LUNUFLAN FAILNI OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER PUBLICATION DATE

: 2003195020 : 09-07-03

APPLICATION DATE

: 26-12-01

APPLICATION NUMBER

: 2001395050

APPLICANT: OTSUKA CHEMICAL HOLDINGS CO LTD;

INVENTOR: YAGI TOSHIAKI;

INT.CL.

: G02B 5/08 C08K 7/00 C08L101/00

TITLE

: REFLECTOR PLATE MATERIAL FOR ULTRAVIOLET LIGHT GENERATION SOURCE

ABSTRACT: PROBLEM TO BE SOLVED: To provide a new reflector plate material which can provide high brightness if the material is used for a light emitting device provided with an ultraviolet light generation source.

> SOLUTION: This reflector plate material for an ultraviolet light generation source is composed of a thermoplastic resin and at least one kind of inorganic compound selected among fibrous and lamina-shaped inorganic compounds that can reflect ultraviolet light and visible light.

COPYRIGHT: (C)2003.JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-195020 (P2003-195020A)

(43)公開日 平成15年7月9日(2003.7.9)

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)
G 0 2 B 5/08		C 0 2 B 5/08	A 2H042
C08K 7/00		C 0 8 K 7/00	4 5 0 0 2
C 0 8 L 101/00		C 0 8 L 101/00	

審査請求 未請求 請求項の数6 OL (全 8 頁)

(21)出廣番号	特順2001-395050(P2001-395050)	(71) 出顧人 000206901			
			大塚化学ホールディングス株式会社		
(22) 山崎日	平成13年12月26日 (2001.12.26)	大阪府大阪市中央区大手通3丁目2番2			
		(72)発明者	堤 秀介		
			德島県徳島市川内町加賀須野463 大塚化		
			学株式会社德島研究所内		
		(72)発明者	田渕明		
			被島果德島市川内町加賀須野463 大塚化		
		学株式会社徳島研究所内			
		(74)代理人			
		(101025)	弁理士 藤本 昇 (外5名)		
		l .			
			最終頁に		

(54) 【発明の名称】 紫外線発生源用反射板材料

(57)【要約】

(課題) 従来、LEDの反射板として熱可塑性樹脂に 酸化チタンを配合した熱可塑性樹脂組成物からなる反射 板が汎用されている。該及射板は白色度が高く、反射性 低に優れるという奔ましい特性を有しているが、紫外発 光素子を備えるLEDに用いると十分な輝度が得られな い、本発明は、紫外線発生源を備える発光装置に用いた 物合に、高い輝度が得られるような新規な反射板材料を 提供することを課題とする。

【解決手段】 本発明の解決手段は、熱可塑性樹脂と、 可視光と共に柴外線をも反射し得る繊維状及び薄片状の 無機化合物から選ばれる少なくとも1種の無機化合物と からなる紫外線発生源用反射板材料にある。

【特許請求の範囲】

【請求項1】 熱可塑性樹脂と、可視光と共に紫外線を も反射し得る繊維状及び薄片状の無機化合物から選ばれ る少なくとも1種の無機化合物とからなる紫外線発生源 用反射板材料。

【請求項2】 可視光と共に紫外線をも反射し得る繊維 状及び/又は澤片状の無機化合物が、チタン酸カリウム 合有化合物である請求項1に記載の紫外線発生源用反射 板材料。

【請求項3】 チタン酸カリウム含有化合物が、チタン 酸カリウム繊維、薄片状チタン酸リチウムカリウム及び 薄片状チタン酸カリウムマグネシウムから選ばれる1種 又は2種以上である請求項2に記載の紫外線発生源用反 射板材料。

【請求項4】 熱可塑性樹脂が、可視光の吸収が少ない 熱可塑性樹脂及び/又は透明性を有する熱可塑性樹脂か ら選ばれる1種又は2種以上である第3項1~3のいず れかに記載の繋外線発生源用反射板材料。

【請求項5】 可視光の吸収か少ない熱可塑性制脂及び / 又は透明性を有する熱可塑性制脂が、半芳香族ポリア ミド、脂肪族ポリアミド、液晶ボリマー、シンジオタク チックポリスチレン、ポリブチレンテレフタレート、ポ リエチレンテレフタレート、ポリエチレンナフタレー ト、ポリスチルベンテン及びポリアセタールから選ばれ

