Introduction to Aerial Robotics Lecture 7

Shaojie Shen
Associate Professor
Dept. of ECE, HKUST

23 March 2021

Outline

- Optical Flow
- Stereo Vision
- Visual Odometry

Vision-based Pose Estimation Pipeline (aka. Map-based Localization)

Vision-based Incremental Pose Estimation Pipeline (aka. Visual Odometry)

電子及計算機工程學系 DEPARTMENT OF ELECTRONIC & COMPUTER ENGINEERING

Frame-to-Frame Feature Matching Problem Definition

- Define regions of interests, or points of interests in the first image at time t
- Search for correspondences in the second image at time t+1

Discrete Feature Matching Approach

- Detect corners features in both images
- Use image patch as feature description
 - Could be extended to color, texture, SIFT/HOG descriptor
- Find correspondences using descriptor matching

Optical Flow

Differential Approach: Optical Flow

Differential Approach: Optical Flow

Differential Approach: Optical Flow

- Detect corners features in first image
- Use image patch as feature description
 - Could be extended to color and texture descriptors
- Use Lucas-Kanade algorithm to compute displacement of the pixels in the patch
 - Motion model could be translation (2-DoF), affine (6-DoF), or more general 3D models
- Subpixel accuracy
- Do not need repeated detection

Given image patch in one image

We don't want to search everywhere in the second image for a match

Given image patch in one image

We don't want to search everywhere in the second image for a match

 The motion is known to be "small", we can bound the search region.

Optical Flow Assumption: Brightness Constancy

 Image measurements (brightness) in a small region remains the same even though their location may change

Optical Flow Assumption: Spatial Coherence

 Neighboring points in the scene typically belong to the same surface and have similar motions

Optical Flow Assumption: Temporal Persistence

Image motion of a surface patch changes smoothly over time

Lucas-Kanade (KLT) Tracking

- Intensity constraint: J(x + d) = I(x)
 - -J(x) = I(x, t+1)
 - -I(x) = I(x,t)

Lucas-Kanade (KLT) Tracking

- Define Sum of Squared Difference (SSD) error as:
 - $-\epsilon = \int_{W} [J(x+d) I(x)]^{2} \omega(x) dx$
 - $-\omega(x)$ is the smoothing term
 - Minimize ϵ with respect to $d \in \mathbb{R}^{2 \times 1}$
- 4 steps for solving this problem:
 - Set $\frac{\partial \epsilon}{\partial d}$ to 0
 - Linearization by Taylor expansion on J(x+d) with respect to d
 - Solve the resulting linearized system
 - Iterative refinement

Step 1: Set Derivative to 0

Differentiate SSD with respect to d and set to 0:

$$\frac{1}{2}\frac{\partial_{\epsilon}}{\partial d} = \int_{W} \left[J(x+d) - I(x)\right]g w dx = 0$$

$$g = \left(\frac{\partial J}{\partial x}, \frac{\partial J}{\partial y}\right)^{T}$$

Step 2: Linearization

$$[J(x+d)-I(x)]$$

• Assume small motion, Taylor expansion of J(x + d) is:

$$J(x + d) = J(x) + g^{T}d$$

$$\int g = (\frac{\partial J}{\partial x}, \frac{\partial J}{\partial y})^{T}$$

Step 2: Linearization

Combining previous equations:

$$\frac{1}{2}\frac{\partial_{\epsilon}}{\partial_{d}} = \int_{W} \left[J(x+d) - I(x) \right] g w \, dx = 0$$

$$J(x+d) = J(x) + g^{T}d$$

$$\downarrow$$

$$\int_{W} g (g^{T}d)w \, dx = \int_{W} \left[I(x) - J(x) \right] g w \, dx$$

Step 3: Solve Linear System

$$\int_{W} g(g^{T}d)w dx = \int_{W} [I(x) - J(x)]g w dx$$

$$\sum_{i,j} \begin{bmatrix} g_{x}(i,j)g_{x}(i,j) & g_{y}(i,j)g_{x}(i,j) \\ g_{x}(i,j)g_{y}(i,j) & g_{y}(i,j)g_{y}(i,j) \end{bmatrix}$$

A: second moment matrix

Step 3: Solve Linear System

$$\int_{W} g(g^{T}d)w dx = \int_{W} [I(x) - J(x)]g w dx$$

$$\sum_{i,j} \left[g_{x}(i,j)[I(i,j) - J(i,j)] \right] g_{y}(i,j)[I(i,j) - J(i,j)]$$
Error vector b

