(19) World Intellectual Property Organization International Bureau

T DER STATE TRADESIA DE STATE FOR THE STATE FOR THE STATE OF THE STATE STATE STATE STATE STATE STATE STATE STA

(43) International Publication Date 10 January 2002 (10.01.2002)

PCT

(10) International Publication Number WO 02/02606 A2

- (51) International Patent Classification7: C07K 14/295, C12N 15/31, A61K 39/118
- (21) International Application Number: PCT/IB01/01445
- (22) International Filing Date: 3 July 2001 (03.07.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data: 0016363.4 3 July 2000 (03.07.2000) GB 0017047.2 11 July 2000 (11.07.2000) GB 0017983.8 21 July 2000 (21.07.2000) GB 0019368.0 7 August 2000 (07.08.2000) GB 0020440.4 18 August 2000 (18.08.2000) GB 0022583.9 14 September 2000 (14.09.2000) GB 0027549.5 10 November 2000 (10.11.2000) GB 0031706.5 22 December 2000 (22.12.2000) GB
- (71) Applicant (for all designated States except US): CHIRON S.P.A. [IT/IT]; Via Fiorentina, 1, I-53100 Siena (IT).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): RATTI, Giulio [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). GRANDI, Guido [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT).
- (74) Agents: HALLYBONE, Huw, George et al.; Carpmaels & Ransford, 43 Bloomsbury Square, London WC1A 2RA (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

[Continued on next page]

(54) Title: IMMUNISATION AGAINST CHLAMYDIA PNEUMONIAE

(57) Abstract: The published genomic of *Chlamydia pneumoniae* reveals over 1000 putative encoded proteins but does not itself indicate which of these might to useful antigens for immunisation and vaccination or for diagnosis. This difficulty is addressed by the invention, which provides a number of *C. pneumoniae* protein sequences suitable for vaccine production and development and/or for diagnostic purposes.

WO 02/02606 A2

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

 without international search report and to be republished upon receipt of that report

IMMUNISATION AGAINST CHLAMYDIA PNEUMONIAE

All documents cited herein are incorporated by reference in their entirety.

TECHNICAL FIELD

This invention is in the field of immunisation against chlamydial infection, in particular against infection by *Chlamydia pneumoniae*.

BACKGROUND ART

5

10

15

20

25

30

35

Chlamydiae are obligate intracellular parasites of eukaryotic cells which are responsible for endemic sexually transmitted infections and various other disease syndromes. They occupy an exclusive eubacterial phylogenic branch, having no close relationship to any other known organisms – they are classified in their own order (Chlamydiales) which contains a single family (Chlamydiaceae) which in turn contains a single genus (Chlamydia). A particular characteristic of the Chlamydiae is their unique life cycle, in which the bacterium alternates between two morphologically distinct forms. an extracellular infective form (elementary bodies, EB) and an intracellular non-infective form (reticulate bodies, RB). The life cycle is completed with the re-organization of RB into EB, which subsequently leave the disrupted host cell ready to infect further cells.

Four chlamydial species are currently known — C.trachomatis, C.pneumoniae, C.pecorum and C.psittaci [e.g. Raulston (1995) Mol Microbiol 15:607-616; Everett (2000) Vet Microbiol 75:109-126]. C.pneumoniae is closely related to C.trachomatis, as the whole genome comparison of at least two isolates from each species has shown [Kalman et al. (1999) Nature Genetics 21:385-389; Read et al. (2000) Nucleic Acids Res 28:1397-406; Stephens et al. (1998) Science 282:754-759]. Based on surface reaction with patient immune sera, the current view is that only one serotype of C.pneumoniae exists world-wide.

C.pneumoniae is a common cause of human respiratory disease. It was first isolated from the conjunctiva of a child in Taiwan in 1965, and was established as a major respiratory pathogen in 1983. In the USA, C.pneumoniae causes approximately 10% of community-acquired pneumonia and 5% of pharyngitis, bronchitis, and sinusitis.

More recently, the spectrum of *C.pneumoniae* infections has been extended to include atherosclerosis, coronary heart disease, carotid artery stenosis, myocardial infarction, cerebrovascular disease, aortic aneurysm, claudication, and stroke. The association of *C.pneumoniae* with atherosclerosis is corroborated by the presence of the organism in atherosclerotic lesions throughout the arterial tree and the near absence of the organism in healthy arterial tissue. *C.pneumoniae* has also been isolated from coronary and carotid atheromatous plaques. The bacterium has also been associated with other acute and chronic respiratory diseases (*e.g.* otitis media, chronic obstructive pulmonary disease, pulmonary exacerbation of cystic fibrosis) as a result of sero-epidemiologic observations, case reports, isolation or direct detection of the organism in specimens, and successful

response to anti-chlamydial antibiotics. To determine whether chronic infection plays a role in initiation or progression of disease, intervention studies in humans have been initiated, and animal models of *C.pneumoniae* infection have been developed.

Considerable knowledge of the epidemiology of *C.pneumoniae* infection has been derived from serologic studies using the *C.pneumoniae*-specific microimmunofluorescence test. Infection is ubiquitous, and it is estimated that virtually everyone is infected at some point in life, with common re-infection. Antibodies against *C.pneumoniae* are rare in children under the age of 5, except in developing and tropical countries. Antibody prevalence increases rapidly at ages 5 to 14, reaching 50% at the age of 20, and continuing to increase slowly to ~80% by age 70.

A current hypothesis is that *C.pneumoniae* can persist in an asymptomatic low-grade infection in very large sections of the human population. When this condition occurs, it believed that the presence of *C.pneumoniae*, and/or the effects of the host reaction to the bacterium, can cause or help progress of cardiovascular illness.

It is not yet clear whether *C.pneumoniae* is actually a causative agent of cardiovascular disease, or whether it is just artefactually associated with it. It has been shown, however, that *C.pneumoniae* infection can induce LDL oxidation by human monocytes [Kalayoglu *et al.* (1999) *J. Infect. Dis.* 180:780-90; Kalayoglu *et al.* (1999) *Am. Heart J.* 138:S488-490]. As LDL oxidation products are highly atherogenic, this observation provides a possible mechanism whereby *C.pneumoniae* may cause atheromatous degeneration. If a causative effect is confirmed, vaccination (prophylactic and therapeutic) will be universally recommended.

Genomic sequence information has been published for *C.pneumoniae* [Kalman et al. (1999) supra; Read et al. (2000) supra; Shirai et al. (2000) J. Infect. Dis. 181(Suppl 3):S524-S527; WO99/27105; WO00/27994] and is available from GenBank. Sequencing efforts have not, however, focused on vaccination, and the availability of genomic sequence does not in itself indicate which of the >1000 genes might encode useful antigens for immunisation and vaccination. WO99/27105, for instance, implies that every one of the 1296 ORFs identified in the *C.pneumoniae* strain CM1 genome is a useful vaccine antigen.

It is thus an object of the present invention to identify antigens useful for vaccine production and development from amongst the many proteins present in *C.pneumoniae*. It is a further object to identify antigens useful for diagnosis (e.g. immunodiagnosis) of *C.pneumoniae*.

DISCLOSURE OF THE INVENTION

The invention provides proteins comprising the *C.pneumoniae* amino acid sequences disclosed in the examples.

It also provides proteins comprising sequences which share at least x% sequence identity with the 35 C.pneumoniae amino acid sequences disclosed in the examples. Depending on the particular

25

10

15

20

sequence, x is preferably 50% or more (e.g. 60%, 70%, 80%, 90%, 95%, 99% or more). These include mutants and allelic variants. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence. Identity between proteins is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1.

The invention further provides proteins comprising fragments of the C.pneumoniae amino acid sequences disclosed in the examples. The fragments should comprise at least n consecutive amino acids from the sequences and, depending on the particular sequence, n is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 30, 40, 50, 75, 100 or more). Preferably the fragments comprise one or more epitope(s) from the sequence. Other preferred fragments omit a signal peptide.

The proteins of the invention can, of course, be prepared by various means (e.g. native expression, recombinant expression, purification from cell culture, chemical synthesis etc.) and in various forms (e.g. native, fusions etc.). They are preferably prepared in substantially pure form (ie. substantially free from other C.pneumoniae or host cell proteins). Heterologous expression in E.coli is a preferred preparative route.

According to a further aspect, the invention provides nucleic acid comprising the *C.pneumoniae* nucleotide sequences disclosed in the examples. In addition, the invention provides nucleic acid comprising sequences which share at least x% sequence identity with the *C.pneumoniae* nucleotide sequences disclosed in the examples. Depending on the particular sequence, x is preferably 50% or more (e.g. 60%, 70%, 80%, 90%, 95%, 99% or more).

Furthermore, the invention provides nucleic acid which can hybridise to the *C.pneumoniae* nucleic acid disclosed in the examples, preferably under "high stringency" conditions (e.g. 65°C in a 0.1xSSC, 0.5% SDS solution).

Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least n consecutive nucleotides from the *C.pneumoniae* sequences and, depending on the particular sequence, n is 10 or more (e.g. 12, 14, 15, 18, 20, 25, 30, 35, 40, 50, 75, 100, 200, 300 or more).

According to a further aspect, the invention provides nucleic acid encoding the proteins and protein fragments of the invention.

30 It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (e.g. for antisense or probing purposes).

Nucleic acid according to the invention can, of course, be prepared in many ways (e.g. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (e.g. single stranded, double stranded, vectors, probes etc.).

In addition, the term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.

According to a further aspect, the invention provides vectors comprising nucleotide sequences of the invention (e.g. cloning or expression vectors) and host cells transformed therewith.

According to a further aspect, the invention provides immunogenic compositions comprising protein and/or nucleic acid according to the invention. These compositions are suitable for immunisation and vaccination purposes. Vaccines of the invention may be prophylactic or therapeutic, and will typically comprise an antigen which can induce antibodies capable of inhibiting (a) chlamydial adhesion, (b) chlamydial entry, and/or (c) successful replication within the host cell. The vaccines preferably induce any cell-mediated T-cell responses which are necessary for chlamydial clearance from the host.

The invention also provides nucleic acid or protein according to the invention for use as medicaments (e.g. as vaccines). It also provides the use of nucleic acid or protein according to the invention in the manufacture of a medicament (e.g. a vaccine or an immunogenic composition) for treating or preventing infection due to C.pneumoniae.

The invention also provides a method of treating (e.g. immunising) a patient, comprising administering to the patient a therapeutically effective amount of nucleic acid or protein according to the invention.

According to further aspects, the invention provides various processes.

A process for producing proteins of the invention is provided, comprising the step of culturing a host cell according to the invention under conditions which induce protein expression.

A process for producing protein or nucleic acid of the invention is provided, wherein the protein or nucleic acid is synthesised in part or in whole using chemical means.

A process for detecting *C.pneumoniae* in a sample is provided, wherein the sample is contacted with an antibody which binds to a protein of the invention.

A summary of standard techniques and procedures which may be employed in order to perform the invention (e.g. to utilise the disclosed sequences for immunisation) follows. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.

<u>General</u>

- The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature e.g. Sambrook Molecular Cloning; A Laboratory Manual, Second Edition (1989) and Third Edition (2001); DNA Cloning, Volumes 1 and ii (D.N Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed, 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds.
- 35 1984); Transcription and Translation (B.D. Hames & S.J. Higgins eds. 1984); Animal Cell Culture (R.I.

Freshney ed. 1986); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide to Molecular Cloning (1984); the Methods in Enzymology series (Academic Press, Inc.), especially volumes 154 & 155; Gene Transfer Vectors for Mammalian Cells (J.H. Miller and M.P. Calos eds. 1987, Cold Spring Harbor Laboratory); Mayer and Walker, eds. (1987), Immunochemical Methods in Cell and Molecular Biology (Academic Press, London); Scopes, (1987) Protein Purification: Principles and Practice, Second Edition (Springer-Verlag, N.Y.), and Handbook of Experimental Immunology, Volumes I-IV (D.M. Weir and C. C. Blackwell eds 1986).

Standard abbreviations for nucleotides and amino acids are used in this specification.

Definitions

5

A composition containing X is "substantially free of" Y when at least 85% by weight of the total X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.

The term "comprising" means "including" as well as "consisting" e.g. a composition "comprising" X may consist exclusively of X or may include something additional to X, such as X+Y.

The term "heterologous" refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a Chlamydial sequence is heterologous to a mouse host cell. A further examples would be two epitopes from the same or different proteins which have been assembled in a single protein in an arrangement not found in nature.

An "origin of replication" is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.

A "mutant" sequence is defined as DNA, RNA or amino acid sequence differing from but having sequence identity with the native or disclosed sequence. Depending on the particular sequence, the degree of sequence identity between the native or disclosed sequence and the mutant sequence is preferably greater than 50% (e.g. 60%, 70%, 80%, 90%, 95%, 99% or more, calculated using the Smith-Waterman algorithm as described above). As used herein, an "allelic variant" of a nucleic acid molecule, or region, for which nucleic acid sequence is provided herein is a nucleic acid molecule, or region, that occurs essentially at the same locus in the genome of another or second isolate, and that, due to natural variation caused by, for example, mutation or recombination, has a similar but not identical nucleic acid sequence. A coding region allelic variant typically encodes a protein having similar activity to that of the protein encoded by the gene to which it is being compared. An allelic variant can also comprise an alteration in the 5' or 3' untranslated regions of the gene, such as in regulatory control regions (e.g. see US patent 5,753,235).

Expression systems

The Chlamydial nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, baculoviruses, plants, bacteria, and yeast.

i. Mammalian Systems

Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5' end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, usually located within 100 to 200 bp upstream of the TATA box. An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation [Sambrook et al. (1989) "Expression of Cloned Genes in Mammalian Cells." In Molecular Cloning: A Laboratory Manual, 2nd ed.].

Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallotheionein gene, also provide useful promoter sequences. Expression may be either constitutive or regulated (inducible), depending on the promoter can be induced with glucocorticoid in hormone-responsive cells.

The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter [Maniatis et al. (1987) Science 236:1237; Alberts et al. (1989) Molecular Biology of the Cell, 2nd ed.]. Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host range. Examples include the SV40 early gene enhancer [Dijkema et al (1985) EMBO J. 4:761] and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus [Gorman et al. (1982) PNAS USA 79:6777] and from human cytomegalovirus [Boshart et al. (1985) Cell 41:521]. Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a hormone or metal ion [Sassone-Corsi and Borelli (1986) Trends Genet. 2:215; Maniatis et al. (1987) Science 236:1237].

A DNA molecule may be expressed intracellularly in mammalian cells. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide.

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells. Preferably, there are processing sites encoded between the leader

15

20

25

30

fragment and the foreign gene that can be cleaved either in vivo or in vitro. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The adenovirus triparite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.

Usually, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. The 3' terminus of the mature mRNA is formed by site-specific post-transcriptional cleavage and polyadenylation [Birnstiel et al. (1985) Cell 41:349; Proudfoot and Whitelaw (1988) "Termination and 3' end processing of eukaryotic RNA. In Transcription and splicing (ed. B.D. Hames and D.M. Glover); Proudfoot (1989) Trends Biochem. Sci. 14:105]. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminater/polyadenylation signals include those derived from SV40 [Sambrook et al (1989) "Expression of cloned genes in cultured mammalian cells." In Molecular Cloning: A Laboratory Manual].

Usually, the above described compinents, comprising a promoter, polyadenylation signal, and transcription termination sequence are put together into expression constructs. Enhancers, introns with functional splice donor 15 and acceptor sites, and leader sequences may also be included in an expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g. plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria. Mammalian replication systems include those derived from animal viruses, which require trans-acting factors to replicate. For example, plasmids containing the replication systems of papovaviruses, such as SV40 [Gluzman (1981) Cell 23:175] or polyomavirus, 20 replicate to extremely high copy number in the presence of the appropriate viral T antigen. Additional examples of mammalian replicons include those derived from bovine papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replicaton systems, thus allowing it to be maintained, for example, in mammalian cells for expression and in a prokaryotic host for cloning and amplification. Examples of such mammalianbacteria shuttle vectors include pMT2 [Kaufman et al. (1989) Mol. Cell. Biol. 9:946] and pHEBO [Shimizu et al. 25 (1986) Mol. Cell. Biol. 6:1074].

The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene-mediated transfection, protoplast fusion, electroporation, encapsulation of polynucleotide(s) in liposomes, direct microinjection of the DNA into nuclei.

Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g. Hep G2), and a number of other cell lines.

35 <u>ii. Baculovirus Systems</u>

The polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector. Vector construction employs techniques which are known in the art. Generally, the components of the expression system include a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus genome, and a convenient restriction site for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence

40

15

30

35

homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.

After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, inter alia, Invitrogen, San Diego CA ("MaxBac" kit). These techniques are generally known to those skilled in the art and fully described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987) (hereinafter "Summers and Smith").

Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its owned set of operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (e.g. plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.

Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers, Virology (1989) 17:31.

The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) Ann. Rev. Microbiol., 42:177) and a prokaryotic ampicillin-resistance (amp) gene and origin of replication for selection and propagation in E. coli.

Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (5' to 3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulated or constitutive.

Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein, Friesen et al., (1986) "The Regulation of Baculovirus Gene Expression," in: The Molecular Biology of Baculoviruses (ed. Walter Doerfler); EPO Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), J. Gen. Virol. 69:765.

DNA encoding suitable signal sequences can be derived from genes for secreted insect or baculovirus proteins, such as the baculovirus polyhedrin gene (Carbonell et al. (1988) Gene, 73:409). Alternatively, since the signals

10

15

for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect origin, such as those derived from genes encoding human & interferon, Maeda et al., (1985), Nature 315:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), Molec. Cell. Biol. 8:3129; human IL-2, Smith et al., (1985) Proc. Nat'l Acad. Sci. USA, 82:8404; mouse IL-3, (Miyajima et al., (1987) Gene 58:273; and human glucocerebrosidase, Martin et al. (1988) DNA, 7:99, can also be used to provide for secretion in insects.

A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted. Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by in vitro incubation with cyanogen bromide.

Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.

After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus -- usually by co-transfection. The promoter and transcription termination sequence of the construct will usually comprise a 2-5kb section of the baculovirus genome. Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art. (See Summers and Smith supra; Ju et al. (1987); Smith et al., Mol. Cell. Biol. (1983) 3:2156; and Luckow and Summers (1989)). For example, the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), Bioessays 4:91. The DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5' and 3' by polyhedrin-specific sequences and is positioned downstream of the polyhedrin promoter.

The newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant baculovirus. Homologous recombination occurs at low frequency (between ~1% and ~5%); thus, the majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles. These occlusion bodies, up to 15µm in size, are highly refractile, giving them a bright shiny appearance that is readily visualized under the light microscope. Cells infected with recombinant viruses lack occlusion bodies. To distinguish recombinant virus from wild-type virus, the transfection supernatant is plaqued onto a monolayer of insect cells by techniques known to those skilled in the art. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus)

or absence (indicative of recombinant virus) of occlusion bodies. "Current Protocols in Microbiology" Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers & Smith, supra; Miller et al. (1989).

Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, inter alia: Aedes aegypti, Autographa californica, Bombyx mori, Drosophila melanogaster, Spodoptera frugiperda, and Trichoplusia ni (WO 89/046699; Carbonell et al., (1985) J. Virol. 56:153; Wright (1986) Nature 321:718; Smith et al., (1983) Mol. Cell. Biol. 3:2156; and see generally, Fraser, et al. (1989) In Vitro Cell. Dev. Biol. 25:225).

Cells and cell culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, e.g. Summers and Smith supra.

The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients. The product may be purified by such techniques as chromatography, e.g. HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, or the like. As appropriate, the product may be further purified, as required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host debris, e.g. proteins, lipids and polysaccharides.

In order to obtain protein expression, recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, based upon what is known in the art.

25 <u>iii. Plant Systems</u>

10

15

20

30

35

There are many plant cell culture and whole plant genetic expression systems known in the art. Exemplary plant cellular genetic expression systems include those described in patents, such as: US 5,693,506; US 5,659,122; and US 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, Phytochemistry 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found in addition to the references described above in Vaulcombe et al., Mol. Gen. Genet. 209:33-40 (1987); Chandler et al., Plant Molecular Biology 3:407-418 (1984); Rogers, J. Biol. Chem. 260:3731-3738 (1985); Rothstein et al., Gene 55:353-356 (1987); Whittier et al., Nucleic Acids Research 15:2515-2535 (1987); Wirsel et al., Molecular Microbiology 3:3-14 (1989); Yu et al., Gene 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellic acid and secreted enzymes induced by gibberellic acid can be found in R.L. Jones and J. MacMillin, Gibberellins: in: Advanced Plant Physiology, Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited, London, pp. 21-52. References that describe other metabolically-regulated genes: Sheen, Plant Cell, 2:1027-1038(1990); Maas et al., EMBO J. 9:3447-3452 (1990); Benkel and Hickey, Proc. Natl. Acad. Sci. 84:1337-1339 (1987)

15

20

Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. The expression cassette is inserted into a desired expression vector with companion sequences upstream and downstream from the expression cassette suitable for expression in a plant host. The companion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker; and, for Agrobacterium transformations, T DNA sequences for Agrobacterium-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993, Plant Mol. Biol. Reptr, 11(2):165-185.

Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance toward antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.

The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, although two or more are feasible. The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant 5' untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the 5' and 3' ends of the cassette allow for easy insertion into a pre-existing vector.

- A heterologous coding sequence may be for any protein relating to the present invention. The sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually lack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested. Typically secretion in seeds are across the aleurone or scutellar epithelium layer into the endosperm of the seed. While it is not required that the protein be secreted from the cells in which the protein is produced, this facilitates the isolation and purification of the recombinant protein.
- Since the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the "intron" region may be conducted to prevent losing a portion of the genetic message as a false intron code, Reed and Maniatis, Cell 41:95-105, 1985.

The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, Mol. Gen. Genet, 202:179-185, 1985. The genetic material may also be

10

15

20

25

30

35

transferred into the plant cell by using polyethylene glycol, Krens, et al., Nature, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., Nature, 327, 70-73, 1987 and Knudsen and Muller, 1991, Planta, 185:330-336 teaching particle bombardment of barley endosperm to create transgenic barley. Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., Proc. Natl. Acad. Sci. USA, 79, 1859-1863, 1982.

The vector may also be introduced into the plant cells by electroporation. (Fromm et al., *Proc. Natl Acad. Sci. USA* 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.

All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hererocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.

In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will be adjusted through routine methods to optimize expression and recovery of heterologous protein.

iv. Bacterial Systems

5

10

15

20

25

30

35

40

Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A bacterial promoter may also have a second domain called an operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5') to the RNA polymerase binding sequence. An example of a gene activator protein is the catabolite activator protein (CAP), which helps initiate transcription of the lac operon in Escherichia coli (E. coli) [Raibaud et al. (1984) Annu. Rev. Genet. 18:173]. Regulated expression may therefore be either positive or negative, thereby either enhancing or reducing transcription.

Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (lac) [Chang et al. (1977) Nature 198:1056], and maltose. Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (trp) [Goeddel et al. (1980) Nuc. Acids Res. 8:4057; Yelverton et al. (1981) Nucl. Acids Res. 9:731; US patent 4,738,921; EP-A-0036776 and EP-A-0121775]. The g-laotam ase (bla) promoter system [Weissmann (1981) "The cloning of interferon and other mistakes." In Interferon 3 (ed. I. Gresser)], bacteriophage lambda PL [Shimatake et al. (1981) Nature 292:128] and T5 [US patent 4,689,406] promoter systems also provide useful promoter sequences.

In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter [US patent 4,551,433]. For example, the tac promoter is a hybrid trp-lac promoter comprised of both trp promoter and lac operon sequences that is regulated by the lac repressor [Amann et al. (1983) Gene 25:167; de Boer et al. (1983) Proc. Natl. Acad. Sci. 80:21]. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system [Studier et al. (1986) J. Mol. Biol. 189:113; Tabor et al. (1985) Proc Natl. Acad. Sci. 82:1074]. In addition, a hybrid promoter can also be comprised of a bacteriophage promoter and an E. coli operator region (EPO-A-0 267 851).

In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In *E. coli*, the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon [Shine et al. (1975) Nature 254:34]. The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3' and of *E. coli* 16S rRNA [Steitz et al. (1979) "Genetic signals and nucleotide sequences in messenger RNA." In Biological

15

20

25

30

Regulation and Development: Gene Expression (ed. R.F. Goldberger)]. To express eukaryotic genes and prokaryotic genes with weak ribosome-binding site [Sambrook et al. (1989) "Expression of cloned genes in Escherichia coli." In Molecular Cloning: A Laboratory Manual].

A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide or by either in vivo on in vitro incubation with a bacterial methionine N-terminal peptidase (EPO-A-0 219 237).

Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the bacteriophage lambda cell gene can be linked at the 5' terminus of a foreign gene and expressed in bacteria. The resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene [Nagai et al. (1984) Nature 309:810]. Fusion proteins can also be made with sequences from the lacZ [Jia et al. (1987) Gene 60:197], trpE [Allen et al. (1987) J. Biotechnol. 5:93; Makoff et al. (1989) J. Gen. Microbiol. 135:11], and Chey [EP-A-O 324 647] genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (e.g. ubiquitin specific processing-protease) to cleave the ubiquitin from the foreign protein. Through this method, native foreign protein can be isolated [Miller et al. (1989) Bio/Technology 7:698].

Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that encode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria [US patent 4,336,336]. The signal sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). Preferably there are processing sites, which can be cleaved either in vivo or in vitro encoded between the signal peptide fragment and the foreign gene.

DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the E. coli outer membrane protein gene (ompA) [Masui et al. (1983), in: Experimental Manipulation of Gene Expression; Ghrayeb et al. (1984) EMBO J. 3:2437] and the E. coli alkaline phosphatase signal sequence (phoA) [Oka et al. (1985) Proc. Natl. Acad. Sci. 82:7212]. As an additional example, the signal sequence of the alphaamylase gene from various Bacillus strains can be used to secrete heterologous proteins from B. subtilis [Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 244 042].

Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription. Examples include transcription termination sequences derived from genes with strong promoters, such as the trp gene in E. coli as well as other biosynthetic genes.

10

15

20

25

30

35

40

Usually, the above described components, comprising a promoter, signal sequence (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g. plasmids) capable of stable maintenance in a host, such as bacteria. The replicon will have a replication system, thus allowing it to be maintained in a prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host.

Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (EP-A- 0 127 328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin (neomycin), and tetracycline [Davies et al. (1978) Annu. Rev. Microbiol. 32:469]. Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.

Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extra-chromosomal replicons or integrating vectors, have been developed for transformation into many bacteria. For example, expression vectors have been developed for, inter alia, the following bacteria: Bacillus subtilis [Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541], Escherichia coli [Shimatake et al. (1981) Nature 292:128; Amann et al. (1985) Gene 40:183; Studier et al. (1986) J. Mol. Biol. 189:113; EP-A-0 036 776, EP-A-0 136 829 and EP-A-0 136 907], Streptococcus cremoris [Powell et al. (1988) Appl. Environ. Microbiol. 54:655]; Streptococcus lividans [Powell et al. (1988) Appl. Environ. Microbiol. 54:655].

Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl₂ or other agents, such as divalent cations and DMSO. DNA can also be introduced into bacterial cells by electroporation. Transformation procedures usually vary with the bacterial species to be transformed. See e.g. [Masson et al. (1989) FEMS Microbiol. Lett. 60:273; Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541, Bacillus], [Miller et al. (1988) Proc. Natl. Acad. Sci. 85:856; Wang et al. (1990) J. Bacteriol. 172:949, Campylobacter], [Cohen et al. (1973) Proc. Natl. Acad. Sci. 69:2110; Dower et al. (1988) Nucleic Acids Res. 16:6127; Kushner (1978) "An improved method for transformation of Escherichia coli with ColE1-derived plasmids. In Genetic

Engineering: Proceedings of the International Symposium on Genetic Engineering (eds. H.W. Boyer and S. Nicosia); Mandel et al. (1970) J. Mol. Biol. 53:159; Taketo (1988) Biochim. Biophys. Acta 949:318; Escherichia], [Chassy et al. (1987) FEMS Microbiol. Lett. 44:173 Lactobacillus]; [Fiedler et al. (1988) Anal. Biochem 170:38, Pseudomonas]; [Augustin et al. (1990) FEMS Microbiol. Lett. 66:203, Staphylococcus], [Barany et al. (1980) J. Bacteriol. 144:698; Harlander (1987) "Transformation of Streptococcus lactis by electroporation, in: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss III); Perry et al. (1981) Infect. Immun. 32:1295; Powell et al. (1988) Appl. Environ. Microbiol. 54:655; Somkuti et al. (1987) Proc. 4th Evr. Cong. Biotechnology 1:412, Streptococcus].

v. Yeast Expression

- Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the "TATA Box") and a transcription initiation site. A yeast promoter may also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may be either positive or negative, thereby either enhancing or reducing transcription.
- Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences. Examples include alcohol dehydrogenase (ADH) (EP-A-0 284 044), enclase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO-A-0 329 203). The yeast PHO5 gene, encoding acid phosphatase, also provides useful promoter sequences [Myanohara et al. (1983) Proc. Natl. Acad. Sci. USA 80:1].
- In addition, synthetic promoters which do not occur in nature also function as yeast promoters. For example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (US Patent Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the ADH2, GAL4, GAL10, OR PHO5 genes, combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EP-A-0 164 556). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, inter alia, [Cohen et al. (1980) Proc. Natl. Acad. Sci. USA 77:1078; Henikoff et al. (1981) Nature 283:835; Hollenberg et al. (1981) Curr. Topics Microbiol. Immunol. 96:119; Hollenberg et al. (1979) "The Expression of Bacterial Antibiotic Resistance Genes in the Yeast Saccharomyces cerevisiae," in: Plasmids of Medical, Environmental and Commercial Importance (eds. K.N. Timmis and A.

A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always

Puhler); Mercerau-Puigalon et al. (1980) Gene 11:163; Panthier et al. (1980) Curr. Genet. 2:109;].

15

20

25

30

35

40

be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide.

Fusion proteins provide an alternative for yeast expression systems, as well as in mammalian, baculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeast protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human superoxide dismutase (SOD) gene, can be linked at the 5' terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See e.g. EP-A-0 196 056. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (e.g. ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method, therefore, native foreign protein can be isolated (e.g. W 088/024066).

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either in vivo or in vitro. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.

DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the genes for invertase (EP-A-0012873; JPO 62,096,086) and A-factor (US patent 4,588,684). Alternatively, leaders of non-yeast origin exit, such as an interferon leader, that also provide for secretion in yeast (EP-A-0060057).

A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a "pre" signal sequence, and a "pro" region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (US Patents 4,546,083 and 4,870,008; EP-A-0 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (e.g. see WO 89/02463.)

Usually, transcription termination sequences recognized by yeast are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator sequence and other yeast-recognized termination sequences, such as those coding for glycolytic enzymes.

Usually, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g. plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 [Botstein et al. (1979) Gene 8:17-24], pC1/1 [Brake et al. (1984) Proc. Natl. Acad. Sci USA 81:4642-4646], and YRp17 [Stinchcomb et al. (1982) J. Mol. Biol. 158:157]. In addition, a replicon may be either a high or low copy number plasmid. A high copy

number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See e.g. Brake et al., supra.

Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome [Orr-Weaver et al. (1983) Methods in Enzymol. 101:228-245]. An integrating vector may be directed to a specific locus in yeast by selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver et al., supra. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced [Rine et al. (1983) Proc. Natl. Acad. Sci. USA 80:6750]. The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the expression construct in the vector, which can result in the stable integration of only the expression construct.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers may include biosynthetic genes that can be expressed in the yeast host, such as ADE2, HIS4, LEU2, TRP1, and ALG7, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of CUP1 allows yeast to grow in the presence of copper ions [Butt et al. (1987) Microbiol, Rev. 51:351].

Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors have been developed for, inter alia, the following yeasts: Candida albicans [Kurtz, et al. (1986) Mol. Cell. Biol. 6:142], Candida maltosa [Kunze, et al. (1985) J. Basic Microbiol. 25:141]. Hansenula polymorpha [Gleeson, et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302], Kluyveromyces fragilis [Das, et al. (1984) J. Bacteriol. 158:1165], Kluyveromyces lactis [De Louvencourt et al. (1983) J. Bacteriol. 154:737; Van den Berg et al. (1990) Bio/Technology 8:135], Pichia guillerimondii [Kunze et al. (1985) J. Basic Microbiol. 25:141], Pichia pastoris [Cregg, et al. (1985) Mol. Cell. Biol. 5:3376; US Patent Nos. 4,837,148 and 4,929,555], Saccharomyces cerevisiae [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75:1929; Ito et al. (1983) J. Bacteriol. 153:163], Schizosaccharomyces pombe [Beach and Nurse (1981) Nature 300:706], and Yarrowia lipolytica [Davidow, et al. (1985) Curr. Genet. 10:380471 Gaillardin, et al. (1985) Curr. Genet. 10:49].

Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See e.g. [Kurtz et al. (1986) Mol. Cell. Biol. 6:142; Kunze et al. (1985) J. Basic Microbiol. 25:141; Candida]; [Gleeson et al. (1986) J. Gen. Microbiol. 132:3459;

20

25

30

35

10

15

20

25

30

35

Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302; Hansenula]; [Das et al. (1984) J. Bacteriol. 158:1165; De Louvencourt et al. (1983) J. Bacteriol. 154:1165; Van den Berg et al. (1990) Bio/Technology 8:135; Kluyveromyces]; [Cregg et al. (1985) Mol. Cell. Biol. 5:3376; Kunze et al. (1985) J. Basic Microbiol. 25:141; US Patents 4,837,148 & 4,929,555; Pichia]; [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75;1929; Ito et al. (1983) J. Bacteriol. 153:163 Saccharomyces]; [Beach & Nurse (1981) Nature 300:706; Schizosaccharomyces]; [Davidow et al. (1985) Curr. Genet. 10:39; Gaillardin et al. (1985) Curr. Genet. 10:49; Yarrowia].

Pharmaceutical Compositions

Pharmaceutical compositions can comprise polypeptides and/or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.

The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgement of the clinician.

For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.

Delivery Methods

Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals; in particular, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (e.g. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

<u>Vaccines</u>

15

20

25

30

35

Vaccines according to the invention may either be prophylactic (ie. to prevent infection) or therapeutic (ie. to treat disease after infection).

Such vaccines comprise immunising antigen(s), immunogen(s), polypeptide(s), protein(s) or nucleic acid, usually in combination with "pharmaceutically acceptable carriers," which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents ("adjuvants"). Furthermore, the antigen or immunogen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, H. pylori, etc. pathogens.

Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59™ (WO 90/14837; Chapter 10 in Vaccine design: the subunit and adjuvant approach, eds. Powell & Newman, Plenum Press 1995), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronicblocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) RibiTM adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (DetoxTM); (3) saponin adjuvants, such as StimulonTM (Cambridge Bioscience, Worcester, MA) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (5) cytokines, such as interleukins (e.g. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (e.g. gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc; and (6) other substances that act as immunostimulating agents to enhance the effectiveness of the composition. Alum and MF59™ are preferred.

10

15

20

25

30

As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.

The immunogenic compositions (e.g. the immunising antigen/immunogen/polypeptide/protein/ nucleic acid, pharmaceutically acceptable carrier, and adjuvant) typically will contain diluents, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles.

Typically, the immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.

Immunogenic compositions used as vaccines comprise an immunologically effective amount of the antigenic or immunogenic polypeptides, as well as any other of the above-mentioned components, as needed. By "immunologically effective amount", it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (e.g. nonhuman primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

The immunogenic compositions are conventionally administered parenterally, e.g. by injection, either subcutaneously, intramuscularly, or transdermally/transcutaneously (e.g. W O98/20734). Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal applications. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.

As an alternative to protein-based vaccines, DNA vaccination may be employed [e.g. Robinson & Torres (1997) Seminars in Immunology 9:271-283; Donnelly et al. (1997) Annu Rev Immunol 15:617-648; see later herein].

Gene Delivery Vehicles

Gene therapy vehicles for delivery of constructs including a coding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal, can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches in *in vivo* or *ex vivo* modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence in vivo can be either constitutive or regulated.

The invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences.

The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) Cancer Gene Therapy 1:51-64; Kimura (1994) Human Gene Therapy 5:845-852; Connelly (1995) Human Gene Therapy 6:185-193; and Kaplitt (1994) Nature Genetics 6:148-153.

Retroviral vectors are well known in the art and we contemplate that any retroviral gene therapy vector is employable in the invention, including B, C and D type retroviruses, xenotropic retroviruses (for example, NZB-X1, NZB-X2 and NZB9-1 (see O'Neill (1985) J. Virol. 53:160) polytropic retroviruses e.g. MCF and MCF-MLV (see Kelly (1983) J. Virol. 45:291), spumaviruses and lentiviruses. See RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985.

Portions of the retroviral gene therapy vector may be derived from different retroviruses. For example, retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.

- These recombinant retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see US patent 5,591,624). Retrovirus vectors can be constructed for site-specific integration into host cell DNA by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626). It is preferable that the recombinant viral vector is a replication defective recombinant virus.
- Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see W 095/30763 and W 092/05266), and can be used to create producer cell lines (also termed vector cell lines or "VCLs") for the production of recombinant vector particles. Preferably, the packaging cell lines are made from human parent cells (e.g. HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.
- Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia, Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus. Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) J Virol 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC Nol VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No.
- VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-190). Such retroviruses may be obtained from depositories or collections such as the American Type Culture Collection ("ATCC") in Rockville, Maryland or isolated from known sources using commonly available techniques.

Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, W089/02468; W089/05349, W089/09271, W090/02806, W090/07936, W094/03622, W093/25698, W093/25234, W093/11230, W093/10218, W091/02805, W091/02825, W095/07994, US 5,219,740, US 4,405,712, US 4,861,719, US 4,980,289, US 4,777,127, US 5,591,624. See also Vile (1993) Cancer Res 53:3860-3864; Vile (1993) Cancer Res 53:962-967; Ram (1993) Cancer Res 53 (1993) 83-88; Takamiya (1992) J Neurosci Res 33:493-503; Baba (1993) J Neurosurg 79:729-735; Mann (1983) Cell 33:153; Cane (1984) Proc Natl Acad Sci 81:6349; and Miller (1990) Human Gene Therapy 1.

Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See, for example, Berkner (1988) Biotechniques 6:616 and Rosenfeld (1991) Science 252:431, and W 093/07283, W 093/06223, and W 093/07282. Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced documents and in W 094/12649, W 093/03769, W 093/19191, W 094/28938, W 095/11984, W 095/00655, W 095/27071, W 095/29993, W 095/34671,

10

15

20

WO96/05320, WO94/08026, WO94/11506, WO93/06223, WO94/24299, WO95/14102, WO95/24297, WO95/02697, WO94/28152, WO94/24299, WO95/09241, WO95/25807, WO95/05835, WO94/18922 and WO95/09654. Alternatively, administration of DNA linked to killed adenovirus as described in Curiel (1992) Hum. Gene Ther. 3:147-154 may be employed. The gene delivery vehicles of the invention also include adenovirus associated virus (AAV) vectors. Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in Srivastava, WO93/09239. Most preferred AAV vectors comprise the two AAV inverted terminal repeats in which the native D-sequences are modified by substitution of nucleotides, such that at least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides. The native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive nucleotides in each AAV inverted terminal repeat (ie. there is one sequence at each end) which are not involved in HP formation. The non-native replacement nucleotide may be any nucleotide other than the nucleotide found in the native D-sequence in the same position. Other employable exemplary AAV vectors are pWP-19, pWN-1, both of which are disclosed in Nahreini (1993) Gene 124:257-262. Another example of such an AAV vector is psub201 (see Samulski (1987) J. Virol. 61:3096). Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D ITR vector is disclosed in US Patent 5,478,745. Still other vectors are those disclosed in Carter US Patent 4,797,368 and Muzyczka US Patent 5,139,941, Chartejee US Patent 5,474,935, and Kotin WO94/288157. Yet a further example of an AAV vector employable in this invention is SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su (1996) Human Gene Therapy 7:463-470. Additional AAV gene therapy vectors are described in US 5,354,678, US 5,173,414, US 5,139,941, and US 5,252,479.

The gene therapy vectors of the invention also include herpes vectors. Leading and preferred examples are herpes simplex virus vectors containing a sequence encoding a thymidine kinase polypeptide such as those disclosed in US 5,288,641 and EP0176170 (Roizman). Additional exemplary herpes simplex virus vectors include HFEM/ICP6-LacZ disclosed in W 095/04139 (W istar), pHSVlac described in Geller (1988) Science 241:1667-1669 and in W 090/09441 & W 092/07945, HSV Us3::pgC-lacZ described in Fink (1992) Human Gene Therapy 3:11-19 and HSV 7134, 2 RH 105 and GAL4 described in EP 0453242 (Breakefield), and those deposited with ATCC as accession numbers ATCC VR-977 and ATCC VR-260.

Also contemplated are alpha virus gene therapy vectors that can be employed in this invention. Preferred alpha virus vectors are Sindbis viruses vectors. Togaviruses, Semliki Forest virus (ATCC VR-67; ATCC VR-1247), Middleberg virus (ATCC VR-370), Ross River virus (ATCC VR-373; ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC VR-1249; ATCC VR-532), and those described in US patents 5,091,309, 5,217,879, and WO92/10578. More particularly, those alpha virus vectors described in US Serial No. 08/405,627, filed March 15, 1995, WO94/21792, WO92/10578, WO95/07994, US 5,091,309 and US 5,217,879 are employable. Such alpha viruses may be obtained from depositories or collections such as the ATCC in Rockville, Maryland or isolated from known sources using commonly available techniques. Preferably, alphavirus vectors with reduced cytotoxicity are used (see USSN 08/679640).

DNA vector systems such as eukaryotic layered expression systems are also useful for expressing the nucleic acids of the invention. See W095/07994 for a detailed description of eukaryotic layered expression systems.

15

20

25

30

35

40

Preferably, the eukaryotic layered expression systems of the invention are derived from alphavirus vectors and most preferably from Sindbis viral vectors.

Other viral vectors suitable for use in the present invention include those derived from poliovirus, for example ATCC VR-58 and those described in Evans, Nature 339 (1989) 385 and Sabin (1973) J. Biol. Standardization 1:115; rhinovirus, for example ATCC VR-1110 and those described in Arnold (1990) J Cell Biochem L401; pox .viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) Proc Natl Acad Sci 86:317; Flexner (1989) Ann NY Acad Sci 569:86, Flexner (1990) Vaccine 8:17; in US 4,603,112 and US 4,769,330 and WO89/01973; SV40 virus, for example ATCC VR-305 and those described in Mulligan (1979) Nature 277:108 and Madzak (1992) J Gen Virol 73:1533; influenza virus, for example ATCC VR-797 and recombinant influenza viruses made employing reverse genetics techniques as described in US 5,166,057 and in Enami (1990) Proc Natl Acad Sci 87:3802-3805; Enami & Palese (1991) J Virol 65:2711-2713 and Luytjes (1989) Cell 59:110, (see also McMichael (1983) NEJ Med 309:13, and Yap (1978) Nature 273:238 and Nature (1979) 277:108); human immunodeficiency virus as described in EP-0386882 and in Buchschacher (1992) J. Virol. 66:2731; measles virus, for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240; Cabassou virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and ATCC VR-1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzylagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR-66; Mucambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATCC VR-371; Pixuna virus, for example ATCC VR-372 and ATCC VR-1245; Tonate virus, for example ATCC VR-925; Triniti virus, for example ATCC VR-469; Una virus, for example ATCC VR-374; Whataroa virus, for example ATCC VR-926; Y-62-33 virus, for example ATCC VR-375; O'Nyong virus, Eastern encephalitis virus, for example ATCC VR-65 and ATCC VR-1242; Western encephalitis virus, for example ATCC VR-70, ATCC VR-1251, ATCC VR-622 and ATCC VR-1252; and coronavirus, for example ATCC VR-740 and those described in Hamre (1966) Proc Soc Exp Biol Med 121:190.

Delivery of the compositions of this invention into cells is not limited to the above mentioned viral vectors. Other delivery methods and media may be employed such as, for example, nucleic acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see US Serial No. 08/366,787, filed December 30, 1994 and Curiel (1992) Hum Gene Ther 3:147-154 ligand linked DNA, for example see Wu (1989) J Biol Chem 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see US Serial No.08/240,030, filed May 9, 1994, and US Serial No. 08/404,796, deposition of photopolymerized hydrogel materials, hand-held gene transfer particle gun, as described in US Patent 5,149,655, ionizing radiation as described in US5,206,152 and in WO92/11033, nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip (1994) Mol Cell Biol 14:2411-2418 and in Woffendin (1994) Proc Natl Acad Sci 91:1581-1585.

Particle mediated gene transfer may be employed, for example see US Serial No. 60/023,867. Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialogrosomucoid, as described in Wu & Wu (1987) J. Biol. Chem. 262:4429-4432, insulin as described in Hucked (1990) Biochem Pharmacol 40:253-263, galactose as described in Plank (1992) Bioconjugate Chem 3:533-539, lactose or transferrin.

15

W 092/11033

Naked DNA may also be employed. Exemplary naked DNA introduction methods are described in WO90/11092 and US 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm.

Liposomes that can act as gene delivery vehicles are described in US 5,422,120, WO95/13796, WO94/23697, WO91/14445 and EP-524,968. As described in USSN. 60/023,867, on non-viral delivery, the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, insulin, galactose, lactose, or transferrin. Other delivery systems include the use of liposomes to encapsulate DNA comprising the gene under the control of a variety of tissue-specific or ubiquitously-active promoters. Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin et al (1994) Proc. Natl. Acad. Sci. USA 91(24):11581-11585. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in

US 5,149,655; use of ionizing radiation for activating transferred gene, as described in US 5,206,152 and

- Exemplary liposome and polycationic gene delivery vehicles are those described in US 5,422,120 and 4,762,915; in WO 95/13796; WO94/23697; and WO91/14445; in EP-0524968; and in Stryer, Biochemistry, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) Biochem Biophys Acta 600:1; Bayer (1979) Biochem Biophys Acta 550:464; Rivnay (1987) Meth Enzymol 149:119; Wang (1987) Proc Natl Acad Sci 84:7851; Plant (1989) Anal Biochem 176:420.
- A polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above. For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

 *Delivery Methods**
- Once formulated, the polynucleotide compositions of the invention can be administered (1) directly to the subject; (2) delivered ex vivo, to cells derived from the subject; or (3) in vitro for recombinant protein expression. The subjects to be treated can be mammals or birds. Also, human subjects can be treated.
 - Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (e.g. see W O98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.
 - Methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and described in e.g. W093/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells.

Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.

5 Polynucleotide and polypeptide pharmaceutical compositions

In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.

A.Polypeptides

One example are polypeptides which include, without limitation: asioloorosomucoid (ASOR); transferrin; asialoglycoproteins; antibodies; antibody fragments; ferritin; interleukins; interferons, granulocyte, macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as RII.

15 B. Hormones, Vitamins, etc.

Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.

C.Polyalkylenes, Polysaccharides, etc.

Also, polyalkylene glycol can be included with the desired polynucleotides/polypeptides. In a preferred embodiment, the polyalkylene glycol is polyethlylene glycol. In addition, mono-, di-, or polysaccharides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chitosan and poly(lactide-co-glycolide)

D.Lipids, and Liposomes

The desired polynucleotide/polypeptide can also be encapsulated in lipids or packaged in liposomes prior to delivery to the subject or to cells derived therefrom.

Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight (1991) Biochim. Biophys. Acta. 1097:1-17; Straubinger (1983) Meth.

30 Enzymol. 101:512-527.

Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner (1987) *Proc. Natl. Acad. Sci. USA* 84:7413-7416); mRNA (Malone (1989) *Proc. Natl. Acad. Sci. USA* 86:6077-6081); and purified transcription factors (Debs (1990) *J. Biol. Chem.*

35 265:10189-10192), in functional form.

Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, NY. (See,

10

25

35

also, Felgner supra). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boerhinger). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, e.g. Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; WO90/11092 for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.

Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, AL), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

The liposomes can comprise multilammelar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See e.g. Straubinger (1983) Meth. Immunol. 101:512-527; Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; Papahadjopoulos (1975) Biochim. Biophys. Acta 394:483; Wilson (1979) Cell 17:77); Deamer & Bangham (1976) Biochim. Biophys. Acta 443:629; Ostro (1977) Biochem. Biophys. Res. Commun. 76:836; Fraley (1979) Proc. Natl. Acad. Sci. USA 76:145; Fraley (1980) J. Biol. Chem. (1980) 255:10431; Szoka & Papahadjopoulos (1978) Proc. Natl. Acad. Sci. USA 75:145; and Schaefer-Ridder (1982) Science 215:166.

20 E.Lipoproteins

In addition, lipoproteins can be included with the polynucleotide/polypeptide to be delivered. Examples of lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.

Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been isolated and identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.

A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C, & E, over time these lipoproteins lose A and acquire C and E apoproteins. VLDL comprises A, B, C, & E apoproteins, LDL comprises apoprotein B; HDL comprises apoproteins A, C, & E.

The amino acid of these apoproteins are known and are described in, for example, Breslow (1985) Annu Rev. Biochem 54:699; Law (1986) Adv. Exp Med. Biol. 151:162; Chen (1986) J Biol Chem 261:12918; Kane (1980) Proc Natl Acad Sci USA 77:2465; and Utermann (1984) Hum Genet 65:232.

Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phospholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in *Meth. Enzymol.* 128 (1986). The composition of the lipids are chosen to aid in

conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding molecule.

Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in *Meth. Enzymol.* (supra); Pitas (1980) J. Biochem. 255:5454-5460 and Mahey (1979) J Clin. Invest 64:743-750. Lipoproteins can also be produced by in vitro or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for example, Atkinson (1986) Annu Rev Biophys Chem 15:403 and Radding (1958) Biochim Biophys Acta 30: 443. Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Techniologies, Inc., Stoughton, Massachusetts, USA. Further description of lipoproteins can be found in Zuckermann et al. PCT/US97/14465.

10 F.Polycationic Agents

5

15

20

25

Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide/polypeptide to be delivered.

Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both in vitro, ex vivo, and in vivo applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously, etc.

The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyornithine, and protamine. Other examples include histones, protamines, human serum albumin, DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and therefore may be useful as nucleic aid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.

Organic polycationic agents include: spermine, spermidine, and purtrescine.

The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents.

Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polybrene. LipofectinTM, and lipofectAMINETM are monomers that form polycationic complexes when combined with polynucleotides/polypeptides.

Nucleic Acid Hybridisation

"Hybridization" refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature; time of hybridization; agitation; agents to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardt's reagent or BLOTTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook et al. [supra] vol.2, chapt.9, pp.9.47 to 9.57.

10

15

20

"Stringency" refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ. For example, the combination of temperature and salt concentration should be chosen that is approximately 120 to 200°C below the calculated Tm of the hybrid under study. The temperature and salt conditions can often be determined empirically in preliminary experiments in which samples of genomic DNA immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook et al. at page 9.50.

Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected. The total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to 1μ g for a plasmid or phage digest to 10^{-9} to 10^{-8} g for a single copy gene in a highly complex eukaryotic genome. For lower complexity polynucleotides, substantially shorter blotting, hybridization, and exposure times, a smaller amount of starting polynucleotides, and lower specific activity of probes can be used. For example, a single-copy yeast gene can be detected with an exposure time of only 1 hour starting with 1 μ g of yeast DNA, blotting for two hours, and hybridizing for 4-8 hours with a probe of 10^8 cpm/ μ g. For a single-copy mammalian gene a conservative approach would start with 10μ g of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 10^8 cpm/ μ g, resulting in an exposure time of ~24 hours.

Several factors can affect the melting temperature (Tm) of a DNA-DNA hybrid between the probe and the fragment of interest, and consequently, the appropriate conditions for hybridization and washing. In many cases the probe is not 100% homologous to the fragment. Other commonly encountered variables include the length and total G+C content of the hybridizing sequences and the ionic strength and formamide content of the hybridization buffer. The effects of all of these factors can be approximated by a single equation:

 $Tm = 81 + 16.6(\log_{10}Ci) + 0.4[\%(G + C)] - 0.6(\% \text{ form a mide}) - 600/n - 1.5(\% \text{ m is m atch}).$

where Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) Anal. Biochem. 138: 267-284).

In designing a hybridization experiment, some factors affecting nucleic acid hybridization can be conveniently altered. The temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (ie. stringency), it becomes less likely for hybridization to occur between strands that are nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also increased with decreasing salt concentrations.

In general, convenient hybridization temperatures in the presence of 50% formamide are 42°C for a probe with is 95% to 100% homologus to the target fragment, 37°C for 90% to 95% homology, and 32°C for 85% to 90% homology. For lower homologies, formamide content should be lowered and temperature adjusted accordingly, using the equation above. If the homology between the probe and the target fragment are not known, the simplest approach is to start with both hybridization and wash conditions which are nonstringent. If non-specific bands or high background are observed after autoradiography, the filter can be washed at high stringency and

reexposed. If the time required for exposure makes this approach impractical, several hybridization and/or washing stringencies should be tested in parallel.

Nucleic Acid Probe Assays

5

10

15

20

25

Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA. A probe is said to "hybridize" with a sequence of the invention if it can form a duplex or double stranded complex, which is stable enough to be detected.

The nucleic acid probes will hybridize to the Chlamydial nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native Chlamydial sequence is preferred because it is the actual sequence present in cells. mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to mRNA, and so a cDNA probe should be complementary to the non-coding sequence.

The probe sequence need not be identical to the Chlamydial sequence (or its complement) — some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected. Also, the nucleic acid probe can include additional nucleotides to stabilize the formed duplex. Additional Chlamydial sequence may also be helpful as a label to detect the formed duplex. For example, a non-complementary nucleotide sequence may be attached to the 5'end of the probe, with the remainder of the probe sequence being complementary to a Chlamydial sequence. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a Chlamydial sequence in order to hybridize therewith and thereby form a duplex which can be detected.

The exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like. For example, for diagnostic applications, depending on the complexity of the analyte sequence, the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably ≥ 30 nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.

Probes may be produced by synthetic procedures, such as the triester method of Matteucci et al. [J. Am. Chem. Soc. (1981) 103:3185], or according to Urdea et al. [Proc. Natl. Acad. Sci. USA (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.

The chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated e.g. backbone modifications, such as phosphorothicates or methylphosphonates, can be used to increase in vivo half-life, alter RNA affinity, increase nuclease resistance etc. [e.g. see Agrawal & Iyer (1995) Curr Opin Biotechnol 6:12-19; Agrawal (1996) TIBTECH 14:376-387]; analogues such as peptide nucleic acids may also be used [e.g. see Corey (1997) TIBTECH 15:224-229; Buchardt et al. (1993) TIBTECH 11:384-3861.

Alternatively, the polymerase chain reaction (PCR) is another well-known means for detecting small amounts of target nucleic acids. The assay is described in: Mullis et al. [Meth. Enzymol. (1987) 155: 335-350]; US patents 4,683,195 & 4,683,202. Two 'primers' hybridize with the target nucleic acids and are used to prime the reaction. The primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its

10

complement) to aid with duplex stability or, for example, to incorporate a convenient restriction site. Typically, such sequence will flank the desired Chlamydial sequence.

A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase, they can be detected by more traditional methods, such as Southern blots. When using the Southern blot method, the labelled probe will hybridize to the Chlamydial sequence (or its complement).

Also, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook et al [supra]. mRNA, or cDNA generated from mRNA using a polymerase enzyme, can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labelled probe and then washed to remove any unhybridized probe. Next, the duplexes containing the labeled probe are detected. Typically, the probe is labelled with a radioactive moiety.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1-189 show data pertaining to examples 1-189.

Figure 190 shows a representative 2D gel of proteins in elementary bodies.

15 Figure 191 shows an alignment of sequences in five (six) proteins of the invention.

EXAMPLES

The examples indicate *C.pneumoniae* proteins, together with evidence to support the view that the proteins are useful antigens for vaccine production and development or for diagnostic purposes. This evidence takes the form of:

- Computer prediction based on sequence information from CWL029 strain (e.g. using the PSORT algorithm available from www.psort.nibb.ac.jp).
 - Data on recombinant expression and purification of the proteins cloned from IOL207 strain.
 - Western blots to demonstrate immunoreactivity in serum (typically a blot of an EB extract of *C.pneumoniae strain FB/96* stained with mouse antiserum against the recombinant protein).
- FACS analysis of *C.pneumoniae* bacteria or purified EBs to confirm accessibility of the antigen to the immune system (see also table III).
 - An indication if the protein was identified by MALDI-TOF from a 2D gel electrophoresis
 map of proteins from purified elementary bodies from strain FB/96. This confirms that the
 protein is expressed in vivo (see also table V).
- Various tests can be used to assess the *in vivo* immunogenicity of the proteins identified in the examples. For example, the proteins can be expressed recombinantly and used to screen patient sera by immunoblot. A positive reaction between the protein and patient serum indicates that the patient has previously mounted an immune response to the protein in question *ie.* the protein is an immunogen. This method can also be used to identify immunodominant proteins.

15

20

25

35

The recombinant protein can also be conveniently used to prepare antibodies e.g. in a mouse. These can be used for direct confirmation that a protein is located on the cell-surface. Labelled antibody (e.g. fluorescent labelling for FACS) can be incubated with intact bacteria and the presence of label on the bacterial surface confirms the location of the protein.

In particular, the following methods (A) to (O) were used to express, purify and biochemically characterise the proteins of the invention:

CLONING OF CPN ORFS FOR EXPRESSION IN E.COLI

ORFs of *Chlamydia pneumoniae* (Cpn) were cloned in such a way as to potentially obtain three different kind of proteins:

- a) proteins having an hexa-histidine tag at the C-terminus (cpn-His)
- b) proteins having a GST fusion partner at the N-terminus (Gst-cpn)
- c) proteins having both hexa-histidine tag at the C-terminus and GST at the N-terminus (GST/His fusion; NH₂-GST-cpn-(His)₆-COOH)

The type a) proteins were obtained upon cloning in the pET21b+ (Novagen). The type b) and c) proteins were obtained upon cloning in modified pGEX-KG vectors [Guan & Dixon (1991) Anal. Biochem. 192:262]. For instance pGEX-KG was modified to obtain pGEX-NN, then by modifying pGEX-NN to obtain pGEX-NNH. The Gst-cpn and Gst-cpn-His proteins were obtained in pGEX-NN and pGEX-NNH respectively.

The modified versions of pGEX-KG vector were made with the aim of allowing the cloning of single amplification products in all three vectors after only one double restriction enzyme digestion and to minimise the presence of extraneous amino acids in the final recombinant proteins.

(A) Construction of pGEX-NN and pGEX-NNH expression vectors

Two couples of complementary oligodeoxyribonucleotides were synthesised using the DNA synthesiser ABI394 (Perkin Elmer) and the reagents from Cruachem (Glasgow, Scotland). Equimolar amounts of the oligo pairs (50 ng each oligo) were annealed in T4 DNA ligase buffer (New England Biolabs) for 10 min in a final volume of 50µl and then were left to cool slowly at room temperature. With the described procedure he following DNA linkers were obtained:

gexNN linker:

gexNNH linker:

HindIII Not! Xho! --Hexa-Histidine-TCGACAAGCTTGCGGCCGCACTCGAGCATCACCATCACTGAT
GTTCGAACGCCGGCGTGAGCACGTAGAGGTAGTGGTAGTGACTATCGA

The plasmid pGEX-KG was digested with BamHI and HindIII and 100 ng were ligated overnight at 16 °C to the linker gexNN with a molar ratio of 3:1 linker/plasmid using 200 units of T4 DNA ligase

10

15

20

(New england Biolabs). After transformation of the ligation product in *E. coli* DH5, a clone containing the pGEX-NN plasmid, having the correct linker, was selected by means of restriction enzyme analysis and DNA sequencing.

The new plasmid pGEX-NN was digested with SalI and HindIII and ligated to the linker gexNNH. After transformation of the ligation product in *E. coli* DH5, a clone containing the pGEX-NNH plasmid, having the correct linker, was selected by means of restriction enzyme analysis and DNA sequencing.

(B) Chromosomal DNA preparation

The chromosomal DNA of elementary bodies (EB) of *C.pneumoniae* strain 10L-207 was prepared by adding 1.5 ml of lysis buffer (10 mM Tris-HCl, 150 mM NaCl, 2 mM EDTA, 0,6 % SDS, 100 μg/ml Proteinase K, pH 8) to 450 μl EB suspension (400.000/μl) and incubating overnight at 37 °C. After sequential extraction with phenol, phenol-chloroform, and chloroform, the DNA was precipitated with 0,3 M sodium acetate, pH 5,2 and 2 volumes of absolute ethanol. The DNA pellet was washed with 70 % ethanol. After solubilization with distilled water and treatment with 20 μg/ml RNAse A for 1 hour at RT, the DNA was extracted again with phenol-chloroform, alcohol precipitated and suspended with 300 μl 1 mM Tris-HCl pH 8,5. The DNA concentration was evaluated by measuring OD₂₆₀ of the sample.

(C) Oligonucleotide design

Synthetic oligonucleotide primers were designed on the basis of the coding sequence of each ORF using the sequence of *C.pneumoniae* strain CWL029. Any predicted signal peptide were omitted, by deducing the 5' end amplification primer sequence immediately downstream from the predicted leader sequence. For most ORFs, the 5' tail of the primers (table I) included only one restriction enzyme recognition site (NdeI, or NheI, or SpeI depending on the gene's own restriction pattern); the 3' primer tails (tableI) included a XhoI or a NotI or a HindIII restriction site.

	5' tails	3' tails
NdeI	5' GTGCGTCATATG 3'	XhoI 5' GCGTCTCGAG 3'
NheI	5' GTGCGTGCTAGC 3'	NotI 5' ACTCGCTAGCGGCCGC 3'
SpeI	5' GTGCGTACTAGT 3'	HindIII 5' GCGTAAGCTT 3'

Table 1. Oligonucleotide tails of the primers used to amplify Cpn genes.

As well as containing the restriction enzyme recognition sequences, the primers included nucleotides which hybridized to the sequence to be amplified. The number of hybridizing nucleotides depended on the melting temperature of the primers which was determined as described [(Breslauer et al. (1986) PNAS USA 83:3746-50]. The average melting temperature of the selected oligos was 50-55°C for the hybridizing region alone and 65-75°C for the whole oligos. Table II shows the forward and reverse primers used for each amplification.

(D) Amplification

The standard PCR protocol was as follow: 50 ng genomic DNA were used as template in the presence of 0,2 µM each primer, 200 µM each dNTP, 1,5 mM MgCl₂, 1x PCR buffer minus Mg (Gibco-BRL), and 2 units of Taq DNA polymerase (Platinum Taq, Gibco-BRL) in a final volume of 100 µl. Each sample underwent a double-step amplification: the first 5 cycles were performed using as the hybridizing temperature the one of the oligos excluding the restriction enzyme tail, followed by 25 cycles performed according to the hybridization temperature of the whole length primers. The standard cycles were as follow:

denaturation: 94 °C, 2 min

10

5

denaturation: 94 °C, 30 seconds

hybridization: 51 °C, 50 seconds

5 cycles

elongation: 72 °C, 1 min or 2 min and 40 sec

15

denaturation: 94 °C, 30 seconds
hybridization: 70 °C, 50 seconds

25 cycles

elongation: 72 °C, 1 min or 2 min and 40 sec

72 °C, 7 min

20 4 °C

The elongation time was 1 min for ORFs shorter than 2000 bp, and 2 min and 40 seconds for ORFs longer than 2000 bp. The amplifications were performed using a Gene Amp PCR system 9600 (Perkin Elmer).

To check the amplification results, 4 μl of each PCR product was loaded onto 1-1.5 agarose gel and the size of amplified fragments compared with DNA molecular weight standards (DNA markers III or IX, Roche). The PCR products were loaded on agarose gel and after electrophoresis the right size bands were excised from the gel. The DNA was purified from the agarose using the Gel Extraction Kit (Qiagen) following the instruction of the manufacturer. The final elution volume of the DNA was 50 μl TE (10 mM Tris-HCl, 1 mM EDTA, pH 8). One μl of each purified DNA was loaded onto agarose gel to evaluate the yield.

(E) Digestion of PCR fragments

One-two µg of purified PCR product were double digested overnight at 37 °C with the appropriate restriction enzymes (60 units of each enzyme) using the appropriate restriction buffer in 100 µl final volume. The restriction enzymes and the digestion buffers were from New England Biolabs. After

purification of the digested DNA (PCR purification Kit, Qiagen) and elution with 30 μ l TE, 1 μ l was subjected to agarose gel electrophoresis to evaluate the yield in comparison to titrated molecular weight standards (DNA markers III or IX, Roche).

(F) Digestion of the cloning vectors (pET21b+, pGEX-NN, and pGEX-NNH)

10 μg of plasmid was double digested with 100 units of each restriction enzyme in 400 μl reaction volume in the presence of appropriate buffer by overnight incubation at 37 °C. After electrophoresis on a 1% agarose gel, the band corresponding to the digested vector was purified from the gel using the Qiagen Qiaex II Gel Extraction Kit and the DNA was eluted with 50 μl TE. The DNA concentration was evaluated by measuring OD₂₆₀ of the sample.

10 (G) Cloning

75ng of the appropriately digested and purified vectors and the digested and purified fragments corresponding to each ORF, were ligated in final volumes of 10-20 µl with a molar ratio of 1:1 fragment/vector, using 400 units T4 DNA ligase (New England Biolabs) in the presence of the buffer supplied by the manufacturer. The reactions were incubated overnight at 16 °C.

15 Transformation in *E coli* DH5 competent cells was performed as follow: the ligation reaction was mixed with 200 μl of competent DH5 cells and incubated on ice for 30 min and then at 42 °C for 90 seconds. After cooling on ice, 0.8 ml LB was added and the cells were incubated for 45 min at 37 °C under shaking. 100 and 900 μl of cell suspensions were plated on separate plates of agar LB 100 μg/ml Ampicillin and the plates were incubated overnight at 37 °C. The screening of the transformants was done by growing randomly chosen clones in 6 ml LB 100 μg/ml Ampicillin, by extracting the DNA using the Qiagen Qiaprep Spin Miniprep Kit following the manufacturer instructions, and by digesting 2 μl of plasmid minipreparation with the restriction enzymes specific for the restriction cloning sites. After agarose gel electrophoresis of the digested plasmid minipreparations, positive clones were chosen on the basis of the correct size of the restriction fragments, as evaluated by comparison with appropriate molecular weight markers (DNA markers III or IX, Roche).

(H) Expression

1 μl of each right plasmid mini-preparation was transformed in 200 μl of competent *E. coli* strain suitable for expression of the recombinant protein. All pET21b+ recombinant plasmids were transformed in BL21 DE3 (Novagen) *E. coli* cells, whilst all pGEX-NN and all pGEX-NNH recombinant plasmids were transformed in BL21 cells (Novagen). After plating transformation mixtures on LB/Amp agar plates and incubation overnight at 37 °C, single colonies were inoculated in 3 ml LB 100 μg/ml Ampicillin and grown at 37 °C overnight. 70 μl of the overnight culture was inoculated in 2 ml LB/Amp and grown at 37 °C until OD600 of the pET clones reached the 0,4-0,8 value or until OD600 of the pGEX clones reached the 0,8-1 value. Protein expression was then

30

induced by adding IPTG (Isopropil β -D thio-galacto-piranoside) to the mini-cultures. pET clones were induced using 1 mM IPTG, whilst pGEX clones were induced using 0.2 mM IPTG. After 3 hours incubation at 37 °C the final OD₆₀₀ was checked and the cultures were cooled on ice. After centrifugation of 0.5 ml culture, the cell pellet was suspended in 50 μ l of protein Loading Sample Buffer (60 mM TRIS-HCl pH 6.8, 5% w/v SDS, 10% v/v glycerin, 0.1% w/v Bromophenol Blue, 100 mM DTT) and incubated at 100 °C for 5 min. A volume of boiled sample corresponding to 0.1 OD₆₀₀ culture was analysed by SDS-PAGE and Coomassie Blue staining to verify the presence of induced protein band.

PURIFICATION OF THE RECOMBINANT PROTEINS

Single colonies were inoculated in 25 ml LB 100 μg/ml Ampicillin and grown at 37 °C overnight. The overnight culture was inoculated in 500 ml LB/Amp and grown under shaking at 25 °C until OD₆₀₀ 0,4-0,8 value for the pET clones, or until OD₆₀₀ 0,8-1 value for the pGEX clones. Protein expression was then induced by adding IPTG to the cultures. pET clones were induced using 1 mM IPTG, whilst pGEX clones were induced using 0.2 mM IPTG. After 4 hours incubation at 25 °C the final OD₆₀₀ was checked and the cultures were cooled on ice. After centrifugation at 6000 rpm (JA10 rotor, Beckman), the cell pellet was processed for purification or frozen at -20 °C.

(I) Procedure for the purification of soluble His-tagged proteins from E.coli

- Transfer the pellets from -20°C to ice bath and reconstitute with 10 ml 50 mM NaHPO₄ buffer, 300 mM NaCl, pH 8,0, pass in 40-50 ml centrifugation tubes and break the cells as per the following outline:
- 2. Break the pellets in the French Press performing three passages with in-line washing.
- 3. Centrifuge at about 30-40000 x g per 15-20 min. If possible use rotor JA 25.50 (21000 rpm, 15 min.) or JA-20 (18000 rpm, 15 min.)
- 4. Equilibrate the Poly-Prep columns with 1 ml Fast Flow Chelating Sepharose resin with 50 mM phosphate buffer, 300 mM NaCl, pH 8,0.
 - 5. Store the centrifugation pellet at -20°C, and load the supernatant in the columns.
 - 6. Collect the flow through.
 - 7. Wash the columns with 10 ml (2 ml + 2 ml + 4 ml) 50 mM phosphate buffer, 300 mM NaCl, pH 8,0.
- 30 8. Wash again with 10 ml 20 mM imidazole buffer, 50 mM phosphate, 300 mM NaCl, pH 8,0.
 - 9. Elute the proteins bound to the columns with 4,5 ml (1,5 ml + 1,5 ml + 1,5 ml) 250 mM imidazole buffer, 50 mM phosphate, 300 mM NaCl, pH 8,0 and collect the 3 corresponding fractions of ~1,5 ml each. Add to each tube 15 μl DTT 200 mM (final concentration 2 mM)

20

- 10. Measure the protein concentration of the first two fractions with the Bradford method, collect a 10 μg aliquot of proteins from each sample and analyse by SDS-PAGE. (N.B.: should the sample be too diluted, load 21 μl + 7 μl loading buffer).
- 11. Store the collected fractions at +4°C while waiting for the results of the SDS-PAGE analysis.
- 5 12. For immunisation prepare 4-5 aliquots of 100 μg each in 0,5 ml in 40% glycerol. The dilution buffer is the above elution buffer, plus 2 mM DTT. Store the aliquots at -20°C until immunisation.

(J) Purification of His-tagged proteins from Inclusion bodies

Purifications were carried out essentially according the following protocol:

- Bacteria are collected from 500 ml cultures by centrifugation. If required store bacterial pellets at
 -20°C. For extraction, resuspend each bacterial pellet in 10 ml 50 mM TRIS-HCl buffer, pH 8,5
 on an ice bath.
 - 2. Disrupt the resuspended bacteria with a French Press, performing two passages.
 - 3. Centrifuge at 35000 x g for 15 min and collect the pellets. Use a Beckman rotor JA 25.50 (21000 rpm, 15 min.) or JA-20 (18000 rpm, 15 min.).
 - 4. Dissolve the centrifugation pellets with 50 mM TRIS-HCl, 1 mM TCEP {Tris(2-carboxyethyl)-phosphine hydrochloride, Pierce}, 6M guanidium chloride, pH 8,5. Stir for ~ 10 min. with a magnetic bar.
 - 5. Centrifuge as described above, and collect the supernatant..
- 20 6. Prepare an adequate number of Poly-Prep (Bio-Rad) columns containing 1 ml of Fast Flow Chelating Sepharose (Pharmacia) saturated with Nichel according to manufacturer recommendations.. Wash the columns twice with 5 ml of H₂0 and equilibrate with 50 mM TRIS-HCl, 1 mM TCEP, 6M guanidinium chloride, pH 8,5.
- 7. Load the supernatants from step 5 onto the columns, and wash with 5 ml of 50 mM TRIS-Hcl buffer, 1 mM TCEP, 6M urea, pH 8,5
 - 8. Wash the columns with 10 ml of 20 mM imidazole, 50 mM TRIS-HCl, 6M urea, 1 mM TCEP, pH 8,5. Collect and set aside the first 5 ml for possible further controls.
 - 9. Elute the proteins bound to the columns with 4,5 ml of a buffer containing 250 mM imidazole, 50 mM TRIS-HCl, 6M urea, 1 mM TCEP, pH 8,5. Add the elution buffer in three 1,5 ml aliquots, and collect the corresponding 3 fractions. Add to each fraction 15 μl DTT (final concentration 2 mM).
 - 10. Measure eluted protein concentration with the Bradford method, and analyze aliquots of ca 10 μ g of protein by SDS-PAGE.
- 11. Store proteins at -20°C in 40% (v/v) glycerol, 50 mM TRIS-HCl, 2M urea, 0.5 M arginine, 2 mM DTT, 0.3 mM TCEP, 83.3 mM imidazole, pH 8,5

30

5

(K) Procedure for the purification of GST-fusion proteins from E.coli

- Transfer the bacterial pellets from -20°C to an ice bath and resuspend with 7,5 ml PBS, pH 7,4 to which a mixture of protease inhibitors (CØMPLETE™ Boehringer Mannheim, 1 tablet every 25 ml of buffer) has been added. Transfer to 40-50 ml centrifugation tubes and sonicate according to the following procedure:
 - a) Position the probe at about 0,5 cm from the bottom of the tube
 - b) Block the tube with the clamp
 - c) Dip the tube in an ice bath
 - d) Set the sonicator as follows: Timer \rightarrow Hold, Duty Cycle \rightarrow 55, Out. Control \rightarrow 6.
- e) perform 5 cycles of 10 impulses at a time lapse of 1 minute (i.e. one cycle = 10 impulses + ~45" hold; b. 10 impulses + ~45" hold; c. 10 impulses + ~45" hold; d. 10 impulses + ~45" hold; e. 10 impulses + ~45" hold)
 - 2. Centrifuge at about 30-40000 x g for 15-20 min. E.g.: use rotor Beckman JA 25.50 at 21000 rpm, for 15 min.
- 3. Store the centrifugation pellets at -20°C, and load the supernatants on the chromatography columns, as follows
 - 4. Equilibrate the Poly-Prep (Bio-Rad) columns with 0,5 ml (≈ 1 ml suspension) of Glutathione-Sepharose 4B resin, wash with 2 ml (1 + 1) H₂O, and then with 10 ml (2 + 4 + 4) PBS, pH 7,4.
 - 5. Load the supernatants on the columns and discard the flow through.
- 20 6. Wash the columns with 10 ml (2 + 4 + 4) PBS, pH 7.4.
 - 7. Elute the proteins bound to the columns with 4,5 ml of 50 mM TRIS buffer, 10 mM reduced glutathione, pH 8.0, adding 1,5 ml + 1,5 ml + 1,5 ml and collecting the respective 3 fractions of ~1,5 ml each.
- Measure the protein concentration of the first two fractions with the Bradford method, analyse a
 μg aliquot of proteins from each sample by SDS-PAGE. (N.B.: if the sample is too diluted load 21 μl (+ 7 μl loading buffer).
 - 9. Store the collected fractions at +4°C while waiting for the results of the SDS-PAGE analysis.
 - 10. For each protein destined to the immunisation prepare 4-5 aliquots of 100 μg each in 0,5 ml of 40% glycerol. The dilution buffer is 50 mM TRIS.HCl, 2 mM DTT, pH 8,0. Store the aliquots at -20°C until immunisation..

SEROLOGY

(L) Protocol of immunization

1. Groups of four CD1 female mice aged between 6 and 7 weeks were immunized with 20 μg of recombinant protein resuspended in 100 μl .

- 2. Four mice for each group received 3 doses with a 14 days interval schedule.
- 3. Immunization was performed through intra-peritoneal injection of the protein with an equal volume of Complete Freund's Adjuvant (CFA) for the first dose and Incomplete Freund's Adjuvant (IFA) for the following two doses.
- 5 4. Sera were collected before each immunization. Mice were sacrified 14 days after the third immunization and the collected sera were pooled and stored at -20°C.

(M) Western blot analysis of Cpn elementary body proteins with mouse sera

Aliquots of elementary bodies containing approximately 4 µg of proteins, mixed with SDS loading buffer (1x: 60 mM TRIS-HCl pH 6.8, 5% w/v SDS, 10% v/v glycerin, 0.1% Bromophenol Blue, 100 mM DTT) and boiled 5 minutes at 95° C, were loaded on a 12% SDS-PAGE gel. The gel was run using a SDS-PAGE running buffer containing 250 mM TRIS, 2.5 mM Glycine and 0.1 %SDS. The gel was electroblotted onto nitrocellulose membrane at 200 mA for 30 minutes. The membrane was blocked for 30 minutes with PBS, 3% skimmed milk powder and incubated O/N at 4° C with the appropriate dilution (1/100) of the sera. After washing twice with PBS + 0.1% Tween (Sigma) the membrane was incubated for 2 hours with peroxidase-conjugated secondary anti-mouse antibody (Sigma) diluted 1:3000. The nitrocellulose was washed twice for 10 minutes with PBS + 0.1% Tween-20 and once with PBS and thereafter developed by Opti-4CN Substrate Kit (Biorad).

Lanes shown in Western blots are: (P) = pre-immune control serum; (I) = immune serum.

(N) FACS analysis of Chlamydia pneumoniae elementary bodies with mouse sera

- 20 1. 2x10⁵ Elementary Bodies (EB)/well were washed with 200 μl of PBS-0.1%BSA in a 96 wells U bottom plate and centrifuged for 10 min. at 1200rpm, at 4°C.
 - 2. The supernatant was discarded and the E.B. resuspended in 10 μl of PBS-0.1%BSA.
 - 3. 10µl mouse sera diluted in PBS-0.1%BSA were added to the E.B. suspention to a final dilution of 1:400, and incubated on ice for 30 min.
- 25 4. EB were washed by adding 180μl PBS-0.1%BSA and centrifuged for 10min. at 1200rpm, 4°C.
 - 5. The supernatant was discarded and the E.B. resuspended in 101 of PBS-0.1%BSA.
 - 6. 10μl of a goat anti-mouse IgG, F(ab')₂ fragment specific-R-Phycoerythrin-conjugated (Jackson Immunoresearch Laboratories Inc., cat.N°115-116-072) was added to the EB suspension to a final dilution of 1:100, and incubated on ice for 30 min, in the dark.
- 30 7. EB were washed by adding 180μl PBS-0.1%BSA and centrifuged for 10min. at 1200rpm. 4°C.
 - 8. The supernatant was discarded and the E.B. resuspended in 150 µl of PBS-0.1%BSA.
 - 9. E.B. suspension was passed through a cytometric chamber of a FACS Calibur (Becton Dikinson, Mountain View, CA USA) and 10.000 events were acquired.

- 10. Data were analysed using Cell Quest Software (Becton Dikinson, Mountain View, CA USA) by drawing a morphological dot plot (using forward and side scatter parameters) on E.B. signals. An histogram plot was then created on FL2 intensity of fluorescence log scale recalling the morphological region of EB.
- NB: the results of FACS depend not only on the extent of accessibility of the native antigens but also on the quality of the antibodies elicited by the recombinant antigens, which may have structures with a variable degree of correct folding as compared with the native protein structures. Therefore, even if a FACS assay appears negative this does not necessarily mean that the protein is not abundant or accessible on the surface. PorB antigen, for instance, gave negative results in FACS but is a surface-exposed neutralising antigen [Kubo & Stephens (2000) Mol. Microbiol. 38:772-780].

(O) Mass Spectrometry analysis of two-dimensional electrophoretic protein maps

Gradient purified EBs from strain FB/96 were solubilized at a final concentration of 5.5mg/ml with immobiline rehydratation buffer (7M urea, 2M thiourea, 2% (w/v) CHAPS, 2% (w/v) ASB 14 [Chevallet et al. (1998) Electrophor. 19:1901-9], 2% (v/v) C.A 3-10NL (Amersham Pharmacia Biotech), 2 mM tributyl phosphine, 65 mM DTT). Samples (250µg protein) were adsorbed overnight on Immobiline DryStrips (7 cm, pH 3-10 non linear). Electrophocusing was performed in a IPGphor Isoelectric Focusing Unit (Amersham Pharmacia Biotech). Before PAGE separation, the focused strips were incubated in 4M urea, 2M thiourea, 30% (v/v) glycerol, 2% (w/v) SDS, 5mM tributyl phosphine 2.5%(w/v) acrylamide, 50mM Tris-HCl pH 8.8, as described [Herbert et al. (1998) Electrophor. 19:845-51]. SDS-PAGE was performed on linear 9-16% acrylamide gradients. Gels were stained with colloidal Coomassie (Novex, San Diego) [Doherty et al. (1998) Electrophor. 19:355-63]. Stained gels were scanned with a Personal Densitometer SI (Molecular Dynamics) at 8 bits and 50 µm per pixel. Map images were annotated with the software Image Master 2D Elite, version 3.10 (Amersham Pharmacia Biotech). Protein spots were excised from the gel, using an Ettan Spot picker (Amersham Pharmacia Biotech), and dried in a vacuum centrifuge. In-gel digestion of samples for mass spectrometry and extraction of peptides were performed as described by Wilm et al. [Nature (1996) 379:466-9]. Samples were desalted with a ZIP TIP (Millipore), eluted with a saturated solution of alpha-cyano-4-hydroxycinnamic acid in 50% acetonitrile, 0.1% TFA and directly loaded onto a SCOUT 381 multiprobe plate (Bruker). Spectra were acquired on a Bruker Biflex II MALDI-TOF. Spectra were calibrated using a combination of known standard peptides, located in spots adjacent to the samples. Resulting values for monoisotopic peaks were used for database searches using the computer program Mascot (www.matrixscience.com). All searches were performed using an error of 200-500ppm as constraint. A representative gel is shown in Figure 190.

Example 1

- 35 The following C.pneumoniae protein (PID 4376552) was expressed <SEQ ID 1; cp6552>:
 - 1 MKKKLSLLVG LIFVLSSCHK EDAQNKIRIV ASPTPHAELL ESLQEEAKDL

15

20

25

```
51 GIKLKILPVD DYRIPNRLLL DKQVDANYFQ HQAFLDDECE RYDCKGELVV
101 IAKVHLEPQA IYSKKHSSLE RLKSQKKLTI AIPVDRTNAQ RALHLLEECG
151 LIVCKGPANL NMTAKDVCGK ENRSINILEV SAPLLVGSLP DVDAAVIPGN
201 FAIAANLSPK KDSLCLEDLS VSKYTNLVVI RSEDVGSPKM IKLQKLFQSP
5 251 SVQHFFDTKY HGNILTMTOD NG*
```

The cp6552 nucleotide sequence <SEO ID 2> is:

```
ATGAAAAAA AATTATCATT ACTTGTAGGT TTAATTTTTG TTTTGAGTTC
                51
                    TTGCCATAAG GAAGATGCTC AGAATAAAAT ACGTATTGTA GCCAGTCCGA
10
               101
                    CACCTCATGC GGAATTATTG GAGAGTTTAC AGGAAGAGGC TAAAGATCTT
                    GGAATCAAGC TGAAAATACT TCCAGTAGAT GATTATCGTA TTCCTAATCG
               151
               201
                    TTTGCTTTTG GATAAACAAG TAGATGCAAA TTACTTTCAA CATCAAGCTT
               251 TTCTTGATGA CGAATGCGAG CGTTATGATT GTAAGGGTGA ATTAGTTGTT
               301
                    ATCGCTAAAG TTCATTTGGA ACCTCAAGCA ATTTATTCTA AGAAACATTC
15
               351
                    TTCTTTAGAG CGCTTAAAAA GCCAGAAGAA ACTGACTATA GCGATTCCTG
               401
                    TGGATCGTAC GAATGCTCAG CGTGCTCTAC ACTTGTTAGA AGAGTGCGGA
               451
                    CTCATTGTTT GCAAAGGGCC TGCTAATTTA AATATGACAG CTAAAGATGT
               501 CTGTGGGAAA GAAAATAGAA GTATCAACAT ATTAGAGGTG TCAGCTCCTC
               551
                    TTCTTGTCGG ATCTCTTCCT GACGTTGATG CTGCTGTCAT TCCTGGAAAT
20
               601
                    TTTGCTATAG CAGCAAACCT TTCTCCAAAG AAAGATAGTC TTTGTTTAGA
               651
                    GGATCTTTCG GTATCTAAGT ATACAAACCT TGTTGTCATT CGTTCTGAAG
               701
                    ACGTAGGTTC TCCTAAAATG ATAAAATTAC AGAAGCTGTT TCAATCTCCT
               751
                    TCTGTACAAC ATTTTTTGA TACAAAATAT CATGGGAATA TTTTGACAAT
               801
                    GACTCAAGAC AATGGTTAG
```

25 The PSORT algorithm predicts an inner membrane location (0.127).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 1A, and also as a GST-fusion. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 1B) and for FACS analysis (Figure 1C).

The cp6552 protein was also identified in the 2D-PAGE experiment (Cpn0278).

These experiments show that cp6552 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 2

The following C.pneumoniae protein (PID 4376736) was expressed <SEQ ID 3; cp6736>:

	1	MKTSIRKFLI	STTLAPCEAS	TAFTVEVIMP	SENFDGSSGK	IFPYTTLSDP
35	51	RGTLCIFSGD	LYIANLDNAI	SRTSSSCFSN	RAGALQILGK	GGVFSFLNIR
	101	SSADGAAISS	VITQNPELCP	LSFSGFSQMI	FDNCESLTSD	TSASNVIPHA
	151	SAIYATTPML	FTNNDSILFQ	YNRSAGFGAA	IRGTSITIEN	TKKSLLFNGN
	201	GSISNGGALT	GSAAINLINN	SAPVIFSTNA	TGIYGGAIYL	TGGSMLTSGN
	251	LSGVLFVNNS	SRSGGAIYAN	GNVTFSNNSD	LTFQNNTASP	QNSLPAPTPP
40	301	PTPPAVTPLL	GYGGAIFCTP	PATPPPTGVS	LTISGENSVT	FLENIASEQG
	351	GALYGKKISI	DSNKSTIFLG	NTAGKGGAIA	IPESGELSLS	ANQGDILFNK
	401	NLSITSGTPT	RNSIHFGKDA	KFATLGATQG	YTLYFYDPIT	SDDLSAASAA
	451	ATVVVNPKAS	ADGAYSGTIV	FSGETLTATE	AATPANATST	LNQKLELEGG
	501	TLALRNGATL	NVHNFTQDEK	SVVIMDAGTT	LATTNGANNT	DGAITLNKLV
45	551	INLDSLDGTK	AAVVNVQSTN	GALTISGTLG	LVKNSQDCCD	NHGMFNKDLQ
	601	QVPILELKAT	SNTVTTTDFS	LGTNGYQQSP	YGYQGTWEFT	IDTTTHTVTG
	651	NWKKTGYLPH	PERLAPLIPN	SLWANVIDLR	AVSQASAADG	EDVPGKQLSI
	701	TGITNFFHAN	HTGDARSYRH	MGGGYLINTY	TRITPDAALS	LGFGQLFTKS
	751	KDYLVGHGHS	NVYFATVYSN	ITKSLFGSSR	FFSGGTSRVT	YSRSNEKVKT
50	801	SYTKLPKGRC	SWSNNCWLGE	LEGNLPITLS	SRILNLKQII	PFVKAEVAYA
	851	THGGIQENTP	EGRIFGHGHL	LNVAVPVGVR	FGKNSHNRPD	FYTIIVAYAP
	901	DVYRHNPDCD	TTLPINGATW	TSIGNNLTRS	TLLVQASSHT	SVNDVLEIFG
	951	HCGCDIRRTS	ROYTLDIGSK	LRF'*		

A predicted signal peptide is highlighted.

The cp6736 nucleotide sequence <SEQ ID 4> is:

	1	ATGAAAACG	r ctattcgta	A GTTCTTAATT	TCTACCACAC	TGGCGCCATG
	51	TTTTGCTTC	A ACAGCGTTT	A CTGTAGAAGT	TATCATGCCT	ጥርርር እር አ አርጥ
_	101	TTGATGGAT(C GAGTGGGAA	3 ATTTTTCCTT	ACACAACACT	ጥጥር ው ር ልጥር ርጥ
5	151	AGAGGGACAG	TCTGTATTT	TTCAGGGGAT	CTCTACATTG	് പ്രേയ്യ പ്രവസ്യ വേ
	201	TAATGCCATA	A TCCAGAACCT	CTTCCAGTTG	CTTTAGCAAT	AGGGCGGGAG
	251	CACTACAAA	r citaggaaa	A GGTGGGGTTT	ጥርጥርረጥጥር	አ አ አ መ አ መ ር ር ር ር መ
	301	TCTTCAGCTC		C GATTAGTAGT	GTA ATC ACCC	ል ል ል ል ጥርር ጥር ል
10	351	ACTATGTCCC	: TTGAGTTTTT	' CAGGATTTAG	ጥሮልርልጥርልጥሮ	ጥጥር ርአጥአ አርጥ
. 10	401	GTGAATCTTT	C GACTTCAGAT	. ACCTCAGCGA	GTAATGTCAT	ACCTCACCCA
	451	TCGGCGATTI	' ACGCTACAAC	GCCCATGCTC	TTTACAAACA	ልጥሮልሮጥሮሮልጥ
	501	ACTATTCCA	TACAACCGTT	CTGCAGGATT	TGGAGCTGCC	ATTCGAGGGA
	551	CAAGCATCAC	. Aatagaaaai	· ACGAAAAAGA	GCCTTCTCTT	ጥል አ ጥር ረርጥል አጥ
1.5	601	GGATCCATCI	' CTAATGGAGG	GGCCCTCACG	GGATCTGCAG	CCATCAACCT
15	651	CATCAACAAT	· AGCGCTCCTG	TGATTTTCTC	AACGAATGCT	ACAGGGATCT
	701	ATGGTGGGGC	TATTTACCTT	ACCGGAGGAT	CTATGCTCAC	CTCTGGGAAC
	751	CTCTCAGGAG	TCTTGTTCGI	TAATAATAGC	TCGCGCTCAG	GAGGCGCTDAT
	801	CTATGCTAAC	GGAAATGTCA	CATTTTCTAA	TAACAGCGAC	്നു ഭൂ ക്തന്ത്രവേ
00	851	AAAACAATAC	: AGCATCTCCA	CAAAACTCCT	TACCTGCACC	TACACCTCCA
20	901	CCTACACCAC	CAGCAGTCAC	TCCTTTGTTA	GGATATGGAG	GCGCC A 41C414
	951	CTGTACTCCT	'CCAGCTACCC	CCCCACCAAC	AGGTGTTAGC	ርጥርልርጥልጥልጥ
	1001	CTGGAGAAAA	. CAGCGTTACA	TTCCTAGAAA	ACATTGCCTC	CCDACAACCA
	1051	GGAGCCCTCT	' ATGGCAAAAA	GATCTCTATA	GATTCTAATA	<u>እ</u> ልጥሮጥአሮአአጥ
0.5	1101	ATTTCTTGGA	AATACAGCTG	GAAAAGGAGG	CGCTATTGCT	ልጥጥሮሮሮርል አ ጥ
25	1151	CTGGGGAGCT	CTCTCTATCC	GCAAATCAAG	GTGATATCCT	ርጥጣጥ አልሮ አልር
	1201	AACCTCAGCA	. TCACTAGTGG	GACACCTACT	CGCAATAGTA	TTCACTTCCC
	1251	AAAAGATGCC	AAGTTTGCCA	CTCTAGGAGC	TACGCAAGGC	ጥልጥል ርርርጥልጥ
	1301	ACTTCTATGA	TCCGATTACA	TCTGATGATT	TATCTGCTGC	ATTCCCCCACCC
20	1351	GCTACTGTGG	TCGTCAATCC	CAAAGCCAGT	GCAGATGGTG	CCTATTCACC
30	1401	GACTATTGTC	TTTTCAGGAG	AAACCCTCAC	TGCTACCGAA	GCAGCAACCC
	1451	CTGCAAATGC	TACATCTACA	TTAAACCAAA	AGCTAGAACT	TGAAGGCCCC
	1501	ACTCTCGCTT	TAAGAAACGG	TGCTACCTTA	AATGTTCATA	ACTITICACCCA
	1551	AGATGAAAAG	TCCGTCGTCA	TCATGGATGC	AGGGACCACA	ጥጥ አርርር አ አርጥአ
25	1601	CAAATGGAGC	TAATAATACT	GACGGTGCTA	TCACCTTAAA	CAACCOUCCON
35	1651	ATCAATCTGG	ATTCTTTGGA	TGGCACTAAA	GCGGCTGTCG	ΨΨΑΑΨΩΨΩΩΑ
	1701	GAGTACCAAT	GGAGCTCTCA	CTATATCCGG	AACTTTAGGA	ርጥጥርጥር እ አ አ አ
	1751	ACTCTCAAGA	TTGCTGTGAC	AACCACGGGA	TGTTTAATAA	ልር፡ልጥጥጥልር ልር
	1801	CAAGTTCCGA	TTTTAGAACT	CAAAGCGACT	ጥሮልልልጥልሮጥር	ጥል አሮሮ አሮመአሮ
40	1851	GGACTTCAGT	CTCGGCACAA	ACGGCTATCA	GCAATCTCCC	ቸልጥርርርም አጥር
40	1901	AAGGAACTTG	GGAGTTTACC	ATAGACACGA	CAACCCATAC	GGTCACAGGA
	1951	AATTGGAAAA	AAACCGGTTA	TCTTCCTCAT	CCGGAGCGTC	ጥጥርርጥርርርጥ
	2001	CATTCCTAAT	AGCCTATGGG	CAAACGTCAT	AGATTTACGA	GCጥርጥ አ አ ርጥር
	2051	AAGCGTCAGC	AGCTGATGGC	GAAGATGTCC	CTGGGAAGCA	እርጥር አ CC አ ጥር
45	2101	ACAGGAATTA	CAAATTTCTT	CCATGCGAAT	CATACCGGTG	ATCCACCAC
45	2151	CTACCGCCAT	ATGGGTGGAG	GCTACCTCAT	CAATACCTAC	ACACCCAMCA
	2201	CTCCAGATGC	TGCGTTAAGT	CTAGGTTTTG	GACAGCTGTT	ሞ <u>ል</u> ር አ አ አ አ ሙሪሙ
	2251	AAGGATTACC	TCGTAGGTCA	CGGTCATTCT	AACGTTTATT	ጥር ርርጥን ርን ርመ
	2301	ATACTCTAAC	ATCACCAAGT	CTCTGTTTGG	ATCATCGAGA	かけいかいかい かん
50	2351	GAGGCACTTC	TCGAGTTACC	TATAGCCGTA	GCAATGAGAA	ልርጥ እ አ ላ አ ረ አ ረ መ
50	2401	TCATATACAA	AATTGCCTAA	AGGGCGCTGC	ТСТТССАСТА	ACA a renderence
	2451	GTTAGGAGAA	CTCGAAGGGA	ACCTTCCCAT	CACTCTCTCT	ጥሮጥሮርር አጥርጥ
	2501	TAAACCTCAA	GCAGATCATT	CCCTTTGTAA	A AGCTGA AGT	ጥር ርጣጥ አ ረርረረረ
	2551	ACTCATGGGG	GCATCCAAGA	AAATACCCCC	GAGGGGAGGA	サインス ころ こうりゅう
EE	2601	CGGTCATCTA	CTCAACGTTG	CAGTTCCCGT	AGGCGTCCGC	ጥጥጥርርር ጥል ል ል ል
55	2651	ATTCTCATAA	TCGACCAGAT	TTTTACACTA	TAATCGTAGC	CTATCCTCCT
	2701	GATGTCTATC	GTCACAATCC	TGATTGCGAT .	ACGACATTAC	ርጥልጥጥል ልጥርረር
•	2751	AGCTACGTGG	ACCTCTATAG	GGAATAATCT	AACCAGAAGT	ልሮምምምርረጥአር
	2801	TACAAGCATC	CAGCCATACT	TCAGTAAATG	ATGTTCTAGA	GATCTTCCCC
60	2851	CACTGTGGAT	GTGATATTCG	CAGAACCTCC	CGTCAATATA	CTCTAGATAT
60	2901	AGGAAGCAAA	TTACGATTTT	AA		

The PSORT algorithm predicts an outer membrane location (0.917).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 2A, and also as a GST-fusion. Both proteins were used to immunise mice, whose sera were used in a Western blot (Figure 2B) and for FACS analysis (Figure 2C).

The cp6736 protein was also identified in the 2D-PAGE experiment (Cpn0453) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6736 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 3

5

The following C.pneumoniae protein (PID 4376751) was expressed <SEQ ID 5; cp6751>:

```
10
                    MRFFCFGMLL PFTFVLANEG LQLPLETYIT LSPEYQAAPQ VGFTHNQNQD
                    LAIVGNHNDF ILDYKYYRSN GGALTCKNLL ISENIGNVFF EKNVCPNSGG
                101
                    AIYAAQNCTI SKNQNYAFTT NLVSDNPTAT AGSLLGGALF AINCSITNNL
                151
                    GQGTFVDNLA LNKGGALYTE TNLSIKDNKG PIIIKQNRAL NSDSLGGGIY
                201
                    SGNSLNIEGN SGAIQITSNS SGSGGGIFST QTLTISSNKK LIEISENSAF
15
                    ANNYGSNFNP GGGGLTTTFC TILNNREGVL FNNNQSQSNG GAIHAKSIII
                251
                301
                    KENGPVYFLN NTATRGGALL NLSAGSGNGS FILSADNGDI IFNNNTASKH
                351
                    ALNPPYRNAI HSTPNMNLQI GARPGYRVLF YDPIEHELPS SFPILFNFET
                    GHTGTVLFSG EHVHQNFTDE MNFFSYLRNT SELRQGVLAV EDGAGLACYK
                401
                451
                    FFQRGGTLLL GQGAVITTAG TIPTPSSTPT TVGSTITLNH IAIDLPSILS
20
                    FQAQAPKIWI YPTKTGSTYT EDSNPTITIS GTLTLRNSNN EDPYDSLDLS
                501
                    HSLEKVPLLY IVDVAAQKIN SSQLDLSTLN SGEHYGYQGI WSTYWVETTT
                    ITNPTSLLGA NTKHKLLYAN WSPLGYRPHP ERRGEFITNA LWQSAYTALA
                601
                651
                    GLHSLSSWDE EKGHAASLQG IGLLVHQKDK NGFKGFRSHM TGYSATTEAT
                701
                    SSQSPNFSLG FAQFFSKAKE HESQNSTSSH HYFSGMCIEN TLFKEWIRLS
25
                    VSLAYMFTSE HTHTMYQGLL EGNSQGSFHN HTLAGALSCV FLPQPHGESL
                751
                    QIYPFITALA IRGNLAAFQE SGDHAREFSL HRPLTDVSLP VGIRASWKNH
                801
                851
                    HRVPLVWLTE ISYRSTLYRQ DPELHSKLLI SQGTWTTQAT PVTYNALGIK
                    VKNTMQVFPK VTLSLDYSAD ISSSTLSHYL NVASRMRF*
```

A predicted signal peptide is highlighted.

30 The cp6751 nucleotide sequence <SEQ ID 6> is:

	1	ATGCGCTTTT	TTTGCTTCGG	AATGTTGCTT	CCTTTTACTT	TTGTATTGGC
	51	TAATGAAGGT	CTCCAACTTC	CTTTGGAGAC	CTATATTACA	TTAAGTCCTG
	101	AATATCAAGC	AGCCCCTCAA	GTAGGGTTTA	CTCATAACCA	AAATCAAGAT
	151	CTCGCAATTG	TCGGGAATCA	CAATGATTTC	ATCTTGGACT	ATAAGTACTA
35	201	TCGGTCGAAT	GGAGGTGCTC	TTACCTGTAA	GAATCTTCTG	ATCTCTGAAA
	251	ATATAGGGAA	TGTCTTCTTT	GAGAAGAATG	TCTGTCCCAA	TTCTGGCGGG
	301	GCAATTTATG	CTGCTCAAAA	TTGCACGATC	TCCAAGAATC	AGAACTATGC
	351	ATTTACTACA	AACTTGGTCT	CTGACAATCC	TACAGCCACT	GCGGGATCAC
	401	TATTGGGTGG	AGCTCTCTTT	GCCATAAATT	GCTCTATTAC	TAATAACCTA
40	451	GGACAGGGAA	CTTTCGTTGA	CAATCTCGCT	TTAAATAAGG	GGGGTGCCCT
	501	CTATACTGAG	ACGAACTTAT	CTATTAAAGA	CAATAAAGGC	CCGATCATAA
	551	TCAAGCAGAA	TCGGGCACTA	AATTCGGACA	GTTTAGGAGG	AGGGATTTAT
	601	AGTGGGAACT	CTCTAAATAT	AGAGGGAAAT	TCTGGAGCTA	TACAGATCAC
	651	AAGCAACTCT	TCAGGATCTG	GGGGAGGCAT	ATTTTCTACC	CAAACACTCA
45	701	CGATCTCCTC	GAATAAAAAA	CTCATAGAAA	TCAGTGAAAA	TTCCGCGTTC
	751	GCAAATAACT	ATGGATCGAA	CTTCAATCCA	GGAGGAGGAG	GTCTTACTAC
	801	CACCTTTTGC	ACGATATTGA	ACAACCGAGA	AGGGGTACTC	TTTAACAATA
	851	ACCAAAGCCA		GGAGCCATTC		
_ ~	901	AAAGAAAATG		CTTTTTAAAT		
50	951	GGCTCTCCTC	AACTTATCAG	CAGGTTCTGG	AAACGGAAGC	TTCATCTTAT
	1001	CTGCAGATAA	TGGAGATATT	ATCTTTAACA	ATAATACGGC	CTCCAAGCAT
	1051	GCCCTCAATC		AAACGCCATT		CTAATATGAA
	1101	TCTGCAAATA		CCGGCTATCG		
	1151	TAGAACATGA		TCCTTCCCCA		
55	1201	GGTCATACAG	GTACAGTTTT	ATTTTCAGGG	GAACATGTAC	ACCAGAACTT

	1251				AAGGAACACT	
	1301				CGGGGCTGGC	
	1351	TTCTTCCAAC	GAGGAGGCAC	TCTACTTCTA	GGTCAAGGTG	CGGTGATCAC
~	1401	GACAGCAGGA	ACGATTCCCA	CACCATCCTC	AACACCAACG	ACAGTAGGAA
5	1451	GTACTATAAC	TTTAAATCAC	ATTGCCATTG	ACCTTCCTTC	TATTCTTTCT
	1501	TTTCAAGCTC	AGGCTCCAAA	AATTTGGATT	TACCCCACAA	AAACAGGATC
	1551	TACCTATACT	GAAGATTCCA	ACCCGACAAT	CACAATCTCA	GGAACTCTCA
	1601	CCTTACGCAA	CAGCAACAAC	GAAGATCCCT	ACGATAGTCT	GGATCTCTCG
	1651	CACTCTCTTG	AGAAAGTTCC	CCTTCTTTAT	ATTGTCGATG	TCGCTGCACA
10	1701	AAAAATTAAC	TCTTCGCAAC	TGGATCTATC	CACATTAAAT	TCTGGCGAAC
	1751	ACTATGGGTA	TCAAGGCATC	TGGTCGACCT	ATTGGGTAGA	AACTACAACA
	1801	ATCACGAACC	CTACATCTCT	ACTAGGCGCG	AATACAAAAC	ACAAGCTGCT
	1851	CTATGCAAAC	TGGTCTCCTC	TAGGCTACCG	TCCTCATCCC	GAACGTCGAG
	1901	GAGAATTCAT	TACGAATGCC	TTGTGGCAAT	CGGCATATAC	GGCTCTTGCA
15	1951	GGACTCCACT	CCCTCTCCTC	CTGGGATGAA	GAGAAGGGTC	ATGCAGCTTC
	2001	CCTACAAGGC	ATTGGTCTTC	TGGTTCATCA	AAAAGACAAA	AACGGTTTTA
	2051	AGGGATTTCG	TAGTCATATG	ACAGGTTATA	GTGCTACCAC	CGAAGCAACC
	2101	TCTTCTCAAA	GTCCGAATTT	CTCTTTAGGA	TTTGCTCAGT	TCTTCTCCAA
	2151	AGCTAAAGAA	CATGAATCTC	AAAATAGCAC	GTCCTCTCAC	CACTATTTCT
20	2201	CTGGAATGTG	CATAGAAAAT	ACTCTCTTCA	AAGAGTGGAT	ACGTCTATCT
	2251	GTGTCTCTTG	CTTATATGTT	TACCTCGGAA	CATACCCATA	CAATGTATCA
	2301	GGGTCTCCTG	GAAGGGAACT	CTCAGGGATC	TTTCCACAAC	CATACCTTAG
	2351	CAGGGGCTCT	CTCCTGTGTT	TTCTTACCTC	AACCTCACGG	CGAGTCCCTG
	2401	CAGATCTATC	CCTTTATTAC	TGCCTTAGCC	ATCCGAGGAA	ATCTTGCTGC
25	2451	GTTTCAAGAA	TCTGGAGACC	ATGCTCGGGA	ATTTTCCCTA	CACCGCCCCC
	2501	TAACGGACGT	CTCCCTCCCT	GTAGGAATCC	GCGCTTCTTG	GAAGAACCAC
	2551	CACCGAGTTC	CCCTAGTCTG	GCTCACAGAA	ATTTCCTATC	GCTCTACTCT
	2601	CTATAGGCAA	GATCCTGAAC	TCCACTCGAA	ATTACTGATT	AGCCAAGGTA
	2651	CGTGGACGAC	GCAGGCCACT	CCTGTGACCT	ACAATGCTTT	AGGGATCAAA
30	2701	GTGAAAAATA	CCATGCAGGT		GTCACTCTCT	- ·
	2751	CTCTGCGGAT	ATTTCTTCCT	CCACGCTGAG	TCACTACTTA	AACGTGGCGA
	2801	GTAGAATGAG				

The PSORT algorithm predicts an outer membrane location (0.923).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 3A, and also in his-tagged form. The GST-fusion recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 3B) and for FACS analysis (Figure 3C).

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6751 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 4

The following C.pneumoniae protein (PID 4376752) was expressed <SEQ ID 7; cp6752>:

	1	MFGMTPAVYS	LQTDSLEKFA	LERDEEFRTS	FPLLDSLSTL	TGFSPITTFV
	51	GNRHNSSQDI	VLSNYKSIDN	ILLLWTSAGG	AVSCNNFLLS	NVEDHAFFSK
45	101				RGLNNASTGG	
	151	GDFTISQNQG	TFYFVNNSVN	NWGGALSTNG	HCRIQSNRAP	LLFFNNTAPS
•	201				AIQTSVTVAI	
	251				GTILFNNNYC	
	301	FLTIKNSGHV	YFTNNQGNWG	GALMLLQDST	CLLFAEQGNI	AFONNEVFLT
50	351	TFGRYNAIHC	TPNSNLQLGA	NKGYTTAFFD	PIEHQHPTTN	PLIFNPNANH
	401	QGTILFSSAY	IPEASDYENN	FISSSKNTSE	LRNGVLSIED	RAGWOFYKFT
	451				VIINNLAINL	
	501	TLWIRPLQSS	APFTEDNNPT	ITLSGPLTLL	NEENRDPYDS	IDLSEPLONI
	551	HLLSLSDVTA	RHINTDNFHP	ESLNATEHYG	YQGIWSPYWV	ETITTTNNAS
55	601	IETANTLYRA	LYANWTPLGY	KVNPEYQGDL	ATTPLWQSFH	TMFSLLRSYN
	651	RTGDSDIERP	FLEIQGIADG	LFVHQNSIPG	APGFRIQSTG	YSLOASSETS

	701	LHOKISLGFA	QFFTRTKEIG	SSNNVSAHNT	VSSLYVEL PW	FOEAFATICTY
	751	LAYGYGDHHL	HSLHPSHQEQ	AEGTCYSHTL	AAATGCSEPW	OOKSAL'HI'GD
	801	FVQAIAIRSH	QTAFEEIGDN	PRKFVSOKPF	YNLTLPIGTO	GKWOSKEHVD
	851	TEWTLELSYO	PVLYQQNPQI	GVTLLASGGS	WDILGHNYVR	NALGYKVHNO
5	901	TALFRSLDLF	LDYQGSVSSS	TSTHHLOAGS	TLKF*	
	The cp6752 nucl					
	1	ATGTTCGGGA	TGACTCCTGC	AGTGTATAGT	TTACAAACGG	ACTCCCTTGA
	51	AAAGTTTGCT	TTAGAGAGGG	ATGAAGAGTT	TCGTACGAGC	T
10	101	TAGACTCTCT	CTCCACTCTT	ACAGGATTTT	CTCCAATAAC	TACGTTTGTT
10	151	GGAAATAGAC	ATAATTCCTC	TCAAGACATT	GTACTTTCTA	ACTACAAGTC
	201	TATTGATAAC	ATCCTTCTTC	TTTGGACATC	GGCTGGGGGA	GCTGTGTCCT
	251	GTAATAATTT	CTTATTATCA	AATGTTGAAG	ACCATGCCTT	CTTCAGTAAA
	301	AATCTCGCGA	TTGGGACTGG	AGGCGCGATT	GCTTGCCAGG	GAGCCTGCAC
15	351 401	AATCACGAAG	AATAGAGGAC	CCCTTATTT	TTTCAGCAAT	CGAGGTCTTA
15	451	CCACACTGCGAG	TACAGGAGGA CGATTTCTCA	GAAACTCGTG	GGGGTGCGAT	TGCCTGTAAT
	501	TTTCCCTCA AC	AACTGGGGAG	CACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	ACTITCTACT	TTGTCAACAA
	551	TOCOTORAC	CAGGGCACCT	CMACCCCTCTC	CACCAATGGA	CACTGCCGCA
	601	GGAGGGGGTG	CGCTTCGTAG	TGAAAATACA	ACCAMEMONE	AGCCCCTAGT
20	651	TCCTATTTAT	TTTAAGAACA	ACTGTGGGAA	CAATGGCGGG	CCCDMMCVVV
	701	CAAGCGTTAC	TGTTGCGATA	AAAAATAACT	CCGGGTCGGT	GATTTCAAA
	751	AACAACACAG	CGTTATCTGG	TTCGATAAAT	TCAGGAAATG	GTTCAGGAGG
	801	GGCGATTTAT	ACAACAAACC	TATCCATAGA	CGATAACCCT	GGAACTATTC
^~	851	TTTTCAATAA	TAACTACTGC	ATTCGCGATG	GCGGAGCTAT	CTGTACACAA
25	901	TTTTTGACAA	TCAAAAATAG	TGGCCACGTA	TATTTCACCA	ACAATCAAGG
	951	AAACTGGGGA	${\tt GGTGCTCTTA}$	TGCTCCTACA	GGACAGCACC	TGCCTACTCT
	1001	TCGCGGAACA	AGGAAATATC	GCATTTCAAA	ATAATGAGGT	TTTCCTCACC
	1051 1101	ACATTTGGTA	GATACAACGC	CATACATTGT	ACACCAAATA	GCAACTTACA
30	1101	ACTTGGAGCT	AATAAGGGGT	ATACGACTGC	TTTTTTTGAT	CCTATAGAAC
30	1201	CAGGGAACGA	$\begin{array}{c} \mathtt{AACTACAAAT} \\ \mathtt{TCTTATTTTC} \end{array}$	CCTCTAATCT	TTAATCCCAA	TGCGAACCAT
	1251	ССВАВАТАВТ	TTCATTAGCA	TICAGCCIAT	MACCICCICAGAAG	CTTCTGACTA
	1301	GTGTCCTCTC	TATCGAGGAT	CCTCCARAAA	CCCAAMMCMA	CTTCGCAATG
	1351	CAAAAAGGAG	GTATCCTTAA	ATTAGGGCAT	GCGGCGAGTA	TTCCAACAAC
35	1401	TGCCAACTCT	GAGACTCCAT	CAACTAGTGT	AGGCTCCCAG	GTCATCATTA
	1451	ATAACCTTGC	GATTAACCTC	CCCTCGATCT	TAGCAAAAGG	AAAAGCTCCT
	1501	ACCTTGTGGA	TCCGTCCTCT	ACAATCTAGT	GCTCCTTTCA	CAGAGGACAA
	1551	TAACCCTACA	ATTACTTTAT	CAGGTCCTCT	GACACTCTTA	AATGAGGAAA
40	1601	ACCGCGATCC	${\tt CTACGACAGT}$	ATAGATCTCT	CTGAGCCTTT	ACAAAACATT
40	1651	CATCTTCTTT	CTTTATCGGA	TGTAACAGCA	CGTCATATCA	ATACCGATAA
	1701 1751	CTTTCATCCT	GAAAGCTTAA	ATGCGACTGA	GCATTACGGT	TATCAAGGCA
	1801	TOTGGTCTCC	TTATTGGGTA	GAGACGATAA	CAACAACAAA	TAACGCTTCT
	1851	CTTACCATAT	CAAACACCCT AAGGTCAATC	CTACAGAGCT	CTGTATGCCA	ATTGGACTCC
45	1901	CCCTATGGCA	ATCCTTTCAT	ACTATION	CTCTATTATA	AACHIOARAA
	1951	CGAACTGGTG	ATTCTGATAT	CCAGAGGCCT	TTCIAIIAAG	WWC1TATAAT.
	2001	TGCCGACGGC	CTCTTTGTTC	ATCAAAATAG	CATCCCCGGG	GCTCCAGGAT
	2051	TCCGTATCCA	ATCTACAGGG	TATTCCTTAC	AAGCATCCTC	CGAAACTTCT
	2101	TTACATCAGA	AAATCTCCTT	AGGTTTTGCA	CAGTTCTTCA	CCCGCACTAA
50	2151	AGAAATCGGA	TCAAGCAACA	ACGTCTCGGC	TCACAATACA	GTCTCTTCAC
	2201	TTTATGTTGA	GCTTCCGTGG	TTCCAAGAGG	CCTTTGCAAC	ATCCACAGTG
	2251	TTAGCGTATG	GCTATGGGGA	CCATCACCTC	CACAGCCTAC	ATCCCTCACA
	2301	TCAAGAACAG	GCAGAAGGGA	CGTGTTATAG	CCATACATTA	GCAGCAGCTA
55	2351	TCGGCTGTTC	TTTCCCTTGG	CAACAGAAAT	CCTATCTTCA	CCTCAGCCCG
55	2401	TTCGTTCAGG	CAATTGCAAT	ACGTTCTCAC	CAAACAGCGT	TCGAAGAGAT
	2451	CCMMACCMCT	CCCCGAAAGT	TTGTCTCTCA	AAAGCCTTTC	TATAATCTGA
	2501 2551	ACACAAMCCA	AGGAATCCAA	GGAAAATGGC	AGTCAAAATT	CCACGTACCT
	2601	TCCCCX X XTC	CTCTAGAACT	TTCTTACCAA	CCGGTACTCT	AAAAAAA
60	2651	TAGGCCAMAIC	GGTGTCACGC CTATGTTCGC	AMCUTGCGAG	CGGAGGTTCC	TGGGATATCC
50	2701	ACTGCGCTCT	TCCGTTCTCT	CCD/ICMV mma	GGTACAAAGT	AACCARCCC
	2751	CTCCTCCTCG	ACATCTACGC	ACCATCTATTC	TIGGALIACC	AAGGATCGGT AAGGATCGGT
	2801	TCTAA		A	vacvaavu(2,1,	DCC I TUMBET.

