# **Редактирование свойств блока и тестирование программы**

В этой главе

5

После того как Вы создали и отредактировали блоки данных и логические блоки, Вы должны проверить и отредактировать свойства блока. Они содержат информацию, которая может помочь Вам в идентификации блока и в поиске неисправностей.

Редактор FUP позволяет тестировать отдельный блок при его исполнении в программе пользователя на CPU. Вы можете следить на экране за потоком сигнала внутри сегмента. Этот тест, называемый статусом программы, поможет Вам проверить последовательность работы программы и устранить ошибки.

# Обзор главы

| В разделе | Вы найдете                                                    | на стр. |  |
|-----------|---------------------------------------------------------------|---------|--|
| 5.1       | Редактирование свойств блока                                  | 5–2     |  |
| 5.2       | Тестирование программы на FUP. Обзор                          | 5-5     |  |
| 5.3       | Настройка окна статуса программы                              | 5–6     |  |
| 5.4       | Установка условия запуска                                     | 5–7     |  |
| 5.5       | Выбор среды тестирования и запуск/остановка статуса программы | 5–8     |  |

# 5.1 Редактирование свойств блока

### Обзор

В свойствах блока хранится дополнительная информация о блоке. Здесь Вы при необходимости можете задать имя, принадлежность к семейству, версию и автора блока. Свойства включают также другие статистические данные и дополнительную информацию, которая автоматически вносится системой и не может редактироваться пользователем (см. рис. 5–1). Вы можете также назначить системные атрибуты блоку.

Свойства блока дают Вам важную информацию о виде блока, необходимой памяти и времени последнего изменения. Эта информация может оказаться полезной при прослеживании таких проблем, как недостаток памяти и конфликт меток времени.

#### Последовательность действий

Свойства блока можно редактировать с помощью диалогового окна.

- В SIMATIC Manager выделите блок и выберите команду меню Edit → Object Properties [Редактировать → Свойства объекта].
- Если блок уже открыт в редакторе FUP, выберите File → Properties [Файл → Свойства] в строке меню.



Рис. 5-1. Диалоговое окно "Свойства" для блоков в редакторе FUP

На вкладках "General – Part 1" ["Общее - часть 1"], "General – Part 2" ["Общее - часть 2"] и "System Attributes" ["Системные атрибуты"] Вы можете сделать ряд записей, включая следующие:

#### Имя и семейство блока

Блоки, для которых указаны имя и семейство, легче классифицировать. Например, Вы можете отнести некоторые блоки к семейству "Системы управления с замкнутым контуром", показав тем самым, что все они используются для программирования систем управления с замкнутым контуром.

Преимущество этой информации становится очевидным, когда впоследствии блок вызывается в разделе операторов другого блока FUP: семейство и вид этого блока отображается в окне списка "Program Elements" ["Элементы программы"] при выборе блока, так что Вы можете легко определить назначение блока.

#### Версия блока

Эта информация показывает, какая версия STEP 7 была использована для создания блока. Блоки версии 1 должны быть преобразованы, прежде чем они могут быть включены в программу версии 3. Этого можно достичь в SIMATIC Manager с помощью команды меню File  $\rightarrow$  Open Version 1 Project [Файл  $\rightarrow$  Открыть проект версии 1].

Блоки версии 1 не могут использоваться совместно с мультиэкземплярами. Они должны быть декомпилированы в исходные файлы, а затем скомпилированы в блоки версии 3.

За дополнительной информацией обращайтесь к Руководству пользователя /231/.

