Taller-Práctica: Representación de Grafos

Este taller pretende asimilar los conceptos teóricos, a través de actividades prácticas y ejercicios para ayudar a comprender y/o aclarar los conceptos de la representación de grafos y las técnicas de búsqueda DFS y BFS.

Objetivos del Taller

- Entender qué es un grafo y sus componentes.
- Aprender las diferentes representaciones de grafos: lista de adyacencia y matriz de advacencia.
- Implementar las dos representaciones.
- Entender los conceptos de recorrido en profundidad (DFS) y recorrido en anchura (BFS).
- Aprender cómo implementar ambos algoritmos.
- Aplicar los recorridos a problemas prácticos.

Duración

4 horas, referencial.

Parte 1: Introducción a los Grafos

1. Conceptos Básicos:

- o Definición de grafo: conjunto de nodos y aristas.
- o Componentes: nodos (vértices) y aristas (enlaces).
- o Tipos de grafos: dirigidos, no dirigidos, ponderados y no ponderados.

2. Diagrama:

o Dibuje un grafo simple y explique sus componentes.

Parte 2: Representaciones de Grafos

- 2.1 Lista de Adyacencia
- 2.2 Matriz de Adyacencia

Parte 3: Ejercicios de Aplicación

1. Ejercicio 1: Construcción de un Grafo:

o Proponer un conjunto de nodos y después dibujar el grafo. Además, luego representar el grafo en ambos formatos: lista y matriz de adyacencia.

2. Ejercicio 2: Modificación de Grafos:

- o Hacer modificaciones sobre el grafo original (agregando o eliminando nodos/aristas) y actualizando ambas representaciones.
- 3. Ejercicio 3: Identificación de Conexiones:

Dado el siguiente grafo cuántos nodos están conectados a un nodo específico.
Encuentre la respuesta haciendo ambas representaciones, matriz de adyacencia y lista de adyacencia.

Parte 4: Introducción a los Recorridos de Grafos

1. Conceptos Básicos:

- o Recordar la importancia de los recorridos en grafos.
- o Obtener diferencias entre DFS y BFS.
- Ejemplos de aplicaciones de cada algoritmo, aparte de, por ejemplo, el análisis de redes, etc.

2. Diagrama:

o Dibuje un grafo simple marcando el orden de recorrido para ambos algoritmos.

Parte 5: Recorrido en Profundidad (DFS)

5.1 Teoría de DFS

1. **Descripción**:

 Funcionamiento del algoritmo DFS: cómo explora un camino hasta llegar a un nodo sin salida y luego retrocede.

2. Estrategia:

o Utilice una pila para realizar el seguimiento de los nodos a visitar.

5.2 Actividad Práctica

1. Implementación:

- o Dado el siguiente grafo realicen un recorrido DFS a partir de un nodo inicial.
- o Anota el orden en que se visitan los nodos.

2. Ejercicio de Pila:

o Simule el uso de una pila para realizar el recorrido. Se debe ir anotando los nodos que se empujan (push()) y sacan (pop()) de la pila.

Parte 6: Recorrido en Anchura (BFS)

6.1 Teoría de BFS

1. **Descripción**:

 Funcionamiento del algoritmo BFS: cómo explora todos los nodos a un nivel antes de avanzar al siguiente nivel.

2. Estrategia:

o Utilice una cola para realizar el seguimiento de los nodos a visitar.

6.2 Actividad Práctica

1. Implementación:

- Use el mismo grafo que en DFS para realizar el recorrido BFS desde un nodo inicial
- o Anote el orden en que se visitan los nodos.

2. Ejercicio de Cola:

 Simule el uso de una cola para realizar el recorrido. Deben ir anotando los nodos que añaden (encolar()) y quitan (desencolar()) de la cola.

Parte 7: Ejercicios de Aplicación

1. Ejercicio 1: Comparación de Recorridos:

o Compare el orden de los nodos visitados en DFS y BFS. ¿Cuál es la diferencia? ¿Por qué ocurre esto?

2. Ejercicio 3: Modificación de Grafos:

 Modifique el grafo original (agregue o elimine nodos/aristas) y vuelvan a realizar los recorridos. Discuta dentro de su grupo cómo los cambios afectan los resultados.

Parte 8: Medir el coste computacional de todos los programas

Consulte el API de Java para más detalles sobre las funciones **System.nanoTime** () y **System.currentTimeMillis** ()

Parte 9: Discusión y Conclusiones

1. Comparación:

- Discuta las ventajas y desventajas de cada representación y de cada técnica de búsqueda,
- En qué situaciones usarían una representación sobre la otra. Lo mismo para las técnicas de búsqueda.

2. Reflexión:

- o ¿Cuál representación les pareció más intuitiva?
- o ¿Cuál técnica de búsqueda les pareció más intuitiva?

Parte 10: Genere y envíe el informe. Use las plantillas disponibles en la plataforma en el botón de Inicio.