

80960HA/HD/HT 32-BIT HIGH-PERFORMANCE SUPERSCALAR PROCESSOR

- 32-Bit Parallel Architecture
 - Load/Store Architecture
 - Sixteen 32-Bit Global Registers
 - Sixteen 32-Bit Local Registers
 - 1.2 Gbyte Internal Bandwidth (75 MHz)
 - On-Chip Register Cache
- Processor Core Clock
 - 80960HA is 1x Bus Clock
 - 80960HD is 2x Bus Clock
 - 80960HT is 3x Bus Clock
- Binary Compatible with Other 80960 Processors
- Issue Up To 150 Million Instructions per Second
- High-Performance On-Chip Storage
 - 16 Kbyte Four-Way Set-Associative Instruction Cache
 - 8 Kbyte Four-Way Set-Associative Data Cache
 - 2 Kbyte General Purpose RAM
 - Separate 128-Bit Internal Paths For Instructions/Data

- 3.3 V Supply Voltage
 - 5 V Tolerant Inputs
 - TTL Compatible Outputs
- **■** Guarded Memory Unit
 - Provides Memory Protection
 - User/Supervisor Read/Write/Execute
- 32-Bit Demultiplexed Burst Bus
 - Per-Byte Parity Generation/Checking
 - Address Pipelining Option
 - Fully Programmable Wait State Generator
 - Supports 8-, 16- or 32-Bit Bus Widths
 - 160 Mbyte/s External Bandwidth (40 MHz)
- High-Speed Interrupt Controller
 - Up to 240 External Interrupts
 - 31 Fully Programmable Priorities
 - Separate, Non-maskable Interrupt Pin
- Dual On-Chip 32-Bit Timers
 - Auto Reload Capability and One-Shot

Order Number: 272495-005

- CLKIN Prescaling, ÷1, 2, 4 or 8
- **JTAG Support IEEE 1149.1 Compliant**

Figure 1. 80960Hx Block Diagram

Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without

notice. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in

The 80960HA/HD/HT may contain design defects or errors known as errata which may cause the 80960HA/HD/HT to deviate from published specifications. Current characterized errata are available upon request.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation

P.O. Box 7641 Mt. Prospect IL 60056-7641 or call 1-800-879-4683.

Many documents are available for download from Intel's website at http://www.intel.com.

Copyright © Intel Corporation 1997.

Third party brands and names are the property of their respective owners.

80960HA/HD/HT 32-BIT HIGH-PERFORMANCE SUPERSCALAR PROCESSOR

1.0	ABOUT THIS DOCUMENT	1
2.0	INTEL'S 80960Hx PROCESSOR	1
	2.1 The i960 [®] Processor Family	1
	2.2 Key 80960Hx Features	1
	2.2.1 Execution Architecture	1
	2.2.2 Pipelined, Burst Bus	2
	2.2.3 On-Chip Caches and Data RAM	2
	2.2.4 Priority Interrupt Controller	2
	2.2.5 Guarded Memory Unit	2
	2.2.6 Dual Programmable Timers	2
	2.2.7 Processor Self Test	3
	2.3 Instruction Set Summary	4
3.0	PACKAGE INFORMATION	5
	3.1 Pin Descriptions	5
	3.2 80960Hx Mechanical Data	11
	3.2.1 80960Hx PGA Pinout	11
	3.2.2 80960Hx PQ4 Pinout	17
	3.3 Package Thermal Specifications	22
	3.4 Heat Sink Adhesives	25
	3.5 PowerQuad4 Plastic Package	25
	3.6 Stepping Register Information	25
	3.7 Sources for Accessories	26
4.0	ELECTRICAL SPECIFICATIONS	
	4.1 Absolute Maximum Ratings	
	4.2 Operating Conditions	27
	4.3 Recommended Connections	
	4.4 V _{CC5} Pin Requirements (V _{DIFF})	
	4.5 DC Specifications	29
	4.6 AC Specifications	
	4.6.1 AC Test Conditions	34
	4.6.2 AC Timing Waveforms	
5.0	BUS WAVEFORMS	
	5.1 80960Hx Boundary Scan Chain	
	5.2 Boundary Scan Description Language Example	78

Contents

FI	Gι	JR	ES
----	----	----	----

Figure 1.	80960Hx Block Diagram	cover
Figure 2.	80960Hx 168-Pin PGA Pinout — View from Top (Pins Facing Down)	11
Figure 3.	80960Hx 168-Pin PGA Pinout — View from Bottom (Pins Facing Up)	12
Figure 4.	80960Hx 208-Pin PQ4 Pinout	17
Figure 5.	Measuring 80960Hx PGA Case Temperature	22
Figure 6.	80960Hx Device Identification Register	25
Figure 7.	V _{CC5} Current-Limiting Resistor	28
Figure 8.	AC Test Load	34
Figure 9.	CLKIN Waveform	35
Figure 10.	Output Delay Waveform	35
Figure 11.	Output Delay Waveform	36
Figure 12.	Output Float Waveform	36
Figure 13.	Input Setup and Hold Waveform	36
Figure 14.	NMI, XINT7:0 Input Setup and Hold Waveform	37
Figure 15.	Hold Acknowledge Timings	37
Figure 16.	Bus Backoff (BOFF) Timings	38
Figure 17.	TCK Waveform	38
Figure 18.	Input Setup and Hold Waveforms for T _{BSIS1} and T _{BSIH1}	39
Figure 19.	Output Delay and Output Float for T _{BSOV1} and T _{BSOF1}	39
Figure 20.	Output Delay and Output Float Waveform for T _{BSOV2} and T _{BSOF2}	40
Figure 21.	Input Setup and Hold Waveform for T _{BSIS2} and T _{BSIH2}	40
Figure 22.	Rise and Fall Time Derating at 85°C and Minimum V _{CC}	41
Figure 23.	I _{CC} Active (Power Supply) vs. Frequency	41
Figure 24.	I _{CC} Active (Thermal) vs. Frequency	42
Figure 25.	Output Delay or Hold vs. Load Capacitance	42
Figure 26.	Output Delay vs. Temperature	43
Figure 27.	Output Hold Times vs. Temperature	43
Figure 28.	Output Delay vs. V _{CC}	44
Figure 29.	Cold Reset Waveform	45
Figure 30.	Warm Reset Waveform	46
Figure 31.	Entering ONCE Mode	47
Figure 32.	Non-Burst, Non-Pipelined Requests without Wait States	48
Figure 33.	Non-Burst, Non-Pipelined Read Request with Wait States	49
Figure 34.	Non-Burst, Non-Pipelined Write Request with Wait States	50
Figure 35.	Burst, Non-Pipelined Read Request without Wait States, 32-Bit Bus	51
Figure 36.	Burst, Non-Pipelined Read Request with Wait States, 32-Bit Bus	52
Figure 37.	Burst, Non-Pipelined Write Request without Wait States, 32-Bit Bus	53
Figure 38.	Burst, Non-Pipelined Write Request with Wait States, 32-Bit Bus	54
Figure 39.	Burst, Non-Pipelined Read Request with Wait States, 16-Bit Bus	
Figure 40.	Burst, Non-Pipelined Read Request with Wait States, 8-Bit Bus	
Figure 41.	Non-Burst, Pipelined Read Request without Wait States, 32-Bit Bus	57

Contents

Figure 42.	Non-Burst, Pipelined Read Request with Wait States, 32-Bit Bus	58
Figure 43.	Burst, Pipelined Read Request without Wait States, 32-Bit Bus	59
Figure 44.	Burst, Pipelined Read Request with Wait States, 32-Bit Bus	60
Figure 45.	Burst, Pipelined Read Request with Wait States, 8-Bit Bus	61
Figure 46.	Burst, Pipelined Read Request with Wait States, 16-Bit Bus	62
Figure 47.	Using External READY	63
Figure 48.	Terminating a Burst with BTERM	64
Figure 49.	BOFF Functional Timing. BOFF occurs during a burst or non-burst data cycle	65
Figure 50.	HOLD Functional Timing	66
Figure 51.	Lock Delays HOLDA Timing	67
Figure 52.	FAIL Functional Timing	67
Figure 53.	A Summary of Aligned and Unaligned Transfers for 32-Bit Regions	68
Figure 54.	A Summary of Aligned and Unaligned Transfers for 32-Bit Regions (Continued)	69
Figure 55.	A Summary of Aligned and Unaligned Transfers for 16-Bit Bus	70
Figure 56.	A Summary of Aligned and Unaligned Transfers for 8-Bit Bus	71
Figure 57.	Idle Bus Operation	
Figure 58.	Bus States	73

ADVANCE INFORMATION

T	A	ВΙ	c

Table 1.	80960Hx Product Description	1
Table 2.	Fail Codes For BIST (bit 7 = 1)	3
Table 3.	Remaining Fail Codes (bit 7 = 0)	3
Table 4.	80960Hx Instruction Set	4
Table 5.	Pin Description Nomenclature	5
Table 6.	80960Hx Processor Family Pin Descriptions	6
Table 7.	80960Hx 168-Pin PGA Pinout — Signal Name Order	13
Table 8.	80960Hx 168-Pin PGA Pinout — Pin Number Order	15
Table 9.	80960Hx PQ4 Pinout — Signal Name Order	18
Table 10.	80960Hx PQ4 Pinout — Pin Number Order	20
Table 11.	Maximum T _A at Various Airflows in °C (PGA Package Only)	23
Table 12.	80960Hx 168-Pin PGA Package Thermal Characteristics	23
Table 13.	Maximum T _A at Various Airflows in °C (PQ4 Package Only)	24
Table 14.	80960Hx 208-Pin PQ4 Package Thermal Characteristics	24
Table 15.	Fields of 80960Hx Device ID	25
Table 16.	80960Hx Device ID Model Types	26
Table 17.	Device ID Version Numbers for Different Steppings	26
Table 18.	Operating Conditions	27
Table 19.	V _{DIFF} Specification for Dual Power Supply Requirements (3.3 V, 5 V)	28
Table 20.	80960Hx DC Characteristics	29
Table 21.	80960Hx AC Characteristics	31
Table 22.	AC Characteristics Notes	33
Table 23.	80960Hx Boundary Scan Test Signal Timings	33
Table 24.	80960Hx Boundary Scan Chain	74
Table 25.	Data Sheet Version -004 to -005 Revision History	94

1.0 ABOUT THIS DOCUMENT

This document describes the parametric performance of Intel's 80960Hx embedded superscalar microprocessors. Detailed descriptions for functional topics — other than parametric performance — are published in the *i960*[®] Hx Microprocessor User's Guide (272484).

In this document, "80960Hx" and "i960 Hx processor" refer to the products described in Table 1. Throughout this document, information that is specific to each is clearly indicated.

2.0 INTEL'S 80960Hx PROCESSOR

Intel's 80960Hx processor provides new performance levels while maintaining backward compatibility (pin and software) with the i960 CA/CF processor. This newest member of the family of i960 32-bit, RISC-style, embedded processors allows customers to create scalable designs that meet multiple price and performance points. This is accomplished by providing processors that can run at the bus speed or faster using Intel's clock multiplying technology (Table 1). The 80960Hx core is capable of issuing 150 million instructions per second, using a sophisticated instruction scheduler that allows the processor to sustain a throughput of two instructions every core clock, with a peak performance of three instructions per clock. The 80960Hxseries comprises three processors, which differ in the ratio of core clock speed to external bus speed.

Table 1. 80960Hx Product Description

Product	Core	Voltage	Operating Frequency (bus/core)
80960HA	1x	3.3 V*	25/25, 33/33, 40/40
80960HD	2x	3.3 V [*]	16/32, 25/50, 33/66, 40/80
80960HT	3x	3.3 V*	20/60, 25/75

NOTE: *Processor inputs are 5 V tolerant.

In addition to expanded clock frequency options, the 80960Hx provides essential enhancements for an emerging class of high-performance embedded applications. Features include a larger instruction cache, data cache, and data RAM than any other

80960 processor to date. It also boasts a 32-bit demultiplexed and pipelined burst bus, fast interrupt mechanism, guarded memory unit, wait state generator, dual programmable timers, ONCE and IEEE 1149.1-compliant boundary scan test and debug support, and new instructions.

2.1 The i960[®] Processor Family

The i960 processor family is a 32-bit RISC architecture created by Intel to serve the needs of embedded applications. The embedded market includes applications as diverse as industrial automation, avionics, image processing, graphics and communications.

Because all members of the i960 processor family share a common core architecture, i960 applications are code-compatible. Each new processor in the family adds its own special set of functions to the core to satisfy the needs of a specific application or range of applications in the embedded market.

2.2 Key 80960Hx Features

2.2.1 Execution Architecture

Independent instruction paths inside the processor allow the execution of multiple, out-of-sequence instructions per clock. Register and resource scoreboarding interlocks maintain the logical integrity of sequential instructions that are being executed in parallel. To sustain execution of multiple instructions in each clock cycle, the processor decodes multiple instructions in parallel and simultaneously issues these instructions to parallel processing units. The various processing units are then able to independently access instruction operands in parallel from a common register set.

Local Register Cache integrated on-chip provides automatic register management on call/return instructions. Upon a call instruction, the processor allocates a set of local registers for the called procedure, then stores the registers for the previous procedure in the on-chip register cache. As additional procedures are called, the cache stores the associated registers such that the most recently called procedure is the first available by the next return (ret) instruction. The processor can store up to fifteen register sets, after which the oldest sets are stored (spilled) into external memory.

^{*} Though not drop-in replaceable. Customers can design systems that accept either 80960Hx or Cx processors.

2.2.2

The 80960Hx supports the 80960 architecturally-defined branch prediction mechanism. This allows many branches to execute with no pipeline break. With the 80960Hx's efficient pipeline, a branch can take as few as zero clocks to execute. The maximum penalty for an incorrect prediction is two core clocks.

Pipelined, Burst Bus

A 32-bit high performance bus controller interfaces the 80960Hx core to the external memory and peripherals. The Bus Control Unit features a maximum transfer rate of 160 Mbytes per second (at a 40 MHz external bus clock frequency). A key advantage of this design is its versatility. The user can independently program the physical and logical attributes of system memory. Physical attributes include wait state profile, bus width, and parity. Logical attributes include cacheability and Big or Little Endian byte order. Internally programmable wait states and 16 separately configurable physical memory regions allow the processor to interface with a variety of memory subsystems with minimum system complexity. To reduce the effect of wait states, the bus design is decoupled from the core. This lets the processor execute instructions while the bus performs memory accesses independently.

The Bus Controller's key features include:

- Demultiplexed, Burst Bus to support most efficient DRAM access modes
- Address Pipelining to reduce memory cost while maintaining performance
- 32-, 16- and 8-bit modes to facilitate I/O interfacing
- Full internal wait state generation to reduce system cost
- · Little and Big Endian support
- Unaligned Access support implemented in hardware
- Three-deep request queue to decouple the bus from the core
- Independent physical and logical address space characteristics

2.2.3 On-Chip Caches and Data RAM

As shown in Figure 1, the 80960Hx provides generous on-chip cache and storage features to decouple CPU execution from the external bus. The processor includes a 16 Kbyte instruction cache, an 8 Kbyte data cache and 2 Kbytes of Data RAM. The caches are organized as 4-way set associative.

