Lab No.	Lab Titles
01	Write a C# program to perform addition using constructor.
02	Write a C# program to initialize and display jagged array elements with sum of each row.
03	Write a C# program to initialize and display 2D array elements with sum of each row.
04	Write a C# program to calculate area of rectangle using single interface.
05	Write a C# program to calculate area and paint cost of rectangle using multiple inheritance.
06	Write a C# program to call base class constructor using "base" keyword.
07	Write a C# program using hierarchical inheritance using virtual method.
08	Write a C# program which takes the length and breadth of 2 rectangle as input and store using an array object. Also print area of each rectangle.
09	Write a C# program to find the position of a specified word in a given string.
10	Write a C# program to count the total number of words and characters in a string.
11	Write a C# program to count the number of alphabets, digits and special characters in string.
12	Write a C# program to count the number of vowels or consonants in a string.
13	Write a C# program to calculate sum and difference of two digit using multicast delegates.
14	Write a C# program to achieve polymorphism using delegates.
15	Create student class with properties for id, name, gender, and address. It then creates a list <student> to store instances of this class the program adds 10 student, prints and searches for Student by their address using FindStudentByAddesss function. It should print the result of the search.</student>
16	Write a C# program to raise an ApplicationException using Custom MyException class.
17	Write a C# program to show insert and select student record with given table (tblStudent) with fields (int id, nvarchar(50) name, nvarchar(50) address, nvarchar(50) gender). Also display total no of student from table.
18	Write a C# program to show insert and fetch student record by Gender from given table (tblStudent) with fields (int id, nvarchar(50) name, nvarchar(50) address, nvarchar(50) gender).
19	Write a C# program to perform (CRUD) operation from given table (tblStudent) with fields (int id, nvarchar(50) name, nvarchar(50) address, nvarchar(50) gender).
20	Write a simple program to create generic class with generic constructor, generic member variable, generic property and generic method.
21	Write an ASP.NET CORE program to explain working of memory caching for state management.
22	Create a new project and add a controller with endpoints to read and write values into cookies.

23	Write a program to validate form using a jQuery.
24	Create a controller with endpoints to set and read a value from the session.
25	Write a program in C# to implement a generic list data structure.
26	Write a generic method called 'Swap' that takes two parameters of the same type and swaps their values.
27	Write an ASP.NET Core program to demonstrate use of hidden fields.
28	Write a C# Program to insert and display records in table name tblEmployee (id int, name nvarchar(50), address nvarchar(50), salary decimal(18,0), gender nvarchar50) using EntityFramework.
29	Write a C# program to compute aggregate salary of 5 employee and then display employee record in descending order with respect to employee salary using EntityFramework.
30	Write a program to select employees whose salary is greater than 20000 and whose address is Kathmandu using EntityFramework.

Lab 1: Write a C# program of addition using constructor


```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ConstructorExample 26836
    internal class Program
        static void Main(string[] args)
            Console.WriteLine("Enter first: ");
            int a = Convert.ToInt32(Console.ReadLine());
            Console.WriteLine("Enter second: ");
            int b = Convert.ToInt32(Console.ReadLine());
            AddTwoDigit obj = new AddTwoDigit(a,b);
            Console.WriteLine(obj.Add());
            Console.ReadLine();
        }
    }
}
public class AddTwoDigit
    int first = 0;
    int second = 0;
    public AddTwoDigit(int x, int y)
        first = x;
        second = y;
```

```
public int Add()
{
    return first+second;
}
```

```
Enter first:
13
Enter second:
12
25
```

Lab2: Write a C# program to find sum of the jugged array.


```
using System;
using System.Collections.Generic;
using System.Diagnostics.CodeAnalysis;
using System.Linq;
using System.Text;
using System. Threading. Tasks;
namespace lab2_26836
{
    internal class Program
        static void Main(string[] args)
        //Write C# program to initialize and print jagged array
            int[][] arr = new int[2][] { new int[] { 92, 93, 94 }, new int[] { 85,
66, 87, 88 } };
            int sum = 0;
            for (int i = 0; i < 2; i++)</pre>
                for (int j = 0; j < arr[i].Length; j++)
                    Console.WriteLine(arr[i][j] + " ");
                    sum += Convert.ToInt32(arr[i][j]);
                Console.Write("=" + sum);
                sum = 0;
                Console.WriteLine();
            Console.ReadLine();
        }
    }
}
```

Lab 3: Write a program to initialize and display 2D array and sum of each row.


```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Lab4
    internal class Program
        static void Main(string[] args)
            Rectangle rect = new Rectangle();
            Console.WriteLine(rect.Add(2, 3));
            Console.WriteLine(rect.Sub(4, 2));
            Console.ReadLine();
    }
    public interface IA
        int Add(int x, int y);
    public interface IB
        int Sub(int x, int y);
    public class Rectangle : IA, IB
        public int Add(int x, int y)
            return x + y;
        public int Sub(int x, int y)
```

```
C:\Users\asus\source\repos\2 \times + \right\rightarrow

1 2 3 =6
4 5 6 =15
7 8 9 =24
```

