Unid.5 - Modulação e Demodulação Angular (Frequência e Fase)

Autor: Prof. Dr. Taufik Abrão 2002

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

2

1 3ELE002 - Circuitos de Comunicação (Teoria)

1.1 Conteúdo

- 1. Circuitos Ressonantes e Filtros
- 2. Osciladores de RF
- 3. Misturadores e conversores de frequência
- 4. Moduladores e Demoduladores AM
- 5. Moduladores e Demoduladores FM e PM
- 6. Amplificadores Sintonizados e de potência em RF;
 - a. Redes Adaptadoras de Impedância
 - b. Carta de Smith
- 7. Multiplicadores de frequência.

2 Modulação e Demodulação Analógicas

- Introdução
- AM Amplitude Modulada: modulação e demodulação
 - AM DSB; AM DSB/SC e AM SSB
- PM Modulação e Demodulação em Fase
- FM Demoduladores/Detectores
- Introdução à modulação/demodulação digital

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

3 PM - Modulação e Demodulação Angular [1]

• informação é transmitida modulando-se a fase ou freq da portadora:

$$S(t) = A(t)\cos\left[\omega_c t + \theta(t)\right] \tag{1}$$

4

- $-\theta\left(t\right)=$ modulação angular; idealmente, $A\left(t\right)=cte$
- em **FM**, a freq instantânea é feita variável em torno de ω_c através de um quantidade proporcional à tensão do sinal modulante:

$$\omega\left(t\right) = \omega_c + K_o V_m\left(t\right) \tag{2}$$

que pode ser implementado a partir de um oscilador VCO linear alimentado por um sinal de áudio, figura . A excursão em torno da freq central, $K_oV_m\left(t\right)$, é denominada **desvio de freq** (em rad). Em FM comercial, máximo desvio é $\pm 75KHz$, isto é:

$$\Delta f = \frac{K_o V_m|_{\text{max}}}{2\pi} = 75000 \ [Hz]$$

- Índice de modulação FM: desvio máximo de fase atingido pelo sinal modulado

$$\beta = \frac{\Delta f}{f_m} = \frac{\Delta \omega}{\omega_m} \quad [\text{rad}] \tag{3}$$

- desvantagem em relação à modulação AM: ocupa maior BW
- vantagem: maior discriminação do sinal em ambiente com alto nível de ruído e sinais interferentes.
- modulação angular subdividida em:
 - modulação de **fase**: a fase da portadora é variável.
 - modulação de freq: derivada da fase da portadora (= freq) é variável.
 - na prática, as modulações em freq e fase são equivalentes:
 - * mudanças na freq da portadora ⇒ alterações de fase
 - * modulação na fase da portadora ⇒ também resulta em modulação na freq
- Seja FM comercial de radiodifusão modulado por um único tom de áudio: $V_m\left(t\right)=A\cos\omega_m t.$

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

a freq instantânea do VCO será:

$$\omega\left(t\right) = \omega_c + K_o B \cos \omega_m t$$

- a fase instantânea será a integral da freq

$$\phi(t) = \int \left[\omega_c + K_o B \cos \omega_m t\right] dt = \omega_c t + \frac{K_o B}{\omega_m} \sin \omega_m t + \phi_0$$

Fig.1. Transmissor básico FM e PM

DEEL-Telecomunicações

3ELE002 - Circuitos de Comunicação

4 FM Banda Estreita e Banda Larga

Fig.2. Modulador de Frequência de Faixa Estreita

Desenvolvendo a eq.(1) com sinal modulante: $V_m(t) = B \sin \omega_m t$, tem-se:

$$S(t) = A\cos\left[\omega_c t + K_o V_m(t)\right] = A\cos\left[\omega_c t + K_o B\sin\omega_m t\right]$$
 (4)

$$S(t) = A\cos\left[\omega_c t + \beta\sin\omega_m t\right]$$

= $A\cos\omega_c t \cdot \cos\left(\beta\sin\omega_m t\right) - A\sin\omega_c t \cdot \sin\left(\beta\sin\omega_m t\right)$ (5)

4.1 FM Banda Estreita (FMFE, índice de modulção $\beta \leq 0, 2$ rad)

9

Simplificações:
$$\beta \leq 0, 2rad \Rightarrow \begin{cases} \sin(\beta \sin \omega_m t) \approx \beta \sin \omega_m t \\ \cos(\beta \sin \omega_m t) \approx 1 \end{cases}$$

∴ a expressão (5) reduz-se:

$$S(t) = A\cos\left[\omega_c t + \beta\sin\omega_m t\right] = A\left[\cos\omega_c t - \beta\sin\omega_c t \cdot \sin\omega_m t\right]$$
$$= A\left[\cos\omega_c t - \frac{\beta}{2}\cos\left(\omega_c - \omega_m\right)t + \frac{\beta}{2}\cos\left(\omega_c + \omega_m\right)t\right]$$

- espectro FMFE é similar ao AM-DSB, apenas que a banda lateral inferior apresenta inversão de fase;
- **potência média** resultante é a mesma do sinal AM-DSB:

$$\overline{P}_{carrier} = \frac{A^2}{2}; \quad \overline{P}_{BLI} = \overline{P}_{BLS} = \frac{(\beta A/2)^2}{2} = \frac{\beta^2 A^2}{8}$$

$$\overline{P}_{total}^{FMFE} = \frac{A^2}{2} \left(1 + \frac{\beta^2}{2} \right)$$

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

4.2 FM Banda Larga (FMFL, índice de modulção $\beta > 0, 2$ rad)

• A solução para eq (5) são as funções transcendentais em série, denominadas "Funções de Bessel" (físico e astrônomo alemão Friedrich Wilhelm Bessel, século XIX),

$$\cos(\beta \sin \omega t) = J_0(\beta) + 2J_2(\beta)\cos(2\omega t) + 2J_4(\beta)\cos(4\omega t) + 2J_6(\beta)\cos(6\omega t) + \dots$$

$$\sin(\beta \sin \omega t) = 2J_1(\beta)\sin(\omega t) + 2J_3(\beta)\sin(3\omega t) + 2J_5(\beta)\sin(5\omega t) + 2J_7(\beta)\sin(7\omega t)$$

Os coeficientes $J_n(\beta)$ são tabelados ou podem ainda ser obtidos graficamente.

• Os coeficientes dessas funções, chamadas **Funções de Bessel de 1**^a **Espécie**" têm duas propriedades importantes:

$$\begin{array}{ll} - & \mathbf{0} \leq \boldsymbol{\beta} \leq \mathbf{29} \Rightarrow & J_0^2\left(\beta\right) + 2J_1^2\left(\beta\right) + 2J_2^2\left(\beta\right) + 2J_3^2\left(\beta\right) + ...2J_n^2\left(\beta\right) = 1, \quad \text{com} \\ & n \to \infty \end{array}$$

$$- \quad \mathbf{0} \le \boldsymbol{\beta} \le \mathbf{29} \implies J_0^2(\beta) + 2J_1^2(\beta) + 2J_2^2(\beta) + 2J_3^2(\beta) + ...2J_n^2(\beta) = 0,98, \quad \cos n = \beta + 1$$

 \Rightarrow e os termos de ordem superior a $\beta \ +1$ são praticamente despresíveis

• Desenvolvendo a eq (5) a partir das funções de Bessel, resulta:

$$S(t) = A\cos\left[\omega_{c}t + \beta\sin\omega_{m}t\right] = A\cos\omega_{c}t \cdot \cos\left(\beta\sin\omega_{m}t\right) - A\sin\omega_{c}t \cdot \sin\left(\beta\sin\omega_{m}t\right)$$

$$= A \cdot \begin{bmatrix} J_{0}(\beta)\cos\omega_{c}t - J_{1}(\beta)\cos\left(\omega_{c} - \omega_{m}\right)t + J_{1}(\beta)\cos\left(\omega_{c} + \omega_{m}\right)t \\ + J_{2}(\beta)\cos\left(\omega_{c} - 2\omega_{m}\right)t + J_{2}(\beta)\cos\left(\omega_{c} + 2\omega_{m}\right)t \\ - J_{3}(\beta)\cos\left(\omega_{c} - 3\omega_{m}\right)t + J_{3}(\beta)\cos\left(\omega_{c} + 3\omega_{m}\right)t \\ - J_{4}(\beta)\cos\left(\omega_{c} - 4\omega_{m}\right)t + J_{4}(\beta)\cos\left(\omega_{c} + 4\omega_{m}\right)t \\ - J_{5}(\beta)\cos\left(\omega_{c} - 5\omega_{m}\right)t + J_{5}(\beta)\cos\left(\omega_{c} + 5\omega_{m}\right)t \\ + \dots$$

$$(6)$$

- o espectro de amplitudes do sinal modulado em FM de Faixa Larga (único tom) é obtido diretamente da eq acima, figura 3.
- Note que existe uma inversão de fase de 180° nas bandas laterais inferiores com múltiplos ímpares de ω_m ,
- Teoricamente, a larqura de faixa ocupada por este espectro tende a ser infinita (resultado de uma série infinita). No entanto, a maior parte da energia do sinal FM (98%) está contida nas primeiras $n = \beta + 1$ raias.

DEEL - Telecomunicações

Fig. 3. Espectro sinal FM modulado.

Fig.4. Coeficientes de Bessel de pimeira espécie.

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

• **Potência Média** total em um sinal FMFL com **BW Infinita**. A partir da eq (6) tem-se:

$$\overline{P}_{total}^{FMFE} = \frac{A^2}{2} \left[J_0^2(\beta) + 2J_1^2(\beta) + 2J_2^2(\beta) + 2J_3^2(\beta) + \dots \right] = \frac{A^2}{2}$$

limitando a BW de tal forma a considerar BW Finita:

$$\overline{P}_{total}^{FMFE} = \frac{A^2}{2}0,98 = 0,49 \\ A^2 = \text{Pot m\'edia sinal FM com } BW = 2n\omega_m \ [rad] \ \text{e} \ n = \beta + 1 \\ A^2 = \frac{A^2}{2} + \frac{A^2}{2} +$$

- com prejuízo de apenas 2% da potência contida em infinitas raias \Rightarrow reduzi-se a BW^{FM} de forma a podermos situar, lado a lado no espectro, varios sinais modulados, de diferentes portadoras, com a certeza de que não haverá interferência entre eles.

4.2.1 LARGURA DE FAIXA OCUPADA PELO SINAL FM

Como visto anteriormente, a largura de faixa ocupada pelo sinal modulado em freq será

$$BW = 2n f_m = 2(\beta + 1) f_m$$

onde n= número de bandas laterais para cada lado da portadora; e $f_m=$ maior freqüência contida no sinal modulante. Como o índice de modulação FM é, por definição, eq (3), $\beta=\frac{\Delta f}{f_m}$, a banda ocupada pelo sinal FM resulta:

$$BW = 2\left(\Delta f + f_m\right)$$

isto é, a largura de faixa ocupada por um sinal modulado FM é o dobro da frequência do sinal modulante + o desvio por ele provocado na frequência da portadora.

 A FCC (Federal Communications Comission - Comissão Federal de Comunicação) dos Estados Unidos padronizou os parâmetros de uma transmissão FM:

Radiodifusão Comercial de FM

• – máxima frequência do sinal modulante, $f_m|_{\text{max}} = 15KHz$

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

- máximo desvio de frequência $\Delta f|_{\text{max}} = 75KHz$

$$BW = 2. (\Delta f + f_m) = 2.(75 + 15) = 180KHz$$

- faixa do espectro FM comericial é de 88MHz a 108MHz, subdividida em 100 canais de 200KHz cada (com banda de guarda de 10KHz de cada lado do canal).
- além da banda de guarda é normal evitar que duas emissoras ocupem canais adjacentes. Desta forma, alternando a ocupação das faixas, garante-se um afastamento mínimo de 400 KHz entre duas estações subseqüentes no espectro, minimizando o risco de interferência.

Canal de Som do Sistema TV Comercial (modulado FM)

• – máximo desvio de freqüência $\Delta f|_{\text{max}} = 25KHz$

$$BW = 2.(\Delta f + fm) = 2.(25 + 15) = 80KHz$$

5 Moduladores Angulares

- Modulador de Fase(PM): pequenos desvios ($\leq 0, 35rad = 20^{\circ}$)
- modulador de freq (FM) podem ser obtidos de modo:
 - direto: modulando-se um VCO (FM direto)
 - indireto: modulando-se a fase da forma de onda de RF, integrando-se a entrada do sinal de áudio (FM indireto)
 - via **PLL**(*Phase-Locked Loop*), figura 5:
 - A saída do modulador angular por PLL será, no domínio s:

$$heta_{o}\left(s
ight)=rac{rac{K_{o}}{s}V_{M}\left(s
ight)}{1+rac{K_{o}K_{d}F\left(s
ight)}{sN}}$$

onde: V_M = sinal modulante; K_d = ganho do detector de fase do PLL; K_o = sensibilidade do VCO, em $\left[\frac{Hz}{V}\right]$.

• Após transitórios (steady state) a fase de saída, θ_o , será proporcional ao sinal modulante, V_M

DEEL - Telecomunicações

- ... o PLL é um modulador de fase ou de frequência (se $V_M = \int$ sinal de interesse)
- para que o laço do PLL não distorça o sinal é necessário que:

$$BW_{PLL} > BW_{V_M}$$

Fig.5. Modulador de freqûëncia com PLL

5.1 Modulador de Fase ($\Delta \phi \leq 0, 35rad$)

• diferença entre o modulador de frequência, figura 2 e o modulador de fase, figura 6: estágio **Integrador**

Fig.6. (a) Modulador de Fase para pequenos desvios ($\leq 20^{\circ}$); (b) relação trigonométrica para modulação de fase em função da amplitude do sinal modulante, A_m .

