Introduction to database systems

Relational algebra

Relational algebra

- Relational algebra defines a sequence of operations that are carried out over a set of relations.
- The **results** and operands are **relations**.

Groups of relational algebra operations

- simple operations:
 - projection, selection, renaming
- **set** operations:
 - union, set-difference, intersection
- **product** operations:
 - cartesian product, θ -join, equijoin, natural join, division
- other operations:
 - semijoin, outer join, aggregate, grouping, etc.

Basic operations with which we can derive others.

Projection

$$\pi_{\mathsf{S}}(\mathsf{R})$$

- Works on a single relation R; returns a relation, which contains only those attributes (columns) that are defined by the list S.
- The projection eliminates duplicates.

Projection (example)

R

Selection

 $\mathbf{O}_{\text{predicate}}(R)$

• Works on a single relation R; returns a relation, which contains only those tuples (rows) from the relation R that satisfy a given condition (predicate)

Selection (example)

R

A	В	С	
1	1	1	
1	1	2	
1	2	3	

$\sigma_{A\neq C \wedge B < 2}(R)$	

Α	В	С
1	1	2

Renaming

$$ho_{\scriptscriptstyle \mathrm{s(S)}(\mathrm{R})}$$

- Renaming of a relation R;
 - s is a new relation name,
 - S is a list of new attribute names.

Renaming (example)

Union

RUS

- Union of the relations R and S
- The condition for the execution of all set operations is that the relations are compatible with one another (the same number of attributes and that the same attributes have the same domains).

Union (example)

R

S

A	В	С
1	2	3
2	4	6
3	6	9

RUS

A	В	С
1	2	3
4	5	6
7	8	9
2	4	6
3	6	9

Set-difference

R-S

- Set-difference of the relations R and S.
- The condition for the execution of all set operations is that the relations are compatible with one another (the same number of attributes and that the same attributes have the same domains).

Set-difference (example)

R

Α	В	С
1	2	3
4	5	6
7	8	9

S

A	В	С	
1	2	3	
2	4	6	
3	6	9	

R-S

A	В	С
4	5	6
7	8	9

Intersection

R∩S

- Intersection of the relations R and S.
 - Also: $R \cap S = R (R S)$
- The condition for the execution of all set operations is that the relations are compatible with one another (the same number of attributes and that the same attributes have the same domains).

Intersection (example)

R

B C 2 3

4 5 6

7 8 9

S

Α	В	С
1	2	3
2	4	6
3	6	9

R∩S

A	В	С
1	2	3

Cartesian product

R×S

 Cartesian product of the relations R and S is which contains one tuple for each pair of tup relations R and S.

R		S		R>	<s< th=""></s<>
ì		1		a	1
)		2	_	а	2
		3		а	3
				b	1
a relation,		b	2		
oles from the		b	3		

Cartesian product (example)

R

A	В	С
1	2	3
4	5	6
7	8	9

ς

D	E
1	2
3	4

A	В	С	D	Е
1	2	3	1	2
1	2	3	3	4
4	5	6	1	2
4	5	6	3	4
7	8	9	1	2
7	8	9	3	4

Cartesian product (example)

	R		9	S	
Α	В	С	D	E	
1	2	3	1	2	R×S
4	5	6	3	4	
_	_	•			

Α	В	С	D	Е
1	2	3	1	2
1	2	3	3	4
4	5	6	1	2
4	5	6	3	4
7	8	9	1	2
7	8	9	3	4

Cartesian product (example)

8

9

R S

A B C D E

1 2 3 1 2 R×S

4 5 6 3 4

A	В	С	D	Е
1	2	3	1	2
1	2	3	3	4
4	5	6	1	2
4	5	6	3	4
7	8	9	1	2
7	8	9	3	4

Cartesian product (example)

	R		9	S		
Α	В	С	D	E		
1	2	3	1	2	R>	×S
4	5	6	3	4		
_	0	0				

Α	В	С	D	Е
1	2	3	1	2
1	2	3	3	4
4	5	6	1	2
4	5	6	3	4
7	8	9	1	2
7	8	9	3	4

Theta join

$$R \bowtie_{\theta} S$$

• θ -join of the relations R and S is a cartesian product where we keep only those tuples which satisfy the condition θ .

