LAPORANTBO TUGAS PROYEK 1

"Finite Automata Application in Search Engine"

Ditujukan sebagai tugas mata kuliah Teori Bahasa dan Otomata prodi Informatika Universitas Udayana

(Dosen: Dr. Anak Agung Istri Ngurah Eka Karyawati, S.Si., M.Eng.)

Kelompok 4 :

Ni Made Yuli Cahyani	1808561027	В
I Made Prema Satwika	1808561031	В
Ni Made Ayu Suandewi	1808561036	В
Made Dwiki Budi Laksana	1808561041	В
I Gusti Gede Ngurah Adryan Pratama Putra Bueka	1808561045	В

PROGRAM STUDI INFORMATIKA FAKULAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS UDAYANA

2020

KATA PENGANTAR

Puji dan syukur ke hadirat Tuhan Yang Maha Kuasa atas segala rahmat yang diberikan-Nya sehingga Laporan TBO Tugas Proyek 1 ini dapat kami selesaikan. Laporan ini kami buat sebagai kewajiban untuk memenuhi tugas. Dalam kesempatan ini, penulis menghaturkan terimakasih yang dalam kepada semua pihak yang telah membantu menyumbangkan ide dan pikiran mereka demi terwujudnya makalah ini. Akhirnya saran dan kritik pembaca yang dimaksuduntuk mewujudkan kesempurnaan makalah ini penulis sangat hargai.

Badung, 19 November 2020

Penyusun

DAFTAR ISI

KATA PENGANTAR	ii
DAFTAR ISI	iii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
BAB II GAMBARAN APLIKASI	2
2.1 Aplikasi Text Search Berbasis Web	2
2.2 Perancangan Mesin NFA	2
2.2.1 Pendefinisian Tuple NFA	2
2.2.2 Perancangan Diagram Transisi NFA	5
2.2.3 Proses Pengecekan Dokumen	5
2.3 Fitur Utama Aplikasi	6
2.4 Arsitektur Sistem	7
2.5 Tampilan Antarmuka	8
BAB III PENGGUNAAN SISTEM	10
3.1 Penggunaan Aplikasi Text Search	10
BAB IV EKSPERIMEN DAN HASIL	14
4.1 Pengujian Black Box	14
4.1.1 Pengujian Fitur Search	14
4.1.2 Pengujian Fitur Machine	14
4.1.3 Pengujian Fitur Evaluation	14
4.1.4 Pengujian Fitur Collection	15
4.2 Pengujian Akurasi	15
4.2.1 Pengujian dengan Menambahkan Koleksi Dokumen	15
4.2.2 Pengujian dengan Merubah Koleksi Document	16
BAB V PENUTUP	17
5.1 Kesimpulan	17

BABI

PENDAHULUAN

1.1 Latar Belakang

Seiring dengan perkembangan informasi, masalah utama telah bergeser dari cara mengakses informasi menjadi memilih informasi utama yang berguna secara selektif. Pencarian atau pemilihan informasi ini tidak mungkin dilakukan secara manual karena kumpulan informasi yang sangat besar, banyak, dan beragam. Dibutuhkan suatu sistem otomatis untuk membantu user (pengguna) dalam menemukan informasi. *Search engine* (mesin pencari) dapat mengatasi permasalahan tersebut secara efektif. Setiap *search engine* menggunakan proprietary algorithm untuk menciptakan indeks-indeks yang ditampilkan dalam bentuk hasil pencarian (Sarwono, 2010:1).

Sistem pencarian dokumen umumnya menampilkan hasil pencarian berdasarkan kata kunci (*keywords*) dan peringkatnya yang ditampilkan dalam daftar yang panjang. Didalam dokumen teks, tulisan yang terkandung merupakan bahasa dengan struktur yang kompleks dan memuat jumlah kata yang banyak. Mesin pencari menggunakan indeks (yang sudah dibuat dan disusun secara teratur) untuk mencari file setelah pengguna memasukkan kriteria pencarian. *Indexing* atau pengindeksan merupakan proses membangun basis data indeks dari koleksi dokumen. *Indexing* dilakukan terhadap dokumen sebelum pencarian dilakukan.

