Analyzing Genome-wide Chromatin Accessibility

Pei-Yu Lin

Dr. Pao-Yang Chen's lab

2022.3.16

Outline

- ATAC-seq
- Data processing pipeline Preprocessing Peak calling
- Post-alignment analysis (demo)
 Accessible regions profiling

Methods for measuring chromatin accessibility

Figure 1 Schematic diagram of current chromatin accessibility assays performed with typical experimental conditions. Representative DNA fragments generated by each assay are shown, with end locations within chromatin defined by colored arrows. Bar diagrams represent data signal obtained from each assay across the entire region. The footprint created by a transcription factor (TF) is shown for ATAC-seq and DNase-seq experiments.

(Tsompana and Buck., 2014)

Chromatin accessibility analysis workflow

All work is done in Linux environment

Data processing – peak calling

- 1. Remove mitochondria DNA
- 2. Peak calling

Download and environment setup for ATAC-seq

1. Download ATAC-graph

git clone https://github.com/RitataLU/ATACgraph.git cd ATACgraph

2. Create python2.7 environment for ATAC-graph

sh ./ATACgraph/base.txt

Example data Human (人類)

• Example:

cd ATACgraph/demo

01_for_data_processing

human genome annotation:

demo_gene.gtf

human gene and promoter bed files:

demo gene body bed6.bed

03_for_downstream_analysis

Peak location BED file:

demo_rmM_peakcall_peaks.narrowPeak

02_for_data_visualisation

Raw reads bam file:

demo.bam

Raw reads bam index file:

demo.bam.bai

BigWig file:

demo_rmM_peakcall_coverage.bw

Peak location BED file:

demo rmM peakcall peaks.narrowPeak

A genes list of overlapping with peaks locations:

demo rmM peakcall peak gene list.txt

Remove mitochondria DNA

20-80% sequences in ATAC-seq are from mitochondria genomes

Remove mitochondria chromosome

./script/ATACgraph 00_rmChr demo/demo.bam demo/demo rmM.bam chrM Input.bam Output.bam chromosomes

Remove chrM 69628 reads Remove total 69628 out of 71843 (0.969)

Transform GTF file to BED files

./script/ATACgraph 02 gtftoBed demo/demo gene.gtf demo/demo -p 2000

Reference genome.gtf

Output.bed Promoter region

Peak calling

Peak calling

./script/ATACgraph 03_callPeak demo/demo_rmM.bam demo/demo_rmM_peakcall demo_gene_body_bed6.bed input.bam Output name

Gene body.bed

- •Peak location file
- demo_rmM_peakcall_peaks.narrowPeak
- Peak intensity bigwig filedemo rmM peakcall coverage.bw
- •A genes list of overlapping with peaks locations demo_rmM_peakcall_peak_gene_list.txt

Post-alignment analysis

Fragment length distribution and Fast Fourier Transform (FFT)

Find fragment

./script/ATACgraph 01_calFragDist demo/demo_rmM.bam_demo/demo_rmM_fragment demo/demo_rmM_FFT input.bam Output (fragment)

Output (FFT)

NFR (nucleosome free region)

Fragment length distribution and Fast Fourier Transform (FFT)

Find fragment

./script/ATACgraph 01_calFragDist demo/demo_rmM.bam_demo/demo_rmM_fragment demo/demo_rmM_FFT input.bam Output (fragment)

Output (FFT)

NFR (nucleosome free region)

12

Visualision of peaks

Peaks analyses

```
./script/ATACgraph 03_genePlot demo/demo_rmM_peakcall_peaks.narrowPeakdemo/demo_rmM_peakcall_coverage.bw_demo/demo_input.narrowpeakdemo/demo_gtf file name
```

3 Figures

- The enrichment status of accessible region in genome Fold Enrichment.pdf
- The accessibility or read abundance around genes gene_body_heatmap.pdf
- The accessibility or read abundance around peaks Peak_heatmap.pdf

ATAC-seq abundance near the peak regions

ATAC-seq enriched at the center of the predicted peak locations

ATAC-seq abundance of the gene body and flanking regions

 The accessible regions are located before the transcription start sites (TSSs) in two-thirds of the genes

ATAC-seq abundance of the gene body and flanking regions

 the ATAC-seq abundance is clearly enriched at promoters close to TSSs, depleted in the gene body, and slightly enriched after the transcription end sites (TESs)

Thank you for listening!