

Analytics – Why, What, How & Beyond

May 2018

Q1: Analytics seems to be an abstract concept. What is the easiest way to think about it at a high-level?

Analytics – Highest Level View

Q2: Am interested to know a lot about Analytics but first can we start with some real-world examples?

Case Study 1: Famous Automobile Manufacturer

Starting Point: 3 Years of vehicle sensor data collected across 108 countries along with data on warranty claims

Case Study 1: Customer Behavior Modeling

Salient Points from Analytics perspective:

- Business: Warranty costs were high & rising. Urgent need to control costs & increase customer satisfaction
- Data: Sensor (semi-structured) data collected from cars running in 100+ countries
- Math: Clustering done on data to identify driving styles which is then correlated with warranty claims to predict defects
- **Technology:** Spark on the Cloud platform called Databricks, User Interface for self-service

Case 2: Large Consumer Durables Company

Starting Point: Purchase drivers were determined by post-facto analysis of POS data at stores and survey data resulting in delays of up to eight months to get consumer feedback on product features.

Case Study 2: Social Data to Drive Innovation

Salient Points from Analytics perspective:

- Business: Can we identify opportunities for Innovation using external data?
- Data: Reviews & Social Interactions captured across the globe. Unstructured data in the form of text
- Math: Sophisticated Natural Language Processing Techniques to extract insights from unstructured data
- **Technology:** Automated data pipeline to ingest & analyze data. Visualization using Tableau

Case 3: World's Largest Food Distribution Company

Starting Point: Customer & transactional data related to sales of food products to over 500,000 customer locations including restaurants, healthcare & educational facilities and other food service customers. They wanted to drive high margin product sales through effective cross-sell & up-sell

Case Study 3: Recommendation Engine to Increase Sales

Promotion on Additional Spend

Salient Points from Analytics perspective:

- Business: Can we identify opportunities for cross-sell / up-sell to sell more of high margin products?
- Data: Customer, Product, Transactions and Promotions
- Math: Clustering followed by Collaborative Filtering (Recommendation Engine)
- Technology: Automated pipeline that generates recommendations for every sales person

Case 4: One of the world's largest E-commerce marketplace

<u>Starting Point:</u> Millions of buy & sell transactions happen every minute in the marketplace. Can we utilize the data to inspire and enhance customer experience?

Case Study 4: Real-time Trends in E-Commerce Marketplace

Salient Points from Analytics perspective:

- **Volume:** Hundreds of Terabytes of data needs to be stored & indexed for search
- Variety: Structured & Unstructured data processing
- **Velocity:** Real-time ingestion of transactions and millisecond response to search queries
- Analytics: Recommendations served in real-time

Q3: How are you sure that the application of analytics is for long-term and is not just a fad?

Digital Shift – Fundamental, Irreversible Change

Data Science & ML can have great impact on industries

McKinsey&Company

MCKINSEY GLOBAL INSTITUTE

THE AGE OF ANALYTICS:

COMPETING IN A
DATA-DRIVEN WORLD

DECEMBER 2016

SOURCE: McKinsey Global Institute analysis

More stories for inspiration...

- **Predictive Policing:** https://en.wikipedia.org/wiki/Predictive_policing
- Genome Sequencing: https://www.techemergence.com/machine-learning-in-genomics-applications/
- Self-correcting Machines: https://www.ge.com/reports/ge-takes-predix-cloud-edge/
- **AlphaZero:** https://www.extremetech.com/extreme/260215-alphazero-new-chess-champion-harbinger-brave-new-world-ai
- Self-Driving Cars: https://en.wikipedia.org/wiki/Autonomous car

Q4: Business, Data, Math, Technology...hmm...that's easy...so why should it take time & effort to acquire this knowledge?

