Package 'deconica'

May 20, 2018

```
Type Package

Title Deconvolution of transcriptome through Immune Component Analysis

Version 0.1.0

Maintainer The package maintainer <urszula.czerwinska@cri-paris.org>

URL https://github.com/UrszulaCzerwinska/DeconICA

BugReports https://github.com/UrszulaCzerwinska/DeconICA/issues
```

Description Deconvolution of transcriptome through Immune Component Analysis aims to provide an analytical pipeline that can be applied to complex mixtures, i.e. transcriptomes in order to extract latent immune variables and provide a tool to study biological insights. It requires mixture data, additional data like .gmt for enrichment analysis and pure profiles of signals. It also allows simulation of gene expression data and comparison with other tools.

```
Depends R (>= 3.4)
License GPL
Encoding UTF-8
LazyData yes
Language en-US
RoxygenNote 6.0.1
Imports fastICA (>= 1.2-1),
      stats (>= 3.4.1),
      Hmisc (>= 4.0.3),
      utils (>= 3.4.1),
      \frac{1}{2} gtools (>= 3.5.0)
Suggests edgeR (>= 3.18.1),
      testthat,
      pheatmap,
      knitr,
      rmarkdown,
      CellMix,
      prettydoc,
      kableExtra,
      analytics,
      ACSNMineR (>= 0.16.8.25),
      matlabr (>= 1.5.0),
      ggplot2 (>= 2.2.1),
      corrplot (>= 0.84),
```

2 R topics documented:

```
reshape (>= 0.8.7),
png (>= 0.1.7),
grDevices (>= 3.4.1),
NMF (>= 0.20.6),
MCPcounter,
Biobase,
GEOquery,
limma
```

biocViews

VignetteBuilder knitr

R topics documented:

add_path
assign_metagenes
BEK_ica_overdecompose
Biton.list
CAF.list
cell_voting_immgen
correlate_metagenes
deconica
dist_test_samples
doICA
doICABatch
Example_ds
export_for_correlation_java
export_for_ICA
generate_basis
generate_markers
gene_enrichment_test
get_matlab_2
get_max_correlations
get_scores
identify_immune_comp
ImmgenHUGO
import_ICA_res
is_logscale
LM22.list
lolypop_plot_corr
make_list
most_variant_IC
plot_dist_test
prepare_data_for_ica
radar_plot_corr
run_fastica
run_fastica_import
run_matlab_code_2
run_matlab_script_2
scores_corr_plot
simulate_gene_expresssion
stacked proportions plot

add_path	ld_path	
	TIMER_cellTypes	36
Index		37
add_p	ath Create PATHs to add to MATLAB PATHs	

Description

Create PATHs to add to MATLAB PATHs

Usage

```
add_path(path)
```

Arguments

path path to add

Value

A character vector

Examples

```
add_path("~/")
```

assign_metagenes

Assign components to a metagene through mutual reciprocity

Description

Attributes labels to components under condition of mutual reciprocal correlation

Usage

```
assign_metagenes(corr, exclude_name = "M8_IMMUNE")
```

Arguments

corr the correlation matrix, with at least r matrix and p matrix, can be generated from

correlate_metagenes function

exclude_name name of the components (present in r) to be excluded from this analysis (for

example immune), by default "M8_IMMUNE" is excluded

Details

This function assign a component to a metagene/profile through verification if the component's the maximal correlation points to a given profile and if for this profile the maximal correlation points back the that component. In mathematical terms, given correlations between the set of profiles/metagenes $A = A_1, ..., A_m$ and S components matrix S = IC1, ..., ICN, if

$$Si = argmaxi(corr(Aj, S))$$

and

$$A_j = argmax_j(corr(S_i, A))$$

Value

returns a dataf. rame with component name in the first column and assigned profile/metagene name in second column

See Also

```
get_max_correlations, correlate_metagenes
```

Examples

```
res_run_ica <- run_fastica (
   Example_ds,
   overdecompose = FALSE,
   n.comp = 5,
   with.names = TRUE
)
corr <- correlate_metagenes(
   S = res_run_ica$S,
   gene.names = res_run_ica$names)
assign_metagenes(corr)</pre>
```

Description

A dataset overdecomposed (into 100 components). Data were downloaded from GEO, then run_fastica using MATLAB algorithm with stabilization as applied.

Usage

```
BEK_ica_overdecompose
```

Biton.list 5

Format

```
a list contaning
```

A A ICA matrix (sample scores)

S S ICA matrix (gene scores)

names gene names

samples sample names

counts raw counts (non centered)

log.counts log2 counts (non centered)

Details

Source: Bekhouche I, Finetti P, Adelaïde J, Ferrari A et al. High-resolution comparative genomic hybridization of inflammatory breast cancer and identification of candidate genes. PLoS One 2011 Feb 9;6(2):e16950. PMID: 21339811

Source

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23720

Biton.list

Array of all Metagenes

Description

list of metagenes

Usage

Biton.list

Format

list of 11 elements

Source

http://www.cell.com/cell-reports/abstract/S2211-1247(14)00904-8

6 cell_voting_immgen

CAF.list

CAF signatures from brest cancer

Description

Signatures of 4 subtypes of CAF

Usage

CAF.list

Format

list of 4 data.frames

Details

Tchou J, Kossenkov AV, Chang L, Satija C et al. Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles. BMC Med Genomics 2012 Sep 6;5:39. PMID: 22954256

Source

```
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37614
```

cell_voting_immgen

Attribute cell type to a component

Description

From gene_enrichment_test result constructs a summary table counting percentage of a certain cell type attributed to a component. Works only with Immgen signatures

Usage

```
cell_voting_immgen(enrich, n = 10)
```

Arguments

enrich enrichment results from gene_enrichment_test

n n top results taken into account, 10 by default

Value

list of data. framefor each non NULL result of enrichment list from gene_enrichment_test

