Claims:

1. A method of binding a kappa opioid receptor in a subject in need thereof, comprising:

administering to said subject a composition comprising a kappa opioid receptor antagonist and a physiologically acceptable carrier, wherein the kappa opioid receptor antagonist is a compound of formula (I):

$$Y_3$$
 R_1
 R_2
 R_4
 R_6
 X_1
 X_2
 R_5
 X_1
 X_2

wherein Q is H or COC_{1-8} alkyl; R₁ is C_{1-8} alkyl, or one of the following structures:

$$\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$$
 $\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$ $\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$ $\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$ $\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$

$$\begin{array}{c|c} \leftarrow C \\ \leftarrow H_2 \\ n \end{array} \begin{array}{c} \searrow \\ Y_1 \end{array} \begin{array}{c} \leftarrow C \\ \leftarrow H_2 \\ n \end{array} \begin{array}{c} N \\ \leftarrow Y_1 \end{array} \begin{array}{c} \leftarrow C \\ \leftarrow H_2 \\ n \end{array} \begin{array}{c} N \\ \sim Y_1 \end{array} \begin{array}{c} \sim N \\ \leftarrow M_2 \\ \sim N \end{array} \begin{array}{c} N \end{array} \begin{array}{c} N \\ \sim N \end{array} \begin{array}{c} N \end{array} \begin{array}{c} N \end{array} \begin{array}{c} N \\ \sim N \end{array} \begin{array}{c} N \end{array} \begin{array}{c} N \\ \sim N \end{array} \begin{array}{c} N \end{array}$$

 Y_1 is H, OH, Br, Cl, F, CN, CF₃, NO₂, N₃, OR₈, CO₂R₉, C_{I-6} alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂(CH₂)_nY₂;

 Y_2 is H, CF₃, CO₂R₉, C₁₋₆alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂OH, CH₂OR₈, COCH₂R₉;

 $Y_{3} \text{ is H, OH, Br, Cl, F, CN, CF}_{3}, NO_{2}, N_{3}, OR_{8}, CO_{2}R_{9}, C_{l.6} \text{ alkyl, NR}_{10}R_{11}, NHCOR_{12}, \\ NHCO_{2}R_{12}, CONR_{13}R_{14}, CH_{2}(CH_{2})_{n}Y_{2};$

 R_2 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl or CH_2 aryl substituted by one or more groups Y_1 ;

 R_3 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl or CH_2 aryl substituted by one or more groups Y_1

wherein R₂ and R₃ may be bonded together to form a C₂₋₈ alkyl group;

 R_4 is hydrogen, C_{1-8} alkyl, CO_2C_{1-8} alkylaryl substituted by one or more groups Y_1 , CH_2 aryl substituted by one or more groups Y_1 or CO_2C_{1-8} alkyl;

Z is N, O or S; where Z is O or S, there is no R₅

 R_5 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, $CH_2CO_2C_{1-8}$ alkyl, CO_2C_{1-8} alkyl or CH_2 aryl substituted by one or more groups Y_1 ;

n is 0, 1, 2 or 3;

 R_6 is a group selected from the group consisting of structures (a)-(bbb):

$$(H_2C)_n$$

$$N$$

$$R_7$$

$$R_7$$

$$(A)$$

$$(CH_2)_n$$

$$NR_{10}R_{11}$$

$$(CH_2)_n$$

$$(CH_$$

$$(H_{2}C)_{n}$$

$$(H_{$$

$$(H_{2}C)_{n}$$

$$(H_{$$

$$\begin{array}{c} Y_1 \\ N \\ N \end{array}$$

$$(z)$$

$$(H_2C)_n \\ NR_{10}R_{11} \\ (hh) \\ (ii) \\ NH \\ (ii) \\ NH \\ (ij) \\ NH \\ (ij)$$

and

5

10

 X_1 is hydrogen, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl; X_2 is hydrogen, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl; or X_1 and X_2 together form =0, =S, =NH;

 R_7 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$, $NHCOR_{12}$, $NHCO_2R_{13}$, $CONR_{14}R_{15}$, $CH_2(CH_2)_nY_2$, $C(=NH)NR_{16}R_{17}$.