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

saída do modulador de Fase:

$$\begin{split} S^{PM}\left(t\right) &= A_{0}\cos\omega_{0}t - KV_{m}\left(t\right)\sin\omega_{0}t \\ &= \sqrt{A_{0}^{2} + K^{2}A_{m}^{2}\left(t\right)} \left[\frac{A_{0}}{\sqrt{A_{0}^{2} + K^{2}A_{m}^{2}}}\cos\omega_{0}t - \frac{KA_{m}}{\sqrt{A_{0}^{2} + K^{2}A_{m}^{2}}}\sin\omega_{0}t \right] \\ &= \sqrt{A_{0}^{2} + K^{2}A_{m}^{2}\left(t\right)} \left[\cos\phi\cos\omega_{0}t - \sin\phi\sin\omega_{0}t\right] \\ &= \sqrt{A_{0}^{2} + K^{2}A_{m}^{2}\left(t\right)}\cos\left(\omega_{0}t + \phi\right), \quad \cos\phi = \tan^{-1}\frac{KA_{m}\left(t\right)}{A_{0}} \end{split}$$

com $\left|V_{m}\left(t\right)\right|=A_{m}\left(t\right)$. Após limitador de amplitudes:

$$S^{PM}\left(t
ight)=B\cos\left(\omega_{0}t+\phi
ight), \quad ext{ com } \phi= an^{-1}rac{KA_{m}\left(t
ight)}{A_{0}}$$

Aplicando série de Taylor:

$$\phi = \tan^{-1} \frac{KA_m(t)}{A_0} = \frac{KA_m(t)}{A_0} - \frac{1}{3} \left(\frac{KA_m(t)}{A_0} \right)^3 + \frac{1}{5} \left(\frac{KA_m(t)}{A_0} \right)^5 - \dots$$

Para pequenos desvios de fase \Longrightarrow o desvio de fase é linearmente proporcional à

amplitude do sinal modulante, $A_{m}(t)$.

$$\phi\cong\underbrace{\frac{K}{A_{0}}}_{\text{cte mod.}}A_{m}\left(t\right),\quad\text{para }\phi\leq0,35rad$$

Modulador via PLL 5.2

- apresenta as vantagens do oscilador a cristal (estabilidade freq) e flexibilidade na modulação (desvios maiores)
- para desvios muito pequenos (causado por deriva do tipo temperatura, polarização etc), PLL responde fixando a freq de oscilação
- PLL: tipo I e tipo II
- PLL também é utilizado como demodulador FM (ou PM)

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

22

5.2.1 PLL Tipo I

(a) diagrama de blocos do PLL tipo I (b) Constante K_d (c) Constante do VCO, K_c

- Diagrama em blocos do PLL tipo I: figura 7.a. Equacionamento:
 - As constantes

$$K_d = -\frac{\Delta V_d}{\Delta \phi_d}$$
 $\left[\frac{V}{\text{rad}}\right]$ (Detetor de Fase) (7)
 $K_c = +\frac{\Delta \omega_0}{\Delta V_d}$ $\left[\frac{\text{rad}}{V.s}\right]$ (VCO) (8)

$$K_c = +\frac{\Delta\omega_0}{\Delta V_d} \qquad \left| \frac{\text{rad}}{V.s} \right| \qquad \text{(VCO)}$$

DEEL - Telecomunicações

fase é a integral da freq; no domínio s:

$$\Delta \phi = \frac{\Delta \omega}{s}$$
 e após divisor de freq por N: $\Delta \omega_d = s \frac{\Delta \phi}{N}$ (9)

desvio de freq à saída do VCO, $\Delta\omega$: desvio causado pelo sinal modulante + desvio imposto pela malha de realimentação do PLL-I através de V_d ; considerando as eq.(7), (8) e (9):

$$\Delta\omega = \Delta\omega_{m} + \Delta\omega_{0}$$

$$\Delta\omega = K_{c}V_{m}(t) - K_{c}\Delta V_{d}, \quad \text{com } \Delta\omega_{m} = K_{c}V_{m}(t)$$

$$= K_{c}V_{m}(t) - K_{c}K_{d}\Delta\phi_{d}$$

$$= K_{c}V_{m}(t) - K_{c}K_{d}\frac{\Delta\omega}{sN}$$

Finalmente, o desvio de freq gerado pelo PLL-I será dado por:

$$\Delta\omega=V_{m}\left(t\right)\frac{sK_{c}}{s+\frac{K_{c}K_{d}}{N}}=V_{m}\left(t\right)\frac{sK_{c}}{s+\frac{\omega_{x}}{N}},\quad\text{com }\omega_{x}=K_{c}K_{d}$$

Resposta à excitação senoidal, $V_m(t) = A_m \cos \omega_m t$: $\Longrightarrow s = j\omega_m$, o desvio de

DEEL - Telecomunicações

24 3ELE002 - Circuitos de Comunicação

freq torna-se

$$\Delta\omega = A_m \frac{j\omega_m K_c}{j\omega_m + \frac{\omega_x}{N}}$$

módulo, fig 8.a: $\left| \frac{\Delta \omega}{A_m} \right| = \frac{\omega_m K_c}{\sqrt{\omega_c^2 + \left(\frac{\omega_x}{L}\right)^2}}$, onde para $\omega_m >> \frac{\omega_x}{N} \Longrightarrow \left| \frac{\Delta \omega}{A_m} \right| \cong K_c$

 $|\omega_m|_{\min} = \frac{\omega_x}{N}$ Portanto, a menor freq modulante:

Fig. 8. Módulo da resposta à excitação senoidal (sinal modulante) em um modulador a PLL (a) tipo (a) tipo II.

5.2.2 Procedimento de projeto para o Modulador FM a PLL-I

menor freq do sinal modulante

$$|\omega_m|_{\min} = \frac{\omega_x}{N}$$

- escolhe-se ω_x com base no intervalo de retenção do PLL.
 - Exemplo: PLL com detector triangular EX–OR operando em $\phi_0 = \frac{\pi}{2}$, figura 7.b
 - portanto, a excursão máxima de tensão de controle é:

$$\begin{split} V_d|_{\max} &= \frac{V}{2} \\ \Delta \omega_0|_{\max} &= \left. K_c \, V_d \right|_{\max} = K_c \frac{V}{2} = \Delta \omega_{ref} \qquad \text{mas neste caso, } K_d = \frac{V}{\pi} \\ \Delta \omega_{ref} &= \left. K_c K_d \frac{\pi}{2} = \omega_x \frac{\pi}{2} \right. \\ \omega_x &= \left. \frac{2\Delta \omega_{ref}}{\pi} \right. \\ \omega_m|_{\min} &= \left. \frac{2\Delta \omega_{ref}}{N\pi} \right. \qquad \text{ou } N = \frac{2\Delta \omega_{ref}}{\pi \, \omega_m|_{\min}} \end{split}$$

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

• Linearidade de modulação no PLL-I

Como o maior desvio de fase ocorre para a menor freq de sinal modulante,

$$\Delta \phi = \frac{\Delta \omega}{s} = \frac{\Delta \omega}{j\omega_m} \implies |\Delta \phi|_{\text{max}} = \frac{\Delta \omega}{\omega_m|_{\text{min}}}$$
 (10)

$$e \left| \Delta \phi_d \right|_{\text{max}} = \frac{\left| \Delta \phi \right|_{\text{max}}}{N} = \frac{\Delta \omega}{N \left| \omega_m \right|_{\text{min}}}$$
(11)

Mas para o detetor de fase utilizado, figura 7.b, pode-se verificar que:

$$\begin{split} |\Delta\phi_d|_{\max} &< \frac{\pi}{2} \quad \text{ou} \quad \frac{\Delta\omega}{N \; \omega_m|_{\min}} < \frac{\pi}{2} \quad \text{ou} \\ \Delta\omega &< \frac{\pi}{2} N \; \omega_m|_{\min} \quad \text{ou} \\ \Delta\omega &< \frac{\pi}{2} N \frac{\omega_x}{N} \quad \text{portanto,} \\ \Delta\omega &< \frac{\pi}{2} \omega_x = \frac{\pi}{2} K_c K_d = \text{intervalo de retenção} \end{split}$$

 intervalo de retenção: faixa de variação de freq do VCO tal que o PLL continue a operar sem perder o sincornismo.

5.2.3 Modulador FM com PLL Tipo II

• Modulador FM via PLL tipo II, figura 9:

Fig.9. (a) diagrama de blocos do PLL tipo II (b) Constante K_d do detector de fase triangular

- inclusão de um **integrador** (filtro FPB) na malha de realimentação resulta nas

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

seguintes modificações das equações relacionadas à malha de realimentação

$$\Delta V_c = G \frac{s + \omega_2}{s} \Delta V_d$$
$$\Delta \omega_0 = K_c \Delta V_c \quad \text{(VCO)}$$

 Resolvendo-se o sistema de equações, obtém-se a equação do desvio de frequência obtido com o modulador FM PLL-II:

$$\Delta\omega \ = \ V_m\left(t\right)\frac{s^2K_c}{s^2+G\frac{\omega_x}{N}s+G\frac{\omega_x}{N}\omega_2} = V_m\left(t\right)\frac{K_cs^2}{s^2+2\varsigma\omega_ns+\omega_n^2}$$

$$\operatorname{com}\omega_x \ = \ K_cK_d; \quad \omega_n = \sqrt{\frac{G\omega_x\omega_2}{N}}; \quad \varsigma = \frac{1}{2}\sqrt{\frac{G\omega_x}{N\omega_2}} \quad \text{sendo} \quad 1 \leq \varsigma \leq 3$$

• Resposta à excitação senoidal, $V_m\left(t\right)=A_m\cos\omega_m t:\Longrightarrow s=j\omega_m,$ o desvio de freq torna-se

$$\Delta\omega = A_m \frac{-\omega_m^2 K_c}{-\omega_m^2 + j2\varsigma\omega_m\omega_n + \omega_n^2}$$

cujo módulo é dado na figura 8.b e o comportamento assintótico obtido por:

$$\lim_{\omega_m > > \frac{\omega_x}{N}} \left| \frac{\Delta \omega}{A_m} \right| = K_c$$

DEEL - Telecomunicações

- Restrições para o PLL-II:
 - * frequência modulante mínima deve ser igual à freq de corte do PLL-II:

$$\omega_m|_{\min} = 2\varsigma \omega_n \tag{12}$$

* Intervalo de retenção, $\Delta\omega_{\rm Ret}$. Se na saída do integrador tivermos a excursão máxima de tensão de $\pm \Delta V_c|_{\rm max}$, então:

$$\Delta\omega_{\rm Ret} = K_c \, \Delta V_c |_{\rm max}$$

• Portanto, 1^a Condição para Desvio Freq do sinal modulante:

$$|\Delta\omega| < \Delta\omega_{\mathrm{Ret}} = K_c \left. \Delta V_c \right|_{\mathrm{max}}$$

- 2^a Condição para Desvio Freq do sinal modulante: máxima excursão de fase $(\Delta\phi=\frac{\Delta\omega}{\omega_m})$:
 - Como o maior desvio de fase ocorre para a menor freq de sinal modulante, equações (10) e (11) e dado que o detector de fase utilizado é do tipo Triangular, figura 9.b

$$|\Delta\phi|_{\max} = \frac{\Delta\omega}{\omega_m|_{\min}}$$
 e $|\Delta\phi_d|_{\max} = \frac{|\Delta\omega|}{N \omega_m|_{\min}} < \frac{\pi}{2}$

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

E considerando a eq. (12), resulta

$$|\Delta\omega| < \pi N \varsigma \omega_n$$
 2^a Condição

• Conclusão: no PLL-II, o maior desvio modulante de freq deve satisfazer a 1^a e 2^a Condição

6 Demoduladores para FM e PM

- mesmos circuitos são utilizados tanto para FM quanto para PM
- detectores FM são também denominados discriminadores de FM
- utiliza-se também demodulador a PLL
- função de transferência de um detector FM: conversão freq-tensão, figura 10.a
- em um sistema FM ou PM, a modulação em amplitude causada por
 - ruído
 - desvanecimento do sinal
 - sinais interferentes
 - ⇒ causa distorção de amplitude no sinal FM (ou PM) recuperado
 - ⇒ Circuitos com função de **limitadores**, figura 10.b, são incluídos nos detectores FM visando redução de eventual modulação em amplitude.
- Um simples estágio limitador baseado em um par de transistores na configuração diferencial, figura 10.c, pode aproximar adequadamente a função de transferência de um limitador ideal desde que o sinal de entrada tenha intesidade suficiente para levar

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

o amplificador diferencial à saturação. O limiar de comparação é definido pela tensão V_{th} .

 Se o sinal de entrada não for suficiente ⇒ vários estágios diferenciais são cascateados. Em geral, CI limitadores contém 3 estágios diferenciais que podem ser cascateados/configurados

Fig.10. (a) conversão freq-tensão em um demodulador FM. (b) característica de transferência de um limitador ideal (função $sign\left(\cdot\right)$). (c) implementa ção de um limitador com par diferencial.

Exemplo 6.1 Um par diferencial possui um ganho de tensão de 60dB em uma carga de de $R_L = 2K\Omega$ e uma impedância de entrada diferencial também de $2K\Omega$. Considerando que são necessários 75mV na entrada para levar o estágio à saturação, quantos estágios são necessários para limitar um sinal de entrada de $5\mu V$?

Um ganho de tensão de $60dB=1000\Rightarrow V_{out}^{1stg}=5mV$ (insuficiente para saturar o segundo estágio). \therefore são necessários 3 estágios diferenciais cascateados.