See Also

```
gene_enrichment_test
```

correlate_metagenes 7

Examples

```
set.seed(123)
res_run_ica <- run_fastica (</pre>
Example_ds,
overdecompose = TRUE,
with.names = TRUE
corr <- correlate_metagenes(</pre>
   S = res_run_ica$S,
   gene.names = res_run_ica$names)
assign <- assign_metagenes(corr)</pre>
immune\_c<-\ identify\_immune\_comp(corr\$r[,"M8\_IMMUNE"],\ assign[,\ "component"],\ threshold = 0.1)
enrichment <- gene_enrichment_test(</pre>
res_run_ica$S,
res_run_ica$names,
names(immune_c),
alternative = "greater",
p.adjust.method = "none",
n = 50,
n.consider = 100,
p.value.threshold = 0.005
)
cell_voting_immgen(enrichment$enrichment)
```

correlate_metagenes

Correlate components with known ranked lists of genes

Description

Components obtained, for example, with run_fastica can be characterized through correlation with known ranked list (metagenes or profiles), by default this function is using metagenes from Biton et al. (2015), Cell. It is using rcorr function for correlations

Usage

```
correlate_metagenes(S, gene.names, metagenes = Biton.list, threshold = -Inf,
    n.genes.intersect = 30, orient.long = TRUE, orient.max = FALSE, ...)
```

Arguments

S	S matrix of components
gene.names	list of gene names, needs to be of the same length as nrow of S, for ICA it is recommended to run run_fastica with.names = TRUE to assure compatibility
metagenes	named list of datasets, each with two columns 1st - gene names, 2nd - ranks, by default 11 metagenes from Biton et al. (2015), Cell
threshold	threshold for components (columns of S) to be applied before correlation, default set to -Inf (all ranks are kept)

8 deconica

n.genes.intersect

minimum of genes that should intersect between a component and a metagene

to keep the component in correlation matrix

orient.long orient by long tails, default TRUE

orient.max orient by maximal correlation, default FALSE, can be used if there is no long

tails

... additional params you can pass to rcorr

Value

a correlation matrix with correlation coefficient r, p.values P and number of overlapping genes n, oriented S matrix

See Also

```
rcorr run_fastica make_list
```

Examples

```
res_run_ica <- run_fastica (
   Example_ds,
   overdecompose = FALSE,
   n.comp = 5,
   with.names = TRUE
)
correlate_metagenes(
   S = res_run_ica$S,
   gene.names = res_run_ica$names)</pre>
```

deconica

deconICA: Deconvolution of transcriptome through Immune Component Analysis

Description

deconICA is a package to perform unsupervised deconvolution of complex mixtures, it contains functions implementing the pipeline of data interpretation

Details

See the README on CRAN or GitHub

deconICA functions

NA

dist_test_samples 9

dist_test_samples

Test impact of each Independent Component

Description

This function is applying distribution statistical test (i.e. t.test, wilcox.test) to evaluate which ICs have highest impact on differences between samples

Usage

```
dist_test_samples(A, sample.names, quant = c(0.1, 0.9), X.counts, test.type,
   thr = 0.1, isLog = NULL, return = "p.value", wide = TRUE)
```

Arguments

result of run_fastica the A matrix names of samples, should correspond to number of columns of A sample.names quant quantiles to use, in form of c(x, y)expression data X.counts test.type test of distributions to perform threshold of maximal p.value considered 0.1 by default thr by default NULL, if X is not counts but log, provide the base of log, for natural isLog logarithm use exp(1)if you want to return p.values select return

should the output matrix be in wide format (FALSE preferable for plotting)

Value

wide

returns a matrix (in long or wide) format

```
# numerical matrix
set.seed(123)
S <- matrix(stats::rnbinom(10000, mu = 6, size = 10), 500, 80)
dat <- matrix(runif(1600,min =1, max=10), 80, 80, byrow = TRUE)</pre>
A <- dat / rowSums(dat)
X <- data.frame(S %*% A)</pre>
res_run_ica <- run_fastica(X, row.center = TRUE, n.comp = 5, overdecompose = FALSE)</pre>
#stats::t.test
dist_test_samples(A = res_run_ica$A,
sample.names = res_run_ica$samples,
X.counts = res_run_ica$log.counts,
test.type = "t.test",
isLog = 2,
return = "p.value",
thr= 0.5)
#edgeR::exactTest
```

10 doICA

```
dist_test_samples(A = res_run_ica$A,
sample.names = res_run_ica$samples,
X.counts = res_run_ica$log.counts,
test.type = "exactTest",
isLog = 2,
return = "p.value",
thr= 0.5)
#for plotting
res.ttest <- dist_test_samples(A = res_run_ica$A,
sample.names = res_run_ica$samples,
X.counts = res_run_ica$log.counts,
test.type = "t.test",
isLog = 2,
return = "p.value",
thr= 0.5,
wide = FALSE)
plot_dist_test(res.ttest, plot.type = "density")
plot_dist_test(res.ttest, plot.type = "line")
```

doICA

Call doICA matlab function

Description

function used inside run_fastica to run fastICA with icasso stabilization. Matlab engine is necessary

Usage

```
doICA(df.scaled.t, names, samples, path_global = getwd(), n, name = FALSE,
    export.corr = FALSE, corr_folder = "CORRELATION", matlbpth = NULL,
    fasticapth = paste0(path.package("deconica", quiet = TRUE), "/fastica++"))
```

Arguments

df.scaled.t scaled numerical data matrix names gene names, no duplicates

samples sample names

path_global path where files will be saved n number of components

name FALSE by default, name of dataset is used, you can put your name

export.corr FALSE by default, if you want to use a java correlation function later or select

TRUE

corr_folder "CORRELATION" by default, only if you selected export.corr = TRUE

matlbpth is found automatically with get_matlab_2 function, replace if not functional

fasticapth path to fastica++ repository with MATLAB scripts

doICABatch 11

Value

it returns A, S matrices of ICA and names and samples for coherence

See Also

```
get_matlab, run_fastica, export_for_ICA,run_matlab_code, import_ICA_res, codeexport_for_correlation_java
```

