

Course Description

- Covers techniques for managing data throughout an end-to-end ML process
- Learn statistical analysis and visualization techniques, including methods for detecting and remedying overfitting
- Gain familiarity with tools in standard ML and data processing libraries

Course Description

- Lecture 1: ML Life-cycle, Data Analysis and Basic ML model: K Nearest Neighbors
- Lecture 2: Feature Engineering, Decision Trees, Hyper-parameters and AWS Sagemaker
- Lecture 3: Optimization, Regression Models, Boosting and Neural Networks

Final Project-Completion

- Apply and experiment with a real-world Amazon dataset.
- Completion of this course is based on your Leaderboard submission.
- Submission page: https://leaderboard.corp.amazon.com/tasks/478
- Submission is open until <u>Saturday 5:00 PM</u> (PST)

Top 3 submissions - this week

Completions

Final Project-Completion

You will get a score after each submission. You can improve your score by making multiple submissions (no upper limit on number of submissions).

- Requirements: At least ONE submission is REQUIRED
- Non-completion: Submit 0 models to the Class Leaderboard

Day 1 Day 2 Day 3

After completion, student and manager receive confirmation email.

Topics for today

- Optimization
- Regression
- Boosting
- Neural Networks
- MxNet
- Final Project

Topics for today

- Optimization
- Regression
- Boosting
- Neural Networks
- MxNet
- Final Project

Optimization

- Optimization is an important part of our life.
- For example we:
 - Optimize the order of our work tasks based on priorities.
 - Optimize our route home to minimize our travel time.
- In machine learning, similarly, we use optimization to usually minimize some error rate of our ML model.

We will learn the Gradient Descent Optimization.

Gradient Descent

- In machine learning, we usually optimize functions.
 - y = f(x) where y=output, x=input, f=function
- Minimizing f means finding the input x that results in the lowest value y. (Maximize: Find x that gives the largest y)
- Gradient:
 - Definition: It is the direction and rate of the fastest increase in a function.
 - It can be calculated with **partial derivatives** of the function f with respect to each input variable in x.
 - Because it has a direction and rate, we also call it a "vector".

y = f(x) = 0.6
$$x^2$$
 and gradient is $\nabla f = < 1.2x >$

y = f(x) = 0.6
$$x^2$$
 and gradient is $\nabla f = < 1.2x >$

$$\nabla f(2) = < 2.4 >$$

y = f(x) = 0.6
$$x^2$$
 and gradient is $\nabla f = < 1.2x >$

$$\nabla f(2) = < 2.4 >$$

 $\nabla f(4) = < 4.8 >$

y = f(x) = 0.6
$$x^2$$
 and gradient is $\nabla f = < 1.2x >$

$$\nabla f(2) = < 2.4 >$$
 $\nabla f(4) = < 4.8 >$
 $\nabla f(-3) = < -3.6 >$

y = f(x) = 0.6
$$x^2$$
 and gradient is $\nabla f = < 1.2x >$

$$\nabla f(2) = < 2.4 >$$
 $\nabla f(4) = < 4.8 >$
 $\nabla f(-3) = < -3.6 >$
 $\nabla f(0) = < 0 >$

y = f(x) = 0.6
$$x^2$$
 and gradient is $\nabla f = < 1.2x >$

$$\nabla f(2) = \langle 2.4 \rangle \Rightarrow |\nabla f(2)| = 2.4$$

$$\nabla f(4) = \langle 4.8 \rangle \Rightarrow |\nabla f(4)| = 4.8$$

$$\nabla f(-3) = \langle -3.6 \rangle \Rightarrow |\nabla f(-3)| = 3.6$$

$$\nabla f(0) = \langle 0 \rangle \Rightarrow |\nabla f(0)| = 0$$

- Sign of the gradient shows direction: + right and
 left (the direction the func. increases)
- As we go towards to the bottom part of the function, gradient length gets smaller and becomes zero

Gradient - Math

Writing the formula:

$$\nabla f = grad \ f = \langle \frac{\partial f}{\partial x}(x) \rangle$$

< > shows that gradient is a "vector" here and $\frac{\partial y}{\partial x}$ is used for partial derivative

Example:

$$y = f(x) = 0.6 x^2$$

Gradient is $\nabla f = < 1.2x >$

Gradient - Math (Higher Dim.)

