

Algèbre Linéaire et Analyse de Données

Examen 2021 - 2022, Durée : 1h45 Licence 2 MIASHS

Guillaume Metzler
Université de Lyon, Université Lumière Lyon 2
Laboratoire ERIC UR 3083, Lyon, France
guillaume.metzler@univ-lyon2.fr

Deux feuilles A4 manuscrites avec vos notes personnelles sont autorisées.

En revanche, l'usage de calculatrice ou de tout autre matériel électronique est interdit.

Résumé

L'examen est volontairement long afin de donner l'opportunité à chacun de trouver des questions qu'il puisse faire pendant le temps imparti.

En outre, il permettra de faire une meilleure distinction entre les étudiants.

A ce titre, il n'est bien sûr pas attendu à ce que vous traitiez tous les exercices!

Les différents exercices qui composent cet examen sont indépendants. La qualité de la rédaction sera prise en compte de l'évaluation de la copie.

Exercice 1

On considère la famille de vecteurs de \mathbb{R}^3 suivante :

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \ \text{et } \mathbf{v}_3 = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

- 1. Rappeler la définition de famille libre.
- 2. La famille de vecteurs $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ forme-t-elle une famille libre de \mathbb{R}^3 ? Est-elle une famille génératrice de \mathbb{R}^3 ?
- 3. On note $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ la base canonique de \mathbb{R}^3 et soit $\phi : \mathbb{R}^3 \to \mathbb{R}^3$ l'application vérifiant

$$\phi(\mathbf{e}_1) = \mathbf{v}_1, \ \phi(\mathbf{e}_2) = \mathbf{v}_2, \ \text{et } \phi(\mathbf{e}_3) = \mathbf{v}_3.$$

- (a) Déterminer la matrice associée à l'application ϕ dans la base canonique de \mathbb{R}^3 , on la notera $Mat(\phi)$.
- (b) L'application ϕ est-elle inversible? Déterminer son inverse.
- 4. On considère maintenant l'application φ dont la représentation matricielle dans la base canonique \mathscr{B} est donnée par

$$M = Mat_{\mathscr{B}}(\varphi) = \begin{pmatrix} 1 & 0 & 0 & -3 \\ -2 & -1 & 0 & 5 \\ -1 & 1 & 2 & -2 \end{pmatrix}.$$

- (a) Déterminer une base du noyau de φ et précisez sa dimension.
- (b) Déterminer une base de l'image de φ et préciser sa dimension.

Correction

1. Une famille de vecteur $(\mathbf{v}_i)_{i=1}^n$ est dite libre si pour tout n-uplet $(\lambda_1, \ldots, \lambda_n)$ on a l'implication suivante :

$$\sum_{i=1}^n \lambda_i \mathbf{v}_i = \mathbf{0} \implies (\lambda_1, \dots, \lambda_n) = \mathbf{0}.$$

2. Ici le système d'équation

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \lambda_3 \mathbf{v}_3 = \mathbf{0}$$

est un système triangulaire supérieur donc on a successivement $\lambda_1 = 0$ puis $\lambda_2 = 0$ et enfin $\lambda_3 = 0$ en utilisant les équations de haut en bas.

La famille de vecteurs $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ est une famille libre de vecteurs de \mathbb{R}^3 , c'est donc une base de \mathbb{R}^3 , et elle est donc génératrice.

3. (a) On rappelle que la matrice d'une application linéaire est entièrement définie par l'image des vecteurs de base par cette application. On a directement

$$Mat(\phi) = \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 0 \\ -1 & 1 & 2 \end{pmatrix}.$$

(b) L'application ϕ est inversible, ses colonnes sont les éléments de la famille $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ qui est une base de \mathbb{R}^3 .

On vérifie que son inverse est donné par

$$Mat(\phi^{-1}) = Mat(\phi)^{-1} = \frac{1}{-2} \begin{pmatrix} -2 & 0 & 0 \\ 4 & 2 & 0 \\ -3 & -1 & -1 \end{pmatrix}.$$

4. On considère

$$M = Mat_{\mathscr{B}}(\varphi) = \begin{pmatrix} 1 & 0 & 0 & -3 \\ -2 & -1 & 0 & 5 \\ -1 & 1 & 2 & -2 \end{pmatrix}.$$

Remarquons que φ est une application de \mathbb{R}^4 dans \mathbb{R}^3 , elle n'est donc clairement pas injective, son noyau est au moins de dimension 1

(a) Nous avons déjà vu que les trois première colonnes de cette matrice, forme une base de \mathbb{R}^3 . Elle forme donc une base de l'espace image qui est un sous espace de \mathbb{R}^3 . En fait, l'espace image est \mathbb{R}^3 tout entier.