Examples

```
## Not run:
data(Example_ds)
res.pre <-
prepare_data_for_ica(Example_ds[, -1], names = Example_ds[, 1])
res.do <- doICA(
    df.scaled.t = res.pre$df.scaled,
    names = res.pre$names,
    samples = res.pre$samples,
    path_global = getwd(),
    n = 5,
    name = "test",
    export.corr = FALSE
)
## End(Not run)</pre>
```

doICABatch

doBatchICA

Description

prepares the data (scales and removes duplicates), runs doBatchICA.m MATLAB script

Usage

```
doICABatch(df, vec, path_global = getwd(), names, samples, name = FALSE,
  matlbpth = NULL, fasticapth = paste0(path.package("deconica", quiet =
  TRUE), "/fastica++"))
```

Arguments

```
df
                  numerical data matrix
                  vector of values for which ICA should be computed
vec
path_global
                  path were files will be saved, current directory by default
names
                  gene names
samples
                  sample names
name
                  name of the dataset, if not provided, name of R variable
                  path to matlab, found automatically with get_matlab_2
matlbpth
fasticapth
                  path to fastica++
```

12 Example_ds

Value

plots of stability and MSTD if possible

Examples

```
## Not run:
data(Example_ds)
doICABatch(
    Example_ds[, -1],
    seq(2, 4, 1),
    names = Example_ds[, 1],
    samples = colnames(Example_ds[, -1]),
    name = "test",
    fasticapth = paste0(path.package("deconica", quiet = FALSE), "/fastica++")
)
## End(Not run)
```

Example_ds

Example of a cancer dataset

Description

A a sample 60 randomly selected samples from transcriptome of inflammatory breast cancer (IBC). Data were centred and in transformed in log2 before sampling

Usage

```
Example_ds
```

Format

```
a dataframe with the

rows 21320

columns 61

first column is related to GENE names
```

Details

Bekhouche I, Finetti P, Adelaïde J, Ferrari A et al. High-resolution comparative genomic hybridization of inflammatory breast cancer and identification of candidate genes. PLoS One 2011 Feb 9;6(2):e16950. PMID: 21339811

Source

```
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23720
```

```
export_for_correlation_java
```

Exports S ICA matrix in a specific format

Description

needed for an external function in java

Usage

```
export_for_correlation_java(corr_folder = "CORRELATION", names, S, samples, A,
    ncomp, name, path_global_1 = getwd())
```

Arguments

```
corr_folder export folder name "CORRELATION" by default names gene names

S S ICA matrix
samples sample names

A A ICA matrix
ncomp number of computed components
name name of the dataset
path_global_1 absolute path
```

Value

saves on the drive in corr_folder exported files

See Also

```
run_fastica, import_ICA_res, doICA, export_for_ICA
```

```
## Not run:
data(Example_ds)
res.pre <-
prepare_data_for_ica(Example_ds[, -1], names = Example_ds[, 1])
res.do <- doICA(
  df.scaled.t = res.pre$df.scaled,
  names = res.pre$names,
  samples = res.pre$samples,
  path_global = getwd(),
 n = 5,
 name = "test",
  export.corr = FALSE
export_for_correlation_java(
S = res.do$S,
A = t(res.do$A),
names = res.do$names,
```

14 export_for_ICA

```
samples = res.do$samples,
name = "test",
ncomp = 5
)
## End(Not run)
```

export_for_ICA

Export files

Description

export files in right format to run fastICA in MATLAB or BiodICA

Usage

```
export_for_ICA(df.scaled.t, names, samples, path_global = getwd(),
  name = FALSE, n = "")
```

Arguments

df.scaled.t scaled numerical matrix
names gene names, vector of character string
samples sample names, vector of character string
path_global path to export files, current directory by default

name name of the dataset n number of components

Value

writes files on the drive in indicated location

See Also

```
run_fastica, import_ICA_res, doICA, export_for_correlation_java
```

```
## Not run:
data(Example_ds)
res.pre <-
    prepare_data_for_ica(Example_ds[, -1], names = Example_ds[, 1])
export_for_ICA(res.pre$df.scaled,
    res.pre$names,
    res.pre$samples,
    path_global = getwd(),
    name = "test",
    n = 5)
## End(Not run)</pre>
```

generate_basis 15

|--|

Description

It generates a basis matrix that can be used for regression from list of weighted markers

Usage

```
generate_basis(df, sel.comp, markers, orient.long = TRUE)
```

Arguments

df	output of run_fastica containing at least S and names elements
sel.comp	components identified as specific sources (i.e. immune cells), by default it takes all components of S matrix, can be provided as valid column names or numeric index
markers	list of markers that should be used for basis matrix (i.e. "gene.list" from generate_markers), can be also simple vector or list of gene names
orient.long	TRUE by default, if you modified S matrix and you don't want it to be oriented select FALSE

Value

it returns a data. frame (basis matrix) that can be used for regression or visualization purposes

```
set.seed(123)
  res_run_ica <- run_fastica (
  Example_ds,
  overdecompose = FALSE,
  n.comp = 20,
  with.names = TRUE
)

corr <- correlate_metagenes(
   S = res_run_ica$S,
   gene.names = res_run_ica$names)

assign <- assign_metagenes(corr)

immune <- identify_immune_comp(corr$r[,"M8_IMMUNE"], assign[, "component"], threshold = 0.1)

markers <- generate_markers(df = res_run_ica,n = 10,sel.comp= names(immune), return= "gene.list")
basis <- generate_basis(df = res_run_ica,sel.comp= names(immune),markers= markers )
pheatmap::pheatmap(basis )</pre>
```

16 generate_markers

generate_markers

Generate markers from components

Description

It extracts from set of components (i.e. ICA S matrix) the n top genes (with weights if needed) to use as marker list or markers with weights for estimation of abundance through get_scores

Usage

```
generate_markers(df, n = 30, thr = Inf, sel.comp = paste("IC",
    1:ncol(df$S), sep = ""), return = "gene.list", orient.long = TRUE)
```

Arguments

df	list (usually output of run_fastica) containing at least S and names elements
n	number of top genes considered from each signature, $n = 30$ by default
thr	max gene expression, if removal of outliers is necessary, Inf (no threshold) by default.
sel.comp	components of interest (i.e. identified as specific to some profiles/metagenes (i.e. immune cells)), by default it takes all columns of S matrix, can be provided as valid column names or numeric index
return	return gene.list or gene.ranked
orient.long	TRUE by default, if S is oriented change to FALSE

