### Hello! Welcome to my Notebook



## **S** Import Libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix,recall_score ,a
```

# \* Reading Data

In [2]: df = pd.read\_csv('/kaggle/input/bank-customer-churn-dataset/Bank Customer Churn Pre
 df.head()

| Out[2]: |   | customer_id | credit_score | country | gender | age | tenure | balance   | products_number |
|---------|---|-------------|--------------|---------|--------|-----|--------|-----------|-----------------|
|         | 0 | 15634602    | 619          | France  | Female | 42  | 2      | 0.00      | 1               |
|         | 1 | 15647311    | 608          | Spain   | Female | 41  | 1      | 83807.86  | 1               |
|         | 2 | 15619304    | 502          | France  | Female | 42  | 8      | 159660.80 | 3               |
|         | 3 | 15701354    | 699          | France  | Female | 39  | 1      | 0.00      | 2               |
|         | 4 | 15737888    | 850          | Spain   | Female | 43  | 2      | 125510.82 | 1               |
|         | 4 |             |              |         |        |     |        |           | <b>&gt;</b>     |

### In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 12 columns):

| #  | Column            | Non-Null Count  | Dtype   |
|----|-------------------|-----------------|---------|
|    |                   |                 |         |
| 0  | customer_id       | 10000 non-null  | int64   |
| 1  | credit_score      | 10000 non-null  | int64   |
| 2  | country           | 10000 non-null  | object  |
| 3  | gender            | 10000 non-null  | object  |
| 4  | age               | 10000 non-null  | int64   |
| 5  | tenure            | 10000 non-null  | int64   |
| 6  | balance           | 10000 non-null  | float64 |
| 7  | products_number   | 10000 non-null  | int64   |
| 8  | credit_card       | 10000 non-null  | int64   |
| 9  | active_member     | 10000 non-null  | int64   |
| 10 | estimated_salary  | 10000 non-null  | float64 |
| 11 | churn             | 10000 non-null  | int64   |
| d+ | os. £100+64/2) in | +C4(0) obios+(2 | \       |

dtypes: float64(2), int64(8), object(2)

memory usage: 937.6+ KB

### In [4]: df.describe()

| Оu | + I | / |  |
|----|-----|---|--|
| Оu | ~   | - |  |
|    |     |   |  |
|    |     |   |  |

|       | customer_id  | credit_score | age          | tenure       | balance       | products_nı |
|-------|--------------|--------------|--------------|--------------|---------------|-------------|
| count | 1.000000e+04 | 10000.000000 | 10000.000000 | 10000.000000 | 10000.000000  | 10000.C     |
| mean  | 1.569094e+07 | 650.528800   | 38.921800    | 5.012800     | 76485.889288  | 1.5         |
| std   | 7.193619e+04 | 96.653299    | 10.487806    | 2.892174     | 62397.405202  | 0.5         |
| min   | 1.556570e+07 | 350.000000   | 18.000000    | 0.000000     | 0.000000      | 1.0         |
| 25%   | 1.562853e+07 | 584.000000   | 32.000000    | 3.000000     | 0.000000      | 1.0         |
| 50%   | 1.569074e+07 | 652.000000   | 37.000000    | 5.000000     | 97198.540000  | 1.0         |
| 75%   | 1.575323e+07 | 718.000000   | 44.000000    | 7.000000     | 127644.240000 | 2.0         |
| max   | 1.581569e+07 | 850.000000   | 92.000000    | 10.000000    | 250898.090000 | 4.0         |
|       |              |              |              |              |               |             |
| 4     |              |              |              |              |               | <b>.</b>    |



```
In [5]: plt.figure(figsize=(10, 5))
    sns.countplot(x='gender', hue='churn', data=df, palette='pastel')
    plt.title('Customer Churn by Gender')
    plt.xlabel('Gender')
    plt.ylabel('Number of Customers')
    plt.legend(title='Churn', labels=['Not Churned', 'Churned'])
    plt.show()
```



Females have a higher churn rate than males.

with pd.option\_context('mode.use\_inf\_as\_na', True):

