# **Bipolar Junction Transistors**

Topic 3 (Chapter 3)

## **OBJECTIVES**

- Basic construction and operation
- Biasing
- Characteristics of an npn or pnp transistor
- Important parameters that define the response of a transistor
- Testing a transistor and identify the three terminals

#### TRANSISTOR INVENTION

 On December 23, 1947, Dr. S. William Shockley, Walter H. Brattain, and John Bardeen demonstrated the amplifying action of the first transistor at the Bell Telephone Laboratories



 The original transistor (a point-contact transistor)



FIG. 3.2

The first transistor. (Courtesy of AT&T Archives and History Center.)

Dr. William Shockley (seated); Dr. John Bardeen (left); Dr. Walter H. Brattain. (Courtesy of AT&T Archives and History Center.)

Dr. Shockley Born: London,

England, 1910

PhD Harvard,

1936

Dr. Bardeen Born: Madison,

Wisconsin, 1908

PhD Princeton,

1936

Dr. Brattain Born: Amoy,

China, 1902 PhD University

of Minnesota,

1928

All shared the Nobel Prize in 1956 for this contribution.

# **Bipolar Junction Transistor (BJT)**

- A semiconductor device that can amplify (enlarge) electronic signals such as radio and television signals
- The transistor has led to many other semiconductor inventions including the integrated circuit (IC)
  - Backbone of modern civilization
- Bipolar means "two polarities" electrons and holes

## **BJT Device Structure**



## The Structure of BJT Transistors in ICs



**Figure**: A more realistic (but still simplified) cross section of an *npn* BJT

- The collector virtually surrounds the emitter region
- The device is *not* symmetrical, and thus the emitter and collector cannot be interchanged.

# **Discrete Component BJT Construction**



pnp

npn

# 2N3904 / MMBT3904 / PZT3904

# Transistor pictures from a datasheet...



2N3904

MMBT3904

PZT3904







#### **NPN General Purpose Amplifier**

This device is designed as a general purpose amplifier and switch. The useful dynamic range extends to 100 mA as a switch and to 100 MHz as an amplifier.

#### **Unbiased transistor**

- Three doped regions: emitter, base, and collector
- Two pn junctions: emitter-base and basecollector
  - Like two back-to-back connected diodes
- NPN or PNP
- Silicon or germanium

#### The bipolar junction transistor has 3 doped regions.



## **Unbiased Transistor**



**Before Diffusion** 

**After Diffusion** 

#### **Biased transistor**

- Forward bias the emitter diode
- Reverse bias the collector diode

In a properly biased NPN transistor, the <u>emitter</u> electrons diffuse into the base and then go on to the collector.



# **Purposes of Different Transistor Regions**

- The heavily doped emitter emits or injects its free electrons into the base
- The lightly doped base also has a welldefined purpose: to pass emitter-injected electrons on to the collector
- The collector is so named because it collects or gathers most of the electrons from the base

#### **Electron Movement**

- If  $V_{BE}$  is greater than the emitter-base barrier potential (0.7 V for Si), emitter electrons will enter the base region
- These electrons can flow in either of two directions.
  - 1. They can flow out of the base through the base terminal
  - 2. They can flow into the collector

# Which way the free electrons in the base region go?

- Most continue on to the collector
  - Why?
    - The base is lightly doped and very thin
    - The light doping means that the free electrons have a long lifetime in the base region
    - The very thin base means that the free electrons have only a short distance to go to reach the collector
    - The positive voltage (reverse voltage) applied to the collector pulls them towards the collector
    - For these reasons, almost all the emitter-injected electrons pass through the base to the collector.
  - Only a few free electrons will recombine with holes in the lightly doped base
    - As valence electrons, they flow through the base resistor to the positive side of the  $V_{BB}$  supply