Value

function returns either list of gene markers gene.list for each component or list of gene.ranked which are gene names with weights

See Also

```
run_fastica, get_scores
```

```
set.seed(123)
  res_run_ica <- run_fastica (
    Example_ds,
    overdecompose = FALSE,
    n.comp = 20,
    with.names = TRUE
)

corr <- correlate_metagenes(
    S = res_run_ica$S,
    gene.names = res_run_ica$names)

assign <- assign_metagenes(corr)

immune <- identify_immune_comp(corr$r[,"M8_IMMUNE"], assign[, "component"], threshold = 0.1)

generate_markers(df = res_run_ica, n = 10, sel.comp= names(immune))
generate_markers(df = res_run_ica, n = 10, sel.comp= names(immune), return= "gene.ranked")</pre>
```

gene_enrichment_test 17

```
gene_enrichment_test Enrichment analysis
```

Description

Computes an enrichment score (fisher exact test) in provided signatures for selected components

Usage

```
gene_enrichment_test(S, gene.names, immune.ics, gmt = ImmgenHUGO,
   alternative = c("greater", "lower"), p.adjust.method = c("holm",
   "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"), n = 100,
   n.consider = 500, min_module_size = 5, max_module_size = 500,
   p.value.threshold = 0.05, orient.long = TRUE)
```

Arguments

S	matrix of components, dim n corresponding to genes, m corresponding to number of components, use oriented matrix	
gene.names	character vector of gene names, length needs to be equal to n	
immune.ics	vector of character names of components to use for enrichment test	
gmt	data.frame obtained from gmt file with a function format_from_gmt, by default Immgen signatures http://Immgen.org	
alternative	greater will check for enrichment, less will check for depletion	
p.adjust.method	t d	
	correction method	
n	number of top genes that will be used to test signature	
n.consider	number of genes from the positive end to be considered	
min_module_size		
	minimal module size from gmt file to be considered in enrichment	
max_module_size		
	maximum module size from gmt file to be considered in enrichment	
p.value.threshold		
	maximal p-value (corrected if correction is enabled) that will be displayed	
orient.long	TRUE by default, in case you applied transformation to your S components, select FALSE.	

Details

gene_enrichment_test runs enrichment of a component (or any ranked list) in known (i.e. immune cell types) signatures. It was designed to use S matrix from run_fastica fisher.test only on components identified as correlated with immune metagene through function identify_immune_ic and it searches in Immgen signatures http://Immgen.org.

Value

returns value if there is an enrichment in provided signatures:

```
metagenes interpreted metagene gene ranking
enrichment full results of the enrichment analysis sorted by corrected p.value
genes.list list of genes used for enrichment
```

18 get_matlab_2

See Also

identify_immune_comp identifying immune related components, run_fastica for running Independent Components Analysis, and enrichment for enrichment in gmt files

Examples

```
set.seed(123)
res_run_ica <- run_fastica (</pre>
Example_ds,
overdecompose = FALSE,
n.comp = 41,
with.names = TRUE
corr <- correlate_metagenes(</pre>
   S = res_run_ica$S,
   gene.names = res_run_ica$names)
assign <- assign_metagenes(corr)</pre>
immune_c<- identify_immune_comp(corr$r[,"M8_IMMUNE"], assign[, "component"], threshold = 0.1)</pre>
gene_enrichment_test(
res_run_ica$S,
res_run_ica$names,
names(immune_c),
alternative = "greater",
p.adjust.method = "none",
n = 50,
n.consider = 100,
p.value.threshold = 0.005
```

get_matlab_2

Find matlab path

Description

This tries to find matlab's path using a system which command, and then, if not found, looks at getOption("matlab.path"). If not path is found, it fails.

Usage

```
get_matlab_2(try_defaults = TRUE, desktop = FALSE, splash = FALSE,
    display = FALSE, wait = TRUE, mpath = NULL)
```

Arguments

try_defaults (logical) If matlab is not found from Sys.which, and matlab.path not found, then try some default PATHs for Linux and OS X.

desktop Should desktop be active for MATLAB? splash Should splash be active for MATLAB?

get_max_correlations 19

display Should display be active for MATLAB?

wait Should R wait for the command to finish. Both passed to system and adds the

-wait flag.

mpath path to matlab if known

Value

Character of command for matlab

Examples

```
if (matlabr::have_matlab()) {
get_matlab_2()
}
```

get_max_correlations Assign through maximal correlations

Description

It assigns maximal correlations between set of correlated vectors

Usage

```
get_max_correlations(corr)
```

Arguments

corr

list of correlation matrices with correlation coefficients and p-values, can be obtained from correlate_metagenes or rcorr

Value

data. frame with matched column names, Pearson correlation coefficient, p.value

See Also

rcorr, correlate_metagenes, assign_metagenes

```
res_run_ica <- run_fastica (
    Example_ds,
    overdecompose = FALSE,
    n.comp = 5,
    with.names = TRUE
)
corr <- correlate_metagenes(
    S = res_run_ica$S,
    gene.names = res_run_ica$names)
get_max_correlations(corr)</pre>
```

20 get_scores

get_scores

Get abundance scores

Description

It calculates abundance scores through a mean of marker genes

Usage

```
get_scores(df, markers.list, summary = "mean", ...)
```

Arguments

df gene matrix with samples in columns and genes in rows with named rows

markers.list list of genes or list of genes with weights

summary can be any type of mean i.e. mean, gm_mean (geometric mean), harmonic_mean, weighted.mean. For weighted mean weights are needed along with gene names optional parameters for the mean function

