CSCE 421: Machine Learning

Lecture 3: Linear Regression

Texas A&M University
Section 201/501
Bobak Mortazavi
Ryan King
Zhale Nowroozilarki

Goals For This Lecture

- Motivate a simple supervised learning problem
- Introduce a linear machine learning method (Linear regression)
- Develop a Loss Function
- Ordinary Least Squares Optimally solve the learning problem
- Interpret model
- Understanding Accuracy and Error
- Acknowledgements: example and figure sources: James, Witten, Hastie, Tibshirani (ISLR)

Notation and Modeling

- $D = \{(x_i, y_i)\}_{i=1}^N$
- x_i a column vector of length p, with N samples
- y_i a scalar
- for p = 1, linear regression is fitting line to data in 2-dimensional space
- in general, linear regression is about fitting a hyperplane to a scatter of points in p + 1 dimensional space

Notation and Modeling

- Consider the p dimensional case
- The objective is determining intercept w_0 and p slope weights $w_i's$ so that for all N datapoints:

$$w_0 + x_{1,i}w_1 + x_{2,i}w_2 + \dots + x_{p,i}w_p \approx y_i$$

Putting it into the vector form:

$$w = \begin{bmatrix} w_0 \\ w_1 \\ \dots \\ w_p \end{bmatrix}, \dot{x}_i = \begin{bmatrix} 1 \\ x_{1,i} \\ \dots \\ x_{p,i} \end{bmatrix}$$

- $\dot{x_i}$ obtained by stacking a 1 on top of x_p
- Our linear equation would be

$$x_i^T w \approx y_i, i = 1, ..., N$$

An Important Example: Advertising

- How do I make a useful Market Plan for the coming fiscal year to increase sales?
- My budget includes advertising in:
 - TV
 - Radio
 - Newspapers
- How much should I add or subtract from each to increase sales?

Important Questions to Ask

- Is there a relationship between budget and sales?
- If there is a relationship, how strong is it?
- Which of the three media contribute to sales?
- How accurately can we estimate the effect of each medium on sales?
- Is the relationship linear?
- Is there synergy among the advertising media?

Simple Linear Regression

We want to predict y based upon a single predictor x

Simple Linear Regression

We want to predict y based upon a single predictor x, we want to regress y on to x:

$$w_0 + w_1 x \approx y$$

Simple Linear Regression

We want to predict y based upon a single predictor x, we want to regress y on to x:

$$w_0 + w_1 x \approx y$$
$$w_0 + w_1 TV \approx Sales$$

Parameters

We want to learn (trained by existing data) the parameters of the model, also known as the coefficients, w

$$\hat{y} = \hat{w}_0 + \hat{w}_1 x$$

Where \hat{y} indicates a prediction of y on the basis of x

Estimating the Coefficients

- We do not know w_0 or w_1
- So, assume we have a training set $D = \{(x_1, y_1), \dots, (x_N, y_N)\}$
- Assume N = 200 markets of sales and tv budget
- Goal: set \hat{w}_0 and \hat{w}_1 so we are as close to y_i from x_i for all i

Residual

- Let $\hat{y_i} = \hat{w}_0 + \hat{w}_1 x_i$ be the prediction for y based on the i'th value of x
- Then the residual error is

$$e_i = y_i - \hat{y}_i$$

So we can define total error as $\sum_{i=1}^{N} e_i$ and want to fit a model while considering this total error

Sum of Residual

Least Squares

The residual sum of squares

$$RSS = e_1^2 + e_2^2 + \dots + e_N^2$$

= $(y_1 - \hat{w}_0 - \hat{w}_1 x_1)^2 + \dots + (y_N - \hat{w}_0 - \hat{w}_1 x_N)^2$

Least Squares: Learning Coefficients

The residual sum of squares

$$RSS = e_1^2 + e_2^2 + \dots + e_N^2$$

= $(y_1 - \hat{w}_0 - \hat{w}_1 x_1)^2 + \dots + (y_N - \hat{w}_0 - \hat{w}_1 x_N)^2$

if *RSS* is our total sum of squared error, what do we need to learn?

