▶ Notel 1. Diviseur

S'il existe un entier relatif a tel que a = bq, alors a est un multiple de b et b est un diviseur de a.

Remarque : si a = bq, on dit aussi que b divise a ou que a est divisible par b.

Si on effectue la division euclidienne de a par b, le reste est nul.

Exemples.

- 1. $21 = 3 \times 7$ donc 21 est un multiple de 3 ou 3 divise 21.
- 2. 312 est divisible par 13 car si l'on effectue la division euclidienne, le reste est nul :

- ▶ Notel 2. Nombres pairs et impairs
 - 1. Un nombre a entier est pair si c'est un multiple de 2, donc s'il existe un entier p tel que a = 2p.
 - 2. Un nombre a entier est impair si ce n'est un multiple de 2, donc s'il existe un entier p tel que a = 2p + 1.

Exemples:

- 1. 13 est impair car $13 = 2 \times 6 + 1$
- 2. 26 est pair car $26 = 2 \times 13$.

Exercice 13.

Compléter chaque phrase par le mot adéquat :

- 1. $144 = 24 \times 6$ donc 24 est un _____ de 144.
- 2. $\frac{221}{12} = 13$ donc 221 est _____ par 12 et
- 3. $395 = 79 \times 5$ donc 395 est un _____ de 79 et de _____.

Exercice 14.

Vrai ou faux? Justifier.

- 1. 81 est un diviseur de 3.
- 2. 185 est divisible par 5.
- 3. 253 est un multiple de 3.

Exercice 15.

Soient a et b deux entiers multiples de 5.

- 1. Écrire une égalité concernant les entiers a et b.
- 2. Justifier alors que la somme a + b est un multiple de 5.
- 3. Démontrer que le produit ab est un multiple de 25.

Exercice 16.

Soit n désigne un entier relatif.

- 1. Écrire en fonction de n le nombre précédent et le nombre suivant n.
- 2. Additionner ces trois nombres. De quel nombre la somme est-elle un multiple?
- 3. Énoncer une propriété traduisant cette propriété.

Exercice 17.

Soient a un nombre pair et b un multiple de 3. Démontrer que $c = a \times b$ est un multiple de 6.

Exercice 18.

Démontrer que le produit de deux nombres impairs est un nombre impair.

Exercice 19.

- 1. Démontrer que la somme de deux entiers impairs est un nombre pair.
- 2. Soit p un nombre premier avec $p \ge 3$. Démontrer que le nombre p+7 ne peut pas être premier.