Applying Machine Learning Techniques to Retail Data

Janani Ravi Co-founder, Loonycorn

www.loonycorn.com

Overview

Association rules learning
Frequent itemsets and support
Evaluating association rules using confidence, lift, and conviction
Market basket analysis using the Apriori algorithm

Association Rules Learning

Association Rules Learning

Data mining technique usually used to identify interesting patterns in which items appear together - for instance beer and diapers in shopping baskets.

Rules and Strong Rules

Rules are of the form "If X then Y"

Strong rules are rules supported by probability

Strong rules can be extremely useful

- Recommendations
- Cross-sell
- Up-sell

Market Basket Analysis

Classic use for association rules learning Used to identify items sold together

- People who buy diapers also buy beer

Also used to segment users

- People who like diapers but not beer

Related to recommendation systems

Evaluating Association Rules

Association Rules Learning

Data mining technique usually used to identify interesting patterns in which items appear together.

Association Rules Learning

Data mining technique usually used to identify strong rules in data.

Strong Rules

Rules with support and confidence that exceed thresholds for minimum support and minimum confidence respectively.

Strong Rules

Rules with support and confidence that exceed thresholds for minimum support and minimum confidence respectively.

Evaluating Association Rules

Confidence Support Conviction Lift

Evaluating Association Rules

Support is a metric defined for itemsets and not association rules

Supermarket Transactions

Each row represents one market basket at check-out

#	Milk	Bread	Butter	Beer	Diapers
1	1	1	0	0	0
2	0	0	1	0	0
3	0	0	0	1	1
4	1	1	1	0	0
5	0	1	0	0	0

{Milk, Bread, Butter, Beer, Diapers}

Items

 $I = \{I_1, I_2, I_3, I_4, I_5\}$

```
{Milk, Bread}
{Bread, Butter}
{Beer, Diapers}
```

Different Itemsets

Each itemset contains some subset of the master set of all items

Supermarket Transactions

Each row represents one market basket at check-out

#	Milk	Bread	Butter	Beer	Diapers
1	1	1	0	0	0
2	0	0	1	0	0
3	O	0	0	1	1
4	1	1	1	0	0
5	0	1	0	0	0

```
T_1 = \{Milk, Bread\}
T_2 = \{Butter\}
T_3 = \{Beer, Diapers\}
T_4 = \{Milk, Bread, Butter\}
T_5 = \{Bread\}
```

Itemset representation

Each transaction represents an itemset

Frequent Itemsets

A frequent itemset is one that appears frequently

i.e. exceeds threshold for probability of occurrence

Probability of occurrence of an itemset is called the Support

Support

Measure of how often an itemset appears in the data.

Support

Measure of how significant or important an itemset is in the data.

Metrics Associated with Rules

Rule: A = > C

"If a transaction contains A, it will contain C"

Rule: A = > C

There is a directionality associated with rules

{Diaper} = > {Beers}

Rule: C = > A

Metric for a rule A->C is not the same as the metric of a rule C->A

A: Antecedents

C: Consequents

Evaluating Association Rules

Confidence of a rule A = > C, where A and C are itemsets, is the proportion of transactions containing A that also contain C

Confidence of a rule A = > C, where A and C are itemsets, is the proportion of transactions containing A that also contain C

Confidence of a rule A = > C, is the probability of seeing the itemset C in a transaction where the transaction also contains A

Confidence of a rule A = > C, is the probability of seeing the itemset C in a transaction where the transaction also contains A

Evaluating Association Rules

Lift

Lift of a rule A = > C, where A and C are itemsets, is the increase in probability of C if A has occurred vs. probability of C if we know nothing about A

Lift

Lift of a rule A = > C, where A and C are itemsets, is the increase in probability of C if A has occurred vs. probability of C if we know nothing about A

Lift

Lift of a rule A = > C, where A and C are itemsets, is the increase in probability of C if A has occurred vs. probability of C if we know nothing about A

Lift

How much more often do A and C occur together than we would expect if they were statistically independent.

Evaluating Association Rules

Conviction of a rule A = > C, measures, of the occasions when the rule is false (A and C do not co-occur), how often C does not occur at all.

Conviction of a rule A = > C, measures, of the occasions when the rule is false (A and C do not co-occur), how often C does not occur at all.

Conviction of a rule A = > C, measures, of the occasions when the rule is false (A and C do not co-occur), how often C does not occur at all.

A measure of how dependent C is on A.

Apriori Algorithm

Frequent Itemsets

Finding frequency of an itemset can involve searching set of all subsets

Known as powerset

For set with N elements, powerset has 2^N-1 elements

Not computationally scalable

Frequent Itemsets

Downward-closure property of itemsets

All subsets of a frequent itemset are also frequent itemsets

Allows efficient computation of frequent itemsets

Apriori Algorithm

Uses breadth-first search and hash tree for efficient implementation

Bottom-up approach to generating candidate frequent sets

Starts with 1-item itemsets

Keeps extending them if possible

Stops when no longer possible

Demo

Performing market basket analysis using the Apriori algorithm and association rules learning

Summary

Association rules learning
Frequent itemsets and support
Evaluating association rules using confidence, lift, and conviction
Market basket analysis using the Apriori algorithm

Resources Referenced in This Course

Gartner reports

https://www.gartner.com/doc/reprints?id=1-265MCE7K&ct=210528&st=sb https://www.gartner.com/en/newsroom/press-releases/2020-02-04-gartner-predicts-at-least-two-top-global-retailers-wi

Use cases for ML in retail:

https://spd.group/artificial-intelligence/ai-for-retail/#Al_in_the_Retail_Supply_Chain https://tryolabs.com/guides/retail-innovations-machine-learning

Challenges for ML in retail:

https://www.jbssolutions.com/resources/blog/challenges-and-pitfalls-retailers-face-starting-machine-learning/

Resources Referenced in This Course

Price elasticity of demand

https://hbr.org/2015/08/a-refresher-on-price-elasticity

Case Study: Price Optimization in Fashion E-commerce

https://arxiv.org/pdf/2007.05216v2.pdf

Case Study: Dynamic Vehicle Routing Problem

https://arxiv.org/pdf/2008.11719.pdf

Related Courses

Machine Learning for Financial Services

Machine Learning for Healthcare