(B2) 辍 4 盐 (IS) 本 (19)日本国特許庁 (JP)

(11)特許番号

(45)発行日 平成8年(1996)9月25日

(24) 登録日 平成8年(1996) 7月8日 第2537503号

> G03G ഥ 广内整理器号 裁別記申 G03G 9/087 (51) ht CL.

325 80/6

技術表示類所

発明の数3(全8月)

(21)出国番号	特顧昭62-17378	(73)特許権者	656666666
			日本カーバイド工業株式会社
(22) 出版日	昭和62年(1987) 1 月29日		東京都千代田区丸の内3丁目3番1号
		(72) 発明者	長谷川 幸仲
(65)公開番号	条例昭3-186253		平塚市公所388-1
(43)公開日	昭和63年(1988) 8月1日	(72) 発明者	おお が数
			平塚市公所388-1
		(72) 発明者	村井 弘一
			華沢市大庭5447 駒奇団地45-504
	****	(72) 発明者	丸山 正像
			平學市夕陽ヶ丘13番6号
		(72) 発明者	丹下 量占
			平绿市线阻断 6番 3 号 302
		(74) 代理人	弁理士 小田島 平吉 (外2名)
		都查官	松本 伍二
			現林河に続く

(54) [発明の名称] 静電荷像現像用トナ・

(57) [特許請求の範囲]

【請求項1】 酸性極性基または塩基性極性基を有する重 合体の一次粒子及び着色剤粒子並びに随意帯電制御剤を **名有してなる二次粒子の会合粒子であることを特徴とす** る静電荷像現像用トナー。

【韻水項3】 重合体エマルジョンに着色剤並びに随意帯 [請求項2] 数二次粒子間の接触部分の少くとも一部が 造版融着している特許請求の範囲第1項記載のトナー。 電制御剤を添加し、20~45℃で1~3時間攪拌下加熱

し、次いで重合体のガラス転移点~ガラス転移点より20 子を、随意戸通し、乾燥することを特徴とする、酸性極 **仕甚又は塩基性極性基を有する重合体の一次粒子及び着 で高い温度に1~3時間攪絆下加熱して生成した会合粒** 色剤粒子並びに随意帯電制御剤を含有してなる二次粒子 の会合粒子である静電荷像現像用トナーの製法。

[請求項4] (1)酸性極性基又は塩基性極性基を有す る国合体の一次粒子及び着色剤粒子並びに帯電制御剤を 含有してなる二次粒子の会合粒子である静電荷像現像用 トナー及び

を含有してなる静電荷像現像用現像剤。 -4144 (2)

[発明の詳細な説明]

本発明は、電子写真、静電配録、静電印刷などにおけ る静電荷像を現像するためのトナー及びその製法に関す 産業上の利用分野

従来技術

カーボンブラックのような着色剤、随意帯電制御剤及び 従来、一般に広く用いられて来たトナーは懸濁重合に より得られるスチレンノアクリレート系共宜合体粉末に

特許 2537503

8

/又は磁性体をドライブレンドして後押出し機等で溶融 原棟し、次いで粉砕・分級することによって製造されて 来た (特開昭51-23354号参照)

しかし、上記のような溶融混練ー粉砕法で得られる従 来のトナーは、トナーの粒径の制御に限界があり、実質 的に10μ以下、特に8μ以下、殊に5μ以下の平均粒径 か、現像剤にした場合解像度が低く且つかぶりが発生す のトナーを歩留りよく製造することが困難である許り るという欠点を避けることが困難であった。 本発明の目的

た上記の欠点を大巾に改善し、しかも新規な製法を用いることによって従来法のトナーよりも安価なトナーを提 本発明は従来一般に広く用いられて来たトナーの有し 供することを目的とするものである。

本発明の特徴

てなる二次粒子の会合粒子であることを特徴とする静電 本発明の静電荷像現像用トナーは、酸性極性基又は塩 基性極性基を有する重合体 (以下「極性甚を有する重合 体」という)、好ましくは酸性極性甚を有する重合体の 一次粒子及び着色剤粒子並びに随意帯電制御剤を含有し

