Problem 1

Several useful inequalities involving absolute values can be derived from the triangle inequality by a judicious choice for a and b.

For any of these examples, we can redefine x and y to be a and b, which will help us reduce to the following variants of the triangle inequalities. For each of the following inequalities, I use the following format $|a| + |b| \le |a + b|$.

(a) $|x| - |y| \le |x - y|$

Here we will let a = (x - y) and b = y. Then, we see that

$$|x-y+y| \le |x-y| + |y| \implies |x| \le |x-y| + |y| \implies |x| - |y| \le |x-y|$$

(b) $|x| - |y| \le |x + y|$

Here we will let a = (x + y) and b = -y. Then, we see that

$$|x+y+(-y)| \le |x+y| + |-y| \implies |x| \le |x+y| + |y| \implies |x| - |y| \le |x+y|$$

(c) $|x| + |y| \ge |x - y|$

Here we will let a = x and b = -y. Then, we see that

$$|x + (-y)| \le |x| + |-y| \implies |x - y| \le |x| + |y|$$

(d) $||x| - |y|| \le |x - y|$

To prove this, we will set up 2 different equations.

(1)
$$|y - x + x| \le |y - x| + |x|$$
 (2) $|x - y + y| \le |x - y| + |y|$

- (1) We can move the |x| from the left side to the right side and take negative one out of the left hand side, which gives us $-(|x|-|y|) \le |y-x|$.
- (2) We can move the |y| from the left side to the right side, which gives us $|x| |y| \le |x y|$.

From the properties of absolute values, we know |x-y|=|y-x| and if $x \ge a$ and $x \ge -a$ then $x \ge |a|$. From the combination of these two facts, we now have $||x|-|y|| \le |x-y|$.

Problem 2

Recall the definition of what it means for $S \subset \mathbb{R}$ to be bounded above, bounded below and just bounded. Prove that S is bounded if and ony if there is a real number M > 0 such that

$$\forall s \in S, |s| \leq M$$

Proof

Let's assume $S \subset \mathbb{R}$, then $|s| \leq M$ means that -M < s < M, $\forall s \in S$. S is bounded above if there exists some $X \in \mathbb{R}$ such that $\forall s \in S$, s < X. Likewise, S is bounded below if there exists some $x \in \mathbb{R}$ such that $\forall s \in S$, x < s. Thus, we see that M is in fact an upper bound for S because s < M, $\forall s \in S$ and that -M is in fact a lower bound for S because -M < s, $\forall s \in S$. Therefore, since S is bounded above and below, S is, by definition, bounded.

Problem 3

We say that a function f is *invertible* if $f^{-1} = \{(b, a) : (a, b) \in f\}$ is also a function, in which case we call it the inverse function to f. Notice that

$$f^{-1}(b) = (a) \leftrightarrow b = f(a),$$

assuming that f^{-1} is a function.

- (a) If f is invertible, what are the domain and range of f^{-1} ?
- (b) Which of the following functions are invertible? For those that are invertible, give the inverse.

$$\begin{array}{ll} l=\{(x,y)\in\mathbb{R}^2:y=2x+1\} & \text{Inverse: }y=\frac{x-1}{2},\text{ Domain: }\mathbb{R},\text{ Range: }\mathbb{R}\\ c=\{(x,y)\in\mathbb{R}^2:y\geq0,x^2+y^2=1\} & \text{Not invertible} \\ s=\{(x,y)\in\mathbb{R}^2:y=x^2\} & \text{Not invertible} \\ \sqrt{=}(x,y)\in\mathbb{R}^2:y\geq0,y^2=x\} & \text{Inverse: }y=x^2,\text{ Domain: }\mathbb{R},\text{ Range: }[0,\infty)\\ sin=\{(x,y)\in\mathbb{R}^2:y=sin(x)\} & \text{Not invertible} \end{array}$$

Problem 4

Assume that g is bounded function, that is, |g(x)| < B for all $x \in \mathbb{R}$. Prove that $\lim_{x \to 0} x \cdot g(x) = 0$.

$$c = 0, L = 0, f(x) = x \cdot g(x)$$

$$|f(x) - L| < \epsilon \implies |x \cdot g(x) - 0| < \epsilon \implies |x \cdot g(x)| < \epsilon.$$

At its max, g(x) can be no greater than B. Thus, we know B is an upper bound for f(x). We can rewrite f(x) as $|x \cdot B|$. Thus, $|x \cdot B| < \epsilon \implies -\epsilon < x \cdot B < \epsilon$. By dividing by B on both sides, we have $\frac{-\epsilon}{B} < x < \frac{\epsilon}{B}$.

