GOODYEAR

AEROSPACE

PAGES OF BUILDING WAY

8

(NASA-CR-124259) COMPUTER PROGRAM FOR THE LOAD AND TRAJECTORY ANALYSIS OF TWO DOF BODIES CONNECTED BY AN ELASTIC

TETHEA: USERS MANUAL (Goodyear Aerospace

orp.) 99 p HC \$7.00 CSCL 20K

N73-24903

Unclas 17825

ial .

The state of the s

GER. 15853

DATE <u>February 5, 1973</u>

CODE IDENT NO. <u>25500</u>

GOODYEAR AEROSPACE

CORPORATION

AKRON 15, OHIO

USERS MANUAL

COMPUTER PROGRAM FOR THE LOAD AND
TRAJECTORY ANALYSIS OF TWO 3 D.O.F. BODIES
CONNECTED BY AN ELASTIC TETHER
(Ref. NASA Contract NAS8-29144)

Ву

George R Doyle Jr.

And

James W Burbick

GER 15853

February 5, 1973

REVISIONS

·				REVISIONS	
REV	DATE	MADE BY	APPD BY	PAGES AFFECTED	REMARKS
		<u> </u>		·	
		1			
		-			
					

DATE	February	5,	1973
REV DA	ATF		

GOODYEAR AEROSPACE

PAGE 1
GER. 15853
CODE IDENT NO. 25500

ABSTRACT

This report contains the derivation of the differential equations of motion of a 3 D.O.F. body joined to a 3 D.O.F. body by an elastic tether. The tether is represented by a spring and dashpot in parallel. A computer program which integrates the equations of motion is also described. Although the derivation of the equations of motion are for a general system, the computer program is written for defining loads in large boosters recovered by parachutes.

ALI: LINGHALLAHNO INCLLUORE V

DATE	February	5,	1973	3
OAIL				-
DEV DA	TE			

GOODYEAR AEROSPACE

PAGE ii	
GER. 15853-	
CODE IDENT NO.	25500

TABLE OF CONTENTS

		Page
	ABSTRACT	i
	TABLE OF CONTENTS	ii
	LIST OF FIGURES	iii
	NOMENCLATURE	iv
	DESCRIPTION	₩
Section	<u>Title</u>	
1	INTRODUCTION	1
II	EQUATIONS OF MOTION	2
	1. General	2
	2. Kinetic Energy	4
	3. Potential Energy	7
	4. Rayleigh's Dissipation Function .	9
	5, Lagrange's Equation	10
	6. Non-Conservative Generalized Forces.	17
	7. Solution of Equations of Motion	20
III	APPLICATION OF THE EQUATIONS OF MOTION TO	
	THE ANALYSIS OF A ROCKET BOOSTER RECOVERED BY A PARACHUTE	21
	1. General · · · · ·	21
	2. Bridle Geometry	26
	3. Parachute Suspension Geometry	30
	4. Spring Constant of Elastic System .	33
IV	COMPUTER PROGRAM	34
	l. Inputs	34
	2. Outputs	40
	3. Fortran IV Program Description	42
	4. Sample Computer Run	44
	5. Computer Program Listing	57
	REFERENCES	78

DATE	February	5,	1973
REV DA	ATE		

GOODYEAR AEROSPACE

PAGE	iii	
GER-	15853	
CODE	IDENT NO.	25500

LIST OF FIGURES

Figure No.	Title			Page
1	COORDINATE SYSTEM	o	•	3
2	RIGID BODY WITH 3 D.O.F	o	ú	4
3	TRANSFORMATION ANGLE	•	۰	6
4	AERODYNAMICS OF FOREBODY · · ·	•	•	17
5	AERODYNAMICS OF DECELERATOR · ·	•	•	18
6	SYSTEM GEOMETRY	o ,		23
7	SCHEMATIC OF TWO BODY SYSTEM	•	۰	24
8	BRIDLE GEOMETRY AND LOADS	o	o	25
9	PARACHUTE GEOMETRY	٥	o	30
10	CALCOMP PLOTS OF SAMPLE COMPUTER RUN	•	•	45

DATE	February	5,	1973	
REV DA	TE			

GOODYEAR AEROSPACE

PAGE	iv		
GER-	1,5853		
•	IDENT NO.	25500	

NOMENCLATURE

The following is a list of the variables used in the computer program with a brief description of each. The notation is displayed in two forms, 1) as it appears in the computer program, and 2) as used throughout the discussion of this report. Some of the variables used in the report are defined when they are introduced, and are therefore not included in the nomenclature.

DATE	February	5,	1973
REV DA	TE		

GOODYEAR AEROSPACE CORPORATION AREON 13, OMIC

v	
PAGE	
GER. 15853	
CODE IDENT NO.	25500

			•
FORTRAN	STANDARD	DESCRIPTION	UNITS
A -	A	Length of tether in X direction from decelerator confluence point to fore-body confluence point	m
AA (6,4)		Dummy variable used to express incre- mental velocities in the numerical integration computation	N /S or rad/sec
AALP (16)		An array of eight variables representing angle-of-attack of the forebody	g rad
AALPP (16	5)	An array of eight variables representing angle-of-attack of the decelerator	g rad
AAM(8)		An array of eight variables representing Mach number of the forebody	g
AAMP(8)		An array of eight variables representing Mach number of the decelerator	g
ABAR	Ā	Distance along longitudinal axis of the forebody from the intersection of the body axes to the tether confluence point positive toward the nose	
AD	Å	Time derivative of A	m /sec
ALP	α	Angle-of-attack of forebody	rad
ALPDEG ALPP ALPPDE	α α α ρ	Angle-of-attack of forebody Angle-of-attack of decelerator Angle-of-attack of decelerator	deg rad deg

GOODYEAR AEROSPACE

νi PAGE 15853 GER. 25500 CODE IDENT NO.

REV DATE CORPORATION REV DATE

UNITS FORTRAN STANDARD DESCRIPTION ALPPSL The ratio of two angle-of-attack differences used in interpolation of aerodynamic coefficients of the decelerator. ALPSL The ratio of two angle-of-attack differences used in interpolation of aerodynamic coefficients of the forebody. ΑM Mach number of forebody Mach number of decelerator AMP The ratio of two Mach number differences AMPSL used in interpolation of aerodynamics coefficients of the decelerator The ratio of two Mach number differ-AMSL ences used in interpolation of aerodynamics coefficients of the forebody Projection along longitudinal axis of APBAR A_{D} decelerator from a line between the intersection of body axes and the tether confluence point, positive toward the nose m AREAI Alphameric input-AREA SEQUENCE OF INFLATION **ATMOS** Alphameric input defining atmosphere Projection along longitudinal axis of **AOBAR** the forebody from a line between the intersection of the body axes and the bridle confluence point, positive toward the nose

ENGINEERING PROCEDURE 5.017 REF.

GOODYEAR AEROSPACE

PAGE Vii

GER- 15853

CODE IDENT NO. 25500

UNITS FORTRAN STANDARD DESCRIPTION Ā, Distance along longitudinal axis of the ALBAR forebody from the intersection of the body axes to the No. one bridle attach point, positive toward the nose m Α̈́2 Distance along longitudinal axis of the A2BAR forebody from the intersection of the body axes to the No. two bridle attach point, positive toward the nose m Length of tether in Z direction from В В decelerator confluence point to forebody confluence point m **BBAR** \overline{B} Projection along lateral axis of forebody from a line between the intersection of the body axes and the tether confluence point, positive up m Ř BD Time derivative of B m/sec Positive angle defined in Figure 6 BET1 rad βı BET 1DE Positive angle defined in Figure 6 βı dea Positive angle defined in Figure 6 BET2 β, rad BET2DE β, Positive angle defined in Figure 6 deg $\overline{B}_{\mathbf{D}}$ Projection along lateral axis of decel-**BPBAR** erator from a line between the intersection of the body axes and the tether confluence point, positive up **BOBAR** Projection along lateral axis of the forebody from a line between the intersection of the body axes and the bridle confluence point, positive up m

STANDARD

Ħ,

REV DATE

REV DATE

FORTRAN

B1BAR

973 ------ **GOO**I

GOODYEAR AEROSPACE

Distance along lateral axis of the forebody from the intersection of the body

DESCRIPTION

Viii

PAGE

GER- 15853

CODE IDENT NO. 25500

UNITS

axes to the No. one bridle attach point, positive up m $\overline{\mathtt{B}}$. Distance along lateral axis of the fore-**B2BAR** body from the intersection of the body axes to the No. two bridle attach point, positive up m. C Damping coefficient of tether С N sec/m CA C_{A} Axial coefficient of forebody CAAP Drag area of decelerator m Axial coefficient of decelerator CAP CAP CCA(8, 16) An array of eight by 16 variables representing axial force coefficients of the forebody corresponding to AAM(8) and AALP (16) CCAP (8-16) An array of eight by 16 variables representing axial force coefficients of the decelerator corresponding to AAMP (8) and AALPP (16) CCM (8, 16) An array of eight by 16 variables representing moment coefficient of the forebody corresponsing to AAM(8) and AALP (16) CCMP (8,16) An array of eight by 16 variables

representing moment coefficients of the decelerator corresponding to AAMP(8) and

AALPP(16)

GOODYEAR AEROSPACE

PAGE 1X

GER- 15853

CODE IDENT NO. 25500

REF: ENGINEERING PROCEDURE S-017

E-117-10(3-/0)() R-210)

١				'वि - इ - :
	FORTRAN S	TANDARD	DESCRIPTION	UNITS
	CCMQ(8,16)		An array of eight by 16 variables representing damping moment coefficients of the forebody corresponding to AAM(8) and AALP (16)	rad ⁻¹
	CCMQP(8,16)	An array of eight by 16 variables representing damping moment coefficients of the decelerator corresponding to AAMP(8) and AALPP(16)	rad ⁻¹
1	CCN (8,16)		An array of eight by 16 variables representing normal force coefficients of the forebody corresponding to AAM(8) and AALP(16)	
	CCNP (8,16)		An array of eight by 16 variables representing normal force coefficients of the decelerator corresponding to AAMP(8) and AALPP(16)	
	CHI	χ	tan A/B	rad
	CHID	χ	dx/dt	rad/sec
	CHIDDE	X	dX/dt	deg/sec
	CHIDEG	X	tan A/B	deg
	CM	$^{\rm C}{}_{\rm m}$	Moment coefficient of forebody	
	CMP	$^{\rm C}$ mp	Moment coefficient of decelerator	
	CMQ	$^{\rm C}$ mq	Damping moment coefficient of forebody	rad ⁻¹
	CMQP	$^{\mathtt{mqp}}$	Damping moment coefficient of decelerator	rad
	CN	c_N .	Normal force coefficient of forebody	
ı				İ

^
Ξ
5
ш
Œ
Э
۵
Ш
Ū
0
č
α
O
ž
ã
Ш
Ε
=
<u> </u>
O
Z
Ш
i.

DATE	February	5,	1973
REV DATE			
REV DATE			

GOODYEAR AEROSPACE

PAGE X
GER. 15853
CODE IDENT NO. 25500

FORTRAN	STANDARD	DESCRIPTION	UNITS
CNP	c_{Np}	Normal force coefficient of decelerator	
CONF	_	Dummy number used to test for the initial configuration of the system	
CONST		Dummy number used to test for completion of trajectory	
СТНЕ	cos θ	cos θ	:
CTHEP	$\cos \theta_{ m p}$	cos θ _p	
D	đ	Aerodynamics reference length for forebody	7 M
DADTHE	<u>d</u> Α dθ	$\frac{d\mathbf{A}}{d\theta}$	m/rad
DADTHP	dA d⊕ p	dA de p	m/rad
DAMP		$C \cdot \mathring{L}_{\mathbf{T}}$	m
DBDTHE	$\frac{dB}{d\theta}$	dB à Đ	m/rad
DBDTHP	$\frac{dB}{d\theta}_{p}$	dB de _p	m/rad
DCG		Distance between the reference center of	
:		the forebody and the C.g. of the decelerat	or m
DD(3,3)		Coefficients of the second derivatives	
		in the equations of motion of the forebody	kg or
DL	DL	Distance between the two bridle con-	
		nection points on the forebody	m
DLP	DLP	Distance between the two suspension	
		line connection points on the	
		decelerator	m

STANDARD

DLS,

REV DATE

FORTRAN

DLS1

GOODYEAR AEROSPACE

Change in length of first suspension

DESCRIPTION

PAGE

GER. 15853

CODE IDENT NO. 25500

UNITS

sec

	·	-	line due to tension in the elastic system	m
	DLS2	DLS ₂	Change in length of second suspension line due to tension in the elastic system	m
	DL1	DL ₁	Change in length of the first bridle line of the forebody due to tension in the elastic system	m
	DL2	DL ₂	Change in length of the second bridle line of the forebody due to tension in the elastic system	m
	DP	d _p	Aerodynamic reference length of the decelerator (same as Ref. dia. D_0)	m
	DT	Δt	Integration time increment	sec
	DTI		Length of inflation time	sec
	DTP		Number which controls the number of integrations between data output	
	DTPC		Control variable in printout routine	
	DTP1	DTPl	<pre>Input constant which controls the number of integrations between data output when DT = DT1</pre>	sec
	DTP2	DTP2	Input constant which controls the number of integrations between data output when DT = DT2	sec
- 1				

Time increment to close thrust valve of

reaction control system on forebody

REF: ENGINEERING PROCEDURE S-017

DTVC

STANDARD

DT1

REV DATE

DT1

FORTRAN

GOODYEAR AEROSPACE

DESCRIPTION

First integration time increment

PAGE X11

GER. 15853

CODE IDENT NO. 25500

UNITS

sec

deg

rad

DT2 DT2 Second integration time increment sec N/m^2 DYPR Dynamic pressure acting on forebody q N/m^2 Dynamic pressure acting on decelerator DYPRP a^{P} Variables representing the forces or EE (3) torque acting on the forebody, shown N or in the equations of motion m-N**EPS** A small positive constant used to check for redundant or inconsistent equations in CROUT subroutine Positive angle defined in Figure 6 **EPSP1** rad $i q^3$ **EPSPlD** Positive angle defined in Figure 6 deq iq^3 Positive angle defined in Figure 6 EPSP2 rad Ep2 Positive angle defined in Figure 6 EPSP2D deq ϵ_{p_2} EPS1 Positive angle defined in Figure 6 rad ٤ : Positive angle defined in Figure 6 **EPSIDE** deg ε, Positive angle defined in Figure 6 EPS2 ε, rad Positive angle defined in Figure 6 EPS2DE deg ε, Positive angle defined in Figure 6 ETAl rad r,

Positive angle defined in Figure 6

Positive angle defined in Figure 6

ETAIDE

ETA2

n,

 $\eta_{_{\mathfrak{D}}}$

REV DATE

GOODYEAR AEROSPACE

PAGE Xiii GER 15853

CODE IDENT NO.

25500

FORTRAN	STANDARD	DESCRIPTION	UNITS
ETA 2 DE		Positive angle defined in Figure 6	deg
FF ['] (3)		Variables representing the accelerations of the decelerator or	m/sec ² rad/sec ²
Ģ	g	Acceleration of gravity of Z	N/sec ²
GAM	Υ	Flight path angle of forebody	rad
GAMDEG	Υ	Flight path angle of forebody	deg
GAMP	$^{\gamma}_{\mathtt{p}}$	Flight path angle of decelerator	rad
GAMPDE	${}^{\gamma}_{\mathbf{p}}$	Flight path angle of decelerator	deg
GR		Acceleration of gravity at sea level	m/sec ²
ннн		Altitude below which trajectory is ended	m
I		Dummy variable used in DO loops	
IERSW		Control number used to check for inconsistant or redundant equations in CROUT subroutine	
III		Control variable used in the iteration section of SUBR	
IIYP (16)		An array of sixteen variables representing the pitch moment of inertia of the deceler corresponding to TTI(16)	_
IY	ıy	Pitch moment of inertia of forebody	kg-m²
IYP	ıyp	Pitch moment of inertia of decelerator	kg-m²
J		Dummy variable used in DO loops	
JJ		Dummy variable used to control output	
JJJ		Dummy variable used to control output	

STANDARD

 $^{\lambda}{}_{0}p$

LAM OPD

K

REV DATE

K

FORTRAN

GOODYEAR AEROSPACE

DESCRIPTION

Spring constant of elastic system

PAGE XIV

GER. 15853

CODE IDENT NO. 25500

UNITS

deg

N/m

KBL	KBL	Longitudinal spring constant of bridle	N/m
квт	KBT	Transverse spring constant of bridle	N/m
кні	KHl	Spring constant of one bridle line (LH1)	N/m
KH2	KH2	Spring constant of second bridle line(LH2)	N/m
KKS (8)	KKS (8)	Spring constant array of dimension 8	N/m
КРНІ	Кф	Spring constant of bridle at a pull-off angle $\boldsymbol{\varphi}$	N/m
KS	KS	Spring constant of both decelerator suspension lines	N/m
KSPKHl	KSPKH1	Spring constant of elastic system when bridle line 2 is slack	N/m
КЅРКН2	KSPKH2	Spring constant of elastic system when bridle line l is slack	N/m
LAM	λ	Angular displacement of forebody's confluence point using the intersection of the forebody's body axes and the	
LAMDEG	λ	Angular displacement of forebody's confluence point using the intersection of the forebody's body axes and the long-	ad leg
LAM0	λ_0	Positive angle defined in Figure 6	ad
LAM ODE	λ_{o}	Positive angle defined in Figure 6	leg
LAM OP	λ _{op}	Positive angle defined in Figure 6	ad
		· · · · · · · · · · · · · · · · · · ·	

Positive angle defined in Figure 6

GOODYEAR AEROSPACE

PAGE XV
GER: 15853
CODE IDENT NO. 25500

	FORTRAN	STANDARD	DESCRIPTION	UNITS
	LAMl	λ	Positive angle defined in Figure 6	rad
	LAMI1DE	λ_1	Positive angle defined in Figure 6	deg
	LAM2	λ	Positive angle defined in Figure 6	rad
	LAM2DE	λ_{2}	Positive angle defined in Figure 6	đeg
	LH1	LH1	Length of first bridle line	m
	LH2	LH2	Length of second bridle line	m
	LSl	LS1	Length of first suspension line	m
	LS2	LS2	Length of second suspension line	m
	LT	$\mathtt{L}_{\mathbf{T}}$	Length of riser line	m
ı	LTD	$\mathring{\mathbb{L}}_{\mathbf{T}}$	$rac{ extsf{dL}_{ extsf{T}}}{ extsf{dt}}$	m/sec
	LTR		Length of riser line if bridle is not slack	m
	LT 0	L _{T 0}	Unstretched length of riser line	m
	L _' O	L ₀	Distance from intersection of forebody's body axes to bridle confluence point	m
	L0P	L _{op}	Distance from c.g. of decelerator to confluence point of suspension lines	m
	Ll	L;	Distance from intersection of forebody's body axis to the negative bridle attach point	m
	L2	L	Distance from intersection of forebody's body axes to the positive bridle attach	111
			point	m
l	М	m	Mass of forebody	kg

E-ILL'10(J-10)(JN-110)
REF: ENGINEERING PROCEDURE S-017

DATE	February	5,	1973
REV DA	TE		
REV DA	TE		

GOODYEAR AEROSPACE

PAGE	xvi		
GER-	15853		
CODE	IDENT NO.	25500	

FORTRAN	STANDARD	DESCRIPTION	UNITS
MA		Added mass of decelerator at T	kg
MMA(16)		An array of 16 variables representing	
		added mass of the decelerator corres-	
		ponding to TTI(16)	kg
MP	m p	Mass of decelerator at T	kg
MU	μ	Pull-off angle of riser from suspension	
		lines	rad
MUD	μ	$\frac{d\mu}{dt}$	rad/sec
MUDEG	μ	Pull-off angle of riser from suspension	
		lines	deg
MUDDEG	μ	$\frac{d\mu}{dt}$	deg/sec
NA		Axial g load on forebody (earth g's)	
NAP		Axial g load on decelerator (earth g's)	
NN		Normal g load on forebody (earth g's)	
NNP		Normal g load on decelerator (earth g's)	·
NU	ν	Positive angle defined in Figure 6	rad
NUDEG	ν	Positive angle defined in Figure 6	deg
NUP	v _p	Positive angle defined in Figure 6	rad
NUPDEG	νp	Positive angle defined in Figure 6	deg
PHI	φ	Pull-off angle of riser from forebody's	
		confluence point	rad
PHIB		Pull-off angle of riser from forebody's	
		confluence point used in iteration	
		section of SUBR	rad

GOODYEAR AEROSPACE

PAGE XVII

GER. 15853

CODE IDENT NO. 25500

FORTRAN	STANDARD	DESCRIPTION	UNITS
PHID	φ̈́	$\frac{d\phi}{dt}$	rad/sec
PHIDDE	.	$\frac{ ext{d}\phi}{ ext{d} ext{t}}$	deg/sec
PHIDEG	φ	Pull-off angle of riser from forebody's confluence point	deg
PHIl	Φ 1	Maximum pull-off angle before bridle line 2 goes slack	rad
PHIlDE	Φ 1	Maximum pull-off angle before bridle line 2 goes slack	deg
PHI2	ф ₂	Maximum pull-off angle before bridle line 1 goes slack	rad
PHI2DE	Φ 2	Maximum pull-off angle before bridle line 1 goes slack	deg
POINT(5)		An array used to transfer data points from the program to a tape	
QTHE	Q _è	Generalized force on θ equation	m-N
QTHEP	$Q_{f qp}$	Generalized force on θ_p equation	m-N
QX	$Q_{\mathbf{x}}$	Generalized force on X equation	N .
QXP	$q_{\mathbf{x}}^{Q}$	Generalized force on X_{p} equation	N.
QZ	$Q_{\mathbf{z}}$	Generalized force on Z equation	N
QZP	$Q_{\mathbf{z}\mathbf{p}}$	Generalized force on z_p equation	N
R		Radius of planet	m
RHO	ρ	Atmospheric density at Z	kg/m³

GOODYEAR AEROSPACE

PAGE XVIII

GER. 15853

CODE IDENT NO. 25500

deg/sec

FORTRAN	STANDARD	DESCRIPTION	UNITS
s	S	Aerodynamic reference area of forebody	m²
sigl	σ	Positive angle defined in Figure 6	rad
SIG1DE	σι	Positive angle defined in Figure 6	deg
SIG2	σ,	Positive angle defined in Figure 6	rad
SIG2DE	σ_z	Positive angle defined in Figure 6	deg
SP	s _p	Reference area of decelerator (S _O)	m²
SPI		Reference area of decelerator during inflation	m ²
SSPI (16)		An array of sixteen variables representing reference area of decelerator corresponding to TTI(16)	m²
STHE	$\sin \theta$	$\sin \theta$	
STHEP	$\sin \theta_{\mathbf{p}}$	$\sin \theta_{\mathbf{p}}$	
Т	t	Flight time	sec
TC		Time at which thrust valve on reaction control system is closed	sec
TDTC		Time at which DT and DTP change value from DTl → DT2 and DTPl → DTP2	sec
TENS		Tension in riser line	N
THE	θ	Pitch angle of forebody	rad
THED	Ö	$\frac{d\theta}{dt}$	rad/sec
THEDDD	θ,	$\frac{d^2\theta}{dt^2}$	deg/sec ²

