

SSC-277 (SL-7-14)

AND CORRELATION SAMPLE

This document has been approved for public release and sale; its distribution is unlimited.

SHIP STRUCTURE COMMITTEE 1978

11 28 059

Member Agencies:
United States Coast Guard
Naval Sea Systems Command
Military Sealift Command
Maritime Administration
United States Geological Survey
American Bureau of Shipping

Address Correspondence to: Secretary, Ship Structure Committee U.S. Coast Guard Headquarters, (G-M/82) Washington, D.C. 20590

SR-1221

An Interagency Advisory Committee Dedicated to Improving the Structure of Ships

SEP 1978

This report is one of a group of Ship Structure Committee Reports which describes the SL-7 Instrumentation Program. This program, a jointly funded undertaking of Sea-Land Service, Inc., the American Bureau of Shipping and the Ship Structure Committee, represents an excellent example of cooperation between private industry, regulatory authority and government. The goal of the program is to advance understanding of the performance of ships' hull structures and the effectiveness of the analytical and experimental methods used in their design. While the experiments and analyses of the program are keyed to the SL-7 Containership and a considerable body of the data developed relates specifically to that ship, the conclusions of the program will be completely general, and thus applicable to any surface ship structure.

The program includes measurement of hull stresses, accelerations and environmental and operating data on the S.S. Sea-Land McLean, development and installation of a microwave radar wavemeter for measuring the seaway encountered by the vessel, a wave tank model study and a theoretical hydrodynamic analysis which relate to the wave induced loads, a structural model study and a finite element structural analysis which relate to the structural response, and installation of long term stress recorders on each of the eight vessels of the class. In addition, work is underway to develop the initial correlations of the results of the several program elements.

Results of each of the program elements are being made available through the National Technical Information Service, each identified by an SL-7 number and an AD- number. A list of all SL-7 reports available to date is included in the back of this report.

This report documents the decisions and methods involved in selecting and converting the wavemeter raw data to useable form. A sampling of reduced wavemeter and other related data, i.e., mid-ship bending stresses, roll, pitch and acceleration from the original microwave radar and standard Tucker wavemeters is also presented.

Henry H. Bell Rear Admiral, U. S. Coast Guard

Chairman, Ship Structure Committee

SSC-277

(SL-7-14)

TECHNICAL REPORT

on

Project SR-1221

"Correlation and Verification of Wavemeter Data from the SL-7"

ORIGINAL RADAR AND STANDARD TUCKER WAVEMETER SL-7 CONTAINERSHIP DATA REDUCTION AND CORRELATION SAMPLE

by

J. F./Dalzell

Stevens Institute of Technology

under

Department of the Navy Naval Ship Engineering Center Contract No. N00024-74-C-5451

(19) 217, SL-7-14

This document has been approved for public release and sale; its distribution is unlimited.

> U. S. Coast Guard Headquarters Washington, D.C.

1978

ABSTRACT

So that more precise correlations between full scale observations and analytical and model results could be carried out, one of the objectives of the instrumentation program for the SL-7 class container ships was the provision of instrumental measures of the wave environment. To this end, two wave meter systems were installed on the S.S. SEA-LAND McLEAN. Raw data was collected from both systems during the second (1973-1974) and third (1974-1975) winter data collecting seasons.

It was the purpose of the present work to reduce this raw data, to develop and implement such corrections as were found necessary and feasible, and to correlate and evaluate the final results from the two wave meters. In carrying out this work it was necessary to at least partly reduce several other channels of recorded data, so that, as a by-product, reduced results were also obtained for midship bending stresses, roll, pitch, and two components of acceleration on the ship's bridge.

As the work progressed it became evident that the volume of documentation required would grow beyond the usual dimensions of a single technical report. For this reason the analyses, the methods, the detailed results, discussions, and conclusions are contained in a series of ten related reports.

The present report is the first in the series, and involves the initial stages of the work. Specifically, this report documents the several decisions and methods thought necessary in conversion of the raw data from its original analog form to digital form, the sampling and calibration of data from the second (1973-1974) season, and a summary of initial results.

CONT ENTS

INTRODU	CTION									•	•															1
INITIAL	DATA	TAPE	SCRE	ENI	NG	AN	D /	ANA	AL(OG	MA	AGN	NET	110	: 1	ΓΑΙ	PE	RI	EPF	ROE	ouc	TI	01	1		1
INITIAL	ANALO	G TAF	PE AN	IALY	sıs																					2
THE INT	ERVAL	SAMPL	ING	SCH	IEME																					4
DIGITIZA	ATION	ANALY	1515							•																6
THE DIG	ITIZIN	IG PRO	CESS																							9
ASS EMBLY	Y OF C	THER	PARA	MET	ERS																					11
FIRST A	NALYSI	S OF	DIGI	TIZ	ED	RE	SUI	LTS	5									•								14
SUMMARY	OF DI	GITIZ	ZED I	NTE	RVA	LS	•			•			•													20
REF ER SNO	CES .																									25

LIST OF FIGURES

		PAGE
1	DIGITIZATION ANALYSIS	8
2	SKETCH ILLUSTRATING MAXIMUM STRESS PARAMETERS	22

LIST OF TABLES

I	RESULTS OF INITIAL DATA TAPE SCREENING	3
II	ANALOG MAGNETIC TAPE TRACK DESCRIPTION, TAPES 139 THROUGH 173	12
III	DEPARTURE DRAFTS	13
VI	SUMMARY OF EXAMINATION FOR SATURATION OF DIGITIZED INTERVALS	19
V	SUMMARY OF INCIDENCE OF FAILURE OF RANGE/RMS TEST	20
VI - XIV	SUMMARY OF LOG-BOOK DATA	26 - 43

SHIP STRUCTURE COMMITTEE

The SHIP STRUCTURE COMMITTEE is constituted to prosecute a research program to improve the hull structures of ships by an extension of knowledge pertaining to design, materials and methods of fabrication.

> RADM W. M. Benkert, USCG (Chairman) Chief, Office of Marchant Marine Safety U.S. Coast Guard Headquarters

Mr. P. M. Palermo Asst. for Structures Maval Ship Engineering Center Naval Ship Systems Command

Mr. John L. Foley Vice President American Bureau of Shipping

Mr. M. Pitkin Asst. Administrator for Commercial Development Maritime Administration

Mr. C. J. Whitestone Engineer Officer Military Sealift Command

SHIP STRUCTURE SUBCOMMITTEE

The SHIP STRUCTURE SUBCOMMITTEE acts for the Ship Structure Committee on technical matters by providing technical coordination for the determination of goals and objectives of the program, and by evaluating and interpreting the results in terms of ship structural design, construction and operation.

NAVAL SEA SYSTEMS COMMAND

Mr. R. Johnson - Member

Mr. J. B. O'Brien - Contract Administrator

Mr. C. Pohler - Member Mr. G. Sorkin - Member

U.S. COAST GUARD

LCDR T. H. Robinson - Secretary LCDR S. H. Davis - Member

CAPT C. B. Glass - Member Dr. W. C. Dietz - Member

MARITIME ADMINISTRATION

Mr. F. Dashnaw - Member

Mr. N. Hammer - Member

Mr. R. K. Kiss - Member

Mr. F. Seibold - Member

MILITARY SEALIFT COMMAND

Mr. T. W. Chapman - Member

CDR J. L. Simmons - Member

Mr. A. B. Stavovy - Member

Mr. D. Stein - Member

AMERICAN BUREAU OF SHIPPING

Mr. S. G. Stiansen - Chairman

Dr. H. Y. Jan - Member

Mr. I. L. Stern - Member

NATIONAL ACADEMY OF SCIENCES SHIP RESEARCH COMMITTEE

Mr. O. H. Oakley - Liaison

Mr. R. W. Rumke - Liaison

SOCIETY OF NAVAL ARCHITECTS & MARINE ENGINEERS

Mr. A. B. Stavovy - Liaison

WELDING RESEARCH COUNCIL

Mr. K. H. Koopman - Liaison

INTERNATIONAL SHIP STRUCTURES CONGRESS

Prof. J. H. Evans - Liaison

U.S. COAST GUARD ACADEMY

CAPT W. C. Nolan - Liaison

STATE UNIV. OF N.Y. MARITIME COLLEGE

Dr. W. R. Porter - Liaison

AMERICAN IRON & STEEL INSTITUTE

Mr. R. H. Sterne - Liaison

U.S. NAVAL ACADEMY

Dr. R. Bhattacharyya - Liaison

U.S. MERCHANT MARINE ACADEMY

Dr. Chin-Bea Kim - Liaison

INTRODUCTION

In the analysis of the wave-induced ship hull strain data obtained by SSC in the 1960's it was necessary to infer the wave environment from estimated Beaufort wind speeds. An extraordinary amount of work was required to develop the inferential techniques. These techniques appear to suffice for valid prediction of long-term trends because a great deal of averaging is carried out. Unfortunately when verification of short-term statistical predictions is desired, the use of wind as a wave environment index appears to be less than satisfactory.

As a consequence it was one of the objectives of the SL-7 fullscale instrumentation program to provide a direct instrumental measure of the wave environment so that more precise correlations could be made between full-scale observations, and analytical and model results.

To this end the ship was fitted with a micro-wave radar relative wave meter and various motion sensing devices. A "Tucker Meter" pressure actuated wave height sensing system was also installed.

The purpose of the present project is to reduce and analyze the resulting wave meter data obtained on the SEA-LAND McLEAN in the second (1973-1974) and third (1974-1975) winter recording seasons.

The purpose of this report is to document the first phase of the project; that is, the selection of data, its digitization and calibration, and results of a first pass analysis. References 1 and 2 are the primary background references for this phase of the work, and a general familiarity with the measurement program, or with these references has been assumed.

INITIAL DATA TAPE SCREENING AND ANALOG MAGNETIC TAPE REPRODUCTION

The original recordings were made at 0.3 ips in low-band FM (270 Hz center frequency). Playback at Davidson Laboratory (D.L.) was not possible without modifications to existing machinery which requires intermediate band FM tapes. Because the D.L. digitization process requires starting and stopping the tape machinery, there would exist some danger of accident (tape stretch or breaks) and the consequent loss of some pieces of rather expensive data if original tapes were used.

For these reasons the most prudent course of action was to duplicate the original tapes in intermediate band FM. This is an operation in which starting and stopping of tape drives is generally limited to the leaders and trailers and represents minimal danger to the original data.

Duplicating analog tape carries with it the danger of introducing noise which would be expected to be mostly in the neighborhood of 60 Hz if present. Ideally the duplicating tape speed should be such that 60 Hz at duplicating speed is outside the bandwidth of interest in real time. The required bandwidth for the present project was estimated to be 1.5 Hz (real time). In order to get 60 Hz noise during duplication to appear as a frequency higher than about 1.5 Hz real time, the duplication speed needs to be no higher than 7-1/2 ips. Sixty Hz noise at a duplication speed of 60 ips corresponds to 0.3 Hz real time.

The costs of duplication go down sharply as duplicating tape speed increases. Accordingly, before any final choices were made as to what tapes to duplicate, how to do it, and how to handle digitization, some data fragments at least had to be in hand. For this purpose Teledyne Materials Research (TMR) produced a sample tape which is a partial duplicate in intermediate band FM of Oata Tape 123 from the 73/74 season. The duplicating tape speed was 60 ips. One of the channels duplicated was a multiplex channel which is essentially a step function. Upon playback at 7.5 ips at D.L., expanded oscillograph recordings were made and this channel examined for 7.5 Hz noise which is what 60 Hz pickup during the duplicating process should appear as. None was found and it was concluded that, with reasonable care, tape duplication could be carried out at the highest and most economical tape speed.

The initial screening of the second (1973-1974) data was done by TMR. Their results are reproduced as Table I. Prior to Voyage 28E (11/29-12/3/73) no radar data (or an insignificant amount) was available. The Tucker Meter was not operational until Voyage 32E (12/30/72). From Voyage 36W onward until loss of the radar during Voyage 37, Tape Recorder No. 1 was mal-functioning and it appeared prudent not to attempt recovery of wavemeter data from Recorder No. 2 during this period. Therefore it appeared best to concentrate upon tapes containing both radar and Tucker Meter data; that is, the odd numbered tapes from 139 through 177, Table I. This decision eliminated from consideration data from Voyages 28 and 29 East. The tapes thus qualified for consideration cover 9 voyage legs during the period 30 December 1973 to 3 March 1974, a total of 20 analog tapes were involved, and these were duplicated by TMR. All thirteen data channels were reproduced against possible future use, though only seven channels were required for the present work.

INITIAL ANALOG TAPE ANALYSIS

The digitization process to be described was started under the assumption that a gross examination of the contents and nature of the analog signals would be unnecessary. Some peculiar behavior of the radar range signal on the visual signal monitor and some indications of higher than anticipated voltage levels necessitated a stop to digitization and the production of "quick look" oscillograph recordings for the channels of interest on all 20 magnetic tapes. The so-called "quick look" record is produced by playing the tape at high speed into an oscillograph

TABLE I

RESULTS OF INITIAL DATA TAPE SCREENING

By Teledyne Materials Research for
SEA-LAND McLEAN, 1973-1974 Winter Recording Season

Voyage	Dates	Recorder No. 1 Tape Numbers	No. Intervals Recorded Radar Tucker
28E	11/29 - 12/3/73	121, 123	52, 48
28W	12/6 - 12/10/73	125, 127	52, 52
29E	12/11 - 12/15/73	129, 131	52, 48
32E	12/30/73 - 1/4/74	139, 141	64, 60 64, 60
32W	1/8 - 1/14/74	143, 145, 147	64, 72, 32 64, 72, 32
33E	1/17 - 1/21/74	149, 151	64, 52 64, 52
33W	1/23 - 1/27/74	153, 155	64, 52 64, 52
34E	1/29 - 2/2	157, 159	52, 52 52, 52
34W	2/5 - 2/9	161, 163	48, 48 48, 48
35E	2/12 - 2/17	165, 167	48, 48 52, 56
35W	2/20 - 2/25	169, 171, 173	56, 46, 36 56, 56, 36
36E	2/27 - 3/3	175, 177	48, 28 48, 28
36W	3/7 - 3/12	179	Recorder problems
37E&W	3/14 - 3/25		Time-shared, recorder problems
38E	3/26 - 3/31		Time-shared, recorder problems

running at low speed. The result is a compression of 30 minutes of real time recording into about 2-1/2 inches of oscillograph tape. The resulting time history is so compressed that only exceptionally large individual fluctuations are visible. However, from such records a quick assessment of oscillatory signal level and gross zero stability is possible, as well as an accounting of recording intervals.

By roughly correlating the interval summary in Reference 2 with the quick look records it appeared that under heavy weather conditions and some combinations of moderate weather and high ship speed, the radar apparently lost lock; with the result that large (physically impossible) changes in the mean radar range signal were visible on a compressed time scale. When this problem appeared the radar signal might typically oscillate about some mean for a few minutes real time, and then jump to a new mean up to the equivalent of 25 feet full scale away from the original. The new mean might persist for the remainder of the 1/2 hour recording interval or the signal might jump two or three more times to new and different means. When this occurred, absolutely no indication

of such radical motions was visible in the roll, pitch or acceleration channels. There was in addition a tendency for the radical changes in radar mean to persist for some time after the heaviest weather. When any radical change was observed during a tape, the mean value of the radar signal was usually different at the end of a tape than at the beginning. In the longest tape corresponding to relatively heavy weather the radar mean appeared suspect in as many as 40 out of 72 half-hour recording intervals. Finally there were a few instances of no radar signal at all, or obvious dropouts during an interval.

The other tape tracks examined included longitudinal vertical bending stress, roll, pitch, vertical and horizontal deck house accelerations, and the Tucker meter. Qualitatively, no problems were apparent with these channels -- apart from a higher than expected calibration signal level on the accelerations, and a half dozen recording intervals (out of more than a thousand) where extraneous influences such as main power supply fluctuations could be suspected.

The peculiar behavior of the radar was discussed with the designers. It appears that the signal from the radar as installed during the 73/74 season is not the range in the ordinary sense of the meaning of radar range. It is the difference in range from some nominal initial range condition. The radar has automatic features which insure initial signal acquisition -- and re-acquisition in case of temporary return signal loss. It appeared likely that the symptoms observed on the quick look records might typically result from loss of signal in a trough (or crest) and re-acquisition in a crest (or trough) since the original range reference is lost when re-acquisition takes place.

Conceptually, the correction of the radar range for ship angular orientation is a straight-forward vector operation. The above considerations showed that the length of the radar range vector could not be established solely from the instrumental data. The only reasonable option appeared to be to assume that: a) the sample mean of the radar data in each interval corresponds to the position of the nominal still water zero speed waterline of the ship; b) to correct the instrumental data to this mean; and c) to add to the corrected data the distance from radar antenna to still water as computed from the ship's departure drafts. If the sample mean is really reasonably close to the still water waterline this procedure might result in total range errors of $2 \rightarrow 4$ feet out of 75, since the corrections are of a cosine nature the final results should not be too far off the mark.

THE INTERVAL SAMPLING SCHEME

In the 20 tape analog magnetic tape data set covering voyages 32E through 36E there are a total of 1064 half-hour recording intervals. As noted in detail in Reference 2, Recorder No. 1 in which the present data was obtained, was also the control recorder. Recorder No. 1 was run every time a new set of signals was patched into Recorder No. 2, so that

Recorder No. I was operating for the first two hours out of every four hour watch. The observational data entered in the TMR log was up-dated only for each watch, rather than for each interval actually recorded on Recorder No. I. The magnitudes of longitudinal vertical bending stress presented in Reference 2 appear quite consistent within each watch. These considerations suggested that a reasonable interval sampling procedure would be to take one interval from each watch. The entire available data set corresponds to 266 watches; or just over forty-four 24 hour days.

The peculiarities of the radar signal re-inforced this sampling idea. The relatively large scale data reduction process envisioned more or less precluded the idea of spending time sorting out radar intervals which are badly chopped up (by a mechanism not fully understood) just for the challenge of it. However, it appeared for the most part that even in heavy weather one radar signal interval out of the four available in each watch was free of gross mis-behavior during the recording interval -- apart possibly from an apparently constant mean value during the interval which might be too high or too low.

Accordingly, the best interval sampling policy appeared to be to take the best looking interval from each watch in accordance with the analysis of quick-look records. This general approach was applied to all 20 tapes and the result was a list of about 215 intervals which satisfied the following:

- a) Regardless of any lack of satisfaction of later criteria, the interval was the first interval of a voyage leg in which all data channels appeared to be functioning. (The main purpose in digitizing intervals of this type regardless of the generally very low level oscillatory signals involved was to obtain calibration signals as little as possible distorted by the actual signal.) It was intended that most intervals of this type would eventually be discarded.
- b) The level of oscillatory signal on longitudinal moment was appreciable and the ship was well out to sea.
- c) All data channels appeared to be functioning normally and free of gross analog magnetic tape saturation problems.
- d) The interval was one for which a log book summary and analysis appears in Reference 2.
- e) The radar signal appeared to have constant mean level during the interval, no obvious signal drop-out, and in marginal cases was at least the best looking of the four intervals available for the watch.

Considering the beginning-of-voyage intervals slated for discard, this sampling scheme involved 206 or 207 watches, or about 78% of those available. A few additional discards from this list were anticipated from mistakes in evaluating quick look data or from blunders during the digitization. It was assumed that the sampling scheme would result in a final sample of between 72 and 78% of the watches available. About half the discards would be from start and end of voyage leg, the other half a combination of perceived malfunctions of the various signals and various mistakes. The main advantage of the scheme is that it involves about an 85% coverage of the available observed conditions for which the responses were appreciable and the ship was in unprotected waters. The main disadvantage is that if the final analysis indicated a poor selection of interval had been made within a particularly interesting watch, it would be uneconomical to back up and digitize another interval.

DIGITIZATION ANALYSIS

Bandwidth

Digitization involves sequential sampling of analog signals at a constant time interval, Δt . The size of this interval controls the bandwidth of the analysis and the size of the resulting time series.

In the present study the interest is in the "rigid body" motions; the movement of the ship as a whole. Wave components which are smaller than the beam of the ship cannot be expected to excite the ship except possibly in vibration. The SL-7 has a 105 foot beam and it is very conservative to assume that little or no motions response should be observed at frequencies which correspond to waves shorter than 50 feet.

The radar is 70 or 80 feet above mean water and has a specified beam width of 3.2°. On this basis the range is at best the average over about a 5 foot diameter circle at the water surface. A range resolution of about 1 foot is specified. A 20 ft by 2 ft wave is nearly breaking, so that it is extremely unlikely that any meaningful radar response at all can be expected at frequencies corresponding to 20 foot and shorter waves. In fact the lack of resolution and the smearing effect of spatial averaging would be expected to introduce significant error up to 40 or 50 foot wave lengths.

In the analyses of Tucker meter outputs from small Weather ships at zero speed, the data for component wave lengths shorter than the ship is considered suspect. Spectral analyses are not usually carried out for frequencies in excess of that corresponding to a 50 foot wave length because the pressure fluctuations induced at the below-surface taps become too weak for shorter waves and the magnitude of the signal becomes comparable with the resolution of the recording apparatus. Given that the SL-7 is nearly an order of magnitude larger than the weatherships it also seems quite conservative to assume that no significant Tucker meter signal will correspond to waves shorter than 40 or 50 feet.

The basic requirement for digitization is to determine the bandwidth of the analysis. All data are observed in the encounter frequency domain. The lower end of the analysis bandwidth is D.C. A conservative estimate of the upper end was made by transforming wave length into encounter frequency under the assumptions of full ship speed and head seas. (For lower speeds and other headings the frequencies decrease.) This transformation is shown in Figure 1. The result is that encounter frequencies corresponding to 40 or 50 foot long waves should be less than 1.4 - 1.7 Hz. Accordingly the required bandwidth of the analysis is D.C. to approximately 1.5 Hz. So long as this bandwidth is maintained throughout the analysis of the various intervals, the resolvable motion and wave components will be available. The typical frequencies of significance in the results of the first season's operations and in the sample tape 123 were seen to be well within the D.C. to 1.5 Hz range.

Analog Playback Considerations

It happens that the normal D.L. analog tape speed is 7-1/2 ips. This is the same tape speed used at TMR for playback and results in a ratio of 25 between playback time and real time. Another fairly normal procedure at D.L. is to interpose low pass filters between the signal out of tape and the A/D Multiplexer. There are available a sufficient number of matched 6 pole Butterworth filters of 40 Hz cutoff. Using the speed up ratio of 25, these filters correspond to 1.6 Hz filters in real time. The amplitude response is plotted in Figure 1.

The normal D.L. procedures fitted the present requirements fairly well. Using the 40 Hz filters in playback, frequency components corresponding to wavelengths greater than 70 feet are negligibly influenced by the filter. At the estimated inherent lower limit of wave length resolution the attenuation is only about 20%. Higher frequencies are rapidly attenuated, which is desirable, as response components above 2 Hz real time are expected to be extraneous noise insofar as motions and wave meters are concerned. The first longitudinal bending frequency would be resolved however. In the process of playback, use of these filters also has the advantage that a 60 Hz pickup or noise introduced by the playback tape recorder is attenuated about 90% before the A/D converter sees it.

Sampling Interval

The normal A/D Multiplex system in use at D.L. allows multichannel digitization at time intervals, Δt , which are integer multiples of 0.002 sec. Accordingly, taking account of the factor of 25 speedup, the available sampling intervals correspond to 0.05, 0.10, 0.15, 0.20..., seconds real time. The corresponding Nyquist frequencies are 10, 5, 3.333, 2.5..., Hz (real time). The existing TMR reduction program uses $\Delta t = 0.1$ sec for stress analysis. According to Figure 1 this is more than adequate for motions data. According to the previous discussion about filtering, a time interval of 0.15 sec should be quite adequate for the motions. Owing to the filtering, the corresponding Nyquist frequency of 3.333 Hz is sufficiently high so as to avoid aliasing (Fig. 1).

FIGURE 1 DIGITIZATION ANALYSIS

The main advantage in choosing $\Delta t = 0.15$ rather than 0.10 is in the 34% reduction of the size of the required digital data storage. The disadvantage is that typical wave components of 0.5 Hz, say are defined by 13 instead of 20 points,

THE DIGITIZING PROCESS

Generally, the philosophy of the TMR single channel digitization scheme seemed best to follow. In that scheme 20 minutes of each interval are digitized and analyzed. The first two minutes of each 30 minute recording interval provide zero and calibrations, the digitized data are essentially 20 minutes worth of the remaining 28. For a 20 minute sample the choice of $\Delta t = 0.15$ sec corresponds to 8000 points per channel per interval. Considering the potential use of the FFT algorithm it appeared useful to specify that at least 8192 points (2^{13}) per channel make up the final sample (20.5 minute samples instead of 20 minutes).

