LE THÉORÈME DE MERTENS SUR LA DISTRIBUTION DES NOMBRES PREMIERS EN PROGRESSIONS ARITHMÉTIQUES ET LA NON-ANNULATION DES FONCTIONS L EN 1

OLIVIER RAMARÉ

ABSTRACT. Une preuve qui ne demande que peu de prérequis et démontre de belles choses!

Version du 28 Mars 2000.

I. Résultats.

Soit q un entier ≥ 1 et a un entier premier à q. Nous démontrons le théorème de Mertens qui affirme que

(1.1)
$$\sum_{\substack{d \le D \\ d \equiv a[q]}} \frac{\Lambda(d)}{d} = \frac{1}{\phi(q)} \operatorname{Log} D + \mathcal{O}(1),$$

où le symbole \mathcal{O} dépend de q. Nous n'utiliserons que les propriétés élémentaires des caractères de Dirichlet, une borne supérieure de type Tchebyschef (le lemme 1 ci-dessous) et les identités de convolution $\Lambda \star 1 = \text{Log}$ et $\mu \star \text{Log} = \Lambda$.

Nous en déduirons qu'il existe trois constantes strictement positives $C_1(q)$, $C_2(q)$ et $C_3(q)$ telles que

$$C_1(q) \frac{D}{\phi(q)} \le \sum_{\substack{d \le D \\ d \equiv a[q]}} \Lambda(d) \le C_2(q) \frac{D}{\phi(q)}$$
, $(D \ge C_3(q))$.

II. Préliminaires.

Lemme 1 (Tchebyschef). Il existe une constante strictement positive C telle que

$$\sum_{d < D} \Lambda(d) \le C \, D \qquad (D \ge 1)$$

Lemme 2. Nous avons, pour tout caractère χ non principal modulo q:

$$\begin{cases} \sum_{d \leq D} \frac{\Lambda(d)}{d} = \operatorname{Log} X + \mathcal{O}(1) \\ \sum_{n \leq N} \frac{\chi(n)}{n} = L(1, \chi) + \mathcal{O}(1/N) \\ \sum_{n \leq N} \frac{\chi(n) \operatorname{Log} n}{n} = -L'(1, \chi) + \mathcal{O}((\operatorname{Log} N)/N) \\ \sum_{n \leq N} \frac{\chi(n)}{\sqrt{n}} = L(1/2, \chi) + \mathcal{O}(1/N^{1/2}) \end{cases}$$

Il faut remarquer que dans les égalités ci-dessus, ce qui nous intéresse c'est que $L(1,\chi), L'(1,\chi)$ et $L(1/2,\chi)$ soient des constantes et non leur forme particulière.

Preuve. Nous partons de

$$\sum_{n \le N} \operatorname{Log} n = N \operatorname{Log} N + \mathcal{O}(N).$$

Comme Log = $1 \star \Lambda$, nous en déduisons

$$N \operatorname{Log} N + \mathcal{O}(N) = \sum_{\substack{d, m \geq 1 \\ dm \leq N}} \Lambda(d) = \sum_{d \leq N} \Lambda(d) \left(\frac{N}{d} + \mathcal{O}(1)\right)$$

$$= N \sum_{d \leq N} \frac{\Lambda(d)}{d} + \mathcal{O}(N)$$

grace au lemme 1, ce qui démontre la première égalité. Les suivantes suivent toutes le mêmes schéma et nous ne montrons que la première. Nous avons

$$\sum_{n < N} \frac{\chi(n)}{n} = L(1, \chi) - \sum_{n > N} \frac{\chi(n)}{n} = L(1, \chi) - \int_{N}^{\infty} \frac{\sum_{N < n \le t} \chi(n)}{t^2} dt$$

en utilisant $\frac{1}{n} = \int_{n}^{\infty} dt/t^2$, et le résultat provient ensuite de ce que $|\sum_{n \leq t} \chi(n)| \leq q$.

III. Deux lemmes.

Lemme 3. Soit χ un caractère modulo q non principal. Nous avons

$$\left[L(1,\chi) \neq 0 \quad \implies \quad \sum_{d \leq D} \frac{\chi(d)\Lambda(d)}{d} = \mathcal{O}(1) \right].$$

Preuve. Puisque $\Lambda \star 1 = \text{Log}$, nous avons

$$\sum_{n \le N} \frac{\chi(n) \log n}{n} = \sum_{d \le N} \frac{\chi(d)\Lambda(d)}{d} \sum_{m \le N/d} \frac{\chi(m)}{m}$$

$$= \sum_{d \le N} \frac{\chi(d)\Lambda(d)}{d} \left\{ L(1,\chi) + \mathcal{O}\left(\frac{d}{N}\right) \right\}$$

$$= L(1,\chi) \sum_{d \le N} \frac{\chi(d)\Lambda(d)}{d} + \mathcal{O}\left(\sum_{d \le N} \Lambda(d)/N\right).$$

