Soluciones resumidas del segundo parcial de Matemática Discreta 2 - Curso 2006 - IMERL

Lunes 03 de julio de 2006

Ejercicio 1. (16 puntos)

1) (2ptos) Si (G, \star) es un grupo y H es un subgrupo de G, definimos la relación en G: $a \sim b \Leftrightarrow a \star b^- 1 \in H$. Es una relación de equivalencia.

Clase de equivalencia de $a \in G$ es $[a] = \{b \in G/b \sim a\} = Ha$.

 $G/H = \{Ha/a \in G\}.$

2) (7 ptos) Si H es normal, veamos que la operación $\overline{\star}$ definida por $[a]\overline{\star}[b]=[a\star b]$ está bien definida. Supongamos que [a]=[a'] y [b]=[b'].

Esto significa que $aa^{l-1} \in H$ y que $bb^{l-1} \in H$. Queremos ver que $[a \star b] = [a' \star b']$ (esto es que $[a] \overline{\star} [b] = [a'] \overline{\star} [b']$, o sea no depende del representante elegido).

 $[a \star b] = [a' \star b'] \Leftrightarrow ab(a'b')^{-1} \in H.$ Pero $ab(a'b')^{-1} = abb'^{-1}a'^{-1} = (abb'^{-1}a^{-1})(aa'^{-1}).$

Como H es normal en G entonces $abb'^{-1}a^{-1} \in H$ ya que $bb'^{-1} \in H$. Luego $(abb'^{-1}a^{-1})(aa'^{-1}) \in H$ por ser producto de dos elementos en H.

entonces el producto está bien definido.

La propiedad asociativa de $\bar{\star}$ se deduce facilmente de la propiedad asociativa de \star .

El elemento neutro de G/H es $e_{G/H} = [e_G]$ (verificarlo).

Todo elemento tiene inverso $[a]^{-1} = [a^{-1}]$ (verificarlo).

3) (7 ptos) Defino $\varphi : G \to G/H$ por $\varphi(a) = [a]$.

Es morfismo de grupos: $\varphi(a \star b) = [a \star b] = [a] \overline{\star} [b] = \varphi(a) \overline{\star} \varphi(b)$.

Es sobreyectivo: dado $[x] \in G/H$, se tiene que $\varphi(x) = [x]$.

Nucleo de φ : $Ker(\varphi) = \{a \in G/ \varphi(a) = e_{G/H}\} = \{a \in G/ [a] = [e_G]\} = \{a \in G/ ae_G^{-1} \in H\} = \{a \in G/ a \in H\} = H.$

Ejercicio 2. (12 puntos)

- 1) (3 ptos) Por el primer teorema de Sylow, como 11|110, existe un subgrupo $S_{11} = H$ con |H| = 11. La cantidad de tales subgrupos es $n_{11} = 1 + k11$ y tiene que dividir a 10. Entonces $n_{11} = 1$ y H es normal en G.
- 2) (3 ptos) De la misma manera como 5|110 existe un subgrupo $S_5 = K$ con |K| = 5.
- 3) (6 ptos) Sea T = HK. Como H es normal en G se tiene que HK = KH (probarlo), entonces HK es un subgrupo de G.

Por otro lado $|HK| = \frac{|H||K|}{|H \cap K|} = \frac{11 \times 5}{1}$ pues $H \cap K = S_{11} \cap S_5 = \{e\}$ (justificarlo). Entonces T = HK es un subgrupo de G con 55 elementos.

T es normal en G pues es subgrupo y [G:T]=2.

Ejercicio 3. (13 puntos)

1) (6 ptos) Tenemos escrito σ como el producto de $\gamma_1 \gamma_2$.