In order to minimize alterations in the existing D.L. digitizing system it was decided to start digitizing as near as possible after the start of the first minute (full scale) of electrical zero, and stop only when the remainder of the zero, the calibration signals and at least 8192 points/channel of sample had been obtained. A minor modification to the D.L. system was made so that after digitization was started it would stop itself after exactly 9015 scans of the channels had been obtained. (A "scan" is equivalent to the digitization of all "N" channels specified at the highest rate possible. In the present case the digitization rate during a scan was nearly two orders of magnitude faster than the basic scan-to-scan rate.) The total scan specification of 9015 was for later convenience. Some previously established conventions on the packing and subsequent handling of the multiplexed data in the general case made it simple to throw away (if desired) the first 805 scans containing the zeros and calibrations. This would leave 8210 scans of sample, a few more than the minimum number specified.

The digitization start was to be manually controlled. Operator reaction times were such that the digitizing actually started about half way through the electrical zero in the vast majority of intervals. Using the cited values of Δt and numbers of scans, and assuming the first scan of the actual sample to be the 806^{th} , the approximate timing of the digitized portions of the original 30 minute interval were as follows:

Start Digitized Electrical Zero:	.5	±.2 min	. after	analog	interval	start
Start Digitized Calibration	1.0	±.2 min	. after	analog	interval	start
End Digitized Calibration	2.0	±.2 min	. after	analog	interval	start
Start Digitized Sample	2.5	±.2 min	. after	analog	interval	start
End Digitized Sample	23.0	±.2 min	. after	analog	interval	start

The digitizing process itself was somewhat cumbersome. The size of the resulting digital files, the minimum running time of the analog tapes (roughly 20 hours), and the necessity to schedule the use of the D.L. PDP-8e computer system meant that the actual digitization work was conducted in several sessions. The aspect of the work most prone to systematic error was the analog signal processing. Prior to the start of the work a voice annotated test tape was made up. The first part of this tape contained known step voltages placed in turn on each of the 7 tape tracks to be digitized. The second part of the tape contained several runs where sinusoidal voltages of constant amplitude and various frequencies were placed on all tape tracks.

As described, the analog setup for each digitizing session consisted of interposing a 40 Hz lowpass filter for each channel between the computer A/D converter and the Ampex FR1800L tape recorder used for playback. A two channel oscilloscope was used for visual monitoring of two of the filtered outputs. Before commencing work in a session three system checks were performed. The first was to check the system voltage calibration for each channel by using the computer in an "on-line" mode to digitize and analyze voltages applied simultaneously to all filter inputs (tape recorder disconnected). This operation was to insure that the D.C. gain and offset of the filters was nominal. The next operation involved connecting the tape recorder, and using the computer to digitize and analyze the first part of the test tape. The result of this operation was essentially a verification by the computer that no blunders had been made in analog wiring or in instructing the computer as to which seven of its 32 input channels to consider.

The last checking operation was to use the computer in a third on-line analysis mode to digitize and analyze the second part of the test tape. In this case a peak-to-peak analysis of the sinusoidal signals on all 7 channels was made for various frequencies. The results verified that the filter frequency response for each channel was nominal and had not changed from session to session.

Most of the activity during actual digitizing involved keeping track of which tape intervals to digitize in accordance with the list resulting from the sampling scheme. Since the tapes contain no annotation of any kind, it was necessary to keep a running account of tape footage corresponding to the actual end of each digitized sample or what would have been the end had the interval been digitized. Fortunately, the TMR programmer was quite reliable in providing constant lengths of tape for each recording interval. When an interval was to be digitized the tape was started prior to the electrical zero portion, and the computer was manually started as soon as the visually monitored signals quieted and returned to the nominal zero position. After the digitization of the interval was finished the tape was stopped, a unique run number was furnished the computer, and the digitized run was stored with its identification and the appropriate computer setup documentation in a file on one of the PDP-8e disk packs. At this stage the data obtained for each interval for the 7 channels consisted of 63105 12 bit computer words in order digitized; that is, an array in which the data for channel J occupies the (Jth), (J+7)th, (J+14)th, etc. positions in the array.

The files resulting from each digitizing session were loaded into DEC tapes (a form of digital magnetic tape peculiar to Digital Equipment Corporation Computer systems). These were ultimately transported to the Stevens Institute PDP-10 Computer Facility where the tapes were read, the files were converted from PDP-8e standard format to a format readable by the PDP-10 and finally the files were written on 9 track digital magnetic tape. At this stage the 63000 integers defining the interval remained in the original order but were packed 3 12 bit numbers to each 36 bit PDP-10 word, and the entire array was organized into blocks conforming to the existing standards for the D.L. digitization system.

ASSEMBLY OF OTHER PARAMETERS

The raw digitization files contained little more information than the original magnetic tape. Quite a number of other pieces of information were needed for analysis and for correlation.

All the readily available information about the general circumstances associated with each tape and interval is contained in the Appendix of Reference 2. This Appendix is a tabulation from the TMR logbooks of time, ships position, speed, draft, visual observations of weather and wave conditions, general comments, and the results of the TMR analysis of midship vertical bending stress. All of the data summarized by TMR for the particular intervals which had been digitized was key punched, reformatted slightly and stored on digital tape so as to be accessible by the Stevens PDP-10 system. In the present case, one item in the TMR summary (estimated wave length) had never been filled in, and was therefore omitted.

Table II contains a track description for Tapes 139 through 173, and the values and senses of the TMR calibration signals. The corresponding track description for Tapes 175 and 177 is the same except that the forward deckhouse accelerometer package (Tracks 6,7) was omitted and a like pair of accelerometers located in the radar pedestal were substituted. The values of calibration signals and their senses were established in conferences with both TMR and NRL, the designers of the radar.

It was decided to digitize longitudinal vertical bending stress (Track 1) as a control channel and for possible use in a later phase of the program. In addition to the radar output, roll, pitch and the outputs of the accelerometer package nearest the radar were digitized (Tracks 3, 4,5,6,7). The seventh track digitized was the Tucker Meter.

The values of the calibration signals are used directly in the calibration of the data. Two sign inversions were necessary. Positive roll starboard side down, positive pitch bow up, and positive vertical acceleration in a sense opposite to the gravity signal from the accelerometer all suit a coordinate system in which the x axis is positive forward, the y axis is positive to star board and the z axis is positive downward. In this coordinate system positive transverse acceleration is

TABLE 11

ANALOG MAGNETIC TAPE TRACK DESCRIPTION, TAPES 139 THROUGH 173

Track	ltem	Calibration Signal Value and Sense
-	Longitudinal Vertical Bending	8214 psi (Tension)
cu	Midships Torsional Shear	
3	Radar	46 ft. (Range decreasing)
4	Roll	10° (Starboard side down)
2	Pitch	10° (8ow up)
9	Forward Deckhouse Acceleration, Vertical	2 g (Opposite sense to gravity component of accelerometer output)
7	Forward Deckhouse Acceleration, Transverse	l g (In same sense as gravity component of accelerometer signal for steady heel, starboard side down)
00	Forward Acceleration, Vertical	
6	Forward Acceleration, Transverse	
01	Operating Parameters (Multiplexed)	
=	Longitudinal Horizontal Bending	
2	Tucker Meter	10 ft. (Sense not documented)
13	Shear Forward, Starboard	
14	Shorted Input	

an acceleration to starboard so that the sign of the calibration signal was reversed for Track 7, the transverse accelerometer. In a preliminary development of the corrections to radar range, the range itself was considered positive, so that the sign of the radar calibration signal needed to be reversed also.

For the radar range corrections the relative position of acceler-ometer package and radar antenna need to be established. From the positions of the transducers given in Reference 2, ship's plans and radar pedestal drawings, the radar antenna was found to be 13.8 feet aft, 46.5 feet to starboard, and 2.25 feet below the forward deckhouse accelerometer package. These values hold for voyages 32 through 35 (Tapes 139-173). In voyage 36E the corresponding values are zero because of the shift in location of accelerometer package to the radar.

According to the radar log the radar was aimed relative to ship coordinates at an azimuth of 90° and depression from horizontal of 74° ; that is, the radar was oriented in a plane normal to the ship centerline, pointing down and slightly to starboard.

The nominal distance of the radar above the departure waterline was established with recorded departure drafts furnished by the owners. The vertical position of radar antenna above baseline was computed from plans to be 106.5 feet, its longitudinal position 123 feet aft of FP. The departure drafts and the result of the computation of initial vertical position of the radar are given in Table III.

TABLE III

Voyage	Departure Fwd. (feet and	Aft	Vertical Position or Radar above WL (feet)
32E	33-8	34-4	72.7
32W	31-4	32-4	75.0
33E	32-9	35-3	73.4
33W	34-9	35-9	71.6
34E	34-0	34-2	72.5
34W	31-8	32-10	74.7
35E	31-8	34-8	74.4
35W	33-2	34-6	73.2
36E	35-0	35-5	71.4

FIRST ANALYSIS OF DIGITIZED RESULTS

Content

The first analysis of the digitized results had the objectives of completing the calibration, developing a few simple indices of the content of the sample, and a general check on the results of the digitizing process. As noted in a previous section, the first 805 scans of each digitized interval were to contain electrical zero and the TMR step calibrations, and an 8200 scan sample followed.

The first step in analysis of the first 805 scans was to establish for each data channel the scan numbers corresponding to the mid-point of the 10 square wave signals produced by the TMR programmer. This was accomplished by a simple time correlation procedure which used the known nominal durations of the square waves, and the magnitude and sense of the swing. Once the position of the square waves was established, the nominal end of the electrical zero could be established and the digitized data could be averaged in the applicable groups of scans to produce an average representing electrical zero, averages representing the value of the cal step, and averages of the signal in between the cal step. To avoid the transient response of the data filters only the middle half of each step was averaged. Because the TMR reduction procedure includes the computation of the mean of the first 4 minutes of data after the calibration this was also incorporated, the average extending as far as necessary past the 805th scan of the interval.

Four numbers were also extracted from the actual sample for each channel of each interval. These numbers were; 1) the largest digitized number in the sample time series; 2) the smallest; 3) the sample mean, and 4) the sample rms.

The results of these operations were listed for visual inspection.

Values of the Calibration Steps

All the calibration square waves are supposed to be imposed at the same time. In the vast majority of cases the calibration algorighm indicated cal steps at the same times and of constant magnitude for radar, pitch, and the two accelerations, but often significantly different times and erratic magnitudes for vertical bending stress, roll and the Tucker meter. Consultation of the quick look oscillograph records and some expanded records showed that the programmer switches were not always functioning for the Tucker, the magnitude of swing for roll was marginally too small, and the signal level on longitudinal bending stress was often too high relative to the cal step for the present simple algorithm. A re-run of the calibration was made in which the position of the cal steps on all channels was determined by the position detected for the transverse acceleration channel. The result was cal step magnitudes of reasonable constancy and these were used for the final calibrations.

Before indicating the calibration results for the various channels the various sensitivities of the elements of the digitization process should be noted. The nominal voltage sensitivity of the reproduce electronics in the analog tape recorder is 1.414 volts output for a 40% of center-frequency frequency deviation on the FM tape. The D.C. gain of the filters is unity \pm .5%. The computer was set to resolve 2-1/2 volts input into 1024 parts. The net sensitivity from magnetic tape output through filter and computer A/D was nearly nominal, ranging from 410 to 412 cu/volt* depending on the channel. In round numbers, 411 cu indicated by the computer corresponded to 1 volt out of the tape recorder or a 28.2% frequency deviation on the tape.

The calibration steps are superimposed upon the signal for the longitudinal bending stress channel. As described in the TMR reports, the average of the 10 cal steps and the average of the nine pieces of signal between the cal steps is computed. The indicated cal step for each interval is the average of the cal steps minus the average of the intermediate pieces of signal. These average indicated steps were computed and listed for all the digitized intervals. Because the signal is mixed up with the calibration step in this channel, the typical interval to interval scatter in what should be a constant is often 15%. However the average result at beginning and end of voyages correlated within about \pm 1% over the entire two month period of the data set. It was concluded best not to believe the indicated fluctuations and a final cal step of \pm 418 cu was used for all tapes all voyages. This corresponds to a positive 1.02 volt step or a 28.8% deviation, both figures nearly exactly the values set up by TMR.

In the radar calibrations the 10 square waves are imposed with reference to electrical zero and the signal is suppressed while the step is imposed. The indicated cal step is thus the average of the 10 individual steps minus electrical zero. This calibration was exceptionally steady from interval to interval and tape to tape, the typical variation being less than 1/2%. In this case the cal step was again taken as constant over all voyages, all tapes and equal to +568 cu. This is equivalent to +1.38 volts or a 39% deviation, and is 38% too high relative to the values which were supposed to have been setup.

The cal steps applied to the roll and pitch tracks were similar to that for the radar. The signal is suppressed while the steps are on, and the reference for the signal is electrical zero. Again the indicated average cal step is the average of the 10 individual steps minus electrical zero. In the first five tapes (Voyages 32E and W) the indicated cal steps were quite steady from interval to interval, the variation being typically less than 1%. The magnitudes determined for roll was 222 cu (.54 volts, 15% deviation) and for pitch was 450 cu (1.09 volts, 31% deviation). These results are very close to the values expected on

^{*}The abbreviation "cu" stands for computer units; that is, roughly 1/411 volts into the A/D.

the basis of TMR setup records. For the remaining 15 tapes (Voyage 33E onward) considerable interval to interval fluctuations were noted even though the values of the individual steps applied within each interval were quite constant. The ratio of the roll and pitch calibration steps was constant however. It turned out that both transducers and the calibration signal circuit were fed from the same power supply and troubles with drooping voltage from this power supply were experienced during the period of time in question. The best course of action was therefore to believe the cal steps derived from the digitization of each interval from Voyage 33E onward. The values ranged from nominal to 70% of nominal, and this variation was confirmed by the analog quick look records.

The cal steps applied to the acceleration channels were effectively superimposed on the mean signal level, though the signal was suppressed. Accordingly, the average cal step was derived by averaging the 10 individual steps from each interval and subtracting from this result the mean of the first 4 minutes of signal which was felt to be a slightly better estimator of the mean signal level during the calibration than the short pieces of signal between cal steps. The stability of these results from interval to interval was very good. The cal step for transverse acceleration appeared to be + 550 cu \pm 1% for all tapes (+ 1.34 volts, 38% deviation). The step for vertical acceleration scattered less than 1% within any voyage leg but was set at slightly different levels for each voyage leg, these varying from + 1135 cu to + 1153 cu (2.78 to 2.81 volts, approximately a 79% deviation).

The step for the transverse acceleration is about 34% higher than the level expected, and that for the vertical acceleration is 280% of the level expected. The mean of the vertical acceleration was supposed to be biased negatively (to simulate gravity) approximately 0.5 volts (-14% deviation). On the tapes in hand it was biased negatively approximately 1.3 volts (-35% deviation) and thus the positive 2.8 volt swing just about stays inside the nominal tape deviation rating.

The average Tucker meter cal step was computed in the same way as for the accelerations. During Voyage 32E and W (Tapes 139-147) the calibration for the Tucker meter was missing in most intervals. Those solid calibrations present indicated a cal step of + 400 cu (0.97 volts, 27% deviation). This is in agreement with nominal values used in original setup. During Voyage 33E the cal step suddenly dropped 30% from nominal 3/4 of the way through the voyage. During Voyage 33W and 34E the step was nominal with interval-to-interval fluctuations of 1 or 2%. During Voyage 34W the step was consistently 6% below nominal with \pm 2% variations. Finally in the last three voyage legs (35E to 36E) the cal step was 60% of nominal with only \pm 1% fluctuations. Most of these variations appear to be matters of periodic gain readjustment prior to the start of a voyage leg, though this could not be confirmed. It was decided to use the individual cal steps computed for Voyage 33 East onward and the estimated value quoted above for Voyages 32E and 32W.

All of the final decisions were incorporated in a computer accessible file so that the correct cal step value could be associated with each channel of each interval.

The unsolved problem of the calibration exercise is why the cal levels on the radar, the accelerations, and on the Tucker meter during 3 voyage legs, are not as expected. One duplicate magnetic tape was returned to Teledyne for verification that it and the master tape were really the same. The conclusion from that exercise was that the duplicate analog tapes are really duplicates. In four of the seven channels (including three with higher than expected gain) the gain stability appears exceptionally good, considering that the original calibration signals have had the opportunity of being degraded by three separate recording/playback operations involving four separate tape recorders and probably at least as many separate pieces of analog hardware.

Zero Stability and Saturation

Enough data from the first pass analysis was available to check if the digitization had been started correctly during the electrical zero for each interval. The indications were that it had been in all but 3 intervals. These were discarded as far as subsequent analysis was concerned.

In principle, the average value for the digitized electrical zero for each interval is the reference level for that interval, irrespective of its deviation from zero volts input measured at the computer A/D interface. However, the magnitude of the offset of the tape electrical zero is an indicator of bias or zero stability of the entire system, including original signals and tape deck, and that of all the subsequent analog processing equipment. An examination of the digitized electrical zeros disclosed no large systematic variations with analog tape or with voyage, except in the cases where the programmer switch for the Tucker meter was known not to be operating properly. The general zero stability of the whole process is perhaps best judged by the zero stability for the roll and pitch channels. Electrical zero in these channels corresponds to a center tap on the potentiometric transducers rather than to the open circuited tape deck input utilized to create a zero on some other channels. In the case of roll and pitch the average offset throughout the data set for roll was about 70 mv with what appeared to be random fluctuations of \pm 35 mv. The corresponding numbers for pitch are 100 mv and \pm 35 mv. The typical mean electrical offset on other channels was not far different. A mean offset of 70 to 100 my represents 5 to 7% of nominal full scale for the playback recorder. Absolute tape speed errors in the four recorders in the process could conceivably add up to this offset magnitude, to say nothing of small offsets in other analog components of the system. The fluctuations in offset of the pitch and roll channels amount to ± 2-1/2% of nominal full scale of the playback recorder. This, too could have been injected by the sum of absolute tape speed errors of original and final playback recorders. Overall, the apparent electrical offsets of the original electrical zero appear at least as small as could have been expected.

The final check on the validity of the digitized intervals was for saturation. As far as the digital part of the process is concerned all signals levels within ± 2 -1/2 volts were resolved, signals outside this

range appear digitized as the maximum possible number (\pm 1023 cu). The filters interposed between tape deck and computer have a \pm 10 volt linear range. The tape machine used in playback has a nominal minimum linear reproduce electronics output range of \pm 1.414 volts. In the present case the reproduce electronics are acceptably linear to \pm 1.75 volts (50% signal deviation). Their output deviates progressively more from linearity as output voltage increases beyond 1.75 volts to some figure above 2 volts where the FM demodulator goes mad and produces wild fluctuations of output signal.

Saturation is thus controlled by the analog tape playback machine. In the present case a digitized number corresponding to less than 1.75 volts was considered unsaturated. Results between 1.75 and 2.0 or 2.1 volts were considered questionable. Digitized results of 1023 cu or -1023 cu were almost certainly a result of over saturation of the tape.

The extremes of the digitized samples were viewed with these criteria. In one or two instances there appeared to be excessive tape saturation and these intervals were disregarded in subsequent analysis. After these discards and the others noted previously the data set had contracted from around 215 to 198 intervals. Of these, there are 24 intervals where some question exists. Table IV summarizes the results of the examination of the data for saturation. There were 174 intervals in the set where the extremes in the sample lay in the \pm 1.75 volt range.

The radar channel was somewhat prone to saturation, since when the oscillatory component of range was large, the mean sometimes shifted sufficiently away from zero that the largest oscillatory fluctuations then saturated the tape. Remaining in the data set are a total of seven intervals where the magnitude of extreme output voltage from the radar channel was between 1.75 and 2.1 V. The fact that one isolated extreme is in the non-linear range of tape reproduce electronics does not necessarily mean that the interval is useless, and the seven intervals were retained on this basis.

The vertical acceleration channel was somewhat more prone to saturation than the radar channel, there being 20 instances in Table IV where the magnitude of the extreme output voltage from the vertical acceleration channel was between 1.75 and 2.1 V. These intervals were retained on the same basis as in the case of the questionable radar intervals. The problem with the vertical acceleration channel is the excessive bias noted in the calibration analysis. The gain for the oscillatory components is not excessive. However a bias of -1.3 volts means that when significant oscillatory accelerations occur, the extremes will almost certainly exceed the nominal minimum linear range and occasionally the practical linear range.

Two instances involving longitudinal bending stress are noted in Table IV. One is merely a questionable isolated extreme and the other is almost certainly a case of over saturation.

As implied by Table IV, no obvious saturation problems were noted for channels not mentioned.

TABLE IV

SUMMARY OF EXAMINATION FOR SATURATION
OF DIGITIZED INTERVALS

Voyage	Tape	Interval	Channels with Saturated Extremes (Magnitude in Volts)
32E	139,141	ALL	None
32W	143	58	Radar (1.8)
1	143	60	Vertical Acceleration (1.8)
	145	1	Radar (2.0), Vertical Acceleration (1.8)
	145	9	Vertical Acceleration (2.1)
	145	13	Vertical Acceleration (1.9)
	145	21	Radar (2.0)
	145	25	Radar (1.9), Vertical Acceleration (1.9)
	145	29	Vertical Acceleration (1.9)
	145	37	Radar (1.9), Vertical Acceleration (1.9)
	145	61	Vertical Acceleration (1.8)
1	147	ALL	None
33E	149,151	ALL	None
33W	153	15	Vertical Acceleration (1.8)
	153	61	Vertical Acceleration (2.0)
+	155	ALL	None
34E	157,159	ALL	None
34W	161	17	Radar (2.1), Vertical Acceleration (1.9)
	163	5	Vertical Acceleration (1.9)
	163	9	Vertical Acceleration (1.9)
+	163	33	Vertical Acceleration (1.9)
35E	165	37	Vertical Acceleration (1.8)
	165	42	Vertical Acceleration (1.8)
V	167	ALL	None
35W	169	ALL	None
	171	5	Vertical Acceleration (1.8)
	171	13	Radar (1.9), Vertical Acceleration (1.9)
	171	21	Vertical Acceleration (2.0), Longitudinal Stress (1.9)
	171	43	Vertical Acceleration (1.9)
	171	56	Vertical Acceleration (1.9)
Y	173	ALL	None
36E	175	45	Longitudinal Stress (over saturated)
+	177	ALL	None

An additional check on the validity of the data was made by forming the ratio of the range of sample extremes (largest - smallest) to the computed rms. If the statistics of the maxima of the processes involved follow the Rayleigh distribution (as dictated by custom and conventional wisdom) this ratio should lie between 5 and 8 in 90% of all samples of 100 or 200 maxima. Excluding the over saturated stress (tape 175 Table IV) in the 198 intervals finally qualified this ratio ranged from 4.5 to about 11, depending on channel. Table V summarizes for each channel the percentage of intervals in which the ratio of range to rms lay outside the 5 to 8 acceptance range. The results look fairly consistent with the statistical assumptions. Failure of this test did not correlate with the instances of questionable extremes in Table IV.

TABLE V

SUMMARY OF INCIDENCE OF FAILURE OF RANGE/RMS TEST

Channel	Percent of Intervals in which ratio of range to rms was outside range between 5 and 8
Longitudinal Vertical Bending Stress	15%
Radar	10%
Ro11	5-1/2%
Pitch	14%
Vertical Acceleration	6%
Transverse Acceleration	6%
Tucker Meter	9%

SUMMARY OF DIGITIZED INTERVALS

TMR Log-book Data

The last stage of the sampling and digitization phase of the project was to gather together the various parameters and scale up some pertinent results from the digitization. The product of this operation was the nine tables appended; these are intended to serve as a listing of which intervals of those digitized were to be considered in subsequent analyses, as well as a summary of the currounding circumstances and of the raw digitized signal magnitudes. Each table pertains to one of the nine voyage legs, and is divided into four parts (a through d).

Parts a and b of each table contain the log-book data extracted from Reference 2. With the exception of the first column of each page, the meaning of each entry is that established by TMR. The first column

is the run number assigned to each interval during the digitization at D.L. This number is retained for identification in subsequent parts of the table.

Comparison of TMR and Raw D.L. Results for Longitudinal Stress

Part c of each table is a comparison of results from the present digitization with that at TMR. Five columns are stress results obtained at TMR, copied from Reference 2. Stresses are presented in thousands of pounds per square inch. The columns marked 6 through 8 are from the present digitization. The probable resolution of the analog tape recorder is \pm 1% of full scale. This, according to the values of cal steps established previously, corresponds roughly to \pm 0.1 kpsi so that the two decimal places shown for stresses are optimistic.

Though it was not within the objectives of the present work to produce anything having to do with recorded midship bending stress, it was felt prudent to digitize this channel and make rudimentary comparisons with the results obtained by TMR. The main reason for this decision was to increase the credibility of the data processing methods described in this report. If the present results and those of TMR, Reference 2, were to diverge by unreasonably large margins, systematic errors in the present process would be suspected to exist in the data channels of primary interest as well as the midship bending stress channel.

