SVM

Пусть $X = \mathbb{R}$ - пространство объектов, $Y = \{-1, 1\}$ - классы, $X^l = \{(x_i, y_i)\}_{i=1}^l$. Требуется построить классификатор $a: X \to Y$.

Линейный пороговый классификатор:

$$a(x) = sign(\langle w, x \rangle - w_0)$$

Уравнение $\langle w, x \rangle = w_0$ описывает гиперплоскость, разделяющую классы. Функционал ошибок:

$$Q(w, w_0) = \sum_{i=1}^{n} \left(y_i(\langle w, x_i \rangle - w_0) < 0 \right)$$

Нормировка:

Пусть x_k - наиболее близкие к гиперплоскости из набора $\{x_i\}$. Тогда возьмем такие w,w_0 , что $\langle w,x_k\rangle-w_0=y_k$. Тогда для всех x_i :

$$\langle w, x_k \rangle - w_0$$
 $\begin{cases} \leq -1, & y_i = -1 \\ \geq 1, & y_i = 1 \end{cases} \Leftrightarrow m_i = y_i (\langle w, x_k \rangle - w_0) \geq 1$

Необходимо найти такие параметры, при которых ширина разделяющей полосы максимальна. Пусть x_1 - ближайший к гиперплоскости элемент класса $\{1\}, x_{-1}$ - класса $\{-1\}$. Тогда ширина полосы:

$$\langle (x_1 - x_{-1}), \frac{w}{||w||} \rangle = \frac{(w_0 + 1) - (w_0 - 1)}{||w||} = \frac{2}{||w||} \to sup$$

Необходимо решить следующую экстремальную задачу:

$$\left\{ \begin{array}{l} ||w|| \to \inf \\ y_i(\langle w, x_i \rangle - w_0) \ge 1, \quad i \in 1:l \end{array} \right.$$

В результате получается, что w может быть представлена как линейная комбинация x_i , лежащих на границе разделяющей полосы.

Если выборка линейно неразделима:

$$\begin{cases} \frac{1}{2}||w|| + C \sum_{i=1}^{l} \varepsilon_i \to inf \\ y_i(\langle w, x_i \rangle - w_0) \ge 1 - \varepsilon_i, & i \in 1:l \\ \varepsilon_i \ge 0 \end{cases}$$

$$Q = \sum_{i=1}^{l} \left[m_i < 0 \right]$$

Замеим пороговую функцию на ее верхней оценкой $\left[m_i < 0\right] \leq (1-m_i)_+$ и добавим слагаемое регуляризации:

$$Q = \sum_{i=1}^{l} (1 - m_i)_+ + \tau ||w||^2 \to inf$$

В результате снова получается, что w можнт быть представлена в виде линейной комбинации векторов на границе разделяющей полосы.

$$\begin{cases} -\sum_{i=1}^{l} \lambda_i + \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \lambda_i \lambda_j \langle x_i, x_j \rangle \to inf \\ 0 \le \lambda_i \le C \\ \sum_{i=1}^{l} \lambda_i y_i = 0 \end{cases}$$

Ядро

Ядром называется функция K(x,x'), если она симметрична и ноетрицательно определена.

Во всех приведенных выражениях скалярное произведение можно заменить ядром K.