DATA PREPARATION AND FEATURE ENGINEERING

Lecture 4

MALI, 2025

DATA PREPARATION AND FEATURE ENGINEERING

- Overview
- Missing data
- Outliers
- Scaling
- String data
- Feature engineering

A MACHINE LEARNING PROJECT

A MACHINE LEARNING PROJECT

Feedback

THE IMPORTANCE OF DATA PREPARATION

Garbage in data Garbage out model

THE TRAVELING SALESPERSONS

Salesperson ID	Years In Business	Total Sales (\$)	Region	Gender	Avg Discount (%)	Customer Satisfaction	Training Hours
I	2	200000	North	Male	NaN	3.5	400
2	5	550000	NaN	Female	NaN	4.0	50
3	10	980000	West	Male	14.3	NaN	10
4	I	80000	North	Female	NaN	5.0	100
5	15	1600000	North	Male	NaN	4.5	10
6	7	900000	East	Female	NaN	4.2	5
7	20	2100000	South	Male	10.1	2.5	200

This data set is not ready

THE TRAVELING SALESPERSONS

Years In Business	Total Sales (\$)	Region	Gender	Avg Discount (%)	Customer Satisfaction	Training Hours
2	200000	North	Male	NaN	3.5	400
5	550000	NaN	Female	NaN	4.0	50
10	980000	West	Male	14.3	NaN	10
1	80000	North	Female	NaN	5.0	100
15	1600000	North	Male	NaN	4.5	10
7	900000	East	Female	NaN	4.2	5
20	2100000	South	Male	10.1	2.5	200

Feature selection: get rid of salesperson ID

DATA PREPARATION AND FEATURE ENGINEERING

- Overview
- Missing data
- Outliers
- Scaling
- String data
- Feature engineering

MISSING VALUES

Years In Business	Total Sales (\$)	Region	Gender		Avg Discount (%)	Customer Satisfaction	Training Hours
2	200000	North	Male	/	NaN	3.5	400
5	550000	NaN	Female		NaN	4.0	50
10	980000	West	Male		14.3	NaN	10
I	80000	North	Female		NaN	5.0	100
15	1600000	North	Male		NaN	4.5	10
7	900000	East	Female		NaN	4.2	5
20	2100000	South	Male		10.1	2.5	200

if a feature is mostly NaNs, get rid of it (~>20%)

MISSING VALUES

Years In Business	Total Sales (\$)	Region	Gender	Customer Satisfaction	Training Hours
2	200000	North	Male	3.5	400
5	550000	NaN	Female	4.0	50
10	980000	West	Male	NaN	10
1	80000	North	Female	5.0	100
15	1600000	North	Male	4.5	10
7	900000	East	Female	4.2	5
20	2100000	South	Male	2.5	200

Importe (replace)
with a likely value
- numeric: mean
- categorical: mode

MISSING VALUES

Years In Business	Total Sales (\$)	Region	Gender	Customer Satisfaction	Training Hours
2	200000	North	Male	3.5	400
5	550000	North	Female	4.0	50
10	980000	West	Male	3.95	10
I	80000	North	Female	5.0	100
15	1600000	North	Male	4.5	10
7	900000	East	Female	4.2	5
20	2100000	South	Male	2.5	200

STRATEGIES FOR MISSING VALUES

MICE: MULTIPLE IMPUTATIONS BY CHAINED EQUATIONS

A	В	С
	4.2	7.8
3.1	3.1	
4.3		6.3
9.8	5.5	8.1

impute with mean

A	В	С
5.7	4.2	7.8
3.1	3.1	7.4
4.3	4.3	6.3
9.8	5.5	8.1

A	В	C
	4.2	7.8
3.1	3.1	7.4
4.3	4.3	6.3
9.8	5.5	8.1

linear regression with A as target

A	В	С
6.3	4.2	7.8
3.1	3.1	7.4
4.3	4.3	6.3
9.8	5.5	8.1

B back to missing

A	В	С
6.3	4.2	7.8
3.1	3.1	7.4
4.3		6.3
9.8	5.5	8.1

linear regression with B as target

A	В	С
6.3	4.2	7.8
3.1	3.1	7.4
4.3	4.4	6.3
9.8	5.5	8.1

C back to missing

and so on

WHY IS DATA MISSING?