Unfortunately the quantities compared in part c of the tables are in a strict sense, different things. This comes about because the two data reduction procedures are different and because the portions of the data interval actually analyzed was slightly different. Figure 2 illustrates some of the differences. The top sketch represents the combined vibratory and wave induced stress actually recorded. In the present analysis the largest and smallest combined stress were extracted. Subtraction of the two yields "range of recorded extremes" as noted in the figure, and recorded in column 6 of the tables. This number is comparable in principle to that produced by a mechanical scratch gage. The largest and smallest instantaneous stress are not necessarily associated except that they were observed in the same 20.5 minute sample. The second item obtained in the present analysis was the process rms, which is the square root of the mean squared deviation from the sample mean for the entire time history analyzed. The numbers produced by the TMR analysis were derived after two filtering operations separated "wave induced stress" and "vibratory stress." Sketches of the result of this operation upon the raw stresses are indicated in Figure 2. The TMR analysis produced only one number from the vibratory part of the stress, "the maximum first mode stress." As noted in Figure 2 this is just the largest double amplitude of vibration in the record. (It should be noted also that the TMR analysis recorded zero vibratory stress if the maximum vibration double amplitude was less than 0.4 to 0.6 kpsi.) With respect to the "wave induced stress" the basic TMR analysis is a "peak to trough" analysis; that is, a series of numbers representing the swing in stress (double amplitude) from each positive maximum to the succeeding negative

FIGURE 2 SKETCH ILLUSTRATING MAXIMUM STRESS PARAMETERS

minimum (the zero crossing convention is employed). A computation of the root mean square of this series of double amplitudes yields the number given in column 4 of the part c tables. Finally, the largest wave induced double amplitude is extracted and this number appears in column 3 of the table.

Now considering a comparison of the present "range of recorded extremes" with the TMR results it should first be noted that the "range of recorded extremes" could be exactly equal to the maximum peak-trough wave induced moment or practically equal to the sum of maximum wave induced and maximum vibratory double amplitudes. Given the non-ideal characteristics of real data (the sketches in Figure 2 are fairly reallistic) the above is most unlikely. Thus, as far as correlations with the TMR results are concerned, the present range of recorded extremes would be expected to be larger than the maximum peak to trough bending stress found by TMR; and quite possibly smaller than the sum of the TMR maximum peak to trough bending stress and the TMR maximum first mode stress. At the right of the table the ratios of the corresponding columns are formed. The ratio of range to maximum peak to trough (6/3) averaged over all 198 intervals is 1.34, a reasonable result. The corresponding average ratio of range to sum of maximum bending and maximum burst (6/3+5) is 1.12, higher than was initially thought. If intervals in which the maximum burst stress is shown as zero are eliminated, this average is 1.04. It may be noted that tape over saturation (Table XIVc, Run 1945) produces quite unrealistic looking ratios. The TMR analysis may well not have included whatever produced the saturation in the present analysis.

Column 7 in the "c" part of the tables is $2\sqrt{2}$ times the scaled up stress process rms. This estimate should compare with the value given by TMR for "rms P to T stress," according to the Rayleigh assumption in common use. How well these latter two estimates compare is indicated by the ratio of column 7 to 4 shown at the right of the table. The mean value of this ratio is 1.18 over all 198 intervals. Since the D.L. digitization produces an rms which includes the effect of longitudinal first mode vibration and the TMR results should not be inclusive of vibration, this appeared to be a reasonable result. Casual examination of the ratio of column 7 to 4 indicates that the estimates are often closer together when the signal magnitude is large. However no further quantitative correlations were attempted.

Column 8 of part "c" of the tables is the scaled difference of the sample mean of the interval noted, from the sample mean of the first interval digitized in each voyage leg. This quantity should reflect the effects of ballast changes during the voyage. Direct correlation with results produced by TMR was not possible within the scope of information available for this project.

Given the present state of knowledge about how the extremes of vibratory and wave induced stress ought to combine, and the extent to which the Rayleigh assumption is generally valid for wave induced stress,

there seemed about as much change of the expectations being wrong as the various analyses. In any event, the comparisons of the two different sets of results implied that no gross systematic problems were present in the present data reduction scheme.

Magnitude of Radar, Motion and Tucker Meter Signals

Part d of the tables involves scaled up indices of the magnitude of radar, roll, pitch, vertical and transverse acceleration, and Tucker meter signals. The first index in each case is 4.0 x the rms. This is a conventional approach to the significant double amplitude (or the average of the 1/3 highest double amplitudes).

The second and third indices are the positive and negative extremes for each channel. The extremes observed for roll and pitch were corrected for electrical zero on tape before scaling. The extremes for all other items were corrected to the sample mean before scaling. As a consequence, shifts in the mean of the radar are washed out, and the one "g" bias in vertical acceleration disappears. The extreme values shown are reasonably symmetrical, and, as was pointed out in a previous section, bear a believable relationship to the rms value.

All of the scaled up values in the part d tables appear physically possible. The magnitude of pitch seems quite reasonable. That for vertical acceleration is high, but the effects of vibration are included. Roll magnitudes seem high in general, and since the transverse acceleration magnitudes include a substantial gravity component due to roll angle, the magnitude of this channel follows that of roll. In general the magnitude of the radar signal appears proportionally about as much higher than the visually observed wave and swell height as the Tucker meter signal appears lower. It should be emphasized that neither radar or Tucker signals have been corrected for anything. The radar channel in particular appears to be significantly affected by roll.

The resolution of each channel on the basis of \pm 1% of nominal full scale of the tape recorder is approximately as follows:

Radar \pm 0.5 ft

Roll \pm 0.25 degree

Pitch \pm 0.12 degree

Accelerations \pm 0.01 g

Tucker Meter \pm 0.2 ft

Thus the majority of the data in the part "d" tables appears to be substantially above the noise level.

REFERENCES

- Fain, R.A., "Design and Installation of a Ship Response Instrumentation System Aboard the SL-7 Class S.S. SEA-LAND McLEAN," SSC-238, SL-7-1, 1973, AD 780090.
- Wheaton, J.W. and Boentgen, R.R., "Second Season Results from Ship Response Instrumentation Aboard the SL-7 Containership S.S. SEA-LAND McLEAN in North Atlantic Service," SL-7-9, 1976, AD-A034162.

TABLE VI(a)

SUMMARY OF THE LOG-BOOK DATA CORRESPONDING TO INTERVALS SELECTED FOR WAVE METER DATA REDUCTION

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 32 EAST

D.L.	TAPE	TMR	TMR		TINE				SPEED	PROP	DROFT	SEA/AIR
NO.		NO.	NO.	DATE		LATITUDE	LONGITUDE	COURSE	KT.	RPM	FI.	TEMP
113	139	4	13	12-30-73	2400	40-38 N	68-17 W	079	33.0	133.8	30.00	43/50
117		5	17	12-31-73	0400	40-38 N	68-17 W	079	32.7	132.4	30.05	44/50
121	139	6	21	12-31-73	0800	40-38 N	68-17 W	079	32.7	132.4	30.11	48/48
133	139	9	33	12-31-73	2000	42-49 N	52-42 W	078	32.6	132.2	30.28	45/55
137		10	37	12-31-73	2400	42-49 N	52-42 W	078	21.1	85.7	30.28	42/42
141	139	11	41	01-01-74	0400	42-49 N	52-42 W	078	21.0	85.1	30.24	46/46
145		12	45	01-01-74	0800	42-49 N	52-42 W	078	21.4	86.7	30.20	60/49
149		13	49	01-01-74	1200	42-49 N	52-42 W	078	21.3	86.3	30.20	47/48
153		14	53	01-01-74	1400	44-39 N	40-31 W	078	21.1	85.5	30.22	47/50
157		15	57	01-01-74	1600	44-39 N	40-31 W	090	21.0	85.1	30.01	58/52
161	139	16	61	01-01-74	2000	44-39 N	40-31 W	090	21.9	88.7	30.00	46/50
201	141	17	1	01-01-74	2400	44-39 N	40-31 W	090	20.8	84.5	29.89	52/50
205	141	18	5	01-02-74	0400	44-39 N	40-31 W	090	21.0	85.3	27.81	56/50
209	141	19	9	01-02-74	08:0	44-39 N	40-31 W	075	21.4	87.0	29.85	56/52
213	141	20	13	01-02-74	1200	45-00 N	29-29 W	075	22.5	91.2	29.85	55/54
217	141	21	17	01-02-74	1600	45-00 N	29-29 W	090	24.1	97.6	29.63	56/56
221	141	22	21	01-02-74	2000	45-00 N	29-29 W	085	27.2	110.4	29.66	55/51
225	141	23	25	01-02-74	2400	45-00 N	29-29 W	085	27.1	109.9	29.53	55/52
229	141	24	29	01-03-74	0400	45-00 N	29-29 W	070	27.7	112.2	29.45	56/50
233	141	25	33	01-03-74	0800	45-00 N	29-29 W	070	27.7	112.4	29.50	54/50
237	141	26	37	01-03-74	1200	47-10 N	15-26 W	070	27.7	112.3	29.36	55/58
241	141	27	41	01-03-74	1600	47-10 N	15-26 W	070	27.7	112.3	29.33	56/54
245	141	28	45	01-03-74	2000	47-10 N	15-26 W	074	27.7	112.3	29.46	53/
249	141	29	49	01-03-74	2400	47-10 N	15-26 W	075	27.5	111.7	29.39	54/52
-	-	100.72										

TABLE VI(b)

SUMMARY OF TMR LOG-BOOK DATA CORRESPONDING TO INTERVALS SELECTED FOR WAVE METER DATA REDUCTION

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 32 EAST

		CREL WINDS		WAVE	REL		ELL->	
RUN		DIR/SPEED	WAVE	HT.	SWELL	HT L	ENGTH	
NO.	STATE	\(K1)	DIR	FT.	DIR	FT.	FT.	VISUAL WEATHER /TMR LOG-BOOK COMMENTS
113	7	169F/30	169P	5	169F	5	300	CLEAR /
117	7	159P/30	169P	6	169P	5	300	CLEAR /
121	6	169F/22	169P	5	169P	5	300	PTLY CLDY /
133	5	123P/20	168P	5	168P	5	300	CLIY /
137	4	168F/20	168F	5	168P	5	250	DCAST /
141	5	168F/20	168F	8	168P	В	250	OCAST /
145	5	123F/20	168P	10	168F	10	200	OCAST /
149	7	123F/28	123P	15	123P	12	200	OCAST /
153	7	123P/30	168P	18	168F	15	200	OCAST /
157	8	157F/35	157F	20	157P	15	200	CLDY /HEAVY ROLLS
151	8	135P/35	135P	20	135F	15	200	CLDY /
201	9	1579/40	157P	20	157P	15	200	CLDY /
205	8	157P/40	157P	12	135P	12	300	PT CLDY /
209	7	1209/40	120P	10	120P	12	300	PT CLDY /
213	9	120P/45	120F	12	120P	15	300	PT CLDY /
217	4	146F/50	157P	15	157P	15	300	CLDY /
221	8	141P/50	141F	12	141F	15	300	CLDY /ROLLING AND PITCHING
225	- 8	130F / 45	130F	12.	130P	10	400	PT CLDY /RAIN SQUALLS
229	8	92F745	115P	12	1150	10	500	CLDY /ROLLING MOD TO HEAVY
233	5	115P/35	115P	8	115F	10	500	CLDY /
237	6	115F/30	115P	10	115P	8	500	PT CLDY /
241	7	1555/30	1555	10	160P	10	500	PT CLUY /
245	6	1515/25	1515	10	1518	8	400	CFDA 1,
249	6	1505/25	165P	8	165P	8	300	PT CLDY /
								물레이 내 그 사람이 되어 나니는 나를 느껴지는 이 학생이 하는 이 없는데, 이 모양이 되었다.

TABLE VI(c)

COMPARISON OF THE RESULTS FOR MIDSHIP VERTICAL BENDING STRESS WITH CORRESPONDING RAW DIGITIZATION RESULTS AT DAVIDSON LABORATORY

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 32 EAST

	*	<	TMR	KESULTS-		*<>	<d.l.< th=""><th>DIGITIZAT</th><th>ION>*<</th><th>con-</th><th>JIN RAT</th><th><201</th></d.l.<>	DIGITIZAT	ION>*<	con-	JIN RAT	<201
	*	NO.	NO.	MAX	RMS	MAX IST*	RANGE OF	2.83X	REL *			
D.1	*	WAVE	1ST	P-T0-T	P-TC-T	MODE *	RECORDED	(SAMPLE	MEAN *	(7)	(6)	(6)
RUN	*	INDUCED	MODE	STRESS	STRESS	STRESS*	EXTREMES	RMS)	STRESS*	1	/	/
NO.	*	CYCLES	BURSTS	KPSI	KPSI	KPSI *	KPS]	KPSI	KPSI *	(4)	(3+5)	(3)
	*	(1)	(2)	(3)	(4)	(5) *	(6)	(7)	(8) *			
	*					*			*			
113	*	83	0	3.55	1.63	0.00 *	4.95	2.06	-0.65 *	1.27	1.39	1.39
117	*	66	0	4.23	1.71	0.00 #	4.85	2.11	-0.82 *	1.23	1.15	1.15
121	*	57	0	3.79	1.77	0.00 *	6.47	2.95	-0.92 *	1.67	1.70	1.70
133	*	91	0	3.99	1.74	0.00 *	4.66	1.89	-0.52 ×	1.09	1.17	1.17
1.37	*	105	0	4.26	1.42	0.00 *	4.62	1.66	-0.96 *	1.17	1.08	1.08
141	*	81	0	3.04	1.38	0.00 *	5.54	1.49	-1.19 *	1.08	1.82	1.82
145	*	76	0	5.93	2.98	0.00 *	6.31	2.97	-1.19 *	1.00	1.06	1.06
149	*	65	0	8.50	4.14	0.00 *	12.50	5.08	-0.17 *	1.23	1.47	1.47
153	*	55	1	13.41	6.07	0.58 *	11.40	5.55	-0.10 *	0.91	0.81	0.85
157	*	58	1	14.80	7.18	0.57 *	15.70	7.02	0.04 *	0.98	1.02	1.06
161	*	55	1	12.48	5.96	0.63 *	13.56	6.40	-0.10 *	1.07	1.03	1.09
201	*	57	C	12.30	7.02	0.00 *	14.60	7.36	-0.12 *	1.05	1.19	1.19
205	*	60	1	10.40	5.75	0.69 #	11.46	5.94	0.11 *	1.03	1.03	1.10
209	*	68	17	10.69	5.10	1.64 *	14.56	6.24	-0.09 *	1.22	1.18	1.36
213	*	58	8	12.89	7.61	1.11 *	15.25	7.91	0.06 *	1.04	1.09	1.18
217	*	61	11	15.80	5.93	0.90 *	18.94	7.10	0.22 *	1.20	1.13	1.20
221	*	56	15	11.63	6.32	1.09 *	15.64	7.11	-0.41 *	1.12	1.23	1.34
225	*	44	0	11.43	6.20	0.00 *	16.19	7.03	-0.59 *	1.14	1.42	1,42
229	*	48	7	10.95	6.26	0.83 *	14.33	6.72	-0.55 *	1.07	1.22	1.31
233	*	43	2	10.39	5.26	0.60 *	10.91	5.31	-0.59 *	1.01	0.49	1.05
237	*	44	0	8.01	4.78	0.00 *	10.26	5.58	-0.41 *	1.17	1.28	1.28
241	*	46	0	9.04	4.47	0.00 *	9.51	4.84	-0.54 *	1.08	1.05	1.05
245	*	46	1	13.80	5.18	0.57 *	13.44	5.68	-0.68 *	1.10	0.94	0.97
249	*	62	3	6.98	3.39	0.74 *	8.78	4.14	-0.94 *	1.22	1.14	1.26

TABLE VI(d)

SUMMARY OF RAW DIGITIZATION RESULTS FOR RADAR RANGE ROLL, PITCH, DECK HOUSE ACCELERATIONS, AND TUCKER METER

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 32 EAST

< RADAR>< ROLL>< PITCH> <vert accel-=""><lat< th=""><th>LAT</th><th colspan="5">ACCEL>< TUCKER></th></lat<></vert>										LAT	ACCEL>< TUCKER>						
D.L.	4.0	RECORDED	4.0	4.0 RECORDED		4.0 RECORDED		ORDED	4.0 RECORDED		4.0	RECORDED		4.0	RECORDED		
RUN	(RMS)	EXTREMES	(RMS)	EXTREMES		(RMS)	EXTREHES		(RMS)	EXTREMES		(RMS)	EXTREMES		(RMS)	EXTREMES	
NO.	FT	FT FT	DEG	DEG	DEG	DEG	DEG	DEG	(G)	(6)	(G)	(G)	(G)	(G)	FT	FT	FT
113	24.	2417.	9.9	7.	-11.	0.4	-0.2	-1.1	0.08	0.1	-0.1	0.22	0.2	-0.2	3.	2.	-3.
117	21.	1618.	8.6	6.	-5.	0.4	-0.2	-().9	0.07	0.1	-0.1	0.19	0.1	-0.1	2.	2.	-2.
121	23.	1816.	9.4	7.	-7.	0.4	-0.1	-0.8	0.07	0.1	-0.1	0.20	0.2	-0.1	2.	2.	-2.
133	17.	1714.	6.2	5.	-5.	0.5	0.1	-0.9	0.10	0.1	-0.1	0.15	0.1	-0.1	3.	2.	-2.
137	16.	1413.	5.2	3.	-5.	0.6	0.0	-().9	0.11	0.1	-0.1	0.13	0.1	-0.1	2.	2.	-2.
141	16.	1414.	6.6	4.	-6.	0.5	0.1	-0.8	0.10	0.1	-0.1	0.15	0.1	-0.1	2.	2.	-2.
145	20.	1518.	13.6	12.	-12.	0.5	0.1	-0.8	0.09	0.1	-0.1	0.32	0.3	-0.3	4.	3.	-3.
149	28.	2121.	21.7	17.	-15.	0.7	0.3	-0.9	0.10	0.1	-0.1	0.49	0.4	-0.4	5.	5.	-4.
153	30.	2725.	21.3	16.	-14.	0.7	0.2	-0.8	0.08	0.1	-0.1	0.46	0.3	-0.3	5.	5.	-4.
157	33.	2832.	24.7	18.	-18.	0.7	0.2	-0.9	0.12	0.1	-0.1	0.55	0.4	-0.4	7.	6.	-6.
161	32.	2823.	22.2	17.	-17.	0.8	0.3	-0.9	0.11	0.1	-0.1	0.49	0.4	-0.4	7.	6.	-6.
201	35.	3035.	23.1	21.	-16.	0.8	0.5	-0.9	0.11	0.1	-0.1	0.51	0.4	-0.5	8.	7.	-5.
205	33.	3528.	26.4	18.	-18.	0.7	0.2	-0.9	0.12	0.1	-0.1	0.59	0.4	-0.4	9.	8.	-7.
209	29.	2426.	25.0	23.	-14.	0.8	0.5	-0.7	0.18	0.2	-0.1	0.55	0.3	-0.5	9.	7.	-7.
213	32.	3128.	26.8	23.	-16.	. 0.9	0.4	-0.9	0.17	0.2	-0.2	0.63	0.4	-0.5	10.	9.	-7.
217	30.	2426.	20.3	20.	-12.	0.8	0.5	-1.0	0.17	0.2	-0.1	0.47	0.3	-0.4	9.	7.	-7.
221	33.	2624.	24.1	21.	-13.	0.8	0.5	-1.0	0.16	0.2	-0.1	0.56	0.4	-0.5	8.	7.	-8.
225	31.	2525.	17.0	17.	-11.	0.6	0.4	-0.9	0.11	0.1	-0.1	0.38	0.3	-0.4	6.	5.	-4.
229	26.	2424.	21.4	14.	-12.	0.8	0.3	-1.0	0.12	0.1	-0.1	0.47	0.3	-0.3	7.	6.	-5.
233	24.	1819.	16.1	13.	-12.	0.6	0.2	-0.8	0.10	0.1	-0.1	0.36	0.3	-0.3	6.	4.	-4.
237	23.	2421.	17.4	15.	-12.	0.7	0.6	-0.9	0.10	0.1	-0.1	0.36	0.2	-0.3	5.	5.	-4.
241	25.	2020.	16.6	10.	-14.	0.7	0.2	-0.9	0.11	0.1	-0.1	0.36	0.3	-0.3	5.	3.	-4.
245	26.	2120.	15.0	9.	-16.	0.9	0.5	-1.0	0.11	0.1	-0.1	0.32	0.3	-0.3	5.	4.	-4.
249	31.	3420.	16.1	8.	-19.	0.9	0.2	-1.6	0.11	0.1	-0.1	0.35	0.3	-0.3	4.	3.	-2.

TABLE VII(a)

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 32 WEST

D.L.	TMR	1 MR	THR										
RUN	TAFE	INDX	INTU		TIME				SPEED	PROP	DRAFT	SEA/AIR	
NO.	ND.	NO.	NO.	DATE	(GMT)	LATITUDE	LONGITUDE	COURSE	KT.	RPM	FT.	TEMP	
309	143	3	9	01-08-74	1500	51-39 N	02-07 E	260	31.5	127.6	29.38	48/44	
313	143	4	13	01-08-74	1710	51-39 N	02-07 E	260	31.5	127.6	29.38	48/44	
337	143	9	36	01-09-74	1200	45-08 N	13-30 W	233	32.6	132.0	29.87	45/55	
341	143	10	40	01-09-74	1600	45-08 N	13-30 W	233	32.7	132.4	29.80	55/58	
345	143	11	44	01-09-74	2000	45-08 N	13-30 W	267	32.3	131.0	29.69	55/52	
349	143	12	48	01-09-74	2400	45-08 N	13-30 W	266	31.8	129.0	29.40	54/54	
357	143	15	58	01-10-74	1200	43-29 N	24-51 W	245	11.0	44.9	29.62	54/54	
361	143	15	60	01-10-74	1200	43-29 N	24-51 W	245	11.0	44.9	29.62	54/54	
401	145	17	1	01-10-74	2000	43-29 N	24-51 W	250	8.7	35.3	29.84	45/50	
405	145	18	5	01-10-74	2400	43-29 N	24-51 W	250	10.9	44.3	29.63	55/48	
407	145	19	9	01-11-74	0400	43-29 N	24-51 W	240	26.1	105.9	28.90	55/48	
413	145	20	13	01-11-74	0800	43-29 N	24-51 W	240	11.0	44.9	29.46	57/52	
421	145	22	21	01-11-74	1600	41-31 N	29-25 W	270	12.4	50.3	29.70	58/51	
425	145	23	25	01-11-74	2000	41-31 N	29-25 W	270	16.2	65.7	29.88	56/44	
429	145	24	29	01-11-74	2400	41-31 N	29-25 W	270	18.7	75.9	29.89	57/46	
437	145	26	37	01-12-74	0800	41-31 N	29-25 W	271	28.4	115.1	29.63	58/52	
441	145	27	41	01-12-74	1200	41-07 N	40-08 W	245	32.5	131.9	29.64	58/	
450	145	29	50	01-12-74	1630	41-07 N	40-08 W	245	28.1	122.0	29.66	61/53	
453	145	30	53	01-12-74	2000	41-07 N	40-08 W	269	32.5	131.8	29.71	59/49	
461	145	32	61	01-13-74	0400	41-07 N	40-08 W	272	29.6	119.9	29.40	63/59	
465	145	33	65	01-13-74	0800	41-07 N	40-08 W	272	32.6	132.1	29.64	50/50	
507	147	36	7	01-13-74	2000	40-17 N	56-29 W	274	31.9	129.3	30.14	61/38	
512	147	37	12	01-13-74	2400	40-17 N	56-29 W	272	28.5	115.5	30.30	65/35	
513	147	38	13	01-14-74	0400	40-17 N	56-29 W	274	32.8	132.9	30.42	61/31	

TABLE VII(b)

SUMMARY OF TMR LOG-BOOK DATA CORRESPONDING TO INTERVALS SELECTED FOR WAVE METER DATA REDUCTION

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 32 WEST

- D.L.		KREL WINDS	REL	WAVE	REL.		ELL->	
RUN		DIR/SPEED	WAVE	HT.	SWELL		ENGTH	
NO.	STATE	/(KT)	DIR	FT.	DIR	FT.	FT.	VISUAL WEATHER /THR LOG-BOOK COMMENTS
309	10	35P/55	35P	10	35P	8	250	OCAST /
313	10	35P/55	35F	10	35P	10	400	DCAST /
337	9	145/45	8P	15	8F	10	500	CLDY /
341	7	30F/40	30P	15	8P	10	500	CLDY /
345	8	64F/45	64F	10	64P	10	500	CLDY /
349	9	41F/50	41F	15	41F	10	500	OCAST /
359	9	25/55	25	30	255	15	500	CLDY RAIN SQUALLS /
361	9	25/55	25	30	258	15	500	CLDY RAIN SQUALLS /
401	9	205/50	205	25	205	20	500	DEAST RAIN /
405	7	2F/55	2F	25	2F	20	500	OCAST /
409	12	37P/60	37F	35	37P	20	500	UCAST /
413	11	15P/60	15P	35	305	20	500	OCAST RAIN /
421	11	455/60	455	30	455	25	400	PT CLDY /
425	10	455/60	455	20	455	25	400	DCAST /
429	10	455/60	0	20	0	25	500	OCAST RAIN SQUALLS /
437	9	91F/50	91P	15	91P	20	400	DCAST /
441	10	25/50	25	25	25	20	400	OCAST /
450	9	25/45	25	25	25	20	400	OCAST /
453	9	44P/45	44P	15	44P	20	400	OCAST /IN AUTO OPERATION
461	7	47F/40	47P	15	2P	12	500	OCAST /
465	10	435/50	435	25	435	20	500	DEAST /HEAVY RAIN SQUALLS
507	9	415/45	415	15	415	20	400	DCAST /HEAVY HAIL
512	9	435/45	435	10	435	20	400	RAIN SNOW /
513	4	419/35	415	4	415	8	300	OCAST /

