UNIVERSITÉ MONTPELLIER II **UFR SCIENCES**

Année 2015-2016

Licence L2- Techniques mathématiques EEA

Devoir surveillé n^o 1 – 5/10/2015 – Durée : 1h 30

Exercice 1

(4 points) Déterminer, si elle existe, la limite en a de la fonction f dans chacun des cas suivants :

(a)
$$f(x) = \frac{1-\cos x}{x}$$
; $a = 0$
(c) $f(x) = \cos \frac{1}{x}$; $a = 0$.

(b)
$$f(x) = \sqrt{4x^2 + 2x - 1} - 2x + 3$$
; $a = +\infty$

(c)
$$f(x) = \cos \frac{1}{x}$$
; $a = 0$

Exercice 2

(5 points) Calculer les dérivées des fonctions suivantes :

(a)
$$f(x) = x(x + \sqrt{1 + x^2});$$
 (b) $f(x) = e^{\sqrt{x^2 + 1}};$

(c)
$$f(x) = \ln \sqrt[3]{\frac{x^2 - 1}{x^2 + 1}}$$
; (d) $f(x) = x \ 2^x$.

Exercice 3

(3 points) Sans utiliser de développement limité, calculer

1.
$$\lim_{x \to 0} \frac{(1+x)^{1/3} - 1}{x}$$

$$2. \quad \lim_{x \to 1} \frac{\sqrt{3+x}-2}{x-1}$$

Exercice 4

(3 points) Déterminer le développement limité à l'ordre 3 en 0 de $f(x) = \frac{e^x}{1-x}$.

Exercice 5

(5 points)

- 1. Redonner la formule de Taylor permettant de calculer le développement limité d'ordre nd'une fonction f en un point x = a.
- 2. Retrouver ainsi les développements limités suivants de sin x et $\cos x$ en x=0:

(a)
$$\sin x = x - x^3/6 + o(x^3)$$
;

(a)
$$\sin x = x - x^3/6 + o(x^3)$$
; (b) $\cos x = 1 - x^2/2 + x^4/24 + o(x^4)$.

3. Calculer les limites de f et g en 0:

(a)
$$f(x) = \frac{1 - \cos x}{x^2}$$
; (b) $g(x) = \frac{e^x - \sin x - \cos x}{x^2}$.