 R_8 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CONR_{13}R_{14}$, $CH_2(CH_2)_nY_2$.

 R_9 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$; R_{10} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$. R_{11} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$. R_{12} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$. R_{13} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$. R_{14} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$. R_{15} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$. R_{16} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$. R_{16} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$.

 $R_{17} \ is \ H, \ C_{1\text{--}8} \ alkyl, \ CH_2 \ aryl \ substituted \ by \ one \ or \ more \ substituents \ Y_1, \ CH_2(CH_2)_n Y_2$

2. The method of claim 1, wherein said kappa opioid receptor antagonist is a compound of formula (I), wherein R_1 , R_4 , R_5 , Y_1 , Y_2 , Z, n, X_1 , X_2 , and R_7 - R_{17} are as indicated above;

Y₃ is H;

 R_2 and R_3 are each, independently, H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, CH_2 aryl substituted by one or more substituents Y_1 ; and

 R_6 is a group having a formula selected from the group consisting of structures (a)-(cc).

and pharmaceutically acceptable salts thereof.

- 3. The method of claim 1, wherein said kappa opioid receptor antagonist is a compound of formula (I) wherein Y_1 , Y_2 , R_4 , R_5 , Z, n, X_1 , X_2 and R_8 - R_{15} are as indicated above;
- R_1 is C_{1-8} alkyl,

20

$$\left(\begin{array}{ccc} C \rightarrow Y_2 \\ H_2 \\ n \end{array}\right) \left(\begin{array}{ccc} C \rightarrow C \\ H_2 \\ n \end{array}\right) \left(\begin{array}{ccc} Y_1 \\ Y_1 \end{array}\right)$$

 Y_3 is H;

 R_2 and R_3 are each, independently, H or C_{1-8} alkyl, wherein R_2 and R_3 cannot both be H at the same time;

R₆ is a formula selected from the structures (a)-(r); and

 R_7 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$, $NHCO_{12}$, $NHCO_2R_{13}$, $CONR_{14}R_{15}$, or $CH_2(CH_2)_nY_2$.

4. The method of claim 1, wherein said kappa opioid receptor antagonist is a compound of formula (I) wherein Y_1 , Z, n, X_1 , X_2 and R_8 - R_{15} are as noted above;

 R_1 is C_{1-8} alkyl;

 Y_2 is H, CF₃, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂OH, CH₂OR₈, COCH₂R₉;

 Y_3 is H;

 R_2 and R_3 are each, independently, H or methyl, wherein R_2 and R_3 cannot both be H at the same time;

 R_4 is H, C_{1-8} alkyl, CO_2C_{1-8} alkyl, aryl substituted by one or more substituents Y_1 and the stereocenter adjacent to R_4 is in an (S) configuration;

R₅ is H, C₁₋₈ alkyl, CH₂CO₂C₁₋₈ alkyl;

R₆ is a group having a formula selected from the group consisting of structures (a)-(c) and (h)-(o); and

 R_7 is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$, $NHCOR_{12}$, $NHCO_2R_{13}$, $CONR_{14}R_{15}$, or $CH_2(CH_2)_nY_2$.

5. The method of claim 1, wherein said kappa opioid receptor antagonist is a compound of formula (I), wherein Y_1 , Z, n, X_1 , X_2 and R_8 - R_{14} are as indicated above;

10

 R_1 is methyl,

 $Y_2 \text{ is } H, CF_3, CO_2R_9, C_{1\text{-}6} \text{ alkyl}, NR_{10}R_{11}, NHCOR_{12}, NHCO_2R_{12}, CONR_{13}R_{14}, \\ CH_2OH, CH_2OR_8, COCH_2R_9;$

 Y_3 is H;

 R_2 and R_3 are each H or methyl, such that when R_2 is H, R_3 is methyl and vice versa;

 R_4 is C_{1-8} alkyl, CO_2C_{1-8} alkyl, and the stereocenter adjacent to R_4 has a configuration of (S);

R₅ is H;

 R_6 is a group having a formula selected from the group consisting of structures (a) and (b); and

 R_7 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 or $CH_2(CH_2)_nY_2$.

- 6. The method of claim 1, wherein said kappa opioid receptor antagonist is a compound selected from formulae 14-21 of Fig. 1.
 - 7. A kappa opioid receptor antagonist compound represented by the formula (I):

$$R_3$$
 R_4
 R_6
 R_5
 R_5
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_9
 R_9

(I)

wherein Q is H or COC_{1-8} alkyl; R₁ is C_{1-8} alkyl, or one of the following structures:

$$+C \longrightarrow_{\mathbf{H}_{2}} Y_{1} + C \longrightarrow_{\mathbf{H}_{2}} Y_{1$$

 Y_1 is H, OH, Br, Cl, F, CN, CF₃, NO₂, N₃, OR₈, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂(CH₂)_nY₂;

 $Y_2 \text{ is H, CF}_3, CO_2R_9, C_{1-6} \text{alkyl}, NR_{10}R_{11}, NHCOR_{12}, NHCO_2R_{12}, CONR_{13}R_{14}, CH_2OH, \\ CH_2OR_8, COCH_2R_9;$

 Y_3 is H, OH, Br, Cl, F, CN, CF₃, NO₂, N₃, OR₈, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂(CH₂)_nY₂;

 R_2 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl or CH_2 aryl substituted by one or more groups Y_1 ;

 R_3 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl or CH_2 aryl substituted by one or more groups $Y_{1,}$

wherein R₂ and R₃ may be bonded together to form a C₂₋₈ alkyl group;

 R_4 is hydrogen, C_{1-8} alkyl, CO_2C_{1-8} alkylaryl substituted by one or more groups Y_1 , CH_2 aryl substituted by one or more groups Y_1 or CO_2C_{1-8} alkyl;

Z is N, O or S; when Z is O or S there is no R_5

 R_5 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, $CH_2CO_2C_{1-8}$ alkyl, CO_2C_{1-8} alkyl or CH_2 aryl substituted by one or more groups Y_1 ;

n is 0, 1, 2 or 3;

R₆ is a group selected from the group consisting of structures (a)-(bbb):

$$(H_2C)_n$$

$$N$$

$$R_7$$

$$R_7$$

$$(a)$$

$$(CH_2)_n$$

$$NR_{10}R_{11}$$

$$(b)$$

$$(c)$$

$$(H_2C)_n$$

$$(R_7)_n$$

$$(R_$$

$$(H_{2}C)_{n}$$

$$(H_{$$

$$(H_2C)_n \\ NR_{10}R_{11} \\ (hh) \\ (ii) \\ NH \\ NH \\ NH_1 \\ NH_1 \\ NR_{10}R_{11} \\ (ij) \\ (ij)$$

5

10

 X_1 is hydrogen, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl;

 X_2 is hydrogen, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl;

or X_1 and X_2 together form =0, =S, =NH;

 R_7 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$,

 $NHCOR_{12}$, $NHCO_2R_{13}$, $CONR_{14}R_{15}$, $CH_2(CH_2)_nY_2$, $C(=NH)NR_{16}R_{17}$.

 R_8 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CONR_{13}R_{14}$, $CH_2(CH_2)_nY_2$.

 R_9 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$;

 R_{10} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$

 R_{11} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$.

R₁₂ is H, C₁₋₈ alkyl, CH₂ aryl substituted by one or more substituents Y₁, CH₂(CH₂)_nY₂.

 $R_{13} \text{ is H, } C_{1\text{--8}} \text{ alkyl, } CH_2 \text{ aryl substituted by one or more substituents } Y_1, CH_2 (CH_2)_n Y_2, CH_2$

 R_{14} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_n Y_2$.

 R_{15} is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_n Y_2$.

 R_{16} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$.

and

 R_{17} is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$ and pharmaceutically acceptable salts thereof.

