1. The Lanczos process

• If **A** is Hermitian, then $\mathbf{H}_j = \mathbf{Q}_j^* \mathbf{A} \mathbf{Q}_j$ in the Arnoldi process is also Hermitian. Since \mathbf{H}_j is upper Hessenberg, it is tridiagonal:

$$\mathbf{H}_{j} = \mathbf{Q}_{j}^{*} \mathbf{A} \mathbf{Q}_{j} = \begin{bmatrix} a_{1} & b_{2} & & & & \\ b_{2} & a_{2} & b_{3} & & & & \\ & b_{3} & a_{3} & \ddots & & & \\ & & \ddots & \ddots & b_{j} & & \\ & & & b_{j} & a_{j} \end{bmatrix} := \mathbf{T}_{j}.$$

Note that $\mathbf{T}_j \in \mathbb{R}^{j \times j}$. We have the Lanczos relation

$$\mathbf{A}\mathbf{Q}_j = \mathbf{Q}_{j+1}\widetilde{\mathbf{T}}_j, \quad \text{where} \quad \widetilde{\mathbf{T}}_j := \mathbf{Q}_{j+1}^* \mathbf{A} \mathbf{Q}_j.$$

• Compared with the Arnoldi process, we have

$$a_j = h_{jj}, \quad b_{j+1} = h_{j+1,j} = h_{j,j+1}.$$

• We may use the Lanczos relation to derive the following algorithm.

Algorithm: Lanczos process generating the orthonormal basis $\mathbf{r} = \text{arbitrary nonzero vector}, b_1 = 0, \mathbf{q}_0 = \mathbf{0}$

$$\mathbf{q}_{1} = \mathbf{r}/\|\mathbf{r}\|_{2}$$

$$\mathbf{for} \ j = 1, 2, 3, \dots,$$

$$\mathbf{v} = \mathbf{A}\mathbf{q}_{j}$$

$$a_{j} = \mathbf{q}_{j}^{*}\mathbf{v}$$

$$\mathbf{v} = \mathbf{v} - b_{j}\mathbf{q}_{j-1} - a_{j}\mathbf{q}_{j}$$

$$b_{j+1} = \|\mathbf{v}\|_{2}$$

$$\mathbf{q}_{j+1} = \mathbf{v}/b_{j+1}$$

end

2. Derivation of conjugate gradient iterations

• Note that the matrix

$$\mathbf{T}_{j} = \mathbf{Q}_{j}^{*} \mathbf{A} \mathbf{Q}_{j} = \begin{bmatrix} a_{1} & b_{2} & & & & \\ b_{2} & a_{2} & b_{3} & & & \\ & \ddots & \ddots & \ddots & \\ & & b_{j-1} & a_{j-1} & b_{j} \\ & & & b_{j} & a_{j} \end{bmatrix}$$

in the Lanczos process is Hermitian positive definite (since $\bf A$ is HPD). Hence, $\bf T_i$ can be LU factorized into

$$\mathbf{T}_{j} = \mathbf{L}_{j} \mathbf{U}_{j} = \begin{bmatrix} 1 & & & & \\ c_{2} & 1 & & & \\ & \ddots & \ddots & \\ & & c_{j-1} & 1 \\ & & & c_{j} & 1 \end{bmatrix} \begin{bmatrix} d_{1} & b_{2} & & & \\ & d_{2} & b_{3} & & \\ & & \ddots & \ddots & \\ & & & d_{j-1} & b_{j} \\ & & & & d_{j} \end{bmatrix}$$

with the recurrences for c_j and d_j :

$$c_j = b_j/d_{j-1}, \quad d_j = \begin{cases} a_1 & \text{if } j = 1, \\ a_j - c_j b_j & \text{if } j > 1. \end{cases}$$

• Assume that $\mathbf{x}_j = \mathbf{x}_0 + \mathbf{Q}_j \mathbf{y}_j$. By $\mathbf{r}_j \perp \mathcal{K}_j$, i.e., $\mathbf{Q}_j^* \mathbf{r}_j = \mathbf{0}$, we have

$$\mathbf{T}_j \mathbf{y}_j = \|\mathbf{r}_0\|_2 \mathbf{e}_1.$$

Rewrite
$$\mathbf{x}_j = \mathbf{x}_0 + \mathbf{Q}_j \mathbf{y}_j$$
 as

$$\mathbf{x}_j = \mathbf{x}_0 + \mathbf{Q}_j \mathbf{T}_j^{-1}(\|\mathbf{r}_0\|_2 \mathbf{e}_1) = \mathbf{x}_0 + \mathbf{Q}_j \mathbf{U}_j^{-1} \mathbf{L}_j^{-1}(\|\mathbf{r}_0\|_2 \mathbf{e}_1).$$

