

Страница 8 из 12

Название кадра	frame22117 (Nº22117)
Задание	Какой будет эквивалентная индуктивность этой цепи L [Гн], если $L_1=L_2=L_3={f 15}$ $\Gamma\kappa$?
	L_1 L_3 L_2
Ответ студента	45
Время ответа	29.11.2013 15:39:13
Оценка системы	1

Страница 9 из 12

Название кадра	frame22216 (Nº22216)
Задание	Чему равно эквивалентное сопротивление этой цепи в Ом, если $R_1=R_2=R_3=15\ O_M$? $R_1 = R_2 = R_3 = 15\ O_M$?
Ответ студента	5
Время ответа	29.11.2013 15:41:32
Оценка системы	1

Страница 10 из 12

Название кадра	frame22400 (Nº22400)
Задание	Укажите вектор падения напряжения на резистивном элементе $\underbrace{I}_{JX_C}\underbrace{U_C}_{JX_L}\underbrace{U_L}_{JX_L}\underbrace{U_L}_{L_2}U_$
Ответ студента	□ 1☑ 2□ недостаточно данных для ответа
Время ответа	29.11.2013 15:41:39
Оценка системы	0

Страница 12 из 12

Название кадра	frame22703 (Nº22703)
Задание	Укажите согласные соединения катушек i_1 i_2 i_3 i_4 i_5 i_6 i_6 i_7 i_8 i_8 i_9 $i_$
Ответ студента	✓ 1⊃ 2
	□ 2
	□ 3
	4
Время ответа	29.11.2013 15:42:13
Оценка системы	,5

Страница 8 из 12

Название кадра	frame22121 (Nº22121)
Задание	Какой будет эквивалентная ёмкость этой цепи С [мкФ], если $C_1=5\ _{M\kappa}\Phi$? $C_1 = \mathbf{C}_1 $
Ответ студента	 □ C > 5 ☑ C < 5 □ недостаточно данных для ответа
Время ответа	26.11.2013 14:34:51
Оценка системы	1

Страница 9 из 12

Название кадра

frame22201 (Nº22201)

Задание

Укажите выражение для комплексной проводимости этого участка цепи

Ответ студента

$$\underline{Y} = \frac{\underline{Z_1} + \underline{Z_2}}{\underline{Z_1}\underline{Z_2}}$$

$$\underline{Y} = \frac{\underline{Z_1}\underline{Z_2}}{\underline{Z_1} + \underline{Z_2}}$$

$$\underline{y} = \underline{Z}_1 \underline{Z}_2$$

Время ответа

26.11.2013 14:35:38

Оценка системы

1

Страница 12 из 12

Название кадра	frame22713 (Nº22713)
Задание	При каком включении катушек может наблюдаться ёмкостный эффект? $u = R_1 \qquad L_1 \\ u = R_2 \qquad L_2$
Ответ студента	□ согласном☑ встречном□ согласном или встречном в зависимости от тока в катушках
Время ответа	26.11.2013 14:38:43
Оценка системы	1

Страница 5 из 12

Название кадра	frame21433 (Nº21433)
Задание	На рисунке изображён вектор напряжения в ёмкостном элементе. В каком квадранте находится вектор тока? 2
Ответ студента	2
Время ответа	28.11.2013 16:23:46
Оценка системы	1

Страница 9 из 12

Название кадра	frame22220 (Nº22220)
Задание	Какой будет эквивалентная индуктивность этой цепи L [Гн], если $L_1 = 25 \ \Gamma \pi$? $L_1 > L_2 > L_3$
Ответ студента	\Box $L > 25$ \Box $L < 25$ \Box недостаточно данных для ответа
Время ответа	28.11.2013 16:27:10
Оценка системы	1

Страница 10 из 12

Название кадра	frame22413 (Nº22413)
Задание	Укажите точку, в которую сместится вектор тока в ёмкостном элементе при уменьшении значения L I I I I I I I
Ответ студента	ef
	□ g
	□ h
	☑ вектор останется в прежнем положении
	педостаточно данных для ответа
Время ответа	28.11.2013 16:30:55
Оценка системы	1

