Floor Planning via Convex Optimization

Final Projection - EEC 254 (Winter 2018)

Agenda

- Problem Definition & Motivation
- Problem Formulation
- Project Goal(s)

- Configure some rectangles within a bounding box
- Objective function is on the bounding box
- Constraints is on the shape and size of rectangles

Constraints:

- no overlap
- relative position

Constraints:

- no overlap
- relative position

Constraints:

- no overlap
- relative position (implies no overlap)
- all rectangles inside the bounding box
- minimum rectangle area/aspect ratio/perimeter
- symmetry
- alignment
- similarity

Objective:

- minimize the size (area, perimeter) of the bounding box
- or, maximize the size of the rectangles given a fixed bounding box

Variables:

- rectangles' positions
- rectangles' sizes
- bounding box size

Motivation

Architecture:

- the rectangles are rooms/floors
- arrange rooms within fixed bounding box

VLSI:

- minimize the area of the blocks which decompose a circuit

Bounding Box (BB):

- width W and height H
- starts at (0,0)

Cells:

- N cells
- cell c_i is defined by its lower left corner (x_i, y_i), width w_i and height h_i

Objective Functions

Minimize BB area:

$$A = H.W$$

Objective Functions

Minimize BB area:

$$A = H.W$$

Hessian's minimum eigenvalue <0 > non-convex

$$log(A) = log(H) + log(W)$$
 concave

Objective Functions

Minimize BB perimeter.

$$p = 2(H + W)$$

Affine, tend to form equal sides BB

Objective Functions

Maximize cells area: concave function

$$max (log(w_i) + log(h_i)), i = 1, ..., N$$

multi-criterion with N objective function

scalarization

$$\max \sum_{i=1}^{N} (log(w_i) + log(h_i))$$

Constraints

Basic constraints:

- Everything inside the bounding box

$$x_i \ge 0,$$

 $y_i \ge 0,$
 $x_i + w_i \le W,$
 $y_i + h_i \le H,$ $i = 1, ..., N$

- Widths and length should be positive

$$w_i \ge 0,$$

 $h_i \ge 0,$ $i = 1, ..., N$

Constraints

No overlap:

$$h_{i} \quad c_{i}$$

$$x_{i}, y_{i} \quad w_{i}$$

$$int(x_{i} \cap x_{i}) = \emptyset, i \neq j$$

$$h_{k} \quad c_{k}$$

$$x_{k}, y_{k} \quad w_{k}$$

Use relative position:

$$x_i + w_i \le x_k \rightarrow c_i$$
 to the left of c_k
 $y_k + h_k \le y_i \rightarrow c_k$ below c_i

Minimum clearance:

$$x_i + w_i + \rho \ge x_j, \quad \rho \ge 0$$

Constraints

Minimum area:

Avoid zero area

 $\sqrt{h_i w_i} \ge \sqrt{A_{min}}$ or $log(h_i) + log(w_i) \ge log(A_{min})$

Constraints

Aspect ratio:

- Ratio between height to width

$$\sigma_i^{min} \le h_i/w_i \le \sigma_i^{max}$$

$$\sigma_i^{min}.w_i \leq h_i \leq \sigma_i^{max}.w_i$$

Constraints

Symmetry:

$$x_{axis} + (y_i + h_i/2) = x_{axis} - (y_k + h_k/2)$$

Constraints

Containment:

- Impose that the cell to contain a point or to be contained inside a polyhedron

$$0 \le x_p - x_i \le w_i$$
, $0 \le y_p - y_i \le h_i$

$$h_k \qquad x_p, y_p$$

$$x_k, y_k \qquad w_k$$

Primal Problem

Basic Problem:

Mini BB area, no overlapping cells, each block has minimum area

Variables:

- $-W,H \in \mathbb{R}$
- (x_i, y_i, h_i, w_i) for N cells

Primal Problem

Relative Position (functions):

Using two relations on $\{1, ..., N\}$ $\mathscr{L}(\text{left to}), \beta \text{ (below)}$

 C_i is left to C_j if $(i, j) \in \mathcal{L}$

 C_i is below C_j if $(i, j) \in \beta$

Relation is anti-symmetric

$$(i,j) \in \mathscr{L} \leftrightarrow (j,i) \notin \mathscr{L}$$

Primal Problem

Relative Position (matrices):

$$L_{i,j} = \begin{cases} 1, (i,j) \in \mathcal{L} \\ 0, otherwise \end{cases}$$

$$B_{i,j} = \begin{cases} 1, & (i,j) \in \beta \\ 0, & otherwise \end{cases}$$

Primal Problem

min
$$2(H + W)$$

s.t $-x \le 0$, $-y \le 0$, $-w \le 0$, $-h \le 0$, $-H \le 0$, $-W \le 0$

$$x + w - W.1 \le 0, \quad y + h - H.1 \le 0$$

$$A_i/h_i$$
- $w_i \le 0$, $i = 1, ..., N$

$$L_{i,j}$$
. $(x_i+w_i-x_j) \le 0$, $B_{i,j}$. $(y_i+h_i-y_j) \le 0$, $i,j=1,...,N$, $i \ne j$

Project Goal

- Formulate the problem as a geometric programming
- Add new constraints
- Numerical results using CVX

Thank You!