Q2-adult-census-income

March 8, 2021

0.1 Question 2

0.2 Census Income Data Set - Machine Learning Model

Data Source: https://www.kaggle.com/uciml/adult-census-income

- 0.2.1 Attribute Characteristics: Categorical, Integer
- 0.2.2 Data Set Characteristics: Multivariate
- 0.3 Prediction task is to determine whether a person makes over 50K a year.
 - 1. Import the csv dataset from https://www.kaggle.com/uciml/adult-census-income (Links to an external site.) .
 - 2. Identify the presence of missing values, fill the missing values with mean for numerical attributes and mode value for categorical attributes.
 - 3. Extract X as all columns except the Income column and Y as Income column.
 - 4. Split the data into training set and testing set.
 - 5. Model the classifier using GaussianNB, BernoulliNB and MultinomialNB
 - 6. Compute the accuracy and confusion matrix for each models.
 - 7. Plot the decision boundary, visualize training and test results of all the models
 - 8. Create an output .csv file consisting actual Test set values of Y (column name: Actual) and Predictions of Y(column name: Predicted).

Data Understanding:

- age: Continuous
- workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.
- fnlwgt: continuous.
- education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.
- education-num: continuous.
- marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.

- occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspet, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.
- relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
- race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
- sex: Female, Male.
- capital-gain: continuous.
- capital-loss: continuous.
- hours-per-week: continuous.
- native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.
- 0.4 Objective: To predict whether a given adult makes more than 50,000 a year based attributes such as:

age, workclass, fnlwgt, education, education.num, marital.status, occupation, relationship, race, sex, capital.gain, capital.loss, hours.per.week, native.country, income.

0.4.1 Common Libraries

0.4.2 1. Import the csv dataset from https://www.kaggle.com/uciml/adult-census-income

- Get the the Data set using read_csv and replace '?' with NaN
- Understand the number of columns

```
[3]: ds.head()
```

```
[3]:
        age workclass fnlwgt
                                  education education.num marital.status
                                                                  Widowed
     0
         90
                  {\tt NaN}
                       77053
                                    HS-grad
                                                         9
     1
         82
                      132870
                                    HS-grad
                                                         9
             Private
                                                                  Widowed
     2
                  NaN 186061 Some-college
         66
                                                        10
                                                                  Widowed
     3
         54
                                    7th-8th
             Private 140359
                                                         4
                                                                 Divorced
     4
             Private 264663 Some-college
                                                        10
                                                                Separated
                            relationship
               occupation
                                                    sex capital.gain
                                           race
     0
                     NaN Not-in-family White Female
                                                                    0
     1
          Exec-managerial
                          Not-in-family White
                                                 Female
     2
                      NaN
                               Unmarried Black
                                                 Female
                                                                    0
     3
       Machine-op-inspct
                                                Female
                                                                    0
                               Unmarried White
     4
          Prof-specialty
                               Own-child White Female
                                                                    0
        capital.loss hours.per.week native.country income
     0
                4356
                                  40 United-States
                                                     <=50K
     1
                4356
                                  18 United-States <=50K
     2
                4356
                                  40 United-States <=50K
     3
                3900
                                  40 United-States <=50K
     4
                3900
                                  40 United-States <=50K
```

0.4.3 Understanding Number of Null values and outliers

```
[4]: col_names=ds.columns
  beforeDropTupleCount= len(ds)
  len(ds.columns)
  print(ds.info())
  ds.isnull().sum()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):
                  32561 non-null int64
age
                  30725 non-null object
workclass
fnlwgt
                  32561 non-null int64
education
                  32561 non-null object
education.num
                  32561 non-null int64
marital.status
                  32561 non-null object
                  30718 non-null object
occupation
                  32561 non-null object
relationship
                  32561 non-null object
race
                  32561 non-null object
sex
capital.gain
                  32561 non-null int64
capital.loss
                  32561 non-null int64
hours.per.week
                  32561 non-null int64
native.country
                  31978 non-null object
                  32561 non-null object
income
dtypes: int64(6), object(9)
memory usage: 3.7+ MB
None
                      0
```

[4]: age workclass 1836 fnlwgt 0 0 education education.num 0 marital.status 0 occupation 1843 relationship 0 0 race 0 sex 0 capital.gain capital.loss 0 hours.per.week 0 native.country 583 income 0

dtype: int64

From above informaion null check, understood that 3 feature have null values

- workclass string 1836 null records
- occupation string 1843 null records
- native.country string 583 null records