Theta join (example)

R

A	В	С
1	2	3
4	5	6
7	8	9

ς

D	E
1	2
3	4

$$R \bowtie_{C \geq D \land A = E} S$$

Α	В	С	D	Е
1	2	3	_1_	_2_
1	2	3	3	_4_
4	_5 _	-6	-1	_2_
4	5	6	3	4
-7	-8	9	_1_	_2_
-7	-8	9	3	_4_

Equijoin

$$R \bowtie_{\theta} S$$

• Equijoin of the relations R and S is a θ -join, where condition $\theta_{=}$ contains only equalities.

Equijoin (example)

R

A	В	С
1	2	3
4	5	6
7	8	9

S

D	Е
1	2
3	4

 $\mathsf{R}\bowtie_{A=E}\mathsf{S}$

A	В	С	D	Е
1	2	3	1	2
1	2	3	3	-4 -
4	_5 _	-6	_1_	_2_
4	5	6	3	4
-7	8	9	1	_2_
-7	8	9	3	_4_

Natural join

 $R \bowtie S$

R ⋈ S					
A	В	С			
а	1	X			
a	1	У			

- Natural join of the relations R and S is an equijoin over all common attributes, where we keep only one occurrence of the common attributes (no duplicate attributes).
 - If relations R and S do not have common attributes, natural join equals cartesian join.

Natural join (example)

R

А	В	С
1	2	3
4	5	6
7	8	9

S

С	D	E
6	1	2
9	3	4

 $\mathsf{R}\bowtie\mathsf{S}$

Α	В	С	D	E
4	5	6	1	2
7	8	9	3	4

Division

R/S

- The quotient of the relations R and S includes only those tuples which cover the relation S.
- The new scheme is obtained by subtracting the R and S schemes.

Division (example)

R

ВС		D
1	2	1
3	4	1
3	4	1
1	2	1
1	2	1
3	4	2
5	6	1
7	8	1
	1 3 3 1 1 3 5	1 2 3 4 3 4 1 2 1 2 3 4 5 6

B C 1 2

3

R/S

Α	D
1	1

Division (example – Who has passed all the exams?)

passed

Student ID	Subject ID	
10000	101	
10001	101	
10001	102	
10002	101	
10003	102	
•••		

exams

Subject ID	
101	
102	•••

 $\pi_{\text{Student ID,Subject ID}}(\text{passed}) / \pi_{\text{Subject ID}}(\text{exams})$

Student ID 10001

Semijoin, semi- θ -join

$$R \triangleright S$$
, $R \triangleright_{\theta} S$

• Semijoin of relations R and S is equal to natural join where we keep only the attributes of the left relation R.

Semijoin (example)

Semi- θ -join (example)

Outer joins (left, right and full)

 $R \bowtie S$, $R \bowtie S$, $R \bowtie S$

- Left outer join of R and S returns a natural join where tuples of R having no matching values in common attributes of S are also included in the result.
 Unknown values of the attributes are set to NULL.
 - Similarly goes for right outer join and full outer join.

Left outer join (example)

Because in S part for the element C we don't have the number 3 like in the R table in the C part -> in the final table after number 3 will have NULL.

		S			R	
	E	D	С	С	В	Α
R ⋈ S	2	1	6	3	2	1
	4	3	9	6	5	4
	6	5	12	9	8	7

A	В	С	D	E
1	2	3	NULL	NULL
4	5	6	1	2
7	8	9	3	4

• All tuples of R are included in the result.

Right outer join (example)

The same thing like in the left outer join.

The difference is that now we firstly are looking in the S table so for number 12 we will have NULL before the column C

	R			S		
A	В	С	С	D	E	
1	2	3	6	1	2	R ⋈ S
4	5	6	9	3	4	
7	8	9	12	5	6	

Α	В	С	D	Е
4	5	6	1	2
7	8	9	3	4
NULL	NULL	12	5	6

• All tuples of S are included in the result.

Full outer join (example)

here are just connected left & right outer jo9in so you know how to do it

	R			S		
Α	В	С	С	D	E	
1	2	3	6	1	2	R ⋈ S
4	5	6	9	3	4	
7	8	9	12	5	6	

Α	В	С	D	Е
1	2	3	NULL	NULL
4	5	6	1	2
7	8	9	3	4
NULL	NULL	12	5	6

• All tuples from R and S are included in the result.

Aggregate

$$au_{\mathsf{AS}}(\mathsf{R})$$

- Applies aggregate function list AS to the relation R.
- Aggregation functions are:
 - COUNT counts all non-NULL values
 - SUM sums the values
 - AVG computes the average
 - MIN finds the lowest number
 - MAX finds the highest number

Aggregate (example)

R

Α	В	С	D
1	а	100	1
1	а	200	1
1	b	200	1
2	а	100	1
2	b	100	1
3	а	100	1
3	NULL	100	1
4	b	100	1
4	b	200	1
4	NULL	200	1

Grouping

$$GA\tau_{AS}(R)$$

• Aggregation with grouping of relation R uses a list of aggregation functions AS upon groups of relation R which are determined with a list of grouping attributes.

