

Course: OSF Operações Sólido Fluido Solid Fluid Operations

LEQB/MEQB, 2023/24

Chemical and Biological Engineering Section, Department of Chemistry, FCTNOVA

OSF/FCTNOVA

Instructors

- Prof. Rui Oliveira (T, TP)
 - Office 628 DQ
 - Email: rmo@fct.unl.pt
- Prof. Isabel Esteves (TP, P)
 - Office 226 DQ/Lab 513 DQ
 - Email: i.esteves@fct.unl.pt

II - REDUÇÃO DA GRANULOMETRIA DE SÓLIDOS

REDUCTION OF SOLIDS PARTICLE SIZE

OSF-FCTUNL 3

Problema II.1

Tritura-se um material num triturador de maxilas Blake e reduz-se o tamanho médio das partículas de 50 mm para 10 mm, com um consumo de energia de 13.0 kW s kg⁻¹. Qual será o consumo de energia necessário para triturar o mesmo material do tamanho médio 75 mm até à dimensão média de 25 mm,

- (a) supondo aplicável a lei de Rittinger, e
- (b) supondo aplicável a lei de Kick?

Qual destes resultados considera de maior confiança e porquê?

Energy for size reduction

Rittinger's law

Bond's law

Kick's law

$$E=K_Rf_c\left(\frac{1}{L_2}-\frac{1}{L_1}\right)$$

$$E = K_R f_c \left(\frac{1}{L_2} - \frac{1}{L_1}\right) \qquad E = E_i \sqrt{\left(\frac{100}{L_2}\right)} \left(1 - \frac{1}{\sqrt{q}}\right) \quad E = K_K f_c \ln\left(\frac{L_1}{L_2}\right)$$

Fine reduction

Intermediate reduction

Coarse reduction

E - energy spent for size reduction, [KJ/kg]

 K_R , K_K – Rittinger, Kick constant respectively; empririal constant related to the equipment; without physical meaning

f_C- Compressive strength [MPa]; caracterizes the solid material that is being reduced

For bond's law only:

E_i - the work index: amount of energy required to reduce unit mass of material from L1=∞ to a size L2=100 µm

 $q = L_1/L_2$

OSF-FCTUNL

Rittinger's law

$$E = K_R f_c \left(\frac{1}{L_2} - \frac{1}{L_1} \right)$$

Fine reduction

 $13 = K_r f_c \left(\frac{1}{10} - \frac{1}{50} \right)$

$$K_r f_c = 162.5 \text{ kW s kg}^{-1} \text{mm}$$

Logo, a energia necessária para triturar o mesmo material do tamanho médio 75 mm até à dimensão média de 25 mm é:

$$E = 162.5 \left(\frac{1}{25} - \frac{1}{75} \right)$$
 $E = 4.33 \text{ kW s kg}^{-1}$

$$E = 4.33 \text{ kW s kg}^{-1}$$

Kick's law

$$E = K_K f_c \ln \left(\frac{L_1}{L_2}\right)$$

Coarse reduction

 $13 = K_k f_c \ln \left(\frac{50}{10} \right)$

$$K_k f_c = 8.1 \, \text{kW s kg}^{-1}$$

Como se trata de moagem grossa de partículas de 7.5 cm, a lei de Kick é a mais fiável para calcular E.

Conclusão:

Logo, a energia necessária para triturar o mesmo material do tamanho médio 75 mm até à dimensão média de 25 mm é:

$$E = 8.1 \ln \left(\frac{75}{25} \right)$$
 OSF-FCTUNL $E = 8.87 \text{ kW s kg}^{-1}$

6

Problema II.2

Usou-se um triturador para triturar um material cuja resistência à compressão era de 22.5 MN/m². O tamanho da alimentação era menor que 50 mm, maior que 40 mm e a energia necessária era 13.0 kW s kg-1. A análise por peneiração do produto produziu o seguinte resultado:

Dimensão da abertura (mm)		Percentagem do produto (% em número)			
Passando por	6.00	100			
Retido em	4.00	26			
Retido em	2.00	18			
Retido em	0.75	23			
Retido em	0.50	8			
Retido em	0.25	17			
Retido em	0.125	3			
Passando por	0.125	5			

Qual seria a potência necessária para triturar 1 kg/s de um material com resistência à compressão de 45 MN/m² a partir de uma alimentação de menor que 45 mm, maior que 40 mm para dar um produto de tamanho médio de 0.50 mm?

