2025年春季数值分析期末回忆版

成崔昊

- 1. 设 $f(x) = ax^4 + bx^2 + c$, 则 $f[0,1] = _____, f[0,-1] = _____, f[1,2,3,4,5]$ (某个 5 阶差商,记不清了) = _____, 若 f[-2,-1,0,1] = 2025, 那 $f[-1,0,1,2] = _____$ 。
- 2. 浮点系 F(10,8,38,-38) 能表示的最大浮点数为 _____, 一共可以表示______个数 答案: 0.99999999 * 10³⁸ , 13860000001
- 4. 常微分方程的梯形公式为_____, 它是一个__步__阶__式方法。

答案: $y_{i+1} = y_i + \frac{h}{2}[f(x_i, y_i) + f(x_{i+1}, y_{i+1})], -$, 二, 隐

5. 设 y=f(x), 有 (x_i, y_i), i=1,2,···10, 10 个插值点构造拉格朗日插值多项式,则
R₉(x)=_____,
l₁(x₁₀)=____, $\sum_{i=1}^{10} l_i(x) (2025x_i^2 + 2023x_i + 2022) =_____$

答案: $\frac{f^{(10)}(x)}{10!}\prod_{i=1}^{10}(x-x_i)$, 0, $2025x^2+2023x+2022$

- 6. 有 n+1 个插值点的求积公式最低代数精度为___, 最高为____, 此时称为____求积公式答案: n, 2n+1,Gauss 解答题:
- 1. 设使用公式 $e^x \approx 1 + x + \frac{x^2}{2!} + \dots + \frac{x^{10}}{10!}$ 计算 e^4 ,如何计算能使精度最高?

2. 给定数据表

Х	0	1	2	3
f(x)	1	0	5	52
f'(x)	2		2	

求插值以上数据不超过5次的多项式,并给出余项

答案:

X	f[.]	f[]	f[]	f[···.]	f[]	f[]
0	1					
0	1	2				
1	0	-1	-3			
2	5	5	3	3		
2	5	2	-3	-3	-3	
3	52	47	45	24	9	4

故
$$p(x) = 1 + 2x - 3x^2 + 3x^2(x - 1) - 3x^2(x - 1)(x - 2) + 4x^2(x - 1)(x - 2)^2$$

$$R(x) = \frac{f^{(6)}(\xi)}{6!}x^2(x - 1)(x - 2)^2(x - 3), \xi \in (0,3)$$

- 3. 系数矩阵为 A=[5,3,7], b=[4] 求其 Jacobi 与 Gauss-Seidel 迭代格式,并判断当 a 取 [3,6,8], [5] [7,8,a], [6] 何值时, $x_0=[1,1,1]^T$ 可以收敛。
- 4. $x^3 x 1 = 0$, 其在 $x_0 = 1.3$ 附近有零点。设迭代格式为 $x^{k+1} = \sqrt[3]{x^k + 1}$, 判断是 否收敛,若不收敛,给出收敛的迭代格式。

解答:
$$\phi'(x) = \frac{1}{3}(x+1)^{\frac{-2}{3}}$$

 $\phi''(x) = \frac{-2}{9}(x+1)^{\frac{-5}{3}}$

取区间[1,2],发现二阶导恒小于 0,即一阶导单调减。 $\phi'(1)=0.20999,\; \phi'(2)=0.16025,\;$ 故在区间[1,2]上 $|\phi'(x)|\leq |\phi'(1)|<1$ 因此收敛。