CAPÍTULO

6

Reglas de derivación

OBJETIVOS PARTICULARES

1. Aplicar reglas básicas de derivación para calcular derivadas, de diverso orden, de funciones algebraicas.

1

- 2. Aplicar la regla de la cadena en el cálculo de derivadas, para funciones explícitamente definidas.
- 3. Aplicar el método de derivación implícita en el cálculo de derivadas, para funciones definidas implícitamente.

6.1 Reglas básicas de derivación

Como se habrá notado en el capítulo anterior, para calcular la derivada de una función y = f(x) mediante la definición, usando la denominada regla de los cuatro pasos, generalmente es necesario llevar a cabo un laborioso procedimiento algebraico.

Para evitar tal complejidad, se opta por el uso o la aplicación de resultados o reglas básicas generales que nos permiten el cálculo de la derivada de diversas funciones de uso frecuente.

Dichas reglas se demuestran a partir de la definición de la derivada a veces con el uso de algún artificio algebraico.

A continuación enunciamos las reglas básicas de derivación, seguida cada una de su respectiva demostración.

• Regla 1. Si f(x) = c, con c constante, entonces

$$f'(x) = \frac{d}{dx}f(x) = \frac{d}{dx}c = 0.$$

¹canek.azc.uam.mx: 22/5/2008

Ejemplos de la regla 1:

- 1. Si f(x) = 5, entonces f'(x) = 0.
- 2. Si f(x) = -125, entonces f'(x) = 0.
- 3. Si f(x) = k, con k constante, entonces f'(x) = 0.

▼ Demostración regla 1:

Si para cada $x \in \mathbb{R}$ se tiene f(x) = c, entonces

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} \frac{0}{h} = \lim_{h \to 0} 0 = 0 \implies$$
$$\Rightarrow f'(x) = 0.$$
Es decir,
$$\frac{d}{dx}c = 0.$$

• Regla 2. Si $f(x) = x^n$, con $n \in \mathbb{N}$, entonces

$$f'(x) = \frac{d}{dx}f(x) = \frac{d}{dx}x^n = nx^{n-1}.$$

Ejemplos de la regla 2:

- 1. Si $f(x) = x^5$, entonces $f'(x) = 5x^4$.
- 2. Si $f(x) = x^{100}$, entonces $f'(x) = 100x^{99}$.
- ▼ Demostración de la regla 2:

$$f(x) = x^{n} \implies f(x+h) = (x+h)^{n}.$$

$$f(x+h) - f(x) = (x+h)^{n} - x^{n} =$$

$$= \left[x^{n} + nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^{2} + \dots + h^{n} \right] - x^{n} =$$

$$= nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^{2} + \frac{n(n-1)(n-2)}{2(3)}x^{n-3}h^{3} + \dots + h^{n} =$$

$$= h \left[nx^{n-1} + \frac{n(n-1)}{2}x^{n-2}h + \frac{n(n-1)(n-2)}{2(3)}x^{n-3}h^{2} + \dots + h^{n-1} \right].$$

$$\frac{f(x+h) - f(x)}{h} =$$

$$= nx^{n-1} + \frac{n(n-1)}{2}x^{n-2}h + \frac{n(n-1)(n-2)}{2(3)}x^{n-3}h^{2} + \dots + h^{n-1}.$$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =$$

$$= nx^{n-1} + \frac{n(n-1)}{2}x^{n-2}(0) + \frac{n(n-1)(n-2)}{2(3)}x^{n-3}(0)^2 + \dots + (0)^{n-1}.$$

$$f'(x) = nx^{n-1}.$$

Es decir,
$$\frac{d}{dx}x^n = nx^{n-1}.$$

Más adelante veremos que esta regla se puede generalizar para el caso en que $n \in \mathbb{Q}$. Nota: un caso particular de la regla 2 aparece para n=1:

$$\frac{d}{dx}x = \frac{d}{dx}x^1 = 1x^{1-1} = x^0 = 1.$$

Es decir, $\frac{d}{dx}x = 1$.

Observación: en lo que sigue trabajaremos con funciones que suponemos derivables.

