For every integer m, $m^2 = 5k$, or $m^2 = 5k + 1$, or $m^2 = 5k + 4$ for some integer k.

Proof: Suppose m is any particular but arbitrarily chosen integer,

By Quotient Remainder Theorem,

Let's consider the cases for m mod 5 and m div 5, for some integer a

- 1) m = 5a
- 2) m = 5a + 1
- 3) m = 5a + 2
- 4) m = 5a + 3
- 5) m = 5a + 4

Squaring all the cases to get a perfect square m^2 and then factoring out 5 from possible terms through commutativity

1)
$$m^2 = (5a)^2 = 25a^2 = 5(5a^2) = 5k$$
, where $k = 5a^2$

2)
$$m^2 = (5a + 1)^2 = 25a^2 + 1 + 10a = 5(5a^2 + 2a) + 1 = 5k + 1$$
, where $k = 5a^2 + 2a$

3)
$$m^2 = (5a + 2)^2 = 25a^2 + 4 + 20a = 5(5a^2 + 4a) + 4 = 5k + 4$$
, where $k = 5a^2 + 4a$

4)
$$m^2 = (5a + 3)^2 = 25a^2 + 9 + 30a = 25a^2 + 5 + 4 + 30a = 5(5a^2 + 6a + 1) + 4 = 5k + 4,$$

where $k = 5a^2 + 6a + 1$

5)
$$m^2 = (5a + 4)^2 = 25a^2 + 16 + 40a = 25a^2 + 1 + 15 + 40a = 5(5a^2 + 8a + 3) + 1 = 5k + 1$$
,
where $k = 5a^2 + 8a + 3$

Hence, by Quotient Remainder Theorem

 \therefore for every integer m, m, $m^2 = 5k$, or $m^2 = 5k + 1$, or $m^2 = 5k + 4$ for some integer k.

 \Box

#42

For all real numbers r and c with $c \ge 0, -c \le r \le c$ if, and only if, $|r| \le c$.

- 1) For all real numbers r and c with $c \ge 0$, $-c \le r \le c$ if $|r| \le c$.
- 2) For all real numbers r and c with $c \ge 0$, if $-c \le r \le c$, then $|r| \le c$.

Proof:

1) Suppose r and c are any particular but arbitrarily chosen real numbers, s.t. $c \geq 0$ and $|r| \leq c$

By definition of absolute value,

$$r \le c \text{ and } -r \le c$$

or,
$$r \le c$$
 and $-c \le r$

$$\therefore -c \le r \le c$$

2) Suppose r and c are any particular but arbitrarily chosen real numbers, s.t. $c \geq 0$ and $-c \leq r \leq c$ Then, by algebra, $r \leq c$ and $-c \leq r$ Hence, $r \leq c$ and $-r \leq c$ By definition of absolute value, $\therefore |r| \leq c$

#47

If m, n, and d are integers, d > 0, and $d \mid (m - n)$, then m mod d = n mod d

```
Proof: Suppose m, n, and d are any particular but arbitrarily chosen integers s.t. d > 0, and d|(m-n).

Let p = m mod d and q = n mod d

By Quotient Remainder Theorem,

m = dr + p

n = dt + q

for some integers r and t

Subtracting n from m

m - n = dr + p - dt - q

m - n = dr - dt + p - q

m - n = d(r - t) + (p - q)

s = r - t is an integer, since integers are closed under subtraction

m - n = ds + (p - q)
```

However, it is given that d|(m-n),

By definition of divisibility for d|(m-n),

 $(m-n) \mod d = 0 = (p-q)$, by substitution

(p-q) = 0, or p = q, by algebra

Since p = q and $p = m \mod d$ and $q = n \mod d$

By transitivity,

 \therefore m mod d = n mod d

2)

Insert after the word "Proof:" -> Suppose negation is true for proof by contradiction

```
\forall x \in R, if |x| \le \epsilon ger any \epsilon > 0, then x = 0
Contradition: 3 x ER, s.t. |x| < E po any E>0, and x=0
 Proof: Suppose x is any to particular but arbitrarily chosen subject that |x| \in E for any E > 0 and x \neq 0
        x f D
  .: |x| >0 (by def of also -0)
       ╁ >0
       () x(2), wing Theorem T27 in
                                       Appendix A
       0 < |x| > 0
    let ε = (x1>0
    E = \underbrace{|X|}_{Y} < |X| - \bigcirc
Given, |X| < E - \bigcirc
By Tamily in \bigcirc & \bigcirc
E < |X| < E
    However, EXE, which is a contradition
    Here, the assumed negation of the statement
            is fall.
    \therefore \forall x \in R if |x| < \varepsilon for any \varepsilon > 0.
```

