Air Quality Index Prediction

(Machine Learning Project Work)
(March-May 2021)
Swati Basu(06004092020), Hritika Verma(01204092020)
Sonam Prasad(05804092020), Sangeetha Panicker(04804092020)

ABSTRACT

Air, an essential natural resource, has been compromised in terms of quality by economic activities. Considerable research has been devoted to predicting instances of poor air quality, but most studies are limited by insufficient longitudinal data, making it difficult to account for seasonal and other factors. Several prediction models have been developed using 5-year-Indian-Dataset(2015-2020). Machine learning Classification methods, including Naive bayes', Logistic Regression, K-Nearest-Neighbours, Decision Trees, Random Forest produce promising results for air quality index (AQI) level predictions. HyperParameter Tuning has been done using two methods including GridSearchCV and RandomizedSearchCV on every algorithm we used to make our model to predict Air Quality Index.

1 INTRODUCTION

Worldwide, air pollution is responsible for around 1.3 million deaths annually according to the World Health Organization (WHO). The depletion of air quality is just one of harmful effects due to pollutants released into the air. Other detrimental consequences, such as acid rain, global warming, aerosol formation, and photochemical smog, have also increased over the last several decades. The recent rapid spread of COVID-19 has prompted many researchers to investigate underlying pollution-related conditions contributing to COVID-19 pandemics in countries. Several shreds of evidence have shown that air pollution is linked to significantly higher COVID-19 death rates, and patterns in COVID-19 death rates mimic patterns in both high population density and high PM2.5 exposure areas. All the above mentioned raises an urgent need to anticipate and plan for pollution fluctuations to help communities and individuals better mitigate the negative impact of air pollution. To do so, air quality evaluation plays a significant role in monitoring and controlling air pollution. The Environmental Protection Agency (EPA) tracks the commonly known criteria pollutants, i.e., groundlevel ozone (O3), Sulphur dioxide (SO2), particulates matter (PM10 andPM2.5), carbon monoxide (CO), carbon dioxide (CO2), and nitrogen dioxide (NO2). These substances are in compositions of a common index, called the Air Quality Index (AQI), indicating how clean or polluted the air is currently or forecasted to become in areas. As the AQI increases, a higher percentage of the population is exposed. Prediction models have been developed using Machine

learning Classification methods, including Naive bayes', Logistic Regression, K-Nearest-Neighbours, Decision Trees, Random Forest produce promising results for air quality index (AQI) level predictions. HyperParameter Tuning has been done using two methods including GridSearchCV and RandomizedSearchCV on every algorithm we used. This Project gives you an idea of fluctuations in pollution pre Covid and post Covid till 2020.

2 RELATED WORK

Researched similar papers on Air Quality Index Prediction and presented the findings in Appendix-A.

3 METHODOLOGY

3.1 Dataset Description

Air is what keeps humans alive. Monitoring it and understanding its quality is of immense importance to our well-being. The dataset contains air quality data and AQI (Air Quality Index) of 5 years i.e. 2015-2020 at hourly and daily level of various stations across multiple cities in India. A tutorial of how AQI is calculated is available here: https://www.kaggle.com/rohanrao/calculatingagi-air-quality-index Cities included in this Dataset are: Ahmedabad, Aizawl, Amaravati, Amritsar, Bengaluru, Bhopal, Brajrajnagar, Chandigarh, Chennai, Coimbatore, Delhi, Ernakulam, Gurugram, Guwahati, Hyderabad, Jaipur, Jorapokhar, Kochi, Kolkata, Lucknow, Mumbai, Patna, Shillong, Talcher, Thiruvananthapuram, Visakhapatnam The data has been made publicly available by the Central Pollution Control Board: https://cpcb.nic.in/ which is the official portal of Government of India. Similar to air monitoring data, a dataset on noise decibel levels in India is available here: https://www.kaggle.com/rohanrao/noise-monitoring-data-in-india

Below is the screenshot of dataset obtained by using python code.

	City	Date	PM2.5	PM10	NO	NO2	NOx	NH3	CO	502	03	Benzene	Toluene	Xylene	AQI	AQI_Bucket
0	Ahmedabad	2015-01-01	NaN	NaN	0.92	18.22	17.15	NaN	0.92	27.64	133.36	0.00	0.02	0.00	NaN	NaN
1	Ahmedabad	2015-01-02	NaN	NaN	0.97	15.69	16.46	NaN	0.97	24.55	34.06	3.68	5.50	3.77	NaN	NaN
2	Ahmedabad	2015-01-03	NaN	NaN	17.40	19.30	29.70	NaN	17.40	29.07	30.70	6.80	16.40	2.25	NaN	NaN
3	Ahmedabad	2015-01-04	NaN	NaN	1.70	18.48	17.97	NaN	1.70	18.59	36.08	4.43	10.14	1.00	NaN	NaN
4	Ahmedabad	2015-01-05	NaN	NaN	22.10	21.42	37.76	NaN	22.10	39.33	39.31	7.01	18.89	2.78	NaN	NaN
29526	Visakhapatnam	2020-06-27	15.02	50.94	7.68	25.06	19.54	12.47	0.47	8.55	23.30	2.24	12.07	0.73	41.0	Good
29527	Visakhapatnam	2020-06-28	24.38	74.09	3.42	26.06	16.53	11.99	0.52	12.72	30.14	0.74	2.21	0.38	70.0	Satisfactory
29528	Visakhapatnam	2020-06-29	22.91	65.73	3.45	29.53	18.33	10.71	0.48	8.42	30.96	0.01	0.01	0.00	68.0	Satisfactory
29529	Visakhapatnam	2020-06-30	16.64	49.97	4.05	29.26	18.80	10.03	0.52	9.84	28.30	0.00	0.00	0.00	54.0	Satisfactory
29530	Visakhapatnam	2020-07-01	15.00	66.00	0.40	26.85	14.05	5.20	0.59	2.10	17.05	NaN	NaN	NaN	50.0	Good
29531 rc	ws × 16 columns															

Figure 1: Dataset

Figure 2: Dataset Description

```
[ ] df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 29531 entries, 0 to 29530
     Data columns (total 16 columns):
      #
          Column
                      Non-Null Count
                                       Dtype
                       ______
      0
          City
                       29531 non-null
                                        object
                                        object
      1
          Date
                       29531 non-null
                                        float64
      2
          PM2.5
                       24933 non-null
      3
          PM10
                      18391 non-null
                                        float64
      4
          NO
                       25949 non-null
                                        float64
      5
                                        float64
          NO<sub>2</sub>
                       25946 non-null
      6
          NOx
                       25346 non-null
                                        float64
                                       float64
      7
          NH3
                      19203 non-null
                                       float64
      8
          CO
                       27472 non-null
      9
                                       float64
          502
                       25677 non-null
                                       float64
      10
          03
                       25509 non-null
                       23908 non-null
                                        float64
      11
          Benzene
                                        float64
      12
          Toluene
                       21490 non-null
                                        float64
      13
          Xylene
                      11422 non-null
                       24850 non-null
                                        float64
      14
      15
          AQI Bucket
                      24850 non-null
                                        object
     dtypes: float64(13), object(3)
     memory usage: 3.6+ MB
```

Figure 3: Dataset Info

3.2 Data Preprocessing

Data preprocessing is an integral step in Machine Learning as the quality of data and the useful information that can be derived from it directly affects the ability of our model to learn; therefore, it is extremely important that we preprocess our data before feeding it into our model.

Data preprocessing is a process of preparing the raw data and making it suitable for a machine learning model. It is the first and crucial step while creating a machine learning model. *3.2.1 Handling Missing Values.* Table 4 shows the amount of data missing in each attributes. The yellow part shows all the missing values.

Figure 4: Missing Values in the dataset

The total amount of data missed in each attribute are:

Table 1: Total Count of Missing Values

Attribute	Count
City	0
Date	0
PM2.5	4598
PM10	11140
NO	3582
NO2	3585
NOx	4185
NH3	10328
CO	2059
SO2	3854
O3	4022
Benzene	5623
Toluene	8041
Xylene	18109
AQI	4681
AQI_Bucket	4681

 Feature variable: The feature variables are all numeric and since the quatity or amount of each constituents depends on an daily basis, so missing values in these attributes are handle by *Linear Interpolation* method.

(Linear interpolation is an imputation technique that assumes a linear relationship between data points and utilises nonmissing values from adjacent data points to compute a value for a missing data point.)

Target Variable: The target variable is a categorical variable compromises of 6 different classes, i.e., Moderate, Satisfactory, Poor, Very

Poor, Severe, Good. These missing values are handled by frequency count method with respect to each city. A city having maximum count of AQI_Bucket value will be inserted for the NaN values for that city in AQI_Bucket. For eg, suppose Ahmedabad has maximum count of say 'Severe', for the city Ahmedabad, NaN values for AQI_Bucket will be replaced with 'Severe'.

Table 2 shows the total count values of target variable after handling all missing values.

Table 2: Caption

Target Variable	Count
Moderate	10868
Satisfactory	10074
Poor	2791
Very Poor	2337
Severe	2013
Good	1448

3.2.2 Checking for Outliers. The outliers are there in the feature variable, so we'll just ignore it for now because temperature variations could also be possible

3.3 Data Visualization

Data visualization is the discipline of trying to understand data by placing it in a visual context so that patterns, trends and correlations that might not otherwise be detected can be exposed.

3.3.1 Yearly Average Pollution Data for Metropolitan Cities and Big Cities. The constituents of air are analysed in each year from 2015 to 2020 of major citites like Ahmedabad, Delhi, Chennai and Kolkata where air pollution is the topic of concern.

Fig 8 describes the yearly average pollution data in Ahmedabad.

Figure 5: Ahmedabad Yearly Average Pollution data

Figure 6: Delhi Yearly Average Pollution data

Figure 7: Chennai Yearly Average Pollution data

Figure 8: Kolkata Yearly Average Pollution data

OBSERVATION:

- Each City Data shows different plot for each pollutants PM2.5, PM10, NO, NO2, NOx, NH3, CO, SO2,O3, Benzene, Toluene and Xylene.
- In an Average Secenario, Yearly Mean of each pollutants shows that From Year 2017 Pollution has increased and reduced from 2019 to 2020. (due to COVID 19 Pendemic!!)

