Matematyczne modelowanie elektrofizjologii neuronów

czyli jak systemy dynamiczne ratują gryzonie (i ludzi)

Dr inż. Jakub Nowacki

whoami

Lead Machine Learning Engineer @ Sotrender (sotrender.com)

Trainer @ Sages (sages.com.pl)

I can code, I do maths

@jsnowacki

Elektrofizjologia

Petrovic MM, Nowacki J, Olivo V, Tsaneva-Atanasova K, Randall AD, Mellor JR (2012) Inhibition of Post-Synaptic Kv7/KCNQ/M Channels Facilitates Long-Term Potentiation in the Hippocampus. PLoS ONE 7(2): e30402.

Kanały jonowe

Ion channels in epilepsy, S.M. Mizielinska, Biochemical Society Transactions, Nov 2007, 35 (5) 1077-1079; DOI: 10.1042/BST0351077

Eksperymenty

Model Hodgkin-Huxley

Extracellular Medium

Źródło: Wikipedia

Model Hodgkin-Huxley

$$C_m \frac{dV}{dt} = -I_{\text{ion}}(V, t) + I_{\text{app}} = -I_{\text{K}}(V, t) - I_{\text{Na}}(V, t) - I_{\text{L}}(V, t) + I_{\text{app}},$$

$$\frac{dn}{dt} = \alpha_n(V)(1 - n) - \beta_n(V)n,$$

$$\frac{dm}{dt} = \alpha_m(V)(1 - m) - \beta_m(V)m,$$

$$\frac{dh}{dt} = \alpha_h(V)(1 - h) - \beta_h(V)h.$$

(In)aktywacja kanałów jonowych

Źródło: https://en.wikipedia.org/wiki/Gating_(electrophysiology)

(In)aktywacja kanałów jonowych

$$y_{x_{\infty}}(V) = \frac{1}{1 + \exp\left(-\frac{V - V_{y_{x}}}{k_{y_{x}}}\right)},$$

$$y_{x_{\infty}}(V) = \frac{\alpha_{\mathbf{x}}}{\alpha_{\mathbf{x}} + \beta_{\mathbf{x}}}$$

$$\tau_{\mathbf{x}}(V) = \frac{1}{\alpha_{\mathbf{x}} + \beta_{\mathbf{x}}}$$

Model neuronów piramidalnych CA1/3

A unified model of CA1/3 pyramidal cells: an investigation into excitability, J Nowacki, HM Osinga, JT Brown, AD Randall, K Tsaneva-Atanasova, Progress in biophysics and molecular biology 105 (1-2), 34-48

Model neuronów piramidalnych CA1/3

Analiza bifurkacyjna

Amarillo, Yimy & Mato, German & Nadal, Marcela. (2015). Analysis of the role of the low threshold currents I T and I h in intrinsic delta oscillations of thalamocortical neurons. Frontiers in Computational Neuroscience. 1. 52. 10.3389/fncom.2015.00052.

Wiele skal czasu

$$x' = f(x,y),$$

$$y' = \varepsilon g(x,y),$$

Szybki podsystem

$$x' = f(x, y),$$

$$y' = 0.$$

Wolny podsystem

$$0 = f(x, y),$$

$$\dot{y} = g(x, y).$$

Transient burst

		$C_{\mathbf{m}}$	=	1.0	μ F/cm ²		
Inward currents:							
				80.0			
$g_{\rm FI}$ = 2.0	mS/cm ²	$g_{\rm SI}$	=	0.5	mS/cm ²		
$V_{\rm m_{\rm FI}} = -25.0$		$V_{ m m_{SI}}$	= -	-54.0	mV	$V_{\rm h_{\rm SI}} = -56.0$	mV
$k_{\rm m_{FI}} = 5.0$	mV	$k_{\rm m_{SI}}$	=	5.0	mV	$k_{\rm h_{SI}} = 8.5$	mV
		$ au_{ m m_{SI}}$	=	3.0	ms	$\tau_{\rm h_{SI}} = 20.0$	ms
Outward currents:							
				-80.0			
$g_{\rm FO} = 9.5$	mS/cm ²	$g_{\rm SO}$	=	1.2	mS/cm^2		
$V_{\rm m_{FO}} = -6.0$	mV	$V_{ m msc}$) = -	-20.0	mV		
$k_{\rm m_{FO}} = 11.5$	mV			10.0			
$\tau_{\rm m_{FO}} = 1.0$	ms	$ au_{ m m_{SO}}$	=	75.0	ms		

Dynamical systems analysis of spike-adding mechanisms in transient bursts

J Nowacki, HM Osinga, K Tsaneva-Atanasova The Journal of Mathematical Neuroscience 2 (1), 7

Potencjał akcyjny jako zagadnienie brzegowe

Po co to wszystko?

My thesis is written in

WWW.PHDCOMICS.COM

Tworzenie leków

Lepsze zrozumienie eksperymentów

Altered intrinsic pyramidal neuron properties and pathwayspecific synaptic dysfunction underlie aberrant hippocampal network function in a mouse model of tauopathy CA Booth, J Witton, J Nowacki, K Tsaneva-Atanasova, MW Jones, ...

Journal of Neuroscience 36 (2), 350-363

Nowe możliwości eksperymentalne

http://rtxi.org/

Zrozumienie nowych problemów matematycznych

Dziękuję!

Pytania?

https://en.wikipedia.org/wiki/Monument to the laboratory mouse