

Общая схема работы генетического алгоритма

Схема формирования новой популяции

Настроечные параметры генетических алгоритмов:

- число поколений,
- количество особей в популяции,
- способ отбора родителей (вид селекции), число участников турнира,
- вероятность мутации,
- стратегия отбора в новую популяцию.

Способ отбора родителей (вид селекции)

- случайный равновероятный отбор (все особи имеют равные шансы стать родителями);
- рангово-пропорциональный отбор (родителями могут стать особи, входящие в k % лучших по значениям функции приспособленности);
- рулетка (вероятность особи быть отобранной в родители пропорциональна значению ее функции приспособленности);
- турнирный отбор (случайным образом выбирается определенное число особей, среди которых побеждает особь с максимальным значением функции приспособленности).

3

Символьная регрессия. Идея метода

Гены:

- переменные,
- арифметические операции, включая унарный минус,
- функции (log, exp, sqrt, ^2, ^3, abs, sin, cos, tanh),
- Константы

Любая функция может быть представлена как хромосома, состоящая из набора генов

$$y=exp(x_1 * x_4) - x_2 * sin(x_1 * x_4)$$

Листья дерева - входные переменные и константы, узлы — арифметические операции и функции. Вычислительная сложность функции определяется числом узлов и глубиной дерева.

постфиксная запись

\mathbf{x}_1	X_4	*	exp	\mathbf{X}_2	X_4	\mathbf{x}_1	*	sin	*	ı

Синтаксическое дерево

Обратная польская запись (постфиксная) Reverse Polish notation

Все аргументы (операнды) расположены перед знаком операции.

Порядок выполнения операций однозначно задаётся порядком следования знаков операций в выражении, поэтому отпадает необходимость использования скобок и введения приоритетов и ассоциативности операций.

Запись набора операций состоит из последовательности операндов и знаков операций.

Операнды в выражении при письменной записи разделяются пробелами.

Выражение читается слева направо. Когда в выражении встречается знак операции, выполняется соответствующая операция над двумя последними встретившимися перед ним операндами в порядке их записи. Результат операции заменяет в выражении последовательность её операндов и её знак, после чего выражение вычисляется дальше по тому же правилу.

Результатом вычисления выражения становится результат последней вычисленной операции

Reverse Polish notation

Традиционная (инфиксная) запись

$$2*(3+5) - (6+7)/(8-9)$$

Вычисление выражения

$$3+5 = 8; 8*2 = 16$$

 $6+7 = 13; 8-9 = -1$
 $13/-1 = -13;$
 $16 - (-13) = 29$

Обратная польская (постфиксная) запись

Вычисление выражения

Вход	3 5 + 2 * 6 7 + 8 9 - / -
Стек	3 5
Вход	+/2 * 6 7 + 8 9 - / -
Стек	8 2
Вход	* 6 7 + 8 9 - / -
Стек	16 6 7
Вход	+ 8 9 - / -
Стек	16 13 8 9
Вход	-// -
Стек	16/13 -1
Вход (Стек	16 -13
Вход Стек	29

1. Обработка входного символа Если на вход подан операнд, он помещается на вершину стека.

Если на вход подан знак операции, то операция выполняется над требуемым количеством значений, извлечённых из стека, взятых в порядке добавления. Результат выполненной операции кладётся на вершину стека.

2. Если входной набор символов обработан не полностью, перейти к шагу 1. Иначе - результат вычисления выражения лежит на вершине стека.

Обратная польская (постфиксная) запись

Вход	3 5 + 2 * 6 7 + 8 9 - / -
Стек	3 5
Вход	+/2 * 6 7 + 8 9 - / -
Стек	8 2
Вход	*67 + 89 - / -
Стек	1667
Вход	+ 8 9 - / -
Стек	16 13 8 9
Вход	-// -
Стек	16/13 -1
Вход (Стек	16 -13
Вход Стек	29

Базовые операции

- Поместить в стек х
- 2. Поместить в стек число
- 3. Сложение и вычитание
- 4. Умножение и деление (в виде $x/(y+\delta)$)
- 5. Возведение в степень (в виде $|x|^y$)
- 6. Унарный минус

Внимание! Они должны возвращать корректный результат при любых входных данных!