Figure 9: CO levels across Cities and Months

3.3.2 CO Levels across Cities and Months. : Fig 9 shows the CO levels across cities and months.

OBSERVATION: For all given cities, CO level in winter season (December, January and February) is more compare to other months data.

3.3.3 PM2.5 levels across Cities and Months. : Fig 10 shows the PM2.5 levels across cities and months.

OBSERVATION: For all given cities, PM2.5 level in winter season (December, January and February) is also more compare to other months data.

3.3.4 AQI Bucket and Cities. Fig 11 shows the relationship between AQI_Bucket and Cities.

Figure 10: PM2.5 levels across Cities and Months

3.3.5 AQ Acceptability and Cities: listed by Acceptable AQ : Fig 12 shows the relationship between AQ Acceptability and Cities: listed by Acceptable AQ.

OBSERVATION: AQ Acceptability and cities shows that Metro(Major) cities like Delhi,Mumbai,Ahmedabad,Chennai are under Unacceptable category of Air Quality!!!

3.3.6 Weekday vs Weekend Polution. Fig 13 - 18 shows the Pollution day-wise data for big cities.

OBSERVATION: Above Weekdays vs Weekend Pollution data graphs shows that generally pollutant readings decreases in weekend (specially PM10).

3.3.7 Pre Corona [2016 to 2020]. : Here I divide the data set into two part namely Vehicular Pollution content (PM2.5, PM10, NO2,

Figure 11: AQI Bucket and Cities

NH3, CO) and Industrial Pollution content (CO, SO2, O3, Benzene, Toluene, Xylene) and find how these contents correlated with AQI (air quality index)

- Vehicular Pollution Content : PM2.5, PM10, NO2, NH3,
- Industrial Pollution Content: CO, SO2, O3, Benzene, Toluene, Xylene

Fig 19 shows the Vehicular Pollution Content. Fig 20 shows the Industrial Pollution Content. Fig 21 shows the Satisfactory Levels for Big Cities.

$\begin{center} \textbf{OBSERVATION} : \\ \end{center}$

• Hence we can observe that in pre-corona stage. the highest Vehicular Pollution is in the City Delhi and then Ahemdabad and lowest or minimum in Shillong.

Figure 12: AQ Acceptability and Cities: listed by Acceptable AQ

Figure 13: Ahemdabad Pollution day-wise

Figure 14: Banglore Pollution day-wise

Figure 15: Chennai Pollution day-wise

Figure 16: Delhi Pollution day-wise

Figure 17: Kolkata Pollution day-wise

 Similarly we can observe that highest Industrial Pollution content is in Delhi, Ahemdabad and Mumbai and lowest in Brajrajnagar.

Figure 18: Mumbai Pollution day-wise

 So the overall satisfactory level quite high for cities like Mumbai, Chennai, Kolkata and Bengaluru but most severe for Delhi and Ahemdabad.

Figure 19: Vehicular Pollution Content

3.3.8 Post Corona [2020 >]. Fig 22 shows the Vehicular Pollution Content. Fig 23 shows the Industrial Pollution Content. Fig 24 shows the Satisfactory Levels for Big Cities.

${\bf OBSERVATION}:$

- Here we can observe that in post-corona stage. the highest Vehicular Pollution is in the City Brajrajnagar and then Patna but less in Delhi and ahemdabad as compared to pre-corona stage. The lowest or minimum is still Shillong.
- Similarly we can observe that highest Industrial Pollution content is in Ahemdabad but less in Delhi and Mumbai.
- So the overall satisfactory level quite high for cities like Mumbai, Chennai and Bengaluru but moderate for Delhi and Ahemdabad.Here the poor and severe levels are not much in any cities.

3.3.9 Cities and the Proportion of Pollution in each of them. : Fig 25 shows the complete overall distribution of Pollution in each city.

Figure 20: Industrial Pollution Content

Figure 21: Satisfactory Levels for Big Cities

Figure 22: Vehicular Pollution Content

3.3.10 Histogram for AQI. Fig 26 shows the histogram for AQI. **OBSERVATION**: Maximum frequency occurs in the interval between 0-250

Figure 23: Industrial Pollution Content

Figure 24: Satisfactory Levels for Big Cities

Cities and the proportion of pollution in each

Figure 25: Cities and the Proportion of Pollution in each of them

3.3.11 HeatMap showing correlations within all the feature variables. Fig 27 shows the correlations within all the feature variables in the form of heatmap.

OBSERVATION: Here We can observe that the correlation coefficient between the 'PM2.5' and 'AQI' is positively correlated. It is a positive correlation. This depicts that for a positive increase in

Figure 26: Histogram for AQI

Figure 27: HeatMap showing correlations within all the feature variables

the variable 'PM2.5', there is also a positive increase in the second variable 'AQI'.

(The correlation coefficient is a statistical measure of the strength of the relationship between the relative movements of two variables. The values range between -1.0 and 1.0. A calculated number greater than 1.0 or less than -1.0 means that there was an error in the correlation measurement. A correlation of -1.0 shows a perfect negative correlation, while a correlation of 1.0 shows a perfect positive correlation. A correlation of 0.0 shows no linear relationship between the movement of the two variables.)

3.3.12 Scatter Plot. Fig 28 shows the scatter plot between AQI and PM2.5

OBSERVATION: Here we can observe that the y variable('AQI') tends to increase as the x variable('PM2.5') increases, and also so there is a positive correlation between these two variables and we have calculated the strength of correlation above ,i.e., 0.63.

(A scatterplot shows the relationship between two quantitative variables measured for the same individuals.)

3.3.13 Pairplot. Fig 29 shows the complete pairplot between all the attributes.

3.4 Proposed Approach

After Data visualization we split the data into normal test train and 10 fold cross validation. We then had performed undersampling and oversampling on both the split-ed dataset. In both the cases

Figure 28: Scatter Plot between AQI and PM2.5

Figure 29: Pairplot

oversampling has maximum accuracy. The algorithm like KNN, Logistic Regression, Decision Tree, Naive Bayes, Random Forest were implemented on the both splinted data-set. At last we performed hyper tuning to find the best parameters using Grid search and Random search.

4 EXPERIMENT DESIGN

Workflow Design is presented in figure 30

Problem Statement Explored Dataset analysis & Preprocessing Data Visualization 10-fold Cross Train-Test Splitting Undersampling and Undersampling and Oversampling Oversampling Classification Implementation Naive KNN Bayes Decision Logistic Regression Random Forest HyperParameter Tuning GridSearchCV RandomizedSearchCV LaTex Report

Figure 30: Workflow Diagram

4.1 Under and Oversampling

Undersampling: which consists in down-sizing the majority class by removing observations until the dataset is balanced.

Oversampling: which consists in over-sizing the minority class by adding observations.

Oversampling and undersampling in data analysis are techniques used to adjust the class distribution of a data set (i.e. the ratio between the different classes/categories represented). These terms are used both in statistical sampling, survey design methodology and in machine learning.

Oversampling and undersampling are opposite and roughly equivalent techniques. There are also more complex oversampling techniques, including the creation of artificial data points with algorithms like Synthetic minority oversampling technique. In signal processing, oversampling is the process of sampling a signal at a sampling frequency significantly higher than the Nyquist rate. Theoretically, a bandwidth-limited signal can be perfectly reconstructed if sampled at the Nyquist rate or above it. The Nyquist rate is defined as twice the bandwidth of the signal. Oversampling is capable of improving resolution and signal-to-noise ratio, and can be helpful in avoiding aliasing and phase distortion by relaxing anti-aliasing filter performance requirements. In signal processing, undersampling or bandpass sampling is a technique where one samples a bandpass-filtered signal at a sample rate below its Nyquist rate (twice the upper cutoff frequency), but is still able to reconstruct the signal.

When one undersamples a bandpass signal, the samples are indistinguishable from the samples of a low-frequency alias of the high-frequency signal. Such sampling is also known as bandpass sampling, harmonic sampling, IF sampling, and direct IF-to-digital conversion.

Random Oversampling:

Random Oversampling includes selecting random examples from the minority class with replacement and supplementing the training data with multiple copies of this instance, hence it is possible that a single instance may be selected multiple times. Random Undersampling:

Random Undersampling is the opposite to Random Oversampling. This method seeks to randomly select and remove samples from the majority class, consequently reducing the number of examples in the majority class in the transformed data.

4.2 ALGORITHMS:

4.3 Logistic Classification:

In statistics, the logistic model (or logit model) is used to model the probability of a certain class or event existing such as pass/fail, win/lose, alive/dead or healthy/sick. This can be extended to model several classes of events such as determining whether an image contains a cat, dog, lion, etc. Each object being detected in the image would be assigned a probability between 0 and 1, with a sum of one. Logistic regression is a supervised learning classification algorithm used to predict the probability of a target variable. The nature of target or dependent variable is dichotomous, which means there would be only two possible classes. In simple words, the dependent variable is binary in nature having data coded as either 1 (stands for success/yes) or 0 (stands for failure/no). Mathematically, a logistic regression model predicts P(Y=1) as a function of X. It is one of the simplest ML algorithms that can be used for various classification problems such as spam detection, Diabetes prediction, cancer detection etc.

Types of Logistic Classification: Generally, logistic regression means binary logistic regression having binary target variables, but there can be two more categories of target variables that can

be predicted by it. Based on those number of categories, Logistic regression can be divided into following types

- (a). Binary or Binomial: In such a kind of classification, a dependent variable will have only two possible types either 1 and 0. For example, these variables may represent success or failure, yes or no, win or loss etc. (b). Multinomial: In such a kind of classification, dependent variable can have 3 or more possible unordered types or the types having no quantitative significance. For example, these variables may represent "Type A" or "Type B" or "Type C".
- (c). Ordinal: In such a kind of classification, dependent variable can have 3 or more possible ordered types or the types having a quantitative significance. For example, these variables may represent "poor" or "good", "very good", "Excellent" and each category can have the scores like 0,1,2,3.
- (d). Logistic Regression Assumptions: Before diving into the implementation of logistic regression, we must be aware of the following assumptions about the same.
- (e). Classification Models: Binary Logistic Regression Model: The simplest form of logistic regression is binary or binomial logistic regression in which the target or dependent variable can have only 2 possible types either 1 or 0.
- (f). Multinomial Logistic Regression Model: Another useful form of logistic regression is multinomial logistic regression in which the target or dependent variable can have 3 or more possible unordered types i.e. the types having no quantitative significance.

