MAL 100: Calculus Lecture Notes

2 Continuity, Differentiability and Taylor's theorem

2.1 Limits of real valued functions

Let f(x) be defined on (a, b) except possibly at x_0 .

Definition 2.1.1. We say that $\lim_{x\to x_0} f(x) = L$ if, for every real number $\epsilon > 0$, there exists a real number $\delta > 0$ such that

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon. \tag{2.1}$$

Equivalently,

Remark 2.1. The above definition is equivalent to: for any sequence $\{x_n\}$ with $x_n \to x_0$, we have $f(x_n) \to L$ as $n \to \infty$.

Proof. Suppose $\lim_{x\to x_0} f(x)$ exists. Take $\epsilon > 0$ and let $\{x_n\}$ be a sequence converging to x_0 . Then there exists N such that $|x_n - x_0| < \delta$ for $n \ge N$. Then by the definition $|f(x_n) - L| < \epsilon$. i.e., $f(x_n) \to L$.

For the other side, assume that $x_n \to c \implies f(x_n) \to L$. Suppose the limit does not exist. i.e., $\exists \epsilon_0 > 0$ such that for any $\delta > 0$, and all $|x - x_0| < \delta$, we have $|f(x) - L| \ge \epsilon_0$. Then take $\delta = \frac{1}{n}$ and pick x_n in $|x_n - x_0| < \frac{1}{n}$, then $x_n \to x_0$ but $|f(x_n) - L| \ge \epsilon_0$. Not possible.

Theorem 2.1.2. If limit exists, then it is unique.

Proof. Proof is easy.

Examples: (i) $\lim_{x\to 1} (\frac{3x}{2}-1) = \frac{1}{2}$. Let $\epsilon > 0$. We have to find $\delta > 0$ such that (2.1) holds with L = 1/2. Working backwards,

$$\frac{3}{2}|x-1| < \epsilon \text{ whenever } |x-1| < \delta := \frac{2}{3}\epsilon.$$

(ii) Prove that
$$\lim_{x\to 2} f(x) = 4$$
, where $f(x) = \begin{cases} x^2 & x \neq 2\\ 1 & x = 2 \end{cases}$

Problem: Show that $\lim_{x\to 0} \sin(\frac{1}{x})$ does not exist.

Consider the sequences $\{x_n\} = \{\frac{1}{n\pi}\}, \{y_n\} = \{\frac{1}{2n\pi + \frac{\pi}{2}}\}$. Then it is easy to see that

 $x_n, y_n \to 0$ and $\sin\left(\frac{1}{x_n}\right) \to 0$, $\sin\left(\frac{1}{y_n}\right) \to 1$. In fact, for every $c \in [-1, 1]$, we can find a sequence z_n such that $z_n \to 0$ and $\sin\left(\frac{1}{z_n}\right) \to c$ as $n \to \infty$.

By now we are familiar with limits and one can expect the following:

Theorem 2.1.3. Suppose $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$, then

- 1. $\lim_{x \to c} (f(x) \pm g(x)) = L \pm M$.
- 2. $f(x) \leq g(x)$ for all x in an open interval containing c. Then $L \leq M$.
- 3. $\lim_{x\to c} (fg)(x) = LM$ and when $M \neq 0$, $\lim_{x\to c} \frac{f}{g}(x) = \frac{L}{M}$.
- 4. (Sandwich): Suppose that h(x) satisfies $f(x) \le h(x) \le g(x)$ in an interval containing c, and L = M. Then $\lim_{x \to c} h(x) = L$.

Proof. We give the proof of (iii). Proof of other assertions are easy to prove. Let $\epsilon > 0$. From the definition of limit, we have $\delta_1, \delta_2, \delta_3 > 0$ such that

$$|x-c| < \delta_1 \implies |f(x)-L| < \frac{1}{2} \implies |f(x)| < N \text{ for some } N > 0,$$

$$|x-c| < \delta_2 \implies |f(x)-L| < \frac{\epsilon}{2M+1}, \text{ and}$$

$$|x-c| < \delta_3 \implies |g(x)-M| < \frac{\epsilon}{2N}.$$

Hence for $|x-c| < \delta = \min\{\delta_1, \delta_2, \delta_3\}$, we have

$$|f(x)g(x) - LM| \le |f(x)g(x) - f(x)M| + |f(x)M - LM|$$

 $\le |f(x)||g(x) - M| + M|f(x) - L|$
 $< \epsilon.$

To prove the second part, note that there exists an interval $(c - \delta, c + \delta)$ around c such that $g(x) \neq 0$ in $(c - \delta, c + \delta)$.

Examples: (i) $\lim_{x\to 0} x^m = 0 \ (m > 0)$. (ii) $\lim_{x\to 0} x \sin x = 0$.