Berdasarkan konsep search engine tersebut dirancanglah sutau aplikasi text search berbasis web dimana dalam penerapan untuk text search pada aplikasi yang dikembangkan ini tidak menggunakan metode indexing melainkan proses pencariannya dengan mengimplementasikan Non-Deterministic Finite Automata (NFA). Non - Deterministic Finite Automata (NFA) merupakan Finite Automata dimana setiap input alphabet/symbol dari suatu state memungkinkan untuk bertransisi ke satu atau lebih dari satu state lain atau bahkan tidak sama sekali.

BAB II

GAMBARAN APLIKASI

2.1 Aplikasi Text Search Berbasis Web

Aplikasi *text search* berbasis web yang dibangun merupakan aplikasi yang bertujuan untuk melakukan pencarian berupa text pada suatu koleksi dokumen dimana proses pencariannya dengan mengimplementasikan *Non-Deterministic Finite Automata (NFA)*. Aplikasi ini dapat menerima inputan berupa keywords dan koleksi dokumen dimana koleksi dokumen ini dapat dihapus dan ditambahkan dengan cara mengupload file-file dokumen dalam format .txt dengan batasan jumlah maksimal file yang bisa diupload yaitu 20 file per satu kali upload. Selanjutnya sistem akan menyimpan file-file tersebut ke dalam suatu direktori/folder.

Proses pencarian yang dilakukan aplikasi *text search* ini, diawali dengan keywords yang diinputkan oleh user baik itu terdiri dari satu kata atau lebih, kemudian berdasarkan *keywords* tersebut sistem akan membangun mesin NFA. Selanjutnya berdasarkan mesin NFA yang telah dibangun tersebut sistem kemudian melakukan pencarian ke setiap file yang terdapat pada direktori/folder yang menampung koleksi dokumen, kemudian sistem akan menampilkan list file yang mengandung paling sedikit 1 *keyword* sebagai hasil dari pencarian.

2.2 Perancangan Mesin NFA

Perancangan mesine NFA dilakukan berdasarkan string *keywords* yang diinputkan oleh user. Misalkan string keywords yang diinputkan user adalah "gubernur koster", maka langkah-langkah perancangan mesin NFA sebagai berikut :

2.2.1 Pendefinisian Tuple NFA

Mesin NFA didefinisikan dalam 5 tupel yaitu

• Q = himpunan state

Dalam menentukann himpunan state terlebih dahulu menentukan jumlah index himpunan state yang akan digunakan.

Menentukan jumlah index himpunan state dilakukan berdasarkan *keywords* yang diinputkan oleh user.

```
keywords = "gubernur koster"
```

1. Split string masukan keywords berdasarkan spasinya dan masukan ke dalam array.

```
key = [qubernur, koster]
```

2. Kemudian gabungkan setiap kata keyword dalam array menjadi suatu string tanpa spasi

```
keygabung = "gubernurkoster"
```

 Tentukan jumlah index himpunan state yang digunakan dengan menghitung panjang string gabungan setiap kata keyword sebelumnya

```
index = panjang keygabung = 14
```

4. Kemudian definisikan himpunan state berdasarkan jumlah index yang telah didapat.

```
Q = [q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12, q13, q14]
```

• S = start sate

Start state selalu didefinisikan untuk q0.

$$S = q0$$

• F = final state

Himpunan final state ditetntukan melalui array key dan himpunan state yang telah didapatkan sebelumnya dengan melakukan perulangan.

key = [gubernur, koster] → jumlah final state ada 2 berarti terjadi 2 kali perulangan

Setiap kata pada array mennetukan state pada himpunan state adalah final state.

```
gubernur → panjangnya 8 → adalah q8
koster → panjangnya 6 + 8 → adalah q14
Sehingga didapatkan :
```

$$F = [q8, q14]$$

• Σ = hinpunan simbol input

Himpunan simbol input dalam NFA yaitu semua karakter ASCII.