• Regla 3. Si $F(x) = f(x) + g(x) - \phi(x)$, entonces

$$F'(x) = \frac{d}{dx}F(x) = \frac{d}{dx}[f(x) + g(x) - \phi(x))] =$$

$$= \frac{d}{dx}f(x) + \frac{d}{dx}g(x) - \frac{d}{dx}\phi(x) = f'(x) + g'(x) - \phi'(x).$$

Ejemplo de la regla 3:

$$(x^5 + x^{100} - x)' = (x^5)' + (x^{100})' - (x)' = 5x^4 + 100x^{99} - 1$$
.

Demostración de la regla 3:

$$F(x) = f(x) + g(x) - \phi(x) \implies F(x+h) = f(x+h) + g(x+h) - \phi(x+h).$$

$$F(x+h) - F(x) = [f(x+h) + g(x+h) - \phi(x+h)] - [f(x) + g(x) - \phi(x)] =$$

$$= [f(x+h) - f(x)] + [g(x+h) - g(x)] - [\phi(x+h) - \phi(x)].$$

$$\frac{F(x+h) - F(x)}{h} = \frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h} - \frac{\phi(x+h) - \phi(x)}{h}.$$

$$\lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} - \lim_{h \to 0} \frac{\phi(x+h) - \phi(x)}{h}.$$

3

$$F'(x) = f'(x) + g'(x) - \phi'(x).$$
 Es decir,
$$\frac{d}{dx} [f(x) + g(x) - \phi(x)] = f'(x) + g'(x) - \phi'(x).$$

Esta regla se generaliza para el caso de tener la suma algebraica de más funciones.

• Regla 4. Si $\phi(x) = f(x)g(x)$, entonces $\phi'(x) = f(x)g'(x) + g(x)f'(x)$.

Ejemplo de la regla 4:

$$[(x^5 + x)(x^{100} - 1)]' = (x^5 + x)(x^{100} - 1)' + (x^{100} - 1)(x^5 + x)' =$$
$$= (x^5 + x) \cdot 100x^{99} + (x^{100} - 1)(5x^4 + 1).$$

▼ Demostración de la regla 4:

$$\phi(x) = f(x)g(x) \Rightarrow \phi(x+h) = f(x+h)g(x+h).$$

$$\phi(x+h) - \phi(x) = f(x+h)g(x+h) - f(x)g(x).$$

Restamos y sumamos f(x + h)g(x)

$$\phi(x+h) - \phi(x) =$$

$$= f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x) =$$

$$= f(x+h)[g(x+h) - g(x)] + g(x)[f(x+h) - f(x)].$$

$$\frac{\phi(x+h) - \phi(x)}{h} = \frac{f(x+h)[g(x+h) - g(x)]}{h} + \frac{g(x)[f(x+h) - f(x)]}{h} =$$

$$= f(x+h) \left[\frac{g(x+h) - g(x)}{h} \right] + g(x) \left[\frac{f(x+h) - f(x)}{h} \right].$$

$$\lim_{h \to 0} \frac{\phi(x+h) - \phi(x)}{h} = \lim_{h \to 0} \left[f(x+h) \frac{g(x+h) - g(x)}{h} \right] + \lim_{h \to 0} \left[g(x) \frac{f(x+h) - f(x)}{h} \right].$$

$$\phi'(x) = \left[\lim_{h \to 0} f(x+h)\right] \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} + \left[\lim_{h \to 0} g(x)\right] \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Nótese que $\lim_{h\to 0} f(x+h) = f(x)$, pues f es continua, ya que es derivable. Entonces:

$$\phi'(x) = f(x)g'(x) + g(x)f'(x).$$

Es decir,

$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x).$$

Nota: un caso particular de esta regla 4 será enunciada como regla 5, debido a que se usa frecuentemente.

• Regla 5. Si $\phi(x) = cg(x)$, con c constante, entonces $\phi'(x) = cg'(x)$.

Ejemplo de la regla 5:

$$(5x^{100})' = 5(x^{100})' = 5 \cdot 100x^{99} = 500x^{99}$$

▼ Demostración de la regla 5:

Considerando la regla 4 con f(x) = c y la regla 1 en la que se asegura que $f'(x) = \frac{d}{dx}c = 0$:

$$\phi'(x) = \frac{d}{dx}[cg(x)] = cg'(x) + g(x)\frac{d}{dx}c = cg'(x) + g(x)(0) = cg'(x) \Rightarrow$$

$$\Rightarrow \phi'(x) = cg'(x).$$
Es decir, $\frac{d}{dx}[cg(x)] = c\frac{d}{dx}g(x)$.

