

Gaussian Process based Model Predictive Control Statistical Learning and Stochastic Control

Lucas Rath Luzia Knödler Dimitrios Gkoutzos

Institute for Systems Theory and Automatic Control University of Stuttgart

January 18, 2020

Table of Contents

- Gaussian Process
- MPC Formulation
- 3 Inverted Pendulum Control
- 4 Autonomous Race Driving Control
- **5** Outlook and Conclusion

- Gaussian Process
- 2 MPC Formulation
- 3 Inverted Pendulum Control
- 4 Autonomous Race Driving Control
- **5** Outlook and Conclusion

Gaussian Process

Show basic equations of GP Each output dimension is treated as one GP Show 1D GP and 2D GP plots

Efficient Implementation

Show the trick of the Cholesky decomposition Matrices alpha and \boldsymbol{L}

Hyper-parameter Optimization

Given the GP Likelihood:

$$Y|X, \theta \sim \mathcal{N}(0, \underbrace{K(X, X) + \sigma_n^2 I}_{K_y})$$
 (1)

where $\theta = [\{M\}, \sigma_f^2, \sigma_n^2]$ is a vector containing all hyper-parameters.

Among many possible choices, we chose to parameterize the length-scale covariance matrix M as:

$$M = \begin{bmatrix} l_1 & 0 \\ & \ddots \\ 0 & l_n \end{bmatrix} = I_{n \times n} \begin{bmatrix} l_1 \\ \vdots \\ l_n \end{bmatrix}$$
 (2)

with $l_i > 0, \forall i \in 0, \ldots, n$

such that the hyperparameter vector becomes $\theta = [l_1, \dots, l_n, \sigma_f^2, \sigma_n^2]$

Hyper-parameter Optimization

One may optimize the GP hyper-parameters by maximizing the log likehood:

$$\log p(Y|X,\theta) = -\frac{1}{2}y^T K_y^{-1} y - \frac{1}{2}\log|K_y| - \frac{n}{2}\log(2\pi)$$

$$\theta = \underset{\theta}{\arg\max} \log p(Y|X,\theta)$$
(3)

which allows local optimization of the hyper-parameters (one opt. for each output dimension).

Obs: Even gradient-free tools like fmincon from Matlab, showed to be efficient.

- Gaussian Process
- 2 MPC Formulation
- 3 Inverted Pendulum Control
- 4 Autonomous Race Driving Control
- Outlook and Conclusion

MPC Formulation

Show basic MPC formulation

Adaptive MPC

$$x_{k+1} = f_d(x_k, u_k) + B_d (d(z_k) + w)$$
(4)

where

$$w \sim \mathcal{N}(0, \sigma_n^2) \tag{5}$$

$$a$$
 (6)

Propagation of uncertainty

Efficient MPC Formulation

Show how the inequality constraints can be removed Show equation and plot of the Relaxed-Barrier function Results = i unconstrained optimization problem, which can be solved very efficiently with nonlinear optimization solvers

- Gaussian Process
- 2 MPC Formulation
- 3 Inverted Pendulum Control
- 4 Autonomous Race Driving Control
- Outlook and Conclusion

The Inverted Pendulum Problem

Modelling Nominal Dynamics

The true Dynamics

Cost function and Constraints

Simulation results

Learning analysis

- Gaussian Process
- 2 MPC Formulation
- 3 Inverted Pendulum Control
- 4 Autonomous Race Driving Control
- **5** Outlook and Conclusion

Racing Car Problem

Vehicle Dynamics

Show basic vehicle dynamics equations

True and Nominal Dynamics

Show difference between true and nominal model

Efficient MPC Formulation

Show how the inequality constraints can be removed Show equation and plot of the Relaxed-Barrier function Results: unconstrained optimization problem, which can be solved very efficiently with nonlinear optimization solvers

Cost function and constraints

Results

MPC with unkown dynamics

Adaptive GP MPC

- Gaussian Process
- MPC Formulation
- 3 Inverted Pendulum Control
- 4 Autonomous Race Driving Control
- **5** Outlook and Conclusion

Outlook and Conclusion

- GP can introduce high nonlinearities in the prediction, making more difficult for the optimizer to a find a good local optimum.
- Replacing the inequality constraints by relaxed barrier functions increase significantly the computational performance, while always ensuring feasibility.
- Hyper-parameter optimization (GP training) plays an important role in the final controller performance

