Inference

Christos Dimitrakakis

March 20, 2025

Outline

Set theory

- First, consider some universal set Ω .
- ightharpoonup A set A is a collection of points x in Ω .
- ▶ $\{x \in \Omega : f(x)\}$: the set of points in Ω with the property that f(x) is true.

Unary operators

Binary operators

- $ightharpoonup A \cup B$ if $\{x \in \Omega : x \in A \lor x \in B\}$ (c.f. $A \lor B$)
- ► $A \cap B$ if $\{x \in \Omega : x \in A \land x \in B\}$ (c.f. $A \land B$)

Binary relations

- \blacktriangleright $A \subset B$ if $x \in A \Rightarrow x \in B$ (c.f. $A \implies B$)
- \blacktriangleright A = B if $x \in A \Leftrightarrow x \in B$ (c.f. $A \Leftrightarrow B$)

The inference problem

▶ Given statements $A_1, ..., A_n$ we know to be true (i.e. a knowledge base), is another statement B true?

The following statements are equivalent:

- $A \implies B \text{ iff } (A \cap \neg B) = \emptyset.$
- $ightharpoonup A \implies B \text{ iff } A \subset B.$

In addition

- ▶ If $(A \Rightarrow B) \land A$ then B.
- ▶ If $(A \land B)$ then A.

Illustration

Events as sets

The universe and random outcomes

- lacktriangle The Ω contains all events that can happen.
- ▶ When something happens, we observe an element $\omega \in \Omega$.

Events in the universe

- ▶ An event is true if $\omega \in A$, and false if $\omega \notin A$.
- ▶ The negative event $\neg A = \Omega \setminus A$ is the set
- lacktriangle The possible events are a collection of subsets Σ of Ω so that
- (i) $\Omega \in \Sigma$, (ii) $A, B \in \Sigma \Rightarrow A \cup Bin\Sigma$ (iii) $A \in \Sigma \Rightarrow \neg A \in \Sigma$

Example: Traffic violation

- \blacktriangleright A car is moving with speed $\omega \in [0,\infty)$ in front of the speed camera.
- $ightharpoonup A_0 = [0, 50]$: below the speed limit
- $ightharpoonup A_1 = (50, 60]$: low fine
- $ightharpoonup A_2 = (60, \infty]$: high fine
- $ightharpoonup A_3 = (100, \infty)$: Suspension of license
- ▶ All combinations of the above events are interesting.

Probability fundamentals

Probability measure P

Probability can be seen as an area-like function assigning a likelihood to sets.

- ▶ $P: \Sigma \to [0,1]$ gives the likelihood P(A) of an event $A \in \Sigma$.
- $P(\Omega) = 1$
- ▶ For $A, B \subset \Omega$, if $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$.

Marginalisation

If $A_1, \ldots, A_n \subset \Omega$ are a partition of Ω

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i).$$

Conditional probability

Definition (Conditional probability)

The conditional probability of an event A given an event B is defined as

$$P(A|B) \triangleq \frac{P(A \cap B)}{P(B)}$$

The above definition requires P(B) to exist and be positive.

Conditional probabilities as a collection of probabilities

More generally, we can define conditional probabilities as simply a collection of probability distributions:

$$\{P_{\theta}: \theta \in \Theta\},\$$

where Θ is indexing possible values of θ .

 \triangleright θ is sometimes called the model or parameter

The theorem of Bayes

Theorem (Bayes's theorem)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

The theorem of Bayes

Theorem (Bayes's theorem)

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

The general case

If A_1, \ldots, A_n are a partition of Ω , meaning that they are mutually exclusive events (i.e. $A_i \cap A_j = \emptyset$ for $i \neq j$) such that one of them must be true (i.e. $\bigcup_{i=1}^n A_i = \Omega$), then

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

and

$$P(A_j|B) = \frac{P(B|A_j)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$$

Bayes's theorem

As a conditional measure

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid \neg A)P(\neg A)}$$

Bayes's theorem

As a conditional measure

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid \neg A)P(\neg A)}$$

As a causal explanation

$$\mathbb{P}(\text{cause} \mid \text{effect}) = \frac{\mathbb{P}(\text{effect} \mid \text{cause}) \, \mathbb{P}(\text{cause})}{\mathbb{P}(\text{effect})}$$

