AIME Problems 2010

 $\begin{array}{c} \text{AIME Problems} \\ 2010 \end{array}$

AIME Problems 2010

Problems

1. Maya lists all the positive divisors of 2010^2 . She then randomly selects two distinct divisors from this list. Let p be the probability that exactly one of the selected divisors is a perfect square. The probability p can be expressed in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m+n.

- 2. Find the remainder when $9 \times 99 \times 999 \times \cdots \times \underbrace{99 \cdots 9}_{999 \ 9\text{'s}}$ is divided by 1000.
- 3. Suppose that $y = \frac{3}{4}x$ and $x^y = y^x$. The quantity x + y can be expressed as a rational number $\frac{r}{s}$, where r and s are relatively prime positive integers. Find r + s.
- 4. Jackie and Phil have two fair coins and a third coin that comes up heads with probability $\frac{4}{7}$. Jackie flips the three coins, and then Phil flips the three coins. Let $\frac{m}{n}$ be the probability that Jackie gets the same number of heads as Phil, where m and n are relatively prime positive integers. Find m+n.
- 5. Positive integers a, b, c, and d satisfy a > b > c > d, a + b + c + d = 2010, and $a^2 b^2 + c^2 d^2 = 2010$. Find the number of possible values of a.
- 6. Let P(x) be a quadratic polynomial with real coefficients satisfying $x^2 2x + 2 \le P(x) \le 2x^2 4x + 3$ for all real numbers x, and suppose P(11) = 181. Find P(16).
- 7. Define an ordered triple (A, B, C) of sets to be minimally intersecting if $|A \cap B| = |B \cap C| = |C \cap A| = 1$ and $A \cap B \cap C = \emptyset$. For example, $(\{1, 2\}, \{2, 3\}, \{1, 3, 4\})$ is a minimally intersecting triple. Let N be the number of minimally intersecting ordered triples of sets for which each set is a subset of $\{1, 2, 3, 4, 5, 6, 7\}$. Find the remainder when N is divided by 1000.
 - "'Note"': |S| represents the number of elements in the set S.
- 8. For a real number a, let $\lfloor a \rfloor$ denote the greatest integer less than or equal to a. Let \mathcal{R} denote the region in the coordinate plane consisting of points (x,y) such that $\lfloor x \rfloor^2 + \lfloor y \rfloor^2 = 25$. The region \mathcal{R} is completely contained in a disk of radius r (a disk is the union of a circle and its interior). The minimum value of r can be written as $\frac{\sqrt{m}}{n}$, where m and n are integers and m is not divisible by the square of any prime. Find m+n
- 9. Let (a, b, c) be a real solution of the system of equations $x^3 xyz = 2$, $y^3 xyz = 6$, $z^3 xyz = 20$. The greatest possible value of $a^3 + b^3 + c^3$ can be written in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m + n.
- 10. Let N be the number of ways to write 2010 in the form $2010 = a_3 \cdot 10^3 + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0$, where the a_i 's are integers, and $0 \le a_i \le 99$. An example of such a representation is $1 \cdot 10^3 + 3 \cdot 10^2 + 67 \cdot 10^1 + 40 \cdot 10^0$. Find N.
- 11. Let \mathcal{R} be the region consisting of the set of points in the coordinate plane that satisfy both $|8-x|+y \leq 10$ and $3y-x \geq 15$. When \mathcal{R} is revolved around the line whose equation is 3y-x=15, the volume of the resulting solid is $\frac{m\pi}{n\sqrt{p}}$, where m, n, and p are positive integers, m and n are relatively prime, and p is not divisible by the square of any prime. Find m+n+p.
- 12. Let $m \geq 3$ be an integer and let $S = \{3, 4, 5, \dots, m\}$. Find the smallest value of m such that for every partition of S into two subsets, at least one of the subsets contains integers a, b, and c (not necessarily distinct) such that ab = c.
 - "'Note": a partition of S is a pair of sets A, B such that $A \cap B = \emptyset$, $A \cup B = S$.
- 13. Rectangle ABCD and a semicircle with diameter AB are coplanar and have nonoverlapping interiors. Let \mathcal{R} denote the region enclosed by the semicircle and the rectangle. Line ℓ meets the semicircle, segment AB, and segment CD at distinct points N, U, and T, respectively. Line ℓ divides region \mathcal{R} into two regions with areas in the ratio 1:2. Suppose that AU = 84, AN = 126, and UB = 168. Then DA can be represented as $m\sqrt{n}$, where m and n are positive integers and n is not divisible by the square of any prime. Find m+n.

AIME Problems 2010

14. For each positive integer n, let $f(n) = \sum_{k=1}^{100} \lfloor \log_{10}(kn) \rfloor$. Find the largest value of n for which $f(n) \leq 300$. "Note:" $\lfloor x \rfloor$ is the greatest integer less than or equal to x.

15. In $\triangle ABC$ with AB=12, BC=13, and AC=15, let M be a point on \overline{AC} such that the incircles of $\triangle ABM$ and $\triangle BCM$ have equal radii. Then $\frac{AM}{CM}=\frac{p}{q}$, where p and q are relatively prime positive integers. Find p+q.