る1種又は2種以上である請求項4に記載の紫外線発生 源用反射板材料

【請求項6】 熱可塑性補脂30~95重量%と可視光 と共に繋外線をも反射し得る無機化合物5~70重量% とからなる請求項1~5のいずれかに記載の紫外線発生 源用反射板材料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、紫外線発生源用反射板材料に関する。

[0002]

【能来の技術】LEDは、反射板(基板)に発光素子を搭載し、エポキシ樹脂等で對止してなる発光装置であり、小型且の軽量で各種機器類へ組込み易く、振動やのN/OFFの繰り返しに強いので寿命が非常に長く、発色が鮮やかで際立って優れた視認性を示し、加えて電力消費量が比較的少ないといった種々の好ましい特性を有まったの様なLEDの中でも、紫外発光素子と該紫外発光素子から発生する紫外線により白色に発光する質光体とを備えた白色LEDが、携帯電話、コンピュータ、テレビ等の液晶表示画面のバックライト、自動車のヘッドとして大きな注目を集めている。

【0003】LEDの反射板には、一般に、発光素子が 発する光又は紫外線を高効率で反射する良好な反射性能 と共に、反射板が発光素子と同様に1~2mm程度の做 細な部品であることから、寸法精度が高いこと、更に は、僅かな変形でもその反射性能が低下するおそれがあ るため、機械的強度や耐熱性に優れていること等が要求 される。

[0004]

【発明が解決しようとする課題】従来、LEDの反射板としては、例えば、樹脂成形品にメッキ及び強装を施した反射核が挙行かれる。該定料板は、反射性低ま実使用に耐えうる程度にあるものの、前述のように非常に散却な都品であるため、全体に切っにメッキを施すのが困難であり、寸法様に任いを生じ易く、不良品を小高いという欠点を有する。また、その機械的強度や耐熱性も、LEDの長寿命を考えると、十分満足できるものではない。

【0005】更に、芳香族ボリカーボネート等の熱可塑性樹脂に充填材として酸化チタンを配合した熱可塑性樹脂相成物からなる取り板が汎用されている(特開平9-321号公根、特開2001-302899号公根等)。該反射板は白色度が高く、反射性能に優れるという好ましい特性を有しているが、紫外発光素子を備えるLEDに用いると、十分な輝度が得られず凹いては視認性が低下し、特に携帯電話等の液晶表示凹面のバックライトや自動車のインスツルメントパネル等の光源としては不適当である。また、該反射板の機械的強度や耐熱性も充分満足できる水池には達しておらず、長期間の使用による変形のおそれがある。

【0006】また、従来、主に機械的強度や耐熱性、難 燃性の向上を目的として、特開平7-242810号公 報は、芳香族ポリカーボネート等の熱可塑性樹脂に酸化 チタン及びチタン酸カリウム繊維を配合した樹脂組成物 を、反射板材料として提案している。しかしながら、該 材料からなる反射板は、主に機械的強度や耐熱性、難燃 性の向上を目的としてチタン酸カリウム繊維を用いてい るが、酸化チタンとの併用を必須としているため、紫外 発光素子を備える白色LEDに適用すると、輝度が不充 分になり、視認性の低下を避けることができない。更 に、特開昭62-179780号公報には、反射板材料 として、芳香族ポリエステルや芳香族ポリエステルアミ ド等の溶融加工性ポリエステルに酸化チタン、酸化亜 鉛、硫化亜鉛、硫酸亜鉛、鉛白等の白色顔料を配合し、 必要に応じてチタン酸カリウム繊維やガラス繊維等の充 填剤を含有する樹脂組成物が開示されている。しかしな がら、該公報には、ポリエステルに実質的にチタン酸カ リウム繊維のみを配合した組成物は具体的には開示され ておらず、しかも該組成物が、紫外発光素子と該素子か **ら発生する紫外線により発光する蛍光体とを備えたLE** Dの反射板材料として極めて有用であるとの示唆もな