OSF-FCTUNL

1) Determinar a dimensão média do produto.

a) Método de Bond – "Bond's diameter is defined as the mesh size through which 80% of material passes, in

a sieving characterization experiment."

Assuma-se 4 mm pelo método de Bond.

Dimensão da abertura (mm)		Percentagem do produto (% em número)			
Passando por	6.00	100			
Retido em	4.00	26			
Retido em	2.00	18			
Retido em	0.75	23			
Retido em	0.50	8			
Retido em	0.25	17			
Retido em	0.125	3			
Passando por	0.125	5			

b) Calculo diâmetro médio em massa

Particle size distribution: mean diameter

	Measurement in weight, x	Measurement in number, n
Mean diameter based on volume (weight) $ar{d}_{\chi}=ar{d}_{v}$	$= \frac{\sum x_i d_i}{\sum x_i}$	$= \frac{\sum n_i d_i^4}{\sum n_i d_i^3}$

$$d_x = \frac{177.92}{37.99} = 4.68 \text{ mm}$$

aperture size (mm)	mean d (mm)	% product	ni	nidi (mm)	nidi ² (mm)	nidi ³ (mm)	nidi ⁴ (mm)
6		100					
4	5	26	0.26	1.3	6.5	32.5	162.5
2	3	18	0.18	0.54	1.62	4.86	14.58
0.75	1.375	23	0.23	0.31625	0.434844	0.59791	0.822126
0.5	0.625	8	0.08	0.05	0.03125	0.019531	0.012207
0.25	0.375	17	0.17	0.06375	0.023906	0.008965	0.003362
0.125	0.1875	3	0.03	0.005625	0.001055	0.000198	3.71E-05
	0.125	5	0.05	0.00625	0.000781	9.77E-05	1.22E-05
sum				2.281875	8.611836	37.9867	177.9177

2) Determinar Kk

Diâmetro médio da alimentação = (50+40)/2 = 45 mm Diâmetro médio do produto = 4 mm Energia consumida = 13.0 kW s kg-1 Força de compressão = 22.5 MN/m²

$$13 = K_k f_c \ln\left(\frac{45}{4}\right)$$

$$K_k = \frac{5.9}{22.5} = 0.26 \text{ kW s kg}^{-1} \text{MN}^{-1} \text{m}^2$$

3) Obter E para as condições pedidas.

Energy for size reduction

Depending on the size of the feed and of the desired product, reduction equipment is classified as: (1)Fine, (2)Intermediate, (3)Coarse; different laws of energy are applied in each case

Feed size (L1) Product size (L2)

Examples of

equipment

OSF-ECTUNL

(powder) Ball mill Buhrstone mill Roller mill NEI pendulum mill Griffin mill

FINE

5-2 mm

<0.1 mm

50-5 mm 5-0.1 (granular/powder)

INTERMEDIATE

Crushing rolls
Disc crusher Edge runner mill Hammer mill Single roll crusher
Pin mill
Symons disc crushe 1500-40 mm 50-5 mm (large/granular)

COARSE

Blake jaw crusher Stag jaw crusher Dodge jaw crusher Gyratory crusher

A potência necessária para triturar 1 kg/s de um material com resistência à compressão de 45 MN/m² a partir de uma alimentação de menor que 45 mm, maior que 40 mm para dar um produto de tamanho médio de 0.50 mm, vem

Diâmetro médio da alimentação = (45+40)/2 = 42.5 mm Diâmetro médio do produto = 0.5 mm Força de compressão = 45 MN/m²

 $E = 0.26 \times 45 \ln \left(\frac{42.5}{0.5} \right)$ $E = 51.98 \text{ kW s kg}^{-1}$