Remark: Suppose f(x) is bounded in an interval containing c and $\lim_{x\to c} g(x) = 0$. Then $\lim_{x\to c} f(x)g(x) = 0$.

Examples: (i) $\lim_{x \to 0} |x| \sin \frac{1}{x} = 0$. (ii) $\lim_{x \to 0} |x| \cos \frac{1}{x} = 0$.

One sided limits: Let f(x) is defined on (c, b). The right hand limit of f(x) at c is L, if given $\epsilon > 0$, there exists $\delta > 0$, such that

$$x - c < \delta \implies |f(x) - L| < \epsilon.$$

Notation: $\lim_{x\to c^+} f(x) = L$. Similarly, one can define the left hand limit of f(x) at b and is denoted by $\lim_{x\to b^-} f(x) = L$.

Both theorems above holds for right and left limits. Proof is easy.

Problem: Show that $\lim_{\theta\to 0} \frac{\sin \theta}{\theta} = 1$.

Solution: Consider the unit circle centred at O(0,0) and passing through A(1,0) and B(0,1). Let Q be the projection of P on x-axis and let T be such that A is the projection of T. Let OT be the ray with $\angle AOT = \theta, 0 < \theta < \pi/2$. Let P be the point of intersection of OT and circle. Then $\triangle OPQ$ and $\triangle OTA$ are similar triangles and hence, Area of $\triangle OAP <$ Area of sector OAP < area of $\triangle OAT$. i.e.,

$$\frac{1}{2}\sin\theta < \frac{1}{2}\theta < \frac{1}{2}\tan\theta$$

dividing by $\sin \theta$, we get $1 > \frac{\sin \theta}{\theta} > \cos \theta$. Now $\lim_{\theta \to 0^+} \cos \theta = 1$ implies that $\lim_{\theta \to 0^+} \frac{\sin \theta}{\theta} = 1$. Now use the fact that $\frac{\sin \theta}{\theta}$ is even function.

At this stage, it is not difficult to prove the following:

Theorem 2.1.4. $\lim_{x\to a} f(x) = L$ exists $\iff \lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x) = L$.

Limits at infinity and infinite limits

Definition 2.1.5. f(x) has limit L as x approaches $+\infty$, if for any given $\epsilon > 0$, there exists M > 0 such that

$$x > M \implies |f(x) - L| < \epsilon.$$

Similarly, one can define limit as x approaches $-\infty$.

Problem: (i) $\lim_{x\to\infty}\frac{1}{x}=0$, (ii) $\lim_{x\to-\infty}\frac{1}{x}=0$. (iii) $\lim_{x\to\infty}\sin x$ does not exist. **Solution:** (i) and (ii) are easy. For (iii), Choose $x_n=n\pi$ and $y_n=\frac{\pi}{2}+2n\pi$. Then $x_n,y_n\to\infty$ and $\sin x_n=0$, $\sin y_n=1$. Hence the limit does not exist.

Above two theorems on limits hold in this also.

Definition 2.1.6. (Horizontal Asymptote:) A line y = b is a horizontal asymptote of y = f(x) if either $\lim_{x \to \infty} f(x) = b$ or $\lim_{x \to -\infty} f(x) = b$.

Examples: (i) y = 1 is a horizontal asymptote for $1 + \frac{1}{x+1}$

Definition 2.1.7. (Infinite Limit): A function f(x) approaches ∞ ($f(x) \to \infty$) as $x \to x_0$ if, for every real B > 0, there exists $\delta > 0$ such that

$$0 < |x - x_0| < \delta \implies f(x) > B.$$

Similarly, one can define for $-\infty$. Also one can define one sided limit of f(x) approaching ∞ or $-\infty$.

Examples (i) $\lim_{x\to 0} \frac{1}{x^2} = \infty$, (ii) $\lim_{x\to 0} \frac{1}{x^2} \sin(\frac{1}{x})$ does not exist.

For (i) given B > 0, we can choose $\delta \leq \frac{1}{\sqrt{B}}$. For (ii), choose a sequence $\{x_n\}$ such that $\sin \frac{1}{x_n} = 1$, say $\frac{1}{x_n} = \frac{\pi}{2} + 2n\pi$ and $\frac{1}{y_n} = n\pi$. Then $\lim_{n \to \infty} f(x_n) = \frac{1}{x_n^2} \to \infty$ and $\lim_{n \to \infty} f(y_n) = 0$, though $x_n, y_n \to 0$ as $n \to \infty$.

Definition 2.1.8. (Vertical Asymptote:) A line x = a is a vertical asymptote of y = f(x) if either $\lim_{x \to a^+} f(x) = \pm \infty$ or $\lim_{x \to a^-} f(x) = \pm \infty$.

Example: $f(x) = \frac{x+3}{x+2}$.

x = -2 is a vertical asymptote and y = 1 is a horizontal asymptote.