Обратная польская (постфиксная) запись

Вычисление выражения

Записать в виде синтаксического дерева и обратной польской записи выражение

$$\frac{\cos^2 x + \sin^2 y}{10^z}$$

Найти значение выражения, записанного в обратной польской записи, и перевести его в обычную (инфиксную) форму записи

Символьная регрессия

Члены популяции

Выражения в обратной польской записи

Базовые операции

- 1. Поместить в стек x
- 2. Поместить в стек число
- 3. Сложение и вычитание
- 4. Умножение и деление (в виде $x/(y+\delta)$)
- 5. Возведение в степень (в виде $|x|^{y}$)
- 6. Унарный минус

Внимание! Они должны возвращать корректный результат при любых входных данных!

Функция приспособленности

$$RSS = \sum_{i} (y_i - \hat{y}_i)^2$$

Скрещивание

Шаг 1. Взять два случайных члена популяции

Шаг 2. Разделить каждое выражение на две части и поменять их местами

Шаг 3. Внести случайные изменения («мутации» в коэффициенты и операции)

Символьная регрессия. Фитнес функция

$$ff_j = -\sum_{i=1}^n (F_j(x_{1i}, x_{2i}, ..., x_{ni}) - y_i)^2$$

где

 $x_{1i}, x_{2i}, ..., x_{ni}$ — значения объясняющих переменных для i-ой записи обучающей выборки, y_{ni} — известное значение целевой переменной для i-ой записи обучающей выборки, n — объем обучающей выборки, j — номер особи (сгенерированной функции) .

Перед знаком суммы знак "-", так как в соответствии с эволюционным принципом выживают наиболее приспособленные особи, и значения функции приспособленности должны стремиться к максимуму.

12

Символьная регрессия. Пример операций скрещивания и мутации

Родители

a)
$$15 + \exp(-x) - 2 * x$$

b)
$$x^3 - \ln(x+5) - 12$$

Потомки

a')
$$15 - \ln(\exp(-x) + 5) - 12$$

b')
$$x^3 + x - 2x$$

b'_m) $x^3 + x - 2^x$

Пример символьной регрессии

$$y = x^2 - 2x + 3$$

Результат регрессии в обратной польской записи

```
X [-1.0409] + U - [2.0115] ^ [3.8315] [0.3417] ^ [0.6995] / [0.6995] ^ +
```

Формула после преобразований

```
(X - 1.0409)^2.0115 + (3.8315^0.3417/0.6995)^0.6995 =
= (X - 1.0409)^2.0115 + 1.7701
```

Пример результата символьной регрессии для расчета коэффициента сжимаемости

Формула	R^2	R_{adj}^2	WAPE, %
$-2.23887 \cdot 0.00283^{0.05491x_3} x_1^{0.05491x_3} + 0.20215 x_5^{9.02 \cdot 10^{-13} \left(\frac{x_1}{x_2 x_3}\right)} - 19.88388$	0.9638	0.9637	1.25
23.15947 32.25716 460.77293			
$ \left(\ln \left(\frac{x_2}{14.00667 \ln(x_2)} \right) + 1.89112 \right)^{\frac{x_3}{x_1 - 12.47056}} - \frac{x_3}{x_3 - 35.62864} - \frac{x_2}{x_2} $			
$329.944x_4 - 0.074x_5^{\left(\frac{\ln(x_2)}{x_1 + \ln(x_1) + 28.104}\right)} - 115.488(x_3 + x_4)^{x_4} + 112.088$	0.9442	0.9439	1.43
$329.944x_4 - 0.074x_5^{417442177231257} - 115.488(x_3 + x_4)^{x_4} + 112.088$			
$3.859 \left(\frac{x_4}{x_1}\right) \qquad 0.031 \ln(x_2) \qquad 59.306$			
$+ 1.065 e^{\left(-\frac{0.005x_2}{x_1} - x_4\right)} + \frac{3.859\left(\frac{x_4}{x_1}\right)}{\left(\frac{18.196}{x_1}\right) + \frac{361,653}{x_1e^{x_2}}} + \frac{0.031ln(x_2)}{10.316x_1x_5ln(x_5) + 18.945} - \frac{59.306}{x_2}$			

