Lecture notes FY8305

August, 2019

Digitialized from "FAG 74986 Funksjonal-integral metoder HØST 1996". Used as lecture notes for self-study in the course "FY8305 - Functional Integral Methods in Condensed Matter Physics". Link to course page

Contributors to the project

- Karl Kristian Ladegård Lockert
- Snorre Bergan

Contents

1 Uncertainties/mistakes						
2	Sho	Short recap of second quantization for fermions and bosons				
	2.1	Many particle basis	4			
	2.2	From classical formulation to second quantization of one-particle				
		operators	5			
	2.3	From classical formulation to second quantization of two-particle				
		operators	5			
	2.4	Statistical mechanics	6			
3	Coherent states and introduction to Grassmann variables					
	3.1	Coherent states	9			
		3.1.1 Bosonic case	9			
		3.1.2 Fermionic case	9			
	3.2	Grassmann variables	10			
		3.2.1 Fundamentals	10			
		3.2.2 Differentiation	10			
		3.2.3 Integration	11			
			11			
		3.2.5 Algebra	12			

CONTENTS CONTENTS

4	Construction of coherent states for bosons, and its properties				
	4.1	Const	ruction	13	
	4.2	Prope	rties	15	
		4.2.1	Coherent states for a one-bosonic oscillator	16	
		4.2.2	The completeness relation for coherent boson states	18	
5	Coherent states for fermions				
	5.1	Const	ruction	19	
	5.2	Proper	rties	19	
		5.2.1	Creation operator	19	
		5.2.2	Overlap	20	
		5.2.3	Completeness relation	20	
6	Gaussian integrals				
7	Matsubara sums and contour integrals				
8	Feynman path integrals				
9	Imaginary time path integrals and the partition function				
10	0 The partition function for a free electron gas				
11	1 Functional integrals over quantum fields				
12	2 Coherent states path integral				

1 Uncertainties/mistakes

- Something weird in the derivation of (28).
- The indices in equation (58) seems off.
- In the proof in section 4.1 i think there should be a creation operator on one of the last lines in the proof, not annihilation operator as it stands in the notes. $ae^{\varphi a^{\dagger}}|0\rangle$ instead of $ae^{\varphi a}|0\rangle$
- It is a somewhat unclear purpose of Equations (87) to (91).
- The ordering of headlines and equations in section 4 is a bit weird, and some things seem a bit unmotivated.

2 Short recap of second quantization for fermions and bosons

Pages 2-10 in lecture notes.

Notation: $\mu = \text{set of quantum numbers that define a one-particle state.}$

2.1 Many particle basis

Ex 1.

 $\mu = (\vec{k}, \sigma)$: Wave number, spin $\mu = (i, \sigma)$: Lattice point, spin $\mu = (n, i)$: Orbital, lattice point

A many-particle basis can be written $|\phi\rangle = |n_{\mu}, n_{\nu}, \dots, n_{\mu_N}\rangle$. Many particle states are built by combining many one-particle states, but where the one-particle states are not necessarily independent. If <u>one</u> of the set of quantum numbers, μ_i , are changed, this <u>scattering</u> will generally have consequences for the distribution of quantum numbers for the remaining sets $\{\mu_j\}_{j\neq i}$. We generally imagine that many-particle states can be built as a linear combination of $|\phi\rangle$'s;

$$|\Psi\rangle = \sum_{n_{\mu_1}, \dots, n_{\mu_N}} \phi_{\mu_1, \dots, n_{\mu_N}} |\mu_1, \dots, n_{\mu_N}\rangle.$$
 (1)

A definite one-state vector $|n_{\mu}, \dots, n_{\mu_N}\rangle$ can be demanded from a vacuum state (where there is no filled one-particle states) $|0\rangle$ via creation operators.

bosons : a^{\dagger}_{μ} fermions : c^{\dagger}_{τ}

A quanta in a one-particle state can be destroyed by the annihilation operators.

bosons : a_{μ} fermions : c_{μ}

These operators satisfy some commutation relations:

$$[a_{\mu}, a_{\nu}]$$
 = $[a_{\mu}^{\dagger}, a_{\nu}^{\dagger}] = 0$ (2)

$$[a_{\mu}, a_{\nu}^{\dagger}] = \delta_{\mu\nu} \tag{3}$$

$$[A,B] = AB - BA \tag{4}$$

$$\{c_{\mu}^{\dagger}, c_{\nu}^{\dagger}\} = \{c_{\mu}, c_{\nu}\} = 0$$
 (5)

$$\{c_{\mu}, c_{\nu}^{\dagger}\} \qquad \qquad = \delta_{\mu\nu} \tag{6}$$

$$\{A, B\} = AB + BA \tag{7}$$

These will automatically satisfy the Pauli principle as well, which gives <u>symmetri/</u> antisymmetric solutions by exchange, dependent if the particles are bosons/fermions.

2.2 From classical formulation to second quantization of one-particle operators

For one-particle operators we usually have a kinetic energy function on a form like

$$T = \sum_{i} T(\vec{r_i}, \vec{p_i}) = \sum_{i} T\left(\vec{r_i}, \frac{\partial}{\partial r}\right)$$
 (8)

Ex 2. External electrostatic potential:

$$T = \sum_{i} V_{\text{ext}} \left(\vec{r}_i \right) \tag{9}$$

Ex 3. Kinetic energy:

$$T = \sum_{i} \frac{p^2}{2m} = -\sum_{i} \frac{\hbar^2}{2m} \nabla_i^2 \tag{10}$$

Ex 4. Crystal-potential:

$$T = \sum_{i} \sum_{j} v_{\text{cryst}} \left(\vec{r_i}, \vec{R}_j \right) \tag{11}$$

Second quantization by an operator on this form can be written

$$T = \sum_{\mu,\nu} T_{\mu\nu} c_{\mu}^{\dagger} c_{\nu}, \tag{12}$$

where

$$T_{\mu\nu} = \langle \mu | T(\vec{r}, \vec{p}) | \nu \rangle. \tag{13}$$

Note: The matrix element of one-particle operators are determined by matrix elements in the Hilbert space of one-particle states.