Value

Function returns numerical value for each column (sample) of provided data frame

```
set.seed(123)
 res_run_ica <- run_fastica (</pre>
 Example_ds,
 overdecompose = FALSE,
n.comp = 20,
with.names = TRUE
)
corr <- correlate_metagenes(</pre>
   S = res_run_ica$S,
   gene.names = res_run_ica$names)
assign <- assign_metagenes(corr)</pre>
immune <- identify_immune_comp(corr$r[,"M8_IMMUNE"], assign[, "component"], threshold = 0.1)</pre>
counts.abs <- (2^res_run_ica$log.counts)-1</pre>
row.names(counts.abs) <- res_run_ica$names</pre>
markers <- generate_markers(df = res_run_ica,n = 10,</pre>
                              sel.comp= names(immune),
                              return= "gene.list")
get_scores (counts.abs, markers, summary = "mean", na.rm = TRUE)
markers <- generate_markers(df = res_run_ica,n = 10,</pre>
                             sel.comp= names(immune),
                             return= "gene.ranked")
get_scores (counts.abs, markers, summary = "weighted.mean", na.rm = TRUE)
```

Description

Identify components related to immune signal

Usage

```
identify_immune_comp(x, 1, threshold = 0.1)
```

Arguments

x the correlation with immune metagene can be retrieved from correlate_metagenes output

1 vector of names of assigned components
threshold lower bound for filtering correlation [0,1]

Value

it returns data frame of component names and correlations passing the threshold

Examples

```
res_run_ica <- run_fastica (
    Example_ds,
    overdecompose = FALSE,
    n.comp = 20,
    with.names = TRUE
)
corr <- correlate_metagenes(
    S = res_run_ica$S,
    gene.names = res_run_ica$names)
assign <- assign_metagenes(corr)
identify_immune_comp(corr$r[,"M8_IMMUNE"], assign[, "component"], threshold = 0.1)</pre>
```

ImmgenHUG0

Cell type signatures

Description

Imported in correct format with format_from_gmt and parsed

Usage

ImmgenHUG0

import_ICA_res

Format

```
a dataframe with the

module first column

module length second column

gene names third column
```

Source

```
http://www.immgen.org
```

import_ICA_res

Import results of ICA

Description

imports files run in Matlab or precomputed

Usage

```
import_ICA_res(name, ncomp, path_global_1)
```

Arguments

```
name name of the dataset
ncomp number of components
path_global_1 absolute path of the files
```

Value

imports A and S ICA matrix

See Also

```
run_fastica, export_for_ICA, doICA, export_for_correlation_java
```

```
## Not run:
data(Example_ds)
res.pre <-
prepare_data_for_ica(Example_ds[, -1], names = Example_ds[, 1])
res.do <- doICA(
    df.scaled.t = res.pre$df.scaled,
    names = res.pre$names,
    samples = res.pre$samples,
    path_global = getwd(),
    n = 5,
    name = "test",
    export.corr = FALSE
)
import_ICA_res("test_5", 5, paste0(getwd(),"/test_5/"))
## End(Not run)</pre>
```

is_logscale 23

is_logscale

Verify if data is in log scale

Description

Verify if data is in log scale

Usage

```
is_logscale(x)
```

Arguments

Х

data.frame or matrix

Value

TRUE or FALSE

Examples

```
M <- matrix(sample(-1:14, 100, replace = TRUE),10,10, byrow = TRUE)
is_logscale(M)
M2 <- 2^M
is_logscale(M2)</pre>
```

LM22.list

Array of all Metagenes

Description

list of 22 immune cell type profiles

Usage

LM22.list

Format

```
list of 22 data.frames
```

Source

```
http://www.cell.com/cell-reports/abstract/S2211-1247(14)00904-8
```

24 lolypop_plot_corr

lolypop_plot_corr	Lolypop plot for correlations	
-------------------	-------------------------------	--

Description

Plot correlations between one metagene or known profile and all components in a form of linear plot which is a variant of a signal plot. Wrapper using ggplot2.

Usage

```
lolypop_plot_corr(r, col, head.size = 10, head.color = "value",
  digits = 2, head.text.size = 3.5, head.text.color = "white",
  vertical = TRUE)
```

Arguments

r	correlation matrix r matrix of output correlate_metagenes
col	select column either index or column name
head.size	size of the point of correlation
head.color	by default colored by correlation values, if you want one color provide color name
digits	parameter of round for the correlation showed on the plot. integer indicating the number of decimal places (round) or significant digits (signif) to be used.
head.text.size head.text.color	size of the correlation text font
	color of the correlation text font
vertical	TRUE for vertical plot, FALSE for horizontal plot

Details

Values are order from highest correlation to lowest correlation. Colors and fonts can be overwritten. To see all correlations simultaneously choose radar_plot_corr

Value

```
returns ggplot
```

See Also

```
ggplot, aes_string, theme_bw, geom_point, labs, scale_color_distiller, coord_flip, geom_segment
```

```
res_run_ica <- run_fastica (
   Example_ds,
   overdecompose = FALSE,
   n.comp = 20,
   with.names = TRUE
)
corr <- correlate_metagenes(
   S = res_run_ica$S,</pre>
```

make_list 25

```
gene.names = res_run_ica$names)
#horizontal
lolypop_plot_corr(corr$r,2, vertical =FALSE)
# vertical
lolypop_plot_corr(corr$r,"M8_IMMUNE")
#change colors
lolypop_plot_corr(corr$r,"M8_IMMUNE",head.color = "black" , head.text.color = "green")
#remove title
lolypop_plot_corr(corr$r,"M8_IMMUNE")+ ggplot2::labs(title="",subtitle="")
```

make_list

Make list of weighted markers

Description

Transforms a data frame with multiple columns into a named list of weighted markers with gene names in the first column and values in the second column.

Usage

```
make_list(df)
```

Arguments

df

data. frame to be transformed with gene names in the row. names

Value

named list of data. frames with gene names in the first column and values in the second column.

