Министерство образования и науки Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет «Программной инженерии и компьютерной техники.»

Алгоритмы и структуры данных

Лабораторная работа №4 Дополнительные задания.

Выполнил

Григорьев Давид Владимирович Группа: P3215 **Преподаватели** Косяков Михаил Сергеевич Тараканов Денис Сергеевич

Содержание

1	Дополнительное задание 1.						
	1.1	Рекуррентное соотношение	1				
	1.2	Специальный случай: $b=1$	1				
	1.3	Общий случай: $b > 1$	1				
		1.3.1 Условие стабилизации	1				
		1.3.2 Сходимость к <i>d</i>	1				
		1.3.3 Условие завершения	2				
	1.4	Почему аналитическое решение невозможно	2				
	1.5	Асимптотика	2				
2	Суп	дествование стоков и истоков в DAG	4				
3	Зав	исимость сложности BFS/DFS от представления графа	5				
	3.1	Способы представления графов	5				
		3.1.1 Матрица смежности	5				
		3.1.2 Список смежности	5				
		3.1.3 Список рёбер	5				
		3.1.4 Матрица инцидентности	5				
	3.2	Сравнение представлений	5				
4	Обзор алгоритмов поиска кратчайшего пути						
	4.1	Поиск в ширину (BFS)	6				
	4.2	Поиск в глубину (DFS)	6				
	4.3	Алгоритм Дейкстры	6				
	4.4	Алгоритм A^*	6				
	4.5	Алгоритм Беллмана-Форда	6				
	4.6	Алгоритм Флойда-Уоршелла	7				
5	Примеры реализации алгоритмов						
	5.1	Алгоритм Дейкстры	7				
	5.2	Поиск в ширину (BFS)	8				
	5.3	Алгоритм Беллмана-Форда	8				
6	При	Причины неприменимости алгоритма Дейкстры в 1450					
7	Обх	Обход дерева в 1329					

1 Дополнительное задание 1.

1.1 Рекуррентное соотношение

Обозначим x_n как количество бактерий после n-го дня. Процесс описывается следующим рекуррентным соотношением:

$$x_{n+1} = \begin{cases} \min(b \cdot x_n - c, d), & \text{если } b \cdot x_n - c \ge 0 \\ 0, & \text{иначе} \end{cases}$$

- Умножение: Каждая бактерия делится на b новых ($b \ge 1$).
- Удаление: с бактерий уничтожаются.
- **Ограничение**: Оставшиеся бактерии не могут превышать вместимость контейнера d.
- Завершение: Если $b \cdot x_n < c$, эксперимент заканчивается ($x_{n+1} = 0$).

1.2 Специальный случай: b = 1

Когда b = 1, умножение отсутствует. Соотношение упрощается:

$$x_{n+1} = x_n - c$$

Это модель линейного убывания:

- Если c = 0: Количество бактерий постоянно $(x_n = \min(a, d))$.
- Если a < c: Эксперимент завершается ($x_1 = 0$).
- Иначе: Население уменьшается на с ежедневно.

Максимальное количество дней до завершения:

$$\max_{\text{days}} = \left\lfloor \frac{a}{c} \right\rfloor$$

- Если $k \leq \max_{a}$ Результат $x_k = \max(0, a k \cdot c)$, ограниченный d.
- Иначе: $x_k = 0$.

1.3 Общий случай: *b* > 1

Для b > 1 система демонстрирует экспоненциальный рост до стабилизации или завершения.

1.3.1 Условие стабилизации

Если популяция достигает d и выполняется условие:

$$b \cdot d - c \ge d \implies d(b-1) \ge c$$
,

то популяция стабилизируется на уровне d:

$$x_{n+1} = \min(b \cdot d - c, d) = d.$$

Это означает, что система достигла неподвижной точки.

1.3.2 Сходимость к d

Если $d(b-1) \ge c$, популяция сходится к d за логарифмическое время:

Число шагов
$$\sim \log_b\left(\frac{d}{a}\right)$$
.

