- 1. Exemple
- 2. Definitia formala
- 3. Limbaje Turing-acceptate si limbaje Turing-decidabile

MT poate sa simuleze

- orice calculator real
- orice limbaj de programare.

Exemplul 1

Fie L = {w#w | w∈{0,1}*}. Construim o MT care sa testeze apartenenta unei secvente binare la L. *idee*:

avem voie sa ne deplasam la stanga si la dreapta in secventa de intrare si putem "marca" un simbol, odata ce l-am examinat.

Cursorul va scana in mod repetat secventa de intrare:

- la fiecare trecere va compara un simbol din stanga cu unul situat in dreapta lui # si, daca coincid, le inlocuieste cu x;
- daca toate simbolurile din secventa au fost inlocuite cu x, atunci MT trece in una dintre starile finale de acceptare; altfel trece in una dintre starile finale de respingere.

- => algoritmul:
- (P1) se scaneaza secventa de intrare w∈{0,1}* in cautarea simbolului special #;
 - daca simbolul este gasit, atunci se trece la pasul 2; altfel, secventa este respinsa.
- (P2) se scaneaza prima pereche de simboluri cele mai din stanga din cele 2 subsecvente;
 - daca coincid, atunci se inlocuiesc cu x si se trece la pasul 3; altfel, secventa este respinsa.
- (P3) se scaneaza urmatoarea pereche de simboluri, pana se epuizeaza simbolurile din stanga lui #;
 - daca la dreapta lui # mai raman simboluri binare, atunci secventa de intrare w este respinsa; altfel, w este acceptata.

- 1. Exemple
- 2. Definitia formala
- 3. Limbaje Turing-acceptate si limbaje Turingdecidabile

Definitia 1

```
MT = un sistem (Q, \Sigma, \Gamma, \delta, q<sub>0</sub>, q<sub>a</sub>, q<sub>r</sub>) unde: Q = mulţime finită: mulţimea stărilor; \Sigma = mulţime finită: alfabetul de intrare; \Sigma \cap Q = \emptyset; \Gamma = mulţime finită: alfabetul benzii; \Sigma \subseteq \Gamma, \Box \in \Gamma, \Box \notin \Sigma; \delta: Q x \Gamma \rightarrow Q x \Gamma x { L , R }: funcţia de tranziţie; q<sub>0</sub> \in Q: starea iniţială; q<sub>a</sub> \in Q: starea finala de acceptare a secventei de intrare; q<sub>r</sub> \in Q: starea finala de respingere a secventei de intrare. Notatie
```

MT = {M | M este o masina Turing}

Observatie: Modul de calcul al MT:

- 1) Initial, MT se afla in starea q₀
- si primeste pe banda, in primele n locatii din extr. stg., secventa de intrare $w=w_1w_2...w_n\in\Sigma^*$.
- Primul blank care apare pe banda marcheaza sfarsitul secv. de intrare.
- 2) Cursorul se afla in extremitatea stanga a benzii (in prima locatie). $\delta(q,a) = \delta(p,b,R)$
- ⇔ MT, aflata in starea q, citeste pe banda de intrare simbolul a ⇒
- MT trece in starea p,
- inlocuieste simbolul a cu simbolul b in celula examinata si
- deplaseaza cursorul cu o celula la dreapta celulei examinate.
- 3) Daca MT incearca sa deplaseze cursorul dincolo de extremitatea stanga a benzii, acesta ramane in dreptul primei locatii din extremitatea stanga.
- 4) Calculul continua pana MT ajunge in q_a sau q_r si se opreste. Altfel, cicleaza nedefinit.

Definitia 2

Configuratie a unei $M \in MT$ = un triplet format din:

- starea curenta a M, q;
- continutul curent al benzii, v w;
- pozitia curenta a cursorului.

Notatie

vqw, $v,w \in \Gamma^*$, $q \in Q$.

Exemplu

Configuratia 1011q₇01111 inseamna

Definitia 3

```
 \begin{split} & \text{Configuratia } C_1 \text{ produce configuratia } C_2 \Leftrightarrow \\ & \text{MT trece} - \text{corect} - \text{din } C_1 \text{ in } C_2 \text{ intr-un singur pas} \Leftrightarrow \\ & \text{Fie a,b,c} \in \Gamma, \\ & \text{v,w} \in \Gamma^*, \\ & \text{q}_i, \, \text{q}_i \in Q \end{split}
```

Spunem ca o configuratie vaq_ibw <u>produce</u> configuratia vq_jacw daca $\delta(q_i,b)=(q_i,c,L);$

Analog: o configuratie vaq_ibw <u>produce</u> configuratia vacq_jw daca $\delta(q_i,b)=(q_j,c,R)$.

Cazuri particulare de configuratii:

- 1) Configuratia initiala: $q_0 w$;
- 2) Configuratii de oprire:
- configuratia de acceptare : q=q_a,
- configuratia de respingere : q=q_r;
- 3) Cursorul este in extr. stanga a benzii => config. curenta q_ibw produce:
- q_icw daca cursorul ramane pe loc,
- cq_iw daca cursorul se deplaseaza la dreapta;
- 4) Cursorul este in extr. dreapta a benzii => config. curenta vaq_i este echivalenta cu vaq_i^{\perp} .

- 1. Exemple
- 2. Definitia formala
- 3. Limbaje Turing-acceptate si limbaje Turing-decidabile

Definitia 4

 $M \in MT$ M accepta secventa de intrare $w \in \Sigma^* \Leftrightarrow$

∃ o succesiune (finita) de configuratii C₁, C₂, ..., C_s astfel incat:

- 1) C₁ este configuratia initiala a lui M pentru intrarea w,
- 2) $\forall 1 \leq i \leq s-1$: $C_i \rightarrow C_{i+1}$,
- 3) C_s este o configuratie de acceptare.

Definitia 5

Fie M \in MT: L(M) = limbajul masinii Turing M = { w \in Σ^* | M accepta w }.

Definitia 6

Limbajul L $\subseteq \Sigma^*$ se numeste Turing-acceptat = recursiv enumerabil \Leftrightarrow \exists M \in MT: L=L(M).

Definitia 7

- M∈MT se numeste decidenta ⇔
 M se opreste indiferent ce secventa primeste la intrare.
- 2) Fie M∈MT si L⊆Σ*; Spunem ca M decide asupra limbajului L ⇔
 (i) L=L(M),
 - (ii) M este decidenta.

Definitia 8

Limbajul L $\subseteq \Sigma^*$ se numeste [Turing-]decidabil = recursiv \Leftrightarrow \exists M \in MT decidenta: L=L(M).

<u>Observatie</u>

```
∀ L Turing-decidabil => L este Turing-acceptat dar (rec.)

(rec.)

<≠
</p>
```

- 1. Exemple
- 2. Definitia formala
- 3. Limbaje Turing-acceptate si limbaje Turingdecidabile