Authors:

Ming Tao, Hao Tang, Songsong Wu, Nicu Sebe, Xiaoyuan Jing, Fei Wu, Bingkun Bao

Supervisor:

Dr. CKM

TA:

Mr. Prudhviraj Jeripothula

Presenter:

Aditya Agrawal CS19B1003

DF-GANs

Text to image synthesis

<u>Problem Statement</u>

Initial Approach

Existing Methods

Motivation

<u>Problems to Solve</u>

DF-GAN Model

Experiments and

<u>Results</u>

Conclusions

References

Generate high quality images from text descriptions which depicts the features.

Examples:

 Small bird with light yellow breast brown wings.

2. Small bird with red crown and light brown feathers.

Existing Methods

- Stacked-GAN
- Attn-GAN
- SD-GAN
- Obj-GAN
- DM-GAN

Stack-GAN

Stacks multiple Gen. and Dis.

- Generated images looks unrealistic and refinements on coarse shapes.
- Text is provided to Gen. by concatenating text vector to input noises and intermediate features.

Stack GAN

Attn-GAN

- Introduces cross-modal attention mechanism for more realistic images.
- Finds mapping between textual information and each pixel.

- Stacked architecture.
- Focuses on text information mostly (compared to DF-GAN).
- Bigger image, bigger network.

Attn-GAN

SD-GAN

- Uses the Siamese structure to distill the semantic commons from texts for image generation consistency.
- Takes **contrastive loss** at multiple stages and try minimizing it.
- Conditional Batch Normalization for text-image fusion.

- Stacked architecture.
- Batch norm. doesn't use affine transformations effectively.

SD-GAN

Motivatio

Applications: Media production, learning methods.

Text to image synthesis is a challenging task. Almost all the current available works employs a *stacked architecture* as the backbone which is inefficient and costly. The utilized text fusion methods, cross-modal att., batch norm, concatenating, are not much effective and introduces extra networks.

This model introduces a simpler architecture while producing better results.

1

Use of stacked architecture

- Costly
- Dependence on initial stages
- Difference in scale of image cause instability in loss

2

Text-image fusion methods

- Concatenation is inefficient/naive
- Cross-modal atten. is based on spatial attention. (Image Size ↑ -Computation ↑)
- Conditional Batch Norm. as in SD-GAN

3

Two ways discriminator

- Use of extra network
- Increases training complexity
- Less efficient

DF-GAN Model

The proposed model has the following features:

- 1. One stage text-to-image backbone.
- 2. A novel fusion module called deep text-image fusion block.
- 3. A novel target-aware discriminator:
 - a. matching-aware gradient penalty
 - b. 1-way discriminator output

DF-GAN

One stage text-to-image backbone

Use of single Generator - Discriminator network.

Uses **hinge loss** to stabilize the training.

Figure 1: (a) Existing text-to-image models stack multiple generators and discriminators to generate high-resolution images. (b) Our proposed DF-GAN generates high-quality images directly and fuses the text and image features deeply by our deep text-image fusion blocks.

Go to Settings to

Target Aware Discriminator Matching Aware Gradient Penalty

- Pushes real data points towards minimum of loss curve.
- Smoothens the surface for and around the real data points for smoother convergence.

$$\begin{split} L_D &= - \, \mathbb{E}_{x \sim \mathbb{P}_r}[min(0, -1 + D(x, e))] \\ &- (1/2) \mathbb{E}_{G(z) \sim \mathbb{P}_g}[min(0, -1 - D(G(z), e))] \\ &- (1/2) \mathbb{E}_{x \sim \mathbb{P}_{mis}}[min(0, -1 - D(x, e))] \\ &+ k \mathbb{E}_{x \sim \mathbb{P}_r}[(\|\nabla_x D(x, e)\| + \|\nabla_e D(x, e)\|)^{\overline{p}}] \end{split}$$

Target Aware Discriminator One-way output

- Reduces computational cost
- Unconditional loss deviates the Adversarial loss from the desired position

Target Aware Discriminator One-way output

- Reduces computational cost
- Unconditional loss deviates the Adversarial loss from the desired position

Figure 3: A diagram for Matching-Aware Gradient Penalty (MA-GP). The data point (real, match) marked by a circle should be applied MA-GP.

Text-image fusion DF-Blocks

- Normalization of feature map is skipped.
- Affine Transformations are used.
- Affine+ReLU blocks are stacked together to form DFBlock.

Text-image fusion DF-Blocks

- Normalization of feature map is skipped.
- Affine Transformations are used.
- Affine+ReLU blocks are stacked together to form DFBlock.

Experiments and Results

Data sets used:

- COCO: (80k training, 40k testing, 5 ld)
- CUB bird: (11788 img, 200 sp., 10 ld)

Id: Language Descriptions

Epochs:

- COCO: 121
- CUB-200:601

Optimizer: Adam (β 1=0.0 and β 2=0.9)

Learning Rate:

- Generator: 1e-4
- Discriminator: 4e-4

Evaluation Metric:

- COCO:
 - Frechet Inception Distance
 - Inception Score
- CUB birds:
 - Inception Score

Table 1: The results of IS and FID compared with the state-of-the-art methods on the test set of CUB and COCO.

Method	CUB-IS↑	CUB-FID↓	COCO-FID↓
AttnGAN [33]	4.36	23.98	35.49
MirrorGAN [23]	4.56	18.34	34.71
SD-GAN [34]	4.67	-:	-
DM-GAN [40]	4.75	16.09	32.64
DF-GAN (Ours)	5.10	14.81	21.42

Qualitative Results

Figure 6: Examples of images synthesized by AttnGAN [33], DM-GAN [40], and our proposed DF-GAN conditioned on text descriptions from the test set of COCO and CUB datasets.

Ablation Study

Table 2: The performance of different components of our model on the test set of CUB.

Architecture	IS↑	FID↓	SC↑
Baseline	3.96	51.34	-
OS-B	4.11	43.45	1.46
OS-B w/ MA-GP	4.46	32.52	3.55
OS-B w/ MA-GP w/ OW-O	4.57	23.16	4.61

Fusion Blocks

Figure 5: We redesign the architecture of the Fusion Block and compare DFBlock with AFFBlock and CBNBlock. (a) A typical UPBlock in the generator network. The UPBlock upsamples the image features and fuses text and image features by two Fusion Blocks. (b) The CBNBlock is a Fusion Block which employs the Conditional Batch Normalization to fuse text and image features. (c) AFFBlock is a simplified version of CBNBlock which removes the Batch Normalization layer. (d) The DFBlock is an enhanced version of AFFBlock, it deepens the text-image fusion process by stacking multiple Affine Transformations.

Architecture	Inception Score ↑
MA-GP GAN	4.57±0.04
+ CBNBlock	4.70 ± 0.05
+ AFFBlock	4.73 ± 0.05
+ CCBlock	4.75 ± 0.04
+ DFBlock	4.86 ± 0.04

DF-GAN model with following components:

- 1 stage backbone efficient, more stable training, more realistic images..
- Novel target-aware discriminator better convergence for generator, improved quality, and text semantic images
 - MAGP
 - o 1 way output
- DF-Block better text image fusion
- Results shows this model rank better on the CUB and COCO datasets.
- Rates better compared to other related work in IS and FID score.

Thank you.

