5. From the equivalent definitions of the Lebesgue measurable sets, there must exist a sequence of closed sets F_1, F_2, \ldots where $F_k \subset A$ and

$$\left| A \setminus \bigcup_{k=1}^{\infty} F_k \right| = 0.$$

Since any finite union of closed sets is closed, then it follows that $F_1, F_1 \cup F_2, F_1 \cup F_2 \cup F_3, \ldots$, is a sequence of increasing closed sets also contained in A. And since $\bigcup_{k=1}^{\infty} F_k = \bigcup_{k=1}^{\infty} \bigcup_{\ell=1}^k F_{\ell}$, then the previous equation holds

6. Let us first assume that A is a Lebesgue measurable set. Then, first consider the following claim:

Claim 1. If $|A| < \infty$, then for every $\varepsilon > 0$, there exists a closed, bounded set $F \subset A$ such that $|A \setminus F| < \varepsilon$.

Proof of claim: By problem 9 in section 2A, for any set $A \subset \mathbf{R}$, it follows that

$$\lim_{t \to \infty} |(-t, t) \cap A| = |A|.$$

From the definition of the limit, for any $\varepsilon>0$, there exists some $t\in\mathbf{R}$ such that $|A\setminus ((-t,t)\cap A)|=|A|-|(-t,t)\cap A|<\varepsilon$. For any $t\in\mathbf{R}$, $(-t,t)\cap A$ is bounded. Moreover, $(-t,t)\cap A$ must be a Lebesgue measurable set (since every Borel set is also a Lebesgue measurable set). Since $(-t,t)\cap A$ is a Lebesgue measurable set, there must exist a closed set $F\subset (-t,t)\cap A$ such that $|(-t,t)\cap A\setminus F|<\varepsilon$. Then, by countable additivity, it must be that $|A\setminus F|=|A\setminus (-t,t)\cap A|+|(-t,t)\cap A\setminus F|<2\varepsilon$. Now, we show the forward claim:

Claim 2. If A is Lebesgue measurable $|A| < \infty$, then for every $\varepsilon > 0$, there exists G, a union of finite, disjoint, bounded open intervals such that $|G\Delta A| < \varepsilon$.

Proof of claim:

By claim 1, it follows that there exists a closed, bounded set $F \subset A$ such that $|A \setminus F| < \varepsilon$. Since F is a Borel set, there must be a open cover $G \supset F$ such that $|G \setminus F| < \varepsilon$. G is the union of finite disjoint open intervals G_1, G_2, \ldots , by the Heine-Borel theorem, there exists a finite subcover of $G' = \bigcup \{G_k\}_{k=1}^n$ of these open intervals. Note that because F is bounded and $|G \setminus F| < \varepsilon$ each of these open intervals must also be bounded. Since $F \subset G' \subset G$, it must be that $|G' \setminus F| < \varepsilon$. So,

$$\begin{split} |G'\Delta A| &= |G'\setminus A| + |A\setminus G'|,\\ &\leq |G'\setminus F| + |A\setminus F|,\\ &< 2\varepsilon. \end{split}$$

Now, for the converse:

Claim 3. By the definition of outer measure, there exists a sequence of open intervals $\{I_k\}_{k=1}^{\infty}$ such that $|\bigcup_{k=1}^{\infty} I_k| < |A \setminus G| + \varepsilon$. Thus, it follows that $G \cup \bigcup_{k=1}^{\infty} I_k$ is open and $|G \cup \bigcup_{k=1}^{\infty} I_k| < |A| + 2\varepsilon$.

12. The forward is trivial and follows directly from the definition of the Lebesgue measure since $A, (b, c) \setminus A$ are disjoint. Now, we show the converse directly,

Claim 4. If $A \subset (b,c)$ and $|A| + |(b,c) \setminus A| = c - b$, then A is Lebesgue measurable.

Proof of claim: By the definition of outer measure, there exists a sequence of open intervals $\{I_k\}_{k=1}^{\infty}$ such that $|\bigcup_{k=1}^{\infty}I_k|<|(b,c)\setminus A|+\varepsilon$. Now consider $B=[b+\varepsilon,c-\varepsilon]\setminus\bigcup_{k=1}^{\infty}I_k$. such that $\varepsilon<\min\{b,c\}$. It follows that B is a closed subset of A. It remains to show that $A\setminus B$ can be made arbitrarily small. By order-preservation of outer measure $|B|\leq |A|$ and since B is closed,

$$\begin{split} |A \setminus B| &= |A| - |B|, \\ |B| &> (c - b + 2\varepsilon) - \left(|(b, c) \setminus A| + \varepsilon\right), \\ &= (c - b + 2\varepsilon) - \left((c - b) - |A| + \varepsilon\right), \\ &= |A| + \varepsilon. \end{split}$$

Measure, Integration, and Real Analysis by Sheldon Axler

Then, it follows that $|A| - |B| < \varepsilon$. So, A is Lebesgue measurable.

13. It must be that $(-n,n) \cap A \subset (-n,n)$. So, let $B = (-n,n) \cap A$. Then, $(-n,n) \setminus A = (-n,n) \setminus B$. Since

$$\begin{split} x \in (-n,n) \setminus A &\iff x \in (-n,n) \text{ and } x \notin \backslash A, \\ &\iff x \in (-n,n) \text{ and } x \notin A \cap (-n,n), \\ &\iff x \in (-n,n) \setminus B. \end{split}$$

So, by problem 12 in this section, this equality only holds if and only if $(-n, n) \cap A$ is Lebesgue measurable for all $n \in \mathbb{Z}^+$. Thus, in the limit as $n \to \infty$, the equality only holds as A is Lebesgue measurable.

- 24. (a) Follows directly from claim 1. Since this holds for every $\varepsilon > 0$, and the limit in claim 1 is monotonically increasing, then it must exist and so $\sup_{t \in \mathbf{R}} |F| = |A|$.
 - (b) Consider the Vitali set.