The PSORT algorithm predicts a cytoplasmic location (0.138).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 4A, and also as a GST-fusion. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (4B) and the his-tagged protein was used for FACS analysis (4C).

The cp6752 protein was also identified in the 2D-PAGE experiment (Cpn0467).

5 These experiments show that cp6752 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 5

10

The following C.pneumoniae protein (PID 4376850) was expressed <SEQ ID 9; cp6850>:

1 MKKAVLIAAM FCGVVSLSSC CRIVDCCFED PCAPSSCNPC EVIRKKERSC 51 GGNACGSYVP SCSNPCGSTE CNSQSPQVKG CTSPDGRCKO *

A predicted signal peptide is highlighted.

The cp6850 nucleotide sequence <SEQ ID 10> is:

The PSORT algorithm predicts an inner membrane location (0.329).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 5A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 5B) and for FACS analysis (Figure 5B). A his-tagged protein was also expressed.

These experiments show that cp6850 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

25 Example 6

The following C.pneumoniae protein (PID 4376900) was expressed <SEQ ID 11; cp6900>:

	1	MKIKFSWKVN	FLICLLAVGL	IFFGCSRVKR	EVLVGRDATW	FPKOFGIYTS
	51	DTNAFLNDLV	SEINYKENLN	INIVNQDWVH	LFENLDDKKT	QGAFTSVLPT
	101	LEMLEHYQFS	DPILLTGPVL	VVAQDSPYQS	IEDLKGRLIG	VYKFDSSVLV
30	151	AQNIPDAVIS	LYQHVPIALE	ALTSNCYDAL	LAPVIEVTAL	IETAYKGRLK
			LRLAILKGTN			

The cp6900 nucleotide sequence <SEQ ID 12> is:

	1	GTGAAGATAA	AATTTTCTTG	GAAGGTAAAT	TTTTTAATAT	GTTTACTGGC
	51	TGTGGGACTG	ATCTTTTTCG	GGTGCTCTCG	AGTAAAAAGA	GAAGTTCTCG
35	101		TGCCACCTGG			
	151	GATACCAACG	CATTTTTAAA	CGATCTTGTT	TCTGAGATTA	ACTATAAAGA
	201	GAATCTAAAT	ATTAATATTG	TAAATCAAGA	TTGGGTGCAT	CTCTTTGAGA
	251	ATTTAGATGA	TAAAAAGACC	CAAGGAGCAT	TTACATCTGT	ATTGCCTACT
	301		TCGAACACTA			
40	351	TCCTGTCCTT	GTCGTCGCTC	AAGACTCTCC	TTACCAATCT	ATAGAGGATC
	401		TCTTATTGGA			
	451	GCTCAAAATA	TCCCTGACGC	TGTGATTAGC	CTCTACCAAC	ATGTTCCAAT
	501	AGCATTGGAA	GCCTTAACAT	CGAATTGTTA	CGACGCTCTT	CTAGCTCCTG
	551	TAATTGAAGT	GACCGCGCTA	ATAGAAACAG	CATATAAAGG	AAGACTGAAA
45	601	ATTATTTCAA	AACCCTTAAA	CGCAGATGGT	TTGCGGCTTG	CAATACTGAA

```
651 AGGGACAAAC GGAGATTTGC TTGAAGGGTT TAACGCAGGA CTTGTGAAAA
701 CACGACGCTC AGGAAAATAC GATGCTATAA AACAGCGGTA TCGTCTTCCC
751 TAA
```

The PSORT algorithm predicts an inner membrane location (0.452).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 6A. The recombinant protein was used to immunise mice, whose sera were used for FACS analysis (Figure 6B). A his-tagged protein was also expressed.

The cp6900 protein was also identified in the 2D-PAGE experiment (Cpn0604).

These experiments show that cp6900 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 7

The following C.pneumoniae protein (PID 4377033) was expressed <SEQ ID 13; cp7033>:

	1	MVNPIGPGPI	DETERTPPAD	LSAQGLEASA	ANKSAEAQRI	AGAEAKPKES
	51	KTDSVERWSI	LRSAVNALMS	LADKLGIASS	NSSSSTSRSA	DVDSTTATAP
15	101	TPPPPTFDDY	KTQAQTAYDT	IFTSTSLADI	QAALVSLQDA	VTNIKDTAAT
	151	DEETAIAAEW	ETKNADAVKV	GAQITELAKY	ASDNQAILDS	LGKLTSFDLL
	201	QAALLQSVAN	NNKAAELLKE	MQDNPVVPGK	TPAIAQSLVD	QTDATATQIE
	251	KDGNAIRDAY	FAGQNASGAV	ENAKSNNSIS	NIDSAKAAIA	TAKTQIAEAQ
	301	KKFPDSPILQ	EAEQMVIQAE	KDLKNIKPAD	GSDVPNPGTT	VGGSKQQGSS
20	351	IGSIRVSMLL	DDAENETASI	LMSGFRQMIH	MFNTENPDSQ	AAQQELAAQA
	401	RAAKAAGDDS	AAAALADAQK	ALEAALGKAG	QQQGILNALG	QIASAAVVSA
	451	GVPPAAASSI	GSSVKQLYKT	SKSTGSDYKT	QISAGYDAYK	SINDAYGRAR
	501	NDATRDVINN	VSTPALTRSV	PRARTEARGP	EKTDQALARV	ISGNSRTLGD
	551	VYSQVSALQS	VMQIIQSNPQ	ANNEEIRQKL	TSAVTKPPQF	GYPYVQLSND
25	601	STOKFIAKLE	SLFAEGSRTA	AEIKALSFET	NSLFIQQVLV	NIGSLYSGYL
	651	0*				

The cp7033 nucleotide sequence <SEQ ID 14> is:

	1	ATGGTTAATC	CTATTGGTCC	AGGTCCTATA	GACGAAACAG	AACGCACACC
	51	TCCCGCAGAT	CTTTCTGCTC	AAGGATTGGA	GGCGAGTGCA	GCAAATAAGA
30	101	GTGCGGAAGC	TCAAAGAATA	GCAGGTGCGG	AAGCTAAGCC	TAAAGAATCT
	151	AAGACCGATT	CTGTAGAGCG	ATGGAGCATC	TTGCGTTCTG	CAGTGAATGC
	201	TCTCATGAGT	CTGGCAGATA	AGCTGGGTAT	TGCTTCTAGT	AACAGCTCGT
	251	CTTCTACTAG	CAGATCTGCA	GACGTGGACT	CAACGACAGC	GACCGCACCT
	301	ACGCCTCCTC	CACCCACGTT	TGATGATTAT	AAGACTCAAG	CGCAAACAGC
35	351	TTACGATACT	ATCTTTACCT	CAACATCACT	AGCTGACATA	CAGGCTGCTT
	401	TGGTGAGCCT	CCAGGATGCT	GTCACTAATA	TAAAGGATAC	AGCGGCTACT
	451	GATGAGGAAA	CCGCAATCGC	TGCGGAGTGG	GAAACTAAGA	ATGCCGATGC
	501	AGTTAAAGTT	GGCGCGCAAA	TTACAGAATT	AGCGAAATAT	GCTTCGGATA
	551	ACCAAGCGAT	TCTTGACTCT	TTAGGTAAAC	TGACTTCCTT	CGACCTCTTA
40	601			TGTAGCAAAC		
	651	TCTTAAAGAG	ATGCAAGATA	ACCCAGTAGT	CCCAGGGAAA	ACGCCTGCAA
	701		TTTAGTTGAT	CAGACAGATG	4	
	751			GGATGCATAT		
	801			AATCTAATAA		
45	851			ACTGCTAAGA		
	901			AATTCTTCAA		AAATGGTAAT
	951	ACAGGCTGAG	AAAGATCTTA	AAAATATCAA	ACCTGCAGAT	GGTTCTGATG
	1001	TTCCAAATCC	AGGAACTACA	GTTGGAGGCT	CCAAGCAACA	AGGAAGTAGT
	1051	ATTGGTAGTA	TTCGTGTTTC	CATGCTGTTA	GATGATGCTG	AAAATGAGAC
50	1101	CGCTTCCATT	TTGATGTCTG	GGTTTCGTCA	GATGATTCAC	ATGTTCAATA
	1151	CGGAAAATCC	TGATTCTCAA			
	1201	AGAGCAGCGA	AAGCCGCTGG	AGATGACAGT	GCTGCTGCAG	CGCTGGCAGA
	1251		GCTTTAGAAG	CGGCTCTAGG		CAACAACAGG
	1301			CAGATCGCTT		TGTGAGCGCA
55	1351			AAGTTCTATA		
	1401	TTACAAGACC	TCAAAATCTA	CAGGTTCTGA	TTATAAAACA	CAGATATCAG

	1451	CAGGTTATGA	TGCTTACAAA	TCCATCAATG	ATGCCTATGG	TAGGGCACGA
	1501	AATGATGCGA	CTCGTGATGT	GATAAACAAT	GTAAGTACCC	CCGCTCTCAC
	1551	ACGATCCGTT	CCTAGAGCAC	GAACAGAAGC	TCGAGGACCA	GAAAAAACAG
~	1601	ATCAAGCCCT	CGCTAGGGTG	ATTTCTGGCA	ATAGCAGAAC	TCTTGGAGAT
5	1651	GTCTATAGTC	AAGTTTCGGC	ACTACAATCT	GTAATGCAGA	TCATCCAGTC
	1701			AGGAGATCAG		
	1751	TGACAAAGCC	TCCACAGTTT	GGCTATCCTT	ATGTGCAACT	TTCTAATGAC
	1801	TCTACACAGA	AGTTCATAGC	TAAATTAGAA	AGTTTGTTTG	CTGAAGGATC
10	1851	TAGGACAGCA	GCTGAAATAA	AAGCACTTTC	CTTTGAAACG	AACTCCTTGT
10	1901			AATATCGGCT		
	1951	αάπαα				

The PSORT algorithm predicts a cytoplasmic location (0.272).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 7A. A his-tagged protein was also expressed. The recombinant proteins were used to immunise mice, whose sera were used for FACS (Figure 7B) and Western blot (7C) analyses.

The cp7033 protein was also identified in the 2D-PAGE experiment (Cpn0728) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7033 a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

20 Example 8

15

The following C.pneumoniae protein (PID 6172321) was expressed <SEQ ID 15; cp0017>:

MGIKGTGIIV WVDDATAKTK NATLTWTKTG YKPNPERQGP LVPNSLWGSF VDVRSIQSLM DRSTSSLSSS TNLWVSGIAD FLHEDQKGNQ RSYRHSSAGY

	4 4 4				X-11X	*********
25	101	ALGGGFFTAS	ENFFNFAFCQ	LFGYDKDHLV	AKNHTHVYAG	AMSYRHLGES
25	151	KTLAKILSGN	SDSLPFVFNA	RFAYGHTDNN	MTTKYTGYSP	VKGSWGNDAF
	201	GIECGGAIPV	VASGRRSWVD	THTPFLNLEM	IYAHQNDFKE	NGTEGRSFQS
	251	EDLFNLAVPV	GIKFEKFSDK	STYDLSIAYV	PDVIRNDPGC	TTTLMVSGDS
	301	WSTCGTSLSR	QALLVRAGNH	HAFASNFEVF	SQFEVELRGS	SRSYAIDLGG
	351	RFGF*				
30	The cp0017 nucl	eotide seaner	nce <seo id<="" td=""><td>165 is:</td><td></td><td></td></seo>	165 is:		
- •	P	au ooquoi	IOO COLO ID	10> 13.		
	1	ATGGGTATCA	AGGGAACTGG	AATAATTGTT	TGGGTCGACG	ATGCAACTGC
	51	AAAAACAAAA	AATGCTACCT	TAACTTGGAC		TACAAGCCGA
	101	ATCCAGAACG	TCAGGGACCT	TTGGTTCCTA	ATAGCCTGTG	GGGTTCTTTT
	15 1	GTCGATGTCC	GCTCCATTCA	GAGCCTCATG	GACCGGAGCA	CAAGTTCGTT
35	201	ATCTTCGTCA	ACAAATTTGT	GGGTATCAGG	AATCGCGGAC	TTTTTGCATG
	251	AAGATCAGAA	AGGAAACCAA	CGTAGTTATC	GTCATTCTAG	CGCGGGTTAT
	301	GCATTAGGAG	GAGGATTCTT	CACGGCTTCT	GAAAATTTCT	TTAATTTTGC
	351	TTTTTGTCAG	CTTTTTGGCT	ACGACAAGGA	CCATCTTGTG	GCTAAGAACC
	401	ATACCCATGT	ATATGCAGGG	GCAATGAGTT	ACCGACACCT	CGGAGAGTCT
40	451	AAGACCCTCG	CTAAGATTTT	GTCAGGAAAT		TACCTTTTGT
	501			ATGGCCATAC	CGACAATAAC	ATGACCACAA
	551	AGTACACTGG	CTATTCTCCT	GTTAAGGGAA	GCTGGGGAAA	TGATGCCTTC
	601	GGTATAGAAT	GTGGAGGAGC	TATCCCGGTA	GTTGCTTCAG	GACGTCGGTC
	651	TTGGGTGGAT	ACCCACACGC	CATTTCTAAA	CCTAGAGATG	ATCTATGCAC
45	701	ATCAGAATGA	CTTTAAGGAA	AACGGCACAG	AAGGCCGTTC	TTTCCAAAGT
	751	GAAGACCTCT	TCAATCTAGC	GGTTCCTGTA	GGGATAAAAT	TTGAGAAATT
	801	CTCCGATAAG	TCTACGTATG	ATCTCTCCAT	AGCTTACGTT	
	851			ACGACAACTC		TGGGGATTCT
50	901	TGGTCGACAT	GTGGTACAAG	CTTGTCTAGA	CAAGCTCTTC	TTGTACGTGC
50	951			CTTCAAACTT	TGAAGTTTTC	AGTCAGTTTG
	1001	AAGTCGAGTT	GCGAGGTTCT	TCTCGTAGCT	ATGCTATCGA	TCTTGGAGGA
	1051	AGATTCGGAT	TTTAA			

This sequence is frame-shifted with respect to cp0016.

The PSORT algorithm predicts a cytoplasmic location (0.075).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 8A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 8B) and for FACS analysis (Figure 8C). A his-tagged protein was also expressed.

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp0017 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 9

10 The following C.pneumoniae protein (PID 6172315) was expressed <SEQ ID 17; cp0014>:

```
1 MKSSFPKFVF STFAIFPLSM LATETVLDSS ASFDGNKNGN FSVRESQEDA
51 GTTYLFKGNV TLENIPGTGT AITKSCFNNT KGDLTFTGNG NSLLFQTVDA
101 GTVAGAAVNS SVVDKSTTFI GFSSLSFIAS PGSSITTGKG AVSCSTGSLS
151 LTKMSVCSSA KTFORIMAVL SPOKLFH*
```

15 The cp0014 nucleotide sequence <SEQ ID 18> is:

```
ATGAAGTCTT CTTTCCCCAA GTTTGTATTT TCTACATTTG CTATTTTCCC
                51
                    TTTGTCTATG ATTGCTACCG AGACAGTTTT GGATTCAAGT GCGAGTTTCG
                    ATGGGAATAA AAATGGTAAT TTTTCAGTTC GTGAGAGTCA GGAAGATGCT
               101
               151
                    GGAACTACCT ACCTATTTAA GGGAAATGTC ACTCTAGAAA ATATTCCTGG
20
               201
                    AACAGGCACA GCAATCACAA AAAGCTGTTT TAACAACACT AAGGGCGATT
               251
                    TGACTTTCAC AGGTAACGGG AACTCTCTAT TGTTCCAAAC GGTGGATGCA
               301
                    GGGACTGTAG CAGGGGCTGC TGTTAACAGC AGCGTGGTAG ATAAATCTAC
                    CACGTTTATA GGGTTTTCTT CGCTATCTTT TATTGCGTCT CCTGGAAGTT
               351
               401
                    CGATAACTAC CGGCAAAGGA GCCGTTAGCT GCTCTACGGG TAGCTTGAGT
25
               451
                    TTGACAAAAA TGTCAGTTTG CTCTTCAGCA AAAACTTTTC AACGGATAAT
                    GGCGGTGCTA TCACCGCAAA AACTCTTTCA TTAA
               501
```

This protein is frame-shifted with respect to cp0015.

The PSORT algorithm predicts an inner membrane location (0.047).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 9A. A 30 GST-fusion was also expressed. The recombinant proteins were used to immunise mice, whose sera were used in an immunoassay (Figure 9B) and for FACS analysis (Figure 9C).

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments suggest that cp0014 is a useful immunogen. These properties are not evident from the sequence alone.

Example 10

The following C.pneumoniae protein (PID 6172317) was expressed <SEQ ID 19; cp0015>:

```
40 MSALFSENTS SKKGGAIQTS DALTITGNQG EVSFSDNTSS DSGAAIFTEA
S1 SVTISNNAKV SFIDNKVTGA SSSTTGDMSG GAICAYKTST DTKVTLTGNQ
40 101 MLLFSNNTST TAGGAIYVKK LELASGGLTL FSRNSVNGGT APKGGAIAIE
151 DSGELSLSAD SGDIVFLGNT VTSTTPGTNR SSIDLGTSAK MTALRSAAGR
```

```
201 AIYFYDPITT GSSTTVTDVL KVNETPADSA LQYTGNIIFT GEKLSETEAA
251 DSKNLTSKLL QPVTLSGGTL SLKHGVTLQT QAFTQQADSR LEMDVGTTLE
301 PADTSTINNL VINISSIDGA KKAKIETKAT SKNLTLSGTI TLLDPTGTFY
351 ENHSLRNPQS VDILELKASG TVTSTAVTPD PIMGEKFHYG YQGTWGPIVW
401 GTGASTTATF NWTKTGYIPN PERIGSLVPN SLWNAFIDIS SLHYLMETAN
451 EGLQGDRAFW CAGLSNFFHK DSTKTRRGFR HLSGGYVIGG NLHTCSDKIL
501 SAAFCQLFGR DRDYFVAKNQ GTVYGGTLYY QHNETYISLP CKLRPCSLSY
551 VPTEIPVLFS GNLSYTHTDN DLKTKYTTYP TVKGSWGNDS FALEFGGRAP
601 ICLDESALFE QYMPFMKLQF VYAHQEGFKE QGTEAREFGS SRLVNLALPI
651 GIRFDKESDC QDATYNLTLG YTVDLVRSNP DCTTTLRISG DSWKTFGTNL
701 ARQALVLRAG NHFCFNSNFE AFSQFSFELR GSSRNYNVDL GAKYQF*
```

This sequence is frame-shifted with respect to cp0014.

The cp0015 nucleotide sequence <SEQ ID 20> is:

	1	ATGTCAGCTC	TGTTTTCTGA	AAATACCTCC	TCAAAGAAAG	GCGGAGCCAT
15	51	TCAGACTTCC	GATGCCCTTA	CCATTACTGG	AAACCAAGGG	GAAGTCTCTT
	101	TTTCTGACAA	TACTTCTTCG	GATTCTGGAG	CTGCAATTTT	TACAGAAGCC
	151				TCCTTTATTG	
	201	CACAGGAGCG	AGCTCCTCAA	CAACGGGGGA	TATGTCAGGA	GGTGCTATCT
	251	GTGCTTATAA	AACTAGTACA	GATACTAAGG	TCACCCTCAC	TGGAAATCAG
20	301	ATGTTACTCT	TCAGCAACAA	TACATCGACA	ACAGCGGGAG	GAGCTATCTA
	351	TGTGAAAAAG	CTCGAACTGG	CTTCCGGAGG	ACTTACCCTA	TTCAGTAGAA
	401				GTGGAGCCAT	
	451	GATAGTGGGG	AATTGAGTTT	ATCCGCCGAT	AGTGGTGACA	TTGTCTTTTT
	501	AGGGAATACA	GTCACTTCTA	CTACTCCTGG	GACGAATAGA	AGTAGTATCG
25	551				TGCGTTCTGC	
	601	GCCATCTACT	TCTATGATCC	CATAACTACA	GGATCATCCA	CAACAGTTAC
	651	AGATGTCTTA	AAAGTTAATG	AGACTCCGGC	AGATTCTGCA	CTACAATATA
	701	CAGGGAACAT	CATCTTCACA	GGAGAAAAGT	TATCAGAGAC	AGAGGCCGCA
	751				CAGCCTGTAA	
30	801	AGGTACTCTA	TCTTTAAAAC	ATGGAGTGAC	TCTGCAGACT	CAGGCATTCA
	851	CTCAACAGGC	AGATTCTCGT	CTCGAAATGG	ACGTAGGAAC	TACTCTAGAA
	901	CCTGCTGATA	CTAGCACCAT	AAACAATTTG	GTCATTAACA	TCAGTTCTAT
	951	AGACGGTGCA	AAGAAGGCAA	AAATAGAAAC	CAAAGCTACG	TCAAAAAATC
	1001	TGACTTTATC	TGGAACCATC	ACTTTATTGG	ACCCGACGGG	CACGTTTTAT
35	1051				TACGACATCT	
	1101				GACTCCAGAT	
	1151				CTTGGGGCCC	
	1201	GGGACAGGGG	CTTCTACGAC	TGCAACCTTC	AACTGGACTA	AAACTGGCTA
	1251				AGTCCCTAAT	
40	1301				ATCTTATGGA	
	1351				TGTGCTGGAT	
	1401				CGGGTTTCGC	
	1451				CTTGTTCAGA	
	1501	AGTGCTGCAT	TTTGTCAGCT	CTTTGGAAGA	GATAGAGACT	ACTITGTAGC
45	1551				TCTCTATTAC	
	1601				GGCCTTGTTC	
	1651	GTTCCTACAG	AGATTCCTGT	TCTCTTTTCA	GGAAACCTTA	GCTACACCCA
	1701				AACATATCCT	
	1751	GAAGCTGGGG	GAATGATAGT	TTCGCTTTAG	AATTCGGTGG	AAGAGCTCCG
50	1801	ATTTGCTTAG	ATGAAAGTGC	TCTATTTGAG	CAGTACATGC	CCTTCATGAA
	1851	ATTGCAGTTT	GTCTATGCAC	ATCAGGAAGG	TTTTAAAGAA	CAGGGAACAG
	1901	AAGCTCGTGA	ATTTGGAAGT	AGCCGTCTTG	TGAATCTTGC	CTTACCTATC
	1951	GGGATCCGAT	TTGATAAGGA	ATCAGACTGC	CAAGATGCAA	CGTACAATCT
	2001	AACTCTTGGT	TATACTGTGG	ATCTTGTTCG	TAGTAACCCC	GACTGTACGA
55	2051	CAACACTGCG	AATTAGCGGT	GATTCTTGGA	AAACCTTCGG	TACGAATTTG
	2101				AACCATTTTT	
	2151				TGAATTGCGT	
	2201				ACCAATTCTA	

The PSORT algorithm predicts a cytoplasmic location (0.274).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 10A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 10B) and for FACS analysis. A his-tagged protein was also expressed.

These experiments show that cp0015 is a useful immunogen. These properties are not evident from the sequence alone.

Example 11

The following C.pneumoniae protein (PID 6172325) was expressed <SEQ ID 21; cp0019>:

```
5
                    LQDSQDYSFV KLSPGAGGTI ITQDASQKPL EVAPSRPHYG YQGHWNYOVI
                     PGTGTQPSQA NLEWVRTGYL PNPERQGSLV PNSLWGSFVD QRAIQEIMVN
                101
                     SSQILCOERG VWGAGIANFL HRDKINEHGY RHSGVGYLVG VGTHAFSDAT
                151
                     INAAFCQLFS RDKDYVVSKN HGTSYSGVVF LEDTLEFRSP QGFYTDSSSE
                201
                     ACCNOVVTID MOLSYSHRNN DMKTKYTTYP EAQGSWANDV FGLEFGATTY
10
                251
                     YYPNSTFLFD YYSPFLRLQC TYAHQEDFKE TGGEVRHFTS GDLFNLAVPI
                301
                     GVKFERFSDC KRGSYELTLA YVPDVIRKDP KSTATLASGA TWSTHGNNLS
                351
                     RQGLQLRLGN HCLINPGIEV FSHGAIELRG SSRNYNINLG GKYRF*
```

This sequence is frame-shifted with respect to cp0018.

The cp0019 nucleotide sequence <SEQ ID 22> is:

```
15
                     TTGCAAGACT CTCAAGACTA TAGCTTTGTA AAGTTATCTC CAGGAGCGGG
                 51
                     AGGGACTATA ATTACTCAAG ATGCTTCTCA GAAGCCTCTT GAAGTAGCTC
                101
                     CTTCTAGACC ACATTATGGC TATCAAGGAC ATTGGAATGT GCAAGTCATC
                151
                     CCAGGAACGG GAACTCAACC GAGCCAGGCA AATTTAGAAT GGGTGCGGAC
               201
                     AGGATACCTT CCGAATCCCG AACGGCAAGG ATCTTTAGTT CCCAATAGCC
20
                251
                     TGTGGGGTTC TTTTGTTGAT CAGCGTGCTA TCCAAGAAAT CATGGTAAAT
                301
                     AGTAGCCAAA TCTTATGTCA GGAACGGGGA GTCTGGGGGA CTGGAATTGC
                351
                    TAATTTCCTA CATAGAGATA AAATTAATGA GCACGGCTAT CGCCATAGCG
                401
                    GTGTCGGTTA TCTTGTGGGA GTTGGCACTC ATGCTTTTC TGATGCTACG
                451
                     ATAAATGCGG CTTTTTGCCA GCTCTTCAGT AGAGATAAAG ACTACGTAGT
25
                501
                    ATCCAAAAAT CATGGAACTA GCTACTCAGG GGTCGTATTT CTTGAGGATA
                551
                     CCCTAGAGTT TAGAAGTCCA CAGGGATTCT ATACTGATAG CTCCTCAGAA
                601
                     GCTTGCTGTA ACCAAGTCGT CACTATAGAT ATGCAGTTGT CTTACAGCCA
                651
                    TAGAAATAAT GATATGAAAA CCAAATACAC GACATATCCA GAAGCTCAGG
                701
                     GATCTTGGGC AAATGATGTT TTTGGTCTTG AGTTTGGAGC GACTACATAC
30
                751
                     TACTACCCTA ACAGTACTTT TTTATTTGAT TACTACTCTC CGTTTCTCAG
                801
                     GCTGCAGTGC ACCTATGCTC ACCAGGAAGA CTTCAAAGAG ACAGGAGGTG
                    AGGTTCGTCA CTTTACTAGC GGAGATCTTT TCAATTTAGC AGTTCCTATT
                851
                    GGCGTGAAGT TTGAGAGATT TTCAGACTGT AAAAGGGGAT CTTATGAACT
                901
                951
                     TACCCTTGCT TATGTTCCTG ATGTGATTCG CAAAGATCCC AAGAGCACGG
35
                     CAACATTGGC TAGTGGAGCT ACGTGGAGCA CCCACGGAAA CAATCTCTCC
               1001
                    AGACAAGGAT TACAACTGCG TTTAGGGAAC CACTGTCTCA TAAATCCTGG
               1051
                     AATTGAGGTG TTCAGTCACG GAGCTATTGA ATTGCGGGGA TCCTCTCGTA
               1101
                     ATTATAACAT CAATCTCGGG GGTAAATACC GATTTTAA
```

The PSORT algorithm predicts a cytoplasmic location (0.189).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 11A. This protein was used to immunise mice, whose sera were used in a Western blot (Figure 11B) and an immunoblot assay (Figure 11C). A his-tagged protein was also expressed.

These experiments show that cp0019 is a useful immunogen. These properties are not evident from the sequence alone.

45 Example 12

The following C.pneumoniae protein (PID 4376466) was expressed <SEQ ID 23; cp6466>:

```
1 MRKISVGICI TILLSLSVVL QCCKESSHS TSRGELAINI RDEPRSLDPR
51 QVRLLSEISL VKHIYEGLVQ ENNLSGNIEP ALAEDYSLSS DGLTYTFKLK
101 SAFWSNGDPL TAEDFIESWK QVATQEVSGI YAFALNPIKN VRKIQEGHLS
50 151 IDHFGVHSPN ESTLVVTLES PTSHFLKLLA LPVFFPVHKS QRTLQSKSLP
201 IASGAFYPKN IKQKQWIKLS KNPHYYNQSQ VETKTITIHF IPDANTAAKL
```

```
251 FNQGKLNWQG PPWGERIPQE TLSNLQSKGH LHSFDVAGTS WLTFNINKFP
301 LNNMKLREAL ASALDKEALV STIFLGRAKT ADHLLPTNIH SYPEHQKQEM
351 AQRQAYAKKI FKEALEELQI TAKDLEHLNL IFPVSSSASS LLVQLIREQW
401 KESLGFAIPI VGKEFALLQA DLSSGNFSLA TGGWFADFAD PMAFLTIFAY
5 451 PSGVPPYAIN HKDFLEILQN IEQEQDHQKR SELVSQASLY LETFHIIBPI
501 YHDAFQFAMN KKLSNLGVSP TGVVDFRYAK EN*
```

The cp6466 nucleotide sequence <SEQ ID 24> is:

	1	ATGCGCAAGA	TATCAGTGGG	AATCTGTATC	ACCATTCTCC	TTAGCCTCTC
10	51	CGTAGTCCTC	CAAGGCTGCA	AGGAGTCCAG	TCACTCCTCT	ACATCTCGGG
	101	GAGAACTCGC	TATTAATATA	AGAGATGAAC	${\tt CCCGTTCTTT}$	AGATCCAAGA
	151	CAAGTGCGAC	TTCTTTCAGA	AATCAGCCTT	GTCAAACATA	TCTATGAGGG
	201	ATTAGTTCAA	GAAAATAATC	TTTCAGGAAA	TATAGAGCCT	GCTCTTGCAG
	251	AAGACTACTC	TCTTTCCTCG	GACGGACTCA	CTTATACTTT	TAAACTGAAA
15	301	TCAGCTTTTT	GGAGTAATGG	CGACCCCTTA	ACAGCTGAAG	ACTTTATAGA
	351	ATCTTGGAAA	CAAGTAGCTA	CTCAAGAAGT	CTCAGGAATC	TATGCTTTTG
	401	CCTTGAATCC	TAAAAATTAA	GTACGAAAGA	TCCAAGAGGG	ACACCTCTCC
	451	ATAGACCATT	TTGGAGTGCA	CTCTCCTAAT	GAATCTACAC	TTGTTGTTAC
	501	CCTGGAATCC	CCAACCTCGC	ATTTCTTAAA	ACTTTTAGCT	CTTCCAGTCT
20	551	TTTTCCCCGT	TCATAAATCT	CAAAGAACCC	TGCAATCCAA	ATCTCTACCT
	601	ATAGCAAGCG	GAGCTTTCTA	TCCTAAAAAT	ATCAAACAAA	AACAATGGAT
	651	AAAACTCTCA	AAAAACCCTC	ACTACTATAA	TCAAAGTCAG	GTGGAAACTA
	701	AAACGATTAC	GATTCACTTC	ATTCCCGATG	CAAACACAGC	AGCAAAACTA
	751	TTTAATCAGG	GAAAACTCAA	TTGGCAAGGA	CCTCCTTGGG	GAGAACGCAT
25	801	TCCTCAAGAA	ACCCTATCCA	ATTTACAGTC	TAAGGGGCAC	TTACACTCTT
	851	TTGATGTCGC	AGGAACCTCA	TGGCTCACCT	TCAATATCAA	TAAATTCCCC
	901	CTCAACAATA	TGAAGCTTAG	AGAAGCCTTA	GCATCAGCCT	TAGATAAGGA
	951	AGCTCTTGTC	TCAACTATAT	TCTTAGGCCG	TGCAAAAACT	GCCGATCATC
	1001	TCCTACCTAC	AAATATTCAT	AGCTATCCCG	AACATCAAAA	ACAAGAGATG
30	1051	GCACAACGCC	AAGCTTACGC	TAAAAAACTC	TTTAAAGAAG	CTTTAGAAGA
	1101	ACTCCAAATC	ACTGCTAAAG	ATCTCGAACA	TCTTAATCTT	ATCTTTCCCG
	1151	TTTCCTCGTC	AGCAAGTTCT	TTACTAGTCC	AACTTATACG	AGAACAGTGG
	1201	AAAGAAAGTT	TAGGGTTCGC	TATCCCTATT	GTCGGAAAGG	AATTTGCTCT
	1251	TCTCCAAGCA	GACCTATCTT	CAGGGAACTT	CTCTTTAGCT	ACAGGAGGAT
35	1301	GGTTCGCAGA	CTTTGCTGAT	CCTATGGCAT	TTCTAACGAT	CTTTGCTTAT
	1351	CCATCAGGAG	TTCCTCCTTA	TGCAATCAAC	CATAAGGACT	TCCTAGAAAT
	1401	TCTACAAAAC	ATAGAACAAG	AGCAAGATCA	CCAAAAACGC	TCGGAATTAG
	1451	TGTCGCAAGC	TTCTCTTTAC	CTAGAGACCT	TTCATATTAT	TGAGCCGATC
	1501	TACCACGACG	CATTTCAATT	TGCTATGAAT	AAAAAACTTT	CTAATCTAGG
40	1551	AGTCTCACCA	ACAGGAGTTG	TGGACTTCCG	TTATGCTAAG	GAAAATTAG

The PSORT algorithm predicts that the protein is an outer membrane lipoprotein (0.790).

The protein was expressed in *E.coli* and purified both as a GST-fusion product and a His-tag fusion product. Purification of the protein as a GST-fusion product is shown in Figure 12A. The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 12B and 12C). FACS analysis was also performed.

These experiments show that cp6466 is a useful immunogen. These properties are not evident from the sequence alone.

Example 13

The following C.pneumoniae protein (PID 4376468) was expressed <SEQ ID 25; cp6468>:

```
1 MFSRWITLFL LFISLTGCSS YSSKHKQSLI 1PIHDDPVAF SPEQAKRAMD
51 LSIAQLLFDG LTRETHRESN DLELAIASRY TVSEDFCSYT FFIKDSALWS
101 DGTPITSEDI RNAWEYAQEN SPHIQIFQGL NFSTPSSNAI TIHLDSPNPD
151 FPKLLAFPAF AIFFRENPKL FSGPYTLVEY FPGHNIHLKK NPNYYDYHCV
201 SINSIKLLII PDIYTAIHLL NRGKVDWVGQ PWHQGIPWEL HKQSQYHYYT
55 251 YPVEGAFWLC LNTKSPHLND LQNRHRLATC IDKRSIIEEA LQGTQQPAET
```

```
301 LSRGAPQPNQ YKKQKPLTPQ EKLVLTYPSD ILRCQRIAEI LKEQWKAAGI
    DLILEGLEYH LFVNKRKVQD YAIATQTGVA YYPGANLISE EDKLLQNFEI
351
```

401 IPIYYLSYDY LTQDFIEGVI YNASGAVDLK YTYFP*

A predicted signal peptide is highlighted.

5 The cp6468 nucleotide sequence <SEQ ID 26> is:

```
1 ATGTTTCAC GATGGATCAC CCTCTTTTA TTATTCATTA GCCTTACTGG
                51
                    ATGCTCCTCC TACTCTTCAA AACATAAACA ATCTTTAATT ATTCCCATAC
               101
                    ATGACGACCC TGTAGCTTTT TCTCCTGAAC AAGCAAAACG GGCCATGGAC
                    CTTTCTATTG CCCAACTTCT TTTTGATGGT CTGACTAGAG AAACTCATCG
               151
10
                    CGAATCCAAT GATTTGGAAT TAGCGATTGC CAGTCGCTAT ACAGTCTCTG
               201
               251
                    AAGACTTTTG CTCTTATACG TTCTTTATCA AAGACAGCGC TTTATGGAGC
               301
                    GACGGAACAC CAATCACCTC CGAAGATATC CGTAACGCTT GGGAGTATGC
                    ACAGGAGAAC TCTCCCCACA TACAGATCTT CCAAGGACTT AACTTCTCAA
               351
               401
                    CTCCTTCATC AAATGCAATT ACGATTCATC TCGACTCGCC CAACCCCGAT
15
                    TTTCCTAAGC TTCTTGCCTT TCCTGCATTT GCTATCTTTA AACCAGAAAA
               451
               501
                    CCCGAAGCTC TTTAGCGGTC CGTATACTCT TGTAGAGTAT TTCCCAGGGC
               551
                    ATAACATTCA TTTAAAGAAA AACCCTAACT ATTACGACTA CCACTGCGTC
                    TCCATCAACT CCATCAAACT GCTCATTATT CCTGATATAT ATACAGCCAT
               601
               651
                    CCACCTCCTA AACAGAGGCA AGGTGGACTG GGTAGGACAA CCCTGGCATC
20
                    AAGGGATTCC TTGGGAGCTC CATAAACAAT CGCAATATCA CTACTACACC
               701
               751
                    TATCCTGTAG AAGGTGCCTT CTGGCTTTGT CTAAATACAA AATCCCCACA
               801
                    CTTAAATGAT CTTCAAAACA GACATAGACT CGCTACTTGT ATTGATAAAC
               851
                    GTTCTATCAT TGAAGAAGCT CTTCAAGGAA CCCAACAACC AGCGGAAACA
               901
                    CTGTCCCGAG GAGCTCCACA ACCAAATCAA TATAAAAAAC AAAAGCCTCT
25
                    AACTCCACAA GAAAAACTCG TGCTTACCTA TCCCTCAGAT ATTCTAAGAT
               951
              1001
                    GCCAACGCAT AGCAGAAATC TTAAAGGAAC AATGGAAAGC TGCTGGAATA
                    GATTTAATCC TTGAAGGACT CGAATACCAT CTGTTTGTTA ACAAACGAAA
              1051
                    AGTCCAAGAC TACGCCATAG CAACACAGAC TGGAGTTGCT TATTACCCAG
              1101
              1151
                    GAGCAAATCT AATTTCTGAA GAAGACAAGC TCCTGCAAAA CTTTGAGATT
30
              1201
                    ATCCCGATCT ACTATCTGAG CTATGACTAT CTCACTCAAG ATTTTATAGA
              1251
                    GGGAGTAATC TATAATGCTT CTGGAGCTGT AGATCTCAAA TATACCTATT
              1301
                    TCCCCTAG
```

The PSORT algorithm predicts that this protein is an outer membrane lipoprotein (0.790).

The protein was expressed in E.coli and purified as a GST-fusion product, as shown in Figure 13A.

The recombinant protein was used to immunise mice, whose sera were used in a Western blot 35 (Figure 13B) and for FACS analysis. A his-tagged protein was also expressed.

These experiments show that cp6468 is a useful immunogen. These properties are not evident from the sequence alone.

Example 14

40 The following C.pneumoniae protein (PID 4376469) was expressed <SEQ ID 27; cp6469>:

```
MKMHRLKPTL KSLIPNLLFL LLTLSSCSKQ KQEPLGKHLV IAMSHDLADL
                    DPRNAYLSRD ASLAKALYEG LTRETDQGIA LALAESYTLS KDHKVYTFKL
                    RPSVWSDGTP LTAYDFEKSI KQLYFEEFSP SIHTLLGVIK NSSAIHNAQK
               101
               151
                    SLETLGIQAK DDLTLVITLE QPFPYFLTLI ARPVFSPVHH TLRESYKKGT
45
               201
                    PPSTYISNGP FVLKKHEHQN YLILEKNPHY YDHESVKLDR VTLKIIPDAS
                    TATKLFKSKS IDWIGSPWSA PISNEDQKVL SQEKILTYSV SSTTLLIYNL
               251
                    QKPLIQNKAL RKAIAHAIDR KSILRLVPSG QEAVTLVPPN LSQLNLQKEI
               351
                    STEERQTKAR AYFQEAKETL SEKELAELSI LYPIDSSNSS IIAQEIQRQL
               401
                    KDTLGLKIKI QGMEYHCFLK KRRQGDFFIA TGGWIAEYVS PVAFLSILGN
50
                    PRDLTQWRNS DYEKTLEKLY LPHAYKENLK RAEMIIEEET PIIPLYHGKY
               451
               501
                    IYAIHPKIQN TFGSLLGHTD LKNIDILS*
```

A predicted signal peptide is highlighted.

The cp6469 nucleotide sequence <SEQ ID 28> is:

	1	ATGAAGATGC	ATAGGCTTAA	ACCTACCTTA	AAAAGTCTGA	TCCCTAATCT
	51	TCTTTTCTTA	TTGCTCACTC	TTTCAAGCTG	CTCAAAGCAA	AAACAAGAAC
	101	CCTTAGGAAA	ACATCTCGTT	ATTGCGATGA	GCCATGATCT	CGCCGACCTA
5	15 1	GATCCTCGCA	ATGCCTATTT	AAGCAGAGAT	GCTTCCCTAG	CAAAAGCCCT
3	201	CTATGAAGGA	CTGACAAGAG	AAACTGATCA	AGGAATCGCA	CTGGCTCTTG
	251	CAGAAAGTTA	TACCCTGTCA	AAAGATCATA	AGGTCTATAC	CTTTAAACTC
	301	AGACCTTCTG	TGTGGAGCGA	TGGCACTCCA	CTCACTGCTT	ATGACTTTGA
	351	AAAATCTATA	AAACAACTGT	ACTTCGAAGA	ATTTTCACCT	TCCATACATA
10	401	CTTTACTCGG	CGTGATTAAA	AATTCTTCGG	CAATCCACAA	TGCTCAAAAA
10	451	TCTCTGGAAA	CTCTTGGGAT	ACAGGCAAAA	GATGATCTTA	CTTTGGTGAT
	501	TACCCTAGAG	CAACCTTTCC	CATACTTTCT	CACACTTATC	GCTCGCCCCG
	551	TATTCTCCCC	TGTTCATCAC	ACCCTTAGGG	AATCCTATAA	GAAAGGAACA
	601	CCCCCATCCA	CATACATCTC	CAATGGGCCC	TTTGTCTTAA	AAAAACATGA
1.5	651	ACACCAAAAC	TACTTAATTT	TAGAAAAAA	TCCTCACTAC	TATGATCATG
15	701	AATCAGTAAA	GTTAGACCGA	GTCACCTTAA	AAATTATCCC	AGACGCCTCC
	751	ACAGCCACGA	AACTTTTCAA	AAGTAAATCT	ATAGATTGGA	TTGGCTCACC
	801	TTGGAGCGCT	CCGATATCTA	ACGAAGACCA	AAAAGTTCTC	TCCCAAGAAA
	851	AGATTCTTAC	CTATTCTGTT	TCAAGCACCA	CCCTTCTTAT	CTATAACCTG
20	901	CAAAAACCTC	TAATACAAAA	TAAAGCCCTC	AGGAAAGCCA	TTGCTCATGC
20	951	TATTGATAGA	AAATCTATCT	TAAGACTCGT	GCCTTCAGGA	CAAGAAGCTG
	1001	TAACTCTAGT	TCCCCCAAAT	CTTTCACAAC	TCAATCTTCA	AAAAGAGATC
	1051	TCAACAGAAG	AACGACAAAC	AAAAGCCAGA	GCATATTTTC	AAGAAGCTAA
	1101	AGAAACACTT	TCTGAAAAAG	AACTCGCAGA	ACTCAGCATC	CTCTATCCTA
05	1151	TAGATTCCTC	GAATTCCTCC	ATCATAGCTC	AAGAAATCCA	AAGACAACTT
25	1201	AAAGATACCT	TAGGATTGAA	AATCAAAATC	CAAGGCATGG	AGTACCACTG
	1251	CTTTTTAAAG	AAACGTCGTC	AAGGAGATTT	CTTCATAGCG	ACAGGAGGAT
	1301	GGATTGCGGA	ATACGTAAGC	CCCGTAGCCT	TCCTATCTAT	TCTAGGCAAC
	1351		TCACACAATG		GATTACGAAA	AGACTTTAGA
20	1401	GAAACTCTAT	CTCCCTCATG	CCTACAAAGA	GAATTTAAAA	CGCGCAGAAA
30	1451	TGATAATAGA	AGAAGAAACC	CCGATTATCC	CCCTGTATCA	CGGCAAATAT
	1501	ATTTACGCTA	TACATCCTAA	AATCCAGAAT	ACATTCGGAT	CTCTTCTAGG
	1551	CCACACAGAT	CTCAAAAATA	TCGATATCTT	AAGTTAG	

The PSORT algorithm predicts a periplasmic location (0.934).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 14A.

The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 14B) and for FACS analysis. A his-tagged protein was also expressed.

These experiments show that cp6469 is a useful immunogen. These properties are not evident from the sequence alone.

Example 15

40 The following C.pneumoniae protein (PID 4376602) was expressed <SEQ ID 29; cp6602>:

	1	MAASGGTGGL	GGTQGVNLAA	VEAAAAKADA	AEVVASQEGS	EMNMIQQSQD
	51.	LTNPAAATRT	KKKEEKFQTL	ESRKKGEAGK	AEKKSESTEE	KPDTDLADKY
	101	ASGNSEISGQ	ELRGLRDAIG	DDASPEDILA	LVQEKIKDPA	LOSTALDYLV
	151	QTTPPSQGKL	KEALIQARNT	HTEQFGRTAI	GAKNILFASQ	EYADOLNVSP
45	201	SGLRSLYLEV	TGDTHTCDQL	LSMLQDRYTY	QDMAIVSSFL	MKGMATELKR
	251	QGPYVPSAQL	QVLMTETRNL	QAVLTSYDYF	ESRVPILLDS	LKAEGIOTPS
	301	DLNFVKVAES	YHKIINDKFP	TASKVEREVR	NLIGDDVDSV	TGVLNLFFSA
	351	LRQTSSRLFS	SADKRQQLGA	MIANALDAVN	INNEDYPKAS	DFPKPYPWS*

The cp6602 nucleotide sequence <SEQ ID 30> is:

		-	-			
50	1	ATGGCAGCAT	CAGGAGGCAC	AGGTGGTTTA	GGAGGCACTC	AGGGTGTCAA
	51	CCTTGCAGCT	GTAGAAGCTG	CAGCTGCAAA	AGCAGATGCA	GCAGAAGTTG
	101	TAGCCAGCCA	AGAAGGTTCT	GAGATGAACA	TGATTCAACA	ATCTCAGGAC
	151	CTGACAAATC	CCGCAGCAGC	AACACGCACG	AAAAAAAAGG	AAGAGAAGTT
~ ~	201	TCAAACTCTA	GAATCTCGGA	AAAAAGGAGA	AGCTGGAAAG	GCTGAGAAAA
55	251	AATCTGAATC	TACAGAAGAG	AAGCCTGACA	CAGATCTTGC	TGATAAGTAT
	301	GCTTCTGGGA	ATTCTGAAAT	CTCTGGTCAA	GAACTTCGCG	GCCTGCGTGA
	351	TGCAATAGGA	GACGATGCTT	CTCCAGAAGA	CATTCTTGCT	CTTGTACAAG

	401	AGAAAATTAA	AGACCCAGCT	CTGCAATCCA	CAGCTTTGGA	CTACCTGGTT
	451		CACCCTCCCA			
	501	AAGGAATACT	CATACGGAGC	AATTCGGACG	AACTGCTATT	GGTGCGAAAA
5	551		TGCCTCTCAA			
	601	TCAGGGCTTC	GCTCTTTGTA	CTTAGAAGTG	ACTGGAGACA	CACATACCTG
	651	TGATCAGCTA	CTTTCTATGC	TTCAAGACCG	CTATACCTAC	CAAGATATGG
	701	CTATTGTCAG	CTCCTTTCTA	ATGAAAGGAA	TGGCAACAGA	ATTAAAAAGG
	751	CAGGGTCCCT	ACGTACCCAG	TGCGCAACTA	CAAGTTCTCA	TGACAGAAAC
10	801	TCGTAACCTG	CAAGCAGTTC	TTACCTCGTA	CGATTACTTT	GAAAGTCGCG
10	851	TTCCTATTTT	ACTCGATAGC		AGGGAATCCA	
	901	GATCTAAACT	TTGTGAAGGT	AGCTGAGTCC	TACCATAAAA	TCATTAACGA
	951	TAAGTTCCCA	ACAGCATCTA	AAGTAGAACG	AGAAGTCCGC	AATCTCATAG
	1001		TGATTCTGTG			
1.5	1051	TTACGTCAAA	CGTCGTCACG	CCTTTTCTCT	TCAGCAGACA	AACGTCAGCA
15	1101	ATTAGGAGCT	ATGATTGCTA	ATGCTTTAGA	TGCTGTAAAT	ATAAACAATG
	1151	AAGATTATCC	CAAAGCATCA	GACTTCCCTA	AACCCTATCC	TTGGTCATGA

The PSORT algorithm predicts a cytoplasmic location (0.080).

The protein was expressed in *E.coli* and purified as both a His-tag and a GST-fusion product, as shown in Figure 15A. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 15B) and for FACS analysis (Figure 15C).

The cp6602 protein was also identified in the 2D-PAGE experiment (Cpn0324).

These experiments show that cp6602 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 16

20

25

The following C.pneumoniae protein (PID 4376727) was expressed <SEQ ID 31; cp6727>:

	1	MKYSLPWLLT		LMAANTDLSS	SDNYENGSSG	SAAFTAKETS
	51	DASGTTYTLT	SDVSITNVSA	ITPADKSCFT	NTGGALSFVG	ADHSLVLOTI
	101	ALTHDGAAIN	NTNTALSFSG	FSSLLIDSAP	ATGTSGGKGA	
	151	ATFTDNASVT	LQKNTSEKDG	AAVSAYSIDL	AKTTTAALLD	QNTSTKNGGA
30	201	LCSTANTTVQ	GNSGTVTFSS	NTATDKGGGI	YSKEKDSTLD	
	251	NTAKTGGAWS	SDDNLALTGN	TOVLFQENKT	TGSAAQANNP	EGCGGAICCY
	301	LATATDKTGL	AISQNQEMSF	TSNTTTANGG	AIYATKCTLD	GNTTLTFDQN
	351	TATAGCGGAI	YTETEDFSLK	GSTGTVTFST	NTAKTGGALY	
0.5	401	TNLLFSGNKA		EGCGGAILAF	IDSGSVSDKT	GLSIANNQEV
35	451		GGAIYATKCT			IYTETEDFTL
	501	TGSTGTVTFS			NTNLLFSGNK	ATGPSNSSAN
	551	QEGCGGAILS		KGLWIEDNEN	VSLSGNTATV	SGGAIYATKC
	601	ALHGNTTLTF		AIYTETEDFT	LTGSTGTVTF	STNTAKTAGA
40	651	LHTKGNTSFT			A	CNISESDIAT
40	701	KSLTLTENES	LSFINNTAKR		VISGSESINF	DGNTAETSGG
	751	AIYSKNLSIT	ANGPVSFTNN		ADSGELSLEA	IDGDITFSGN
	801	RATEGTSTPN	SIHLGAGAKI	TKLAAAPGHT	IYFYDPITME	APASGGTIEE
	851	LVINPVVKA I			PANPNTGTIV	FSSGKLPSOD
	901	ASIPANTTTI	LNQKINLAGG	NVVLKEGATL	QVYSFTQQPD	STVFMDAGTT
45	951	LETTTTNNTD	GSIDLKNLSV	NLDALDGKRM	ITIAVNSTSG	GLKISGDLKF
	1001	HNNEGSFYDN	PGLKANLNLP		VNLDDFNPIP	SSMAAPDYGY
	1051	QGSWTLVPKV	GAGGKVTLVA	EWQALGYTPK	PELRATLVPN	SLWNAYVNIH
	1101	SIQQEIATAM	SDAPSHPGIW	IGGIGNAFHQ	DKQKENAGFR	LISRGYIVGG
	1151	SMTTPQEYTF	AVAFSQLFGK	SKDYVVSDIK	SOVYAGSLCA	OSSYVIPLHS
50	1201	SLRRHVLSKV	LPELPGETPL	VLHGOVSYGR	NHHNMTTKLA	NNTOGKSDWD
	1251	SHSFAVEVGG	SLPVDLNYRY	LTSYSPYVKL	OVVSVNOKGF	QEVAADPRIF
	1301	DASHLVNVSI	PMGLTFKHES	AKPPSALLLT	LGYAVDAYRD	HPHCLTSTTN
	1351	GTSWSTFATN	LSRQAFFAEA	SGHLKLLHGI	DCFASGSCEL	RSSSRSVNAN
	1401	CGTRYSF*				- COUNTY THAN

55 A predicted signal peptide is highlighted.

The cp6727 nucleotide sequence <SEQ ID 32> is:

	1					
	1	ATGAAATATT	CTTTACCTTG	GCTACTTACC	TCTTCGGCTT	TAGTTTTCTC
	51	CCTACATCCA	CTAATGGCTG	CTAACACGGA	TCTCTCATCA	TCCGATAACT
5	101	ATGAAAATGG	TAGTAGTGGT	AGCGCAGCAT	TCACTGCCAA	GGAAACTTCG
3	151	GATGCTTCAG	GAACTACCTA	CACTCTCACT	AGCGATGTTT	CTATTACGAA
	201	TGTATCTGCA	ATTACTCCTG	CAGATAAAAG	CTGTTTTACA	AACACAGGAG
	251 301	GAGCATTGAG	TTTTGTTGGA	GCTGATCACT	CATTGGTTCT	GCAAACCATA
	351	THE COURT ACCO	ATGATGGTGC TTCTCGTCAC	TGCAATTAAC	AATACCAACA	CAGCTCTTTC
10	401	CTTCCCCCCCC	CAAGGGTGCT	AUTOTIANICA	CTCAGCTCCA	GCAACAGGAA
	451	GCGACTTTTA	CTGACAATGC	CAGTGTCACC	CHAATACAGA	ATTACHTO ACT
	501	AAAAGATGGA	GCTGCAGTTT	CTGCCTACAG	CATCGATCTT	GCTAAGACTA
	551		TCTCTTAGAT			
	601	CTCTGTAGTA	CAGCAAACAC	TACAGTCCAA	GGAAACTCAG	GAACGGTGAC
15	651	CTTCTCCTCA	AATACTGCTA	CAGATAAAGG	TGGGGGGATC	TACTCAAAAG
	701	AAAAGGATAG	CACGCTAGAT	GCCAATACAG	${\tt GAGTCGTTAC}$	CTTCAAATCT
	751	AATACTGCAA	AGACGGGGG	TGCTTGGAGC	TCTGATGACA	ATCTTGCTCT
	801	TACCGGCAAC	ACTCAAGTAC	TTTTTCAGGA	AAATAAAACA	ACCGGCTCAG
20	851	CAGCACAGGC	AAATAACCCG	GAAGGTTGTG	GTGGGGCAAT	CTGTTGTTAT
20	901 951	AAMCAGGMACAG	CAACAGACAA	AACTGGATTA	GCCATTTCTC	AGAATCAAGA
	1001	CTACTAAACTA	ACTAGTAATA TACTCTGGAT	CAACAACTGC	CMCMMACCAM	GCGATCTACG
	1051	ACTGCGACAG	CAGGATGTGG	CGGAGCTATC	CICITACCIT	CUCATCAGAAT
	1101	TTCTCTTAAG	GGAAGTACGG	GAACCGTGAC	CTTCACCACACA	CIGAAGATTI
25	1151	AGACAGGCGG	CGCCTTATAT	TCTAAAGGAA	ACAGCTCGCT	GACTGGAAAT
	1201	ACCAACCTGC	TCTTTTCAGG	GAACAAAGCT	ACGGGCCCGA	GTAATTCTTC
	1251	AGCAAATCAA	GAGGGTTGCG	GTGGGGCAAT	CCTAGCCTTT	ATTGATTCAG
	1301	GATCCGTAAG	CGATAAAACA	GGACTATCGA	TTGCAAACAA	CCAAGAAGTC
20	1351	AGCCTCACTA	GTAATGCTGC	AACAGTAAGT	GGTGGTGCGA	TCTATGCTAC
30	1401	CAAATGTACT	CTAACTGGAA	ACGGCTCCCT	GACCTTTGAC	GGCAATACTG
	1451 1501	CTGGAACTTC	AGGAGGGGG	ATCTATACAG	AAACTGAAGA	TTTTACTCTT
	1551	CCCCCCCTTT	CAGGAACCGT TATTCTAAAG	GACCTTCAGC	ACAAA'I'ACAG	CAAAGACAGG
	1601	TGCTCTTTTC	AGGGAACAAA	GCMACGACTC	CCACTAATTC	TOTOLOGIANO
35	1651	CAAGAGGGTT	GCGGTGGGGC	AATCCTATCG	TTTCTTGAGT	CAGCATCTGT
	1701	AAGTACTAAA	AAAGGACTCT	GGATTGAAGA	TAACGAAAAC	GTGAGTCTCT
	1751	CTGGTAATAC	TGCAACAGTA	AGTGGCGGTG	CGATCTATGC	GACCAAGTGT
	1801	GCTCTGCATG	GAAACACGAC	TCTTACCTTT	GATGGCAATA	CTGCCGAAAC
40	1851	TGCAGGAGGA	GCGATCTATA	CAGAAACCGA	AGATTTTACT	CTTACGGGAA
40	1901	GTACGGGAAC	CGTGACCTTC	AGCACAAATA	CAGCAAAGAC	AGCAGGGGCT
	1951	CTACATACTA	AAGGAAATAC	TTCCTTTACC	AAAAATAAGG	CTCTTGTATT
	2001 2051	TTCTGGAAAT	TCAGCAACAG	CAACAGCAAC	AACAACTACA	GATCAAGAAG
	2101	GITGIGGIGG	AGCGATCCTC CTCTTACTGA	AAATATCT	CAGAGTCTGA	CATAGCTACA
45	2151	GGCAAAAAGA	AGTGGTGGTG	GTATTTAGAGA	TIMAGITICA	CTA ATCTCA C
,	2201		CATAAACTTT			
	2251	GCGATTTATT	CGAAAAACCT	TTCGATTACA	GCTAACGGTC	CTGTCTCCTT
	2301	TACCAATAAT	TCTGGAGGCA	AGGGAGGCGC	CATTTATATA	GCCGATAGCG
7 0	2351	GAGAACTTTC	CTTAGAGGCT	ATTGATGGGG	ATATTACTTT	CTCAGGGAAC
50	2401	CGAGCGACTG	AGGGAACTTC	AACTCCCAAC	TCGATCCATT	TAGGTGCAGG
	2451		ACTAAGCTTG			
	2501	ATGATCCTAT	TACGATGGAA	GCTCCTGCAT	CTGGAGGAAC	AATAGAGGAG
	2551 2601	AAARCORCOR	ATCCTGTTGT	CAAAGCTATT	GTTCCTCCTC	CCCAACCAAA
55	2651	CANACACGG	ATAGCTTCAG AACTATAGTA	TGCCTGTAGT	CCCTGTAGCA	CCTGCAAACC
55	2701	GCCTCGATTC	CTGCAAATAC	TITICITCIG	CHCAACCCC	ACATCAAGAT
	2751	AGCAGGAGGA	AATGTCGTTT	TAAAAGAAGG	AGCCACCCTA	CAACTAACTT
	2801	CCTTCACACA	GCAGCCTGAT	TCTACAGTAT	TCATGGATGC	AGGAACGACC
_	2851	TTAGAGACCA	CGACAACTAA	CAATACAGAT	GGCAGCATCG	ATCTAAAGAA
60	2901	TCTCTCTGTA	AATCTGGATG	CTTTAGATGG	CAAGCGTA1G	ATAACGATTG
	2951	CCGTAAACAG	CACAAGTGGG	GGATTAAAAA	TCTCAGGGGA	TCTGAAATTC
	3001	CATAACAATG	AAGGAAGTTT	CTATGACAAT	CCTGGGTTGA	AAGCAAACTT
	3051	AAATCTTCCT	TTCTTAGATC	TTTCTTCTAC	TTCAGGAACT	GTAAATTTAG
65	3101	ACGACTTCAA	TCCGATTCCT	TCTAGCATGG	CTGCTCCGGA	TTATGGGTAT
05	3151 3201	TAAGGGAGTT	GGACTCTGGT	TCCTAAAGTA	GGAGCTGGAG	GGAAGGTGAC
	3201	TITEGICECE	GAATGGCAAG AGTTCCTAAT	ACCOMMUNICAS	CACTCCTAAA	CCAGAGCTTC
	7431	OTGCGWC111	POLICCIMAL.	AUULTTUGA	ATGCT TATGT	AAACATCCAT

```
3301 TCTATACAGC AGGAGATCGC CACTGCGATG TCGGACGCTC CCTCACATCC
              3351
                    AGGGATTTGG ATTGGAGGTA TTGGCAACGC CTTCCATCAA GACAAGCAAA
              3401 AGGAAAATGC AGGATTCCGT TTGATTTCCA GAGGTTATAT TGTTGGTGGC
              3451 AGCATGACCA CCCCTCAAGA ATATACCTTT GCTGTTGCAT TCAGCCAACT
 5
              3501
                    CTTTGGCAAA TCTAAGGATT ACGTAGTCTC GGATATTAAA TCTCAAGTCT
              3551
                    ATGCAGGATC TCTCTGTGCT CAGAGCTCTT ATGTCATTCC CCTGCATAGC
              3601
                    TCATTACGTC GCCACGTCCT CTCTAAGGTC CTTCCAGAGC TCCCAGGAGA
                    AACTCCCCTT GTTCTCCATG GTCAAGTTTC CTATGGAAGA AACCACCATA
              3651
              3701
                    ATATGACGAC AAAGCTTGCG AACAACACA AAGGGAAATC AGACTGGGAC
10
              3751
                    AGCCATAGCT TCGCTGTTGA AGTCGGTGGT TCTCTTCCTG TAGATCTAAA
              3801
                    CTACAGATAC CTTACCAGCT ACTCTCCCTA TGTGAAACTC CAAGTTGTGA
              3851
                    GTGTAAATCA AAAAGGATTC CAAGAGGTTG CTGCTGATCC ACGTATCTTT
              3901
                    GACGCTAGCC ATCTGGTCAA CGTGTCTATC CCTATGGGAC TCACCTTCAA
              3951
                    ACACGAATCA GCAAAGCCCC CCAGTGCTTT GCTTCTTACT TTAGGTTACG
15
              4001
                    CTGTAGATGC TTACCGGGAT CACCCTCACT GCCTGACCTC CTTAACAAAT
              4051
                    GGCACCTCGT GGTCTACGTT TGCTACAAAC TTATCACGAC AAGCTTTCTT
              4101
                    TGCTGAGGCT TCTGGACATC TGAAGTTACT TCATGGTCTT GACTGCTTCG
              4151
                    CTTCTGGAAG TTGTGAACTG CGCAGCTCCT CAAGAAGCTA TAATGCAAAC
              4201
                    TGTGGAACTC GTTATTCTTT CTAA
```

20 The PSORT algorithm predicts an outer membrane location (0.915).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 16A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 16B) and for FACS analysis (Figure 16C). A GST-fusion protein was also expressed.

The cp6727 protein was also identified in the 2D-PAGE experiment (Cpn0444).

These experiments show that cp6727 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 17

The following C.pneumoniae protein (PID 4376731) was expressed <SEQ ID 33; cp6731>;

```
MKSSLHWFLI SSSLALPLSL NFSAFAAVVE INLGPTNSFS GPGTYTPPAO
30
                51
                    TTNADGTIYN LTGDVSITNA GSPTALTASC FKETTGNLSF QGHGYQFLLQ
               101
                    NIDAGANCTF TNTAANKLLS FSGFSYLSLI QTTNATTGTG AIKSTGACSI
               151
                    QSNYSCYFGQ NFSNDNGGAL QGSSISLSLN PNLTFAKNKA TOKGGALYST
               201
                    GGITINNTLN SASFSENTAA NNGGAIYTEA SSFISSNKAI SFINNSVTAT
               251
                    SATGGAIYCS STSAPKPVLT LSDNGELNFI GNTAITSGGA IYTDNLVLSS
35
               301
                    GGPTLFKNNS AIDTAAPLGG AIAIADSGSL SLSALGGDIT FEGNTVVKGA
                    SSSQTTTRNS INIGNTNAKI VQLRASQGNT IYFYDPITTS ITAALSDALN
               351
               401
                    LNGPDLAGNP AYQGTIVFSG EKLSEAEAAE ADNLKSTIQQ PLTLAGGQLS
               451
                    LKSGVTLVAK SFSQSPGSTL LMDAGTTLET ADGITINNLV LNVDSLKETK
                    KATLKATQAS QTVTLSGSLS LVDPSGNVYE DVSWNNPQVF SCLTLTADDP
               501
40
               551
                    ANIHITDLAA DPLEKNPIHW GYQGNWALSW QEDTATKSKA ATLTWTKTGY
               601
                    NPNPERRGTL VANTLWGSFV DVRSIQQLVA TKVRQSQETR GIWCEGISNF
                    FHKDSTKINK GFRHISAGYV VGATTTLASD NLITAAFCQL FGKDRDHFIN
               651
               701
                    KNRASAYAAS LHLQHLATLS SPSLLRYLPG SESEQPVLFD AQISYIYSKN
               751
                    TMKTYYTQAP KGESSWYNDG CALELASSLP HTALSHEGLF HAYFPFIKVE
45
                    ASYIHQDSFK ERNTTLVRSF DSGDLINVSV PIGITFERFS RNERASYEAT
                    VIYVADVYRK NPDCTTALLI NNTSWKTTGT NLSRQAGIGR AGIFYAFSPN
               851
               901
                    LEVTSNLSME IRGSSRSYNA DLGGKFQF*
```

A predicted signal peptide is highlighted.

The cp6731 nucleotide sequence <SEQ ID 34> is:

```
50 1 ATGAAATCCT CTCTTCATTG GTTTTTAATC TCGTCATCTT TAGCACTTCC
51 CTTGTCACTA AATTTCTCTG CGTTTGCTGC TGTTGTTGAA ATCAATCTAG
101 GACCTACCAA TAGCTTCTCT GGACCAGGAA CCTACACTCC TCCAGCCCAA
151 ACAACAAATG CAGATGGAAC TATCTATAAT CTAACAGGGG ATGTCTCAAT
201 CACCAATGCA GGATCTCCGA CAGCTCTAAC CGCTTCCTGC TTTAAAGAAA
```

	251	CTACTCCCAA	TOTO TOTO TOTO	CAAGGCCACG	COM2 CO2 2000	mamaama aa a
	301	A A TATO CAMO	CCCCACCCAA	CTGTACCTTT	GCTACCAATT	TCTCCTACAA
	351	COMMONOMO	TOUGHAGE GAA	TCTCCTATTT	ACCAATACAG	CTGCAAATAA
	401	ATTOTOTO	ACCANGGAT	TCTCCTATTT	GTCACTAATA	CAAACCACGA
5	451	AIGCIACCAC	AGGAACAGGA	GCCATCAAGT	CCACAGGAGC	TTGTTCTATT
J		CAGTCGAACT	ATAGTTGCTA	CTTTGGCCAA	AACTTTTCTA	ATGACAATGG
	501	AGGCGCCCTC	CAAGGCAGCT	CTATCAGTCT	ATCGCTAAAC	CCCAACCTAA
	551	CGTTTGCCAA	AAACAAAGCA	ACGCAAAAAG	GGGGTGCCCT	CTATTCCACG
	601	GGAGGGATTA	CAATTAACAA	TACGTTAAAC	TCAGCATCAT	TTTCTGAAAA
10	651	TACCGCGGCG	AACAATGGCG	GAGCCATTTA	CACGGAAGCT	AGCAGTTTTA
10	701	TTAGCAGCAA	CAAAGCAATT	AGCTTTATAA	ACAATAGTGT	GACCGCAACC
	751	TCAGCTACAG	GGGGAGCCAT	TTACTGTAGT	AGTACATCAG	CCCCCAAACC
	801	AGTCTTAACT	CTATCAGACA	ACGGGGAACT	GAACTTTATA	GGAAATACAG
	851	CAATTACTAG	TGGTGGGGCG	ATTTATACTG	ACAATCTAGT	TCTTTCTTCT
	901	GGAGGACCTA	CGCTTTTTAA	AAACAACTCT	GCTATAGATA	CTGCAGCTCC
15	951	CTTAGGAGGA	GCAATTGCGA	TTGCTGACTC	TGGATCTTTG	AGTCTTTCGG
	1001	CTCTTGGTGG	AGACATCACT	TTTGAAGGAA	ACACAGTAGT	CAAAGGAGCT
	1051	TCTTCGAGTC	AGACCACTAC	CAGAAATTCT	ATTAACATCG	GAAACACCAA
	1101	TGCTAAGATT	GTACAGCTGC	GAGCCTCTCA	AGGCAATACT	ATCTACTTCT
	1151	ATGATCCTAT	AACAACTAGO	ATCACTGCAG	Cかしかしかいなる	ጥርርጥርጥልልአር
20	1201	TTAAATGGTC	CTGACCTTGC	AGGGAATCCT	CCATATCAAC	GAACCAMCCM
	1251	ATTTTCTGGA	GAGAAGCTCT	CGGAAGCAGA	ACCTICCAGAA	CCTCATA AND
	1301	TCAAATCTAC	AATTCAGCAA	CCTCTAACTC	TTCCCCCACC	GCTARTARTC
	1351	CTTAAATCAG	GAGTCACTCT	AGTTGCTAAG	TIGCGGGAGG	A A MCMCCCCC
	1401	CTCTACCCTC	CTCATGGATG	CAGGGACCAC	AUTOCALITICAC	CCMCAMCCCA
25	1451	TCACTATCAA	ጥልልጥርጥጥርጥጥ	CTCAATGTAG	AT TAGAMACC	GC TGATGGGA
	1501	AAGGCTACGC	TANICITOIT	ACAAGCAAGT	ATTCCTTAAA	AGAGACCAAG
	1551	ATTCCCTACTICAL	COUNCULACY	CTTCTGGAAA	CAGACAGICA	CITTATCTGG
	1601	CCAATAACCC	TO A CONCERNA	TCTTGTCTCA	TGTCTACGAA	GATGTCTCTT
	1651	CCCAAMAMMC	TCAMGICITI	CTTAGCTGCT	CTCTTACTGC	TGACGACCCC
30	1701	TATOCAMMOC	CCAMACCAA	GGAATTGGGC	GATCCCCTAG	AAAAAAAI'CC
	1751	CECCCYCEA	AMOGNANCOA	GCGACTCTTA	ATTATCTTGG	CAAGAGGATA
	1801	AAMCCCAAMC	ATCCAAAGCA	GCGACTCTTA	CCTGGACAAA	AACAGGATAC
	1851	AMICCOMMIC	CAMCOCCOCC	TGGAACCTTA	GTTGCTAACA	CGCTATGGGG
	1901	CCCAAMCMCA	AGNANGROOG	CCATACAACA	GCTTGTAGCC	ACTAAAGTAC
35	1951	UUUGGAMA AAG	AGAAACTCGC	GGCATCTGGT	GTGAAGGGAT	CTCGAACTTC
55	2001	TTCCATAAAG	ATAGCACGAA	GATAAATAAA	GGTTTTCGCC	ACATAAGTGC
		AGGITATGTT	GTAGGAGCGA	CTACAACATT	AGCTTCTGAT	AATCTTATCA
	2051	CTGCAGCCTT	CTGCCAATTA	TTCGGGAAAG	ATAGAGATCA	CTTTATAAAT
	2101	AAAAATAGAG	CTTCTGCCTA	TGCAGCTTCT	CTCCATCTCC	AGCATCTAGC
40	2151	GACCTTGTCT	TCTCCAAGCT	TGTTACGCTA	CCTTCCTGGA	TCTGAAAGTG
40	2201	AGCAGCCTGT	CCTCTTTGAT	${\tt GCTCAGATCA}$	GCTATATCTA	TAGTAAAAAT
	2251	ACTATGAAAA	CCTATTACAC	CCAAGCACCA	AAGGGAGAGA	GCTCGTGGTA
	2301	TAATGACGGT	TGCGCTCTGG	AACTTGCGAG	CTCCCTACCA	CACACTGCTT
	2351	TAAGCCATGA	GGGTCTCTTC	CACGCGTATT	TTCCTTTCAT	CAAAGTAGAA
A.F.	2401	GCTTCGTACA	TACACCAAGA	${\tt TAGCTTCAAA}$	GAACGTAATA	CTACCTTGGT
45	2451	ACGATCTTTC	GATAGCGGTG	ATTTAATTAA	CGTCTCTGTG	CCTATTGGAA
	2501	TTACCTTCGA	GAGATTCTCG	AGAAACGAGC	GTGCGTCTTA	CGAAGCTACT
	2 551	GTCATCTACG	TTGCCGATGT	CTATCGTAAG	AATCCTGACT	GCACGACAGC
	2601	TCTCCTAATC	AACAATACCT	CGTGGAAAAC	TACAGGAACG	AATCTCTCAA
	2651	GACAAGCTGG	TATCGGAAGA	GCAGGGATCT	TTTATGCCTT	CTCTCCAAAT
50	2701	CTTGAGGTCA	CAAGTAACCT	ATCTATGGAA	ATTCGTGGAT	CTTCACGCAG
	2751	CTACAATGCA	GATCTTGGAG	GTAAGTTCCA	GTTCTAA	

The PSORT algorithm predicts an outer membrane location (0.926).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 17A. A GST-fusion protein was also expressed. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 17B; his-tag) and for FACS analysis (Figure 17C; his-tag and GST-fusion).

The GST-fusion protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis. Less cross-reactivity was seen with the his-fusion.

These experiments show that cp6731 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 18

The following C.pneumoniae protein (PID 4376737) was expressed <SEQ ID 35; cp6737>:

5	1	MPLSFKSSSF	CLLACLCSAS	CAFAETRLGG	NFVPPITNOG	EEILLTSDFV
	51	CSNFLGASFS	SSFINSSSNL	SLLGKGLSLT	FTSCOAPTNS	NYALLSAAET
	101	LTFKNFSSIN	FTGNQSTGLG	GLIYGKDIVF	OSIKDLIFTT	NRVAYSPASV
	151	TTSATPAITT	VTTGASALQP	TDSLTVENIS	QSIKFFGNLA	NFGSAISSSP
10	201	TAVVKFINNT	ATMSFSHNFT	SSGGGVIYGG	SSLLFENNSG	CIIFTANSCV
10	251	NSLKGVTPSS	GTYALGSGGA	ICIPTGTFEL	KNNOGKCTFS	YNGTPNDAGA
	301	IYAETCNIVG	NQGALLLDSN	TAARNGGAIC	AKVLNIOGRG	PIEFSRNRAE
	351	KGGAIFIGPS	VGDPAKQTST	LTILASEGDI	AFOGNMLNTK	PGIRNATTVE
	401	AGGEIVSLSA	QGGSRLVFYD	PITHSLPTTS	PSNKDITINA	NGASGSVVFT
15	451	SKGLSSTELL	LPANTTTILL	GTVKIASGEL	KITDNAVVNV	LGFATOGSGO
15	501			VDFTIGKLAF		VSASVNAGTK
	551	NVTLTGALVL	DEHDVTDLYD	MVSLQTPVAI	PIAVFKGATV	TKTGFPDGEI
	601	ATPSHYGYQG	KWSYTWSRPL	LIPAPDGGFP	GGPSPSANTL	YAVWNSDTLV
	651	RSTYILDPER	YGEIVSNSLW	ISFLGNQAFS	DILQDVLLID	HPGLSITAKA
20	701	LGAYVEHTPR	QGHEGFSGRY	GGYQAALSMN	YTDHTTLGLS	FGQLYGKTNA
20	751			PIVTQKSEAL		KNHLNTTYLR
	801	PDKAPKSQGQ	WHNNSYYVLI	SAEHPFLNWC	LLTRPLAQAW	DLSGFISAEF
	851			GKGYNVSLPI		KKAPSTLTIK
	901	LAYKPDIYRV	NPHNIVTVVS	NQESTSISGA	NLRRHGLFVQ	IHDVVDLTED
	951	TQAFLNYTFD	GKNGFTNHRV	STGLKSTF*		

25 A predicted signal peptide is highlighted.

The cp6737 nucleotide sequence <SEQ ID 36> is:

	1	ATGCCTCTTT	CTTTCAAATC	TTCATCTTTT	TGTCTACTTG	CCTGTTTATG
	51	TAGTGCAAGT	TGCGCGTTTG	CTGAGACTAG	ACTCGGAGGG	AACTTTGTTC
00	101	CTCCAATTAC	GAATCAGGGT	GAAGAGATCT		AGATTTTGTT
30	151			GAGTTTTTCA		TCAATAGTTC
	201	CAGCAATCTC	TCCTTATTAG	GGAAGGGCCT		TTTACCTCTT
	251			AACTATGCGC		CGCAGAGACT
	301	CTGACCTTCA	AGAATTTTTC	TTCTATAAAC	TTTACAGGGA	ACCAATCGAC
25	351	AGGACTTGGC	GGCCTCATCT	ACGGAAAAGA	TATTGTTTTC	CAATCTATCA
35	401	AAGATTTGAT	CTTCACTACG	AACCGTGTTG	CCTATTCTCC	AGCATCTGTA
	451	ACTACGTCGG	CAACTCCCGC	AATCACTACA	GTAACTACAG	GAGCCTCTGC
	501	TCTCCAACCT	ACAGACTCAC	TCACTGTCGA	AAACATATCC	CAATCGATCA
	551	AGTTTTTTGG	GAACCTTGCC	AACTTCGGCT	CTGCAATTAG	CAGTTCTCCC
40	601	ACGGCAGTCG	TTAAATTCAT	CAATAACACC	GCTACCATGA	GCTTCTCCCA
40	651	TAACTTTACT	TCGTCAGGAG	GCGGCGTGAT	TTATGGAGGA	AGCTCTCTCC
	701	TTTTTGAAAA	CAATTCTGGA	TGCATCATCT	TCACCGCCAA	CTCCTGTGTG
	751	AACAGCTTAA	AAGGCGTCAC	CCCTTCATCA	GGAACCTATG	CTTTAGGAAG
	801	TGGCGGAGCC	ATCTGCATCC	CTACGGGAAC	TTTCGAATTA	AAAAACAATC
4.50	851	AGGGGAAGTG	CACCTTCTCT	TATAATGGTA	CACCAAATGA	TGCGGGTGCG
45	901	ATCTACGCCG	AAACCTGCAA	CATCGTAGGG	AACCAGGGTG	CCTTGCTCCT
	951	AGATAGCAAC	ACTGCAGCGA	GAAATGGCGG	AGCCATCTGT	GCTAAAGTGC
	1001	TCAATATTCA	AGGACGCGGT	CCTATTGAAT	TCTCTAGAAA	CCGCGCGGAG
	1051	AAGGGTGGAG	CTATTTTCAT	AGGCCCCTCT	GTTGGAGACC	CTGCGAAGCA
= 0	1101	AACATCGACA	CTTACGATTT	TGGCTTCCGA	AGGTGATATT	GCGTTCCAAG
50	1151	GAAACATGCT	CAATACAAAA	CCTGGAATCC	GCAATGCCAT	CACTGTAGAA
	1201	GCAGGGGGAG	AGATTGTGTC	TCTATCTGCA	CAAGGAGGCT	CACGTCTTGT
	1251	ATTTTATGAT	CCCATTACAC	ATAGCCTCCC	AACCACAAGT	CCGTCTAATA
	1301	AAGACATTAC	AATCAACGCT	AATGGCGCTT	CAGGATCTGT	AGTCTTTACA
	1351	AGTAAGGGAC	TCTCCTCTAC	AGAACTCCTG	TTGCCTGCCA	ACACGACAAC
55	1401	TATACTTCTA	GGAACAGTCA	AGATCGCTAG	TGGAGAACTG	AAGATTACTG
	1451	ACAATGCGGT	TGTCAATGTT	CTTGGCTTCG	CTACTCAGGG	CTCAGGTCAG
	1501	CTTACCCTGG	GCTCTGGAGG	AACCTTAGGG	CTGGCAACAC	CCACGGGAGC
	1551	ACCTGCCGCT	GTAGACTTTA	CGATTGGAAA	GTTAGCATTC	GATCCTTTTT
	1601	CCTTCCTAAA	AAGAGATTTT	GTTTCAGCAT	CAGTAAATGC	AGGCACAAAA
60	165 1	AACGTCACTT	TAACAGGAGC	TCTGGTTCTT	GATGAACATG	ACGTTACAGA

	1701	സ്വസന്ത്രമന ്ട്രമന	AMCCMCDCA m	m1 03 1 1 0000	3.0ms	
	1751	TOTTIAIGAL	ATGGTGTCAT	TACAAACTCC	AGTAGCAATT	CCTATCGCTG
		TTTTCAAAGG	AGCAACCGTT	ACTAAGACAG	GATTTCCTGA	TGGGGAGATT
	1801				AAGTGGTCCT	ACACATGGTC
_	1851	CCGTCCCCTG	TTAATTCCAG	CTCCTGATGG	AGGATTTCCT	GGAGGTCCCT
5	1901	CTCCTAGCGC	AAATACTCTC	TATGCTGTAT	GGAATTCAGA	CACTCTCGTG
	1951	CGTTCTACCT	ATATCTTAGA	TCCCGAGCGT	TACGGAGAAA	TTGTCAGCAA
	2001	CAGCTTATGG	ATTTCCTTCT	TAGGAAATCA	GGCATTCTCT	
	2051	AAGATGTTCT	TTTGATAGAT		TGTCCATAAC	
	2101	TTAGGAGCCT	ATGTCGAACA		CAAGGACATG	
10	2151	AGGTCGCTAT	GGAGGCTACC		ATCTATGAAC	
	2201	ACACTACGTT	AGGACTTTCT		TTTATGGAAA	
	2251	AACCCCTACG			ATGTATTTAC	
	2301	TGGTCAATTC			CGAGGCCTTA	
	2351	AAGCAGCTTA			TAAATACCAC	
15	2401	CCTGACAAAG			TGGCATAACA	
	2451	TGTTCTTATT				
	2501	GACCTCTGGC				
	2551				${\tt GTTTTATTTC}$	
		CTAGGTGGTT			ACTGGAGATC	
20	2601	CTTTAGTAGA			CCTACCGATA	GGATGTTCTT
20	2651	CTCAATGGTT				
	2701	CTTGCCTACA			AACCCTCACA	ATATTGTGAC
	2751	TGTCGTCTCA	AACCAAGAGA	GCACTTCGAT	CTCAGGAGCA	AATCTACGCC
	2801	GCCACGGTTT	GTTTGTACAA	ATCCATGATG	TAGTAGATCT	CACCGAGGAC
~ ~	2851	ACTCAGGCCT	TTCTAAACTA	TACCTTTGAC		
25	2901	CCACCGAGTG	TCTACAGGAC	TAAAATCCAC		

The PSORT algorithm predicts an outer membrane location (0.940).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 18A. The recombinant protein was used to immunise mice, whose sera were used in an immunoblot analysis blot (Figure 18B) and for FACS analysis (Figure 18C). A his-tagged protein was also expressed.

The cp6737 protein was also identified in the 2D-PAGE experiment (Cpn0454) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6737 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

35 Example 19

30

The following C.pneumoniae protein (PID 4377090) was expressed <SEQ ID 37; cp7090>:

```
1 MNIHSLWKLC TLLALLALPA
51 51 PLYTEEDFNP NFTFGEYDSK EEKQYKSSQV AAPRNITFAT DSYTIKGEEN
101 LAILTILVHY MKKNPKATLY IEGHTDERGA ASYNLALGAR RANAIKEHLR
40 A predicted signal peptide is highlighted.
```

The cp7090 nucleotide sequence <SEQ ID 38> is:

```
ATGAATATAC ATTCCCTATG GAAACTTTGT ACTTTATTGG CTTTACTTGC
                51
                    ATTGCCAGCA TGTAGCCTTT CCCCTAATTA TGGCTGGGAG GATTCCTGTA
45
               101
                   ATACATGCCA TCATACAAGA CGAAAAAAGC CTTCTTCTTT TGGCTTTGTT
               151
                    CCTCTCTATA CCGAAGAGGA CTTTAACCCT AATTTTACCT TCGGTGAGTA
               201
                    TGATTCCAAA GAAGAAAAC AATACAAGTC AAGCCAAGTT GCAGCATTTC
               251
                   GTAATATCAC CTTTGCTACA GACAGCTATA CAATTAAAGG TGAAGAGAAC
                   CTTGCGATTC TCACGAACTT GGTTCACTAC ATGAAGAAAA ACCCGAAAGC
               301
50
               351
                   TACACTGTAC ATTGAAGGGC ATACTGACGA GCGTGGAGCT GCATCCTATA
               401 ACCTTGCTTT AGGAGCACGA CGAGCCAATG CGATTAAAGA GCATCTCCGA
               451 AAGCAGGGAA TCTCTGCAGA TCGTCTATCT ACTATTTCCT ACGGAAAAGA
```

501 ACATCCTTTA AATTCGGGAC ACAACGAACT AGCATGGCAA CAAAATCGCC

551 GTACAGAGTT TAAGATTCAT GCACGCTAA

The PSORT algorithm predicts an outer membrane location (0.790).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 19A.

A his-tagged protein was also expressed. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 19B) and for FACS analysis.

These experiments show that cp7090 is useful immunogen. These properties are not evident from the sequence alone.

Example 20

10 The following C.pneumoniae protein (PID 4377091) was expressed <SEQ ID 39; cp7091>:

	1	MLRQLCFQVF	FFCFASLVYA	EELEVVVRSE	HITLPIEVSC	QTDTKDPKIQ
	51			QPTAASKESS		
	101	SSKTPQTLCS	FTISQNLSVD	ROKIHHAADT	VHYALTGIPG	ISAGKIVFAL
	151			GKNLAPLTTE		
15	201	VSYKYGVPKI	FLGSLENTEG	KKVLPLKGNQ	LMPTFSPRKK	LLAFVADTYG
				RLLNENFGTQ		
	301	RPRLYIMSLD	PEPQAPRLLT	KKYRNSSCPA	WSPDGKKIAF	CSVIKGVRQI
		CIYDLSSGED	YQLTTSPTNK	ESPSWAIDSR	HLVFSAGNAE	ESELYLISLV
	401	TKKTNKIAIG	VGEKRFPSWG	AFPQQPIKRT	L*	

20 A predicted signal peptide is highlighted.

The cp7091 nucleotide sequence <SEQ ID 40> is:

	1	A MODERN COOR	3 3 000 3 00 0000			
			AACTATGCTT			TCGCATCGCT
	51	AGTCTATGCT	GAAGAATTAG	AAGTTGTTGT	CCGTTCCGAA	CATATCACGC
05	101	TCCCTATTGA		CAGACCGATA	CGAAAGATCC	AAAAATACAG
25	151	AAATACCTCA		GGAGATATTT	TGCAAGGACA	TTGCCCTAGG
	201	AGATTGTCTA	CAACCCACAG	CGGCTTCTAA	AGAATCGTCA	TCTCCTTTAG
	251	CAATATCTTT	ACGGTTGCAT	GTACCTCAGC	TATCTGTAGT	GCTTTTACAG
	301	TCTTCAAAAA	CTCCTCAAAC	CTTATGTTCT	TTTACTATTT	CTCAAAATCT
	351	TTCTGTAGAT	CGTCAAAAAA	TCCATCACGC	TGCTGATACA	GTTCATTACG
30	401	CCCTCACAGG	GATTCCTGGA	ATCAGTGCTG	GGAAAATTGT	TTTTGCTCTA
	451	AGTTCTTTAG	GAAAAGATCA	AAAGCTCAAG	CAAGGAGAAT	TATGGACTAC
	501	AGATTACGAT	GGGAAAAACC	TCGCCCCTTT	AACCACAGAA	TGTTCGCTCT
	551	CTATAACTCC	AAAATGGGTG	GGTGTGGGAT	CAAATTTTCC	CTATCTCTAT
	601	GTTTCGTATA	AGTATGGTGT	GCCTAAAATT	TTTCTTGGTT	CCCTAGAGAA
35	651	CACTGAAGGT	AAAAAAGTCC	TTCCGTTAAA	AGGCAACCAA	
	701	CGTTTTCTCC	AAGAAAAAG	CTTTTAGCTT	TCGTTGCTGA	TACGTATGGA
	751	AATCCTGATT	TATTTATTCA	ACCGTTCTCA	CTAACTTCAG	GACCTATGGG
	801	TCGCCCACGT	CGCCTCCTTA	ATGAGAATTT		GGGAATCCCT
	851	CCTTCAACCC		CAGCTTGTCT	TTATATCGAA	
40	901	CGTCCGCGTC	TTTATATTAT	GTCCCTCGAT	CCTGAACCCC	
	951		AAAAAATACA	GAAATAGCAG	TTGCCCTGCA	
	1001	ATGGTAAAA		TGCTCTGTAA	TTAAAGGGGT	GCGACAAATT
	1051	TGTATTTACG		TGGAGAGGAT	TACCAACTCA	
	1101	CACAAATAAA		CTTGGGCTAT		
45	1151			·	AGACAGCCGT	CATCTTGTCT
40	1201		GAATGCTGAA	GAATCAGAGT	TATATTTAAT	CAGTCTAGTC
		ACCAAAAAA		TGCTATAGGA	GTAGGAGAAA	
	1251	CTCCTGGGGT	GCTTTCCCTC	AGCAACCGAT	AAAGAGAACA	CTATGA

The PSORT algorithm predicts an inner membrane location (0.109).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 20A.

A his-tagged protein was also expressed. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 20B) and for FACS analysis.

These experiments show that cp7091 is a useful immunogen. These properties are not evident from the sequence alone.

Example 21

The following C.pneumoniae protein (PID 4376260) was expressed <SEQ ID 41; cp6260>:

5	1	MRFSLCGFPL	VFSFTLLSVF	DTSLSA TTIS	LTPEDSFHGD	SQNAERSYNV
	51	QAGDVYSLTG	DVSISNVDNS	ALNKACFNVT	SGSVTFAGNH	HGLYFNNISS
	101	GTTKEGAVLC	CQDPQATARF	SGFSTLSFIQ	SPGDIKEQGC	LYSKNALMIL
	151	NNYVVRFEQN	QSKTKGGAIS	GANVTIVGNY	DSVSFYQNAA	TFGGAIHSSG
10	201	PLQIAVNQAE	IRFAQNTAKN	GSGGALYSDG	DIDIDQNAYV	LFRENEALTT
10	251	AIGKGGAVCC	LPTSGSSTPV	PIVTFSDNKQ	LVFERNHSIM	GGGAIYARKL
	301	SISSGGPTLF	INNISYANSQ	NLGGAIAIDT	GGEISLSAEK	GTITFOGNRT
	351	SLPFLNGIHL	LQNAKFLKLQ	ARNGYSIEFY	DPITSEADGS	TQLNINGDPK
	401	NKEYTGTILF	SGEKSLANDP	RDFKSTIPQN	VNLSAGYLVI	KEGAEVTVSK
1.5	451	FTQSPGSHLV	LDLGTKLIAS	KEDIAITGLA	IDIDSLSSSS	TAAVIKANTA
15	501	NKQISVTDSI	ELISPTGNAY	EDLRMRNSQT	FPLLSLEPGA	GGSVTVTAGD
	551	FLPVSPHYGF	QGNWKLAWTG	TGNKVGEFFW	DKINYKPRPE	KEGNLVPNIL
	601	WGNAVDVRSL	MQVQETHASS	LQTDRGLWID	GIGNFFHVSA	SEDNIRYRHN
	651	SGGYVLSVNN	EITPKHYTSM	AFSQLFSRDK	DYAVSNNEYR	MYLGSYLYOY
20	701	TTSLGNIFRY	ASRNPNVNVG	ILSRRFLQNP	LMIFHFLCAY	GHATNDMKTD
20	751	YANFPMVKNS	WRNNCWAIEC	GGSMPLLVFE	NGRLFQGAIP	FMKLOLVYAY
	801	QGDFKETTAD	GRRFSNGSLT	SISVPLGIRF	EKLALSODVL	YDFSFSYIPD
	851	IFRKDPSCEA	ALVISGDSWL	VPAAHVSRHA	FVGSGTGRYH	FNDYTELLCR
	901	GSIECRPHAR	NYNINCGSKF	RF*		

A predicted signal peptide is highlighted.

25 The cp6260 nucleotide sequence <SEQ ID 42> is:

	1	ATGCGATTTT	CGCTCTGCGG	ATTTCCTCTA	GTTTTTTCTT	TTACATTGCT
	51	CTCAGTCTTC	GACACTTCTT	TGAGTGCTAC	TACGATTTCT	TTAACCCCAG
	101	AAGATAGTTT	TCATGGAGAT	AGTCAGAATG	CAGAACGTTC	TTATAATGTT
	151	CAAGCTGGGG	ATGTCTATAG	CCTTACTGGT	GATGTCTCAA	TATCTAACGT
30	201	CGATAACTCT	GCATTAAATA	AAGCCTGCTT	CAATGTGACC	TCAGGAAGTG
	251	TGACGTTCGC	AGGAAATCAT	CATGGGTTAT	ATTTTAATAA	TATTTCCTCA
	301	GGAACTACAA	AGGAAGGGC	TGTACTTTGT	TGCCAAGATC	CTCAAGCAAC
	351	GGCACGTTTT	TCTGGGTTCT	CCACGCTCTC	TTTTATTCAG	AGCCCCGGAG
or .	401	ATATTAAAGA	ACAGGGATGT	CTCTATTCAA	AAAATGCACT	TATGCTCTTA
35	451	AACAATTATG	TAGTGCGTTT	TGAACAAAAC	CAAAGTAAGA	CTAAAGGCGG
	501	AGCTATTAGT	GGGGCGAATG	TTACTATAGT	AGGCAACTAC	GATTCCGTCT
	551	CTTTCTATCA	GAATGCAGCC	ACTTTTGGAG	GTGCTATCCA	TTCTTCAGGT
	601	CCCCTACAGA	TTGCAGTAAA	TCAGGCAGAG	ATAAGATTTG	CACAAAATAC
40	651	TGCCAAGAAT	GGTTCTGGAG	GGGCTTTGTA	CTCCGATGGT	GATATTGATA
40	701	TTGATCAGAA	TGCTTATGTT	CTATTTCGAG	AAAATGAGGC	ATTGACTACT
	751	GCTATAGGTA	AGGGAGGGC	$\mathbf{TGTCTGTTGT}$	CTTCCCACTT	CAGGAAGTAG
	801	TACTCCAGTT	CCTATTGTGA	CTTTCTCTGA	CAATAAACAG	TTAGTCTTTG
	851	AAAGAAACCA	TTCCATAATG	GGTGGCGGAG	CCATTTATGC	TAGGAAACTT
4.5	901	AGCATCTCTT	CAGGAGGTCC	TACTCTATTT	ATCAATAATA	TATCATATGC
45	951	AAATTCGCAA	AATTTAGGTG	GAGCTATTGC	CATTGATACT	GGAGGGGAGA
	1001	TCAGTTTATC	AGCAGAGAAA	GGAACAATTA	CATTCCAAGG	AAACCGGACG
	1051	AGCTTACCGT	TTTTGAATGG	CATCCATCTT	TTACAAAATG	CTAAATTCCT
	1101	GAAATTACAG	GCGAGAAATG	GATACTCTAT	AGAATTTTAT	GATCCTATTA
70	1151	CTTCTGAAGC	AGATGGGTCT	ACCCAATTGA	ATATCAACGG	AGATCCTAAA
50	1201	AATAAAGAGT	ACACAGGGAC	CATACTCTTT	TCTGGAGAAA	AGAGTCTAGC
•	1251	AAACGATCCT	AGGGATTTTA	AATCTACAAT	CCCTCAGAAC	GTCAACCTGT
	1301	CTGCAGGATA	CTTAGTTATT	AAAGAGGGGG	CCGAAGTCAC	AGTTTCAAAA
	1351	TTCACGCAGT	CTCCAGGATC	GCATTTAGTT	TTAGATTTAG	GAACCAAACT
,-, -,-	1401	GATAGCCTCT	AAGGAAGACA	TTGCCATCAC	AGGCCTCGCG	ATAGATATAG
55	1451	ATAGCTTAAG	CTCATCCTCA	ACAGCAGCTG	TTATTAAAGC	AAACACCGCA
	1501	AATAAACAGA	TATCCGTGAC	GGACTCTATA	GAACTTATCT	CGCCTACTGG
	1551	CAATGCCTAT	GAAGATCTCA	GAATGAGAAA	TTCACAGACG	TTCCCTCTGC
	1601	TCTCTTTAGA	GCCTGGAGCC	GGGGGTAGTG	TGACTGTAAC	TGCTGGAGAT
60	1651	TTCCTACCGG	TAAGTCCCCA	TTATGGTTTT	CAAGGCAATT	GGAAATTAGC
60	1701	TTGGACAGGA	ACTGGAAACA	AAGTTGGAGA	ATTCTTCTGG	GATAAAATAA

	1751	ATTATAAGCC	TAGACCTGAA	AAAGAAGGAA	ATTTAGTTCC	TAATATCTTG	
	1801	TGGGGGAATG	CTGTAGATGT	CAGATCCTTA	ATGCAGGTTC	AAGAGACCCA	
	1851	TGCATCGAGC	TTACAGACAG	ATCGAGGGCT	GTGGATCGAT	GGAATTGGGA	
_	1901	ATTTCTTCCA	TGTATCTGCC	TCCGAAGACA	ATATAAGGTA	CCGTCATAAC	
5	1951	AGCGGTGGAT	ATGTTCTATC	TGTAAATAAT	GAGATCACAC	CTAAGCACTA	
	2001	TACTTCGATG	GCATTTTCCC	AACTCTTTAG	TAGAGACAAG	GACTATGCGG	
	2051	TTTCCAACAA	CGAATACAGA	ATGTATTTAG	GATCGTATCT	CTATCAATAT	
	2101	ACAACCTCCC	TAGGGAATAT	TTTCCGTTAT	GCTTCGCGTA	ACCCTAATGT	
• •	2151	AAACGTCGGG	ATTCTCTCAA	GAAGGTTTCT	TCAAAATCCT	CTTATGATTT	
10	2201	TTCATTTTTT	GTGTGCTTAT	GGTCATGCCA	CCAATGATAT	GAAAACAGAC	
	2251	TACGCAAATT	TCCCTATGGT	GAAAAACAGC	TGGAGAAACA	ATTGTTGGGC	
	2301	TATAGAGTGC	GGAGGGAGCA	TGCCTCTATT	GGTATTTGAG	AACGGAAGAC	
	2351	TTTTCCAAGG	TGCCATCCCA	TTTATGAAAC	TACAATTAGT	TTATGCTTAT	
4.5	2401	CAGGGAGATT	TCAAAGAGAC	${\tt GACTGCAGAT}$	GGCCGTAGAT	TTAGTAATGG	
15	2451	GAGTTTAACA	TCGATTTCTG	TACCTCTAGG	CATACGCTTT	GAGAAGCTGG	
	2501	CACTTTCTCA	GGATGTACTC	TATGACTTTA	${\tt GTTTCTCCTA}$	TATTCCTGAT	
	2551	ATTTTCCGTA	AGGATCCCTC	ATGTGAAGCT	GCTCTGGTGA	TTAGCGGAGA	
	2601	CTCCTGGCTT	GTTCCGGCAG	TAGATGT CAGATCCTTA CAGACAG ATCGAGGCT ATCTGCC TCCGAAGACA TTCTATC TGTAAATAAT TTTTCCC AACTCTTTAG GATACAGA ATGTATTTAG GGAATAT TTCCGTTAT CCTCTCAA GAAGGTTTCT TGCTTAT GGTCATGCCA CTATGGT GAAAAACAGC CATCCCA TTTATGAAC CATCCCA TTTATGAAC AAGAGC GACTGCAGAT ATTTCTG TACCTCTAGG ATTCTCT ATGCTTAT ACTCTTAG ATCCCTC ATGGAGCT CCCGGCAG CACACGTATC GTATCAC TTTAACGACT GTATCAC TTTAACGACT GTATCAC TTTAACGACT GTATCAC TTTAACGACT GTATCAC CACACGTATC GTATCAC CCCGCCAC CCATGCTAGG GCCCCC CCATGCTAGG	AAGACATGCT	TTTGTAGGGA	
20	2651	GTGGAACGGG	TCGGTATCAC	TTTAACGACT	ATACTGAGCT	CTTATGTCGA	
20	2701	GGAAGTATAG	AATGCCGCCC	CCATGCTAGG	AATTATAATA	TAAACTGTGG	
	2751	AAGCAAATTT	CGTTTTTAG				

The PSORT algorithm predicts an outer membrane location (0.921).

The protein was expressed in *E.coli* and purified both as a his-tag and GST-fusion product. The GST-fusion is shown in Figure 21A. This recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 21B) and for FACS analysis (Figure 21C).

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6260 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

30 Example 22

The following C.pneumoniae protein (PID 4376456) was expressed <SEQ ID 43; cp6456>:

```
1 MSSPVNNTPS APNIPIPAPT TPGIPTTKPR SSFIEKVIIV AKYILFAIAA
                    TSGALGTILG LSGALTPGIG IALLVIFFVS MVLLGLILKD SISGGEERRL
                51
               101
                    REEVSRFTSE NQRLTVITTT LETEVKDLKA AKDQLTLEIE AFRNENGNLK
35
                    TTAEDLEEQV SKLSEQLEAL ERINQLIQAN AGDAQEISSE LKKLISGWDS
               151
                    KVVEQINTSI QALKVLLGQE WVQEAQTHVK AMQEQIQALQ AEILGMHNQS
               201
                    TALQKSVENL LVQDQALTRV VGELLESENK LSQACSALRQ EIEKLAQHET
               251
                    SLQQRIDAML AQEQNLAEQV TALEKMKQEA QKAESEFIAC VRDRTFGRRE
               301
                    TPPPTTPVVE GDESQEEDEG GTPPVSQPSS PVDRATGDGQ *
               351
40
     The cp6456 nucleotide sequence <SEQ ID 44> is:
                    ATGTCATCTC CTGTAAATAA CACACCCTCA GCACCAAACA TTCCAATACC
                51
                    AGCGCCCACG ACTCCAGGTA TTCCTACAAC AAAACCTCGT TCTAGTTTCA
               101
                    TTGAAAAGGT TATCATTGTA GCTAAGTACA TACTATTTGC AATTGCAGCC
               151 ACATCAGGAG CACTCGGAAC AATTCTAGGT CTATCTGGAG CGCTAACCCC
45
                    AGGAATAGGT ATTGCCCTTC TTGTTATCTT CTTTGTTTCT ATGGTGCTTT
               201
                    TAGGTTTAAT CCTTAAAGAT TCTATAAGTG GAGGAGAAGA ACGCAGGCTC
               251
               301 AGAGAAGAGG TCTCTCGATT TACAAGTGAG AATCAACGGT TGACAGTCAT
               351
                    AACCACAACA CTTGAGACTG AAGTAAAGGA TTTAAAAGCA GCTAAAGATC
               401
                    AACTTACACT TGAAATCGAA GCATTTAGAA ATGAAAACGG TAATTTAAAA
               451 ACAACTGCTG AGGACTTAGA AGAGCAGGTT TCTAAACTTA GCGAACAATT
50
               501 AGAAGCACTA GAGCGAATTA ATCAACTTAT CCAAGCAAAC GCTGGAGATG
               551
                    CTCAAGAAAT TTCGTCTGAA CTAAAGAAAT TAATAAGCGG TTGGGATTCC
               601 AAAGTTGTTG AACAGATAAA TACTTCTATT CAAGCATTGA AAGTGTTATT
               651 GGGTCAAGAG TGGGTGCAAG AGGCTCAAAC ACACGTTAAA GCAATGCAAG
55
               701 AGCAAATTCA AGCATTGCAA GCTGAAATTC TAGGAATGCA CAATCAATCT
```

```
751 ACAGCATTGC AAAAGTCAGT TGAGAATCTA TTAGTACAAG ATCAAGCTCT
801 AACAAGAGTA GTAGGTGAGT TGTTAGAGTC TGAGAACAAG CTAAGCCAAG
851 CTTGTTCTGC GCTACGTCAA GAAATAGAAA AGTTGGCCCA ACATGAAACA
901 TCTTTGCAAC AACGCATTGA TGCGATGCTA GCCCAAGAGC AAAATTTGGC
951 AGAGCAGGTC CAACGCCCTTG AAAAAATGAA ACAAGAAGGC CAGAAGGCTG
1001 AGTCCGAGT CATTGCTTGT GTACGTGATC GAACTTTCGG ACGTCGTGAA
1051 ACACCTCCAC CAACAACACC TGTAGTTGAA GGTGATGAAA GTCAAGAAGA
1101 AGACGAAGAG GGTACTCCC CAGTATCACA ACCATCTTCA CCCGTAGATA
1151 GAGCAACAGG AGATGGTCAG TAA
```

10 The PSORT algorithm predicts inner membrane (0.127).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 22A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 22B) and for FACS analysis (Figure 22C). A his-tag protein was also expressed.

These experiments show that cp6456 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 23

The following C.pneumoniae protein (PID 4376729) was expressed <SEQ ID 45; cp6729>:

	1	MKIPLHKLLI	SSTLVTPILL	SIATYGADAS	LSPTDSFDGA	GGSTFTPKST
20	51	ADANGTNYVL	SGNVYINDAG	KGTALTGCCF	TETTGDLTFT	GKGYSFSFNT
	101	VDAGSNAGAA	ASTTADKALT	FTGFSNLSFI	AAPGTTVASG	KSTLSSAGAL
	151	NLTDNGTILF	SQNVSNEANN	NGGAITTKTL	SISGNTSSIT	FTSNSAKKLG
	201	GAIYSSAAAS	ISGNTGQLVF	MNNKGETGGG	ALGFEASSSI	TONSSLFFSG
	251	NTATDAAGKG	GAIYCEKTGE	TPTLTISGNK	SLTFAENSSV	TOGGAICAHG
0.5	301	LDLSAAGPTL	FSNNRCGNTA	AGKGGAIAIA	DSGSLSLSAN	OGDITFLGNT
	351	LTSTSAPTST	RNAIYLGSSA	KITNLRAAQG	OSIYFYDPIA	SNTTGASDVI
	401	TINQPDSNSP	LDYSGTIVFS	GEKLSADEAK	AADNFTSILK	OPLALASGTI
	451	ALKGNVELDV	NGFTQTEGST	LLMQPGTKLK	ADTEAISLTK	LVVDLSALEG
	501	NKSVSIETAG	ANKTITLTSP	LVFQDSSGNF	YESHTINOAF	TOPLVVFTAA
^^	551	TAASDIYIDA	LLTSPVQTPE	PHYGYQGHWE	ATWADTSTAK	SGTMTWVTTG
	601	YNPNPERRAS	VVPDSLWASF	TDIRTLQQIM	TSQANSIYOO	RGLWASGTAN
	651	FFHKDKSGTN	QAFRHKSYGY	IVGGSAEDFS	ENIFSVAFCQ	LFGKDKDLFI
	701	VENTSHNYLA	SLYLQHRAFL	GGLPMPSFGS	ITDMLKDIPL	ILNAOLSYSY
	751	TKNDMDTRYT	SYPEAQGSWT	NNSGALELGG	SLALYLPKEA	PFFQGYFPFL
0.5	801	KFQAVYSRQQ	NFKESGAEAR	AFDDGDLVNC	SIPVGIRLEK	ISEDEKNNFE
	851	ISLAYIGDVY	RKNPRSRTSL	MVSGASWTSL	CKNLARQAFL	ASAGSHLTLS
<u>-</u>	901	PHVELSGEAA	YELRGSAHIY	NVDCGLRYSF	*	

A predicted signal peptide is highlighted.

The cp6729 nucleotide sequence <SEQ ID 46> is:

40	1	ATGAAAATAC	CCTTGCACAA	ACTCCTGATC	TCTTCGACTC	TTGTCACTCC
40	51	CATTCTATTG	AGCATTGCAA	CTTACGGAGC	AGATGCTTCT	TTATCCCCTA
	101	CAGATAGCTT	TGATGGAGCG	GGCGGCTCTA	CATTTACTCC	AAAATCTACA
	151	GCAGATGCCA	ATGGAACGAA	CTATGTCTTA	TCAGGAAATG	TCTATATAAA
	201	CGATGCTGGG	AAAGGCACAG	CATTAACAGG	CTGCTGCTTT	ACAGAAACTA
	251	CGGGTGATCT	GACATTTACT	GGAAAGGGAT	ACTCATTTTC	ATTCAACACG
45	301	GTAGATGCGG	GTTCGAATGC	AGGAGCTGCG	GCAAGCACAA	CTGCTGATAA
	351	AGCCCTAACA	TTCACAGGAT	TTTCTAACCT	TTCCTTCATT	GCAGCTCCTG
	401	GAACTACAGT	TGCTTCAGGA	AAAAGTACTT	TAAGTTCTGC	AGGAGCCTTA
	451	AATCTTACCG	ATAATGGAAC	GATTCTCTTT	AGCCAAAACG	TCTCCAATICA
	501	AGCTAATAAC	AATGGCGGAG	CGATCACCAC	AAAAACTCTT	TCTATION
50	551	GGAATACCTC	TTCTATAACC	ጥጥር ልርጥልርጥል	ATAGCGCAAA	TOTATITCIG
	601	GGAGCGATCT	ATAGCTCTGC	GGCTGCAAGT	ATTTCAGGAA	ACACCCCCCA
	651	GTTAGTCTTT	ATGAATAATA	AAGGAGAAAC	TGGGGGTGGG	CCTOTOTOCCCT
	701	TTGAAGCCAG	CTCCTCGATT	ACTICA A A AMA	GCTCCCTTTT	GCICIGGGCI.
	751	AACACTGCAA	CAGATGCTCC	ACCCAAGAIA	GGGGCCATTT	ATTCTCTCTGGA
55	801	AACAGGAGAG	ACTICCTACTIC	DWA CWA HOWO	TGGAAATAAA	ATTGTGAAAA
	851	TCGCCGAGAA	CTCTTCTCTC	TIMOTATOTO	GAGCAATCTG	AGTCTGACCT
		~ CCCGMGMM	CTCTTCMGTA	ACTUMAGGGG	GAGCAATCTG	TGCCCATGGT

	901	CTAGATCTTT	ന്ദ്രസ്താ ന്ദ്രേ	CCCTACCCTA	ጥጥጥጥ C አ አ አጥ አ	አ ሞአር አ ሞር ርርር
	951			GCGGCGCTAT		
	1001		CTCTGCAAAT		TCACGTTCCT	
	1051		CCTCCGCGCC		CGGAATGCTA	
5	1101			ACTTAAGGGC		
	1151		TCCGATTGCA		CAGGAGCTTC	
	1201		AACCGGATAG		TTAGATTATT	
	1251	TGTATTTTCT	GGGGAAAAGC		TGAAGCGAAA	
	1301	ACTTCACATC	TATATTAAAG		CTCTAGCCTC	
10	1351	GCACTCAAAG	GAAATGTCGA		AATGGTTTCA	
	1401		CTCCTCATGC		AAAGCTCAAA	
	1451	AAGCTATCAG			ATCTTTCTGC	
	1501	AATAAGAGTG	TGTCCATTGA		GCCAACAAAA	
	1551		CTTGTTTTCC		CGGCAATTTT	
15	1601		CCAAGCCTTC	ACGCAGCCTT		
	1651		GCGATATTTA	TATCGATGCG		
	1701	AACTCCAGAA	CCTCATTACG	GGTATCAGGG		
	1751		AACTGCAAAA			
	1801	TACAACCCTA	ATCCTGAGCG			
20	1851	GGCATCCTTT	ACTGACATTC			
	1901	CGAATAGTAT	CTATCAGCAA	CGAGGACTCT	GGGCATCAGG	AACTGCGAAT
	1.951			AGGAACTAAC		
	2001	CTACGGCTAT	ATTGTTGGAG	GAAGTGCTGA	AGATTTTTCT	GAAAATATCT
	2051	TCAGTGTAGC	TTTCTGCCAG	CTCTTCGGTA	AAGATAAAGA	CCTGTTTATA
25	2101	GTTGAAAATA	CCTCTCATAA	CTATTTAGCG	TCGCTATACC	TGCAACATCG
	2151	AGCATTCCTA	GGAGGACTTC	CCATGCCCTC		
	2201	TGCTGAAAGA	TATTCCTCTC	ATTTTGAATG	CCCAGCTAAG	CTACAGCTAC
	2251	ACTAAAAATG	ATATGGATAC	TCGCTATACT	TCCTATCCTG	AAGCTCAAGG
••	2301	CTCTTGGACC		GGGCTCTAGA	GCTCGGAGGA	TCTCTGGCTC
30	2351		TAAAGAAGCA	CCGTTCTTCC	AGGGATATTT	CCCCTTCTTA
	2401		CAGTCTACAG	CCGCCAACAA	AACTTTAAAG	AGAGTGGCGC
	2451		GCTTTTGATG	ATGGAGACCT		
	2501			ATCTCCGAAG		
25	2551			TGATGTGTAT		
35	2601			GAGCCTCTTG		
	2651			GCAAGTGCTG		
	2701	CCTCATGTAG		GGAAGCTGCT		
	2751	ACACATCTAC	AATGTAGATT	GTGGGCTAAG	ATACTCATTC	TAG

The PSORT algorithm predicts outer membrane (0.927).