6.1 Detectores FM Diferenciadores de Sintonia Deslocada

• **Diferenciador**: Derivada do sinal FM

$$\frac{d}{dt}S(t) = \frac{d}{dt} \left\{ A \cos \left[\omega_c t + \theta(t) \right] \right\}$$
$$= -\left(\omega_c + \frac{d\theta}{dt} \right) \left\{ A \cos \left[\omega_c t + \theta(t) \right] \right\}$$

- - resultando em um sinal FM com **modulação em amplitude**. Normalmente, $\omega_c >> \frac{d\theta}{dt}$
 - * a informação é recuperada passando-se o sinal por um detector de envoltória (demodulação em amplitude)

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

- * note que a modulação em amplitude causada por ruído deve ser previamente removida (antes da detecção) passando-se o sinal original por um **limitador**
- saída do detector envoltória é proporcial a $\omega_c + \frac{d\theta}{dt} = \omega_c + KV_m\left(t\right)$ para um sinal FM
- elimina-se ω_c passando-se o sinal por um Filtro Passa-Altas \Rightarrow sinal resultante é $\propto KV_m(t)$
- desvantagem do detector FM diferenciador: elimina eventual componente DC do sinal original

6.1.1 Circuito Diferenciador:

- existem muitos circuitos que realizam a operação de diferenciação.
- resposta de um diferenciador ideal: $H(j\omega) = j\omega K$:
 - magnitude aumenta $6dB/d\acute{e}cada$ com a freq
 - há defasagem de $+90^{\circ}$
 - K = cte do diferenciador
- ullet Um simples circuito LC sintonizado, de sintonia deslocada, aproxima a resposta de

35

um diferenciador ideal para freqs suficientemente abaixo da freq de ressonância. No entanto, se ω_c estiver muito abaixo da freq de ressonância do $LC \Rightarrow$ haverá muita degradação da SNR.

• A magnitude da resposta em freq de um LC sintonizado, já estudado:

$$|A(j\omega)| = rac{R}{\sqrt{1 + Q^2 \left(rac{\omega}{\omega_o} - rac{\omega_o}{\omega}
ight)^2}}$$

que para a freq $\omega_c + \Delta\omega$

$$|A\left(j\omega_{c}+j\Delta\omega\right)| = \frac{R}{\sqrt{1+Q^{2}\left(\frac{\omega_{c}+\Delta\omega}{\omega_{o}}-\frac{\omega_{o}}{\omega_{c}+\Delta\omega}\right)^{2}}} \approx \frac{R\omega_{o}\left(\omega_{c}+\Delta\omega\right)}{Q\left[\omega_{o}^{2}-\left(\omega_{c}+\Delta\omega\right)^{2}\right]}$$

e uma vez que ω_o está suficientemente afastado de $\omega_c + \Delta\omega$,

$$\omega_c + \Delta\omega \ll \omega_o$$

então

$$|A(j\omega)| \approx \frac{R}{Q\omega_o}(\omega_c + \Delta\omega)$$

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

correspondendo **termo constante**, $\frac{R}{Q\omega_o}\omega_c$ mais uma componente proporcional ao desvio de freq, $\Delta\omega$

- o **termo constante** é eliminado utilizando-se o balanceamento, figura 11:
 - circuito ressonante **superior** (L_1C_1) sintonizado em ω_{o2} , com saída proporcional a $\omega_c + \Delta\omega$;
 - circuito ressonante **inferior** (L_2C_2) sintonizado em ω_{o1} , com saída proporcional a $\omega_c \Delta\omega$;
 - saída diferencial é então

$$V_o = K \left[\omega_c + \Delta\omega - (\omega_c - \Delta\omega) \right] = 2K\Delta\omega$$

proporcional ao desvio de freq em relação à freq portadora.

- O desvio de freq deve estar confinado à região linear na figura 12 para que não haj distorção harmônica na saída.
- $\bullet \quad$ para desvio nulo (freq instantânea da portadora = $\omega_c)$ não há sinal modulante \rightarrow $V_o=0V$
- para desvio positivo de freq (= $\omega_c + \Delta\omega$) \Rightarrow circuito superior (L_1C_1) gera maior

tensão instantânea sobre carga (R_{sup}) em relação a R_{inf}

Fig.11. Discriminador de freq balanceado (sintonia deslocada acima e abaixo de ω_c).

- Uma mudança na freq instantânea da portadora ⇒ mudança linear na tensão de saída.
- V_o é proporcional ao desvio de freq.
- freq do sinal de saída é igual à freq do sinal modulante.
- **desvantagem**: dificuldade na simetria de sintonia dos circuitos ressonantes inferior e superior.

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

• Ganho de Tensão para a curva S

 $-\Delta\omega$ $\omega_{\rm c}$ $\Delta\omega$

(a)

- equação geral do ganho de tensão em função da freq de um circuito LC paralelo:

Fig.12. (a) curva em freq para cada um dos circuitos LC sintonizados (b) curva em freq resultante (curva S).

(b)

6.2 Discriminador de Fase Foster-Seeley

• opera com o primário e o secundário sintonizados na frequência da portadora,

• funciona a paritr da defasagem provovada no sinal pela fuga (deslocamento) da sintonia de um circuito LC, figura 13.a

Fig.13. (a) Discriminador FM Foster-Seeley; (b) circuito equivalente para o secundário de T1

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

Princípio de operação do Discriminador de freq Foster-Seeley

- L_3 = choque de RF; C_3 = capacitor de acoplamento.
- C_5 tem um valor suficientemente **elevado** $\to X_{C_3} \approx 0$ para RF. : sobre L_3 desenvolve-se toda a tensão de RF de entrada, S(t) (apenas L_3 apresenta reatância considerável em RF)
- no secundário de T1 temos:
 - pelo circuito equivalente do secundário de T1, figura 13.b, a divisão dos parâmetros de indutância e resistência do enrolamento e da própria tensão, devido ao tap de derivação central, resultando na corrente de secundário :

$$I_{\text{sec}} = \frac{V_{\text{sec}}}{R_s + j \left(X_{L_2} - X_{C_2}\right)}$$

$$V_{fa} = \frac{V_{\text{sec}}}{2} - I_{\text{sec}} \frac{R_s + j X_{L_2}}{2}$$

$$V_{ga} = I_{\text{sec}} \frac{R_s + j X_{L_2}}{2} - \frac{V_{\text{sec}}}{2}$$

$$\therefore V_{fa} = -V_{ga}$$

note que:

* tensão entre primário e secundário de T1 estão defasadas de 180^o

- * na resonância (em ω_c), $X_{L_2} = X_{C_2}$
- * as tensões V_{fa} e V_{ga} estão defasadas de 90^o em relação à tensão do secundário ($V_{\rm sec}$).
- Quando a frequência do sinal aplicado ao primário for maior que a frequência de ressonância (modulação FM), o secundário será predominantemerte indutivo, aumentando a defasagem de V_{fa} e V_{ga} em relação à tensão do secundário.
- Fato semelhante ocorre se a frequência do sinal de entrada for menor que a de ressonância, pois assim o secundário adquire características mais fortemente capacitivas ($\downarrow X_L$ e $\uparrow X_C$), diminuindo a defasagem de V_{fa} e V_{ga} em relação a V_{sec}
- A fiqura 14 mostra o circuito equivalente para a análise da etapa de saída deste detetor, considerando V_{fa} e V_{ga} como geradores de tensão; sobre o choque L_3 desenvolve-se a tensão do primário e(t). Os detetores de envoltória recuperam as respectivas tensões de pico aplicadas e a tensão recuperada será a diferença entre aquelas tensões de pico.

DEEL - Telecomunicações

Fig.14. Circuito aquivalante para o estágio da saída do detector Foster-Seeley

$$V_{cb} = |V_{fa} + S(t)|$$

$$V_{db} = |S(t) + V_{ga}|$$

Funcionamento do discrimiandor Foster em termos de fasores, figura 15:

Fig.15. Diagramas fasoriais para discriminador Foster

• (a) diagrama fasorial para o caso onde a $\omega_{in} = \omega_o$ (L2, C2):

$$|V_{cb}| = |V_{db}|$$
 \therefore $s(t) = 0$

• (b) diagrama fasorial para o caso onde a $\omega_{in} > \omega_o$:

$$|V_{cb}| > |V_{db}|$$
 \therefore $s(t) > 0$

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

• (c) diagrama fasorial para o caso onde a $\omega_{in} < \omega_o$:

$$|V_{cb}| < |V_{db}|$$
 \therefore $s(t) < 0$

- Este tipo de detetor, por trabalhar sintonizado na própria freqüência da portadora, responde às variações de freqüência em torno do ponto de sintonia com uma variação de fase e não com variações de amplitude, como os detetores de sintonia deslocada (também denominados detectores de inclinação).
 - Apesar disso, em virtude do fato de que a variação de fase é convertida pelos detetores de envoltória em variação de amplitude, o discriminador Foster-Seeley tem como curva de resposta a mesma curva "S" do detetor balanceado.
 - vantagem: necessita apenas de dois circuitos ressonantes para serem calibrados e ambos são sintonizados na mesma freqüência (contra 3 circuitos sintonizados em freqs distintas no caso do discriminador de sintonia deslocada)

45

6.3 Detetor de Relação

• circuito semelhante ao Discriminador de Fase Foster-Seeley, tanto na apresentação como no funcionamento, figura 16.a

Fig.16. (a) Detector FM de Relação; (b) circuito equivalente simplficado

 o choque de RF n\u00e3o existe neste circuito → substitu\u00eddo pelo terceiro enrolamento no transformador

DEEL - Telecomunicações

- com mesma função de L_3 do discriminador Foster: aplicar a tensão do primário no circuito ligado ao secundário.
- Devido à disposição dos diodos Dl e D2, os capacitores C3 e C4 carreqam-se sempre no mesmo sentido, fazendo com que a tensão sobre C5 seja a soma das tensões em cada um deles e essa tensão **permanece praticamente constante**:
 - valor de C5 é normalmente elevado (dezenas de μ F) e os valores de R1 e R2 também (alguns K Ω), resultando uma constante de tempo elevada.
- o circuito equivalente simplificacado da figura 16.b auxilia a análise dos valores instantâneos da tensão recuperada do detector de Relação:
 - a análise de corrente e tensão para o secundário de T1 no Detector de Relação, podem ser consideradas idênticas àquelas apresentadas para o detector de fase Foster-Seeley.

- as relações de tensão no circuito da figura 16.b resultam em:

carga instantânea sobre
$$C_4$$
: $V_{gf} = |S\left(t\right) + V_{bc}|$ admitindo-se $R_1 = R_2$: $V_{R_2} = \frac{|S\left(t\right) - V_{ca}| + |S\left(t\right) + V_{bc}|}{2}$ portanto, sinal demodulado : $s\left(t\right) = V_{gf} - V_{R_2} = \frac{|S\left(t\right) + V_{bc}| - |S\left(t\right) - V_{ca}|}{2}$

- Análise fasorial para as três circunstâncias principais da frequência instantânea do sinal aplicado à entrada do demodulador é similar ao caso anterior, vide fiqura 15, resultando, neste caso em:
 - diagrama fasorial para o caso onde a $\omega_{in} = \omega_o$ (L2, C2 e L1,C1):

$$|S(t) + V_{bc}| = |S(t) - V_{ca}| \qquad \therefore \quad s(t) = 0$$

- (b) diagrama fasorial para o caso onde a $\omega_{in} > \omega_o$:

$$|S(t) + V_{bc}| > |S(t) - V_{ca}|$$
 $\therefore s(t) > 0$

– (c) diagrama fasorial para o caso onde a $\omega_{in} < \omega_o$:

$$|S(t) + V_{bc}| < |S(t) - V_{ca}|$$
 $\therefore s(t) < 0$

DEEL - Telecomunicações

- grande **vantagem** do demodulador de Relação (sobre os anteriores): detector age como limitador, pois:
 - o capacitor C5 se mantém com sua carga praticamente constante, o circuito torna-se insensível às variações de amplitude do sinal modulado, detendo-se exclusivamente nas variações de frequência instantânea.
 - ainda: a tensão contínua sobre R_1 ou R_2 pode ser usada como amostra da estabilidade de freqüência do oscilador local do receptor e controlá-lo, mediante uma realimentação (Controle Automático de Freqüência, CAF)

6.4 Discriminadores de Pulso

- abordagem diferente para demodulação de sinais FM, figura 17.
- detector cruzamento: gera pulso toda vez que for detectado um cruzamento em zero
- discriminador de período: determina o período entre cruzamentos alternados de zeros.
- conversor T-V converte a informação de período em uma sinal analógico (tensão proporcional)

Fig.17. Diagrama de blocos de um discriminador de pulsos

6.4.1 Dois métodos de implementação para o Discriminador de Pulso Método 1:

• comparador de tensão: tem função de limitador de amplitudes

DEEL - Telecomunicações

- Toda vez que o sinal de entrada faz passagem por zero ascendente (- → +), o conteúdo do contador é transferido para o convesor D/A e o contador é ressetado. A taxa de incremento do contador é constante e igual à freq de clock.
- o conteúdo do contador é proporcional ao tempo desde a última passagem por zero ascendente do sinal de entrada.
- conversor D/A gera um sinal analógico proporcional ao período (ou freq) dado pelo contador.