Bayes's theorem

As a conditional measure

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid \neg A)P(\neg A)}$$

As a causal explanation

$$\mathbb{P}(\text{cause} \mid \text{effect}) = \frac{\mathbb{P}(\text{effect} \mid \text{cause}) \, \mathbb{P}(\text{cause})}{\mathbb{P}(\text{effect})}$$

As model inference

- ▶ Prior $\beta(\theta)$
- ▶ Model class $\{P_{\theta}(\beta) : \theta \in \Theta\}$
- ▶ Data x

$$\beta(\theta \mid x) = \frac{P_{\theta}(x)\beta(\theta)}{\mathbb{P}_{\beta}(x)} = \frac{P_{\theta}(x)\beta(x)}{\sum_{\theta' \in \Theta} P_{\theta'}(x)\beta(\theta')}$$

Independence

Independent events $A \perp \!\!\! \perp B$ A, B are independent iff $P(A \cap B) = P(A)P(B)$. Conditional independence $A \perp \!\!\! \perp B \mid C$ A, B are conditionally independent given C iff $P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$.

Example: Naive Bayes models

Sometimes we observe multiple effects that have a common cause, but which are otherwise independent:

$$\mathbb{P}(\text{effect}_1, \dots \text{effect}_n \mid \text{cause}) = \prod_{i=1}^n \mathbb{P}(\text{effect}_i \mid \text{cause})$$

Naive Bayes model

- ▶ Observations $(x_t, y_t)_{t=1}^T$ with $x_t = (x_{t,1}, \dots, x_{t,n})$.
- ▶ Probability models $P_{\theta}(y \mid x) = \prod_{i=1}^{n} P_{\theta}(y \mid x_i)$.

Conditional independence

For any set of events A_1, A_2, A_3, \ldots , we can write their co-occurence probability as $\prod_i P(A_i \mid \cap A_1 \cap A_2 \cap \cdots \cap A_{i-1})$. However, we can use a Bayesian network to define conditional independence structures.

If A is a parent of B and C is a child of B, and there are no other paths from A to C then the following conditional independence holds:

$$P(C \mid B, A) = P(C \mid B)$$

i.e. C is conditionally independent of A given B.

Conditional probability tables

We can now write the distribution of the above example as

$$P(B, C_1, C_2) = P(A_1)P(A_2)P(B|A_1 \cap A_2)P(C_1|B)P(C_2|B).$$

Example: Wumpus world

Details

- ▶ Probability of each world A_i being true: 1/4
- ▶ Probability of each hole generating a breeze: $P(B_1|A_2 \cup A_4) = P(B_2|A_3 \cup A_4)$ with B_1, B_2 conditionally independent given A.

Questions

- ▶ What is the probability of feeling a breeze $B = B_1 \cup B_2$ in each world?
- ▶ What is the probability of a hole above if you feel a breeze?
- ▶ What is the probability of a hole above f you don't feel a breeze?

Example: The k-meteorologists problem

▶ A set of stations Θ , with $\theta \in \Theta$ making weather predictions:

$$P_{\theta}(x_{t+1} \mid x_1, \ldots, x_t)$$

- A prior probability $P(\theta)$ on the stations.
- ► The marginal probability

$$P(x_1,\ldots,x_t) = \sum_{\theta \in \Theta} P_{\theta}(x_1,\ldots,x_t)P(\theta)$$

The posterior probability

$$P(\theta \mid x_{1},...,x_{t}) = \frac{P_{\theta}(x_{1},...,x_{t})P(\theta)}{P(x_{1},...,x_{t})} = \frac{\prod_{i=1}^{t} P_{\theta}(x_{t} \mid x_{1},...,x_{t-1})P(\theta)}{P(x_{1},...,x_{t})}$$
$$= \frac{P_{\theta}(x_{t} \mid x_{1},...,x_{t-1})P(\theta \mid x_{1},...,x_{t-1})}{P(x_{t} \mid x_{1},...,x_{t-1})}$$

► The marginal posterior probability

$$P(x_{t+1} \mid x_1, ..., x_t) = \sum_{\theta \in \Theta} P_{\theta}(x_{t+1} \mid x_1, ..., x_t) P(\theta \mid x_1, ..., x_t)$$

Preferences

Types of rewards

- For e.g. a student: Tickets to concerts.
- For e.g. an investor: A basket of stocks, bonds and currency.
- For everybody: Money.