 $\frac{d\,\theta}{d\,t}$

REF: ENGINEERING PROCEDURE S-017

THEDDE

STANDARD

REV DATE

FORTRAN

GOODYEAR AEROSPACE

DESCRIPTION

PAGE XIX GER. 15853

CODE IDENT NO. 25500

UNITS

THEDEG	θ	Pitch angle of forebody	deg
THEDL		Forebody's pitching rate at which reaction control thruster begins to turn off	rad/sec
THEDU		Forebody's pitching rate at which reaction control thruster is turned on	rad/sec
THED2	• ²	$\left(\frac{d\theta}{dt}\right)^2$	rad²/sec²
THEP	$\theta_{\mathbf{p}}$	Pitch angle of decelerator	rad
THEPD	ė p	$\frac{d\theta}{dt}$	rad/sec
THPDDD	e d p	$\frac{d^2\theta}{dt^2}$	deg/sec²
THPDDE	θp	$\frac{d\theta}{dt}$	deg/sec
THPDEG	θp	Pitch angle of decelerator	deg
TI		Time at which decelerator inflation begins (=0.0)	sec
TIME1		Alphameric input - TIME SEQUENCE OF INFLATION	
TISL	•	Ratio of two time differences used to calculate inflation characteristics of decelerator	
TOR		Maximum value of torque on the forebody produced by the reaction control system	m-N

GOODYEAR AEROSPACE

PAGE XX

GER. 15853

CODE IDENT NO. 25500

FORTRAN STANDARD UNITS DESCRIPTION TORO Value of torque on forebody produced by m-Nreaction control system at T Ratio of time differences used in the TSL interpolation of gust velocity Tension array associated with TTENS (8) N KKS (8) TTG (8) An array of eight variables representing time used in gust interpolation sec TTI (16) An array of 16 variables representing time used in the inflation interpolation sec TTT Time at which trajectory is ended sec V V Total inertial velocity of forebody m/sec m/sec² VD Total inertial acceleration of forebody V_{q} VG Gust velocity m/sec Total inertial velocity of decelerator VΡ m/sec VPD Total inertial acceleration of decelerator m /sec2 VS Speed of sound at Z m/sec VVG(8) An array of eight variables representing gust velocity corresponding to TTG(8) m/sec X X Horizontal displacement of forebody along the X inertial coordinate m

GOODYEAR AEROSPACE

FORTRAN	STANDARD	DESCRIPTION	UNITS
ZBAR	\overline{z}	Lateral displacement of the c.g. of the	
,		forebody from the intersection of the	
		body axes, positive up	m
XD	x	$\frac{dx}{dt}$	m/sec
XDD	· · · X	d^2X	m/sec²
, ADD	Λ	$\frac{d^2X}{dt^2}$	111/300
XP	Y	Horizontal displacement of decelerator	
,	хр	along the Y inertial coordinate	m
XPD	*	dX _p	
AFD	^X p	dt	m/sec
XPDD	x X p	d²X _p	m/sec²
AI DD	^ p	dt²	111/500
Z	Z .	Vertical displacement of forebody along	
-	_	the Z inertial coordinate	m.
XBAR	\overline{X}	Longitudinal displacement of the c.g. of	
		the forebody from the intersection of the	
		body axes, positive toward the nose	m .
ZD	ž	$\frac{dZ}{dt}$	m/sec
		2	
ZDD	Z	d ² Z dt ²	m/sec²
ZP	z _p	Vertical displacement of decelerator	
	•	along the Z inertial coordinate dZ p	m
ZPD	р	ατ	m/sec
ZPDD	z _p	$\frac{d^2 Z_p}{d^2 Z_p}$	m/sec²
	٢	dt²	
ZSL		Ratio of altitude differences used in the	
		interpolation of RHO and VS	
1			

PAGE	1	
GER-	15853	
CODE	IDENT NO.	25500

SECTION I - INTRODUCTION

The objective of this report is to present a computer simulation of the dynamics of two bodies (coupled by an elastic tether) in a plane. This is a simplification of a more general problem (see Ref 5). Both bodies have two translation degrees of freedom and one rotational degree of freedom each; the tether is considered massless and its only function is to apply a constraint to the two bodies such that they remain in the vicinity of each other. A situation in which this simulation would be of use is in a deceleration and stabilization study of a re-entry vehicle by a parachute system. The re-entry vehicle (hereafter denoted as the forebody) is assumed to have arbitrary mass and shape characteristics, but the decelerator is considered to be symmetric. Also included in the report is a listing and explanation of the computer program used to integrate the equations of motion.

PAGE	2	
GER-	15853	
CODE	IDENT NO.	25500

SECTION II - EQUATIONS OF MOTION

1. General

The system is defined as two rigid bodies joined by an elastic tether and free to move in a given plane. Both the forebody and the decelerator have 3 D.O.F. In general the forebody may have an off center c.g., but the decelerator is considered to be symmetric and homogeneous. The elastic tether is simulated by a spring and dashpot in parallel and is attached to the forebody by means of a bridle; the tether is attached to the decelerator at the confluence point of the suspension lines or at the apex of a BALLUTE.

The motion is referenced to a Cartesian coordinate system fixed on a flat, non-rotating planet. Coordinate system X Z is an inertial coordinate system (Figure 1); X_1Z_1 and $X_{R_1}Z_{R_1}$ are body axes for the forebody and decelerator respectively. XZ and X_{R} Z_{R} are fixed to the forebody and decelerator respectively at one point and always remain parallel to the inertial XZ axes. In general, axes XZ and X,Z,intersect at the same point but not at the center of gravity of the forebody. fore, X, Z, are not principal axes in general. However, X_{R} , Z_{R} , are principal axes. \vec{r}_{1} is the vector distance from the intersection of the body axes (longitudinal and lateral axes of the forebody) to the confluence point of the forebody. Because of the harness configuration, this confluence point changes location discretely or continuously during a simulation. This problem will be

PAGE 3
GER. 15853
CODE IDENT NO. 25500

discussed in Section III-2. \vec{r}_2 is the vector distance from the intersection of the body axis of the decelerator (c.g. location) to the confluence point of the decelerator.

FIGURE 1 - COORDINATE SYSTEM

E-ID-18(3-70)(JR-218) REF: ENGINEERING PROCEDURE S-017

PAGE	4		
	15853		
-	IDENIT NO	25500	

2. Kinetic Energy

Consider an arbitray body rotating and translating in a plane (Figure 2). Axes \overline{X} \overline{Z} are inertial axes; axes X_2Z_1 are orthogonal axes fixed to the body and intersect at point 0. Angular velocity, $\dot{\theta}$, has only one component perpendicular to the plane of motion. Linear velocity \vec{V}_0 has components $V_{0_{\mathbf{X}^1}}$ and $V_{0_{\mathbf{Z}^1}}$ along the instantaneous directions of the X_1Z_1 axes respectively. \mathbf{m} is located at the center of mass of the body with position \overline{X} , \overline{Z} relative to the X_1Z_1 axes $(\overline{X}$ and \overline{Z} are considered constant in this problem). \vec{u} is the velocity of the center of mass with respect to the X_1Z_1 axes and it has components $u_{\mathbf{X}^1}$, $u_{\mathbf{Z}^1}$, $u_{\mathbf{Z}^1}$ is the vector from \mathbf{o} to \mathbf{m} .

FIGURE 2 - RIGID BODY WITH 3 D. O. F.

GOODYEAR AEROSPACE

PAGE
GER. 15853
CODE IDENT NO. 25500

REV DATE

The velocity \vec{u} can be expressed as follows:

$$\vec{u} = \vec{\omega} \times \vec{r} = (-\vec{\theta} \vec{j}) \times (\overline{X} \vec{1} + \overline{Z} \vec{k}) \tag{1}$$

It follows immediately from equation (1):

$$\begin{array}{rcl}
\mathbf{u}_{\mathbf{X}^{1}} & = & -\dot{\theta} & \overline{\mathbf{Z}} \\
\mathbf{u}_{\mathbf{Z}^{1}} & = & +\dot{\theta} & \overline{\mathbf{X}}
\end{array}$$
(2)

If the point o has instantaneous velocity components $V_{0\times 1}$ and $V_{0\times 1}$ along X_1 and Z_1 (V_0 represents a linear velocity of the body as a whole), the inertial velocity along X_1 are:

$$V_{X1} = V_{0X1} + u_{X1} = V_{0X1} - \dot{\theta} \overline{Z}$$

$$V_{Z1} = V_{0Z1} + u_{Z1} = V_{0Z1} + \dot{\theta} \overline{X}$$
(3)

The kinetic energy is:

$$T = \frac{1}{2} m \left(V_{x_1}^2 + V_{z_1}^2 \right)$$
 (4)

Expanding equation (4):

$$T = \frac{1}{2} m \left[V_{0X1}^{2} + V_{0Z1}^{2} \right] + \frac{1}{2} m \left[\dot{\theta}^{2} \left(\overline{Z}^{2} + \overline{X}^{2} \right) \right] + m \left[-V_{0X1}^{3} \dot{\theta} \overline{Z} + V_{0Z1}^{3} \dot{\theta} \overline{X} \right]$$
(5)

or

$$T = \frac{1}{2} m V_0^2 + \frac{1}{2} I_Y^{\dot{\theta}^2} + m (-V_{0X_1} \overline{Z} + V_{0Z_1} \overline{X}) \dot{\theta}$$
 (6)

CODE IDENT NO. 25500

REV DATE

Equation (6) applies to both the forebody and the decelerator. However, in the case of the decelerator \overline{X} and \overline{Z} are zero. Therefore, for the decelerator:

$$T_{p} = \frac{1}{2} m_{p} V_{0p}^{2} + \frac{1}{2} I_{yp} \dot{\theta}_{p}^{2}$$
 (7)

Velocities V_{0x1} and V_{0z1} must now be transformed from the body axes coordinate system to the inertial coordinate system. Figure 3 shows the relationship.

$$V_{0\times 1} = \dot{X} \cos \theta + \dot{Z} \sin \theta \tag{8}$$

$$V_{0z1} = -\dot{x} \sin\theta + \dot{z} \cos\theta$$
 (9)

FIGURE 3 - TRANSFORMATION ANGLE

The total kinetic energy of the system is:

$$T_{T} = \frac{1}{2} m (\mathring{X}^{2} + \mathring{Z}^{2}) + \frac{1}{2} m_{p} (\mathring{X}_{p}^{2} + \mathring{Z}_{p}^{2}) + \frac{1}{2} I_{y} \mathring{\theta}^{2} + \frac{1}{2} I_{yp} \mathring{\theta}_{p}^{2}$$

$$+ m \mathring{\theta} [-\mathring{X} (\overline{Z} \cos \theta + \overline{X} \sin \theta) - \mathring{Z} (\overline{Z} \sin \theta - \overline{X} \cos \theta)] \qquad (10)$$

GOODYEAR AEROSPACE

PAGE 7
GER. 15853
CODE IDENT NO. 25500

3. Potential Energy

The potential energy in the system is due to the weight of the two bodies and to the elasticity in the tether.

$$V_{T} = mg[Z + \overline{X} \sin \theta + \overline{Z} \cos \theta] + m_{p}g Z_{p} + \frac{1}{2} K(L_{T} - L_{T0})^{2}$$
 (11)

 $\rm L_{T^{\,0}}$ is the unstretched length of the tether and $\rm L_{T}$ is the stretched length of the tether given by the geometry of the system. Referring to Figure 1:

$$L_{m} = |\vec{P}_{2} - \vec{P}_{1}| \qquad (12)$$

 \vec{P}_1 and \vec{P}_2 are vectors from the inertial coordinate system to the confluence points of the forebody and decelerator respectively. For the decelerator:

$$\vec{P}_2 = X_p \vec{i} + Z_p \vec{k} + \vec{r}_2$$
 (13)

$$r_{2} = \overline{A}_{p} i_{p_{1}} + \overline{B}_{p} k_{p_{1}}$$
 (14)

$$\vec{i}_{p1} = \vec{i} \cos \theta_p + \vec{k} \sin \theta_p$$
 (15)

$$\vec{k}_{pi} = -\vec{i} \sin \theta_p + \vec{k} \cos \theta_p \tag{16}$$

$$\vec{P}_{2} = \vec{i} (X_{p} + \overline{A}_{p} \cos \theta_{p} - \overline{B}_{p} \sin \theta_{p}) + \vec{k} (Z_{p} + \overline{A}_{p} \sin \theta_{p} + \overline{B}_{p} \cos \theta_{p})$$
(17)

GOODYEAR AEROSPACE

PAGE
GER. 15853
CODE IDENT NO. 25500

For the forebody:

$$\vec{P}_1 = \vec{x} + \vec{i} + \vec{z} + \vec{k} + \vec{r}_1$$
 (18)

$$\vec{r}_1 = \vec{A} \vec{i}_1 + \vec{B} \vec{k}_1 \tag{19}$$

$$\vec{1}_1 = \vec{1} \cos \theta + \vec{k} \sin \theta \tag{20}$$

$$\vec{k}_1 = -\vec{i} \sin \theta + \vec{k} \cos \theta \tag{21}$$

$$\vec{P}_1 = \vec{i}(X + \overline{A} \cos \theta - \overline{B} \sin \theta) + \vec{k}(Z + \overline{A} \sin \theta + \overline{B} \cos \theta)$$

$$L_{\mathbf{m}} = (L_{\mathbf{m}} \cdot L_{\mathbf{m}})^{\frac{1}{2}} \tag{23}$$

$$L_{T} = [(X_{p} + \overline{A}_{p} \cos \theta_{p} - \overline{B}_{p} \sin \theta_{p} - X - \overline{A} \cos \theta]$$

+
$$\overline{B}$$
 sin θ)²+(Z_p + \overline{A}_p sin θ_p + \overline{B}_p cos θ_p

$$-Z - \overline{A} \sin \theta - \overline{B} \cos \theta)^{2}$$
 (24)

Define the variables A and B such that:

$$L_{T} = [A^{2} + B^{2}]^{\frac{1}{2}}$$
 (25)

The constraint equation is:

$$\overline{g} = [A^2 + B^2]^{\frac{1}{2}} - L_T = 0$$
 (26)

GE _

GER. 15853

CODE IDENT NO. 25500

Derivatives of A and B with respect to the coordinates are:

$$\frac{\delta A}{\delta X} = -1 \qquad \frac{\delta B}{\delta Z} = -1$$

$$\frac{\delta A}{\delta X_{p}} = 1 \qquad \frac{\delta B}{\delta Z_{p}} = 1$$
(27)

$$\frac{\delta A}{\delta Z} = \frac{\delta A}{\delta Z_{p}} = \frac{\delta B}{\delta X} = \frac{\delta B}{\delta X_{p}} = 0$$
 (28)

$$\frac{\delta A}{\delta \theta} = \overline{A} \sin \theta + \overline{B} \cos \theta \tag{29}$$

$$\frac{\delta A}{\delta \theta_{p}} = -\overline{A}_{p} \sin \theta_{p} - \overline{B}_{p} \cos \theta_{p}$$
 (30)

$$\frac{\delta B}{\delta \theta} = -\overline{A} \cos \theta + \overline{B} \sin \theta \tag{31}$$

$$\frac{\delta B}{\delta \theta_{p}} = \overline{A}_{p} \cos \theta_{p} - \overline{B}_{p} \sin \theta_{p}$$
 (32)

4. Rayleigh's Dissipation Function (See Ref 1 and 2)

Frictional forces which are proportional to the velocity may be derived in terms of a function defined as

$$\int_{1}^{\infty} = \frac{1}{2} \sum_{i=1}^{m} C_{i} \dot{q}_{i}^{2}$$
(33)

where the summation is over all the degree of freedom. For this problem, Raleigh damping is considered only in the tether.

$$\mathcal{J} = \frac{1}{2} C \dot{\mathbf{L}}_{\mathrm{T}}^{2} \tag{34}$$

PAGE 10

GER. 15853

CODE IDENT NO. 25500

REV DATE

5. Lagrange's Equation

Lagrange's equation for non-conservative forces, holonomic, scleronomic constraint, and Rayleigh's dissipation function can be written

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{\delta L}{\delta \dot{\mathbf{q}}_{i}} \right) - \frac{\delta L}{\delta \mathbf{q}_{i}} - \lambda \frac{\delta \overline{\mathbf{g}}}{\delta \mathbf{q}_{i}} + \frac{\delta \mathcal{J}}{\delta \dot{\mathbf{q}}_{i}} = Q_{i} \left(\text{See Ref 1 & 2} \right) \quad (35)$$

In equation (35), the term λ $\frac{\delta \overline{g}}{\delta q_1}$ expresses the generalized force exerted by the tether on the "i"th degree of freedom. The term $\frac{\delta \overline{\mathcal{J}}}{\delta q_1}$ is the damping in the spring and Q_1 is the non-conservative aerodynamic and reaction control forces.

The Lagrangian (L) is equal to the total kinetic energy of the system minus the total potential energy of the system.

$$L = T_{\mathbf{T}} - V_{\mathbf{T}} \tag{36}$$

Substituting equation (10) and (11) into equation (36), the Lagrangian can be written as a function of the generalized coordinates, $(X, Z, \theta, X_p, Z_p, \theta_p)$.

$$L = \frac{1}{2} m (\mathring{X}^2 + \mathring{Z}^2) + \frac{1}{2} m_p (\mathring{X}_p^2 + \mathring{Z}_p^2) + \frac{1}{2} I_y \mathring{\theta}^2 + \frac{1}{2} I_{yp} \mathring{\theta}_p^2$$

$$+ m \mathring{\theta} [-\mathring{X}(\overline{Z} \cos \theta + \overline{X} \sin \theta) - \mathring{Z}(\overline{Z} \sin \theta - \overline{X} \cos \theta)]$$

-
$$mg[Z + \overline{X} \sin \theta + \overline{Z} \cos \theta] - m_p g Z_p - \frac{1}{2} K(L_T - L_{T_0})^2$$
 (37)

PAGE 11
GER- 15853
CODE IDENT NO. 25500

REV DATE

Now operate on equation (37) with equation (35).

X equation

$$\frac{\delta L}{\delta \dot{x}} = m \dot{x} - m \dot{\theta} (\overline{Z} \cos \theta + \overline{X} \sin \theta)$$
 (38)

$$\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{x}} \right) = m \dot{x} - m \dot{\theta} (\overline{Z} \cos \theta + \overline{X} \sin \theta)$$

$$- m \dot{\theta}^{2} (-\overline{Z} \sin \theta + \overline{X} \cos \theta)$$
 (39)

$$\frac{\delta L}{\delta X} = 0 \tag{40}$$

$$\frac{\delta \overline{Q}}{\delta X} = \left[A \frac{\delta A}{\delta X} + B \frac{\delta B}{\delta X} \right] / L_{T} = - \frac{A}{L_{T}}$$
 (41)

$$\frac{\delta \mathcal{L}}{\delta \mathbf{v}} = 0 \tag{42}$$

Z_equation

$$\frac{\delta L}{\delta \dot{z}} = m \dot{z} - m \dot{\theta} (\overline{Z} \sin \theta - \overline{X} \cos \theta) \tag{43}$$

$$\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{z}} \right) = m \dot{z} - m \dot{\theta} (\overline{Z} \sin \theta - \overline{X} \cos \theta)$$

$$- m \dot{\theta}^{2} (\overline{Z} \cos \theta + \overline{X} \sin \theta)$$
 (44)

$$\frac{\delta L}{\delta Z} = - mg \tag{45}$$

GOODYEAR AEROSPACE

12 PAGE 15853

CODE IDENT NO.

25500

(46)

 $\frac{\delta \overline{g}}{\delta Z}$ = $[A \frac{\delta A}{\delta Z} + B \frac{\delta B}{\delta Z}] / L_T$ = $-\frac{B}{L_T}$

$$\frac{\delta \mathcal{T}}{\delta \dot{Z}} = 0 \tag{47}$$

X_p Equation

$$\frac{\delta L}{\delta \bar{X}_{p}} = m_{p} \dot{X}_{p} \tag{48}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\delta L}{\delta \dot{\mathbf{X}}_{\mathrm{p}}} \right) = m_{\mathrm{p}} \dot{\mathbf{X}}_{\mathrm{p}}^{\bullet} \tag{49}$$

$$\frac{\delta L}{\delta X_{p}} = 0 \tag{50}$$

$$\frac{\delta \overline{g}}{\delta X_{p}} = \left[A \frac{\delta B}{\delta X_{p}} + B \frac{\delta B}{\delta X_{p}}\right] / L_{T} = \frac{A}{L_{T}}.$$
 (51)

$$\frac{\delta \mathcal{J}}{\delta \dot{\mathbf{x}}_{\mathbf{p}}} = 0 \tag{52}$$

 $\mathbf{Z}_{\mathbf{p}}$ Equation

$$\frac{\delta L}{\delta \dot{z}_{p}} = m_{p} \dot{z}_{p} \tag{53}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\delta L}{\delta \dot{z}_{\mathrm{p}}} \right) = m_{\mathrm{p}} \dot{z}_{\mathrm{p}}^{*} \tag{54}$$

AGE 13

CODE IDENT NO. 25500

REV DATE ____

$$\frac{\delta L}{\delta Z_{p}} = -m_{p} g \tag{55}$$

$$\frac{\delta \overline{g}}{\delta Z_{p}} = \left[A \frac{\delta A}{\delta Z_{p}} + B \frac{\delta B}{\delta Z_{p}}\right] / L_{T} = \frac{B}{L_{T}}$$
 (56)

$$\frac{\delta \mathcal{I}}{\delta \dot{z}_{p}} = 0 \tag{57}$$

θ Equation

$$\frac{\delta L}{\delta \dot{\theta}} = I_{Y} \dot{\theta} - m[\dot{X}(\overline{Z} \cos \theta + \overline{X} \sin \theta) + \dot{Z}(\overline{Z} \sin \theta - \overline{X} \cos \theta)]$$

(58)

$$\frac{d}{dt} \left(\frac{\delta L}{\delta \dot{\theta}} \right) = I_{\underline{Y}} \dot{\theta} - m[\ddot{X}(\overline{Z} \cos \theta + \overline{X} \sin \theta) + \dot{Z}(\overline{Z} \sin \theta - \overline{X} \cos \theta)] + \dot{X} \dot{\theta}(-\overline{Z} \sin \theta + \overline{X} \cos \theta) + \dot{Z} \dot{\theta}(\overline{Z} \cos \theta + \overline{X} \sin \theta)]$$

$$(59)$$

$$\frac{\delta L}{\delta \theta} = -m\dot{\theta} \left[\dot{X} \left(-\overline{Z} \sin \theta + \overline{X} \cos \theta \right) + \dot{Z} \left(\overline{Z} \cos \theta + \overline{X} \sin \theta \right) \right]$$

$$-mg \left[\overline{X} \cos \theta - \overline{Z} \sin \theta \right] \tag{60}$$

$$\frac{\delta \overline{g}}{\delta \theta} = \left[A \frac{\delta A}{\delta \theta} + B \frac{\delta B}{\delta \theta} \right] / L_{T}$$
 (61)

$$\frac{\delta \mathcal{F}}{\delta \dot{\theta}} = 0 \tag{62}$$

3E 14 R. 15853

CODE IDENT NO. 25500

θ_B Equation

$$\frac{\delta L}{\delta \mathring{\theta}_{p}} = I_{yp} \mathring{\theta}_{p} \tag{63}$$