2.3 From classical formulation to second quantization of two-particle operators

Typically, we consider pair-potentials

$$V = \sum_{i,j} V(\vec{r_i}, \vec{r_j}). \tag{14}$$

Ex 5. Exchange interaction of two charges

$$V = \frac{e^2}{2} \sum_{i \neq j} \frac{1}{|\vec{r}_i - \vec{r}_j|} \tag{15}$$

Figure 1: Scattering from an external potential $v_{\mu\nu}c^{\dagger}_{\mu}c_{\nu}$

Figure 2: Exchange interaction between two particles.

The second quantization versions of these are

$$V = \sum_{\mu,\dots,\beta} V_{\mu\nu\alpha\beta} c_{\mu}^{\dagger} c_{\nu}^{\dagger} c_{\alpha} c_{\beta}, \tag{16}$$

where again

$$V_{\mu\nu\alpha\beta} = \langle \mu\nu | V(\vec{r}_i, \vec{r}_j) | \beta\alpha \rangle \tag{17}$$

Note: The matrix element of two-particle operators are determined by matrix elements in the Hilbert room of two-particle states. The Hamiltonian:

$$H = T + V \tag{18}$$

$$T = -\sum_{i} \frac{\hbar^2}{2m} \nabla_i^2 \tag{19}$$

So far, we have just presented second quantization for fermion operators, but an equivalent statement will of course hold for the second quantization version of the Hamiltonian for an interacting, material, bosonic system, which has the same identical form as (18). Notice that each term in H has just as many c^{\dagger}_{μ} as c_{ν} .

2.4 Statistical mechanics

Assume that we know the spectrum E_N^n for an interacting many-particle system, defined by a state $|\psi_N\rangle_n$, where N is the number of particles in the system and n is an index that indicates what excited state $|\psi_N\rangle_n$ the system is in. $|\psi_N\rangle$ is also assumed to be known, such that the matrix product of observables can be calculated:

$$H |\psi\rangle_n = E_N |\psi\rangle_n. \tag{20}$$

To do statistical mechanics, we need to introduce temperature. We do this by using the canonical partition function

$$Z_N = \sum_n e^{-\beta E_N^n}. (21)$$

Note, in (21) we sum over states, <u>not</u> the energy levels E_N^n .

$$Z = \sum_{n} {}_{n} \langle \psi_{N} | e^{-\beta H} | \psi_{N} \rangle_{n}$$

$$= \operatorname{Tr} (e^{-\beta H}) = \operatorname{Tr} (S^{-1} S e^{-\beta H})$$

$$= \operatorname{Tr} (S e^{-\beta H} S^{-1})$$

$$= \sum_{n'} {}_{n'} \langle \phi_{N} | e^{-\beta H} | \phi_{N} \rangle_{n'}.$$
(22)

We see in (22) that we can use an <u>arbitrary</u> basis to calculate the partition function. The most convenient basis is often a basis where the Hamiltonian is diagonal, but not always.

We write the statistical mean value of an operator as

$$\langle \hat{O} \rangle \equiv \frac{1}{Z} \operatorname{Tr} \left(\hat{O} e^{-\beta H} \right)$$

$$= \frac{1}{Z} \sum_{n} {}_{n} \langle \psi_{N} | \hat{O} e^{-\beta H} | \psi_{N} \rangle_{n}$$

$$= \frac{1}{Z} \sum_{n,n'} {}_{n} \langle \psi_{N} | \hat{O} | \psi_{N} \rangle_{n'} \underbrace{{}_{n'} \langle \psi_{N} | e^{-\beta H} | \psi_{N} \rangle_{n}}_{\delta_{nn'} e^{-\beta E_{n'}}}.$$
(23)

Thus, we have

$$\left\langle \hat{O} \right\rangle = \frac{1}{Z} \sum_{n} \underbrace{{}_{n} \left\langle \psi_{N} | \hat{O} | \psi_{N} \right\rangle_{n}}_{\text{QM matrix element}} e^{-\beta E_{N}^{n}}.$$
 (24)

Notice how the temperature, T only appears in the last factor in (24). Let us now consider the ground state (n=0) in the low temperature limit with energy E_0 corresponding to the state $|\psi_N\rangle_0$.

$$\left\langle \hat{O} \right\rangle \simeq \frac{1}{Z_{\beta=\infty}} e^{-\beta E_0} {}_0 \left\langle \psi_N | \hat{O} | \psi_N \right\rangle_0$$
$$= \frac{e^{-\beta E_0}}{e^{-\beta E_0}} {}_0 \left\langle \psi_N | \hat{O} | \psi_N \right\rangle_0,$$

such that

$$\left\langle \hat{O} \right\rangle \stackrel{\beta \to \infty}{=} {}_{0} \left\langle \psi_{N} | \hat{O} | \psi_{N} \right\rangle_{0}.$$
 (25)

We now have a way to calculate the statistical mean value in the ground state at zero temperature. Let us now now assume that the energy spectrum

2 SHORT RECAP OF SECOND QUANTIZATION FOR FERMIONS AND 2.4 Statistical mechanics BOSONS

is such that the ground state is separated from excited states by a $\underline{\text{gap}}$ (band insulators, semiconductors, superconductors). This way, we can express the excited state energies as

$$E_N^1 = E_N^0 + \Delta_N \tag{26}$$

such that

$$E_N^2, E_N^3, \dots \ge E_N^1.$$
 (27)

This way, we get from (24)

$$\left\langle \hat{O} \right\rangle = \frac{1}{Z} \sum_{n} {}_{n} \left\langle \psi_{N} | \hat{O} | \psi_{N} \right\rangle_{n} e^{-\beta E_{N}^{n}}$$

$$= \frac{\sum_{n} {}_{n} \left\langle \psi_{N} | \hat{O} | \psi_{N} \right\rangle_{n} e^{-\beta E_{N}^{n}}}{\sum_{n} e^{-\beta E_{N}^{n}}}$$

$$= \cdots$$

$$= \frac{{}_{0} \left\langle \psi_{N} | \hat{O} | \psi_{N} \right\rangle_{0} e^{-\beta E_{N}^{0} \left(1 + e^{-\beta \Delta} \dots \right)}}{e^{-\beta E_{N}^{0}} \left(1 + e^{-\beta \Delta} \dots \right)}$$
(28)

and we find that as $\beta\Delta >> 1$, $\hat{O} \simeq {}_0 \langle \psi_N | \hat{O} | \psi_N \rangle_0$. In semiconductors we find $\Delta \sim 10 {\rm mev} \sim 1000 {\rm K}$.