Preferences among rewards

For any rewards $x, y \in R$, we either

- ightharpoonup (a) Prefer x at least as much as y and write $x \leq^* y$.
- ▶ (b) Prefer x not more than y and write $x \succeq^* y$.
- ▶ (c) Prefer x about the same as y and write x = x y.
- ▶ (d) Similarly define >* and <*</p>

Utility and Cost

Utility function

To make it easy, assign a utility U(x) to every reward through a utility function $U: R \to \mathbb{R}$.

Utility-derived preferences

We prefer items with higher utility, i.e.

- ▶ (a) $U(x) \ge U(y) \Leftrightarrow x \succeq^* y$
- ▶ (b) $U(x) \le U(y) \Leftrightarrow y \succeq^* x$

Cost

It is sometimes more convenient to define a cost function $C: R \to \mathbb{R}$ so that we prefer items with lower cost, i.e.

$$ightharpoonup C(x) \ge C(y) \Leftrightarrow y \succeq^* x$$

Random outcomes

Choosing among rewards

-[A] Bet 10 CHF on black -[B] Bet 10 CHF on 0 -[C] Bet nothing What is the reward here?

Choosing among trips

-[A] Taking the car to Zurich (50' without delays, 80' with delays) -[B] Taking the train to Zurich (60' without delays) What is the reward here?

Random rewards

- Each gamble gives us different rewards with different probabilities.
- ► These rewards are then random
- For simplicity, we assign a real-valued utility to outcomes. This is a random variable

Random variables

A random variable $f: \Omega \to \mathbb{R}$ is a real-valued function, with $\omega \sim P$.

The distribution of *f*

The probability that f lies in some subset $A \subset \mathbb{R}$ is

$$P_f(A) \triangleq P(\{\omega \in \Omega : f(\omega) \in A\}),$$

and we write $f \sim P_f$.

Shorthands for RV

- ▶ For RVs $f: \Omega \to \mathbb{R}$, we can write $P(f \in A)$ to mean $P_f(A)$.
- ▶ For RVs $f: \Omega \to X$, where X is a finite set e.g. $\{1, 2, ..., n\}$, we can write P(f = x) for any $x \in X$.

Independence

Two RVs f, g are independent in the same way that events are independent:

$$P(f \in A \land g \in B) = P(f \in A)P(g \in B) = P_f(A)P_g(B).$$

In that sense, $f \sim P_f$ and $g \sim P_g$.

Expectation

For any real-valued random variable $f \colon \Omega \to \mathbb{R}$, the expectation with respect to a probability measure P is

$$\mathbb{E}_{P}(f) = \sum_{\omega \in \Omega} f(\omega) P(\omega).$$

When Ω is continuous, we can use a density p

$$\mathbb{E}_P(f) = \int_{\Omega} f(\omega) p(\omega) d\omega.$$

Linearity of expectations

For any RVs x, y:

$$\mathbb{E}_{P}(x+y) = \mathbb{E}_{P}(x) + \mathbb{E}_{P}(y)$$

Multiple variables

The joint distribution P(x, y)

For two (or more) RVs $x:\Omega\to\mathbb{R}$, and $y:\Omega\to\mathbb{R}$, this is a shorthand for the distribution of $(x(\omega),y(\omega))$ when $\omega\sim P$. We can also use P(x=i,y=j) for the probability that the two variables assume the values i,j respectively.

Independence

If x, y are independent RVs then $P(x, y) = P_x(x)P_y(y)$.

Correlation

If x, y are not correlated then $\mathbb{E}_P(xy) = \mathbb{E}(x) \mathbb{E}(y)$.

