V. Granica funkcji jednej zmiennej.

1. Definicja granicy właściwej i niewłaściwej funkcji.

Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech $x_0 \in R, r > 0, a, b \in R$. Definiujemy

- $S(x_0,r) := (x_0 r, x_0) \cup (x_0, x_0 + r)$ sąsiedztwo o promieniu r punktu x_0 ;
- \bullet $S(x_0^-,r):=(x_0-r,x_0)$ sąsiedztwo lewostronne o promieniu r punktu $x_0;$
- $S(x_0^+,r) := (x_0,x_0+r)$ sąsiedztwo prawostronne o promieniu r punktu x_0 ;
- $S(-\infty) := (-\infty, b)$ sąsiedztwo $-\infty$;
- $S(+\infty) := (a, +\infty)$ sąsiedztwo $+\infty$.

Definicja 1.2. (granicy właściwej w punkcie)

(i) Niech $x_0 \in R$ i niech f będzie funkcją określoną przynajmniej na pewnym sąsiedztwie $S(x_0)$ punktu x_0 . Liczbę g nazywamy granicą właściwą funkcji f w punkcie x_0 , co zapisujemy

$$\lim_{x \to x_0} f(x) = g,$$

wtedy i tylko wtedy, gdy dla dowolnego ciągu punktów $\{x_n\} \subset S(x_0)$ takiego, że $x_n \to x_0$, gdy $n \to \infty$ zachodzi warunek $f(x_n) \to g$, gdy $n \to \infty$, tzn.

$$\lim_{x \to x_0} f(x) = g \quad \Leftrightarrow \quad \left[\forall \{x_n\} \subset S(x_0) \ \left(\lim_{n \to \infty} x_n = x_0 \right) \Rightarrow \lim_{n \to \infty} f(x_n) = g \right].$$

(ii) Niech $x_0 \in R$ i niech f będzie funkcją określoną przynajmniej na pewnym sąsiedztwie lewostronnym $S(x_0^-)$ punktu x_0 . Liczbę g nazywamy granicq lewostronną właściwą funkcji <math>f w punkcie x_0 , co zapisujemy

$$\lim_{x \to x_0^-} f(x) = g,$$

wtedy i tylko wtedy, gdy dla dowolnego ciągu punktów $\{x_n\} \subset S(x_0^-)$ takiego, że $x_n \to x_0$, gdy $n \to \infty$ zachodzi warunek $f(x_n) \to g$, gdy $n \to \infty$, tzn.

$$\lim_{x \to x_0^-} f(x) = g \quad \Leftrightarrow \quad \left[\forall \{x_n\} \subset S(x_0^-) \ \left(\lim_{n \to \infty} x_n = x_0 \right) \Rightarrow \lim_{n \to \infty} f(x_n) = g \right].$$

(iii) Niech $x_0 \in R$ i niech f będzie funkcją określoną przynajmniej na pewnym sąsiedztwie prawostronnym $S(x_0^+)$ punktu x_0 . Liczbę g nazywamy granicq prawostronną właściwą funkcji <math>f w punkcie x_0 , co zapisujemy

$$\lim_{x \to x_0^+} f(x) = g,$$

wtedy i tylko wtedy, gdy dla dowolnego ciągu punktów $\{x_n\} \subset S(x_0^+)$ takiego, że $x_n \to x_0$, gdy $n \to \infty$ zachodzi warunek $f(x_n) \to g$, gdy $n \to \infty$, tzn.

$$\lim_{x \to x_0^+} f(x) = g \quad \Leftrightarrow \quad \left[\forall \{x_n\} \subset S(x_0^+) \ \left(\lim_{n \to \infty} x_n = x_0 \right) \Rightarrow \lim_{n \to \infty} f(x_n) = g \right].$$

Przykład 5.1.

Wykażemy, że $\lim_{x\to 1} \frac{x^2-1}{x-1} = 2$.