3 Coherent states and introduction to Grassmann variables

Pages 10-17 in lecture notes.

3.1 Coherent states

A coherent state (both for fermions and bosons) is defined as an eigenstate to an annihilation operator

$$a_{\mu} |\phi\rangle = \varphi_{\mu} |\phi\rangle$$
 Bosons (29)

$$c_{\mu}|\psi\rangle = \xi_{\mu}|\psi\rangle$$
 Fermions (30)

Both $|\psi\rangle$ and $|\phi\rangle$ must contain a component with the least (≥ 0) quantum number (quant), but it is clear that neither $|\psi\rangle$ nor $|\phi\rangle$ can be states with a sharply defined number of particles. They are therefore also "hard to destroy". This also explains why we chose to define them as eigenstates of the annihilation operators, not the creation operators. We will get back to the creation of these coherent states.

We will first look at the bosonic case:

3.1.1 Bosonic case

$$a_{\mu} |\phi\rangle = \varphi_{\mu} |\phi\rangle \tag{31}$$

$$[a_{\mu}, a_{\nu}] = 0$$

$$\Rightarrow (a_{\mu}a_{\nu} - a_{\nu}a_{\mu}) |\phi\rangle = 0$$

$$= (\varphi_{\mu}\varphi_{\nu} - \varphi_{\nu}\varphi_{\mu}) |\phi\rangle$$

$$\Rightarrow [\varphi_{\mu}, \varphi_{\nu}] = 0. \tag{32}$$

Equation (32) will always be satisfied if $\varphi_{\mu} \in \mathbb{C}$. The eigenvalues to coherent boson states can be chosen as complex numbers. This is something we can state without knowing anything about how these states are constructed.

3.1.2 Fermionic case

$$c_{\mu} |\psi\rangle = \xi_{\mu} |\psi\rangle \tag{33}$$

$$\{c_{\mu}, c_{\nu}\} = 0$$

$$\Rightarrow (c_{\mu}c_{\nu} + c_{\nu}c_{\mu}) |\psi\rangle = 0$$

$$= (\xi_{\mu}\xi_{\nu} + \xi_{\nu}\xi_{\mu}) |\psi\rangle$$

$$\Rightarrow \{\xi_{\mu}, \xi_{\nu}\} = 0. \tag{34}$$

If $\xi_{\mu} \in \mathbb{C}$, (34) will only be satisfied if $\{\xi_{\mu}\}=0$, trivial eigenvalues. The eigenvalues for coherent fermion states must be chosen as anti-commuting numbers, Grassmann-variables.

3.2 Grassmann variables

3.2.1 **Fundamentals**

Equation (34) states the fundamental property of Grassmann variables, and it immediately follows that

$$\xi_{\mu}^2 = 0, \tag{35}$$

the squares of the Grassmann variables vanish! Similarly we have that $\xi^n =$ $\xi^2 \xi^{n-2} = 0, n \ge 2$. An arbitrary series expansion in Grassmann variables

$$f(\xi) = \sum_{n} c_n \xi^n$$

= $c_0 + c_1 \xi + \dots$
= $c_0 + c_1 \xi$ (36)

is linear. We can also consider $f(\xi^*) = c_0 + c_1 \xi^*$, where $(\xi^*)^* = \xi$. An arbitrary function of ξ, ξ^* can be written on the forms

$$A(\xi, \xi^*) = c_0 + c_1 \xi + c_2 \xi^* + c_3 \xi \xi^*$$
(37)

$$= c_0 + c_1 \xi + c_2 \xi^* + d_3 \xi^* \xi \tag{38}$$

We will now look into some of the properties of functions of Grassmann variables.

3.2.2Differentiation

Differentiation with respect to Grassman variables follows

$$\frac{\partial \xi}{\partial \xi} = 1 \qquad \qquad \frac{\partial \xi}{\partial \xi^*} = 0 \qquad (39)$$

$$\frac{\partial \xi^*}{\partial \xi} = 0 \qquad \qquad \frac{\partial \xi^*}{\partial \xi^*} = 1 \qquad (40)$$

$$\frac{\partial \left(\xi \xi^*\right)}{\partial \xi} = \xi^* \tag{41}$$

$$\frac{\partial \left(\xi \xi^*\right)}{\partial \xi^*} = -\frac{\partial \left(\xi^* \xi\right)}{\partial \xi^*} = -\xi \tag{42}$$

$$\frac{\partial f\left(\xi\right)}{\partial \xi^*} = 0\tag{43}$$

$$\frac{\partial f(\xi)}{\partial \xi} = c_1 = \frac{\partial f(\xi^*)}{\partial \xi^*},\tag{44}$$

and for functions defined as in (37), we have

$$\frac{\partial}{\partial \xi} A(\xi, \xi^*) = c_1 + c_3 \xi^* = c_1 - d_3 \xi^*$$
(45)

$$\frac{\partial}{\partial \xi^*} A(\xi, \xi^*) = c_2 - c_3 \xi = c_2 + d_3 \xi. \tag{46}$$

3.2.3Integration

Integrating with respect to Grassmann variables are motivated from the properties of "normal" Riemann integrals, that if $f(x=\pm\infty)=0$, then

$$\int_{-\infty}^{\infty} \mathrm{d}x \, \frac{\mathrm{d}f}{\mathrm{d}x} = 0. \tag{47}$$

Equivalently we define

$$\int d\xi \cdot 1 = \int d\xi \frac{d\xi}{d\xi} = 0 \tag{48}$$

$$\int d\xi^* = 0, \tag{49}$$

in other words, the integral of a total differential is zero.

$$\int d\xi \,\xi = \int d\xi^* \,\xi^* = 1 \tag{50}$$

is a "normalization" criteria. These relations define what we mean by Grassmannintegration.

