Particule libre sur un cercle

On donne les expressions du Laplacien en coordonnées cartésiennes et en coordonnées cylindriques

$$\triangle V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} \text{ et } \triangle V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} + \frac{\partial^2 V}{\partial z^2}$$

Une particule de masse m est libre de se déplacer sur un cercle de rayon R. La position d'un point M est repérée par l'angle polaire θ .

- 1. Par analogie avec l'équation de Schrödinger unidirectionnelle, proposer une équation indépendante du temps pour ce problème.
- 2. Quelle condition aux limites peut-on proposer pour une fonction d'onde stationnaire Ψ ?
- 3. En déduire l'ensemble des solution stationnaires $\Psi_n(\theta)$ où n est un entier de quatification.
- 4. Écrire la solution superposition entre l'état stationnaire n=0 et n=1. Est-ce un état stationnaire? Quelle est la position moyenne de la particule au cours du temps?

Paquets d'onde

On envisage un paquet d'ondes qui est la superposition d'ondes planes sinusoïdales de pulsations voisines de ω_0 et de vecteurs d'onde voisins de k_0 . On suppose que $\Delta\omega\ll\omega_0$ et $\Delta k\ll k_0$. On représente en x=0 la partie réelle de la fonction d'onde. Pour simplifier l'étude, on considère la superposition de trois ondes planes :

$$\Psi = B \left[e^{i(k_0 x - \omega_0 t)} + \frac{1}{2} e^{i((k_0 + \Delta k/2)x - (\omega_0 + \Delta \omega/2)t)} + \frac{1}{2} e^{i((k_0 - \Delta k/2)x - (\omega_0 - \Delta \omega/2)t)} \right]$$

On donne le graphe représentant la partie réelle de la fonction d'onde en fonction de x à t=0. Déterminer la largeur Δx des "bouffées d'onde".

1. Montrer que $\Delta k_x \Delta x \geq 2\pi$. Retrouver l'inégalité de Heisenberg spatiale. Déterminer la vitesse de la particule.

La figure ci-dessous représente la partie réelle de la fonction d'onde d'un paquet d'ondes gaussien à t=0 en fonction de l'anscisse. Ce paquet d'ondes est la superposition d'une infinité d'ondes planes de pulsations voisines de ω_0 et de vecteurs d'onde voisins de k_0 .

- 2. Est-ce que la condition de normalisation peut être résolue? Définir la vitesse de phase et la vitesse de groupe. Comment est définie la vitesse de la particule?
- 3. Le milieu est-il dispersif? Le paquet d'onde se propage dans le sens des x > 0. Est-ce qu'il se déforme au cours du temps, en supposant qu'à l'avant du front d'onde à t = 0 se trouvent les longueurs d'onde les plus grandes?

Equation de conservation particulaire

Une particule de fonction d'onde complexe $\Psi(x,t)$ et de densité de probabilité de présence $\rho(x,t) = \Psi(x,t).\Psi^*(x,t)$ vérifie l'équation de Schrödinger à une dimension dans le champ de potentiel V(x).

- 1. Ecrire l'équation de Schrödinger (E) vérifiée par Ψ .
- 2. Ecrire l'équation (E') issue de la combinaison linéaire $(E') = \Psi^* \cdot (E) \Psi \cdot (E)^*$.
- 3. On pose $j(x,t) = \frac{-\hbar}{2m} \left[\Psi^* \frac{\partial \Psi}{\partial x} \Psi \frac{\Psi^*}{\partial x} \right]$. Traduire l'équation (E') en fonction de ρ et de j(x,t).
- 4. Justifier que pour une particule libre de pulsation ω , j(x,t) coïncide avec la densité de courant donnée par le cours.