Búsqueda

Carlos Linares López

Grupo de Planificación y Aprendizaje (PLG) Departamento de Informática Escuela Politécnica Superior Universidad Carlos III de Madrid

2 de diciembre de 2013

Definiciones

- Espacio de problemas
 - Conjunto de estados
 - Conjunto de operadores
 - Estado(s) inicial(es)
 - Meta(s) o estado(s) final(es)
- Representable por un grafo
- Resolución de problemas = búsqueda en el grafo
- Normalmente, la búsqueda genera un árbol
- Parámetros importantes
 - Factor de ramificación, b
 - Profundidad del árbol de búsqueda, d

Ejemplo: 8-Puzzle

Ejemplo: Las torres de Hanoi (3,2)

Ejemplo: Las torres de Hanoi (3,2)

El factor de ramificación $(b = \frac{8}{3})$ es una propiedad del grafo de estados

Ejemplo: Las torres de Hanoi (3,2)

La profundidad (d = 3) es una propiedad del problema a resolver

Ejemplo: Las garrafas

Simon dice:

Se tienen dos garrafas de agua, una de cinco galones de capacidad y otra de tres. Ninguna de ellas tiene marcas de medición. Se tiene una bomba que permite llenar las jarras de agua, vaciarlas, y traspasar contenido de una garrafa a otra. ¿Cómo se puede lograr tener exactamente cuatro galones de agua en la jarra de cinco galones de capacidad?

Ejemplo: Las garrafas

- Espacio de Estados:
 - conjunto de pares ordenados de enteros (x, y), de forma que x = 0, ..., 5, y = 0, ..., 3
 - x representa el número de galones de agua que hay en la garrafa de 5 galones de capacidad
 - y representa el número de galones de agua que hay en la garrafa de 3 galones de capacidad
- Estado inicial: (0,0)
- Estado meta:
 - Descripción implícita: (4, n), donde $n = 0, \dots, 3$
 - Descripción explícita: (4,0), (4,1), (4,2), (4,3)

Ejemplo: Las garrafas

Operadores

```
Llenar garrafa grande :Si (x < 5) \rightarrow (5, y)

Llenar garrafa pequeña:Si (y < 3) \rightarrow (x, 3)

Vaciar garrafa grande :Si (x > 0) \rightarrow (0, y)

Vaciar garrafa pequeña:Si (y > 0) \rightarrow (x, 0)

Verter en grande :Si (y > 0) \rightarrow (x + \min\{5 - x, y\}, y - \min\{5 - x, y\})

Verter en pequeña :Si (x > 0) \rightarrow (x - \min\{x, 3 - y\}, y + \min\{x, 3 - y\})
```

Explosión combinatoria

Dominio	Número de estados	Tiempo (10 ⁷ nodos/s)
8-puzzle	$\left. \left(\frac{N^2!}{2} \right) \right _{N=3} = 181,440$	0.01 segundos
15-puzzle	$\left \left(\frac{N^2!}{2} \right) \right _{N=4} = 10^{13}$	11,5 días
24-puzzle	$\left. \left(\frac{N^2!}{2} \right) \right _{N=5} = 10^{25}$	$31,7 imes 10^9$ años
Hanoi (3,2)	$(3^n) _{n=2}=9$	$9 imes 10^{-7}$ segundos
Hanoi (3,4)	$(3^n) _{n=4} = 81$	$8,1 imes10^{-6}$ segundos
Hanoi (3,8)	$(3^n) _{n=8} = 6561$	$6,5 imes 10^{-4}$ segundos
Hanoi (3,16)	$(3^n) _{n=16} = 4,3 \times 10^7$	4,3 segundos
Hanoi (3,24)	$(3^n) _{n=24} = 2,824 \times 10^{11}$	0,32 días
Cubo de Rubik $2 \times 2 \times 2$	10 ⁶	0,1 segundos
Cubo de Rubik $3 \times 3 \times 3$	$4,32 \times 10^{19}$	31.000 años

Ejercicio: 8 reinas

- Objetivo: Colocar 8 reinas en un tablero de ajedrez de manera que cada reina no ataque a ninguna otra (una reina ataca a otra si está en su misma fila, columna o diagonal)
- Dos posibles formulaciones del problema:
 - Formulación completa de estados: comienza con las 8 reinas en el tablero y las mueve
 - Formulación incremental: comienza con el tablero vacío, y añade una reina cada vez
- En cualquier caso, no importa el camino a la solución: sólo importa la solución (no hay descripción explícita de la meta)

