

Assignment-5

Residual Stress and Distortion Prediction in LPBF Samples

Process Parameters

		Build Plate	Laser	Scan	Scan	Layer
	Material	Material	Power(W)	Speed(mm/s)	Strategy	Thickness(mm)
Case1	316L	316L	100	500	Bidirectional	0.04
Case2	316L	316L	200	500	Bidirectional	0.04
Case3	316L	316L	300	500	Bidirectional	0.04

• Sample:

Case 1:Laser Power-100W

Component on build plate

Cross section of the Component parallel to z axis

Outer surface of the Component under tensile residual stresses, because component not released from the built plate

Z normal stress(MPa) vs distance(mm)

Z normal stresses in Y direction

• Case 2:Laser Power-200W

Fig.Z normal stresses in Z direction

Case 3:Laser Power-300W

Fig.Z normal stresses in Z direction

Summary

	Power Input(W)	Coordinates(X,Y,Z)(mm)	Normal Stress(MPa)
Case1	100	75,75,2.7	-308
Case2	200	75,75, <mark>2.5</mark>	-353
Case3	300	75,75,2.568	-170
Case4	400	75,75,2.596	-150

As laser power increased, the compressive residual stresses decreased

Name: K Sowjanya Roll No: MM22M023