Страница 12 из 12

Название кадра	frame22700 (Nº22700)
Задание	Укажите согласные соединения катушек i_1 i_2 i_1 i_2 i_3 i_4 i_4 i_5 i_6 i_7 i_8 $i_$
Ответ студента	✓ 1□ 2
	3
	☑ 4
Время ответа	28.11.2013 16:34:18
Оценка системы	1

Страница 3 из 12

Название кадра	frame21101 (Nº21101)
Задание	Укажите обозначения, соответствующие мгновенным значениям величин
Ответ студента	\Box I_m
	\square U_m
	\square E_m
	\Box i_m
	\square u_m
	\square e_m
	\checkmark $\iota\iota$
	√ €
Время ответа	05.12.2013 11:31:19
Оценка системы	1

Страница 4 из 12

Название кадра	frame21319 (Nº21319)
Задание	Укажите номер положения, которое займёт вектор $\underline{\underline{A}}$ после умножения на оператор поворота $-\sqrt{3}/2 - j/2$
Ответ студента	7
Время ответа	05.12.2013 11:34:40
Оценка системы	1

Страница 5 из 12

Название кадра	frame21413 (Nº21413)
Задание	Комплексная амплитуда тока в индуктивном элементе равна $\underline{I}_m = 0,5$ А. Чему равно действующее значение напряжения на индуктивном элементе в В, если $X_L = 10$ Ом?
Ответ студента	3.536
Время ответа	05.12.2013 11:42:41
Оценка системы	1

Страница 7 из 12

Название кадра

Задание

frame21600 (Nº21600)

Укажите правильные уравнения для этого участка цепи

Ответ студента

$$\underline{I}_1 + \underline{I}_2 + \underline{I}_5 = \underline{I}_3 + \underline{I}_4$$

$$\underline{I}_1 + \underline{I}_2 + \underline{I}_5 - \underline{I}_3 - \underline{I}_4 = \mathbf{0}$$

Время ответа

Оценка системы

05.12.2013 11:54:02

1

Страница 12 из 12

Название кадра

frame22709 (Nº22709)

Задание

При каких условиях векторная диаграмма будет соответствовать схеме замещения?

Ответ студента

- 📗 начало второй обмотки в точке а
- начало второй обмотки в точке b
- $\Box L_1 < M$
- $\mathcal{L}_1 > M$
- $L_2 > M$
- векторная диаграмма не может соответствовать этой схеме замещения

Время ответа

05.12.2013 12:07:27

Оценка системы

0

Страница 3 из 12

Название кадра	frame21103 (Nº21103)
Задание	Укажите обозначения, соответствующие эффективным значениям величин
Ответ студента	\Box I_m
	\square U_m
	\square E_m
	☑ U
	\Box u
	□ e
Время ответа	28.11.2013 14:21:00
Оценка системы	1

Страница 4 из 12

Название кадра	frame21300 (Nº21300)
Задание	Укажите обозначения, соответствующие комплексным амплитудам величин
Ответ студента	$\underline{\underline{I}}_m$
	$\underline{\underline{U}}_m$
	$\underline{\underline{\mathcal{E}}}_m$
	\Box \underline{i}_m
	\square \underline{u}_m
	\square \underline{e}_m
	□ <u>U</u>
	□ <u>E</u>
Время ответа	28.11.2013 14:21:10
Оценка системы	1

Страница 5 из 12

Название кадра	frame21411 (Nº21411)
Задание	Напряжение на индуктивном элементе равно $u = 10\sin(314t + 2\pi/3)$ В. Чему равна начальная фаза тока в индуктивном элементе в град?
Ответ студента	30
Время ответа	28.11.2013 14:22:09
Оценка системы	1

Страница 6 из 12

Название кадра	frame21520 (Nº21520)
Задание	Ток и падение напряжения на участке электрической цепи равны $i=10\sin(314t+\pi/4)$ А и $u=100\sin(314t+\pi/8)$ В. Чему равна полная мощность в ВА?
Ответ студента	500
Время ответа	28.11.2013 14:25:29
Оценка системы	1

Страница 7 из 12

Название кадра

Задание

frame21605 (Nº21605)