Lab 4: Write a C# to calculate area of rectangle using single interface.


```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace InheritanceLab
{
   internal class Program
   {
```

```
static void Main(string[] args)
            Rectangle rect = new Rectangle();
            rect.setHeight(5);
            rect.setWidth(5);
            Console.WriteLine("Area of rectangle : {0}", rect.CalculateArea());
            Console.ReadLine();
    }
}
class Shape
    protected int width;
    protected int height;
    public void setWidth(int w)
        width = w;
    public void setHeight(int h)
        height = h;
}
class Rectangle: Shape
    public int CalculateArea()
       return (width * height);
}
```


Lab 5: Write a C# program to calculate area and paint cost of rectangle using multiple inheritance.


```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System. Threading. Tasks;
namespace lab5 26836
    class Program
        static void Main(string[] args)
            Rectangle rect = new Rectangle();
            int area;
            rect.setHeight(7);
            rect.setWidth(23);
            area = rect.getArea();
            Console.WriteLine("Total Area:"+ rect.getArea());
            Console.WriteLine("Total Paint Cost:"+ rect.getCost(area));
            Console.ReadLine();
        }
    }
}
class Shape
    protected int width;
    protected int height;
    public void setWidth(int w)
        width = w;
    public void setHeight(int h)
```

```
height = h;
}

//Base Class
public interface PaintCost
{
   int getCost(int area);
}

//Derived Class
class Rectangle : Shape, PaintCost
{
   public int getArea()
   {
      return (width * height);
   }

   public int getCost(int area)
   {
      return area*70;
   }
}
```


Lab 6: Write a C# program to display car model and speed using base keyword


```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Security.Cryptography.X509Certificates;
using System.Text;
using System.Threading.Tasks;
namespace paintcost 26808
    class Program
        static void Main(string[] args)
            Car car = new Car();
            Console.WriteLine("Car Model: {0}, Speed {1}", car.model, car.speed);
            Console.WriteLine();
            Console.ReadLine();
    }
}
class Vehicle {
    public int speed;
    public Vehicle() {
        this.speed = 5;
}
class Car: Vehicle
    public string model;
    public Car(): base()
        this.model = "Toyata";
}
```

Output:

```
C:\Users\asus\source\repos\L × + \
```

Lab 7: Write a C# program using hierarchical inheritance using virtual method.


```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace OverridingLab_26836
{
    internal class Program
    {
        static void Main(string[] args)
        {
            God g = new Ram();
            God g1 = new Shiva();

            Console.WriteLine(g.GodName());
            Console.ReadLine();
        }
    }
}
```

```
public class God
{
    public virtual string GodName() {
        return "God";
    }
}
public class Ram : God
{
    public override string GodName()
        {
        return "Ram";
    }
}

public class Shiva : God
{
    public override string GodName()
        {
        return "Shiva";
    }
}
```


Lab 8: Write a C# program to illustrate hierarchical inheritance using virtual method.


```
namespace arrayOfObject
    internal class Program
        static void Main(string[] args)
            Rectangle[] rect = new Rectangle[2];
            for (int i = 0; i < 2; i++) {
            Console.WriteLine("Rectangle :" + (i + 1));
            Console.WriteLine("Enter Length");
            int 1 = Convert.ToInt32(Console.ReadLine());
            Console.WriteLine("Enter breadth");
            int b = Convert.ToInt32(Console.ReadLine());
            rect[i] = new Rectangle(l, b);
            for(int i = 0;i<2;i++)</pre>
                Console.WriteLine("Area of Rectangle : {0}= {1}", (i+1),
rect[i].getArea());
            Console.ReadLine();
        }
    }
    public class Rectangle
        private int length = 0;
        private int breadth = 0;
        public Rectangle(int 1, int b) {
        this.length = 1;
        this.breadth = b;
       public int getArea()
           return length*breadth;
        }
    }
}
                      © C:\Users\asus\source\repos\a ×
                     Rectangle :1
                     Enter Length
                     5
Output:
                     Enter breadth
                     Rectangle :2
                     Enter Length
                     Enter breadth
                     Area of Rectangle : 1= 20
                     Area of Rectangle : 2= 6
```

Lab 9: Write a C# program to find the position of a specified word in a given string.


```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System. Threading. Tasks;
namespace String_26836
    class Program
        static void Main(string[] args)
            Finder f = new Finder();
            string str1 = "The cat sat on the mat";
            Console.WriteLine("Original String:" + strl);
            Console.Write("Position of the word 'sat' is:" + f.GetResult(str1,
"sat"));
            Console.Write("\nPosition of the word 'the' is:" + f.GetResult(str1,
"the"));
            Console.Write("\nPosition of the word 'cat' is:" + f.GetResult(str1,
"cat"));
            Console.ReadLine();
    }
public class Finder
    public int GetResult(string text, string word)
        string[] str = text.Split(' ');
        int a = Array.IndexOf(str, word) + 1;
        return a;
}
```

```
Original String:The cat sat on the mat Position of the word 'sat' is:3
Position of the word 'the' is:5
Position of the word 'cat' is:2
```

