- · There are six static timing paths in this circuit:
- From A to D1 (primary input to flip-flop)
- From D1 to D2 including the XOR (flip-flop to flip-flop
- From D2 via XOR to D2 (flip-flop to flip-flop)
- From D2 to D1 via AND (flip-flop to flip-flop)
- From D2 to Z via the OR gate (flip-flop to output)
- From A to Z via the OR gate (input to output)
- The most complicated paths are the flip-flop to flip-flop paths; the other paths can be treated as special
 cases of this type of path.
- Static timing analysis checks how the data arrives with respect to clock. It detects setup and hold-time
 violations in the design so that they can be corrected. A setup time violation occurs if the data changes just
 before the clock without pro- viding enough setup time for the flip-flop. A hold-time violation occurs if the
 data changes just after the clock without providing enough hold time for the flip-flop.

- Slack is the amount of time still left before a signal will violate a setup or hold-time constraint. Paths must have a positive or zero slack in order to have no violations. Paths that have a zero or very small slack are the speed-limiting paths in the design, because any small changes in clock or gate delays will lead to violations in such circuits. Paths that have a negative slack time have already violated a setup or hold constraint. Static timing analysis considers the worst possible timing scenarios, but not the logical operation of the circuit. In comparison with circuit simulation,
- static timing analysis is faster because it doesn't need to simulate multiple test vectors.

ADHURA R

(b) Timing diagram when setup time is met

Timing Rules for Flip-Flop to Flip-Flop Paths

For a circuit of the general form of Figure 1-36, assume that the maximum propagation delay through the combinational circuit is $t_{\rm cmax}$ and the maximum ${\it clock-to-Q}$ ${\it delay}$ or propagation delay from the time the clock changes to the time the flip-flop output changes is $t_{\rm pmax}$, where $t_{\rm pmax}$ is the maximum of $t_{\rm plh}$ and $t_{\rm phl}$. Also assume that the minimum propagation delay through the combinational circuit is $t_{\rm cmin}$ and the minimum clock-to-Q delay or propagation delay from the time the clock changes to the time the flip-flop output changes is $t_{\rm pmin}$, where $t_{\rm pmax}$ data is launched from the time the flip-flop output changes is $t_{\rm pmin}$, where $t_{\rm pmax}$ data is launched from the flip-flop output changes is $t_{\rm pmin}$, where $t_{\rm pmax}$ data is launched from the time the clock at $t_{\rm pmax}$ data is captured at t_{\rm

 CL_1 . Late is captured at FF_2 's D (i.e., D_2) at the positive edge of clock at FF_1 (i.e., CLK_2). FF_1 is called the launching flip-flop, and FF_2 is called the capturing flip-flop. There are two rules this circuit has to meet in order to ensure proper operation.

(c) Timing diagram when setup time is violated

Rule No. 1: Setup time rule for flip-flop to flip-flop path: Clock period should be long enough to satisfy flip-flop setup time.

For proper synchronous operation, the data launched by FF_1 at edge E_1 of clock CK_1 should be captured by FF_2 at edge E_2 of clock CK_2 . The clock period should be long enough to allow the first flip-flop's outputs to change and the combinational circuitry to change while still leaving enough time to satisfy the setup time. Once the clock CK_1 arrives, it could take a delay of up to t_{pmax} before FF_1 's output changes. Then it could take a delay of FF_1 before the output of the combinational circuitry changes. Thus the maximum time from the active edge FF_1 of the clock FF_1 to the time the change in FF_1 propagates to the second flip-flop's input (i.e., FF_2) is FF_1 .

order to ensure proper flip-flop operation, the combinational circuit output must be stable at least t_{su} before the end of the clock E_2 reaches FF_2 . If the clock period is t_{ck} ,

$$t_{ck} \ge t_{pmax} + t_{cmax} + t_{su} \tag{1-34-a}$$

Equation (1-34-a) relates the clock frequency of operation of the circuit with setup time of the flip-flops. Therefore, setup time violations can be solved by changing the clock frequency. The difference between t_{ck} and $(t_{pmax} + t_{cmax} + t_{su})$ is referred to as the setup time margin. The setup margin has to be zero or positive in order to have a circuit pass timing checks. Figure 1-36 (b) illustrates a situation in which setup time constraint is met, and Figure 1-36 (c) illustrates a situation when setup time constraint is violated. One can check for setup time violations by checking whether

MADHURA R

$$t_{ck} - t_{pmax} - t_{cmax} - t_{su} \ge 0 ag{1-34-b}$$

Rule No. 2 Hold-time rule for flip-flop to flip-flop path: Minimum circuit delays should be long enough to satisfy flip-flop hold time.

For proper synchronous operation, the data launched by flip-flop 1 on edge E_1 of clock CK_1 should not be captured by flip-flop 2 on edge E_1 of clock CK_1 . This can be understood by thinking about Rule No. 1. According to Rule No. 1, in Figure 1-37 at edge E_2 , FF_2 should capture the data launched by FF_1 on the previous edge (i.e., edge E_1). For this to happen successfully, the old data should remain stable at edge E_2 until FF_2 's hold time clapses. When FF_2 is capturing this old data at edge E_2 , FF_1 has started to launch new data on edge E_2 , which should be captured by FF_2 only at edge E_3 . A hold-time violation could occur if the data launched by FF_1 at E_2 is fed through the combinational circuit and causes D_2 to change too soon after the clock edge E_2 . The new data being launched by FF_1 takes at least t_{pmin} time to pass through FF_1 and at least t_{cmin} to pass through the combinational circuitry. Hence, the hold time is satisfied if

$$t_{\text{pmin}} + t_{\text{cmin}} \ge t_h \tag{1-35}$$

Figure 1-37 illustrates a situation where hold-time is satisfied. When checking for hold-time violations, the worst case occurs when the timing parameters have their minimum values. Since $t_{pmin} > t_h$ for normal flip-flops, a hold-time violation due