Writing the formula:

$$\nabla f = \operatorname{grad} f = \langle \frac{\partial f}{\partial x_1}(x_1, x_2, \dots, x_n), \frac{\partial f}{\partial x_2}(x_1, x_2, \dots, x_n), \dots, \frac{\partial f}{\partial x_n}(x_1, x_2, \dots, x_n) \rangle$$

< > shows that gradient is a "vector" here and $\frac{\partial y}{\partial x}$ is used for partial derivative

Example:

y =
$$f(x_1, x_2) = 3 x_1^2 + 5 x_2^2$$

Gradient is $\nabla f = < 6x_1, 10x_2 >$

Gradient – Math (Higher Dim.)

y = $f(x_1, x_2) = 3 x_1^2 + 5 x_2^2$ and gradient is $\nabla f = < 6x_1, 10x_2 >$

Gradient Descent Method

- Gradient descent method uses gradients to find the minimum of a function iteratively.
- We take **small steps** towards the minimum (opposite direction of gradient).

Starting at an initial point x

- Update x_{new}: x_{current} step_size * gradient
- Let's find the minimum of $y=0.6x^2$, we will start from an initial point assume x=4.25 and step_size=0.2

Gradient Descent Method

• Let's find the minimum of $y=0.6x^2$, we will start from an initial point assume x=4.25 and step_size=0.2

Gradient is $\nabla f = < 1.2x >$

x_{new}: x_{curr.} - step_size * gradient

Topics for today

- Optimization
- Regression
- Boosting
- Neural Networks
- MxNet
- Final Project

Linear Regression

- We use it for numerical value prediction.
- For example: Predicting house prices by looking at square footage, number of rooms etc.
- When there is a single feature (explanatory variable x) and a real-valued response (target variable y):

$$y = w_0 + w_1 x$$

Linear Regression

- Given data (x, y), a line: $y = w_0 + w_1 x$ is defined by w_0 (i.e. intercept) and w_1 (slope)
- The vertical offset for each data point from the line is the error between the true label y and the prediction based on x.
- The best line minimizes the sum of squared errors (SSE): $\sum (y_i \hat{y}_i)^2$

Linear Regression

• Multiple linear regression includes m features with $m \ge 2$:

$$y = w_0 + w_1 x_1 + \dots + w_m x_m$$

- Sensitive to correlation between features resulting in high variance of coefficients.
- Features are allowed to have interactions and higher order terms.

Gradient Descent - Fitting a model

• Let's have a linear regression model:

$$y=w_0+w_1x_1+w_2x_2+\cdots+w_qx_q$$
 where $w_0,\,w_1,\,..,\,w_m$: coefficients and $x_0,\,x_1,\,..,\,x_m$: input variables

• Minimize the cost function Mean Squared Error:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 where y_i : Data value, \hat{y}_i : Predicted value and n: # of records

• Iteratively update coefficients with Gradient Descent:

Logistic Regression

Linear regression was useful when predicting continuous values.

$$y = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_q x_q$$

Can we use a similar approach to solve classification problems?

The most simple classification problem is binary classification y=0 or 1:

Examples:

■ Email: Spam or Not spam

Text: Positive or negative meaning

Image: Hotdog or Not hotdog

How can we modify this linear regression equation to work for this?

$$y = w_0 + w_1 x_1 + w_2 x_2 + \cdots + w_q x_q$$

Applying Sigmoid Function

- $sigmoid(x) = \frac{1}{1+e^{-x}}$
- We can classify with this:
 - if sigmoid(x) < 0.5, round down:(0)
 - if $sigmoid(x) \ge 0.5$, round up:(1)
- Our regression function becomes:

$$h_w(x) = p = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2 + \dots + w_q x_q)}}$$

We can say p is the probability that y=1 for input x.