4.4 Naive Bayes :-

It is a classification technique based on Bayes' Theorem with an assumption of independence among predictors. In simple terms, a Naive Bayes classifier assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature.

For example, a fruit may be considered to be an apple if it is red, round, and about 3 inches in diameter. Even if these features depend on each other or upon the existence of the other features, all of these properties independently contribute to the probability that this fruit is an apple and that is why it is known as 'Naive'.

Naive Bayes model is easy to build and particularly useful for very large data sets. Along with simplicity, Naive Bayes is known to outperform even highly sophisticated classification methods. Naive Bayes is a simple technique for constructing classifiers: models that assign class labels to problem instances, represented as vectors of feature values, where the class labels are drawn from some finite set. There is not a single algorithm for training such classifiers, but a family of algorithms based on a common principle: all naive Bayes classifiers assume that the value of a particular feature is independent of the value of any other feature, given the class variable. For example, a fruit may be considered to be an apple if it is red, round, and about 10 cm in diameter. A naive Bayes classifier considers each of these features to contribute independently to the probability that this fruit is an apple, regardless of any possible correlations between the color, roundness, and diameter features. For some types of probability models, naive Bayes classifiers can be trained very efficiently in a supervised learning setting. In many practical applications, parameter estimation for naive Bayes models uses the method of maximum likelihood; in other words, one

can work with the naive Bayes model without accepting Bayesian probability or using any Bayesian methods.

An advantage of naive Bayes is that it only requires a small number of training data to estimate the parameters necessary for classification.

4.5 Decision Tree:-

A decision tree is a decision support tool that uses a tree-like model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. It is one way to display an algorithm that only contains conditional control statements.

Decision trees are commonly used in operations research, specifically in decision analysis, to help identify a strategy most likely to reach a goal, but are also a popular tool in machine learning. A decision tree is a flowchart-like structure in which each internal node represents a "test" on an attribute (e.g. whether a coin flip comes up heads or tails), each branch represents the outcome of the test, and each leaf node represents a class label (decision taken after computing all attributes). The paths from root to leaf represent classification rules. Decision Tree is a Supervised learning technique that can be used for both classification and Regression problems, but mostly it is preferred for solving Classification problems. It is a tree-structured classifier, where internal nodes represent the features of a dataset, branches represent the decision rules and each leaf node represents the outcome. In a Decision tree, there are two nodes, which are the Decision Node and Leaf Node. Decision nodes are used to make any decision and have multiple branches, whereas Leaf nodes are the output of those decisions and do not contain any further branches. The decisions or the test are performed on the basis of features of the given dataset. It is a graphical representation for getting all the possible solutions to a problem/decision based on given conditions. It is called a decision tree because, similar to a tree, it starts with the root node, which expands on further branches and constructs a tree-like structure. A decision tree simply asks a question, and based on the answer (Yes/No), it further split the tree into sub trees.

4.6 Random Forest

Random Forest is a popular machine learning algorithm that belongs to the supervised learning technique. It can be used for both Classification and Regression problems in ML. It is based on the concept of ensemble learning, which is a process of combining multiple classifiers to solve a complex problem and to improve the performance of the model.

As the name suggests, "Random Forest is a classifier that contains a number of decision trees on various subsets of the given dataset and takes the average to improve the predictive accuracy of that dataset." Instead of relying on one decision tree, the random forest takes the prediction from each tree and based on the majority votes of predictions, and it predicts the final output.

The greater number of trees in the forest leads to higher accuracy and prevents the problem of overfitting. Since the random forest combines multiple trees to predict the class of the dataset, it is possible that some decision trees may predict the correct output, while others may not. But together, all the trees predict the correct output. Therefore, below are two assumptions for a better Random forest classifier:

There should be some actual values in the feature variable of the dataset so that the classifier can predict accurate results rather than a guessed result. The predictions from each tree must have very low correlations.

Random Forest is capable of performing both Classification and Regression tasks. It is capable of handling large datasets with high dimensionality. It enhances the accuracy of the model and prevents the overfitting issue.

4.7 k-Nearest-Neighbour(KNN)

K-Nearest Neighbour is one of the simplest Machine Learning algorithms based on Supervised Learning technique. K-NN algorithm assumes the similarity between the new case/data and available cases and put the new case into the category that is most similar to the available categories. K-NN algorithm stores all the available data and classifies a new data point based on the similarity. This means when new data appears then it can be easily classified into a well suite category by using K- NN algorithm. K-NN algorithm can be used for Regression as well as for Classification but mostly it is used for the Classification problems. K-NN is a non-parametric algorithm, which means it does not make any assumption on underlying data. It is also called a lazy learner algorithm because it does not learn from the training set immediately instead it stores the dataset and at the time of classification, it performs an action on the dataset. KNN algorithm at the training phase just stores the dataset and when it gets new data, then it classifies that data into a category that is much similar to the new data. K-nearest neighbors (KNN) algorithm is a type of supervised ML algorithm which can be used for both classification as well as regression predictive problems. However, it is mainly used for classification predictive problems in industry. The following two properties would define KNN well:

Lazy learning algorithm: KNN is a lazy learning algorithm because it does not have a specialized training phase and uses all the data for training while classification.

Non-parametric learning algorithm: KNN is also a non-parametric learning algorithm because it does not assume anything about the underlying data.

4.8 Hypertuning

A Machine Learning model is defined as a mathematical model with a number of parameters that need to be learned from the data. By training a model with existing data, we are able to fit the model parameters. However, there is another kind of parameters, known as Hyperparameters, that cannot be directly learned from the regular training process. They are usually fixed before the actual training process begins. These parameters express important properties of the model such as its complexity or how fast it should learn.

Some examples of model hyperparameters include:

The penalty in Logistic Regression Classifier i.e. L1 or L2 regularization The learning rate for training a neural network. The C and sigma hyperparameters for support vector machines. The k in k-nearest neighbors. they all are different in some way or the other, but what makes them different is nothing but input parameters for the model. These input parameters are named as Hyperparameters.

These hyperparameters will define the architecture of the model, and the best part about these is that you get a choice to select these for your model. Of course, you must select from a specific list of hyperparameters for a given model as it varies from model to model.

Often, we are not aware of optimal values for hyperparameters which would generate the best model output. So, what we tell the model is to explore and select the optimal model architecture automatically. This selection procedure for hyperparameter is known as Hyperparameter Tuning.

5 RESULTS AND OBSERVATIONS:

Baseline Comparison Chart has been done and added in the end of Appendix A.

5.1 NORMAL TEST/TRAIN SPLIT (75 TRAIN and 25 TEST) RATIO

- C1 Good
- C2 Moderate
- C3 Poor
- C4 Satisfactory
- C5 Severe
- C6 Very Poor

Figure 31: Confusion Matrix of Logistic Regression (Undersampling) - Normal Test/Train

5.2 K - FOLD CROSS VALIDATION (10 FOLD)

5.3 Hypertuning Results

5.3.1 Logistic Classification. : Performed hypertuning and found hypertuned parameters.

- max_iter: 500
- solver: newton-cg
- penalty: l2
- C: 10
- Best Score : 90.16%

Table 3: Normal Test/Train Split - UNDERSAMPLING

ML Model			PRECI	SION %					RECA	ALL %			AVG.	AVG.	Accuracy
WIL WIOUEI	C1	C2	C3	C4	C5	C6	C1	C2	C3	C4	C5	C6	Precision %	Recall %	Accuracy
Logistic	65.25	53.09	30.40	86.45	72.11	59.21	73.31	57.79	68.59	39.28	82.15	75.60	61.09	66.12	56.27
Regres-															
sion															
Random	94.36	46.42	34.08	99.02	87.10	73.94	98.87	60.22	78.58	23.94	98.03	90.83	72.49	75.08	56.35
Forest															
Classifier															
KNN	67.47	55.52	37.40	95.06	79.68	70.84	86.96	65.58	75.94	35.80	96.56	85.80	67.66	74.44	61.43
CLassifier															
Decision	88.23	42.60	28.85	98.55	64.02	91.91	96.51	47.71	78.80	26.96	98.68	93.03	69.03	73.61	53.14
Tree															
Naive	50.89	52.69	38.87	74.76	33.26	70.37	33.72	58.65	71.5	24.81	86.86	78.03	53.47	58.9	
Bayes															
Classifier															

Table 4: Normal Test/Train Split - OVERSAMPLING

ML Model			Precis	sion %					Rec	all %			Avg.	Avg.	Accuracy
WIL WIGGE	C1	C2	C3	C4	C5	C6	C1	C2	C3	C4	C5	C6	Precision %	Recall %	Accuracy
Logistic	58.12	87.93	62.28	88.52	80.99	60.16	99.43	78.99	78.14	80.35	66.86	77.85	73	80.27	79.43
Regres-															
sion															
Random	95.40	98.01	94.81	98.13	98.42	96.62	99.15	96.68	97.97	97.71	97.84	98.96	96.90	98.05	98
Forest															
Classifier															
KNN	76.24	94.63	80.00	93.65	92.40	86.94	95.46	89.51	91.54	91.19	92.93	90.09	87.31	91.79	90.84
CLassifier															
Decision	95.95	95.32	96.86	97.24	96.79	97.16	95.44	97.02	94.73	96.44	96.61	95.64	96.56	95.98	96.39
Tree															
Naives	36.26	85.44	56.35	76.65	74.46	80.37	92.60	71.18	81.99	67.99	78.79	84.10	68.22	80	
Bayes															
Classifier															

Figure 32: Confusion Matrix of Random Forest Classification (Undersampling) - Normal Test/Train

Figure 33: Confusion Matrix of KNN Classification (Undersampling) - Normal Test/Train