Fig.18. Método 1: diagrama de blocos de um discriminador de freq por pulso

51

Método 2:

- para cada sinal de disparo (trigger) à entrada do mutivibrador monoestável ⇒ este gera um pulso positivo de duração constante.
- Quando o monoestável for diparado com um sinal de freq igual à da portadora \Rightarrow pulso com ciclo ativo igual a 50% (pulso quadrado).
- o último bloco consiste de circuito que calcula o valor médio deste pulso.
 - No caso $T_{S(t)} = T_{carrier} \Rightarrow V_o = 0V$
 - se $T_{S(t)} < T_{carrier} \Rightarrow$ saída do multivibridador terá um Duty cicle > 50%, figura $20 \Rightarrow V_o > 0V$
 - e se $T_{S(t)} > T_{carrier} \Rightarrow$ saída do multivibridador terá um Duty cicle < 50% $\Rightarrow V_o < 0V$

Fig.19. Método 2 para o discriminador de pulso

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

Fig.20. Formas de onda para o discriminador de pulso - método 2. Neste caso, $\omega_{in}>\omega_c$

6.4.2 Trade-off para os esquemas Discriminadores de Pulsos

- Vantagem do Discriminador de Pulso: bastante insensível à modulação de amplitude
- **Desvantagens** (em relação aos discriminadores de relação):
 - limitado à velocidade dos circuitos digitais associados;
 - aumento de complexidade do hardware

6.5 Demodulador a PLL

- A malha básica de um PLL, figura 21.b consiste de um detetor de fase, de um filtro passa baixas e de um oscilador controlado por tensão (VCO)
- O VCO gera uma na feqüência igual à de entrada; neste caso, na freqüência intermediária. O detetor de fase compara a freqüência do VCO e a freqüência de entrada, modulada em freq e, então, desenvolve uma tensão de erro, que é proporcional a diferença de freqüência e que segue o sentido desta diferença. Este sinal de erro é, então, aplicado ao filtro passa baixas (no PLL tipo II).
 - o filtro determina várias das características dinâmicas do PLL. Ele estabelece a faixa de freqüência na qual a malha alcançará e manterá sua fase (faixa de captura e retenção, respectivamente).
 - o filtro também determina a velocidade de resposta da malha, para as variações da frequência de entrada.
- A tensão de erro do filtro é, então, usada para controlar o VCO. Por exemplo, se a freqüência de entrada se desvia acima da freqüência do VCO, uma tensão de erro é gerada pelo detetor de fase. Esta tensão é filtrada e aplicada ao VCO. Portanto, a tensão de erro faz com que o VCO aumente sua freqüência, de forma que ela se torne

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

igual a frequência de entrada. Quando o sinal de entrada é modulado em frequência, o VCO tentará seguir os desvios de frequência deste sinal e, como resultado, a tensão de erro é uma cópia exata do sinal modulante.

• O PLL segue a freq de referência, ω_{ref} (sinal modulado em freq) resultando em um ΔV_c proporcional ao sinal modulador em freqüência, caso a freq do sinal modulante (áudio) seja muito menor que a freq de corte do PLL, $\omega_m << \omega_x$. Assim,

VARIAÇÕES LENTAS DE FREQ ⇒ PLL ACOMPANHA A REFERÊNCIA

(= sinal mod em freq)

• Vantagens do PLL:

- excelente performance,
- baixo custo
- necessidade de poucos componentes extemos.
- elimina os caros indutores e transformadores
- simplifica muito o processo de sintonia.

6.5.1 Demodulador PLL tipo I

- para variações lentas em ω_{ref} , o PLL tenta seguir estas referências:
 - entrada (FM modulado por um único tom):

$$\omega_{ref} = \underbrace{\omega_0}_{freq.\ VCO\ do\ modulador,\ repouso} + \underbrace{\Delta\omega_p\cos\omega_m t}_{\Delta\omega_{in}}$$

a diferença de freq instantânea entre o VCO e a entrada:

$$\Delta\omega = \omega_c - \Delta\omega_{in}$$

- Na figura 21.a, a tensão V será proporcional à freq de referência (sinal modulado em freq de entrada):

$$\Delta V = -K_d \Delta \phi = -K_d \frac{\Delta \omega}{s} = -\frac{K_d}{s} (\omega_c - \Delta \omega_{in}) = -\frac{K_d}{s} (K_c \Delta V - \Delta \omega_{in})$$

$$\Delta V = \Delta \omega_{in} \frac{K_d}{s + K_d K_c}, \quad \text{com } \omega_x = K_d K_c, \text{ resulta}$$

$$\Delta V = \frac{\Delta \omega_{in}}{K_c} \frac{\omega_x}{s + \omega_x}$$

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

• Excitação períodica: $\Delta\omega_{in} = \Delta\omega_{p}\cos\omega_{m}t = \Delta\omega_{p}\exp j\omega_{m}t; e \quad s \to j\omega_{m}$

$$\Delta V = \frac{\Delta \omega_p \exp j\omega_m t}{K_c} \frac{\omega_x}{j\omega_m + \omega_x}$$

cujo módulo e fase são dados por:

$$|\Delta V| = \frac{\Delta \omega_p}{K_c} \frac{1}{\sqrt{1 + \left(\frac{\omega_m}{\omega_x}\right)^2}} e^{\theta} = \omega_m t - \underbrace{\tan^{-1} \frac{\omega_m}{\omega_x}}_{\psi}$$

com $\psi =$ defasagem entre a modulação e o sinal demodulado.

- Caso a freq do sinal modulante for muito menor que a freq de corte do PLL, $\omega_m << \omega_x$, então

$$\Delta V \cong \frac{\Delta \omega_p}{K_c} \cos \omega_m t$$

a saída reproduz a freq do sinal modulante ω_m

- Restrição de fase para o Demodulador FM com PLL-I
 - utilizando o mesmo detector de fase triangular com resposta dado na figura 7.b,

– admitindo ponto de operação em $\phi = \frac{\pi}{2} rad$, resulta:

$$|\Delta\phi|_{\max} < \frac{\pi}{2} rad$$

- como

$$\Delta \phi = -\frac{\Delta V}{K_d} = -\frac{\Delta \omega_{in}}{K_d K_c} \frac{\omega_x}{s + \omega_x} = -\frac{\Delta \omega_{in}}{s + \omega_x}$$

para excitação senoidal, o módulo resulta:

$$|\Delta\phi| = \frac{\Delta\omega_p}{\sqrt{\omega_m^2 + \omega_x^2}}$$

onde $|\Delta\phi|_{\mathrm{max}}$ ocorre para $\omega_m \to 0$

$$|\Delta\phi|_{\max} = \frac{\Delta\omega_p}{\omega_r} < \frac{\pi}{2}rad$$

Finalmente, a restrição de linearidade de fase é dada por:

$$\omega_x > \frac{2}{\pi} \Delta \omega_p$$

e para que a resposta em freq do demodulador FM PLL-I seja plana é necessário

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

que

$$|\omega_m|_{\max} < \omega_x$$

Fig.21. Demodulador de FM empregando (a) PLL tipo I; (b) PLL tipo II

6.5.2 Demodulador PLL tipo II

- figura 21.b apresenta o demodulador PLL-II
- inclusão do integrador
- condição para resposta plana em freq do demodulador FM PLL-II:

$$\begin{aligned} \left|\omega_m\right|_{\max} < 2\varsigma \omega_n, \\ \text{onde } \omega_n = \sqrt{\frac{G\omega_x\omega_2}{N}}; \ \ \omega_x = K_cK_d; \quad \varsigma = \frac{1}{2}\sqrt{\frac{G\omega_x}{N\omega_2}} \ \ \text{sendo} \ \ 1 \le \varsigma \le 3 \end{aligned}$$

• Caso $\omega_m << 2\varsigma \omega_n$, então:

$$\Delta V_c \cong \frac{1}{K_c} \Delta \omega_p \cos \omega_m t$$

 \Rightarrow a saída reprouz o sinal modulante.

- Restrição de fase. Analogamente ao tipo I,
 - ponto de operação em $\phi = \frac{\pi}{2} rad \Longrightarrow |\Delta \phi|_{\max} < \frac{\pi}{2} rad$

$$|\Delta\phi|_{\max} = \frac{\Delta\omega_p}{2\varsigma\omega_n} < \frac{\pi}{2}rad$$

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

Finalmente, a **restrição de linearidade de fase** é dada, para uma excitação senoidal, por:

$$|\omega_m|_{\rm max} < 2\varsigma\omega_n$$
 (sem divisor)

ou, quando há divisor de freqs:

$$|\omega_m|_{\max} < \frac{2\varsigma\omega_n}{N}$$
 (com divisor freq por N)

- Exemplo de PLL monolítico: A figura 22 ilustra um típico cicuito integrado PLL, o NE 565 da SIGMETICS.
 - Rl e Cl são usados para estabelecer a faixa de freqüência de operação do VCO.
 - C2 e o resistor intemo de 3K6 formam o filtro passa baixas, RC.

A única diferença entre este circuito e o diagrama de blocos da figura 21.b é o amplificador DC, que alimenta a tensão do sinal de erro.

Fig.22. Esquema interno do PLL NE 565

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

6.6 Pré-Enfase e Dê-Enfase

A transmissão de sinais por meio de ondas eletromagnéticas sofre a ação de vários tipos de ruído, tendo sido constatado que a maior incidência se dá na região das **frequências** mais altas de áudio.

- relação sinal/ruído do sinal FM recebido (S/N) não será constante, pois a amplitude do ruído, sendo gradualmente crescente com a freqüência de áudio diminue sensivelmente a S/N nas freqüências mais altas de áudio.
- **técnica de Pre-Ênfase:** tentativa de manter uma boa relação sinal/ruído ao longo de toda a faixa audível:
 - Pre-Ênfase: reforça o ganho da amplificação do sinal modulante na região de alta frequiência. Circuito típico e respectivas respostas, figura 23.a. onde:

$$f_1=rac{1}{2\pi R_1C}$$
 frequência de início de atuação da pré-ênfase $f_2=rac{1}{2\pi\left(R_1//R_2\right)C}$ frequência de final de atuação da pré-ênfase $G_0=20\log\left[rac{R_2}{R_1+R_2}
ight]$ $[dB]$ ganho inicial do pré-ênfase

Fig.23. Circuito e resposta em freq para (a) Pré-Ênfase; (b) De-Ênfase.

 Dois padrões de constantes de tempo para enfatização FM adotados em todo o mundo:

DEEL - Telecomunicações

- * norma americana da FCC: $R_1C=75\mu s$ (utilizado na fig 23) $\Rightarrow f_1=2122Hz$
- * norma japonesa do JIS (Japanese Industrial Standard),: $R_1C=50\mu s$. $\Rightarrow f_1=3183Hz$
- * $f_2 = 15KHz$ (= máxima freqüência do sinal modulante)
- No receptor: necessidade de se desfazer a enfatização que foi dada à informação, realizada no transmissor, mediante o processo chamado De-ênfase, figura 23.b.

$$f_1 = \frac{1}{2\pi R_1 C}$$
 frequência de início de atuação da dê-ênfase

- * No caso de De-Ênfase, não é necessário que exista uma frequência de término de atuação \Rightarrow frequências acima de 15KHz não são nem mesmo transmitidas.
- * as constantes de preênfase e deênfase devem ser necessariamente iguais.

65

7 Topologias para um sistema de transmissão FM

- moduladores analisados até aqui têm uma característica em comum (não muito desejável):
 - têm uma região linear de operação relativamente pequena → pequenos índices de modulação → sistemas de faixa estreita (FMFE)
 - pode-se obter um sinal modulado em freq de faixa larga (FMFL) a partir de um FMFE

7.1 FM de Banda Larga - Método Indireto

- Obtenção de um FM Banda larga a partir de um modulador Banda Estreita é obtida mediante a multiplicação de freqs.
- Do sinal modulado em freq, eqs (1) e (2):

$$S(t) = A\cos\left[\omega_c t + K_o \sin \omega_m t\right]$$

$$\operatorname{com} V_m(t) = B \sin \omega_m t \operatorname{e} K_o = KB$$

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

• realizando a multiplicação da freq deste sinal por um fator n:

$$S^{n}(t) = A\cos\left[n\omega_{c}t + nK_{o}\sin\omega_{m}t\right]$$

tanto a freq da portadora quanto o índice de modulação ficam multiplicados pelo fator "n".

como desvio de freq

$$\Delta f = \beta f_m$$

para uma mesma frequência do sinal de informação pode-se, pela multiplicação de frequência, provocar um desvio de frequência maior no sinal modulado, figura 24.

- Com o propósito de se obter no amplificador de potência um sinal modulado em freq na faixa de 88MHz a 108MHz e $\Delta f \approx 75KHz$, desvio máximo permitido na radiodifusão comercial, partindo-se de:
 - oscilador a cristal de 2MHz e um desvio de frequência de 1,56KHz provocado pelo sinal modulante;
 - após a passagem pelo conjunto de multiplicadores com fator de multiplicação total igual a $M = M_1 \times M_2 \times ... \times M_x$, teremos

$$f_c = 96MHz$$
$$\Delta f = 74,88KHz$$

Fig.24. Diagrama de blocos de um transmissor FM básico de Banda Larga a partir de um FM Banda Estreita (sistema Armstrong) + multiplicadores de Freq

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

• Etapas multiplicadoras de freq:

- são amplificadores classe C em cascata, que geram harmônicos do sinal de entrada e filtram apenas o harmônico desejado, bloqueando os demais (serão vistos em detalhes na Unid.7 - Multiplicadores de freqüência)
- facilidade na obtenção de multiplicadores por 2, 3 ou 4
- à medida que cresce a ordem do harmônico, mais difícil fica a sua recuperação (menor energia),
- sendo portanto os multiplicadores limitados, na maioria das aplicações, a $4\times$ ou $5\times$
- Para maiores fatores de demultiplicação, o usual é um arranjo com vários circuitos em cascata.

69

7.2 FM de Banda Larga - Método Direto (modulador à varicap)

Outra maneira de se fazer a transmissão FM banda larga, considerada um pouco mais eficiente, pela sua estabilidade na frequência da portadora é o processo de obtenção do método direto (modulador com varicap), colocado em uma **malha de travamento de fase**, conhecida por P.L.L (**Phase Locked Loop**), figura 25.