$$\Sigma$$
 = [semua karakter ASCII]

Setelah menentukan himpunan simbol input NFA selanjutnya tentukan diperlukan juga mennetukan simbol input untuk percabangan state. Untuk lebih jelasnya sebagai berikut :

Didalam inputan keywords terdiri dari 2 kata yaitu key = [gubernur, koster] setiap kata ini akan membentuk percabangan dari start state yaitu q0 dan setiap karakter dalam masing-masing kata akan menentukan simbol inputan untuk tiap state dalam percabangan.

$$\rightarrow$$
 gubernur : percabangan terdiri dari q1 – q8

q0

Sehingga dapat didefinisikan himpunan simbol input untuk percabangan yaitu gabungan dari semua karakter dalam setiap kata kunci dalam bentuk kapital maupun huruf kecil.

$$\Sigma$$
 percabangan = [g,u,b,e,r,n,u,r,k,o,s,t,e,r,G,U,B,E,R,N,U,R,K,O,S,T,E,R]

• δ = fungsi transisi

Fungsi transisi ditentukan berdasarkan himpunan state dan himpunan simbol input yang telah didapatkan seblumnya. Fungsi transisi didefinisikan sebagai berikut :

Untuk start state

menerima semua himpunan simbol input (karakter ASCII)
 bertransisi ke dirinya sendiri

$$\delta(q0, \Sigma) = q0$$

– menerima inputan g,G bertransisi ke q1

$$\delta (q0, g) = q1$$

$$\delta(q0, G) = q1$$

- menerima inputan k,K bertransisi ke q9

$$\delta(q0, k) = q9$$

$$\delta(q0, K) = q9$$

Untuk percabangan gubernur:

$$\delta(q1, u) = q2$$

$$\delta(q1, U) = q2$$

----- seterusnya hingga sampai pada q8

$$\delta(q7, r) = q8$$

$$\delta(q7, R) = q8$$

Untuk percabangan koster

$$\delta (q9, o) = q10$$

$$\delta (q9, O) = q10$$

----- seterusnya hingga sampai pada q14

$$\delta$$
 (q13, r) = q14

$$\delta$$
 (q13, R) = q14

2.2.2 Perancangan Diagram Transisi NFA

Berdasarkan tupel yang telah difinisikan seperti di atas dapat dirancang diagram transisi NFA dari inputan keywords = "gubernur koster" sebagai berikut :

2.2.3 Proses Pengecekan Dokumen

Suatu dokumen dalam koleksi dokumen dikatakan *accepted* jika paling sedikit mengandung 1 keyword dari string keywords yang

dimasukan. Proses pengecekan nya dilakukan pada setiap karakter pada dokumen. Proses pengecekan akan berhenti jika pada mesin NFA karakter yang dicek bertransisi ke final state dan karakter tersebut adalah karakter terakhir dalam dokumen atau karakter selanjutnya setelah karakter tersebut adalah spasi atau titik atau koma atau strip atau enter. Untuk lebih jelasnya sebagai berikut :

Keywords = gubernur

2.3 Fitur Utama Aplikasi

Pada aplikasi text search berbasis web yang dibangun memiliki 4 fitur utama yaitu :

1. Fitur Search

- Menerima inputan keywords
- Menampilkan lamanya waktu yang diperlukan dalam melakukan proses pencarian
- Menampilkan list dokumen dari hasil pencarian (nama file + snippet)
- Dapat menampilkan ful text dokumen hasil pencarian ketika mengklik nama file tersebut.

