Part I

1. Evaluate $\int_1^\infty \frac{1}{1+x^2} dx$

$$\int_{1}^{\infty} \frac{1}{1+x^{2}} dx = \lim_{a \to \infty} \int_{1}^{a} \frac{1}{1+x^{2}} dx$$

$$\lim_{a \to \infty} \int_{1}^{a} \frac{1}{1+x^{2}} dx = \lim_{a \to \infty} \left[\arctan(x) \right]_{1}^{a} = \lim_{a \to \infty} \arctan(a) - \arctan(1)$$

$$= \frac{\pi}{2} - \frac{\pi}{4} = \boxed{\frac{\pi}{4}}$$

2. Suppose:

$$x = 4 - \ln(t)$$

$$y = 1 + \ln(7t)$$

$$1 \le t \le e$$

Compute the arc length.

Arc length:
$$\int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$
$$\frac{dx}{dt} = -\frac{1}{t}$$
$$\frac{dy}{dt} = \frac{7}{7t} = \frac{1}{t}$$
$$\int_{1}^{e} \sqrt{\left(-\frac{1}{t}\right)^{2} + \left(\frac{1}{t}\right)^{2}} dt = \int_{1}^{e} \sqrt{\frac{1}{t^{2}} + \frac{1}{t^{2}}} dt = \int_{1}^{e} \sqrt{\frac{2}{t^{2}}} dt = \sqrt{2} \int_{1}^{e} \frac{1}{t} dt$$
$$= \sqrt{2} \left[\ln(t)\right]_{1}^{e} = \sqrt{2} \left[\ln(e) - \ln(1)\right] = \boxed{\sqrt{2}}$$

3. Suppose:

$$x = \cos(3+t)$$

$$y = \sin(3+t)$$

What is the area of the region bounded by the graph and the positive x-axis and the positive y-axis?

To find where the curve strikes the axes: $x = \cos(3+t) = 0$; $3+t = \arccos(0)$ $3+t = \frac{\pi}{2}$, $t = \frac{\pi}{2} - 3$ when x = 0 $y = \sin(3+t) = 0$; $3+t = \arcsin(0)$ 3+t = 0, t = -3 when y = 0 $A = \int_{-3}^{\frac{\pi}{2} - 3} \sin(3+t)(-\sin(3+t))dt$ $= -\int_{-3}^{\frac{\pi}{2} - 3} \sin^2(3+t)dt$

$$-\int_{-3}^{\frac{\pi}{2}-3} \sin^2(3+t)dt = -\int_{-3}^{\frac{\pi}{2}-3} \frac{1-\cos(6+2t)}{2}dt$$

$$= -\left[\frac{1}{2}t - \frac{\sin(6+2t)}{4}\right]_{-3}^{\frac{\pi}{2}-3} = -\left[\left(\frac{\pi-12}{4} - \frac{\sin(6+\pi-3)}{4}\right) - \left(\frac{-3}{2} - \frac{\sin(6-6)}{2}\right)\right]$$

$$= -\left(\frac{\pi-6}{4} - \frac{\sin(3+\pi)}{4}\right) \approx \boxed{0.679}$$

4. Use the root test to tell if the series converges: $\sum \sqrt{\frac{1+n^2}{1+3^n}}$

$$\lim_{n \to \infty} \sqrt[n]{\left|\frac{1+n^2}{1+3^n}\right|} = \lim_{n \to \infty} \sqrt[n]{1+n^2}$$
Note that:
$$\lim_{n \to \infty} \sqrt[n]{n^2} \le \lim_{n \to \infty} \sqrt[n]{1+n^2} \le \lim_{n \to \infty} \sqrt[n]{2n^2}$$

$$\sqrt[n]{n^2} = \sqrt[n]{n^2} \to 1$$

$$1 \le \lim_{n \to \infty} \sqrt[n]{1+n^2} \le 1, \quad \therefore \lim_{n \to \infty} \sqrt[n]{1+n^2} = 1$$
Note that:
$$\lim_{n \to \infty} \sqrt[n]{3^n} \le \lim_{n \to \infty} \sqrt[n]{1+3^n} \le \lim_{n \to \infty} \sqrt[n]{2 \cdot 3^n}$$

$$\sqrt[n]{2 \cdot 3^n} = \sqrt[n]{2} \cdot \sqrt[n]{3^n} \to 1 \cdot 3 = 3$$

$$3 \le \lim_{n \to \infty} \sqrt[n]{1+3^n} \le 3, \quad \therefore \lim_{n \to \infty} \sqrt[n]{1+3^n} = 3$$

$$\therefore \lim_{n \to \infty} \sqrt[n]{1+n^2} = \frac{1}{3}, \quad \frac{1}{3} < 1, \quad \text{Converges}$$

5. Express the following as a closed-form expression: $\sum_{k=0}^{\infty} (-36)^k \frac{x^{10k}}{(2k)!}$

Note that:
$$\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$$

$$\sum_{k=0}^{\infty} (-36)^k \frac{x^{10k}}{(2k)!} = \sum_{k=0}^{\infty} (-1)^k \frac{(6x^5)^{2k}}{(2k)!}$$

$$\therefore \sum_{k=0}^{\infty} (-36)^k \frac{x^{10k}}{(2k)!} = \boxed{\cos(6x^5)}$$

6. Find the Maclaurin series of e^{x-5}

Note that:
$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$
 and $e^{x-5} = \frac{e^x}{e^5}$

$$\therefore e^{x-5} = \left[\sum_{k=0}^{\infty} \frac{x^k}{e^5 k!}\right]$$

7. Graph $r = 16\cos(\theta)$.

I get to cheat this one with technology, but note that:

- For $r = \cos(\theta)$, its path circular.
- The max distance the graph goes from y = 0 is 16 $(16 \cdot \cos(n \cdot \pi))$.
- It has a radius of 8.
- Its center is on x = 8.

8. A region is bounded by the x-axis and the line $y = x^2 - 16$. A solid object sits on this region. Cross sections perpendicular to the y-axis are squares. What is the volume of this object?

The intersection looks like this:

Note that the values here will be inverted: $y = x^2 - 16 \rightarrow y = 16 - x^2$ to get positive results.

The area to integrate is: $0 = 16 - x^2$, $x = \pm 4$, [-4,4].

Note that for
$$V$$
 volume: $V = \int_a^b A dx$ Where $A = 16 - x^2$

$$\int_{-4}^{4} 16 - x^2 dx = 2 \left[16x - \frac{x^3}{3} \right]_{0}^{4} = 2 \left[16(4) - \frac{(4)^3}{3} \right] = 2 \left[64 - \frac{64}{3} \right] = 2 \cdot \frac{128}{3} = \boxed{\frac{256}{3}}$$

Part II