Differentiation

To minimize RSS, need to differentiate with respect to both unknowns

$$RSS = \sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)^2$$

- Calculate $\frac{\partial RSS}{\partial \hat{w}_0}$
- Calculate $\frac{\partial RSS}{\partial \hat{w}_1}$

$$RSS = \sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)^2$$

$$RSS = \sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)^2$$
$$\frac{\partial RSS}{\partial \hat{w}_0} = \sum_{i=1}^{N} 2(y_i - \hat{w}_0 - \hat{w}_1 x_i)(-1)$$

$$RSS = \sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)^2$$

$$\frac{\partial RSS}{\partial \hat{w}_0} = \sum_{i=1}^{N} 2(y_i - \hat{w}_0 - \hat{w}_1 x_i)(-1)$$

$$= -2\sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)$$

$$RSS = \sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)^2$$

$$\frac{\partial RSS}{\partial \hat{w}_0} = \sum_{i=1}^{N} 2(y_i - \hat{w}_0 - \hat{w}_1 x_i)(-1)$$

$$= -2\sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)$$

$$= -2\sum_{i=1}^{N} y_i + 2\sum_{i=1}^{N} \hat{w}_0 + 2\hat{w}_1 \sum_{i=1}^{N} x_i$$

$$RSS = \sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)^2$$

$$\frac{\partial RSS}{\partial \hat{w}_0} = \sum_{i=1}^{N} 2(y_i - \hat{w}_0 - \hat{w}_1 x_i)(-1)$$

$$= -2\sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)$$

$$= -2\sum_{i=1}^{N} y_i + 2\sum_{i=1}^{N} \hat{w}_0 + 2\hat{w}_1 \sum_{i=1}^{N} x_i$$
Note: $\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$ is the sample mean

$$RSS = \sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)^2$$

$$\frac{\partial RSS}{\partial \hat{w}_0} = \sum_{i=1}^{N} 2(y_i - \hat{w}_0 - \hat{w}_1 x_i)(-1)$$

$$= -2\sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)$$

$$= -2\sum_{i=1}^{N} y_i + 2\sum_{i=1}^{N} \hat{w}_0 + 2\hat{w}_1 \sum_{i=1}^{N} x_i$$

$$\mathbf{Note:} \ \bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i \ \text{is the sample mean}$$

$$= -2N\bar{y} + 2N\hat{w}_0 + 2N\hat{w}_1 \bar{x}$$

$$RSS = \sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)^2$$

$$\frac{\partial RSS}{\partial \hat{w}_0} = \sum_{i=1}^{N} 2(y_i - \hat{w}_0 - \hat{w}_1 x_i)(-1)$$

$$= -2\sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)$$

$$= -2\sum_{i=1}^{N} y_i + 2\sum_{i=1}^{N} \hat{w}_0 + 2\hat{w}_1 \sum_{i=1}^{N} x_i$$

$$Note: \bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i \text{ is the sample mean}$$

$$= -2N\bar{y} + 2N\hat{w}_0 + 2N\hat{w}_1 \bar{x}$$
To minimize, set $\frac{\partial RSS}{\partial \hat{w}_0} = 0$

$$RSS = \sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)^2$$

$$\frac{\partial RSS}{\partial \hat{w}_0} = -2N\bar{y} + 2N\hat{w}_0 + 2N\hat{w}_1\bar{x}$$

To minimize, set
$$\frac{\partial RSS}{\partial \hat{w}_0} = 0$$

$$-2N\bar{y} + 2N\hat{w}_0 + 2N\hat{w}_1\bar{x} = 0$$

$$RSS = \sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)^2$$

$$\frac{\partial RSS}{\partial \hat{w}_0} = -2N\bar{y} + 2N\hat{w}_0 + 2N\hat{w}_1\bar{x}$$