Dimensions of Analytics

Use Case **Interpret Analytics** Domain Business Formulation Output **Expertise** Acquisition & Data Visualization & Signals from data Data (subtract noise) Wrangling **Story Telling** Math / **Statistical Modeling** Select the right Evaluating the vs ML techniques & code output of algos Quant Tech / Understand the IT Data Engineering / Software Ecosystem **Pipelines** Engineering / SDLC Software

My Analytics Mindmap

Global Trends in Society

Macro-economy

Business Fundamentals

Specific Industry Domain

Analytical use cases

Analytical
Platforms &
Techniques

Data Management

Reporting & Self-service

Quantitative Techniques

Performance Mgmt

Insight Delivery

Analytics for Business Value

http://bit.ly/31KArT8

Scan for New Products

Evaluate Maturity

Monitor Ecosystem

Leverage Resources

Q5: What are the typical roles in the analytics space and what do they do on a daily basis?

Typical Roles in Analytics

Business Business Analyst Functional Expert Domain Expert Visualization Data **Data Analyst experts** Math / **Data Scientist Statisticians** Quant (Junior to Senior Level) **ML** Engineer Tech / Tech Leads / **Project / Delivery** Data Engineer **Architects** Managers Software (Cloud, Big Data etc.)

Typically one will need all skills in different proportions

Q6: What are the useful components in the data science toolbox?

Data Science Toolbox

- > Maths / Stats orientation (Not a tool but you know...)
- > Atleast 1 programming language Python (Jupyter notebooks), R
- > Atleast 1 GUI based ML platform H2o, Azure ML, BigML
- ➤ 1 Cloud based platform (Nice to have) AWS, Databricks
- > Github
- Kaggle (Competition & Kernels), AnalyticsVidhya
- Database / SQL knowledge (preferable)

Q7: There could be many techniques and it is not possible to learn everything in a short timeframe? Any tips on how to keep track of them and learn as you go along?

Data Science Techniques – There are a lot of them!

Making Sense of the World (using Data)

Develop your own personal map

Example: Category 1

Is the focus on data **Navigation** or on the process Data Type of Data Structured Not Webscale Volume of data Is it a time-series? Has Label / DV? No Yes Category 1: Supervised ML on Structured Data DV – Continuous or Categorical? Continuous Categorical Classification Regression

Details

- Exploratory Data Analysis (EDA)
- Data Pre-processing Outliers, Missing data, Variable Transformations
- Feature Selection & Dimensionality Reduction
- Feature Engineering
- Algorithms Standalone vs Ensembles
- Algorithms Parametric vs Non-Parametric
- Algorithms Linear vs Non-linear
- Cross validation
- Hyper-parameter Tuning
- Predict on Test set

Q8: Other than the analytical techniques themselves, what are the top 2 skills that needs to be developed?

Business Orientation is the cornerstone of Analytics

Business Decision Making Pipeline

Data Science Pipeline

Think Technology Landscape

- > Cloud
- Big Data
- Mobility
- ➤ Web Technologies
- Embedded Analytics in Applications
- Legacy Systems

Big Data – Key Technology Enabler

Q9: Given the roles discussed earlier, how should one acquire the required skills?

How to make the transition? – Fresher / Developer

	Can Aspire to be	Skills to Acquire	How to Acquire
Fresher / Junior Developer	Business Analyst	Business OrientationFunctional Knowledge(in 1 or 2 areas)	Domain / FunctionalCertificationsMBA
	Data Analyst	 SQL Skills / DB knowledge Translate business requirements to data needs Basic Stats knowledge 	 Online Tutorials Technical certifications MOOCs
	Big Data Engineer	SQL SkillsHands-on coding expertise in BigData tools	Focused Big Data CoursesOnline CoursesMOOCs

How to make the transition? – Experienced Techie (6-12 years)

	Can Aspire to be	Skills to Acquire	How to Acquire
Lead / Architect	Data Engineer	 Strong SQL & Programming skills in Java, Scala, etc. Design data pipelines for analytics 	 Technical certifications Online Tutorials Focused Courses
	Big Data / Cloud Specialist	 Design Big Data Systems Expertise in using databases / cloud platforms in the Big Data context 	Technical certifications in areas of specialization
	Mid-Level Data Scientist	 Good Stats / Math knowledge Intuitive understanding of algorithms Hands-on coding expertise in ML/Data Science (R, Python etc.) 	 Specialized Analytics Programs MOOCs Build a portfolio of ML projects Online competitions (Ex: Kaggle, AnalyticsVidhya)