TABLE VII(c)

COMPARISON OF TMR RESULTS FOR MIDSHIP VERTICAL BENDING STRESS WITH CORRESPONDING RAW DIGITIZATION RESULTS AT DAVIDSON LABORATORY

SEA LAND MC LEAM : 1973-1974 WINTER SEASON : VOYAGE 32 WEST

	*	<	THR	RESULTS-		*<>	<d.l.< th=""><th>DIGITIZAT</th><th>IDN>*<</th><th>COL</th><th>JMN RAT</th><th>105></th></d.l.<>	DIGITIZAT	IDN>*<	COL	JMN RAT	105>
	*	NO.	.011	MAX	RMS	MAX 15T*	RANGE OF	2.83X	REL *			
D.L.	*	WAVE	151	P-T0-T	P-TO-T	MODE *	RECORDED	(SAMPLE	MEAN *	(7)	(6)	(6)
RUN	*	INDUCED	MODE	STRESS	STRESS	STRESS*	EXTREMES	RMS)	STRESS*	1	1	/
NO.	*	CYCLES	BURSTS	KPSI	KFSI	KPSI *	KPSI	KPSI	KPSI *	(4)	(3+5)	(3)
	*	(1)	(2)	(3)	(4)	(5) *	(6)	(7)	(8) *			
	*					*			*			
309	*	153	9	3.55	1.76	1.29 *	6.56	2.11	-0.19 *	1.20	1.36	1.85
313	*	212	62	11.02	3.99	7.58 *	10.98	4.19	-0.10 *	1.05	0.59	1.00
337	*	186	34	6.73	2.99	2.66 *	9.45	3.28	-0.58 *	1.10	1.01	1.40
341	*	179	60	8.33	3.43	4.97 *	13.83	3.53	-0.33 *	1.03	1.04	1.66
345	*	199	62	9.83	4.22	3.19 *	12.79	4.70	-0.24 *	1.11	0.98	1.30
349	*	142	65	14.51	7.25	4.16 *	19.02	7.49	1.52 *	1.03	1.02	1.31
359	*	109	49	17.32	10.06	2.33 *	23.11	10.46	-0.18 *	1.04	1.18	1.33
361	*	113	50	19.98	9.46	2.75 *	21.83	9.56	-0.08 *	1.01	0.96	1.09
401	*	113	9	19.36	7.60	3.28 *	21.07	7.88	-0.23 *	1.04	0.93	1.09
405	*	117	6	15.97	6.74	2.31 *	19.51	6.57	-0.35 *	0.97	1.07	1.22
409	*	158	37	13.71	4.70	3.86 *	16.80	4.96	-1.71 *	1.05	0.96	1.23
413	*	135	27	19.15	7.25	3.70 *	21.18	7.10	-0.48 *	0.98	0.93	1.11
421	*	132	28	17.53	7.54	3.61 *	17.84	7.16	-0.13 *	0.95	0.84	1.02
425	*	140	29	16.43	6.77	4.75 *	21.44	6.60	-0.27 *	0.97	1.01	1.30
429	*	150	47	14.39	6.34	4.42 *	17.49	6.42	-0.96 *	1.01	0.93	1.22
437	*	173	43	15.35	5,35	8.98 *	22.11	5.69	-1.37 *	1.06	0.91	1.44
441	*	197	23	6.63	3.30	3.25 *	11.59	3.93	-1.00 *	1.19	1.17	1.75
450		183	29	11.34	5.37	4.07 *	15.90	6.07	-0.10 *	1.13	1.03	1.40
453		208	23	7.64	3.40	3.43 *	14.46	4.08	-0.62 *	1.20	1.31	1.89
461		179	31	12.17	5.03	5.38 *	17.84	5.25	0.57 *	1.04	1.02	1.47
465	*	199	11	7.68	3.55	3.05 *	11.12	4.09	-0.44 *	1.15	1.04	1.45
507	*	210	11	10.09	3.67	3.20 *	12.44	4.48	-0.36 *	1.22	0.94	1.23
512	*	198	23	8.34	4.10	5.35 *	14.40	4.39	0.34 *	1.07	1.05	1.73
513	*	230	6	6.10	2.92	1.84 #	10.40	3.74	-0.10 *	1.28	1.31	1.70

TABLE VII(d)

SUMMARY OF RAW DIGITIZATION RESULTS FOR RADAR RANGE ROLL, PITCH, DECK HOUSE ACCELERATIONS, AND TUCKER METER

SEA LAND MC LEAM : 1973-1974 WINTER SEASON : VOYAGE 32 WEST

	R	ADAR	>	RI	PLL .	>	P	ITCH	>	VER	T ACC	CEL->	LAT	ACCE	EL><	TU	CKER	>
D.L.	4.0	KECO	RDED	4.0	REC	DRDED	4.0	RECO	DROED	4.0	RECO	DRDED	4.0	RECO	DEDED	4.0	REC	DRDED
RUN	(RMS)	EXTR	REMES	(RMS)	EXT	REMES	(RMS)	EXT	REMES	(EMS)	EXT	REMES	(RMS)	EXT	REMES	(RMS)	EXT	REMES
NO.	FT	FT	FT	DEG	DEG	DEG	DEG	DEG	DEG	(G)	(G)	(G)	(6)	(G)	(G)	FT	FT	FT
309	15.	13.	-13.	5.0	7.	-2.	0.6	0.2	-1.2	0.16	0.2	-0.1	0.15	0.2	-0.1	2.	2.	-2.
313	28.	28.	-39.	3.2	4.	-4.	1.3	0.5	-1.7	0.29	0.2	-0.2	0.11	0.2	-0.1	3.	3.	-3.
337	34.	28.	-23.	7.3	6.	-7.	1.7	0.9	-1.8	0.39	0.3	-0.3	0.21	0.2	-0.2	7.	5.	-6.
341	33.	32.	-41.	4.8	4.	-3.	1.8	1.2	-2.1	0.41	0.5	-0.4	0.15	0.1	-0.1	6.	5.	-5.
345	37.	29.	-34.	4.9	8.	-2.	2.1	1.2	-2.1	0.46	0.4	-0.3	0.16	0.1	-0.2	5.	4.	-5.
349	54.	41.	-38.	5.9	7.	-5.	2.2	2.0	-1.9	0.49	0.4	-0.4	0.19	0.2	-0.2	7.	5.	-6.
359	68.	59.	-48.	23.7	19.	-21.	1.9	2.0	-1.6	0.44	0.3	-0.4	0.64	0.6	-0.5	17.	11.	-11.
361	58,	45.	-50.	15.9	12.	-12.	2.0	2.0	-1.8	0.43	0.3	-0.4	0.43	0.3	-0.3	13.	10.	-11.
401	60.	69.	-50.	23.3	15.	-19.	1.7	1.9	-1.5	0.38	0.3	-0.4	0.62	0.5	-0.4	13.	9.	-10.
405	51.	50.	-35.	18.7	18.	-17.	1.7	1.6	-1.6	0.40	0.3	-0.3	0.50	0.5	-0.5	13.	9.	-10.
409	51.	56.	-48.	14.1	15.	-15.	2.4	2.3	-2.1	0.55	0.4	-0.6	0.39	0.4	-0.5	12.	11.	-11.
413	62.	45.	-53.	17.0	13.	-15.	2.0	2.1	-1.8	0.48	0.4	-0.5	0.47	0.4	-0.4	11.	8.	-8.
421	53.	41.	-51.	7.6	5.	-7.	1.9	1.9	-1.8	0.43	0.3	-0.4	0.21	0.2	-0.2	8.	6.	-6.
425	59.	54.	-54.	8.4	6.	-7.	2.2	2.2	-1.9	0.52	0.4	-0.5	0.23	0.3	-0.2	10.	11.	-8.
429	61.		-57.	8.5		-7.	2.6		-2.2			-0.5			-0.2	9.	7.	-7.
437	54.	51.	-54.	7.6	7.		2.6		-2.3	100	15 7 77	-0.5			-0.2	8.	6.	-8.
441	38.	32.	-48.	7.8	6.	-9.	2.0		-2.1	0.44	0.4	-0.3			-0.2	7.	5.	-6.
450	47.	35.	-52.	8.8	6.	-7.	2.4		-2.2	0.51	0.4	-0.4			-0.2	6.	4.	-5.
453	34.	32.	-42.	6.6	7.	-4.	1.8		-2.6			-0.3			-0.2	5.	4.	-4.
461	43.	35.	-42.	5.2	4.	-4.	2.3	1.7	-2.1			-0.4	0.15			5.	3.	-5.
465	32.		-28.	5.8	3.	-7.	1.8		-2.2		7.7	-0.3	0.15			4.	3.	-4.
507	33.	24.	-42.	8.5	5.	-8.	1.6		-2.0	0.34	0.3	-0.3	0.21	0.2	-0.2	4.	3.	-3.
512	32.	27.	-28.	6.3	3.	-9.	1.9	0.9	-2.1	0.42	0.4	-0.3	0.17	0.1	-0.2	4.	3.	-4.
513	25.	23.	-19.	5.1	2.	-6.	1.1	0.5	-1.4	0.25	0.2	-0.2	0.14	0.1	-0.1	3.	2.	-3.

TABLE VIII(a)

SUMMARY OF TMR LOG-BOOK DATA CORRESPONDING TO INTERVALS SELECTED FOR WAVE METER DATA REDUCTION

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 33 EAST

D.L.	TMR	TMR	TMR									
RUN	TAFE	INDX	INTU		TIME				SPEED	FROF	DRAFT	SEA/AIR
NO.	NO.	NO.	NO.	DATE	(GMT)	LATITUDE	LONGITUDE	COURSE	KT.	RPM	FT.	TEMP
601	149	1	1	01-17-74	1600	40-20 N	70-19 W	090	32.2	130.4	30.04	48/35
605	149	2	5	01-17-74	2000	40-20 N	70-19 W	079	32.3	131.0	30.01	47/36
609	149	3	9	01-17-74	2400	40-20 N	70-19 W	079	32.1	130.0	30.05	48/24
613	149	4	13	01-18-74	0400	40-20 N	70-19 W	079	29.7	120.6	30.01	65/20
621	149	6	21	01-18-74	1200	40-20 N	70-19 W	078	32.5	131.9	29.96	60/29
625	149	7	25	01-18-74	1600	42-17 N	55-25 W	078	32.4	131.3	29.93	54/34
629	149	8	29	01-18-74	2000	42-17 N	55-25 W	078	32.3	131.0	29.80	48/34
633	149	9	33	01-18-74	2400	42-17 N	55-25 W	078	32.4	131.3	29.88	34/33
637	149	10	37	01-19-74	0400	42-17 N	55-25 W	077	32.5	131.6	29.80	48/33
641	149	11	41	01-19-74	0800	42-17 N	55-25 W	077	32.5	131.9	29.75	40/34
645	149	12	45	01-19-74	1100	42-17 N	55-25 W	077	32.2	130.7	29.63	54/45
649	149	13	49	01-19-74	1310	44-30 N	39-55 W	077	32.2	130.7	29.63	54/45
653	149	14	53	01-19-74	1530	44-30 N	39-55 W	078	32.4	131.5	29.67	55/47
657	149	15	57	01-19-74	1740	44-30 N	39-55 W	078	32.4	131.5	29.67	55/47
702	151	17	2	01-19-74	2000	44-30 N	39-55 W	078	32.5	131.7	29.81	65/48
705	151	18	5	01-19-74	2400	44-30 N	39-55 W	078	32.4	131.4	29.83	55/43
709	151	19	9	01-20-74	0400	44-30 N	39-55 W	078	32.5	131.6	29.88	53/49
713	151	20	13	01-20-74	0800	44-30 N	39-55 W	078	32.6	132.1	30.00	53/51
717	151	21	17	01-20-74	1200	46-57 N	23-30 W	079	32.4	131.3	30.00	53/58
721	151	22	21	01-20-74	1600	46-57 N	23-30 W	079	32.7	132.6	30.00	52/52
725	151	23	25	01-20-74	2000	46-57 N	23-30 W	077	32.7	132.5	30.07	52/52
729	151	24	29	01-20-74	2400	46-57 N	23-30 W	.077	32.0	129.6	29.89	52/50
733	151	25	33	01-21-74	0400	46-57 N	23-30 W	077	32.3	131.1	29.95	53/54
737	151	26	37	01-21-74	0800	46-57 N	23-30 W	077	32.9	133.4	30.10	52/54

TABLE VIII(b)

SUMMARY OF TMR LOG-BOOK DATA CORRESPONDING TO INTERVALS SELECTED FOR WAVE METER DATA REDUCTION

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 33 EAST

D.L.		KEL WIND>	REL	WAVE	REL	<-5W	ELL->	
RUN	SEA	DIR/SPEED	WAVE	HT.	SWELL	HT L	ENGTH	
NO.	STATE	/(KT)	DIR	FT.	DIR	FT.	FI.	VISUAL WEATHER /THR LOG-BOOK COMMENTS
601	6	45F/25	90P	4	90F	10	400	PT CLDY /
603	7	79F/30	79F	8	79P	10	400	OCAST /SHIP RIDING EASILY
609	8	79P/35	79F	10	79F	12	400	OCAST /
613	8	79F/38	79P	10	79P	12	400	OCAST /
621	7	78F/30	78F	12	78F	12	400	CLDY /
625	8	100F/35	78F	20	78F	12	400	CLDY /
629	8	145P/35	145P	20	123P	12	500	CLDY /SHIPPING WATER OVER BOW
633	8	123P/35	123P	20	123P	12	500	CLDY /
637	9	122F/35	122P	20	122P	15	500	DCAST /
641	8	122P/35	122P	20	122P	15	500	CLDY /
645	9	167F/40	144P	20	144F	15	500	OCAST /
649	9	167F/40	144F	20	144P	15	500	DCAST /SAW 33 DEG ROLL
653	10	145P/45	145P	25	145P	15	600	PT CLDY /MANUAL OPERATION
657	10	145P/45	145P	20	45P	15	600	PT CLDY /
702	7	145P/35	145P	12	145F	12	600	PT CLDY /BACK IN AUTO OPERATION
705	6	145P/25	145P	8	145F	10	400	PT CLUY /
709	6	123F/25	123P	8	145P	10	400	CLDY /
713	5	168F/25	168P	4	168F	10	400	PT CLDY /
717	5	169F/20	169P	4	169F	8	300	PT CLDY /
721	4	124P/20	124P	4	1695	8	300	PT CLDY /
725	4	167F/20	167P	4	167F	6	300	PT CLDY /
729	6	77P/20	77P	6	77F	6	300	DCAST /
733	6	355/20	355	6	355	4	300	OCAST /
737	5	585/15	585	6	585	4	300	CLDY /

TABLE VIII(c)

COMPARISON OF TMR RESULTS FOR MIDSHIP VERTICAL BENDING STRESS WITH CORRESPONDING RAW DIGITIZATION RESULTS AT DAVIDSON LABORATORY

SEA LAND MC LEAM : 1973-1974 WINTER SEASON : VOYAGE 33 EAST

	*	<	IMR	RESULTS-		*	D.L.	DIGITIZAT	100>*<	cor.	JHN RAT	105>
	*	NO.	NO.	XAM	EMS	MAX 15T*	RANGE OF	2.83X	REL #			
D.L.	*	WAVE	151	P-10-1	P-10-T	MUDE *	RECORDED	(SAMPLE	MEAN *	(7)	(6)	(6)
RUN	*	INDUCED	MODE	STRESS	STRESS	STRES5*	EXTREMES	RMS)	STRESS*	/	1	1
NO.	*	CYCLES	BURSTS	KPSI	KPSI	KPSI *	KPSI	KPS1	KFS1 *	(4)	(3+5)	(3)
	*	(1)	(2)	(3)	(4)	(5) *	(6)	(7)	(8) *			
	*					*			*			
601	*	215	16	2.29	1.01	1.19 *	3.54	1.40	-0.00 *	1.38	1.02	1.55
605	*	156	36	3.75	2.00	1.52 #	6.09	2.29	0.11 *	1.14	1.16	1.63
609	*	96	36	6.73	3.40	2.61 *	7.88	3.38	0.10 *	0.99	0.84	1.17
613	*	97	51	7.83	3.41	2.27 *	10.41	4.26	0.04 *	1.25	1.03	1.33
621	*	73	38	9.69	4.50	1.57 *	12.89	5.75	-0.34 *	1.28	1.14	1.33
625	*	66	31	10.05	4.92	1.4/ *	11.75	5.95	-0.56 *	1.21	1.02	1.17
629	*	58	17	10.33	4.77	1.36 #	12,22	5.58	-0.16 *	1.17	1.05	1.18
633	*	61	18	12.88	5.14	1.55 *	14.91	6.91	-0.24 *	1.34	1.03	1.16
637	*	52	19	13.83	6.78	1.12 *	16.72	7.81	-0.05 *	1.15	1.13	1.22
641	*	59	10	9.69	4.28	0.97 *	14.64	6.52	0.01 *	1.52	1.37	1.51
645	*	53	21	14.47	5.99	1.15 *	17.84	8.04	0.13 *	1.34	1.14	1.23
649	*	60	36	11.41	5.80	1.44 *	17.04	7.27	0.02 *	1.25	1.33	1.49
653	*	51	23	17.56	6.119	1.47 *	15.90	8.02	-0.27 *	1.16	0.84	0.91
657	*	47	18	13.01	7.06	1.41 *	16.35	7.60	0.10 *	1.08	1.13	1.26
702	*	74	0	9.02	3.84	0.00 *	15.11	6.28	-0.21 *	1.64	1.67	1.67
705	*	44	1	12.29	6.02	0.79 *	14.17	6.52	0.01 *	1.08	1.08	1.15
709	*	48	3	9.25	4.38	0.85 *	15.09	6.57	0.37 *	1.50	1.49	1.63
713	*	40	2	13.68	5.87	0.85 *	13.66	7.06	0.15 *	1.20	0.94	1.00
717	*	49	1	12.44	4.35	0.85 *	13.34	6.11	1.13 *	1.41	1.00	1.07
721	*	41	1	9.82	4.11	0.79 *	11.59	5.76	0.71 *	1.40	1.09	1.18
725	*	44	14	10.85	3.62	0.97 *	8.25	3.94	0.26 *	1.09	0.70	0.76
729	*	62	16	6.65	2.27	1.01 *	8.31	3.78	0.50 *	1.67	1.09	1.25
733	*	58	3	4.58	1.92	0.87 *	6.72	3.29	0.38 *	1.72	1.23	1.47
737	*	37	0	4.75	2.21	0.00 *	5.52	2.62	0.72 *	1.19	1.16	1.16

TABLE VIII(d)

SUMMARY OF RAW DIGITIZATION RESULTS FOR RADAR RANGE ROLL, PITCH, DECK HOUSE ACCELERATIONS, AND TUCKER METER

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 33 EAST

	R	ADAR	>	RI	DLL -	>	(P	ITCH	>	CVER	T AC	CEL->	CLAT	ACCI	EL><	TU	CKER	>
D.L.	4.0	RECE	RDED	4.0	RECO	RDED	4.0	RECI	DRDED	4.0	REC	DRIED	4.0	REC	DRIVED	4.0	RECO	DRDED
RUN	(RMS)	EXTR	EMES	(RMS)	EXTR	EMES	(RMS)	EXIL	REMES	(RMS)	EXT	REMES	(RMS)	EXT	REMES	(RMS)	EXT	REMES
NO.	FT	FT	FT	DEG	DEG	DEG	DEG	DEG	DEG	(G)	(G)	(G)	(6)	(G)	(G)	FT	FT	FT
601	11.	9.	-9.	3.1	6.	0.	7		-1.0	0.09			0.09			2.	2.	-2.
605	18.	14.	-21.	6.9	10.	-3.	0.9	0.4	-1.3	0.20	0.2	-0.2			-0.2	3.	3.	-3.
609	27.	26.	-22.	18.5	18.	-9.	0.7	0.2	-1.1	0.18					-0.4	4.	4.	-3.
613	29.	27.	-28.	19.8	20.	-11.	1.3	1.1	-1.7			-0.3	0.45			6.	8.	-6.
621	36.	33.	-28.	27.8	25.	-12.	1.1	0.8	-1.4	0.27			0.63			9.	9.	-7.
625	36.	29.	-36.	24.9	22.	-15.	1.0	0.3	-1.3	0.21	0.2	-0.2	0.55			8.	8.	-6.
629	34.	29.	-23.	24.7	23.	-12.	0.8	0.4	-1.1	0.15	0.2	-0.1	0.55	0.4	-0.4	8.	9.	-6.
633	39.	39.	-29.	29.4	23.	-16.	1.0	0.7	-1.0	0.16	0.2	-0.1	0.68			9.	8.	-7.
637	44.	46.	-33.	29.0	22.	-15.	1.1	0.7	-1.1	0.16	0.1	-0.1	0.63	0.4	-0.5	9.	10.	-7.
641	42.	44.	-34.	21.2	16.	-13.	1.0	0.6	-1.3	0.22	0.2	-0.2	0.46	0.3	-0.3	7.	6.	-6.
645	52.	49.	-32.	28.2	22.	-15.	1.0	0.5	-1.2	0.20	0.2	-0.2	0.61	0.4	-0.4	7.	7.	-5.
649	48.	42.	-40.	25.9	21.	-14.	1.0	0.4	-1.2	0.21	0.2	-0.2	0.60	0.4	-0.5	10.	9.	-8.
653	56.	45.	-41.	32.2	22.	-20.	1.0	0.5	-1.2	0.18	0.1	-0.2	0.68	0.5	-0.5	11.	9.	-8.
657	53.	49.	-42.	31.5	23.	-17.	1.0	0.3	-1.2	0.17	0.2	-0.1	0.71	0.5	-0.5	11.	10.	-7.
702	50.	53.	-42.	23.1	16.	-17.	1.1	0.5	-1.3	0.24	0.2	-0.2	0.48	0.4	-0.4	18.	10.	-10.
705	49.	34.	-46.	21.6	13.	-14.	1.1	0.6	-1.4	0.22	0.2	-0.2	0.45	0.3	-0.3	18.	10.	-9.
709	49.	43.	-36.	23.1			0.9	0.3	-1.3	0.16	0.2	-0.2	0.46	0.4	-0.4	20.	10.	-10.
713	50.	50.	-33.	21.1			0.8	0.2	-1.1	0.14	0.1	-0.1	0.44	0.4	-0.3	19.	11.	-10.
717	43.		-29.	18.7			0.8		-1.0	0.13	0.1	-0.1	0.41	0.3	-0.3	19.	10.	-10.
721	44.		-29.	21.4			0.7	0.2	-1.0	0.09	0.1	-0.1	0.43	0.3	-0.3	23.	11.	-11.
725	23.		-19.	13.2			0.7		-0.9	0.09	0.1	-0.1	0.28	0.2	-0.2	8.	6.	-4.
729	22.		-16.	9.7		-11.	0.6		-1.0	0.08	0.1	-0.1	0.21	0.2	-0.2	13.	10.	-10.
733	20.		-15.	10.4	8.	-9.	0.7		-1.0	0.07	0.1	-0.1	0.21	0.2	-0.2	12.	10.	-8.
737	15.		-14.	9.6	9.	-7.	0.6	-	-0.9	0.06	0.1	-0.0	0.20	0.1	-0.2	9.	6.	-7.
, 0,					100						-					100	-	

TABLE IX(a)