Proof

Let $\delta_{\epsilon} = \frac{\epsilon}{B}$. Then $|x - 0| < \delta_{\epsilon} \implies \delta_{\epsilon} < x - 0 < \delta_{\epsilon}$.

$$\frac{-\epsilon}{B} < x < \frac{\epsilon}{B}$$
$$-\epsilon < x \cdot B < \epsilon$$
$$|x \cdot B| < \epsilon$$

Since we said g(x) < B, $\forall x \in \mathbb{R}$, we know the following inequality to be true: $x \cdot g(x) < |x \cdot B| < \epsilon$. This completes the proof.

Problem 5

Using the " $\epsilon - \delta$ " definition to prove that

(a)
$$\lim_{x \to 2} (4x + 1) = 9$$

$$|f(x) - L| < \epsilon \implies |(4x + 1) - 9| < \epsilon \implies |4x - 8| < \epsilon \implies |4(x - 2)| \implies |x - 2| < \frac{\epsilon}{4}$$

Proof

Let
$$\delta_{\epsilon} \implies \frac{\epsilon}{4}$$
. Then, $0 < |x-2| < \frac{\epsilon}{4} \implies -\frac{\epsilon}{4} < x-2 < \frac{\epsilon}{4}$.
$$\frac{\epsilon}{4} < x-2 < \frac{\epsilon}{4}$$
$$-\epsilon < 4(x-2) < \epsilon$$
$$-\epsilon < 4x-8 < \epsilon$$
$$-\epsilon < (4x+1) - 9 < \epsilon$$

This completes the proof because we showed $|f(x) - L| < \epsilon$ for a specific δ .

(b)
$$\lim_{x \to 5} \sqrt{x+4} = 3$$

$$|f(x) - L| < \epsilon \implies \left| \sqrt{x+4} - 3 \right| < \epsilon \text{ implies}$$

$$-\epsilon < \sqrt{x+4} - 3 < \epsilon$$

$$-\epsilon + 3 < \sqrt{x+4} < \epsilon + 3$$

$$(-\epsilon + 3)^2 < x + 4 < (\epsilon + 3)^2$$

$$(-\epsilon + 3)^2 - 9 < x - 5 < (\epsilon + 3)^2 - 9$$

 $\left| (4x+1) - 9 \right| < \epsilon$

You can see that we subtracted 9 to both sides at the end. That is because our |x-p| value is |x-5|.

Proof

Let $\delta_{\epsilon} = (\epsilon + 3)^2 - 9$. Then, $0 < |x - 5| < (\epsilon + 3)^2 + 9$ implies

$$(-\epsilon + 3)^{2} - 9 < x - 5 < (\epsilon + 3)^{2} - 9$$
$$(-\epsilon + 3)^{2} < x + 4 < (\epsilon + 3)^{2}$$
$$-\epsilon + 3 < \sqrt{x + 4} < \epsilon + 3$$
$$-\epsilon < \sqrt{x + 4} - 3 < \epsilon$$

This completes the proof because we showed $|f(x) - L| < \epsilon$ for a specific δ .

(c)
$$\lim_{x \to 3} \frac{1}{8 - 4x} = \frac{1}{4}$$

$$\begin{split} \left|f(x)-L\right| < \epsilon &\implies \left|\frac{1}{8-4x}-\frac{1}{4}\right| < \epsilon \text{ implies} \\ -\epsilon < \frac{1}{8-4x}-\frac{1}{4} < \epsilon \\ -\epsilon + \frac{1}{4} < \frac{1}{-4(x-2)} < \epsilon + \frac{1}{4} \\ 4\epsilon - 1 > \frac{1}{x-2} > -4\epsilon - 1 \\ \frac{1}{4\epsilon - 1} > x - 2 > \frac{1}{-4\epsilon - 1} \\ \frac{1}{4\epsilon - 1} - 1 > x - 3 > \frac{1}{-4\epsilon - 1} - 1 \end{split}$$

You can see that we subtracted 1 to on sides at the end. That is because our |x-p| value is |x-3|.

Proof

Let
$$\delta_{\epsilon} = \frac{1}{-4\epsilon - 1} - 1$$
. Then, $0 < |x - 3| < \frac{1}{-4\epsilon - 1} - 1$ implies

$$\begin{split} \frac{1}{4\epsilon - 1} - 1 &> x - 3 > \frac{1}{-4\epsilon - 1} - 1 \\ \frac{1}{4\epsilon - 1} &> x - 2 > \frac{1}{-4\epsilon - 1} \\ 4\epsilon - 1 &> \frac{1}{x - 2} > -4\epsilon - 1 \\ -\epsilon + \frac{1}{4} &< \frac{1}{-4(x - 2)} < \epsilon + \frac{1}{4} \\ -\epsilon &< \frac{1}{-4(x - 2)} - \frac{1}{4} < \epsilon \\ -\epsilon &< \frac{1}{8 - 4x} - \frac{1}{4} < \epsilon \end{split}$$

This completes the proof because we showed $\left|f(x)-L\right|<\epsilon$ for a specific $\delta.$