Укажите правильные уравнения для этого участка цепи

Ответ студента

$$i_1 + i_2 = i_5 + i_3 + i_4$$

$$i_1 - i_2 - i_5 + i_3 - i_4 = 0$$

$$\vec{u} \quad i_4 + i_5 + i_2 = i_1 + i_3$$

$$i_1 + i_5 = i_3 + i_4 + i_2$$

$$i_1 + i_2 - i_5 - i_3 - i_4 = \mathbf{0}$$

Время ответа

Оценка системы

28.11.2013 14:25:57

1

Страница 8 из 12

Название кадра	frame22111 (Nº22111)
Задание	Чему равно эквивалентное сопротивление этой цепи [Ом], если $R_1={f 20}~Om;~R_2={f 30}~Om;~R_3={f 10}~Om$?
	R_1 R_2
Ответ студента	60
Время ответа	28.11.2013 14:26:08
Оценка системы	1

Страница 9 из 12

Название кадра	frame22229 (Nº22229)
Задание	Напряжение на двух параллельно соединённых конденсаторах равно $u=8\sin(2000t+10^\circ)\mathrm{B}$. Какой конденсатор обладает большей добротностью, если токи в них равны $i_1=.5\sin(2000t+85^\circ)\mathrm{A};i_2=.8\sin(2000t+75^\circ)\mathrm{A}?$
Ответ студента	□ 1☑ 2□ недостаточно данных для ответа
Время ответа	28.11.2013 14:28:43
Оценка системы	0

Страница 10 из 12

Название кадра	frame22405 (Nº22405)
Задание	Укажите точку, в которую сместится вектор падения напряжения на резистивном элементе при увеличении значения L $\underbrace{\begin{array}{c} I\\ $
Ответ студента	 b c d вектор останется в прежнем положении недостаточно данных для ответа
Время ответа	28.11.2013 14:29:52
Оценка системы	1

Страница 12 из 12

Название кадра	frame22705 (Nº22705)
Задание	Укажите правильное соотношение для двух магнитно связанных катушек
Ответ студента	
	$\Box L_1 + L_2 - 2M < 0$
	$L_1 + L_2 - 2M = 0$
	$\Box L_1 + L_2 = 2M$

Время ответа

Оценка системы

28.11.2013 14:39:23

1

Страница 3 из 12

Название кадра	frame21102 (Nº21102)
Задание	Укажите обозначения, соответствующие действующим значениям величин
Ответ студента	\Box I_m
	\square U_m
	\square E_m
	✓ E
	□ e
Время ответа	26.11.2013 14:26:47
Оценка системы	1

Страница 6 из 12

Название кадра	frame21509 (Nº21509)
Задание	Комплексные ток и напряжение на участке электрической цепи равны $\underline{I} = 10e^{j\pi/6}$ А и $\underline{U} = 80e^{j2\pi/3}$ В. Чему равно реактивное сопротивление этого участка в Ом?
Ответ студента	8
Время ответа	26.11.2013 14:35:08
Оценка системы	1

Страница 7 из 12

Название кадра

frame21603 (Nº21603)

Задание

Укажите правильные уравнения для этого участка цепи

Ответ студента

$$i_1 + i_2 = i_5 + i_3 + i_4$$

$$\vec{i}_1 + i_2 - i_5 + i_3 - i_4 = \mathbf{0}$$

$$\vec{u}_4 + i_5 = i_1 + i_2 + i_3$$

$$i_1 + i_2 = i_3 + i_4 + i_5$$

$$i_1 + i_2 - i_5 - i_3 - i_4 = \mathbf{0}$$

Время ответа

26.11.2013 14:36:07

Оценка системы

1

Страница 9 из 12

Название кадра	frame22217 (Nº22217)
Задание	Каким будет эквивалентное сопротивление этой цепи R [Ом], если $R_1 = 15~{\it O_M}$?
Ответ студента	 □ R > 15 ☑ R < 15 □ недостаточно данных для ответа
Время ответа	26.11.2013 14:43:00
Оценка системы	1

