

### **BCM4375**

# Single-Chip 5G WiFi IEEE 802.11ax 2x2 MAC/Baseband/Radio with Integrated Bluetooth 5.0

### **General Description**

The Broadcom® BCM4375 is a dual-band (2.4 GHz and 5 GHz) 2×2 IEEE 802.11ax draft-compliant and Bluetooth (BT) 5.0 system-on-a-chip.

The WLAN host interface is PCIe v3.0 compliant and runs at Gen2 speeds. The BT host interface is a high-speed 4-wire UART.

Figure 1: BCM4375 Functional Block Diagram



#### **Features**

#### IEEE 802.11 Key Features

- IEEE 802.11ax draft compliant.
- Data rate of up to 1200 Mbps during single-band operation and 1430 Mbps in RSDB mode.
- 20/40/80 MHz channels for the main (Main) 2×2 WLAN core (1024-QAM modulation), and 20 MHz channels for the auxiliary (Aux) 2×2 WLAN core (256-QAM modulation).
- Full IEEE 802.11a/b/g/n/ac legacy compatibility with enhanced performance.
- Zero wait dynamic frequency selection (DFS): background channel availability check (CAC) scan for immediate switch to candidate DFS channel.
- PCIe mode complies with PCI Express base specification revision 3.0 for ×1 lane and power management running at Gen2 speeds.
- Integrated ARM Cortex R4 processor. On-chip memory includes 1600 KB SRAM and 1216 KB ROM.

#### **Features**

#### **Bluetooth Key Features**

- Complies with BT Core Specification Version 5.0 with support for future specifications.
- Interface support: host controller interface (HCI) using a high-speed UART interface and PCM for audio data.
- Supports serial flash interfaces.

#### **General Features**

- Supports battery range from 3.0V to 5.25V.
- Supports 1406 bytes of user-accessible OTP, of which 512 bytes are allocated for BT and 894 bytes are allocated for WLAN for storing board parameters.
- GPIOs: 21
- Package: 651-bump WLCSP (6.225 mm × 6.130 mm, 0.2 mm pitch)

# **Table of Contents**

| Chap | oter 1: Overview                                        | 5    |
|------|---------------------------------------------------------|------|
| Chap | oter 2: DC Characteristics                              | . 6  |
| 2.1  | Absolute Maximum Ratings                                | 6    |
| 2.2  | Environmental Ratings                                   | 6    |
| 2.3  | Recommended Operating Conditions and DC Characteristics | 7    |
| 2.4  | Electrostatic Discharge Specifications                  | 8    |
| Chap | oter 3: Power Supplies and Power Management             | . 9  |
| 3.1  | Power Supply Topology                                   | 9    |
| 3.2  | Power-Up/Power-Down/Reset Circuits                      | .10  |
| 3.3  | Device Power Management                                 | . 10 |
| 3.4  | Bluetooth Subsystem Power Management                    | .11  |
| 3.5  | Internal Regulator Electrical Specifications            | . 12 |
|      | 3.5.1 PMU                                               | . 12 |
| 3.6  | Reset and Startup Control Signal Sequencing             | . 13 |
| Chap | oter 4: Frequency References                            | 17   |
| 4.1  | Crystal Interface and Clock Generation                  | . 17 |
| 4.2  | External 32.768 kHz Low-Power Oscillator                | . 18 |
| Chap | oter 5: Bluetooth Subsystem                             | 19   |
|      | Overview                                                |      |
| 5.2  | PCM Interface                                           | . 19 |
|      | 5.2.1 Slot Mapping                                      | . 19 |
|      | 5.2.2 Frame Synchronization                             | . 19 |
|      | 5.2.3 Data Formatting                                   | . 19 |
|      | 5.2.4 Wideband Speech Support                           | . 20 |
|      | 5.2.5 Burst PCM Mode                                    | . 20 |
|      | 5.2.6 PCM Interface Timing                              | . 20 |
|      | 5.2.6.1 Short Frame Sync, Master Mode                   | . 20 |
|      | 5.2.6.2 Short Frame Sync, Slave Mode                    | .21  |
|      | 5.2.6.3 Long Frame Sync, Master Mode                    | . 22 |
|      | 5.2.6.4 Long Frame Sync, Slave Mode                     | . 23 |
|      | 5.2.6.5 Short Frame Sync, Burst Mode                    | . 24 |
|      | 5.2.6.6 Long Frame Sync, Burst Mode                     | . 25 |
|      | UART Interface                                          |      |
| 5.4  | I <sup>2</sup> S Interface                              |      |
|      | 5.4.1 I <sup>2</sup> S Timing                           | . 29 |
| Chap | ter 6: WLAN Global Functions and Interfaces             | 31   |
| 6.1  | WLAN CPU and Memory Subsystem                           | .31  |

