Rechnernetze und Telekommunikation

Sicherheit

Übersicht

- Grundlagen
 - Bedrohungen, Netzwerk-Sicherheit im Sicherheits-Prozess
- Kryptographische Verfahren
 - Symmetrische und asymmetrische Verschlüsselung, Secure Hashes
- Authentifizierung
 - Kerberos, Zertifikate
- Sichere Netzwerk-Architekturen
 - VPNs, Firewalls, Architektur für Web-Dienste
- Penetrations-Tests

Was ist Sicherheit?

- Deutsch ist hier ungenau: <u>Security</u> vs. Safety
- Computer Security
 - The **protection of information assets** through the use of technology, processes, and training. (Microsoft)
 - Computer security is the effort to create a secure computing platform, designed so that agents (users or programs) can only perform actions that have been allowed. This involves specifying and implementing a security policy. (Wikipedia)
- Begegnet Bedrohungen von IT-Systemen

Bedrohungen von IT-Systemen

	Bedeutung heute		Prognose		Schäden	
	Rang	Priorität	Rang	Priorität	Rang	ja, bei
Irrtum und Nachlässigkeit eigener Mitarbeiter	1	1,50	2	1,70	2	51%
Malware (Viren, Würmer, Troj. Pferde,)	2	1,34	1	2,80	1	54%
unbefugte Kenntnisnahme, Informa- tionsdiebstahl, Wirtschaftsspionage	3	0,60	4	1,14	8	9%
Software-Mängel/-Defekte	4	0,57	5	0,96	3	43%
Hacking (Vandalismus, Probing, Missbrauch,)	5	0,48	3	1,26	5	9%
Hardware-Mängel/-Defekte	6	0,40	8	0,32	4	38%
unbeabsichtigte Fehler von Externen	7	0,30	9	0,26	7	15%
höhere Gewalt (Feuer, Wasser,)	8	0,24	11	0,04	9	8%
Manipulation zum Zweck der Bereicherung	9	0,17	7	0,43	10	8%
Mängel der Dokumentation	10	0,15	10	0,20	6	17%
Sabotage (inkl. DoS)	11	0,12	6	0,55	11	8%
Sonstiges	12	0,03	12	0,00	12	3%

Quelle: http://www.kes.info/archiv/material/studie2006/

Sicherheit als Prozess

- Sicherheit ist kein Zustand, sondern ein Prozess
 - d.h. Sicherheit unterliegt einer kontinuierlichen Dynamik
 - (z. B. durch Änderungen im Bedrohungs- und Gefährdungsbild, in Gesetzen oder durch den technischen Fortschritt)
- Sicherheit muss aktiv gemanagen, aufrecht erhalten und kontinuierlich verbessert werden
 - IT-Systemeinführung planen
 - IT-Sicherheitsmaßnahmen definieren und umsetzen.
 - Erfolgskontrolle regelmäßig durchführen
 - Schwachpunkte oder Verbesserungsmöglichkeiten finden
 - Maßnahmen verbessern
 - (Änderungen planen und umsetzen)
 - IT-Sicherheitsaspekte bei Außerbetriebnahme berücksichtigen

ISMS - Information Security Management System

Komponenten:

- Management-Prinzipien
- Ressourcen
- Mitarbeiter
- IT-Sicherheitsprozess
 - IT-Sicherheitsleitlinie (einschl. IT-Sicherheitsziele und -strategie)
 - IT-Sicherheitskonzept

Standards

- ISO/IEC 27001
- BSI-Standard 100-1 (kompatibel)
- Netzwerk-Sicherheit ist nur ein kleiner Baustein!

Sicherheitsziele

- Integrität (integrity)
 - Daten können nicht ohne Berechtigung verändert werden.
- Vertraulichkeit (privacy)
 - Es können nur Berechtigte Daten lesen.
- Verantwortlichkeit/Authentifikation (authentication)
 - Jeder weiß, mit wem er kommuniziert.
- Zugriffskontrolle/Autorisierung (autorisation, access control)
 - Darf derjenige das, was er tun will?
- Verfügbarkeit (availability)
 - Ist der Rechner/Service erreichbar?
- Unabstreitbarkeit (non-repudiation)
 - Kann nachgewiesen werden, dass jemand etwas getan hat?
- Potentiell unabhängige Anforderungen!

