INTRODUCTION TO DATA SCIENCE

Mining Data Streams (MMDS4)

Mining Data Streams

- Database mining
 - All data is available

- Stream mining
 - Data arrives as a stream
 - Immediately processed/stored
 - Only feasible to store and interact with a small portion of the data
 - Rapid rate of arrival

The Stream Data Model

A data-stream-management system

Figure 4.1: A data-stream-management system

Examples

- Sensor data
 - Temperature sensors equipped with GPS floating in the ocean
 - 10 readings per second, 4 bytes = 3.5Mb per day
 - 1M sensors 3.5T per day
- Image data
 - Satellites producing images each second
- Internet and web traffic
 - Switching node monitors streams of IP packets to report problems or rerouting decisions
 - Google's stream of queries(popular queries) or Yahoo! stream of clicks (popular pages)

Stream Queries

- Standing queries
 - Permanently executing, producing outputs at appropriate times
 - Alert whenever the temperature exceed a certain value
 - Produce the average of last 24 reading when new data arrives

- Ad-hoc queries
 - Asked once about the current state

Sliding window

- Store a sliding window in the working store
 - All elements arrived during last t time units
 - Most recent n elements
 - Keep it fresh
- □ Treat elements of the stream as tuples
 - Treat sliding window as a relation
 - Query with SQL query

Example: Number of Unique Users

Relation Logins(name,time)

```
SELECT COUNT(DISTINCT(name))
FROM Logins
WHERE time >= t;
```

 Maintain entire stream of logins for a past month in the working storage

Issues in Stream Processing

- Rate of arrival might be high
 - Multiple streams
 - Process elements in real-time
 - No disk access

- Approximation
 - Much more efficient to get an approximate answer
 - Hashing to introduce useful randomness

Sampling Data in a Stream

A motivating example

- Input: Stream of queries (query,user)
- Problem
 - What fraction of the typical user's queries were repeated over the past month
 - Average user perfumed n queries, k of them were repeated more then once
- Limitation
 - Can store only tenth of stream data

Example: Obvious approach

- Generate random a 0-9 number for each query
- Store a tuple only if the random number is 0
- Wrong answer
 - Suppose s queries once and d queries twice, and no queries more then twice
 - s/10 queries will appear once
 - d/100 will appear twice
 - $d\left[\frac{1}{10}\frac{9}{10} + \frac{9}{10}\frac{1}{10}\right] = \frac{18}{100}d$ of those who appears twice in the original stream, will appear in the sample exactly once
 - The correct answer is d/(s+d), using the sampling

$$\frac{d/_{100}}{d/100 + s/_{10} + {}^{18}d/_{100}} = \frac{d}{19d + 10s}$$

Representative sample

- Sample users and store queries of all selected users
- Option I: keep list of all users
 - Check if user exists
 - Generate 0-9 random number for a new user
 - If number is 0, start to track this user's queries
- Option II: hashing
 - Hash every user id to 0-9
 - Store queries for user that has value 0

The General Sampling Problem

- Stream tuples have 3 components
 - Key, Value, Time
 - Selection based on keys
 - Sample all tuples with a subset of key values

- □ Too take a sample of size a/b
 - Hash key value for a tuple into b buckets
 - Store when has value is less than a

Varying the Sample Size

- Have a budget on total stored tuples
 - Remove samples as more new samples are coming in
- Hash to large number of buckets B
 - Maintain a threshold t
 - Maintain samples such that their keys K have h(K)<t</p>
- Low the threshold of number of samples exceed the allocated space
 - Reduce to t-1
 - Drop all samples hashed to t

Filtering Streams

Motivating Example

- □ Stream: e-mails
- □ Input: list of 1B legitimate e-mail addresses
 - Others are spam
- □ Filtering: Allow only legitimate addresses
- E-mail address is 20 bytes
- Not feasible to store the list in RAM

□ What can we do with 1G of memory?

Bloom Filtering

- □ Use 1Gb RAM as bit array
 - 8B of bits
 - Hash every address to 8B buckets
 - Approximately 1/8 will be ones
 - Some will hash to the same bit
- □ New e-mail arrives
 - Hash and check if bit is set
 - Let it through if one
 - Some spam will get through
 - Cascade bloom filters

The Bloom Filter

A Bloom filter consists of:

- An array of n bits, initially all 0's.
- 2. A collection of hash functions h_1, h_2, \ldots, h_k . Each hash function maps "key" values to n buckets, corresponding to the n bits of the bit-array.
- 3. A set S of m key values.