GPTIPS 2MATLAB: an open-source software platform for symbolic data mining Dominic P. Searson

Свободно распространяемое расширение для Матлаб

Компактные формулы, включающие линейные и нелинейные слагаемые, контроль за сложностью модели

Модификация ГА — мультигенное генетическое программирование

Рассматривается линейная комбинация деревьев-генов с весами множественная регрессия, где входные переменные — структура типа дерева, которые являются нелинейными функциями входных переменных, псевдо-

$$\mathbf{\hat{y}} = b_0 + b_1 \mathbf{t}_1 + \dots + b_G \mathbf{t}_G$$

ti – вектор ($N \times 1$) значений i-го гена – дерева,

$$G$$
 – матрица $(N \times (G + 1))$ $G = [1 t_1 ... t_G]$

$$\hat{y} = Gb$$

Оценки коэффициентов $b_0, b_1, \dots b_G$ (вектор ($(G+1) \times 1$) могут быть получены с помощью МНК из обучающей выборки: $\mathbf{b} = (\mathbf{GT} \mathbf{G})^{-1} \mathbf{GT} \mathbf{y}$ (используется псевдообращение Мура — Пенроуза)

Методика ГОСТ

ГОСТ 30319.3—2015. Газ природный. Методы расчета физических свойств. Вычисление физических свойств на основе данных о компонентном составе

Рекомендована итеративная процедура решения нелинейного уравнения. Погрешность метода расчета коэффициента сжимаемости 0,1 – 0,2%. Если для аппроксимации построить простую расчетную зависимость с погрешностью в 3-5 раз меньше методической, то можно получить значительный выигрыш при решении задач планирования, идентификации параметров, моделирования нестационарных режимов.

Компонентный состав природного газа

Component	MIN, %	MAX, %
Methane	92.2	98.87
Nitrogen	0.5	0.9
Carbon dioxide	0.025	0.435
Ethane	0.33	4.7
Propane	0.0051	0.95
Isobutane	0.0066	0.26
n-Butane	0.0025	0.24
Isopentane	0.0025	0.045
n-Pentane	0.0025	0.03
n-Hexane	0.0025	0.0124
Hydrogen	0.001	0.0023
Oxygen	0.0046	0.0085
Helium	0.0086	0.0147

Таблица создана на основе фактических данных о составах газа транспортируемых по ЕСГ

Генерация набора данных

2 диапазона давления, температура 273-333К

Диапазон	Давление,	Объем	
	МПа	выборки	
P1	3.5-5.6	15 900	
P2	5.5-7.5	13 333	

Во входные параметры модели добавлена молярная масса газа

$$M_m = \sum_{i=1}^{Nc} x_i M_i$$

нормализация параметров в диапазоне [0, 1]

$$X' = \frac{X - X^{\min}}{X^{\max} - X^{\min}}$$

 $x_{\rm i}$ — молярная доля *i*-го компонента природного газа,

 $M_{\rm i}$ – молярная масса i-го компонента, $N_{\rm C}$ – количество компонентов

Примеры сгенерированных формул

R ²	Model complexity	Model	
		0.0262 T - 0.0168 P - 0.00804 Mm- 0.00122 T ² (Mm+ P) -	
0.999	118	0.00115 (2 Mm+ 2 T) (Mm + P + 2 T) + 0.00872 T (Mm + P) +	
		0.00114 Mm(CO2 + 2 Methane + N + T) + 0.923	
		0.0263 T - 0.0169 P - 0.00844 Mm- 0.00134 T ² (Mm+ P) -	
0.999	92	0.00105 (2 Mm + 2 T) (Mm + P + 2 T) + 0.00843 T (Mm + P) +	
		0.923	
0.998	36	0.0263 T - 0.0166 P - 0.01 Mm+ 0.00639 P T + 0.00214 T (Mm -	
		P T) - 0.00488 T ² + 0.924	
0.983	6	0.0265 T - 0.0176 P - 0.00998 Mm- 0.00478 T ² + 0.924	

