част	факултетен номер	група	курс	специалност
2				СИ
Име:				

1. (1 т.) Намерете безконтекстна граматика с език:

$$(L(\mathcal{A}) \cup L(\Gamma) \circ L(\Gamma))^*$$
,

където \mathcal{A} е недетерминираният краен автомат:

Δ	0	1
$\rightarrow^* S$	$\{0, P\}$	Ø
*0	{0}	$\{S\}$
P	Ø	$\{0, P\}$

$$\Gamma = (\{0, 1\}, \{P\}, P, \{P \to P0P | 11P | 01 | \varepsilon\}).$$

2. Проверете кои от следните езици са безконтекстни:

$$\begin{split} (\mathbf{a},\ 1.5\ \mathbf{t})\ \mathbf{L}_1 &= \{w \in \{a,b,c\}^*\ :\ |w|_c^2 = |w|_a^2 + |w|_b^2\};\\ (\mathbf{6},\ 1.5\ \mathbf{t})\ \mathbf{L}_2 &= \{w \in \{a,b,c\}^*\ :\ |w|_c^2 + 2|w|_a|w|_b = |w|_a^2 + |w|_b^2\}.\\ \mathbf{o}\mathbf{u}\mathbf{e}\mathbf{h}\mathbf{k}\mathbf{a} &= \mathbf{2}\ +\ \mathbf{toukm} \end{split}$$

част	факултетен номер	група	курс	специалност
2				СИ
Име:				

1. (1 т.) Намерете безконтекстна граматика с език:

$$(L(\mathcal{A}) \cup L(\Gamma) \circ L(\Gamma))^*$$
,

където \mathcal{A} е недетерминираният краен автомат:

Δ	0	1
$\rightarrow^* S$	$\{0, P\}$	Ø
*0	{0}	$\{S\}$
P	Ø	$\{0, P\}$

$$\Gamma = (\{0,1\}, \{P\}, P, \{P \to P0P | 11P | 01 | \varepsilon\}).$$

2. Проверете кои от следните езици са безконтекстни:

$$\begin{array}{l} (\mathbf{a},\, 1.5 \; \mathbf{t}) \; \mathbf{L}_1 = \{w \in \{a,b,c\}^* \; : \; |w|_c^2 = |w|_a^2 + |w|_b^2\}; \\ \\ (\mathbf{6},\, 1.5 \; \mathbf{t}) \; \mathbf{L}_2 = \{w \in \{a,b,c\}^* \; : \; |w|_c^2 + 2|w|_a|w|_b = |w|_a^2 + |w|_b^2\}. \\ \\ \mathbf{o}_{\mathbf{l}\mathbf{e}\mathbf{h}\mathbf{K}\mathbf{a}} = \mathbf{2} \; + \; \mathbf{to}_{\mathbf{l}\mathbf{K}\mathbf{h}} \\ \end{array}$$

част	факултетен номер	група	курс	специалност
2				СИ
Име:		'		

1. (1 т.) Намерете безконтекстна граматика с език:

$$(L(\mathcal{A}) \cup L(\Gamma) \circ L(\Gamma))^*$$
,

където \mathcal{A} е недетерминираният краен автомат:

Δ	0	1
$\rightarrow^* S$	$\{0, P\}$	Ø
*0	{0}	$\{S\}$
P	Ø	$\{0, P\}$

$$\Gamma = (\{0,1\}, \{P\}, P, \{P \to P0P | 11P | 01 | \varepsilon\}).$$

2. Проверете кои от следните езици са безконтекстни:

$$\begin{array}{l} (\mathbf{a},\,1.5\;\mathbf{t})\;\mathbf{L}_1=\{w\in\{a,b,c\}^*\;:\;|w|_c^2=|w|_a^2+|w|_b^2\};\\ \\ (\mathbf{6},\,1.5\;\mathbf{t})\;\mathbf{L}_2=\{w\in\{a,b,c\}^*\;:\;|w|_c^2+2|w|_a|w|_b=|w|_a^2+|w|_b^2\}.\\ \\ \mathbf{olehka}=\mathbf{2}\;+\;\mathbf{tolkh} \end{array}$$

