Algorithmique Partiel nº 1

Info-Sup - Epita

D.S. 312053.19 BW (20 jan 2011 - 10:00)

Remarques (à lire!):

- □ Vous devez répondre sur les feuilles de réponses prévues à cet effet.
 - Aucune autre feuille ne sera ramassée (gardez vos brouillons pour vous).
 - Répondez dans les espaces prévus, les réponses en dehors ne seront pas corrigées : utilisez des brouillons!
 - Ne séparez pas les feuilles à moins de pouvoir les ré-agrafer pour les rendre.
 - Aucune réponse au crayon de papier ne sera corrigée.
- □ La présentation est notée en moins, c'est à dire que vous êtes noté sur 20 et que les points de présentation (2 au maximum) sont retirés de cette note.

\square Les algorithmes :

- Tout algorithme doit être écrit dans le langage Algo (pas de C#, CAML ou autre).
- Tout code Algo non indenté ne sera pas corrigé.
- En dehors d'indication dans les énoncés, vous ne pouvez utiliser aucune routine (fonction ou procédure) supplémentaire.
- ${\bf Rappel}$: pour chaque algorithme, lorsque demandé sur les feuilles de réponses, vous devez donner :
 - Les spécifications c'est à dire ce qu'il fait, les paramètres (types et significations) et les éventuelles conditions d'utilisation.
 - Le principe algorithmique c'est à dire en clair la méthode retenue pour résoudre le problème. Attention le principe et les spécifications sont notés, ne pas les envisager revient à sacrifier directement des points.
- □ Durée : 2h.

Info-Sup

ЕРІТА

Exercice 1 (Un peu de cours... – 4 points)

- 1. Dans la résolution d'un problème, quelle raison principale motive l'utilisation d'une pile?
- 2. Citer 3 sortes d'arbres binaires particuliers. Donner une représentation graphique de chacun d'eux pour un nombre maximum de 13 noeuds (le minimum étant de 5 noeuds).
- 3. Donner le principe d'un algorithme qui utiliserait *obligatoirement* une pile pour tester qu'un mot donné sous la forme d'une chaîne de caractères est ou non un palindrome.

Exercice 2 (Cheminons - 6 points)

Soit le type algébrique abstrait suivant :

```
TYPES
    ArbreBinaire
UTILISE
    Noeud, Elément
OPERATIONS
    arbre-vide: 
ightarrow ArbreBinaire
    <_, _, _> : Noeud 	imes ArbreBinaire 	imes ArbreBinaire 	o ArbreBinaire
    racine
                 : ArbreBinaire 
ightarrow Noeud
                 : ArbreBinaire 
ightarrow ArbreBinaire
    g
    d
                 : ArbreBinaire 
ightarrow ArbreBinaire
    contenu
                : Noeud 
ightarrow Element
PRECONDITIONS
    racine(B) est-défini-ssi B \neq arbre\_vide
    g(B) est-défini-ssi B \neq arbre_vide
    d(B) est-défini-ssi B \neq arbre_vide
AXIOMES
    Racine(<o, B1, B2>) = o
    g(<o, B1, B2>) = B1
    d(<o, B1, B2>) = B2
AVEC
    Noeud
                   0
```

- 1. Donner le principe d'un algorithme déterminant pour un arbre binaire quelconque la longueur de cheminement externe de celui-ci.
- 2. En utilisant les opérations définies par le type algébrique abstrait, écrire la **procédure récursive** "calcule_lce(B,h,lce)" correspondant à ce principe ou B est de type ArbreBinaire, h et lce de type Entier représentant respectivement la hauteur du noeud racine de B et la longueur de cheminement externe de B.

Notes:

- Vous pouvez déclarer tous les variables locales supplémentaires que vous jugerez nécessaires, en gardant à l'esprit que le résultat doit être retourné (sera contenu) par le paramètre global "lce".
- Vous donnerez l'appel de cette procédure.

ArbreBinaire B, B1, B2

- Si vous désirez utiliser des opérations supplémentaires, vous devez au préalable les définir abstraitement.

Le type utilisé pour représenter les listes

Dans les exercices qui suivent, les listes sont représentées en contiguë (par le type t_liste).

```
constantes
   LMax = ...

types
   /* déclaration du type t_element*/
   t_vectLMaxElts = LMax t_element

t_liste = enregistrement
   t_vectLMaxElts elts
   entier longueur
   fin enregistrement t_liste
```

Exercice 3 (Minimum - 5 points)

Après avoir donné son principe, écrire l'algorithme minimum qui détermine la position de la valeur minimum dans une liste L entre les positions données d et f (avec $1 \le d < f \le L.longueur$).

Exemple:

Dans la liste suivante :

Entre les positions d = 3 et f = 8, le minimum est à la position 4.

Exercice 4 (Tri par sélection – 5 points)

- 1. Écrire la procédure swap qui échange le contenu de deux variables de type t_element.
- 2. Écrire un algorithme qui trie en ordre croissant une liste. Votre algorithme doit obligatoirement utiliser l'algorithme minimum de l'exercice précédent, la procédure swap de la question 1.

Exemple:

La liste donnée à l'exercice précédent sera après le tri :

	1	2	3	4	5	6	7	8	9	10	
L.elts	-6	-5	-3	-2	0	3	3	4	7	8	