Recordamos que si σ se descompone como unión de ciclos disjuntos $\sigma = \tau_1 \cdots \tau_r$ entonces el orden de σ es $mcm(\tau_1, \cdots, \tau_r)$. Como $\sigma(2) = 2$ quedan para permutar 8 elementos. Para que el mayor orden se dé, habría que escribir σ como producto de un 3-ciclo y de un 5-ciclo, ya que mcm(3,5) = 15. Se llega a que:

donde $\star_1 = \gamma_1(c)$ y $\star_2 = \gamma_1(d)$.

Se llega a que b = 9, c = 2, d = 4 y a = 1.

Luego $\sigma = (15876)(349)$.

Podra haberse estudiado también los 4 casos ya que se sabe que $a, b \in \{1, 9\}$ y $c, d \in \{2, 4\}$.

- 2) $(4 \text{ ptos}) \sigma^{248} = ((15876)(349))^{248} = (15876)^{248}(349)^{248} = (17568)(394)$
- 3) (3 ptos) σ es el producto de un 5-ciclo y de un 3-ciclo, ambos con signo par, luego σ tiene signo par también.

Ejercicio 4. (19 puntos)

1) (5 ptos) Hay que verificar que (\mathbb{R}^3 , +) es un grupo conmutativo, \times es asociativa, \times es distributiva sobre + (ambos lados) y que la unidad es (1,1,0).

No es conmutativo, por ejemplo $(1,2,3) \times (3,4,5) = (3,8,13)$ y $(3,4,5) \times (1,2,3) = (3,8,19)$.

2) (4 ptos) (x, y, z) es una unidad si y sólo si $(x, y, z) \times (x', y'z') = (1, 1, 0) = (x', y', z') \times (x, y, z)$.

O sea (xx', yy', xz' + y'z) = (1, 1, 0) = (x'x, y'y, x'z + yz'). o sea hay que pedir que x e y sean invertibles y que xz' + y'z = x'z + yz' = 0. Los invertibles son de la forma $\{(x, y, z) : x, y, \text{ invertibles}, z \text{ cualquiera}\}$.

El inverso de $(x, y, z) = (\frac{1}{x}, \frac{1}{y}, \frac{-z}{xy}).$

3) (3 ptos) los elementos de la forma (0, y, z) son divisores propios de 0. Tambien los del tipo (x, 0, z).

 $(0, y, z) \times (x', 0, z') = (0, 0, 0).$

4) (3 ptos) Claramente (I, +, 0) es un subgrupo de \mathbb{R}^3 .

 $(x,y,z) \times (a,0,b) = (xa,0,xb+0z) \in I$ y $(a,0,b) \times (x,y,z) = (xa,0,az+y0) \in I$, luego I es un ideal bilateral de \mathbb{R}^3 .

5) (4 ptos) $\varphi : \mathbb{R}^3 \to \mathbb{R}$ definida por $\varphi(x, y, z) = y$ es un morfismo de anillos sobreyectivo (verificarlo).

 $Ker(\varphi) = I$. Por el primer teorema de homomorfismos de anillos tenemos que $\mathbb{R} = Im(\varphi) \cong \mathbb{R}^3/Ker(\varphi) = \mathbb{R}^3/I$. Como \mathbb{R} es un cuerpo, I es un ideal maximal ya que por el segundo teorema de homorfismos de anillos los ideales de \mathbb{R} están en correspondencia con los ideales de \mathbb{R}^3 que contienen a $I = Ker(\varphi)$. Al ser \mathbb{R} un cuerpo, I es maximal.

Otra manera. Sea *J* ideal de \mathbb{R}^3 tal que $I \subset J$. Sea $v \in J \setminus I$. Entonces v es de la forma (a', α, b') con $\alpha \neq 0$.

Si $a' \neq 0$ entonces (a', α, b') es un elemento invertible del anillo \mathbb{R}^3 , luego $J = \mathbb{R}^3$.

Si a' = 0 entonces $(0, \alpha, b) + (1, 0, 0) = (1, \alpha, b) \in J$, luego $J = \mathbb{R}^3$.

Entonces *I* es maximal.