Combinational circuit

Vikas Dhiman for ECE275

September 8, 2023

1 Learning objectives

- 1. Representing digital circuits
- 2. Converting between different notations: Boolean expression, logic networks and switching circuits
- 3. Converting between different logic network specifications: truth table, minterm, maxterms, product of sums canonical form and sum of product canonical form.

Building blocks.	Gates	
Basic gates	(,,	ı I
(D AND g	ate (G	rass is green AND
@ OR 9	ate	" Sky is blue") is touch
(3) NOT g	•	if both statements
		are true
Inputs A - Tr	4ND)— (C = A · B = A & B
B 1/2	NSI Symbol	Boolean C/ Verilog
A B A	1051 SAWAGE	ABIC 0=False
3 c	Truth	
111-	table	00 0 1= True
In a circuit	AND gate =	. Switches in Socies
Venn duignam	A B B	$C = A + B$ $C = A \cdot B$

O ANSI Symbol

Buffer Bubble

2 Boolean algebra symbol

$$C = \overline{A}$$

= A'

3) Truth table

2 Basic Gates and notations summary

Venn diagram		x	x_1 x_1
(ANSI) symbol	x_2	$x_1 \longrightarrow \underbrace{L(x_1, x_2)}_{}$	x_1
Switching circuit	Power Supply T	Power Supply S. 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	Power W x Supply T x X Supply T
Truth Table	$\begin{array}{c cccc} x_1 & x_2 & x_1 \cdot x_2 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} x_1 & \bar{x}_1 \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
Boolean expr.	$L = x_1 \cdot x_2 = x_1 x_2$	$L = x_1 + x_2$	$L=\bar{x}_1=x_1'$
C/Verilog	L = x1 & x2	L = x1 x2	_ = × ×1
Name	AND Gate	OR Gate	NOT Gate

CL = Combinational Logic

Cuthut Y = F(A, B, C) Z = G(A, B, C)

Two input networks

Example 1. Convert the following (ANSI) network into a Boolean expression, a truth table and a Venn diagram.

$$g = \chi_1 \cdot \chi_2$$

$$f = \overline{g} = g'$$

$$\Rightarrow f = \chi_1 \cdot \chi_2$$

 $= (\chi_1 \cdot \chi_2)$

 x_1 -

Example 2. Convert the following Boolean expression into a (ANSI) network, a truth table and a Venn diagram:

$$f = \overline{x_1 + x_2}$$

7(1 22

Problem 1. Convert the following (ANSI) network into a Boolean expression, a truth table and a Venn diagram.

$$9_1 = 1_1 = \chi_1 \cdot \chi_2$$
 $h_1 = \overline{\chi}_1$
 $h_2 = \overline{\chi}_2$
 $g_2 = h_1 \cdot h_2 = \overline{\chi}_1, \overline{\chi}_2$

$$f = g_1 + g_2 = (\chi_1, \chi_2) + (\bar{\chi}_1, \bar{\chi}_2)$$

Example 3. Convert the following Boolean expression into a network, a truth table and a Venn diagram:

$$f = x_1 \bar{x}_2 + \bar{x}_1 x_2$$

Problem 2. Can two different circuits have the same truth table? Can two different truth tables have the same circuit? Consider the following two circuits for example

Remark 1. Truth tables and Venn diagrams define what the combinational circuit should do. Truth tables define output for every input. Boolean expression and networks define how to achieve the desired input output relationship.

How cirmi

Problem 3. Convert the following (ANSI) network into a Boolean expression and a truth table.

