华东理工大学

《物理化学》期终模拟试题(1)

一、	概念题(20分,每空格1分)
1. 2. 3.	$1 \mod 2 \mod 2 \mod 3$ 在 $1 \mod 3 \mod 3$ 在 $1 \mod 3 \mod 3 \mod 3$ 在 $1 \mod 3 \mod $
4.	按照规定,物质 $CO_2(g)$ 、 $CO(g)$ 、 $H_2O(l)$ 、 $N_2(g)$ 、 $SO_2(g)$ 中,标准摩尔燃烧焓不为零的物质是。
5.	任何气体进行恒温膨胀后,热和功之间的关系均为 $Q = -W$ 。(对,错)
6.	在温度为 300K 和 800K 的两热源间工作的热机,以可逆热机的效率为最大。(对,错)
7.	在实际气体的节流过程中,系统的 值不变。(选填: U , H , S , G)
8.	反应 $C(s)+\frac{1}{2}O_2(g)=CO(g)$ 在恒压绝热的条件下进行,反应后温度升高,则反应的 ΔH 零。(大于、小于、等于)
9.	试在右图中示意画出理想溶液系统的恒温气液平衡相图。
10.	组分 A 和 B 能形成两种固态稳定化合物 A ₄ B、A ₂ B,则在
	该系统完整的液固平衡相图中应有几个最低共熔点?
11.	当反应 A(s)→B(s)+D(g)达到化学平衡时,系统的自由度
	f= •
12.	试写出理想溶液中组分 i 的化学势的表达式:。
13	直空容哭中的纯固体 NH HS (s) 受执分解为 NH (a) 及 H S (a) ,并且达到分解平衡,该

系统的自由度 f = ______。

- 14. 多相多组分系统达到相平衡时,每个组分在各相的化学势 _____。(相等,不相等)
- 15. 物质A和B形成具有最高恒沸点的系统,当该系统在塔板数足够多的精馏塔中精馏时, 塔底得到 。(纯A或纯B、恒沸混合物)
- 16. 理想稀溶液中的溶质服从_____。(拉乌尔定律,亨利定律)
- 17. 实际气体向真空绝热膨胀时,其熵变 ΔS ______ 零。 (大于,小于,等于)
- 18. 化学反应 N₂ + 3H₂ → 2NH₃ 的化学平衡条件是 ______
- 19. 由下列相图可知, MX·2H₂O 是一个不稳定的水合物。_____ (对,错)

20. 合成氨反应为: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

标准平衡常数为 $K_{(1)}^{\circ}$

或 $\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \rightarrow NH_3(g)$

标准平衡常数为 K (2)

则 $K_{(1)}^{\circ}$ 与 $K_{(2)}^{\circ}$ 之间的关系为 ______。

二、(14分)

物质 A 和 B 组成溶液,其中 B 是不挥发的,A 服从拉乌尔定律。实验测得 300K 时溶液的蒸气压为 11250Pa,溶液组成 $x_{\rm A1}=0.9955$; 350K 时溶液的蒸气压为 12450Pa,溶液组成 $x_{\rm A2}=0.9055$ 。。

- (1) 设 A 的摩尔蒸发焓不随温度而变化,试求此摩尔蒸发焓; (7分)
- (2) 温度为 340K 时,溶液的蒸气压为 10950 Pa,试求此溶液的组成。(7分)

三、(15分)

D(g)+E(g)=G(g)+R(g) 为理想气体化学反应 , 300K时的标准平衡常数 $K^\circ=1.45$, 350K时的 $K^\circ=1.05$ 。设该反应的 $\Delta_c H_m^\circ$ 不随温度而变化。

- (1) 求该反应在300K时的 $\Delta_r H_m^e$, $\Delta_r S_m^e$, $\Delta_r G_m^e$; (5分)
- (2) 试判断当温度为300K、反应系统中 $p_{\rm D}=0.125{
 m MPa}$ 、 $p_{\rm E}=0.225{
 m MPa}$ 、 $p_{\rm G}=0.185{
 m MPa}$ 、 $p_{\rm R}=0.325{
 m MPa}$ 时化学反应的方向: (5分)
- (3) 当340K反应系统达化学平衡状态时D、E、G 的平衡分压分别为 $p_{\rm D}=0.125{
 m MPa}$ 、 $p_{\rm E}=0.125{
 m MPa}$ 、 $p_{\rm G}=0.105{
 m MPa}$ 。 试求此状态R的平衡分压 $p_{\rm R}$ 。 (5分)

四、(16分)

下图是物质A和B的液固平衡相图。

(1) 试写出相图中各相区的相态: (8分)

①	; ②	; ③	; 4	;
⑤	; 6	; ⑦	; 8	•

(2) 在图中 mno 和 ijk 线上各有哪些相平衡共存? (4分)

mno:	; ijk:	0

- (3) 在相图右侧的坐标中画出以 a 点为代表的系统的冷却曲线。(2 分)
- (4) 略去压力对凝聚系统平衡的影响, 计算在相区④系统的自由度

五、(15分)

