HERMES

Efficient Ring Packing using MLWE Ciphertexts and Application to Transciphering

Youngjin Bae, Jung Hee Cheon, Jaehyung Kim, <u>Jai Hyun Park</u>, Damien Stehlé

- We consider the ring packing problem.
 - Fully homomorphic encryption ring packing (FHE RP)

- We consider the ring packing problem.
 - Fully homomorphic encryption ring packing (FHE RP)
- We suggest generic acceleration tools for FHE RP.

- We consider the ring packing problem.
 - Fully homomorphic encryption ring packing (FHE RP)
- We suggest generic acceleration tools for FHE RP.
- We propose a new FHE RP method: HERMES.
 - 40x higher throughputs compared to state-of-the-art.

- We consider the ring packing problem.
 - Fully homomorphic encryption ring packing (FHE RP)
- We suggest generic acceleration tools for FHE RP.
- We propose a new FHE RP method: HERMES.
 - 40x higher throughputs compared to state-of-the-art.
- Application to transciphering.

- LWE format
 - Granularity and fast latency
 - TFHE / FHEW

- LWE format
 - Granularity and fast latency
 - TFHE / FHEW

- Ring LWE format (RLWE)
 - Scalability and high throughput
 - BGV / BFV / CKKS

- LWE format
 - Granularity and fast latency
 - TFHE / FHEW

- Ring LWE format (RLWE)
 - Scalability and high throughput
 - BGV / BFV / CKKS

- LWE format
 - Granularity and fast latency
 - TFHE / FHEW

- Ring LWE format (RLWE)
 - Scalability and high throughput
 - BGV / BFV / CKKS

- LWE format
 - Granularity and fast latency
 - TFHE / FHEW

- Ring LWE format (RLWE)
 - Scalability and high throughput
 - BGV / BFV / CKKS

- LWE format
 - Granularity and fast latency
 - TFHE / FHEW

- Ring LWE format (RLWE)
 - Scalability and high throughput
 - BGV / BFV / CKKS

- Ring packing (RP) bridges LWE and RLWE formats [CGG117, MS18, BGGJ20, CDKS21, LHH+21]
 - Scheme switching during homomorphic computation
 - Transciphering

- RLWE-based FHE schemes
 - RLWE schemes are leveled homomorphic encryptions.
 - Parameters: Moduli and Ring degree
 - Encoding: Slots-encoding / Coefficients-encoding

- RLWE-based FHE schemes
 - RLWE schemes are leveled homomorphic encryptions.
 - Parameters: Moduli and Ring degree
 - Encoding: Slots-encoding / Coefficients-encoding

- RLWE-based FHE schemes
 - RLWE schemes are leveled homomorphic encryptions.
 - Parameters: Moduli and Ring degree
 - Encoding: Slots-encoding / Coefficients-encoding
- Which ring packing?

- RLWE-based FHE schemes
 - RLWE schemes are leveled homomorphic encryptions.
 - Parameters: Moduli and Ring degree
 - Encoding: Slots-encoding / Coefficients-encoding
- Which ring packing?
- FHE Ring Packing (FHE RP)

- RLWE-based FHE schemes
 - RLWE schemes are leveled homomorphic encryptions.
 - Parameters: Moduli and Ring degree
 - Encoding: Slots-encoding / Coefficients-encoding
- Which ring packing?
- FHE Ring Packing (FHE RP)

"Packing into slots-encoding RLWE of modulus Q_{comp} and degree N_{BTS} ."

- RLWE-based FHE schemes
 - RLWE schemes are leveled homomorphic encryptions.
 - Parameters: Moduli and Ring degree
 - Encoding: Slots-encoding / Coefficients-encoding

- Which ring packing?
- FHE Ring Packing (FHE RP)

"Packing into slots-encoding RLWE of modulus Q_{comp} and degree N_{BTS} ."

Bottom

Large parameters for FHE RP

• FHE RP means outputting RLWE with large parameters.

Large parameters for FHE RP

• FHE RP means outputting RLWE with large parameters.

- Unsatisfactory runtime and key size.
 - Computation in higher moduli and degree is slow.

Large parameters for FHE RP

Top

• FHE RP means outputting RLWE with large parameters.

- Unsatisfactory runtime and key size.
 - Computation in higher moduli and degree is slow.
 - Requires large evaluation keys.

Accelerating FHE RP

Conventional approach

Ring switching (RS) [GHPS13]

- Small moduli allow a small degree RLWE.
- Switch into RLWE of an extension ring with a higher degree.