Angriffe

- Maskierung (Masquerade)
 - Jemand gibt sich als ein anderer aus
- Abhören (Eavesdropping)
 - Jemand liest Informationen, die nicht für ihn bestimmt sind
- Zugriffsverletzung (Authorization Violation)
 - Jemand benutzt einen Dienst oder eine Resource, die nicht für ihn bestimmt ist
- Verlust oder Veränderung (übertragener) Information
 - Daten werden verändert oder zerstört
- Verleugnung der Kommunikation
 - Jemand behauptet (fälschlicherweise) nicht der Verursacher von Kommunikation zu sein
- Fälschen von Information
 - Jemand erzeugt (verändert) Nachrichten im Namen anderer
- Sabotage
 - Jede Aktion, die die Verfügbarkeit oder das korrekte Funktionieren der Dienste oder des Systems reduziert

Angriffe auf Ziele

	Bedrohungen									
Sicherheits- ziele	Mas- kierung	Abhören	Zugriffs- ver- letzung	Verlust oder Verän- derung (über- tragener) information	Verleug- nung der Kommuni- kation	Fäl- schen von Infor- mation	Sabotage (z.B. Überlast)			
Vertraulichkeit	x	x	x							
Datenintegrität	x		x	x		x				
Verantwort- lichkeit	x		x		x	x				
Verfügbarkeit	x		х	x			х			
Zugriffs- kontrolle	х		х			x				

Sicherheitsmechanismen

Überwiegend mit kryptographischen Mechanismen:

- Authentisierung
 - von Systemen/Benutzern (entity authentication)
 - von Datenpaketen (data origin authentication)
- Integritätssicherung (integrity protection)
- Verschlüsselung (encryption)
- Schlüsselmanagement (key exchange)
- ...

Ohne kryptographische Mechanismen:

- Zugriffskontrolle (access control)
- Policy-Management
- Einbruchserkennung (intrusion detection)
- ...

Prinzipien der Kryptographie

Prinzip

- Sender verschlüsselt Daten so, dass ein Intruder die übertragene Information nicht erkennen kann.
- Empfänger ist in der Lage, die Daten zu lesen.

Komponenten

Kryptographie-Verfahren

Symmetrische Kryptographie

- Instanzen besitzen gemeinsamen geheimen Schlüssel.
- Vorteile:
 - geringer Rechenaufwand
 - kurze Schlüssel
- Nachteile:
 - Schlüsselaustausch schwierig
 - keine Verbindlichkeit

Asymmetrische Kryptographie (Public-Key-Kryptographie)

- Schlüsselpaar aus privatem und öffentlichem Schlüssel
- Vorteile:
 - öffentliche Schlüssel sind relativ leicht verteilbar
 - Verbindlichkeit möglich
- Nachteile:
 - hoher Rechenaufwand
 - längere Schlüssel

Beispiele – Symmetrische Verschlüsselung

ältere ENIGMA (ab 1918)

Vierwalzen-ENIGMA (Marineausführung, ab 1942)

Voraussetzung

- Notwendige Voraussetzung für sichere Verschlüsselung:
 - Durchprobieren der Schlüssel muss aussichtslos sein
- ◆ Beispiel: Klartextangriff mit Spezialrechner bei bekanntem symmetrischen Verfahren, 10[®] Schlüssel pro Sekunde

Schlüsselgröße benötigte Zeit Qualität

```
40 Bits 100 Sekunden schlecht
56 Bits 10 Tage schwach
64 Bits 30 Jahre mäßig
128 Bits 10<sup>20</sup> Jahre gut
256 Bits 10<sup>60</sup> Jahre sehr gut
```

Sicherheit Martin Gergeleit

Kryptoanalyse

Ziel:

- Code knacken
- Schlüssel und Klartext herausfinden

Ansätze:

- Entschlüsselungsangriff wenn nur Geheimtext vorliegt
- Klartextangriff wenn zusätzlich Teile des Klartextes vorliegen

Notwendige Voraussetzung:

Sprache der Nachricht muss bekannt sein!