- Initially: set a bit to one if at least one element of S and at least one hash function set it to one
- □ To test a key K: let through if all bits are one

$$h_1(K), h_2(K), \ldots, h_k(K)$$

Analysis of Bloom Filtering

- All keys from S should pass
- What is the probability of false positive
- Throwing darts at targets using a single hash
 - x targets: bits locations
 - y darts: member of S
 - Probability that a given target won't be hit by any darts (i.e. zero bit)
- Probability that given dart will not hit a given targets is $\frac{x-1}{x}$
- Probability that none of y darts will hit a given target is

$$\left(\frac{x-1}{x}\right)^{y} = \left(1 - \frac{1}{x}\right)^{x\frac{y}{x}} \to e^{-\frac{y}{x}}$$

Example

- □ 1B e-mails/darts
- 8B targets/bits
- Probability that any given bit will be zero is

$$e^{-\frac{y}{x}} = e^{-\frac{1}{8}}$$

□ Probability that given bit will be 1 is

$$1 - e^{-\frac{1}{8}} = 0.1175$$

 \square Slightly less than 1/8=0.125

Generalization

- S has m members, array has n bits and there are k hash function
 - Targets x=n
 - Number of darts y=km
- Want proportion of 0 be large
 - So non-S will hash to zero at least once
 - Choose k to be n/m or less
 - Probability of 0 $e^{-\frac{y}{x}} = e^{-\frac{km}{n}} = 0.37 = 37\%$
 - Probability of 1 is $1 e^{-\frac{km}{n}}$
 - Probability of false positive $\left(1 e^{-\frac{km}{n}}\right)^k$

Example

- In the previous example
 - Fraction on 1's is 0.1175
 - Also the probability of false positive
- Use two different hash functions
 - 2B darts on 8B targets
 - \blacksquare Probability of zero is $e^{-\frac{1}{4}}$
 - False positive $(1 e^{-\frac{1}{4}})^2 = 0.0493$

Counting Distinct Elements

The Count-Distinct Problem

- How many different elements in the stream
 - Counting from the beginning or known time in the past
 - Example: number of unique users
- The obvious way
 - Keep list of all elements seen in the RAM
 - Check new element against the list
- Approximation
 - Estimate the number of distinct elements

The Flajolet-Martin Algorithm

- Hash element to a sufficiently long bit string
 - More possible hash values then elements
 - □ 64 bits for URLs (2⁶⁴ values)
- Whenever number of distinct elements increases
 - Number of different hash-values increases
 - The probability of "special/unusual" hash-value increases
- Unusual value
 - Ending in many 0's

Tail length

 \square h(a) is hashed to a bit string

 $lue{}$ Number of zeros at the end is tail lengths of h(a)

□ Let R be maximum tail length seen so far

 \square Estimate number of different elements as 2^R

Analysis

- $\ \square$ For m distinct element in the stream, the probability that none of them has at least r is

$$(1-2^{-r})^m = (1-2^{-r})^{2^{-r}m2^r} \approx e^{-m2^{-r}}$$

- Estimate of m
 - \blacksquare For $m\gg 2^r$, $e^{-m2^{-r}}$ is small, at least one has r zeroes
 - \blacksquare For $m \ll 2^r$, $e^{-m2^{-r}}$ is large, no elements have r zeroes

Combining Estimates

- Assume we have many hash functions
- \square How to combine their estimates (2^R) ?
- Averaging does not work well
 - The more functions we have, the more the probability of large number of trailing zeroes just by chance
 - □ If R grows by 1, the impact grows by factor 2
- Robust fusion
 - Median: OK with outliers, but only powers of 2
 - Combine into estimations into small groups
 - Average within the group
 - Median of group averages

Space Requirements

- Keep a single number per stream per hash
 - Largest tail length seen so far

Estimating Moments

Definition of Frequency Moments

- Generalization of Count-Distinct problem
- Assume set of possible elements is an ordered set
 - We can define an ith element in this order
 - lacktriangle Let m_i be the number of occurrences of ith element
- The k-th order moment (k-th moment) of the stream is

$$M_k = \sum_i (m_i)^k$$

- k=0 is the number of distinct elements
- □ K=1 is the length of the stream
- K=2 is the surprise number