	MT M- 1.1			Prec	ision					Re	call			Average	Average	A
Part	ML Model	C1	C2	C3	C4	C5	C6	C1	C2	C3	C4	C5	C6	_		Accurac
28.09 50.67 10.98 58.43 10.92 35.33 91.53 70.74 59.22 29.22 14.28 96.07 42.30 60.53 51.35 51.01 10.97 38.68 36.92 27.15 17.99 36.01 10.09 50.37 75.81 55.05 52.11 8.17 53.78 69.99 63.35 63.64 60.73 43.64 43.64 60.73 43.64 43.	_	23.55	35.09	16.20	39.05	90.90	03.10	93.22	14.04	55.08	48.89	25.89	03.57	37.19	40.11	33.61
	gression															
1907 38-86 30-92 1215 17-99 36-01 100 50-07 50-07 100 50-07 50																
14 10 15 15 16 16 17 18 18 18 18 18 18 18																
Part																
Part																
Random For extent																
Random For et Cl 24.0 16.09 21.09 43.64 100 59.06 99.43 20.58 35.78 55.16 50.87 50.87 50.87 47.19 52.12 48.88 28.88					I											
	.															
		42.40	16.09	21.93	43.64	100	59.06	99.43	20.58	35.78	55.16	50.87	50.89	47.19	52.12	48.88
	est Classifier	05.54	10.10	24.04	100	50.00	60.40	00.40	F0 F4	05.05	04.46	100	04.45	(0.50	F0 (F	5 0.44
Page																
Part																
New Result																
Note 10																
Result																
No No No No No No No No																
No																
fier	WNN Classi															
	_	30.13	22.42	17.93	30.99	99.81	15.97	99.43	29.05	34./3	45.17	40.44	05.80	07.78	79.19	65.97
Result of the least	1101	66 33	48 79	25.85	91 77	36.84	62.82	81 04	79 69	80.58	32.64	100	94 23	78 36	90.68	88 38
Part In Process 42.25 42.01 57.93 95.88 69.44 74.03 80.28 61.73 71.95 28.99 93.89 83.15 83.00 86.30 87.19 52.38 66.22 41.23 78.74 53.60 68.49 88.32 50 69.87 28.84 99.70 88.24 80.56 86.08 83.64 52.66 65.65 33.98 88.23 48.52 69.92 74 29.95 99 84.13 75.14 85.09 29.09 74.09 75.00 32.49 55.05 55.23 76.73 81.30 51.01 29.95 99.93 79.03 75.44 85.09 77.78 75.70 75.00 32.49 56.50 55.23 76.73 81.30 56.10 99.93 79.03 75.84 81.59 77.78 75.83 3.70 28.91 58.50 38.92 38.20 26.91 19.00 98.11 47.55 48.59 76.30 86.21																
Figure 1 5.3.8 66.22 41.23 78.74 53.60 68.49 88.32 50 69.87 28.44 93.70 88.24 80.56 86.68 83.64 89.72 66.16 26.17 95.68 34.78 41.17 90.34 73.24 88.41 39.25 88.83 91.91 92.48 73.68 67.44 40.07 99.74 62.12 86.09 93.33 58.15 81.22 100 91.54 79.03 89.92 86.08 75.00 32.04 56.50 55.23 76.73 81.30 51.30 78.20 29.35 96.93 79.03 75.84 81.59 77.78 75.80 31.36 28.79 42.25 100.0 57.14 9943 28.67 27.55 940.4 38.6 442.5 44.60 43.56 44.55 44.56 44.56 44.26 44.55 44.56 44.56 44.56 44.56 44.56 44.56 44.26																
S2.86 65.85 33.98 88.23 48.52 69.12 85.71 54.92 74. 29.95 99. 84.13 75.14 85.09 80.79 73.68 74.4 49.07 99.4 62.12 86.09 93.33 58.15 84.12 21.52 100 91.54 79.03 89.92 86.08 74.90 75.00 32.49 56.50 55.23 76.73 83.03 51.15 83.05 52.95 59.93 79.03 75.84 81.59 77.87 74.90 75.00 28.49 56.50 55.23 76.73 83.03 51.14 85.06 83.04 64.86 51.18 100 100 83.36 94.64 86.31 85.66 34.86 32.43 34.25 34.25 100 57.14 89.43 2687 2175 5940 43.86 4821 47.65 49.57 42.65 75.80 33.87 83.23 37.42 83.03 57.40 89.35 51.20 81.55 27.65 100.0 98.07 55.95 72.26 44.26 75.81 33.87 83.23 89.95 48.96 96.30 95.40 68.73 82.67 26.91 100.0 98.11 56.87 75.83 47.37 75.83 33.87 83.23 89.95 48.96 96.30 69.01 62.78 83.95 48.96 69.35 69.91 45.25 45.25 40.00 49.13 67.97 74.20 60.95 86.07 62.58 57.11 93.33 18.34 90.39 97.14 52.81 59.14 32.65 100.0 94.13 67.97 74.29 57.77 93.33 25.25 56.49 99.34 50.50 92.85 59.95 68.36 88.28 43.77 100.0 94.13 67.97 74.29 57.77 87.84 89.95 36.95 36.95 36.95 36.95 36.85 38.28 38.28 38.37 100.0 94.13 67.97 74.29 57.77 88.95 38.95 38.95 38.28 38.28 38.28 38.28 38.37 100.0 94.13 67.97 74.29 57.77 89.55 38.28 38.28 38.28 38.28 38.28 38.28 38.37 100.0 94.00 51.54 57.00 60.78 89.85 38.95 38.95 38.85 38.28 38.28 38.28 38.37 100.0 94.00 51.54 57.00 60.78 89.85 38.95 38.95 38.85 38.95 38.85 38.85 38.85 38.85 38.95 38.85 38.95 38.85 38.95 38.85 38.95 38.85 38.95 38.85 38.95 38.85 38.95 38.85 38.95 38																
Naiva Nai																
Decision Tree 74.90 75.00 32.49 56.50 55.23 76.73 81.30 51.30 78.20 29.35 96.93 79.03 75.84 81.59 77.78 Decision Tree 43.89 13.66 28.79 42.25 100.0 57.14 94.83 26.87 21.75 5940 4386 4821 47.65 49.57 45.46 Reference Processor 43.89 31.86 28.49 97.75 21.27 83.60 27.55 40.25 40.25 40.26																
Parish								81.30		78.20		96.93	79.03		81.59	
Naive Bayes Classifier Say		58.84						89.56	83.04	64.86	51.18	100	100	83.36	90.46	
S5.66 34.86 32.43 97.42 01.71 83.60 93.95 51.20 81.55 27.65 100.0 98.07 55.95 72.26 44.26	Decision Tree															
72.80 57.75 41.25 97.75 62.37 69.33 95.40 68.73 82.67 26.91 100.0 98.11 56.87 75.83 47.37 75.38 33.87 86.32 89.95 48.96 96.30 69.01 62.78 93.69 18.85 100.0 95.68 71.80 74.20 60.95 66.84 59.07 58.54 79.50 21.93 88.21 91.24 45.20 73.93 22.65 100.0 99.14 62.35 71.63 57.22 98.56 53.63 44.04 98.39 01.22 100.0 94.48 50.03 90.24 30.23 100.0 100.0 65.97 81.93 57.67 86.07 62.58 57.11 93.33 18.34 90.39 97.14 52.81 95.14 23.65 100.0 94.13 67.97 74.29 57.77 93.33 23.56 56.49 99.34 05.60 97.93 93.33 59.88 98.41 08.26 100.0 100.0 62.71 76.86 34.67 68.33 57.29 31.06 31.25 30.24 91.07 16.66 27.89 83.33 23.37 100.0 94.00 51.54 57.09 46.39 84.90 53.23 46.00 98.69 00.67 92.85 98.90 68.73 88.28 43.37 100.0 94.00 51.54 57.09 46.39 84.90 53.23 46.00 98.69 00.67 92.85 98.90 68.73 88.28 43.37 100.0 100.0 62.72 81.69 60.78 84.10 14.48 63.63 50.84 81.77 68.96 68.36 27.11 7.36 66.23 70.06 0.89 43.27 40.00 51.9 Classifier 54.18 40.31 22.22 73.81 32.11 62.59 49.59 66.50 67.96 19.41 100.0 96.15 42.60 66.66 41.75 54.18 40.31 22.22 73.81 32.11 52.59 49.59 66.50 67.96 19.41 100.0 96.15 42.60 66.66 41.75 58.46 30.59 55.85 89.10 52.18 75.31 53.52 55.15 71.74 13.33 84.03 89.63 60.25 61.23 55.77 59.37 60.04 22.16 72.66 42.10 61.90 13.10 59.58 85.79 33.83 100.0 76.47 46.72 61.55 50.32 47.51 56.03 38.44 56.41 11.28 82.98 47.85 41.13 52.28 13.51 100.0 70.66 48.61 54.24 41.58 83.33 28.07 55.11 91.36 37.07 88.47 13.33 54.31 83.33 6.90 100.0 91.90 45.84 59.29 31.29 76.73 74.79 33.33 43.71 21.54 78.67 49.18 33.11 70.33 20.							83.60	93.95	51.20	81.55	27.65		98.07		72.26	
Naive Bays 42.10 33.87 86.32 89.59 48.96 96.30 69.01 62.78 93.69 18.85 100.0 95.68 71.80 74.20 60.95 66.84 59.07 58.54 79.50 21.93 88.21 91.24 45.20 73.93 22.65 100.0 99.14 62.35 71.63 57.22 98.56 53.63 44.04 98.39 01.22 100.0 94.48 50.03 90.24 30.23 100.0 100.0 65.97 81.93 57.67 80.07 62.58 57.11 93.33 18.34 90.39 97.14 52.81 95.14 23.65 100.0 94.13 67.97 74.29 57.77 93.33 23.56 56.49 99.34 05.60 97.93 93.33 59.88 84.41 08.26 100.0 94.00 51.54 57.09 46.39 Naive Bayes 42.10 14.48 63.63 50.84 81.77								95.40		82.67		100.0	98.11	56.87	75.83	47.37
Reference Facility Reference Refer																
P8.56 S3.63 44.04 98.39 01.22 100.0 94.48 50.03 90.24 30.23 100.0 100.0 65.97 81.93 57.67 R6.07 62.58 57.11 93.33 18.34 90.39 97.14 52.81 95.14 23.65 100.0 94.13 67.97 74.29 57.77 P3.33 23.56 56.49 99.34 05.60 97.93 93.33 59.88 98.41 08.26 100.0 100.0 62.71 76.86 34.67 R6.33 57.29 31.06 31.25 30.24 91.07 16.66 27.89 83.33 23.37 100.0 94.00 51.54 57.09 46.39 Raive Bayes 42.10 14.48 63.63 50.84 81.77 68.96 68.36 27.11 7.36 66.23 70.06 0.89 43.27 40.00 51.9 Classifier 54.18 40.31 22.22 73.81 32.11 62.59 49.59 66.50 67.96 19.41 100.0 96.15 42.60 66.66 41.75 F3.48 40.31 22.22 73.81 32.11 62.59 49.59 66.50 67.96 19.41 100.0 96.15 42.60 66.66 41.75 F3.48 40.31 22.22 73.81 32.11 62.59 49.59 66.50 67.96 19.41 100.0 96.15 42.60 66.66 41.75 F3.48 40.31 40		66.84	59.07	58.54	79.50	21.93	88.21	91.24	45.20	73.93	22.65	100.0		62.35	71.63	57.22
