Section 6.6: Bivariate Transformations using Jacobians

Often, we are interested in find the probability distribution of a function of two or more random variables and/or the joint distribution of functions of multivariate random variables.

For example, suppose two random variables Y_1 and Y_2 have joint pdf/pmf f_{Y_1,Y_2} (y_1,y_2) .

We are sometimes interested in a new bivariate random vector (U, V) defined by $U = g_1(Y_1, Y_2)$ and $V = g_2(Y_1, Y_2)$, and we want to find either the CDF/pdf/pmf of U or V, or the joint pdf/pmf of (U, V).

In such situations, we can extend the methods used in the univariate case to the bivariate (or multivariate) case.

Example:

A shipping company handles containers in three different sizes:

(1) 27 ft³,

(2) 125 ft³, and

(3) 512 ft³.

Let Y_i (i = 1, 2, 3) denote the number of type i containers shipped during a given week.

Total volume shipped = 27% + 125% + 512% = 9(91,92,93)

Example:

A gas station sells three grades of gasoline: regular, extra, and super. These are priced at \$3.00, \$3.20, and \$3.40 per gallon, respectively. Let Y_1 , Y_2 , and Y_3 denote the amounts of these grades purchased (gallons) on a particular day.

Suppose the Y_i are independent and each Y_i has pdf of $f(y_i)$.

The revenue from sales is $U = 3Y_1 + 3.2Y_2 + 3.4Y_2 = 9(y_1, y_2, y_3)$

Find the probability that revenue exceeds 4500. That is, find P(U > 4500) = 7Need to know pdf of U.

Five automobiles of the same type are to be driven on a 300-mile trip. The first two will use an economy brand of gasoline, and the other three will use a name brand.

Let Y_1 , Y_2 , Y_3 , Y_4 , and Y_5 be the observed fuel efficiencies (mpg) for the five cars.

Suppose these variables are independent and normally distributed with $\mu_1 = \mu_2 = 20$, $\mu_3 = \mu_4 = \mu_5 = 21$, $\sigma_1 = \sigma_2 = 2$ and $\sigma_3 = \sigma_4 = \sigma_5 = 1.1$.

U is a measure of the difference in efficiency between economy gas and name-brand gas and defined as

$$U = \frac{Y_1 + Y_2}{2} - \frac{Y_3 + Y_4 + Y_5}{3}$$
Compute $P(U \le 0)$ and $P(-1 \le U \le 1)$. Need to be a part of U .

Example:

Suppose your waiting time for a bus in the morning is denoted by $\frac{Y_1}{1}$ and uniformly distributed on [0, 8] minutes, whereas waiting time in the evening is denoted by Y_2 and uniformly distributed on [0, 10] minutes independent of morning waiting time.

- a. If you take the bus each morning and evening for a week, what is your total expected
- waiting time? $U = U + V_2 = g(y_1, y_2)$ b. What is the variance of your total waiting time per week? $V_{QY}(U) = ?$
- c. What is the probability that the difference between morning and evening waiting times on a given day is less than 5 minutes? $P(|\gamma_1 - \gamma_2| < 5) = 7$

Need to know pdf of y_1-y_2 . Now, suppose Y_1 and Y_2 are (absolutely) **continuous** random variables. If there is a one-toone transformation from the support of (Y_1, Y_2) to the support of (U_1, U_2) , the **Jacobian** method discussed for the univariate case can be extended to find the joint distribution of (U_1, U_2) in the bivariate case.

Bivariate Transformations for Continuous Random Variables using Jacobian:

Suppose Y_1 and Y_2 are (absolutely) continuous random variables with joint pdf f_{Y_1,Y_2} (y_1,y_2) . Let $U_1 = h_1(Y_1, Y_2)$ } These are two different functions of

Suppose the transformation pair $u_1 = h_1(y_1, y_2)$ and $u_2 = h_2(y_1, y_2)$ is **one-to-one**.