Step 3: Solve Linear System

- What if A is not full rank? Recall the structure of A:
 - Same as the one for corner detection
 - Eigenvalues and eigenvectors of A tells whether we are tracking a corner

Edge

- large gradients, all the same direction
- large l₁, small l₂

Low Texture Region

- small I_1 , small I_2

High Texture Region

- Iterative refinement
 - Estimate velocity at pixels of interests using one iteration of Lucas-Kanade algorithm
 - Transform pixels using the estimated flow field
 - Refine estimate by repeating the process

$$\int_{W} g(g^{T}d)w \, dx = \int_{W} [I(x) - J(x)]g \, w \, dx$$

$$\downarrow \qquad \qquad \downarrow$$

$$A = \sum_{i,j} \begin{bmatrix} g_{x}(i,j)g_{x}(i,j) & g_{y}(i,j)g_{x}(i,j) \\ g_{x}(i,j)g_{y}(i,j) & g_{y}(i,j)g_{y}(i,j) \end{bmatrix}$$

$$b = \sum_{i,j} \begin{bmatrix} g_{x}(i,j)[I(i,j) - J(i,j)] \\ g_{y}(i,j)[I(i,j) - J(i,j)] \end{bmatrix}$$

$$d = A^{-1}b$$

Iterate:

- Update $J_{i+1}(x)$ → $J_i(x+d)$
- Recompute d between $J_{i+1}(x)$ and I(x)

Motion Models

- 2D Models:
 - Affine
 - Quadratic
 - Planar projective transform (Homography)
- 3D Models:
 - Instantaneous camera motion models
 - Homography+epipole
 - Plane+Parallax

Motion Models

Translation

2 unknowns

Affine

6 unknowns:

$$x' = Ax + d$$

3D rotation

3 unknowns

Compute Affine Motion

• Intensity constancy constraint: J(Ax + d) = I(x)

Define Sum of Square Difference, SSD, error as:

$$\in = \int_{W} [J(Ax+d) - I(x)]^{2} w(x) dx \quad (1)$$

Let A = I + D, min. \in with respect to $D \in \mathbb{R}^{2 \times 2}$, and $d \in \mathbb{R}^{2 \times 1}$

- Three steps for solving this problem:
 - Set $\frac{\partial \in}{\partial D}$, $\frac{\partial \in}{\partial d}$ to 0;
 - Taylor expression on J(Ax+d) respect to x;
 - Solve for A(D) and d

Compute Affine Motion

$$\in=\int_W [J(Ax+d)-I(x)]^2 w(x) dx$$

Differentiate ∈ with respect to D and d,

$$\frac{1}{2}\frac{\partial_{\epsilon}}{\partial p} = \int_{W} \left[J(Ax + d) - I(x) \right] g x^{T} w dx = 0 \tag{2}$$

$$\frac{1}{2}\frac{\partial_{\epsilon}}{\partial_{d}} = \int_{W} \left[J(Ax + d) - I(x) \right] g w dx = 0 \tag{3}$$

where
$$g = (\frac{\partial J}{\partial x}, \frac{\partial J}{\partial y})^T$$
.

- Assume small motion, Ax + d = x + (Dx + d) = x + u,
 - Taylor expression of J(Ax + d) is: $J(Ax + d) = J(x) + g^{T}u$

Minimize
$$\in = \int_W [J(Ax + d) - I(x)]^2 w(x) dx$$

• From previous slide, we have:

$$\int_{w} \left[J(Ax+d) - I(x) \right] g \ x^{T} \ w \ dx = 0$$

$$\int_{w} \left[J(Ax+d) - I(x) \right] g \ w \ dx = 0$$

$$J(Ax+d) = J(x) + g^{T} u$$
 where $g = (\frac{\partial J}{\partial x}, \frac{\partial J}{\partial y})^{T}$.

Combining them, we have:

$$\int_{W} g x^{T} (g^{T}u)w \ dx = \int_{W} [I(x) - J(x)]g x^{T} dx$$
 (5)

$$\int_{W} g (g^{T}u)w \ dx = \int_{W} [I(x) - J(x)]g w \ dx$$
 (6)

 Can rewrite (5) and (6) as a linear system of 6 equations and unknowns.