| 6.2   | One-Time Programmable Memory                        | 31  |
|-------|-----------------------------------------------------|-----|
| 6.3   | GPIO Interface                                      | 31  |
| 6.4   | External Coexistence Interface                      | 32  |
| 6.5   | Debug UART Interface                                | 32  |
| 6.6   | FAST UART Interface                                 | 33  |
| 6.7   | BSC Interface                                       | 33  |
| 6.8   | JTAG/SWD Interface                                  | 33  |
|       | 6.8.1 JTAG Timing                                   | 34  |
|       | 6.8.2 SWD Timing                                    | 34  |
| 6.9   | PCI Express Interface                               | 35  |
| Chap  | oter 7: Bluetooth RF Specifications                 | 37  |
| Chap  | oter 8: WLAN RF Specifications                      | 45  |
| 8.1   | Introduction                                        | 45  |
| 8.2   | 2.4 GHz Band General RF Specifications              | 46  |
| 8.3   | WLAN 2.4 GHz Receiver Performance Specifications    | 46  |
| 8.4   | WLAN 2.4 GHz Transmitter Performance Specifications | 52  |
| 8.5   | WLAN 5 GHz Receiver Performance Specifications      | 53  |
| 8.6   | WLAN 5 GHz Transmitter Performance Specifications   | 64  |
| 8.7   | General Spurious Emissions Specifications           | 65  |
| Chap  | oter 9: System Power Consumption                    | 66  |
| 9.1   | WLAN Current Consumption                            | 66  |
| 9.2   | Bluetooth Current Consumption                       | 68  |
| Chap  | oter 10: Package Information                        | 69  |
| 10.   | 1 WLCSP Coordinates                                 | 69  |
| 10.2  | 2 Signal Descriptions                               | 86  |
| 10.3  | 3 WLAN/BT GPIO Signals and Strapping Options        | 98  |
| 10.4  | 4 GPIO Alternative Signal Functions                 | 99  |
| 10.   | 5 I/O States                                        | 103 |
| 10.0  | 6 Ball Map and Keep-Out Areas                       | 105 |
| 10.   | 7 Mechanical Drawing                                | 106 |
| Chap  | oter 11: Ordering Information                       | 107 |
| Revis | sion History                                        | 108 |
|       | /5-DS104; August 14, 2018                           |     |
|       | 75-DS103; July 6, 2018                              |     |
| 437   | 75-DS100: July 13, 2017                             | 108 |

# **Chapter 1: Overview**

The Broadcom® BCM4375 single-chip device includes an integrated IEEE 802.11 a/b/g/n/ac/ax MAC/baseband/radio (dual-core 2×2 MU-MIMO). It also supports Bluetooth 5.0 and Bluetooth Low Energy (BLE).

Figure 2 shows the interconnect of all the major physical blocks in the BCM4375 and their associated external interfaces, which are described in greater detail in the following sections.

Figure 2: BCM4375 System Block Diagram



# **Chapter 2: DC Characteristics**

Values in this data sheet are design goals and are subject to change based on the results of device characterization.

# 2.1 Absolute Maximum Ratings

CAUTION! The absolute maximum ratings in Table 1 indicate levels where permanent damage to the device can occur, even if these limits are exceeded for only a brief duration. Functional operation is not guaranteed under these conditions. Operation at absolute maximum conditions for extended periods can adversely affect long-term reliability of the device.

**Table 1: Absolute Maximum Ratings** 

| Rating                                          | Symbol                  | Value         | Unit |
|-------------------------------------------------|-------------------------|---------------|------|
| DC supply for VBAT                              | VBAT                    | -0.5 to +5.25 | V    |
| DC supply voltage for digital I/O               | VDDIO                   | -0.5 to 2.07  | V    |
| DC supply voltage for RF switch I/Os            | VDDIO_RF                | -0.5 to 3.795 | V    |
| DC input supply voltage for MISCLDO             | _                       | -0.5 to 1.28  | V    |
| DC supply voltage for RF analog                 | _                       | -0.5 to 1.15  | V    |
| DC supply voltage for core                      | _                       | -0.5 to 1.035 | V    |
| External TSSI Input                             | TSSI                    | -0.5 to 1.15  | V    |
| Maximum undershoot voltage for I/O <sup>a</sup> | V <sub>undershoot</sub> | -0.5          | V    |
| Maximum overshoot voltage for I/O <sup>a</sup>  | Vovershoot              | VDDIO + 0.5   | V    |
| Maximum junction temperature                    | T <sub>j</sub>          | 125           | °C   |
|                                                 | -                       |               |      |

a. Duration not to exceed 25% of the duty cycle.

# 2.2 Environmental Ratings

The environmental ratings are shown in Table 2.

**Table 2: Environmental Ratings** 

| Characteristic                        | Value        | Units | Conditions/Comments               |
|---------------------------------------|--------------|-------|-----------------------------------|
| Ambient Temperature (T <sub>A</sub> ) | -30 to +85   | °C    | Functional operation <sup>a</sup> |
| Storage Temperature                   | -40 to +125  | °C    | _                                 |
| Relative Humidity                     | Less than 60 | %     | Storage                           |
|                                       | Less than 85 | %     | Operation                         |

a. Functionality is guaranteed across this range of temperature. Optimal RF performance specified in the data sheet, however, is guaranteed only for -10°C to +55°C without derating performance.

4375-DS104 **Broadcom Confidential** 

# 2.3 Recommended Operating Conditions and DC Characteristics

**CAUTION!** Functional operation is not guaranteed outside of the limits shown in Table 3, and operation outside these limits for extended periods can adversely affect long-term reliability of the device.