#9 Insert after the word "Proof:" -> Suppose negation is true for proof by contradiction

(a)) Statement: The difference of any isorational number and any rational number is isorational.
	Student's Statement: The difference of any irrational number on I any retional number is retional.
	The problems are marked in red. The negation, instead of being existential, it is universal. Instead of any it should be some for proper contradition.
þ)	The difference of any invadinal number and any motional number is invadinal.
	Negation: The difference of some isnotherd number and some some
	Proof: let's origine that there exists x and & as positives but expitrarily chosen restricted & irrational numbers respectively such that (y-x) E Q
	by def. of settind number, $X = a \text{where} a, b \text{are time integers}$ $b \mathcal{L} b \neq 0$
	By. Lef. of rational number
	$(y-x) = p$ where p , q are some solger q k $q \neq 0$

y-a = to , by substitution y= + a + a $y = \frac{b}{b} + \frac{2a}{2b}$, by multiplied in identity y = bp + 29 , by communicationsly by y = bp + qa, algebre since integers are closed under addition and justirecon and multiplection, bp + ga, bg are all interes and by zero product property and b = 0 & q = 0, .: by = 0 is by def of sotural number. y is a shoul number which is a contradition. Hence, the negeth assumed was palse. The difference of any irrational number and any extinct number is irrational.

Insert after the word "Proof:" -> Suppose negation is true for proof by contradiction

```
If a and b are rational number, b \neq 0 and r is an irrational number, then a + br is irrational.
Negation: a and b are ratinel number, b = 0 and or is on irrestind number
     and a the ig prational.
Proof: Suppose a, b are any fortimen but arbitrarily chosen reativel number and on is any portiular but arbitrarily chosen irrational number such that b \neq 0 and a + ba is retirnel.
            By def. of pratinal number, let p, q, m, n be some integers such that q, n \neq 0. For \alpha = b & b = m
              then, a+ba = b + mx (by substitution)
                                ⇒ n b + qmr , By Mulapherative ng qu (dentity
                                = np + qmr , by community no
                               = np + gmr , by Algebre -(1)
             sme a+bs is nothered, by dep of
                       settinal
                    a+ba=\frac{1}{d} for some integer i, j=2
                by transitivity pown D& D
                    \frac{i}{j} = \frac{np + qme}{nq}
```

2mr = ing - np r = ing - njp jem Since integers are closed under multiplication, subtraction, and division. (ing - njp) and jam are both integery. $j\neq 0$, $q\neq 0$ and since $b\neq 0$, $m\neq 0$ $\Rightarrow m\neq 0$ By Zora Product Property, · jam ≠ 0 By def. of a sational number, or is sothinal.

which is a contradiction. The supposition is they plus ill a, b are retinel numbers, b +0, 91 is an isreturely then a t br is irrational.

For every real number r, if r^2 is irrational then r is irrational.

- a) Proof by contradiction: Suppose not. That is, suppose there exists a real number r such that r^2 is irrational and r is rational. Show that this supposition leads logically to a contradiction, which will prove that r^2 is irrational, then r is irrational for every real number r.
- b) Proof by contraposition: Suppose that for every real number r such that r is rational. Show that r^2 is rational.

```
Case 1): Suppose r = 0 then |r| = 0, by definition of absolute value c = 0
r = c = 0
|r| = r = 0
By transitivity,
r = c = 0
\therefore r < c
Case 2): Suppose r > 0 then |r| = r, by definition of absolute value |r| = r > 0
c > 0
By transitivity,
c \ge |r| = r
c \ge r
```

#24Insert after the word "Proof:" -> Suppose negation is true for proof by contradiction