To minimize, set
$$\frac{\partial RSS}{\partial \hat{w}_0} = 0$$

$$-2N\bar{y} + 2N\hat{w}_0 + 2N\hat{w}_1\bar{x} = 0$$

$$2N\hat{w}_0 = 2N\bar{y} - 2N\hat{w}_1\bar{x}$$

$$RSS = \sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)^2$$

$$\frac{\partial RSS}{\partial \hat{w}_0} = -2N\bar{y} + 2N\hat{w}_0 + 2N\hat{w}_1\bar{x}$$

To minimize, set
$$\frac{\partial RSS}{\partial \hat{w}_0} = 0$$

$$-2N\bar{y} + 2N\hat{w}_0 + 2N\hat{w}_1\bar{x} = 0$$

$$2N\hat{w}_0 = 2N\bar{y} - 2N\hat{w}_1\bar{x}$$

$$\frac{2N}{w_0} = \frac{2N}{y} - \frac{2N}{w_1}\bar{x}$$

$$RSS = \sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)^2$$

$$\frac{\partial RSS}{\partial \hat{w}_0} = -2N\bar{y} + 2N\hat{w}_0 + 2N\hat{w}_1\bar{x}$$

To minimize, set
$$\frac{\partial RSS}{\partial \hat{w}_0} = 0$$

$$-2N\bar{y} + 2N\hat{w}_0 + 2N\hat{w}_1\bar{x} = 0$$

$$2N\hat{w}_0 = 2N\bar{y} - 2N\hat{w}_1\bar{x}$$

$$\frac{2N}{2N}\hat{w}_0 = \frac{2N}{2N}\bar{y} - \frac{2N}{2N}\hat{w}_1\bar{x}$$

$$\hat{w}_0^* = \bar{y} - \hat{w}_1 \bar{x}$$

$$RSS = \sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)^2$$

$$RSS = \sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)^2$$

$$\frac{\partial RSS}{\partial \hat{w}_1} = \sum_{i=1}^{N} 2(y_i - \hat{w}_0 - \hat{w}_1 x_i)(-x_i)$$

$$RSS = \sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)^2$$

$$\frac{\partial RSS}{\partial \hat{w}_1} = \sum_{i=1}^{N} 2(y_i - \hat{w}_0 - \hat{w}_1 x_i)(-x_i)$$

$$= -2\sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)(x_i)$$

$$RSS = \sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)^2$$

$$\frac{\partial RSS}{\partial \hat{w}_1} = \sum_{i=1}^{N} 2(y_i - \hat{w}_0 - \hat{w}_1 x_i)(-x_i)$$

$$= -2\sum_{i=1}^{N} (y_i - \hat{w}_0 - \hat{w}_1 x_i)(x_i)$$

Set equal to o

$$-2\sum_{i=1}^{N} y_i x_i + 2\hat{w}_0 \sum_{i=1}^{N} x_i + 2\hat{w}_1 \sum_{i=1}^{N} x_i^2 = 0$$

$$-2\sum_{i=1}^{N} y_i x_i + 2w_0 \sum_{i=1}^{N} x_i + 2w_1 \sum_{i=1}^{N} x_i^2 = 0$$

$$= -\frac{2}{2} \sum_{i=1}^{N} y_i x_i + \frac{2}{2} \hat{w}_0 \sum_{i=1}^{N} x_i + \frac{2}{2} \hat{w}_1 \sum_{i=1}^{N} x_i^2 = 0$$

$$-2\sum_{i=1}^{N} y_i x_i + 2\hat{w}_0 \sum_{i=1}^{N} x_i + 2\hat{w}_1 \sum_{i=1}^{N} x_i^2 = 0$$

$$= -\frac{2}{2} \sum_{i=1}^{N} y_i x_i + \frac{2}{2} \hat{w}_0 \sum_{i=1}^{N} x_i + \frac{2}{2} \hat{w}_1 \sum_{i=1}^{N} x_i^2 = 0$$

$$= -\sum_{i=1}^{N} y_i x_i + (\bar{y} - \hat{w}_1 \bar{x}) \sum_{i=1}^{N} x_i + w_1 \sum_{i=1}^{N} x_i^2 = 0$$