Surprise number

- Measure how uneven the distribution of elements in the stream
 - Assume a stream of length 100 with 11 distinct elements (a1....a11)
- Case I: "Even" distribution
 - al appears 10 times, a2..a11 appear 9 times each
 - \square Surprise number is $10^2 + 10 \times 9^2 = 910$
- □ Case II: "Uneven" distribution
 - al appears 90 times, a2..all appear 1 time each
 - \square Surprise number is $90^2 + 10 \times 1^2 = 8110$

Alon-Matias-Szegedy Algorithm

- Estimating 2nd moment using limited space
- Start with a finite stream of length n, extend later
- \square Compute a number of variables X_1, \dots, X_k
- For each X store two values X.element and X.value
- To compute X
 - Select a random position i between 1 and n
 - Set X.element to be the element at this position
 - Initialize X.value to 1
 - Starting from the next position, scan the stream to the end
 - Add 1 to X.value for each new appearance of X.element

Example

- \square Stream is $\{a,b,c,b,d,a,c,d,a,b,d,c,a,a,b\}$
- □ Frequencies a:5, b:4,c:3,d:3
- \square Surprise number $5^2 + 4^2 + 3^2 + 3^2 = 59$
- □ 3 variables, 3 random positions 3,8,13
- $X_1 = \{c, 3\}, X_2 = \{d, 2\}, X_3 = \{a, 2\}$
- □ Second moment estimator is $n \times (2 \times X.value 1)$
- 55 is the average of
 - 15*(6-1), 15*(4-1), 15*(4-1)
- □ Compare 55 vs. 59

Analysis

- \square Let e(i) be an element at position i
- oxdot Let c(i) be number of appearances of e(i) starting from position i
- □ The expected value of $n \times (2 \times X.value 1)$ for a given stream is:
 - $\blacksquare E[n \times (2 \times X.value 1)] = \frac{1}{n} \sum_{i=1}^{n} n(2c(i) 1)$

Higher-Order Moments

- $\ \square$ Turn a number of occurrences v into estimation of the second moment is n imes (2v-1)
 - Why?
 - $lue{}$ Assume a counter goes from v-1 to v. What is the change in contribution of an element a.
 - $\triangle (m_a)^2 = v^2 (v-1)^2 = 2v 1$
 - lacksquare They sum up to m^2 , their average is m^2/n
- □ For 3^{rd} moment compute $v^3 (v-1)^3 = 3v^3 3v + 1$
 - $n \times (3v^3 3v + 1), v = X. value$
- For general k-th order moment
 - $n \times (v^k (v-1)^k), v = X. value$

Dealing with Infinite Streams

- Finite number of variables
 - Keep stream length so far (n)
- Selecting position
 - Once and for all
 - Bias in favor of early positions
 - Wait too long
 - Won't have enough variables for early estimations
- Maintain same number of variables
 - Throw and replace some variables as stream grows

Replacing Variables

- Assume want to maintain s variables
- □ When (n+1) element arrives
 - \square Pick this position with probability s/(n+1)
 - If picked, then with equal probability select a variable
 - Throw it away and replace with the new variable
- Prove that probability of every position to be selected is s/(n+1)
 - □ It's sure true for the current (n+1) position

Analysis

- Prove that probability to be selected is s/(n+1) for every position 1...n+1
 - By induction on n
- Assume it's true for n
 - With probability 1-(s/(n+1)), (n+1)st position won't be selected
 - Probability of each of the first n positions remains s/n
 - If (n+1)st selected than probability of first n reduced by factor $\frac{s-1}{s}$
 - Overall, the probability of each first n position to be selected is

A general Stream-Sampling Problem

 Maintain a sample of s elements such that every element of the stream is equally likely to be selected

- Solution
 - \square Select new sample with probability s/(n+1)
 - □ If selected, replace any old sample at random

Counting Ones in a Window

Exact Solution

- Assume binary infinite stream
- At any point at time to be able to answer following query
 - How many 1's in the last M bits of the stream (for all $M \le N$)
- Claim: Exact solution requires at least N bits for stream of length N
- Claim: Event answering queries only for a fixed M requires storing entire window (M bits)
 - Non-trivial: why not to count (logM bits)?