93.33 23.56 56.49 99.34 05.60 97.93 93.33 59.88 98.41 08.26 100.0 100.0 62.71 76.86 34.67 68.33 57.29 31.06 31.25 30.24 91.07 16.66 27.89 83.33 23.37 100.0 94.00 51.54 57.09 46.39 84.90 53.23 46.00 98.69 00.67 92.85 98.90 68.73 88.28 43.37 100.0 100.0 62.72 81.69 60.78 Naive Bayes 42.10 14.48 63.63 50.84 81.77 68.96 68.36 27.11 7.36 66.23 70.06 0.89 43.27 40.00 51.9 Fals 40.31 22.22 73.81 32.11 62.59 49.59 66.50 67.96 19.41 100.0 96.15 42.60 66.66 41.75 21.33 52.62 26.50 81.74 15.38 39.25 18.39 55.84 79.9 24.53 33.33 100.0 37.16 52.00 45.54 58.46 30.59 55.85 89.10 52.18 75.31 53.52 55.15 71.74 13.33 84.03 89.63 60.25 61.23 50.55 46.45 61.51 45.50 53.33 33.69 76.50 33.57 49.91 72.43 19.64 98.42 92.52 52.84 61.03 55.77 59.37 60.04 22.16 72.66 42.10 61.90 13.10 59.58 85.97 33.83 100.0 76.47 46.72 61.55 50.32 47.51 56.03 38.44 56.41 11.28 82.98 47.85 41.13 52.28 13.51 100.0 70.66 48.61 54.24 41.58 83.33 28.07 55.11 91.36 37.07 88.47 13.33 54.31 83.33 6.90 100.0 91.90 45.84 59.29 31.29 76.73 74.79 33.33 43.71 21.54 78.67 49.18 33.11 70.33 20.77 95.40 85.02 54.02 59.05 48.59		98.56						94.48	50.03			100.0		65.97	81.93	
93.33 23.56 56.49 99.34 05.60 97.93 93.33 59.88 98.41 08.26 100.0 100.0 62.71 76.86 34.67 68.33 57.29 31.06 31.25 30.24 91.07 16.66 27.89 83.33 23.37 100.0 94.00 51.54 57.09 46.39 84.90 53.23 46.00 98.69 00.67 92.85 98.90 68.73 88.28 43.37 100.0 100.0 62.72 81.69 60.78 Naive Bayes 42.10 14.48 63.63 50.84 81.77 68.96 68.36 27.11 7.36 66.23 70.06 0.89 43.27 40.00 51.9 Fals 40.31 22.22 73.81 32.11 62.59 49.59 66.50 67.96 19.41 100.0 96.15 42.60 66.66 41.75 21.33 52.62 26.50 81.74 15.38 39.25 18.39 55.84 79.9 24.53 33.33 100.0 37.16 52.00 45.54 58.46 30.59 55.85 89.10 52.18 75.31 53.52 55.15 71.74 13.33 84.03 89.63 60.25 61.23 50.55 46.45 61.51 45.50 53.33 33.69 76.50 33.57 49.91 72.43 19.64 98.42 92.52 52.84 61.03 55.77 59.37 60.04 22.16 72.66 42.10 61.90 13.10 59.58 85.97 33.83 100.0 76.47 46.72 61.55 50.32 47.51 56.03 38.44 56.41 11.28 82.98 47.85 41.13 52.28 13.51 100.0 70.66 48.61 54.24 41.58 83.33 28.07 55.11 91.36 37.07 88.47 13.33 54.31 83.33 6.90 100.0 91.90 45.84 59.29 31.29 76.73 74.79 33.33 43.71 21.54 78.67 49.18 33.11 70.33 20.77 95.40 85.02 54.02 59.05 48.59		86.07	62.58	57.11	93.33		90.39	97.14	52.81	95.14	23.65	100.0	94.13	67.97	74.29	57.77
Naive Bayes 42.10 14.48 63.63 50.84 81.77 68.96 68.36 27.11 7.36 66.23 70.06 0.89 43.27 40.00 51.9		93.33	23.56				97.93	93.33	59.88	98.41	08.26	100.0	100.0	62.71	76.86	34.67
Naive Bayes Classifier 42.10 14.48 63.63 50.84 81.77 68.96 68.36 27.11 7.36 66.23 70.06 0.89 43.27 40.00 51.9 Classifier 54.18 40.31 22.22 73.81 32.11 62.59 49.59 66.50 67.96 19.41 100.0 96.15 42.60 66.66 41.75 21.33 52.62 26.50 81.74 15.38 39.25 18.39 55.84 79.9 24.53 33.33 100.0 37.16 52.00 45.54 58.46 30.59 55.85 89.10 52.18 75.31 53.52 55.15 71.74 13.33 84.03 89.63 60.25 61.23 50.55 46.45 61.51 45.50 53.33 33.69 76.50 33.57 49.91 72.43 19.64 98.42 92.52 52.84 61.03 55.77 59.37 60.04 22.16 72.66 42.10		68.33	57.29	31.06	31.25	30.24	91.07	16.66	27.89	83.33	23.37	100.0	94.00	51.54	57.09	46.39
Classifier 54.18 40.31 22.22 73.81 32.11 62.59 49.59 66.50 67.96 19.41 100.0 96.15 42.60 66.66 41.75 21.33 52.62 26.50 81.74 15.38 39.25 18.39 55.84 79.9 24.53 33.33 100.0 37.16 52.00 45.54 58.46 30.59 55.85 89.10 52.18 75.31 53.52 55.15 71.74 13.33 84.03 89.63 60.25 61.23 50.55 46.45 61.51 45.50 53.33 33.69 76.50 33.57 49.91 72.43 19.64 98.42 92.52 52.84 61.03 55.77 59.37 60.04 22.16 72.66 42.10 61.90 13.10 59.58 85.97 33.83 100.0 76.47 46.72 61.55 50.32 47.51 56.03 38.44 56.41 11.28 82.98 47.85 41.13		84.90	53.23	46.00	98.69	00.67	92.85	98.90	68.73	88.28	43.37	100.0	100.0	62.72	81.69	60.78
54.18 40.31 22.22 73.81 32.11 62.59 49.59 66.50 67.96 19.41 100.0 96.15 42.60 66.66 41.75 21.33 52.62 26.50 81.74 15.38 39.25 18.39 55.84 79.9 24.53 33.33 100.0 37.16 52.00 45.54 58.46 30.59 55.85 89.10 52.18 75.31 53.52 55.15 71.74 13.33 84.03 89.63 60.25 61.23 50.55 46.45 61.51 45.50 53.33 33.69 76.50 33.57 49.91 72.43 19.64 98.42 92.52 52.84 61.03 55.77 59.37 60.04 22.16 72.66 42.10 61.90 13.10 59.58 85.97 33.83 100.0 76.47 46.72 61.55 50.32 47.51 56.03 38.44 56.41 11.28 82.98 47.85 41.13 52.28 <	Naive Bayes	42.10	14.48	63.63	50.84	81.77	68.96	68.36	27.11	7.36	66.23	70.06	0.89	43.27	40.00	51.9
21.33 52.62 26.50 81.74 15.38 39.25 18.39 55.84 79.9 24.53 33.33 100.0 37.16 52.00 45.54 58.46 30.59 55.85 89.10 52.18 75.31 53.52 55.15 71.74 13.33 84.03 89.63 60.25 61.23 50.55 46.45 61.51 45.50 53.33 33.69 76.50 33.57 49.91 72.43 19.64 98.42 92.52 52.84 61.03 55.77 59.37 60.04 22.16 72.66 42.10 61.90 13.10 59.58 85.97 33.83 100.0 76.47 46.72 61.55 50.32 47.51 56.03 38.44 56.41 11.28 82.98 47.85 41.13 52.28 13.51 100.0 70.66 48.61 54.24 41.58 83.33 28.07 55.11 91.36 37.07 88.47 13.33 54.31 83.33 6.90 100.0 91.90 45.84 59.29 31.29 76.73																
21.33 52.62 26.50 81.74 15.38 39.25 18.39 55.84 79.9 24.53 33.33 100.0 37.16 52.00 45.54 58.46 30.59 55.85 89.10 52.18 75.31 53.52 55.15 71.74 13.33 84.03 89.63 60.25 61.23 50.55 46.45 61.51 45.50 53.33 33.69 76.50 33.57 49.91 72.43 19.64 98.42 92.52 52.84 61.03 55.77 59.37 60.04 22.16 72.66 42.10 61.90 13.10 59.58 85.97 33.83 100.0 76.47 46.72 61.55 50.32 47.51 56.03 38.44 56.41 11.28 82.98 47.85 41.13 52.28 13.51 100.0 70.66 48.61 54.24 41.58 83.33 28.07 55.11 91.36 37.07 88.47 13.33 54.31 83.33 6.90 100.0 91.90 45.84 59.29 31.29 76.73		54.18	40.31	22.22	73.81	32.11	62.59	49.59	66.50	67.96	19.41	100.0	96.15	42.60	66.66	41.75
58.46 30.59 55.85 89.10 52.18 75.31 53.52 55.15 71.74 13.33 84.03 89.63 60.25 61.23 50.55 46.45 61.51 45.50 53.33 33.69 76.50 33.57 49.91 72.43 19.64 98.42 92.52 52.84 61.03 55.77 59.37 60.04 22.16 72.66 42.10 61.90 13.10 59.58 85.97 33.83 100.0 76.47 46.72 61.55 50.32 47.51 56.03 38.44 56.41 11.28 82.98 47.85 41.13 52.28 13.51 100.0 70.66 48.61 54.24 41.58 83.33 28.07 55.11 91.36 37.07 88.47 13.33 54.31 83.33 6.90 100.0 91.90 45.84 59.29 31.29 76.73 74.79 33.33 43.71 21.54 78.67 49.18 33.11 70.33 <																
46.45 61.51 45.50 53.33 33.69 76.50 33.57 49.91 72.43 19.64 98.42 92.52 52.84 61.03 55.77 59.37 60.04 22.16 72.66 42.10 61.90 13.10 59.58 85.97 33.83 100.0 76.47 46.72 61.55 50.32 47.51 56.03 38.44 56.41 11.28 82.98 47.85 41.13 52.28 13.51 100.0 70.66 48.61 54.24 41.58 83.33 28.07 55.11 91.36 37.07 88.47 13.33 54.31 83.33 6.90 100.0 91.90 45.84 59.29 31.29 76.73 74.79 33.33 43.71 21.54 78.67 49.18 33.11 70.33 20.77 95.40 85.02 54.02 59.05 48.59																
59.37 60.04 22.16 72.66 42.10 61.90 13.10 59.58 85.97 33.83 100.0 76.47 46.72 61.55 50.32 47.51 56.03 38.44 56.41 11.28 82.98 47.85 41.13 52.28 13.51 100.0 70.66 48.61 54.24 41.58 83.33 28.07 55.11 91.36 37.07 88.47 13.33 54.31 83.33 6.90 100.0 91.90 45.84 59.29 31.29 76.73 74.79 33.33 43.71 21.54 78.67 49.18 33.11 70.33 20.77 95.40 85.02 54.02 59.05 48.59																
47.51 56.03 38.44 56.41 11.28 82.98 47.85 41.13 52.28 13.51 100.0 70.66 48.61 54.24 41.58 83.33 28.07 55.11 91.36 37.07 88.47 13.33 54.31 83.33 6.90 100.0 91.90 45.84 59.29 31.29 76.73 74.79 33.33 43.71 21.54 78.67 49.18 33.11 70.33 20.77 95.40 85.02 54.02 59.05 48.59																
83.33 28.07 55.11 91.36 37.07 88.47 13.33 54.31 83.33 6.90 100.0 91.90 45.84 59.29 31.29 76.73 74.79 33.33 43.71 21.54 78.67 49.18 33.11 70.33 20.77 95.40 85.02 54.02 59.05 48.59																
76.73 74.79 33.33 43.71 21.54 78.67 49.18 33.11 70.33 20.77 95.40 85.02 54.02 59.05 48.59																
															59.05	
								15.93	73.86					49.31	66.16	56.48