• Regla 6. Si $\phi(x) = \frac{f(x)}{g(x)}$, entonces $\phi'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$.

Ejemplo de la regla 6:

$$\left(\frac{x^5 + x}{x^{100} - 1}\right)' = \frac{(x^{100} - 1)(x^5 + x)' - (x^5 + x)(x^{100} - 1)'}{(x^{100} - 1)^2} = \frac{(x^{100} - 1)(5x^4 + 1) - (x^5 + x) \cdot 100x^{99}}{(x^{100} - 1)^2}.$$

▼ Demostración de la regla 6.

$$\phi(x) = \frac{f(x)}{g(x)} \Rightarrow \phi(x+h) = \frac{f(x+h)}{g(x+h)} \Rightarrow$$

$$\Rightarrow \phi(x+h) - \phi(x) = \frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)} = \frac{g(x)f(x+h) - g(x+h)f(x)}{g(x+h)g(x)}.$$

Restamos y sumamos g(x) f(x) en el numerador

$$\phi(x+h) - \phi(x) = \frac{g(x)f(x+h) - g(x)f(x) + g(x)f(x) - g(x+h)f(x)}{g(x+h)g(x)} = \frac{g(x)[f(x+h) - f(x)] - f(x)[g(x+h) - g(x)]}{g(x+h)g(x)}.$$

5

Entonces,

$$\begin{split} & \frac{\phi(x+h) - \phi(x)}{h} = \\ & = \frac{1}{h} \left[\frac{g(x)[f(x+h) - f(x)]}{g(x+h)g(x)} - \frac{f(x)[g(x+h) - g(x)]}{g(x+h)g(x)} \right] = \\ & = \frac{g(x)}{g(x+h)g(x)} \left[\frac{f(x+h) - f(x)}{h} \right] - \frac{f(x)}{g(x+h)g(x)} \left[\frac{g(x+h) - g(x)}{h} \right] \,. \end{split}$$

Calculamos el límite

$$\lim_{h \to 0} \frac{\phi(x+h) - \phi(x)}{h} =$$

$$= \lim_{h \to 0} \left\{ \frac{g(x)}{g(x+h)g(x)} \left[\frac{f(x+h) - f(x)}{h} \right] - \frac{f(x)}{g(x+h)g(x)} \left[\frac{g(x+h) - g(x)}{h} \right] \right\}.$$

Vemos que $\lim_{h\to 0} g(x+h) = g(x)$, pues g(x) es continua por ser derivable.

$$\phi'(x) = \frac{g(x)}{g(x)g(x)} [f'(x)] - \frac{f(x)}{g(x)g(x)} [g'(x)] =$$

$$= \frac{g(x)f'(x)}{[g(x)]^2} - \frac{f(x)g'(x)}{[g(x)]^2} = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}.$$

Entonces,

$$\phi'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}.$$

Es decir,

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} f(x) - f(x) \frac{d}{dx} g(x)}{[g(x)]^2} = \frac{g(x) f'(x) - f(x) g'(x)}{[g(x)]^2}.$$

Generalizamos la regla 2 en el caso en que $n \in \mathbb{Z}$.

• Regla 2*. Si $f(x) = x^n$, con $n \in \mathbb{Z}$, entonces $f'(x) = nx^{n-1}$.

Ejemplo de la regla 2*:

$$(x^{-100})' = -100x^{-101}.$$

▼ Demostración de la regla 2*:

Si $n \in \mathbb{N}$, la función es la de la regla 2 precisamente.

Si
$$n = 0 \implies f(x) = x^0 = 1 \implies f'(x) = 0 = 0x^{0-1}$$
.

Si n es un entero negativo, entonces $-n \in \mathbb{N}$.

$$f(x) = x^{n} = \frac{1}{x^{-n}} \implies f'(x) = \frac{x^{-n} \frac{d}{dx} 1 - 1 \frac{d}{dx} x^{-n}}{(x^{-n})^{2}} = \frac{x^{-n} (0) - (-n) x^{-n-1}}{x^{-2n}} = \frac{n x^{-n-1}}{x^{-2n}} = n x^{-n-1+2n} = n x^{n-1}.$$

Por ahora supondremos que para $n \in \mathbb{Q}$ se cumple: $\frac{d}{dx}x^n = nx^{n-1}$.