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{\delta L}{\delta \dot{\theta}_{\mathrm{p}}} = I_{\mathrm{yp}} \dot{\theta}_{\mathrm{p}}^{\dagger} \right)$$
 (64)

$$\frac{\delta L}{\delta \theta_{\rm p}} = 0 \tag{65}$$

$$\frac{\delta \overline{g}}{\delta \theta_{p}} = \left[A \frac{\delta A}{\delta \theta_{p}} + B \frac{\delta B}{\delta \theta_{p}} \right] / L_{T}$$
 (66)

$$\frac{\delta \mathcal{Z}}{\delta \dot{\theta}_{\mathbf{p}}} = 0 \tag{67}$$

 $\mathbf{L_{T}}$ Equation

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{\delta L}{\delta \hat{L}_{\mathrm{T}}} \right) = 0 \tag{68}$$

$$\frac{\delta L}{\delta L_{T}} = -K(L_{T} - L_{T_{0}})$$
 (69)

$$\frac{\delta \overline{g}}{\delta L_{T}} = -1 \tag{70}$$

$$\frac{\delta \mathcal{I}}{\delta \dot{\mathbf{L}}_{\mathrm{T}}} = \mathbf{C} \dot{\mathbf{L}}_{\mathrm{T}} \tag{71}$$

PAGE 15 15 853 CODE IDENT NO. 25500

If equations (68) to (71) are substituted into equation (35), the resulting equation is:

$$K(L_{T} - L_{T_0}) + \lambda + C \dot{L}_{T} = 0$$
 (72)

$$\lambda = -[K(L_{T} - L_{T_0}) + C \dot{L}_{T}]$$
 (73)

The variable λ can now be substituted into equation (35) when writing out the differential equations of motion. \dot{L}_{m} is found by differentiating equation (25)

$$\dot{L}_{T} = \frac{d}{dt} [A^{2} + B^{2}]^{\frac{1}{2}} = \frac{A \dot{A} + B \dot{B}}{L_{T}}$$
 (74)

$$A = X_{p} + \overline{A}_{p} \cos \theta_{p} - \overline{B}_{p} \sin \theta_{p} - X - \overline{A} \cos \theta + \overline{B} \sin \theta$$
(75)

$$\ddot{A} = \dot{x}_p - \overline{A}_p \dot{\theta}_p \sin \dot{\theta}_p - \overline{B}_p \dot{\theta}_p \cos \theta_p - \dot{x}$$

$$+ \overline{A}\dot{\theta}\sin\theta + \overline{B}\dot{\theta}\cos\theta$$
 (76)

$$B = Z_{p} + \overline{A}_{p} \sin \theta_{p} + \overline{B}_{p} \cos \theta_{p} - Z - \overline{A} \sin \theta - \overline{B} \cos \theta$$
 (77)

$$\dot{B} = \dot{z}_{p} + \overline{A}_{p} \dot{\theta}_{p} \cos \theta_{p} - \overline{B}_{p} \dot{\theta}_{p} \sin \theta_{p} - \dot{z} - \overline{A} \dot{\theta} \cos \theta$$

$$+ \overline{B} \dot{\theta} \sin \theta \tag{78}$$

Hence λ can be expressed as a function of the generalized coordinates and their time derivative. The six equations of motion are now expressed as follows:

1) X Equation:

$$m\mathring{X}^{\bullet} - m(\overline{Z} \cos \theta + \overline{X} \sin \theta)\mathring{\theta} = m(-\overline{Z} \sin \theta + \overline{X} \cos \theta)\mathring{\theta}^{2}$$

$$+ [K(L_{T} - L_{T0}) + C\mathring{L}_{T}][\frac{A}{L_{T}}] + Q_{X}$$
(79)

2) Z Equation:

$$m\ddot{Z}^{\bullet} - m(\overline{Z} \sin \theta - \overline{X} \cos \theta)\dot{\theta}^{\bullet} = m(\overline{Z} \cos \theta + \overline{X} \sin \theta)\dot{\theta}^{2} - mg$$

$$+[K(L_{T} - L_{T^{0}}) + C\dot{L}_{T}] \left[\frac{B}{L_{T}}\right] + Q_{Z}$$
(80)

3) X_p Equation

$$m_{p} \overset{*}{X}_{p}^{*} = -[K(L_{T} - L_{T0}) + C \overset{*}{L}_{T}] [\frac{A}{L_{T}}] + Q_{xp}$$
 (81)

4) Z_p Equation

$$m_{p} \overset{\circ}{Z}_{p}^{\circ} = -m_{p} g - [K(L_{T} - L_{T_{0}}) + C \overset{\bullet}{L}_{T}] [\frac{B}{L_{m}}] + Q_{Zp}$$
 (82)

5) θ Equation:

$$I_{Y}^{\theta^{\bullet}} - m(\overline{Z} \cos \theta + \overline{X} \sin \theta) \dot{X} - m(\overline{Z} \sin \theta - \overline{X} \cos \theta) \dot{Z} =$$

$$-mg[\overline{X} \cos \theta - \overline{Z} \sin \theta] - [K(L_{T} - L_{T0})]$$

$$+ C \dot{L}_{T}^{\bullet} [A \frac{\delta A}{\delta \theta} + B \frac{\delta B}{\delta \theta}] / L_{T} + Q_{\theta}$$
(83)

6) θ_{p} Equation

$$I_{yp} \stackrel{\bullet}{\theta}_{p} = -[K(L_{T} - L_{T0}) + C \stackrel{\bullet}{L}_{T}][A \frac{\delta A}{\delta \theta_{p}} + B \frac{\delta B}{\delta \theta_{p}}]/L_{T} + Q_{\theta p}$$
(84)

6. Non-Conservative Generalized Forces

a) Forebody Aerodynamics:

The aerodynamics of the forebody are given with respect to the body axes as shown in Figure 4.

FIGURE 4 - AERODYNAMICS OF FOREBODY

$$Q_{x} = -qS(C_{A} \cos \theta + C_{N} \sin \theta)$$
 (85)

$$Q_{z} = qS(C_{N} \cos \theta - C_{A} \sin \theta)$$
 (86)

The generalized force \mathbf{Q}_{θ} is given later in equation (90).

b) Decelerator Aerodynamics:

The aerodynamics of the decelerator are given with respect to the body axes (Figure 5).

FIGURE 5 - AERODYNAMICS OF DECELERATOR

$$Q_{xp} = -q_p S_p (C_{AP} \cos \theta_p + C_{NP} \sin \theta_p)$$
 (87)

$$Q_{zp} = q_p S_p (C_{NP} \cos \theta_p - C_{AP} \sin \theta_p)$$
 (88)

$$Q_{\theta p} = q_p S_p d_p [C_{mp} + C_{m\theta p} (\frac{\theta p^d p}{V_p})]$$
 (89)

GOODYEAR AEROSPACE

PAGE 19
GER. 15853
CODE IDENT NO. 25500

c) Reaction Control System:

A reaction control system may be used to stabilize the forebody's pitching motions. This is accomplished by checking the pitching rate of the forebody. If the absolute value of the rate is above a given upper value, a restoring torque (TORQ) is applied to the forebody. This restoring torque is maintained until a given lower value of pitching rate is reached. The torque is then decreased to zero over a finite time increment (DTVC). The generalized force Q_{θ} is now written as:

$$Q_{\alpha} = q S d \left[C_{m} + C_{m\theta} \cdot \left(\frac{\dot{\theta} d}{V}\right)\right] + TORQ$$
 (90)

7. Solution of Equations of Motion

Because the center of mass of the forebody is not located at the intersection of the longitudinal and vertical axes (point 0, Figure 2), the equation of motion of the forebody are coupled in the second derivatives. These equations ((79), (80), (83) have the following form:

$$D_{11} \overset{\bullet}{X} + D_{12} \overset{\bullet}{Z} + D_{13} \overset{\bullet}{\theta} = E_{1}$$

$$D_{21} \overset{\bullet}{X} + D_{22} \overset{\bullet}{Z} + D_{23} \overset{\bullet}{\theta} = E_{2}$$

$$D_{31} \overset{\bullet}{X} + D_{32} \overset{\bullet}{Z} + D_{33} \overset{\bullet}{\theta} = E_{3}$$
(91)

Before numerically integrating equation (91), they are separated using Crout reduction (Refer to Ref 3). The final form will be:

$$\dot{q}_{i} = f_{i}(x, z, \theta, x_{p}, z_{p}, \theta_{p}, \dot{x}, \dot{z}, \dot{\theta}, \dot{x}_{p}, \dot{z}_{p}, \dot{\theta}_{p}, t)$$

$$i = 1, 2, 3 \tag{92}$$

The equations of motion for the decelerator are not coupled in the second derivative and can be written in the form:

The six second order differential equations of motion, (92) and (93), can now be numerically integrated using 4th order Runge-Kutta. (Re Ref. 4).

PAGE 21

GER- 15853

CODE IDENT NO. 25500

REV DATE CORP

SECTION III

APPLICATION OF THE EQUATIONS OF MOTION TO THE ANALYSIS OF A ROCKET BOOSTER RECOVERED BY A PARACHUTE

(Ref. Figure 6)

1. General

The mathematical model defined up to this point applies to a general system. Except for the tether line, the entire system is rigid. In actual application the structure between either body reference point and the appropriate tether end is not rigid. In other words there is an elastic structure between the end of the tether and the referenced body. The tether is attached to the forebody by an elastic bridle, and to the aft body by the elastic suspension lines of a parachute. An effective system spring constant must be used to adequately account for the effect the suspension lines and bridle have on the system spring constant.

The bridle consists of two lines (LH1, LH2) attached to points (1 and 2) located on the forebody. The other ends of lines LH1 and LH2 attach to the tether. An important fact to remember is that the lines can't carry a compressive load and one bridle line will go slack if the tether tension load is directed in such a direction as to lie outside σ_1 or σ_2 . Therefore, when the tether tension load is directed along one of the bridle lines or outside σ_1 or σ_2 , the opposite line goes slack and the tether and the line become one longer tether connecting the aft body to the forebody at point 1 or 2 depending upon which bridle line is carrying the load. The suspension lines in the

'n
ш
202
⊃
Ω
Ш
O
200
œ
O.
S N
Ż
Ξ
œ
EE
7
=
Z
z
Ш
Ŀ
ш
œ

DATE	February	5,	1973
REV DA	TE		
REV DA	TE		

22
PAGE
GER. 15853
CODE IDENT NO. 25500

parachute (aft body) are resolved into two lines (LS1 and LS2). Each line has a spring constant (KS) which is used together with the bridle spring constant (K\$\phi\$, see Equation 133) in calculating an effective system spring constant (K) for the dynamic two body system. It should be noted here that the computer program from which this program has been adapted was written for the Viking program. This system had a very short rigid tether, the elastic effects of which were included in the parachute suspension line spring constant (KS). Therefore, one half the tether spring constant should be added in series with one of the parachute suspension line spring constants, and the resultant spring constant is the spring constant KS used in this computer program.

The parachute shown in Figure 9 can be made elastic or rigid by removing or adding the "C" in the comment column of the card CALL SUSPEN in the subroutine, SUBR. It has been found that a rigid parachute representation results in a much faster running program, with little change in tether tension when compared to a system with an elastic parachute. Therefore, this program calls for the rigid parachute simulation; and if desired it can be made elastic as discussed above.

SYSTEM GEOMETRY FIG. 6

PAGE 24

GER. 15853 CODE IDENT NO.

25500

FIGURE 7 - SCHEMATIC OF 2 BODY SYSTEM

From Figure 7, the following relationships exist:

$$\chi = \tan^{-1} \frac{A}{B}$$
 (94)

$$\mu = -\frac{\pi}{2} - \theta_p - \nu_p - \chi \tag{95}$$

$$\phi = -\theta - \lambda + \frac{\pi}{2} - \chi \tag{96}$$

PREPARED	GOODYEAR AEROSPACE	PAGE 25	PAGE 25 MODEL GER 15853			
DATE February 5, 197	GORPORATION	GER				
REV DATE		CODE IDENT	25500			
			i .			
	₹					
	**					
	Ers V					
•			ī			
	LHZ KHZ		•			
	1	•				
	\tag{\tau_{\tau}}					
20						
BRIDLE GE	\ \					
AND LOADS	\	, \ '				
FIG 8	<u>, </u>	٨٥١	į			
	ty.	P				
	. * \	•	×			
		\	1			
•	`	\ \				
·						
		\ \	1			
		1, /				
)				
		\				
		\	i			
		1				
			;			
		•				
arcupa 0	DOINE CEOMEMON AND LOADS					
rigure 8 -	BRIDLE GEOMETRY AND LOADS		The second secon			
			, days he seems			

REF. ENGRG PROCEDURE S-017

PAGE 26
GER- 15172
CODE IDENT NO. 25500

2. Bridle Geometry

At any given time the bridle schematic will be as shown in Figure 6. The complete geometry of the system, shown in Figure 6 can be defined by inputting six variables. These variables are LH1, LH2, \overline{A}_1 , \overline{A}_2 , \overline{B}_1 , \overline{B}_2 . LH1, and LH2 are always positive and represent the lengths of the two bridle lines of the bridle. \overline{A}_1 and \overline{A}_2 are positive towards the nose of the vehicle. They represent the distance to the location of the bridle attach points along the centerline. \overline{B}_1 and \overline{B}_2 represent distances to the bridle attach points along the lateral axis of the vehicle. With these six values the geometry of Figure 6 is defined through the following equations:

$$L_1 = \sqrt{\overline{A}_1^2 + \overline{B}_1^2} \tag{97}$$

$$L_2 = \sqrt{\overline{A}_2^2 + \overline{B}_2^2} \tag{98}$$

$$DL = \sqrt{(\overline{B}_2 - \overline{B}_1)^2 + (\overline{A}_2 - \overline{A}_1)^2}$$
 (99)

$$\beta_{1} = \cos^{-1}[(L_{1}^{2} + DL^{2} - L_{2}^{2})/(2*L_{1}*DL)]$$
 (100)

E-ID-18(3-70)(JR-218)
REF: ENGINEERING PROCEDURE S-017

ORPORATION

GER- 15853
CODE IDENT NO. 25500

REV DATE

	,		
β ₂ =	cos [(L, 2	+ $DL^2 - L_1^2$)/(2*L ₂ *DL)	(101)

$$\varepsilon_1 = \cos^{-1} [(LH1^2 + DL^2 - LH2^2)/(2*LH1*DL)]$$
 (102)

$$\varepsilon_2 = \cos^{-1} [(LH2^2 + DL^2 - LH1^2)/(2*LH2*DL)]$$
 (103)

$$\eta_1 = \pi - \beta_1 - \epsilon_1 \tag{104}$$

$$\eta_2 = \pi \quad \beta_2 - \epsilon_2 \tag{105}$$

$$L_0 = [L_1^2 + LH1^2 - 2*LH1*L_1*cos (\beta_1 + \epsilon_1)]^{\frac{1}{2}}$$
 (106)

$$\lambda_2 = \tan^{-1}(\overline{B}_2/\overline{A}_2)$$
 (107)

$$\lambda_1 = \tan^{-1}(\overline{B}_1/\overline{A}_1) \tag{108}$$

$$\lambda_0 = \lambda_2 + \cos^{-1}[(L_2^2 + L_0^2 - LH2^2)/(2*L_2*L_0)]$$
 (109)

$$\sigma_1 = \pi - \beta_1 - \epsilon_1 - (\lambda_1 - \lambda_0) \tag{110}$$

$$\sigma_2 = \pi - \beta_2 - \epsilon_2 - (\lambda_0 - \lambda_2) \tag{111}$$

$$v = \lambda_0 \tag{112}$$

$$\overline{A}_0 = L_0 * \cos \nu \tag{113}$$

$$\overline{B}_0 = L_0 * \sin \nu \tag{114}$$

PAGE 28
GER. 15853
CODE IDENT NO. 25500

REV DATE _______

Equations (97) to (114) are used to find the point which the tension is acting through. If ϕ is greater than σ_1 , the confluence point of the forebody is located at $(\overline{A}_1 \ \overline{B}_1)$; if ϕ is less than σ_2 , the confluence point is at $(\overline{A}_2, \overline{B}_2)$. Otherwise the confluence point is at $(\overline{A}_0, \overline{B}_0)$. However, $(\overline{A}_0, \overline{B}_0)$ is a variable depending on LH1 and LH2 which depend on the tension and the angle ϕ . The following method is used to find LH1 and LH2 when each leg of the bridle is under tension. Figure 8 shows a schematic of the forebody bridle.

The tension loads in lines LH1 and LH2 are given by Equations 115 and 116.

$$T_{1} = TENS \left[-\frac{\sin\phi \cos\sigma_{2}}{\sin(\sigma_{1} + \sigma_{2})} + \frac{\cos\phi \sin\sigma_{2}}{\sin(\sigma_{1} + \sigma_{2})} \right]$$
 (115)

$$T_{2} = TENS \left[\frac{\sin \phi \cos \sigma_{1}}{\sin (\sigma_{1} + \sigma_{2})} + \frac{\cos \phi \sin \sigma_{1}}{\sin (\sigma_{1} + \sigma_{2})} \right]$$
 (116)

The change in lengths of bridle lines LH1 and LH2 from unstrained length is given by Equations 117 and 118.

$$DL = T_1/KH1$$
 (117)

$$DL = T_2/KH2$$
 (118)

The bridle spring constants, KBT and KBL in the directions of forces TT and TL are given by Equations 119 and 120.

$$KBT = \left[\left\{\frac{\cos \sigma_2}{\sin \left(\sigma_1 + \sigma_2\right)}\right\}^2 \cdot \frac{1}{KH1} + \left\{\frac{\cos \sigma_1}{\sin \left(\sigma_1 + \sigma_2\right)}\right\}^2 \cdot \frac{1}{KH2}\right]^{-1}$$
(119)

$$KBL = \left[\left\{\frac{\sin \sigma_2}{\sin (\sigma_1 + \sigma_2)}\right\}^2 \cdot \frac{1}{KH1} + \left\{\frac{\sin \sigma_1}{\sin (\sigma_1 + \sigma_2)}\right\}^2 \cdot \frac{1}{KH2}\right]^{-1} \quad (120)$$

GOODYEAR AEROSPACE

PAGE 29
GER- 15853
CODE IDENT NO. 25500

Now using equations 117 and 118

$$LH1 = LH1 + DL, (121)$$

$$LH2 = LH2 + DL_2 \tag{122}$$

If the value of LHl and LH2 are now used in equations (97) to (114) the confluence point will be translated and \overline{A}_0 and \overline{B}_0 will be used to give new values of A, B, ϕ , μ , etc. Now the process is repeated. This is done until ϕ_1 - $\phi_{1-1} <$.5 degree. If the iteration does not converge for i <10 , the program will write out "ITERATION DOES NOT CONVERGE" and will continue on. It has been observed that during some computer runs the iteration did not converge but continued on to the next step without any noticeable effect to the results. Usually, if the iteration does not converge, a smaller Δt is needed. This of course cost more time on the computer.

CODE	IDENT NO	25500
GER-	15853	
PAGE	30	

REV DATE REV DATE

Parachute Suspension Geometry 3.

A typical parachute has many suspension lines. To include the effect of each line separately is no small task. Consequently, the suspension system is assumed to be two lines as shown in Figure 9.

FIGURE 9 PARACHUTE GEOMETRY

PAGE 31
GER 15853
CODE IDENT NO. 25500

REV DATE _____

Since the parachute is symmetric, three quantities will define its geometry (DLP, LS1, LS2). The following equations result from this input:

$$\varepsilon_{\rm pl} = \cos^{-1}[(DLP^2 + LS1^2 - LS2^2)/2*DLP*LS1)]$$
 (123)

$$\varepsilon_{D^2} = \cos^{-1}[(DLP^2 + LS2^2 - LS1^2)/2*DLP*LS2)]$$
 (124)

$$L_{0p} = [(\frac{DLP}{2})^2 + LS1^2 - DLP*LS1*cos \epsilon_{p1}]^{\frac{1}{2}}$$
 (125)

$$v_{\rm p} = \cos^{-1} \left[\left(\left(\frac{\rm DLP}{2} \right)^2 + L_{\rm 0p}^2 - \rm LS2^2 \right) / \left(\rm DLP * L_{\rm 0p} \right) \right] - \frac{\pi}{2}$$
 (126)

$$\overline{A}_{p} = L_{0p} \cos v_{p} \tag{127}$$

$$\overline{B}_{p} = L_{op} \sin \nu_{p} \tag{128}$$

Like the bridle confluence point the suspension lines confluence point can also translate. Summing forces in two orthogonal directions, and assuming the system to be in equilibrium, yields

TENS*cos(
$$\mu + \nu_p$$
) = DLS₁*KS sin ϵ_{p^1} + DLS₂*KS sin ϵ_{p^2} (129)

TENS*sin(
$$\mu + \nu_p$$
)=-DLS₁*KS cos $\epsilon_{p_1} + DLS_2$ *KS cos ϵ_{p_2} (130)

PAGE 32
GER. 15853
CODE IDENT NO. 25500

REV DATE ______

Expressing (127) and 128) in matrix form, inverting and solving for DLS, and DLS, gives:

$$TENS \begin{cases} \cos (\mu + \nu_{p}) \\ \sin (\mu + \nu_{p}) \end{cases} = KS \begin{bmatrix} \sin \varepsilon_{p_{1}} & \sin \varepsilon_{p_{2}} \\ -\cos \varepsilon_{p_{1}} & \cos \varepsilon_{p_{2}} \end{bmatrix} \begin{cases} DLS_{1} \\ DLS_{2} \end{cases}$$
(131)

$$\begin{cases}
DLS_{1} \\
DLS_{2}
\end{cases} = \frac{TENS}{KS*\sin(\varepsilon_{p_{1}} + \varepsilon_{p_{2}})} \begin{bmatrix}
\cos \varepsilon_{p_{1}} & -\sin \varepsilon_{p_{1}} \\
\cos \varepsilon_{p_{1}} & \sin \varepsilon_{p_{1}}
\end{bmatrix} \begin{cases}
\cos(\mu + \nu_{p}) \\
\sin(\mu + \nu_{p})
\end{cases} (132)$$

Using equation (130) LS1 and LS2 are calculated.

$$LS1 = LS1 + DLS, (133)$$

$$LS2 = LS2 + DLS_2$$
 (134)

If these values are used in equations (123) to (128) the confluence point will be translated as shown in Figure 9, and new values of \overline{A}_p and \overline{B}_p will be used in the equation of motion. Unlike the bridle it is assumed that neither side of the suspension lines will become slack. This motion of the suspension line confluence point is also included in the iteration process mentioned at the end of the preceding Section III-2.

It is possible to allow each suspension line to stretch independently, thereby providing a better simulation. To allow the parachute to change geometry under load, remove the "C" from the comment column of the card CALL SUSPEN in the subroutine SUBR. This allows entry to SUSPEN and provides for stretch in the suspension lines.

REV DATE REV DATE

Spring Constant of Elastic System

When both bridle lines are in tension, the spring constant for the bridle is given by:

$$K\phi = \frac{KBL*KBT}{[KBT*cos^2\phi + KBL*sin^2\phi]} (Ref Pg 28)$$
 (135)

Then the spring constant for the complete system is

$$K = \frac{2 \cdot *KS * K\phi}{2 \cdot *KS + K\phi}$$
 (Ref Pg 22)

If one bridle line goes slack the spring constant becomes either!

$$K = KSPKH1 = \frac{2*KS*KH1}{2*KS+KH1}$$
 (137)

or

$$K = KSPKH2 = \frac{2*KS*KH2}{2*KS+KH2}$$
 (138)

PAGE 34

GER- 15853

CODE IDENT NO. 25500

sec

 m^2

kg

kg-m²

m/sec

sec

SECTION IV - COMPUTER PROGRAM

1. Inputs

The format for all numeric inputs is 8F10.0. There a couple alphameric inputs which use 20A4. The following is a list of all inputs used to make a computer run in the order read in.