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 33 WEST

D.L. RUN	TAPE	THR	TMR		TIME				SPEED	FROF	DRAFT	SEA/AIR
NO.	NO.	NO.	NO.	DATE	(GMT)	LATITUDE	LONGITUDE	COURSE	KT.	RPM	FT.	TEMP
815	153	4	15	01-24-74	0400			245	32.3	131.0	30.10	50/47
817	153	5	17	01-24-74	0800			245	32.3	131.0	30.19	51/49
822	153	6	22	01-24-74	1200	47-33 N	11-56 W	247	32.2	130.6	30.20	52/50
825	153	7	25	01-24-74	1600	47-33 N	11-56 W	248	33.3	135.1	30.10	53/52
829	153	8	29	01-24-74	2000	47-33 N	11-56 W	246	32.4	131.4	30.15	52/50
833	153	9	33	01-24-74	2400	47-33 N	11-56 W	246	31.9	129.4	30.02	58/50
837	153	10	37	01-25-74	0400	47-33 N	11-56 W	246	32.1	130.3	29.90	53/50
841	153	11	41	01-25-74	0800	47-33 N	11-56 W	246	32.1	130.0	25.88	54/51
845	153	12	45	01-25-74	1200	42-51 N	28-27 W	265	31.8	129.0	29.81	56/55
€49	153	13	49	01-25-74	1410	42-51 N	28-27 W	266	31.8	128.9	29.80	57/52
€53	153	14	53	01-25-74	1620	42-51 N	28-27 W	266	31.8	128.9	29.80	57/52
163	153	16	61	01-25-74	2040	42-51 N	28-27 W	266	32.0	129.8	30.02	65/49
901	155	17	1	01-25-74	2400	42-51 N	28-27 W	266	31.2	126.7	30.03	57/48
905	155	18	5	01-26-74	0100	42-51 N	28-27 W	266	31.8	129.0	30.00	56/51
909	155	19	9	01-26-74	0800	42-51 N	28-27 W	266	32.6	132.0	30.05	61/49
913	155	20	13	01-26-74	1200	41-50 N	45-25 W	266	32.4	131.2	30.03	58/50
517	155	21	17	01-26-74	1600	41-50 N	45-25 W	266	32.3	130.9	30.11	44/39
921	155	22	21	01-26-74	2000	41-50 N	45-25 W	267	33.1	134.7	30.37	58/36
925	155	23	25	01-26-74	2400	41-50 N	45-25 W	267	32.4	131.2	30.45	63/44
929	155	24	29	01-27-74	0400	41-50 N	45-25 W	267	32.4	131.4	30.38	58/52
937	155	26	37	01-27-74	1200	40-45 N	62-42 W	266	32.2	130.4	30.00	59/58
941	155	27	41	01-27-74	1600	40-45 N	62-42 W	265	31.8	128.9	29.77	65/65
945	155	28	45	01-27-74	2000	40-45 N	62-42 W	266	32.1	130.0	29.81	43/60
949	155	29	49	01-27-74	2400	40-45 N	62-42 W	268	32.3	131.1	29.88	43/60

TABLE IX(b)

SUMMARY OF TMR LOG-BOOK DATA CORRESPONDING TO INTERVALS SELECTED FOR WAVE METER DATA REDUCTION

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 33 WEST

D.L.		KREL WIND>	REL	WAVE	REL	<-Sk	ELL->	
RUN	SEA	DIR/SPEED	WAVE	HT.	SWELL	HT L	ENGTH	
NO.	STATE	/(KT)	DIR	FT.	DIR	FT.	FT.	VISUAL WEATHER /THR LUG-ROOK COMMENTS
815	4	25/16	25	2	28	5	300	OCAST /FITCHING MODERATELY
817	4	255/16	255	1	255	5	300	SCAT CLOUDS /GETTING GOOD VERT BEND
822	4	235/20	235	1	235	4	250	SCAT CLOUDS /
825		12F/20	12P	2	225	4	250	PT CLDY /PITCHING EASILY
829		10F/20	10F	2	10F	4	250	PT CLDY /
833	6	10F/25	245	3	245	4	250	PT CLDY /
837		. 15/25	15	5	15	6	150	OCAST /PITCHING MODERATELY
841		21F/30	21P	5	21P	6	150	OCAST /
845		55/35	55	8	55	6	150	PT CLDY /
849		45/45	45	8	45	10	250	PT CLDY /MANUAL OPERATION HIGH WINDS
853		495/45	495	12	45	10	250	PT CLDY /MORE VERT BENDING ACTION
861		265/45	265	12	265	12	300	PT CLDY /SHIPPING WATER OVERDECKS
901		495/20	45	5	45	10	300	PT CLDY /WIND DOWN TO 30 MPH
905		48/15	45	5	45	8	250	OCAST /
905		265/10	265	1	265	8	250	DCAST /
913		495/10	45	i	45	8	250	OCAST /
917		495/15	495	2	495	8	250	PT CLDY /
921		485/15	485	2	485	6	300	CLDY /
925		485/15	485	2	485	6	300	CLEAR /
929		485/15	485	1	485	6	300	CLEAR /
937		41F/35	412	6	41F	8	400	RAIN SQUALLS /
941		40F/40	40P	8	40P	8	400	OCAST /
945		41F/35	41F	5	41P	5	400	CLRY /
949		43F/25	43F	5	43F	5	400	CLDY /

TABLE IX(c)

COMPARISON OF TMR RESULTS FOR MIDSHIP VERTICAL BENDING STRESS WITH CORRESPONDING RAW DIGITIZATION RESULTS AT DAVIDSON LABORATORY

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 33 WEST

	*	·	THR F	RESULTS-		>*	< D.L.	DIGITIZAT	ION>*	CCOLI	JHN RAT	105>
	*	NO.	NO.	MAX	RMS	MAX 151*	RANGE DF	2.83X	REL *			
D.L.	*	WAVE	1ST	P-TO-T	P-TO-T	MODE *	RECORDED	(SAMPLE	MEAN *	(7)	(6)	(6)
RUN	*	INDUCED	MODE	STRESS	STRESS	STRESS*	EXTREMES	RMS)	STRESS*	/	1	1
NO.	*	CYCLES	BURSTS	KFSI	KPSI	KPSI *	KPSI	KPSI	KFSI *	(4)	(3+5)	(3)
	*	(1)	(2)	(3)	(4)	(5) *	(6)	(7)	(8) *			
	*					*			*			
815	*	158	53	11.24	4.73	3.72 *	13.09	4.87	-0.37 *	1.03	0.87	1.16
817	*	175	40	8.57	4.04	2.56 *	11.04	4.00	-1.05 *	0.99	0.99	1.29
822	*	172	17	6.96	3.25	2.43 *	7.31	3.23	-1.04 *	0.99	0.78	1.05
825	*	180	7	5.97	2.76	1.28 *	7.53	2.89	-1.27 *	1.05	1.04	1.26
829	*	177	10	4.56	2.00	1.16 *	5.88	2.32	-1.30 *	1.16	1.03	1.29
833	*	204	38	4.97	2.23	2.17 *	6.86	2.63	-1.40 *	1.18	0.96	1.38
837	*	197	53	6.50	3.16	3.68 *	9.53	3.45	-1.35 *	1.09	0.94	1.47
841	*	205	66	9.50	3.84	5.04 *	15.31	4.10	-1.29 *	1.07	1.05	1.61
845	*	200	50	8.30	3.41	2.57 *	10.34	3.67	0.60 *	1.08	0.95	1.24
849	*	219	51	7.42	3.21	2.75 *	13.85	3.89	0.84 *	1.21	1.36	1.87
853	*	214	62	9.96	3.86	4.49 *	13.99	4.58	0.92 *	1.19	0.97	1.41
861	*	181	86	17.35	6.06	12.58 *	25.02	6.66	1.18 *	1.10	0.84	1.44
901	*	197	64	9.66	4.31	4.57 ×	13.26	4.49	0.73 *	1.04	0.93	1.37
905	*	202	25	5.45	2.52	1.48 *	8.04	2.69	0.51 *	1.06	1.16	1.47
909	*	187	4	4.21	1.78	1.16 *	5.84	2.07	0.46 *	1.16	1.09	1.38
913		177	1	3.49	1.70	6.73 *	5.36	2.11	0.65 *	1.24	1.27	1.54
917	*	125	16	3.25	1.29	1.22 *	4.44	1.61	0.49 *	1.25	0.99	1.37
921	*	110	0	1.99	0.90	0.00 *	2.01	1.12	0.51 *	1.25	1.51	1.51
925	*	101	0	1.99	0.91	0.00 *	2.87	1.20	0.44 *	1.32	1.44	1,44
929	*	153	0	1.45	0.76	0.00 *	2.42	0.98	0.29 *	1.30	1.66	1.66
937	*	113	1	0.90	0.43	1.22 *	1.87	0.70	-1.13 *	1.64	0.88	2.07
941	*	240	38	4.37	1.59	1.47 *	6.43	2.21	-0.73 *	1.39	1.10	1.47
945	*	228	16	2.84	1.17	1.22 *	4.54	1.59	-0.38 *	1.36	1.12	1.60
949	*	212	37	4.73	2.19	1.85 *	6.66	2.66	-0.80 *	1.21	1.01	1.41

TABLE IX(d)

SUMMARY OF RAW DIGITIZATION RESULTS FOR RADAR RANGE ROLL, PITCH, DECK HOUSE ACCELERATIONS, AND TUCKER METER SEA LAND MC LEAN: 1973-1974 WINTER SEASON: VOTAGE 33 WEST

	< R	ADAR>	RI	DLL	P	ITCH>	CVER	T ACCEL ->	LAT	ACCEL>	< TU	CKER -	>
D.L.	4.0	RECORDED	4.0	RECORDE	4.0	RECORDED	4.0	RECORDED		RECORDED		RECO	
RUI	(RMS)	EXTREMES	(RMS)	EXTREME	(KMS)	EXTREMES	(RMS)	EXTREMES	(RMS)	EXTREMES	(RMS)	EXTR	EMES
NO	. FT	FT FT	DEG	DEG DE	DEG	DEG DEG	(G)	(G) (G)	(G)	(G) (G)	FT	FT	FT
81	5 46.	37. ~44.	6.8	47	2.2	1.7 -2.1	0.49	0.4 -0.4	0.17	0.1 -0.1	9.	7.	-7.
81	7 34.	3032.	4.5	35	1.8	0.9 -1.9	0.40	0.3 -0.3	0.13	0.1 -0.1	6.	5.	-5.
82	2 29.	2524.	4.6	25	1.5	1.0 -1.9	0.34	0.3 -0.3	0.12	0.1 -0.1	5.	4.	-4.
82	5 26.	2420.	4.8	26	1.3	0.6 -1.9	0.30	0.2 -0.3	0.12	0.1 -0.1	5.	4.	-5.
82	22.	2419.	5.3	35	1.0	0.5 -1.8	0.24	0.2 -0.2	0.14	0.1 -0.1	5.	5.	-3.
83.	3 22.	2123.	4.3	34	1.1	0.4 -1.6	0.23	0.2 -0.2	0.12	0.1 -0.1	4.	3.	-3.
83		2322.	3.7	33	1.5	0.6 -1.9	0.34	0.3 -0.3	0.11	0.1 -0.1	4.	3.	-3.
84	1 36.	3045.	4.0	35	1.5	0.8 -2.1	0.34	0.4 -0.3	0.12	0.1 -0.1	5.	4.	-4.
84	5 27.	3032.	2.9	32	1.4	0.8 -1.7	0.30	0.3 -0.3	0.09	0.1 -0.1	3.	3.	-3.
84	27.	2840.	2.9	33	1.3	0.7 -1.8	0.26	0.3 -0.3	0.09	0.1 -0.1	4.	3.	-3.
85	3 33.	2845.	3.7	24	1.6	1.2 -2.1	0.35	0.4 -0.3	0.11	0.1 -0.1	4.	4.	-3.
86	1 60.	4451.	5.4	39	. 2.4	2.5 -2.1	0.59	0.6 -0.5	0.16	0.2 -0.2		6.	-7.
90	1 35.	2947.	4.7	26	1.6	1.0 -1.7	0.40	0.3 -0.3	0.14	0.1 -0.1	5.	4.	-4.
90	5 24.	2019.	4.4	26	1.2	0.4 -1.9	0.27	0.2 -0.2	0.12	0.1 -0.1	4.	3.	-4.
90	9 19.	1518.	5.3	17	0.8	0.2 -1.4	0.19	0.2 -0.2	0.13	0.1 -0.1	4.	3.	-4.
91	3 23.	1820.	10.1	512	0.9	0.4 -1.3	0.19	0.2 -0.2	0.23	0.2 -0.2	4.	4.	-3.
91	7 20.	1717.	9.1	312	0.6	-0.0 -1.2	0.13	0.1 -0.1	0.20	0.2 -0.2	4.	4.	-3.
92	1 12.	1011.	5.5	46	0.6	-0.1 -1.0	0.06	0.1 -0.1	0.13	0.1 -0.1	2.	2.	-2.
92	5 13.	1111.	5.9	27	. 0.6	-0.1 -1.1	0.06	0.1 -0.1	0.13	0.1 -0.1	2.	1.	-2.
92	7 10.	89.	4.3	3, -4	0.7	0.1 -1.1	0.08	0.1 -0.1	0.10	0.1 -0.1	1.	1.	-1.
93	7 7.	6, -7.	3.3	5. 1	. 0.6	-0.2 -1.0	0.04	0.0 -0.0	0.08	0.1 -0.1	1.	1.	-1.
94	1 17.	1314.	4.3	9. 2	0.8			0.1 -0.1		0.1 -0.1		2.	-2.
94	5 13.	1212.	4.9	72	. 0.7	0.1 -1.0		0.1 -0.1		0.1 -0.1			-2.
94	9 19.	1415.	5.7	84	. 1.3	0.8 -1.4	0.28	0.3 -0.2	0.15	0.2 -0.1	3.	3.	-3.

TABLE X(a) SUMMARY OF THE LOG-BOOK DATA CORRESPONDING TO INTERVALS SELECTED FOR WAVE METER DATA REDUCTION

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 34 EAST

D.L.	TMR	TMR	TMR									
RUN	TAPE	INDX	INTU		TIME				SPEED	PROP	DRAFT	SEA/AIR
NO.	NO.	NO.	NO.	DATE	(GMT)	LATITUDE	LONGITUDE	COURSE	KT.	RPM	FT.	TEMP
1009	157	3	9	01-29-74	2400			082	32.3	132.0	29.80	45/45
1013	157	4	13	01-30-74	0400			089	32.2	131.7	30.10	45/45
1017	. 157	5	17	01-30-74	0800			087	32.3	132.0	30.06	64/49
1021	157	6	21	01-30-74	1200	40-31 N	59-02 W	090	32.3	131.8	30.11	65/52
1026	157	7	26	01-30-74	1600	40-31 N	59-02 W	090	32.1	131.3	30.08	59/55
1029	157	8	29	01-30-74	2000	40-31 N	59-02 W	090	32.2	131.8	30.02	58/52
1033	157	9	33	01-30-74	2400	40-31 N	59-02 W	090	32.1	131.5	30.00	66/60
1037	157	10	37	01-31-74	0400	40-31 N	59-02 W	090	31.9	130.1	30.00	65/55
1041	157	11	41	01-31-74	0800	40-31 N	59-02 W	090	32.2	131.7	30.00	34/44
1045	157	12	45	01-31-74	1200	40-59 N	43-08 W	090	32.6	133.1	30.05	57/52
1049	157	13	49	01-31-74	1600	40-59 N	43-08 W	073	32.3	132.2	30.06	60/55
1101	159	14	1	01-31-74	2000	40-59 N	43-08 W	073	32.1	131.0	30.10	57/48
1105	159	15	5	01-31-74	2400	40-59 N	43-08 W	073	32.3	132.2	30.10	56/46
1109	159	16	9	02-01-74	0400	40-59 N	43-08 W	073	31.8	130.0	30.09	55/45
1113	159	17	13	02-01-74	0800	40-59 N	43-08 W	073	32.3	132.0	30.05	54/47
1117	159	18	17	02-01-74	1200	44-27 N	27-18 W	072	32.3	132.0	30.09	53/60
1122	159	19	22	02-01-74	1600	44-27 N	27-18 W	072	32.4	132.6	30.00	53/50
1125	159	20	25	02-01-74	2000	44-27 N	27-18 W	072	32.3	132.0	29.89	52/54
1129	159	21	29	02-01-74	2400	44-27 N	27-18 W	072	32.6	133.0	29.75	52/50
1134	159	22	34	02-02-74	0400	44-27 N	27-18 W	071	32.4	132.5	29.62	52/45
1137	159	23	37	02-02-74	0800	44-27 N	27-18 W	071	32.6	133.0	29.57	51/47
1141	159	24	41	02-02-74	1200	48-10 N	10-20 W	071	32.3	132.0	29.61	51/48
1145	159	25	45	02-02-74	1600	48-10 N	10-20 W	071	32.1	131.2	29.75	53/44
1149	159	26	49	02-02-74	2000	48-10 N	10-20 W	071	32.2	131.6	29.80	50/47

TABLE X(b)

SUMMARY OF TMR LOG-BOOK DATA CORRESPONDING TO INTERVALS SELECTED FOR WAVE METER DATA REDUCTION

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 34 EAST

B.L.		<pre><rel wind=""> DIR/SPEED</rel></pre>	REL	WAVE HT.	REL		ELL->					
	STATE		DIR	FT.	DIR		FT.	VISUAL	WEATHER	/TMR	L0G-B00K	COMMENTS
1009	2	172P/ 5	172P	1	172F	2	150	CLEAR ,	,			
1013	2	179P/ 5	179F	1	179F	3	150	CLEAR	/			
1017	2	19F/ 5	19P	1	177P	4	150	OCAST /	/			
1021	2	0 / 5	0	2	180	4	150	OCAST /	/			
1026	3	115/ 8	115	2	180	5	150	DCAST /	/			
1029	3	115/ 8	115	2	180	5	150	DCAST /	/			
1033	4	455/12	455	2	180	5	150	OCAST /	,			
1037	4	228/12	225	2	180	5	150	DCAST /	/			
1041	3	115/10	115	2	180	5	150	DCAST /	/			
1045	2	118/ 5	115	3	180	8	150	PT CLD	11			
1049	2	95P/ 5	95P	2	1525	8	150	PT CLDY	1			
1101	2	50P/ 5	50P	2	1528	8	150	PT CLDY	1			
1105	4	95P/12	95F	2	1528	8	150	PT CLDY	11			
1109	4	95P/15	95P	2	1075	8	150	PT CLD	11			
1113	4	118P/15	118P	2	1075	8	150	PT CLDY	11			
1117	5	117P/20	117P	3	635	8	150	PT CLDY				
1122	7	151P/30	151P	4	635	8	150	PT CLUY	1/			
1125	7	117F/30	117F	4	635	6	150	PT CLDY	11			
1129	7	1755/30	1755	4	635	6	150	PT CLDY	11			
1134	5	161F/20	161F	4	645	В	150	DCAST /	,			
1137	3	161P/10	161P	4	645	В	150	OCAST /				
1141		645/20	645	3	645	6	150	DCAST /				
1145		1545/20	1545	3	645	8	150	OCAST /				
1149	_	1545/10	1545	1	645	1	300	PT CLDY				

TABLE X(c)

COMPARISON OF THE RESULTS FOR MIDSHIP VERTICAL BENDING STRESS WITH CORRESPONDING RAW DIGITIZATION RESULTS AT DAVIDSON LABORATORY

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 34 EAST

	*	<	TMR	RESULTS-		*<	(D.L.	DIGITIZAT	10N>*	COL	JIAN RAT	105>
	*	NO.	NO.	MAX	RMS	MAX 1ST*	RANGE OF	2.83x	REL *			
D.L.	*	WAVE	151	P-10-T	P-TE-T	MODE *	RECONDED	(SAMPLE	MEAN *	(7)	(6)	(6)
RUN	*	INDUCED	MODE	STRESS	STRESS	STRESS*	EXTREMES	RMS)	STRESS*	/	/	1
NO.	*	CYCLES	BURSTS	KFSI	KFSI	KFSI *	KPSI	KPSI	KFSI *	(4)	(345)	(3)
	*	(1)	(2)	(3)	(4)	(5) *	(6)	(7)	(8) *			
	*					*			*			
1009	*	109	0	2.79	1.15	0.00 *	3.18	1.40	-1.93 *	1.21	1.14	1.14
1013	*	86	0	3.74	1.54	0.00 *	4.21	1.85	-1.83 *	1.20	1.12	1.12
1017	*	95	0	3.74	1.61	0.00 *	5.33	2.27	-2.22 *	1.41	1.42	1.42
1021	*	109	0	2.15	1.12	0.00 *	4.26	1.69	1.53 *	1.51	1.99	1.99
1026	*	93	0	2.77	1.43	0.00 *	5.05	2.12	1,39 *	1.48	1.82	1.82
1029	*	108	0	3.40	1.47	0.00 *	4.95	1.96	1.40 *	1.33	1.46	1.46
1033	*	127	19	4.25	1.67	1.05 *	4.70	2.04	0.33 *	1.22	0.89	1.11
1037	*	. 128	13	3.73	1.86	0.97 *	5.44	2.24	0.68 *	1.21	1.16	1.45
1041	*	128	2	4.52	2.27	0.67 *	5.88	2.61	0.59 *	1.15	1.13	1.30
1045	*	142	21	7.44	3.53	1.91 *	8.90	3.78	0.74 *	1.07	0.95	1.20
1049	*	108	0	1.84	2.41	0.00 *	8.37	3.15	0.76 *	1.30	1.73	1.73
1101	*	108	8	7.71	2.75	1.14 *	7.72	3.28	0.91 *	1.19	0.87	1.00
1105	*	105	12	5.34	2.71	1.20 *	9.37	3.67	0.59 *	1.35	1.43	1.76
1109	*	106	15	6.36	2.92	1.42 *	8.80	3.92	0.87 *	1.34	1.13	1.38
1113	*	109	11	6.58	2.84	1.02 *	8.04	3.48	0.82 *	1.23	1.06	1.22
1117	*	93	10	8.77	2.77	1.58 *	8.31	3.32	1.50 *	1.20	0.80	0.95
1122	*	94	3	7.28	2.94	1.43 ×	9.37	3.94	1.64 *	1.34	1.08	1.29
1125	*	69	1	6.41	3.26	0.75 *	9.83	4.00	1.78 *	1.23	1.37	1.53
1129	*	90	0	6.92	2.84	0.00 *	9.35	3.80	2.04 *	1.34	1.35	1.35
1134	*	79	4	8.04	3.38	0.89 *	7.64	3.85	1.73 *	1.14	0.86	0.95
1137	*	64	1	6.50	2.98	8.74 *	9.20	3.65	1.80 *	1.22	0.60	1.41
1141	*	48	0	6.92	3.54	0.00 *	7.88	4.30	1.90 *	1.22	1.14	1.14
1145	*	49	0	7.71	3.90	0.00 *	9.47	4.43	1.86 *	1.14	1.23	1.23
1149		24	0	4.32	2.86	0.00 *	5.46	3.39	1.89 *	1.19	1.27	1.27

TABLE X(d)

SUMMARY OF RAW DIGITIZATION RESULTS FOR RADAR RANGE ROLL, PITCH, DECK HOUSE ACCELERATIONS, AND TUCKER METER

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 34 EAST

	R	ADAR>	RO	ILL	><	- FIT	CH	-> VEF	T AC	CEL->	LAT	ACCE	L><	Tij	KER	>
D.L.		RECORDED													RECE	RDED
RUN	(RMS)	EXTREMES												(RMS)	EXIE	EMES
NO.	FT	FT FT	DEG	DEG	DEG I	EG I	EG D	EG (G)	(G)	(6)	(6)	(G)	(G)	FT	FT	FT
1009	-	1312.	5.9			.5 -0				-0.1	0.14			2.		-2.
1013	21.	2114.	9.9	5		.5 -0				-0.1	0.22			6.	7.	-3.
1017	21.	1619.	9.1	5	10. 0					-0.1	0.21			4.	5.	-3.
1021	14.	1612.	6.0	2.		.4 -0				-0.1	0.13			3.	3.	-2.
1026	19.	2418.	8.9	5		.5 0				-0.1	0.19			4.	4.	-3.
1029	18.	1416.	8.2	4.		.5 0				-0.1	0.18			4.	4.	-2.
1033	18.	1612.	7.2	3	10. 0	.7 0	.1 -1	.2 0.15	0.1	-0.1	0.16			4.	4.	-3.
1037	21.	1922.	9.1	6	10. 0	.8 0	.3 -1	.4 0.19	0.2	-0.2	0.20	0.2	-0.2	4.	4.	-4.
1041	22.	1817.	8.0	5.	-7. 1	.0 0	.5 -1	.6 0.24	0.2	-0.2	0.18	0.1	-0.2	5.	4.	-4.
1045	30.	2726.	9.4	8.	-9. 1	.6 1	.1 -1	.9 0.39	0.3	-0.3	0.22	0.2	-0.2	6.	4.	-6.
1049	25.	2119.	12.1	8	10. 1	.1 0	.6 -1	.6 0.26	0.2	-0.2	0.27	0.2	-0.2	5.	5.	-4.
1101	25.	2121.	12.9	9	12. 1	.1 0	.6 -1	.6 0.26	0.2	-0.2	0.28	0.3	-0.2	6.	6.	-5.
1105	26.	2222.	13.7	11	11. 1	.1 0	.6 -1	.5 0.25	0.2	-0.2	0.30			6.	7.	-5.
1109	26.	2225.	13.8	11	10. 1	.0 0	. 4 -1	.4 0.23	0.2	-0.2	0.30	0.2	-0.2	6.	5.	-5.
1113	26.	2120.	14.9	12	12. 1	.1 0	. 4 -1			-0.2	0.33			6.	8.	-5.
1117	27.	2220.	16.0	13	13. 1	.0 0	. 4 -1	.5 0.24	0.2	-0.2	0.35			9.	9.	-5.
1122	27.	2026.	16.2	16	12. 0	.9 0	.5 -1			-0.2	0.34			8 *	7.	-6.
1125	29.	2421.		15		.0. 0				-0.2	0.39			6.	7.	-
1129	33.	3023.		12			.8 -1			-0.2	0.41			12.		-7.
1134	30.	2326.		17			.6 -1			-0.2	0.42			14.		-9.
1137	31.	3522.		17			.4 -1			-0.2	0.43			15.		-10.
1141	30.	2322.	21.3	18	15. 0		.2 -1			-0.1	0.46					-8 *
1145	34.	3420.	23.1	17	17. 0	.8 0	.2 -1	.3 0.10	0.1	-0.1	0.51	0.4	-0.4	16.	11.	-11.
1149	24.	2117.	13.1	8	11. 0	.8 0	. 1 -1	.1 0.04	0.0	-0.0	0.27	0.5	-0.2	18.	11.	-11.

TABLE XI(a)

SEA LAND MC LEAM : 1973-1974 WINTER SEASON : VOYAGE 34 WEST

	THR	THR		-									
TAPE	INDX	INTU		TIME						SPEED	FROP	DRAFT	
NO.	NO.	NO.	DATE	(GMT)	LATITUDE	E	LONGITUI	E	COURSE	KT.	RPM	FT.	TEMP
161	3	9	02-06-74	0400					308	32.3	132.0	28.82	43/40
161	5	17	02-06-74	1200	58-27 N	N	08-51 k	1	267	31.9	130.0	29.09	46/42
161	7	28	02-06-74	2000	58-27 h	N	08-51	1	246	30.8	127.0	29.74	47/41
161	8	30	02-06-74	2400	58-27 N	N	08-51 W	1	246	31.3	128.0	29.83	47/45
	9	33	02-07-74	0400	58-27 N	N	08-51 4	1	246	31.6	129.0	29.65	47/16
	10	37	02-07-74	0800	58-27 N	N	08-51 W	1	242	31.6	129.0	29.34	47/48
161	11	41	02-07-74	1200	54-00 N	N	30-00 W	1	241	31.6	129.2	29.15	44/50
	12	45	02-07-74	1600	54-00 N	N	30-00 W	1	238	31.7	129.5	29.04	42/44
163	14	5	02-07-74	2400	54-00 N	N	30-00 W		243	31.3	128.0	28.93	45/42
163	15	9	02-08-74	0400	54-00 N	N	30-00 W	1	243	31.4	128.5	28.97	54/44
	17	17	02-08-74	1200	48-09 N	N	47-18 4		243	31.4	128.5	29.22	34/31
163	18	21	02-08-74	1600	48-09 M	N	47-18 W	1	245	31.8	130.0	29.14	28/27
163	20	29	02-08-74	2400	48-09 N	N	47-18 W		245	31.3	128.0	29.62	28/24
163	21	33	02-09-74	0400	48-09 N	N	47-18 W	1	240	31.4	128.5	29.60	33/26
163	22	37	02-09-74	0800	48-09 N	N	47-18 W		246	31.8	130.0	29.42	34/28
163	23	41	02-09-74	1200	42-32 M	N	63-16 W	1	245	32.1	131.0	29.52	37/33
163	24	45	02-09-74	1600	42-32 h	N	63-16	1	245	32.1	131.0	29.62	39/34
978037155971	N TAPE NO. 161 161 161 161 161 161 161 161 163 163	N TAPE INDX NO. NO. 7 161 3 7 161 5 8 161 7 8 161 9 7 161 10 16 161 11 16 161 11 16 163 14 7 163 15 7 163 15 8 163 20 8 163 21 163 22 163 23	N TAPE INDX INTU NO.	N TAPE INDX INTV NO. NO. NO. DATE 7 161 3 9 02-06-74 7 161 5 17 02-06-74 8 161 7 28 02-06-74 9 161 8 30 02-06-74 9 161 9 33 02-07-74 161 10 37 02-07-74 161 11 41 02-07-74 163 14 5 02-07-74 163 15 9 02-08-74 163 17 17 02-08-74 163 18 21 02-08-74 163 20 29 02-08-74 163 21 33 02-09-74 163 22 37 02-09-74 163 23 41 02-09-74	N TAPE INDX INTU DATE (GHT) 7 161 3 9 02-06-74 0400 7 161 5 17 02-06-74 1200 8 161 7 28 02-06-74 2400 8 161 8 30 02-06-74 2400 8 161 9 33 02-07-74 0400 7 161 10 37 02-07-74 0800 8 161 11 41 02-07-74 1600 8 163 14 5 02-07-74 1600 9 163 15 9 02-08-74 1200 1 163 17 17 02-08-74 1200 1 163 18 21 02-08-74 1200 1 163 20 29 02-08-74 1200 1 163 20 29 02-08-74 1200 1 163 21 33 02-09-74 0400 1 163 22 37 02-09-74 0800 1 163 22 37 02-09-74 0800	N TAPE INDX INTU DATE (6HT) LATITUDE	TIME (GHT) LATITUDE 7 161 3 9 02-06-74 0400 7 161 5 17 02-06-74 1200 58-27 N 8 161 7 28 02-06-74 2400 58-27 N 9 161 8 30 02-06-74 2400 58-27 N 9 161 9 33 02-07-74 0400 58-27 N 161 10 37 02-07-74 0400 58-27 N 161 11 41 02-07-74 1200 58-27 N 161 12 45 02-07-74 1600 58-27 N 161 13 14 5 02-07-74 1600 54-00 N 163 15 9 02-08-74 1600 54-00 N 17 163 17 17 02-08-74 1200 48-09 N 18 163 20 29 02-08-74 1600 48-09 N 18 163 21 33 02-09-74 0400 48-09 N 18 163 22 37 02-09-74 0800 48-09 N 18 163 22 37 02-09-74 0800 48-09 N 18 163 22 37 02-09-74 0800 48-09 N 18 163 23 41 02-09-74 0800 48-09 N	TIME DATE INDX INTU DATE (GHT) LATITUDE LONGITUDE CONGITUDE NO. NO. NO. NO. DATE (GHT) LATITUDE LONGITUDE LONGITUDE DATE (GHT) LATITUDE LONGITUDE LONGITUDE LONGITUDE DATE (GHT) LATITUDE LONGITUDE LONGITUDE LONGITUDE LONGITUDE DATE (GHT) LATITUDE LONGITUDE	TAPE INDX INTV. NO. NO. NO. DATE (GHT) LATITUDE LONGITUDE 7 161 3 9 02-06-74 0400 7 161 5 17 02-06-74 1200 58-27 N 08-51 W 8 161 7 28 02-06-74 2000 58-27 N 08-51 W 9 161 8 30 02-06-74 2400 58-27 N 08-51 W 161 10 37 02-07-74 0400 58-27 N 08-51 W 17 161 10 37 02-07-74 0400 58-27 N 08-51 W 18 161 11 41 02-07-74 1200 58-27 N 08-51 W 18 161 12 45 02-07-74 1200 54-00 N 30-00 W 18 163 14 5 02-07-74 1600 54-00 N 30-00 W 18 163 15 9 02-08-74 1200 54-00 N 30-00 W 18 163 17 17 02-08-74 1200 48-09 N 47-18 W 18 163 20 29 02-08-74 2400 48-09 N 47-18 W 18 163 21 33 02-09-74 0400 48-09 N 47-18 W 18 163 22 37 02-09-74 0800 48-09 N 47-18 W 18 163 23 41 02-09-74 1200 42-32 N 63-16 W	TIME (GHT) LATITUDE LONGITUDE COURSE 7 161 3 9 02-06-74 0400 308 7 161 5 17 02-06-74 1200 58-27 N 08-51 W 267 8 161 7 28 02-06-74 2000 58-27 N 08-51 W 246 9 161 8 30 02-06-74 2400 58-27 N 08-51 W 246 9 161 9 33 02-07-74 0400 58-27 N 08-51 W 246 9 161 10 37 02-07-74 0400 58-27 N 08-51 W 246 9 161 10 37 02-07-74 0800 58-27 N 08-51 W 246 9 161 10 41 02-07-74 1200 54-00 N 30-00 W 241 16 161 12 45 02-07-74 1600 54-00 N 30-00 W 243 16 163 14 5 02-07-74 2400 54-00 N 30-00 W 243 17 163 15 9 02-08-74 1200 54-00 N 30-00 W 243 17 163 17 17 02-08-74 1200 54-00 N 30-00 W 243 18 163 18 21 02-08-74 1600 48-09 N 47-18 W 245 19 163 20 29 02-08-74 2400 48-09 N 47-18 W 245 19 163 21 33 02-09-74 0400 48-09 N 47-18 W 245 19 163 22 37 02-09-74 0800 48-09 N 47-18 W 245 19 163 23 41 02-09-74 1200 48-09 N 47-18 W 245 19 163 22 37 02-09-74 0800 48-09 N 47-18 W 245 19 163 23 41 02-09-74 1200 42-32 N 63-16 W 245	N TAPE INDX INTU NO. NO. DATE (6HT) LATITUDE LONGITUDE COURSE NT. 7 161 3 9 02-06-74 0400 308 32.3 7 161 5 17 02-06-74 1200 58-27 N 08-51 W 267 31.9 8 161 7 28 02-06-74 2000 58-27 N 08-51 W 246 30.8 9 161 8 30 02-06-74 2400 58-27 N 08-51 W 246 31.3 3 161 9 33 02-07-74 0400 58-27 N 08-51 W 246 31.6 7 161 10 37 02-07-74 0400 58-27 N 08-51 W 246 31.6 7 161 10 37 02-07-74 1200 58-27 N 08-51 W 242 31.6 8 161 11 41 02-07-74 1200 54-00 N 30-00 W 243 31.6 8 163 14 5 02-07-74 1600 54-00 N 30-00 W 243 31.7 9 163 15 9 02-08-74 1200 54-00 N 30-00 W 243 31.3 9 163 17 17 02-08-74 1200 48-09 N 47-18 W 245 31.8 1 163 20 29 02-08-74 2400 48-09 N 47-18 W 245 31.8 1 163 21 33 02-09-74 0800 48-09 N 47-18 W 245 31.8 1 163 22 37 02-09-74 0800 48-09 N 47-18 W 245 31.8 1 163 23 41 02-09-74 1200 42-32 N 63-16 W 245 32.1	TIME (GHT) LATITUDE LONGITUDE COURSE KT, KPM 7 161 3 9 02-06-74 0400 7 161 5 17 02-06-74 1200 58-27 N 08-51 W 267 31.9 130.0 8 161 7 28 02-06-74 2400 58-27 N 08-51 W 246 30.8 127.0 9 161 8 30 02-06-74 2400 58-27 N 08-51 W 246 31.3 128.0 9 161 9 33 02-07-74 0400 58-27 N 08-51 W 246 31.6 129.0 9 161 10 37 02-07-74 0800 58-27 N 08-51 W 242 31.6 129.0 9 161 11 41 02-07-74 1200 54-00 N 30-00 W 243 31.7 129.0 9 163 15 9 02-08-74 1600 54-00 N 30-00 W 243 31.3 128.0 9 163 15 9 02-08-74 0400 54-00 N 30-00 W 243 31.3 128.0 9 163 15 17 17 02-08-74 1200 48-09 N 47-18 W 245 31.8 130.0 163 163 20 29 02-08-74 1600 48-09 N 47-18 W 245 31.8 130.0 163 23 41 02-09-74 1200 42-32 N 63-16 W 245 31.3 128.0	N TAPE INDX INTU NO. NO. NO. DATE (GHT) LATITUDE LONGITUDE COURSE NT. FROM FT. 7 161 3 9 02-06-74 0400 308 32.3 132.0 28.82 7 161 5 17 02-06-74 1200 58-27 N 08-51 W 267 31.9 130.0 29.09 161 7 28 02-06-74 2400 58-27 N 08-51 W 246 30.8 127.0 29.74 161 9 33 02-07-74 0400 58-27 N 08-51 W 246 31.3 128.0 29.63 161 9 33 02-07-74 0400 58-27 N 08-51 W 246 31.6 129.0 29.65 161 10 37 02-07-74 0400 58-27 N 08-51 W 242 31.6 129.0 29.65 161 11 41 02-07-74 1200 54-00 N 30-00 W 243 31.6 129.0 29.34 161 12 45 02-07-74 1600 54-00 N 30-00 W 243 31.7 129.5 29.04 163 15 9 02-08-74 0400 54-00 N 30-00 W 243 31.3 128.0 28.93 17 163 15 9 02-08-74 0400 54-00 N 30-00 W 243 31.4 128.5 28.97 163 15 9 02-08-74 1200 48-09 N 47-18 W 245 31.8 130.0 29.14 163 18 21 02-08-74 1600 48-09 N 47-18 W 245 31.8 130.0 29.14 163 18 21 02-08-74 1600 48-09 N 47-18 W 245 31.8 130.0 29.65 163 21 33 02-09-74 0400 48-09 N 47-18 W 245 31.4 128.5 29.60 163 21 33 02-09-74 0400 48-09 N 47-18 W 245 31.3 128.0 29.62 163 20 39 02-08-74 0400 48-09 N 47-18 W 245 31.3 128.0 29.62 163 21 33 02-09-74 0400 48-09 N 47-18 W 245 31.8 130.0 29.62 163 22 37 02-09-74 0400 48-09 N 47-18 W 245 31.4 128.5 29.60 163 21 33 02-09-74 0400 48-09 N 47-18 W 245 31.4 128.5 29.60 163 22 37 02-09-74 0400 48-09 N 47-18 W 245 31.4 128.5 29.60 163 22 37 02-09-74 0400 48-09 N 47-18 W 245 31.4 128.5 29.60 163 22 37 02-09-74 0400 48-09 N 47-18 W 245 31.4 128.5 29.60 163 22 37 02-09-74 0400 48-09 N 47-18 W 245 31.4 128.5 29.60 163 22 37 02-09-74 0400 48-09 N 47-18 W 245 31.4 128.5 29.60 163 22 37 02-09-74 0400 48-09 N 47-18 W 245 31.4 128.5 29.60 163 22 37 02-09-74 0400 48-09 N 47-18 W 245 31.4 128.5 29.60 163 22 37 02-09-74 0400 48-09 N 47-18 W 245 31.4 128.5 29.60 163 22 37 02-09-74 0400 48-09 N 47-18 W 245 31.4 128.5 29.60 163 22 37 02-09-74 0400 48-09 N 47-18 W 245 31.4 128.5 29.60 163 22 37 02-09-74 0400 48-09 N 47-18 W 245 31.4 128.5 29.60 163 22 37 02-09-74 0400 48-09 N 47-18 W 245 31.4 131.0 29.52

TABLE XI(b)

SUMMARY OF TMR LOG-BOOK DATA CORRESPONDING TO INTERVALS SELECTED FOR WAVE METER DATA REDUCTION

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 34 WEST

		CREL WINDS	REL	WAVE	REL	<-5W	ELL->	
RUN	SEA	DIR/SPEED	WAVE	HT.	SWELL	HT L	ENGTH	
NO.	STATE	/(KT)	DIR	FT.	DIR	FT.	FT.	VISUAL WEATHER /THR LOG-BOOK COMMENTS
1209	4	83P/15	83P	1				PT CLBY /
1217	6	1385/25	1385	5	1158	8	150	OCAST /HEAVY ROLL
1228	8	1365/35	1365	5	1368	8	150	PT CLDY /HEAVY ROLL
1230	3	156F/10	156F	4	1365	6	150	PT CLDY /RIDING EASY
1233	5	100F/20	100F	2	1145	6	150	OCAST /
1237	6	118P/25	118F	2	1185	6	150	OCAST /
1241	3	106F/10	106P	3	1195	6	150	OCAST FOG RAIN /
1245	3	103F/10	103P	2	1228	6	200	OCAST /
1305	3	18F/10	18F	2	18P	6	200	PT CLBY /
1309	6	495/25	495	5	18P	8	150	HAIL RAIN SQUALLS /
1317	2	495/ 5	495	5	275	8	150	CLEAR FOG SNOW /
1321	4	475/15	475	0	258	15	200	OCAST SNOW /ICE FIELD ROLLING HIGH SWELL
1329	6	925/25	925	2	255	5	150	DCAST /
1333	5	755/20	755	2	305	5	150	OCAST /
1337	5	1595/20	1595	2	245	5	150	OCAST SNOW /
1341	4	1375/15	1375	2	258	3	200	OCAST SNOW /
1345	4	1375/15	1375	1	and the same and	2	300	PT CLDY /
	1209 1217 1228 1230 1233 1237 1241 1245 1305 1309 1317 1321 1329 1333 1337	1209 4 1217 6 1228 8 1230 3 1233 5 1237 6 1241 3 1345 3 1309 6 1317 2 1321 4 1329 6 1333 5 1337 5	1209 4 83P/15 1217 6 138S/25 1228 8 1365/35 1230 3 156P/10 1233 5 100P/20 1237 6 118P/25 1241 3 106P/10 1305 3 18P/10 1309 6 49S/25 1317 2 49S/5 1321 4 47S/15 1329 6 92S/25 1333 5 75S/20 1337 5 159S/20 1341 4 137S/15	1209 4 83P/15 83P 1217 6 138S/25 138S 1228 8 136S/35 136S 1230 3 156F/10 156F 1233 5 100F/20 100F 1237 6 118F/25 118F 1241 3 106F/10 106P 1245 3 103F/10 103P 1305 3 18F/10 13F 1309 6 49S/25 49S 1317 2 49S/5 49S 1321 4 47S/15 47S 1329 6 92S/25 92S 1333 5 75S/20 75S 1337 5 159S/20 159S 1341 4 137S/15 137S	1209 4 83P/15 83P 1 1217 6 138S/25 138S 5 1228 8 136S/35 136S 5 1230 3 156F/10 156F 4 1233 5 100F/20 100F 2 1237 6 118P/25 118P 2 1241 3 106F/10 106P 3 1245 3 103P/10 103P 2 1305 3 18P/10 18P 2 1309 6 49S/25 49S 5 1317 2 49S/ 5 49S 5 1321 4 47S/15 47S 0 1329 6 92S/25 92S 2 1333 5 75S/20 75S 2 1337 5 159S/20 159S 2 1337 5 159S/20 159S 2	1209 4 83P/15 83P 1 1217 6 138S/25 138S 5 115S 1228 8 136S/35 136S 5 136S 1230 3 156F/10 156F 4 136S 1233 5 100F/20 100F 2 114S 1237 6 118P/25 118P 2 118S 1241 3 106F/10 106P 3 119S 1245 3 103F/10 103P 2 122S 1305 3 18P/10 108P 2 12S 1309 6 49S/25 49S 5 18P 1317 2 49S/ 5 49S 5 18P 1321 4 47S/15 47S 0 25S 1329 6 92S/25 92S 2 25S 1333 5 75S/20 75S 2 30S 1337 5 159S/20 159S 2 24S 13341 4 137S/15 137S 2 25S	1209 4 83P/15 83P 1 1217 6 138S/25 138S 5 115S 8 1228 8 136S/35 136S 5 136S 8 1230 3 156P/10 156P 4 136S 6 1233 5 100P/20 100P 2 114S 6 1237 6 118P/25 118P 2 118S 6 1241 3 106P/10 106P 3 119S 6 1245 3 103P/10 103P 2 122S 6 1305 3 18P/10 108P 2 18P 6 1309 6 49S/25 49S 5 18P 8 1317 2 49S/5 49S 5 18P 8 1317 2 49S/5 49S 5 27S 8 1321 4 47S/15 47S 0 25S 15 1329 6 92S/25 92S 2 25S 5 1333 5 75S/20 75S 2 30S 5 1337 5 159S/20 159S 2 24S 5 13341 4 137S/15 137S 2 25S 3	1209

TABLE XI(c)

COMPARISON OF TMR RESULTS FOR MIDSHIP VERTICAL BENDING STRESS WITH CORRESPONDING RAW DIGITIZATION RESULTS AT DAVIDSON LABORATORY

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 34 WEST

	*	<	TMR	RESULTS-		>	K <d.l.< th=""><th>DIGITIZAT</th><th>ION>*<</th><th>core</th><th>JMN RAT</th><th>105></th></d.l.<>	DIGITIZAT	ION>*<	core	JMN RAT	105>
	*	NO.	NO.	MAX	RMS	MAX 1ST	RANGE OF	2.83X	REL *			
D.L.	*	WAVE	151	P-T0-T	P-TO-T	MODE A	RECORDED	(SAMPLE	MEAN *	(7)	(6)	(6)
RUN	*	INDUCED	MODE	STRESS	STRESS	STRESSA	EXTREMES	RMS)	STRESS*	1	1	/
NO.	*	CYCLES	BURSTS	KPSI	KFSI	KPSI I	KPSI	KPS1	KPSI *	(4)	(3+5)	(3)
	*	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8) *			
	*								*			
1209	*	177	0	1.32	0.55	0.00	1.83	0.73	3.53 *	1.35	1.38	1.38
1217	*	142	44	10.16	4.85	3.30	14.62	5.21	0.01 *	1.07	1.09	1.44
1228	*	140	23	11.02	5.29	1.53	15.15	5.95	0.28 *	1.13	1.21	1.37
1230	*	145	19	9.21	4.81	2.34	12.58	5.49	1.96 *	1.14	1.09	1.37
1233	*	125	5	8.66	3.64	1.02	11.69	4.73	1.55 *	1.30	1.21	1.35
1237	*	85	34	8.34	3.83	1.33	11.69	5.19	2.05 *	1.36	1.21	1.40
1241	*	91	5	6.72	3.01	1.17	8.76	4.16	0.28 *	1.38	1.11	1.30
1245	*	137	8	8.97	4.12	1.81	12.34	4.98	1.89 *	1.21	1.14	1.38
1305	*	157	60	14.77	5.80	4.03 ×	17.51	6.15	-0.06 *	1.06	0.93	1.19
1309	*	154	57	14.43	5.68	5.62	18.31	5.99	0.02 *	1.06	0.91	1.27
1317	*	138	43	9.26	3.87	2.10	12.14	4.70	0.06 *	1.21	1.07	1.31
1321	*	117	0	8.34	3.00	0.00	8.49	3.53	-0.04 *	1.17	1.02	1.02
1329	*	198	45	8.31	3.47	1.77	9.39	3.68	0.18 *	1.06	0.93	1.13
1333	*	181	44	10.46	4.39	3.63	13.32	4.54	0.21 *	1.03	0.95	1.27
1337	*	197	2	5.41	2.36	0.92	6.66	2.66	0.18 *	1.12	1.05	1.23
1341	*	192	0	2.87	1.10	0.00	3.20	1.22	-0.04 ×	1.11	1.12	1.12
1345	*	139	2	1.84	0.86	0.81	2.99	1.22	0.10 *	1.42	1.13	1.62

TABLE XI(d)

SUMMARY OF RAW DIGITIZATION RESULTS FOR RADAR RANGE ROLL, PITCH, DECK HOUSE ACCELERATIONS, AND TUCKER METER

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 34 WEST

	R	ADAR>	ROL	L>	P	ITCH>	VERT	ACCEL->	LAT	ACCEL>	TU	CKER>
D.L.	4.0	RECORDED	4.0 R	ECORDED	4.0	RECORDED	4.0	RECORDED	4.0	RECORDED	4.0	RECORDED
RUN	(RMS)	EXTREMES	(RMS) E	XTREMES	(RMS)	EXTREMES	(RMS)	EXTREMES	(RMS)	EXTREMES	(RMS)	EXTREMES
NO.	FT	FT FT	DEG D	DEG DEG	DEG	DEG DEG	(G)	(G) (G)	(G)	(G) (G)	FT	FT FT
1209	9.	79.	2.0	13.	0.6	-0.0 -0.9	0.09	0.1 -0.1	0.06	0.1 -0.0	2.	22.
1217	50.	5952.	17.6	719.	1.8	1.2 -2.3	0.42	0.4 -0.4	0.39	0.4 -0.3	15.	1010.
1228	56.	4652.	18.0 1	0, -16.	1.9	1.0 -2.1	0.43	0.3 -0.3	0.39	0.3 -0.3	19.	1111.
1230	43.	3246.	15.7	914.	1.6	0.9 -1.9	0.35	0.3 -0.3	0.34	0.3 -0.2	14.	118.
1233	36.	3040.	14.5	815.	1.0	0.4 -1.7	0.23	0.2 -0.2	0.30	0.3 -0.2	15.	119.
1237	30.	2523.	9.8 1	08.	0.9	0.3 -1.4	0.19	0.2 -0.2	0.22	0.2 -0.2	9.	85.
1241	25.	2219.	8.9	58.	0.9	0.3 -1.4	0.18	0.1 -0.2	0.20	0.2 -0.2	8.	87.
1245	31.	2625.	8.3	57.	1.3	0.5 -2.0	0.27	0.2 -0.3	0.18	0.1 -0.1	9.	76.
1305	44.	3344.	8.0	57.	2.2	1.7 -2.4	0.50	0.4 -0.4	0.19	0.2 -0.2	9.	77.
1309	43.	4043.	10.1	89.	2.1	1.7 -2.3	0.47	0.5 -0.4	0.23	0.2 -0.2	9.	98.
1317	40.	3347.	16.2	916.	1.3	0.6 -1.9	0.30	0.3 -0.3	0.35	0.3 -0.3	14.	109.
1321	33.	3120.	16.5	716.	0.7	0.0 -1.3	0.15	0.1 -0.1	0.36	0.3 -0.2	13.	117.
1329	25.	2625.	4.0 -	18.	1.2	0.5 -2.1	0.28	0.3 -0.2	0.11	0.1 -0.1	5.	43.
1333	35.	3147.	4.6	26.	1.8	1.2 -2.2	0.41	0.4 -0.4	0.12	0.1 -0.1	4.	44.
1337	19.	1516.	3.9	26.	1.0	0.4 -1.8	0.23	0.2 -0.2	0.09	0.1 -0.1	4.	34.
1341	11.	1310.	2.8 -	05.	0.7	-0.0 -1.3	0.12	0.1 -0.1	0.07	0.1 -0.1	3.	22.
1345	12.	1511.	5.3	18.	0.6	-0.0 -1.1	0.07	0.1 -0.1	0.12	0.1 -0.1	6	54.

