```
Replication 4 of 8
```

- 1) Estimating the expected survival time using NO reactivation... --> 62.7 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 4.8)... --> 73.1 sec
- --> PMC(K)=0.066801% vs. Pr(K)=0.124693% vs. PFV1(K)=0.063018% vs. PFV2(K)=0.007936% vs. Pr(K)=0.124693%

Replication 5 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 60.5 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 5.0)... --> 65.8 sec
- --> PMC(K)=0.169315% vs. Pr(K)=0.124693% vs. PFV1(K)=0.059960% vs. PFV2(K)=0.000000% vs. Pr(K)=0.124693%

Replication 6 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 61.2 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 4.9)... --> 68.6 sec
- --> PMC(K)=0.068964% vs. Pr(K)=0.124693% vs. PFV1(K)=0.035888% vs. PFV2(K)=0.000000% vs. Pr(K)=0.124693%

Replication 7 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 68.8 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 5.1)... --> 64.6 sec
- --> PMC(K)=0.242094% vs. Pr(K)=0.124693% vs. PFV1(K)=0.103481% vs. PFV2(K)=0.531168% vs. Pr(K)=0.124693%

Replication 8 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 60.7 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 5.0)... --> 63.6 sec
- --> PMC(K)=0.085679% vs. Pr(K)=0.124693% vs. PFV1(K)=0.041370% vs. PFV2(K)=0.000000% vs. Pr(K)=0.124693%

---> NEW BUFFER SIZE(6)

Computing TRUE blocking probability... --> 0.0 sec Pr(K)=0.124693%

---> NEW NPARTICLES (400)

K=20, buffer_size_activation=6, particles=400, nmeantimes=50

Replication 1 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 59.3 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 7.9)... --> 66.7 sec
- --> PMC(K)=0.222771% vs. Pr(K)=0.124693% vs. PFV1(K)=0.045163% vs. PFV2(K)=0.370516% vs. Pr(K)=0.124693%

Replication 2 of 8

- 1) Estimating the expected survival time using NO reactivation... --> $59.1 \ \text{sec}$
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 7.7)... --> 62.5 sec
- --> PMC(K)=0.044004% vs. Pr(K)=0.124693% vs. PFV1(K)=0.057758% vs. PFV2(K)=0.550667% vs. Pr(K)=0.124693%

Replication 3 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 59.4 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 7.8)... --> 66.5 sec
- --> PMC(K)=0.154945% vs. Pr(K)=0.124693% vs. PFV1(K)=0.121507% vs. PFV2(K)=0.740641% vs. Pr(K)=0.124693%

Replication 4 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 65.0 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 7.2)... --> 65.8 sec
- --> PMC(K)=0.066838% vs. Pr(K)=0.124693% vs. PFV1(K)=0.194186% vs. PFV2(K)=1.623498% vs. Pr(K)=0.124693%

Replication 5 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 61.5 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 7.9)... --> 65.1 sec
- --> PMC(K)=0.169511% vs. Pr(K)=0.124693% vs. PFV1(K)=0.076967% vs. PFV2(K)=0.569619% vs. Pr(K)=0.124693%