Lab 10: Write a C# program to count the total number of words and characters in a string.


```
using System;
using System.Collections.Generic;
using System.Ling;
using System. Text;
using System. Threading. Tasks;
namespace total words characters 26836
    class Program
        static void Main(string[] args)
            string inputString = "The quick brown fox jumps over the lazy dog.";
            int wordCount = CountWords(inputString);
            int charCount = inputString.Length;
            Console.WriteLine("String: " + inputString);
            Console.WriteLine("Total number of words: " + wordCount);
            Console.WriteLine("Total number of characters: " + charCount);
            Console.ReadLine();
        static int CountWords(string input)
```

```
string[] words = input.Split(new char[] { ' ', '\n', '\t', '\r' },
StringSplitOptions.RemoveEmptyEntries);
    return words.Length;
}

C:\Users\asus\source\repos\C × + \ \

String: The quick brown fox jumps over the lazy dog.
Total number of words: 9
Total number of characters: 44
```

Lab 11: Write a C# program to count the number of alphabets, digits and special characters in string.


```
{
    digitCount++;
}
else
{
    specialCharCount++;
}

Console.WriteLine("Number of alphabets:" + alphabetCount);
Console.WriteLine("Number of digits:" + digitCount);
Console.WriteLine("Number of special characters:" + specialCharCount);
Console.ReadLine();
}
```


Lab 12: Write a C# program to count the number of vowels or consonants in a string.


```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
```

```
namespace vowels consonants 26808
    class Program
        static void Main(string[] args)
            string inputString = "Checking of vowel and consonants";
            inputString = inputString.ToLower();
            int vowelCount = 0;
            int consonantCount = 0;
            foreach (char character in inputString)
                if (Char.IsLetter(character))
                    if ("aeiou".Contains(character))
                        vowelCount++;
                    }
                    else
                        consonantCount++;
                }
            Console.WriteLine("Input String:" + inputString);
            Console.WriteLine("Number of vowels:" + vowelCount);
            Console.WriteLine("Number of consonants:" + consonantCount);
            Console.ReadLine();
        }
    }
```


Lab 13: Write a C# program to find sum and difference of two digit using multicast delegate.

60

40

This is subtract mode

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace @delegate
   // c# program to find sum and difference of two digit using multicast delegate
   public delegate void delmethod(int x, int y);
   public class TestMultipleDelegate
        public void plus_Method1(int x, int y)
            Console.WriteLine("This is plus mode");
            Console.WriteLine(x + y);
        public void sub Method2(int x, int y)
            Console.WriteLine("This is subtract mode");
            Console.WriteLine(x - y);
    internal class Program
        static void Main(string[] args)
            TestMultipleDelegate obj = new TestMultipleDelegate();
            delmethod del = new delmethod(obj.plus Method1);
            //Multicast
            del += new delmethod(obj.sub Method2);
            del(50, 10);
            Console.WriteLine();
            Console.ReadLine();
       }
    }
               © C:\Users\asus\source\repos\la ×
Output:
              This is plus mode
```

Lab 14: Write a C# program to show polymorphism using delegates.

```
Polymorphism_26836

Properties

References

App.config

C# Program.cs
```

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Polymorphism delegates 26836
    class Program
        static void Main(string[] args)
            GodDelegate godMethod;
            godMethod = new Ram().GodName;
            godMethod();
            godMethod = new Sita().GodName;
            godMethod();
            Console.ReadLine();
    delegate void GodDelegate();
    class Ram
        public void GodName()
            Console.WriteLine("God Ram");
```

```
class Sita
{
    public void GodName()
    {
        Console.WriteLine("God Sita");
    }
}
```


Lab 15: Create student class with properties for id, name, gender, and address. It then creates a list<student> to store instances of this class the program adds 10 student, prints and searches for Student by their address using FindStudentByAddesss function. It should print the result of the search.


```
internal class Program
        static void Main(string[] args)
           //create student class with properties for id, name, gender, and
address.
            //it then creates a list<student> to store instances of this class
            // the program adds 10 student, prints and searches for Student by
their address using FindStudentByAddesss function
            //finally it prints the result of the search.
            List<Student> st = new List<Student>();
            st.Add(new Student() { Id = 1, Name = "Sunil Chaudary", Address =
"Kathmandu", Gender = "Male" });
            st.Add(new Student() { Id = 2, Name = "Sunil jha", Address =
"Kathmandu", Gender = "Male" });
            st.Add(new Student() { Id = 3, Name = "Sunil shrextha", Address =
"Bhaktapur", Gender = "Male" });
            st.Add(new Student() { Id = 4, Name = "anil Chaudary", Address =
"Lalitpur", Gender = "Male" });
            st.Add(new Student() { Id = 5, Name = "Sanil Chaudary", Address =
"Dang", Gender = "Male" });
           st.Add(new Student() { Id = 6, Name = "Manil Chaudary", Address =
"Kathmandu", Gender = "Male" });
           st.Add(new Student() { Id = 7, Name = "Kunal Chaudary", Address =
"Kathmandu", Gender = "Male" });
           st.Add(new Student() { Id = 8, Name = "Rannil Chaudary", Address =
"Kathmandu", Gender = "Male" });
           st.Add(new Student() { Id = 9, Name = "Punil Chaudary", Address =
"Bhaktapur", Gender = "Male" });
           st.Add(new Student() { Id = 10, Name = "Cunil Chaudary", Address =
"Kathmandu", Gender = "Male" });
            List<Student> filterStudent = new List<Student>();
            foreach (Student item in st)
                if(item.Address == "Kathmandu")
                    filterStudent.Add(item);
            foreach (var item in filterStudent)
                Console.WriteLine("Name: {0} Address: {1} Gender: {2}", item.Name,
item.Address, item.Gender);
            Console.ReadLine();
        public static List<Student> FindStudentByAddress(List<Student> students,
string searchAddress)
            List<Student> filterStudent = new List<Student>();
            foreach (Student item in students)
                if (item.Address == searchAddress)
                    filterStudent.Add(item);
            return filterStudent;
```

```
public class Student
{
    public int Id { get; set; }
    public string Name { get; set; }

    public string Address { get; set; }

    public string Gender { get; set; }
}
```

```
Name: Sunil Chaudary Address: Kathmandu Gender: Male
Name: Sunil jha Address: Kathmandu Gender: Male
Name: Manil Chaudary Address: Kathmandu Gender: Male
Name: Kunal Chaudary Address: Kathmandu Gender: Male
Name: Rannil Chaudary Address: Kathmandu Gender: Male
Name: Cunil Chaudary Address: Kathmandu Gender: Male
```

