P89 RNA-seq CAR transcript analysis

James Eddy March 30, 2016

Summary

I compared **coverage profiles** and **estimated abundances** for CAR and related transcripts using three sets of samples:

- **P89 bulk:** sorted CD8+ T-cells, sequenced as bulk populations (expected to express *CAR*)
- **P89 single-cell:** CD8+ T-cells, captured using C1 instrument and sequenced invididually (expected to express CAR)
- **P85 single-cell:** MAIT-cells, captured using C1 and sequenced individually (not expected to express CAR)

Based on read coverage across the *CAR* transcript, the construct appears to be (i) expressed in bulk samples from P89; (ii) not expressed in single-cell samples from P85; (iii) expressed in a fraction of single-cell samples from P89.

All code used for the pipeline and subsequent analysis (including this Rmarkdown report) is available at this repo: https://github.com/jaeddy/carTcellAnalysis

Pipeline overview

The CAR detection pipeline utilizes two tools: Salmon and RapMap. Both use the concept of "lightweight" / "quasi-" / "pseudo" alignment to rapidly map RNA-seq reads to the transcriptome. Salmon is primarily geared towards transcript quantification, using a probabilistic algorithm to estimate abundance (i.e., counts or TPM) for each reference transcript. RapMap provides a stand-alone version of the quasi-mapper used under the hood by Salmon. The output of RapMap is a SAM-like record of aligned reads, which enables further inspection of transcript coverage. These tools were chosen because they're extremely fast — ~2-5 minutes to map/quantify an RNA-seq library with ~5-10 million reads — allowing for rapid prototyping and testing.

For each library, reads are mapped to a modified human reference transcriptome, including all annotated transcripts from the hg38 gene model GTF plus the CAR transcript sequence.

Data used for analysis

Data presented below was generated and/or compiled from several sources:

- \bullet sample_metrics_data: sample annotation (e.g., donor ID, timepoint, etc.) as well sequencing & alignment metrics from RNA-seq processing
- sample_rapmap_data: read coverage measured across the length of the CAR transcript and several EGFR transcript isoforms, based on mapping with the RapMap tool
- sample_salmon_data: abundance estimates (e.g., TPM, count) produced by the Salmon tool for *CAR* and several relevant transcripts when mapping to a modified human reference transcriptome (hg38)
- salmon_imgt_data: predicted/identified TCR junction sequences and alleles in single-cell libraries, as produced by assembly with Trinity followed by matching with IMGT High V-QUEST
- gff_file : custom-built GTF file describing where individual segments are located along the length of the CAR transcript

Results

Visualizing CAR coverage & abundance

The plots below show read coverage from RapMap mapping across the length of the CAR sequence. Segments in the transcript, corresponding to the gene parts used to build the construct, are depicted by colored boxes in each plot. Transparency (i.e., alpha) is scaled based on the estimated abundance of the CAR transcript (TPM) as measured by Salmon.

Bulk libraries from project P89: While expressed at what would be considered low levels, the CAR transcript appears to be present in all donors at all timepoints. Note that for all but the $\mathbf{x194}\sim\mathbf{IP}$ timepoint (2 replicates), each plot shows data from a single library.

Single-cell libraries from project P89: In contrast, some single-cell libraries clearly show signs of CAR expression, but most do not. Each plot in this case shows data from all cells from a given donor/timepoint combination. The orange fit line depicts the average across all cells.

The table below shows the breakdown of libraries (cells) per group:

donor_id	timepoint	num_libs
x145	IP	79
x145	t1	56
x145	t2	60
x194	IP	71
x194	t1	74
x194	t2	57
x228	IP	58
x228	t1	35
x228	t2	69

Single-cell libraries from project P85: As expected for the negative control, the MAIT cells from P85 show virtually no evidence of CAR expression.

Here's the breakdown of libraries per group for P85:

donor_id	timepoint	num_libs
x145	IP	79
x145	t1	56
x145	t2	60
x194	IP	71
x194	t1	74
x194	t2	57
x228	IP	58
x228	t1	35
x228	t2	69

Inspecting trends in CAR coverage among single-cell P89 libs

To simplify the plots (and make it easier to distinguish between libraries), below I've just shown the fit line of coverage for each library. Notably, these plots also show more clearly that, in many of the libraries with apparent CAR expression, the bulk of the signal appears to fall within the EGFRt region. I'll return to this point below.