2 min
$$S_1 = \overline{B}$$
 $S_1 = \overline{B}$
 $S_2 = \overline{B}$
 $S_3 = \overline{B}$
 $S_4 = \overline{$

 $(A + \overline{B}) \cdot (.) = +$ B Row ~w \bigcirc \circ \circ S \Diamond h Q D O90W3

A=1 A=0 50 h Row 3 BzO B=1 C = / C=1 $M_3 = (A+\overline{B}) \cdot (D)$ D>1 DZI M3 = A, B, C.D 3th montiem S 1 for 70w 3 2 O otherwise ABCD M1 = A.B.CD 110= (1011)2 11th Jon grow 11 Montern 2 0 otherwise

(5,0= () (1) M15 = A.B. (,D

$$M_3 = \begin{cases} 0 & \text{fon now 3} \\ 1 & \text{otherwise} \end{cases}$$

$$M_3 = (\overline{A} \cdot \overline{B} \cdot C \cdot D) \qquad 3_{10} = (0011)_2$$

$$= (A + B + \overline{C} + \overline{D})$$

$$M_1 = \overline{A} + B + \overline{C} + \overline{D} \qquad |1_{10} = (1011)_2$$

$$= (\overline{A} \cdot \overline{B} \cdot C \cdot \overline{D})$$

$$M_{15} = (\overline{A} + \overline{B} + \overline{C} + \overline{D}) \qquad 15_{10} = (1011)_2$$

$$M_{15} = (\overline{A} \cdot \overline{B} \cdot C \cdot \overline{D})$$

$$M_{15} = (\overline{A} \cdot \overline{B} \cdot C \cdot \overline{D})$$

$$M_{15} = (\overline{A} \cdot \overline{B} \cdot C \cdot \overline{D})$$

$$M_{15} = (\overline{A} \cdot \overline{B} \cdot C \cdot \overline{D})$$

$$M_{15} = (\overline{A} \cdot \overline{B} \cdot C \cdot \overline{D})$$

Touth tables is that they are cumber some to write

6 Minterms and Maxterms

6.1 Minterms

Minterm is a product involving all inputs (or complements) to a function. Every row of a truth table has a corresponding minterm. Minterm is true if and only if the corresponding row in the table is active.

Minterms defined as follows for each row of a two input truth table:

A	В	minterm	minterm
			name
0	0	$ar{A}ar{B}$	m_0
0	1	$ar{A}B$	$m_0 \ m_1$
1	0	$Aar{B}$	m_2
1	1	AB	m_3

Consider a two input circuit whose output Y is given by the truth table:

A	В	Y	$\min term$	$\min term$
				name
0	0	0	$ar{A}ar{B}$	$\overline{m_0}$
0	1	1	$ar{A}B$	m_1
1	0	0	$Aar{B}$	m_2
1	1	1	AB	m_3

then $Y = \bar{A}B + AB = m_1 + m_3 = \sum (1,3)$.

This also gives the sum of products canonical form.

Example 5. What is the minterm m_{13} for a 4-input circuit with inputs x, y, z, w (ordered from MSB to LSB).

Problem 4. What is the minterm m_{23} for a 5-input circuit with inputs a, b, c, d, e (ordered from MSB to LSB).

Example 6. Convert the following 4-input truth table into sum of minterms and sum of products canonical form.

minterm	A	В	C	D	f
name					
m_0	0	0	0	0	0
m_1	0	0	0	1	1
m_2	0	0	1	0	0
m_3	0	0	1	1	0
m_4	0	1	0	0	0
m_5	0	1	0	1	1
m_6	0	1	1	0	0
m_7	0	1	1	1	0
m_8	1	0	0	0	0
m_9	1	0	0	1	0
m_{10}	1	0	1	0	0
m_{11}	1	0	1	1	0
m_{12}	1	1	0	0	0
m_{13}	1	1	0	1	1
m_{14}	1	1	1	0	0
m_{15}	1	1	1	1	0

 $\textbf{Problem 5.} \ \textit{Convert the following 4-input truth table into sum of minterms and sum of products } \\ \textit{canonical form.}$

minterm	A	В	C	D	f
name					
$\overline{m_0}$	0	0	0	0	0
m_1	0	0	0	1	0
m_2	0	0	1	0	0
m_3	0	0	1	1	1
m_4	0	1	0	0	0
m_5	0	1	0	1	0
m_6	0	1	1	0	0
m_7	0	1	1	1	1
m_8	1	0	0	0	0
m_9	1	0	0	1	0
m_{10}	1	0	1	0	0
m_{11}	1	0	1	1	1
m_{12}	1	1	0	0	0
m_{13}	1	1	0	1	1
m_{14}	1	1	1	0	1
m_{15}	1	1	1	1	0

6.2 Maxterms

Maxterm is a sum involving all inputs (or complements) to a function. Every row of a truth table has a corresponding maxterm. Minterm is false if and only if the corresponding row in the table is active.