Ainsi on a

$$3C_1 - C_2 + C_3 + C_4 = 0$$

Donc le noyau est engendré par le vecteur (3, -1, 1, 1), c'est donc un espace de dimension 1.

(b) D'après ce qui précède, l'image est un espace de dimension 3 engendré par les trois première colonnes de la matrice.

Exercice 2

On note $\mathbf{x} = (x_1, x_2, x_3)$ un vecteur de \mathbb{R}^3 . On considère une application ϕ de \mathbb{R}^3 dans $\mathcal{M}_3(\mathbb{R})$ définie par

$$\phi: \mathbf{x} \mapsto \begin{pmatrix} x_1 & x_1 + x_2 & 0 \\ 0 & x_2 & x_2 + x_3 \\ 0 & 0 & x_3 \end{pmatrix}$$

1. Montrer que l'ensemble

$$E = \left\{ \begin{pmatrix} x_1 & x_1 + x_2 & 0 \\ 0 & x_2 & x_2 + x_3 \\ 0 & 0 & x_3 \end{pmatrix} \mid x_1, x_2, x_3 \in \mathbb{R} \right\}$$

est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.

- 2. Déterminer E', le sous-espace de l'ensemble des matrices inversibles de E.
- 3. Montrer que l'application ϕ est linéaire. Est-elle injective?
- 4. L'application ϕ est-elle surjective?

Correction

- 1. Il faut montrer que cet ensemble est non vide et qu'il est stable par combinaison linéaire
 - E est non vide, car la matrice nulle de $\mathcal{M}_3(\mathbb{R})$ est un élément de E où $x_1 = x_2 = x_3 = 0$.
 - Soient $A, B \in E$ et $\lambda \in \mathbb{R}$, alors

$$A + \lambda B = \begin{pmatrix} a_1 & a_1 + a_2 & 0 \\ 0 & a_2 & a_2 + a_3 \\ 0 & 0 & a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 & b_1 + b_2 & 0 \\ 0 & b_2 & b_2 + b_3 \\ 0 & 0 & b_3 \end{pmatrix},$$

$$= \begin{pmatrix} a_1 + \lambda b_1 & a_1 + \lambda b_1 + a_2 + \lambda b_2 & 0 \\ 0 & a_2 + \lambda b_2 & a_2 + \lambda b_2 + a_3 + \lambda b_3 \\ 0 & 0 & a_3 + \lambda b_3 \end{pmatrix}.$$

C'est donc un élément de E en posant $c_i = a_i + \lambda b_i$.

 $2.\ E$ est un sous espace des matrices triangulaires supérieures qui sont inversibles si et seulement si leurs éléments diagonaux sont non nuls. Donc

$$E' = \left\{ \begin{pmatrix} x_1 & x_1 + x_2 & 0\\ 0 & x_2 & x_2 + x_3\\ 0 & 0 & x_3 \end{pmatrix} \mid x_1, x_2, x_3 \in \mathbb{R}^* \right\}$$

3. La question précédente a montre que l'application ϕ est linéaire, inutile donc de le refaire ici. En effet on a montré, en posant $\mathbf{c} = \mathbf{a} + \lambda \mathbf{b}$ que

$$\phi(\mathbf{c}) = \phi(\mathbf{a} + \lambda \mathbf{b}) = \phi(\mathbf{a}) + \lambda \phi(\mathbf{b})$$

L'application ϕ est en effet injective car la l'ensemble des triplets (x_1, x_2, x_3) qui donnent la matrice nulle est le triplet nul, il suffit de se concentrer sur les éléments diagonaux.

4. L'application ϕ n'est évidemment pas surjective dans $\mathcal{M}_3(\mathbb{R})$. Par exemple, la matrice

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

n'admet d'antécédent par ϕ .

Exercice 3

On se place dans l'espace vectoriel $E = \mathbb{R}^3$, on note $\mathscr{B} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ sa base canonique. Soit u un endomorphisme de E dont la représentation matricielle dans la base \mathscr{B} , notée A, est donnée par :

$$A = \begin{pmatrix} 6 & -2 & 2 \\ 0 & 4 & 0 \\ 2 & -2 & 6 \end{pmatrix}$$

On pose $\mathbf{f}_1 = \mathbf{e}_1 + \mathbf{e}_3$, $\mathbf{f}_2 = \mathbf{e}_1 + \mathbf{e}_2$ et $\mathbf{f}_3 = \mathbf{e}_1 - \mathbf{e}_3$.