Proof: Any M

- Assume representation less then N bits
 - $\square 2^N$ possible streams
 - Have to be at least 2 streams with the same representation x, w.
 - Let k to be the position they are differ (from the right)
 - = w= 0101, x = 1010, k = 1
 - = w= 1001, x = 0101, k = 3
 - Query: "how many bits in window of length M=k"
 - Same representation->same answer
 - Different number of bits

Proof: Fixed M

- Find a pair (w,x) of length M with the same representation
- □ Let k to be position (from the right) they are differ
- Create new pair
 - Take k bits from w and x and add M-k identical bits
 - Any algorithm will produce the same answer

Exact solution require storing entire stream

The Datar-Gions-Indyk-Motwani(DGIM) Algorithm

- Approximation
 - For a fixed window of length N
- Simple version
 - $lue{}$ Space $O(log^2N)$
 - Error: No more than 50%
- Improvements
 - \blacksquare Error: Any $\varepsilon > 0$
 - lacksquare Space $O(log^2N)$ with factor that depends on arepsilon

DGIM:Timestamps

- A timestamp of a bit- the position it arrives
- First bit has timestamp 1
- Only need to distinguish positions within the window
 - \blacksquare Represent timestamps modulo N ($log_2N\ bits$)
 - Also store total number of elements ever seen modulo N
 - Use timestamp of element in the window modulo N and length of stream modulo N to find the position of this element within the stream
 - (10,11,12,13,14,15) mod 6 is (4,5,0,1,2,3), last modulo N is 3

Buckets

- Divide the window into buckets
 - Different from hash buckets
- For each bucket stores
 - The timestamp of its rightmost bit (most recent)
 - □ The number of 1's in the bucket (size of the bucket)
 - Select the bucket so it size will be a power of two
 - Example: total 7 bits, divide into buckets of size 1,2,4
- Total bits per bucket
 - \blacksquare Timestamp log_2N bits
 - $lue{}$ Size of the bucket log_2log_2N
 - Bucket size $i = 2^j$, need only represent j
 - lacksquare Maximum value of i is N, maximum value of j is log_2N
 - Total log_2log_2N bits for representing every value of j

Buckets rules

- The right end of a bucket is always a position with a 1.
- Every position with a 1 is in some bucket.
- No position is in more than one bucket.
- There are one or two buckets of any given size, up to some maximum size.
- All sizes must be a power of 2.
- Buckets cannot decrease in size as we move to the left (back in time).

Example

. . 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0

Figure 4.2: A bit-stream divided into buckets following the DGIM rules

Storage Requirements for the DGIM

- \square Each bucket requires $O(log_2N + log_2log_2N)$
- Maximum possible number of buckets in the window
 - Maximum number of 1's is N
 - \blacksquare Largest bucket size is 2^j , $j \leq log_2N$
 - At most 2 buckets of each size
 - lacksquare Total, no more than $2log_2N$ buckets
- □ Total space requirements is

Answering queries

- Answer queries about number of 1's in the last k elements
 - Find the leftmost bucket b with at least some bits from k-window
 - $lue{}$ Sum sizes of all buckets to the right of b and half the size of bucket b
- Example: k=10: 0110010110, 5 bits
 - \Box (4/2)+2+1+1=6

The error

- Assume correct answer c
- \square Assume the size of bucket b is 2^{j}
- Case I: The estimate is less than c
 - \square Worst case: all of b are within the k: estimate misses half of bucket b: 2^{j-1}
 - lacktriangle Rule: At least one bucket of each size: c is at least $\sum_{i=0}^{j-1} 2^i = 2^j$
 - □ Error: 50%
- Case II: The estimate is greater than c
 - Worst case: only a single bit from b within the k: estimates overestimate by half
 - lacktriangle Rule: At least one bucket of each size: c is at least $\sum_{i=0}^{j-1} 2^i = 2^j$
 - □ Error: 50%
- General idea: allow larger errors for larger k by allowing buckets of greater size

Maintaining the DGIM Conditions

- Assume proper buckets in a window of size N
- How to modify with a new bit coming in
 - Drop leftmost bucket if its timestamp (rightmost) is out of the range
 - If new bit is 0 do nothing, If new bit is one, than
 - Create a new bucket with the current timestamp and size 1
 - If only a single bucket of size 1, done
 - If not, combine buckets to obtain bucket of size 2
 - Continue to combine If more then 2 buckets of the same size obtained
- Complexity
 - \blacksquare At most $2log_2N$ buckets to combine, total O(logN)