1.3.3 Условие завершения

Если на любом шаге $b \cdot x_n < c$, популяция становится отрицательной, и процесс завершается $(x_{n+1} = 0)$.

1.4 Почему аналитическое решение невозможно

Рекуррентное соотношение содержит:

- 1. **Нелинейность**: Умножение $(b \cdot x_n)$ и вычитание (-c).
- 2. **Пороговые условия**: Ограничение $(\min(\cdot, d))$ вносит разрывы.
- 3. **Условное завершение**: Процесс останавливается, если $b \cdot x_n < c$.

1.5 Асимптотика

Итого сложность данного алгоритма $O(min(days, log(max_capacity)))$

```
#include <algorithm>
#include <iostream>
int main() {
  // Input values
  int64_t initial_bacteria = 0;
  int64_t multiplier = 0;
  int64_t removed_per_day = 0;
  int64_t max_capacity = 0;
  int64_t days = 0;
  // Read input
  std::cin >> initial_bacteria >> multiplier >> removed_per_day >> max_capacity >> days;
  // Special case: if bacteria don't multiply (multiplier = 1)
  if (multiplier == 1) {
    if (removed_per_day == 0) {
      // Bacteria count remains constant, just cap at max_capacity
      std::cout << std::min(initial_bacteria, max_capacity);</pre>
      return 0;
    }
    // If initial bacteria are not enough for the first day
    if (initial_bacteria < removed_per_day) {</pre>
      std::cout << 0;
      return 0;
    }
    // Calculate how many full days the bacteria can survive
    int64_t max_full_days = initial_bacteria / removed_per_day;
    if (days <= max_full_days) {</pre>
      // Bacteria still exist after 'days' days
      int64_t remaining = initial_bacteria - (days * removed_per_day);
      std::cout << std::min(remaining, max_capacity);</pre>
    } else {
      // All bacteria are gone before the end of 'days'
      std::cout << 0;
```

```
}
  return 0;
int64_t current_bacteria = initial_bacteria;
bool has_stabilized = false;
for (int64_t day = 0; day < days && !has_stabilized; ++day) {
  // Multiply bacteria and remove the used ones
  int64_t multiplied = current_bacteria * multiplier;
  int64_t after_removal = multiplied - removed_per_day;
  // If bacteria count drops below zero, experiment ends
  if (after_removal < 0) {</pre>
    std::cout << 0;
    return 0;
  }
  // Cap at max capacity
  int64_t next_bacteria = std::min(after_removal, max_capacity);
  // If no change occurs, further iterations won't change anything
  if (next_bacteria == current_bacteria) {
   break;
  }
  current_bacteria = next_bacteria;
  // Check if we've reached max capacity and the population is stable
  // This happens when d * (b - 1) >= c
  if (current_bacteria == max_capacity && max_capacity * (multiplier - 1) >= removed_r
    has_stabilized = true;
  }
}
// Output the final bacteria count after k days
std::cout << current_bacteria;</pre>
return 0;
```

}

2 Существование стоков и истоков в DAG

Топологическая сортировка принципиально опирается на свойства DAG. Докажем фундаментальную лемму о существовании начальных и конечных вершин:

- 1. **Предположим противное**: в DAG нет истоков, т.е. $\forall v \in V \deg^-(v) \ge 1$.
- 2. Выберем произвольную вершину v_1 . По предположению $\exists v_2 \neq v_1$ такая, что $(v_2, v_1) \in E$.
- 3. Для v_2 аналогично $\exists v_3$ с $(v_3, v_2) \in E$, и т.д. Получаем бесконечную регрессию:

$$v_1 \leftarrow v_2 \leftarrow v_3 \leftarrow \dots$$

4. В конечном графе $\exists k < m : v_k = v_m$, что создаёт цикл:

$$v_k \to v_{k-1} \to \cdots \to v_m = v_k$$

Противоречие с ацикличностью DAG.