8. The kappa opioid receptor antagonist compound of claim 7, wherein R_1 , R_4 , R_5 , Y_1 , Y_2 , Z, R_1 , X_2 , and R_7 - R_{17} are as indicated above;

Y₃ is H;

 R_2 and R_3 are each, independently, H, $C_{1.8}$ alkyl, $C_{3.8}$ alkenyl, $C_{3.8}$ alkynyl, CH_2 aryl substituted by one or more substituents Y_1 ; and

 R_6 is a group having a formula selected from the group consisting of structures (a)-(cc).

The kappa opioid receptor antagonist compound of claim 7, wherein Y₁, Y₂, R₄, R₅,
 N₁, X₂ and R₈-R₁₅ are as indicated above;

 R_1 is $C_{1.8}$ alkyl,

$$\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$$
 $\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$ $\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$ $\begin{pmatrix} C \\ H_2 \\ n \end{pmatrix}$

25

5

 Y_3 is H;

 R_2 and R_3 are each, independently, H or C_{1-8} alkyl, wherein R_2 and R_3 cannot both be H at the same time;

R₆ is a formula selected from the structures (a)-(r) shown above; and

 R_7 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$, $NHCOR_{12}$, $NHCO_2R_{13}$, $CONR_{14}R_{15}$, or $CH_2(CH_2)_nY_2$.

10. The kappa opioid receptor antagonist compound of claim 7, wherein Y_1 , Z, n, X_1 , X_2 and R_8 - R_{15} are as noted above;

 R_1 is C_{1-8} alkyl;

 $Y_2 \text{ is H, CF}_3, CO_2R_9, C_{1\text{-}6} \text{ alkyl}, NR_{10}R_{11}, NHCOR_{12}, NHCO_2R_{12}, CONR_{13}R_{14}, CH_2OH, \\ CH_2OR_8, COCH_2R_9;$

 Y_3 is H;

 R_2 and R_3 are each, independently, H or methyl, wherein R_2 and R_3 cannot both be H at the same time;

 R_4 is H, C_{1-8} alkyl, CO_2C_{1-8} alkyl, aryl substituted by one or more substituents Y_1 and the stereocenter adjacent to R_4 is in an (S) configuration;

 R_5 is H, C_{1-8} alkyl, $CH_2CO_2C_{1-8}$ alkyl;

 R_6 is a group having a formula selected from the group consisting of structures (a)-(c) and (h)-(o); and

 R_7 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$, $NHCOR_{12}$, $NHCO_2R_{13}$, $CONR_{14}R_{15}$, or $CH_2(CH_2)_nY_2$.

11. The kappa opioid receptor antagonist compound of claim 7, wherein Y_1 , Z, n, X_1 , X_2 and R_8 - R_{14} are as indicated above;

 R_1 is methyl,

Y₂ is H, CF₃, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂OH, CH₂OR₈, COCH₂R₉;

 Y_3 is H;

 R_2 and R_3 are each H or methyl, such that when R_2 is H, R_3 is methyl and vice versa;

10

 R_4 is C_{1-8} alkyl, CO_2C_{1-8} alkyl, and the stereocenter adjacent to R_4 has a configuration of (S);

R₅ is H;

 R_6 is a group having a formula selected from the group consisting of structures (a) and (b); and

 R_7 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 or $CH_2(CH_2)_nY_2$.

- 12. The kappa opioid receptor antagonist of claim 7, wherein said compound is a compound selected from formulae **14-21** of Fig. 1.
 - 13. A pharmaceutical composition comprising:

an effective amount of a kappa opioid receptor antagonist and a physiologically acceptable carrier, wherein the kappa opioid receptor antagonist is a compound of formula (I):

$$R_3$$
 R_4
 R_6
 X_1
 X_2
 R_5
 X_1
 X_2

wherein Q is H or COC_{1-8} alkyl; R₁ is C_{1-8} alkyl, or one of the following structures:

$$+C \longrightarrow_{\mathbf{H}_{2}} Y_{1} + C \longrightarrow_{\mathbf{H}_{2}} Y_{1$$