0.5 2. Identify the presence of missing values, fill the missing values with mean for numerical attributes and mode value for categorical attributes.

```
[5]: print('workclass mode:',ds['workclass'].mode().iloc[0])
     print('occupation mode:',ds['occupation'].mode().iloc[0])
     print('native.country mode:',ds['native.country'].mode().iloc[0])
     ds['workclass']=ds['workclass'].fillna(ds['workclass'].mode().iloc[0])
     ds['occupation']=ds['occupation'].fillna(ds['occupation'].mode().iloc[0])
     ds['native.country'] = ds['native.country'].fillna(ds['native.country'].mode().
      \rightarrowiloc[0])
    workclass mode: Private
    occupation mode: Prof-specialty
    native.country mode: United-States
[6]: col_names=['age','workclass','fnlwgt','education','education.num','marital.
      →status','occupation','relationship','race','sex','capital.gain','capital.
      →loss','hours.per.week','native.country','income',]
     col names=ds.columns
     beforeDropTupleCount= len(ds)
     len(ds.columns)
     print(ds.info())
     ds.isnull().sum()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 32561 entries, 0 to 32560
    Data columns (total 15 columns):
                      32561 non-null int64
    age
    workclass
                      32561 non-null object
    fnlwgt
                      32561 non-null int64
                      32561 non-null object
    education
                      32561 non-null int64
    education.num
    marital.status
                      32561 non-null object
                      32561 non-null object
    occupation
    relationship
                      32561 non-null object
                      32561 non-null object
    race
                      32561 non-null object
    sex
                      32561 non-null int64
    capital.gain
    capital.loss
                      32561 non-null int64
    hours.per.week
                      32561 non-null int64
    native.country
                      32561 non-null object
                      32561 non-null object
    income
    dtypes: int64(6), object(9)
    memory usage: 3.7+ MB
    None
```

```
[6]: age
                        0
     workclass
                        0
     fnlwgt
                        0
     education
                        0
     education.num
                        0
     marital.status
                        0
     occupation
                        0
     relationship
                        0
                        0
     race
                        0
     sex
                        0
     capital.gain
     capital.loss
                        0
                        0
     hours.per.week
                        0
     native.country
                        0
     income
     dtype: int64
[7]: ds.head()
[7]:
                                               education.num marital.status
        age workclass
                        fnlwgt
                                    education
         90
              Private
                         77053
                                      HS-grad
                                                                      Widowed
     0
     1
         82
              Private
                        132870
                                      HS-grad
                                                            9
                                                                      Widowed
     2
         66
                        186061
                                Some-college
              Private
                                                           10
                                                                      Widowed
     3
                                      7th-8th
         54
              Private
                        140359
                                                            4
                                                                    Divorced
     4
         41
              Private
                        264663
                                Some-college
                                                           10
                                                                    Separated
                occupation
                             relationship
                                                            capital.gain
                                             race
                                                       sex
     0
           Prof-specialty
                            Not-in-family
                                            White
                                                   Female
                                                                        0
     1
          Exec-managerial
                            Not-in-family
                                            White
                                                   Female
                                                                        0
     2
           Prof-specialty
                                Unmarried Black
                                                   Female
                                                                        0
     3
        Machine-op-inspct
                                Unmarried White
                                                   Female
                                                                        0
           Prof-specialty
                                Own-child White
                                                   Female
                                                                        0
```

hours.per.week native.country income

United-States

United-States

United-States

United-States

United-States

<=50K

<=50K

<=50K

<=50K

<=50K

40

18

40

40

40

0.5.1 2.1 Below Null records are handled in above step

• workclass mode: Private

4356

4356

4356

3900

3900

capital.loss

0

1

2

3

4

occupation mode: Prof-specialtynative.country mode: United-States

0.5.2 2.1.1 Data analysis

• Distinct Value on each Feature/Attributes

```
[8]: print(ds.info())
     Attribute_Wise_Count = pd.DataFrame(columns=['Attribute', 'Distinct_Count'])
     for col_index in ds.columns:
         Attribute_Wise_Count = Attribute_Wise_Count.append(pd.
      →DataFrame({'Attribute': [col_index], 'Distinct_Count': [len(ds[col_index].
      →unique())]}))
     Attribute_Wise_Count.reset_index(drop=True).sort_values(by='Distinct_Count',__
      →ascending=False)
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 32561 entries, 0 to 32560
    Data columns (total 15 columns):
                       32561 non-null int64
    age
                       32561 non-null object
    workclass
    fnlwgt
                      32561 non-null int64
                      32561 non-null object
    education
    education.num
                      32561 non-null int64
    marital.status
                      32561 non-null object
    occupation
                      32561 non-null object
    relationship
                      32561 non-null object
                      32561 non-null object
    race
                      32561 non-null object
    sex
    capital.gain
                      32561 non-null int64
    capital.loss
                      32561 non-null int64
    hours.per.week
                      32561 non-null int64
    native.country
                      32561 non-null object
    income
                      32561 non-null object
    dtypes: int64(6), object(9)
    memory usage: 3.7+ MB
    None
[8]:
              Attribute Distinct Count
     2
                                 21648
                 fnlwgt
           capital.gain
                                    119
     10
     12
        hours.per.week
                                     94
     11
           capital.loss
                                     92
     0
                                     73
                    age
                                     41
     13 native.country
     3
                                     16
              education
     4
          education.num
                                     16
     6
                                     14
             occupation
                                      8
     1
              workclass
                                      7
     5
         marital.status
     7
           relationship
```

```
8 race 5
9 sex 2
14 income 2
```

0.5.3 2.1.2 Numerical data visual interpretation

```
[9]: num_col=['age','capital.gain','capital.loss','fnlwgt','education.num','hours.

→per.week']

fig,axes = plt.subplots(3,2,figsize=(15,15))

for idx,cat_col in enumerate(num_col):

row,col = idx//2,idx%2

sns.distplot(ds[cat_col],ax=axes[row,col], rug=False, color='b',

→label="All").set_title(cat_col)

plt.subplots_adjust(hspace=.2)
```


0.5.4 2.1.3 Correctation on numerical values

[10]:		age fnlwgt	education.num	capital.gain	capital.loss	\
	age	1.000000 -0.076646	0.036527	0.077674	0.057775	
	fnlwgt	-0.076646 1.000000	-0.043195	0.000432	-0.010252	
	education.num	0.036527 -0.043195	1.000000	0.122630	0.079923	
	capital.gain	0.077674 0.000432	0.122630	1.000000	-0.031615	
	capital.loss	0.057775 -0.010252	0.079923	-0.031615	1.000000	
	hours.per.week	0.068756 -0.018768	0.148123	0.078409	0.054256	

hours.per.week
age 0.068756
fnlwgt -0.018768
education.num 0.148123
capital.gain 0.078409
capital.loss 0.054256
hours.per.week 1.000000

