Regularization

Bias Variance Trade off

$$E_{X \in D_{test}}(squared\ loss) = E_X \left\{ \left[E_D \big(f(X) - \hat{f}(X) \big) \right]^2 + Var_D \big[\hat{f}(X) \big] + Var_{\varepsilon}(\varepsilon) \right\}$$

Bias of \hat{f}

Variance of of \hat{f} Irreducible error

Bias down, variance up

Bias up, variance down

Smaller representational capacity

Agenda

- Taming the sine wave using regularization
- Ridge and lasso regularization
- Examples

Overfitting

In linear regression model, as we increase the number of predictors, the training error will always decrease

Overfitting

Polynomial regression

Overfit: fitting the data more than is warranted

Polynomial Regression

$$\begin{array}{lll} \mathbf{S} & & & & \\ \mathbf{E} & & & \\ \mathbf{F}_1 : f(x) = w_0 + w_1 x \\ \mathbf{R} & & & \\ \mathbf{F}_2 : f(x) = w_0 + w_1 x + w_2 x^2 \\ \mathbf{C} & & \\ \mathbf{H} & & \\ \mathbf{F}_3 : f(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 \\ \mathbf{S} & & & \\ \mathbf{S} & & & \\ \mathbf{F}_K : f(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_K x^K \\ \mathbf{C} & & \\ \mathbf{E} & & & \\ \end{array}$$

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}_K$$

Regularized Regression

$$\begin{array}{c|c} \mathbf{S} & & & & \\ \mathbf{E} & & & \\ \mathbf{A} & & & \\ \mathbf{R} & & & \\ \mathbf{F}_2 = \{w \to w \cdot x | \ \|w\|_2 \leq 2W\} \\ \mathbf{C} & & & \\ \mathbf{F}_3 = \{w \to w \cdot x | \ \|w\|_2 \leq 3W\} \\ \mathbf{S} & & & \\ \mathbf{S} & & & \\ \mathbf{F}_{\mathbf{C}} & & \\ \mathbf{F}_{\mathbf{C}} & & & \\ \mathbf{F}_{\mathbf{C}$$

Complexity Search Space

Approximating a sine wave

True function $f(x) = \sin(\pi x)$. We have $f: [-1, 1] \to R$

Idea: Use polynomial regression to approximate the sine wave

Let's look at the Taylor expansion

 $+ x^9/9!$

+ x⁵/5!

+ x¹³/13!

$$f(x) = \sin(\pi x)$$

$$\sin(\pi x) \approx \pi x - \frac{\pi^3}{3!} x^3 + \frac{\pi^5}{5!} x^5 - \frac{\pi^7}{7!} x^7 + \frac{\pi^9}{9!} x^9 - \dots$$

Higher Degree is always better.

But with decreasing returns.

Approximation: Poly 20 > Poly 3

$$\sin(\pi x) \approx \pi x - \frac{\pi^3}{3!} x^3 + \frac{\pi^5}{5!} x^5 - \frac{\pi^7}{7!} x^7 + \frac{\pi^9}{9!} x^9 - \cdots$$

Approximation with noise: Poly 3 > Poly 20

$$\sin(\pi x) \approx \pi x - \frac{\pi^3}{3!} x^3 + \frac{\pi^5}{5!} x^5 - \frac{\pi^7}{7!} x^7 + \frac{\pi^9}{9!} x^9 - \dots$$

Let's inspect the Taylor expansion

$$\sin(\pi x) \approx \pi x - \frac{\pi^3}{3!} x^3 + \frac{\pi^5}{5!} x^5 - \frac{\pi^7}{7!} x^7 + \frac{\pi^9}{9!} x^9 - \dots$$

	x	1	x^1	x^2	x^3	x^4	x^5	x^6	x^7	
	$\mathbf{w}_{\mathrm{Taylor}}$	0	$\frac{\pi^1}{1!}$	0	$-\frac{\pi^3}{3!}$	0	$\frac{\pi^5}{5!}$	0	$-\frac{\pi^7}{7!}$	
	$\mathbf{w}_{\mathrm{poly}(3)}$	-0.23	3.00	1.60	-3.59	0	0	0	0	
	Δ	0.23	0.14	1.60	1.58	0	$rac{\pi^5}{5!}$	0	$\frac{\pi^7}{7!}$	
1	$\mathbf{w}_{\mathrm{poly}(20)}$	-0.24	-0.44	1.15	31.67	0.48	-75.53	15.10	2.12	
	Δ	0.24	3.59	1.15	36.84	0.48	78.08	15.10	2.72	

How could we potentially limit the complexity?

$$\begin{aligned} \left\| w_{Taylor} \right\|_2 &\approx 6.6\\ \left\| w_{Poly(20)} \right\|_2 &\approx 370 \end{aligned}$$

Restricting w

Minimize
$$\frac{1}{N} \sum_{i=1}^{N} l(y^{(i)}, f(x^{(i)}))$$

S.T $||w||_2 \le R$

L2 Regularization

Minimize
$$\frac{1}{N}\sum_{i=1}^{N}l(y^{(i)},f(x^{(i)}))$$

S.T
$$||w||_2 \leq R$$

In Regression Setting: $Y = w_0 + w^T X$

Minimize
$$\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - w^{T} x^{(i)} - w_0)^2$$

$$S.T \|w\|_2 \le R$$

Ridge Regression

In Regression Setting: $Y = w_0 + w^T X$

$$\operatorname{Min} \sum_{i=1}^{N} (y^{(i)} - \sum_{j=1}^{p} x_j^{(i)} w_j - w_0)^2$$

S.T
$$\sum_{i=1}^{p} w_i^2 \leq R$$

Can Not use gradient descent!