# Summary of Carrier Flow in a Biased NPN Transistor



- V<sub>BB</sub> forward biases the emitter diode
  - Forces the free electrons in the emitter to enter the base
- The thin and lightly doped base gives almost all these electrons enough time to diffuse into the collector
- These electrons flow through the collector, through  $R_{\rm C}$  and into the positive terminal of the  $V_{\rm CC}$  voltage source

# **Transistor Operation**

With the external sources,  $V_{EE}$  and  $V_{CC}$ , connected as shown:

The emitter-base junction is forward biased

The base-collector junction is reverse biased



# **Currents in a Transistor**

Emitter current is the sum of the collector and base currents:

$$I_E = I_C + I_B$$



# Carrier flow in a pnp transistor



Emitter current is the sum of the collector and base currents:

$$I_E = I_C + I_B$$

The collector current is comprised of two currents:

$$I_{C} = I_{C}(majority) + I_{CO}(minority)$$

#### **Transistor Connections**

# There are three useful way to connect a transistor:

- CE (common emitter) most widely used
- CC (common collector)
- CB (common base)

# Common-Emitter Configuration

The emitter is common to both input (base-emitter) and output (collector-emitter) circuits.

The input is applied to the base and the output is taken from the collector.



# The CE connection



$$V_{CE} = V_C - V_E$$

$$V_{CB} = V_C - V_B$$

$$V_{BE} = V_B - V_E$$

- The <u>emitter</u> is grounded or common
- The <u>base-emitter</u> acts like a diode
  - The <u>base-collector</u> acts like a dependent current source equal to  $\beta_{dc}I_{B}$

## **CE Transistor Characteristics**

- To fully describe the behavior of a BJT, two sets of characteristics are required:
  - 1. Driving point or input characteristics
  - 2. Output side or output characteristics



Base or Input Characteristics



Collector or Output Characteristics

# **Common-Emitter Amplifier Currents**

**Ideal Currents** 

$$I_E = I_C + I_B$$

$$I_C = \alpha I_E$$

**Actual Currents** 

$$I_C = \alpha I_E + I_{CBO}$$

where  $I_{CBO}$  = minority collector current

 $I_{CBO}$  is usually so small that it can be ignored, except in high power transistors and in high temperature environments.

When  $I_B = 0 \mu A$  the transistor is in cutoff, but there is some minority current flowing called  $I_{CEO}$ .

$$I_{CEO} = \frac{I_{CBO}}{1 - \alpha} \Big|_{I_B = 0 \, \mu A}$$

#### **Transistor Current Gain**

- The <u>ratio</u> of collector current to base current is current gain ( $\beta_{dc}$  or  $h_{FE}$ )
- Current gain is typically 100 to 300



#### **Electron flow**

$$I_E = I_C + I_B$$

$$\alpha_{dc} = \frac{I_C}{I_E}$$



#### **Conventional flow**

$$I_C \cong I_E$$

$$I_B \ll I_C$$

$$\beta_{dc} = \frac{I_C}{I_B}$$

# Beta (β)

 $\beta$  represents the amplification factor of a transistor.

In DC mode:

$$\beta_{cc} = \frac{I_C}{I_B}$$

In AC mode:

$$eta_{\mathit{ac}} = rac{\Delta \emph{I}_{\mathit{C}}}{\Delta \emph{I}_{\mathit{B}}} \Big|_{\mathit{V}_{\mathit{CE}} = constant}$$

 $\beta_{ac}$  is sometimes referred to as  $h_{fe}$ , a term used in transistor modeling calculations

# Beta (β)

#### Determining $\beta$ from a Graph

$$\beta_{AC} = \frac{(3.2 \text{ mA} - 2.2 \text{ mA})}{(30 \text{ }\mu\text{A} - 20 \text{ }\mu\text{A})}$$
$$= \frac{1 \text{ mA}}{10 \text{ }\mu\text{A}} \Big|_{V_{CE} = 7.5 \text{ V}}$$
$$= 100$$

$$\beta_{DC} = \frac{2.7 \text{ mA}}{25 \text{ }\mu\text{A}} \Big|_{V_{CE} = 7.5 \text{ }V}$$
$$= 108$$



A transistor has a collector current of 10 mA and a base current of 40  $\mu$ A. What is the current gain of the transistor?