0.6 2.2 Categorical Visual Interpretation

0.6.1 2.2.1 Exploring categorical data individually with respect to age

```
[12]: def plot_chart(x_axis_val,y_axis_val):
         heights = y_axis_val
         bars = x_axis_val
         y_pos = range(len(bars))
         plt.bar(y_pos, heights)
         plt.xticks(y_pos, bars, rotation=90)
[13]: education_df=pd.DataFrame(ds.groupby(['education.num', 'education'])['age'].
      education_df=education_df.sort_values(by=['age'],ascending=False)
     plot_chart(ds.sort_values(by=['education.num'])['education'].
      →unique(),education_df['age'])
     pd.DataFrame(education_df).reset_index().rename({'age': 'count'}, axis=1).
      [13]:
         education.num
                          education count
     0
                    9
                            HS-grad 10501
                       Some-college
     1
                    10
                                     7291
     2
                          Bachelors
                                      5355
                    13
                                      1723
     3
                    14
                            Masters
     4
                          Assoc-voc
                                      1382
                    11
     5
                    7
                               11th
                                      1175
     6
                    12
                         Assoc-acdm
                                      1067
     7
                    6
                               10th
                                       933
     8
                    4
                            7th-8th
                                       646
     9
                    15
                        Prof-school
                                       576
                                       514
     10
                    5
                                9th
     11
                    8
                               12th
                                       433
```

Doctorate

Preschool

5th-6th

1st-4th


```
[14]:
                 workclass
                             count
                   Private
      3
                             24532
         Self-emp-not-inc
      5
                              2541
                 Local-gov
                              2093
      1
      6
                 State-gov
                              1298
      4
             Self-emp-inc
                              1116
               Federal-gov
                               960
      0
      7
                                14
               Without-pay
      2
              Never-worked
                                 7
```



```
[15]:
                  occupation
                              count
             Prof-specialty
      9
                               5983
      2
               Craft-repair
                               4099
      3
            Exec-managerial
                               4066
      0
               Adm-clerical
                               3770
                               3650
      11
                       Sales
      7
              Other-service
                               3295
      6
          Machine-op-inspct
                               2002
      13
           Transport-moving
                               1597
      5
          Handlers-cleaners
                               1370
      4
            Farming-fishing
                                994
      12
               Tech-support
                                928
      10
            Protective-serv
                                649
```

8 Priv-house-serv 149 1 Armed-Forces 9


```
[16]: race_df=pd.DataFrame(ds.groupby(['race'])['age'].count()).reset_index().

→rename({'age': 'count'}, axis=1).sort_values(by=['count'],ascending=False)

plot_chart(ds.sort_values(by=['race'])['race'].unique(),race_df['count'])

race_df
```

[16]: race count 4 27816 White 2 Black 3124 1 Asian-Pac-Islander 1039 0 Amer-Indian-Eskimo 311 3 Other 271


```
[17]: sex_df=pd.DataFrame(ds.groupby(['sex'])['age'].count()).reset_index().

→rename({'age': 'count'}, axis=1).sort_values(by=['count'],ascending=False)

plot_chart(ds.sort_values(by=['sex'])['sex'].unique(),sex_df['count'])

sex_df
```

[17]: sex count 1 Male 21790 0 Female 10771


```
[18]:
           relationship count
      0
                Husband 13193
         Not-in-family
                          8305
      1
      3
              Own-child
                          5068
      4
              Unmarried
                          3446
     5
                   Wife
                          1568
      2 Other-relative
                           981
```



```
[19]:
                marital.status
                                 count
      2
            Married-civ-spouse
                                 14976
      4
                 Never-married
                                 10683
      0
                       Divorced
                                  4443
      5
                      Separated
                                  1025
                        Widowed
      6
                                   993
      3
         Married-spouse-absent
                                   418
      1
             Married-AF-spouse
                                    23
```



```
[20]:
                        native.country
                                         count
                        United-States
      38
                                         29753
      25
                                Mexico
                                           643
      29
                           Philippines
                                           198
      10
                               Germany
                                           137
      1
                                Canada
                                           121
      32
                           Puerto-Rico
                                           114
      7
                           El-Salvador
                                           106
      18
                                 India
                                           100
```

4	Cuba	95
8	England	90
22	Jamaica	81
34	South	80
2	China	75
21	Italy	73
5	Dominican-Republic	70
39	Vietnam	67
12	Guatemala	64
23	Japan	62
30	Poland	60
3	Columbia	59
35	Taiwan	51
13	Haiti	44
19	Iran	43
31	Portugal	37
26	Nicaragua	34
28	Peru	31
11	Greece	29
9	France	29
6	Ecuador	28
20	Ireland	24
16	Hong	20
37	${\tt Trinadad\&Tobago}$	19
0	Cambodia	19
24	Laos	18
36	Thailand	18
40	Yugoslavia	16
27	Outlying-US(Guam-USVI-etc)	14
17	Hungary	13
15	Honduras	13
33	Scotland	12
14	Holand-Netherlands	1


```
[21]: income_df=pd.DataFrame(ds.groupby(['income'])['age'].count()).reset_index().

→rename({'age': 'count'}, axis=1).sort_values(by=['count'],ascending=False)

plot_chart(ds.sort_values(by=['income'])['income'].unique(),income_df['count'])

income_df
```

[21]: income count 0 <=50K 24720 1 >50K 7841

0.6.2 There are two types in target class: one is "50K" and the other is ' $<=50 {\rm K}$ '. Below is the understanding

- The data is distribution with tags is unbalanced, and the proportion of '< = 50 K' tags is greater, which is 75%.
- Understood that the imbalance of label data distribution.
- It will be a binary task.

