Q: Given a string og length M. Return the sum of ASCII values of every substring of length N. 8: acbabcdefabc 今M a -> I 6-12 $C \rightarrow 3$ d -> 4 -> Return int (). No. ef substrings ef length N in a String of length $M \equiv M-N+1$ of length M acbabadefaba 6-141 = 6 6 - 3 + 2

g. Given a string (tent) of len M& a small String (pattern) et len N, Count the number of occurrences et pattern in the tent. M 77 N.

T: abenyed monged jpgryem krt nyed P: nyed

Approach 1:

T: abenyelmonyeljpgryemket nyel P: nyel

T: abababab ? count = 3

P: abab

ef substrings of len = N > M-N+1

ef comparisons in 1 substring = N

of iterations => N.M

TC > 0(M·N) SC: 0(1) Approach 2: Hash Map.

(K, V)

String int

7 Insert all the substrings of length N in the HashMap with their frequency.

for every substring (3) of length N:

if (map. contains (5))

map[s] ++;

else (

map. insert (s,1);

TC of inserting a String (N) in HashMap.

Calculating Hashlode of an ind \Rightarrow O(1) Calculating Hashlode of a String \Rightarrow O(N) TC to insert a String in Map \Rightarrow O(N).

TC to search a String in Map > O(N)

TC to insert M strings in $+M \Rightarrow O(MN)$ S(: O(MN)

T: abenyelmonyeljpgryemkrtnyel P: nyel

Claber, beny, enge, nyel, -----]].

Array of string

P: nyel

MYTO

=> MM

 $TC : O(M*\overline{D})$

Array of int:
[48, 81, 49, 35, 42, 21, ----]=> M

K = 35 => freq(n)

TC: O(M)

String Comparison $\Rightarrow O(N)$ Int Comparison $\Rightarrow O(1)$

ight N. ASCII value of substring of length N.
T: $abcabacdef$ P: abc
Sum et ASCII value et pattern = 6
→ If the hashcode is NOT matching: Strings aren't equal.
⇒ If the trashcode is matching: ⇒ Strings can be equal ⇒ Char by that by matching
Best Case: O(M) & No matches & Build the Array of trash code of all substring.
Worst Case: TC: O(NM) {All matches }
$SC: O(M) \longrightarrow O(I)$

T: aaaaaaa P: aaa

> A: [3 3 3 3 3]

tc(P) = 3

- 1) h(abc) = h(acb) = h(bac) = h(bca)=h(cab) = h(cba) = h(aad)
- λ) h(aabc) = h(abbb)

 $t(abc) = a \times p^0 + b \times p^1 + c \times p^2$ $f(acb) = axp^0 + cxp^1 + bxp^2$

T:
$$abcdefgh$$
 $N=3$
 $h(abc) = ax P^0 + bx P^1 + cx P^2$
 $bx P^1 + cx P^2$
 $bx P^0 + cx P^1$
 $dx P^2$
 $dx P^2$
 $dx P^2$

T: åbcdejggh

$$t(abcd) = 0 \times p^{0} + b \times p^{1} + c \times p^{2} + d \times p^{3}$$

$$\int_{-a}^{-a} b \times p^{1} + c \times p^{2} + d \times p^{3}$$

$$\int_{|p|}^{|p|} b \times p^{0} + c \times p^{1} + d \times p^{2}$$

$$+ e \times p^{3} \xrightarrow{|p|}^{|p|}$$

$$t(bcde) = (b \times p^{0} + c \times p^{1} + d \times p^{2} + e \times p^{3}) \%$$

$$R(Str) = \left(\frac{S}{1=0} Strlid \times P^i \right) /. K$$

$$h(bcde) = \left(\frac{h(abcd) - a}{P} + exp^3\right) \% K$$

$$(P^{N})$$
 γ . $K \Rightarrow pow(P, n, K)$

$$f(abc) = \left(\frac{S}{1=0} \text{ Strlid} \times P^i \right) . K \in [0, K-1]$$

Given a String N.

Prefin Substring: Substring starts mith Inden=0

Suffin Substring: Substring ends at inden = N-1.

Prefin
Suffin
Suffin
b
ab
ab
ab
abab
abab

Quiz S: "breakthe bias" Not Prefin Substang

Perfect Prefin: Stants at Inden=04 ends at inden (N-1

Perfect Suffin: ends at inden = N-1 & Starts at inden 70.

gui2

break the bias

of prefin Substrings = N # of perfect prefin Substrings = N-1

Quiz S: aaaaa

Quiz S: a $\Rightarrow 0$

S: $S_0 S_1 S_2 S_3 S_4 S_5$ $S_0 S_1 S_2 S_3 S_4 S_5 \Rightarrow N-1$ $S_0 S_1 S_2 S_3 S_4 S_5 \Rightarrow N-2$ $S_0 S_1 S_2 S_3 S_4 S_5 \Rightarrow N-2$ $S_0 S_1 S_2 S_3 S_4 S_5 \Rightarrow N-3$ $S_0 S_1 S_2 S_3 S_4 S_5 \Rightarrow N-3$

TC: 0 (N2)

D. Given a String of high N, return the

LPS[ii]: Length et longest prefin triat is also a suffin from inden 0 to 1 8: <u>aabaaba</u> LPS[]: <u>0 1 0 1 2 3 4</u>

Quiz

S: aabacaaba LPS[] 0 1 0 1 0 1 2 3 4

TC of building LPS[] > O(N3)

KMP (Knuth Morris Prat) Algo.

____× ____