HOL IN ISABELLE

Higher-Order Logic (HOL)

In HOL, we represent sets and predicates by functions often denoted by lambda abstractions.

Definition (Lambda Abstraction)

Lambda abstractions are **terms** that denote functions directly by the rules which define them, e.g. the square function is λx . x*x.

This is a way of defining a function without giving it a name:

$$f(x) \equiv x * x$$
 vs $f \equiv \lambda x. x * x$

We can use lambda abstractions exactly as we use ordinary function symbols. E.g. $(\lambda x. \ x*x) \ 3 = 3*3 = 9$. See β -reduction later in the lecture.

Representation of Logic in HOL I

- ▶ Types <u>bool</u>, <u>ind</u> (individuals) and $\alpha \Rightarrow \beta$ primitive. All others defined from these.
- ► Two primitive (families of) functions:

$$\checkmark$$
 equality (=α): α ⇒ α ⇒ bool
 \checkmark implication (→): bool ⇒ bool ⇒ bool

All other functions defined using this, lambda abstraction and application.

- Distinction between formulas and terms is dispensed with:

 formulas are just terms of type bool.
- Predicates are represented by functions $\alpha \Rightarrow bool$. Sets are represented as predicates.

Higher-Order Functions

Using λ -notation, we can think about functions as individual objects.

E.g., we can define functions which map from and to other functions.

Example

The K-combinator maps some x to a function which sends any y to x.

$$\lambda x. \lambda y. x$$
 thus, e.g. $(\lambda x. \lambda y. x) 3 = \lambda y. 3$

Example

The composition function maps two functions to their composition:

$$\lambda f. \lambda g. \lambda x. f(gx)$$

False can be defined as:

Representation of Logic in HOL II

► True is defined as:

$$\perp \equiv \forall P. P$$

$$\top \equiv (\lambda x. x) = (\lambda x. x)$$

► Universal quantification as function equality:

$$\forall x. \ \phi \equiv (\lambda x. \ \phi) = (\lambda x. \top).$$

This works for x of any type: bool, ind \Rightarrow bool, ...

- Therefore, we can quantify over functions, predicates and sets.
 - Conjunction and disjunction are defined:

$$\checkmark P \land Q \equiv \forall R.(P \rightarrow Q \rightarrow R) \rightarrow R$$

 $\checkmark P \lor Q \equiv \forall R.(P \rightarrow R) \rightarrow (Q \rightarrow R) \rightarrow R$

▶ Define natural numbers (\mathbb{N}), integers (\mathbb{Z}), rationals (\mathbb{Q}), reals (\mathbb{R}), complex numbers (\mathbb{C}), vector spaces, manifolds, ...

Isabelle/HOL

Higher-Order Logic is the underlying logic of Isabelle/HOL, the theorem prover we are using.

The axiomatisation is slightly different to the one described on the previous slides, and a bit more powerful (but we won't be delving into this).

We are interested in Isabelle/HOL from a functional programming and logic standpoint.

Isabelle/HOL Types

Basic syntax (as a BNF grammar):

Convention: $\tau_1 \Rightarrow \tau_2 \Rightarrow \tau_3 \equiv \tau_1 \Rightarrow (\tau_2 \Rightarrow \tau_3)$ Right A formula is simply a term of type bool.

HOL = Functional Programming + Logic

HOL = Higher-Order Logic

HOL = Functional Programming + Logic

HOL has

- ▶ datatypes
- recursive functions
- ▶ logical operators

HOL is a programming language!

Higher-order = functions are values, too!

Isabelle/HOL Terms

Terms can be formed as follows:

Function application ft is the call of function f with argument t. If f has more arguments: $ft_1 t_2 ...$ Examples: $sin \pi$, plus x y

Function abstraction: $\lambda x. t$ is the function with parameter x and result t, i.e. " $x \mapsto t$ ". Example: $\lambda x. plus x x$

Note: $\lambda x_1 . \lambda x_2 \lambda x_n . t$ is usually denoted by $\lambda x_1 x_2 ... x_n . t$

Isabelle/HOL Terms

Basic syntax:

Examples:
$$f(g x) y$$

 $h(\lambda x. f(g x))$

Convention:
$$\int t_1 t_2 t_3 \equiv ((\int t_1) t_2) t_3$$

This language of terms is known as the λ -calculus.

Well-typed Terms

The type into is needed

Terms must be well-typed

bc. numbers and anthmetic operation (the argument of every function call must be of the right type)

are overloaded in Isabelle,

Notation: and w/o it, Isabelle $t::\tau$ means "t is a well-typed term of type τ ". will assume that the

type of 0 is 'a rather than nat $\frac{t::\tau_1\Rightarrow\tau_2\qquad u::\tau_1}{tu::\tau_2}$

 $\forall P. P(0::nat) \land (\forall n. Pn \rightarrow P(n+1)) \rightarrow (\forall n. Pn)$

→ This formula is equiv. to: [[?PO; \n.?Pn →?P (Suc n)]] ⇒ 7.P ?n

β -reduction

The computation rule of the λ -calculus is the replacement of formal by actual parameters:

$$(\lambda x.\ t)\ u\ =\ t[w/x]$$

where t[u/x] is "t with u substituted for x".

Example: $(\lambda x. x + 5) 3 = 3 + 5$

- ▶ The step from $(\lambda x. t) u$ to t[u/x] is called β -reduction.
- \blacktriangleright Isabelle performs β -reduction automatically.

e.g.
$$(\lambda x. (\lambda w. x w)) f j = (\lambda w. f w) j$$

$$= f j$$

Type inference

- → Isabelle automatically computes the type of each variable in a term. This is called type inference.
- → In the presence of overloaded functions (functions with multiple types) this is not always possible.

User can help with type annotations inside the term.

Examples f(x::nat)g (A::real set)

2-9. (Ax:: nat > real. (Aw:: nat. xw)) (f (j:: complex)) What is type of 'f'?

Ly Complex => nat => real

Currying

Process of transforming a function that takes multiple arguments into:

- one that takes just a single argument, and
- returns another function if any arguments are still needed.

Typing:

- ▶ Curried: $f :: \tau_1 \Rightarrow \tau_2 \Rightarrow \tau$
- ▶ Tupled: $f' :: \tau_1 \times \tau_2 \Rightarrow \tau$

Advantage:

Currying allows partial application

$$f a_1 :: \tau_2 \Rightarrow \tau$$
 where $a_1 :: \tau_1$

So, e.g. if plus :: nat \Rightarrow nat \Rightarrow nat then plus 10 :: nat \Rightarrow nat

Example: Type bool

datatype bool = True | False

Predefined functions:

 $\land, \lor, \longrightarrow, \dots :: bool \Rightarrow bool \Rightarrow bool$

A formula is a term of type bool

if-and-only-if: =

Predefined syntactic sugar

- ▶ Infix: +, -, *, #, @, ...
- ► Mixfix: if _ then _ else _, case _ of , ...

Prefix binds more strongly than infix: $fx + y \equiv (fx) + y \not\equiv f(x + y)$

Enclose if and case in parentheses:

! (if_ then_ else _) !

Example: Type nat

datatype nat = 0 | Suc nat

Values of type nat: 0, Suc 0, Suc(Suc 0), ...

Predefined functions: +, *, ... :: $nat \Rightarrow nat \Rightarrow nat$

Numbers and arithmetic operations are overloaded: $0, 1, 2, \dots : 'a, + :: 'a \Rightarrow 'a \Rightarrow 'a$

You need type annotations: 1 :: nat, x + (y::nat) unless the context is unambiguous: Suc z