【0007】一方、熱可塑性樹脂にチタン酸カリウム繊 維等を配合してなる樹脂組成物は、上記特許公報以外で もよく知られているが、その用途は、電気・電子製品、 精密機器、その他の機械類のハウジング、機構部品、精 動部品等の材料であり、またチタン酸カリウム等を配合 する目的は、機械約9強度を向上させるためにすぎない。 即ち、従来の技術では、熱可塑性樹脂にチタン酸カリウ ム繊維を単東で配合した組板物を、紫外線を圧溺用の反 射板材料として用いることは実施されておらず、しか も、それによって得られる特有の効果については全く知 られていない。

180001

【課題を解決するための手段】本発明者は、上記従来技術の課題を解決すべ、鋭意研究を重ねた結果、紫外線発生源を備える発光装置に用いた場合に、高い輝度が得られるような新規な反射核材料を見出し、本発明を完成した。即ち、本発明は、熱可塑性樹脂と、可視光と共に紫外線をも反射し得る線維状及び薄け状の無機化合物から強はれる少なくとも1種の無機化合物とからなる紫外線発生週用反射板材料に係る。

【0009】 本発明者の研究によれば、熱可塑性樹脂に可視光と共に紫外線をも反射し得る繊維状及び薄片状の 無機化合物から選ばれる少なくとも1種の無機化合物を配合した材料からなる反射板を用いる場合には、紫外発 光素子から発生する紫外線を高密度で蛍光体に送ること ができるので、紫外発光等を月かに入したり、特に向色 しをDの発生光を著しく高輝度で視認性の極めて良好な ものにできることが判明した。これに対し、従来汎用さ れている酸化チタンを含する機能温度物からなる反射 板は、可視光は反射するが、420m以下の紫外線を 吸収し、発生光の輝度が十分に高くならないものと推測

【0010】また、本施明の材料は、成形加工性、機械 的強度、寸法安定性、削熱性、吸湿性等の各種特性をも 高水準で満たしており、LEDの長寿命を報なうことが ない、本発明の材料は、各種の柴外線発生源の反射板材 料として好源に使用でき、特に、紫外光光素子と紫外線 により発色する蛍光体とを備えた各種LED、その中で も自色LEDに、より粉酒に使用できる。

[0011]

【発明の実施の形態】本発明の紫外線源用反射板材料は、熱可塑性樹脂、及び可視光と共に繋外線をも反射し 得る繊維状及び薄片状の無機化合物から選ばれる少なく とも1種の無機化合物を必須成分とする。

【0012】熱可製性協勝としては公知のものをいずれも使用でき、例えば、半芳香族ボリアミド、脂肪族系ポリアミド、ボリエステル、ボリエチレンテレフタレート、ボリプロビレンテレフタレート、ボリブチレンテレフタレート、ボリエチレン・カリアロビレン、ボリエチレン、塩素化ポリエチレン、ボリアロビレン、ボリイソプレン、ボリフタジエン、ボリ塩化ビニル、ボリフッ化ビニリデン、ボリテトラフルオロエチレ

ン、ポリアセタール、ポリカーボネート、アクリル樹 脂、ポリスチレン、耐衝撃性ポリスチレン、シンジオタ クチックポリスチレン、アクリロニトリルースチレン樹 脂(AS樹脂)、アクリロニトリルーブタジエンースチ レン樹脂(ABS樹脂)、メチルメタクリレートーブタ ジエン-スチレン樹脂(MBS樹脂)、メチルメタクリ レートーアクリロニトリルーブタジエンースチレン樹脂 (MABS樹脂)、アクリロニトリルーアクリルゴムー スチレン樹脂(AAS樹脂)、ポリメチル(メタ)アク リレート ポリメチルペンテン ポリフェニレンエーテ ル (PPE)、変性ポリフェニレンエーテル、ポリケト ン系樹脂(ポリエーテルケトン、ポリエーテルエーテル ケトン、ポリエーテルケトンケトン、ポリエーテルエー テルケトンケトン等)、ポリエーテルニトリル、ポリベ ンゾイミダゾール、ボリエーテルサルホン、ポリサルホ ン、熱可塑性ポリイミド、ポリエーテルイミド、ポリア リレート、ポリフェニレンスルフィド、ポリフェニレン オキサイド、ポリアミドイミド、ポリアロマティック樹 脂等を挙げることができる。