MT M 1.1			Preci	sion					Re	call			Average	Average	
ML Model	C1	C2	C3	C4	C5	C6	C1	C2	C3	C4	C5	C6	Precision	Recall	Accuracy
Logistic Regression	52.55	27.34	15.33	10.20	10.0	20.83	98.87	69.97	23.50	20.66	00.38	02.23	37.70	35.93	22.10
	53.37	58.64	23.52	94.38	12.5	70.68	95.56	78.05	69.90	45.81	57.14	78.84	52.18	70.88	62.78
	41.14	72.82	49.47	63.13	11.11	23.91	98.85	59.43	74.40	58.34	33.33	62.26	43.60	64.43	61.46
	53.48	90.80	47.69	90.48	04.34	42.39	96.18	79.67	88.41	91.96	00.93	19.87	54.87	63.00	70.84
	53.51	74.35	60.84	72.75	49.35	69.16	100.0	72.97	80.34	35.92	59.84	70.94	63.33	70.00	67.42
	51.97	82.69	57.87	60.89	10.0	56.25	100.0	67.20	89.63	65.71	75.0	52.94	68.28	75.08	69.48
	58.29	79.83	52.73	32.29	28.93	68.96	97.85	69.62	77.14	53.30	68.00	41.37	58.51	67.88	65.42
	46.87	84.06	80.62	97.57	40.0	73.78	100.0	88.09	61.11	96.30	39.02	85.21	70.48	78.29	90.01
	69.29	83.75	33.19	55.10	50.0	56.71	96.34	59.42	50.96	63.11	10.71	87.55	58.01	61.35	62.98
	44.03	75.20	67.66	82.36	14.28	75.51	99.45	81.80	81.08	61.20	50.0	71.15	59.84	74.11	72.90
Random For-	78.57	72.32	51.35	99.57	100	48.27	99.43	100	100	87.08	50.72	100	75.01	89.54	75.69
est Classifier	95.73	95.58	87.82	100	E0 22	95 24	99.59	100	00.05	04.41	100	100	97.19	09 67	97.05
		95.38	73.62	95.15	58.33 85.14	85.24 76.47	100	100 91.69	98.05 100	94.41	100	100	87.12	98.67	
	97.75 95.83	99.70	99.79	99.23	100	100	97.18		97.96	91.79	100	98.11 100	87.51 99.09	96.93 99.15	92.82 99.52
	89.54	99.70	99.79	88.92	87.76	91.55	100	100 84.51	97.96	99.80	96.06	99.57	99.09	96.29	99.52
	99.31	100	100	97.40	100	100	100	98.25	100	100	100	100	91.29	96.29	93.09
	95.89	97.84	91.84	81.11	72.79	93.54	100	83.12	99.71	96.31	99	100	88.83	96.35	90.99
	100	94.52	100	100	97.61	99.30	100	99.42	99.60	98.42	100	100	98.57	99.57	98.88
	91.66	98.03	71.23	73.74	97.01	92.34	76.01	79.63	100	99.22	100	100	87.34	92.47	88.38
	87.92	100	92.5	95.48	100	94.54	100	93.46	100	98.42	50.0	100	95.07	90.31	96.54
KNN Classi- fier	68.37	73.75	39.16	94.02	100	32.54	97.74	89.83	95.08	78.41	41.66	73.66	67.97	79.39	66.07
nei	78.27	88.16	63.44	94.82	70	77.19	91.53	93.16	89.32	85.30	100	84.61	78.65	90.65	88.75
	69.64	91.28	61.66	84.56	66.66	57.35	89.65	80.35	90.55	85.61	33.33	73.58	71.86	75.51	83.30
	59.09	86.39	86.74	92.86	91.12	83.87	91.54	87.29	90.44	88.42	72.30	88.76	83.34	86.46	87.47
	72.31	91.74	79.08	79.86	78.4	81.76	93.43	78.61	88.88	82.83	77.16	91.02	80.53	85.32	83.64
	72.91	95.29	87.64	92.73	100	82.35	96.55	94.52	95.12	88.33	100	82.35	88.49	92.81	92.48
	65.48	92.30	76.08	74.41	67.54	78.22	92.14	77.56	90	78.18	77	94.13	75.67	84.83	81.47
	50	60.89	81.31	98.53	90.24	91.44	93.33	86.37	88.09	83.96	90.24	97.88	78.73	89.98	86.21
	89.13	91.04	56.17	58.86	76.07	82.18	83.33	70	90.38	72.46	81.12	90.32	75.57	81.27	77.31
	51.32	94.50	81.51	88.86	100	85.45	95.60	86.76	87.38	84.53	50	90.38	83.61	82.44	86.31
Decision Tree	77.51	31.57	65.86	93.78	100.0	41.95	91.52	96.85	85.96	86.34	15.00	76.78	68.44	75.41	55.65
	65.06	89.23	89.81	97.70	53.84	96.22	85.48	99.71	94.17	90.62	100.0	98.07	86.98	94.67	93.66
	97.67	92.71	75.46	93.24	31.57	72.41	96.55	90.56	95.66	88.96	100.0	79.24	77.18	91.83	90.38
	94.23	62.71	99.67	91.94	90.95	100.0	69.01	98.80	61.99	93.87	94.36	54.64	89.91	78.78	82.96
	92.85	89.72	91.64	77.20	86.15	92.88	94.89	84.51	89.10	88.14	88.18	92.09	88.41	89.48	87.77
	95.17	98.28	100.0	94.81	88.88	100.0	95.17	96.54	90.24	99.40	100.0	76.47	96.19	92.95	96.95
	95.62	91.90	91.66	69.54	58.08	93.93	93.57	82.98	75.42	90.16	79.0	85.51	83.46	84.44	84.28
	100.0	62.40	100.0	98.39	96.55	99.23	100.0	94.26	94.04	86.73	68.29	90.84	92.76	89.09	88.96
	88.00	91.83	77.83	50.83	93.71	92.47	26.82	78.26	90.06	95.32	98.97	87.78	82.45	79.54	80.22
N	87.63	96.64	92.24	93.35	66.66	96.15	89.56	92.88	96.39	97.78	100.0	48.07	88.81	87.45	94.34
Naive Bayes Classifier	51.05	82.65	54.86	83.33	82.90	21.71	96.04	87.01	73.84	61.80	78.67	14.73	62.75	68.68	71.90
	034.29	76.48	58.71	89.99	12.27	76.78	91.53	89.22	62.13	51.39	100.0	82.69	58.16	79.49	69.11
	31.73	81.94	54.85	69.88	1.56	47.36	7.86	67.74	57.87	72.90	16.66	50.94	47.88	56.99	68.70
	31.92	64.11	83.70	85.01	89.56	77.71	74.64	76.38	91.86	65.16	48.35	89.63	72.00	74.34	75.00
	49.80	84.80	71.52	61.15	60.22	83.05	97.08	65.06	90.17	59.64	79.52	85.47	68.94	79.49	73.34
	35.91	93.63	66.50	76.63	70.05	88.23	99.31	82.38	84.14	67.19	87.50	88.23	71.52	84.79	78.15
	52.17	89.04	63.68	68.31	17.87	81.41	95.00	58.79	66.2	71.58	79.00	75.57	62.31	74.36	66.54
	18.75	37.79	75.63	80.92	44.47	93.43	100.0	63.14	82.93	35.16	73.17	86.61	52.03	73.97	50.25
	68.12	88.76	51.58	33.91	42.08	74.94	88.61	45.65	89.42	35.16	78.17	84.10	59.87	71.05	61.63
	27.71	91.06	67.08	67.40	20.00	87.17	99.45	62.36	95.49	61.27	50.00	65.38	60.07	72.32	65.42