Maxterms are defined as follows for each row of a two input truth table:

A	В	maxterm	maxterm
			name
0	0	A + B	M_0
0	1	$A + \bar{B}$	M_1
1	0	$\bar{A} + B$	M_2
1	1	$\bar{A} + \bar{B}$	M_3

Consider a two input circuit whose output Y is given by the truth table:

A	В	Y	maxterm	maxterm
				name
0	0	0	A + B	M_0
0	1	1	$A + \bar{B}$	M_1
1	0	0	$\bar{A} + B$	M_2
1	1	1	$\bar{A} + \bar{B}$	M_3

then $Y = (A + B)(\bar{A} + B) = M_0 M_2$.

Writing a functional specification in terms of minterms is also called product of sums canonical form.

Example 7. Write the maxterm M_{11} for 4-input Boolean function with the ordered inputs A, B, C, D.

Example 8. Convert the following 4-input truth table into product of maxterms and product of sums canonical form.

maxterm	A	B	C	D	$\mid f \mid$
name					
M_0	0	0	0	0	0
M_1	0	0	0	1	0
M_2	0	0	1	0	0
M_3	0	0	1	1	1
M_4	0	1	0	0	0
M_5	0	1	0	1	0
M_6	0	1	1	0	0
M_7	0	1	1	1	1
M_8	1	0	0	0	0
M_9	1	0	0	1	0
M_{10}	1	0	1	0	0
M_{11}	1	0	1	1	1
M_{12}	1	1	0	0	0
M_{13}	1	1	0	1	1
M_{14}	1	1	1	0	1
M_{15}	1	1	1	1	0

Problem 6. Convert the following 4-input truth table into product of maxterms and products of sums canonical form.

maxterm	A	В	C	D	f
name					
M_0	0	0	0	0	0
M_1	0	0	0	1	1
M_2	0	0	1	0	1
M_3	0	0	1	1	1
M_4	0	1	0	0	1
M_5	0	1	0	1	0
M_6	0	1	1	0	1
M_7	0	1	1	1	1
M_8	1	0	0	0	0
M_9	1	0	0	1	1
M_{10}	1	0	1	0	1
M_{11}	1	0	1	1	1
M_{12}	1	1	0	0	0
M_{13}	1	1	0	1	1
M_{14}	1	1	1	0	1
M_{15}	1	1	1	1	0

Example 9. Write the 3-input truth table for the function $f = m_2 + m_3 + m_7$.

Problem 7. Write the 3-input truth table for the function $f = M_4 M_5 M_7$.

Problem 8. Write the truth table for the function $f = \bar{A}B\bar{C} + AB\bar{C}$.

7 Karnaugh maps

7.1 Two input K-maps

7.2 Three input K-maps

$^{\rm A}$	B ₀₀	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

7.3 Four input K-maps

CDA	B ₀₀	01	11	10
00	m_0	m_4	m_{12}	m_8
01	m_1	m_5	m_{13}	m_9
11	m_3	m_7	m_{15}	m_{11}
10	m_2	m_6	m_{14}	m_{10}

7.4 Five input K-maps

$$A = 0$$

$$DE \qquad DE \qquad 00 \qquad 01 \qquad 11 \qquad 10$$

$$00 \qquad m_0 \qquad m_4 \qquad m_{12} \qquad m_8$$

$$01 \qquad m_1 \qquad m_5 \qquad m_{13} \qquad m_9$$

$$11 \qquad m_3 \qquad m_7 \qquad m_{15} \qquad m_{11}$$

$$10 \qquad m_2 \qquad m_6 \qquad m_{14} \qquad m_{10}$$

	_	→		A a	A
Hnow	A	B \	5	13	
0	O	O			
1	O	(
2	(\mathcal{O}			
2	1	1	Į		

Venn Diagram

Truth Table

A = 1					
	DE	C ₀₀	01	11	10
	00	m_{16}	m_{20}	m_{28}	m_{24}
	01	m_{17}	m_{21}	m_{29}	m_{25}
	11	m_{19}	m_{23}	m_{31}	m_{27}
	10	m_{18}	m_{22}	m_{30}	m_{26}

