Examenul de bacalaureat național 2019 Proba E. c)

Matematică *M_tehnologic*

Clasa a XII-a

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(1+\sqrt{5}\right)^2 = 6+2\sqrt{5}$	3 p
	$\sqrt{20} = 2\sqrt{5}$, deci $(1+\sqrt{5})^2 - \sqrt{20} = 6 + 2\sqrt{5} - 2\sqrt{5} = 6$	2p
2.	$f(x) = 0 \Leftrightarrow x^2 + 2x - 3 = 0$, deci $x = -3$ sau $x = 1$	3 p
	Distanța dintre punctele de intersecție a graficului funcției f cu axa Ox este egală cu 4	2 p
3.	$2^{2x} \cdot 2^{3x+3} = 2^{8x} \Leftrightarrow 2^{5x+3} = 2^{8x}$	3p
	5x + 3 = 8x, deci $x = 1$	2 p
4.		3p
	3 și 5	°P
	Numerele sunt 135, 153, 315, 351, 513 și 531	2p
5.	a+1=2a-1	3 p
	a=2	2p
6.	$4\sin^2 x + 12\sin x \cos x + 9\cos^2 x + 9\sin^2 x - 12\sin x \cos x + 4\cos^2 x =$	2p
	$=13\sin^2 x + 13\cos^2 x = 13\left(\sin^2 x + \cos^2 x\right) = 13, \text{ pentru orice număr real } x$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(2) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} =$	3p
	$= 2 \cdot 2 - 1 \cdot 1 = 3$	2 p
b)	$A(x) \cdot A(y) = \begin{pmatrix} x & x-1 \\ x-1 & x \end{pmatrix} \begin{pmatrix} y & y-1 \\ y-1 & y \end{pmatrix} = \begin{pmatrix} xy + xy - x - y + 1 & xy - x + xy - y \\ xy - y + xy - x & xy - x - y + 1 + xy \end{pmatrix} = \begin{pmatrix} xy + xy - x - y + 1 & xy - x + xy - y \\ xy - y + xy - x & xy - x - y + 1 + xy \end{pmatrix} = \begin{pmatrix} xy + xy - x - y + 1 & xy - x + xy - y \\ xy - y + xy - x & xy - x - y + 1 + xy \end{pmatrix}$	3 p
	$= \begin{pmatrix} 2xy - x - y + 1 & 2xy - x - y + 1 - 1 \\ 2xy - x - y + 1 - 1 & 2xy - x - y + 1 \end{pmatrix} = A(2xy - x - y + 1), \text{ pentru orice numere reale } x \text{ §i } y$	2p
	$A(x) \cdot A\left(\frac{1}{2}\right) = A\left(2 \cdot x \cdot \frac{1}{2} - x - \frac{1}{2} + 1\right) = A\left(\frac{1}{2}\right), \ A\left(\frac{1}{2}\right) \cdot A(y) = A\left(2 \cdot \frac{1}{2} \cdot y - \frac{1}{2} - y + 1\right) = A\left(\frac{1}{2}\right),$	2p
	pentru orice numere reale x și y	
	Pentru orice numere reale x și y , $\left(A(x) \cdot A\left(\frac{1}{2}\right)\right) \cdot A(y) = A\left(\frac{1}{2}\right) \cdot A(y) = A\left(\frac{1}{2}\right)$, deci $a = \frac{1}{2}$	3p
2.a)	$6*2=6+2-\frac{6\cdot 2}{4}=$	3 p
	=8-3=5	2 p

b)	$x + 4x - \frac{x \cdot 4x}{4} = 6 \Leftrightarrow x^2 - 5x + 6 = 0$	3p
	x = 2 sau $x = 3$	2p
c)	x*4=4 şi $4*y=4$, pentru orice numere reale x şi y	2p
	1*2*3**2019 = ((1*2*3)*4)*(5*6**2019) = 4*(5*6**2019) = 4	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{1 \cdot e^x - (x - 3) \cdot e^x}{\left(e^x\right)^2} =$	3p
	$= \frac{e^{x} (1 - (x - 3))}{e^{2x}} = \frac{4 - x}{e^{x}}, x \in \mathbb{R}$	2p
b)	$f''(x) = \frac{x-5}{e^x}, \ x \in \mathbb{R}$	3p
	$f''(x) \ge 0$, pentru orice $x \in [5, +\infty)$, deci funcția f este convexă pe $[5, +\infty)$	2p
c)	$x \in (-\infty, 4] \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $(-\infty, 4]$ și $x \in [4, +\infty) \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $[4, +\infty)$	2p
	$f(x) \le f(4)$, pentru orice număr real $x \Rightarrow 3 + \frac{x-3}{e^x} \le 3 + \frac{1}{e^4}$, deci $x-3 \le e^{x-4}$, pentru orice	3р
2.a)	număr real x	
2.0)	$\left \int_{0}^{1} f(x) dx = \int_{0}^{1} (6x^{2} + 4x + 1) dx = (2x^{3} + 2x^{2} + x) \right _{0}^{1} =$	3 p
	=2+2+1-0=5	2p
b)	F este o primitivă a funcției $f \Rightarrow F'(x) = f(x) = 6x^2 + 4x + 1, x \in \mathbb{R}$	2p
	$f(x) > 0 \Rightarrow F'(x) > 0$, pentru orice număr real x, deci funcția F este crescătoare pe \mathbb{R}	3 p
c)	$\int_{1}^{a} \frac{f(x)}{x} dx = \int_{1}^{a} \left(6x + 4 + \frac{1}{x} \right) dx = \left(3x^{2} + 4x + \ln x \right) \Big _{1}^{a} = 3a^{2} + 4a + \ln a - 7$	2p
	$3a^2 + 4a + \ln a - 7 = 13 + \ln a \Leftrightarrow 3a^2 + 4a - 20 = 0$, de unde obţinem $a = -\frac{10}{3}$ care nu convine, $a = 2$ care convine	3р