AES - Advanced Encryption Standard

Heute DAS symmetrische Verschlüsselungsverfahren

- Standardisiert seit 2001
- Das Verfahren ist bekannt, der Schlüssel ist geheim
- Schlüssellängen von 128, 192 und 256 Bit
- Blockchiffrierung: 64-bit-Blöcke
- Mehrstufiges Verfahren mit Transpositionen und Substitutionen
- Schnelle Realisierung auch in Software möglich
- Hardware-Realisierung ebenfalls möglich
- Weitere Informationen unter http://csrc.nist.gov/encryption/aes/

Electronic Code Book (ECB) Elementare Blockverschlüsselung

Zwei Nachteile:

- Wiederholungen von Klartextblöcken im Geheimtext erkennbar
- Wiedereinspielen zuvor abgefangener Blöcke verletzt Authentizität

Sicherheit Martin Gergeleit

Cipher Block Chaining (CBC)

- benutzt die Blockverschlüsselung für eine Stromverschlüsselung mit Rückkoppelung
 - (M1 = M3) führt kaum zu (C1 = C3)

Output Feedback Mode (OFB)

- Vorteile: Keine Fehlerpropagierung
- "One-time Pad" kann im Voraus berechnet werden

Vor- und Nachteile der symm. Verschlüsselung

Pros:

- Effiziente Verschlüsselung
- Kurze Schlüssel
- Große Erfahrung mit den Algorithmen

Cons:

- Sichere Verteilung der Schlüssel.
- Viele Schlüsselpaare in einem großen Netzwerk
- Ggf. eine "Trusted Thrid Party" TTP erforderlich

Sicherheit Martin Gergeleit

Asymmetrische Kryptographie

- Kommunikationspartner können sicher kommunizieren, ohne einen gemeinsamen geheimen Schlüssel zu benötigen
 - Es gibt einen öffentlich bekannten Schlüssel und einen privaten Schlüssel
 - Grundlage: Die Berechnung des privaten Schlüssels auf Grundlagen des öffentlichen Schlüssels und des Verschlüsselungsalgorithmus ist praktisch nicht möglich.
- Vorteil
 - Es müssen keine geheimen Schlüssel verteilt werden

Der RSA-Algorithmus (1)

Entworfen von Ron Rivest,
 Adi Shamir und
 Len Adleman

- Auswahl des privaten und öffentlichen Schlüssels:
 - Auswahl zweier großer Primzahlen p und q
 - 768 bit für private Nutzung empfohlen von RSA Laboratories
 - 1024 bit für Nutzung innerhalb einer Firma
 - Berechne n = p * q und z = (p- 1) * (q- 1)
 - Wähle eine Zahl e < z, die außer 1 keinen gemeinsamen Faktor mit z hat
 - Finde d, so dass ed-1 durch z dividierbar ist
 - d wird so gewählt, dass ed/ z = 1
 - Modulo-Operation
 - Öffentlicher Schlüssel: (n, e), Privater Schlüssel: (n, d)

Vor- und Nachteile der asymm. Verschlüsselung

Pros:

- Nur der private Schlüssel muss geheim gehalten werden
- Schlüsselmanagement erfordert nur Vertrauen in die Funktion der TTP (Trusted Third Party)
- Langlebige Schlüssel

Cons:

- Geringer Durchsatz
 - Faktor 1000 und mehr gegenüber symm. Kryptographie
- Lange Schlüssel
- Sicherheit beruht auf wenigen mathematischen Prinzipien
- Beschränkte Erfahrung