Equivalent format

$$\operatorname{Min} \sum_{i=1}^{N} (y^{(i)} - \sum_{j=1}^{p} x_j^{(i)} w_j - w_0)^2 + \lambda \sum_{j=1}^{p} w_j^2$$

- The is one to one correspondence between λ and R
- The intercept w_0 is left out of the penalty term
- Penalization by L2 norm of the parameters in neural networks is also known as weight decay

Ridge Regression (optional)

$$Y = w_0 + w^T X$$

$$\min \sum_{i=1}^{N} (y^{(i)} - \sum_{j=1}^{p} x_j^{(i)} w_j - w_0)^2 + \lambda \sum_{j=1}^{p} w_j^2$$

- The standard least squares coefficient estimate in simple linear regression is scale equivariant: multiply X_j by a constant c simply leads to a scaling the of coefficient estimates
- Ridge regression is NOT equivariant under the scaling of the inputs. We usually standardize the inputs first before applying ridge regression

$$x_j^{(i)} \leftarrow \frac{x_j^{(i)}}{\sqrt{\frac{1}{n} \sum_{i=1}^{N} (x_j^{(i)} - \bar{x}_j)^2}}$$

$$Y = w_0 + w^T X$$

$$J(w) = \sum_{i=1}^{N} (y^{(i)} - \sum_{j=1}^{p} x_j^{(i)} w_j - w_0)^2 + \lambda \sum_{j=1}^{p} w_j^2$$

Then we can write the penalized residual sum of squares (λ is the regularization parameter)

$$J(w) = (y - Xw)^{T}(y - Xw) + \lambda w^{T}w$$

To minimize I(w), consider the first order derivative:

$$\nabla_w J(w) = -2X^T (y - Xw) + 2\lambda w = 0$$

Ridge regression has closed form solution

$$\widehat{w} = (X^T X + \lambda I)^{-1} X^T y$$

Solution for ridge regression: $\widehat{w} = (X^TX + \lambda I)^{-1}X^Ty$ Matrix X^TX is p.s.d., consider eigendecomposition of X^TX

$$X^T X = U \begin{bmatrix} \sigma_1^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_p^2 \end{bmatrix} U^T$$

Even when *X* is not full rank, we still have

$$X^{T}X + \lambda I = U \begin{bmatrix} \sigma_{1}^{2} + \lambda & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_{p}^{2} + \lambda \end{bmatrix} U^{T}$$

is always symmetric and positive definite (hence has full rank)

Hence $\widehat{w} = (X^TX + \lambda I)^{-1}X^Ty$ always exists and unique!

Lasso Regression

Model: $Y = w_0 + w^T X$

Lasso Regression

Loss function: $\sum_{i=1}^{N} (y^{(i)} - \sum_{j=1}^{p} x_j^{(i)} w_j - w_0)^2$

Regularization: $\sum_{i=1}^{p} |w_i| \leq R$

Or Equivalently

 $\operatorname{Min} \sum_{i=1}^{N} (y^{(i)} - \sum_{j=1}^{p} x_j^{(i)} w_j - w_0)^2 + \lambda \sum_{j=1}^{p} |w_j|$

Ridge and Lasso Regression

When the input matrix *X* is orthogonal,

- Ridge regression does a proportional shrinkage.
- \circ Lasso translates each coefficient by a constant factor λ , truncating at zero.
- Best-subset selection drops all variables with coefficients smaller than the Mth largest

Estimator	Formula				
Feature Selection	$\widehat{w}_j \cdot I(\widehat{w}_j > \widehat{w}_{(M)})$				
Ridge	$\widehat{w}_j/(1+\lambda)$				
Lasso	$Sign(\widehat{w}_j)(\widehat{w}_j -\lambda)_+$				

Note on Regularization

$$||w||_p = \left(\sum_{j=1}^N |w_j|^p\right)^{1/p}$$

Note on regularization

The lasso regularization performs variable selection

Note on regularization

How to choose tuning parameter λ

Exercise

Restricting w in python using optimization

Extend sklearn so that we can do

Minimize
$$\frac{1}{N} \sum_{i=1}^{N} l(y^{(i)}, f(x^{(i)}))$$

S.T $||w|| \le W$

Object oriented programming

```
from sklearn.base import BaseEstimator

class ConstantModel(BaseEstimator):
    def __init__(self):
        print("A constant model was born")
        self.expected_value = None

def fit(self, X, y):
        self.expected_value = np.mean(y)
        return self

def predict(self, X):
    return self.expected_value
```

```
model = ConstantModel()
A constant model was born

model.fit([1,2,3,4,5,6],[2,2,3,3,2,3])
model.predict(1)
2.5
```

Exercise

- Predict what will happen when you set D=11, W=0. Then try it out
- Predict what will happen when you set D=11, W=∞. Then try it out by setting W=10e10
- Try to find the right value of W that gives a result similar to the plot below for a 11-degree polynomial

```
# train the model with your chosen parameters
model = MyConstrainedRegression(W=...,D=...,verbose=True)
model.fit(X,y)

# plot the result:
    _,ax = plt.subplots(1,1)
ax.scatter(X,y,label="sample");
plotf(ax,f, label="f(x)")
plotf(ax, model.predict, c='r',label="fhat")
```


Extra: vary the parameter W

