Introduction to systems of linear equations

Recall that the general equation of a line in $\ensuremath{\mathbb{R}}^2$ is of the form

$$ax + by = c$$

and that the general equation of a plane in $\ensuremath{\mathbb{R}}^3$ is of the form

$$ax + by + cz = d$$

Equations of this form are called linear equations.

This is the main motivation for the following

Definition (linear equation). A linear equation in the n variables x_1, x_2, \ldots, x_n is an equation that can be written in the form

$$a_1x_1+a_2x_2+\ldots+a_nx_n=b$$

where the **coefficients** a_1, a_2, \ldots, a_n and the **constant term** b are constants.

Some examples

The following equations are linear:

$$3x - 4y = -1$$

$$r - \frac{s}{2} - \frac{15}{3}t = 9898$$

Remark. Although in these examples the coefficients are elements of \mathbb{R} , in some applications (for example, in cryptography) they will be elements of \mathbb{Z}_p , where p is a prime number (modular arithmetic!).

Examples of nonlinear equations

The following equations are **not** linear:

- $2 x_1^2 x_2^3 = 3$
- $\frac{x}{v} + z = 2$

Remark. Linear equations **do not** contain products, reciprocals, or other functions of the variables; the variables occur only to the **first power** and are multiplied only by constants.

Questions

- ② Is $sin(\frac{\pi}{7}) \cdot x_1 + 2^e \cdot x_2^e + \sqrt{3} \cdot x_3 = 1$ linear?

Definition. A **solution** of a linear equation $a_1x_1 + a_2x_2 + ... + a_nx_n = b$ is a vector $[s_1, s_2, ..., s_n]$ whose components satisfy the equation when we substitute $x_1 = s_1, x_2 = s_2, ..., x_n = s_n$.

Example. [5, 4] is a solution of 3x - 4y = -1.

Definition. A **solution of a system of linear equations** is a vector that is **simultaneously** a solution of each equation in the system.

Question. Is [1, -1] is a solution of the following system?

$$\begin{cases} 2x - y = 3 \\ x + 3y = 5 \end{cases}$$

Geometric interpretation

As usual, there is a nice interplay between geometry and algebra. Suppose we have the following systems of equations:

Back substitution

Consider the system

$$\begin{cases} x - y - z = 2\\ y + 3z = 5\\ 5z = 10 \end{cases}$$

Question 1. How can we solve this system?

Answer. Work backwards! from the last equation we get z=2. Using the second equation we obtain y=5-3(2)=-1 and then the first equation gives x=3.

The above procedure is known as **back substitution**.

Question 2. What is the geometric interpretation of this system in \mathbb{R}^3 ?

Row echelon form

Definition (row echelon form). A matrix is in row echelon form if it satisfies the following properties:

- 1 Any rows consisting entirely of zeros are at the bottom.
- In each nonzero row, the first nonzero entry (called the leading entry) is in a column to the right of the leading entry in the previous row.

Remark 1. The above properties guarantee that the leading entries form a staircase pattern.

Remark 2. In any column, all entries below the leading entry are zero.

Examples of matrices in row echelon form

The following matrices are in row echelon form (make sure you understand why!):

1

$$\begin{bmatrix} 2 & 4 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

0

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 11 & 5 \\ 0 & 0 & 4 \end{bmatrix}$$

6

$$\begin{bmatrix} 1 & -2 & 2 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

4

0 0 0 0	2	0	1	-1	3
0	0	-1	1	-1 2	3 2 0 5
0	0	0	0	4	0
0	0	0	0	0	5

Exercise

Which of the following matrices are in row echelon form? explain why!

0

$$\begin{bmatrix} 7 & 0 & 1 & 0 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

4

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

2

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

6

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 3 & 5 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

$\textbf{Answers} \ \odot$

- Yes
- Yes
- Yes
- No
- No

Elementary row operations

We now describe the procedure by which any matrix can be reduced to a matrix in row echelon form.

Elementary row operations

- 1 Interchange two rows.
- Multiply a row by a nonzero constant.
- 3 Add a multiple of a row to another row.

Notation for the previous operations

- $\bullet R_i \longleftrightarrow R_i \text{ means interchange rows } i \text{ and } j.$
- ② kR_i means multiply row i by k.
- **3** $R_i + kR_j$ means add k times row j to i (and replace row i with the result).

Useful strategies to reduce a matrix to row echelon form

Useful strategies to reducing to row echelon form

- Work column by column (from left to right).
- 2 Work from the top to the bottom.
- Create a leading entry in a column and use it to create zeros below it.

A worked example

Example. Find the row echelon form of

$$\begin{bmatrix} 0 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & -2 \end{bmatrix}$$

Solution. First, we consider the first nonzero column (which is column 1) and try to create a leading entry in this column. We can interchange rows 1 and 3: $R_1 \longleftrightarrow R_3$. We get:

$$\begin{bmatrix} 1 & -1 & -2 \\ 2 & 3 & 1 \\ 0 & 2 & 3 \end{bmatrix}$$

In place of 2 we must have 0, a simple way is to apply $R_2 - 2R_1$. The new elements of R_2 are:

$$2-2(1) = 0$$

 $3-2(-1) = 5$
 $1-2(-2) = 5$

so the new matrix is

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 5 & 5 \\ 0 & 2 & 3 \end{bmatrix}.$$

The leading term of the second row is 5, and below it we must have 0. It is easier to work when the leading term is 1; thus we can apply $\frac{1}{5}R_2$ to get

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 0 & 2 & 3 \end{bmatrix}$$

Now in place of 2 we must have 0, so we can apply $R_3 - 2R_2$ to obtain

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

and this matrix is now in row echelon form. We are done!

Warning: The row echelon form of an arbitrary matrix is **NOT** unique! (point is: there is no a "correct" answer)

Question: Can you think of an application of row echelon form?

Rank of a matrix

Definition (rank) The rank of a matrix is the number of nonzero rows in its row echelon form. The rank of a matrix A is usually denoted by rank(A).

Exercise. Prove that the matrix

$$\begin{bmatrix} 1 & -1 & 2 \\ 1 & 2 & -1 \\ 0 & 2 & -2 \end{bmatrix}$$

has rank 2 and verify your answer with Mathematica.