Sicherheit Martin Gergeleit

Folgerung

- Asymmetrische (Public Key) Verschlüsselung für
 - Schlüsselmanagement
 - Digitale Signaturen
 - Authentifizierung
- Symmetrische (Shared Secret Key) Verschlüsselung für
 - Effiziente Verschlüsselung von großen Datenmengen
- Man benutzt asymmetrische Verfahren um einen Schlüssel für die anschließende symmetrische Verschlüsselung auszuhandeln

Sicherheit Martin Gergeleit

Digital Signaturen

 Digital Signatur mit einem Public-Key Verfahren und einer Hash-Funktion

Message Digest

Ziel

- Einfach zu berechnende digitale Signatur fester Länge (Fingerabdruck)

Beispiel

- MD5 (128 Bit-Hashwert, 1991 Ron Rivest)
- SHA-1 (160 Bit-Hashwert, 1994 NIST)

Vorgehensweise

- Anwenden der Hashfunktion H auf Nachricht m
 - Message Digest: H(m)

Eigenschaften von Hashfunktionen

- Many-to-One
- Ergebnis fester Länge
- Bei gegebenem Message Digest x ist es praktisch unmöglich, H so zu ermitteln, dass H(m) = x
- Es ist praktisch unmöglich, zwei Nachrichten m und m' zu finden, so dass H(m)= H(m′) (Kollision, Verfahren für SHA-1 zz. bei 2[®]Versuche)

Sicherheit Martin Gergeleit

Bsp: Schwächen von Message Digest-Algorithmen

MD5

- Kollision bei MD5-Hashes
- Anwendung: gefälschtes PKI-Zertifikat
- 2008 auf 200 Playstation-3-Spielkonsolen berechnet

SHA-1

- 2005: Komplexität zum Finden einer Kollision: 2⁶⁹ (statt 2⁸⁰)
- 2009: Komplexität zum Finden einer Kollision: 2⁵²
- Folge: SHA-1 bald nicht mehr sicher
- Lösung: neue Algorithmen
 - 2005: SHA-2 (SHA-224, SHA-256, SHA-512)
 - Gleicher Algorithmus wie SHA-1, nur längere Schlüssel
 - 2007: Ausschreibung des NIST für SHA-3
 - Auswahl für Standard ab 2012

Authentifizierung und Authentisierung

- Authentifizierung (engl. authentication)
 - Vorgang der Überprüfung der Identität eines Gegenübers
- Authentisierung
 - Vorgang des Nachweises der eigenen Identität. Zuweisung und Überprüfung von Zugriffsrechten auf Daten und Diensten
- Zwischen Nutzern und/oder Maschinen
 - Identität einer Maschine
 - IP-Addresse, Hostname, UID, ...?
- Generelles Problem: Identity-Management
 - "User-Provisioning"
 - Verwalten von Nutzern und Accounts
 - Gewünscht: SSO (Single Sign-on) eine Authentifizierung für alle Dienste

Authentifizierung mit Secret Keys (1)

- Ziel

 Bob möchte, dass Alice Ihre Identität beweist

Protokoll mit Shared Secret Key

- Nonce: Zufallszahl (R), die der Benutzer eines Protokolls nur einmal benutzt
- Alice sagt "I am Alice".
- Bob sendet Nonce R, der von Alice verschlüsselt zurück gesendet wird.
- Anschließend umgekehrt

- Challenge-Response

- Häufig genutztes Verfahren

Authentifizierung mit Secret Keys(2)

Mit einem Key Distribution Center (KDC)

Kerberos

- Authentifizierungsdienst, der am MIT entwickelt wurde.
 - Benutzt ein KDC
 - Authentifizierung von Benutzern, die auf Server im Netz zugreifen
 - Ursprünglich für den Einsatz in einer einzelnen Domäne (z. B. Uni) konzipiert
 - Ähnlich dem vorne vorgestellten Konzept

♦ Einsatz

- OSF Distributed Computing Environment (DCE)
- Microsoft Windows seit Windows 2000
- Kerberos Server übernimmt die Rolle des KDC
 - umfasst einen Authentication Service (AS) und
 - einen Ticket Granting Service (TGS)

Authentifizierung mit Public Key Verfahren (1)

- Basierend auf R_A und R_B kann nun ein Session-Key für eine nachfolgende symmetrische Verschlüsselung bestimmt werden
- Angewendetes Verfahren bei
 - SSL, HTTPS, TLS, SSH, ...