荷像現像用トナーである。

ス力等の結合力によって凝集している粒子であって、一 っている。第1図は本発明のトナー製造工程において生 本発明で用いられる極性甚を有する重合体の一次粒子 する熱可塑性重合体の粒子であって、一般に乳化重合法 によって好適に得られる。本発明のトナーである上記会 する重合体の一次粒子とがイオン性結合、水架結合、金 属配位結合、弱酸一弱基結合、或いはフアンデアワール 台粒子を構成する二次粒子は、0.01~0.5、好ましくは 般に0.5~5 μ、好ましくは1 μ~4 μの平均粒径をも 成した二次粒子の一例を示す倍率1,000倍の走査電子顕 は0.05~0.5μ、好ましくは0.1~0.3μの平均粒径を有 0.03~0.1μの平均粒径をもつ着色剤粒子と極性甚を有 微鏡写真である。

ましい。

ဓ

本発明の会合粒子は上記二次粒子が疑集して生成した 第2図は本発明のトナーである会合粒子の一例を示す倍 μ、好ましくは5~15μ、最もしくは5~13μである。 不定形の粒子であって、その平均粒径は一般に3~25 率1,000倍の走査電子顕微鏡写真である。

本発明の好適な態様では、上配会合粒子を構成する二 **枚粒子間の接触部分の少くとも一部、好ましくは二次粒** 子間の接触部分の大半、が造膜融着している会合粒子が 用いられる。第3図は本発明の二次粒子間の接触部分の 少くとも一部が造膜融着した会合粒子の倍率1,000倍の 走査形電子顕微鏡写真である。

本発明のトナーである会合粒子は、極性基を有する重 合体と着色剤の合計当り、極性基を有する重合体を20~ 99.9重量%、好ましくは30~98重量%、最も好ましくは 40~95<u>寓量%及び</u>着色剤を80~0.1**重量%、**好ましくは7 0~2重量%、最も好ましくは60~5重量%含有してな

2

るものである。

例はスチレン類、アルキル(メタ)アクリレート及び酸 「極性甚を有するコモノマー」という)の共宜合体であ 本発明で用いられる極性基を有する重合体の好ましい 性極性甚又は塩基性極性甚を有するコモノマー(以下

(イ)、(イ)及び(ロ)の合計に基心、バスチレン類 (ロ)、(イ)及び(ロ)の合計に基づいてアルキル 90~20重盘%、好ましくは70~30重量%、 このような共宜合体の好ましい例は、

(メタ) アクリレート10~80缸盘%、好ましくは30~70 合極性甚を有するコモノマー0.05~30重量部、好ましく (ハ)、(イ)及び(ロ)の合計を100重量部とした場 **自量%及び**

は、(イ)、(ロ)及び(ハ)のモノマー以外に、本発 明のトナーの性能を損じない程度に共宜合し得る他のコ を含有してなる共宜合体である。また、上記共宜合体 モノマーを随意含有していてもよい。 は1~20国母部

4ージメサルスサレン、p-n-ブチルスチレン、p-t ーメトキシスチレン、pーフエニルスチレン、pークロ ルスチレンなどを挙げることができ、スチレンが特に好 上記(イ)のスチレン類の例としては、スチレン、0 ーメチルスチレン、Mーメチルスチレン、ローメチルス チレン、αーメチルスチレン、ローエチルスチレン、2, - n - オクチルスチレン、p - n - ノニルスチレン、p - n - デンルスチレン、p - n - ドデンルスチレン、p ortーブチルスチレン、p-n-ヘキシルスチレン、p ルスチレン、3,4ージクロルスチレン、ロークロロメチ ន

上記(ロ)のアルキル (メタ) アクリレートの例とし てはアクリル酸メチル、アクリル酸エチル、アクリル酸 nープチル、アクリル酸インプチル、アクリル酸プロピ シル、メタアクリル散ステアリルを挙げることができる 好ましくは4の脂肪族アルコールの(メタ)アクリル酸 クリル酸nーブチル、メタアクリル酸イソプチル、メタ が、中でも段栞原子数1~12、好ましくは3~8、特に タアクリル酸ラウリル、メタアクリル酸2-エチルヘキ ル、アクリル酸n-オクチル、アクリル酸ドデシル、プ クリル酸ラウリル、アクリル酸2-エチルヘキシル、プ タアクリル酸エチル、メタアクリル酸プロピル、メタア アクリル酸n-オクチル、メタアクリル酸ドデシル、ノ **ークロルアクリル酸メチル、メタアクリル酸メチル、、** クリル敵ステアリル、アクリル酸2~クロルエチル、 エステルが用いられる。 \$

レン性不飽和化合物及び (ii) スルホン基 (−50gH)を 有するα,B-エチレン性不飽和化合物を挙げることが (i) カルボキシル基(-COOH)を有するa、B-エチ 上記(ハ)の敵性極性基を有するモノマーとしては、