- 1. Montrer que $\mathscr{B}' = (\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3)$ une base de E.
- 2. Déterminer la matrice de passage P de la base \mathscr{B} vers la base \mathscr{B}' .
- 3. Déterminer $u(\mathbf{f}_1), u(\mathbf{f}_2)$ et $u(\mathbf{f}_3)$ et en déduire une représentation matricielle de A dans cette nouvelle base \mathcal{B}' . Elle sera appelée D dans la suite.

- 4. Calculer D^n pour tout entier $n \in \mathbb{N}^*$.
- 5. Donner l'expression de A^n pour tout entier $n \in \mathbb{N}^*$ en fonction de la matrice D^n .

Correction

1. On procède toujours de la même, on va regarder si la matrice formée par les vecteurs écrits dans la base canonique forme est inversible, *i.e.* on va étudier la matrice

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

On peut voir très facilement que cette matrice est inversible! On peut par exemple voir une forme échelonnée réduite en ajoutant la première colonne à la troisième.

2. La matrice de passage P de la base \mathscr{B} vers \mathscr{B}' est obtenue en représentant les vecteurs de la nouvelles base dans l'ancienne base, i.e.

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix}.$$

3. On va simplement procéder au calcul

$$u(\mathbf{f}_1) = \begin{pmatrix} 6 & -2 & 2 \\ 0 & 4 & 0 \\ 2 & -2 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 8 \\ 0 \\ 8 \end{pmatrix} = 8\mathbf{f}_1$$

$$u(\mathbf{f}_2) = \begin{pmatrix} 6 & -2 & 2 \\ 0 & 4 & 0 \\ 2 & -2 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 0 \end{pmatrix} = 4\mathbf{f}_2$$

$$u(\mathbf{f}_3) = \begin{pmatrix} 6 & -2 & 2 \\ 0 & 4 & 0 \\ 2 & -2 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ -4 \end{pmatrix} = 4\mathbf{f}_3$$

On a donc
$$D = \begin{pmatrix} 8 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$
.

4. La matrice D étant diagonale, on a trivialement :

$$D^n = \begin{pmatrix} 8^n & 0 & 0 \\ 0 & 4^n & 0 \\ 0 & 0 & 4^n \end{pmatrix}.$$

5. A l'aide de la formule de changement de base reliant les représentations du même endomorphisme U dans les bases \mathscr{B} et \mathscr{B}' , nous avons

$$A = PDP^{-1}$$

soit

$$A^n = PD^nP^{-1}$$

Exercice 4

1. Soit $\mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$. Considérons la famille de vecteurs $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$

$$\mathbf{v}_1 = \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ \text{et } \mathbf{v}_3 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

- (a) Déterminer un vecteur \mathbf{v}_3 tel que la famille $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ forme une famille orthogonale de \mathbb{R}^3 , *i.e.* déterminer l'expression de $q(\mathbf{x})$ et celle de $\phi(\mathbf{x}, \mathbf{y})$ où ϕ désigne la forme polaire associée.
- (b) Déterminer l'espace orthogonal au vecteur \mathbf{v}_1 dans \mathbb{R}^3 , *i.e.* l'ensemble des vecteurs de \mathbb{R}^3 qui sont orthogonaux au vecteur \mathbf{v}_1 .
- 2. On considère l'application $\phi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ par

$$\phi(\mathbf{x}, \mathbf{y}) = (x_1 + y_1)^2 + (x_2 + y_2)^2 - (x_1 - y_1)^2 - (x_2 - y_2)^2$$

- (a) Montrer que l'application ϕ définit un produit scalaire.
- (b) Déterminer la forme quadratique associée et la matrice associée à l'application ϕ .
- (c) La forme quadratique est-elle définie positive?

Correction

1. On commence par voir que les vecteurs \mathbf{v}_1 et \mathbf{v}_2 sont bien orthogonaux. En effet

$$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \mathbf{v}_1^T \mathbf{v}_2 = 0.$$

(a) le vecteur \mathbf{v}_3 doit vérifier

$$\mathbf{v}_1^T \mathbf{v}_3 = 0 \iff -x_1 - 2x_2 - x_3 = 0,$$

$$\mathbf{v}_2^T \mathbf{v}_3 = 0 \iff x_1 - x_3 = 0,$$

La deuxième équation impose que $x_1 = x_3$ et en injectant dans la première équation on trouve $x_2 = -x_3$.