2. Fitur Machine

- Menerima inputan keywords
- Menampilkan diagram transisi dari NFA
- Menampilkan Quintuple dari NFA

3. Fitur Evaluation

- Menerima inputan file-file dokumen mana saja yang digunakan (missal dokumen ke 1 – dokumen ke-50).
- Menerima inputan keywords.
- Menampilkan lamanya waktu yang diperlukan dalam melakukan proses pencarian
- Menampilkan list dokumen dari hasil pencarian (nama file + snippet)
- Dapat menampilkan ful text dokumen hasil pencarian ketika mengklik nama file tersebut.
- Menerima inputan jumlah dokumen hasil pencarian dan jumlah dokumen yang mengandung paling sedikit 1 keywords
- Menampilkan hasil pengujian akurasi dalam bentuk persen

4. Fitur Doc Collection

- Tempat menambah koleksi dokumen dengan mengupload file-file format .txt dimana maksimal jumlah file yang dapat diupload yaitu 20 file dalam sekali upload.
- Dapat menampilkan seluruh file dalam dalam koleksi dokumen
- Dapat menghapus seluruh file dalam dalam koleksi dokumen

2.4 Arsitektur Sistem

Aplikasi *Text Search* yang dibangun merupakan aplikasi berbasis web. Aplikasi berbasis web merupakan sebuah program atau perangkat lunak yang di akses melalui internet dengan menggunakan web browser. Dalam pembanguan aplikasi *text search* berbasis web ini menggunakan beberapa Bahasa pemrograman yaitu HTML, PHP, CSS.

1. HTML adalah, (HyperText Markup Language) sebuah bahasa standar yang digunakan oleh browser Internet untuk membuat halaman dan dokumen pada sebuah Web yang kemudian dapat diakses dan dibaca layaknya sebuah artikel. HTMLjuga dapat digunakan sebagai link link

- antara file-file dalam situs atau dalam komputer dengan menggunakan localhost, atau link yang menghubungkan antar situs dalam dunia internet.
- Cascading Style Sheet (CSS) merupakan salah satu bahasa pemrograman web untuk mengendalikan beberapa komponen dalam sebuah web sehingga akan lebih terstruktur dan seragam. Pada umumnya CSS dipakai untuk memformat tampilan halaman web yang dibuat dengan bahasa HTML dan XHTML.
- 3. PHP: Hypertext Preprocessor adalah bahasa skrip yang dapat ditanamkan atau disisipkan ke dalam HTML. PHP banyak dipakai untuk memrogram situs web dinamis. Bahasa pemrograman PHP disini digunakan sebagai back end dari web.

4. JavaScript

JavaScript digunakan pada Web pages untuk meningkatkan design, validate forms, detect browsers, create cookies, GUI dsb. Sama seperti CSS, Javascript tidak dapat berdiri sendiri dan harus didasari oleh HTML atau PHP. Namun perbedaan Javascript dengan CSS adalah, Javascript mengatur logika seperti validasi untuk membuat tampilan website lebih dinamis dan CSS mengatur tampilan dari website tersebut seperti gambar, warna, font, dll.

2.5 Tampilan Antarmuka

Tampilan antarmuka dari aplikasi text search berbasis web adalah sebagai berikut :

1. Fitur Search

2. Fitur Machine

3. Fitur Evaluation

Document Searching

Search	Machine	Evaluation	Collection
Pengujian Akurasi Jumlah koleksi dokumen : 225			
Masukan dokumen yang akan digunak	can:		
doc ke-	sampai dengan doc ke-		
Cari			Cari

4. Fitur Collection

Document Searching

BAB III

PENGGUNAAN SISTEM

3.1 Penggunaan Aplikasi Text Search

Penggunaan dari setiap fitur dalam aplikasi text search berbasis web adalah sebagai berikut :

1. Fitur Search

Pertama-tama ketikan keywords pada *search bar* yang tersedia kemudian klik tombol search maka akan ditampilkan lamanya waktu yang diperlukan dalam melakukan proses pencarian, list dokumen dari hasil pencarian (nama file + snippet), kemudian ketika nama file diklik akan menampilkan full text dari file dokumen.