Figure 34: Confusion Matrix of Decision Tree (Undersampling) - Normal Test/Train

Figure 35: Confusion Matrix of Naive Bayes (Oversampling)
- Normal Test/Train

5.3.2 Random Forest Classification. : Performed hypertuning and found hypertuned parameters.

• Best n estimators: 336

• Best max features: sqrt

• Best max_depth: 50

• Best criterion: entropy

• Best Score: 99.20%

5.3.3 Decesion Tree. : Performed Randomise-Search and found hypertuned parameters.

• criterion: gini

• max_depth: None

• max_leaf_nodes: None

• min_samples leaf : 5

• min_samples split: 2

• Best Score: 98.53%

Figure 36: Confusion Matrix of Logistic Regression (Oversampling) - Normal Test/Train

Figure 37: Confusion Matrix of Random Forest Classification (Oversampling) - Normal Test/Train

5.3.4 Decesion Tree. : Performed Grid-Search and found hypertuned parameters.

• criterion: entropy

• max_depth: None

• max_leaf_nodes: None

• min_samples leaf : 1

• min_samples split: 2

• Best Score: 99.01%

5.3.5 KNN Classification. : Performed Grid-Search(GS) and Randomized-Search(RS) and found hypertuned parameters.

• Metric : minkowski

• Best leaf_size(GS) : 1

• Best p(GS) : 1

• Best n_neighbours(GS): 7

• Best Score(GS): 91.64%

• Best leaf_size(RS): 10

• Best p(RS) : 1

Figure 38: Confusion Matrix of KNN Classification (Oversampling) - Normal Test/Train

Figure 39: Confusion Matrix of Decision Tree (Oversampling) - Normal Test/Train

ullet Best n_neighbours(RS) : 1

• Best Score(GS): 97.37%

6 FUTURE WORK AND CONCLUSION

Machine learning Classification methods, including Naive bayes', Logistic Regression, K-Nearest-Neighbours, Decision Trees, Random Forest produce promising results for air quality index (AQI) level predictions. HyperParameter Tuning has been done using two methods including GridSearchCV and RandomizedSearchCV on every algorithm we used to make our model to predict Air Quality Index. We performed all this after performing Undersampling and Oversampling on dataset for get more accurate result and we found that in each algorithm we applied, **Oversampling of Data** gives more accurate results on multiple classification algorithms along with Better Performance Rate.We also applied K-fold (k=10) Cross

Figure 40: Confusion Matrix of Naive Bayes (Oversampling) - Normal Test/Train

Figure 41: Confusion Matrix for highest accuracy of Logistic Classification done using 10_Kfold (Oversampling)

Figure 42: Confusion Matrix for highest accuracy of Rnadom Forest Classification done using 10_Kfold (Oversampling)

Figure 43: Confusion Matrix for highest accuracy of KNN done using 10_Kfold (Oversampling)

Figure 44: Confusion Matrix for highest accuracy of Decision Tree done using 10_Kfold (Oversampling)

validation to check classification results. As **future work**, we intend to improve and investigate the usage of Neural Networks in predicting Air Quality Index to get more accuracy. Also, we will try to inculcate other boosting algorithms to achieve the results. In this project we have just performed classification algorithms to predict the quality of air but we can also apply regression algorithms to find out the air quality index.

REFERENCES

- [1] Burhan BARAN. "AIR QUALITY INDEX PREDICTION IN BESIKTAS DISTRICT BY ARTIFICIAL NEURAL NETWORKS AND K NEAREST NEIGHBORS". In: Milhendislik Bilimleri ve Tasarım Dergisi 9 1 (2021), pp. 52–63
- Mühendislik Bilimleri ve Tasarım Dergisi 9.1 (2021), pp. 52–63.

 [2] José Juan Carbajal-Hernández et al. "Assessment and prediction of air quality using fuzzy logic and autoregressive models". In: Atmospheric Environment 60 (2012), pp. 37–50.
- [3] Fabio Cassano et al. "A Recurrent Neural Network Approach to Improve the Air Quality Index Prediction". In: International Symposium on Ambient Intelligence. Springer. 2019, pp. 36–44.

Figure 45: Confusion Matrix for highest accuracy of Naive Bayes Classification done using 10_Kfold (Oversampling)

Figure 46: Logistic Classification - Accuracy values vs Number of Runs

Figure 47: Random Forest - Accuracy values vs Number of Runs

Figure 48: Decision Tree - Accuracy values vs Number of Runs

Figure 49: Decision Tree - Accuracy values vs Number of Runs

Figure 50: KNN Classification - Accuracy values vs Number of Runs for Grid Search

Figure 51: KNN Classification - Accuracy values vs Number of Runs for Randomized Search

- [6] Gaganjot Kaur Kang et al. "Air quality prediction: Big data and machine learning approaches". In: International Journal of Environmental Science and Development 9.1 (2018), pp. 8–16.
- [7] Ibrahim Kök, Mehmet Ulvi Şimşek, and Suat Özdemir. "A deep learning model for air quality prediction in smart cities". In: 2017 IEEE International Conference on Big Data (Big Data). IEEE. 2017, pp. 1983–1990.
- [8] Huixiang Liu et al. "Air quality index and air pollutant concentration prediction based on machine learning algorithms". In: Applied Sciences 9.19 (2019), p. 4069.
- [9] Jasleen Sethi and Mamta Mittal. "Ambient air quality estimation using supervised learning techniques". In: EAI Endorsed Transactions on Scalable Information Systems 6.22 (2019).
- [10] A Gnana Soundari, J Gnana Jeslin, and AC Akshaya. "INDIAN AIR QUALITY PREDICTION AND ANALYSIS USING MACHINE LEARNING". In: International Journal of Applied Engineering Research 14.11 (2019).
- [11] Dongwen Zhang, Qi Zhao, and Yunfeng Xu. Prediction of Air Quality Index Based on LSTM Model: A Case Study on Delhi and Houston. Tech. rep. EasyChair, 2019

^[4] J Dhilipan, DB Shanmgam, and Rikhitha Manoj Kumar. "AIR QUALITY ANAL-YSIS BEFORE AND DURING COVID-19 LOCKDOWN". In: ().

^[5] Elia Georgiana Dragomir. "Air quality index prediction using K-nearest neighbor technique". In: Bulletin of PG University of Ploiesti, Series Mathematics, Informatics, Physics, LXII 1.2010 (2010), pp. 103–108.

Table 5: Comparative analysis between prior research works

SNo.	Paper Title	Paper Year	Approach	Results
1	AIR QUALITY	December 2020	The air quality examples	Lockdown has affected the par-
	ANALYSIS		have been moved into two	ticulate matter level of cities
	BEFORE AND		phases: the pre-lockdown	such that it has decreased in
	DURING		stage (1 March to 24 March	most of the cities significantly
	COVID-19		2020) and the post-lockdown	and making the air more suit-
	LOCKDOWN		stage (25 March to 15 April	able to breathe.Outcomes show
	Dhilipan et al.		2020). The null values are	an articulated decrease in air
	[4]		replaced using the accurate	poisons during lockdown par-
			method (calculating mean	ticularly in Delhi and Kolkata;
			using group by series, month,	these two urban communities
			year and replacing null values	are known to be exceptionally
			by it) to increase accuracy.	contaminated urban areas in In-
			Then the BTX and Particulate	dia and on the planet. The out-
			matter and it is updated in	comes will draw in the consid-
			the data. Leftover nan or null	eration of the Indian Govern-
			values with '0' to detect the	ment to consider the most pro-
			fault in cities for recording	ficient method to carefully limit
			pollutants level.Analysis for	vehicular and modern contam-
			Particulate_Matter factor 2015	ination to improve air quality
			to 2020 using Bar Graphs for	which will assist with support-
			different cities.	ing better general wellbeing in
				India.
2	INDIAN AIR	2019	Data is collected from	Model is capable of predicting
	QUALITY PRE-		cpcb.nic.in website and	the current data with 95% accu-
	DICTION AND		developed a model to predict	racy. It will successfully predict
	ANALYSIS US-		the air quality index based on	the upcoming air quality index
	ING MACHINE		historical data of previous years	of any particular data within a
	LEARNING		and predicting over a particular	given region. With this model
	[10]		upcoming year as aGradient	one can forecast the AQI and
			descent boosted multivariable	alert the respected region of the
			regression problem. Outliers	country. Also it a progressive
			are removed from the data by	learning model it is capable of
			boundary value analysis (BVA)	tracing back to the particular
			and Box Plot. Using the Naïve	location needed attention pro-
			Forecast approach, the dataset	vided the time series data of ev-
			is splitted into two parts of first	ery possible region needed at-
			75% and rest 25% data into test	tention.
			and train datasets to identify	
			the huge seasonal variations	
			and trend. Resampling the data	
			month wise is done to remove	
			the seasonal trends and applied	
			linear regression to fit the	
			data. Also used AHP MCDM	
			technique to find of order of	
			preference by similarity to ideal	
			solution.	