TABLE XII(a)

SEA LAND HC LEAN : 1973-1974 WINTER SEASON : VOYAGE 35 EAST

D.L.	TMR	TMR	TMR									
RUN	TAPE	INDX	INTU		TIME				SPEED	PROP	DRAFT	SEA/AIR
NO.	NO.	NO.	NU.	DATE	(GMT)	LATITUDE	LONGITUDE	COURSE	KT.	RPM	FI.	TEMP
1405	165	2	5	02-12-74	2000	40-25 N	71-01 W	079	32.4	132.5	30.00	43/34
1409	165	3	9	02-12-74	2400	40-25 N	71-01 W	079	32.3	132.0	30.00	43/36
1413	165	4	13	02-13-74	0400	40-25 N	71-01 W	079	32.4	132.4	30.00	46/34
1417	165	5	17	02-13-74	0800	40-25 N	71-01 W	079	32.3	132.3	30.04	51/36
1421	165	6	21	02-13-74	1200	42-35 N	55-02 W	079	32.1	131.0	30.10	44/35
1429	165	8	29	02-13-74	2000	42-35 N	55-02 W	079	32.3	132.0	30.18	47/35
1433	165	9	33	02-13-74	2400	42-35 N	55-02 W	079	32.4	132.4	30.24	34/35
1437	165	10	37	02-14-74	0400	42-35 N	55-02 W	079	32.3	132.0	30.22	57/36
1442	165	11	42	02-14-74	0800	42-35 N	55-02 W	079	32.3	132.0	30.22	57/35
1445	165	12	45	02-14-74	1200	45-05 N	38-25 W	079	32.1	131.4	30.20	54/45
1449	165	13	49	02-14-74	1600	45-05 N	38-25 W	079	32.3	132.0	30.18	54/47
1501	167	14	1	02-14-74	2000	45-05 N	38-25 W	079	32.1	131.2	30.11	43/48
1505	167	15	5	02-14-74	2400	45-05 N	38-25 W	079	32.2	131.5	30.10	52/47
1513	167	17	13	02-15-74	0800	45-05 N	38-25 W	077	31.9	130.5	29.92	52/48
1517	167	18	17	02-15-74	1200	47-09 N	21-59 W	076	31.9	130.5	29.80	52/54
1525	167	20	25	02-15-74	2400	47-09 N	21-59 W	080	17.2	70.0	29.70	50/50
1529	167	21	29	02-16-74	0400	47-09 N	21-59 W	075	17.3	72.0	29.69	52/50
1533	167	22	33	02-16-74	0800	47-09 N	21-59 W	075	17.3	72.0	29.70	52/49
1537	167	23	37	02-16-74	1200	48-36 N	11-29 W	075	16.5	65.0	29.76	51/53
1541	167	24	41	02-16-74	1600	48-36 N	11-29 W	075	19.7	82.0	29.74	50/49
1545	167	25	45	02-16-74	2000	48-36 N	11-29 W	075	26.2	107.0	29.73	50/49

TABLE XII(b)

SUMMARY OF TMR LOG-BOOK DATA CORRESPONDING TO INTERVALS SELECTED FOR WAVE METER DATA REDUCTION

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 35 EAST

D.L.		KEL WIND	REL	WAVE	REL.	<-SW	ELL->					
RUN	SEA	DIR/SPEED	WAVE	HT.	SWELL	HT L	ENGTH					
NO.	STATE	/(KT)	DIR	FT.	DIR	FT.	FT.	VISUAL	WEATHER	/TMR	LOG-BOOK	COMMENTS
1405	5	124F/20	124F	2	124F	3	150	FT CLD	,			
1409	5	124P/20	124P	3	79P	5	150	OCAST /				
1413	5	1249/20	124P	3	79F	5	150	DCAST /				
1417	5	124P/20	124P	3	124P	5	150	OCAST /				
1421	5	124F/20	124P	3	124P	5	150	OCAST /				
1429	6	135F/25	135P	4	90F	6	150	PT CLDY	1			
1433	4	169P/15	169F	6	124P	8	200	FT CLIN	/			
1437	5	169P/20	169P	6	124P	10	200		/HEAVY	ROLL		
1442	7	146F/30	146F	6	124P	10	200		THEOUY			
1445	8	124F/35	124P	5	124P	10	200	PT CLDY	THEAVY	ROLL		
1447	8	146F/35	146P	5	124P	8	200		/HEAVY			
1501	9	124F/45	124P	6	124P	10	200		/HEAVY			
1505	9	124F/45	124P	6	124P	10	200		HEAVY			
1513	9	1118/45	111P	10	122P	15	250		THEAVY			
1517	10	121P/55	121P	20	121P	25	300		/HEAVY			
1525	10	125P755	125P	20	801	20	250	OCAST /				
1529	9	120P/45	120F	20	75P	20	250	OCAST /				
1533	9	97F/45	97P	20	75P	20	250	PT CLDY				
1537	9	97F/45	97P	20	75P	20	250		HEAVY	ROLL		
1541	10	97P/55	97F	20	75P	20	300		/HEAVY			
1545	9	97P/45	97P	4	75P	6	300	PT CLDY				

TABLE XII(c)

COMPARISON OF TMR RESULTS FOR MIDSHIP VERTICAL BENDING STRESS WITH CORRESPONDING RAW DIGITIZATION RESULTS AT DAVIDSON LABORATORY
SEA LAND HC LEAN: 1973-1974 WINTER SEASON: VOYAGE 35 EAST

	*	<	TMR	RESULTS-		*<>	< li.L.	DIGITIZAT	ION>*	COL	JMN RAT	105
	*	NO.	NO.	MAX	RMS	MAX 151*	RANGE OF	2.83X	REL *			
D.L.	*	WAVE	1ST	P-T0-T	P-T0-T	MODE *	RECORDED	(SAMPLE	MEAN *	(7)	(6)	(6)
RUN	*	INDUCED	MODE	STRESS	STRESS	STRESSA	EXTREMES	RMS)	STRESS*	/	1	1
NO.	*	CYCLES	BURSTS	KPSI	KPSI	KFSI *	KPS1	KPSI	KPSI *	(4)	(3+5)	(3)
	*	(1)	(2)	(3)	(4)	(5) *	(6)	(7)	(8) *			
	*								*			
405	*	120	0	3.18	1.37	0.00 *	4.60	1.47	0.21 *	1.07	1.45	1.45
409	*	84	9	4.70	2.63	0.86 *	7.09	2.97	-0.20 *	1.13	1.28	1.51
413	*	99	4	6.99	2.12	0.79 *	8.06	3.44	-0.19 *	1.63	1.04	1.15
417	*	126	10	6.85	2.72	1.16 *	8.45	4.12	0.22 *	1.51	1.05	1.23
421	*	165	3	3.74	1.83	0.97 *	7.60	3.27	-0.15 *	1.79	1.61	2.03
427	*	97	11	7.92	3.24	0.99 *	11.06	4.04	-0.03 *	1.25	1.24	1.40
433	*	105	4	9.51	3.27	0.80 #	10.38	4.27	-0.09 *	1.31	1.01	1.09
437	*	105	26	7.19	3.55	1.70 *	10.57	4.36	-0.45 *	1.23	1.19	1.47
442	*	114	23	10.19	4.58	2.00 *	16.33	6.03	-0.20 *	1.32	1.34	1.60
145	*	71	23	17.74	5.48	1.23 *	18.20	7.46	0.19 *	1.36	0.96	1.03
449	*	63	23	13.62	5.49	1.14 *	14.25	6.75	-0.11 *	1.23	0.96	1.05
501	*	62	9	11.51	4.73	1.22 *	18.12	6.72	-0.05 *	1.42	1.42	1.57
505	*	74	31	15.15	5.00	1.34 *	17.37	6.65	0.44 *	1.33	1.05	1.15
513	*	58	44	13.11	6.52	1.63 *	17.92	7.90	0.73 *	1.21	1.22	1.37
517	*	59	42	18.22	6.73	2.21 *	20.04	8.42	0.97 *	1.25	0.98	1.10
525	*	67	18	14.83	6.74	1.36 *	17.84	7.30	0.98 *	1.08	1.10	1.20
529	*	76	17	12.13	5:74	1.10 *	13.05	5.79	1.16 *	1.01	0.99	1.08
533	*	82	26	10.52	5.62	1.14 *	11.61	5.29	1.23 *	0.94	1.00	1.10
537	*	58	33	15.26	7.08	1.41 *	17.25	7.46	0.84 *	1.05	1.04	1.13
541	*	61	33	11.42	5.81	1.35 *	11.00	5.81	0.78 *	1.00	0.86	0.96
1545	*	44	23	7.76	4.37	1.39 *	9.88	4.85	-0.30 ×	1.11	1.00	1.27

TABLE XII (d)

SUMMARY OF RAW DIGITIZATION RESULTS FOR RADAR RANGE ROLL, PITCH, DECK HOUSE ACCELERATIONS, AND TUCKER METER

' SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 35 EAST

D.L. 4.0 RECORDED 4.0 RECORDED 4.0 RECORDED 4.0 RECORDED RUN (RMS) EXTREMES (RMS) EXTREMES (RMS) EXTREMES (RMS) EXTREMES	< TUCKER>
RUN (RMS) EXTREMES (RMS) EXTREMES (RMS) EXTREMES (RMS) EXTREMES	4.0 RECORDED
	(RMS) EXTREMES
NO. FT FT FT DEG DEG DEG DEG DEG (G) (G) (G) (G) (G)	FT FT FT
1405 15. 1414. 5.6 54. 0.6 -0.5 -1.7 0.11 0.1 -0.1 0.14 0.1 -0.1	2. 21.
1409 24. 2118. 15.5 139. 0.8 0.2 -1.1 0.15 0.1 -0.1 0.36 0.2 -0.3	3. 43.
1413 25. 2223. 12.4 1110. 0.7 0.1 -1.1 0.12 0.1 -0.1 0.26 0.3 -0.2	3. 43.
1417 28. 2122. 10.0 125. 1.0 0.5 -1.3 0.22 0.2 -0.2 0.21 0.2 -0.2	3. 32.
1421 22. 2022. 7.2 86. 0.9 0.4 -1.5 0.16 0.2 -0.2 0.16 0.2 -0.2	2. 22.
1429 33. 3030. 14.5 1213. 1.0 0.4 -1.5 0.23 0.2 -0.2 0.33 0.3 -0.2	5. 54.
1433 36. 3028. 17.9 1312. 1.1 0.4 -1.8 0.25 0.2 -0.2 0.40 0.3 -0.3	9. 86.
1437 34. 2937. 13.4 1310. 1.5 1.0 -2.2 0.35 0.3 -0.3 0.31 0.3 -0.3	8. 76.
1442 45. 3940. 23.8 2314. 2.1 1.6 -2.3 0.44 0.4 -0.3 0.49 0.4 -0.5	12. 98.
1445 48. 3543. 28.2 3024. 1.7 1.0 -2.2 0.35 0.3 -0.3 0.59 0.6 -0.6	17. 159.
1449 42, 35, -33, 28,1 25, -14, 1.6 0.9 -2.1 0.33 0.3 -0.2 0.61 0.4 -0.5	13. 108.
1501 42. 5029. 23.6 1916. 1.3 0.9 -1.6 0.30 0.3 -0.3 0.53 0.4 -0.4	14. 1411.
1505 44. 3631. 25.3 2618. 1.5 1.0 -1.9 0.35 0.3 -0.3 0.55 0.5 -0.5	
1513 42. 3233. 33.9 3814. 1.6 1.4 -1.7 0.31 0.3 -0.3 0.68 0.4 -0.5	
1517 43. 3736. 31.6 2717. 1.4 1.0 -1.5 0.31 0.3 -0.3 0.67 0.5 -0.5	
1525 44. 4444. 29.6 2418. 1.0 0.4 -1.3 0.26 0.3 -0.2 0.66 0.5 -0.4	
1529 42. 3432. 22.0 2213. 0.9 0.4 -1.2 0.26 0.3 -0.2 0.50 0.4 -0.4	
1533 39, 32, -42, 19.1 20, -10, 0.9 0.3 -1.3 0.26 0.2 -0.2 0.45 0.4 -0.3	
1537 40. 3630. 29.1 2614. 1.1 0.8 -1.5 0.30 0.3 -0.3 0.68 0.5 -0.5	
1541 39. 3928. 34.0 2914. 1.0 0.4 -1.3 0.22 0.2 -0.2 0.72 0.5 -0.5	
1545 28. 2023. 23.1 2012. 0.8 0.3 -1.3 0.11 0.1 -0.1 0.50 0.4 -0.3	

TABLE XIII(a)

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 35 WEST

D.L.	THR	TMR	TMR									
RUN	TAPE	INDX	INTU		TIME				SPEED	PROP	DRAFT	
NO.	NO.	NO.	NO.	DATE	(GMT)	LATITUDE	LONGITUDE	COURSE	KT.	RPM	FT.	TEMP
1617	169	5	17	02-20-74	2400	50-23 N	01-16 W	263	31.6	129.0	30.42	51/50
1621	169	6	21	02-21-74	0400	50-23 N	01-16 W	263	31.8	130.0	30.37	51/50
1625	169	7	25	02-21-74	0800	50-23 N	01-16 W	263	31.8	130.0	30.36	51/51
1629	169	8	29	02-21-74	1200	47-19 N	19-35 W	261	32.0	131.0	30.32	51/50
1633	169	9	33	02-21-74	1600	47-19 N	19-35 W	261	31.4	128.3	30.20	52/50
1641	169	11	41	02-21-74	2400	47-19 N	19-35 W	261	31.9	130.5	30.40	52/47
1645	169	12	45	02-22-74	0400	47-19 N	19-35 W	261	32.0	131.0	30.35	51/48
1649	169	13	49	02-22-74	0800	47-19 N	19-35 W	261	32.0	131.0	30.12	53/50
1653	169	14	53	02-22-74	1200	45-12 N	38-08 W	259	31.8	130.0	29.83	53/53
1705	171	16	5	02-22-74	1700	45-12 N	38-08 W	259	31.3	128.0	29.65	57/48
1710	171	17	10	02-22-74	2000	45-12 N	38-08 W	259	31.3	128.0	29.80	57/37
1713	171	18	13	02-22-74	2400	45-12 N	38-08 W	235	25.3	106.0	29.99	40/34
1717	171	19	17	02-23-74	0400	45-12 N	38-08 W	260	20.2	86.0	30.12	36/34
1721	171	20	21	02-23-74	0800	45-12 N	38-08 W	261	31.8	130.0	30.20	31/33
1725	171	21	25	02-23-74	1200	42-32 N	52-49 W	261	32.1	131.4	29.97	45/45
1729	171	22	29	02-23-74	1600	42-32 N	52-49 W	259	32.0	131.0	29.55	52/46
1743	171	25	43	02-24-74	0400	42-32 N	52-49 W	259	10.0	60.0	29.67	34/44
1747	171	26	47	02-24-74	0080	42-32 N	52-49 W		6.0	42.0	29.B1	38/45
1749	171	27	49	02-24-74	1200	40-35 N	60-49 W	225		30.0	30.02	55/45
1756	171	28	56	02-24-74	1600	40-35 N	60-49 W	250	10.0	62.0	30.09	50/46
1801	173	29	1	02-24-74	1900	40-35 N	60-49 W	270	10.0	64.0	30.20	50/41
1809	173	31	9	02-24-74	2300	40-35 N	60-49 W	268	32.0	131.0	30.20	60/40
1813	173	32	13	02-25-74	0100	40-35 N	60-49 W	268	32.1	131.5	30.10	52/39
1817	173	33	17	02-25-74	0300	40-35 N	60-49 W	269	32.3	131.8	29.96	40/38

TABLE XIII(b)

SUMMARY OF TMR LOG-BOOK DATA CORRESPONDING TO INTERVALS SELECTED FOR WAVE METER DATA REDUCTION

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 35 WEST

D.L.		KEL WIND	REL	WAVE	REL	<-5W	ELL->	
RUN	SEA	DIR/SPEED	WAVE	HT.	SWELL	HT L	ENGTH	
NO.	STATE	/(KT)	DIR	FT.	DIR	FT.	FT.	VISUAL WEATHER /THR LOG-BOOK COMMENTS
1617	1	75/ 2	75	1	75	3	250	PT CLBY /
1621	3	75/10	75	1	75	3	250	PT CLDY /
1625	3	38F/10	38P	1	38P	3	250	DCAST /
1629	5	36F/20	36P	2	36P	4	200	PT CLDY /
1633	5	47F/20	36P	3	36F	5	150	OCAST /
1641	2	995/ 5	995	3	98	5	150	DCAST /
1645	2	171F/ 5	171P	3	95	5	150	PT CLDY /
1645	5	103F/20	103P	3	36F	5	150	PT CLDY /
1653	7	79F/30	79P	6	79P	8	150	OCAST /
1705	9	335/45	335	5	79P	8	150	DCAST /
1710	8	225/40	228	5	225	8	150	DEAST /RETURN TO AUTO RECORDING
1713	8	355/40	355	6	358	8	150	DCAST /
1717	5	445/20	555	4	558	6	200	PT CLDY /
1721	2	36P/ 5	36P	2	36P	4	200	PT CLDY /
1725	5	81P/20	BIP	2	81F	4	200	PT CLBY /
1729	7	56P/30	56P	5	115	7	150	OCAST /
1743	9	128/45	128	25	0	25	400	OCAST /HOVE TO 30 RPM
1747	10	0 /50	0	30	. 255	30	400	PT CLDY /HOVE TO 30 RPM
1749	10	565/50	565	30	455	30	400	PT CLDY /
1756	10	209/50	205	15	205	15	200	PT CLDY /
1801	9	115/45	115	15	0	15	200	PT CLDY /
1809	2	345/ 5	25	6	25	6	300	OCAST / .
1813	5	178P/20	178P	4	178P	4	300	DCAST /
1817	7	179F/30	179P	3	179F	3	300	OCAST /

TABLE XIII(c)

COMPARISON OF TMR RESULTS FOR MIDSHIP VERTICAL BENDING STRESS WITH CORRESPONDING RAW DIGITIZATION RESULTS AT DAVIDSON LABORATORY

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 35 WEST

	*		TMR	RESULTS-		>*	< D.L.	DIGITIZAT	ION>*<	COL	JHN RAT	105>
	*	NO.	NO.	MAX	RMS	MAX 15T*	RANGE OF	2.83X	REL *			
D.L.	*	WAVE	1ST	P-T0-T	P-10-T	MODE *	RECORDED	(SAMPLE	MEAN *	(7)	(6)	(6)
RUN	*1	NDUCED	MODE	STRESS	STRESS	STRESS*	EXTREMES	RMS)	STRESS*	1	1	/
NO.	*	CYCLES	HURSTS	KPSI	KFSI	KFSI *	KPSI	KPSI	KPSI *	(4)	(3+5)	(3)
	*	(1)	(2)	(3)	(4)	(5) *	(6)	(7)	(8) *			
	*					*			*			
1617		171	8	7.61	3.50	1.10 *	7.05	3.16	-1.32 *	0.91	0.81	0.93
1621	*	179	1	6.39	2.86	0.70 *	6.54	2.76	-1.29 *	0.96	0.92	1.02
1625	*	173	0	4.44	2.22	0.00 *	5.29	2.20	-1.26 *	0.99	1.19	1.19
1629	*	177	23	7.14	2.97	1.19 *	8.08	3.14	-1.41 *	1.05	0.97	1.13
1633	*	183	37	8.16	. 3.56	2.00 *	9.71	3.55	-1.25 *	1.00	0.96	1.19
1641	*	189	25	11.25	4.01	2.10 *	11.83	3.71	-1.38 *	0.93	0.89	1.05
1645	*	199	8	7.27	3.24	1.59 *	8.35	3.22	-1.36 *	0.99	0.94	1.15
1649	*	194	13	4.46	2.16	1.16 *	5.09	2.14	-1.49 *	0.99	0.91	1.14
1653	*	190	37	5.59	2.50	3.39 *	8.17	2.83	-1.52 *	1.13	0.91	1.46
1705	*	166	59	12.51	5.21	4.53 *	15.74	5.47	-1.20 *	1.05	0.92	1.26
1710	*	165	71	7.72	4.00	4.21 *	10.55	4.17	-1.10 *	1.04	0.88	1.37
1713	*	160	69	15.99	6.61	4.11 *	16.68	6.71	-0.25 *	1.01	0.83	1.04
1717	*	147	45	13.06	5.61	3.18 *	14.56	5.72	0.01 *	1.02	0.90	1.12
1721	*	189	52	16.48	5.10	9.33 *	24.03	5.07	-1.23 *	0.99	0.93	1.46
1725	*	210	2	5.00	2.40	0.93 *	6.33	2.64	-1.49 *	1.10	1.07	1.27
1729	*	199	34	3.23	1.32	1.71 *	4.17	1.64	-1.64 *	1.24	0.84	1.29
1743	*	113	71	23.26	11.01	3.29 *	23.56	10.38	0.52 *	0.94	0.89	1.01
1747	*	107	42	27.76	10.07	2.95 *	26.12	9.38	0.68 *	0.93	0.85	0.94
1749	*	107	37	18.64	9.00	2.32 *	17.67	8.35	0.59 *	0.93	9.84	0.95
1756	*	147	73	20.10	8.19	5.13 *	21.62	7.95	0.37 *	0.97	0.86	1.08
1801	*	133	22	18.78	7.98	3.90 *	18.73	7.07	0.53 *	0.89	0.83	1.00
1809	*	200	25	7.94	3.82	7.15 ×	9.77	4.23	-0.93 *	1.11	0.65	1.23
1813	*	221	0	4.21	2.02	0.00 *	6.13	2.57	-1.22 *	1.27	1.46	1.46
1817	*	184	0	3.30	1.33	0.00 *	4.07	1.49	-1.20 *	1.12	1.23	1.23

TABLE XIII(d)

SUMMARY OF RAW DIGITIZATION RESULTS FOR RADAR RANGE ROLL, PITCH, DECK HOUSE ACCELERATIONS, AND TUCKER METER

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 35 WEST

	R	ADAR>	R	DLL -	>	P	ITCH	>	VER	ACC	CEL->	LAT	ACCI	EL><	TU	CKER	>
D.L.	4.0	RECORDED	4.0	RECO	RDED	4.0	RECO	RDED	4.0	RECO	DRDED	4.0	REC	DRDED	4.0	RECO	RDED
RUN	(RMS)	EXTREMES	(RMS)	EXTR	EMES	(RMS)	EXTR	EMES	(RMS)	EXT	REMES	(RMS)	EXT	REMES	(RMS)	EXTR	EMES
NO.	FT	FT FT	DEG	DEG	DEG	DEG	DEG	DEG	(G)	(G)	(G)	(B)	(B)	(G)	FT	FT	FT
1617	27.	2220.	3.1	2.	-3.	1.5	0.8	-	0.33	-	1	0.09	-		3.	3.	-3.
1621	23.	2119.	3.0	2.	-3.	1.3	0.5		0.28	0.2	-0.2	0.09	0.1	-0.1	3.	3.	-2.
1625	18.	1715.	2.7	2.	-2.	1.0	0.2	-1.5	0.22	0.2	-0.2	0.08	0.1	-0.1	2.	2.	-2.
1629	25.	2120.	2.4	2.	-2.	1.4	0.8	-1.8	0.29	0.2	-0.3	0.07	0.1	-0.1	3.	2.	-3.
1633	26.	2324.	2.2	3.	-1.	1.4	0.6	-1.8	0.30	0.2	-0.2	0.07	0.1	-0.1	3.	2.	-2.
1641	26.	2440.	2.5	1.	-3.	1.4	1.0	-2.2	0.30	0.4	-0.3	0.07	0.1	-0.1	2.	2.	-2.
1645	24.	1818.	3.2	1.	-4.	1.3	0.5	-1.9	0.27	0.2	-0.2	0.09	0.1	-0.1	3.	2.	-2.
1649	17.	1513.	3.0	3.	-2.	0.9	0.3	-1.4	0.20	0.2	-0.2	0.09	0.1	-0.1	2.	2.	-2.
1653	19.	1618.	5.7	7.	-3.	1.0	0.3	-1.3	0.21	0.2	-0.2	0.15	0.2	-0.1	3.	2.	-2.
1705	41.	3044.	11.0	9.	-9.	2.2	1.7	-2.3	0.49	0.4	-0.4	0.26	0.2	-0.2	6.	5.	-5.
1710	34.	3142.	5.8	4.	-6.	1.8	1.1	-2.0	0.37	0.3	-0.3	0.15	0.2	-0.1	4.	4.	-3.
1713	50.	3451.	5.0	2.	-7.	2.4		-2.1	0.52			0.13			5.	4.	-4.
1717	51.	3549.	4.6	1.	-14.	2.0	1.1	-2.0	0.45	0.3	-0.3	0.13	0.1	-0.1	5.	4.	-4.
1721	34.	3446.	3.3	2.	-5.	1.9		-2.4	0.39			0.10	0.1	-0.1	3.	3.	-3.
1725	16.	1514.	2.6	2.	-3.	1.0	0.3		0.19	100 100		0.08	-		2.	2.	-2.
1729	11.	911.	3.1	5.	-0.	0.8	0.3		0.11			0.09	7		2.	2.	-2.
1743	52.	3942.	9.3		-121	2.1	1.9		0.45			0.24			7.	7.	-7.
1747	51.	3943.	10.3		-13.	1.6		-1.8	0.36			0.26	-		8.	8.	-8.
1749	49.	3541.	11.1	5.	-12.	1.6		-1.6	0.36			0.27			9.	8.	-8.
1756	55.	4449.	7.0	4.	-8.	2.3	1.7	-2.0	0.49	0.4	-0.4	0.18	0.2	-0.2	. 6.	5.	-6.
1801	53.	3651.	5.5	2.	-6.	1.9	1.3		0.43			0.14	0.1	-0.2	5.	4.	-4.
1809	28.	2325.	5.2	3.	-7.	1.7		-2.0	0.38	0.3	-0.3	0.14	0.1	-0.1	3.	3.	-3.
1813	16.	1513.	3.8	1.	-6.	0.9	0.2	-1.4	0.17	0.1	-0.1	0.10	0.1	-0.1	2.	1.	-2.
1817	12.	1112.	3.6	2.	-4.	0.8	0.2	-1.3	0.16	0.1	-0.1	0.10	0.1	-0.1	2.	1.	-1.

