The Basic scRNAseq Analysis Workflow

What does a standard workflow look like?

The Goal - KNN graph

Ultimately we want to build a KNN/SNN graph of our dataset.

Each node is a cell and each edge is the similarity between two cells.

But... how do we measure this similarity?

Where we start - Count Matrix

		100K cells					
		Cell1	Cell2		CellN		
30K genes	Gene1	3	2		13		
	Gene2	2	3		1		
	Gene3	1	14		18		
	GeneM	25	0		0		

Cell Connectivity in PCA Space

- We can't compute distances in this high dimensional space
- Not memory efficient or computationally feasible
- We need to reduce the dimensions

Intermediate steps - Data Normalization

	Cell1	Cell2	 CellN
Gene1	3	2	13
Gene2	2	3	1
Gene3	1	14	18
GeneM	25	0	0

- We can't compare raw counts
- scRNAseq has a lot of technical noise
- We need to normalize by library size and log

Intermediate steps - Feature Selection

- We can't do PCA using all genes
- We aim to to subset our genes to the most biologically relevant
- We select top X most informative (variable) genes

Intermediate steps - Feature Selection

- We can't do PCA using all genes
- We aim to to subset our genes to the most biologically relevant
- We select top X most informative (variable) genes

Intermediate steps - PCA

- We can't compute distances in this high dimensional space
- PCA reduces the dimensions to <50 learning orthogonal information
- We can also use NMF, scVI, SVD...

- Classical methods like k-means or hierarchical clustering don't scale
- We can use community detection algorithms on the SNN -

- Classical methods like k-means or hierarchical clustering don't scale
- We can use community detection algorithms on the SNN -

Community detection algorithms have a resolution parameter

Downstream steps - UMAP visualization

- Classical methods like KNN or hierarchical clustering don't scale
- We can use community detection algorithms on the SNN -

Downstream Analysis

Downstream Analysis