Examples

```
X <- as.data.frame(matrix(runif(10000), 50, 10))
row.names(X) <- paste("A",1:nrow(X), sep="")
make_list(X)</pre>
```

 $most_variant_IC$

Compute variance explained by each Independent Component

Description

Compute variance explained by each Independent Component

Usage

```
most_variant_IC(S, A, X, n = 5)
```

26 plot_dist_test

Arguments

S	result of run_fastica the S matrix
Α	result of run_fastica the A matrix
Χ	data, either post-PCA data of run_fastica X matrix
n	number of top ICs if $n = "all"$ then fraction of variance explained for all ICs is returned

Value

returns a data frame with n top ICs numbers ranked by their fraction of variance explained

Examples

```
set.seed(123)
res_fastica <- run_fastica (
    Example_ds,
    overdecompose = FALSE,
    n.comp = 20,
    with.names = TRUE
)
most_variant_IC(res_fastica$S, res_fastica$A, res_fastica$X, n =3)

res <- most_variant_IC(res_fastica$S, res_fastica$A, res_fastica$X, n =5)
barplot(as.matrix(t(res)))</pre>
```

plot_dist_test

Plot results of density test

Description

Wrapper over ggplot plotting either rank or density versus selected value in dist_test_samples (p.value or test statistics)

Usage

```
plot_dist_test(df, plot.type = c("line", "density"))
```

Arguments

```
df data.frame in long format
plot.type can be either "line" or "density"
```

Value

returns a line or density plot of p.value or test statistics versus rank or density

See Also

```
ggplot, stat_density, theme_bw, aes, geom_line
```

prepare_data_for_ica 27

Examples

```
#numerical matrix
set.seed(134)
S <- matrix(stats::rnbinom(10000, mu = 6, size = 10), 500, 80)</pre>
dat <- matrix(runif(1600,min =1, max=10), 80, 80, byrow = TRUE)</pre>
A <- dat / rowSums(dat)
X <- data.frame(S %*% A)</pre>
res_run_ica <- run_fastica(X, row.center = TRUE, n.comp = 5, overdecompose = FALSE)</pre>
#run the funtion selecting wide = FALSE
res.ttest <- dist_test_samples(A = res_run_ica$A,</pre>
sample.names = res_run_ica$samples,
X.counts = res_run_ica$log.counts,
test.type = "t.test",
thr=0.5,
isLog = 2,
return = "p.value",
wide = FALSE)
#plot results
plot_dist_test(res.ttest, plot.type = "density")
plot_dist_test(res.ttest, plot.type = "line")
```

prepare_data_for_ica Formats data for ICA in MATLAB

Description

Formats data for ICA in MATLAB

Usage

```
prepare_data_for_ica(df, names, samples = NULL, isLog = TRUE)
```

Arguments

df numerical data matrix
names gene names character vector

samples if not provided column names will be used

isLog are data in log? if FALSE data will be transformed to log2(x+1)

Value

df.scaled scaled data without duplicates
names gene names without duplicates
non.scaled non scaled data without duplicates

samples sample names

See Also

```
run_fastica, import_ICA_res, doICA, doICABatch
```

28 radar_plot_corr

Examples

```
data(Example_ds)
prepare_data_for_ica(Example_ds[, -1], names = Example_ds[, 1])
```

radar_plot_corr

Radar plot of correlations

Description

Wrapper using ggplot2 to plot correlations between components and given metagenes or pure profiles

Usage

```
radar_plot_corr(df, ax.size = NULL, size.el.txt = 15, point.size = 5)
```

Arguments

output of function correlate_metagenes - correlation matrix with correlation and p-values

ax.size define size of axis labels, adapts automatically by default

size.el.txt define general size of letters, 15 by default

point.size size parameter in geom_point

Value

Radar plots for correlations of each input component with matagene/profile, Returns a list containing the data. frame df used to generate the plot - long format - and the plot itself p.

See Also

```
ggplot, geom_point, coord_polar, theme_bw, facet_wrap, scale_color_distiller, theme,
element_text
```

```
res_run_ica <- run_fastica (
    Example_ds,
    overdecompose = FALSE,
    n.comp = 20,
    with.names = TRUE
)
corr <- correlate_metagenes(
    S = res_run_ica$S,
    gene.names = res_run_ica$names)
radar_plot_corr(corr)
data <- radar_plot_corr(corr)$df
#change plot
radar_plot_corr(corr)$p +</pre>
```

run_fastica 29

run_fastica

Decompose dataset with ICA.

Description

This is a wrapper of fastICA. It allows compute number of ICs overdecompose for over decomposition for immune deconvolution.

Usage

```
run_fastica(X, overdecompose = TRUE, row.center = TRUE,
  with.names = FALSE, gene.names = NULL, samples = NULL,
  alg.typ = "parallel", method = "C", n.comp = 100, isLog = TRUE,
  R = TRUE, path_global = getwd(), matlbpth = NULL,
  fasticapth = paste0(path.package("deconica", quiet = TRUE), "/fastica++"),
  export.corr = FALSE, name = NULL, ...)
```

Arguments

X a data matrix with n rows representing observations and p columns representing variables, place gene names in the first column and select with.names = TRUE

overdecompose check TRUE to let select best number of components for deconvolution, for

datasets >120 columns, n.comp will be set to 100, if <120 then number of components will be selected according to Kaiser Rule (90 percent of variance ex-

plained)

row.center if TRUE subtract row mean from data

with.names if first column of X is row.names please indicate TRUE, in case of duplicated

names, the transcript with highest variance will be kept, names need to be HUGO names, if names are not provided at this step, you can provide them

later

gene.names character vector of row names - gene names

samples if samples names different from column names

alg.typ == "parallel" the components are extracted simultaneously (the

default). if alg.typ == "deflation" the components are extracted one at a

time.

method if method = "R" then computations are done exclusively in R (default). The

code allows the interested R user to see exactly what the algorithm does. if method == "C" then C code is used to perform most of the computations, which makes the algorithm run faster. During compilation the C code is linked to an optimized BLAS library if present, otherwise stand-alone BLAS routines

are compiled.

30 run_fastica

n.comp	number of components to be extracted
isLog	if data is in log TRUE if data is in counts FALSE
R	if TRUE (default) the R version of fastICA is running, else the matlab version (you need to provide parameters of your matlab engine)
path_global	only if $R = FALSE$, the global path where files will be written, current directory by default
matlbpth	only if R = FALSE, the path to matlab engine, it uses $\texttt{get_matlab}$ to find path to your matlab automatically
fasticapth	path to repository of source matlab code, it is set by default as coming with the package
export.corr	TRUE if you need to export S matrix in a specific format for correlation in external java app
name	important for Matlab version, defines the name of your files
	other possible parameters for fastICA

Value

A list containing the following components as in fastICA

X pre-processed data matrix (after PCA)

K pre-whitening matrix that projects data onto the first n.comp principal components.

