Développement 29. L'enveloppe convexe du groupe orthogonal

Soit $n \ge 1$ un entier non nul. On note $||| |||_2$ la norme subordonnée à la norme euclidienne $||| ||_2$ sur $\mathcal{M}_n(\mathbf{R})$. Pour une partie $A \subset \mathcal{M}_n(\mathbf{R})$, on note Conv $A \subset \mathcal{M}_n(\mathbf{R})$ son enveloppe convexe. On considère le groupe orthogonal $O_n(\mathbf{R}) \subset \mathcal{M}_n(\mathbf{R})$.

Théorème 1. L'enveloppe convexe du groupe $O_n(\mathbf{R})$ est égale à la boule unité fermée $\mathscr{B} \subset \mathscr{M}_n(\mathbf{R})$ pour la norme $||| |||_2$.

Preuve On sait que toute matrice orthogonale est de norme une, donc $O_n(\mathbf{R}) \subset \mathscr{B}$. Comme la boule \mathscr{B} est convexe, on obtient une première inclusion

$$C := \operatorname{Conv} O_n(\mathbf{R}) \subset \mathscr{B}.$$

On souhaite montrer l'inclusion réciproque. Pour cela, raisonnons par l'absurde et supposons qu'on dispose d'une matrice $M \in \mathcal{B} \setminus C$. D'après un corollaire du théorème de Hahn-Banach analytique (théorème I.7 de [1]), comme l'ensemble $\{M\}$ est convexe compact et l'ensemble C est convexe compact d'après le théorème de Carathéodory, il existe une forme linéaire continue $\varphi \in \mathcal{M}_n(\mathbf{R})'$ telle que

$$\forall B \in C, \qquad \varphi(B) < \varphi(M). \tag{1}$$

Muni du produit scalaire défini par l'égalité

$$\langle A, B \rangle := \operatorname{Tr}({}^{\mathsf{t}}AB), \qquad A, B \in \mathscr{M}_n(\mathbf{R}),$$

l'espace $\mathcal{M}_n(\mathbf{R})$ est euclidien. Le théorème de Riesz assure alors qu'il existe une matrice $A \in \mathcal{M}_n(\mathbf{R})$ telle que

$$\forall B \in \mathscr{M}_n(\mathbf{R}), \qquad \varphi(B) = \operatorname{Tr}(AB) = \operatorname{Tr}(BA).$$
 (2)

Montrons qu'il existe une matrice $U \in \mathcal{O}_n(\mathbf{R})$ telle que $\varphi(M) \leqslant \varphi(U)$ ce qui contredira l'inégalité (1). D'après le théorème de décomposition polaire, la matrice A peut écrire sous la forme A = OS avec $O \in \mathcal{O}_n(\mathbf{R})$ et $S \in \mathscr{S}_n^+(\mathbf{R})$. D'après le théorème spectral, il existe une base orthonormée (e_1, \ldots, e_n) de \mathbf{R}^n composées de vecteurs propres de la matrice S. Pour chaque indice $i \in [1, n]$, on note $\lambda_i \geqslant 0$ la valeur propre associé au vecteur propre e_i . L'égalité (2) permet alors d'obtenir

$$\varphi(M) = \text{Tr}(MA) = \sum_{i=1}^{n} \langle MAe_i, e_i \rangle$$
$$= \sum_{i=1}^{n} \langle MOSe_i, e_i \rangle$$
$$= \sum_{i=1}^{n} \lambda_i \langle MOe_i, e_i \rangle$$

et l'inégalité de Cauchy-Schwarz donne

$$|\varphi(M)| \leqslant \sum_{i=1}^{n} \lambda_i |\langle MOe_i, e_i \rangle|$$

$$\leq \sum_{i=1}^{n} \lambda_{i} \|MOe_{i}\|_{2} \|e_{i}\|_{2}
\leq \sum_{i=1}^{n} \lambda_{i} \|M\|_{2} \|O\|_{2}.$$

Comme $|||M|||_2 \le 1$ et $|||O|||_2 = 1$, on trouve

$$|\varphi(M)| \leqslant \sum_{i=1}^{n} \lambda_i.$$

Par ailleurs, on calcul

$$\varphi({}^{\mathsf{t}}O) = \operatorname{Tr}({}^{\mathsf{t}}OA) = \operatorname{Tr}(S) = \sum_{i=1}^{n} \lambda_i.$$

En particulier, on conclut l'inégalité $\varphi({}^tO) \geqslant \varphi(M)$. Ceci contredit ainsi l'inégalité (1) puisque ${}^tO \in \mathcal{O}_n(\mathbf{R}) \subset C$. On en déduit l'autre inclusion $\mathscr{B} \subset C$ ce qui conclut le théorème.

Haïm Brézis. Analyse fonctionnelle. 2e tirage. Masson, 1983.

^[2] Lucas Isenmann et Timothée Pecatte. L'oral à l'agrégation de mathématiques. Ellipses, 2017.