Lab 16: Write a C# program to implement custom exception.


```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace lab15_26836
{
    class MyException : ApplicationException
    {
```

```
public void MyCustomException() {
        Console.WriteLine("Exception occured, divisor should not be 0");
internal class Program
    static void Main(string[] args)
        //Custom exception lab
        int d, div, res;
        div = Int32.Parse(Console.ReadLine());
        d = Int32.Parse(Console.ReadLine());
        try
            if(div == 0)
                throw new MyException();
            res = d / div;
            Console.WriteLine("Result: {0}", res);
            Console.ReadLine();
        }
        catch (MyException e)
            e.MyCustomException();
        Console.ReadLine() ;
```



```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Data.SqlClient; //MS SQL server
using System.Data;
namespace DatabaseInsertSelectdisplay
    //Write C# program to show inset and select student record with given
table(tblStudent) with fields(int id, nvarchar(50)gender.
    //Also display total no of students from table
    internal class Program
        static void Main(string[] args)
            Student st = new Student();
            //st.InsertStudent();
            st.DisplayStudentData();
            Console.ReadLine();
    }
    public class Student
```

```
public void InsertStudent()
            string conStr = @"Data Source = (LocalDB) \MSSQLLocalDB;
Database=SamriddhiDB; Integrated Security=true";
            SqlConnection con = new SqlConnection(conStr);
            SqlCommand cmd = new SqlCommand("insert into tblStudent
values(@a,@b,@c)", con);
            cmd.Parameters.AddWithValue("@a", "Suni Chaudhary");
            cmd.Parameters.AddWithValue("@b", "Kathmandu");
            cmd.Parameters.AddWithValue("@c", "Female");
            con.Open();
            cmd.ExecuteNonQuery();
            con.Close();
            Console.WriteLine("Record Inserted");
        public void DisplayStudentData()
            string conStr = @"Data Source = (LocalDB) \MSSQLLocalDB;
Database=SamriddhiDB; Integrated Security=true";
            SqlConnection con = new SqlConnection(conStr);
            SqlCommand cmd = new SqlCommand("select * from tblStudent", con);
            SqlDataAdapter da = new SqlDataAdapter(cmd);
            DataTable dt = new DataTable();
            da.Fill(dt);
            for(int i = 0; i < dt.Rows.Count; i++)</pre>
                Console.WriteLine("Name: {0}, Address: {1}, Gender: {2}",
                    dt.Rows[i]["Name"], dt.Rows[i]["Address"],
dt.Rows[i]["Gender"]);
            }
   }
```



```
er C:\Users\asus\source\repos\D × + ~

Name: Suni Chaudhary, Address: Kathmandu, Gender: Female
```

LAB 18: Write a C# program to show insert and fetch student record by Gender from given table (tblStudent) with fields (int id, nvarchar(50) name, int age, nvarchar(50) gender).


```
using System;
using System.Collections.Generic;
using System.Data.SqlClient;
using System. Data;
using System.Linq;
using System.Text;
using System. Threading. Tasks;
namespace ConsoleApp2
    internal class Program
        static void Main(string[] args)
            StudentInsert SelectRecord obj = new StudentInsert SelectRecord();
            Console.Write("Enter Name:");
            string name = Console.ReadLine();
            Console.Write("Enter Address:");
            string address = Console.ReadLine();
            Console.Write("Enter Gender:");
            string gender = Console.ReadLine();
            obj.Insert(name, address, gender);
            Console.WriteLine("Record Inserted");
            Console.WriteLine();
            Console.WriteLine("*****************************);
            Console.WriteLine("All Student By Gender");
            DataTable dt = obj.GetAllStudentByGender("Male");
            for (int i = 0; i < dt.Rows.Count; i++)</pre>
                string n = dt.Rows[i]["Name"].ToString();
                string a = dt.Rows[i]["Address"].ToString();
                string g = dt.Rows[i]["Gender"].ToString();
                Console.WriteLine("Name: {0} Address: {1} Gender: {2}", name,
address, gender);
            Console.WriteLine("******************************);
            Console.WriteLine("Total No of Student: " + dt.Rows.Count);
            Console.ReadLine();
        }
    public class StudentInsert SelectRecord
        public void Insert(string name, string address, string gender)
            string connStr = @"Data Source=(localdb) \MSSqlLocalDB;
Database=SamriddhiDB; Integrated Security=true";
            SqlConnection con = new SqlConnection(connStr);
            string sql = "insert into tblStudent values(@name,@address,@gender)";
            SqlCommand cmd = new SqlCommand(sql, con);
            cmd.Parameters.AddWithValue("@name", name);
            cmd.Parameters.AddWithValue("@address", address);
            cmd.Parameters.AddWithValue("@gender", gender);
            con.Open();
            cmd.ExecuteReader();
            con.Close();
```

```
public DataTable GetAllStudentByGender(string gender)
{
    string connStr = @"Data Source=(localdb) \MSSqlLocalDB;
Database=SamriddhiDB; Integrated Security=true";
    SqlConnection con = new SqlConnection(connStr);
    string sql = "select *from tblStudent where Gender=@gender";
    SqlCommand cmd = new SqlCommand(sql, con);
    cmd.Parameters.AddWithValue("@gender", gender);

    SqlDataAdapter da = new SqlDataAdapter(cmd);
    DataTable dt = new DataTable();//can hold data in tabular format da.Fill(dt);

    return dt;
}
```