Страница 10 из 12

Название кадра	frame22410 (Nº22410)
Задание	Укажите точку, в которую сместится вектор тока в ёмкостном элементе при увеличении значения R U I I I I I I I
Ответ студента	ef
	□ g
	□ h
	■ вектор останется в прежнем положении
	педостаточно данных для ответа
Время ответа	26.11.2013 14:46:19
Оценка системы	1

Страница 11 из 12

Название кадра	frame22601 (Nº22601)
Задание	Укажите минимальное число индуктивных элементов в электрической цепи, необходимое для возникновения режима резонанса
Ответ студента	☑ 1
	2
	□ 3
	 любое число, в том числе нулевое,т.к. явление резонанса не зависит от наличия или отсутствия этих элементов
Время ответа	26.11.2013 14:53:40
Оценка системы	1

Страница 12 из 12

Название кадра	frame22714 (Nº22714)
Задание	При каком включении катушек может наблюдаться ёмкостный эффект в обеих катушках? $ \begin{matrix} R_1 & L_1 \\ u & M_b \end{matrix} $ $ \begin{matrix} R_2 & L_2 \end{matrix}$
Ответ студента	 □ согласном ☑ встречном □ согласном или встречном в зависимости от тока в катушках □ в обеих катушках ёмкостного эффекта не может быть
Время ответа	26.11.2013 14:56:24
Оценка системы	<u>o</u>

Страница 4 из 12

Название кадра	frame21317 (Nº21317)
Задание	Укажите номер положения, которое займёт вектор $\underline{\underline{A}}$ после умножения на ј
Ответ студента	3
Время ответа	29.11.2013 16:58:18
Оценка системы	1

Страница 5 из 12

Название кадра	frame21422 (Nº21422)
Задание	Комплексный ток ёмкостном элементе равен $\underline{I}=1,0$ А. Чему равна амплитуда напряжения на ёмкостном элементе в В, если $X_C=10$ Ом?
Ответ студента	14.14
Время ответа	29.11.2013 17:01:20
Оценка системы	1

Страница 9 из 12

Название кадра	frame22225 (Nº22225)	
Задание	Ток и напряжение катушки индуктивности равны $i = 2\sin(1000t + 10^{\circ})$ A ; $u = 10\sin(1000t + 80^{\circ})$ B . Чему равен угол потерь катушки в град?	
Ответ студента	20	6
Время ответа	29.11.2013 17:07:36	
Оценка системы	1	

Страница 10 из 12

Название кадра	frame22404 (Nº22404)
Задание	Укажите точку, в которую сместится вектор падения напряжения на резистивном элементе при уменьшении значения L U I I I I I I I
Ответ студента	 b c d вектор останется в прежнем положении недостаточно данных для ответа
Время ответа	29.11.2013 17:09:45
Оценка системы	<u>o</u>

Страница 11 из 12

Название кадра

Задание

frame22603 (Nº22603)

Укажите равенство справедливое для режима резонанса в этой цепи

Ответ студента

$$extstyle U_L = U_C$$

$$U_L = \underline{U}_C$$

$$u_L = u_C$$

Время ответа

Оценка системы

29.11.2013 17:10:42

Страница 12 из 12

Оценка системы	<u>o</u>
Время ответа	29.11.2013 17:13:49
Ответ студента	□ а☑ b□ недостаточно данных для ответа
Задание	Где должна располагаться точка начала обмотки второй катушки, чтобы схема замещения соответствовала векторной диаграмме? $ \begin{matrix} R_1 & L_1 \\ U & U \end{matrix} $
Название кадра	frame22707 (Nº22707)

Страница 3 из 12

Название кадра	frame21105 (Nº21105)
Задание	Как соотносятся между собой эффективное и действующее значения синусоидальной величины?
Ответ студента	 эффективное значение в 1,41 раз меньше действующего эффективное значение в 1,41 раз больше действующего эффективное значение в 0,63 раза меньше действующего эффективное значение в 0,63 раза больше действующего эффективное значение равно действующему
Время ответа	09.12.2013 12:45:56
Оценка системы	1

Страница 4 из 12

Название	кадра

Задание

Ответ студента

frame21302 (Nº21302)

Укажите комплексную амплитуду тока $i = 10 \sin(314t + \pi/4)$

■ 10 $e^{j\pi/4}$

 $10 \left(\sqrt{2} / 2 + j \sqrt{2} / 2 \right)$

 $10\sqrt{2}(1+j)/2$

- 10 $e^{j(314+\pi/4)}$

 $10 \left(\sqrt{2}/2 + j\sqrt{2}/2 \right) e^{\pi/4}$

 $10e^{\pi/4}$

Время ответа

Оценка системы

09.12.2013 12:46:25

,33

Страница 5 из 12

Название кадра	frame21432 (Nº21432)
Задание	На рисунке изображён вектор тока в ёмкостном элементе. В каком квадранте находится вектор напряжения? 2 1 3 4
Ответ студента	4
Время ответа	09.12.2013 12:47:18
Оценка системы	1

Страница 7 из 12

Название кадра

Задание

frame21608 (Nº21608)

Укажите правильные уравнения для контура abcd?

Ответ студента

$$\qquad R_2 \underline{I}_2 - j X_{L_1} \underline{I}_1 - j X_{L_3} \underline{I}_3 + j X_{C_4} \underline{I}_4 = \underline{E}_2 - \underline{E}_1$$

$$\qquad R_2\underline{I}_2 - jX_{\underline{I}_1}\underline{I}_1 - jX_{\underline{I}_3}\underline{I}_3 + jX_{\underline{C}_4}\underline{I}_4 = \underline{E}_1 - \underline{E}_2$$

Время ответа

Оценка системы

09.12.2013 12:53:42

Страница 8 из 12

Название кадра	frame22115 (Nº22115)
Задание	Чему равна эквивалентная индуктивность этой цепи [Гн], если $L_1={f 20}$ Γ н; $L_2={f 30}$ Γ н; $L_3={f 10}$ Γ н ? $ L_1 = {f 20}$
Ответ студента	60
Время ответа	09.12.2013 12:54:49
Оценка системы	1

Страница 9 из 12

Название кадра

frame22218 (Nº22218)

Задание

Укажите правильное выражение для эквивалентной индуктивности этой цепи

Ответ студента

Время ответа

09.12.2013 12:55:16

Оценка системы

Страница 10 из 12

Название кадра	frame22402 (Nº22402)
Задание	Укажите точку, в которую сместится вектор падения напряжения на резистивном элементе при увеличении значения R $ \begin{array}{cccccccccccccccccccccccccccccccccc$
Ответ студента	 b c d вектор останется в прежнем положении недостаточно данных для ответа
Время ответа	09.12.2013 12:59:41
Оценка системы	1

Страница 11 из 12

Название кадра	frame22614 (Nº22614)
Задание	Укажите условие, при котором в этой цепи напряжение на индуктивном элементе будет больше напряжения на входе R L u_{c}
Ответ студента	✓ p > R
	□ p < R
	\Box $L > R$
	□ L < R
	□ C < R
	\square $C > R$
	такой режим в цепи невозможен
Время ответа	09.12.2013 13:03:59
Оценка системы	1

Страница 12 из 12

Название кадра	frame22708 (Nº22708)
Задание	Где должна располагаться точка начала обмотки второй катушки, чтобы схема замещения соответствовала векторной диаграмме? $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
Ответ студента	□ а☑ b□ недостаточно данных для ответа
Время ответа	09.12.2013 13:06:06
Оценка системы	<u>o</u>

Страница 5 из 12

Название кадра	frame21430 (Nº21430)
Задание	На рисунке изображён вектор тока в резистивном элементе. В каком квадранте находится вектор напряжения? 2
Ответ студента	
Время ответа	06.12.2013 15:48:48
Оценка системы	1

Страница 6 из 12

Название кадра	frame21511 (Nº21511)
Задание	Комплексные ток и напряжение на участке электрической цепи равны $\underline{I} = 5e^{j3\pi/8}$ А и $\underline{U} = 100e^{j\pi/8}$ В. Чему равно активное сопротивление этого участка в Ом?
Ответ студента	14.1421
Время ответа	06.12.2013 15:50:25
Оценка системы	1

Страница 7 из 12

Название кадра

Задание

frame21604 (Nº21604)