On peut donc prendre le vecteur

$$\mathbf{v}_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

pour que la famille étudiée soit orthogonale.

- (b) D'après la question précédente, l'espace orthogonale à \mathbf{v}_1 dans \mathbb{R}^3 est l'espace engendré par les vecteurs \mathbf{v}_2 et \mathbf{v}_3 .
- 2. On se concentre sur l'étude de l'application ϕ . On va commencer par simplifier son expression pour trouver que

$$\phi(\mathbf{x}, \mathbf{y}) = 4x_1y_1 + 4x_2y_2$$

(a) On rappelle qu'un produit scalaire est une forme bilinéaire symétrique, définie positive. On doit donc vérifier ces différents points.

- On a $\phi(\mathbf{x}, \mathbf{x}) = 4x_1^2 + 4x_2^2 \ge 0$. De plus $\phi(\mathbf{x}, \mathbf{x}) = 0$ si seulement si $4(x_1^2 + x_2^2) = 0$, *i.e.* $x_1 = x_2 = 0$, ainsi ϕ est définie positive.
- Elle est clairement symétrique vu l'expression simplifiée.
- Elle est linéaire à gauche, en effet, pour tout $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}$

$$\phi(\mathbf{x} + \lambda \mathbf{x}', \mathbf{y}) = 4(x_1 + \lambda x_1')y_1 + 4(x_2 + \lambda x_2')y_2,$$

= $4x_1y_1 + 4x_2y_2 + \lambda(4x_1'y_1 + 4x_2'y_2),$
= $\phi(\mathbf{x}, \mathbf{y}) + \lambda \phi(\mathbf{x}', \mathbf{y}).$

Comme ϕ est symétrique, elle est donc aussi linéaire à droite, donc bilinéaire. In fine, ϕ est bien un produit scalaire.

(b) La forme quadratique associée est

$$q(\mathbf{x}) = \phi(\mathbf{x}, \mathbf{x}) = 4x_1^2 + 4x_2^2$$

et la matrice associée à cette forme quadratique (ou la forme bilinéaire associée $\phi)$ est donnée par

$$Mat(\phi) = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}.$$

(c) La forme quadratique est définie positive, c'est une conséquence de la question a). Cela peut également se lire sur la matrice qui est diagonale avec ses éléments diagonaux strictement positifs.

Exercice 5

Soit q la forme quadratique de \mathbb{R}^3 dans \mathbb{R} de matrice

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

dans la base canonique $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ de \mathbb{R}^3

- 1. Donner l'expression analytique de q dans la base $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ et expliciter sa forme polaire.
- 2. Vérifier que la famille $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ définie par

$$\mathbf{e}_1' = \mathbf{e}_1, \ \mathbf{e}_2' = \mathbf{e}_1 - \mathbf{e}_2, \ \mathbf{e}_3' = -\mathbf{e}_2 + \mathbf{e}_3$$

est une base de \mathbb{R}^3 et donner la matrice A' de q dans cette base.

- 3. Expliciter q dans cette base.
- 4. Déterminer le projection du vecteur \mathbf{e}_2' sur le vecteurs \mathbf{e}_1' puis sur le vecteur \mathbf{e}_3' .

Correction

1. La forme quadratique q, dans la base $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ est définie, pour tout $\mathbf{x} \in \mathbb{R}^3$ par

$$q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = x^1 + x_2^2 + 2x_3^2 + 4x_1x_2 + 2x_2x_3.$$

La forme polaire associée, notée ϕ est définie pour tout vecteur $\mathbf{x},\mathbf{y}\in\mathbb{R}^3$ par

$$\phi(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T A \mathbf{y} = x_1 y_1 + x_2 y_2 + x_3 y_3 + 2x_1 y_2 + 2x_2 y_1 + x_2 y_3 + x_3 y_2.$$

2. On peut représenter cette famille de vecteurs dans une matrice qui sera notre matrice de passage P, on a

$$P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Cette matrice est échelonnée "réduite", elle est de rang 3 et est donc inversible. La famille de vecteurs ainsi défini est donc une base de \mathbb{R}^3 .

