Universidade Federal de Ouro Preto Inteligência Artificial Prova 1

Prof. Rodrigo Silva

- 1. Dados dois agentes hipotéticos A_1 e A_2 criados para escalar montanhas, como podemos determinar qual o mais inteligente?
- 2. O que é uma heurística admissível? Mostre em um grafo uma execução do branch and bound em que a utilização de uma heurística não admissível causa problemas.
- 3. Qual algoritmo de busca você utilizaria para implementar um agente que deve encontrar a saída de um labirinto. Explique a sua escolha e indique possíveis desvantagens.
- 4. Descreva o problema de palavras cruzadas como um problema de satisfação de restrições e proponha um algoritmo para resolvê-lo. Discuta possíveis vantagens e desvantagens do algoritmo proposto.
- 5. Matematicamente, o que significa "treinar" um modelo de aprendizado máquina?
- 6. A frase "duas classes são linearmente separáveis" indica que duas classes podem ser separadas por um hiperplano. Dê a equação de um hiperplano que separe as classes da figura abaixo.

- 7. Por quê dividimos erros em falso positivos e falso negativos? Esta divisão faz sentido para problemas de regressão? Explique.
- 8. Quais aspectos devem ser analisados na escolha de uma função de erro para um problema de aprendizado de supervisionado?
- 9. Quais algoritmos vistos na disciplina são adequados para resolver o problema de classificação relacionado aos dados apresentados na figura abaixo. Explique.

- 10. O código apresentado na figura 1 abaixo apresenta uma implementação do método de abdução. Baseado nele, responda:
 - (a) O que acontece quando uma observação não pode ser explicada pela base de conhecimento?
 - (b) Altere o código da figura 1 para que ele imprima a mensagem "Esta(s) observação(ões) não pode(m) ser explicada(s)!" quando existir algum átomo no conjunto de observações que não pode ser explicado pela base de conhecimento.
 - (c) O que o código da figura 1 retorna para as observações [a,g], dada a base de conhecimento abaixo.
 - (d) Qual a explicação mínima para as observações [a, g].

```
\begin{aligned} a &\leftarrow b \wedge c. \\ b &\leftarrow e. \\ b &\leftarrow d. \\ d &\leftarrow h. \\ g &\leftarrow b \wedge e. \\ f &\leftarrow h \wedge b. \end{aligned}
```

Assumables: [c,d,e]

```
def explain(observations, kb, explanation = set()):
       if observations:
2
           a = observations[0]
3
           if a in kb['assumables']:
               return explain(observations[1:],kb,explanation|{a})
           else:
                bodies = kb['rules'][a]
                explanations = []
                for body in bodies:
11
                    explanations += explain(body + observations[1:],kb,explanation)
13
                return explanations
14
       return [explanation]
15
```

Figure 1: Abdução

11. Dada a base de dados abaixo, apresente o modelo linear de ordem 1 gerado pelo método dos mínimos quadrados (minimização do erro quadrático).

$$\begin{array}{c|cc} X & y \\ \hline 2 & 7 \\ 5 & 13 \\ 4 & 11 \\ \end{array}$$

Table 1: Base de dados

12. Considere a seguinte base de dados:

Example	Author	Thread	Length	$Where_read$	$User_action$
e_1	known	new	long	home	skips
e_2	unknown	new	short	work	reads
e_3	unknown	followup	long	work	skips
e_4	known	followup	long	home	skips
e_5	known	new	short	home	reads
e_6	known	followup	long	work	skips
e_7	unknown	followup	short	work	skips
e_8	unknown	new	short	work	reads
e_9	known	followup	long	home	skips
e_{10}	known	new	long	work	skips
e_{11}	unknown	followup	short	home	skips
e_{12}	known	new	long	work	skips
e_{13}	known	followup	short	home	reads
e_{14}	known	new	short	work	reads
e_{15}	known	new	short	home	reads
e_{16}	known	followup	short	work	reads
e_{17}	known	new	short	home	reads
e_{18}	unknown	new	short	work	reads
e_{19}	unknown	new	long	work	?
e_{20}	unknown	followup	short	home	?

- (a) Apresente uma árvore de decisão para a classificação das User-actions.
- (b) De acordo com a árvore apresentada, qual a classificação dos exemplos e_{19} e e_{20} ?
- (c) Mostre como a árvore de decisão proposta pode ser representada como um conjunto de cláusulas definidas.