Estimating σ^2

- Calculate sum of square of residuals
 - Residuals = difference between actual y_i and predicted value $Bx_i + A$

$$SS_{R} = \sum_{i=1}^{n} (Y_{i} - A - Bx_{i})^{2}$$

• The MLE estimate would be:
$$\widehat{u}_{x_i}$$

$$\widehat{\sigma}_{nle}^2 = \widehat{\Sigma}(Y_i - (A + B\pi_i))^2$$

$$\widehat{\sigma}_{nle} = \widehat{\sigma}_{nle}^2 = \widehat{\sigma}_{nle}^2$$
The above is bis and like for remark Convenient ways at the second state of th

- The above is biased like for normal Gaussian parameters.
- We will use a different method:

The Chi-Square distribution (Section 5.8 of textbook)

Definition. If $Z_1, Z_2, ..., Z_n$ are independent standard normal random variables, then X, defined by

$$X = Z_1^2 + Z_2^2 + \dots + Z_n^2$$
 (5.8.1)

is said to have a *chi-square distribution with n degrees of freedom.* We will use the notation

$$X \sim \chi_n^2$$

to signify that *X* has a chi-square distribution with *n* degrees of freedom.

Deriving the density of χ_n^2 distribution

Use MGF.

• Consider n=1 first.

$$E[e^{tX}] = E[e^{tZ^2}] \text{ where } Z \sim \mathcal{N}(0, 1)$$

$$= \int_{-\infty}^{\infty} e^{tx^2} f_Z(x) dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-tx^2/2} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2/2\bar{\sigma}^2} dx \quad \text{where } \bar{\sigma}^2 = (1 - 2t)^{-1}$$

$$= (1 - 2t)^{-1/2} \frac{1}{\sqrt{2\pi}\bar{\sigma}} \int_{-\infty}^{\infty} e^{-x^2/2\bar{\sigma}^2} dx$$

$$= (1 - 2t)^{-1/2}$$

General n

•
$$E_X[e^{\{tX\}}] = E\left[e^{t\sum_i Z_i^2}\right] = \prod_i E\left[e^{tZ_i^2}\right] = (1-2t)^{-n/2}$$

• The above is MGF of gamma distribution with parameters (n/2,1/2).

A random variable is said to have a gamma distribution with parameters
$$(\alpha, \lambda), \lambda > 0, \alpha > 0$$
, if its density function is given by
$$f(x) = \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{\alpha - 1}}{\Gamma(\alpha)} & x \ge 0\\ 0 & x < 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{\alpha - 1}}{\Gamma(\alpha)} & x \ge 0\\ 0 & x < 0 \end{cases}$$

• Thus, density of χ^2 distribution is

$$f(x) = \frac{\frac{1}{2}e^{-x/2}\left(\frac{x}{2}\right)^{(n/2)-1}}{\Gamma\left(\frac{n}{2}\right)}, \quad x > 0$$

Expected value of χ_n^2 distribution ${\it lmuml}$

• $E[\chi_n^2] = n$ [Can be derived from the MGF]

•
$$Var[\chi_n^2] = 2n$$

• Mode = max(n-2, 0)

Estimating σ^2

- Calculate sum of square of residuals where

$$SS_R = \sum_{i=1}^{n} (Y_i - A - Bx_i)^2$$

- Residuals = difference between actual y_i and predicted value $Bx_i + A$ SSR = $\sum_{i=1}^{n} (Y_i A Bx_i)^2$ can be show that $\frac{SS_R}{\sigma^2}$ follows a Chi-square distribution freedom • It can be show that $\frac{SS_R}{\sigma^2}$ follows a Chi-square distribution with n-2 degrees of freedom
 - Book has a kind of intuitive proof...

A, & B one functions of Yi each of the n terms in SSR not independent of rech other.

Estimating σ^2

Let estimate of σ^2 be called S.

$$\frac{2}{S^2} = \frac{S}{n-2}$$

S is an unbiased estimate of σ^2 . It is easy to see that $E[S] = \sigma^2$

Example 9.3.a. The following data relate *x*, the moisture of a wet mix of a certain product, to *Y*, the density of the finished product.

