МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ І СПОРТУ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО"

КАФЕДРА КОНСТРУЮВАННЯ ЕОА

3BIT

з лабораторної роботи №5 по курсу «Основи теорії кіл - 2» на тему «Гармонійні сигнали в найпростіших ланцюгах»

Виконав:

студент гр. ДК-82

Сопіра Р. Я.

Перевірив:

доцент

Короткий Є. В.

Послідовний контур

Використані значення:

R = 985 Om,

L = 0.925 мГн,

С = 138 нФ

$$f_{\mathit{pes}} = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}} = \frac{1}{2 \cdot \pi \cdot \sqrt{0.925 \cdot 10^{-3} \cdot 138 \cdot 10^{-9}}} \approx 14.09 \left(\kappa \Gamma \mathbf{y} \right)$$

Параметри вхідного сигналу:

$$U_{\text{bx}} = 1 \text{ B},$$
 $f = 8 \text{ к}\Gamma\text{ц}$

Для вимірювання фаз сигналів був використаний наступний скрипт:

[===]

Напруга на резисторі

LTSpice:

$$\varphi_R = (\frac{-0.806}{125}) \cdot 360 = -2.32^{\circ}$$

Експеримент:

Напруга на котушці

LTSpice:

$$\varphi_L = \left(\frac{-34}{125}\right) \cdot 360 \approx -98^{\circ}$$

Експеримент:

Напруга на конденсаторі

LTSpice:

$$\varphi_C = (\frac{39}{125}) \cdot 360 \approx 112^{\circ}$$

Експеримент:

Результати вимірювань

Табл. 1

Cx.		U _{bx}	Δφ	$\mathbf{U}_{\mathbf{R}}$	Δφ	Uc	Δφ	\mathbf{U}_{L}	Δφ	I_{BX}
-//-	В, мА, °	0.9965	4.68	0.9795	-83.04	0.1448	72.84	0.0573	0.00	0.9836
	Діюче	0.7046		0.6926		0.1024		0.0405		0.6955

 $I_{\text{вх}} = I_{\text{R}} = I_{\text{C}} = I_{\text{L}}$, тому, що маємо послідовний контур; через це різниця фаз між напругою на вході та струмом буде нульовою.

Опори схеми:

$$\begin{split} X_R &= Re^{j(\Delta\phi)} = 985 \, e^{j(4.68)} = 981.72 + 80.37 \, j(O_M) \\ X_C &= \frac{1}{2\pi f \cdot C} e^{j(\Delta\phi)} = \frac{1}{2\pi 8 \cdot 138 \cdot 10^{-6}} e^{j(-83.04)} = 144.16 \, e^{j(-83.04)} = 17.47 - 143.1 \, j(O_M) \\ X_L &= 2\pi f \cdot L \, e^{j(\Delta\phi)} = 2\, \pi \, 8 \cdot 10^{-3} \cdot 0.925 = 46.5 \, e^{j(72.84)} = 13.72 + 44.43 \, j(O_M) \\ X_{ex} &= X_C + X_L = 31.19 - 98.67 \, j = 103.48 \, e^{j(-72.46)} (O_M) \\ Z_{ex} &= X_R + X_{ex} = 1012.91 - 18.3 \, j = 1013.08 \, e^{j(-1.04)} (O_M) \\ \dot{Y}_{ex} &= \frac{1}{\dot{Z}_{ex}} = \frac{1}{1013.08} e^{j(1.04)} = 0.987 \, e^{j(1.04)} (M_CM) \end{split}$$

Струм у схемі:

$$\dot{I}_{\rm ex} = \frac{\dot{U}_{\rm ex}}{\dot{Z}_{\rm ex}} = \frac{0.9965 \, e^{j(0)}}{1013.08 \, e^{j(-1.04)}} = 0.9836 \, e^{j(1.04)} (\, {\rm MA})$$