2. Fitur Machine

Pertama-tama ketikan keywords pada *search bar* yang tersedia kemudian klik tombol search maka akan ditampilkan diagram transisi dan quintuple dari mesin NFA.


```
q0 -> q0 -> ♦
q0 -> q1 -> ♦
q0 -> q1 -> $
q1 -> q2 -> r
q2 -> q3 -> a
q3 -> q4 -> m
q4 -> q5 -> a
q0 -> q6 -> b
q6 -> q7 -> a
q7 -> q8 -> i
q0 -> q1 -> K
q1 -> q2 -> R
q2 -> q3 -> A
q3 -> q4 -> M
q4 -> q5 -> A
q0 -> q6 -> B
q6 -> q7 -> A
q1 -> q2 -> R
q2 -> q3 -> A
q3 -> q4 -> M
q4 -> q5 -> A
q3 -> q4 -> M
```

3. Fitur Evaluation

Pertama-tama masukan dokumen mana saja yang akan digunakan untuk pengujian, kemudian ketikan keywords pada *search bar* yang tersedia kemudian klik tombol search maka akan ditampilkan lamanya waktu yang diperlukan dalam melakukan proses pencarian, list dokumen dari hasil pencarian (nama file + snippet) dan ketika nama file diklik akan menampilkan full text dari file dokumen. Selanjutny inputkan jumlah dokumen hasil pencarian (diisi otomatis system) dan jumlah dokumen yang mengandung paling sedikit 1 keyword (diisi user). Lalu klik tombol hitung maka akan menampilkan hasil pengujian akurasi dalam bentuk persen.

4. Fitur Collection

Menambah koleksi dokumen dengan mengupload file-file format .txt dimana maksimal jumlah file yang dapat diupload yaitu 20 file dalam sekali upload. Pertama-tama klik choose file, setelah memilih file yang akan diupload lalu klik tombol upload.

Dapat menampilkan seluruh file dalam dalam koleksi dokumen dengan mengeklik tombol lihat koleksi. Dan dapat menghapus seluruh file dalam dalam koleksi dokumen dengan mengeklik tombol hapus koleksi.

Search Machine Evaluation Collection Choose Files No file chosen Upload Lihat Koleksi Hapus Koleksi

Document Searching

BAB IV EKSPERIMEN DAN HASIL

4.1 Pengujian Black Box

4.1.1 Pengujian Fitur Search

No.	Skenario pengujian	Hasil yang diharapkan	Hasil Pengujian	Kesimpulan
1	Mengetikkan keywords pada serach bar kemudian klik tombol search	Sistem akan menerima inputan dan menampilkan lama waktu pencarian, list dokumen dari hasil pencarian (nama file + snippet)	Sesuai harapan	Valid
2 Mengeklik nama file yang berupa link		Sistem akan menampilkan ful text dari dokumen dengan nama file yang yang diklik	Sesuai harapan	Valid

4.1.2 Pengujian Fitur Machine

No. Skenario pengujian		Hasil yang diharapkan	Hasil Pengujian	Kesimpulan
1	Mengetikkan keywords pada serach bar kemudian klik tombol search	Sistem akan menerima inputan lalu menampilkan diagram transisi dan quintuple dari NFA	Sesuai harapan	Valid

4.1.3 Pengujian Fitur Evaluation

No.	Skenario pengujian	Hasil yang diharapkan	Hasil Pengujian	Kesimpulan
mana saja yang akan in diuji. Mengetikkan la keywords pada serach bar kemudian klik pe		Sistem akan menerima inputan dan menampilkan lama waktu pencarian, list dokumen dari hasil pencarian (nama file + snippet)	Sesuai harapan	Valid
2	Mengeklik nama file yang berupa link	Sistem akan menampilkan ful text dari dokumen dengan nama file yang yang diklik	Sesuai harapan	Valid

		meinputkan jumlah			
		dokumen hasil			
		pencarian (diisi			
		otomatis system) dan	Sistem akan menampilkan	Sesuai	
	3	jumlah dokumen yang	hasil pengujian akurasi	Harapan	Valid
		mengandung paling	dalam bentuk persen.	Harapan	
		sedikit 1 keyword (diisi			
		user). Lalu klik tombol			
l		hitung.			