**Table 3: Recommended Operating Conditions and DC Characteristics** 

|                                                                           |                       |                  | Value   |             |          |
|---------------------------------------------------------------------------|-----------------------|------------------|---------|-------------|----------|
| Parameter                                                                 | Symbol                | Minimum          | Typical | Maximum     | <br>Unit |
| DC supply voltage for VBAT                                                | VBAT                  | 3.0 <sup>a</sup> | _       | 5.25        | V        |
| DC supply voltage for core                                                | VDD                   | 0.85             | 0.9     | 0.95        | V        |
| DC supply voltage for RF blocks in chip                                   | VDDRF                 | 0.95             | 1.0     | 1.05        | V        |
| DC supply voltage for digital I/O                                         | VDDIO                 | 1.62             | 1.8     | 1.98        | V        |
| DC supply voltage for analog I/O                                          | VDDIOA,<br>VDDIOP     | 1.62             | 1.8     | 1.98        | V        |
| DC supply voltage for RF switch I/Os when supporting 3.3V RF_SW_CTRL pads | VDDIO_RF <sup>b</sup> | 3.13             | 3.3     | 3.46        | V        |
| DC supply voltage for RF switch I/Os when supporting 1.8V RF_SW_CTRL pads |                       | 1.62             | 1.8     | 1.98        | V        |
| External TSSI input                                                       | TSSI                  | 0.15             | _       | 0.95        | V        |
| Internal POR threshold                                                    | Vth_POR               | 0.4              | _       | 0.7         | V        |
| Other Digital I/O Pins                                                    |                       |                  |         |             |          |
| For VDDIO = 1.8V:                                                         |                       |                  |         |             |          |
| Input high voltage                                                        | VIH                   | 0.65 x VDDIO     | _       | _           | V        |
| Input low voltage                                                         | VIL                   | _                | _       | 0.4 x VDDIO | V        |
| Output high voltage @ 2 mA                                                | VOH                   | VDDIO – 0.40     | _       | _           | V        |
| Output low voltage @ 2 mA                                                 | VOL                   | _                | _       | 0.40        | V        |
| RF Switch Control Output Pins <sup>c</sup>                                |                       |                  |         |             |          |
| For VDDIO_RF = 1.8V:                                                      |                       |                  |         |             |          |
| Output high voltage @ 2 mA                                                | VOH                   | VDDIO_RF - 0.40  | _       |             | V        |
| Output low voltage @ 2 mA                                                 | VOL                   | _                | _       | 0.40        | V        |
| For VDDIO_RF = 3.3V:                                                      |                       |                  |         | "           |          |
| Output high voltage @ 2 mA                                                | VOH                   | VDDIO_RF - 0.40  | _       | _           | V        |
| Output low voltage @ 2 mA                                                 | VOL                   | _                | _       | 0.40        | V        |
| Input capacitance                                                         | C <sub>IN</sub>       | _                | _       | 5           | pF       |

a. The BCM4375 is functional across this range of voltages. Optimal RF performance specified in the data sheet, however, is guaranteed only for 3.2V < VBAT < 4.8V.

c. Programmable 2 mA to 16 mA drive strength. Default is 10 mA.

b. The BCM4375 supports either 1.8V or 3.3V RF switch control pads. To select 1.8V, connect MODEHV and MODEHV1 to ground. To select 3.3V, connect MODEHV and MODEHV1 to 3.3V.

# 2.4 Electrostatic Discharge Specifications

Extreme caution must be exercised to prevent electrostatic discharge (ESD) damage. Proper use of wrist and heel grounding straps to discharge static electricity is required when handling these devices. Always store unused material in its antistatic packaging.

**Table 4: ESD Specifications** 

| Pin Type                                                                | Symbol       | Condition                                                               | ESD Rating       | Unit |
|-------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------|------------------|------|
| ESD, Handling Reference:<br>NQY00083, Section 3.4,<br>Group D9, Table B | ESD_HAND_HBM | Human body model contact discharge per JEDEC EID/JESD22-A114            | 2000             | V    |
| CDM                                                                     | ESD_HAND_CDM | Charged device model contact<br>discharge per JEDEC EIA/JESD22-<br>C101 | 350 <sup>a</sup> | V    |

a. 250V for O\_PAD\_BT\_13DBMOP.

# **Chapter 3: Power Supplies and Power Management**

# 3.1 Power Supply Topology

The BCM4375 contains a power management unit (PMU) that is powered by VBAT (3.0V to 5.25V) and VDDIO (1.62V to 1.8V). All other voltages are provided by internal BCM4375 regulators.

Two control signals, BT\_REG\_ON and WL\_REG\_ON, are used to power-up the regulators and take the respective sections out of reset. All regulators are powered down only when both control signals are deasserted.

Figure 3 shows the typical BCM4375 power topology. The gray areas are external to the BCM4375.

Figure 3: Typical Power Topology



# 3.2 Power-Up/Power-Down/Reset Circuits

The host controls device power consumption via two signals, BT\_REG\_ON and WL\_REG\_ON. The state of BT\_REG\_ON determines whether Bluetooth subsystem circuits are enabled or disabled, and the state of WL\_REG\_ON determines whether WLAN subsystem circuits are enabled or disabled. If both signals are low, then internal regulators are disabled. For timing diagrams of these signals and the required power-up sequences, see Section 6: "WLAN Global Functions and Interfaces," on page 31.