ATMOS	-	Alphameric	discription	of	atmosphere,
		1 card			

TIMEI	-	Alphameric statement,	TIME	SEQUENCE
		OF INFLATION, 1 card		

AREAI	-	Alp	hameric	sta	ate	ement,	AREA	SEQUENCE
		OF	INFLATIO	ON,	1	card		

TTI	-	An ar	ray of	16	variables	re	epresenting
		time	inflati	ion	sequence,	2	cards

SSPI	-	An array of 16 variables representing
		reference area of decelerator, S,
		corresponding to TTI. 2 cards

MIMA	_	An array of 16 variables representing
		added massassociated with the decel-
		erator corresponding to TTT 2 cards

IIYP	-	An array of 16 variables representing
		pitch moment of inertia of the decel-
		erator corresponding to TTI 2 cards

TTG	-	An array of eight variables repre-
		senting time for gust sequence,
		l card

VVG	-	An array of eight variables repre-
		senting gust velocities corresponding
		to TTG, 1 card

DATE	February 5, 1973
REV DA	TE
BEV DA	TE .

PAGE 35
GER. 15853
CODE IDENT NO. 25500

AAM - An array of eight variables representing
Mach number of the forebody, 1 card

AAMP - An array of eight variables representing
Mach number of the decelerator, 1 card

AALPE - An array of eight variables representing angle-of-attack of the forebody, 1 card deg

AALPPE- An array of eight variables representing angle-of-attack of the decelerator, l card deg

CCA - An array of eight by eight variables representing axial force coefficients of the forebody, 8 cards

CCN - An array of eight by eight variables representing normal force coefficients of the forebody, 8 cards

CCM - An array of eight by eight variables representing pitch moment coefficients of the forebody, 8 cards

CCMQ - An array of eight by eight variables representing pitch damping coefficient of the forebody, 8 cards

rad⁻¹

CCAP - An array of eight by eight variables
 representing axial force coefficient
 of the decelerator, 8 cards

CCNP - An array of eight by eight variables representing normal force coefficients of the decelerator, 8 cards

CCMP - An array of eight by eight variables representing pitch moment coefficients of the decelerator, 8 cards

E-ID-18(3-70)(JR-218)
REF: ENGINEERING PROCEDURE S-017

DATE February 5, 1973	GOODYEAR AEROSPACE	PAGE	
REV DATE	CORPORATION AKEON 15, OHIO	GER- 15853 CODE IDENT NO.	25500

CCMQP	-	An array of eight by eight variables representing pitch damping coefficients of the decelerator, 8 cards	rad ⁻¹
TTENS	-	An array of 8 elements representing force in spring KS	N
KKS	-	An array of 8 elements representing the spring constant, KS	N/m
Х	-	Initial range of forebody	m
Z	-	Initial altitude of forebody	m
THE		Initial pitch angle of forebody	đeg
THED	-	Initial pitching velocity of forebody	deg/sec
V	-	Initial velocity of forebody	
GAM	-	Initial flight path angle of forebody	deg
ннн	-	Altitude below which trajectory ends	m
THEP	-	Initial pitch angle of decelerator	d e g
GAMP	-	Initial flight path angle of decelerator	deg
V P	-	Initial velocity of decelerator	m/sec
THEPD	-	Initial pitching velocity of decelerator	deg/sec
TOR	une.	Maximum value of torque from the reaction control system	m-N
THEDU	-	Forebody's pitching rate at which the reaction control thruster is turned on giving a torque of TOR	deg/sec
THEDL	-	Forebody's pitching rate at which the reaction control thruster begins to turn off	deg/sec

PAGE 37
GER. 15853

CODE IDENT NO.

25500

		·	
· DTVC	-	Length of time for reaction control thruster valve to close	sec
APBAR	-	Distance from c.g. of decelerator to confluence point of the decelerator suspension lines	m
XBAR	-	Lateral c.g. off-set of forebody positive up	m
ZBAR	-	Longitudinal c.g. off-set of forebody, positive towards nose	m
S	-	Aerodynamic reference area of forebody	m²
D	-	Aerodynamic reference length of forebody	m
М	-	Mass of forebody	kg
IY	-	Pitch moment of inertia of forebody	kg-m²
LTR	-	Length of riser line	m
С	-	Damping coefficient of elastic system	N sec
DP	-	Aerodynamic reference length of decelerator (same as Ref. dia. D _O)	m
MP	-	Mass of decelerator	kg
IYP	-	Moment of inertia of decelerator fully inflated	kg-m²
DTI	-	Inflation time	sec
T		Initial time	sec
TI	-	Time inflation begins	sec
DTl	_	First integration time increment	sec
DT2	_	Second integration time increment	sec
DTPl	-	Number of integrations between printout when DT = DT1	. •

PAGE 38

GER- 15853

CODE IDENT NO. 25500

DTP2	-	Number of integrations between print- out when DT=DT2	
TDTC	_	Time at which DTl→ DT2 and DTPl→ DTP2	sec
TTT	_	Time at which trajectory is ended	sec
LHl		Length of first bridle line	
		(see Figure 7)	m
LH2	_	Length of second bridle line	
		(see Figure 7)	m
Albar	-	Distance along longitudinal axis	
		of the forebody from the intersection	•
		of the body axes to the negative	
		harness attach point, positive toward	
		the nose (see Figure 7)	m
A2BAR	-	Distance along longitudinal axis of	
		the forebody from the intersection of	
		the body axes to the positive harness	
		attach point, positive toward the	
		nose (see Figure 7)	m
BlBAR	-	Distance along lateral axis of the	
		forebody from the intersection of	
		the body axes to the negative harness	
		attach point, positive up	
		(see Figure 7)	m
B2BAR	_	Distance along lateral axis of the	
		forebody from the intersection of the	
		body axes to the positive harness	.
T C 1		attach point, positive up (See Figure	
LS1		Length of first suspension line	m

39 15853

REV DATE REV DATE

25500 CODE IDENT NO.

Length of second suspension line m _ LS2 Distance between the two suspension DLPline connection points on the decelerator m

Spring constant of bridle line LHl N/m KHl

Spring constant of bridle line LH2 N/m KH2

Title card for plot HEADER -

Condition card for digital program CONT

15853

CODE IDENT NO.

25500

REV DATE REV DATE

2. Output

At predetermined intervals (see inputs eee, fff), the following data is outputed. Each term is defined in the nomenclature.

1st row: T, X, XD, XDD, VD, GAMDEG, AM, TENS, PHIDEG, QX, CA, CAP

TORQ, Z, ZD, ZDD, VPD, GAMPDE, AMP, DAMP, PHIDDE, 2nd row: QZ, CN, CNP

M, THEDEG, THEDDE, THEDDD, NA, ALPDEG, DYPR, LTO, 3rd row: MUDEG, QTHE, CM, CMP

MP, XP, XPD, XPDD, NN, ALPPDE, DYPRP, LT, MUDDEG, 4th row: QXP, CMQ, CMQP

IY, ZP, ZPD, ZPDD, NAP, V, DP, LTD, CHIDEG, QZP, 5th row: K, CAAP

IYP, THPDEG, THPDDE, THPDDD, NNP, VP, RHO, DCG, 6th row: CHIDDE, QTHEP, C, SPI

7th ro: LAMDEG, A, B, PHILDE, PHILDE, ABAR, BBAR, NUPDEG, APBAR, BPBAR, LOP, VG

When a simulation reaches TTT or HHH, the computer will write out RUN ENDED BY CONSTRAINTS." It will then attempt to read in more data cards to initialize for another run. If the first card read in contains a "l." in the first two columns, the program will CALL EXIT. Otherwise it will read in data starting from input (y) and proceeding to input (www).

ENGINEERING PROCEDURE S-017 C-11-10(3-10)(3 R-210)

GOODYEAR AEROSPACE

PAGE 41

GER- 15853

CODE IDENT NO. 25500

Before beginning each trajectory, a list of variables will be printed out which mostly define the initial geometry of the system. These variables are defined in the nomenclature.

lst row: LH1, LH2, AlBAR, A2BAR, B1BAR, B2BAR, L1, L2, DL, L0, BET1DE, BET2DE

2nd row: EPS1DE, EPS2DE, ETA1DE, ETA2DE, SIG1DE, SIG2DE, LAM1DE, LAM2DE, LAM0DE, NUDEG, A0BAR, B0BAR

3rd row: K, KSPKH1, KSPKH2, TI, DTI, THEDU, THEDL, TOR, DTVC, LS1, LS2, DLP

4th row: LOP, LAMOPD, NUPDEG, APBAR, BPBAR, EPSP1D, EPSP2D, DT, KH1, KH2

Also printed out is the atmosphere used; the area versus time inflation sequence; spring constant array, KKS(8), and its tension array, TTENS(8); and the aerodynamic coefficient arrays and their associated mach number and angle of attack arrays.

REV DATE REV DATE

Fortran IV Program Description 3。

A listing of the program may be found in Section IV-5. A description of the main program and the subroutines follows:

Main Program a.

- Read inputs 1)
- Initialize and define certain variables
- Call BRIDLE so that the geometry of the system may be defined
- Output data points on tape for later plotting if 4) T > TPLOT
- 5) Check time and altitude constraints (inputs ee and hhh)
- If constraint or output conditions are met, 6) write output
- Advance the six coordinates through one time increment (\Delta t) by use of Runge-Kutta numerical integration
- 8) Check for increase in DT and DTP (input ggg)

b. Subroutine SUBR

- Calculate acceleration of gravity at Z
- Calculate torque available from reaction control system
- Calculate gust velocity as a function of time, and density and speed of sound as a function of altitude
- Calculate total inertial velocity, Mach number, 4) and dynamic pressure of the forebody and decelerator

DATE _	February	5,	1973
REV DAT	ŧ		

GOODYEAR AEROSPACE

PAGE	43	·
GER-	15853	
CODE	IDENT NO.	25500

- 5) Calculate flight path angle and angle-of-attack
- 6) Call AERO to determine the aerodynamics of the system
- 7) Calculate bridle, riser, suspension lines geometry under tension and iterate until the geometry converges to one compatible to the tension in the elastic system. After the iteration has converged, the tension, damping, pull-off angles and rates will be determined.
- 8) Call MATRIX to determine the equation of motion of the forebody
- 9) Express equations of motion of decelerator

c) Subroutine AERO

- Calculate the aerodynamic coefficients of the forebody and the decelerator as a function of Mach number and angle-of-attack
- 2) Calculate the generalized forces acting on the forebody
- 3) Calculate the reference area, apparent mass, pitch moment of inertia and total mass of decelerator
- 4) Calculate the aerodynamic coefficients of the decelerator (CNP, CMP, CMQP) during inflation, assumed a linear increase
- 5) Calculate the generalized forces acting on the decelerator

d) Subroutine MATRIX

- 1) Define the matrices DD(i,j) and EE(i)
- 2) Call CROUT so that the equations of motion of the forebody are separated into a form suitable for integration

REF: ENGINEERING PROCEDURE S-017

25500 CODE IDENT NO.

Subroutine BRIDLE e)

- Calculate the geometry of the bridle, bridle attach points and intersection of the body axes of the forebody
- Call SUSPEN so that the geometry of the decelerator 2) and suspension lines can be defined.
- Write out pertinent information about the geometry of the system.
- 4) Define the initial position of the decelerator with respect to the forebody

f) Subroutine SUSPEN

- Calculate the geometry of the decelerator and suspension lines
- Calculate the position of the decelerator if 2) the suspension lines are allowed to stretch

Subroutine CROUT q)

Decouple the equations of motion of the forebody. Equations (91) will be reduced to the form (92)

Sample Computer Run 4.

Figure 10 shows Calcomp plots of 8 program output variables versus time for a sample computer run. Immediately following this figure is a list of the input data used to make this run and several pages of output.

.0	2.	10.	14.	30.	39.	1000.
.0 .7871	271 (12	271 (12	111/ 02/	1117 034	2207 247	2207 247
.0	3/1.014	3/1.012	1114.836	1114.530	3301.341	3307.347
46.	876.	876.	2919.	2919.	8756.	8756.
.0	£//722 7/	54/733 74	566732.76	5//722 7/	5//222 2/	F// 720 7/
•0 ••••••••	200132-10	200132.10	200132.10	200132.10	366132.16	300/32./3
.0	1000.					
0			·			
0	1000.					

	_					
	10					
	10.					
0.0	45.	80.	90•	110	135.	180,
0.0	10.	90.				
0.0 4.85	2.3	68	-1.	-1.2	-1.1	55
4.85 0.0	2.3	68	-1.	-1.2	-1.1	55
0.0						
0.0						
					· .	
0.0						
0.0						
0.0						
0.0						
0.0			1.2			
	8.5	16.5	17.	15.8	10.	0.0
0.0	8.5	16.5	17.	15.8	10.	0.0
0.0			· · · · · · · · · · · · · · · · · · ·			
0.0						
0.0						
0.0						
0.0						
0.0					\	
0.0						
0.0 0.0						
	-2.2	-1.7	5		1.3	0.0
	-2.2	-1.7	5		1.3	0.0
0.0						
0.0						
0.0						
0.0	·					
0.0						
0.0						
0.0			· · · · · · · · · · · · · · · · · · ·			
0.0						
0.0						
		· · · · · · · · · · · · · · · · · · ·			······································	

SPACE SHUTTLE BOOSTER, MAIN PARACHJ	TE DEPLOYMENT THROUGH 1ST STAC	GE OF REEFING	
INITIAL VALUES, ENGINEERING UNITS ARE M	ETRIC (METERS, NEWTON, SEC)		
LH1 LH2 ALBAR AZBAR	81BAR B2BAR L1	L2 DL L0	BET1 BET2
EPS1 EPS2 ET41 ETA2	SIGI SIG2 LAMI	LAM2 LAMO NU TORQUE DT-VALVE LS1	AOBAR BOBAR LS2 DLP
LOP LAMOP NUP APBAR	BPBAR EPSIP EPSZP	DT KH1 KH2	
36.576 6.096 -12.192 24.384 9.560 85.220 161.210 90.135	1.981 1.981 12.352 9.084 76.135 170.770	24.464 36.576 25.198 4.645 18.645 18.645	9.230 4.645 23.876 8.056
555571. 547271. 761421. 0.0 68.115 90.000 0.000 68.115	2.300 9.000 8.000	0.0 0.010 69.799	
	ARTH ATMOSPHERE		
MAIN PARACHUTE INFLATION TIME, TTI(16)	AND ALBOYT GENE		
0.0 2.000 10.000 14.000	30.000 38.000 1000.000	0 0.0	
0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0	
MAIN PARACHUTE DRAG AREA, SSPI(16)			
2.787 371.612 371.612 1114.836	1114.836 3307.347 3307.34	7 0.0	
0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0	
SPRING CONSTANT ARRAY, KKS(8)			
 437817 <u>.</u> 1 43781 <u>7.1 0.0 0.</u>		• 00 • 0	
SPRING CONSTANT TENSION ARRAY, TTENS(8)			
0.044482216.2 0.0 0.	0 0.0 0.0 0	•00•0	
			Pac GEI
			ige in 1
			5 81
			5 _ω
			· · · · · · · · · · · · · · · · · · ·

MACH NUMBER ARRAY, AAM[8] 5.0 10.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 FORBODY AXIAL COEF. ARRAY. CCA(8.16) 8500 2.3000 -0.6800 -1.0000 -1.2000 -1.1000 -0.5500 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		AERODY	NAMIC PA	RAMETERS				
MACH NUMBER ARRAY, AAM[B]		FORBODY	ANGLE O	FATTACK	ARRAY,	AALP(16)	DEGREES	
MACH NUMBER ARRAY, AAM[8]	0 0	45 000	90 000	00 000	110.000	125 000	100 000	
MACH NUMBER ARRAY, AAM[8] 0.0 10.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 FORBODY AXIAL COEF, ARRAY, CCA(8,16) 8500 2.3000 -0.6800 -1.0000 -1.2000 -1.1000 -0.5500 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0							
FORBODY AXIAL COEF, ARRAY, CCA(B, 16) FORBODY AXIAL COEF, ARRAY, CCA(B, 16)								
FORBODY AXIAL COEF, ARRAY, CCA(8, 16) 8500 2.3000 - 0.6800 - 1.0000 - 1.2000 - 1.1000 - 0.5500 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 8500 2.3000 - C.6800 - 1.0000 - 1.2000 - 1.1000 - 0.5500 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0					0.0	0.0	0.0
8500 2.3000								
0	0500						0.5500	
.8500								
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8500	2.3000	- C. 6800	-1.0000	-1.2000			
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	• 0	0.0	0.0	0.0	0.0	0.0	0.0	
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0							
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	• 0						0•0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	•0							
-0	• 0							
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	- 0	0.0		0.0	0.0		0.0	
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	-0							
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0							
FORBODY NORMAL COEF. ARRAY, CCN(8,16) -0								
8.5000 16.5000 17.0000 15.8000 10.0000 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.	0.0							
8.5000 16.5000 17.0000 15.8000 10.0000 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.	·	FORBOD	Y NORMAL	COEF. A	RRAY, CC	N(8,16)	-	
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0								
•0 8.5000 16.5000 17.0000 15.8000 10.0000 0.0 0.0 0.0 •0 0.0 0.0 0.0 0.0 0.0 •0 0.0 0.0 0.0 0.0 0.0 •0 0.0 0.0 0.0 0.0 0.0 •0 0.0 0.0 0.0 0.0 0.0 •0 0.0 0.0 0.0 0.0 0.0 •0 0.0 0.0 0.0 0.0 0.0 •0 0.0 0.0 0.0 0.0 0.0 •0 0.0 0.0 0.0 0.0 0.0 •0 0.0 0.0 0.0 0.0 0.0 •0 0.0 0.0 0.0 0.0 0.0 •0 0.0 0.0 0.0 0.0 0.0 •0 0.0 0.0 0.0 0.0 0.0 •0 0.0 0.0 0.0 0.0 0.0 •0	0.0							
.0	0.0							
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0	0.0	0.0	0.0	0.0	0.0		
•0 0•0 0•0 0•0 0•0 0•0 0•0 0•0 0•0 0•0	0.0							
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0							
.0 0.								
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0							
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	. 0							
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	.0							
0 0.0 0.0 0.0 0.0 0.0 0.0	.0	_0.0	0.0	0.0	0.0	0.0	0.0	
	• 0	_ 0.0	0.0	0.0				
	• 0	0-0						

.

•0	-2.2000	-1.7000	-0.5000	0.0	1.3000		0.0					
• 0	0.0	0.0	0.0	_0.0	0.0	_0.0						
•0		-1.7000			1.3000							
•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
•0	0.0	0.0	0.0	0.0	0.0	0.0						
• 0	0.0	0.0	0.0	0.0	0.0	0.0						
•0 ~	0.0	0.0	0.0	0.0	0.0	0.0						
•0	0.0	0.0	0 0	0.0	0.0	0.0						
. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
•0 _	0.0	0.0	0.0	0.0	0.0	0.0						
• 0	0.0 0.0	0.0	0.0	0.0	0.0	0.0						
•0	0.0	0.0	0.0	0.0	0.0	0.0						
• 0	0.0	- 0.0	0.0	0.0	0.0	0.0						
•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
~	FORBOD	Y PITCH	DAMPING (COEF. A	RAY, CCMQ	(8,16)						
• 0	0.0			0.0		0.0					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
•0	0.0	0.0	_ 0.0	0.0	0.0	0.0	0.0 0.0	·····				
• 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
• 0	0.0	0.0	0.0	0.0	0.0	0.0	2 2					
• 0	0.0	0.0	_ 0.0	0.0	0.0	0.0						
•0	0.0	0.0	0.0	0.0_	0.0	0.0						
• 0	0.0	0.0	0.0	0.0	0.0	0.0						
• 0 • 0	0.0	0.0	0.0	0.0	0.0	_0.0	0.0					
• 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 ,				
•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		***************************************			
.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
• 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0					
												
								······································				
						······						
	·		····									
												
						· · · · · · · · · · · · · · · · · · ·				·		 ,

to be well than the control of the c

0.0				NARATA	MALPPIL	6) DEGREE	<u></u>	
	10.000	90.000	0.0	0.0	0.0	0.0	0.0 0.0	
	AFTBODY	MACH NU	MBER AR	RAY.AAMP	(8)			
0.0	10.000	0.0	0.0	0.0	0.0	0.0	0.0	
	AFTBODY	AXIAL C	DEF. AR	RAY, CCA	P[8,161			
5000	0.5000	0.1000	0.0	0.0	0.0	0.0	0.0	
.0	_0.0	.0.0	0.0	0.0	0.0	0.0	0.0	
	0.5000 _	0.1000		0.0	0.0	0.0	0.0	
. 0 . 0	0.0	0 0	0.0	0.0	0.0	0.0		
.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0	_0.0	0.0	_0.0	0.0	0.0	0.0	0.0	
0 0	0.0	0.0	0.0	<u> </u>	0.0	0.0	_0.0	
0	0.0	0.0	_0.0 _0.0	0.0	0.0 0.0	0.0	0.0	
. o	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	AF THODY	NORMAL	COEF. A	RRAY, CC	NP(8.16)			
. 0	0-0690	0.6200	0.0	0.0	0.0	0.0	_0.0	
. 0	0.0	0.0	0.0	0.0	0.0	0.0		
.0		0.6200		0.0	0,0	0.0	0.0	
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
.0	0.0	0.0	0.0	_0.0	0.0	0.0	_0.0	
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0		0.0	0.0	0.0	0.0	0.0	0.0	
.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0	_0.0	0.0	0.0	0.0	0.0	_0.0	0.0	
.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
								

