Fundamentals of signals and systems

Course instructor: Dr. Baraka Maiseli

Department of Electronics and Telecommunications Engineering College of Information and Communication Technologies University of Dar es Salaam

June 2020

Course information

Course code

TE 231

Course weight

Total credits: 8 Units

Prerequisite

- ▶ MT 171 (One variable calculus and differential equations for non-majors)
- ▶ MATLAB

Objective

To reveal mathematical tools necessary to analyze signals and systems in time and frequency domains.

Course information

Outcomes

Upon completion of the course, you are expected to

- ▶ Describe properties of signals in time and frequency domains
- ▶ Transform signals from time domain into frequency domain, and vice versa
- Describe characteristics of noise
- ▶ Explain how noise affects signals
- ▶ Derive effects of networks on signals
- ▶ Explain systems and give their practical examples
- ▶ Establish relationships between signals and systems

Course information

Assessment

- Coursework: 40%
- Final Examination: 60%

Delivery mode (hours/semester)

- Lecture: 30
- ▶ Tutorial: 15
- ▶ Practical: 20
- Assignment: 15
- Total: 80

Unit 1: Description of signals and systems in time domain

- ▶ What is a signal?
- ▶ Classification of signals
- Classification of systems
- Operation on signals
- ▶ Linear time invariant systems (LTI)
- ▶ Impulse responses of LTI systems
- Responses of LTI systems

Unit 2: Description of signals and systems in frequency domain

- ▶ Fourier series analysis of periodic signals
- ▶ Fourier transforms of signals and systems
- ▶ Transfer functions of LTI systems
- ▶ Transmission of signals through distortionless systems Power
- spectral density of signals
- ▶ Energy spectral density of signals
- ▶ Power and energy spectral densities of LTI systems' outputs

Unit 3: Probability and random variables

- ▶ Probability and sample space
- ▶ Random variables
- Statistical averages for random variables
- Common probability models

Unit 4: Random signals and noise

- ▶ Random processes
- ▶ Correlation of random processes
- Power spectral density of random processes
- ▶ Transmission of random processes through LTI systems
- Gaussian process
- ▶ White and colored noise
- Narrowband random process

Unit 5: Linear time invariant networks

- ▶ Transfer functions
- ▶ Convolution
- ▶ Filters and noise
- ▶ Signal-to-noise ratio and noise figure

Recommended references

- B. Carlson, P. B. Crilly, and J. C. Rutledge, Communication Systems: An introduction to Signals and Noise in Electrical Communication, McGraw-Hill Higher Education, 4th ed, 2002.
- 2 P. Z. Peebles, Jr, Probability, Random Variables and Random Signal Principles, McGraw-Hill International ed, 4th ed, 2001.
- ${\color{red} \bullet}$ H. P. Hsu, Signals and Systems, Schaum's Outlines, McGraw-Hill, 1995.
- L. W. Couch II, Digital and Analog Communication Systems, Prentice Hall International ed, 5th ed, 2004.
- Vinay K. Ingle and John G. Proakis, Digital Signal Processing Using MATLAB, Cengage Engineering, 2006