Replication 6 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 62.1 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 7.9)... --> 69.2 sec
- --> PMC(K)=0.068966% vs. Pr(K)=0.124693% vs. PFV1(K)=0.064637% vs. PFV2(K)=0.553830% vs. Pr(K)=0.124693%

```
Replication 7 of 8
       1) Estimating the expected survival time using NO reactivation... --> 60.8 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 8.1)... --> 70.2 sec
       --> PMC(K)=0.242148% vs. Pr(K)=0.124693% vs. PFV1(K)=0.067425% vs. PFV2(K)=0.393952% vs.
Pr(K)=0.124693%
       Replication 8 of 8
       1) Estimating the expected survival time using NO reactivation... --> 63.0 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 7.3)... --> 69.6 sec
       --> PMC(K)=0.085659% vs. Pr(K)=0.124693% vs. PFV1(K)=0.082749% vs. PFV2(K)=0.679740% vs.
Pr(K)=0.124693%
       ---> NEW BUFFER SIZE(8)
Computing TRUE blocking probability... --> 0.0 sec
Pr(K)=0.124693%
               ---> NEW NPARTICLES (400)
K=20, buffer_size_activation=8, particles=400, nmeantimes=50
       Replication 1 of 8
       1) Estimating the expected survival time using NO reactivation... --> 71.2 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 13.6)... --> 93.6 sec
       --> PMC(K)=0.222790% vs. Pr(K)=0.124693% vs. PFV1(K)=0.097627% vs. PFV2(K)=1.124599% vs.
Pr(K)=0.124693%
       Replication 2 of 8
       1) Estimating the expected survival time using NO reactivation... --> 60.5 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 13.6)... --> 64.5 sec
        --> PMC(K)=0.044040% vs. Pr(K)=0.124693% vs. PFV1(K)=0.103067% vs. PFV2(K)=1.467155% vs.
Pr(K)=0.124693%
       Replication 3 of 8
       1) Estimating the expected survival time using NO reactivation... --> 63.5 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 12.5)... --> 66.0 sec
        --> PMC(K)=0.154960% vs. Pr(K)=0.124693% vs. PFV1(K)=0.063301% vs. PFV2(K)=1.211979% vs.
Pr(K)=0.124693%
       Replication 4 of 8
       1) Estimating the expected survival time using NO reactivation... --> 65.1 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 13.2)... --> 63.1 sec
       --> PMC(K)=0.066868% vs. Pr(K)=0.124693% vs. PFV1(K)=0.089290% vs. PFV2(K)=0.932885% vs.
Pr(K)=0.124693%
       Replication 5 of 8
       1) Estimating the expected survival time using NO reactivation... --> 59.0 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 13.9)... --> 66.4 sec
        --> PMC(K)=0.169528% vs. Pr(K)=0.124693% vs. PFV1(K)=0.103019% vs. PFV2(K)=1.232434% vs.
Pr(K)=0.124693%
       Replication 6 of 8
       1) Estimating the expected survival time using NO reactivation... --> 59.8 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 12.7)... --> 64.7 sec
       --> PMC(K)=0.069123% vs. Pr(K)=0.124693% vs. PFV1(K)=0.108250% vs. PFV2(K)=1.203228% vs.
Pr(K)=0.124693%
       Replication 7 of 8
       1) Estimating the expected survival time using NO reactivation... --> 57.6 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 13.1)... --> 61.6 sec
        --> PMC(K)=0.242584% vs. Pr(K)=0.124693% vs. PFV1(K)=0.148462% vs. PFV2(K)=1.760170% vs.
Pr(K)=0.124693%
       Replication 8 of 8
       1) Estimating the expected survival time using NO reactivation... --> 72.9 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 12.5)... --> 77.7 sec
       --> PMC(K)=0.085661% vs. Pr(K)=0.124693% vs. PFV1(K)=0.128562% vs. PFV2(K)=1.830047% vs.
```