Table 5 provides the BT\_REG\_ON and WL\_REG\_ON electrical specification.

Table 5: BT\_REG\_ON and WL\_REG\_ON Electrical Specification

| Parameter                  | Symbol                | Conditions                                          | Min. | Тур. | Max. | Unit |
|----------------------------|-----------------------|-----------------------------------------------------|------|------|------|------|
| Input high voltage         | V <sub>IH</sub>       | For WL_REG_ON                                       | 1    | _    | 1.98 | V    |
|                            |                       | For BT_REG_ON                                       | 1    | _    | 1.98 | V    |
| Input low voltage          | V <sub>IL</sub>       | _                                                   | VSS  | _    | 0.3  | V    |
| Pull-down resistance       | R <sub>PD</sub>       | Auto-enabled for input low; disabled for input high | _    | 50   | _    | kΩ   |
| Leakage discharged current | I <sub>LEAK_DIS</sub> | _                                                   | _    | 28   | _    | nA   |
| REG OFF time               | T <sub>REG_OFF</sub>  | C <sub>REG_ON</sub> ≤ 10 pF                         | 2    | _    | _    | ms   |
| Reset hold time            | _                     | Hold low to reset.                                  | 10   | _    | _    | ms   |

# 3.3 Device Power Management

In addition to the BT\_REG\_ON and WL\_REG\_ON signals described in "Power-Up/Power-Down/Reset Circuits" on page 10, the BCM4375 includes a PMU sequencer, which saves significant power by putting the BCM4375 into low-power modes pertinent to the operating environment and activities being performed.

Table 6 describes the power modes. VBAT and VDDIO are both on for the modes shown in the table.

Table 6: Power Modes

| Power Mode                | WL_REG_ON | BT_REG_ON | Description                                                                                                                                                                                                                                                                                                                |
|---------------------------|-----------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Active                    | On        | On        | All blocks are powered up and fully functional.                                                                                                                                                                                                                                                                            |
| Deep-Sleep<br>(low power) | On        | On        | Most of the chip is powered off, including all main clocks. The 32.768 kHz LPO clock is available only to the PMU sequencer so that it can wake the chip and transition to Active mode. Logic states are saved in retention memory and are restored upon a wake-up event triggered by PMU timers or an external interrupt. |
| Power-Down<br>(low power) | Off       | Off       | The BCM4375 is effectively powered off by shutting down all internal regulators. External logic brings the chip out of this mode.                                                                                                                                                                                          |
|                           |           |           | <b>NOTE:</b> BT and WLAN operate independently and one or both may be placed in power-down mode at a time.                                                                                                                                                                                                                 |

During long periods of inactivity, the BT and WLAN cores enter low-power modes. The device may be forced into the Power-Down mode by deasserting both WL\_REG\_ON and BT\_REG\_ON.

# 3.4 Bluetooth Subsystem Power Management

The BCM4375 may be configured so that dedicated signals are used for power management handshaking between the BCM4375 and the host. The basic power saving functions supported by those handshaking signals include the standard Bluetooth defined power savings modes and standby modes of operation. Table 7 describes the power-control handshake signals used with the UART interface.

**Table 7: Power Control Pin Description** 

| Signal       | Mapped to Pin | Туре | Description                                                                                                                                                                                                                                                                                                                              |
|--------------|---------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BT_DEV_WAKE  | 408           | I    | Bluetooth device wake-up: Signal from the host to the BCM4375 indicating that the host requires attention.  Asserted: The Bluetooth device must wake-up or remain awake.  Deasserted: The Bluetooth device may sleep when sleep criteria are met.  The polarity of this signal is software configurable and can be asserted high or low. |
| BT_HOST_WAKE | 377           | 0    | Host wake up. Signal from the BCM4375 to the host indicating that the BCM4375 requires attention.  Asserted: host device must wake-up or remain awake.  Deasserted: host device may sleep when sleep criteria are met. The polarity of this signal is software configurable and can be asserted high or low.                             |
| BT_CLK_REQ   | 411           | 0    | The BCM4375 asserts BT_CLK_REQ when Bluetooth or WLAN wants the host to turn on the reference clock. The BT_CLK_REQ polarity is active-high.                                                                                                                                                                                             |

See Figure 9 for the Bluetooth startup signaling sequence.

# 3.5 Internal Regulator Electrical Specifications

### 3.5.1 PMU

Table 8 provides the PMU electrical specification.

