Chapter 9: Mass-Storage Systems

The First Commercial Disk Drive

1956 IBM RAMDAC computer included the IBM Model 350 disk storage system

5M (7 bit) characters 50 x 24" platters Access time = < 1 second

Moving-head Disk Mechanism

Solid-State Disks

- Nonvolatile memory used like a hard drive
 - Many technology variations
- Can be more reliable than HDDs
- More expensive per MB
- Less capacity
- But much faster
- Busses can be too slow -> connect directly to PCI for example
- No moving parts, so no seek time or rotational latency

Magnetic Tape

- Was early secondary-storage medium
 - Evolved from open spools to cartridges
- Relatively permanent and holds large quantities of data
- Access time slow
- Random access ~1000 times slower than disk
- Mainly used for backup, storage of infrequently-used data, transfer medium between systems
- Once data under head, transfer rates comparable to disk
 - 140MB/sec and greater

Disk Scheduling

- ☐ The operating system is responsible for using hardware efficiently for the disk drives, this means having a fast access time and disk bandwidth
- Access Time
 - Seek time: Time for the disk arm to move the heads to the cylinder containing the desired sector
 - Rotational latency: The additional time for the disk to rotate the desired sector to the disk head
- Disk bandwidth is the total number of bytes transferred, divided by the total time between the first request for service and the completion of the last transfer

Disk Scheduling (Cont.)

- □ There are many sources of disk I/O request

 - Users processes
- □ I/O request includes input or output mode, disk address, number of sectors to transfer
- □ OS maintains queue of requests, per disk
- Idle disk can immediately work on I/O request, busy disk means work must queue
 - Optimization algorithms only make sense when a queue exists

Disk Scheduling (Cont.)

- Note that drive controllers have small buffers and can manage a queue of I/O requests
- Several algorithms exist to schedule the servicing of disk I/O requests
- We illustrate scheduling algorithms with a request queue (0-199)

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53

FCFS

Illustration shows total head movement of 640 cylinders

queue = 98, 183, 37, 122, 14, 124, 65, 67 head starts at 53

SSTF

- Shortest Seek Time First selects the request with the minimum seek time from the current head position
- SSTF scheduling is a form of SJF scheduling; may cause starvation of some requests
- Illustration shows total head movement of 236 cylinders

SCAN

- The disk arm starts at one end of the disk, and moves toward the other end, servicing requests until it gets to the other end of the disk, where the head movement is reversed and servicing continues.
- □ SCAN algorithm Sometimes called the elevator algorithm
- Illustration shows total head movement of 236 cylinders
- But note that if requests are uniformly dense, largest density at other end of disk and those wait the longest

SCAN (Cont.)

C-SCAN

- Provides a more uniform wait time than SCAN
- The head moves from one end of the disk to the other, servicing requests as it goes
 - When it reaches the other end, however, it immediately returns to the beginning of the disk, without servicing any requests on the return trip
- Treats the cylinders as a circular list that wraps around from the last cylinder to the first one
- □ Total number of cylinders?

C-SCAN (Cont.)

queue = 98, 183, 37, 122, 14, 124, 65, 67 head starts at 53

C-LOOK

- LOOK a version of SCAN, C-LOOK a version of C-SCAN
- Arm only goes as far as the last request in each direction, then reverses direction immediately, without first going all the way to the end of the disk
- □ Total number of cylinders?

C-LOOK (Cont.)

queue = 98, 183, 37, 122, 14, 124, 65, 67 head starts at 53

Selecting a Disk-Scheduling Algorithm

- SSTF is common and has a natural appeal
- SCAN and C-SCAN perform better for systems that place a heavy load on the disk
 - Less starvation
- Performance depends on the number and types of requests
- The disk-scheduling algorithm should be written as a separate module of the operating system, allowing it to be replaced with a different algorithm if necessary
- ☐ Either SSTF or C-LOOK is a reasonable choice for the default algorithm
- What about rotational latency?
 - Difficult for OS to calculate

Disk Management

- Low-level formatting, or physical formatting Dividing a disk into sectors that the disk controller can read and write
 - Each sector can hold header information, plus data, plus error correction code
 (ECC)
 - Usually 512 bytes of data but can be selectable
- ☐ To use a disk to hold files, the operating system still needs to record its own data structures on the disk
 - Partition the disk into one or more groups of cylinders, each treated as a logical disk
 - Logical formatting or "making a file system", maps of free and
 - allocated space
- Boot block initializes system
 - The bootstrap is stored in ROM
 - Bootstrap loader program stored in boot blocks of boot partition

Booting from a Disk in Windows

End of Chapter 9

