Semestrální práce KKY/ZDO

1 Úvod

Kleštík včelí (*Varroa destructor*) je parazitický roztoč včely východní a včely medonosné. Způsobuje přenos infekčního onemocnění varroóza. Cílem této práce je rozpoznat kleštíky na snímcích směsného odpadu z úlu na světlém podkladu. Dospělý kleštík je oválného tvaru s červenohnědou až hnědou barvou. Prvním krokem je tedy rozlišit tmavé objekty od světlého pozadí. Skutečnou výzvou této úlohy je však poté rozdělit tmavé objekty na skutečné kleštíky a na zbytek směsného odpadu. Na Obrázku 1 je detail vstupních dat, na kterém jsou kleštíci a zbytek směsného odpadu.

Obrázek 1: Ukázka vstupních dat

2 Postup řešení

Pro zpracování vstupních obrázků jsme využili klasické metody zpracování obrazu. Cílem je získat binární masku, která v obrázku označí místa kde se nacházejí kleštíci a kde pozadí. Tato maska bude získána pomocí strojového učení s učitelem. Celá úloha je tedy rozdělena do dvou částí. V první části je provedeno natrénování klasifikátoru a v druhé části je provedena predikce. Veškerá data jsou rozdělena na trénovací (80%) a validační (20%).

V obou částech je nejdříve potřeba oddělit popředí od pozadí a pro jednotlivé objekty popředí vypočítat příznaky. Obrázek je nejdříve převeden na šedotónový. Protože nejsou všechny obrázky osvětlené rovnoměrně, je v dalším kroku provedena normalizace osvětlení, a to tak, že je provedena konvoluce mezi šedotónovým obrázkem a relativně velkým konvolučním jádrem. Výsledek je pak odečten od původního šedotónového obrázku. Následně je provedena segmentace prahováním a výplň děr.

Následující část se pro trénování od predikci liší. Před dalším postupem jsou z trénovacích dat z binárního obrazu vzniklého prahováním odstraněny objekty kleštíků, které získáme z anotovaných dat. V obrazu tak zůstanou pouze objekty pozadí, které budou klasifikovány do třídy směsného odpadu bez kleštíků. V další části je již možné získat příznaky jednotlivých objektů. Během prahování však vzniklo v obrázku velké množství velmi malých objektů. K jejich odfiltrování jsme použili n-krát morfologickou operaci eroze následovanou stejným počtem operací dilatace. Tímto krokem se nám zredukoval počet objektů přibližně na desetinu. Na Obrázku 2 jsou vyobrazeny jednotlivé kroky.

Po těchto operacích jsme v části trénování zvlášť získali binární obraz pro objekty reprezentující pozadí a binární obraz reprezentující kleštíky načtený z anotací. V části predikce jsme získali pouze jeden binární obraz ve kterém jsou objekty pozadí a potenciálně i kleštíci. V obou částech jsou pro objekty vypočteny zvolené příznaky. Vektor těchto příznaků je poté použit pro trénování klasifikátoru. Jednotlivé kroky pro obě části jsou zobrazené v diagramu 3.

2.1 Nastavení metod předzpracování

Zvolené metody předzpracování nemají jednoznačnou implementaci. Rozhodli jsme se proto vyzkoušet jejich různé nastavení:

Velikost konvolučního jádra pro normalizaci osvětlení

Rozměr jádra volíme jako relativní část rozměru obrázku. Pro obdélníkový obrázek tedy máme obdélníkové konvoluční jádro. Zkoušeli jsme různá nastavení od 1/250 až po 1/40 velikosti obrázku. Nejlepší výsledky jsme získali při použití 1/75 velikosti obrázku.

• Hranice prahování

Pro určení prahu segmentace jsme zkoušeli použít adaptivní metody i napevno stanovené hranice. Protože však v obrázku není mnoho tmavších objektů než jsou kleštíci, nepoužili jsme ve finále žádnou z adaptivních metod, ale zvolili jsme práh tak, aby v obrázku zůstalo 10% nejtmavších jasů.