Ejemplo 6.1.1 Calcular las derivadas de las funciones:

1.
$$f(x) = -20$$
.

2.
$$g(x) = x^5$$
.

3.
$$h(t) = \frac{31}{5}$$
.

4.
$$j(y) = \frac{1}{v^8}$$
.

5.
$$\phi(x) = \sqrt{x^3}$$
.

6.
$$\alpha(z) = z^4 - \frac{1}{z^2}$$
.

7.
$$\beta(t) = \sqrt{t} - t + 6$$
.

8.
$$\gamma(x) = 5x^4 - 2x^3 + 4x^2$$
.

9.
$$\delta(x) = \frac{3x^2 - 4x + 5}{7x^2}$$
.

10.
$$y = \frac{5x^2 - 6x^3 - 8x^4}{2\sqrt{x}}$$
.

Soluciones

1.
$$f'(x) = \frac{d}{dx}(-20) = 0$$
.

2.
$$g'(x) = \frac{d}{dx}(x^5) = 5x^{5-1} = 5x^4$$
.

3.
$$h'(t) = \frac{d}{dt} \left(\frac{31}{5} \right) = 0$$
.

4.
$$j'(y) = \frac{d}{dy} \left(\frac{1}{y^8} \right) = \frac{d}{dy} (y^{-8}) = -8y^{-8-1} = -8y^{-9} = -\frac{8}{y^9}$$
.

5.
$$\phi'(x) = \frac{d}{dx}\sqrt{x^3} = \frac{d}{dx}x^{\frac{3}{2}} = \frac{3}{2}x^{\frac{3}{2}-1} = \frac{3}{2}x^{\frac{1}{2}} = \frac{3}{2}\sqrt{x}$$
.

6.
$$\alpha'(z) = \frac{d}{dz} \left(z^4 - \frac{1}{z^2} \right) = \frac{d}{dz} (z^4 - z^{-2}) = \frac{d}{dz} z^4 - \frac{d}{dz} z^{-2} =$$

$$= 4z^{4-1} - (-2)z^{-2-1} = 4z^3 + 2z^{-3} = 4z^3 + \frac{2}{z^3}.$$

7.
$$\beta'(t) = \frac{d}{dt} \left(\sqrt{t} - t + 6 \right) = \frac{d}{dt} t^{\frac{1}{2}} - \frac{d}{dt} t + \frac{d}{dt} 6 =$$

$$= \frac{1}{2} t^{\frac{1}{2} - 1} - 1 + 0 = \frac{1}{2} t^{-\frac{1}{2}} - 1 = \frac{1}{2t^{\frac{1}{2}}} - 1 = \frac{1}{2\sqrt{t}} - 1.$$

8.
$$\gamma'(x) = \frac{d}{dx}(5x^4 - 2x^3 + 4x^2) = \frac{d}{dx}(5x^4) - \frac{d}{dx}(2x^3) + \frac{d}{dx}(4x^2) =$$

$$= 5\frac{d}{dx}x^4 - 2\frac{d}{dx}x^3 + 4\frac{d}{dx}x^2 = 5(4x^3) - 2(3x^2) + 4(2x) =$$

$$= 20x^3 - 6x^2 + 8x.$$

9.
$$\delta'(x) = \frac{d}{dx} \left(\frac{3x^2 - 4x + 5}{7x^2} \right) =$$

$$= \frac{d}{dx} \left(\frac{3x^2}{7x^2} - \frac{4x}{7x^2} + \frac{5}{7x^2} \right) =$$

$$= \frac{d}{dx} \left[\frac{3}{7} - \frac{4}{7}x^{-1} + \frac{5}{7}x^{-2} \right] = \frac{d}{dx} \left(\frac{3}{7} \right) - \frac{d}{dx} \left(\frac{4}{7}x^{-1} \right) + \frac{d}{dx} \left(\frac{5}{7}x^{-2} \right) =$$

$$= 0 - \frac{4}{7} \left(\frac{d}{dx}x^{-1} \right) + \frac{5}{7} \left(\frac{d}{dx}x^{-2} \right) = -\frac{4}{7}(-x^{-2}) + \frac{5}{7}(-2x^{-3}) =$$

$$= \frac{4}{7}x^{-2} - \frac{10}{7}x^{-3} = \frac{4}{7x^2} - \frac{10}{7x^3} = \frac{4x - 10}{7x^3}.$$

