

Olimpiada Națională de Fizică Târgoviște 2019 Proba teoretică

SUBIECTE - Clasa a X-a

Pagina 1 din 2

PROBLEMA 1. MECANICĂ CLASICĂ

(10 puncte)

– Mişcări ...

Asupra unui punct material, cu masa m, având viteza inițială \vec{v}_0 , începe să acționeze la momentul inițial t=0, o forță constantă \vec{F} . Se constată că după τ secunde, modulul vitezei corpului s-a înjumătățit și că după încă τ secunde el a devenit $v_0/4$.

- **a.**) (3,5 puncte) Determinați unghiul α dintre vectorii \vec{F} și \vec{v}_0 și stabiliți relația dintre F, τ , m și v_0 ;
- **b.**) (1 punct) Determinați valoarea minimă a modulului vitezei punctului material și momentul de timp corespunzător ;
- c.) (2 puncte) Alegând un sistem cartezian (SC) de coordonate convenabil, stabiliți dependența y = y(x) și reprezentați grafic traiectoria punctului material. Determinați coordonatele carteziene ale punctului material la momentele de timp $t_n = n\tau$, cu n = 1, 2, 3, 4, indicând pozițiile acestuia pe traiectorie;
- **d.**) (2,3 puncte) Aflați unghiurile β_n dintre vitezele $\vec{v}_n = \vec{v}(n\tau)$ și \vec{v}_0 . Determinați valorile acestora pentru n = 1, 2, 3, 4;
- **e.**) (1,2 puncte) La momentul inițial t=0, prin același loc unde se afla punctul material descris anterior, trece un al doilea mobil în mișcare rectilinie și uniformă cu viteza $\overrightarrow{v_0}$, având modulul $\overrightarrow{v_0}$. Pentru ce valoare a unghiului φ dintre $\overrightarrow{v_0}$ și \overrightarrow{F} , cele două mobile se mai întâlnesc încă o dată? La ce moment de timp are loc a doua întâlnire?

<u>Indicație</u>: Alegeți axa Oy a SC pe suportul vectorului \vec{F} și în sens opus acestuia, iar axa Ox în așa fel încât componenta v_{0x} a vectorului \vec{v}_0 să fie pozitivă.

PROBLEMA 2. OPTICĂ GEOMETRICĂ

(10 puncte)

– Lumini și umbre ...

Deasupra unei emisfere masive, confecționată din sticlă omogenă și transparentă, cu indicele de refracție n_0 și rază R, pe axa de simetrie, la înălțimea $a = (\sqrt{2} - 1) \cdot R$ față de suprafața emisferei, se așează o sursă de lumină punctiformă S. Indicele de refracție al aerului încojurător se consideră egal cu unitatea.

a.) (4 puncte) Să se arate că umbra emisferei pe suprafața orizontală pe care este așezată, are forma unei coroane circulare. Cunoscând raza exterioară $r_1 = 28,2$ cm și raza interioară $r_2 = 13,3$ cm ale coroanei "umbră", să se determine raza emisferei R și indicele de refracție n_0 al sticlei din care ea este confecționată.

- 1. Fiecare dintre problemele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.
- 2. În cadrul unei probleme, elevul are dreptul să rezolve în orice ordine cerințele a, b, c, ...
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare poblemă se punctează de la 10 la 0. Punctajul final reprezintă suma acestora.

Olimpiada Națională de Fizică Târgoviște 2019

Proba teoretică

SUBIECTE – Clasa a X-a

Pagina 2 din 2

- **b.**) (4 puncte) În spațiul din jurul emisferei, se toarnă treptat, un lichid omogen și transparent cu indicele de refracție n = 1,31. Când înălțimea lichidului devine h, în interiorul umbrei apare un inel luminos circular, subțire. Să se determine înălțimea h.
 - c.) (2 puncte) În condițiile punctului b.) să se determine raza r_0 a inelului luminos.

PROBLEMA 3.TERMODINAMICĂ

(10 puncte)

- Transformări termodinamice ...

Un gaz ideal cu exponentul adiabatic γ , suferă o transformare în care presiunea variază liniar cu volumul după legea $p=p_0-a\cdot V$, unde a>0, $p_0>0$, sunt constante pozitive.

a.) (5 puncte) Fie stările **A** și **B** în care o *izotermă*, respectiv o *adiabată* ale gazului considerat sunt *tangente* la transformarea liniară $p = p_0 - a \cdot V$. Determinați raportul temperaturilor absolute ale gazului din cele două stări T_A/T_B în funcție de exponentul adiabatic γ arătând că $T_A/T_B > 1$, precizând semnificația fizică a stărilor **A** și **B**. Calculați *căldura molară medie* în transformarea liniară $A \rightarrow B$, în funcție de *constanta universală a gazului ideal R* și

exponentul adiabatic γ al gazului.

b.) (2 puncte) Un mol de gaz ideal parcurge ciclul $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$, reversibil, din figura alăturată, în care $1 \rightarrow 2$ este o transformare izobară, $2 \rightarrow 3$ este o transformare izocoră, iar $3 \rightarrow 1$ este o transformare liniară de forma: $p = p_0 - a \cdot V$, cu a > 0 și $p_0 > 0$. Între volumele V_I și V_2 există relația: $V_1 + V_2 = p_0 / a$. Cunoscând numai temperatura stării 1, T_I , determinați raportul T_3 / T_I .

c.) (3 puncte) Care este randamentul *ciclului Carnot* care ar funcționa între temperaturile extreme atinse pe ciclul din figură. Se cunoaște raportul: $n = T_1 / T_M$, unde T_M este *temperatura maximă* atinsă pe ciclu.

Subiecte propuse de:

prof. univ. dr. Florea ULIU, Departamentul de Fizică al Universității din Craiova;
prof. Cristian MIU, Colegiul Național "Ion Minulescu" din Slatina;
prof. Dumitru ANTONIE, Colegiul Tehnic Nr.2 din Tg. – Jiu.

^{1.} Fiecare dintre problemele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.

^{2.} În cadrul unei probleme, elevul are dreptul să rezolve în orice ordine cerințele a, b, c, ...

^{3.} Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.

^{4.} Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.

^{5.} Fiecare poblemă se punctează de la 10 la 0. Punctajul final reprezintă suma acestora