GRIP Task 1: Prediction using Supervised ML

Name: Debartha Paul July 4, 2021

Importing libraries and visualising the data

We first load the libraries required for our work and then read the dataset

```
#Importing the necessary libraries
library(Metrics)
```

```
#Reading the dataset
s_data<-read.csv('http://bit.ly/w-data',header=T)</pre>
dim(s_data)#the dimensions of the dataset
## [1] 25 2
head(s_data,n=5) #a brief preview of the dataset
##
    Hours Scores
## 1
       2.5
              21
       5.1
## 2
              47
       3.2
              27
## 3
## 4 8.5
           75
## 5
      3.5
              30
names(s_data)#column names of the dataset
## [1] "Hours" "Scores"
```

Now we plot the data points on a 2-D graph to check if there's any visible correlation between the variables

From the graph above, we can clearly see that there is a positive linear relation between the number of hours studied and percentage of score.

Preparing the data

We now divide the data into attributes (inputs or x) and labels (outputs or y)

```
X<-s_data$Hours;Y<-s_data$Scores</pre>
```

Then, we split our data into training and test sets. We do this using the sample() method in R.

```
t_sample<-sample(nrow(s_data),floor(0.8*nrow(s_data)),replace=F)
X_train<-X[t_sample];Y_train<-Y[t_sample]
X_test<-X[-t_sample];Y_test<-Y[-t_sample]</pre>
```

Training the Algorithm

We have split our data into training and testing sets. Now we train our algorithm and then plot the regression line along with the observed marks.

```
model<-lm(Y_train~X_train)</pre>
```


Making Predictions

Now, it's time to make some predictions using our trained agorithm.

```
X_test#Testing data
## [1] 3.2 8.3 7.7 8.9 7.4

Y_predicted<-predict(model,newdata=data.frame(X_train=X_test)) #Predicting the scores

#Comparing Actual vs. Predicted values
df<-data.frame('Hours'=X_test,'Actual score'=Y_test,'Predicted score'=Y_predicted)
df</pre>
```

```
##
     Hours Actual.score Predicted.score
       3.2
                    27
                               34.24819
## 2
       8.3
                     81
                               82.68557
## 3
       7.7
                     85
                               76.98705
## 4
                     95
                                88.38408
       8.9
       7.4
## 5
                     69
                                74.13780
```

Predicting the score of a student who studied for 9.25 hours:

```
pred<-predict(model,newdata=data.frame(X_train=9.25))
pr_data<-data.frame('Hours'=9.25,'Predicted Score'=pred)
pr_data
## Hours Predicted.Score
## 1 9.25 91.70822</pre>
```

Evaluating the model

Finally, we evaluate the performance of the model. We chose the mean absolute error as the measure of performance of the algorithm (lower is better):

```
mae(df$Actual,df$Predicted)
## [1] 5.740084
```