Sieci komputerowe

Wykład 3 Warstwa łącza, sprzęt i topologie sieci Ethernet

Zadania warstwy łącza danych

- Organizacja bitów danych w tzw. ramki
- Adresacja fizyczna urządzeń
- Wykrywanie błędów
- Multipleksacja (dostarczanie danych do odpowiedniego protokołu warstwy wyższej)
- Sposób dostęp do medium (w przypadku Ethernetu: CSMA/CD)
 - rozstrzyga, kiedy medium może być użyte

Adresacja Ethernet

- Ethernet korzysta z adresów tzw. sprzętowych, zwanych adresami MAC (MAC – Media Access Control)
- Adres jest przypisany na stałe do karty sieciowej
- Adresy są 48 bitowe
 - np.: 00:0d:61:b0:14:79
- Pierwsze 3 bajty określają producenta karty sieciowej
- Adres ff:ff:ff:ff:ff jest adresem rozgłoszeniowym (ang. broadcast)

Ramka Ethernet

Ethernet IEEE 802.2/802.3 LLC/SNAP (RFC 1042)

◀	802.3 MAC	>	 	802.2 LLC	>	■ 802.3	SNAP ►		
adres przeznaczenia	adres źródła	dłu- gość danych	DSAP AA	SSAP AA	entrl 03	org code 00	typ	dane	CRC
6	6	2	1	1	1	3	2	38-1492	4

typ 0800	datagram IP
2.	38-1492

Ethernet II (DIX) (RFC 894):

adres przeznaczenia	adres źródła	typ	dane	CRC
6	6	2	46-1500	4

typ	datagram IP		
0800			

- Ramka Ethernet II jest najczęściej używana
- Typy protokołów (np. 800 szesnastkowo to IP):
 - http://www.isi.edu/in-notes/rfc1700.txt

Ramki DIX i 802 w sieci

- Żadna z wartości pola długość w formacie 802 nie jest identyczna z wartością pola typ w ramce Ethernet II. Gdyby tak było te typy ramek nie mogłyby współistnieć w sieci
- Jak sprawdzić typ ramki?

Multipleksacja

Multiplexing Using Data-Link Type and Protocol Fields

 Warstwa łącza dostarcza dane do odpowiedniego protokołu wyższej warstwy

Topologie sieci Ethernet

Sieć w standardzie 10BASE2

Small Ethernet 10BASE2 Network

- Taka sieć nie wykorzystywała żadnych dodatkowych urządzeń
- Połączenia tworzą jedną szynę elektryczną występują kolizje
- Dla unikania kolizji stosuje się mechanizm CSMA/CD

CSMA/CD

- CS (Carrier Sense) urządzenia nasłuchują medium
 - jeśli jest wolne, można zacząć transmisję
- MA (Multiple Access) każde urządzenie ma dostęp do medium
- CD (Collision Detection) gdy urządzenia rozpoczną nadawanie w tym samym momencie, dochodzi do kolizji. Generowany jest sygnał, który świadczy o nieważności danych
 - po odczekaniu pewnego okresu czasu węzeł próbuje ponownie rozpocząć transmisję
 - czas ten może być zwiększany w przypadku występowania kolejnych kolizji

Skutki stosowania CSMA/CD

- Wykrywanie kolizji prowadzi do zmniejszenia liczby wysyłanych ramek i tym samym zapobiega kolejnym kolizjom
 - powoduje to znaczące zmniejszenie przepustowości sieci

Sieć w standardzie 10BASE-T oparta o hub

Small Ethernet 10BASE-T Network

- Sieć 10BASE-T bazuje na urządzeniu zwanym hubem (koncentratorem)
- W tego typu sieciach również występują kolizje
- Uszkodzenie kabla nie powoduje awarii całej sieci (tak jak w przypadku 10BASE2)

Zasada działania huba

10BASE-T Hub Re-Creates One Electrical Bus, Similar to 10BASE2

Hub powiela sygnał na wszystkich portach

Hub – domena kolizyjna

Cała sieć tworzy wspólną domenę kolizyjną

Sieć wykorzystująca most

- Dla zwiększenia wydajności sieci stosowano urządzenia zwane mostami (ang. bridge)
- Ograniczają domeny kolizyjne

Zasada działania mostu

Bridge Table: Before Either Frame is sent

Bridge Table: After Frame 1 (Fred to Barney)

Address: Interface 0200.1111.1111 E0

Bridge Table: After Frame 2 (Barney to Fred)

 Address:
 Interface

 0200.1111.1111
 E0

 0200.2222.2222
 E0

Sieć wykorzystująca przełącznik

 Współczesne sieci Ethernet są budowane z wykorzystaniem urządzeń zwanych przełącznikami (ang. switch)

Zasada działania przełacznika

Możliwa jest transmisja tzw. full duplex

- Domena kolizyjna została ograniczona do pary: karta sieciowa - port przełącznika
- CSMA/CD nie wpływa na wydajność

Techniki przełączania

Tryb pracy	Właściwości		
Store-and-forward	Ramka jest zapamiętywana w		
	całości, następnie po odczytaniu		
	adresów przeznaczenia i źródła, jest		
	przekazywana na właściwy port		
Cut-through	Ramka jest przekazywana na port		
	docelowy natychmiast (gdy tylko		
	zostaną odczytane adresy		
	przeznaczenia i źródła)		

- Metoda Cut-through jest szybsza
 - posiada jednak pewną wadę (jaką?)
- Generalnie opóźnienia współczesnych przełączników są niewielkie
 - rzędu 10¹ μs przełączanie cut-through,
 - rzędu 10² μs przełączanie store-and-forward

Topologie logiczne i fizyczne

Different Types of Network Topologies for Ethernet So Far in This Book

- · Physical Bus
- · Logical Bus

- Physical Star
- · Logical Bus

- · Physical Star
- · Logical Star

Współczesne sieci LAN oparte o przełączniki

- Nadmiarowość połączeń dla zapewnienia niezawodności powoduje pętle (przełącznik musi obsługiwać protokół Spanning Tree)
- Separacja portów (aby była możliwa, przełącznik musi obsługiwać tzw. VLANy)