Résumé 9 - Séries entières

Une série entière de variable réelle ou complexe z est une série de la forme $\sum a_n z^n$ où $(a_n)_{n\in\mathbb{N}}\in\mathbb{K}^\mathbb{N}$. Son domaine de convergence est le domaine de définition de :

$$z\mapsto \sum_{n=0}^{+\infty}a_nz^n$$

Rayon de convergence

→ Définition et propriétés

Lemme: Lemme d'Abel

Soit $z_0 \in \mathbb{C}$. Si la suite $(a_n z_0^n)_{n \in \mathbb{N}}$ est bornée, alors, pour tout nombre complexe z tel que $|z| < |z_0|$, la série $\sum a_n z^n$ est absolument convergente.

Définition

On appelle rayon de convergence de la série entière $\sum a_n z^n$ l'élément $R \in \overline{\mathbb{R}}_+$ défini par :

$$R = \sup\{r \ge 0 \mid (a_n r^n)_{n \in \mathbb{N}} \text{ est bornée}\}$$

- Théorème

Soit $\sum a_n z^n$ une série entière de rayon de convergence R.

- Si |z| < R alors $\sum a_n z^n$ converge absolument.
- Si |z| > R alors $\sum a_n z^n$ diverge grossièrement.
- Si |z| = R alors on ne peut rien dire.

En d'autres termes,

$$R = \sup\{r \ge 0 \mid \sum a_n r^n \text{ converge absolument}\}\$$

→ Détermination pratique du rayon de convergence

On considère deux séries entières $\sum a_n z^n$ et $\sum b_n z^n$ de rayons de convergence respectifs R_a et R_b .

Théorème: Encadrement

Soit $z_0 \in \mathbb{C}$.

- Si $\sum a_n z_0^n$ converge, alors $|z_0| \le R$
- Si $\sum a_n z_0^n$ diverge, alors $|z_0| \ge R$.
- Si $\sum a_n z_0^n$ est semi-convergente, alors $|z_0| = R$.

Théorème: Comparaison

- si $|a_n| \le |b_n|$ à partir d'un certain rang, $R_a \ge R_b$.
- $\operatorname{si} |a_n| \underset{n \to +\infty}{\sim} |b_n|$, $R_a = R_b$.
- si $a_n = o(b_n)$, $R_a \ge R_b$.

On appliquera également la règle de d'Alembert (pour une série numérique à termes strictement positifs) ou, lorsque $a_n \neq 0$ à partir d'un certain rang, sous la forme :

$$\left|\frac{a_{n+1}}{a_n}\right|\xrightarrow[n\to+\infty]{}\ell\in\overline{\mathbb{R}}_+\quad\Longrightarrow\quad R=\frac{1}{\ell}$$

Théorème

Pour $\alpha \in \mathbb{R}$, les séries entières $\sum a_n z^n$ et $\sum n^{\alpha} a_n z^n$ ont même rayon de convergence.

→ Opérations sur les séries entières

Théorème: Somme et produit

- $\sum (a_n + b_n)z^n$ est une série entière de rayon de convergence R avec $R = \min(R_a, R_b)$ si $R_a \neq R_b$ ou $R \geqslant R_a$ si $R_a = R_b$.
- $\sum \lambda a_n z^n$ est une série entière de rayon de convergence R_a si $\lambda \neq 0$ ou $+\infty$ si $\lambda = 0$.
- Le produit de Cauchy des deux séries est de la forme $\sum c_n z^n$ avec $c_n = \sum_{k=0}^n a_k b_{n-k}$ et son rayon de convergence R vérifie $R \ge \min(R_a, R_b)$.

Régularité de la somme

Soient la série entière $\sum a_n z^n$, R > 0 son rayon de convergence et $f: z \mapsto \sum_{n=0}^{+\infty} a_n z^n$ sa somme.

→ Continuité

- Théorème

Une série entière converge normalement, donc uniformément, sur $D_f(0, r)$ pour tout r < R.

Attention, il n'y a *a priori* pas convergence normale sur le domaine de convergence, seulement sur tout disque fermé inclus dans le domaine *ouvert*!

Théorème : Continuité

La somme d'une série entière réelle est continue sur le disque ouvert de convergence.

Pour justifier la continuité au bord du domaine, on s'intéressera à la convergence uniforme ou on appliquera (dans le cas réel) le théorème radial.

Théorème : Théorème de convergence radiale d'Abel

Soit $\sum a_n x^n$ une série entière de rayon de convergence $R \in \mathbb{R}_+^*$. On suppose que $\sum a_n R^n$ converge.

Alors,
$$\sum_{n=0}^{+\infty} a_n x^n \xrightarrow[x\to R^-]{} \sum_{n=0}^{+\infty} a_n R^n$$
.

Dans le cas réel, la somme est continue sur le domaine de convergence.

→ Dérivation et intégration terme à terme (cas réel)

On suppose désormais que $\sum a_n x^n$ est une série entière de la variable réelle. f est alors définie sur l'intervalle I, où $]-R,R[\subset I\subset [-R,R]$.

Théorème : Dérivation terme à terme

f est de classe \mathscr{C}^{∞} sur $]-R,R[,\sum na_nx^{n-1}$ est une série entière de rayon de convergence R et :

$$\forall x \in]-R, R[, \quad f'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1}$$

Théorème : Intégration terme à terme

On note F une primitive de f. $\sum \frac{a_n}{n+1} x^{n+1}$ est une série entière de rayon de convergence R et :

$$\forall x \in]-R, R[, F(x) = F(0) + \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$$

Développements en série entière

Définition

Une application est développable en série entière sur]-r,r[s'il existe une série entière $\sum a_nx^n$ de rayon de convergence R avec $R \ge r$ telle que :

$$\forall x \in]-r, r[, f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

- Théorème

Si f admet un développement en série entière sur]-r,r[alors f est de classe \mathscr{C}^{∞} sur]-r,r[, son développement en série entière est unique et est donné

par sa série de Taylor :
$$\sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

La réciproque est fausse : toute fonction de classe \mathscr{C}^{∞} n'est pas développable en série entière.

→ Détermination pratique

- Utilisation des développements usuels (♥).
- Dérivation et intégration terme à terme.
- Formule de Taylor avec reste intégral.
- Décomposition en éléments simples.
- Utilisation d'une équation différentielle.

→ Développements en série entière usuels

$$+\infty \quad e^{z} = \sum_{n=0}^{+\infty} \frac{z^{n}}{n!}$$

$$+\infty \quad ch(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}; \quad sh(x) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!}$$

$$+\infty \quad cos(x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n} x^{2n}}{(2n)!}; \quad sin(x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}$$

$$R = 1 \quad \frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^{n} x^{n}; \quad ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} x^{n}$$

$$R = 1 \quad (1+x)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^{n} \quad (\alpha \notin \mathbb{N})$$