Stores that hit the data cache are written through to memory. The data cache performs write allocation on cache misses. A fifteen-set stack frame cache allows the processor to rapidly allocate and deallocate local registers. All of the on-chip RAM sustains a 4-word (128-bit) access every clock cycle.

2.2.4 Priority Interrupt Controller

The interrupt unit provides the mechanism for the low latency and high throughput interrupt service essential for embedded applications. A priority interrupt controller provides full programmability of 240 interrupt sources with a typical interrupt task switch (latency) time of 17 core clocks. The controller supports 31 priority levels. Interrupts are prioritized and signaled within 10 core clocks of the request. If the interrupt has a higher priority than the processor priority, the context switch to the interrupt routine would typically complete in another 7 bus clocks.

External agents post interrupts via the 8-bit external interrupt port. The Interrupt unit also handles the two internal sources from the Timers. Interrupts can be level- or edge-triggered.

2.2.5 Guarded Memory Unit

The Guarded Memory Unit (GMU) provides memory protection without the address translation found in Memory Management Units. The GMU contains two memory protection schemes: one prevents illegal memory accesses, the other detects memory access violations. Both signal a fault to the processor. The programmable protection modes are: user read, write or execute; and supervisor read, write or execute.

2.2.6 Dual Programmable Timers

The processor provides two independent 32-bit timers, with four programmable clock rates. The user configures the timers via the Timer Unit registers. These registers are memory-mapped within the 80960Hx, addressable on 32-bit boundaries. The timers have a single-shot mode and auto-reload capabilities for continuous operation. Each timer has an independent interrupt request to the processor's interrupt controller.

2.2.7 Processor Self Test

When a system error is detected, the FAIL pin is asserted, a fail code message is driven onto the address bus, and the processor stops execution at the point of failure. The only way to resume normal operation is to perform a RESET operation. Because System Error generation can occur sometime after the bus confidence test and even after initialization during normal processor operation, the FAIL pin is HIGH (logic "1") before the detection of a System Error.

The processor uses only one read bus-transaction to signal the fail code message; the address of the bus transaction is the fail code itself. The fail code is of the form: **0xfeffff**nn; bits 6 to 0 contain a mask recording the possible failures. Bit 7, when set to 1, indicates that the mask contains failures from the internal Built-In Self-Test (BIST); when 0, the mask indicates other failures.

Systems should ignore reserved bits 0 and 1. This is also true for bits 5 and 6 when bit 7 is clear (=0).

The mask is shown in Table 2 and Table 3.

Table 2. Fail Codes For BIST (bit 7 = 1)

Bit	When Set:	
6	On-chip Data-RAM failure detected by BIST.	
5	Internal Microcode ROM failure detected by BIST.	
4	Instruction cache failure detected by BIST.	
3	Data cache failure detected by BIST.	
2	Local-register cache or processor core failure detected by BIST.	
1	Reserved. Always zero.	
0	Reserved. Always zero.	

Table 3. Remaining Fail Codes (bit 7 = 0)

Bit	When Set:	
6	Reserved. Always one.	
5	Reserved. Always one.	
4	A data structure within the IMI is not aligned to a word boundary.	
3	A System Error during normal operation has occurred.	
2	The Bus Confidence test has failed.	
1	Reserved. Always zero.	
0	Reserved. Always zero.	

2.3 Instruction Set Summary

Table 4 summarizes the 80960Hx instruction set by logical groupings.

Table 4. 80960Hx Instruction Set

Data Movement	Arithmetic	Logical	Bit / Bit Field / Byte
Load	Add	And	Set Bit
Store	Subtract	Not And	Clear Bit
Move	Multiply	And Not	Not Bit
Load Address	Divide	Or	Alter Bit
Conditional Select ²	Remainder	Exclusive Or	Scan For Bit
	Modulo	Not Or	Span Over Bit
	Shift	Or Not	Extract
	Extended Shift	Nor	Modify
	Extended Multiply	Exclusive Nor	Scan Byte for Equal
	Extended Divide	Not	Byte Swap ²
	Add with Carry	Nand	
	Subtract with Carry		
	Rotate		
	Conditional Add ²		
	Conditional Subtract ²		
Comparison	Branch	Call/Return	Fault
Compare	Unconditional Branch	Call	Conditional Fault
Conditional Compare	Conditional Branch	Call Extended	Synchronize Faults
Compare and Increment	Compare and Branch	Call System	
Compare and Decrement		Return	
Compare Byte ²		Branch and Link	
Compare Short ²			
Test Condition Code			
Check Bit			
Debug	Processor Mgmt	Atomic	Cache Control
Modify Trace Controls	Flush Local Registers	Atomic Add	Instruction Cache
Mark	Modify Arithmetic	Atomic Modify	Control ^{1,2}
Force Mark	Controls		Data Cache Control ^{1,2}
	Modify Process Controls		
	Interrupt Enable/ Disable ^{1,2}		
	System Control ¹		

NOTES:

- 1. 80960Hx extensions to the 80960 core instruction set.
- 2. 80960Hx extensions to the 80960Cx instruction set.

3.0 PACKAGE INFORMATION

This section describes the pins, pinouts and thermal characteristics for the 80960Hx in the 168-pin ceramic Pin Grid Array (PGA) package, 208-pin PowerQuad2* (PQ4). For complete package specifications and information, see the Intel *Packaging* Handbook (Order# 240800).

3.1 Pin Descriptions

This section defines the 80960Hx pins. Table 5 presents the legend for interpreting the pin descriptions in Table 6. All pins float while the processor is in the ONCE mode, except TDO, which can be driven active according to normal JTAG specifications.

Table 5. Pin Description Nomenclature

Symbol	Description
I	Input only pin.
0	Output only pin.
I/O	Pin can be input or output.
-	Pin must be connected as indicated for proper device functionality.
S(E)	Synchronous edge sensitive input. This input must meet the setup and hold times relative to CLKIN to ensure proper operation of the processor.
S(L)	Synchronous level sensitive input. This input must meet the setup and hold times relative to CLKIN to ensure proper operation of the processor.
A(E)	Asynchronous edge-sensitive input.
A(L)	Asynchronous level-sensitive input.
H()	While the processor bus is in the HOLD state (HLDA asserted), the pin: H(1) is driven to V _{CC} H(0) is driven to V _{SS} H(Z) floats H(Q) continues to be a valid output
B()	While the processor is in the bus backoff state (BOFF asserted), the pin: B(1) is driven to V _{CC} B(0) is driven to V _{SS} B(Z) floats B(Q) continues to be a valid output
R()	While the processor's RESET pin is asserted, the pin: R(1) is driven to V _{CC} R(0) is driven to V _{SS} R(Z) floats R(Q) continues to be a valid output

^{*}PowerQuad is a trademark of Amkor Electronics.

Table 6. 80960Hx Processor Family Pin Descriptions (Sheet 1 of 5)

Name	Type	Description
A31:2	O H(Z) B(Z) R(Z)	ADDRESS BUS carries the upper 30 bits of the physical address. A31 is the most significant address bit and A2 is the least significant. During a bus access, A31:2 identify all external addresses to word (4-byte) boundaries. The byte enable signals indicate the selected byte in each word. During burst accesses, A3 and A2 increment to indicate successive addresses.
D31:0	I/O S(L) H(Z) B(Z) R(Z)	DATA BUS carries 32, 16, or 8-bit data quantities depending on bus width configuration. The least significant bit of the data is carried on D0 and the most significant on D31. The lower 8 data lines (D7:0) are used when the bus is configured for 8-bit data. When configured for 16-bit data, D15:0 are used.
DP3:0	I/O S(L) H(Z) B(Z) R(Z)	DATA PARITY carries parity information for the data bus. Each parity bit is assigned a group of 8 data bus pins as follows: DP3 generates/checks parity for D31:24 DP2 generates/checks parity for D23:16 DP1 generates/checks parity for D15:8 DP0 generates/checks parity for D7:0 Parity information is generated for a processor write cycle and is checked for a processor read cycle. Parity checking and polarity are programmable. Parity generation/checking is only performed for the size of the data accessed.
РСНК	O H(Q) B(Q) R(1)	PARITY CHECK indicates the result of a parity check operation. An asserted PCHK indicates that the previous bus read access resulted in a parity check error.
BE3:0	O H(Z) B(Z) R(1)	BYTE ENABLES select which of the four bytes addressed by A31:2 are active during a bus access. Byte enable encoding is dependent on the bus width of the memory region accessed: 32-bit bus: BE3 enables D31:24 BE2 enables D23:16 BE1 enables D15:8 BE0 enables D7:0 16-bit bus: BE3 becomes Byte High Enable (enables D15:8) BE2 is not used (state is undefined) BE1 becomes Address Bit 1 (A1) BE0 becomes Byte Low Enable (enables D7:0) 8-bit bus: BE3 is not used (state is undefined) BE2 is not used (state is undefined) BE3 is not used (state is undefined) BE4 Address Bit 1 (A1) BE5 Address Bit 0 (A0)
W/R	O H(Z) B(Z) R(0)	WRITE/READ is low for read accesses and high for write accesses. W/R becomes valid during the address phase of a bus cycle and remains valid until the end of the cycle for non-pipelined accesses. For pipelined accesses, W/R changes state when the next address is presented. 0= Read 1= Write

Table 6. 80960Hx Processor Family Pin Descriptions (Sheet 2 of 5)

Name	Type	Description
D/C	O H(Z) B(Z) R(0)	DATA/CODE indicates that a bus access is a data access or an instruction access. D/\overline{C} has the same timing as W/\overline{R} . $0 = Code$ $1 = Data$
SUP	O H(Z) B(Z) R(1)	SUPERVISOR ACCESS indicates whether the current bus access originates from a request issued while in supervisor mode or user mode. SUP can be used by the memory subsystem to isolate supervisor code and data structures from non-supervisor access. 0 = Supervisor Mode 1 = User Mode
ĀDS	O H(Z) B(Z) R(1)	ADDRESS STROBE indicates a valid address and the start of a new bus access. ADS is asserted for the first clock of a bus access.
READY	I S(L)	READY, when enabled for a memory region, is asserted by the memory subsystem to indicate the completion of a data transfer. READY is used to indicate that read data on the bus is valid, or that a write transfer has completed. READY works in conjunction with the internal wait state generator to accommodate various memory speeds. READY is sampled after any programmed wait states: • During each data cycle of a burst access
		During the data cycle of a non-burst access
BTERM	I S(L)	BURST TERMINATE, when enabled for a memory region, is asserted by the memory subsystem to terminate a burst access in progress. When BTERM is asserted, the current burst access is terminated and another address cycle occurs.
WAIT	O H(Z) B(Z) R(1)	WAIT indicates the status of the internal wait-state generator. WAIT is asserted when the internal wait state generator generates N _{WAD} , N _{RAD} , N _{WDD} and N _{RDD} wait states. WAIT can be used to derive a write data strobe.
BLAST	O H(Z) B(Z) R(1)	BURST LAST indicates the last transfer in a bus access. BLAST is asserted in the last data transfer of burst and non-burst accesses after the internal wait-state generator reaches zero. BLAST remains active as long as wait states are inserted via the READY pin. BLAST becomes inactive after the final data transfer in a bus cycle.
DT/R	O H(Z) B(Z) R(0)	DATA TRANSMIT/RECEIVE indicates direction for data transceivers. DT/R is used with DEN to provide control for data transceivers connected to the data bus. DT/R is driven low to indicate the processor expects data (a read cycle). DT/R is driven high when the processor is "transmitting" data (a store cycle). DT/R only changes state when DEN is high. 0 = Data Receive 1 = Data Transmit

Table 6. 80960Hx Processor Family Pin Descriptions (Sheet 3 of 5)

Name	Туре	Description
DEN	O H(Z) B(Z) R(1)	DATA ENABLE indicates data transfer cycles during a bus access. DEN is asserted at the start of the first data cycle in a bus access and de-asserted at the end of the last data cycle. DEN remains asserted for an entire bus request, even when that request spans several bus accesses. For example, a ldq instruction starting at an unaligned quad word boundary is one bus request spanning at least two bus accesses. DEN remains asserted throughout all the accesses (including ADS states) and de-asserts when the lqd instruction request is satisfied. DEN is used with DT/R to provide control for data transceivers connected to the data bus. DEN remains asserted for sequential reads from pipelined memory regions.
LOCK	O H(Z) B(Z) R(1)	BUS LOCK indicates that an atomic read-modify-write operation is in progress. LOCK may be used by the memory subsystem to prevent external agents from accessing memory that is currently involved in an atomic operation (e.g., a semaphore). LOCK is asserted in the first clock of an atomic operation and deasserted when BLAST is deasserted in the last bus cycle.
HOLD	I S(L)	HOLD REQUEST signals that an external agent requests access to the processor's address, data, and control buses. When HOLD is asserted, the processor: Completes the current bus request. Asserts HOLDA and floats the address, data, and control buses. When HOLD is deasserted, the HOLDA pin is deasserted and the processor reassumes control of the address, data, and control pins.
HOLDA	O H(1) B(0) R(Q)	HOLD ACKNOWLEDGE indicates to an external master that the processor has relinquished control of the bus. The processor grants HOLD requests and enters the HOLDA state while the RESET pin is asserted. HOLDA is never granted while LOCK is asserted.
BOFF	I S(L)	BUS BACKOFF forces the processor to immediately relinquish control of the bus on the next clock cycle. When READY/BTERM is enabled and: • When BOFF is asserted, the address, data, and control buses are floated on the next clock cycle and the current access is aborted. • When BOFF is deasserted, the processor resumes by regenerating the aborted bus access. See Figure 16, Bus Backoff (BOFF) Timings (pg. 38), for BOFF timing requirements.
BREQ	O H(Q) B(Q) R(0)	BUS REQUEST indicates that a bus request is pending in the bus controller, but the processor <i>is not stalled</i> pending the result of the bus operation. BREQ can be used with BSTALL to indicate to an external bus arbiter the processor's bus ownership requirements.
BSTALL	O H(Q) B(Q) R(0)	BUS STALL indicates that the processor has stalled pending the result of a request in the bus controller. When BSTALL is asserted, the processor <i>must</i> regain bus ownership to continue processing (i.e., it can no longer execute strictly out of onchip cache memory).

