a)

i. Eíval
$$AB = \alpha - (-\alpha) = 2\alpha$$
.

Επειδή το Δ ανήκει στην παραβολή $y=3-x^2$ ισχύει $y_{_{\Delta}}=3-x_{_{\Delta}}^{^2}=3-\alpha^2$. Οπότε $A\Delta=y_{_{\Delta}}-y_{_{\rm A}}=3-\alpha^2-0=3-\alpha^2\,.$

Eίναι
$$E = AB \cdot A\Delta = 2\alpha (3 - \alpha^2) = 6\alpha - 2\alpha^3$$
.

Επομένως για κάθε $\alpha \in (0, \sqrt{3})$ είναι $E = f(\alpha) = -2\alpha^3 + 6\alpha$.

- ii. Το ζητούμενο εμβαδό ισούται με $f(1) = -2 \cdot 1^3 + 6 \cdot 1 = 4$ τετ. μονάδες.
- β) Για να αποδείξουμε ότι το εμβαδό E δεν μπορεί να ξεπεράσει τις 4 τετραγωνικές μονάδες αρκεί να αποδείξουμε ότι $E\!\leq\!4$.

Έχουμε

$$E \leq 4 \Leftrightarrow -2\alpha^3 + 6\alpha \leq 4$$

$$\Leftrightarrow 2\alpha^3 - 6\alpha + 4 \geq 0$$

$$\Leftrightarrow \alpha^3 - 3\alpha + 2 \geq 0$$

$$\Rightarrow \alpha^3 - 3\alpha + 2 \geq 0$$

$$\Rightarrow (\alpha + 2)(\alpha - 1)^2 \qquad :(1)$$

γ) Για κάθε $\alpha \in (0,\sqrt{3})$ είναι $E \le 4 \stackrel{(\alpha)}{\Longleftrightarrow} f(\alpha) \le f(1)$ άρα το εμβαδό έχει μέγιστη τιμή 4 τετραγωνικές μονάδες στη θέση $\alpha = 1$.