8-Puzle - Amplitud

8-Puzle - Amplitud

8-Puzle - Amplitud

Búsqueda en amplitud

Búsqueda en profundidad Búsqueda en profundidad iterativa

8-Puzle – Amplitud

Búsqueda en amplitud

Búsqueda en profundidad Búsqueda en profundidad iterativa

8-Puzle – Amplitud

Búsqueda en amplitud

Procedimiento Amplitud (Estado-inicial, Estado-Final)

- Crear lista ABIERTA con el nodo inicial, I, (estado-inicial)
- EXITO=Falso
- Hasta que ABIERTA esté vacía O EXITO

Quitar de ABIERTA el primer nodo, N

Si N tiene sucesores

Entonces Generar los sucesores de N

Crear punteros desde los sucesores hacia N

Si algún sucesor es nodo meta

Entonces EXITO=Verdadero

Si no Añadir los sucesores al final de ABIERTA

Si EXITO

Entonces Solución=camino desde I a N por los punteros Si no. Solución=fracaso

Características de la búsqueda en amplitud

- Completitud: encuentra solución si existe y el factor de ramificación es finito en cada nodo
- Optimalidad: si todos los operadores tienen el mismo coste, encontrará la solución óptima
- Eficiencia: buena si las metas están cercanas
- Problema: consume memoria exponencial

8-Puzle – Profundidad

8-Puzle – Profundidad

8-Puzle – Profundidad

Búsqueda en profundidad

Procedimiento Profundidad (Estado-inicial, Estado-Final Profundidad-máxima)

- 1 Crear lista ABIERTA con el nodo inicial, I, y su profundidad=0
- EXITO=Falso
- Hasta que ABIERTA esté vacía O EXITO

Quitar de ABIERTA el primer nodo
Lo llamaremos N y a su profundidad P
Si P < Profundidad-máxima Y N tiene sucesores
Entonces Generar los sucesores de N
Crear punteros desde los sucesores hacia N
Si algún sucesor es el Estado-Final
Entonces EXITO=Verdadero
Si no, Añadir los sucesores al principio de ABIERTA

Asignarles profundidad P+1

Si EXITO Entonces Solución=camino desde I a N por los punteros Si no, Solución=fracaso

Características de la búsqueda en profundidad

- Requiere técnica de retroceso ("backtracking")
- Razones para retroceso:
 - Se ha llegado al límite de profundidad
 - Se han estudiado todos los sucesores de un nodo y no se ha llegado a la solución
 - Se sabe que el estado no conduce a la solución
 - Se genera un estado repetido
- Completitud: no asegura encontrar la solución
- Optimalidad: no asegura encontrar la solución óptima
- Eficiencia: bueno cuando metas alejadas de estado inicial, o problemas de memoria
- No es bueno, especialmente cuando hay ciclos

8-Puzle – Profundidad Iterativa

8-Puzle – Profundidad Iterativa

8-Puzle - Profundidad Iterativa

Búsqueda en profundidad iterativa

Procedimiento Profundidad-Iterativa (Estado-inicial, Estado-Final, Incremento)

- Profundidad-máxima = Incremento
- EXITO=Falso
- Mientras que EXITO=Falso

```
EXITO = Profundidad (Estado-inicial, Estado-Final, Profundidad-máxima)

Profundidad-máxima += Incremento
```

Si EXITO Entonces Solución=camino desde I a N por los punteros Si no, Solución=fracaso

Características de la búsqueda en profundidad iterativa

- Completitud: encuentra la solución, si ésta existe
- Optimalidad: encuentra la solución óptima, si Incremento=1
- Eficiencia:

$$\frac{\text{Tiempo}(\text{Profundidad} - \text{Iterativa})}{\text{Tiempo}(\text{Primero} - \text{Amplitud})} = \frac{b}{b-1}$$

Problema: puede generar muchos nodos duplicados

Análisis de complejidad: Problema

- Si se dispone de:
 - factor de ramificación medio, b
 - profundidad del árbol de búsqueda, d
- ¿Cuál sería, en el peor de los casos, el número de nodos que examinaría cada técnica?
 - Primero en Amplitud (5)
 - Primero en Profundidad (3)
 - Primero en Profundidad Iterativo (3)
- Pista:
 - supóngase que b = 3, e ir incrementando d
 - calcular de forma inductiva el número de nodos

Nivel 0

ı

Número máximo de nodos

Técnica de Búsqueda	Número máximo de nodos
Primero en amplitud	$\sum_{i=0}^{d} b^i$
Primero en profundidad	$\sum_{i=0}^{d} b^i$
Primero en profundidad iterativo	$\sum_{i=0}^{d} (d-i+1)b^i$

