PROBLEM SHEET 5

- (1) (a) $y(t) = \lambda e^{-150t} t + \frac{1}{3}$ is the general solution

 Hence, $y_e(t) = e^{-150t} t + \frac{1}{3}$, e = 0
 - (b) $|y_{0}(t) y_{0}(t)| \le |\varepsilon^{-150}t| \le |\varepsilon|$ $|y_{0}(t) - y_{0}(t)| \le |\varepsilon|$ $|y_{0}(t) - y_{0}(t)|_{\infty} \le |\varepsilon|$
 - (c) y_0 (t) is the solution of the differential equation

 Naturally $y_0(t+h) y_0(t) = h y_0'(t)$

By substitution:

- (d) Uniform step size h

 Euler's Method

 Me, o = E+ 4/3

 Me, i+1 = Me, i + h f(ti, Me, i)

=
$$(1-150L)\mu_{\epsilon,i} + L(49-150t_i)$$

(e)
$$u_{e,i+1} - y_{o}(t_{i+1}) = (1-150h)(u_{e,i} - y_{o}(t_{i}))$$

Juital step: $u_{e,1} - y_{o}(0) = E$

Geometric sequence: $u_{e,i} - y_{o}(t_{i}) = (1-150h)^{i-1}E$,

 $i=1,...,n+1$

(f)
$$n = 50$$
, $\varepsilon = 0.01$
 $\Rightarrow 150 h = 3$
 $\Rightarrow |u_{\varepsilon,n+1} - y_{0}(1)| = |(-2)^{50} \cdot 0.01|$
 $\sim 1.126 \cdot 10^{13}$

(9)
$$\max_{1 \le i \le n+1} |u_{e,i} - y_{e,i}| \le |\varepsilon|$$

$$-1 \le 1 - 150h \le 1; h = \frac{1}{n} > 0$$

$$n \ge 75$$

(a) The backward Euler gives

$$\mu_{\epsilon,0} = \epsilon + \frac{1}{3}$$

$$\mu_{\epsilon,i+1} = \mu_{\epsilon,i} + \lambda f(t_{i+1}, \mu_{\epsilon,i+1})$$

$$= \mu_{\epsilon,i} + \lambda (49 - 150(t_i + \lambda) - 150 \mu_{\epsilon,i+1})$$

We get

$$(1+150L)u_{e,i+1} = u_{e,i} + L(49-150(t_i+L))$$

(b) As before

substituting and rearranging we get

Therefore, & - & leads to

$$M_{\epsilon,i} - y_{\bullet}(t_{i}) = \frac{\epsilon}{(1+150h)^{i-1}, i=1,...,n+1}$$

(c) This is a trick question, since for any n, we have

max | ue,i - yo(ti) | = 1 = 1