فاطمه نائينيان 810198479

يسنا رستم بيك 810198396

👃 طراحی مسیر داده به شکل زیر است:

برای اضافه کردن hazard unit به شکل زیر عمل میکنیم.

یک component اضافه میکنیم تا در صورتی که هزارد داشتیم ، سیگنال ها را صفر کند.

👃 طراحی کنترلر به شکل زیر است:

4	RegDst	SelWrite	WriteSrc	RegWrite	Alusrc	branch	jmp	JorJr	AluOp	MemRead	MemWrite	MemtoReg
Slti	0	0	0	1	1	0	0	0	11	0	0	0
Addi	0	0	0	1	1	0	0	0	01	0	0	0
Jr	-	-	-	0	-	0	1	1		0	0	-
Jal	-	1	1	1	-	0	1	0		0	0	-
J	-	-	-	0	-	0	1	0		0	0	-
Beq	-	-	-	0	0	1	0		10	0	0	-
Lw	0	0	0	1	1	0	0	0	01	1	0	1
Sw	-	-	-	0	1	0	0	0	01	0	1	-
R-T	1	0	0	1	0	0	0	0	00	0	0	0

👃 طراحی کنترلر ALU به شکل زیر است:

	OP	Func	AluO	D .
R-T	00	0000010	000	And or Add Sub Sit
la/Sw/adi	01		010	Add
beg	10		110	Sub
SITI	11		111	SIT

👃 فرمت ورودی دستور ها به شکل زیر است :

Instruction format
add, sub, and, or, slt
lw, Sw, slti, addi

J, Jal
beg

Jr

_	25 21 20								
୍ବ	rs	rt r	4	func					
	625 2120		adr or	data	0				
31	26 25				0				
opc adr									
<u> </u>	2625 212		5		0				
000	5 (5)	(t		L					
-	2625 2	1							
op	c rt								

👃 برای پیدا کردن بزرگترین عنصر ارایه به شکل زیر عمل میکنیم:

lw R9, 1000(R0) add R10, R9, R0 add R11, R0, R0 Loop: slti R12, R11, 20 beg R12, R0, END add R14, R11, R11 add R14, R14, R14 lw R9, 1000(R14) slt R12, R9, R10 beg R12, R0, SKIP add R10, R9, R0 add R13, R11, R0 SKIP: addi R11, R11, 1 J Loop **END**

sw R9, 2000(R0)

sw R13, 2004(R0)

👃 ابتدای شکل موج دریافتی که میتوان در شکل زیر مشاهده می شود:

≨ 1 →	Msgs															
√TB/dk	0															
√ /TB/rst	0	لــــــــــــــــــــــــــــــــــــــ														
II → /TB/PCOut	28	-(0 (4	(8		12	(16	20	24	(28	(32	(36	(40	(44	48		52
II → /TB/InstOut	000000000000000	(00000	0 (00000	000000000	0000	10 (0001	01 (0000	0000000000	0000000000	(00	0000 (0000	0000 (0000	11 (0000	00 (0001	01011000000	0 (000
⊕ - ∜ /TB/DMReadData	0	-{0		5447	72 (0										(54477	2 (0
→ /TB/DMAddress	000000000000000	(000000000	0000000000	0 (0000	0000	0000 (0000	0000 (0000	0000 (0000	00000000000	(00	00000000000	000000000	0000000		(00000	0 (000
-/ /TB/DMWriteData	0	-(0													54477	2
/TB/MemRead	St0	_														\lnot
/TB/MemWrite	St0															

همانطور که در شکل بالا مشاهده میکنید از حافظه 1000 شروع به خواندن می کند و برای خواندن از این حافظه سیگنال MemRead را فعال میکند. سپس داده درون این بخش از حافظه استخراج می شود.

انتهای شکل موج دریافتی که میتوان در شکل زیر مشاهده می شود:

حال به پایان برنامه میرسیم. میبینیم اخرین ارایه از خانه 1076 برداشته شده است و مراحل ما برای پیدا کردن بزرگترین ارایه به پایان می رسد. در نهایت کوچکترین عدد یعنی عدد 2147221503- را در حافظه 2000 مینویسیم و اندیس ان یعنی 10 را نیز در خانه 2004 حافظه مینویسیم.