W estimated un-mixing matrix (see definition in details)

A estimated mixing matrix

S estimated source matrix

names if with.names = TRUE will contain row names list

counts if isLog = FALSE will contain initial matrix without duplicated genes

log.counts initial matrix without duplicated genes in log2(x+1) before centering

samples sample names as provided

See Also

```
fastICA https://cran.r-project.org/web/packages/fastICA/index.html
```

```
# numerical matrix
S <- matrix(runif(10000), 10, 2)
A <- matrix(sample(-3:3, 16, replace = TRUE),2,8, byrow = TRUE)
X <- data.frame(S %*% A)
run_fastica(X, row.center = TRUE, n.comp = 2, overdecompose = FALSE)
#matlab
## Not run:
run_fastica(X, row.center = TRUE, n.comp = 3, overdecompose = FALSE, R = FALSE)
## End(Not run)
# matrix with gene names
S <- matrix(runif(10000), 5000, 2)
A <- matrix(c(1, 1, -1, 3), 2, 2, byrow = TRUE)
X <- data.frame(S %*% A)</pre>
```

run_fastica_import 31

```
names <- paste("A",1:nrow(X), sep="")
X <- cbind(names,X)
run_fastica(X, row.center = TRUE, n.comp = 2, overdecompose = FALSE, with.names = TRUE)</pre>
```

run_fastica_import

Reproduce process of run_fastica

Description

Applies preprocessing of run_fastica but instead of running ICA it imports matlab output files. It is handy if you run the matlab idenpendly or if you lost R session data

Usage

```
run_fastica_import(X, overdecompose = TRUE, row.center = TRUE,
  with.names = FALSE, gene.names = NULL, n.comp = 100, isLog = TRUE,
  import = TRUE, path_global = getwd(), name = NULL, ...)
```

Arguments

X	a data matrix with n rows representing observations and p columns representing variables, place gene names in the first column and select with names = TRUE
overdecompose	check TRUE to let select best number of components for deconvolution, for datasets >120 columns, n.comp will be set to 100, if <120 then number of components will be selected according to Kaiser Rule (90 percent of variance explained)
row.center	if TRUE subtract row mean from data
with.names	if first column of X is row.names please indicate TRUE, in case of duplicated names, the transcript with highest variance will be kept, names need to be HUGO names, if names are not provided at this step, you can provide them later
gene.names	character vector of row names - gene names
n.comp	number of components to be extracted
isLog	if data is in log TRUE if data is in counts FALSE
import	imports data only if TRUE
path_global	only if $R = FALSE$, the global path where files will be written, current directory by default
name	important for Matlab version, defines the name of your files
	other possible parameters for fastICA

Value

```
an object as run_fastica
```

32 run_matlab_code_2

Examples

```
## Not run:

# numerical matrix
S <- matrix(runif(10000), 10, 2)
A <- matrix(sample(-3:3, 16, replace = TRUE),2,8, byrow = TRUE)
X <- data.frame(S %*% A)
#matlab
run_fastica(X, row.center = TRUE, n.comp = 2, overdecompose = FALSE, R = FALSE)
run_fastica_import(X, row.center = TRUE, n.comp = 2, overdecompose = FALSE, import=TRUE)
## End(Not run)</pre>
```

run_matlab_code_2

Runs matlab code

Description

This function takes in matlab code, where the last line must end with a ;, and returns the exit status, slightly modified version of run_matlab_code

Usage

```
run_matlab_code_2(code, matlbpth = NULL, endlines = TRUE, verbose = TRUE,
  add_clear_all = FALSE, paths_to_add = NULL, ...)
```

Arguments

code Character vector of code.

matlbpth path to matlab engine
endlines Logical of whether the semicolon (;) should be pasted to each element of the vector.

verbose Print out filename to run
add_clear_all Add clear all; to the beginning of code
paths_to_add Character vector of PATHs to add to the script using add_path

... Options passed to run_matlab_script

Value

Exit status of matlab code

```
if (matlabr::have_matlab()){
   run_matlab_code_2("disp(version)", matlbpth = "matlbpth")
   run_matlab_code_2("disp(version)", paths_to_add = "~/")
   run_matlab_code_2(c("disp('The version of the matlab is:')", "disp(version)"))
   run_matlab_code_2(c("x = 5", "disp(['The value of x is ', num2str(x)])"))
}
```

run_matlab_script_2 33

run_matlab_script_2
Run matlab script

Description

This function runs a matlab script, and returns exit statuses, slightly modified version of run_matlab_script

Usage

```
run_matlab_script_2(fname, matlbpth = NULL, verbose = TRUE,
  desktop = FALSE, splash = FALSE, display = FALSE, wait = TRUE, ...)
```

Arguments

fname	Filename of matlab script (.m file)
matlbpth	path to matlab engine
verbose	print diagnostic messages
desktop	Should desktop be active for MATLAB?
splash	Should splash be active for MATLAB?
display	Should display be active for MATLAB?
wait	Should R wait for the command to finish. Both passed to system and adds the -wait flag.
	Options passed to system

Value

Exit status of matlab code

scores_corr_plot Correlation plot of abundance scores

Description

Produces correlation plot of abundance scores estimated versus expected

Usage

```
scores_corr_plot(x, y, ...)
```

Arguments

X	\ensuremath{matrix} or data.frame of abundance scores, samples in rows and cell types in columns
У	matrix or data.frame of expected (or to compare) abundance scores, samples in rows and cell types in columns
	additional parameters for method from corrplot

Details

correlation plot between different abundance scores of cell types in samples, correlates both matrices with each other merging two data.frames by row.names, on corrplot is.corr parameter is set to FALSE

Value

```
correlation plot based on corrplot
corr.full full correlation matrix
corr.filtere correlation without correlation with itself
```