• Počet morfologických operací pro filtraci malých objektů

Volili jsme počet operací $n = \{1, 3, 5\}$. Nejlepší výsledky jsme získali při použití n = 3 erozí a následných dilatací.

2.2 Zvolené příznaky

Pro určení kleštíků jsme se pokusili zvolit takové příznaky, které je charakterizují a mohou je pomoci odlišit od ostatních objektů. Přidáním některých příznaků se výsledek zlepšil více než u jiných. Kombinace zvolených příznaků jsme volili na základě předchozích experimentů. Pro všechny objekty jsme předem vypočetli všechny příznaky a získali jsme pro ně střední hodnotu a varianci. Pro trénování poté byli použity jejich vynormované hodnoty $\left(\frac{(p_i - \mu_p)}{var[p]}\right)$ pro příznak p.

Obrázek 2: Segmentace vstupních dat

• Barva

Používali jsme průměr jednotlivých barevných kanálů a průměr šedotónového obrázku

- Červená
- Zelená
- Modrá
- Šedá

• Relativní barva vůči pozadí

Abychom kompenzovali odstín celého snímku, použili jsme kromě průměrné barvy objektu i průměrnou barvu jeho okolí. Velikost okolí jsme experimentálně zvolili 20 pixelů.

$$barva = \frac{barva_{objekt}}{barva_{objekt \ s \ okolim}}$$

- Červená
- Zelená

Obrázek 3: Postup práce s daty

- Modrá
- Šedá

• Délka

Maximální délka objektu

• Centroid

- Souřadnice x středu objektu
- Souřadnice y středu objektu

• Nekompaktnost

$$-Nekompaktnost = \frac{(o_{objekt})^2}{S_{objekt}}$$

• Konvexnost

$$-Konvexnost = \frac{S_{objekt}}{S_{konvexni}}$$

• Konvoluční neuronová síť (CNN)

Příznaky se snažíme volit tak aby co nejlépe reprezentovaly daný objekt a dobře ho oddělily od objektů ostatních tříd. Tato volba může být obtížná. Proto jsme se pokusili natrénovat konvoluční neuronovou síť, která by zachytila vlastnosti objektů a zároveň by sloužila jako klasifikátor. Jako data pro trénování jsme využili regiony získané segmentací. Problematický je velký nepoměr mezi množstvím regionů, které obsahují pozadí a kleštíky. Trénovací množina obsahovala přes 75000 regionů pozadí, 350 kleštíků a validační přes 11000 regionů pozadí a 70 kleštíků. Při trénování jsme proto využili možnosti vážení ztráty jednotlivých tříd v poměru, v kterém jsou zastoupeny. To znamená, že chybná klasifikace kleštíka přispěla k celkové ztrátě mnohem více než chybná klasifikace pozadí. Výsledný model měl pro trénovací množinu pro pozadí přesnost 99.5%, pro kleštíky 88.6% a pro validační množinu pro pozadí 99.3% a pro kleštíky 58.6%. Model nebylo bohužel možné použít přímo ke klasifikaci, ale využili jsme jí jako další příznak. Výsledky by se potenciálně dali vylepšit využitím augmentací.

- CNN

• Počet rohů

Rohový detektor s parametrem minimální vzdálenosti dvou rohů od sebe d

- d = 2 pixely
- d = 3 pixely

2.3 Použité Klasifikátory

Jádrem našeho řešení úlohy je strojové učení. Vytvořili jsme sadu celkem dvaceti klasifikátorů s různým nastavením, které jsme trénovali pomocí vhodně zvolené kombinace příznaků. Hodnoty parametrů a architekturu sítě jsme volili experimentálně. Používali jsme tyto druhy klasifikáorů:

- Support Vector Machine (SVM)
- Gaussian Naive Bayes (GNB)
- K-Nearest Neighbors (KNN)
- Multi-layer Perceptron (MLP)