Classify as 1 if p>=0.5, as 0 if p<0.5

Log-loss: A numeric value that measures the performance of a binary classifier when the output of the model is probability between 0 and 1.

- We prefer small values for the loss (we try to minimize it). A loss of 0 means the perfect classifier.
- Log loss gets larger when the predicted probability diverges from the actual label (0 or 1).
- In mathematical terms:

$$Logloss = -(y * log(p) + (1 - y) * log(1 - p))$$

$$where$$

y: True class, p: Prob. of the model, log: Logarithm function

Example: Let's calculate the log-loss for these situations below

$$Logloss = -(y * log(p) + (1 - y) * log(1 - p))$$

• y=True class:1 and p: 0.3

$$-(1 * log(0.3) + (1 - 1) * log(0.7)) = 0.52$$

• y=True class:1 and p: 0.8

$$-(1 * log(0.75) + (1 - 1) * log(0.25)) = 0.1$$

Example: Let's calculate the log-loss for these situations below

$$Logloss = -(y * log(p) + (1 - y) * log(1 - p))$$

• y=True class:1 and p: 0.3

$$-(1 * log(0.3) + (1 - 1) * log(0.7)) = 0.52$$

• y=True class:1 and p: 0.8

$$-(1 * log(0.75) + (1 - 1) * log(0.25)) = 0.1$$

Example: Let's calculate the log-loss for these situations below

$$Logloss = -(y * log(p) + (1 - y) * log(1 - p))$$

• y=True class:1 and p: 0.3

$$-(1 * log(0.3) + (1 - 1) * log(0.7)) = 0.52$$

• y=True class:1 and p: 0.8

$$-(1 * log(0.75) + (1 - 1) * log(0.25)) = 0.1$$

Better prediction gives smaller loss

Gradient Descent - Fitting a model

• Let's have our logistic regression model:

y = sigmoid(
$$w_0 + w_1x_1 + w_2x_2 + \cdots + w_qx_q$$
)

where w_0 , w_1 , ..., w_m : coefficients and x_0 , x_1 , ..., x_m : input variables

• Minimize the cost function: Log-loss:

Logloss =
$$\sum_{i=1}^{n} -(y_i * \log(p_i) + (1 - y_i) * \log(1 - p_i))$$

where

i:index,n:# $number\ of\ records,y_i:True\ label,y_i:$ Probability of prediction

• Iteratively update coefficients with Gradient Descent:

Topics for today

- Optimization
- Regression
- Boosting
- Neural Networks
- MxNet
- Final Project

Adaptive Boosting (AdaBoost)

Main idea of boosting: Instead of learning a single model, learn multiple weak models that are good at different parts of the data.

It works as below:

- Output of the system (classification) is a weighted sum of individual models.
- We will first use a model using our training data. Then, create a second model that tries to correct initially misclassified samples.
- Add more models until all data correctly classified or we reach the max. number of iterations.

Adaptive Boosting (AdaBoost)

On each iteration t:

- ullet Learn a weak model h_t and calculate its error rate $oldsymbol{\epsilon}_t$
- lacktriangle Assign the strength of this weak model: $lpha_t$
- Assign a weight D(i) to each data point i that is correlated to how incorrectly classified (We will use ϵ_t and α_t).

Final classifier: $H(X) = sign(\sum_{t=1}^{T} \alpha_t h_t(X))$

AdaBoost – Example

Increase weights

We also calculate each model's strength: α based on its correct predictions

Final classifier: $H(X) = sign(\sum_{t=1}^{3} \alpha_t h_t(X))$

Topics for today

- Optimization
- Regression
- Boosting
- Neural Networks
- MxNet
- Final Project

Why Neural Networks?

- In the last 5-10 years, neural networks achieved **state-of-the art results** in many different machine learning areas.
- Neural networks can automatically **extract useful features** from input data. Traditionally feature engineering has been the most laborious and unprincipled part of building ML models
- When using neural networks, we should be careful about model complexity and make sure we have enough amount of data for training.