Table 6. 80960Hx Processor Family Pin Descriptions (Sheet 4 of 5)

Name	Type	Description					
		CYCLE TYPE indicates the type of bus cycle curre state. CT3:0 encoding follows:	ently being s	tarted or processor			
		Сусіе Туре	ADS	CT3:0			
CT3:0	O H(Z) B(Z) R(Z)	Program-initiated access using 8-bit bus Program-initiated access using 16-bit bus Program-initiated access using 32-bit bus Event-initiated access using 8-bit bus Event-initiated access using 16-bit bus	0 0 0 0	0000 0001 0010 0100 0101			
		Event-initiated access using 32-bit bus Reserved Reserved for future products Reserved	0 0 0 1	0110 0X11 1XXX XXXX			
		EXTERNAL INTERRUPT pins are used to reques can be configured in three modes:	·	•			
XINT7:0	A(E)	Dedicated Mode: Each pin is assigned a dedicated can be programmed to be level (low or high) or ed Expanded Mode: All eight pins act as a vectored in	ge (rising or	falling) sensitive.			
	A(L)	are level sensitive in this mode. Mixed Mode: The XINT7:5 pins act as dedicated sources and the XINT4:0 pins act as the five most significant bits of a vectored source. The least significant bits of the vectored source are set to "010" internally.					
NMI	I A(E)	NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur. NMI is the highest priority interrupt source. NMI is falling edge triggered.					
CLKIN	ı	CLOCK INPUT provides the time base for the 809 synchronized to CLKIN. All input and output timing For the 80960HD, the 2x internal clock is derived by frequency by 2. For the 80960HT, the 3x internal clckIN frequency by 3.	s are specific by multiplying	ed relative to CLKIN. g the CLKIN			
RESET	I A(L)	RESET forces the device into reset. RESET cause to return to their reset state (if defined). The rising processor boot sequence.					
STEST	I S(L)	SELF TEST , when asserted during the rising edge processor to execute its built in self-test.	of RESET,	causes the			
FAIL	O H(Q) B(Q) R(0) P(1)	FAIL indicates a failure of the processor's built-in sization. FAIL is asserted immediately out of reset a indicate the status of individual tests. If self-test pathe processor branches to the user's initialization of FAIL pin is asserted and the processor ceases exerting the	and toggles on usses, FAIL in code. Should	during self-test to s de-asserted and			
ONCE	ı	ON-CIRCUIT EMULATION control: the processor samples this pin during reset. If it is asserted low at the end of reset, the processor enters ONCE mode. In ONCE mode, the processor stops all clocks and floats all output pins except the TDO pin. $\overline{\text{ONCE}}$ includes a nominal 80 k Ω internal pull-up resistor.					
тск	I	TEST CLOCK provides the clocking function for IE testing.	EEE 1149.1 I	Boundary Scan			

Table 6. 80960Hx Processor Family Pin Descriptions (Sheet 5 of 5)

Name	Type	Description
TDI	I	TEST DATA INPUT is the serial input pin for IEEE 1149.1 Boundary Scan testing.
TDO	0	TEST DATA OUTPUT is the serial output pin for IEEE 1149.1 Boundary Scan testing. ONCE does not disable this pin.
TRST	I	TEST RESET asynchronously resets the Test Access Port (TAP) controller. TRST must be held low at least 10,000 clock cycles after power-up. One method is to provide TRST with a separate power-on-reset circuit. TRST includes a nominal 65 kΩ internal pull-up resistor. Pull this pin low when not in use.
TMS	ı	TEST MODE SELECT is sampled at the rising edge of TCK. TCK controls the sequence of TAP controller state changes for IEEE 1149.1 Boundary Scan testing. TMS includes a nominal 80 k Ω internal pull-up resistor.
V _{CC5}	I	5 V REFERENCE VOLTAGE input is the reference voltage for the 5 V-tolerant I/O buffers. This signal should be connected to +5 V for use with inputs which exceed 3.3 V. If all inputs are from 3.3 V components, this pin should be connected to 3.3 V.
V _{CCPLL}	ı	PLL VOLTAGE is the +3.3 VDC analog input for the PLL.
VOLDET	0	VOLTAGE DETECT signal allows external system logic to distinguish between a 5 V 80960Cx processor and the 3.3 V 80960Hx processor. This signal is active low for a 3.3 V 80960Hx (it is high impedance for 5 V 80960Cx). This pin is available only on the PGA version. 0 = 80960Hx 1 = 80960Cx

3.2 80960Hx Mechanical Data

3.2.1 80960Hx PGA Pinout

Figures 2 depicts the complete 80960Hx PGA pinout as viewed from the top side of the component (i.e., pins facing down). Figures 3 shows the complete

80960Hx PGA pinout as viewed from the pin-side of the package (i.e., pins facing up). Table 8 lists the 80960Hx pin names with package location. See Section 4.3, Recommended Connections (pg. 27) for specifications and recommended connections.

Figure 2. 80960Hx 168-Pin PGA Pinout — View from Top (Pins Facing Down)

Figure 3. 80960Hx 168-Pin PGA Pinout — View from Bottom (Pins Facing Up)

Table 7. 80960Hx 168-Pin PGA Pinout — Signal Name Order (Sheet 1 of 2)

Signal Name	PGA Pin	Signal Name	PGA Pin	Signal Name	PGA Pin	Signal Name	PGA Pin
A2	D16	ADS	R6	D14	L2	LOCK	S14
А3	D17	BE0	R9	D15	L1	NC	A9
A4	E16	BE1	S7	D16	M1	NC	A10
A5	E17	BE2	S6	D17	N1	NC	B13
A6	F17	BE3	S5	D18	N2	NC	B14
A7	G16	BLAST	S8	D19	P1	NC	D3
A8	G17	BOFF	B1	D20	P2	NMI	D15
A9	H17	BREQ	R13	D21	Q1	ONCE	C3
A10	J17	BSTALL	R12	D22	P3	PCHK	В8
A11	K17	BTERM	R4	D23	Q2	READY	S3
A12	L17	CLKIN	C13	D24	R1	RESET	A16
A13	L16	СТО	A11	D25	S1	STEST	B2
A14	M17	CT1	A12	D26	Q3	SUP	Q12
A15	N17	CT2	A13	D27	R2	тск	B5
A16	N16	СТЗ	A14	D28	Q4	TDI	A7
A17	P17	D/C	S13	D29	S2	TDO	A8
A18	Q17	D0	E3	D30	Q5	TMS	В6
A19	P16	D1	C2	D31	R3	TRST	A6
A20	P15	D2	D2	DEN	S9	V _{CC}	B7
A21	Q16	D3	C1	DP0	А3	V _{cc}	В9
A22	R17	D4	E2	DP1	В3	V _{CC}	B11
A23	R16	D5	D1	DP2	A4	V _{CC}	B12
A24	Q15	D6	F2	DP3	B4	v _{cc}	C6
A25	S17	D7	E1	DT/R	S11	V _{CC}	C14
A26	R15	D8	F1	FAIL	A2	V _{CC}	E15
A27	S16	D9	G1	_	_	V _{CC}	F3
A28	Q14	D10	H2	_	_	V _{CC}	F16
A29	R14	D11	H1	_	_	V _{CC}	G2
A30	Q13	D12	J1	HOLD	R5	v _{cc}	H16
A31	S15	D13	K1	HOLDA	S4	v _{cc}	J2
V _{CC}	J16	V _{CCPLL}	B10	V _{SS}	НЗ	V _{SS}	Q10
v _{cc}	K2	VOLDET	A5	V _{SS}	H15	V _{SS}	Q11
V _{CC}	K16	V _{SS}	A1	V _{SS}	J3	W/R	S10
		•					

Table 7. 80960Hx 168-Pin PGA Pinout — Signal Name Order (Sheet 2 of 2)

Signal Name	PGA Pin	Signal Name	PGA Pin	Signal Name	PGA Pin	Signal Name	PGA Pin
V _{CC}	M2	V _{SS}	C4	V _{SS}	J15	WAIT	S12
v _{cc}	M16	V _{SS}	C7	V _{SS}	K3	XINT0	B15
V _{CC}	N3	V _{SS}	C8	V _{SS}	K15	XINT1	A15
V _{CC}	N15	V _{SS}	C9	V _{SS}	L3	XINT2	A17
v _{cc}	Q6	V _{SS}	C10	V _{SS}	L15	XINT3	B16
ν _{cc}	R7	V _{SS}	C11	V _{SS}	МЗ	XINT4	C15
V _{CC}	R8	V _{SS}	C12	V _{SS}	M15	XINT5	B17
v _{cc}	R10	V _{SS}	F15	V _{SS}	Q7	XINT6	C16
V _{CC}	R11	V _{SS}	G3	V _{SS}	Q8	XINT7	C17
V _{CC5}	C5	V _{SS}	G15	V _{SS}	Q9	_	_

Table 8. 80960Hx 168-Pin PGA Pinout — Pin Number Order (Sheet 1 of 2)

PGA Pin	Signal Name						
A1	V _{SS}	B14	NC	E15	V _{CC}	K15	V _{SS}
A2	FAIL	B15	XINT0	E16	A4	K16	V _{CC}
А3	DP0	B16	XINT3	E17	A5	K17	A11
A4	DP2	B17	XINT5	F1	D8	L1	D15
A5	VOLDET	C1	D3	F2	D6	L2	D14
A6	TRST	C2	D1	F3	V _{CC}	L3	V _{SS}
A7	TDI	C3	ONCE	F15	V_{SS}	L15	V _{SS}
A8	TDO	C4	V _{SS}	F16	V _{CC}	L16	A13
A9	NC	C5	VCC5	F17	A6	L17	A12
A10	NC	C6	V _{CC}	G1	D9	M1	D16
A11	CT0	C 7	V _{SS}	G2	V _{CC}	M2	V _{CC}
A12	CT1	C8	V_{SS}	G3	V_{SS}	М3	V _{SS}
A13	CT2	C9	V_{SS}	G15	V_{SS}	M15	V _{SS}
A14	СТЗ	C10	V _{SS}	G16	A7	M16	V _{CC}
A15	XINT1	C11	V_{SS}	G17	A8	M17	A14
A16	RESET	C12	V_{SS}	H1	D11	N1	D17
A17	XINT2	C13	CLKIN	H2	D10	N2	D18
B1	BOFF	C14	V_{CC}	Н3	V_{SS}	N3	V _{CC}
B2	STEST	C15	XINT4	H15	V _{SS}	N15	V _{CC}
В3	DP1	C16	XINT6	H16	V _{CC}	N16	A16
B4	DP3	C17	XINT7	H17	A9	N17	A15
B5	TCK	D1	D5	J1	D12	P1	D19
В6	TMS	D2	D2	J2	V _{CC}	P2	D20
B7	V _{CC}	D3	NC	J3	V_{SS}	P3	D22
B8	PCHK	D15	NMI	J15	V _{SS}	P15	A20
В9	V _{CC}	D16	A2	J16	V _{CC}	P16	A19
B10	V_{CCPLL}	D17	А3	J17	A10	P17	A17
B11	V _{CC}	E1	D7	K1	D13	Q1	D21
B12	V _{CC}	E2	D4	K2	V _{CC}	Q2	D23
B13	NC	E3	D0	К3	V_{SS}	Q3	D26

Table 8. 80960Hx 168-Pin PGA Pinout — Pin Number Order (Sheet 2 of 2)

PGA Pin	Signal Name	PGA Pin	Signal Name	PGA Pin	Signal Name	PGA Pin	Signal Name
Q4	D28	Q16	A21	R11	V _{CC}	S6	BE2
Q5	D30	Q17	A18	R12	BSTALL	S 7	BE1
Q6	V _{CC}	R1	D24	R13	BREQ	S8	BLAST
Q7	V_{SS}	R2	D27	R14	A29	S9	DEN
Q8	V_{SS}	R3	D31	R15	A26	S10	W/R
Q9	V_{SS}	R4	BTERM	R16	A23	S11	DT/R
Q10	V_{SS}	R5	HOLD	R17	A22	S12	WAIT
Q11	V_{SS}	R6	ADS	S1	D25	S13	D/C
Q12	SUP	R7	V _{CC}	S2	D29	S14	LOCK
Q13	A30	R8	V _{CC}	S3	READY	S15	A31
Q14	A28	R9	BE0	S4	HOLDA	S16	A27
Q15	A24	R10	V _{CC}	S5	BE3	S17	A25

3.2.2 80960Hx PQ4 Pinout

Figure 4. 80960Hx 208-Pin PQ4 Pinout

Table 9. 80960Hx PQ4 Pinout — Signal Name Order (Sheet 1 of 2)

Signal Name	PQ4 Pin	Signal Name	PQ4 Pin	Signal Name	PQ4 Pin	Signal Name	PQ4 Pin
A2	151	BE0	83	D16	39	PCHK	189
А3	150	BE1	82	D17	40	READY	68
A4	147	BE2	79	D18	41	RESET	174
A5	146	BE3	78	D19	42	STEST	208
A6	145	BLAST	84	D20	45	SUP	97
A7	144	BOFF	10	D21	50	TCK	194
A8	141	BREQ	100	D22	51	TD0	188
A9	140	BSTALL	91	D23	52	TDI	191
A10	139	BTERM	67	D24	54	TMS	192
A11	138	CLKIN	175	D25	55	TRST	193
A12	135	СТО	183	D26	56	v _{cc}	1
A13	134	CT1	182	D27	57	V _{cc}	4
A14	133	CT2	181	D28	61	V _{CC}	9
A15	132	СТЗ	180	D29	62	V _{cc}	11
A16	127	D/C	96	D30	63	V _{cc}	17
A17	126	D0	12	D31	64	V _{cc}	19
A18	125	D1	13	DEN	85	v _{cc}	25
A19	124	D2	14	DP0	206	V _{CC}	31
A20	121	D3	15	DP1	207	V _{CC}	33
A21	120	D4	20	DP2	203	v _{cc}	38
A22	119	D5	21	DP3	202	V _{cc}	44
A23	118	D6	22	DT/R	89	V _{cc}	46
A24	113	D7	23	FAIL	5	v _{cc}	49
A25	112	D8	26	_	_	V _{CC}	59
A26	111	D9	27		_	V _{cc}	60
A27	110	D10	28	_	_	v _{cc}	66
A28	107	D11	29	HOLD	69	V _{CC}	71
A29	106	D12	34	HOLDA	72	V _{cc}	74
A30	105	D13	35	LOCK	99	v _{cc}	76
A31	104	D14	36	NMI	159	V _{CC}	81
ADS	77	D15	37	ONCE	6	V _{CC}	87

Table 9. 80960Hx PQ4 Pinout — Signal Name Order (Sheet 2 of 2)