**Table 8: PMU Electrical Specification** 

| Parameter                            | Symbol                 | Conditions                                       | Min.  | Тур.  | Max.   | Unit |
|--------------------------------------|------------------------|--------------------------------------------------|-------|-------|--------|------|
| Input supply voltage                 | V <sub>BAT</sub>       | _                                                | 3.0   | 3.6   | 5.25   | V    |
| I/O supply voltage                   | $V_{DDIO}$             | _                                                | 1.62  | 1.80  | 1.98   | V    |
| Input supply voltages ramp-up time   | T <sub>ramp</sub>      | _                                                | 40 µs | _     | 100 ms | _    |
| Power up time                        | T <sub>PU</sub>        | CSR output reaching 0.9V with respect to REG_ON  | _     | 295   | _      | μs   |
|                                      |                        | ASR output reaching 1.12V with respect to REG_ON | _     | 315   | _      | μs   |
| V <sub>BAT</sub> UVLO threshold      | V <sub>UVLO_rise</sub> | Rising                                           | _     | 2.43  | _      | V    |
|                                      | V <sub>UVLO_fall</sub> | Falling                                          | _     | 2.28  | _      | V    |
| V <sub>DDIO</sub> brownout threshold | V <sub>BRWO_rise</sub> | Rising                                           | _     | 1.597 | _      | V    |
|                                      | V <sub>BRWO_fall</sub> | Falling                                          | _     | 1.424 | _      | V    |

Table 9 provides the electrical specification of the internal regulators.

Table 9: Regulators Electrical Specification

|           |         | nput Supply Vo | Itage (V) | Output Current (mA) |         |         |  |
|-----------|---------|----------------|-----------|---------------------|---------|---------|--|
| Regulator | Minimum | Typical        | Maximum   | Minimum             | Typical | Maximum |  |
| ABUCK     | 3       | 3.6            | 5.25      | _                   | _       | 550     |  |
| CBUCK     | 3       | 3.6            | 5.25      | _                   | _       | 850     |  |
| RFLDO3P3  | 3       | 3.6            | 5.25      | 0.3                 | _       | 675     |  |
| BTLDO3P3  | 3       | 3.6            | 5.25      | 0.2                 | _       | 450     |  |
| LPLDO     | 1.62    | 1.8            | 1.98      | 0.001               | _       | 60      |  |
| MEMLPLDO  | 1.62    | 1.8            | 1.98      | 0.001               | _       | 60      |  |
| TXDACLDO  | 1.62    | 1.8            | 1.98      | 0.05                | _       | 12      |  |

# 3.6 Reset and Startup Control Signal Sequencing

The BCM4375 has two signals that allow the host to control power consumption by enabling or disabling the Bluetooth, WLAN, and internal regulator blocks. These signals are described in Table 5. Additionally, diagrams are provided to indicate proper sequencing of the signals for various operational states (see Figure 4, Figure 5, and Figure 6 and Figure 7). The timing values indicated are minimum required values; longer delays are also acceptable.

NOTE: The BCM4375 has an internal power-on reset (POR) circuit. The device will be held in reset for a maximum of 110 ms after CBUCK\_EXT, ABUCK\_EXT, and VDDIO have passed the POR threshold. Wait at least 150 ms after CBUCK\_EXT, ABUCK\_EXT, and VDDIO are available before initiating PCIe accesses. See Figure 3 for the CBUCK\_EXT and ABUCK\_EXT pins.

**NOTE:** The VBAT and VDDIO 10%–90% rise times should not be faster than 40 µs.

Figure 4: WLAN = ON, Bluetooth = ON



#### \*Notes:

- The VBAT and VDDIO 10%–90% rise times should be less than 40 microseconds.
- 2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

Figure 5: WLAN = OFF, Bluetooth = OFF



#### \*Notes

- 1. The VBAT and VDDIO 10%–90% rise times should be less than 40 microseconds.
- 2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

Figure 6: WLAN = ON, Bluetooth = OFF



Figure 7: WLAN = OFF, Bluetooth = ON



- 1. The VBAT and VDDIO 10%–90% rise times should be less than 40 microseconds.

  2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

Figure 8 shows the WLAN boot-up sequence from power-up to firmware download.

Figure 8: WLAN Boot-Up Sequence



#### \*Notes:

- 1. The VBAT and VDDIO 10%-90% rise times should be less than 40 microseconds.
- 2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

The Bluetooth startup sequence timing is defined in Figure 9.

Figure 9: Bluetooth Subsystem Startup Signaling Sequence



#### Notes:

- T1 is the time for Host to settle its IOs after a reset.
  T2 is the time for Host to drive BT\_REG\_ON high after the Host IOs are configured.
  T3 is the time for BTH (Bluetooth) device to settle its IOs after a reset and reference clock settling time has elapsed.
- T4 is the time for BTH device to drive BT\_UART\_RTS\_N low after the Host drives BT\_UART\_CTS\_N low. This assumes the BTH device has already completed initialization.
- T5 is the time for BTH device to drive CLK\_REQ\_OUT high after BT\_REG\_ON goes high. Note this pin is used for designs that use an external reference clock source from the Host. This pin is irrelevant for Crystal reference clock based designs where the BTH device generates its own reference clock from an external crystal connected to its oscillator circuit.

Timing diagram assumes VBAT is present.

# **Chapter 4: Frequency References**

An external crystal is used for generating all radio frequencies and normal operation clocking. In addition, a low-power oscillator (LPO) is provided for lower power mode timing.

# 4.1 Crystal Interface and Clock Generation

The BCM4375 uses an external crystal to provide a frequency reference. The recommended configuration for the crystal oscillator including all external components is shown in Figure 10. Consult the reference schematics for the latest configuration.

