15/11/2017 HackerRank

Almost Integer Rock Garden

Victor is building a Japanese rock garden in his 24×24 square courtyard. He overlaid the courtyard with a Cartesian coordinate system so that any point (x, y) in the courtyard has coordinates $x \in [-12, 12]$ and $y \in [-12, 12]$. Victor wants to place 12 stones in the garden according to the following rules:

- The center of each stone is located at some point (x,y), where x and y are integers $\in [-12,12]$
- The coordinates of all twelve stones are pairwise distinct.
- The Euclidean distance from the center of any stone to the origin is not an integer.
- The sum of Euclidean distances between all twelve points and the origin is an almost integer, meaning the absolute difference between this sum and
 an integer must be < 10⁻¹².

Given the values of x and y for the first stone Victor placed in the garden, place the remaining 11 stones according to the requirements above. For each stone you place, print two space-separated integers on a new line describing the respective x and y coordinates of the stone's location.

Input Format

Two space-separated integers describing the respective values of \boldsymbol{x} and \boldsymbol{y} for the first stone's location.

Constraints

• $-12 \le x, y \le 12$

Output Format

Print 11 lines, where each line contains two space-separated integers describing the respective values of x and y for a stone's location.

Sample Input 0

7 11

Sample Output 0

12 -3

10 3 9 6

-12 -7

1 11

-6 -6

12 -4 4 12

Explanation 0

The diagram below depicts the placement of each stone and maps its distance to the origin (note that *red* denotes the first stone placed by Victor and *blue* denotes the eleven remaining stones we placed):

Now, let's determine if the sum of these distances is an almost integer. First, we find the distance from the origin to the stone Victor placed at (7,11), which is $\sqrt{7^2 + 11^2} \approx 13.038404810405297429165943114858$. Next, we calculate the distances for the remaining stones we placed in the graph above:

1. $\sqrt{11^2 + 1^2} \approx 11.045361017187260774210913843344$

2.
$$\sqrt{(-2)^2 + 12^2} \approx 12.165525060596439377999368490404$$

3.
$$\sqrt{5^2 + 4^2} \approx 6.4031242374328486864882176746218$$

4.
$$\sqrt{12^2 + (-3)^2} \approx 12.369316876852981649464229567922$$

5.
$$\sqrt{10^2 + 3^2} \approx 10.440306508910550179757754022548$$

6.
$$\sqrt{9^2 + 6^2} \approx 10.816653826391967879357663802411$$

7.
$$\sqrt{(-12)^2 + (-7)^2} \approx 13.892443989449804508432547041029$$

8.
$$\sqrt{1^2 + 11^2} \approx 11.045361017187260774210913843344$$

9.
$$\sqrt{(-6)^2 + (-6)^2} \approx 8.4852813742385702928101323452582$$

10.
$$\sqrt{12^2 + (-4)^2} \approx 12.649110640673517327995574177731$$

11.
$$\sqrt{4^2+12^2} \approx 12.649110640673517327995574177731$$

When we sum these eleven distances with the distance for the stone Victor placed, we get $\approx 135.000000000000000162078888321012$. The nearest integer to this number is 135, and the distance between this sum and the nearest integer is $\approx 1.6 \times 10^{-14} \le 10^{-12}$ (meaning it's an almost integer). Because this configuration satisfies all of Victor's rules for his rock garden, we print eleven lines of \times y coordinates describing the locations of the stones we placed.

f ⊌ in

Solved score: 80.00pts

15/11/2017 HackerRank

Submissions:<u>55</u>
Max Score:80
Difficulty: Expert

Rate This Challenge:
☆ ☆ ☆ ☆ ☆

More

```
Current Buffer (saved locally, editable) & 🗗
                                                                                             Java 7
                                                                                                                               \Diamond
 1 ▼ import java.io.*;
 2 import java.util.*;
 3 import java.text.*;
    import java.math.*;
    import java.util.regex.*;
 6
 7 ▼ public class Solution {
 8
 9 ▼
         public static void main(String[] args) {
10
             Scanner in = new Scanner(System.in);
             int x = in.nextInt();
11
12
             int y = in.nextInt();
13
             // your code goes here
         }
14
15
    }
16
                                                                                                                      Line: 1 Col: 1
1 Upload Code as File
                       Test against custom input
                                                                                                          Run Code
                                                                                                                       Submit Code
```

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature