Player Behavior and Optimal Team Composition in Online Games

Hao Yi Ong, Sunil Deolalikar, and Mark Peng CS 229: Machine Learning Class Project

Introduction

• In online role-playing games, players work in teams to accomplish a common objective (e.g., defeating an opposing team)

- In a game, given the teams' player compositions and their player statistics, we want to predict the players' play style and forecast the game outcome
- Player behavior
- In-game play style; e.g., prefers
 Types of players on a team, each more offense-oriented strategies
- Also encompasses skill level
- Predict from player statistics

Team composition

- classified by their play styles
- Predict from game server database's match histories

Problem Description

- Given
- Match histories containing participant IDs and match statistics
- Player statistics containing player histories and overall game statistics
- Output
- Play style classifier that groups players by their in-game tendencies given their game histories
- Outcome predictor that guesses which team will win given the various team compositions
- In order to
- Gain insight on player behaviors and game strategies
- Maximize accuracy on predicting game outcomes

Target Online Game

- League of Legends
- Multiplayer battle arena game with 27 million plays per day
- Free online API to retrieve deidentified game data
- Official guide provides clustering information for players based on in-game character choices (e.g., character with good defense)

Baseline Outcome Predictor

- Features are team compositions for each team in a game based on official game guide's clustering information
- Logistic regression with 10% hold-out cross validation
- Data samples with 120,000 train and validation and 12,000 test samples
- Accuracy of ??% on test samples

Behavioral Clustering

Cluster Visualization

Results and Analysis

• **Best structure** We picked the top 8 structures based on the Bayesian score, ran parameter learning on them, and tested their prediction accuracies based on classifying test sets using inference

- Error rates Varying the number of missing variables, the error rates were 15-19% on 1,000 test samples, which are competitive with the 16% baseline
- Runtime Depending on the number of missing variables, a single prediction can take up to 30 seconds—much more expensive than our baseline Summary: Classification results with varying number of missing features

#missing	Error rate	False positive	False negative	Pred time (sec)
3	0.1662	0.0363	0.1299	3.754
5	0.1511	0.0302	0.1208	6.437
8	0.1339	0.0272	0.1067	9.672
10	0.1299	0.0252	0.1047	11.859

Conclusion and Extensions

- Our model is suitable for diabetes prediction on existing databases (even with incomplete records) to detect patients at risk for diabetes
- Incorporate expert knowledge in feature selection and deciding the structure
- Consider different inference methods for runtime and accuracy improvement

Acknowledgements

We thank Professor Andrew Ng, the instructor team, and fellow students for their help with and feedback on our work.