Signal Name	PQ4 Pin	Signal Name	PQ4 Pin	Signal Name	PQ4 Pin	Signal Name	PQ4 Pin
V _{CC}	92	V _{CC}	187	V _{SS}	70	V _{SS}	164
v _{cc}	95	v _{cc}	196	V _{ss}	73	V _{ss}	170
V _{cc}	101	V _{CC}	199	V _{SS}	75	V _{SS}	172
V _{CC}	102	V _{CC}	201	V _{SS}	80	V _{SS}	178
v _{cc}	109	v _{cc}	204	V _{SS}	86	V _{SS}	184
V _{CC}	115	VCC5	197	V _{SS}	93	V _{SS}	186
V _{CC}	117	V _{CCPLL}	177	V _{SS}	94	V _{SS}	190
v _{cc}	123	V _{SS}	2	V _{SS}	98	V _{SS}	195
V _{cc}	128	V _{SS}	3	V _{SS}	103	V _{SS}	198
V _{CC}	131	V _{SS}	7	V _{SS}	108	V _{SS}	200
v _{cc}	137	V _{SS}	8	V _{SS}	114	V _{SS}	205
V _{CC}	143	V _{SS}	16	V _{SS}	116	W/R	88
V _{CC}	149	V _{SS}	18	V _{SS}	122	WAIT	90
v _{cc}	153	V _{SS}	24	V _{SS}	129	XINT0	169
V _{cc}	154	V _{SS}	30	V _{SS}	130	XINT1	168
V _{CC}	158	V _{SS}	32	V _{SS}	136	XINT2	167
v _{cc}	165	V _{SS}	43	V _{SS}	142	XINT3	166
V _{CC}	171	V _{SS}	47	V _{SS}	148	XINT4	163
V _{CC}	173	V _{SS}	48	V _{SS}	152	XINT5	162
V _{cc}	176	V _{SS}	53	V _{SS}	155	XINT6	161
V _{CC}	179	V _{SS}	58	V _{SS}	156	XINT7	160
V _{CC}	185	V _{SS}	65	V _{SS}	157	_	_

Table 10. 80960Hx PQ4 Pinout — Pin Number Order (Sheet 1 of 2)

PQ4 Pin	Signal Name						
1	V _{CC}	31	V _{CC}	61	D28	91	BSTALL
2	V _{SS}	32	V _{SS}	62	D29	92	V _{CC}
3	V _{SS}	33	V _{CC}	63	D30	93	V _{SS}
4	V _{CC}	34	D12	64	D31	94	V _{SS}
5	FAIL	35	D13	65	V _{SS}	95	V _{CC}
6	ONCE	36	D14	66	V _{CC}	96	D/C
7	V _{SS}	37	D15	67	BTERM	97	SUP
8	V _{SS}	38	V _{CC}	68	READY	98	V _{SS}
9	V _{CC}	39	D16	69	HOLD	99	LOCK
10	BOFF	40	D17	70	V_{SS}	100	BREQ
11	V _{CC}	41	D18	71	V _{CC}	101	V _{CC}
12	D0	42	D19	72	HOLDA	102	V _{CC}
13	D1	43	V _{SS}	73	V_{SS}	103	V _{SS}
14	D2	44	V _{CC}	74	V _{CC}	104	A31
15	D3	45	D20	75	V_{SS}	105	A30
16	V_{SS}	46	V _{CC}	76	V_{CC}	106	A29
17	V _{CC}	47	V _{SS}	77	ADS	107	A28
18	V _{SS}	48	V_{SS}	78	BE3	108	V_{SS}
19	V _{CC}	49	V _{CC}	79	BE2	109	V _{CC}
20	D4	50	D21	80	V_{SS}	110	A27
21	D5	51	D22	81	V _{CC}	111	A26
22	D6	52	D23	82	BE1	112	A25
23	D7	53	V_{SS}	83	BE0	113	A24
24	V _{SS}	54	D24	84	BLAST	114	V_{SS}
25	V _{CC}	55	D25	85	DEN	115	V _{CC}
26	D8	56	D26	86	V _{SS}	116	V _{SS}
27	D9	57	D27	87	V _{CC}	117	V _{CC}
28	D10	58	V _{SS}	88	W/R	118	A23
29	D11	59	V _{CC}	89	DT/R	119	A22
30	V _{SS}	60	V _{CC}	90	WAIT	120	A21

Table 10. 80960Hx PQ4 Pinout — Pin Number Order (Sheet 2 of 2)

PQ4 Pin	Signal Name	PQ4 Pin	Signal Name	PQ4 Pin	Signal Name	PQ4 Pin	Signal Name
121	A20	143	V _{CC}	165	V _{CC}	187	V _{CC}
122	V _{SS}	144	A7	166	XINT3	188	TD0
123	V _{CC}	145	A6	167	XINT2	189	PCHK
124	A19	146	A5	168	XINT1	190	V _{SS}
125	A18	147	A4	169	XINT0	191	TDI
126	A17	148	V _{SS}	170	V _{SS}	192	TMS
127	A16	149	V _{CC}	171	V _{CC}	193	TRST
128	V _{CC}	150	A3	172	V _{SS}	194	TCK
129	V _{SS}	151	A2	173	V _{CC}	195	V _{SS}
130	V _{SS}	152	V _{SS}	174	RESET	196	V _{CC}
131	V _{CC}	153	V _{CC}	175	CLKIN	197	VCC5
132	A15	154	V _{CC}	176	V _{CC}	198	V _{SS}
133	A14	155	V _{SS}	177	V _{CCPLL}	199	V _{CC}
134	A13	156	V _{SS}	178	V _{SS}	200	V _{SS}
135	A12	157	V _{SS}	179	V _{CC}	201	V _{CC}
136	V_{SS}	158	V _{CC}	180	CT3	202	DP3
137	V _{CC}	159	NMI	181	CT2	203	DP2
138	A11	160	XINT7	182	CT1	204	V _{CC}
139	A10	161	XINT6	183	CT0	205	V _{SS}
140	A9	162	XINT5	184	V _{SS}	206	DP0
141	A8	163	XINT4	185	V _{CC}	207	DP1
142	V _{SS}	164	V _{SS}	186	V _{SS}	208	STEST

3.3 Package Thermal Specifications

The 80960Hx is specified for operation when T_C (case temperature) is within the range of 0°C–85°C. T_C may be measured in any environment to determine whether the 80960Hx is within the specified operating range. Measure the case temperature at the center of the top surface, opposite the pins. Refer to Figures 5.

 T_A (ambient temperature) is calculated from θ_{CA} (thermal resistance from case to ambient) using the equation:

$$T_A = T_C - P^*\theta_{CA}$$

Table 11 shows the maximum T_A allowable (without exceeding T_C) at various airflows and operating frequencies (f_{CLKIN}).

Note that T_A is greatly improved by attaching fins or a heatsink to the package. P (maximum power consumption) is calculated by using the typical I_{CC} as tabulated in Section 4.5, DC Specifications (pg. 29) and V_{CC} of 3.3 V.

Figure 5. Measuring 80960Hx PGA Case Temperature

Table 11. Maximum T_A at Various Airflows in °C (PGA Package Only)

					Airflow-ft/n	nin (m/sec)		
		f _{CLKIN} (MHz)	0 (0)	200 (1.01)	400 (2.03)	600 (3.04)	800 (4.06)	1000 (5.07)
Core 1X Bus Clock	T _A with Heatsink*	25 33 40	69 63 59	74 70 67	78 75 73	79 77 75	80 79 77	80 79 77
	T _A without Heatsink	25 33 40	64 56 50	67 62 56	71 67 63	74 70 67	75 72 69	76 74 71
Core 2X Bus Clock	T _A with Heatsink*	16 25 33 40	68 58 49 41	73 66 60 55	77 73 69 65	79 75 71 68	80 77 74 72	80 77 74 72
	T _A without Heatsink	16 25 33 40	62 49 38 27	66 56 46 38	71 62 55 48	73 66 60 55	75 68 63 58	76 71 66 62
Core 3X Bus	T _A with Heatsink*	20 25	53 45	63 58	71 67	73 70	76 73	76 73
Clock	T _A without Heatsink	20 25	43 33	51 42	58 51	63 58	66 61	68 64

NOTE: *0.285" high unidirectional heatsink (Al alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).

Table 12. 80960Hx 168-Pin PGA Package Thermal Characteristics

T	hermal	Resistar	nce — °C	/Watt			
		Air	flow — f	t./min (m	/sec)		
Parameter	0 (0)	200 (1.01)	400 (2.03)	600 (3.07)	800 (4.06)	1000 (5.07)	
θ Junction-to-Case (Case measured as shown in Figures 5)	1.5	1.5	1.5	1.5	1.5	1.5	θ _{JA} Φ _{JC}
θ Case-to-Ambient (No Heatsink)	17	14	11	9	8	7	
θ Case-to-Ambient (With Heatsink)*	13	9	6	5	4	4	

NOTES:

- 1. This table applies to 80960Hx PGA plugged into socket or soldered directly to board.
- 2. $\theta_{JA} = \theta_{JC} + \theta_{CA}$

^{*0.285&}quot; high unidirectional heatsink (Al alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).

Table 13. Maximum T_A at Various Airflows in °C (PQ4 Package Only)

		i							
					Airflow-ft/n	nin (m/sec)			
		f _{CLKIN} (MHz)	0 (0)	200 (1.01)	400 (2.03)	600 (3.04)	800 (4.06)	1000 (5.07)	
Core 1X Bus Clock	T _A with Heatsink*	25 33 40	71 67 63	76 74 71	79 77 75	79 77 75	80 79 77	80 79 77	
	T _A without Heatsink	25 33 40	70 65 61	73 68 65	75 72 69	75 72 69	76 74 71	76 74 71	
Core 2X Bus Clock	T _A with Heatsink*	16 25 33 40	71 62 55 48	76 71 66 62	79 75 71 68	79 75 71 68	80 77 74 72	80 77 74 72	
	T _A without Heatsink	16 25 33 40	69 60 52 42	72 64 57 51	75 68 63 58	75 68 63 58	76 71 66 62	76 71 66 62	
Core 3X Bus	T _A with Heatsink*	20 25	58 51	68 64	73 70	73 70	76 73	76 73	
Clock	T _A without Heatsink	20 25	56 48	61 55	66 61	66 61	68 64	68 64	

NOTE: *0.285" high unidirectional heatsink (Al alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).

Table 14. 80960Hx 208-Pin PQ4 Package Thermal Characteristics

T	hermal	Resistar	nce — °C	:/Watt			
Airflow — ft./min (m/sec)							
Parameter	0 (0)	200 (1.01)	400 (2.03)	600 (3.07)	800 (4.06)	1000 (5.07)	
θ Junction-to-Case (Case measured as shown in Figures 5)	1	1	1	1	1	1	θ_{JA}
θ Case-to-Ambient (No Heatsink)	12	10	8	8	7	7	
θ Case-to-Ambient (With Heatsink)*	11	7	5	5	4	4	

NOTES:

^{1.} This table applies to 80960Hx PQ4 plugged into socket or soldered directly to board.

^{2.} $\theta_{JA} = \theta_{JC} + \theta_{CA}$

^{*0.285&}quot; high unidirectional heatsink (Al alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).

3.4 Heat Sink Adhesives

Intel recommends silicone-based adhesives to attach heat sinks to the PGA package. There is no particular recommendation concerning the PQ4 package.

3.5 PowerQuad4 Plastic Package

The 80960Hx family is available in an improved version of the common 208-lead SQFP plastic package called the PowerQuad4* (PQ4). The PQ4 package dimensions and lead pitch are identical to the SQFP package and the former PQ2 package, so the PQ4 fits into the same board footprint. The advantage of the PQ4 package is the superior thermal conductivity that allows the plastic version of

the 80960Hx to operate with the same 0 - 85°C temperature specifications as the more expensive ceramic PGA package.

The PQ4 package integrates a copper heat sink within the package to dissipate heat effectively. See Table 13 and Table 14 on page 24.

3.6 Stepping Register Information

The memory-mapped register at FF008710H contains the 80960Hx Device ID. The ID is identical to the ID obtained from a JTAG Query. Figures 6 defines the current 80960Hx Device IDs. The value for device identification is compliant with the IEEE 1149.1 specification and Intel standards. Table 15 describes the fields of the device ID.

Figure 6. 80960Hx Device Identification Register

Table 15. Fields of 80960Hx Device ID

Field	Value	Definition
Version	See Table 17	Indicates major stepping changes.
V _{CC}	1 = 3.3 V device	Indicates that a device is 3.3 V.
Product Type	00 0100 (Indicates i960 CPU)	Designates type of product.
Generation Type	0010 = H-series	Indicates the generation (or series) the product belongs to.
Model	See Table 16	Indicates member within a series and specific model information.
Manufacturer ID	000 0000 1001 (Indicates Intel)	Manufacturer ID assigned by IEEE.

Table 16. 80960Hx Device ID Model Types

Device	Version	V _{CC}	Product	Gen.	Model	Manufacturer ID	'1'
80960HA	0	1	000100	0010	00000	0000001001	1
80960HD	See Table 17	1	000100	0010	00001	0000001001	1
80960HT	Table 17	1	000100	0010	00010	0000001001	1

Table 17. Device ID Version Numbers for Different Steppings

Stepping	Version
A0	0000
A1	0001
A2	0001
B0, B2	0010

NOTE: This data sheet applies to the B2 stepping.

3.7 Sources for Accessories

The following is a list of suggested sources for 80960Hx accessories. This is neither an endorsement nor a warranty of the performance of any of the listed products and/or companies.

Sockets

- 3M Textool Test and Interconnection Products 6801 River Place Blvd. MS 130-3N-29 Austin, TX 78726-9000 (800) 328-0411 FAX: (800) 932-9373
- Concept Mfg, Inc. (Decoupling Sockets) 400 Walnut St. Suite 609 Redwood City, CA 94063 (415) 365-1162 FAX: (415) 365-1164

Heatsinks/Fins

- Thermalloy, Inc.
 2021 West Valley View Lane
 Dallas, TX 75234-8993
 (972) 243-4321 FAX: (972) 241-4656
- Wakefield Engineering, Inc.
 60 Audubon Road
 Wakefield, MA 01880
 (617) 245-5900 FAX: (617) 246-0874
- Aavid Thermal Technologies, Inc. One Kool Path Laconia. NH 03247-0400 (603) 523-3400

4.0 ELECTRICAL SPECIFICATIONS

4.1 Absolute Maximum Ratings

Parameter	Maximum Rating
Storage Temperature	–65°C to +150°C
Case Temperature Under Bias	-65°C to +110°C
Supply Voltage wrt. V _{SS}	-0.5 V to + 4.6 V
Voltage on V _{CC5} wrt. V _{SS}	-0.5 V to + 6.5 V
Voltage on Other Pins wrt. V _{SS}	–0.5 V to $V_{\rm CC}$ + 0.5 V

NOTICE: This document contains information on products in the sampling and initial production phases of development. It is valid for the devices indicated in the revision history. The specifications within this data sheet are subject to change without notice. Verify with your local Intel sales office that you have the latest data sheet before finalizing a design.

WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

4.2 Operating Conditions

Table 18. Operating Conditions

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	3.15	3.45	V
V _{CC5}	Input Protection Bias	3.15	5.5	V
f _{CLKIN} 1xcore	Input Clock Frequency - 1x Core (80960HA)	16	40	MHz
f _{CLKIN} 2xcore	Input Clock Frequency - 2x Core (80960HD)	16	40	MHz
f _{CLKIN} 3xcore	Input Clock Frequency - 3x Core (80960HT)	16	25	MHz
T _C	Case Temp Under Bias (PGA and PQ4 Packages)	0	85	°C

4.3 Recommended Connections

Power and ground connections must be made to multiple V_{CC} and V_{SS} (GND) pins. Every 80960Hx-based circuit board should include power (V_{CC}) and ground (V_{SS}) planes for power distribution. Every V_{CC} pin must be connected to the power plane; every V_{SS} pin must be connected to the ground plane. Pins identified as "NC" —no connect pins—**must not** be connected in the system.

Liberal decoupling capacitance should be placed near the 80960Hx. The processor can cause transient power surges when its numerous output buffers transition, particularly when connected to large capacitive loads.

Low inductance capacitors and interconnects are recommended for best high-frequency electrical performance. Inductance can be reduced by shortening the board traces between the processor and decoupling capacitors as much as possible. Capacitors specifically designed for PGA packages offer the lowest possible inductance.

For reliable operation, always connect unused inputs to an appropriate signal level. In particular, any unused interrupt (XINT7:0, NMI) input should be connected to V_{CC} through a pull-up resistor, as should $\overline{\text{BTERM}}$ if not used. Pull-up resistors should be in the in the range of 20 $K\Omega$ for each pin tied high. If $\overline{\text{READY}}$ or HOLD are not used, the unused input should be connected to ground. N.C. pins must always remain unconnected.

4.4 V_{CC5} Pin Requirements (V_{DIFF})

In mixed voltage systems that drive 80960Hx processor inputs in excess of 3.3 V, the V_{CC5} pin must be connected to the system's 5 V supply. To limit current flow into the V_{CC5} pin, there is a limit to the voltage differential between the V_{CC5} pin and the other V_{CC} pins. The voltage differential between the 80960Hx V_{CC5} pin and its 3.3 V V_{CC} pins should never exceed 2.25 V. This limit applies to power-up, power-down, and steady-state operation. Table 19 outlines this requirement.

Meeting this requirement ensures proper operation and guarantees that the current draw into the V_{CC5} pin does not exceed the specification.

If the voltage difference requirements cannot be met due to system design limitations, an alternate solution may be employed. As shown in Figure 7, a minimum of 100 Ω series resistor may be used to limit the current into the V_{CC5} pin. This resistor ensures that current drawn by the V_{CC5} pin does not exceed the maximum rating for this pin.

Figure 7. V_{CC5} Current-Limiting Resistor

This resistor is not necessary in systems that can guarantee the V_{DIFF} specification.

In 3.3 V-only systems and systems that drive 80960Hx pins from 3.3 V logic, connect the $\rm V_{CC5}$ pin directly to the 3.3 V $\rm V_{CC}$ plane.

Table 19. V_{DIFF} Specification for Dual Power Supply Requirements (3.3 V, 5 V)

Symbol	Parameter	Min	Max	Units	Notes
V _{DIFF}	V _{CC5} -V _{CC} Difference		2.25		$\rm V_{CC5}$ input should not exceed $\rm V_{CC}$ by more than 2.25 V during power-up and power-down, or during steady-state operation.

4.5 DC Specifications

Table 20. 80960Hx DC Characteristics (Sheet 1 of 2)

Per the conditions described in Section 4.3, Recommended Connections (pg. 27).

Symbol	Parameter	Min	Тур	Max	Units	Notes
V _{IL}	Input Low Voltage	- 0.3		+0.8	V	
V _{IH}	Input High Voltage	2.0		$V_{CC5} + 0.3$	V	(4)
V _{OL}	Output Low Voltage All outputs except FAIL			0.4 0.2	V	$I_{OL} = 3 \text{ mA}$ $I_{OL} = 100 \mu\text{A}$
V _{OL}	Output Low Voltage FAIL pin			0.4	V	I _{OL} = 5 mA
V _{OH}	Output High Voltage	2.4 V _{CC} – 0.2			V V	$I_{OH} = -3 \text{ mA}$ $I_{OH} = -100 \mu\text{A}$
ILI	Input Leakage Current Non-Test Inputs TDI, TMS, TRST and ONCE pins	-1		1 -110	μA μA	$0 \le V_{IN} \le V_{CC}$ $V_{IN} = 0 V$
I _{LO}	Output Leakage Current Non-Test Outputs TDO pin			1 5	μΑ μΑ	$0.45 \le V_{OUT} \le V_{CC}$ $0.45 \le V_{OUT} \le V_{CC}$
I _{CC} Active (Power Supply)	80960HA 25 33 40 80960HD 32 50 66 80 80960HT 60 75			579 765 927 631 985 1300 1578 1165 1455	mA	(4,5)
I _{CC} Active (Thermal)	80960HA 25 33 40 80960HD 32 50 66 80 80960HT 60 75		392 518 628 413 645 851 1034 752 938		mA	(4,6)
I _{CC} Test (Reset Mode)	80960HA 25 33 40 80960HD 32 50 66 80 80960HT 60 75			330 436 528 382 595 785 955 702 878	mA	(7,8)

Table 20. 80960Hx DC Characteristics (Sheet 2 of 2)

Per the conditions described in Section 4.3, Recommended Connections (pg. 27).

Symbol	Parameter	Min	Тур	Max	Units	Notes
I _{CC} Test (ONCE mode)				25	mA	(7)
I _{CC5} Current on the V _{CC5} Pin	80960HA 80960HD 80960HT			200 200 200	μА	(9)
C _{IN}	Input Capacitance for:					
	PQ4 PGA			12	pF pF	F _C = 1 MHz
C _{OUT}	Output Capacitance of each output pin			12	pF	F _C = 1 MHz (3)
C _{I/O}	I/O Pin Capacitance			12	pF	F _C = 1 MHz
R _{PU}	Internal Pull-Up Resistance for ONCE, TMS, TDI and TRST	30	65	100	kΩ	

NOTES:

- I_{CC} Maximum is measured at worst case frequency, V_{CC}, and temperature, with device operating and outputs loaded to the test conditions described in Section 4.6.1, AC Test Conditions (pg. 34).
- 2. I_{CC} Typical is not tested.
- 3. Output Capacitance is the capacitive load of a floating output.
- 4. ICE inputs are not 5V tolerant. $V_{OH} = 2.0 \text{ V} \rightarrow V_{CC} + 0.3 \text{ V}$
- Measured with device operating and outputs loaded to the test conditions in Figure 8, AC Test Load (pg. 34). Input signals rise to V_{CC} and fall to V_{SS}.
- I_{CC} Active (Power Supply) value is provided for selecting your system's power supply. It is measured using one of the worst case instruction mixes with V_{CC} = 3.45 V. This parameter is characterized but not tested.
- I_{CC} Active (Thermal) value is provided for your system's thermal management. Typical I_{CC} is measured with V_{CC} = 3.3 V and temperature = 25°C. This parameter is characterized but not tested.
- I_{CC} Test (Power modes) refers to the I_{CC} values that are tested when the 80960HA/HD/HT is in Reset mode or ONCE mode with V_{CC} = 3.45 V.
- 9. Worst case is $V_{CC} = 3.45 \text{ V}$, 0°C.
- 10. is tested at V_{CC} = 3.0 V, V_{CC5} = 5.25 V.

4.6 AC Specifications

Table 21. 80960Hx AC Characteristics (Sheet 1 of 2)

Per the conditions in Section 4.2, Operating Conditions (pg. 27) and Section 4.6.1, AC Test Conditions (pg. 34).

Symbol	Parameter	Min	Max	Units	Notes			
Input Clock (1,7)								
T _F	CLKIN Frequency 80960HA 80960HD 80960HT		16 16 16	40 40 25	MHz MHz MHz			
Т	CLKIN Period	CLKIN Period 80960HA 80960HD 80960HT			ns ns ns			
T _{CS}	CLKIN Period Stability		-250	+250	ps	(11)		
T _{CH}	CLKIN High Time		8		ns	(11)		
T _{CL}	CLKIN Low Time	80960HA 80960HD 80960HT	8 8 8		ns ns ns	(11)		
T _{CR}	CLKIN Rise Time		0	4	ns	(11)		
T _{CF}	CLKIN Fall Time		0	4	ns	(11)		
	Synch	ronous Outputs	(1,2,3,6)					
T _{OV1} , T _{OH1}	Output Valid Delay and Output outputs except DT/R, BLAST, BREQ for 3.3 V inputs and I/O	1.5	9.5	ns	(13)			
	Same as above, but for 5.5 V i	1.5	12.5	ns				
T _{OV2} , T _{OH2}	Output Valid Delay and Output	T/2 + 1.5	T/2 + 9.5	ns				
T _{OV3} , T _{OH3}	Output Valid Delay and Output	1.5	9	ns				
T _{OV4} , T _{OH4}	Output Valid Delay and Output Hold for BREQ and BSTALL		0.5	9	ns			
T _{OV5} , T _{OH5}	Output Valid Delay and Output	1.5	8.5					
T _{OF}	Output Float for all outputs	1.5 9		ns	(11)			
Synchronous Inputs (1,7,8,9)								
T _{IS1}	Input Setup for all inputs except READY, BTERM, HOLD, and BOFF		2.5		ns			
T _{IH1}	Input Hold for all inputs except RE HOLD, and BOFF	2.5		ns				
T _{IS2}	Input Setup for READY, BTERM BOFF	6		ns				
T _{IH2}	Input Hold for READY, BTERM, BOFF	2.5	ns					

NOTE:

See Table 22, AC Characteristics Notes (pg. 33) for all notes related to AC specifications.

Table 21. 80960Hx AC Characteristics (Sheet 2 of 2)

Per the conditions in Section 4.2, Operating Conditions (pg. 27) and Section 4.6.1, AC Test Conditions (pg. 34).

Symbol	Parameter	Min	Max	Units	Notes			
Relative Output Timings (1,2,3,6,10)								
T _{AVSH1}	A31:2 Valid to ADS Rising	T – 5	T + 5	ns	(10)			
T _{AVSH2}	BE3:0, W/R, SUP, D/C Valid to ADS Rising	T – 5	T + 5	ns	(10)			
T _{AVEL1}	A31:2 Valid to DEN Falling	T – 5	T + 5	ns	(10)			
T _{AVEL2}	BE3:0, W/R, SUP Valid to DEN Falling	T – 5	T-5 T+5		(10)			
T _{NLQV}	WAIT Falling to Output Data Valid	-5	-5 5		(10)			
T _{DVNH}	Output Data Valid to WAIT Rising	-5 + N*T 5 + N*T		ns	(4,10)			
T _{NLNH}	WAIT Falling to WAIT Rising	-4 + N*T 4 + N*T		ns	(4,10)			
T _{NHQX}	Output Data Hold after WAIT Rising	-5 + (N+1)*T 5 + (N+1)*T		ns	(5,10)			
T _{EHTV}	DT/R Hold after DEN High	T/2 – 5 Infinite		ns	(10)			
T _{TVEL}	DT/R Valid to DEN Falling	T/2 – 4		ns	(10)			
Relative Input Timings (1,7,10)								
T _{IS7}	XINT7:0, NMI Input Setup	6		ns	(9)			
T _{IH7}	XINT7:0, NMI Input Hold	2.5		ns	(9)			
T _{IS8}	RESET Input Setup	3		ns	(8)			
T _{IH8}	RESET Input Hold	T/4 + 1		ns	(8)			

NOTE:

See Table 22, AC Characteristics Notes (pg. 33) for all notes related to AC specifications.

Table 22. AC Characteristics Notes

NOTES:

- 1. See Section 4.6.2, AC Timing Waveforms (pg. 34) for waveforms and definitions.
- See Figure 25, Output Delay or Hold vs. Load Capacitance (pg. 42) for capacitive derating information for output delays and hold times.
- 3. See Figure 22, Rise and Fall Time Derating at 85°C and Minimum VCC (pg. 41) for capacitive derating information for rise and fall times.
- Where N is the number of N_{RAD}, N_{RDD}, N_{WAD} or N_{WDD} wait states that are programmed in the Bus Controller Region Table. WAIT never goes active when there are no wait states in an access.
- 5. N = Number of wait states inserted with READY.
- 6. These specifications are guaranteed by the processor.
- 7. These specifications must be met by the system for proper operation of the processor.
- 8. RESET is an asynchronous input that has no required setup and hold time for proper operation. However, to guarantee the device exits the reset mode synchronized to a particular clock edge, the rising edge of RESET must meet setup and hold times to the rising edge of the CLKIN.
- 9. The interrupt pins are synchronized internally by the 80960Hx. They have no required setup or hold times for proper operation. These pins are sampled by the interrupt controller every clock and must be active for at least two consecutive CLKIN rising edges when asserting them asynchronously. To guarantee recognition at a particular clock edge, the setup and hold times shown must be met.
- Relative Output timings are not tested.
- 11. Not tested.
- 12. The processor minimizes changes to the bus signals when transitioning from a bus cycle to an idle bus for the following signals: A31:4, SUP, CT3:0, D/C, LOCK, W/R, BE3:0.
- 13. Worst-case T_{OV} condition occurs on I/O pins when pins transition from a floating high input to driving a low output state. The Data Bus pins encounter this condition during a read followed by a write. 5 V signals take 3 ns longer to discharge than 3.3 V signals at 50 pF loads.

Table 23. 80960Hx Boundary Scan Test Signal Timings (Sheet 1 of 2)

Symbol	Parameter	Min	Max	Units	Notes
T _{BSF}	TCK Frequency	0	8	MHz	
T _{BSC}	TCK Period	125	Infinite	ns	
T _{BSCH}	TCK High Time	40		ns	Measured at 1.5 V (1)
TBSCL	TCK Low Time	40		ns	Measured at 1.5 V (1)
T _{BSCR}	TCK Rise Time		8	ns	0.8 V to 2.0 V (1)
T _{BSCF}	TCK Fall Time		8	ns	2.0 V to 0.8 V (1)
T _{BSIS1}	Input Setup to TCK — TDI, TMS	8		ns	
T _{BSIH1}	Input Hold from TCK — TDI, TMS	10		ns	
T _{BSOV1}	TDO Valid Delay	3	30	ns	

NOTE:

1. Not tested.

		•		•	,
Symbol	Parameter	Min	Max	Units	Notes
T _{BSOF1}	TDO Float Delay		36	ns	(1)
T _{BSOV2}	All Outputs (Non-Test) Valid Delay	3	30	ns	Relative to TCK
T _{BSOF2}	All Outputs (Non-Test) Float Delay		36	ns	Relative to TCK (1)
T _{BSIS2}	Input Setup to TCK - All Inputs (Non-Test)	8		ns	
T _{BSIH2}	Input Hold from TCK - All Inputs (Non-Test)	10		ns	

Table 23. 80960Hx Boundary Scan Test Signal Timings (Sheet 2 of 2)

NOTE:

1. Not tested.

4.6.1 AC Test Conditions

AC values in Section 4.6, AC Specifications (pg. 31) are derived using the 50 pF load shown in Figure 8. Figure 25, Output Delay or Hold vs. Load Capacitance (pg. 42), shows how timings vary with load capacitance. Input waveforms (except for CLKIN) are assumed to have a rise and fall time of \leq 2 ns from 0.8 V to 2.0 V.

4.6.2 AC Timing Waveforms

Figure 8. AC Test Load

Figure 9. CLKIN Waveform

Figure 10. Output Delay Waveform

Figure 11. Output Delay Waveform

Figure 12. Output Float Waveform

Figure 13. Input Setup and Hold Waveform

Figure 14. NMI, XINT7:0 Input Setup and Hold Waveform

 ${
m T_{IS}\,T_{IH}}$ — INPUT SETUP AND HOLD - The input setup and hold requirements specify the sampling window during which synchronous inputs must be stable for correct processor operation.

Figure 15. Hold Acknowledge Timings

Figure 16. Bus Backoff (BOFF) Timings

Figure 17. TCK Waveform

Figure 18. Input Setup and Hold Waveforms for T_{BSIS1} and T_{BSIH1}

Figure 19. Output Delay and Output Float for $T_{\mbox{\footnotesize{BSOV1}}}$ and $T_{\mbox{\footnotesize{BSOF1}}}$

Figure 20. Output Delay and Output Float Waveform for T_{BSOV2} and T_{BSOF2}

Figure 21. Input Setup and Hold Waveform for $T_{\mbox{\footnotesize{BSIS2}}}$ and $T_{\mbox{\footnotesize{BSIH2}}}$

Figure 22. Rise and Fall Time Derating at 85°C and Minimum V_{CC}

Figure 23. I_{CC} Active (Power Supply) vs. Frequency

Figure 24. I_{CC} Active (Thermal) vs. Frequency

Figure 25. Output Delay or Hold vs. Load Capacitance

Figure 26. Output Delay vs. Temperature

Figure 27. Output Hold Times vs. Temperature

Figure 28. Output Delay vs. V_{CC}

5.0 BUS WAVEFORMS

Figure 29. Cold Reset Waveform

Figure 30. Warm Reset Waveform

Figure 31. Entering ONCE Mode

Figure 32. Non-Burst, Non-Pipelined Requests without Wait States

Figure 33. Non-Burst, Non-Pipelined Read Request with Wait States

Figure 34. Non-Burst, Non-Pipelined Write Request with Wait States

Figure 35. Burst, Non-Pipelined Read Request without Wait States, 32-Bit Bus

Figure 36. Burst, Non-Pipelined Read Request with Wait States, 32-Bit Bus

Figure 37. Burst, Non-Pipelined Write Request without Wait States, 32-Bit Bus

Figure 38. Burst, Non-Pipelined Write Request with Wait States, 32-Bit Bus

Figure 39. Burst, Non-Pipelined Read Request with Wait States, 16-Bit Bus

Figure 40. Burst, Non-Pipelined Read Request with Wait States, 8-Bit Bus

Figure 41. Non-Burst, Pipelined Read Request without Wait States, 32-Bit Bus

Figure 42. Non-Burst, Pipelined Read Request with Wait States, 32-Bit Bus

Figure 43. Burst, Pipelined Read Request without Wait States, 32-Bit Bus

Figure 44. Burst, Pipelined Read Request with Wait States, 32-Bit Bus

Figure 45. Burst, Pipelined Read Request with Wait States, 8-Bit Bus

Figure 46. Burst, Pipelined Read Request with Wait States, 16-Bit Bus

Figure 47. Using External READY

Figure 48. Terminating a Burst with BTERM

Figure 49. BOFF Functional Timing. BOFF occurs during a burst or non-burst data cycle.

Figure 50. HOLD Functional Timing

Figure 51. Lock Delays HOLDA Timing

Figure 52. FAIL Functional Timing

Figure 53. A Summary of Aligned and Unaligned Transfers for 32-Bit Regions

Figure 54. A Summary of Aligned and Unaligned Transfers for 32-Bit Regions (Continued)

Figure 55. A Summary of Aligned and Unaligned Transfers for 16-Bit Bus

Figure 56. A Summary of Aligned and Unaligned Transfers for 8-Bit Bus

Figure 57. Idle Bus Operation

Figure 58. Bus States

5.1 80960Hx Boundary Scan Chain

Table 24. 80960Hx Boundary Scan Chain (Sheet 1 of 4)

#	BOUNDARY SCAN CELL	CELL TYPE	COMMENT
1	DP3	Bidirectional	
2	DP2	Bidirectional	
3	DP0	Bidirectional	
4	DP1	Bidirectional	
5	STEST	Input	
6	FAILBAR	Output	
7	Enable for FAILBAR, BSTALL and BREQ	Control	
8	ONCEBAR	Input	
9	BOFFBAR	Input	
10	D0	Bidirectional	
11	D1	Bidirectional	
12	D2	Bidirectional	
13	D3	Bidirectional	
14	D4	Bidirectional	
15	D5	Bidirectional	
16	D6	Bidirectional	
17	D7	Bidirectional	
18	Enable for DP(3:0) and D(31:0)	Control	
19	D8	Bidirectional	
20	D9	Bidirectional	
21	D10	Bidirectional	
22	D11	Bidirectional	
23	D12	Bidirectional	
24	D13	Bidirectional	
25	D14	Bidirectional	
26	D15	Bidirectional	
27	D16	Bidirectional	
28	D17	Bidirectional	

- 1. Cell#1 connects to TDO and cell #112 connects to TDI.
- 2. All outputs are three-state.
- 3. In output and bidirectional signals, a logical "1" on the enable signal enables the output. A logical "0" three-states the output.

Table 24. 80960Hx Boundary Scan Chain (Sheet 2 of 4)

#	BOUNDARY SCAN CELL	CELL TYPE	COMMENT
29	D18	Bidirectional	
30	D19	Bidirectional	
31	D20	Bidirectional	
32	D21	Bidirectional	
33	D22	Bidirectional	
34	D23	Bidirectional	
35	D24	Bidirectional	
36	D25	Bidirectional	
37	D26	Bidirectional	
38	D27	Bidirectional	
39	D28	Bidirectional	
40	D29	Bidirectional	
41	D30	Bidirectional	
42	D31	Bidirectional	
43	BTERMBAR	Input	
44	RDYBAR	Input	Appears as READYBAR in BSDL file.
45	HOLD	Input	
46	HOLDA	Output	
47	Enable for HOLDA control	Control	
48	ADSBAR	Output	
49	BE3BAR	Output	Appears as BEBAR(3:0) in BSDL file.
50	BE2BAR	Output	
51	BE1BAR	Output	
52	BE0BAR	Output	
53	BLASTBAR	Output	
54	DENBAR	Output	
55	WRRDBAR	Output	Appears as WRBAR in BSDL file.
56	DTRBAR	Output	
57	Enable for DTRBAR	Control	

- 1. Cell#1 connects to TDO and cell #112 connects to TDI.
- 2. All outputs are three-state.
- 3. In output and bidirectional signals, a logical "1" on the enable signal enables the output. A logical "0" three-states the output.

Table 24. 80960Hx Boundary Scan Chain (Sheet 3 of 4)

#	BOUNDARY SCAN CELL	CELL TYPE	COMMENT
58	WAITBAR	Output	
59	BSTALL	Output	
60	DATACODBAR	Output	Appears as DCBAR in BSDL file.
61	USERSUPBAR	Output	Appears as SUPBAR in BSDL file.
62	Enable for ADSBAR, BEBAR, BLASTBAR, DENBAR, WRRDBAR, WAITBAR, DCBAR, SUPBAR and LOCKBAR,	Control	
63	LOCKBAR	Output	
64	BREQ	Output	
65	A31	Output	
66	A30	Output	
67	A29	Output	
68	A28	Output	
69	A27	Output	
70	A26	Output	
71	A25	Output	
72	A24	Output	
73	A23	Output	
74	A22	Output	
75	A21	Output	
76	A20	Output	
77	A19	Output	
78	A18	Output	
79	A17	Output	
80	A16	Output	
81	Enable for A(31:0) and CT(3:0)	Control	
82	A15	Output	_
83	A14	Output	
84	A13	Output	
85	A12	Output	_

- 1. Cell#1 connects to TDO and cell #112 connects to TDI.
- 2. All outputs are three-state.
- 3. In output and bidirectional signals, a logical "1" on the enable signal enables the output. A logical "0" three-states the output.

Table 24. 80960Hx Boundary Scan Chain (Sheet 4 of 4)

86 A11 Output 87 A10 Output 88 A9 Output 89 A8 Output 90 A7 Output 91 A6 Output 92 A5 Output	
88 A9 Output 89 A8 Output 90 A7 Output 91 A6 Output	
89 A8 Output 90 A7 Output 91 A6 Output	
90 A7 Output 91 A6 Output	
91 A6 Output	
92 A5 Output	
93 A4 Output	
94 A3 Output	
95 A2 Output	
96 NMIBAR Input	
97 XINT7BAR Input Appears as XINTBAR(7:0) in BSDL
98 XINT6BAR Input	
99 XINT5BAR Input	
100 XINT4BAR Input	
101 XINT3BAR Input	
102 XINT2BAR Input	
103 XINT1BAR Input	
104 XINTOBAR Input	
105 RESETBAR Input	
106 CLKIN Input	
107 CT3 Output Appears as CT(3:0) in	BSDL file.
108 CT2 Output	
109 CT1 Output	
110 CT0 Output	
111 PCHK Output Appears as PCHKBAR	in BSDL file.
112 PCHK enable Control	

- 1. Cell#1 connects to TDO and cell #112 connects to TDI.
- 2. All outputs are three-state.
- 3. In output and bidirectional signals, a logical "1" on the enable signal enables the output. A logical "0" three-states the output.

5.2 Boundary Scan Description Language Example

Boundary-Scan Description Language (BSDL) Example 5-2 meets the de facto standard means of describing essential features of ANSI/IEEE 1149.1-1993 compliant devices.

Example 5-1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 1 of 9)

Example 5-1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 2 of 9)

```
-- Project code HA
-- File **NOT** verified electrically
------
-- Rev. 0.8 26 Jun 1997 Updated for B-2 stepping
-- Rev 0.7 18 Dec 1995 Updated for A-1 stepping.
-- Rev 0.6 08 Dec 1994
-- Rev 0.5 21 Nov 1994
-- Rev 0.4 31 Oct 1994
-- Rev 0.3 26 July 1994
-- Rev 0.2 22 June 1994
-- Rev 0.1 16 Mar 1994
-- Rev 0.0 30 Aug 1993
entity Ha_Processor is
 generic(PHYSICAL_PIN_MAP : string:= "PGA");
 port (A : out bit_vector(2 to 31);
    ADSBAR : out bit:
     BEBAR : out bit_vector(0 to 3);
    BLASTBAR : out bit:
     BOFFBAR : in
                     bit:
    BREQ : out bit:
     BSTALL : out bit;
     BTERMBAR : in
                     bit:
     CT
          : out bit_vector(0 to 3);
     CLKIN : in bit:
          : inout bit_vector(0 to 31);
     DENBAR : out bit;
           : inout bit_vector(0 to 3);
    DTRBAR : out bit:
    DCBAR : out bit;
    FAILBAR : out bit;
    HOLD : in
                  bit;
    HOLDA : out bit:
    LOCKBAR : out bit:
    NMIBAR : in bit:
    ONCEBAR : in bit:
    PCHKBAR : out bit;
    READYBAR: in
                     bit:
     RESETBAR : in
                     bit;
     STEST : in bit:
```


Example 5-1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 3 of 9)

```
SUPBAR : out
                   bit:
   TCK : in
                bit;
   TDI : in
                bit:
   TDO : out bit:
   TMS : in
                bit:
   TRST : in
                 bit:
   WAITBAR : out bit;
   WRBAR : out bit:
   XINTBAR : in bit_vector(0 to 7);
   FIVEVREF: linkage bit;
   VCCPLL : linkage bit;
   VOLTDET : out bit;
   VCC1 : linkage bit_vector(0 to 23);
   VCC2 : linkage bit_vector(0 to 20);
   VSS1 : linkage bit_vector(0 to 25);
   VSS2 : linkage bit_vector(0 to 22);
   NC : linkage bit_vector(0 to 4)
);
use STD_1149_1_1990.all;
use i960ha_a.all;
attribute PIN_MAP of Ha_Processor: entity is PHYSICAL_PIN_MAP;
constant PGA:PIN_MAP_STRING :=
  "A
         : (D16, D17, E16, E17, F17, G16, G17, H17, J17, K17,"&
            L17, L16, M17, N17, N16, P17, Q17, P16, P15, Q16,"&
            R17, R16, Q15, S17, R15, S16, Q14, R14, Q13, S15),"&
  "ADSBAR : R06,"&
  "BEBAR: (R09, S07, S06, S05),"&
  "BLASTBAR: S08,"&
  "BOFFBAR: B01."&
  "BREQ: R13."&
  "BSTALL: R12."&
  "BTERMBAR: R04."&
  "CT
        : (A11, A12, A13, A14),"&
  "CLKIN : C13,"&
```


Example 5-1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 4 of 9)

```
: (E03, C02, D02, C01, E02, D01, F02, E01, F01, G01,"&
"D
        H02. H01. J01. K01. L02. L01. M01. N01. N02. P01."&
        P02, Q01, P03, Q02, R01, S01, Q03, R02, Q04, S02,"&
        Q05, R03),"&
"DENBAR : S09,"&
"DP
      : (A03, B03, A04, B04),"&
"DTRBAR : $11,"&
"DCBAR : S13,"&
"FAILBAR: A02,"&
"HOLD : R05."&
"HOLDA: $04,"&
"LOCKBAR: $14,"&
"NMIBAR : D15,"&
"ONCEBAR: C03,"&
"PCHKBAR: B08,"&
"READYBAR: S03,"&
"RESETBAR: A16."&
"STEST : B02."&
"SUPBAR : Q12."&
"TCK : B05,"&
"TDI : A07."&
"TDO: A08,"&
"TMS : B06,"&
"TRST : A06,"&
"WAITBAR: S12,"&
"WRBAR : $10,"&
"XINTBAR: (B15, A15, A17, B16, C15, B17, C16, C17),"&
"FIVEVREF: C05,"&
"VOLTDET: A05,"&
"VCCPLL : B10,"&
"VCC1 : (M02, K02, J02, G02, N03, F03, C06, B07, B09, B11,"&
        B12, C14, E15, F16, H16, J16, K16, M16, N15, Q06,"&
        R07, R08, R10, R11),"&
"VSS1 : (G03, H03, J03, K03, L03, M03, C07, C08, C09, C10,"&
        C11, C12, Q07, Q08, Q09, Q10, Q11, F15, G15, H15,"&
       J15, K15, L15, M15, A01, C04),"&
"NC
      : (A09, A10, B13, B14, D03)";
```