Multi-variable linear regression

Reading material: Section 9.10 of Ross Textbook

General case: k > 1

$$f(Y|x_1,...,x_k) \sim N(\mu_x,\sigma^2), \quad where \quad \mu_x = \beta_1 x_1 + \cdots + \beta_k x_k + \beta_0$$
Or
$$Y = \beta_1 x_1 + \cdots + \beta_k x_k + \beta_0 + e \quad \text{where } e \sim N(0,\sigma^2)$$

Training data D will be denoted as

$$\{(x_{i1}, x_{i2}, \dots x_{ik}, y_i) : i = 1 \dots n\}$$

$$\{(x_i, y_i) : i = 1 \dots n\}$$

Parameter estimation using MLE

arameter estimation using MLE
$$LL(D) = \sum_{i=1}^{\infty} log e^{-\frac{(Y_i - (B_i x_i + \cdots - B_k x_k + B_o))}{\sigma^2}} - n log |_{2\pi\sigma}$$

$$\frac{\partial LL}{\partial B_o} = 0 \qquad \sum_{i=1}^{\infty} (Y_i - (B_i x_i + \cdots - B_k x_k + B_o))(-1) = 0$$

$$\frac{\partial LL}{\partial B_o} = 0 \qquad \sum_{i=1}^{\infty} (Y_i - (B_i x_i + \cdots - B_k x_k + B_o))(-1) = 0$$

$$\frac{\partial LL}{\partial B_1} = 0 \qquad \frac{\lambda}{2} \left(y_i - \left(B_1 x_1 + - - \cdot B_k x_k + B_0 \right) \right) x_i = 0$$

$$\frac{\partial LL}{\partial B_{i}} = 0 \qquad \sum_{i=1}^{\infty} \left(y_{i} - (B_{i} x_{i} + \cdots B_{k} x_{k} + B_{k}) \right) \chi_{k} = 0$$

Solving the MLE

$$\sum_{i=1}^{n} Y_{i} = nB_{0} + B_{1} \sum_{i=1}^{n} x_{i1} + B_{2} \sum_{i=1}^{n} x_{i2} + \dots + B_{k} \sum_{i=1}^{n} x_{ik}$$

$$\sum_{i=1}^{n} x_{i1} Y_{i} = B_{0} \sum_{i=1}^{n} x_{i1} + B_{1} \sum_{i=1}^{n} x_{i1}^{2} + B_{2} \sum_{i=1}^{n} x_{i1} x_{i2} + \dots + B_{k} \sum_{i=1}^{n} x_{i1} x_{ik}$$

$$\vdots$$

$$\sum_{i=1}^{k} x_{ik} Y_{i} = B_{0} \sum_{i=1}^{n} x_{ik} + B_{1} \sum_{i=1}^{n} x_{ik} x_{i1} + B_{2} \sum_{i=1}^{n} x_{ik} x_{i2} + \dots + B_{k} \sum_{i=1}^{n} x_{ik}^{2}$$

Matrix notation for k-dimensional covariates.

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}, \quad X = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix} \qquad \chi \equiv \mathcal{N} \times (le+1)$$

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}, \quad \mathbf{e} = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

$$(H1) \mathcal{N} = \mathbf{e} = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix}$$

then **Y** is an $n \times 1$, **X** an $n \times p$, β a $p \times 1$, and **e** an $n \times 1$ matrix where $p \equiv k + 1$.

The regression equation on this data becomes:

$$Y = X\beta + e$$

$$\mathbf{X}'\mathbf{X} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_{11} & x_{21} & \cdots & x_{n1} \\ x_{12} & x_{22} & \cdots & x_{n2} \\ \vdots & \vdots & & \vdots \\ x_{1k} & x_{2k} & \cdots & x_{nk} \end{bmatrix} \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix} \qquad \mathbf{X}' = \mathbf{Transpos}$$

