UDP BANDWITH

Obsah

U	OP BANDWITH	1
	Teorie	1
	Slovníček pojmů	1
	Popis nástrojů potřebných pro sběr výchozích dat	
	Výpočty	2
	Aplikační dokumentace	3
	Reflector	3
	Klient	3
	Naměřená data	4
	Závěr	4
	Zdroje	5

Teorie

Slovníček pojmů

Bandwith

Maximální průtok dat z bodu A do bodu B

Udává se jako počet přenesených dat za jednotku času.

RTT

ROUND TRIP TIME

Čas za který se zpráva dostane z klienta na server a ze serveru zpátky na klienta

UDP

User Datagram Protocol

Jednoduchý síťový protokol který negarantuje že zpráva bude úspěšně doručena.

Popis nástrojů potřebných pro sběr výchozích dat

Program se zkládá ze dvou částí, jednoduchého reflektoru a klienta který generuje data a provádí vlastní měření.

Reflector

Reflector obdrží pomocí UDP protokolu zprávu z klienta a stejnou zprávu pošle na klienta zpátky.

Michal Tichý xtichy 26

Klient

Klient generuje po určitý čas pakety o určité velikosti které zasílá pomocí UDP na reflektor. Tyto pakety následně znovu příjme a poznačí si jak dlouho trvalo než se danný paket vrátil.

Pokud odeslaný paket znovu neobdržíve tak víme že jsme dosáhli maximálního bandwithu.

Výpočty

Výpočet bandwithu

$$BANDWITH = \frac{(počet přijatých paketů*2)*velikost paketu}{čas měření}$$

Počet přijatých paketů násobíme dvěmi kvůli tomu že paket musel vykonat nejprve cestu z klienta na reflektor a následně cectu z reflektoru na klienta.

Výpočet RTT

$$RTT = čas přijetí - čas odeslání$$

$$Průměrná RTT = \frac{\sum RTT}{počet přijatých paketů}$$

Aplikační dokumentace

Reflector

Parametry

./ipk-mtrip reflect -p port

• port - číslo portu, na kterém bude reflektor spuštěn.

Popis funkcionality

Naslouchá na daném portu a všechny přijaté zprávy odesílá zpátky odesilateli.

Klient

Parametry

./ipk-mtrip meter -h vzdáleny_host -p vzdálený_port - s velikost_sondy -t doba_mereni

- vzdáleny_host doménové jméno nebo IP adresa stanice, na které je reflektor spuštěn.
- vzdálený_port číslo portu, na kterém je reflektor spuštěn.
- velikost sondy velikost dat použitých v "probe" paketu
- doba_mereni celový čas měření

Popis funkcionality

Po daný čas generuje pakety o dané velikosti.

Po při odeslání paketu si poznamená čas kdy byl paket odeslán.

Po odeslání každého paketu proběhne kontrola jestli nějaká zpráva nečeká na příjem a pokud ano tak ji přijme a poznačí kdy byla přijata.

Po ukončení měření zpočítá bandwith (viz <u>teorie výpočtu bandwithu</u>) a průměrný RTT (viz <u>teorie výpočtu RTT</u>).

Popis výstupu

BANDWIDTH: {naměřený bandwith v MB/s} AVERAGE RTT: {naměřený RTT v ms}

Příklad

BANDWIDTH: 1556MB/s AVERAGE RTT: 318ms

Popis paketu

Paket se skládá z ID paketu a dummy dat které zajišťují že paket bude mít správnou velikost.

Příklad

První odeslaný paket o požadované velikosti 10B.

0aaaaaaaa

Známé chyby v projektu

Klient nevypisuje minimální a maximální bandwith ale pouze průměrný.

Michal Tichý

xtichy 26

Naměřená data

Měření proběhlo s klientem i reflektorem na serveru merlin

Postupně byla zvětšována velikost paketu.

Každý běh měření trval 30s.

Velikost paketu [B]	Bandwith [MB/s]	Průměrný RTT [ms]
1024	118	495
10000	937	289
60000	1524	325

Závěr

Bandwith

Díky tomu že refloktor I klient je na stejném stroji tak omezující factor není linky ale výkon procesoru, tudíž můžeme pozorovat že při vetším paketu dostáváme větší bandwith => linku se nám nepoda5ilo saturovat.

RTT

Díky tomu že test proběhl jen chvíly před odevzdáním tak je na vysokém RTT poznat že v danou chvíly testuje mnoho lidí.

Michal Tichý xtichy 26

IPK projekt 2 – Bandwith measurement

Zdroje

https://cs.wikipedia.org/wiki/User Datagram Protocol

 $\underline{https://www.performancevision.com/blog/measuring-network-performance-links-between-latency-throughput-packet-loss/}$

https://iperf.fr/en/