8 More Gates and notations summary

Name	C/Verilog	Boolean expr.	Truth Table	(ANSI) symbol	K-map
NAND Gate	Q = ~(x1 & x2)	$Q = \overline{x_1 \cdot x_2} = \overline{x_1 x_2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O B W	$\begin{bmatrix} A & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ \end{bmatrix}$
NOR Gate	Q = ~(x1 x2)	$Q = \overline{x_1 + x_2}$	$\begin{array}{c ccccc} x_1 & x_2 & \overline{x_1 + x_2} \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}$	\bigcap_{B}^{O}	$\begin{bmatrix} A & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$
XOR Gate	Q = x1 ° x2	$Q=x_1\oplus x_2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\bigcap_{B} \bigvee_{A}$	B 0 1 1 0 1 1 V
XNOR Gate	Q = ~(x1 ^ x2)	$Q = \overline{x_1 \oplus x_2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A B Do-out	B 0 1 0 1 1 0 1

Problem 9. Convert the following logic circuit into a K-map.

9 Boolean Algebra

9.1 Axioms of Boolean algebra

- 1. $0 \cdot 0 = 0$
- 2. 1+1=1

- 3. $1 \cdot 1 = 1$
- 4. 0+0=0
- 5. $0 \cdot 1 = 1 \cdot 0 = 0$
- 6. $\bar{0} = 1$
- 7. $\bar{1} = 0$
- 8. $x = 0 \text{ if } x \neq 1$
- 9. $x = 1 \text{ if } x \neq 0$
- 9.2 Single variable theorems (Prove by drawing K-maps)
 - 1. $x \cdot 0 = 0$
 - 2. x + 1 = 1
 - 3. $x \cdot 1 = x$
 - 4. x + 0 = x
 - 5. $x \cdot x = x$
 - 6. x + x = x
 - 7. $x \cdot \bar{x} = 0$

- 8. $x + \bar{x} = 1$
- 9. $\bar{\bar{x}} = x$

Remark 2 (Duality). $Swap + with \cdot and 0$ with 1 to get another theorem

- 9.3 Two and three variable properties (Prove by K-maps)
 - 1. Commutative: $x \cdot y = y \cdot x$, x + y = y + x

2. Associative: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$, x + (y + z) = (x + y) + z

3. Distributive: $x \cdot (y+z) = x \cdot y + x \cdot z$, $x+y \cdot z = (x+y) \cdot (y+z)$

4. Absorption: $x + x \cdot y = x$, $x \cdot (x + y) = x$

5. Combining: $x \cdot y + x \cdot \bar{y}$, $(x + y) \cdot (x + \bar{y}) = x$

6. DeMorgan's theorem: $\overline{x \cdot y} = \overline{x} + \overline{y}$, $\overline{x + y} = \overline{x} \cdot \overline{y}$.

7. Concensus:

(a)
$$x + \bar{x} \cdot y = x + y$$

(b)
$$x \cdot (\bar{x} + y) = x \cdot y$$

(c)
$$x \cdot y + y \cdot z + \bar{x} \cdot z = x \cdot y + \bar{x} \cdot z$$

(d)
$$(x+y) \cdot (y+z) \cdot (\bar{x}+z) = (x+y) \cdot (\bar{x}+z)$$

Example 11 (Multiplexer). Multiplexer is a circuit used to select one of the input lines x_1 and x_2 based only select input s. When s=0, x_1 is selected, x_2 is selected otherwise. Find a boolean expression and a circuit for multiplexer

Example 12. Simplify $f = \bar{A}\bar{B}\bar{C} + A\bar{B}\bar{C} + A\bar{B}\bar{C}$ using boolean algebra.

Example 13. Simplify $f = \bar{A}\bar{A}\bar{C} + \bar{A}\bar{B}C$ using K-maps.