Gamma Ray Counting for Low Background Experiments

Dr. Tom Sonley
SNOLAB Staff Scientist

InterSpec Gamma Ray Software

- https://github.com/sandialabs/ interspec/releases
- Please download and install the appropriate version for your OS.

Example Radioactivity Levels

- ¹⁴C: 1 ppt of natural Carbon
- 40K: 120 ppm of natural Potassium
- ²³⁸U: to 10 ppm in rocks and soil
- ²³²Th: to 10 ppm in rocks and soil
- Thoriated welding rods: 1-4% ²³²Th
- Screened low-background materials: <1 ppb U, Th
- Rn gas:
 - 1 to 100 Bq/m³ on surface
 - ~3 Bq/m³ in Sudbury
 - ~130 Bq/m³ at SNOLAB

Sources of Radioactive Backgrounds

- Nearly stable isotopes
 - $^{238}U 4.5 \times 10^9$ years
 - 232 Th 1.4×10^{10} years
 - $^{235}U 7 \times 10^{8}$ years
 - $^{40}K 1.3 \times 10^9 \text{ years}$
- Activated isotopes
 - $^{14}C 5,700$ years
 - ³⁹Ar 270 years

• ⁷Be − 53 days

- Daughter isotopes
 - 210 Pb 22 years
 - 208Tl 3 minutes
 - 228Ac 6.2 hours
- Gaseous daughter isotopes
 - 220Rn 56 seconds
 - 222 Rn 3.8 days
 - ⁴He stable

- Fission products
 - 137Cs 30 years
 - 131 I 8 days

- Man-made isotopes
 - 60Co 5.3 years
 - ${}^{3}H 12 \text{ years}$
 - ¹⁸F 110 minutes

232Th Chain

	Thorium Gamma Inter	nsities		A = 4n			13.52 1.600 16.2 0.72 12.75 0.304 15.5 0.16	Ra 228 5.75 a	63.823 0.264 204.68 0.021	Th 232 1.405x10 ¹⁰ a
								911.204 25.8 968.971 15.8 338.320 11.27 964.766 4.99 463.004 4.40 794.947 4.25 209.253 3.89	Ac 228 6.15 h	
	238.632 43.3 300.087 3.28 115.183 0.592	Pb 212 10.64(1) h	804.9 0.0019	Po 216 145(2) ms	549.76 0.114	Rn 220 55.6(1) s	240.986 4.10	Ra 224 3.66(4) d	84.373 1.220 215.983 0.254 131.613 0.131 166.410 0.104	Th 228 1.9116(16) a
2614.533 99.0 583.191 84.5 510.77 22.6 860.564 12.42 277.351 6.31 763.13 1.81	T1 208 3.053(4) m	39.858 1.091	Bi 212 60.55(6) m 35.94% 64.06%	β 727.330 6.58 1620.50 1.49 785.37 1.102						
		Pb 208 stable	-	Po 212 299(2) ns						

235U Chain

Actinium Gamma Intensities			A = 4n + 3					25.64 14.5 84.214 6.6	Th 231 1.0633 d	185.715 57.2 143.76 10.96 163.33 5.08 205.311 5.01 109.16 1.54 202.11 1.08	U 235 7.028x10 ⁸ a	
		293.56 100 271.23 8.2 517.60 4.3 776.90 3.4 1398.8 3.4 564.09 2.8 608.30 2.8 835.32 2.6 s	Bi 215 7.6 m	α none β none	At 219 56 s	α none β 50.13 36.0 β 79.72 9.1 β 234.81 3.0 β 49.89 2.7	Fr 223 21.8 m	α 160.26 0.0059 β none	Ac 227 21.773(3) a	27.36 10.29 300.07 2.47 302.65 2.19 283.69 1.70 330.06 1.40 19.00 0.374	Pa 231 3.276x10 ⁴ a	
	404.853 3.78 832.01 3.52 427.088 1.76	Pb 211	438.8 ~0.040	Po 215 1.781(4) ms	271.23 10.8 401.81 6.37	Rn 219 3.96(1) s	269.459 13.70 154.21 5.62 323.871 3.93 144.232 3.22 338.281 2.79 445.031 1.27	11.435(4) d	235.971 12.3 50.13 8.26 256.25 7.01 329.85 2.69 300.00 2.32 286.12 1.53	100 may 200 1		
897.80 0.260 569.702 0.00159 328.12 0.00140	4.77 m	α 351.059 12.91 β none	Bi 211 2.14(2) m 99.724% 0.276%									
		Pb 207 stable	897.80 0.561 569.702 0.5	Po 211 516 ms								

