Kenneth L. Ho

Academic and Employment History

07/2021 -	Technical Manager, Optimal Pattern Correction, TSMC, San Jose, CA
08/2017 - 06/2021	Principal Engineer, Optimal Pattern Correction, TSMC, San Jose, CA
06/2019 – 12/2020	Visiting Scholar/Consultant, CCM, Flatiron Institute, New York, NY
08/2015 - 08/2017	Sr. Engineer, Optimal Pattern Correction, TSMC, San Jose, CA
01/2013 - 07/2015	NSF Postdoctoral Fellow, Mathematics, Stanford
09/2012 – 12/2012	Visiting Scholar, Courant Institute, NYU
08/2012	Visiting Scholar, Theoretical Systems Biology, Imperial College London
06/2012 - 08/2012	Assistant Research Scientist, Courant Institute, NYU
09/2007 - 05/2012	Ph.D., Computational Biology (Mathematics), Courant Institute, NYU
06/2010 - 02/2012	Intern/Consultant, Schrödinger, New York, NY
09/2003 – 06/2007	B.S. (with honor), Applied and Computational Mathematics, Caltech

Technical Summary

- Applied mathematics Ph.D. with broad training in computer science, statistics, biology, and chemistry
- Roughly three-stage career so far across both academia (3 years postdoc) and industry (7+ years)
- First, as an early graduate student, I started in mathematical biology and computational chemistry. Research highlights: mechanistic modeling of apoptosis and "trimer" theory for bistability²; automated all-atom protein crystal structure refinement³; algebraic methods for model selection of chemical reaction networks^{5,13}.
- Then during later graduate studies (with Leslie Greengard) and continuing through my postdoc (with Lexing Ying), I moved into scientific computing and numerical linear algebra, specifically fast direct solvers and other generalizations of the fast multipole method: O(N) generalized LU decomposition for hierarchical matrices, e.g., for solving integral equations^{4,11,14} and PDEs^{12,18}; applications to chemistry⁶, physics⁷, and statistics¹⁶; open-source MATLAB software²²; $O(N \log N)$ butterfly factorization^{9,19} for high-frequency scattering and Fourier integral operators.
- Now I work in computational lithography and software engineering as a lead developer on TSMC's in-house simulator for OPC/ILT/SMO: numerical methods, computational infrastructure, software design; optics theory^{24,25} and fast TCC²³; high-performance computing, CPU/GPU acceleration; computational electromagnetics, inverse problems, numerical optimization.
- Computing: C, C++, CUDA, Fortran, Julia, LaTeX, MATLAB, MPI, Octave, OpenMP, Python
- Awards: NSF graduate and postdoctoral fellowships, NYU dissertation award, Caltech merit award and research fellowship
- 20 peer-reviewed publications, 7+ patents, 46 conference/seminar presentations, 8 open-source codes
- Google Scholar: 6gr2NYwAAAAJ (1000+ citations); ORCID: 0000-0001-5450-4966

Publications and Patents

- 25. K.L.K. Ho, C.-J. Lai, K. Yamazoe, X. Zhou, D. Peng. Multi-component kernels for vector optical image simulation. U.S. patent 11,435,670, 2022. Google: US11435670.
- 24. K.L.K. Ho. Litho-aware source sampling and resampling. U.S. patent 11,256,176, 2022. Google: US11256176.
- 23. K.L.K. Ho. Method and apparatus for computing feature kernels for optical model simulation. U.S. patents 10,809,629, 2020; 11,003,092, 2021. Google: US10809629.