## Атрибуты блока

Атрибуты блока на вкладке "General - Part 2" ["Общее - часть 2"] включают следующие записи:

- Атрибут "The data block is write-protected in the programmable controller" ["Блок данных защищен от записи в программируемом контроллере"] означает, что блок предназначен только для чтения. Это полезно для блоков данных, содержащих постоянные значения, которые не должны изменяться. Этот DB должен существовать как исходный файл на AWL.
- Атрибут "Know-How Protection" ["Защита ноу-хау"] означает защищенный блок и влияет следующим образом:
  - Раздел операторов нельзя просмотреть.
  - В таблице описания переменных не отображаются временные и статические переменные.
  - Блок не может быть декомпилирован в исходный файл на AWL.
  - Свойства блока не могут редактироваться.
- Атрибут "Standard Block" означает защищенный стандартный блок фирмы Siemens. Этот атрибут появляется в нижнем левом углу вкладки.
- Атрибут "Unlinked" ["Несвязанный"] появляется только у блоков данных. Он указывает, что блок данных не может быть загружен из загрузочной памяти в рабочую память СРU. К блокам данных в загрузочной памяти можно обратиться только с помощью SFC, которые копируют содержимое блоков данных в рабочую память. Этим достигается более эффективное использование рабочей памяти, так как она содержит во время исполнения программы только нужные данные.

### Указание

Такие атрибуты, как защита блока, защита от записи и несвязанность, могут быть добавлены к блоку только в том случае, если он программируется как исходный файл на AWL. Если Вы создали свой блок в FUP, то Вы должны перейти в представление на языке программирования AWL с помощью команды меню View → STL [Вид → Список команд]. Затем Вы должны преобразовать блок в исходный файл, прежде чем ввести эти атрибуты. После компиляции исходных файлов в блоки эти блоки будут защищены в соответствии с атрибутами, которые Вы выбрали.

За более подробной информацией обращайтесь к Справочному руководству по AWL /232/.

# Системные атрибуты для блоков

Для конфигурирования управления процессом и диагностики процесса Вы можете назначить следующие атрибута на вкладке "System Attributes" ["Системные атрибуты"].

Таблица 5-1. Системные атрибуты для конфигурирования управления процессом

| Атрибут           | Значение                              | Когда назначать атрибут                                                                                            | Допустимый тип блока |
|-------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------|
| S7_m_c            | true, false<br>[истина,<br>ложь]      | Если блок должен управляться или наблюдаться с панели оператора.                                                   | FB, SFB              |
| S7_tasklist       | 'taskname1',<br>'taskname2',<br>ит.д. | Если блок должен вызываться в организационных блоках, иных, чем циклические ОВ (например, в ОВ ошибок или запуска) | FB, SFB, FC, SFC     |
| S7_block-<br>view | big, small<br>[большой,<br>маленький] | Для указания, должен ли блок отображаться в большом или малом формате.                                             | FB, SFB, FC, SFC     |

Таблица 5-2. Системные атрибуты для диагностики процесса

| Атрибут             | Значение                         | Когда назначать атрибут                                                                                                      | Допустимый тип блока |
|---------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------|
| S7_pdiag            | true, false<br>[истина,<br>ложь] | Если блок должен генерировать информацию, имеющую значение для диагностики процесса.                                         | FB, FC, OB, DB       |
| S7_pdiag_<br>unit   | true, false<br>[истина,<br>ложь] | Если блок должен генерировать информацию, имеющую значение для диагностики процесса, и должна наблюдаться единица измерения. | UDT                  |
| S7_pdiag_<br>motion | true, false<br>[истина,<br>ложь] | Если блок должен генерировать информацию, имеющую значение для диагностики процесса, и должно наблюдаться движение.          | UDT                  |

# 5.2 Тестирование программы на FUP. Обзор

## Метод тестирования

Программу на FUP можно тестировать визуально, отображая поток сигнала внутри сегмента блок. Отображение состояния программы обновляется циклически.

## Предварительные условия

Состояние программы можно отобразить только при выполнении следующих условий:

- Блок был сохранен и загружен в СРU без ошибок.
- СРU работает и исполняет программу пользователя.
- Блок открыт в режиме online.