Then, for each
$$(u_1, u_2)$$
 in the support of (U_1, U_2) ,

Then, for each (u_1, u_2) in the support of (U_1, U_2) , $y_1 = h_1^{-1}(u_1, u_2)$ These are functions of u_1 and u_2 . These are functions of u_1 and u_2 and $u_3 = h_2^{-1}(u_1, u_2)$ found by solving $u_1 = h_1(y_1, y_2)$ and $u_2 = h_2(y_1, y_2)$

If y_1 and y_2 have continuous partial derivatives with respect to u_1 and u_2 , and absolute value of the Jacobian:

$$= \begin{bmatrix} det \begin{bmatrix} \frac{\partial y_1}{\partial u_1} & \frac{\partial y_1}{\partial u_2} \\ \frac{\partial y_2}{\partial u_1} & \frac{\partial y_2}{\partial u_2} \end{bmatrix}$$

 $= det \begin{bmatrix} \frac{\partial y_1}{\partial u_1} & \frac{\partial y_1}{\partial u_2} \\ \frac{\partial y_2}{\partial v_2} & \frac{\partial y_2}{\partial v_2} \end{bmatrix} \qquad because \quad y_1 = h_1(u_1, u_2)$ $and \quad y_2 = h_2(u_1, u_2).$

$$= \left| \left(\frac{\partial h_1^{-1}(u_1, u_2)}{\partial u_1} \times \frac{\partial h_2^{-1}(u_1, u_2)}{\partial u_2} \right) - \left(\frac{\partial h_1^{-1}(u_1, u_2)}{\partial u_2} \times \frac{\partial h_2^{-1}(u_1, u_2)}{\partial u_1} \right) \right|$$

$$= \left| \left| \frac{\partial y_1}{\partial u_1} \times \frac{\partial y_2}{\partial u_2} \right| - \left| \left(\frac{\partial y_1}{\partial u_2} \times \frac{\partial y_2}{\partial u_1} \right) \right| \right| \neq 0$$

det |a b | = (ab) - (bc)

then the joint pdf of U_1 and U_2 is $f_{U_1,U_2}(u_1,u_2) = f_{Y_1,Y_2}(h_1^{-1}(u_1,u_2), h_2^{-1}(u_1,u_2)) \times |J|$ The joint pdf of J_1, J_2 Absolute evaluated at $J_1 = h_1(u_1,u_2)$ Value of $J_2 = h_2(u_1,u_2)$ Tacobian.

Example 1: Let J_1 and J_2 be independent random variables with $J_1 \sim N(0,1)$ and $J_2 \sim N(0,1)$.

Let $J_1 = \frac{Y_1 + Y_2}{2}$ and $J_2 = \frac{Y_2 - Y_1}{2}$ (a) Find joint pdf of J_1 and J_2 .
(b) Find the marginal pdf of J_1 and J_2 .

(a) Find joint pdf of
$$U_1$$
 and U_2 .

(b) Find the marginal pdf of U_1

(c) Y $\sim N(O_1^1) \Rightarrow \text{pdf of } Y_1$ is $f_1(y_1) = \frac{1}{\sqrt{211}} C_{y_2^2}$; $-\infty < y_2 < \infty$

Y $\sim N(O_1^1) \Rightarrow \text{pdf of } Y_2$ is $f_2(y_2) = \frac{1}{\sqrt{211}} C_{y_2^2}$; $-\infty < y_2 < \infty$

Since Y_1 and Y_2 are independent, the joint pdf of Y_1 and Y_2 is $f_1(y_1) = \frac{1}{\sqrt{211}} C_{y_2^2}$; $f_1(y_1) = f_1(y_1) = \frac{1}{\sqrt{211}} C_{y_2^2}$; $f_2(y_2) = \frac{1}{\sqrt{211}} C_{y_2^2}$; $f_1(y_1) = \frac{1}{\sqrt{211}} C_{y_2^2}$; $f_2(y_2) = \frac{1}{\sqrt{211}} C_{y_2^2}$;

When $-\infty < y_1 < \infty$ and $-\infty < y_2 < \infty$, $-\infty < u_1 < \infty$ and $-\infty < u_2 < \infty$.

Solve
$$u_1 = \frac{y_1 + y_2}{2}$$
 and $u_2 = \frac{y_2 - y_1}{2}$ for y_1 and y_2

$$\begin{bmatrix}
u_1 - u_2 = \frac{y_1 + y_2}{2} - \frac{y_2 - y_1}{2} = \frac{y_1}{2} + \frac{y_2}{2} - \frac{y_2}{2} + \frac{y_1}{2} = \frac{y_1}{2} + \frac{y_2}{2} = \frac{y_2}{2} + \frac{y_2}{$$

Then the Jacobian is

Sections 6.5-6.6 of the textbook

$$\frac{341}{342} \frac{342}{342} = \det \left(\frac{3(u+u_2)}{3u} \right) \frac{3(u+u_2)}{3u_2}$$

$$= \det \left(\frac{341}{3u} \right) \frac{342}{3u_2} = \det \left(\frac{3(u+u_2)}{3u} \right) \frac{3(u+u_2)}{3u_2}$$

$$= \det \left(\frac{1}{1} \right) = \left(\frac{1}{1} \right) = 2$$