MNIST Classification: Multiple Linear Regression and Logistic Regression

CMPUT 328 Nilanjan Ray

MNIST Dataset

Classify images into digits

Each image is 28x28

10 labels

55,000 training images

5,000 validation images

10,000 test images.

Linear regression

1 number, indicating digit

	Digit		
<i>x</i> ₁	<i>X</i> ₂	 X ₇₈₄	v
0.1	0.3	 0.0	0
0.2	0.1	 0.5	1
0.0	0.98	 0.8	9
0.5	0.25	 0.36	?
0.1	0.95	 0.1	?

Multiple or Vector Linear Regression

10 numbers, indicating class scores

Pixel values (feature) Digit: 1-not vector								
x ₁	<i>x</i> ₂		X ₇₈₄	y ₁		y ₁₀		
0.1	0.3		0.0	0		1		
0.2	0.1		0.5	1		0		
0.0	0.98		0.8	0		1		
0.5	0.25		0.36	?		?		
0.1	0.95		0.1	?		?		

Divolvalues (facture) Digit: 1 hot vector

Multiple Linear Regression: PyTorch Implementation

 $\mathbf{y}^p = (\mathbf{x} - \bar{\mathbf{x}})W + \bar{\mathbf{y}}$ Prediction model:

Regularized loss function:
$$L = \frac{1}{2} \sum_{i=1}^{n} ||\mathbf{y}_{i}^{p} - \mathbf{y}_{i}||^{2} + \frac{\gamma}{2} ||W||^{2}$$

https://en.wikipedia.org/wiki/Matrix calculus

This derivation requires matrix-vector differentiation

Gradient of loss function:

$$\nabla L = (X^T X + \gamma I)W - X^T Y$$

Equating gradient of *L* to zero matrix and solving for W gives us:

and matrix Y is defined as:
$$Y = \begin{bmatrix} \mathbf{y}_1 - \overline{\mathbf{y}} \\ \vdots \\ \mathbf{y}_n - \overline{\mathbf{y}} \end{bmatrix}$$

where matrix X is defined as: $X = \begin{bmatrix} \mathbf{x}_1 - \bar{\mathbf{x}} \\ \vdots \\ \mathbf{x}_n - \bar{\mathbf{x}} \end{bmatrix}$

$$W = (X^T X + \gamma I)^{-1} X^T Y$$

and I is an identity matrix of size 784-by-784

We will "minimally" modify our linear regression scripts into multiple linear regression implementations!

Logistic Regression

Would it not be nice if we can predict class probabilities instead of scores?

10 numbers, indicating class probabilities

Pixel values (feature) Digit: 1-not vector							
x ₁	<i>x</i> ₂		X ₇₈₄	y ₁		y ₁₀	
0.1	0.3		0.0	0		1	
0.2	0.1		0.5	1		0	
0.0	0.98		0.8	0		1	
0.5	0.25		0.36	?		?	
0.1	0.95		0.1	?		?	

Divolvalues (feature) Digit, 1 hot voctor

Logistic Regression

Can we modify scores from multiple regression function to output probabilities?

What is a suitable loss function for classification?

Logistic regression: from multiple linear regression

Scores from multiple linear regression:
$$\mathbf{s}_i = (\mathbf{x}_i - \bar{\mathbf{x}})W + \bar{\mathbf{y}}$$
 or $\mathbf{s}_{i,k} = (\mathbf{x}_i - \bar{\mathbf{x}})W_{:,k} + \bar{\mathbf{y}}_k$
Score for k^{th} class, $k = 0, \dots, 9$

Predicted probability for
$$k^{th}$$
 class: $y_{i,k}^p = \frac{\exp(s_{i,k})}{\sum_{c=0}^9 \exp(s_{i,c})}$

"Softmax" function

Logistic regression: loss function

Cross entropy loss:
$$loss(\mathbf{y}^p, \mathbf{y}) = -\sum_{k=0}^{9} \mathbf{y}_k \log(\mathbf{y}_k^p)$$

Why this loss function? What does it mean? Why not use Euclidean loss as in MLR?