$$-2\sum_{i=1}^{N} y_i x_i + 2\hat{w}_0 \sum_{i=1}^{N} x_i + 2\hat{w}_1 \sum_{i=1}^{N} x_i^2 = 0$$

$$= -\frac{2}{2} \sum_{i=1}^{N} y_i x_i + \frac{2}{2} w_0 \sum_{i=1}^{N} x_i + \frac{2}{2} w_1 \sum_{i=1}^{N} x_i^2 = 0$$

$$= -\sum_{i=1}^{N} y_i x_i + (\bar{y} - \hat{w}_1 \bar{x}) \sum_{i=1}^{N} x_i + \hat{w}_1 \sum_{i=1}^{N} x_i^2 = 0$$

$$= -\sum_{i=1}^{N} y_i x_i + \sum_{i=1}^{N} x_i + w_1 \sum_{i=1}^{N} x_i^2 = 0$$

$$-2\sum_{i=1}^{N} y_i x_i + 2\hat{w}_0 \sum_{i=1}^{N} x_i + 2\hat{w}_1 \sum_{i=1}^{N} x_i^2 = 0$$

$$= -\frac{2}{2} \sum_{i=1}^{N} y_i x_i + \frac{2}{2} \hat{w}_0 \sum_{i=1}^{N} x_i + \frac{2}{2} \hat{w}_1 \sum_{i=1}^{N} x_i^2 = 0$$

$$= -\sum_{i=1}^{N} y_i x_i + (\bar{y} - \hat{w}_1 \bar{x}) \sum_{i=1}^{N} x_i + \hat{w}_1 \sum_{i=1}^{N} x_i^2 = 0$$

$$= -\sum_{i=1}^{N} y_i x_i + \bar{y} \sum_{i=1}^{N} x_i - \hat{w}_1 \bar{x} \sum_{i=1}^{N} x_i + \hat{w}_1 \sum_{i=1}^{N} x_i^2 = 0$$

$$\bar{y} \sum_{i=1}^{N} x_i - \sum_{i=1}^{N} y_i x_i = \widehat{w}_1 \bar{x} \sum_{i=1}^{N} x_i - \widehat{w}_1 \sum_{i=1}^{N} x_i^2$$

$$\bar{y} \sum_{i=1}^{N} x_i - \sum_{i=1}^{N} y_i x_i = \widehat{w}_1 (\bar{x} \sum_{i=1}^{N} x_i - \sum_{i=1}^{N} x_i^2)$$

$$\widehat{w}_{1}^{*} = \frac{\bar{y} \sum_{i=1}^{N} x_{i} - \sum_{i=1}^{N} y_{i} x_{i}}{\bar{x} \sum_{i=1}^{N} x_{i} - \sum_{i=1}^{N} x_{i}^{2}}$$

$$\widehat{w}_{1}^{*} = \frac{\bar{y} \sum_{i=1}^{N} x_{i} - \sum_{i=1}^{N} y_{i} x_{i}}{\bar{x} \sum_{i=1}^{N} x_{i} - \sum_{i=1}^{N} x_{i}^{2}}$$

$$\widehat{w}_{1}^{*} = \frac{\bar{y} \, \bar{x} N - \sum_{i=1}^{N} y_{i} x_{i}}{\bar{x}^{2} N - \sum_{i=1}^{N} x_{i}^{2}}$$

$$\widehat{w}_1^* = \frac{\sum_{i=1}^N y_i x_i - \bar{y} \, \bar{x} N}{\sum_{i=1}^N x_i^2 - \bar{x}^2 N}$$