化合物の例としては、アクリル酸、メタアクリル酸、フ ン敵モノブチルエステル、マレイン酸モノオクチルエス テル、およびこれらのNaZn等の金属塩類等を挙げること **トール数、トワイン数、イタコン数、ケイ皮酸、トワイ** (i)の-C00基を有するα, β-エチレン性不飽和

(ii) の-SOyl 基を有するa, β-エチレン性不飽和 化合物の例としてはスルホン化ステレン、そのNa塩、ア リルスルホコハク酸、アリルスルホコハク酸オクチル、 そのNa塩等を挙げることができる。

2

としては、(i)アミン基あるいは4級アンモニウム基 を有する炭漿原子数1~12、好ましくは2~8、特に好 ましくは2の脂肪族アルコールの (メタ) アクリル酸エ ステル、 (ii) (メタ)アクリル数アミドあるいは随意 員として有する複架蝦基で置換されたピニール化合物及 (i) のアミン基あるいは四級アンモニウム基を有する 脂肪族アルコールの(メタ)アクリル酸エステルが塩基 また、上記(ハ)の塩基性極性基を有するコモノマー N上で炭栗原子数1~18のアルキル基でモノー又はジー び (iv) N,Nージアリルーアルキルアミンあるいはその 置換された (メタ) アクリル酸アミド、(iii) Nを環 四級アンモニウム塩を倒示することができる。中でも、 性甚を有するコモノマーとして好ましい。

フエニルアクリレート、2ーヒドロキシー3ーメタクリ る脂肪族アルコールの(メタ)アクリル酸エステルの例 としては、ジメチルアミノエチルアクリレート、ジメチ ルアミノエチルメタクリレート、ジエチルアミノエチル ルオキシプロピルトリメチルアンモニウム塩等を挙げる (i) のアミン基あるいは四級アンモニウム甚を有す アクリレート、ジエチルアミノエチルメタクリレート、 上記4化合物の四級アンモニウム塩3ージメチルアミノ

(ii) の (メタ) アクリル酸アミドあるいはN上で随 散モノー又はジーアルギル置換された (メタ) アクリル 数アミドとしては、アクリルアミド、Nープチルアクリ アクリルアミド、メタクリルアミド、Nープチルメタク ルアミド、N,Nージプチルアクリルアミド、ピベリジル リルアミド、N,Nージメチルアクリルアミド、Nーオク タデンルアクリルアミド等を挙げることができる。

ド、ピニルNーエチルピリジニウムクロリド等を挙げる (iii) のNを蝦員として有する複葉蝦基で置換され **れアリーケ穴如色わつたは、アリーチプラジン、アリー** ルピロリドン、ピニルN-メチルピリジニウムクロリ

ジアリルエチルアンモニウムクロリド等を挙げることが は、N.Nージアリルメチルアンモニウムクロリド、N.N-(iv) ON Nージアリルアルキルアミンの例として

င္တ 本発明で用いられる極性甚を有する重合体のガラス転 移点は-90~100℃、好ましくは、-30~80℃、最も好

くなる傾向があって好ましくなく、また-90℃未満と低 すぎては、トナーの粉体流動性が低下する傾向があるの で好ましくない。一方、ゲル化度が50重量%を超えて高 ましくは、-10~60℃であり、またそのゲル化度は、ア すぎては低温定着性が悪くなる傾向があるので好ましく セトン環流下ソツクスレー抽出時の不容分や敷わして0. 0~99.9重量%、好ましくは1~30重量%である。ガラ ス転移点が100℃を越えて高過ぎては、低温定着性が悪

ニグロシン染料のような帯電制御剤のように磁性又は帯 電制御性のような着色剤以外の性能を現像剤に賦与する 本明細書で「着色剤」の語は、静電荷像現像剤として 必要な色彩を歓現像剤に与える着色性の添加剤と言う意 味で用いられるもので、マグネタイトのような磁性体や 添加剤も現像剤に所期の着色性を与えるならば「着色 削」に含まれるものである。

機類料が用いられるが、一種、又は二種以上の類料又は 有機顱料及び有機染料、好ましくは、無機顱料又は、有 人及び一種又は二種以上の染料を必要に応じて組合せて 本発明で用いられる着色剤としては、無機顱科又は、 用いてもよい。このような無機顔料としては、 ន

- (イ) 会風形米樹料、
- (口) 金属酸化物系類料、
- (へ) カーボン米額料、 (二) 研化物系颇料
- (ホ) クロム酸塩系顔料

(へ) レエロシアン化塩米顔料

等が好適である。

このような (イ) 金属粉系顔料の倒としては、亜鉛 粉、鉄粉、蝦粉等が挙げられる。 ಜ

ブルー、ミネラルバイオレツト、四酸化三鉛、などが挙 (ロ) 金属酸化物系顔料の例としてはマグネタイト、フ エライト、ペンガラ、酸化チタン、亜鉛莓、シリカ、酸 化クロム、ウルトラマリーン、コパルト首、セルリアン げられる。 (へ) カーボン系値枠としてはカーボンブラック、サー **々トミツウカーボン、ランプブラツク、フアーネスブラ** ツク、などが挙げられる。 (一) 硫化物系顔枠としては硝化亜鉛、カドミウムレツ ド、セフソフシド、壌化木鍛、カドミウムイエロー、な どが挙げられる。

\$

(ホ) クロム酸塩茶顱料としてはモリグデンレツド、バ リウムイエロー、ストロンチウムイエロー、クロムイエ ロー、などが挙げられる。

(へ) フェロシアン化化合物系質科としてはミロリプル ーなどが挙げられる。

また前記の有機顔料としては、下配のものを例示でき

(イ) アン米顔料:

くンヂイHローG、 ムンジジンイHロー、 ムンジジン

リンールワシド、プリリアントメガーワシトG、 ボント ギワンジ、パーケネントレッド4R、ピランロンレシド、 **ルーンライト、などー。**

3

(ロ) 製在栄料系顔料及び **包基性染料系颜料**、

으 ン、ピーコンクブルー、アルカリブルー毎の弥料を抗殿 別により沈殿したもの。ローダミン、マゼンタ、マラカ イトグリーン、メチルバイオレツト、ピクトリアブルー リンイエロー、タートラジンイエロー、アシンドグリー 箏の染料をタンニン数、吐酒石、PTA、PNA、PTNAなどで オレンジII、アシツトオレンジR、エオキシン、キノ れ限したものなどー。

電荷像現像用現像剤としては特に好適である。

(7) 媒殊染料系植料

ヒドロキシアンスラキノン類の金属塩類、アリザリン マーダーレーキなどー。

(二) レタロシアニンK樹料

フタロシアニンブルー、スルホン化蝦フタロシアニン

(ホ) キナクリドン茶飯料及びジオキサン茶飯料

キナクリドンレッド、キナクリドンパイオレット、カ ルベゾーケジオキサジンベイオワツトなどー。 (1) から街

また、前配の有機祭科としては、ニグロシン祭科、 有機蛍光顔料、アニリンプラツクなどー。 イリン殊性が用いられる。

塩、アルコキシル化アミン、四极アンモニウム塩、アル 本路明のトナーは、哲配のように、必要に応じ、帯亀 制御剤や磁性体等を含有するものである。このような帯 **垬与性染料、その他ナフテン酸または高級脂肪酸の金属** マイナス用として電子受容性の有機錯体、その他塩聚化 既制御剤としては、プラス用としてニグロシン茶の配子 パラフイン、塩葉化ポリエステル、酸基過剰のポリエス アル、鯛フタロシアニンのスルホニルアミンなどが例示 キルアミド、キレート、頗料、フツ繋処理活性剤など、

また、本発明のトナーは、必要により流動化剤等の旅 加剤と共に用いることができ、そのような流動化剤とし **たは疎水柱シリカ、酸化チタン、酸化アルミニウム毎の** 散粉末を例示でき、トナー100瓜盘部当り0.01~5盅盘 部、好ましくは0.1~1 重量部用いられる。

を続けると二次粒子が更に凝集して第2図の写真に示し 本発明のトナーの好適な製法を例示すれば、以下の通 りである。乳化重合により得られた酸性極性甚又は塩基 性極性甚を有する重合体のエマルジョンに所要量の着色 と極性甚を有する重合体の一次粒子と着色剤粒子は次第 均粒径をもった二次粒子に生長する。このような分散体 判務未並びに随意帯電制御剤を添加混合して均一に分散 を更にそのまま0.5~3時間、好適には1~2時間攪拌 に凝集して第1図の写真に示したような0.5~5μの平 させ0.5~4時間、好ましくは1~3時間攪拌を続ける