IID (Independent and Identically Distributed) random variables

A sequence x_t of r.v.s is IID if $x_t \sim P$ so that

$$(x_1,\ldots,x_t,\ldots,x_T)\sim P^T$$

i.e. a *T*-length sample is drawn from the product distribution $P^T = P \times P \times \cdots \times P$

Conditional expectation

The conditional expectation of a random variable $f: \Omega \to \mathbb{R}$, with respect to a probability measure P conditioned on some event B is simply

$$\mathbb{E}_{P}(f|B) = \sum_{\omega \in \Omega} f(\omega) P(\omega|B).$$

Conditional expectations are similar to conditional probabilities.

Conditional probabilities of RVs

Similarly to the notation over sets,

$$P(A \cap B) = P(A \mid B)P(B),$$

when dealing with RVs, it is common to use the notation

$$P(x,y) = P(x|y)P(y)$$

This equation works for all possible values of x, y e.g.

$$P(x = 1, y = 0) = P(x = 1|y = 0)P(y = 0)$$

which then denotes the probability msas of each

Expected utility

Actions, outcomes and utility

In this setting, we obtain random outcomes that depend on our actions.

- ightharpoonup Actions $a \in A$
- ▶ Outcomes $\omega \in \Omega$.
- ▶ Probability of outcomes $P(\omega \mid a)$
- ▶ Utility $U: \Omega \to \mathbb{R}$

Expected utility

The expected utility of an action is:

$$\mathbb{E}_{P}[U \mid a] = \sum_{\omega \in \Omega} U(\omega) P(\omega \mid a).$$

The expected utility hypothesis

We prefer a to a' if and only if

$$\mathbb{E}_P[U \mid a] \geq \mathbb{E}_P[U \mid a']$$

The St-Petersburg Paradox

The game

If you give me x CHF, then I promise to (a) Throw a fair coin until it comes heads. (b) If it does so after T throws, then I will give you 2^T CHF.

The question

- ► How much x are you willing to pay to play?
- ► Given that the expected amount of money is infinite, why are you only willing to pay a small *x*?

Example: Betting

In this example, probabilities reflect actual randomness

Choice	Win Probability p	Payout w	Expected gain
Don't play	0	0	0
Black	18/37	2	
Red	18/37	2	
0	1/37	36	
1	1/37	36	

What are the expected gains for these bets?

Example: Route selection

▶ In this example, probabilities reflect subjective beliefs

Choice	Best time	Chance of delay	Delay amount	Expected time
Train	80	5%	5	
Car, route A	60	50%	30	
Car, route B	70	10%	10	

Example: Estimation

► In this example, probabilities are calculated starting from subjective beliefs

Mean-Square Estimation

If we want to guess $\hat{\theta}$, and we knew that $\theta \sim P$, then the guess

$$\hat{\theta} = \mathbb{E}_{P}(\theta) = \operatorname*{arg\,min}_{\hat{\theta}} \mathbb{E}_{P}[(\theta - \hat{\theta})^{2}]$$

Example: The k-meteorologists problem

▶ A set of stations Θ , with $\theta \in \Theta$ making weather predictions:

$$P_{\theta}(x_{t+1} \mid x_1, \ldots, x_t)$$

- A prior probability $P(\theta)$ on the stations.
- ► The marginal probability

$$P(x_1,\ldots,x_t) = \sum_{\theta \in \Theta} P_{\theta}(x_1,\ldots,x_t)P(\theta)$$

The posterior probability

$$P(\theta \mid x_{1},...,x_{t}) = \frac{P_{\theta}(x_{1},...,x_{t})P(\theta)}{P(x_{1},...,x_{t})} = \frac{\prod_{i=1}^{t} P_{\theta}(x_{i} \mid x_{1},...,x_{t-1})P(\theta)}{P(x_{1},...,x_{t})}$$
$$= \frac{P_{\theta}(x_{t} \mid x_{1},...,x_{t-1})P(\theta \mid x_{1},...,x_{t-1})}{P(x_{t} \mid x_{1},...,x_{t-1})}$$

► The marginal posterior probability

$$P(x_{t+1} \mid x_1, ..., x_t) = \sum_{\theta \in \Theta} P_{\theta}(x_{t+1} \mid x_1, ..., x_t) P(\theta \mid x_1, ..., x_t)$$