The reciprocal of any isvotional number is isometimal.
Broof by Contenadiction: Negation: There exists an invastment number whose surpresent is retiral.
Subborl m is any particular but arbitrarily charles invoticed number such
Suppose m is any particular but arbitrarily chosen irrotical number, such that <u>I</u> is rational.
m your sale
By def of retional number,
$\frac{1}{m} = \underbrace{a}_{b}, \text{ where } a, b \text{ are some } -0$ $\text{integers such that}$ $b \neq 0.$ $\text{since } 1 \text{ is radionel},$ m $1 \text{ and } m \text{ must be integers}.$
m b integer such that
b≠0.
gince I is something,
I and m much be might.
By. Lef of ratural numbers,
m = m is national (i.e. all
M 2 W 18 7 Sm2
inkow are restinel)
lland in the state of
Henu, m is nothinal, which is a
antrodiction.
Hence, the supposition is false.
The second of th
. The secipercial of any irrestronal number is irrestronal.
number is irrational.

```
For all integers a, b, and c, if all and at c, then a x (b+c).
Proof by antiraposition: suppose a,b,c are any positiveles but arbitrarily check integers such that a l(b+c).
                        By Lef. of anvisibility
                                                                      To pene: axbor
                                                                               alc
                          b+c = ak for some integer k.
             To pre: albec) -> alb V alc, Yabac ER
                      we con prime
           = Y a,b,c &B, al (b+c) A-(a+b) -> alc
            = V a,b,c & Z, al(b+c) / alb → alc
                       by def. of Juisibility,
                        b = am por some integer m
                  By Substitution
                       am + c = ak
                          c = ak - am
                           c = a(k-m)
                 since integers are closed under subtraction and
                      k,m and integer, (k-m) is an integer
                           by def. of divisibility,
                            alc.
             : \ta,b,c &Z a | Cb+c) = axb V alc
             \forall a,b,c \in \mathbb{Z}' algered \land \neg (aYb) \rightarrow alc

\forall a,b,c \in \mathbb{Z}', alb \land akc \rightarrow aY(b+c).
```

Insert after the word "Proof:" -> Suppose negation is true for proof by contradiction

```
Proof by Contradition:
Negation: There exist some integers a,b,c such that all and all and all cbtc).
Suppose a,b,c are any postivules but arbitrarily chosen integers, such that alb, axc, and al(b+c).
      By Left of dissibility
          b = ak goe some integer k
         btc = am for some integer m
     By substitution,
          aktc = am
            c = am -ak
             c = a (m-k)
  since integers are closed under subtraction and
      k,m and integor, (m-k) is an integer
           by def. of dissibility,
             alc.
       which is a contradition to are.
   Hence, the supposition is forly.
   .. For all integers a, b, and c, if all and a tc, then at (b+c).
```

```
(a) Fee all positive integry, n, 91 and 8, if see < n, then

91 < \( \overline{\text{In}} \) or 8 < \overline{\text{In}} \).

Broof by (interpolation: Suppose n, 91, are any particular but arbitrarily thosen positive integers such that 91 > \overline{\text{In}} \) and <math>8 > \overline{\text{In}} \).

Using Theorem T27 in Appendix A,

91.8 > \overline{\text{In}} \) \frac{1}{\text{In}}

91 > \overline{\text{In}} \) \frac{2}{\text{91}}

which was to be proved.

... Fee all positive integry, n, 91 and 8, if \( \text{92} \) \( \text{1} \).
```

```
(b) \n E Z+- £1}, n is not prime => ] prime no. p s.t. p ≤ \n \ p\n.
        Proof: Support n is any particular but arbitrarily chosen integer such
                  that n > 1 and n is not prime
              since n is not prime,
                   by ly of composite numbers,
                    n = ab for some integers a and b
                                   s.t. aln and bln and
                                      a,b \neq n,1.
       Using roults foun (a)
          if ab < n, then a < In on b < In.
          Cet's consider the cool when
          if abin > a Str.
              By pubotitution,
                   <u>n</u> < 5n
                   b \geq \frac{n}{\sqrt{n}}
                    6 > m
        cal when if ab <n -> b < vi
               By substitution,
                  <u>^</u> ≤ √n
                  a ≥ In
         Here, weither of a orb \geq n and then the other is \leq n
          Thus, n has a factor p <= Vn
               (since all numbers on be expused
                    as a product of perme factors)
                 such that p is beine.
          Since all and bln and
                p is a prime fater of
                     either a or b such that
                          either of them is C=VA
                            a pund above, i.e pla a plb.
               then, pln by transisting
      . I n E Z+- £13, n is not prime => ] prime no. p s.t. p < la / pln.
                    (c) Contropositive of (b): Fire each integer n > 1 if n is not divisible by any prime number p out that p \leq \sqrt{n}, then n is prime.
```