0.7 2.3 Encoding Categorical Values

Encoded Ouput table interpretation

\	education	native.country	Encoded Value	[22]:
	10th	Cambodia	0	0
	11th	Canada	1	1
	12th	China	2	2
	1st-4th	Columbia	3	3
	5th-6th	Cuba	4	4
	7th-8th	Dominican-Republic	5	5
	9th	Ecuador	6	6
	Assoc-acdm	El-Salvador	7	7
	Assoc-voc	England	8	8
	Bachelors	France	9	9
	Doctorate	Germany	10	10
	HS-grad	Greece	11	11
	Masters	Guatemala	12	12
	Preschool	Haiti	13	13
	Prof-school	Holand-Netherlands	14	14
	Some-college	Honduras	15	15
	NaN	Hong	16	16
	NaN	Hungary	17	17
	NaN	India	18	18
	NaN	Iran	19	19
	NaN	Ireland	20	20
	NaN	Italy	21	21
	NaN	Jamaica	22	22
	NaN	Japan	23	23
	NaN	Laos	24	24
	NaN	Mexico	25	25
	NaN	Nicaragua	26	26
	NaN	Outlying-US(Guam-USVI-etc)	27	27
	NaN	Peru	28	28
	NaN	Philippines	29	29
	NaN	Poland	30	30
	NaN	Portugal	31	31
	NaN	Puerto-Rico	32	32
	NaN	Scotland	33	33

34	34		South	NaN	
35	35	T	'aiwan	NaN	
36	36	Tha	iland	NaN	
37	37	Trinadad&T	'obago	NaN	
38	38	United-S	states	NaN	
39	39	Vi	etnam	NaN	
40	40	Yugos	slavia	NaN	
	occupation	workclass	mari	tal.status	\
0	Adm-clerical	Federal-gov		Divorced	
1	Armed-Forces	Local-gov	Married	-AF-spouse	
2	Craft-repair	Never-worked	Married-	civ-spouse	
3	Exec-managerial	Private	Married-spo	use-absent	
4	Farming-fishing	Self-emp-inc	Nev	er-married	
5	Handlers-cleaners	Self-emp-not-inc		Separated	
6	Machine-op-inspct	State-gov		Widowed	
7	Other-service	Without-pay		NaN	
8	Priv-house-serv	NaN		NaN	
9	Prof-specialty	NaN		NaN	
10	Protective-serv	NaN		NaN	
11	Sales	NaN		NaN	
12	Tech-support	NaN		NaN	
13	Transport-moving	NaN		NaN	
14	NaN	NaN		NaN	
15	NaN	NaN		NaN	
16	NaN	NaN		NaN	
17	NaN	NaN		NaN	
18	NaN	NaN		NaN	
19	NaN	NaN		NaN	
20	NaN	NaN		NaN	
21	NaN	NaN		NaN	
22	NaN	NaN		NaN	
23	NaN	NaN		NaN	
24	NaN	NaN		NaN	
25	NaN	NaN		NaN	
26	NaN	NaN		NaN	
27	NaN	NaN		NaN	
28	NaN	NaN		NaN	
29	NaN	NaN		NaN	
30	NaN	NaN		NaN	
31	NaN	NaN		NaN	
32	NaN	NaN		NaN	
33	NaN	NaN		NaN	
34	NaN	NaN		NaN	
35	NaN	NaN		NaN	
36	NaN	NaN		NaN	
37	NaN	NaN		NaN	

38	N	aN NaM	J		NaN
39	N	aN NaN	J		NaN
40	N	aN NaM	J		NaN
	relationship	race	sex	income	
0	Husband	Amer-Indian-Eskimo	Female	<=50K	
1	${ t Not-in-family}$	Asian-Pac-Islander	Male	>50K	
2	Other-relative	Black	NaN	NaN	
3	Own-child	Other	NaN	NaN	
4	Unmarried	White	NaN	NaN	
5	Wife	NaN	NaN	NaN	
6	NaN	NaN	NaN	NaN	
7	NaN	NaN	NaN	NaN	
8	NaN	NaN	NaN	NaN	
9	NaN	NaN	NaN	NaN	
10	NaN	NaN	NaN	NaN	
11	NaN	NaN	NaN	NaN	
12	NaN	NaN	NaN	NaN	
13	NaN	NaN	NaN	NaN	
14	NaN	NaN	NaN	NaN	
15	NaN	NaN	NaN	NaN	
16	NaN	NaN	NaN	NaN	
17	NaN	NaN	NaN	NaN	
18	NaN	NaN	NaN	NaN	
19	NaN	NaN	NaN	NaN	
20	NaN	NaN	NaN	NaN	
21	NaN	NaN	NaN	NaN	
22	NaN	NaN	NaN	NaN	
23	NaN	NaN	NaN	NaN	
24	NaN	NaN	NaN	NaN	
25	NaN	NaN	NaN	NaN	
26	NaN	NaN	NaN	NaN	
27	NaN	NaN	NaN	NaN	
28	NaN	NaN	NaN	NaN	
29	NaN	NaN	NaN	NaN	
30	NaN	NaN	NaN	NaN	
31	NaN	NaN	NaN	NaN	
32	NaN	NaN	NaN	NaN	
33	NaN	NaN	NaN	NaN	
34	NaN	NaN	NaN	NaN	
35	NaN	NaN	NaN	NaN	
36	NaN	NaN	NaN	NaN	
37	NaN	NaN	NaN	NaN	
38	NaN	NaN	NaN	NaN	
39	NaN	NaN	NaN	NaN	
40	NaN	NaN	NaN	NaN	

```
[23]: ds_enc.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 32561 entries, 0 to 32560
     Data columns (total 15 columns):
                        32561 non-null int64
     age
                        32561 non-null int32
     workclass
                        32561 non-null int64
     fnlwgt
                        32561 non-null int32
     education
     education.num
                        32561 non-null int64
     marital.status
                        32561 non-null int32
     occupation
                        32561 non-null int32
     relationship
                        32561 non-null int32
     race
                        32561 non-null int32
                        32561 non-null int32
     sex
                        32561 non-null int64
     capital.gain
     capital.loss
                        32561 non-null int64
     hours.per.week
                        32561 non-null int64
                        32561 non-null int32
     native.country
     income
                        32561 non-null int32
     dtypes: int32(9), int64(6)
     memory usage: 2.6 MB
     0.7.1 2.3.1 Percentage of Income Data
[24]: from collections import Counter
      target = ds.values[:,-1]
      counter = Counter(target)
      for k,v in counter.items():
          per = v / len(target) * 100
          print('Class=%s, Count=%d, Percentage=%.3f%%' % (k, v, per))
     Class=<=50K, Count=24720, Percentage=75.919%
     Class=>50K, Count=7841, Percentage=24.081%
[25]: ds_enc.head()
[25]:
              workclass
                                 education
                                             education.num
         age
                        fnlwgt
                                                            marital.status
          90
                      3
                          77053
                                                         9
      0
                                         11
                                                                          6
                      3
                                                         9
                                                                          6
      1
          82
                         132870
                                         11
      2
          66
                      3
                         186061
                                         15
                                                        10
                                                                          6
      3
          54
                      3
                         140359
                                          5
                                                         4
                                                                          0
                         264663
                                         15
                                                        10
                                                                          5
         occupation relationship race
                                          sex
                                               capital.gain
                                                             capital.loss \
      0
                                       4
                                                                      4356
      1
                  3
                                 1
                                       4
                                            0
                                                           0
                                                                      4356
```

