第一章作业

第七题

设X是线性赋范空间.证明:

- (1) 对于任何 $A,B\subset X$, $\overline{A}+\overline{B}\subset\overline{A+B}$.
- (2) $x_0 + A$ 是开集(闭集) 当且仅当 A 是开集(闭集).
- (3) A, B 中只要有一个是开集, A+B 是开集.
- (4) 若 $A^2 \neq \emptyset$, 则 A A 以 0 为内点.

证明:

(1)

设 $z\in\overline{A}+\overline{B}$,则存在 $x\in\overline{A}$, $y\in\overline{B}$ 使得 z=x+y。 由闭包定义,存在序列 $\{x_n\}\subset A$, $\{y_n\}\subset B$ 使得: $x_n\to x$, $y_n\to y$

考虑序列 $\{x_n + y_n\}$, 它属于 A + B。

由范数的连续性:

$$\|z-(x_n+y_n)\|=\|(x+y)-(x_n+y_n)\|\leq \|x-x_n\|+\|y-y_n\| o 0$$

因此 $z \in \overline{A+B}$

(2)

先证明开集情况:

"⇒": 若 x_0+A 是开集,对任意 $a\in A$, x_0+a 是 x_0+A 的内点,存在 r>0 使得 $B(x_0+a,r)\subset x_0+A$ 。则 $B(a,r)=-x_0+B(x_0+a,r)\subset A$,说明 a 是 A 的内点。

"ጐ": 若 A 是开集,对任意 $a\in A$,存在 r>0 使得 $B(a,r)\subset A$ 。则 $B(x_0+a,r)=x_0+B(a,r)\subset x_0+A$,说明 x_0+A 是开集。

闭集情况类似,利用序列定义即可证明。

(3) 证明 A, B 中只要有一个是开集, A+B 是开集:

不妨设 A 是开集。对任意 $z\in A+B$,存在 $a\in A$, $b\in B$ 使得 z=a+b。因为 A 是开集,存在 r>0 使得 $B(a,r)\subset A$ 。则 $B(z,r)=B(a+b,r)=b+B(a,r)\subset b+A\subset A+B$ 。因此 z 是 A+B 的内点,A+B 是开集。

(4) 证明若 $A^0 \neq \emptyset$, 则 A - A 以 0 为内点:

因为 $A^0 \neq \emptyset$,存在 $a \in A^0$ 。 由内点的定义,存在 r>0 使得 $B(a,r) \subset A$ 。 对任意 $\|h\| < r$,有 $(a+h)-a=h \in A-A$ 。 因此 $B(0,r) \subset A-A$,即 0 是 A-A 的内点。

第十九题

设 X 是线性赋范空间,若 X 有可数无穷 Hamel 基,则 X 不可能是完备的。

证明:

不妨设设 $\{e_n\}_{n=1}^{\infty}$ 是 X 的一个 Hamel 基。

定义 E_n :

$$E_n = \{x \in X : x = \sum_{k=1}^n \alpha_k e_k, \alpha_k$$
 为标量 $\}$

即 E_n 是由前 n 个基向量张成的有限维子空间。

由 Hamel 基的定义,我们有:

$$X = \bigcup_{n=1}^{\infty} E_n$$

若X是完备的,则X是第二纲的,即其不能表示为可数个无处稠密闭集的并。

但在 X 中, E_n 是闭集且无处稠密的。

因此 X 不可能完备。

第二十一题

- 设X是度量空间,则以下条件等价:
- (1) *X* 具有 Baire 性质.
- (2) X 中可数多个无处稠密闭集合之并其内点是空集.
- (3) X 中每个非空开集是第二纲的.
- (4) X 中每个第一纲集的余集在 X 中稠密.

证明:

 $(1) \Rightarrow (2)$:

若 X 具有 Baire 性质,则 X 不能表示为可数个无处稠密闭集的并

因此,若 $\{F_n\}$ 是可数个无处稠密闭集,则 $\bigcup_{n=1}^{\infty} F_n$ 的内点必须是空集,不然 X 就可以表示为可数个无处稠密闭集的并。

 $(2) \Rightarrow (3)$:

不妨设对于任意非空开集 $U\subset X$,U 是第一纲的。

则 $U = \bigcup_{n=1}^{\infty} F_n$,其中 F_n 是闭集且无处稠密。

这就出问题了,U 中可数多个无处稠密闭集合之并其内点是空集,这与 U 是开集矛盾。很坏。

 $(3) \Rightarrow (4)$:

设 A 是第一纲集,则 $A=\bigcup_{n=1}^{\infty}F_n$,其中 F_n 是无处稠密闭集

若 X-A 不稠密,则存在非空开集 U 使得 $U\cap (X-A)=\emptyset$

这意味着 $U \subset A$, 即 U 是第一纲的,这与 U 是开集矛盾。

 $(4) \Rightarrow (1)$:

假设不具有 Baire 性质,则存在可数个无处稠密闭集 F_n 使得 $X = \bigcup_{n=1}^\infty F_n$

则X 是第一纲集,由(4)知X在X的余集 \emptyset 在X中稠密,这与 $X=\bigcup_{n=1}^{\infty}F_n$ 矛盾。

第二十三题

设 X 是度量空间,证明集合 E 在 X 中稠密当且仅当 $\forall \varepsilon>0, X=\bigcup_{x\in E}O(x,\varepsilon).$

证明:

 \Rightarrow

任取 $y \in X$, 由 E 在 X 中稠密知:

orall arepsilon > 0, $\exists x \in E$ 使得 $d(x,y) < rac{arepsilon}{2}$

此时 $y\in O(x,arepsilon)$,因为 $d(x,y)<rac{arepsilon}{2}<arepsilon$,

所以 $y \in O(x, \varepsilon) \subset \bigcup_{x \in E} O(x, \varepsilon)$

由 y 的任意性,得到 $X\subset \bigcup_{x\in E}O(x,\varepsilon)$

另一方向的包含显然成立,因为 $O(x,\varepsilon)\subset X$

因此
$$X = \bigcup_{x \in E} O(x, \varepsilon)$$

 \leftarrow

设 $\forall \varepsilon>0, X=igcup_{x\in E}O(x,\varepsilon)$,证明 E 在 X 中稠密

任取 $y \in X$ 和 $\varepsilon > 0$

由条件知 $y \in \bigcup_{x \in E} O(x, \varepsilon)$,

因此存在 $x \in E$ 使得 $y \in O(x, \varepsilon)$,

即 $d(x,y) < \varepsilon$

这说明 $E \cap O(y, \varepsilon) \neq \emptyset$

由 y 和 ε 的任意性,得到 E 在 X 中稠密

第二十五题

设 (X,d) 是度量空间, $x\in X$, $E\subset X$, x 到 E 的距离是 d(x,E), 证明:

- (1) E 是闭集当且仅当 $\forall x \in X$, d(x, E) = 0 时 $x \in E$.
- (2) 若 E 是闭集, 则 $x \notin E$ 当且仅当 d(x, E) > 0.

证明:

(1)

 \Rightarrow 设 E 是闭集,取 $x\in X$ 使得 d(x,E)=0

由距离定义: $d(x, E) = \inf_{y \in E} d(x, y) = 0$

因此存在序列 $\{y_n\}\subset E$ 使得 $d(x,y_n) o 0$,即 $y_n o x$

由E是闭集知 $x \in E$

 \Leftarrow

取序列 $\{x_n\} \subset E$,且 $x_n \to x$

则 $d(x,x_n) \rightarrow 0$,因此 d(x,E) = 0

由条件知 $x \in E$, 即 E 是闭集

(2)

 \Rightarrow 设 $x \notin E$,假设 d(x,E)=0

由 (1) 知 $x \in E$, 这与 $x \notin E$ 矛盾

因此必有 d(x, E) > 0

 \Leftarrow 设 d(x, E) > 0,假设 $x \in E$

则 d(x, E) = 0, 这与 d(x, E) > 0 矛盾

因此必有 $x \notin E$

第三十二题

设X度量空间, $A \subset X$ 是紧集,则

- (1) $\forall x \in X$,存在 $y \in A$,使得 d(x,y) = d(x,A).
- (2) $\exists x, y \in A$ 使得 $d(x, y) = \operatorname{diam} A$,后者为 A 的直径.
- (3) 若另有 $B\subset X$ 和闭集,则 $A\cap B=\emptyset$ 当且仅当 $d(A,B)=\inf_{x\in A,y\in B}d(x,y)>0.$
- (4) 举例说明, 当 A 是闭集时, (1) 可以不成立.

证明:

证明:

(1)

任取 $x \in X$,由距离定义: $d(x,A) = \inf_{y \in A} d(x,y)$

因此存在序列 $\{y_n\}\subset A$ 使得 $d(x,y_n) o d(x,A)$

由 A 的紧性, $\{y_n\}$ 有收敛子列 $\{y_{n_k}\}$,设其极限为 $y_0\in A$

由距离的连续性: $d(x,y_0) = \lim_{k \to \infty} d(x,y_{n_k}) = d(x,A)$

(2)

由直径定义: $\operatorname{diam} A = \sup_{x,y \in A} d(x,y)$

存在序列 $\{x_n\},\{y_n\}\subset A$ 使得 $d(x_n,y_n) o \mathrm{diam} A$

由 A 的紧性, $\{x_n\}$ 和 $\{y_n\}$ 分别有收敛子列,设其极限分别为 $x_0,y_0\in A$

由距离的连续性: $d(x_0, y_0) = \text{diam} A$

(3)

(\Rightarrow) 设 $A \cap B = \emptyset$

若 d(A,B)=0,则存在序列 $\{x_n\}\subset A$, $\{y_n\}\subset B$ 使得 $d(x_n,y_n) o 0$

由 A 的紧性, $\{x_n\}$ 有收敛子列,其极限为 $x_0 \in A$

由B的闭性, $y_n o x_0 ext{ 且 } x_0 \in B$

这与 $A \cap B = \emptyset$ 矛盾,因此d(A,B) > 0

(仁)设 d(A,B)>0,若 $A\cap B\neq\emptyset$

则存在 $z\in A\cap B$,此时 d(z,z)=0,这与 d(A,B)>0 矛盾 (4)

在
$$\mathbb{R}^2$$
 中,令 $A=\{(x,\frac{1}{x}):x>0\}\cup\{(0,y):y\geq 0\}$, $x=(0,-1)$
在这个例子中, A 是闭集,但对于 $x=(0,-1)$,不存在 $y\in A$ 使得 $d(x,y)=d(x,A)$

第三十五题

证明度量空间中,若 A 在 B 中稠密,B 在 C 中稠密,则 A 在 C 中稠密.

证明:

任取 $c \in C$ 和 $\varepsilon > 0$

因为 B 在 C 中稠密,存在 $b \in B$ 使得 $d(b,c) < \frac{\varepsilon}{2}$

因为 A 在 B 中稠密,存在 $a \in A$ 使得 $d(a,b) < \frac{\varepsilon}{2}$

由三角不等式:

$$d(a,c) \leq d(a,b) + d(b,c) < rac{arepsilon}{2} + rac{arepsilon}{2} = arepsilon$$

这说明对任意 $c \in C$ 和 $\varepsilon > 0$,都存在 $a \in A$ 使得 $d(a,c) < \varepsilon$

因此 A 在 C 中稠密。