- The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 23A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 23B) and for FACS analysis (Figure 23C). A his-tag protein was also expressed.
 - The cp6729 protein was also identified in the 2D-PAGE experiment (Cpn0446) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.
- These experiments show that cp6729 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 24

The following C.pneumoniae protein (PID 4376849) was expressed <SEQ ID 47; cp6849>:

	1	MSKLIRRVVT	VLALTSMASC	FASGGIEAAV	AESLITKIVA	SAETKPAPVP
50	51			RGAFCDKEFY		
	101			YATVGSPYPI		
	151	CEAEFVSSDP	ETTPTSDGKL	VWKIDRLGAG	DKCKITVWVK	PLKEGCCFTA
	201			CIKQEGPDCA		
	251	RNVTVDNPVP	DGYSHASGQR	VLSFNLGDMR	PGDKKVFTVE	FCPORRGQIT
55	301	NVATVTYCGG	HKCSANVTTV	VNEPCVQVNI	SGADWSYVCK	PVEYSISVSN
	351	PGDLVLHDVV	IODTLPSGVT	VLEAPGGEIC	CNKWAWRIKE	MCPCETLOFK

```
401 LVVKAQVPGR FTNQVAVTSE SNCGTCTSCA ETTTHWKGLA ATHMCVLDTN
451 DPICVGENTV YRICVTNRGS AEDTNVSLIL KFSKELQPIA SSGPTKGTIS
501 GNTVVFDALP KLGSKESVEF SVTLKGIAPG DARGEAILSS DTLTSPVSDT
551 ENTHVY*
```

The cp6849 nucleotide sequence <SEQ ID 48> is:

	1	ATGTCCAAAC	TCATCAGACG	AGTAGTTACG	GTCCTTGCGC	TAACGAGTAT
	51	GGCGAGTTGC	TTTGCCAGCG	GGGGTATAGA	GGCCGCTGTA	GCAGAGTCTC
10	101	TGATTACTAA	GATCGTCGCT	AGTGCGGAAA	CAAAGCCAGC	ACCTGTTCCT
10	151	ATGACAGCGA	AGAAGGTTAG	ACTTGTCCGT	AGAAATAAAC	AACCAGTTGA
	201	ACAAAAAAGC	CGTGGTGCTT	TTTGTGATAA	AGAATTTTAT	CCCTGTGAAG
	251	AGGGACGATG	TCAACCTGTA	GAGGCTCAGC	AAGAGTCTTG	CTACGGAAGA
	301	TTGTATTCTG	TAAAAGTAAA	CGATGATTGC	AACGTAGAAA	TTTGCCAGTC
	351	CGTTCCAGAA	TACGCTACTG	TAGGATCTCC	TTACCCTATT	GAAATCCTTG
15	401	CTATAGGCAA	AAAAGATTGT	GTTGATGTTG	TGATTACACA	ACAGCTACCT
	451	TGCGAAGCTG	AATTCGTAAG	CAGTGATCCA	GAAACAACTC	CTACAAGTGA
	501	TGGGAAATTA	GTCTGGAAAA	TCGATCGCCT	GGGTGCAGGA	GATAAATGCA
	551	AAATTACTGT	ATGGGTAAAA	CCTCTTAAAG	AAGGTTGCTG	CTTCACAGCT
	601		GTGCTTGCCC			
20	651		TGTATTAAGC			TGCCTAAGAT
	701	GCCCTGTATG	CTACAAA \TC	GAAGTAGTGA	ACACAGGATC	TGCTATTGCC
	751	CGTAACGTAA	CTGTAGATAA	TCCTGTTCCC	GATGGCTATT	CTCATGCATC
	801		GTTCTCTCTT			
	851		TACAGTTGAG			
25	901	AACGTTGCTA	CTGTAACTTA	CTGCGGTGGA	CACAAATGTT	CTGCAAATGT
	951	AACTACAGTT	GTTAATGAGC	CTTGTGTACA	AGTAAATATC	TCTGGTGCTG
	1001	ATTGGTCTTA	CGTATGTAAA	CCTGTGGAGT	ACTCTATCTC	AGTATCGAAT
	1051	CCTGGAGACT	TGGTTCTTCA	TGATGTCGTG	ATCCAAGATA	CACTCCCTTC
	1101	TGGTGTTACA	GTACTCGAAG	CTCCTGGTGG	AGAGATCTGC	TGTAATAAAG
30	1151	TTGTTTGGCG	TATTAAAGAA	ATGTGCCCAG	GAGAAACCCT	CCAGTTTAAA
	1201	CTTGTAGTGA	AAGCTCAAGT	TCCTGGAAGA	TTCACAAATC	AAGTTGCAGT
	1251	AACTAGTGAG	TCTAACTGCG	GAACATGTAC	ATCTTGCGCA	GAAACAACAA
	1301		${\tt AGGTCTTGCA}$			
~ "	1351	GATCCTATCT	${\tt GTGTAGGAGA}$	AAATACTGTC	TATCGTATCT	GTGTAACTAA
35	1401		GCTGAAGATA		${\bf TTTAATCTTG}$	
	1451		GCCAATAGCT			
	1501	GGTAATACCG	${\tt TTGTTTTCGA}$	CGCTTTACCT	AAACTCGGTT	CTAAGGAATC
	1551		TCTGTTACCT			GATGCTCGCG
	1601	GCGAAGCTAT	TCTTTCTTCT	GATACACTGA	CTTCACCAGT	ATCAGACACA
40	1651	GAAAATACCC	ACGTGTATTA	A		

The PSORT algorithm predicts periplasmic space (0.93).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 24A, and also as a his-tag protein. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 24B) and for FACS analysis (Figure 24C).

The cp6849 protein was also identified in the 2D-PAGE experiment (Cpn0557).

These experiments show that cp6849 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 25

The following C.pneumoniae protein (PID 4376273) was expressed <SEQ ID 49; cp6273>:

50	1	MGLFHLTLFG	LLLCSLPISL	VAKFPESVGH	KILYISTQST	QQALATYLEA
	51	LDAYGDHDFF	VLRKIGEDYL	KQSIHSSDPQ	TRKSTIIGAG	LAGSSEALDV
	101	LSQAMETADP	LQQLLVLSAV	SGHLGKTSDD	LLFKALASPY	PVIRLEAAYR
	151	LANLKNTKVI	DHLHSFIHKL	PEEIQCLSAA	IFLRLETEES	DAYIRDLLAA
	201	KKSAIRSATA	LQIGEYQQKR	FLPTLRNLLT	SASPODOEAI	LYALGKLKDG

```
251 QSYYNIKKQL QKPDVDVTLA AAQALIALGK EEDALPVIKK QALEERPRAL
301 YALRHLPSEI GIPIALPIFL KTKNSEAKLN VALALLELGC DTPKLLEYIT
351 ERLVQPHYNE TLALSFSKGR TLQNWKRVNI IVPQDPQERE RLLSTTRGLE
401 EQILTFLFRL PKEAYLPCIY KLLASQKTQL ATTAISFLH TSHQEALDLL
451 FQAAKLPGEP IIRAYADLAI YNLTKDPEKK RSLHDYAKKL IQETLLFVDT
501 ENQRPHPSMP YLRYQVTPES RTKLMLDILE TLATSKSSED IRLLIQLMTE
551 GDAKNFPVLA GLLIKIVE*
```

The cp6273 nucleotide sequence <SEQ ID 50> is:

10						
10	1		TCCATCTAAC	TCTCTTTGGA	CTTTTATTGT	GTAGTCTTCC
	51	CATTTCTCTT	GTTGCTAAAT	TCCCTGAGTC	TGTAGGTCAT	AAGATCCTTT
	101	ATATAAGTAC	GCAATCTACA	CAGCAGGCCT	TAGCAACATA	TCTGGAAGCT
	151	CTAGATGCCT	ACGGTGATCA	TGACTTCTTC	GTTTTAAGAA	AAATCGGAGA
	201	AGACTATCTC	AAGCAAAGCA	TCCACTCCTC	AGATCCGCAA	ACTAGAAAA
15	251	GCACCATCAT	TGGAGCAGGC	CTGGCGGGAT	CTTCAGAAGC	CTTGGACGTG
	301	CTCTCCCAAG	CTATGGAAAC	TGCAGACCCC	CTGCAGCAGC	TACTGGTTTT
	351	ATCGGCAGTC	TCAGGACATC	TTGGGAAAAC	TTCTGACGAC	TTACTGTTTA
	401	AAGCTTTAGC	ATCTCCCTAT	CCTGTCATCC	GCTTAGAAGC	CGCCTATAGA
	451	CTTGCTAATT	TGAAGAACAC	TAAAGTCATT	GATCATCTAC	ATTCTTTCAT
20	501	TCATAAGCTT	CCCGAAGAAA	TCCAATGCCT	ATCTGCGGCA	ATATTCCTAC
	551	GCTTGGAGAC	TGAAGAATCT	GATGCTTATA	TTCGGGATCT	CTTAGCTGCC
	601	AAGAAAAGCG	CGATTCGGAG	TGCCACAGCT	TTGCAGATCG	GAGAATACCA
	651	ACAAAAACGC	TTTCTTCCGA	CACTTAGGAA	TTTGCTAACG	AGTGCGTCTC
	701	CTCAAGATCA	AGAAGCTATT	CTTTATGCTT	TAGGGAAGCT	TAAGGATGGT
25	751	CAGAGCTACT	ACAATATAAA	AAAGCAATTG	CAGAAGCCTG	ATGTGGATGT
	801	CACTTTAGCA	GCAGCTCAAG	CTTTAATTGC	TTTGGGGAAA	GAAGAGGACG
	851	CTCTTCCCGT	GATAAAAAAG	CAAGCACTTG	AGGAGCGGCC	TCGAGCCCTG
	901	TATGCCTTAC	GGCATCTACC	CTCTGAGATA	GGGATTCCGA	TTGCCCTGCC
	951	GATATTCCTA	AAAACTAAGA	ACAGCGAAGC	CAAGTTGAAT	GTAGCTTTAG
30	1001	CTCTCTTAGA	GTTAGGGTGT	GACACCCCTA	AACTACTGGA	ATACATTACC
	1051	GAAAGGCTTG	TCCAACCACA	TTATAATGAG	ACTCTAGCCT	TGAGTTTCTC
	1101	TAAGGGGCGT	ACTTTACAAA	ATTGGAAGCG	GGTGAACATC	ATAGTCCCTC
	1151	AAGATCCCCA	GGAGAGGGAA	AGGTTGCTCT	CCACAACCCG	AGGTCTTGAA
	1201	GAGCAGATCC	TTACGTTTCT	CTTCCGCCTA	CCTAAAGAAG	CTTACCTCCC
35	1251	CTGTATTTAT	AAGCTTTTGG	CGAGTCAGAA	AACTCAGCTT	GCCACTACTG
	1301	CGATTTCTTT	TTTAAGTCAC	ACCTCACATC	AGGAAGCCTT	AGATCTACTT
	1351	TTCCAAGCTG	CGAAGCTTCC	TGGAGAACCT	ATCATCCGCG	CCTATGCAGA
	1401	TCTTGCTATT	TATAATCTCA	CCAAAGATCC	TGAAAAAAA	CGTTCTCTCC
	1 451	ATGATTATGC	AAAAAAGCTA	ATTCAGGAAA	CCTTGTTATT	TGTGGACACG
40	1501	GAAAACCAAA	GACCCCATCC	CAGCATGCCC	TATCTACGTT	ATCAGGTCAC
	1551	CCCAGAAAGC	CGTACGAAGC	TCATGTTGGA	TATTCTAGAG	ACACTAGCCA
	1601	CCTCGAAGTC	TTCCGAAGAT	ATCCGTTTAT		GATGACGGAA
	1651	GGAGATGCAA	AAAATTTCCC	AGTCCTTGCA	GGCTTACTCA	TAAAAATTGT
	1701	GGAGTAA				

45 The PSORT algorithm predicts a periplasmic location (0.922).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product, as shown in Figure 25A. The recombinant GST-fusion was used to immunise mice, whose sera were used in a Western blot (Figure 25B) and for FACS analysis (Figure 25C).

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6273 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 26

The following C. pneumoniae protein (PID 4376735) was expressed <SEQ ID 51; cp6735>:

```
1 MTILRNFLTC SALFLALPAA AQVVYLHESD GYNGAINNKS LEPKITCYPE
                 51 GTSYIFLDDV RISNVKHDQE DAGVFINRSG NLFFMGNRCN FTFHNLMTEG
                101
                     FGAAISNRVG DTTLTLSNFS YLAFTSAPLL POGOGAIYSL GSVMIENSEE
                151
                    VTFCGNYSSW SGAAIYTPYL LGSKASRPSV NLSGNRYLVF RDNVSQGYGG
 5
                201 AISTHNLTLT TRGPSCFENN HAYHDVNSNG GAIAIAPGGS ISISVKSGDL
                     IFKGNTASQD GNTIHNSIHL QSGAQFKNLR AVSESGVYFY DPISHSESHK
                251
                301
                    ITDLVINAPE GKETYEGTIS FSGLCLDDHE VCAENLTSTI LQDVTLAGGT
                351
                    LSLSDGVTLQ LHSFKQEASS TLTMSPGTTL LCSGDARVQN LHILIEDTDN
                401
                    FVPVRIRAED KDALVSLEKL KVAFEAYWSV YDFPQFKEAF TIPLLELLGP
10
                451
                    SFDSLLLGET TLERTQVTTE NDAVRGFWSL SWEEYPPSLD KDRRITPTKK
                501
                    TVFLTWNPEI TSTP*
```

The cp6735 nucleotide sequence <SEQ ID 52> is:

```
ATGACCATAC TTCGAAATTT TCTTACCTGC TCGGCTTTAT TCCTCGCTCT
15
                51
                   CCCTGCAGCA GCACAAGTTG TATATCTTCA TGAAAGTGAT GGTTATAACG
               301
                    GTGCTATCAA TAATAAAAGC TTAGAACCTA AAATTACCTG TTATCCAGAA
               151
                    GGAACTTCTT ACATCTTTCT AGATGACGTG AGGATTTCCA ACGTTAAGCA
               201
                    TGATCAAGAA GATGCTGGGG TTTTTATAAA TCGATCTGGG AATCTTTTTT
               251
                   TCATGGGCAA CCGTTGCAAC TTCACTTTTC ACAACCTTAT GACCGAGGGT
20
                   TTTGGCGCTG CCATTTCGAA CCGCGTTGGA GACACCACTC TCACTCTCTC
               301
               351
                   TAATTTTCT TACTTAGCGT TCACCTCAGC ACCTCTACTA CCTCAAGGAC
               401
                   AAGGAGCGAT TTATAGTCTT GGTTCCGTGA TGATCGAAAA TAGTGAGGAA
                   GTGACTTTCT GTGGGAACTA CTCTTCGTGG AGTGGAGCTG CGATTTATAC
               451
               501
                   TCCCTACCTT TTAGGTTCTA AGGCGAGTCG TCCTTCAGTA AATCTCAGCG
25
                   GGAACCGCTA CCTGGTGTTT AGAGACAATG TGAGCCAAGG TTATGGCGGC
               551
                   GCCATATCTA CCCACAATCT CACACTCACG ACTCGAGGAC CTTCGTGTTT
               601
               651
                   TGAAAATAAT CATGCTTATC ATGACGTGAA TAGTAATGGA GGAGCCATTG
               701
                   CCATTGCTCC TGGAGGATCG ATCTCTATAT CCGTGAAAAG CGGAGATCTC
               751
                   ATCTTCAAAG GAAATACAGC ATCACAAGAC GGAAATACAA TACACAACTC
30
                   CATCCATCTG CAATCTGGAG CACAGTTTAA GAACCTACGT GCTGTTTCAG
               801
               851
                   AATCCGGAGT TTATTTCTAT GATCCTATAA GCCATAGCGA GTCGCATAAA
               AACAATTAGC TTCTCAGGAC TATGCCTGGA TGATCATGAA GTTTGTGCGG
               951
              1001
                   AAAATCTTAC TTCCACAATC CTACAAGATG TCACATTAGC AGGAGGAACT
35
                   CTCTCTCTAT CGGATGGGGT TACCTTGCAA CTGCATTCTT TTAAGCAGGA
              1051
              1101
                   AGCAAGCTCT ACGCTTACTA TGTCTCCAGG AACCACTCTG CTCTGCTCAG
              1151
                   GAGATGCTCG GGTTCAGAAT CTGCACATCC TGATTGAAGA TACCGACAAC
                   TTTGTTCCTG TAAGGATTCG CGCCGAGGAC AAGGATGCTC TTGTCTCATT
              1201
              1251
                   AGAAAAACTT AAAGTTGCCT TTGAGGCTTA TTGGTCCGTC TATGACTTTC
40
              1301
                   CTCAATTTAA GGAAGCCTTT ACGATTCCTC TTCTTGAACT TCTAGGGCCT
                   TCTTTTGACA GTCTTCTCCT AGGGGAGACC ACTTTGGAGA GAACCCAAGT
              1351
              1401
                   CACAACAGAG AATGACGCCG TTCGAGGTTT CTGGTCCCTA AGCTGGGAAG
              1451
                   AGTACCCCC TTCTCTGGAT AAAGACAGAA GGATCACACC AACTAAGAAA
              1501
                   ACTGTTTTCC TCACTTGGAA TCCTGAGATC ACTTCTACGC CATAA
```

45 The PSORT algorithm predicts an outer membrane location (0.922).

The protein was expressed in *E.coli* and purified as a as a his-tag product and as a GST-fusion product, as shown in Figure 26A. The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 26B).

These experiments show that cp6735 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 27

The following C.pneumoniae protein (PID 4376784) was expressed <SEQ ID 53; cp6784>:

```
1 MNRRKARWVV ALFAMTALIS VGCCPWSQAK SRCSIDKYIP VVNRLLEVCG
51 LPEAENVEDL IESSSAWVLT PEERFSGELV SICQVKDEHA FYNDLSLLHM
55 101 TQAVPSYSAT YDCAVVFGGP LPALRQRLDF LVREWQRGVR FKKIVFLCGE
151 RGRYQSIEEQ EHFFDSRYNP FPTEENWESG NRVTPSSEEE IAKFVWMOML
```

```
201 LPRAWRDSTS GVRVTFLLAK PEENRVVANR KDTLLLFRSY QEAFPGRVLF
251 VSSQPFIGLD ACRVGQFFKG ESYDLAGPGF AQGVLKYHWA PRICLHTLAE
```

301 WLKETNGCLN ISEGCFG*

5 The cp6784 nucleotide sequence <SEQ ID 54> is:

A predicted signal peptide is highlighted.

	_					
	1		GAAAAGCAAG	ATGGGTAGTG	GCATTGTTCG	CAATGACGGC
	51	GCTCATTTCT	GTTGGGTGTT	GTCCTTGGTC	ACAAGCGAAA	TCAAGATGTT
	101	CTATTGATAA	GTATATTCCT	GTAGTCAATC	GTTTACTAGA	AGTTTGTGGA
	151	CTTCCTGAAG	CTGAGAATGT	TGAGGATTTA	ATCGAGTCCT	CGTCTGCTTG
10	201	GGTACTGACT	CCTGAAGAAC	GTTTTTCTGG	AGAGTTAGTC	TCTATCTGTC
	251	AGGTTAAAGA	TGAGCATGCT	TTCTATAACG	ATTTGTCTTT	ATTACATATG
	301	ACTCAGGCTG	TGCCTTCGTA	TTCTGCAACG	TATGATTGTG	CTGTAGTTTT
	351	TGGCGGGCCT	TTGCCAGCGC	TACGTCAGCG	CTTAGATTTT	TTGGTGCGAG
	401	AGTGGCAGCG	TGGCGTGCGC	TTTAAGAAAA	TCGTTTTTCT	ATGTGGAGAG
15	451	CGAGGGCGCT	ATCAGTCTAT	TGAAGAACAA	GAGCATTTCT	TTGATTCTCG
20	501	GTACAATCCT	TTCCCTACTG	AAGAGAACTG	GGAATCTGGT	AACCGAGTTA
	551	CTCCCTCTTC	TGAAGAAGAG	ATTGCCAAAT	TTGTTTGGAT	GCAAATGCTT
	601	TTACCTAGAG	CATGGCGAGA	TAGTACTTCA	GGAGTCAGAG	TGACATTTCT
	651	TCTAGCAAAG	CCAGAGGAAA	ATCGTGTGGT	TGCGAATCGT	AAGGACACCT
	701	TACTTTTATT	CCGTTCTTAT	CAAGAAGCGT	TTCCGGGACG	CGTGTTATTT
	751	GTAAGTAGTC	AACCCTTTAT	CGGTTTAGAT	GCTTGCAGGG	TCGGGCAGTT
	801	TTTCAAAGGG	GAAAGCTATG	ATCTTGCTGG	ACCTGGATTT	GCTCAAGGAG
	851	TCTTGAAGTA	TCATTGGGCT	CCAAGGATTT	GTCTACATAC	
	901		AAACGAACGG			
25	951	ATGA			*** TONGNOG	GIIGIIIIGG

The PSORT algorithm predicts a periplasmic location (0.894).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product, as shown in Figure 27A. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 27B). The GST-fusion product was used for FACS analysis (Figure 27C).

30 The cp6784 protein was also identified in the 2D-PAGE experiment (Cpn0498).

These experiments show that cp6784 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 28

The following C.pneumoniae protein (PID 4376960) was expressed <SEQ ID 55; cp6960>:

```
35 1 MNRRWNLVLA TVALALSVAS CDVRSKDKDK DQGSLVEYKD NKDTNDIELS
51 DNQKLSRTFG HLLARQLRKS EDMFFDIAEV AKGLQAELVC KSAPLTETEY
101 EEKMAEVQKL VFEKKSKENL SLAEKFLKEN SKNAGVVEVQ PSKLQYKIIK
151 EGAGKAISGK PSALLHYKGS FINGQVFSSS EGNNEPILLP LGQTIPGFAL
201 GMQGMKEGET RVLYIHPDLA YGTAGQLPPN SLLIFEINLI QASADEVAAV
40 251 POEGNOGE*
```

A predicted signal peptide is highlighted.

The cp6960 nucleotide sequence <SEQ ID 56> is:

```
ATGAACAGAC GGTGGAATTT AGTTTTAGCA ACAGTAGCTC TGGCACTCTC
                    CGTCGCTTCT TGTGACGTAC GGTCTAAGGA TAAAGACAAG GATCAGGGGT
45
               101
                    CGTTAGTGGA ATATAAAGAT AACAAAGATA CCAATGACAT AGAATTATCC
               151
                    GATAATCAAA AGTTATCCAG AACATTTGGT CATTTATTAG CACGCCAATT
                    ACGCAAGTCA GAAGATATGT TTTTTGATAT TGCAGAAGTG GCTAAGGGGT
               201
               251
                    TGCAGGCGGA ATTGGTTTGT AAAAGTGCTC CTTTAACAGA AACAGAGTAT
               301
                    GAAGAAAAA TGGCTGAAGT ACAGAAGTTG GTTTTTGAAA AAAAATCAAA
                    AGAAAATCTT TCATTGGCAG AAAAATTCTT AAAAGAAAAT AGCAAGAACG
50
               351
                    CTGGTGTTGT TGAAGTGCAA CCAAGTAAAT TGCAATACAA AATTATTAAA
```

```
451 GAAGGTGCAG GGAAAGCAAT TTCAGGTAAA CCTTCAGCTC TATTGCACTA
501 CAAGGGTTCC TTCATCAATG GCCAAGTATT TAGCAGTTCA GAAGGCAACA
551 ATGAGCCTAT CTTGCTTCCT CTAGGCCAAA CAATTCCTGG TTTTGCTTTA
601 GGTATGCAGG GCATGAAAGA AGGAGAAACT CGAGTTCTC ACATCCATCC
651 TGATCTTGCT TACGGAACCG CAGGACAACT TCCTCCAAAC TCTTTATTAA
701 TTTTTGAAAT TAACTTGATT CAGGCTTCAG CAGATGAAGT TGCTGCTGTA
751 CCCCAAGAAG GAAATCAAGG TGAATGA
```

The PSORT algorithm predicts periplasmic space location (0.930).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product, as shown in Figure 28A. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 28B) and for FACS analysis (Figure 28C).

The cp6960 protein was also identified in the 2D-PAGE experiment.

These experiments show that cp6960 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

15 **Example 29**

5

The following C.pneumoniae protein (PID 4376968) was expressed <SEQ ID 57; cp6968>:

```
1 MKFLLYVPLL LVLVSTGCDA KPVSFEPFSG KLSTQRFEPQ HSAEEYFSQG
51 QEFLKKGNFR KALLCFGIIT HHFPRDILRN QAQYLIGVCY FTQDHPDLAD
101 KAFASYLQLP DAEYSEELFQ MKYAIAQRFA QGKRKRICKL EGFPKLMNAD
151 EDALRIYDEI LTAFPSKDLG AQALYSKAAL LIVKNDLTEA TKTLKKLTLQ
201 FPLHILSSEA FVRLSEIYLQ QAKKEPHNLQ YLHFAKLNEE AMKKQHPNHP
251 LNEVVSANVG AMREHYARGL YATGRFYEKK KKAEAANIYY RTAITNYPDT
301 LLVAKCOKRL DRISKHTS*
```

A predicted signal peptide is highlighted.

25 The cp6968 nucleotide sequence <SEQ ID 58> is:

	1	ATGAAATTTC	TATTATACGT	TCCACTTCTT	CTTGTTCTCG	TATCTACGGG
	51	GTGCGATGCA	AAACCTGTTT	CTTTTGAGCC	CTTTTCAGGA	AAGCTTTCCA
30	101	CCCAGCGTTT	TGAGCCTCAG	CACTCTGCTG	AAGAATATTT	TTCTCAGGGA
	151	CAGGAATTCT	TAAAAAAAGG	AAATTTCAGA	AAAGCTTTAC	TATGCTTTGG
	201	AATCATTACG	CATCACTTCC	CTAGGGACAT	CTTGCGTAAT	CAAGCACAGT
	251	ATCTTATAGG	AGTCTGTTAC	TTCACGCAGG	ATCACCCAGA	TTTAGCAGAC
	30 1	AAGGCATTTG	CATCTTACTT	ACAACTTCCT	GATGCGGAGT	ACTCTGAAGA
35	351	GTTGTTCCAG	ATGAAATATG	CGATTGCTCA	AAGATTTGCT	CAAGGGAAGC
	401	GTAAACGGAT	TTGTCGATTA	GAGGGCTTCC	CAAAACTAAT	GAATGCTGAT
	451	GAAGATGCGC	TACGCATTTA	TGACGAGATT	CTAACAGCGT	TTCCTAGTAA
	501	AGACTTAGGA	GCTCAGGCCC	TCTATAGTAA	AGCTGCGTTA	CTTATTGTAA
	551	AAAACGATCT	TACAGAAGCC	ACCAAAACCT	TAAAAAAACT	CACGTTACAA
40	601	TTTCCTCTAC	ATATTTTATC	TTCAGAGGCC	TTTGTACGTT	TATCGGAAAT
	65 1	CTATTTACAG	CAAGCTAAGA	AAGAGCCTCA	CAATCTTCAA	TATCTTCATT
	701	TTGCAAAGCT	TAATGAAGAG	GCAATGAAAA	AGCAGCATCC	TAACCATCCT
	751	CTGAATGAGG	TTGTTTCTGC	TAATGTTGGA	GCTATGCGGG	AACATTATGC
	801	TCGAGGTTTG	TATGCCACAG	GTCGTTTCTA	TGAGAAGAAG	AAAAAAGCCG
	85 1	AGGCTGCGAA	TATCTATTAC	CGCACTGCGA	TTACAAACTA	CCCAGACACT
	901	TTATTAGTGG	CTAAATGTCA	AAAGCGTCTA	GATAGAATAT	CTAAGCATAC
45	951	TTCCTAA				

The PSORT algorithm predicts an inner membrane location (0.790).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product, as shown in Figure 29A. The recombinant GST-fusion was used to immunise mice, whose sera were used in a Western blot (Figure 29B) and for FACS analysis (Figure 29C).

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6968 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

5 Example 30

The following C.pneumoniae protein (PID 4376998) was expressed <SEQ ID 59; cp6998>:

```
10 MKKLLKSALL SAAFAGSVGS LQALPVGNPS DPSLLIDGTI WEGAAGDPCD
110 PCATWCDAIS LRAGFYGDYV FDRILKVDAP KTFSMGAKPT GSAAANYTTA
101 VDRPNPAYNK HLHDAEWFTN AGFIALNIWD RFDVFCTLGA SNGYIRGNST
101 AFNLVGLFGV KGTTVNANEL PNVSLSNGVV ELYTDTSFSW SVGARGALWE
102 CGCATLGAEF QYAQSKPKV ELNVICNVSQ FSVNKKKYK GVAFPLPTDA
103 GVATATGTKS ATINYHEWQV GASLSYRLNS LVPYIGVQWS RATFDADNIR
104 ALQPKLPTAV LNLTAWNFSL LGNATALSTT DSFSDFMQIV SCQINKFKSR
105 KACGVTVGAT LVDADKWSLT AEARLINERA AHVSGQFRF*
```

15 A predicted signal peptide is highlighted.

The cp6998 nucleotide sequence <SEQ ID 60> is:

	1	ATGAAAAAAC	TCTTAAAGTC	GGCGTTATTA	TCCGCCGCAT	ጥጥርርጥርርጥጥር
	51	TGTTGGCTCC	TTACAAGCCT	TGCCTGTAGG	GAACCCTTCT	
	101	TATTAATTGA	TGGTACAATA	TGGGAAGGTG	CTGCAGGAGA	TCCTTGCGAT
20	151	CCTTGCGCTA	CTTGGTGCGA	CGCTATTAGC	TTACGTGCTG	GATTTTACGG
	201	AGACTATGTT	TTCGACCGTA	TCTTAAAAGT	AGATGCACCT	AAAACATTTT
	251	CTATGGGAGC	CAAGCCTACT	GGATCCGCTG	CTGCAAACTA	TACTACTGCC
	301	GTAGATAGAC	CTAACCCGGC	CTACAATAAG	CATTTACACG	ATGCAGAGTG
	351	GTTCACTAAT	GCAGGCTTCA	TTGCCTTAAA	CATTTGGGAT	CGCTTTGATG
25	401	TTTTCTGTAC	TTTAGGAGCT	TCTAATGGTT	ACATTAGAGG	AAACTCTACA
	451	GCGTTCAATC	TCGTTGGTTT	ATTCGGAGTT	AAAGGTACTA	CTGTAAATGC
	50 1	AAATGAACTA	CCAAACGTTT	CTTTAAGTAA	CGGAGTTGTT	GAACTTTACA
	-551	CAGACACCTC	TTTCTCTTGG	AGCGTAGGCG	CTCGTGGAGC	CTTATGGGAA
• •	601	TGCGGTTGTG	CAACTTTGGG	AGCTGAATTC	CAATATGCAC	AGTCCAAACC
30	651		GAACTTAATG	TGATCTGTAA	CGTATCGCAA	TTCTCTGTAA
	701	ACAAACCCAA	GGGCTATAAA	${\tt GGCGTTGCTT}$	TCCCCTTGCC	AACAGACGCT
	751	GGCGTAGCAA		AACAAAGTCT	GCGACCATCA	ATTATCATGA
	801	ATGGCAAGTA	GGAGCCTCTC	TATCTTACAG	ACTAAACTCT	TTAGTGCCAT
	851	ACATTGGAGT	ACAATGGTCT	CGAGCAACTT	TTGATGCTGA	TAACATCCGC
35	901	ATTGCTCAGC	CAAAACTACC	TACAGCTGTT	TTAAACTTAA	CTGCATGGAA
	951	CCCTTCTTTA	CTAGGAAATG	CCACAGCATT	GTCTACTACT	GATTCGTTCT
	1001	CAGACTTCAT	GCAAATTGTT	TCCTGTCAGA	TCAACAAGTT	TAAATCTAGA
	1051	AAAGCTTGTG	GAGTTACTGT	AGGAGCTACT	TTAGTTGATG	CTGATAAATG
	1101	GTCACTTACT	GCAGAAGCTC	${\tt GTTTAATTAA}$	CGAGAGAGCT	GCTCACGTAT
40	1151	CTGGTCAGTT	CAGATTCTAA			

The PSORT algorithm predicts an outer membrane location (0.707).

The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 30A) and as a his-tag product. The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 30B) and for FACS analysis (Figure 30C).

The cp6998 protein was also identified in the 2D-PAGE experiment (Cpn0695) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6998 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 31

The following C.pneumoniae protein (PID 4377102) was expressed <SEQ ID 61; cp7102>:

	1	MKHTFTKRVL	FFFFLVIPIP	LLLNLMVVGF	FSFSAAKANL	VQVLHTRATN
~	51	LSIEFEKKLT	IHKLFLDRLA	NTLALKSYAS	PSAEPYAOAY	NEMMALSNTD
5	101	FSLCLIDPFD	GSVRTKNPGD	PFIRYLKOHP	EMKKKI SAAV	GKAFLLTIPG
	151	KPLLHYLILV	EDVASWDSTT	TSGLLVSEVP	MCET OKDITEO	SLHITKGNIC
	201	LVNKYGEVLF	CAODSESSEV	FSLDLPNT.PO	FOARSDSATE	IEKASGILGG
	251	ENLITYSINK	KRYLGLVLNK	TPTOGTVTT	LVPVSDLIQS	TEUWOGITEG
301	301	FYVLAFLLMW	WIFSKINTKL	MK DI OEI WEC	MEAAWRGNHN	MERDODICIE
10	351	EFNELGNIFN	CTILLLINST	EKADIDARGO	EKLQKELGIL	VKLEPÜLIGI
	401	DFPTFPKVTF	SSOHTERROL	SCHENCIALIO	DGGDTLLGII	SSLQSALLSP
	451	YLYALSARSI.	FT.AVACCDUC	PORTERDADO	SFSKTTEGNE	GLAGDIGLPS
	501	VEKDEST.ELT.	ST-SECV Dumes	TOBCECE LAST	SESKTTEGNE	AVVAMTFIKY
	551	FULLVAROUT	DIRECTION	LORGESTVRL	PLETHQALQP	GDRLICLTGG
15	601	LSFS*	t trennyndn	MADMLENTID	SLTMMLNNET	EHSADGTLTI
	~ ~ ~	1010				

A predicted signal peptide is highlighted.

The cp7102 nucleotide sequence <SEQ ID 62> is:

	_1	ATGAAACATA	CCTTTACCAA	GCCTGTTCTA	TTTTTTTCT	TTTTAGTGAT
20	51	TCCCATTCCC	CTACTCCTCA	ATCTTATGGT	CGTAGGTTTT	
20	101	CTGCCGCTAA	AGCAAATTTA	GTACAGGTCC	TCCATACCCG	TGCTACGAAC
	151	TTAAGTATAG	AATTCGAAAA	. AAAACTGACG	ATACACAAGC	TTTTCCTCGA
	201	TAGACTTGCC	AACACATTAG	CCTTAAAATC	CTATGCATCT	CCTTCTGCAG
	251	AGCCCTATGC	ACAGGCATAC	AATGAGATGA	TGGCACTCTC	CAATACAGAC
25	301	TTTTCCTTAT	GCCTTATAGA	TCCCTTTGAT	GGATCTGTAA	GGACGAAAAA
25	351	TCCTGGAGAC	CCTTTCATTC	GCTATCTAAA	ACAGCATCCT	GAAATGAAGA
	401		CGCAGCTGTA		TTTTATTGAC	CATTCCAGGT
	451	AAACCACTTT		TATTCTAGTT	GAAGATGTCG	
	501		ACTTCAGGAC		TTTCTATCCC	ATGTCTTTTT
30	551	TACAGAAAGA	TTTATTCCAA	TCCTTACACA	TCACCAAAGG	AAATATCTGC
30	601	CTTGTAAATA	AGTATGGCGA	GGTCCTCTTC	TGTGCTCAGG	ACAGTGAATC
	651	TTCTTTTGTA	TTTTCTCTAG	ATCTCCCTAA	TTTACCGCAA	TTCCAAGCAA
	701	GAAGCCCCTC		ATTGAGAAAG	CTTCTGGAAT	TCTTGGTGGG
	751	GAGAACCTAA			AAACGCTACC	TAGGATTGGT
35	801		ATTCCTATCC		CACTCTATCT	TTAGTTCCAG
33	851	TTTCTGATCT			TTCCTCTCAA	
	901	TTCTATGTAC	TTGCTTTCCT	CCTCATGTGG	TGGATTTTCT	CTAAGATCAA
	951	CACCAAACTT		TTCAAGAACT	GACCTTCTGT	ATGGAAGCTG
	1001			GTGAGGTTTG	AACCCCAGCC	TTACGGTTAT
40	1051	GAATTCAATG		TATTTTCAAT	TGCACTCTCC	TACTCTTATT
40	1101	GAATTCCATT			CCATTCAGGC	GAAAAATTAC
	1151	AAAAAGAATT	AGGGATTTTA	TCTTCACTAC		ACTAAGTCCG
	1201	GATTTCCCTA	CGTTCCCTAA	AGTTACCTTT	AGTTCCCAAC	ATCTCCGGAG
	1251	AAGGCAACTT	TCCGGTCATT		GACAGTTCAA	
	1301	ATACCCTTTT	AGGGATCATA			TCTTCCTTCC
45	1351	TATCTCTATG	CTTTATCCGC		TTTCTTGCCT	
	1401	GGACGTTTCG	TTACAAAAAA		TACTGCCGAC	
	1451		AGGCAATGAG			CATTAAATAT
	1501		ATCGATCTCT		TCGTTAAGCG	AGGGAGCTCC
~^	1551	TACCATGTTT	CTACAACGAG			CCCTTAGAGA
50	1601	CTCACCAAGC	TCTACAGCCT			CACTGGAGGA
	1651	GAAGACATCC	TCAAGTACTT	TTCTCAGCTT	CCTATTGAAG	AGCTCTTAAA
	1701	AGATCCTTTA	AACCCTCTAA	ATACAGAGAA	TCTTATTGAT	TCTCTAACCA
	1751	TGATGTTAAA	CAACGAAACC		CAGATGGAAC	
	1801	CTTTCATTTT	CATAA			- O + O 1 2 C C M 1 C

55 The PSORT algorithm predicts an inner membrane location (0.338).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product. The purified GST-fusion product is shown in Figure 31A. The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot and for FACS analysis (Figure 31B).

These experiments show that cp7102 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 32

The following C.pneumoniae protein (PID 4377106) was expressed <SEQ ID 63; cp7106>:

```
1 MKDLGTLGGT SSTAKTVSPD GKVIMGRSQI ADGSWHAFMC HTDFSSNNVL
51 FDLDNTYKTL RENGRQLNSI FNLQNMMLQR ASDHEFTEFG RSNIALGAGL
101 YVNALQNLPS NLAAQYFGIA YKIRPKYRLG VFLDHNFSSH VPNNFNVSHN
151 RLWMGAFIGW QDSDALGSSV KVSFGYGKQK ATITREQLEN TEAGSGESHF
201 EGVAAQIEGR YGKSLGGHVR VQPFLGLQFV HITRKEYTEN AVQFPVHYDP
251 IDYSTGVVYL GIGSHIALVD SLHVGTRMGM EQNFAAHTDR FSGSIASIGN
301 FVFEKLDVTH TRAFAEMRVN YELPYLQSLN LILRVNQQPL QGVMGFSSDL
351 RYALGF*
```

The cp7106 nucleotide sequence <SEQ ID 64> is:

		_	=			
	1	ATGAAAGATT	TGGGGACTCT	TGGGGGTACC	TCTTCTACAG	CAAAAACAGT
15	51	GTCCCCAGAT	GGTAAAGTGA	TCATGGGTAG	ATCACAAATT	GCTGATGGCA
	101	GTTGGCACGC	ATTTATGTGT	CATACGGATT	TCTCCTCTAA	TAATGTACTC
	151	TTTGATCTCG	ATAATACGTA	TAAAACTCTA	AGAGAAAATG	GCCGTCAGCT
	201	AAATTCCATA	TTCAACCTAC	AAAATATGAT	GTTACAGAGA	GCCTCAGATC
	251	ATGAGTTCAC	AGAGTTTGGA	AGGAGTAACA	TCGCTCTTGG	TGCCGGGCTT
20	301	TATGTGAATG	CCTTGCAGAA	TCTCCCTAGC	AATTTAGCAG	CACAATATTT
	351	TGGAATCGCA	TACAAAATAC	GTCCTAAATA	TCGTTTGGGG	GTGTTTTTGG
	401	ACCATAATTT	CAGCTCCCAC	GTTCCTAATA	ATTTTAACGT	AAGCCACAAT
	451	AGACTCTGGA	TGGGAGCCTT	TATTGGATGG	CAGGATTCTG	ATGCTCTAGG
	501	ATCTAGTGTC	AAGGTGTCTT	TCGGATATGG	AAAACAAAAA	GCCACGATTA
25	551	CAAGAGAGCA	ATTAGAGAAT	ACAGAAGCCG	GGAGTGGGGA	GAGCCATTTT
	601	GAAGGGGTCG	CTGCTCAGAT	AGAAGGGCGG	TATGGTAAGA	GCCTCGGAGG
	651	ACATGTCAGG	GTCCAGCCTT	TCCTAGGACT	GCAGTTTGTC	CACATTACAA
	701	GGAAAGAATA	TACCGAAAAT	GCAGTGCAAT	TTCCTGTACA	CTATGATCCT
	751	ATAGACTATT	CTACAGGTGT	AGTGTATTTA	GGAATTGGAT	CTCATATTGC
30	801	ACTTGTAGAT	TCTTTACATG	TAGGCACACG	CATGGGAATG	GAGCAAAACT
	851	TTGCAGCCCA	TACGGACAGG	TTCTCAGGAT	CTATAGCGTC	TATTGGAAAC
	901	TTTGTGTTTG	AAAAGCTTGA	TGTGACTCAC	ACAAGGGCAT	TTGCGGAAAT
	951	GCGTGTCAAC	TATGAGCTTC	CCTATCTACA	GTCTCTGAAT	CTTATTCTAC
0.5	1001	GAGTTAATCA	ACAGCCTCTA	CAAGGGGTTA	TGGGATTTTC	CAGTGATCTT
35	1051	AGGTATGCCT	TAGGATTCTA	A		

The PSORT algorithm predicts a cytoplasmic location (0.224).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product. The purified GST-fusion product is shown in Figure 32A. The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 32B) and for FACS analysis (Figure 32C).

This protein also showed very good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7106 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

45 Example 33

The following C.pneumoniae protein (PID 4377228) was expressed <SEQ ID 65; cp7228>:

- 1 MTAVLILTSF PSEESARSLA RHLITERLAS CVHVFPKGTS TYLWEGKLCE
- 51 SEEHHIQIKS IDIRFSEICL AIQEFSGYEV PEVLLFPIEN GDPRYLNWLT
- 101 ILSYPEKPPL SD*

40

The cp7228 nucleotide sequence <SEQ ID 66> is:

```
1 ATGACTGCTG TTCTTATTCT TACATCTTTC CCTTCGGAGG AAAGTGCTCG
51 CTCCTTAGCT AGACATCTGA TTACAGAGCG TCTTGCTTCC TGTGTGCATG
101 TATTCCCTAA AGGCACATCG ACATATCTAT GGGAAAGCAA GCTATGTGAG
151 TCTGAAGAAC ATCATATACA AATCAAATCG ATAGACATAC GCTTCTCGGA
201 AATTTGTCTT GCTATTCAGG AGTTCTCTGG CTATGAAGTT CCTGAAGTCT
251 TACTATTTCC TATTGAAAAT GGGGATCCGA GGTACTTGAA TTGGTTAACG
301 ATTCTCAGCT ATCCAGAGAA GCCTCCGCTT TCAGATTAG
```

The PSORT algorithm predicts an inner membrane location (0.040).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product, as shown in Figure 33A (his-tag = left-hand arrow, GST = right-hand arrow). The proteins were used to immunise mice, whose sera were used in a Western blot (Figure 33B) and FACS analysis.

These experiments show that cp7228 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

15 Example 34

5

The following C.pneumoniae protein (PID 4377170) was expressed <SEQ ID 67; cp7170>:

```
1 MNSKMLKHLR LATLSFSMFF GIVSSPAVYA LGAGNPAAPV LPGVNPEQTG
51 WCAFQLCNSY DLFAALAGSL KFGFYGDYVF SESAHITNVP VITSVTTSGT
101 GTTPTITSTT KNVDFDLNNS SISSSCVFAT IALQETSPAA IPLLDIAFTA
151 RVGGLKQYYR LPLNAYRDFT SNPLNAESEV TDGLIEVQSD YGIVWGLSLQ
201 KVLWKDGVSF VGVSADYRHG SSPINYIIVY NKANPEIYFD ATDGNLSYKE
251 WSASIGISTY LNDYVLPYAS VSIGNTSRKA PSDSFTELEK QFTNPKFKIR
301 KITNFDRVNF CFGTTCCISN NFYYSVEGRW GYQRAINITS GLQF*
```

A predicted signal peptide is highlighted.

25 The cp7170 nucleotide sequence <SEO ID 68> is:

	1	ATGAATAGCA	AGATGCTAAA	ACATTTACGT	TTAGCAACCC	TTTCCTTCTC
	51	TATGTTCTTC	GGGATTGTAT	CTTCTCCCGC	AGTATATGCC	CTAGGGGCTG
	101	GAAACCCTGC	AGCTCCAGTA	CTCCCAGGTG	TGAATCCTGA	GCAAACGGGA
••	151	TGGTGTGCCT	TCCAACTTTG	TAATAGTTAC	GATCTTTTTG	CTGCTCTTGC
30	201	AGGAAGCCTC	AAATTTGGGT	TCTATGGAGA	TTATGTCTTC	TCAGAAAGTG
	251	CCCATATTAC	CAATGTCCCT	GTCATTACCT	CCGTTACGAC	TTCAGGCACA
	301	GGAACAACGC	CAACCATTAC	CTCTACAACT	AAAAACGTAG	ACTTTGATCT
	351	TAACAACAGC	TCCATCAGCT	CGAGCTGTGT	TTTTGCAACC	ATAGCTCTAC
	401	AGGAAACATC	CCCAGCTGCC	ATTCCCCTTT	TAGATATAGC	CTTCACTGCA
35	451	CGTGTCGGAG	GACTTAAGCA	GTACTACCGC	CTCCCTCTCA	ATGCTTACAG
	501	AGACTTCACT	TCAAATCCTT	TAAATGCAGA	ATCTGAAGTT	ACAGATGGTC
	551	TCATTGAAGT	CCAGTCAGAC	TATGGAATTG	TCTGGGGTCT	GAGTTTACAA
	601	AAAGTATTGT	GGAAAGATGG	AGTGTCTTTT	GTAGGGGTGA	GCGCTGACTA
	651	CCGTCACGGT	TCCAGTCCCA	TCAACTATAT	CATCGTTTAC	AACAAGGCCA
40	701	ACCCCGAGAT	CTATTTCGAT	GCTACTGATG	GAAACCTAAG	CTATAAAGAA
	751	TGGTCTGCAA	GCATCGGCAT	CTCTACGTAT	CTTAATGACT	ATGTGCTTCC
	801	CTATGCATCC	GTATCTATAG	GAAATACTTC	AAGAAAAGCT	CCTTCTGATA
	851	GCTTCACAGA	ACTCGAAAAG	CAATTTACGA	ATTTTAAATT	TAAAATTCGT
	901	AAAATCACAA	ACTTCGACAG	AGTAAACTTC	TGCTTCGGAA	CTACCTGCTG
45	951	CATCTCAAAT	AACTTCTACT		AGGCCGTTGG	GGATATCAGC
	1001	GTGCTATCAA	CATTACGTCA		TTTAG	

The PSORT algorithm predicts a bacterial outer membrane location (0.936).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product. The purified GST-fusion product is shown in Figure 34A. The GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (34B) and for FACS analysis (34C).

50

The cp7170 protein was also identified in the 2D-PAGE experiment (Cpn0854).

These experiments show that cp7170 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 35

5 The following C.pneumoniae protein (PID 4377072) was expressed <SEQ ID 69; cp7072>:

```
1 MDIKKLFCLF LCSSLIAMSP IYGKTGDYEK LTLTGINID RNGLSETICS
51 KEKLKKYTKV DFLAPQPYQK VMRMYKNKRG DNVSCLTAYH TNGQIKQYLE
101 CLNNRAYGRY REWHVNGNIK IQAEVIGGIA DLHPSAESGW LFDQTTFAYN
151 DEGILEAAIV YEKGLLEGSS VYYHTNGNIW KECPYHKGVP QGKFLTYTSS
201 GKLKEQNYQ QGKRHGLSIR YSEDSEDVL AWEEYHEGRI LKAEYLDPQT
251 HEIYATIHEG NGIQAIYGKY AVIETRAFYR GEPYGKVTRF DNSGTQIVQT
301 YNLLQGAKHG EEFFFYPETG KPKLLLNWHE GILNGIVKTW YPGGTLESCK
351 ELVNNKKSGL LTIYYPEGQI MATEEYDNDL LIKGEYFRPG DRHPYSKIDR
```

15 A predicted signal peptide is highlighted.

The cp7072 nucleotide sequence <SEQ ID 70> is:

	1		AAAAACTCTT			
	51		ATTTATGGGA		CTATGAGAAA	CTCACCCTTA
20	101		TATCATTGAT			TATTTGCTCT
20	151	AAAGAGAAGC	TAAAGAAATA	CACCAAGGTA	GACTTTCTTG	CTCCCCAGCC
	201	CTATCAAAAG	GTCATGAGGA	TGTATAAAA	CAAACGCGGA	GATAACGTTT
	251	CTTGTTTAAC	AGCCTATCAC	ACTAACGGGC	AAATTAAGCA	GTACCTGGAG
	301	TGTCTCAATA	ATCGTGCTTA	TGGAAGATAT	CGTGAATGGC	ACGTCAACGG
	351	GAATATCAAA	ATCCAAGCTG	AGGTTATCGG	AGGTATTGCG	GATCTTCATC
25	401	CCTCAGCAGA	GTCTGGCTGG	CTATTTGATC	AAACTACATT	TGCCTATAAT
	451	GATGAAGGTA	TCTTAGAAGC	CGCTATCGTC	TATGAAAAAG	GGCTGCTCGA
	501	AGGATCTTCG	GTGTATTACC	ATACTAATGG	GAATATTTGG	AAAGAGTGTC
	551	CCTATCATAA	GGGAGTTCCT	CAAGGTAAAT	TCCTGACATA	CACATCTTCG
	601	GGGAAACTGC	TCAAAGAACA	GAATTACCAA	CAAGGCAAAA	GACACGGTCT
30	651		TACAGCGAAG			
	701	AATATCATGA	GGGACGACTC	CTAAAAGCAG	AGTACTTAGA	TCCTCAAACT
	751	CACGAAATCT	ATGCGACTAT	ACACGAAGGG	AACGGCATTC	AAGCAATCTA
	801	CGGCAAGTAT	GCCGTTATAG	AAACTAGGGC	ATTTTACCGA	GGGGAACCTT
	851		TACCAGATTC			
35	901		TGCAAGGCGC			
	951	TGAGACAGGG	AAACCCAAGC	TGCTTCTTAA	TTGGCATGAA	GGAATTTTAA
	1001	ATGGGATAGT	AAAAACTTGG	TATCCCGGAG		AAGTTGTAAA
	1051	GAACTCGTAA	ATAACAAAAA	ATCCGGGTTA	CTGACCATTT	ACTACCCTGA
	1101	AGGACAGATC	ATGGCGACCG	AAGAGTATGA		CTAATTAAAG
40	1151		CCGCCCTGGA			AATAGATCGT
	1201		CTGCAGTATT			TTACTAAAAA
	1251		CAGGACGGCA			TINCIMMAN
					CATAC TUO	

The PSORT algorithm predicts a periplasmic location (0.688).

The protein was expressed in E.coli and purified as a his-tag product (Figure 35A) and as a GST-

fusion product (Figure 35B). The recombinant his-tag protein was used to immunise mi ce, whose sera were used in a Western blot (Figure 35C) and for FACS analysis.

These experiments show that cp7072 is a useful immunogen. These properties are not evident from the sequence alone.

Example 36

The following C.pneumoniae protein (PID 4376879) was expressed <SEQ ID 71; cp6879>:

	1	MATPAQKSPI	' FQDPSFVREI	GSNHPVFSPL	TLEERGEMAI	ARVOOCGWNH
	51	TIVKVSLIII	ALLTILGGGI	LVGLLPAVPM	FIGTGLIALG	AVIFALALTI.
	101	CLYDSQGLPE	ELPPVPEPQC	IQIEDLRNET	REVLEGTLLE	VILLKDRDAKD
_	151	PAVPQVVVDC	EKRLGMLDRK	LRREEEILYR	STAHLKDEER	YEFLURIUEM
5	201	RSLVADRLEF	NRRSYERFVC	GIMTVRSEEG	EKEISRLODL	ISLOCOTTOD
	251	LRSRIDDEQK	RCWTALORIN	QSQKDIQRAH	DREASORACE	GTEMDCAERO
	301	QLEKDLRRQL	KSMQEWIEMR	GTIHOOEKAW	RKONAKLERL	OEDI-RI-TGTA
	351	FDEQSLFYRE	YKEKYLSOKI	DMQKILQEVN	AEKSEKACLE	SIVHDYEKOI.
	401	EQKDANLKKA	AAVWEEELGK	QQQEDYEQTQ	EIRRLSTFIL	EYODSIREAE
10	451	KVEKDFQELQ	QRYSRLOEEK	QVKEKILEES	MNHFADLFEK	YOKENWAAKK ESSELITIE
	501	KLADLEGAAA	PTEIGEDDDW	VLTDSASLSO	KKIRELVEEN	OFTAKALARK
	551	SNELTQLVAD	AVEAEKEISK	LREHIEEQKE	GLRALDKMHA	OATKOCEAAO
	601	RKCCDLESLL	SPVREDAGMR	FELEVELQRL	OEENAOLBAE	VERLEGERED
	651	G*			Z	ATT CTOL O
15	The cp6879 nuc	leotide seque	nce <seq id<="" th=""><th>72> is:</th><th></th><th></th></seq>	72> is:		
	1	ATGGCAACAC	CCGCTCAAAA	ATCCCCTACA	መመመር አ አረ አመር	CMACMMMMCM
	51	AAGAGAGCTA	GGCAGTAACC	ACCCTGTCTT	TTTCAAGATC	ACCOMMON CO
	101	AAAGAGGGGA	GATGGCAATA	GCTCGAGTCC	TICCCCCCCTW	AUGCTTGAGG
	151	ACAATTGTTA	AGGTAAGTCT	TATTATTCTT	CCECGEGEGE	ATGGAATCAT
20	201	GGGAGGATTA	CTCGTAGGAT	TGCTGCCAGC	ACTUITA	CIATTITAGG
	251	CAGGTCTGAT	TGCTTTGGAL	GCCGTTATAT	MUCCUMUNCOC	TTTATTGGAA
	301	TGTCTTTATG	ATTCTCAGGG	CCTTCCTGAG	CA A COCCOORC	CCCUMCOMOR
	351	ACCACAACAA	ATTCACATTC	AAGATTTAAG	AAACTCCCTC	ACACA A COURC
	401	TTGAAGGGAC	TCTTTTTAGAG	GTTCTCTTAA	ACCAMACACE	AGAGAAGTTC
25	451	CCTGCGGTGC	CCCAGGTGGT	TGTAGACTGT	CANACCOMO	CGCTAAGGAC
	501	GGATCGTAAG	CTCCCACCTC	AAGAGGAGAT	MCMCM3 MCCC	TTGGAATGTT
	551	ATCTTAAACA	CCACCAAACC	TATGAGTTCT	TCTGTATCGC	TUGAUGUCU
	601	CGTAGTCTGG	TTCCCCATCC	GCTAGAATTT	A A COCONACA A	CTTGGAAATG
	651	ATTTGTTCAA	GGAATTATCA	CAGTTAGATC	AGACCATAGAA	GTTATGAGCG
30	701	TTTCTCGTCT	ACAAGATOTA	ATCAGTTTGC	ACCACCACAC	GAAAAAGAGA
	751	TTAAGGAGTC	GGATCGATGA	CGAGCAGAAG	ACAMOCHGAC	GGTGCAAGAT
	801	ACGTATTAAC	CAATCTCAGA	AGGATATACA	ACCCCCCCCAM	CAMCCOCACO
	851	CTTCGCAGCG	TGCCTGTGAG	GGCACAGAGA	TCGGGCTCA1	ACT ACCCCAGG
	901	CAACTGGAGA	AGGATTTAAG	GAGACAGCTG	A A A MOUTA MOO	AGAACGCCAG
35	951	TGAGATGAGG	GGCACAATCC	ATCAACAAGA	CAACCCUMOC	AGGAGTGGAT
	1001	ATGCCAAATT	AGAAAGATTA	CAAGAGGATC	TCACACTTGG	CGTAAGCAGA
	1051	TTTGACGAAC	AATCTCTCTT	CTATCGCGAA	TOMORCI I AC	1 GGGATTGCT
	1101	TCAGAAACTA	GATATGCAAA	AGATTTTACA	CCINCOCONC	CCACACAAAA
·	1151	GTGAGAAGGC	TTGCTTAGAG	AGTCTGGTCC	AUCACUANCA	CARGAGAAAA
40	1201	GAACAAAAAG	ATCCTTATOTO	GAAGAAAGCA	CCACCOCOO	CCCAAGCACCAC
	1251	ATTAGGGAAG	CAGCAACAGG	AAGACTACGA	ACANACCCANA	CARAGAAGA
	1301	GTCTGAGTAC	ATTCATTCTT	GAGTACCAGG	ACAMACCCAA	GAAATTAGAC
	1351	AAAGTTGAGA	AAGATTTCCA	AGAGCTACAA	CAAACCONAMA	TGAGGCAGAA
	1401	AGAGGAGAAA	CAGGTANAAG	AAAAAATCTT	ACANGGIATA	GCCGTCTTCA
45	1451	TTGCCGATCT	CTTTCACAAC	GCTCAAAAGG	AGAAGAAAGT	ATGAATCATT
	1501	AAGTTAGCGG	ATTICAGAAGG	TGCCGCTGCT	AAAACATGGC	CTACAAGAAG
	1551	CGATGACTGG	CUNCUCACAC	ATTCTGCTTC	TOTAL COOR O	TCGGTGAGGA
	1601	CCGAACTCCT	GCVVGVCVVW	CAAGAACTCC	TCTCAGCCAG	AAGAAGATCC
	1651	TCTAACGAAT	TCACTCA ACT	GGTTGCCGAT	TGAAAGCACT	TGCATTTAAA
50	1701	AATCAGCAAG	CONCIONACI	ACATAGAAGA	COACATAGAAG	CIGAAAAAGA
	1751	CTCTTGATA	CITCOMGMAC	CARCOCAMO	AADAAAGAA	GGA'I'I'ACGAG
	1801	AGAAAATGOM	GMCACCHMCA	CAAGCGATCA	AAGATTGCGA	AGCTGCTCAG
	1851	TIGGA ATTGCT	GIGACCTIGA	GAGCCTTCTC	TCTCCTGTTC	GAGAAGATGC
*	1901	AUCCACACOM	TITGMGCTAG	AGGTCGAGCT	TCAAAGATTG	CAAGAAGAAA
55	1951	GGATAA	ACACCGGAG	GTTGAAAGAC	TAGAGCAAGA	GCAATTTCAA
22	エンコエ	GGWTWW				

The PSORT algorithm predicts an inner membrane location (0.646).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product. The purified GST-fusion product is shown in Figure 36A. The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 36B) and for FACS analysis.

These experiments show that cp6879 is useful immunogen. These properties are not evident from the sequence alone.

-77-

Example 37

The following C.pneumoniae protein (PID 4376767) was expressed <SEQ ID 73; cp6767>:

```
5 MIKQIGRFFR AFIFIMPLSL TSCESKIDRN RIWIVGTNAT YPPFEYVDAQ
5 GEVVGFDIDL AKAISEKLGK QLEVREFAFD ALILINLKKHR IDAILAGMSI
101 TPSRQKEIAL LPYYGDEVQE LMVVSKRSLE TPVLPLTQYS SVAVQTGTFQ
151 EHYLLSQPGI CVRSFDSTLE VIMEVRYGKS PVAVLEPSVG RVVLKDFPNL
201 VATRLELPPE CWVLGCGLGV AKDRPEEIQT IQQAITDLKS EGVIQSLTKK
```

The cp6767 nucleotide sequence <SEQ ID 74> is:

		-	-			
10	1	ATGATAAAAC	AAATAGGCCG	TTTTTTAGA	GCATTTATTT	ጥጥልጥል አጥርርርር
	51	TTTATCTTTA	ACAAGTTGTG	AGTCTAAAAT		CGCATCTGGA
	101	TTGTAGGTAC	GAATGCTACA	TATCCTCCTT	TTGAGTATGT	GGATGCTCAG
	151	GGGGAAGTTG	TAGGTTTCGA	TATAGATTTG	GCAAAGGCAA	TTAGTGAAAA
15	201	ACTTGGCAAG	CAATTGGAAG	TTAGAGAATT	CGCTTTCGAT	GCTTTAATTT
15	251	TAAATTTAAA	AAAACATCGT	ATCGATGCAA	TTTTAGCAGG	AATGTCCATT
	301	ACTCCTTCGC	GTCAGAAGGA	AATCGCCCTG	CTTCCCTATT	ATGGCGATGA
	351	GGTTCAAGAG	CTGATGGTGG	TTTCTAAGCG	GTCTTTAGAG	ACCCCTGTGC
	401	TTCCCCTAAC	ACAGTATTCT	TCTGTTGCTG	TTCAGACAGG	AACGTTTCAG
20	451	GAGCATTATC	TTTTATCTCA	GCCCGGAATT	TGTGTCCGTT	CTTTTGATAG
20	501		GTGATTATGG			
	551	TTCTAGAACC	CTCGGTAGGA	CGTGTCGTTC	TTAAAGACTT	CCCTAATCTT
	601	GTTGCAACAA		CCCTCCTGAA		
	651	TCTCGGCGTA	GCTAAAGATC			
0.5	701	CGATTACAGA				
25	751	TGGCAACTTT	CTGAAGTTGC			

The PSORT algorithm predicts an inner membrane location (0.083).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product. The purified his-tag product is shown in Figure 37A. The recombinant his-tag protein was used to immunise mice, whose sera were used in a Western blot (Figure 37B) and for FACS analysis (Figure 37C). The GST-fusion was also used in a Western blot (Figure 37D).

The cp6767 protein was also identified in the 2D-PAGE experiment and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6767 is a useful immunogen. These properties are not evident from the sequence alone.

35 Example **38**

30

The following C.pneumoniae protein (PID 4376717) was expressed <SEQ ID 75; cp6717>:

	7	MMSRLRFRLA	ALGIFFILLV	PNSVSAKTIV	ASDKEKVGVL	VYDNSVEAFO
	51	QILDCIDHAN				ELCSYIIIQP
40	101		LKALKERHPN	RFFYVFTGCP	PSTSILAPNV	IEMHTKLSTI
40	151	DGKYCILGGT	NFEEFMCTPG	DEVPEKVDNP	RLFVSGVRRP	LAFRDODIM
	201	RSTAFGLQLR	EEYHKQFAMW	DYYAHHMWFI	DNPEOFAGAC	PPLTLEOARE
	251	TVFPGFDKHE	DLVLVDSSKI	RIVLGGPHDK	QPNPVTQEYL	KLIOGARSSV
	301	KLAHMYFIPK	DELLNALVDV	SHNHGVHLSL		
	351		KRYPLWKKWF	CEKLKPYERV	SIYEFAIWET	OLHKKCMTTD
45	401	DEIFVIGSYN	FGKKSDAFDY	ESIVVIESPE	VAAKANKVFN	KDIGLSIPVS
	451	HGDIFSWYFH	SVHHTLGHLQ	LTYMPA *		

A predicted signal peptide is highlighted.

The cp6717 nucleotide sequence <SEQ ID 76> is:

	1			TCGCTTGGCA	GCTCTTGGAA	TATTTTTTAT
	51	TTTGCTGGTT				GCTTCAGACA
	101	AGGAGAAGGT		GTTTATGACA	ATAGTGTAGA	GGCCTTTCAA
5	151			TCATGCAAAT	TTTTATGTAG	AACTGTGTCC
3	201	CTGCATGACA	GGAGGCCGAA	CGCTTAAAGA	GATGGTAGAT	CACCTCGAGG
	251	CTCGTATGGA	TCTGGTTCCA	GAGCTCTGTA	GCTATATCAT	TATCCAACCC
	301			CCAAAAATTA	CTCAAAGCTC	TCAAAGAACG
	351	TCATCCCAAC	CGGTTTTTCT	ACGTTTTTAC		CCCTCAACAA
10	401	GCATCCTCGC	TCCTAATGTC	ATTGAAATGC		TTCTATCATC
10	451	GATGGGAAAT	ATTGTATTTT	AGGTGGTACC		AGTTTATGTG
	501	CACTCCAGGG	GATGAGGTTC	CTGAGAAAGT		CGTTTATTTG
	551	TCAGTGGAGT	GCGTCGGCCC	CTAGCATTTC		TATCATGTTG
	601	CGTTCTACAG	CATTCGGTTT	GCAGCTCAGA		ATAAGCAATT
1.5	651	TGCTATGTGG	GACTACTATG	CACATCATAT		GATAATCCTG
15	701	AACAGTTTGC	AGGCGCCTGT	CCTCCACTGA		AGCCGAGGAG
	751	ACAGTATTTC	CTGGATTTGA	CAAACATGAA		TTGTCGACTC
	801	TTCCAAGATC	AGGATAGTTT	TAGGTGGTCC		CAACCCAATC
	851	CTGTGACTCA	AGAATATTTG	AAACTTATCC	AGGGAGCTAG	
00	901	AAGCTTGCTC	ACATGTATTT	CATCCCTAAG	GACGAGCTTT	
20	951	TGTCGACGTT	TCTCATAATC	ACGGTGTTCA	TCTGAGTTTA	
	1001	GCTGTCATGA	ATTAAGTCCT	GCAATTACAG		
	1051	CGTATTAACT	ATTTCGCCTT	GCTCTATGGG	AAACGGTATC	
	1101	AAAATGGTTT	TGCGAAAAGC	TAAAACCTTA	TGAGCGGGTT	
0.5	1151	AGTTTGCTAT	TTGGGAAACG	CAGTTGCACA	AGAAGTGTAT	
25	1201	GATGAAATTT	TTGTGATCGG	AAGTTATAAT	TTTGGAAAGA	
	1251	CTTTGATTAC	GAAAGTATTG	TAGTTATCGA	ATCTCCAGAA	
	1301	AAGCTAACAA	AGTCTTCAAT		GATTGTCGAT	
	1351	CATGGCGACA	TTTTCTCTTG		TCCGTACACC	
	1401	ACATTTGCAG	CTGACCTATA	TGCCAGCCTA	G	

30 The PSORT algorithm predicts a periplasmic location (0.939).

The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 38A), as a his-tagged protein, and as a GST/his fusion product. The proteins were used to immunise mice, whose sera were used in a Western blot (Figure 38B) and for FACS analysis.

These experiments show that cp6717 is a useful immunogen. These properties are not evident from the sequence alone.

Example 39

The following C.pneumoniae protein (PID 4376577) was expressed <SEQ ID 77; cp6577>:

```
40 MKKLLFSTFL LVLGSTSAAH ANLGYVNLKR CLEESDLGKK ETEELEAMKQ
51 QFVKNAEKTE EELTSIYNKL QDEDYMESLS DSASEELRKK FEDLSGEYNA
101 YQSQYYQSIN QSNVKRIQKL IQEVKIAAES VRSKEKLEAI LNEEAVLAIA
151 PGTDKTTEII AILNESFKKQ N*
```

A predicted signal peptide is highlighted.

The cp6577 nucleotide sequence <SEQ ID 78> is:

	1	ATGAAAAAAT	TATTATTTC	TACATTTCTT	Cumarana v	CAMONAGANG
45	51	CGCAGCTCAT	GCAAAmmmaG	GCTATGTTAA	CTTOTITIAG	GATCAACAAG
	101	AATCCGATCT	ACCENTANA	GAAACTGAAG	TITMAAGCGA	TGTCTTGAAG
		14116664161	MOGIAAAAAG	GAAACIGAAG	AATTGGAAGC	TATGAAACAG
	151	CAGTTTGTAA	AAAATGCTGA	GAAAATAGAA	GAAGAACTCA	CTTCTATTTA
	201	TAATAAGTTG	CAAGATGAAG	ATTACATGGA	AAGCCTATCG	GATTCTCCT
	251	CTGAAGAGTT	GCGAAAGAAA	TTCGAAGATC	TITITE ACCION	CMACAAMOOC
50	301	ma coa emono	10001000000		MONDON	GIACAAIGCG
50		TACCAGICIC	AGTACTATCA	ATCTATCAAT	CAAAGTAATG	TAAAACGCAT
	351	TCAAAAACTC	ATTCAAGAAG	TAAAAATAGC	TGCAGAATCA	GTGCGGTCCA
	401	AAGAAAAACT	AGAAGCTATC	CTTAATGAAG	y ycconomo	OZGCGGICCA
	451	COMOCOL CES	201210011110	or transcripto	WYGCIGICI.T.	AGCAATAGCA
		CCTGGGACTG	ATAAAACAAC	${\tt CGAAATTATT}$	GCTATTCTTA	ACGAATCTTT
	501	CAAAAAACAA	ልልሮሞአር			

55 The PSORT algorithm predicts a periplasmic space location (0.932).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 39A) and as a GST-fusion product (Figure 39B). The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 39C) and for FACS analysis.

The cp6577 protein was also identified in the 2D-PAGE experiment.

5 These experiments show that cp6577 is a useful immunogen. These properties are not evident from the sequence alone.

Example 40

The following C.pneumoniae protein (PID 4376446) was expressed <SEQ ID 79; cp6446>:

```
1 MKQPMSLIFS SVCLGLGLGS LSSCNQKPSW NYHNTSTSEE FFVHGNKSVS 51 QLPHYPSAFR TTQIFSEEHN DPYVVAKTDE ESRKIWREIH KNLKIKGSYI 101 PISTYGSLMH PKSAALTLKT YRPHPIWING YERSFNIDTG KYLKNGSRRR 151 TSHDGPKNRA VLNLIKSSGR RCNAIGLEMT EEDFVIARRR EGVYSLYPVE 201 VCSYPQGNPF VIAYAWIADE SACSKEVLPV KGYYSLVWES VSSSDSLNAF 251 GDSFAEDYLR STFLANGTSI LCVHESYKKV PPQP*
```

15 A predicted signal peptide is highlighted.

The cp6446 nucleotide sequence <SEO ID 80> is:

	1	ATGAAACAGC	CCATGTCTCT	TATCTTTTCA	AGTGTATGTT	TAGGATTAGG
	51	TCTTGGATCT	CTTTCCTCCT	GTAATCAAAA	GCCCTCTTGG	AATTATCACA
	101	ACACTTCAAC	GAGCGAAGAA	TTCTTTGTTC	ATGGAAATAA	GAGTGTTTCG
20	151	CAACTGCCTC	ATTATCCTTC	TGCATTTCGT	ACGACTCAAA	TCTTTTCTGA
	201	AGAGCACAAT	GATCCTTATG	TCGTAGCTAA	GACTGATGAA	GAGTCTCGTA
	251	AAATTTGGAG	AGAAATCCAT	AAAAATCTCA	AAATCAAAGG	TTCTTACATT
	301	CCCATATCGA	CTTATGGAAG	TCTGATGCAC	CCAAAATCAG	CAGCTCTTAC
	351	ATTAAAAACG	TATCGTCCAC	ATCCTATTTG	GATAAATGGA	TACGAGCGTT
25	401	CTTTTAATAT	AGACACAGGA	AAGTACTTAA	AAAACGGAAG	TCGCCGTAGA
	451	ACTTCTCACG	ATGGTCCGAA	AAATCGAGCT	GTACTGAATC	TCATTAAATC
	501	TTCGGGACGA	CGCTGTAATG	CTATAGGCCT	TGAGATGACA	GAAGAAGACT
	551	TTGTAATAGC	TAGAAGGCGA	GAAGGTGTTT	ATAGCCTGTA	TCCCGTTGAA
	601	GTGTGCTCGT	ATCCTCAGGG	GAATCCTTTT	GTCATTGCTT	ATGCCTGGAT
30	651	TGCAGATGAG	AGTGCTTGCT	CAAAAGAGGT	CCTACCTGTA	AAAGGGTACT
	701	ATTCTTTAGT	CTGGGAAAGC	GTTTCTTCCT	CTGATTCTCT	GAATGCTTTT
	751	GGAGATTCCT	TTGCAGAGGA	CTACCTCAGA		TAGCAAACGG
	801	AACTTCTATA		ATGAAAGCTA		CCTCCTCAGC
	851	CCTAA				

35 The PSORT algorithm predicts an inner membrane location (0.177).

The protein was expressed in *E.coli* and purified as a his-tag product and a GST-fusion product. The GST-fusion product is shown in Figure 40A. The recombinant his-tag protein was used to immunise mice, whose sera were used in a Western blot (Figure 40B) and for FACS analysis.

These experiments show that cp6446 is a useful immunogen. These properties are not evident from the sequence alone.

Example 41

The following C.pneumoniae protein (PID 4377108) was expressed <SEQ ID 81; cp7108>:

```
201 SEANAISEDG TVIVGRGEIS RNHIVAVKWN KNAVYSLGTL GGSVASAEAI
251 SANGKVIVGW STTNNGETHA FMHKDETMHD LGTLGGGFSV ATGVSADGRA
301 IVGFSAVKTG EIHAFYYAEG EMEDLTTLGG EEARVFDISS EGNDIIGSIK
351 TDAGAERAYL FHIHK*
```

5 A predicted signal peptide is highlighted.

The cp7108 nucleotide sequence <SEQ ID 82> is:

```
ATGAGTAAGA AGATAAAGGT TCTAGGTCAT TTGACGCTCT GCACTCTGTT
                    TAGAGGAGTG CTGTGTGCAG CGGCCCTTTC CAACATAGGA TATGCGAGTA
                    CTTCTCAGGA ATCACCATAT CAGAAGTCTA TAGAAGACTG GAAAGGGTAT
               101
10
               151 ACCTTTACAG ATCTTGAGTT ACTGAGTAAG GAAGGGTGGT CTGAAGCTCA
               201
                    TGCAGTTTCT GGAAATGGCA GTAGAATTGT AGGAGCTTCG GGAGCTGGCC
               251
                    AAGGTAGTGT GACTGCTGTC ATATGGGAAA GTCACCTGAT AAAACATCTC
               3.01
                    GGCACTTTAG GTGGCGAGGC TTCATCTGCA GAGGGAATTT CAAAGGATGG
                    AGAGGTGGTC GTTGGGTGGT CAGATACTAG AGAGGGATAT ACTCATGCCT
               351
15
               401
                    TTGTCTTCGA CGGTAGAGAT ATGAAAGATC TCGGTACTCT AGGAGCTACC
                    TATTCTGTAG CAAGGGGTGT TTCTGGAGAT GGTAGTATCA TCGTAGGAGT
               451
                    CTCTGCAACT GCTCGTGGAG AGGATTACGG ATGGCAAGTT GGTGTCAAGT
               501
               551
                    GGGAAAAAGG GAAAATCAAA CAATTGAAGT TGTTGCCTCA AGGTCTCTGG
                    TCTGAGGCGA ATGCAATCTC TGAGGATGGT ACGGTGATTG TCGGGAGAGG
               601
20
                    GGAAATCTCT CGCAATCACA TCGTTGCTGT AAAAATGGAAT AAAAATGCTG
               651
                    TGTATAGTTT GGGGACTCTC GGAGGTAGTG TCGCTTCAGC AGAGGCTATA
               701
               751
                    TCGGCAAATG GGAAAGTAAT TGTAGGATGG TCCACGACTA ATAATGGTGA
                    GACTCATGCC TTTATGCACA AAGATGAGAC AATGCACGAT CTCGGCACTC
               801
               851
                    TAGGAGGAGG TTTTTCTGTC GCAACTGGAG TTTCTGCTGA TGGGAGAGCC
25
               901
                    ATCGTAGGAT TTTCAGCAGT GAAGACCGGA GAAATTCATG CTTTTTACTA
                    TGCAGAAGGA GAAATGGAGG ATTTAACAAC TTTGGGAGGG GAAGAAGCTC
               951
                    GAGTGTTCGA CATATCTAGC GAAGGAAACG ATATCATTGG CTCTATAAAA
              1001
              1051
                    ACTGACGCTG GAGCTGAACG CGCCTATCTG TTCCATATAC ATAAATAA
```

The PSORT algorithm predicts an outer membrane location (0.921).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 41A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 41B) and for FACS analysis (Figure 41C). A his-tagged protein was also expressed.

The cp7108 protein was also identified in the 2D-PAGE experiment.

These experiments show that cp7108 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 42

The following C.pneumoniae protein (PID 4377287) was expressed <SEQ ID 83; cp7287>:

	1	MVAKKTVRSY	RSSFSHSVIV	AILSAGIAFE	AHSLHSSRID	T.CT/PNIZOPIPE
40	51	HSAHVEEAQT	SVLKGSDPVN	PSOKESEKTA.	VTOVDIMOGG	COROT DE 2D2
40	101	MUDEHLÖHPL	EETTVFGIDO	KLVWSDLDTR	ガザらいりかい マカカ	MONTATIONICE
	151	SDIKENKKDL	ETEDPSKKSG	LKEVSSDLPK	SDETATION TO	POT BY GENT C
	201	ARDPLQGLAF	FYKNTSSOSI	SEKDSSFQGI	TECCCOMCC	PODETSENTS
	251	SGAAVYSDRD	IVFENLVKGL	SFISCESLED	CCY YOUNTIME	TGF ENLIKAPK
	301	CATGLDLEAL	RLVKDFSRGG			
45	351	EKNSAEKSNG	GAFACGSFVY	SNNENTALWK	QNNLAGGILS	VVGNKGAIVV
	401	NCSAIEFSGN	OSLIALGEHI	GLTDFVGGGA	ENQALISCGAL	SSASDIDIQG
	451	TSKTHGGAIL	AGTVDLMETT	SEVAFKQNTA	MANGTETER	NNAVVQCVKN
	501	EILFEONEVR	NHGGATYCGC	RSNPKLEQKD	ALTGGALSAN	DKVIIANNFG
	551	ASVLEVMTOA	EDVAGGGAT.M	GHNVLLDSNS	DGENINIIGN	SGAITFLKNK
50	601	GGGAILSTDR	WITSMNSCOV	VFKGNKGQCL	GNIOLIGNIG	GSTFWIGEYV
	651	NKDEKSINAC	SHGDHVDDVT	VEEEVPPSLL	AQKYVAPQET	APVESDASST
	701	HIFITONTON	LRESCHI CCC	EESSTVGDLA	EEHPVVSSTD	IRGGGAILAQ
	751	VVFSDMVTSN	CCDCCCVIT A	KKYDI CARRIC	IVGGGALLST	NEVNVCSNQN
	801	SVAITTINIGSA	COSCONTANT	KKVDISANHS GGAGVAAPQG	VEFVSNGSGK	FGGAVCALNE
		~ DINGDM	APLPWKIKT	GGAGVAAPQG	SVTICGNOGN	IAFKENFVFG

	851	SENQRSGGGA	IIANSSVNIQ	DNAGDILFVS	NSTGSYGGAI	FVGSLVASEG
	901	SNPRTLTITG	NSGDILFAKN	STQTAASLSE	KDSFGGGAIY	TONLKIVKNA
	951	GNVSFYGNRA	PSGAGVQIAD	GGTVCLEAFG	GDILFEGNIN	FDGSFNAIHL
	1001	CGNDSKIVEL	SAVQDKNIIF	QDAITYEENT	IRGLPDKDVS	PLSAPSLIFN
5	1051	SKPQDDSAQH	HEGTIRFSRG	VSKIPQIAAI	QEGTLALSQN	AELWLAGLKQ
	1101	ETGSSIVLSA	GSILRIFDSQ	VDSSAPLPTE	NKEETLVSAG	VQINMSSPTP
	1151	NKDKAVDTPV	LADIISITVD	LSSFVPEQDG	TLPLPPEIII	PKGTKLHSNA
	1201	IDLKIIDPTN	VGYENHALLS	SHKDIPLISL	KTAEGMTGTP	TADASLSNIK
10	1251	IDVSLPSITP	ATYGHTGVWS	ESKMEDGRLV	VGWQPTGYKL	NPEKQGALVL
10	1301	NNLWSHYTDL	RALKQEIFAH	HTIAQRMELD	FSTNVWGSGL	GVVEDCQNIG
	1351	EFDGFKHHLT	GYALGLDTQL	VEDFLIGGCF	SQFFGKTESQ	SYKAKNDVKS
	1401	YMGAAYAGIL	AGPWLIKGAF	VYGNINNDLT	TDYGTLGIST	GSWIGKGFIA
	1451	GTSIDYRYIV	NPRRFISAIV	STVVPFVEAE	YVRIDLPEIS	EQGKEVRTFO
- ·	1501	KTRFENVAIP	FGFALEHAYS	RGSRAEVNSV	QLAYVFDVYR	KGPVSLITLK
15	1551	DAAYSWKSYG	VDIPCKAWKA	RLSNNTEWNS	YLSTYLAFNY	EWREDLIAYD
	1601	FNGGIRIIF*				

A predicted signal peptide is highlighted.

The cp7287 nucleotide sequence <SEQ ID 84> is:

00	1	ATGGTAGCGA	AAAAAACAGT	ACGATCTTAT	AGGTCTTCAT	TTTCTCATTC
20	51	CGTAATAGTA	GCAATATTGT	CAGCAGGCAT	TGCTTTTGAA	GCACATTCCT
	101	TACACAGCTC	AGAACTAGAT	TTAGGTGTAT	TCAATAAACA	GTTTGAGGAA
	151	CATTCTGCTC	ATGTTGAAGA	GGCTCAAACA	TCTGTTTTAA	AGGGATCAGA
	201	TCCTGTAAAT	CCCTCTCAGA	AAGAATCCGA	GAAGGTTTTG	TACACTCAAG
~-	251	TGCCTCTTAC	CCAAGGAAGC	TCTGGAGAGA	GTTTGGATCT	CGCCGATGCT
25	301	AATTTCTTAG	AGCATTTTCA	GCATCTTTTT	GAAGAGACTA	CAGTATTTGG
	351	TATCGATCAA	AAGCTGGTTT	GGTCAGATTT	AGATACTAGG	AATTTTTCCC
	401	AACCCACTCA	AGAACCTGAT	ACAAGTAATG	CTGTAAGTGA	GAAAATCTCC
	451	TCAGATACCA	AAGAGAATAG	AAAAGACCTA	GAGACTGAAG	ATCCTTCAAA
20	501	AAAAAGTGGC	CTTAAAGAAG	TTTCATCAGA	TCTCCCTAAA	AGTCCTGAAA
30	551	CTGCAGTAGC	AGCTATTTCT	GAAGATCTTG	AAATCTCAGA	AAACATTTCA
	601	GCAAGAGATC	CTCTTCAGGG	TTTAGCATTT	TTTTATAAAA	ATACATCTTC
	651	TCAGTCTATC	TCTGAAAAGG	ATTCTTCATT	TCAAGGAATT	ATCTTTTCTG
	701	GTTCAGGAGC	TAATTCAGGG	CTAGGTTTTG	AAAATCTTAA	GGCGCCGAAA
0.5	751	TCTGGGGCTG	CAGTTTATTC	TGATCGAGAT	ATTGTTTTTG	AAAATCTTGT
35	801	TAAAGGATTG	AGTTTTATAT	CTTGTGAATC	TTTAGAAGAT	GGCTCTGCCG
	851	CAGGTGTAAA	CATTGTTGTG	ACCCATTGTG	GTGATGTAAC	TCTCACTGAT
	901	TGTGCCACTG	GTTTAGACCT	TGAAGCTTTA	CGTCTGGTTA	AAGATTTTTC
	951	TCGTGGAGGA	GCTGTTTTCA	CTGCTCGCAA	CCATGAAGTG	CAAAATAACC
40	1001	TTGCAGGTGG	AATTCTATCC	GTTGTAGGCA	ATAAAGGAGC	TATTGTTGTA
40	1051	GAGAAAAATA	GTGCTGAGAA	GTCCAATGGA	${\tt GGAGCTTTTG}$	CTTGCGGAAG
	1101	TTTTGTTTAC	AGTAACAACG	AAAACACCGC	CTTGTGGAAA	GAAAATCAAG
	1151	CATTATCAGG	AGGAGCCATA	TCCTCAGCAA	GTGATATTGA	TATTCAAGGG
	1201	AACTGTAGCG	CTATTGAATT	TTCAGGAAAC	CAGTCTCTAA	TTGCTCTTGG
. ~	1251	AGAGCATATA	GGGCTTACAG	ATTTTGTAGG	TGGAGGAGCT	TTAGCTGCTC
45	1301	AAGGGACGCT	TACCTTAAGA	AATAATGCAG	TAGTGCAATG	TGTTAAAAAC
	1351	ACTTCTAAAA	CACATGGTGG	AGCTATTTTA	GCAGGTACTG	TTGATCTCAA
	1401	CGAAACAATT	AGCGAAGTTG	CCTTTAAGCA	GAATACAGCA	GCTCTAACTG
	1451	GAGGTGCTTT	AAGTGCAAAT	${\tt GATAAGGTTA}$	TAATTGCAAA	TAACTTTGGA
~ 0	1501	GAAATTCTTT	TTGAGCAAAA	CGAAGTGAGG	AATCACGGAG	GAGCCATTTA
50	1551	TTGTGGATGT	CGATCTAATC	CTAAGTTAGA	ACAAAAGGAT	TCTGGAGAGA
	1601	ACATCAATAT	TATTGGAAAC	TCCGGAGCTA	TCACTTTTTT	AAAAAATAAG
	1651	GCTTCTGTTT	TAGAAGTGAT	GACACAAGCT	GAAGATTATG	CTGGTGGAGG
	1701	CGCTTTATGG	GGGCATAATG	TTCTTCTAGA	TTCCAATAGT	GGGAATATTC
	1751	AATTTATAGG	AAATATAGGT	GGAAGTACCT	TCTGGATAGG	AGAATATGTC
55	1801	GGTGGTGGTG	CGATTCTCTC	TACTGATAGA	GTGACAATTT	CTAATAACTC
	1851	TGGAGATGTT	GTTTTTAAAG	GAAACAAAGG	CCAATGTCTT	GCTCAAAAAT
	1901	ATGTAGCTCC	TCAAGAAACA	GCTCCCGTGG	AATCAGATGC	TTCATCTACA
	1951	AATAAAGACG	AGAAGAGCCT	TAATGCTTGT	AGTCATGGAG	ATCATTATCC
	2001	TCCTAAAACT	GTAGAAGAGG	AAGTGCCACC	TTCATTGTTA	GAAGAACATC
60	2051	CTGTTGTTTC	TTCGACAGAT	ATTCGTGGTG	GTGGGGCCAT	TCTACCTCAA
	2101	CATATCTTTA	TTACAGATAA	TACAGGAAAT	CTGAGATTCT	CTGGGAACCT
	2151	TGGTGGTGGT	GAAGAGTCTT	CTACTGTCGG	TGATTTAGCT	ATCGTAGGAG
	2201	GAGGTGCTTT	GCTTTCTACT	AATGAAGTTA	ATGTTTGCAG	TAACCAAAAT
	2251	GTTGTTTTT	CTGATAACGT	GACTTCAAAT	GGTTGTGATT	CAGGGGGAGC
65	2301	TATTTTAGCT	AAAAAAGTAG	ATATCTCCGC	GAACCACTCG	GTTGAATTTC

	235 1	TCTCTAATGG	TTCAGGGAAA	TTCGGTGGTG	CCGTTTGCGC	TTTAAACGAA
	2401	TCAGTAAACA	TTACGGACAA	TGGCTCGGCA	GTATCATTCT	CTAAAAATAG
	2451	AACACGTCTT	GGCGGTGCTG	GAGTTGCAGC	TCCTCAAGGC	TCTGTAACGA
5	2501	TTTGTGGAAA	TCAGGGAAAC	ATAGCATTTA	AAGAGAACTT	TGTTTTTGGC
J	2551	TCTGAAAATC	AAAGATCAGG	TGGAGGAGCT	ATCATTGCTA	ACTCTTCTGT
	2601	AAATATTCAG	GATAACGCAG	GAGATATCCT	ATTTGTAAGT	AACTCTACGG
	2651	GATCTTATGG	AGGTGCTATT	TTTGTAGGAT	CTTTGGTTGC	TTCTGAAGGC
	270 1	AGCAACCCAC	GAACGCTTAC	AATTACAGGC	AACAGTGGGG	ATATCCTATT
10	2751	TGCTAAAAAT	AGCACGCAAA	CAGCCGCTTC	TTTATCAGAA	AAAGATTCCT
10	2801	TTGGTGGAGG	GGCCATCTAT	ACACAAAACC	TCAAAATTGT	AAAGAATGCA
	2851	GGGAACGTTT	CTTTCTATGG	CAACAGAGCT	CCTAGTGGTG	CTGGTGTCCA
	2901	AATTGCAGAC	GGAGGAACTG	TTTGTTTAGA	GGCTTTTGGA	GGAGATATCT
	2951	TATTTGAAGG	GAATATCAAT	TTTGATGGGA	GTTTCAATGC	GATTCACTTA
1 "	3001	TGCGGGAATG	ACTCAAAAAT	CGTAGAGCTT	TCTGCTGTTC	AAGATAAAAA
15	3051	TATTATTTC	CAAGATGCAA	TTACTTATGA	AGAGAACACA	ATTCGTGGCT
	3101	TGCCAGATAA	AGATGTCAGT	CCTTTAAGTG	CCCCTTCATT	AATTTTTAAC
	3151	TCCAAGCCAC	AAGATGACAG	CGCTCAACAT	CATGAAGGGA	CGATACGGTT
	3201	TTCTCGAGGG	GTATCTAAAA	TTCCTCAGAT	TGCTGCTATA	CAAGAGGGAA
• •	3251	CCTTAGCTTT	ATCACAAAAC	GCAGAGCTTT	GGTTGGCAGG	ACTTAAACAG
20	3301	GAAACAGGAA	GTTCTATCGT	ATTGTCTGCG	GGATCTATTC	TCCGTATTTT
	335 1	TGATTCCCAG	GTTGATAGCA	GTGCGCCTCT	TCCTACAGAA	AATAAAGAGG
	3401	AGACTCTTGT	TTCTGCCGGA	GTTCAAATTA	ACATGAGCTC	TCCTACACCC
	3451	AATAAAGATA	AAGCTGTAGA	TACTCCAGTA	CTTGCAGATA	TCATAAGTAT
	3501	TACTGTAGAT	TTGTCTTCAT	TTGTTCCTGA	GCAAGACGGA	ACTCTTCCTC
25	3551	TTCCTCCTGA	AATTATCATT	CCTAAGGGAA	CAAAATTACA	TTCTAATGCC
	3601	ATAGATCTTA	AGATTATAGA	TCCTACCAAT	GTGGGATATG	AAAATCATGC
	3651	TCTTCTAAGT	TCTCATAAAG	ATATTCCATT	AATTTCTCTT	AAGACAGCGG
	3701	AAGGAATGAC	AGGGACGCCT	ACAGCAGATG	CTTCTCTATC	TAATATAAAA
	375 1	ATAGATGTAT	CTTTACCTTC	GATCACACCA	GCAACGTATG	GTCACACAGG
30	3801	AGTTTGGTCT	GAAAGTAAAA	TGGAAGATGG	AAGACTTGTA	GTCGGTTGGC
	3851	AACCTACGGG	ATATAAGTTA	AATCCTGAGA	AGCAAGGGGC	TCTAGTTTTG
	3901	AATAATCTCT	GGAGTCATTA	TACAGATCTT	AGAGCTCTTA	AGCAGGAGAT
	3951	CTTTGCTCAT	CATACGATAG	CTCAAAGAAT	GGAGTTAGAT	TTCTCGACAA
_	4001			GGTGTTGTTG		
35	4051	GAGTTTGATG	GGTTCAAACA	TCATCTCACA	GGGTATGCCC	TAGGCTTGGA
	4101	TACACAACTA	GTTGAAGACT	TCTTAATTGG	AGGATGTTTC	TCACAGTTCT
	4151	TTGGTAAAAC	TGAAAGCCAA	TCCTACAAAG	CTAAGAACGA	TGTGAAGAGT
	4201	TATATGGGAG	CTGCTTATGC	GGGGATTTTA	GCAGGTCCTT	GGTTAATAAA
	4251	AGGAGCTTTT	GTTTACGGTA	ATATAAACAA	CGATTTGACT	ACAGATTACG
40	4301	GTACTTTAGG	TATTTCAACA	GGTTCATGGA	TAGGAAAAGG	GTTTATCGCA
	4351	GGCACAAGCA	TTGATTACCG	CTATATTGTA	AATCCTCGAC	GGTTTATATC
	4401	GGCAATCGTA	TCCACAGTGG	TTCCTTTTGT	AGAAGCCGAG	TATGTCCGTA
	4451	TAGATCTTCC	AGAAATTAGC	GAACAGGGTA	AAGAGGTTAG	AACGTTCCAA
	4501	AAAACTCGTT	TTGAGAATGT	CGCCATTCCT	TTTGGATTTG	CTTTAGAACA
45	4551	TGCTTATTCG	CGTGGCTCAC	GTGCTGAAGT	GAACAGTGTA	CAGCTTGCTT
	4601	ACGTCTTTGA	TGTATATCGT	AAGGGACCTG	TCTCTTTGAT	TACACTCAAG
	4651	GATGCTGCTT	ATTCTTGGAA	GAGTTATGGG	GTAGATATTC	CTTGTAAAGC
	4701	TTGGAAGGCT	CGCTTGAGCA	ATAATACGGA	ATGGAATTCA	ΤΑΤΤΤΑΔΙΙΤΑ
	4751	CGTATTTAGC	GTTTAATTAT	GAATGGAGAG	AAGATCTGAT	AGCTTATGAC
50	4801		GTATCCGTAT			
		· · · · · · · · ·				

The PSORT algorithm predicts an inner membrane location (0.106).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 42A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 42B) and for FACS analysis (Figure 42C). A his-tagged protein was also expressed.

55 The cp7287 protein was also identified in the 2D-PAGE experiment and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7287 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

-83-

Example 43

The following C.pneumoniae protein (PID 4377105) was expressed <SEQ ID 85; cp7105>:

```
5 MSLYQKWNS QLKKSLCYST VAALIFMIPS QESFADSLID LNLGLDPSVE
51 CLSGDGAFSV GYFTKAGSTP VEYQPFKYDV SKKTFTILSV ETANQSGYAY
101 GISYDGTITV GTCSLGAGKY NGAKWSADGT LTPLTGITGG TSHTEARAIS
151 KDTQVIEGFS YDASGQPKAV QWASGATTVT QLADISGGSR SSYAYAISDD
201 GTIIVGSMES TITRKTTAVK WVNNVPTYLG TLGGDASTGL YISGDGTVIV
251 GAANTATVTN GNQESHAYMY KDNQMKD*
```

The cp7105 nucleotide sequence <SEQ ID 86> is:

	_	•		20.		
10	1	GTGAGTCTAT	ATCAAAAATG	GTGGAACAGT	Cacmmaaaca	1.C7.CCC.
	51		GTTGCTGCTC			
	101	TTGCAGATAG	TCTTATAGAT	TTAAATTTAG		
	151	TGTCTGTCAG	GAGATGGTGC	ATTTTCTGTT		
1.5	201	ATCGACTCCC	GTAGAATATC	AGCCGTTTAA	ATACGACGTA	TOTALGACACA
15	251	CATTCACAAT	CCTTTCCGTA	GAAACGGCAA	ATCAGAGCGG	CTATCCTTAC
	301	GGAATCTCCT	ACGATGGCAC	GATCACTGTA	GGAACGTGTA	CCCTACCTCC
	351	AGGAAAATAT	AACGGCGCAA	AATGGAGTGC	GGATGGCACT	TUDACACCOM
	401	TAACTGGAAT	CACGGGGGGG	ACGTCACATA	CGGAAGCGCG	TGCGATTTCT
00	451	AAGGATACTC	AGGTGATCGA	GGGTTTCTCA	TATGATGCTT	CAGGGCAACC
20	501	CAAGGCTGTG	CAGTGGGCAA	GCGGAGCGAC	TACAGTAACA	CAATTACCAC
	551	ATATTTCAGG	AGGCTCTAGA	AGCTCTTATG	CGTATGCTAT	ልጥርጥር አጥር አ ጥ
	601	GGCACGATTA	TTGTTGGGTC	TATGGAGAGC	ACGATAACAA	GGAAAACTAC
	651	AGCTGTAAAA	TGGGTAAATA	ATGTTCCTAC	GTATCTGGGA	ACCTUAGGAG
0.5	701	GAGATGCTTC	TACAGGTCTT	TATATTTCTG	GAGACGCCAC	CGTGATTCTA
25	751	GGTGCGGCAA	ATACAGCAAC	TGTAACCAAT	GGGAATCAGG	AATCCCACCC
	801	CTATATGTAT	AAAGATAACC	AAATGAAAGA	TTGA	.m.r.cccAcGc

The PSORT algorithm predicts an inner membrane location (0.100).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 43A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 43B) and for FACS analysis (Figure 43C). A his-tagged protein was also expressed.

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7105 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

35 Example 44

30

The following C.pneumoniae protein (PID 4376802) was expressed <SEQ ID 87; cp6802>:

```
40 MSNQLQPCIS LGCVSYINSF PLSLQLIKRN DIRCVLAPPA DLLNLLIEGK LDVALTSSLG AISHNLGYVP GFGIAANQRI LSVNLYAAPT FFNSPQPRIA ATLESRSSIG LLKVLCRHLW RIPTPHILRF ITTKVLRQTP ENYDGLLLIG DAALQHPVLP GFVTYDLASG WYDLTKLPFV FALLLHSTSW KEHPLPNLAM 201 EEALQQFESS PEEVLKEAHQ HTGLPPSLLQ EYYALCQYRL GEEHYESFEK 251 FREYYGTLYQ QARL*
```

A predicted signal peptide is highlighted.

The cp6802 nucleotide sequence <SEQ ID 88> is:

```
45 1 ATGTCTAACC AACTCCAGCC ATGTATAAGC TTAGGCTGCG TAAGTTATAT
51 TAATTCCTTT CCGCTGTCCC TACAACTCAT AAAAAGAAAC GATATTCGCT
101 GTGTTCTTGC TCCCCCTGCA GACCTCCTCA ACTTGCTAAT CGAAGGGAAA
151 CTCGATGTTG CTTTGACCTC ATCCCTAGGA GCTATCTCT ATAACTTGGG
201 GTATGTCCCC GGCTTTGGAA TTGCAGCAAA CCAACGTATC CTCAGTGTAA
```

	251	ACCTCTATGC	AGCTCCCACT	TTCTTTAACT	CACCGCAACC	TCGGATTGCC
	301	GCAACTTTAG	AAAGTCGCTC	CTCTATAGGA	CTCTTAAAAG	TGCTTTGTCG
	351	TCATCTCTGG	CGCATCCCAA	CTCCTCATAT	CCTAAGATTC	ATAACTACAA
E	401	AAGTACTCAG	ACAAACCCCT	GAAAATTATG	ATGGCCTCCT	CCTAATCGGA
3	451	GATGCAGCGC	TACAACATCC	TGTACTTCCT	GGATTTGTAA	CCTATGACCT
	501	TGCCTCGGGG	TGGTATGATC	TTACAAAGCT	ACCTTTTGTA	TTTGCTCTTC
	551	TTCTACACAG	CACCTCTTGG	AAAGAACATC	CCCTACCCAA	CCTTGCGATG
	601	GAAGAAGCCC	TCCAACAGTT	CGAATCTTCA	CCCGAAGAAG	TCCTTAAAGA
10	651	AGCTCATCAA	CATACAGGTC	TGCCCCCTTC	TCTTCTTCAA	GAATACTATG
10	701	CCCTATGCCA	${\tt GTACCGTCTA}$	GGAGAAGAAC	ACTACGAAAG	CTTTGAAAAA
	751	TTCCGGGAAT	ATTATGGAAC	CCTCTACCAA	CAAGCCCGAC	ጥር ጥ አ አ

The PSORT algorithm predicts an inner membrane location (0.060).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 44A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 44B) and for FACS analysis (Figure 44C). A his-tagged protein was also expressed.

These experiments show that cp6802 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 45

15

The following C.pneumoniae protein (PID 4376390) was expressed <SEQ ID 89; cp6390>:

20	1	MVFSYYCMGL	FFFSGAISSC	GLLVSLGVGL	GLSVLGVLLL	LLAGLLLFKI
	51	QSML REVPKA	PDLLDLEDAS	ERLRVKASRS	LASLPKEISO	LESYIRSAAN
	101	DLNTIKTWPH	KDQRLVETVS	RKLERLAAAO	NYMISELCEI	SEILEEERHH
	151	LILAQESLEW	IGKSLFSTFL	DMESFLNLSH	LSEVRPYLAV	NDPRLIETTE
~~	201	ESWEVVSHFI	NVTSAFKKAQ	ILFKNNEHSR	MKKKLESVOE	LLETETYKSL
25	251	KRSYRELGCL	SEKMRIIHDN	PLFPWVQDQQ	KYAHAKNEFG	EIARCLEEFE
	301	KTFFWLDEEC	AISYMDCWDF	LNESIQNKKS	RVDRDYISTK	KIALKDRART
	351	YAKVLLEENP	TTEGKIDLQD	AQRAFERQSQ	EFYTLEHTET	KVRLEALOOC
	401	FSDLREATNV	RQVRFTNSEN	ANDLKESFEK	IDKERVRYOK	EORLYWETTD
00	451	RNEQELREEI	GESLRLQNRR	KGYRAGYDAG	RLKGLLROWK	KNLRDVEAHL
30	501	EDATMDFEHE	VSKSELCSVR	ARLEVLEEEL	MDMSPKVADI	EELLSYEERC
	551	ILPIRENLER	AYLQYNKCSE	ILSKAKFFFP	EDEOLLVSEA	NLREVGAOUK
	601	QVQGKCQERA	QKFAIFEKHI	QEQKSLIKEQ	VRSFDLAGVG	FLKSELLSTA
	651	CNLYIKAVVK	ESIPVDVPCM	QLYYSYYEDN	EAVVRNRLLN	MTERYONEKR
~~	701	SLNSIQFNGD	VLLRDPVYQP	EGHETRLKER	ELOETTLSCK	KLKVAODRIS
35	751	ELESRLSRR				

A predicted signal peptide is highlighted.

The cp6390 nucleotide sequence <SEQ ID 90> is:

	1	TTGGTATTCT	CATACTATTG	CATGGGATTA	TTTTTTTTCT	CTGGAGCTAT
40	51	TTCTAGTTGT	GGTCTTTTAG	TGTCTCTAGG	AGTTGGTTTA	GGACTTAGTG
40	101	TTTTAGGAGT	ACTTTTACTT	CTCTTAGCAG	GTCTTTTGCT	TTTTAAGATC
	151	CAAAGTATGC	TTCGAGAGGT	GCCTAAGGCT	CCTGATCTAT	TAGATTTAGA
	201	AGATGCAAGT	GAACGGCTTA	GAGTAAAGGC	TAGCCGTTCT	TTAGCAAGCC
	251	TCCCGAAGGA	AATCAGTCAG	CTAGAGAGCT	ACATTCGTTC	TGCAGCTAAT
4.5	301		CAATTAAGAC		AAAGATCAAA	GACTCGTCGA
45	351		CGAAAATTAG		AGCTGCTCAA	AACTATATGA
	401		CTGCGAGATT		TTGAGGAAGA	
	451	CTAATTTTGG	CTCAGGAATC	TCTAGAATGG	ATAGGTAAGA	GTCTATTTTC
	501		GACATGGAAT			CTATCTGAAG
60	551	TGCGTCCGTA	CTTAGCTGTA	AATGATCCTA	GATTATTAGA	AATTACCGAA
50	601	GAATCTTGGG	AAGTAGTGAG	TCATTTCATA	AATGTAACGT	CTGCTTTTAA
	651	GAAAGCTCAG	ATTCTTTTTA	AGAACAACGA	ACATTCTCGG	ATGAAGAAGA
	701	AGTTAGAAAG	TGTTCAAGAG	TTACTGGAAA	CATTTATTTA	TAAGAGTTTA
	751	AAGAGAAGTT	ATCGAGAATT	AGGATGCTTA	AGTGAAAAGA	TGAGAATCAT
	801	TCACGACAAT	CCTCTCTTCC	CTTGGGTGCA	AGATCAGCAG	AAGTATGCTC
55	851	ATGCTAAGAA	TGAATTTGGA	GAGATTGCGC	GGTGTTTAGA	GCAGTTTCA A
	901	AAGACGTTCT	TCTGGTTGGA	TGAGGAGTGT	GCTATTTCTT	ACATGGACTG

	951	TTGGGATTTT		CTATTCAGAA	TAAGAAGTCC	AGAGTAGATC
	1001	GAGATTATAT	ATCCACGAAG	AAAATTGCAT	TAAAGGATAG	AGCCCGCACT
	1051	TATGCTAAGG	TTCTTTTAGA	AGAGAATCCG	ACTACAGAGG	GTAAAATAGA
<i>c</i> -	1101	TTTGCAAGAC	GCTCAAAGAG	CCTTTGAGCG	TCAAAGTCAG	GAGTTTTATA
5	1151	CACTAGAGCA	TACGGAAACA	AAGGTGAGAC	TAGAAGCACT	TCAACAGTGC
	1201	TTCTCGGATC	TTAGGGAGGC	GACGAACGTA		GGTTTACAAA
	1251	TTCTGAAAAT		TAAAGGAGAG	TTTCGAGAAG	ATAGATAAAG
	1301	AGCGTGTGCG		GAGCAAAGGC	TCTATTGGGA	AACAATAGAT
	1351	CGCAATGAGC		GGAAGAGATT	GGGGAGTCGC	TTCGTTTACA
10	1401	AAATCGGAGA		GGGCTGGATA	TGATGCTGGG	CGTTTAAAAG
	1451	GTTTGTTGCG		AAAAATCTCC	GCGATGTGGA	
	1501	GAAGATGCAA	CTATGGATTT	TGAGCATGAA		GCGAATTGTG
	1551	CAGTGTTCGG		AGGTTCTAGA		ATGGATATGT
	1601	CTCCTAAAGT		GAAGAGTTGT	TGTCCTATGA	
15	1651	ATTCTTCCTA		TTTAGAAAGG	GCATACCTCC	AATATAATAA
	1701	GTGTTCTGAA		AGGCAAAGTT	CTTCTTTCCG	GAAGACGAGC
	1751	AATTGCTAGT			AGGTGGGTGC	CCAGTTAAAA
	1801	CAAGTACAGG	GAAAATGTCA		CAAAAGTTCG	CAATATTTGA
	1851	AAAGCATATT			TAAAGAGCAA	GTGCGGAGTT
20	1901	TTGATCTAGC			GTGAGCTTCT	
	1951	TGTAACCTTT	ATATAAAGGC		GAGTCTATAC	TAGTATTGCT
	2001	GCCTTGTATG			CGAAGATAAT	CAGTTGATGT
	2051	TGCGAAACCG			GGTATCAAAA	GAAGCTGTAG
	2101	AGTTTGAATT	CCATACAATT			TTTTAAAAGG
25	2151					GGGATCCGGT
	2201	AAACAACTTT		AAATTAAAAG	AAAGGAACGG	GAGCTACAAG
	2251		CAAGGCTGTC		TGGCTCAAGA	TCGTCTTTCT
			CTTTGGC TGTC	TAGGAGATAG		

The PSORT algorithm predicts a periplasmic location (0.932).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 45A.

The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 45B) and for FACS analysis (Figure 45C). A his-tagged protein was also expressed.

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6390 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 46

The following C.pneumoniae protein (PID 4376272) was expressed <SEQ ID 91; cp6272>:

	1	MKRCFLFLAS	FVLMGSSADA	LTHQEAVKKK	NSYLSHFKSV	SGIVTTEDGV
4.0	51	LNIHNNLRIQ	ANKVYVENTV	GOSLKLVAHG	NVMVNYRAKT	LVCDYLEVYE
40	101	DTDSCLLTNG	RFAMYPWFLG	GSMITLTPET	IVIRKGYIST	SEGPKKDLCL
	151	SGDYLEYSSD	SLLSIGKTTL	RVCRIPILFL	PPFSTMPMET	PKDDIMERGG
	201	TGGFLGSYLG	MSYSPISRKH	FSSTFFLDSF	FKHGVGMGEN	THUSOKOVDE
	251	NVFNMKSYYA	HRLAIDMAEA	HDRYRLHGDF	CETHKHT/NES	CEARL'S DOME
	301	TVADIFPNNF	MLKNTGPTRV	DCTWNDNYFE	GYT.TSSVKVNI	SECMANOET D
45	351	YLTLROYPIS	IYNTGVYLEN	IVECGYLNFA	FSDHTVGENE	ST QMM/QDJF
	401	LHKTVPLPIG	TLSSTLGSSL	IYYSDVPEIS	SPHSOL SAKI.	OI.DVDET T.YV
	451	SYIORRHIIE	PFVTFITETR	PLAKNEDHYI	FSTODA PHCI.	MITANCEDUC
	501	VLSKTNPRFP	RIHAKIWITH	ILSNTESKPT	EDRMY CEL CL	MUTICAGENIA
	551	DAEWIWKKHC	WDHMNTRWEW	IGNDNVAMTL	FOLUDOWYCI	FLOWWILLAST
50	601	DVSRPIDQLL	DSPLSDHRAT.	TOWNWANTH	DCMMIDT OF N	INCORENFIL
	651	VIEVOMILOT	KIEERMOTVO	VYERREADSR	PCWNYRLSLR	YGWHRQDTPN
	00-	THETOTION	WIT FUNDING TIC	VYERREADSK	FFFFKLDKP	KKPPF*

A predicted signal peptide is highlighted.

The cp6272 nucleotide sequence <SEQ ID 92> is:

1 ATGAAACGTT GCTTCTTATT TCTAGCTTCC TTTGTTCTTA TGGGTTCCTC

	51	AGCTGATGCT	TTGACTCAT	CAAGAGGCTGT	GAAAAAGAAA	AACTCCTATC
	101	TTAGTCACT	' ''AAGAGTGT'	l TCTGGGATTG	TGACCATCGA	ACAMCCCCCMX
	151	TTGAATATCC	: ATAACAACC!	l GCGGATACAA	GCCAATAAAG	ጥርጥአጥርጥአር እ
5	201	AAATACTGTG	GGTCAAAGCC	TGAAGCTTGT	CGCACATGGC	$\Delta \Delta m C m m \Delta m C C$
5	251	TGAACTATAC	GGCAAAAACC	CTAGTTTGTG	ATTACCTAGA	でかなかのみでである
	301	GATACAGACT	CTTGTCTTCT	TACTAATGGA	AGATTCCCCA	TOTA MOOME
	351	GTTTCTAGGG	GGGTCTATG	TCACTCTAAC	CCCAGAAACC	ልጥል ሮ ጥሮ እመጠረ
	401	GGAAGGGATA	TATCTCTACC	* TCCGAGGGTC	CCAAAAAAGA	CCTCTCCCCC
10	451	TCCGGAGATT	' ACCTGGAATA	TTCTTCAGAT	ACI ጥጥጥር ተካጥጥ	で切り切りでででする
10	501	GACAACATTA	AGGGTGTGTC	GCATTCCGAT	ACJUMMONTA	CCTCCATITION
	551	CTATCATGCC	TATGGAGATC	CCTAAGCCTC	CGATAAACTT	TOGAGGACCA
	601	ACAGGAGGAT	' TTCTGGGATC	CTATTTGGGG	ATGAGCTACT	CCCCCAmmac
	651	TAGGAAGCAT	. T.T.C.T.C.C.T.CGY	CATTTTTCTT	GGATAGCTTT	ጥጥር እ አርያር አጠር
15	701	GCGTCGGCAT	GGGATTCAAC	CTCCATTGTT	CTCAGAAGCA	COMPOUNDA
15	751	AATGTCTTCA	. ATATGAAAAG	CTATTATGCC	CACCGCCTTG	ርጥልጥርር አመአጠ
	801	GGCAGAAGCT	CATGATCGCT	ATCGCCTACA	CCCACAMMIC	TO COMPC A COC
	851	ATAAGCATGT	AAATTTTTCT	GGAGAATACC	ATCTCAGCGA	ሞልርምጥር ርርር አ አ
	901	ACTGTTGCTG	ACATTTTCCC	CAACAACTTC	ATGTTGAAAA	ATACAGGGGG
20	951	CACACGTGTC	GATTGCACTT	GGAATGACAA	CTATTTTCAA	GGGTATICTICA
20	1001	CCLCLLCLCLCL	TAAGGTAAAC	TCTTTCCAAA	ATGCCAACCA	AGAGCTCCCT
	1051	TATTTAACAT	TAAGGCAGTA	CCCGATTTCT	ልጥ ልጥ ልጥጥጥል	CCCCACRCMA
	1101	CCTTGAAAAC	ATCGTAGAAT	GTGGGTATTT	AAACTTTTCCTT	THE TARGET AND A COUNTY
	1151	ATATCGTTGG	CGAGAATTTC	TCTTCACTAC	GTCTTGCTGC	GCGCCCCMXXC
25	1201	CTCCATAAAA	CTGTGCCTCT	ACCTATAGGA	ACGCTCTCCT	CCXCCCmxcc
23	1251	GAGTTCTCTG	ATTTACTATA	GCGATGTTCC	TGAGATCTCC	TOGOGOGOMA
	1301	GTCAGCTTTC	CGCGAAGCTA	CAACTTGATT	ATCGCTTTTCT	ልጥጥ እ <i>ር</i> አ ጠ አ አ <i>ር</i>
	1351	TCCTACATTC	AAAGACGCCA	TATTATAGAG	CCGTTCGTTA	CCMMCAMMAC
	1401	AGAGACTCGT	CCTCTAGCTA	AGAATGAAGA	ጥሮልጥጥልጥልጥር	THE THE PART OF TH
30	1451	AAGATGCCT.T.	TCACTCCTTA	AACCTTCTGA	AACCCCCTAT	ACAMA COMOO
30	1501	GTACTGAGTA	AGACTAACCC	TCGATTCCCG	AGAATCCATG	CGNACCTIONC
	1551	GACTACCCAC	ATCTTGAGCA	ATACAGAAAG	CAAACCCACG	中ののつつつつるるる。
	1601	CIGCAIGCGA	GCTATCTCTA	CCTTTTGGAA	AGAAAAATAC	$\Delta C T C T C C T T T A$
	1651	GATGCTGAAT	GGATTTGGAA	AAAGCACTGT	TGGGATCACA	中で カスクカのカウク
35	1701	TTGGGAGTGG	ATCGGAAATG	ACAATGTGGC	ΨΑͲGΑCͲCͲΔ	CAAMCCCCTCC
33	1751	ATAGAAGCAA	ATACAGCCTG	ATTAAGTGTG	ACAGGGAGAA	COMO A COMO A
	1801	GATGTCAGCC	GTCCCCATTGA	CCAGCTTTTA	GACTCCCCTC	中で中で中で 7 田へ 7
	1851	TAGGAATCTC	ATTTTPAGGGA	AATTATTTGT	ACCIACCTC ATT	CCCMCMmccx
	1901	ATTACCGCTT	ATCCTTACGC	TATGGCTGGC	ATCGCCAGGA	CACTICCONNO
40	1951	TACCTAGAAT	ACCAGATGAT	TCTAGGGACG	AAGATCTTCG	AACAMMCCCCA
40	2001	GCTCTATGGG	GTGTATGAAC	GCCGAGAAGC	AGATAGTCGA	TTTTTCTTCT
	2051	TCTTAAAGCT	CGACAAACCT	AAAAAACCTC	CCTTCTAA	

The PSORT algorithm predicts an outer membrane location (0.48).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 46A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot and for FACS analysis (Figure 46B). A his-tagged protein was also expressed.