How to make the transition? — Senior Tech Professionals

Can Aspire to be Skills to Acquire How to Acquire **Strong Functional / Domain Executive MBA programs** Delivery Manager / **Functional / Domain Knowledge Specialized Analytics Expert Business Head Conceptual Knowledge of Analytics** programs (Online / Offline) SDLC as applicable to analytics / On the job **Project / Delivery MOOCs (Case study** big data projects Manager based approach) Conceptual knowledge of **Business + Data + Math Good Stats / Math knowledge Specialized Analytics Programs Intuitive understanding of MOOCs** Mid-Level **Data Scientist** algorithms Build a portfolio of ML projects Hands-on coding expertise in Online competitions (Ex: Kaggle, ML/Data Science (R, Python etc.) Analytics Vidhya)

Q10: In the industry whenever people speak of Analytics, they now talk about Artificial Intelligence. How is this course related to AI, if at all?

What is Artificial Intelligence?

Artificial Intelligence refers to the theory and development of computer systems & machines with the ability to perform tasks normally requiring human intelligence

What constitutes Human Intelligence?

- 1. Perceive the world, detect signals and collect data
- Make sense of the world using data (Insights, Inference, Predictions etc.)
- Decide on the next course of action (Planning)
- 4. Act in the Real World

Al Techniques in Enterprises – Parallels to Human Intelligence

Strong Motivation – Data Science is a journey

Curiosity – Ask yourself, others & internet the right questions

Connecting the Dots – Learn & Assimilate

Skill - Should enjoy working with numbers

Q & A

- Karthikeyan Sankaran, Director, LatentView Analytics
- Email ID <u>Karthikeyan.Sankaran@latentview.com</u>
- Mindmap <u>bit.ly/31KArT8</u>
- LinkedIn http://in.linkedin.com/in/karthikeyansankaran
- Tapchief <u>www.tapchief.com/karthik</u>

Companies are looking beyond conventional data sources...

A Reference Architecture always helps...

A Big Data Platform Reference Architecture for Analytical Solutions

Why do we need a different technology paradigm?

Category	Traditional View	Issues	Big Data Paradigm
	Data handled by scaling up SMP relational databases	 Limited Scalability (order of Terabytes) 	 Distributed 'Scale-out' architecture Commodity Hardware (Cost effective) Robust software controlled data distribution, redundancy
Volume	Data handled by using MPP relational databases	Poor scalability / cost ratioSpecialized HardwareVendor lock-in	
Variety Unstruc	Structured data handled with schema created at 'design' time	Data types that do not fit the designed schema cannot be ingested	 Schema imposed at run-time allows all types of data to be ingested into the system Distributed high-performance processing capability (Ex:MapReduce, Spark etc.) on all types of data
	Unstructured data handled as blob objects inside RDBMS	No processing capability	
Velocity	Utilize Messaging Infrastructure / Real Time ETL Flows	'True' Real-time is still not achievable (my personal experience)	Big Data based streaming platforms (Ex: Spark Streaming, Storm etc.) are built ground-up for real- time stream processing
Veracity	Only cleansed / processed data stored in enterprise systems	Lose out on interesting opportunities related to scenarios using messy, real-world data	Platform ingests processed data and also messy real- world data. Cost effective processing techniques helps to discover new insights

Why are we here?

Big Data - The Opportunity

IDC expects the Big Data and Analytics market to grow from \$130 billion in 2016 to more than \$203 billion in 2020

According to Forbes, Big Data & Business Analytics will grow from \$122 billion in 2015 to more than \$187 billion in 2019, an increase of more than 50%

Big Data - The Challenge (which makes it interesting)

