Week 1: Advanced Statistics & Regression

Course 2: Multivariate Linear Regression

Reminders:

• Random Vector:

X is random vector if each coordinate X_i is random variable So : $\mathbb{E}(X)$ = ($\mathbb{E}(X_1)$, ..., $\mathbb{E}(X_d)$)

• Affine transformation:

$$\begin{aligned} &\text{if}: Y = \alpha + AX \text{ so}: \mathbb{E}(Y) \text{ = } \alpha + A\,\mathbb{E}(X) \\ &\text{and } Cov(Y) = ACov(X)\mathbf{A}^\top \end{aligned}$$

• Gaussian Vector (GV):

X is a GV if, and only if, its characteristic function is:

$$\Phi(t) = exp(im - rac{t^2\sigma^2}{2})$$

Or, for all $a \in R^d$, we have $\mathbf{a}^ op X$ is a guassian variable.

• Standard Gaussian Vector:

X is standrad GV if $\mathbb{E}(X)=0$ and $Cov(X)=I_d$

- ullet if X is GV so all X_i are guassian variable and X_i is independent of X_j if $Cov(X_i,X_j)=0$
- · Cochran's Theorem: c.f slides

Multivariate Regression:

Goal:

create a statistical framework for:

- Probabilistic model that describe the observations
- Construction of estimators
- Statistic optimality
- · Statistic inference

Linear Model :
$$Y_i = eta_0 + \sum_{j=1}^p eta_j X_{ij} + \epsilon_i$$
 with $i=1,...,n$

$$\operatorname{Simply}: Y = X\beta + \epsilon$$

P.s : The model is lineary dependent to β not necessarily to X

• Model is identified if, and only if, XX^{\top} is invertible (X is of rank full).

Нуро

- $\mathbb{E}(\epsilon_i)=0$: errors are centralized
- ullet $Var(\epsilon_i)=\sigma^2$: errors with constant variance
- ullet $Cov(\epsilon_i,\epsilon_j)=0$: The errors are decorrelated from each other

But we can simply suppose that $\epsilon_i \sim \mathsf{Norm}(0,\sigma^2)$

• LSE

$$\hat{eta} = argmin_{u \in R^p} \|Y - Xu\|^2$$

with norm is the euclidian norm.

So, if
$$X\mathbf{X}^{ op}$$
 is invertible : $\hat{eta} = (X\mathbf{X}^{ op})^{-1}\mathbf{X}^{ op}Y$

· Gauss-Markov's Theorem:

if $X\mathbf{X}^{\top}$ is invertible, the estimor $\hat{\beta}$ LSE is guaranting the minimal variance within all the linear estimors.

Plus, It's unbiased :
$$\mathbb{E}_{eta}(\hat{eta}) = eta$$
 and $Var_{eta}(\hat{eta}) = \sigma^2(X\mathbf{X}^{ op})^{-1}$

- We define empirical residuals as : $\hat{\epsilon}=Y-X\hat{\beta}$ so the estimation of σ wih LSE is given by : $\hat{\sigma}^2=\frac{\|\hat{\epsilon}\|^2}{n-p}$
- ullet For guassian model : LSE \sim MLE. However, MLE is biaised given $\hat{\sigma}_{ML}^2=rac{\|\hat{\epsilon}\|^2}{n}$

Hypothesis Tests:

for this part, we will present only the results, and the slides give wider explaination yet no proof is presented.

• Distribution of LSE:

If all hypothesis above are met, with
$$X\mathbf{X}^{ op}$$
 is invertible, we have, for all $c \in R^p$: $\frac{\mathbf{c}^{ op}\hat{eta} - \mathbf{c}^{ op}\beta}{\hat{\sigma}\sqrt{\mathbf{c}^{ op}(X\mathbf{X}^{ op})^{-1}c}} \sim t_{(n-p)}$

with $t_{(n-p)}$ is the student law with n-p degree of freedom

• Trust Region:

from the result above, we can define the trust interval with the level 1-lpha

$$I_{c,lpha} = [\mathbf{c}^{ op}\hat{eta} \pm t_{n-p,1-lpha/2}\hat{\sigma}\sqrt{\mathbf{c}^{ op}(X\mathbf{X}^{ op})^{-1}c}]$$

with
$$t_{n-p,1-lpha/2}$$
 is the $1-lpha/2$ quantile of $t_{(n-p)}$

Tests:

we present here the test presented in the slides, yet the details to be checked there,

so the test admits an error: $\Phi(Y)=1_{(|T|>t_{n-p,1-lpha/2})}$

Robust Extensions:

Problem : LSE and MLE do not perform well in the case of p>n (more variables than observations) and in the presence of outliers.

• Huber Loss:

A solution of outliers, since this loss will be less sensitive to the outliers. It's given by :

$$L_{\delta}(a) = egin{cases} a^2/2 ext{ if } \mid a \mid < \delta \ \delta(\mid a \mid -\delta/2) ext{ otherwise.} \end{cases}$$

• Ridge Regression:

The problem becomes : $\hat{eta} \in argmin_{u \in R^p} \|Y - Xu\|^2 + \lambda \|u\|^2$

 λ : term of regularisation

By tuning λ we control the regularisation

Generally, ridge regression gives better prediction errors

Also, it enhances the numeric stability of the model.