

Faculty of Computing and Information Technology

Department of Computer Science

Spring 2018

CPCS-414 Syllabus

Catalog Description

CPCS-414 High Performance Computing **Credit:** 3 (Theory: 3, Lab: 0, Practical: 0)

Prerequisite: CPCS-361 Classification: Elective

The objective of this course is to provide an in-depth overview of the current state of the art in high-performance computing. Additionally, the course provides more information about the architecture of high-performance computers.

Class Schedule

Meet 50 minutes 3 times/week or 80 minutes 2 times/week Lab/Tutorial 90 minutes 1 times/week

Textbook

Michael Jay Quinn, , "Parallel Programming in C with MPI and OpenMP", McGraw-Hill Science Engineering; (2004)

ISBN-13 9780072822564 **ISBN-10** 0072822562

Grade Distribution

Week	Assessment	Grade %
3	Quiz	5
8	Exam 1	15
9	Homework Assignments	10
14	Exam 2	15
15	Lab Exam	10
15	Project (Individual)	15
16	Comprehensive Final Exam	30

Topics Coverage Durations

Topics	Weeks					
Introduction to High Performance Computing						
Dependence Analysis and General Optimizations	2					
Parallel Programming Models						
Shared Memory Programming	2					
Programming Distributed Memory Systems						
Heterogeneous Computing						
Parallel Algorithm Design						

Last Articulated

February 12, 2017

Relationship to Student Outcomes

a	b	c	d	e	f	g	h	i	j	k
	X	X				X	X			

Course Learning Outcomes (CLO)

By completion of the course the students should be able to

- 1. Describe grand challenge applications and the need for parallel computation (g)
- 2. Deduce the maximum theoretical speedup and scalability of a system given a sequential code using Amdahl's law (b)
- 3. Identify and eliminate dependencies in sequential code to make it amenable to parallelism (b)
- 4. Apply appropriate cache and general optimizations to sequential code to reduce its computational time (c)
- 5. Identify the different phases in parallel program design using domain or functional decomposition (b)
- 6. Use the concept of fork-join model to parallelize sequential code using OpenMP directives (c)
- 7. Choose appropriate OpenMP directives for scheduling, implementing mutual exclusion and applying reduction (c)
- 8. Develop MPI programs using point-to-point communication while avoiding deadlocks (c)
- 9. Choose appropriate MPI collective communication calls to minimize communication between processes (c)
- 10. Identify opportunities in code to apply appropriate MPI reduction operations (c)
- 11. Recognize the need for heterogenous computing, coprocessors and newer architectures and programming paradigms (h)
- 12. Distinguish between workflows to program MICs and GPUs (b)
- 13. Design a parallel matrix mutiplication algorithm using a distributed memory model (c)
- 14. Parallelize Floyd's algorithm using point-to-point communication (c)
- 15. Parallelize numerical algorithms to solve recurring problems in physics and mechanical engineering (c)

Coordinator(s)

Dr. Waseem Ahmed Kareem Abdulkhayoom, Assistant Professor