Authentifizierung mit Public Key Verfahren (2)

Problem:

- Wie kann man sicher sein, dass man den richtigen Public Key kennt?
- Veröffentlichung (z.B. auf der Web-Site) ist ganz gut, aber nicht wirklich sicher

2 Ansätze

- Web-of-Trust: Nutzer bestätigen sich Peer-2-Peer die Gültigkeit von Schlüsseln
 - Beispiel: PGP
 - Probleme: Skalierung und benötigtes Verständnis beim Nutzer
- Public Key Infrastructure (PKI): Eine Hierarchie von trusted "Certification Authorities" bestätigt zentral die Gültigkeit von Public Keys (Zertifikate)

Sicherheit Martin Gergeleit

Public-Key Zertifizierung

- Vertrauenswürdige Instanz (Certifying Authority – CA) bestätigt den Zusammenhang zwischen Public-Key und einer Person/Institution
- Bestätigter Public-Key ist ein Zertifikat
- "Chain-of-Trust" verschiedener CAs möglich
- Den Public-Keys der Root-CAs muss man vertrauen
 - z.B. in Browsern und Mail-Programmen eingebaut

Standard für Zertifikate: X.509

Zertifikat:

- Version
- Seriennummer
- Algorithmus/Parameter
- Aussteller
- Geltungsdauer
- Betreff
- Public Key
- Aussteller-Signatur

Mechanismen in Protokollen (1)

- HTTPS (HTTP secure): "sicherer" Web-Zugriff
 - Authentifizierung des Servers mittels Zertifikat
 - Meist authentifiziert sich der Client auf Anwendungsebene (mit Passw.)
 - Optional auch: Authentifizierung des Clients mittels Zertifikat
 - Verschlüsselung der übertragenen Daten mittels sym. Verschlüsselung
 - Übertragung über TCP-Port 443 (statt 80 für HTTP)
 - Nutzt SSL/TLS, ähnlich z.B. WLAN mit PEAP
- S/MIME: signierte und/oder verschlüsselte Email
 - Signierte Email mittels **Zertifikat des Senders** (s.o.)
 - Verschlüsselte Email mittels Zertifikat des Empfängers
 - Verschlüsselt mit Public Key des Empfängers
 - Nur er kann das mit seinem Private Key wieder entschlüsseln
 - Daten werden wieder mit sym. Verschlüsselung verschlüsselt
 - Nur der sym. Schlüssel wird im "Envelope" asym. verschlüsselt

Mechanismen in Protokollen (2) VPN – Virtual Private Network

- Vollwertige LAN-LAN
 Zusammenführung zweier räumlich getrennter IT-Netzwerke (private oder öffentliche Netze)
- Vollwertiger Zugriff auf alle Ressourcen eines IT-Netzwerks von überall: Schaffung eines virtuellen lokalen Anschlusses

Site-to-Site

Gewährleistet

- Vertraulichkeit
- Authentifizierung
- Integrität

End-to-Site

Mechanismen in Protokollen (3) Prinzip des VPN-Tunnels

Sicherheit Martin Gergeleit

Mechanismen in Protokollen (4) VPN-Protokolle

- IPSec VPN: remote Zugang zu einem Netz
 - Verschlüsselt werden IP-Pakete
 - D.h. alles, was über IP versendet wird, ist verschlüsselt
 - Authentifizierung des Clients und des Servers mittels Zertifikaten
 - Es authentifizieren sich zunächst die Maschinen
 - Meist authentifiziert sich der Anwender danach zusätzlich mit Passw.
 - Verschlüsselung der übertragenen Daten mittel sym. Verschlüsselung
- SSL VPN: remote Zugang zu einem Netz oder Diensten
 - Nutzt HTTPS
 - Kann IP-Pakete durch HTTPS tunneln
 - D.h. alles wird eingepackt und mit HTTPS in einer "Web-Session" übertragen
 - Vorteil gegenüber IPSec: funktioniert auch, wenn alle Dienste außer
 Web gesperrt sind (also fast immer!)