Niech $f(x) = \frac{x^2-1}{x-1}$. Weźmy dowolny ciąg $\{x_n\}$ punktów leżących w S(1) taki, że $x_n \to 1$, gdy $n \to \infty$. Wtedy otrzymujemy

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{x_n^2 - 1}{x_n - 1} = \lim_{n \to \infty} \frac{(x_n - 1)(x_n + 1)}{x_n - 1} = \lim_{n \to \infty} (x_n + 1) = 1 + 1 = 2.$$

Zatem wobec definicji 1.2 (i) mamy $\lim_{x\to 1} \frac{x^2-1}{x-1} = 2$.

Przykład 5.2.

Wykażemy, że $\lim_{x\to 0} \sin \frac{1}{x}$ nie istnieje.

Niech $f(x) = \sin \frac{1}{x}$. Weźmy dwa konkretne ciągi $x_n = \frac{1}{n\pi}$ oraz $y_n = \frac{1}{\frac{\pi}{2} + 2n\pi}$.

Oczywiście $x_n, y_n \subset S(0)$ oraz $x_n \to 0$ i $y_n \to 0$, gdy $n \to \infty$. Otrzymujemy natomiast

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \sin \frac{1}{x_n} = \lim_{n \to \infty} \sin n\pi = 0,$$

 $\lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} \sin \frac{1}{y_n} = \lim_{n \to \infty} \sin \left(\frac{\pi}{2} + 2n\pi\right) = \lim_{n \to \infty} \sin \frac{\pi}{2} = 1.$

Zatem ponieważ ciągi $\{f(x_n)\}$, $\{f(y_n)\}$ dążą do dwóch różnych granic, więc zgodnie z definicją 1.2 (i) nie istnieje granica $\lim_{x\to 0} f(x)$.

Definicja 1.3. (granicy niewłaściwej w punkcie)

(i) Niech $x_0 \in R$ i niech f będzie funkcją określoną przynajmniej na pewnym sąsiedztwie $S(x_0)$ punktu x_0 .

$$\lim_{x \to x_0} f(x) = \infty \quad \Leftrightarrow \quad \left[\forall \{x_n\} \subset S(x_0) \ \left(\lim_{n \to \infty} x_n = x_0 \right) \Rightarrow \lim_{n \to \infty} f(x_n) = \infty \right) \right].$$

(ii) Niech $x_0 \in R$ i niech f będzie funkcją określoną przynajmniej na pewnym sąsiedztwie lewostronnym $S(x_0^-)$ punktu x_0 .

$$\lim_{x \to x_0^-} f(x) = \infty \quad \Leftrightarrow \quad \left[\forall \{x_n\} \subset S(x_0^-) \quad (\lim_{n \to \infty} x_n = x_0 \quad \Rightarrow \quad \lim_{n \to \infty} f(x_n) = \infty) \right].$$

(iii) Niech $x_0 \in R$ i niech f będzie funkcją określoną przynajmniej na pewnym sąsiedztwie prawostronnym $S(x_0^+)$ punktu x_0 .

$$\lim_{x \to x_0^+} f(x) = \infty \quad \Leftrightarrow \quad \left[\forall \{x_n\} \subset S(x_0^+) \quad (\lim_{n \to \infty} x_n = x_0 \quad \Rightarrow \quad \lim_{n \to \infty} f(x_n) = \infty) \right].$$

Przykład 5.3.

Wykażemy, że $\lim_{x\to 2^+} \frac{1}{x-2} = +\infty$.

Niech $f(x) = \frac{1}{x-2}$. Weźmy dowolny ciąg $\{x_n\}$ punktów leżących w $S(2^+)$ taki, że $x_n \to 2$, gdy $n \to \infty$. Wtedy otrzymujemy

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{1}{x_n - 2} = +\infty.$$

Zatem wobec definicji 1.3 (iii) mamy $\lim_{x\to 2^+} \frac{1}{x-2} = +\infty$.