Now, we have

$$\int d\xi f(\xi) = c_1 \tag{51}$$

$$\frac{\partial f}{\partial \xi} = c_1 \tag{52}$$

$$\int d\xi A(\xi, \xi^*) = \int d\xi (x_0 + c_1 \xi + c_2 \xi^* + c_3 \xi \xi^*)$$

$$= c_1 + c_3 \xi^*.$$
(53)

As we can see by comparing (53) with (45), "integration" = "derivation". The somewhat hand wavy definition of integration is motivated by the fact that it gives results that reminds us about results from the theory for complex functions.

The number operator

Generally, we have that

$$a_{\mu}^{\dagger} |\phi\rangle \neq |\phi\rangle$$
 $c_{\mu}^{\dagger} |\xi\rangle \neq |\xi\rangle$, (54)

and so

$$a_{\mu}^{\dagger} a_{\mu} \left| \phi \right\rangle \neq N_{\mu}^{\phi} \left| \phi \right\rangle \tag{55}$$

$$c_{\mu}^{\dagger}c_{\mu}\left|\xi\right\rangle \neq N_{\mu}^{\xi}\left|\xi\right\rangle. \tag{56}$$

The coherent states are <u>not</u> eigenstates of the counting operator. $|\phi\rangle$, $|\xi\rangle$ are not states with a fixed number of "quants".

3.2.5 Algebra

Consider a vector space with the following additional properties:

- (xy)z = x(yz)
- 2) x(y+z) = xy + xz
- (x+y)z = xz + yz
- 4) $\alpha xy = x\alpha y.$

In Abelian algebra, xy = yx, while in Grassmann algebra xy = -yx. Complex numbers are generators for the Abelian algebra over the field \mathbb{G} of commuting numbers. Grassmann numbers are generators for the algebra over the field \mathbb{G} of anticommuting numbers.

4 Construction of coherent states for bosons, and its properties

Pages 18-26 in lecture notes.

4.1 Construction

The definition of a coherent boson state $|\phi\rangle$ is stated in (29). We make an ansatz – a qualified guess – that $|\phi\rangle$ can be created as

$$|\phi\rangle = e^{\sum_{\mu} \varphi_{\mu} a_{\mu}^{\dagger}} |0\rangle. \tag{57}$$

We claim that

$$a_{\mu} e^{\sum_{\nu} \varphi_{\nu} a_{\nu}^{\dagger}} |0\rangle = \varphi_{\mu} e^{\sum_{\nu} \varphi_{\nu} a_{\nu}^{\dagger}} |0\rangle$$
 (58)

Proof.

$$a\sum_{n=0} \frac{\left(\varphi a^{\dagger}\right)^n}{n!} |0\rangle = a\sum_{n=1} \frac{\varphi^n}{n!} \left(a^{\dagger}\right)^n |0\rangle.$$

Note that $(a^{\dagger})^n a |0\rangle = 0$, and so we wish to "commute a through".

$$[a, f(a^{\dagger})] = \sum_{n=1}^{\infty} c_n [a, (a^{\dagger})^n]$$

$$= \sum_{n=1}^{\infty} n c_n (a^{\dagger})^{n-1}$$

$$f(a^{\dagger}) = \sum_{n=0}^{\infty} c_n (a^{\dagger})^n$$

$$\Longrightarrow [a, f(a^{\dagger})] = \frac{\partial}{\partial a^{\dagger}} f(a^{\dagger}).$$

More generally:

$$[g(a), f(a^{\dagger})] = g\left(\frac{\partial}{\partial a^{\dagger}}\right) f\left(a^{\dagger}\right)$$
$$\left[a, \left(a^{\dagger}\right)^{n}\right] = n\left(a^{\dagger}\right)^{n-1}$$
$$\left[\left(a\right)^{m}, \left(a^{\dagger}\right)^{n}\right] = \frac{n!}{(n-m)!} \left(a^{\dagger}\right)^{n-m}$$
$$\left\{c, f\left(c^{\dagger}\right)\right\} = \frac{\partial}{\partial c^{\dagger}} f\left(c^{\dagger}\right)$$
$$\left\{g(c), f(c^{\dagger})\right\} = g\left(\frac{\partial}{\partial c^{\dagger}}\right) f\left(c^{\dagger}\right)$$

4 CONSTRUCTION OF COHERENT STATES FOR BOSONS, AND ITS 4.1 Construction PROPERTIES

To find out what the commutator $\left[a,\left(a^{\dagger}\right)^{n}\right]$ is, we use that

$$[A, BC] = [A, B]C + B[A, C],$$
 (59)

with $A = a, B = a^{\dagger}, C = \left(a^{\dagger}\right)^{n-1}$ to get

$$\begin{bmatrix} a, (a^{\dagger})^n \end{bmatrix} = (a^{\dagger})^{n-1} + a^{\dagger} \begin{bmatrix} a, (a^{\dagger})^{n-1} \end{bmatrix}
= a (a^{\dagger})^{n-1}
\Rightarrow a (a^{\dagger})^n |0\rangle = n (a^{\dagger})^{n-1} |0\rangle
\Rightarrow a e^{\varphi a^{\dagger}} |0\rangle = \sum_{n=1}^{\infty} \frac{\varphi^n n (a^{\dagger})^{n-1}}{n!} |0\rangle
= \varphi \sum_{n=1}^{\infty} \frac{(\varphi a^{\dagger})^{n-1}}{(n-1)!} |0\rangle
= \varphi e^{\varphi a^{\dagger}} |0\rangle .$$

Then, for more modes (quantum numbers), we get

$$|\phi\rangle = e^{\sum_{\mu} \varphi_{\mu} a_{\mu}^{\dagger}} |0\rangle \tag{60}$$

with the φ_{μ} 's satisfying

$$a_{\mu} |\phi\rangle = \varphi_{\mu} |\phi\rangle. \tag{61}$$

Coherent states: "difficult to destroy".

