Nuclear and Radiation Physics (PHY2005) Lecture 7

D. Margarone

2021-2022

Recap & Learning Goals

Summary of Lecture 6 (Chap.4)

- Nuclear Decay
 - ✓ Decay law
 - ✓ Application: C-14 dating

$$N(t) = N(0)e^{-Rt}$$

$$T_{1/2} = (\ln 2)T = 0.693T$$

Learning goals of Lecture 7 (Chap.4)

- Knowing the theory of alpha decay
- Understanding physical reasoning behind alpha decay

4. Nuclear Decays 4.2 Alpha Decay I

Alpha Decay (general properties)

- α-particles (⁴He) → least penetrating radiation (naturally occurring)
- mass measured in 1903 (Rutherford from decay of Rn)
- typical natural decay in <u>heavy nuclei</u>
- why α-emission over other decay modes?

4. Nuclear Decays 4.2 Alpha Decay II

Alpha Decay (general properties) cont.

- Coulomb repulsion ($\sim Z^2$) has a faster increase rate than nuclear binding energy ($\sim A$)
- α decay is <u>spontaneous</u> → kinetic energy emission out of a decrease in mass (energetically possible only for α-particles)
- α -emitter \rightarrow not too small decay rate $(T_{1/2} < 10^{16} \text{ y})$

Emitted Particle	Energy Release (MeV)	Emitted Particle	Energy Release (MeV)
n litts dimensi jin	-7.26	⁴ He	+ 5.41
¹ H	-6.12	⁵ He	-2.59
² H	-10.70	⁶ He	-6.19
³ H	-10.24	⁶ Li	-3.79
³ He	-9.92	⁷ Li	-1.94

^aComputed from known masses.

4. Nuclear Decays 4.2 Alpha Decay III

Alpha Decay Equations

■ decay process → conservation of energy and momentum:

$${}_{Z}^{A}X_{N} \rightarrow {}_{Z-2}^{A-4}X_{N-2}^{\prime} + \alpha$$

spontaneous decay → Q-value > 0

$$Q = (m_X - m_{X'} - m_\alpha)c^2$$

■ α -particle \rightarrow ~ 98% of Q X' (heavy nucleus) \rightarrow ~ 2%

$$T_{\alpha} = Q(1 - \frac{4}{A})$$

 Tα by spectrometer → Q measurement (useful for short-lived nuclei mass estimation)

4. Nuclear Decays 4.2 Alpha Decay IV

Alpha Decay (peculiarities)

- Geiger-Nuttal rule: α emitters with high
 Q-values → short half-life
- Example:

$$^{232}Th \rightarrow Q = 4.08 \text{ MeV}; T_{1/2} = 1.4 \times 10^{10} \text{ y}$$

 $^{218}Th \rightarrow Q = 9.85 \text{ MeV}; T_{1/2} = 1.0 \times 10^{-7} \text{ s}$

10.0

5.0

4.0

- adding neutrons to heavy nuclei →
 Q-value decreases →
 ... T_{1/2} increases (Geiger-Nuttal rule)
 - → more stable nuclei
- discontinuity $\sim A = 212 \ (N = 126) \rightarrow$ nuclear shell structure!

4. Nuclear Decays 4.2 Alpha Decay V

Alpha Decay (theory)

- Geiger-Nuttal → <u>Gamow-Gurney quantum mechanical theory</u>
- <u>one-body model</u>: α -particle preformed in the parent nucleus
- α-particle: moves in a spherical region determined by the daughter nucleus (works well for even-even nuclei)
- V(r): potential energy between α -particle and daughter nucleus
- **Q**: disintegration energy
- a: radius α-particle + radius daughter nucleus (maximum value of Coulomb potential)
- Three distinguished regions:
 - i. r < a: potential well V_0 (α -particle moves with kinetic energy $Q + V_0$ but classically cannot escape)
 - *ii.* a < r < b: potential barrier (classically forbidden region from either directions)
 - iii. r > b (classically permitted)

4. Nuclear Decays 4.2 Alpha Decay VI

Alpha Decay (theory) cont.

- classically: α-particle in (i) reverse its motion
- quantum mechanically: <u>tunnelling</u> through the barriers!!!
- Example:

$$^{238}U \rightarrow ^{\sim} 10^{38}$$
 tries to escape $\rightarrow 10^9$ y !!!

 disintegration constant/rate and transmission probability: (G: Gamow factor)

$$\lambda = fP$$

$$P = e^{-2G}$$

4. Nuclear Decays Example 4.4

Derive the equation for the Q-value of an α -decay reaction:

$$Q = (m_X - m_{X'} - m_\alpha)c^2$$

Convertation of energy:

$$m_{\chi}c^2 = m_{\chi_1}c^2 + T_{\chi_1} + m_{\chi_2}c^2 + T_{\chi_1}$$

 $(m_{\chi} - m_{\chi_1} - m_{\chi_1})c^2 = T_{\chi_1} + T_{\chi_2}$
 $Q = (m_{\chi} - m_{\chi_1} - m_{\chi_1})c^2$

4. Nuclear Decays Derivation/Example 4.5

Derive the equation for the kinetic energy of the α -particle emitted in α -decay:

Derive the equation for the kinetic energy of the
$$\alpha$$
-particle emitted in α -decay:

$$T_{\alpha} = Q(1 - \frac{4}{A})$$

Bue to the conservation of linear momentum χ' and χ' are with equal and approxite momenta;

$$T_{\alpha} = Q(1 - \frac{4}{A})$$

$$T_{\alpha} = Q(1 -$$

$$Q = T_{X'} + T_{Z}$$

$$Q$$

$$Q = T_{X'} + T_{Z}$$

$$Q$$

$$Q = M_{X'} T_{X'} - T_{X'} - T_{X'} - M_{X'} T_{Z}$$

$$Q \rightarrow Q = M_{X'} T_{Z} + T_{Z} = T_{Z} \left(\frac{M_{Z}}{M_{X'}} + 1 \right)$$

$$Q \rightarrow Q = M_{X'} T_{Z} + T_{Z} = T_{Z} \left(\frac{M_{Z}}{M_{X'}} + 1 \right)$$

$$T_{2} = \frac{Q}{1 + \frac{1}{2}} = \frac{Q}{A} \left(1 - \frac{M_{2}}{A}\right) = \frac{Q}{A} \left(1 - \frac{4}{A}\right)$$

4. Nuclear Decays Derivation/Example 4.6

The α -decay reaction: $^{241}_{95}Am \rightarrow ^{237}_{93}Np + ^{4}_{2}He + 5.638~MeV$ Calculate the kinetic energy of the α -particle and of the daughter nucleus

$$T_{1} = Q(1 - \frac{4}{A})$$

$$T_{2} = 5.638 [MeV] \times (1 - \frac{4}{241}) = 5.638 \times 0.983 = 5.544 MeV$$