2.2 Continuous functions

Definition 2.2.1. A real valued function f(x) is said to be continuous at x = c if

- (i) $c \in domain(f)$
- (ii) $\lim f(x)$ exists
- (iii) The limit in (ii) is equal to f(c).

In other words, for every sequence $x_n \to c$, we must have $f(x_n) \to f(c)$ as $n \to \infty$. i.e., for a given $\epsilon > 0$, there exists $\delta > 0$ such that

$$0 < |x - c| < \delta \implies |f(x) - f(c)| < \epsilon.$$

Examples: (i) $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$ is continuous at 0.

Let $\epsilon > 0$. Then $|f(x) - f(0)| \le |x^2|$. So it is enough to choose $\delta = \sqrt{\epsilon}$.

(ii)
$$g(x) = \begin{cases} \frac{1}{x} \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 is not continuous at 0.

Choose $\frac{1}{x_n} = \frac{\pi}{2} + 2n\pi$. Then $\lim x_n = 0$ and $f(x_n) = \frac{1}{x_n} \to \infty$.

The following theorem is an easy consequence of the definition.

Theorem 2.2.2. Suppose f and g are continuous at c. Then

- (i) $f \pm g$ is also continuous at c
- (ii) fg is continuous at c(iii) $\frac{f}{g}$ is continuous at c if $g(c) \neq 0$.

Theorem 2.2.3. Composition of continuous functions is also continuous i.e., if f is continuous at c and g is continuous at f(c) then g(f(x)) is continuous at c.

Corollary: If f(x) is continuous at c, then |f| is also continuous at c.

Theorem 2.2.4. If f, g are continuous at c, then $\max(f, g)$ is continuous at c.

Proof. Proof follows from the relation

$$\max(f, g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|$$

and the above theorems.

Types of discontinuities

Removable discontinuity: f(x) is defined every where in an interval containing a except at x = a and limit exists at x = a OR f(x) is defined also at x = a and limit is NOT equal to function value at x = a. Then we say that f(x) has removable discontinuity at x=a. These functions can be extended as continuous functions by defining the value of f to be the limit value at x = a.

Example:
$$f(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
. Here limit as $x \to 0$ is 1. But $f(0)$ is defined to be 0.

Jump discontinuity: The left and right limits of f(x) exists but not equal. This type of discontinuities are also called discontinuities of first kind.

Example: $f(x) = \begin{cases} 1 & x \le 0 \\ -1 & x > 0 \end{cases}$. Easy to see that left and right limits at 0 are different.

Infinite discontinuity: Left or right limit of f(x) is ∞ or $-\infty$.

Example: $f(x) = \frac{1}{x}$ has infinite discontinuity at x = 0.

Discontinuity of second kind: If either $\lim_{x\to c^-} f(x)$ or $\lim_{x\to c^+} f(x)$ does not exist, then cis called discontinuity of second kind.

Example: Let $f(x) = \begin{cases} 1 & x \in Q \\ 0 & x \notin Q \end{cases}$. Then lett and right limits does not exist at any point. **Example:** Let $f(x) = \begin{cases} x & x \in Q \\ 0 & x \notin Q \end{cases}$. Then f is continuous only at x = 0.

Properties of continuous functions

Definition 2.2.5. (Closed set): A subset A of \mathbb{R} is called closed set if A contains all its limit points. (i.e., if $\{x_n\} \subset A$ and $x_n \to c$, then $c \in A$).

Theorem 2.2.6. Continuous functions on closed, bounded interval is bounded.

Proof. Let f(x) be continuous on [a,b] and let $\{x_n\} \subset [a,b]$ be a sequence such that $f(x_n) \to \infty$. Then $\{x_n\}$ is a bounded sequence and hence there exists a subsequence $\{x_{n_k}\}$ which converges to c. Then $f(x_{n_k}) \to f(c)$, a contradiction.

Theorem 2.2.7. Let f(x) be a continuous function on closed, bounded interval [a,b]. Then maximum and minimum of functions are achieved in [a,b].

Proof. Let $\{x_n\}$ be a sequence such that $f(x_n) \to \max f$. Then $\{x_n\}$ is bounded and hence by Bolzano-Weierstrass theorem, there exists a subsequence x_{n_k} such that $x_{n_k} \to x_0$ for some x_0 . $a \le x_n \le b$ implies $x_0 \in [a, b]$. Since f is continuous, $f(x_{n_k}) \to f(x_0)$. Hence $f(x_0) = \max f$. The attainment of minimum can be proved by noting that -f is also continuous and $\min f = -\max(-f)$.

Remark: Closed and boundedness of the interval is important in the above theorem. Consider the examples (i) $f(x) = \frac{1}{x}$ on (0,1) (ii) f(x) = x on \mathbb{R} .

