MLOps: Machine Learning Operations

Quem sou

Técnico em Eletrônica - Instituto Federal de Goiás

- Projetos de extensão: Lógica de programação em escolas da rede metropolitana
- Projetos de ensino: IoT para estudantes da graduação e técnicos do IFG
- Projetos de Pesquisa: Atuação em laboratório de inovação
- Desenvolvedor: Startup para monitoramento de placas solares com ML

Inteligência Artificial - Universidade Federal de Goiás

- Atuação no Centro de Excelência em IA (CEIA)
- Desenvolvimento Fullstack
- Infraestrutura e DevOPs: AWS e GCP

Tecnologia

- Tecnologia: o estudo da técnica
- Não se trata apenas da tecnologia da informação
- Transformações de hábitos também são necessários para que uma nova técnica tenha efeito
- **Cultura:** etimologia parecida com "cultivar"

Vaso Jomon

DevOps

- "Development Operations"
- Cultura de cooperação entre times (não só do de desenvolvimento) visando entrega de valor contínua para o cliente

MLOps

- Machine Learning Operations
- A maioria dos modelos em produção não são tão "grandes" dentro da escala de modelos de linguagem que temos no mercado hoje
- LLMOps: Large Language Models Operations

MLOps

- Na realidade, alguns sistemas chegam a ter centenas de modelos orquestrados de uma única vez
- Adaptação para regiões, épocas do ano, datas comemorativas, horários do dia, etc.
- Requisitam monitoramente contínuo, automatizado e com métricas de qualidade confiáveis

MLOps: Dificuldades

- REST APIs possuem um modelo de desenvolvimento, testes e implementação bem consolidados
- Realizar CRUD em bancos de dados se tornou uma tarefa mais simples na maioria dos casos com o uso de tecnologias como ORMs
- Modelos tradicionais de APIs e aplicações se tornaram simples a nível computacional e de implementação
- Artefatos de código são aproveitados independente dos dados no banco ou do SGBD

MLOps: Dificuldades

- Modelos de lA conversam com os dados e com o server
- Eles fazem parte dos artefatos de código e dos dados que compuseram seu treinamento
- Modelos podem **errar** sem lançar nenhum tipo de problema ao sistema (gerar uma resposta errada)
- Testar e avaliar esses modelos, em alguns casos, deixa de ser uma tarefa trivial

Modelo

LLMOps: Dificuldades

- Necessidade de orquestração de um grande volume de dados
- Custo computacional elevado
 - Treinamento
 - Validação
 - Produção
- Necessidade de aproveitar de forma inteligente os recursos computacionais disponíveis

LLMOps: Dificuldades

- Atender a diferentes requisitos:
 - Time de vendas
 - Time de ML
 - Time de finanças
 - Clientes
 - Líderes
- Muitos desses requisitos acabam virando métricas de avaliação de performance

MLOps: Dificuldades

MLOps: Dificuldades

- Lidar com integrações entre times de desenvolvedores, cientistas de dados, engenheiros de dados, etc.
- Isso quando essas funções estão bem definidas

MLOps: Manutenção

- Assim como qualquer projeto de software, projetos de ML não ficam prontos
- Atualização e manutenção contínuas são necessárias para lidar com fatores do ambiente de deploy
 - Mudança na distribuição dos dados
 - Surgimento de eventos especiais que aletaram as requisições
 - Mudanças de comportamento dos usuários

Fundamentos de Docker

Motivação

SO

Servidores

Motivação

Servidores

Problemas com dependências/conflitos

Virtualização

Virtualização

Recursos de um SO

- Sistema de Arquivos
- Interface Gráfica (GUI)
- Gerenciador de Processos
- Controlador de I/O
- Controle de Rede
- Segurança em acesso
- [...]

Recursos de um SO

Sem necessidade de tantos recursos

Containers

Containers

Docker

- Plataforma para implementação de containers
- Tecnologia popular
- Comunidade forte e criação de um Hub
- Ampla adoção em ambientes de cloud
- Open Source

Docker: Imagens

- Containers são inicializdos a partir de uma imagem
- Uma imagem especifica quais recursos e comandos o container precisa para executar a aplicação
- Imagens não são containers

docker images

C:\Users\lucas>docker images				
REPOSITORY	TAG	IMAGE ID	CREATED	SIZE
streamlit	latest	f0891c033434	20 hours ago	1.59GB
medallion-architecture-medallion-services	latest	a3761af05d9d	39 hours ago	3.47GB
generic	latest	2e4b0581b44e	42 hours ago	2.93GB
mvp-qdrant	latest	86237736a543	5 weeks ago	1.53GB
mvp-tron-front	latest	0b43f088aade	5 weeks ago	2.03GB
memcached	latest	89b2dfa7e55e	2 months ago	131MB
searxng/searxng	2025.3.16-84636ef49	d904830b5d61	2 months ago	279MB
ankane/pgvector	latest	956744bd14e9	20 months ago	628MB

