Introduction to Algorithms

Chapter 24 : Single-Source Shortest Paths

Xiang-Yang Li and Haisheng Tan

School of Computer Science and Technology University of Science and Technology of China (USTC)

Fall Semester 2022

Outline of Topics

Shortest-paths Problem

The Bellman-Ford Algorithm

Single-source Shortest Paths in Directed Acyclic Graphs

Dijkstra's Algorithm

shortest-paths problem

In a **shortest-paths problem**, we are given a weighted, directed graph G = (V, E), with weight function $w : E \to \mathbb{R}$ mapping edges to real-valued weights.

The **weight** w(p) of path $p = \langle v_0, v_1, \dots, v_k \rangle$ is the sum of the weights of its constituent edges:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i).$$

We define the **shortest-path weight** $\delta(u,v)$ from u to v by

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\} & \text{if there is a path from } u \text{ to } v, \\ \infty & \text{otherwise.} \end{cases}$$

A **shortest path** from vertex u to vertex v is then defined as any path p with weight $w(p) = \delta(u, v)$.

Variants

In this chapter, we shall focus on the **single-source shortest-paths problem**: given a graph G = (V, E), we want to find a shortest path from a given source vertex $s \in V$ to each vertex $v \in V$. The algorithm for the single-source problem can solve many other problems, including the following variants:

- ➤ **Single-destination shortest-paths problem**: Find a shortest path to a given destination vertex *t* from each vertex *v*.
- ► Single-pair shortest-path problem: Find a shortest path from *u* to *v* for given vertices *u* and *v*.
- ▶ All-pairs shortest-paths problem: Find a shortest path from *u* to *v* for every pair of vertices *u* and *v*. Although we can solve this problem by running a single-source algorithm once from each vertex, we usually can solve it faster.

イロト (部) (日) (日) (日)

Optimal substructure of a shortest path

Lemma 24.1 (Subpaths of shortest paths are shortest paths) Given a weighted, directed graph G = (V, E) with weight function $w : E \to \mathbb{R}$, let $p = \langle v_0, v_1, \dots, v_k \rangle$ be a shortest path from vertex v_0 to vertex v_k and, for any i and j such that $0 \le i \le j \le k$, let $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$ be the subpath of p from vertex v_i to vertex v_j . Then, p_{ij} is a shortest path from v_i to v_j .

Relaxation on an edge (u, v)

v.d: a shortest path (distance) estimation from the source s. Initially set $v.d = +\infty$ except s.d = 0, and $v.\pi = nil$.

RELAX(u, v, w)

1: **if**
$$v.d > u.d + w(u, v)$$
 then

$$2: v.d = u.d + w(u, v)$$

3: $v.\pi = u$ // update the predecessor

Properties of shortest paths and relaxation

- ▶ **Triangle inequality** (Lemma 24.10) For any edge $(u, v) \in E$, we have $\delta(s, v) \le \delta(s, u) + w(u, v)$
- ▶ **Upper-bound property** (Lemma 24.11) We always have $v.d \ge \delta(s,v)$ for all vertices $v \in V$, and once v.d achieves the value $\delta(s,v)$, it never changes.
- No-path property (Corollary 24.12) If there is no path from *s* to v, then we always have $v.d = \delta(s, v) = \infty$
- ► Convergence property (Lemma 24.14) If $s \rightsquigarrow u \rightarrow v$ is a shortest path in G for some $u, v \in V$, and if $u.d = \delta(s, u)$ at any time prior to relaxing edge (u, v), then $v.d = \delta(s, v)$ at all times afterward.

Properties of shortest paths and relaxation

- Path-relaxation property (Lemma 24.15) If $p = \langle v_0, v_1, \dots, v_k \rangle$ is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, then $v_k.d = \delta(s, v_k)$. This property holds regardless of any other relaxation steps that occur, even if they are intermixed with relaxations of the edges of p.
- ▶ **Predecessor-subgraph property** (Lemma 24.17) Once $v.d = \delta(s, v)$ for all $v \in V$, the predecessor subgraph is a shortest-paths tree rooted at s.