【0013】これらの中でも、可視光の吸収が少ない熱 可塑性樹脂及び/又は透明性を有する熱可塑性樹脂が好 ましく、更にはんだ耐熱性の高いものが好ましい。その 具体例としては、半芳香族ポリアミド、脂肪族ポリアミ ド、液晶ポリマー、シンジオタクチックポリスチレン、 ポリブチレンテレフタレート、ポリエチレンテレフタレ ート、ポリエチレンナフタレート、ポリアセタール、ポ リメチルペンテン等を挙げることができる。ここで、可 視光の吸収が少ないとは、具体的には、該樹脂の外観 が、濃淡を問わず、白色を呈することを意味する。これ、 らの樹脂の中でも、半芳香族ポリアミド(特開2001 -279093号公報、特開2001-106908号 公報、特開2000-273300号公報、特開200 0-219809号公報,特開2000-186142 号公報、特開2000-80270号公報、特開平11 -263840号公報、特開平10-338746号公 報、特開平9-279020号公報、特開平9-279 018号公報、特開平8-34850号公報、特開平7 -228694号公報、特開平5-32870号公報 等)、液晶ポリマー、シンジオタクチックポリスチレン 等が特に好ましい。また、斯かる熱可塑性樹脂は1種を 単独で使用でき又は2種以上を併用できる。

【0014】本売明の反射版材料における熱可塑性樹脂 の配合量は特に制限されず、熱可塑性樹脂そのものの種 類、併用する可視光及び紫外線反射性無機化合物の種 類、得られる反射板を適用する亮光体の種類等の各種条 件に応じて広い範囲から適宜選択すればよいが、反射光 の調度をより一層高めるという点を考慮すると、本発明 材料全量の30~95重量%、好ましくは40~90重 量%とするのがよい。

【0015】本発明において、可視光と共に紫外線をも

反射し得る繊維状及が漂片状の無機化合物とは、熱可塑性樹脂に混合分散させた際に、可視光と紫外線とを反射 性樹脂に混合分散させた際に、可視光と紫外線とを反射 は得る無線化合物を意味する。該無機化合物としては、 繊維状及び/又は薄片状(板状)のものを使用でき、例 えば、チシ・酸カリウム含有化合物等を挙げることがで きる。チタン酸カリウム含有化合物は、マトックスと なる熱可塑性樹脂の機械が強度や耐熱性を向上させ、寸 法精 使や成形加工性を損なわないという特性も有してい 2

【0016】チタン酸カリウム含有化合物としては、チ タン酸カリウムを含有し且つ繊維状又は薄片状のもので あれば公知のものをいずれも使用でき、例えば、チタン 酸カリウム繊維、薄片状チタン酸カリウム、薄片状チタ ン酸リチウムカリウム、薄片状チタン酸カリウムマグネ シウム等を挙げることができる。チタン酸カリウム繊維 は、通常、繊維形状の無機化合物である。チタン酸カリ ウム繊維としては特に制限はなく、従来公知のものを広 く使用でき、例えば、4チタン酸カリウム繊維、6チタ ン酸カリウム繊維、8チタン酸カリウム繊維等を挙げる ことができる。チタン酸カリウム繊維の寸法は特に制限 はないが、通常、平均繊維径0.01~1 um、好まし くは0.1~0.5 μm、平均繊維長1~5 0 μm、好 ましくは3~30 mである。本発明では市販品も使用 でき、例えば、ティスモ(商品名、大塚化学(株)製、 平均繊維径0.2~0.5 m 、 平均繊維長5~30 m m) 等を挙げることができる。薄片状チタン酸リチウム カリウムは、チタン酸カリウムのカリウム原子の一部が リチウム原子で置換された、公知のチタン酸カリウム含 有化合物であり、例えば、特開平3-285819号公 報、特開2000-344520号公報等に記載されて いる。薄片状チタン酸カリウムマグネシウムは、チタン 酸カリウムのカリウム原子の一部がマグネシウム原子で 置換された公知のチタン酸カリウム含有化合物であり、 例えば、例えば、特開平3-285819号公報、特開 平5-221795号公報、特開2000-23016 8号公報等に記載されている。その他、一般式K, Tig O.a.[式中、x=1.0~2.0である。] で表わされ るホーランダイト型構造の薄片状チタン酸カリウム含有 化合物 (特開昭62-105925号公報)、一般式 $(K_{x-x}H_x)$ Ti₈O₁₆ (式中、 $x=1.0\sim1.3$ 、