Comparative analysis between prior research works Table ${\bf 5}$

SNo.	Paper Title	Paper Year	Approach	Results
3	Air Quality	2010	The training data is gathered by	If the actual and the predicted
	Index Predic-		one of the monitoring station	values are equal, then the er-
	tion using		from the national air quality-	ror is zero. Otherwise, it is dis-
	K-Nearest		monitoring network located in	played the error value: as a neg-
	Neighbor		Ploiesti. The data used in this	ative number if the predicted
	Technique [5]		application were recorded in	value of the air quality index
	reeminque [e]		June 2009. The daily mean val-	is smaller than the actual one,
			ues of these parameters are	or as a positive number if the
			used in order to establish the	prediction gives a value greater
			quality index for each pollu-	than the actual value. The re-
			tant. Only the data recorded in	sults were relatively good, if we
			29 days of June 2009 are avail-	consider that for 19 of the 29 in-
			able for this experiment. This is	stances the prediction error was
			a drawback because the train-	zero. The accuracy of the model
			ing set should have had more	can be improved by taking into
			instances in order to create a	consideration a longer period
			model more accurate and pre-	of time for the model's training
			cise. The experiment has been	set. Among the parameters that
			made using Weka (Waikato En-	have been selected for this ex-
			vironment for Knowledge Anal-	periment, there is a strong cor-
			ysis), a data mining specialized	relation, and, therefore, these
			software. Used 10-fold cross-	can be used in the forecasting
			validation.	process.
4	Ambient Air	July 2019	The air quality dataset of Farid-	It has been observed that en-
1	Quality Esti-	July 2017	abad from CPCB website has	semble techniques outperform
	mation using		been used. Computation of AQI	in the ensemble category and
	Supervised		- Calculation of Sub- Index, For-	Stacking ensemble has high-
	Learning		mation of AQI Noise/missing	est accuracy and F1 score
	Techniques [9]		data has been ignored. Metrics	and lowest error rate. Deci-
			used for AQI Prediction - Pre-	sion Trees show highest accu-
			cision, Recall, Accuracy, Error	racy and error rate compared
			rate, F1 score and ROC curve,	to all other classification tech-
			correlation coefficient, coeffi-	niques. In case of regression
			cient of determination, min	techniques, SVR has the high-
			max accuracy and mean abso-	est value of min max accuracy
			lute percentage error. To pre-	and least value of MAPE. Pre-
			dict the AQI, three classifica-	venting burning of garbage in
			tion techniques namely Deci-	residential areas and using natu-
			sion tree, Naïve Bayes and SVM	ral gas rather than coal in power
			and three ensemble techniques	plants are some of the measures
			namely Random Forest, Voting	that could be used to improve
			and Stacking have been used.	the air quality.
5	Air quality	January 2018	Big data and machine learning	With the advancement of IoT
	prediction:big		techniques has been used in air	infrastructures, big data tech-
	data and ma-		quality forecasting. Quality of	nologies, and machine learning
	chine learning		air has been evaluated using ar-	techniques, real-time air quality
	approaches [6]		tificial intelligence techniques.	monitor and evaluation is desir-
			Big data model is used to predict	able for future smart cities. Pa-
			the level of ground level ozone.	per reports the recent literature
			Forecast the reading of an air	study, reviews and compares
			quality monitoring station for	current research work on air
			0-48 hours using a data driven	quality evaluation based on big
			method. Enable the determina-	data analytics, machine learn-
			tion of the regional source of	ing models and techniques. It
			air pollution using sensor and	highlights some observations
			satellite data.	on future research issues, chal-
			20 ****	lenges, and needs.
		1		0,

Comparative analysis between prior research works Table 5

SNo.	Paper Title	Paper Year	is between prior research work Approach	Results
6	Air Quality In-	September 2019	2 Datasets - Beijing Air Qual-	Experimental results showed
	dex and Air Pol-	September 2017	ity Dataset (December 2013 to	that the SVR-based model per-
	lutant Concen-		August 2018), is from the Bei-	formed better in the prediction
	tration Predic-		jing Municipal Environmental	of the AQI (RMSE = 7.666, R
	tion Based on		Monitoring Center(has 1738 in-	2 = 0.9776, and $r = 0.9887$),
	Machine Learn-		stances), and air quality record-	and the RFR-based model per-
	ing Algorithms		ing that contains the responses	formed better in the predic-
	[8]		of a gas multi-sensor device de-	tion of the NOX concentra-
	[0]		ployed on a field in an Ital-	tion (RMSE = 83.6716, R 2 =
			ian city. The dataset contains	0.8401, and $r = 0.9180$). With
			9358 instances of hourly aver-	the increasing number of sam-
			aged responses from an array	ples, the time complexity of the
			of five metal oxide chemical sen-	SVR model increased cubically.
			sors embedded in an air quality	Therefore, the SVR model is not
			chemical multi-sensor device.	suitable for processing a large
			Data were recorded from March	number of samples. This study
			2004 to February 2005. Used	established two prediction mod-
			support vector regression (SVR)	els based on different prediction
			and random forest regression	scenarios, which improved the
			(RFR) to build regression mod-	prediction accuracy of air indi-
			els for predicting the Air Qual-	cators and provides guidance
			ity Index (AQI) in Beijing and	for modeling and analyzing ur-
			the nitrogen oxides (NOX) con-	ban air quality.
			centration in an Italian city. The	ban an quanty.
			root-mean-square error (RMSE),	
			correlation coefficient (r), and	
			coefficient of determination (R	
			2) were used to evaluate the	
			performance of the regression	
			models. HeatMap- correlation	
			coefficients for air pollution in-	
			dicators of (a) Beijing and (b) an	
			Italy city.	
7	A Recurrent	June 2019	Using two different Recurrent	Two different types of exper-
'	Neural Net-	June 2017	Neural Network models, they	iments have been conducted:
	work Approach		have performed two tests to	the former using as test some
	to Improve the		prove that it is possible to pre-	random data from the datasets,
	Air Quality In-		dict the level of the pollutants	the latter letting the RNN to
	dex Prediction		in a specific area by using the	blindly predict the behaviour of
	[3]		data coming from the surround-	a specific area knowing the be-
			ing area. By using this approach	haviour of the neighbour one.
			on both the weather and air	Results shows that the RNN is
			stations on the territory it is	able to predict with a very high
			possible to have alerts many	accuracy the CAQI level of ran-
			days ahead on the pollution lev-	dom days while the "blind pre-
			els. To avoid the overfitting and	diction" results are promising.
			the random weight initializa-	diction results are promising.
			tion problem, we have repeated	
			the training 20 times randomly	
			choosing the training and test-	
			ing data.	
L			mg uata.	

Comparative analysis between prior research works Table 5

SNo.	Paper Title	Paper Year	Approach	Results
8	Prediction of	2019	uses data provided by the en-	Recent advances in the devel-
	air quality	2019	vironmental protection depart-	opment of deep learning mod-
	index based on		ment to predict Air Quality In-	els have led to a rapid in-
	Lstm [11]		dex (AQI) through temperature,	crease in their application in
	Louin [11]		PM2.5, PM10, SO 2, wind di-	academic and industrial set-
			rection, NO 2, CO and O3 pa-	tings. the greatest environmen-
			per proposes a prediction model	tal concern is air pollution in
			of environmental quality based	the form of fine PM, which con-
			on Long Short Term Memory	sists of liquid and solid particle
			(LSTM). Introduced the back-	compounds that are dangerous
			ground, technical characteris-	to human health. According the
			tics, development status and	experimental results, we have
			problems of air environment	optimized the LSTM and with
			monitoring. It will introduced	a learning rate of 0.01, epoch
			the environmental prediction	of 100, and batch sizes of 32,
			model. AQI prediction by using	64, 128, and 256. For the pre-
			LSTM and analyze the error of	diction result, the LSTM model
			the prediction results.	had minimum RMSE values of
			1	11.113for PM10 and 12.174 for
				PM2.5 at a batch size of 32. At
				the same time, the DAEs model
				had minimumRMSE values of
				15.038 for PM10 and 15.431 for
				PM2.5 at a batch size of 64.
				Also compared thetotal average
				RMSE of prediction of PM10
				and PM2.5, the LSTM prediction
				model were more accuratethan
				the DAE model.
9	Assessment	2012	In the proposed SD method,	In the first step the air quality
	and prediction		wavelet decomposition (WD)	parameters are predicted, and in
	of air quality		is chosen as the primary de-	the second step the fuzzy infer-
	using fuzzy		composition technique to gen-	ence system assesses predicted
	logic and au-		erate a high frequency detail	values having as a result a pre-
	toregressive		sequence WD(D) and a low	dicted air quality index. Three
	models [2]		frequency approximation se-	months of measurements were
			quence WD(A). Long short-	extracted from data base (Janu-
			term memory (LSTM) neural	ary, February and March, 2008).
			network with good ability of	In other words, for one day of in-
			learning and time series mem-	formation, the next 24 h can be
			ory is applied to make it easy to	predicted using the AR model,
			be predicted. The proposed BA-	and in the second step the
			LSSVM model considering air	predicted values are processed
			pollutant factors is applied to	by the fuzzy inference system,
			forecast WD(A). The proposed	calculating the predicted AQI
			optimal-hybrid model outper-	(P-AQI),inference system, cal-
			forms other hybrid models.	culating the predicted AQI (P-
				AQI). The P-AQI performances
				were evaluated using correla-
				tion coefficient (R), mean er-
				ror (ME), root mean square er-
				ror (RMSE) and normalized root
				mean square error (NRMSE).

Comparative analysis between prior research works Table 5

SNo.	Paper Title	Paper Year	Approach	Results
10	A deep learn-	2017	In this paper, a novel deep learn-	proposed model have the lowest
	ing model for		ing model is proposed for ana-	error rates in Yellow and Green
	air quality pre-		lyzing IoT smart city data. The	alarms. In red alarms, it has a
	diction in smart		dataset contains 8 features in-	bit higher error rates than SVR.
	cities[7]		cluding ozone, particulate mat-	In this paper, they proposed
			ter, carbon monoxide, sulfur	a DL model to overcome air
			dioxide, nitrogen dioxide, lon-	pollution problems in SC. We
			gitude, latitude and timestamp	firstly configured the network
			was used for experiment. The	with the best hyper parame-
			dataset has 17568 samples that	ters according to the results ob-
			are collected at five-minute in-	tained from the experiments.
			tervals. Each sample value is	Then, the proposed model is
			given in the form of EPA's AQI	trained, and evaluated with
			standard. In this study, ozone	widely used RMSE and MAE
			and nitrogen dioxide pollutants	metrics. Consequently, the ob-
			are selected for air quality pre-	tained results show that the em-
			diction. Training set %: 69.5 and	ployment of the LSTM based
			test set %: 30.5. They proposed	prediction model to the IoT data
			a novel model based on Long	is effective and promising.
			Short Term Memory (LSTM)	
			networks to predict future val-	
			ues of air quality in a smart city.	

Baseline Comparison Table

	Dascinic comparison rank				
SNo.	Algorithm	Paper used for Comparison	Performance	Performance	
			Rate of algo	Rate in our	
			applied in	Project	
			Paper		
1	KNN Classifica-	AIR QUALITY INDEX PREDIC-	92.86% (n	90.78%	
	tion	TION IN BESIKTAS DISTRICT	_neighbours is	(n_neighbours	
		BY ARTIFICIAL NEURAL NET-	5)	is 5)	
		WORKS AND K NEAREST			
		NEIGHBORS [1]			
2	Decision Trees	Ambient air quality estimation	95.5 %	96.11 %	
		using supervised learning tech-			
		niques [9]			
3	Naive Bayes	Ambient air quality estimation	73.93 %	72.28 %	
		using supervised learning tech-			
		niques [9]			
4	Random Forest	Ambient air quality estimation	99.3 %	97.53%	
		using supervised learning tech-			
		niques [9]			
5	Logistic Regres-	None	None	79.43%	
	sion				