Tanisha Khurana

+1 984-758-3458 | Raleigh, NC | tkhuran3@ncsu.edu | linkedin.com/in/tanisha-khurana/ | tanisha1112.github.io

Education

North Carolina State University

Aug 2022 - May 2024

Master of Science in Electrical Engineering; CGPA 3.95/4

Raleigh, NC

Courses: Digital Imaging systems, Digital Signal Processing, Random Processes, Neural Networks and Deep Learning, Advanced Machine Learning, Detection and Estimation theory, Pattern Recognition, Cloud Computing, Natural Language Processing

Bharati Vidyapeeth University

Jul 2014 – Jun 2018

Bachelor of Technology in Electronics and Communication Engineering; CGPA 9.2/10

Pune, India

Technical Skills

Languages: Python, C/C++, SQL, Bash, Git Developer Tools: MATLAB, AWS, Azure, Google Cloud, Docker Frameworks: OpenCV, Pytorch, Tensorflow, Scikit-Learn, Pandas, Numpy, PIL, Matplotlib, Seaborn, Pytest ROS, Flask

Experience

Precision Sustainable Agriculture, NCSU

March 2023 - Present

Raleigh, NC

Graduate Research Assistant

Raieign, N

- Collaborated with USDA to integrate a camera system with an ML model for mapping crop species, biomass and densities.
- Engineered a containerized system with integrated RESTful APIs for seamless data visualization and control.
- Implemented an image classification model for precision farming, accurately differentiating crop species from weeds.

Active Robotics and Sensing Lab, NCSU

Jan 2023 - Present

Research Assistant

Raleigh, NC

- Performed an extensive literature review on chamber segmentation techniques for identification of Foraminifera species.
- Generated 2D segmentation masks from synthetic 3D reconstructions in Blender, serving as ground truth data for region-based and topology preserving edge-based segmentation.

Wobot.ai May 2021 - Jul 2022

Senior Computer Vision Engineer

New Delhi, India

- Developed customized Video Analytics and Smart Surveillance solutions for diverse industries including hospitality, food service, and retail, resulting in improved security and operational efficiency.
- Formulated algorithms for varied tasks including activity recognition, multi-object detection and tracking, pose estimation, motion detection, facial recognition, and person re-identification.
- Processed RTSP feeds from over 200+ CCTV cameras, enabling advanced monitoring and actionable insights.
- Scaled ML models in high-throughput and low-latency using TF Serving and triton leading to 50% faster inference time.
- $\bullet \ \ \text{Improved accuracy of existing models by more than } 20\% \ \text{using new data generation and augmentation techniques}.$
- Implemented a scalable and dockerized system and integrated backend and frontend for efficient deployment and live usage.

Intello Labs Jan 2020 - May 2021

Deep Learning Engineer

Gurgaon, India

- Led the entire development lifecycle for a real-time AI powered commodity grader utilizing size, color and visual defect analysis.
- Accomplished an identification accuracy of 95% and classification accuracy of approximately 90%.
- Utilized Faster RCNN, Mask-RCNN and SSD for object detection of 20 different fruits with an average size error of ~ 1 mm.
- Enhanced commodity classification with K-means, color segmentation, and PCA significantly improving processing speed.
- Innovated a novel model cascading approach, enabling the sequential execution of multiple models to optimize inference performance on NVIDIA-powered edge devices.

Qiggle.ai Jan 2019 - Oct 2019

Data Scientist

New Delhi, India

- Designed a predictive analytics solution for industrial applications using Anomaly detection and remaining life estimation
- Detected under-performing and abnormally-behaving assets to save weeks of lost power generation and reduce asset downtime.

Projects

Explainable AI for Deepfake Detection Model

- Achieved an F1 score of 98% with Xceptionet architecture for deep fake detection on Face Forensics++ and Celeb-DF dataset.
- Applied Explainable AI (XAI) methods such as GradCAM, LIME and LRP to highlight the relevance of the input to the prediction and improved transparency and interpretability.

Comparative Analysis of 3D & 2D CNN for Lung Cancer Nodule Detection

- Created 2D and 3D CNN VGG-16 models to detect lung cancer with 79% and 91% sensitivity using Luna16 DICOM images.
- Conducted data preprocessing for nodule patch extraction, performed voxel coordinate conversion, and applied data augmentation techniques to enhance the dataset's diversity and model robustness.

Laplacian Blob Detector

- Implemented Blob detection by applying Laplacian scale-space representation as well as 2-D and 3-D non-maximum suppression.
- Experimented with different thresholds, standard deviations, and constant multiplier values to achieve the appropriate number of blobs and run time for various images.