(K_{1-y}H_y) 「1₃O₁g (式中、x=1. U~1. 3. O<y≤0. 7である。〕で表わされるホーランダイト 型構造の薄片状チタン酸カリウム含有化合物 (特開平2 -9282号公報) 等も、チタン酸カリウム含有化合物として使用することができる。

【0017】可視光と共に紫外線をも反射し得る繊維状及び薄片状の無機化合物は、1種を単独で使用でき又は 2種以上を併用できる。

【0018】また、本発明においては、得られる反射板 材料の機械的強度等の物性をより一層向上させるため に、可視光及び紫外線反射性無機化合物に表面処理を施 してもよい。表面処理は公知の方法に従い、シランカップリング剤、キタンカップリング剤等を用いて行えばよい。これらの中でも、シランカップリング剤が好ましく、アミノシランが特に好ましい。

【0019】可視光と共に集外線をも反射し得る繊維状及び海片状の無機化合物の配合量は対に削限されず、併用する熱可塑性樹脂の種類、可視光及び紫外線反射性無機化合物そのものの種類、可視光及び紫外線反射性無機化合物そのものの種類、得られる反射板を適用する多光体の種類等の各種条件に応じて広い範囲から適宜選択すればよいが、反射光の輝度をより層高めるという点を考慮すると、通常、本売明の反射板料を量のちへて0重量%、好ましくは10~60重量%とするのがよ

【0020】本発明の反射板材料には、その好ましい特性を損なわない範囲で、酸化防止剤、熱安定剤等を配合してもよい。酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、リン系酸化防止剤、リン系酸化防止剤、ラン系酸化防止剤、ラン系酸化防止剤、ラン系酸化防止剤等を挙げることができる。

【0021】フェノール系酸化防止剤としては、例え ば、トリエチレングリコール・ビス[3-(3-t-ブ チルー5-メチルー4-ヒドロキシフェニル)プロピオ ネート]、1,6-ヘキサンジオール・ビス[3-(3,5-ジーt-ブチル-4-ヒドロキシフェニル) プロピオネート]、ペンタエリスリチルーテトラキス 「3-(3.5-ジーt-ブチル-4-ヒドロキシフェ ニル)プロピオネート]、オクタデシルー3-(3,5 ージーtーブチルー4-ヒドロキシフェニル) プロピオ ネート、3,5ージーセーブチルー4ーヒドロキシベン ジルフォスフォネートージエチルエステル、N.N'-ヘキサメチレンビス(3.5-ジーセーブチルー4-ヒ ドロキシーヒドロシンナムアミド)、1、3、5ートリ メチルー2、4、6ートリス(3、5ージーセーブチル -4-ヒドロキシベンジル)ベンゼン、3、9-ビス [2-{3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル) プロピオニルオキシ} -1, 1-ジメ チルエチル 1-2.4.8.10-テトラオキサスピロ [5,5]ウンデカン等を挙げることができる。これら の中でも、ペンタエリスリチル・テトラキス [3-(3,5-ジーt-ブチル-4-ヒドロキシフェニル) プロピオネート]、N、N´ーヘキサメチレンビス

プロピオネート]、N、N′ーヘキサメチレンピス (3、5 - ジーセーブチルー4 - ヒドロキシーヒドロシ ンナムアミド) が好ましい。

【0022】リン系酸化防止剤の具体例としては、例えば、トリス(2、4 \rightarrow 5 \rightarrow 7 \rightarrow

【0023】イオウ系酸化防止剤の具体例としては、例 えば、2、2・チオージエチレンビス [3-(3,5-ジーセーブチルー4ーヒドロキシフェニル) プロビオネ ート]、テトラキス(メチレンー3-(ドデシルチオ) プロビオネート] メタン等を挙げることができる。これ らの酸化防止剤は1種を単独で使用でき又は2種以上を 併用できる。