Pour obtenir la représentation de q dans cette nouvelle base, on se souvient que pour tout vecteur $\mathbf{x} \in \mathbb{R}^3$ on a

$$q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$$

.

Or les relations de changement de base d'un vecteur nous donne $\mathbf{x} = P\mathbf{x}'$ ou \mathbf{x}' est la représentation de \mathbf{x} dans la nouvelle base $(\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3)$. D'où

$$q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = (P \mathbf{x}')^T A (P \mathbf{x}) = \mathbf{x}'^T P^T A P \mathbf{x}' = \mathbf{x}'^T A' \mathbf{x}'.$$

On a donc

$$A' = P^T A P = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -2 \\ -1 & -2 & -2 \\ -2 & -2 & 1 \end{pmatrix}.$$

3. L'expression de q dans cette nouvelle base est alors

$$q(\mathbf{x}) = x_1^2 - 2x_2^2 + x_3^2 - 2x_1x_2 - 4x_1x_3 - 4x_2x_3.$$

4. Les vecteurs $\mathbf{e}'_1, \mathbf{e}'_2, \mathbf{e}'_3$ sont définies par

$$\mathbf{e}_1' = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \mathbf{e}_2' = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \ \mathbf{e}_3' = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}.$$

On rappelle que la projection d'un vecteur \mathbf{x} sur un vecteur \mathbf{y} est donnée par

$$p_{\mathbf{y}}(\mathbf{x}) = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{y}\|^2} \mathbf{y}.$$

Dans ce cas nous avons respectivement

$$p_{\mathbf{e}_1'}(\mathbf{e}_2') = \frac{\langle \mathbf{e}_2', \mathbf{e}_1' \rangle}{\|\mathbf{e}_1'\|^2} \mathbf{e}_1'.$$

Or
$$\langle \mathbf{e}_2', \mathbf{e}_1' \rangle = 1$$
 et $\|\mathbf{e}_1'\|^2 = 1$, donc $p_{\mathbf{e}_1'}(\mathbf{e}_2') = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

De la même façon, nous avons

$$p_{\mathbf{e}_3'}(\mathbf{e}_2') = \frac{\langle \mathbf{e}_2', \mathbf{e}_3' \rangle}{\|\mathbf{e}_3'\|^2} \mathbf{e}_3'.$$
 Or $\langle \mathbf{e}_2', \mathbf{e}_3' \rangle = 1$ et $\|\mathbf{e}_1'\|^2 = 2$, donc $p_{\mathbf{e}_1'}(\mathbf{e}_2') = \begin{pmatrix} 0 \\ -1/2 \\ 1/2 \end{pmatrix}$.

Exercice 6

On considère la matrice

$$A = \begin{pmatrix} 1/2 & 1/2 & 0 & 0\\ 1/4 & 1/4 & 1/2 & 0\\ 1/8 & 1/8 & 1/4 & 1/2\\ 1/8 & 1/8 & 1/4 & 1/2 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R}).$$

- 1. Rappeler le lien entre valeurs propres d'une matrice et sa trace.
- 2. Déterminer la dimension du noyau de la matrice A.
- 3. Quel est le déterminant de A? Préciser le rang de la matrice A.
- 4. Déterminer les valeurs propres de la matrice A.

 Indication : on pourra effectuer les calculs suivants

$$A \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \quad et \quad A \begin{pmatrix} 2 \\ 0 \\ -1 \\ -1 \end{pmatrix}$$

La matrice A est-elle diagonalisable?

Correction

- 1. La trace d'une matrice est égale à la somme de ses valeurs propres.
- 2. On montre que le noyau est de dimension 1. En effet, soit $\mathbf{x} \in \mathbb{R}^4$ un élément du noyau de A, alors la première ligne de la matrice impose

$$x_1 = -x_2$$
.

Ce qui, en utilisant la deuxième ligne de la matrice A nous donne

$$x_3 = 0.$$

De la même façon, en utilisant la troisième ligne de la matrice, on trouve

$$x_4 = 0.$$

Donc le noyau de A se trouve dans le sous-espace engendré par le vecteur (1, -1, 0, 0).

Réciproquement, on montre que pour tout $\alpha \in \mathbb{R}$, le vecteur $\mathbf{x}_{\alpha}(\alpha, -\alpha, 0, 0)$ vérifie bien $A\mathbf{x}_{\alpha} = \mathbf{0}$.

Le noyau de A est donc bien un espace de dimension 1.

