

TUTORIAL #11

Session 11

Reinforcement Learning

LECTURE OVERVIEW

01

Intro to RL

What is it?
Why it is so important?

03

Policy gradient algorithms

02

RL Math

Understanding of the fundamental math background

04

Implementation

Using RL in practice.

Theory INTRO TO RL

What is RL?

Theory INTRO TO RL

What differentiates it?

Theory INTRO TO RL

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s' \in S} \sum_{r \in R} p(s',r \mid s,a) (r + \gamma V_{\pi}(s'))$$

Value function of Reinforcement Learning

INTRO TO RL

States and Rewards

INTRO TO RL

States and Rewards

$$V(s) = \sum_{t} \gamma^{t} R(S_{t})$$

INTRO TO RL

Policy Gradient Algorithm

The reward function is defined as:

$$J(heta) = \sum_{s \in \mathcal{S}} d^\pi(s) V^\pi(s) = \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_ heta(a|s) Q^\pi(s,a)$$

INTRO TO RL

Proof

$$egin{aligned} &
abla_{ heta}V^{\pi}(s) \ = &
abla_{ heta}\left(\sum_{a\in\mathcal{A}}\pi_{ heta}(a|s)Q^{\pi}(s,a)
ight) \ = & \sum_{a\in\mathcal{A}}\left(
abla_{ heta}\pi_{ heta}(a|s)Q^{\pi}(s,a) + \pi_{ heta}(a|s)
abla_{ heta}Q^{\pi}(s,a)
ight) \ = & \sum_{a\in\mathcal{A}}\left(
abla_{ heta}\pi_{ heta}(a|s)Q^{\pi}(s,a) + \pi_{ heta}(a|s)
abla_{ heta}\sum_{s',r}P(s',r|s,a)(r+V^{\pi}(s'))
ight) \ = & \sum_{a\in\mathcal{A}}\left(
abla_{ heta}\pi_{ heta}(a|s)Q^{\pi}(s,a) + \pi_{ heta}(a|s)\sum_{s',r}P(s',r|s,a)
abla_{ heta}V^{\pi}(s')
ight) \ = & \sum_{a\in\mathcal{A}}\left(
abla_{ heta}\pi_{ heta}(a|s)Q^{\pi}(s,a) + \pi_{ heta}(a|s)\sum_{s',r}P(s'|s,a)
abla_{ heta}V^{\pi}(s')
ight) \ \end{cases}$$

$$abla_{ heta}V^{\pi}(s) = \sum_{a \in \mathcal{A}} \left(
abla_{ heta}\pi_{ heta}(a|s)Q^{\pi}(s,a) + \pi_{ heta}(a|s) \sum_{s'} P(s'|s,a)
abla_{ heta}V^{\pi}(s')
ight)$$

THANK YOU CO

RLIMPLEMENTATION

Build and train a simple agent

RLIMPLEMENTATION

REINFORCE method

- REINFORCE is a policy gradient method in RL that updates policy based on expected rewards.
- It computes gradient of expected cumulative reward with respect to policy parameters.
- It is computationally efficient and used to learn stochastic/deterministic policies, but suffers from high variance and slow convergence.

RLIMPLEMENTATION

REINFORCE method

RL IMPLEMENTATION

Actor-critic reinforcement learning

- Actor-critic RL is a type of algorithm that combines both value-based and policy-based methods in reinforcement learning.
- It uses an actor to learn an optimal policy for decision making and a critic to estimate the value function associated with the policy.
- The actor learns to improve its policy by using the feedback from the critic, which helps to optimize the decision-making process over time.

RLIMPLEMENTATION

Actor-Critic

Estimates action probability

Estimates value for action

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) G_{t} \right]$$
 REINFORCE
$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) Q^{w}(s, a) \right]$$
 Q Actor-Critic
$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) A^{w}(s, a) \right]$$
 Advantage Actor-Critic
$$= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \delta \right]$$
 TD Actor-Critic

SEE YOU NEXT TIME