We also could have done this in a more direct way: Assume

$$|\phi\rangle = \prod_{\mu} f_{\mu} \left(\varphi, a_{\mu}^{\dagger}\right) |0\rangle \tag{62}$$

with

$$a_{\mu} = \varphi_{\mu} \left| \phi \right\rangle. \tag{63}$$

Then, we need that

$$a_{\mu}f_{\mu}\left(\varphi, a_{\mu}^{\dagger}\right)|0\rangle = \varphi_{\mu}f_{\mu}\left(\varphi, a_{\mu}^{\dagger}\right)|0\rangle, \tag{64}$$

but

$$a_{\mu}f_{\mu}|0\rangle = [a_{\mu}, f_{\mu}]|0\rangle \tag{65}$$

$$\implies \frac{\partial}{\partial a_{\mu}^{\dagger}} f_{\mu} = \varphi_{\mu} f_{\mu} \tag{66}$$

$$\implies \frac{\mathrm{d}f_{\mu}}{f_{\mu}} = \varphi_{\mu} \, \mathrm{d}a_{\mu}^{\dagger} \tag{67}$$

$$\ln f_{\mu} = \varphi_{\mu} a_{\mu}^{\dagger} \tag{68}$$

$$f_{\mu} = e^{\varphi_{\mu} a_{\mu}^{\dagger}}.$$
 (69)

Properties 4.2

We will now look at some of the properties of coherent bosonic states.

$$a_{\mu}^{\dagger} |\phi\rangle = a_{\mu}^{\dagger} e^{\sum_{\mu} \varphi_{\nu} a_{\nu}^{\dagger}} |0\rangle \tag{70}$$

$$=\frac{\partial}{\partial\varphi_{\mu}}\left|\phi\right\rangle \tag{71}$$

$$\langle \phi | = \langle 0 | e^{\sum_{\mu} \varphi_{\mu}^* a_{\mu}} \Longrightarrow$$
 (72)

$$\langle \phi | \, a_{\mu} = \frac{\partial}{\partial \varphi_{\mu}^{*}} \, \langle \phi | \tag{73}$$

The overlap of two coherent bosonic states are

$$\langle \phi | \sigma \rangle = \langle 0 | e^{\sum_{\mu} \varphi_{\mu}^* a_{\mu}} e^{\sum_{\nu} \sigma_{\nu} a_{\nu}^{\dagger}} | 0 \rangle.$$
 (74)

Now define

$$A = \sum_{\mu} \varphi_{\mu}^* a_{\mu}$$
$$B = \sum_{\nu} \sigma_{\nu} a_{\nu}$$

such that

$$\langle \phi | \sigma \rangle = \langle 0 | e^A e^B | 0 \rangle.$$
 (75)

We see that

$$\langle 0|e^B e^A |0\rangle = 1. \tag{76}$$

Baker-Hausdorff:

$$e^{A+B} = e^A e^B e^{-\frac{1}{2}[A,B]}$$
 (77)

$$= e^B e^A e^{-\frac{1}{2}[B,A]}, (78)$$

where [A, B] commutes with A, B.

$$\implies e^A e^B = e^B e^A e^{[A,B]} \tag{79}$$

$$[A, B] = \sum_{\mu, \nu} \varphi_{\mu}^* \sigma_{\nu} \underbrace{\left[a_{\mu}, a_{\nu}^{\dagger} \right]}_{\delta_{\mu\nu}} \tag{80}$$

$$=\sum_{\mu}\varphi_{\mu}^{*}\sigma_{\mu}\tag{81}$$

$$\Longrightarrow$$
 (82)

$$\Rightarrow \qquad (82)$$

$$\langle \phi | \sigma \rangle = e^{\sum_{\mu} \varphi_{\mu}^{*} \sigma_{\mu}} \underbrace{\langle 0 | e^{B} e^{A} | 0 \rangle}_{=1}$$

$$= e^{\sum_{\mu} \varphi_{\mu}^* \sigma_{\mu}}, \tag{84}$$

the states are not orthogonal!

For the normalization of $|\phi\rangle$ we have

$$\langle \phi | \phi \rangle = e^{\sum_{\mu} \varphi_{\mu}^* \varphi_{\mu}} \tag{85}$$

$$= e^{\langle N \rangle}. \tag{86}$$

 $\langle N \rangle$ is the average number of particles in the state $|\phi\rangle$

$$\frac{\langle \phi | \sum_{\mu} a_{\mu}^{\dagger} a_{\mu} | \phi \rangle}{\langle \phi | \phi \rangle} = \langle N \rangle \tag{87}$$

$$=\sum_{\mu}\varphi_{\mu}^{*}\varphi_{\mu}\tag{88}$$

$$\left\langle \left(\Delta N\right)^{2}\right\rangle =\frac{1}{\left\langle \phi|\phi\right\rangle }\left[\left\langle \phi|\hat{N}^{2}|\phi\right\rangle -\left(\left\langle \phi|\hat{N}|\phi\right\rangle \right)^{2}\right] \tag{89}$$

$$= \frac{1}{\langle \phi | \phi \rangle} \left[\langle \phi | \sum_{\mu,\nu} a_{\mu}^{\dagger} a_{\mu} a_{\nu}^{\dagger} a_{\nu} | \phi \rangle - \left(\sum_{\mu} \varphi_{\mu}^{*} \varphi_{\mu} \right)^{2} \right]$$
(90)

$$=\sum_{\mu}\varphi_{\mu}^{*}\varphi_{\mu}=N. \tag{91}$$

4.2.1 Coherent states for a one-bosonic oscillator

Following the construction from (57), we have

$$|z\rangle = e^{za^{\dagger}} |0\rangle$$
 (92)

$$= \sum_{n=0}^{\infty} \frac{z^n \left(a^{\dagger}\right)^n}{n!} |0\rangle = \sum_n \frac{z^n}{\sqrt{n!}} \frac{\left(a^{\dagger}\right)}{\sqrt{n!}} |0\rangle \tag{93}$$

$$=\sum_{n}\frac{z^{n}}{\sqrt{n!}}|n\rangle\tag{94}$$

$$\frac{1}{2\pi i} \int dz dz^* e^{-z^* z} |z\rangle\langle z|$$
 (95)

$$= \frac{1}{2\pi i} \int dz dz^* e^{-zz^*} \sum_{n,m} \frac{z^n}{\sqrt{n!}} \frac{(z^*)^m}{\sqrt{m!}} |m\rangle\langle m|$$
(96)

$$= \frac{1}{2\pi i} \sum_{n,m} \frac{1}{\sqrt{n!m!}} |n\rangle\langle m| \int dz dz^* e^{-zz^*} z^n (z^*)^m$$
 (97)

$$= \frac{1}{\pi} \sum_{n,m} \frac{1}{\sqrt{n!m!}} |n\rangle\langle m| \int dx \, dy \, e^{-(x^2 + y^2)} (x + iy)^n) (x - iy)^m.$$
 (98)