3. Le noyau étant de dimension 1, on en déduit que la matrice A n'est pas inversible, son déterminant est donc nul.

De plus, le théorème du rang qui énonce que

$$dim(\mathbb{R}^4) = dim(Ker(A)) + rg(A)$$

nous indique le rang de la matrice A est directement égal à 3.

4. Effectuons les opérations demandées

$$A \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \quad et \quad A \begin{pmatrix} 2 \\ 0 \\ -1 \\ -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 \\ 0 \\ -1 \\ -1 \end{pmatrix}$$

Ces deux calculs montrent que 1 et 1/2 sont des valeurs propres de A. La question 1 a montré que 0 est une valeur propre de A, car la matrice A a un noyau non réduit au vecteur nul.

Il manque donc une valeur propre à déterminer, or Tr(A) = 3/2 et la somme des trois valeurs propres actuelles est aussi égale à 3/2, la dernière valeur propre est donc nécessairement égale à 0.

Pour que A soit diagonalisable, il faudrait que le sous-espace propre associé à la valeur propre 0 soit de dimension 2, or la question 1 a montré que dim(Ker(A)) = 1. A n'est donc pas diagonalisable.

Exercice 7

Dire si les matrices suivantes sont diagonalisables ou non

1. La matrice A de $\mathcal{M}_3(\mathbb{R})$ définie par

$$A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 1 \end{pmatrix}.$$

2. La matrice B de $\mathcal{M}_3(\mathbb{R})$ définie par

$$B = \begin{pmatrix} 3 & -1 \\ 0 & 3 \end{pmatrix}.$$

3. La matrice C de $\mathcal{M}_3(\mathbb{R})$ définie par

$$C = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 3 & 1 \\ 1 & -1 & 1 \end{pmatrix}.$$

Correction

1. La matrice A est diagonalisable car il s'agit d'une matrice symétrique réelle. Elle est donc orthogonalement semblable à une matrice diagonale.

2. La matrice B n'est pas diagonalisable. En effet, supposons qu'elle le soit, il existerait donc une matrice P telle que

$$B = PDP^{-1},$$

où D est la matrice $2I_2$. La matrice D commute donc avec P, ce qui voudrait dire que l'on aurait

$$B=D$$
,

ce qui est absurde car $B \neq D$.

3. On commence par déterminer le polynôme caractéristique \mathcal{X}_C défini par

$$\mathcal{X}_C(\lambda) = egin{bmatrix} 1 - \lambda & 1 & 1 \ -1 & 3 - \lambda & 1 \ 1 & -1 & 1 - \lambda \end{bmatrix}$$

Or

$$\mathcal{X}_{C}(\lambda) = \begin{vmatrix} 1 - \lambda & 1 & 1 \\ -1 & 3 - \lambda & 1 \\ 1 & -1 & 1 - \lambda \end{vmatrix},$$

$$\downarrow \text{ on pose } L_{2} \leftarrow L_{2} + L_{3}$$

$$= \begin{vmatrix} 1 - \lambda & 1 & 1 \\ 0 & 2 - \lambda & 2 - \lambda \\ 1 & -1 & 1 - \lambda \end{vmatrix},$$

$$\downarrow \text{ on développe selon la deuxième ligne}$$

$$= (2 - \lambda)((1 - \lambda)^{2} - 1) + (2 - \lambda)(\lambda),$$

$$= (2 - \lambda)(-\lambda(2 - \lambda)) - (2 - \lambda)^{2},$$

$$= -(2 - \lambda)^{2}(1 - \lambda).$$

Ainsi les valeurs propres sont 1 et 2 et la valeur propre 2 est de multiplicité 2.

Il suffit de montrer que le sous-espace propre associé à la valeur propre 2 est bien de dimension

2. On va pour cela étudier le noyau de $A - 2I_3 = \begin{pmatrix} -1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \end{pmatrix}$.

Les trois lignes sont identiques (à un facteur multiplicatif près, ce qui assure que le noyau est dimension 2), on doit trouver les vecteurs $\mathbf{x} = (x_1, x_2, x_3)$ qui vérifient

$$x_1 - x_2 - x_3 = 0 \iff x_1 = x_2 + x_3$$

On vérifie que les vecteurs $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

Sont bien solutions de cette équation et forment donc une base de l'espace propre associé à la valeur propre 2, base constituée de deux vecteurs. La matrice C est donc diagonalisable.