Lab #1

ECE-2026 Spring-2025 LAB COMPLETION REPORT

^		, ,	15.
Name: RUDRA	God	Date of Lab:	13/2024

Part 3.1 Write the string reversal output below and show it to the instructor.

Part 3.2 Replace the inner for loop with only one or two lines of vectorized MATLAB code. Write the MATLAB code in the space below:

```
%% Your code here
ccsum2 = zeros(1,500);
tt2 = dt*[1:1:500]; % generate the timestamps

for kx = 1:length(XX)
    Ak = abs(XX(kx));
    phik = angle(XX(kx));

    ccsum2 = Ak*cos(2*pi*freq*tt2 + phik);
```

Part 3.3 Show the plot of a decaying sinusoid.

Part 3.4 Read in a voice file and plot a section. Locate a vowel region containing a quasi-periodic waveform with higher amplitude than neighboring consonant sections. Measure the <u>pitch period</u>, which is the duration of a period in the vowel sound. The inverse of it is called pitch which is a vibrating frequency of a speaker's glottis when pronouncing the vowel. We will come back to this issue later in Lab #3.

$$t_{P_1} = .3459$$
 $t_{P_2} - t_{P_1} = PiH_L Paiod = .0074S$
 $t_{P_2} = .3385$
 $\Delta t_{P_{21}} = .0074$
 $(\Delta t_{P_{21}})^{-1} = 135.19 H_2$

Part 3.5.1 Show the plot of a time-reversed decaying sinusoid.


```
Code For Lab 1
Part I
응응
%3.1 string reversal
% You are asked to write the functionality into a function
\mbox{\ensuremath{\$}} and test the function with your full name.
my_name = 'Rudra Goel'; %fill in your name
disp(revstring(my_name)); %finish the revstring function
below
응응
function y = revstring(x)
% a function that reverses the input string
% x: input string
% y: output string
% Write your command below:
y = x (end:-1:1)
end
```

```
Part II
%% 3.2 Vectorization
% Change the following code without using the inner for loop
%% With For Loops
%--- make a plot of sum of cosines
dt = 1/800;
XX = rand(1,3).*exp(2i*pi*rand(1,3)); %--Random amplitude and
phases
freq = 20;
ccsum = zeros(1,500);
for kx = 1:length(XX)
    for kt = 1:500
        t = kt*dt;
        Ak = abs(XX(kx));
        phik = angle(XX(kx));
        ccsum(kt) = ccsum(kt) + Ak*cos(2*pi*freq*t + phik);
        tt(kt) = t;
    end
end
plot(tt,ccsum) %-- Plot the sum sinusoid
grid on, zoom on, shg
%% Your code here
ccsum2 = zeros(1,500);
tt2 = dt*[1:1:500]; % generate the timestamps
for kx = 1:length(XX)
    Ak = abs(XX(kx));
    phik = angle(XX(kx));
    ccsum2 = Ak*cos(2*pi*freq*tt2 + phik);
end
figure
plot(tt2,ccsum2) %-- Plot the sum sinusoid
grid on, zoom on, shg
```

```
Part III
%3.3 Generating Sinusoids and Decaying Sinusoids
% testing the given code in lab report
amp = 6;
freq = 80;
pha = pi/6;
fs = 8000;
tsta = 0:
tend = 3; %a 3-sec long signal
xs = mySinusoid(amp, freq, pha, fs, tsta, tend);
%<--- plot first three cycles of the generated sinusoid
ts = tsta:1/fs:tsta+3/freq;
Lt = length(ts);
plot( ts, xs(1:Lt), 'b-', ts, 2*xs(1:Lt), 'r--'), grid on
title('TEST PLOT of TWO SINUSOIDS (scaling by 2)')
xlabel('TIME (sec)')
% test decaying sinusoid with 2 decaying factor
% fill in the parameters
Amp = 10;
b = .2; %decay parameter
fs = 1000; %sampling freq
freq = 40; % given freq
w = 2*pi*freq; %omega
s = 0; %Start time
e = 2; % End time
phase = pi/4; %phase
tt = s:1/fs:e; %time vector
xDecay = myDecayingSinusoid(Amp, b, w, phase, fs, s, e);
%finish function below
figure;
plot(tt, xDecay); title('xDecay for time 2 seconds');
xlabel('Time (sec)');
figure;
b = 3; %set new decay parameter
xDecay new = myDecayingSinusoid(Amp, b, w, phase, fs, s, e);
plot(tt, xDecay new); title('xDecay new for time 2 seconds');
xlabel('Time (sec)');
save('Lab 1 decay.mat');
function xs = mySinusoid(amp, freq, pha, fs, tsta, tend)
```

```
% amp = amplitude
% freq = frequency in cycle per second
% pha = phase, time offset for the first peak
% fs = number of sample values per second
% tsta = starting time in sec
% tend = ending time in sec
tt = tsta : 1/fs : tend; % time indices for all the values
xs = amp * cos(freq*2*pi*tt + pha);
end
function X = myDecayingSinusoid(A, b, omega, phi, fs, tStart,
%A=starting amplitude
%b=decay rate
%omega=frequency
%phi=phase
%fs=frequency
%tStart=start time
%tEnd=end time
%% write your command below:
tt = tStart:1/fs:tEnd;
X = A*exp(-b*tt).*cos(omega*tt+phi);
End
```

```
Part IV %%
%3.4 Reading WAV File into MATLAB and Playing an Array % access the 'sample.wav' and plot it from 0.25 to 0.5 [xx, fs] = audioread('sample.wav'); %fill in your file name dur = length(xx)/fs; %duration of sound file len = length(xx); %length of sound array tt1 = .25:1/fs:.5; %time array for plot figure; plot(tt1, xx(2000:4000)); title('Sound wave from 0.25 to 0.5 seconds'); xlabel('Time (sec)');
```

```
Part V
%%
%3.5.1 Time reversal
% Here we reverse the decaying sinusoid from 3.3
% Please finish 3.3 first
load('Lab_1_decay.mat');
len = length(xDecay_new); %length of decaying sin
xDecayReverse = xDecay_new(len:-1:1); %reverse decaying sin
figure;
plot(tt,xDecayReverse);
title('xDecayReversed for time 2 seconds'); xlabel('Time
(sec)');
```