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6272 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

50 Example 47

The following C.pneumoniae protein (PID 4377111) was expressed <SEQ ID 93; cp7111>:

55 1	.01 .51	LEFROTOSPR GSPNKETLGA LINGGMHADN	YQGKGVLQAV NAILGVSLAT GLEFQEFMIR	KNVKEILFPL AHAAAATLRR PIGASSIKEA	VKGCSVYEQS PLYRYLGGCF VNMGADVFHT	SGASTGKKEA LIDSLMMDSD ACSLPCPMMN LKKLLHERGL LALDCAASSF
------	------------	--	--	--	--	--

45

```
251 YNVKTGTYDG RHYEEQIAIL SNLCDRYPID SIEDGLAEED YDGWALLTEV
301 LGEKVQIVGD DLFVTNPELI LEGISNGLAN SVLIKPNQIG TLTETVYAIK
351 LAQMAGYTTI ISHRSGETTD TTIADLAVAF NAGQIKTGSL SRSERVAKYN
401 RLMEIEEELG SEAIFTDSNV FSYEDSEE*
```

5 A predicted signal peptide is highlighted.

The cp7111 nucleotide sequence <SEQ ID 94> is:

	_ 1		CTGTCATTGC		GCTAGGGAAA	TCTTGGATTC
	51		CCCACTTTAC	ATGTTAAAGT	AACCACTAGC	ACAGGTTCTG
10	101		TCGGGTTCCT	TCAGGAGCAT		AAAAGAAGCC
10	151	TTAGAGTTTC	GTGATACAGA	TTCTCCTCGT	TATCAAGGCA	AAGGGGTTTT
	201	GCAAGCTGTA	AAAAACGTAA		TTTTCCCCTC	
	251	GTAGTGTTTA	TGAGCAATCC		CTCTGATGAT	
	301	GGCTCTCCGA	ACAAAGAAAC	TCTAGGGGCC		TAGGAGTCTC
1 5	351	TCTAGCTACA	GCACATGCAG			CCTCTGTATC
15	401	GTTATTTAGG	AGGGTGTTTT	GCCTGCAGTC	TTCCCTGTCC	TATGATGAAT
	451	CTGATCAATG	GAGGCATGCA	TGCCGATAAC	GGCTTGGAGT	TCCAAGAATT
	501	TATGATCCGT	CCTATTGGAG	CCTCTTCCAT		GTCAACATGG
	551	GTGCTGACGT	TTTTCATACT			AAGAGGCTTA
00	601	TCTACTGGAG	TGGGTGACGA	AGGAGGCTTC	GCCCCGAATC	TTGCTTCTAA
20	651	TGAAGAAGCT	CTAGAGCTCC			GCAGGCTTTA
	701	CTCCAGGAAA	AGATATATCG			ATCCTCATTC
	751	TATAACGTAA	AAACAGGCAC			AAGAGCAAAT
	801	CGCAATCCTT	TCTAATTTAT			TCCATAGAAG
	851	ATGGTCTTGC	TGAAGAAGAC			AACTGAAGTT
25	901		AAGTACAGAT			TTACAAATCC
	951		TTAGAGGGTA			TCTGTGTTGA
	1001		TCAGATAGGG			TGCTATCAAG
	1051			TACTACAATT		
	1101					
30	1151					AACGCCGGTC
	1201			AGAGCTTGGA		AAAATACAAT
	1251					TTTTCACAGA
			I CIIAC	GAGGATTCT	GAGGAATAG	

The PSORT algorithm predicts an inner membrane location (0.100).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 47A.

The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 47B) and for FACS analysis (Figure 47C). A his-tagged protein was also expressed.

The cp7111 protein was also identified in the 2D-PAGE experiment and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7111 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 48

The following C.pneumoniae protein (PID 4455886) was expressed <SEQ ID 95; cp0010>:

	1	MKSQFSWLVL	SSTLACFTSC	STVFAATAEN	IGPSDSFDGS	TNTGTYTPKN
4 ~	51	TTTGIDYTLT	GDITLQNLGD	SAALTKGCFS	DTTESLSFAG	KGYSLSFLNI
45	101	KSSAEGAALS	VTTDKNLSLT	GFSSLTFLAA	PSSVITTPSG	KGAVKCGGDL
	151	TFDNNGTILF	KQDYCEENGG	AISTKNLSLK	NSTGSTSFEG	NKSSATGKKG
	201	GAICATGTVD	ITNNTAPTLF	SNNIAEAAGG	ATMSTGNCTT	TGNTSLVFSE
	251	NSVTATAGNG	GALSGDADVT	ISGNOSVTFS	GNOAVANGGA	IYAKKLTLAS
	301	GGGGVSPFLT	IIVQGTTAGN	GGAISILAAG	ECSISAFACD	ITFNGNAIVA
50	351	TTPQTTKRNS	IDIGSTAKIT	NLRAISGHSI	FFYDPTTANT	AADSTDTLNL
	401	NKADAGNSTD	YSGSIVFSGE	KLSEDEAKVA	DNITETIAN	VTLTAGNLVL
	451	KRGVTLDTKG	FTQTAGSSVI	MDAGTTLKAS	TERTURGE	IPVDSLGEGK
	501	KVVIAASAAS	KNVALSGPIL	TIDNOCNAVE	MADI CABODE	SFVQLSALGT
				XOIMTT	TATE OF TOPE	DE AĞIDBUTIĞİ.

```
551 ATTTDVPAVP TVATPTHYGY QCTWGMTWVD DTASTPKTKT ATLAWTNTGY
601 LPNPERQGPL VPNSLWGSFS DIQAIQGVIE RSALTLCSDR GFWAAGVANF
651 LDKDKKGEKR KYRHKSGGYA IGGAAQTCSE NLISFAFCQL FGSDKDFLVA
701 KNHTDTYAGA FYIQHITECS GFIGCLLDKL PGSWSHKPLV LEGQLAYSHV
751 SNDLKTKYTA YPEVKGSWGN NAFNMMLGAS SHSYPEYLHC FDTYAPYIKL
801 NLTYIRQDSF SEKGTEGRSF DDSNLFNLSL PIGVKFEKFS DCNDFSYDLT
851 LSYVPDLIRN DPKCTTALVI SGASWETYAN NLARQALQVR AGSHYAFSPM
901 FEVLGQFVFE VRGSSRIYNV DLGGKFQF*
```

A predicted signal peptide is highlighted.

10 The cp0010 nucleotide sequence $\langle SEQ ID 96 \rangle$ is:

		-	ζ-			
	1	ATGAAATCG	C AATTTTCCT	G GTTAGTGCT	TCTTCGACA	TGGCATGTTT
	51	TWCIMGILG	1 ICCACTGTT	T TTGCTGCAAC	ን ጥርርርጥር እእአአለ	7 7 M 7 C C C C C C C C C C C C C C C C
	101	CIGHTWACT	I IGACGGAAG	T ACTAACACAC	2 ርሮክሮሮመክመክ <i>ለ</i>	* MOOM>
15	151	TOUCHACT.	G GAATAGACT	A TACTCTCACI	しんしょうしょう ロット	0000000
15	201	CCIIGGGGA	T TCGGCAGCT	T TAACCAACCC		010101
	251	. WUICILIWW	e CliffGCCGG	I' AAGGGGTAC1	$^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$	1 000000000
	301	. WAGICINGIA	G CIGAAGGCC	C ACCACMMMC4	COMPACIA COMP	
	351 401	. GICGCTAAC	A GGATTTTCG	A GTCTTACTIVIT	$^{\circ}$ CTTTACCCCCCC	
20		. THUT CHCHHI	CCCCTCAGG	A AAAGGTGC\ac	. ጥጥ እ አ አ ጥር ጠርር	1 100000
20	451	ACAITIGAT	A ACAATGGAA	ուստ գա տարա րգ ը	ነ አኢአሮአአሮአጠብ	1 200000000
	501	MAM I GG CGG	A GCCATTTCT	A CCAAGAATCT		******
	551	GW1CGW1.1.1.(- 1"1"1"I"GAAGG(3 አልጥልልልጥሶርኔ	CCCCAAAAA	~~~~~
	601	GGGGCTWT.I.	r GIGCLACTGO	3 TACTGTAGAT	Δ የምጣ አ (" ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	3 M3 CCCCm
25	651	TMCCCTCTTT	- TCGAACAATA	A TTGCTGAAGC	TOCACOROCA	CCM 3 ma 3 a ma
4 0	701 751	AMADDAJAJD	1 CTGTACAATT	ľ ACAGGGA አጥአ	CCTCTCTTCTTCTT	3 mmmm
	801	AWING LOUGH	A CAGCGACCGC	Z DOCA A DOCA	CCACCRORRE	000000000
	851	CGAIGITACC	ATATCTGGG	\ Aጥሮልፎልፎጥሮ ጥ	$\Lambda \Lambda C M M M M M M A A$	003333
	901	CIGINGCIAN	LIGGCGGACCC	ለ መረጋው <u>ል ው</u> ርም ጥ	入ぐるるののののまっ	3 cm c
30	951	0000000000	GGGTATCTC	' ጥጥጥጥጥ አአ~አ	AMIA - MA AMAA	
	1001	TACEGRAMI	GGTGGAGCCA	יחים מיוז מיני מינייוי	CCCACCHCCA	C3 CE
	1051	TATOMOCHON	<i>AGCAGGGGAC</i>	: ልጥጥል (ተርመመረ A	አመርረርርን አመርረር	03 mmo
	1101	ACIMCACCAC	AAACTACAAA	A A G A A A TOTO TO	አጣጣር አ ር አጠክር	CAMOUNA COM-
	1151	WWGWI CHC	AATTTACGTC	F CAATATCTCC	こつかのか ごうかのへ	mmmmoma
35	1201	MICCOMTIAC	TGCTAATACC	GCTGCGGATT	CONCINENTA	mmn
	1251	MATAMGGCTG	ATGCAGGTA A	. ጥልርምልሮልርአ ም	MAMA CMOCOM	~~~
	1301	TICIGGIGAA	AAGCTCTCTG	AAGATGAAGC	$\lambda \lambda \lambda \lambda \alpha mm \alpha \alpha \lambda$	G2 G2 2 CC
	1351	CTTCTWCGCT	GAAGCAGCCT	' ርምልልሮምሮሞልል	CINCIONATION	MMM
	1401	MANCGIGGIG	TCAUTCTCGA	TACCANACCC	MINITED A COROLA COR	~~~~~
40	1451	CICIGITATI	ATGGATGCGG	CCACAACCTT	3 3 3 3 C C 3 3 C C	3 03 03 005
	1501	TOUCTITUME	MOGICITIC	Aminconconsc	$\lambda C B C B B B B \Delta \Delta \Delta$	~~~~~~
	1551	WWAGIIGIWW	TTGCTGCTTC	ጥርርር እርርር እ አርጥ	77777mom*o	~~~~
	1601	TCCGMITCII	CTTTTTGGATA	ACCAAGGGAA	中でに 田田 本田 ロマネネ	3.3/003
	1651	TURGUMUMC	TCAAGACTTT	"!"C A かかかなかるへ	7//mamamaa	
45	1701	GCHACHACTA	CAGATGTTCC	ACCCCCTTCCT	7/7 / CO 7 / CO 7 7	ana
	1751	CINIGGGIAL	CAAGGTACT"	(CCCCA AMCAC	TO COMPOSE	~~~~
	1801	CONCICCAMM	GACTAAGACA	GCGACATTAC	CHROCAROAN	M3 03 04
	1851	CYTCCGWWTC	CIGAGCGICA	$\Delta CC\Delta CCDDDDD$	CMMCCMMAAMA	~~~
	1901	TICTITIE	GACATCCAAG	ርር ልጥጥሮ አ አ ርሶ	MCMC A Macac	
50	1951	1040101110	TTCAGATCGA	GCCTTTCCC	CMCGGGGGGGGGGG	~~~
	2001	TINGUIMMO	WINNOWARG	(4(12) 2 2 2 2 2 (2) (2)	7 7 7 m 7 0 0 0 0 m 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	2001	* CONTITUE I	MIT (ALVACINATIVA	じゅんさいいいれるかん	COCAMO COCA * *	
	2101	OCT TIGCCIT.	TIGCCAACIC	יוייייתיתיתייוי	TIN TO TO TO THE STATE OF THE S	
	2151	TANAMA CALL	CITATACCIA	""""""""""""""""""""""""""""""""""""""	mmama mama	
55	2201	TIONATO THOT.	GGGTTCATAG	(S) Direction Companies	303 ma a a comm	
55	2251	COMPLETIVE	ACCCCTCGII	יוייוי אכא אכככככ	ACAMAAAAmma	ma co
	2301	TOTUTALIC	TUTANUAMU AMA	しょいり かり へがぐるる	Mamoomes	
	2351	T TOOGGGWYT	AATGULTITA	$\Delta C \Delta T C \Delta T C T T T T T T T T T T T T $	700300mm	
		TITCOTGUITA	CCTGCALIGT	יוייויים עבוידייוייוי	7 MOCOMOCO SERVICES	~- ~ ~
60	2401	THE TOTAL C. T.	ATATACGICA	CACACACAMAC	TCCCC702222	
00	2451		GATGACAGCA	ACCUPATIONS		~~~
	2501		GWWGIICICI	ר גייויים עווייזי א א מיי	7.000000000	
	2551	* TWY CCTWIR	TITCUTGATUT	'I'D MCCCCC X X M	~~m~~~~~~~	
	2601		AGCGGAGCC	Character a variety	カース かんりんりょう かんしょう	3 3 70
65	2651					
05	2701	TTTGAAGTGC	TCGGCCAGTT	TGTCTTTGAA	GTTCGTGGAT	CCTCACGGAM
						CCTCWCGGWI.

2751 TTATAATGTA GATCTTGGGG GTAAGTTCCA ATTCTAG
The PSORT algorithm predicts an outer membrane location (0.922).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 48A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 48B) and for FACS analysis (Figure 48C). A his-tagged protein was also expressed.

The cp0010 protein was also identified in the 2D-PAGE experiment and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp0010 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

10 Example 49

The following C.pneumoniae protein (# ID 4376296) was expressed <SEQ ID 97; cp6296>:

```
1 MEEVSEYLQQ VENQLESCSK RLTKMETFAL GVRLEAKEEI ESILLSDVVN
51 RFEVLCRDIE DMLSRVEEIE RMLRMAELPL LPIKEALTKA FVQHNSCKEK
101 LTKVEPYFKE SPAYLTSEER LQSLNQTLQR AYKESQKVSG LESEVRACRE
201 YDDIDLERTR ARWMAMSERY RDAFQAFQEM LKEGLVEEAQ ALRETEYWLY
251 REERKSKKKH*
```

The cp6296 nucleotide sequence <SEQ ID 98> is:

20	1	ATGGAGGAGG	TGTCTGAGTA	TCTTCAGCAA	GTAGAAAATC	AGTTGGAATC
20	51	CTGTTCCAAG	CGATTAACCA	AGATGGAAAC	TTTTCCCTTA	GGTGTGAGGT
	101	TGGAAGCTAA	AGAAGAGATA	GAGTCTATCA	TACTTUCTA	TGTAGTGAAC
	151	CGTTTTGAGG	TTTTATGTAG	AGATATTGAA	CATATCCTOA	CTCGAGTCGA
	201	GGAGATAGAG	CGGATGTTAC	GTATCCCCCA	CCOOCCOOC	CTTCCTATAA
	251	AAGAAGCGCT	TACCAAGGCT	THETTACANA	AULYCOTOTA	TAAAGAGAAG
25	301	TTAACCAAGG	TAGAGCCTTA	COUNTRY AND A	ATMACAGCTG	TAAAGAGAAG ATCTAACTAG
	351	TGAAGAGCGA	TTGCAGAGTT	TGAATCAGAC	AGCCCTGCAT	ATCTAACTAG
	401	AGTCCCAAAA	CCTTTTCACAGII	TGAATCAGAC	TTTACAACGT	GCGTACAAAG
	451	CAGCTTAAAG	ATCAAGTAAG	TTAGAATCGG	AAGTGAGAGC	CTGTCGAGAG
	501				ACTCAAGGAG	TGAGCTTGAT
30	551			- 4-10 1110	CTTTAGAACT	AAATTTAGCT
	601					
	651		TTGATCTAGA		GCTCGATGGA	TGGCGATGTC
	701	TGAGAGGTAT	AGAGATGCTT	TTCAGGCATT	CCAGGAGATG	TTGAAGGAAG
		GCCTAGTTGA	AGAAGCTCAG	GCTCTTAGAG	AAACCGAGTA	CTGGTTATAT
	751	CGAGAGGAGA	GAAAGAGTAA	AAAGAAACAT	TGA	

35 The PSORT algorithm predicts a cytoplasmic location (0.523).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 49A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 49B) and for FACS analysis (Figure 49C). A his-tagged protein was also expressed.

These experiments show that cp6296 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 50

The following C.pneumoniae protein (PID 4376664) was expressed <SEQ ID 99; cp6664>:

```
1 MVLFHAQASG RNRVKADAIV LPFWHFKDAK NAASFEAEFE PSYLPALENF
51 QGKTGEIELL YSSPKAKEKR IVLLGLGKNE ELTSDVVFQT YATLTRVLRK
45 101 AKCSTVNIIL PTISELRLSA EEFLVGLSSG ILSLNYDYPR YNKVDRNLET
```

```
PLSKVTVIGI VPKMADAIFR KEAAIFEGVY LTRDLVNRNA DEITPKKLAE
                     VALNLGKEFP SIDTKVLGKD AIAKEKMGLL LAVSKGSCVD PHFIVVRYQG
                201
                     RPKSKDHTVL IGKGVTFDSG GLDLKPGKSM LTMKEDMAGG ATVLGILSAL
                301 AVLELPINVT GIIPATENAI DGASYKMGDV YVGMSGLSVE ICSTDAEGRL
 5
                     ILADAITYAL KYCKPTRIID FATLTGAMVV SLGEEVAGFF SNNDVLAEDL
                351
                     LEASAETSEP LWRLPLVKKY DKTLHSDIAD MKNLGSNRAG AITAALFLQR
                     FLEESSVAWA HLDIAGTAYH EKEEDRYPKY ASGFGVRSIL YYLENSLSK*
      The cp6664 nucleotide sequence <SEQ ID 100> is:
                  1 GTGGTTTTAT TTCATGCTCA AGCCTCTGGG CGTAATCGTG TTAAGGCAGA
10
                     TGCTATAGTC CTGCCCTTTT GGCATTTTAA GGATGCAAAA AATGCAGCTT
                101
                     CTTTTGAAGC CGAGTTTGAA CCCTCGTATC TCCCCGCTTT AGAAAACTTT
                151
                     CAAGGAAAAA CCGGGGAGAT TGAACTCCTT TATAGTAGTC CTAAAGCTAA
                201
                     GGAAAAACGC ATTGTCCTCT TAGGCTTAGG GAAAAATGAA GAGCTCACCT
                251
                     CTGATGTTGT TTTCCAAACC TATGCGACAC TAACTCGTGT CTTACGTAAA
15
                     GCAAAGTGTT CCACAGTCAA TATCATCTTA CCTACAATTT CTGAATTGCG
                301
                351
                     GCTTTCTGCC GAAGAATTCT TAGTGGGGTT GTCCTCAGGA ATTTTGTCAT
                401
                     TAAACTATGA CTACCCACGT TATAATAAGG TAGATCGTAA TCTTGAAACT
                     CCTCTTTCTA AAGTCACGGT TATCGGTATC GTTCCCAAAA TGGCGGATGC
                451
                501
                     TATCTTTAGG AAAGAAGCAG CCATTTTCGA AGGCGTATAT CTCACTCGAG
20
                551
                    ATCTTGTGAA CAGGAATGCT GATGAAATTA CCCCTAAGAA ATTGGCAGAG
                    GTTGCTCTGA ATCTGGGAAA AGAGTTCCCT AGTATTGATA CTAAGGTCTT
                601
                     GGGAAAAGAT GCCATCGCCA AAGAGAAAAT GGGACTCCTA TTGGCTGTTT
                651
                701
                    CCAAGGGTTC TTGTGTGGAT CCACACTTTA TCGTTGTCCG TTATCAAGGA
                751
                    CGTCCTAAGT CTAAAGATCA CACCGTCTTG ATAGGGAAAG GGGTCACTTT
25
                    TGACTCTGGA GGTTTAGACC TCAAGCCTGG AAAATCCATG CTTACTATGA
                801
                851
                    AAGAAGACAT GGCAGGTGGG GCTACAGTCC TCGGGATTCT CTCGGCGTTA
                    GCAGTTTTAG AGCTTCCTAT AAATGTCACG GGGATCATTC CTGCTACAGA
                901
                    GAATGCTATC GATGGCGCCT CCTATAAAAT GGGAGATGTC TATGTAGGAA
               951
                    TGTCGGGGCT TTCTGTTGAG ATTTGTAGTA CCGATGCTGA GGGACGTCTT
              1001
30
              1051
                    ATCCTCGCTG ATGCGATTAC ATATGCTTTA AAATATTGTA AACCGACACG
                    TATTATAGAT TTTGCAACTC TAACAGGAGC TATGGTAGTC TCTCTAGGAG
              1101
                    AAGAGGTTGC AGGTTTCTTT TCCAATAACG ATGTTTTAGC TGAAGATCTT
              1151
              1201
                    TTAGAGGCGT CAGCCGAAAC CTCCGAGCCG TTATGGAGAC TTCCTCTAGT
                    TAAGAAGTAT GATAAAACAT TGCATTCTGA TATTGCTGAT ATGAAAAATC
              1251
35
                    TAGGCAGTAA CCGTGCAGGG GCTATTACAG CAGCATTATT CTTGCAGAGA
              1301
              1351
                    TTTTTGGAAG AATCTTCGGT AGCTTGGGCA CATCTTGATA TTGCAGGTAC
              1401
                    TGCATATCAT GAAAAAGAAG AAGACCGTTA TCCAAAATAT GCTTCAGGTT
                    TTGGTGTTCG TTCTATTCTT TATTACTTAG AAAATAGTCT TTCTAAGTAG
              1451
```

The PSORT algorithm predicts an inner membrane location (0.268).

- The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 50A), as a his-tagged protein, and as a GST/His fusion. The proteins were used to immunise mice, whose sera were used in Western blot Western blot (50B) and FACS (50C) analyses.
 - The cp6664 protein was also identified in the 2D-PAGE experiment (Cpn0385) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.
- These experiments show that cp6664 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 51

The following C.pneumoniae protein (PID 4376696) was expressed <SEQ ID 101; cp6696>:

50	1 51 101	MTLIFVIIIV ACQDKTLRQS QYPSGAVELF	VLKIFRYHPL	LKIHDIARAV	YLLMALEEGE	DIGLEFINIO
	151 201	SHFQQALFDH LEDPALGFWM	QGSVFPSLWS	QENSRLLKER	TTISOSTIFO	LOMOTUDEVS
55	251 301	DCAARGCCGT	AKEFVCQKSH	QTTEISFLTS	TGKPHPRNTG	FSYLEDSYVH

```
351 LDSYKGPGND IMILGENDAI NIVSASPYME IFALQGKEKF WNADFLINIP
401 YKEEGVMLIF EKKVTSEKGR FFTKMN*
```

A predicted signal peptide is highlighted.

The cp6696 nucleotide sequence <SEQ ID 102> is:

5	-					
,	1	TTGACTCTAA	TTTTTGTTAT	TATTATCGTT	TGGTGCAATG	CTTTTCTGAT
	51	CAAATTGTGC		GGCTGCAATC	CAGGTTACAA	CATTGTATAG
	101	AAGTGTCCCA	GAATTCGAAC	TTTGATTCAC	AAGTAAAACA	GTTTATCTAT
	151	GCGTGCCAAG	ATAAGACATT	AAGGCAGTCT	GTACTCAAGA	TTTTCCGCTA
10	201	CCATCCTTTA		ATGATATTGC	TCGGGCCGTC	ТАТСТТТСА
10	251	TGGCCTTAGA	AGAAGGCGAG	GATTTAGGCT	TAAGCTTTTT	AAATGTACAG
	301	CAGTACCCTT		AGAACTGTTT		
	351	GAAAGGATTA	CCTTATCCTG	CAGAACATGC	GGAATTTGGC	CTACTCCTGT
	401	TACAGATCGC	AGAGTTTTAT	GAAGAGAGTC	AGGCATACGT	CTCTAAAATG
1 =	451	AGTCATTTTC	AACAGGCACT	CTTTGATCAC	CAAGGGAGCG	TCTTTCCCTC
15	501	TCTCTGGAGC	CAGGAGAACT	CTCGACTCCT	AAAAGAAAAG	ACA ACTICOTIC
	551	GCCAATCGTT	TCTCTTCCAA	TTAGGAATGC	AAATTCACCC	AGAATACAGT
	601	CTTGAGGATC		GTTCTGGATG		
	651	CGCTTTTGTA	GCCGCTTCAG	GATGTCAAAG	TAGCTTGGGA	GCGTATTCCT
20	701	CAGGGGATGT	CGGTGTTATC	GCTTATGGAC	CTTGCTTCTCG	AGACATTAGT
20	751	GATTGTTATT	ATTTTGGATG			TCGTGTGCCA
	801	AAAATCTCAC	CAAACTACAG	AGATTTCTTT	TCTCACCTCT	ACAGGAAAGC
	851	CTCATCCCAG				CTATGTACAT
	901	CTGCCGATCC		CACTATTTCC		ATCGCGTGCA
~~	951	CGCTGCGTTG	GCTGAGGCCA		GACGTTTTCT	ATTTTCTGTA
25	1001			GTTGACGGCC		CTCCTGTTCC
	1051					TTGGGGAAAA
	1101	TGACGCAATC			CTATATGGAA	
	1151	TGCAAGGCAA				
	1201	TACAAAGAAG				TAATATTCCT
30	1251			GTTAATTTTT AGATGAATTA	TAMMAAAAG	TGACCTCTGA
				VGV T GWW J. I.W	A	

The PSORT algorithm predicts an inner membrane location (0.463).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 51A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 51B) and for FACS analysis (Figure 51C). A his-tagged protein was also expressed.

35 This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6696 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 52

40 The following C.pneumoniae protein (PID 4376790) was expressed <SEQ ID 103; cp6790>:

```
MSEHKKSSKI IGIDLGTTNS CVSVMEGGQA KVITSSEGTR TTPSIVAFKG
                51 NEKLVGIPAK RQAVTNPEKT LGSTKRFIGR KYSEVASEIQ TVPYTVTSGS
                    KGDAVFEVDG KQYTPEEIGA QILMKMKETA EAYLGETVTE AVITVPAYFN
               101
               151
                    DSQRASTKDA GRIAGLDVKR IIPEPTAAAL AYGIDKVGDK KIAVFDLGGG
45
               201
                    TFDISILEIG DGVFEVLSTN GDTLLGGDDF DEVIIKWMIE EFKKQEGIDL
                    SKDNMALQRL KDAAEKAKIE LSGVSSTEIN QPFITMDAQG PKHLALTLTR
               251
               301
                    AQFEKLAASL IERTKSPCIK ALSDAKLSAK DIDDVLLVGG MSRMPAVQET
               351
                    VKELFGKEPN KGVNPDEVVA IGAAIQGGVL GGEVKDVLLL DVIPLSLGIE
                    TLGGVMTTLV ERNTTIPTQK KQIFSTAADN QPAVTIVVLQ GERPMAKDNK
               401
50
               451
                    EIGRFDLTDI PPAPRGHPQI EVSFDIDANG IFHVSAKDVA SGKEQKIRIE
               501 ASSGLQEDEI QRMVRDAEIN KEEDKKRREA SDAKNEADSM IFRAEKAIKD
               551 YKEQIPETLV KEIEERIENV RNALKDDAPI EKIKEVTEDL SKHMOKIGES
               601 MQSQSASAAA SSAANAKGGP NINTEDLKKH SFSTKPPSNN GSSEDHIEEA
```

651 DVEIIDNDDK*

The cp6790 nucleotide sequence <SEQ ID 104> is:

	1	ATGAGTGAAC	ACAAAAAATC	AAGCAAAATT	ATAGGTATAG	ACTTAGGCAC
_	51	AACAAACTCC	TGCGTATCTG	TTATGGAAGG	AGGACAAGCT	AAAGTAATTA
5	101	CATCATCCGA	AGGAACAAGA	ACCACGCCAT	CGATCGTTGC	CTTCAAAGGT
	151	AATGAGAAAT	TAGTGGGGAT	TCCAGCAAAA	CGTCAAGCAG	TGACAAATCC
	201	AGAAAAAACT	CTCGGCTCTA	CAAAACGCTT	TATTGGCCGT	AAGTACTCTG
	251	AAGTAGCTTC	GGAAATCCAA	ACCGTTCCTT	ATACAGTCAC	CTCCGGATCT
10	301	AAAGGTGATG	CCGTTTTCGA	AGTTGATGGC	AAACAATACA	CTCCAGAAGA
10	351	AATTGGCGCA	CAAATCTTAA	TGAAAATGAA	AGAGACAGCA	GAAGCTTATC
	401	TAGGCGAAAC	TGTCACAGAA	GCAGTGATCA	CCGTCCCCGC	ATACTTCAAT
	451	GATTCTCAAC	GAGCATCCAC	AAAAGATGCT	GGACGCATTG	CAGGTCTAGA
	501	TGTAAAACGT	ATCATTCCAG	AACCTACCGC	AGCAGCTCTT	GCCTACGGAA
1.5	551	TCGATAAAGT	CGGTGATAAA	AAAATCGCTG	TCTTCGACCT	TGGTGGAGGA
15	601	ACTTTTGATA	TCTCCATCCT	AGAAATCGGT	GATGGCGTCT	TCGAAGTTCT
	651	ATCTACAAAT	GGAGATACTC	TCCTCGGTGG	AGACGACTTT	GATGAAGTCA
	701	TTATCAAATG	GATGATCGAA	GAATTCAAAA	AACAAGAAGG	CATTGATCTT
	751	AGCAAAGATA	ATATGGCCTT	ACAAAGACTT	AAAGATGCTG	CTGAGAAAGC
20	801	AAAAATAGAA	CTTTCAGGAG	TCTCTTCCAC	AGAAATCAAT	CAGCCATTCA
20	851	TCACAATGGA	TGCACAAGGA	CCTAAACACC	TTGCATTGAC	ACTCACACGT
	901	GCGCAATTCG	AGAAACTCGC	AGCCTCTCTA	ATCGAAAGAA	CAAAATCTCC
	951	ATGCATCAAA	GCACTCAGTG	ACGCAAAACT	TTCCGCTAAG	GATATCGATG
	1001	ATGTTCTCTT	AGTTGGAGGT	ATGTCAAGAA	TGCCCGCAGT	GCAAGAAACT
25	1051	GTAAAAGAAC	TCTTCGGCAA	AGAGCCTAAT	AAAGGAGTCA	ACCCCGACGA
25	1101	AGTTGTTGCT	ATTGGAGCCG	CAATTCAAGG	TGGTGTTCTT	GGCGGAGAAG
	1151	TTAAGGATGT	TCTACTTCTA	GACGTTATCC	CCCTATCTCT	GGGTATCGAA
	1201	ACTCTAGGAG	GCGTCATGAC	GACTCTGGTA	GAGAGAAATA	CTACAATCCC
	1251	TACACAGAAA	AAACAAATCT	TCTCCACAGC	TGCTGATAAC	CAGCCTGCGG
30	1301	TTACCATCGT	AGTTCTCCAA	GGAGAGCGTC	CCATGGCCAA	AGATAACAAG
30	1351	GAAATCGGAA	GATTCGATCT	TACAGATATC	CCTCCGGCTC	CTCGAGGCCA
	1401	TCCTCAAATC	GAAGTCTCCT	TCGATATCGA	TGCAAACGGA	ATTTTCCATG
	1451	TCTCAGCTAA	AGATGTTGCC	AGCGGTAAAG	AACAGAAAAT	TCGTATCGAA
	1501	GCAAGCTCAG	GACTTCAAGA	AGATGAAATC	CAAAGAATGG	TTCGAGATGC
35	1551	CGAAATTAAT	AAGGAAGAAG	ATAAAAAACG	TCGTGAAGCT	TCAGATGCTA
55	1601	AAAATGAAGC	CGATAGCATG	ATCTTCAGAG	CCGAAAAAGC	TATTAAAGAT
	1651	TATAAGGAGC	AAATTCCTGA	AACTTTAGTT	AAAGAAATCG	AAGAGCGAAT
	1701	CGAAAACGTG	CGCAACGCAC	TCAAAGATGA	CGCTCCTATT	GAAAAAATTA
	1751	AAGAGG'I'TAC	TGAAGACCTA	AGCAAGCATA	TGCAAAAAAT	TGGAGAGTCT
40	1801 1851	ATGCAATCGC	AGTCTGCATC	AGCAGCAGCA	TCATCGGCAG	CCAATGCTAA
40	1901	AGGTGGACCT	AACATCAATA	CAGAAGATTT	GAAAAAACAT	AGTTTCAGTA
	1901	CGAAGCCTCC	TTCAAATAAC	GGTTCTTCAG	AAGACCATAT	CGAAGAAGCT
	1921	GATGTAGAAA	TTATTGATAA	CGACGATAAG	TAA	

The PSORT algorithm predicts an inner membrane location (0.151).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 52A) and a histagged product. The proteins were used to immunise mice, whose sera were used in Western blot (Figure 52B) and FACS (Figure 52C) analyses.

The cp6790 protein was also identified in the 2D-PAGE experiment (Cpn0503).

These experiments show that cp6790 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

50 **Example 53**

The following C.pneumoniae protein (PID 4376878) was expressed <SEQ ID 105; cp6878>:

1 MNVPDSKNLH PPAYELLEIK ARITQSYKEA SAILTAIPDG ILLLSETGHF
51 LICNSQAREI LGIDENLEIL NRSFTDVLPD TCLGFSIQEA LESLKVPKTL
101 RLSLCKESKE KEVELFIRKN EISGYLFIQI RDRSDYKQLE NAIERYKNIA
55 151 ELGKMTATLA HEIRNPLSGI VGFASILKKE ISSPRHQRML SSIISGTRSL
201 NNLVSSMLEY TKSQPLNLKI INLQDFFSSL IPLLSVSFPN CKFVREGAQP

```
251
    LFRSIDPDRM NSVVWNLVKN AVETGNSPIT LTLHTSGDIS VTNPGTIPSE
    IMDKLFTPFF TTKREGNGLG LAEAQKIIRL HGGDIQLKTS DSAVSFFIII
301
351 PELLAALPKE RAAS*
```

The cp6878 nucleotide sequence <SEQ ID 106> is:

```
5
               ATGAACGTCC CTGATTCCAA GAACCTCCAT CCTCCTGCAT ACGAACTCCT
          51
               AGAGATCAAG GCTCGCATCA CACAATCTTA TAAAGAAGCG AGTGCTATAC
              TGACAGCGAT TCCTGATGGT ATCCTATTAC TTTCTGAAAC AGGACACTTT
          151
              CTTATCTGCA ATTCACAAGC ACGTGAAATT CTAGGAATTG ATGAAAATCT
          201
              AGAAATTCTT AATAGATCCT TTACCGATGT TCTCCCCGAT ACGTGTCTTG
10
              GATTTTCTAT TCAAGAGGCT CTTGAATCTC TAAAAGTCCC TAAAACTCTT
          251
          301 AGACTCTCTC TCTGTAAAGA ATCTAAAGAA AAAGAAGTGG AACTCTTCAT
          351
              CCGTAAAAAC GAGATCAGTG GATACCTGTT TATCCAAATC CGCGATCGGT
          401 CCGACTATAA ACAACTAGAA AACGCTATAG AAAGATATAA AAATATCGCA
              GAACTTGGGA AAATGACGGC TACCCTAGCT CACGAAATCC GCAATCCGCT
          451
15
          501 AAGTGGAATC GTTGGATTTG CCTCTATCCT AAAGAAAGAG ATTTCCTCTC
          551 CTCGCCACCA ACGAATGCTC TCCTCAATCA TCTCCGGCAC AAGGTCTCTA
          601 AATAACCTTG TCTCTTCTAT GTTAGAATAT ACAAAATCAC AACCGTTGAA
          651
              701 TCTCCGTCTC TTTCCCGAAT TGCAAGTTTG TAAGAGAGGG CGCACAACCT
20
          751 CTATTCAGAT CTATAGATCC TGATCGGATG AACAGTGTCG TTTGGAACCT
          801 AGTGAAAAAT GCTGTAGAAA CAGGGAACTC TCCGATCACT CTGACCCTGC
          851 ATACATCGGG AGACATCTCG GTAACGAACC CCGGAACGAT TCCTTCCGAG
              ATCATGGACA AGCTCTTCAC TCCATTCTTC ACAACAAGA GAGAGGGAAA
          901
          951
              TGGTTTGGGA CTTGCTGAAG CTCAAAAAAT TATAAGACTC CATGGAGGAG
25
          1001 ATATCCAATT AAAAACAAGC GACTCCGCCG TTAGCTTCTT CATAATCATC
          1051 CCCGAACTTC TAGCGGCCCT ACCCAAAGAA AGAGCCGCTA G
```

The PSORT algorithm predicts an inner membrane location (0.204).

The protein was expressed in E.coli and purified as a his-tag product (Figure 53A) and as a GSTfusion product. The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 53B) and for FACS analysis.

These experiments show that cp6878 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 54

30

The following C.pneumoniae protein (PID 4377224) was expressed <SEQ ID 107; cp7224>:

35	1	MMKKIRKVAL	AVGGSGGHIV	PALSVKEARS	REGIDULLIG	KGLKNHPSLQ	
	51	QGISYREIPS	GLPTVLNPIK	IMSRTLSLCS	GALKABKELK	TEURUNG	
	101	GSYHSLPVLL	AGLSHKIPLF	LHEONLVPGK	VNOLFSRYAR	GIGVNFSPVT	
	151	KHFRCPAEEV	FLPKRSFSLG	SPMMKRCTNH	TPTICVVGGS	OGAOILNTCV	
4.0	201	PQALVKLVNK	YPNMYVHHIV	GPKSDVMKVQ	HVYNRGEVLC	CVKPFEEOLL	
40	251	DVLLAADLVI	SRAGATILEE	ILWAKVPGIL	IPYPGAYGHO	EVNAKFFVDV	
	301	LEGGTMILEK	ELTEKLLVEK	VTFALDSHNR	EKORNSLAAY	SQQRSTKTFH	
	351	AFICECL*					
The cp7224 nucleotide sequence <seo 108="" td=""> is:</seo>							

	1	ATGATGAAGA	AAATTCGAAA	AGTAGCCTTG	GCTGTAGGAG	GTTCAGGAGG
45	51	CCACATTGTC	CCAGCTCTCT	CGGTAAAGGA	AGCTTTTTCT	CGTGAAGGAA
	101	TAGACGTATT	ACTACTAGGG	AAAGGTCTCA	AGAACCATCC	TTCTTTGCAA
	151	CAGGGAATCA	GCTATCGGGA	AATCCCCTCA	GGACTTCCTA	CAGTCCTTAA
	201	TCCCATAAAG	ATCATGAGCA	GGACCCTTTC	TCTATGTTCA	GGATACCTGA
	251	AAGCAAGAAA	GGAACTTAAA	ATTTTTGACC	CTGACCTGGT	CATAGGATTT
50	301	GGGAGCTACC	ACTCTCTTCC	CGTGTTGCTC	GCAGGACTGT	CCCATAAAAT
	351	TCCCTTATTT	CTACACGAAC	AAAATCTAGT	TCCTGGAAAA	GTAAATCAAT
	401	TGTTTTCCCG	CTATGCTCGA	GGTATTGGAG	TGAATTTCTC	CCCCGTTACT
	451	AAACACTTCC	GCTGCCCCGC	AGAAGAGGTC	TTCCTTCCTA	AACGAAGCTT
	501	CTCCTTAGGA	AGCCCTATGA	TGAAGCGATG	TACAAATCAT	ACCCCTACAA
55	551	TCTGTGTTGT	TGGAGGTTCT	CAGGGAGCAC	AGATATTAAA	TACTICATO
	601	CCCCAAGCTC	TTGTCAAGCT	AGTCAATAAG	TACCCAAATA	TGTACGTCCA

```
651 TCATATTGTA GGACCTAAAA GTGATGTTAT GAAGGTGCAA CATGTTTACA
701 ATCGTGGAGA GGTCCTCTC TGTGTGAAGC CGTTCGAAGA GCAACTCCTA
751 GATGTCTTGC TTGCCGCAGA TTTGGTCATC AGTAGGCAG GAGCCACAAT
801 TTTAGAAGAA ATTCTTTGGG CAAAAGGTTCC CGGAATTTTA ATTCCCTATC
5 851 CAGGACCTTA TGGACATCAG GAAGTTAAAT CTAAATTCTT TGTAGACGTC
901 TTAGAAGGG GAACTATGAT CCTAGAAAAA GAATTAACAG AGAAGCTATT
951 AGTAGAAAAA GTAACGTTTG CTTTAGACTC CCATAACAGA GAAAAACAAC
1001 GCAATTCCCT AGCGGCGTAT AGTCAGCAAA GGTCAACAAA AACATTCCAT
1051 GCATTCATTT GTGAATGCTT ATAG
```

10 The PSORT algorithm predicts an inner membrane location (0.164).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 54A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 54B) and for FACS analysis (Figure 54C). A his-tagged protein was also expressed.

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7224 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 55

The following C.pneumoniae protein (PID 4377140) was expressed <SEQ ID 109; cp7140>:

20	1	MVRRSISFCL	FFLMTLLCCT	SCNSRSLIVH	GLPGREANEI	VVLLVSKGVA
	51	AQKLPQAAAA	TAGAATEQMW	DIAVPSAQIT	EALAILNQAG	LPRMKGTSLL
	101	DLFAKQGLVP	SELQEKIRYQ	EGLSEQMAST	IRKMDGVVDA	SVQISFTTEN
	151	EDNLPLTASV	YIKHRGVLDN	PNSIMVSKIK	RLIASAVPGL	VPENVSVVSD
	201	RAAYSDITIN	GPWGLTEEID	YVSVWGIILA	KSSLTKFRLI	FYVLILILFV
25	251	ISCGLLWVIW	KTHTLIMTMG	GTKGFFNPTP	YTKNALEAKK	AEGAAADKEK
	301	KEDADSQGES	KNAETSDKDS	SDKDAPEGSN	EIEGA*	

A predicted signal peptide is highlighted.

The cp7140 nucleotide sequence <SEQ ID 110> is:

	1	ATGGTTCGTC	GATCTATTTC	TTTTTGCTTG	TTCTTTCTAA	TGACATTGCT
30	51	GTGCTGTACA	AGCTGTAACA	GCAGGTCTCT	AATTGTGCAC	GGTCTTCCTG
	101	GCAGAGAAGC	GAATGAGATT	${\tt GTGGTGCTTT}$	TGGTAAGCAA	AGGGGTGGCT
	151	GCACAAAAAT	TGCCTCAAGC	TGCAGCGGCT	ACAGCCGGAG	CAGCTACTGA
	201	GCAAATGTGG	GATATCGCGG	TTCCGTCAGC	ACAAATCACA	GAGGCCCTTG
	251	CCATTCTAAA	TCAAGCGGGT	CTTCCACGTA	TGAAAGGGAC	AAGCCTGTTA
35	301	GATCTTTTTG	CAAAACAAGG	TCTTGTTCCT	TCCGAGCTTC	AGGAAAAAAT
	351	CCGTTATCAA	GAAGGCTTAT	CAGAACAGAT	GGCCTCTACG	ATTAGAAAAA
	401	TGGATGGCGT	TGTCGATGCC	TCAGTACAGA	TTTCCTTCAC	TACAGAAAAT
	451	GAAGATAATC	TTCCTTTAAC	AGCCTCTGTG	TATATTAAGC	ATCGAGGGGT
	501	TTTGGACAAT	CCGAACAGCA	${\tt TTATGGTTTC}$	CAAAATTAAG	CGCCTTATTG
40	551	CAAGTGCTGT	TCCAGGACTT	GTGCCAGAGA	ACGTCTCTGT	AGTGAGCGAT
	601	CGCGCAGCTT	ATAGTGATAT	${\tt TACAATTAAT}$	GGTCCTTGGG	GATTAACAGA
	651	AGAAATCGAT	TATGTTTCTG	TTTGGGGTAT	TATTCTTGCG	AAGTCTTCGC
	701	TCACCAAATT	CCGTCTCATT	TTTTATGTCT	TGATTCTCAT	TTTATTTGTT
	751	ATTTCTTGTG	GTCTCCTTTG	GGTCATTTGG	AAAACTCATA	CTCTCATTAT
45	801	GACTATGGGA	GGTACAAAAG	GGTTCTTCAA	CCCTACACCA	TATACAAAGA
	851	ATGCCTTGGA	AGCCAAGAAA	GCCGAGGGAG	CAGCTGCTGA	CAAAGAGAAA
	901	AAAGAAGATG	CAGATTCACA	GGGGGAAAGC	AAAAATGCGG	AAACCAGTGA
	951	TAAAGACTCT	AGTGATAAAG	ATGCTCCAGA	AGGAAGCAAT	GAAATTGAGG
	1001	GTGCTTAG				

50 The PSORT algorithm predicts an inner membrane location (0.650).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 55A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 55B) and for FACS analysis (Figure 55C). A his-tagged protein was also expressed.

These experiments show that cp7140 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 56

5

The following C.pneumoniae protein (PID 4377306) was expressed <SEQ ID 111; cp7306>:

	1	MITKQLRSWL	AVLVGSSLLA	LPLSGQAVGK	KESRVSELPQ	DVLLKEISGG
	51	FSKVATKATP	AVVYIESFPK	SQAVTHPSPG	RRGPYENPFD	YFNDEFFNRF
10	101	FGLPSQREKP	QSKEAVRGTG	FLVSPDGYIV	TNNHVVEDTG	KIHVTLHDGQ
	151	KYPATVIGLD	PKTDLAVIKI	KSQNLPYLSF	GNSDHLKVGD	WAIAIGNPFG
	201	LQATVTVGVI	SAKGRNQLHI	ADFEDFIQTD	AAINPGNSGG	PLLNIDGQVI
	251	GVNTAIVSGS	GGYIGIGFAI	PSLMANRIID	QLIRDGQVTR	GFLGVTLQPI
	301	DAELAACYKL	EKVYGALVTD	VVKGSPADKA	GLKQEDVIIA	YNGKEVDSLS
15	351	MFRNAVSLMN	PDTRIVLKVV	REGKVIEIPV	TVSQAPKEDG	MSALQRVGIR
	401	VQNLTPETAK	KLGIAPETKG	ILIISVEPGS	VAASSGIAPG	QLILAVNRQK
	451	VSSIEDLNRT	LKDSNNENIL	LMVSQGDVIR	FIALKPEE*	

A predicted signal peptide is highlighted.

The cp7306 nucleotide sequence <SEQ ID 112> is:

20	1	ATGATAACTA	AGCAATTGCG	TTCGTGGCTA	GCTGTACTTG	TTGGTTCAAG
	51	TCTGCTAGCT	CTTCCTTTAT	CAGGGCAAGC	TGTCGGGAAA	AAAGAATCTC
	101	GAGTTTCCGA	GCTGCCTCAA	GACGTTCTTC	TTAAAGAGAT	CTCGGGAGGG
	151	TTTTCTAAGG	TCGCTACCAA	GGCGACTCCC	GCTGTTGTGT	ACATAGAAAG
	201	TTTCCCAAAG	AGCCAGGCTG	TAACACATCC	TTCTCCTGGA	CGCCGTGGGC
25	251	CTTATGAAAA	TCCTTTTGAT	TATTTTAATG	ATGAGTTTTT	CAATCGTTTT
	301	TTTGGTCTAC	CTTCACAGAG	GGAAAAACCT	CAAAGTAAAG	AGGCGGTTCG
	351	AGGAACAGGT	TTCCTAGTAT	CTCCAGATGG	CTATATTGTG	ACTAATAACC
	401	ATGTTGTCGA	AGATACAGGT	AAGATTCACG	TAACTCTTCA	TGATGGGCAA
	451	AAGTACCCAG	CAACTGTAAT	CGGACTCGAT	CCTAAAACAG	ACCTTGCAGT
30	501	CATTAAAATT	AAATCCCAAA	ACCTCCCGTA	TCTTTCTTTT	GGAAACTCCG
	551	ACCACTTAAA	AGTCGGAGAT	TGGGCAATTG	CAATTGGAAA	TCCCTTCGGT
	601	CTTCAAGCTA	CGGTCACCGT	AGGTGTCATC	AGTGCTAAAG	GAAGAAATCA
	651	ACTCCACATT	GCAGATTTTG	AAGATTTTAT	TCAGACAGAT	GCTGCGATTA
	701	ATCCAGGCAA	CTCTGGAGGC	CCTCTTCTAA	ATATTGATGG	ACAGGTCATC
35	751	GGTGTTAATA	CTGCCATTGT	CAGTGGTAGT	GGTGGCTATA	TTGGAATCGG
	801	GTTTGCGATT	CCTAGCCTTA	TGGCAAATAG	AATCATAGAT	CAGCTGATTC
	851	GTGATGGTCA	AGTTACCCGA	GGATTCTTAG	GAGTGACTTT	ACAACCTATA
	901	GATGCGGAAC	TCGCTGCTTG	CTACAAACTC	GAAAAGGTTT	ATGGCGCTTT
	951	AGTCACAGAT	GTTGTTAAAG	GATCTCCAGC	AGATAAAGCA	GGGCTAAAAC
40	1001	AAGAAGATGT	GATCATTGCT	TATAATGGGA	AAGAAGTCGA	TTCACTGAGT
	1051	ATGTTCCGTA	ATGCTGTTTC	TTTAATGAAT	CCAGATACAC	GTATTGTTCT
	1101	AAAGGTAGTT	CGTGAAGGAA	AGGTTATCGA	AATACCCGTG	ACAGTTTCTC
	1151	AAGCTCCAAA	AGAAGATGGA	ATGTCGGCTT	TACAGCGTGT	GGGAATCCGT
	1201	GTGCAAAACC	TAACTCCTGA	AACTGCTAAG	AAGCTGGGAA	TTGCTCCAGA
45	1251	GACTAAAGGC	ATTTTGATTA	TAAGTGTTGA	ACCAGGGTCT	GTAGCAGCTT
	1301	CTTCAGGAAT	TGCTCCTGGT	CAGCTGATCC	TTGCTGTGAA	TAGACAAAAA
	1351	GTATCTTCGA	TTGAAGATCT	GAATAGAACG	TTAAAAGATT	CTAACAATGA
	1401	GAATATTCTT	CTTATGGTTT	CTCAAGGAGA	TGTTATTCGC	TTCATTGCCC
	1451	TGAAACCTGA	AGAATAA			

50 The PSORT algorithm predicts a periplasmic location (0.923).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 56A) and as a GST-fusion product (Figure 56B). The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 56C) and for FACS (Figure 56D) analyses.

The cp7306 protein was also identified in the 2D-PAGE experiment (Cpn0979) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7306 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

5 Example 57

10

The following C.pneumoniae protein (PID 4377132) was expressed <SEQ ID 113; cp7132>:

```
1 MCNSIAMKKO KRGFVLMELL MSFTLIALLL GTLGFWYRKI YTVQKQKERI
51 YNFYIEESRA YKQLRTLFSM SLSSSYEEPG SLFSLIFDRG VYRDPKLAGA
101 VRASLHHDTK DQRLELRICN IKDQSYFETQ RLLSHVTHVV LSFQRNPDPE
151 KLPETIALTI TREPKAYPPR TLTYQFAVGK*
```

A predicted signal peptide is highlighted.

The cp7132 nucleotide sequence <SEQ ID 114> is:

```
ATGTGTAACT CTATAGCTAT GAAAAAGCAA AAGCGTGGCT TTGTGCTTAT
                     GGAATTACTC ATGTCGTTCA CTCTAATTGC TTTGTTATTA GGGACTTTAG
                 51
15
                101
                     GATTTTGGTA TCGGAAAATT TATACTGTAC AAAAGCAAAA AGAACGTATT
                     TATAACTTTT ATATCGAAGA AAGCCGAGCC TACAAGCAGC TCAGAACCCT
                151
                201
                     GTTTAGCATG TCCTTGTCTT CATCTTACGA GGAGCCTGGA TCATTATTTT
                251
                     CTTTAATCTT TGATCGGGGT GTTTATCGAG ATCCTAAGCT GGCAGGTGCG
                     GTACGAGCTT CTCTCCATCA TGACACCAAG GATCAGAGAT TGGAACTTCG
                301
20
                351
                     TATTTGTAAT ATTAAGGATC AGTCTTACTT TGAAACACAG CGACTGCTCT
                401
                     CCCACGTGAC CCATGTTGTA CTTTCCTTCC AGAGAAATCC TGATCCTGAA
                     AAACTTCCTG AAACAATTGC TTTAACTATA ACACGGGAAC CTAAAGCATA
                451
                501
                     TCCTCCAAGG ACGTTAACAT ACCAATTTGC GGTTGGGAAA TAA
```

The PSORT algorithm predicts a periplasmic location (0.915).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 57A) or as a GST-fusion. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 57B) and FACS (Figure 57C) analyses.

These experiments show that cp7132 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

30 Example 58

The following C.pneumoniae protein (PID 4376733) was expressed <SEQ ID 115; cp6733>:

```
MKTSIPWVLV SSVLAFSCHL QSLANEELLS PDDSFNGNID SGTFTPKTSA
                     TTYSLTGDVF FYEPGKGTPL SDSCFKQTTD NLTFLGNGHS LTFGFIDAGT
                51
                    HAGAAASTTA NKNLTFSGFS LLSFDSSPST TVTTGQGTLS SAGGVNLENI
                101
35
               151
                    RKLVVAGNFS TADGGAIKGA SFLLTGTSGD ALFSNNSSST KGGAIATTAG
                    ARIANNTGYV RFLSNIASTS GGAIDDEGTS ILSNNKFLYF EGNAAKTTGG
                201
                    AICNTKASGS PELIISNNKT LIFASNVAET SGGAIHAKKL ALSSGGFTEF
                251
               301
                    LRNNVSSATP KGGAISIDAS GELSLSAETG NITFVRNTLT TTGSTDTPKR
                    NAINIGSNGK FTELRAAKNH TIFFYDPITS EGTSSDVLKI NNGSAGALNP
               351
40
                    YQGTILFSGE TLTADELKVA DNLKSSFTQP VSLSGGKLLL QKGVTLESTS
                401
                451
                    FSQEAGSLLG MDSGTTLSTT AGSITITNLG INVDSLGLKQ PVSLTAKGAS
                    NKVIVSGKLN LIDIEGNIYE SHMFSHDQLF SLLKITVDAD VDTNVDISSL
               501
                    IPVPAEDPNS EYGFQGQWNV NWTTDTATNT KEATATWTKT GFVPSPERKS
                551
               601
                    ALVCNTLWGV FTDIRSLQQL VEIGATGMEH KQGFWVSSMT NFLHKTGDEN
45
                    RKGFRHTSGG YVIGGSAHTP KDDLFTFAFC HLFARDKDCF IAHNNSRTYG
                651
                    GTLFFKHSHT LQPQNYLRLG RAKFSESAIE KFPREIPLAL DVQVSFSHSD
                701
                751
                    NRMETHYTSL PESEGSWSNE CIAGGIGLDL PFVLSNPHPL FKTFIPQMKV
                    EMVYVSQNSF FESSSDGRGF SIGRLLNLSI PVGAKFVQGD IGDSYTYDLS
               801
```

851 GFFVSDVYRN NPQSTATLVM SPDSWKIRGG NLSRQAFLLR GSNNYVYNSN 901 CELFGHYAME LRGSSRNYNV DVGTKLRF*

A predicted signal peptide is highlighted.

The cp6733 nucleotide sequence <SEQ ID 116> is:

	-		-	•			
5		1	ATGAAGACTT	CGATTCCTTG	GGTTTTAGTT	ጥሮርጥሮርናምርጥ	ጥ ል ርርጥጥጥርጥር
		51	ATGTCACCTA	CAGTCACTAG	CTAACGAGGA	ACTTTTATCA	CCTGATGATA
		101	GCTTTAATGG	AAATATCGAT	TCAGGAACGT	TTACTCCAAA	AACTTCAGCC
		151	ACAACATATT	CTCTAACAGG	AGATGTCTTC	TTTTACGAGC	CTGGAAAAGG
		201	CACTCCCTTA	TCTGACAGTT	GTTTTAAGCA	AACCACGGAC	AATCTTACCT
10		251	TCTTGGGGAA	CGGTCATAGC	TTAACGTTTG	GCTTTATAGA	TGCTGGCACT
		301	CATGCAGGTG	CTGCTGCATC	TACAACAGCA	AATAAGAATC	TTACCTTCTC
		351	AGGGTTTTCC	TTACTGAGTT	TTGATTCCTC	TCCTAGCACA	ACCCTTACTA
		401	CAGGTCAGGG	AACGCTTTCC	TCAGCAGGAG	GCGTAAATTT	AGAAAATATT
		451	CGTAAACTTG	TAGTTGCTGG	GAATTTTTCT	ACTGCAGATG	GTGGAGCTAT
15		501	CAAAGGAGCG	TCTTTCCTTT	TAACTGGCAC	TTCTGGAGAT	GCTCTTTTTA
		551	GTAACAACTC	TTCATCAACA	AAGGGAGGAG	CAATTGCTAC	TACAGCAGGC
		601	GCTCGCATAG	CAAATAACAC	AGGTTATGTT	AGATTCCTAT	CTAACATAGC
		651	GTCTACGTCA	GGAGGCGCTA	TCGATGATGA	AGGCACGTCG	ATACTATCGA
•		701	ACAACAAATT	TCTATATTT	GAAGGGAATG	CAGCGAAAAC	TACTGGCGGT
20		75 1	GCGATCTGCA	ACACCAAGGC	GAGTGGATCT	CCTGAACTGA	TAATCTCTAA
		801	CAATAAGACT	CTGATCTTTG	CTTCAAACGT	AGCAGAAACA	AGCGGTGGCG
		851	CCATCCATGC	TAAAAAGCTA	GCCCTTTCCT	CTGGAGGCTT	TACAGAGTTT
		901	CTACGAAATA	ATGTCTCATC	AGCAACTCCT	AAGGGGGGTG	CTATCAGCAT
0.5		951	CGATGCCTCA	GGAGAGCTCA	GTCTTTCTGC	AGAGACAGGA	AACATTACCT
25		1001	TTGTAAGAAA	TACCCTTACA	ACAACCGGAA	GTACCGATAC	TCCTAAACGT
		1051	AATGCGATCA	ACATAGGAAG	TAACGGGAAA	TTCACGGAAT	TACGGGCTGC
		1101	TAAAAATCAT	ACAATTTTCT	TCTATGATCC	CATCACTTCA	GAAGGAACCT
		1151	CATCAGACGT	ATTGAAGATA	AATAACGGCT	CTGCGGGAGC	TCTCAATCCA
20		1201	TATCAAGGAA	CGATTCTATT	TTCTGGAGAA	ACCCTAACAG	CAGATGAACT
30		1251	TAAAGTTGCT	GACAATTTAA	AATCTTCATT	CACGCAGCCA	GTCTCCCTAT
		1301	CCGGAGGAAA	GTTATTGCTA	CAAAAGGGAG	TCACTTTAGA	GAGCACGAGC
		1351	TTCTCTCAAG	AGGCCGGTTC	TCTCCTCGGC	ATGGATTCAG	GAACGACATT
		1401	ATCAACTACA	GCTGGGAGTA	TTACAATCAC	GAACCTAGGA	ATCAATGTTG
35		1451	ACTCCTTAGG	TCTTAAGCAG	CCCGTCAGCC	TAACAGCAAA	AGGTGCTTCA
33		1501	AATAAAGTGA	TCGTATCTGG	GAAGCTCAAC	CTGATTGATA	TTGAAGGGAA
		1551	CATTTATGAA	AGTCATATGT	TCAGCCATGA	CCAGCTCTTC	TCTCTATTAA
		1601	AAATCACGGT	TGATGCTGAT	GTTGATACTA	ACGTTGACAT	CAGCAGCCTT
		1651	ATCCCTGTTC	CTGCTGAGGA	TCCTAATTCA	GAATACGGAT	TCCAAGGACA
40		1701	ATGGAATGTT	AATTGGACTA	CGGATACAGC	TACAAATACA	AAAGAGGCCA
40		1751	CGGCAACTTG	GACCAAAACA	${\tt GGATTTGTTC}$	CCAGCCCCGA	AAGAAAATCT
		1801	GCGTTAGTAT	GCAATACCCT	ATGGGGAGTC	TTTACTGACA	TTCGCTCTCT
		1851	GCAACAGCTT	GTAGAGATCG	GCGCAACTGG	TATGGAACAC	AAACAAGGTT
		1901	TCTGGGTTTC	CTCCATGACG	AACTTCCTGC	ATAAGACTGG	AGATGAAAAT
45		1951 2001	CGCAAAGGCT	TCCGTCATAC	CTCTGGAGGC	TACGTCATCG	GTGGAAGTGC
45		2051	CONCACACTA	AAAGACGACC	TATTTACCTT	TGCGTTCTGC	CATCTCTTTG
		2101	CTAGAGACAA	AGATTGTTT	ATCGCTCACA	ACAACTCTAG	AACCTACGGT
	_	2151	GGAACTITAT	TCTTCAAGCA	CTCTCATACC	CTACAACCCC	AAAACTATTT
		2201	GAGATTAGGA	AGAGCAAAGT	TTTCTGAATC	AGCTATAGAA	AAATTCCCTA
50		2251	A A COCHE MCC	CCTAGCCTTG	GATGTCCAAG	TTTCGTTCAG	CCATTCAGAC
50		2301	CACCAACCAC	MANACGCACTA	TACCTCATTG	CCAGAATCCG	AAGGTTCTTG
		2351	GAGCAACGAG	TGTATAGCTG	GTGGTATCGG	CCTAGACCTT	CCTTTTGTTC
		2401	TTTCCAACCC	ACATCCTCTT	TTCAAGACCT	TCATTCCACA	GATGAAAGTC
		401 2451	GAAATGGTTT	ATGTATCACA	AAATAGCTTC	TTCGAAAGCT	CTAGTGATGG
55		2501	CCGTGGTTTT	AGTATTGGAA	GGCTGCTTAA	CCTCTCGATT	CCTGTGGGTG
, ,			CGAAATTCGT	GCAGGGGGAT	ATCGGAGATT	CCTACACCTA	TGATCTCTCA
		2601	GGATTCTTTG	ACCOCATGT	CTATCGTAAC	AATCCCCAAT	CTACAGCGAC
		651	TCTTGTGATG	AGCCCAGACT	CTTGGAAAAT	TCGCGGTGGC	AATCTTTCAA
			GACAGGCATT	TTTACTGAGG	GGTAGCAACA	ACTACGTCTA	CAACTCCAAT
60		701	TGTGAGCTCT	TCGGACATTA	CGCTATGGAA	CTCCGTGGAT	CTTCAAGGAA
00	2	751	CTACAATGTA	GATGTTGGTA	CCAAACTCCG	ATTCTAG	

The PSORT algorithm predicts an outer membrane location (0.924).

The protein was expressed in E.coli and purified as a his-tag product, as shown in Figure 58A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 58B) and for FACS (Figure 58C) analyses. A GST-fusion protein was also expressed.

The cp6733 protein was also identified in the 2D-PAGE experiment (Cpn0451).

These experiments show that cp6733 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 59

The following C.pneumoniae protein (PID 4376814) was expressed <SEQ ID 117; cp6814>:

```
MHDALLSILA IQELDIKMIR LMRVKKEHQK ELAKVQSLKS DIRRKVQEKE
10
                 51
                    LEMENLKTQI RDGENRIQEI SEQINKLENQ QAAVKKMDEF NALTQEMTTA
                101
                    NKERRSLEHQ LSDLMDKQAG GEDLIVSLKE SLASTENSSS VIEKEIFESI
                    KKINEEGKAL LEQRTELKHA TNPELLSIYE RLLNNKKDRV VVPIENRVCS
                    GCHIVLTPQH ENLVRKKDRL IFCEHCSRIL YWQESQVNAQ ENSTAKRRRR
                201
                251
                    RAAV*
     The cp6814 nucleotide sequence <SEQ ID 118> is:
15
                    ATGCATGACG CACTTCTAAG CATTTTGGCT ATTCAAGAGC TTGATATTAA
                    AATGATTCGC CTTATGCGCG TAAAGAAAGA ACATCAGAAA GAATTGGCTA
                51
               101
                    AAGTCCAATC TTTAAAAAGT GATATTCGTA GAAAAGTTCA GGAAAAAGAA
                    CTCGAAATGG AGAATTTGAA AACTCAAATT CGAGATGGAG AGAATCGCAT
               151
20
               201
                    CCAAGAGATT TCTGAACAAA TCAATAAATT AGAAAATCAG CAAGCTGCTG
               251
                    TAAAAAAAT GGATGAGTTT AACGCTCTTA CCCAAGAAAT GACTACAGCA
                    AACAAAGAAC GTCGCTCTTT AGAGCACCAG CTTAGCGATC TCATGGATAA
               301
```

CTACAGAAAA TAGTAGCAGT GTCATTGAAA AAGAAATTTT TGAAAGCATC 25 AAAAAGATTA ATGAAGAAGG CAAAGCTTTG CTTGAACAAC GGACAGAGTT 451 AAAGCATGCG ACGAATCCCG AACTACTCAG CATCTATGAG CGTCTATTAA 501 551 ACAATAAAAA AGATCGCGTT GTTGTTCCTA TTGAAAATCG TGTCTGCAGT GGTTGTCATA TTGTTCTAAC TCCTCAACAC GAAAATCTTG TAAGAAAGAA 601

AGACCGACTC ATTTTTTGCG AACATTGCTC TCGAATTCTC TATTGGCAAG 651 30 701 AATCCCAAGT CAATGCTCAG GAAAATTCCA CAGCAAAACG TCGTCGTCGT 751

CGCGCAGCTG TATAA

351 401

The PSORT algorithm predicts an inner membrane location (0.070).

The protein was expressed in E.coli and purified as a GST-fusion (Figure 59A) or his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in Western blot (Figure 59B) and FACS (Figure 59C) analyses.

These experiments show that cp6814 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 60

The following C.pneumoniae protein (PID 4376830) was expressed <SEQ ID 119; cp6830>:

```
40
                    MKWLPATAVF AAVLPALTAF CDPASVEIST SHTGSGDPTS DAALTGFTQS
                51
                    STETDGTTYT IVGDITFSTF TNIPVPVVTP DANDSSSNSS KGGSSSSGAT
               101
                    SLIRSSNLHS DFDFTKDSVL DLYHLFFPSA SNTLNPALLS SSSSGGSSSS
                    SSSSSGSAS AVVAADPKGG AAFYSNEANG TLTFTTDSGN PGSLTLQNLK
               151
                    MTGDGAAIYS KGPLVFTGLK NLTFTGNESQ KSGGAAYTEG ALTTQAIVEA
               201
45
               251
                    VTFTGNTSAG QGGAIYVKEA TLFNALDSLK FEKNTSGQAG GGIYTESTLT
                    ISNITKSIEF ISNKASVFAP APEPTSPAPS SLINSTTIDT STLQTRAASA
               301
               351
                    TPAVAPVAAV TPTPISTQET AGNGGAIYAK QGISISTFKD LTFKSNSASV
```

35

	401	DATLTVDSST	IGESGGAIFA	ADSIQIQQCT	GTTLFSGNTA	NKSGGGIYAV
	451	GQVTLEDIAN	LKMTNNTCKG	EGGAIYTKKA	LTINNGAILT	TFSGNTSTDN
	501		TLSDLVEVRF		PITKAASNTA	PVVSSSTTAA
E	551	SPAVPAAAAA	PVTNAAKGGA	LYSTEGLTVS	GITSILSFEN	NECQNQGGGA
5	601	YVTKTFQCSD	SHRLQFTSNK	AADEGGGLYC	GDDVTLTNLT	GKTLFOENSS
	651	EKHGGGLSLA	SGKSLTMTSL			ENIVLTFTYT
	701	PTPNEPAPVQ	QPVYGEALVT			LSSVTFDONT
	751	SSENGGALLT	QKAADKTDCS	FTYITNVNIT	NNTATGNGGG	IAGGKAHFDR
	801	IDNLTVQSNQ	AKKGGGVYLE			SGGGIYAKDI
10	851		ITDNKVETSL			NISGTFGITG
	901	NSVINTATSQ	DADIQGGGIY	ATTSLSINOC	NTPILFSNNS	AATKKTSTTK
	951	QIAGGAIFSA	AVTIENNSOP			KDSCGGAIAA
	1001	NSVTLTNNPE	ITFKGNYAET	GGAIGCIDLT	NGSPPRKVSI	ADNGSVLFOD
	1051	NSALNRGGAI	YGETIDISRT	GATFIGNSSK	HDGSAICCST	ALTLAPNSOL
15	1101	IFENNKVTET	TATTKASINN			ENGSIFFKNN
	1151	LCTATNKYCS	IAGNVKFTAI	EASAGKAISF	YDAVNVSTKE	TNAQELKLNE
	1201	KATSTGTILF	SGELHENKSY			SVVSFTQSPG
	1251	TTITMGPGSV	LSNHSKEAGG	IAINNVIIDF		TVAPPTLKLV
**	1301	SRTNADSKDK	IDITGTVTLL	DPNGNLYONS		FNIDNSASGA
20	1351	VTATNVTLQG	NLGAKKGYLG	TWNLDPNSSG		KYLRWPYIPR
	1401	DNHFYINSIW	GAQNSLVTVK	QGILGNMLNN	ARFEDPAFNN	FWASATGSEL
	1451	RKEVSRNSDS	FTYHGRGYTA	AVDAKPROEF		GHAESEYHLD
	1501				ILFOGVATYG	YMQHDTTTYY
	1551	PSIEEKNMAN	WDSIAWLFDL	RFSVDLKEPQ		TEARVERTEO
25	1601	EKFTELDYDP	RSFSACSYGN	LAIPTGFSVD	GALAWREIIL	VNKVSDAVLD
	1651			NVVNVLPTRN	AARAEVSSOT	VIGSVMTTVC
	1701	TYTIDASMNT	LVQMANGGIR	FVF*		
			-	-		

A predicted signal peptide is highlighted.

The cp6830 nucleotide sequence <SEQ ID 120> is:

20	_					
30	_1	ATGAAGTGGC	TACCAGCTAC	AGCTGTTTTT	GCTGCCGTAC	TCCCCGCACT
	51	AACAGCCTTC	GGAGATCCCG	CGTCTGTTGA	AATAAGTACC	AGCCATACAG
	101	GATCCGGGGA	TCCTACAAGC	GACGCTGCCT		
	151		CTGACGGTAC			ATATCACCTT
25	201		ACGAATATTC		AGTAACTCCA	
35	251		CAATAGCTCT		GTAGCAGTAG	
	301		GATCCTCAAA	CCTACACTCC	GATTTTGATT	TTACAAAAGA
	351		GACCTCTATC	ACCTTTTCTT	TCCTTCAGCT	TCAAATACTC
	401	TCAATCCTGC	ACTCCTTTCT		GCGGTGGATC	
40	451		CATCATCTGG		GCTGTTGTTG	
40	501		GCTGCCTTTT		GGCTAACGGA	
	551		CTCTGGAAAT	CCCGGCTCCC	TGACTCTTCA	GAATCTTAAA
	601	ATGACCGGAG	ATGGAGCCGC		AAGGGTCCTC	
	651	TGGTTTAAAA	AATCTAACCT	TTACAGGAAA	TGAATCTCAG	AAATCTGGAG
	701	GTGCTGCCTA	TACTGAAGGC	GCACTCACAA	CACAAGCAAT	CGTTGAAGCC
45	751	GTAACTTTTA	CTGGCAACAC		CAAGGAGGCG	
	801	TAAAGAAGCT	ACCCTATTCA		CAGCCTCAAA	
	851	ACACTTCTGG	GCAAGCTGGT		ATACAGAGTC	
	901	ATCTCGAACA	TCACAAAATC		ATCTCTAATA	
	951	CCCTGCCCCC	GCTCCTGAGC		GGCTCCAAGT	
50	1001	ATTCTACAAC	GATCGATACC		AAACCCGAGC	
	1051	ACTCCAGCAG	TGGCTCCTGT		ACTCCAACAC	
	1101	TCAAGAGACC	GCAGGAAATG		CTATGCTAAA	
	1151	CGATATCCAC	GTTTAAAGAT		AGTCTAACTC	
	1201	GATGCCACCC	TTACTGTCGA		ATTGGAGAAT	
55	1251	TATCTTTGCA	GCAGACTCTA		ACAGTGCACG	
	1301	TATTCAGTGG	CAATACTGCC		GTGGGGGTAT	
	1351	GGACAAGTCA	CCCTAGAAGA	TATAGCGAAT		
	1401	CTGTAAAGGT	GAAGGTGGAG	CCATCTACAC	TAAAAAGGCT	TTAACTATCA
	1451	ACAACGGTGC	CATTCTCACT	ACATTTTCTG	GAAATACATC	CACAGATAAT
60	1501	GGTGGGGCTA	TTTTTGCTGT	AGGTGGCATC	ACTOTOTOTO	አጥሮጥጥርጥ አር አ
	1551	AGTCCGCTTT	AGTAAAAATA	AGACCGGAAA	TOTOTOTOTO	CCMPALDICCY
	1601	AAGCGGCTAG	CAACACAGCT	CCTGTAGTTT	Cupaccaca	A D CTCCTCCA
	1651	TCTCCTGCGG	TCCCTGCTGC	CGCTGCAGCA	CCTCTTACAA	MACTACIOCA
	1701	AGGAGGGGCT	TTATATAGTA	CAGAAGGACT	CACACANA	CCAAMCACAM
65	1751	CGATATTGTC	GTTTGAAAAC	AACGAATGCC	DCD DUCK NCC	ACCIRCOCOUNT.
					DOWN I LWWOL	WGG1GGGC.L

	1801	ጥአ ሶርጥመአ ሮመአ	3 3 2 C C C C C C C C C C C C C C C C C	CMCDmccca m	mamaz macco	maaa.am
	1851	TACGITACTA	AAACCTTCCA	GTGTTCCGAT AAGGCGGGGG	TCTCATCGCC	TCCAGTTTAC
	1901					
	1951	CACAAACAAC	CARCUTGACA	GGGAAAACAC CTCTCTCGCC	TATTTCAAGA	GAATAGCAGT
5	2001	CACAMCAIG	CACACCOMOR	GCTTAAATGC	TCAGGAAAAT	CTCTGACTAT
_	2051	GACGCCGTGC	GAGAGCTTCT	GAAAATATTG	MAATACAGCA	AAGGAAAACG
	2101			GCCTGTGCAG		
	2151	TOTTOTTOTT	ALGMACCIGC	CCACAAAAAG	CAGCCCGTGT	ATGGAGAAGC
	2201	AAAATGCGGC	CUTCUCAAAU	TTATCTTCTG	TGGTGGGGGC	ATTTACACGA
10	2251	ጥሮጥጥሮልሮአልአ	AUCCUCCHAAAT	CTTACTTACC	TAACTTTGA	TUAAAATACC
-	2301	GGACTGTTCT	TTCACCTATA	TTACAAATGT	CAAAAAGCTG	CAGATAAAAC
	2351	CTACAGGAAA	TECHCCIAIN	ATTGCTGGGG	CAAIAICACC	AACAATACAG
	2401	ልሞሞርልጥል ልጥር	TGGTGGGGGC	AAGCAACCAA	CONNECACA	TTTCGATCGC
	2451	ጥጥልጥርጥጥርልል	CATCACTCCA	TCCTGGAAAA	GCAAAGAAAG	GIGGIGGGG
15	2501	רברבבבבבב	DECEDENCY	AGTGGTGGGG	COMMONACO	GGTTCTGTCT
	2551	CAACTACAAG	CTCTACCTCC	AGCTTCACA	ATTENDED COCATA	AMANAGGATATT
	2601	AACTACTCTT	ACTACTIGG	CTAATTTATA	MCCMCCCCCC	ATMAMGTCGA
	2651			AATATATCTG		
	2701	AACTCTGTTA	TCAATACACC	GACATCCCAG	CAMCCACAMA	CATTACAGGA
20	2751	GGGCATTTA	CCAATACAGC	CTCTCTCAAT	ANDCANDO	TACAAGGTGG
	2801	ጥጥርጥልጥጥጥልር	CAACAACTCT	GCTGCCACTA	AAATCAATGT	AATACACCCA
	2851	CAAATTGCTG	CTCCCCCTAT	CTTCTCCGCT	CONCENTACEN	MACAACAAAG
	2901	CTCTCAGCCC	ልተዋልመው ነልተ እጥተልመው ክርጥ	TAAATAATTC	CCCAAACTA	TCGAGAATAA
	2951	CACCACCAAC	MCCVCCVVVW	AAAGATAGCT	CGCAAAGTCG	GAAGCAACTA
25	3001	APCOLOCHUA	COMMONANT	TAACCCTGAA	GIGGAGGAGC	CATTGCAGCT
	3051	TGCAGAAACT	CITIAACAAA	TTGGCTGTAT	ATAACCTITA	AAGGAAATTA
	3101	CTCCCCCTA	ACTICATION	GCAGACAACG	COMORGO	AATGGCTCAC
	3151	AACTICTICCCT	MANAGECT CIAIT	AGGCGCTATC	GTTCTGTCCT	TTTTCAAGAC
	3201	CTCCAGGACA	CGTCCCACTO	TCATCGGTAA	COCCOOCA	CTATCGATAT
30	3251	GTGCA ATTTG	CTCTTCAACT	GCCCTAACTC	UTCTTCAAAA	CATGATGGAA
	3301	ATCTTTCAAA	ACATICATOR	TACGGAAACC	A CACCCCAAA	CARACOTT
	3351	CATABATAAT	TTAGGAGCTG	CAATTTATGG	ACAGCCACTA	ACMACAGCTTC
	3401	ጥርልርጥልጥርጥር	TITIOGROCIO	GAGAATGGAA	CUNDUMBUCUM MANIANIGAG	ACTAGTGACG
	3451	CTATGCACAG	CAACAACAA	ATACTGCAGT	AUTOCOTOCAA	ACCULATA
35	3501	TACAGCAATA	GAAGCTTCAG	CAGGGAAAGC	TITGCIGGAA	#AUCAHCOAC
	3551	TTAACGTTTC	CACCAAAGAA	ACAAATGCTC	AAGAGCTAAAA	TATGATGCAG
	3601	AAAGCGACAA	GTACAGGAAC	GATTCTATTT	TCTGGGGAAC	WITH THAM I GAM
	3651	TAAATCCTAT	ATTCCACAGA	AAGTCACTTT	CCCACATICC	A A TO COCO A TIMO
	3701	TAGGTAAAA	TGCAGAACTT	AGCGTAGTTT	CCTTTTACCCA	ATCTCCAGGC
40	3751	ACCACAATCA	CTATGGGCCC	AGGATCGGTT	CTTTTCCAACC	ATAGCAAAGA
	3801	AGCAGGAGGA	ATCGCTATAA	ACAATGTCAT	CATTGATTT	AGTGAAATCG
	3851	TTCCTACTAA	AGATAATGCA	ACAGTAGCTC	CACCCACTCT	TAAATTAGTA
	3901	TCGAGAACTA	ATGCAGATAG	TAAAGATAAG	ATTGATATTA	CAGGAACTGT
	3951	GACTCTTCTA	GATCCTAATG	GCAACTTATA	TCAAAATTCT	TATCTTGGTG
45	4001	AAGACCGCGA	TATCACTCTT	TTCAATATAG	ACAATTCTGC	AAGTGGGGCA
	4051	GTTACAGCCA	CGAATGTCAC	CCTTCAAGGG	AATTTAGGAG	CTAAAAAAGG
	4101	ATATTTAGGA	ACCTGGAATT	TGGATCCAAA	TTCCTCGGGT	TCAAAAATTA
	4151	TTCTAAAATG	GACCTTTGAC	AAATACCTGC	GCTGGCCCTA	CATCCCTAGA
	4201	GACAACCACT	TCTACATCAA	CTCTATTTGG	GGAGCACAAA	ACTCTTTAGT
50	4251	GACTGTGAAA	CAAGGGATCT	TAGGGAACAT	GTTGAACAAT	GCAAGGTTTG
	4301	AAGATCCTGC	TTTCAACAAC	TTCTGGGCTT	CGGCTATAGG	ATCTTTCCTT
	4351	AGGAAAGAAG	TATCTCGAAA	TTCTGACTCA	TTCACCTATC	ATGGCAGAGG
	4401	CTATACCGCT	GCTGTGGATG	CCAAACCTCG	CCAAGAATTT	ATTTTAGGAG
	4451	CTGCCTTCAG	TCAGGTTTTT	GGTCACGCCG	AGTCTGAATA	TCACCTTGAC
55	4501	AACTATAAGC	ATAAAGGCTC	AGGTCACTCT	ACACAAGCAT	CTCTTTATGC
	4551	TGGCAATATC	TTCTATTTTC	CTGCGATACG	GTCTCGGCCT	ATTCTATTCC
	4601	AAGGTGTGGC	GACCTATGGT	TATATGCAAC	ATGACACCAC	AACCTACTAT
	4651	CCTTCTATTG	AAGAAAAAAA	TATGGCAAAC	TGGGATAGCA	TTGCTTGGTT
	4701	ATTTGATCTG	CGTTTCAGTG	TGGATCTTAA	AGAACCTCAA	CCTCACTCTA
60	4751	CAGCAAGGCT	TACCTTCTAT	ACAGAAGCTG	AGTATACCAG	AATTCGCCAG
	4801	GAGAAATTCA	CAGAGCTAGA	CTATGATCCT	AGATCTTTCT	CTGCATGCTC
	4851	TTATGGAAAC	TTAGCAATTC	CTACTGGATT	CTCTGTAGAC	GGAGCATTAG
	4901	CTTGGCGTGA	GATTATTCTA	TATAATAAAG	TATCAGCTGC	GTACCTCCCT
	4951	GTGATTCTCA	GGAATAATCC	AAAAGCGACC	TATGAAGTTC	TCTCTACAAA
65	5001	AGAAAAGGGC	AACGTAGTCA	ACGTTCTCCC	TACAAGAAAC	GCAGCTCGTG
	5051	CAGAGGTGAG	CTCTCAAATT	TATCTTGGAA	GTTACTGGAC	ACTCTACGGC
	5101	ACGTATACTA	TTGATGCTTC	AATGAATACT	TTAGTGCAAA	TGGCCAACGG
	5151	AGGGATCCGG	TTTGTATTCT	AG		

The PSORT algorithm predicts an outer membrane location (0.926).

The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 60A) or his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in Western blot (Figure 60B) and FACS (Figure 60C) analyses.

The cp6830 protein was also identified in the 2D-PAGE experiment (Cpn0540) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6830 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 61

10 The following C.pneumoniae protein (PID 4376854) was expressed <SEQ ID 121; cp6854>:

	1	MSIAIAREQY	AAILDMHPKP	SIAMFSSEQA	RTSWEKRQAH	PYLYRLLEII
	51	WGVVKFLLGL	IFFIPLGLFW	VLQKICQNFI	LLGAGGWIFR	PICRDSNLLR
	101	QAYAARLFSA	SFQDHVSSVR	RVCLQYDEVF	IDGLELRLPN	AKPDRWMLIS
	151	NGNSDCLEYR	TVLQGEKDWI	FRIAEESQSN	ILIFNYPGVM	KSQGNITRNN
15	201	VVKSYQACVR	YLRDEPAGPQ	ARQIVAYGYS	LGASVQAEAL	SKEIADGSDS
	251			FIGSLGVWLA		
	301			ETCFAAPFLD		
	351	HDHTI-SDDVT	KEVACHTORH	FINI*		-

The cp6854 nucleotide sequence <SEQ ID 122> is:

20	_					
20	1	ATGTCAATAG	CTATTGCAAG	GGAACAATAC	GCAGCTATAT	TGGATATGCA
	51	TCCTAAACCT	TCGATCGCCA	TGTTTTCTTC	GGAGCAGGCG	AGAACTTCTT
	101	GGGAGAAACG	ACAGGCTCAT	CCTTACCTTT	ATCGTCTTCT	TGAGATCATA
	151	TGGGGTGTTG	TGAAATTTCT	TCTCGGCTTA	ATCTTCTTTA	TTCCCTTGGG
	201	TCTTTTCTGG	GTCCTTCAGA	AGATATGTCA	GAATTTTATT	CTTCTTGGTG
25	251	CAGGAGGGTG	GATTTTTAGA	CCCATATGCA	GGGACTCTAA	TTTATTGCGA
	301	CAAGCTTACG	CCGCGCGTCT	TTTCTCCGCT	TCATTCCAAG	ATCATGTCTC
	351	CTCTGTGCGA	AGGGTTTGCT	TACAGTATGA	CGAGGTCTTT	ATTGACGGAT
	401	TGGAGTTACG	TCTTCCCAAT	GCTAAGCCAG	ATCGATGGAT	GTTAATCTCC
	451	AATGGAAACT	CCGATTGCTT	AGAGTATAGG	ACAGTGCTGC	AAGGGGAAAA
30	501	GGACTGGATA	TTCCGTATTG	CTGAAGAGTC	TCAATCCAAC	ATTTTAATCT
	551	TCAATTACCC	AGGAGTCATG	AAGAGCCAAG	GGAATATAAC	AAGAAACAAT
	601	GTAGTCAAAT	CTTATCAAGC	ATGCGTACGC	TATCTTAGAG	ATGAACCCGC
	651	AGGACCTCAG	GCGCGTCAAA	TCGTTGCTTA	TGGCTATTCT	TTAGGAGCTA
	701	GTGTTCAAGC	CGAAGCATTA	AGTAAAGAGA	TCGCAGACGG	AAGTGATAGC
35	751	GTCCGTTGGT	TTGTCGTTAA	AGATCGAGGA	GCTCGCTCTA	CAGGAGCCGT
	801	TGCTAAACAG	TTTATTGGAA	GTCTAGGAGT	TTGGCTGGCG	AATCTTACCC
	851	ATTGGAATAT	TAATTCTGAA	AAGAGAAGCA	AGGACTTGCA	TTGCCCAGAA
	901	CTCTTTATTT	ATGGCAAGGA	TTCCCAAGGT	AATCTTATCG	GGGATGGATT
	951	GTTCAAAAAA	GAGACGTGCT	TCGCAGCACC	ATTTTTAGAT	CCTAAAAACT
40	1001	TGGAAGAGTG	TTCAGGGAAG	AAAATCCCTG	TAGCTCAGAC	CGGTCTAAGA
	1051	CACGATCATA	TCCTTTCCGA	TGATGTGATT	AAAGAAGTTG	CAGGTCATAT
	1101	TCAAAGACAT	TTCGATAATT			

The PSORT algorithm predicts an inner membrane location (0.461).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 61A. The recombinant protein was used to immunise mice, whose sera were used in Western blot (Figure 61B) and FACS (Figure 61C) analyses. A his-tagged protein was also expressed.

These experiments show that cp6854 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

45

-102-

Example 62

The following C.pneumoniae protein (PID 4377101) was expressed <SEQ ID 123; cp7101>:

```
MYSCYSKGIS HNYLLHPMSR LDIFVFDSLI ANQDONLLEE IFCSEDTVLF
                     KAYRTTALQS PLAAKNLNIA RKVANYILAD NGEIDTVKLV EAIHHLSQCT
 5
                     YPLGPHRHNE AQDREHLLKM LKALKENPKL KESIKTLFVP SYSTIQNLIR
                151
                     HTLALNPQTI LSTIHVRQAA LTALFTYLRQ DVGSCFATAP AILIHQEYPE
                201
                     RFLKDLNDLI SSGKLSRIVN QREIAVPINL SGCIGELFKP LRILDLYPDP
                251
                     LVKLSSSPGL KKAFSAANLI ETLGDSEAQI QQLLSHQYLM QKLQNVHETL
                     TANDIIKSTL LHYYQLQEST VRAIFFKEGL FSKEQVAFST QHPRELSEIO
                301
10
                351
                     RVYHYLHAYE EAKSAFIHDT QNPLLKAWEY TLATLADASQ PTISNHIRLA
                401
                     LGWKSEDPHS LVSLVTHFVE EEVENIRILV QQCEQTYHEA RSQLEYIEGR
                451
                     MRNPLNNQDS QILTMDHMRF RQELNKALYE WDSAOEKAKK FLHLPEFLLS
                501
                     FYTKQIPLYF RSSYDAFIQE FAHLYANAPA GFRILFTHGR THPNTWSPIY
                551
                     SINEFIRFLS EFFTSTESEL LGKHAVINLE KETSRLVHNI TAMLHTDVFO
15
                601
                     EALLTRILEA YQLPVPPSIL NHLDQLSQTP WVYVSGGTVD TLLLDYFESS
                     EPLTLTEKHP ENPHELAAFY ADALKDLPTG IKSYLEEGSH SLLSSSPTHV
                653
                701
                     FSIIAGSPLF REAWDNDWYS YTWLRDVWVK QHQDFLQDTI LPQLSIYAFI
                     ENFCNKYALQ HVVHDFHDFC SDHSLTLPEL YDKGSRFLSS LFTKDKTVAL
                     IYIRRLLYLM VREVPYVSEQ QLPEVLDNVS SYLGISSRIT YEKFRSLIEE
                801
20
                     TIPKMTLLSS ADLRHIYKGL LMQSYQKIYT EEDTYLRLTT AMRHHNLAYP
                851
                     APLLFADSNW PSIYFGFILN PGTTEIDLWK FNYAGLOGOP LDNIOELFAT
                     SRPWTLYANP IDYGMPPPPG YRSRLPKEFF *
     The cp7101 nucleotide sequence <SEQ ID 124> is:
                     ATGTATTCGT GTTACAGCAA AGGAATATCC CATAACTATC TTCTACATCC
25
                 51
                     TATGTCACGT TTGGATATTT TTGTTTTCGA TTCTCTGATC GCAAACCAGG
                     ATCAAAATCT TCTTGAGGAA ATTTTCTGTT CTGAAGACAC AGTTTTATTT
                     AAAGCCTACC GTACTACGGC TCTACAATCC CCTCTAGCTG CTAAGAACCT
                151
                201
                     AAATATCGCC CGTAAAGTCG CAAATTATAT CTTAGCTGAC AATGGGGAAA
                     TCGATACAGT AAAGCTTGTC GAAGCCATTC ACCATCTCTC ACAATGTACC
                251
30
                     TATCCTTTAG GGCCTCATCG CCATAATGAA GCTCAAGATC GTGAACACCT
                301
                     CCTTAAAATG CTAAAAGCTC TAAAGGAAAA TCCTAAATTA AAAGAAAGCA
                351
                401
                     TCAAAACTCT CTTTGTCCCT TCATACTCTA CAATCCAAAA CCTAATTCGC
                451
                     CATACACTAG CATTGAATCC ACAGACAATT CTCTCTACGA TTCATGTGCG
                     TCAAGCAGCA CTCACAGCGC TCTTCACCTA CCTTCGGCAA GATGTAGGTT
                501
35
                551
                     CCTGTTTTGC TACGGCTCCT GCCATTCTCA TTCACCAAGA ATATCCAGAA
                     CGATTCCTTA AAGATCTCAA TGATCTCATT AGCAGTGGCA AACTCTCTAG
                601
                     AATCGTAAAC CAAAGGGAAA TTGCGGTTCC TATAAACCTT TCGGGATGCA
                651.
                701
                     TTGGAGAGCT ATTCAAGCCT TTAAGGATTC TAGATCTTTA TCCTGATCCT
                751
                     CTGGTTAAGC TCTCCTCATC TCCAGGACTC AAAAAAGCCT TTTCTGCTGC
40
                801
                     CAATCTTATT GAAACTCTTG GGGATTCTGA AGCACAAATC CAACAGTTGC
                     TCTCGCATCA ATATTTGATG CAAAAACTAC AAAATGTCCA TGAGACCTTA
                851
                901
                     ACTGCTAACG ACATTATCAA ATCGACACTT CTGCACTACT ATCAGCTCCA
                951
                     AGAAAGTACT GTACGAGCTA TTTTCTTCAA AGAAGGGTTG TTCAGCAAAG
               1001
                     AACAAGTGGC ATTCTCGACG CAACACCCCA GAGAGCTCTC AGAAATACAA
45
               1051
                     CGGGTATACC ACTACTTACA TGCCTATGAA GAAGCAAAAT CTGCTTTTAT
               1101
                     CCATGACACT CAAAATCCCT TACTGAAAGC CTGGGAGTAT ACTTTAGCGA
                     CTCTTGCGGA TGCTAGCCAA CCTACCATCT CAAACCATAT CCGCCTTGCC
               1151
               1201
                     TTAGGATGGA AAAGTGAAGA CCCTCACAGT CTTGTATCTC TAGTTACACA
               1251
                     CTTTGTTGAA GAGGAAGTAG AAAACATCCG AATTTTAGTC CAACAATGTG
50
                     AACAGACCTA TCACGAAGCA CGCTCCCAAC TAGAATATAT TGAAGGGCGG
               1301
               1351
                     ATGCGCAACC CACTAAATAA TCAAGACAGT CAGATTTTGA CGATGGATCA
               1401
                     CATGCGCTTC CGTCAAGAAC TCAATAAAGC TCTTTATGAG TGGGATAGTG
                     CTCAAGAAAA GGCAAAGAAA TTTCTACATC TTCCTGAATT CTTACTTTCT
               1451
               1501
                     TTCTATACAA AGCAAATTCC CTTATACTTT CGTAGTTCTT ACGATGCCTT
55
               1551
                     CATTCAAGAA TTTGCTCATC TCTATGCTAA TGCTCCCGCT GGCTTCCGTA
                     TTCTTTCAC GCATGGACGC ACCCATCCGA ACACATGGTC CCCCATCTAT
               1601
               1651
                     TCGATTAATG AATTTATACG TTTTCTTTCT GAATTCTTCA CCTCCACAGA
               1701
                     GTCAGAACTT CTGGGGAAAC ATGCCGTGAT CAATTTAGAG AAAGAAACAT
                     CTCGGCTCGT CCACAACATC ACTGCCATGC TACACACGGA TGTTTTCCAA
               1751
60
               1801
                     GAAGCTCTCC TTACAAGAAT TTTAGAAGCC TATCAGCTTC CTGTGCCTCC
               1851
                     CTCCATCTTA AACCACTTAG ATCAGCTGTC ACAAACTCCC TGGGTTTATG
                     TTTCTGGAGG AACAGTGGAC ACTCTTCTTT TGGATTATTT TGAAAGCTCA
               1901
               1951
                     GAACCTCTGA CACTTACAGA AAAGCATCCT GAAAATCCTC ATGAGCTTGC
               2001
                     AGCTTTCTAC GCAGACGCCC TTAAAGATCT CCCTACAGGA ATTAAAAGTT
```

	2051	ATCTAGAAGA	AGGATCCCAC	TCTCTACTTA	GCTCATCACC	CACCCACGTT
	2101	ТТСТСТАТАА	TCGCAGGATC	TCCTTTATTT	CGGGAAGCTT	GGGATAATGA
	2151	TTGGTACAGC	TATACCTGGC	TTCGTGATGT	CTGGGTGAAA	CAACACCAAG
_	2201	ATTTCCTTCA	AGATACTATA	TTACCTCAGC	TAAGTATCTA	TGCTTTCATA
5	2251	GAGAATTTTT	GTAACAAATA	TGCTTTGCAA	CATGTAGTTC	ATGACTTTCA
	2301	TGATTTCTGC	TCCGACCACT	CCTTGACTCT	TCCGGAGCTC	TATGACAAAG
	2351	GATCGCGTTT	TCTAAGCTCC	TTATTCACCA	AAGATAAGAC	CGTAGCTCTT
	2401	ATCTATATAC	GCCGTCTTCT	CTACCTTATG	GTCCGTGAAG	TCCCTTATGT
	2451	TTCAGAACAA	CAGCTTCCAG	AAGTCTTAGA	TAACGTCTCT	TCATATCTCG
10	2501	GGATTTCCTC	TCGTATTACC	TATGAGAAAT	TCCGCTCCCT	GATAGAGGAA
	2551	ACCATCCCTA	AAATGACCTT	ACTCTCCTCA	GCAGACCTGA	GGCATATCTA
	2601	TAAAGGTCTC	CTCATGCAAA	GTTATCAAAA	GATCTACACC	GAAGAAGATA
	2651	CGTACCTCCG	CCTCACCACG	GCAATGAGGC	ATCATAATCT	TGCCTATCCC
	2701	GCTCCTTTGC	TCTTTGCAGA	CAGTAACTGG	CCTTCTATTT	ATTTTGGATT
15	2751	CATCCTAAAT	CCAGGAACCA	CAGAGATCGA	TCTTTGGAAA	TTTAACTATG
	2801	CAGGGCTGCA	AGGACAGCCT	CTTGACAATA	TCCAGGAGCT	GTTCGCAACG
	2851	TCAAGACCCT	GGACCCTCTA	TGCAAATCCT	ATAGATTATG	
	2901	GCCTCCAGGC	TACCGCAGCC	GCCTCCCTAA	AGAATTTTTC	

The PSORT algorithm predicts a cytoplasmic location (0.206).

The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 62A) or his-tagged product. The proteins were used to immunise mice, whose sera were used in Western blot (Figure 62B) and FACS (Figure 62C) analyses.

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7101 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 63

The following C.pneumoniae protein (PID 4377107) was expressed <SEQ ID 125; cp7107>:

00	1	MSIVRNSALP	LPCLSRSETF	KKVRSHMKFM	KVLTPWIYRK	DLWVTAFLLT
30	51	AIPGSFAHTL	VDIAGEPRHA	AQATGVSGDG	KIVIGMKVPD	DPFAITVGFO
	101			NGITPDGTVI		
	151	VSELPMLPDT	LDSVASAVSA	DGRVIGGNRN	INLGASVAVK	WEDDVITQLP
	201			VGTMVDVSWR		
	251	TSVASAISTD	GTVIVGGSEN	ADSQTHAYAY	KNGVMSDIGT	LGGFYSLAHA
35	301	VSSDGSVIVG	VSTNSEHRYH	AFQYADGQMV	DLGTLGGPES	YAQGVSGDGK
	351	VIVGRAQVPS	GDWHAFLCPF	QAPSPAPVHG	GSTVVTSQNP	RGMVDINATY
	401	SSLKNSQQQL	QRLLIQHSAK	VESVSSGAPS	FTSVKGAISK	OSPAVONDVO
	451	KGTFLSYRSQ	VHGNVQNQQL	LTGAFMDWKL	ASAPKCGFKV	ALHYGSODAL
	501	VERAALPYTE	QGLGSSVLSG	FGGQVQGRYD	FNLGETVVLO	PFMGIOVLHL
40	551	SREGYSEKNV	RFPVSYDSVA	YSAATSFMGA	HVFASLSPKM	STAATLGVER
	601	DLNSHIDEFK	GSVSAMGNFV	LENSTVSVLR	PFASLAMYYD	VROOOLVTLS
	651	VVMNQQPLTG				~~~
	mi - 7107 1					

The cp7107 nucleotide sequence <SEQ ID 126> is:

	1	ATGAGTATAG	TCAGAAATTC	TGCATTGCCA	CTTCCGTGTT	TAAGCAGATC
45	51	CGAAACCTTT	AAAAAAGTTA	GGTCGCATAT	GAAATTTATG	AAAGTCCTTA
	101					
	151			ACATACTCTT		
	201	TCGGCATGCT	GCTCAAGCAA	CAGGAGTTTC	TGGAGATGGT	AAAATTGTTA
	251	TAGGAATGAA	AGTTCCGGAT	GATCCTTTTG	CTATAACTGT	AGGATTTCAA
50	301	TATATTGATG	GGCATTTGCA	ACCCTTAGAG	GCAGTACGTC	CTCAATGCTC
	351	TGTATACCCT	AATGGTATAA	CCCCGGACGG	AACGGTTATT	GTGGGTACAA
	401	ACTATGCCAT	CGGGATGGGT	AGTGTTGCTG	TGAAATGGGT	AAATGGCAAG
	451	GTTTCTGAAC	TTCCCATGCT	CCCTGACACC	CTCGATTCTG	TAGCATCGGC
	501	AGTTTCTGCA	GATGGAAGAG	TGATTGGAGG	GAATAGAAAT	ATAAATCTTG
55	551	GCGCTTCTGT	TGCTGTGAAA	TGGGAGGACG	ACGTGATTAC	ACAACTTCCT
	601	TCTCTTCCTG	ATGCTATGAA	TGCTTGTGTT	AACGGAATTT	CTTCAGATGG

	651	TTCTATAATT	GTAGGAACCA	TGGTAGACGT	GTCATGGAGA	AATACCGCAG
	701	TACAATGGAT	CGGGGATCAG			AGGAGGAACT
	751	ACTTCTGTTG	CTAGTGCAAT	CTCAACAGAT	GGCACTGTGA	TTGTAGGAGG
<u>~</u>	801	TTCTGAAAAT	GCAGATTCTC	AGACTCATGC	CTATGCTTAT	AAAAACGGTG
5	851	TTATGAGCGA	TATAGGGACC			AGCACATGCA
	901	GTATCTTCAG	ATGGTTCTGT	GATTGTAGGA	GTATCCACGA	ACTCTGAGCA
	951	TAGATATCAT	GCATTCCAAT			GATTTAGGAA
	1001	CTTTAGGAGG	GCCTGAATCT			AGATGGAAAG
10	1051	GTAATTGTGG	GTAGAGCACA	AGTACCATCT		
10	1101	ATGTCCTTTC	CAAGCTCCGA		TGTCCATGGG	
	1151	TCGTAACTAG	CCAGAATCCA		TAGATATCAA	
	1201	TCCTCTTTGA	AAAATAGCCA		CAAAGATTGC	
	1251	TAGTGCAAAA	GTTGAAAGTG		AGCACCATCT	
	1301	TGAAAGGTGC	GATCTCAAAA		CAGTGCAAAA	
15	1351	AAAGGGACGT	TTTTAAGTTA		GTTCATGGAA	
	1401	TCAGCAATTG	CTCACAGGAG		CTGGAAACTC	
	1451	CTAAATGCGG	CTTTAAAGTA		ATGGCTCTCA	
	1501	GTAGAACGTG	CAGCTCTTCC		CAAGGCTTAG	
••	1551	CTTGTCAGGT	TTTGGAGGAC		ACGCTATGAC	
20	1601	GAGAAACTGT	TGTTCTGCAA			TCTCCACCTA
	1651	AGTAGAGAAG	GGTATTCTGA			TAAGCTATGA
	1701	TTCTGTAGCC	TACTCAGCAG			CATGTATTTG
	1751	CCTCCCTAAG	CCCTAAAATG	AGTACAGCAG		TGTGGAGAGA
~ ~	1801	GATCTGAATT	CACATATAGA			CTGCTATGGG
25	1851	AAACTTTGTC	TTGGAAAATT		TGTTTTAAGA	
	1901	CTCTTGCTAT	GTACTATGAC	GTAAGACAAC		GACGTTGTCA
	1951	GTAGTTATGA	ATCAACAACC			
	2001	AAGTAGCTAT	AATCTTAGCT			

The PSORT algorithm predicts an inner membrane location (0.100).

The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 63A) or his-tagged product. The proteins were used to immunise mice, whose sera were used in Western blot (Figure 63B) and FACS (Figure 63C) analyses.

These experiments show that cp7107 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

35 Example **64**

The following C.pneumoniae protein (PID 4376467) was expressed <SEQ ID 127; cp6467>:

```
MLRFFAVFIS TLWLITSGCS PSQSSKGIFV VNMKEMPRSL DPGKTRLIAD
                    QTLMRHLYEG LVEEHSQNGE IKPALAESYT ISEDGTRYTF KIKNILWSNG
               101
                    DPLTAQDFVS SWKEILKEDA SSVYLYAFLP IKNARAIFDD TESPENLGVR
40
               1.51
                    ALDKRHLEIQ LETPCAHFLH FLTLPIFFPV HETLRNYSTS FEEMPITCGA
                    FRPVSLEKGL RLHLEKNPMY HNKSRVKLHK IIVQFISNAN TAAILFKHKK
               201
               251
                    LDWQGPPWGE PIPPEISASL HQDDQLFSLP GASTTWLLFN IQKKPWNNAK
               301
                    LRKALSLAID KDMLTKVVYQ GLAEPTDHIL HPRLYPGTYP ERKRQNERIL
                    EAQQLFEEAL DELQMTREDL EKETLTFSTF SFSYGRICQM LREQWKKVLK
               351
45
                    FTIPIVGQEF FTIQKNFLEG NYSLTVNQWT AAFIDPMSYL MIFANPGGIS
               401
               451
                    PYHLQDSHFQ TLLIKITQEH KKHLRNQLII EALDYLEHCH ILEPLCHPNL
               501 RIALNKNIKN FNLFVRRTSD FRFIEKL*
```

A predicted signal peptide is highlighted.

The cp6467 nucleotide sequence <SEQ ID 128> is:

```
50 1 ATGCTCCGTT TCTTCGCTGT ATTTATATCA ACTCTTTGGC TCATTACCTC
51 AGGATGTTC CCATCCCAAT CCTCTAAAGG AATTTTTGTG GTAAATATGA
101 AGGAAATGC ACGCTCCTTG GATCCTGGAA AAACTCGTCT CATTGCAGAC
151 CAAACTCTAA TGCGTCATCT ATATGAAGGA CTCGTCCAAG AACATTCCCA
201 AAATGGAGAG ATTAAACCAG CCCTTGCAGA AAGCTACACC ATCTCGAAG
55 251 ACGGGACTCG GTACACATTT AAAATCAAAA ACATCCTTTG GAGTAACGGA
301 GACCCTCTGA CAGCTCAAGA CTTTGCTCC TCTTGGAAGG AAATCCTAAA
```

	351	GGAAGATGCG		ATCTCTATGC	GTTTTTACCT	ATCAAAAATG
	401	CTCGGGCAAT	CTTTGATGAT	ACTGAGTCTC	CAGAAAATCT	AGGAGTCCGA
	451	GCTTTAGATA	AGCGTCATCT	CGAAATTCAG	TTAGAAACTC	CCTGCGCGCA
~	501	TTTCCTACAT	TTCTTGACTC	TTCCTATTTT	TTTCCCTGTT	CATGAAACTC
5	551	TGCGAAACTA	TAGCACCTCT	TTTGAAGAGA	TGCCCATTAC	CTGCGGTGCT
	601	TTCCGCCCTG	TGTCTCTAGA	AAAAGGCCTG	AGACTCCATC	TAGAGAAAAA
	651	CCCTATGTAC	CATAATAAAA	GCCGTGTGAA	ACTACATAAA	
	701	AGTTTATCTC	AAACGCTAAC	ACTGCAGCCA	TTCTATTCAA	ACATAAGAAA
4.0	751	TTAGATTGGC	AAGGACCTCC	TTGGGGAGAA	CCTATCCCTC	CAGAAATCTC
10	801	AGCTTCTCTA	CATCAAGATG	ACCAGCTCTT		GGCGCTTCGA
	851	CTACATGGTT	ACTCTTTAAT	ATACAAAAA		CAATGCTAAA
	901	TTACGCAAGG	CATTGAGCCT		AAAGATATGT	
	951	GGTATACCAA	GGTCTTGCAG	AACCTACAGA		
	1001	TTTATCCAGG	GACCTATCCC	GAACGGAAAA		
15	1051	GAGGCTCAAC	AACTCTTTGA			AAATGACACG
	1101	CGAAGATCTA	GAAAAGGAAA	CTTTGACTTT		TCTTTTTCTT
	1151	ACGGAAGGAT	TTGCCAAATG	CTAAGAGAAC		AGTCTTAAAA
	1201	TTTACTATCC	CTATAGTAGG	CCAAGAGTTT		АААААААСТТ
	1251	CCTAGAGGGG	AACTATTCCC	TAACCGTGAA		
20	1301	TTGATCCGAT	GTCTTATCTC	ATGATCTTTG		AGGAATTTCC
	1351	CCCTATCACC	TCCAAGATTC	ACACTTTCAA		
	1401	TCAAGAACAT	AAAAAACACC	TACGAAATCA		GAAGCCCTTG
	1451	ACTATTTAGA	ACACTG PCAC			
	1501	CGAATTGCTT	TGAACAAAA		TTTAATCTTT	
25	1551	AACTTCAGAC	TTTCGTTTTA	TAGAAAAACT		O COACO

The PSORT algorithm predicts an outer membrane lipoprotein (0.790).

The protein was expressed in *E.coli* and purified as a his-tag product and a GST-fusion protein, as shown in Figure 64A. The recombinant his-tag protein was used to immunise mice, whose sera were used in a Western blot (Figure 64B). The recombinant GST-fusion protein was also used to immunise mice, whose sera were used in a Western blot (Figure 64C) and for FACS analysis (Figure 64D).

These experiments show that cp6467 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 65

30

40

35 The following C.pneumoniae protein (PID 4376679) was expressed <SEQ ID 129; cp6679>:

```
1 MRKMLVLLAS LGLLSPTLSS CTHLGSSGSY HPKLYTSGSK TKGVIAMLPV
51 FHRPGKSLEP LPWNLQGEFT EEISKRFYAS EKVFLIKHNA SPQTVSQFYA
101 PIANRLPETI IEQFLPAEFI VATELLEQKT GKEAGVDSVT ASVRVRVFDI
151 RHHKIALIYQ EIIECSQPLT TLVNDYHRYG WNSKHFDSTP MGLMHSRLFR
201 EVVARVEGYV CANYS*
```

A predicted signal peptide is highlighted.

The cp6679 nucleotide sequence <SEQ ID 130> is:

```
ATGCGAAAAA TGTTGGTATT ATTGGCATCT TTAGGACTTC TATCCCCAAC
                51
                    CCTATCCAGC TGCACTCACT TAGGCTCTTC AGGAAGTTAT CATCCTAAGC
45
                    TATACACTTC AGGGAGCAAA ACTAAAGGTG TGATTGCGAT GCTTCCTGTA
               101
               151
                    TTTCATCGCC CAGGAAAGAG TCTTGAACCT TTACCTTGGA ACCTCCAAGG
               201
                    AGAATTTACT GAAGAGATCA GCAAAAGGTT TTATGCTTCG GAAAAGGTCT
                    TCCTGATCAA GCACAATGCT TCACCTCAGA CAGTCTCTCA GTTCTATGCT
               251
               301
                    CCGATTGCGA ATCGTCTACC CGAAACAATT ATTGAGCAAT TTCTTCCTGC
50
               351
                   AGAATTCATT GTTGCTACAG AACTGTTAGA ACAAAAGACA GGGAAAGAAG
                   CAGGTGTCGA TTCTGTAACA GCGTCTGTAC GTGTTCGCGT TTTTGATATC
               401
               451
                    CGTCATCATA AAATAGCTCT CATTTATCAA GAGATTATCG AATGCAGCCA
               501 GCCTTTAACT ACCCTAGTCA ATGATTATCA TCGCTATGGC TGGAACTCAA
               551 AACATTTGA TTCAACGCCC ATGGGCTTAA TGCATAGCCG TCTTTTCCGC
```

601 GAAGTTGTTG CCAGAGTTGA GGGCTATGTT TGTGCTAACT ACTCGTAG The PSORT algorithm predicts an inner membrane location (0.149).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 65A) and as a GST-fusion product (Figure 65B). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 65C) and for FACS analysis.

These experiments show that cp6679 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 66

5

The following C.pneumoniae protein (PID 4376890) was expressed <SEQ ID 131; cp6890>:

A predicted signal peptide is highlighted.

The cp6890 nucleotide sequence <SEQ ID 132> is:

00	1	ATGAAACAAT	TACTTTTCTG	TGTTTGCGTA	TTTGCTATGT	CATGTTCTGC
20	51	TTACGCATCC		AAGATCCTTC		
	101	GAAATAATTA	TGGCATTATT			AAAGCGTGGT
	151	TCTGACGGCA	CCATCACCAA	AGTACTCAAA	AATGGAGCTA	CCCTGCATGA
25	201	AGTTTATTCT	GGAGGCCTCC	TTCATGGGGA	AATTACCTTA	ACGTTTCCCC
	251	ATACCACAGC	ATTGGACGTT	GTTCAAATCT	ATGATCAAGG	TAGACTCGTT
	301	TCTCGCAAAA	CCTTTTTTGT	GAACGGTCTT		AAGAGCTGTT
	351	CAATGAAGAT	GGCACGTTTG	TCCTCACACG		AACAACGACA
	401	GTGATACCAT	CACAAAGCCT	TACTTCATAG		TCAAGGGCAT
	451	GTCATAGAAG	GAAGTTATAC	TTCCTTTAAT	GGGAAATACT	CCTCATCCAT
30	501	CCACAATGGA	GAGGGAGTTC		CTCCTCCAAT	
	551	TTTCTGAAGA	GACCTTCAAT			
	601	TATCCGAATC	GCGATCCCGA		CATTATCAAA	
	651		CGGCTAACAT		TGGCATCCCC	
	701	AGGAGTGGCG	TTATGGCTTT		CGACCATCGT	
	75 1	GGTTGTAAGA	CATCTGAGAT		AAGGGAGTGA	
35	801	AGAACTGCGC	TACAATGAAC		AGCTGAAGAA	COUNTCOURCE
	851	GTAATGATTT	TCTGCATGGA	GAACGTAAGA	TOTATIONS TO THE TOTAL T	ACCA AMCCA A
	901			CGGGAGATCT		
	951		GCTGCAGGAT	AG	CIMICIAMAG	CCMMATTCGA

The PSORT algorithm predicts an outer membrane location (0.940).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 66A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 66B) and for FACS analysis. A his-tagged protein was also expressed.