Differentiation: \widehat{w}_1 - Numerator

$$\sum_{i=1}^{N} y_i x_i - \bar{y} \, \bar{x} N$$

$$\sum_{i=1}^{N} y_i x_i - \bar{y} \, \bar{x} N - \bar{y} \, \bar{x} N + \bar{y} \, \bar{x} N$$

$$\sum_{i=1}^{N} y_i x_i - \bar{y} \sum_{i=1}^{N} x_i - \bar{x} \sum_{i=1}^{N} y_i + \bar{y} \bar{x} N$$

$$\sum_{i=1}^{N} y_i x_i - \bar{y} \sum_{i=1}^{N} x_i - \bar{x} \sum_{i=1}^{N} y_i + \bar{y} \bar{x} \sum_{i=1}^{N} 1$$

$$\sum_{i=1}^{N} y_i x_i - \bar{y} \sum_{i=1}^{N} x_i - \bar{x} \sum_{i=1}^{N} y_i + \sum_{i=1}^{N} \bar{y} \bar{x}$$

$$\sum_{i=1}^{N} y_i x_i - \sum_{i=1}^{N} \bar{y} x_i - \sum_{i=1}^{N} \bar{x} y_i + \sum_{i=1}^{N} \bar{y} \bar{x}$$

$$\sum_{i=1}^{N} (y_i x_i - \bar{y} x_i + \bar{x} y_i + \bar{y} \,\bar{x})$$

$$\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

Differentiation: \hat{w}_1

$$\widehat{w}_{1}^{*} = \frac{\bar{y} \sum_{i=1}^{N} x_{i} - \sum_{i=1}^{N} y_{i} x_{i}}{\bar{x} \sum_{i=1}^{N} x_{i} - \sum_{i=1}^{N} x_{i}^{2}}$$

$$\widehat{w}_{1}^{*} = \frac{\bar{y} \, \bar{x} N - \sum_{i=1}^{N} y_{i} x_{i}}{\bar{x}^{2} N - \sum_{i=1}^{N} x_{i}^{2}}$$

$$\widehat{w}_{1}^{*} = \frac{\sum_{i=1}^{N} y_{i} x_{i} - \bar{y} \, \bar{x} N}{\sum_{i=1}^{N} x_{i}^{2} - \bar{x}^{2} N}$$

$$\widehat{w}_{1}^{*} = \frac{\sum_{i=1}^{N} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{N} x_{i}^{2} - \bar{x}^{2} N}$$

Differentiation: \widehat{w}_1 - Denominator

$$\sum_{i=1}^{N} x_i^2 - \bar{x}^2 N$$

$$= \sum_{i=1}^{N} x_i^2 - \bar{x}^2 N - \bar{x}^2 N + \bar{x}^2 N$$

$$= \sum_{i=1}^{N} x_i^2 - 2\bar{x}^2 N + \bar{x}^2 N$$

$$= \sum_{i=1}^{N} x_i^2 - 2\bar{x}\bar{x}N + \bar{x}^2 \sum_{i=1}^{N} 1$$

$$= \sum_{i=1}^{N} x_i^2 - 2\bar{x} \sum_{i=1}^{N} x_i + \sum_{i=1}^{N} \bar{x}^2$$

$$= \sum_{i=1}^{N} (x_i^2 - 2\bar{x}x_i + \bar{x}^2)$$

$$= \sum_{i=1}^{N} (x_i^2 - \bar{x}x_i - \bar{x}x_i + \bar{x}^2)$$

$$= \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})$$

$$= \sum_{i=1}^{N} (x_i - \bar{x})^2$$

Differentiation: \widehat{w}_1

$$\widehat{w}_{1}^{*} = \frac{\bar{y} \sum_{i=1}^{N} x_{i} - \sum_{i=1}^{N} y_{i} x_{i}}{\bar{x} \sum_{i=1}^{N} x_{i} - \sum_{i=1}^{N} x_{i}^{2}}$$

$$\widehat{w}_{1}^{*} = \frac{\bar{y} \, \bar{x} N - \sum_{i=1}^{N} y_{i} x_{i}}{\bar{x}^{2} N - \sum_{i=1}^{N} x_{i}^{2}}$$

$$\widehat{w}_{1}^{*} = \frac{\sum_{i=1}^{N} y_{i} x_{i} - \bar{y} \, \bar{x} N}{\sum_{i=1}^{N} x_{i}^{2} - \bar{x}^{2} N}$$

$$\widehat{w}_{1}^{*} = \frac{\sum_{i=1}^{N} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{N} x_{i}^{2} - \bar{x}^{2} N}$$

$$\widehat{w}_{1}^{*} = \frac{\sum_{i=1}^{N} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{N} (x_{i} - \bar{x})^{2}}$$