Improved FHE RP

Conventional FHE RP

Existing Approaches

• LWE ciphertexts **ct**_i:

$$c_{i 1} s_1 + c_{i 2} s_2 + \dots + c_{i K} s_K \approx m_i$$

for each i

c _{1 1}	<i>c</i> _{1 2}	•••	$c_{1 K}$		S_1		m_1
<i>c</i> _{2 1}	c ₂₂	•••	c_{2K}		S_2	≈	m_2
•	••		•	×	:	~	÷
$c_{N \ 1}$	<i>C</i> _{N 2}	•••	$c_{N K}$		S_K		m_N

• LWE ciphertexts **ct**_i:

$$c_{i 1} s_1 + c_{i 2} s_2 + \dots + c_{i K} s_K \approx m_i$$

for each i

c _{1 1}	<i>c</i> ₁₂	•••	$c_{1 K}$		S_1		$\boxed{m_1}$
c_{21}	c_{22}	•••	c_{2K}		S_2	~	$ m_2 $
:	:		:	×	:	≈	÷
<i>c</i> _{N 1}	$c_{N 2}$	•••	c_{NK}		S_K		m_N

... is a linear system with errors.

• LWE ciphertexts **ct**_i:

$$c_{i 1} s_1 + c_{i 2} s_2 + \dots + c_{i K} s_K \approx m_i$$

for each i

c _{1 1}	c ₁₂	•••	$c_{1 K}$		S_1		$\boxed{m_1}$
c ₂₁	<i>c</i> _{2 2}	• • •	c_{2K}	×	S_2	≈	m_2
:	••		:	^	:	~	:
$c_{N \ 1}$	c_{N2}	• • •	C_{NK}		S_K		$oxed{m_N}$

... is a linear system with errors.

• LWE ciphertexts **ct**_i:

$$c_{i 1} s_1 + c_{i 2} s_2 + \dots + c_{i K} s_K \approx m_i$$

for each i

c _{1 1}	c ₁₂	•••	$c_{1 K}$		
c _{2 1}	c _{2 2}	• • •	c_{2K}		
:	:		:	×	
•	•		•		-
$C_{N 1}$	c_{N2}	•••	c_{NK}		

 S_1 m_1 S_2 m_2 \approx m_N S_K

... is a linear system with errors.

• LWE ciphertexts **ct**_i:

$$c_{i 1} s_1 + c_{i 2} s_2 + \dots + c_{i K} s_K \approx m_i$$

for each i

<i>c</i> _{1 1}	<i>c</i> _{1 2}	•••	$c_{1 K}$		S_1
<i>c</i> _{2 1}	c ₂₂	•••	c_{2K}	×	S_2
:	•••		:		:
<i>c</i> _{N 1}	$c_{N 2}$	•••	c_{NK}		S_K

... is a linear system with errors.

• RP is (plaintext) matrix – (ciphertext) vector multiplication in RLWE formats.

Existing Approaches

• Three approaches to encode the plaintext matrix.

Column method

- CGGI17, BGGJ20
- K key switchings
- K keys
- Consumes 0 level

Row method

- CDKS21
- K key switchings
- $\log K$ keys
- Consumes 1 level

Diagonal method

- HS14, LHH+21
- $2\sqrt{K}$ key switchings
- $2\sqrt{K}$ keys
- Consumes ≥ 4 levels

HERMES

HERMES⁰: the column method with our optimizations

• Practically fast.

HERMES¹: the *block method* with our optimizations

How to encode the blocks?

- How to encode the blocks?
- How to squeeze the blocks?

- How to encode the blocks? Module LWE (MLWE)
- How to squeeze the blocks?

- How to encode the blocks? Module LWE (MLWE)
- How to squeeze the blocks? MLWE key switching / MLWE ring switching

Experimental Result

Ring Packing

FHE RP Method		RLWE RLWE		# of	Amortized	Key size (MB)	
		modulus	degree	input LWE	Time (ms/slot)	Base RP	Half- BTS
Pegasus [LHH+21]	Diagonal	2^{270}	2 ¹⁶	2 ¹²	12.62	3540	
[CDKS21] with Optimizations	Row	2^{562}	2^{16}	2 ¹⁶	0.83	1	667
HERMES ⁰	Column	2^{562}	2 ¹⁶	2 ¹⁶	0.44	114	667
HERMES ¹	Block	2^{562}	2 ¹⁶	2 ¹⁶	0.47	6	667
		2^{270}	2 ¹⁵	2 ¹⁵	0.31	5	542

All experiments are measured on AMD® Ryzen 7 3700x 8-core processor with a single-threaded CPU.

Pegasus figures are borrowed from [LHH+21]; measured on single-threaded Intel Xeon Platinum 8269CY CPU (20-cores) at 2.50GHz.