- 22. K.L. Ho. FLAM: Fast linear algebra in MATLAB Algorithms for hierarchical matrices. J. Open Source Softw. 5 (51): 1906, 2020. doi:10.21105/joss.01906.
- 21. D. Beylkin, K.L. Ho, S.V. Trivedi, F. Xu, J. Lei, D. Peng. Synchronized parallel tile computation for large area lithography simulation. U.S. patents 10,671,052, 2020; 10,915,090, 2021; 11,340,584, 2022. Google: US10671052.
- 20. Z. Chen, J. Zhang, K.L. Ho, H. Yang. Multidimensional phase recovery and interpolative decomposition butterfly factorization. J. Comput. Phys. 412: 109427, 2020. doi:10.1016/j.jcp.2020.109427.
- 19. Q. Pang, K.L. Ho, H. Yang. Interpolative decomposition butterfly factorization. SIAM J. Sci. Comput. 42 (2): A1097–A1115, 2020. doi:10.1137/19M1294873.
- 18. J. Feliu-Fabà, K.L. Ho, L. Ying. Recursively preconditioned hierarchical interpolative factorization for elliptic partial differential equations. Commun. Math. Sci. 18 (1): 91–108, 2020. doi:10.4310/CMS. 2020.v18.n1.a4.
- 17. H.A. Harrington, K.L. Ho, N. Meshkat. A parameter-free model comparison test using differential algebra. Complexity 2019: 6041981, 2019. doi:10.1155/2019/6041981.
- 16. V. Minden, A. Damle, K.L. Ho, L. Ying. Fast spatial Gaussian process maximum likelihood estimation via skeletonization factorizations. Multiscale Model. Simul. 15 (4): 1584–1611, 2017. doi:10.1137/17M1116477.
- 15. F. Fang, K.L. Ho, L. Ristroph, M.J. Shelley. A computational model of the flight dynamics and aero-dynamics of a jellyfish-like flying machine. J. Fluid Mech. 819: 621–655, 2017. doi:10.1017/jfm. 2017.150.
- 14. V. Minden, K.L. Ho, A. Damle, L. Ying. A recursive skeletonization factorization based on strong admissibility. Multiscale Model. Simul. 15 (2): 768–796, 2017. doi:10.1137/16M1095949.
- 13. E. Gross, B. Davis, K.L. Ho, D.J. Bates, H.A. Harrington. Numerical algebraic geometry for model selection and its application to the life sciences. J. R. Soc. Interface 13 (123): 20160256, 2016. doi: 10.1098/rsif.2016.0256. PMID:27733697.
- 12. K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: differential equations. Comm. Pure Appl. Math. 69 (8): 1415–1451, 2016. doi:10.1002/cpa.21582.
- 11. K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: integral equations. Comm. Pure Appl. Math. 69 (7): 1314–1353, 2016. doi:10.1002/cpa.21577.
- 10. V. Minden, A. Damle, K.L. Ho, L. Ying. A technique for updating hierarchical skeletonization-based factorizations of integral operators. Multiscale Model. Simul. 14 (1): 42–64, 2016. doi:10.1137/15M1024500.
- 9. Y. Li, H. Yang, E.R. Martin, K.L. Ho, L. Ying. Butterfly factorization. Multiscale Model. Simul. 13 (2): 714–732, 2015. doi:10.1137/15M1007173.
- 8. K.L. Ho, L. Greengard. A fast semidirect least squares algorithm for hierarchically block separable matrices. SIAM J. Matrix Anal. Appl. 35 (2): 725–748, 2014. doi:10.1137/120902677.
- 7. L. Greengard, K.L. Ho, J.-Y. Lee. A fast direct solver for scattering from periodic structures with multiple material interfaces in two dimensions. J. Comput. Phys. 258: 738–751, 2014. doi:10.1016/j.jcp.2013.11.011.
- 6. K.L. Ho. Fast direct methods for molecular electrostatics. Ph.D. thesis, New York Univ., 2012. UMI: 3524158.
- 5. H.A. Harrington, K.L. Ho, T. Thorne, M.P.H. Stumpf. Parameter-free model discrimination criterion based on steady-state coplanarity. Proc. Natl. Acad. Sci. U.S.A. 109 (39): 15746–15751, 2012. doi: 10.1073/pnas.1117073109. PMID: 22967512.
- 4. K.L. Ho, L. Greengard. A fast direct solver for structured linear systems by recursive skeletonization. SIAM J. Sci. Comput. 34 (5): A2507–A2532, 2012. doi:10.1137/120866683.
- 3. J.A. Bell, K.L. Ho, R. Farid. Significant reduction in errors associated with nonbonded contacts in protein crystal structures: automated all-atom refinement with *PrimeX*. Acta Cryst. D68 (8): 935–952, 2012. doi:10.1107/S0907444912017453. PMID:22868759.

- 2. K.L. Ho, H.A. Harrington. Bistability in apoptosis by receptor clustering. PLoS Comput. Biol. 6 (10): e1000956, 2010. doi:10.1371/journal.pcbi.1000956. PMID:20976242.
- 1. H.A. Harrington, K.L. Ho, S. Ghosh, KC Tung. Construction and analysis of a modular model of caspase activation in apoptosis. Theor. Biol. Med. Model. 5: 26, 2008. doi:10.1186/1742-4682-5-26. PMID:19077196.

Presentations

- Conferences and workshops: NVIDIA GTC 2020; SIAM AN18; SIAM CSE15; MBI WYRMB 2014; SIAM AN14; FACM 2014; SIAM UQ14; BIRS Workshop on Integral Equations, 2013; SIAM CSE13; NYU/Columbia RTG Symp., NYU, 2012; SIAM LS12; SIAM AN12; SIAM ALA12; CJR, Yale, 2012; DOE Appl. Math. Prog. Meet., 2011; Courant 75th Anniv., NYU, 2011; COB Day, NYU, 2009; NSF IGERT PI Meet., 2009; Bioeng. Bootcamp, Caltech, 2008; MBI Summer Grad. Prog., 2007; RIPS-IPAM 2006; SURF Semin. Day, Caltech, 2005
- Seminars and colloquiua: Argonne Natl. Lab., CMU (2), Caltech, Colorado State, Imperial College London
 (2), JPL, LBNL, NCSU, NJIT, NYU (4), Stanford, Theranos, TSMC (2), U. Minnesota, U. Wisconsin-Madison, UC Irvine (2), UC Riverside

Codes

- 8. mortgage.py: a simple state-based mortgage calculator
- 7. f2mk1: adapter for preloading Intel MKL in applications linked against Fortran BLAS
- 6. lpscheduler: a simple linear-programming-based scheduling utility
- 5. SparseFFT.jl: sparse fast Fourier transforms in Julia
- 4. LowRankApprox. jl: fast low-rank matrix approximation in Julia (doi:10.5281/zenodo.1254147)
 - original developer; now maintained by JuliaLinearAlgebra
- 3. FLAM: fast linear algebra in MATLAB (doi:10.5281/zenodo.1253581)
- 2. PyMatrixID: fast interpolative decompositions in Python
 - contributed to SciPy 0.13 as scipy.linalg.interpolative
- 1. hypoct: hyperoctree construction and manipulation