Minimize
$$\in = \int_{W} [J(Ax + d) - I(x)]^2 w(x) dx$$

Tz = a:

$$T = \int_{W} \begin{bmatrix} g_{x}^{2}x^{2} & g_{x}g_{y}xy & g_{x}^{2}xy & g_{x}g_{y}x^{2} & g_{x}^{2}x & g_{x}g_{y}x \\ g_{x}g_{y}xy & g_{y}^{2}y^{2} & g_{x}g_{y}y^{2} & g_{y}^{2}xy & g_{x}g_{y}y & g_{y}^{2}y \\ g_{x}^{2}xy & g_{x}g_{y}y^{2} & g_{x}^{2}y^{2} & g_{x}g_{y}xy & g_{y}^{2}y & g_{x}g_{y}y \\ g_{x}g_{y}x^{2} & g_{y}^{2}xy & g_{x}g_{y}xy & g_{y}^{2}x^{2} & g_{x}g_{y}x & g_{y}^{2}x \\ g_{x}^{2}x & g_{x}g_{y}x & g_{x}^{2}y & g_{x}g_{y}x & g_{x}^{2}y & g_{x}g_{y}x \\ g_{x}g_{y}x & g_{y}^{2}x & g_{x}g_{y}y & g_{y}^{2}x & g_{x}g_{y} & g_{y}^{2} \end{bmatrix} w dx$$
 (7)

and

$$z = [D(1,1), D(2,2), D(1,2), D(2,1), d(1), d(2)]^{T}$$
(8)

$$a = \int_{W} (I(x) - J(x)) \begin{bmatrix} g_{x}x \\ g_{y}y \\ g_{y}x \\ g_{x} \\ g_{y} \end{bmatrix} dx$$
(9)
Slide adapted from Kostas Da

Limits of the KLT Tracker

- Fails when intensity structure in window is poor
- Fails when the displacement is large (typical operating range is motion of 1 pixel
 - Linearization of brightness is suitable only for small displacement
- Brightness is not strictly constant in images
 - Actually less problematic than it appears, since we can filter images to make them look similar

Coarse-to-Fine Estimation

Coarse-to-Fine Estimation

Optical Flow-based Velocity Estimator

Stereo Vision

3D Shape perception

- Depth: the distance of the surface from the observer
- Surface orientation: the slant and tilt of the surface with respect to observers' sight

Depth ambiguity

Inverse problem: multiple solution exists

Pictorial cues for 3D shape

- Perspective projection gives us the relative position to horizon, therefore we can deduce its physical size
- Shading also reveal shape using illumination model

Shape from Focus, Accommodation

- Because of its restricted range (6-8 feet), accommodation is rarely a crucial source of depth in humans.
- In the chameleon, it is of paramount importance, for it controls this organism's ability to feed itself. A chameleon catches its prey by slicking its sticky tongue out just the right distance to catch an insect.
- When chameleons were outfitted with prisms and spectacles that manipulated the
 accommodation and convergence of their eyes, the distance they flicked their
 tongues was changed.

Convergence

- The eyes fixate a given point in external space when both of them, are aimed directly at the point so that light coming from it falls on the centers of both foveae simultaneously.
- The crucial fact about the convergence that provides information about fixation depth is that the angle formed by the two lines of sight varies systematically with distance between the observer and the fixated point.

$$d = \frac{c}{2tan(\frac{a}{2})}$$

Accommodation and Convergence

 Accommodation and convergence normally change in lock steps. For human, they are important sources of depth information at close distance.

Human performance: up to a few meters

Stereo Vision

Our visual angle is 104d, and it is facing forward.

What happened to rabbit's vision?

Basic Stereo Derivations

Epipolar Geometry

Stereo Rectification

A Simple Stereo System

Correspondence

Computing Correspondence

Take a window (template) around a pixel in the left image, search where that template finds its best match in the right image.

Convolution peak (here schematic) at position of corresponding patch in right image

Choice of similarity function for image patches

We want similarity function to be resistant to image noise, illumination changes.

