CHAPTER-11 TRIANGLES

1 Exercise 11.2

Q5. Construct a right triangle whose base is 12cm and sum of its hypotenuse and other side is 18cm

Solution: Let A,B and C are the vertices of the right triangle with coordinates. Given BC = 12cm(base). So the coordinates of vertices B,C are:

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} a \\ 0 \end{pmatrix} \tag{1}$$

Also given $\angle B=90^\circ$, so by finding the coordinates of the other side we can form a required triangle.

The input parameters for this construction are

Symbol	Value	Description
a	12	BC
θ	90°	$\angle B \text{ in } \triangle ABC$
k	18	AB + AC i.e $b + c$
$\mathbf{e_2}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	Basis vector

Table 1: Parameters

Caluclating Other Coordinate:

$$\mathbf{A} = c \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \tag{2}$$

We know that

$$c = \frac{1}{2(1 - \frac{a\cos\theta}{k})} \mathbf{e_2}^\top \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \frac{a^2}{k} \\ k \end{pmatrix}$$
 (3)

$$c = 5 \tag{4}$$

The vertices of $\triangle ABC$ are

$$\mathbf{A} = 5 \begin{pmatrix} \cos 90^{\circ} \\ \sin 90^{\circ} \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \end{pmatrix} \tag{5}$$

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{6}$$

$$\mathbf{C} = \begin{pmatrix} 12\\0 \end{pmatrix} \tag{7}$$

Construction:

Figure 1: Triangle ABC