 $Y_{1} \text{ is H, OH, Br, Cl, F, CN, CF}_{3}, NO_{2}, N_{3}, OR_{8}, CO_{2}R_{9}, C_{l-6} \text{ alkyl, NR}_{10}R_{11}, NHCOR_{12}, \\ NHCO_{2}R_{l2}, CONR_{13}R_{l4}, CH_{2}(CH_{2})_{n}Y_{2};$

 $Y_2 \text{ is H, CF}_3, CO_2R_9, C_{\text{I-6}} \text{alkyl}, NR_{10}R_{11}, NHCOR_{12}, NHCO_2R_{12}, CONR_{13}R_{\text{I4}}, CH_2OH, \\ CH_2OR_8, COCH_2R_9;$

 $Y_{3} \text{ is H, OH, Br, Cl, F, CN, CF}_{3}, NO_{2}, N_{3}, OR_{8}, CO_{2}R_{9}, C_{l.6} \text{ alkyl, NR}_{10}R_{11}, NHCOR_{12}, \\ NHCO_{2}R_{12}, CONR_{13}R_{14}, CH_{2}(CH_{2})_{n}Y_{2};$

 R_2 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl or CH_2 aryl substituted by one or more groups Y_1 ;

 R_3 is H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl or CH_2 aryl substituted by one or more groups Y_1

wherein R₂ and R₃ may be bonded together to form a C₂₋₈ alkyl group;

 $R_4 \ is \ hydrogen, \ C_{1.8} \ alkyl, \ CO_2C_{1.8} \ alkylaryl \ substituted \ by \ one \ or \ more \ groups \ Y_1,$ $CH_2 aryl \ substituted \ by \ one \ or \ more \ groups \ Y_1, \ or \ CO_2C_{1.8} \ alkyl;$

Z is N, O or S; when Z is O or S, there is no R_5

 $R_5 \text{ is H, C}_{1\text{--8}} \text{ alkyl, C}_{3\text{--8}} \text{ alkenyl, C}_{3\text{--8}} \text{ alkynyl, CH}_2 \text{CO}_2 \text{C}_{1\text{--8}} \text{ alkyl, CO}_2 \text{C}_{1\text{--8}} \text{ alkyl or CH}_2 \text{aryl substituted by one or more groups Y}_1;$

n is 0, 1, 2 or 3;

 R_6 is a group selected from the group consisting of structures (a)-(bbb):

$$(H_2C)_n \qquad \qquad Y_1 \qquad \qquad$$

$$(H_2C)_n$$

$$(H_2C)_n$$

$$R_7$$

$$(d)$$

$$(H_2C)_n$$

$$R_7$$

$$(CH_2)_n$$

$$R_7$$

$$(e)$$

$$(f)$$

N R₇

(p)

$$(H_{2}C)_{n}$$

$$R_{7}$$

$$(i)$$

(q)

(r)

(w)

$$(H_2C)_n \\ NR_{10}R_{11} \\ (hh) \\ (ii) \\ NH \\ (H_2C)_n \\ NR_{10}R_{11} \\ (ij)$$

25

30

and

5

10

 X_1 is hydrogen, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl; X_2 is hydrogen, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl; or X_1 and X_2 together form =0, =S, =NH;

 R_7 is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$, $NHCOR_{12}$, $NHCO_2R_{13}$, $CONR_{14}R_{15}$, $CH_2(CH_2)_nY_2$, $C(=NH)NR_{16}R_{17}$.

 R_8 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CONR_{13}R_{14}$, $CH_2(CH_2)_nY_2$

 R_9 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$; R_{10} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$, R_{11} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$, R_{12} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$, R_{13} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$, R_{14} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$, R_{15} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$, R_{16} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$, R_{16} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$.

 R_{17} is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $CH_2(CH_2)_nY_2$ or a pharmaceutically acceptable salt thereof.

14. The pharmaceutical composition of claim 13, wherein said kappa opioid receptor antagonist is a compound of formula (I), wherein R_1 , R_4 , R_5 , Y_1 , Y_2 , Z, n, X_1 , X_2 , and R_7 - R_{17} are as indicated above;

 Y_3 is H;

 R_2 and R_3 are each, independently, H, C_{1-8} alkyl, C_{3-8} alkenyl, C_{3-8} alkynyl, CH_2 aryl substituted by one or more substituents Y_1 ; and

 R_6 is a group having a formula selected from the group consisting of structures (a)-(cc).