Real Neural Networks

- Neuron = cell that processes and transmits information through electrical and chemical signals
- Synapses = connections between neurons transmitting signals

- Axon = single output sending signals
- Neurons are electrically excitable, maintaining voltage gradients
- If the voltage changes by a large enough amount, an **electrochemical pulse** is generated and travels rapidly along the axon and activates synaptic connections with other cells when it arrives.
- Neurons form complex network structures, the human brains has 10¹¹ neurons.

Artificial Neural Networks

- Has many processing units (neurons)
- Received numbers from many other neurons (synapses)
- Combines numbers into weighted sum (dendrites)
- Has single outgoing number (axon)
- Applies function to decide how strong of a signal to send (pulse)

Artificial Neural Networks

Perceptron: A single neuron within a connected set of neurons.

Multi Layer Perceptron

- A neural network consisting of input, hidden and output layers.
- Each layer is connected to the next layer.
- Except for the input units, each neuron has an activation function.

Activation Functions

Name	Plot	Function	Description
Logistic (sigmoid)	0 X	$f(x) = \frac{1}{1 + e^{-x}}$	The most common activation function. Squashes input to [0,1]
Hyperbolic tangent (tanh)	0 X X	$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	Squashes input to [-1, 1]
Rectified Linear Unit (ReLu)	0	$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	Popular act. Function. Anything less than 0, results in zero activation

Derivatives of these functions are also important when we use gradient descent.

Forward Pass

Assume we have a network with:

- 2 inputs: $i_1=0.05$ and $i_2=0.1$
- 1 output (Binary classification: 0 or 1)
- 1 Hidden layer
- All neurons have sigmoid activation function

Forward Pass

$$net_{h1} = w_1 * i_1 + w_2 * i_2$$

$$net_{h1} = 0.15 * 0.05 + 0.2 * 0.1 = 0.0275$$

$$out_{h1} = \frac{1}{1 + e^{-net_{h1}}} = \frac{1}{1 + e^{-0.0275}} = 0.507$$

$$out_{h2} = 0.511$$
Sigmoid function
$$f(x) = \frac{1}{1 + e^{-x}}$$

Forward Pass

$$net_{o1} = w_5 * out_{h1} + w_6 * out_{h2}$$

$$net_{o1} = 0.4 * 0.507 + 0.45 * 0.511$$

$$out_{o1} = \frac{1}{1 + e^{-net_{o1}}} = \frac{1}{1 + e^{-0.432}} = 0.61$$

For binary classification, we would classify this as class 1 (0.61>0.5)

Output Function

- Binary classification: Sigmoid
 - Outputs P(target class|x) in [0,1] $\sigma(z) = \frac{1}{1 + \exp(-z)}$
 - Last layer is Logistic Regression of output of previous layers

- Multi-class classification: Softmax
 - Still want P for each class output in [0,1]
 - Want sum of output to be 1 (probability distribution)
 - Training drives value for target class up, others down.
- Regression: Output activation can be linear or relu

Cost Functions

Binary classification: Cross entropy for logistic

$$C = -\frac{1}{n} \sum_{examples} y \ln p + (1 - y) \ln(1 - p)$$

Multi-class classification: Cross entropy for Softmax

$$C = -\frac{1}{n} \sum_{examples} \sum_{classes} y_j \ln p_j$$

Regression: Mean Squared Error: $C = \frac{1}{n} \sum_{examples} (y - p)^2$

Notation for Classification

- n training examples
- j classes
- p = prediction (probability)
- y = true class (1 for yes, 0 for no)

Notation for Regression

- n training examples
- p = prediction (numeric)
- y = true value

Training Neural Networks

- During the training of neural networks, we can update the weights in the network by applying the gradient descent method.
- Cost function is selected accr. to problem: Binary, multi-class classification or regression.
- Weight update formula:

Dropout

- Regularization technique to prevent overfitting.
- Randomly removes some nodes and their connections during the training.