- (1) 1 mol、100℃、101325 Pa 的单原子理想气体经恒温可逆膨胀压力降至 20265 Pa。计算过程的 ΔU 、 ΔH 、 ΔS 、 ΔA 、 ΔG 。(5 分)
 - (2) 1 mol、100℃、101325 Pa 的单原子理想气体通过节流装置压力降至 20265 Pa。计算

过程的 ΔU 、 ΔH 、 ΔS 、 ΔA 、 ΔG 。(5分)

(3) 1 mol、100 °C、101325 Pa 的单原子理想气体经绝热可逆膨胀压力降至 20265 Pa。计算过程的 ΔU 、 ΔH 、 ΔS 。(5分)

六、(12分)

已知 25℃时硝基甲烷 $CH_3NO_2(I)$ 的标准摩尔熵为 $171.75 J \cdot K^{-1} \cdot mol^{-1}$,摩尔蒸发焓为 $38.36 kJ \cdot mol^{-1}$,饱和蒸气压为4.887 kPa。求 $CH_3NO_2(g)$ 在 25℃时的标准摩尔熵。设蒸气服从理想气体状态方程。

七、(8分)

- 1. 下面是某物质的 T-S 图。标有 H 的曲线是恒焓线,标有 p 的曲线是恒压线。
- (1) 画出物质从状态 O 点出发,经节流装置由 p_4 到 p_2 的过程; (2 分)
- (2) 画出物质从状态 O 点出发,经绝热可逆膨胀过程由 p_4 到 p_3 的过程; (2 分)
- (注意:解答时需有表示过程方向的箭头和终点的标识)

- 2. 某气态物质的 pVT 关系可用状态方程表示成: $pV_m = A + Bp + Cp^2 + \cdots$, 其中 $A,B,C\cdots$ 等均为温度的函数。
 - (1) 计算当温度 T=300K 时 A 等于多少;(注意当压力趋于零时压缩因子 Z 的特点) (2 分)
 - (2) 已知 T=300K 时 $\lim_{p\to 0} \left(\frac{\partial Z}{\partial p}\right)_T = -0.00153$,试求该温度下 B 等于多少。(2 分)

答 案

一、概念题

- 1. $R(T_2 T_1)$ 2. 对 3. 恒压只做体积功、封

 - 闭系统 4. CO(g) 5. 错

- 6. 对 7. H 8. 等于 9.

p

- 10. 3 11. 1 12. $\mu_i = \mu_i^* + RT \ln x_i$
- 13. 1 14. 相等
- 15. 恒沸混合物 16. 亨利定律
- 17. 大于 18. $2\mu_{NH_3} \mu_{N_2} 3\mu_{H_2} = 0$
- 19. 对 20. $K_{(1)}^{\circ} = (K_{(2)}^{\circ})^2$

$$p_{A1}^* = \frac{p_1}{x_{A1}} = \frac{11250}{0.9955} = 1.1301 \times 10^4 \text{ Pa}, \quad p_{A2}^* = \frac{p_2}{x_{A2}} = \frac{12450}{0.9055} = 1.3749 \times 10^4 \text{ Pa}$$

$$\ln \frac{p_{A2}^*}{p_{A1}^*} = -\frac{\Delta_{\text{vap}} H_{\text{m}}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$\Delta_{\text{vap}} H_{\text{m}} = \frac{R \ln \frac{p_{A1}^{*}}{p_{A2}^{*}}}{\frac{1}{T_{2}} - \frac{1}{T_{1}}} = \frac{8.3145 \times \ln \frac{1.1301 \times 10^{4}}{1.3749 \times 10^{4}}}{\frac{1}{350} - \frac{1}{300}} = 3424 \text{ J} \cdot \text{mol}^{-1}$$

$$\ln \frac{p_{A3}^*}{1.1301 \times 10^4} = -\frac{3424}{8.3145} \left(\frac{1}{340} - \frac{1}{300} \right)$$

$$p_{A3}^* = 1.3282 \times 10^4 \,\text{Pa}$$
 $x_3 = \frac{p_3}{p_{A3}^*} = \frac{10950}{1.3282 \times 10^4} = 0.8244$