Figure 10: Recommended Oscillator Configuration



The frequency reference is a 37.4 MHz crystal. The signal characteristics for the crystal oscillator interface are provided in Table 10.

**Table 10: Crystal Oscillator Requirements** 

| Parameter                                                                                                          | Crystal <sup>a</sup> | Units |
|--------------------------------------------------------------------------------------------------------------------|----------------------|-------|
| Frequency 2.4 GHz and 5 GHz bands: IEEE 802.11ax operation, PCIe WLAN                                              | 37.4                 | MHz   |
| interface                                                                                                          |                      |       |
| Frequency tolerance over the lifetime of the equipment, including temperature <sup>b</sup> , and without trimming. | ±20                  | ppm   |
| Crystal load capacitance                                                                                           | 6–16                 | pF    |
| ESR                                                                                                                | < 60                 | Ω     |
| Drive level                                                                                                        | > 200                | μW    |
| (External crystal must be able to tolerate this drive level.)                                                      |                      |       |

a. (Crystal) Use I\_PAD\_XTAL\_XOP and O\_PAD\_XTAL\_XON.

b. It is the responsibility of the equipment designer to select oscillator components that comply with these specifications.

### 4.2 External 32.768 kHz Low-Power Oscillator

The BCM4375 uses a secondary low-frequency clock for Low-Power mode timing. Either the internal low- precision LPO or an external 32.768 kHz precision oscillator is required. The internal LPO frequency range is approximately 33 kHz (± 30%) over process, voltage, and temperature, which is adequate for some applications. However, one trade-off caused by this wide LPO tolerance is a small current consumption increase during power save mode that is incurred by the need to wake up earlier to avoid missing beacons.

Whenever possible, the preferred approach is to use a precision external 32.768 kHz clock which meets the requirements listed in Table 11.

Table 11: External 32.768 kHz Sleep Clock Specifications

| Parameter                    | LPO Clock                | Unit    |
|------------------------------|--------------------------|---------|
| Nominal input frequency      | 32.768                   | kHz     |
| Frequency accuracy           | ±200                     | ppm     |
| Duty cycle                   | 30–70                    | %       |
| Input signal amplitude       | 200–3300                 | mV, p-p |
| Signal type                  | Square-wave or sine-wave | _       |
| Input impedance <sup>a</sup> | > 100k                   | Ω       |
|                              | < 5                      | pF      |

a. When power is applied or switched off.

# **Chapter 5: Bluetooth Subsystem**

#### 5.1 Overview

The Broadcom BCM4375 is a Bluetooth 5.0 + EDR-compliant, baseband processor/2.4 GHz transceiver, which presents a standard Host Controller Interface (HCI) via a high-speed UART and PCM for audio. The Bluetooth microprocessor core is based on the ARM Cortex-M4 32-bit RISC processor with embedded ICE-RT debug and JTAG interface units. The ARM core is paired with a memory unit that contains 1152 KB of ROM memory for program storage and boot ROM, and 704 KB of RAM for data scratch-pad and patch RAM code. At power-up, the lower-layer protocol stack is executed from the internal ROM memory. External patches may be applied to the ROM-based firmware to provide flexibility for bug fixes or features additions. These patches may be downloaded from the host to the BCM4375 through the UART transports.

#### 5.2 PCM Interface

The BCM4375 supports two independent PCM interfaces that share the pins with the I<sup>2</sup>S interfaces. The PCM Interface on the BCM4375 can connect to linear PCM codec devices in master or slave mode. In master mode, the BCM4375 generates the BT\_PCM\_CLK and BT\_PCM\_SYNC signals, and in slave mode, these signals are provided by another master on the PCM interface and are inputs to the BCM4375.

The configuration of the PCM interface may be adjusted by the host through the use of vendor-specific HCI commands.

### 5.2.1 Slot Mapping

The BCM4375 supports up to three simultaneous full-duplex SCO or eSCO channels through the PCM interface. These three channels are time-multiplexed onto the single PCM interface by using a time-slotting scheme where the 8 kHz or 16 kHz audio sample interval is divided into as many as 16 slots. The number of slots is dependent on the selected interface rate of 128 kHz, 512 kHz, or 1024 kHz. The corresponding number of slots for these interface rate is 1, 2, 4, 8, and 16, respectively. Transmit and receive PCM data from an SCO channel is always mapped to the same slot. The PCM data output driver tristates its output on unused slots to allow other devices to share the same PCM interface signals. The data output driver tristates its output after the falling edge of the PCM clock during the last bit of the slot.

## 5.2.2 Frame Synchronization

The BCM4375 supports both short- and long-frame synchronization in both master and slave modes. In short-frame synchronization mode, the frame synchronization signal is an active-high pulse at the audio frame rate that is a single-bit period in width and is synchronized to the rising edge of the bit clock. The PCM slave looks for a high on the falling edge of the bit clock and expects the first bit of the first slot to start at the next rising edge of the clock. In long-frame synchronization mode, the frame synchronization signal is again an active-high pulse at the audio frame rate; however, the duration is three bit periods and the pulse starts coincident with the first bit of the first slot.

# 5.2.3 Data Formatting

The BCM4375 may be configured to generate and accept several different data formats. For conventional narrowband speech mode, the BCM4375 uses 13 of the 16 bits in each PCM frame. The location and order of these 13 bits can be configured to support various data formats on the PCM interface. The remaining three bits are ignored on the input and may be filled with 0s, 1s, a sign bit, or a programmed value on the output. The default format is 13-bit 2's complement data, left justified, and clocked MSB first.

### 5.2.4 Wideband Speech Support

When the host encodes wideband speech (WBS) packets in transparent mode, the encoded packets are transferred over the PCM bus for an eSCO voice connection. In this mode, the PCM bus is typically configured in master mode for a 4 kHz sync rate with 16-bit samples, resulting in a 64 kbps bit rate. The BCM4375 also supports slave transparent mode using a proprietary rate-matching scheme. In SBC-code mode, linear 16-bit data at 16 kHz (256 kbps rate) is transferred over the PCM bus.

#### 5.2.5 Burst PCM Mode

In this mode of operation, the PCM bus runs at a significantly higher rate of operation to allow the host to duty cycle its operation and save current. In this mode of operation, the PCM bus can operate at a rate of up to 24 MHz. This mode of operation is initiated with an HCl command from the host.

### 5.2.6 PCM Interface Timing

#### 5.2.6.1 Short Frame Sync, Master Mode

Figure 11: PCM Timing Diagram (Short Frame Sync, Master Mode)



Table 12: PCM Interface Timing Specifications (Short Frame Sync, Master Mode)

| Reference | Characteristics                                                                                    | Minimum | Typical | Maximum | Unit |
|-----------|----------------------------------------------------------------------------------------------------|---------|---------|---------|------|
| 1         | PCM bit clock frequency                                                                            | _       | _       | 12      | MHz  |
| 2         | PCM bit clock low                                                                                  | 41      | _       | _       | ns   |
| 3         | PCM bit clock high                                                                                 | 41      | _       | _       | ns   |
| 4         | BT_PCM_SYNC delay                                                                                  | 0       | _       | 25      | ns   |
| 5         | BT_PCM_OUT delay                                                                                   | 0       | _       | 25      | ns   |
| 6         | BT_PCM_IN setup                                                                                    | 8       | _       | _       | ns   |
| 7         | BT_PCM_IN hold                                                                                     | 8       | _       | _       | ns   |
| 8         | Delay from rising edge of BT_PCM_CLK during last bit period to BT_PCM_OUT becoming high impedance. | 0       | _       | 25      | ns   |

# 5.2.6.2 Short Frame Sync, Slave Mode

Figure 12: PCM Timing Diagram (Short Frame Sync, Slave Mode)



Table 13: PCM Interface Timing Specifications (Short Frame Sync, Slave Mode)

| Reference | Characteristics                                                                                    | Minimum | Typical | Maximum | Unit |  |
|-----------|----------------------------------------------------------------------------------------------------|---------|---------|---------|------|--|
| 1         | PCM bit clock frequency                                                                            | _       | _       | 12      | MHz  |  |
| 2         | PCM bit clock low                                                                                  | 41      | _       | _       | ns   |  |
| 3         | PCM bit clock high                                                                                 | 41      | _       | _       | ns   |  |
| 4         | BT_PCM_SYNC setup                                                                                  | 8       | _       | _       | ns   |  |
| 5         | BT_PCM_SYNC hold                                                                                   | 8       | _       | _       | ns   |  |
| 6         | BT_PCM_OUT delay                                                                                   | 0       | _       | 25      | ns   |  |
| 7         | BT_PCM_IN setup                                                                                    | 8       | _       | _       | ns   |  |
| 8         | BT_PCM_IN hold                                                                                     | 8       | _       | _       | ns   |  |
| 9         | Delay from rising edge of BT_PCM_CLK during last bit period to BT_PCM_OUT becoming high impedance. | 0       | _       | 25      | ns   |  |

# 5.2.6.3 Long Frame Sync, Master Mode

Figure 13: PCM Timing Diagram (Long Frame Sync, Master Mode)



Table 14: PCM Interface Timing Specifications (Long Frame Sync, Master Mode)

| Reference | Characteristics                                                                                    | Minimum | Typical | Maximum | Unit |
|-----------|----------------------------------------------------------------------------------------------------|---------|---------|---------|------|
| 1         | PCM bit clock frequency                                                                            | _       | _       | 12      | MHz  |
| 2         | PCM bit clock low                                                                                  | 41      | _       | _       | ns   |
| 3         | PCM bit clock high                                                                                 | 41      | _       | _       | ns   |
| 4         | BT_PCM_SYNC delay                                                                                  | 0       | _       | 25      | ns   |
| 5         | BT_PCM_OUT delay                                                                                   | 0       | _       | 25      | ns   |
| 6         | BT_PCM_IN setup                                                                                    | 8       | _       | _       | ns   |
| 7         | BT_PCM_IN hold                                                                                     | 8       | _       | _       | ns   |
| 8         | Delay from rising edge of BT_PCM_CLK during last bit period to BT_PCM_OUT becoming high impedance. | 0       |         | 25      | ns   |

# 5.2.6.4 Long Frame Sync, Slave Mode

Figure 14: PCM Timing Diagram (Long Frame Sync, Slave Mode)