Grouping (example)

R

Α	В	С	D
1	а	100	1
1	а	200	1
1	b	200	1
2	а	100	1
2	b	100	1
3	а	100	1
3	NULL	100	1
4	b	100	1
4	b	200	1
4	NULL	200	1

A,D	$ au_{COUNTB.SUMC}$	(R)
, ,, ,	COUNT B. SUM C	('')

A	D	•••	
1	1	3	500
2	1	2	200
3	1	1	200
4	1	2	500

List of operations and their predicates

- Projection = $\pi_s(R)$
- Selection = $\sigma_{\text{predicate}}(R)$
- Renaming = $\rho_{s(S)}(R)$
- Union = RUS
- Set-difference = R—S
- Intersection = R∩S
- Cartesian product = R×S
- Theta join = $R \bowtie_{\theta} S$
- Equistick = $R \bowtie_{\theta_{=}} S$

- Natural join = R ⋈ S
- Division = R / S
- Semijoin = $R \triangleright S$
- Semi- θ -join = R \triangleright_{θ} S
- Left outer join = $R \bowtie S$
- Right outer join = $R \bowtie S$
- Full outer join= R ➤ S
- Aggregate = $\tau_{AS}(R)$
- Grouping = $GA\tau_{AS}(R)$

Priority of operations

1. Simple operations: projection, selection, renaming

2. Product operations: cartesian product, θ -join, natural join, division

3. Set operations: intersection, union, set-difference

4. Other operations: aggregate (with grouping)

Relational algebra exercises

Exercise 1 - Operator

Write the following queries in a relational algebra.

- 1. Which customers are buying telephones at Telekom?
- 2. Which operators are selling Janez's prefered phone?
- 3. Which customers are buying from all operators? Assume that all the operators are listed in relation p.
- 4. Which operators are selling all Janez's prefered telephones? Assume that relation n contains more tuples which correspond to Janez.
- 5. Which customers are buying from one operator only?

p (sale)

Operator	Telephone
Telekom	Nokia
Telekom	Siemens
T2	Nokia
T2	Samsung
A1	Nokia
A1	Siemens
A1	Samsung

k (buying)

Customer	Operator
Marko	Telekom
Marko	A1
Meta	Telekom
Meta	T2
Meta	A1
Janez	A1
Petra	Telekom

n (prefers)

Customer	Telephone
Marko	Siemens
Meta	Nokia
Janez	Siemens
Petra	Nokia

Exercise 2 - GSM

Relation	Relation schema
s customer	CUSTOMER (SID, SName, SSurname, SAge, SCity)
p seller	SELLER (<u>PID</u> , PName, PSurname, PAge, PDiscount)
g mobile phone	GSM (<u>GID</u> , GType, GPrice)
k purchase	PURCHASE (<u>#SID</u> , <u>#PID</u> , <u>#GID</u> , KDate, KPieces)

Write the following queries in a relational algebra.

- 1. Find names and surnames of customers who are from Kranj and are older than 18 years.
- 2. Find names and surnames of customers who have bought something.
- 3. Find names and surnames of customers who have never bought anything. Assume that the customers are stored in a relation CUSTOMER.
- 4. Find names and surnames of the sellers who have sold Nokia mobile phones.
- 5. For each type of mobile phone find the total number of sold pieces.

Exercise 3 - Hotel

Relation	Relation schema
g guest	GUEST (GNo, GName, GAddress)
h hotel	HOTEL (<u>HNo</u> , HName, HCity)
r room	ROOM (RNo, #HNo, RType, RPrice)
b booking	BOOKING (<u>#HNo</u> , <u>#RNo</u> , <u>#GNo</u> , <u>BFrom</u> , BTo)

Write the following queries in a relational algebra.

- 1. Find the numbers of all single-bed rooms (Rtype = 1), where the price is lower than 80€ per day.
- 2. Find the numbers, prices and room types in hotel Bernardin.
- 3. Find names of the guests which are currently in hotel Bernardin (value today). Show also the prices and types of the rooms they are situated in.
- 4. For each hotel list its name, number of all rooms and an average room price.
- 5. List all the room data of hotel Bernardin (RNo, RType and RPrice), including the name of the guest in the room if it is currently occupied (otherwise value NULL).