【0024】更に本発明の反射板材料には、その好まし い特性を損なわない範囲で、従来から合成樹脂用に用い られている各種添加剤の1種又は2種以上を配合するこ とができる。該添加剤としては、例えば、ワラストナイ ト、ガラス繊維等の繊維状無機充填材、シリカ、タルク 等の粉末状無機充填材、顔料、酸化防止剤、帯電防止 剤、離型剤、潤滑剤、熱安定剤、ドリップ防止剤、難燃 剂、紫外線吸収剂、光安定剂、遮光剂、金属不活性剂。 老化防止剤、可塑剤、衝撃強度改良剤、相溶化剤、粘度 調整剤、消泡剤、レベリング剤、有機溶剤等を挙げるこ とができる。これらの添加剤は 樹脂に対する配合成分 の全量中、10重量%未満の割合とするのが好ましい。 【0025】本発明の反射板材料は、合成樹脂と、可視 光と共に紫外線をも反射し得る無機化合物と、更に必要 に応じて、他の添加剤とを公知の手段により混合又は混 練することにより製造できる。例えば、粉末、ビーズ、 フレーク又はペレット状の各成分を、1 軸押出機、2軸 押出機等の押出機、バンバリーミキサー、加圧ニーダ 一、2本ロール等の混練機等を用いて混合又は混練する ことにより、本発明の反射板材料のペレットを製造する ことができる。また、本発明の材料を、射出成形法、圧 縮成形法、押出成形法等の公知の樹脂成形法によって成 形することにより、任意の形状の反射板とすることがで きる。

【0026】本発明の材料からなる反射板は、各種の紫 外線発生源を備えた発光装置の反射板として有用であ る。該光源としては、例えば、紫外発光素子と影外線を 受けて発色する蛍光体とを備えたしED、紫外灯、水艇 灯、冷陰極管、蛍光灯、白熱電球等を挙げることができ る。更に、該発光装置を備えた原明器具等にも適用でき る。これらの中でも、LED、特に白色LEDの反射板 として有用である。

【0027】また、本発明の材料からなる反射板を備え

た紫外線発生源は、従来の紫外線発生源と同様の用途に 用いることができる。該用途の具体例は次の通りであ る。

通信用途: LAN、ファクシミリ、ファイバー通信等 広告・情報用途: 屋内・屋外表示板、立体ディスプレ ー、アクセサリー等

計測・制御用途:自動販売機、自動ドア、各種センサー、計色の光源等

自動車用途:インパネ内メーター、インジケーター、ハ イマウントストップランプ、テールランプ、サイドマー カー等

事務器・OA用途:電子写真光源、CD読取光源、プリンター、スキャナー等

交通·運輸用途:車両灯具、信号標識等

防犯・防災用途:非常灯、煙感知器,ガス漏れ感知器等 農林・施業用途:誘塊灯、疑心蛆、成長促進火源等 医療用途:医療放音、関本・トシステム、数面装置等 家電用途:VTR、DVD、ステレオ、テレビ、エアコ ン、家電製品のインジケークー、レベルメーター等 バーソナルコンビューター、携帯電話、液晶テレビ等の 各種液晶表示画面のバックライト光源等

[0028]

【実施例】以下に実施例を挙げて本発明を具体的に説明 する。なお、本実施例で使用した熱可塑性樹脂、及び可 視光と共に紫外線をも反射し得る繊維状又は薄片状の無 機化合物は、具体的には次が通りである。

【熱可塑性樹脂】半芳香族ポリアミド(2ーメチルペン タメチレンジアミン、ヘキサメチレンジアミン及びテレ フタル酸をそれぞれ25モル%、25モル%及び50モ ル%の割合で重合してなる半芳香族ポリアミド、商品 名: ザイテルHTN501、デュポン社製、酸点305 で、ガラス転移温度125℃)

液晶ボリマー (商品名:ベクトラC950RX、ボリプラスチックス (株) 製)

〔無機充填材〕

チタン酸カリウム繊維 (商品名: ティスモD101、大 塚化学 (株) 製、繊維長10~20μm、繊維径0.3 ~0.6μm)

チタン酸リチウムカリウム (組成: $K_{0,8}$ Ti_{1.73}Li_{0.27}O₄、長径3~5 μ m、短径2~5 0μ m、厚さ 0.5~2 μ m)

チタン酸カリウムマグネシウム (商品名: テラセスP S、大塚化学 (株) 製、長径3~5μm、短径3~5μ m、厚さ0.5~2μm)

粉末状酸化チタン (ルチル型酸化チタン、商品名: JR -405、テイカ (株) 製、平均粒径0、21μm) ガラスファイバー (商品名:チョップドスランドECS 03T249/PL、電気化学工業(株) 製 平均繊維 長3mm、平均繊維径13μm)