Pr(K)=0.124693%

---> NEW BUFFER SIZE(10)
Computing TRUE blocking probability... --> 0.0 sec
Pr(K)=0.124693%

```
---> NEW NPARTICLES (400)
K=20, buffer_size_activation=10, particles=400, nmeantimes=50
       Replication 1 of 8
       1) Estimating the expected survival time using NO reactivation... --> 65.7 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 23.0)... --> 74.2 sec
       --> PMC(K)=0.223289% vs. Pr(K)=0.124693% vs. PFV1(K)=0.099379% vs. PFV2(K)=1.212602% vs.
Pr(K)=0.124693%
       Replication 2 of 8
       1) Estimating the expected survival time using NO reactivation... --> 77.6 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 22.7)... --> 70.7 sec
       --> PMC(K)=0.044139% vs. Pr(K)=0.124693% vs. PFV1(K)=0.133858% vs. PFV2(K)=1.451900% vs.
Pr(K)=0.124693%
       Replication 3 of 8
       1) Estimating the expected survival time using NO reactivation... --> 68.0 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 22.3)... --> 76.9 sec
       --> PMC(K)=0.154972% vs. Pr(K)=0.124693% vs. PFV1(K)=0.116716% vs. PFV2(K)=1.497926% vs.
Pr(K)=0.124693%
       Replication 4 of 8
       1) Estimating the expected survival time using NO reactivation... --> 84.3 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 24.8)... --> 77.6 sec
       --> PMC(K)=0.066873% vs. Pr(K)=0.124693% vs. PFV1(K)=0.121797% vs. PFV2(K)=1.274678% vs.
Pr(K)=0.124693%
       Replication 5 of 8
       1) Estimating the expected survival time using NO reactivation... --> 77.4 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 24.3)... --> 77.8 sec
       --> PMC(K)=0.170236% vs. Pr(K)=0.124693% vs. PFV1(K)=0.128356% vs. PFV2(K)=1.152981% vs.
Pr(K)=0.124693%
       Replication 6 of 8
       1) Estimating the expected survival time using NO reactivation... --> 69.8 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 21.7)... --> 82.0 sec
       --> PMC(K)=0.069234% vs. Pr(K)=0.124693% vs. PFV1(K)=0.144814% vs. PFV2(K)=1.240077% vs.
Pr(K)=0.124693%
       Replication 7 of 8
       1) Estimating the expected survival time using NO reactivation... --> 70.6 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 23.6)... --> 77.7 sec
       --> PMC(K)=0.242594% vs. Pr(K)=0.124693% vs. PFV1(K)=0.161615% vs. PFV2(K)=1.192351% vs.
Pr(K)=0.124693%
       Replication 8 of 8
       1) Estimating the expected survival time using NO reactivation... --> 83.2 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 23.7)... --> 96.5 sec
       --> PMC(K)=0.085651% vs. Pr(K)=0.124693% vs. PFV1(K)=0.148928% vs. PFV2(K)=1.469704% vs.
Pr(K)=0.124693%
---> NEW K (Queue's capacity = 40)
       ---> NEW BUFFER SIZE(1)
Computing TRUE blocking probability... --> 0.3 sec
Pr(K)=0.000394%
              ---> NEW NPARTICLES (400)
K=40, buffer_size_activation=1, particles=400, nmeantimes=50
       Replication 1 of 8
       1) Estimating the expected survival time using NO reactivation... --> 72.2 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 6.7)... --> 77.1 sec
       --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000000% vs. PFV2(K)=0.000000% vs.
Pr(K)=0.000394%
       Replication 2 of 8
       1) Estimating the expected survival time using NO reactivation... --> 61.0 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 6.7)... --> 74.8 sec
       Pr(K)=0.000394%
```

```
Replication 3 of 8
```

- 1) Estimating the expected survival time using NO reactivation... --> $65.3 \ \text{sec}$
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 6.8)... --> 70.1 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.0000000% vs. PFV2(K)=0.0000000% vs. Pr(K)=0.000394%

Replication 4 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 60.2 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 6.8)... --> 66.3 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000000% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

Replication 5 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 92.5 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 6.4)... --> 118.1 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000000% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

Replication 6 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 77.7 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 6.8)... --> 86.1 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.0000000% vs. PFV2(K)=0.0000000% vs. Pr(K)=0.000394%

Replication 7 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 89.0 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 6.8)... --> 132.3 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000000% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

Replication 8 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 81.9 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 6.8)... --> 65.4 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000000% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

---> NEW BUFFER SIZE(8)

Computing TRUE blocking probability... --> 0.2 sec Pr(K)=0.000394%

---> NEW NPARTICLES (400)

K=40, buffer_size_activation=8, particles=400, nmeantimes=50

Replication 1 of 8

- 1) Estimating the expected survival time using NO reactivation... --> $61.2 \ \text{sec}$
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 13.8)... --> 62.6 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000000% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

Replication 2 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 73.6 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 13.7)... --> 63.9 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000004% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

Replication 3 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 58.5 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 12.5)... --> 62.2 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000037% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

Replication 4 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 60.9 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 13.3)... --> 64.5 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000000% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

Replication 5 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 60.5 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 13.9)... --> 62.1 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000022% vs. PFV2(K)=0.000000% vs.

