CS & IT ENGINEERING Algorithms

Miscellaneous Topics

Lecture No. - 06

Recap of Previous Lecture

Topic

Shortest Paths

Dijkstras Algorithm

Topics to be Covered

Topic

Single Source Shortest Paths

Problem Solving

renten	d- Values						
Bel	1	2	3	-	-	+	n

Continationes

$$\frac{1}{2C_1 * 3C_2 * 2C_1} = 12$$

Ans: 12

$$6c_3 - 8) = 12$$

0

m=3

Let G(V, E) be a directed graph, where $V = \{1, 2, 3, 4, 5\}$ is the set of vertices and E is the set of directed edges, as defined by the following adjacency matrix A. n=3 n=4 Lower Triangular Matin

$$\begin{cases} A[i][j] = \begin{cases} 1, & 1 \le j \le i \le 5 \\ 0, & otherwise \end{cases}$$

A[i][j] = 1 indicates a directed edge from node i to node j. A directed spanning tree of G, rooted at r ∈ V, is defined as a subgraph T of G such that the undirected version of T is a tree, and T contains a directed path from r to every other vertex in V. The number of such directed spanning trees rooted at vertex 5 is

Jime: 0 (n2)

```
Algorithm ShortestPaths (v, cost, dist, n)
    // dist [j], 1 \le j \le n, is set to the length of the shortest
    // path from vertex v to vertex j in a digraph G with n
    // vertices. dist[v] is set to zero.- G is represented by its
    // cost adjacency matrix cost/.[1:n, 1:n].
6
                              S[1..m] =
        for i := 1 to n do
        { // Initialize S.
8
                                               0(2)
                                                           V=1
           S[i] := false; dist[t] := cost[v , i];
10
113, S[v] := true; dist[v] := 0.0; // Put v in S.
12 3 for num := 2 to n — 1 do
13
14
        // Determine n — 1 paths from v.
        Choose u from among those vertices not n
15
```

```
16 in S such that dist[u] is minimum;
17 | S[u] := true; // Put u in S.
182) for (each w adjacent to u with S[w] = false) do {
      // Update distances.
19
        if (dist [w] > dist[u] + cost[u, w])) then
20
        dist[w]:= dist[u] + cost[u, w];
21
22
23
                                10
                50
            20
                        20
```


Consider a weighted undirected graph with positive edge weights and let uv be an edge in the graph. It is known that the shortest path from the source vertex s to u has weight 53 and the shortest path from s to v has weight 65. Which one of the following statements is always true?

- (A) weight (u, v) < 12 (B) weight (u, v) ≤ 12
- (C) weight (u, v) > 12
- (D) weight (u, v) ≥ 12

wt(u,v) > 12

Topic: III. Greedy Method

Q. Applying Dijkstra's Algorithm over the given Graph, Which path is reported from

Topic: III. Greedy Method

- Q. Let G be a weighted connected undirected graph with distinct positive edge weights. If every edge weight is increased by the same value, then which of the following statements is/are true?
 - 1. Minimum spanning Tree of the graph does not change. : T
 - 2. Shortest path between any pair of vertices does not change. ; ;

Topic: III. Greedy Method

- Q. Let G = (V, E) be any connected undirected edge-weighted graph. The weights of the edges in E are positive and distinct. Consider the following statements:
 - (I) Minimum Spanning Tree of G is always unique.
 - (II) Shortest path between any two vertices of G is always unique.
 Which of the above statements is/are necessarily true?

- (a) (I) only
- (b) (II) only
- (c) Both (I) and (II)
- (d) Neither (I) nor (II)

Consider the following table:

Algorithms

Design Paradigms

(P) Kruskal (i) Divide and Conquer

(Q) Quick sort (ii) Greedy

Match the algorithms to the design paradigms they are based on.

(a) (P) \leftrightarrow (ii), (Q) \leftrightarrow (iii), (R) \leftrightarrow (i)

(b) $(P) \leftrightarrow (iii)$, $(Q) \leftrightarrow (i)$, $(R) \leftrightarrow (ii)$

(c) $(P) \leftrightarrow (ii)$, $(Q) \leftrightarrow (i)$, $(R) \leftrightarrow (iii)$

(d) (P) \leftrightarrow (i), (Q) \leftrightarrow (ii), (R) \leftrightarrow (iii)

Topic: Algorithms: DP

Dynamic Programming (DP) is an algorithm design strategy (method) paradigm, used for solving program, whose solution are viewed as a result of marking a sequence of decisions.

Topic: Dynamic Programming: (DP)

Dynamic programming (DP) is an algorithm design method used for solving problems, whose solutions are viewed as a result of making a set/sequence of decisions;

- One way of making these decisions is to make them one at a time in a step-wise (sequential) step-by-step manner and never make an erroneous decision. This is true of all problems solvable by Greedy method.)
- For many other problems it is not possible to make step-wise decisions based on local information available at every step, In such a manner that the sequence of decision made is optimal.

Topic: Dynamic Programming: (DP)

(1) COIN CHANGE PROBLEM:

Given a set 9 Coin Values; (en) Construct a surn 9 Money Using as few Coins as possible. We can use each coin value army number of Times; Target: 11

number of Jimes; Coins: (1,2,5) Coins: (1,2,5)

Ex: 2: N=6; Coims={1,3,4} Greedy-mothod: 4+1+1=6 Com Failed optimal Sohn: 3+3=6

Topic: IV. Dynamic Programming

Consider the weights and values of items listed below. Note that there is only one

unit of each item.

Item number	Weight (in kgs)	Value (in Rupees)					
1	10	60					
2	7	28					
3	4	20					
4	2	24					

OI KNAPSACK:

Using Greedy Method

13=

Topic: Dynamic Programming: (DP)

Timding Shortest
Poth from 18'

Loth from 18'

Greedy Method:

GM Fail

THANK - YOU