Коэффициент детерминации

Коэффициент детерминации – доля разброса данных, объясненная регрессионной моделью.

$$R^{2} = 1 - \frac{SS_{ocmam}}{SS_{obw}} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

$$SS_{oбw} = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

 $SS_{oбщ} = \sum_{i=1}^{n} (y_i - \overline{y})^2$ Общий разброс (total sum of squares TSS) значений переменной y_i относительно среднего значения

$$SS_{ocmam} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Остаточный (необъясненный) разброс (residual sum of squares \widehat{RSS}) – отклонения y_i от модельных значений \widehat{y}_i

$$SS_{\phi a \kappa mop} = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$$

Объясненный (или факторный) $SS_{\phi a \kappa mop} = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$ разброс (explained sum of squares ESS) – отклонения модельных значений от среднего

Z₁₁₀=8.92e-4 Carbon_dioxide - 0.00178 Ethane + 8.92e-4 Nitrogen - 0.0428 P - 8.92e-4 Propane - 0.0521 exp(-T) + 0.0257 P T - 0.0212 Mm exp(- T) - 0.00934 Mm P + 0.979

 Z_{605} =0.0139 T - 0.00166 Ethane - 0.0302 exp(-T) - 0.019 Mm exp(-T) - 0.0431 P exp(-T) - 0.0129 Mm P + 0.957

 Z_8 =0.0016 Nitrogen - 0.00283 Ethane + 0.0224 T - 0.0381 exp(-T) - 0.00771 exp(-2T) - 0.0328 Mm exp(-T) - 0.0381 P exp(-T) - 0.0112 Mm P + 0.933

 Z_{15} =0.00136 Nitrogen - 0.0369 Mm- 0.00273 Ethane - 0.00559 P - 0.0824 exp(-T) + 0.0226 Mm T - 0.0378 P exp(-T) - 0.00136 P Propane exp(Mm) + 0.972

Графики Pareto

Population (merged) models = 900 Data: Z 16 inputs

R ²	Model comple xity	Model
		0.0262 T - 0.0168 P - 0.00804 Mm- 0.00122 T ² (Mm+ P) -
0.999	118	0.00115 (2 Mm+ 2 T) (Mm + P + 2 T) + 0.00872 T (Mm +
		P) + 0.00114 Mm(CO2 + 2 Methane + N + T) + 0.923
	 	0.0263 T - 0.0169 P - 0.00844 Mm- 0.00134 T ² (Mm+ P) -
0.999	92	0.00105 (2 Mm + 2 T) (Mm + P + 2 T) + 0.00843 T (Mm +
	l!	P) + 0.923
0.000	36	0.0263 T - 0.0166 P - 0.01 Mm+ 0.00639 P T + 0.00214 T
0.998	36	(Mm - P T) - 0.00488 T ² + 0.924
0.983	6	0.0265 T - 0.0176 P - 0.00998 Mm- 0.00478 T ² + 0.924

$$1 - R^2 = SS_{ocmam} / SS_{obuj} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 / \sum_{i=1}^{n} (y_i - \overline{y})^2$$

Наиболее значимые входные переменные

REC – кривые для сравнения моделей

Графики REC (Regression Error Characteristic) строятся для тестовой выборки, по оси абсцисс – модуль отклонения предсказанного значения выходной переменной от реального, по оси ординат – доля данных для которых ошибка предсказания не более х. REC – можно интерпретировать как эмпирическую функция распределения ошибки построенной модели.

Символьная регрессия или генетическое программирование

Символьная регрессия - метод построения регрессионных моделей путём перебора суперпозиций заранее заданного набора функций, вид функциональной зависимости определяется в процессе работы генетического алгоритма

Достоинства:

Возможно использовать в том случае, когда неизвестен заренее вид модели

Модель интерпретируема – легко поддается анализу экспертов-технологов

Может заменить сложную математическую модель (суррогатное моделирование), в том числе с итерационными процедурами или предполагающую решение дифференциального уравнения разностными методами.

Недостатки:

- 1. Ресурсоёмкость
- 2. Нередко полученные модели избыточно сложны