Complejidad temporal y espacial

Técnica de Búsqueda	Complejidad temporal	Complejidad espacial
Amplitud	$O(b^d)$	$O(b^d)$
Profundidad	$O(b^d)$	O(d)
Profundidad iterativa	$O(b^d)$	O(d)

 Cuando complejidad en tiempo es igual a la de espacio, se agota la memoria antes que el tiempo

Heurísticas

- Si no se tiene conocimiento → búsqueda sin información
- Si se tiene conocimiento perfecto → algoritmo exacto
- En la mayor parte de los problemas que resuelven los humanos, se está en posiciones intermedias
- Heurística: (del griego "heurisko" (εύρισκω): "yo encuentro") conocimiento parcial sobre un problema/dominio que permite resolver problemas eficientemente en ese problema/dominio
- Representación de las heurísticas
 - Metarreglas
 - Funciones h(n, t)
- Las funciones heurísticas se descubren resolviendo modelos simplificados del problema real

Relajación de restricciones

 Típicamente, las funciones heurísticas se obtienen por relajación de las restricciones del problema original

- h(·) es la solución óptima del problema relajado
- h₁(·): heurística del número de posiciones mal dispuestas

Relajación de restricciones

 Típicamente, las funciones heurísticas se obtienen por relajación de las restricciones del problema original

Admisibilidad

Las funciones h(·)
 obtenidas por
 relajación deben ser
 necesariamente
 monótonas:

$$h(n) \leq c(n, n') + h(n')$$

• Y, por lo tanto, admisibles:

$$h(n) \leq h^*(n)$$

h(n)

Otras relajaciones

- La relajación no es la única forma de simplificar problemas
- ¡Tampoco es cierto que cualquier relajación sea más fácil de resolver que el problema original!
- Otras alternativas son:
 - Añadir restricciones al problema original \longrightarrow heurísticas no admisibles. Se usa para eliminar alternativas anticipadas que exceden el coste $h(\cdot)$
 - Por estimación probabilística de los descendientes más prometedores
 - Por razonamiento por analogía o metafórico

Búsqueda en escalada

Procedimiento escalada (Estado-inicial Estado-final)

```
N=Estado-inicial; EXITO=Falso
```

Hasta que ABIERTA esté vacía O EXITO

Generar los sucesores de N

SI algún sucesor es Estado-final

ENTONCES EXITO=Verdadero

SI NO, Evaluar cada nodo con la función de evaluación, f(n)

N=mejor sucesor

Si EXITO

Entonces Solución=camino desde nodo del Estado-inicial al nodo N por los punteros

Si no, Solución=fracaso

Características

- Problemas de los métodos avariciosos
 - Máximos (o mínimos) locales: pico que es más alto que cada uno de sus estados vecinos, pero más bajo que el máximo global
 - Mesetas: zona del espacio de estados con función de evaluación plana
 - Crestas: zona del espacio de estados con varios máximos (mínimos) locales

Características

- Soluciones
 - Retroceso
 - Dar más de un paso
 - Reinicio aleatorio
- Método local
 - Completitud: no tiene porqué encontrar la solución
 - Admisibilidad: no siendo completo, aún menos será admisible
 - Eficiencia: rápido y útil si la función es monótona (de)creciente

8 Puzle – Búsqueda en haz

8 Puzle – Búsqueda en haz

8 Puzle – Búsqueda en haz

Búsqueda en haz

Procedimiento "Beam Search" (Estado-inicial Estado-final K)

ABIERTA=(Estado-inicial); EXITO=Falso

Hasta que ABIERTA esté vacía O EXITO

ABIERTA=Todos los sucesores de los nodos de ABIERTA

SI algún nodo de ABIERTA es Estado-final

ENTONCES EXITO=Verdadero

SI NO, Evaluar cada nodo con la función de evaluación f(n) ABIERTA=K mejores nodos de ABIERTA

Si EXITO

Entonces Solución=camino desde nodo del Estado-inicial al nodo N por los punteros

Si no, Solución=fracaso

Características

- La búsqueda en haz es una generalización de la escalada: HC = BS(k = 1)
- Abriendo la ventana de sucesores eligibles, mejoran las posibilidades de:
 - Escapar de los plateaus o mesetas formadas por la función heurística
 - Encontrar caminos más cortos hasta alguna meta
- Sin embargo, no es cierto que el algoritmo encuentra soluciones mejores con valores de k mayores, aunque lo normal es que sea así

Búsqueda de el mejor primero

Procedimiento Mejor-primero (Estado-inicial Estado-final)

Crear grafo de búsqueda *G*, con el nodo inicial, *I* (Estado-inicial) ABIERTA=*I*, CERRADA=Vacío, EXITO=Falso