Pr(K)=0.000394%

Replication 6 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 58.7 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 12.9)... --> 62.2 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000000% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

Replication 7 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 58.2 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 13.3)... --> 61.9 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000000% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

Replication 8 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 57.5 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 12.5)... --> 62.7 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000005% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

---> NEW BUFFER SIZE(12)

Computing TRUE blocking probability... --> 0.3 sec Pr(K)=0.000394%

---> NEW NPARTICLES (400)

Replication 1 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 58.9 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 38.3)... --> 65.2 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000005% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

Replication 2 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 60.1 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 38.1)... --> 61.3 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000076% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

Replication 3 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 58.0 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 35.5)... --> 62.3 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000000% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

Replication 4 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 58.4 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 46.4)... --> 61.7 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000106% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

Replication 5 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 57.1 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 43.9)... --> 60.5 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000002% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

Replication 6 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 58.6 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 39.7)... --> 63.0 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000072% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

Replication 7 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 58.2 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 38.1)... --> 61.6 sec
- --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000022% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

Replication 8 of 8

- 1) Estimating the expected survival time using NO reactivation... --> 57.7 sec
- 2) Estimating blocking probability using Fleming-Viot (E(T) = 45.6)... --> 62.2 sec

```
--> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000003% vs. PFV2(K)=0.000000% vs.
Pr(K)=0.000394%
       ---> NEW BUFFER SIZE(16)
Computing TRUE blocking probability... --> 0.2 sec
Pr(K)=0.000394%
               ---> NEW NPARTICLES (400)
K=40, buffer_size_activation=16, particles=400, nmeantimes=50
       1) Estimating the expected survival time using NO reactivation... --> 59.8 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 88.8)... --> 62.0 sec
       --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000185% vs. PFV2(K)=0.000000% vs.
Pr(K)=0.000394%
       Replication 2 of 8
       1) Estimating the expected survival time using NO reactivation... --> 57.5 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 107.5)... --> 61.0 sec
       --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000044% vs. PFV2(K)=0.000000% vs.
Pr(K)=0.000394%
       Replication 3 of 8
       1) Estimating the expected survival time using NO reactivation... --> 58.4 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 120.9)... --> 64.5 sec
       --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000075% vs. PFV2(K)=0.000000% vs.
Pr(K)=0.000394%
       Replication 4 of 8
       1) Estimating the expected survival time using NO reactivation... --> 58.9 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 152.1)... --> 63.7 sec
       --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000142% vs. PFV2(K)=0.000000% vs.
Pr(K)=0.000394%
       Replication 5 of 8
       1) Estimating the expected survival time using NO reactivation... --> 61.1 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 136.5)... --> 66.4 sec
       --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000022% vs. PFV2(K)=0.000000% vs.
Pr(K)=0.000394%
       Replication 6 of 8
       1) Estimating the expected survival time using NO reactivation... --> 62.1 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 121.8)... --> 66.9 sec
       --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000362% vs. PFV2(K)=0.000000% vs.
Pr(K)=0.000394%
       Replication 7 of 8
       1) Estimating the expected survival time using NO reactivation... --> 61.7 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 93.5)... --> 63.9 sec
       --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000162% vs. PFV2(K)=0.000000% vs.
Pr(K)=0.000394%
       Replication 8 of 8
       1) Estimating the expected survival time using NO reactivation... --> 62.1 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 150.9)... --> 67.0 sec
       --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000110% vs. PFV2(K)=0.000000% vs.
Pr(K)=0.000394\%
       ---> NEW BUFFER SIZE(20)
Computing TRUE blocking probability... --> 0.2 sec
Pr(K)=0.000394%
               ---> NEW NPARTICLES (400)
K=40, buffer_size_activation=20, particles=400, nmeantimes=50
       Replication 1 of 8
       1) Estimating the expected survival time using NO reactivation... --> 61.3 sec
       2) Estimating blocking probability using Fleming-Viot (E(T) = 362.0)... --> 64.1 sec
       --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000191% vs. PFV2(K)=0.000000% vs.
Pr(K)=0.000394%
```

```
Replication 2 of 8
        1) Estimating the expected survival time using NO reactivation... --> 62.2 sec
        2) Estimating blocking probability using Fleming-Viot (E(T) = 750.5)... --> 67.1 sec
        --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000080% vs. PFV2(K)=0.000000% vs.
Pr(K)=0.000394%
        Replication 3 of 8
        1) Estimating the expected survival time using NO reactivation... --> 62.7 sec
        2) Estimating blocking probability using Fleming-Viot (E(T) = 313.8)... --> 66.5 sec
        --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000090% vs. PFV2(K)=0.000000% vs.
Pr(K)=0.000394%
        Replication 4 of 8
        1) Estimating the expected survival time using NO reactivation... --> 62.8 sec
        2) Estimating blocking probability using Fleming-Viot (E(T) = 856.5)... --> 70.3 sec
        --> PMC(K)=0.000000\% vs. Pr(K)=0.000394\% vs. PFV1(K)=0.000047\% vs. PFV2(K)=0.000000\% vs.
Pr(K)=0.000394\%
        Replication 5 of 8
        1) Estimating the expected survival time using NO reactivation... --> 70.1 sec
        2) Estimating blocking probability using Fleming-Viot (E(T) = 379.7)... --> 66.7 sec
        --> PMC(K)=0.000000\% vs. Pr(K)=0.000394\% vs. PFV1(K)=0.000098\% vs. PFV2(K)=0.000000\% vs.
Pr(K)=0.000394%
        Replication 6 of 8
        1) Estimating the expected survival time using NO reactivation... --> 63.4 sec
        2) Estimating blocking probability using Fleming-Viot (E(T) = 495.4)... --> 66.8 sec
        --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000228% vs. PFV2(K)=0.000000% vs.
Pr(K)=0.000394%
        Replication 7 of 8
        1) Estimating the expected survival time using NO reactivation... --> 70.6 sec
        2) Estimating blocking probability using Fleming-Viot (E(T) = 293.2)... --> 66.0 sec
        --> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000266% vs. PFV2(K)=0.000000% vs.
Pr(K)=0.000394%
        Replication 8 of 8
        1) Estimating the expected survival time using NO reactivation... --> 62.0 sec
```