SOLUTION Divide the collector current by the base current to get:

$$\beta_{\rm dc} = \frac{10 \text{ mA}}{40 \text{ } \mu\text{A}} = 250$$

A transistor has a current gain of 175. If the base current is 0.1 mA, what is the collector current?

SOLUTION Multiply the current gain by the base current to get:

$$I_C = 175(0.1 \text{ mA}) = 17.5 \text{ mA}$$

A transistor has a collector current of 2 mA. If the current gain is 135, what is the base current?

SOLUTION Divide the collector current by the current gain to get:

$$I_B = \frac{2 \text{ mA}}{135} = 14.8 \ \mu\text{A}$$

Use the second approximation to calculate the base current in Fig. 6-8b. What is the voltage across the base resistor? The collector current if  $\beta_{dc} = 200$ ?



$$V_{BB} - V_{BE} = 2 \text{ V} - 0.7 \text{ V} = 1.3 \text{ V}$$

$$I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{1.3 \text{ V}}{100 \text{ k}\Omega} = 13 \text{ } \mu\text{A}$$

$$I_C = \beta_{dc}I_B = (200)(13 \ \mu\text{A}) = 2.6 \ \text{mA}$$

# **Common-Base Configuration**



The base is common to both input (emitter-base) junction and output (collector-base) junction of the transistor.

# **Operating Regions**

#### **Active**

Operating range of the amplifier.

#### Cutoff

The amplifier is basically off. There is voltage, but little current.

#### **Saturation**

The amplifier is fully on. There is current, but little voltage.

# Developing the equivalent model for the base-to-emitter region



# **Common-Collector Configuration**

The input is on the base and the output is on the emitter.



# **Operating Limits**

 $V_{CE}$  is maximum and  $I_C$  is minimum in the cutoff region.

$$I_{C(\text{max})} = I_{CEO}$$

 $I_C$  is maximum and  $V_{CE}$  is minimum in the saturation region.

$$V_{CE(max)} = V_{CE(sat)} = V_{CEO}$$



The transistor operates in the active region between saturation and cutoff.

# **Power Dissipation**

#### Common-base:

$$P_{Cmax} = V_{CB}I_{C}$$

#### **Common-emitter:**

$$P_{Cmax} = V_{CE}I_{C}$$

#### **Common-collector:**

$$P_{Cmax} = V_{CE}I_{E}$$

The transistor of Fig. 6-11a has  $\beta_{dc} = 300$ . Calculate  $I_B$ ,  $I_C$ ,  $V_{CE}$ , and  $P_D$ .







$$I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{10 \text{ V} - 0.7 \text{ V}}{1 \text{ M}\Omega} = 9.3 \text{ } \mu\text{A}$$
  
 $I_C = \beta_{dc}I_B = (300)(9.3 \text{ } \mu\text{A}) = 2.79 \text{ mA}$ 

$$V_{CE} = V_{CC} - I_{C}R_{C} = 10 \text{ V} - (2.79 \text{ mA})(2 \text{ k}\Omega) = 4.42 \text{ V}$$

$$P_D = V_{CE}I_C = (4.42 \text{ V})(2.79 \text{ mA}) = 12.3 \text{ mW}$$

# **Transistor Specification Sheet**

#### **MAXIMUM RATINGS**

| Rating                                                        | Symbol           | 2N4123      | Unit       |
|---------------------------------------------------------------|------------------|-------------|------------|
| Collector-Emitter Voltage                                     | V <sub>CEO</sub> | 30          | Vdc        |
| Collector-Base Voltage                                        | V <sub>CBO</sub> | 40          | Vdc        |
| Emitter-Base Voltage                                          | V <sub>EBO</sub> | 5.0         | Vdc        |
| Collector Current – Continuous                                | $I_{C}$          | 200         | mAdc       |
| Total Device Dissipation @ $T_A = 25$ °C Derate above $25$ °C | $P_{D}$          | 625<br>5.0  | mW<br>mW°C |
| Operating and Storage Junction<br>Temperature Range           | $T_j, T_{stg}$   | -55 to +150 | °C         |

