⊘ Correct

- β is symmetric. Therefore, we only need to show linearity in one argument.

• $\beta(\mathbf{x} + \lambda \mathbf{z}, \mathbf{y}) = \beta(\mathbf{x}, \mathbf{y}) + \lambda \beta(\mathbf{z}, \mathbf{y})$. This holds because of the rules for vector-matrix multiplication and addition.

an inner product

not positive definite

With $x=[1,1]^T$ we get $\beta(\mathbf{x},\mathbf{x})=0$. Therefore β is not positive definite.

not an inner product

⊘ Correct

Correct: Since eta is not positive definite, it cannot be an inner product.

symmetric

not bilinear	
3. The function $\beta(\mathbf{x},\mathbf{y})=\mathbf{x}^T\begin{bmatrix}2&1\\-1&1\end{bmatrix}\mathbf{y}$ is	
□ symmetric ☑ not symmetric	
\odot Correct: If we take $\mathbf{x}=[1,1]^T$ and $\mathbf{y}=[2,-1]^T$ then $\beta(\mathbf{x},\mathbf{y})=0$ but $\beta(\mathbf{y},\mathbf{x})=6$. Therefore, β is not symmetric.	
Correct.	
not bilinear	•
□ an inner product ☑ not an inner product ② Correct Correct: Symmetry is violated.	
4. The function $\beta(\mathbf{x},\mathbf{y})=\mathbf{x}^T\begin{bmatrix}1&0\\0&1\end{bmatrix}\mathbf{y}$	
is ✓ symmetric	
 Correct It is the dot product, which we know already. Therefore, it is symmetric. 	
□ not bilinear □ not an inner product	
ositive definite	
Correct It is the dot product, which we know already. Therefore, it is positive definite.	_
✓ bilinear✓ Correct	•
It is the dot product, which we know already. Therefore, it is positive bilinear.	
□ not positive definite☑ an inner product	
Correct It is the dot product, which we know already. Therefore, it is also an inner product.	