These experiments show that cp6890 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

45 Example 67

The following C.pneumoniae protein (PID 6172323) was expressed <SEQ ID 133; cp0018>:

```
MKTSVSMLLA LLCSGASSIV LHAATTPLNP EDGFIGEGNT NTFSPKSTTD
                     AAGTTYSLTG EVLYIDPGKG GSITGTCFVE TAGDLTFLGN GNTLKFLSVD
                1.01
                    AGANIAVAHV QGSKNLSFTD FLSLVITESP KSAVTTGKGS LVSLGAVQLQ
                    DINTLVLTSN ASVEDGGVIK GNSCLIQGIK NSAIFGQNTS SKKGGAISTT
                151
 5
                     QGLTIENNLG TLKFNENKAV TSGGALDLGA ASTFTANHEL IFSQNKTSGN
                251
                    AANGGAINCS GDLTFTDNTS LLLQENSTMQ DGGALCSTGT ISITGSDSIN
                301
                    VIGNTSGQKG GAISAASLKI LGGQGGALFS NNVVTHATPL GGAIFINTGG
                     SLQLFTQGGD IVFEGNQVTT TAPNATTKRN VIHLESTAKW TGLAASQGNA
                401
                     IYFYDPITTN DTGASDNLRI NEVSANOKLS GSIVFSGERL STAEAIAENL
10
                451
                    TSRINQPVTL VEGSLVLKQG VTLITQGFSQ EPESTLLLDL GTSL*
```

A predicted signal peptide is highlighted.

The cp0018 nucleotide sequence <SEQ ID 134> is:

```
ATGAAGACTT CAGTTTCTAT GTTGTTGGCC CTGCTTTGCT CGGGGGCTAG
                 51
                     CTCTATTGTA CTCCATGCCG CAACCACTCC ACTAAATCCT GAAGATGGGT
15
                     TTATTGGGGA GGGCAATACA AATACTTTTT CTCCGAAATC TACAACGGAT
                101
                     GCTGCAGGAA CTACCTACTC TCTCACAGGA GAGGTTCTGT ATATAGATCC
                151
                201
                     GGGGAAAGGT GGTTCAATTA CAGGAACTTG CTTTGTAGAA ACTGCTGGCG
                251
                     ATCTTACATT TTTAGGTAAT GGAAATACCC TAAAGTTCCT GTCGGTAGAT
                     GCAGGTGCTA ATATCGCGGT TGCTCATGTA CAAGGAAGTA AGAATTTAAG
                301
20
                351
                     CTTCACAGAT TTCCTTTCTC TGGTGATCAC AGAATCTCCA AAATCCGCTG
                401
                     TTACTACAGG AAAAGGTAGC CTAGTCAGTT TAGGTGCAGT CCAACTGCAA
                451
                     GATATAAACA CTCTAGTTCT TACAAGCAAT GCCTCTGTCG AAGATGGTGG
                     CGTGATTAAA GGAAACTCCT GCTTGATTCA GGGAATCAAA AATAGTGCGA
                551
                    TTTTTGGACA AAATACATCT TCGAAAAAAG GAGGGGCGAT CTCCACGACT
25
                    CAAGGACTTA CCATAGAGAA TAACTTAGGG ACGCTAAAGT TCAATGAAAA
                601
                651
                    CAAAGCAGTG ACCTCAGGAG GCGCCTTAGA TTTAGGAGCC GCGTCTACAT
                    TCACTGCGAA CCATGAGTTG ATATTTTCAC AAAATAAGAC TTCTGGGAAT
                701
                751
                    GCTGCAAATG GCGGAGCCAT AAATTGCTCA GGGGACCTTA CATTTACTGA
                801
                    TAACACTTCT TTGTTACTTC AAGAAAATAG CACAATGCAG GATGGTGGAG
30
                    CTTTGTGTAG CACAGGAACC ATAAGCATTA CCGGTAGTGA TTCTATCAAT
                851
                901
                    GTGATAGGAA ATACTTCAGG ACAAAAAGGA GGAGCGATTT CTGCAGCTTC
                951
                    TCTCAAGATT TTGGGAGGGC AGGGAGGCGC TCTCTTTTCT AATAACGTAG
               1001
                    TGACTCATGC CACCCCTCTA GGAGGTGCCA TTTTTATCAA CACAGGAGGA
                    TCCTTGCAGC TCTTCACTCA AGGAGGGGAT ATCGTATTCG AGGGGAATCA
               1051
35
               1101
                    GGTCACTACA ACAGCTCCAA ATGCTACCAC TAAGAGAAAT GTAATTCACC
                    TCGAGAGCAC CGCGAAGTGG ACGGGACTTG CTGCAAGTCA AGGTAACGCT
               1151
               1201
                    ATCTATTCT ATGATCCCAT TACCACCAAC GATACGGGAG CAAGCGATAA
                    CTTACGTATC AATGAGGTCA GTGCAAATCA AAAGCTCTCG GGATCTATAG
               1251
                    TATTTTCTGG AGAGAGATTG TCGACAGCAG AAGCTATAGC TGAAAATCTT
               1301
40
               1351
                    ACTTCGAGGA TCAACCAGCC TGTCACTTTA GTAGAGGGGA GCTTAGTACT
                    TAAACAGGGA GTGACCTTGA TCACACAAGG ATTCTCGCAG GAGCCAGAAT
               1401
               1451
                    CCACGCTTCT TTTGGATCTG GGGACCTCAT TATAA
```

The PSORT algorithm predicts outer membrane (0.935).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 67A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 67B) and for FACS analysis.

These experiments show that cp0018 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 68

50 The following C.pneumoniae protein (PID 4376262) was expressed <SEQ ID 135; cp6262>:

```
1 MRKLRILAIV LIALSIILIA GGVVLLTVAI PGLSSVISSP AGMGACALGC
51 VMLALGIDVL LKKREVPIVL ASVTTTPGTG SPRSGISISG ADSTIRSLPT
101 YLLDEGHPQS MRKLRILAIV LIVFSIILIA SGVVLLTVAI PGLSSVISSP
151 AGMGACALGC VMLALGIDVL LKKREVPIVL ASVTTTPGTG SPRSGISISG
55 201 ADSTIRSLPT YPLDEGHPQS MRKLRILAIV LIVFSIILIA SGVVLLTVAI
251 PGLSSIISSP AEMGACALGC VMLALGIDVL LKKREVPIVV PAPIPEEVVI
```

```
301 DDIDEESIRL QQEAEAALAR LPEEMSAFEG YIKVVESHLE NMKSLPYDGH
               351
                    GLEEKTKHQI RVVRSSLKAM VPEFLDIRRI FEEEEFFFLS ARKRLIDLAT
                401 TLVERKILTE QLERNNLRKA FSYLYQDSIF KKIIDNFEKL AWKFMILSKS
                451
                    ICRFTIIFEN HEHGVAKSLL HKNAVLLEKV IYRSLQKSYR DIGMSSAKMK
 5
                    ILHGNPFFSL EDNKKTIMKE HAEMLESLSS YRKVFLALSD ENVVDTPSDP
               501
                    KKWDLSGIPC RDALSEISRD EQWQKKAHLK HQESLYTQAR DRLTDQSSKE
                    NQKELEKAEQ EYISSWERVK KFEIERVQER IRAIQKLYPN ILEREEETTG
               601
                    QETVTPTVQG TTASSDLTDI LGRIEVSSRE DNQNQESCVK VLRSHEVEMS
               651
               701
                    WEVKQEYGPK KKEFQDQMGS LERFFTEHIE ELEVLQKDYS KHLSYFKKVN
10
                    NKKEVQYAKF RLKVLESDLE GILAQTESAE SLLTQEELPI LATRGALEKA
               751
               801
                    VFKGSLCCAL ASKAKPYFEE DPRFQDSDTQ LRALTLRLQE AKASLEEEIK
                    RFSNLENDIA EERRLLKESK QTFERAGLGV LREIAVESTY DLRSLTNTWE
                    GTPESEKVYF SMYLNYYNEE KRRAKTRLVE MTQRYRDFKM ALEAMQFNEE
               901
               951
                    ALLQEELSIQ APSE*
```

15 A predicted signal peptide is highlighted.

The cp6262 nucleotide sequence <SEQ ID 136> is:

	1	ATGAGGAAAC	TTCGTATTCT	TGCGATCGTT	ርጥሮልሞአርርጣጥ	MC 3 CC 3 MM 3 M
	51	TTTGATTGCA	GGTGGTGTGG	TATTGCTTAC	TOTAGOCATO	CCCCACCA
	101	GTTCAGTCAT	TTCTTCCCCG	GCAGGGATGG	GTGCCTGTGC	TOTOGGATTAA
20	151	GTGATGCTTG	CTTTAGGGAT	CGATGTTCTT	CIGCCIGIGC	CACAACRACA
	201	TATAGTTCTC	GCATCTGTAA	CTACGACACC	ACCAACTICCC	ACCCCTACA
	251	GTGGTATTTC	TATTTCAGGA	GCTGATAGCA	CCAMACCOMO	MGCCCTAGAA
	301	TATCTCTTGG	ACGAGGGACA	TCCACAATCC	ATTCACCAAAC	TUTTUUTAUG
	351	TGCGATCGTT	CTCATAGTT	TTAGCATTAT	THUTCH BUCCA	1TCGTATTCT
25	401	TATTGCTTAC	TGTAGCGATC	CCTGGATTAA	CTUCACUCA	MINORITOGICG
	451	GCAGGGATGG	GTGCCTGTGC	TTTGGGATGT	GLICAGICAT	COMMUNICACION
	501	CGATGTTCTT	CTGAAGAAAC	GAGAAGTCCC	TATACTIC	COMMONORA
	551	CTACGACACC	AGGAACTGGC	AGCCCTAGAA	CACCANAMAN	CCATCTGTAA
	601	GCTGATAGCA	CCATACGTTC	TCTTCCTACG	TATCCCOMPCC	ACCACCA
30	651	TCCACAATCC	ATGAGGAAAC	TTCGTATTCT	TATCCCTTGG	ACGAGGGACA
	701	TTAGCATTAT	TTTGATTGCA	AGTGGTGTGG	TGCGATCGTT.	CTCATAGTTT
	751	CCTGGATTAA	GCTCGATCAT	TTCTTCCCCA	CCCCACAMOG	TGTAGCGATC
	801	TTTGGGATGT	CTCATCCTTC	CTTTGGGGAT	CCACCOMPONE	GTGCTTGTGC
	851	GAGAAGTCCC	TATAGTAGTT	CCCGCACCTA	CGACGTTCTT.	CTGAAGAAAC
35	901	GATGATATAG	ATGAAGAGAG	TATACGGCTG	CACCACCAAGA	AGTCGTCATA
	951	TTTAGCAAGA	CTTCCTCACC	AGATGAGTGC	AMMMONTAGE	CTGAAGCCGC
	1001	TTGTCGAGAG	TCATTTGGAG	AACATGAAAA	ATTTGAAGGT	TACATAAAAG
	1051	GGGCTAGAAG	AGAAAACGAA	ACATCAGATA	ACACTICCTTA	TGATGGTCAT
	1101	GAAGGCTATG	CTTCCACAAT	TTTTAGATAT	AGAGTCGTCA	GATCTTCTTT
40	1151	AAGAGTTCTT	THE CHARGE	GCTCGCAAAC	CAGAAGAATT	TTTGAAGAAG
	1201	ACTITAGTAG	AGAGAAAAAM	TTTAACAGAG	GACTTATAGA	TTTAGCTACT
	1251	AAGGAAAGCG	աստանանարան 1101101111111111111111111111111111111	TATATCAGGA	CAACTTGAGC	GCAATAATTT
	1301	TTGATAACTT	CGAGAAGTTA	GCATGGAAAT	CTCAATTTTT	AAAAAAATTA
	1351	ATTTGTCGAT	ጥጥልሮልልጥጥልጥ	TTTTGAAAAT	TTATGATTTT	GAGTAAATCA
45	1401	GAGCCTGTTA	CACAAGAATG	CAGTGTTACT	CATGAACATG	GTGTAGCAAA
	1451	GTTTGCAAAA	AACCTATACA	GATATAGGCA	GGAGAAGGTA	ATCTATAGGA
	1501	ATCTTGCACG	CCA ACCCUMUM	TTTCTCTTTG	TGTCATCTGC	AAAGATGAAA
	1551	AATCAAACAA	CACCCACACA	TGCTTGAAAG	GAAGATAATA	AAAAGACGAT
	1601	ጥልጥጥጥጥልርር	TOTATOTOAN	GAGAACGTTG	TCTCAGTAGC	TATAGGAAGG
50	1651	AAGAAAMGGG	TOTATOTGAT	AAGAACGTTG	TAGATACACC	TAGCGATCCA
••	1701	THICKKALGOO	WITIGICEGG	AATCCCCTGT	AGGGACGCGT	TGTCTGAGAT
	1751	CCCCCCCCATCAT	CCA ACCURACO	AGAAGAAAGC	ACATCTAAAG	CATCAAGAGT
	1801	ADTORONAC	ACMMACACA =	GATCGTTTAA	CAGACCAGAG	CTCTAAAGAA
	1851	ACCCCUMA A A	AGIIAGAGAA	AGCTGAACAA	GAGTACATAT	CTTCTTGGGA
55	1901	TOGGGI I AMA	WWWIIIGWGW	TTGAGAGAGT	ACAGGAGAGG	ATACGGGCAA
	1951	CACCACACTO	TIMICCIMAT	ATCCTCGAGA	GAGAAGAAGA	AACCACAGGT
	2001	CAGGAGACTG	TGACTCCAAC	TGTTCAAGGG	ACGACGGCTT	CATCCGATTT
	2001	AACAGATATT	TTAGGAAGAA	TAGAGGTCTC	CAGTAGGGAG	GATAATCAGA
	2101	MICAAGAGIC	TTGTGTAAAA	GTCTTAAGAA	GTCATGAGGT	AGAAATGAGC
60	2151	1GGGAAGTCA	AACAAGAGTA	TGGCCCTAAG	AAAAAAGAAT	TTCAGGATCA
00		WATGGGT.I.C.I.	TTAGAGAGGT	TTTTTACAGA	GCATATTGAA	gagttagaag
	2201 2251	TATTACAGAA	GGACTACTCT	AAACACTTGT	CTTATTTTAA	AAAAGTAAAC
		AATAAGAAAG	AGGTTCAATA	TGCGAAGTTT	AGGTTGAAGG	TTTTAGAGTC
	2301	AGATTTAGAA	GGGATTCTAG	CTCAGACTGA	GAGTGCTGAG	AGTCTGTTAA
65	2351	CTCAAGAAGA	ACT TCCGATT	CTTGCAACTC	GGGGAGCCTTT	AGAGA A ACCO
05	2401	GITTTCAAAG	GGAGTCTATG	TTGCGCGCTA	GCAAGCAAAG	CAAAACCCTA

```
2451 TTTTGAAGAG GATCCCAGAT TCCAAGATTC TGATACGCAA TTGCGAGCTC
2501 TGACTCTAAG GTTACAGGAG GCTAAGGCAA GCCTGGAAGA AGAGATAAAG
2551 AGATTTCAA ATCTTGAGAA CGATATTGCA GAGGAAAGAC GCCTTCTTAA
2601 AGAGAGCAAG CAGACGTTCG AAAGAGCAGG TTTAGGGGTT CTCCGAGAAA
2701 GGGACCCCAG AGAGTGAGAA GGTCTATTTT AGCATGAGAA
2751 CAACGAAGAG AAACGTAGGG CTAAAACAAG ATTGCTTGAA
2801 GGTATAGAGA TTTTAAAATG GCCTTGGAAG CTATGCAGTT TAATGAAGAA
2851 GCCCTTTTGC AAGAGGAACT CTCTATTCAA GCTCCCAGTG AATAA
```

10 The PSORT algorithm predicts inner membrane (0.660).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 68A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 68B) and for FACS analysis.

These experiments show that cp6262 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 69

The following C.pneumoniae protein (PID 4376269) was expressed <SEQ ID 137; cp6269>:

			• \		· wa Oxprosec	20EQ ID 13
	1 51	MYQENLRLLE	RLLYNSVQKS	YADRLFSYER	TKMVHDTPLI	PWEEDKEKCA
20		EWEVELTEČČ	KILLDYGKSI	FWLNENDETA	TATTO DIA CHACT N	morn month man
20	101	ADDSEVMNUT	· ATTOKTEDDA	EKLLEESSKE	CONTAINE TO C	DI III III TINA
	151	TULL DVV OFF	VETKAKDPES	RYGGTVDPKC	TYPE ARRESTET.	EXCI DIDET DO
	201	TESETAČCTE	DODITAMENT) VKDI ARTORI	TECOUTE A PER	TO A PRIDE TO COT
	251	TWINGWARD	DRAKWHIENA	EDSITWWTSO	TEMPEDMIZATET.	VII VEDICE
25	301	TERTOPTETC	PSPEEPPPJ	' TRELLTKSYT	KRKTOGRATI.	WIND OX TITLES TO THE
23	351	TAGETEAGEG	NUGEKLOGIS	ORFGKKODDE	AND PRODUCT OF	WWDT DDT mos-
	401	E ET ÖGE MEMK	LUFKAAAKDI	YTRSTAEORM	MEDITIONET TO	D DISTITUTE TO SEC.
	451	TWEINTINGAL	SYKDAKKKLC	SLRLDEKET.I.	OKEIKKEEFY	QKKQQRHADR
	501	SRHTTYQKLR	IAEELALELK	KKI*		K-mik Signibil
	The cp6269 nuc	leotide sequer	nce <seq id<="" td=""><td>138> is:</td><td></td><td></td></seq>	138> is:		
30	1	ATGTACCAGG	AGAATCTAAG	7 mmcmmcc 2 2	7.000	ATAATAGTGT
	51	TCAAAAGAGC	TATGCGGATC	ATTGTTGGAA	AGGCTTCTT	ATAATAGTGT ACAAAGATGG
	101	TGCACGATAC	TCCCCTCATT	CCCTGTTTTC	CTATGAAAAG	ACAAAGATGG AAAATGTGCT
	151	GAAGCTGAGA	AAGCTOTT	ACACCAAGA	AGGATAAGGA	AAAATGTGCT TAGATTATGG
	201	AAAATCTATC	TTTTGGCTGA	AGAGCAACAG	AAGATTCTCC	TAGATTATGG
35	251	CTTGGAGTTG	GGGTCTTAAA	ATGAGAACGA	TGAGATCAAT	TTAAACGATC ATTCCAAGAG
	301	GTTGACGACA	GTGAACGTTC	ACGGTGAGGA	CTAGGAAAGT	ATTCCAAGAG
	351	GGACGATTAT	GTGAACGTTG	TACACCA A A C	GTACTCATTC	AAAAACTCGA
	401	CAAATAAGAA	GAGAAACTTC GCTTTTATCT	CACUMACUAAAG	TTCAAAAGAG	TCTACTGAAG
	451	ACAAAATTTT	TCCTGAAGAA	ACACCAGG	ATCGTCTTGA	AGATGCTAAG
40	501	TCTTAGAGCT	CGATATGGAG	ACAGGAGGAG	GTGGAGACTC	GCGTTAAGGA
	551	CTAAGAAGAA	AGTCGAATTG	CACCOMACOM	TCCTAAGCAG	GATACGGAAG
	601	ATCGAATCAG	ACCTACTACA	COCCOORDA CAR	TAGAAACCTT	TTTAGATTCC
	651	AGAACAGGAT	AGCTAGTACA	UNCONCOUR C	GATCAAGATA	TATATTGGAA
	701	ATATTGAAGC	GTCAAAGATC	CARCACGTAC	GCAAGAGCTC	GAGGAACAAG
45	751	GAGCGTTTA	GAAGAGGGAA	GAAGCTGCCG	AAGACCTAAG	AAGTCTTAAT
	801	TGAAAATGCT	AGAAGTCAAA	AACTATGTTA	GATAGGGCTA	AATGGCATAT
	851	AGGATATGAA	GAGGACAGTA	TTACCTGGTG	GACTAGTCAG	ATAGAAATGA
	901	СТАССТСААА	AGCAAGACTG	MAGATCTTAA	AAGAAGATAT	AACAAGTGTT
	951	CTACCTGAAA	TUGAT GAGAT.	TGAAACGTGT	TTAAGCTTAG	AGGAGCTTCC
50	1001	TTTGCTTACG	ACCAGGGAAC	TCTTAACTAA	GTCCTACCTA	AAGTTTAAGA
_	1051	TTTGTTCGGA	VGCVCTVT.TA	AAAATGACTT	CTGTGTTTGA	GAACAATATC
	1101	TATGTTCAGG	TOTACGAGGT.	TCAGCTGCAA	AATCTAGGGT	TTAAGTTACA
	1151	AGGNACACCO	CAGAGAT TCG	GAAAGAAACA	AGACGATTTT	GCGAATCTAG
	1201	AGGAACAGGT	AACCATTGCAA	AAGAAACGAC	TCAGAGAGCT	CACTCAGAAT
55	1251	TITGMMING	AAGGATTCAA	TTTCATGAAA	$CD\DeltaCDmmmmx$	ACCCA COCCA
- -	1301	TAAAGATCTT	CCACCMCDCC	GTACAGCTGA	ACAAAAGATG	AACTTTGATG
	1351	TGCCTTGCAT	acvac.tc.t.t.c	CGTAGGTATC	ATGAGGAGGT	CAACAAGCCG
	4.JJ1	CTTCTTGAGT	IGMIGTACAA	TTGTGCAGAC	AGTTATAGAG	ATGCTAAGAA

- 1401 AAAGCTTTGC TCTCTACGTC TTGATGAAAA AGAGTTATTA CAAAAAGAAA 1451 TCAAGAAAGA GGAATTTTAT CAAAAGAAAC AACAAAGGCA TGCAGATAGA 1501 TCACGTCATA CTACGTATCA AAAGCTACGA ATTGCTGAAG AGCTTGCTCT 1551 TGAGCTGAAG AAGAAAATCT AA
- 5 The PSORT algorithm predicts cytoplasmic location (0.412).

The protein was expressed in E.coli and purified as a GST-fusion product (Figure 69A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 69B) and for FACS analysis.

These experiments show that cp6269 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone. 10

Example 70

The following C.pneumoniae protein (PID 4376270) was expressed <SEQ ID 139; cp6270>:

		MKIPLRFLLI	SLVPTLSMSN	LLGAATTEEL	SASNSFDGTT	STTSFSSKTS
15	51	SATDGTNYVF	KDSVVIENVP	KTGETOSTSC	FKNDAAAGDI.	NELGCGESET
13	101	FSN IDATTAS	GAAIGSEAAN	KTVTLSGFSA	LSFLKSPAST	WINGI GD TANK
	151	KGNLSLLDND	KVLIQDNFST	GDGGAINCAG	SLKIANNKSL	SETCHISSOND
	201	GGAIHTKNLT	LSSGGETLFQ	GNTAPTAAGK	GGATATADSG	TI.STECDECD
	251	IIFEGNTIGA	TGTVSHSAID	LGTSAKITAL	RAAOGHTIVE	VIDTIMITOCO
-	301	SVADALNINS	PDTGDNKEYT	GTIVESGEKL	TEVEVEN	TOT TIVIGOT
20	351	FKNGTVVLKG	DVVLSANGFS	ODANSKLTMD	T.GT.ST.TZANTE	VIDYTH MALES
	401	IDSLRNGKKI	KLSAATAQKD	IRTDRPMAA	TODECEVONO	STEDITORDA
	451	ILELDAGKDI	VISADSRSID	AVOSPYCYOC	TODEST IONG	FUNEDRANDG
	501	SFNPTAEOEA	PLVPNLLWGS	FTDVRSFONE	TOT CURCADA	KKATVSWAKQ
	551	NVLHRSGREN	QRKFRHVSGG	TATA LUDI OINT	TEDGIEGAEI	EKRFWVAGIS
25	601	MNTNFAKTYA	GSLRLQHDAS	LVCMCTTTC	GGDILSLGFA	QLFARDKDYF
	651	YGOLSYGHTD	HDMKMECT DD	DIDOM COLDING	EGGLKEIDDP	YVSKTLPCSF
	701	SCECEEVEAN	HRMKTESLPP	PPPTLSTDHT	SWGGYVWAGE	LGTRVAVENT
	. 751	POKOLLÖULI	PFVKVQAVYA	KODSFVELGA	ISRDFSDSHL	YNLAIPLGIK
	801	TIOAGGERA	HVVAMYSPDV	CRSNPKCTTT	LLSNQGSWKT	KGSNLARQAG
			GAAAELFGNF	GFEWRGSSRS	YNVDAGSKIK	F*
30	A predicted signa	al peptide is h	ighlighted.			

A predicted signal peptide is highlighted.

The cp6270 nucleotide sequence <SEQ ID 140> is:

	•					
	1	ATGAAGATTC	CACTCCGCTT	TTTATTGATA	TCATTAGTAC	CTACGCTTTC
	51	TATGTCGAAT	TTATTAGGAG	CTGCTACTAC	CGAAGAGTTA	TCGGCTAGCA
35	101	ATAGCTTCGA	TGGAACTACA	TCAACAACAA	GCTTTTCTAG	TAAAACATCA
	151	TCGGCTACAG		TTATGTTTTT	AAAGATTCTG	TAGTTATAGA
	201			AAACTCAGTC	TACTAGTTGT	TTTAAAAATG
	251	ACGCTGCAGC	TGGAGATCTA	AATTTCTTAG	GAGGGGGATT	TTCTTTCACA
	301	TTTAGCAATA	TCGATGCAAC	CACGGCTTCT	GGAGCTGCTA	ጥጥርር አአርጥር አ
40	351	AGCAGCTAAT	AAGACAGTCA	CGTTATCAGG	ATTTTCGGCA	
40	401	TTAAATCCCC	AGCAAGTACA	GTGACTAATG	GATTGGGAGC	
	451	AAAGGGAATT	TAAGCCTATT	GGATAATGAT	AAGGTATTCA	THICARIGIT.
	501	TTTCTCAACA	GGAGATGGCG	GAGCAATTAA	TTGTGCAGGC	
	551	TCGCAAACAA	TAAGTCCCTT	TCTTTTATTG	CAAATACTTC	TCCI IGAAGA
	601	GGCGGAGCGA	TTCATACCAA	AAACCTCACA	CHARTITAGITC	TICAACACGT
45	651	TCTATTTCAG	GGGAATACAG	CGCCTACGGC	CIAICIICIG	GIGGGGAAAC
	701	TCGCGATTGC	AGACTCTGGC	ACCCTATCCA	TGCTGGTAAA	GGAGGTGCTA
	751	ATTATCTTTG	AAGGCAATIAC	GATAGGAGCT	TTTCTGGAGA	CAGTGGCGAC
	801	TGCTATTGAT	TTAGGAACTA	GCGCTAAGAT	ACAGGAACCG	TCTCTCATAG
	851	AAGGACATAC	CAMAMACHM	TABLE TARGET	AACTGCGTTA	CGTGCTGCGC
50	901	TOTOTOTO	QMINIACTIT.	TATGATCCGA	TTACTGTAAC	AGGATCGACA
	951	ACACTATACC	CCAACCACA	TATTAATAGC	CCTGATACTG	GAGATAACAA
	1001	AGAGIAIACG	GGAACCATAG	TCTTTTCTGG	AGAGAAGCTC	ACGGAGGCAG
	1051	MMMAAAAAA	TGAGAAGAAC	CGCACTTCTA	AATTACTTCA	AAATGTTGCT
	1101	COCCOMMONOR	GGACTGTAGT	TTTAAAAGGT	GATGTCGTTT	TAAGTGCGAA
55°		CGGTTTCTCT	CAGGATGCAA	ACTCTAAGTT	GATTATGGAT	TTAGGGACGT
<i>33</i>	1151	CGTTGGTTGC	AAACACCGAA	AGTATCGAGT	TAACGAATTT	CCAAAmmaam
	1201	ATAGACTCTC	TCAGGAACGG	GAAAAAGATA	AAACTCAGTG	CTGCCACAGC

	1251		ATTCGTATAG	ATCGTCCTGT	TGTACTGGCA	ATTAGCGATG
	1301	AGAGTTTTTA		TTTTTGAATG	AGGACCATTC	CTATGATGGG
	1351	ATTCTTGAGT			GTGATTTCTG	CAGATTCTCG
5	1401	CAGTATAGAT		CTCCGTATGG	CTATCAGGGA	
3	1451	TCAATTGGTC		AAGAAAGCTA	CGGTTTCTTG	GGCGAAGCAG
	1501	AGTTTTAATC	CCACTGCTGA		CCGTTAGTTC	
	1551	TTGGGGTTCT	TTTATAGATG		CCAGAATTTT	
	1601	GTACTGAAGG	TGCTCCTTAC		TTTGGGTTGC	
10	1651	AATGTTTTGC	ATAGGAGCGG	TCGTGAAAAT	CAAAGGAAAT	TCCGTCATGT
10	1701	GAGTGGAGGT	GCTGTAGTAG		GAGGATGCCG	GGTGGTGATA
	1751	CCTTGTCTCT	GGGTTTTGCT		CGCGTGACAA	
	1801	ATGAATACCA	ATTTCGCAAA	GACCTACGCA	GGATCTTTAC	GTTTGCAGCA
	1851	CGATGCTTCC	CTATACTCTG		CCTTTTAGGA	
	1901	TCCGCGAGAT	CCTGTTGCCT	TATGTTTCCA	AGACTCTCCC	GTGCTCTTTC
15	1951	TATGGGCAGC	TTAGCTACGG			
	2001	TCTACCCCCC	CCCCCCCGA	CGCTCTCGAC	CCATCATACT	TCTTGGGGAG
	2051	GATATGTCTG	GGCTGGAGAG	CTGGGAACTC		TGAAAATACC
	2101	AGCGGCAGAG		AGAGTACACT		AAGTCCAAGC
	2151	TGTTTACGCT	CGCCAAGATA	GCTTTGTAGA		ATCAGTCGTG
20	2201	ATTTTAGTGA	TTCGCATCTT	TATAACCTTG		
	2251	TTAGAGAAAC		GCAATATTAT		TGGAATCAAG
	2301	TCCAGATGTT		ACCCCAAATG	MACCACMACC	CGATGTATTC
	2351	ACCAAGGGAG	TTGGAAGACC	AAAGGTTCGA		CTACTTTCCA
	2401	ATTGTTCAGG				ACAGGCTGGT
25	2451			GGCGGGGATC	GGAGCTGCAG	CAGAGCTTTT
	2501	ATGCGGGTAG	CAAAATCAAA	unuuva aacaaaaviic	TTCTCGTAGC	TATAATGTAG
				TITIO		

The PSORT algorithm predicts outer membrane (0.92).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 70A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot and for FACS analysis (Figure 70B).

The cp6270 protein was also identified in the 2D-PAGE experiment (Cpn0013).

These experiments show that cp6270 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 71

30

35 The following C.pneumoniae protein (PID 4376402) was expressed <SEQ ID 141; cp6402>:

```
1 MNVADLLSHL ETLLSSKIFQ DYGPNGLQVG DPQTPVKKIA VAVTADLETI
51 KQAVAAEANV LIVHHGIFWK GMPYPITGMI HKRIQLLIEH NIQLIAYHLP
101 LDAHPTLGNN WRVALDLNWH DLKPFGSSLP YLGVQGSFSP IDIDSFIDLL
151 SQYYQAPLKG SALGGPSRVS SAALISGGAY RELSSAATSQ VDCFITGNFD
201 EPAWSTALES NINFLAFGHT ATEKVGPKSL AEHLKSEFPI STTFIDTANP
251 F*
```

The cp6402 nucleotide sequence <SEQ ID 142> is:

	1	ATGAATGTTG	CGGATCTCCT	TTCTCATCTT	GAGACTCTTC	TCTCATCAAA
	51	AATATTTCAG	GATTATGGAC	CCAACGGACT	TCAAGTTGGA	GATCCCCAAA
45	101	CTCCGGTAAA	GAAAATCGCT	GTTGCAGTTA	CCGCAGATCT	AGAAACCAMA
	151	AAACAAGCTG	TTGCGGCCGA	AGCAAACGTT	CTCATTCTAC	ACCACGGAAT
	201	TTTTTGGAAA	GGTATGCCCT	ATCCTATTAC	CGGCATGATC	CATAACCCCAA
	251	TCCAATTACT	AATAGAACAC	OAKCOOMATAA	TCATTGATC	CCACCOURTCOR
	301	TTGGATGCTC	ACCCTACCTT	AGGAAATAAC	TGGACACTIO	CCACCTTCCT
50	351	AAATTGGCAT	GACTTGAAGC	CCddadaccanac	TTCCCCCCCCC	CCCTGGATCT
	401	TGCAAGGCTC	TTTCTCTCCT	ATCGATATAG	ATTCCCTCCCT	TATTTAGGAG
	451	TCTCAATATT	ACCAAGCTCC	CCTANANCCA	WITCI-T-TCAT	TGACCTGTTA
	501	TAGAGTCTCC	TCAGCAGCTC	CCIAAAAGGA	1C1GCCTTGG	GUGGUCCCTC
	551	CTTCGGCAGC	CACCACCAC	COCCARROCE	MCAGCTTAT	AGAGAACTCT
55	601	GAACCTCCAT	COTCOAA	CTCGATTGCT	TCATCACAGG	AAATTTTGAT
	651	GAACCTGCAT	CCCACACACC	TCTAGAAAGC	AATATCAACT	TCCTAGCATT
		TGGACATACA	GCCACAGAAA	AAGTAGGTCC	AAAATCTCTT	GCAGAGCATC

701 TAAAAAGCGA ATTTCCTATT TCCACAACCT TTATAGATAC GGCCAACCCC 751 TTCTAA

The PSORT algorithm predicts cytoplasmic (0.158).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 71A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 71B) and for FACS analysis.

These experiments show that cp6402 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 72

15

10 The following C.pneumoniae protein (PID 4376520) was expressed <SEQ ID 143; cp6520>:

```
1 MKHYLSFSPS ADFFSKQGAI ETQVLFGERV LVKGSTCYAY SQLFHNELLW
51 KPYPGHSFRS TLVPCTPEFH 1HPNVSVVSV DAFLDPWGIP LPFGTLLHVN
101 SQNTVIFPKD ILNHMNTIWG SGTPQCDPRH LRRLNYNFFA ELLIKDADLL
151 LNFPYVWGGR SVHESLEKPG VDCSGFINIL YQAQGYNVPR NAADQYADCH
201 WISSFENLPS GGLIFLYPKE EKRISHVMLK QDSSTLIHAS GGGKKVEYFI
251 LEQDGKFLDS TYLFFRNNQR GRAFFGIPRK RKAFL*
```

The cp6520 nucleotide sequence <SEQ ID 144> is:

	_					
	1	ATGAAACACT	ACCTATCATT	TTCTCCTTCT	GCTGATTTTT	TCTCTAAACA
20	51	GGGTGCTATT	GAAACTCAAG			TTAGTCAAAG
20	101	GGAGCACCTG	CTATGCATAT	TCCCAATTAT		GCTGTTATGG
	151	AAGCCCTATC	CAGGTCATAG			CCTGCACTCC
	201	TGAATTTCAT	ATCCATCCAA	ATGTTTCTGT		
	251	TAGATCCTTG		CTTCCTTTTG	GAACTTTACT	GATGCATTTT
	301	TCTCAAAATA		CCCTAAGGAT		CCATGTGAAT
25	351	CATCTGGGGC	0001111111		ATTCTCAATC	ATATGAACAC
	401			CTCAATGCGA		CTACGTCGTC
		TAAATTATAA		OTTIOTA # TITES	TTAAAGACGC	AGACCTTTTA
	451	CTGAACTTTC	CCTATGTATG	GGGAGGACGG	TCTGTACACG	AAAGTCTGGA
	501	AAAGCCGGGT	GTTGATTGTT	CGGGATTTAT	CAATATCCTT	TACCAGGCAC
20	551	AGGGATACAA	CGTCCCTAGA	AACGCTGCAG		GGATTGTCAT
30	601	TGGATCTCTA		CCTTCCTTCT		TATTTCTTTA
	651	CCCTAAAGAA		TTTCTCATGT		
	701	CCACCCTCAT				CAGGATAGTT
	751			GGTGGAGGGA		GTATTTCATT
			ATGGGAAGTT		ACTTATCTAT	TTTTTAGAAA
25	801		GGACGGGCAT	TTTTTGGGAT	~	AGAAAAGCCT
35	851	TTCTGTAA				

The PSORT algorithm predicts cytoplasmic (0.265).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 72A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 72B) and for FACS analysis.

These experiments show that cp6520 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 73

The following C.pneumoniae protein (PID 4376567) was expressed <SEQ ID 145; cp6567>:

```
45 51 MTSPIPFQSS GDASFLAEQP QQLPSTSESQ LVTQLLTMKK HTQALSETVL QQQRDRLPTA SIILQVGGAP TGGAGAPFQP GPADDHHPI PPPVVPAQIE 101 TEITTIRSEL QLMRSTLQQS TKGARTGVLV VTAILMTISL LAIIIILAV LGFTGVLPQV ALLMQGETNL IWAMVSGSII CFIALIGTLG LILTNKNTPL
```

201 PAS*

The cp6567 nucleotide sequence <SEQ ID 146> is:

```
ATGACCTCAC CGATCCCCTT TCAGTCTAGT GGCGATGCCT CTTTCCTTGC
                51
                    CGAGCAGCCA CAGCAACTCC CGTCTACTTC TGAATCTCAG CTAGTAACTC
 5
               101
                    AATTGCTAAC CATGATGAAG CATACTCAAG CATTATCCGA AACGGTTCTT
               151
                    CAACAACAAC GCGATCGATT ACCAACCGCA TCTATTATCC TTCAAGTAGG
               201
                    AGGAGCTCCT ACAGGAGGAG CGGGTGCGCC TTTTCAACCA GGACCGGCAG
               251
                    ATGATCATCA TCATCCCATA CCGCCGCCTG TTGTACCAGC TCAAATAGAA
               301
                    ACAGAAATCA CCACTATAAG ATCCGAGTTA CAGCTCATGC GATCTACTCT
10
               351 ACAACAAAGC ACAAAAGGAG CTCGTACAGG AGTTCTAGTG GTTACTGCAA
               401 TCTTAATGAC GATCTCCTTA TTGGCTATTA TTATCATAAT ACTAGCTGTG
               451
                    CTTGGATTTA CGGGCGTCTT GCCTCAAGTA GCTTTATTGA TGCAGGGTGA
               501
                    AACAAATCTG ATTTGGGCTA TGGTGAGCGG TTCTATTATT TGCTTTATTG
                    CGCTAATTGG AACTCTAGGA TTAATTTTAA CAAATAAGAA CACGCCTCTA
               551
15
               601
                    CCGGCTTCTT AA
```

The PSORT algorithm predicts inner membrane (0.694).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 73A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 73B) and for FACS analysis.

These experiments show that cp6567 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 74

The following C.pneumoniae protein (PID 4376576) was expressed <SEQ ID 147; cp6576>:

```
MLIMRNKVIL QISILALIQT PLTLFSTEKV KEGHVVVDSI TIITEGENAS
25
                    NKHPLPKLKT RSGALFSQLD FDEDLRILAK EYDSVEPKVE FSEGKTNIAL
               101
                    HLIAKPSIRN IHISGNQVVP EHKILKTLQI YRNDLFEREK FLKGLDDLRT
                    YYLKRGYFAS SVDYSLEHNQ EKGHIDVLIK INEGPCGKIK QLTFSGISRS
               151
                    EKSDIQEFIQ TKQHSTTTSW FTGAGLYHPD IVEQDSLAIT NYLHNNGYAD
                    AIVNSHYDLD DKGNILLYMD IDRGSRYTLG HVHIQGFEVL PKRLIEKQSQ
               251
30
                    VGPNDLYCPD KIWDGAHKIK QTYAKYGYIN TNVDVLFIPH ATRPIYDVTY
               301
               351
                    EVSEGSPYKV GLIKITGNTH TKSDVILHET SLFPGDTFNR LKLEDTEQRL
               401
                    RNTGYFQSVS VYTVRSQLDP MGNADQYRDI FVEVKETTTG NLGLFLGFSS
                    LDNLFGGIEL SESNFDLFGA RNIFSKGFRC LRGGGEHLFL KANFGDKVTD
               451
                    YTLKWTKPHF LNTPWILGIE LDKSINRALS KDYAVQTYGG NVSTTYILNE
               501
35
               551
                    HLKYGLFYRG SQTSLHEKRK FLLGPNIDSN KGFVSAAGVN LNYDSVDSPR
               601
                    TPTTGIRGGV TFEVSGLGGT YHFTKLSLNS SIYRKLTRKG ILKIKGEAQF
                    IKPYSNTTAE GVPVSERFFL GGETTVRGYK SFIIGPKYSA TEPQGGLSSL
               651
               701
                    LISEEFQYPL IRQPNISAFV FLDSGFVGLQ EYKISLKDLR SSAGFGLRFD
               751
                    VMNNVPVMLG FGWPFRPTET LNGEKIDVSQ RFFFALGGMF
```

40 A predicted signal peptide is highlighted.

The cp6576 nucleotide sequence <SEQ ID 148> is:

	1	ATGCTCATCA	TGCGAAATAA	AGTTATCTTG	САААТАТСТА	TTCTAGCGTT
	51	AATCCAAACC	CCTTTAACTT	TATTTTCTAC	TGAAAAAGTT	AAAGAAGGCC
	101	ATGTGGTGGT	AGACTCTATC	ACAATCATAA	CGGAAGGAGA	$A \supset T \cap T \cap T \cap A \cap A \cap A \cap T \cap T \cap T \cap T \cap$
45	151	AATAAACATC	CCTTACCCAA	ATTAAAGACC	AGAAGTGGGG	Շ ախարարաշ
	201	TCAATTAGAT	TTTGATGAAG	ACTTGAGAAT	TCTAGCTAAA	GAATACCACT
	251	CTGTTGAGCC	TAAAGTAGAA	TTTTCTGAAG	GGAAAACTAA	CAMAGCCCCOM
	301	CACCTAATAG	CTAAACCCTC	AATTCGAAAT	ATTCATATCT	CALAGOCCUI
	351	AGTCGTTCCT	GAACATAAAA	TTCTTAAAAC	CCTACAAATT	TACCCUAAMC
50	401	ATCTCTTTGA	ACGAGAAAA	TTTCTTAAGG	GTCTTGATCA	TACCGIAATG
	451	TATTATCTCA	AGCGAGGATA	TTTCGCATCC	ACTOMICACION	1C1AAGAACG
	501	ACACAATCAA	GAAAAAGGTC	ACATCGATGT	TOTOTAGACT	ACAGICIGGA
	551	GTCCTTGCGG	GAAAATTAAA	CAGCTTACGT	TITAATTAAA	ATCAATGAAG
	601	CANANTONO	2002 00 00 2 2 0 2	CUGCLINCGT	TCTCAGGAAT	CTCTCGATCA
	201	GRAMMATCAG	ATATCCAAGA	ATTTATTCAA	ACCAAGCAGC	ACTCTACAAC

		-					
		651	TACAAGTTG	TTTACTGGA	G CTGGACTCT	TCACCCAGAT	ATTGTTGAAC
		701	AAGATAGCTT	GGCAATTAC	• AATTACCTA	ATAATAACGG	GTACGCTGAT
		751	GCTATAGTC	ACTCTCACT	ጓ TGACCTTGA	GACAAAGGGA	ATATTCTTCTT
5		801		T ATTGATCGAC	GGTCGCGAT;	TACCTTAGGA	CACGTCCATA
J		851	TCCAAGGGTT		CCAAAACGCC	TTATAGAAAA	GCAATCCCAA
		901	GTCGGCCCC	ATGATCTTT	I TTGCCCCGA1	AAAATATGGG	AUCCCCUTY
		951	TAAGATCAAA	CAAACTTATO	CAAAGTATGG	CTACATCAAT	ACCAATGTAG
		1001	ACGTTCTCTT	CATCCCTCAC	GCAACCCGCC	CTATTTATGA	TGTAACTTAM
10		1051	GAGGTAAGTG	AAGGGTCTCC	: TTATAAAGTM	GGGTTAATTA	AAATTACTCC
10		1101	GAATACCCAT	ACAAAATCTG	ACGTTATTT	ACACGAAACC	AGTOTOTOG
		1151	CAGGAGATAC	ATTCAATCGC	TTAAAGCTAG	ΔΔCΔΠλαπαλ	CC330CC
		1201	AGAAATACAG	GCTACTTCCA	AAGCGTTAGT	GTCTATACAC	JUCCHHOUNON A
		1251	MCTIGHTCCT.	ATGGGCAATG	CGGATCAATA	CCGAGATATT	TICGIICICA
15		1301	TCAAAGAAAC		AACTTAGGCT	TATTOTTACC	TTTGTAGAAG
13		1351	CTTGACAATC	TTTTTGGAGG	AATTGAACTA	TCTGAAAGTA	MITTAGITCT
		1401	ATTTGGAGCT		TTTCTAAAGG		CTAAGAGGCG
		1451	GTGGAGAACA		AAAGCCAACT	TCCCCCACAA	ACTOR OF CO.
		1501	TATACTTTGA	AGTGGACCAA	ACCTCATTTT	CTAAACACTC	CURCCACAGAC
20		1551	AGGAATTGAA	TTAGATAAAT	CAATTAACAG	AGCATTATCT	CT TOOMITH.
20		1601	CTGTCCAAAC		AACGTCAGCA	CAACGTATAT	CTTGAACGAA
		1651	CACCTGAAAT	ACGGTCTATT	TTATCGAGGA	AGTCAAACGA	CTIGAACGAA
		1701	AAAACGTAAG		GGCCAAATAT	AGACAGCAAT	GIIIACAIGA
		1751	TCTCTGCTGC	AGGTGTCAAC	TTGAATTACG	ATTCTGTAGA	TARGGATTTG
25		1801	ACTCCAACTA	CAGGGATTCG	CGGGGGGGTG		TTTCTGGTTT
23		1851	GGGAGGAACT	TATCATTTTA	CAAAACTCTC		TCTATCTATA
		1901	GAAAACTTAC	GCGTAAAGGT	ATTTTGAAAA	TCAAAGGGGA	ACCIONAMENT
		1951	ATTAAACCCT	ATAGCAATAC	TACAGCTGAA		TCAGTGAGCG
		2001	CTTCTTCCTA	GGTGGAGAGA	CTACAGTTCG	GGGATATAAA	TCCTTTATTA
30		2051	TCGGTCCAAA	ATACTCTGCT	ACAGAACCTC	AGGGAGGAGM	CTCTTCGCTC
30		2101	CTTATTTCAG	AAGAGTTTCA	ATACCCTCTC		CTAATATTAG
		2151	TGCCTTTGTA	TTCTTAGACT	CAGGTTTTGT	CCCTTTTACAA	GAGTATAAGA
		2201	TTTCGTTAAA	AGATCTACGT	AGTAGTGCTG	GATTTCCTCT	GCGCTTCGAT
		2251	GTAATGAATA	ATGTTCCTGT	TATGTTAGGA	THE PROPERTY OF THE PROPERTY O	OCTOMO COMA
35		2301	AACCGAGACT	TTGAATGGAG	AAAAAATTGA	TGTATCTCAG	CCTTCCGTCC
22		2351	TTGCTTTAGG	GGGCATGTTC	TAA		CONTICITON

The PSORT algorithm predicts outer membrane (0.7658).

The protein was expressed in *E.coli* and purified as GST-fusion (Figure 74A), his-tag and his-tag/GST-fusion products. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 74B) and for FACS analysis (Figure 74C).

40 The cp6576 protein was also identified in the 2D-PAGE experiment (Cpn0300).

These experiments show that cp6576 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 75

The following C.pneumoniae protein (PID 4376607) was expressed <SEQ ID 149; cp6607>:

```
45 1 MNKRQKDKLK ICVIISTLIL VGIFARAPRG DTFKTFLKSE EAIIYSNQCN
51 EDMRKILCDA IEHADEEIFL RIYNLSEPKI QQSLTRQAQA KNKVTIYYQK
101 FKIPQILKQA SNVTLVEQPP AGRKLMHQKA LSIDKKDAWL GSANYTNLSL
151 RLDNNLILGM HSSELCDLII TNTSGDFSIK DQTGKYFVLP QDRKIAIQAV
201 LEKIQTAQKT IQVAMFALTH SEIIQALHQA KQRGIHVDII IDRSHSKLTF
101 KQLRQLNINK DFVSINTAPC TLHHKFAVID NKTLLAGSIN WSKGRFSLND
301 ESLIILENLT KQQNQKLRMI WKDLAKHSEH PTVDDEEKEI IEKSLPVEEQ
```

A predicted signal peptide is highlighted.

The cp6607 nucleotide sequence <SEQ ID 150> is:

	1	ATGAATAAAA	GACAAAAAGA	TAAATTAAAA	ATCTGTGTTA	TTATTAGCAC
	51	GTTGATTTTA	GTAGGAATTT	TTGCAAGAGC	TCCTCGTGGT	GACACTTTTA
	101	AGACTTTTTT	AAAGTCTGAA	GAAGCTATCA	TCTACTCAAA	TCAATGCAAT
5	151	GAGGACATGC	GTAAAATTCT	ATGCGATGCT	ATAGAACACG	CTGATGAAGA
5	201	GATCTTCCTA	CGTATTTATA	ACCTCTCAGA	ACCCAAGATC	CAACAGAGTT
	251	TAACTCGACA	AGCTCAAGCA	AAAAACAAAG	TTACGATCTA	CTATCAAAAA
	301	TTTAAAATTC	CCCAAATCTT	AAAGCAAGCC	AGCAATGTAA	CTTTAGTCGA
	351	GCAACCTCCA	GCAGGGCGTA	AACTGATGCA	TCAAAAAGCT	ርጥጥጥርር አጥልር
10	401	ATAAGAAAGA	TGCTTGGCTA	GGATCTGCGA	ACTACACCAA	TCተተባተነገተ
10	451	CGTTTAGATA	ATAATCTCAT	TCTAGGAATG	CATAGCTCGG	AGCTCTGTGA
	501	TCTCATTATC	ACAAATACCT	CTGGAGACTT	TTCTATAAAG	GATCAAACAG
	551	GAAAGTATTT	TGTTCTTCCT	CAAGATCGTA	AAATTGCAAT	ACAAGCTGTA
	601	CTCGAAAAAA	TCCAGACAGC	TCAGAAAACC	ATCCAAGTTG	СТАТСТТТСС
1.5	651	TCTGACCCAC	TCGGAGATTA	TTCAAGCCTT	ACATCAAGCA	AAACAACGAG
15	701	GAATCCATGT	AGATATTATC	ATTGATAGAA	GTCATAGCAA	ACTOTACTOTOTO
	751	AAGCAATTAC	GACAATTAAA	TATCAATAAA	GACTTTGTTT	СТАТАААТАС
	801	CGCACCCTGT	ACTCTTCACC	ATAAGTTTGC	AGTTATAGAT	AATAAAACTC
20	851	TACTTGCAGG	ATCTATAAAT	TGGTCTAAAG	GAAGATTCTC	СТТАВАТСАТ
	901	GAAAGCTTGA	TCATACTGGA	AAACCTGACC	AAACAACAAA	ልጥሮል ሮል ልልሮጥ
	951	TCGAATGATT	TGGAAAGATC	TAGCTAAGCA	TTCAGAACAT	CCTACAGTAG
	1001	ACGATGAAGA	AAAAGAAATT	ATAGAAAAA	GTCTTCCAGT	AGAAGAGCAA
	1051	GAAGCAGCGT	GA	•		

The PSORT algorithm predicts periplasmic (0.934).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 75A) and also as a GST-fusion. The GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 75B) and for FACS analysis.

These experiments show that cp6607 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 76

30 The following C.pneumoniae protein (PID 4376624) was expressed <SEQ ID 151; cp6624>:

	1	MDAKMGYIFK	VMRWIFCFVA	CGITFGCTNS	GFONANSRPC	ILSMNRMIHD
	51	CVERVVGNRL	ATAVLIKGSL	DPHAYEMVKG	DKDKTAGSAV	TECNGLCT.PU
	TOT	TLSLRKHLEN	NPNSVKLGER	LIARGAFVPL	EEDGTCDPHT	MINT STATEES
25	151	ATELLEAPLE	KFPEWSAEFK	ANSEELVCEM	SILDSWAKOC	LSTTPENT.DV
35	201	LVSGHNAFSY	FTRRYLATPE	EVASGAWRSR	CISPEGLSPE	AOTSVRDTMA
	∠5±	AADATNEHDA	SVVFPEDTLN	ODALKKIVSS	LKKSHLVRLA	QKPLYSDNVD
•	301	DNYFSTFKHN	VCLITEELGG	VALECQR*		2

The cp6624 nucleotide sequence <SEQ ID 152> is:

		•	~	10.		
40	1	ATGGATGCGA	AAATGGGATA	TATATTTAAA	GTGATGCGTT	GGATTTTCTG
40	51	TTTCGTGGCA	TGTGGTATAA			GGGTTTCAGA
	101	ATGCAAATTC	ACGTCCTTGT			GATTCATGAT
	151	TGTGTTGAAA	GAGTCGTGGG			TTTTGATCAA
	201	AGGATCCTTA	GACCCTCATG			GATAAGGACA
	251	AGATTGCTGG	AAGTGCCGTA			TCTTGAGCAT
45	301	ACATTAAGTT	TGCGGAAGCA			GTGTCAAGTT
	351		TTGATAGCGC			GAAGAAGACG
	401		TCCTCATATC			
•	451		TTACAGAAGT			GAAGGAAGCT
	501		GCAAATAGTG			AATGGTCTGC
50	551		GAAACAATGC			TCTATTTTAG
- •	601		GTCATAATGC			TTTACGGTAT
	651		GAAGTGGCTT		TTTACACGTC	
	701		ATCTCCAGAA		GAGGTCTCGT	
	751		_		GTGTTCGTGA	
55	801		ATATTAATGA			TCCCTGAGGA
		TACTCTGAAC		TGAAAAAAAT		
	851	GTCATTTAGT		CAAAAACCAT	TGTATAGTGA	TAATGTGGAC
	901	GACAATTATT	TTAGCACCTT	TAAACATAAT	GTCTGCCTTA	TCACAGAAGA

951 ATTAGGAGGG GTGGCTCTTG AATGTCAAAG ATGA

The PSORT algorithm predicts inner membrane (0.168).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 76A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 76B) and for FACS analysis.

The cp6624 protein was also identified in the 2D-PAGE experiment.

These experiments show that cp6624 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 77

10 The following C.pneumoniae protein (PID 4376728) was expressed <SEQ ID 153; cp6728>:

1 MKSSVSWLFF SSIPLFSSLS IVAAEVTLDS SNNSYDGSNG TTFTVFSTTD

	Τ.	MKSSVSWLFF	SSIPLFSSLS	IVAAEVTLDS	SNNSYDGSNO	TTFTVFSTTD
	51	AAAGTTYSLL	SDVSFONAGA	LGIPLASGCE	' T.EAGCOT. TEC	CNICITATIONS
	101	TIMESSAGIA	ASTSAADKNI	LFNDFSRIST	TSCDSLLLSE	DOCOUNT TO COTTO
15	151	MUSTIGMSOI	- IFTONESSON	GGVINTKNFT	T.SCTSOENER	CYNDRE COMES
13	201	GGAAXWIGIT	TIENSPGIVS	FSONDAKGSC	CAT.VCTDNICC	THENTE
	251	GNOAWEAAQA	QGGAICCTTT	' DKTVTLTGNR	TATION TOTAL	MVCCATOCTA
	301	ASTSWGGLIT	FOSNISGSSA	GOGGGGAINT	A SACETATOR	MCCDTMT
	351	OATMODIDIK	NAINLIDTAK	VTSIRAATGC	STVEVDDTMN	TOOMS A CONTRACT
20	401	MUMUADAMSE	LEYGGAIVES	GEKLISPTEKA	TAAMMOMTD	ODAYIT ADODS
20	451	ATTECTACALIALE.	KULTOSPGSR	ILMDGGTTLS	AKEANT OF MC	T NYME COT TO
	501	TNKAALKTEA	. AUKNISLSGT	IALIDTEGGE	VENUALIZATO	MISTATE THE COMPA
	551	GWING L'T.I.TICH	PETRITION	THYGYOGNWO	T. SMANAGOV	TOOTHUMBOO
	601	TTESEEKVSN	LELINSLWGNE	IDIRSTNOTA	RTKCCCCCDDD	DET ME GOTTES
25	651	FFIRDSMPTR	HGFRHISGGY	ALGITATTPA	EDOLUTE A ECO	TEADONATE
23	701	GVMUGDI.I.QV	SLYFHHTEGL	FDIANFLWCK	ATRA DIATIT OF	TCOTTOT COM
	751	WELDITHIDM	HMKTYYTDNS	IIKGSWRNDA	FCADLCA CLD	TOTAL CHARGES TO THE
	801	FAPELAYAĞI	TYAHOODFYE	RHAEGRAFNK	CTT.TATTTTOT	CAMBINATION
	851	EVGIIDULIM	XTTDWXKKUD	KCOTSLTASD	A NIMINIA VICTORIT	ARQGFSVRAA
	901	NHFQVNPHME	IFGQFAFEVR	SSSRNYNTNL	GSKFCF*	THISOT DATOM
30	The cp6728 nucl	leotide seaner	ce ~SEO ID	15/2 in		
-	F 20 1140	condo seque	icc /pro/ ID	134>15:		
	1	ATGAAGTCCT	CTGTCTCTTG	CTTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	MOMMO2 2 mas	
	51	ATCGCTCTCT	ATAGTCGCGG	Cycyccmcyc	COTTCAATCC	CGCTCTTTTC
	101	GCTATGATGG	ATCTAACGGA	A CHA COMMON	CTTAGATAGC	AGCAATAATA
	151	GCTGCTGCAG	GAACTACCTA	MACCAGO TICH	TOGGTCTTTTC	CACTACGGAC
35	201	TGCAGGGGCT	TTAGGAATTC	CCMMACCCM	ACCARCGTAT	CCTTTCAAAA
	251	GCGGCGATCT	TACTTTCCAA	CCLIMGCCIC	AGGATGCTTC	CTAGAAGCGG
•	301	ATCAATGCGG	GCTCTAGCGC	TICCY Y CHICKY	COCACTGAA	GTTTGCATTT
	351	TAAGAATCTT	CTCTTTAATG	AUTOMACTOTA	A COCAGTACCT	CAGCAGCAGA
	401	CCTCTCTTCT	TCTCTCTCT	ATTITICIAG	ACTCTCTATT	ATCTCTTGTC
40	451	AATCTATCTC	TAACTGGCAA	TOTOGACAAT	GTGCTTTAAA	ATCTGTGGGG
	501	GTCAGATAAC	GGCGGTGTTA	TICCCAAATT.	ATATTTACTC	AGAACTTCTC
	551	CATCTCAGTT	TGCGAGCTTT	TCAATACGAA	AAACTTCTTA	TTATCAGGGA
	601	GGCGGTGTAG	TOCOMOCITY	A CCA A CMA MA	AAGCCTTCAC	AGGGAAGCAA
	651	GATAGTTTCC	TTTACGCTAC	AGGAACTATA	ACTATCGAGA	ACAGCCCTGG
45	701	ACAGCACTGA	TTCTCTCAAA	ACCTAGCGAA	AGGATCTGGC	GGTGCTCTGT
	751	GGCAATAGTG	CAACTGTTCG	ATTACAGATA	ACTITICAAGT	GATCTTTGAC
	801	CACTACGACA	CTTGGGAAGC	CGCTCAAGCT	CAGGGGGGG	CTATTTGTTG
	851	ערשע ערשע איי	GATAAAACAG	TGACTCTTAC	TGGGAACAAA	AACCTCTCTT
	901	CTCACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	TACAGCATTG	ACATATGGCG	GAGCCATCTC	TGGACTCAAG
50	951	AAGEAGGGGG	CCGCTGGAGG	TCCTACTCTA	TTTCAAAGTA	ATATCTCAGG
	1001	GCC A A CTCCC	GGTCAGGGAG	GAGGAGGAGC	GATCAATATA	GCATCTGCTG
	1051	CDAGRACICGC	TCTCTCTGCT	ACTTCTGGAG	ATATTACCTT	CAATAACAAC
	1101	UNCCCCUMA A A	ACGGAAGCAC	AAGTACAAGA	AACGCAATAA	ATATCATTGA
	1151	TWCCGCTWWW	GTCACATCGA	ͲΆϹϾϪϾϹͲϾϹ	でなぐらぐらっつっっ っ	mama mama mm
55	1201	AACHIIAAAACC	CATCACAAAT	CCAGGAACCG	CAGCTTCTAC	CGACACATTG
	1251	WUCTIWWCT.	TAGCAGATGC	GAACAGTGAG	<u>አጥ</u> ርርእርጥአመሩ	OCCOMPCON M
	1431	TOTCTTTTCT	GGAGAAAAGC	TTTCCCCTAC	AGAAAAAGCA	ATCGCTGCAA

	1301	ACGTCACCTC	TACTATCCGA	CAACCTGCAG	TATTAGCGCG	GGGAGATCTT
	1351	GTACTTCGTG	ATGGAGTCAC	CGTAACTTTC	AAGGATCTGA	CTCAAAGTCC
	1401	AGGATCCCGC	ATCTTAATGG	ATGGGGGGAC	TACACTTAGT	GCTAAAGAGG
5	1451	CAAATCTTTC	GCTTAATGGC	TTAGCAGTAA	ATCTCTCCTC	TTTAGATGGA
5	1501	ACCAACAAGG		AACAGAAGCT	GCAGATAAAA	ATATCAGCCT
	1551	ATCGGGAACG	ATTGCGCTTA	TTGACACGGA	AGGGTCATTC	TATGAGAATC
	1601	ATAACTTAAA	AAGTGCTAGT	ACCTATCCTC	TTCTTGAACT	TACCACCGCA
	1651	GGAGCCAACG	GAACGATTAC	TCTGGGAGCT	CTTTCTACCC	TGACTCTTCA
10	1701	AGAACCTGAA	ACCCACTACG	GGTATCAAGG	AAACTGGCAG	TTGTCTTGGG
10	1751	CAAATGCAAC	ATCCTCAAAA	ATAGGAAGCA	TCAACTGGAC	CCGTACAGGA
	1801	TACATTCCTA	GTCCTGAGAG	AAAAAGTAAT	CTCCCTCTAA	ATAGCTTATC
	1851	GGGAAACTTT	ATAGATATAC	GCTCGATCAA	TCAGCTTATA	GAAACCAAGT
	1901	CCAGTGGGGA	GCCTTTTGAG	CGTGAGCTAT	GGCTTTCAGG	AATTGCGAAT
15	1951	TTCTTCTATA	GAGATTCTAT	GCCCACCCGC	CATGGTTTCC	GCCATATCAG
15	2001	CGGGGGTTAT	GCACTAGGGA	TCACAGCAAC	AACTCCTGCC	GAGGATCAGC
	2051	TTACTTTTGC	CTTCTGCCAG	CTCTTTGCTA	GAGATCGCAA	TCATATTACA
	2101	GGTAAGAACC	ACGGAGATAC	TTACGGTGCC	TCTTTGTATT	TCCACCATAC
	2151	AGAAGGGCTC	TTCGACATCG	CCAATTTCCT	CTGGGGAAAA	GCAACCCGAG
20	2201	CTCCCTGGGT	GCTCTCTGAG	ATCTCCCAGA		ATCGTTCGAT
20	2251	GCTAAATTCA	GTTATCTCCA	TACAGACAAC	CACATGAAGA	CATATTATAC
	2301	CGATAACTCT	ATCATCAAGG	GTTCTTGGAG	AAACGATGCC	TTCTGTGCAG
	2351	ATCTTGGAGC	TAGCCTGCCT	TTTGTTATTT		TCTTCTGAAA
	2401	GAAGTCGAAC	CTTTTGTCAA	AGTACAGTAT	ATCTATGCGC	ATCAGCAAGA
25	2451	CTTCTACGAG	CGTCATGCTG	AAGGACGCGC	TTTCAATAAA	AGCGAGCTTA
25	2501	TCAACGTAGA	GATTCCTATA	GGCGTCACCT	TCGAAAGAGA	CTCAAAATCA
	2551	GAAAAGGGAA	CTTACGATCT	TACTCTTATG	TATATACTCG	ATGCTTACCG
	2601	ACGCAATCCT	AAATGTCAAA	CTTCCCTAAT	AGCTAGCGAT	GCTAACTGGA
	2651	TGGCCTATGG	TACCAACCTC	GCACGACAAG	GTTTTTCTGT	TCGTGCTGCG
20	2701	AACCATTTCC	AAGTGAACCC	CCACATGGAA	ATCTTCGGTC	AATTOCCOTTOCG
30	2751	TGAAGTACGA	AGTTCTTCAC	GAAATTATAA	TACAAACCTA	GGCTCTAAGT
	2801	TTTGTTTCTA	G			

The PSORT algorithm predicts inner membrane (0.187).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 77A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 77B) and for FACS analysis.

The cp6728 protein was also identified in the 2D-PAGE experiment.

These experiments show that cp6728 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 78

35

40 The following C.pneumoniae protein (PID 4376847) was expressed <SEQ ID 155; cp6847>:

50 EPYGDGVIGK VTLHSFYEGE NQVSSEQDLR RAIQGLKEKN LLGLVLDIF 401 NTGGFLSQAI KVSGLFMTNG VVVVSRYADG TMKCYRTVSP KKFYDGPLF 50 451 LVSKSSASAA EIVAQTLQDY GVALVVGDEQ TYGKGTIQHQ TITGDASQI 501 CFKVTVGKYY SPSGKSTQLQ GVKSDILIPS LYAEDRLGER FLEHPLPAL 551 CDNVLHDPLT DLDTQTRPWF QKYYLPNLQK QETLWREMLP QLTKNSEQF 601 SENSNFQAFL SQIKSSEKTD LSYGSNDLQL EESINILKDM ILLQQCRK*	50 451 501 551	ATYKNINQLI LDEVKQRQRA LGINDHGVAM EKGMCGIGVV HLSFRGVLDC EPYGDGVIGK NTGGFLSQAI LVSKSSASAA CFKVTVGKYY CDNVLHDPLT	SYIQSFDPHK HESILRARQW LLLSYLSLHL DRDEEAYQFH LKEDIDGVVV LRGGHGSTVV VTLHSFYEGE KVSGLFMTNG EIVAQTLQDY SPSGKSTQLQ DLDTQTRPWF	SYLSNQEVAV RNEWVKNPKE AGASSSRYEG IRVVKALAHS REIIPGGPAA LDIHRGESDH NQVSSEQDLR VVVVSRYADG GVALVVGDEQ GVKSDILIPS GVKYDILIPS OKYYLPNLOK	FLQSPETKKR LVLEASSYQI KEEQLAALCL LDAHTAYFSK KSGDLQLGDI TIALRREKIL RAIQGLKEKN TMKCYRTVSP TYGKGTIQHQ LYAEDRLGER OETLWREMLD	LLKNYKAGNI SKQPMQWSK. RQIENHENV' DEALAMRIQI IYRVDGKDII LEDRRVDVS' LLGLVLDIRI KKFYDGPLAT TITGDASQDI FLEHPLPAD
---	----------------------	---	--	--	--	---

A predicted signal peptide is highlighted.

The cp6847 nucleotide sequence <SEQ ID 156> is:

	_					
	1	ATGTTCGTA	А ТGAAAAAAC'	TGTCCGTCT2	TGCGTAGTTC	, փոհահուհուհուհուհուհուհուհուհուհուհուհուհուհ
	51	ACTICCOMA,	r GIATTATTI	L' CTTCGGATCT	ነ መጥጥአ ውርአው አ	~~~~~~~
	101	MANAGAT GM.	I GGACAAGCT	3 ATCGAGTATC	' <u>እጥር</u> መሮር አመረ።	man
5	151	TOTACGGWIN	A TACTCTCGC	\mathbf{F}	` ልርጥጥል C አ ጥጥረ	3 2 CO
5	201	TOTOTIME	A TUTTATUTT	I CAAACCAAGA	CCのかいしょう Comm	mmmo-da oa
	251	CICCGGNAM	- MAAGAAACG	L CTCTTAAAGA	Δጥጥλጥ Δ λ C C C	3000330000
	301	GC TWI I IWI	- GCAACATCA	A TCAATTAATT	CAMCACACON	mmamaaaaa
	351	CHOGCHGIGG	- AGAAACGAA	' GGGTTAAGAA	ጥሮሮ አል አል አር አር	COMPOND DOGO
10	401	MGGCATCCTC	ATATCAGATA	1 TCGAAGCAAC	ርጥልጥርር እ አጥር	0300333man
10	451	TIMONCOMAC	JUAAGCAGAC	: ACAACGCGCT	CITY CITY COMMIN	GGET3 = GET= -
	501	TTTACATCTT	GCTGGAGCTT	· CTTCCTCTC	ምም አጣር አ CCCm	33305305
	551	WGCTIGCLGC	TCTGTGTCTA	L CGTCAAATCG	プログルクログルのご オ	CAAMOMAMAM
	601	TIMOGINICA	ACGATCATGO	ՐՐՐՐՐՐՐՐՐ Ի	CATCCCCATC	******
1.5	651	CCAATTCCAT	ATCCGTGTTC	TUDADACCOURT	AGCTCATAGC	AAGAAGCCTA
15	701	ATACGGCGTA	TTTCAGTAAG	GACGAAGCGT	TGGCGATGCG	TTAGATGCAC
	751	GAAAAAGGCA	TGTGTGGAAT	TGGTGTTGCGT	CTGAAGGAAG	AATCCAACTA
	801	AGTTGTTGTT	AGAGAAATCA	TTCCTGGGG	ACCTGCGGCT	ATATTGATGG
	851	ATCTTCAGCT	TGGAGATATC	AMCHARCCCC	TGGATGGCAA	AAATCTGGGG
20	901	CATCTTTCTT	TCCGCGGTGT	TITCIAI COGG	TTACGTGGAG	GGATATCGAG
20	951	TACTGTAGTC	TTAGATATCC	AUCCACCCCA	GAGCGATCAT	GTCATGGCTC
	1001	TGAGAAGGGA	GAAAATCCTT	TTACAACACC	GTCGTGTGGA	ACGATCGCCT
	1051	GAGCCTTATG	GAGATGGTGT	CAMMOCCOAAA	GTTACGTTAC	TGTTTCCTAT
	1101	TGAAGGAGAA	AATCAGGTTT	CENCECANON	AGATCTACGT	ATTCTTTTTA
	1151	AGGGATTAAA	GGAGAAGAAC	CINGIGMACA	TAGTTTTAGA	CGAGCGATTC
25	1201	AATACGGGTG	CAMMINITATIO	CIICIIGGAI.	AAAGTTTCTG	TATCCGAGAA
	1251	GACCAATGGC	GTTGTGGTTG	TCHAGCGATC	TGCTGATGGT	GTTTATTTAT
	1301	GCTACCGCAC	AGTATCTCCT	AAAAAA	TGCTGATGGT	ACCATGAAGT
	1351	TTAGTATCTA	AAAGTTCCCC	AAAAAATTCT	ATGATGGTCC	TTTGGCTATT
	1401	CCAAGATTAT	GGAGTTCCGC	MA COMPORTED	GAGATTGTAG	CACAAACTCT
30	1451	AGGGAACGAT	TCAGCATCAA	1AG1TGTTGG	AGATGAGCAG	ACCTATGGGA
	1501	TGTTTTAAGG	TCAGCATCAA	CAAATTACTG	GAGATGCCTC	TCAGGACGAT
	1551	TCAACTTCAG	TINCIGIAGG	GAAATATTAT	TCCCCTTCTG	GGAAATCGAC
	1601	AAGATCGTCT	ACCACACCCM	CCGATATTTT	AATTCCTTCT	CTCTATGCTG
	1651	TGTGATAATG	TACONGAGCGT.	TTTCTAGAGC	ATCCCTTACC	TGCAGATTGC
35	1701	TCCTTCCTTT	CANANAMACM	TCCTCTCACG	GACTTGGATA	CTCAAACACG
	1751	TTTCCACACA	CHAMAATACT	ATCTTCCTAA	TCTACAAAAG	CAAGAGACTC
	1801	TCTCAGAAnn	GATGCTACCT	CAGCTTACGA	AAAACAGTGA	GCAAAGGCTT
	1851	AAAAACGGAC	COMMITTICA	GGCATTTTTG	TCGCAGATAA	AATCATCTGA
	1901	TAAACATTOO	CAACCACATG	GTTCCAATGA	TTTACAATTG	GAAGAGTCGA
40	The Doors t		GAAGGACATG	ATTTTATTAC	AACAGTGTAG	AATAAA

40 The PSORT algorithm predicts periplasmic (0.932).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 78A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 78B) and for FACS analysis.

These experiments show that cp6847 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 79

The following C.pneumoniae protein (PID 4376969) was expressed <SEQ ID 157; cp6969>:

```
50 MRLFSLGTIY LFFSLALSSC CGYSILNSPY HLSSLGKSLL QERIFIAPIK
LTPLICATION LTPLICATION AUGUSTICAL
STATEMENT OF THE STREET STRE
```

A predicted signal peptide is highlighted.

The cp6969 nucleotide sequence <SEQ ID 158> is:

55	J.	TT COT CMT.CC.	TGTGGTTACT	CTATTTTAAA	CTTTTTTTT CAGCCCGTAT	03 0mm 3 ma
	101	CTTTAGGTAA	${\tt GTCTTTATTA}$	CAGGAAAGAA	TTTTCATTGC	TCCCATAAAA

```
151 GAAGATCCTC ATGGTCAGCT CTGCTCAGCT CTAACTTATG AGCTTAGTAA
201 GCGTTCTTT GCTATCTCTG GAAGGAGTTC TTGCGCAGGC TATACTCTTA
251 AAGTAGAGCT TCTGAATGGT ATTGACAAGA ATATAGGTTT TACGTATGCC
301 CCAAATAAAC TCGGAGATAA GACTCACAGG CATTTATAG TCTCTAATGA
401 AAGAAGTCCT TATAGACCAA TGTGTTGCTC GAGAGTCTGT AGACTTTGACACACTC
451 TTTGAGCCTG ACTTAGGAAC AGCAAACGCT CATGAATTTG CTTTAGGCCA
501 ATTTGAAATG CATAGTGAAC CCATAAAAAAG TGCTCGCCGT ATACTATCTA
551 TACGCCTAGC CGAGACGATT GCTCACCAGG TATACTATCTA
```

10 The PSORT algorithm predicts inner membrane (0.126).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 79A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 79B) and for FACS analysis.

These experiments show that cp6969 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 80

The following C.pneumoniae protein (PID 4377109) was expressed <SEQ ID 159; cp7109>:

```
1 MKKTCQNYR SIGVVFSVVL FVLTTQTLFA GHFIDIGTSG LYSWARGVSG
51 DGRVVVGYEG GNAFKYVDGE KFLLEGLVPR SEALVFKASY DGSVIIGISD
101 QDPSCRAVKW VNGALVDLGI FSEGMQSFAE GVSSDGKTIV GCLYSDDTET
151 NFAVKWDETG MVVLPNLPED RHSCAWDASE DGSVIVGDAM GSEEIAKAVY
201 WKDGEQHLLS NIPGAKRSSA HAVSKDGSFI VGEFISEENE VHAFVYHNGV
251 IKDIGTLGGD YSVATGVSRD GKVIVGHSTR TDGEYRAFKY VDGRMIDLGT
301 LGGSASFAFG VSDDGKTIVG KFETELGECH AFIYLDD*
```

25 A predicted signal peptide is highlighted.

The cp7109 nucleotide sequence <SEQ ID 160> is:

	_					
	_1	ATGAAAAAGA	CATGTTGCCA	AAATTACAGA	TCGATAGGCG	TTGTGTTCTC
	51	TGTGGTACTT	TTCGTTCTTA	CAACACAGAC	GCTGTTTGCA	GGACATTTTA
20	101	TTGATATTGG	AACTTCTGGA	TTATATTCTT	GGGCTCGAGG	TGTATCTGGA
30	151	GATGGCCGCG	TTGTCGTAGG	TTATGAAGGT	GGCAATGCAT	TTAAATATGT
	201	TGATGGTGAG	AAATTTCTGT	TAGAAGGTTT	GGTCCCGAGA	TCCGAGGCCT
	251	TGGTATTTAA	AGCTTCTTAT	GATGGCTCTG	TAATTATAGG	AATCTCGGAT
	301	CAAGATCCGT	CTTGCCGCGC	TGTGAAGTGG	GTAAACGGTG	CACTTGTTGA
	351	TCTTGGAATA	TTTTCTGAGG	GAATGCAATC	TTTTGCAGAG	GGTGTTTCCA
35	401	GTGATGGAAA	GACGATTGTA	GGGTGCCTAT	ATAGTGATGA	TACAGAGACA
	451	AACTTTGCTG	TGAAGTGGGA	TGAAACAGGA	ATGGTTGTTC	TCCCTAACTT
	501	ACCAGAAGAT	CGACATTCTT			GATGGCTCTG
	551	TGATTGTAGG	GGACGCCATG		AAATTGCCAA	
	601	TGGAAGGACG	GTGAACAACA			GAGCTAAAAG
40	651	ATCGTCAGCA				
	701	TCATCAGTGA			TTGTTTATCA	
	751	ATCAAAGATA		AGGAGGAGAT		
	801	TTCTAGGGAT			TACTCTGTAG	
	851	AATACCGTGC	ATTTAAATTA			
45	901	TTAGGAGGTT		GTGGATGGAA		TTTGGGGACT
73	951			TGCTTTTGGT		ATGGCAAAAC
				CAGAGCTAGG	AGAATGTCAT	GCCTTTATCT
	1001	ACCTTGATGA	TTAG			

The PSORT algorithm predicts outer membrane (0.887).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 80A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 80B) and for FACS analysis.

These experiments show that cp7109 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 81

The following C.pneumoniae protein (PID 4377110) was expressed <SEQ ID 161; cp7110>:

```
5 1 MAAIKQILRS MLSQSSLWMV LFSLYSLSGY CYVITDKPED DFHSSSAVKW
51 DHWGKTTLSR LSNKKASAKA VSGTGATTVG FIKDTWSRTY AVRWNYWGTK
101 ELPTSSWVKK SKATGISSDG SIIAGIVENE LSQSFAVTWK NMEMYLLPST
151 WAVQSKAYGI SSDGSVIVGS AKDAWSRTFA VKWTGHEAQV LPVGWAVKSV
201 ANSVSANGSI IVGSVQDASG ILYAVKWEGN TITHLGTLGG YSAIAKAVSN
10 251 NGKVIVGRSE TYYGEVHAFC HKNGVMSDLG TLGGSYSAAK GVSATGKVIV
301 GMSTTANGKL HAFKYVGGRM IDLGEYSWKE ACANAVSIDG EIIVGVQSE*
```

A predicted signal peptide is highlighted.

The cp7110 nucleotide sequence <SEQ ID 162> is:

15		1	ATGGCAGCTA	TAAAACAAAT	TTTACGTTCT	ATGCTATCTC	AGAGTAGCTT
15		51	ATGGATGGTC	CTATTTTCAT		ATCTGGTTAT	
		101	TTACAGACAA	ACCAGAAGAT		CTTCATCCGC	
		151	GATCATTGGG	GAAAGACAAC			
		201	TGCAAAAGCT	GTTTCAGGAA		AACTGTCGGC	
20		251	ACACTTGGTC				TTTATAAAAG
20		301	GAACTCCCTA			TCAAAAGCAA	GGGGACCAAA
		351	CTCTGATGGG				
		401	GTTTCGCAGT		AACAATGAAA		CTTTCTCAAA
		451	TGGGCAGTGC		GTATGGAATT		CCCTTCCACA
		501	TGTAGGGAGT	GCTAAGGATG		-0110101110	GCTCTGTTAT
25		551	CGGGACACGA			AACTTTCGCT	GTGAAGTGGA
		601	GCGAATTCTG	TATCTGCCAA			CAAATCTGTA
		651	CGCCTCTGGA			ATTGTAGGGT	CTGTACAAGA
		701	ATCTAGGAAC	ATTCTTTATG	CTGTAAAGTG	GGAAGGGAAC	ACTATTACAC
		751		TTTAGGAGGC		TTGCAAAAGC	TGTATCCAAT
30		801	AATGGCAAGG	TCATTGTAGG	GAGATCCGAA	ACATATTATG	GAGAGGTCCA
50			TGCTTTCTGT	CATAAGAATG	GCGTCATGTC	AGACCTCGGC	ACCCTCGGAG
		851	GATCTTATTC	TGCAGCTAAG	GGAGTCTCTG	CAACTGGAAA	AGTTATTGTC
		901	GGTATGTCCA	CAACAGCAAA	TGGGAAATTG		AATATGTCGG
		951	TGGAAGAATG	ATCGACTTAG	GAGAGTATAG		GCCTGTGCAA
		1001	ACGCTGTTTC	TATTGATGGA		TTGGAGTCCA	
25	CC14	D00000					0110131444

35 The PSORT algorithm predicts outer membrane (0.827).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 81A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 81B) and for FACS analysis.

These experiments show that cp7110 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Figure 191 shows a schematic representation of the structural relationships between of cp7105, cp7106, cp7107, cp7108, cp7109 and cp7110, each of which is identified herein. These six proteins may be grouped in a new family of related outer membrane-associated proteins. These proteins have a repeat structure in common (cf. the pmp family).

45 Example 82

The following C.pneumoniae protein (PID 4377127) was expressed <SEQ ID 163; cp7127>:

1 MVFFRNSLLH LVALSGMLCC SSGVALTIAE KMASLEHSGR GADDYEGMAS

```
51 FNANMREYSL QLSKLYEEAR KLRASGTEDE ALWKDLIRRI GEVRGYLREI
               101 EELWAAEIRE KGGNLEDYAL WNHPETTIYN LVTDYGTEDS IYLIPQEIGA
               151
                    IKIATLSKFV VPKESFEDCL TQILSRLGIG VRQVNSWIKE LYMMRKEGCS
               201 VAGVFSSRKD LEALPETAYI GFVLNSNVDA HTNQHVLKKF INPETTHVDV
 5
               251 IAGRVWIFGS AGEVGELLKI YNFVQSESIR QEYRVIPLTK IDPGEMISIL
               301 NAAFREDLTK DVSEESLGLR VVPLQYQGRS LFLSGTAALV QQALTLIREL
               351 EEGIENPTDK TVFWYNVKHS DPQELAALLS QVHDVFSGEN KASVGAADGC
                    GSQLNASIQI DTTVSSSAKD GSVKYGNFIA DSKTGTLIMV VEKEVLPRIQ
               401
                    MLLKKLDVPK KMVRIEVLLF ERKLAHEQKS GLNLLRLGEE VCKKGCSPSV
               451
10
               501 SWAGGTGILE FLFKGSTGSS IVPGYDLAYQ FLMAQEDVRI NASPSVVTMN
               551
                    QTPARIAVVD EMSIAVSSDK DKAQYNRAQY GIMIKMLPVI NVGEEDGKSY
                    ITLETDITFD TTGKNHDDRP DVTRRNITNK VRIADGETVI IGGLRCKQMS
               601
               651
                    DSHDGIPFLG DIPGIGKLFG MSSTSDSLTE MFVFITPKIL ENPVEQUERK
               701
                    EEALLSSRPG EREEYYQALA ASEAAARAAH KKLEMFPASG VSLSQVERQE
15
               751
                    YDGC*
```

A predicted signal peptide is highlighted.

The cp7127 nucleotide sequence <SEQ ID 164> is:

	1	ATGGTTTTT	TCCGTAATT	TTTACTGCAT	TTAGTTGCCC	TATCCGGAAT
20	51	GCTCTGTTGT	· TCTTCTGGA(F TGGCTTTAAC	GATAGCCGAG	AACAMCCCMM
20	101	CTTTAGAGCZ	A CTCGGGGAGA	GGAGCAGACG	ATTATCACCC	CATCCCTTCC
	151	TTTAATGCCA	ATALGAGGG	GTATAGCCTT	CAGCTGAGCA	AGTTCTTTCS
	201	GGAAGCACGA	AAGCTACGCC	CTTCTGGAAC	TGAGGATGAA	GCTCTCTCTCA
	251	AGGACTTAAT	TCGACGGATT	GGTGAGGTGC	GAGGCTATCT	TOGAGAGAMO
25	301	GAGGAGCTTT	' GGGCTGCAGA	AATTCGTGAG	AAAGGGGGCA	አ ሞሮሞሮርአርርአ
25	351	CTACGCCCTC	TGGAATCACC	CAGAGACTAC	' ር፡ልጥጥጥል ሶልልጥ	COMPONDACIO
	401	ATTACGGAAC	CGAAGACTCI	ATTTATTGA	ጥጥሮሮሞሮል ልርል	AATCCCACCC
	451	ATTAAAATCG	CAACCTTATC	GAAATTTGTA	GTTCCTAAAG	ACTICUORUCCA
	501	AGACTGTCTC	ACTCAGATCC	TATCTCGCTT	AGGTATTGGC	GTCCCTCA CC
20	551	TCAATTCTTG	GATTAAGGAA	CTTTATATGA	TGCGTAAGGA	GGGCGGCACM
30	601	GTTGCTGGAG	TTTTTTCCTC	CAGAAAAGAT	TTAGAGGCCC	TCCCACACACAC
	651	AGCCTATATT	GGTTTTGTAT	TGAATTCGAA	CCTACATCCC	CAMACCAAAAC
	701	AACATGTCTT	AAAAAAGTTC	ATTAACCCTG	AAACAACCCA	TOTAL CAMOUND
	751	ATTGCAGGAC	GTGTGTGGAT	TTTTGGTTCT	GCGGGGGAAG	TGIAGAIGIG
	801	TCTGAAGATT	TATAATTTTG	TGCAGTCGGA	GAGCATACCT	CAACACTAGCT
35	851	GGGTGATTCC	CTTAACTAAG	ATCGATCCAG	GGGAGATGAT	CAAGAGTATC
	901	AACGCAGCAT	TTCGTGAGGA	TCTGACTAAA	CATCOTOLICAL	11CCATTCTC
	951	AGGCCTTCGT	GTAGTTCCTT	TACAGTATCA	ACCCCCTTCC	TTGTTTTTAA
	1001	GTGGAACCGC	GGCGTTAGTG	CAGCAAGCGC	TCACTCTCAT	
	1051	GAAGAAGGGA	TTGAGAACCC	TACGGATAAA	T GYC L C L CVI	TCGAGAGCTT GGTATAACGT
40	1101	CAAGCACTCC	GATCCCCAAG	AGTTGGCGGC	VIACUCLAMANCO VICTORIALITI	CAAGTCCATG
	1151	ATGTCTTCTC	TGGCGAGAAT	AAGGCGAGTG	TCCCA CCTCC	
	1201	GGGTCGCAAT	TAAATGCCTC	GATCCAAATT	CAMACMACAGC	AGATGGATGT
	1251	TGCGAAAGAT	GGCTCAGTGA	AGTACGGAAA	CUMCAUCCC	TAAGTTCTTC
	1301	CAGGAACTCT	GATTATGGTG	GTTGAGAAAG	2 J COMPCHINGS	
45	1351	ATGCTACTTA	AGAAACTAGA	TGTCCCTAAA	AAGIICITCC	ACGTATTCAG
	1401	GCTGTTATTT	GAAAGAAAAT	TGGCACATGA	THORIGOTOC	GTATCGAGGT
	1451	TTCTACGTCT	TGGTGAGGAA	GTTTGTAAAA	A A CCCMCCAA	GGGTTAAATC
	1501		GGGGTACTGG	CATACTAGAA	MANGGGIGCAG	TCCTTCTGTG
	1551	GGGATCTTCG	ATAGTTCCTG	GTTATGATCT	CCCCCCATCAA	
50	1601	CTCAAGAGGA	CGTTCGGATT	AATGCGAGTC	COCCTATCAA	TTTTTAATGG
	1651	CAAACCCCAG	CACGGATTGC	TGTTGTTGAT	CITCIGIAGI	TACTATGAAC
	1701	TTCAGATAAA	GATAAAGCGC	AATACAATCG	GAAATGTCAA	TAGCGGTGTC
	1751	TAAAAATGCT	CCCCGTAATT	AATGTGGGAG	1 GCGCAGTAC	GGTATCATGA
	1801	ATTACTTTAG	AGACAGACAM	CACCTTTGAT	AGGAAGACGG	AAAAAGTTAC
55	1851	TGATCGTCCT	GATCTTACAA	GGCGTAATAT	ACTACGGGAA	
	1901	CTGACGGAGA	GACTGTTACAA	AUDCCACCOR	TACTAATAAG	GTGCGCATTG
	1951	GATTCTCATG	ATCCCA MINOC	ATTGGAGGTT TTTCCTTGGA		
	2001	GTTATTTCCA	ATCACHTICC	TTTCCTTGGA	GACATTCCTG	GTATAGGGAA
	2051	ጥጥልጥሮልሮጥሮሮ	CA ACAMOUTICCA	CATCAGACAG	TCTCACGGAG	ATGTTTGTAT
60	2101	GAAGAAGCTCC	TACTICATA	GAAAATCCTG	TAGAGCAACA	AGAACGTAAA
-	2151	GGCTTTAGCA	CONTOUCTO	GCGCCCTGGA	GAGAGAGAAG	AATACTATCA
	2201	ACATICATION A	GCCAMOT GAGG	CTGCAGCACG	AGCAGCTCAT	AAAAAATTAG
	2251	TACGATGGCT	COM	GTATCTTTAT	CTCAGGTAGA	GAGGCAAGAA
		TITCHATGGCT	GCTAG			

The PSORT algorithm predicts periplasmic (0.920).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 82A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 82B) and for FACS analysis.

These experiments show that cp7127 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 83

The following C.pneumoniae protein (PID 4377133) was expressed <SEQ ID 165; cp7133>:

```
10 MOPFIFTLLC LTSLVSLVAF DAANARKRCA CAQTIERGEN FFSIKRSACA
51 EIEYQEKSRH ASAIERISKD KGKVTPKQIA KVATKKKQRY RLLQVPFSRP
101 PNNSRYNLYA LLSEPPECYS DTASWYAIFI RLLRRAYVDT GNVPPGSEYA
151 IANALISNKQ EILERGAQLG PDVIETLTLP EEQABIFYKM LKGSSNSQSL
201 LNFLHYEEKS LGHCKLNLIF MDPLLLEAVL DHPDAYRETS LLRDGIWEAV
251 KRQEHAIQEH GQAAALELFK TRTDFRLELR DKMQLLLSRY DLLPLLNKKM
301 FDYTLGSAGD YLFLVDPDTK AISRCRCPSK SIKL
```

15 A predicted signal peptide is highlighted.

The cp7133 nucleotide sequence <SEQ ID 166> is:

			•			
20	1 51 101 151		GATGCTGCGA TGGAGAGAAC ATCAAGAAAA	ATGCTCGTAA TTCTTTTCCA ATCTCGCCAC	ACGTTGTGCC TAAAACGCTC	TGCTTGTGCT
	201 251 301		AAAGGCAAAG GCAAAGATAC CAAGGTATAA		GCAGATTGCG AGGTTCCTTT TTGCTTAGTG	AAAGTAGCTA TTCAAGGCCT
25	351 401 451	ATGCTATAGC GACGTGCTTA ATCGCTAATG	GATACAGCAT TGTAGACACG CTTTGATAAG	CATGGTATGC GGAAATGTAC		CGGTTACTTC TGAGTATGCC
	501 551 601	GCAGCTTGGA CCGAGATTTT CTGAATTTTC	CCCGATGTTA TTATAAAATG TGCATTATGA	TTGAAACTCT CTCAAAGGGT	AACATTGCCT CGTCAAACTC	GAGGAACAAG TCAGTCGCTA
30	651 701 751	TCTGATCTTC ATGCTTATAG	ATGGATCCCC GGAAACGTCG	TACTGTTAGA CTCCTGCGCG	AGCTGTTCTA ATGGCATTTG	GTAAGCTAAA GATCATCCCG GGAAGCGGTG
25	801 851		AACATGCCAT ACACGCACCG AAGTCGATAC	CCAAGAACAT ACTTCCGCCT GATTTGCTCC	GGAGCTGCGA	CTGCTTTGGA GATAAGATGC TAAAAAAATG
35	901 951 1001	TTCGACTACA AGATACTAAG TATAA	CCTTAGGAAG GCAATTTCTC	TGCCGGAGAT GATGTCGCTG	TACTTATTTT	TGGTAGACCC AGTATTAAAT

The PSORT algorithm predicts outer membrane (0.92).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 83A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 83B) and for FACS analysis.

These experiments show that cp7133 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 84

- The following C.pneumoniae protein (PID 4377222) was expressed <SEQ ID 167; cp7222>:
 - 1 MNRRDMVITA VVVNAILLVA LFVTSKRIGV KDYDEGFRNF ASSKVTQAVV
 - 51 SEEKVIEKPV VAEVPSRPIA KETLAAQFIE SKPVIVTTPP VPVVSETPEV

```
101 PTVAVPPQPV RETVKEEQAP YATVVVKKGD FLERIARANH TTVAKLMQIN
151 DLTTTQLKIG QVIKVPTSQD VSNEKTPQTQ TANPENYYIV QEGDSPWTIA
201 LRNHIRLDDL LKMNDLDEYK ARRLKPGDQL RIR*
```

A predicted signal peptide is highlighted.

5 The cp7222 nucleotide sequence <SEQ ID 168> is:

	1 51 101 151	GCTTGTGGCT ACGAGGGATT	CTTTTCGTCA CCGTAATTTT	CATCAAAGCG GCTTCTAGCA	TATTGGCGTC AGGTTACACA	AGCAGTAGTT
10	201 251	TCCTATCGCT TTATTGTAAC	AAAGAGACTC CACACCACCC	AAAGCCTGTA TAGCTGCACA GTGCCTGTTG	GTTTATTGAA TTAGCGAAAC	AGTAAGCCGG CCCAGAAGTG
1.0	301 351 401	ACAAGCTCCT	TATGCTACTG	TCAGCCTGTT TTGTAGTGAA ACTACCGTTG	AAAAGGAGAT	ቸምምርምርርል እ ር
15	451 501 551	GATCTTACCA GTCTCAAGAT	CCACCCAACT GTCAGCAACG	TAAAATTGGT AAAAAACTCC	CAGGTCATCA TCAAACACAG	AAGTCCCTAC
20	601 651 701	TTGCGTAACC	ATATTCGATT	CAAGAAGGGG GGATGATTTG TTAAGCCTGG	CTAAAAATGA	ATGATCTCGA

The PSORT algorithm predicts periplasmic (0.935).

The protein was expressed in E.coli and purified as a GST-fusion product (Figure 84A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 84B) and for FACS analysis.

These experiments show that cp7222 is a surface-exposed and immunoaccessible protein, and that it 25 is a useful immunogen. These properties are not evident from the sequence alone.

Example 85

The following C.pneumoniae protein (PID 4377225) was expressed <SEQ ID 169; cp7225>:

					_	-
20	1	MKGTPQYHFI	GIGGIGMSAL	AHILLDRGYE	VSGSDLYESY	TIESTKAKGA
30	51	RCFSGHDSSH	VPHDAVVVYS	SSIAPDNVEY	LTAIORSSRI	LHRAELLSOL
	101	MEGYESILVS	GSHGKTGTSS	LIRAIFOEAO	KDPSYATGGT.	AANCI.NOVCC
	151	SSKIFVAEAD	ESDGSLKHYT	PRAVVITNID	NEHLWWYACH	LDMINOTION
	201	FSRKVTDLNK	VFYNGDCPIL	KGNVQGISYG	VSPECOLHTY	ZAMOKYMOCH TOMOTAÑA TÔD
	251	FSFTFLGOEY	ODIELNLPGO	HNAANAAAAC	GUALTECTOT	NT TOWN I WAR
35	301	SGVHRRLERK	NISESFLELE	DYAHHPVEVA	AMDIT DELIGION	MITHWAPKKI
	351	PHRESRUEEC	LOTEPKAFOE	ADEVILTOVY	UTENSVEDE	GLRRVIAIFQ
	401	KSSYVHCCVV	DHGDTVDVI.D	NYIRIHDVCV	SAGESPRESI	LUSDLAEQIR
	451	KLSTGLVCCC	VCCERDICIT.	MITKTUDACA	SLGAGNIYTI	GEALKDFNPK
	501	KUEDRI TEEM	VOCEMPTOTITI	SAQHVSKYIS	PEFYDVSYFI	INRQGLWRTG
40	551	TONDVACDOL	Taccuscus	ASALAKVDCL	FPVLHGPFGE	DGTIQGFFEI
70	601	CTONT TERMS	SEAATAMUKL	LTKRIASAVG	VPVVPYQPLN	LCFWKRNPEL
		CIÓNPIELES	FPMIVKTAHL	GSSIGIFLVR	DKEELQEKIS	EAFLYDTDVF
	651	VEESKLGSRE	IEVSCIGHSS	SWYCMAGPNE	RCGASGETDV	OFRACEDCED
	701	CAKISFDLQL	SQESLDCVRE	LAERVYRAMQ	GKGSARIDEE	T.DEECMVMT.C
	751	EAMBIEGMLY	ASPFLQAFVH	AGWTQEQIVD	HFIIDALHKF	DKOOTTEOAF
45	801	TKEQDLVKR*				
	The cp7225 nucle	eotide sequen	ce <seq id<="" td=""><td>170> is:</td><td></td><td></td></seq>	170> is:		

```
1 ATGAAGGGAA CTCCTCAGTA TCATTTTATC GGTATCGGTG GTATAGGAAT
                    GAGCGCTTTA GCTCATATTT TGCTTGATCG TGGCTATGAG GTCTCTGGAA
               101 GCGACTTATA TGAAAGCTAT ACGATCGAAA GCCTGAAAGC TAAAGGTGCG
50
                    AGGTGTTTCT CAGGCCATGA TTCCTCCCAT GTTCCTCATG ATGCCGTCGT
               151
               201
                    TGTTTATAGC TCAAGTATAG CCCCTGATAA TGTAGAGTAT CTTACCGCTA
                    TTCAAAGATC ATCACGTCTT CTTCATAGAG CAGAGCTCTT GAGTCAGCTT
               251
                   ATGGAGGGTT ATGAAAGCAT TCTGGTTTCA GGAAGCCATG GGAAGACAGG
               301
                   GACCTCATCT CTAATTCGAG CGATTTTCCA GGAAGCTCAG AAAGATCCCT
```

	400					
	401		T TGGAGGACT	C GCTGCAAACT	GCCTGAATGG	GTATTCTGGA
	451	TCATCGAAA	A TCTTCGTTG	C CGAAGCCGA1	GAAAGTGATG	ርርጥሮጥጥጥ አ አ አ
	501	GCACTACAC	i. CCCCGTGCA	3 TAGTCATTAC	: АААТАТАСАТ	ልልጥር እ አ <i>ር</i> አ mm
5	551	IGAATAATTI	A CGCTGGGAA	r cttgataacc	TGGTTC AGGT	AATCCACCAC
5	601	LICICIAGA	A AAGTAACAG	A TCTCAATAAG	ፈ ርጥልጥጥርጥልጥል	7 CCCCCA mma
	651	TCCTATTTT	• AAAGGAAAT(F TCCAAGGGAT	, փարևական գոտանալու	MARIE CA COAC
	701	WATGICAMI.	I GCATATCGT	r TCCTATAATC	AAAAGGCATG	CC A A MOMO A O
	751	1111001111	Y CCT.LLLLYAGO	€ CCAGGAGTAT	'CAAGACATTG	ACCIDED A MOOTH
10	801	CCCTGGACAL	A CATAACGCTO	G CAAATGCAGC	* AGCAGCCTCTC	CCACITIOODO
10	851	TIACCTTTG	CATAGACATA	AACATCATTC	GAAAAGCTCTCT	CAAAAAAmma
	901	1 CGGGAGT T	ATCGACGTCI	, AGAAAGAAA	ጋንንምልምልምል ል	A A A C C C C C C C C C C C C C C C C C
	951	TITCTTAGAP	L GATTATGCTC	: ATCATCCTGT	AGAGGGTTGCA	CAMACCCCMCC
	1001	GCTCTGTGCG	* IGATGCTGTC	GGTTTGCGAA	GAGTCATCCC	A A COMPONICA S
15	1051	CCACATCGAT	· TCTCTCGTTI	' AGAAGAGTGC	ጥጥ አር አ አ ለርርጥ	TOCOCON A ROOM
13	1101	TTTCCAAGAA	GCTGATGAAG	TCATACTTAC	AGATGTCTAT	ACTICCCAAAAGC
	1151	AAAGTCCTAG	AGAGTCTATC	ATTCTTTCCG	ACCTTGCGGA	AGIGCCGGAG
	1201	AAGTCTTCTT	ATGTCCATTG	TTGTTATGTT	CCCCATGGAG	ACAGATTCGT
	1251	TTATCTACGA	AACTACATTC	GCATTCATGA	TGTCTGTGTT	
20	1301	CTGGAAATAT	CTATACTATT	GGAGAGGCTT		
20	1351	AAATTATCCA	TAGGACTCGT	CTGTGGAGGG	AAATCTTGCG	TAACCCTAAA
	1401	TTCTCTACTT	TCTGCTCAAC	ATGTCTCTAA		
	1451	ATGATGTGAG	TTACTTCATC	ATAAATCGTC	AGGGCTTATG	CCTGAATTCT
	1501	AAGGATTTTC	CTCATCTTAT	TGAAGAGACT	CAAGGGGATT	GAGAACAGGA
25	1551	TTCTGAAATC	GCTTCAGCTT	TAGCAAAAGT	CCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CGCCACTTTC
25	1601	TCCATGGCCC	ATTTGGAGAG	GATGGTACGA		TTTCCCGTGC
	1651	TTAGGAAAAC	CTTATGCCGG	ACCCTCACTA	TCTTTAGCAG	TTTTGAAATC
	1701	GOWINGCIG	TTAACAAAAC	GAATTCCATC	ACCACROCOM	
	1751	TCCCTTACCA	ACCTTTAAAT	CTCTCTTTTTCT		GTTCCTGTAG
00	1801	TGTATTCAGA	ATCTTATAGA	CACATITUTO		TCCAGAACTA
30	1851	TGCACATTTG	GGATCTAGTA	TTGGGATATT		TTGTAAAAAC
	1901	AATTACAAGA	AAAGATCTCA	CAACCAMMO		GATAAAGAGG
	1951	GTGGAGGAAA	GTCGCTTAGG	CTCTCCTCA	ATCGAAGTGT	GGATGTGTTT
	2001	CCATTCTTCT	AGCTGGTATT	GTATCCCACC	GCCTAATGAA	CCTGTATCGG
٥	2051	CTAGTGGGTT	TATTGATTAT	CAACACAAAM		
35	2101	TGCGCAAAGA	TCTCTTTTGA	TTTACACCTC	TCACAAGAAT	TGGCATAGAT
	2151	TGTTAGAGAA	CTTGCAGAGC	CACACAGCIC	AGCAATGCAA	CTTTAGATTG
	2201	CAGCTCGAAT	AGATTTTTTC	TUCCATCIACCG	AGCAATGCAA (GAAAAGGTT
	2251	GAGGTCAATC	CTATTCCAGG	AAMCACACCA		
40	2301	TTTTGTTCAC	GCAGGATGC A	CCCAACAGCA	AATTGTAGAT	TTTTACAAGC
40	2351	TAGATGCTCT	ACATAAGTTT	GATA ACCACO	AGACTATCGA :	CACTTTATTA
	2401	ACTAAAGAAC	AAGATTTAGT	TANANCAGC	AGACTATCGA 1	ACAGGCATTC
	The DOODT .1.			AATMMMM*		

The PSORT algorithm predicts inner membrane (0.16).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 85A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 85B) and for FACS analysis.

These experiments show that cp7225 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 86

The following C.pneumoniae protein (PID 4377248) was expressed <SEQ ID 171; cp7248>:

1 MKFWLQGCAF VGCLLLTLPC CAARRASGE NLQQTRPIAA ANLQWESYAE
51 ALEHSKQDHK PICLFFTGSD WCMWCIKMQD QILQSSEFKH FAGVHLHMVE
101 VDFPQKNHQP EEQRQKNQEL KAQYKVTGFP ELVFIDAEGK QLARMGFEPG
151 GGAAYVSKVK SALKLR*

A predicted signal peptide is highlighted.

- 55 The cp7248 nucleotide sequence <SEQ ID 172> is:
 - 1 ATGAAATTTT GGTTGCAAGG ATGTGCTTTT GTCGGTTGTC TGCTATTGAC

45

```
51 TTTACCTTGT TGTGCTGCAC GAAGACGTGC TTCTGGAGAA AATTTGCAAC
               101 AAACTCGTCC TATAGCAGCT GCAAATCTAC AATGGGAGAG CTATGCAGAA
               151 GCTCTTGAAC ATTCTAAACA AGATCACAAA CCTATTTGTC TTTTCTTTAC
               201 AGGATCAGAC TGGTGTATGT GGTGCATAAA AATGCAAGAC CAGATTTTGC
 5
               251 AAAGCTCTGA GTTTAAGCAT TTTGCGGGTG TGCATCTGCA TATGGTTGAA
               301 GTTGATTTCC CCCAAAAGAA TCATCAACCT GAAGAGCAGC GCCAAAAAAA
                    TCAAGAACTG AAAGCTCAAT ATAAAGTTAC AGGATTCCCC GAACTGGTCT
               351
               401 TCATAGATGC AGAAGGAAAA CAGCTTGCTC GCATGGGATT TGAGCCTGGT
               451 GGTGGAGCTG CTTACGTAAG CAAGGTGAAG TCTGCTCTTA AACTACGTTA
10
               501
```

The PSORT algorithm predicts periplasmic (0.932).

The protein was expressed in E.coli and purified as a GST-fusion product (Figure 86A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 86B) and for FACS analysis.

15 The cp7248 protein was also identified in the 2D-PAGE experiment.

These experiments show that cp7248 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 87

The following C.pneumoniae protein (PID 4377249) was expressed <SEQ ID 173; cp7249>:

20	4					
20	1	MIPSPIPINF	RDDTILETDP	KPSLIMFSSK	KTEIASERRK	AHPTLFKVLG
	51	TIWNIVKFII	SIILFLPLAL	LWVLKKTCQF	FILPSSIISQ	SMSKTAVAIR
	101	RMTFLSHIKQ	LLSLKEISAA	DRVVIQYDDL	VVDSLAIKIP	HALPHRWILY
	151	SQGNSGLMEN	LFDRGDSSLH	QLAKATGSNL	LVFNYPGIMS	SKGEAKRENL
25	201	VKSYQACVRY	LRDEETGPKA	NQIIAFGYSL	GTSVQAAALD	REVTDGSDGT
23	251	SWIVVKDRGP	RSLADVANQI	CKPIASAIIK	LVGWNIDSVK	PSERLRCPEI
	301	FIYNSNHDQE	LISDGLFERE	NCVATPFLEL	PEVKTSGTKI	PIPERDLLHL
	351	NPLSPNVVDR	LAAVISNYLD	SENRKSQQPD	*	
	The cp7249 nucl	eotide sequer	nce <seq id<="" td=""><td>174> is:</td><td></td><td></td></seq>	174> is:		
	1	ATGATCCCAT	CCCCTACCCC	AATAAACTTT	CGTGATGATA	ССБАТТСТАСА
30	51	GACGGATCCA	AAGCCGTCTT	TAATCATGTT	CTCTTCAAAA	AAAACAGAGA
	101	TAGCTTCTGA	AAGACGGAAG	GCCCATCCCA	CCTTATTTAA	AGTTCTAGGA
	151	ACGATTTGGA	ATATTGTGAA	GTTTATTATC	TCAATCATTC	TGTTCCTTCC
	201	CTTAGCGTTA	TTGTGGGTAC	TCAAGAAAAC	CTGTCAGTTT	TTCATTCTCC
A	251	CATCTTCTAT	CATATCTCAG	AGCATGTCAA	AAACAGCTGT	GGCAATTCGG
35	301	CGAATGACCT	TTCTGTCCCA	TATTAAACAA	CTCCTAAGCC	TTAAGGAAAT
	351	CTCAGCTGCC	GATCGTGTGG	TTATACAATA	TGACGATTTG	GTGGTTGATA
	401	GCTTAGCTAT	AAAGATACCT	CATGCTCTTC	CCCACAGGTG	GATTCTTTAT
	451	TCTCAAGGAA	ACTCTGGATT	GATGGAAAAC	CTGTTCGATC	GGGGCGATTC
	501	CTCTCTACAC	CAGCTAGCCA	AAGCAACCGG	CTCGAATCTT	CTTGTGTTCA
40	551	ACTATCCTGG	AATTATGTCC	AGCAAAGGAG	AAGCGAAACG	AGAAAATCTG
	601	GTTAAATCGT	ATCAGGCATG	CGTACGCTAC	CTACGAGATG	AAGAGACAGG
	651	TCCTAAAGCC	AATCAAATCA	TAGCTTTCGG	ATACTCTTTG	GGAACTAGTG
	701	TCCAAGCTGC	TGCTCTAGAT	CGTGAGGTCA	CTGATGGCAG	TGATGGAACT
	751	TCATGGATTG	TTGTAAAAGA	TCGGGGCCCT	CGCTCTCTAG	CAGATGTCGC
45	801	GAATCAAATT	TGTAAGCCCA	TAGCTTCCGC	GATTATAAAA	CTCGTTGGTT
	851	GGAACATAGA	CTCTGTGAAA	CCTAGCGAAA	GATTGCGTTG	TCCCGAAATT
	901	TTCATTTACA	ACTCTAATCA	TGATCAAGAA	CTCATTAGCG	ACGGCCTCTT
	951	CGAAAGAGAA	AATTGCGTAG	CAACACCTTT	TCTAGAGCTT	CCTGAAGTAA
	1001	AAACCTCGGG	GACTAAAATT	CCTATACCCG	AAAGGGATCT	TCTCCATCTA
50	1051	AATCCTCTCA	GTCCAAATGT	AGTAGACAGA	TTAGCAGCAG	TGATCTCTAA
	1101	TTATTTAGAT	TCTGAAAACA	GAAAGTCTCA	GCAACCTGAT	TAA

The PSORT algorithm predicts inner membrane (0.571).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 87A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 87B) and for FACS analysis.

These experiments show that cp7249 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 88

5

The following C.pneumoniae protein (PID 4377261) was expressed <SEQ ID 175; cp7261>:

```
1 MLPISILLFY VILGCLSAYI ADKKKRNVIG WFFAGAFFGF IGLVVLLLLP
51 SRRNALEKPQ NDPFDNSDLF DDLKKSLAGN DEIPSSGDLQ ETVIDTEKWF
101 101 YLNKDRENVG PISFEELVVL LKGKTYPEEI WVWKKGMKDW QRVKDVPSLQ
```

The cp7261 nucleotide sequence <SEQ ID 176> is:

```
ATGCTCCCTA TTTCGATTTT ATTATTTTAT GTGATTCTAG GTTGTCTATC
                    TGCCTACATA GCAGATAAGA AAAAACGAAA TGTTATTGGC TGGTTTTTTT
                51
15
                    CAGGAGCATT TTTTGGATTT ATTGGTCTAG TTGTCCTTCT TCTTCCT
               101
                    TCTCGTCGAA ACGCTTTAGA AAAGCCACAA AACGATCCTT TTGATAACTC
                    CGATCTTTTT GATGATTTGA AAAAAGTTT AGCAGGTAAT GACGAGATAC
               201
                    CCTCATCGGG AGATCTTCAA GAAATCGTTA TCGATACAGA GAAGTGGTTT
               251
                    TATTTAAATA AAGATAGAGA AAACGTAGGT CCGATATCTT TTGAGGAGTT
               301
20
                   GGTCGTACTT TTAAAGGGAA AAACGTATCC AGAAGAAATT TGGGTATGGA
                    AAAAGGGAAT GAAAGATTGG CAACGAGTGA AGGATGTTCC ATCACTACAA
               401
                   CAGGCTTTGA AAGAAGCATC AAAATAA
               451
```

The PSORT algorithm predicts inner membrane (0.848).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 88A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 88B) and for FACS analysis.