三

(1)
$$\ln \frac{K_{2}^{\circ}}{K_{1}^{\circ}} = -\frac{\Delta H_{m}^{\circ}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}} \right), \Delta_{r} H_{m}^{\circ} = \frac{R \ln \frac{K_{2}^{\circ}}{K_{1}^{\circ}}}{\frac{1}{T_{1}} - \frac{1}{T_{2}}} = \left(\frac{8.3145 \times \ln \frac{1.05}{1.45}}{\frac{1}{200} - \frac{1}{250}} \right) J \cdot \text{mol}^{-1} = -5635 J \cdot \text{mol}^{-1}$$

$$\Delta_{\rm r} G_{\rm m}^{\circ} = -RT \ln K^{\circ} = -8.314 \times 300 \ln 1.45 = -926.8 \text{J} \cdot \text{mol}^{-1}$$

$$\Delta_{\rm r} S_{\rm m}^{\circ} = \frac{\Delta_{\rm r} H_{\rm m}^{\circ} - \Delta_{\rm r} G_{\rm m}^{\circ}}{T} = \frac{-5635 + 926.8}{300} = -15.69 \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$$

(2)
$$K_p = K^\circ = 1.45$$
, $J_p = \frac{0.185 \times 0.325}{0.125 \times 0.225} = 2.14 > K_p$ 反应逆向进行

(3)
$$\ln \frac{K_2^{\circ}}{1.45} = -\frac{-5635}{8.314} (\frac{1}{340} - \frac{1}{300}), \quad K_p = K_2^{\circ} = 1.11$$
$$\frac{p_R \times 0.105}{0.125 \times 0.125} = 1.11, \quad p_R = 0.165 \text{MPa}$$

四、

(1) 1. L 2. L+S_{α} 3. S_{α} 4. L+S_C 5. $S_{\alpha} + S_{C}$ 6. $S_{C} + S_{\beta}$ 7. S_{β} 8. $L + S_{\beta}$

(2) L S_{α} S_{C} , L S_{β} S_{C}

(3)

$$(4) 2-2+1=1$$

五、

(1)
$$\Delta U = 0$$
 $\Delta H = 0$ $\Delta S = R \ln \frac{p_1}{p_2} = 8.314 \times \ln \frac{101325}{20265} = 13.381 \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$
 $\Delta G = \Delta A = -T\Delta S = -373.15 \times 13.381 = -4993 \text{J} \cdot \text{mol}^{-1}$

(2)
$$\Delta U = 0$$
 $\Delta H = 0$ $\Delta S = R \ln \frac{p_1}{p_2} = 8.314 \times \ln \frac{101325}{20265} = 13.381 \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

$$\Delta G = \Delta A = -T\Delta S = -373.15 \times 13.381 = -4993 \text{J} \cdot \text{mol}^{-1}$$

(3)
$$p_1^{1-\gamma}T_1^{\gamma} = p_2^{1-\gamma}T_2^{\gamma}$$

$$T_2 = \left(\frac{p_1}{p_2}\right)^{\frac{1-\gamma}{\gamma}} T_1 = \left(\frac{101325}{20265}\right)^{\frac{-2/3}{5/3}} \times 373.15 = 196.02 \text{K}$$

$$\Delta U = \frac{3}{2} \times 8.314 \times (196.02 - 373.15) = -2209 J$$

$$\Delta H = \frac{5}{2} \times 8.314 \times (196.02 - 373.15) = -3682 \text{J}$$

$$\Delta S = 0$$

六、

$$\text{MF:} \quad \Delta S_1 = \frac{\Delta_{\text{vap}} H_{\text{m}}}{T} = \left(\frac{38.36 \times 10^3}{298.15}\right) \mathbf{J} \cdot \mathbf{K}^{-1} \cdot \text{mol}^{-1}$$
$$= 128.66 \,\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \text{mol}^{-1}$$

$$\Delta S_2 = R \ln \frac{p_1}{p_2} = \left(8.3145 \times \ln \frac{4.887}{100} \right) \mathbf{J} \cdot \mathbf{K}^{-1} \cdot \text{mol}^{-1}$$
$$= -25.10 \,\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \text{mol}^{-1}$$

$$S_{m}^{\theta}(g,298.15K) = S_{m}^{\theta}(l,298.15K) + \Delta S_{1} + \Delta S_{2}$$

$$= (171.75 + 128.66 - 25.10) J \cdot K^{-1} \cdot mol^{-1}$$

$$= 275.31 J \cdot K^{-1} \cdot mol^{-1}$$

七、 1、

(1)
$$V_{\rm m} = \frac{A + Bp + Cp^2 + \cdots}{p}$$

$$Z = \frac{pV_{\rm m}}{RT} = \frac{A + Bp + Cp^2 + \cdots}{RT}$$

$$\lim_{p \to 0} Z = \frac{A}{RT} = 1 \qquad A = RT = 8.314 \times 300 = 2494 \text{ J} \cdot \text{mol}^{-1}$$

(2)
$$\left(\frac{\partial Z}{\partial p}\right)_{T} = \frac{B + 2Cp + \cdots}{RT}$$

$$\lim_{p \to 0} \left(\frac{\partial Z}{\partial p}\right)_{T} = \frac{B}{RT} = -0.00153$$

$$B = -0.00153 \times 8.314 \times 300 = -3.816 \,\mathrm{m}^3 \cdot \mathrm{mol}^{-1}$$

