ATIVIDADE PI

OBJETIVO:

 Criar um projeto que envolva a detecção da umidade do solo para irrigação quando necessário, utilizado para facilitar o plantio dos produtores de soja através de dados gerados na detecção dos sensores e mostrado em tempo real para o cliente em gráficos e protocolos do site.

PLANEJAMENTO:

- Pesquisas do projeto;
- Planejamento sobre a problemática;
- Produção e apresentação da problemática e importância da solução;
- Gerar o gráfico do Node com as informações de umidade;
- Criação da calculadora financeira para importância da venda e aplicação da ideia;
- Tabela relacional com as informações da nossa aplicação;
- Estruturação do projeto para apresentação comercial e técnica;
- Apresentação e venda do projeto para o cliente.

ESCOPO E ARQUITETURA:

- Git / Github;
- Draw.io;
- MySQL Workbench;
- HTML / JS;
- Node / CSS;
- Photoshop cs6;
- Planner;

PREMISSAS:

- Cliente tem um plantio;
- Cliente fornece os dados da área de cultivo e safras do qual ele quer calcular;
- O cliente ter acesso a estrutura de irrigação;

SUSTENTAÇÃO:

- Criar um protocolo de irrigação que forneça periodicamente certa quantidade de água para evitar a morte da plantação;
- Criar um programa que analise o funcionamento dos sensores e, ao perceber algum erro, envie a informação para o suporte técnico que irá resolver o problema;
- Fornecer uma lista com o protocolo indicado para o cliente na manutenção do plantio durante o suporte técnico;
- Mecanismo que impeça a vazão involuntária em caso de pane de detecção repentina de umidade em solo já úmido para evitar a irrigação excessiva da plantação;

REQUISITOS:

Essencial:

- Utilizar os sensores;
- Realizar uma aplicação web que gere os valores e gráficos relativo à umidade do solo e utilização de água;
- Captação dos dados;
- O banco de dados armazenando informações sobre os sensores;
- Arduino funcionando e recebendo os dados;
- Simular o arduino;

Importante:

- Desenvolver o conhecimento básico de <u>Git</u> para aplicação do grupo;
- Sistema de login de usuário;
- A justificativa do projeto;
- Desenho da solução;
- Backlog do projeto;
- Contexto documentado do processo;
- Organização do grupo;
- Uso de ferramentas para gestão de projetos (Microsoft Project/ Planner);

Desejável:

- Ícones com interação no site (homepage, sobre, portifólio, contato, login);
- Implementação de diferentes sensores;
- Apresentação bem-preparada com interação com os professores;
- Vender um plano a parte de suporte com maquinários de irrigação;
- Demonstração para captação de cientes;

- Criar uma versão de uso residencial;
- Exportação de dados;
- Análise do funcionamento dos sensores e, ao perceber algum erro, envio de informações para o suporte técnico que irá resolver o problema;
- Mecanismo que impeça a vazão involuntária em caso de pane de detecção repentina de umidade em solo já úmido para evitar a irrigação excessiva da plantação;
- Banco de dados para estudos científicos;
- Artigo implementado para geração de valor para o site;

Marcos do projeto:

1.	Criação da documentação	[12/02]
2.	Definição e idealização do projeto;	[12/02]
3.	Pesquisa sobre os assuntos relacionados a aplicação;	[13/02]
4.	Detalhamento do projeto (escolhendo a plantação específica: soja);	[13/02]
5.	Pesquisa e coleta de informações sobre o tema;	[14/02]
6.	Debate e criação do PowerPoint sobre a problemática;	[15/02]
7.	Apresentação da problemática;	[18/02]
8.	Planejamento e debate do diagrama de soluções;	[18/02]
9.	Início dos estudos de sensores e definição dos sensores a ser usado	
	(LM35/ DHT11/ LDR);	[23/02]
10.	Criação do diagrama de soluções;	[24/02]
11.	Apresentação do diagrama de soluções ;	[25/02]
12.	Utilização do Planner para planejamento dos próximos passos do	
	Projeto;	[25/02]
13.	Alteração dos slides para apresentação da primeira sprint;	[25/02]
14.	Naturalização com node;	[01/03]
15.	Planejamento e alteração do PPT;	[01/03]
16.	Prática com node JS;	[04/03]
17.	Criação do modelo conceitual de banco de dados;	[04/03]
18.	Desenvolvimento do simulador financeiro;	[06/03]
19.	Conclusão do PPT;	[06/03]
20.	Treinamento da apresentação;	[09/03]
21.	Apresentação e venda do projeto.	[11/03]

ORÇAMENTO:

• Sensor de umidade de solo HD-38: R\$85,00;

Referências:

- Diferença no percentual de umidade na mesma colheita de soja:
 - https://cropwatch.unl.edu/managing-soybean-harvest-timing-moistureimprove-yield;
- Tamanho médio da plantação de soja no Mato Grosso:
 - https://ocj.com/2020/02/how-big-are-soybean-farms-in-brazil/;
- O valor da saca de soja:
 - hoje#:~:text=0%20valor%20da%20saca%20da,%C3%A9%20de%20car%C3%A1 ter%20exclusivamente%20informativo;
- Automação da irrigação no mundo e sua demanda de mercado:
 - https://www.globenewswire.com/newsrelease/2020/04/27/2022172/0/en/The-irrigation-automation-market-isprojected-to-grow-at-a-CAGR-of-18-5-from-2020-to-2025.html.

Integrantes do projeto:

•	André de CLK Guimarães	RA: 01211004
•	Jorge Leão	RA: 01211070
•	Kaio Raphael Zaniboni	RA: 01211076
•	Kennedy Florentino	RA: 01211078
•	Lucas Castrillo Pulcino	RA: 01211083
•	Luiz Felipe Dias Ekstein	RA: 01211088

