Math 104 HW9

Neo Lee

11/10/2023

Exercise 23.1 (a, b, c)

Find the radius of convergence and determine the exact interval of convergence for

- (a) $\sum n^2 x^n$
- (b) $\sum \left(\frac{x}{n}\right)^n$
- (c) $\sum \left(\frac{2^n}{n^2}\right) x^n$

Solution.

(a)

$$\lim \left| \frac{(n+1)^2}{n^2} \right| = \lim \left| \frac{n^2 + 2n + 1}{n^2} \right| = \lim \left| 1 + \frac{2}{n} + \frac{1}{n^2} \right| = 1$$

$$\implies \beta = \limsup |x^2|^{\frac{1}{n}} = 1$$

$$\implies R = \frac{1}{\beta} = 1.$$

For both x = 1 and x = -1, the series diverges because for x = 1, $\lim n^2 x^n = \infty$ and for x = -1, the limit does not exist. Hence, the convergence interval is (-1, 1).

(b)

$$\sum \left(\frac{x}{n}\right)^n = \sum \frac{1}{n^n} x^n$$

$$\Longrightarrow \beta = \limsup \left|\frac{1}{n^n}\right|^{\frac{1}{n}} = \limsup \frac{1}{n} = 0$$

$$\Longrightarrow R = \infty.$$

Hence, the series converges for all $x \in \mathbb{R}$.

(c)

$$\lim \left| \frac{2^{n+1}}{(n+1)^2} \cdot \frac{n^2}{2^n} \right| = \lim \left| \frac{2}{\left(1 + \frac{1}{n}\right)^2} \right| = 2$$

$$\implies \beta = \lim \sup \left| \frac{2^n}{n^2} \right|^{\frac{1}{n}} = \lim \left| \frac{2^{n+1}}{(n+1)^2} \cdot \frac{n^2}{2^n} \right| = 2$$

$$\implies R = \frac{1}{\beta} = \frac{1}{2}.$$

For
$$x = \frac{1}{2}$$
,

$$\sum \left(\frac{2^n}{n^2}\right) \frac{1}{2^n} = \sum \frac{1}{n^2},$$

which we know converges. For $x = -\frac{1}{2}$,

$$\sum \left(\frac{2^n}{n^2}\right) \left(-\frac{1}{2}\right)^n = \sum \frac{(-1)^n}{n^2},$$

which we know converges by the alternating series test. Hence, the convergence interval is $\left[-\frac{1}{2},\frac{1}{2}\right]$.

Exercise 23.2 (b)

Find the radius of convergence and determine the exact interval of convergence for $\sum \frac{1}{n\sqrt{n}}x^n$.

Solution.

$$\beta = \limsup \left| \frac{1}{n^{\sqrt{n}}} \right|^{\frac{1}{n}} = \limsup \frac{1}{n^{\frac{1}{\sqrt{n}}}} = \limsup \sqrt{\frac{1}{n^{\frac{1}{\sqrt{n}}}} \cdot \frac{1}{n^{\frac{1}{\sqrt{n}}}}} = \limsup \sqrt{\frac{1}{n^{1/n}}} = \sqrt{\lim \frac{1}{n^{1/n}}} = 1$$

$$\implies R = \frac{1}{\beta} = 1.$$

For x = 1,

$$\frac{1}{n^{\sqrt{n}}} \le \frac{1}{n^2} \quad \text{for } n \ge 4,$$

then by Comparision Test with $\sum \frac{1}{n^2}$, the series converges. For x = -1, the series converges by the Alternating Series Test. Hence, the convergence interval is [-1,1].

Exercise 23.8

Proposition 1. For each $n \in \mathbb{N}$, let $f_n(x) = \frac{1}{n} \sin nx$, where each f_n is a differentiable function, then

- (a) $\lim f_n(x) = 0$ for all $x \in \mathbb{R}$,
- (b) but $\lim f'_n(x)$ need not exist [at $x = \pi$ for instance].