También podríamos derivar $\delta(x)$ directamente como un cociente de funciones:

$$\delta'(x) = \frac{7x^2 \frac{d}{dx} (3x^2 - 4x + 5) - (3x^2 - 4x + 5) \frac{d}{dx} (7x^2)}{(7x^2)^2} =$$

$$= \frac{7x^2 (6x - 4) - (3x^2 - 4x + 5) 14x}{49x^4} =$$

$$= \frac{42x^3 - 28x^2 - 42x^3 + 56x^2 - 70x}{49x^4} = \frac{28x^2 - 70x}{49x^4} = \frac{7x(4x - 10x)}{7x(7x^3)} =$$

$$= \frac{4x - 10}{7x^3}.$$

10.
$$y' = \frac{d}{dx}y = \frac{d}{dx}\left(\frac{5x^2 - 6x^3 - 8x^4}{2\sqrt{x}}\right) = \frac{d}{dx}\left(\frac{5x^2}{2x^{\frac{1}{2}}} - \frac{6x^3}{2x^{\frac{1}{2}}} - \frac{8x^4}{2x^{\frac{1}{2}}}\right) =$$

$$= \frac{d}{dx}\left(\frac{5}{2}x^{\frac{3}{2}}\right) - \frac{d}{dx}(3x^{\frac{5}{2}}) - \frac{d}{dx}(4x^{\frac{7}{2}}) =$$

$$= \frac{5}{2}\frac{d}{dx}x^{\frac{3}{2}} - 3\frac{d}{dx}x^{\frac{5}{2}} - 4\frac{d}{dx}x^{\frac{7}{2}} =$$

$$= \frac{5}{2}\left(\frac{3}{2}x^{\frac{1}{2}}\right) - 3\left(\frac{5}{2}x^{\frac{3}{2}}\right) - 4\left(\frac{7}{2}x^{\frac{5}{2}}\right) =$$

$$= \frac{15}{4}\sqrt{x} - \frac{15}{2}\sqrt{x^3} - 14\sqrt{x^5} = \frac{15\sqrt{x} - 30\sqrt{x^3} - 56\sqrt{x^5}}{4}.$$

Y como cociente:

$$y' = \left(\frac{5x^2 - 6x^3 - 8x^4}{2\sqrt{x}}\right)' = \frac{2x^{\frac{1}{2}}(10x - 18x^2 - 32x^3) - (5x^2 - 6x^3 - 8x^4)x^{-\frac{1}{2}}}{4x} =$$

$$= \frac{20x^{\frac{3}{2}} - 36x^{\frac{5}{2}} - 64x^{\frac{7}{2}} - 5x^{\frac{3}{2}} + 6x^{\frac{5}{2}} + 8x^{\frac{7}{2}}}{4x} =$$

$$= \frac{15x^{\frac{3}{2}} - 30x^{\frac{5}{2}} - 56x^{\frac{7}{2}}}{4x} = \frac{15x^{\frac{1}{2}} - 30x^{\frac{3}{2}} - 56x^{\frac{5}{2}}}{4} = \frac{15\sqrt{x} - 30\sqrt{x^3} - 56\sqrt{x^5}}{4}.$$

Ejemplo 6.1.2 Calcular las derivadas de las funciones:

1.
$$f(x) = \frac{x^2 - 3}{x^2 + 3}$$
.

3.
$$y = (5x^3 - 4x^2)(1 - x^2 + x^4)$$
.

2.
$$h(y) = \frac{1 - 2y^3}{1 + 2y^3}$$
.

4.
$$z = (\sqrt{u} - \sqrt[3]{u}) \left(\frac{1}{u} - \frac{1}{u^2} + \frac{1}{u^3} \right)$$
.