See Also

```
rcorr, corrplot
```

Examples

```
x <- matrix(runif(1000), ncol = 10, nrow = 10)
y <- matrix(runif(1000), ncol = 10, nrow = 10)
row.names(x) <- row.names(y) <- paste0("S", 1:10)
colnames(x) <- paste0("CL_", 1:10, "_estimated")
colnames(y) <- paste0("CL_", 1:10, "_expected")
scores_corr_plot(x,y, method = "number", tl.col = "black")
scores_corr_plot(x,y, method = "square", tl.col = "black")</pre>
```

```
simulate_gene_expresssion
```

Simulate gene expression

Description

Function simulating gene expression of mixed cell types with a perturbator (i.e. proliferation, stress)

Usage

```
simulate_gene_expresssion(x, n, p, z = 0, dist.cells = list(dist =
    stats::rnbinom, size = 3, mu = 5), markers = NULL, mfold = 2,
    CLnames = NULL, genes = NULL, dist.noise.sources = list(dist =
    stats::rnorm, mean = 0, sd = 0.05), alpha = 1,
    dist.noise.global = list(dist = stats::rgamma, shape = 5, scale = 1),
    perturb = .pos.gaussian, pargs = list(p = p, mean = 0.5, sd = 0.2, lwr =
    0, upr = 1))
```

Arguments

```
    x number of cell types
    n number of genes
    p number of samples
    z number of perturbators
    dist.cells distribution and parameters from which cell profiles will be drawn
```

markers number of markers that will distinguish cell types, can be a number (the same

number of marker genes for cell types and perturbator), can be a vector of length

x+z, it will be set to ceiling(n/20) if not provided

mfold number of fold change between gene markers and other genes

CLnames column names (cell and perturbator)

genes gene names

dist.noise.sources

noise that will be added to each column of basis matrix (to each source)

alpha parameter for the dirichlet distribution from which are drawn the cell propor-

tions, using rdirichlet.

dist.noise.global

distribution and parameters of global noise (added to each sample one mixture

is obtained)

perturb function of distribution

pargs arguments of perturbation function

Value

```
expression mixed expression matrix
```

marker.genes list of marker genes per cell type

basis_matrix pure cell type and perturbator profile

prop pure cell type and perturbator proportions (from 0 to 1)

Examples

```
res <- simulate_gene_expresssion (3, 30, 10, 2 , markers = c(4,5,5,3,4))
#visualise the basis matrix
pheatmap::pheatmap(res$basis_matrix)
#visualize expression
pheatmap::pheatmap(res$expression)
#observe distribution of signals
par(mfrow=c(2,2))
apply(res$basis_matrix, 2, hist)</pre>
```

```
stacked_proportions_plot
```

Plot cell proportions

Description

Plots scores for all samples as a fraction of one in each samples

Usage

```
stacked_proportions_plot(dat)
```

Arguments

dat scores data.frame with cell types in lines and samples in columns

36 TIMER_cellTypes

Value

a stacked bar plot based on ggplot2

Examples

```
#random matrix y
y <- data.frame(matrix(runif(10000), ncol = 100, nrow = 10))
#plot
stacked_proportions_plot(y)</pre>
```

TIMER_cellTypes

TIMER signatures

Description

Signatures of 9 cell types published as part of TIMER tool

Usage

TIMER_cellTypes

Format

a dataframe with the

module first column
module length second column

gene names third column

Details

Li, Bo, et al. "Comprehensive analyses of tumor immunity: implications for cancer immunotherapy." Genome biology 17.1 (2016): 174.

Source

http://cistrome.org/TIMER/

Index

*Topic datasets BEK_ica_overdecompose, 4 Biton.list, 5 CAF.list, 6 Example_ds, 12 ImmgenHUGO, 21 LM22.list, 23 TIMER_cellTypes, 36	geom_line, 26 geom_point, 24, 28 geom_segment, 24 get_matlab, 11, 30 get_matlab_2, 10, 11, 18 get_max_correlations, 4, 19 get_scores, 16, 20 ggplot, 24, 26, 28
add_path, 3, 32 aes, 26 aes_string, 24 assign_metagenes, 3, 19	<pre>identify_immune_comp, 18, 21 ImmgenHUGO, 21 import_ICA_res, 11, 13, 14, 22, 27 is_logscale, 23</pre>
BEK_ica_overdecompose, 4 Biton.list, 5	labs, 24 LM22.list, 23 lolypop_plot_corr, 24
CAF.list, 6 cell_voting_immgen, 6 coord_flip, 24 coord_polar, 28	<pre>make_list, 8, 25 most_variant_IC, 25</pre>
correlate_metagenes, <i>3</i> , <i>4</i> , 7, <i>19</i> , <i>21</i> , <i>24</i> , <i>28</i> corrplot, <i>33</i> , <i>34</i>	<pre>plot_dist_test, 26 prepare_data_for_ica, 27</pre>
deconica, 8 deconica-package (deconica), 8 dist_test_samples, 9, 26 doICA, 10, 13, 14, 22, 27 doICABatch, 11, 27	radar_plot_corr, 24, 28 rcorr, 7, 8, 19, 34 round, 24 run_fastica, 4, 7–11, 13, 14, 17, 18, 22, 26, 27, 29, 31 run_fastica_import, 31
element_text, 28 enrichment, 18 Example_ds, 12 export_for_correlation_java, 11, 13, 14,	run_matlab_code, 11, 32 run_matlab_code_2, 32 run_matlab_script, 32, 33 run_matlab_script_2, 33
22 export_for_ICA, 11, 13, 14, 22	scale_color_distiller, 24, 28 scores_corr_plot, 33
<pre>facet_wrap, 28 fastICA, 29-31 fisher.test, 17 format_from_gmt, 17, 21</pre>	simulate_gene_expresssion, 34 stacked_proportions_plot, 35 stat_density, 26 system, 19, 33
gene_enrichment_test, 6, 17 generate_basis, 15 generate_markers, 16	theme, 28 theme_bw, 24, 26, 28 TIMER_cellTypes, 36