. -

•

Page 56 GER 15853

C	GOODYEAR AEROSPACE PROGRAM ZK886	
C	ASSESSAENT OF LOADS RESULTING FROM PARACHUTE DECELERATION SYSTEM	
С	CONVERTED FOR MSFC UNDER VASA CONTRACT VAS8-29144	
	IMPLICIT REAL+8(A-H,O-Z)	
	REAL TM(302), YA(302), YB(302), YC(302), YC(302), YE(302), YF(302),	
	YG (302), YH (302), HEADER (14)	
	DOUBLE PRESISION LAMIDE, LAMODE, NUDEG, LAMOPD, KS,	
	KSPKH2,LTR, MJ, MUD, LHI, LH2, LI, L2, LO, LAMI, LAM2, LAMO, NU , MUDEG, MUDDEG, NAP, NAP, LAMDEG, LSI, LS2, LDP, LAMOP, NJP, NJPDEG	<u> </u>
	, M, MP, IY, IYP, LT, LTD, LTC, NA, NN, K, KSPK-I	
	, MMA(16), MA, I LYP(16), KBL, KBT, KH1, KH2, KPH1, KKS(8)	
	DIAENSIAN ATMOS(20), TIMEI(23), AREAI(23)	
	CUMMON T.DT.X.Z.XP.ZP.THE, THEP.XD.ZD.XPD.ZPD.THED.THEPD.GAM.GAMP.	
	ALP,ALPP,AM,AMP,DYPR,DYPRP,RHO,S,SP,D,DP,M,MP,IY,IYP,LT,LTO,LTO, DCG,C,K,CA,CN,CMQ,CCA(8,16),CCN(8,16),CCN(8,16),CCM(8,16),CAP,	
	CNP, CMP, CMQP, CCAP(8, 16), CCNP(8, 16), CCMP(8, 16), CCMQP(8, 16), V, VP, GR,	
·	R, AA(6, 4), DD(3, 3), EE(3), FF(3), QX, QZ, QXP, QZP, QTHE, QTHEP, APBAR, XBAR,	
	ZBAR, AAM(8), AAMP(8), AALPE(16), AALPPE(16), IIN, IOUT,	
	DADTHE, DBDTHE, DADTHP, DBDTHP, ABAR, ABAR, A, B, CHI, CHID, MU, MUD, PHI, SPI,	
	MONTO BULL BULLS NETT BEEL EDEN EDEN VENVUN VENVUN LEN DI	
	PHILIPHILIPHILIPETING DAME CIME CIME CIMED THED 141.142	
	SIG1, SIG2, ETA1, ETA2, TENS, DAMP, STHE, CTHE, STHEP, CTHEP, LH1, LH2, DA1BAR, A2BAR, B1BAR, B2BAR, B3BAR, A3BAR, L3, L1, L2, LAM3, LAM1, LAM2, NU, G	
	CUMMON TOR, THEOU, THEOL, DIVC, TURQ, BRID, LAM, TI, CONF, DTI, CDAB	
	TTI(16),SSPI(16),LS1,LS2,LJP,LAMJP, YUP, BPBAR, EPSP1, EPSP2, DLP, KS	
	MMA, MA, TTG(B), VVG(B), VG, I IYP, KBL, KBT, KH1, KH2, TTENS(B), KCS,	
	CUNT(20), AALP(16), AALPP(16)	
	FORMAT(8F10.0)	
	FORMAT(20A4)	
	FORMAT(LHL, 9X, 'TIME', 6X, 'RANGE', 5X, 'HORVEL', 4X, 'HORACC', 4X,	
	*TÜTACC * .4X .*GAMMA * .5 X .*MACH NO * .3X .*TENSION * .3X .*PHI * .7X . *OX * .	
	28X, CA', XX, CAP'/IUX, TORQUE', 4X, ALTITUDE', 2X, VERTVEL', 3X,	
	B'VERTACC', 3X, 'TOTACCP', 3X, 'GAMMAP', 4X, 'MACH NOP', 2X, 'DAMPING',	
	3X, PHID ,6X, QZ ,3X, CN ,9X, CNP /10X, MASS ,6X, THETA ,5X,	
	5'THEVFL ", 4X, "THEACC", 4X, "AX-3", 6X, "ALPHA", 5X, "DY-PR", 5X, "LTO",	
	57X, " MU", BX, "QTHE", 6X, "CM", BX, "CMP"/ 10X, "MASSP", 5X, "RANGEP", 4X,	
	7*HORVELP*,3X,*HORACCP*,3X,*NOR-G*,5X,*ALPHAP*,4X,*DY-PRP*,4X,	
	3*LT*, 3X, *MJD*, 7X, *QXP*, 7X, *CMQ*, 7X, *CMQP*/10X, *IY*, 8X, *ALTI TUDEP*,	
	91 X, * VERTVEL P! ,2X, * VERTACCP * ,2X, * AX-GP * ,5X, * VELJCITY * ,2X, * OP * ,	
	18x, 'LTD', 7x, 'CHI', 7x, 'QZP', 7x, 'K', 9x, 'CAAP'/10x, 'IYP', 7x, 'THETAP',	
	24X, *THEVELP*, 3X, *THEACCP*, 3X, *NOR-GP*, 4X, *VELDGITYP*, 1X, *DENSITY*	
	3,3X,*DCG*,7X,*CHID*,6X,*QTHEP*,5X,*C*,9X,*SP*/10X,*LAMDA*5X;	
	4'A',9X,'B',9X,'PHII',6X,'PHI2',6X,'ABAR',6X,'BBAR',6X,'NUP',7X,	
	5'APBAR',5X,'BPBAR',5X,'LUP',7X,'GUST VEL'//)	
5	FORMAT(8X,F8.3,1X,8(F9.1,1X),F9.0,2X,2(F8.5,2X)/	
	18X,9(Fd.1,2X),F9.0,1X,2(F8.4,2X)/	
	28X,F8.2,2X,8(F8.2,2X),F10.J, 2(F8.4,2X)/	
	38X, F3. 3, 2X, 8(F8. 2, 2X), F9. 0, 1X, 2(F8. 4, 2X)/	្អ
	7X,F9.0,2X,8(F8.1,2X),F9.0,1X,F9.0,1X,F8.1/	GER
	58X,6(F9.2,1X),E10.4,2(F8.2,2X),F9.3,1X,2(F9.2,2X)/	
	68X, 12(F8.2, 2X)/)	끉
	FORMAT(///20X, 'RUN ENDED BY CONSTRAINT'//)	55.0
	FORMAT(/10X,8F10.3/10X,8F13.3/)	ິິເຕ
	FORMAT (/10X, 'SHUTTLE ROCKET MOTOR', 5X, 2044)	ω
50	FORMAT(/10X,20A4)	