Укажите правильные уравнения для этого участка цепи

Ответ студента

$$i_1 + i_3 = i_4 + i_5 + i_2$$

$$\vec{s}_1 + i_4 - i_1 + i_2 - i_3 = \mathbf{0}$$

$$i_1 + i_2 = i_3 + i_4 + i_5$$

$$i_1 + i_2 - i_5 - i_3 - i_4 = \mathbf{0}$$

Время ответа

Оценка системы

06.12.2013 15:51:22

Страница 8 из 12

Название кадра	frame22124 (Nº22124)
Задание	Как изменится эквивалентное ёмкостное сопротивление этой цепи, если частота питания увеличится вдвое?
Ответ студента	 увеличится вдвое уменьшится втрое увеличится втрое останется прежним недостаточно данных для ответа
Время ответа	06.12.2013 15:51:46
Оценка системы	1

Страница 3 из 12

Название кадра	frame21104 (Nº21104)
Задание	Укажите обозначения, соответствующие среднеквадратичным значениям величин
Ответ студента	\Box I_m
	\square U_m
	\square E_m
	☑ U
	✓ E
	□ e
Время ответа	13.11.2013 12:44:20
Оценка системы	1

Страница 4 из 12

Название кадра	frame21301 (Nº21301)
Задание	Укажите обозначения, соответствующие комплексным действующим значениям величин
Ответ студента	\Box \underline{I}_m
	\square \underline{U}_m
	\square $\underline{\mathcal{E}}_m$
	$\bar{\underline{i}}_m$
	$\overline{}$ \underline{u}_m
	$ \underline{e}_m$
	✓ <u>I</u>
	$\underline{\underline{\mathcal{E}}}$
Время ответа	13.11.2013 12:45:12
Оценка системы	1

Страница 5 из 12

Название кадра	frame21400 (Nº21400)
Задание	Ток в резистивном элементе равен $i = 10 \sin(314t + \pi/4)$ А. Чему равна начальная фаза напряжения на резистивном элементе в град?
Ответ студента	45
Время ответа	13.11.2013 12:46:06
Оценка системы	1

Страница 7 из 12

Название кадра

Задание

frame21607 (Nº21607)

Укажите правильные уравнения для контура abcd?

Ответ студента

$$R_2 i_2 - L_1 \frac{di_1}{dt} - L_4 \frac{di_4}{dt} - \frac{1}{C_3} \int i_3 dt = e_2 - e_1$$

$$R_2 i_2 - L_1 \frac{di_1}{dt} - L_4 \frac{di_4}{dt} + \frac{1}{C_3} \int i_3 dt = e_2 - e_1$$

$$R_2 i_2 - L_1 \frac{di_1}{dt} - L_4 \frac{di_4}{dt} + \frac{1}{C_3} \int i_3 dt = e_1 - e_2$$

Время ответа

Оценка системы

13.11.2013 12:53:47

Страница 8 из 12

Название кадра	frame22122 (Nº22122)
Задание	Какой будет эквивалентная ёмкость этой цепи С [мкФ], если $C_1 = C_2 = C_3 = \textbf{45} \ \ \text{мк} \Phi$
Ответ студента	15
Время ответа	13.11.2013 12:54:24
Оценка системы	1

Страница 9 из 12

Название кадра	frame22203 (Nº22203)
Задание	Укажите вектор активной составляющей тока в первой ветви \underline{I}_1 \underline{U} \underline{I} I
Ответ студента	□ 1□ 2☑ 3
	45
	6
Время ответа	13.11.2013 12:55:42
Оценка системы	1

Страница 10 из 12

Название кадра	frame22403 (Nº22403)
Задание	Укажите точку, в которую сместится вектор падения напряжения на резистивном элементе при уменьшении значения R $ \begin{array}{cccccccccccccccccccccccccccccccccc$
Ответ студента	 b c d вектор останется в прежнем положении недостаточно данных для ответа
Время ответа	13.11.2013 12:57:01
Оценка системы	1

Страница 3 из 12

Название кадра	frame21107 (Nº21107)
Задание	Чему равна действующее значение синусоидального тока, если его амплитуда равна 14,142 А?
Ответ студента	10
Время ответа	27.11.2013 11:11:15
Оценка системы	1

Страница 5 из 12

Название кадра	frame21406 (Nº21406)
Задание	Как изменится амплитуда тока в резистивном элементе, если при том же напряжении частота питания увеличится вдвое?
Ответ студента	 останется прежней увеличится в два раза уменьшится в два раза недостаточно данных для ответа
Время ответа	27.11.2013 11:15:10
Оценка системы	1

Страница 7 из 12

Название кадра

Задание

frame21609 (Nº21609)

Укажите правильные уравнения для контура abcd?

Ответ студента

$$R_2 i_2 - L_1 \frac{di_1}{dt} - L_3 \frac{di_3}{dt} + \frac{1}{C_4} \int i_4 dt = e_2 - e_1$$

$$R_2 i_2 + L_1 \frac{di_1}{dt} - L_3 \frac{di_3}{dt} + \frac{1}{C_4} \int i_4 dt = e_1 - e_2$$

Время ответа

Оценка системы

27.11.2013 11:38:39

Страница 8 из 12

Название кадра

Задание

frame22114 (Nº22114)

Укажите правильное выражение для эквивалентной

индуктивности

Ответ студента

Время ответа

Оценка системы

27.11.2013 11:38:58

Страница 9 из 12

Название кадра

frame22221 (Nº22221)

Задание

Укажите правильное выражение для эквивалентной ёмкости этой цепи

Ответ студента

Время ответа

Оценка системы

27.11.2013 11:39:22

Страница 11 из 12

Страница 12 из 12

Название кадра

Задание

frame22704 (Nº22704)

Укажите правильное соотношение для двух магнитно связанных катушек

Ответ студента

$$\sqrt{\frac{M}{L_1 L_2}} < 1$$

$$\sqrt{\frac{M}{L_1 L_2}} > 1$$

$$\sqrt{\frac{M}{L_1 L_2}} = 1$$

$$\sqrt{\frac{M}{L_1 L_2}} > \pi$$

$$\sqrt{\frac{M}{L_1 L_2}} < \pi$$

$$\sqrt{\frac{M}{L_1 L_2}} = \tau$$

Время ответа

Оценка системы

27.11.2013 11:43:32

Страница 4 из 12

Название кадра	frame21310 (Nº21310)
Задание	Укажите функцию, соответствующую комплексному току $\underline{I} = {\bf 7,07} e^{j\pi/6}$
Ответ студента	■ $10\sin(314t + \pi/6)$ ■ $10\sin(314t - \pi/6)$ ■ $7,07\sin(314t + \pi/6)$ ■ $7,07\sin(314t - \pi/6)$
Время ответа	29.11.2013 13:27:13
Оценка системы	1

Страница 5 из 12

Название кадра	frame21419 (Nº21419)
Задание	Комплексные амплитуды тока и напряжения резистивного элемента равны $\underline{I}_m = 1,5 e^{j\pi/4}$ А и $\underline{U}_m = 10,0 e^{j\pi/4}$ В. Укажите среднее значение мощности в Вт.
Ответ студента	7.5
Время ответа	29.11.2013 13:29:40
Оценка системы	1

Страница 6 из 12

Название кадра	frame21513 (Nº21513)
Задание	Комплексные ток и напряжение на участке электрической цепи равны $\underline{I} = 5e^{j3\pi/8}$ А и $\underline{U} = 200e^{j\pi/8}$ В. Чему равно активное напряжение на этом участке в В?
Ответ студента	141.4214
Время ответа	29.11.2013 13:32:16
Оценка системы	1

Страница 8 из 12

Название кадра	frame22119 (Nº22119)
Задание	Как изменится эквивалентное индуктивное сопротивление этой цепи, если частота питания уменьшится вдвое?
Ответ студента	
	уменьшится втрое
	увеличится втрое
	останется прежним
	педостаточно данных для ответа
Время ответа	29.11.2013 13:35:04
Оценка системы	1

Страница 10 из 12

Название кадра	frame22412 (Nº22412)
Задание	Укажите точку, в которую сместится вектор тока в ёмкостном элементе при увеличении значения L I I I I I I I
Ответ студента	 e f g h м вектор останется в прежнем положении недостаточно данных для ответа
Время ответа	29.11.2013 13:43:36
Оценка системы	1