Fig.25. Modulador FM com PLL

DEEL - Telecomunicações

- Em um PLL., o oscilador a cristal não precisa ter, necessariamente, a mesma freqüência da portadora (caso isso aconteça, teremos m = n, na figura 25), pois a comparação de fase é feita após as divisões por n e m que igualam essas duas freqüências.
- modulador FM à Varicap → índice de modulação baixo
- o erro de fase ε varia proporcionalmente à amplitude do sinal de áudio aplicado:
 - como o valor médio deste sinal é nulo (filtrado pelo capacitor), basta projetar o filtro passa-baixas para responder não às variações do áudio, mas sim ao seu valor médio.
 - caso o valor médio se mantenha nulo, a malha não atua, mas a partir do momento em que houver variação na freqüência da portadora, o P.L.L. corriqe essa variação pelo valor DC aplicado ao modulador FM.
 - melhora a estabilidade do circuito modulador FM
- os circuitos **multiplicadores de freq** nem sempre são suficientes para se obter o desvio de freqüência e a portadora desejados, a partir de um sinal já modulado em FM, com índice de modulação baixo.

→ alternativa uso de Heterodinação

7.3 Transmissor Heteródino para FM - Banda Larga

- consiste em passar o sinal modulado por um **Misturador**.
 - altera-se a frequência de portadora sem modificar o desvio de frequência do sinal, figura 26.
 - este processo, torna independente os fatores de multiplicação da frequência de portadora e do desvio de frequência.
 - * após o misturador, pode-se ter uma freqüência central maior ou menor, mantendo o mesmo desvio de freqüência, evitando os problemas:
 - * **caso A** para se obter o desvio de frequência necessário seria necessário um fator de multiplicação tão grande que a frequência de portadora ficaria acima da desejada;
 - * **caso B** pode-se fazer necessário um fator de multiplicação tão pequeno para o desvio de frequência que a portadora não chegaria a atingir o valor desejado.
 - * mais comumente o processo de heterodinação FM resulta em um sinal FM de banda larga;

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

• O processo por heterodinação é utlizado em emissoras de radiodifusão comercial de FM e também em transmissores profissionais de micro-ondas.

Fig.26. Transmissor FM Heteródino (banda estreita)

7.4 Determinação da Constante do Modulador FM

• A figura 27.a mostra um circuito modulador FM pelo método direto a varicap;

• a figura 27.b apresenta a porção linear da curva de transferência do varicap $\Delta C \times \Delta V$

Fig.27. (a) Oscilador Hartley como modulador FM - método direto; $C_1=$ capacitor de bloqueio; $P_2=$ sensibilidade do cirucuito ao sinal modulante; C_d << C_2 . (b) Curva caracterísitica do Varicap mostrando a região linear.

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

• Constante do Modulador FM - método Direto

freq de oscilação

$$f_i = \frac{1}{2\pi\sqrt{L_2C}} \cong \frac{1}{2\pi\sqrt{L_2C_d}}; \quad \text{com } C = \frac{C_2C_d}{C_2 + C_d}, \quad \text{uma vez } C_2 >> C_d$$

- **Ausência de sinal modulante**: tensão e capacitância do varicap: V_0 e C_0 ; a freq angular instantânea será:

$$\omega_0 = \frac{1}{\sqrt{L_2 C_0}}$$

- aplicando-se um sinal modulante $V_m\left(t\right)$: $\Rightarrow \Delta V \to \Delta C$ e a freq instantânea será

$$\omega_{i} = \omega_{0} + \Delta\omega = \frac{1}{\sqrt{L_{2}\left(C_{0} + \Delta C\right)}} = \frac{1}{\sqrt{L_{2}C_{0}\left(1 + \frac{\Delta C}{C_{0}}\right)}}$$

Desenvolvendo:

$$\omega_0 + \Delta\omega = \frac{1}{\sqrt{L_2 C_0}} \cdot \frac{1}{\sqrt{1 + \frac{\Delta C}{C_0}}} = \frac{\omega_0}{\sqrt{1 + \frac{\Delta C}{C_0}}}$$
(14)

Para pequenos valores de $\frac{\Delta C}{C_0} < 0, 3$, vale a aproximação: $\left(1 + \frac{\Delta C}{C_0}\right)^{-0.5} \approx 1 - \frac{\Delta C}{2C_0}$. Portanto a equação (14) pode ser reescrita:

$$\begin{split} \omega_0 + \Delta \omega \; &= \; \frac{\omega_0}{\sqrt{1 + \frac{\Delta C}{C_0}}} \cong \omega_0 \left(1 - \frac{\Delta C}{2C_0} \right); \quad \text{ para } \frac{\Delta C}{C_0} < 0, 3 \\ \Delta \omega \; &\cong \; -\omega_0 \frac{\Delta C}{2C_0} \end{split}$$

– a equação (2), $\omega\left(t\right)=\omega_{c}+K_{o}V_{m}\left(t\right)$, indica que $V_{m}\left(t\right)$ provoca um ΔV . Portanto, a freq instantânea nesta condição será:

$$\omega_i = \omega_c + K_o \Delta V$$

Finalmente, a Constante do Modulador FM será

$$K_o = \frac{\omega_i - \omega_c}{\Delta V} = \frac{\Delta \omega}{\Delta V} \cong \frac{-\omega_0}{2C_0} \underbrace{\frac{\Delta C}{\Delta V}}_{K_{varicap}}$$
(15)

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

8 Topologia para o Receptor de FM

Forma básica para um receptor de frequência modulada pode ser visto na figura 28.

- **Antena** Um receptor pode ter, basicamente, dois tipos de antenas:
 - telescópica: comum em receptores portáteis
 - * devido à sua impedância de $\approx 75\Omega \to \text{conexão}$ é feita diretamente ao amplificador de RF, figura.29.a
 - antena externa,: em receptores residenciais de melhor qualidade.
 - * impedância de 75Ω (desbalanceada \rightarrow uso cabo coaxial)
 - * impedância de 300Ω (uso cabo paralelo balanceado), fiqura.29.b
 - · rejeição de ruído de modo comum: nos cabos balanceados, sinais e ruído em cada condutor resultam em fases opostas em relação ao terra.
 - * BALUN (Balanced-Unbalanced): transformador de RF capaz de "casar" uma linha balanceada com uma desbalanceada (ex: $300\Omega \Leftrightarrow 75\Omega$)
 - · arranjo de transformadores com enrolamento bifilares, figura 30

Fig.28. Receptor FM

Fig.29. circuitos de entrada para antenas (a) telescópica; (b) cabo de 300Ω

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

Fig.30. Transformador Balanceado \longleftrightarrow Desbalanceado (Balun)

9 FM Estéreo

A palavra estéreo, ou estereoscópio, originalmente referia-se a um técnica fotográfica especial usada para dar ao observador a impressão de uma cena tridimensional. Isto foi feito tomando-se duas fotos do mesmo objeto tiradas de ângulos diferentes. Quando uma foto é vista por um olho e a outra foto pelo outro olho tem-se como resultado a aparência de uma imagem tridimensional. Exatamente esta mesma técnica é usada para áudio esteriofônico. A mesma fonte de som é gravada de dois ângulos diferentes, neste caso, do lado esquerdo e do lado direito. Quando a gravação é reproduzida, por alto falantes direcionados aos ouvidos esquerdo e direito, tem-se a aparência de uma fonte sonora tridimensional.

- A adaptação de uma emissora de som estéreo apresenta dois problemas:
 - um sistema usado para transmitir sinais estéreo tem que ser compatível com receptores monofônicos.
 - o sinal estéreo tem de ser transmitido com uma largura de faixa de no máximo 200KHz (padronização e regulamentação do espectro)
- sistema FM Estéreo aprovado foi o que usou o esquema de multiplexação por divisão de freqüência.

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

- manter a compatibilidade com os receptores monofônicos, o sistema estéreo multiplexado transmite:
 - * sinal L + R: ambos os canais, direito e esquerdo, em suas freqüências de áudio normais, 50 Hz a 150 KHz.
 - * sinal L R: obtido usando um sinal de portadora suprimida de dupla banda com 38 KHz de subportadora.
 - · dificuldade de demodulação sem um sinal de sincronismo \Longrightarrow **portadora piloto especial** é transmitida em 19KHz, exatamente a metade da freqüência da subportadora.
 - · espectro do sinal estéreo multiplexado resultante, figura 31
 - * sinal multiplexado \Longrightarrow modula o transmissor da emissora de FM.
- **Sinal Demodulado**: mesmo espectro da figura 31.
 - **receptor monofônico**, terá sua resposta de áudio limitada em 16 ou 17KHz
 - * \Longrightarrow apenas sinal L+R, reproduz **ambos** os canais de áudio, mas sem separação estereofônica. (Compatível)
 - receptor estereofônico ⇒ circuitos de demultiplexação obtém a separação dos canais de áudio direito e esquerdo.

Fig.31. Espectro de um sinal FM Estéreo Multiplexado. Canais L-R em torno da subportadora suprimida (28KHz) caracteriza uma modulação AM DSB/SC.

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

9.1 TRANSMISSOR FM ESTÉREO

Diagrama de blocos de um transmissor estéreo multiplexado típico é mostrado na figura 32.

- Há um microfone e um pré-amplificador para ambos os canais direito e esquerdo. Ambos os sinais direito e esquerdo são imediatamente aplicados a um amplificador somador "A". Sua saída é uma **mistura linear** de dois canais \Rightarrow sinal L + R. Operação semelhante é empregada para obter o sinal L R.
- O sinal L R é aplicado a um modulador balanceado, juntamente com a **portadora** de 38KHz, derivada de um oscilador de 19KHz, usando um dobrador de fieqüência.
- finalmente, o modulador do transmissor FM recebe os sinais
 - -L-R modulado em amplitude com portadora de 38KHz suprimida (saída do modulador balanceado)
 - sinal L +R atrasado (compensar o atraso do modulador balanceado)
 - sinal piloto de 19 KHz com amplitude reduzida tal que provoque um desvio de 7,5KHz na freq da portadora, ou seja, 10% do máximo desvio permitido.
 - Característica do sinal FM estéreo:

- * desvio máximo de freq: $\Delta f_{\rm max} = 75 KHz$
- * máxima freq do sinal modulante: $fm_{\text{max}} = 53KHz$
- * índice de modulação:

$$\beta^{stereo} = \frac{\Delta f_{\rm max}}{f m_{\rm max}} \simeq 1,5$$

* Largura de banda ocupada:

$$BW^{est\'ereo} = 2\left(\Delta f_{\max} + f m_{\max}\right) = 256KHz$$

correspondendo a um canal maior que o reservado para o FM monofônico !!!

- Existe ainda uma porção no espectro do sinal FM estéreo, não mostrado na figura 31, denominada faixa SCA (Secondary Communication Authorization), localizada no intervalo 60KHz a 74KHz. Características:
 - * serviço com transmissão opcional;
 - * portadora em 70KHz, modulada em FM com largura de banda de 14KHz (isto é, $\pm 7KHz$);
 - * apenas algumas emissoras transmitem este sinal, conhecido como canal de "só músisca".

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

Fig.32. Multiplexação em freq de um sistema FM Estéreo

9.2 RECEPTOR FM ESTÉREO

Um diagrama de blocos de um receptor estéreo multiplexado típico utiliza:

- sintonizador FM convencional (monofônico) e um demodulador FM → recuperam o sinal estéreo multiplexado.
- Demultiplexagem é obtida a partir de filtros. Estes são usados para separar as componentes básicas do sinal.
 - filtro **passa baixas** \longrightarrow sinal L + R (entre 50 Hz e 15 KHz).
 - * facilmente ralizável com circuito RC
 - filtro **passa banda** (23 a 53 KHz) \longrightarrow separa o sinal L-R AM-DSB/SC.
 - * este filtro pode ser um circuito duplamente sintonizado com acoplamento super-crítico
 - filtro passa banda (19 KHz) \longrightarrow separa o sinal da portadora piloto FM
 - * circuito sintonizado simples, pois dispõe de uma faixa de $\pm 4KHz$ (não abrupto), não sendo difícil obter esta característica com circuito LC
- sinal piloto de 19 KHz -> aplicado a um dobrador visando recuperar a fase e

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

freqüência da subportadora (38 KHz). Esta é acoplada ao modulador balanceado, para obter o sinal L-R.

- sinais demodulados L + R e L R são combinados visando a **separação dos canais** L e R. Entre os possíveis métodos tem-se:
 - método **somador-subtrator**, figura 33;
 - método com rede matricial Decodificadora, figura 34.a.

9.2.1 Método Somador-Subtrator

Neste método, o sinal L-R (modulado AM-DSB/SC) é demodulado, sincronamente a partir da multiplicação da subportadora de 38KHz (obtida via multiplicação freq do sinal piloto), figura 33, resultando um um sinal banda-base L-R que combinado ao sinal L+R em um somador e subtrator resultam:

somador:
$$[L\left(t\right) + R\left(t\right)] + [L\left(t\right) - R\left(t\right)] = 2L\left(t\right)$$
 subtrator:
$$[L\left(t\right) + R\left(t\right)] - [L\left(t\right) - R\left(t\right)] = 2R\left(t\right)$$

Fig.33. Receptor Estéreo Multiplexado - método Somador-Subtrator na separação dos canais L e R.

DEEL - Telecomunicações

9.2.2 Método com Rede Matricial Decodificadora.

- Sinal L − R modulado (AM-DSB/SC) é somado à subportadora de 38KHz (reinserção da portadora) → AM-DSB
- Matriz Decodificadora, figura 34.b, recebe os sinais L + R em banda base e o L R modulado (AM-DSB):
 - circuito é um detector de envoltória do sinal:

$$(L+R)_{
m Banda\; Base}\;\;\pm\;\;{
m envolt\'oria}\;\,(L-R)_{
m portadora\;em\;38KHz}$$

sendo que os diodos selecionam a envoltória do sinal (L-R) ora positiva, ora negativa:

- D1 seleciona a envoltória positiva de L-R e soma-a ao sinal L+R através de R1 e R3.
- Em seguida, a célula π , formada por R5, C1 e C3 recupera (FPB) o sinal 2L acrescido de um valor médio positivo.
- Analogamente, D2 seleciona a envoltória negativa -(L-R) e soma-a ao sinal L+R através de R2 e R4

89

 Filtragem e eliminação do valor médio negativo é obtido forma idêntica ao caso anterior.