2):

$$\dot{X}_{R} = \frac{\dot{U}_{R}}{\dot{I}_{ev}} = \frac{0.9765 \, e^{j(4.68)}}{0.000984 \, e^{j(1.04)}} = 992.38 \, e^{j(3.64)} = 990.37 + 63 \, j(O_{M})$$

$$\dot{X}_{C} = \frac{\dot{U}_{C}}{\dot{I}_{\rm ex}} = \frac{0.1448\,e^{j(-83.04)}}{0.000984\,e^{j(1.04)}} = 147.15\,e^{j(-84.08)} = 15.18 - 146.37\,j\,(O{\rm M})$$

$$\dot{X}_L = \frac{\dot{U}_L}{\dot{I}_{\rm ex}} = \frac{0.0573 \, e^{j(72.84)}}{0.000984 \, e^{j(1.04)}} = 58.23 \, e^{j(72.84)} = 18.19 + 55.32 \, j(O{\rm M})$$

$$\overset{\cdot}{X}_{\text{ex}} = \overset{\cdot}{X}_{\text{C}} + \overset{\cdot}{X}_{\text{L}} = 33.37 - 91.05 \, j = 96.97 \, e^{j(-69.87)} (O_{\text{M}})$$

$$\dot{Z}_{\text{ex}} = \frac{\dot{U}_{\text{ex}}}{\dot{I}_{\text{ex}}} = \frac{0.9965 \, e^{j(0)}}{0.000984 \, e^{j(1.04)}} = 1012.7 \, e^{j(-1.04)} (O_{\text{M}})$$

Табл. 2

-200,00

Cx.		R	Xc	X_{L}	X _{BX}	Z _{bx}	Y _{BX}
-//-	Ом,	985	144.16	46.5	103.48	1013.08	0.987
	мСм	e ^ j(4.68)	e ^ j(-83.04)	e ^ j(72.84)	e ^ j(-72.46)	e ^ j(-1.04)	e ^ j(1.04)
-//-	Ом,	992.38	147.15	58.23	96.97	1012.7	0.988
	мСм	e ^ j(3.64)	e ^ j(-84.08)	e ^ j(71.8)	e ^ j(-69.87)	e ^ j(-1.04)	e ^ j(1.04)

Векторні діаграми опорів

Розрахунок потужностей

Повна потужність:

$$S_R = U_R \cdot I_{ex} = 0.6929 \cdot 0.6955 \approx 0.4819 (B \cdot A \cdot 10^{-3})$$

$$S_L = U_L \cdot I_{ex} = 0.0405 \cdot 0.6955 \approx 0.0282 (B \cdot A \cdot 10^{-3})$$

$$S_C = U_C \cdot I_{ex} = 0.1024 \cdot 0.6955 \approx 0.0712 (B \cdot A \cdot 10^{-3})$$

Активна потужність:

$$P_R = S_R \cdot \cos \Delta \varphi_R = 0.4819 \cdot \cos(4.68^\circ) \approx 0.4819 \cdot 0.997 \approx 0.4805 (\text{MBm})$$

$$P_L = S_L \cdot \cos \Delta \varphi_L = 0.0282 \cdot \cos (72.84^\circ) \approx 0.0282 \cdot 0.295 \approx 0.0083 (MBm)$$

$$P_R = S_R \cdot \cos \Delta \varphi_R = 0.0712 \cdot \cos(-83.04^\circ) \approx 0.0712 \cdot 0.121 \approx 0.0086 (MBm)$$

Реактивна потужність:

$$Q_R = S_R \cdot \sin \Delta \varphi_R = 0.4819 \cdot \sin(4.68^\circ) \approx 0.4819 \cdot 0.082 \approx 0.0395 (eap \cdot 10^{-3})$$

$$Q_L = S_L \cdot \sin \Delta \varphi_L = 0.0282 \cdot \sin(72.84^\circ) \approx 0.0282 \cdot 0.955 \approx 0.0269 (\text{вар} \cdot 10^{-3})$$

$$Q_C = S_C \cdot \sin \Delta \, \varphi_C = 0.0712 \cdot \sin(-83.04^\circ) \approx 0.0712 \cdot (-0.993) \approx -0.0707 \, (eap \cdot 10^{-3})$$

Векторні діаграми потужностей

Потужності на резисторі

Потужності на котушці

Потужності на конденсаторі

Висновок

На даній лабораторній було досліджено поведінку гармонійних сигналів у послідовному коливальному контурі шляхом моделювання схеми у симуляторі LTSpice і шляхом експерименту.

На макетній платі було побудовано послідовний коливальний контур та за допомогою плати Analog Discovery 2 та програми Waveforms виміряні потрібні величини. Подальші розрахунки виконувалися методом комплексних амплітуд. Було розраховано опори та потужності схеми і побудовано відповідні векторні діаграми.

Репозиторій на GitHub: [===]