```
In [6]: # Plotting the age distribution
   plt.figure(figsize=(10, 5))
   sns.histplot(df['age'], bins=30, kde=True, color='skyblue')
   plt.title('Age Distribution', fontsize=14)
   plt.xlabel('Age', fontsize=12)
   plt.ylabel('Frequency', fontsize=12)
   plt.show()

/usr/local/lib/python3.10/dist-packages/seaborn/_oldcore.py:1119: FutureWarning: use
   _inf_as_na option is deprecated and will be removed in a future version. Convert inf
   values to NaN before operating instead.
```





France and Germany have a higher churn rate.

```
In [8]: plt.figure()
sns.countplot(x='churn', data=df, palette='pastel')
```

```
plt.title('Customer Churn')
plt.show()
```



```
In [9]: # Plotting the scatter plot for Credit Score vs. Balance
plt.figure()
sns.scatterplot(data=df, x='credit_score', y='balance', hue='churn', palette='coolw
plt.title('Credit Score vs. Balance', fontsize=14)
plt.xlabel('Credit Score', fontsize=12)
plt.ylabel('Balance', fontsize=12)
plt.legend(title='Churn')
plt.show()
```

### Credit Score vs. Balance



```
In [10]: churn_rate_by_products = df.groupby('products_number')['churn'].mean().reset_index(
    # Create the bar plot
    plt.figure()
    sns.barplot(x='products_number', y='churn', data=churn_rate_by_products, palette='p

# Set plot labels and title
    plt.xlabel('Number of Products')
    plt.ylabel('Churn Rate')
    plt.title('Churn Rate by Number of Products')

# Show the plot
    plt.show()
```

### Churn Rate by Number of Products



```
In [11]: churn_rate = df.groupby('active_member')['churn'].mean().reset_index()

# Create a bar plot using seaborn
sns.barplot(x='active_member', y='churn', data=churn_rate,palette='pastel')
plt.xlabel('Active Member')
plt.ylabel('Churn Rate')
plt.title('Churn Rate by Active Member Status')
plt.show()
```

### Churn Rate by Active Member Status



```
In [12]: plt.figure(figsize=(10, 5))
    sns.boxplot(x='churn', y='age', data=df, palette='pastel')
    plt.title('Age Distribution by Churn Status')
    plt.xlabel('Churn (0 = Not Churned, 1 = Churned)')
    plt.ylabel('Age')
    plt.grid()
    plt.show()
```



#### **Correlation between Features**

```
In [13]: numeric_df = df.select_dtypes(include=['number'])

# Calculate the correlation matrix
correlation_matrix = numeric_df.corr()
plt.figure(figsize=(20, 12))
# Create a heatmap using seaborn
sns.heatmap(correlation_matrix, annot=True, fmt='.2f')
plt.title('Correlation Heatmap')
plt.show()
```



# Data Preprocessing

#### \*Encoding categorical features\*

```
In [14]: label_encoder = LabelEncoder()
    df['country'] = label_encoder.fit_transform(df['country'])
    df['gender'] = label_encoder.fit_transform(df['gender'])
```

\*Removing the customer\_id column because it has no impact on the data.\*

```
In [15]: df.drop(columns=['customer_id'], inplace=True)
    df.columns
```

## ★ Model Building and Training