These experiments show that cp7261 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 89

The following C.pneumoniae protein (PID 4377305) was expressed <SEQ ID 177; cp7305>:

		MEVYSFHPAV VSISTTEKVL GIDIESCKI.P	TOTOTABLE	VIII ALLITECT	T 77 (**) 77 77 77 77 77 77 77 77 77 77 77 77 77		
35	151 201 251	GIDIESCKLP VFQKIPKTSR TSYQSATSLD HVSDIICQCW ELRNSLLRAV	FSYWFSQKET PERVLQYCLT WPKFLEVIOS	RKRDYVRNML DNQELQGEVQ	PRIDVDYHTL DHVIGYLTSE RLLNEESATK	HSKDWVVF GGEWLQYI SSGDKEVLI	PI SK
	The em7205 1				* TIEST KING I P.E.	SRS*	

The cp7305 nucleotide sequence <SEQ ID 178> is:

40	101 AA 151 GT 201 CG 251 AT 301 GG 351 TT	AGTAGTTTC AGTAGTTT AGTACCGATT ATTAGGAT AATTGATA CCTCGTTT	TCTAGATAGT CAACGACAGA GTCATAATAG AGACGTAGAG TAGAAAGCTG ATTTGGTTTG	TGTAACTCAG AAAAGTCTTG CTCTGTTAAT AAGGAACGTT CAAACTCCCC	TCTAGGAGGG GTTGGGCGTA AAACTACTCT TCGTTGTCTT GGTTAAAAAT AGTTCTTATG	
	401 AT	GTAGATTA	TCATACGCTA	CATAGCAAAG	ATCCAAACGG ACTGGGTAGT	CCACGTATTG TTTCCCTATC

```
GTTTTTCAGA AAATTCCAAA GACCTCGCGT TTCAGTTATT GGTTCTCACA
                    AAAAGAAACA AGGAAGAGGG ATTATGTGAG AAATATGCTG GACCACGTCA
                501
                    TTGGTTATCT AACGTCAGAA GGTGGGGAGT GGTTGCAGTA TATATCGAAA
                551
                    ACCTCTTATC AAAGCGCTAC TTCCTTGGAT CCTGAAAGAG TTCTTCAATA
                601
 5
                    TTGCTTAACT GATAACCAGG AGCTCCAGGG AGAAGTGCAA CGTTTGCTTA
                651
                    ATGAGGAGAG TGCGACCAAA AGCTCTGGGG ATAAGGAAGT TTTGTTAAGT
               701
                    CATGTATCTG ACATTATTTG CCAGTGTTGG TGGCCAAAGT TTCTTGAAGT
                751
                    TATACAATCT CCGGCCTTTA TTGAAGAATT AGTAGAAGAA GTGAGTGGTA
               801
                    AACTTAATTT AGATTTTTTA TGCCTAGAAA AGGCTAATAC ATTAGATCAG
               851
10
                    GAGTTGAGAA ACAGTCTTCT AAGAGCAGTC GTACACCACG GTTCTGAAGG
               901
                    AGTTGATATT AAGAAAGTTG GTGCCGGCCT CATTATTTAT ACGGAAGCTA
               951
                    TTCAATTACA GATTCCCTTC TCAAGGAGTT AA
              1001
```

The PSORT algorithm predicts inner membrane (0.508).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 89A) and also as a double GST/his fusion. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 89B) and for FACS analysis.

These experiments show that cp7305 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 90

The following C.pneumoniae protein (PID 4377347) was expressed <SEQ ID 179; cp7347>:

```
MKKGKLGAIV FGLLFTSSVA GFSKDLTKDN AYQDLNVIEH LISLKYAPLP
                    WKELLFGWDL SQQTQQARLQ LVLEEKPTTN YCQKVLSNYV RSLNDYHAGI
                    TFYRTESAYI PYVLKLSEDG HVFVVDVQTS QGDIYLGDEI LEVDGMGIRE
                101
                    AIESLRFGRG SATDYSAAVR SLTSRSAAFG DAVPSGIAML KLRRPSGLIR
                151
25
                    STPVRWRYTP EHIGDFSLVA PLIPEHKPQL PTQSCVLFRS GVNSQSSSSS
                    LFSSYMVPYF WEELRVQNKQ RFDSNHHIGS RNGFLPTFGP ILWEQDKGPY
                251
                    RSYIFKAKDS QGNPHRIGFL RISSYVWTDL EGLEEDHKDS PWELFGEIID
               301
                    HLEKETDALI IDQTHNPGGS VFYLYSLLSM LTDHPLDTPK HRMIFTQDEV
               351
               401
                    SSALHWQDLL EDVFTDEQAV AVLGETMEGY CMDMHAVASL QNFSQSVLSS
30
                    WVSGDINLSK PMPLLGFAQV RPHPKHQYTK PLFMLIDEDD FSCGDLAPAI
               451
                    LKDNGRATLI GKPTAGAGGF VFQVTFPNRS GIKGLSLTGS LAVRKDGEFI
               501
                    ENLGVAPHID LGFTSRDLQT SRFTDYVEAV KTIVLTSLSE NAKKSEEQTS
               601
                    PQETPEVIRV SYPTTTSAS*
```

A predicted signal peptide is highlighted.

35 The cp7347 nucleotide sequence <SEQ ID 180> is:

40	1 51 101 151	TAGTGTTGCT ATTTAAATGT	GGAAATTAGG GGTTTTTCTA CATAGAGCAT TATTATTTGG	AGGATTTGAC TTAATATCGT	TAAAGACAAC TAAAATATGC	
40	201 251 301 351	TCGCTTGCAA AGGTACTCTC ACGTTTTATC	CTGGTCTTAG TAACTACGTG GTACTGAAAG	AAGAAAAACC AGATCATTAA TGCGTATATC		
45	401 451 501	TGAAGATGGT TTTACTTAGG GCTATCGAAA TGCAGTTCGT	GGATGAAATC GCCTTCGCTT TCCTTGACAT	CTTGAAGTAG	ACAGACTAGC ATGGAATGGG AGTGCCACAG CGCTTTTGGA	CAAGGGGATA GATTCGTGAG ACTATTCTGC
50	551 601 651 701 751	CTTCAGGAAT TCGACACCGG TTTAGTTGCT GTTGTGTGCT TTATTCAGTT	TCCGTTGGCG CCTTTGATTC ATTCCGTTCC CCTACATGGT	AAACTTCGCC TTATACTCCA CTGAACATAA GGGGTAAATT GCCTTATTTC	GACCCAGTGG GAGCATATCG ACCTCAATTA CACAGTCTTC TGGGAAGAAT	TTTGATCCGT GAGATTTTTC CCTACACAAA TAGTAGCTCT
55	801 851 901 951 1001	AAATAAGCAG TTTTACCTAC CGTTCCTATA AGGATTTTTA AAGAGGATCA	CGTTTTGACA GTTTGGTCCT TCTTTAAAGC AGAATTTCTT	GTAATCACCA ATTCTTTGGG AAAAGATTCT CTTATGTTTG	TATAGGGAGC AACAAGACAA CAGGGCAATC GACTGATTTA TCTTTGGAGA	CGTAATGGAT GGGGCCCTAT CCCATCGCAT GAAGGACTTG

5 10	1051 1101 1151 1201 1251 1301 1351 1401 1451 1551 1601 1651 1701	ATCCTTTAGA AGCTCGGCTT GCAGGCAGTT TGCATGCTGT TGGGTTTCAG TGCACAGGTT TGTGATAGA TTGAAGGATA TGGAGGTTTT GTCTTCTTT GAAAACTTAG	GTTTTCTATC TACTCCTAAA TGCACTGCA GCCGTGCTAG AGCCTCTCTT GTGATATTAA CGACCTCATC CGAGGATGAC ATGCCCGCG GTATTCCAAG AACAGGATCT GAGTGGCTCC	TTCTCTTGTG TACTCTCATT TCACTTTCCC TTAGCTGTTA TCATATTGAT	ACTATCTATG TTTTCACTCA GAAGATGTCT GGAAGGATAT CTCAGAGTGT CCTATGCCTT ATATACTAAA GAGATTTAGC GGAAAGCCAA TAACCGTTCT GGAAAGATGG TTAGGATTTA	TTAACAGATC GGATGAAGTC TCACAGATGA TGCATGGATA CCTTTCTTCC TGCTAGGATT CCTTTGTTTA CCCTGCAATT CCAGCAGGAGC GGAATTAAAG TGAGTTTATT CCTCCAGGGA
15	1701 1751 1801 1851	TTTGCAAACT TTTTAACTTC CCGCAAGAGA TGCTTCGTAA	TCCAGGTTTA TTTGTCTGAG	CTGATTACGT AACGCTAAGA	TGAGGCAGTG AGAGTGAAGA	AAAACTATAG

The PSORT algorithm predicts periplasmic space (0.2497).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 90A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 90B) and for FACS analysis.

These experiments show that cp7347 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 91

25 The following C.pneumoniae protein (PID 4377353) was expressed <SEQ ID 181; cp7353>:

	1	MNMPVPSAVP	SANITLKEDS	STVSTASCIT.	Kmy work are	0001
	51	DALISLALGO	ITLATOORI.I.	LOCOMPRIOTE	MINIGENTAR	IQVVDLLVQL
	101	EHAETTTGED	OEMOROCE OF	DOSTMANÓTIT	LTABEAAETE	IQVVDLLVQL
30	151	VI OMDADORI	ZEIQIQSKSE	OLTHOOSESK	QSALSPRSLK	PEISDSKQQQ
	201		VVUODALPER	ייים דא ברו פרו א	CCCCCCCCC	
50		… なみないひひしひし	DOOL SAEKOK	PAT, TTO YOUR	TATETATA	
	251	QEEDAESKKK ETTEKKKI DC	KKKRGLGVEA	WEEDCENT D	TITETOONE	OKEOMDKKHD
	301	ETTEKKKI.DC	DWCZGCCCC	AVERLGEMIN	TAATIL SDOW	RPPAEETSKK
	351	ETTFKKKLPS	EMPAR SKE TE	SKNPLSVGSS	IHGPIQTPKV	ENVFLRFMKI.
25		TOTAL	EMMET AMKAK	ייי. דיוירולאכוכנייזיאט	TIT TOTETANAME	
	401	MKALLNRAKE	IGVTIDKEKY	TWPEEEKRY.T.	P. E.M. COMPANY	KOLDWOENEE
35	451	DMQRHLQEIS	OCHON BONEST	TT T TENTANT	LUEWA OMEKEN	MEKITOMERT
			SCII ÓW USM A TI	VULKELMOTE	TYNII.RD*	

The cp7353 nucleotide sequence <SEQ ID 182> is:

40 45	1 51 101 151 201 251 301 351 401 451 501	ATGAATATGC AGAAGACAGC CAGGTGAAGT GATGCTTTAA AGAACTGCTC CTGAAGTTGT GAACATGCAG TAGGAGTGAG TCTCCCCACG GCTCTTCAAA GTCACCTGAG	TCAACAGTTT CTTAGTCTCT TTAGCTTAGC TTACAAAGCA AGAATTAGAA AGACAATCAC CAGACCCTCC CTCCTTAAAA CACCAAAAGA	CCACAGCCTC TGTACAGCGC TTTAGGACAA CAAATGTTCA ATCCAAGTTG AAGTGAACCA CTCAACAAAG CCTGAAATTT CTCTGCTGTA	TGGAATATTA TAGAAGGAAG ATCATTCTTG TCAACTCCTC TTGACTTGCT CAAGAACAC CAGCAGTAAA CTGATTCTAA	CTCTTCTACA CGACCCAACA TTCCTCCCTC AGTGCAATTG AAACGCAAAG CAATCTGCTC ACAACAGCAA
50 55	551 601 651 701 751 801 851 901 951 1001	CTCAGAGATC GAACAAAA GAAACAAAAA AACGCGATCA CAGGAAGAAG TGTAGAGGCA TAATCTTCTC GAAACGACAT ATTCATCCCT	CTTACCTCC AAGCAAGCTC GAGGCCCTGA AGATCGCCAA ACGCTGAATC GTCGCTGAGG AGATCAAATG TCAAAAAGAA AGTAAGAATC	CAAGAAAGTG CTTCTCTCT CGACCTCAAA CAAAGAGAGC TAAAAAGAAA AACCCGGAGA CGACCTCCTG GCTACCTTCT	CTATCCCAGT ATCTCATGAA AGCACGACAG AAGAAGAAAC AAATCTAGAT CTGAAGAAAC CCAATGTCTG AGGCTCTTCA	AACACTATTA TCTCTGCAGA CTCTATAAAG

```
1051 ATGGCAAGAA TCTTAGGCCA AGCCGAAGCC GAAGCTAATG AACTCTACAT
1101 GCGAGTCAAA CAACGTACCG ATGATGTAGA CACACTCACA GTCCTTATCT
1151 CTAAGATCAA TAATGAAAAG AAAGACATTG ATTGGAGTGA AAATGAAGAG
1201 ATGAAAGCTC TTTTAAATCG AGCTAAAGAG ATTGGAGTCA CTATAGACAA
1301 TCCAAATGCG CAAAGAGAAT ATGAGAAAAA AAGACTTCTA AAAGAGAATG
1351 GACATGCAAA GGCACCTCCA AGAGATTCT CAATGTCAAAT GGAAAGGACG
1401 TAATGTATTG AAGTTATTGA AAGACTTAT GGACCCTTC ATTTACAACC
```

10 The PSORT algorithm predicts cytoplasm (0.1308).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 91A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 91B) and for FACS analysis.

These experiments show that cp7353 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 92

The following C.pneumoniae protein (PID 4377408) was expressed <SEQ ID 183; cp7408>:

					-	
20	1 51 101 151 201 251 The cp7408 nucl	LGEETLAIDI LHSLLRQNLS LSQLFAQLDL LFSYVHPYST	FRNKECLESE FQKRSIASES SPKKIIFLGE ATELQEAQGL	QVISDEVAQL	ETRRRQLFKS NSSALVLGIS DASVFYKGVL	LENQSYGNER
25	1	» mommon » » »				
~~	-	ATGTTGAAAA	TCCAGAAAAA	AAGAATGTGT	GTCAGCGTAG	TCATCACGGT
	51	AGGCGCCATA	GIGGGGTTTT	TCAATTCTGC	AGACGCAGCA	CCAAAGAAAA
	101	AGAAGATCCC	TATACAGATT	CTCTACTCCT	TTACTAAAGT	CACAACCATA
	151		AAGACGCAAG	TACTATATTT	TGCGTCGATG	TGGATCCTCC
20	201	ACTTCTCCAG	CATCGGTATT	TAGGTAGTCC	AGGATGGCAG	CANACCACAC
30	251	GTCGGCAGTT	ATTTAAATCC	TTAGAAAATC	AATCATACCC	CARACCAGAC
	301	TTAGGAGAAG	AAACTCTTGC	TATTGATATT	TITLE CALLACTOR	CAMCGAACGT
	351	GGAGAGCGAG	ATCCCAGAGC	AGATGGAAGC	TATOCOTACA	AAGAGTGCTT
	401	CCTTGGTCTT	AGGCATCTCT	TCTTTTGGGA	TCACACCAAM	AATTCCTCGG
	451	TTGCATAGTT		GAATCTATCT	TCACAGGAAT.	TCCTGCGACT
35	501	ATCGGAGAGC	TTCCTTTTAA	AGATCGATAG	TICCAAAAAC	GCTCTATAGC
	551	TTTTTTATAA	AGGCGTGCTT	TTCCGCGGAG	ACACECCCTCA	GATGCCTCTG
	601			GCTCGATCTT	MGACTGCGAT	CGTGGATGCG
	651	TCTAGGAGAA	GACCCTGAGG	DCTCGWICIT.	TCTCCTAAAA	AAATTATCTT
	701	GTTGGGGCAT	GAACTTTTTTA	GGCCTGGTAT	TGTTGGGTCT	GCTTGTATAG
40	751	CTTTTTTCTT	VICTOR LITTE	GGCCTGGTAT.	ACTATCCTGC	TCAAGAAAGC
	801			TTACTCTACA	GCAACGGAGC	TCCAAGAAGC
	851	ACAGGGTTTA CTCTTCCGAA	CUUGIAMITI.	CAGATGAAGT	CGCACAGCTT	ACTTTAAACG
	05.2	CICIICCGAM	MULCHHILHW			

The PSORT algorithm predicts inner membrane (0.123).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 92A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 92B) and for FACS analysis.

These experiments show that cp7408 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

-130-

Example 93

5

The following C.pneumoniae protein (PID 4376424) was expressed <SEQ ID 185; cp6424>:

1 MMHNIVVLSE EPGRSAFLGR TAFFPNKYPI AQGGVGIPST IGNLFTIWYC 51 FYFYRAATPQ SDHPDGCGFI LLERLKELGA GFFYCDLRES NTTGFTLFFE 101 GSNKGVLKNH LFIRDE*

The cp6424 nucleotide sequence <SEQ ID 186> is:

```
1 ATGATGCACA ATATTGTTGT TCTTAGTGAG GAACCTGGAC GAAGCGCTTT
51 TCTTGGTAGG ACGGCATTT TCCCTAATAA GTATCCAATA GCTCAGGGTG
101 GTGTTGGAAT ACCATCTACA ATAGGCAATC TCTTTACTAT ATGGTACTGT
151 TTCTATTTTT ATAGAGCTGC AACTCCACAA TCTGATCATC CTGACGGATG
201 TGGCTTTATT CTACTAGAAA GGCTTAAGGA GCTCGGTGCA GGGTTCTTTT
251 ATTGTGATCT TCGTGAGTCC AATACCACTG GCTTTACTCT TTTTTTGAA
301 GGCTCCAATA AAGGTGTGT AAAGAATCAC TTGTTTATTA GAGATGAGTA
```

15 The PSORT algorithm predicts cytoplasm (0.2502).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 93A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figure 93B) and for FACS analyses (Figure 93C; GST-fusion).

These experiments show that cp6424 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 94

The following C.pneumoniae protein (PID 4376449) was expressed <SEQ ID 187; cp6449>:

- 1 VASETYPSQI LHAQREVRDA YFNQADCHPA RANQILEAKK ICLLDVYHTN
 51 HYSVFTFCVD NYPNLRFTFV SSKNNEMNGL SNPLDNVLVE AMVRRTHARN
 101 LLAACKIRNI EVPRVVGLDL RSGILISKLE LKQPQFQSLT EDFVNHSTNQ
 151 EEARVHQKHV LLISLILLCK QAVLESFQEK KRSS*
 - The cp6449 nucleotide sequence <SEQ ID 188> is:

30	1 51 101	ACGTGATGCC AGATTCTCGA	TATTTTAATC GGCTAAGAAA	AAGCGGATTG ATCTGTTTAT	CCATCCTGCT TAGATGTTTA	AGAGGGAAGT CGGGCTAATC TCATACTAAT
	151	CATTATTCCG	TATTTACTTT	TTGTGTAGAT	AATTATCCCA	ATCTCCCCTTT
	201 251	TACATTTGTA	TCTTCAAAAA	ACAATGAGAT	GAATGGCTTA	TOTA AMOORO
	301	CUNCUMCCAC	TCTTGTAGAG	GCTATGGTAC	GTAGAACACA	TGCAAGAAAC
35	351	CTACTI GCAG	CGTGTAAAAT	TCGAAATATT	GAGGTTCCAA	GGGTTGTTGG
	401	CTCACTTCCA	AGATCTGGGA	TACTCATTTC	GAAACTAGAA	TTGAAGCAAC
	451	GAAGAAGCTC	AAGTTTAACA	GAAGACTTCG	TAAATCATTC	CACAAATCAG
	501	ACTTTGCAAG	GCGTCCATCA	MAAGCATGTG	TTGCTAATTT	CTTTAATTTT
	551	CALT	CAGGCCGTTC	TGGAATCATT	CCAGGAAAAA	AAGCGATCCT

40 The PSORT algorithm predicts inner membrane (0.2084).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 94A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figure 94B) and for FACS analyses (Figure 94C; GST-fusion).

These experiments show that cp6449 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 95

The following C.pneumoniae protein (PID 4376495) was expressed <SEQ ID 189; cp6495>:

 ${\tt MRELNAFELTQPEEYRNRWVLMPCLKCRFCRTQHAKVWSYRCVHEASLYEKNCFLTLTYDDKHLPQYGSLVKLHLQLFLKR}$ LRKMISPHKIRYFECGAYGTKLQRPHYHLLLS

5 The cp6495 nucleotide sequence <SEQ ID 190> is:

> $\tt TTGCGAGAATTAAATGCTTTTGAATTAACTCAACCTGAAGAGTATCGAAACCGTTGGGTTTTGATGCCTTGATGTTAAGTGT$ CGTTTTTGTAGAACGCAACATGCAAAAGTCTGGTCTTATCGTTGTGTCCATGAAGCTTCTTTGTATGAGAAAAATTGTTTT CTTACTTTGACTTATGATGATAAGCATTTACCTCAGTATGGTTCGTTGGTAAAGCTGCATTTACAGCTGTTTCTTAAGAGA TTAAGAAAGATGATTTCTCCTCATAAAATTCGTTATTTTGAATGTGGTGCGTATGGAACCAAATTACAAAGACCTCATTAT CATCTACTTTTATCATGA

The PSORT algorithm predicts cytoplasmic (0.280).

The protein was expressed in E.coli and purified as a GST-fusion product (Figure 95A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 95B) and for FACS analysis (Figure 95C).

These experiments show that cp6495 is a surface-exposed and immunoaccessible protein, and that it 15 is a useful immunogen. These properties are not evident from the sequence alone.

Example 96

10

20

The following C.pneumoniae protein (PID 4376506) was expressed <SEQ ID 191; cp6506>: 1 MRRFLFLILS SLPLVAFSAD NFTILEEKQS PLSRVSIIFA LPGVTPVSFD

20	_		PHEHAMEPAD	MELTIPEEROS	PLSRVSTIFA	LPGVTPVCED	
20	51	GNCPIPWFSH	SKKTLEGQRI	YYSGDSFGKY	FVVSALWPNK	MIND AUTTAPPIT	
	101	TUKHKADI'II	IIGSCYSRSQ	DSRFGSVLVS	KGYTNYDADW	ਰਸਕਾਰਕਾਕਰਤ	
	151	DIKKSVFATS	EVHREAILRG	GEEFISTHKO	EIEELLKTHG	VI.K COUNDER	
	201	TLMEGLVATG	ESFAMSRNYF	LSLOKLYPEI	HGFDSVSGAV	COMCABACTU	
	251	CLGVNILLPH	PLESRSNEDW	KHLOSEASKI	YMDTLLKSVI.	KEI'CGGR*	
25	The cp6506 nucl	leotide sequer	nce <seq id<="" td=""><td>192> is:</td><td>1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -</td><td>KEIICSSII"</td><td></td></seq>	192> is:	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	KEIICSSII"	
	1	ATGCGTCGTT	TTCTGTTTCT	ТАТТСТТАСС	ጥሮጥሮጥጥሮሮጣጥ	TGGTCGCATT	
	51	CTCTGCTGAT	AATTTCACTA	TTCTAGAAGA	AAAACAGACE 1010110011	CCBBBB ACBC	
	101	GTGTAAGTAT	TATTTTTGCT	TTACCTGGGG	TUTACAGAGI	TTCTTTTGAT	
• •	151	GGTAATTGTC		GTTTTCTCAT	ACTANANACA	CECENCIACIO	
30	201	ACAGAGAATT		GCGACTCCTT	TGGGAAAAAA	CTCTAGAGGG	
	251	CTGCTCTTTG	GCCTAATAAA	GTTTCTTCAG	CACAMATAC	TIIGIAGITT	
	301	ATTCTTAAAC	ATCGAGTGGA	TCTTATTCTA	ATTATACCOM	COMORMATATG	
	351	TAGGTCTCAA	GATAGCCGTT	TTGGCAGCGT	COMPACEMENT	CGIGITACIC	
	401	TTAATTATGA	TGCAGATGTG	AGGCCTTTCT	CITAGITICI	MCACAERROCA	
35	451	GACATTAAAA	AGAGTGTTTT	TGCAACCAGT	CACCOMCAMA	CCCACCCAA	
	501	TCTTCGTGGA	GGCGAAGAGT	ጥዋልጥጥጥውልር	CCAMANACAA	GGGAGGCAAT.	
	551	AGCTTTTGAA	GACTCATGGG	TATTTGAAAT	CAACAACCAA	AAAATCGAAG	
	601	ACCTTAATGG	AAGGTTTGGT	TGCTACAGGC	CACTCOTOTOC	CCAMOMOCOC	
	651	AAACTATTTT	CTTTCCTTAC	AAAAATTOTA	DUCA CACAMO	CGATGTCGCG	
40	701	ATAGTGTCAG	CGGCGCTGTT	TCTCAGGTAT	CCTOMOMIT.	CAIGGITTIG	
	751	TGTTTAGGTG	TC V V W V W C C W	momogomor-	GCIMIGMATA	TAGCATTCCT	

The PSORT algorithm predicts periplasmic space (0.571).

The protein was expressed in E.coli and purified as his-tag (Figure 96A) and GST-fusion (Figure 45 96B) products. The GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 96C) and for FACS analysis (Figure 96D).

TGTTTAGGTG TGAATATCCT TCTCCCTCAT CCTTTAGAAT CACGGAGTAA

CGAGGATTGG AAGCATCTTC AAAGTGAGGC AAGTAAAATT TATATGGATA CCTTGCTCAA GAGTGTATTA AAAGAACTCT GTTCTTCTCA TTAA

These experiments show that cp6506 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 97

The following C.pneumoniae protein (PID 4376882) was expressed <SEQ ID 193; cp6882>:

```
5
                    MSLLNLPSSQ DSASEDSTSQ SQIFDPIRNR ELVSTPEEKV RQRLLSFLMH
                    KLNYPKKLII IEKELKTLPP LLMRKGTLIP KRRPDILIIT PPTYTDAQGN
                101
                    THNLGDPKPL LLIECKALAV NQNALKQLLS YNYSIGATCI AMAGKHSQVS
                    ALFNPKTQTL DFYPGLPEYS QLLNYFISLN L*
               151
     The cp6882 nucleotide sequence <SEQ ID 194> is:
10
                    ATGTCCTTAT TGAACCTTCC CTCAAGCCAG GATTCTGCAT CTGAGGACTC
                    CACATCGCAA TCTCAAATCT TCGATCCCAT TAGAAATCGG GAGTTAGTTT
                51
               101
                    CTACTCCCGA AGAAAAAGTC CGCCAAAGGT TGCTCTCCTT CCTAATGCAT
                    AAGCTGAACT ACCCTAAGAA ACTCATCATC ATAGAAAAAG AACTCAAAAAC
               151
                    TCTTTTTCCT CTGCTTATGC GTAAAGGAAC CCTAATCCCA AAACGCCGCC
               201
15
                    CAGATATTCT CATCATCACT CCCCCCACAT ACACAGACGC ACAGGGAAAC
               251
                    ACTCACAACC TAGGCGACCC AAAACCCCTG CTACTTATCG AATGTAAGGC
               301
                    CTTAGCCGTA AACCAAAATG CACTCAAACA ACTCCTTAGC TATAACTACT
                    CTATCGGAGC CACCTGCATT GCTATGGCAG GGAAACACTC TCAAGTGTCA
               401
```

501 AGAGTATTCC CAACTCCTAA ACTACTTTAT TTCTTTAAAC TTATAG The PSORT algorithm predicts cytoplasm (0.362).

451

The protein was expressed in E.coli and purified as a GST-fusion product (Figure 97A). The protein was used to immunise mice, whose sera were used in a Western blot (Figure 97B) and for FACS analysis (Figure 97C).

GCTCTCTTCA ATCCAAAAAC ACAAACTCTT GATTTTTATC CTGGCCTCCC

These experiments show that cp6882 is a surface-exposed and immunoaccessible protein, and that it 25 is a useful immunogen. These properties are not evident from the sequence alone.

Example 98

20

The following C.pneumoniae protein (PID 4376979) was expressed <SEQ ID 195; cp6979>:

```
MSVNPSGNSK NDLWITGAHD QHPDVKESGV TSANLGSHRV TASGGRQGLL
30
                51
                    ARIKEAVTGF FSRMSFFRSG APRGSQQPSA PSADTVRSPL PGGDARATEG
                    AGRNLIKKGY QPGMKVTIPQ VPGGGAQRSS GSTTLKPTRP APPPPKTGGT
               101
                    NAKRPATHGK GPAPQPPKTG GTNAKRAATH GKGPAPQPPK GILKQPGQSG
               201
                    TSGKKRVSWS DED*
```

The cp6979 nucleotide sequence <SEQ ID 196> is:

	and open in much	condc scque	ince capto in	190> IS:		
35	1	ATGTCTGTTA	ል ሞርሮልሞር አርር	አ አ አጠጠርረ አ ኤ ሌ	3.3.603.man	GGATTACGGG
	51	AGCTCATGAT	CAGCATCCCG	ATGTTAAAGA	AACGATCTCT	GGATTACGGG
	101	ACCTAGGAAG	TCATAGAGTG	ACTGCCTCAG	GAGGACGCCA	$\Delta G G G \Pi \Pi \Lambda \Pi \Pi \Lambda$
	151	GCACGAATCA	AAGAAGCAGT	AACCGGGTTTT	ተተሞልርሞርርር አ	TC A COMMOND
40	201 251	CAGATCGGGA	GCTCCAAGAG	GTAGCCAACA	ACCCTCTCCT	CCATCTCCA
	301	GCTGGTAGGA	TAGCCCGTTG	CCGGGAGGGG	ATGCTCGCGC	TACCGAGGGA
	351	TATCCCACAG	ACTTAATTAA GTTCCTGGAG	GAGGGGGCCCA	CAACCAGGGA	TGAAAGTCAC
	401	CACTAAAGCC	TACGCGTCCG	GCACCCCCAC	CTCCTAAAAC	GCCBCCAAGB
45	451	WWIGCWWWC	GTCCGGCAAC	GCACGGGAAG	GGTCCAGCAC	CCCACCOMOO
43	501 551	I AAAACAGG.I.	GGGACCAATG	CTAAGCGCGC	AGCAACGCAT	GGCAAAGGMG
	551 551	CAGCACCICA	ACCTCCTAAG	GGCATTTTCA	AACAGCCTCC	CCACMOMOGO
	301	ACTICAGGAA	AGAAGCGTGT	CAGCTGGTCT	GACGAAGATT	AA

The PSORT algorithm predicts cytoplasm (0.360).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 98A). The GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 98B) and for FACS analysis (Figure 98C).

These experiments show that cp6979 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 99

The following C.pneumoniae protein (PID 4377028) was expressed <SEQ ID 197; cp7028>:

```
MLLGFLCDCP CASWQCAAVA NCYDSVFMSR PEHKPNIPYI TKATRRGLRM
                     KTLAYLASLK DARQLAYDFL KDPGSLARLA KALIAPKEAL QEGNLFFYGC
                 5.1
10
                101
                     SNIEDILEEM RRPHRILLLG FSYCOKPKAC PEGRFNDACR YDPSHPTCAS
                     CSIGTMMRLN ARRYTTVIIP TFIDIAKHLH TLKKRYPGYQ ILFAVTACEL
                     SLKMFGDYAS VMNLKGVGIR LTGRICNTFK AFKLAERGVK PGVTILEEDG
                201
                251
                     FEVLARILTE YSSAPFPRDF CEIH*
      The cp7028 nucleotide sequence <SEQ ID 198> is:
15
                  1 ATGCTTCTAG GGTTTTTGTG TGACTGCCCC TGTGCTTCGT GGCAGTGTGC
                     GGCCGTTGCT AATTGTTATG ATTCCGTATT TATGTCTAGA CCAGAGCACA
                 51
                101
                     AACCTAATAT TCCTTATATT ACTAAAGCTA CAAGACGGGG TCTGCGTATG
                     AAGACGCTTG CTTATCTGGC CTCTTTAAAA GATGCTAGAC AGCTTGCCTA
                151
                     TGATTTTCTG AAAGATCCTG GTTCTTTAGC TCGGTTAGCT AAGGCTTTGA
                201
20
                251
                     TAGCTCCTAA GGAGGCCTTA CAGGAGGGCA ACCTATTTT TTATGGCTGT
                301
                    AGTAATATTG AGGATATTTT AGAGGAGATG CGTCGTCCTC ATAGAATCCT
                    TTTGTTAGGA TTTTCTTATT GTCAAAAGCC TAAGGCATGT CCTGAAGGGC
                351
                401
                    GTTTCAATGA TGCTTGTCGG TATGATCCTT CACATCCTAC ATGTGCCTCA
                451
                    TGTTCTATAG GGACCATGAT GCGGCTGAAT GCTCGTAGAT ACACTACTGT
25
                    GATCATCCCT ACATTTATAG ATATCGCAAA ACATTTACAC ACTTTAAAAA
               501
                    AGCGCTACCC TGGATATCAA ATTCTCTTTG CAGTTACTGC TTGTGAACTT
               551
               601
                    TCCTTAAAAA TGTTTGGAGA TTATGCCTCC GTAATGAACT TAAAGGGTGT
               651
                    GGGCATCAGA CTCACAGGAC GTATTTGCAA TACATTTAAG GCATTTAAAT
               701
                    TAGCTGAGCG AGGAGTCAAA CCAGGAGTCA CTATCCTAGA AGAAGATGGC
30
                    TTTGAGGTAT TAGCAAGGAT TCTTACAGAA TACAGTAGCG CTCCTTTCCC
               751
               801
                    TAGAGACTTT TGTGAGATCC ATTAG
```

The PSORT algorithm predicts cytoplasm (0.1453).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 99A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 99B) and for FACS analysis (Figure 99C).

These experiments show that cp7028 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 100

The following C.pneumoniae protein (PID 4377355) was expressed <SEQ ID 199; cp7355>:

```
40 1 MKKVVTLSII FFATYCASEL SAVTVVAVPL SEAPGKIQVR PVVGLQFQEE 51 QGSVPYSFYY PYDYGYYYPE TYGYTKNTGQ ESRECYTRFE DGTIFYECD*

The cp7355 nucleotide sequence <SEO ID 200> is:
```

1 ATGAAGAAAG TCGTAACACT ATCCATTATA TTTTTCGCAA CGTATTGTGC
51 ATCAGAGGCTT AGTGCTGTAA CTGTACTGGC TGTGCCTTTA TCAGAGGCTC
45 101 CAGGGAAGAT TCAAGTTCGT CCCGTCGTTG GTCTGCAATT TCAAGAAGAA
151 CAGGGTTCTG TGCCCTATAG TTTTTATTAT CCTTATGACT ATGGGTATTA
201 CTATCCAGAG ACTTATGGCT ATACTAAAAA TACAGGTCAA GAAAGTCGCG

251 AATGTTATAC CCGATTTGAA GATGGCACAA TTTTTTATGA ATGCGATTAG The PSORT algorithm predicts inner membrane (0.143).

The protein was expressed in E.coli and purified as a GST-fusion (Figure 100A) and a his-tag product. The proteins were used to immunise mice, whose sera were used in a Western blot (Figure 100B) and for FACS analysis (Figure 100C).

These experiments show that cp7355 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 101

10

The following C.pneumoniae protein (PID 4377380) was expressed <SEQ ID 201; cp7380>:

```
VHYCERTLDP KYILKIALKL RQSLSLFFQN SQSLQRAYST PYSYYRIILQ
                     KENKEKQALA RHKCISILEF FKNLLFVHLL SLSKNQREGC STDMAVVSTP
                 51
                101
                    FFNRNLWYRL LSSRFSLWKS YCPRFFLDYL EAFGLLSDFL DHQAVIKFFE
                151
                     LETHFSYYPV SGFVAPH, IL SLLQDRYFPI ASVMRTLDKD NFSLTPDLIH
                     DLIGHVPWLL HPSFSEFFIN MGRLFTKVIE KVQALPSKKQ RIQTLQSNLI
                201
15
                    AIVRCFWFTV ESGLIENHEG RKAYGAVLIS SPQELGHAFI DNVRVLPLEL
                    DQIIRLPFNT STPQETLFSI RHFDELVELT SKLEWMLDQG LLESIPLYNQ
                301
                351
                    EKYLSGFEVL CQ*
     The cp7380 nucleotide sequence <SEQ ID 202> is:
                    GTGCACTACT GCGAGAGAAC CCTGGACCCA AAGTATATTC TGAAGATTGC
20
                51
                    TCTAAAGCTG AGACAATCAC TTTCCCTGTT CTTCCAGAAC AGCCAATCAC
               101
                    TCCAACGTGC ATACTCGACC CCATATTCCT ACTACCGAAT CATTCTACAA
                    AAGGAAAATA AAGAGAAGCA AGCTTTAGCT CGACACAAAT GCATTTCTAT
               151
                    TTTAGAATTT TTCAAAAACT TACTCTTTGT TCATCTTCTG TCATTATCAA
               201
               251 AGAATCAAAG GGAAGGTTGC TCCACTGATA TGGCTGTTGT AAGCACTCCC
25
               301
                    TTTTTTAATC GGAATTTATG GTATCGACTC CTTTCCTCAC GGTTTTCTCT
                    ATGGAAAAGC TATTGTCCAA GATTTTTTCT TGATTACTTA GAAGCTTTCG
               351
                    GTCTCCTTTC TGATTTCTTA GACCATCAAG CAGTCATTAA ATTCTTCGAA
               401
               451
                    TTAGAAACAC ATTTTTCCTA TTATCCCGTT TCAGGATTTG TAGCTCCCCA
                    TCAATACTTG TCTCTGTTGC AGGACCGTTA CTTTCCCATT GCCTCTGTAA
               501
30
                    TGCGAACTCT CGATAAAGAT AATTTCTCCT TAACTCCTGA TCTCATCCAT
               551
                    GACCTTTTAG GGCACGTGCC TTGGCTTCTA CATCCCTCAT TTTCTGAATT
               601
                    TTTCATAAAC ATGGGAAGAC TCTTCACTAA AGTCATAGAA AAAGTACAAG
               651
                    CTCTTCCTAG TAAAAAACAA CGCATACAAA CCCTACAAAG CAATCTGATC
               701
                    GCTATTGTAC GCTGCTTTTG GTTTACTGTT GAAAGCGGAC TTATTGAAAA
               751
35
               1.08
```

GAGAAATATC TTTCTGGTTT TGAGGTACTT TGCCAATGA The PSORT algorithm predicts inner membrane (0.1362).

The protein was expressed in E.coli and purified as a GST-fusion product (Figure 101A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 101B) and for FACS analysis (Figure 101C).

CCATGAAGGA AGAAAAGCAT ATGGAGCCGT TCTTATCAGT TCTCCTCAGG AACTTGGACA CGCTTTCATT GATAACGTAC GTGTTCTCCC TTTAGAATTG

GATCAGATTA TTCGTCTTCC CTTCAATACA TCAACTCCAC AAGAGACTTT

ATTTTCAATA AGACATTTTG ATGAACTGGT AGAACTCACT TCAAAATTAG AATGGATGCT CGACCAAGGT CTGTTAGAAT CAATTCCCCT TTACAATCAA

These experiments show that cp7380 is a surface-exposed and immunoaccessible protein, and that it 45 is a useful immunogen. These properties are not evident from the sequence alone.

Example 102

851 901

951

1001

1051

The following C.pneumoniae protein (PID 4376904) was expressed <SEQ ID 203; cp6904>:

```
5 MMNYEDAKLR GQAVAILYQI GAIKFGKHIL ASGEETPLYV DMRLVISSPE
51 VLQTVATLIW RLRPSFNSSL LCGVPYTALT LATSISLKYN IPMVLRRKEL
101 QNVDPSDAIK VEGLFTPGQT CLVINDMVSS GKSIIETAVA LEENGLVVRE
151 ALVFLDRRKE ACQPLGPQGI KVSSVFTVPT LIKALIAYGK LSSGDLTLAN
5 201 KISEILEIES *
```

The cp6904 nucleotide sequence <SEQ ID 204> is:

	1	ATGATGAACT	ACGAAGATGC	AAAATTACGC	GGTCAAGCTG	ጥል ርር ል ልጥጥር ጥ
	51	ATACCAAATC	GGAGCTATAA	AGTTCGGAAA	ACATATTCTC	CCMACCCCAAC
	101	AAGAAACTCC	ТСТСТАТСТА	GATATGCGTC	MINORCA MORO	GCIAGCGGAG
10	151	COMCOCACA	07000000	ONINIGCGIC	1 1GTGATCTC	CICICCAGAA
		GIICICCAGA	CAGTGGCAAC	TCTTATTTGG	CGCCTCCGCC	CCTCATTCAA
	201	TAGTAGCTTA	CTCTGCGGAG	TCCCTTATAC	TGCTCTAACC	ርጥ አርር እ አርርጥ
	251	CGATCTCTTT	AAAATATAAC	ATCCCTATGG	TATTCCCAAC	CINGCMACCI.
	301	CAGAATGTAG	ACCCCTCCCA	CGCTATTAAA	CELCLARG	GAAGGAA1-1A
	351	700707770	TECCCICGGA	CGCIATIAAA	GTAGAAGGGT	TATTTACTCC
15		AGGACAAACT	TGTTTAGTCA	TCAATGATAT	GGTTTCCTCA	GGAAAATCTA
13	401	TAATAGAGAC	AGCAGTCGCA	CTGGAAGAAA	АТССТСТССТ	ACMMCCMCA A
	451	GCATTGGTAT	TCTTAGATCG	TAGAAAAGAA	CCCGCGGGAAA	AGTICGIGAA
	501	ACACCCA AMA	3330003000	#11071AAAAAAA	GCGIGICAAC	CACTIGGTCC
		ACAGGGAMIA	AAAGTCAGTT	CGGTATTTAC	TGTACCCACT	CTGATAAAAG
	551	CTTTGATCGC	TTATGGGAAG	CTAAGCAGTG	GTGATCTAAC	CCTGGCAAAC
	601	AAAATTTCCG	AAATTCTAGA	AATTGAATCT	ጥልል	COTOGCTAMC

20 The PSORT algorithm predicts cytoplasm (0.0358).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 102A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 102B) and for FACS analysis.

The cp6904 protein was also identified in the 2D-PAGE experiment.

These experiments show that cp6904 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 103

30

35

40

The following C.pneumoniae protein (PID 4376964) was expressed <SEQ ID 205; cp6964>:

1 MKKLIALIGI FLVPIKGNTN KEHDAHATVL KAARAKYNLF FVQDVFPVHE 51 VIEPISPDCL VHYEGWV*

The cp6964 nucleotide sequence <SEQ ID 206> is:

1 ATGAAAAAAT TGATTGCTTT GATAGGGATA TTTCTTGTTC CAATAAAAGG
51 AAATACCAAT AAGGAACACG ACGCTCACGC GACTGTTTTA AAAGCGGCCA
101 GAGCAAAGTA TAATTTGTTC TTTGTTCAGG ATGTTTTCCC TGTACACGAA
151 GTTATCGAGC CTATTCTCC CGATTGCCTG GTACATTATG AAGGGTGGGT
201 TTGA

The PSORT algorithm predicts inner membrane (0.091).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 103A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 103B) and for FACS analysis (Figure 103C).

These experiments show that cp6964 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 104

The following C.pneumoniae protein (PID 4377387) was expressed <SEQ ID 207; cp7387>:

551

AΑ

```
LNFAKIDHNH LYLTCLGDLG VACPILSTDC LPNYSEKASH EVLVYSKFRC
                 51
                     ISGEPSRLAT SGNDTYYSIV SLPIGLRYEV TSPSGRHDFN IDMHVAPKIG
                101 AVLSHGTREA KEIPGSSKDY AFFSLTARES LMISEKLAMT FQVSEVIQNC
                151 YSQCTKVTKT NLKEQYRHLS HNTGFELSVK SAF*
 5
     The cp7387 nucleotide sequence <SEQ ID 208> is:
                     TTGAATTTTG CAAAGATTGA TCACAATCAT CTCTACCTTA CATGTTTGGG
                    AGATCTTGGT GTAGCTTGTC CTATACTTTC TACAGATTGT CTACCTAATT
                     ATAGCGAGAA AGCATCTCAT GAGGTTCTTG TTTATAGTAA ATTTAGATGC
                101
                    ATTTCTGGAG AGCCATCTCG ACTTGCAACT TCAGGAAATG ACACATATTA
                151
10
                    TTCTATAGTA AGTTTACCTA TAGGACTCCG TTACGAAGTG ACTTCACCAT
                201
                    CAGGACGTCA TGATTTCAAT ATTGATATGC ATGTAGCTCC AAAGATAGGT
                251
                    GCAGTACTCT CTCATGGAAC ACGAGAGGCT AAAGAGATCC CAGGATCTTC
                301
                    AAAAGACTAT GCATTTTTTA GCTTGACTGC TAGAGAAAGT TTAATGATTT
                    CTGAAAAGCT TGCGATGACT TTCCAAGTTA GCGAAGTTAT TCAGAATTGT
                401
15
                    TATTCACAAT GTACTAAAGT AACGAAAACT AATTTAAAAG AACAGTATAG
                451
```

The PSORT algorithm predicts inner membrane (0.043).

The protein was expressed in E.coli and purified as a his-tagged-fusion product (Figure 104A) and also as a GST-fusion (Figure 104B). The recombinant proteins were used to immunise mice, whose 20 sera were used in a Western blot and for FACS analysis (Figure 104C; his-tagged).

GCACTTATCC CACAATACAG GGTTTGAGTT AAGCGTCAAG TCTGCATTCT

These experiments show that cp7387 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 105

The following C.pneumoniae protein (PID 4376281) was expressed <SEQ ID 209; cp6281>: 25

```
MFLQFFHPIV FSDQSLSFLP YLGKSSGIIE KCSNIVEHYL HLGGDTSVII
    TGVSGATFLS VDHALPISKS EKIIKILSYI LILPLILALF IKIVLRIILF
101
    FKYRGLILDV KKEDLKKTLT PDQENLSLPL PSPTTLKKIH ALHILVRSGK
    TYNELIQEGF SFTKITDLGQ APSPKQDIGF SYNSLLPNFY FHSLVSVPNI
151
    SGEERALNYH KEQQEEMAVK LKTMQACSFV FRSLHLPSMQ TKDKKAGFGL
201
    LTFFPWKIYP L*
```

The cp6281 nucleotide sequence <SEQ ID 210> is:

	1	ATGTTTCTTC		TCCTATAGTC	TTCTCGGATC	AGTCCTTATC
35	51 101	TTTTCTTCCT ATATCGTTGA		AAAGCTCTGG CATTTGGGAG		AAATGTTCCA
	151	ACAGGAGTTT	CTGGAGCTAC	CTTTCTATCT	GTTGATCATG	TGTTATCATC CCCTCCCAAT
	201 251	CTCGAAATCT CTCTGATTCT		TAAAAATTCT	CTCCTATATT	TTAATTCTTC
40	301	TTCAAGTATC	GTGGTCTAAT	ATTAAGATCG CCTAGATGTT	AAGAAGGAGG	TATCTTATTC ATTTGAAAAA
40	351 401	AACACTTACA	CCTGACCAAG	AAAACCTCAG	ጥርጥጥርርጥጥጣን	CCATCTCCTA
	451	ACCTATAACG	AGCTTATACA	GCGCTACACA AGAAGGGTTT	ጥር ውጤጥር እርጥ እ	TTCTGGAAAA AAATCACAGA
	501 551	TCTTGGTCAA	GCTCCTTCAC	CAAAGCAAGA	TATTGGCTTC	TCTTATAATT
45	601	CCCTTCTCCC TCAGGCGAGG		TTTCATTCCT TAATTATCAT		TCCAAATATT
	651 701	GGCTGTTAAA	TTAAAAACAA	TGCAAGCGTG	TTCTTTTGTC	AAGAGGAAAT TTCCGATCCC
	751	TGCATTTACC CTGACGTTTT	TTCAATGCAA TCCCTTGGAA	ACGAAGGACA AATCTACCCC	AAAAGGCTGG	ATTTGGACTA
_					CIMIMA	

The PSORT algorithm predicts inner membrane (0.5373).

The protein was expressed in E.coli and purified as a GST-fusion product (Figure 105A). The 50 recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 105B) and for FACS analysis.

These experiments show that cp6281 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 106 and Example 107

- The following C.pneumoniae protein (PID 4376306) was expressed <SEQ ID 211; cp6306>:
 - 1 MGNHETYIHP GVLPSSHAQD VSRSTVYPSR SFIMRRMLMG WNFNRVPSKS
 - 51 SEQLMDGHRI PLIFFGKHHP TISILNVNRF SWLSIFYNGE RGF*

The cp6306 nucleotide sequence <SEQ ID 212> is:

- 10 ATGGGAAACC ATGAGACCTA TATACATCCA GGAGTGCTCC CGAGTAGTCA
 51 TGCTCAGGAT GTTAGCAGAT CTACAGTTTA CCCCAGTCGA AGTTTTATCA
 101 TGAGACGTAT GCTCATGGGC TGGAATTTCA ATCGTGTTCC CTCGAAGAGC
 151 TCCGAGCAGT TAATGGATGG TCATCGCATA CCTCTTATAT TTTTTGGGAA
 201 GCATCATCCT ACTATATCTA TTTTAAATGT CAATAGATTT TCTTGGCTCT
 251 CCATTTTTA CAATGGAGAA AGGGGGTTTT GA
- 15 The PSORT algorithm predicts cytoplasm (0.167).

The following C.pneumoniae protein (PID 4376434) was also expressed <SEQ ID 213; cp6434>:

- 1 MSESINRSIH LEASTPFFIK LTNLCESRLV KITSLVISLL ALVGAGVTLV 51 VLFVAGILPL LPVLILEIIL ITVLVLLFCL VLEPYLIEKP SKIKELPKVD 101 ELSVVETDST L*
- 20 The cp6434 nucleotide sequence <SEQ ID 214> is:

The PSORT algorithm predicts inner membrane (0.6859).

The proteins were expressed in *E.coli* and purified as his-tag products (Figure 106A; 6306 = lanes 2-4; 6434 = lanes 8-10). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 106B & 107) and for FACS analysis.

These experiments show that cp6306 & cp6434 are surface-exposed and immunoaccessible proteins, and that they are useful immunogens. These properties are not evident from the sequences alone.

Example 108

- The following C.pneumoniae protein (PID 4377400) was expressed <SEQ ID 215; cp7400>:
 - 1 MRVMRFFCLF FLGFLGSFHC VAEDKGVDLF GVWDDNQITE CDDSYMTEGR
 - 51 EEVEKVVDA

The cp7400 nucleotide sequence <SEQ ID 216> is:

- 40 51 GTGAGAGTTA TGAGATTTTT TTGTCTATTT TTTCTTGGGT TCCTAGGATC
 51 TTTTCATTGT GTTGAGA ACAAGGGCGT GGATTTATTT GGGGTCGGG
 101 ACGATAACCA AATTACAGAG TGTGACGATA GTTACATGAC AGAGGGTCGT
 151 GAAGAGGTTG AAAAGGTAGT GGACGCTTAG
 - The PSORT algorithm predicts periplasmic space (0.924).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 108A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 108B) and for FACS analysis.

These experiments show that cp7400 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 109

المارين بالمراوية والأرماعية والموارية والكوافية والمساكة

The following C.pneumoniae protein (PID 4376395) was expressed <SEQ ID 217; cp6395>:

```
MENAMSSSFV YNGPSWILKT SVAQEVFKKH GKGIQVLLST SVMLFIGLGV
                 51
                     CAFIFPQYLI VFVLTIALLM LAISLVLFLL IRSVRSSMVD RLWCSEKGYA
 10
                     LHQHENGPFL DVKRVQQILL RSPYIKVRAL WPSGDIPEDP SQAAVLLLSP
                101
                     WTFFSSVDVE ALLPSPQEKE GKYIDPVLPK LSRIERVSLL VFLSAFTLDD
                     LNEQGVNPLM NNEEFLFFIN KKAREHGIQD LKHEIMSSLE KTGVPLDPSM
                201
                     SFQVSQAMFS VYRYLRQRDL TTSELRCFHL LSCFKGDVVH CLASFENPKD
                251
                301 LADSDFLEAC KNVEWGEFIS ACEKALLKNP QGISIKDLKQ FLVR*
 15
      The cp6395 nucleotide sequence <SEQ ID 218> is:
                     ATGGAGAATG CTATGTCATC ATCGTTTGTG TATAATGGGC CTTCGTGGAT
                     TTTAAAAACG TCAGTAGCTC AGGAGGTATT TAAAAAGCAC GGTAAGGGGA
                 51
                     TTCAGGTTCT CTTAAGTACT TCAGTGATGC TTTTTATAGG TCTTGGAGTC
                     TGTGCCTTTA TATTTCCTCA ATATCTGATT GTTTTTGTTT TGACTATAGC
                151
20
                     TTTGCTTATG CTCGCTATAA GCTTGGTATT GTTTCTCTTA ATACGTTCTG
                201
                     TACGCTCTTC AATGGTAGAT CGTTTGTGGT GTTCTGAAAA AGGATATGCT
                251
                    CTTCATCAAC ATGAGAACGG GCCTTTTTTG GATGTGAAGC GTGTACAGCA
                301
                    AATTCTTCTA AGATCACCCT ATATTAAAGT TCGGGCTTTA TGGCCGTCTG
                351
                    GAGATATCCC TGAGGATCCT TCACAAGCTG CGGTTCTATT ACTTTCTCCT
                401
25
                    TGGACTTTCT TTTCATCCGT GGATGTAGAG GCTTTATTAC CGAGTCCTCA
                451
                    AGAAAAGGAG GGTAAGTATA TAGATCCTGT GCTGCCTAAG TTGTCTAGGA
                501
                    TAGAGAGAGT CTCACTTTTA GTGTTTTTGA GTGCATTTAC TTTGGATGAC
                551
                    TTAAACGAAC AGGGAGTCAA TCCTTTGATG AATAATGAGG AATTTTTATT
                601
                    TTTTATAAAT AAGAAAGCGC GTGAGCATGG GATTCAGGAT TTAAAACACG
                651
30
                701
                    AGATTATGTC TTCGTTAGAG AAAACAGGAG TGCCATTAGA CCCCTCAATG
                    AGTTTTCAAG TTTCACAAGC GATGTTTTCT GTATATCGCT ACTTGAGACA
                751
               801
                    AAGGGATTTA ACGACTTCAG AATTAAGATG TTTTCACCTC TTAAGTTGTT
               851
                    TTAAAGGGGA TGTGGTTCAT TGTTTAGCTT CATTTGAAAA CCCTAAAGAT
                    TTAGCAGATT CTGACTTTTT AGAAGCTTGT AAGAACGTGG AATGGGGTGA
               901
35
                    GTTTATTTCG GCATGTGAGA AGGCTCTTTT AAAGAATCCG CAAGGAATTT
              1001
                    CCATTAAGGA TCTAAAACAA TTTTTAGTGA GGTAA
```

The PSORT algorithm predicts inner membrane (0.6307).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 109A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 109B) and for FACS analysis.

These experiments show that cp6395 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 110

The following C.pneumoniae protein (PID 4376396) was expressed <SEQ ID 219; cp6396>:

```
45 1 MIEFAFVPHT SVTADRIEDR MACRMNKLST LAITSLCVLI SSVCIMIGIL
51 CISGTVGTYA FVVGIIFSVL ALVACVFFLY FFYFSSEEFK CASSQEFRFL
101 PIPAVVSALR SYEYISQDAI NDVIKDTMQL STLSSLLDPE AFFLEFPYFN
151 SLIVNHSMKE ADRLSREAFL ILLGEITWKD CETKILPWLK DPNITPDDFW
201 KLLKDHFDLK DFKKRIATWI RKAYPEIRLP KKHCLDKSIY KGCCKFLLLS
```

251 ENDVQYQRLL HKVCYFSGEF PAMVLGLGSE VPMVLGLPKV PKDLTWEMFM 301 ENMPVLLQSK REGHWKISLE DVASL*

The cp6396 nucleotide sequence <SEQ ID 220> is:

5	1 51	ATGATCGAGT TGAGGATCGC	2200777701	- octoring	TCCGTGACAG GTTGTCTACT	
	101	CAAGTCTTTG	CALC	AGTTCAGTTT		# TYTOCKTUT TW
	151	TGCATTTCTG	***************************************	GACCTATGCA		TOOGNATITIA
	201	TTCTGTGCTT				GAATTATTTT
10	251	TTTCTTCTGA	GGAATTTAAG			TTCTTTTATT
10	301	CCTATACCAG	CTGTGGTTTC			TCGTTTTTTG
	351	GGACGCTATC	AATGACGTTA			ACATTTCTCA
	401	CTTCTCTTTT	AGATCCCGAA		GATGCAGTTG	TCTACCCTTT
	451	TCTTTGATAG	TGAATCATTC		TAGAATTTCC	TTATTTTAAC
1.5	501	GGCTTTTTTG	ATTTTATTAG	GTGAGATTAC	GCGGATCGTT	TGTCTCGAGA
15	551	AAATTTTGCC		GATCCTAATA	TTGGAAGGAT	TGTGAAACAA
	601	AAGCTATTAA	AAGACCATTT	CGATTTAAAG	TCACTCCTGA	TGATTTCTGG
	651	CACTTGGATA			GACTTTAAGA	AGAGGATCGC
	701	GTTTAGATAA	GTCTATCTAT	ATCCAGAAAT		AAGAAGCATT
	751	GAGAATGATG			GTAAGTTTTT	ATTACTTTCT
20	801	TGGGGAGTTT		TTOOL INLIN		GTTATTTCTC
	851	TGTTAGGACT		TTTTAGGTTT	GGGAAGTGAA	GTGCCTATGG
	901			CCCAAGGATC	TTACCTGGGA	GATGTTTATG
	951			GCAAAGCAAA	AGAGAGGGGC	ATTGGAAAAT
	231	CTCCTTGGAA	GACGTAGCCT	CTCTTTAA		

The PSORT algorithm predicts inner membrane (0.6095).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 110A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 110B) and for FACS analysis.

These experiments show that cp6396 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

30 Example 111

The following *C.pneumoniae* protein (PID 4376408) was expressed <SEQ ID 221; cp6408>:

```
1 MNTSLKRPLK SHFDVVGSFL RPEHLKKTRE SLKEGSISLD QLMQIEDIAI
51 QDLIKKQKAA GLSFITDGEF RRATWHYDFM WGFHGVGHHR ATEGVFFDGE
101 RAMIDDTYLT DKISVSHHPF VDHFKFVKAL EDEFTTAKOT LPAPAQFLKQ
151 MIFPNNIEVT RKFYFTNQEL IEDIVAGYRK VIRDLYDAGC RYLQLDDCTR
201 GGLVDPRVCS WYGIDEKGLQ DLIQQYLLIN NLVIADRPDD LVVNLHVCRG
251 NYHSKFFASG SYDFIAKPLF EQTNVDGYYL EFDHERSGDF SPLTFISGEK
301 TVCLGLVTSK TPTLENKDEV IARIHQAADY LPLERLSLSP QCGFASCEIG
```

40 The cp6408 nucleotide sequence <SEQ ID 222> is:

50	451 501 551	CGCGCTATGA CCACCCATTT TTACGACTGC ATGATCTTCC TCAGGAGCTA ATCTTTATGA	CGTCCTGAGC TTCTCTAGAT TCAAAAAACA CGCAGAGCTA TCACCACAGA TCACCACAGA TCGATGATAC GTGGATCACT AAAGCAAACT CTAATAATAT ATTGAAGATA	ACCTCTGAAA ATTTAAAAAA CAACTCATGC AAAAGCAGCA CGTGGCATTA GCTACAGAAG TTAAATTTGT CTTCCTGCAC AGAGGTCACA TTGTTGCAGG CGCTATCTCC	AACTAGAGAA AAATTGAGGA GGTCTTTCTT CGACTTCATG GACTTTTCTT GACAAGATCT AAAAGCTCTA AGGCACAGTT CGTAAATTCT TTATCGTAAA	AGCCTTAAAG TATCGCTATC TTATTACTGA TGGGGTTTTC TGATGGAGAA CTGTATCTCA GAAGATGAAT TTTAAAGCAG ATCCTACAAA
FF	651	AGGTCTTCAA	GATCTGATTC	AGTCTGTTCG AACAATATCT CTAGTCGTTA	TGGTATGGTA	TCGATGAAAA

```
751 AACTACCACT CAAAATTCTT TGCTAGTGGT AGTTATGACT TTATTGCAAA
801 GCCCCTATTC GAACAACAA ATGTAGACGG CTACTATTTA GAGTTTGATC
851 ATGAGCGTTC TGGAGACTTC TCTCCTCTCA CCTTCATTTC TGGAGAAAAA

901 ACTGTCTGCT TAGGTCTTGT TACCAGCAAA ACCCCTACAC TTGAAAATAA

951 GGATGAGGTC ATTGCTCGCA TACATCAAGC AGCAGACTAC CTGCCCTTGG
1001 AAAGACTCTC TCTAAGTCCA CAGTGTGGTT TTGCTTCATG TGAAAATAGGA
1051 AATAAATTAA CAGAAGAAGA GCAATGGGCT AAAGTTGCTC TAGTAAAAGA
1101 AATTTCCGAA GAAGTTTGGA AATAA
```

The PSORT algorithm predicts cytoplasm (0.2171).

The protein was expressed in E.coli and purified as a GST-fusion product (Figure 111A) and also as a his-tagged product. The his-tag protein was used to immunise mice, whose sera were used in a Western blot (Figure 111B) and for FACS analysis.

These experiments show that cp6408 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

15 Example 112

The following *C.pneumoniae* protein (PID 4376430) was expressed <SEQ ID 223; cp6430>:

1 MKLYSISSDV DTPWIFQLMS KVDSYLFLGG NRIKVVSIVM QEPNLIIGKV

		THE TOTODD	DIEMTE OPMR	KADSATETE	NRIKVVSIVM	QEPNLIIGKV
	51	PMAKTSTTAK	. TUKILSFLIF	PLILTALALE	VELLATAVA	TITTOTETT
20	101	FUIVFIFGRS	GDTASHYKLT	TLVPVSOKNI,	OAMCCMIDT.EV	DAAT DOMESTO
20	151	LICVIANINO	TITESHGIRE	SIDLEOUADD	TATL DOLLOTTON	TOTAL BYOMEN CO.
	201	PVWDVKATÖN	VQNLRTGTYI	NSVGKRSLLK	PMT OUT BY TO	THOMADAA
	251	MATSCHILDE	PSVRYIYSHF	TPONPTTWPO	VERROCETOR	DDCCCCTTTT -
	301	QLQELGVRFP	ICPSQGPDNP	NFQGFQGIRI	YWEDSYOPNK	EA*
	The cp6430 nuc	leotide seaner	ice <seo id<="" td=""><td>224> in:</td><td>2.2.4.0</td><td>2.0</td></seo>	224> in:	2.2.4.0	2.0
Ġ.		ouque!	TOT COLL	424/15.		
25	1	ATGAAACTTT	ATAGCATCTC	ጥጥሮልርልጥርጥአ	CAMACACCE	GGATATTTCA
	51	GCTTATGTCA	AAGGTAGATT	CONTACONA	CMM19CCCCTT	AATAGAATCA
	101	AGGTTGTATC	TATAGTTATG	CAAGAACCTA	A COMPA A COMPA CO	AATAGAATCA TGGAAAAGTA
	151	GAAAACGTTC	GGATCTCCAC	AATACTCAAA	ACTTAATTAT	TGGAAAAGTA
	201	CTTAATCTTC	CCTCTGATTT	TA ATCCCTON	ATATTAAAGA	TTTATCCTT
30	251	ATGCTAAATA	TGCTAATCAC	THAT COCITY	AGCCCTACAC	TATTTTCTAC
	301	CCTCAGTATG	TGCCTATTCC	TGGTCGTTCA	CTAAGATTTT	AGAAAGAGCT
	351	TAAATTAACA	ACATTGGTTC	CAGTATICA	AAAAAAA	CGTCTCATTA
	401	GATCAAATCC	TCTAGAAGTT	GAAGCGCCMC	AAAAAATCTA	CAAGCTATGG
a -	451	TTTTTCTGTG	TACCTGCAAA	ATACCGTCAC	AUMAMAACTAC	AAAACCCTCT
35	501	CATTCGCTTT	TCTTTAGATC	TTGAACAACT	MCCMC2 MC2 C	CAAGTCACGG
	551	ATTCGGTTTC	CTGGCCTACG	GAGTATOTACT	A CONCURR CORR	ATTAATTTAG
	601	AGCAAGGCAG	ATAAACGTGT			
	65 1	AACTTACATA	AATTCTGTAG		GTACAAAATC	TGCGGACAGG
	701	AGCACCTATT	TATTGATGGG		CCTTTTAAAA	TTCATGTTAC
40	751	AACAATACAT	CTGGAAGACT		AAAACCCTGA	AGCCCTTCCT
	801	TTCTCATTTT	ACTCCACAAA		CCTAGTGTTC	GTTATATCTA
	851	GACAAGGTCC	тстасатсаа	CAUCCACCAC	ATGGCCGCAA	GTCTTTTTCA
	901	CAATTACAAG	ACTUACTOR	GWICGWGGWG	GAGGATTTGA	GATCTTAGAG
	951	CAATTACAAG AGACAATCCT	A D T T T T T T T T T T T T T T T T T T	TAGGTTTCCA	ATTTGCCCCT	CTCAAGGACC
45	1001	AGACAATCCT ATTCCTATCA	ycccy ymy yc	CACCERERA :	GATTCGTATC	TATTGGGAAG
			MATAMO	GAGGTTTAA		

The PSORT algorithm predicts inner membrane (0.5140).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 112A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 112B) and for FACS analysis.

These experiments show that cp6430 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 113

The following C.pneumoniae protein (PID 4376439) was expressed <SEQ ID 225; cp6439>:

```
MSYDTLFKNL EKEDSVHKIC NEIFALVPRL NTIACTEAII KNLPKADIHV
                     HLPGTITPQL AWILGVKNGF LKWSYNSWTN HRLLSPKNPH KQYSNIFRNF
 5
                101
                     QDICHEKDPD LSVLQYNILN YDFNSFDRVM ATVQGHRFPP GGIQNEEDLL
                     LIFNNYLQQC LDDTIVYTEV QQNIRLAHVL YPSLPEKHAR MKFYQILYRA
                151
                     SQTFSKHGIT LRFLNCFNKT FAPQINTQEP AQEAVQWLQE VDSTFPGLFV
                     GIQSAGSESA PGACPKRLAS GYRNAYDSGF GCEAHAGEGI ETRTIFSSAK
                251
                     VNPEGLIEIT RVTFSSLKRK QPSSLPIRVT CQLG*
                301
10
      The cp6439 nucleotide sequence <SEQ ID 226> is:
                     ATGTCTTATG ATACGTTATT CAAGAATCTT GAAAAGGAAG ATTCTGTACA
                 51
                     TAAGATATGC AATGAGATCT TTGCATTAGT ACCACGACTC AATACAATCG
                     CTTGCACCGA AGCTATCATC AAAAACCTCC CCAAAGCAGA TATCCATGTA
                101
                     CACCTTCCTG GGACCATAAC ACCTCAATTA GCTTGGATTT TAGGTGTGAA
                151
15
                201
                     AAATGGGTTC TTAAAATGGT CTTATAATTC TTGGACCAAT CATCGATTAC
                     TTTCTCCTAA GAATCCTCAT AAACAATACT CCAATATTTT CCGAAACTTT
                251
                     CAAGATATCT GTCACGAAAA GGATCCGGAT TTAAGTGTAT TACAATATAA
                301
                     TATCTTAAAT TACGATTTTA ATAGCTTTGA TAGAGTGATG GCTACAGTAC
                351
                401
                     AAGGACATCG CTTTCCTCCT GGAGGAATCC AAAATGAAGA AGACCTTCTT
20
                     CTCATTTCA ATAACTATCT CCAGCAATGT CTGGACGATA CTATCGTGTA
                451
                     TACTGAAGTA CAACAAAATA TCCGCCTTGC CCATGTTTTG TATCCTTCAT
                501
                551
                     TACCTGAAAA GCACGCGCGT ATGAAGTTTT ATCAAATCTT GTATCGTGCT
                     TCGCAAACGT TTTCAAAACA CGGGATTACT TTACGATTTT TAAACTGCTT
                601
                651
                     CAATAAAACA TTTGCTCCAC AAATAAACAC ACAAGAACCT GCCCAAGAAG
25
                701
                     CTGTTCAATG GCTCCAAGAG GTTGATTCTA CATTTCCTGG TCTATTTGTA
                751
                     GGGATACAAT CCGCAGGATC AGAATCTGCG CCCGGAGCCT GTCCTAAGCG
                     ATTAGCTTCT GGATATAGAA ATGCTTATGA CTCAGGGTTT GGTTGTGAAG
                801
                851
                     CTCATGCTGG AGAAGGCATA GAGACCCGGA CTATTTTTC GTCAGCTAAG
                901
                     GTAAATCCAG AGGGATTGAT CGAGATAACC CGAGTGACTT TCTCGTCTCT
30
                     TAAACGAAAA CAGCCATCTA GTTTACCCAT AAGAGTTACT TGCCAGTTAG
               951
               1001
                     GATAA
```

The PSORT algorithm predicts cytoplasm (0.1628).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 113A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 113B) and for FACS analysis.

These experiments show that cp6439 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 114

The following C.pneumoniae protein (PID 4376440) was expressed <SEQ ID 227; cp6440>:

			• `	/	ab onproos	
45	1 51 101 151 201 251 301	VSPGVGEFGY VIASTSQCSI PTLWNPLYIQ RSGHASEVIK LLDRHPFPGP AFALFLPIKS	PHSVYENKAP TPIHLYPCEL SGIENTKQRL QDLVSKIQDT SHHNVGGLPK GLTIRVIGEI VSVKGDCRSY	TYVLAKQVRK HLDPEIYKLG FKHIVDCESL YGLQFHPEVS VIEVFDEVAQ NLKLKLVEPL LPEYLAILRR GYTIALRAVE	LFVYCEVLPW IPILAICYGM DTEIRMSHRD DSTPTGNKIL SLDVQWLAQG RYLFKDEVRI ADLIFIEELR	QLMARDFGGT HVTTIPEGFN ETFVQEICSA TIYSDVIESS LGEALGLSSY
	401	SSRIINEIPE	VSRVVYDISD	KPPATIEWE*	DIBLINGING	THECDANSSC
	The cp6440 nucle					
50	•					

	-		
101	TTGCAGAGTG CAAGGAGAC ATCTCAATAT ACTTATGTA ATTGCGAAGT TCTTCCCTG GCGCCTTTGG GGATCATTC	T TAGCAAAGCA AGTGCGGAAG G AATATCTCTC TCCAATGTT	TATTTTTT

	001					
	201		CATTTAGATC	- ~ OTT TYT C TYY	TAAACTTGGC	ATTCCAATTC
	251	TAGCTATTTG	CTATGGCATG	CAGCTTATGG	CTAGAGATTT	
	301	GTAAGCCCTG	GTGTAGGAGA	ATTTGGATAT		ATCTGTATCC
_	351	TTGTGAGCTC	TTCAAACACA	TCGTCGACTG		GACACAGAGA
5	401	TTCGGATGAG	CCATCGGGAT			AGGATTTAAT
	451		CCACCTCACA			
	501	ACAACGGTTG		AATTTCATCC		AAAATACCAA
	551		TAAGATTCTA			GACTCCACTC
	601		GGAATCCCTT		TTCAAGAGAT	
10	651		GTTATTGAAG	GTATATTCAG	CAAGACCTTG	
	701			TATTTGATGA	AGTCGCTCAG	TCATTAGACG
			AGCTCAAGGA	ACCATCTACT	CAGATGTTAT	TGAGTCCTCA
	751		ATGCCTCCGA	AGTAATAAAA	TCACATCATA	ATGTAGGGGG
	801	GCTTCCAAAA		TGAAGTTAGT	CGAGCCCTTA	
15	851	TTAAAGATGA	AGTTCGAATT	TTAGGAGAAG		TTCTAGCTAT
15	901	CTCTTGGACA	GGCATCCTTT		GGCTTGACAA	
	951	TGGAGAGATC	CTTCCTGAAT		TTTACGACGG	
	1001	TCTTTATAGA	AGAGCTTAGG		TCTACGATAA	
	1051	GCCTTTGCTC				
	1101				GTATCTGTAA	
20	1151	TCATGACAGG			TGCTGTAGAA	
	1201	TCATCGCGAA				CAGTTCTTGC
	1251			AATACCCGAG	GTAAGCCGAG	TGGTCTATGA
	101	IAITICTGAC	AAGCCACCAG	CAACTATAGA	ATGGGAATAG	

The PSORT algorithm predicts cytoplasm (0.0481).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 114A) and also as a his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 114B) and for FACS analysis.

These experiments show that cp6440 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 115

The following C.pneumoniae protein (PID 4376475) was expressed <SEQ ID 229; cp6475>:

```
1 MNTYTFSPTL QKSFSLFLLE KLDSYFFFGG TRTQILVITP TNIRLAAKKR
51 GCKVSTIEKI IKILSFILLP LVIIAFILRY FLHKKFDKQF LCIPKVISNE
101 DEALLGSRPQ AVEKAVREIS PAFFSIPRKY QLIRIDTPKD DAPSILFPIG
151 IEIILKDLCI DTLKQSNLFL KREMDFLGHP EEKALFDSIC SIEKDQEWMS
201 LESKKLLITH FLKYLFVSGI EQLNPGFNPE NGRGYFSEIS TAKIHFHQHG
```

The cp6475 nucleotide sequence $\langle SEQ\ ID\ 230 \rangle$ is:

	1	3 703 5 7 7 7				
	1.	ATGAATACCT	ATACCTTCTC	TCCTACACTT	CAGAAAAGCT	TCAGCCTATT
40	51	TCTTTTAGAA	AAATTAGACT	CTTACTTTT	CTTTGGAGGG	ልሮሞሮሮሞልሮልሮ
40	101	AAATCTTAGT	CATCACACCA	ACCAATATTA	CATTACCACC	TO A COLLACAC
	151	GGGTGTAAGG	TTTCTACTAT	AGAAAAGATA	AUCA FOR MOC	TAAAAAAAGA
	201	CCTGCTGCCC	Curranavaca	UMCCCMMM* =	ATCAAGATCC	TCTCTTTTAT
	251	ACAAAMMOCA	CTAGITATCA	TTGCCTTTAT	ACTTCGCTAT	TTCTTACATA
		AGAAATTCGA	TAAACAGT TC	TTGTGTATCC	CAAAAGTCAT	TTCTAACGAA
45	301	GAUGAAGCTU	TTCTTGGATC	TAGACCACAA	GCAGTTGAAA	AACCACEMECG
43	351	AGAAATATCT	CCAGCCTTCT	TCTCTATACC	AAGAAAATAC	ር አ አርጥጥአጣጥአ
	401	GAATCGACAC	TCCTAAAGAT	GACGCTCCCT	C_{Δ}	CCCCONTRACCC
	451	ATAGAGATCA	TTCTCAAAGA	TTTATGTATT	CIMICOLLII	ACCA A MCMA
	501	TCTTTTCCTT	AAAAGAGAAA	TGGATTTCTT	GATACACTCA	AGCAATCTAA
	551	CAMMAMMOCA	COCCAMANA	IGGATTTCTT	AGGTCATCCA	GAAGAAAAAG
50	601	CMITATICGA	CICGATATGT	TCTATAGAAA	AAGATCAAGA	ATGGATGAGC
50		TTGGAAAGTA	AAAAACTTTT	AATCACGCAC	TTCCTAAAGT	ATCTCTTTGT
	651	CTCTGGAATC	GAACAACTAA	ATCCAGGCTT	TAACCCAGAG	AAMCCCCCMC
	701	GGTATTTTTC	AGAAATAAGT	ACAGCAAAGA	TOCO TOTAL	WITGGGGGIG
	751	CGATATGGGC	CAATCCCTTTC	TTCCCCA CCC	ICCALLITICA	TCAGCACGGT
	 D00		01411 (C G 1 1 C	TICGGGACCC	ATCATGAAGG	AAATATAA

The PSORT algorithm predicts inner membrane (0.5373).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 115A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 115B) and for FACS analysis.

These experiments show that cp6475 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 116

The following C.pneumoniae protein (PID 4376482) was expressed <SEQ ID 231; cp6482>:

```
10 MLVELEALKR EFAHLKDQKP TSDQEITSLY QCLDHLEFVL LGLGQDKFLK
51 ATEDEDVLFE SQKAIDAWNA
101 VNRRAFCIAS EHHFLKTAIR
151 AKRKLCTFEK ETKELNESLL
201 FCFSKTPSQE EYQKDCLYQS RLRYLLLLYE YTLLCKTSTD FQEQARAKEE
251 FIREKFSLLE LEKGIKQTKE LEFAIAKSKL ERGCLVMRKY EAAAKHSLDS
301 MFEEETVKSP RKDTE*

1 ATGCTAGTAG AGTTAGAGGC ACAAGTGACC ACAAGTGACC TCCACTTAT CAATGTTTGG
```

	1	ATGCTAGTAG	AGTTAGAGGC	TCTTAAAAGA	GAGTTTGCGC	ATTTAAAAGA
	51	CCAGAAGCCG	ACAAGTGACC	AAGAGATCAC		CAATGTTTGG
	101	ATCATCTTGA	ATTCGTTTTA	CTCGGGCTGG		ATTTTTAAAG
• •	151	GCTACGGAAG	ATGAAGATGT	GCTTTTTGAG	TCTCAAAAAG	
20	201	GTGGAATGCT	TTATTGACAA	AAGCCAGAGA		011110011100
	251	TAGGTGCTAT		ATAGAATTCT	-02-111001	TTTATCAAAA
	301	COCA ADCCCA	GGGCTTTTTG			
				TATTGCTTCG	GAGATACATT	TTCTAAAAAC
	351		GATTTGAATG	CATATTACCT	GTTAGATTTT	AGATGGCCTC
05	401	TTTGCAAGAT	AGAAGAGTTT	GTGGATTGGG	GGAATGATTG	TGTTGAAATA
25	451	GCAAAGAGGA	AGCTATGCAC	TTTTGAAAAA		
	501	GAGCCTTCTT	AGAGAGGAGC	ATGCGATGGA		
•	551	TGCAAAGGAA	ACTTAGCGAC		AATTGCATGA	
	601	TTTTGTTTT	CTAAGACTCC			
	651				GAGTATCAAA	
30		GTATCAATCA		ACTTATTGTT	GCTGTATGAG	TATACATTGT
30	701	TATGTAAGAC	ATCCACAGAT	TTTCAAGAGC		
	751	TTCATTAGGG	AGAAATTCAG		CTCGAAAAGG	
	801	AACTAAAGAG	CTTGAGTTTG	CAATTGCTAA		
	851	GTTTAGTTAT	GAGGAAGTAT	GAAGCTGCCG		TTTAGATTCT
	901	ATGTTCGAAG				
			THE TOTAL STATE OF THE STATE OF	GAAGTCGCCG	COGMAAGACA	CAGAATAA

35 The PSORT algorithm predicts cytoplasm (0.4607).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 116A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 116B) and for FACS analysis.

These experiments show that cp6482 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 117

The following C.pneumoniae protein (PID 4376486) was expressed <SEQ ID 233; cp6486>:

```
45 UVVVALFILG IFFLSGSLAF LVHTSCGVLL GAALPILCIG LVLLAVALIV
51 FLCHKHKTRQ DLDYYDQDLD SLVIHKKEIP NDISELRVTF EKLQNLFQFH
101 TKDFSDLSQE LQGKFINCME KWLTLEDEVT KFLIVRDRFL ETRRNFTTFG
151 EQVKGIQSNI FDLHEEKSSL YLELYRLRKD LQVLLNFFLL PPGILKVDYD
201 EIEAIKGLFI RLTSRLDKLD VKAQERKKFI NEMSREFKEV EKAFDIVDRA
251 TKKLMDRAKK ESPARLFMGR TESLLEMKKN EEALKNQGLD PENLSHPELF
301 SPYQQLLILN YLNSEIVLHH YEFLISGTVT SGLTLEECEN RMRAASTGLN
```

351 ALLVRKLQFR GAIKSAYFEK LTEIEKELRS LQDVIKSLEL ELIHKIKDIV 401 TEET*

The cp6486 nucleotide sequence <SEQ ID 234> is:

~		1 GTGG	TGGTTG	TCGCTTTATT	TATCCTTGGG	ATTTTCTTTT	TATCTGGTTC
5	5	1 TCTT	GCATTC	CTTGTTCATA	CGTCTTGCGG	AGTTCTTTTA	GGAGCGGCGC
	10	1 TTCC	CATACT	TTGCATAGGT	CTTGTTTTAT	TGGCTGTAGC	TCTTATTGTT
	15	1 TTCT	TATGTC	ACAAACACAA	GACTCGTCAA	GATTTAGATT	ATTATGATCA
	20	1 AGAT	TTAGAT	TCTTTGGTGA	TTCATAAGAA	AGAGATCCCC	AATGACATCT
10	25	1 CTGA	GTTGCG	GGTAACATTT	GAAAAGTTGC	AAAATCTGTT	TCAGTTCCAT
10	30	1 ACGA	AAGATT	TCTCTGATCT	AAGCCAAGAG	CTTCAGGGTA	AATTTATCAA
	35	1 TTGC	ATGGAG	AAATGGCTAA	CTTTAGAAGA	CGAAGTGACT	AAATTTCTTA
	40	1 TTGT	TCGAGA	TAGATTTTTA	GAAACCAGAA	GAAATTTTAC	CACTTTTGGA
	45	1 GAAC	AGGTTA	AAGGGATCCA	AAGCAATATT	TTTGATTTGC	ATGAGGAAAA
	50	1 GTCT	TCATTA	TATTTAGAAT	TGTATAGGCT	TAGGAAAGAC	CTCCAAGTTC
15	55	1 TATT	TTTAAA	TTTTCTGCTC	CCCCCAGGTA	TACTCAAGGT	AGATTATGAT
	60	1 GAAA	TTGAGG	CTATCAAAGG	TCTGTTTATA	AGATTAACCT	CTAGATTAGA
	65		CTTGAT	GTGAAAGCTC	AGGAACGTAA	GAAGTTCATT	AATGAAATGA
	70		GGAATT	TAAAGAAGTA	GAGAAAGCTT	TTGATATTGT	CGATAGGGCA
20	75		AAAAGC	TTATGGATAG	AGCCAAGAAA	GAAAGTCCGG	CACGTCTTTT
20	80		GGTAGA	ACTGAGTCTC	TCTTAGAAAT	GAAAAAAAA	GAAGAAGCCC
	85	1 TTAA	AAATCA	GGG CTAGAT	CCTGAAAATC	TTTCCCATCC	TGAACTTTTT
	90		CGTATC	AACAGCTTTT	AATTTTGAAT	ATAAATTAATA	GCGAAATAGT
	95		CATCAT	TATGAGTTCC	TTATTTCTGG	AACAGTAACT	TCTGGCCTAA
~~	100			ATGTGAAAAT	CGAATGAGGG	CGGCTTCTAC	TGGGTTGAAC
25	105		FTCTGG	TGCGTAAGCT	CCAGTTCAGA	GGTGCTATAA	AATCTGCGTA
	110		GAAAAA	CTCACAGAGA	TTGAAAAAGA	GTTACGATCA	CTTCAAGACG
	115			ATTGGAACTA	GAACTGATCC	ATAAGATAAA	AGATATAGTG
	120	1 ACAG	AAGAAA	CTTAG			

The PSORT algorithm predicts inner membrane (0.7474).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 117A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 117B) and for FACS analysis.

These experiments show that cp6486 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

35 **Example 118**

The following C.pneumoniae protein (PID 4376526) was expressed <SEQ ID 235; cp6526>:

```
MSPFKKIVNR LLCYISFQKE SRTLPIIIRE PRMTTKSLGS FNSVISKNKI
                51
                    HFISLGCSRN LVDSEVMLGI LLKAGYESTN EIEDADYLIL NTCAFLKSAR
               101
                    DEAKDYLDHL IDVKKENAKI IVTGCMTSNH KDELKPWMSH IHYLLGSGDV
40
               151
                    ENILSAIESR ESGEKISAKS YIEMGEVPRQ LSTPKHYAYL KVAEGCRKRC
               201
                    AFCIIPSIKG KLRSKPLDQI LKEFRILVNK SVKEIILIAQ DLGDYGKDLS
               251
                    TDRSSQLESL LHELLKEPGD YWLRMLYLYP DEVSDGIIDL MQSNPKLLPY
                    VDIPLQHIND RILKQMRRTT SREQILGFLE KLRAKVPQVY IRSSVIVGFP
               301
               351
                    GETQEEFQEL ADFIGEGWID NLGIFLYSQE ANTPAAELPD QIPEKVKESR
45
               401
                    LKILSQIQKR NVDKHNQKLI GEKIEAVIDN YHPETNLLLT ARFYGQAPEV
               451
                    DPCIIVNEAK LVSHFGERCF IEITGTAGYD LVGRVVKKSQ NQALLKTSKA
               501
```

The cp6526 nucleotide sequence <SEQ ID 236> is:

	1	ATGAGTCCTT	TTAAGAAAAT	AGTAAATCGC	TTACTATGCT	ATATTTCTTT
50	51	TCAAAAAGAA	TCAAGAACTC	TCCCAATCAT	TATTAGAGAA	CCTAGGATGA
						AAATAAAATT
	151	CATTTTATTA	GTTTGGGATG	CTCTCGGAAC	CTTGTAGATA	GCGAAGTCAT
						GAAATTGAAG
						AAGTGCTAGA
55						AAAAAGAGAA

	351		ATTGTAACTG	GATGCATGAC	TTCCAACCAC	AAAGATGAGC
	401	TTAAACCCTG	GATGTCACAC	ATCCATTACC	TACTAGGTTC	TGGGGATGTT
	451	GAGAATATTC	TTTCTGCTAT	TGAGTCTCGT	GAATCTGGAG	AAAAAATCTC
5	501	TGCAAAGAGT	TACATTGAGA	TGGGAGAAGT		CTTTCCACAC
3	551	CAAAACACTA	TGCCTATTTA	AAAGTTGCTG	AGGGCTGTAG	AAAACGTTGT
	601	GCTTTTTGTA	TTATTCCTTC	CATTAAAGGA	AAGCTCCGCA	GCAAACCTCT
	651	GGATCAAATT	CTTAAAGAAT	TCCGCATCCT		AGTGTGAAAG
	701	AGATTATATT	GATAGCTCAA	GACCTAGGAG	ATTATGGAAA	GGATCTCTCT
10	751	ACAGACCGCA	GTTCGCAGCT	AGAATCACTA	TTACATGAGT	TACTGAAAGA
10	801	GCCTGGTGAT	TATTGGCTGC	GGATGTTGTA		
	851	GTGATGGCAT	TATAGATCTT	ATGCAATCTA	ATCCCAAACT	TCTTCCCTAT
	901	GTAGATATTC	CCTTACAGCA	CATTAACGAC	CGTATTTTAA	
	951	AAGAACGACT	TCTAGGGAGC	AAATCCTAGG	ATTCCTAGAA	
1.5"	1001	CCAAGGTTCC	TCAGGTCTAT	ATCCGTTCTT	CTGTTATTGT	
15	1051	GGTGAAACTC	AGGAAGAATT	CCAGGAGTTA	GCTGATTTTA	
	1101	TTGGATTGAT	AATCTCGGAA	TTTTCTTGTA	CTCTCAAGAA	
	1151	CGGCAGCAGA	ACTCCCTGAC	CAGATACCAG	AAAAAGTTAA	
	1201	TTGAAAATTC	TATCTCAAAT		AATGTGGATA	
20	1251	GAAGCTCATT	GGGGAAAAA	TAGAAGCAGT	TATTGATAAC	
20	1301	AAACGAATCT	TTTACTCACT	GCAAGGTTCT	ATGGACAAGC	
	1351	GACCCTTGTA	TTATTGTAAA	TGAGGCGAAG	CTTGTTTCTC	
	1401	AAGATGCTTT	ATAGAAATCA	CAGGGACTGC		
	1451	GTGTTGTAAA	AAAATCTCAG	AACCAAGCTT	TGCTAAAAAC	TAGCAAAGCT
	1501	TAG				

25 The PSORT algorithm predicts cytoplasm (0.1296).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 118A) and also as a his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 118B) and for FACS analysis.

These experiments show that cp6526 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 119

The following C.pneumoniae protein (PID 4376528) was expressed <SEQ ID 237; cp6528>:

35	1 51 101 151 201 251 The cp6528 nucl	FKDQVSATGL PANYVRSPEY FIGWKQSTRE NGLGQVQCES GIFYLSNGGS	YFKLDSTVDG TSGTTYNLNA FFCSKPLIGD LTVGGNTAIQ TIYSGGGYAT SAGIGNYSFS	QNFTSSQISI FDFNSGESYL FLAAGTYIVS IGTLGTSIYR LLYYPDDRG*	DFKNNRLSNC PLTGSEYTLY FTVGKRWGWN	ALPKEDCDPV QSRNVNSIFR NGWGGAIYIN
	The openion naci	condc scques.	ice card in	230>18:		
40	1	ATGAAAAACA	ATATTAATAA	TAATGAGTGC	TATTTTAAAT	TAGACTCAAC
	51	TGTAGATGGT	${\tt GATTTGTTAG}$	CAGCCAATCT	CAAGACCTTT	GATACACAGG
	101	CCCAAGGAAT	$\mathtt{CTCATCGACT}$	GAAACATTTT	CTGTTCAGGG	GAATGCAACA
	151	TTTAAAGATC	AAGTTTCAGC	AACTGGATTA	ACTTCAGGAA	Cary Campamy y
	201	TTTAAATGCA	CAAAACTTTA	COTOCOCO	A AMOMOMAMA	CIMCIIVIMA
45	251	ATAATCGTCT	GAGTAATTGT	CCAMMCCCA	ANTOICIAIA	GATTTTAAAA
	301	CCAGCGAATT	ATGTTCGTTC	TCCCCA ATAM	MAGAAGACTG	CGATCCGGTG
	351	GATCGGAGAT	THE THE TOTAL	ACTIONALIAT	TTTTTCTGTT	CCAAGCCTCT
	401	CTTTCCCCA AMA	TTTGATTTTA	ACTCAGGGGA	ATCTTATTTG	CCTCTGACTG
	451	MINASSOLLO	TACTCTATAT	CAGTCACGTA	ATGTAAATAG	TATATTTCGT
50		TTTATAGGAT	GGAAGCAAAG	TACACGAGAA	TTAACTGTAG	GGGGAAATAC
50	501	TGCGATACAA	$\mathtt{TTTCTTGCAG}$	CAGGAACCTA	TATCGTTTCA	TTTACTGTTG
	551	GTAAACGGTG	GGGATGGAAT	AATGGTTGGG	GAGGAGCCAT	ጥል ልጋጥልጥልጥፐ
	601	AATGGTTTAG	GACAAGTCCA	ATGTGAAAGC	ACGATTTATA	GTGGTGGAGG
	651.	GTATGCAACA	ATAGGTACAC	TGGGGACCTC	AATATATAGA	GCCጥርጥርጥል C
	701	ATGTAGCTCC	TAATCCTAAT	GATCCGAATG	CTTCGGATCG	CTATAGAGCC
55	751	GGTATTTTCT	ATCTCAGTAA	CGGTGGTTCT	AGTGCAGCTA	DY CCCY YEAR
	801	CTCCTTTTCT	CTTCTCTATT	ATTCCGGACGA	myCycccmyC	INGGGMATTA

CTCCTTTTCT CTTCTCTATT ATCCGGACGA TAGAGGGTAG

The PSORT algorithm predicts cytoplasm (0.1668).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 119A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 119B) and for FACS analysis.

5 These experiments show that cp6528 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 120

The following C.pneumoniae protein (PID 4376627) was expressed <SEQ ID 239; cp6627>:

10	1 51	MKCSPLTLVP LAAPISYAIG	HIFLKNDCEC GTLALAATVI	HRSCSLKIRT	IARLILGLVL AKSKVLPIPN	ALVSALSFVF		
	101 151	PKEVFYFVKT	HSLTVNELKI	FINCWKSGTD	LPPNLHKKAE	AFGIDILKST		
	201	AFHKGYTTIF	HSYTRPLLTL	LSHFIDKTES	VAGEIGLNKT SKASKNOWDS	QKVYGLLGPL		
15	251 301	FKELPHNMIF	RKDVQGISQF	LFLFFSHGIT	WEOAOMIOLI	NPDNWKMI.CO		
	351	KESPMHPASA	LVQKICVNTT	TNMFDPVSSN HHONLLKRWO	YEPTVNFMTW FVRNTSSQWT	KELKVLLEKV		
	401	QTYKLEKKIE	SSLPIRSSL*			PDELATAN		
	The cp6627 nucleotide sequence <seq 240="" id=""> is:</seq>							
	1	A THO A A CHICHIA	OMOOMMET TO					

20	1	ATGAAGTGTA		ACTAGTTCCC	CATATATTTT	TAAAAAATGA
20	51	CTGCGAATGT		GTTCTTTAAA	AATTAGGACA	ATTGCCCGAC
	101	TCATTCTTGG		GCTCTTGTTA	GCGCACTTTC	TTTTGTTTC
	151	CTTGCTGCGC	CGATTAGCTA	TGCTATTGGA	GGAACTTTAG	CTTTAGCCGC
	201	TATCGTAATC		CGCTAGTCGT	AGCACTGCTA	
0.5	251	AGGTTCTGCC	CATCCCCAAC	GAACTTCAGA	AGATTATTTA	
25	301	CCTAAAGAAG	TCTTTTATTT	CGTGAAAACA	CACTCCCTGA	
	351	ATTAAAAATA	TTTATTAATT		CGGTACAGAC	CTGCCTCCGA
	401	ATTTACATAA	AAAAGCAGAG		TCGATATTCT	AAAATCTATA
	451	GATTTAACCC	TGTTTCCAGA		ATTCTTCTTC	AAAACTGCCC
20	501	GTTATACTGG	CTCTCCCATT		AACTGAATCT	GTTGCTGGGG
30	551	AAATCGGATT	AAATAAAACA	CAAAAAGTTT	ATGGTTTACT	TGGGCCCTTA
	601	GCGTTTCATA	AAGGATATAC	AACTATTTC		CACGCCCTCT
	651	ACTAACATTA			GTTCCTATAT	AGTAAAGCGT
	701	CTAAGAATCA	ATGGGATTCT		AAAAAACCTG	CGAAGAAATA
~ =	751	TTCAAGGAAC	TCCCCCACAA		CGGAAGGATG	TTCAAGGAAT
35	801	CTCACAATTC	TTATTTCTTT		TGGTATCACT	TGGGAACAGG
	851	CTCAGATGAT	TCAACTTATA			GTTGTGTCAG
	901	TTTGATAAAG	CAGGAGGCCA		GCAACATTTG	GAGGCTTTTT
	951	GAATACTGAA	ACAAATATGT	TCGATCCAGT		TATGAACCTA
	1001	CAGTGAACTT		AAAGAATTGA		AGAGAAAGTA
40	1051	AAAGAAAGTC				AGATATGCGT
	1101	AAATACAACG		ATCTGTTAAA		TTTGTTCGTA
	1151	ATACGAGTTC		TCAAGCTTAC		TTTCCACGCC
	1201	CAAACCTACA	AACTAGAGAA	AAAAATAGAA	AGCAGTCTCC	ChymyCCyma
	1251	TTCCCTATAA				CIAIACGATC

45 The PSORT algorithm predicts inner membrane (0.7198).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 120A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 120B) and for FACS analysis.

These experiments show that cp6627 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

-147-

Example 121

The following C.pneumoniae protein (PID 4376629) was expressed <SEQ ID 241; cp6629>:

```
MSNITSPVIQ NNRSCNYYFE LKNSTTIHIV ISAILLCGAL IAFLCVAAPV
                     SYILSGALLG LGLLIALIGV ILGIKKITPM ISSKEQVFPQ ELVNRIRAHY
                 51.
 5
                101
                     PKFVSDFVSE AKPNLKDLIS FIDLLNQLHS EVGSSTNYNV SEELQQKIDT
                151
                     FEGIARLKNE VRTASLKRLE SAASSRPLFP SLPKILQKVF PFFWLGEFIS
                201
                     AGSKVVELHR VKKIGGSLEE DLSDYIKPEM LPTYWLIPLD FRPTNSSILN
                     LHTLVLARVL TRDVFQHLKY AALNGEWNLN HSDLNTMKQQ LFAKYHAAYQ
                251
                301
                     SYKHLSQPSL QEDEFYNLLL CIFKHRYSWK QMSLIKTVPA DLWENLCCLT
10
                     LDHTGRPQDM EFASLIGTLY TQGLIHKESE AFLSSLTLLS LDQFKTIRRQ
                351
                     STNIAMFLEN LATHNSTFRS LPPITVHPLK RSVFSQPEED ESSLLIG*
                401
     The cp6629 nucleotide sequence <SEQ ID 242> is:
                     ATGAGTAATA TAACCTCGCC AGTTATTCAA AATAATCGCT CTTGTAATTA
                51
                     TTATTTTGAA TTAAAGAATT CAACCACTAT TCATATTGTT ATCAGTGCCA
15
                     TCTTACTCTG CGGAGCTTTG ATAGCTTTCT TGTGTGTAGC AGCTCCTGTT
                101
                151
                     TCCTATATTC TAAGTGGCGC ATTGTTAGGA TTAGGATTAT TAATAGCCTT
                201
                    GATTGGTGTG ATTTTAGGAA TAAAAAAAAT CACGCCTATG ATTTCATCAA
                251
                    AAGAACAAGT ATTCCCCCAA GAACTCGTAA ATAGAATCAG GGCGCACTAT
                     CCTAAATTTG TCTCTGATTT TGTTTCAGAA GCTAAACCAA ATCTTAAAGA
                301
20
               351
                    TCTCATAAGT TTTATTGATC TTCTAAATCA ATTGCACTCT GAAGTTGGAT
               401
                    CATCTACAAA TTACAACGTA TCTGAAGAAC TACAACAGAA AATAGATACG
                    TTCGAGGGTA TCGCACGCTT AAAAAATGAA GTCCGTACTG CTTCTCTTAA
               451
               501
                    AAGACTTGAA AGCGCTGCTT CTTCCCGTCC CCTCTTCCCC TCTTTACCAA
               551
                    AAATCTTACA AAAGGTATTT CCATTTTTCT GGTTAGGAGA GTTTATTTCT
25
                    GCAGGCAGCA AGGTTGTAGA GCTCCATCGA GTTAAGAAAA TTGGAGGCAG
               601
```

CCTCGAAGAA GACCTTAGTG ATTATATAAA ACCAGAGATG CTTCCTACCT 651 701 ATTGGTTGAT TCCTTTAGAT TTTAGACCAA CAAATTCCTC TATTCTAAAT 751 CTACACACAT TAGTTTTAGC TAGAGTCTTA ACTCGTGATG TTTTTCAACA TCTTAAGTAT GCAGCATTAA ATGGCGAGTG GAACCTGAAT CATAGTGATC 801 30 851 TAAATACTAT GAAACAGCAG CTCTTTGCTA AATATCATGC GGCGTATCAA 901 TCCTATAAAC ATCTATCTCA ACCCTCTCTT CAAGAGGATG AATTCTATAA CCTGCTCTTG TGTATTTTTA AGCATAGGTA CTCGTGGAAG CAGATGTCCT 951 1001 TAATAAAAAC AGTCCCGGCT GATTTATGGG AAAACCTCTG TTGCTTGACT 1051 TTAGACCATA CAGGACGACC CCAAGACATG GAATTTGCCT CTCTAATTGG 35 1101

1101 TACTCTCTAC ACACAGGCC TAATTCATAA AGAAAGCGAA GCATTTCTTT
1151 CTTCATTGAC ACTCCTTAGT TTAGATCAGT TTAAAACGAT CCGTCGTCAG
1201 TCAACCAATA TAGCGATGTT CCTTGAGAAT TTAGCAACTC ATAATTCCAC
1251 CTTTAGAAGC TTACCACCTA TAACAGTCCA TCCACTCAAG AGAAGCGTCT
1301 TCTCCCAACC TGAAGAAGAC GAGTCCTCCC TGCTGATAGG TTAG

40 The PSORT algorithm predicts inner membrane (0.5776).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 121A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 121B) and for FACS analysis.

These experiments show that cp6629 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 122

The following C.pneumoniae protein (PID 4376732) was expressed <SEQ ID 243; cp6732>:

```
1 MEMMSPFQQP EQCHFDVVGS FLRPESLTRA RSDFEEGRIV YEQMRVVEDA
51 AIRNLIKKQT EAGLIFFTDG EFRRYSWDFD FMWGFHGVDR RRDSNDPEIG
50 101 VYLKDKISVS KHPFIEHFEF VKTFEKGNAK AKQTIPSPSQ FFHEMIFAPN
151 LKNTRKFYPT NQELIDDIVF YYRQVIQDLY AAGCRNLQLD DCAWCRLLDI
201 RAPSWYGVDS HDRLQEILEQ FLWIHNLVMK DRPEDLFVSL HVCRGDYQAE
251 FFSRRAYDSI EEPLFAKTDV DSYHYYWALD DKYSGGAEPL AYVSGEKHVC
301 LGLISSNHSC IEDRDAVVSR IYEAASYIPL ERLSLSPQCG FASCEGDHRM
```

351 TEEEQWKKIA FVKEIAKEIW G* The cp6732 nucleotide sequence <SEQ ID 244> is:

	1	ATGGAAATGA	TGAGCCCATT	CCAACAACCT	GAGCAATGTC	ΑͲͲͲͲʹΓΑͲ <mark>Ϲ</mark> Ͳ
_	51	TGTGGGAAGT	TTCTTACGTC	CTGAAAGTCT	TACACGAGCA	CGCTCTGATT
5	101	TTGAAGAAGG		TATGAGCAGA		
	151	GCTATTCGTA		AAAGCAAACA		TTATCTTTTT
	201	TACTGATGGG		GGTATAGTTG		TTTATGTGGG
	251	GATTCCATGG		CGCAGGGACT		
10	301	GTGTATCTTA		CTCCGTATCA		TTATAGAACA
10	351	TTTCGAGTTT		TTGAGAAGGG		GCAAAACAAA
	401	CGATTCCTTC		TTTTTCCATG		TGCTCCTAAT
	451	CTGAAAAATA		TTATCCTACG		
	501	TATTGTCTTT		AAGTCATCCA		GCTGCAGGTT
1.5	551	GTCGTAATTT				CTTGGATATA
15	601	CGAGCGCCTT	CTTGGTATGG	TGTTGATTCT		TGCAGGAAAT
	651	TTTAGAACAG		TCCATAATTT		GATAGACCCG
	701	AGGATCTTTT				TCAGGCCGAG
	751	TTTTTCTCTA	GACGAGCTTA			TATTTGCTAA
00	801	GACCGATGTG	GATAGTTATC			GATAAGTATT
20	851	CAGGAGGTGC	TGAGCCTTTA		CTGGAGAGAA	
	901	TTGGGATTGA	TCTCCAGCAA	CCATTCTTGT		GAGATGCTGT
	951			CTGCGAGCTA		GAGAGACTTT
	1001	CTTTGAGCCC	GCAATGTGGG	TTTGCTTCTT	GTGAGGGAGA	CCATAGAATG
٥٣	1051			GAAGATCGCC	TTTGTGAAAG	AGATTCCTDA
25	1101	AGAGATCTGG	GGATAA			

The PSORT algorithm predicts cytoplasm (0.2196).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 122A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 122B) and for FACS analysis.

These experiments show that cp6732 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 123

The following C.pneumoniae protein (PID 4376738) was expressed <SEQ ID 245; cp6738>:

					-	~
35	1 51 101 151 201 251	YLNVVRCDLS ERIFVSREKE QGSLTEEQLG LEASVTDALV	GETTVQQRLL AADAYASGCK ALLCNTVSTE SYVSNLDMIP	VCNHSEPNIL LNADEGRSMT VVAFDDEHLP KNLAFALDAV YTSSQGIVIE KDPLISDDED	VVISELPEGH WVSSHIAYAE IKQSVWRFRN	PDIRNLQLAS EIREKQEQTM PDLFAYEREA HTLIVNCAAF
40	The cp6738 nucl	entide cenner	nce <seo id<="" td=""><td>2465 :</td><td></td><td></td></seo>	2465 :		
10	The operso nac	coade seques	ice cand in	240> 1S:		
	1	GTGTGGCTGC	GCTTTTTACT	TTTAGTGTCC	TATGATGAGA	AGGAGAAAGA
	51	CGTAGTTGTC	GTTTGTAATC	ATTCTGAACC	TAATATCCTC	GGCCTGCCTC
	101	CTGAAGCAGT	${\tt CTCTCAGCTT}$	ATTGAAGAGC		AGGCTATAGC
15	151	TATCTGAATG	$\mathtt{TAGTGCGTTG}$	TGATCTCTCC	GGGGAGACTA	CGGTTCAACA
45	201	ACGTCTGCTA	${\tt TTGAATGCCG}$	ATGAAGGGAG		GTGGTGATCT
	251	CAGAGCTTCC	TGAAGGGCAC	CCCGATATTC	GGAATTTGCA	GTTGGCATCC
	301	GAAAGAATTT	TTGTTTCTCG	TGAAAAAGAA	GCTGCTGATG	
	351	AGGATGTAAA	GTGGTCGCTT	TCGATGATGA	GCATCTCCCT	
c 0	401	GTCATATTGC	CTACGCGGAG	GAGATCAGAG	AGAAACAAGA	
50	451	CAAGGGTCTT	TAACTGAAGA	GCAGTTAGGA	GCACTCCTCT	
	501	CTCCACAGAG	AAAAATCTAG	CCTTTGCTCT	AGACGCCGTG	ATAAAAAAAA
	551	CTGTGTGGAG	ATTCCGCAAT	CCGGATCTTT	TTGCTTATCA	GAGAGAACCE
	601	CTAGAGGCTT	CAGTAACAGA	TGCTTTAGTA	TCTTACCTTT	$C \Delta \Delta \Delta T T T T T A C A$
ے ہے	651	CATGATACCG	TACACAAGTT	CTCAGGGCAT	AGTCATAGAA	CATACTACTA
55	701	TCGTCCGTAC	CTCTCAAGAG	CATACACTCA	TTGTGAACTG	TGCAGCATTC

- 751 GATAGTTAG CGAGCCAAAT AGAGTTCTTA TGCCCCAGTG ACGTGTTGCC 801 CATTTCTGGT AAAGACCCTT TGATTTCTGA TGATGAGGAT GAGGAACTGA
- 851 ATCCTAAAGT TTCATCTGCT GCAGACTCTA AAGATAAAAC CTAG

The PSORT algorithm predicts cytoplasm (0.1587).

5 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 123A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 123B) and for FACS analysis.

These experiments show that cp6738 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

10 Example 124

The following C.pneumoniae protein (PID 4376739) was expressed <SEQ ID 247; cp6739>:

```
MTHCLHGWFS VVRHHFVQAF NFSRPLYSRI THFALGVIKA IPIVGHLVMG
                    VDWLISHCFE RGVJHPGFPS DIAPILKVEK IAGRDHISRI ENQLKSLRKT
                101
                    IEVEDLDKVH GQYQENPYAD MASSEVLKLD KGVHVSELGK AFSRVRNRIT
15
                151
                    RSYSYAPTPQ LDSIAIVGID LVSPEEQENL VRLANEVIQL YPKSKTTLYL
                201 LIDFNKEWVG DISSDKEKQL RSLGLHSEVQ CLSVLEPQGA EGEDTKHFDL
                251
                    MVGCYGKDSY LREGKILQQA LGTSLGTVPW VNVMHTLPSR YRSRLSLPIN
                    TEKDKTELYK EISRTHHQLH TLGMGLGAQD SGLLLDRQRL HAPLSQGSHC
                    HSYLADLTHE ELKILLFSAF VDAKNISKKE LREVSLNFAN DTSVECGCAF
               351
20
               401
                    YF*
```

The cp6739 nucleotide sequence <SEQ ID 248> is:

	1	ATGACTCATT	GCTTACATGG	TTGGTTTTCT	GTAGTTCGTC	ATCACTTTGT
	51	GCAGGCGTTT	AATTTCTCAC	GTCCTTTATA	TTCTCGAATT	ACCCACTTCG
05	101	CTTTAGGGGT	GATTAAGGCC	ATCCCCATTG	TAGGGCATCT	TGTTATGGGA
25	151	GTCGATTGGT	TGATCTCTCA	TTGCTTCGAG	AGGGGAGTCT	
	201	GTTCCCTTCA	GATATTGCTC	CTATACTGAA	AGTAGAAAAG	ATCGCGGGCC
	251	GAGATCATAT	TTCTAGAATC	GAAAATCAGC	TAAAGAGCCT	TAGGAAAACT
	301	ATCGAGGTTG	AAGATCTAGA	TAAAGTCCAC	GGGCAATATC	
•	351	TTATGCAGAT	ATGGCCTCTA	GTGAGGTTCT	TAAACTCGAT	AAGGGAGTTC
30	401	ATGTTAGCGA	GCTTGGCAAA	GCCTTTTCTA	GAGTTCGCAA	
	451	AGATCCTATA	GTTATGCCCC	TACTCCTCAG	TTGGACTCTA	
	501	TGGTATAGAT	CTCGTCAGTC	CTGAAGAACA	AGAGAATTTA	GTACGCTTGG
	551	CGAATGAGGT	CATTCAACTC	TATCCCAAAT		TCTATATCTT
	601	CTTATCGATT	TTAATAAGGA	GTGGGTAGGG	GATATCTCCT	CTGATAAGGA
35	651	AAAACAGCTC	CGTTCTCTAG	GTCTACATTC		TGTCTTTCCG
	701	TCTTGGAACC	TCAGGGTGCC		ATACGAAACA	
	751	ATGGTCGGCT	GTTATGGGAA	GGATTCTTAC		
	801		CTAGGGACTT			
	851		GCCATCTAGG	TATAGATCTC	TGTTCCCTGG	GTGAATGTTA
40	901		ATAAGACAGA			ACCTATAAAT
	951		ACTTTGGGAA			GTACACACCA
	1001		GCAACGACTC			TCAGGATTGC
	1051	CATTCCTATC	TTGCAGATCT	CATGCTCCTT	TATCTCAAGG	
	1101					TTTTGTTATT
45	1151		GTGGATGCTA			CTTCGTGAGG
7.7	1201		TTTTGCTAAC	GATACTTCCG	TAGAGTGTGG	CTGCGCTTTT
	T = 0 T	TACTTTTAG				

The PSORT algorithm predicts inner membrane (0.2190).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 124A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 124B) and for FACS analysis.

50

These experiments show that cp6739 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 125

The following C.pneumoniae protein (PID 4376741) was expressed <SEQ ID 249; cp6741>:

_						-2
5	1	MASCLSAWFS	IVREHFYRAI	F DFSLPFCARI	TEFVLGVIKG	IPVVGHIIVG
	51	TEMPASKAPE	SFVTKPTFVS	S DVVSLLKTER	VACRDHIARN	TERRITORIAN
	101	VAPEDEDKVE	GKIPVHPFGO	IOPVEVIJULV	PEVODATICE.	AFCETDAM
	151	QAYLQAPRPE	LQKIYIIGNI	MNPFEVDDFI	HLARLCMETO	RLYPDATISL
10	201	YUTASGGRNA	MUKKNRKLLS	S DCELNPKTAC	T.DENOGDARK	OMMOTOGRAFIE
10	251	HGENDQGTLN	OIOEELEKSO	EETPWTHVGC	KDI.SOSI.WOR	SPFSSLEMKG
	301	DKEKALEYSE	LEKEOLYSRI	VYVGERSSVI	SIGECDERCE	ILMDPKRVHA
	351	PLSEGHYCHS	YLADLENPGI	OKTILAAFIM	DEGL GDSKSG	PISLNLILNS
	401	KTYLROHFGF	' FERMSRSDRN		T KILISSITIV	QHFIMELECR
	451	GYSHFNIFAF	RSNSMCVEER	RTINESSORK	VERMIECEDE	VSQGDIRCLH
15	501	LASEGMLCGK	ECYAVDVYTS	CCAMEMMEEN	T.T. EDDONEN	NRKHGLWKRE
	551	VRKOKOEAAL	DODESELYVO	NOLTAQONFA	CG*	NRKHGLWKRE
	The cp6741 nuc					
	1					
	51	TCGAGCCTTCTT	GIIIMICIGO	CIGGIIIIICI	ATAGTTCGTG	AGCACTTTTA
20	101	TATTAGGGGG	CATCAACCC	TGCCGTTTTG	TGCTCGTATT	ACGGAATTTG
	151	ATAGAGTGGC	CAICAAGGGG	ATCCCTGTTG	TGGGTCACAT	TATTGTTGGG
	201	ATTTCTCTCTCT	CATCTCTAG	GTATTTAGAG	AGTTTCGTGA	CCAAGCCGAC
	251	GCGATCACAT	WCCWCCWCWA	GTCTTCTGAA	AACAGAGAAA	GTTGCTGGTC
	301	GUGGTCACAT	AACAMCAGCA	GTGGAGACTT	TGAAGAGGCA	GAGAGTCGCT
25	351	THEOCOCOCCA	AAGATGAGGA	TAAGGTCCAT	GGGAAGATTC	CTGTGCATCC
	401	A ACAMCCA AC	ATCCAACCTG	TAGAAGTTCT	CACTCTCTAT	CCCGAAGTTC
	451	CACCCCMAMM	TAGGGCTT	GCCTTCTCTA	AAATTCGTAA	TCGTGTAAGA
	501	CAGGCGIAIT.	TGCAAGCTCC	ACGGCCAAAA	CTGCAGAAGA	TTTACATCAT
	551	AGGMANCGAT.	ATGAATCCTT	TTGAAGTTGA	CGACTTCTTG	CATCTAGCCC
30	601	TATCICIGIAA	TGAAACTCAA	AGACTCTATC	CTGACGCTAC	GATTTCTCTA
-	651	CULTANCAG	CTTCTGGTGG	TCGCAATGCT	ATGGACAAAA	AGAATCGGAA
	701	ATTACTIAGE	GATTGCGAAC	TAAACCCCAA	GATTGCTTGT	TTGGACTTTA
	751	CATCAGGGIGA	AUCAUCATO	CAAGCAACTT	GTGACTGTTG	GATGGTGTAT
	801	A A A CENCA CCC	ATGATCAAGG	TACGTTGAAT	CAGATTCAGG	AAGAGTTAGA
35	851	CACA A MOCHIN	GAGGAAACCC	CTTGGATTCA	TGTGGGGCAA	AAGCCTCTTT
	901	CACAMICCII	GTGGGATTTC	TCTCCATTTT	CATCTTTGGA	GATGAAGGGA
	951	BENCH COA BING	AAGCTCTAGA	GTACTCTGAA	TTAGAAAAAG	AACAGCTATA
	1001	TICICGATIG	GTATACGTAG	GAGAGCGCTC	TTCGGTTCTT	AGTTTGGGGT
	1051	CCCMBAMCMC	1CGGTCAGGG	ATCTTGATGG	ACCCAAAACG	GGTGCATGCT
40	1101	CCCTIATCIG	AAGGGCATTA	TTGTCATTCC	TACCTTGCAG	ACTTAGAAAA
	1151	TCCCGGGTTA	CAAAAAACAA	TTTTAGCGGC	ATTTCTGAAT	CCTAAGGAGT
	1201	1 GAGCAGIAC	CATACTGCAA	CCTATATCTC	TAAATCTTAT	CTTAAATAGC
	1251	AAAACTTACT	TAAGGCAGCA	CTTTGGCTTT	TTTGAGAGGA	TGAGCAGAAG
	1301	TGATCGCAAT	GTGGTTGTCG	TTGTATGTGA	TTCTTGGTGG	GGTACCGACT
45	1351	GGAAGGAGGA	ACCOMAGE TO THE	CAACACTTTA	TTATGGAGCT	AGAGTGTCGA
	1401	GGGTATTCGC	ACTICAATAT	TTTTGCCTTT	AGATCTAATA	GCATGTGTGT
	1451	AGAAGAACGT	AGGATCTTAA	ATGAAAGTTC	TCAAGAGAAA	GCCTTTACCA
	1501	TGATTTTCTG	1 GAGGATTCA	GTATCTCAAG	GAGATATCCG	CTGTTTGCAT
	1551	TTGGCGTCTG	MAGGAATGCT	TTGTGGTAAA	GAGTGCTATG	CTGTCGATGT
50	1601	CTATACGTCA	GGATGCGCGA	ACTTTATGAT	GGAAGAAGTC	TTAACTTTGG
50	1651	AGCGAGAATC	TAATCTGTGG	AATAGAAAGC	ATCCTCTTC	C ス ス ス ス C ス C ス ス
	1701	GTTAGAAAAC	AGAAACAAGA	AGCTGCTTTG	GATCAAGACG	AGAGCGAGAT
	_	TTACGTTTGT				TGTTCTTGA
	The PSORT along					

The PSORT algorithm predicts inner membrane (0.2869).

