PRÁCTICA No. 3 TEOREMA DE SUPERPOSICIÓN

4.1. OBJETIVO DE LA PRÁCTICA

Comprobar experimentalmente el Teorema de Superposición.

4.2. REQUISITOS PREVIOS.

Se requiere el análisis analítico del circuito mostrado en la figura 4.1., aplicando el Teorema de Superposición. Obtenga los valores de V_A e I_X, respetando tanto la polaridad del voltaje como el sentido de la corriente que se proporcionan y anote los resultados en la tabla 4.1. y 4.2. según corresponda.

4.3. INFORMACIÓN GENERAL

Uno de los métodos que se aplica en el análisis de circuitos eléctricos que cuentan con varias fuentes, es el Teorema de Superposición que establece que:

El voltaje o corriente a través de cualquier elemento del circuito puede obtenerse sumando algebraicamente todos los voltajes o corrientes individuales generados por cada fuente actuando por sí sola, con todas las demás fuentes igualadas a cero.

Las fuentes de voltaje igualadas a cero equivalen a un corto circuito, mientras que las fuentes de corriente igualadas a cero equivalen a un circuito abierto.

4.4. MATERIAL Y EQUIPO REQUERIDO

Cantidad	Elemento				
2	Fuente de Voltaje de C.D.				
2	Multímetros Digitales				
1	Resistor de 1 kΩ				
1	Resistor de 2.2 kΩ				
1	Resistor de 820 Ω				
1	Resistor de 470 Ω				
1	Protoboard				

DARWIN ALULEMA

4.5. PROCEDIMIENTO

4.5.1. Arme el circuito que se muestra en la figura 4.1.

Figura 4.1. Circuito para comprobar el Teorema de Superposición.

- 4.5.2. Con las dos fuentes conectadas, mida el voltaje V_A y la corriente I_X, respetando tanto la polaridad del voltaje como el sentido de la corriente que se proporcionan. Anote el valor de las mediciones en la tabla 4.1 y 4.2 respectivamente.
- 4.5.3. Haga "cero" la fuente de voltaje de 12 V (V₂) y mida el voltaje V_A y la corriente I_X, respetando tanto la polaridad del voltaje como el sentido de la corriente que se proporcionan. Anote el valor de las mediciones en la tabla 4.1 y 4.2 respectivamente.
- 4.5.4. Haga "cero" la fuente de voltaje de $20 \text{ V} (V_1)$ y mida el voltaje V_A y la corriente $I_{X,}$ respetando tanto la polaridad del voltaje como el sentido de la corriente que se proporcionan. Anote el valor de las mediciones en la tabla 4.1 y 4.2 respectivamente.

Tabla 4.1. Medición de voltaje aplicando superposición.

Voltaje Total		Voltaje (VA)		Voltaje (VA)	
(V _A)		cuando V2=0		cuando V ₁ =0	
Calculado	Medido	Calculado	Medido	Calculado	Medido

Tabla 4.2. Medición de corriente aplicando superposición.

Corriente Total (I _X)		Corriente (IX) cuando V ₂ =0		Corriente (Ix) cuando V ₁ =0	
Calculado	Medido	Calculado	Medido	Calculado	Medido

4.5.5. Verifique el cumplimiento del Teorema de Superposición y compare los resultados obtenidos prácticamente con los obtenidos analíticamente. Realice sus conclusiones.

DARWIN ALULEMA 10