LAB 19: Write a C# program to perform (CRUD) Operation from given table (tblStudent) with fields (int id, nvarchar(50) name, int age, nvarchar(50) gender).

```
using System;
using System.Collections.Generic;
using System.Configuration;
using System.Data;
using System.Data.SqlClient;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ConsoleApp1
    internal class Program
        static void Main(string[] args)
            Student st = new Student();
            Console.WriteLine("Enter Option");
            Console.WriteLine("1 For Insert Student");
            Console.WriteLine("2 For Update Student");
            Console.WriteLine("3 For Delete Student");
            Console.WriteLine("4 For Fetch All Student");
```

```
string option = Console.ReadLine();
            switch (option)
                case "1":
                    Console.Write("Enter Name: ");
                    string name = Console.ReadLine();
                    Console.Write("Enter Address: ");
                    string address = Console.ReadLine();
                    Console.Write("Enter Gender: ");
                    string gender = Console.ReadLine();
                    st.InsertStudent(name, address, gender);
                    Console.WriteLine("Record Inserted");
                    break:
                case "2":
                    Console.Write("Enter Id To Update: ");
                    int id = Convert.ToInt32(Console.ReadLine());
                    Console.Write("Enter Name: ");
                    string uname = Console.ReadLine();
                    Console.Write("Enter Address: ");
                    string uaddress = Console.ReadLine();
                    Console.Write("Enter Gender: ");
                    string ugender = Console.ReadLine();
                    st. UpdateStudent (uname, uaddress, ugender, id);
                    Console.WriteLine("Record Updated");
                    break;
                case "3":
                    Console.Write("Enter Id To Update: ");
                    int did = Convert.ToInt32(Console.ReadLine());
                    st.DeleteStudent(did);
                    Console.WriteLine("Record Deleted");
                    break;
                case "4":
                    DataTable dt = st.DisplayStudentData();
                    for (int i = 0; i < dt.Rows.Count; i++)
                        Console.WriteLine("Name: {0}
                                                     Address: {1}
                                                                     Gender: {2}",
                        dt.Rows[i]["Name"], dt.Rows[i]["Address"],
dt.Rows[i]["Gender"]);
                    break;
                default:
                    break;
            Console.ReadLine();
        }
    public class Student
        public void InsertStudent(string name, string address, string gender)
            string connStr = @"Data Source=(localdb) \MSSqlLocalDB;
Database=SamriddhiDB; Integrated Security=true";
            SqlConnection con = new SqlConnection(connStr);
            string sql = "insert into tblStudent values(@name,@address,@gender)";
            SqlCommand cmd = new SqlCommand(sql, con);
            cmd.Parameters.AddWithValue("@name", name);
            cmd.Parameters.AddWithValue("@address", address);
```

```
cmd.Parameters.AddWithValue("@gender", gender);
            con.Open();
            cmd.ExecuteNonQuery();
            con.Close();
        public void UpdateStudent(string name, string address, string gender, int
id)
            string connStr = @"Data Source=(localdb) \MSSqlLocalDB;
Database=SamriddhiDB; Integrated Security=true";
            SqlConnection con = new SqlConnection(connStr);
            string sql = "update tblStudent set Name=@name, Address=@address,
Gender=@gender whwere Id=@id";
            SqlCommand cmd = new SqlCommand(sql, con);
            cmd.Parameters.AddWithValue("@name", name);
            cmd.Parameters.AddWithValue("@address", address);
            cmd.Parameters.AddWithValue("@gender", gender);
            cmd.Parameters.AddWithValue("@id", id);
            con.Open();
            cmd.ExecuteNonQuery();
            con.Close();
        }
        public void DeleteStudent(int id)
            string connStr = @"Data Source=(localdb) \MSSqlLocalDB;
Database=SamriddhiDB; Integrated Security=true";
            SqlConnection con = new SqlConnection(connStr);
            string sql = "delete from tblStudent whwere Id=@id";
            SqlCommand cmd = new SqlCommand(sql, con);
            cmd.Parameters.AddWithValue("@id", id);
            con.Open();
            cmd.ExecuteNonQuery();
            con.Close();
        public DataTable DisplayStudentData()
            string conStr = "Data Source=(LocalDB) \\MSSQLLocalDB;
Database=SamriddhiDB; Integrated Security=true";
            SqlConnection con = new SqlConnection(conStr);//
            SqlCommand cmd = new SqlCommand("select *from tblStudent", con);
            SqlDataAdapter da = new SqlDataAdapter(cmd);//works as mediator
between datasource=datatable
            DataTable dt = new DataTable();//row column
            da.Fill(dt);
            return dt;
        }
    }
```

```
C:\Users\asus\source\repos\li \times + \times

Enter Option
1 For Insert Student
2 For Update Student
3 For Delete Student
4 For Fetch All Student
1
Enter Name: Suchak Niraula
Enter Address: Changathali
Enter Gender: Male
Record Inserted
```

```
Name:Suni Chaudhary Address:Kathmandu Gender:Female
Name:Suni Chaudhary Address:Kathmandu Gender:Female
Name:Suchak Niraula Address:Changathali Gender:Male
Name:Suchak Niraula Address:Changathali Gender:Male
```