Se Popmar(IN 10X, 197) NG CONSTANT ARRAY, (KS(8)*/) YF CHMAR(IN 10X, 8(F)0.17Y) YF CHMAR(IN 10X, 8(F)0.17Y) AS CONSTANT IN 10X, 1991 NG CONSTANT TENSION APRAY, ITENS(8)*/1 61 FORMAR(IN 10X, 192) MIGGORD APRAY, ITENS(8)*/1 61 FORMAR(IN 10X, 192) ANGEL READ(IN 10X, 10X, 10X, 10X, 10X, 10X, 10X, 10X,			
S9 FORMATILA 10X,8F10_11/1 S0 FORMATILA 10X,9F1ND_CONSTANT TENSION APRAY, TTENS[9]/1 S1 FORMATILA 10X,9F1ND_CONSTANT TENSION APRAY, TTENS[9]/1 S1 FORMATILA 10X,9T1 READITILA 10X,9X,9T1 READITILA 10X,9X,9T1 READITILA 10X,9X,9T1 READITILA 10X,9X,9T1 READITILA 10X,9T1 10X,9T1 READITILA 10X,9T1 10X,9T1 READITILA 10X,9T1 10X,9T1 READITILA 10X,9T1 10X,9T1 10X,9T1 10X,9T1 READITILA 10X,9T1 10X,9T1 10X,9T1 10X,9T1 10X,9T1 READITILA 10X,9T1 10X,9T1 10X,9T1 10X,9T1 10X,9T1 READITILA 10X,9T1 10X,9T1 10X,			
S9 FORMATILA 10X,8F10_11/1 S0 FORMATILA 10X,9F1ND_CONSTANT TENSION APRAY, TTENS[9]/1 S1 FORMATILA 10X,9F1ND_CONSTANT TENSION APRAY, TTENS[9]/1 S1 FORMATILA 10X,9T1 READITILA 10X,9X,9T1 READITILA 10X,9X,9T1 READITILA 10X,9X,9T1 READITILA 10X,9X,9T1 READITILA 10X,9T1 10X,9T1 READITILA 10X,9T1 10X,9T1 READITILA 10X,9T1 10X,9T1 READITILA 10X,9T1 10X,9T1 10X,9T1 10X,9T1 READITILA 10X,9T1 10X,9T1 10X,9T1 10X,9T1 10X,9T1 READITILA 10X,9T1 10X,9T1 10X,9T1 10X,9T1 10X,9T1 READITILA 10X,9T1 10X,9T1 10X,			
SO FORWAT(I) 1, 10X, 19PRING CONSTANT TENSION APRAY, TIENS(9) 1/1 A FORWAT(I) 1, 10X, 19PRING CONSTANT TENSION APRAY, TIENS(9) 1/1 A FORWAT(I) 1, 10X, 19PRING CONSTANT TENSION APRAY, TIENS(9) 1/1 A FORWAT(I) 1, 11X, 15X, 11X, 11X, 11X, 11X, 11X, 1	58	FURMAT(1H , 10X, SPRING CONSTANT ARRAY, KKS(8) 1/)	
6 FORMATILISAN, A22 MINES INTES IDUITE			
11N-5	60	FORMAT(1H .10X, SPRING CONSTANT TENSION APRAY, TTENS(8) 1/)	
100156 READ(ITN.2) ATMOS READ(ITN.2) ATMOS READ(ITN.2) ATMOS READ(ITN.2) ATMOS READ(ITN.2) ATMOS READ(ITN.1) ANA AMPRICAL PROPERTY READ(ITN.1) (SCI.) (S. 1)	61	FORMAT (13A6, A2)	
MEADITIN.2] ATMOS READITIN.2] AREA PEADITIN.2] AREA PEADITIN.3] AREA PEADITIN.3			
READLIN.2) THEE PRODITIN.2 THEE PRODITIN.3 THI, SSS HMA. [LYP READLIN.1] THE READLIN HMA. [LYP READLIN.1] THI, THE READLIN HMA. [LYP READLIN.1] THI, THE READLIN HMA. [LYP READLIN.1] THI, THI, THE PLOT HMA. [LYP READLIN.1] THI, THE READLIN HMA. [LYP READLIN.1] THI, THI, THE PLOT HMA. [LYP READLIN.1] THI, THI, THE PLOT HMA. [LYP READLIN.1] THI, THI, THE PLOT HMA. [LYP READLIN.1] THIRD HMA. [LYP READLIN HMA. [LYP READLIN.1] THIRD HMA. [LYP READLIN.1] THIRD HMA. [LYP READLIN H		1()117=6	
### PEADLIN, 2) AREA] READLIN, 11 TIL SSPI_MMALLYP READLIN, 11 TIL SSPI_MMALLYP READLIN, 11 TIL SSPI_MMALLYP READLIN, 11 TIL SSPI_MMALLYP BEACHIN, 11 CANANAMM, AALPE, AALPPE DO 20 1=1.16 DO 20 1=1.16 PEADLIN, 11 (CANANAMM, AALPE, AALPPE DO 20 1=1.16 PEADLIN, 11 (CCANI, 1), 1=1.16), 1=1.8) READLIN, 11 (TESS, MKS. 105, PEADLIN, 11 (TESS, MKS. 105, PEADLIN, 11 (TESS, MKS. 107, PEADLIN, 11 (TESS, MKS. 108, PEADLIN, 11 (TESS, MKS. 109, PEADLIN, 11 (TESS,		READ(IIN, 2) ATMOS	
READITIN, 11 TIT, SYPT, MYA, LLYP READITIN, 11 TIT, SYPT DO 20 1=1,16 AAR PILIFAADPE(11/57,2958 70 AAR PILIFAADPE(11/57,2958 READITIN, 11 (CCM; (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		READ(IIN, 2) TIMEI	
READIIN, 1) TIG, YUE BEADIIN, 1) ANALYAMP, AALPF AALPPE DO 20 [=1,16 AALPI = AALPE = AALPE = AALPPE AALPPE ZO AALPY = AALPE = AALPE = AALPPE AALPPE READIIN, 11 (CCAN			
### ### ### ### #### #### ############		READ(IIN,1) TTI,SSPI,MMA,IIYP	
DO 20 1=16 AALPI(1)=AALPE(11/57.2958 20 AALPI(1)=AALPE(11/57.2958 20 AALPI(1)=AALPE(11/57.2958 READ(1(N),1)(CCA(1,1),1,21,16),1=1,91 READ(1(N),1)(CCA(1,1),1,21,16),1=1,81) READ(1(N),1)(CCA(1,1),1,21,16),1=1,81) READ(1(N),1)(CCA(1,1),1,21,16),1=1,81) READ(1(N),1)(CCA(1,1),1,21,16),1=1,81) READ(1(N),1)(CCA(N)(1,1),1,21,16),1=1,81) READ(1(N),1)(CCA(N)(1,1),1,21,16),1=1,9) READ(1(N),1)(CCA(N)(1,1),1,21,16),1=1,9) READ(1(N),1)(CCA(N)(1,1),1,21,16),1=1,9) READ(1(N),1)(CCA(N)(1,1),1,21,16),1=1,9) READ(1(N),1)(CCA(N)(1,1),1,21,16),1=1,9) READ(1(N),1)(CCA(N)(1,1),1,21,16),1=1,9) READ(1(N),1)(DALPA(N),1,21,16),1=1,9) READ(1(N),1)(DALPA(N),1,21,16),1=1,10] READ(1(N),1)(DALPA(N),1,21,16),1=1,10] READ(1(N),1)(DALPA(N),1,21,16),1=1,10] READ(1(N),1)(DALPA(N),1,21,16),1=1,10] READ(1(N),1)(DALPA(N),1,21,16),1=1,10] READ(1(N),1)(DALPA(N),1,21,16),1=1,10] READ(1(N),1)(DALPA(N),1,21,16),1=1,10] READ(1(N),1)(DALP		READ(IIN,1) TTG,VVG	
ALGIT = ALPET John 1, 12, 18 20 ALPYT SALPYT SALPYT 1, 18 21 ALPYT SALPYT SALPYT 1, 18 22 ALPYT SALPYT 1, 18 32 READIT 1, 11 (CCAT(1,1) 1, 1 1, 10 1, 18 33 READIT 1, 11 (CCAT(1,1) 1, 1 1, 10 1 1, 18 34 READIT 1, 11 (CCAT(1,1) 1, 1 1, 10 1 1, 18 35 READIT 1, 10 (CCAT(1,1) 1, 1 1, 10 1 1, 18 36 READIT 1, 11 (CCAT(1,1) 1, 1 1, 10 1 1, 18 37 READIT 1, 11 (CCAT(1,1) 1, 1 1, 10 1 1, 18 38 READIT 1, 11 (CCAT(1,1) 1, 1 1, 10 1 1, 18 39 READIT 1, 11 (CCAT(1,1) 1, 1 1, 10 1 1, 18 30 READIT 1, 11 (CCAT(1,1) 1, 1 1, 1 1, 1 1, 18 30 READIT 1, 11 (CCAT(1,1) 1, 1 1, 1 1, 1 1, 1 30 READIT 1, 11 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1, 1 1, 1 30 READIT 1, 11 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 30 READIT 1, 11 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			
20 AALPPELLY-7-2958 READILIN, 11 (CCCALL), 13-1, 161, 1-1, 9] READILIN, 12 (CCCALL), 13-1, 161, 1-1, 181 READILIN, 12 (CCCALL), 13-1, 161, 1-1, 181 READILIN, 13 (CCCACALL), 13-1, 161, 161, 181 READILIN, 13 (CCCACALL), 13-1, 161, 161, 161, 161, 161, 161, 161, 1			
READITIN, 11 (CCX(1, 1, 1, 1-1, 1-1, 1-1, 1-1) READITIN, 11 (CCX(1, 1, 1, 1-1, 1-1, 1-1, 1-1) READITIN, 11 (CCX(1, 1, 1, 1-1, 1-1, 1-1, 1-1) READITIN, 11 (CCX(1, 1, 1, 1-1, 1-1, 1-1, 1-1) READITIN, 11 (CCX(1, 1, 1, 1-1, 1-1, 1-1, 1-1, 1-1) READITIN, 11 (CCX(1, 1, 1, 1-1, 1-1, 1-1, 1-1, 1-1, 1-1,		AALP(1)=AALPE(1)/57.2958	
READITIN, 11 (CCVII, 1, 1, 1-1, 1-1, 1-1, 1-1, 1-1, 1-1,	20	AALPP(I)=AALPPE(I)/57.2958	
REAQLITY, 11 (LCCM(1, j, j, j=1, 16), 1=1, 18) REAQLITY, 11 (LCCM(1, j), j=1, 16), 1=1, 18) REAQLITY, 11 TENS, KSS 105 PEAQLITY, 11 TENS, KSS REAQLITY, 11 THENS, KSS REAQLITY, 11 TO 90 READLITY, 11 TO 90 READLITY, 11 TO 90 READLITY, 11 TO 90, THEOJ, THEOD PEAGLITY, 11 TO 91, THEOJ, THEOD READLITY, 11 TO 91, THEOJ, THEOJ, TO 90 READLITY, 11 TO 91, THEOJ, THEOJ, TO 90 READLITY, 11 TO 91, PMP, 179, PT, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17		READ(IIN,1)((CCA(I,J),J=1,16),I=1,8)	
READLIIN, 1) ((CCAP(I, J), J=1, Id), I=1, B) PREADLIIN, 1) ((CCAP(I, J), J=1, Id), I=1, B) READLIIN, 1) TENS, KRS. 105 PEADLIIN, 1D TENS, KRS. 105 PEADLIIN, 1D JENS, KRS. 107 PEADLIIN, 1D JENS, KRS. 108 PEADLIIN, 1D JENS, INC. 109 PEADLIIN, 1D JENS, INC. 100 PEADLI		READ(IIN, 1) ((CCN(I, J), J=1, 16), I=1, 8)	
READIIN, 11 ((CCAP(I,J), J=1, 16), I=1,8) READIIN, 11 TIENS, RKS. 105 PEADIIN, 11 TIENS, RKS. READIIN, 11 TIENS, RKS. READIIN, 11 TOP, THED, V, GAM, HUMM IF (X, FQ, 1, 1 GO TO 90) READIIN, 11 TOP, THED, THED, THED, P, THED, PEADIIN, 11 TOP, THED, THED, THED, TOTE, READIIN, 11 TOP, THED, THED, TOTE, TOTE, READIIN, 11 S, D, M, I Y, I TR. READIIN, 11 TOPI, DTZ, TOTE, TOTE, TOTE, READIIN, 11 TOPI, DTZ, OTPI, DTZ, TOTE, TOTE READIIN, 11 LH, LLLL, 24, 10A3, 22A3, Y, BBAS, 92BAR READIIN, 11 LH, LLLL, 24, 10A3, 22A3, Y, BBAS, 192BAR READIIN, 12 LS, D, P, KHI, KHZ READIIN, 13 LS, D, P, KHI, KHZ READIIN, 13 LS, D, P, KHI, KHZ READIIN, 15 LS, D, P, KHI, KHZ READIIN, 16 LS, D,		READ(IIN,1)((CCM(I,J),J=1,16),I=1,8)	
READ(IIN,1)(ICCAPP(I,J),J=1,16),I=1,8) READ(IIN,1)(ICCAPP(I,J),J=1,16),I=1,8) READ(IIN,1)(ICCAPP(I,J),J=1,16),I=1,9) READ(IIN,1) ITEMS,KKS 105. READ(IIN,1) X.22,INE,INE,INED(I,J),J=1,16),I=1,9) READ(IIN,1) ITEMS,KKS 105. READ(IIN,1) ITEMS,KKS 105. READ(IIN,1) ITEMS,KKS READ(IIN,1) ITEMS,KKS READ(IIN,1) ITEMS,KKS READ(IIN,1) ITEMS,KKS READ(IIN,1) ITEMS,KMS READ(IIN,1) ITEMS,MAP,VP,MIRED READ(IIN,1) AND MIRED READ(IIN,1) AND MIRE		READ([[N,1)((CCMO([,J),J=1,16),[=1,8)	
READ(IIN,1) ((CGMP(I,J),J=1,10),J=1,8) READ(IIN,1) ((CGMP(I,J),J=1,10),1=1,8) READ(IIN,1) ((CGMP(I,J),J=1,10),1=1,8) READ(IIN,1) TERPS,KKS. 105 PEAD(IIN,1) X2,THE DIV,5AM,HHH IFIX,F,3-1,1 GU TI 903 READ(IIN,1) TOP, THED, THED, THED DIVE READ(IIN,1) DP, MP, TYP, DTI, I, READ(IIN,1) DP, MP, TYP, DTI, I, READ(IIN,1) TOPI, TIZ, OTPI, DTP2, TDIC, TTI READ(IIN,1) LHI, HZ, 41DAZ, A25AY, E1BAR, B2BAR READ(IIN,1) LSI, LSZ, DIP, THE, KHZ READ(IIN,2) CONT THE=IHE/57, 2958 GAM=GAM/57, 2958 THED=THED/57, 2958 THED-THED/57, 2958 THED-THEN/57, 2958 THED-THE		READ(IIN, 1) ((CCAP(I, J), J=1, 16), I=1, 8)	
READ(IIN,1) (ICCM;P(I,J),F=1,B), I=I,B) READ(IIN,1) ITENS;RKS 105 PEAD(IIN,1) X,Z,IME,THED,V,GAM;HHH ITEX,F3,1,1 GD IT 30 30 READ(IIN,1) THEP,GAMP,VP,THEPD PEAD(IIN,1) THEP,GAMP,VP,THEPD PEAD(IIN,1) THEP,GAMP,VP,THEPD READ(IIN,1) APDAR, XBAM, ZBAM READ(IIN,1) S,D,M,IY,CITR,C READ(IIN,1) DP,MP,IYD,OTI,IL READ(IIN,1) DP,MP,IYD,OTI,IL READ(IIN,1) LH,LULZ,ADAR, ZBAM, BBBAR,BBBAR READ(IIN,1) LH,LULZ,ADAR, ZBAM, BBBAR,BBBAR READ(IIN,1) LS,LSZ,DLP;KHIKHZ READ(IIN,2) LOUNT THE=IHEP7,Z958 GAM-GAM/57,2958 THED=THEP57,2958 THED=THEP57,2958 THED=THEP57,2958 THEP=THEP757,2958 XD=VDCOS(GAM) ZD=VDSIN(GAM) ZD=VDSIN(GAM) ZD=VDSIN(GAMP) R= 6378377, GH= 9,8054160 C GR=32.17 C R=2025435, UTD-UTR			
READ([IIN,1], TEINS, KKS 105.PEAD(IIN,1), X, I, IHE, THED, Y, GAM, HHH IF(X,F2,1.), GU TO 900 READ([IIN,1]) THEP, GAMP, YP, THEDD PEAD(IIN,1] THEP, GAMP, YP, THEDD PEAD(IIN,1] TOPO, THEDJ, THEDJ, DTYG READ(IIN,1] APBAR, XBAK, ZBAK READ(IIN,1] DP, MP, ITYP, OTI, TI READ(IIN,1] T, DTI, DTI, DTP2, TDIC, TTI READ(IIN,1] T, DTI, DTI, DTP2, TDIC, TTI READ(IIN,1) LSI, LSZ, DLP, YHILKHEZ READ(IIN,1) LSI, LSZ, DLP, YHILKHEZ READ(IIN,1) LSI, LSZ, DLP, YHILKHEZ READ(IIN,2) L CONT THE-THEP/57, 2958 GAM-GAM/57, 2958 THED-THED/57, 2958 THED-THED/57, 2958 THED-THED/57, 2958 THED-THED/57, 2958 GAMP-GAMP/57, 2958 XD=VDCOSIGAN) ZD=VDSINIGAN) ZD=VDSINIGAN) ZD=VDSINIGAN) ZD=VDSINIGAN ZD=VPOSINIGAN ZPD-VPOSINIGANP) R= 6378377. GR= 9.8054160 C R= 2022435. DT-DTI DTP-DTP1 LTO-LTR		READ(IIN, 1) (($CCMP(I,J), J=1, 16$), $I=1, 8$)	
105 PEAD(IIN, I) X, Z, THE, THED, Y, SAM, HHH IF(X, F, F, L), GO TO 900 READ(IIN, I) THEP, GAMP, YP, THEDD PEAD(IIN, I) TOR, THEDJ, THEDJ, THEDJ, TOTO READ(IIN, I) TOR, THEDJ, THEDJ, THEDJ, TOTO READ(IIN, I) S, M, Y, TR, S READ(IIN, I) S, M, Y, TR, S READ(IIN, I) DP, MP, TYP, DTI, TI READ(IIN, I) TOTI, DTZ, DTRI, DTZ, TDIC, TTI READ(IIN, I) LHI, LHIZA LBAR, AZBAR, ELBAR, BZBAR READ(IIN, I) LSI, LSZ, DLP, SHIKKBZ READ(IIN, I) LSI, LSZ, DLP, SHIKKBZ READ(IIN, I) HEADER READ(IIN, I) HEADER GAM=GAM/57, 2958 GAM=GAM/57, 2958 THED-THED/57, 2958 THED-THED/57, 2958 THED-THED/57, 2958 XD=VDCGS(GAM) ZD=VDS(IN(GAM) XPU-VPPCCS(GAMP) ZPD=VPPCCS(GAMP) R = 6378377, GH = 9,8054160 C GR = 32.17 G = 20926435. DT=OTI DTP=OTI UDFD-OTI LTD-UTI DTP=OTI UTD-UTI DTP=OTI UTD-UTI DTP=OTI UTD-UTI UTD-		READ(IIN, 1)((CCM2P(I, J), $J=1$, 16), $I=1$, 8)	
IFIX.F3.1. GU TO 900 READI(IN.II HEP, SAMP, VP, THEP) PEADI(IN.II HEP, SAMP, VP, THEP) PEADI(IN.II SI), MBAR, XBAK, ZBAK READI(IN.II SI), MI, VL TR.C READI(IN.II SI), MI, VL TR.C READI(IN.II T, DTI, DTP, DTP, ITT.C READI(IN.II T, DTI, DTP, DTP, ITT.C READI(IN.II LSI, LS2, DLP, KHI, KH2 READI(IN.61) HEADER READI(I		READ(IIN.1) TIENS, KKS	
READ(LIN, 1) THEP, GAMP, VP, THEPD PROVITIN, 1) TOP, THEDD, THEDD, TYC READ(LIN, 1) TOP, THEDD, THEDL, TYCQ READ(LIN, 1) S. D., N. LY. LTR. C READ(LIN, 1) D., N. LY. LTR. C READ(LIN, 1) D., N. LY. LTR. C READ(LIN, 1) T., DTL, DTZ, DTPZ, TDTC, TTT READ(LIN, 1) L. DTL, LYZ, ADDAY, AZBAY, AZBAY, AZBAY, BZBAR READ(LIN, 1) L. SZ, DLP, S. HL, KM2 READ(LIN, 1) L. SZ, DLP, S. HL, KM2 READ(LIN, 2) CONT THE = THE 757.2958 GAM-GAM/S7.2958 THED=THEP/S7.2958 GAM-GAM/S7.2958 GAMPGAMP/S7.2958 GAMPGAMP/S7.2958 GAMPGAMP/S7.2958 GAMPGAMP/S7.2953 XO=V-WOCRSIGAM) ZO-VPOSINIGAMD ZPD=VPOSINIGAMD R= 6378377. GR= 9.805460 C GR=22025435. DT=DT1 DTP=DT1 DTP=DT1 C TOTAL C DTD C	105	READ(IIN,1) X,Z,THE,THEO,V,GAM,HHH	
PEAD(IIN, I) TOP, THEOJ, THEOJ, TOVE READ(IIN, I) APMAR, XBAN, ZBAR READ(IIN, I) S,D,M,IY, LTR,C READ(IIN, I) CD, MP, IYP, OTI, TI READ(IIN, I) T, OTI, DIZ, OTIPI, OTIPZ, TOIC, TIT READ(IIN, I) LHI, LUIZ, ALBAZ, AZBAR, BLBAR, BZBAR READ(IIN, I) LHI, LUIZ, ALBAZ, AZBAR, BLBAR, BZBAR READ(IIN, 61) HEAJER READ(IIN, 61) HEAJER READ(IIN, 62) CONT THE THEOST, 2958 GAM=GAM/57, 2958 THED=THEOST, 2958 THED=THEOP/57, 2958 THEPD=THEPD/57, 2958 GAYP=GAMP/57, 2958 THEPD=THEPD/57, 2958 THEPD-THEPD/57, 2958 ZD=V*DSIN(GAM) XPD=V*DSIN(GAM) XPD=V*DSIN(GAMP) R= 6378377. GR= 2,8054160 C GR=32.17 G R= 20925435. DIPOIPI		IF(x.FQ.1.) GO TO 900	
READ(III,1) APBAR, XBAR, ZBAR READ(III,1) S.D., N., IV, LTR, C. READ(III,1) DP, MP, IVP, DTI, TI READ(III,1) LHI, LUIZ, A [DAR, A ZBAR, B BBAR READ(III,1) LHI, LUIZ, A [DAR, A ZBAR, B BBAR] READ(III,1) L SI, LSZ, DLP, KHI, KHZ READ(III,2) CONT THE THE/57.2958 GAM=GAM/57.2958 THED=THED/57.2958 THED=THED/57.2958 GAM=GAM/57.2958 GAM=GAM/57.2958 GAM=GAM/57.2958 GAY=CAMP/57.2958 GAY=CAMP/57.2958 GAY=CAMP/57.2958 GAY=CAMP/57.2958 GAY=CAMP/57.2958 GAY=CAMP/57.2958 GAY=CAMP/57.2958 GOVENOSIN(GAM) X PD=VPROSIN(GAM) X PD=VPROSIN(GAMP) Z PD=VPROSIN(GAMP) Z PD=VPROSIN(GAMP) C G R= 32.17 G R= 2.8054160 C GR=32.17 C R= 20226435. DI=DII DIP=DIPI LTO=LTR		READ((IN,1) THEP,GAMP,VP,THEPD	
READ(IIN,1) S,1),N,1Y,1R,C READ(IIN,1) DP,MP,1YP,OTI,TL READ(IIN,1) LHJ,U12,410A3,A2BA3,E1BAR,B2BAR READ(IIN,1) LLS1,LU2,A10A3,A2BA3,E1BAR,B2BAR READ(IIN,1) LS1,LS2,DLP,CH1KH2 READ(IIN,2) CONT THE-THE77.2958 GAM-GAM/57.2958 THED-THED/57.2958 THEP-THEP/57.2958 GAM-GAM/57.2958 THEP-THEP/57.2958 GAM-GAM/57.2958 THEP-THEP/57.2958 GAM-GAM/S7,2958 THEP-THEP/57.2958 GAM-GAM/S7,3958 THEP-THEP/57.2958 GAM-GAM/S7,3958 THEP-THEP/57.2958 GAM-GAM/S7,3958 THEP-THEP/S7,3958 THEP-THEP/S7,3958 THEP-THEP/S7,3958 THEP-THEP/S7,3958 GAM-GAM/S7,3958 THEP-THEP/S7,3958 THEP		PEAD(IIN, 1) TOR, THEOU, THEOL, DIVC	
READ([IN,1] DP, MP, IYP, DTI, DIL READ([IN,1] T, DTI, DT2, DTPI, DTP2, TDIC, TTI READ([IN,1] LH, LHZ, A LDAR, A 2BAR, BLBAR, B2BAR READ([IN,1] LSI, LSZ, DLP, CHICKH2 READ([IN,1] LONT THE STEP ST. 2958 GAM=GAM/57, 2958 THED=THED/57, 2958 THED=THED/57, 2958 THEP=THEP/57, 2958 GAMP=GAMP/57, 2958 GAMP=GAMP/57, 2958 TO = VOCOS [GAM] ZD = VOS IN (GAM) CG R= 3.817. GR = 9.8054160 CG R= 32.17 GR = 20926435. DIP=DTP1 DIP=DTP1 US UM US US UM US US UM US		READ(IIN,1) APBAR, XBAK, ZBAK	
READ(IIN,1) I,DTI,DTZ,DTP1,DTP2,TDIC,TTT READ(IIN,1) LH1,LH2,4 BAR, AZBAR, BZBAR READ(IIN,1) LEASER READ(IIN,61) HEADER READ(IIN,61) HEADER READ(IIN,2) CONT THE=THE7,7.2958 GAM=GAM/57.2958 THED=THED/57.2958 THEP=THEP/57.2958 THEP=THEP/57.2958 THEPD=THEP/57.2958 XD=V*DCOS(GAM) ZD=V*DSIN(GAM) XPD=VP*DSIN(GAM) XPD=VP*DSIN(GAM) ZPD=VP*DSIN(GAMP) R= 6378377. GR= 9.8054160 C GR= 32.17 C R=20926435. DT=DT1 DTP=DT1 DTP=DTP1 LT0=LTR		READ(IIN,1) S.D.M,IY,LTR,C	
READ(IIN,1) LN1,LN2,410A3,A2BAR,B2BAR READ(IIN,1) LS1,LS2,DLP,SH1KH2 READ(IIN,6) HEADER READ(IIN,2) COMT THE=IHE/57.2958 GAM=GAM/57.2958 THED=THED/57.2958 THEP=THED/57.2958 THEP=THEP/57.2958 GAMP=GAMP/57.2958 ZD=V*DCOS(GAMP) ZD=V*DCOS(GAM) ZD=V*DCOS(GAMP) ZPD=VP*DSIN(GAMP) R=6378377. GR=9.8054160 C GR=32.17 C R=20926435. DT=DT1 DT=DT1 DTP=DT1 DTP=DT1 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS		READ(IIN,1) DP,MP,IYP,DTI,TI	
READ(IIN,61) LS1,LS2,DLP,KH1,KH2 READ(IIN,61) HEADER READ(IIN,61) HEADER READ(IIN,2) CONT THE=THE/57.2958 GAM=GAM/57.2958 THED=THED/57.2958 THEP=THED/57.2958 GAMP=GAMP/57.2958 GAMP=GAMP/57.2958 SO=V*DCOS(GAM) ZD=V*DSIN(GAM) XPD=V*DSIN(GAM) ZP=V*POSIN(GAM) R= 6378377. GR = 9.8054160 C GR = 32.17 C R=20926435. DI=DII DIP=DIP1 DIP=DIP1 LTD=LIR W W		READ(LIN,1) T,DT1,DT2,DTP1,DTP2,TDIC,TTF	
READ(IIN, 61) HEAJER READ(IIN, 2) CONT THE=THE/57.2958 GAM=GAM/57.2958 THED=THED/57.2958 THED=THED/57.2958 GAMP=GAMP/57.2958 GAMP=GAMP/57.2958 GAMP=GAMP/57.2958 ZD=V*DSIN(GAM) ZD=V*DSIN(GAM) ZD=V*PDSIN(GAMP) ZPD=VP*DSIN(GAMP) R= 6378377. GR= 9.8054160 C GR=32.17 C R=20925435. DI=DII DIP=DIPI DIP=DIPI LIO=LIR SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS		READ(IIN, 1) LH1, LH2, 416AR, A2BAR, B1BAR, B2BAR	
READ(IIN, 2) CONT THE=THE/57.2958 GAM=GAM/57.2958 THED=THED/57.2958 THEP=THEP/57.2958 GAMP-GAMP/57.2958 GAMP-GAMP/57.2958 XD=V*DCOS(GAM) ZD=V*DSIN(GAM) XPD=V*DCOS(GAMP) ZPD=VP*OSIN(GAMP) R= 6378377. GR= 9.8054160 C GR= 32.17 C R=20925435. DT=DTI DTP=DTPI LTO=LTR		READ(IIN,1) LSI,LS2,DLP,(H1,KH2	
THE=THE/57.2958 GAM=GAM/57.2958 THED=THED/57.2958 THEP=THEP/57.2958 GAMP=GAMP/57.2958 GAMP=GAMP/57.2958 XD=V*DCDS(GAM) ZD=V*DSIV(GAM) XPD=VP*DCOS(GAMP) ZPD=VP*DSIN(GAMP) R= 6378377. GR= 9.8054160 C GR=32.17 C R=20926435. DT=DTI DTP=DTPL LTO=LTR		READ(IIN,61) HEAJER	
GAM=GAM/57.2958 THED=THED/57.2958 THEP=THEP/57.2958 THEP=THEP/57.2958 GAMP=GAMP/57.2958 GAMP=GAMP/57.2958 XD=V*DCOS(GAM) ZD=V*DSIN(GAM) XPD=V*DSIN(GAMP) R= 6378377. GR= 9.8054160 C GR=32.17 C R=20926435. DT=DTI DTP=DTPL LTDE LTDE LTDE LTDE LTDE LTDE LTDE LTD		READ(LIN, 2) CONT	
THED=THED/57.2958 THEP=THEP/57.2958 THEPD=THEPD/57.2958 GAMP=GAMP/57.2958 XD=V*DCOS(GAM) ZD=V*DSIN(GAM) XPD=V*DCOS(GAMP) ZPD=VP*DCSN(GAMP) R= 6378377. GR= 9.8054160 C GR=32.17 C R=20926435. DIT=DII DIT=DII DIT=DII DIT=DIPI LTO=LTR		THE=THE/57.2958	
THE P= THE P/57.2958 THE PD = THE PD /57.2958 GAMP= GAMP/57.2958 XD = V * DC IS (GAM) ZD = V * DS IN (GAM) XPD = V P * DC IS (GAMP) ZPD = V P * DS IN (GAMP) R = 6378377. GK = 9.8054160 CGR = 9.8054160 CR = 20926435. DI = DI I DI = DI I DI = DI I DI = DI I UD = L TR		GAM=GAM/57.2958	
THEPD=THEPD/57.2958 GAMP=GAMP/57.2958 XD=V*DCRS(GAM) ZD=V*DSIN(GAM) XPD=VP*DCRS(GAMP) ZPD=VP*DSIN(GAMP) R= 6378377. GR= 9.8054160 C GR=32.17 C R=20926435. DI=DII DI=DII DIPDII UD LTO=LTR		THED=THED/57.2958	
GAMP=GAMP/57.2953 XD=V+DCDS(GAM) ZD=V+DSIN(GAM) XPD=VP+DCOS(GAMP) ZPD=VP+DSIN(GAMP) R= 6378377. GR= 9.8054160 C GR=32.17 C R=20926435. DT=DT1 DT=DT1 DTP=DTP1 LTO=LTR		THEP-THEP/57.2958	
XD=V*DCNS(GAM) ZD=V*DSIN(GAM) XPD=VP*DCOS(GAMP) ZPD=VP*DSIN(GAMP) R= 6378377。 GR= 9.8054160 C GR=32.17 C R=20926435。 DT=DTI DT=DTI DTP=DTPI C DT=LTR		THEPD=THEPD/57.2958	
ZD=V*DSIN(GAM) XPD=VP*DCOS(GAMP) ZPD=VP*DSIN(GAMP) R= 6378377。 GR= 9.8054160 C GR=32.17 C R=20926435。 DT=DT1 DTP=OfP1 LTO=LTR			
XPD=VP*DCOS(GAMP) ZPD=VP*DSIN(GAMP) R= 6378377。 GR= 9.8054160 C GR=32.17 C R=20926435。 DT=DT1 DTP=DTP1 DTP=DTP1 DTP=DTP1 UTUSE DTP=DTP1 DTP=DTP1 DTP=DTP1 DTP=DTP1 DTP=DTP1 DTP=DTP1 DTP=DTP1 DTP=DTP1 DTP=DTP1 DTD=DTP		XD=V+DCDS(GAM)	
ファート ファート ファート ファート ファート ファート ファート ファート		ZD=V*DSIN(GAM)	;
R= 6378377。			
C GR=32-17 C R=20926435• DT=DT1 DTP=DTP1 Δ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ		ZPD=VP*DSIN(GAMP)	
C GR=32-17 C R=20926435• DT=DT1 DTP=DTP1 Δ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ		R= 6378377.	<u>ଫ</u> ନ
C R=20926435. DT=DTI DTP=DTPI Δ Φ Δ Φ Δ T Φ Δ Φ Δ Φ Φ Δ Φ Φ Δ Φ Φ Δ Φ Φ Φ Δ Φ Φ Φ Δ Φ Φ Φ Φ			HO.
C R=20926435。 DT=DT1 DTP=DTP1 LT0=LTR	c	GR=32.17	~ ĭ e
DTP=DTP1	C	R=20926435.	
DTP=DTP1		DT=DT1	
LTO=LTRŬ		DTP=DTP1	
TENS=0.		LTO=LTR	
		TENS=0.	

```
MA=O.
   CONF=0.
   L=0
   CALL BRIDLE
   WRITE (IOUT, 55) ATMOS
   WRITE(TOUT, 56) TIMEL
   WRITE(IOUT, 53) TTI
   WRITE (IUUT, 56) AREAI
   WRITE(IOUT, 53) SSPI
   WRITE (IOUT, 58)
   WRITE (19UT, 59) (KKS(1),[=1,8)
   WRITE(IDJT, 60)
   WRITE (IOUT, 59) (Trens(I), I=1,8)
17 FORMAT (1H1, 10X, "AFROD YNAMIC PARAMETERS"//)
18 FORMAT(10X, FORBUDY ANGLE OF ATTACK ARRAY, AALP(16) DEGREES /)
16 FORMAT(1X,8F8.3/)
 3 FORMAT(2(1X,8F8.3/))
 4 FORMAT(14 , LOX, "MACH NUMBER ARRAY, AAM(8) 1/)
 5 FORMAT(14 ,10X, FURBODY AXIAL COEF. ARRAY, CCA(8,16) 1/)
 6 FORMAT (16(1X,8(F3,4)/))
 7 FORMAT(1H ,10X, FORBODY NORMAL COEF. ARRAY, CCN(8,16) 1/1
 8 FORMAT(1H1, 10x, *FORBODY PITCH MOM COEF. ARRAY, CCM(8,16)*/)
 9 FORMAT(1H ,10X, FORBODY PITCH DAMPING COEF. ARRAY, CCMQ(8,16) 1/)
10 FORMAT(1H1,10X, AFTBUDY ANGLE OF ATTACK ARRAY, AALPP(15) DEGREE!/)
11 FORMAT(1H , LOX, "AFTBODY MACH NUMBER ARRAY, AAMP(8) 1/)
12 FORMAT(1H ,10X, AFTBODY AXIAL COEF. ARRAY, CCAP(8,16) 1/)
13 FORMAT(1H , 10X, 'AFTBODY NORMAL COEF. ARRAY, CCNP(8,15) 1/)
14 FORMAT (1H1, 10X, "AFTBODY PITCH MOM COEF. ARRAY, CCMP(8, 16) "/)
15 FORMAT(IH ,10x, AFTBODY PITCH DAMPING COEF. ARRAY, CCMUP(8,16) //)
   WRITE(10UT.17)
   WRITE([OUT.18]
   WRITE(10UT,3)(AALPE(J),J=1,16)
   WRITE(IDUT, 4)
   WRITE (10UT, 16) (AAM(J), J=1, 3)
   WRITE(IOUT, 5)
   WRITE(10UT,6)((CCA(I,J),J=1,16),I=1,8)
   WRITE ([OUT, 7)
   WRITE(IOUT, 6)((CCN(I, J), J=1, 16), I=1, 8)
   WRITE([OUT,8]
   WRITE(10UT,6)((CCM(I,J),J=1,16),I=1,8)
   WRITE(10UT,9)
   WRITE([OUT,6)((CCMQ([,J),J=1,16),[=1,8)
   WRITE(10UT, 10)
   WRITE(IOUT, 3) (AALPPE(J), J=1,16)
   WRITE(IOUT,11)
   WRITE(10UT, 16) (AAMP(J), J=1,8)
   WRITE(IOUT, 12)
   WRITE([OUT, 6)((CCAP([,J),J=1,16),[=1,8)
   WRITE(IOUT, 13)
   WRITE (10UT, 6) ((CCNP(1, J), J=1, 16), I=1,8)
   WRITE (IOUT, 14)
   WRITE([OUT,6]((CCMP([,J),J=1,16),[=1,8)
   WRITE ([OUT, 15)
   WRITE(IOUT, 6) ((CCMQP(I,J),J=1,16),I=1,8).
```

19 TORQ=0.	
THEDU=THEDJ/57.2953	
THEDL = THEDL /57 • 2958	
DTPC=0.	
CONST=-1.	
JJJ=1	·
JJ=1	·
WRITE(IOUT, 50)	The print of the contract of t
99 IF(Z-LT-HHH) CONST=0.	
1/11-01-1111/ CUN31-0-	
IF(JJ.EQ.1) 60 TO 101	
DTPC=DTPC+1.	
IF(DTPC.LT.DTP) GU TO 102	
JJJ=JJJ+1 DTPC=0.	
1F(JJJ.LE.6) GO TO 101	
WRITE(1901,50)	
JJJ=1	
101 CALL SUBR	
THPDDE=THEPD*57.2958	
THEOUE = THEO + 57 • 2 9 5 8	
ALPDEG=ALP+57.2958	
PHIDEG=PHI+57.2958	
GANDEG=GAM*57.2958	
THEDEG=THE +57.2958	
THPDEG=THEP*57.2958	
GAMPDE=GAMP *57.2958	
ALPPDE=ALPP*57.2958	
PHIDDE=PHID*57.2953	^
MUDEG=MU*57.2958	
MUDDEG=MJD*57 • 2 95 8	
CHIDEG=CHI * 57.2958	•
CHIDDE=CHID #57.2958	
LAMDEG=LAM*57.2958	
NUDEG=NU*57.2958	
NUPDEG=NUP + 57 • 2958	
PHI10E=PHI1 +67.2958	
PHI 2DE = PHI 2 * 57, 2958	
DCG=DSQRT((X-XP)**2+(Z-ZP)**2)	
XDD = EE (1)	
ZDD=EE(2)	
THEDDD=EE(3)*57.2958	
XPDD=FF(1)	
ZPDD=FF(2) NAP=(XPDD*CTHEP+ZPDD*STHEP)/GR	
NAP=(APDI)**CHEF*ZPDD**STREP // GR	
NNP=(ZPDD+CTHEP-XPDD+STHEP)/GR NA=(XDD+CTHE+ZDD+STHE)/GR	
NN= (XDD+CTHE+2DD+STHE)/GR	
THPDDD=FF(3) +57.2958	
CAAP=CAP*SPI	