4 CONSTRUCTION OF COHERENT STATES FOR BOSONS, AND ITS 4.2 Properties PROPERTIES

Now, the integral in (98) is

$$\frac{1}{\pi} \int dx \, dy \, e^{-\left(x^2 + y^2\right)} \left(x + iy\right)^n \right) \left(x - iy\right)^m$$

$$= \frac{1}{\pi} \int d\rho \, \rho \, d\theta \, e^{-\rho^2} \left(\rho e^{i\theta}\right)^n \left(\rho e^{-i\theta}\right)^m$$

$$= \frac{1}{\pi} \underbrace{\int d\theta \, e^{i\theta(n-m)}}_{2\pi\delta_{nm}} \int d\rho \, \rho^{n+m+1} e^{-\rho^2}$$

$$= 2\delta_{nm} \int d\rho \, \rho^{2n+1} e^{-\rho^2}$$

$$= \delta_{nm} \int_0^\infty dr \, r^{-\frac{1}{2}} r^{\frac{2n+1}{2}} e^{-r} = \int_0^\infty dr \, r^n e^{-r}$$

$$= \delta_{nm} n!, \tag{99}$$

such that (95) becomes

$$\frac{1}{2\pi i} \int dz dz^* e^{-z^* z} |z\rangle\langle z| = \sum_{n,m} \frac{1}{\sqrt{n!m!}} |n\rangle\langle m| \cdot \delta_{nm} n!$$
$$= \sum_{n} |n\rangle\langle n| = 1.$$

Coherent states stays coherent under the propagation of time, but with a different label:

$$e^{\frac{-iHt}{\hbar}} |z\rangle = e^{\frac{-i\hbar\omega a^{\dagger}at}{\hbar}} |z\rangle = e^{-i\omega t a^{\dagger}a} |z\rangle$$

$$= e^{-i\omega t a^{\dagger}a} \sum_{n} \frac{z^{n}}{\sqrt{n!}} |n\rangle = \sum_{n} \frac{z^{n}}{\sqrt{n!}} e^{-i\omega t a^{\dagger}a} |n\rangle$$

$$= \sum_{n} \frac{z^{n}}{\sqrt{n!}} e^{-i\omega t n} |n\rangle = \sum_{n} \frac{\left(z e^{-i\omega t}\right)^{n}}{\sqrt{n!}} |n\rangle$$

$$= |z e^{-i\omega t}\rangle$$

The propagator in this basis is thus very simple:

$$\langle z_n | e^{\frac{-iHt}{\hbar}} | z_0 \rangle = \langle z_n | z_0 e^{-i\omega t} \rangle$$

$$= e^{z_n^* z_0 e^{-i\omega t}}$$
(100)

4.2.2 The completeness relation for coherent boson states

$$\int \left(\prod_{\mu} \frac{\mathrm{d}\varphi_{\mu}^{*} \, \mathrm{d}\varphi_{\mu}}{2\pi i} \right) e^{-\sum_{\mu} \varphi_{\mu}^{*} \varphi_{\mu}} |\phi\rangle\langle\phi|$$

$$= \int \left(\prod_{\mu} \frac{\mathrm{d}\varphi_{\mu}^{*} \, \mathrm{d}\varphi_{\mu}}{2\pi i} \right) e^{-\sum_{\mu} \varphi_{\mu}^{*} \varphi_{\mu}} e^{\sum_{\mu} \varphi_{\mu} a_{\mu}^{\dagger}} |0\rangle\langle0| e^{-\sum_{\mu} a_{\mu} \varphi_{\mu}^{*}}$$

$$= \int \left(\prod_{\mu} \frac{\mathrm{d}\varphi_{\mu}^{*} \, \mathrm{d}\varphi_{\mu}}{2\pi i} \right) e^{-\sum_{\mu} \varphi_{\mu}^{*} \varphi_{\mu}}$$

$$\cdot \sum_{n_{\mu}=0}^{\infty} \frac{\varphi_{\mu}^{n_{\mu}}}{\sqrt{n_{\mu}!}} \sum_{n_{\nu}=0}^{\infty} \frac{\varphi_{\nu}^{n_{\nu}}}{\sqrt{n_{\nu}!}} \cdots |n_{\mu}, n_{\nu}, \ldots\rangle$$

$$\cdot \sum_{m_{\mu}=0}^{\infty} \frac{(\varphi_{\mu}^{*})^{m_{\mu}}}{\sqrt{m_{\mu}!}} \sum_{m_{\nu}=0}^{\infty} \frac{(\varphi_{\nu}^{*})^{m_{\nu}}}{\sqrt{m_{\nu}!}} \cdots |n_{\mu}, n_{\nu}, \ldots|$$

$$= \sum_{n_{\mu}=0}^{\infty} \sum_{n_{\nu}=0}^{\infty} \cdots |n_{\mu}, n_{\nu}, \ldots\rangle\langle n_{\mu}, n_{\nu}, \ldots|$$

$$= I$$

Coherent states for fermions 5

Construction 5.1

We will also in the fermionic case make an ansatz on the construction of coherent fermionic states, somewhat similar to (57):

$$|\psi\rangle = e^{-\sum_{\mu} \xi_{\mu} c_{\mu}^{\dagger}} |0\rangle \tag{102}$$

$$= \prod_{\mu} \left(1 - \xi_{\mu} c_{\mu}^{\dagger} \right) |0\rangle \tag{103}$$

It is simpler to show that the ansatz satisfies the definition (30) ($c_{\mu} \left| \psi \right\rangle =$ $\xi_{\mu} | \psi \rangle$) for fermions than it was for bosons. Use the fact that $\xi_{\mu}^2 = 0$ to express the expansion of the exponential function.