Definicja 1.4. (granicy właściwej i niełaściwej w ∞)

(i) Niech f będzie funkcją określoną przynajmniej w sąsiedztwie $S(\infty)$.

$$\lim_{x \to \infty} f(x) = g \quad \Leftrightarrow \quad \left[\forall \{x_n\} \subset S(\infty) \quad \left(\lim_{n \to \infty} x_n = \infty \quad \Rightarrow \quad \lim_{n \to \infty} f(x_n) = g \right) \right].$$

(ii) Niech f będzie funkcją określoną przynajmniej w sąsiedztwie $S(\infty)$.

$$\lim_{x \to \infty} f(x) = \infty \quad \Leftrightarrow \quad \left[\forall \{x_n\} \subset S(\infty) \quad \left(\lim_{n \to \infty} x_n = \infty \quad \Rightarrow \quad \lim_{n \to \infty} f(x_n) = \infty \right) \right].$$

Przykład 5.4.

Wykażemy, że $\lim_{x\to\infty} \frac{2}{x+2} = 0$.

Niech $f(x) = \frac{2}{x+2}$.

Weźmy dowolny ciąg $\{x_n\}$ punktów leżących w $S(\infty)$ taki, że $x_n \to \infty$, gdy $n \to \infty$.

Wtedy otrzymujemy

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{2}{x_n + 2} = 0.$$

Zatem wobec definicji 1.4 (i) mamy $\lim_{x\to\infty} \frac{2}{x+2} = 0$.

Twierdzenie 1.5. (warunek konieczny i dostateczny istnienia granicy w punkcie)

Funkcja f ma w punkcie x_0 granicę właściwą bądź niewłaściwą wtedy i tylko wtedy, gdy

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x).$$

Wspólna wartość granic jednostronnych jest wówczas granicą funkcji.

Przykład 5.5.

Sprawdzimy, czy istnieje granica funkcji $f(x) = e^{-\frac{1}{x}}$ w punkcie $x_0 = 0$.

2. Twierdzenia o granicach właściwych funkcji.

Twierdzenie 2.1. (o arytmetyce granic)

Załóżmy, że funkcje f i g mają granice właściwe w punkcie x_0 . Wówczas

1.
$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$
,

2.
$$\lim_{x \to x_0} (f(x) - g(x)) = \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x)$$
,

3.
$$\lim_{x\to x_0} c \cdot f(x) = c \cdot \lim_{x\to x_0} f(x), \quad c \in R,$$

4.
$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$
,

5.
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$$
, o ile $\lim_{x \to x_0} g(x) \neq 0$,

6. $\lim_{x\to x_0} [f(x)]^{g(x)} = [\lim_{x\to x_0} f(x)]^{\lim_{x\to x_0} g(x)}$, o ile wyrażenia po obu stronach równości mają sens.

Przykłady 5.6.

Uwaga.

Własności (1)-(6) są prawdziwe dla granic jednostronnych funkcji w punkcie oraz dla granic w $\pm \infty$.

Twierdzenie 2.2. (o trzech funkcjach)

Jeżeli funkcje $f,\,g$ i h spełniają warunki:

(i)
$$f(x) \le g(x) \le h(x)$$
 dla wszystkich $x \in S(x_0)$,

(ii)
$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} h(x) = q$$
,

to
$$\lim_{x\to x_0} g(x) = q$$
.

Przykład 5.7.

Obliczymy $\lim_{x\to 0} x^2 (2 + \cos \frac{1}{x}).$

Wniosek 2.3.

Jeżeli $\lim_{x\to x_0} f(x) = 0$ i funkcja g(x)jest ograniczona, to

$$\lim_{x \to x_0} [f(x) \cdot g(x)] = 0.$$

Twierdzenie 2.4. (o granicy funkcji złożonej)

Jeżeli funkcje f i g spełniają warunki:

- (i) $\lim_{x\to x_0} f(x) = y_0$,
- (ii) $f(x) \neq x_0$ dla wszystkich $x \in S(x_0)$,
- (iii) $\lim_{y\to y_0} g(y) = q$,

to
$$\lim_{x\to x_0} g(f(x)) = q$$
.

Uwaga.

Twierdzenie o trzech funkcjach, wniosek 2.3 i twierdzenie o granicy funkcji złożonej zachodzą dla pozostałych typów granic funkcji.

Przykłady 5.8.

3. Twierdzenia o granicach niewłaściwych funkcji.

Twierdzenie 3.1. (o dwóch funkcjach)

Załóżmy, że funkcje f i g spełniają nierówność $f(x) \leq g(x)$ dla wszystkich $x \in S(x_0)$.