Fig.34. (a) Receptor Estéreo Multiplexado (b) Matriz Simplificada para o Estéreo Multiplexado

Finalmente, os sons estereofônicos resultantes são amplificados e alimentam os altos falantes. O exemplo mostrado aqui é simplificado, na prática existem outras variações de circuitos que implementam a demultiplexagem do sinal FM estéreo demodulado.

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

10 Circuitos para Modulação e Demodulação Digital

10.1 Por que Modulação Digital?

- atualmente, a maior parte dos sistemas de comunicação utilizam modulação / demodulação (Modem) digital
- vantagens sobre a modulação analógica:
 - / capacidade de canal
 - melhor desempenho: transmissão e recepção de informação com maior acurácia (menor BER para um mesmo $\frac{E_b}{N_0}$) em ambiente com ruído (canal AWGN) e distorção (canal com desvanecimento).
 - * Sistemas analógicos: cada etapa introduz alguma degradação em S/N.
 - * Comunicação Digital: regenração do sinal sem ruído + código corretor de erro $\rightarrow \forall BER$ desejado (disponibilidade BW)
 - Integração serviços de voz, dados, imagem
 - facilidade de armazenamento da informação para transmissão posterior
 - Eficiência em banda → com codificação e decodificação (CODEC) da informação

91

- Imunidade a interferência e segurança
- **Sistema:** número finito de formas de onda ou símbolos é transmitida: cada símbolo → representa um ou mais bits.
- Receptor digital \Longrightarrow estimar cada símbolo originalmente enviado pelo Tx
 - após a introdução de ruído e distorção no canal
 - não importa a amplitude ou formato (distorção) do sinal recebido: o receptor deve ser capaz de distinguir um símbolo do outro (estimar corretamente)
- Comunicações Digitais: tornam-se robustas devido aos embaralhadores (scramblers)
 - → necessários para a prevenção de interferências dos canais adjancentes,
 - devido as picos espectrais;
 - surtos de sincronização;
 - transmissão de padrões repetidos;
 - intervalos de silêncio alternados com de transmissão em altas taxas.

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

Fig.35. Codificador digital genérico

⇒ é desejável ter um sistema de codificação eficiente em banda e potência.

10.2 Tipos de Modulação/Demodulação (MoDem) Digital

- Modulação em Amplitude (ASK = Amplitude Shift Keying): M-ASK; QAM
- Modulação em **Fase** (PSK = Phase Shifting Keying): BPSK; QPSK
- Modulação em **Freqüência** (FSK = Frequency Shifting Keying): BFSK e MFSK.
 - CP-FSK = Continuous Phase FSK
 - FFSK = Fast FSK (caso especial de CP-FSK)
- $\bullet~$ Compromisso Eficiência em Potência, η_{Pot} X Eficiência espectral, η_{BW}
- PSK tem sido extensivamente utilizada:
 - em ambiente AWGN: PSK resulta em vantagem de 3dB sobre a ASK \rightarrow mesmo desempenho.
 - Em canal c/ desvanecimento: ASK resulta em maiores erros na detecção (devido às variações de amplitude)

Para a mesma BW, a taxa de informação é dobrada \rightarrow utilizando PSK em quadratura (4 fases ou QPSK)

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

Fig.36. Classificação para esquemas de modulação digital

10.3 Modulação em Amplitude (ASK = Amplitude Shift Keying)

ASK

Fig.37. ASK: Modulação em Amplitude de uma portadora senoidal por um sinal banda base PAM.

• modulação digital em banda base PAM, as formas de onda são:

$$s_m(t) = A_m g_T(t)$$
 $m = 1, 2, ..., M$

com $g_T(t)$ = formato do pulso filtrado transmitido \Longrightarrow determina a característica espectral do sinal transmitido. A_m = amplitudes discretas do sinal

$$A_m = (2m - 1 - M)$$
 $m = 1, 2, ..., M$

- Espectro dos sinais Banda Base: confinado em $|f| \le W$, com W = banda de freq ocupada por $|G_T(f)|^2$

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

• sinais digitais com formas de onda em banda base $s_m(t)$ são transmitidos através de um canal passa-banda empregando-se modulação amplitude (PAM) via portadora:

$$u_m(t) = A_m g_T(t) \cos(2\pi f_c t) \qquad m = 1, 2, ..., M$$

= $s_m \psi(t)$

onde forma de onda básica do sinal:

$$\psi(t) = \sqrt{\frac{2}{E_g}} g_T(t) \cos(2\pi f_c t)$$

$$s_m = \sqrt{\frac{E_g}{2}} A_m \qquad m = 1, 2, ..., M$$

Espectro do sinal modulado em amplitude resulta:

$$U_m(f) = \frac{A_m}{2} \left[G_T(f - f_c) + G_T(f + f_c) \right]$$
 DSB-SC AM

10.3.1 Demodulação e Detecção em Amplitude

- demodulação de sinais PAM digitais passa-banda: MF ou correladores
 - sinal transmitido e recebido:

$$Tx:$$
 $u_m(t) = A_m g_T(t) \cos(2\pi f_c t)$
 $Rx:$ $r(t) = A_m g_T(t) \cos(2\pi f_c t) + n(t)$

com processo **ruído** passa banda $n\left(t\right)=n_{I}\left(t\right)\cos\left(2\pi f_{c}t\right)-n_{Q}\left(t\right)\sin\left(2\pi f_{c}t\right)$

- correlacionando o sinal recebido com a função básica do sinal $\psi(t)$ (sincronismo perfeito com o sinal recebido) \Longrightarrow sinal digital demodulado

$$\int_{-\infty}^{\infty} r(t) \psi(t) dt = A_m \sqrt{\frac{2}{E_g}} \int_{-\infty}^{\infty} g_T^2(t) \cos^2(2\pi f_c t) dt + \int_{-\infty}^{\infty} n(t) \psi(t) dt$$
$$= A_m \sqrt{\frac{E_g}{2}} + n$$

com n =componente de ruído aditivo à saida do **correlator.**

- em seguida, sinal passa pelo detector.
- Há formas de se recuperar a fase da portadora ⇒ uso de PLL

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

10.3.2 M-ário QAM

 $1 \ simbolo \Rightarrow \ {
m gerado} \ {
m a} \ {
m partir} \ {
m de} \ {
m log}_2 \ M \ {
m bits} \ {
m de} \ {
m info}$ seq. de M bits info \Rightarrow convertido em ${
m log}_2 \ M$ dados paralelos ${
m log}_2 \ M$ dados paralelos \Rightarrow divididos em 2 grupos: $I \ {
m e} \ Q$ regra de mapeamento \Rightarrow Codificação Gray

- exige detecção coerente
 ⇒ técnicas de regeneração da portadora empregando esquemas com sinal piloto
 - pode-se empregar codificação Gray detecção coerente de fase absoluta ⇒
 menor BER que a codificação diferencial com detecção coerente ou detecção
 diferencial
- Exemplo, 16QAM: 2bits para cada um dos grupos (I e Q); distância Euclidiana dos sinais em cada grupo: 2
 - cada símbolo de um dos quadrantes da constelação terá SER distinto
 - considerando 16QAM e codificação $\Rightarrow BER = \frac{SER}{4}$

Fig.38. Constelação para M-QAM, M=16 e M=64

$\begin{array}{ c c } \hline canal \ \mathbf{I} \\ (a_{4n-3}; a_{4n-2}) \\ \hline \end{array}$	Amplitude	$\begin{array}{c} canal \ \mathbf{Q} \\ (a_{4n-1}; a_{4n}) \end{array}$	Amplitude	
00	-3	00	-3	
01	-1	01	-1	
11	1	11	1	
10	3	10	3	

Tabela 1. Regra de mapeamento Gray para 16QAM

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

10.4 Modulação em Fase (PSK = Phase Shifting Keying)

- **BPSK** = Binário PSK; **QPSK**=Quadratura e **MPSK**= *M*-ário PSK
- informação transmitida sobre um canal de comunicação é impressa na fase da portadora. Faixa das fases possíveis em um MPSK:

$$\theta_k = \frac{2\pi k}{M}, \ k = 0, 1, ..., M - 1 \ e \ 0 \le \theta < 2\pi$$

Representação geral para um conjunto de sinais com modulação de fase da portadora

$$u_k(t) = g_T(t)\cos\left(2\pi f_c t + \frac{2\pi k}{M}\right)$$

com $g_{T}\left(t\right)=$ formato do pulso filtrado transmitido

- Admitindo energia do pulso transmitido igual energia de símbolo: $E_q=E_s$
- formatação de pulso retangular $\Longrightarrow g_T(t) = \sqrt{\frac{2E_s}{T}} \Longrightarrow$ sinal transmitido terá **envoltória constante**:

$$u_k(t) = \sqrt{\frac{2E_s}{T}}\cos\left(2\pi f_c t + \frac{2\pi k}{M}\right)$$

- fase da portadora muda abruptamente no início de cada intervalo de sinal = PSK (phase shift keying)
- mapeamento de k bits de informação em $M=2^k$ possíveis fases será feito preferencialmente por **códigos Gray**
 - fases adjancentes diferem apenas por um dígito binário (bit): \Longrightarrow erros mais frequentes causados por ruído envolvem a seleção errônea de uma das fases adjacentes àquela transmitida \Longrightarrow único bit errado em um símbolo de k bits.

Fig.39. Constelação sinais MPSK (c ódigo Gray)

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

10.4.1 BPSK (Binary PSK), M = 2

• modulação primitiva para sistemas comunicações sem fio. Sinal tx: sinal transmitido:

$$\begin{split} s_T(t) &= \sqrt{\frac{2E_s}{T}}\cos\left(2\pi f_c t + \pi k\right); \quad k = 1, 2 \\ &= A\cos\left(2\pi f_c t + \theta_D\left(t\right)\right) = A\left[\cos\left(2\pi f_c t\right)\cos\left(\theta_D\left(t\right)\right) - \sin\left(2\pi f_c t\right)\sin\left(\theta_D\left(t\right)\right)\right] \\ &= u_I\left(t\right)\cos\left(2\pi f_c t\right) - u_Q\left(t\right)\sin\left(2\pi f_c t\right) \\ s_T\left(t\right) &= u_I\left(t\right)\cos\left(2\pi f_c t\right) \\ pois \text{ em BPSK} \Rightarrow u_Q\left(t\right) = A\sin\left(\theta_D\left(t\right)\right) = 0. \end{split}$$

• Demodulação/detecção BPSK coerente (representação real: $d\left(t\right)=u_{I}\left(t\right)$):

$$\sin al : d(t) \cos^2(\omega_c t) = d(t) \left[\frac{2 + \cos(2\omega_c t)}{2} \right] = \frac{d(t)}{2} + \underbrace{\frac{d(t) \cos(2\omega_c t)}{2}}_{\text{Filtrado: PSK em } 2\omega_c}$$

ruído : $n(t) \cdot \cos(\omega_c t)$

- Relação sinal/ruído recebido: $SNR=\gamma=A^{2}/2\sigma^{2}$, com $\sigma^{2}=\mathbb{E}\left[n^{2}\left(t\right)\right]$

BPSK - Transmissor e Receptor

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

BPSK de Banda Limitada - Transmissor e Receptor

DEEL - Telecomunicações

10.4.2 **QPSK**

• esquema modulação transmite 2 bits informação a partir de 4 fases de portadora

- aplica-se codificação de fase absoluta (Gray)
 - 1 erro de símbolo → 1 erro de bit de info (distância de Hamming entre fases adjacentes é sempre igual a 1)
- codificação diferencial (DEQPSK)
 - quando fase de referência da portadora em detecção coerente resultar em ambiguidade:

fase do n- ésimo símbolo: $\phi_n=\phi_{n-1}+d\phi_n ~~ \cos d\phi_n=$ qde desloc.de fase

Dados	ϕ	$d\phi$
00	$-3\pi/4$	0
01	$3\pi/4$	$\pi/2$
10	$-\pi/4$	$-\pi/2$
11	$\pi/4$	π

Tabela 2. Relação entre 2 bit informação e codificação QPSK absoluta e diferencial

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

106

(b) Diferencial

Fig.40. Diagrama de estados em uma modula ção QPSK codificação Gray e diferencial (DEQPSK)

Modulador QPSK.

$$s_T(t) = \operatorname{Re} \left[u(t) \exp \left(2\pi f_c t \right) \right]$$

= $u_I(t) \cos \left(2\pi f_c t \right) - u_Q(t) \sin \left(2\pi f_c t \right)$

Fig.41. Modulador QPSK

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

- \Rightarrow quando filtros de Nyquist são empregados no Tx (redução espectral do sinal BPSK) e Rx $\gamma_0\cong \overline{E_b/N_0}$
 - uso CQPSK (em detrimento do DEQPSK) ⇒ deve-se utilizar esquema de sinal piloto auxiliar para demodulação coerente

10.4.3
$$\pi/4$$
-QPSK

- modificação QPSK. Ambas as codificações são disponíveis: fase absoluta (Gray) e diferencial
- Muda-se os eixos I-Q de 0 e $\pi/2 \Leftrightarrow -\pi/4$ e $\pi/4$ a cada T_s
- vantagem: envoltória do sinal $\pi/4$ -QPSK nunca assume amplitude zero \Rightarrow reduz o espalhamento do espectro causado pela não linearidade do amplificador final (PA) no $Tx \Rightarrow \uparrow \eta_{POT}$

