Multiobjective Optimization Neighborhood Exploration

Igor Machado Coelho

20/09/2024

- 1 Module: Neighborhood Exploration
- Neighborhood Exploration
- 3 Heuristics for Neighborhood Exploration
- 4 Local Search techniques
- 5 Advanced Topic: Multi Improvement
- 6 Practical Exercise
- Discussions

8 Agradecimentos

Module: Neighborhood Exploration

Requirements

The requirements for this class are:

- Data Structures and Algorithmic Complexity
 - Graph concepts
- Programming in Python or C/C++
- Module 1 Fundamentals
- Module 2 Greedy

Topics

Neighborhood Exploration

Some Definitions (remember from Module 2)

Recall basic definitions for an optimization problem, such as solutions and evaluations, and classic NP-hard problems such as the Knapsack Problem and Traveling Salesman Problem. More precisely:

- The XS denotes a Solution Space, where XE is an Evaluation Space (or Objective Space)
 - The pair $XES = \langle XS, XE \rangle$ denotes the XESolution space
 - A SO optimization problem is defined by the triple $\langle XS, XE, f \rangle$
- The space XE can be partioned into $XE = XFeasible \cup XInfeasible$, where XFeasible \cap XInfeasible $= \emptyset$
- XS denotes all valid representations of a solution, that are structurally correct
 - it may include infeasible solutions s, that are valid, but with infeasible evaluation $f(s) \in XInfeasible$
 - it depends on how the problem is modeled, but it's not uncommon to have XInfeasible $\neq \emptyset$
- The optimal solution s^* is always feasible $f(s^*) \in XFeasible$, unless the problem is impossible

Neighborhood

Given a solution $s \in XS$, we define a *neighbor solution* $s' \in XS$ as:

- a neighborhood (or neighborhood structure) $\mathcal{N}(s)$ is a set of solutions reachable by some move function/operator $m: XS \mapsto XS$
- ullet we say that $s' \in \mathcal{N}(s) \iff \exists m \; such \; that \; s' = m(s)$
 - or, typically denoted by operator \oplus notation: $s' = s \oplus m$

Reachability of Solutions and Move Composition

We recall an instance of the Knapsack Problem with 5 items and consider solutions $s_1=(01001)$ and $s_2=(11010)$ from XS

- We consider the following move definition $M^{(I)} = \{m_1, m_2, ..., m_i\} = \{$ change the value of the bit $i\}$
- We can find moves $m_1, m_4, m_5 \in M^{(I)}$ such that $s_2 = ((s_1 \oplus m_1) \oplus m_4) \oplus m_5$
 - this changes the values of the first, fourth and fifth bits
 - the following intermediate solutions are visited in this path: $s_1 = (01001) \rightarrow (11001) \rightarrow (11011) \rightarrow (11010) = s_2$
- Alternatively, a composite move $m_{1,4,5}$ could be built with function composition: $m_{1,4,5} = m_5 \circ m_4 \circ m_1$; or $m_{1,4,5} = \bigcirc_{m \in (m_1,m_4,m_5)} m$ or by using \mapsto sequential notation: $m_{1,4,5} = m_1 \mapsto m_4 \mapsto m_5$
 - In other words, $m_{1,4,5}(s) = m_5(m_4(m_1(s)))$
- Now we consider moves $M^{(II)}$ where two bits i and j are simultaneously changed (Exercise: What is the size of this neighborhood?)
 - Solution s_2 could never be reachable by s_1 in such neighborhood!

Move Cost

Given a move m, we can compute the move cost \bar{m} in the following way:

- given an evaluation function $f: XS \mapsto XE$, and e = f(s) denoting the evaluation of a solution s
- given a *neighbor* s' = m(s) the *move cost* $\bar{m}(s)$ is defined by $\bar{m}(s) = f(s') f(s)$
- naturally, any $e \in XE$ space must support add and subtract basic arithmetics
- we do not require XE to be a total order, although this is true for single objective optimization, i.e., minimization or maximization
- we say that moves $M=(m_1,m_2,...)$ are independent if composite move $m'=\bigcirc_{m\in M} m$ has a fixed cost $\bar{m}'(s)=\sum_{m\in M} \bar{m}(s), \ \forall s\in XS$
 - this is an important property for newer neighborhood strategies in literature!

Example for the Traveling Salesman Problem (euclidean)

Let's think of a neighborhood structure for the TSP. What is a move? How much does it cost?

Heuristics for Neighborhood Exploration

Heuristics for Neighborhood Exploration and Local Optima

Given a neighborhood \mathcal{N} and a solution s, we can explore it, in order to improve solution s by finding a better neighbor s'

Some heuristics for neighborhood exploration are classic, mainly three: random selection (RS); first improvement (FI); and best improvement (BI). We have also proposed a multi improvement (MI) strategy that will be studied later.

These are also called *refinement heuristics* and are the foundations for several local search (LS) algorithms.

Differently from a global search (GS) algorithm, that tries to find an optimal solution, a local search tries to find a locally optimal solution regarding some specific neighborhood \mathcal{N} .