LAB 20: Write a C# program to create generic class with generic constructor, generic member variable, generic property and generic method.


```
using System.Linq;
using System.Linq.Expressions;
using System.Text;
using System.Threading.Tasks;
namespace GenericProgram
    internal class Program
        static void Main(string[] args)
            MyGenericClass<int> intGenericClass = new MyGenericClass<int>(10);
            intGenericClass.DisplayGenericValue();
            intGenericClass.GenericProperty = 20;
            intGenericClass.DisplayGenericValue();
            MyGenericClass<string> stringGenericClass = new
MyGenericClass<string>("Hello World!");
            stringGenericClass.DisplayGenericValue();
            stringGenericClass.GenericProperty = "Goodbye, Samriddhi College!";
            stringGenericClass.DisplayGenericValue();
            Console.ReadLine();
        }
    public class MyGenericClass<T>
        private T variable;
        public MyGenericClass(T value)
            this.variable = value;
        public T GenericProperty
            get { return variable; }
            set { variable = value; }
        public void DisplayGenericValue()
            Console.WriteLine($"Generic Value: {variable}");
```

```
Generic Value: 10
Generic Value: 20
Generic Value: Hello World!
Generic Value: Goodbye, Samriddhi College!
```

LAB 21: Write an ASP.NET CORE program to explain working of memory caching for state management.

Program.cs

```
var builder = WebApplication.CreateBuilder(args);

// Add services to the container.
builder.Services.AddControllersWithViews();

var app = builder.Build();

// Configure the HTTP request pipeline.
if (!app.Environment.IsDevelopment())
{
    app.UseExceptionHandler("/Home/Error");
    // The default HSTS value is 30 days. You may want to change this for production scenarios, see https://aka.ms/aspnetcore-hsts.
    app.UseHsts();
}
```

```
app.UseHttpsRedirection();
app.UseStaticFiles();
app.UseRouting();
app.UseAuthorization();
app.MapControllerRoute(
    name: "default",
    pattern: "{controller=Student}/{action=Index}/{id?}");
app.Run();
HomeController.cs
using MemoryCachingProgram.Models;
using Microsoft.AspNetCore.Mvc;
using System. Diagnostics;
namespace MemoryCachingProgram.Controllers
    public class HomeController : Controller
        private readonly ILogger<HomeController> logger;
        public HomeController(ILogger<HomeController> logger)
            logger = logger;
        public IActionResult Index()
            return View();
        public IActionResult Privacy()
            return View();
        [ResponseCache(Duration = 0, Location = ResponseCacheLocation.None,
NoStore = true) ]
        public IActionResult Error()
            return View(new ErrorViewModel { RequestId = Activity.Current?.Id ??
HttpContext.TraceIdentifier });
}
StudentController.cs
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Caching.Memory;
namespace MemoryCachingProgram.Controllers
```

```
public class StudentController : Controller
        private readonly IMemoryCache memoryCache;
        public StudentController(IMemoryCache memoryCache)
            this.memoryCache = memoryCache;
        public IActionResult Index()
            DateTime currentTime;
            bool isExist = memoryCache.TryGetValue("CacheTime", out currentTime);
            if (!isExist)
                currentTime = DateTime.Now;
                memoryCache.Set("CacheTime", currentTime,
TimeSpan.FromSeconds(30));
            return View("Index", currentTime.ToLongTimeString());
        }
Index.cshtml
    For more information on enabling MVC for empty projects, visit
https://go.microsoft.com/fwlink/?LinkID=397860
* a
@model string
<h2>Wihthout Cache: @DateTime.Now.ToLongTimeString()</h2>
<h2>With Cache: @Model</h2>
Output:
                          http://localhost:5156
 📘 movies/animes 📘 media 🔼 (164) YouTube 🛛 Inbox (2,706) - nira... 👯 Nepali Calendar 20... 📄 CSIT (
MemoryCachingProgram Home Privacy
          Wihthout Cache: 6:57:20 PM
          With Cache: 6:57:14 PM
```

Lab 22: Create a new MVC project in ASP.NET Core and add controller with endpoints to read and write values into cookies.