Sichere Netzwerk- und Systemarchitekturen

Eine Kernkomponente: Firewall

- Verbindung zwischen "sicherem" und "unsicherem" Netz
- Regelt und überwacht gesamten Datenverkehr
- Oder besser: zwischen verschiedenen Sicherheits-Domänen
 - Können auch innerhalb einer Organisation sein
 - z.B. zwischen WLAN und Festnetz, zwischen Produktion und Verwaltung, etc.

Besteht meist aus mehreren Komponenten

- Packet Filter
- Application Gateways
- ggf. Intrusion Detection System (IDS)
- ggf. VPN-Gateway

Packet Filter (1)

 Kontrolliert ankommende IP-Pakete anhand folgender Informationen:

- Art des "Transport"-protokolls (TCP, UDP, ICMP)
- TCP/UDP Header, vor allem Quell- und Zielport
- ICMP Nachrichtentyp
- Interface, auf dem Paket ankommt
- Static Packet Filter: benutzt ausschließlich obige Quellen
- Dynamic Packet Filter: benutzt zusätzlich Kontextinformationen
- Löschen nicht-regelkonformer Pakete
 - Weiterleitung des Rests

Packet Filter (2)

Alternative Strategien zur Regelung

- Permissive: was nicht verboten ist, ist erlaubt

- Prohibitiv: was nicht erlaubt ist, ist verboten

Beispiel (prohibitiv):

Reihenfolge ist entscheidend

Zugang	Quelle	Port	Ziel	Port	Attribute
erlaubt	{inneres Netz}	*	*	25	*
erlaubt	*	25	*	*	ACK
	•••				
blockiert	*	*	*	*	*

Implementierungen

- Linux: IPChains, IPFilters, IPTables

- Windows: Internet Firewall

Router: ACL (Access Control List)

Static Packet Filter

Fähigkeiten

- Unsichere Dienste blockieren
 - (z.B. finger, portmapper, nfs, tftp, ...)
- IP-Spoofing in begrenztem Ausmaß erkennen
 - Interfaces und dazugehörige Adressen
- IP Source Routing unterbinden
- Gefährliche ICMP-Nachrichten beschränken
- TCP-Verbindungsrichtung feststellen (ACK-Flag)

Nachteile

- Durchsatzverminderung möglich
- z.B. FTP nicht beherrschbar (2. Verbindung von außen)
- UDP-Anfrage oder -Antwort nicht unterscheidbar

Dynamic Packet Filter

- Fähigkeiten wie Static Packet Filter
- Kann zusätzlich zwischen UDP-Anfrage und -Antwort unterscheiden
 - Regeln erlauben nur Anfrage
 - Anfrage wurde weitergeleitet -> Antworterlaubnis für kurze Zeit
 - Antwort nur vom Zielsocket der Anfrage zu deren Quellsocket
- Vorteil: Ermöglicht beherrschbaren UDP-Verkehr
- Nachteil: Größere Unsicherheit im Zeitfenster für Antwort

Application Gateways (Proxy Servers) (1)

- Proxy Server interpretieren Kommandos bzw. Daten und leiten diese abhängig von den Filter Regeln weiter
 - Spricht Protokolle der Anwendungsschicht
 - Spezialisierter Code für jede Anwendung

Application Gateways (Proxy Servers) (2)

Typische Proxies für:

- HTTP(S), SMTP/IMAP, Citrix (Terminalserver)

Vorteile

- oft unveränderte Client-Software
- detaillierte Überwachung der übertragenen Daten
 - dadurch z.B. Virenscannung, Inhalt von Webseiten, ...
- umfassendes Logging möglich
- Lecks in inneren Diensten werden abgeschirmt