Theorem 2.2.8. Let f(x) be a continuous function on [a,b] and let f(c) > 0 for some $c \in (a,b)$, Then there exists $\delta > 0$ such that f(x) > 0 in $(c - \delta, c + \delta)$.

Proof. Let $\epsilon = \frac{1}{2}f(c) > 0$. Since f(x) is continuous at c, there exists $\delta > 0$ such that

$$|x-c| < \delta \implies |f(x) - f(c)| < \frac{1}{2}f(c)$$

i.e., $-\frac{1}{2}f(c) < f(x) - f(c) < \frac{1}{2}f(c)$. Hence $f(x) > \frac{1}{2}f(c)$ for all $x \in (c - \delta, c + \delta)$.

Corollary: Suppose a continuous functions f(x) satisfies $\int_a^b f(x)\phi(x)dx = 0$ for all continuous functions $\phi(x)$ on [a,b]. Then $f(x) \equiv 0$ on [a,b].

Proof. Suppose f(c) > 0. Then by above theorem f(x) > 0 in $(c - \delta, c + \delta)$. Choose $\phi(x)$ so that $\phi(x) > 0$ in $(c - \delta/2, c + \delta/2)$ and is 0 otherwise. Then $\int_a^b f(x)\phi(x) > 0$. A contradiction.

Alternatively, one can choose $\phi(x) = f(x)$.

Theorem 2.2.9. Let f(x) be a continuous function on \mathbb{R} and let f(a)f(b) < 0 for some a, b. Then there exits $c \in (a, b)$ such that f(c) = 0.

Proof. Assume that f(a) < 0 < f(b). Let $S = \{x \in [a,b] : f(x) < 0\}$. Then $[a,a+\delta) \subset S$ for some $\delta > 0$ and S is bounded. Let $c = \sup S$. We claim that f(c) = 0. Take $x_n = c + \frac{1}{n}$, then $x_n \notin S$, $x_n \to c$. Therefore, $f(c) = \lim f(x_n) \ge 0$. On the other and, taking $y_n = c - \frac{1}{n}$, we see that $y_n \in S$ for n large and $y_n \to c$, $f(c) = \lim f(y_n) \le 0$. Hence f(c) = 0.

Corollary: Intermediate value theorem: Let f(x) be a continuous function on [a,b] and let f(a) < y < f(b). Then there exists $c \in (a,b)$ such that f(c) = y

Remark: A continuous function assumes all values between its maximum and minimum.

Problem: (fixed point): Let f(x) be a continuous function from [0,1] into [0,1]. Then show that there is a point $c \in [0,1]$ such that f(c) = c.

Define the function g(x) = f(x) - x. Then $g(0) \ge 0$ and $g(1) \le 0$. Now Apply Intermediate value theorem.

Application: Root finding: To find the solutions of f(x) = 0, one can think of defining a new function g such that g(x) has a fixed point, which in turn satisfies f(x) = 0. Example: (1) $f(x) = x^3 + 4x^2 - 10$ in the interval [1, 2]. Define $g(x) = \left(\frac{10}{4+x}\right)^{1/2}$. We can check that g maps [1, 2] into [1, 2]. So g has fixed point in [1, 2] which is also solution of f(x) = 0. Such fixed points can be obtained as limit of the sequence $\{x_n\}$, where $x_{n+1} = g(x_n), x_0 \in (1, 2)$. Note that

$$g'(x) = \frac{\sqrt{10}}{(4+x)^{3/2}} < \frac{1}{2}.$$

By Mean Value Theorem, $\exists z$ (see next section)

$$|x_{n+1} - x_n| = |g'(z)||x_n - x_{n-1}| \le \frac{1}{2}|x_n - x_{n-1}|$$

Iterating this, we get

$$|x_{n+1} - x_n| < \frac{1}{2^n} |x_1 - x_0|.$$

Therefore, $\{x_n\}$ is a Cauchy sequence. (see problem after Theorem 1.4.4).

Uniformly continuous functions

Definition: A function f(x) is said to be uniformly continuous on a set S, if for given $\epsilon > 0$, there exists $\delta > 0$ such that

$$x, y \in S, |x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$$

Here δ depends only on ϵ , not on x or y.

Proposition: If f(x) is uniformly continuous function \iff for ANY two sequences $\{x_n\}, \{y_n\}$ such that $|x_n - y_n| \to 0$, we have $|f(x_n) - f(y_n)| \to 0$ as $n \to \infty$.

Proof. Suppose not. Then there exists $\{x_n\}, \{y_n\}$ such that $|x_n - y_n| \to 0$ and $|f(x_n)|$

 $|f(y_n)| > \eta$ for some $\eta > 0$. Then it is clear that for $\epsilon = \eta$, there is no δ for which $|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$. Because the above sequence satisfies $|x - y| < \delta$, but its image does not.

