Fourier Sine Series

Consider $f: [0, \pi] \to \mathbb{R}$

$$f(x) = -f(-x)$$

Then
$$\widetilde{f}_{odd}(x) = \begin{cases} f(x) & x>0 \\ 0 & x=0 \\ -f(-x) & x<0 \end{cases}$$

 $\tilde{f}_{oda}: [-\pi, \pi] \to \mathbb{R}$ odd, $\tilde{f}_{oda}(x) \sim \tilde{\xi}_{n}^{\pi} b_{k} \sin(kx)$, $b_{k} = \tilde{\pi} \int_{0}^{\pi} f(x) \sin(kx) dx$ and if f has bounded variation, then $f(x) \sim \tilde{\xi}_{n}^{\pi} b_{k} \sin(kx) = \frac{1}{2} (\tilde{f}_{oda}(x^{-}) + \tilde{f}_{oda}(x^{+}))$ $= \frac{1}{2} (f(x^{-}) + f(x^{+}))$ for $x \in [0, \pi]$

This is the Fourier sine series associated to f.

$$\widetilde{\mathcal{F}}_{odd}(x) = X \sim 2 \sum_{k=1}^{\infty} (-1)^{k+1} \frac{\sin(kx)}{k}$$

$$= \begin{cases} x & x \in (-\pi, \pi) \\ 0 & x = -\pi, \pi \end{cases}$$

Orthogonal Functions

Motivation: On V=R" we have the inner product $(\vec{\nabla}, \vec{\omega}) = (\vec{\nabla}, \vec{\omega})_{\text{End}} = \begin{pmatrix} \vec{\nabla}_{1} \\ \vdots \\ \vec{\nabla}_{N} \end{pmatrix} \cdot \begin{pmatrix} \vec{\omega}_{1} \\ \vdots \\ \vec{\omega}_{N} \end{pmatrix}$ The vectors $e_i = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, $e_i = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ are orthonormal: $(e_k, e_k) = \delta_{kk} = \{0 \ k \neq k\}$

Krouecker Delta

and for every VER", v= = akek with (V, e1) = = akce, ex) = Sakske = a1, i.e. v= \(\frac{2}{k!}\)(Viek)ek.

Aim: decompose functions in a similar way.

 $\int_{-\pi}^{\pi} e^{inx} \overline{e^{imx}} \, dx = \int_{-\pi}^{\pi} e^{inx} e^{imx} \, dx$ $= \begin{cases} 2\pi & n=m \\ 0 & n\neq m \end{cases}$ i.e. the functions $\left\{ \frac{e^{inx}}{\sqrt{2\pi}} \mid n \in \mathbb{Z} \right\}$ are ON wrt Recall the inner product (f,g) = f-n f(x) g(x) dx complex conj. of gux)

Def. An inner product on a vector space V, e.g. V=R" or V=C([a,b], R), is a map $(\cdot,\cdot): V\times V\to \mathbb{C}$ i) (f,+c.f2, g)= (f, g)+c(f2, g) ii) (f, g) = (g, f)

= (9, f) if $f, 9: [a, b] \rightarrow \mathbb{R}$

üü)
$$(f, f) \ge 0$$
, and $(f, f) = 0 \Leftrightarrow f = 0$

Ex. On $C([a,b], \mathbb{R})$ we have the L^2 -inner product $(f,g)_{L^2} = \int_a^b f(x)g(x)dx$

i)
$$(f_1 + c_2 f_1, g) = \int_a^b (f_1 g + c_2 f_2)g$$

 $= \int_a^b (f_1 g + c_2 f_2)g$
 $= \int_a^b f_1 g + c \int_a^b f_2 g$
 $= (f_1, g) + c(f_2, g)g$

ii) $(f,g) = \int_{a}^{b} fg = \int_{a}^{b} gf = (g,f)$ iii) $(f,f) = \int_{a}^{b} f^{2} \ge 0$

$$(ii) (f,f) = \int_{a}^{b} f^{2} \ge 0$$

(f, f) = 0, if $f(x_0) > 0$, then by continuity, f(x) > 0 on $(x_0 - \delta, x_0 + \delta)$, and $\int_a^b f^2 \ge \int_{x_0 - \delta}^{x_0 + \delta} f^2 > 0$ $\Rightarrow f(x_0) > 0 \Rightarrow (f, f) > 0$ equivalently $(f, f) = 0 \Rightarrow f = 0$

Ex. For n, meN, the functions $\frac{1}{\sqrt{2\pi}}$, $\frac{\cos(n\pi)}{\sqrt{\pi}}$, $\frac{\sin(n\pi)}{\sqrt{\pi}}$

are orthonormal wrt the L^2 -inner product on $[a,b] = [-\pi,\pi]$.

(Rmk. They are NOT orthonormal on $[0, \pi]$.) Note $cos(nx) = \frac{e^{inx} + e^{imx}}{z}$

 $SIN(NX) = \frac{e^{inx} - e^{imx}}{2i}$

(cosunx), $sin(nx) = \overline{\psi} \int_{-\pi}^{\pi} (e^{inx} + e^{inx})(e^{inx} - e^{inx}) dx$ = $\overline{\psi} \int_{-\pi}^{\pi} (e^{inx} e^{inx} - e^{inx} e^{inx} + e^{inx} e^{inx} - e^{inx} e^{inx}) dx$

$$= \frac{2\pi}{4i} (8_{n,m} - 8_{n,-m} + 8_{-n,m} - 8_{-n,-m})$$

$$= \frac{2\pi}{4i} (8_{n,m} - 8_{n,m}) = 0$$

Rmk. If
$$\{\Theta_n\}$$
 are orthogonal,
i.e. $(\Theta_n, \Theta_m) = 0$ if $n \neq m$,
and $(\Theta_n, \Theta_n) = C_n > 0$, then
 $\{\Phi_n = \frac{\Theta_n}{\sqrt{C_n}}\}$ are ON.

Ex. Let $g \in C([a,b], \mathbb{R})$ with g(x) > 0 for all $x \in [a,b]$. Then $(f,g)_3 = \int_a^b f(x)g(x) \cdot g(x) dx$ is an inner product on $CC([a,b], \mathbb{R})$