Ring Packing

FHE RP Method		RLWE RLWE .		# of	Amortized	Key size (MB)	
		modulus	degree	input LWE	Time (ms/slot)	Base RP	Half- BTS
Pegasus [LHH+21]	Diagonal	2270	2 ¹⁶	2 ¹²	12.62	35	40
[CDKS21] with Optimizations	Row	2^{562}	2 ¹⁶	2 ¹⁶	0.83	1	667
HERMES ⁰	Column	2^{562}	2 ¹⁶	2 ¹⁶	0.44	114	667
HERMES ¹	Block	2^{562}	2 ¹⁶	2 ¹⁶	0.47	6	667
		2^{270}	2 ¹⁵	2 ¹⁵	0.31	5	542

All experiments are measured on AMD® Ryzen 7 3700x 8-core processor with a single-threaded CPU.

Pegasus figures are borrowed from [LHH+21]; measured on single-threaded Intel Xeon Platinum 8269CY CPU (20-cores) at 2.50GHz.

Ring Packing

FHE RP Method		RLWE RLWE .		# of	Amortized	Key size (MB)	
		modulus	degree	input LWE	Time (ms/slot)	Base RP	Half- BTS
Pegasus [LHH+21]	Diagonal	2270	2 ¹⁶	2^{12}	12.62	35	40
[CDKS21] with Optimizations	Row	2^{562}	2 ¹⁶	2 ¹⁶	0.83	1	667
HERMES ⁰	Column	2^{562}	2 ¹⁶	2^{16}	0.44	114	667
HERMES ¹	Block	2^{562}	2 ¹⁶	2^{16}	0.47	6	667
		2^{270}	2 ¹⁵	2 ¹⁵	0.31	5	542

All experiments are measured on AMD® Ryzen 7 3700x 8-core processor with a single-threaded CPU.

Pegasus figures are borrowed from [LHH+21]; measured on single-threaded Intel Xeon Platinum 8269CY CPU (20-cores) at 2.50GHz.

Transciphering

Scheme	RLWE degree	Granularity	Latency (s)	Expansion Ratio	Mean Precision
HERA [CHK+21]		16	141.6	1.24	19.1
Rubato [HKL+22]	2 ¹⁶	64	106.4	1.26	18.9
Rabato [TIKL+22]		16	71.1	1.31	18.8
		64	25.8	1.58	23.0
HERMES		16	25.7	1.58	23.0
		1	30.9	1.58	23.0

All experiments are measured on AMD® Ryzen 7 3700x 8-core processor with a single-threaded CPU.

HERA and Rubato figures are borrowed from [CHK+21] and [HKL+22]; measured on AMD Ryzen 7 2700X @ 3.70 GHz single-threaded CPU.

• Optimize the existing RP methods for FHE RP.

- Optimize the existing RP methods for FHE RP.
- Propose a new efficient FHE RP method, HERMES.
 - Compared to state-of-the-art, 40x faster in terms of throughput.

- Optimize the existing RP methods for FHE RP.
- Propose a new efficient FHE RP method, HERMES.
 - Compared to state-of-the-art, 40x faster in terms of throughput.
- Application to transciphering.

- Optimize the existing RP methods for FHE RP.
- Propose a new efficient FHE RP method, HERMES.
 - Compared to state-of-the-art, 40x faster in terms of throughput.
- Application to transciphering.

eprint: 2023/1244 Thank you!

References

[BGGJ20] C. Boura, N. Gama, M. Georgieva, and D. Jetchev. CHIMERA: combining ring-LWE-based fully homomorphic encryption schemes. J. Math. Cryptol., 2020.

[CDKS21] H. Chen, W. Dai, M. Kim, and Y. Song. Efficient homomorphic conversion between (ring) LWE ciphertexts. In ACNS, 2021.

[CGGI17] I. Chillotti, N. Gama, M. Georgieva, and M. Izabach`ene. Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In ASIACRYPT, 2017

[CHK+21] J. Cho, J. Ha, S. Kim, B. Lee, J. Lee, J. Lee, D. Moon, and H. Yoon. Transciphering framework for approximate homomorphic encryption. In ASIACRYPT, 2021.

[GHPS13] C. Gentry, S. Halevi, C. Peikert, and N. P. Smart. Field switching in BGV-style homomorphic encryption. Journal of Computer Security, 2013.

[HKL+22] J. Ha, S. Kim, B. Lee, J. Lee, and M. Son. Rubato: Noisy ciphers for approximate homomorphic encryption. In EUROCRYPT, 2022.

[HS14] S. Halevi and V. Shoup. Algorithms in HElib. In CRYPTO, 2014.

[LHH+21] W.-J. Lu, Z. Huang, C. Hong, Y. Ma, and H. Qu. PEGASUS: bridging polynomial and non-polynomial evaluations in homomorphic encryption. In S&P, 2021.

[MS18] D. Micciancio and J. Sorrell. Ring packing and amortized FHEW bootstrapping. In ICALP, 2018.