For converse, assume that for any two sequences $\{x_n\}$, $\{y_n\}$ such that $|x_n-y_n|\to 0$ we have $|f(x_n)-f(y_n)|\to 0$. Suppose f is not uniformly continuous. Then by the definition there exists ϵ_0 such that for any $\delta>0$, $|x-y|<\delta \implies |f(x)-f(y)|>\epsilon_0$. Now take $\delta=\frac{1}{n}$ and choose x_n,y_n such that $|x_n-y_n|<1/n$. Then $|f(x_n)-f(y_n)|>\epsilon_0$. A contradiction.

Examples: (i) $f(x) = x^2$ is uniformly continuous on bounded interval [a, b]. Note that $|x^2 - y^2| \le |x + y| |x - y| \le 2b|x - y|$. So one can choose $\delta < \frac{\epsilon}{2b}$.

(ii) $f(x) = \frac{1}{x}$ is not uniformly continuous on (0,1). Take $x_n = \frac{1}{n+1}, y_n = \frac{1}{n}$, then for n large $|x_n - y_n| \to 0$ but $|f(x_n) - f(y_n)| = 1$.

(iii) $f(x) = x^2$ is not uniformly continuous on \mathbb{R} . Take $x_n = n + \frac{1}{n}$ and $y_n = n$. Then $|x_n - y_n| = \frac{1}{n} \to 0$, but $|f(x_n) - f(y_n)| = 2 + \frac{1}{n^2} > 2$.

Remarks:

- 1. It is easy to see from the definition that if f, g are uniformly continuous, then $f \pm g$ is also uniformly continuous.
- 2. If f, g are uniformly continuous, then fg need not be uniformly continuous. This can be seen by noting that f(x) = x is uniformly continuous on \mathbb{R} but x^2 is not uniformly continuous on \mathbb{R} .

Theorem 2.2.10. A continuous function f(x) on a closed, bounded interval [a,b] is uniformly continuous.

Proof. Suppose not. Then there exists $\epsilon > 0$ and sequences $\{x_n\}$ and $\{y_n\}$ in [a, b] such that $|x_n - y_n| < \frac{1}{n}$ and $|f(x_n) - f(y_n)| > \epsilon$. But then by Bolzano-Weierstrass theorem, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ that converges to x_0 . Also $y_{n_k} \to x_0$. Now since f is continuous, we have $f(x_0) = \lim f(x_{n_k}) = \lim f(y_{n_k})$. Hence $|f(x_{n_k}) - f(y_{n_k})| \to 0$, a contradiction.

Corollary: Suppose f(x) has only removable discontinuities in [a, b]. Then \tilde{f} , the extension of f, is uniformly continuous.

Example: $f(x) = \frac{\sin x}{x}$ for $x \neq 0$ and 0 for x = 0 on [0, 1].

Theorem 2.2.11. Let f be a uniformly continuous function and let $\{x_n\}$ be a cauchy sequence. Then $\{f(x_n)\}$ is also a Cauchy sequence.

Proof. Let $\epsilon > 0$. As f is uniformly continuous, there exists $\delta > 0$ such that

$$|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$$
.

Since $\{x_n\}$ is a Cauchy sequence, there exists N such that

$$m, n > N \implies |x_n - x_m| < \delta.$$

Therefore $|f(x_n) - f(x_m)| < \epsilon$.

Example: $f(x) = \frac{1}{x^2}$ is not uniformly continuous on (0,1).

The sequence $x_n = \frac{1}{n}$ is cauchy but $f(x_n) = n^2$ is not. Hence f cannot be uniformly continuous.

2.3 Differentiability

Definition 2.3.1. A real valued function f(x) is said to be differentiable at x_0 if

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \quad exists.$$

This limit is called the derivative of f at x_0 , denoted by $f'(x_0)$.

Example: $f(x) = x^2$

$$f'(x) = \lim_{h \to 0} \frac{2xh + h^2}{h} = 2x.$$

Theorem 2.3.2. If f(x) is differentiable at a, then it is continuous at a.

Proof. For $x \neq a$, we may write,

$$f(x) = (x - a)\frac{f(x) - f(a)}{(x - a)} + f(a).$$

Now taking the limit $x \to a$ and noting that $\lim(x-a) = 0$ and $\lim \frac{f(x)-f(a)}{(x-a)} = f'(a)$, we get the result.

