- 13. 设 $G \in M_n(R)$ 上的加法群, $n \ge 2$,判断下列子集是否构成子群.
- (1) 全体对称矩阵;
- (2)全体对角矩阵;
- (3) 全体行列式 ≥ 0 的矩阵;
- (4) 全体上(下) 三角矩阵,
- い 构成 (2) 构成 (3) 不构成 (4) 构成
 - 15. 找出满足以下条件的群G:
 - (1) 只有一个子群;
 - (2) 只有两个子群;
 - (3) 只有三个子群;
- (1) $G = \{e\}$ (2) \mathbb{Z}_2 , \mathfrak{D}_2 (3) \mathbb{Z}_4 , \mathfrak{D}_4
- 16. 设 H_1, H_2 是 G 的子群. 证明 H_1H_2 是 G 的子群的充要条件是 $H_1H_2 = H_2H_1$,其中 $H_1H_2 = \{h_1h_2|h_1 \in H_1 \ \land \ h_2 \in H_2\},$ $H_2H_1 = \{h_2h_1|h_2 \in H_2 \ \land \ h_1 \in H_1\}.$
 - i) 治行生: H. Hz = HzH, => V h.hz GHzHz . 3 h.hz GHzHz st. h.hz=hzhi'

显然 G中草(运元 e = e·e e HiH₂

(hih₂)(gig₂) = hi (h₂gi)g₂ = hi(h₁'gi')g₂ , h₂'gi'e HiH₂

= (hih₂')(gi'g₂) e HiH₂

(hih₂) = h₂ h₁ = (h₂-1)'(hi-1)' e HiH₂

围制定一: HiH₂ = G

i) 必要性: HiHz = G => b h.hz e HiHz,

(hihz) = hz hi = e HiHz

V gzg, e HzH, , 3 hi = gi = hz H, e HiHz

(hihz) = gzg, e HiHz => HzH, e HiHz

同程: HiHz = HzHi

7 H. H. = H2H.

- 19. 设 G = (a) 是 15 阶循环群.
- (1) 找出 G 的全部生成元;
- (2) 找出 G 的全部子群并画出 G 的子群格.
- (1) r=1, 2, 4, 7, 8, 11, 13, 14全部的生成元为 $a, a^2, a^4, a^7, a^8, a^{11}, a^{13}, a^{14}$
- (2) 15=1×3×5 1所子展: {e} 33介子群: <a⁵7={e,a⁵,a¹⁰} 5阶子群: 〈a³7={e,a³,a⁶,a⁹,a¹²} 15孙子群: G

20. 设 G 是群, $a,b \in G$, |a| = p,p 为素数,若 $a \in \langle b \rangle$,证明 $\langle a \rangle \cap \langle b \rangle = \{e\}$.

见起 ec(a7 且 ec(b7 字 e e(a7 \cap cb7 作设 习 x + e , x e (a7 \cap cb7 \Rightarrow x = α = b^{t} , 设 |b| = m $x^{p} = \alpha^{sp} = b^{tp} = e \Rightarrow m|tp \Rightarrow m|t$

⇒ t=km ⇒
$$x = b^{km} = e^k = e$$
 矛盾
to 不存在 x ≠e 且 x c < a > Λ < b >

Pp <a>1 = {e}

- 21. 设G是rs 阶循环群、(r,s) = 1, H_1 和 H_2 分别为G的r,s 阶子群. 证明 $G = H_1H_2$.
 - i) 证 Hithz eg, 设 G= <a7, lal=rs

7) H1= (a⁵), H2= (a⁷) Y h1h2 + H1H2, h1h2 = (a⁵)^m·(a^r)ⁿ = a^{5m+rn} + G

ii) 证 G = Hirly, 因为 (r,s)=1 => 3 u,v e Z^t s.t ur+sv=1
V a^t G G, a^t = (a^{ur+sv}) t = (a^r)^{ut}. (a^s)^{vt} G H₁H₂

女G=HiHz得证

23. 证明任何无限群有无穷多个子群.

反证: 作文设 无 P R R A G A K 个 子 R A H I, H L, ···, H K G ⊇ { a 1, a 2, ···, a k, a k+1 }

Hi = < a; >

i) Hi 两两不同,若 <ai7=<aj7 则
b) ai⁵,3 t s.t. ai⁵=aj^t ヲ a;=aj^m
□旦: aj= aiⁿ ⇒ai=aj ⇒ i=j
i)考虑 Hi-11=<ae+17,是第 k+1 个3 群,矛盾

女 无限群有无穷多个子群