2) Estimating blocking probability using Fleming-Viot (E(T) = 832.7)... --> 66.3 sec

Pr(K) \

0.0 0.000004

--> PMC(K)=0.000000% vs. Pr(K)=0.000394% vs. PFV1(K)=0.000052% vs. PFV2(K)=0.000000% vs. Pr(K)=0.000394%

PMC(K)

Top and bottom 5 records in the results data frame:

1 4.906411 5.0 0.102876 0.249326 0.119261 0.119875 2 4.922706 5.0 0.088311 0.260383 0.118891 0.119875

PFV2(K)

K PFV1(K)

136 832.731256 40.0 5.239287e-07

E(T)

```
4.986134 5.0 0.099119
                           0.244629
                                     0.120777 0.119875
4 5.014999 5.0 0.100563 0.261759 0.118346 0.119875
5 4.723236 5.0 0.093723 0.306693 0.115655 0.119875
   buffer size activation buffer size activation value integral nmeantimes \
1
                                                   1.0 0.504750
                                                                       50.0
                     1.0
2
                                                  1.0 0.434728
                                                                       50.0
                     1.0
3
                     1.0
                                                  1.0 0.494221
                                                                       50.0
4
                                                       0.504322
                                                                       50.0
                     1.0
                                                   1.0
                                                  1.0 0.442677
                                                                       50.0
5
                     1.0
   nparticles rep
                     seed
1
       400.0 1.0 1717.0
       400.0 2.0 1718.0
2
3
       400.0 3.0 1719.0
       400.0 4.0 1720.0
400.0 5.0 1721.0
4
5
          E(T)
                   K
                           PFV1(K) PFV2(K) PMC(K)
                                                       Pr(K)
132 856.521705 40.0 4.749205e-07
                                        0.0
                                               0.0 0.000004
    379.714346 40.0 9.829498e-07
                                        0.0
                                               0.0 0.000004
134 495.391615 40.0 2.281541e-06
                                               0.0 0.000004
                                        0.0
                                               0.0 0.000004
135 293.159243 40.0 2.664488e-06
                                        0.0
```