Аналогичное доказательство для стоков получается обращением ориентации рёбер.

Обобщение на несвязные графы:

Для DAG с несколькими компонентами связности доказательство применяется к каждой компоненте отдельно. Каждая компонента как подграф:

- Сохраняет ацикличность
- Содержит минимум один исток и один сток
- Гарантирует стартовые точки для алгоритмов (например, Кана)

Роль в данном коде

- Реализован в функции ComputeTopologicalOrdering()
- Позволяет корректно вычислить самый длинный путь:
 - Обработка вершин в топологическом порядке гарантирует, что все входящие пути учтены
 - Использует массив longest_path_distances для хранения промежуточных результатов

3 Зависимость сложности BFS/DFS от представления графа

3.1 Способы представления графов

3.1.1 Матрица смежности

• Хранение: матрица $A \in \{0,1\}^{V \times V}$, где

$$A[i][j] = \begin{cases} 1, & \text{есть ребро } (i \to j) \\ 0, & \text{иначе} \end{cases}$$

• Память: $O(V^2)$

• Поиск соседей для v: O(V)

• Сложность BFS/DFS: $O(V^2)$

3.1.2 Список смежности

• Хранение: массив списков $\mathrm{Adj}[V]$, где $\mathrm{Adj}[v]$ содержит соседей v

• Память: O(V + E)

• Поиск соседей для v: O(1) на соседа

• Сложность BFS/DFS: O(V + E)

3.1.3 Список рёбер

• Хранение: список пар (u, v)

Память: O(E)

Поиск соседей для v: O(E)

• Сложность BFS/DFS: $O(V \cdot E)$

3.1.4 Матрица инцидентности

• Хранение: матрица $B \in \{0,1\}^{V \times E}$, где

$$B[i][j] = \begin{cases} 1, & \text{вершина } i \text{ инцидентна ребру } j \\ 0, & \text{иначе} \end{cases}$$

• Память: $O(V \cdot E)$

• Поиск соседей для v: O(E)

• Сложность BFS/DFS: $O(V \cdot E)$

3.2 Сравнение представлений

Представление	Время BFS/DFS	Память
Матрица смежности	$O(V^2)$	$O(V^2)$
Список смежности	O(V+E)	O(V+E)
Список рёбер	$O(V \cdot E)$	O(E)
Матрица инцидентности	$O(V \cdot E)$	$O(V \cdot E)$

4 Обзор алгоритмов поиска кратчайшего пути

4.1 Поиск в ширину (BFS)

- **Принцип работы**: Обход графа послойно от начальной вершины. Исследование всех соседей на каждом шаге. Гарантирует кратчайший путь в невзвешенных графах. Реализация через очередь (FIFO).
- Примеры: Поиск пути в лабиринте, анализ социальных сетей.
- Сложность:
 - Время: O(V + E) (списки смежности), $O(V^2)$ (матрица смежности)
 - Память: O(V)

4.2 Поиск в глубину (DFS)

- **Принцип работы**: Исследование пути до конца с последующим возвратом. Использует стек (LIFO) или рекурсию. Не гарантирует кратчайший путь.
- Примеры: Проверка связности, поиск циклов.
- Сложность:
 - Время: O(V + E) (списки смежности), $O(V^2)$ (матрица смежности)
 - Память: O(V)

4.3 Алгоритм Дейкстры

- Принцип работы: Жадный алгоритм для графов с неотрицательными весами. Выбор вершины с минимальным расстоянием и обновление соседей.
- **Примеры**: Маршрутизация в GPS.
- Сложность:
 - Наивная реализация: $O(V^2)$
 - С приоритетной очередью: $O((E + V) \log V)$
 - С фибоначчиевой кучей: $O(E + V \log V)$

4.4 Алгоритм **A***

- **Принцип работы**: Модификация Дейкстры с эвристической функцией h(x). Требует допустимой эвристики.
- Примеры: Навигация в играх, планирование пути роботов.
- Сложность:
 - Время: $O(E + V \log V)$ (при оптимальной эвристике)
 - Память: O(V)

4.5 Алгоритм Беллмана-Форда

- **Принцип работы**: Обрабатывает графы с отрицательными весами (без циклов отрицательной стоимости). Выполняет V-1 релаксаций рёбер.
- Примеры: Финансовые модели с учётом долгов.
- Сложность:
 - Время: $O(V \cdot E)$

4.6 Алгоритм Флойда-Уоршелла

- Принцип работы: Находит кратчайшие пути между всеми парами вершин. Использует динамическое программирование.
- Примеры: Анализ транспортных сетей.
- Сложность:

Время: O(V³)
Память: O(V²)

Сравнение алгоритмов

Алгоритм	Тип графа	Время	Применение
BFS	Невзвешенный	O(V +	Кратчайший путь, связность
		E)	
Дейкстра	Неотрицательные веса	O((E +	GPS, сети
		$V) \log V$	
A*	Неотрицательные + эвристика	O(E +	Игры, робототехника
		$V \log V$	
Беллман-Форд	Отрицательные веса	$O(V \cdot$	Финансы, обнаружение циклов
		E)	
Флойд-Уоршелл	Все пары вершин	$O(V^3)$	Плотные графы, сетевой анализ

minted

5 Примеры реализации алгоритмов

5.1 Алгоритм Дейкстры

```
#include <vector>
#include <queue>
#include imits>
using namespace std;
vector<int> dijkstra(int start, vector<vector<pair<int, int>>> adj) {
    int n = adj.size();
   vector<int> dist(n, numeric_limits<int>::max());
   dist[start] = 0;
   priority_queue<pair<int, int>, vector<pair<int, int>>,
                   greater<pair<int, int>>> pq;
   pq.push({0, start});
    while (!pq.empty()) {
        int u = pq.top().second;
        int d = pq.top().first;
        pq.pop();
        if (d > dist[u]) continue; // Устаревший путь
        for (auto edge : adj[u]) {
            int v = edge.first;
            int weight = edge.second;
```

```
if (dist[u] + weight < dist[v]) {</pre>
                dist[v] = dist[u] + weight;
                pq.push({dist[v], v});
            }
        }
    }
    return dist;
}
    Поиск в ширину (BFS)
#include <vector>
#include <queue>
using namespace std;
vector<int> bfs(int start, vector<vector<int>> adj) {
    int n = adj.size();
    vector<int> dist(n, -1);
    queue<int> q;
    dist[start] = 0;
    q.push(start);
    while (!q.empty()) {
        int u = q.front(); q.pop();
        for (int v : adj[u]) {
            if (dist[v] == -1) {
                dist[v] = dist[u] + 1;
                q.push(v);
            }
        }
    }
    return dist;
}
5.3 Алгоритм Беллмана-Форда
#include <vector>
#include imits>
using namespace std;
vector<int> bellman_ford(int start, int n, vector<vector<int>> edges) {
    vector<int> dist(n, numeric_limits<int>::max());
    dist[start] = 0;
    for (int i = 0; i < n-1; ++i) {
        for (auto e : edges) {
            int u = e[0], v = e[1], w = e[2];
            if (dist[u] != numeric_limits<int>::max() &&
                dist[u] + w < dist[v]) {
                dist[v] = dist[u] + w;
            }
        }
```

}

```
return dist;
}
```

6 Причины неприменимости алгоритма Дейкстры в 1450

1. Целевая задача:

- Алгоритм Дейкстры предназначен для поиска кратчайших путей в графах с неотрицательными весами
- Для поиска самого длинного пути требуется принципиально иной подход

2. Проблема жадного выбора:

- Дейкстра предполагает, что найденный кратчайший путь до вершины уже оптимален
- Для длинных путей это неверно: добавление новых рёбер может увеличить длину пути

7 Обход дерева в 1329

Рис. 1: Обход дерева в 1329