4.1.4 Pengujian Fitur Collection

No.	Skenario pengujian	Hasil yang diharapkan	Hasil Pengujian	Kesimpulan
1	Mengeklik tombol Choose file untuk memilih dokumen yang akan diupload	Sistem akan melakukan browse pada computer untuk memilih dokumen yang akan diupload	Sesuai harapan	Valid
2	Mengeklik tombol upload	Sistem akan menyimpan dokumen ke dalam direktori yang menampung koleksi dokumen setelah mengeklik tombol upload	Sesuai harapan	Valid
3	Mengeklik tombol lihat koleksi	Sistem akan menampilkan isi dari direktori yang menampung koleksi dokumen	Sesuai harapan	Valid
4	Mengeklik tombol Sistem akan menghapus semua isi dari direktori yang Sesua		Sesuai harapan	Valid

4.2 Pengujian Akurasi

4.2.1 Pengujian dengan Menambahkan Koleksi Dokumen

keywords = gubernur koster

	Skenario	Jumlah	Jumlah list	Jumlah file yang	
No.	pengujian	file yang	file hasil	mengandung paling	Hasil pengujian
110.	(penambahan)	digunakan	pencarian	sedikit 1 kata kunci	(y/x * 100%)
	(ренашоанан)	digunakan	(x)	(y)	
1	doc ke-1-50	50	26	26	100%
2	doc ke-51-100	100	47	47	100%
3	doc ke-101-150	150	66	66	100%
4	doc ke-151-200	200	97	97	100%

5 doc ke-201–225 225 112 112 100%

4.2.2 Pengujian dengan Merubah Koleksi Document

keywords = krama bali

No.	Skenario pengujian (pengubahan)	Jumlah file yang digunakan	Jumlah list file hasil pencarian (x)	Jumlah file yang mengandung paling sedikit 1 kata kunci (y)	Hasil pengujian (y/x * 100%)
1	doc ke-1-50	50	46	46	100%
2	doc ke-51-100	50	39	39	100%
3	doc ke-101-150	50	44	44	100%
4	doc ke-150-200	50	46	46	100%
5	doc ke-201–225	25	23	22	96.65%

BAB V

PENUTUP

5.1 Kesimpulan

Berdasarkan hasil dari pengujian black box yang dilakukan dapat disimpulkan bahwa aplikasi text search berbasis web yang dibangun dengan mengimplementasikan *Non-Deterministic Finite Automata* (NFA) dapat berfungsi dengan benar.

Berdasarkan hasil pengujian akurasi dengan menambah atau mengubah koleksi dokumen yang diuji dapat disimpulkan bahwa pengaruh koleksi dokumen tidak terlalu membawa perubahan pada fungsi dari sistem.

Dari hasil pengujian tersebut dapat diketahui bahwa sistem masih memiliki kekurangan dalam pengecekan keyword dalam dokumen ketika keyword merupakan suffiks dalam suatu string, string tersebut diterima. Misalnya keyword = 'krama', jika terdapat string 'parikrama', maka string tersebut diterima yang seharusnya tidak diterima.

DAFTAR PUSTAKA

Benny Richardson, Kevin Hendy, dkk. (2019). *Penerapan Konsep Non-Deterministic Finite Automata (NFA) pada Aplikasi Simulasi Mesin Kopi Vending*. Jurnal Informatika Universitas Pamulang, ISSN: 2541-1004 Vol. 4, No. 1.

Sarwono, Jonathan. 2010. SEARCH ENGINE. Yogyakarta: Penerbit ANDI.

Rizky Indah Melly E.P, W. D. (2012). *Penerapan Konsep Finite State Automata (FSA) pada Mesin Pembuat Minuman Kopi Otomatis*. Jurnal Komputasi, 95-102.