15. The pharmaceutical composition of claim 13, wherein said kappa opioid receptor antagonist is a compound of formula (I), wherein Y_1 , Y_2 , R_4 , R_5 , Z, R_4 , R_5 , R_6 , R_7 , and R_8 - R_{15} are as indicated above;

 R_1 is C_{1-8} alkyl,

10

15

20

$$\left(\begin{array}{ccc} C \\ H_2 \\ n \end{array} \right)_n^{Y_2} \quad \left(\begin{array}{ccc} C \\ H_2 \\ n \end{array} \right)_{Y_1}$$

 Y_3 is H;

 R_2 and R_3 are each, independently, H or C_{1-8} alkyl, wherein R_2 and R_3 cannot both be H at the same time;

R₆ is a formula selected from the structures (a)-(r) shown above; and

 R_7 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$, $NHCO_{12}$, $NHCO_2R_{13}$, $CONR_{14}R_{15}$, or $CH_2(CH_2)_nY_2$.

16. The pharmaceutical composition of claim 13, wherein said kappa opioid receptor antagonist is a compound of formula (1), wherein Y_1 , Z, n, X_1 , X_2 and R_8 - R_{15} are as noted above;

 R_1 is C_{1-8} alkyl;

Y₂ is H, CF₃, CO₂R₉, C_{1.6} alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂OH, CH₂OR₈, COCH₂R₉;

 Y_3 is H;

 R_2 and R_3 are each, independently, H or methyl, wherein R_2 and R_3 cannot both be H at the same time;

 R_4 is H, C_{1-8} alkyl, CO_2C_{1-8} alkyl, aryl substituted by one or more substituents Y_1 and the stereocenter adjacent to R_4 is in an (S) configuration;

 $R_{\mathfrak{5}}$ is H, $C_{1\text{--}8}$ alkyl, $CH_{2}CO_{2}C_{1\text{--}8}$ alkyl;

 R_6 is a group having a formula selected from the group consisting of structures (a)-(c) and (h)-(o); and

 R_7 is H, $C_{1.8}$ alkyl, CH_2 aryl substituted by one or more substituents Y_1 , $NR_{10}R_{11}$, $NHCO_{12}$, $NHCO_2R_{13}$, $CONR_{14}R_{15}$, or $CH_2(CH_2)_nY_2$.

10

17. The pharmaceutical composition of claim 13, wherein said kappa opioid receptor antagonist is a compound of formula (I), wherein Y_1 , Z, n, X_1 , X_2 and R_8 - R_{14} are as indicated above;

 R_1 is methyl,

 Y_2 is H, CF₃, CO₂R₉, C₁₋₆ alkyl, NR₁₀R₁₁, NHCOR₁₂, NHCO₂R₁₂, CONR₁₃R₁₄, CH₂OH, CH₂OR₈, COCH₂R₉:

 Y_3 is H;

 R_2 and R_3 are each H or methyl, such that when R_2 is H, R_3 is methyl and vice versa;

 R_4 is C_{1-8} alkyl, CO_2C_{1-8} alkyl, and the stereocenter adjacent to R_4 has a configuration of (S);

 R_5 is H;

 R_6 is a group having a formula selected from the group consisting of structures (a) and (b); and

 R_7 is H, C_{1-8} alkyl, CH_2 aryl substituted by one or more substituents Y_1 or $CH_2(CH_2)_nY_2$.

- 18. The pharmaceutical composition of claim 13, wherein said kappa opioid receptor antagonist is a compound selected from formulae 14-21 of Fig. 1.
- 19. The pharmaceutical composition of claim 13, wherein said composition is an injectable composition.
- 20. The pharmaceutical composition of claim 13, wherein said composition is an orally administrable composition.
- 21. The pharmaceutical composition of claim 20, wherein said orally administrable composition is in a form selected from the group consisting of tablets, capsules, troches, powders, solutions, dispersions, emulsions and suspensions.