Class 8: Relations

Schedule

Problem Set 3 is due Friday at 6:29pm.

Functions

A **function** is a mathematical datatype that associates elements from one set, called the *domain*, with elements from another set, called a *codomain*.

$$f: domain \rightarrow codomain$$

If the function is *total*, every element of the domain has one associated codomain element; if the function is *partial*, there may be elements of the domain that do not have an associated codomain element.

Defining a function. To define a function, we need to describe how elements in the domain are associated with elements in the codomain.

Set Products. A *Cartesian product* of sets S_1, S_2, \dots, S_n is a set consisting of all possible sequences of n elements where the ith element is chosen from S_i .

$$S_1 \times S_2 \times \cdots \times S_n = \{(s_1, s_2, \cdots, s_n) | s_i \in S_i\}$$

How many elements are in $A \times B$?

What are the (sensible) domains and codomains of each function below:

$$f(n) ::= |n|$$
 $f(x) ::= x^2$ $f(n) ::= n + 1$ $f(a, b) ::= a/b$
$$f(x) ::= \sqrt{x}$$
 $f(S) ::= minimum_{<}(S)$

For which of them is the function *total*?

cs2102: Class 8: Relations

How are functions in your favorite programming languages like and unlike mathematical functions?

Relations

A **binary relation**, R, consists of a domain set, A, and a codomain set, B, and a subset of $A \times B$ called the *graph* of R.

For each statement below, give the name and at least one example.

A binary relation where no element of A has more than one outgoing edge:

A binary relation where every element of *A* has exactly one outgoing edge:

A binary relation where every element of *B* has exactly one incoming edge:

A binary relation where every element of *A* has exactly one outgoing edge and every element of *B* has exactly one incoming edge:

If there exists a *bijective* relation between *S* and *T* defined by the graph *G* which of these *must* be true:

- a. there exists some *injective* relation between *S* and *T*.
- b. there exists some *bijective* relation between *T* and *S*.
- c. there exists a *total* function, $f: S \to T$.
- d. $S-T=\emptyset$.
- e. the number of elements of *S* is equal to the number of elements of *T*.
- f. $G (S \times T) = \emptyset$.
- g. $(S \times T) G = \emptyset$.
- h. $(S \times T) G \neq \emptyset$.