2	9	4 2	0	0	4356
3	6	4 4	0	0	3900
4	9	3 4	0	0	3900
	hours.per.week	native.country	income		
0	40	38	0		
1	18	38	0		
2	40	38	0		

38

38

0.7.2 2.4 Entire dataset corelation after encoding

```
[26]: corr =ds_enc.corr()
corr.style.background_gradient(cmap='coolwarm').set_precision(2)
```

0

0

[26]: <pandas.io.formats.style.Styler at 0x1e8d1afe208>

Highly Correlated Values

 \bullet education-income: 0.34

• age-income: 0.24

3

4

hours.per.week-income: 0.23sex-hours.per.week: 0.23

40

40

• sex-income: 0.22

• age-hours.per.week: 0.1

0.8 3. Extract X as all columns except the Income column and Y as Income column.

```
[27]: X = ds.iloc[:,:14]
Y = ds.iloc[:,-1:]
X.head()

[27]: age workclass fnlwgt education education.num marital.status \
```

age workclass fnlwgt education education.num marital.status 90 Private 77053 HS-grad 9 Widowed 82 Private 132870 HS-grad 9 Widowed 66 Private 186061 Some-college 10 Widowed 54 Private 140359 7th-8th 4 Divorced 41 Private 264663 Some-college 10 Separated coccupation relationship race sex capital.gain \ Prof-specialty Not-in-family White Female 0 Exec-managerial Not-in-family White Female 0 Prof-specialty Unmarried Black Female 0 Machine-op-inspct Unmarried White Female 0 Prof-specialty Own-child White Female 0
90 Private 77053 HS-grad 9 Widowed 82 Private 132870 HS-grad 9 Widowed 66 Private 186061 Some-college 10 Widowed 54 Private 140359 7th-8th 4 Divorced 41 Private 264663 Some-college 10 Separated occupation relationship race sex capital.gain \ Prof-specialty Not-in-family White Female 0 Exec-managerial Not-in-family White Female 0 Prof-specialty Unmarried Black Female 0 Machine-op-inspct Unmarried White Female 0
82 Private 132870 HS-grad 9 Widowed 66 Private 186061 Some-college 10 Widowed 54 Private 140359 7th-8th 4 Divorced 41 Private 264663 Some-college 10 Separated occupation relationship race sex capital.gain \ Prof-specialty Not-in-family White Female 0 Exec-managerial Not-in-family White Female 0 Prof-specialty Unmarried Black Female 0 Machine-op-inspct Unmarried White Female 0
66 Private 186061 Some-college 10 Widowed 54 Private 140359 7th-8th 4 Divorced 41 Private 264663 Some-college 10 Separated occupation relationship race sex capital.gain \ Prof-specialty Not-in-family White Female 0 Exec-managerial Not-in-family White Female 0 Prof-specialty Unmarried Black Female 0 Machine-op-inspct Unmarried White Female 0
41 Private 264663 Some-college 10 Separated occupation relationship race sex capital.gain \ Prof-specialty Not-in-family White Female 0 Exec-managerial Not-in-family White Female 0 Prof-specialty Unmarried Black Female 0 Machine-op-inspct Unmarried White Female 0
occupation relationship race sex capital.gain \ Prof-specialty Not-in-family White Female 0 Exec-managerial Not-in-family White Female 0 Prof-specialty Unmarried Black Female 0 Machine-op-inspct Unmarried White Female 0
Prof-specialty Not-in-family White Female 0 Exec-managerial Not-in-family White Female 0 Prof-specialty Unmarried Black Female 0 Machine-op-inspct Unmarried White Female 0
Prof-specialty Not-in-family White Female 0 Exec-managerial Not-in-family White Female 0 Prof-specialty Unmarried Black Female 0 Machine-op-inspct Unmarried White Female 0
Exec-managerial Not-in-family White Female 0 Prof-specialty Unmarried Black Female 0 Machine-op-inspct Unmarried White Female 0
Prof-specialty Unmarried Black Female 0 Machine-op-inspct Unmarried White Female 0
Machine-op-inspct Unmarried White Female 0
Prof-specialty Own-child White Female 0

```
4356
      0
                                     40
                                         United-States
                  4356
      1
                                     18
                                         United-States
      2
                  4356
                                         United-States
      3
                  3900
                                     40
                                         United-States
                  3900
                                         United-States
      4
                                     40
[28]: Y.head()
[28]:
        income
      0 <=50K
      1 <=50K
      2 <=50K
      3 <=50K
      4 <=50K
[29]: X = ds_enc.iloc[:,:14]
      Y = ds_enc.iloc[:,-1:]
      X.head()
[29]:
              workclass fnlwgt
                                   education
                                               education.num
                                                               marital.status
         age
                           77053
      0
          90
                       3
                                           11
                                                            9
                                                                             6
      1
          82
                       3
                         132870
                                           11
                                                            9
                                                                             6
      2
          66
                       3 186061
                                           15
                                                           10
                                                                             6
      3
          54
                       3 140359
                                            5
                                                            4
                                                                             0
      4
          41
                          264663
                                           15
                                                           10
                                                                             5
         occupation relationship
                                                 capital.gain
                                                                capital.loss \
                                     race
                                            sex
      0
                                  1
                                        4
                                              0
                                                                         4356
                   3
                                        4
                                                             0
                                                                         4356
      1
                                  1
                                              0
      2
                   9
                                  4
                                         2
                                              0
                                                             0
                                                                         4356
                                  4
                                        4
      3
                   6
                                              0
                                                             0
                                                                         3900
      4
                   9
                                  3
                                        4
                                              0
                                                             0
                                                                         3900
         hours.per.week native.country
      0
                      40
                                       38
      1
                      18
                                       38
      2
                      40
                                       38
      3
                      40
                                       38
      4
                      40
                                       38
[30]: Y.head()
[30]:
         income
```