```
In [16]: X = df.drop('churn', axis=1)
         y = df['churn']
         *Splitting our data*
In [17]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
In [18]: print(f'X_train shape: {X_train.shape}')
         print(f'y_train shape: {y_train.shape}')
         print(f'X test shape: {X test.shape}')
         print(f'y_test shape: {y_test.shape}')
        X_train shape: (8000, 10)
        y_train shape: (8000,)
        X_test shape: (2000, 10)
        y_test shape: (2000,)
         *Scaling the data using Standard Scaler*
In [19]: | scaler = StandardScaler()
         X_train = scaler.fit_transform(X_train)
         X_test = scaler.transform(X_test)
In [20]: X_train
Out[20]: array([[ 0.35649971, -0.9055496 , 0.91324755, ..., 0.64920267,
                  0.97481699, 1.36766974],
                 [-0.20389777, 0.30164867, 0.91324755, ..., 0.64920267,
                  0.97481699, 1.6612541 ],
                 [-0.96147213, 1.50884694, 0.91324755, ..., 0.64920267,
                 -1.02583358, -0.25280688],
                 [0.86500853, -0.9055496, -1.09499335, ..., -1.54035103,
                 -1.02583358, -0.1427649 ],
                 [0.15932282, -0.9055496, 0.91324755, ..., 0.64920267,
```

\*Make List to append the result of each model in it\*

-1.02583358, -0.05082558],

0.97481699, -0.81456811]])

```
In [21]: final=[]
```

[0.47065475, 0.30164867, 0.91324755, ..., 0.64920267,

```
In [22]: def evaluate_model(y_test, y_pred):
    print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
    print(f"Precision: {precision_score(y_test, y_pred)}")
    print(f"Recall: {recall_score(y_test, y_pred)}")
    cm = confusion_matrix(y_test, y_pred)
    sensitivity = cm[1, 1] / (cm[1, 1] + cm[1, 0])
    specificity = cm[0, 0] / (cm[0, 0] + cm[0, 1])
    print(f"Sensitivity: {sensitivity}")
    print(f"Specificity: {specificity}")
    print(f"ROC AUC: {roc_auc_score(y_test, y_pred)}")
    sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")
    plt.show()
```

# ★ Logistic Regression

```
In [23]: from sklearn.linear_model import LogisticRegression
    LR= LogisticRegression()

In [24]: # Train the model
    LR.fit(X_train, y_train)
    # Make predictions
    y_pred_LR = LR.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred_LR)
    final.append(accuracy)

In [25]: evaluate_model(y_test,y_pred_LR)
```

Accuracy: 0.815

Precision: 0.5966386554621849
Recall: 0.1806615776081425
Sensitivity: 0.1806615776081425
Specificity: 0.970130678282514
ROC AUC: 0.5753961279453282



### \* Random Forest

```
In [26]: from sklearn.ensemble import RandomForestClassifier
         RF = RandomForestClassifier(n_estimators=100, random_state=42)
In [27]: # Train the model
         RF.fit(X_train, y_train)
         # Make predictions
         y_pred_rf = RF.predict(X_test)
         accuracy = accuracy_score(y_test, y_pred_rf)
         final.append(accuracy)
In [28]: evaluate_model(y_test,y_pred_rf)
```

Accuracy: 0.8645

Precision: 0.7479674796747967 Recall: 0.4681933842239186 Sensitivity: 0.4681933842239186 Specificity: 0.9614187927815806 ROC AUC: 0.7148060885027495



### ★ Decision Tree

```
In [29]: from sklearn.tree import DecisionTreeClassifier
         dt = DecisionTreeClassifier(random_state=42)
In [30]: # Train the model
         dt.fit(X_train, y_train)
         # Make predictions
         y_pred_dt = dt.predict(X_test)
         accuracy = accuracy_score(y_test, y_pred_dt)
         final.append(accuracy)
```

In [31]: evaluate\_model(y\_test,y\_pred\_dt)

Accuracy: 0.781

Precision: 0.45076586433260396 Recall: 0.5241730279898219 Sensitivity: 0.5241730279898219 Specificity: 0.8438083385189795 ROC AUC: 0.6839906832544006



```
In [32]: final=np.array(final)
    result=final.reshape(3,1)
    columns=['Accuracy']
    index=['Logistic Regression','Random Forest', 'Decision Tree']
    final_result=pd.DataFrame(result,index=index,columns=columns)
```

In [33]: final\_result

Out[33]: Accuracy

| Logistic Regression  | 0.8150 |
|----------------------|--------|
| Random Forest        | 0.8645 |
| <b>Decision Tree</b> | 0.7810 |