Introduction to Propositional Logic

Shirley Chu

De La Salle University

Sep 12, 2011

Summary

Summary	Not	And	Or	Xor	Implies	lff
p q	_¬ <i>p</i>	<u> p ∧ q</u>	$p \lor q$	<i>p</i> ⊕ <i>q</i>	$p \rightarrow q$	$p \leftrightarrow q$
TT	_	T	T	F	T	T
ΤF	'	F	T	T	F	F
FT	_	F	T	T	T	F
FF	'	F	F	F	T	T

Introduction

Definition

Compound propositions whose truth values are the same for all possible cases are said to be **logically equivalent**.

We write $p \equiv q$ or $p \Leftrightarrow q$ when p is logically equivalent to q.

Introduction

Definition

A compound proposition whose truth value is always true is called a **tautology** or a **fact**.

Definition

A compound proposition whose truth value is always false is called a **contradiction** or a **fallacy**.

Definition

A compound proposition whose truth value is not a tautology nor a contradiction is called a **contingency**.

Logical Equivalence Rules

Identity Laws

$$p \wedge T \equiv p$$

$$p \vee F \equiv p$$

Domination Laws

$$p \wedge F \equiv F$$

$$p \lor T \equiv T$$

Negation Laws

$$p \land \neg p \equiv F$$

$$p \vee \neg p \equiv T$$

Idempotent Laws

$$p \wedge p \equiv p$$

$$p \lor p \equiv p$$

Involution Laws

$$\neg(\neg p) \equiv p$$

De Morgan's Laws

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Logical Equivalence Rules

Commutative Laws

$$p \wedge q \equiv q \wedge p$$

$$p \lor q \equiv q \lor p$$

Associative Laws

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$

$$p \lor (q \lor r) \equiv (p \lor q) \lor r$$

Distributive Laws

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

Absorption Laws

$$p \wedge (p \vee q) \equiv p$$

$$p \lor (p \land q) \equiv p$$

Material Implication Laws

$$p \to q \equiv \neg p \lor q$$

Material Equivalence Laws

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\lnot p \land \lnot q)$$

Exercise 1

Derive the following rules from the Logical Equivalence Rules.

- Absorption Laws
- 2 Material Equivalence Laws

Exercise 2

Simplify the following propositions. Identify whether the proposition is a tautulogy, contradiction or a contingency.

$$2 (p \lor q) \to (p \land q)$$

$$p \leftrightarrow \neg p$$

Exercise 3

Determine whether the following pairs of propositions are logically equivalent or not using Rules of Logical Equivalences. Verify your answers using the truth table.

- 2 $(p \land q) \rightarrow r$ and $(p \rightarrow r) \land (q \rightarrow r)$

Reference

Discrete Mathematics and Its Applications, 7^{th} edition by Kenneth Rosen