TABLE XIV(a)

SUMMARY OF TMR LOG-BOOK DATA CORRESPONDING TO INTERVALS SELECTED FOR WAVE METER DATA REDUCTION

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 36 EAST

D.L.	TMR	TMR	TMR									
RUN	TAPE	INDX	INTU		TIME				SPEED	PROP	DRAFT	SEA/AIR
ND.	NO.	NO.	NO.	DATE	(GMT)	LATITUDE	LONGITUDE	COURSE	KT.	RPM	FT.	TEMP
1925	175	7	25	02-28-74	2000	41-36 N	58-10 W	079	32.3	131.0	30.31	47/37
1929	175	8	29	02-28-74	2400	41-36 N	58-10 W	078	32.1	130.0	30.30	43/35
1933	175	9	33	03-01-74	0400	41-36 N	58-10 W	078	32.4	131.3	30.30	42/34
1937	175	10	37	03-01-74	0800	41-36 N	58-10 W	078	31.9	129.5	30.26	37/35
1941	175	11	41	03-01-74	1200	41-36 N	58-10 W	078	32.1	130.0	30.24	60/36
1945	175	12	45	03-01-74	1600	44-05 N	42-20 W	078	32.2	130.6	30.27	57/46
1949	175	13	49	03-01-74	2000	44-05 N	42-20 W	078	32.3	130.8	30.25	58/47
1953	175	14	53	03-01-74	2400	44-05 N	42-20 W	077	32.3	131.0	30.29	57/48
1957	175	15	57	03-02-74	0490	44-05 N	42-20 W	077	32.4	131.3	30.34	53/48
1961	175	16	61	03-02-74	0800	44-05 N	42-20 W	077	32.2	130.5	30.33	54/47
2001	177	17	1	03-02-74	1200	44-05 N	42-20 W	077	32.1	130.0	30.34	52/48
2005	177	18	5	03-02-74	1600	46-36 N	25-47 W	078	32.4	131.3	30.40	52/50
2010	177	19	10	03-02-74	2000	46-36 N	25-47 W	077	32.4	131.2	30.36	52/50
2013	177	20	13	03-02-74	2400	46-36 N	25-47 W	078	32.2	131.0	30.39	51/48
2017	177	21	17	03-03-74	0400	46-36 N	25-47 W	078	32.5	131.6	30.38	51/48
2021	177	22	21	03-03-74	0800	46-36 N	25-47 W	077	32.4	131.4	30.33	51/47

TABLE XIV(b)

SUMMARY OF TMR LOG-BOOK DATA CORRESPONDING TO INTERVALS SELECTED FOR WAVE METER DATA REDUCTION

SEA LAND MC LEAN : 19/3-1974 WINTER SEASON : VOYAGE 36 EAST

D.1		CREL WIND>	REL	WAVE	REL	<-SW	ELL->	
RUN	SEA	DIR/SPEED	WAVE	HT.	SWELL	HT L	ENGTH	
NO.	STATE	/(KT)	DIR	FT.	DIR	FT.	FT.	VISUAL WEATHER /THR LOG-BOOK COMMENTS
1925	4	56P/12	56P	2	56P	3	150	PT CLDY /
1929	3	56P/12	56P	2	55P	3	150	PT CLDY /
1933	4	33P/12	33P	3	33P	3	150	PT CLDY /
1937	5	55P/15	55P	3	55P	3	150	PT CLDY /
1941	5	33P/15	33P	3	33P	3	150	PT CLDY /
1945	5	33F/20	33P	3	33P	3	250	PT CLDY /
1949	4	55P/15	55P	3	33P	3	250	PT CLDY /
1953	2	54P/10	32P	2	32P	4	300	CLDY /
1957	2	54F/ 5	32P	2	32P	4	300	OCAST /
1961	2	/5		2		6	500	CLDY /LONG CONFUSED SWELL
2001	2	/5		2		6	500	PT CLDY /
2005	2	78P/ 5	78F	2	123P	6	500	PT CLDY /
2010	4	99P/10	99P	2	124P	6	300	CLDY /
2013	3	78P/10	78P	4	124P	6	300	CLDY /
2017	4	78F/10	78P	4	124P	6	125	CLDY /
2021	4	54P/15	54P	5	124P	6	125	PT CLDY /

TABLE XIV(c)

COMPARISON OF TMR RESULTS FOR MIDSHIP VERTICAL BENDING STRESS WITH CORRESPONDING RAW DIGITIZATION RESULTS AT DAVIDSON LABORATORY

SEA LAND MC LEAN : 1973-1974 WINTER SEASON : VOYAGE 36 EAST

	*	<	TMR	RESULTS-		*<>	< D.L.	DIGITIZAT	ION>*<	COL	UMN RAT	10S
	*	NO.	NO.	MAX	RMS	MAX 1ST*	RANGE OF	2.83X	REL *			
D.L.	*	WAVE	151	P-T0-T	P-TO-T	MODE *	RECORDED	(SAMPLE	MEAN *	(7)	(6)	(6)
RUN	*	INDUCED	MODE	STRESS	STRESS	STRESS*	EXTREMES	RMS)	STRESS*	/	1	1
NO.	*	CYCLES	BURSTS	KPSI	KPSI	KPSI *	KPSI	KPSI	KPSI *	(4)	(3+5)	(3)
	*	(1)	(2)	(3)	(4)	(5) *	(6)	(7)	(8) *			
	*					*			*			
1925	*	197	0	2.24	0.88	0.00 *	2.85	1.12	0.39 *	1.26	1.27	1.27
1929	*	187	0	2.29	0.94	0.00 *	3.05	1.17	0.19 *	1.25	1.33	1.33
1933	*	207	2	2.48	1.04	0.72 *	3.42	1.23	0.31 *	1.18	1.07	1.38
1937	*	197	50	3.46	1.74	2.15 *	5.64	2.10	0.23 *	1.21	1.01	1.03
1941	*	181	13	4.52	2.03	0.79 *	6.21	2.44	0.28 *	1.20	1.17	1.37
1945	*	149	6	3.49	1.50	3.40 *	22.95 **	2.21	0.50 *	1.47	3.33	6.58
1949	*	136	1	2.56	1.38	0.56 *	4.24	1.79	0.51 *	1.30	1.36	1.66
1953	*	121	0	3.29	1.45	0.00 *	4.44	1.80	0.44 *	1.24	1.35	1.35
1957	*	124	0	3.61	1.73	0.00 *	5.27	2.15	0.48 *	1.24	1.46	1.46
1961	*	113	7	4.08	2.00	0.83 *	5.84	2.43	0.60 *	1.21	1.19	1.43
2001	*	95	2	3.78	1.89	0.53 *	5.76	2.33	-0.14 *	1.24	1.33	1.52
2005	*	102	7	6.19	2.37	0.92 *	5.93	2.64	-0.24 *	1.11	0.83	0.96
2010	*	91	1	4.39	2.22	0.65 *	6.21	2.84	-0.78 *	1.28	1.23	1.42
2013	*	82	11	4.72	2.20	1.00 *	7.49	2.74	-0.58 *	1.25	1.31	1.59
2017	*	90	10	4.80	2.08	0.77 *	5.82	2.60	-0.71 *	1.25	1.05	1.21
2021	*	76	19	5.69	2.22	1.19 *	6.05	2.52	-0.61 *	1.13	0.88	1.06

^{**} Magnetic Tape Saturation, probably extraneous

TABLE XIV(d)

SUMMARY OF RAW DIGITIZATION RESULTS FOR RADAR RANGE ROLL, PITCH, DECK HOUSE ACCELERATIONS, AND TUCKER METER

SEA LAND MC LEAM : 1973-1974 WINTER SEASON : VOYAGE 36 EAST

	R	ADAR>	RI	DLL	><-	P	ITCH	>	VER	T ACI	CEL->	LAT	ACCE	L>	TU	CKER	>
D.L.	4.0	RECORDED	4.0	RECCR	DED	4.0	RECE	RDED	4.0	REC	DRDED	4.0	RECO	DRDED	4.0	RECO	RDED
RUN	(RMS)	EXTREMES	(RMS)	EXTRE	MES (RMS	EXTR	EMES	(RMS)	EXT	REMES	(RMS)	EXT	REMES	(RMS)	EXTR	EMES
NO.	FT	FT FT	DEG	DEG	DEG	DEG	DEG	DE.G	(G)	(G)	(G)	(G)	(G)	(G)	FT	FT	FT
1925	10.	108.	2.1	3.	-1.	0.5	-0.2	-1.1	0.08	0.1	-0.1	0.06	0.1	-0.1	1.	1.	-1.
1929	10.	810.	2.3	3.	-1.	0.5	-0.3	-1.1	0.09	0.1	-0.1	0.07	0.1	-0.1	1.	1.	-1.
1933	11.	910.	2.3	3.	-1.	0.5	-0.1	-1.0	0.09	0.1	-0.1	0.07	0.1	-0.1	1.	1.	-1.
1937	16.	1312.	3.4	5.	-1.	0.8	0.3	-1.3	0.18	0.2	-0.2	0.10	0.1	-0.1	2.	2.	-2.
1941	18.	2018.	4.8	6.	-2.	1.0	0.6	-1.6	0.22	0.2	-0.2	0.13	0.1	-0.1	2.	2.	-2.
1945	14.	1413.	5.0	5.	-4.	0.7	0.1	-1.1	0.15	0.1	-0.1	0.13	0.1	-0.1	2.	2.	-2.
1949	14.	1212.	5.5	5.	-4.	8.0	0.7	-0.7	0.15	0.1	-0.1	0.14	0.1	-0.1	2.	2.	-2.
1953	16.	1212.	9.0	6.	-6.	0.7	0.7	-0.6	0.13	0.1	-0.1	0.21	0.1	-0.2	2.	3.	-2.
1957	18.	1414.	7.6	9.	-5.	0.9	9.9	-0.7	0.19	0.2	-0.2	0.19	0.2	-0.2	3.	3.	-2.
1961	20.	1915.	9.4	9.	-7.	1.0	1.1	-0.8	0.20	0.2	-0.2	0.23	0.2	-0.2	3.	3.	-3.
2001	19.	1813.	10.6	9.	-7.	0.7	0.7	-0.7	0.16	0.2	-0.1	0.25	0.2	-0.2	3.	3.	-2.
2005	22.	1917.	12.3	10	10.	0.9	1.0	-0.9	0.20	0.2	-0.2	0.29	0.3	-0.2	4.	4.	-3.
2010	27.	2521.	19.0	16	13.	8.0	0.7	-0.8	0.17	0.2	-0.1	0.43	0.3	-0.3	5.	7.	-4.
2013	24.	2319.	17.5	15	12.	8.0	0.8	-0.6	0.14	0.1	-0.1	0.38	0.3	-0.3	5.	7.	-5.
2017	25.	2019.	16.1	14.	-9.	0.8	0.9	-0.5	0.14	0.1	-0.1	0.37	0.3	-0.3	5.	5.	-3.
2021	24.	2316.		14.		0.7		-0.4	0.12	0.1	-0.1	0.36	0.3	-0.3	5.	6.	-3.

METRIC CONVERSION FACTORS

	Sympo	•	9 =	ř	Ē			Ĩ			7 2			10 11	Z 8	ā	23	2					
Messures	1	aches	inches	* Asseds	3 miles		square mches	square miles			Downer &	short tons		Huid Dunces	pints	gellons	cudic test			Lebranda	lemper alore	3.002	10
rsians from Metric	Meltiply by	0.04	***	2	•	AREA	9.16	2.5	MASS (weinhit	ישנים (שניפשוני)	0.035	3	VOLUME	0.03	1.06	0.26	35	:	TEMPERATURE (eract)	9/5 (Ihen	406 32)	1	0,,
Appreximate Conversions from Matric Messures	When You Know	milimeters	Cantimuters	and the same of th	Honeler	1	Square centimeters	square hitemeters hectares (10,000 m ²)		1	grams kelograms	townes (1000 kg)	1	militines.	liters	liters	Cubic maters		TEM	Celeus	temperatura	2	250
		ı	5 e		5		~ 8 ~ e	`š 2			. 2	-		1		-	Te Te						1 4.
cz zz	12 	202		et I	111:41	31	S1		121	1						14		·	5	1.			
		and and the comment							111111	111	1111		111111	1111	1111								
,'''	'''		1.1.1	7		' '		' '	5	1'	'	1.	1,1	' '	3	1	1	.l.t.	2	[1]	171		inches
[''']	Symbol	rrr	111		. 5	' '	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	•••		1'	-	' . 	1'1	• •	3	-		-7	2			1.	inches
Mosum	To find Symbol				kelonatars hm	' '		square molers m.		1'	o succh		1'1	militions and	2 1		litters .				Colsins .c	1 sames	inches
rertions to Metric Messures		LENGTH		Cantinguists Cm		AREA	Square Cantimetors		hectares	ASS (weight)		Loans	VOLUME		2 1	liters	0.47 1:1003	liters		ERATURE (exect)		1 temporestus	inches
Approximate Conversions to Metric Messures	1	LENGTH		30 Centimoters Cm	meter. kilometars	AREA	s 6.5 square cantimeters	square melers	0.4 hectares	MASS (weight)	grans	0.9 tomors	1	5 melliliars	militiers mi	0.24 liters		3.8 hters	Cubic meters m	TEMPERATURE (exact)	Calana	1 temporestus	1

LINCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. RE	SSC-277 (SL-7-14)	3. RECIPIENT'S CATALOG NUMBER
4. TIT	TLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
	RIGINAL RADAR AND STANDARD TUCKER WAVEMETER -7 CONTAINERSHIP DATA REDUCTION AND	Technical Report
	DRELATION SAMPLE	6. PERFORMING ORG. REPORT NUMBER
7. AU	THOR(e)	S. CONTRACT OR GRANT NUMBER(s)
	J. F. DALZELL	N00024-74-C-5451
9. PE	REFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
	Stevens Institute of Technology Hoboken, N.J.	Task 17593
11. CC	ONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE June 1978
	Dept. of the Navy	13. NUMBEROFPASEP
	Naval Ship Engineering Center	43
14. M	ONITORING ASERTH THE & ADDRESS IN SHIFT FOR Controlling Office)	18. SECURITY CLASS. (of this report)
	Ship Structure Committee	UNCLASSIFIED
	U.S. Coast Guard Headquarters	154 DECLASSIFICATION/DOWNGRADING
	Washington, D.C. 20590	154. DECLASSIFICATION/DOWNGRADING
16. DI	ISTRIBUTION STATEMENT (of this Report)	
	UNLIMITED	DISTRIBUTION STATEMENT A
		Approved for public release;
17. DI	ISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different Tri	Distribution Unlimited
	UNLIMITED	
18. St	UPPLEMENTARY NOTES	
10 11	EY WORDS (Continue on reverse alde if necessary and identify by block number	
	and a feeling of the state of t	

and analytical and model results could be carried out, one of the objectives of the instrumentation program for the SL-7 class container ships was the provision of instrumental measures of the wave environment. To this end, two wave meter systems were installed on the S.S. SEA-LAND McLEAN. Raw data was collected from both systems during the second (1973-1974) and third (1974-1975) winter data collecting seasons.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601

UNCLASSIFIED

LECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

It was the purpose of the present work to reduce this raw data, to develop and implement such corrections as were found necessary and feasible, and to correlate and evaluate the final results from the two wave meters. In carrying out this work it was necessary to at least partly reduce several other channels of recorded data, so that, as a by-product, reduced results were also obtained for midship bending stresses, roll, pitch, and two components of acceleration on the ship's bridge.

As the work progressed it became evident that the volume of documentation required would grow beyond the usual dimensions of a single technical report. For this reason the analyses, the methods, the detailed results, discussions, and conclusions are contained in a series of ten related reports.

The present report is the first in the series, and involves the initial stages of the work. Specifically, this report documents the several decisions and methods thought necessary in conversion of the raw data from its original analog form to digital form, the sampling and calibration of data from the second (1973-1974) season, and a summary of initial results.

SHIP RESEARCH COMMITTEE Maritime Transportation Research Board National Academy of Sciences-National Research Council

The Ship Research Committee has technical cognizance of the interagency Ship Structure Committee's research program:

MR. O. H. OAKLEY, Chairman, Consultant, McLean, Virginia

MR. M. D. BURKHART, Head, Marine Science Affairs, Office of Oceanographer of the Navy

DR. J. N. CORDEA, Senior Staff Metallurgist, ARMCO Steel Corporation

MR. D. P. COURTSAL, Vice President, DRAVO Corporation MR. E. S. DILLON, Consultant, Silver Spring, Maryland

DEAN D. C. DRUCKER, College of Engineering, University of Illinois

MR. W. J. LANE, Consultant, Baltimore, Maryland

DR. W. R. PORTER, Vice Pres. for Academic Affairs, State Univ. of N.Y.

Maritime College

MR. R. W. RUMKE, Executive Secretary, Ship Research Committee

The Ship Design, Response, and Load Criteria Advisory Group prepared the project prospectus, evaluated the proposals for this project, provided the liaison technical guidance, and reviewed the project reports with the investigator:

MR. W. J. LANE, Chairman, Consultant, Baltimore, Maryland

PROF. A. H.-S. ANG, Dept. of Civil Engineering, University of Illinois

PROF. S. H. CRANDALL, Dept. of Mechanical Engineering, Massachusetts

Institute of Technology

DR. M. K. OCHI, Research Scientist, Naval Ship R & D Center, Bethesda, MD

PROF. W. D. PILKEY, Dept. of Mechanics, University of Virginia

PROF. R. H. SCANLAN, Dept. of Civil & Geological Engrg., Princeton University PROF. H. E. SHEETS, Chairman, Dept. of Ocean Engrg., University of Rhode Island

MR. H. S. TOWNSEND, Consultant, Westport, Connecticut

SHIP STRUCTURE COMMITTEE PUBLICATIONS

These documents are distributed by the National Technical Information Service, Springfield, Va. 22151. These docwments have been announced in the Clearinghouse journal U.S. Government Research & Development Reports (USGRDR) under the indicated AD numbers.

SL-7 PUBLICATIONS TO DATE

SL-7-1, (SSC-238) - Design and Installation of a Ship Response Instrumentation System Aboard the SL-7 Class Containership S.S. SEA-LAND MoLEAN by R. A. Fain. 1974. AD 780090.

SL-7-2, (SSC-239) - Wave Loads in a Model of the SL-7 Containership Running at Oblique Headings in Regular Waves by J. F. Dalzell and M. J. Chiocco. 1974. AD 780065.

SL-7-3, (SSC-243) - Structural Analysis of SL-7 Containership Under Combined Loading of Vertical, Lateral and Torsional Moments Using Finite Element Techniques by A. M. Elbatouti,

D. Liu, and H. Y. Jan. 1974. AD-A002620. SL-7-4, (SSC-246) - Theoretical Estimates of Wave Loads on the SL-7 Containership in Regular and Irregular Seas by P. Kaplan, T. P. Sargent, and J. Cilmi. 1974. AD-A004554.

SL-7-5, (SSC-257) - SL-7 Instrumentation Program Background and Research Plan by W. J. Siekierka,

R. A. Johnson, and CDR C. S. Loosmore, USCG. 1976. AD-A021337. SL-7-6, (SSC-259) - Verification of the Rigid Vinyl Modeling Techniques: The SL-7 Structure by J. L. Rodd. 1976. AD-A025717.

SL-7-7, (SSC-263) - Static Structural Calibration of Ship Response Instrumentation System Aboard the SEA-LAND McLEAN by R. R. Boentgen and J. W. Wheaton. 1976. AD-A031527.

SL-7-8, (SSC-264) - First Season Results from Ship Response Instrumentation Aboard the SL-7 Class Containership S.S. SEA-LAND McLEAN in North Atlantic Service by R. R. Boentgen, R. A. Fain, and J. W. Wheaton. 1976. AD-A039752.

SL-7-9, Second Season Results from Ship Response Instrumentation Aboard the SL-? Class Containership S. S. SEA-LAND McLEAN in North Atlantic Service by J. W. Wheaton and R. R. Boentgen. 1976. AD-A034162.

SL-7-10, Third Season Results from Ship Response Instrumentation Aboard the SL-7 Class Containership S. S. SEA-LAND McLEAN in North Atlantic Service by R. R. Boentgen. 1976. AD-A034175. SL-7-11, (SSC-269) - Structural Tests of SL-7 Ship Model by W. C. Webster and H. G. Payer. 1977.

AD-A047117.

SL-7-12,(SSC-271) - A Correlation Study of SL-7 Containership Loads and Motions - Model Tests and Computer Simulation by P. Kaplan, T. P. Sargent, and M. Silbert. 1977. AD-A049349. SL-7-13, A Report on Shipboard Waveheight Radar System by D. Chen and D. Hammond. 1978.

AD-A053379.

SL-7-14, (SSC-277) - Original Radar and Standard Tucker Wavemeter SL-7 Containership Data Reduction and Correlation Sample by J. F. Dalzell. 1978.
SL-7-15, (SSC-278) - Wavemeter Data Reduction Method and Initial Data for the SL-? Containership.

by J. F. Dalzell... 1978. SL-7-16, Radar and Tucker Wavemeter Data from S. S. SEA-LAND McLEAN - Voyage 32 by J. F. Dalzell. 1978.

SL-7-17, Radar and Tucker Wavemeter Data from S. S. SEA-LAND McLEAN - Voyage 33 by J. F. Dalzell. 1978.

SL-7-18, Radar and Tucker Wavemeter Data from S. S. SEA-LAND McLEAN - Voyage 34 by J. F. Dalzell. 1978.

SL-7-19, Radar and Tucker Wavemeter Data from S. S. SEA-LAND McLEAN - Voyages 35 and 36E by J. F. Dalzell. 1978.

SL-7-20, (SSC-279) - Modified Radar and Standard Tucker Wavemeter SL-7 Containership Data by J. F. Dalzell. 1978.

SL-7-21, Radar and Tucker Wavemeter Data from S. S. SEA-LAND McLEAN - Voyage 60

by J. F. Dalzell. 1978. SL-7-22, Radar and Tucker Wavemeter Data from S. S. SEA-LAND McLEAN - Voyage 61 by J. F. Dalzell. 1978.

SL-7-23, (SSC-280) - Results and Evaluation of the SL-7 Containership Radar and Tucker Wavemeter Data by J. F. Dalzell. 1978.