Page 61 GER 15853

2, MUDEG, MJDDEG, NAP, NNP, LAM, LAMDEG, LSI, LS2, LOP, LAMOP, NUP, NUPDES	
3, M, MP, IY, IYP, LTO, LTO, NA, NN, K, KS PKHI	
4, MMA(16), MA, 11YP(16), KBL, KBT, KH1, KH2, KPH1, KKS(8)	and the state of t
COMMON T.DT.X.Z.XP, ZP, THE, THEP, XD, ZD, XPD, ZPD, THED, THEPD, GAM, GAMP,	
1ALP, ALPP, AM, AMP, DYPR, DYPRP, RHJ, S, SP, D, DP, M, MP, LY, LYP, LT, LTO, LTD,	
2DCG, C, K, CA, CN, CM, CM, CCA(8, 16), CCN(8, 16), CCM(8, 16), CCM(8, 16), CAP.	
3CNP, CMP, CM4P, CCAP(8,16), CCAP(8,16), CCMP(8,16), CCMAP(8,16), V, VP, GR,	
4R, AA(6,4), DO(3,3), EE(3), FF(3), QX, QZ, QXP, QZP, QTHE, QTHEP, APUAR, X3AR,	-
528AP, AA1(8), AA1P(8), AALPE(16), AALPPE(16), IIN, IOUT,	
60 AD THE , DBDTHE , DADTHP, DBDTHP, ABAR, BBAR, A, B, CHI, CHIO, MJ, MUD, PHI, SPI,	
TO LEG DIEL BULLO DETEN SETS COOL COCO DECOUNT AND A LEG SE	The second secon
8SIGI, SIG2, ETA1, FTA2, TENS, DAMP, STHE, CTHE, STHEP, CTHEP, LH1, LH2,	
9A 1BAR, A2BAR, B1BAR, B2BAR, B0BAR, A3BAR, L3, L1, L2, LAM1, LAM2, NU, G	
COMMON TOR, THEOU, THEOL, DIVC, TORQ, BRID, LAM, TI, CONF, DTI, CDAB	
1.TTI(16).SSPI(16).LS1,LS2,LDP,LAMOP,NUP,BPBAR,EPSP1,EPSP2,DLP,KS	
2, MMA, MA, TTG(8), VVG(8), VG, L(YP, KBL, KBT, KH1, KH2, TTENS(3), KKS,	
3CONT(20), AALP(16), AALPP(16)	
1[[=]	
G=GR*(R/(Z+R)) **2	
REACTION CONTROL SYSTEM	
[F(TORQ.EQ.O.) GO TO 49	
IF (THED.GT. THEDL) GU TO 48	
ICATUCA LT TUCALA CO TO 17	
IF(T-TC.GT.DTVC) GO TO 40	
IF(THED.GT.O.) TORQ=-TOR#(1(T-TC)/DTVC)	
IF(THED.LT.U.) TORQ=TOR *(1(T-TC)/DTVC)	
GO TO 42	THE RESIDENCE OF STREET, AND ASSOCIATION OF STREET, WHICH STREET, WHITE
48 FOR Q=-TUR	
TC=T	
GO TO 42	
47 TORQ=TOR	
TC=T	
GO TO 42	
49 1F (THED.LT. THEDU.AND. THED.GTTHEDU) GO TO 40	
IF(THED.GT.THEDU) GD TO 41	
TORU= TOR	**************************************
TC=0.	
GO TO 42	منه ا <i>لرجو ب</i> د د حالا الرجوبية شم الرح <u>سيا</u> رة الأكوبينية بينستي <u>ة المسيد المنات والمستدي</u> ر والمستدر
41 TORQ=-TOR	
TC=0.	
GO TO 42	
40 TOKQ=0.	
42 CONTINUE	
TORQ=0.0	ი Ⴊ
I = 2	
400 [F(T.LE.TTG([)) GO TO 40]	Rg
[=[+]	Ø
GO TO 400	
401 TS(=(T-TTG(!-1))/(TTG(!)-TTG(!-1))	; <u></u>
401 TSL=(T-TTG([-1))/(TTG([)-TTG([-1)))	
VG=VVG([-1)+(VVG([)-VVG([-1))*TSL	Oι

V=D SQR T (XD**2+ZD**2) VP=DSQRT(XPD**2+LPO**2) AM=DSURT((XD-VG)**2+ZD**2)/VS AMP=DSQRT((XPU-VG) **2+ZPD**2)/VS DYPR=.5*RHO*((XD-VG)**2+ZD**2) DYPRP= . 5*R+O* ((XPI)-VG)* *2 + ZPD **2) STHE=DSIN(THE) CIHE=DCOS(THE) STHEP=OSIN(THEP) CTHEP=DCOS(THEP) GAM= DATAN2 (ZD, XD) GAMP= DATAN2(ZPD, XPD) ANG= DATANE (ZD, (XD-VG)) IF (ANG. LT. 0.0) ANG = ANG + 5.2831854 201 THEA = 6.283185+THE ALP=THEA-ANG IF (ALP-GT-3-1415927) ALP=ALP-6-283185 ANGP= DATAN2(ZPD,(XPD-VG)) IF (ANGP .LT. 0.0) ANGP=ANGP+6.2931854 301 THEPA=6.283185+THEP ALPP=THEPA-ANGP IF (ALPP-GT-3-1415927) ALPP=ALPP-6-283185 700 CALL AERO BRIDLE, RISER, SUSPENSION GEOMETRY A=XP+APBAR+CTHEP-BPBAR+STHEP-X-ABAR+CTHE+BBAR+STHE B=ZP+APBAR*STHEP+BPBAR*CTHEP-Z-ABAR*STHE-BBAR*CTHE AD=XPD-APBAR*THEPD*STHEP-BPBAR*THEPD*CTHEP-X)+ABAR*THED*STHE+ 1BBAR* THED*CTHE BO=ZPO+AP3AR*THEPD*CIHEP-BPBAR*THEPD*STHEP-ZO-ABAR*THED*CIHE+ 1BBAR*THED*STHE LT=DSQRT(A**2+8**2) IF(LT.LT.LTO) GO TO 35 TENS=K#(LT-LTO) GO TO 36 35 TENS=0. 36 CHI=DATAN(A/B) MU=-1.5707963-THEP-NUP-CHI PHI = 1.5707963-THE-LAM-CHI IF(8.LT.O.) MU=1.5707963-THEP-NUP-CHI IF (B.LT.O.) PHI=4.7123889-THE-LAM-CHI 20 PHIB=PHI 1 = 2 600 IF (TENS.LE.TTENS(I)) GO TO 601 [=[+] GO TO 600 601 TENSL=(TENS-TTENS(I-1))/(TTENS(I)-TTENS(I-1)) KS=KKS(I-1)+(KKS(I)-KKS(I-1))*IENSL KSPKH1=(2.*KS*KH1)/(2.*KS+KH1) ပ်ာတ KSPKH2= (2. *KS *KH2)/(2. *KS+KH2) IF (PHI.GT.PHI2.OR.PHI.LT.-PHII) GO TO 15 DL1= (TENS/(KH1*DSIN(SIG1+SIG2)))*(-DSIN(PHI)*DCOS(SIG2) 1 +DCOS(PHI)*DSIN(SIG2))

	DU 2- ATCHC//WHOTOCAN/CICLACICANA MADCIN/DUTA-DOCOC/CICLA	
	DL 2= (TENS/(KH2*DSIN(SIG1+SIG2)))*(DSIN(PHI)*DCOS(SIG1)	
	1 +DCOS(PHI) +DSIN(S[G1))	
	LH1=LH1+3L1	
	L H2 = L H2 + DL 2	
	CALL BRIDLE	
	[H]=[H]-)[]	
	LH2=LH2-0L2	
	BBAR=BJJAR	
		<u>-</u>
	ABAR=AUBAR	
	PHI1=SIG1	
	PH12=S1G2	
	KPHI=K9L* <bt (kbt*(dcds(phi))**2+kbl*(dsin(phi))**2)<="" td=""><td></td></bt>	
	K=2.*KS*KPHI/(2.*KS+KPHI)	
	LTO=LTR	
	L AMENU	
	GO TO 14	
	15 [F(PHI.LTPHIL) GO TO 16	
	ABAR = AZBAR	
	BBAR=B2BAR	
	LTO=LTR+LH2	
	K=KSPKH2	
	PHI2=ETA2	
	LAM=LAM2	
	IF (LAM.GT.3.1415927) LAM= LAM2-6.28318531	
	GO TO 14	
	16 ABAR= A1BAR	
	88AR=81 BAR	
	L TU=LTR+LH1	
	K=KSPKH1	
	PHI1=ETA1	
		
	LAM=LAM1	
	14 DLS1=(TENS/(KS*DSIN(EPSP1+EPSP2)))*(DCOS(EPSP2)*DCOS(MU+NUP)-	
	IDSIN(EPSP2)*DSIN(MU+NUP))	
	DLS2=(TENS/(KS*DSIN(EPSP1+EPSP2)))*(DCOS(EPSP1)*DCDS(MU+NUP)+	
	1DSIN(EPSP1)*DSIN(MU+NUP))	
	L S1=L S1+)LS1	
	LS2=LS2+DLS2	
i	CALL SUSPEN	
	LS1=LS1-DLS1	
	LS2=LS2-DLS2	
	A=XP+APBAR*CTHEP-BPBAR*STHEP-X-ABAR*CTHE+BBAR*STHE	
	B=ZP+APBAR*STHEP+BPBAR*CTHEP-Z-ABAR*STHE-BBAP*CTHE	· · · · · · · · · · · · · · · · · · ·
	AD=XPN-APBAR*THEPD*STHEP-BPBAR*THEPD*CTHEP-XD+ABAR*THED*STHE+	
	188AR*THED*C THE	:
		;
	BD=ZPD+APBAR *THEPD*CTHEP-BPBAR *THEPD*STHEP-ZD-ABAR *THED*CTHE+	1
	18BAR*THED*STHE	_
	LT=DSQRT(A**2+B**2)	. a b
	LTD=(A*AD+8*BD)/LT	- H.O.
	CHI =DATAN(A/B)	age ER
	MU=-1.5707963-THEP-NUP-CHI	- ~ ~
		- µ"
	PHI = 1.5707963-THE-LAM-CHI	_ 0.00
	IF(B.LT.O.) MU=1.5707963-THEP-NUP-CHI	္ ထပၢ
	IF(B.LT.O.)PHI=4.7123889-THE-LAM-CHI	U
	CHID=(B*AD-A*BD)/(LT**2)	- ω

601 ALPSL=(DABS(ALP)-AALP(J-1))/(AALP(J)-AALP(J-1))

C	IF(T.LT.DTI) CMP=CMP*T/DTI	
c	IF(T.LT.DTI) CMGP=CMQP*T/DTI	
	QXP=-DYPRP*(SPI*CAP*CTHEP+SP*CNP*STHEP)	
	OZP=DYPRP*(SPI*CNP*CTHEP-SPI*CAP*STHEP)	
	QTHEP=DYPRP*SPI*OP*(CMP+CMQP*THEPD*DP/VP)	
	RETURN	
	END	
	SUBROUTINE MATRIX	
	IMPLICIT REAL +8(A-H, D-Z)	
	DOUBLE PRECISION LAMIDE, LAMODE, NUDES, LAMOPD, KS.	
	IKSPKH2, LTR, MU, MUJ, LH1, LH2, L1, L2, L0, LAM1, LAM2, LAMO, NU	
	2, MUDEG, MJDDEG, NAP, NNP, LAM, LAMDEG, LSI, LS2, LOP, LAMOP, NUP, NUPDES	
	7 W MO TV TVO LT LTO ATO AN AND V VC OVIN	
	4,MMA(13),MA,TTYP(16),KBL,KBT,KH1,KH2,KPH <u>T,KK</u> S(<u>3</u>) CUMMUN T,DT,X,Z,XP,ZP,THL,THLP,XD,ZD,XPD,ZPD,THED,THEPD,GAM,GAMP,	
	TALO ALDO AM AMO DVODO BUDO C. CO. D. D. M. D. TV. L. T. L. T. D. T. D. T. T. D. T.	·
	1ALP, ALPP, AM, AMP, DYPR, OYPRP, RHO, S, SP, D, DP, M, MP, IY, IYP, LT, LTO, LTO,	
	2DCG, C, K, CA, CN, CY, CYO, CCA(8, 16), CCN(8, 16), CCM(8, 16), CCM(8, 16), CAP,	
	3CNP, CMP, CMRP, CGAP13, 161, CC VP(9, 16), CCMP(8, 16), CCMOP(8, 16), V, VP, GR.	
	4R, AA(6, 4), DO(3, 3), EE(3), FF(3), OX, OZ, QXP, QZP, OTHE, OTHEP, APBAR, XBAR,	
	5ZBAR, ANY(8), AAMP(8), AALPE(16), AALPPE(16), IIN, IDUT,	
	SUAD THE JUNUTHE JUNUTHE, DUDTHE, ANAK, BRAK, A, B, CHI, CHID, MJ, MUD, PHI, SPI,	
	7PHID, PHI1, PHI2, BET1, BET2, EPS1, EPS2, KSPK+1, KSPK+2, LTR, DL;	
	8SIG1, SIG2, ETA1, ETA2, TENS, DAMP, STHE, CTHE, STHEP, CTHEP, LH1, LH2,	
	9A1BAR, A2BAR, B1BAR, B2BAR, B0BAR, A0BAR, L0, L1, L2, LAMO, LAM1, LAM2, NU, G	
	COMMON TOR, THEOU, THEOL, DTVC, TURO, BRID, LAM, TI, CONF, DTI, CDAB	
	1.TTI(16),SSPI(16),LS1,LS2,LDP,LAMOP,NUP, BPBAR,EPSP1,EPSP2,DLP,KS	
	2, MMA, MA, TTG(8), VVG(8), VG, LIYP, KBL, KBT, KHL, KH2, TTENS(3), KKS,	
	3CONT(20), AALP(16), AALPP(16)	
	DD(1,1)=M	
	UD(1,2)=0.	
	DD(1,3)=-M*(ZBAR*CTHE+XBAR*STHE)	
	DO(2,1)=0.	
*	DD(2,2)=M	
	DD(2,3)=-M*(ZBAR*STHE-XBAR*CTHE)	
	00(3,1)=00(1,3)	
	DD(3,2)=DD(2,3)	
	DD(3,3)=IY	
	THED2=THED**2	
	FE(1)=DD(2,3)+THED2+(TENS+DAMP)+A/LT+QX	
	EE(2)=-DD(1,3)*THED2+(TENS+DAMP)*B/LT-M*G+QZ	
	EE(3)=-G*DJ(2,3)-(TENS+DAMP)*(A*DADTHE+B*DBDTHE)/LT+QTHE	
	EPS=.10-11 ·	
	CALL CROUT(DD, EE, 3, 3, EPS, 1 ERSW)	
	IF(IERSW.EQ.O) RCTURN	
	WRITE(IQUT,50)	
	STOP	0 H
	50 FORMAT (////20X, INCUNSISTENT EQUATIONS)	Page GER
	END ·	Ď.K
	SUBROUTINE BRIDLE	(D
	IMPLICIT REAL+8(A-H, D-Z)	H.
	DOUBLE PRECISION LAMIDE, LAMODE, NUDEG, LAMOPD, KS,	<u>я</u> 6
	1KSPKH2,LTR,MU,MU,LH1,LH2,L1,L2,L0,LAM1,LMA2,LMU,CMA1,LML1,LML1,LML1,LML1,LML1,LML1,LML1,L	8 8
	2, MUDEG, MUDDEG, NAP, NNP, LAM, LAMDEG, LS1, LS2, LOP, LAMOP, NUP, NUPDEG	ŭ
	3, M, MP, IY, IYP, LT, LTO, LTO, NA, NN, K, KSPKH1	

```
4, MMA(16), MA, IIYP(16), KBL, KBT, KH1, KH2, KPHI, KKS(8)
  COMMON T,DT,X,Z,XP,ZP,THE,THEP,XD,ZD,XPD,ZPD,THED,THEPD,GAM,GAMP,
 IALP, ALPP, AM, AMP, DYPR, DYPRP, RHO, S, SP, D, DP, M, MP, LY, LYP, LT, LTO, LTO,
 2DCG,C,K,CA,CN,CM,CMU,CCA(8,16),CCN(8,16),CCM(8,16),CCMQ(8,16),CAP,
 3CNP,CMP,CMQP,CCAP(8,16),CCNP(8,16),CCMP(8,16),CCMQP(3,16),V,VP,GR,
 4R, AA(6,4),DD(3,3),EE(3),FF(3),QX,QZ,QXP,QZP,QTHE,QTHEP,APBAR,XBAR,
 5ZRAR, AAM(8), AAMP(8), AALPE(16), AALPPE(16), IIN, IDUT,
 6DADTHE, D3DTHE, DADTHP, DBDTHP, ABAR, BBAR, A, B, CHI, CHID, MU, MUD, PHI, SPI,
 7PHID, PHI1, PHI2, BET1, BET2, EPS1, EPS2, KSPKH1, KSPKH2, LTR, DL,
 8SIG1, SIG2, ETA1, ETA2, TENS, DAMP, STHE, CTHE, STHEP, CTHEP, LH1, LH2,
9418AR, AZBAR, B1BAR, B2BAR, B0BAR, A0BAR, L0, L1, L2, LAMO, LAMI, LAMZ, NU, G________________________________
  COMMON FOR, THE DU, THEDL, DIVC, TORQ, BRID, LAM, TI, CONF, DII, COAB
 1, TTI(16), SSPI(16), LSI, LS2, LOP, LAMOP, NUP, BPBAR, EPSPI, EPSP2, DLP, KS
 2,MMA, MA,TTG(8),VVG(9),VG,IIYP,KBL,KBT,KHI,KH2,TTENS(8),KKS,___________________
 3CONT(20), AALP(16), AALPP(16)
53 FORMAT(1H1, 15X, 20A4///)
54 FORMAT (1H . 10x, INITIAL VALUES, ENGINEERING UNITS ARE METRIC (METE
 IRS, NEWTON, SEC11/1
55 FURMAT(1H ,/10X, LH1 , 7X, LH2 , 7X, A1BAR , 5X, A2BAR , 5X, B1BAR , 5X,
1'B2BAR',5X,'L1',8X,'L2',8X,'DL',8X,'LO',8X,'BET1',6X,'BET2'/10X,
 2*EPS1*,6X,*EPS2*,6X,*ETA1*,6X,*ETA2*,6X,*SIG1*,5X,*SIG2*,6X,
 3"LAML",6X, "LAM2",6X, "LAMO",6X, "NU",8X, "4084R",5X, "803AR"/10X,
4'KSPKB',5X,'KSPKH1',4X,'KSPKH2',4X,'T-INF',5X,'DT-INF',4X,
 5'THEDU', 5X, 'THEDL', 5X, 'TJRQUE', 4X, 'DT-VALVE', 2X, 'LS1', 7X, 'LS2',
 67X, DLP'/13X, LOP', 7X, LAMOP', 5X, NUP', 7X, APBAR', 5X, BPBAR', 5X,
  7'EPS1P',5X,'EPS2P',5X,'DT',8X,'KH1',7X,'KH2'/)
56 FORMAT(9X,12(F8.3,2X)/8X,12(F9.3,2X)/8X,3(F9.0,1X),9(F8.3,2X)
 1/8X,8(F8.3,2X) ,4(F9.0,1X)//)
  STATEMENT FUNCTION
  DARCOS(DL) = DACOS(DL)
  L1=DSORT(A1BAR **2+31BAR **2)
  L2=DSQRT(A2BAR**2+B2BAR**2)
  DL=DSQRT((B2BAR-B1BAR)**2+(A2BAR-A1BAR)**2)
  BET1=DARCOS ((L1**2+DL **2-L 2**2)/(2.*L1*)L))
  BET2=DARCOS((L2**2+DL **2-L1**2)/(2.*L2*DL))
  EPS1=DARCOS((LH1**2+DL**2-LH2**2)/(2.*L+1*DL))
  EPS2=DARCUS((LH2*+2+DL*+2-LH1*+2)/(2.*LH2*DL))
  ETA1=3.1415927-BET1-EPS1
  ETA2=3.1415927-BET2-EPS2
  LO=DSQRT(L1**2+LH1**2-2.*LH1*L1*DCDS(BET1+EPS1))
  LAMI= DATAN2(BIBAR, AIBAR)
  IF(LAM1.LT.0.0) LAM1=6.28318531+LAM1
  LAM2 = DATAN2 (B2BAR, A2 BAR)
  IF(LAM2.LT.0.0) LAM2=6.28318531+LAM2
                                                                                                   Pag
GER
  LAMO=LAM2+DARCUS((L2**2+L0 **2-LH2**2)/(2.*L2*L0))
  SIG1=3.1415927-BET1-EPS1-LAM1+LAM0
  IF(LAMO.GE.3.14159270) SIG1=SIG1-6.28318531
  SIG2=3.1415927-BET2-EPS2-LAMO+LAM2
                                                                                                   \sigma
  IF(LAMO.GE. 3.14159270) LAMO=LAMO-6.28318531
                                                                                                   ထမ
  NU = LAMO
  LAM=NU
  AOBAR = LO+JCUS(NU)
```