Example 5-1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 5 of 9)

```
attribute Tap_Scan_In of TDI : signal is true;
 attribute Tap_Scan_Mode of TMS : signal is true;
 attribute Tap_Scan_Out of TDO: signal is true;
 attribute Tap_Scan_Reset of TRST: signal is true;
 attribute Tap_Scan_Clock of TCK : signal is (66.0e6, BOTH);
 attribute Instruction_Length of Ha_Processor: entity is 4;
 attribute Instruction_Opcode of Ha_Processor: entity is
   "BYPASS (1111)," &
   "EXTEST (0000)," &
   "SAMPLE (0001)," &
   "IDCODE (0010)," &
   "RUBIST (0111)," &
   "CLAMP (0100)," &
   "HIGHZ (1000)," &
   "Reserved (1011, 1100)";
 attribute Instruction_Capture of Ha_Processor: entity is "0001";
 attribute Instruction_Private of Ha_Processor: entity is "Reserved";
 attribute Idcode_Register of Ha_Processor: entity is
                  & --version,
   "1000100001000000" & --part number
   "0000001001" & --manufacturers identity
   "1":
                 --required by the standard
 attribute Register_Access of Ha_Processor: entity is
  "Runbist[32] (RUBIST)," &
  "Bypass
             (CLAMP, HIGHZ)";
{ The first cell, cell 0, is closest to TDO
{ BC_1:Control, Output3 CBSC_1:Bidir BC_4: Input, Clock
```


Example 5-1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 6 of 9)

```
attribute Boundary_Cells of Ha_Processor: entity is "BC_4, BC_1, CBSC_1";
attribute Boundary_Length of Ha_Processor: entity is 112;
attribute Boundary_Register of Ha_Processor: entity is
 "0 (CBSC_1, DP(3),
                        bidir, X, 17, 1, Z)," &
 "1 (CBSC_1, DP(2), bidir, X, 17, 1, Z)," &
 "2 (CBSC_1, DP(0),
                     bidir, X, 17, 1, Z)," &
 "3 (CBSC_1, DP(1),
                     bidir, X, 17, 1, Z)," &
 "4 (BC_4, STEST,
                      input, X)," &
 "5 (BC_1, FAILBAR, output3, X, 6, 1, Z)," &
 "6 (BC_1, *,
                    control, 1)," &
 "7 (BC_4, ONCEBAR,
                        input, X)," &
 "8 (BC_4, BOFFBAR, input, X)," &
 "9 (CBSC_1, D(0),
                       bidir, X, 17, 1, Z)," &
 "10 (CBSC_1, D(1),
                     bidir, X, 17, 1, Z)," &
 "11 (CBSC_1, D(2),
                     bidir, X, 17, 1, Z)," &
 "12 (CBSC_1, D(3),
                     bidir, X, 17, 1, Z)," &
 "13 (CBSC_1, D(4),
                     bidir, X, 17, 1, Z)," &
 "14 (CBSC_1, D(5),
                     bidir, X, 17, 1, Z)," &
 "15 (CBSC_1, D(6),
                        bidir, X, 17, 1, Z)," &
                        bidir, X, 17, 1, Z)," &
 "16 (CBSC_1, D(7),
                     control, 1)," &
 "17 (BC_1, *,
 "18 (CBSC_1, D(8),
                        bidir, X, 17, 1, Z)," &
 "19 (CBSC_1, D(9),
                        bidir, X, 17, 1, Z)," &
                        bidir, X, 17, 1, Z)," &
 "20 (CBSC_1, D(10),
 "21 (CBSC_1, D(11),
                        bidir, X, 17, 1, Z)," &
 "22 (CBSC_1, D(12),
                        bidir, X, 17, 1, Z)," &
 "23 (CBSC_1, D(13),
                        bidir, X, 17, 1, Z)," &
 "24 (CBSC_1, D(14),
                        bidir, X, 17, 1, Z)," &
 "25 (CBSC_1, D(15),
                        bidir, X, 17, 1, Z)," &
 "26 (CBSC_1, D(16),
                        bidir, X, 17, 1, Z)," &
 "27 (CBSC_1, D(17),
                        bidir, X, 17, 1, Z)," &
 "28 (CBSC_1, D(18),
                        bidir, X, 17, 1, Z)," &
 "29 (CBSC_1, D(19),
                        bidir, X, 17, 1, Z)," &
 "30 (CBSC_1, D(20),
                        bidir, X, 17, 1, Z)," &
 "31 (CBSC_1, D(21),
                        bidir, X, 17, 1, Z)," &
 "32 (CBSC_1, D(22),
                        bidir, X, 17, 1, Z)," &
 "33 (CBSC_1, D(23),
                        bidir, X, 17, 1, Z)," &
```


Example 5-1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 7 of 9)

```
"34 (CBSC_1, D(24),
                      bidir, X, 17, 1, Z)," &
"35 (CBSC_1, D(25),
                      bidir. X. 17. 1. Z)." &
"36 (CBSC_1, D(26),
                      bidir, X, 17, 1, Z)," &
"37 (CBSC_1, D(27), bidir, X, 17, 1, Z)," &
"38 (CBSC_1, D(28),
                     bidir, X, 17, 1, Z)," &
"39 (CBSC_1, D(29), bidir, X, 17, 1, Z)," &
"40 (CBSC_1, D(30), bidir, X, 17, 1, Z)," &
"41 (CBSC_1, D(31), bidir, X, 17, 1, Z)," &
"42 (BC_4, BTERMBAR, input, X)," &
"43 (BC_4, READYBAR, input, X)," &
"44 (BC_4, HOLD,
                     input, X)," &
"45 (BC_1, HOLDA,
                      output3, X, 46, 1, Z)," &
"46 (BC_1, *,
                  control, 1)," &
"47 (BC_1, ADSBAR, output3, X, 61, 1, Z)," &
"48 (BC_1, BEBAR(3), output3, X, 61, 1, Z)," &
"49 (BC_1, BEBAR(2), output3, X, 61, 1, Z)," &
"50 (BC_1, BEBAR(1), output3, X, 61, 1, Z)," &
"51 (BC_1, BEBAR(0), output3, X, 61, 1, Z)," &
"52 (BC_1, BLASTBAR, output3, X, 61, 1, Z)," &
"53 (BC_1, DENBAR, output3, X, 61, 1, Z)," &
"54 (BC_1, WRBAR, output3, X, 61, 1, Z)," &
"55 (BC_1, DTRBAR, output3, X, 56, 1, Z)," &
"56 (BC_1, *,
                  control, 1)," &
"57 (BC_1, WAITBAR, output3, X, 61, 1, Z)," &
"58 (BC_1, BSTALL,
                      output3, X, 6, 1, Z)," &
"59 (BC_1, DCBAR,
                      output3, X, 61, 1, Z)," &
"60 (BC_1, SUPBAR, output3, X, 61, 1, Z)," &
"61 (BC_1, *,
                   control, 1)," &
"62 (BC_1, LOCKBAR, output3, X, 61, 1, Z)," &
"63 (BC_1, BREQ,
                      output3, X, 6, 1, Z)," &
"64 (BC_1, A(31), output3, X, 80, 1, Z)," &
"65 (BC_1, A(30), output3, X, 80, 1, Z)," &
"66 (BC_1, A(29),
                  output3, X, 80, 1, Z)," &
"67 (BC_1, A(28), output3, X, 80, 1, Z)," &
"68 (BC_1, A(27),
                    output3, X, 80, 1, Z)," &
"69 (BC_1, A(26),
                  output3, X, 80, 1, Z)," &
"70 (BC_1, A(25),
                    output3, X, 80, 1, Z)," &
"71 (BC_1, A(24),
                    output3, X, 80, 1, Z)," &
```


Example 5-1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 8 of 9)

```
"72 (BC_1, A(23),
                    output3, X, 80, 1, Z)," &
"73 (BC_1, A(22),
                    output3, X, 80, 1, Z)," &
"74 (BC_1, A(21),
                    output3, X, 80, 1, Z)," &
"75 (BC_1, A(20),
                    output3, X, 80, 1, Z)," &
"76 (BC_1, A(19),
                    output3, X, 80, 1, Z)," &
"77 (BC_1, A(18),
                    output3, X, 80, 1, Z)," &
"78 (BC_1, A(17),
                    output3, X, 80, 1, Z)," &
"79 (BC_1, A(16),
                    output3, X, 80, 1, Z)," &
"80 (BC_1, *,
                  control, 1)," &
"81 (BC_1, A(15),
                    output3, X, 80, 1, Z)," &
"82 (BC_1, A(14),
                    output3, X, 80, 1, Z),"
"83 (BC_1, A(13),
                    output3, X, 80, 1, Z)," &
"84 (BC_1, A(12),
                    output3, X, 80, 1, Z)," &
"85 (BC_1, A(11),
                    output3, X, 80, 1, Z)," &
"86 (BC_1, A(10),
                    output3, X, 80, 1, Z)," &
"87 (BC_1, A(9),
                    output3, X, 80, 1, Z)," &
"88 (BC_1, A(8),
                    output3, X, 80, 1, Z)," &
"89 (BC_1, A(7),
                    output3, X, 80, 1, Z)," &
"90 (BC_1, A(6),
                    output3, X, 80, 1, Z)," &
"91 (BC_1, A(5),
                    output3, X, 80, 1, Z)," &
"92 (BC_1, A(4),
                    output3, X, 80, 1, Z)," &
"93 (BC_1, A(3),
                    output3, X, 80, 1, Z)," &
"94 (BC_1, A(2),
                    output3, X, 80, 1, Z)," &
"95 (BC_4, NMIBAR,
                       input, X)," &
"96 (BC_4, XINTBAR(7), input, X)," &
"97 (BC_4, XINTBAR(6), input, X)," &
"98 (BC_4, XINTBAR(5), input, X)," &
"99 (BC_4, XINTBAR(4), input, X)," &
"100(BC_4, XINTBAR(3), input, X)," &
"101(BC_4, XINTBAR(2), input, X)," &
"102(BC_4, XINTBAR(1), input, X)," &
"103(BC_4, XINTBAR(0), input, X)," &
"104(BC_4, RESETBAR, input, X)," &
"105(BC_4, CLKIN, input, X)," &
"106(BC_1, CT(3),
                    output3, X, 80, 1, Z)," &
```


Example 5-1. Boundary-Scan Description Language (BSDL) for PGA Package Example (Sheet 9 of 9)

```
"107(BC_1, CT(2), output3, X, 80, 1, Z)," &

"108(BC_1, CT(1), output3, X, 80, 1, Z)," &

"109(BC_1, CT(0), output3, X, 80, 1, Z)," &

"110(BC_1, PCHKBAR, output3, X, 111, 1, Z)," &

"111(BC_1, *, control, 1)";

end Ha_Processor;
```

Example 5-2. Boundary-Scan Description Language (BSDL) for PQ4 Package Example (Sheet 1 of 8)

```
-- Copyright Intel Corporation 1995, 1996
--Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any
errors which may appear in this document nor does it make a commitment to update the information
contained herein.
--Boundary-Scan Description Language (BSDL Version 0.0) is a de-facto
--standard means of describing essential features of ANSI/IEEE 1149.1-1990 compliant devices. This
language is under consideration by the IEEE for formal inclusion within a supplement to the 1149.1-1990
standard. The generation of the supplement entails an extensive IEEE review and a formal acceptance
balloting procedure which may change the resultant form of the language. Be aware that this process may
extend well into 1993, and at this time the IEEE does not endorse or hold an opinion on the language.
-- i960(R) Processor BSDL Model
-- Project code HA
-- File **NOT** verified electrically
-- Rev 0.9
          26 Jun 1997 Updated for B-2 stepping
-- Rev 0.8
          4 Apr 1996 Changed for PQ2 Package
-- Rev 0.7
          18 Dec 1995 Updated for A-1 stepping.
-- Rev 0.6
          08 Dec 1994
-- Rev 0.5
          21 Nov 1994
-- Rev 0.4
          31 Oct 1994
-- Rev 0.3 26 July 1994
-- Rev 0.2 22 June 1994
-- Rev 0.1 16 Mar 1994
-- Rev 0.0 30 Aug 1993
```


Example 5-2. Boundary-Scan Description Language (BSDL) for PQ4 Package Example (Sheet 2 of 8)

```
entity Ha_Processor is
 generic(PHYSICAL_PIN_MAP : string:= "PQ4");
 port (A : out bit_vector(2 to 31);
    ADSBAR : out bit;
    BEBAR : out bit_vector(0 to 3);
    BLASTBAR : out bit:
    BOFFBAR : in
                  bit:
    BREQ : out bit:
    BSTALL : out bit;
    BTERMBAR : in bit:
    CT : out bit_vector(0 to 3);
    CLKIN: in bit;
         : inout bit_vector(0 to 31);
    DENBAR : out bit;
        : inout bit_vector(0 to 3);
    DTRBAR : out bit:
    DCBAR : out bit:
    FAILBAR : out bit:
    HOLD : in bit:
    HOLDA : out bit;
    LOCKBAR : out bit:
    NMIBAR : in bit;
    ONCEBAR : in bit:
    PCHKBAR : out bit;
    READYBAR : in
                     bit:
    RESETBAR : in
    STEST : in bit:
    SUPBAR : out bit;
    TCK : in bit:
    TDI : in bit;
    TDO : out bit:
    TMS: in bit:
    TRST: in bit;
    WAITBAR : out bit:
    WRBAR : out bit;
    XINTBAR : in bit_vector(0 to 7);
    FIVEVREF: linkage bit;
    VCCPLL : linkage bit;
```


Example 5-2. Boundary-Scan Description Language (BSDL) for PQ4 Package Example (Sheet 3 of 8)

```
VCC1
            : linkage bit_vector(0 to 23);
   VCC2
           : linkage bit_vector(0 to 23);
   VSS1
           : linkage bit_vector(0 to 23);
   VSS2
           : linkage bit_vector(0 to 23)
);
use STD_1149_1_1990.all;
use i960ha_a.all;
attribute PIN_MAP of Ha_Processor: entity is PHYSICAL_PIN_MAP;
constant PQ4:PIN_MAP_STRING :=
   "A
         : (151, 150, 147, 146, 145, 144, 141, 140, 139, 138, "&
             135, 134, 133, 132, 127, 126, 125, 124, 121, 120,"&
            119, 118, 113, 112, 111, 110, 107, 106, 105, 104),"&
   "ADSBAR : 77."&
   "BEBAR: (83, 82, 79, 78),"&
   "BLASTBAR: 84,"&
   "BOFFBAR : 10."&
   "BREQ: 100."&
   "BSTALL: 91,"&
   "BTERMBAR: 67,"&
         : (183, 182, 181, 180),"&
   "CLKIN: 175."&
   "D
          : (12, 13, 14, 15, 20, 21, 22, 23, 26, 27, 28, 29, "&
            34, 35, 36, 37, 39, 40, 41, 42, 45, 50, 51, 52,"&
            54, 55, 56, 57, 61, 62, 63, 64), "&
   "DENBAR : 85,"&
   "DP
           : (206, 207, 203, 202),"&
   "DTRBAR : 89,"&
   "DCBAR : 96."&
   "FAILBAR: 5."&
   "HOLD : 69."&
   "HOLDA: 72."&
   "LOCKBAR: 99,"&
   "NMIBAR : 159."&
```