Nachteile

- noch speziellere Programme pro Dienst nötig
- mehr Software (Unsicherheit) und Verwaltungsaufwand
- weniger Durchsatz als Transport Gateways

Web Proxy Servers

Für <u>ausgehenden</u> Web-Verkehr von internen <u>Browsern</u>

Aufgaben eines Web-Proxies:

- Zwischenspeicher (Cache)
 - gestellte Anfragen zu statischen Inhalten bzw. deren Ergebnis werden gespeichert
- Security-Scanner
 - Scannen von Inhalten nach Schadcode
- Zensur/Zugriffssteuerung
 - Sperren oder Protokollieren von bestimmten Webzugriffen
 - ggf. nutzerabhängig
 - Auch z.B. Ausfiltern von Werbung
- SSL-Terminierung
 - Aufbrechen einer SSL-Verbindung (terminiert), um auch deren Inhalte auf Schadcode zu überprüfen
 - weitere Verschlüsselung zum Client (Browser) mit Proxy-Zertifikat, Problem:
 Benutzer sieht das Originalzertifikat nicht mehr

Sicherheit Martin Gergeleit

Reverse Proxy Servers

- Für <u>eingehenden</u> Web-Verkehr auf interne <u>Server</u>
- Aufgaben eines Reverse Web-Proxies:
 - Zwischenspeicher (Cache für statische Inhalte)
 - Lastverteiler (bei mehreren App-Servern im Backend)
 - Security-Scanner
 - Scannen von Inhalten nach Schadcode
 - Abweisen von unerwünschten Zugriffen (z.B. wg. IP-Adresse)
 - u.A. auch Bereinigung von URLs mit Script- oder SQL-Injection
 - Authentifizierung/Autorisierung
 - Prüft Credentials und verwaltet Sessions
 - Leitet nur authentifizierte Requests an Application-Server weiter (mit ID-Token)
 - Single-Sign-On!
 - Sicherer Zugangspunkt
 - Bietet einen HTTPS-Zugangspunkt für alle Dienste
 - Logging und Auditing (protokolliert Zugriffe)

Firewall Architekturen

Grundsätzliche Architekturen:

- Packet filtering router
- Dual-homed host (Bastion Host)
- Screened host
- Screened subnet
- Mehrstufige Firewall

Begriffsklärungen

- Gateway
 - Application und Transport Gateway meist gemeinsam implementiert
 - bei Bedarf an den Schnittstellen zusätzlich Packet Filter
- Bastion Host
 - Exponiertes Gateway
- Demilitarisierte Zone (DMZ):
 - Netzsegment innerhalb der Firewall

Packet Filtering Router

Einfachste Lösung

- Nur Packet-Filtering
- z.B. viele DSL-Router

Internet

Dual-Homed Host

Vorteile

- Dual-Homed Host
- Mehr Durchsatz als andere Architekturen
- Billiger als andere Architekturen

Nachteile

- Einzige Hürde für Angreifer
- Schwierig zu implementieren
 - Sehr viel Funktionalität auf
 - einem Rechner

Internet

Sicherheit Martin Gergeleit

Screened Host

- Vorteile
 - Ähnlich Dual-Homed Host, eingehender Verkehr geht nur zum Screened Host
 - Ausgehende Verkehr evtl. direkt
 - Nur einfacher Router steht direkt im Internet
- Nachteile
 - Aufwendiger

Internet

Screened Subnet

Vorteile

- Mehrere Hürden für Angreifer
 - "Defense in Depth"
 - Ggf. Router/Packet-Filter von verschiedenen Herstellern
 - Innerer Router (bei Eroberung der DMZ einfach zu schließen)
- DMZ kann heiklere Netzdienste anbieten
- Nachteile:

Internet

- Weniger Durchsatz
- Komplexer und teuerer

Mehrstufige Firewall

Die Topologie und die Security Policies bestimmen:

- welche Art von Applikation in welcher Zone laufen darf
- welche Protokolle in welcher Zone zulässig sind
- ab wann Requests authentisiert sein müssen
- wer wie auf diese Zonen zugreifen darf, z.B. für Software-Wartung