$$= \begin{bmatrix} n & \sum_{i} x_{i1} & \sum_{i} x_{i2} & \cdots & \sum_{i} x_{ik} \\ \sum_{i} x_{i1} & \sum_{i} x_{i1}^{2} & \sum_{i} x_{i1} x_{i2} & \cdots & \sum_{i} x_{i1} x_{ik} \\ \vdots & \vdots & & \vdots & & \vdots \\ \sum_{i} x_{ik} & \sum_{i} x_{ik} x_{i1} & \sum_{i} x_{ik} x_{i2} & \cdots & \sum_{i} x_{ik}^{2} \\ i & \vdots & \vdots & & \vdots \\ \sum_{i} x_{ik} & \sum_{i} x_{ik} x_{i1} & \sum_{i} x_{ik} x_{i2} & \cdots & \sum_{i} x_{ik}^{2} \\ \sum_{i} x_{i1} Y_{i} \end{bmatrix}$$
and
$$\begin{bmatrix} \sum_{i} Y_{i} \\ \sum_{i} x_{i1} Y_{i} \end{bmatrix}$$

$$\mathbf{X'Y} = \begin{bmatrix} \sum_{i} Y_{i} \\ \sum_{i} x_{i1} Y_{i} \\ \vdots \\ \sum_{i} x_{ik} Y_{i} \end{bmatrix}$$

Solving the MLE

$$\sum_{i=1}^{n} Y_{i} = nB_{0} + B_{1} \sum_{i=1}^{n} x_{i1} + B_{2} \sum_{i=1}^{n} x_{i2} + \dots + B_{k} \sum_{i=1}^{n} x_{ik}$$

$$\sum_{i=1}^{n} x_{i1} Y_{i} = B_{0} \sum_{i=1}^{n} x_{i1} + B_{1} \sum_{i=1}^{n} x_{i1}^{2} + B_{2} \sum_{i=1}^{n} x_{i1} x_{i2} + \dots + B_{k} \sum_{i=1}^{n} x_{i1} x_{ik}$$

$$\vdots$$

$$\sum_{i=1}^{k} x_{ik} Y_{i} = B_{0} \sum_{i=1}^{n} x_{ik} + B_{1} \sum_{i=1}^{n} x_{ik} x_{i1} + B_{2} \sum_{i=1}^{n} x_{ik} x_{i2} + \dots + B_{k} \sum_{i=1}^{n} x_{ik}^{2}$$

X'XB = X'Y

 $\mathbf{B} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$

where X' is the transpose of X.

Example

Get least square estimate on this data with last column as y.

Table 9.5							
	Age (years)	Elevation (1000 ft)	Rain- fall(inches)	Specific Gravity	Diameter at Breast Height (inches)		
1	44	1.3	250	.63	18.1		
2	33	2.2	115	.59	19.6		
3	33	2.2	75	.56	16.6		
4	32	2.6	85	.55	16.4		
5	34	2.0	100	.54	16.9		
6	31	1.8	75	.59	17.0		
7	33	2.2	85	.56	20.0		
8	30	3.6	75	.46	16.6		
9	34	1.6	225	.63	16.2		
10	34	1.5	250	.60	18.5		
11	33	2.2	255	.63	18.7		
12	36	1.7	175	.58	19.4		
13	33	2.2	75	.55	17.6		
14	34	1.3	85	.57	18.3		
15	37	2.6	90	.62	18.8		

$$y = 11.54873 + 0.05728 x_1 + 0.08712 x_2 + 7.33231 x_3$$

Evaluating goodness of a fit: The coefficient of determination

Measure amount of variation in the data:

$$S_{YY} = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

Measure the amount of variation in the residual after a model is fit

$$\underbrace{SSR}_{SSR} = \underbrace{\sum_{i=1}^{n} (Y_i - A - Bx_i)^2}_{SSR} = \underbrace{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}_{SSR} = \underbrace{\sum_{i=1}^{n} (Y_i - \hat{Y}_i$$

The coefficient of determination

The coefficient of determination
$$\underbrace{R^2 = \frac{S_{YY} - SS_R}{S_{YY}}}_{=1 - \frac{SS_R}{S_{YY}}}$$

$$= 1 - \frac{SS_R}{S_{YY}}$$

Demo

https://colab.research.google.com/github/rafiag/DTI2020/blob/main/0 02a Multi Linear Regression (EN).ipynb