© 2024 - MemoryCachingProgram - Privacy

HomeController.cs

```
public IActionResult Index()
{
    string userName = Request.Cookies["UserName"];
    return View("Index", userName);
}
[HttpPost]
public IActionResult Index(IFormCollection form)
{
    string userName = form["userName"].ToString();

    //set the key value in Cookie
    CookieOptions option = new CookieOptions();
    option.Expires = DateTime.Now.AddMinutes(10);
    Response.Cookies.Append("UserName", userName, option);
    return RedirectToAction(nameof(Index));
}
public IActionResult RemoveCookie()
{
    //Delete the cookie
    Response.Cookies.Delete("UserName");
```

```
return View("Index");
}
Index.cshtml
@ {
   ViewData["Title"] = "Home Page";
@if (!string.IsNullOrWhiteSpace(Model))
   <div>Welcome back, @Model</div>
   @Html.ActionLink("Forget Me", "RemoveCookie")
}
else
    <form asp-action="Index">
       <span>Hey, seems like it's your first time here!
        <label>Please provide your name:</label>
       @Html.TextBox("userName")
        <div class="form-group">
            <input type="submit" value="Update" class="btn btn-primary" />
   </form>
}
```


Lab 23: Write a program to validate form using a jQuery .

Source Code:

HomeController.cs

```
public IActionResult Index()
{
    return View();
Index.cshtml
@ {
   ViewData["Title"] = "Home Page";
<div class="text-center">
   <h1 class="display-4">Welcome</h1>
   Learn about <a href="https://learn.microsoft.com/aspnet/core">building Web
apps with ASP.NET Core</a>.
</div>
<script
src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.1.1/jquery.min.js"></script>
<form id="first_form" method="post" action="">
    <div>
        <label for="first name">First Name:</label>
```

```
<input type="text" id="first name" name="first name" />
    </div>
    <div>
        <label for="last name">Last Name:</label>
        <input type="text" id="last name" name="last name" />
    </div>
    <div>
        <label for="email">Email:</label>
        <input type="email" id="email" name="email" />
    </div>
    <div>
        <label for="password">Password:</label>
        <input type="password" id="password" name="password" />
    </div>
    <div>
        <input type="submit" value="Submit" />
    </div>
</form>
<script>
    $ (document) .ready(function () {
        $('#first form').submit(function (e) {
            e.preventDefault();
            var first name = $('#first_name').val();
            var last_name = $('#last_name').val();
            var email = $('#email').val();
            var password = $('#password').val();
            if (first name.length < 1) {</pre>
                alert("First Name Required")
            if (last name.length < 1) {</pre>
                alert("Last Name Required")
            if (email.length < 1) {</pre>
                alert("Email Required")
            if (password.length < 8) {</pre>
                alert("Password Required")
        });
    });
</script>
```


LAB 24: Create a controller with endpoints to set and read a value from the session.

WelcomeController.cs

```
public class WelcomeController : Controller
{
    public IActionResult Index()
    {
        HttpContext.Session.SetString("Name", "Suchak Niraula");
        HttpContext.Session.SetInt32("Age", 22);
```

```
User newUser = new User()
{
         Name = HttpContext.Session.GetString("Name"),
         Age = HttpContext.Session.GetInt32("Age").Value
        };
        return View(newUser);

}

User.cs(Models)

namespace SessionExample26836.Models
{
    public class User
        {
            public string Name { get; set; }
            public int Age { get; set; }
        }
}
```

Index.cshtml(Views -> Welcome)

```
@model SessionExample26836.Models.User
@ {
    ViewData["Title"] = "Index";
<h1>Index</h1>
<div>
    <h4>User</h4>
    <hr />
    <dl class="row">
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Name)
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Name)
        </dd>
        <dt class="col-sm-2">
            @Html.DisplayNameFor(model => model.Age)
        <dd class="col-sm-10">
            @Html.DisplayFor(model => model.Age)
        </dd>
    </dl>
</div>
    @Html.ActionLink("Edit", "Edit", new { /* id = Model.PrimaryKey */ }) |
    <a asp-action="Index">Back to List</a>
```

SessionExample26836 Home Privacy

Index

User

Nierona Constanto Nicono

LAB 25: Write a program in C# to implement a generic list data structure.

Source Code:

```
using System;
using System.Collections.Generic;
namespace Generic method 26808
    internal class Program
        static void Main(string[] args)
            MyList<int> myList = new MyList<int>();
            myList.Add(1);
            myList.Add(2);
            myList.Add(3);
            Console.WriteLine("Count: " + myList.Count); // Output: 3
            Console.WriteLine("Contains 2: " + myList.Contains(2)); // Output:
True
            Console.WriteLine("Contains 5: " + myList.Contains(5)); // Output:
False
            myList.Remove(2);
            Console.WriteLine("Count after removal: " + myList.Count); // Output:
            Console.ReadLine();
```

```
public class MyList<T>
{
    private List<T> items = new List<T>();
    public void Add(T item)
    {
        items.Add(item);
    }
    public bool Remove(T item)
    {
        return items.Remove(item);
    }
    public bool Contains(T item)
    {
        return items.Contains(item);
    }
    public int Count
    {
        get { return items.Count; }
    }
}
```

```
C:\Users\asus\source\repos\G \times + \rightarrow

Count: 3

Contains 2: True

Contains 5: False

Count after removal: 2
```

Lab 26: Write a generic method called 'Swap' that takes two parameters of the same type and swaps their values.