Missing Not At Random **MNAR**

Probability of missing X depends on the value of X

People w/ large alcohol intake less likely to report alcohol intake IL BADO we need more data

Missing At Random MAR

Probability of missing X does not depend on the value of X, but may depends on other features

Older people less likely Inadvertent shipping to report alcohol intake of question to report alcohol intake Derved imputation (regression)

Missing Completely At Random **MCAR**

Probability of missing X does not depend on any features at all

Simple or derived imputation 14

DATA PREPARATION AND FEATURE ENGINEERING

- Overview
- Missing data
- Outliers
- Scaling
- String data
- Feature engineering

OUTLIERS

TRANSFORMING SKEWED DATA

Transform right-skewed data with log(x) or \sqrt{x}

TRANSFORMING SKEWED DATA

3.5 5.99

ale 4.0 3.91

3.95 2.30

ale 5.0 4.61

4.5 2.30

ale 4.2 1.61

2.5 5.30

Customer

Satisfaction

log(Training

Hours)

Such data transformations may be relevant for skewed data even if there are no outliers!

THE BOXPLOT QUIZ

True or False?

- 1. Girls are, on average, taller. Fムタ
- 2. Girls have a higher spread. False
- 3. The shortest person is a girl. \rule
- 4. The tallest person is a boy. True
- 5. Both datasets are left skewed. True
- 6. The average height of boys is 172 cm. False
- 7. Half of the girls are between 155 and 170 cm. False

- 8. The average height of boys is less than the median height. True
- 9. Exactly half of the boys are shorter than 172 cm. True
- 10. Exactly half the girls are taller than 165 cm. False
- II. Exactly ¾ of the girls are taller than 155 cm. True
- 12. Exactly 3/4 of the boys are shorter than 180 cm. True
- 13. The population displayed is ethnic Danish. not enough info

DATA PREPARATION AND FEATURE ENGINEERING

- Overview
- Missing data
- Outliers
- Scaling
- String data
- Feature engineering

SCALING

Years In Business	Total Sales (\$)	Region	Gender	Customer Satisfaction	log(Training Hours)
2	200000	North	Male	3.5	5.99
5	550000	North	Female	4.0	3.91
10	980000	West	Male	3.95	2.30
1	80000	North	Female	5.0	4.61
15	1600000	North	Male	4.5	2.30
7	900000	East	Female	4.2	1.61
20	2100000	South	Male	2.5	5.30

many algorithms (hNN, Ridge, Lasso) depend on the scale of data

ideal when
there when
fixed bandares

DIFFERENT TYPES OF SCALING

from sklearn.preprocessing import MinMaxScaler

$$X' = \frac{X - \min(X)}{\max(X) - \min(X)}$$

all values between 0 and 1

from sklearn.preprocessing import StandardScaler

the scaled feature has $\bar{x}'=0$ and $\sigma=1$

SCALING

Years In Business	Total Sales (\$)	Region	Gender	Customer Satisfaction	log(Training Hours)
-0.89	-1.06	North	Male	-0.61	1.46
-0.45	-0.54	North	Female	0.07	0.13
0.30	0.09	West	Male	0.00	-0.91
-1.04	-1.23	North	Female	1.42	0.57
1.04	1.01	North	Male	0.75	-0.91
-0.74	-0.02	East	Female	0.34	-1.35
1.79	1.74	South	Male	-1.97	1.02

DATA PREPARATION AND FEATURE ENGINEERING

- Overview
- Missing data
- Outliers
- Scaling
- String data
- Feature engineering

DEALING WITH STRINGS

Years In Business	Total Sales (\$)	Region	Gender	Customer Satisfaction	log(Training Hours)
-1.05	-1.06	North	Male	-0.61	1.46
-0.58	-0.54	North	Female	0.07	0.13
0.20	0.09	West	Male	0.00	-0.91
-1.20	-1.23	North	Female	1.42	0.57
0.98	1.01	North	Male	0.75	-0.91
-0.11	-0.02	East	Female	0.34	-1.35
1.76	1.74	South	Male	-1.97	1.02

WHAT MAY STRINGS REPRESENT?