Les lemmes 1 et 2 nous permettent de conclure facilement. $\diamond \diamond \diamond$

Lemme 4. Soit χ un caractère modulo q non principal. Nous avons

$$\left[L(1,\chi) = 0 \quad \implies \quad \sum_{d \le D} \frac{\chi(d)\Lambda(d)}{d} = -\operatorname{Log} D + \mathcal{O}(1)\right].$$

Preuve. Nous avons

$$\sum_{n|d} \mu(n) \operatorname{Log} \frac{D}{n} = \sum_{n|d} \mu(n) \operatorname{Log} \frac{D}{d} + \sum_{n|d} \mu(n) \operatorname{Log} \frac{d}{n} = \begin{cases} \operatorname{Log} D & \text{si } d = 1 \\ \Lambda(d) & \text{si } d > 1. \end{cases}$$

Il vient alors

$$\sum_{d \le D} \frac{\chi(d)\Lambda(d)}{d} = -\log D + \sum_{d \le D} \frac{\chi(d)}{d} \sum_{n|d} \mu(n) \log \frac{D}{n}$$

$$= -\log D + \sum_{n \le D} \frac{\mu(n)\chi(n)}{n} \log \frac{D}{n} \sum_{m \le D/n} \frac{\chi(m)}{m}$$

$$= -\log D + \sum_{n \le D} \frac{\mu(n)\chi(n)}{\log n} \frac{D}{n} \left\{ L(1,\chi) + \mathcal{O}\left(\frac{n}{D}\right) \right\}.$$

Puisque nous supposons que $L(1,\chi)=0,$ et moyennant de rappeler que

$$\sum_{n \le D} \operatorname{Log} \frac{D}{n} = \mathcal{O}(D),$$

nous obtenons bien le résultat annoncé. $\diamond \diamond \diamond$

IV. Premières déductions.

Nous avons

$$\frac{1}{\phi(q)} \sum_{\substack{\chi \mod q}} \overline{\chi(a)} \chi(d) = \begin{cases} 1 & \text{si } d \equiv a[q] \\ 0 & \text{si } d \not\equiv a[q] \end{cases}$$

ce qui nous donne

$$\sum_{\substack{d \equiv a[q] \\ d \leq D}} \frac{\Lambda(d)}{d} = \frac{1}{\phi(q)} \sum_{\chi \mod q} \overline{\chi(a)} \sum_{d \leq D} \frac{\chi(d)\Lambda(d)}{d}.$$

Définissons $\delta(\chi)$ par

$$\delta(\chi) = \begin{cases} 1 & \text{si } \chi = \chi_0 \\ -1 & \text{si } \chi \neq \chi_0 \text{ et } L(1, \chi) = 0 \\ 0 & \text{si } \chi \neq \chi_0 \text{ et } L(1, \chi) \neq 0 \end{cases}$$

(où χ_0 est le caractère principal) de telle sorte que

$$\sum_{d < D} \frac{\chi(d)\Lambda(d)}{d} = \delta(\chi) \operatorname{Log} D + \mathcal{O}(1).$$

Nous obtenons alors

(4.1)
$$\sum_{\substack{d \equiv a[q] \\ d < D}} \frac{\Lambda(d)}{d} = \frac{1}{\phi(q)} \left(\sum_{\chi \mod q} \overline{\chi(a)} \delta(\chi) \right) \operatorname{Log} D + \mathcal{O}(1).$$

En spécialisant en a=1, et en remarquant que le membre de gauche de l'égalité précédente est positif ou nul, nous obtenons

$$0 \le \sum_{\chi \mod q} \delta(\chi) = 1 - \sum_{\chi/L(1,\chi) = 0} 1$$

tant et si bien qu'il y a au plus un caractère modulo q pour lequel $L(1,\chi) = 0$. Comme $L(1,\overline{\chi}) = \overline{L(1,\chi)}$, ce caractère est nécessairement réel.

V. La non-annulation de $L(1,\chi)$ pour χ réel.

Pour montrer que $L(1,\chi) \neq 0$ lorsque χ est réel, remarquons tout d'abord que

$$\sum_{d|n} \chi(d) \ge 0$$

et même ≥ 1 si n est un carré. En effet, comme la fonction $1 \star \chi$ est multiplicative, il nous suffit de vérifier ces propriétés sur les puissances de nombres premiers. Si $\chi(p)=1$, alors $1 \star \chi(p^{\nu})=\nu+1$ et si $\chi(p)=-1$, alors $1 \star \chi(p^{\nu})=((-1)^{\nu}+1)/2$, ce qui démontre bien ce que nous avons annoncé.