Docker: Dockerfile

- Arquivo que descreve como a imagem será montada
- Ela geralmente é montada com referência a uma pasta local

```
COPY requirements.txt requirements.txt

RUN pip install -r requirements.txt

WORKDIR /app

COPY streamlit/* .

EXPOSE 8501

CMD ["python", "-m", "streamlit", "run", "app_stream.py"]
```

Dockerfile

Docker: Dockerfile

docker build -f <DOCKERFILE> -t <CONTAINER_NAME> .

<pre>\$ docker build -f docker/Dockerfile.app -t streamlit-app .</pre>	
[+] Building 1.2s (10/10) FINISHED	docker:desktop-linux
=> [internal] load build definition from Dockerfile.app	0.0s
=> => transferring dockerfile: 262B	0.0s
=> [internal] load metadata for docker.io/library/python:3.10.14-slim	0.9s
=> [internal] load .dockerignore	0.0s
=> => transferring context: 2B	0.0s
=> [1/5] FROM docker.io/library/python:3.10.14-slim@sha256:2407c61b1a18067393fecd8a22cf6fceede893b6aaca817bf9fbfe65e33614a3	0.0s
=> => resolve docker.io/library/python:3.10.14-slim@sha256:2407c61b1a18067393fecd8a22cf6fceede893b6aaca817bf9fbfe65e33614a3	0.0s
=> [internal] load build context	0.0s
=> => transferring context: 188B	0.0s
=> CACHED [2/5] COPY requirements.txt requirements.txt	0.0s
=> CACHED [3/5] RUN pip install -r requirements.txt	0.0s
=> CACHED [4/5] WORKDIR /app	0.0s
=> CACHED [5/5] COPY streamlit/* .	0.0s
=> exporting to image	0.1s
=> => exporting layers	0.0s
=> => exporting manifest sha256:a91506f6ab487919e1c85bd9c941a940b4a44518e593c304cc3972d0a22095a4	0.0s
=> => exporting config sha256:1b3fbe2eb3936b803d81afce3ea17509ce20fd6ab75e92d3af804b5908594624	0.0s
=> => exporting attestation manifest sha256:e06f5eac7ab7face391112fdd7ecd6f9c239987b19d1b7070f68fd7fd0e09671	0.0s
=> => exporting manifest list sha256:95c469775f893571f97f56f70e090c012fb7822ed4e87e51d604fa2c630d5163	0.0s
=> => naming to docker.io/library/streamlit-app:latest	0.0s
=> => unpacking to docker.io/library/streamlit-app:latest	0.0s

Docker: Execução

- Após a etapa de build, a imagem está pronta, mas o container precisa ser executado com base na imagem
- O "run" também pode ter parâmetros específicos que diferenciam containers, mesmo que criados de uma mesma imagem

docker run -p <OUT_PORT>:<IN_PORT> -it <CONTAINER_NAME>

Docker: Execução

docker run -p <OUT_PORT>:<IN_PORT> -it <CONTAINER_NAME>

```
$ docker run -p 8501:8501 -it streamlit-app
```

Collecting usage statistics. To deactivate, set browser.gatherUsageStats to false.

You can now view your Streamlit app in your browser.

Local URL: http://localhost:8501

Network URL: http://172.17.0.2:8501

External URL: http://200.137.197.75:8501

Docker: "Fluxo"

Container: Rede

docker run -p 8501:8501 -it <CONTAINER_NAME>

Container: Volume

docker run -v <out_path>:<in_path> -it <CONTAINER_NAME>

Referências

- https://docs.docker.com/guides/
- https://github.com/kamranahmedse/developer-roadmap
- https://roadmap.sh/docker
- https://www2.decom.ufop.br/terralab/um-breve-historico-sobre-virtualizacao/? utm_source=chatgpt.com
- https://www.techtarget.com/searchitoperations/feature/Dive-into-the-decades-long-history-of-container-technology
- https://www.grupounibra.com/repositorio/REDES/2022/analise-de-desempenhoentre-maquinas-virtuais-e-containers-utilizando-o-docker3.pdf? utm_source=chatgpt.com
- https://www.targetso.com/artigos/containers-e-virtualizacao/