Computer Networks CS3001 (Section BDS-7A) Lecture 18

Instructor: Dr. Syed Mohammad Irteza
Assistant Professor, Department of Computer Science
24 October, 2023

Network-layer service model

Network Architecture		Service	Quality of Service (QoS) Guarantees ?				
		Model	Bandwidth	Loss	Order	Timing	
	Internet	best effort	none	no	no	no	
	ATM	Constant Bit Rate	Constant rate	yes	yes	yes	
	ATM	Available Bit Rate	Guaranteed min	no	yes	no	
	Internet	Intserv Guaranteed (RFC 1633)	yes	yes	yes	yes	
	Internet	Diffserv (RFC 2475)	possible	possibly	possibly	no	

Reflections on best-effort service:

- simplicity of mechanism has allowed Internet to be widely deployed adopted
- sufficient provisioning of bandwidth allows performance of real-time applications (e.g., interactive voice, video) to be "good enough" for "most of the time"
- replicated, application-layer distributed services (datacenters, content distribution networks) connecting close to clients' networks, allow services to be provided from multiple locations
- congestion control of "elastic" services helps

It's hard to argue with success of best-effort service model

Network layer: "data plane" roadmap

- Network layer: overview
 - data plane
 - control plane
- What's inside a router
 - input ports, switching, output ports
 - buffer management, scheduling
- IP: the Internet Protocol
 - datagram format
 - addressing
 - network address translation
 - IPv6

- Generalized Forwarding, SDN
 - Match+action
 - OpenFlow: match+action in action
- Middleboxes

Router architecture overview

high-level view of generic router architecture:

Router architecture overview

analogy view of generic router architecture:

Input port functions

link layer:

e.g., Ethernet (chapter 6)

decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- goal: complete input port processing at 'line speed'
- input port queuing: if datagrams arrive faster than forwarding rate into switch fabric

Input port functions

link layer:

e.g., Ethernet (chapter 6)

decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- destination-based forwarding: forward based only on destination IP address (traditional)
- generalized forwarding: forward based on any set of header field values

Destination-based forwarding

		forwa	rding table –		
Destination Address Range					Link Interface
11001000 through	00010111	000 <mark>10000</mark>	00000000		n
11001000 through	00010111	000 <mark>10000</mark>	00000100		3
_	00010111	000 <mark>10000</mark>	00000111		3
11001000	00010111	000 <mark>11000</mark>	11111111		
11001000 through	00010111	000 <mark>11001</mark>	0000000		2
11001000	00010111	000 <mark>11111</mark>	11111111		
otherwise					3

Q: but what happens if ranges don't divide up so nicely?

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination A	Link interface					
11001000	00010111	00010***	*****	0		
11001000	00010111	00011000	*****	1		
11001000	00010111	00011***	*****	2		
otherwise	otherwise					

examples:

which interface?	10100001	00010110	00010111	11001000
which interface?	10101010	00011000	00010111	11001000

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination Ad	Link interface			
11001000	00010111	00010***	*****	0
11001000	0000111	00011000	*****	1
11001000	match! 1	00011***	*****	2
otherwise				3

examples:

11001000 00010111 00010 110 10100001 which interface?
11001000 00010111 00011000 10101010 which interface?

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination .	Link interface			
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	00010111	00011***	*****	2
otherwise	1			3
	المامخموس			

examples:

longest prefix match

11001000

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination .	Link interface			
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	0000111	00011***	*****	2
otherwise	match!			3
11001000	_	00010110	1010001	which interface?

00011000

examples:

which interface?
which interface?

- we'll see why longest prefix matching is used shortly, when we study addressing
- longest prefix matching: often performed using ternary content addressable memories (TCAMs)
 - content addressable: present address to TCAM: retrieve address in one clock cycle, regardless of table size
 - Cisco Catalyst: ~1M routing table entries in TCAM

Excluded Topics (Chapter 4)

- What's Inside A Router (Section 4.2)
- Possibly topics like Middleboxes

Network layer: "data plane" roadmap

- Network layer: overview
 - data plane
 - control plane
- What's inside a router
 - input ports, switching, output ports
 - buffer management, scheduling
- IP: the Internet Protocol
 - datagram format
 - addressing
 - network address translation
 - IPv6

- Generalized Forwarding, SDN
 - match+action
 - OpenFlow: match+action in action
- Middleboxes

Network Layer: Internet

host, router network layer functions:

IP Datagram format

IP addressing: introduction

- IP address: 32-bit identifier associated with each host or router interface
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)

dotted-decimal IP address notation:

IP addressing: introduction

- IP address: 32-bit identifier associated with each host or router interface
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)

dotted-decimal IP address notation:

IP addressing: introduction

Q: how are interfaces actually connected?

A: we'll learn about that in chapters 6, 7

223.1.1.1 223.1.2. 223.1.1.2 223.1.1.4 223.1.2.9 A: wired Ethernet interfaces 223.1.3.27 connected by 223.1.1.3 Ethernet switches 223.1.3.1 223.1.3.2

For now: don't need to worry about how one interface is connected to another (with no intervening router)

A: wireless WiFi interfaces connected by WiFi base station