### Основная последовательность действий

На рис. 5–2 показана основная последовательность действий для наблюдения статуса программы:



Рис. 5-2. Процедура тестирования логических блоков в FUP

# 5.3 Настройка окна статуса программы

### Последовательность действий

Перед запуском статуса программы в FUP Вы можете выбрать по своему желанию способ отображения потока сигналов, используя команду меню **Options**  $\rightarrow$  **Customize** [Параметры  $\rightarrow$  Настроить] для открытия вкладки "LAD\FBD" (в немецкоязычном варианте "KOP/FUP").



Рис. 5-3. Настройка отображения статуса программы в FUP

На этой вкладке Вы выбираете цвет и толщину линии для двух возможных результатов:

- "Status not fulfilled" ["Статус не выполняется"]: условия не выполнены. Поток сигнала отсутствует (пунктирная линия).
- "Status fulfilled" ["Статус выполняется"]: условия выполнены. Сигнал проходит (сплошная линия).

# 5.4 Установка условия запуска

Фон

Установкой условий запуска Вы выбираете среду вызова тестируемого блока. Тестирование не производится, пока не выполнено условие запуска.

## Последовательность действий

Условия запуска могут быть установлены вызовом команды меню **Debug**  $\rightarrow$  **Call Environment** [Отладка  $\rightarrow$  Среда вызова].



Рис. 5-4. Установка условий запуска

# Настройки условий запуска и их значения

Три возможные настройки имеют следующие значения:

- Условия отсутствуют: Среда вызова тестируемого блока не имеет значения.
  Это значит, что если блок вызывается в процессе выполнения программы из разных точек, то Вы не сможете установить вызов, к которому относится статус.
- Путь вызова: Это путь, используемый для вызова блока, чтоб запустить отображение статуса. Вы можете ввести три уровня вложения блоков, прежде чем будет достигнут блок, подлежащий тестированию.
- Открыть блоки данных: В этом случае Среда вызова определяется одним или двумя блоками данных. Отображение статуса запускается, если тестируемый в данный момент блок вызывается в связке с одним из этих двух блоков данных.

# 5.5 Выбор среды тестирования и запуск/остановка статуса программы

## Выбор среды тестирования

Имеется два способа тестирования программы в режиме online.

- Если установлена среда тестирования "process" ["процесс"], то Ваша программа тестируется в режиме online в работающем процессе. Отображение состояния операторов в программных циклах, выполняемых более одного раза в цикле обработки программы процессором, прерывается в точке возврата и не возобновляется, пока этот цикл виден в окне статуса. Этот режим занимает минимально возможную часть времени цикла обработки программы.
- В среде тестирования "laboratory" ["лаборатория"] Ваша программа также тестируется в режиме online, но в лабораторных условиях. В этом случае состояние операторов в программных циклах, выполняемых более одного раза в цикле обработки программы процессором, отображается в конце каждого цикла. Этот режим может занимать значительную часть времени цикла обработки программы, зависящую от числа итераций цикла и количества тестируемых команд.

Среду тестирования можно выбрать с помощью команды меню **Debug**  $\rightarrow$  **Test Environment**  $\rightarrow$  **Laboratory/Process** [Отладка  $\rightarrow$  Среда тестирования  $\rightarrow$  Лаборатория/Процесс].

# Запуск и остановка статуса программы

Статус программы запускается и останавливается с помощью команды меню **Debug →Monitor** [Отладка → Наблюдение]. Статус программы отображается только для области. видимой в данный момент в редакторе.



Рис. 5-5. Статус программы в FUP (пример)

### Контроль времени цикла

Активизация режима тестирования увеличивает время цикла. Если установленное время цикла превышено, то CPU переходит в состояние STOP, если Вы не запрограммировали OB 80.

Вы можете отобразить и проконтролировать установленное в данный момент время цикла, используя команду меню **PLC — Module Information** [Контроллер — Информация о модуле]. Если необходимо, Вы можете изменить максимальное время цикла в свойствах CPU для целей тестирования при назначении параметров аппаратного обеспечения.