238U Chain

Uranium – Radium Gamma Intensities			A = 4n + 2					63.29 4.84 92.38 2.81 92.80 2.77 112.81 0.28	Th 234 24.10 d	49.55 0.064 113.5 0.010	U 238 4.468x10° a	
										1001.03 0.837 766.38 0.294		2.269 98.2%
	351.932 37.6 295.224 19.3 241.997 7.43 53.2275 1.2 785.96 1.07	Pb 214 26.8(9) m	α none β none	Po 218 3.10(1) m	511 0.076	Rn 222 3.8235(3) d	186.211 3.59	Ra 226 1600(1) a	67.672 0.378	Th 230 7.538x10 ⁴ a	53.20 0.123	U 234 7.455x10 ⁵ a
799 99 298 79 1316 21 1210 17 1070 12 1110 6.9 2010 6.9	Tl 210 1.30(3) m	5 609.312 46.1 5 1764.494 15.4 5 1120.287 15.1 5 1238.110 5.79 5 2204.21 5.08 5 768.356 4.94 6 1377.669 4.00 8 934.061 3.03	α none Bi 214 19.9(4) m 0.276% 99.724%	none	At 218 1.5 s							
	46.539 4.25	Pb 210 22.3(2) a	799.7 0.0104	Po 214 164.3(20) us								
		none	Bi 210 5.013 d									
		Pb 206 stable	803.10 0.00121	Po 210 138.376 d								

Gamma Ray Generation

Eg (keV)	Ig (%)	Decay mode
211.40 <i>15</i>	0.178 20	b-
233.36 15	0.307 20	b-
252.61 <i>10</i>	0.69 4	b-
277.351 10	6.31 9	b-
277.72		b-
485.95 <i>15</i>	0.050 5	b-
510.77 10	22.6 3	b-
583.191 2	84.5 7	b-
1381.1 5	0.007 3	b-
1647.5 7	0.0020 10	b-
1744.0 7	0.0020 10	b-
2614.533 <i>13</i>	99	b-

Gamma Ray Detection

- High-purity germanium crystal detectors: Semiconductor Diodes
- Incoming gammas create holes/ewhich are drifted to n/p electrodes for read-out
- Shielded with low-activity copper and lead

Germanium Detector Function

- Detectors must be cooled to reduce the thermal generation of charge carriers
- •Liquid nitrogen, which has a temperature of 77 K is the common cooling medium
- •Detector is mounted in a vacuum chamber, which is attached to or inserted into an LN_2 Dewar.

Simulation of 1.5 MeV Gamma Rays

- Line widths are
 usually set by the
 resolution of the
 detector.
- Germanium detectors have resolutions of 1 to 3 keV.

Analysis Method

- Focus only on photoelectric peak
- Calculate number of observed events in peak
- Convert to activity for that isotope

Analysis Method

$$N = \Omega \cdot \epsilon \cdot \frac{Ig}{100} \cdot M \cdot t \cdot A$$

- N = Number of Counts
- Ω = Solid Angle factor (from Simulations)
- ε = Photoelectric peak efficiency (from Simulations)
- Ig = Branch Probability (from Lund database)
- M = Sample mass
- t = Data acquisition time
- A = Activity (units such as Bq/kg)

Analysis Goals

$$N = \Omega \cdot \epsilon \cdot \frac{Ig}{100} \cdot M \cdot t \cdot A$$

- What radioactive elements are present in your samples?
- What is the activity (with uncertainty) of each of these elements?
- Are these activities consistent with other measurements?
- Are there any decay chains present?

- Are the elements in the chains in equilibrium?
- Or have certain elements been concentrated or diluted?
- What are the dominant uncertainties in your analysis?

https://www.snolab.ca/~tjsonley/CAPSS2023/

CAPSS 2023 Gamma Ray Counting Exercise

Interspec Software

Each group need a copy of Interspec on one of their computers.

Windows link

Mac link

Linux link

The download website is <u>here</u>

Data Files

Download all of the data files in a .zip file

The unzipped data is <u>here</u> if you have trouble unzipping the main file.

Python

We will be using python to perform part of the analysis.

There is a simple python interface using "Jupyter Notebooks" in your web browser available at https://jupyter.org/try-jupyter/lab/ Follow that link, then use the file browser to upload all of the files in the "PythonFitting" directory.

Then open CAPSS2023Notebook.ipynb.

Now, highlight each of the cells in order and click the "play" button above to execute the code.

The first box should take 30 seconds or so to run, but the others should be fast.

You will see the marker in front of the box go from [] before hitting play,

to [*] while the code is running,

to [1] or [2] when the code has finished.

You can change any of the lines and rerun that cell to see how it changes the output.

InterSpec

- https://github.com/sandialabs/ interspec/releases
- Can open many data formats
- Automatic Peak Fitting
- Automatic Background Subtraction
- Library of Gamma Ray Nuclides

InterSpec

- Open the Rain_Water.chn file
- View -> Chart Options -> Linear Y-Scale
- Zoom in by dragging right
- Zoom out by dragging left
- Double-click on a peak to fit it
- Details show up in the bottom peak manager
- Right-click on a peak to refit
- Library of Gamma Ray Nuclides

InterSpec

- Use Nuclide Search tab to identify peaks
 - Click on peak to automatically fill energy
 - Search for decays with high "Rel B.R."
 = Relative Branching Ratio
 - InterSpec will sometimes list multiple "Parents" for the same decay. Just choose one.