2.4 Výsledky

Pro řadu výše zmíněných nastavení předzpracování a příznaků jsme trénovali zvolené klasifikátory. Jejich přesnost jsme hodnotili pomocí F1-skóre. Z počátku jsme nastavení trénování volili náhodně, později jsme volili nastavení na základě výsledků předchozích pokusů. Reprezentativní výběr výsledků je znázorněn v Tabulce 2 pro trénovací data a v Tabulce 3 pro validační data. Konkrétní nastavení je následující:

- SVM: kernel: RBF, gamma = 1, C = 100
- GNB
- KNN: K = 5
- MLP: alpha = 10^{-5} , hidden_layer_sizes: {128, 256, 512}, random_state: 1

	Relativní velikost konvolučního jádra	Hranice prahování	Počet morf. operací	Příznaky	Jiné	
1	50	10%	3	barva, centroid, nekompaktnost, convexnost		
2	50	Otsu	3	barva, centroid, nekompaktnost, convexnost		
3	50	10%	5	barva, centroid, nekompaktnost, convexnost		
4	75	10%	3	barva, centroid, nekompaktnost, convexnost		
5	75	10%	3	barva, centroid, nekompaktnost, convexnost	Bez použití chybných anotací	
6	75	10%	3	barva, centroid, nekompaktnost, convexnost, CNN	Bez použití chybných anotací	
7	75	10%	3	barva, relativní barva, centroid, nekompaktnost, convexnost, počet rohů d=3, CNN	Bez použití chybných anotací	

Tabulka 1: Nastavení předzpracování a volba příznaků pro reprezentativní výběr

	1	2	3	4	5	6	7
SVM	0,618	0,566	0,571	0,641	0,714	0,720	0,682
GNB	0,522	0,529	0,559	0,557	0,567	0,640	0,628
KNN	0,598	0,565	0,561	0,625	0,679	0,724	0,725
MLP	0,612	0,573	0,544	0,663	0,730	0,749	0,720

Tabulka 2: F1 skóre pro dané reprezentativní nastavení a modely trénovacích dat

	1	2	3	4	5	6	7
SVM	0,599	0,545	0,546	0,603	0,623	0,616	0,603
GNB	0,533	0,526	0,543	0,546	0,554	0,586	0,575
KNN	0,602	0,543	0,555	0,585	0,592	0,621	0,618
MLP	0,586	0,532	0,530	0,600	0,626	0,626	0,624

Tabulka 3: F1 skóre pro dané reprezentativní nastavení a modely validačních dat

3 Závěr

Cílem této práce bylo rozpoznat kleštíky ve snímcích směsného odpadu ze včelího úlu. Tuto úlohu jsem se rozhodli řešit pomocí strojového učení. Natrénovali jsme řadu odlišných klasifikátorů s různým nastavení předzpracování a volbou příznaků. V průběhu práce jsme objevili chybu v anotacích. Nejjednodušším řešením pro nás bylo nepoužívat vstupní obrázky s těmito anotacemi pro trénování našich modelů. V Tabulkách 2 a 3 jsou reprezentativní výsledky našich nastavení, příznaků a modelů. Z tabulek lze vidět, jak se nám v průběhu dařilo najít lepší nastavení pro klasifikaci. Nejlepší výsledky má nastavení s číslem 6 uvedeným výše. Model GNB jsme kvůli špatnému skóre vyřadili. Abychom využili co nejvíce dat, natrénovali jsme zbylé tři modely jak pro trénovací data, tak pro validační.

Tabulka 4: Výsledné skóre modelů pro trénovací a validační data dohromady

Nejlepší výsledky má model MLP, rozhodli jsme se ho tedy považovat za náš finální. Na Obrázku 4 je znázorněna klasifikace kleštíků z Obrázku 1. Zeleně jsou vyobrazeni kleštíci, kteří byli správně klasifikováni, červeně ti, kteří rozpoznal náš model, ale nebyli anotováni a modře ti, kteří byli anotováni, ale náš model je neodhalil.

Obrázek 4: Ukázka vstupních dat