Optimal Coefficients: \hat{w}_0 , \hat{w}_1

$$\hat{w}_0^* = \bar{y} - \hat{w}_1 \bar{x}$$

$$\widehat{w}_{1}^{*} = \frac{\sum_{i=1}^{N} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{N} (x_{i} - \bar{x})^{2}}$$

Advertising Solution

- $\hat{w}_0 = 7.03$
- $\hat{w}_1 = 0.0475$
- Source: ISLR

Advertising Solution

 $\hat{w}_0 = 7.03$ and $\hat{w}_1 = 0.0475$. If we had no TV advertising, how many units would we sell? What if we had \$1000 budgeted for TV?

- A. 703, 475 + 703
- **B**. 7.03, 47.5 + 7.03
- C. 47.5 + 7.03, 7.03
- D. 475 + 703, 703

Advertising Solution

 $\hat{w}_0 = 7.03$ and $\hat{w}_1 = 0.0475$. If we had no TV advertising, how many units would we sell? What if we had \$1000 budgeted for TV?

- A. 703, 475 + 703
- B. 7.03, 47.5 + 7.03
- C. 47.5 + 7.03, 7.03
- D. 475 + 703, 703

Least Absolutes

• The residual sum of absolutes

$$RSS = |e_1| + |e_2| \cdots |e_N|$$

$$= |y_1 - \hat{w}_0 - \hat{w}_1 x_1| + |y_2 - \hat{w}_0 - \hat{w}_1 x_2| \cdots |y_N - \hat{w}_0 - \hat{w}_1 x_N|$$

Least Absolutes

- Downside of least square cost:
 - Squaring errors larger than 1 emphasizes them
 - Forces the weights to minimize larger errors, typically those of outliers
 - Susceptible to overfitting to outliers
- Least absolute error partially addresses this problem

Least Absolutes

- Black line fitted using least squares
- Pink line fitted using least absolute

- Assume the true relationship is $y = f(x) + \epsilon$, where $\epsilon \sim N(0, \sigma^2)$ (mean zero random error term)
- So, $y = w_0 + w_1 x + \epsilon$

- Assume the true relationship is $y = f(x) + \epsilon$, where $\epsilon \sim N(0, \sigma^2)$ (mean zero random error term)
- So, $y = w_0 + w_1 x + \epsilon$
- This is the population regression line which is the best linear approximation to the true relationship between x and y.

- Assume the true relationship is $y = f(x) + \epsilon$, where $\epsilon \sim N(0, \sigma^2)$ (mean zero random error term)
- So, $y = w_0 + w_1 x + \epsilon$
- This is the population regression line which is the best linear approximation to the true relationship between x and y.
- Assume, for example $y=2+3x+\epsilon$ and you sample this population with 100 random variables x to generate 100 y.

• Assume, for example $y=2+3x+\epsilon$ and you sample this population with 100 random variables x to generate 100 y.

- Assume, for example $y=2+3x+\epsilon$ and you sample this population with 100 random variables x to generate 100 y.
- $\hat{\mu}=\bar{y}$ sample mean from observations recorded is close with lots of sampling. Same \hat{w}_0 and \hat{w}_1 is a good estimate with enough data.
- Linear regression versus estimation of the mean of a random variable leads to concept of bias

- Assume, for example $y=2+3x+\epsilon$ and you sample this population with 100 random variables x to generate 100 y.
- $\hat{\mu}=\bar{y}$ sample mean from observations recorded is close with lots of sampling. Same \hat{w}_0 and \hat{w}_1 is a good estimate with enough data.
- Linear regression versus estimation of the mean of a random variable leads to concept of bias.
- If we use the sample mean $\hat{\mu}$ to estimate true μ , this is unbiased since, on average, we expect them to be the same.
 - One set of y_1, y_2, \dots, y_N might result in $\hat{\mu}$ that underestimates μ
 - Another that overestimates μ
 - etc