Text Lo Bag of Words / Count Vectorizer

Category
Li One-hot enceding/Dunning enceding

BAG OF WORDS

Did you hear about the mathematician who is afraid of the negative numbers? She will stop at nothing to avoid them.

Are monsters good at math? Not unless you Count Dracula.

ONE-HOT ENCODING

ONE-HOT ENCODING

Years In Business	Total Sales (\$)	Region North	Region West	Region East	Region South	Gender Male	Customer Satisfaction	log(Training Hours)
-1.05	-1.06	1	0	0	0	1	-0.61	1.46
-0.58	-0.54	1	0	0	0	0	0.07	0.13
0.20	0.09	0	1	0	0	1	0.00	-0.91
-1.20	-1.23	1	0	0	0	0	1.42	0.57
0.98	1.01	I	0	0	0	1	0.75	-0.91
-0.11	-0.02	0	0	I	0	0	0.34	-1.35
1.76	1.74	0	0	0	1	1	-1.97	1.02

if only two categories, a single feature suffices

DATA PREPARATION AND FEATURE ENGINEERING

- Overview
- Missing data
- Outliers
- Scaling
- String data
- Feature engineering

FEATURE ENGINEERING

Years In Business	Total Sales (\$)	Region North	Region West	Region East	Region South	Gender Male	Customer Satisfaction	log(Training Hours)
-1.05	-1.06	I	0	0	0	1	-0.61	1.46
-0.58	-0.54	I	0	0	0	0	0.07	0.13
0.20	0.09	0	I	0	0	1	0.00	-0.91
-1.20	-1.23	1	0	0	0	0	1.42	0.57
0.98	1.01	I	0	0	0	1	0.75	-0.91
-0.11	-0.02	0	0	1	0	0	0.34	-1.35
1.76	1.74	0	0	0	ı	1	-1.97	1.02

Feature selection = selecting relevant features Feature extraction = combining existing features

CORRELATION MATRIX

data.corr()

COFF = 1

cc11=-1

AND WITH OUR NEW FEATURE

Years In Business	Sales/Years	Region North	Region West	Region East	Region South	Gender Male	Customer Satisfaction	log(Training Hours)
-1.05	-0.30	1	0	0	0	1	-0.61	1.46
-0.58	0.44	1	0	0	0	0	0.07	0.13
0.20	-0.45	0	1	0	0	I	0.00	-0.91
-1.20	-1.78	1	0	0	0	0	1.42	0.57
0.98	0.20	I	0	0	0	I	0.75	-0.91
-0.11	1.82	0	0	I	0	0	0.34	-1.35
1.76	0.07	0	0	0	I	I	-1.97	1.02

Descalabled based on non-scaled data, then rescaled retain this, get rid of Total Sales

CORRELATION MATRIX (AGAIN)

OUR FINAL DATA MATRIX

Salesperson ID	Years In Business	Total Sales (\$)	Region	Gender	Avg Discount (%)	Customer Satisfaction	Training Hours
I	2	200000	North	Male	NaN	3.5	400
2	5	550000	NaN	Female	NaN	4.0	50
3	10	980000	West	Male	14.3	NaN	10
4	1	80000	North	Female	NaN	5.0	100
5	15	1600000	North	Male	NaN	4.5	10
6	7	900000	East	Female	NaN	4.2	5
7	20	2100000	South	Male	10.1	2.5	200

Years In Business	Sales/Years	Region North	Region West	Region East	Region South	Gender Male	Customer Satisfaction	log(Training Hours)
-1.05	-0.30	1	0	0	0	1	-0.61	1.46
-0.58	0.44	I	0	0	0	0	0.07	0.13
0.20	-0.45	0	1	0	0	1	0.00	-0.91
-1.20	-1.78	1	0	0	0	0	1.42	0.57
0.98	0.20	1	0	0	0	1	0.75	-0.91
-0.11	1.82	0	0	1	0	0	0.34	-1.35
1.76	0.07	0	0	0	I	I	-1.97	1.02

- Explain why data preparation is necessary
- Explain the steps needed to prepare a dataset
- Prepare a dataset for use in ML models in sklearn