操作系统的处理器管理功能概要

处理器资源-最重要的资源

处理器调度-如何分配

- 作业调度
 - 。 作业后备队列选取若干作业装入内存
 - 作业选择与资源分配
 - 。 调入内存建立进程
- 进程调度
 - 。 就绪进程队列
 - 。 进程选择与处理及分配
 - o 保存现场 ¹ , 恢复现场 ²
- 调度算法
 - 。 先来先服务, nice值低的进程优先权高, 时间轮片选择的几率更大, 运行的机会更多

进程控制

- 主要任务
 - 。 创建进程
 - 。 撤销进程
 - 。 切换进程状态
- 进程控制机制
 - **原语** ³
 - 讲程&线程 4

进程同步

- 主要任务
 - 。 进程/现成的并发执行协调
 - 。 互斥/同步方式
 - 临界资源 5 &临界区 6
 - 要保证各个进程互斥的访问临界资源/临界区
- 进程同步机制
 - 。 开/关锁原语【支持简单的/短时间的互斥问题】
 - 。 信号量机制
 - 管程【高级编程概念】

进程通信

- 主要任务
 - 进程(线程)间的信息交换
- 进程通信方式
 - 。 共享存储器
 - 。 管道通信

- 。 消息传递系统
 - 消息缓冲队列
 - ■邮箱

内存资源管理

内存分配

- 主要任务
 - 。 使程序各得其所
 - 。 提高存储器利用率
 - 。 适应程序和数据的动态增长需要
- 内存分配机制
 - 。 内存分配用数据结构
 - 。 内存分配
 - 连续/离散分配方式
 - 静态/动态分配方式
 - 。 内存回收

内存保护

- 主要任务
 - 。 首先保证内核安全, 其次确保程序见互不干扰
 - 。 存取访问控制
- 内存保护机制
 - o 越界检查
 - 。 硬件实现
 - 。 保护方式
 - 上下限界限寄存器
 - 页号<页表长度
 - 段号<段表长度&&段内地址<段长
 - 特权级比较

地址映射/转换

- 主要任务
 - 逻辑地址转换为物理地址
- 基本概念
 - 。 地址空间&内存空间
 - 。 逻辑/相对/有效地址
 - 。 物理/绝对地址
- 地址映射机制
 - 。 硬件实现
 - 重定位寄存器、页表/段表、快表

内存扩充

- 主要任务
 - 。 从逻辑上扩充内存容量

- 内存扩充的可行性
 - 。 程序运行局部性原理
 - 。 离散分配方式
- 内存扩充机制
 - 。 虚拟存储技术
 - 硬件(页/段表、缺页/段中断、地址变换)
 - 软件(请求调入/置换功能)

设备管理

设备分配

- 主要任务
 - 。 设备及相应控制器的通道的分配
- 设备分配机制
 - 。 设备分配用的数据结构
 - 。 设备分配与设备分配所对应的方式
 - 。 设备分配与回收算法
 - 设备独立性⁷
 - 虚拟设备 ⁸

缓冲管理

- 主要任务
 - 。 管理各样的缓冲区
 - 。 缓和CPU和I/O速度不匹配
 - 。 提高资源利用率和系统吞吐量
- 缓冲管理机制
 - 。 单/双/多缓冲类型
 - 字符缓冲 ⁹ 与盘块缓冲 ¹⁰
 - 。 共用缓冲池机制

设备处理

- 主要任务
 - o CPU与设备控制器间的通信
- 设备处理过程
 - I/O请求提出
 - I/O请求合法性检查
 - 。 了解设备状态
 - 。 传递参数并设置工作方式
 - o 诵道程序自动构成 11
 - 。 发送I/O指令和启动I/O设备
 - 。 及时响应中断请求

文件管理

文件存储空间管理

- 主要任务
 - 。 使每个文件各得其所
 - 。 提高外存空间利用率
 - 。 提高外存空间访问速度
- 文件存储空间管理机制
 - 。 存储空间所用的数据结构
 - 。 存储空间的分配与回收功能
 - 。 离散/连续的分配方式
 - 以盘块/簇 12 为基本分配单位

目录管理

- 主要任务
 - 。 文件的按名存取
 - 。 提高文件查找速度
 - 。 支持文件的重命名, 共享, 保护
- 目录管理机制
 - o 文件控制块与索引节点(inode)
 - 。 目录结构
 - 。 目录检索手段

文件的读写和存取控制

- 文件的读写管理
 - 。 从外存读取数据或将数据存入外存
 - 目录检索->外存地址->读写指针->读写操作
 - 文件描述符表和文件表(提高文件的读写)
- 文件的存取控制
 - 。 防止未经核准的用户存取文件
 - 。 防止冒名顶替存取文件
 - 。 防止以不正确的方式使用文件
 - 。 系统级/用户级/文件级存取控制

操作系统的特征

- 并发性:
 - o 并行与并发、程序与进程/线程 ¹³
- 共享性
 - 互斥共享方式,同时访问方式,**可重入码** 14
- 虚拟性
 - 模拟虚拟机,虚拟内存,虚拟盘,虚拟设备
- 异步性
 - 。 进程的执行顺序与执行时间的不确定性

操作系统的设计原则及非结构化设计问题

操作系统的设计原则

• 可维护性

- 纠错性/适应性/完善性/预防性维护
- 可靠性
 - 。 正确性/健壮性
- 可理解性
- 可用性
- 性能
 - 。 系统资源利用率及用户请求响应

模块化操作系统的结构评价

- 优点
 - 提高了设计的正确性、可理解性和可维护性
 - 。 增强了操作系统的可适应性
 - 。 加速了操作系统的开发过程
- 尚存改进空间方面
 - 。 模块划分和接口规定难保正确和合理
 - 。 未能区别共享资源和独占资源
 - 。 管理差异导致模块间依赖关系复杂
- 1. 将当前寄存器中的内容入栈,并跳转至至下一现场 👱
- 2. 把原寄存器中的内容从栈顶恢复到寄存器中 €
- 3. 计算机进程的控制通常由原语完成。所谓原语,一般是指由若干条指令组成的程序段,用来实现某个特定功能,在执行过程中不可被中断。 🚉
- 4. 线程包含于进程,共享进程在内存中的资源 👱
- 5. 一段时间之内只能被一个进程所访问的资源叫做临界资源 👱
- 6. 临界资源的代码区叫做临界区,访问临界资源的代码栈 ↔
- 7. 程序和设备不直接关联,程序应访问逻辑设备,便于程序移植,提高程序可扩充性,提高程序的可维护性 \underline{e}
- 8. 独占性质设备,设置共享,通过虚拟技术,把物理上的独占设备转换成共享设备 ↔
- 9. 对于键盘使用字符缓冲 ←
- 10. 对于磁盘/软盘/硬盘/使用盘块缓冲 ↔
- 11. 仅限于通道控制方式,通道的形成,是由驱动程序自动构成的 ↔
- 12. 簇是由多个扇区组成的逻辑结构,每个扇区512个字节,簇的大小就是扇区的整数倍 ↔
- 13. 并行:任何一个时间点上,多个事件同时发生;并发:一段时间内,多个事件同时发生;线程:本身不用有资源,可以共享进程的资源。
- 14. 不可修改的可执行代码,大家都要对该代码调用和执行 \underline{c}