• Same with \widehat{w}_0 and \widehat{w}_1 - average enough samples and enough regressions to get to the true w_0 and w_1

• Assume, for example $y=2+3x+\epsilon$ and you sample this population with 100 random variables x to generate 100 y – repeating the process

- Same with \widehat{w}_0 and \widehat{w}_1 average enough samples and enough regressions to get to the true w_0 and w_1
- So, we ask, how accurate is the sample mean $\hat{\mu}$ from the estimate of μ how far off is a single estimate?

- Same with \widehat{w}_0 and \widehat{w}_1 average enough samples and enough regressions to get to the true w_0 and w_1
- So, we ask, how accurate is the sample mean $\hat{\mu}$ from the estimate of μ how far off is a single estimate?
- We need to calculate the standard error of $\hat{\mu}$, SE($\hat{\mu}$)

$$Var(\hat{\mu}) = SE(\hat{\mu})^2 = \frac{\sigma^2}{N}$$

- Where σ^2 is the standard deviation of each of the realizations of y_i of y (the N observations must be uncorrelated)
- Average amount $\hat{\mu}$ differs from μ larger N, smaller error

• In the same vein – How close can we make \widehat{w}_0 and \widehat{w}_1 to w_0 and w_1 ?

• In the same vein – How close can we make \widehat{w}_0 and \widehat{w}_1 to w_0 and w_1 ?

$$SE(\widehat{w}_0)^2 = \sigma^2 \left(\frac{1}{N} + \frac{x^2}{\sum_{i=1}^{N} (x_i - \bar{x})^2} \right)$$

$$SE(\widehat{w}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^N (x_i - \bar{x})^2}, \sigma^2 = Var(\epsilon)$$

• We assume ϵ_i are uncorrelated with common variance σ^2 (Often not true but a good approximation)

• In the same vein – How close can we make \widehat{w}_0 and \widehat{w}_1 to w_0 and w_1 ?

$$SE(\widehat{w}_0)^2 = \sigma^2 \left(\frac{1}{N} + \frac{x^2}{\sum_{i=1}^{N} (x_i - \bar{x})^2} \right)$$

$$SE(\widehat{w}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^{N} (x_i - \bar{x})^2}, \sigma^2 = Var(\epsilon)$$

- We assume ϵ_i are uncorrelated with common variance σ^2 (Often not true but a good approximation)
- When x_i are spread out, and smaller, we have more leverage to estimate the slope, reducing $SE(\widehat{w}_1)$
- $SE(\widehat{w}_0) = SE(\overline{\mu})$ if $\overline{x} = 0$

• In the same vein – How close can we make \widehat{w}_0 and \widehat{w}_1 to w_0 and w_1 ?

$$SE(\widehat{w}_0)^2 = \sigma^2 \left(\frac{1}{N} + \frac{x^2}{\sum_{i=1}^{N} (x_i - \bar{x})^2} \right)$$

$$SE(\widehat{w}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^{N} (x_i - \bar{x})^2}, \sigma^2 = Var(\epsilon)$$

- We assume ϵ_i are uncorrelated with common variance σ^2 (Often not true but a good approximation)
- When x_i are spread out, and smaller, we have more leverage to estimate the slope, reducing $SE(\widehat{w}_1)$
- $SE(\widehat{w}_0) = SE(\overline{\mu})$ if $\overline{x} = 0$
- σ^2 is not known either but can be estimated from data. The estimate, σ is the residual standard error

$$RSE = \sqrt{\frac{RSS}{N-2}}$$

Coefficient Estimates: Confidence Intervals

$$SE(\widehat{w}_0)^2 = \sigma^2 \left(\frac{1}{N} + \frac{x^2}{\sum_{i=1}^{N} (x_i - \bar{x})^2} \right)$$