Страница 11 из 12

Название кадра	frame22624 (Nº22624)
Задание	Укажите резонансную кривую, соответствующую контуру с наименьшей добротностью I 0 0
Ответ студента	123недостаточно данных для ответа
Время ответа	29.11.2013 13:44:31
Оценка системы	1

Страница 4 из 12

Название кадра	frame21314 (Nº21314)
Задание	Укажите функции, соответствующие комплексной амплитуде тока $\underline{I}_m = \mathbf{7,07(-1} + j)$
Ответ студента	
	$ = 10\sin(1000t + 3\pi/4) $
	$ = 10\sin(314t - \pi/4) $
	$ = 7,07 \sin(1000t + 3\pi/4) $
	$ = 7,07\sin(314t - \pi/6) $
Время ответа	16.10.2013 11:54:47
Оценка системы	,5

Страница 6 из 12

Название кадра	frame21518 (Nº21518)
Задание	Комплексная проводимость участка электрической цепи равна $\underline{Y} = 3 - j4$ См. Чему равно полное сопротивление участка в Ом?
Ответ студента	0.2
Время ответа	16.10.2013 12:02:38
Оценка системы	1

Время ответа

Оценка системы

Страница 8 из 12

frame22109 (Nº22109) Название кадра Задание Вектор А соответствует току на этом участке цепи. Укажите ближайшее положение, которое займёт этот вектор при уменьшении частоты питания. Ответ студента 2 7 8 9 10 11

16.10.2013 12:07:56

Страница 12 из 12

Название кадра	frame22701 (Nº22701)
Задание	Укажите встречные соединения катушек i_1 i_2 i_1 i_2 i_1 i_2 i_3 i_4 i_4 i_5 i_6 i_8 $i_$
Ответ студента	 □ 1 ☑ 2 ☑ 3 □ 4
Время ответа	16.10.2013 12:23:18
Оценка системы	1

Страница 6 из 12

Название кадра	frame21501 (Nº21501)
Задание	Ток и падение напряжения на участке электрической цепи равны $i = 10\sin(314t + \pi/4)$ А и $u = 150\sin(314t + \pi/3)$ В. Какой характер имеет сопротивление этого участка?
Ответ студента	 активно-ёмкостный активный индуктивный ёмкостный активно- индуктивный
Время ответа	29.11.2013 14:32:12
Оценка системы	1

Страница 11 из 12

Название кадра	frame22607 (Nº22607)
Задание	Как изменится резонансная частота в этой цепи, если ёмкость С увеличить вдвое? $ \begin{matrix} R & L \\ u_L & u_C \end{matrix} $
Ответ студента	 □ останется прежней □ недостаточно данных для ответа □ увеличится вдвое □ уменьшится вдвое □ увеличится в 1,41 раза ☑ уменьшится в 1,41 раза
Время ответа	29.11.2013 14:40:51
Оценка системы	1

Страница 4 из 12

Название кадра	frame21311 (Nº21311)
Задание	Укажите функцию, соответствующую комплексной амплитуде тока $\underline{I}_m = {\bf 7,07} e^{j\pi/6}$
Ответ студента	□ $10\sin(314t + \pi/6)$ □ $10\sin(314t - \pi/6)$ ☑ $7,07\sin(314t + \pi/6)$ □ $7,07\sin(314t - \pi/6)$
Время ответа	26.11.2013 13:57:39
Оценка системы	1

Страница 5 из 12

Название кадра	frame21425 (Nº21425)
Задание	Как изменится амплитуда тока в ёмкостном элементе, если при том же напряжении его сопротивление уменьшится в два раза?
Ответ студента	□ останется прежней✓ увеличится в два раза□ уменьшится в два раза□ недостаточно данных для ответа
Время ответа	26.11.2013 13:59:05
Оценка системы	1

Страница 8 из 12

Название кадра

Задание

frame22120 (Nº22120)

Укажите правильное выражение для эквивалентной ёмкости

Ответ студента

$$C = C_1 C_2 C_3$$

Время ответа

Оценка системы

26.11.2013 14:05:10