- (i) Jeżeli $\lim_{x\to x_0} f(x) = +\infty$, to $\lim_{x\to x_0} g(x) = +\infty$.
- (ii) Jeżeli $\lim_{x\to x_0} g(x) = -\infty$, to $\lim_{x\to x_0} f(x) = -\infty$.

Przykład 5.9.

Obliczymy $\lim_{x\to 0^+} \frac{2+\cos\frac{1}{x}}{\sqrt{x}}$.

Twierdzenie 3.2. (o granicach niewłaściwych - zapis symboliczny)

- 1. $p + \infty = \infty$ dla $-\infty ,$
- 2. $p \cdot \infty = \infty$ dla 0 ,
- 3. $\frac{p}{\infty} = 0$ dla $-\infty ,$
- $4. \ \frac{p}{0^+} = \infty \quad \text{dla} \quad 0$
- 5. $p^{\infty} = 0$ dla $0^+ \le p < 1$,
- 6. $p^{\infty} = \infty$ dla 1 ,
- 7. $\infty^q = 0$ dla $-\infty \le q < 0$,
- 8. $\infty^q = \infty$ dla $0 < q \le \infty$.

Przykłady 5.10.

Symbole

$$0 \cdot \infty, \quad \infty - \infty, \quad \frac{\infty}{\infty}, \quad \frac{0}{0}, \quad 0^0, \quad 1^\infty, \quad \infty^0.$$

nazywamy symbolami nieoznaczonymi.

Granice podstawowych wyrażeń nieoznaczonych.

•
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
,

•
$$\lim_{x\to 0} \frac{\arcsin x}{x} = 1$$
,

$$\bullet \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a, \quad a > 0,$$

$$\bullet \lim_{x\to 0} \frac{e^x - 1}{x} = 1,$$

•
$$\lim_{x\to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}, \quad a > 0, \ a \neq 1,$$

•
$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1,$$

•
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$$
,

•
$$\lim_{x\to\pm\infty} \left(1+\frac{1}{x}\right)^x = e$$
.

Przykład 5.11.

4. Asymptoty funkcji.

Definicja 4.1.

Prosta x = a jest asymptota pionową

 \bullet lewostronną funkcji f, jeżeli

$$\lim_{x \to a^{-}} f(x) = \pm \infty;$$

 \bullet prawostronną funkcji f, jeżeli

$$\lim_{x \to a^+} f(x) = \pm \infty;$$

 \bullet obustronną funkcji f, jeżeli

$$\lim_{x \to a} f(x) = \pm \infty.$$

Uwaga. (lokalizacja asymptot pionowych)

Funkcja elementarna może mieć asymptoty pionowe tylko w skończonych krańcach swojej dziedziny, które do niej nie należą.

Przykład 5.12.

Sprawdzimy, czy prosta x=0 jest asymptotą pionową funkcji $f(x)=\frac{e^{-x}-1}{e^x-1}$.

Przykład 5.13.

Sprawdzimy, czy prosta x=0 jest asymptotą pionową funkcji $f(x)=e^{\frac{1}{x}}$.

Definicja 4.2.

Prosta y = Ax + B jest asymptotą ukośną funkcji $f \le \pm \infty$, jeżeli

$$\lim_{x \to +\infty} [f(x) - (Ax + B)] = 0.$$

Jeżeli A=0, to prostą y=B nazywamy $asymptotą\ poziomą$ funkcji f.

Fakt 4.3.

Prosta y = Ax + B jest asymptotą ukośną funkcji f w $\pm \infty$ wtedy i tylko wtedy, gdy

$$A = \lim_{x \to \pm \infty} \frac{f(x)}{x} \quad \land \quad B = \lim_{x \to \pm \infty} [f(x) - Ax].$$

Fakt 4.4.

Prostay=Bjest asymptotą poziomą funkcji $f\le\pm\infty$ wtedy i tylko wtedy, gdy

$$B = \lim_{x \to \pm \infty} f(x).$$

Przykład 5.14.

Znajdziemy asymptoty funkcji $f(x) = \frac{x}{1-x}$.