Department of Mathematics, Bennett University Engineering Calculus (EMAT101L) Solutions for Tutorial Sheet 5

1. (a)
$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h} = \begin{cases} \lim_{h \to 0} \frac{h}{h} = 1, & h \in \mathbb{Q} \\ \lim_{h \to 0} \frac{\sin h}{h} = 1, & h \notin \mathbb{Q}. \end{cases}$$
 Thus $f'(0) = 1$.

(b)
$$\lim_{h\to 0} \frac{f(h) - f(0)}{h} = \lim_{h\to 0} \frac{\sin\frac{1}{h}}{\sqrt{h}}$$
 doesn't exist. So f is not differentiable at $x = 0$.

(c)
$$\lim_{h\to 0} \frac{f(h)-f(0)}{h} = \lim_{h\to 0} h\cos\frac{1}{h} = 0$$
. Therefore f is differentiable at $x=0$.

(d)
$$\lim_{h\to 0} \frac{f(h) - f(0)}{h} = \lim_{h\to 0} \frac{e^{-\frac{1}{h^2}}}{h} = \lim_{k\to \infty} \frac{k}{e^{k^2}} = 0$$
. Thus f is differentiable at 0.

(e)
$$\lim_{h\to 0} \frac{f(h)-f(0)}{h} = \lim_{h\to 0} \cos\frac{1}{h}$$
 doesn't exist. So f is not differentiable at 0.

(f)
$$\lim_{h\to 0} \frac{f(h)-f(0)}{h} = \lim_{h\to 0} \frac{e^{-|h|}-1}{h}$$
 doesn't exist. So f is not differentiable at 0.

2. (a)
$$\lim_{h\to 0} \frac{f(0+h)-f(0)}{h} = \lim_{h\to 0} \frac{h^3 \sin\frac{1}{h}}{h} = \lim_{h\to 0} h^2 \sin\frac{1}{h} = 0$$
. Thus f is differentiable at 0 and $f'(0) = 0$. Now $f'(x) = 3x^2 \sin\frac{1}{x} - x \cos\frac{1}{x}$. So $\lim_{x\to 0} f'(x) = 0 = f'(0)$. Therefore f' is continuous at $x = 0$.

(b)
$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h^2 \cos \frac{1}{h}}{h} = 0$$
. Therefore f is differentiable at 0 and $f'(0) = 0$. Now $f'(x) = 2x \cos \frac{1}{x} + \sin \frac{1}{x}$, $x \neq 0$. So limit does not exist as $x \to 0$. Thus f' is not continuous at $x = 0$.

(c) For
$$x > 0$$
, $f'(x) = 2x \ln \frac{1}{x} - x$ and $\lim_{x \to 0^+} f'(x) = 0$. Also for $x < 0$, $f'(x) = 2x \ln \frac{1}{|x|} - x$ and $\lim_{x \to 0^-} f'(x) = 0$. As $f'(0) = \lim_{h \to 0} h \ln \frac{1}{|h|} = 0$, thus f' is continuous at 0

3. Use
$$\frac{dA}{dt} = 2\pi r \frac{dr}{dt}$$
.

- 4. Let $x_0 \in (a, b)$. Then by mean value theorem, we have $\frac{f(x) f(x_0)}{x x_0} = f'(d) = c$ (given) where $a < d < x_0$. From this we have, $f(x) = cx + f(x_0) cx_0$. Hence f(x) = cx + k, where $k = f(x_0) cx_0$.
- 5. Now $(f-g)'(x) \le 0$. Then f-g is decreasing function. Therefore $(f-g)(x) \le (f-g)(0)$ for all $x \ge 0$. As f(0)-g(0)=0, we have $f(x) \le g(x)$ for all $x \ge 0$.
- 6. By mean value theorem, we have $f(x) = f\left(\frac{1}{2}\right) + (x \frac{1}{2})f'(c)$ for some $c \in (0, 1)$. Then

$$|f(x)| \le \left| f\left(\frac{1}{2}\right) \right| + \left| \left(x - \frac{1}{2}\right) \right| |f'(c)| \le \frac{1}{2} + \frac{1}{2}\alpha < \frac{1}{2} + \frac{1}{2} = 1.$$

7. Use L'Hospital rule. (a) $\frac{1}{2}$, (b) $-\frac{1}{24}$, (c) -1.