3, M, MP, IY, IYP, LT, LTD, LTO, NA, NN, K, KSPKH1

Page 70 GER 15853

4, MMA(16), MA, I [YP(16), KBL, KBT, KH1, KH2, KPHI, KKS		
COMMON T.OT, X.Z.XP, ZP, THE, THEP, XD, ZD, XPD, ZPD,	THED, THEPD, GAM, GAMP,	
TALP, ALPP, AM, AMP, DYPR, DYPRP, RHD, S, SP, D, DP, M, MP	,IY,IYP,LT,LTO,LTD,	
20LG,C,K,CA,CN,CM,CMQ,CCA(8,16),CCN(8,16),CCM(8,16),CCMQ(8,16),CAP,	
	,CCMQP(8,16),V,VP,GR,	The same of the same of
4R, AA(6,4), DU(3,3), FE(3), FE(3), WX, WZ, WXP, QZP, W 5ZBAR, AAM(8), AAMP(8), AALPE(16), AALPPE(16), IIN,		
	CHID, MU, MUD, PHI, SPI,	
7PHID, PHII, PHI2, BET1, BET2, EPS1, EPS2, KSPKH1, <sp< td=""><td>KH2, LTR, DL,</td><td></td></sp<>	KH2, LTR, DL,	
SSIGI.SIG2.ETAI.FTA2.TENS.DAMP.STHE.CTHE.STHEP	CTHEP, LHI, LHZ,	W.C. 18 PR. 1 P. 1 THE MAIN PROPERTY.
	LAMO, LAMI, LAMZ, NU, G	
COMMON TOR, THEOU, THEOL, DTVC, TOKO, BRID, LAM, FI.	CONF.DII.COAB	
1, TTI(16), SSPI(16), LSI, LS2, LQP, LAMOP, NUP, HPBAR	R,FPSPL,EPSP2,DLP,KS	
2,MMA,MA,TTG(8),VVG(8),VG,I[YP,KBL,K <u>BT,K+1,K+2</u>	P,TTENS(B),KKS,	
3CONT(20),AALP(16),AALPP(16)	The second secon	
	CONTROL OF THE STATE OF THE STA	
DARCUS(DLP) = DACOS(DLP)		
E0003-0400000000000000000000000000000000	su)	
######################################	521)	
LOP=DSQRT((DLP/2.)**2+LS1**2-DLP*LS1*DCDS(EPS	. 10111	
LAMOP = DARCOS (((DL P/2 .) * *2 + LOP * *2 - LS 2 * *2) / (DL P	PF	
NUP=LAMOP-1.5707963		
R P R A Z = L O P A O S I N (NILD)		
DI OAN =LUF=U31141 ANE 1		
IF (CONF. FQ.0.0) RETURN		
IF (CONF.FQ.O.O) RETURN XP=X+ANAR*CTHE-BHAR*STHE-APBAR*CTHEP+BPBAR*ST	HFP+(LTO+TENS/K)	
IF(CONF.FQ.O.O) PETURN XP=X+ABAR*CTHE-BHAR*STHE-APBAR*CTHEP+BP3AR*ST	HFP+(LTO+TENS/K)	
IF (CONF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BHAR*STHE-APBAR*CTHEP+BP3AR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT	HFP+(LTO+TENS/K)	
IF (CONF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BHAR*STHE-APBAR*CTHEP+BP3AR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI)	HFP+(LTO+TENS/K)	
IF (CONF.FQ.O.O) PETURN XP=X+ABAR*CTHE-BHAR*STHE-APBAR*CTHEP+BP3AR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN	HFP+(LTO+TENS/K) HEP+(LTO+TENS/K)	
IF (C)NF.FQ.O.O) PETURN XP=X+ABAR*CTHE-BHAR*STHE-APBAR*CTHEP+BPBAR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END	HFP+(LTO+TENS/K) [HEP+(LTO+TENS/K)	
IF (CONF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BHAR*STHE-APBAR*CTHEP+BPBAR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBRUUTINE CROUT(A, C, N, LD, EPS, IERSW)	HFP+(LTO+TENS/K) [HEP+(LTO+TENS/K)	
IF (CONF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BHAR*STHE-APBAR*CTHEP+BPBAR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBRUUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS — CROUT	HFP+(LTO+TENS/K) [HEP+(LTO+TENS/K) LS223 2	
IF (CONF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BHAR*STHE-APBAR*CTHEP+BPBAR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBROUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS — CROUT DOUBLE PRECISION A.C.SUM.EPS.ZERO	HFP+(LTO+TENS/K) [HEP+(LTO+TENS/K) LS223 2	
IF (CONF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BHAR*STHE-APBAR*CTHEP+BPBAR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBROUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS — CROUT DOUBLE PRECISION A.C.SUM.EPS.ZERO DIMENSION A(LD,1), C(I)	HEP+(LTO+TENS/K) [HEP+(LTO+TENS/K) LS220 2	
IF (CONF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BHAR*STHE-APBAR*CTHEP+BPBAR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBROUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS — CROUT DOUBLE PRECISION A.C.SUM.EPS.ZERO DIMENSION A(LD,1), C(1) ZERO = 0.000	HFP+(LTO+TENS/K) [HEP+(LTO+TENS/K)	
IF (CINF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BBAR*STHE-APBAR*CTHEP+BPBAR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBRUUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS — CROUT DOUBLE PRECISION A.C.SUM.EPS.ZERO DIMENSION A(LD,1), C(1) ZERO = 0.000 ZERO = 0. IERSW=0	LS220 3 LS220 7	
IF (CINF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BBAR*STHE-APBAR*CTHEP+BPBAR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBRUUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS — CROUT DOUBLE PRECISION A.C.SUM.EPS.ZERO DIMENSION A(LD,1), C(1) ZERO = 0.000 ZERO = 0. IERSW=0	LS220 3 LS220 7	
IF (CINF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BBAR*STHE-APBAR*CTHEP+BPBAR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBRUUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS — CROUT DOUBLE PRECISION A.C.SUM.EPS.ZERO DIMENSION A(LD,1), C(1) ZERO = 0.000 ZERO = 0. IERSW=0	LS220 3 LS220 7	
IF (C)NF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BBAR*STHE-APBAR*CTHFP+BPBAR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBROUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS - CROUT DOUBLE PRECISION A.C.SUM.EPS.ZERO DIMENSION A(LD,1), C(1) ZERO = 0.000 ZERO = 0. IERSW=0 IF(DABS(A(1,1)) - EPS)90,5,5 IF(A3S(A(1,1)) - EPS)90,5,5 5 IF(N-1)90,10,15	LS220 3 LS220 6	
IF (C)NF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BBAR*STHE-APBAR*CTHEP+BPBAR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBROUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS - CROUT DOUBLE PRECISION A.C. SUM, EPS, ZERO DIMENSION A(LD,1), C(1) ZERO = 0.000 ZERO = 0. IERSW=0 IF(DABS(A(1,1)) - EPS)90,5,5 IF(A3S(A(1,1)) - EPS)90,5,5 5 IF(N-1)90,10,15 10 C(1) = C(1)/A(1,1)	HFP+(LTO+TENS/K) LS220 2 :	
IF (C)NF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BBAR*STHE-APBAR*CTHEP+BPBAR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBROUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS — CROUT DOUBLE PRECISION A.C.SUM.EPS.ZERO DIMENSION A(L),1), C(1) ZERO = 0.000 ZERO = 0. IERSW=0 IF(DABS(A(1,1)) — EPS)90,5,5 IF(A3S(A(1,1)) — EPS)90,5,5 5 IF(N-1)90,10,15 10 C(1) = C(1)/A(1,1) RETURN	HFP+(LTO+TENS/K) LS220 2 LS220 3 LS220 6 LS220 7 LS220 9 LS220 10 LS220 11 LS220 12	
IF (C)NF.FQ.O.O) PETURN XP=X+ABAR*CTHE-BHAR*STHE-APBAR*CTHEP+BP3AR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBROUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS — CROUT DOUBLE PRECISION A.C.SUM.EPS.ZERO DIMENSION A(LD,1), C(1) ZERO = 0.000 ZERO = 0. IERSW=0 IF(DABS(A(1,1)) — EPS)90,5,5 IF(A3S(A(1,1)) — EPS)90,5,5 5 IF(N-1)90,10,15 10 C(1) = C(1)/A(1,1) RETURN 15 DO 20 I=2.N	LS220 2	
IF (C)NF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BBAR*STHE-APBAR*CTHEP+BPBAR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBROUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS - CROUT DOUBLE PRECISION A.C.SUM.EPS.ZERO DIMENSION A(LD,1), C(1) ZERO = 0.000 ZERO = 0. IERSW=0 IF(DABS(A(1,1)) - EPS)90,5,5 IF(ABS(A(1,1)) - EPS)90,5,5 5 IF(N-1)90,10,15 10 C(1) = C(1)/A(1,1) RETURN 15 DO 20 I=2,N 20 A(1,1)=A(1,1)/A(1,1)	HFP+(LTO+TENS/K) LS220 2 LS220 3 LS220 6 LS220 7 LS220 9 LS220 10 LS220 11 LS220 12 LS220 13 LS220 14	
IF (C)NF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BBAR*STHE-APBAR*CTHEP+BP3AR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBROUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS - CROUT DOUBLE PRECISION A.C.SUM.EPS.ZERO DIMENSION A(LD,1), C(1) ZERO = 0.000 ZERO = 0. IERSW=0 IF(DABS(A(1,1)) - EPS)90,5,5 IF(ABS(A(1,1)) - EPS)90,5,5 5 IF(N-1)90,10,15 10 C(1) = C(1)/A(1,1) RETURN 15 DO ZO I=Z,N 20 A(1,1)=A(1,1)/A(1,1) DO 65 I=Z,N	HFP+(LTO+TENS/K) LS220 2 LS220 3 LS220 6 LS220 7 LS220 9 LS220 10 LS220 11 LS220 12 LS220 12 LS220 13 LS220 14 LS220 15	
IF (C)NF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BBAR*STHE-APBAR*CTHEP+BP3AR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBROUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS — CROUT DOUBLE PRECISION A.C.SUM.EPS.ZERO DIMENSION A(LD,1), C(1) ZERO = 0.000 ZERO = 0. IERSW=0 IF(DABS(A(1,1)) — EPS)90,5,5 IF(A3S(A(1,1)) — EPS)90,5,5 5 IF(N-1)90,10,15 10 C(1) = C(1)/A(1,1) RETURN 15 DO 20 I=2,N 20 A(1,1)=A(1,1)/A(1,1) DO 65 J=2,N DO 65 J=2,N	HFP+(LTO+TENS/K) LS220 2 LS220 3 LS220 6 LS220 7 LS220 9 LS220 10 LS220 11 LS220 12 LS220 12 LS220 13 LS220 14 LS220 15 LS220 16	
IF (CINF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BBAR*STHE-APBAR*CTHFP+BPBAR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBRUUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS — CROUT DOUBLE PRECISION A.C.SUM.EPS.ZERO DIMENSION A(LD,1), C(1) ZERO = 0.000 ZERO = 0. IERSW=0 IF(DABS(A(1,1)) — EPS)90,5,5 IF(ABS(A(1,1)) — EPS)90,5,5 5 IF(N-1)90,10,15 10 C(1) = C(1)/A(1,1) RETURN 15 DO 20 I=2,N 20 A(1,1)=A(1,1)/A(1,1) DO 65 J=2,N DO 65 J=2,N SUM = ZERO	HFP+(LTO+TENS/K) LS220 2 LS220 3 LS220 6 LS220 7 LS220 10 LS220 10 LS220 11 LS220 12 LS220 12 LS220 13 LS220 14 LS220 15 LS220 16 LS220 17	ο
IF (CINF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BBAR*STHE-APBAR*CTHFP+BPBAR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBRUUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS — CROUT DOUBLE PRECISION A.C. SUM.EPS.ZERO DIMENSION A(LD,1), C(1) ZERO = 0.000 ZERO = 0. IERSW=0 IF(DABS(A(1,1)) — EPS)90,5,5 IF(ABS(A(1,1)) — EPS)90,5,5 5 IF(N-1)90,10,15 10 C(1) = C(1)/A(1,1) RETURN 15 DO 20 I=2,N 20 A(1,1)=A(1,1)/A(1,1) DO 65 J=2,N SUM = ZERO IF(J — I) 30,30,25	HFP+(LTO+TENS/K) LS220 2 LS220 3 LS220 6 LS220 7 LS220 9 LS220 10 LS220 11 LS220 12 LS220 14 LS220 14 LS220 15 LS220 16 LS220 17 LS220 17 LS220 18	G H
IF (C)NF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BBAR*STHE-APBAR*CTHFP+BP3AR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBROUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS - CROUT DOUBLE PRECISION A.C.SUM.EPS.ZERO DIMENSION A(LD,1), C(1) ZERO = 0.000 ZERO = 0. IERSW=0 IF(DABS(A(1,1)) - EPS)90,5,5 IF(A3S(A(1,1)) - EPS)90,5,5 5 IF(N-1)90,10,15 10 C(1) = C(1)/A(1,1) RETURN 15 DO 20 I=2,N 20 A(1,1)=A(1,1)/A(1,1) DO 65 J=2,N SUM = ZERO IF(J - I) 30,30,25 25 J[N=I-1	HFP+(LTO+TENS/K) LS220 2 LS220 3 LS220 6 LS220 7 LS220 9 LS220 10 LS220 10 LS220 12 LS220 12 LS220 12 LS220 14 LS220 15 LS220 16 LS220 17 LS220 18 LS220 19	G H
IF (CINF.FQ.O.O) RETURN XP=X+ABAR*CTHE-BBAR*STHE-APBAR*CTHFP+BPBAR*ST 1*DSIN(CHI) ZP=Z+ABAR*STHE+BBAR*CTHE-APBAR*STHEP-BPBAR*CT 1*DCOS(CHI) RETURN END SUBRUUTINE CROUT(A, C, N, LD, EPS, IERSW) LINEAR ALGEBRAIC EQUATIONS — CROUT DOUBLE PRECISION A.C. SUM.EPS.ZERO DIMENSION A(LD,1), C(1) ZERO = 0.000 ZERO = 0. IERSW=0 IF(DABS(A(1,1)) — EPS)90,5,5 IF(ABS(A(1,1)) — EPS)90,5,5 5 IF(N-1)90,10,15 10 C(1) = C(1)/A(1,1) RETURN 15 DO 20 I=2,N 20 A(1,1)=A(1,1)/A(1,1) DO 65 J=2,N SUM = ZERO IF(J — I) 30,30,25	HFP+(LTO+TENS/K) LS220 2 LS220 3 LS220 6 LS220 7 LS220 9 LS220 10 LS220 11 LS220 12 LS220 14 LS220 14 LS220 15 LS220 16 LS220 17 LS220 17 LS220 18	ρ

35 DO 40 K=1,JIN	L S220 22	
40 SUM = SUM+A(I,K) +A(K,J)	LS223_23	
IF (J-1)45, 45, 55	LS22J 24	
45 A(I,J) = A(I,J)-SUM	L\$220 25	
	L\$220.26	
50 1F(DABS(A(1:1))-EPS190.65.65		
50 1F(ABS(A(1,1))-EPS)90,65,55	LS220_23	
55 IF(DABS(A(1,1)) - EPS) 90,60,60	A Salah Sala	
55 IF(ABS(A(1,1)) - EPS)90,60,60	L\$270 30	
60 A(1,J)=(A(1,J)-SUM)/A(1,1)	1.5220 31	
65 CONTINUE	L\$220 32	
C(1) = C(1) / A(1,1)	L \$2.20 33	·
υθ 75 [=2,N	L\$220_34	
SUM = ZERO	L S220 35	
JIN =I-1	L \$220 36	
DO 70 K=1,JIN 70 SUM=SUM+Λ(1,K) +C(K)	LS223 37	
70 SUM=50 N+A(1,K)+C(K)	LS220 33	
(.(I)=(C(I)-SUM)/A(I,I)	L \$22 <u>0_3</u> 9	
	LS22J 40	
JIN =N-1	L 5220 41	
00 85 M=1,JIN	L S 2 2 3 . 4 2	
SUM = ZERO	LS22J_43	
L=J[N-M+1		
	L S220 45	
DO 80 K=LL.N 80 SUM = SUM +A(L.K)*C(K)	15220 75	
00 30M - 30M + A(L(K)+C(K)	L 5220 .47	
85 C(L) = C(L) -SUM	L 5223 43	
RETURN CO. TERSU-1	L 5220 49	
90 IERSW=1 RETURN	15220 50	
END	L S223 51	
CHROCHTING DITONICY VI. VO VA VA N IV IVI IVO IVO	L \$220 52	
SUBROUTINE PLTRAJ(X,Y1,Y2,Y3,Y4,N,IX,IY1,IY2,IY3 THIS SUBROUTINE PLOTS UP TO FOUR CURVES ON THE S	DALE V CCALE CACH	
HAVING ITS OWN Y SCALE		
ANY ING. ITS. OWN, Y. SCALE		
X THE X (HORIZONTAL) VALUES AT	BUILD A-CIAN IS CONDITED	
Y1,Y2,Y3,Y4 THE Y (VERICAL) COORDINATES A	AT EACH V	
N THE NUMBER OF POINTS IN EACH	AT EACH X OF THE ARRAYS ABOVE	
IX THE CONTROL FOR X LABELLING ((NOT=0)	
IV1, IV2, IV3, IV4 THE CONTROL FOR Y LABELLING	(0-OMIT THIS & FOLLOWING)	
	THE CURVES)	
THE THE SER I DE MILITURE FOR LON	· DIE CONTEST	
DIMENSION X(1), Y1(1), Y2(1), Y3(1), Y4(1), HDR(1)		
DIMENSION VMX(4), VM1(4), VM2(4), VM3(4), VM4(4), VM5	S(4.5).ID(27)	
EQUIVALENCE (VMS(1,1),VM1(1)), (VMS(1,2),VM2(1)),		
1 (VMS(1,4),VM4(1)),(VMS(1,5),VMX(1))		
DIMENSION LABELS(4,12)		
	1,	
		
DATA LABELS / "ALTITU", "DE M*", "13**3 ", "		
DATA LABELS / 'ALTITU', 'DE M*', '13**3 ', ' 2	1,	
DATA LABELS / 'ALTITU', 'DE		·
DATA LABELS / 'ALTITU','DE M*','13**3 ',' 2	21,	· · ·
DATA LABELS / 'ALTITU', 'DE	21,	·

£.

· · · · · · · · · · · · · · · · · · ·	
8 'ANGLE ', 'DF ATT', 'ACK D', 'EG ',	
9 RANGE 1, M 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
A	
C 'ANGLE ', 'JF ATT', 'ACK P ', ' DEG '/	
DIMENSION LTYPE(4)	
MATA LIVOR / O L O C /	
DATA ID / *USE 12*, ** 3 IVC*, *H GPID*, *PAPER, *, * 20 GR*, *IDS PE*, 2 'R INCH*, ** USE ', *BLACK ', *LIQUID*, *INK IN*, *A 3 M*, *IL TIP*, 3 * PEN* ', ** ',	
2 'R INCH', '. USE ', 'BLACK ', 'LIQUID', 'INK IN', ' A 3 M', 'IL TIP', 3 ' PEN. ', ' ', ' ', ' ', ' ', ' ', ' ', ' ',	
DATA XL, YL, HT / 12., 8., .105/	
DATA DA2,DA3,DA4/5, -1., -1.5/	
DATA FG, FP/100J., .001/	
DATA TITME/U/	
IF(IX.LE.0) GO TO 900	
IF(ITIME)100,100,150	
100 CALL CALID(ID) HT2 = .5*HT	
HT2 = .5*HT 150 ITIME = ITIME + 1	
C	
CALL PLOT (0., 1.5, -3) C FIND MINIMUM, MAXIMUM OF ARRAYS	
DD 190 I=1.5	
VMS(2,1) =1E38	
VMS(1,1) = +.1E38 190 CONTINUE	
190 CONTINUE DO 200 I=1,N	
IF(X(1).GT.VMX(2)) VMX(2) = X(1)	
$IF(X(I) \cdot LT \cdot VMX(I)) VMX(I) = X(I)$	
IF(1Y1.LE.0) GO TO 200	
[F(Y1(1).GT.VM1(2)) VM1(2) = Y1(1)	
IF(Y1(I).LT.VM1(1)) VM1(1) = Y1(I) IF(IY2.LE.0) GO TO 200	
$IF(Y2(1) \cdot G1 \cdot VM2(2)) VM2(2) = Y2(1)$ $IF(Y2(1) \cdot L7 \cdot VM2(1)) VM2(1) = Y2(1)$	
IF([Y3.LE.0) GO TO 200	· · · · · · · · · · · · · · · · · · ·
IF(Y3(1).GT.VM3(2)) VM3(2) = Y3(1)	
[F(Y3(I).LT.VM3(1)) VM3(1) = Y3(I)	
IF(1Y4.LE.0) GO TO 200	
<pre>IF(Y4(1).GT.VM4(2)) VM4(2) = Y4(1) IF(Y4(1).LT.VM4(1)) VM4(1) = Y4(1)</pre>	
200 CUNTINUE	
C.	
C DO SCALING AND AXES	
IF(IX - 1)400,310,320	
310 VMX(1) = VMX(1) * FP	····
VMX(2) = VMX(2) *FP	
320 CALL SCALE(VMX,XL,2,1) CALL AXIS(0.,0.,LABELS(1,IX),-24,XL,0.,VMX(3),VMX(4))	
IF(1X - 1)340,330,340	——— H
330 CONTINUE	Þ.Ó
VMX(3) = VMX(3) +FG	
VMX(4) = VMX(4) *FG	57
	ω ω
•	ω

Y4(N+2) = VM4(4)	
C	
	* *************************************
400 CONTINUE 	
C	
C DRAW LINES	
J = N/24 + 1	
IF(IY1)450,450,410 410 CUNTINUE	
CALL LINE(X,Y1,N,1,J,LTYPE(1))	
IF(IY2)450,450,420	
420 CONTINUE	
CALL LINE(X,Y2,N,1,J,LTYPE(2))	
16(173)450,450,430	
430 CONTINUE	
CALL LINE(X,Y3, V, 1, J, LTYPE(3))	
IF(1Y4)450,450,440	
CALL LINEA VA ALL LITYOFAAA	
CALL_LINE(X,Y4,N,1,J,LTYPE(4))	
C	
C DP AW LABELLING	
VX = XL5	
$1 = VX - 2 \cdot I$	
<u>VY = YL - HT-HT</u>	
IF(IY1)550,550,510	
510 CONTINUE CALL SYMBOL (T, VY, HT, LABELS(1, IY1), 0., 24)	
CALL SYMBOL(1,VY,HI,LABELS(1,IYI),0.,24)CALL SYMBOL(XX,VY+HI2,HT,LTYPE(1),0.,-1)	
VY = VY - HI-HI	
IF(IY2)550,550,520	
520 CONTINUE	
CALL SYMBOL (T, VY, HT, LABELS(1, IY2), 0., 24)	
CALL SYMBOL (VX, VY+HT2, HT, LTYPE(2), 0.,-1)	
VY = VY - HT-HT	
1F(1Y3)550,550,530	
530 CONTINUE	
CALL SYMBOL(T, VY, HT, LABELS(1, IY3), 0.124) CALL SYMBOL(VX, VY+HT2. HT, LTYPE(3), 0.1-1)	
VY = VY - HT-HT	
1F(1Y4)550,550,540	
540 CONTINUE	
CALL SYMBOL (T, VY, HT, LABELS (1, 144), 2., 24)	
CALL SYMBOL (VX, VY+HT2,HT,L TYPE (4),0.,-1)	
550 CONTINUE	
CALL PLOT(XL+4.,-1.5,-3) 900 CONTINUE	
RETURN :	 -
FND	
SUBROUTINE DENSM(Z1, P, RHO, CS)	
DOUBLE PRECISION ZI, P. RHO, CS	Pa
DIMENSION HB(22), PB(22), TB(22), A(22), B(22)	E A G
DATA HB/0.,36089.239,65616.798,104986.88,154199.48,170603.67,	
	15
	875

```
200131.23, 259186.35, 291153.40, 323002.75, 354753.59, 386406.39,
     483781.04,512046.16,543215.48,605263.45,728243.91,939894.75,
     1234619.4,1520799.4,1799726.4,2068776.5/
   DATA P3/2116-217,472-67922,114-34505,18-128852,2-3162994,_______________________
   1 1.2322512,.38032173,.021672818,,0034331482,.00J62812953.
     <u>-0.0.015359986...000052666807...000010571582...0000077157071...</u>
     .94176667E-7,.22884174E-7,.72058936E-8,.24891264E-8/
   DATA TB/288.15, 2*216.65, 228.65, 2*270.65, 252.65, 2*180.65, 210.65,
   1 260.65, 360.65, 960.65, 1112.65, 1210.65, 1350.65, 1550.65, 1830.65,
     2163.65,2420.65,2590.65,2700.65/
   DATA 4/~.68755356E-5.0...14068775E-5..37325169E-5.0..
   1 -.22523554E-5,-.48256491E-5,0.,.52141408E-5,.74757236E-5,
   2 .12120769E-4,.17628281E-4,.49941997E-5,.28986537E-5,
   3 .18635746E-5, .12041172E-5, .85314774E-6, .6116347E-6,
     •42J48419E-6,•25268889E-6,2*•1572315E-6/
                             DATA 8/5.255886,-.480631026-4,-34.163232;-12.201179;-.38473567E-4;
   1 ___ 17.081527,8.540804,-.576411356-4,-11.055226,-6.6127901,____
   2 -3.2961763,-1.6390858,-2.1704464,-3.2456973,-4.6155949,
     -6.4033868,-7.9733154,-9.3039<u>0</u>39,-11.4627,-17.025198,
   4 2*-25.562133/
              Z = Z1*3.28084
   H = 20855531.F0 + 2/(20855531.E0 + 2)
   00 1 1 = 2, 22
   IF(H-HB(I))2,1,1
  CONTINUE
  [ = 23
  2 1 = 1 - 1
   DH = H - HB(I)
   TEMP = 1. + A(I) *DH
  T = TS(I) * TEMP
   IF(A(I))3,6,3
  6 TEMP = EXP(B(1)*DH)
   GD TO 4
  3 \text{ TEMP} = \text{TEMP} \Rightarrow B(I)
  4 P = PB(1) + TEMP + 47.88025
   RHO = .003483647*P/T
   CS = 20.04679 * SQRI(I)
   RETURN
   E ND
-----
```

DATE	February	5,	1973
DEV DA	TE		

REV DATE

GOODYEAR AEROSPACE

CODE	IDENT NO.	25500
GER	15853	
PAGE	77	

REFERENCES

- 1. Lagrangian Dynamics, D. A. Wells, Schaum Publishing Company, New York, N. Y., 1967
- 2. Classical Mechanics, H. Goldstein, Addison-Wesley-Cambridge, Mass., 1950
- 3) Introduction to Numerical Analysis, F.B. Hildegrand, McGraw-Hill Inc. 1958
- 4) Mathematical Handbook for Scientists and Engineers, G. A. Korn, McGraw-Hill Inc. 1961
- 5) Mathematical Model and Computer Program for a 6 D.O.F. Body Connected to a 5 D.O.F. Body by an Elastic Tether, George R. Doyle Jr. GER-14958, August 1970