Theorem 2.3.3. Let f, g be differentiable at $c \in (a, b)$. Then $f \pm g, fg$ and $\frac{f}{g}$ $(g(c) \neq 0)$ is also differentiable at c

Proof. We give the proof for product formula: First note that

$$\frac{(fg)(x) - (fg)(c)}{x - c} = f(x)\frac{g(x) - g(c)}{x - c} + g(c)\frac{f(x) - f(c)}{x - c}.$$

Now taking the limit $x \to c$, we get the product formula

$$(fg)'(c) = f(c)g'(c) + f'(c)g(c).$$

Since $g(c) \neq 0$ and g is continuous, we get $g(x) \neq 0$ in a small interval around c. Therefore

$$\frac{f}{g}(x) - \frac{f}{g}(c) = \frac{g(c)f(x) - g(c)f(c) + g(c)f(c) - g(x)f(c)}{g(x)g(c)}$$

Hence

$$\frac{(f/g)(x) - (f/g)(c)}{x - c} = \left\{ g(c) \frac{f(x) - f(c)}{x - c} - f(c) \frac{g(x) - g(c)}{x - c} \right\} \frac{1}{g(x)g(c)}$$

Now taking the limit $x \to c$, we get

$$(\frac{f}{g})'(c) = \frac{g(c)f'(c) - f(c)g'(c)}{g^2(c)}.$$

Theorem 2.3.4. (Chain Rule): Suppose f(x) is differentiable at c and g is differentiable at f(c), then h(x) := g(f(x)) is differentiable at c and

$$h'(c) = g'(f(c))f'(c)$$

Proof. Define the function h as

$$h(y) = \begin{cases} \frac{g(y) - g(f(c))}{y - f(c)} & y \neq f(c) \\ g'(f(c)) & y = f(c) \end{cases}$$

Then the function h is continuous at y = f(c) and g(y) - g(f(c)) = h(y)(y - f(c)), so

$$\frac{g(f(x)) - g(f(c))}{x - c} = h(f(x)) \frac{f(x) - f(c)}{x - c}.$$

Now taking limit $x \to c$, we get the required formula.

Local extremum: A point x = c is called local maximum of f(x), if there exists $\delta > 0$ such that

$$0 < |x - c| < \delta \implies f(c) \ge f(x).$$

Similarly, one can define local minimum: x = b is a local minimum of f(x) if there exists $\delta > 0$ such that

$$0 < |x - b| < \delta \implies f(b) \le f(x).$$

Theorem 2.3.5. Let f(x) be a differentiable function on (a,b) and let $c \in (a,b)$ is a local maximum of f. Then f'(c) = 0.

Proof. Let δ be as in the above definition. Then

$$x \in (c, c + \delta) \implies \frac{f(x) - f(c)}{x - c} \le 0$$

$$x \in (c - \delta, c) \implies \frac{f(x) - f(c)}{x - c} \ge 0.$$

Now taking the limit $x \to c$, we get f'(c) = 0.

Theorem 2.3.6. Rolle's Theorem: Let f(x) be a continuous function on [a,b] and differentiable on (a,b) such that f(a) = f(b). Then there exists $c \in (a,b)$ such that f'(c) = 0.

Proof. If f(x) is constant, then it is trivial. Suppose $f(x_0) > f(a)$ for some $x_0 \in (a, b)$, then f attains maximum at some $c \in (a, b)$. Other possibilities can be worked out similarly.

Theorem 2.3.7. Mean-Value Theorem (MVT): Let f be a continuous function on [a,b] and differentiable on (a,b). Then there exists $c \in (a,b)$ such that

$$f(b) - f(a) = f'(c)(b - a).$$

Proof. Let l(x) be a straight line joining (a, f(a)) and (b, f(b)). Consider the function g(x) = f(x) - l(x). Then g(a) = g(b) = 0. Hence by Rolle's theorem

$$0 = g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$$

Corollary: If f is a differentiable function on (a, b) and f' = 0, then f is constant.

Proof. By mean value theorem f(x) - f(y) = 0 for all $x, y \in (a, b)$.

Example: Show that $|\cos x - \cos y| \le |x - y|$.

Use Mean-Value theorem and the fact that $|\sin x| \leq 1$.

Problem: If f(x) is differentiable and $\sup |f'(x)| < C$ for some C. Then, f is uniformly continuous.

Apply mean value theorem to get $|f(x) - f(y)| \le C|x - y|$ for all x, y.

Definition: A function f(x) is strictly increasing on an interval I, if for $x, y \in I$ with x < y we have f(x) < f(y). We say f is strictly decreasing if x < y in I implies f(x) > f(y).

Theorem 2.3.8. A differentiable function f is (i) strictly increasing in (a, b) if f'(x) > 0 for all $x \in (a, b)$. (ii) strictly decreasing in (a, b) if f'(x) < 0.

Proof. Choose x, y in (a, b) such x < y. Then by MVT, for some $c \in (x, y)$

$$\frac{f(x) - f(y)}{x - y} = f'(c) > 0.$$

Hence f(x) < f(y).