The protein was expressed in E.coli and purified as a GST-fusion product (Figure 125A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 55 125B) and for FACS analysis.

These experiments show that cp6741 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 126

The following C.pneumoniae protein (PID 4376742) was expressed <SEQ ID 251; cp6742>:

5	-					-
J	_1		V VMPIPYISS	W ISTVROHFVI	K AFDFSRPFCS	RVTNFALGVI
	51	. VATETAGHT	V MGMEWLVSS	C VAGIITRSSE	TSDMAATMA	TVALCODITE
	101	 VAWETPÖKE 	R GTITPENOD	K VHGKEPVCPI	CRIKCEETIN	T.V.DCTTTTOMT
	151	DIALPRIKI	'R VI'RAYLQAP	R PEIRTISIVO	SKIKTDODEC	OFTER TAXES
10	201	VIULE VIOLE	L YLTGLNRES	O MCDTTTAEKI	OVI.HNISCI.DO	PTOCKDOKOD
10	251	DAGSPENPE	L WIGYYSREO	O HNIDGOYTOG) CLCKCADDID	TATT LIT TO TOTAL
	301	LITEPHETS	X SHIROSIDP	${f T}$ SPPRLPESEC	DEDGT.VCOT.C	DOMINIMA
	351	LGUKPEDAG	L LMDPDRIYA	P LSOGHYCHSV	T.Antement.p	TIAT CORT DO
	401	GMTOSETIFK	P VAPNIARLE	L ELDSLEFRIJ	7 ふごつつぼごひれてい	THE ATTOMOSTS
15	451	DIDEDSMINT	P TEKTOWSGY	S YLNIFSYKSE	THOUGHAUTEN S	CDDCDCDCRODE
15	501	DINLEDLIZ	A ADFRCLQLA	A EGMVAKDLPS	: Wantcagge	CIOECEMOOD
	551	CHIEIKOME	A RVEDEAGEE	A REPUTYSONO	LCCMT.TMCONT	ETTERCE TARREST
	601	CHIMKLKRK	G LLTMERKAL	S EEFLTATESV	T.CCOCONTONION	CVDDDDTTTTTT
	651	VISFEELDRI	M VQVLPAEVP	A DSGNDPTRPV	DINDUCADUCA	OVECU*
	The cn6742 pur	leatida assura	OTO T	> 0.50	THEDDINEDSS	MEG2.
	The cp6742 nuc	nconde seque	ince <2EQ II) 252> is:		
20	1	ተተረተው ተ	ኮ ሮሞአአመመመል፣	r ttttttttgtt		
	51	TTCTTCTTC	2 AUTOCOTACO	r TritiinitGii	GTTATGCCAA	TTCCCTATAT
	101	TCTCTCCTC	2 CUUUUUCUCUUCU	TTCGACAGCA	TTTTGTTAAG	GCGTTTGATT
* *	151	AAGGCCATC	CITITICITO	AGGGTTACGA	ATTTTGCTTT	AGGGGTCATC
	201	TTCTTCTTC	CIMITOTAGO	ACATATTGTC	ATGGGGATGG	AGTGGTTAGT
25	251	TCGTTCAGA	. GTIGCCGGGF	TTATTACTAG	GTCCTCCTTT	ACCTCAGATG
	301	CGAGTGGCG	2 ACAMAMMACACI	GAGAAGGCGT	TAGGTCGAGA	TCATATATCT
	351	TCAAGATAAG	COCCARCOCA	AAGAGAAAGG AGTTTCCTGT	GGGACCATAA	CTCCTGAGAA
	401	AATCCGAGG	A CAUDINA VALUE C	CTTAAGCCGG	CTGTCCTTTT	GGTCGTTTAA
	451	GATACTGTAT	, <u> </u>	TCGCACGCGC	GAGAAAGAGA	GGGAACTTTA
30	501	GGCCCCCCG	CCCCVVV	GTACGATTTC	GTGACTCGTG	CGTACTTACA
	551	AAACTCCTCZ	AGATTTCTCC	CAATTTGTGA	TATTGTGGGT	TCGAAACTTA
	601	AGACTGCATC	CTGAAGCGTT	AGTTTGTGA	GTCTCGCGAA	TGAAACGCAG
	651	CGAATCTCAG	ATGTGCGATA	CAACTACTGC	ACTORING	GCTTGAATCG
	701	ATAACTCAGG	TCTCGACTCT	AGAATCCAGT	AGAGAAGAAG	CAGTACCTAC
35	751	GACGCTGGCT	CTCCTGAAAA	TCCCGAACTT	GCAAAGACAG	TAAAGAAGAC
	801	AGAGCAACAG	CATAATATA	ACGGGCAGTA	TGGATTGGCT	ATTATTCACG
	851	AGAGTGCAGA	TCCAATTCCT	TGGATTCATG	TATTCAGCAG	TGTCTAGGGA
	901	TTTTATTACC	CACCAAACTT	TACTTCATAC	TTACTGAAGA	CACAAAGGAT
	951	AGACCCAACA	TCGCCACCAA	GACTCCCTGA	AACHCAGGG	GACAATCTAC
40	1001	CCTTGTACGG	ACAACTGAGT	CGATCGTATC	AAGTGAGGGG	GATAAGGATT
	1051	TTGGGATTAA	AACCAGAGGA	TGCAGGACTC	COCATGAGTA	TATGCTTGGT
	1101	CTATGCTCCT	CTATCCCAAG	GGCATTATTG	MCAMMOOMA C	CGGATAGAAT
	1151	TAGAAAATGA	GGATCTACGA	ACTTTAGTCC	TCATTCCTAC	CTTGCGGATA
	1201	GGCAATCTTA	GTAGCGAGGA	TCTTCGTCCT	CHACCAMMON	CCTAGATCCT
45	1251	ATTGCCATTA	GAATTGGACT	CGTTATTTTT	CCCCCCOMMCDO	ATATCGCTAG
	1301	AAGAAGGGAG	AAACATAGTT	ACCCTTGCCC	CCGCC11G1.1	GCGGGTCAGC
	1351	GAICLIGATO	CTGACTCAAT	GAACAMMCMG	ACCACA ACAM	Magaaaa
	1401	IGGATATAGC	TATTTGAACA	$\Delta \Delta $	ጥል እ አጥር አ ረርረር	7 7 7 7 mm -
~~	1451	TURKERANCE	TCAGTTCTTT	GGAGATCGTT	CTGAACCCAA	CHOMBAsas
50	1501	TTGATCTTAT	TTGAGGATCC	CATTAGTGCA	CLOUNGGGAN	GTCTTTCACA
	1551	GCIAGCIGCA	GAAGGTATGG	ጥጥርርርጥል አርርር አ	TICTICCCCCACC	Om3 og3 g2 m2
	1601	TITGIGCCTC	TGGATGTTCC	TGCATTCACT	THE TOTAL AND A	0070700000
	1651	CHOCCIAILG	AATATAGACA	ATGGGAGGCA	CCTCTCTAAC	70077007
	1701	AGAAGAAGCC	AGAGAACCAG	TAATTTATTC	TCACCAMCAA	ATGAAGCAGG
55	1751	TGCTCACTAC	ACAACAGAAT	TTTGTATTT	CHCHACAHOA	TTGAGCAGCA
	1801	CUGGCGWICT.	GGAGATTCCG	TTCGAAAccan		TOO 3 3 3 3 3 5 5
	1851	COCACIAGGC	GAGGAGTTCT	TAACTCCCAT	$\lambda mmmm cm \lambda m$	TITE
	1901	MUGHICGINA	TGAGAATATG	(GCIAAAAAAAAA	~ma~~~a~~	
60	1951	GITTAT CHGC.I.	TUGAAGAGCT	AGATCCCATC .	CTCCN NOTICE I	700020000
60	2001	MOTOCCIRCM	GATTCAGGGA	A'I'(JATICCTIAC .	CCCMCCCCmm /	TOUCAGCCGA
	2051	ATAGTAACCC	TGATTCCTCG	CAAAATGAAG	CCACCCGT. (CTAATCCAG
					COMOTING	

The PSORT algorithm predicts inner membrane (0.2338).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 126A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 126B) and for FACS analysis.

These experiments show that cp6742 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 127

The following C.pneumoniae protein (PID 4376744) was expressed <SEQ ID 253; cp6744>:

```
VIQHLLNFAL EETPSISVQY QEQEKLSPCD HSPEIGKKKR WNKLESFSTY
10
                     CSLFMSVKDH YKLNLGIQNS LSGWLLDPYR VCAPLSSPYS CPSYLLDLQN
                     KELRRSLLST FLDPKNLTSE TFRSVSINFG NSSFGQRWSE FLSRVLHDEK
                101
                     EKHVAVVCND AKLLEEGLSP EALSLLEEDL RESGYSYLNI LSVSPEGVSK
                151
                     VQERQILRRD LQGRSFTVMI TDLPLGSEDI RSLQLASDRI LVSSSLDAAD
                251
                    ACASGCKVLV YENPNASWAQ ELENFYKQVE RRR*
15
      The cp6744 nucleotide sequence <SEQ ID 254> is:
                    GTGATACAAC ATCTTCTAAA CTTTGCTCTA GAAGAGACCC CTTCCATTTC
                    CGTGCAATAC CAAGAACAAG AGAAGCTCTC TCCGTGCGAT CATTCCCCAG
                 51
               101
                    AAATAGGTAA AAAGAAAAGA TGGAATAAGC TGGAATCCTT CTCCACGTAT
                    TGTTCTCTGT TTATGTCTGT TAAGGATCAT TATAAGCTGA ATCTAGGAAT
               151
20
                    TCAGAATTCC CTGTCAGGGT GGCTTCTGGA TCCCTATAGG GTTTGCGCGC
               201
               251
                    CTTTATCTTC ACCGTACTCG TGTCCTTCCT ATCTTTTAGA TTTGCAAAAC
               301
                    AAAGAGCTAC GTCGTTCCCT TCTGTCAACG TTTCTAGACC CTAAAAATCT
                    CACTAGCGAA ACATTCCGTT CTGTCTCTAT AAACTTTGGC AACTCTTCGT
               351
                    TTGGACAGAG ATGGTCAGAG TTTCTATCTC GTGTTCTGCA CGACGAGAAA
               401
25
               451
                    GAAAAGCACG TAGCTGTTGT TTGTAATGAT GCAAAACTTC TGGAAGAAGG
               501
                    ATTGTCCCCA GAGGCATTGT CTCTATTAGA AGAAGACTTA AGAGAATCAG
                    GGTATTCGTA TCTAAACATT CTCTCGGTGA GCCCCGAAGG AGTCTCCAAG
               551
                    GTTCAGGAAC GTCAGATTCT AAGGCGAGAT CTCCAAGGAC GGTCCTTTAC
               601
                    TGTCATGATT ACAGATCTTC CTTTAGGTAG CGAAGATATC CGTAGTTTAC
               651
30
                    AATTAGCCTC GGATAGGATT TTAGTCTCCA GTTCTCTTGA TGCCGCGGAT
               701
                    GCATGTGCTT CGGGATGTAA AGTCTTAGTC TACGAAAATC CAAATGCATC
               751
               801
                    CTGGGCTCAG GAATTGGAGA ACTTCTACAA ACAAGTTGAG AGAAGAAGGT
               851
                    AG
```

The PSORT algorithm predicts cytoplasm (0.3833).

35 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 127A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 127B) and for FACS analysis.

These experiments show that cp6744 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

40 Example 128

The following C.pneumoniae protein (PID 4376745) was expressed <SEQ ID 255; cp6745>:

```
45 VACPSISSWF TVVRQHFVNA FDFTHPVCSR ITNFALGIIK AIPVLGHIVM
FISQEDLIGKV HGRTPEDPFV DITPTEIVQL LPDEELSTVU EALQGVRSRL
TYAYRSVEKP MIQDLALVGF GLRDSADLIN FVRLANGVQN HYPHTKVKLY
LAKNLADVWD CEISEEKGQ LRALGLDPKI ESISLTSAGL PSVPEVATVD
```

The cp6745 nucleotide sequence <SEQ ID 256> is:

5	1 51 101 151 201	TTGCTTTGGG GGAATCGAGT	GATCATTAAG GGTTGATTTC	CCCATCCCGT GCAATTCCCG CTGGATTCCC	TTGTTCTCGG TATTAGGACA	CATTGTCATG
	251	GTCATAATTG	TTTACCTCCC	CTAGTGCTAT CTAGAAGCCT	TAAAGTAGAA	CAAACACGGG
	301	CCCATTLCCC	AAGAAGATCT	AGGCAAAGTA	CACGGGAGAA	CCCCACAACA
10	351	TCCCTTCGTA	GATATCACAC	ССАСАGAAAT	ጥርጥርር ል አርጥጥ	CTCCCTTCTTTC
~ 0	401 451	AAGAACTCTC	TACTGTAGAT	GAGGCACTGC	AAGGCGTTCG	TACHACCIONA
	501	ACCIATGCCT	ATAGGTCCGT	AGAGAAACCT	ልጥር ልጥጥር አ አ ር	A TOTAL COMMON
		TTGCTAATGG	CCTCCCGAG	ATTCTGCGGA	CCTCATAAAT	TTCGTGCGTC
1.5	601	TTAGCGAAGA	ACTTGGCAGA	CACTATCCCC TGTCTGGGAC	ATACTAAAGT	GAAGCTCTAT
15	651	AAAAGGGCAA	CTCCGAGCTC	TAGGTTTAGA	CCCTA A A A TO	C'I'GAAGAGGA
	701	CCCTTACGAG	TGCAGGTCTT	CCTTCAGTGC	CAGAAGTCGC	macmcmacam
	751	TTTATGATTA	CCTGTTACGG	GAAAGATCAG	GAAGTCCAAG	ATCCCTAC

The PSORT algorithm predicts inner membrane (0.2253).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 128A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 128B) and for FACS analysis.

These experiments show that cp6745 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 129

25 The following C.pneumoniae protein (PID 4376747) was expressed <SEQ ID 257; cp6747>:

```
1 MMKQGVGQDA KELYTFLSRG NEHYQPCLWF SLEELGFLF DEKMLCAPLS
51 EDHYCHSYLV DLVDQHLKDL ILSMFLDPQN ISAGELLKVS INVGDSFSPL
101 QQKDFLSMVL RDETGKNVVV VFKGVLSLPA TQVCKLVEEL NSKDYSYLN1
151 FSCHGDSSPQ LLFRKELEGT SGRYFTVICA LYLGDTDMRS LQLASERIMV
201 SREFDLVDAY AARCKLLKID HTNWRPGTFS RHADFADAVD VSAGFNSREF
251 KLITQANQGI LESGELPLPS KTFWEGFLAF CDRVTVTRHF IPMLDAAIKQ
301 AVWTHKHPSL IDKECEALDL KTQCLPSIVS YLEYVTNSHE KTSKGPFIQK
351 EILADCSPLK EALFPGSDED VFSTSEDPSD DHPSDLEDS*
```

The cp6747 nucleotide sequence <SEQ ID 258> is:

_		4		400 - 15.		
35	1	3 <i>0</i> 03 <i>0</i> 03333				
	51	ATGATGAAAC	AAGGAGTCGG	GCAGGATGCT	AAAGAGCTAT	ACACATTTCT
		ATCTCGTGGG	AATGAGCATT	ACCAACCGTG		AGTCTCGAAG
	101	AGGAACTCGG			TECTETECE	CCCTCTATCT
	151	GAGGATCACT	ATTGCCACTC	GTATCTTGTA	GATCTAGTGG	ATCAACATTT
40	201	AAAGGATTTA		TGTTTTTAGA	TCCTCAGAAT	ATCTCAGCAG
40	251	GAGAACTCCT	CAAGGTCTCT		GAGATTCTTT	
	301	CAACAGAAAG	ATTTCCTCTC	GATGGTCTTA	CGTGATGAAA	TTCTCCTCTA
	351	CGTCGTCGTG		GAGTTCTCTC		
	401	GCAAATTAGT		AACTCTAAGG	CTTACCCGCA	
	451	TTTTCTTGTC		TAGTCCTCAG	ACTACTCCTA	
45	501	AGAGGGAACT	TCAGGGCGTT		CTTTTATTCC	GTAAGGAATT
	551	GGGATACAGA			GATTTGCGCT	TTATATCTAG
	601	TCTAGAGAGT		TTACAACTTG	CTTCTGAAAG	GATCATGGTC
	651	GAAAATCGAT		AGATGCCTAT	GCTGCAAGAT	GCAAGCTCTT
	701				AACTTTCAGT	CGCCACGCCG
50	751	ATTTCGCAGA		GTATCAGCAG	GATTTAACTC	AAGAGAATTT
50	801	AAACTGATTA		TCAAGGGATC	CTAGAGTCTG	GAGAACTCCC
		GCTCCCTTCA	AAAACCTTCT	GGGAAGGATT	CTTAGCATTC	TGTGATCGAG
	851	TGACTGTCAC	GAGACACTTC	ATTCCAATGT	TAGACGCCGC	TATAAAGCAA
	901	GCGGTATGGA	CTCATAAACA		ATAGATAAAG	AGTGTGAAGC
~~	951	CCTAGACTTG	AAAACACAGT	GCTTGCCATC		TACCTTGAAT
55	1001	ATGTCACAAA	CTCTCACGAA			
	1051					CATACAAAA
				TOCICIIMA	GAGGCGCTCT	TCCCAGGTTC

1101 TGATGAAGAT GTTCCCTCTA CCTCTGAGGA TCCTTCAGAT GATCATCCTT
1151 CGGATCTTGA AGACTCTTAA

The PSORT algorithm predicts inner membrane (0.1447).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 129A) and also as

a his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 129B) and for FACS analysis.

These experiments show that cp6747 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 130

10 The following C.pneumoniae protein (PID 4376756) was expressed <SEQ ID 259; cp6756>:

	1	MASGIGGSSG	LGKIPPKDNG	DRSRSPSPKG	ELGSHEISLP	POEHGEEGAS
	51	GSSHIHSSSS	FLPEDQESQS	SSSAASSPGF	FSRVRSGVDR	ALKSEGNEES
	101	AESTSQARET	ROAFVRLSKT	ITADERROVD	SSSAAATEAR	MARDACTICOR
1.5	151	NPSQGVPETS	SGPEPORLFS	LPSVKKQSGL	CRIMOTURDE	TVI DCC3 DDM
15	201	DSEPLSLYEL	NLRLSSLROE	LSDIQSNDQL	TPEEK A FAMILY	TATESCAPET
	251	FOCGYMEATO	SSVSTAFARE	KGVETSDEIN	TITELIAM TV	TTOOTTOTTE
	301	LONLLDETAD	DIEAALSHTP	LSFSLDDNPT	DICALLIDE	TORUMSDGDS
	351	GAADPORTRE	MUSTRIAMOT	REALVSLLGM	PIDMMPTLIS	GEEDIAEEIG
	401	EAVGROOTER	CEECWGGEED	VEWINGDOM	TESTEGSTER	RLRIARHAAA
20	451	EDGDI.MMATT	CHAIRMICARD	SMSVGSPSEI	DETERTGSPH	DVPRRNGSPR
-	501	TODI DIMENTO	GWARKHGAKT	KESSESSTPE	ISISAPIVRG	WSQDSSVSFI
	551	AMEDDHILLID	VPRRKDGIYD	VPSSPRWSPA	RELEEDVFGD	YEVPITSAEP
	601	SKOKMIYMTP	RLATPAIYDL	PSRPGSSGSS	RSPSSDRVRS	SSPNRRGVPL
		PPVPSPAMSE	EGSIYEDMSG	ASGAGESDYE	DMSRSPSPRG	DLDEPIYANT
25	651	PEDNPFTQRN	IDRILQERSG	GASASPVEPI	YDEIPWIHGR	PPATLPRPEN
43	701	TLINVSLRVS	PGFGPEVRAA	LLSESVSAVM	VEAESIVPPT	EPGDGESEYT.
	751	EPLGGLVATT	KILLQKGWPR	GESNA*		

The cp6756 nucleotide sequence <SEQ ID 260> is:

		see made beque,	nco corco in	200>15.		
	1	ATGGCATCAG	GAATCGGAGG	ATCTAGTGGA	ጥጥል ርር ል አ ልር አ	MMCC A COMA A
	51	AGATAATGGG	GATAGAAGTC	GATCGCCCTC	TCCTAACCCA	CAACCTAA
30	101	GCCACGAGAT	TTCCCTGCCT	CCTCAAGAAC	ATGGAGAGGA	ACCACCIONCA
	151	GGATCTTCGC	ATATACATAG	CAGTTCCTCT	TTTCTACCAC	AGGAGCITCA
	201	GTCTCAGAGC	TCTTCTTCGG	CAGCTTCTAG	CCCGGCAmm	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
	251	TACGTTCTGG	GGTAGACAGG	GCCTTAAAAT	CATTTCCCAA	CHAMMAMAC
~~	301	GCAGAGTCTA	CGAGTCAAGC	GCGTGAAACG	CGACAAGCTT	THETTE
35	351	ATCAAAAACC	ATCACCGCGG	ATGAGAGACG	GGATGTCGAT	TIGITAGATI
	401	CTGCTGCTAC	AGAAGCCCGA	GTGGCAGAGG	ACGCGAGTGT	שתיים מכיכים א
	451	AATCCTTCTC	AGGGGGTTCC	AGAAACCTCT	TCTGGACCAG	AACCTCACCC
	501	TITATTTTCT	CTTCCTTCAG	TAAAAAAAACA	GAGCGGTTTTC	COMPORTATION
40	551	TACAGACAGT	TCGCGATCGC	ATAGTACTTC	CTACTGGGGC	ጥርርስርርመአርስ
40	601	GACAGCGAGC	CTTTAAGTCT	CTACGAGCTA	AACCTCCGTT	ጥር እርጥ እርጥጥጥ
	651	ACGTCAGGAG	CTCTCTGACA	TACAAAGTAA	TGATCAGTTG	ACTCCAGAGG
	701	AAAAAGCAGA	AGCCACAGTT	ACCATACAAC	AGCTGATCCA	ልልምምል ርልርልል
	751	TTCCAATGCG	GCTATATGGA	GGCAACACAA	ጥርጥጥርርርጥልጥ	CHCHACCACA
45	801	AGCTCGTTTT	AAGGGGGTAG	AAACTAGTGA	TGAGATCAAT	TO COMOTO THE
45	851	CAGAACTGAC	AGATCCTGAG	CTTCAAGAAC	TCATGAGTGA	TOCACACTOR
	901	CTTCAAAACC	TATTAGATGA	GACTGCCGAC	CATTOTACAAC	CINCOMMINOMO
	951	CCATACTCGA	TTGAGTTTTT	CTTTAGACGA	TAATCCAACT	CCCAMACACA
	1001	ATAATCCAAC	TCTGATTTCT	CAAGAAGAGC	CTATTTTATCA	CCAAAMCCCA
~~	1051	GGAGCTGCAG	ATCCTCAAAG	AACTCGGGAA	AACTCCTCTA	CAACAMMAMO
50	1101	GAATCAGATT	CGCGAGGCTC	TGGTTTCTCT	ጥጥጥ ል ርርር ል ልጥር	አመመመመ አ ላ ር ረ አ
	1151	TTCTAGGGTC	CATCTTGCAC	AGGTTGCGTA	TTGCTCGTCX	TOCACOMOOT
	1201	GAAGCAGTGG	GTCGTTGTTG	CACGTGCCGA	GGAGAACACT	CMACMMCMMC
	1251	TGAAGAGGAC	TCGATGTCGG	TGGGGTCTCC	TTCAGAAATT	CATCAAACTC
~~	1301	AAAGAACGGG	CTCTCCGCAT	GACGTTCCAC	GCAGAAARCC	A A COLOGA CICO
55	1351	GAAGATTCTC	CATTGATGAA	TGCCTTAGTA	GGATGGGCAAC	አመአ አርርን ሮርር
	1401	TGCTAAAACC	AAGGAGAGTT	CAGAATCAAG	TACCCCGGAA	A THUMO COA MITHIN
	1451	CTGCTCCCAT	AGTGAGAGGT	TGGAGTCAAG	ACAGTTCCGT	CAGTTTTATT

	1 - 0 1					
	1501		ATGATCATAT	TTTCTATGAT	GTTCCTCGTA	GAAAAGATGG
	1551	AATCTATGAC	GTTCCTAGTT	CCCCTAGATG	GAGTCCTGCG	CGAGAGTTGG
	1601	AAGAGGATGT	TTTTGGAGAT	TATGAAGTTC	CTATAACCTC	TGCTGAACCA
<i>c</i>	1651	TCTAAAGACA	AGAACATCTA	CATGACACCT	AGATTAGCAA	CTCCTGCTAT
5	1701	CTATGATCTT	CCTTCACGTC			+
	1751	CTTCAGATCG	CGTACGAAGC	AGCTCACCAA		
	1801	CCTCCAGTTC	CTTCACCTGC	TATGAGTGAG	GAGGGGAGCA	TTTATGAGGA
	1851	TATGAGCGGT	GCTTCAGGTG	CAGGTGAAAG	TGATTATGAA	GATATGAGCC
10	1901	GTTCCCCCTC	TCCTAGAGGC	GACTTGGATG	AACCCATATA	TGCTAATACT
10	1951	CCTGAAGATA	ATCCATTTAC	TCAGAGAAAT	ATAGATAGAA	TTTTACAGGA
	2001	GAGGTCAGGC	GGTGCTTCCG	CTTCTCCTGT	AGAGCCTATT	TATGATGAGA
	2051			CCCCCTGCTA		
	2101			TAGAGTGAGC		GACCAGAAGT
	2151			AGAGCGTGAG		GTCGAAGCAG
15	2201			GAGCCGGGGG		
	2251			AGCTACAACG		
	2301	ATGGCCTCGT	GGAGAGTCGA	ATGCTTAG	HANNICI INC	IACAAAAAGG

The PSORT algorithm predicts inner membrane (0.3994).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 130A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 130B) and for FACS analysis.

These experiments show that cp6756 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 131

25 The following C.pneumoniae protein (PID 4376761) was expressed <SEQ ID 261; cp6761>:

MTVAEVKGTF KLVCLGCRVN QYEVQAYRDQ LTILGYQEVL DSEIPADLCI

```
INTCAVTASA ESSGRHAVRQ LCRQNPTAHI VVTGCLGESD KEFFASLDRQ
                101
                     CTLVSNKEKS RLIEKIFSYD TTFPEFKIHS FEGKSRAFIK VQDGCNSFCS
                     YCIIPYLRGR SVSRPAEKIL AEIAGVVDQG YREVVIAGIN VGDYCDGERS
                151
30
                     LASLIEQVOR IPGIERIRIS SIDPODITED LHRAITSSRH TCPSSHLVLQ
                201
                     SGSNSILKRM NRKYSRGDFL DCVEKFRASD PRYAFTTDVI VGFPGESDQD
                     FEDTLRIIED VGFIKVHSFP FSARRTKAY TFDNQIPNQV IYERKKYLAE
                     VAKRVGQKEM MKRLGETTEV LVEKVTGQVA TGHSPYFEKV SFPVVGTVAI
                351
                401
                     NTLVSVRLDR VEEEGLIGEI V*
35
     The cp6761 nucleotide sequence <SEQ ID 262> is:
                     ATGACGGTTG CGGAAGTCAA AGGAACATTT AAGCTGGTCT GTTTAGGCTG
                 5.1
                     TCGGGTGAAT CAGTATGAGG TCCAAGCATA TCGCGACCAG TTGACTATCT
                101
                     TAGGTTACCA AGAGGTCCTG GATTCTGAAA TCCCTGCAGA TTTATGCATA
                    ATCAATACGT GTGCTGTCAC AGCTTCTGCT GAGAGTTCGG GTCGTCATGC
40
                201
                     TGTGCGTCAG TTATGTCGTC AGAACCCTAC AGCACATATT GTTGTCACAG
                    GTTGTTTGGG GGAATCTGAC AAAGAGTTTT TTGCTTCTTT GGATCGGCAA
                251
                    TGCACACTTG TTTCCAATAA AGAAAAATCC CGACTTATAG AAAAAATTTT
                351
                     TTCCTATGAT ACGACCTTCC CTGAGTTCAA GATCCATAGT TTTGAGGGAA
                    AGTCTCGAGC TTTTATTAAA GTTCAAGATG GCTGTAATTC TTTTTGCTCG
                401
45
                451
                     TACTGCATTA TTCCTTATTT GCGGGGGCGT TCGGTTTCTC GTCCTGCTGA
                501
                    GAAGATTTTA GCTGAAATCG CAGGGGTTGT AGACCAAGGA TATCGCGAAG
                    TTGTAATTGC AGGAATTAAT GTTGGAGATT ATTGCGATGG AGAGCGTTCA
                551
                    TTAGCCTCTT TGATTGAACA GGTGGACCGG ATTCCTGGAA TTGAGAGGAT
                601
                651
                    TCGAATTTCC TCTATAGATC CTGATGATAT CACTGAAGAT CTGCACCGTG
50
                701
                    CCATCACCTC ATCGCGTCAC ACTTGTCCTT CGTCACACCT TGTTCTTCAA
                751
                    TCGGGGTCGA ATTCAATTTT AAAGAGAATG AACCGGAAGT ATTCTCGCGG
                801
                    AGATTTTTTA GATTGTGTAG AGAAGTTCCG TGCTTCTGAT CCTCGCTATG
               851
                    CCTTTACTAC AGATGTGATT GTCGGATTTC CTGGAGAGAG TGATCAAGAT
                    TTTGAAGATA CTTTGAGAAT TATTGAAGAT GTAGGCTTTA TTAAAGTGCA
               901
55
                951
                    TAGTTTCCCT TTCAGTGCTC GTCGTCGTAC TAAGGCATAT ACTTTTGATA
                    ATCAGATTCC CAATCAGGTG ATCTATGAGA GGAAGAAGTA TCTTGCTGAG
               1001
               1051 GTTGCTAAGA GGGTAGGCCA GAAAGAGATG ATGAAGCGTT TAGGAGAGAC
```

- 1101 TACAGAGGTG CTTGTTGAGA AAGTAACGGG GCAGGTTGCT ACGGGTCACT 1151 CTCCTTATTT TGAAAAGGTT TCTTTCCCTG TTGTAGGAAC GGTAGCTATC 1201 AACACTCTAG TTTCTGTGCG TCTTGATAGG GTAGAGGAAG AAGGGCTGAT 1251 TGGGGAGATT GTATGA
- 5 The PSORT algorithm predicts inner membrane (0.1574).

The protein was expressed in E.coli and purified as a GST-fusion product (Figure 131A) and also as a his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 131B) and for FACS analysis.

These experiments show that cp6761 is a surface-exposed and immunoaccessible protein, and that it 10 is a useful immunogen. These properties are not evident from the sequence alone.

Example 132

The following C.pneumoniae protein (PID 4376766) was expressed <SEQ ID 263; cp6766>: MATSVPVTSS TSVGEANSSN ERFTERTSRM YYAALVLGAL SCLIFIAMIV

		MATSVPVTSS	TSVGEANSS1	I ERFTERTSRN	YYAALVLGAI	SCLIFIAMIV
15	51	TE EO A GTIMA A	/ VLGFALGCLI	. ISLATTÆ∆₹/€	CIAT OWNER TO	
1.5	101	WOVEMILT OFF	\ \rac{\rac{\rac{\rac{\rac{\rac{\rac{	LISLFIRGOT	HEGI.TUDGUT	DOIDTDOOLO
	151	74 TTTTTTTT TO I	THOUTHKKDC/	HINTTOHIA	OWNER CALLED	TOTAL PROPERTY AND
	201	THEMTERMIT	SPDILLKLIRY	'GDALOATSPI	MINIMARCCE	TITLA DOTTED OF THE
	251	THUNCALDINAL	, ACLULLLALE	NPDRRFLKDS	FINVTMCCCC	* TOTOTETT TETOTET **
20	301	PUCTABLIA	TOVARAFEROI	OTFLERVEOR	T.TYLTAYAMOT D	147737747
20	351	CIRDAMOKIN	MULTAL SSSW	PAMKRITINKV	CCMMONDO	TDTOTT OF
	401	ナロロバルごうひと てん	. PTIEIFIEL	TOWAVITOCV	DOMETCI POC) 7 TYPETTOT
	451	Domport	LUSGUKVLNF	RDVISEOAAV	MINDOIN NOC	VSFQGLKALM
	501	THINFORM	DGALLESE	PVFNRMKEFL	GESLGD*	· · · · · · · · · · · · · · · · · · ·
	The cp6766 nuc	leotide seque	nce <seq id<="" td=""><td>264> is:</td><td></td><td></td></seq>	264> is:		
25	1	ATGGCAACCT	СТСТТССТСТ	<u> አ</u> ስርምመር አመርተ	A COMMONION O	GAGAGGCTAA
	51	CTCCTCCAAC	GAAAGATTTA	CTGAACGAAC	ACTICIGIAG	TATTACGCAG
	101	CTTTAGTCCT	AGGGGCTTTG	ACCTICATION N	MUMMON	TATTACGCAG TATGATTGTC
	151	ATTTTCCCAC	AGGTCGGATT	GTGGGCTGTG	COCCOCCOC	TATGATTGTC TTGCTCTTGG
	201	ATGTTTACTT	TTAAGCTTAG	CTATCGTTTT	TCCTCGGGT	GGTCTCGTTT
30	251	TAGGCAAGAC	TTTAGAACCT	AGTCGAGAAG	CCACACCACC	AGAAATTGTT
	301	CCGCTTWYYGG	AGTGGACTAC	ACAACAACAM	Calcumatoroa	3003000
	351	GCG11CCGMG	TIGATITICCT	TGTTCTTACC	ACCCCAMORO	03 003 3 0000
	401	TOWITGITGW	TTCTAAGGAT	CCATCTTTAC	AMAMMAA	03 0mmma
٥.	451	WOTNINGH	AACTTGAGCC	CCTATOTACC	$\lambda C\lambda CMMMAAA$	MOMMA A A A A
35	501	VOWIIGIGIC	CACATCAATA	ፓርልሞሞሞልሮል	中央 かんりん かんりん かんりん かんりん かんりん かんりん かんりん かんり	G3 GMG G3 3
	551	TUCIOGGMGI	GGATCTTAGT	CCTGAAGTGA	CTCCCCACCC	00700770
	601	$c_1 c_1 c_1 c_1 c_1 c_1 c_1 c_1 c_1 c_1 $	IGATAGAAGA	CCACTATTAC	TO THE COME A THE	mmmar
	651	OWITCOCTMC	GGAGATGCTT	ייאמים במים מיוי	CMCMCCMmma	3 TO CO 3 TO TO TO TO
40	701	CUGULICAGO	TICCITIAGI	GTAGACGCAG	ACCCCCMA mm	ma comorana
40	751	MANAGEMENT	GITCICCIGA	GGATICCTTTTC	CCCCAAmmaa	3 mammann-
	801	COCCLIGGWW	MATCCCGACA	$\Box \Delta C \Box $	$\lambda \lambda \lambda C C \lambda D D C C$	mmmamer =
	851	WCWIIIGGIC	GICTICATTT	TTTTCACAACT	THE PART OF THE PA	003 moms or o
	901	MANAGERACIA	GMAMGCTCCC	AGAGACACCC	$\lambda m C C \lambda m C m C C$	0000000000
45	951	VOCUCAUVIN	CAAACATTTC	יניטיטיטיטיטיטיטיטי	から かんりょう かんりょう	OMOOR THE
43	1001	TIMECACATA	GICCITAGAT.	ገ (ፈርርርር አጥ አጥ አ	λ COCMCCMC λ	000303335
	1051	* C T TIT OVOV	GCGCAAATCA	AAGATITAGAG	A A CALLIA WILLIAM A	OT COMME
	1101	* * C * * C * C * C * * *	CCIGCIAIGA	ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	market a market	000000
	1151	TUCGGGTWGW	TOGIAGGCAG	ATTCCTCACC	$\lambda \subset \lambda \cup $	C11000000
50	1201	*** ^ * *** (0.000.00.00.00.00.00.00.00.00.00.00.00.	TATOMOT CHOICE	Cartain Contractor	$\lambda \cap \cup $	3 3 m 3 m 4
30	1251		ATAGMITGGG		$\lambda C \lambda C M C M C M M M M M M M M M M M M $	00000000
	1301		TOULGHTCHC	CHCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		~~~
	1351	CTTT T C T NIT C T	TWI C T CWWIII	11.40.070 (3.000)	MM 3 / 3 / MM	~~~~~
	1401					
55	1451	**********	スペンなくればんじん	(3) 1) (2) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	7 7 7/2 mm~	B 0 0000000000000000000000000000000000
JJ	1501					
	1551	101111111	CCIGICIAIN,	ATCGGATGAA	AGAATTTCTT	GGGGAATCTC
	1601	TGGGAGACTA	G			

The PSORT algorithm predicts inner membrane (0.6158).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 132A) and also as a his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 132B) and for FACS analysis.

These experiments show that cp6766 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 133

The following C.pneumoniae protein (PID 4376804) was expressed <SEQ ID 265; cp6804>:

```
MSNQLQPCIS LGCVSYINSF PLSLQLIKRN DIRCVLAPPA DLLNLLIEGK
10
                 51
                     LDVALTSSLG AISHNLGYVP GFGIAANQRI LSVNLYAAPT FFNSPQPRIA
                    ATLESRSSIG LLKVLCRHLW RIPTPHILRF ITTKVLRQTP ENYDGLLLIG
                101
                    DAALQHPVLP GFVTYDLASG WYDLTKLPFV FALLLHSTSW KEHPLPNLAM
                     EEALQQFESS PEEVLKEAHQ HTGLPPSLLQ EYYALCQYRL GEEHYESFEK
                251
                    FREYYGTLYO OARL
15
      The cp6804 nucleotide sequence <SEQ ID 266> is:
                 1 ATGTCTAACC AACTCCAGCC ATGTATAAGC TTAGGCTGCG TAAGTTATAT
                    TAATTCCTTT CCGCTGTCCC TACAACTCAT AAAAAGAAAC GATATTCGCT
                101
                    GTGTTCTTGC TCCCCCTGCA GACCTCCTCA ACTTGCTAAT CGAAGGGAAA
                    CTCGATGTTG CTTTGACCTC ATCCCTAGGA GCTATCTCTC ATAACTTGGG
                151
20
                201
                    GTATGTCCCC GGCTTTGGAA TTGCAGCAAA CCAACGTATC CTCAGTGTAA
                251
                    ACCTCTATGC AGCTCCCACT TTCTTTAACT CACCGCAACC TCGGATTGCC
                    GCAACTTTAG AAAGTCGCTC CTCTATAGGA CTCTTAAAAG TGCTTTGTCG
                301
                    TCATCTCTGG CGCATCCCAA CTCCTCATAT CCTAAGATTC ATAACTACAA
                351
               401 AAGTACTCAG ACAAACCCCT GAAAATTATG ATGGCCTCCT CCTAATCGGA
25
                451
                    GATGCAGCGC TACAACATCC TGTACTTCCT GGATTTGTAA CCTATGACCT
                    TGCCTCGGGG TGGTATGATC TTACAAAGCT ACCTTTTGTA TTTGCTCTTC
               501
               551
                    TTCTACACAG CACCTCTTGG AAAGAACATC CCCTACCCAA CCTTGCGATG
                    GAAGAAGCCC TCCAACAGTT CGAATCTTCA CCCGAAGAAG TCCTTAAAGA
               601
               651 AGCTCATCAA CATACAGGTC TGCCCCCTTC TCTTCTTCAA GAATACTATG
30
               701
                    CCCTATGCCA GTACCGTCTA GGAGAAGAAC ACTACGAAAG CTTTGAAAAA
```

The PSORT algorithm predicts inner membrane (0.060).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 133A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 133B) and for FACS analysis.

TTCCGGGAAT ATTATGGAAC CCTCTACCAA CAAGCCCGAC TGTAA

These experiments show that cp6804 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 134

The following C.pneumoniae protein (PID 4376805) was expressed <SEQ ID 267; cp6805>:

```
40 1 MSSLLSCGRI EPTRVTCSLK TYLEDTSQNQ LSTRLVRASV IFLCALLIIL
51 VCVALSSLIP SIMALATSFT VMGLILFVMS LLGDVAIISY LTYSTVTSYR
101 QNKRAFEIHK PARSVYYEGV RHWDLGRSSL GTGEIPIVRT LFSPFQNHGL
151 NHALAAKIFL FMEHFSPEPP NEPLVDWACL IRDFRPHVSS LCFVIEKQGS
201 SLRTKEGNTI CEAFRSDYDA HFAMVDCYKL IHSKLIIEKM GLKNIDIIPS
45 251 VMVREDYPSR PGEGYREGLL RMYGGKGAL*
```

The cp6805 nucleotide sequence <SEQ ID 268> is:

35

	1		TACTGAGCTG		GAGCCGACTC	GGGTTACCTG
	51	TAGCTTAAAG	ACGTATCTTG	AGGATACGAG	TCAGAATCAG	TTGAGGAGAGAG
	101	GTCTAGTTCG	GGCAAGTGTC	ATCTTTTTAT	GCGCATTGTT	CATCACACAC
5	151	GTTTGTGTGG	CCCTCTCTAG	TTTGATTCCA	AGCATTATGG	COMMOGOGO
5	201	CTCTTTTACG	GTAATGGGGT	TA A TITLE TOOLS	TGTGATGTCA	CCTTGGCGAC
	251	ACGTTGCAAT			GCACTGTTAC	CTTCTTGGTG
	301	CAAAATAAGA	CACCOUNTERA	CLINCITATA	GCACTGTTAC	GAGTTACCGG
	351			AMMILACAAG	CCCGCTCGCT	CCGTTTACTA
	401	ACAMMCOMAM	CGCCATIGGG	ATTTAGGACG	ATCATCTTTA	GGCACAGGCG
10	451	AACCATGCCT	AGTAAGGACG	TTATTCTCTC	CATTTCAGAA	CCATGGTCTT
	501			AATTTTCCTA	TTTATGGAGC	ATTTCAGCCC
		TGAGCCACCG	AACGAGCCTT	TGGTGGATTG	GGCCTGTTTC	ATTOCCCC A TOTAL
	551	TTAGGCCTCA	CGTCAGTTCT	TTGTGCTTTG	ጥጥልጥጥሮልልልል	ACA ACCOMO
	601	TUGUTGAGGA	CTAAGGAAGG	CAATACGATT	TGTGAGGCTT	TCCCCTTCTC
15	651	TTACGACGCC	CATTTTGCTA	TGGTAGATTG	CTACCGGTTG	AUCCOCICION
13	701	AGTTGATTAT	AGAGAAAATG	GGATTGAAGA	ATATCGATAT	CAMBOCO A CM
•	751	GTCATGGTTC	GTGAAGATTA	TCCTAGCCGT	CCTGGGGAGG	CATTCCGAGT
	801	AGGCCTATTA	CGTATGTATG	GTGGCAAGGG	CCTGGGGAGG	GCTATCGCGA

The PSORT algorithm predicts inner membrane (0.711).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 134A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 134B) and for FACS analysis.

These experiments show that cp6805 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 135

25 The following C.pneumoniae protein (PID 4376813) was expressed <SEQ ID 269; cp6813>:

	1	MSGPSRTESS	QVSVLSYVPR	DKEIAPKKOF	TTAKT STT.AT	T.ACT AT CATE
	51	AGISLTIVLG	NPVFLALLIT	TALESWITEI.	WHOMBERIE	DASDALGALV
	101	FKPLGKAWQE	KNVDCYSNEM	OFYNNHI NPK	EKAN TOMBY C	SUMOKATEÓN
20	151	LRVIEKNOST	GIIFNPVGPT	MI TONOVOUNT.	CULL ACUL NO	QPFQPTFLTG
30	201	EGGPAKGEDP	FSPTEVRVVK	T.DMFAT.DOWE	DI TITI STITUT	KSAMDICKÓK
	251	CGPKSEELPN	OOEYYROALT.	AVENCIRAL	NUNLSSAEKK ECHA A TURE R	SILPTFLGHV
	301	EEILPKEGTF	YWDNOTOARC	KDVI'L DV TOM	ESHAAIVALP	LFTSVYEVPP
	3 51	IESQSRSEE*	* WEST OFFICE	WWITHTATT	TALKYPORSL	LVILQDPFNT

The cp6813 nucleotide sequence $\langle SEQ ID 270 \rangle$ is:

35	1	ATGTCAGGAC	CCTCACGTAC	marar came-		
	51	TGTGCCTCGG			CAAGTTTCTG	TACTATCCTA
	101		***************************************	TTGCTCCTAA	AAAACAGTTT	ACCATAGCAA
	151	AAATATCCAC			TAGCTTTAGG	AGCTTTGGTG
		GCTGGAATCT	4		AACCCTGTAT	TTTTGGCTCT
40	201		ACGGCCCTCT		AACCTTCTTA	GTCTACCACC
40	251	AAATGACCTC	AAAGGTATCT	TCTAACTGGC	AGAAAGTTCT	AGAGCAAAAC
	301	TTCAAGCCTT	TGGGAAAAGC	GTGGCAAGAA	AAAAACGTAG	
	351		CAATTTTACA			ACTGCTACTC
	401	CGATACAAAC	AGATGCGTCT		GAACCCTAAG	TTCAAGGTAG
	451	CTTAGAGTGA	TCGAAAAAA	CAACCATTTC	AGCCTACTTT	CTTAACTGGA
45	501	ACCCCCAAGO	ICGARAAAAA		GGGATCATCT	TTAATCCCGT
	551	mmma cmaar a	AATCTGATCG	ACAACACTGC	AACGAACCTC	TCTACTATCC
	601	CARCICCAC	CCTAAAAGAT	AAAAGCGTGT	GGGATACATG	CAAGCAACGC
		GAAGGGGGTC	CCGCAAAAGG	AGAAGACCCC	TTTTCCCCTA	CCGAAGTGAG
	651	AGTAGTAAAA	CTTCCAAACG	AAGCTCTAGA	TCAAACGTTT	AATCTAAATT
~ 0	701	TAAGCTCTGC	AGAAAAGAAA	AGTATTCTTC	CGACCTTTTT	AGGCCACGTA
50	751	TGCGGCCCTA	AATCTGAAGA	GTTACCA A AT		
	801	AGCTTTACTA	GCGTACGAGA	VCMCCCMW V		ATTATCGCCA
	851	CAGCAATCGT			AGCAGCTATA	
	901	GAAGAGATTC	TOCTOTICCT	CTCTTTACTT	CGGTCTATGA	AGTGCCTCCA
	951	AGCGTTTTGC			TATTGGGACA	
55	1001	CCTATCCTTTTGC		TATTGGACGC	TATTCAAAAT	ACGGCCCTAC
<i>33</i>	1051	GCTATCCTCA	AAGATCTTTA	CTTGTTATAC	TCCAAGATCC	
	TODT	ATAGAATCAC	AAAGTCGTTC	TGAGGAGTAA		

The PSORT algorithm predicts inner membrane (0.4291).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 135A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 135B) and for FACS analysis.

These experiments show that cp6813 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 136

The following C.pneumoniae protein (PID 4376844) was expressed <SEQ ID 271; cp6844>:

```
MWRVVLRFLI IFILGRAVFP LRASESFSWE TSTCLTVLGI PFIDIILTTN
10
                 51
                    EDFVAQCGLQ IGTISSTNNA KIKEIFLIYK EKFPEASISF KRKEPLNLSQ
                     SHLSDLGILC MRNGETYAEG MANKENGPAL KQPKDLRLVL RCPNQPDTLL
               101
                    YSEKEAEKGI ETNTCLCNQG YTLLDGQLIL YGDSIEKFLK ETKRKNNHTL
               201
                    VDLCDSQVVT TFLGRFWSLL NYVQVLFLSE DSAKILAGIP DLAQATQLLS
                    HTVPLLFIYT NDSIHIIEQG KESSFTYNQD LTEPILGFLF GYINRGSMEY
               251
15
               301
                    CFNCAQSSLG ET*
     The cp6844 nucleotide sequence <SEQ ID 272> is:
                    ATGTGGCGCG TTGTCCTCAG ATTCCTTATA ATTTTTATCT TGGGAAGAGC
                51
                    CGTCTTCCCT CTAAGAGCTT CAGAAAGCTT CTCCTGGGAA ACATCGACCT
                    GTTTAACAGT GCTAGGGATT CCTTTCATAG ATATTATCCT CACAACGAAT
               101
20
                    GAGGACTTTG TTGCCCAGTG CGGCCTGCAA ATAGGAACCA TTTCTTCGAC
               201
                    TAATAACGCA AAAATAAAAG AAATTTTTTT GATATAAG GAAAAATTTC
               251
                    CAGAAGCCTC TATCAGTTTC AAACGAAAAG AACCTCTAAA CCTTTCCCAA
                    TCCCATCTCT CCGATTTAGG TATTTTATGT ATGCGTAACG GAGAAACTTA
               301
                    CGCTGAGGGA ATGGCAAATA AAGAAAACGG ACCCGCTCTA AAACAACCCA
               351
25
               401
                    AGGATCTAAG ATTAGTTTTA CGTTGTCCTA ACCAACCAGA TACCCTGCTC
                    TACTCGGAAA AAGAAGCAGA AAAGGGCATA GAAACAAATA CTTGCCTATG
               451
                    CAATCAGGGA TACACACTCC TGGATGGGCA ATTGATTCTC TACGGGGATA
               501
               551
                    GTATAGAAAA GTTTCTGAAA GAGACCAAAA GAAAGAATAA CCACACGCTT
               601
                    GTTGATCTTT GTGACTCACA AGTCGTGACC ACGTTCCTCG GTCGCTTTTG
30
                    GTCTCTTCTA AACTACGTTC AAGTTCTTTT CCTATCTGAA GACTCCGCTA
               651
                    AAATTCTTGC GGGCATCCCA GACCTAGCTC AAGCTACGCA ATTGCTTTCC
               751
                    CACACCGTAC CTTTGCTTTT TATTTATACC AACGATTCTA TTCACATCAT
                    AGAACAAGGC AAAGAAAGTA GTTTTACCTA TAACCAAGAT TTAACAGAGC
               801
               851
                    CCATTTTAGG ATTTCTCTTT GGTTACATAA ATCGCGGCTC TATGGAATAC
```

The PSORT algorithm predicts inner membrane (0.1786).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 136A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 136B) and for FACS analysis.

These experiments show that cp6844 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

TGCTTTAATT GTGCACAGTC TTCATTAGGA GAAACCTAA

Example 137

901

The following C.pneumoniae protein (PID 4377201) was expressed <SEQ ID 273; cp7201>:

```
45 1 VLVGICPSLY PEHPRSFYYR VSGDIGSRFD DRGFVNSGVE TLPYSSGSFG
151 IFWISFTDPT FNFAIVNTFM RTAGINEVSR PMTQDTETSL IEMRDLSEQQ
101 EANNTDSLEQ EESLMGIVGH TVGGVSMTVT SSPNIFYRIQ TLLGLPETLA
151 EAEENPTFPN STIDSLAEIM MNLVRISDAV SIFWIFPIVD TTYNGVLLAV
```

35

1001

1051 1101

```
CIGFFGINGI CSTFLMLTNP RSRRDRWRNL RIMVLCYRSL GSGMNLFDLS
                201
                     NNVRMAARRH VTSCTVALYA MVTLFGWTVA IQDALQYGFP SVRDAFYRYC
                     LRHRYCLTQR NEDSLQTTGT RFQVTRTHLE DQQMVASILN LSVFGLFFGF
                301
                351
                    VGLMTTFGGL EISPSCRWDA ANNRTVGIF*
     The cp7201 nucleotide sequence <SEQ ID 274> is:
                     GTGCTCGTTG GTATCTGTCC TTCTCTATAT CCAGAACATC CTCGCTCCTT
                 51
                     TTATTATCGT GTTTCTGGAG ATATAGGCTC CCGATTCGAC GATAGAGGAT
                101
                     TTGTAAACTC TGGAGTCGAA ACCCTGCCAT ACTCTTCAGG CAGCTTTGGG
                151
                     ATTTTTTGGA TCTCGTTTAC GGATCCCACA TTTAATTTTG CTATCGTAAA
10
                201
                     TACCTTTATG CGAACTGCAG GGATCAATGA AGTCTCTAGA CCCATGACAC
                251
                    AAGATACAGA AACTTCATTG ATAGAAATGA GAGACCTAAG TGAACAACAA
                301
                    GAAGCGAATA ACACAGATTC TTTAGAGCAA GAAGAGAGCT TAATGGGTAT
                351
                    TGTAGGACAT ACTGTGGGAG GAGTTTCCAT GACCGTGACC TCCAGTCCAA
                401
                    ATATCTTTTA TCGTATACAA ACACTTCTGG GACTGCCAGA GACTCTTGCA
15
                451
                    GAAGCTGAAG AAAATCCTAC CTTCCCAAAT TCTACTATAG ATAGCCTTGC
               501
                    AGAAATAATG ATGAACCTCG TAAGGATCTC TGATGCTGTC TCTATTTTCT
               551
                    GGATTTTTCC TATCGTAGAT ACTACATATA ATGGAGTTTT ATTAGCCGTC
               601
                    TGTATCGGCT TCTTCGGAAT CAATGGGATT TGTTCCACGT TCCTTATGCT
                    TACGAATCCA CGCTCTCGTC GAGATAGATG GAGGAATTTA CGCATCATGG
               651
20
               701
                    TTCTTTGCTA TCGTTCTTTG GGAAGCGGAA TGAATCTCTT TGATCTTAGC
               751
                    AATAATGTGC GCATGCCAGC ACGTAGGCAT GTGACATCAT GTACAGTAGC
               801
                    TCTCTATGCT ATGGTCACTC TATTTGGATG GACAGTAGCA ATACAAGATG
               851
                    CTTTGCAATA TGGTTTCCCT AGCGTTCGGG ATGCCTTCTA TAGATATTGC
               901
                    TTACGCCACA GATATTGCTT AACTCAAAGA AACGAAGACT CTCTGCAAAC
25
               951
                    TACAGGAACG CGCTTTCAGG TTACCCGTAC ACATCTAGAA GATCAACAGA
```

The PSORT algorithm predicts inner membrane (0.3102).

The protein was expressed in E.coli and purified as a GST-fusion product (Figure 137A). The 30 recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 137B) and for FACS analysis.

GTGGGATGCA GCAAATAACC GAACGGTAGG TATTTTTTAG

TGGTGGCTTC TATTTTGAAT TTGAGTGTTT TTGGGCTCTT TTTTGGATTC

GTAGGGCTAA TGACCACGTT TGGAGGATTA GAAATCTCAC CATCTTGTCG

These experiments show that cp7201 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

35 Example 138

The following C.pneumoniae protein (PID 4377251) was expressed <SEQ ID 275; cp7251>:

```
MAPIHGSNAF VEDILHSHPS PQATYFSSTR AQKLHEFKDR HPVLTRIASV
                    IIKIFKVLIG LIILPLGIYW LCQTLCTNSI LPSKNLLKIF KKQPNTKTLK
               101
                    TNYLHALQDY SSKNRVASMR RVPILQDNVL IDTLEICLSQ APTNRWMLIS
40
                    LGSDCSLEEI ACKEIFDSWQ RFAKLIGANI LVYNYPGVMS STGSSSLKDL
               151
               201
                    ASAHNICTRY LKDKEQGPGA KEIITYGYSL GGLIQAEALR DQKIVANDDT
                    TWIAVKDRCP LFISPEGFHS CRRIGKLVAR LFGWGTKAVE RSQDLPCLEI
                    FLYPTDSLRR STVRQNKLLA PELTLAHAIK NSPYVQNKEF IEVRLSSDID
               301
               351
                    PIDSKTRVAL ATPILKKLS*
```

45 The cp7251 nucleotide sequence <SEQ ID 276> is:

	1	ATGGCTCCAA	TTCACGGAAG	TAATGCGTTT	GTTGAGGATA	TTTTACATTC
	51	CCACCCTTCT	CCACAAGCGA	CTTATTTTTC	TTCAACACGC	GCCCAAAAAC
	101	TTCATGAGTT	TAAAGACAGG	CATCCCGTGC	TTACACCCAT	DCCCUTTTTTC
	151	ATTATTAAAA	መመመመው እስር መ	TCTGATAGGG	CECAECOCAT	IGCITCIGIA
50	201	A Aጥርጥ Aርጥርር	CUMUCHONA	TCIGNINGGG	CTGATCATCC	TTCCCTTAGG
	251	AATCTACTGG	CIAIGICAAA	CGCTTTGTAC	AAACTCGATT	CTCCCTTCCA
		AGAATTTATT	AAAAATTTTC	AAGAAGCAAC	CCAACACTAA	AACCTTAAAA
	301	ACTAATTATT	TGCATGCTTT	GCAAGATTAT	TCCTCGAAAA	ACCGCGTTGC
	351	TTCCATGAGA	CGAGTTCCTA	TCCTCCAGGA	TAATGTTCTC	Aጥሮር Aሮ Aሮጥጥ
	401	TGGAAATATG	CCTTTCACAA	GCACCTACGA	A THE COUNTED A THE	COMONUMENT
55	451	${\tt TTAGGAAGTG}$	አርጥርጥአርርጥጥ	CCAACAAAMO	COMMONT	GCTCATITCT
			MCIGIMOCII	COMMOMMATC	GCTTGTAAGG	AGATCTTTGA

	501	mmmmeee.				
		TTCTTGGCAA	AGATTTGCCA	AGTTGATAGG	GGCCAATATA	CTCGTTTATA
	551	ACTACCCCGG	AGTCATGTCC	AGCACAGGGA	GCAGCAGCCT	AAAGGACCTA
	601	GCATCAGCTC	ATAATATTTG	TACAAGATAC	СТТАВАСАТА	ANGANCAGGG
r	651	CCCTGGAGCA	AAAGAAATCA	TTACCTATGG	GTACTCCCTA	GGAGGTTTGA
3	701	TACAAGCAGA	AGCATTGCGA	GACCAGAAGA	TTGTTGCAAA	CGATGATACT
	751	ACTTGGATAG	CAGTCAAAGA	TAGGTGTCCT	CTCTTTATAT	CTCCAGAAGG
	801	TTTCCACAGT	TGCAGACGCA	$\mathtt{TAGGAAAGCT}$	AGTAGCTCGT	Chahahaccca
	851	GGGGGACCAA	AGCCGTAGAG	AGAAGCCAAG	ACCTTCCCTG	CCTAGAAATT
10	901	TTTCTCTATC	CTACGGATTC	CTTACGAAGA	TCAACAGTCA	GACAGAACAA
10	951	GCTCTTAGCA	CCTGAACTTA	CTCTCGCTCA	TGCGATAAAA	AATAGTCCCT
	1001	ATGTTCAAAA	TAAAGAATTT	ATAGAAGTAC	GATTATCGTC	ТСАТАТССАТ
	1051	CCCATCGACA	GCAAAACAAG	AGTGGCTCTT	GCCACACCAA	ጥጥጥጥርልአአአ
	1101	GCTCTCTTAG				****

The PSORT algorithm predicts inner membrane (0.4545).

The protein was expressed in E.coli and purified as a GST-fusion product (Figure 138A). The 15 recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 138B) and for FACS analysis.

These experiments show that cp7251 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

20 Example 139

701

751

801

851

901 951

1001 1.051

1101 1151

The following C.pneumoniae protein (PID 4377288) was expressed <SEQ ID 277; cp7288>:

CAATATTGAT CAAGCTCCTC ATAGAAGCTC TTACTGGAAA GTCCTCTTTA CCCAAAACTC CTAGTACAAA GGAAAAAATG CAAGCGGCCT TATTTATTGC

AAGTTCTTGC AAGACTTGTA AGCCGACTTG GGGAGAAGTC ATAACCAGAT

CTCTTAACAG ACTCTATAGT ATAGCTAATG AAGGAGACAA TCAGCTTCTG ATTTGGGTTC AAGAGTTTAA AGAACGAGAG CTGATGTCCA TCCAAGATGG

TGATGATGCT GAAGAGTATC GGTTTGCGGC TCAGCAACAC GGTGAGCGTT ACACAGAGGC AATAGAACAA GTTCTACGAA ACGAGTCAGC AGCCAAACTA

CAATGGCATG TGATCAACAC TATGAAATTC TTCCATGGGA AAAATCTCGG

TCTAGTTACA GAACACCTAC AAGATACTCT CGGCGCCCTA ACTTTACGTC

AAACTACAGT GGACACACAT CAAGGCAGAG AAGACGCTGA TTTGTCAGCT 1201 GCTCTTTTCC TAAATAAGTA TTTAAATTCT GGAAATCAAC TTGTTAATAG

```
MHMSNPISLF SPAELIAKYN LIPKTSPIYP RRTELIILEE NACQTRLTNV
                     AQVLHPSSLF SMSKKILNPC GCSGGPLCWV ILNILAFIIT SVLFIILLPV
                 51
                     NLIVAGLRLF MPLPPKKIVE DLSEPTTEET NEVIQPFIFA LQALLFEDNK
                101
25
                151
                     LRSFKIVEQS VGKAPLPNPF LNRLVAISPQ ESQEAMRKIP DLCSQLKKVL
                    KSLGVLTPEW KHMLKYFEGL KNEHDSNPDK KTFPILIKLL IEALTGKSSL
                201
                     PKTPSTKEKM QAALFIASSC KTCKPTWGEV ITRSLNRLYS IANEGDNQLL
                251
                     IWVQEFKERE LMSIQDGDDA EEYRFAAQQH GERYTEAIEQ VLRNESAAKL
                     QWHVINTMKF FHGKNLGLVT EHLQDTLGAL TLRQTTVDTH QGREDADLSA
                351
30
                     ALFLNKYLNS GNQLVNSVFK SMQKADPETK ALIREFALDI LYASLRLPQT
                401
                     SAHTEVFSTL LMDPETYEPN KACIAYLLYV LKIIEL*
                451
     The cp7288 nucleotide sequence <SEQ ID 278> is:
                 1 ATGCATATGT CTAACCCCAT CTCTTTGTTT TCCCCTGCAG AGTTAATAGC
                    AAAGTACAAT TTAATTCCAA AAACTTCGCC GATTTATCCT CGGAGGACGG
                 51
35
                101
                    AACTTATTAT CTTGGAAGAA AATGCGTGTC AAACACGCCT AACCAACGTG
                    GCTCAGGTCC TACATCCTTC TAGCCTATTC AGTATGTCAA AAAAAATACT
               201
                    GAATCCCTGC GGGTGCTCTG GTGGTCCCTT ATGTTGGGTG ATTCTCAACA
               251
                    TCCTAGCATT TATTATTACT TCAGTACTGT TTATCATTCT TTTACCGGTG
                    AATCTCATCG TAGCAGGTCT TCGTCTCTTC ATGCCTCTTC CCCCTAAAAA
               301
40
               351
                    AATCGTAGAG GATTTAAGTG AACCTACTAC TGAAGAAACG AATGAGGTCA
               401
                    TTCAACCCTT CATTTTCGCT TTGCAAGCGT TGCTTTTTGA GGATAACAAA
                    CTTCGCTCTT TTAAAATTGT TGAACAAAGT GTAGGCAAAG CACCCTTACC
               451
               501
                    TAATCCCTTT TTAAATAGAC TAGTAGCAAT TTCGCCGCAA GAAAGCCAAG
               551 AAGCCATGCG GAAGATTCCG GATCTATGCT CACAACTGAA AAAAGTATTA
45
               601
                    AAGTCTCTAG GCGTGCTAAC TCCAGAATGG AAGCACATGC TGAAGTACTT
                    TGAGGGACTG AAAAACGAAC ATGATAGTAA TCCTGATAAA AAGACGTTCC
               651
```

50

55

5

15

```
1251 CGTCTTTAAA TCCATGCAAA AAGCAGATCC AGAAACCAAA GCTTTAATCC
     GTGAGTTTGC TCTAGATATA TTATATGCAT CCTTACGGCT TCCTCAAACT
     TCCGCTCATA CCGAGGTCTT TTCTACACTC TTAATGGACC CAGAGACCTA
1351
1401
     TGAACCTAAT AAAGCTTGTA TCGCCTACTT GCTCTATGTA TTAAAGATCA
1451
     TCGAACTATA A
```

The PSORT algorithm predicts inner membrane (0.5989).

The protein was expressed in E.coli and purified as a GST-fusion product (Figure 139A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 139B) and for FACS analysis.

These experiments show that cp7288 is a surface-exposed and immunoaccessible protein, and that it 10 is a useful immunogen. These properties are not evident from the sequence alone.

Example 140

The following C.pneumoniae protein (PID 4377359) was expressed <SEQ ID 279; cp7359>: MPGSVSSPPL SPVIVRERVP SSSGSDLIQP HAVLKISILI FALVTILGIV

```
LVVLSSALGA LPSLVLTVSG CIAIAVGLIG LGILVTRLIL STIRKVDAMG
                101
                     YDAAVKEEQY LSRIRELESE NREIRDRNRA VEDQCAHLSE ENKDLRDPEY
                     LHGMTERLIA SLEIENQALV AENILLKOWN ASLSRDFRAY KOKFPLGALE
                151
                201
                     PWKEDIACIM EQNLFLKPEC IAMVKSLPLE TQRLFLYPKG FQSLVNRFAP
                     RSRFFQTPKY EYNSRNENED GKVAAVCARL KKEFFSAVLG ACSYEELGGI
                251
20
                301
                     CERAVALKET LPLPEAVYDT LVQEFPNLLT AESLWKEWCF YSYPYLRPYL
                351
                     SVDYCKRLFV QLFEELCLKL FTTGSPEDQA LVRLFSYYRN HIPAVLASFG
                401
                     LPPPETGGSV FVLLPKQENL LWSQIEVLAT RYLKDTFVRN SEWTGSFEMM
                451
                     FSYNEMCKEI SEGRIRFAED YETRHSEEFP PSPLSEEGEG EEFLPPCSEE
                     EVSVLERPDL DVDSMWVWHP PVPKGPL*
                501
25
     The cp7359 nucleotide sequence <SEQ ID 280> is:
                     ATGCCAGGTT CTGTGTCATC ACCTCCTTTG TCTCCTGTAA TTGTCCGTGA
                     AAGGGTCCCA TCCTCTTCAG GATCCGACCT CATACAGCCT CATGCTGTTT
                 51
                101
                     TAAAGATCTC CATCCTAATT TTTGCGCTTG TGACAATTTT AGGAATTGTT
                151
                     CTTGTAGTGT TGTCTAGTGC TTTAGGAGCT CTTCCTAGTT TAGTTTTGAC
30
                201
                     GGTTTCTGGT TGTATTGCAA TAGCTGTAGG CCTGATTGGT TTAGGGATTC
                     TTGTGACACG GCTGATTCTC TCTACGATCA GAAAAGTAGA TGCCATGGGT
                251
                301
                     TATGATGCTG CGGTCAAAGA AGAGCAGTAT TTGTCACGTA TCAGAGAATT
                351
                     AGAGTCTGAA AATAGAGAGA TTAGAGATAG AAATCGTGCT GTCGAAGATC
                401
                    AGTGTGCCCA TTTATCCGAA GAGAACAAGG ACCTTAGGGA TCCCGAATAT
35
                     CTACATGGAA TGACTGAAAG GCTCATTGCG AGCTTAGAAA TAGAGAATCA
                451
                501 AGCTCTCGTA GCTGAGAACA TTCTTCTCAA AGACTGGAAT GCAAGCCTAT
                     CTAGAGATTT CCGCGCATAT AAGCAAAAAT TTCCTCTTGG GGCATTAGAA
                551
                601
                     CCCTGGAAAG AAGATATTGC ATGTATCATG GAACAAAATC TCTTTTTAAA
                651
                    ACCGGAATGT ATCGCGATGG TTAAGTCTCT TCCATTAGAG ACGCAACGGC
40
                    TGTTTTTATA TCCAAAAGGA TTTCAGTCTT TAGTTAATCG ATTTGCTCCG
                701
                    CGGTCTCGCT TTTTCCAGAC TCCAAAGTAT GAATATAACA GTAGGAATGA
                751
                801
                    AAATGAGGAC GGAAAGGTAG CCGCAGTGTG CGCCCGTTTG AAAAAAGAAT
                851
                    TCTTCAGTGC TGTTTTAGGA GCCTGTAGTT ACGAAGAACT AGGGGGCATT
                    TGTGAAAGAG CAGTAGCACT TAAAGAGACG TTGCCATTGC CTGAAGCTGT
               901
45
               951
                    CTATGATACC CTAGTTCAGG AGTTCCCAAA TCTTCTTACT GCTGAGAGTT
              1001
                    TATGGAAAGA ATGGTGCTTC TATTCCTATC CCTACCTTCG TCCCTATCTT
                    TCTGTGGATT ACTGTAAGAG GTTATTTGTA CAACTTTTTG AGGAACTCTG
              1051
              1101
                    CCTAAAGCTT TTTACAACGG GATCTCCAGA AGACCAAGCT TTGGTTCGCC
                    TTTTCTCTTA CTATAGGAAT CATATTCCCG CAGTCTTGGC CTCATTTGGT
              1151
50
                    TTGCCCCCGC CTGAGACAGG GGGGTCTGTA TTTGTATTGC TACCAAAACA
              1201
              1251
                    AGAAAACCTT CTTTGGAGTC AAATTGAGGT GCTGGCTACA AGGTATCTCA
                    AAGATACCTT CGTGAGAAAC TCAGAATGGA CGGGCTCTTT CGAGATGATG
              1301
                    TTTTCTTATA ACGAGATGTG TAAGGAGATC TCCGAAGGAA GGATTCGTTT
              1351
                    TGCTGAAGAC TATGAAACGA GGCATTCCGA AGAATTCCCT CCTTCCCCTC
              1401
55
                    TCTCTGAAGA AGGAGAGGGC GAAGAATTCC TTCCTCCTTG CTCTGAAGAA
              1451
                    GAGGTTTCGG TTCTTGAGCG CCCAGATCTA GATGTAGACT CTATGTGGGT
              1501
              1551 CTGGCATCCG CCGGTCCCTA AGGGACCTCT TTAA
```

The PSORT algorithm predicts inner membrane (0.7453).

The protein was expressed in E.coli and purified as a GST-fusion product (Figure 140A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 140B) and for FACS analysis.

These experiments show that cp7359 is a surface-exposed and immunoaccessible protein, and that it 5 is a useful immunogen. These properties are not evident from the sequence alone.

Example 141

The following C.pneumoniae protein (PID 4377374) was expressed <SEQ ID 281; cp7374>:

```
MDKQSSGNSG CIWHPFTQSA LDSTPIKIVR GEGAYLYAES GTRYLDAISS
10
                     WWCNLHGHGH PYITKKLCEQ AQKLEHVIFA NFTHEPALEL VSKLAPLLPE
                    GLERFFFSDN GSTSIEIAMK IAVQYYYNQN KAKSHFVGLS NAYHGDTFGA
                101
                151
                    MSIAGTSPTT VPFHDLFLPS STIAAPYYGK EELAIAQAKT VFSESNIAAF
                     IYEPLLQGAG GMLMYNPEGL KEILKLAKHY GVLCIADEIL TGFGRTGPLF
                201
                251
                    ASEFTDIPPD IICLSKGLTG GYLPLALTVT TKEIHDAFVS QDRMKALLHG
15
                    HTFTGNPLGC SAALASLDLT LSPECLQQRQ MIERCHQEFQ EAHGSLWQRC
                301
                    EVLGTVLALD YPAEATGYFS QYRDHLNRFF LERGVLLRPL GNTLYVLPPY
                351
                    CIQEEDLRII YSHLQDALCL QPQ*
     The cp7374 nucleotide sequence <SEQ ID 282> is:
                    ATGGACAAGC AATCATCAGG GAATTCAGGG TGTATCTGGC ACCCCTTCAC
20
                51
                    TCAATCTGCA TTAGATTCTA CACCCATAAA GATTGTAAGG GGAGAAGGTG
               101
                    CTTACCTCTA TGCGGAATCA GGAACAAGAT ATCTTGATGC GATATCTTCA
               151
                    TGGTGGTGCA ACCTCCACGG TCATGGGCAT CCCTACATTA CAAAAAATT
                    ATGTGAGCAA GCACAGAAGT TAGAACATGT GATCTTCGCA AATTTCACCC
               201
               251
                    ATGAACCGGC TCTAGAGCTC GTATCGAAAC TCGCTCCCCT CCTTCCTGAA
25
               301
                    GGTCTAGAAC GTTTCTTTTT CTCTGACAAC GGATCAACGT CTATCGAAAT
               351
                    AGCAATGAAA ATTGCTGTGC AATATTACTA CAATCAAAAC AAGGCTAAGA
               401
                    GCCATTTTGT TGGACTCAGC AATGCCTATC ACGGAGATAC ATTTGGAGCT
                    ATGTCGATAG CTGGCACGAG CCCTACTACA GTTCCCTTTC ATGATCTTTT
               451
               501
                    TCTTCCTTCC AGTACAATTG CTGCTCCCTA TTATGGCAAG GAAGAGCTTG
30
               551
                    CCATTGCCCA AGCAAAAACA GTCTTTTCTG AAAGCAATAT CGCAGCGTTT
                    ATCTATGAGC CGCTATTGCA AGGTGCTGGA GGGATGTTAA TGTATAATCC
               601
                    CGAAGGCCTA AAGGAGATTC TCAAGCTTGC CAAGCATTAC GGGGTTCTCT
               651
                    GTATTGCTGA TGAAATTCTT ACTGGCTTTG GCCGTACGGG TCCACTGTTT
               701
                    GCTTCTGAAT TTACAGACAT TCCTCCTGAC ATTATCTGTC TTTCTAAAGG
               751
35
                    TCTTACAGGA GGCTATCTCC CTCTAGCCTT GACAGTAACC ACTAAAGAAA
               801
               851
                    TTCATGATGC CTTTGTCTCC CAAGATCGGA TGAAGGCACT GCTTCATGGC
               901
                    CATACCTTCA CAGGAAATCC TTTAGGCTGT AGTGCTGCCC TCGCTTCTTT
                    GGATCTCACC CTATCTCCAG AATGCCTACA ACAAAGGCAA ATGATAGAAC
               951
                    GGTGTCATCA AGAGTTTCAA GAAGCTCATG GTTCCCTATG GCAACGGTGT
              1001
40
                    GAGGTTCTGG GCACGGTACT CGCTCTAGAT TACCCTGCAG AAGCTACAGG
```

45 The PSORT algorithm predicts cytoplasm (0.2930).

CCTATGTCTA CAACCACAGT AA

1051

1101

1151 1201

1251

The protein was expressed in E.coli and purified as a GST-fusion product (Figure 141A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 141B) and for FACS analysis.

ATATTTTCA CAATATAGAG ACCATCTCAA TCGCTTTTTC TTAGAACGTG

GAGTCCTTCT TCGTCCTTTA GGGAACACAC TGTATGTGCT GCCCCCCTAC

TGTATCCAAG AAGAAGATCT CCGGATTATT TATTCTCACC TACAGGATGC

These experiments show that cp7374 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone. 50

Example 142

The following C.pneumoniae protein (PID 4377377) was expressed <SEQ ID 283; cp7377>:

```
MREETVSWSL EDIREIYHTP VFELIHKANA ILRSNFLHSE LQTCYLISIK
                     TGGCVEDCAY CAQSSRYHTH VTPEPMMKIV DVVERAKRAV ELGATRVCLG
 5
                     AAWRNAKDDR YFDRVLAMVK SITDLGAEVC CALGMLSEEQ AKKLYDAGLY
                101
                     AYNHNLDSSP EFYETIITTR SYEDRLNTLD VVNKSGISTC CGGIVGMGES
                151
                     EEDRIKLLHV LATROHIPES VPVNLLWPID GTPLQDQPPI SFWEVLRTIA
                201
                     TARVVFPRSM VRLAAGRAFL TVEQQTLCFL AGANSIFYGD KLLTVENNDI
                251
                    DEDAEMIKLL GLIPRPSFGI ERGNPCYANN S*
                301
10
      The cp7377 nucleotide sequence <SEQ ID 284> is:
                    ATGCGTGAAG AAACTGTATC CTGGTCATTA GAAGACATCC GCGAAATTTA
                    TCACACTCCC GTATTTGAGC TGATTCACAA AGCCAATGCC ATATTGCGTA
                 51
                    GTAATTTCCT CCATTCAGAA CTGCAGACTT GCTATCTGAT TTCGATTAAA
                101
                    ACTGGTGGAT GCGTTGAAGA TTGCGCCTAC TGTGCCCAAT CTTCCCGCTA
                151
15
                    TCATACCCAC GTCACACCAG AACCTATGAT GAAAATTGTA GACGTTGTGG
                201
                    AAAGGGCAAA ACGTGCTGTA GAGCTAGGCG CCACTCGTGT GTGTCTTGGG
                251
                    GCTGCCTGGC GCAATGCTAA GGACGATCGA TACTTTGATA GAGTCCTCGC
                301
                    TATGGTGAAA AGTATCACAG ATCTCGGAGC CGAGGTTTGT TGTGCTTTAG
                351
                    GCATGCTCTC CGAAGAGCAA GCTAAAAAAC TGTATGATGC AGGACTTTAT
                401
20
                    GCCTACAATC ATAATTTAGA CTCTTCTCCG GAATTCTATG AAACTATAAT
                451
                    CACAACACGT TCTTATGAAG ATCGCCTCAA CACTCTTGAT GTAGTAAATA
               501
               551 AATCTGGCAT TAGTACATGC TGCGGTGGTA TTGTAGGTAT GGGAGAATCT
                    GAAGAAGACC GTATAAAGCT TCTTCATGTT CTTGCAACAA GAGATCATAT
                    CCCAGAATCC GTACCTGTAA ATTTACTTTG GCCGATTGAC GGCACGCCTT
               651
25
                    TGCAAGACCA GCCTCCGATT TCTTTCTGGG AAGTCTTGCG AACCATAGCA
               701
                    ACGGCACGGG TTGTTTTCCC CAGATCCATG GTACGACTTG CTGCAGGACG
               751
                    CGCTTTCCTC ACAGTAGAAC AACAAACCTT ATGTTTTCTA GCCGGTGCCA
               801
                    ACTCCATATT CTATGGAGAT AAACTGTTGA CTGTAGAAAA CAATGATATA
               851
                    GATGAAGATG CTGAAATGAT CAAACTTTTA GGCTTAATCC CTCGCCCTTC
               901
30
               951
                    ATTTGGAATA GAAAGAGGTA ACCCATGTTA TGCCAACAAT TCCTAA
```

The PSORT algorithm predicts cytoplasm (0.2926).

The protein was expressed in E.coli and purified as a GST-fusion product (Figure 142A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 142B) and for FACS analysis.

These experiments show that cp7377 is a surface-exposed and immunoaccessible protein, and that it 35 is a useful immunogen. These properties are not evident from the sequence alone.

Example 143

The following C.pneumoniae protein (PID 4377407) was expressed <SEQ ID 285; cp7407>:

```
MVCPNNSWFR MCGNFNCEWV EVTTTEETTR QSASDISEEA GSSGGAAPIT
40
                    TOPTKITKVE KRVQFNTAQG DESTIHMIQE AGELVDSILS HRRTQGCTEY
                51
                    CYDSYATGCG QRCGSFGRLI CGTYKACCLD REDNQVAGLV HECEQTHGPI
               101
                    AVALAAKTMG LNLMELVEKN TILSEEQKNE FRQHCSEAKT QLYGTMQSLS
               151
                    QNFFLEGVNS IRERGLDDSL VQAVLSFIAT RSWEKTIESE EASGTSSASN
               201
                    STRIPACYIL NTSPLTTSRL SCGSRDARRP SSVGAEPQYV AKKYNDNGMA
               251
45
                    RQLGKIQVTN LKTGDFSALG PFGLLIVKML NSFLLSASQS TSSILKHTGG
               301
                    EICYTCPNFR DIVVLLMLAI GYCPANTDET SVVDIHMIDD PIMTIFYRLQ
               351
                   YSYRTGKTSA SFLKKKPSLV RQESLDCPTP AESVPLMSSL EEEDENEDDD
               401
               451 EDGNLAYQQR ILECSGHLQT LFLGIKINKE *
     The cp7407 nucleotide sequence <SEQ ID 286> is:
```

```
50
                    ATGGTTTGCC CAAATAATTC TTGGTTCAGA ATGTCTGGAA ATTTCAACTG
                    CGAATGGGTT GAAGTAACAA CAACAGAAGA AACAACGCGG CAATCGGCTT
                51
                    CAGATATAAG CGAAGAAGCT GGTTCGAGTG GAGGAGCTGC TCCTATAACT
               101
                   ACGCAACCTA CTAAAATTAC AAAAGTAGAG AAACGTGTCC AATTTAATAC
```

	201	TGCTCAAGGT	0111 01 11 10 111	CAATACACAT	GATCCAAGAA	GCAGGAGAAT
	251	TGGTAGACTC	CATTCTATCA		CGCAAGGATG	
	301	TGTTATGACA	GTTACGCAAC		CAGCGTTGCG	
5	351	AAGACTCATT		ATAAAGCGTG	TTGCTTAGAC	
3	401	ATCAGGTTGC	TGGACTTGTC		AACAGACCCA	
	451	GCCGTTGCTT	TAGCTGCTAA	AACTATGGGC	CTCAACTTAA	TGGAACTTGT
	501	AGAAAAAAAC	ACTATTTTGT	CTGAAGAACA	GAAAAATGAA	TTTAGACAGC
	551	ATTGCTCGGA	AGCTAAAACC	CAACTCTATG	GAACGATGCA	GAGCCTTTTCT
10	601	CAAAACTTTT	TCCTTGAAGG	AGTCAACAGC		GCGGTCTAGA
10	651	CGATTCACTA	GTCCAAGCCG		TATTGCTACA	
	701	AAAAAACTAT	AGAATCAGAG	GAAGCCTCAG		TGCTTCTAAT
	751	TCTACACGCA	TTCCTGCGTG			CCTTAACGAC
	801	GTCACGCCTA	TCCTGTGGAT		GCGACGCCCA	
	851	GTGCAGAGCC	CCAGTACGTA	GCAAAAAAT	ACAATGACAA	TGGCATGGCC
15	901	AGACAATTAG		AGTCACCAAT		GAGATTTTTC
	951	AGCTTTAGGT	CCTTTTGGTC	TCCTGATTGT	GAAAATGCTG	AATAGCTTTC
	1001	TCTTATCTGC	ATCACAAAGC	ACATCTTCTA	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	CACAGGTGGA
	1051	GAAATATGTT	ATACGTGCCC		GATATCGTCG	TTTTATTGAT
••	1101	GTTAGCGATT		CTGCAAATAC		TCTGTCGTAG
20	1151	ATATACACAT		CCGATTATGA		TCGACTACAA
	1201	TACAGCTATA		AACTTCAGCA		AAAAGAAACC
	1251			GTCTTGATTG		
	1301	TCCCTCTCAT	GTCAL GTCTC	GAAGAAGAAG		GCAGAATCTG
	1351			TCAACAGCGT	ATGAMAATGA	
25	1401	TTTACAAACT	Cubununuac	GGATAAAAAT	ATCCTTGAAT	GCTCGGGTCA
	 		~*************************************	TARARAT.	AAACAAAGAA	TAA

The PSORT algorithm predicts inner membrane (0.1319).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 143A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 143B) and for FACS analysis.

These experiments show that cp7407 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 144

The following C.pneumoniae protein (PID 4376432) was expressed <SEQ ID 287; cp6432>:

```
35 1 MTRSTIESSD SLCSRSFSQK LSVQTLKNLC ESRLMKITSL VIAFLTLIVG
51 GALIALAGGG VLSFPLGLIL GSVLVLFSSI YLVSCCKFFT LKEMTMTCSV
101 KSKINIWFEK QRNKDIEKAL ENPDLFGENK RNVGNRSARN QLEMILHETD
151 GIILKRYMKG AKMYFYL*
```

The cp6432 nucleotide sequence <SEQ ID 288> is:

10	1	ATGACTAGAA	GTACTATTGA	AAGCAGTGAT	TCGCTATGCT	CAAGGTCTTT
40	51	TTCTCAAAAA	TTAAGTGTCC	AGACATTAAA	AAATCTCTGT	GAAAGTAGAT
	101	TAATGAAGAT	CACTTCTCTT	GTGATTGCTT	TCCTAACTCT	AATTGTGGGG
	151	GGTGCTCTTA	TAGCTTTAGC	AGGAGGGGG	GTTCTTTCTT	TCCCTCTTCC
	201	GCTAATCTTA	GGAAGCGTAC	TCGTTTTGTT	TTCTTCTATC	ጥልጥጥጥA Cጥርጥ
4 =	251	CTTGTTGTAA	ATTTTTTACT	TTAAAAGAGA	TGACAATGAC	CTGTAGTGTC
45	301	AAATCTAAAA	TCAATATATG	GTTTGAAAAG	CAACGAAACA	AAGACATCGA
	351	AAAGGCATTA	GAGAATCCAG	ATCTCTTTGG	AGAAAAMAAG	AGANATICTICOA
	401	GAAATCGTTC	GGCAAGAAAT	CAACTAGAAA	ጥርልጥርጥጥልርል	CCACACHCAC
	451	GGAATTATTT	TGAAAAGATA	TATGAAAGGA	CCTAAAATCT	y Cummun y manu
•	501	ATGA			OCIMMIGI	WCITITATTT

50 The PSORT algorithm predicts inner membrane (0.5394).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 144A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 144B) and for FACS analysis.

These experiments show that cp6432 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 145

The following C.pneumoniae protein (PID 4376433) was expressed <SEQ ID 289; cp6433>:

```
5 1 MNWVPKTIDH VDPESEIDIR KVVSCYKLIK ECQPEFRSLI SELLGVIRCG
51 LRLLKRSKYQ EQARTVSDED APLFCLTRSY YQDGYLTPLR AGPRDLINHY
101 IHLRRRENPK HFFSPKHPCY YARLAFNESV CVYRELFDIE RLTKMYVEGD
151 YSKEQEKNLQ AILSFVKTLD EGKDFLIEHK DTDLIGRGFT DVFCT*

The cp6433 nucleotide sequence <SEQ ID 290> is:

0 1 ATGAATTGGG TTCCAAAAAC AATAGACCAT GTAGATCCAG AATCAGAGAT
```

10						
10	1	ATGAATTGGG	TTCCAAAAAC	AATAGACCAT	GTAGATCCAG	AATCAGAGAT
	51	AGATATACGT	AAAGTCGTCT	CCTGCTATAA	GTTGATAAAA	GAATGTCAAC
	101	CTGAATTTCG	ATCTCTTATA	AGTGAATTAC	TAGGAGTGAT	TICCCTICTICAAC
	151	TTAAGACTAT	TAAAACGTTC	TAAGTATCAA	GAACAGGCTTA	CAACHCHARC
15	201	TGATGAAGAT	GCACCTCTTT	TCTGCCTGAC	TCCTTCTCTTCTTT	GAACTGTATC
	251	GTTATCTCAC	GCCATTAAGA	GCAGGACCTC	COCAMOMBA	TATCAAGATG
	301	ATACACTTGC	GTCGCCGAGA	GAATCCTAAG	GIGATCTTAT	AAATCACTAT
	351	ጥርር አጥርጥጥአጥ	TA TO COTO CA TO	UMATCCIAAG	CATTTTTCA	GTCCTAAGCA
		TOCHIOTIMI	TAIGCICGAT	IGGCTTTTAA	TGAGTCAGTG	TGTGTCTATA
	401	GAGAACTCTT	TGATATAGAG	CGACTTACAA	AAATGTATGT	CGAGGGTGAT
20	451	TATTCTAAAG	AACAAGAGAA	AAACCTACAG	GCTATTCTTA	CHALLACTOR A
	501	AACTCTAGAT	GAAGGAAAGG	ACTTTCTTAT	TGAACATAAA	CATACCCARC
	551	TCATTGGGAG	AGGTTTTACT	GATGTGTTCT	GCACTTAA	OHINCCOMIC

The PSORT algorithm predicts cytoplasm (0.4068).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 145A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 145B) and for FACS analysis.

These experiments show that cp6433 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 146

25

The following C.pneumoniae protein (PID 4376643) was expressed <SEQ ID 291; cp6643>:

				-	
30 1 51 101 151	IILFCFLAAV	CLIVLSLLAI	RPALOFTLET	CHPAATAUT.A	TACCOUNT T TAXATA

The cp6643 nucleotide sequence <SEQ ID 292> is:

25						
35	1	ATGGGATATC	TTCCAGTATC	TGCTACGGAC	Chalcadanatac	AAAGTCCAGC
	51	CGCTCCCTTA	ATCAATAGCG	CAAACACACA	AAATCAGAAA	CHCARACT
	101	THE A A COCCA A A	007000	OTHER CACA	MAMICAGAAA	CTCATAGAAC
		TCAAGGGGAA	GCAGCAAGCT	GAGTCTTCTC	CACGGACAAT	CACTTCTGTC
	151	ATATTGGAAG	TTCTCCTAGT	GATCGGATGC	TGCCTCATAG	THE TOTAL THE THE
	201	AጥጥGGC Δ ΔጥC	CCCCCTCCTC	MCC A Amma a c	TCTAGAAACT	TICTINGIII
40	053		COCCCIGCIC	I GCHAT TCAC	TCTAGAAACT	GGACATCCAG
40	251	CTGCCATTGC	AGTCCTTGCT	GTCTCAGGAA	CAATTCTATT	CCTCCCTCTT
	301	ATCATCTTGT	Պարազարագր	ACC ACCROMO	CCATTCGCTG	0010001011
	351			MGCMGCTGTG	CCATTCGCTG	CTAAGAAAAC
		TTATAAATAT	GTTAAGACGG	TTGATGACTA	TGCTTCTTGG	$C\Delta TTCTCTCTTC$
	401	AGCAAACACC	GACCCMACCC	A COLA MORRORO	2001101100	CHICICATC
	453		GIACCC TAGGC	ACTAIC LILL.	CAGGTATCGT	CTATGCAGAA
	451	TCCCAGGCGC	AATTATAG			

45 The PSORT algorithm predicts inner membrane (0.6859).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 146A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 146B) and for FACS analysis.

These experiments show that cp6643 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 147

5

The following C.pneumoniae protein (PID 4376722) was expressed <SEQ ID 293; cp6722>:

```
1 VSSTLNGVFP SSLPEESADL FITNKEIVAL GEKGNVFLTH SIPMHIAAIT
51 ILVIVALAGI AIICLGCYSQ SILLIAVGIV LTILTLLCLQ ALVGFIKFIR
101 QLPQQLHTTV QFIREKIRPE SSLQLVTNAQ RKTTQDTLKL YEELCDLSQK
151 EFKLQSTLYQ KRFELSHKNE KTNQN*
```

The cp6722 nucleotide sequence <SEQ ID 294> is:

```
GTGTCTAGTA CTTTAAACGG GGTATTTCCC TCATCCCTTC CGGAAGAGTC
                    TGCTGATTTA TTCATTACGA ATAAGGAGAT CGTAGCTTTG GGGGAGAAGG
                51
15
                101
                    GCAATGTTTT TCTCACCCAC TCCATTCCTA TGCATATTGC TGCGATTACG
                    ATCTTAGTGA TTGTAGCTCT TGCTGGAATC GCTATTATCT GTTTGGGTTG
                151
                201
                    CTATAGCCAA AGCATTCTGT TGATTGCCGT TGGCATTGTT CTTACTATTT
                    TGACTCTTCT CTGCCTACAA GCCTTGGTAG GATTTATTAA ATTCATCCGG
               251
                    CAGCTCCCTC AGCAGCTCCA TACGACAGTA CAATTTATCA GGGAGAAGAT
               301
20
               351
                    TCGACCTGAA TCCTCTCTAC AGCTTGTAAC CAATGCACAG AGAAAAACCA
               401
                    CTCAAGATAC GCTAAAGTTA TACGAAGAAC TCTGCGACCT CTCACAAAAA
                    GAGTTCAAAC TGCAATCAAC TCTTTATCAA AAACGTTTTG AGCTTTCTCA
               451
                    CAAGAATGAA AAGACAAATC AAAACTAG
```

The PSORT algorithm predicts inner membrane (0.6668).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 147A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 147B) and for FACS analysis.

These experiments show that cp6722 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

30 Example 148

The following C.pneumoniae protein (PID 4377253) was expressed <SEQ ID 295; cp7253>:

```
1 MSELAPCSTG LQMVPHTQVH HALDTRRVIL TIAACLSLIA GIVLVGLGAA
51 AILPSLFGVI GGMILILFSS IALIYLYKKT REVDQIALEP LPEMISKDQS
101 IIDFVKTRDY ASLEKKATFA YTHTHYYDGS MVFYREIPRF MLGSYLALRK
35 151 DMDRQALF*
```

The cp7253 nucleotide sequence <SEQ ID 296> is:

```
ATGAGCGAGC TCGCCCCTG CTCGACAGGA TTGCAGATGG TCCCCCATAC
                    GCAGGTCCAT CATGCCCTTG ATACGCGGAG AGTCATTCTA ACGATAGCCG
               1.01
                    CCTGTCTGTC TTTAATTGCA GGAATCGTGT TGGTTGGCTT AGGTGCTGCA
40
                    GCAATCCTGC CCTCGCTTTT TGGAGTCATT GGAGGAATGA TTCTTATTCT
               151
                    GTTTTCTTCG ATCGCCCTCA TTTATTTATA CAAGAAGACA AGGGAGGTGG
               201
               251 ATCAGATTGC TCTGGAGCCT CTTCCTGAGA TGATTTCTAA AGATCAAAGC
                    ATTATAGATT TTGTAAAGAC ACGAGACTAT GCATCTTTAG AAAAGAAAGC
               301
                    GACCTTTGCT TATACTCATA CTCATTATTA CGATGGAAGC ATGGTCTTCT
               351
45
                    ATAGGGAGAT CCCTAGATTT ATGTTAGGCT CTTATCTCGC GCTTCGCAAA
               451
                    GACATGGACC GCCAAGCTCT TTTTTGA
```

The PSORT algorithm predicts inner membrane (0.5394).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 148A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 148B) and for FACS analysis.

These experiments show that cp7253 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 149

The following C.pneumoniae protein (PID 4376264) was expressed <SEQ ID 297; cp6264>:

```
VISGLLFLLV RREVPTVRSE EIPRGVSVTP SEEPALEKAQ KEPETKKILD
                51
                    RLPKELDQLD TYIQEVFACL ERLKDPKYED RGLLTEAKEK LRVFDVVEKD
10
                    MMSEFLDIQR VLNEEAYYVE HCQDPLENIA YEIFSSQELR DYYCAGVCGY
               151
                    LPSGDARADR LKRSVKEVMD RFMRVTWKSW EASVMLDHSY GVARELFKKA
               201
                    VGVLEESVYK ILFKSYRDAF YECEKAKIQR DGRFKWL*
     The cp6264 nucleotide sequence <SEQ ID 298> is:
                    GTGATTTCGG GACTTCTATT CCTTCTAGTA AGACGAGAGG TTCCGACAGT
15
                51
                    ACGTTCAGAG GAAATTCCCA GAGGGGTTTC TGTGACCCCT TCTGAAGAGC
               101
                    CTGCTCTAGA GAAGGCTCAA AAAGAACCGG AGACAAAGAA AATTTTAGAT
               151
                    CGGTTGCCGA AGGAATTGGA TCAGTTAGAT ACGTATATTC AGGAAGTGTT
                    TGCATGTTTA GAGAGGCTGA AGGATCCTAA GTACGAAGAT CGAGGTCTTT
               201
               251
                    TAACAGAGGC GAAGGAGAAA CTTCGAGTTT TTGACGTTGT TGAGAAAGAT
20
               301
                    ATGATGTCAG AGTTTTTAGA CATACAACGA GTGTTGAATG AGGAAGCATA
               351
                    TTATGTAGAA CATTGTCAAG ATCCCCTAGA GAATATAGCC TACGAGATTT
               401
                    TCTCTTCCCA AGAGCTTCGT GATTACTACT GTGCAGGGGT GTGTGGGTAT
               451
                    TTGCCTTCTG GGGATGCTCG AGCGGATCGA TTAAAGAGAT CAGTTAAGGA
               501
                    GGTAATGGAT CGCTTTATGA GGGTGACCTG GAAATCTTGG GAGGCATCAG
25
               551
                    TCATGTTGGA TCATAGCTAT GGGGTAGCGC GAGAGTTATT CAAGAAGGCA
               601
                    GTAGGAGTAC TAGAGGAGAG TGTCTATAAA ATTCTGTTTA AGAGCTATAG
                    AGATGCGTTT TATGAATGTG AGAAGGCAAA GATCCAGAGG GATGGGCGTT
               651
               701
                    TCAAATGGTT ATAG
```

The PSORT algorithm predicts cytoplasm (0.2817).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 149A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 149B) and for FACS analysis.

These experiments show that cp6264 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

35 Example 150

The following C.pneumoniae protein (PID 4376266) was expressed <SEQ ID 299; cp6266>:

```
1 MLLLISGALF LTLGIPGLSA AISFGLGIGL SALGGVLMIS GLLCLLVKRE
51 IPTVRPEEIP EGVSLAPSEE PALQAAQKTL AQLPKELDQL DTDIQEVFAC
101 LRKLKDSKYE SRSFLNDAKK ELRVFDFVVE DTLSEIFELR QIVAQEGWDL
151 NFLINGGRSL MMTAESESLD LFHVSKRLGY LPSGDVRGEG LKKSAKEIVA
201 RLMSLHCEIH KVAVAFDRNS YAMAEKAFAK ALGALEESVY RSLTQSYRDK
251 FLESERAKIP WNGHITWLRD DAKSGCAEKK LGMPRNVGRN LGKQSFG*
```

The cp6266 nucleotide sequence <SEQ ID 300> is:

```
45 1 ATGCTCTTAC TGATTTCAGG AGCTCTCTT CTGACGTTAG GGATTCCAGG
51 ATTGAGTGCA GCAATTTCTT TTGGATTAGG CATCGGTCTC TCCGCATTAG
101 GAGGAGTGCT GATGATTTCG GGACTACTAT GTCTTTTAGT AAAACGAGAG
151 ATTCCGACAG TACGACCAGA AGAAATTCCT GAAGGGGTTT CGCTGGCTCC
```

-169-

```
201 TTCTGAGGAG CCAGCTCTAC AGGCAGCTCA GAAGACTTTA GCTCAGCTGC
               251 CTAAGGAATT GGATCAGTTA GATACAGATA TTCAGGAAGT GTTCGCATGT
               301 TTAAGAAAGC TGAAAGATTC TAAGTATGAA AGTCGAAGTT TTTTAAACGA
               351 TGCTAAGAAG GAGCTTCGAG TTTTTGACTT TGTGGTTGAG GATACCCTCT
 5
               401 CGGAGATTTT CGAGTTGCGG CAGATTGTGG CTCAAGAGGG ATGGGATTTA
               451 AACTTTTGA TCAATGGGGG ACGAAGCCTC ATGATGACTG CAGAATCTGA
               501 ATCGCTTGAT TTGTTTCATG TATCGAAGCG GCTAGGGTAT TTACCTTCTG
               551
                    GGGATGTTCG AGGGGAGGG TTAAAGAAAT CTGCGAAGGA GATAGTCGCT
                    CGTTTGATGA GCTTGCATTG CGAGATTCAC AAGGTGGCGG TAGCGTTTGA
               601
10
               651
                    TAGGAATTCC TATGCGATGG CAGAAAAGGC GTTTGCGAAA GCGTTGGGAG
               701
                    CTTTAGAAGA GAGTGTGTAT CGGAGTCTGA CGCAGAGTTA TAGAGATAAA
                    TTTTTGGAGA GCGAGAGGGC GAAGATCCCA TGGAATGGGC ATATAACCTG
               751
               801
                    GTTAAGAGAT GATGCGAAGA GTGGGTGTGC TGAAAAGAAG CTCGGGATGC
               851
                    CGAGGAACGT TGGAAGAAAT TTAGGAAAGC AGTCTTTTGG GTAG
```

15 The PSORT algorithm predicts inner membrane (0.3590).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 150A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 150) and for FACS analysis.

These experiments show that cp6266 is a surface-exposed and immunoaccessible protein and that they it is a useful immunogen. These properties are not evident from the sequence alone.

Example 151

25

The following C.pneumoniae protein (PID 4376895) was expressed <SEQ ID 301; cp6895>:

```
1 MKIKKSFQYS LCQAKRFQNM LPNHFDPCLQ PVNLQLKQDR LAYGELIILL
51 SKYQQKTFSS LLKEETCSLN RAKQHLLYKI LRDFNTMQHL RSLGLNGWGE
.01 IPMSPCL*
```

The cp6895 nucleotide sequence <SEQ ID 302> is:

	1.	ATGAAGATTA	AAAAATCTTT	TCAATACAGT	TTATGCCAAG	CAAAGAGATT
	51	TCAGAACATG				
	101					
30	151	TCTAAATATC	AACAAAAGAC	CTTTTCCTCT	TTGTTGAAGG	AAGAAACATG
	201	TTCTCTTAAT				
	251	TTAATACTAT				
	301	ATCCCTATGA	GTCCTTGCCT	CTAA		

The PSORT algorithm predicts cytoplasm (0.3264).

35 The protein was expressed in *E.coli* and purified as a his-tag product (Figure 151A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 151B) and for FACS analysis.

These experiments show that cp6895 is a surface-exposed and immunoaccessible protein and that it is a useful immunogen. These properties are not evident from the sequence alone.

40 Example 152 and Example 153

The following C.pneumoniae protein (PID 4376282) was expressed <SEQ ID 303; cp6282>:

```
45 MSLLNLPSSQ DSASEDSTSQ SQIFDPIRNR ELVSTPEEKV RQRLLSFLMH
51 KLNYPKKLII IEKELKTLFP LLMRKGTLIP KRRPDILIIT PPTYTDAQGN
LICHARY NQNALKQLLS YNYSIGATCI AMAGKHSQVS
LIST ALFNPKTQTL DFYPGLPEYS QLLNYFISLN L*
```

-170-

The cp6282 nucleotide sequence <SEQ ID 304> is:

```
ATGTCCTTAT TGAACCTTCC CTCAAGCCAG GATTCTGCAT CTGAGGACTC
                    CACATCGCAA TCTCAAATCT TCGATCCCAT TAGAAATCGG GAGTTAGTTT
                51
                    CTACTCCCGA AGAAAAAGTC CGCCAAAGGT TGCTCTCCTT CCTAATGCAT
               101
 5
               153
                    AAGCTGAACT ACCCTAAGAA ACTCATCATC ATAGAAAAAG AACTCAAAAC
                    TCTTTTTCCT CTGCTTATGC GTAAAGGAAC CCTAATCCCA AAACGCCGCC
               201
                    CAGATATTCT CATCATCACT CCCCCCACAT ACACAGACGC ACAGGGAAAC
               251
               301
                    ACTCACAACC TAGGCGACCC AAAACCCCTG CTACTTATCG AATGTAAGGC
                    CTTAGCCGTA AACCAAAATG CACTCAAACA ACTCCTTAGC TATAACTACT
               351
10
               401
                    CTATCGGAGC CACCTGCATT GCTATGGCAG GGAAACACTC TCAAGTGTCA
               451
                    GCTCTCTTCA ATCCAAAAAC ACAAACTCTT GATTTTTATC CTGGCCTCCC
               501
                    AGAGTATTCC CAACTCCTAA ACTACTTTAT TTCTTTAAAC TTATAG
```

The PSORT algorithm predicts cytoplasm (0.362).

The following C.pneumoniae protein (PID 4377373) was also expressed <SEQ ID 305; cp7373>:

```
1 MSTTTVKHFI HTASRWEPVL KEIVASNYWH AQWINTLSFL ENSGAKKISA
51 SEHPTEVKEE VLKHAAEEFR HGHYLKTQIS RISETSLPDY TSKNLLGGLL
101 TKYYLHLLDL RTCRVLENEY SLSGQTLKTA AYILVTYAIE LRASELYPLY
151 HDILKEAQSK ITVKSIILEE QGHLQEMERE LKDLPHGEEL LGYACQFEGE
201 LCLQFVERLE QMIFDPSSTF TKF*
```

20 The cp7373 nucleotide sequence <SEQ ID 306> is:

```
1 ATGTCTACAA CCACAGTAAA ACACTTTATC CACACAGCCT CTCGTTGGGA
                51
                    GCCCGTTCTC AAAGAGATCG TAGCTTCCAA CTATTGGCAT GCACAATGGA
               101
                    TAAATACCCT GTCCTTTTTA GAAAATAGTG GAGCAAAAAA AATCTCCGCA
               151
                    AGTGAACATC CTACGGAGGT AAAGGAAGAA GTTTTAAAAC ATGCTGCTGA
25
               201 AGAATTTCGT CATGGTCACT ATCTAAAAAC TCAGATTTCT AGAATCTCAG
                    AGACTTCTCT CCCTGACTAT ACATCTAAAA ATCTTCTGGG AGGCTTACTT
               251
               301 ACAAAATATT ACCTCCATCT TCTAGATTTA AGGACGTGCC GAGTACTGGA
               351 AAATGAATAC TCCCTATCGG GACAAACGTT AAAAACTGCA GCGTATATTT
                    TAGTTACCTA CGCAATCGAA CTTCGTGCTT CTGAACTTTA TCCTCTGTAT
               401
30
               451 CACGATATTC TGAAAGAAGC TCAAAGTAAA ATAACGGTAA AATCCATTAT
               501
                    CTTAGAAGAG CAAGGCCATC TGCAAGAGAT GGAACGTGAA CTTAAAGATC
                    TCCCCCACGG GGAGGAACTC TTAGGCTATG CTTGCCAATT CGAAGGGGAG
               551
                    CTTTGCTTGC AGTTTGTAGA GAGATTAGAA CAAATGATCT TCGATCCTTC
               601
                    CTCGACTTTT ACAAAGTTCT AG
               651
```

35 The PSORT algorithm predicts cytoplasm (0.1069).

The proteins were expressed in E.coli and purified as his-tag products (Figure 152A; 6282 = 1888 & 9; 7373 = 18888 and 7373 = 18888 Western blots (Figures 152B & 153) and for FACS analysis.

These experiments show that cp6282 & cp7373 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from the sequence alone.

Example 154 , Example 155 , Example 156 , Example 157 and Example 158

The following C.pneumoniae protein (PID 4376412) was expressed <SEQ ID 307; cp6412>:

```
1 MSSSEVVFQT VHGLGFGGLS SKSVVPFKKS LSDAPRVVCS ILVLTLGLGA
51 LVCGIAITCW CVPGVILMGG ICAIVLGAIS LALSLFWLWG LFSNCCGSKR
101 VLPGEGLLRD KLLDGGFSRA APSGMGLPGD GSPRASTPSC LEELQAEIQA
151 VTQAIDQMSD D*
```

The cp6412 nucleotide sequence <SEQ ID 308> is:

45

50

```
1 ATGAGCAGTT CGGAAGTTGT TTTCCAGACA GTTCATGGCC TTGGCTTTGG
                     TGGATTGTCT TCAAAAAGTG TTGTCCCTTT TAAGAAAAGT CTTTCGGATG
                 51
                     CGCCCCGTGT TGTGTGCTCG ATTTTAGTTT TGACTCTGGG GTTGGGAGCG
                101
                151 CTTGTTTGTG GTATTGCCAT TACTTGTTGG TGTGTCCCGG GAGTTATTTT
  5
                201 AATGGGGGA ATTTGCGCTA TAGTTTTAGG TGCAATTTCT TTAGCTTTAA
                     GTCTATTTTG GTTGTGGGGT TTATTTTCTA ATTGTTGTGG TTCTAAGAGA
                251
                301
                     GTTTTACCGG GTGAGGGATT GCTACGGGAT AAGCTTTTAG ATGGTGGATT
                     TTCAAGAGCG GCACCTTCAG GAATGGGACT TCCGGGTGAT GGATCTCCAA
                351
                     GAGCGTCAAC GCCATCTTGC CTAGAGGAAC TTCAAGCAGA GATACAGGCA
10
                451
                     GTTACTCAAG CTATCGATCA GATGTCAGAT GATTGA
      The PSORT algorithm predicts inner membrane (0.4864).
      The following C.pneumoniae protein (PID 4376431) was also expressed <SEQ ID 309; cp6431>:
                  1 LRAGGSLVTT YPKEGQRLRS PEQLRVLDDL VQSYPNHLHA IELDCGAIPQ
                 51 DLIGATYIIT FADFSTYILS LRSYQANSPS DDTWGIWFGS IDDPVQAVIS
15
                101 FLKDHGFALP STLAQDPLLC TNK*
      The cp6431 nucleotide sequence <SEQ ID 310> is:
                  1 TTGCGAGCAG GAGGTAGTCT TGTTACAACA TACCCTAAGG AAGGTCAGAG
                 51 ATTGCGCTCC CCAGAACAGT TAAGAGTTCT GGATGATTTA GTGCAAAGCT
                     ATCCAAATCA CCTACATGCG ATTGAACTTG ATTGTGGTGC AATCCCTCAA
                101
20
                     GATTTGATCG GAGCCACCTA TATCATCACG TTCGCCGATT TTTCCACCTA
                151
                     TATTCTCTCT TTAAGAAGCT ACCAAGCCAA TTCTCCCTCC GATGATACAT
                201
                     GGGGGATTTG GTTTGGATCT ATTGACGATC CTGTTCAAGC AGTCATATCA
                251
                301
                     TTTTTAAAAG ATCATGGATT TGCTCTTCCC TCGACCTTAG CTCAAGATCC
                351
                     TTTGCTTTGT ACTAACAAGT AA
      The PSORT algorithm predicts cytoplasm (0.2115).
25
     The following C.pneumoniae protein (PID 4376443) was also expressed <SEQ ID 311; cp6443>:
                  1 MIMTTISNSP SPALNPELSL IPPPTLVSSG TQTSLAYTIP AQGRRSTLRI
                    ILDIFIIILG LATIISTFIV IFFLNGLNLL STPSIISSSC LIIVGLLFLI
                101
                    MGLYFMISSL DQGLVGLLQK ELSQAEEREE EYIQEIEALR GAPRAESPTE
30
                151 SPSTWL*
      The cp6443 nucleotide sequence <SEQ ID 312> is:
                    ATGATTATGA CTACTATATC TAACTCACCC TCCCCTGCAT TGAATCCCGA
                    ACTITCCCTT ATTCCTCCAC CAACACTTGT ATCTTCAGGT ACGCAAACAT
                 51
                101
                    CTCTAGCTTA TACGATCCCC GCACAAGGAC GAAGATCCAC CCTACGTATT
35
                    ATATTAGATA TATTCATTAT CATTCTTGGT TTAGCTACGA TCATTTCTAC
                151
                    CTTTATTGTT ATTTTCTTTT TAAATGGGCT GAACTTGCTC TCGACCCCAT
                201
                    CTATTATCTC TTCGTCATGT TTAATCATTG TTGGATTGCT TTTTTTGATT
                301
                    ATGGGGTTAT ATTTCATGAT CTCGAGTTTG GATCAGGGGC TTGTAGGCCT
                    TCTGCAAAAG GAACTCTCTC AAGCCGAAGA AAGAGAAGAA GAGTATATCC
               351
40
                    AGGAAATCGA AGCTTTAAGA GGAGCTCCTA GAGCAGAATC TCCCACAGAG
                401
               451
                    TCTCCTAGTA CCTGGTTATG A
     The PSORT algorithm predicts inner membrane (0.5585).
     The following C.pneumoniae protein (PID 4376496) was also expressed <SEQ ID 313; cp6496>:
                    MLIGRYSSDD QFTEATKNTP TIIKLGFVRD NLEGLTNPIS EIVSETSSSI
45
                    KDSVLRSLPI LGSILGCARL YSTLSTNDPL DETQEKIWHT IFGALETLGL
                    GILILLFKII FVILHCIFHL VIGFCK*
     The cp6496 nucleotide sequence <SEQ ID 314> is:
                    ATGCTAATAG GCAGATACAG TAGTGATGAC CAATTCACTG AAGCAACAAA
                51
                    AAACACCCCA ACCATAATTA AGCTAGGTTT TGTTAGAGAT AATCTCGAGG
50
               101
                    GATTAACGAA CCCTATCTCT GAAATCGTCT CGGAAACCTC CTCTTCTATT
               151
                    AAAGATTCCG TTCTTCGCTC TCTTCCTATT TTAGGGTCCA TTTTAGGATG
                    CGCCCGACTT TACAGCACAC TCTCTACAAA TGATCCTCTT GACGAAACTC
               201
               251
                    AAGAAAAGAT TTGGCACACT ATATTTGGAG CCTTAGAAAC CTTAGGCTTA
               301
                    GGGATTCTCA TCCTCTTATT TAAAATTATT TTTGTTATAT TACACTGCAT
55
               351 ATTTCATCTA GTTATTGGGT TCTGCAAATA A
```

5

20

25

30

-172-

The PSORT algorithm predicts inner membrane (0.5989).