$$c_{\mu} \prod_{\nu} \left(1 - \xi_{\nu} c_{\nu}^{\dagger} \right) |0\rangle = c_{\mu} |\psi\rangle \tag{104}$$

affects one of the products:

$$c_{\mu} \left(1 - \xi_{\mu} c_{\mu}^{\dagger} \right) |0\rangle = +\xi_{\mu} \underbrace{c_{\mu} c_{\mu}^{\dagger}}_{1 - c_{\mu} \dagger c_{\mu}} |0\rangle \tag{105}$$

$$= +\xi_{\mu} \left| 0 \right\rangle \tag{106}$$

$$= \xi_{\mu} \left(1 - \xi_{\mu} c_{\mu}^{\dagger} \right) |0\rangle$$

$$\Longrightarrow$$

$$(100)$$

$$(107)$$

$$c_{\mu} |\psi\rangle = \xi_{\mu} |\psi\rangle \,, \tag{108}$$

where we used the anticommutation relations $\{\xi_{\mu}, c_{\mu}\} = \{\xi_{\mu}, c_{\mu}^{\dagger}\} = 0$.

5.2 **Properties**

5.2.1 Creation operator

Acting with the creation operator on a coherent fermion state:

$$\begin{split} c^{\dagger}_{\mu} \left| \psi \right\rangle &= c^{\dagger}_{\mu} \left(1 - \xi_{\mu} c^{\dagger}_{\mu} \right) \prod_{\nu \neq \mu} \left(1 - \xi_{\nu} c^{\dagger}_{\nu} \right) \left| 0 \right\rangle \\ &= - \frac{\partial}{\partial \xi_{\mu}} \left(1 - \xi_{\mu} c^{\dagger}_{\mu} \right) \prod_{\nu \neq \mu} \left(1 - \xi_{\nu} c^{\dagger}_{\nu} \right) \left| 0 \right\rangle \\ &= - \frac{\partial}{\partial \xi_{\mu}} \left| \psi \right\rangle. \end{split}$$

Similarly, on the "bra" vectors:

$$\langle \psi | c_{\mu} = \prod_{\mu} \langle 0 | \left(1 + \xi_{\mu}^* c_{\mu} \right) c_{\mu}$$

$$= \frac{\partial}{\partial \xi_{\mu}^*} \prod_{\mu} \langle 0 | \left(1 + \xi_{\mu}^* c_{\mu} \right)$$

$$= \frac{\partial}{\partial \xi_{\mu}^*} \langle \psi |$$

NB: Note the plus sign in the product.

5.2.2 Overlap

The overlap between two coherent fermion states:

$$\begin{split} \langle \psi | \psi' \rangle &= \langle 0 | \prod_{\mu,\nu} \left(1 + \xi_{\nu}^* c_{\nu} \right) \left(1 - \xi_{\mu} c_{\mu}^{\dagger} \right) | 0 \rangle \\ &= \prod_{\mu,\nu} \langle 0 | \left(1 + \xi_{\nu}^* c_{\nu} \xi_{\mu} c_{\mu}^{\dagger} \right) | 0 \rangle \\ &= \prod_{\nu \neq \mu} \cdot 1 \prod_{\mu} \left(1 + \xi_{\mu}^* \xi_{\mu} \right) \\ &= \prod_{\mu} \left(1 + \xi_{\mu}^* \xi_{\mu} \right) \end{split}$$

Re-exponentiation $\implies \langle \psi | \psi' \rangle = e^{\sum_{\mu} \xi_{\mu}^* \xi_{\mu}}.$

We have used $\{c_{\mu}, \xi_{\mu}\} = 0$.

5.2.3 Completeness relation

The completeness relation for fermion coherent states is

$$\int \prod_{\mu} d\xi_{\mu}^* d\xi_{\mu} e^{-\sum_{\mu} \xi_{\mu}^* \xi_{\mu}} |\xi\rangle\langle\xi| = 1.$$
 (109)

Proof. For one mode:

$$\int d\xi \, d\xi^* \, e^{-\xi^* \xi} e^{-\xi c^\dagger} \, |0\rangle\langle 0| \, e^{-c\xi^*}$$

$$= \int d\xi \, d\xi^* \, (1 - \xi^* \xi) \, (1 - \xi c^\dagger) \, |0\rangle\langle 0| \, (1 - c\xi^*)$$

$$= \int d\xi \, d\xi^* \, [1 - \xi^* \xi - \xi^\dagger] \, |0\rangle\langle 0| \, (1 + \xi^* c)$$

$$= \int d\xi \, d\xi^* \, [(1 - \xi^* \xi) \, |0\rangle - \xi c^\dagger \, |0\rangle] \, [\langle 0| + \xi^* \, \langle 0| \, c]$$

$$= \int d\xi \, d\xi^* \, [(1 - \xi^* \xi) \, |0\rangle\langle 0| - \xi c^\dagger \, |0\rangle\langle 0|$$

$$+ \, (1 - \xi^* \xi) \, |0\rangle\langle \xi^* \, \langle 0| \, c - \xi c^\dagger \, |0\rangle \, \xi^* \, \langle 0| \, c]$$

$$= \int d\xi \, d\xi^* \, [(1 - \xi^* \xi) \, |0\rangle\langle 0| - \xi \, |1\rangle\langle 0|$$

$$+ \, (1 - \xi^* \xi) \, \xi^* \, |0\rangle\langle 1| + \xi \xi^* \, |1\rangle\langle 1|]$$

$$= |0\rangle\langle 0| + |1\rangle\langle 1| = 1$$

For multiple modes:

$$\int \prod_{\mu} d\xi_{\mu} d\xi^{*}_{\mu} e^{-\sum_{\mu} \xi_{\mu}^{*} \xi_{\mu}} |\xi\rangle\langle\xi|$$

$$= \int \prod_{\mu} d\xi_{\mu} d\xi^{*} \mu e^{-\sum_{\mu} \xi_{\mu}^{*} \xi_{\mu}} e^{-\sum_{\mu} \xi_{\mu} c_{\mu}^{\dagger}} |0\rangle\langle0| e^{-\sum_{\mu} c_{\mu} \xi_{\mu}^{*}}$$

$$= \int \left(\prod_{\mu} d\xi_{\mu}^{*} d\xi_{\mu}\right) \left(\prod_{\mu} \left(1 - \xi_{\mu}^{*} \xi_{\mu}\right)\right) \left(\prod_{\mu} \left(1 - \xi_{\mu} c_{\mu}^{\dagger}\right)\right)$$

$$\times |0\rangle\langle0| \left(\prod_{\mu} \left(1 + \xi_{\mu}^{*} c_{\mu}\right)\right)$$

We can treat $\xi_{\mu}^* \xi_{\mu}, \xi_{\mu} c_{\mu}^{\dagger}$ etc. as ordinary numbers when we change places, since they commute.