Solution.

(a) For all $x \in \mathbb{R}$, $|f_n(x)| \leq |\frac{1}{n}|$ because $|\sin nx| \leq 1$ for all $n \in \mathbb{N}$. Then, taking the same N as for the ϵ -proof of the limit of $\frac{1}{n}$, we have

$$|f_n(x) - 0| < \epsilon,$$

thus $\lim f_n(x) = 0$ for all $x \in \mathbb{R}$.

(b)

$$f_n'(x) = \cos nx.$$

Specifically, $f'_n(\pi) = (-1)^n$, which does not have a limit.

Exercise 24.4

For $x \in [0, \infty)$, let $f_n(x) = \frac{x^n}{1+x^n}$,

- (a) Find $f(x) = \lim_{n \to \infty} f_n(x)$.
- (b) Determine whether $f_n \to f$ uniformly on [0,1].
- (c) Determine whether $f_n \to f$ uniformly on $[0, \infty)$.

Solution.

(a) For x < 1, $\lim x^n = 0$, thus

$$\lim f_n(x) = 0.$$

For x = 1,

$$\lim f_n(x) = \frac{1}{2}.$$

For x > 1,

$$\lim f_n(x) = \lim \frac{1}{1/x^n + 1} = 1.$$

Hence,

$$f(x) = \begin{cases} 0 & \text{if } x < 1\\ \frac{1}{2} & \text{if } x = 1\\ 1 & \text{if } x > 1. \end{cases}$$

(b) For $x \in [0,1]$, x^n is continuous $\Longrightarrow 1+x^n$ is continuous and nonzero $\Longrightarrow \frac{1}{1+x^n}$ is continuous. Hence, f_n is continuous on [0,1] for all $n \in \mathbb{N}$. However, f is not continuous at x=1 because

$$\lim_{x \to 1^{-}} f(x) = 0 \neq \frac{1}{2} = f(1).$$

Therefore, by Theorem 24.3, f_n does not converge uniformly to f on [0,1].

(c) Similarly, f_n is continuous on $[0,\infty)$ for all $n \in \mathbb{N}$. However, f is not continuous at x=1 because

$$\lim_{x \to 1^{-}} f(x) = 0 \neq \frac{1}{2} = f(1).$$

Therefore, by Theorem 24.3, f_n does not converge uniformly to f on $[0, \infty)$.

More simply, if f_n converges uniformly to f on $[0, \infty)$, then f_n will converge to f uniformly on [0, 1], which we have shown to be false. Hence, f_n does not converge uniformly to f on $[0, \infty)$.

Exercise 24.11

Proposition 2. Let $f_n(x) = x$ and $g_n(x) = \frac{1}{n}$ for all $x \in \mathbb{R}$. Let f(x) = x and g(x) = 0 for $x \in \mathbb{R}$, then

- (a) $f_n \to f$ uniformly on \mathbb{R} and $g_n \to g$ uniformly on \mathbb{R} ;
- (b) The sequence f_ng_n does not converge uniformly to fg on \mathbb{R} ; Proof.
- (a) For $f_n \to f$, take N = 1, then for all n > N and $x \in \mathbb{R}$,

$$|f_n(x) - f(x)| = |x - x| = 0 < \epsilon.$$

For $g_n \to g$, take $N = \frac{1}{\epsilon}$, then for all n > N and $x \in \mathbb{R}$,

$$|g_n(x) - g(x)| = \left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \epsilon.$$

(b)
$$(f_n g_n) = \frac{x}{n}, \qquad fg = 0.$$

We show that there does not exist N such that for n > N and all $x \in \mathbb{R}$,

$$\left|\frac{x}{n} - 0\right| < 1.$$

Simply take x = 2N, then for n = N + 1,

$$\left|\frac{x}{n} - 0\right| = \left|\frac{2N}{N+1}\right| > 1.$$