UNIVERSIDADE FEDERAL DA FRONTEIRA SUL

Matricula:

Estudante: Jacquet lemé e

Kerby Lovince

Disciplina: circuitos Digitais

2121101001

2011100019

-Relato da estratégia aplicada

1. Apresentação.

O Trabalho a ser feito tem como propósito, a simulação de um jogo de batalha naval Onde temos que utilizar várias portas lógicas tais como a família 74xx para Montar um circuito desse jogo.

O principal problema é a transformação de um código em outro utilizando Normalmente um decodificador. Após disso tem que comparar os códigos Para saber se o navio do adversário foi acertado ou não.

Como que o trabalho não tão fácil, antes de começar pesquisei muito para Entender melhor, elaborando também uma série de mapa, procurando Lógicas para ter clareza sobre o que deveria ser feito no trabalho. Depois de tudo eu iniciei a construção do meu jogo.

Primeiramente para começar eu iniciei elaborando a tabela verdade do Decodificador, peguei um a parte que escolhi naqueles que o professor Passou dai depois , eu fui lá no logisim criei a tabela coloquei as entradas A B C D

E saídas X Y Z We gerei a tabela verdade para ficar mais legal só tirei um print ao

Inverse de fazer a mão usando caneta.

Depois que eu organizei tudo iniciei a montagem das mapas de Karnaugh Para cada um dos bits da matriz e também consegui tirar a expressão de Cada uma, junto com a sua simplificação.

Abri de no o logisim para fazer a montagem do circuito onde eu montei o Primeiro navio e o segundo dai depois, parti para a montagem do compa Rador, utilizando portas lógicas XNOR onde a igualdade sera marcada por 1 e 0 para a

desigualdade. Por fim utilizei uns 5 portas lógicas ANDs para criar o botão disparar.

-Codificação do campo

00	0001	001 0	0100	1000
01	1001	101 0	1100	1110
10	0001	010 1	0111	0110
11	1111	000	1101	0011
	00	01	10	11

Decimal	Binario	saidas
1	0000	0001
2	0001	0010
3	0010	0 1 0 0
4	0011	1000
5	0100	1001
6	0101	1010
7	0110	1 1 0 0
8	0111	1110
9	1000	0001
10	1001	0 1 0 1
11	1010	0111
12	1011	0 1 1 0
13	1100	1111
14	1101	0000
15	1110	1 1 0 1
16	1111	0 0 1 1

- Tabela-verdade

Α	В	С	D	X	Y	Z	W
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	1	0	0
0	0	1	1	1	0	0	0
0	1	0	0	1	0	0	1
0	1	0	1	1	0	1	0
0	1	1	0	1	1	0	0
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1
1	0	0	1	0	0	0	1
1	0	1	0	0	1	1	1
1	0	1	1	0	1	1	0
1	1	0	0	1	1	1	1
1	1	0	1	0	0	0	0
1	1	1	0	1	1	0	1
1	1	1	1	0	0	1	1

- Simplificações

S1)

 $\overline{A} \cdot C \cdot D + \overline{A} \cdot B + B \cdot \overline{D}$

Saida 2)

 $C \cdot \overline{D} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{D}$

Saida 3)

 $\overline{\mathsf{A} \cdot \mathsf{C}} \cdot \mathsf{D} + \mathsf{B} \cdot \mathsf{C} \cdot \mathsf{D} + \mathsf{A} \cdot \overline{\mathsf{B}} \cdot \mathsf{C} + \mathsf{A} \cdot \mathsf{B} \cdot \overline{\mathsf{C}} \cdot \overline{\mathsf{D}}$

Saida 4)

$\overline{\text{C}} \cdot \overline{\text{D}} + \text{A} \cdot \overline{\text{B}} \cdot \overline{\text{C}} + \text{A} \cdot \overline{\text{D}} + \text{A} \cdot \text{B} \cdot \text{C}$

Circuito completo usando portas lógicas utilizando o Logisim:

Circuito completo usando Cls (74XX) usando o tinkercad (incluir link)

- Montagem de um bit da saída do circuito de codificação com a identificação das entradas e saídas.
- Montagem dele no logisim

Montagem no tikercard

Links para essa montagem:

https://www.tinkercad.com/things/fpFgvA5XHEi-brave-jaagub-leelo/editel?sharecode=jZ2pfDh7o_fBtKUK1-WvtRt5idgqtdaWolpC3OS1e4E

Conclusão

Estou concluindo o meu trabalho dizendo que nesse jogo foi desenvolvida uma série de estratégias para a implementação de circuitos, mostrando a importância do circuito na vida humana e no pensamento computacional. Foi um trabalho bem legal que nos ajudou muito a compreender melhor e ter um bom conhecimento sobre o assunto, além de ter-nos permitido desenvolver competências de investigação, de lógica e organização para melhorar nossa vida intelectual.

Links do projeto:

https://www.tinkercad.com/things/jnEWlYkdaz7-tremendous-snaget/editel?sharecode=F H3on4CdhFoUVnYEWac8V_VtiTUzk1YkKQ0EWvweT70

Link do video: https://youtu.be/xngyr-TfScM