- So, recalling the basic definitions with XE as a total order, we define local optima $s^* \in XS$, given neighborhood \mathcal{N} and a solution $s \in XS$:
 - For minimization, we have that $f(s^*) \leq f(s'), \forall s' \in \mathcal{N}(s)$
 - For maximization, we have that $f(s^*) \geq f(s'), \forall s' \in \mathcal{N}(s)$

Neighborhood Exploration: Four Primitives

Given a neighborhood \mathcal{N} and solution $s \in XS$, we define four neighborhood exploration primitives: FindAny, FindFirst, FindNext and FindBest.

- the FindAny tries to find any solution $s' \in \mathcal{N}(s)$ that improves s
 - we assume a more restricted neighborhood $\mathcal{N}_{\leq k} \subseteq \mathcal{N}$, where $|\mathcal{N}_{\leq k}| \leq k$ • assuming minimization, if such $s' \in \mathcal{N}_{\leq k}(s)$ exists, then f(s') < f(s)
- the FindFirst tries to find the first $s_i \in \mathcal{N}(s) = \{s_1, ..., s_i, ...\}$ that *improves* current solution *s*
 - assuming minimization, if such $s_i \in \mathcal{N}(s)$ exists, then i is the smallest value such that $f(s_i) < f(s)$
- the FindNext tries to find the next $s_i \in \mathcal{N}(s) = \{s_i, ..., s_i, ...\}$ that *improves* current solution *s*
 - assuming minimization, if such $s_i \in \mathcal{N}(s)$ exists, then i is the smallest value such that $f(s_i) < f(s)$ and i > j
- the FindBest tries to find the best $s^* \in \mathcal{N}(s)$ that improves current solution s
 - assuming minimization, if such $s^* \in \mathcal{N}(s)$ exists, then $f(s^*) < f(s)$ and $f(s^*) < f(s'), \ \forall s' \in \mathcal{N}(s)$

Neighborhood Exploration: Random Selection

Given a neighborhood \mathcal{N} and a parameter k_{max} , the Random Selection (RS) heuristic is an implementation of the primitive FindAny:

- RS tries to find any solution $s' \in XS$ that improves current solution $s \in XS$
- RS is limited to k_{max} tries

Neighborhood Exploration: First Improvement

TODO

Neighborhood Exploration: Best Improvement

TODO

Local Search techniques

Creating a Local Search: Hill Climbing

TODO

Creating a Local Search: Random Descent Method

TODO

Advanced Topic: Multi Improvement

Exploring the Multi Improvement technique

TODO

Practical Exercise

Implementing a Local Search (Step 1/3)

- Choose a language: Python or C/C++
- ullet Consider the following data for a Knapsack Problem with n=5 items and capacity Q=10

```
5
10
1 1 1 5 5
1 2 3 7 8
```

- Save it into a file and read it
 - First load the n and Q
 - Then, for each item, load each profit p_i and weight w_i

Implementing a Local Search (Step 2/3)

- Model the solution representation as an array (or list) of booleans or binary numbers
- Create a neighborhood structure and two neighborhood exploration techniques (example: best improvement and first improvement)

Implementing a Local Search (Step 3/3)

- Choose some Local Search technique, such as Hill Climbing (for BI and FI), or RDM (for RS)
- Generate multiple initial solutions with some randomness (example, 1000)
- Apply each of the two Local Search on them, for each generated solution
- Compute de Average cost and Computational time taken for each of the two local searches
- Generate bigger instances, to make the problem harder!
- Which one is better?

Discussions

Short discussion

Current scenario: optimization problems in the university and work

- Do you know of any optimization problem that needs to be solved in the university or your work?
- Can exact methods solve them? Do you need heuristic methods?
- Read the introduction material from prof Marcone (in Portuguese): http://www.decom.ufop.br/prof/marcone/Disciplinas/InteligenciaComput

Agradecimentos

Pessoas

Em especial, agradeço aos colegas que elaboraram bons materiais, como o prof. Raphael Machado, Kowada e Viterbo cujos conceitos formam o cerne desses slides.

Estendo os agradecimentos aos demais colegas que colaboraram com a elaboração do material do curso de Pesquisa Operacional, que abriu caminho para verificação prática dessa tecnologia de slides.

Software

Esse material de curso só é possível graças aos inúmeros projetos de código-aberto que são necessários a ele, incluindo:

- pandoc
- LaTeX
- GNU/Linux
- git
- markdown-preview-enhanced (github)
- visual studio code
- atom
- revealjs
- groomit-mpx (screen drawing tool)
- xournal (screen drawing tool)
- o . . .

Empresas

Agradecimento especial a empresas que suportam projetos livres envolvidos nesse curso:

- github
- gitlab
- microsoft
- google
-

Reprodução do material

Esses slides foram escritos utilizando pandoc, segundo o tutorial ilectures:

https://igormcoelho.github.io/ilectures-pandoc/

Exceto expressamente mencionado (com as devidas ressalvas ao material cedido por colegas), a licença será Creative Commons.

Licença: CC-BY 4.0 2020

Igor Machado Coelho

This Slide Is Intentionally Blank (for goomit-mpx)