Donnons-nous deux paramètres $M, D \geq 1$ et tels que MD = N. Il vient

$$\begin{split} \sum_{n \leq N} \frac{\sum_{d \mid n} \chi(d)}{\sqrt{n}} &= \sum_{d, m/dm \leq N} \frac{\chi(d)}{\sqrt{d}} \frac{1}{\sqrt{m}} \\ &= \sum_{d \leq D} \frac{\chi(d)}{\sqrt{d}} \sum_{m \leq N/d} \frac{1}{\sqrt{m}} + \sum_{m \leq M} \frac{1}{\sqrt{m}} \sum_{D < d \leq N/m} \frac{\chi(d)}{\sqrt{d}} \\ &= \sum_{d < D} \frac{\chi(d)}{\sqrt{d}} \left\{ \frac{1}{2} \sqrt{\frac{N}{d}} + c + \mathcal{O}\left(\sqrt{\frac{d}{N}}\right) \right\} + \sum_{m \leq M} \frac{1}{\sqrt{m}} \mathcal{O}(1/\sqrt{D}) \end{split}$$

(car $\sum_{m \le M} m^{-1/2} = M^{1/2}/2 + c + \mathcal{O}(M^{-1/2})$), soit finalement

$$\sum_{n \le N} \frac{\sum_{d|n} \chi(d)}{\sqrt{n}} = \frac{1}{2} \sqrt{N} (L(1, \chi) + \mathcal{O}(1/D)) + \mathcal{O}(1 + DN^{-1/2} + M^{1/2}D^{-1/2}).$$

Nous prenons alors $D = M = N^{1/2}$, ce qui nous donne

$$\sum_{n \le N} \frac{\sum_{d|n} \chi(d)}{\sqrt{n}} = \frac{1}{2} \sqrt{N} L(1, \chi) + \mathcal{O}(1).$$

Par ailleurs

$$\sum_{n < N} \frac{\sum_{d \mid n} \chi(d)}{\sqrt{n}} \ge \sum_{\ell^2 < N} \frac{1}{\sqrt{\ell^2}} \ge \frac{1}{2} \operatorname{Log} N + \mathcal{O}(1).$$

Par conséquent

$$L(1,\chi) \geq rac{\operatorname{Log} N + \mathcal{O}(1)}{\sqrt{N}}$$

et il suffit de prendre N assez grand pour obtenir $L(1,\chi) \neq 0$.

VI. Conclusion.

L'équation (4.1) allié au fait que $\delta_{\chi} = 0$ pour tout caractère non principal nous donne le théorème de Mertens (1.1).

Pour en déduire des inégalités de type Tchebyschef (1.2), nous procédons comme suit. Donnons-nous un paramètre $\alpha \in]0,1[$. Nous avons

$$\sum_{\substack{\alpha D < d \leq D \\ d \equiv a[q]}} \frac{\alpha D\Lambda(d)}{d} \leq \sum_{\substack{\alpha D < d \leq D \\ d \equiv a[q]}} \Lambda(d) \leq \sum_{\substack{\alpha D < d \leq D \\ d \equiv a[q]}} \frac{D\Lambda(d)}{d}$$

où il nous suffit d'appliquer (1.1) pour obtenir

$$\alpha D\left(\frac{\operatorname{Log}(1/\alpha)}{\phi(q)} + \mathcal{O}(1)\right) \leq \sum_{\substack{\alpha D < d \leq D \\ d = a[q]}} \Lambda(d) \leq D\left(\frac{\operatorname{Log}(1/\alpha)}{\phi(q)} + \mathcal{O}(1)\right)$$

et nous prenons alors α suffisamment petit de sorte que les quantités $\frac{\text{Log}(1/\alpha)}{\phi(q)} + \mathcal{O}(1)$ ci-dessus soient toutes les deux ≥ 1 . Nous ajoutons les contributions de D à αD , puis de αD à $\alpha^2 D$, etc, ce qui prouve (1.2).

VII. Commentaires.

Les lignes qui suivent sont empruntées à plusieurs preuves plus ou moins classiques dont je ne saurai reconnaître les auteurs. Il faut remarquer que (4.1) parle déjà de la célèbre constante 2 du théorème de Brun-Tichmarsh : si il existe un zéro exceptionnel, disons ici $L(1,\chi)=0$ dans notre formalisme simplifié, alors certaines classes contiennent deux fois plus de nombres premiers que la valeur espérée. Plus remarquable encore, ces classes forment un sous-groupe...

L'argument de la partie V si il a l'avantage de s'intégrer agréablement au reste du développement donne une piètre minoration de $L(1,\chi)$ en fonction de q dès que l'on explicite la dépendance dans ce paramètre.