Example 5-2. Boundary-Scan Description Language (BSDL) for PQ4 Package Example (Sheet 4 of 8)

```
"ONCEBAR: 6."&
  "PCHKBAR: 189."&
  "READYBAR: 68,"&
  "RESETBAR: 174."&
  "STEST : 208,"&
  "SUPBAR : 97,"&
  "TCK : 194,"&
  "TDI: 191,"&
  "TDO: 188,"&
  "TMS : 192,"&
  "TRST: 193,"&
  "WAITBAR : 90."&
  "WRBAR : 88,"&
  "XINTBAR: (169, 168, 167, 166, 163, 162, 161, 160),"&
  "FIVEVREF: 197,"&
  "VCCPLL: 177."&
  "VCC1 : (1, 4, 9, 11, 17, 19, 25, 31, 33, 38, 44, 46,"&
                 49, 59, 60, 66, 71, 74, 76, 81, 87, 92, 95, 101),"&
  "VCC2 : (102, 109, 115, 117, 123, 128, 131, 137, 143, 149,"&
               153, 154, 158, 165, 171, 173, 176, 179, 185, 187, "&
                196, 199, 201, 204),"&
    "VSS1 : (2, 3, 7, 8, 16, 18, 24, 30, 32, 43, 47, 48,"&
                 53, 58, 65, 70, 73, 75, 80, 86, 93, 94, 98, 103),"&
    "VSS2 : (108, 114, 116, 122, 129, 130, 136, 142, 148, 152,"&
                 155, 156, 157, 164, 170, 172, 178, 184, 186, 190,"&
                 195, 198, 200, 205)";
attribute Tap_Scan_In of TDI: signal is true;
attribute Tap_Scan_Mode of TMS : signal is true;
attribute Tap_Scan_Out of TDO: signal is true;
attribute Tap_Scan_Reset of TRST: signal is true;
attribute Tap_Scan_Clock of TCK : signal is (66.0e6, BOTH);
attribute Instruction_Length of Ha_Processor: entity is 4;
attribute Instruction_Opcode of Ha_Processor: entity is
```


Example 5-2. Boundary-Scan Description Language (BSDL) for PQ4 Package Example (Sheet 5 of 8)

```
"BYPASS (1111)," &
   "EXTEST (0000)." &
   "SAMPLE (0001)," &
   "IDCODE (0010)," &
   "RUBIST (0111)," &
   "CLAMP (0100)," &
   "HIGHZ (1000)," &
   "Reserved (1011, 1100)";
 attribute Instruction_Capture of Ha_Processor: entity is "0001";
 attribute Instruction_Private of Ha_Processor: entity is "Reserved";
 attribute Idcode_Register of Ha_Processor: entity is
   "0010"
                           & --version,
   "1000100001000000" & --part number
   "0000001001"
                          & --manufacturers identity
   "1":
                             --required by the standard
 attribute Register_Access of Ha_Processor: entity is
  "Runbist[32] (RUBIST)," &
               (CLAMP, HIGHZ)";
  "Bypass
{ The first cell, cell 0, is closest to TDO
{ BC_1:Control, Output3 CBSC_1:Bidir BC_4: Input, Clock
 attribute Boundary_Cells of Ha_Processor: entity is "BC_4, BC_1, CBSC_1";
 attribute Boundary_Length of Ha_Processor: entity is 112;
 attribute Boundary_Register of Ha_Processor: entity is
   "0 (CBSC_1, DP(3),
                          bidir, X, 17, 1, Z)," &
   "1 (CBSC_1, DP(2),
                          bidir, X, 17, 1, Z)," &
   "2 (CBSC_1, DP(0),
                          bidir, X, 17, 1, Z)," &
   "3 (CBSC_1, DP(1),
                           bidir, X, 17, 1, Z)," &
                          input, X)," &
   "4 (BC 4. STEST.
   "5 (BC_1, FAILBAR,
                          output3, X, 6, 1, Z)," &
```


Example 5-2. Boundary-Scan Description Language (BSDL) for PQ4 Package Example (Sheet 6 of 8)

```
"6 (BC_1, *,
                   control, 1)," &
"7 (BC_4, ONCEBAR, input, X)," &
"8 (BC_4, BOFFBAR,
                        input, X)," &
"9 (CBSC_1, D(0),
                      bidir, X, 17, 1, Z)," &
"10 (CBSC_1, D(1),
                    bidir, X, 17, 1, Z)," &
"11 (CBSC_1, D(2),
                    bidir, X, 17, 1, Z)," &
                    bidir, X, 17, 1, Z)," &
"12 (CBSC_1, D(3),
"13 (CBSC_1, D(4),
                    bidir, X, 17, 1, Z)," &
                    bidir, X, 17, 1, Z)," &
"14 (CBSC_1, D(5),
"15 (CBSC_1, D(6),
                      bidir, X, 17, 1, Z)," &
"16 (CBSC_1, D(7),
                      bidir, X, 17, 1, Z)," &
"17 (BC_1, *,
                   control, 1)," &
"18 (CBSC_1, D(8),
                      bidir, X, 17, 1, Z)," &
"19 (CBSC_1, D(9),
                      bidir, X, 17, 1, Z)," &
"20 (CBSC_1, D(10),
                       bidir, X, 17, 1, Z)," &
"21 (CBSC_1, D(11),
                       bidir, X, 17, 1, Z)," &
"22 (CBSC_1, D(12),
                       bidir, X, 17, 1, Z)," &
"23 (CBSC_1, D(13),
                       bidir, X, 17, 1, Z)," &
"24 (CBSC_1, D(14),
                       bidir, X, 17, 1, Z)," &
"25 (CBSC_1, D(15),
                       bidir, X, 17, 1, Z)," &
"26 (CBSC_1, D(16),
                       bidir, X, 17, 1, Z)," &
                       bidir, X, 17, 1, Z)," &
"27 (CBSC_1, D(17),
"28 (CBSC_1, D(18),
                       bidir, X, 17, 1, Z)," &
                       bidir, X, 17, 1, Z)," &
"29 (CBSC_1, D(19),
"30 (CBSC_1, D(20),
                       bidir, X, 17, 1, Z)," &
"31 (CBSC_1, D(21),
                       bidir, X, 17, 1, Z)," &
"32 (CBSC_1, D(22),
                       bidir, X, 17, 1, Z)," &
"33 (CBSC_1, D(23),
                       bidir, X, 17, 1, Z)," &
"34 (CBSC_1, D(24),
                       bidir, X, 17, 1, Z)," &
"35 (CBSC_1, D(25),
                       bidir, X, 17, 1, Z)," &
"36 (CBSC_1, D(26),
                       bidir, X, 17, 1, Z)," &
                       bidir, X, 17, 1, Z)," &
"37 (CBSC_1, D(27),
"38 (CBSC_1, D(28),
                       bidir, X, 17, 1, Z)," &
"39 (CBSC_1, D(29),
                       bidir, X, 17, 1, Z)," &
"40 (CBSC_1, D(30),
                       bidir, X, 17, 1, Z)," &
```


Example 5-2. Boundary-Scan Description Language (BSDL) for PQ4 Package Example (Sheet 7 of 8)

```
"41 (CBSC_1, D(31), bidir, X, 17, 1, Z)," &
"42 (BC_4, BTERMBAR, input, X)," &
"43 (BC_4, READYBAR, input, X)," &
"44 (BC_4, HOLD,
                     input, X)," &
"45 (BC_1, HOLDA,
                      output3, X, 46, 1, Z)," &
"46 (BC_1, *,
                  control, 1)," &
"47 (BC_1, ADSBAR,
                       output3, X, 61, 1, Z)," &
"48 (BC_1, BEBAR(3), output3, X, 61, 1, Z)," &
"49 (BC_1, BEBAR(2), output3, X, 61, 1, Z)," &
"50 (BC_1, BEBAR(1), output3, X, 61, 1, Z)," &
"51 (BC_1, BEBAR(0), output3, X, 61, 1, Z)," &
"52 (BC_1, BLASTBAR, output3, X, 61, 1, Z)," &
"53 (BC_1, DENBAR, output3, X, 61, 1, Z)," &
"54 (BC_1, WRBAR,
                      output3, X, 61, 1, Z)," &
"55 (BC_1, DTRBAR,
                       output3, X, 56, 1, Z)," &
"56 (BC_1, *,
                  control, 1)," &
"57 (BC_1, WAITBAR, output3, X, 61, 1, Z)," &
"58 (BC_1, BSTALL,
                      output3, X, 6, 1, Z)," &
"59 (BC_1, DCBAR,
                      output3, X, 61, 1, Z)," &
"60 (BC_1, SUPBAR,
                       output3, X, 61, 1, Z)," &
                  control, 1)," &
"61 (BC_1, *,
"62 (BC_1, LOCKBAR, output3, X, 61, 1, Z)," &
"63 (BC_1, BREQ,
                    output3, X, 6, 1, Z)," &
"64 (BC_1, A(31),
                    output3, X, 80, 1, Z)," &
"65 (BC_1, A(30),
                    output3, X, 80, 1, Z)," &
                    output3, X, 80, 1, Z)," &
"66 (BC_1, A(29),
"67 (BC_1, A(28),
                    output3, X, 80, 1, Z)," &
"68 (BC_1, A(27),
                    output3, X, 80, 1, Z)," &
"69 (BC_1, A(26),
                    output3, X, 80, 1, Z)," &
"70 (BC_1, A(25),
                    output3, X, 80, 1, Z)," &
"71 (BC_1, A(24),
                    output3, X, 80, 1, Z)," &
                    output3, X, 80, 1, Z)," &
"72 (BC_1, A(23),
"73 (BC_1, A(22),
                    output3, X, 80, 1, Z)," &
"74 (BC_1, A(21),
                    output3, X, 80, 1, Z)," &
"75 (BC_1, A(20),
                    output3, X, 80, 1, Z)," &
```


Example 5-2. Boundary-Scan Description Language (BSDL) for PQ4 Package Example (Sheet 8 of 8)

```
"76 (BC_1, A(19),
                       output3, X, 80, 1, Z)," &
   "77 (BC_1, A(18),
                       output3, X, 80, 1, Z)," &
   "78 (BC_1, A(17),
                       output3, X, 80, 1, Z)," &
   "79 (BC_1, A(16),
                       output3, X, 80, 1, Z)," &
   "80 (BC_1, *,
                     control, 1)," &
                       output3, X, 80, 1, Z)," &
   "81 (BC_1, A(15),
   "82 (BC_1, A(14),
                       output3, X, 80, 1, Z)," &
   "83 (BC_1, A(13),
                       output3, X, 80, 1, Z)," &
   "84 (BC_1, A(12),
                       output3, X, 80, 1, Z),"
   "85 (BC_1, A(11),
                       output3, X, 80, 1, Z)," &
   "86 (BC_1, A(10),
                       output3, X, 80, 1, Z)," &
   "87 (BC_1, A(9),
                       output3, X, 80, 1, Z)," &
   "88 (BC_1, A(8),
                       output3, X, 80, 1, Z)," &
   "89 (BC_1, A(7),
                       output3, X, 80, 1, Z)," &
   "90 (BC_1, A(6),
                       output3, X, 80, 1, Z)," &
                    output3, X, 80, 1, Z)," &
   "91 (BC_1, A(5),
   "92 (BC_1, A(4),
                    output3, X, 80, 1, Z)," &
   "93 (BC_1, A(3),
                       output3, X, 80, 1, Z)," &
   "94 (BC_1, A(2),
                       output3, X, 80, 1, Z)," &
   "95 (BC_4, NMIBAR,
                          input, X)," &
   "96 (BC_4, XINTBAR(7), input, X)," &
   "97 (BC_4, XINTBAR(6), input, X)," &
   "98 (BC_4, XINTBAR(5), input, X)," &
   "99 (BC_4, XINTBAR(4), input, X)," &
   "100(BC_4, XINTBAR(3), input, X)," &
   "101(BC_4, XINTBAR(2), input, X)," &
   "102(BC_4, XINTBAR(1), input, X)," &
   "103(BC_4, XINTBAR(0), input, X)," &
   "104(BC_4, RESETBAR, input, X)," &
   "105(BC_4, CLKIN, input, X)," &
   "106(BC_1, CT(3), output3, X, 80, 1, Z)," &
   "107(BC_1, CT(2), output3, X, 80, 1, Z)," &
   "108(BC_1, CT(1), output3, X, 80, 1, Z)," &
   "109(BC_1, CT(0),
                        output3, X, 80, 1, Z)," &
   "110(BC_1, PCHKBAR, output3, X, 111,1, Z)," &
   "111(BC_1, *,
                      control, 1)";
end Ha_Processor;
```


Table 25. Data Sheet Version -004 to -005 Revision History

Section	Description	
Section 1	Added descriptive text to first sentence.	
Section 1	Removed reference to future revisions providing electrical characteristics.	
Section 1	Removed note	
Table 1	Added 40/80 to 80960HD Operating Frequency	
Table 6	Removed P(7) from CT3:0.	
Section 3.2.2	Replaced PQ2 with PQ4 from this section throughout rest of data sheet.	
Table 11	Revised all table values.	
Table 13	Revised all table values.	
Section 3.5	Added descriptive text to second sentence.	
Table 17	Added B2 reference.	
Section 3.7	Corrected 3M and Thermalloy phone numbers. Added Aavid information. Removed Augat reference.	
Section 4.1	Update Notice text.	
Table 18	Revised 2xcore "Maximum" value. Added PQ4 to T _C "Parameter".	
Table 20	Revised I_{CC} (Power Supply, Thermal and Reset) "Typical" and "Maximum" values. Put overbar on R_{PU} "ONCE" parameter.	
Table 21	Removed ".0" from single digit numbers. Revised T _F maximum value of 33.33 to 40. Revised T minimum value of 30 to 25.	
Table 22	In #12: overbar to SUP and BE3:0.	
Figure 15	Removed subscript "1" from footnote values T _{OV} , T _{OH} .	
Figure 23	Revised all graph lines.	
Figure 24	Revised all graph lines.	
Example 5-1	Added Rev. 0.8 text. Changed "attribute Idcode_Register of Ha_Processor" (sheet 5 of 8) value to "0010".	
Example 5-2	Added Rev. 0.9 text. Changed "attribute Idcode_Register of Ha_Processor" (sheet 5 of 8) value to "0010".	
Table 25	Added version -005 revisions.	