#### THERMAL CHARACTERISTICS

| Characteristic                          | Symbol         | Max  | Unit |
|-----------------------------------------|----------------|------|------|
| Thermal Resistance, Junction to Case    | $R_{	heta JC}$ | 83.3 | °C W |
| Thermal Resistance, Junction to Ambient | $R_{	heta JA}$ | 200  | °C W |



# **Transistor Specification Sheet**

| Characteristic                                                                                                                    | Symbol               | Min              | Max  | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|------|------|
| OFF CHARACTERISTICS                                                                                                               |                      |                  |      |      |
| Collector-Emitter Breakdown Voltage (1) $(I_C = 1.0 \text{ mAdc}, I_E = 0)$                                                       | V <sub>(BR)CEO</sub> | 30               |      | Vdc  |
| Collector-Base Breakdown Voltage $(I_C = 10 \mu Adc, I_E = 0)$                                                                    | V <sub>(BR)CBO</sub> | 40               |      | Vdc  |
| Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$                                                                      | V <sub>(BR)EBO</sub> | 5.0              | -    | Vdc  |
| Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$                                                                     | $I_{CBO}$            | 7-2              | 50   | nAdc |
| Emitter Cutoff Current $(V_{BE} = 3.0 \text{ Vdc}, I_C = 0)$                                                                      | I <sub>EBO</sub>     | -                | 50   | nAdc |
| ON CHARACTERISTICS                                                                                                                |                      |                  |      |      |
| DC Current Gain(1)<br>$(I_C = 2.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$<br>$(I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ | h <sub>FE</sub>      | 50<br>25         | 150  | 7-7  |
| Collector-Emitter Saturation Voltage(1)<br>$(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$                                      | V <sub>CE(sat)</sub> | : <del>-</del> : | 0.3  | Vdc  |
| Base-Emitter Saturation Voltage(1)<br>$(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$                                           | V <sub>BE(sat)</sub> | (=)              | 0.95 | Vde  |

# **Transistor Specification Sheet**

| Current-Gain – Bandwidth Product<br>$(I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz})$                                                                      | $f_T$            | 250       |          | MHz |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|----------|-----|
| Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 100 \text{ MHz})$                                                                                                    | $C_{obo}$        |           | 4.0      | pF  |
| Input Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_C = 0, f = 100 \text{ kHz})$                                                                                                     | C <sub>ibo</sub> | -         | 8.0      | pF  |
| Collector-Base Capacitance $(I_E = 0, V_{CB} = 5.0 \text{ V}, f = 100 \text{ kHz})$                                                                                              | C <sub>cb</sub>  | 9-1       | 4.0      | pF  |
| Small-Signal Current Gain $(I_C = 2.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$                                                                               | h <sub>fe</sub>  | 50        | 200      | -   |
| Current Gain – High Frequency $ (I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz}) $ $ (I_C = 2.0 \text{ mAdc}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}) $ | h <sub>fe</sub>  | 2.5<br>50 | _<br>200 | -   |
| Noise Figure ( $I_C = 100 \mu Adc$ , $V_{CE} = 5.0 Vdc$ , $R_S = 1.0 k$ ohm, $f = 1.0 kHz$ )                                                                                     | NF               | j-        | 6.0      | dB  |

<sup>(1)</sup> Pulse Test: Pulse Width = 300  $\mu$ s. Duty Cycle = 2.0%