Задача 1. Ако $\sqrt{x^2} - \sqrt{x} + 1 = y \times (\sqrt{x} + 1)^{-1}$, тогава $x \times \sqrt{x} = x$

- **A)** 1 + y
- **B**) y 1
- **C**) -y + 1
- **D**) *y*

Задача 2. Вписаната в правоъгълния триъгълник *ABC* окръжност се допира до хипотенузата *AB* в точката *M*. Ако $AM = 3 \ cm$ и $BM = 6 \ cm$, тогава лицето на триъгълника е:

- **A)** $18 cm^2$
- **B**) $9 cm^2$
- C) $27 cm^2$
- **D**) $36cm^2$

Задача 3. Ако числото a е рационално и числото $b = (2 - a - a^3) \times \sqrt{3} + 2 + a$ е също рационално, тогава стойността на b е:

A) 0

B) 1

C) 2

D) 3

Задача 4. Произведението от реалните корени на уравнението

$$(1+x) \times (1+x^2) \times (1+x^4) = 1-x^8$$
 e:

- **A**) -1
- **B**) (

C) 1

D) 2

Задача 5. От всички триъгълници със страни a, b и c, такива че

$$0 \le a \le 6 \le b \le 8 \le c \le 11$$

пресметнете обиколката на триъгълника с най-голямо лице.

A) 25

B) 24

- **C**) 23
- **D**) друг отговор

Задача 6. Намерете естественото число x, 97 < x < 102, за което изразът $4 + 4^{50} + 4^x$ е точен квадрат на естествено число.

- **A)** 98
- **B**) 99

- **C**) 100
- **D**) 101

Задача 7. Ако точките M и N са среди съответно на страните CD и DA на успоредника ABCD, а правите AM и BN се пресичат в точка P, тогава AP: PM =

- **A)** 2:3
- **B**) 1:2
- **C**) 1:3
- **D**) друг отговор

Задача 8. Квадрат и кръг имат обща част. Лицето на квадрата, лицето на общата част и лицето на кръга се отнасят, както $4 \div 1 \div 17$. Колко процента от лицето на фигурата е лицето на общата част?

A) 5

B) 10

C) 15

D) 20

Задача 9. Броят на рационалните числа в редицата $\sqrt{1}$, $\sqrt{3}$, $\sqrt{5}$, ..., $\sqrt{2015}$, $\sqrt{2017}$ е:

A) 44

B) 42

- **C**) 22
- **D**) 21

Задача 10. Колко са точките (x, y), чиито координати са цели отрицателни числа, и

$$2x + 3y + 8 > 0$$
?

A) 0

B) 1

C) 2

D) повече от 2

Задача 11. Уравнението $x^4 - x^3 + a x^2 + bx + 4 = 0$, където a и b са параметри, има двукратен корен 1. Колко са реалните му корени?

Задача 12. Остроъгълният триъгълник ABC е вписан в окръжност с център O и радиус R. Ако r е радиуса на окръжността, допираща се до отсечките AO и BO, и дъгата AB, и R = 3r, пресметнете $\sphericalangle ACB$.

Задача 13. Колко са целите стойности на израза $\alpha^2 + 3\alpha + 1$, за всяко число α , което удовлетворява неравенството $x^2 - 6x + 8 < 0$?

Задача 14. Представете като несъкратима дроб стойността на израза

$$\frac{0,1(6)+0,(3)}{4,1(6)+0,(3)}$$

Задача 15. Страните на триъгълник ABC са AB=3 cm, BC=4 cm и AC=5 cm. Точките K, M и N са петите на перпендикулярите от точка P съответно към страните AB, AC и BC. Да се пресметне $3 \times AK + 4 \times BN + 5 \times CM$.

Улътване: Сред класическите теореми в геометрията е тази на французина Лазар Никола Маргерит Карно: Перпендикулярите издигнати от точките K, M и N към страните AB, AC и BC на триъгълника ABC се пресичат в една точка P тогава и само тогава, когато $KB^2 + NC^2 + MA^2 = KA^2 + NB^2 + MC^2$.

Задача 16. Ако x < y, $x = \frac{9}{x} + y$ и $y = \frac{16}{y} + x$, да се пресметне x - y.

Задача 17. В числовото равенство $\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}=\sqrt{2}+\sqrt{3}+A$, известно като "*задача на индийския математик Бхаскара*" вместо последното число е записана буквата A. Определете A.

Задача 18. В някоя година три последователни месеца имат по 4 недели. Кои са възможните сборове от дните на тези три последователни месеца?

Задача 19. От квадрат със страна 10 *см* изрязваме от двата противоположни ъгъла по едно квадратче, всяко със страна 1 *см*. На колко най-много правоъгълници с размери 1 *см* на 2 *см* може да разрежим получената фигура?

Задача 20. Ако N е цяло число, колко са възможните остатъци при делението на N^4 на 5?