Dados	ϕ	φ			
$(a_{2n-1};a_{2n})$	$t = 2mT_s$	$t = (2m+1)T_s$			
00	$-3\pi/4$	π			
01	$3\pi/4$	$\pi/2$			
10	$-\pi/4$	$-\pi/2$			
11	$\pi/4$	0			

Tabela 3. Relação entre 2 bit informação e codificação $\pi/4--$ QPSK absolutal

Fig. 42. Diagrama de estado de sinais para um $\pi/4-{\rm QPSK}$ com codificação de fase absoluta (Gray)

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

Fig.43. Modulador $\pi/4$ -QPSK com codificação Gray

10.4.4 M-ário PSK

- $1 \ simbolo \Rightarrow$ transmite $\log_2 M$ bits de info
- cada $simbolo \Rightarrow$ assume uma das fases $\phi = \frac{2\pi}{M}(m-1)$, m=1,2,...,M

8-PSK com codificação de fase absoluta (Gray)

Fig.44. Constelação 8-PSK com codificação Gray

Dados	4	Dados	4	
$(a_{3n-2};a_{3n-1};a_{3n})$	ϕ_n	$(a_{3n-2};a_{3n-1};a_{3n})$	ϕ_n	
000	$\pi/8$	110	$-7\pi/8$	
001	$3\pi/8$	111	$-5\pi/8$	
011	$5\pi/8$	101	$-3\pi/8$	
010	$7\pi/8$	100	$-\pi/8$	

Tabela 4. Relação entre 3 bit informação e as fases com codificação absoluta em um 8-PSK

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

10.5 Modulação/Demodulação Coerente em Freqüência

- transmissão de dados: FM digital (= FSK: Frequency Shifting Keying)
- índice modulação: $\uparrow m$ (banda larga) $\downarrow m$ (banda estreita)
- ullet uso demoduladores **não-coerentes**: requer $\uparrow CNR$ em relação à demod. **coerente**

10.5.1 MSK (minimum Shift Keying) = MoDem FSK Coerente c/ derivação freq:

$$\Delta f_{pp}=2\Delta f=f_2-f_1=rac{1}{2T_b}; \quad ext{ indice mod.: } m=\Delta f_{pp}T_b=rac{1}{2}$$

• sinal FSK: transmissão de 2 freqs, $f_1 = f_c - \Delta f$ e $f_2 = f_c - \Delta f$

$$s_{FSK}(t) = A \cos \left[2\pi \left(f_c \pm \Delta f\right) t\right]$$

= $A \left[\cos \left(\pm 2\pi \Delta f t\right) \cos \left(2\pi f_c t\right) - \sin \left(\pm 2\pi \Delta f t\right) \sin \left(2\pi f_c t\right)\right]$

• demodulação coerente \Rightarrow desvio freq ajustado para $\Delta f = \frac{1}{4T_b}$. O sinal **MSK** será:

$$s_{MSK}(t) = A \left[\cos \left(\pm \pi \frac{t}{2T_b} \right) \cos \left(2\pi f_c t \right) - \sin \left(\pm \pi \frac{t}{2T_b} \right) \sin \left(2\pi f_c t \right) \right]$$

demodulação MSK opera de mesma forma que O-QPSK

10.5.2 GMSK - Modulação em Frequência

- é uma MSK (modulação em freq. com índice de modulação m=0,5) + filtro Gaussiano na pré-modulação
- Envoltória constante \Rightarrow requisito para amplificador não-linear ($\nearrow \eta_{POT}$)
- $1^{\rm o}$ nulo espectral: $(f-f_c)\,T_b=0,75$ contra 0,50 do QPSK

Fig. 45. Configura ção para o modulador GMSK e diagram de estado de sinal do MSK.

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

$$\begin{aligned} \text{dados tx} &: & a\left(t\right) = \sum_{k=-\infty}^{\infty} b_k u\left(t-kT_b\right); & \text{bipolariz: } b_k = \left\{ \begin{array}{l} 1; & a_k = 1 \\ -1; & a_k = 0 \end{array} \right. \\ \text{e} &: & u\left(t\right) = \left\{ \begin{array}{l} 1; & 0 \leq t < T_b \\ 0; & cc \end{array} \right. & \text{(pulso retangular)} \end{aligned}$$

 $-a\left(t\right)$ é filtrado pelo LPF Gaussiano (GLPF) com largura de banda de 3dB igual a B (pré-modulação); à saída tem-se:

$$b(t) = a(t) \otimes c_b(t); \quad \operatorname{com} c_b(t) = \sqrt{\frac{2\pi}{\ln 2}} B \exp\left(-\frac{2\pi^2}{\ln 2} B^2 t^2\right)$$
$$= \sqrt{\frac{2\pi}{\ln 2}} B \int^T \exp\left(-\frac{2\pi^2}{\ln 2} B^2 t^2\right) dt$$
$$= \frac{1}{2} \left[\operatorname{erf} \left(-\sqrt{\frac{2}{\ln 2}} \pi B(t)\right) + \operatorname{erf} \left(\sqrt{\frac{2}{\ln 2}} \pi B(t + T_b)\right) \right]$$

com produto $BT_b = cte$ e inversamente proporcional à banda do sinal Tx.

- sinal transmitido após modulação FM com m=0,5

$$s_T(t) = A\cos\left[2\pi f_c + \phi\left(t\right) + \theta_0\right]; \quad \text{com: } \phi\left(t\right) = \frac{\pi}{2T_b} \int_{-\infty}^t b\left(\tau\right) d\tau$$

$$\phi\left(t\right) = \text{desvio de fase produzido pelo modulador: } \begin{cases} a_k = 1 \ \to \ \phi = \frac{\pi}{2T_b} \\ a_k = 0 \ \to \ \phi = -\frac{\pi}{2T_b} \end{cases}$$

- 3 esquemas para a **demodulação** GMSK:
 - detecção diferencial
 - discriminador de frequência
 - detecção coerente

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

10.6 Modulação Ortogonal Binária

- k bits de informação \Rightarrow são transmitidos empregando-se um **código ortogonal** de comprimento 2^k bits
- quaisquer duas palavras de códigos são ortogonais
- $\bullet \;$ geração de códigos ortogonais $\{s_1,s_2;...;s_m\}$, com $m=2^k$: matriz de Hadamard (ou Walsh ou Hadamard–Sylvester)
 - caracterísitica: ortogonalidade na condição de fase preferencial e facilidade de construção (geração recursiva)

$$H_{m+1}=\left[egin{array}{cc} H_m & H_m \ H_m & -H_m \end{array}
ight]=\left[egin{array}{cc} s_1 \ s_2 \ dots \ s_{2^k} \end{array}
ight], \quad ext{ onde }$$

$$H_{1} \in \{\pm D_{1}; \pm D_{2}; \pm D_{3}; \pm D_{4}\}$$

$$D_{1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}; D_{2} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}; D_{3} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}; D_{4} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

DEEL - Telecomunicações

- $-T_s=2^kT_c$
- matrizes contém uma linha com todos os elementos iguais a "1" e as linhas restantes possuem idêntico número de "1" e "-1". Cada linha de H_m representa uma função de Walsh.
- devantagem: fora da fase prefencial: ortogonalidade é perdida.
- Receptor ML: correlação entre o sinal recebido e cada palavra de código ⇒ seleciona o que produz máxima correlação
- melhoria considerável BER para k crescentes em canal AWGN e região média de $\frac{E_b}{N_0}$.

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

Fig.46. (a) Modulador ortogonal (b) Receptor para modulação ortogonal binária

11 Exercícios Resolvidos

Exemplo 11.1 Dois sinais modulantes contínuos, de valor E_{DC} são injetados em um modulador PM, de constante K_P e um modulador FM, de constante K_F , modulando duas portadoras identicas, com expressão do tipo: $e_c(t) = E_c \cos \omega_c t$. Deseja-se saber se o sinal modulado em freqüência será também modulado em fase e se o sinal modulado em fase será também modulado em freqüência.

modulação FM:

$$S^{FM}(t) = E_c.\cos\left[\omega_c t + K_F \int V_m\left(t\right) dt\right]$$

mas $V_m(t) = E_{DC}$ e portanto,

$$S^{FM}(t) = E_c \cdot \cos \left[\omega_c t + K_F \int E_{DC} dt \right] = E_c \cdot \cos \left[\omega_c t + K_F E_{DC} \cdot t \right]$$
$$= E_c \cdot \cos \left(\omega_c + K_F E_{DC} \right) t$$

que representa um sinal de freqüência constante, porém com um aumento de $K_F E_{DC}$ na velocidade angular. Para efeito de modulação PM, percebe-se que, como a freqüência mudou em relação à portadora, a fase sofrerá constante alteração ao longo do tempo e assim:

⇒ A Modulação FM gera modulação PM.

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

Modulação PM:

$$S^{PM}(t) = E_c \cdot \cos\left[\omega_c t + K_P V_m(t)\right]$$

como $V_m(t) = E_{DC}$:

$$S^{PM}(t) = E_c \cdot \cos\left[\omega_c t + K_P E_{DC}\right]$$

que é um sinal defasado de K_PE_{DC} em relação ao sinal da portadora original. Esta defasagem permanece constante ao longo do tempo, vemos que o período do sinal modulante é constante e sua frequência não se altera. Assim, no caso de um sinal modulante contínuo:

⇒ A Modulação PM não gera modulação FM.

Exemplo 11.2 Uma portadora cossenoidal de 100MHz e 200Vpp é modulada em freqüência, com desvio máximo de 75KHz, por um sinal também cossenoidal de 15KHz e 20Vpp. Determinar:

a) O índice de modulação do sinal modulado

$$\beta = \frac{\Delta f}{f_m} = \frac{75}{15} = 5rd$$
 (FM comercial)

b) A constante do circuito modulador (VCO, se mdoulação direta)

$$K_F = \frac{\Delta\omega}{V_m} = \frac{2\pi \times 75 \times 10^3}{10} = 47123,9 \ \left[\frac{rd}{Vs}\right]$$

c) A largura de faixa ocupada pelo sinal modulado

$$BW = 2 \left(\Delta f + f_m |_{\text{max}} \right) = 2 \left(75 + 15 \right) 10^3 = 180 KHz$$

d) O espectro de amplitudes do sinal modulado.

Espectro que contém 98% da potência total: coeficientes da funções de Bessel até a ordem $n = \beta + 1 = 6$:

Do gráfico ou da tabela, temos:

$$J_0(5) = -0.18; J_1(5) = -0.33; J_2(5) = 0.05; J_3(5) = 0.36; J_4(5) = 0.39; J_5(5) = 0.26; J_6(5) = 0.13$$

. Verifica-se neste espectro que a diferença entre as freqüências das raias extremas é:

$$100,09 \times 10^6 - 99,91 \times 10^6 = 180 KHz \ (=$$
 largura de faixa)

e) A potência entregue pelo modulador, nestas condições, a uma antena de 50Ω A potência média, por unidade de carga, para um espectro finito:

$$\overline{P}_{Total} = 0,49A^2 = 0,49 \times 100^2 = 4900$$

A potência entregue à antena será:

$$\overline{P}_{Total} = \frac{4900}{Z_{antena}} = \frac{4900}{50} = 98W$$

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

Exemplo 11.3 Um modulador FM a varicap idêntico ao da figura 27 utiliza um indutor $L_2 = 1,3\mu H$ e um varicap cuja curva característica é dada na figura 47. Determinar:

Fig. 47. Resposta do Varicap mostrando a região linear.

1. A tensão de polarização DC do varicap para melhor aproveitamento da região linear:

$$V_{varicap_ref} = \frac{V_{\max} + V_{\min}}{2} = 1,5V$$

O divisor de tensão resistivo formado por R1, R2 e P1,figura 27 deve ser dimensionado de forma a obtemos no cursor de P1 uma tensão de 1.5V

2. A freqüência de portadora na qual o circuito oscila

reta (região linear) para o varicap: $C_d=3, 5-1 \times V_{rev} \quad [pF]$; $1 \leq V_{rev} \leq 2$ Na ausência de sinal modulante, $C_{d0}=2pF$ ($V_{rev}=1,5V$), e como $C_d << C_2$

$$f_c = \frac{1}{2\pi\sqrt{L_2C_{d0}}} = \frac{1}{2\pi\sqrt{1,3\mu \times 2p}} = 98,7MHz$$

3. A constante do circuito modulador, K_o .

O coeficiente angular da reta da figura 47 é: $K_{varicap} = \frac{\Delta C}{\Delta V} = \frac{1.5-2.5}{2-1} = -1pF/V$. Pela reta deduz-se ainda que a capacitância do varicap na ausência de sinal modulante será: $C_0 = 2pF$ (@ $V_0 = 1, 5V$). Finalmente:

$$K_o \cong \frac{-\omega_0}{2C_0} \underbrace{\frac{\Delta C}{\Delta V}}_{K_{various}} = \frac{-2\pi 98, 7 \times 10^6}{2 \times 2 \times 10^{-12}} \left(-1 \times 10^{-12} \right) = 4,935\pi \times 10^7 \left[\frac{rad}{V.s} \right]$$

1. O máximo valor de pico do sinal modulante antes de começar a haver distorção por não-linearidade.

O sinal modulante poderá excursionar $\pm 0,5V$ em torno de $V_o=1,5V\to V_m|_{\rm max}=$

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

0,5V

2. O máximo desvio de frequência que pode ser provocado sem distorção.

$$\Delta\omega = K_o V_m$$

$$\therefore \Delta f|_{\text{max}} = \frac{K_o V_m|_{\text{max}}}{2\pi} = \frac{4,935\pi \times 10^7 \times 0,5}{2\pi} = 12,34MHz$$

 \Longrightarrow circuito modulador demasiadamente sensível $0,5V\longrightarrow 12,34MHz$

- \implies para manter o desvio em $75KHz \longrightarrow V_m = 3mV$ apenas!!!
- 3. O índice de modulação, β, na situação de máximo desvio de frequência e sinal modulante de 15KHz. Este modulador é banda larga ou estreita ? Justifique. Da equação (3),

$$\beta = \frac{\Delta f}{f_m} = \frac{12,34 \times 10^6}{15 \times 10^3} \cong 823 \text{ rad}$$

Exemplo 11.4 Um detetor FM de inclinação balanceado é projetado para atuar numa faixa de $\pm 400KHz$ em torno da F.I. de rádios FM comerciais e usa circuitos sintonizados com índice de mérito de 25. Verificar se a curva "S" obtida como resultado tem uma região linear aproveitável para a demodulação.

