Advanced quantum theory, June 20th 2019

Born approximation

Let $H = H_0 + V$. During the lecture, the wave operators were defined

$$\Omega_{\pm} = \lim_{t \to \mp \infty} e^{iHt} e^{-iH_0 t} E_{ac}(H_0) \tag{1}$$

that obey the Lippmann-Schwinger equation

$$\Omega_{\pm} = \lim_{\epsilon \to 0} \int (\mathbb{1} + R_{H_0}(\omega \pm i\epsilon) V \Omega_{\pm}) E_{ac}(d\omega). \tag{2}$$

Problem 1 Lippmann-Schwinger equation for 1D rectangular barrier.

- 1. Iterate equation (2) to obtain a solution as a power series in $R_{H_0}V$.
- 2. From (2) obtain a Lippmann-Schwinger equation for wave functions in coordinate representation

$$\langle x|\psi\rangle = \langle x|\phi\rangle + \int dy \langle x|\frac{1}{E - H_0 + i\epsilon}|y\rangle\langle y|V|\psi\rangle$$
 (3)

where $|\phi\rangle$ is a scattering state of the free Hamiltonian H_0 and $|\psi\rangle$ is the scattering state of H.

3. Compute the resolvent R_{H_0} for $H_0=\frac{p^2}{2m}$ in coordinate representation. That is, show that (in units $\hbar=1$)

$$\langle x|\frac{1}{E-H_0+i\epsilon}|y\rangle = \frac{1}{2\pi} \int dp \frac{e^{ip(x-y)}}{E-\frac{p^2}{2m}+i\epsilon}.$$
 (4)

(*Hint*: insert an identity $\mathbb{1} = \int dp |p\rangle\langle p|$).

Close the integration contour and apply Jordan's lemma to get

$$\langle x|\frac{1}{E-H_0+i\epsilon}|y\rangle = -im\frac{e^{i\Sigma|x-y|}}{\Sigma}$$
 (5)

where $\Sigma^2 = 2mE$

4. Consider a potential V(x) that is equal to U in the region 0 < x < a and 0 everywhere else. Observe that Lippmann-Schwinger equation yields

$$\psi(x) = \phi(x) + \frac{imU}{\Sigma} \int_0^a dy e^{i\Sigma|x-y|} \psi(y). \tag{6}$$

Take only the first term in the expansion form the subexercise 1 to get the *Born approximation* of the Lippmann-Schwinger equation

$$\psi(x) = \phi(x) + \frac{imU}{\Sigma} \int_0^a dy e^{i\Sigma|x-y|} \phi(y). \tag{7}$$

Take a scattering state $\phi(x) = \frac{e^{ikx}}{\sqrt{2\pi}}$ of $H_0 = \frac{p^2}{2m}$ to obtain the approximation for $\psi(x)$.

Problem 2 S-matrix for Yukawa potential

1. During the lecture the S-matrix was defined as $S=\Omega_+^{\dagger}\Omega_-$. Let $|p\rangle$ and $|q\rangle$ be two eigenstates of H_0 . Expand S to the first order in V to obtain

$$\langle p|S^{(1)}|q\rangle = \delta(p-q) + \langle p|V|q\rangle \lim_{\epsilon \to 0} \left(\frac{1}{E_p - E_q + i\epsilon} + \frac{1}{E_q - E_p + i\epsilon}\right).$$
 (8)

2. Show that

$$\left(\frac{1}{E_p - E_q + i\epsilon} + \frac{1}{E_q - E_p + i\epsilon}\right) = -2\pi i \delta \left(E_p - E_q\right).$$
(9)

(*Hint*: use Cauchy's integral formula.)

Obtain the Born approximation to the S-matrix,

$$\langle p|S^{(1)}|q\rangle = \delta(p-q) - 2\pi i\delta\left(E_p - E_q\right)\langle p|V|q\rangle. \tag{10}$$

- 3. Let be a Yukawa potential $V=-\frac{\alpha}{r}e^{-\lambda r}$. This potential describes interaction of massive bosons. Calculate $\langle \vec{q}|V|\vec{p}\rangle$ where $|\vec{p}\rangle$ and $|\vec{q}\rangle$ are eigenvectors of $H_0=\frac{\vec{p}^2}{2m}$ in 3D.
- 4. Calculate $S^{(1)}$ for Yukawa potential. Take a look at what happens if the mass of the bosons vanishes $\Leftrightarrow \lambda \to 0$.