して生成した分散液を、更に、極性甚を有する重合体の に示したように、二次粒子間の接触部分の少くとも一部 たような5~25μの平均粒径をもった会合粒子に生長す る。本発明のトナーの最も好適な製法では、このように ガラス転移点~ガラス転移点より20℃高い温度に1~6 時間、好適には2~4時間慢枠を続けると第3図の写真 が造陶融着した会合粒子が生成する。このような会合粒 送、現像剤製造時等に殆んど筋機することが無いので静 子は、二次粒子間が造膜融着しているので、貯蔵、輪 特許 2537503

本発明のトナーは、鉄、ガラスピース等のキャリアと アーとしては、樹脂被覆、好ましくは弗衆系樹脂被覆に **混合されて現像剤とされるが、トナー自体がフエライト 等を既に着色剤として含有するような場合には、フエラ** イト毎はキヤリアの働きもするので、その語合にはトナ 一はそのまま現像剤として用い得る。 なお、上配キヤリ より角の摩擦帯電棒性を有する鉄粉が殊に好適である。 本発明の効果

径が比較的小さいので、静電荷像現像剤にした場合、従 んど無いといった優れた効果を奏し、更に粉砕分級を要 本発明のトナーは、粒度分布が比較的狭く且つ平均粒 来品に較く解像度が著しく向上し且つかぶりの発生が殆 しない毎製缶が従来法に敷くて簡略化され且し必要なト ナー粒分の収率も高いので経済性においても優れている といった効果を敷するものである。 ន

以下に実施例により本発明を具体的に説明する。 お、特配しない限り数量は重量によって投示した。

黎性極性基含有重合樹脂の調整

40 の水溶液混合物に添加し、攪砕下70℃で8時間重合さ	の水路液流合物に添加し、	\$
0.5	過硫酸カリウム	
	(ネオゲンR)	
1.5	アニオン乳化剤	
	(エマルゲン950)	
1 部	ノニオン乳化剤	
100部		
	以上のモノマー混合物を	
88	アクリル酸 (AA)	
40部	アクリル酸プチル (BA)	
記	30 スヤレンキノヤー (51)	8

蹈

て固形分50%の酸性極性基含有樹脂エマルジョンを得

トナーの関数 (1)	
酸性極性基含有樹脂エマルジョン	120部
マグネタイト	40部
ルグロシン弦奏	50
(ポントロンN-04)	
カーボンブラック	5部
(ダイヤブラツク#100)	

20

作を繰り返した。結果を扱ー2に示す。 以上の混合物をスラッシャーで分散機件しながら約30℃

に2時間保持した。その後、さちに攪拌しながら70℃に 加温して3時間保持した。この間脳微鏡が観察して、樹 に生長するのが確認された。帝却して、得られた液状分 脂粒子とマグネタイト粒子とのコンプレツクスが約10μ 散物をブフナーロ過、水洗し、50℃真空乾燥10時間させ

カ (日本アエロジル社製アエロジルR972) を0.5重量部 この得られたトナー100重量部に流動化剤としてシリ を添加混合し、試験用現像剤とした。

2

このトナーで用いた上記重合体のTgは45℃、ゲル化度 は5%、軟化点は148℃、トナーの平均粒径は、12mで 上記現像剤を市販の複写機 (キヤノン製NP-2702) に 入れ技写を行ったところ、濃度の高い、かぶりの少ない 複写画が得られた。 結果を数-2に示した。 数-1に示したモノマー組成を用い実施例1と同様の 操作を繰り返した。 結果を表-2に示す。 なお、安-1 で用いた略配号の意味を以下に示す。 2GJA:アクリル数2エテルヘキシル

ន

MAA:メタクリル酸

BO4:2ーヒドロキンプロピルーN'N'Nートリメチクアンモ ニウムクロライドアクリレート MBI: トレイン製モノプチル

DMAA:アクリル数ジメチルアミノエチル LNA:メタクリル殴ラウリル

DMPC:N, Nージアリルメチルアンモニウムクロライド VP: アーケアンジン

米施例1と同様の酸性極性基含有樹脂エマルジョンを、 來杨例8

調整した後、トナー調整時に以下の操作を行った。

30 比較例3

実施例1の酸性極性基含有樹脂 トナーの調整 (2)

ドレケション

307部 1部 カーボンブレシク (リーガル330K) グロム弥埜 (ボントロンE-81)

