Contrôle S2 – Corrigé Architecture des ordinateurs

Durée: 1 h 30

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge.

Exercice 1 (5 points)

Répondez sur le document réponse. Soit le mot binaire sur 10 bits suivant : 10010110102.

- 1. Donnez sa représentation hexadécimale.
- 2. Donnez sa représentation décimale s'il s'agit d'un entier non signé.
- 3. Donnez sa représentation décimale s'il s'agit d'un entier signé.
- 4. Donnez la représentation binaire sur 8 bits non signés du nombre 128₁₀.
- 5. Donnez la représentation binaire sur 8 bits signés du nombre -128₁₀.
- 6. Combien faut-il de bits, au minimum, pour représenter en binaire non signé le nombre 2⁴²?
- 7. Combien faut-il de bits, au minimum, pour représenter en binaire signé le nombre -2^{42} ?
- 8. Combien faut-il de bits, au minimum, pour représenter en binaire signé le nombre 2⁴² ?
- 9. Donnez, en puissance de deux, le nombre d'octets contenus dans **1 Mib**.
- 10. Donnez, à l'aide des préfixes binaires (Ki, Mi ou Gi), le nombre de bits contenus dans **256 Kio**. Vous choisirez un préfixe qui permet d'obtenir la plus petite valeur numérique entière.

Exercice 2 (7 points)

- 1. Convertissez les nombres présents sur le <u>document réponse</u> dans le format IEEE754 **simple précision**. Vous exprimerez le résultat final sous **forme binaire** en précisant les trois champs.
- 2. Donnez la représentation associée aux mots binaires codés au format IEEE754 **double précision** présents sur le <u>document réponse</u>. Si une représentation est un nombre, vous l'exprimerez en base 10 sous la forme $k \times 2^n$ où k et n sont des entiers relatifs.

Exercice 3 (3 points)

Pour chaque question de cet exercice, seule une des cinq réponses suivantes est possible :

- La sortie est toujours à 0;
- La sortie est toujours à 1;
- · La sortie ne change jamais;
- La sortie bascule à chaque front descendant du signal d'horloge;
- · On ne sait pas.

Soit une bascule JK maître-esclave:

- 1. Comment se comporte la sortie si J = K = 1?
- 2. Comment se comporte la sortie si J = 1 et K = Q?
- 3. Comment se comporte la sortie si $J = \overline{Q}$ et K = Q?

Exercice 4 (5 points)

Complétez les chronogrammes sur le <u>document réponse</u> (jusqu'à la dernière ligne verticale pointillée) pour les montages ci-dessous.

Figure 1

Figure 2

Non	Pránom ·	Classo.	
110011	ı:Prénom:	Classe:	

DOCUMENT RÉPONSE À RENDRE

Exercice 1

1. 25A ₁₆	6. 43 bits
2. 602 ₁₀	7. 43 bits
3422 ₁₀	8. 44 bits
4. 1000 0000 ₂	9. 2 ¹⁷ octets
5. 1000 0000 ₂	10. 2 Mib

Exercice 2

1.

Nombre	S	E	M
-88	1	10000101	01100000000000000000000
45,375	0	10000100	01101011000000000000000
0,375	0	01111101	100000000000000000000000000000000000000

2.

Représentation IEEE 754	Représentation associée
432100000000000_{16}	17 × 2 ⁴⁷
$FFFFFFFFFFFF_{16}$	NaN
7FF00000000000 ₁₆	+∞
80024000000000016	-9 × 2 ⁻¹⁰²⁸

Exercice 3

- 1. La sortie bascule à chaque front descendant du signal d'horloge.
- 2. La sortie bascule à chaque front descendant du signal d'horloge.
- 3. La sortie bascule à chaque front descendant du signal d'horloge.

Exercice 4

Figure 1

Figure 2

Si vous manquez de place, vous pouvez utiliser le cadre ci-dessous.