▼ Soluciones:

1.
$$f'(x) = \frac{d}{dx} \left(\frac{x^2 - 3}{x^2 + 3} \right) = \frac{(x^2 + 3)\frac{d}{dx}(x^2 - 3) - (x^2 - 3)\frac{d}{dx}(x^2 + 3)}{(x^2 + 3)^2} =$$
$$= \frac{(x^2 + 3)(2x - 0) - (x^2 - 3)(2x + 0)}{(x^2 + 3)^2} = \frac{2x(x^2 + 3) - 2x(x^2 - 3)}{(x^2 + 3)^2} =$$
$$= \frac{2x^3 + 6x - 2x^3 + 6x}{(x^2 + 3)^2} = \frac{12x}{(x^2 + 3)^2}.$$

9

2.
$$h'(y) = \frac{d}{dy} \left(\frac{1 - 2y^3}{1 + 2y^3} \right) = \frac{(1 + 2y^3) \frac{d}{dy} (1 - 2y^3) - (1 - 2y^3) \frac{d}{dy} (1 + 2y^3)}{(1 + 2y^3)^2} =$$

$$= \frac{(1 + 2y^3)(0 - 6y^2) - (1 - 2y^3)(0 + 6y^2)}{(1 + 2y^3)^2} =$$

$$= \frac{-6y^2(1 + 2y^3) - 6y^2(1 - 2y^3)}{(1 + 2y^3)^2} = \frac{-6y^2 - 12y^5 - 6y^2 + 12y^5}{(1 + 2y^3)^2} =$$

$$= \frac{-12y^2}{(1 + 2y^3)^2}.$$

3.
$$y' = \frac{dy}{dx} = \frac{d}{dx}[(5x^3 - 4x^2)(1 - x^2 + x^4)] =$$

$$= (5x^3 - 4x^2)\frac{d}{dx}(1 - x^2 + x^4) + (1 - x^2 + x^4)\frac{d}{dx}(5x^3 - 4x^2) =$$

$$= (5x^3 - 4x^2)(0 - 2x + 4x^3) + (1 - x^2 + x^4)(15x^2 - 8x) =$$

$$= (5x^3 - 4x^2)(4x^3 - 2x) + (x^4 - x^2 + 1)(15x^2 - 8x).$$

También podemos efectuar primero el producto $(5x^3 - 4x^2)(1 - x^2 + x^4)$ y luego derivar:

$$y = (5x^3 - 4x^2)(1 - x^2 + x^4) = 5x^3 - 4x^2 - 5x^5 + 4x^4 + 5x^7 - 4x^6 =$$

= $x^7 - 4x^6 - 5x^5 + 4x^4 + 5x^3 - 4x^2$;

por esto,

$$\frac{dy}{dx} = 35x^6 - 24x^5 - 25x^4 + 16x^3 + 15x^2 - 8x.$$

4.
$$z' = \frac{dz}{du} = \frac{d}{du} \left[(\sqrt{u} - \sqrt[3]{u}) \left(\frac{1}{u} - \frac{1}{u^2} + \frac{1}{u^3} \right) \right] =$$

$$= (\sqrt{u} - \sqrt[3]{u}) \frac{d}{du} (u^{-1} - u^{-2} + u^{-3}) + \left(\frac{1}{u} - \frac{1}{u^2} + \frac{1}{u^3} \right) \frac{d}{du} (u^{\frac{1}{2}} - u^{\frac{1}{3}}) =$$

$$= (\sqrt{u} - \sqrt[3]{u}) (-u^{-2} + 2u^{-3} - 3u^{-4}) + \left(\frac{1}{u} - \frac{1}{u^2} + \frac{1}{u^3} \right) \left(\frac{1}{2} u^{-\frac{1}{2}} - \frac{1}{3} u^{-\frac{2}{3}} \right) =$$

$$= (\sqrt{u} - \sqrt[3]{u}) \left(\frac{-1}{u^2} + \frac{2}{u^3} - \frac{3}{u^4} \right) + \left(\frac{1}{u} - \frac{1}{u^2} + \frac{1}{u^3} \right) \left(\frac{1}{2u^{\frac{1}{2}}} - \frac{1}{3u^{\frac{2}{3}}} \right) =$$

$$= (\sqrt{u} - \sqrt[3]{u}) \left(-\frac{1}{u^2} + \frac{2}{u^3} - \frac{3}{u^4} \right) + \left(\frac{1}{u} - \frac{1}{u^2} + \frac{1}{u^3} \right) \left(\frac{1}{2\sqrt{u}} - \frac{1}{3\sqrt[3]{u^2}} \right).$$

