Umělá inteligence a její využití v programování KIV/ADT – 12. přednáška

Ing. Miloslav Konopík, Ph.D. konopik@kiv.zcu.cz

10. května 2024

Obsah

- Jazykové modely
- Zpracování textu v počítači
- 3 Využití v programování
- 4 Vyhodnocení předmětu

Chatboti

Chatbot

- Počítačový program, který simuluje lidskou konverzaci.
- Může být použit pro odpovídání na otázky, poskytování informací, zpracování příkazů nebo zábavu.
- Založený na umělé inteligenci a strojovém učení.
- Využívá jazykové modely pro generování textů.

Chatbot

- Odpovídá na otázky a poskytuje informace.
 - Pamatuje si historii a reaguje v kontextu.
 - Výpočetně náročný.

Vyhledávač

Hledá informace na základě klíčových slov.

- Nezohledňuje kontext.
- Velmi rychlý a efektivní.

Hlavní úkol jazykových modelů:

Odhadnout pravděpodobnost sekvence slov (výskytu sekvence náhodné proměnné):

$$P(w_1^k) = ? (1$$

Lze použít k předpovědi následujícího slova:

$$P(w_i|w_1^{i-1}) = P(w_i|w_{i-1}, w_{i-2}, \dots, w_1)$$
(2)

Například:

V Plzni se narodil ...

Hlavní úkol jazykových modelů:

• Odhadnout pravděpodobnost sekvence slov (výskytu sekvence náhodné proměnné):

$$P(w_1^k) = ? (1)$$

Lze použít k předpovědi následujícího slova:

$$P(w_i|w_1^{i-1}) = P(w_i|w_{i-1}, w_{i-2}, \dots, w_1)$$
(2)

Například:

V Plzni se narodil Karel Gott.

Hlavní úkol jazykových modelů:

Odhadnout pravděpodobnost sekvence slov (výskytu sekvence náhodné proměnné):

$$P(w_1^k) = ? (1$$

Lze použít k předpovědi následujícího slova:

$$P(w_i|w_1^{i-1}) = P(w_i|w_{i-1}, w_{i-2}, \dots, w_1)$$
(2)

Například:

V Plzni se narodil Emil Škoda.

Konopík, M.: Programování s Al

N-gramové modely

N14-1--1--1/-/--1----

Historie	Nasledujici slovo	Pocet
v Plzni	byla	1 161
	působí	763
	se	354
Plzni se	ceny	342
	rozhodlo	131
	narodil	127
se narodil	V	1 769
	jako	1 213
	Karel	67

Emil

D - Y - 4

12 •> • • •

Použití neuronových sítí

Jazykové modely – učení

Strategie učení:

- Předpovídání schovaného slova.
- Odšumování (opravování, hledání správného pořadí, ...).
- Generování pokračování vyžaduje dekodér.

Jazykové modely – učení

Strategie učení:

- Předpovídání schovaného slova.
- Odšumování (opravování, hledání správného pořadí, ...).
- Generování pokračování vyžaduje dekodér.

Dekodér:

- Algoritmus pro generování optimální sekvence pokračování.
- Paprskové prohledávání (beam search).

Jazykové modely – učení

Strategie učení:

- Předpovídání schovaného slova.
- Odšumování (opravování, hledání správného pořadí, ...).
- Generování pokračování vyžaduje dekodér.

Dekodér:

- Algoritmus pro generování optimální sekvence pokračování.
- Paprskové prohledávání (beam search).

Společná vlastnost učení jazykových modelů:

Stačí čistý (neoznačený) text.

Velké jazykové modely

15,000x increase in 5 years

Hardware pro trénování

Throughput - Relative Performance

Hardware pro trénování

Konopík, M.: Programování s Al

Zpracování textu v počítači

Uložení textu v počítači

Text je v počítači uložen v číslech:

Český novinář Ferdinand Peroutka kdysi podotkl: ...

Uložení textu v počítači

Text je v počítači uložen v číslech:

Český novinář Ferdinand Peroutka kdysi podotkl: ...

225	1225	25226	25227	857	625]

Novinář:

• publicista: 77351

• žurnalista: 15547

komentátor: 35547

• spisovatel: 752

sporťák: 11567

• osoba: 463

Slovní vektory

Transformer – Model

- Umožňuje dávat slova do souvislostí a vytvořit číselné reprezentace významu vět.
- Používá mechanismus pozornosti.
- Základní mechanismus pozornosti vyžaduje kvadratickou výpočetní náročnost vzhledem k délce vstupu.

Transformer – příklad

990

Dotazování modelů.

- **Dotaz** text $\vec{x'}$ vytvořený ze vstupního dotazu \vec{x} pomocí *šablony*
- Šablona text s dvěma sloty: vstupním slotem [X] pro vstup \vec{x} a slotem [Z] pro odpověď $\vec{z} \to$ mapováno na \vec{y}
- Příklad pro odpovídání otázek:
 - $\vec{x'}$: "Kdo se narodil v Plzni"
 - Šablona: V [X] se narodil [Z].
 - \vec{x} : "V Plzni se narodil"
 - Odpověď: "V Plzni se narodil Karel Gott."

Datové sady dialogů.

Modely jsou dále doladěny na datových sadách dialogů.

Struktura:

- Vstup: otázka.
- Výstup: očekávaná odpověď
- Volitelně:
 - Reakce na odpověď.
 - Doplňující odpověď.
- Metadata:
 - Kvalita
 - Kreativita
 - Humor
 - Slušnost
 - ...

Datové sady dialogů.

Modely jsou dále doladěny na datových sadách dialogů. Struktura:

- Vstup: otázka.
- Výstup: očekávaná odpověď
- Volitelně:
 - Reakce na odpověď.
 - Doplňující odpověď.
- Metadata:
 - Kvalita
 - Kreativita
 - Humor
 - Slušnost
 - ...

Lidská data

Nejcennější je živá zpětná vazba od lidí. Hodnotí aktuální průběh dialogu.

Řízení dialogu.

- Systémové dotazy (skryté, modifikují chování modelu).
- Kontrola výstupu (jiný Al / LM, který cenzuruje výstupy).
- Omezení délky dialogu (kvadratická výpočetní náročenost vzhledem k délce vstupu omezení délky kontextu).

Další poznámky.

- Cena za provoz 36 centů (přibližně 10x více než vyhledávání klíčovými slovy).
- Open source alternativy.
 - Open Assistant.
 - GPT for All
 - OpenChatKit
- Další vylepšení:
 - Agenti.
 - Myšlenkový řetěz vylepšování dotazů.
 - Plug-iny, nástroje.
 - AutoGPT (automatické dotazování + nástroje).

GPT-4 Turbo 128 000 tokenů, 62.5 stránek

Využití v programování

Využití v programování

- Generování kódu.
- Dokumentace.
- Testování.
- Vývojové prostředí.
- ..

Praktické ukázky

- ChatGPT plus.
- Github Copilot.

Vyhodnocení předmětu

Dotazník

References I