P = 51.98 kW

Kick's law

 $E = K_K f_c \ln \left(\frac{L_1}{L_1} \right)$

Coarse reduction

2) Determinar Kk

Diâmetro médio da alimentação = (50+40)/2 = 45 mm Diâmetro médio do produto = 4 mm Energia consumida = 13.0 kW s kg-1 Força de compressão = 22.5 MN/m²

Energy for size reduction

FINE

Depending on the size of the feed and of the desired product, reduction equipment is classified as:
(1)Fine, (2)Intermediate, (3)Coarse; different laws of energy are applied in each case

INTERMEDIATE

50-5 mm

5-0,1

(granular/powder)

Crushing rolls
Disc crusher
Edge runner mill
Hammer mill
Single roll crusher

Pin mill

mons disc crusher

 $13 = K_k f_c \ln \left(\frac{45}{4}\right)$

 $K_k = \frac{5.9}{22.5} = 0.2$ E se se considerar o diâmetro médio do

3) Obter E para as condiçõ

produto de tamanho médio

Diâmetro médio da alimenta Diâmetro médio do produto

Obtém-se igualmente P = 52 kW, logo é fiável a aproximação feita pelo método de Bond.

produto (L_2) = 4.68 mm, qual o valor de

potência obtido?

Força de compressão = 45 MN/m²

 $E = 51.98 \text{ kW s kg}^{-1}$

OSF-FCTUNL

Coarse reduction

10

P = 51.98 kW

A potência necessária para t MN/m² a partir de uma alim

Kick's law

 $E = K_K f_c \ln \left(\frac{L_1}{L_2} \right)$

COARSE

1500-40 mm

50-5 mm

(large/granular)

Blake jaw crusher Stag jaw crusher Dodge jaw crusher Gyratory crusher

Problema II.6

Um moinho de bolas com 1.2 m de diâmetro está a trabalhar a 0.80 Hz verificando-se que o moinho não está a trabalhar satisfatoriamente. Sugere alguma modificação nas condições de funcionamento?

OSF-FCTUNL 11

Equipment for size reduction

Ball mill (Moinho de bolas)

• A **ball mill** has a critical rotation speed $(w_c, rad/s)$ that must be avoided. At the critical point, the ball (with mass m and radius r) is subject to a centrifugal force (mu^2/r) equal to the gravitational force (mg)

$$m\frac{u^2}{r} = mg \qquad m \, rw_c^2 = mg \Leftrightarrow$$

$$w_c = \sqrt{\frac{g}{r}}$$

 The optimal rotation speed (w_o, rad/s) should be chosen below the critical value (w_c, rad/s) in order to maximize milling efficiency: □

$$w_o \sim [1/2, 3/4] \times w_c$$

 $W_{\mathcal{C}}$ - [rad/s], r - (mill internal radius - particle radius)], g = 9,81 [m/s²]

 $1 Hz = 2\pi rad/s$

A velocidade angular crítica (para partículas pequenas, $r \cong$ raio do moinho) vem

$$w_c = \sqrt{\frac{9.81}{0.6}} = 4.04 \text{ rad/s}$$
 $\frac{4.04}{2\pi} = 0.64 \text{ Hz}$

A velocidade angular ótima é 0.5 $w_{\rm c}$ a 0.75 $w_{\rm c}$, logo varia de

$$w_o = 0.5 \times 4.04 = 2.02 \ \mathrm{rad/s}$$

$$\frac{2.02}{2\pi} = 0.32 \ \mathrm{Hz}$$

$$w_o = 0.75 \times 4.04 = 3.03 \ \mathrm{rad/s}$$

$$\frac{4.04}{2\pi} = 0.48 \ \mathrm{Hz}$$

O moinho de bolas com 1.2 m de diâmetro está a trabalhar a 0.80 Hz. Verifica-se que corretamente o moinho deveria funcionar com uma rotação ótima de (0.32+0.48)/2 =0.4 Hz, i.e. a metade da rotação a que está.