$$SE(\widehat{w}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^{N} (x_i - \bar{x})^2}, \sigma^2 = Var(\epsilon)$$

$$\widehat{w} \pm SE(\widehat{w})$$

Hypothesis Testing

- Standard Errors let us hypothesis test
- Most common is the Null Hypothesis
- H_0 : There is no relation between x and y
- Alternatively, we have H_a : There is some relationship between x and y
- Mathematically, this is like testing
 - $-H_0$: $w_1 = 0$ Therefore $y = w_0 + \epsilon$
 - $-H_a$: $w_1 \neq 0$ therefore determine that \widehat{w}_1 is sufficiently far from 0
- The important question becomes how far is far enough?

T-Statistic

- T-statistic $t_W=rac{\widehat{w}_1-w}{SE(\widehat{w}_1)}$ T-statistic $t_W=rac{\widehat{w}_1-0}{SE(\widehat{w}_1)}$ for H_0

T-Statistic

- T-statistic $t_w = \frac{\widehat{w}_1 w}{SE(\widehat{w}_1)}$
- T-statistic $t_W = \frac{\widehat{w}_1 0}{SE(\widehat{w}_1)}$ for H_0
- If no relationship between x and y exists, we expect a t-distribution with P-2 degrees of freedom
- Compute the probability of observing any number equal to ---t--- or larger in absolute value, assuming $w_1=0$
- This probability is called the p-value
- A small p-value it is unlikely to observe a substantial association between predictor and response due to chance
- Therefore, a small p-value means there is an association between x and y so we can reject the null hypothesis
- The cutoff is usually 5% or 1%

Advertising Example

• If P=30

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

With P=30 the t-statistic for the null hypothesis are around 2 and 2.75 respectively. We conclude $w_0 \neq 0$ and $w_1 \neq 0$

Important Questions to Ask

- Is there a relationship between budget and sales?
- If there is a relationship, how strong is it?
- Which of the three media contribute to sales?
- How accurately can we estimate the effect of each medium on sales?
- Is the relationship linear?
- Is there synergy among the advertising media?

Accuracy of Simple Linear Regression

- Once we reject the null hypothesis for w_0 and w_1 , it is natural to ask how well the model fits the data
- One measure is the residual standard error

$$RSE = \sqrt{\frac{RSS}{N-2}} = \sqrt{\frac{1}{N-2} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2}$$

- Measure of lack of fit, it is an absolute measure. It is not always clear what a good value of RSE is.
- Another possible measurement is the R^2 statistic

R^2 Statistic

- Proportion of variance explained, always between 0 and 1, independent of scale of y
- Total sum of squares $TSS = \sum_{i=1}^{N} (y_i \bar{y})^2$

$$R^{2} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}}$$

R^2 Statistic

- Proportion of variance explained, always between 0 and 1, independent of scale of y
- Total sum of squares $TSS = \sum_{i=1}^{N} (y_i \bar{y})^2$

$$R^{2} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}}$$

- TSS measures the total variance in response y (amount inherent in response before the regression is performed)
- RSS amount left unexplained after the regression

R^2 Statistic

•
$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{N} (y_i - \bar{y})^2}$$

- R^2 is the proportion of variability in y that can be explained using x.
- R^2 close to 1 large proportion of variation explained by the regression
- R^2 close to 0 regression id not explain the variation perhaps because model is wrong. σ^2 is too high, or possibly both?
- R^2 is a measure of the linear relationship between x and y
- Still. What is a good value for R^2

R^2 Statistic: Correlation

$$Cor(X,Y) = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{N} (y_i - \bar{y})^2}}$$

- This is also a measure of the linear relationship between x and y
- r = Cor(X, Y)
- In simple linear regression, $\mathbb{R}^2 = \mathbb{R}^2$. In multiple regression however \mathbb{R}^2 does not extend.

Takeaways

- Understanding key notation
- Important questions to ask for supervised learning problem
- Ordinary Least Squares
- Simple Linear Regression
- Optimizing RSS
- Next Time: Multiple Linear Regression and Coding