Topics for today

- Optimization
- Regression
- Boosting
- Neural Networks
- MXNet
- Final Project

MXNet

- Open source Deep Learning Library to train and deploy neural networks.
- With the Gluon interface, we can define and train neural networks easily.
- We will go over the tutorials below:
 - Mxnet-Ndarrays-Autograd intro: https://eider.corp.amazon.com/sazaracs/notebook/NBM9GVVWI98P
 - Building Neural Network with MXNet:
 https://eider.corp.amazon.com/sazaracs/notebook/NBLQY2I99MEG

Hands-on exercise

- In this exercise we will work with an internal Amazon Dataset.
- We will do the following tasks:
 - Exploratory Data Analysis
 - Splitting dataset into training and test sets.
 - Fit a Neural Network
 - Check the performance metrics on test set.
- Open the notebook below:

https://eider.corp.amazon.com/sazaracs/notebook/NB8A43NS520E

Dive into Deep Learning

Dive into Deep Learning

An **interactive** deep learning book with code, math, and discussions, based on the **NumPy** interface.

E-book on deep learning by Amazon Scientists, available here: https://d2l.ai

Related chapters:

Chapters 3: Linear Neural Networks: https://d2l.ai/chapter_linear-networks/index.html

Chapters 4: Multilayer Perceptrons: https://d2l.ai/chapter_multilayer-perceptrons/index.html

AutoML

AutoML helps automating some of the tasks related to ML model development and training such as:

- Preprocessing and cleaning data
- Feature selection
- ML model selection
- Hyper-parameter optimization

Auto © LUON AutoML

- Open source AutoML Toolkit (AMLT) created by Amazon Al
- With AutoGluon, state of the art ML results can be achieved in a few lines of Python code.

```
>>> from autogluon import TabularPrediction as task
>>> predictor = task.fit(train_data=task.Dataset(file_path=TRAIN_DATA.csv), label=COLUMN_NAME)
>>> predictions = predictor.predict(task.Dataset(file_path=TEST_DATA.csv))
```

Auto © LUON AutoML

Easy to Use – Built-in Applications

Tabular Prediction

Pyrion | - 1/10 | 1

Image Classification

Dog

Object Detection

Text Classification

Auto © LUON AutoML

- AutoGluon is able to produce top solutions to many real-world business problems. AutoGluon was utilized to create:
 - The first place solution to the MLA NLP I Hazmat Challenge
 - First place against over 1,000 competitors and 10,000 manual submissions over the course of 12 months.
 - The first place solution to the MLE Ops Tech IT Challenge
 - The first place solution to the SCOT Grand Challenge 2018
 - Solution was able to determine if two products are identical better than a human evaluator.
 - Used as the production solution to the product matching problem within Amazon.
 - The first place solution to the SCOT Grand Challenge 2019
 - Solution approximately halved the predictive error of Amazon.com shipment costs worldwide.
 - The existing production solution to Amazon Grocery (F3) sales forecasting
- pip install to get started: https://github.com/awslabs/autogluon

Topics for today

- Optimization
- Regression
- Boosting
- Neural Networks
- MXNet
- Final Project

Final Project

Product substitute: Given products (A, B), predict whether B is a substitute for A

- We say that B is a "substitute" for A if a customer would buy B in place of A -- say, if A were out of stock.
- The goal of this project is to predict a substitute relationship between pairs of products.
- Link: https://leaderboard.corp.amazon.com/tasks/478

Final Project Walkthrough - Day 3

- See the provided project walkthrough below to get started with this project.
- You can use Boosted Trees and Neural Networks this time.
- Complete the following notebook and submit your results

https://eider.corp.amazon.com/sazaracs/notebook/NBLR85NVZ4V4

Notebook

Notebooks for day 3

- MXNet NDarrays intro: <u>https://eider.corp.amazon.com/sazaracs/notebook/NBM9GVVWI98P</u>
- Neural Networks intro: <u>https://eider.corp.amazon.com/sazaracs/notebook/NBLQY2I99MEG</u>
- Neural Networks full example: <u>https://eider.corp.amazon.com/sazaracs/notebook/NB8A43NS520E</u>
- Final project walkthrough for day 3: https://eider.corp.amazon.com/sazaracs/notebook/NBLR85NVZ4V4