

Utilizar elementos de la programación orientada a objetos para la implementación de una pieza de software que da solución a un problema de baja complejidad

- Unidad 1: Flujo, ciclos y métodos
- Unidad 2: Arreglos y archivos
- Unidad 3: Programación orientada a objetos

Unidad 4: Pruebas unitarias y TDD

- Comprender qué es UML y para qué nos sirve.
- Reconocer los distintos tipos de diagramas en UML para analizar los requerimientos e implementar las posibles soluciones con rapidez.

{desafío} latam_

¿Qué es UML?

/* UML */

¿Qué es UML?

Unified Modeling Language (Lenguaje Unificado de Modelado)

- Es el lenguaje de modelado de sistemas de software más conocido y utilizado en la actualidad.
- No es un lenguaje de programación.
- Es una serie de normas y estándares gráficos respecto a cómo se debe representar los esquemas relativos al software.

UML a diagrama

¿Qué se requiere antes de diagramar?

Se debe tener pleno conocimiento de todos los requerimientos del software.

Un buen diagrama debe explicar por sí solo un software sin siquiera utilizarlo o programarlo.

Esa es la importancia de entender bien el negocio:

- saber crear un diagrama.
- plasmar lo importante del software.

Ejemplo

Diagrama de clases de empleados en una empresa

Tipos de diagrama

Caso de uso

Diagrama

Representan a los actores y casos de uso (procesos principales) que intervienen en un desarrollo de software.

Clase *Diagrama*

- Recoge las clases de objetos y sus asociaciones.
- Se representa la estructura y el comportamiento de cada uno de los objetos del sistema y sus relaciones con los demás objetos
- No muestra información temporal, sino que muestra el comportamiento de los eventos en los flujos de conexión entre clases.

Secuencia

Diagrama

- Representan objetos software y el intercambio de mensajes entre ellos.
- Normativa: crear objetos de izquierda a derecha, estos objetos representan el flujo del diagrama y se pueden ocupar en una o varias llamadas del flujo según sea el caso.

Colaboración

Diagrama

- Representan objetos o clases y la forma en que se transmiten mensajes.
- Colaboran entre ellos para cumplir un objetivo.

Estados

Diagrama

 Representan cómo evoluciona un sistema, es decir, cómo va cambiando de estado a medida que se producen determinados eventos.

Ejercicio guiado

Analizar el diagrama a utilizar

La funcionalidad "Venta con Débito" realiza ventas desde puntos Transbank:

- Comienza cuando el vendedor ingresa el monto en el punto de venta.
- 2. Posteriormente, se le entrega la máquina al cliente, el cual valida e ingresa su clave.
- 3. Finalmente, devuelve el punto al vendedor, el cual le entrega el comprobante de boleta.

Requerimiento

Identificar el diagrama correspondiente al caso expuesto.

Solución

El diagrama a utilizar para este ejercicio es un Diagrama de Secuencia.

A continuación se explican algunas técnicas de análisis para una mayor rapidez en la elección. Lo que se debe analizar para crear el diagrama correcto es lo siguiente:

- La forma de explicar el caso es contando una historia con palabras claves como esto "Comienza", "posteriormente" y "Finalmente", indicando secuencia en el caso.
- Los objetos nombrados: Punto, Vendedor, Cliente, Boleta.

Con esta información realizaremos un diagrama de Secuencia, ya que están los elementos, mensajes y secuencia del caso.

Solución

¡Revisemos el diagrama resultante!

Ejercicio
"Identificar qué tipo de diagrama se debe implementar"

¡Practiquemos!

Análisis de un Diagrama

Reconocer los componentes necesarios para realizar el diagrama de un software que lleve a cabo una venta de distintos tipos de casas a un cliente.

El vendedor se identifica con:

- Nombre.
- Rut.
- Sucursal.
- Código vendedor.

Las casas pueden ser de dos tipos y tienen:

- Color.
- Metros cuadrados.
- Altura.

Y el cliente tiene:

- Nombre.
- Rut.
- País.
- Fecha de nacimiento.

Ejercicio
"Crear un diagrama clases"

¡Practiquemos!

Crear un diagrama clases

Identificar los distintos tipos de instrumentos de una banda de rock

Guitarra

- tipo mástil: String
- marca: String

Batería

- cantidad platillos: int
- tipo pedal: int
- cantidad Cajas: int

Parlantes

- tamaño: int
- altura: double
- marca: String

¿En qué lenguajes de programación podemos aplicar los diagramas de clases UML?

¿Para qué utilizamos los diagramas de secuencia?

{desafío} Academia de talentos digitales

