

Tópicos Especiais: Ciência de Dados

Apresentação da Disciplina e Introdução

Prof. Marcos H. F. Ribeiro

Departamento de Informática - UFV

Descrição Geral

- Atualmente, muitas disciplinas vêm sendo oferecidas no DPI com alguma relação a Inteligência Artificial e Aprendizado de Máquinas
- Esta disciplina pertence, também, a este contexto
- Mas, normalmente, tais disciplinas possuem foco nas técnicas e algoritmos
- No entanto, esta disciplina, apesar de também lidar com, e tratar de algoritmos, tem seu foco principal no processo todo de Ciência de Dados, enfatizando aspectos de análise, engenharia preparação de dados, bem como em aspectos da análise e comparação de resultados e sua aplicação
- Além dos aspectos acima, terá foco também na metodologia de treinamento e avaliação de modelos
- Desta forma, ela é complementar com outras disciplinas da área, como Mineração de Dados, Aprendizado de Máquina, Visão Computacional, Deep Learning e outras

1

Objetivos da disciplina

- Proporcionar uma visão geral da área de Ciência de Dados (Data Science), com foco nas etapas de preparação de dados, análise de resultados e modelos e também em aplicações reais ou realísticas.
- Relacionar a visão ampla do conceito de Ciência de Dados com as áreas correlatas de Aprendizado de Máquina e Mineração de Dados.
- Apresentar um repertório de técnicas que possibilite a atuação em contextos envolvendo suporte à tomada de decisões, seja na área acadêmica ou não.

Metodologia

- Aulas expositivas, com slides
- Aulas e exemplos práticos, usando a linguagem Python e Python Notebooks
- Não haverá foco na implementação da grande maioria dos algoritmos de mineração de dados e aprendizado de máquina. Ao invés disso:
 - Serão apresentados os princípios básicos de funcionamento dos algoritmos
 - Serão utilizadas bibliotecas já existentes que implementam os algoritmos vistos, o que não elimina o emprego de implementação e programação de computadores durante as aulas
 - As implementações feitas durante a disciplina visam o uso e aplicação dos métodos em problemas reais ou realísticos (cenários fictícios que emulam cenários reais)
- Desenvolvimento de projetos de aplicação
- Para a pós-graduação: seminários relacionando os temas da disciplina aos projetos de dissertação/tese

Outras Informações Gerais

- Horário das aulas:
 - Segundas-feiras, às 16:00h
 - Quintas-feiras, às 14:00h
- Professores:
 - Marcos Ribeiro (marcosh.ribeiro@ufv.br)
 - Daniel Louzada (daniel.louzada@ufv.br)

1. Introdução

- O que é Ciência de Dados (*Data Science*)
- Conceitos importantes: Data Mining versus Machine Learning versus Data Science versus IA
- Visão geral do curso e suas lições

2. Fundamentos de análise de dados

- Representação de dados
- Tipos de atributos
- Fundamentos de estatística
 - População e amostra
 - Variáveis aleatórias
 - Média, mediana e moda
 - Amplitude, quantis e quartis
 - Desvio padrão, coeficiente de variação, variância
 - Covariância e correlação
 - Distribuições
 - Teste de hipóteses, testes não paramétricos e ANOVA
- Visualização de dados na análise exploratória
- Análise uni e multivariada

- 3. Pré-processamento e preparação de dados
 - Normalização (escalonamento e padronização)
 - Identificação e remoção de dados discrepantes (outliers)
 - Tratamento de valores faltantes
 - Pré-processamento de dados categóricos
 - Categorização de dados numéricos
- 4. Redução de dimensionalidade e seleção de atributos
 - Remoção de redundância por correlação
 - Métodos de seleção de atributos
 - Mutual information
 - Seleção por variância
 - Seleção usando modelos simples e Extra Trees
 - Teste-F
 - Métodos Embedded, Filter e Wrapper
 - Análise de Componentes Principais (PCA)

- 5. Agrupamentos (Clusters)
 - Definição / conceitos básicos
 - Tipos de agrupamentos
 - Visão geral dos principais algoritmos
 - Métricas de avaliação e validação de agrupamentos
 - Visualização de dados na análise de agrupamentos

- 6. Classificação
 - Definição / conceitos básicos
 - Construindo um Classificador Linear Simples
 - Algoritmos
 - White box versus Black box
 - Principais famílias e algoritmos
 - Metodologia para treinamento de classificadores
 - Treinamento e teste
 - Métricas de avaliação e validação de classificadores
 - Validação Cruzada
 - Comparação de modelos
 - Classificação multi classe e multi rótulo
 - Casos especiais
 - Underfitting
 - Overfitting
 - Classes não balanceadas
 - Classes ausentes
 - Visualização de dados na análise de classificadores

7. Regressão

- Definição / conceitos básicos
- Paralelos e diferenças com classificação
- Construindo um Regressor Linear Simples
- Principais famílias de algoritmos
- Metodologia para treinamento de regressores
 - Treinamento e teste
 - Métricas de avaliação e validação de classificadores
 - Validação Cruzada
 - Comparação de modelos
- Visualização de dados na análise de classificadores

- 8. Comitês
 - Tipos de comitês e tipos de votação
 - Avaliação de comitês
- 9. Explicabilidade de Modelos
 - Interpretabilidade intrínseca e extrínseca
 - Abordagem específica e agnóstica
 - Técnicas local e global
 - Principais métodos
 - LIME
 - SHAP
 - ELI5
 - Desafios e limitações
 - Estudos de caso

- 10. Noções de outras técnicas de aprendizado
 - Aprendizado semi-supervisionado
 - Séries temporais
 - Aprendizado por reforço
 - Regras de Associação
- 11. Visão geral de áreas de aplicação modernas
 - Processamento de Linguagem Natural
 - Visão Computacional
 - Modelos Generativos
 - Federated Learning

Para saber mais

Tem dúvidas ou quer saber mais? Faça contato.