Let

$$\mathbf{P}_{j} := \mathbf{Q}_{j} \mathbf{U}_{j}^{-1} = \begin{bmatrix} \mathbf{p}_{0} & \mathbf{p}_{1} & \cdots & \mathbf{p}_{j-1} \end{bmatrix},$$

$$\mathbf{z}_{j} := \mathbf{L}_{j}^{-1} (\|\mathbf{r}_{0}\|_{2} \mathbf{e}_{1}) = \begin{bmatrix} \zeta_{1} & \zeta_{2} & \cdots & \zeta_{j} \end{bmatrix}^{\top},$$

where $\mathbf{p}_0 = \mathbf{q}_1/a_1$, $\zeta_1 = ||\mathbf{r}_0||_2$ and, for $j \ge 2$,

$$\mathbf{p}_{j-1} = \frac{1}{d_j} (\mathbf{q}_j - b_j \mathbf{p}_{j-2}), \quad \zeta_j = -c_j \zeta_{j-1}.$$

It is now important to observe that (why?)

$$\mathbf{P}_{j} = \begin{bmatrix} \mathbf{p}_{0} & \mathbf{p}_{1} & \cdots & \mathbf{p}_{j-1} \end{bmatrix} = \begin{bmatrix} \mathbf{P}_{j-1} & \mathbf{p}_{j-1} \end{bmatrix},$$
$$\mathbf{z}_{j} = \begin{bmatrix} \zeta_{1} & \zeta_{2} & \cdots & \zeta_{j} \end{bmatrix}^{\top} = \begin{bmatrix} \mathbf{z}_{j-1} \\ \zeta_{j} \end{bmatrix},$$

With this formulation, we arrive at a simple recurrence for \mathbf{x}_j :

$$\mathbf{x}_j = \mathbf{x}_0 + \mathbf{P}_j \mathbf{z}_j = \mathbf{x}_0 + \mathbf{P}_{j-1} \mathbf{z}_{j-1} + \zeta_j \mathbf{p}_{j-1} = \mathbf{x}_{j-1} + \zeta_j \mathbf{p}_{j-1}.$$

• The residual \mathbf{r}_j is essentially a multiple of \mathbf{q}_{j+1} (see below for a proof), therefore, all residuals are mutually orthogonal.

In fact, we have $\mathbf{r}_0 = ||\mathbf{r}_0||_2 \mathbf{q}_1$ and, for $j \geq 1$,

$$\mathbf{r}_{j} = \mathbf{b} - \mathbf{A}\mathbf{x}_{j} = \mathbf{b} - \mathbf{A}(\mathbf{x}_{0} + \mathbf{Q}_{j}\mathbf{y}_{j})$$

$$= \mathbf{r}_{0} - \mathbf{A}\mathbf{Q}_{j}\mathbf{y}_{j} = \mathbf{r}_{0} - \mathbf{Q}_{j+1}\tilde{\mathbf{T}}_{j}\mathbf{y}_{j}$$

$$= \mathbf{r}_{0} - \mathbf{Q}_{j}\mathbf{T}_{j}\mathbf{y}_{j} - b_{j+1}(\mathbf{e}_{j}^{*}\mathbf{y}_{j})\mathbf{q}_{j+1}$$

$$= \|\mathbf{r}_{0}\|_{2}\mathbf{q}_{1} - \mathbf{Q}_{j}(\|\mathbf{r}_{0}\|_{2}\mathbf{e}_{1}) - b_{j+1}(\mathbf{e}_{j}^{*}\mathbf{y}_{j})\mathbf{q}_{j+1}$$

$$= -b_{j+1}(\mathbf{e}_{j}^{*}\mathbf{y}_{j})\mathbf{q}_{j+1}.$$

• If we allow \mathbf{p}_{j-1} to scale and compensate for the scaling in the scalars, we potentially can have simpler recurrences of the form: $\mathbf{p}_0 = \mathbf{r}_0$ and for $j \geq 1$,

