Definitions

You should always check the lecture note and the textbook for the definition, and make sure the definitions are consistents.

- 1. A **vector space** is a set V together with two operations
 - (a) $+: V \times V \to V$
 - (b) $\cdot : \mathbb{F} \times V \to V$

such that

- (1) $\forall v, w \in V, v + w = w + v$
- (2) $\forall u, v, w \in V, (u+v) + w = u + (v+w)$
- (3) $\exists 0 \in V, \forall v \in V, 0 + v = v$
- (4) $\forall v \in V, \exists w \in V \text{ such that } v + w = 0.$ Denote w by -v
- (5) $\forall a \in \mathbb{F}, \forall u, v \in V, a \cdot (u+v) = a \cdot u + a \cdot v$
- (6) $\forall a, b \in \mathbb{F}, \forall u \in V, (a+b) \cdot v = a \cdot v + b \cdot v$
- (7) $\forall a, b \in \mathbb{F}, \forall v \in V, a \cdot (b \cdot v) = (ab) \cdot v$
- (8) $\forall v \in V, 1 \cdot v = v$

If $\mathbb{F} = \mathbb{R}$, we call V together with the operations the **real vector space**.

If $\mathbb{F} = \mathbb{C}$, we call V together with the operations the **complex vector space**.

- 2. A set α is called a basis of the vector space V if α is linearly independent and span(α) = V.
- 3. Let $\alpha = \{v_1, \dots, v_n\}$ be a set of vectors in V, $\operatorname{span}(\alpha) = \{a_1v_1 + \dots + a_nv_n | a_1, \dots, a_n \in \mathbb{F}\}$
- 4. Let $\alpha = \{v_1, \dots, v_n\}$ be a set of vectors in V, recall that it is called linearly independent if

$$a_1v_1 + \cdots + a_nv_n = 0$$
 for some $a_1, \cdots, a_n \in \mathbb{F} \implies a_1 = \cdots = a_n = 0$

Remark. Notice the definitions of linearly independent and span depends \mathbb{F} .

1 Define \mathbb{C} as real vector space

Given $\mathbb{C} = \{a + ib | a, b \in \mathbb{R}\}$. Let V be the vector space \mathbb{C} over \mathbb{R} with the following addition and scalar multiplication

- $(a_1+ib_1)+(a_2+ib_2):=(a_1+a_2)+i(b_1+b_2)$ for all $a_1+ib_1, a_2+ib_2 \in V$
- k(a+ib) := (ka) + i(kb) for all $k \in \mathbb{R}, a+ib \in V$

Consider the following questions with the above definition.

- 1. Show that $i \notin \text{span}(\{1\})$, conclude that $\{1\}$ is not a basis of V.
- 2. Show that $\alpha = \{1, i\}$ is linearly independent.
- 3. Show that α is a spanning set of V.
- 4. Conclude that α is a basis of V.

2 Define \mathbb{C} as complex vector space

Given $\mathbb{C} = \{a + ib | a, b \in \mathbb{R}\}$. Let V be the vector space \mathbb{C} over \mathbb{C} with the following addition and scalar multiplication

- $(a_1+ib_1)+(a_2+ib_2):=(a_1+a_2)+i(b_1+b_2)$ for all $a_1+ib_1, a_2+ib_2 \in V$
- k(a+ib) := (ka) + i(kb) for all $k \in \mathbb{C}, a+ib \in V$

Consider the following questions with the above definition.

- 1. Show that $\{1, i\}$ is a linearly dependent set in V. Conclude that it is not a basis of V.
- 2. Show that $\beta = \{1\}$ is linearly independent.
- 3. Show that β is a spanning set of V.
- 4. Conclude that β is a basis of V.