2.4 Taylor's theorem and Taylor Series

Let f be a k times differentiable function on an interval I of $I\!\!R$. We want to approximate this function by a polynomial $P_n(x)$ such that $P_n(a) = f(a)$ at a point a. Moreover, if the derivatives of f and P_n also equal at a then we see that this approximation becomes more accurate in a neighbourhood of a. So the best coefficients of the polynomial can be calculated using the relation $f^{(k)}(a) = P_n^{(k)}(a), k = 0, 1, 2, ..., n$. The best is in the sense that if f(x) itself is a polynomial of degree less than or equal to n, then both f and P_n are equal. This implies that the polynomial is $\sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x-a)^k$. Then we write $f(x) = P_n(x) + R_n(x)$ in a neighbourhood of a. From this, we also expect the $R_n(x) \to 0$ as $x \to a$. In fact, we have the following theorem known as **Taylor's theorem**:

Theorem 2.4.1. Let f(x) and its derivatives of order m are continuous and $f^{(m+1)}(x)$ exists in a neighbourhood of x = a. Then there exists $c \in (a, x)$ (or $c \in (x, a)$) such that

$$f(x) = f(a) + f'(a)(x - a) + \dots + f^{(m)}(a)\frac{(x - a)^m}{m!} + R_m(x)$$

where
$$R_m(x) = \frac{f^{(m+1)}(c)}{(m+1)!}(x-a)^{m+1}$$
.

Proof. Define the functions F and g as

$$F(y) = f(x) - f(y) - f'(y)(x - y) - \dots - \frac{f^{(m)}(y)}{m!}(x - y)^{m},$$
$$g(y) = F(y) - \left(\frac{x - y}{x - a}\right)^{m+1} F(a).$$

Figure 1: Approximation of sin(x) by Taylor's polynomials

Then it is easy to check that g(a) = 0. Also g(x) = F(x) = f(x) - f(x) = 0. Therefore, by Rolle's theorem, there exists some $c \in (a, x)$ such that

$$g'(c) = 0 = F'(c) + \frac{(m+1)(x-c)^m}{(x-a)^{m+1}}F(a).$$

On the other hand, from the definition of F,

$$F'(c) = -\frac{f^{(m+1)}(c)}{m!}(x-c)^m.$$

Hence $F(a) = \frac{(x-a)^{m+1}}{(m+1)!} f^{(m+1)}(c)$ and the result follows.

Examples:

$$(i) \ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} e^c, c \in (0, x) \text{ or } (x, 0) \text{ depending on the sign of } x.$$

$$(ii) \ \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^n}{n!} \sin(c + \frac{n\pi}{2}), c \in (0, x) \text{ or } (x, 0).$$

$$(iii) \ \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} \cos(c + \frac{n\pi}{2}), c \in (0, x) \text{ or } (x, 0).$$

(ii)
$$\sin x = x - \frac{x^3}{3!} + \frac{x^3}{5!} + \dots + \frac{x^n}{n!} \sin(c + \frac{n\pi}{2}), c \in (0, x) \text{ or } (x, 0).$$

(iii)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} \cos(c + \frac{n\pi}{2}), c \in (0, x) \text{ or } (x, 0).$$

Problem: Find the order n of Taylor Polynomial P_n , about x=0 to approximate e^x in (-1,1) so that the error is not more than 0.005

Solution: We know that $p_n(x) = 1 + x + \dots + \frac{x^n}{n!}$. The maximum error in [-1,1] is

$$|R_n(x)| \le \frac{1}{(n+1)!} \max_{[-1,1]} |x|^{n+1} e^x \le \frac{e}{(n+1)!}.$$

So n is such that $\frac{e}{(n+1)!} \le 0.005$ or $n \ge 5$.

Problem: Find the interval of validity when we approximate $\cos x$ with 2nd order polynomial with error tolerance 10^{-4} .

Solution: Taylor polynomial of degree 2 for $\cos x$ is $1 - \frac{x^2}{2}$. So the remainder is $(\sin c)\frac{x^3}{3!}$. Since $|\sin c| \le 1$, the error will be at 10^{-4} if $|\frac{x^3}{3!}| \le 10^{-4}$. Solving this gives |x| < 0.084

Taylor's Series

Suppose f is infinitely differentiable at a and if the remainder term in the Taylor's formula, $R_n(x) \to 0$ as $n \to \infty$. Then we write

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n.$$

This series is called Taylor series of f(x) about the point a.