част	факултетен номер	група	курс	специалност
1				СИ
Име:				

1. (1 т.) Намерете детерминиран автомат, чийто език е равен на сечението на езиците на автоматите:

8	0	1	1	δ	0	1
$\rightarrow^* n$	$\frac{0}{n}$	1		$\rightarrow p$	_	q
- p	<i>P</i>	$\frac{q}{p}$		*q	p	r
q		P		*r	q	_

2. За думи $u, v \in \{0,1\}^*$ с равни дължини определяме $u \oplus v \in \{0,1\}^*$ да бъде думата с дължина |u| = |v|такава, че: за всяко $i \leq |u|$, i-тата буква на $u \oplus v$ е 1 точно тогава, когато i-те букви на u и v са равни. За езици $L_1, L_2 \subseteq \{0, 1\}^*$ определяме:

$$L_1 \oplus L_2 = \{u \oplus v : u \in L_1 \text{ и } v \in L_2 \text{ и } |u| = |v|\}$$

Винаги ли е вярно, че: (а, 1,5 т.) Ако L_1 и L_2 са регулярни, то $L_1 \oplus L_2$ е регулярен? Защо? (б, 1,5 т.) Ако L_1 е регулярен, а L_2 е безконтекстен, то $L_1 \oplus L_2$ е регулярен?

част	факултетен номер	група	курс	специалност
1				СИ
Име:				

1. (1 т.) Намерете детерминиран автомат, чийто език е равен на сечението на езиците на автоматите:

δ	0	1	
$\rightarrow^* p$	p	q	
q	_	p	

δ	0	1
$\rightarrow p$	_	q
*q	p	r
*r	q	_

2. За думи $u, v \in \{0, 1\}^*$ с равни дължини определяме $u\oplus v\,\in\,\{0,1\}^*$ да бъде думата с дължина $|u|\,=\,|v|$ такава, че: за всяко $i \leq |u|$, i-тата буква на $u \oplus v$ е 1 точно тогава, когато i-те букви на u и v са равни. За езици $L_1, L_2 \subseteq \{0, 1\}^*$ определяме:

$$L_1 \oplus L_2 = \{u \oplus v : u \in L_1 \text{ и } v \in L_2 \text{ и } |u| = |v|\}$$

Винаги ли е вярно, че: (а, 1,5 т.) Ако L_1 и L_2 са регулярни, то $L_1 \oplus L_2$ е регулярен? Защо? (б, 1,5 т.) Ако L_1 е регулярен, а L_2 е безконтекстен, то $L_1 \oplus L_2$ е регулярен? Защо?

част	факултетен номер	група	курс	специалност
1				СИ
Име:				

1. (1 т.) Намерете детерминиран автомат, чийто език е равен на сечението на езиците на автоматите:

			δ	0
δ	Ω	1	U	U
U	0	-	$\rightarrow p$	_
$\rightarrow^* n$	n	$\mid a \mid$	· I	
· F	Г	7	*a	r
q	_	p	*	ľ
			r	q

δ	0	1
$\rightarrow p$	_	q
*q	p	r
r	q	_

2. За думи $u,v \in \{0,1\}^*$ с равни дължини определяме $u\oplus v\in\{0,1\}^*$ да бъде думата с дължина |u|=|v|такава, че: за всяко $i \leq |u|$, i-тата буква на $u \oplus v$ е 1 точно тогава, когато i-те букви на u и v са равни. За езици $L_1, L_2 \subseteq \{0, 1\}^*$ определяме:

$$L_1 \oplus L_2 = \{u \oplus v : u \in L_1 \text{ и } v \in L_2 \text{ и } |u| = |v|\}$$

Винаги ли е вярно, че: (а, 1,5 т.) Ако L_1 и L_2 са регулярни, то $L_1 \oplus L_2$ е регулярен? Защо? (б, 1,5 т.) Ако L_1 е регулярен, а L_2 е безконтекстен, то $L_1 \oplus L_2$ е регулярен? Защо?