Blackbox Optimization using LSTMs

Felix Sattler, Pattarawat Chormai, Raphael Holca-Lamarre

Summary

We present a new way of optimizing black box functions...

Model

LSTMs explanation

Training Data

Training Data: Gaussian Processes, different Kernels

Comparison of Loss Functions

The model learns different optimization techniques depending on the loss function.. exploration/exploitation trade off...

Loss functions and equations

- min
- sum
- OI

Results on Test Functions

Results on Benchmask Functions

Results (on Airfoil data)

Conclusions

- Neque porro quisquam est qui dolorem ips
- Neque porro quisquam est qui dolorem ips

References

[1] Andrychowicz, Marcin, et al. "Learning to learn by gradient descent by gradient descent." Advances in Neural Information Processing Systems. 2016. [2] Mockus, Jonas. "The Bayesian approach to global optimization." System Modeling and Optimization (1982): 473-481.

[3] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.

$$y_{2} = i < 6$$
 = [-1,1] $\alpha = [-5,5]$