Correlation with abundance of non-CAR transcripts: The following human transcripts (which overlap the CAR sequence) were quantified by Salmon. The xcript_name (e.g., "CD28") corresponds to the "common" gene name for a particular CAR segment; segment_version includes a tag indicating record number, if multiple isoforms exist for the gene (e.g., "CD28tm_r1") in the reference transcriptome.

xcript_name	segment_version
CSF2	GMCSFRss_r1
CD28	$CD28tm_r1$
CD28	$CD28tm_r2$
CD28	$CD28tm_r3$
TNFRSF9	$IgG4hinge_r1$
CD247	$CD3Zeta_r1$
CD247	$CD3Zeta_r2$
EGFR	$EGFRt_r1$
EGFR	$EGFRt_r2$
EGFR	$EGFRt_r3$
EGFR	$EGFRt_r4$

Each plot shows CAR coverage across libraries, but colored based on the estimated abundance of the respective transcript. In other words, a "brighter" fit line in the plot for $EGFRt_r4$ indicates higher expression of that transcript in a library, even though the lines themselves still represent CAR transcript coverage.

Estimated abundance of EGFR & CAR expression: Once again, higher estimated expression of some EGFR transcripts (particularly $EGFRt_r2$ and $EGFRt_r4$) appears to correspond to stronger evidence of CAR expression. I took a closer look at this by identifying the subsequence of each transcript that overlaps with the EGFRt segment of the CAR gene, then plotting the coverage from RapMap for each transcript. The region matching EGFRt is highlighted in the purple box (i.e., "transmembrane").

It's pretty clear that the vast majority of reads mapping to any of the EGFR transcripts fall within the

transmembrane region. There are other subsequences with some coverage outside of the transmembrane region, but these are fairly short and may overlap with other transcripts in hg38.

As for **why** reads from the CAR transcript are mostly mapping to the EGFRt segment, there are at least a couple possible explanations:

- 1. Because the *CAR* transcript is fairly long, degradation from both the 5' and 3' ends could lead to less coverage on either end of the transcript;
- 2. Libraries prepared using the Nextera XT kit (or more specifically, using the Clontech SMARTer cDNA synthesis kit for C1) show a fair amount of 3' bias, which could further (or primarily) contribute to the skew observed along the CAR transcript.

"Classifying" CAR detection in single-cell libraries

Based on the above observations, I tried to come up with a relatively simple way to classify whether CAR was detected in a particular library. In all cases, I set an absolute threshold for detection, based on whether a library had the bare minimum number of reads mapping to any position along the transcript. That is,

non-zero coverage = TRUE if \geq 5 positions with at least one read OR \geq 1 position with at least two reads

Cases where a CAR detection rule and the non-zero coverage rule both return FALSE are considered to be "true negatives", giving some measure of specificity. When CAR is detected in libraries without non-zero coverage, this suggests a false positive.

Binarized CAR expression: Using the most straightforward criteria — positive expression of the CAR transcript (i.e., $\log 2(\text{TPM} + 1) > 0$ for CAR, as estimated by Salmon) — I appeared to miss a number of libraries that showed coverage of EGFRt or one of the non-human CAR segments (i.e., CD19scFv, T2A).

While there are no false positives in this case, and the specificity (true negative rate) appears solid, I would consider at least some of the libraries in the bottom right panel to be false negatives.

car_expr_tpm	nz_cov	n_libs
car_expr_tpm	TRUE	73
car_expr_tpm	NA	1
no_car_tpm	FALSE	391
no_car_tpm	TRUE	90
no_car_tpm	NA	4

Quantification-based rule: I tried to devise a more complicated rule based on the abundance of both the CAR transcript and each of the EGFR transcript isoforms (not shown). However, this lead to greater numbers of apparent false positives and false negatives, so I dropped this idea.

Coverage-based rule: Finally, putting together various pieces of information, I settled on a rule that checked for ≥ 2 contiguous (adjacent) positions with positive coverage in **ANY** of the segments CD19scFV, T2A, or EGFRt.