Example: 1 enters

Reducing the Error

- □ Allow r or (r-1) buckets of any size
 - r=2 for previous algorithm
- Exception
 - Allow any number from (1 to r) of buckets of size 1 or of the largest size
- \square If r+1 buckets of size 2^j are crated
 - $lue{}$ Combine 2 leftmost buckets into a new one of size 2^{j+1}
 - Continue combining while required
 - □ Should be at least r-1 buckets of size 1 for any other size to exist

Error

- \square Assume only 1 bit of b(size 2^{j}) is in the range
 - \blacksquare Error is $2^{j-1}-1$
- True count is at least

$$1 + (r-1)(2^{j-1} + 2^{j-2} + ... + 1)$$

Relative error no more than

$$\frac{2^{j-1}-1}{1+(r-1)\left(2^{j-1}+2^{j-2}+..+1\right)} \le \frac{2^{j-1}}{(r-1)2^j} \le \frac{1}{2(r-1)} \le \frac{1}{r-1}$$

 \square Pick r for any bound arepsilon

Extensions

- Sum of last k numbers in stream of integers
- Unlikely for positive and negative stream
 - The leftmost bucket can have very large positive and negative numbers that sum up to zero
- Possible for positive only stream
 - \blacksquare Assume range 1 to 2^m
 - Treat each of m bit as a separate stream
 - \blacksquare Estimate sum as $\sum_{i=0}^{m-1} c_i 2^i$

Decaying Windows

Example: Most-Common Elements

- Stream
 - Tickets purchased with the name of a movie

- Query
 - Most popular movies 'currently'

- How to interpret 'currently'?
 - Popular movies of past year/month/day
 - Popular movies of past hour

Using bit streams

- Represent each movie by a bit stream
 - i-th element 1 is i-th ticket is for that movie
 - Estimate number of 1s in each stream in window of size
 - Rank movies according to estimate
- Won't work if millions of items/streams
 - Most popular amazon products
 - Most popular pages/tweets etc.

Decaying Window

- □ Compute weighted sum of 1's ever seen
 - Exponentially decaying weights
 - Further back in the stream, less weight is given
- Exponentially decaying window is the sum

$$\sum_{i=0}^{t-1} a_{t-i} (1-c)^i$$

- \Box c is a small constant (e. g. 10^{-6} or 10^{-9})
- Note $\sum_{i=0}^{\infty} (1-c)^i = \frac{1}{c}$
- Fixed window pit equal weights to all element in the window and zero weight to all others
 - Fixed window of same total weight will put 1 for most recent $^{1}/_{c}$ elements

Fixed vs. Decaying Window Weights

Computing Decaying Window

- Much easier vs. fixed window
 - No need to store old elements

- □ Simple Algorithm
 - 1. Multiply the current sum by 1-c.
 - 2. Add a_{t+1} .

Find the Most Popular Elements

- $c = 10^{-9}$, approximate a 1B sliding window
- Large number of movies, maintain score only for popular movies
- For each new ticket
 - 1. For each movie whose score we are currently maintaining, multiply its score by (1-c).
 - 2. Suppose the new ticket is for movie M. If there is currently a score for M, add 1 to that score. If there is no score for M, create one and initialize it to 1.
 - 3. If any score is below the threshold 1/2, drop that score.

Analysis

- Number of scores is limited at any time
 - Sum of all scores is 1/c
 - Each new ticket adds only single 1 to total scores
 - \square No more than 2/c movies with score 1/2 or more
 - Else sum of scores will exceed 1/c
- \square Number of active scores is limited by 2/c
 - □ In practice, small number of blockbusters

Summary

Summary

- Stream Data Model
 - limited active storage for maintaining summaries
- Sampling of streams
 - Sampling by key attributes
- Bloom filters
 - Cascade bit array lookups
- Counting Distinct Elements
 - Count special hash values (trailing zeroes)

- Moments of streams
 - Frequency moments
- Second Moment
 - Count appearances from random location
 - Higher moments by different formula
- Estimating the Number of 1s
 - Longer buckets farther in time
 - Reduce error using r,r+1 rule
- Exponentially decaying windows
 - Easy to compute