hours.per.week native.country

capital.loss

```
2 0
3 0
4 0
```

[31]: X.describe()

[31]:		age	workclass	fnlwgt	education e	education.num	\
	count	32561.000000	32561.000000	3.256100e+04	32561.000000	32561.000000	•
	mean	38.581647	3.094438	1.897784e+05	10.298210	10.080679	
	std	13.640433	1.107194	1.055500e+05	3.870264	2.572720	
	min	17.000000	0.000000	1.228500e+04	0.000000	1.000000	
	25%	28.000000	3.000000	1.178270e+05	9.000000	9.000000	
	50%	37.000000	3.000000	1.783560e+05	11.000000	10.000000	
	75%	48.000000	3.000000	2.370510e+05	12.000000	12.000000	
	max	90.000000	7.000000	1.484705e+06	15.000000	16.000000	
		marital.statu	s occupation	n relationshi	p race	sex	\
	count	32561.00000	0 32561.00000	0 32561.000000	32561.000000	32561.000000	
	mean	2.61183	6.13875	5 1.446362	2 3.665858	0.669205	
	std	1.50622	2 3.97270	8 1.60677	0.848806	0.470506	
	min	0.00000	0.00000	0.000000	0.000000	0.000000	
	25%	2.00000	3.00000	0.000000	4.000000	0.000000	
	50%	2.00000	0 6.00000	0 1.000000	4.000000	1.000000	
	75%	4.00000	9.00000	0 3.000000	4.000000	1.000000	
	max	6.00000	0 13.00000	0 5.00000	4.000000	1.000000	
		capital.gain	capital.loss	hours.per.weel	k native.count	ry	
	count	32561.000000	32561.000000	32561.000000	32561.00000	00	
	mean	1077.648844	87.303830	40.437456	36.4171	55	
	std	7385.292085	402.960219	12.347429	9 6.05604	47	
	min	0.000000	0.000000	1.000000	0.0000	00	
	25%	0.000000	0.000000	40.00000	38.00000	00	
	50%	0.000000	0.000000	40.00000	38.00000	00	
	75%	0.000000	0.000000	45.00000	38.0000	00	
	max	99999.000000	4356.000000	99.00000	40.00000	00	

[32]: X.info()

```
occupation
                  32561 non-null int32
relationship
                  32561 non-null int32
                  32561 non-null int32
race
                  32561 non-null int32
sex
capital.gain
                 32561 non-null int64
                 32561 non-null int64
capital.loss
hours.per.week
                 32561 non-null int64
native.country
                 32561 non-null int32
dtypes: int32(8), int64(6)
memory usage: 2.5 MB
```