The trace of an operator:

$$\operatorname{Tr} A = \sum_{n} \langle n|A|n\rangle$$

$$= \int \prod_{\mu} d\xi_{\mu}^{*} d\xi_{\mu} e^{-\sum_{\mu} \xi_{\mu}^{*} \xi_{\mu}} \sum_{n} \langle n|\xi\rangle \langle \xi|A|n\rangle$$

$$= \int \prod_{\mu} d\xi_{\mu}^{*} d\xi_{\mu} e^{-\sum_{\mu} \xi_{\mu}^{*} \xi_{\mu}} \sum_{n} \langle -\xi|A|n\rangle \langle n|\xi\rangle$$

$$= \int \prod_{\mu} d\xi_{\mu}^{*} d\xi_{\mu} e^{-\sum_{\mu} \xi_{\mu}^{*} \xi_{\mu}} \langle -\xi|A|\xi\rangle$$

$$= \int \prod_{\mu} d\xi_{\mu}^{*} d\xi_{\mu} e^{-\sum_{\mu} \xi_{\mu}^{*} \xi_{\mu}} \langle -\xi|A|\xi\rangle$$
(110)

 $\hat{N} = \sum_{\mu} c_{\mu}^{\dagger} c_{\mu}$ is the number operator, as usual. What is the mean value of this operator in a fermion coherent state?

$$\frac{\langle \xi | \hat{N} | \xi \rangle}{\langle \xi | \xi \rangle} = \sum_{\mu} \frac{\langle \xi | c_{\mu}^{\dagger} c_{\mu} | \xi \rangle}{\langle \xi | \xi \rangle}$$
(111)

$$=\sum_{\mu}\xi_{\mu}^{*}\xi_{\mu}\tag{112}$$

This is neither a real nor complex number! It is therefore meaningless to talk about the mean value of number of fermions in a coherent state.

In (110) we used a property that is not true in general, but is under the integral.

$$\langle \psi | \xi \rangle = c_0 + c_1 \xi$$
$$\langle \xi | \psi \rangle = d_0 + d_1 \xi^*$$

Terms linear in ξ, ξ^* is zero under Grassmann integration

$$|\xi\rangle \equiv e^{\xi c^{\dagger}} |0\rangle$$
$$|-\xi\rangle = e^{-\xi c^{\dagger}} |0\rangle$$
$$\neq -|\xi\rangle$$

Such that

$$\langle \psi | \xi \rangle \langle \xi | \psi \rangle \neq \langle -\xi | \psi \rangle \langle \psi | \xi \rangle,$$
 (113)

but it comes out correct in the integral. We used this as

$$\int d\xi \,d\xi^* \,\langle \psi | \xi \rangle \,\langle \xi | \psi \rangle = \int d\xi \,d\xi^* \,\langle -\xi | \psi \rangle \,\langle \psi | \xi \rangle \tag{114}$$

The reason for this fundamental difference between Bosonic and fermionic coherent states lies in the Pauli exclusion principle and the definition of coherent states.

With a given set of one-particle states, together with the Pauli princliple, a physical state must have a fixed, determinable number of particles, and cannot be an eigenstate of a annihilation operator. The fermionic coherent states therefore lay outside the Hilbert space of physical states, and need not represent observable states. For bosons, the symmetric property means that even with a given set of quantum numbers, physical states can be an eigenstate of the annihilation operator. This is because each one particle state can assume an arbitrary number of quants. Boson coherent states are thus physical. They are in fact physical states naturally occurring when taking the classical limit of a quantum field theory. Also in lasers.

When we considered the trace (eq (110)) of an operator A for both for both fermionic and bosonic coherent states, we had to consider the matrix elements

$$\langle \phi | A | \phi \rangle$$
 (Bosons) $\langle -\psi | A | \psi \rangle$ (Fermions)

For bosons: Assume that $A(a_\mu^\dagger,a_\mu)$ are normal ordinals ; all a_μ are placed to the right of a_μ^\dagger -

$$a_{\mu} \left| \phi \right\rangle = \varphi_{\mu} \left| \phi \right\rangle \tag{115}$$

$$(a_{\mu})^{n} |\phi\rangle = (\varphi_{\mu})^{n} |\phi\rangle \tag{116}$$

$$A(a_{\mu})|\phi\rangle = A(\varphi_{\mu})|\phi\rangle, \qquad (117)$$

thus

$$\langle \phi | A \left(a_{\mu}^{\dagger}, a_{\mu} \right) | \phi' \rangle = A \left(\varphi_{\mu}^{*}, \varphi_{\mu'} \right) \langle \phi | \phi' \rangle \tag{118}$$

$$= A\left(\varphi_{\mu}^{*}, \varphi_{\mu'}\right) e^{\sum_{\mu} \varphi_{\mu}^{*} \varphi_{\mu'}}.$$
 (119)

Similarly,

$$\langle \psi | A \left(c_{\mu}^{\dagger}, c_{\mu} \right) | \psi' \rangle = A \left(\xi_{\mu}^{*}, \xi_{\mu}^{\prime} \right) e^{\sum_{\mu} \xi_{\mu}^{*} \xi_{\mu}^{\prime}}$$

$$\tag{120}$$

6 Gaussian integrals

In the functional integral formulation

7 Matsubara sums and contour integrals

8 Feynman path integrals

9 Imaginary time path integrals and the partition function

10 The partition function for a free electron gas

11 Functional integrals over quantum fields

12 Coherent states path integral