Correspondence Using Correlation

Edge

Sum of squared differences

Vaniili

Slide adapted from Kostas Daniilidis

Low texture region

Sum of squared differences

High textured region

Sum of squared differences Err(x,y)

Disparity computation using SSD

Scene

Ground truth

Alternative Dissimilarity Measures

- Rank and Census transforms [Zabih ECCV94]
- Rank transform:
 - Define window containing R pixels around each pixel
 - Count the number of pixels with lower intensities than center pixel in the window
 - Replace intensity with rank (0..R-1)
 - Compute SAD on rank-transformed images
- Census transform:
 - Use bit string, defined by neighbors, instead of scalar rank
- Robust against illumination changes

Census Measure

Fig. 2. Right and left random dot stereograms

Fig. 3. Disparities from normalized correlation, rank and census transforms

MATCH METRIC	DEFINITION
Normalized Cross-Correlation (NCC)	$\sum_{u,v} \left(I_1(u,v) - \overline{I}_1 \right) \cdot \left(I_2(u+d,v) - \overline{I}_2 \right)$
	$ \frac{\overline{u,v}}{\sqrt{\sum_{u,v} (I_1(u,v) - \bar{I}_1)^2 \cdot \sum_{u,v} (I_2(u+d,v) - \bar{I}_2)^2}} $
Sum of Squared Differences (SSD)	
, ,	$\sum_{u,v} (I_1(u,v) - I_2(u+d,v))^2$
Normalized SSD	$\left(\begin{array}{cccc} \left(T_1\left(u_1,u_2\right) & \overline{T}_1\right) & \left(T_1\left(u_1,u_2\right) & \overline{T}_1\right) \end{array}\right)^2$
	$\sum_{u,v} \left \frac{\left(I_1(u,v) - \bar{I}_1 \right)}{\sqrt{\sum_{u,v} \left(I_1(u,v) - \bar{I}_1 \right)^2}} - \frac{\left(I_2(u+d,v) - \bar{I}_2 \right)}{\sqrt{\sum_{u,v} \left(I_2(u+d,v) - \bar{I}_2 \right)^2}} \right $
Sum of Absolute Differences (SAD)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Zero Mean SAD	$\sum_{u,v} I_1(u,v) - I_2(u+d,v) $ $\sum_{u,v} (I_1(u,v) - \bar{I_1}) - (I_2(u+d,v) - \bar{I_2}) $
Rank	$I'_{k}(u,v) = \sum_{m,n} I_{k}(m,n) < I_{k}(u,v)$
	$\sum_{u,v} (I_1'(u,v) - I_2'(u+d,v))$
Census	$I'_{k}(u,v) = BITSTRING_{m,n}(I_{k}(m,n) < I_{k}(u,v))$
	$\sum_{u,v} HAMMING(I_1(u,v),I_2(u+d,v))$

Comparison of different similarity measures

Visual Odometry

Vision-based Incremental Pose Estimation Pipeline (aka. Visual Odometry)

Visual Odometry

- Visual odometry is the process of real-time estimation of incremental motion of the camera (sensor suite) using only sequential images as input
- Analogy to odometer on cars

Visual Odometry v.s. Map-based Localization

VO Setup

- Applicable to different camera configurations (monocular, stereo, etc.)
- Sufficient illumination and texture
- Dominance of static scene
- Unknown environment
- Sufficient overlapping between consecutive frames
- Focus on local consistency

Localization Setup

- Applicable to different camera configurations (monocular, stereo, etc.)
- Sufficient illumination and texture
- Dominance of static scene
- Known map
- Sufficient observation of map features
- Focus on global consistency

Stereo Visual Odometry

Setup

- Known stereo intrinsic and extrinsic calibration
- Rectified stereo image pairs
- Set starting point of the dataset as the origin
- Estimate camera movement with respect to the origin

Stereo Visual Odometry

- Frame-to-frame stereo visual odometry
 - 1. Input Frame1 (two images)
 - 2. Detect 2D features in Frame1

- 4. Input Frame2 (two images)
- 5. Detect 2D features in Frame 2
- Compute the incremental pose displacement between Frame1 and Frame2 using 2D-3D pose estimation
- 7. Accumulate incremental pose displacement
- 8. Set Frame2 as Frame1, goto Step 3
- Question: How to set initial values?
- Question: What are the disadvantages of frame-to-frame setup?

Stereo Visual Odometry

- Keyframe-based stereo visual odometry
 - No pose drift when there is no keyframe change
 - Only initiate new keyframe when:
 - Displacement between the current frame and the latest keyframe is large
 - Number of features between the current frame and the latest keyframe is insufficient
 - Question: Can we do even better?

More on Visual Odometry

- Sliding window visual odometry
- Sliding window visual-inertial odometry
- Full visual SLAM
- Full visual-inertial SLAM
- ...
- To be covered in Lecture 10

Logistics

- Project 2, phase 2 is released (03/23)
 - You have a lot of time to finish it: 04/13