0.8.1 Finding important feature using correlation

```
[33]: col_names = ds_enc.columns
      param=[]
      correlation=[]
      abs_corr=[]
      for c in col_names:
          if c != "income":
              if len(ds_enc[c].unique()) <= 2:</pre>
                  corr = spearmanr(ds_enc['income'],ds_enc[c])[0]
              else:
                  corr = pointbiserialr(ds_enc['income'],ds_enc[c])[0]
              param.append(c)
              correlation.append(corr)
              abs_corr.append(abs(corr))
      param_df=pd.DataFrame({'correlation':correlation,'parameter':param, 'abs_corr':
       →abs_corr})
      param_df=param_df.sort_values(by=['abs_corr'], ascending=False)
      param_df=param_df.set_index('parameter')
      param_df
      import warnings
      warnings.filterwarnings('ignore')
```

```
[34]: for md in ['GaussianNB', 'BernoulliNB', 'MultinomialNB']:
    scoresCV = []
    scores = []
    for i in range(1,len(param_df)):
        new_df=ds_enc[param_df.index[0:i+1].values]
        X = new_df.ix[:,1::]
        y = new_df.ix[:,0]
        if md=='BernoulliNB':
            clf=BernoulliNB()
        if md=='MultinomialNB':
            clf= MultinomialNB()
        if md=='GaussianNB':
            clf=GaussianNB()
```

```
scoreCV = cross_val_score(clf, X, y, cv= 10)
scores.append(np.mean(scoreCV))

plt.figure(figsize=(15,5))
plt.plot(range(1,len(scores)+1),scores, '.-')
plt.axis("tight")
plt.title(md+' Feature Selection Chart', fontsize=14)
plt.xlabel('No Of Features', fontsize=12)
plt.ylabel('Score', fontsize=12)
plt.grid();
best_features=param_df.index[0:10].values
print(md, ' Best features:\t',best_features)
```

```
GaussianNB Best features: ['education.num' 'relationship' 'age' 'hours.per.week' 'capital.gain' 'sex' 'marital.status' 'capital.loss' 'education' 'race']
BernoulliNB Best features: ['education.num' 'relationship' 'age' 'hours.per.week' 'capital.gain' 'sex' 'marital.status' 'capital.loss' 'education' 'race']
MultinomialNB Best features: ['education.num' 'relationship' 'age' 'hours.per.week' 'capital.gain' 'sex' 'marital.status' 'capital.loss' 'education' 'race']
```


0.8.2 Top 10 Features

```
[35]: best_features=param_df.index[0:10].values print('Best_features:\t',best_features)
```

```
Best features: ['education.num' 'relationship' 'age' 'hours.per.week'
'capital.gain'
  'sex' 'marital.status' 'capital.loss' 'education' 'race']
```

0.9 4. Split the data into training set and testing set.

Split DataSet into training and testing - Split into features, training data

```
[36]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    def prepare_datafunc(dataSet, train_size=0.67):
        dataSet_features = dataSet.drop(['income'], axis=1)
        dataSet_response = dataSet['income']
```

```
X_train, X_test, y_train, y_test =
       →train_test_split(dataSet_features,dataSet_response,train_size=0.
       →80,random_state=6,stratify=dataSet_response)
          return X_train, X_test, y_train, y_test
      X_train, X_test, y_train, y_test = prepare_datafunc(ds_enc)
      print('X Train Shape:',X train.shape)
      print('X Test Shape:',X_test.shape)
      print('y Train Shape:',y_train.shape)
      print('y Test Shape:',y_test.shape)
     X Train Shape: (26048, 14)
     X Test Shape: (6513, 14)
     y Train Shape: (26048,)
     y Test Shape: (6513,)
[37]: pd.DataFrame(X_train).head()
[37]:
             age workclass fnlwgt education education.num marital.status
      25458
              39
                          3
                              99452
                                              9
                                                            13
                                                                              2
      26686
              27
                          3 190525
                                              8
                                                                              4
                                                            11
      7663
                                              9
                                                                              4
              44
                          6 296326
                                                            13
                                                                              2
      9395
              56
                          5 258752
                                              9
                                                            13
      9333
                                              3
                                                             2
                                                                              2
              37
                          3 323155
             occupation relationship race
                                              sex
                                                  capital.gain
                                                                 capital.loss \
      25458
                      9
                                    0
                                           4
                                                1
      26686
                      6
                                    4
                                           4
                                                1
                                                              0
                                                                             0
      7663
                      0
                                    1
                                           4
                                                1
                                                              0
                                                                             0
                      3
      9395
                                    0
                                           4
                                                1
                                                              0
                                                                             0
      9333
                      4
                                     0
                                                1
                                                              0
                                                                             0
             hours.per.week native.country
      25458
                         50
                                          38
      26686
                         45
                                          38
      7663
                         40
                                          38
      9395
                         60
                                          38
      9333
                         85
                                          25
```

0.10 5. Model the classifier using GaussianNB, BernoulliNB and MultinomialNB

```
[38]: def get_score(model, X_test, y_test):
    return model.score(X_test, y_test)
```

0.11 5.1 MultinomialNB

```
[39]: model = MultinomialNB()
    model.fit(X_train, y_train)
    naive_pre= model.predict(X_test)
    MultinomialNBCnfMat=confusion_matrix(y_test,naive_pre)
    print(classification_report(y_test,naive_pre))
    MNB = accuracy_score(y_test, naive_pre)
    print("The Accuracy for MultinomialNB is {}".format(MNB))
    MultinomialNBScore = get_score(model,X_test,y_test)
```

	precision	recall	f1-score	support
0	0.80	0.96	0.87	4945
1	0.64	0.24	0.35	1568
accuracy			0.78	6513
macro avg	0.72	0.60	0.61	6513
weighted avg	0.76	0.78	0.74	6513

The Accuracy for MultinomialNB is 0.7844311377245509

```
[40]: scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
```

0.12 5.2 GaussianNB

```
[41]: model = GaussianNB()
  model.fit(X_train, y_train)
  naive_pre= model.predict(X_test)
  GaussianNBCnfMat=confusion_matrix(y_test,naive_pre)
  print(classification_report(y_test,naive_pre))
  GNB = accuracy_score(y_test, naive_pre)
  print("The Accuracy for GaussianNB is {}".format(GNB))
  GaussianNBScore = get_score(model,X_test,y_test)
```

	precision	recall	f1-score	support
0	0.82	0.95	0.88	4945
1	0.68	0.34	0.46	1568
accuracy			0.80	6513
macro avg	0.75	0.65	0.67	6513
weighted avg	0.79	0.80	0.78	6513

The Accuracy for GaussianNB is 0.8036235221863964

0.13 5.3 BernoulliNB

```
[42]: model = BernoulliNB()
  model.fit(X_train, y_train)
  naive_pre= model.predict(X_test)
  BernoulliNBCnfMat=confusion_matrix(y_test,naive_pre)
  print(classification_report(y_test,naive_pre))
  BNB = accuracy_score(y_test, naive_pre)
  print("The Accuracy for BernoulliNB is {}".format(BNB))
  BernoulliNBScore = get_score(model,X_test,y_test)
```

	precision	recall	f1-score	support
0	0.87	0.86	0.87	4945
1	0.58	0.59	0.59	1568
accuracy			0.80	6513
macro avg	0.72	0.73	0.73	6513
weighted avg	0.80	0.80	0.80	6513

The Accuracy for BernoulliNB is 0.7985567326884692

0.14 6. Compute the accuracy and confusion matrix for each models.