Based on coverage of these CAR "indicator" segments and the criteria of non-zero coverage across the CAR transcript, I would label 138 of the 559 single-cell libraries in P89 as "positive" for presence of the CAR transcript. Note: the pipeline produced an error for the RapMap step for 5 of the libraries, so I don't currently have coverage data for these; I'll need to go back and re-run this step.

car_expr_cov	nz_cov	n_libs
car_expr_cov	TRUE	138
no_car_cov	FALSE	391
no_car_cov	TRUE	25
NA	NA	5

Revisiting CAR transcript trends across patients

With a more informed designation of *CAR* detection, below are plots of the remaining 138 libraries. Note that I haven't tried to control for library size in any way, so relative *abundances* (i.e., height on the y-axis) between libraries shouldn't be taken too seriously.

donor_id	timepoint	n_libs
x145	IP	29
x145	t1	13
x145	t2	9
x194	IP	28
x194	t1	12
x194	t2	7
x228	IP	24
x228	t1	11
x228	t2	5

As an additional check, I compared the overlap of libraries with detected CAR transcript and those for which we were able to identify either a functional TRAV or TRBV TCR junction. Not surprisingly, some libraries for which a TCR junction was identified did not appear to show evidence of CAR expression. On the other hand, TCR junctions were not recovered for several libraries with reasonably clear evidence of CAR coverage, suggesting that the junctions may have been missed due to limitation with sequencing parameters, transcriptome assembly tools, or junction identification tools.

Thoughts / next steps

- 1. I still don't have a great idea for how to quantify abundance of the CAR transcript in a particular library. I might be able to construct a reference transcript containing only the non-human segments and EGFRt, then map reads to **only** this transcript. On an absolute scale, I would expect the abundance estimates to be biased, but they might provide a reasonable indication of relative expression between libraries.
- 2. Beyond TCR junction detection, I haven't looked at correlation between *CAR* detection and any other features or phenotypes (including TCR clonotype). If there are any that seem like they might be especially interesting, that's something I could explore.
- 3. As far as key take-away points here, I would probably focus on 5 figures (we can discuss how to present those points in the most succinct way):
 - i. CAR coverage in bulk P89 libraries;
 - ii. CAR coverage in all single-cell P89 libraries;
 - iii. CAR coverage in all single-cell P85 libraries;
 - iv. EGFR coverage in single-cell P89 libraries;
 - v. CAR coverage in those single-cell P89 libraries designated as CAR-positive

Detailed methods

Data preprocessing

Prior to any computation with Salmon and RapMap, several steps were needed to prepare reference data and indexes:

Formatting/building reference transcriptome To convert the CAR sequence information from lines in a Word document to something more usable (in this case, FASTA), I wrote a script to do most of the work for me. Writing the script took a bit of extra time, but it was useful for minimizing human error and replicated effort.

```
python scripts/format_fasta.py \
    data/sequence/carGeneRaw.txt \ # unformatted sequences, copied from Word doc into text file
    CAR \ # name of gene/transcript
    data/sequence/carTranscript.fasta \ # output FASTA file
    True \ # merge individual segments into a single FASTA record
    True # output is transcript (don't add artificial 'intron' buffer between segments)
```

To convert transcript records in the hg38 gene model GTF to the required FASTA format, I used the gffread function included with cufflinks.

```
gffread \
   -w data/sequence/hg38_transcripts.fa \ # output transcriptome FASTA
   -g genome.fa \ # reference genome (hg38) from iGenomes
   genes.gtf # reference gene models for hg38 from iGenomes
```

Finally, I simply pasted the CAR sequence to the top of the hg38 transcriptome FASTA.

cat data/sequence/carTranscript.fasta data/sequence/hg38_transcripts.fa > hg38_CAR_transcripts.fa

Formatting/building reference gene model GTF For the purposes of visualization and some filtering tasks, I created a pseudo-GTF file with a record for each segment of the CAR transcript. Each segment (e.g., "CD28tm") is labeled as a unique 'transcript', and the chromosome is denoted as CAR-1. The start and end position of each segment is also included. I was able to use the format_fasta.py script for this, keeping the default option to not merge segments.

```
python scripts/format_fasta.py \
    data/sequence/carGeneRaw.txt \ # unformatted sequences, copied from Word document into text file
    CAR \ # name of gene/transcript
    data/sequence/carGeneParts.fasta \ # output FASTA file
```