Hasta que ABIERTA esté vacía O EXITO

Quitar el primer nodo de ABIERTA, N y meterlo en CERRADA

SI N es Estado-final ENTONCES EXITO=Verdadero

SI NO Expandir N, generando el conjunto S de sucesores de N, que no son antecesores de N en el grafo

Generar un nodo en G por cada s de S

Establecer un puntero a N desde aquellos s de S que no estuvieran ya en G

Añadirlos a ABIERTA

Para cada s de S que estuviera ya en ABIERTA o CERRADA

decidir si redirigir o no sus punteros hacia N

Para cada s de S que estuviera ya en CERRADA

decidir si redirigir o no los punteros de los nodos en sus subárboles

Reordenar ABIERTA según f(n)

Si EXITO Entonces Solución=camino desde *I* a *N* a través de los punteros de *G* Si no Solución=Fracaso

A* (Hart, Nilsson y Raphael, 1968)

- Función de ordenación de nodos: f(n) = g(n) + h(n)
 - f(n): función de evaluación
 - g(n): función de coste de ir desde el nodo inicial al nodo n
 - h(n): función heurística que mide la distancia estimada desde n a algún nodo meta
- g(n) se calcula como la suma de los costes de los arcos recorridos, $k(n_i, n_j)$
- Los valores reales sólo se pueden conocer al final de la búsqueda
 - f*(n): coste real para ir desde el nodo inicial a algún nodo meta a través de n
 - $g^*(n)$: coste real para ir desde el nodo inicial al nodo n
 - $h^*(n)$: coste real para ir desde el nodo n a algún nodo meta

Grafo no dirigido – A* (definiciones)

Características

- Completitud: si existe solución, la encuentra
- Admisibilidad: si hay una solución, encuentra la óptima si:
 - el número de sucesores es finito para cada nodo,
 - $k(n_i, n_j) \ge \epsilon > 0$ en cada arco, y
 - La función heurística $h(\cdot)$ es admisible, $h(n) \leq h^*(n) \quad \forall n$
- Si $h_1(n) <= h_2(n) \forall n$, $h_2(n)$ está más informada que $h_1(n)$ y servirá para expandir menos nodos
 - Ejemplo: distancia de Manhattan está más informada que número de casillas mal colocadas (problema de Manhattan es menos relajado que el del número de casillas)
- Extremos:
 - h(n) = 0 para cada nodo: no se tiene información (Dijkstra)
 - $h(n) = h^*(n)$ para cada nodo: se tiene información perfecta
- No tiene sentido dedicar más coste computacional a calcular una buena h(n) que a realizar la búsqueda equivalente: equilibrio

Resumen de técnicas de el mejor primero

- No informadas:
 - Búsqueda en amplitud: f(n) = profundidad(n)
 - Dijkstra: f(n) = g(n)
- Informadas (heurísticas):
 - Escalada y búsqueda en haz: f(n) = h(n)
 - A*, IDA*: f(n) = g(n) + h(n)
 - Ponderadas: $f(n) = g(n) + \omega h(n), \omega > 1$
 - Es completo, pero no es admisible
 - La solución óptima tiene un coste menor o igual que $(1+\omega)$ veces la generada

Grafo no dirigido – IDA* (Korf, 1985)

Iteración 1,
$$\eta_1 = h(1) = 40$$

Iteración 2,
$$\eta_2 = f(3) = 70$$

Iteración 3,
$$\eta_3 = f(4) = 75$$

Iteración 4,
$$\eta_4 = f(2) = 225$$

IDA*

Procedimiento IDA* (Estado-inicial Estado-final)

EXITO=Falso
$$\eta = h(s)$$
 Mientras que EXITO=Falso EXITO=Profundidad (Estado-inicial, η) $\eta = \min_{i=1,n} \{f(i)\} = \min_{i=1,n} \{g(i) + h(i)\}$ Solución=camino desde nodo del Estado-inicial

Profundidad (Estado-inicial, η)

Expande todos los nodos cuyo coste f(n) no excede el valor de η

al Estado-final por los punteros

Características

- Completitud: El algoritmo IDA* es completo, esto es, encuenta una solución si existe alguna
- Admisibilidad: Además, el algoritmo IDA* es admisible y, por lo tanto, encontrará la solución óptima
- Mientras su complejidad de tiempo es también exponencial, su complejidad de espacio es lineal en la profundidad del árbol de búsqueda
- Aunque pudiera parecer lo contrario, el número de re-expansiones es sólo mayor en un pequeño factor que el número de expansiones de los algoritmos de el mejor primero
- Fue el primer algoritmo que resolvió óptimamente 100 casos generados aleatoriamente en el 15-Puzle