0.14.1 Comparing the Performance of each algorithm

Best algorithm is BernoulliNB, with BernoulliNBScore: 0.8036235221863964

[44]: Text(0.5, 1.0, 'BernoulliNB Confusion Matrix')


```
[45]: ax = plt.axes()
sns.heatmap(MultinomialNBCnfMat/np.sum(MultinomialNBCnfMat), annot=True, fmt='.

→2%', cmap='Blues', ax = ax)
ax.set_title('MultinomialNB Confusion Matrix')
```

[45]: Text(0.5, 1.0, 'MultinomialNB Confusion Matrix')


```
[46]: ax = plt.axes()
sns.heatmap(GaussianNBCnfMat/np.sum(GaussianNBCnfMat), annot=True, fmt='.2%',
cmap='Blues', ax = ax)
ax.set_title('GaussianNB Confusion Matrix')
```

[46]: Text(0.5, 1.0, 'GaussianNB Confusion Matrix')


```
[47]: import seaborn as sns
    names = ['BernoulliNB', 'GaussianNB', 'MultinomialNB']
    Algorithm = [BernoulliNBScore,GaussianNBScore,MultinomialNBScore]
    best = max(Algorithm)
    for i in range(3):
        if best == Algorithm[i]:
            print(f'Best algorithm is {names[i]}, with score : {Algorithm[i]}')
            sns.barplot(x=Algorithm, y=names)
    plt.xlabel('Score')
    plt.ylabel('Algorithm')
    plt.title("Visualizing Score of each algorithm")
    plt.show()
```

Best algorithm is GaussianNB, with score : 0.8036235221863964

0.15 7. Plot the decision boundary, visualize training and test results of all the models

```
[48]: def plot_decision_boundaries(X, y, model_class, **model_params):
          reduced_data = X.iloc[:, :2]
          model = model_class(**model_params)
          model.fit(reduced_data, y)
          h = .02
          x_min, x_max = reduced_data.iloc[:, 0].min() - 1, reduced_data.iloc[:, 0].
       \rightarrowmax() + 1
          y_min, y_max = reduced_data.iloc[:, 1].min() - 1, reduced_data.iloc[:, 1].
       \rightarrowmax() + 1
          xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
          Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
          x_min, x_max = X.iloc[:, 0].min() - 1, X.iloc[:, 0].max() + 1
          y_min, y_max = X.iloc[:, 1].min() - 1, X.iloc[:, 1].max() + 1
          xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1))
       →1))
          Z = model.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)
          plt.contourf(xx, yy, Z, alpha=0.4)
          plt.scatter(X.iloc[:, 0], X.iloc[:, 1], c=y, alpha=0.8)
          return plt
```

```
[49]: dataSet_features = ds_enc.drop(['income'], axis=1)
      dataSet_response = ds_enc['income']
      X_train, X_test, y_train, y_test =
      →train_test_split(dataSet_features,dataSet_response,train_size=0.
      →80,random_state=6,stratify=dataSet_response)
      plt.figure()
      plt.title('MultinomialNB',fontsize=16)
      plot_decision_boundaries(X_train, y_train,MultinomialNB)
      plt.show()
      plt.figure()
      plt.title('GaussianNB',fontsize=16)
      plot_decision_boundaries(X_train, y_train,GaussianNB)
      plt.show()
      plt.figure()
      plt.title('BernoulliNB',fontsize=16)
      plot_decision_boundaries(X_train, y_train,BernoulliNB)
      plt.show()
```

MultinomialNB

0.15.1 7.1 Decision Boundary using mlxtend

To Draw Decision Boundary below are the points considered, region of a problem space in which the output label of a classifier is ambiguous. - To draw decision boundary we have to consider 2 features & 1 output class

plt.show()

0.16 8. Create an output .csv file consisting actual Test set values of Y (column name: Actual) and Predictions of Y(column name: Predicted).

53]:	<pre>out_ds=(X_test.join(y_test)).copy() out_ds.head()</pre>										
53]:		age	workcl	ass	fnlwgt	educat	ion	educati	ion.num	marital.status	\
	30767	43		3	87284		15		10	4	
	11068	37		1	174924		15		10	0	
	20582	21		3	383603		0		6	4	
	23127	42		3	197522		15		10	5	
	28292	61		3	79827		11		9	2	
		occu	pation	rel	ationshi	p race	sez	capit	al.gain	capital.loss	\
	30767		5			1 4		L	0	0	
	11068		10			4 4		L	0	0	
	20582		7			1 4	()	0	0	
	23127		6			4 2	()	0	0	
	28292		3			0 4	:	L	0	0	
		hour	s.per.w	eek	native.	country	ino	come			
	30767			40		38		0			
	11068			48		10		0			

20582	35	38	0
23127	40	38	0
28292	50	38	0

[54]: out_ds.to_csv(os.path.join(cwd,'output.csv'),index=False)