Podemos efectuar también primero el producto y luego derivar:

$$z = (u^{\frac{1}{2}} - u^{\frac{1}{3}})(u^{-1} - u^{-2} + u^{-3}) = u^{-\frac{1}{2}} - u^{-\frac{2}{3}} - u^{-\frac{3}{2}} + u^{-\frac{5}{3}} + u^{-\frac{5}{2}} - u^{-\frac{8}{3}};$$

por lo tanto:

$$\frac{dz}{du} = -\frac{1}{2}u^{-\frac{3}{2}} + \frac{2}{3}u^{-\frac{5}{3}} + \frac{3}{2}u^{-\frac{5}{2}} - \frac{5}{3}u^{-\frac{8}{3}} - \frac{5}{2}u^{-\frac{7}{2}} + \frac{8}{3}u^{-\frac{11}{3}}.$$

Ejercicios 6.1.1 Soluciones en la página ??

Utilizando reglas de derivación, calcular la derivada de las funciones siguientes.

1.
$$f(x) = 1 - 2x + 3x^2 - 4x^3$$
.

2.
$$g(x) = \frac{3x^{10}}{5} - \frac{4x^6}{3} + \frac{5x^3}{6} - \frac{9}{2}$$
.

3.
$$h(t) = \frac{2}{3t} - \frac{3}{4t^2} + \frac{4}{5t^3} - \frac{5}{6t^4}$$
.

4.
$$y = 4\sqrt{x^3} - 6\sqrt[3]{x^4} + 8\sqrt[4]{x^5}$$
.

5.
$$u = \frac{1}{\sqrt{y}} - \frac{1}{\sqrt[3]{y}} - \frac{1}{\sqrt[4]{y}}$$
.

$$6. \ x = \frac{3y^2 - 4y + 5}{6\sqrt{y}} \,.$$

7.
$$y = \left(x - \frac{1}{x} + \frac{1}{x^2}\right) \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)$$
.

8.
$$z = (x^3 + 1)^2(x^2 - 1)^3$$
.

9.
$$x = \frac{1+t^3}{1-t^3}$$
.

10.
$$y = \frac{2x}{x^2 + 4}$$
.

11.
$$w = \frac{3u+2}{4u^2-9}$$
.

12.
$$v = \frac{1}{w^2 - w + 1}$$
.

Ejercicios 6.1.1 Reglas básicas de derivación, página ??

1.
$$f'(x) = -2 + 6x - 12x^2$$
.

2.
$$g'(x) = 6x^9 - 8x^5 + \frac{5}{2}x^2$$
.

3.
$$h'(t) = -\frac{2}{3t^2} + \frac{3}{2t^3} - \frac{12}{5t^4} + \frac{10}{3t^5}$$
.

4.
$$\frac{dy}{dx} = 6\sqrt{x} - 8\sqrt[3]{x} + 10\sqrt[4]{x}$$
.

5.
$$\frac{du}{dy} = -\frac{1}{2\sqrt{y^3}} + \frac{1}{3\sqrt[3]{y^4}} + \frac{1}{4\sqrt[4]{y^5}}$$
.

6.
$$\frac{dx}{dy} = \frac{3}{4}\sqrt{y} - \frac{1}{3\sqrt{y}} - \frac{5}{12\sqrt{y^3}}$$

7.
$$y' = \left(x - \frac{1}{x} + \frac{1}{x^2}\right) \left(\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{x^3}}\right) + \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right) \left(1 + \frac{1}{x^2} - \frac{2}{x^3}\right).$$

8.
$$z' = (x^3 + 1)^2 (6x^5 - 12x^3 + 6x) + (x^2 - 1)^3 (6x^5 + 6x)$$
.

9.
$$\frac{dx}{dt} = \frac{6t^2}{(1-t^3)^2}.$$

10.
$$\frac{dy}{dx} = \frac{-2x^2 + 8}{(x^2 + 4)^2} = \frac{2(4 - x^2)}{(x^2 + 4)^2}$$
.

11.
$$\frac{dw}{du} = -\frac{12u^2 + 16u + 27}{(4u^2 - 9)^2}.$$

12.
$$\frac{dv}{dw} = \frac{1 - 2w}{(w^2 - w + 1)^2}.$$