Firewalls

Ungelöste Probleme

- Eingeschränkter Zugriff auf erwünschte Dienste
- Evtl. Durchsatzprobleme

Firewalls helfen nicht gegen

- schlechte Passwörter
- Social Engineering
- physisches Eindringen
- 'Angriffe von Innen'
- 'Hintertüren' (z.B. Modems)
- Viren und Mail Bomben

Auch im eigentlichen Einsatzgebiet kein vollkommener Schutz - Beispiele:

- Programm- und Konfigurationsfehler auf der Firewall
- Denial of Service Angriffe
- Schwierige, aber notwendige Anwendungsprotokolle

Daher

- Abwägen von Schutz gegen Kosten

Sicherheit Martin Gergeleit

Enterprise-Architektur für gesicherte Web-Services (1)

- Application-Server
 - z.B. xAMP
 - ggf. selbst verteilte Architektur
- Angebunden über Reverse Proxy
 - App-Level Gateway
 - Filtert Requests und Inhalte
 - Stellt HTTPS-Zugang bereit
 - Überprüft Identitäten und Zugriffsrechte
 - Managet User-Sessions
 - Session-Cookies für den Client
 - Tokens für den App.-Server
 - z.B. WebSEAL (IBM)

Enterprise-Architektur für gesicherte Web-Services (2)

- LDAP-Server zur Verwaltung
 - der Nutzer-Accounts
 - der Nutzergruppen
 - der Nutzer-Credentials
 - Passworte
 - Zertifikate
- z.B. MS Active Directory,
 eDirectory oder OpenLDAP
- Ggf. weitere Server zur Überprüfung der Identitäten
 - z.B. RADIUS oder zur Überprüfung von SecureID-Tokens

Enterprise-Architektur für gesicherte Web-Services (3)

- Identity-Management zur Verwaltung
 - der Nutzer-Identitäten
 - Ein Nutzer kann verschiedene Accounts haben
 - Konsistentes Identity-Life-Cycle-Management
 - Erstellung der Credentials
 - Der Nutzer-Rollen und ihrer Berechtigungen
 - Role-Based-Access-Controll
- z.B. IBM Tivoli oder MS
 Forefront Identity Manager

Enterprise-Architektur für gesicherte Web-Services (4)

Sicherheit Martin Gergeleit

Enterprise-Architektur für gesicherte Web-Services (5)

Sicherheit Martin Gergeleit

Enterprise-Architektur für gesicherte Web-Services (6)

Sicherheit Martin Gergeleit

Penetrationstest

Umfassenden Sicherheitstest

- für einzelner Rechner oder ganze Netzwerke
- Nutzt Mittel und Methoden, die ein Angreifer anwenden würde
- ermittelt die Empfindlichkeit des zu testenden Systems gegen derartige Angriffe

Ziele eines Penetrationstests

- Identifikation von Schwachstellen
- Aufdecken potentieller Fehler, die sich aus der (fehlerhaften) Bedienung ergeben
- Erhöhung der Sicherheit auf technischer und organisatorischer Ebene
- Bestätigung der IT-Sicherheit durch einen externen Dritten

Literatur

- Leitfaden IT-Sicherheit, BSI 2004
- NIST SP 800-42: Guideline on Network Security Testing

Klassifikation von Pen.-Tests (nach BSI)

Phasen eines Pen.-Tests (nach BSI)

Mögliche Werkzeuge

Phase 2:

- Informationsbeschaffung
 - Google (etc.)
 - nslookup (Adressinformationen)
- Scanner
 - nmap (Portscanner)
 - nessus (Schwachstellenscanner)
 - nikto (Webserver-Schwachstellenscanner)
- Phase 4:
 - Client-Web-Proxy
 - Paros Proxy (zum Analysieren/Manipulieren von HTML-Requests)
 - Password-Cracker
 - John the Ripper, Brutus (Brute Force und Defaults)
- Weitere Tools verfügbar in Linux-Distributionen BackTrack oder Knopix Security Tool Distribution (STD)