Source Code:

```
using System;
namespace Swap 26808
{
    internal class Program
        static void Main(string[] args)
            int a = 7, b = 23;
            Console.WriteLine($"Before swap: a = {a}, b = {b}");
            GenericExample.Swap(ref a, ref b);
            Console.WriteLine($"After swap: a = {a}, b = {b}");
            Console.ReadLine();
        }
    public class GenericExample
        public static void Swap<T>(ref T a, ref T b)
            T temp = a;
            a = b;
            b = temp;
        }
   }
}
```

```
© C:\Users\asus\source\repos\S \times + \rightarrow

Before swap: a = 7, b = 23

After swap: a = 23, b = 7
```

Lab 27: Write an ASP.NET Core program to demonstrate use of hidden fields.

HomeController.cs

```
[HttpGet]
public IActionResult SetHiddenFieldValue()
{
    User newUser = new User()
    {
        Id = 101,
            Name = "John",
        };
        return View(newUser);
}
[HttpPost]
public IActionResult SetHiddenFieldValue(User us)
{
        var id = us.Id;
```

```
ViewBag.ID = id;
    return View(us);
}
User.cs(Models)
namespace HiddenField26836.Models
    public class User
       public int Id { get; set; }
       public string Name { get; set; }
}
SetHiddenFieldValue.cshtml(Views)
@model HiddenField26836.Models.User
<h2>SetHiddenFieldValue</h2>
<h3>User</h3>
@using (Html.BeginForm("SetHiddenFieldValue", "Home", FormMethod.Post))
    @Html.HiddenFor(model => model.Id)
    <div>
        @Html.LabelFor(model => model.Name)
        @Html.DisplayFor(model => model.Name)
    </div>
    <input type="submit" value="Update" class="btn btn-primary" />
}
Program.cs
app.MapControllerRoute(
   name: "default",
    pattern: "{controller=Home}/{action=SetHiddenFieldValue}/{id?}");
```

HiddenField26836 Home Privacy

SetHiddenFieldValue User

Name

Update

HiddenField26836 Home Privacy

SetHiddenFieldValue User

Name John

Update

LAB-28: Write a C# Program to insert and display records in tablename tblEmployee (id int, name nvarchar(50), address nvarchar(50), salary decimal(18,0), gender nvarchar50) using EntityFramework.

EmployeeDB.cs

Program.cs

```
using EFCore26836.Models;
using Entity_Framework_26836.Models;

EmployeeDB emp = new EmployeeDB();
TblEmployee tb = new TblEmployee();
tb.Name = "Ram Shah";
tb.Address = "Bhaktapur";
tb.Salary = 20000;
tb.Gender = "Male";
emp.CreateEmployee(tb);

List<TblEmployee> lst = emp.GetAllEmployees();
foreach (TblEmployee item in lst)
{
    Console.WriteLine("{0} {1} {2} {3} {4}", item.Id, item.Name, item.Address, item.Salary, item.Gender);
}
Console.ReadLine();
```


Lab 29: Write a C# program to compute aggregate salary of 5 employee and then display employee record in descending order with respect to employee salary using EntityFramework.

```
Solution Explorer
Search Solution Explorer (Ctrl+;)
 Solution 'EFCore26836' (1 of 1 project)
▶ ■ External Sources

▲ C= EFCore26836

▲ Bed Dependencies

     ▶ ₹ Analyzers
     ▶ •■ Frameworks

▲ Packages

        Microsoft.EntityFrameworkCore.Sql
        Microsoft.EntityFrameworkCore.Too
   ▶ C# EmployeeDB.cs
     ▶ C# SamriddhiDbContext.cs
     D C# Table.cs
     ▶ C# TblCustomer.cs
     ▶ C# TblEmployee.cs
     ▶ C# Program.cs
```

Program.cs

```
©\\\ C:\Users\asus\source\repos\E
Average Salary:40000
  Suchak Niraula
                    Bhaktapur
                                      Male
                               80000
  Mona Lisa
              Kathmandu 60000
                                 Male
             Bhaktapur 20000 Male
  Ram Shah
  Ram Shah Bhaktapur 20000
                                Male
             Bhaktapur 20000
  Ram Shah
                                Male
```

Lab 30: Write a program to select employees whose salary is greater than 20000 and whose address is Kathmandu using EntityFramework.

Program.cs

```
using EFCore26836.Models;

    SamriddhiDbContext db = new SamriddhiDbContext();
    List<TblEmployee> emp = db.TblEmployees.Where(a => a.Salary > 20000 &&
a.Address == "Kathmandu").ToList();
    foreach (TblEmployee item in emp)
    {
        Console.WriteLine("{0} {1} {2} {3} {4}", item.Id, item.Name, item.Address, item.Salary, item.Gender);
    }
    Console.ReadLine();
```