$$\mathbf{x}_{j} = \mathbf{x}_{j-1} + \alpha_{j} \mathbf{p}_{j-1},$$

$$\mathbf{r}_{j} = \mathbf{r}_{j-1} - \alpha_{j} \mathbf{A} \mathbf{p}_{j-1},$$

$$\mathbf{p}_{j} = \mathbf{r}_{j} + \beta_{j} \mathbf{p}_{j-1}.$$

• Note that at present we have

$$\mathbf{P}_j = \begin{bmatrix} \mathbf{p}_0 & \mathbf{p}_1 & \cdots & \mathbf{p}_{j-1} \end{bmatrix} = \mathbf{Q}_j \mathbf{U}_j^{-1} \mathbf{D}_j,$$

where \mathbf{D}_j is diagonal with scaling parameters as diagonal entries. We now derive the **A**-conjugacy of \mathbf{p}_j , i.e., for i < j,

$$\mathbf{p}_i^* \mathbf{A} \mathbf{p}_j = 0.$$

It suffices to show that $\mathbf{P}_{i}^{*}\mathbf{A}\mathbf{P}_{j}$ is diagonal. Since

$$\mathbf{P}_{j}^{*}\mathbf{A}\mathbf{P}_{j} = \mathbf{D}_{j}^{*}\mathbf{U}_{j}^{-*}\mathbf{Q}_{j}^{*}\mathbf{A}\mathbf{Q}_{j}\mathbf{U}_{j}^{-1}\mathbf{D}_{j}$$
$$= \mathbf{D}_{j}^{*}\mathbf{U}_{j}^{-*}\mathbf{T}_{j}\mathbf{U}_{j}^{-1}\mathbf{D}_{j}$$
$$= \mathbf{D}_{j}^{*}\mathbf{U}_{j}^{-*}\mathbf{L}_{j}\mathbf{D}_{j}$$

is Hermitian and lower triangular simultaneously, then $\mathbf{P}_j^* \mathbf{A} \mathbf{P}_j$ must be diagonal.

• Now we can derive the scalar factors α_j and β_j by solely imposing the orthogonality of \mathbf{r}_j and \mathbf{A} -conjugacy of \mathbf{p}_j . Due to the orthogonality of \mathbf{r}_j , it is necessary that

$$\mathbf{r}_{j-1}^* \mathbf{r}_j = \mathbf{r}_{j-1}^* (\mathbf{r}_{j-1} - \alpha_j \mathbf{A} \mathbf{p}_{j-1}) = 0.$$

As a result,

$$\alpha_j = \frac{\mathbf{r}_{j-1}^* \mathbf{r}_{j-1}}{\mathbf{r}_{j-1}^* \mathbf{A} \mathbf{p}_{j-1}} = \frac{\mathbf{r}_{j-1}^* \mathbf{r}_{j-1}}{(\mathbf{p}_{j-1} - \beta_{j-1} \mathbf{p}_{j-2})^* \mathbf{A} \mathbf{p}_{j-1}} = \frac{\mathbf{r}_{j-1}^* \mathbf{r}_{j-1}}{\mathbf{p}_{j-1}^* \mathbf{A} \mathbf{p}_{j-1}}.$$

Similarly, due to the **A**-conjugacy of \mathbf{p}_j , it is necessary that

$$\mathbf{p}_{j}^{*}\mathbf{A}\mathbf{p}_{j-1} = (\mathbf{r}_{j} + \beta_{j}\mathbf{p}_{j-1})^{*}\mathbf{A}\mathbf{p}_{j-1} = 0.$$

As a result,

$$\beta_j = -\frac{\mathbf{r}_j^* \mathbf{A} \mathbf{p}_{j-1}}{\mathbf{p}_{j-1}^* \mathbf{A} \mathbf{p}_{j-1}} = -\frac{\mathbf{r}_j^* (\mathbf{r}_{j-1} - \mathbf{r}_j)}{\alpha_j \mathbf{p}_{j-1}^* \mathbf{A} \mathbf{p}_{j-1}} = \frac{\mathbf{r}_j^* \mathbf{r}_j}{\mathbf{r}_{j-1}^* \mathbf{r}_{j-1}}.$$