Solução:

A expressão para o ganho deste circuito é dada por (13):

$$A_v = \frac{1}{\sqrt{1 + \left(Q_1 \frac{(f_{01} - f)}{f_{01}}\right)^2}} - \frac{1}{\sqrt{1 + \left(Q_1 \frac{(f_{02} - f)}{f_{02}}\right)^2}}$$

Para F.I. = 10,7MHz, a faixa de $\pm 400KHz$ deverá ir de 10,3MHz a 11,1MHz. Assim, podemos montar a tabela e obter a gráfico da figura 48:

<i>,</i> 1				<u> </u>						
f[MHz]	10,30	10,35	10, 40	10,4	10,	50 10), 60	10,65	10,70	10,75
A_v	-0,73	-0,69	-0,60	-0,	49 -0	,37 -	0,26	-0, 16	0,03	0, 12
f[MHz]	10,80	10,85	10,90	10,95	11,00	11,05	11, 1	.0		
A_v	0,21	0,31	0,42	0,53	0,63	0,71	0,75)		

 \Rightarrow apesar do baixo valor de Q, o grande afastamento entre as frequências de ressonância dos dois circuitos sintonizados faz com que a curva "S" tenha uma boa região linear dentro da faixa de $\pm 400 KHz$.

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

Fig.48. Curva S.

Exemplo 11.5 Um transmissor Heterodino de FM (como o da figura 26) usa um modulador PLL com freqüência de portadora de 860KHz e desvio máximo de freqüência de 520Hz. Os dois grupos de multiplicadores são de 12 vezes cada um e a portadora final na antena tem que

ser de 100MHz. Quais devem ser as características do Oscilador a Cristal, do Misturador e o desvio máximo de freqüência do sinal na antena.

Solução:

1. Desvio máximo de freqüência do sinal na antena:

$$\Delta f_{final} = m \times n \times \Delta f = 12 \times 12 \times 520 = 74,88KHz$$

A relação entre a portadora final e a portadora do modulador é: $\frac{100MHz}{860KHz}=116,28$, que é menor que a multiplicação total dada pelos circuitos multiplicadores (144). Então, a única possibilidade disso ocorrer é o misturador e o oscilador abaixarem a freqüência da portadora. Assim, teremos a portadora final dada por:

$$f_{\text{carrier final}} = m \left(n f_{\text{carrier}} - f_{osc} \right) = 12(12 \times 860 \times 10^3 - f_{osc})$$

Portanto, deve-se ter um oscilador a cristal com freg:

$$f_{osc} = nf_{\text{carrier}} - \frac{f_{\text{carrier_final}}}{m} = 12 \times 860 \times 10^3 - \frac{100 \times 10^6}{12} = 1,9867MHz$$

- ⇒ deve-se ter um Oscilador a Cristal de 1,9867MHz
- \Longrightarrow um Misturador com circuito sintonizado na diferença de $12 \times 860kHz$ com a freqüência do Oscilador:

$$f_{mixer} = 12 \times 860kHz - 1,9867MHz = 8,333MHz$$

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

12 Exercícios

- 1. mostre como um transmissor PM pode ser empregado na geração de um sinal FM
- 2. Um tom senoidal de 2KHz e $20V_{pp}$ modula em FM uma portadora de 10MHz e $100V_{pp}$ em um circuito modulador cuja constante é de $125,66\left[\frac{rd}{Vs}\right]$. Determinar
 - a. índice de modulação (resp: 0, 1 rd)
 - b. expressão do sinal modulado
 - c. espectro de amplitudes resultante
 - d. potência entregue por este modulador a uma antena de $Z=50\Omega$ (resp: 25,125W)
- 3. Qual a principal diferença entre o discriminadores de relação, sintonia deslocada e o Foster-Seeley.
- 4. Um transmissor FM semelhante ao da figura 24, com um grupo de multiplicadores que aumentam a freq do oscilador a cristal por M=96 tem no oscilador à cristal a geração de uma freq de $\omega_o=2\pi\times 10^6$ rad e recebe um sinal modulante de $f_m=15KHz$. O índice de modulação $m_{FM}=0,1rad$. Verificar se o sinal

129

transmitido obedece aos padrões de radiodifusão FM comercial.

- 5. Considerando ainda os padrões de radiodifusão FM comercial, qual deve ser a freq de oscilação de um oscilador local de um receptor FM para que se possa sintonizar uma emissora que transmite em 94,5MHz. Neste caso se aplica o problema da freq imagem? Se sim, responda
 - a. qual é a freq imagem?
 - b. caso haja um sinal interferente modulado em amplitude e com freq da portadora igual à freq imagem, esta interferência causará problemas na recuperação do sinal modulado FM ? Por que?
- 6. Considere o transmissor FM heteródino da figura 26 contendo um modulador com portadora de 500KHz e desvio máximo de freq de $\pm 260Hz$. Deseja-se obter na saída um sinal de 106MHz de portadora e desvio máximo de $\pm 75KHz$, lançando mão de vários circuitos multiplicadores por 2,3 ou 4 na formação dos dois grupos de mutliplicadores. Determinar as características do oscilador e do misturador de tal forma a atender os requisitos acima.
- 7. O que é balun? Onde é utilizado?
- 8. Uma portadora cossenoidal de 100MHz e 100Vpp é modulada em freqüência por um

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

tom cossenoidal de 10KHz e 20Vpp, em um circuito cuja constante é $8\pi 10^3 \text{rd/Vs}$, Determinar:

- a. O desvio máximo de frequência no sinal modulado;
- b. O índice de modulação do sinal modulado;
- c. A largura de faixa ocupada pelo sinal modulado;
- d. O espectro de amplitudes do sinal modulado;
- e. A potência entregue por esse modulador, nessas condições a uma antena de 75Ω
- 9. Projetar um circuito de preênfase, norma americana, com atenuação de 15dB antes do início da atuação de enfatização. Considerar $f_2=15KHz$ e desenvolver o projeto usando um capacitor de $0,22\mu F$.
- 10. Um modulador FM pelo método direto (a varicap), figura 47.a usa um indutor de $25\mu H$ e um varicap cuja curva característica está mostrada na figura 49. Determinar:
 - a. A tensão de polarização DC do varicap para o melhor aproveitamento da região linear ($resp: V_{bias} = 7,5V$)
 - b. A frequência de portadora na qual o circuito oscila (resp: $f_c = 2,013MHz$)

- c. A constante deste circuito modulador (resp: $K_c = 597,63 \times 10^3 [rad/Vs]$)
- d. O valor máximo de pico do sinal modulante, sem que haja distorção por não-linearidade (resp: $V_{m_{MAX}}=2,5V_p$)
- e. O máximo desvio de feqüência que pode ser provocado sem distorção (resp: $\Delta f_{Max} = 238 Hz$)
- f. O índice de modulação na situação de máximo desvio de frequência e sinal modulante senoidal de 15KHz (resp: $\beta_{\rm max}=15,87rad$)

Fig.49. Região linear para a curva $C_{varicap} imes V_{rev}$

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

11. Na figura 50 são apresentados um PLL e a respectiva resposta do detector de fase. Quando o PLL é excitado com degrau $B=10^4 rd/s$ tem-se um acréscimo definitivo de fase de 0,5rad. Caso seja excitado com uma tensão alternada com freq. $f_m=1KHz$ e amplitude de $A=100mV_p$, qual será o do desvio de freq do VCO, Δf_v , em Hertz. $(resp: \Delta f_v \simeq 75Hz)$

Fig.50. (a) PLL; (b) resposta do detector de fase do PLL

12. Uma portadora $e_o(t)=100\cos\left(2\pi\times10^8t\right)$ é modulada em freq por um tom de $f_m=1KHz$ e $40V_{pp}$ em um circuito modulador de $K_K=10\pi\left[rad/Vs\right]$. Determinar.

a. índice de modulação (resp: 0, 1rd)

3ELE002 - Circuitos de Comunicação

- b. expressão para o sinal modulado (resp: $S^{FM}(t) = 100 \cos \left[2\pi 10^8 t + 200\pi \cos \left(2\pi 10^8 t + 200\pi \cos (2\pi 10^8 t + 200\pi \cos \left(2\pi 10^8 t + 200\pi \cos (2\pi 10^8 t + 200\pi \cos (2$
- c. espectro de amplitudes do sinal FM (resp: duas raias em oposição de fase e equidistanciadas de $f_c = 100MHz$ por 1KHz)
- d. Potência que o modulador entregará a um antena de $Z=100\Omega$ resp: 50,025W)
- 13. Comprovar, para $\beta=6$ rd, a propriedade das.funções de Bessel de la. espécie (somatória quadrática dos termos até a ordem $n=\beta+1$ é 0,98) (resp: $\sum_n J_n=0,99069$)
- 14. Projetar um circuito de preênfase, norma JIS com atenuação de 13,5dB antes do início da atuação do circuito de preênfase. Considerar a frequência máxima f_2 em 15KHz. (resp: $R_1 = 500\Omega$; $R_2 = 134\Omega$; C = 100nF))
- 15. Um circuito modulador FM, com a entrada de sinal modulante aterrada, oscila em 90MHz. Se colocarmos um sinal modulante contínuo de 10V em sua entrada ele irá osciiar com 90,05MHz. Determinar a constante do circuito moduiador. $(K_F = 31415, 92 \left[\frac{rd}{Vs}\right])$
- 16. Considere um demodulador FM por PLL-I da figura 51, cujo VCO e detector de

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

fase 'possuem constantes $K_c=10^6 \left[\frac{rad}{V.s}\right]$ e $K_d=\frac{4}{\pi} \left[\frac{V}{rad}\right]$.Determinar

- a. N para que a freq de -3dB fique a mais próxima possível de 20KHz, onde N = número inteiro. (resp: N=10)
- b. nesta condição. determinar a amplitude do sinal demodulado para que o desvio seja $\Delta f_p = 10KHz$. (resp: $\Delta V = 0,628V$)

Fig.51. Demodulador de Frequencia por PLL-I

17. O modulador de fase da figura 52 segue a equação

$$\phi_p = KV$$
, onde $K = 3 \left\lceil \frac{rad}{V} \right\rceil$

Determinar o valor de A sabendo-se que na freq modulante de 300Hz deseja-se reproduzir um desvio de fase de $\phi_p = 0, 3rad$.

Fig.52. Modulador de fase

18. Um modulador por PLL-II deve ser projeatdo de tal modo que o desvio modulante

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

 $\Delta f=10KHz$ seja vinte vezes menor que o intervalo de retenção e metade do intervalo de linearidade de fase. Sabe-se que o detetor de fase trangular utilizado no projeto apresenta constate $K_d=\frac{4}{\pi}\left[\frac{V}{rad}\right]$ e o integrador resutla em um excursão máxima de $\Delta V_c|_{\rm max}=\pm 5V$. Adote $\varsigma=2$. Determinar:

- a. menor número inteiro N que satisfaça às restrições sabendo-se que o modulador deve responder a freq de áudio a partir de 30Hz (resp: $N \ge 425$)
- b. K_c , $G \in \omega_2$ (resp: $K_c = 80\pi rad/Vs$, $G = 0, 25 \in \omega_2 = 11, 8rad/s$)
- c. Para freqs modulantes muito maiores que 30Hz, determinar a amplitude aproximada do sinal modulante que produz um $\Delta f = 10KHz$. (resp:)
- 19. O PLL da figura 53 possui constate $K_d = \frac{4}{\pi} \left[\frac{V}{rad} \right], \quad K_c = 10^6 \left[\frac{rad}{V.s} \right], \quad \omega_2 = 1,4 \times 10^5 \left[\frac{rad}{s} \right] \text{ e } \omega_3 = 5,6 \times 10^4 \left[\frac{rad}{s} \right]$. Determinar
 - a. $\omega_n \ e \ \varsigma \ (resp: \omega_n = 422, 2Krad/s; \varsigma = 0, 983);$
 - b. o acréscimo definitivo na defasagem quando excitado com um acréscimo de freq de $\Delta f_{\infty}=300KHz$. (resp: $\Delta\phi_{\infty}=-0,592rad$ ou -34°).

Fig.53. PLL tipo II

DEEL - Telecomunicações

3ELE002 - Circuitos de Comunicação

Bibliografia

- 1] J. Smith, *Modern Communication Circuits*. N.York: McG raw-Hill, second ed., 1998.
- U. L. Rohde, J. Whitaker, and T. T. N. Bucher, *Communications Receivers*. New York: McGraw-Hill, second ed., 1997.
- 3] L. E. Larson, *RF and Microwave Circuits Design for Wireless Communications*. Boston, USA: Artech House, Inc, 1996.
- J. B. Hagen, Radio-Frequency Electronics Circuits and Applications. Cambridge, UK
 New York, USA Melbourne, Australia: Cambridge Universit Press, 1999 (Second edition).
- 5] S. Sampei, *Applications of Digital Wireless Technologies to Global Wireless Communications*. Upper Saddle River, NJ: Prentice-Hall, Inc, 1997.
- [6] J. Proakis, *Digital Communications*. McGraw-Hill, 2nd ed. 1989.
- 7] K. Feher, *Wireless Digital Communications Modlation and Spread Spectrum Applications*. Prentice Hall PTR, 1995.