【0029】実施例1~4及び比較例1~4

表1および表2に示す配合割合(重量%)に従い、熱可 **塑性樹脂を一軸混練押出機のメインホッパーに投入し** 溶融湿練した後、サイドフィーダーから無機充填材を加 対 溶融混練して押出し、本発明の反射板材料のペレッ トを製造した。なお、熱可塑性樹脂の二軸混練押出機で の溶融混練温度は、実施例1~3及び比較例1~3が3 30℃、実施例4及び比較例4が310℃とした。上記 で得られた本発明の反射板材料のペレットを、JIS試 除片作製用金型(金型温度130℃=実施例1~3及び 比較例1~3、金型温度120℃=実施例4及び比較例 4)を装着した射出成形機(商品名: JS75. (株) 日本製鋼所製、シリンダー温度330℃) に投入して射 出成形し、各種JIS試験片を製造し、以下の性能試験 に供した。なお、実施例1~3及び比較例1~3は、金 型温度130℃、射出成形機のシリンダー温度330 で 実施例4及び比較例4は、金型温度120℃、射出 成形機のシリンダー温度310℃とした。結果を表1に 示方.

- 【0030】(1)引張強さ及び引張破断伸び: JIS K7113に準じて測定した。
- (2)曲げ強さ及び曲げ弾性率:JIS K7271に 連じて測定した。
- (3) ノッチ付きアイゾット (IZOD) 衝撃値: JIS K7110に準じ、1号試験片で評価した。
- (4) HDT (耐熱性試験): JIS K7207に準 にて、曲げ応力1.82MPaを加えた時の荷重たわみ

温度(HDT. ℃)を測定した。

- (4)線助張係数: TAM 120 熱機械分析装置(商品 名: SSC 5200 Hディスクテーシン、セイコーイ ンスツルメンツ(株)製)を使用し、20~130℃の 線勘張係数を測定した。樹脂の流れ方向をMD、その直 角方向を下ひとした。製力性の指標とするためMDとT Dの線動類係級の比TD/MDを記載した。
- (6) 吸水率: JIS K7209に準じて測定した。 (7) ハンター白色度: 日本電色(株) 製の色差計を用いて測定した。白度93以上を◎、93未満91以上を ○、91未満89以上を△、89未満85以上を×、8 5未満を×と評価した。
- (8) 反射率:実施例及び比較例で得られたペレットを上記と同様に射出成形し、90mm×50mm×3.2mmの就験片を製造した。この試験片の380nm反射率(%)を可視紫外分光光度計(日立製作所(株)製、磁気分光光度計U-3000型)にて測定した。ソファレンスには酸化マグネシウムを用いた。得られた測定値から、60%以上を②、45%以上へ60%未満をへ、15%未満を本、15%未満を入、15%以上へ30%上では一次、20%以上へ45%未満を入。20%以上へ45%未満を入。25%以上へ30%未満を入。25%以上で30%未満を入。25%未満を、上記と同様として、光の波長と反射率との関係を測定した。結果を図1~8に示す。図1~8において、縦軸は光反射率(%)、横軸は光の波長(nm)をそれぞれ示す。100317

【表1】

- 6 70072 - 6 - 7 - 7 7 1 2 2 2 4 7 - 7				
	1	2	3	4
【実施例】 平芳香族ポリアミド		70	70	
液晶ポリマー				70
チタン酸カリウム繊維				30
チタン酸カリウムリチウム		30		
チタン酸マグネシウムカリウム			30	
ガラスファイバー				
,				
引張強さ(MPa)				184
引張級断伸び(%)				4.7
曲げ強さ(MPa)				204
曲げ弾性率(GPa)				13,0
IZOD衝撃値(J/m) Hr)T(°C)				160
	253	2.28		228
MD	2.2	3.8	3.9	1.2
TD	5.6	3.9	4.1	4.2
TD/MD	2.5	1.0	1,1	3.5
	0.17	0.18	0.17	0.04
ハンター白度		0		0
放射率(380nm、%)		0	0	0
	種 デウム - ムカリ・カム - n) - MD - TD - TD/MD	議 30 デウム 180 ・ 180 ・ 270 ・ 180 ・ 270 ・ 9.1 n) 38 ・ 253 MD 22 TD 5.6 TD/MD 2.5	70 70 70 70 70 70 70 70 70 70 70 70 70 7	70 70 70 70 70 70 70 70 70 70 70 70 70 7