0.0

	buffer_size_activation	<pre>buffer_size_activation_value</pre>	integral	\
132	0.5	20.0	0.000407	
133	0.5	20.0	0.000373	
134	0.5	20.0	0.001130	

135 136		0.5 0.5			20.0 20.0	0.000781 0.000436
	nmeantimes	nparticles	rep	seed		
132	50.0	400.0	4.0	1720.0		
133	50.0	400.0	5.0	1721.0		
134	50.0	400.0	6.0	1722.0		
135	50.0	400.0	7.0	1723.0		
136	50.0	400.0	8.0	1724.0		
_						

Execution time: 299.9 min

C:\ProgramData\Anaconda\Anaconda3\lib\site-packages\pandas\core\groupby.py:4291: FutureWarning: using a dict with renaming is deprecated and will be removed in a future version

return super(DataFrameGroupBy, self).aggregate(arg, *args, **kwargs)

C:\ProgramData\Anaconda\Anaconda3\lib\site-packages\matplotlib\pyplot.py:528: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).

max_open_warning, RuntimeWarning)

K=5, N=400, activation size=2, nmeantimes=50, rhos=[0.4, 0.75, 0.35], mean_lifetime=3.3, reactivate=True, finalize=ABS, seed=1717

K=10, N=400, activation size=1, nmeantimes=50, rhos=[0.4, 0.75, 0.35], mean_lifetime=6.2, reactivate=True, finalize=ABS, seed=1717

K=10, N=400, activation size=2, nmeantimes=50, rhos=[0.4, 0.75, 0.35], mean_lifetime=4.2, reactivate=True, finalize=ABS, seed=1717

K=10, N=400, activation size=3, nmeantimes=50, rhos=[0.4, 0.75, 0.35], mean_lifetime=4.2, reactivate=True, finalize=ABS, seed=1717

K=10, N=400, activation size=4, nmeantimes=50, rhos=[0.4, 0.75, 0.35], mean_lifetime=4.9, reactivate=True, finalize=ABS, seed=1717

K=10, N=400, activation size=5, nmeantimes=50, rhos=[0.4, 0.75, 0.35], mean_lifetime=5.9, reactivate=True, finalize=ABS, seed=1717

K=20, N=400, activation size=1, nmeantimes=50, rhos=[0.4, 0.75, 0.35], mean_lifetime=6.7, reactivate=True, finalize=ABS, seed=1717

K=20, N=400, activation size=4, nmeantimes=50, rhos=[0.4, 0.75, 0.35], mean_lifetime=5.2, reactivate=True, finalize=ABS, seed=1717

K=20, N=400, activation size=6, nmeantimes=50, rhos=[0.4, 0.75, 0.35], mean_lifetime=7.9, reactivate=True, finalize=ABS, seed=1717

K=20, N=400, activation size=8, nmeantimes=50, rhos=[0.4, 0.75, 0.35], mean_lifetime=13.6, reactivate=True, finalize=ABS, seed=1717

K=20, N=400, activation size=10, nmeantimes=50, rhos=[0.4, 0.75, 0.35], mean_lifetime=23.0, reactivate=True, finalize=ABS, seed=1717

K=40, N=400, activation size=1, nmeantimes=50, rhos=[0.4, 0.75, 0.35], mean_lifetime=6.7, reactivate=True, finalize=ABS, seed=1717

K=40, N=400, activation size=8, nmeantimes=50, rhos=[0.4, 0.75, 0.35], mean_lifetime=13.8, reactivate=True, finalize=ABS, seed=1717

K=40, N=400, activation size=12, nmeantimes=50, rhos=[0.4, 0.75, 0.35], mean_lifetime=38.3, reactivate=True, finalize=ABS, seed=1717

K=40, N=400, activation size=16, nmeantimes=50, rhos=[0.4, 0.75, 0.35], mean_lifetime=88.8, reactivate=True, finalize=ABS, seed=1717

K=40, N=400, activation size=20, nmeantimes=50, rhos=[0.4, 0.75, 0.35], mean_lifetime=362.0, reactivate=True, finalize=ABS, seed=1717

In [375]: