特開平7-335748

(43)公開日 平成7年(1995)12月22日

(51) Int.Cl.6

識別記号 庁内整理番号

FΙ

技術表示箇所

H01L 21/768

HO1L 21/90

M

審査請求 未請求 請求項の数1 OL (全 5 頁)

(21)出顧番号

特願平6-124873

(22)出願日

平成6年(1994)6月7日

(71)出顧人 390008855

宮崎沖電気株式会社

宫崎県宮崎郡清武町大字木原727番地

(71)出願人 000000295

沖電気工業株式会社

東京都港区虎ノ門1丁目7番12号

(72)発明者 河野 浩幸

宮崎県宮崎郡清武町大字木原727番地 宮

崎沖電気株式会社内

(74)代理人 弁理士 柿本 恭成

(54) 【発明の名称】 半導体素子の製造方法

(57)【要約】

【目的】 SOGのアウトガスによる金属配線のボイド 発生を抑制し、金属配線の信頼性を向上させる。

【構成】 第1金属配線10を形成し、その後、P-SiO11を形成する。次に、SOG膜12をスピンコートし、硅素化する。フォトリソグラフィにより、レジストパターン13をマスクとして、スルーホールを開孔する。レジストパターン14を除去し、その後、剥離液により側壁保護膜14を除去する。TEOS酸化膜15を形成してSOG膜12をキャッピングする。その後、レジストパターンを形成し、レジストパターンをマスクとして、ウェットエッチング、ドライエッチングにより、TEOS酸化膜15を除去する。レジストパターンを除去し、スパッタリングして第2金属配線を形成する。

本発明の実施例の半導体素子製造方法

【特許請求の範囲】

【請求項1】 第1層間絶縁膜を形成する工程と、 SOGを塗布し、硅素化する工程と、

フォトリソグラフィにより第1レジストパターンを形成 する工程と、

前記第1レジストパターンをマスクとして前記SOG、 及び第1層間絶縁膜を順次エッチング除去し第1コンタ クトホールを開孔する工程と、

前記第1レジストパターンを除去する工程と、

第2層間絶縁膜を形成する工程と、

フォトリソグラフィにより第2レジストバターンを形成 する工程と.

前記第2レジストパターンをマスクとして前記第2層間 絶縁膜をエッチング除去し第2コンタクトホールを開孔

前記第2レジストパターンを除去する工程と、

金属配線を形成する工程とを、

順に施すことを特徴とする半導体素子の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体素子の製造方法 に関し、特にコンタクトホール側壁部に絶縁物質よりな るバリア壁を形成し、SOG(Spin On Glass)よりの水 分放出を防ぐととによって、良好な金属配線を形成する 方法に関するものである。

[0002]

【従来の技術】図2(a)~(d)は、従来の多層配線 構造を持った微細半導体素子の製造方法の工程図であ る。この図2(a)~(d)の工程(1)~(4)を以 下に説明する。

(1) 図2(a)の工程

アルミニウム等の金属により第1金属配線1を形成した 後、第1層間絶縁膜としてプラズマ化学気相成長(以 下、プラズマCVDと呼ぶ)法により、SiH、、及び N. Oを原料ガスとして、膜厚O. 4μmのシリコン酸 化膜(P-SiO)2を形成する。次に、平坦度向上を 目的としてSOGをスピンコートし、第1金属配線1に 支障のない450°C以下の温度で加熱し、硅素化して SOG膜3を形成する。その後、再度、第1シリコン酸 化膜2と同様にして第2層間絶縁膜として第2シリコン 40 酸化膜4を0.4μm程度の厚さに気相成長させる。

(2) 図2(b)の工程

フォトリソグラフィ工程により、第1金属配線1と第2 金属配線との接続のためのスルーホールを開孔するため のレジストパターン5を形成する。

(3) 図2(c)の工程

レジストパターン5をマスクとして、ウェットエッチン グにより第2シリコン酸化膜4を除去し、端部をテーバ 形状する。その後、ドライエッチングにより残りの第2

膜2を順次エッチング除去し、スルーホールを開孔す る。との時、第1シリコン酸化膜24、及び第2シリコ ン酸化膜4の側壁に側壁保護膜6が形成される。次に、 レジストパターン5を除去し、その後、剥離液により側 壁保護膜6を除去する。

(4) 図2(d)の工程

アルミニウム等の第2金属配線7をスパッタリング法に より形成し、第1金属配線1と第2金属配線7との間の コンタクトを取る。

10 [0003]

【発明が解決しようとする課題】しかしながら、従来の 半導体素子の製造方法においては、次のような課題があ った。図2(c)のスルーホールの開孔時において、S OG膜3の露出部から水分脱離によるアウトガスが発生 するため、異方性エッチングの効果を髙める側壁保護膜 6が形成されずSOG膜3のサイドエッチが進行する。 そのため、図2(d)の第2金属配線7をスパッタリン グする際に、第2金属配線7のステップカバレッジが悪 化し、空洞(以下ボイドと呼ぶ)8が発生する。図3 20 は、図2(d)中のボイドの拡大図である。この図に示 すようにSOG膜3の露出部のサイドエッチにより、C の部分にボイド8が発生する。このボイド8のために、 第2金属配線7のエレクトロマイグレーション耐性劣化 による断線等が問題となる。

[0004]

【課題を解決するための手段】本発明は、前記課題を解 決するために、P-SiO等の第1層間絶縁膜を形成す る工程と、SOGを塗布し、硅素化する工程と、フォト リソグラフィにより第1レジストバターンを形成する工 30 程と、前記第1レジストパターンをマスクとして前記S OG、及び第1層間絶縁膜を順次エッチング除去し、例 えば第1スルーホールを開孔する工程と、前記第1レジ ストパターンを除去する工程と、TEOS酸化膜等の第 2層間絶縁膜を形成する工程と、フォトリソグラフィに より第2レジストパターンを形成する工程と、前記第2 レジストパターンをマスクとして前記第2層間絶縁膜を エッチング除去し、例えば第2スルーホールを開孔する 工程と、前記第2レジストパターンを除去する工程と、 金属配線を形成する工程とを順に施すようにしている。 [0005]

【作用】本発明によれば、以上のように半導体素子の製 造方法を構成したので、フォトリソグラフィにより第1. レジストパターンを形成し、この第1レジストパターン をマスクとしてSOG、及び第1層間絶縁膜を順次エッ チング除去し第1コンタクトホールを開孔する。第1コ ンタクトホールの開孔時において、SOGの露出部にお いて水分脱離によりアウトガスが放出され、SOGのサ イドエッチングが進行する。次に、第2層間絶縁膜を形 成し、SOGをキャッピングした後、フォトリソグラフ シリコン酸化膜4、SOG膜3、及び第1シリコン酸化 50 ィにより第2レジストパターンを形成して、該第2レジ

(3)

ストパターンをマスクとして第2コンタクトホールを開 孔する。この第2コンタクトホール開孔時において、S OGが第2層間絶縁膜によってキャッピングされている ので、この第2層間絶縁膜が、SOGのサイドエッチを 抑制し、金属配線の形成時のボイドの発生を抑制する働 きがある。従って、前記課題を解決できるのである。 [0006]

【実施例】図1(a)~(c)、及び図4(a)~ (c)は、本発明の実施例の半導体素子の製造方法を示 す工程図である。この図1(a)~(c)、及び図4 (a)~(c)の工程を以下(1)~(6)に説明す る。

(1) 図1(a)の工程

まず、アルミニウム等の金属により第1金属配線10を 形成する。その後、第1層間絶縁膜としてプラズマCV D法により、原料ガスSiH、、及びN、O、圧力2. 0~3. O Torrで、膜厚O. 4μmのシリコン酸化 膜(P-SiO)11を形成する。このP-SiO11 は、層間絶縁膜としての働きの上に、次に形成するSO 働きもある。その後、平坦化のためにシリコン酸化膜1 1上にSOGをスピンコートし、温度400°C、ドラ イN、雰囲気で、ベークしてSOG膜12を形成する。 ドライN、雰囲気中でのベークは、水分の吸湿の抑制し 膜質の劣化を防止するためである。次に、第1スルーホ ールを開孔するために、フォトリソグラフィ工程により レジストパターン13を形成する。

(2) 図1(b)の工程

レジストパターン13をマスクとして、ドライエッチン を順次エッチング除去し、第1スルーホールを開孔す る。この時、第1シリコン酸化膜11とドライエッチン グによるエッチングガスとの反応により、第1シリコン 酸化膜11の側壁部に、側壁部のオーバーエッチングを 抑制する異方性エッチングには好ましい側壁保護膜14 が形成される。一方、SOG膜12の露出部から水分脱 離によるアウトガスが発生するので側壁保護膜が形成さ れず、サイドエッチングが進行し、アンダーカットが発 生する。

【0007】(3) 図1(c)の工程 レジストパターン14を除去し、その後、剥離液により 側壁保護膜14を除去する。次に、以下のプロセス条件 でCVD法により、膜厚O.8μm以上のO,-TEO S-NSG (Non Silicate Glass) 膜(以下、TEOS

TEOS酸化膜15のプロセス条件

酸化膜と呼ぶ) 15を形成する。

TEOS流量

1. 5 S L M

O,流量

7. 5 S L M

〇,流量

 $100 \, \text{g/m}^3$

生成温度

400°C

これにより、TEOS酸化膜15がスルーホール内に平 坦性良く埋め込まれるとともに、SOG膜 12の露出部 のアンダーカット部が、TEOS酸化膜15によりキャ ッピングされる。

(4) 図4(a)の工程

フォトリソグラフィ工程により、第2スルーホール開孔 のためのレジストパターン16を形成する。

【0008】(5) 図4(b)の工程

レジストパターン16をマスクとして、まず0.2μm 10 程度のTEOS酸化膜 15を以下の条件でウェットエッ チングし、TEOS酸化膜15の端部をテーパ形状にす

TEOS酸化膜15のウェットエッチングの条件

NH, HF,

10~11%

NH. F

14%

CH, COOH

32~33%

H, O

残り

の混合溶剤

次に、以下の条件のドライエッチングにより、レジスト G膜12の第1金属配線10への水分の透過を抑制する 20 パターン16をマスクとして、残ったTEOS酸化膜1 5を除去して第2スルーホールを開孔する。

TEOS酸化膜15のドライエッチングの条件

真空度

100mTorr 750W

RFパワー Arガス

800sccm

CHF, ガス

60sccm

CF、ガス

60sccm

との時、TEOS酸化膜15、シリコン酸化膜11の露 出部に側壁保護膜17が形成され、エッチング形状が良 グにより、SOG膜12、及び第1シリコン酸化膜11 30 くなる。また、SOG膜12の露出部のアンダーカット 部が、TEOS酸化膜15によりキャッピングされてい るためSOG膜12のアウトガスによるサイドエッチン グは発生しない。

(6) 図4(c)の工程

レジストパターン16を除去し、その後、剥離液により 側壁保護膜17を除去する。次に、アルミニウム等の金 属をスパッタリングして第2金属配線18を形成する。 この時、SOG膜12がTEOS酸化膜15によりキャ ピングされているため、第2金属配線18のステップカ 40 バレッジが悪化することもなく、ボイドの発生を抑制す ることができる。

【0009】以上説明したように、本実施例では、P-SiO11、SOG膜12を形成し、第1スルーホール を開孔し、その後、TEOS酸化膜15を形成すること により、SOG膜12の露出部をTEOS酸化膜15で キャッピングする。そして、第2スルーホールを開孔し て、第2金属配線18を形成するので、以下の利点があ

(a) 第2金属配線18のステップカバレッジが悪化す 50 ることなく、ボイドの発生を抑制することができ、多層 (4)

配線の信頼性を向上させ、半導体素子の歩留まりを向上 させることができる。

- (b)第2層間絶縁膜をTEOS酸化膜15とすることにより、第2層間絶縁膜が平坦になり、第2スルーホールへの埋め込み性が良くなるとともに、第2金属配線18の形成後の熱処理において、SOG膜12内の残留水分はP-SiO11で阻止され、その代わりにTEOS酸化膜中に拡散するので、SOG膜12内の加熱による残留水分による第1金属配線10への影響も低減することができる。なお、本発明は、上記実施例に限定されず10種々の変形が可能である。その変形例としては、例えば次のようなものがある。
- (i) 金属配線の層間絶縁膜が、第1層間絶縁膜/S OG膜/第2層間絶縁膜から構成され、該構造を持つ層 間絶縁膜にコンタクトホールを開孔し、金属配線を埋め 込む場合であれば、本発明を適用することができる。
- (ii) 第2層間絶縁膜は、TEOS酸化膜以外の絶縁膜、例えば、<math>P-SiO、またはPSG膜等であってもよい。

[0010]

【発明の効果】以上詳細に説明したように、本発明によれば、SOG、及び第1層間絶縁膜を順次エッチング除*

* 去し第1コンタクトホールを開孔した後、第2層間絶縁 膜によりSOGをキャッピングして、第2コンタクトホ ールを開孔し、金属配線を形成するので、金属配線のス テップカバレッジが悪化することもなく、ボイドの発生 を抑制することができる。したがって、金属配線の信頼 性を向上させることができる。

【図面の簡単な説明】

- 【図1】本発明の実施例の半導体素子製造方法を示す工程図である。
- 【図2】従来の半導体素子の製造方法を示す工程図である。
 - 【図3】図2(d)中のボイドを示す図である。
 - 【図4】本発明の実施例の半導体素子製造方法を示す工程図である。

【符号の説明】

20

1 0	用 1 金 偶配線
1 1	第1層間絶縁膜 (P-SiO)
1 2	S.OG膜
13, 16	レジストパターン
1 5	第2層間絶縁膜(TEOS酸化膜)
1 8	第2金属配線

| (図1) | (Z1) | (Z

【図4】