Using a bit of digging and manual editing, I also added entries for each transcript in the reference human transcriptome that might overlap with CAR segments. In this case, the transcript ID (e.g., "NM_001243077") is used as the chromosome name, the "common" gene name (e.g., "CD28") is used as the gene ID, and the corresponding CAR segment along with a tag indicating record number, if multiple isoforms exist for the gene (e.g., "CD28tm_r1").

```
python scripts/gene_fasta_to_gtf.py \
    data/sequence/carGeneParts.fasta \
    CAR \
    data/annotation/carGeneParts.gtf
```

Building indexes The commands for building indexes with RapMap and Salmon. Note: docker was used to run RapMap, as the tool is not currently available for Mac OS.

```
docker run --rm -v ${PWD}/data:/home/data jaeddy/rapmap:0.1.0-pre \ # loading docker image
    rapmap quasiindex \ # command to use rapmap executable & quasiindex module
    -t data/sequence/hg38_CAR_transcripts.fa \ # input reference transcriptome
    -i data/indexes/rapmap/hg38_CAR \ # index folder/prefix
    -k 19 #

tools/SalmonBeta-0.5.0_OSX-10.10/bin/salmon index # salmon executable & index module \
    -t data/sequence/hg38_CAR_transcripts.fa \
    -i data/indexes/salmon/hg38_CAR \
    --type quasi \
    -k 19
```

Mapping & quantification

Both index building and actual mapping/quantification are included in the script <code>car_detect_pipe.sh</code>, which runs the pipeline an all library FASTQ files specified in a tab-delimited input list. The <code>bash</code> code is a bit messy, so I won't include it here, but the <code>RapMap</code> step proceeds as follows:

- 1. Map reads to reference transcriptome, save output SAM file
- 2. Convert SAM to BAM, sort, and index with samtools
- 3. Filter BAM records to only include reads mapping to CAR or relevant endogeneous transcripts (using samtools)
- 4. Index again with samtools)

For the Salmon step, outputs are saved as-is.

Compiling & formatting outputs

I used several R scripts to read, parse, and format the outputs from RapMap and Salmon. In the interest of time, I haven't described what those scripts do here, but I can add that later.

Session info

```
## R version 3.2.1 (2015-06-18)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
## Running under: OS X 10.11.4 (unknown)
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
## [1] stats4
                 parallel stats
                                     graphics grDevices utils
                                                                    datasets
## [8] methods
                 base
##
## other attached packages:
## [1] cowplot_0.6.1
                             scales_0.4.0
                                                  ggthemes_3.0.2
   [4] rtracklayer_1.30.4
                             GenomicRanges_1.22.4 GenomeInfoDb_1.6.3
## [7] IRanges 2.4.8
                             S4Vectors 0.8.11
                                                  BiocGenerics 0.16.1
## [10] viridis 0.3.4
                             ggplot2 2.1.0
                                                  dplyr 0.4.3
                             stringr_1.0.0
                                                  knitr_1.12.3
## [13] tidyr_0.4.1
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.4
                                   highr_0.5.1
## [3] futile.logger_1.4.1
                                   formatR_1.3
## [5] plyr_1.8.3
                                   XVector_0.10.0
## [7] futile.options_1.0.0
                                   bitops_1.0-6
## [9] tools_3.2.1
                                   zlibbioc_1.16.0
## [11] digest_0.6.9
                                   lattice_0.20-33
## [13] nlme_3.1-126
                                   evaluate_0.8.3
## [15] gtable 0.2.0
                                   mgcv 1.8-12
## [17] Matrix_1.2-4
                                   DBI_0.3.1
## [19] yaml_2.1.13
                                   gridExtra 2.2.1
## [21] Biostrings_2.38.4
                                   grid_3.2.1
## [23] Biobase 2.30.0
                                   R6 2.1.2
## [25] XML_3.98-1.4
                                   BiocParallel 1.4.3
## [27] rmarkdown 0.9.5
                                   reshape2 1.4.1
## [29] lambda.r 1.1.7
                                   magrittr 1.5
## [31] codetools_0.2-14
                                   GenomicAlignments_1.6.3
## [33] Rsamtools_1.22.0
                                   htmltools_0.3.5
## [35] SummarizedExperiment_1.0.2 assertthat_0.1
## [37] colorspace_1.2-6
                                   labeling_0.3
## [39] stringi_1.0-1
                                   lazyeval_0.1.10
## [41] RCurl_1.95-4.8
                                   munsell_0.4.3
```