The Bellman-Ford Algorithm

The **Bellman-Ford algorithm** solves the single-source shortest-paths problem in the general case in which edge weights **may be negative**. Given a weighted, directed graph G = (V, E) with source s and weight function $w : E \to \mathbb{R}$, the Bellman-Ford algorithm returns a boolean value indicating **whether or not there is a negative-weight cycle that is reachable from the source**. If there is such a cycle, the algorithm indicates that no solution exists. If there is no such cycle, the algorithm produces the shortest paths and their weights.

Bellman-Ford

```
BELLMAN-FORD(G, w, s)
 1: for each v \in V do
2: v.d = \infty; v.\pi = nil
3 \cdot s d = 0
4: for i = 1 to |G.V| - 1 do
       for each edge (u, v) \in G.E do
           RELAX(u, v, w)
   for each edge (u, v) \in G.E do
       if v.d > u.d + w(u,v) then
           return FALSE
9.
10: return TRUE
```


BELLMAN-FORD: Analysis

```
Correctness? Time Complexity=O(VE)
BELLMAN-FORD(G, w, s)
 1: for each v \in V do // initialization
 2: v.d = \infty; v.\pi = nil
 3: s.d = 0
 4: for i = 1 to |G.V| - 1 do // Process each edge |V| - 1 times
 5: for each edge (u, v) \in G.E do // relax each edge once
          RELAX(u, v, w)
 7: for each edge (u, v) \in G.E do // check for a negative-weight cycle
       if v.d > u.d + w(u, v) then
          return FALSE
10: return TRUE
```

Single-source Shortest Paths in DAGs

By relaxing the edges of a weighted DAG (directed acyclic graph) G = (V, E) according to a topological sort of its vertices, we can compute shortest paths from a single source in $\Theta(V + E)$ time. Shortest paths are always well defined in a DAG, since even if there are negative-weight edges, no negative-weight cycles can exist.

DAG-SHORTEST-PATHS(G, w, s)

- 1: topologically sort the vertices of G
- 2: INITIAL-SINGLE-SOURCE(G,s)
- 3: **for** each vertex u, taken in topologically sorted order **do**
- 4: **for** each vertex $v \in G.Adj[u]$ **do**
- 5: RELAX(u, v, w)

Single-source Shortest Paths in DAGs: Analysis

```
Correctness? Time Complexity=O(V+E)
```

DAG-SHORTEST-PATHS(G, w, s)

- 1: topologically sort the vertices of G
- 2: INITIAL-SINGLE-SOURCE(G,s)
- 3: **for** each vertex u, taken in topologically sorted order **do**
- 4: **for** each vertex $v \in G.Adj[u]$ **do**
- 5: RELAX(u, v, w)

Dijkstra's Algorithm

- ► If no negative edge weights, we can beat BF
- Similar to breadth-first search
 - Grow a tree gradually, advancing from vertices taken from a queue
- Also similar to Prim's algorithm for MST
 - Use a priority queue keyed on d[v]

Dijkstra's Algorithm

```
DIJKSTRA(G, w, s)

1: INITIAL-SINGLE-SOURCE(G, s)

2: S = \emptyset  // nodes with the shortest distance computed

3: Q = G.V

4: while Q \neq \emptyset do

5: u = \text{EXTRACT-MIN}(Q)

6: S = S \cup \{u\}

7: for each vertex v \in G.Adj[u] do

8: RELAX(u, v, w)
```


Correctness of Dijkstra's algorithm

Theorem 24.6 (Correctness of Dijkstra's algorithm) Dijkstra's algorithm, run on a weighted, directed graph G = (V, E) with non-negative weight function w and source s, terminates with $u.d = \delta(s, u)$ for all vertices $u \in V$.

Corollary 24.7 If we run Dijkstras algorithm on a weighted, directed graph G = (V, E) with non-negative weight function w and source s, then at termination, the predecessor subgraph G_{π} is a shortest-paths tree rooted at s.

Dijkstra's Algorithm - Time Complexity

Time: $O(E + V \log V)$, by implementing the min-priority queue with a Fibonacci heap.