トナーを閲整した。得られた重合体のTgは、43℃、ゲル 以上の混合物を実施例1と同様の操作を行って、試験用 化度590、軟化点147℃、トナーの平均粒径は、10.5mm であった。このトナーを市販の複写機(東芝製レオドラ い、かぶりの少ない複写画が得られた。結果を要ー2に イBD-4140) に入れ、複写を行ったところ、濃度の高

. 数-1に示すモノマー組成を用い実施例8と同様の模 **联构例9~11**

保持の代りに60℃加温2時間に保持したところ、粒子成 長が制御され収率60%で平均粒径5μmのトナーが得ら れた。このトナーにより複写試験を行ったところ、非常 に解像度の良好で、濃度が高く、かぶりの少ない画像が 実施例1における会合粒子形成反応時、70C、 えられた。 北較例1

・ 表-1に示すように、実施例1の樹脂モノマー組成中 数性衆極性甚モノマーであるMを添加せず重合した樹脂 エマルジョンを用いたところ、会合粒子の成長がなく、 試験用トナーがえられなかった。 比較例2

樹脂を得た。この樹脂60部、マグネタイト40部、ニグロ **ツン弦粒(ボントロンN-04)5 哲、 カーボンブルック** 均粒径5μmのトナーを得た。この時の収率は、35%で 実施例1における樹脂エマルジョンをスプレードライ (ダイヤブラツク#100) 5部を容融混模、粉砕して平 ヤー(アンギワーロアトセイボー製、ホードバレイナ -) で入口温度120℃、出口温度90℃、供給量1.51/mi n、アトレイザー3×104thmの運動条件にし転極かわ、 かった。

カ (日本アエロジル社製R-972)を0.5重量部を添加税 この得られたトナー100国由部に流動化剤としてシリ 合し、試験用現像剤とした。

の現像剤を用いて、実施例1と同様の複写試験を行った この現像剤は、非常に消動性の悪いものであった。 ところ、非常にかぶりの多い画像がえられた。 比較例2と同様の操作を行い数-1に示すような樹脂 組成を得て、比較例2と同様の配合で容融混練、粉砕し て収率55%で平均粒径12.0μmのトナーを得た。このト ナーを用いて、同様の複写試験を行った。結果を要ー2

填写画解像度評価方法

した。本評価方法において、数-1の樹脂組成では、解 データクウエスト社テストパターンARー4を模写し、 |四あたりのライン数を目視確認して、解像度の評価と 像度6.3以上で良好、3.6以下で不良と判断できる。

いて、光角45。にて複写前の白紙の反射率と複写後の非 (%) とした。かぶり譲度0.7以下でかぶり良好、1.0以 村上カラーラボラトリー社製CN-53Pの反射率計を用 文字部分の反射率を比較し、反射率比にてかぶり濃度 上で不良と判断できる。 復写画かぶり評価符:

蚁

=

9

特許 2537503

2

k	ゲル化度(%)	2	ιn	7	ଷ	12	13	ო	ь	гo	କ୍ଷ	က	2		1	വ	rc
1111年	τg("C) / γ.	45	- 21	22	3	∞	9	12	45	21	\$	12	45		1	- \$	3
2	酸性又は塩基性モノマー	8 W	NA 8	9 787	2 YG		4P 2	DMPC 5	8 W	MAA 8	26 26 26		8 W		(ない)	8 W	8 W
数語ストルション	(メタ)アクリル酸エステル		DS VIEZ										!			88	
	ST	8	\$	9	88	4	\$	2	8	4	8	2	8		8	8	8
		英族例	8	က	4	2	9	2	∞	6	91	=	21	比較例	-	2	က

	かぶり温度 (米)
7	解像度 (ライン)
i Ri	トナーの平 均粒径(μm)

	トナーの半 均粒径(n m)	解除は(ケイン)	(%) (%)
2	5.0	4.5	3.2
е	12.0	3,6	1.5

[図面の簡単な説明]

12,5 12,5 10,5 10,5

第1回は本発明のトナー製造時の二次粒子の粒子構造を ナーの会合粒子の粒子構造を示す配子顕微鏡写真の図画 部が造膜融着した会合粒子の粒子構造を示す電子顕微鏡 示す電子顕微鏡写真の図面代用写真、第2図は本発明ト **代用写真、第3図は二次粒子間の接触部分の少くとも一** 写真の図面代用写真である。 ജ

This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

特許 2537503

3

[第1図]

フロントページの続き

(56)参考文献 特開 昭63-33753 (JP, A) 特開 昭61 210368 (JP, A)

[第2図]