[比較例]		11	2	3	4
半芳香集ポリアミド		70	70	70	
液晶ポリマー					70
チタン酸カリウム繊維			20		
チタン酸カリウムリチ・ラム					
チタン酸マグネシウムカリウム					
ガラスファイバー				20	20
ルチル型酸化チダン		30	10	10	10
引張強さ(MPa)		80	132	123	101
引張破断伸び(%)		1.7	2.3	2.3	1.9
曲げ強さ(MPs)		110	237	161	141
曲げ弾性率(GPa)		3.2	8.7	7.1	10.3
IZOD衝撃値(J/m)		24	44	29	80
Hı) Γ(°C)		178	243	254	220
總膨張係数 (×10 ⁻⁵ /K)	MD	5.8	2.8	2.7	1.0
	TD	5.9	6.1	6.7	4.5
	TD/MD	1.0	2.2	2.5	4.5
G連(×10 ⁻² cm ³)		0.18	0.17	0.17	0.04
ハンター白度		0	0	0	0
反射率(380nm、%)		ХX	XX	XX	××

[0033]表1から、本発明の反射板材料が、機械的 強度、寸法安定性、順熱性、吸温性等の各種特性を高水 準で満たしていることが明かである。また、図1~8か ら、本発明の反射板材料が紫外線、特に360nmから 400nmまでの紫外線を高効率で反射していることが 明かである(図1~4)。具体的に説明するとチタン能 カリウム繊維を含む実施例1の反射板の紫外線反射率が 極めて高いのに対し(図1)、ルチル型能化チタンのみ を含む場合(比較例1)やチタン能力り立人繊維とルチ ル型酸化チタンとを含む場合には(比較例2)紫外線反射率が が成り、大手を 射率が不充分であり(図5,6)紫外線反射率が着しく 低いことが明らかである。これらのことか。本発明の 反射板材料は可視光と共に紫外線をも効率的に反射し、 紫外線を 紫外線を 紫外線を 大手線を 大手線を 大手線と 大手線と 大手線と 大手線と 大手線と 大手線と 大手線と 大手線と 大手線と 大手線を 大手線と 大手線と 大手線と 大手線と 大手線と 大手線を 大手線を 大手線と 大手線を 大手線と 大手線を 大手線と 大手線を 大手線と 大手線を 大手線を 大手線と 大手線を 大手線と 大手線と 大手線と 大手線と 大手線と 大手線を 大手線を 大手線と 大手線と 大手線と 大手線を 大手線と 大手線を 大手線と 大手線を 大手線と 大手線を 大手

[0034]

【発明の効果】以上のように、本発明に係る紫外線発生 源用反射板材料によれば、紫外線を光源とする白色 L E D等の発光装置に用いた場合に、可視光および紫外線を 良好に反射することができ、充分な輝度が得られること となる。

【図面の簡単な説明】

- 【図1】本発明の反射板材料(実施例1)の、光の波長と反射率との関係を示すグラフである。
- 【図2】本発明の反射板材料(実施例2)の、光の波長 と反射率との関係を示すグラフである。
- 【図3】本発明の反射板材料(実施例3)の、光の波長と反射率との関係を示すグラフである。
- 【図4】本発明の反射板材料(実施例4)の、光の波長 と反射率との関係を示すグラフである。
- 【図5】従来の反射板材料(比較例1)の、光の波長と 反射率との関係を示すグラフである。
- 【図6】従来の反射板材料(比較例2)の、光の波長と 反射率との関係を示すグラフである。
- 【図7】従来の反射板材料(比較例3)の、光の波長と 反射率との関係を示すグラフである。
- 【図8】従来の反射板材料(比較例4)の、光の波長と 反射率との関係を示すグラフである。

【図1】

【図2】

フロントページの続き

(72) 発明者 八木 敏晃 徳島県徳島市川内町加賀須野463 大塚化 学株式会社徳島研究所内

Fターム(参考) 2H042 DA01 DA11 DB02 DE05 4J002 AA011 CL031 DE186 FA016 FA046 GP00