InterSpec Parameters (1)

Md258

Min. HL 6000 s

Min. BR 0

367.80

6.45

1.00

-0.32

Md258→Es254m

InterSpec Parameters (2)

Eg (keV)	Ig (%)	Decay mode
80.185 2	2.62 3	b⁻
85.9 2	0.00009 5	b-
163.930 8		b-
177.214 2	0.270 <i>3</i>	b-
232.18 <i>15</i>	0.0032 4	b-
272.498 <i>17</i>	0.0578 11	b-
284.305 <i>5</i>	6.14 5	b-
295.8 2	0.0018 8	b-
302.4 2	0.0047 6	b-
318.088 <i>16</i>	0.0776 16	b-
324.651 25	0.0212 25	b-
325.789 <i>4</i>	0.274 21	b-
358.4.2	0.016.6	b-
364.489 <i>5</i>	81.7 6	b-
+04.614 <i>4</i>	0.0547 10	b-
503.004 <i>4</i>	0.360 <i>3</i>	b-
636.989 <i>4</i>	7.17 9	b-
642.719 <i>5</i>	0.217 4	b-
722.911 5	1.773 25	b-

Simulation Parameters

$$N = \Omega \cdot \epsilon \cdot \frac{Ig}{100} \cdot M \cdot t \cdot A$$

- The product $(\Omega \cdot \epsilon)$ is calculated by simulation
- https://www.snolab.ca/~tjsonley/CAPSS2023/

Python

We will be using python to perform part of the analysis.

There is a simple python interface using "Jupyter Notebooks" in your web browser available at https://jupyter.org/try-jupyter/lab/ Follow that link, then use the file browser to upload all of the files in the "PythonFitting" directory. Then open CAPSS2023Notebook.ipynb.

Now, highlight each of the cells in order and click the "play" button above to execute the code.

The first box should take 30 seconds or so to run, but the others should be fast.

You will see the marker in front of the box go from [] before hitting play,

to [*] while the code is running,

to [1] or [2] when the code has finished.

You can change any of the lines and rerun that cell to see how it changes the output.

Simulation Parameters

- Change the input Efficiency file to the one for the data you are analyzing
- Go through the notebook and find the efficiency at the energy of the given peak
- Repeat for every peak!

Analysis Goals

$$N = \Omega \cdot \epsilon \cdot \frac{Ig}{100} \cdot M \cdot t \cdot A$$

- What radioactive elements are present in your samples?
- What is the activity (with uncertainty) of each of these elements?
- Are these activities consistent with other measurements?
- Are there any decay chains present?

- Are the elements in the chains in equilibrium?
- Or have certain elements been concentrated or diluted?
- What are the dominant uncertainties in your analysis?

Error Propagation

$$F = f(a, b)$$

$$\sigma_F^2 = \left(\frac{\partial F}{\partial a} \cdot \sigma_a\right)^2 + \left(\frac{\partial F}{\partial b} \cdot \sigma_b\right)^2$$

$$F = \frac{ab}{c}$$

$$\sigma_f^2 = F^2 \left(\frac{\sigma_a^2}{a^2} + \frac{\sigma_b^2}{b^2} + \frac{\sigma_c^2}{c^2} \right)$$

Error Comparisons

$$\frac{\sigma_f^2}{F^2} = \left(\frac{\partial F}{\partial a} \cdot \frac{\sigma_a}{F}\right)^2 + \left(\frac{\partial F}{\partial b} \cdot \frac{\sigma_b}{F}\right)^2$$

Error Source	Uncertainty (%)
Uncertainty on Counts	10.2
Detection Efficiency	5
Branching Ratio	1
Sample Mass	0.1
Livetime	0.001
Total	11.4

- Usually summarized in an Error Table
- Since they are added in quadrature, only the largest ones matter.
- e.g. "Uncertainty on Counts" contributes 80% of the total

Measurement precision is given by $\frac{\sigma_f}{E}$:

Error Rules of Thumb $\frac{\sigma_f^2}{F^2} = \left(\frac{\partial F}{\partial a} \cdot \frac{\sigma_a}{F}\right)^2 + \left(\frac{\partial F}{\partial b} \cdot \frac{\sigma_b}{F}\right)^2$

- Dominant Uncertainties
 - > 1/3 of max uncertainty
 - These must be addressed to improve the measurement
 - Papers and reports must describe how these were estimated
- Secondary Uncertainties
 - 1/3 to 1/10 of max uncertainty
 - These could become dominant in an improved measurement
 - Reports should describe the general method used to estimate them (repeated measurements, simulations, etc.)
- Negligible Uncertainties
 - < 1/10 of max uncertainty
 - They must go in the error table
 - Reports should spend less than 1 sentence describing them.