Suppose there exists C = C(x) > 0, independent of n, such that $|f^{(n)}(x)| \le C(x)$. Then $|R_n(x)| \to 0$ if $\lim_{n \to \infty} \frac{|x-a|^{n+1}}{(n+1)!} = 0$. For any fixed x and a, we can always find N such that |x-a| < N. Let $q := \frac{|x-a|}{N} < 1$. Then

$$\left| \frac{(x-a)^{n+1}}{(n+1)!} \right| = \left| \frac{|x-a|}{1} \right| \left| \frac{|x-a|}{2} \right| \dots \left| \frac{|x-a|}{N-1} \right| \left| \frac{|x-a|}{N} \right| \dots \left| \frac{|x-a|}{n+1} \right|$$

$$< \left| \frac{|x-a|^{N-1}}{(N-1)!} \right| q^{n-N+2}$$

 $\rightarrow 0$ as $n \rightarrow \infty$ thanks to q < 1.

In case of a = 0, the formula obtained in Taylor's theorem is known as Maclaurin's formula and the corresponding series that one obtains is known as Maclaurin's series.

Example: (i)
$$f(x) = e^x$$
.
In this case $R_n(x) = \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c) = \frac{x^{n+1}}{(n+1)!} e^c = \frac{x^{n+1}}{(n+1)!} e^{\theta x}$, for some $\theta \in (0,1)$.

Therefore for any given x fixed, $\lim_{n\to\infty} |R_n(x)| = \lim_{n\to\infty} \left(\frac{x^{n+1}}{(n+1)!}\right) e^{\theta x} = 0.$

Example: (ii) $f(x) = \sin x$.

In this case it is easy to see that $|R_n(x)| \leq \frac{|x|^{2n+1}}{(2n+1)!} |\sin(c+\frac{n\pi}{2})|$. Now use the fact that $|\sin x| \leq 1$ and follow as in example (i).

Maxima and Minima: Derivative test

Definition 2.4.2. A point x = a is called critical point of the function f(x) if f'(a) = 0. **Second derivative test:** A point x = a is a local maxima if f'(a) = 0, f''(a) < 0.

Suppose f(x) is continuously differentiable in an interval around x = a and let x = a be a critical point of f. Then f'(a) = 0. By Taylor's theorem around x = a, there exists, $c \in (a, x)$ (or $c \in (x, a)$),

$$f(x) - f(a) = \frac{f''(c)}{2}(x - a)^2.$$

If f''(a) < 0. Then by Theorem2.2.8, f''(c) < 0 in $|x - a| < \delta$. Hence f(x) < f(a) in $|x - a| < \delta$, which implies that x = a is a local maximum.

Similarly, one can show the following for local minima: x = a is a local minima if f'(a) = 0, f''(a) > 0.

Also the above observations show that if f'(a) = 0, f''(a) = 0 and $f^{(3)}(a) \neq 0$, then the sign of f(x) - f(a) depends on $(x - a)^3$. i.e., it has no constant sign in any interval containing a. Such point is called point of inflection or saddle point.

We can also derive that if $f'(a) = f''(a) = f^{(3)}(a) = 0$, then we again have x = a is a local minima if $f^{(4)}(a) > 0$ and is a local maxima if $f^{(4)}(a) < 0$.

Summarizing the above, we have:

Theorem 2.4.3. Let f be a real valued function that is differentiable 2n times and $f^{(2n)}$ is continuous at x = a. Then

- 1. If $f^{(k)}(a) = 0$ for k = 1, 2, 2n 1 and $f^{(2n)}(a) > 0$ then a is a point of local minimum of f(x)
- 2. If $f^{(k)}(a) = 0$ for k = 1, 2, 2n 1 and $f^{(2n)}(a) < 0$ then a is a point local maximum of f(x).

3. If $f^{(k)} = 0$ for k = 1, 2, 2n - 2 and $f^{(2n-1)}(a) \neq 0$, then a is point of inflection. i.e., f has neither local maxima nor local minima at x = a.

L'Hospitals Rule:

Suppose f(x) and g(x) are differentiable n times, $f^{(n)}, g^{(n)}$ are continuous at a and $f^{(k)}(a) = g^{(k)}(a) = 0$ for k = 0, 1, 2, ..., n - 1. Also if $g^{(n)}(a) \neq 0$. Then by Taylor's theorem,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f^{(n)}(c)}{g^{(n)}(c)}$$
$$= \frac{f^{(n)}(a)}{g^{(n)}(a)}$$

In the above, we used the fact that $g^{(n)}(x) \neq 0$ "near x = a" and $g^{(n)}(c) \rightarrow g^{(n)}(a)$ as $x \rightarrow a$.

Similarly, we can derive a formula for limits as x approaches infinity by taking $x = \frac{1}{y}$.

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{y \to 0} \frac{f(1/y)}{g(1/y)}$$

$$= \lim_{y \to 0} \frac{(-1/y^2)f'(1/y)}{(-1/y^2)g'(1/y)}$$

$$= \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

References

- [1] Elementary Analysis: The Theory of Calculus, K. A. Ross.
- [2] Calculus, G. B. Thomas and R. L. Finney, Pearson.