The following C.pneumoniae protein (PID 4376654) was also expressed <SEQ ID 315; cp6654>:

```
1 MKTKMNSRKK AGQWAIFNSP TPGVSSTLVL AWTPWGYYDK DVQDILERKD
51 PMSSSLSEKD SKEFLKNLFV DLLENGFTSV HIHAEBAFTP LDHTGKPHFK
101 RDNVYLPGKL LGALNEAAVQ ANVSADTQFT LFLTQDECNP FHDKKRG*
```

The cp6654 nucleotide sequence <SEQ ID 316> is:

```
ATGAAAACTA AAATGAACTC TAGAAAAAAA GCAGGTCAAT GGGCAATTTT
                51
                    CAATTCTCCA ACTCCTGGTG TCAGTTCAAC TTTAGTTTTA GCATGGACTC
                    CTTGGGGTTA TTACGACAAG GATGTACAAG ATATCTTAGA AAGAAAAGAT
               101
10
                    CCGATGAGCT CTTCGCTTTC TGAAAAAGAC TCAAAGGAGT TCTTGAAAAA
               151
               201 TCTGTTTGTA GATCTCTTAG AAAATGGCTT CACATCAGTA CATATTCACG
               251
                    CAGAAGAAGC TTTCACTCCT CTTGATCATA CCGGGAAACC TCACTTTAAA
               301 AGAGACAATG TGTACTTACC CGGAAAGTTG TTAGGCGCCT TGAATGAGGC
               351
                    TGCGGTACAA GCCAATGTAA GTGCGGATAC TCAATTTACA TTGTTCCTTA
15
               401
                    CTCAAGATGA GTGCAATCCT TTTCATGATA AGAAAAGAGG TTAA
```

The PSORT algorithm predicts cytoplasm (0.0730).

The proteins were expressed in E.coli and purified as his-tag products (Figure 154A; 6412 = lanes 2-3; 6431 = lanes 11-12; 6443 = lanes 5-6; 6496 = lanes 8-9; 6654 = lane 10; markers in lanes 1, 4, 7). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 154B, 155, 156, 157 & 158) and for FACS analysis.

These experiments show that cp6412, cp6431, cp6443, cp6496 & cp6654 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from their sequences alone.

Example 159 and Example 160

The following C.pneumoniae protein (PID 4376477) was expressed <SEQ ID 317; cp6477>:

1 LLKFFLVCEE LCILTVATHR ALLETPLALS FFKELKTKYV YRAKDILQLH

51 NYKGFTILNT SPLCS*

The cp6477 nucleotide sequence <SEQ ID 318> is:

1 TTGCTAAAGT TCTTTCTAGT ATGTGAAGAG TTATGTATAC TTACTGTTGC
51 TACACATAGA GCTCTCTTAG AAACTCCTTT AGCTCTATCA TTTTTTAAAG
101 AACTTAAGAC AAAATATGTC TACAGGGCGA AAGACATACT ACAACTACAT
151 AACTATAAAG GATTTACTAT CCTTAATACA TCACCGTTAT GTTCTTAA

The PSORT algorithm predicts inner membrane (0.128).

The following C.pneumoniae protein (PID 4376435) was also expressed <SEQ ID 319; cp6435>:

1 LWSHFPRGFF MLPFCPTILL AKPFLNSENY GLERLAATVD SYFDLGQSQI 51 VFLSKQDQGI TVEELSAKDR KFKPGSMNCT LYTEDPILPA HNSFSNCSDI 101 QMRTPISPIH *

The cp6435 nucleotide sequence <SEQ ID 320> is:

```
40 1 TTGTGGTCGC ATTTCCCAAG AGGATTTTT ATGCTCCTT TTTGCCCTAC
51 CATCCTTCTT GCTAAACCTT TTTTAAATAG CGAGAATTAC GGCTTAGAAC
101 GTTTAGCTGC AACCGTAGAT TCTTATTTTG ATCTGGGACA GTCTCAAATA
151 GTCTTCCTAA GCAAACAGGA TCAAGGAATC ACTGTGGAAG AATTGAGTGC
201 TAAAGATAGG AAATTCAAGC CAGGCTCTAT GAACCTGTACA CTGTACACTG
45 251 AAGATCCTAT CTTACCTGCT CATAATTCCT TTAGTAATTG CTCTGATATT
301 CAAATGCGTA CTCCGATTAG CCCTATACAT TAA
```

The PSORT algorithm predicts periplasmic space (0.4044).

The proteins were expressed in E.coli and purified as his-tag products (Figure 159A; 6435 = lanes 2-4; 6477 = lanes 5-7). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 159B & 160) and for FACS analysis.

5 These experiments show that cp6477 & cp6435 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from the sequences alone.

Example 161 and Example 162 and Example 163

15

The following C.pneumoniae protein (PID 4376441) was expressed <SEQ ID 321; cp6441>:

```
1 VEAGANVLVI DTAHAHSKGV FQTVLEIKSQ FPQISLVVGN LVTAEAAVSL
51 AEIGVDAVKV GIGPGSICTT RIVSGVGYPQ ITAITNVAKA LKNSAVTVIA
101 DGRIRYSGDV VKALAAGADC VMLGSLLAGT DEAPGDIVSI DEKLFKRYRG
151 MGSLGAMKQG SADRYFQTQG QKKLVPGGVE GLVAYKGSVH DVLYQILGGI
201 RSGMGYVGAE TLKDLKTKAS FVRITESGRA ESHIHNIYKV QPTLNY
```

The cp6441 nucleotide sequence <SEQ ID 322> is:

```
GTGGAAGCTG GAGCAAATGT TCTAGTCATT GACACAGCTC ATGCACACTC
                 51
                    TAAAGGAGTA TTCCAAACAG TTTTAGAAAT AAAATCCCAG TTCCCACAAA
                    TTTCTTTAGT TGTAGGGAAT CTTGTTACAG CTGAAGCCGC AGTTTCCTTA
                101
20
                151
                    GCTGAGATTG GAGTTGACGC TGTAAAGGTA GGTATTGGCC CAGGATCTAT
                    CTGTACAACT AGAATCGTTT CAGGGGTCGG TTATCCACAA ATTACTGCCA
                201
                    TTACAAACGT AGCAAAAGCT CTTAAAAACT CTGCCGTGAC TGTAATTGCT
                251
                301
                    GATGGGAGAA TCCGCTATTC TGGAGATGTG GTAAAAGCAT TAGCAGCAGG
                    AGCAGACTGT GTCATGCTAG GAAGTTTGCT TGCAGGGACT GATGAAGCTC
                351
25
                    CTGGGGATAT CGTTTCTATC GATGAGAAGC TTTTTAAAAG GTACCGCGGC
                401
                    ATGGGATCTT TAGGCGCTAT GAAACAAGGA AGTGCTGACC GGTATTTTCA
                451
                    AACACAGGGA CAGAAAAAGC TGGTTCCTGG GGGAGTTGAA GGACTAGTCG
                    CTTATAAAGG CTCTGTCCAC GATGTCCTCT ATCAAATTTT AGGAGGAATA
                551
                    CGCTCAGGTA TGGGGTATGT TGGAGCTGAA ACTCTCAAAG ATTTAAAAAC
               601
30
                651
                    TAAGGCTTCC TTTGTTCGAA TTACTGAATC TGGAAGAGCT GAAAGTCATA
                    TTCATAATAT TTACAAAGTT CAACCAACCT TAAATTATTA A
```

The PSORT algorithm predicts bacterial inner membrane (0.132).

The following C.pneumoniae protein (PID 4376748) was also expressed <SEQ ID 323; cp6748>:

```
1 LFSEGTALNL FRIFAPLRNR VTTEYSRARQ PDLHRIAIVY IGVLDSESSK
51 ILERLISYMS CIYSESQMYL RFFMGKNVNQ SAVLSKLHVE NLHIRCGFFS
101 EDAVPESEPF DLSIYVHTDR SCPLPTKKRS SSWELQTVEL PESIYPQSEF
151 LLMRPRMLS*
```

The cp6748 nucleotide sequence <SEQ ID 324> is:

```
TTGTTCTCTG AGGGGACAGC TCTAAATTTA TTTCGTATAT TTGCTCCACT
40
                    ACGCAACCGT GTGACTACAG AATACAGTCG TGCTAGGCAA CCCGACCTAC
                51
               101 ATAGAATTGC CATCGTCTAT ATAGGAGTTC TCGATTCAGA AAGTTCCAAG
               151 ATCCTAGAGC GGCTAATCTC TTATATGAGT TGTATCTATT CTGAATCGCA
                    AATGTATTTA AGATTCTTTA TGGGCAAGAA TGTAAATCAA AGTGCTGTAC
               201
                    TCTCAAAATT ACATGTAGAA AATCTGCACA TCCGTTGTGG GTTTTTCAGC
45
                    GAGGATGCTG TTCCAGAGAG TGAGCCCTTC GATCTCTCCA TCTACGTGCA
               301
                    CACAGATCGT AGCTGTCCTC TCCCTACGAA AAAACGGAGC AGCTCCTGGG
               351
                    AACTCCAAAC TGTAGAACTC CCAGAGTCAA TATATCCACA GTCGGAATTC
               451 CTATTGATGA GACCTCGAAT GCTTTCGTAG
```

The PSORT algorithm predicts cytoplasm (0.170).

The following C.pneumoniae protein (PID 4376881) was also expressed <SEQ ID 325; cp6881>:

-174-

```
1 MRPHRKHVSS KSLALKQSAS THVEITTKAF RLSMPLKQLI LEKSDHLPPM
                     ETIRVVLTSH KDKLGTEVHV VASHGKEILQ TKVHNANPYT AVINAFKKIR
                 51
                     TMANKHSNKR KDRTKHDLGL AAKEERIAIQ EEQEDRLSNE WLPVEGLDAW
                101
                     DSLKTLGYVP ASAKKKISKK KMSIRMLSQD EAIRQLESAA ENFLIFLNEQ
                151
 5
                201 EHKIQCIYKK HDGNYVLIEP SLKPGFCI*
     The cp6881 nucleotide sequence <SEQ ID 326> is:
                     ATGAGACCTC ATCGTAAACA CGTATCATCT AAAAGCTTAG CTTTAAAGCA
                     ATCTGCATCA ACTCATGTAG AGATCACAAC AAAAGCCTTT CGTCTCTCTA
                101
                     TGCCTCTAAA ACAGCTGATC CTAGAGAAAA GCGACCACCT CCCCCCTATG
10
                     GAAACAATCC GTGTGGTGCT AACCTCTCAT AAAGATAAGC TAGGCACCGA
                151
                     GGTGCATGTT GTAGCTTCTC ATGGCAAAGA AATCCTTCAA ACTAAGGTTC
                251
                     ATAACGCAAA CCCATACACT GCAGTGATCA ATGCTTTTAA GAAAATCCGC
                     ACCATGGCAA ATAAGCACTC CAATAAACGT AAAGACAGGA CAAAACATGA
                301
                     TCTAGGTCTT GCAGCAAAAG AAGAACGTAT CGCAATACAG GAAGAACAAG
                351
15
                     AAGATCGCCT TAGCAACGAG TGGCTTCCTG TCGAAGGCCT CGATGCCTGG
                401
                451
                     GATTCTCTAA AAACTCTTGG GTATGTTCCC GCATCAGCGA AAAAGAAGAT
                501
                     CTCCAAGAA AAGATGAGCA TTCGTATGCT ATCTCAAGAC GAGGCTATCC
                     GCCAGCTAGA GTCTGCCGCA GAAAACTTCC TGATCTTCTT GAACGAGCAA
                551
                601
                     GAGCATAAAA TCCAATGCAT TTATAAAAAA CATGACGGCA ACTATGTCCT
20
                651
                     TATTGAACCT TCCCTCAAGC CAGGATTCTG CATCTGA
     The PSORT algorithm predicts cytoplasm (0.249).
     The proteins were expressed in E.coli and purified as his-tag products (Figure 161A; 6441= lanes
```

7-9; 6748 = lanes 2-3; 6881 = lanes 4-6). The recombinant protein was used to immunise mice, whose sera were used in Western blots (Figures 161B, 162 & 163) and for FACS analysis.

These experiments show that cp6441, cp6748 & cp6881 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from the sequence alone.

Example 164 and Example 165

30 Example 166

The following C.pneumoniae protein (PID 4376444) was expressed <SEQ ID 327; cp6444>:

- 1 MEQPNCVIQD TTTVLYALNS FDPRLSDDTH RLGKQSPLEA ENALGEFIEG 51 LDTNSFPLEE VAIPILPGYH PKFYLSFIDR DDQGVHYEVL DGVFLKTVAA 101 CIIENSFLTD SMSPELLSEV KEALKR*
- 35 The cp6444 nucleotide sequence <SEQ ID 328> is:
- 1 ATGGAGCAAC CCAATTGTGT GATTCAGGAT ACTACAACTG TTTTGTATGC
 51 CTTAAATAGC TTTGATCCTA GACTTAGTGA TGACACTCAC AGACTTGGGA
 101 AGCAATCACC TCTTGAAGCA GAAAATGCTC TTGGAGAATT TATTGAAGGT
 151 TTGGATACAA ATACCTTTCC TTTAGAGGAA GTTGCCATTC CCATCCTGCC
 201 AGGTTATCAC CCTAAGTTTTA ATTTATCTTT CATAGATAGG GACGATCAAG
 251 GTGTCCACTA TGAAGTTTTA GATGGCGTAT TTTTAAAGAC AGTCGCTGCT
 301 TGTATTATAG AGAACTCCTT CTTAACTGAT TCTATGAGCC CGGAGCTTCT
 351 CAGCGAAGTT AAGGAAGCTC TGAAACGATG A

The PSORT algorithm predicts cytoplasm (0.2031).

- The following C.pneumoniae protein (PID 4376413) was also expressed <SEQ ID 329; cp6413>:
 - 1 MAVQSIKEAV TSAATSVGCV NCSREAIPAF NTEERATSIA RSVIAAIIAV 51 VAISLLGLGL VVLAGCCPLG MAAGAITMLL GVALLAWAIL ITLRLLNIPK
 - 101 AEIPSPGNNG EPNERNSATP PLEGGVAGEA GRGGGSPLTQ LDLNSGAGS*

The cp6413 nucleotide sequence <SEQ ID 330> is:

50 1 ATGGCTGTTC AATCTATAAA AGAAGCCGTA ACATCAGCCG CAACATCAGT

```
51
                    AGGATGTGTA AACTGTTCTA GAGAGGCTAT ACCAGCATTT AATACAGAGG
                101
                     AGAGAGCAAC GAGTATTGCT AGATCTGTTA TAGCAGCTAT CATTGCTGTT
                151
                     GTAGCTATCT CCTTACTCGG ACTAGGTCTT GTAGTTCTTG CTGGTTGCTG
                     TCCTTTAGGA ATGGCTGCGG GTGCTATAAC AATGCTGCTG GGTGTAGCAT
                201
 5
                     TATTAGCTTG GGCAATACTG ATTACTTTGA GACTGCTTAA TATACCTAAG
                301
                     GCTGAAATAC CGAGTCCAGG GAACAACGGT GAGCCTAATG AAAGAAATTC
                     AGCAACTCCT CCTCTAGAGG GTGGTGTTGC AGGAGAAGCC GGTCGCGGCG
                351
                     GGGGGTCACC TTTAACCCAA CTTGATCTCA ATTCAGGGGC GGGAAGTTAG
      The PSORT algorithm predicts inner membrane (0.6180).
10
     The following C.pneumoniae protein (PID 4377391) was also expressed <SEQ ID 331; cp7391>:
                     MMLRVIELPL LPIKQALEKA FVQYNSYKAK LTKVEPCFRE SPAYITSEER
                     LQSLDQTLER AYKEYQKRFQ EPSRLESEVS GCREHLREQV KQFETQGLDL
                 51
                101
                     IKEELIFVSD VLFRKMVSCL VSTVHVPFME FYYEYFELHR LRLRAQWMAN
                151
                     AEIYSKVRKA FPEMLKETLE KAKAPREEEY WLLCEERKSK EKRLILNKIE
15
                201 AAQQRVKDLE PPPIKETGKQ KRKKEYSFFI RLKS*
     The cp7391 nucleotide sequence <SEQ ID 332> is:
                     ATGATGCTTC GTGTCATAGA GCTTCCACTA CTTCCTATAA AGCAAGCGTT
                 51
                     GGAGAAGGCT TTTGTACAAT ATAATAGCTA CAAAGCGAAG TTAACCAAGG
                101
                     TAGAACCTTG CTTTAGAGAG AGCCCTGCCT ATATAACTAG CGAAGAGCGA
20
                     CTCCAGAGTT TGGATCAGAC TTTAGAACGT GCGTACAAAG AGTACCAGAA
                151
                     GAGATTCCAG GAGCCTTCAC GTTTGGAATC GGAAGTAAGT GGATGTAGAG
                251
                     AGCATCTTAG AGAGCAGGTA AAACAATTTG AAACTCAAGG ACTAGACTTG
                     ATCAAAGAAG AGCTTATTTT TGTTAGTGAT GTGTTATTCC GAAAAATGGT
                301
                351
                     CAGTTGTCTA GTGTCGACAG TGCATGTTCC CTTTATGGAG TTTTATTATG
25
                401
                    AGTATTTTGA GTTGCATAGA TTGAGGTTGC GGGCCCAATG GATGGCGAAT
                451
                    GCCGAGATTT ATAGCAAAGT TAGAAAAGCA TTCCCAGAGA TGTTGAAGGA
                     GACCTTAGAA AAAGCTAAGG CTCCCAGAGA AGAAGAGTAT TGGTTACTTT
                501
                     GCGAGGAGAG AAAGAGTAAG GAGAAGCGTT TGATTCTCAA CAAGATAGAG
                551
                601
                    GCAGCTCAGC AGCGGGTAAA AGATTTAGAA CCTCCTCCTA TTAAAGAGAC
30
                651
                     AGGGAAACAG AAACGGAAGA AAGAATATTC GTTTTTCATT CGATTAAAAT
                701
```

The PSORT algorithm predicts inner membrane (0.1489).

The proteins were expressed in *E.coli* and purified as his-tag and GST-fusion products (Figure 164A; 6444=lanes 11-12; 7391=lanes 2-3; 6413=lanes 4-6). The recombinant protein was used to immunise mice, whose sera were used in Western blots (Figures 164B, 165 & 166) and for FACS analysis.

These experiments show that cp6444, cp6413 & cp7391 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from the sequence alone.

Example 167, 40 Example 168, Example 169 and Example 170

The following C.pneumoniae protein (PID 4376463) was expressed <SEQ ID 333; cp6463>:

```
45 MKKKVTIDEA LKEILRLEGA ATQEELCAKL LAQGFATTQS SVSRWLRKIQ
AVKVAGERGA RYSLPSSTEK TTTRHLVLSI RHNASLIVIR TVPGSASWIA
101 ALLDQGLKDE ILGTLAGDDT IFVTPIDEGR LPLLMVSIAN LLQVFLD*
```

The cp6463 nucleotide sequence <SEQ ID 334> is:

```
1 ATGAAAAAA AAGTAACTAT AGATGAGGCT TTAAAAGAAA TTTTACGTCT
51 TGAAGGAGCG GCAACTCAGG AGGAATTATG TGCAAAAACTC TTAGCTCAAG
50 101 GTTTTGCTAC AACCCAGTCG TCTGTATCTC GTTGGCTACG AAAGATTCAG
151 GCTGTAAAGG TTGCTGGAGA GCGTGGTGCT CGTTATTCTT TACCCTCTTC
```

35

```
201 AACAGAGAAG ACCACGACCC GTCATTTGGT GCTCTCTATT CGCCATAACG
                     CCTCTCTTAT TGTAATTCGT ACGGTTCCTG GTTCAGCTTC TTGGATCGCT
                     GCTTTGTTAG ATCAAGGGCT CAAAGATGAA ATTCTTGGAA CTTTGGCAGG
                    AGATGACACG ATTTTTGTCA CTCCTATAGA TGAAGGGAGG CTCCCATTGT
 5
                     TGATGGTTTC GATTGCAAAT TTACTGCAAG TTTTCTTGGA TTAA
                401
      The PSORT algorithm predicts inner membrane (0.1510).
      The following C.pneumoniae protein (PID 4376540) was also expressed <SEQ ID 335; cp6540>:
                    MSQCQSSSTS TWEWMKSFVP NWKNPTPPLS PIPSEDEFIL AYEPFVLPKT
                    DPENAQANPP GTSTPNVENG IDDLNPLLGQ PNEQNNANNP GTSGSNPTSL
10
                101 PAPERLPETE ENSQEEEQGS QNNEDLIG*
      The cp6540 nucleotide sequence <SEQ ID 336> is:
                    ATGTCTCAAT GTCAGAGTAG CAGTACATCT ACCTGGGAAT GGATGAAATC
                 51
                    TTTTGTGCCA AACTGGAAGA ATCCAACTCC CCCCTTATCT CCTATACCTT
                    CTGAGGACGA ATTTATATTA GCATACGAGC CATTTGTTCT ACCGAAAACA
                101
15
                    GATCCAGAAA ACGCACAAGC TAATCCTCCA GGCACATCTA CACCGAATGT
                201 AGAAAACGGG ATCGATGATC TCAACCCTCT TCTGGGGCAA CCCAACGAAC
                    AAAACAATGC CAACAATCCA GGAACTTCTG GATCTAATCC TACATCTCTA
                251
                    CCCGCCCCG AACGACTCCC TGAAACTGAA GAGAACAGCC AAGAAGAAGA
                351 ACAAGGATCT CAAAATAATG AGGATCTTAT AGGATAA
20
      The PSORT algorithm predicts cytoplasm (0.3086).
      The following C.pneumoniae protein (PID 4376743) was also expressed <SEQ ID 337; cp6743>:
                    LREEGSVSFR EYFRAYMCDK IVAQKNFLFT LDAVIKQAGW RSQEKLNLFY
                    VESQALGREI KVSLEEYIQS MVGILGSQRT KKSFKFSVDF TPLEQALQER
                    CSSDDDEDAT ATSTATGATA SPTDMHEDE*
25
      The cp6743 nucleotide sequence <SEQ ID 338> is:
                    TTGAGAGAAG AAGGTAGTGT TTCTTTCAGA GAATATTTCA GAGCCTATAT
                    GTGTGATAAA ATCGTGGCAC AGAAGAACTT CTTATTTACT TTAGACGCTG
                51
                    101
                151
                    GTTGAAAGTC AGGCTTTAGG AAGAGAAATC AAAGTCAGCT TAGAGGAATA
30
               201
                    TATTCAGAGT ATGGTCGGGA TTTTGGGATC TCAGAGAACC AAGAAAGCT
                    TTAAGTTTC TGTCGACTTT ACCCCTTTAG AGCAGGCTCT ACAAGAAAGA
                251
                    TGCTCTTCTG ATGATGACGA AGATGCAACA GCAACTTCGA CCGCTACAGG
                301
                    GGCAACAGCA TCTCCGACTG ACATGCACGA AGATGAGTAA
     The PSORT algorithm predicts cytoplasm (0.2769).
     The following C.pneumoniae protein (PID 4377041) was also expressed <SEQ ID 339; cp7041>:
35
                 1 MLMMIMMIIG ITGGSGAGKT TLTQNIKEIF GEDVSVICQD NYYKDRSHYT
                    PEERANLIWD HPDAFDNDLL ISDIKRLKNN EIVQAPVFDF VLGNRSKTEI
                    ETIYPSKVIL VEGILVFENQ ELRDLMDIRI FVDTDADERI LRRMVRDVQE
               151
                    QGDSVDCIMS RYLSMVKPMH EKFIEPTRKY ADIIVHGNYR QNVVTNILSQ
40
               201
                    KIKNHLENAL ESDETYYMVN SK*
     The cp7041 nucleotide sequence <SEQ ID 340> is:
                    ATGTTGATGA TGCTTATGAT GATTATTGGA ATTACAGGAG GTTCTGGAGC
                51
                    TGGGAAAACC ACCCTAACCC AAAACATTAA AGAAATTTTC GGTGAGGATG
                    TGAGTGTTAT CTGCCAAGAT AATTATTACA AAGATAGATC TCATTATACT
               101
45
                    CCTGAAGAAC GTGCCAATTT AATTTGGGAT CATCCGGACG CCTTTGATAA
               151
                    TGACTTATTA ATTTCAGACA TAAAACGTCT AAAAAATAAT GAGATTGTCC
               201
                    AAGCCCCAGT TTTTGATTTT GTTTTAGGTA ATCGATCTAA AACGGAGATA
               251
                    GAAACGATCT ATCCATCTAA AGTTATTCTT GTTGAAGGTA TTCTGGTCTT
               301
                    TGAAAATCAA GAACTTAGAG ATCTTATGGA TATTAGGATC TTTGTAGACA
               351
50
               401
                    CCGATGCTGA TGAAAGGATA CTACGCCGTA TGGTTCGAGA TGTTCAAGAA
                    CAAGGAGATA GCGTGGACTG CATCATGTCT CGTTATCTTT CTATGGTAAA
               451
                    GCCTATGCAT GAGAAATTTA TAGAGCCGAC TCGGAAATAT GCTGATATCA
               501
                    TTGTACATGG AAATTACCGA CAAAACGTAG TAACAAATAT TTTGTCACAG
               551
               601 AAAATTAAAA ATCATTTAGA GAATGCCCTG GAAAGCGATG AGACGTATTA
               651 TATGGTCAAC TCTAAGTAA
55
```

-177-

The PSORT algorithm predicts inner membrane (0.1022).

The proteins were expressed in E.coli and purified as his-tag products (Figure 167A; 6463 = lanes 2-4; 6540 = lanes 5-7; 6743 = lanes 8-9; 7041 = lanes 10-11). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 167B, 168, 169 & 170) and for FACS analysis.

These experiments show that cp6463, cp6540, cp6743 & cp7041 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from the sequence alone.

Example 171 and Example 172 and

Example 173

5

10

20

25

35

The following C.pneumoniae protein (PID 4376632) was expressed <SEQ ID 341; cp6632>:

- VQLFQYMNES GWDWLCDFDS QGEGFQLSRL VGLLHSSWAL YEAKEQFYLP 51
- EVSLLTWEEL IEMQLLSKPT KHGVAKDLCN VFEKHFQRFR QYLGSLDLNQ 15

101 RFENTFLNYP KYHLDRE*

The cp6632 nucleotide sequence <SEQ ID 342> is:

- GTGCAATTAT TTCAATATAT GAATGAGTCC GGATGGGATT GGCTTTGTGA 51 TTTTGATTCT CAAGGCGAGG GATTCCAGTT ATCACGTCTG GTTGGGCTGT TACATTCGTC CTGGGCATTA TACGAAGCAA AAGAGCAATT TTACCTTCCT 101 GAGGTTTCTC TATTGACCTG GGAAGAACTG ATAGAAATGC AGTTATTAAG 151 CAAACCAACA AAACACGGGG TTGCAAAAGA TCTTTGTAAT GTATTTGAAA 251 AACACTTTCA AAGGTTTAGA CAGTACCTAG GTTCCTTAGA TCTAAATCAA AGGTTCGAAA ATACCTTCTT GAATTATCCT AAATACCATT TAGATAGGGA 301
 - 351 The PSORT algorithm predicts cytoplasm (0.3627).

The following C.pneumoniae protein (PID 4376648) was also expressed <SEQ ID 343; cp6648>:

- MPVSSAPLPT SHRPSSGNLG LMEPNSKALK AKHQDKTTKT IKLLVKILVA
- ILVIEVLGII AAFFIPGTPP ICLIILGGLI LTTVLCVLLL VIKLALVNKT
- 101 EGTTAEQQIK RKLSSKSIS*
- 30 The cp6648 nucleotide sequence <SEQ ID 344> is:
 - ATGCCCGTGT CCTCAGCCCC CCTACCCACA AGCCACCGCC CTTCCTCTGG 51 AAATCTAGGC CTCATGGAAC CAAATTCCAA AGCTCTAAAA GCAAAGCATC 101 AAGATAAAAC GACGAAGACG ATTAAACTTT TAGTTAAAAT CCTTGTTGCC ATTCTAGTAA TAGAAGTTTT AGGAATAATT GCAGCTTTCT TTATTCCTGG 151 GACTCCTCCC ATCTGCTTGA TTATCCTAGG AGGCCTTATT CTTACAACAG 251
 - TACTCTGTGT GCTTCTTCTT GTTATAAAGC TTGCCCTTGT AAACAAAACC GAAGGAACAA CTGCTGAACA GCAGATAAAA CGTAAACTCT CTTCTAAAAG 301

351 TATTTCTTAG

The PSORT algorithm predicts inner membrane (0.6074).

- The following C.pneumoniae protein (PID 4376497) was also expressed <SEQ ID 345; cp6497>: 40
 - MKPNSIIFLE NTKHYPDIFR EGFVRDRHGL MEASDWLLST EITIIRSILG
 - 51 AIPILGNILG AGRLYSVWYT SDEDWKKQVV *

The cp6497 nucleotide sequence <SEQ ID 346> is:

ATGAAGCCAA ATAGTATTAT TTTTTTAGAA AATACTAAGC ATTATCCCGA 45 51 CATCTTTCGA GAAGGATTTG TTCGTGATCG TCATGGACTA ATGGAAGCCT 101 CGGATTGGTT ACTTTCTACG GAAATTACGA TCATTCGCTC CATTCTGGGA 151 GCTATCCCTA TTTTAGGAAA TATTCTTGGA GCCGGACGAC TCTATAGCGT

 $201\,$ TTGGTATACA AGTGACGAAG ATTGGAAAAA ACAAGTGGTT TGA The PSORT algorithm predicts inner membrane (0.145).

The proteins were expressed in E.coli and purified as his-tag products (Figure 171A; 6632 = lanes 5-7; 6648 = lanes 8-10; 6497 = lanes 2-4). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 171B, 172, 173) and for FACS analysis.

These experiments show that cp6632, cp6648 and cp6497 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from the sequence alone.

```
Example 174,
10 Example 175,
Example 176,
Example 177 and
Example 178
```

5

The following C.pneumoniae protein (PID 4377200) was expressed <SEQ ID 347; cp7200>:

```
15 MPVPIDNSSR NLQEVPESLE DLEQHAEESP THQSAESSSL QLSLASSAIS
51 SRVEQLSSLV LGMENSDFSS LRDVPIFSAI YESSTHTPVP TPLVGVGYIN
101 GSQSGYYDTQ RESLHLSQLL GSRRVEVVYN QGNFMEASLL NLCPRRPRRD
151 PSPISLALLE LWEAFFLEHP PGSTFNPIFF W*
```

The cp7200 nucleotide sequence <SEQ ID 348> is:

```
20
                    ATGCCCGTTC CTATAGATAA TTCCTCTCGC AACCTACAAG AAGTTCCAGA
                    AAGCCTAGAA GACCTCGAAC AACACGCAGA AGAATCTCCT ACTCATCAAA
                51
               101
                    GTGCAGAAAG CAGTTCTTTG CAACTGTCTC TAGCCTCCTC AGCAATTTCT
               151
                    AGTAGAGTAG AACAACTATC TTCCCTCGTC TTAGGAATGG AAAATTCAGA
               201
                    TTTCTCCTCT TTAAGAGACG TTCCTATCTT CTCAGCTATC TACGAATCTT
25
               251
                    CAACACACA ACCTGTCCCC ACTCCTCTAG TTGGCGTGGG ATATATCAAC
                    GGAAGTCAAT CAGGATACTA CGATACACAA AGAGAATCTC TTCACCTCAG
               301
               351
                    CCAATTGTTA GGAAGCCGAA GAGTTGAAGT TGTCTATAAC CAAGGAAACT
                    TCATGGAGGC CTCTTTGCTA AATCTGTGCC CCAGAAGACC TCGAAGAGAT
               401
                    CCCTCTCCAA TTTCTTTAGC TCTATTAGAG CTCTGGGAAG CATTTTTTTT
               451
30
               501
                    AGAACACCCC CCAGGTAGCA CTTTTAATCC AATATTTTT TGGTAA
```

The PSORT algorithm predicts cytoplasm (0.3672).

The following C.pneumoniae protein (PID 4377235) was also expressed <SEQ ID 349; cp7235>:

```
1 LNFVSTLTGS DFYAPVLEKL EEAFADTTGQ VILFSSSPDF IVHPIAQQLG
51 ISSWYASCYR DQSAEQTIYK KCLTGDKKAQ ILSYIKKINQ ARSHTFSDH1
35 101 LDLPFIMLGE EKTVVRPQGR LKKMAKKYYW NIV*
```

The cp7235 nucleotide sequence <SEQ ID 350> is:

```
TTGAATTTTG TATCGACTCT GACCGGCTCC GATTTTTATG CTCCTGTTTT
                51
                    AGAAAAACTA GAAGAAGCTT TTGCAGATAC CACAGGACAG GTGATCCTTT
               101
                    TTTCTTCTTC TCCAGACTTT ATTGTCCACC CCATAGCGCA GCAACTCGGG
40
                151
                    ATTAGTTCTT GGTATGCGTC GTGTTATCGC GATCAGTCTG CAGAACAGAC
               201
                    GATCTATAAA AAATGTCTTA CAGGGGATAA AAAAGCGCAA ATTTTGAGTT
                    ATATTAAAAA AATTAATCAA GCAAGAAGCC ATACCTTCTC CGACCATATT
               251
                    TTAGATCTTC CTTTTCTTAT GCTGGGAGAA GAGAAAACCG TCGTTCGCCC
               301
                    TCAGGGACGA CTCAAGAAAA TGGCAAAAAA ATATTACTGG AATATCGTTT
               351
45
               401
```

The PSORT algorithm predicts cytoplasm (0.3214).

The following C.pneumoniae protein (PID 4377268) was also expressed <SEQ ID 351; cp7268>:

1 MMHRYFIPLL ALLIFSPSLV RAELQPSENR KGGWPTQLSC AEGSQLFCKF

```
51 EAAYNNAIEE GKPGILVFFS ERPTPEFADL TNGSFSLSTP IAKGFNVVVL
                 101 CPGLISPLDF FHKMDPVILY MGSFLEMFPE VEAVSGPRLC YILIDEQGGA
                 151 QCQAVLPLET KN*
      The cp7268 nucleotide sequence <SEQ ID 352> is:
 5
                   1 ATGATGCACC GTTATTTAT TCCTTTATTA GCACTTCTCA TTTTCTCTCC
11 TTCTTTAGTC AGGGCAGAGC TACAACCAAG TGAAAACAGA AAAGGGGGGT
                101
                     GGCCTACACA ACTTTCCTGT GCAGAAGGTT CGCAACTCTT CTGTAAATTC
                     GAAGCTGCCT ATAATAATGC AATTGAGGAA GGGAAACCTG GGATTTTAGT
                 151
                201 CTTTTCTCT GAGCGACCCA CACCAGAATT TGCCGACTTA ACGAATGGTT
10
                251
                     CATTITCTCT CTCTACGCCA ATCGCCAAGG GCTTTAATGT CGTTGTGTTA
                      TGCCCCGGGC TTATCAGTCC CTTAGACTTT TTCCACAAAA TGGATCCTGT
                301
                     GATTCTCTAT ATGGGAAGTT TTCTAGAGAT GTTCCCTGAA GTGGAGGCAG
                     TTAGTGGCCC TCGCTTATGT TATATCTTAA TAGATGAACA GGGTGGGGCT
                401
                     CAATGTCAGG CTGTCCTGCC TTTAGAAACA AAGAATTAG
15
     The PSORT algorithm predicts inner membrane (0.1235).
      The following C.pneumoniae protein (PID 4377375) was also expressed <SEQ ID 353; cp7375>:
                   1 MQRIIIVGID TGVGKTIVSA ILARALNAEY WKPIQAGNLE NSDSNIVHEL
                     SGAYCHPEAY RLHKPLSPHK AAQIDNVSIE ESHICAPKTT SNLIIETSGG
                101 FLSPCTSKRL QGDVFSSWSC SWILVSQAYL GSINHTCLTV EAMRSRNLNI
20
                     LGMVVNGYPE DEEHWLTQEI KLPIIGTLAK EKEITKTIIS CYAEQWKEVW
                201 TSNHQGIQGV SGTPSLNLH*
     The cp7375 nucleotide sequence <SEQ ID 354> is:
                     ATGCAACGTA TCATCATTGT AGGAATCGAC ACTGGCGTAG GAAAAACCAT
                     TGTCAGTGCT ATCCTTGCTA GAGCACTTAA CGCAGAATAC TGGAAACCTA
                 51
25
                     TACAAGCAGG GAATCTAGAA AATTCAGATA GCAATATTGT TCATGAGCTA
                     TCGGGAGCCT ACTGTCATCC CGAAGCTTAT CGATTGCATA AGCCCTTGTC
                201
                     TCCACACAAG GCAGCGCAAA TCGATAATGT AAGTATCGAA GAGAGTCATA
                     TTTGTGCGCC AAAAACAACT TCGAATCTGA TTATTGAGAC TTCAGGAGGA TTTTTATCCC CCTGCACATC AAAAAGACTT CAGGGAGATG TGTTTTCTTC
                251
30
                351
                     TTGGTCATGT TCTTGGATTT TAGTGAGCCA AGCATATCTC GGAAGTATCA
                     ATCACACCTG TTTAACGGTA GAAGCAATGC GCTCACGAAA CCTCAATATC
                401
                     TTAGGTATGG TGGTAAATGG GTATCCAGAG GACGAAGAGC ACTGGCTAAC
                     TCAAGAAATC AAGCTTCCTA TAATCGGGAC TCTTGCCAAG GAAAAAGAAA
                551
                     TCACAAAGAC AATCATAAGC TGTTATGCCG AACAATGGAA GGAAGTATGG
35
                     ACAAGCAATC ATCAGGGAAT TCAGGGTGTA TCTGGCACCC CTTCACTCAA
                601
                     TCTGCATTAG
     The PSORT algorithm predicts cytoplasm (0.0049).
     The following C.pneumoniae protein (PID 4377388) was also expressed <SEQ ID 355; cp7388>:
                  1 MQVLLSPQLP PPPQHSVGSI SSPSKLRVLA ITFLVFGMLL LISGALFLTL
40
                     GIPGLSAAIS FGLGIGLSAL GGVLMISGLL CLLVKREIPT VRPEEIPEGV
                101
                     SLAPSEEPAL QAAQKTLAQL PKELDQLDTD IQEVFACLRK LKDSKYESRS
                     FLNDAKKELR VFDFVVEDTL SEIFELRQIV AQEGWDLNFL INGGRSLMMT
                201
                     AESESLDLFH VSKRLGYLPS GDVRGEGLKK SAKEIVARLM SLHCEIHKVA
                     VAFDRNSYAM AEKAFAKALG ALEESVYRSL TQSYRDKFLE SERAKIPWNG
                251
45
                    HITWLRDDAK SGCAEKKLRD AEERWKKFRK AVFWVEEDGG FDINNLLGDW
                351
                     GTVLDPYRQE RMDEITFHEL YEKTTFLKRL HRKCALAKTT FEKKRSKKNL
                401
                     QAVEEANARR LKYVRDWYDQ EFQKAGERLE KLHALYPEVS VSIRENKIQE
                     TRSNLEKAYE AIEENYRCCV REQEDYWKEE EKREAEFRER GNKILSPEEL
                451
                501
                     ESSLEQFDHG LKNFSEKLME LEGHILKLQK EATAEVENKI LSDAESRLEI
50
                551
                     VFEDVKEMPC RIEEIEKTLR MAELPLLPTK KAFEKACSQY NSCAEMLEKV
                     KPYCKESLAY VTSKERLVSL DEDLRRAYTE CQKRFQGDSG LESEVRACRE
                     QLRERIQEFE TQGLDLVEKE LLCVSSRLRN TECDCVSGVK KEAPPGKKFY
                701
                     AQYYDEIYRV RVQSRWMTMS ERLREGVQAC NKMLKAGLSE EDKVLKEEEY
                     WLYREERKNK EKRLVGTKIV ATQQRVAAFE SIEVPEIPEA PEEKPSLLDK
                751
55
                801
                    ARSLFTREDH T
     The cp7388 nucleotide sequence <SEQ ID 356> is:
                    ATGCAAGTAC TTCTATCTCC GCAGCTACCC CCCCCCCCC AACACTCTGT
```

51 AGGGTCGATT TCTTCTCCAT CTAAACTTCG CGTTTTAGCG ATTACTTTTT

	101	TAGTTTTTGG	TATGCTCTTA	CTGATTTCAG	GAGCTCTCTT	TCTGACGTTA
	15 1	GGGATTCCAG	GATTGAGTGC	AGCAATTTCT	ሳተተርርልጥጥልር ተ	GCATCGGTCT
	201	CTCCGCATTA	GGAGGAGTGC	TGATGATTTC	CCCDCTACTAC	TGTCTTTTAG
_	251	TAAAACGAGA	GATTCCGACA	GTACGACCAG	AAGAAAMMCC	TGAAGGGGTT
5	301	TCGCTGGCTC	CTTCTGAGGA	GCCAGCTCTA	CAGGGAGGE	1GVVGGGG11
	351	AGCTCAGCTG	CCTAAGGAAT	' TGGATCAGTT	ACAMACACIC	AGMAGACTIT
	401	TGTTCGCATG	TTTAAGAAAG	CTGAAAGATT	AGMIACAGAI	ATTCAGGAAG
	451	TTTTTAAACG	ATGCTAAGAA	GGAGCTTCGA	CIAAGIAIGA	MMCMCcmmca
_	501	GGATACCCTC	TCGGAGATTT	TCGAGTTGCG	CCACAMMONO	TIGIGGITGA
10	551	GATGGGATTT		ATCAATGGGG	GLAGATIGIG	GUTCAAGAGG
	601	GCAGAATCTG	AATCCCTTTCA	TTTGTTTCAT	CMACCAAGCCT	CATGATGACT
	651	TTTACCTTCT	GGGGATGTTC	GAGGGGAGGG	GTATCGAAGC	GGCTAGGGTA
	701	AGATAGTCGC	TCCTTTC ATC	AGCTTGCATT	GTTAAAGAAA	TCTGCGAAGG
	751	GTAGCGTTTG	AMACCA AMMO	CTATGCGATG	GCGAGATTCA	CAAGGTGGCG
15	801	AGCGTTGGGA	CCOMMINGANO	AGAGTGTGTA	GCAGAAAAGG	CGTTTGCGAA
	851	ATAGAGATAA	AMMMMMCCAC	AGAGIGIGIA	TCGGAGTCTG	ACGCAGAGTT
	901		ATTTTTGGAG	AGCGAGAGGG	CGAAGATCCC	ATGGAATGGG
	951	CCTTTTAACCI	GGTTAAGAGA	TGATGCGAAG	AGTGGGTGTG	CTGAAAAGAA
	1001	GCCTTCGGGWT	ACACCOCCAC	GTTGGAAGAA	ATTTAGGAAA	GCAGTCTTTT
20	1051	GGGTAGAAGA	AGACGGGGC	TTTGACATCA	ATAATCTCCT	TGGAGACTGG
	1101	CCAMCAGIGC	TIGATCCTTA	TAGACAAGAG	AGAATGGACG	AGATAACGTT
	1151	CUCCCUMACC	TATGAAAAA	CTACGTTTTT	GAAAAGACTG	CACAGAAAGT
	1201	CACCCA CMCC	GAAAACAACC	TTTGAAAAGA	AGAGATCTAA	AAAGAATTTG
	1251	CHURCARCAC	AGGAGGCGAA	TGCACGTAGG	TTGAAATATG	TAAGGGATTG
25	1301	CHURCHARO	GAGTTTCAGA	AAGCAGGGGA	GAGATTAGAG	AAACTGCATG
	1351	AGGGGGGGGG	TGAGGTTTCA	GTCTCTATAA	GAGAGAACAA	AATACAAGAG
	1401	ACGCGCTCTA	ATTTAGAGAA	AGCCTATGAG	GCTATCGAAG	AGAACTATCG
	1451	11GCTGTGTC	CGAGAGCAAG	AGGACTACTG	GAAAGAAGAA	GAGAAAAGGG
	1501	AAGCGGAGTT	TAGGGAGAGG	GGAAACAAGA	TTCTTTCTCC	TGAGGAGCTG
30	1551	GAAAGTTCTT	TGGAGCAATT	CGACCATGGT	TTGAAAAATT	TTTCTGAGAA
50	1601	ATTAATGGAA	TTGGAAGGGC	ATATCTTAAA	ACTTCAGAAA	GAAGCCACAG
		CAGAGGTGGA	GAATAAAATA	CTTTCAGATG	CAGAGAGCCG	CCTTGAGATT
	1651	GTATTTGAAG	ATGTCAAGGA	GATGCCCTGT	CGAATTGAGG	AGATAGAGAA
	1701	GACGCTGCGT	ATGGCGGAGC	TGCCCCTACT	TCCTACGAAG	AAGGCGTTTG
35	1751	AGAAGGCCTG	CTCACAATAT	AATAGCTGCG	CAGAGATGTT	GGAGAAGGTG
33	1801	AAGCCTTACT	GCAAGGAGAG	CCTCGCCTAT	GTGACTAGCA	AAGAGCGTTT
	1851	AGTGAGCTTG	GATGAAGATT	TACGACGAGC	CTACACAGAG	TGTCAGAAGA
	1901	GATTCCAGGG	GGATTCGGGT	TTGGAGTCGG	AAGTAAGAGC	CTGTCGAGAG
	1951	CAACTGCGAG	AGCGGATCCA	AGAGTTTGAA	ACTCAAGGGC	中ででするこれでは
40	2001	GGAAAAAGAG	TTGCTTTGTG	TGAGTAGTAG	ATTAAGAAAT	ACAGAGTGCG
40	2051	ATTGTGTATC	TGGTGTTAAG	AAAGAAGCAC	CTCCTGGTAA	ው ልጥጥጥጥ ልጥ
	2101	GCCCAGTATT	ATGATGAGAT	TTATCGAGTT	AGAGTTCAAT	ССССА ТССАТ
	2151	GACGATGTCT	GAGAGATTGA	GAGAGGGAGT	TCAAGCATGC	AACAAGATGT
	2201	TGAAGGCAGG	CCTAAGCGAA	GAAGATAAGG	TTCTTAAAGA	AGAAGAGTAT
15	2251	TGGTTGTATC	GAGAGGAGAG	AAAGAATAAA	GAGAAACGTT	ቸርርጥጥርርጥ አ <i>C</i>
45	2301	TAAGATAGTA	GCAACGCAGC	AGCGAGTTGC	AGCATTTGAA	TCCATAGAAG
	2351	TTCCTGAGAT	TCCTGAGGCC	CCAGAGGAGA	AACCGAGTTT	GCTGGATAAA
	2401	GCGCGTTCTT	TATTTACTCG	CGAGGACCAT	ACCTAG	

The PSORT algorithm predicts inner membrane (0.461).

The proteins were expressed in *E.coli* and purified as his-tag products (Figure 174: 7200=lanes 2-3; 7236=lanes 4-5; 7268=lanes 6-8; 7375=lanes 9-10; 7388=lanes 11-12). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 174, 175, 176, 177 & 178) and for FACS analysis.

These experiments show that cp7200, cp7235, cp7268, cp7375 & cp7388 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from the sequence alone.

Example 179

The following C.pneumoniae protein (PID 4376723) was expressed <SEQ ID 357; cp6723>:

55

```
1 MATSVAPSPV PESSPLSHAT EVLNLPNAYI TQPHPIPAAP WETFRSKLST
                 51 KHTLCFALTL LLTLGGTISA GYAGYTGNWI ICGIGLGIIV LTLILALLLA
                101 IPLKNKQTGT KLIDEISQDI SSIGSGFVQR YGLMFSTIKS VHLPELTTQN
                     QEKTRILNEI EAKKESIQNL ELKITECQNK LAQKQPKRKS SQKSFMRSIK
                151
 5
                201 HLSKNPVILF DC*
     The cp6723 nucleotide sequence <SEQ ID 358> is:
                 1 ATGGCAACTT CCGTAGCCCC ATCACCAGTC CCCGAGAGCA GCCCTCTCTC
                    TCATGCTACA GAAGTTCTCA ATCTTCCTAA TGCTTATATT ACGCAGCCTC
                51
                101 ATCCGATTCC AGCGGCTCCT TGGGAGACCT TTCGCTCCAA ACTTTCCACA
10
                151
                    AAGCATACGC TCTGTTTTGC CTTAACACTA CTGTTAACCT TAGGGGGAAC
                    GATCTCAGCA GGTTACGCAG GATATACTGG AAACTGGATC ATCTGTGGCA
               201
               251
                    TCGGCTTGGG AATTATCGTA CTCACACTGA TTCTTGCTCT TCTTCTAGCA
               301
                    ATCCCTCTTA AAAATAAGCA GACAGGAACA AAACTGATTG ATGAGATATC
                    TCAAGACATT TCCTCTATAG GATCAGGATT TGTTCAGAGA TACGGGTTGA
               351
15
               401 TGTTCTCTAC AATTAAAAGC GTGCATCTTC CAGAGCTGAC AACACAAAAT
               451
                    CAAGAAAAA CAAGAATTT AAATGAAATT GAAGCGAAAA AGGAATCGAT
                    CCAAAATCTT GAGCTTAAAA TTACTGAGTG CCAAAACAAG TTAGCACAGA
               501
               551 AACAGCCGAA ACGGAAATCA TCTCAGAAAT CATTTATGCG TAGTATTAAG
               601
                    CACCTCTCCA AGAACCCTGT AATTTTGTTC GATTGCTGA
```

20 The PSORT algorithm predicts inner membrane (0.6095).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 179A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 179B) and for FACS analysis.

These experiments show that cp6723 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 180

30

The following C.pneumoniae protein (PID 4376749) was expressed <SEQ ID 359; cp6749>:

```
1 MSYYFSLWYL KVQQHFQAAF DFTRSLCSRI SNFALGVIAL LPIIGQLYVG
51 LDWLLSRIKK PEFPSDVDQI VRVEHVVGHD HRSRVEDILK RQRLSLEPRD
101 EGKVHGDLPS APFF*
```

The cp6749 nucleotide sequence <SEQ ID 360> is:

	1	ልጥር ልርጥጥ ልጥ ጥ	አ ርጥጥጥጥርጥር 	mmccmxmcmc	33 CCTCCC 3 2 C	AGCACTTTCA
		111 OHOT INT	ACTITICICI	TIGGINICIG	AAGGTGCAAC	AGCACTTTCA
	51	AGCAGCATTT	GATTTTACTC	GCTCCCTGTG	TTCACGAATT	TCTAATTTTG
0.5	101	CTTTGGGAGT	GATTGCATTG	CTTCCTATTA	TTGGGCAGTT	GTATGTAGGG
35	151	CTGGACTGGC	TCCTCTCTAG	GATAAAAAAG	CCAGAATTTC	CTTCCGATGT
	201	GGATCAGATC	GTGCGAGTAG	AACACGTCGT	GGGTCACGAC	CATAGAAGTC
	251	GAGTTGAAGA	TATTCTAAAG	AGACAAAGGC	TCTCATTAGA	GCCTAGAGAC
	301	GAGGGGAAGG	TTCACGGAGA	TCTGCCTTCA	CCACCAMMANA	ጥጥጥር እ

The PSORT algorithm predicts inner membrane (0.2996).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 180A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 180B) and for FACS analysis.

These experiments show that cp6749 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

```
Example 181
      Example 182
      Example 183
      Example 184 and
  5
      Example 185
      The following C.pneumoniae protein (PID 4376301) was expressed <SEQ ID 361; cp6301>:
                     LNQDLQNVYQ ECQKATGLES EVSAYRDHLR EQITEFETQG LDVIKEELLF
                     VSSTLKSKLS YDPLIADIPC MKFYEEYYDG IDKARVQSRW LEKSERYRKA
                 101
                     KKGFQEMLKE GLFKEDQALK KAEYRLLREK RMNKEKLLIC NKIEAAQQRV
10
                 151
                     QEFGPSDS*
      The cp6301 nucleotide sequence <SEQ ID 362> is:
                     TTGAATCAGG ATTTACAAAA TGTATACCAA GAGTGCCAGA AGGCTACAGG
                     TTTAGAATCG GAAGTGAGTG CATATAGAGA TCATCTTAGA GAGCAGATCA
                 51
                 101
                     CAGAGTTTGA AACTCAAGGG CTGGACGTGA TAAAAGAAGA ACTTCTTTTT
15
                 151
                     GTGAGTAGTA CTCTCAAAAG TAAATTGAGC TATGATCCAT TAATAGCAGA
                     CATTCCCTGT ATGAAGTTTT ATGAGGAGTA TTATGATGGC ATTGATAAAG
                201
                     CGAGAGTTCA ATCCCGATGG CTGGAGAAGT CTGAGAGGGTA TAGAAAGGCG
                251
                     AAGAAGGGAT TCCAAGAGAT GCTGAAGGAA GGCCTATTCA AAGAAGATCA
                     GGCTTTGAAA AAAGCAGAGT ACAGATTACT TCGAGAGAAG AGAATGAATA
                351
20
                     AGGAGAAGCT TTTGATTTGC AATAAGATAG AAGCAGCTCA GCAGCGAGTC
                401
                     CAAGAATTTG GACCCTCGGA TTCATAA
      The PSORT algorithm predicts cytoplasm (0.4621).
      The following C.pneumoniae protein (PID 4376558) was also expressed <SEQ ID 363; cp6558>:
                     MNIPAPQVPV IDEPVVNNTS SYGLSLKSSL RPITYLILAI LAIATLMSVL
25
                 51
                     YFCGIISVGT FVLGMLIPLS VCSVLCVAYL FYQQSSIEKT KVFSITSPSV
                101
                     FFSDEDLNLL LGREEDSVSA IDELLKNFPA DDFRRPKMLP YSNFLDEQGR
                151
                    PNESREEDSH TSKIL*
      The cp6558 nucleotide sequence <SEQ ID 364> is:
                     ATGAACATAC CCGCTCCCCA AGTACCAGTC ATAGATGAGC CTGTAGTGAA
30
                     CAACACAAGT AGCTATGGTC TTTCATTGAA AAGTAGTTTA AGACCGATTA
                 51
                     CTTATTTGAT TTTAGCTATC TTAGCTATAG CCACACTGAT GTCTGTTCTC
                101
                     TACTTTTGTG GCATCATTAG TGTTGGGACG TTTGTTTTGG GCATGCTGAT
                151
                201
                     CCCTCTATCG GTCTGCTCTG TTCTTTGCGT TGCCTATTTA TTCTATCAGC
                     AATCTTCTAT AGAAAAGACT AAGGTCTTTT CTATAACCAG TCCTTCAGTA
                251
35
                301
                     TTTTTCTCTG ATGAGGATCT TAATTTACTC TTAGGTCGAG AAGAAGATTC
                351
                     AGTGTCTGCA ATTGATGAAC TTCTTAAGAA CTTTCCAGCT GATGATTTCC
                     GTAGGCCGAA GATGCTTCCT TATTCAAATT TTCTAGATGA GCAGGGAAGG
                401
                     CCTAATGAGA GTAGGGAAGA AGACTCTCAT ACTTCCAAGA TCTTATAA
      The PSORT algorithm predicts inner membrane (0.4630).
     The following C.pneumoniae protein (PID 4376630) was also expressed <SEQ ID 365; cp6630>:
40
                    MSMTIVPHAL FKNHCECHST FPLSSRTIVR IAIASLFCIG ALAALGCLAP
                 51
                     PVSYIVGSVL AFIAFVILSL VILALIFGEK KLPPTPRIIP DRFTHVIDEA
                    YGLSISAFVR EQQVTLAEFR QFSTALLCNI SPEEKIKQLP SELRSKVESF
                101
                151
                    GISRLAGDLE KNNWPIFEDL LSQTCPLYWL QKFISAGDPQ VCRDLGVPRE
45
                    CYGYYWLGPL GYSTAKATIF CKETHHILQQ LTKEDVLLLK NKALQEKWDT
                201
                    DEVKAIVERI YTTYTARGTL KTEAGGLTKE TISKELLLLS LHGYSFDQLQ
                251
                    LITQLPRDAW DWLCFVDNST AYNLQLCALV GALSSQNLLD ESSIDFDVNL
                    GLYVIQDLKE AVQAFSASDE PKKELGKFLL RHLSSVSKRL ESVLRQGLHR
                351
                    IALEHGNARA RVYDVNFVTG ARIHRKTSIF FKD*
               401
50
     The cp6630 nucleotide sequence <SEQ ID 366> is:
                    ATGAGCATGA CGATCGTTCC ACATGCTTTA TTTAAAAATC ATTGCGAGTG
                51
                    TCATTCTACC TTTCCTTTGA GTTCAAGGAC TATTGTAAGA ATAGCCATTG
                    CCAGCCTCTT TTGTATAGGT GCATTAGCAG CTTTAGGCTG TTTGGCTCCT
               101
                    CCCGTTTCTT ATATTGTTGG GAGTGTTTTA GCTTTTATTG CCTTTGTCAT
55
               201 TCTTTCTTTA GTAATTTTAG CTTTGATTTT TGGAGAGAAG AAGCTTCCAC
```

```
251 CAACACCAAG AATCATTCCT GATAGATTTA CTCACGTGAT AGATGAAGCT
                     TATGGCCTTT CAATCTCTGC ATTTGTAAGA GAACAGCAGG TAACATTAGC
                301
                351 CGAGTTTAGA CAATTTTCTA CTGCCCTGTT GTGTAACATA TCTCCTGAAG
                401 AGAAAATCAA ACAATTGCCT TCTGAATTGC GAAGTAAAGT AGAGAGTTTT
  5
                     GGTATTAGCA GGCTCGCAGG TGATTTAGAA AAGAATAATT GGCCAATATT
                451
                     TGAAGATCTT TTAAGCCAAA CCTGCCCGTT ATATTGGCTT CAGAAATTTA
                551
                     TATCAGCAGG AGATCCACAA GTTTGTAGAG ACCTAGGTGT CCCTAGAGAA
                     TGTTATGGGT ACTATTGGCT AGGGCCTTTG GGATACAGTA CAGCTAAGGC
                601
                651
                     TACAATTTTT TGTAAAGAGA CGCATCATAT TCTTCAACAA TTAACGAAAG
10
                701
                     AGGACGTTCT TTTATTAAAA AACAAGGCTC TTCAAGAGAA ATGGGATACT
                     GATGAAGTCA AAGCAATTGT AGAGCGTATC TACACTACCT ATACGGCACG
                751
                801
                     AGGAACTCTA AAGACCGAAG CAGGGGGACT TACAAAAGAG ACAATCAGTA
                851
                     AGGAATTGCT ATTGTTGAGC TTGCATGGCT ATTCTTTTGA TCAGCTACAG
                901
                    CTGATCACTC AACTTCCTAG AGATGCTTGG GATTGGCTGT GTTTTGTAGA
15
                    TAACAGTACC GCATACAACC TTCAGCTTTG TGCTCTTGTA GGAGCTTTGT
                951
               1001
                    CATCCCAAAA TCTTCTTGAC GAATCTTCTA TCGATTTTGA TGTAAACCTA
               1051
                    GGCCTGTATG TGATTCAGGA TCTAAAAGAA GCTGTTCAAG CATTTTCTGC
                    TTCTGATGAG CCAAAGAAAG AACTAGGTAA ATTCTTGTTA AGGCATTTGA
               1101
               1151
                    GTTCAGTTTC TAAGCGATTA GAGAGTGTAT TAAGACAGGG TCTTCACAGA
20
               1201
                    ATAGCTCTAG AGCATGGAAA TGCCAGAGCT AGGGTTTATG ACGTCAATTT
                    TGTAACAGGA GCTAGAATTC ATAGGAAGAC GAGTATCTTC TTTAAAGACT
               1251
               1301
      The PSORT algorithm predicts inner membrane (0.7092).
      The following C.pneumoniae protein (PID 4376633) was also expressed <SEQ ID 367; cp6633>:
25
                    MVNIQPVYRN TQVNYSQATQ FSVCQPALSL IIVSVVAAVL AIVALVCSQS
                    LLSIELGTAL VLVSLILFAS AMFMIYKMRQ EPKELLIPKK IMELIQEHYP
                101
                    SIVVDFIRDQ EVSIYEIHHL ISILNKTNVF DKAPVYLQEK LLQFGIEKFK
                    DVHPSKLPNF EEILLQHCPL HWLGRLVYPM VSDVTPGTYG YYWCGPLGLY
                    ENAPSLFERR SLLLLKKISF GEFALLEDGL KKNTWSSSEL VQIRQNLFTR
30
                    YYADKEEVDE AELNADYEQF DSLLHLIFSH KLS*
      The cp6633 nucleotide sequence <SEQ ID 368> is:
                    ATGGTTAATA TACAGCCTGT GTATAGGAAT ACCCAAGTCA ACTATAGTCA
                 1
                    GGCTACCCAA TTTTCGGTGT GCCAGCCAGC GCTTAGCCTG ATTATCGTTT
                101
                    CTGTTGTTGC TGCTGTACTC GCTATTGTAG CTTTGGTATG CAGTCAATCT
35
                151
                    CTTTTATCCA TAGAGTTAGG AACTGCTCTT GTTCTAGTTT CTCTTATTCT
                201
                    TTTTGCTTCT GCTATGTTTA TGATTTATAA GATGAGACAA GAACCTAAGG
                251 AGTTGCTGAT CCCTAAGAAA ATCATGGAAC TCATCCAAGA ACATTATCCA
               301
                    AGTATTGTTG TTGATTTTAT TAGAGATCAG GAGGTTTCCA TTTATGAGAT
                    ACATCACTTG ATCTCTATTC TTAATAAGAC GAATGTTTTC GACAAAGCAC
                351
40
                    CAGTATATTT ACAAGAAAAA CTCTTACAGT TTGGCATTGA GAAGTTCAAA
                451
                    GATGTACATC CAAGTAAGCT CCCTAATTTT GAAGAAATTC TTCTACAGCA
                501
                    TTGCCCATTG CATTGGTTGG GACGTCTGGT ATATCCCATG GTATCGGATG
                551 TCACTCCAGG AACCTATGGA TACTATTGGT GTGGTCCTTT AGGACTGTAC
               601
                    GAGAACGCTC CCTCTCTTTT TGAACGTCGA TCTCTTCTAT TGTTAAAGAA
45
               651 AATTAGCTTT GGAGAGTTTG CTCTTTTAGA AGATGGTCTC AAGAAAAACA
                    CGTGGAGTTC TTCGGAACTC GTTCAAATCA GACAAAACCT TTTTACAAGA
                701
                    TATTATGCTG ATAAAGAAGA GGTAGATGAA GCAGAGTTAA ACGCTGATTA
               801
                    CGAACAGTTT GATTCCCTCC TTCACCTTAT TTTTTCTCAC AAGCTCTCTT
               851 GA
50
     The PSORT algorithm predicts inner membrane (0.7283).
     The following C.pneumoniae protein (PID 4376642) was also expressed <SEQ ID 369; cp6642>:
                    MATISPISLT VDHPLVDTKK KSCSNFDKIQ SRILLITAIF AVLVTIGTLL
                    IGLLLNIPVI YFLTGISFIA VVLSNFILYK RATTLLKPRA CGKHKEIKPK
               101 RVSTNLQYSS ISIAINRSKE NWEHQPKDLQ NLPAPSALLT DNPYEIWKAK
55
                    HSLFSLVSLL PGGNPEHLLI SASENLGKTL LIEETSQNAP ISSYVDTTPS
               201 PKSLLNEAIQ ETRVEINTEL PAGDSGERLY WQPDFRGRVF LPQIPTTPEA
                    IYQYYYALYV TYIQTAINTN TQIIQIPLYS LREHLYSREL PPQSRMQQSL
                    AMITAVKYMA ELHPEYPLTI ACVERSLAQL PQESIEDLS*
     The cp6642 nucleotide sequence <SEQ ID 370> is:
60
                 1 ATGGCTACAA TCTCACCCAT ATCTTTAACT GTAGATCATC CCCTAGTAGA
```

	51	САСТААААА	AAATCCTGCA	GCAACTTTGA	TAAGATTCAG	TCTCGAATTC
	101				TTACTATAGG	
	15 1	ATTGGTTTGC	TTTTAAATAT	TCCTGTTATC	TATTTCCTCA	CAGGAATTTC
_	201	ATTTATTGCT	GTTGTTCTTA		CCTTTATAAA	
5	251	CCCTCTTAAA	ACCGCGTGCT	TGTGGCAAAC	ACAAAGAAAT	AAAACCAAAA
	301				ATCTCTATCG	
	351				GGACCTACAG	
	401				ACGAGATATG	
4.0	451				CCGGGAGGCA	
10	501				AAAGACTCTG	
	551				ACGTAGATAC	
	601				GAAACCAGGG	
	651				ACGTTTATAC	
	701				TACCAACAAC	
15	751				ACTTATATCC	
	801				TTTATACAGC	
	851	ATCTCTATTC			CAAGAATGCA	
	901	GCTATGATTA			GAGCTGCACC	
	951				AGCCCAACTA	
20	1001	GTATTGAGGA			110CCC/MICAN	CCICINGAMM

The PSORT algorithm predicts inner membrane (0.5288).

The proteins were expressed in E.coli and purified as GST-fusion products. The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 181-185) and for FACS analysis.

These experiments show that cp6301, cp6558, cp6630, cp6633 and cp6642 are surface-exposed and 25 immunoaccessible proteins, and that they are useful immunogens. These properties are not evident from their sequences alone.

Example 186

30

40

The following C.pneumoniae protein (PID 4376389) was expressed <SEQ ID 371; cp6389>:

```
MSEVKPLFLK NDSFDLATQR FQNLINMLQE QAEIYNEYEE KNARVQNEIK
                    EQKDFVKRCI EDFEARGLGV LKEELASLTR DFHDKAKAET SMLIECPCIG
               101
                    FYYSIHQEEQ RQRQERLQKM AERYRDCKQV LEAVQVEQKD MISSRVVVDD
               151
                    SYFEEEKEEQ KVDNRKKEQD
     The cp6389 nucleotide sequence <SEQ ID 372> is:
35
                    ATGTCAGAAG TGAAGCCTTT GTTTTTAAAG AATGACTCTT TTGATTTGGC
                51
                    AACTCAGAGA TTCCAGAATC TAATTAACAT GCTACAAGAG CAAGCCGAGA
               101
                    TATATAACGA GTATGAAGAA AAGAATGCTA GGGTTCAGAA TGAGATTAAG
                    GAGCAAAAGG ACTTTGTGAA AAGATGCATA GAGGACTTTG AAGCCAGAGG
               201
                    ACTGGGGGTG CTAAAAGAAG AGCTTGCATC TTTGACGCGT GATTTCCATG
```

TTTTATTATA GTATTCATCA GGAGGAACAA AGGCAAAGGC AAGAAAGGCT 301 351 TCAAAAGATG GCTGAGCGCT ATAGGGACTG TAAACAAGTC TTGGAGGCTG 401 TCCAGGTGGA GCAAAAAGAT ATGATATCTT CTAGAGTCGT TGTCGATGAC 451 AGCTACTTTG AAGAAGAAAA AGAAGAACAA AAGGTGGATA ACAGAAAGAA

45 AGAACAGGAC TAG 501

251

The PSORT algorithm predicts cytoplasm (0.3193).

The protein was expressed in E.coli and purified as a GST-fusion product (Figure 186A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 186B) and for FACS analysis.

ATAAAGCAAA AGCAGAGACT TCTATGCTCA TTGAATGTCC TTGTATTGGT

These experiments show that cp6389 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 187

The following C.pneumoniae protein (PID 4376792) was expressed <SEQ ID 373; cp6792>:

```
5 1 VLQEHFFLSE DVITLAQQLL GHKLITTHEG LITSGYIVET EAYRGPDDKA
51 CHAYNYRKTQ RNRAMYLKGG SAYLYRCYGM HHLLNVVTGP EDIPHAVLIR
101 AILPDQGKEL MIQRRQWRDK PPHLLTNGPG KVCQALGISL ENNRQRLNTP
151 ALYISKEKIS GTLTATARIG IDYAQEYRDV PWRFLLSPED SGKVLS*
```

The cp6792 nucleotide sequence <SEQ ID 374> is:

		-	_	• •		
10	1	GTGCTACAAG	አ አር አጥጥጥጥጥ	TCTATCGGAA	C MCm Amma	03.003.0000
	5 1	ACAGCTTTTA	GGACATAAAC	TCATCACAAC	ACATGACCCT	CACTAGCGCA
	101	CAGGTTACAT	TGTAGAAACC	GAAGCGTATC	GTGGCCCTGA	TGACAAAGCA
	151	TGCCACGCCT	ACAACTACAG	AAAAACTCAG	AGGAACAGAG	CGATGTACCT
15	201	GAAAGGAGGC	TCTGCTTACC	TCTACCGTTG	CTATGGCATG	CATCACCTAT
15	25 1	TGAATGTTGT	CACTGGACCT	GAGGACATTC	CCCATGCCGT	CCTGATCCGG
	301	GCCATCCTTC	CTGATCAAGG	CAAAGAACTT	ATGATCCAAC	GCCGCCAATG
	351	GAGAGATAAA	CCCCCACACC	TTCTCACCAA	TGGACCCGGA	AAAGTGTGCC
	401	AAGCTCTAGG	AATCTCTTTG	GAAAACAATA	GGCAACGCCT	AAATACCCCA
00	451	GCTCTCTATA	TCAGCAAAGA	AAAAATCTCT	GGGACTCTAA	CAGCAACTGC
20	501	CCGGATCGGC	ATCGATTATG	CTCAAGAGTA	TCGTGATGTC	CCATGGAGAT
	551			TCGGGAAAAG		

The PSORT algorithm predicts cytoplasm (0.180).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 187A; lanes 2-4). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 187B) and for FACS analysis.

These experiments show that cp6792 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 188

25

The following C.pneumoniae protein (PID 4376868) was expressed <SEQ ID 375; cp6868>:

30	1	MVETVLHNFQ	RYLSKYLYRV	FRFPCRKKTF	LSSHRVLARP	SFPVDYCPCK
	. 51		LNAQLFQGAL	RLQIGWFGRK	ATRKCKSVVL	GLEHENEOLT
	101	RIHRSLDRQE	IPRFFMEYLV	YHEMVHSVVP	REYSLSGRSI	FHGKKEKEVE
	151	QRFPLYDRAV	AWEKANAYLL	RGYKKRVGGG	YGRA*	
	The cn6868 micl	entide seguer	on ceed in	2765 :		

The cp6868 nucleotide sequence <SEQ ID 376> is:

	_	_	•			
35	1	ATGGTTGAAA	CAGTACTTCA	TAATTTCCAA	CGTTATCTGA	GCAAGTATCT
	51	CTATAGGGTA	TTTCGCTTCC	CATGTCGTAA	AAAGACGTTC	CTATCTTCGC
	101	ACAGGGTTCT	TGCTCGTCCT	TCATTCCCAG	TAGACTACTG	TCCGGGAAAG
	151	ATCTATGATT	TGCAGGAGAT	CTATGAGGAA	TTGAATGCGC	AGTTATTTCA
40	201	AGGTGCACTG	CGTTTACAGA	TTGGTTGGTT	CGGAAGGAAA	GCTACCAGAA
40	251	AAGGCAAGAG	TGTTGTCTTG	GGATTGTTTC	ATGAAAATGA	ACAGTTAATT
	301	CGAATTCATC	GTTCTTTAGA	TCGGCAGGAA	ATCCCAAGAT	TTTTTATGGA
	351	ATATCTTGTG	TATCATGAAA	TGGTTCATAG	TGTAGTCCCT	AGAGAGTATT
	401	CTCTATCGGG	GCGTTCGATT	TTTCATGGTA	AAAAGTTTAA	AGAATACGAA
4.0	451	CAACGTTTCC	CCTTGTATGA	TCGTGCTGTT	GCTTGGGAAA	AGGCAAACGC
45	501	TTATTTATTG	CGAGGGTATA	AAAAAAGAGT	AGGTGGAGGA	TATGGCAGGG
	551	CATAG				

The PSORT algorithm predicts bacterial cytoplasm (0.325).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 188A; lanes 2-3). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 188B) and for FACS analysis.

These experiments show that cp6868 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 189

The following C.pneumoniae protein (PID 4376894) was expressed <SEQ ID 377; cp6894>:

```
MYKRCVLDKI LKGIVAGSLI LLYWSSDLLE RDIKSIKGNV RDIQEDIREI
                51
                    SRVVKQQQTS QAIPAAPGVM LAPKLVRDEA FALLFGDPSY PNLLSLDPYK
10
                    QQTLPELLGT NFHPHGILRT AHVGKPENLS PFNGFDYVVG FYDLCIPSLA
               101
                    SPHVGKYEEF SPDLAVKIEE HLVEDGSGDK EFHIYLRPNV FWRPIDPKAL
               151
                    PKHVQLDEVF QRPHPVTAHD IKFFYDAVMN PYVATMRAVA LRSCYEDVVS
               201
                    VSVENDLKLV VRWKAHTVIN EEGKEERKVL YSAFSNTLSL QPLPRFVYQY
               251
                    FANGEKIIED ENIDTYRTNS IWAQNFTMHW ANNYIVSCGA YYFAGMDDEK
               301
15
               351
                    IVFSRNPDFY DPLAALIDKR FVYFKESTDS LFQDFKTGKI DISYLPPNQR
                    DNFYSFMKSS AYNKQVAKGG AVRETVSADR AYTYIGWNCF SLFFQSRQVR
               401
                    CAMNMAIDRE RIIEQCLDGQ GYTISGPFAS SSPSYNKQIE GWHYSPEEAA
               501
                    RLLEEEGWID TDGDGIREKV IDGVIVPFRF RLCYYVKSVT AHTIADYVAT
                    ACKEIGIECS LLGLDMADLS QAFDEKNFDA LLMGWCLGIP PEDPRALWHS
               551
20
                    EGAMEKGSAN VVGFHNEEAD KIIDRLSYEY DLKERNRLYH RFHEIIHEEA
               601
               651
                    PYAFLFSRHC SLLYKDYVKN IFVPTHRTDL IPEAQDETVN VTMVWLEKKE
               701 DPCLSTS*
```

The cp6894 nucleotide sequence <SEQ ID 378> is:

		_	_			
25	1	ATGTATAAAA	GATGTGTGCT	AGATAAAATT	TTAAAGGGGA	TTGTCGCCGG
25	51	TTCTTTAATT	TTGTTATACT	GGTCCTCAGA	CCTACTTGAA	AGAGACATTA
	101	AGTCGATAAA	AGGTAACGTA	AGAGATATTC	AAGAAGACAT	TCGTGAAATC
	151	TCACGCGTAG	TGAAACAACA	GCAGACATCA	CAAGCTATCC	CTGCGGCACC
	201	TGGGGTGATG	CTCGCTCCTA	AGCTCGTCAG	AGACGAAGCT	TTTGCTCTAC
00	251	TCTTTGGAGA	TCCTAGTTAT	CCTAATTTAC	TTTCCCTAGA	CCCCTATAAA
30	301	CAGCAGACTC	TTCCTGAACT	TCTAGGAACA	AATTTCCACC	CTCATGGTAT
	351	CCTACGCACT	GCCCATGTCG	GAAAACCCGA	AAATCTGAGC	CCTTTTAATG
	401	GCTTTGATTA	TGTCGTGGGC	TTTTACGATC	TCTGTATTCC	TAGTTTAGCT
	451	TCTCCCCACG	TAGGGAAATA	CGAAGAATTT	TCTCCAGATC	TCGCTGTGA A
0.5	501	AATAGAAGAA	CATCTTGTTG	AAGATGGTTC	TGGGGATAAA	GAGTTTCACA
35	551	TCTATCTGAG	GCCGAATGTT	TTTTGGCGTC	CTATAGATCC	TAAGGCCCCTT
	601	CCAAAACACG	TTCAGTTAGA	CGAAGTATTT	CAACGTCCTC	ATCCTGTGAC
	651	AGCTCATGAT	ATTAAGTTTT	TCTACGACGC	TGTTATGAAC	CCTTATGTAG
	701	CAACCATGCG	AGCAGTGGCT	CTGCGCTCTT	GTTATGAAGA	ጥርጥርረጥጥጥርጥ
40	751	GTCTCAGTAG	AAAACGATTT	AAAATTAGTA	GTCAGATGGA	AAGCACACAC
40	801	GGTAATCAAT	GAAGAAGGAA	AGGAAGAGCG	CAAAGTGCTC	TACTCTGCAT
	851	TTTCTAATAC	CTTAAGCTTG	CAGCCCCTCC	CTAGATTTGT	ATATCAGTAT
	901	TTTGCTAACG	GGGAAAAAAT	CATTGAAGAT	GAGAATATCG	ATACCTACCG
	951	AACCAATTCC	ATTTGGGCGC	AAAACTTCAC	TATGCATTGG	GCAAACAACT
10	1001	ATATTGTAAG	TTGTGGAGCC	TACTACTTTG	CAGGGATGGA	TGATGAGAAA
45	1051	ATCGTGTTTT	CTAGAAATCC	TGACTTCTAT	GATCCTCTTG	CGGCTCTTAT
	1101	TGACAAGCGT	TTCGTCTATT	TTAAGGAAAG	CACAGACTCC	CTATTCCAAG
	1151	ATTTTAAGAC	AGGGAAAATA	GACATCTCTT	ACCTTCCACC	CAACCAAAGA
	1201	GATAATTTCT	ATAGTTTTAT	GAAAAGCTCC	GCTTATAACA	AACAGGTAGC
50	1251	TAAGGGAGGA	GCCGTCCGTG	AAACAGTCTC	AGCAGATCGA	GCATATACCT
50	1301	ACATAGGATG	GAATTGCTTT	TCATTATTT	TCCAAAGCCG	ACAGGTGCCC
	1351	TGTGCTATGA	ACATGGCAAT	CGATAGAGAG	AGGATTATCG	AACAGTGCTT
	1401	GGATGGCCAA	GGCTATACGA	TTAGTGGGCC	TTTTGCTTCG	∆ር ጥጥርጥር ርጥጥ
	1451	CITIATAATAA	ACAGATCGAA	GGGTGGCATT	ATTCTCCAGA	AGAAGCAGCT
	1501	CGTCTCCTGG	AAGAAGAGGG	ATGGATAGAT	ACCGATGGCG	ATCCAATCCC
55	1551	AGAAAAAGTT	ATCGATGGTG	TGATTGTCCC	GTTCCGTTTC	CGmmmp $MGCm$
	1601	ATTATGTAAA	GAGTGTCACC	GCTCATACCA	TTGCAGATTA	CGTAGCTACT
	1651	GCTTGTAAGG	AAATCGGAAT	CGAGTGTAGC	CTTCTAGGAC	ТАСАТАТССС
	1701	CGATCTTTCG	CAAGCTTTTG	ATGAAAAGAA	TTTCGATGCT	ርጣጣጣጣን አጥርር
	1751	GATGGTGTTT	AGGAATTCCT	CCTGAGGATC	CTAGGGCTTT	ATGGCATTCT

```
1801 GAAGGGCTA TGGAAAAGGG TTCAGCGAAT GTTGTAGGTT TCCATAATGA
1851 AGAAGCTGAT AAAATCATAG ACAGACTCAG CTACGAATAC GATCTGAAAG
1901 AACGTAATCG CCTGTACCAC CGTTTCCATG AAATTATTCA TGAGGAAGCT
1951 CCTTATGCTT TCTTGTTCTC ACGACATTGT TCCTTACTTT ATAAGGATTA
2001 TGTAAAAAAT ATTTTCGTAC CTACACATAG AACAGATTTA ATTCCTGAAG
2051 CTCAGGATGA GACTGTCAAC GTAACTATGG TATGGCTTGA GAAGAAGGAG
2101 GATCCGTGCT TAAGTACATC CTAA
```

The PSORT algorithm predicts inner membrane (0.162).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 189A) and also in GST/his form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 189B) and for FACS analysis.

These experiments show that cp6894 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Example 190

The following *C.pneumoniae* protein (PID 4377193) was identified in the 2D-PAGE experiment <SEQ ID 379; cp7193>:

```
1 MKRVIYKTIF CGLTLLTSLS SCSLDPKGYN LETKNSRDLN QESVILKENR
51 ETPSLVKRLS RRSRRLFARR DQTQKDTLQV QANFKTYAEK ISEQDERDLS
101 FVVSSAAEKS SISLALSQGE IKDALYRIRE VHPLALIEAL AENPALIEGM
201 SIVQGERWPE LVDIVIT*
```

A predicted leader peptide is underlined.

The cp7193 nucleotide sequence <SEQ ID 380> is:

0.7	1	ATGAAAAGAG	TCATTTATAA	AACCATATTT	TGCGGGTTAA	CTTTACTTAC
25	51	AAGTTTGAGT	AGTTGTTCCC	TGGATCCTAA	AGGATATAAC	CTAGAGACAA
	101	AAAACTCGAG	GGACTTAAAT	CAAGAGTCTG	TTATACTGAA	GGAAAACCGT
	151	GAAACACCTT	CTCTTGTTAA	GAGACTCTCT	CGTCGTTCTC	GAAGACTCTT
	201	CGCTCGACGT	GATCAAACTC	AGAAGGATAC	GCTGCAAGTG	CAAGCTAACT
	251	TTAAGACCTA	CGCAGAAAAG	ATTTCAGAGC	AGGACGAAAG	AGACCTTTCT
30	301	TTCGTTGTCT	CGTCTGCTGC	AGAAAAGTCT	TCAATTTCGT	TAGCTTTGTC
	351	TCAGGGTGAA	${\tt ATTAAGGATG}$	CTTTGTACCG	TATCCGAGAA	GTCCACCCTC
	401	TAGCTTTAAT	AGAAGCTCTT	GCTGAAAACC	CTGCCTTGAT	AGAAGGGATG
	451		AAGGCCGTGA			
	501	AAGTGAAGTA	TTTTCTCAAG		AGGGGTTATC	
35	551	ATATCGCCGC	ATTTGCCTCC			
	601	TCCATTGTCC	AAGGGGAAAG	GTGGCCCGAG	CTTGTGGATA	TAGTGATAAC
	651	TTAA				

The PSORT algorithm predicts periplasmic (0.925).

This shows that cp7193 is an immunoaccessible protein in the EB and that it is a useful immunogen. These properties are not evident from the protein's sequence alone.

It will be appreciated that the invention has been described by way of example only and that modifications may be made whilst remaining within the spirit and scope of the invention.

40

TABLE II - sequences of the primers used to amplify Cpn genes.

O.am	TABLE II - sequences of the primers used to ampiny Cpn genes.				
Orf ID	N-terminus final primer	C-terminus final primer			
CP0014P CP0015P	GCGTC CCG GGTCATATG AAGTCTTCTTTCCCCA	GCGT CTC GAG ATGAAAGAGTTTTTGCG			
CP0015P CP0016P	GCGTCCCGGGTCATATG TCAGCTCTGTTTTCTGA	GCGT CTC GAG GAATTGGTATTTTGCTC			
CP0016P CP0017P	GCGTCCCGGGTCATATG GCCGATCTCACATTAG	GCGT CTC GAG GTCCAAGTTAAGGTAGCA			
CP0017P	GCGT CCG GGTCATATG GGTATCAAGGGAACTG	GCGT CTC GAG AAATCCGAATCTTCC			
CP6260P	GCGTCCCGGGTCAT ATGCAAGACTCTCAAGACTATAG	GCGT CTC GAG AAATCGGTATTTACCC			
CP6260P CP6397P	GCGTC CCG GGT GCTAGCACTACGATTTCTTTAACCC	GCGT CTC GAG AAAACGAAATTTGCTTC			
CP6456P	GCGTC CCG GGTCATATGTTTAAACTGCTAAAAAATCTATT	GCGT CTC GAG ATGAAAGAAGAGTCCTCG			
CP6466P	GCGTC CCG GGT CATATG TCATCTCCTGTAAATAACA GCGTC CCG GGT CAT ATG TGCAAGGAGTCCAGT	GCGT CTC GAG CTGACCATCTCCTGTT			
CP6467P		GCGT CTC GAG ATTTTCCTTAGCATAACG			
CP6468P		GCGT CTC GAG TAGTTTTCTATAAAACGAAAGTCT			
CP6469P		GCGT CTC GAG GGGGAAATAGGTATATTTGA			
CP6552P	GCGTC CCG GGT CAT ATG AGCTGCTCAAAGCAA GCGTC CCG GGT CAT ATG TGCCATAAGGAAGATG	GCGT CTC GAG ACTTAAGATATCGATATTTTTGA			
CP6567P	GCGTC CCG GGT CAT ATG ACCTCACCGATCCCC	GCGT CTC GAG ACCATTGTCTTGAGTCAT			
CP6576P	GCGTC CCG GGT CAT ATG ACTGAAAAAGTTAAAGAAGG	GCGT CTC GAG AGAAGCCGGTAGAGGC			
CP6727P	GCGTC CCG GGT CATATGCTACATCCACTAATGGC	GCGT CTC GAG GAA CATGCCCCCTAA			
CP6729P	GCGTC CCG GGT CAT ATGGCAGATGCTTCTTTATC	GCGT CTC GAG GAAAGAATAACGAGTTCC GCGT CTC GAG GAATGAGTATCTTAGCC			
CP6731P	GCGTC CCG GGT CATATGGCTGTTGTAAAATCAAT				
CP6736P	GCGTC CCG GGT GCT AGCGTAGAAGTTATCATGCCTT	GCGTC CAT GGC GGC CGC GAACTGGAACTTACCTCC GCGTC CAT GGC GGC CGC AAATCGTAATTTGCTTC			
CP6737P	GCGT GGA TCC CAT ATG GAGACTAGACTCGGAGG	GCGT CTC GAG AAATGTGGATTTAGTCC			
CP6751P	GCGTC CCG GGT GCT AGC AATGAAGGTCTCCAACT	GCGT CTC GAG AAATCTCATTCTACTCGC			
CP6752P	GCGTGA ATT CAT ATGTTCGGGATGACTCCT	GCGT CTC GAG GAATTTTAAGGTACTTCCTG			
CP6753P	GCGTC CCG GGT GCT AGCACTCCCTACTCTCATAGAG	GCGT CTC GAG AAACTTAAAGGTCGTTC			
CP6767P	GCGTC CCG GGT CAT ATG ATAAAACAAATAGGCCGT	GCGT CTC GAG TTCGTAAGCAACTTCAGA			
CP6829P	GCGTC CCG GGT CAT ATG AAGCAGATGCGTCTTT	GCGTC CAT GGC GGC CGC GAAACTAAGGGAGAGGC			
CP6830P	GCGTC CCG GGT CAT ATG GATCCCGCGTCTGTT	GCGTC CAT GGC GGC CGC GAATACAAACCGGATCC			
CP6832P	GCGTC CCG GGT CAT ATG CATAAAGTAATAGTTTTCATTT	GCGT CTC GAG TAAACTAGAAAAAGTCGTC			
CP6848P	GCGTC CCG GGT CAT ATG TCATCAAATCTACATCCC	GCGT CTC GAG AACGCGAGCTATTTTAC			
CP6849P	GCGTC CCG GGT GCT AGC AGCGGGGGTATAGAG	GCGT CTC GAG ATACACGTGGGTATTTTC			
CP6850P	GCGTC CCG GGT CAT ATG TGCCGCATTGTAGAT	GCGT CTC GAG CTGTTTGCATCTGCC			
CP6854P	GCGTC CCG GGT GCT AGC TCAATAGCTATTGCAAG	GCGT CTC GAG TTATCGAAATGTCTTTG			
CP6879P CP6894P	GCGTC CCG GGT CAT ATG GCAACACCCGCTCAA	GCGTC CAT GGC GGC CGC TCCTTGAAATTGCTCTTGC			
CP6900P	GCGTC CCG GGT CAT ATG TATAAAAGATGTGTGCTAGA GCGTC CCG GGT CAT ATG AAGATAAAATTTTCTTGGAAG	GCGT CTC GAG GGATGTACTTAAGCACG			
CP6952P	The state of the s	GCGT AAG CTT GGGAAGACGATACCG			
CP7034P	GCGTC CCG GGT CAT ATG CTCTCGGATCAATATATAGG GCGTC CCG GGT CAT ATG AAAAAACAGGTATATCAATG	GCGT CTC GAG TCGAATTTCTTTTTAGC			
CP7090P	GCGTC CCG GGT CAT ATG TGTAGCCTTTCCCCT	GCGT AAG CTT AAACGCTGAAATTATACC			
CP7091P	GCGTC CCG GGT CAT ATG GAAGAATTAGAAGTTGTTGT	GCGT CTC GAG GCGTGCATGAATCTTA			
CP7170P	GCGTC CCG GGT CAT ATG CTAGGGGCTGGAAACC	GCGT CTC GAG TAGTGTTCTCTTTATCGGT GCGT AAG CTT AAACTGCAGACCTGACG			
CP7228P	GCGTC CCG GGT CAT ATG ACTGCTGTTCTTATTCTTACA	GCGT CTC GAG ATCTGAAAGCGGAGG			
CP7249P	GCGTC CCG GGT CAT ATG ATCCCATCCCCTACC	GCGT CTC GAG ATCAGGTTGCTGAGACTT			
CP7250P	GCGTC CCG GGT CAT ATG AATCTTTCAAACAGGTCT	GCGT CTC GAG ATTTTTTCTAGAGAGACTCTC			
CP0018P	GTGCGT CATATG GCAACCACTCCACTAA	ACTCGCTA GCGGCCGC TAATGAGGTCCCCAG			
CP6270P	GTGCGT CATATG AATTTATTAGGAGCTGCT	ACTCGCTA GCGGCCGC AAATTTGATTTTGCTACC			
CP6735P	GTGCGT CATATG GCAGCACAAGTTGTATAT	ACTCGCTA GCGGCCGC TGGCGTAGAAGTGATC			
CP6998P	GTGCGT CATATG TTGCCTGTAGGGAAC	ACTCGCTA GCGGCCGC GAATCTGAACTGACCAGA			
CP7033P	GTGCGT CATATG GTTAATCCTATTGGTCCA	ACTCGCTA GCGGCCGC TTGGAGATAACCAGAATATA			
CP7287P	GTGCGT CATATG TTACACAGCTCAGAACTAGA	ACTCGCTA GCGGCCGC GAAAATAATACGGATACCA			
CP0010P	GTGCGT CATATG GCAACTGCTGAAAATATA	GCGT CTCGAG GAATTGGAACTTACCC			
CP0468P	GTGCGT GCTAGC ATTTTTTATGACAAACTCTAT	GCGT CTCGAG AAATGTGCAATGACTCT			
CP6272P	GTGCGT CATATG TTGACTCATCAAGAGGCT	GCGT CTCGAG GAAGGGAGGTTTTTTAGGT			
CP6273P	GTGCGT CATATG ACATATCTGGAAGCTC	ACTCGCTA GCGGCCGC CTCCACAATTTTATG			
CP6362P	GTGCGT CATATG CCCTTTGATATTACTTATTATACA	GCGT CTCGAG TCGTTTCCAAATCCA			
CP6372P	GTGCGT CATATG AAACAACACTATTCTCTAAATA	GCGT CTCGAG TTTCTTGTGGTTTTTCT			
CP6390P	GTGCGT CATATG CGAGAGGTGCCTAAG	ACTCGCTA GCGGCCGC TCTCCTAGACAGCCTT			
CP6402P	GTGCGT CATATG AATGTTGCGGATCTCCTTT	GCGT CTCGAG GAAGGGGTTGGCCGT			
CP6446P	GTGCGT CATATG TGTAATCAAAAGCCCTCTT	GCGT CTCGAG GGGCTGAGGAGGAAC			
CP6520P	GTGCGT GCTAGC AAACACTACCTATCATTTTCT	GCGT CTCGAG CAGAAAGGCTTTTCTTT			
CP6577P CP6602P	GTGCGT CATATG AATTTAGGCTATGTTAATTTA	GCGT CTCGAG GTTTGTTTTTGAAAGA			
UI GOOZF	GTGCGT CATATG GCAGCATCAGGAGGCA	GCGT CTCGAG TGACCAAGGATAGGGTTTAG			

CP6607P	GTGCGT CATATG CCTCGTGGTGACACTTT	GCGT CTCGAG CGCTGCTTCTTGCTC
CP6615P	GTGCGT CATATG TGCTCTCAAAAAACGACAA	GCGT CTCGAG TGAAGAGGCGCCATC
CP6624P	GTGCGT CATATG GATGCGAAAATGGGA	GCGT CTCGAG TCTTTGACATTCAAGAGC
CP6672P	GTGCGT CATATG ATTCCTACCATGTTAATG	GCGT CTCGAG GTCATACAATTTCCTTATATA
CP6679P	GTGCGT CATATG TGCACTCACTTAGGCT	
CP6717P	GTGCGT GCTAGC AAGACAATCGTAGCTTCA	
CP6784P	GTGCGT GCTAGC AAATCAAGATGTTCTATTGATA	
CP6802P	GTGCGT CATATG TGCGTAAGTTATATTAATTCCTT	Com Charles
CP6847P		GCGT CTCGAG CAGTCGGGCTTGTTG
CP6884P	cocca	GCGT CTCGAG TTTTCTACACTGTTGTAATAAA
CP6886P		GCGT CTCGAG AGAGAAGGTAATTGTACC
CP6890P	TOTAL TATAL TRACTAL COMME	GCGT CTCGAG TTCAGAAAAATGGCT
CP6960P	- TOTAL CONCURS	GCGT CTCGAG TCCTGCAGCATTTAGC
CP6968P		ACTCGCTA GCGGCCGC TTCACCTTGATTTCCT
CP6969P	GTGCGT CATATG TGCGATGCAAAAC	ACTCGCTA GCGGCCGC GGAAGTATGCTTAGATATT
	GTGCGT CATATG TGCTGTGGTTACTCTATT	ACTCGCTA GCGGCCGC AAAAAGGTCATAGTATACCT
CP7005P	GTGCGT CATATG AAAACTGTGATATTGAACA	GCGT CTCGAG CTGAGCTTCTATTTCTATTAT
CP7072P	GTGCGT CATATG CCCATTTATGGGAAA	GCGT CTCGAG GTTGAGCAAAGGTTTG
CP7101P	GTGCGT CATATG TATTCGTGTTACAGCAA	GCGT CTCGAG GAAAAATTCTTTAGGGAG
CP7102P	GTGCGT CATATG GCCGCTAAAGCAAAT	GCGT CTCGAG TGAAAATGAAAGGATGGT
CP7105P	GTGCGT GCTAGC AGTCTATATCAAAAATGGTG	GCGT CTCGAG ATCTTTCATTTGGTTATCT
CP7106P	GTGCGT CATATG AAAGATTTGGGGACTCT	GCGT CTCGAG GAATCCTAAGGCATACCTA
CP7107P	GTGCGT GCTAGC AGTATAGTCAGAAATTCTGCA	GCGT CTCGAG GAAGCTAAGATTATAGCTACTTT
CP7108P	GTGCGT GCTAGC GCGGCCCTTTCCA	ACTCGCTA GCGGCCGC TTTATGTATATGGAACAGATAGG
CP7109P	GTGCGT CATATG GGACATTTTATTGATATTG	ACTCGCTA GCGGCCGC ATCATCAAGGTAGATAAAG
CP7110P	GTGCGT CATATG GGTTATTGCTATGTAATTACA	GCGT CTCGAG TTCTGATTGGACTCCA
CP7127P	GTGCGT CATATG GTGGCTTTAACGATAGC	ACTCGCTA GCGGCCG GCAGCCATCGTATTC
CP7130P	GTGCGT CATATG TTCAATATGCGAGG	GCGT CTCGAG CTTCTTATTTGAACTTTG
CP7140P	GTGCGT CATATG ACAGCCGGAGCAGCT	GCGT CTCGAG AGCACCCTCAATTTCATTG
CP7182P	GTGCGT CATATG GGATATGTTTTCTATGTGATC	GCGT CTCGAG GCTACTAAATCGAATCGA
CP6262P	GTGCGT CATATG ATCCCTGGATTAAGTTCA	ACTCGCTA GCGGCCGC TTCACTGGGAGCTTGA
CP6269P	GTGCGT CATATG TACCAGGAGAATCTAAGAT	ACTCGCTA GCGGCCGC GATTTTCTTCTTCAGCTC
CP6296P	GTGCGT CATATG GAGGAGGTGTCTGAGTAT	ACTOGOTA GOGGOOGO ATGTTTCTTTTTACTCTTTCT
CP6419P	GTGCGT CATATG GCTCCAGTCCGTGTT	GCGT CTCGAG AAGTGTTCGTTGGAAGT
CP6601P	GTGCGT CATATG AATAAGCTACTCAATTTCGT	GCGT CTCGAG GAAAATCTGAATTCTTCCT
CP6639P	GTGCGT CATATG TTANATTCAAGCAATTCA	GCGT CTCGAG AGGAACTAAAACCTCATCT
CP6664P	GTGCGT GCTAGC GTTTTATTCATGCTCAA	ACTCGCTA GCGGCCGC CTTAGAAAGACTATTTTCTAAGTA
CP6696P	GTGCGT CATATG TGCGTGATAATGGG	GCGT CTCGAG ATTCATCTTCGTAAAGAAT
CP6757P	GTGCGT CATATG GCAGTTGGTGGCGT	ACTCGCTA GCGGCCGC CTGTCCCTCTGGAGC
CP6790P	GTGCGT GCTAGC AGTGAACACAAAAAATCA	
CP6814P	GTGCGT CATATG CATGACGCACTTCTAAG	ACTCGCTA GCGGCCGC CTTATCGTCGTTATCAATA GCGT CTCGAG TACAGCTGCGCGA
CP6834P	GTGCGT CATATG GTTATGGGAACCTATATCG	
P6878P	GTGCGT CATATG AACGTCCCTGATTCC	GCGT CTCGAG TACATTTGTATTGATTTCAG
	GTGCGT CATATG CAGAAGCATCCTTCCT	GCGT CTCGAG GCTAGCGGCTCTTTC
	GTGCGT CATATG TCCTCTTTAGGAAATGG	ACTCGCTA GCGGCCGC TCCTCTTAGGAAATGG
	GTGCGT CATATG GCAGTACGATTAATTGTTG	GCGT CTCGAG CAGTGCCAAGTAGGGA
	GTGCGT GCTAGC AGCAGAAAAGACAATGA	GCGT CTCGAG TTTATTGTAGTCTATTTTATATTTC
	GTGCGT CATATG ATTACCATAAATCACGTG	GCGT CTCGAG ATTTTGAGTGTCTTGCA
		GCGT CTCGAG TATCCATCGACTTATAGC
		ACTCGCTA GCGGCCGC GGATTCTGCATACTCTG
	GTGCGT CATATG TCTCCTCTTCCTAAAAAA GTGCGT CATATG AAATACCGCTTCACG	GCGT CTCGAG GGATTCATTACTGACCA
		GCGT CTCGAG ATTCTGTAGGGCTACGT
	GTGCGT CATATG GTACACTTCTCATAACCC	GCGT CTCGAG TAAGTTTGTATTGCGGTAT
	GTGCGT CATATG TTGTTATTAGGGACTTTAGGA	GCGT CTCGAG TTTCCCAACCGCA
	GTGCGT CATATG GCTGCGAATGCTC	GCGT CTCGAG TAATTTAATACTCTTTGAAGG
	GTGCGT CATATG CCTACTCAAGTTAAAACAGA	GCGT CTCGAG AAGTTTATATTTCAGCACTT
	GTGCGT GCTAGC CATATAGGATTTTGCCA	GCGT CTCGAG GTACTTAGCAAAGCGAT
	GTGCGT GCTAGC AAGAAGCTATATCACCCTA	GCGT CTCGAG CACACCGAGGAAAC
	GTGCGT CATATG GTAGTTTCAGAAGAAAAGTC	GCGT CTCGAG ACGTATGCGCAACTG
P7223P	STGCGT CATATG GAAGTATTAGACCGCTCT	GCGT CTCGAG CGAGAAAAAGCTTCC
	STGCGT CATATG ATGAAGAAAATTCGAAA	ACTCGCTA GCGGCCGC TAAGCATTCACAAATGA
P7225P	STGCGT CATATG CATATTTTGCTTGATCGT	GCGT CTCGAG TCTTTTAACTAAATCTTGTTCTT
P7303P	STGCGT CATATG CTTGTCTATTGTTTTGATCC	GCGT CTCGAG AAAATATACGGAACTCGC
	STGCGT GCTAGC GAAGTTTATAGTTTTTCCC	
		GCGT CTCGAG TTTTTGATTCCTTAAGAAG
P7305P	STGCGT CATATG GAAGTTTATAGTTTTCACCCT	GCGT CTCGAG ACTCCTTGAGAAGGGAA

CP7342P	GTGCGT CATATG AAAAAAAAATTTATTTTCTACT	ACTCGCTA GCGGCCGC CACACTCTGTTCTTCTG
CP7347P	GTGCGT CATATG TTTTCTAAGGATTTGACTAA	GCGT CTCGAG CGAAGCAGAAGTCGT
CP7353P	GTGCGT CATATG AATATGCCTGTTCCTTCT	GCGT CTCGAG GGGGCGTAGGTTGTA
CP7193P	GTGCGT CATATG TGTTCCCTGGATCCT	ACTCGCTA GCGGCCGC AGTTATCACTATATCCACAAG
CP7248P	GTGCGT GCTAGC CTTGAACATTCTAAACAAGAT	GCGT CTCGAG ACGTAGTTTAAGAGCAGACT
CP7261P	GTGCGT CATATG TGTCTATCTGCCTACATAG	GCGT CTCGAG TTTTGATGCTTCTTTCA
CP7280P	GTGCGT CATATG GACCAGAAAATTGAAAA	GCGT CTCGAG AGAGGTCTTCTGAGTGC
CP7302P	GTGCGT CATATG AATTTCCATTGTAGTGTAGT	GCGT CTCGAG GAACAGTTCGATTTGTG
CP7306P	GTGCGT CATATG CTTCCTTTATCAGGGCA	ACTCGCTA GCGGCCGC TTCTTCAGGTTTCAGG
CP7367P	GTGCGT GCTAGC CGTTATGCCGAGGTC	GCGT CTCGAG TTCGTGCATTTGGTG
CP7408P	GTGCGT CATATG TTGAAAATCCAGAAAAA	GCGT CTCGAG ATTCATTTTCGGAAGAG
CP7409P	GTGCGT CATATG AGACGTTATCTTTTCATGGT	GCGT CTCGAG CCCTTTGCTCTTTACATAG
CP6733P	GTGCGT ACTAGT TGTCACCTACAGTCACTAG	GCGT CTCGAG GAATCGGAGTTTGGTA
CP6728P	GTGCGT ACTAGT AAGTCCTCTGTCTCTTGG	GCGT CTCGAG GAAACAAACTTAGAGCCC

TABLE III – Proteins with best results in FACS analysis

cp number	Molecular		
ch nomber	Theoretical	Western Blot	Fusion type
6260	97.5	94; 70	GST
6270	87.5	-	GST
6272	78.0	90	GST
6273	58.6	74; 64; 50	GST
6296	31.1	-	GST
6390	88.9	102	GST
6456	42.5	89; 67,45	GST
6466	57.5	59; 56	His
6467	59.0	67	GST
6552	28.4	50; 27	GST
6576	86.0	79; 70; 62; 45	GST
6577	17.3	12	GST
6602	43.4	53; 42; 34	GST
6664	54.5	104; 45	GST
6696	47.9	95; 53	GST
6727	130.0-142.9	123; 61; 39	His
6729	94.8	multiple bands	GST
6731	95.5	97	GST
6733	97.1	104	His
6736	100.1	98; 93; 66; 60	GST
6737	101.2	multiple bands	GST
6751	100.2	95;71	GST
6752	102.1	97; 48	His
6767	29.1	28	GST
6784	32.9	35	GST
6790	71.3	multiple bands	His
6802	29.7	-	GST
6814	29.6	28	GST

6830	177.4	174; 91; 13	GST
6849	57.3	multiple bands	GST
6850	7.4-9.4	61; 14; 8	GST
6854	42.2	-	GST
6878	40.4	-	GST
6900	28.0	-	GST
6960	25.6	75; 35	GST
6968	34.6	83; 53; 35	GST
6998	39.3	multiple bands	GST
7033	68.2	multiple bands	GST
7101	113	105	GST
7102	63.4	-	GST
7105	29.2	30	GST
7106	39.5	72;46	GST
7107	71.4	67; 31	His
7108	35.9	35	GST
7111	46.1	51	GST
7132	17.9	57; 47; 17	His
7140	36.2-29.8	50; 38; 34	GST
7170	34.4	77; 33	GST
7224	39.4	40	GST
7287	167.3	180	GST
7306	50.1	50	GST

TABLE IV - FACS-positive proteins not found in *C.trachomatis*

cp7105	ср6390
cp7106	cp6784
cp7107	ср6296
cp7108	

TABLE V – Proteins identified by MALDI-TOF following 2D electrophoresis

cp6270	cp6733	cp6900
cp6552	ср6736	cp6960
ср6576	ср6737	cp6998
ср6577	ср6752	cp7033
cp6602	ср6767	cp7108
ср6664	ср6784	cp7111
cp6727	ср6790	cp7170
cp6728	cp6830	cp7287
cp6729	cp6849	cp7306

CLAIMS

- A protein comprising an amino acid sequence selected from the group consisting of SEQ IDs 97, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351, 353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, & 377.
 - 2. A protein having 50% or greater sequence identity to a protein according to claim 1.
- 3. A protein comprising a fragment of an amino acid sequence selected from the group consisting of SEQ IDs 97, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351, 353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, & 377.
- 25 4. A nucleic acid molecule which encodes a protein according to any one of claims 1 to 3.
- 5. A nucleic acid molecule according to claim 4, comprising a nucleotide sequence selected from the group consisting of SEQ IDs 98, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318,

- 320, 322, 324, 326, 328, 330, 332, 334, 336, 338, 340, 342, 344, 346, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, & 378.
- 6. A nucleic acid molecule comprising a fragment of a nucleotide sequence selected from the group consisting of SEQ IDs 98, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, 322, 324, 326, 328, 330, 332, 334, 336, 338, 340, 342, 344, 346, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, & 378.
- 7. A nucleic acid molecule comprising a nucleotide sequence complementary to a nucleic acid molecule according to any one of claims 4 to 6.
 - 8. A nucleic acid molecule comprising a nucleotide sequences having 50% or greater sequence identity to a nucleic acid molecule according to any one of claims 4 to 7.
 - 9. A nucleic acid molecule which can hybridise to a nucleic acid molecule according to any one of claims 4 to 8 under high stringency conditions.
- 20 10. A composition comprising a protein or a nucleic acid molecule according to any preceding claim.
 - 11. A composition according to claim 10 being a vaccine composition.
 - 12. A composition according to claim 10 or claim 11 for use as a pharmaceutical.
- 13. The use of a composition according to claim 10 in the manufacture of a medicament for the treatment or prevention of infection due to *Chlamydia* bacteria, particularly *Chlamydia* 25 pneumoniae.

Fig. 1A

1/169

FIGURE 1

Fig. 1C

FIGURE 4

Fig. 6A

6/169

FIGURE 6

ΡI

FIGURE 7

FIG. 7A

FIG. 7B

PÍ

PJ

FIGURE 8

Fig. 8A

FIGURE 9

Fig. 9A

FIG. 9B

\$1\$2\$38\$26\$20\$1-20\$8H-\$100

Fig. 9C

FIGURE 13

FIG. 13A

FIG. 14A

FIGURE 15

16/169

FIGURE 16

Fig. 19A

19/169

FIGURE 19

FIG. 19B

P

KDa

8462251438

19
2620
15538H-060Z

\$IH-060Z

\$IH-060Z

\$IH-060Z

24/169

27/169

FIG. 27A

FIGURE 28

FIG. 28A

FIGURE 29

FIG. 29A

Garaga L

FIGURE 30

FIG. 30A

FIGURE 31

Fig. 31A

FIGURE 32

Fig. 32A

trough a septembers

Fig. 32B

FIG. 32C

FIGURE 35

Fig. 35B

FIG. 37A

FIG. 37C

FIG. 37B

39/169

FIGURE 41

Fig. 41B

Fig. 41C

FIGURE 42

Fig. 42C

FIGURE 43

FIGURE 44

FIGURE 45

FIG. 45B

FIG. 45B

46/169

FIGURE 47

FIGURE 48

FIGURE 49

FIG. 49A

26 -20 -

Fig. 49B

Fig. 50B

FIGURE 55

FIG. 55A

Fig. 55C

FIG. 56A

7-b

FIG. 56B

Fig. 56**D**

FIGURE 57

FIG. 57B 15-21 8H-28

FIGURE 58

FIG. 58A

FIG. 58B

Fig. 58C

FIG. 59A

FIGURE 60

FIG. 60A

Fig. 60C

FIGURE 61

FIG. 61A

KDa P I 84 -62 -51 -38-26-FIG. 61B 20≆ **15** -

Fig. 62A

FIG. 62C

FIG. 62B

FIG. 63A

63/169

FIGURE 63

KDa. P 1 62-51-38-26-FIG. 63B 20-15-

7107-His 710

FIGURE 66

FIG. 66A

P | KDa | 84- 62- 51- 38- -34 | Fig. 66B | 26- 20- 15- 15- 968

FIGURE 69

FIG. 69A

FIGURE 70

KDa. 846225138262015.5-20-8

FIGURE 73

FIG. 73A

FIGURE 75

PI

FIG. 75B

FIG. 75B

1S 5-109

FIG. 77A

FIG. 78A

FIGURE 79

Fig. 79A

KDa 84-62 51- 666 51- 18:5-686 20:-

FIGURE 82

FIG. 82A

FIGURE 86

FIG. 86A

FIGURE 87

FIG. 87A

Fig. 93C

FIGURE 94

82

100

10

ումում 10³

FIGURE 95

FIGURE 99

FIGURE 100

FIGURE 101

FIGURE 102

Fig. 102A

KDa P

FIG. 102B

382620-

FIGURE 103

FIG. 104A

FIGURE 104

FIG. 105A

105/169

FIGURE 105

115-

84 -62 -51 -

38-

Fig. 105B

26-

20 -

FIGURE 106

Fig. 106A

FIG. 106B KDa P |

FIGURE 107

KDa Pl.

FIGURE 108

Fig. 108A

FIG. 108B 26-15-9-

115-

7400-951 7400-951

FIGURE 109

Fig. 109A

KĎa Pl

1 15 --84 -62 --51 --38 --

26-20-

Fig. 109B

5-63T 5-GST

FIGURE 110

1

FIG. 110A

The second secon

Fig. 110B

KDa P

115846251382620LSB-96

FIGURE 111

FIG. 111A

KDa.

1 15.-

184 -162 -151 -

38-

Fig. 111B

26-

20-

FIGURE 112

1

FIG. 112A

FIG. 112B

Annual Control of the
115-84-62-51-38-26-20-

FIGURE 113

Fig. 113A

Fig. 113B

115 - 15 5 - 684 -

FIGURE 114

FIG. 114A

Fig. 114B

FIGURE 115

Fig. 115A

KDa.

FIGURE 116

Fig. 116A

KDa.

FIGURE 117

FIG. 117A

	1 15 -	
	84 62- 51-	
17B	38-	
	26-	

KDa P

FIG. 117B

FIGURE 118

FIG. 118A

Fig. 118B

FIGURE 119

Fig. 119A

115-84-62-51-38-

20 -

KDa.

Fig. 119B

528-GST 528-GST

FIGURE 120

Fig. 120A

KDa

FIGURE 121

FIG. 121A

Fig. 121B

84.-62-51-38-

1 15:-

KĎa À I

,26'- ¹

20-

551

FIGURE 122

FIG. 122A

ŧ' ·,

KDa /P Î

1 15-

84 -62 -51 -

38-

Fig. 122B

26-20-

FIGURE 123

FIG. 123A

KDa P I

11584625138
FIG. 123B

6738 - GST 6738 - GST

FIGURE 124

FIG. 124A

KDa P I

11584625138
FIG. 124B

2620-

FIGURE 125

Fig. 125A

Fig. 125B

Fig. 126A

125/169

FIGURE 126

FIG. 126B

FIGURE 127

FIG. 127A

Fig. 127B

KDa P | 115" | 15"

FIG. 128A

127/169

FIGURE 128

KDa P

115-84-62-51-38-**FIG. 128B**26-20-

FIGURE 129

FIG. 129A

Fig. 129B

FIGURE 130

FIG. 130A

FIG. 130B

FIG. 130B

115
155
2620-

FIG. 131A

FIGURE 132

FIG. 132A

	KDa P	KDa Pj.
Fig. 132 B	115- 84- 62- 51- 38- 26- 20-	115 - 84 - 62 - 51 - 38 - 26 - 20 -
	6766-45T	6766 - His 6766 - His

FIGURE 133

FIG. 133A

KDa P 1

11584625138
FIG. 133B

2620-

FIGURE 134

FIG. 134A

FIGURE 135

Fig. 135A

FIGURE 136

FIG. 136A

Fig. 137A

FIG. 138A

FIGURE 138

FIGURE 139

Fig. 139A

na thatagaile at an indicate a second

FIGURE 140

FIG. 140A

FIGURE 141

Fig. 141A

	KDa Pl	kĎa Pl
Fig. 141B	115- 84- 62- 51- 38- 26- 20-	115
	7374-GST 7374-GST	7374 - His

FIG. 142A

141/169

FIGURE 142

FIGURE 143

FIG. 143A

Fig. 143B

KDa P 1 115-84-155-100 1555-10

FIGURE 144

FIG. 144A

115-.84-.62-.51:-38-26-20-

KDa P I

FIGURE 145

FIGURE 146

KDa P I

115846251382620-

Fig. 147A

146/169

FIGURE 147

KDa Pl

115-84-62-51-38-

Fig. 147B

26-20-

> 722 - His 722 - His

FIGURE 148

KDa P |

11584625138262020-

FIGURE 150

FIG. 150A

Fig. 150B

P. I

KDa

115-84-62-51-38-26-20-\$\frac{1}{2} \text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exittitt{\$\text{\$\exittitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exittitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\ti

FIGURE 151

FIG. 151A

tempera Anni UT

de de la companya de

and com

FIG. 151B

KDa P | 1.15.84.51.38.26.20.8H-9689

FIGURE 154

FIGURE 156

FIGURE 157

FIGURE 158

FIGURE 159

Fig. 159A

FIG. 171A

159/169

160/169

FIGURE 174

FIG. 174A

FIGURE 180

FIG. 180A

FIGURE 181

KDa P

FIGURE 182

KDa P L

FIGURE 183

KDa Pl

115-	
84 62	
51	A 15
38-	11
26 -	
20 -	

FIGURE 184

KDa P

1 15	*
84 62 <i>-</i> -	*
51 -	paudi
38~	

FIGURE 185

1,15-

84-62-51-

38~

26-

20-

l j

FIGURE 186

KDa PI

FIG. 186A

FIG. 186B

1158462513838262020-

KDa "P"↓

FIGURE 189

Fig. 189A

Fig. 189B

KDa Pl

1.15 -

38-

26-

20-

FIGURE 190

