Department of Computer Science

CS301 - Theory of Automata FALL 2018

Instructor Name: Sobia Tariq

Email address: sobia.tariq@nu.edu.pk

TA Name (if any):
Email address: -

Office Location/Number: N203 Office Location/Number: -

Office Hours: Mon, Wed 8:00-10:00 Office Hours: -

Course Information

Program: BS Credit Hours: 3 Type:

Core

Pre-requisites: CS211 Discrete Structures

Course Website: \\sandata\Xeon\Fall 2018\Automata (A&B)

Class Meeting Time: Section B: Tues, Thurs 8:00-9:30, Section A: Tues,

Thurs 9:30 - 11:00

Class Venue: Section A & B: CS-06

Course Description/Objectives/Goals:

Course Learning Outcomes (CLOs):					
At the end of the course students will be able to:	Domain	BT Level			
Explain and manipulate the different concepts in automata theory and formal languages such as formal proofs, automata, regular expressions, Turing machines etc;					
Prove properties of languages, grammars and automata with rigorously formal mathematical methods					
Design of automata, RE and CFG					
Transform between equivalent NFAs, DFAs and Res					
Define Turing machines performing simple tasks.					
Differentiate and manipulate formal descriptions of languages, automata and grammars with focus on regular and context-free languages, finite automata and regular expressions					

Course Textbook

1. John C. Martin. *Introduction to Languages and the Theory of Computation*. Fourth Edition. McGraw-Hill. ISBN: 0-07-115468-X (International Students Edition).

Additional references and books related to the course:

1. John E. Hopcroft. Jeffery D. Ullman. *Introduction to Automata Theory, Languages, and Computation*. 1979. Addison-Wesley. ISBN 0-201-02988

- 2. Michael Sipser. *Introduction to the Theory of Computation.* 1997. PWS Publishing Company.
- 3. T.A. Sudkamp: Languages and Machines (Addison-Wesley, 2nd Edition, 1997)
- 4. Harry R. Lewis, Christos H. Papadimitriou *Elements of The Theory of Computation*. Second Edition. 1998.
- 5. Daniel I. A. Cohen. *Introduction to Computer Theory*. Second Edition. 1997. John Wiley & Sons. ISBN: 0-471-13772-3.

Tentative Weekly Schedule

Tentative Weekly Schedule						
Week	Topics to be covered	Readings	Assignments/ Projects			
1	IntroductionLanguage Definition Preliminaries		,			
2	 Regular Languages (Focus of DFA) 		Assignment 1			
3	NFA, NFA null					
4	 Closure Properties of FA Regular Expressions Kleene Theorem Part 1 					
5	Kleene Theorem part 2Minimal DFA					
6	Pumping lemma of Non RLIntro to CFL					
7	 PDA, (deterministic and non- deterministic) 		Assignment 2			
8	CNFCYK parser					
9	 LL(1) grammar Top down parser Pumping Lemma for non-CFL 					
10	 Turing Machines (intro and variants) 					
11	Turing Machines		Assignment 3			
12	 Turing Machines 					
13	 Decidability 					
14	 Context sensitive languages 					

Linear bounded	
automate	

(Tentative) Grading Criteria

Assignments + Quizzes
 Mid-I + Mid II
 35%

3. Final 45%

Course Policies

- 1. Cheating in any respect will be treated as a big crime and your cases will be forwarded to DC.
- 2. Eligibility to pass this course, students should have to get at least 50% marks and 80% attendance.
- 3. Hand written assignments should be submitted in due time
- 4. Quizzes can be unannounced, covering contents of last two lectures.