Table 15: PCM Interface Timing Specifications (Long Frame Sync, Slave Mode)

| Reference | Characteristics                                                                                    | Minimum | Typical | Maximum | Unit |
|-----------|----------------------------------------------------------------------------------------------------|---------|---------|---------|------|
| 1         | PCM bit clock frequency                                                                            | _       | _       | 12      | MHz  |
| 2         | PCM bit clock low                                                                                  | 41      | _       | _       | ns   |
| 3         | PCM bit clock high                                                                                 | 41      | _       | _       | ns   |
| 4         | BT_PCM_SYNC setup                                                                                  | 8       | _       | _       | ns   |
| 5         | BT_PCM_SYNC hold                                                                                   | 8       | _       |         | ns   |
| 6         | BT_PCM_OUT delay                                                                                   | 0       | _       | 25      | ns   |
| 7         | BT_PCM_IN setup                                                                                    | 8       | _       | _       | ns   |
| 8         | BT_PCM_IN hold                                                                                     | 8       | _       | _       | ns   |
| 9         | Delay from rising edge of BT_PCM_CLK during last bit period to BT_PCM_OUT becoming high impedance. | 0       | _       | 25      | ns   |

# 5.2.6.5 Short Frame Sync, Burst Mode

Figure 15: PCM Burst Mode Timing (Receive Only, Short Frame Sync)



Table 16: PCM Burst Mode (Receive Only, Short Frame Sync)

| Reference | Characteristics         | Minimum | Typical | Maximum | Unit |
|-----------|-------------------------|---------|---------|---------|------|
| 1         | PCM bit clock frequency | _       | _       | 24      | MHz  |
| 2         | PCM bit clock low       | 20.8    | _       | _       | ns   |
| 3         | PCM bit clock high      | 20.8    | _       | _       | ns   |
| 4         | BT_PCM_SYNC setup       | 8       | _       | _       | ns   |
| 5         | BT_PCM_SYNC hold        | 8       | _       | _       | ns   |
| 6         | BT_PCM_IN setup         | 8       | _       | _       | ns   |
| 7         | BT_PCM_IN hold          | 8       | _       | _       | ns   |

# 5.2.6.6 Long Frame Sync, Burst Mode

Figure 16: PCM Burst Mode Timing (Receive Only, Long Frame Sync)



Table 17: PCM Burst Mode (Receive Only, Long Frame Sync)

| Reference | Characteristics         | Minimum | Typical | Maximum | Unit |
|-----------|-------------------------|---------|---------|---------|------|
| 1         | PCM bit clock frequency | _       | _       | 24      | MHz  |
| 2         | PCM bit clock low       | 20.8    | _       | _       | ns   |
| 3         | PCM bit clock high      | 20.8    | _       | _       | ns   |
| 4         | BT_PCM_SYNC setup       | 8       | _       | _       | ns   |
| 5         | BT_PCM_SYNC hold        | 8       | _       | _       | ns   |
| 3         | BT_PCM_IN setup         | 8       | _       | _       | ns   |
| 7         | BT_PCM_IN hold          | 8       | _       | _       | ns   |

### 5.3 UART Interface

The BCM4375 UART is a standard 4-wire interface (RX, TX, RTS, and CTS) with adjustable baud rates from 9600 bps to 4.0 Mbps. The interface features an automatic baud rate detection capability that returns a baud rate selection. Alternatively, the baud rate may be selected through a vendor-specific UART HCI command.

UART has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support EDR. Access to the FIFOs is conducted through the AHB interface through either DMA or the CPU. The UART supports the Bluetooth 5.0 UART HCI specification: H4, a custom Extended H4, and H5. The default baud rate is 115.2 Kbaud.

The UART supports the 3-wire H5 UART transport, as described in the Bluetooth specification ("Three-wire UART Transport Layer"). Compared to H4, the H5 UART transport reduces the number of signal lines required by eliminating the CTS and RTS signals.

The BCM4375 UART can perform XON/XOFF flow control and includes hardware support for the Serial Line Input Protocol (SLIP). It can also perform wake-on activity. For example, activity on the RX or CTS inputs can wake the chip from a sleep state.

Normally, the UART baud rate is set by a configuration record downloaded after device reset, or by automatic baud rate detection, and the host does not need to adjust the baud rate. Support for changing the baud rate during normal HCI UART operation is included through a vendor-specific command that allows the host to adjust the contents of the baud rate registers. The BCM4375 UARTs operate correctly with the host UART as long as the combined baud rate error of the two devices is within ±2%.

Table 18: Example of Common Baud Rates

| Desired Rate | Actual Rate | Error (%) |  |
|--------------|-------------|-----------|--|
| 4000000      | 400000      | 0.00      |  |
| 3692000      | 3692308     | 0.01      |  |
| 3000000      | 3000000     | 0.00      |  |
| 2000000      | 2000000     | 0.00      |  |
| 1500000      | 1500000     | 0.00      |  |
| 1444444      | 1454544     | 0.70      |  |
| 921600       | 923077      | 0.16      |  |
| 460800       | 461538      | 0.16      |  |
| 230400       | 230796      | 0.17      |  |
| 115200       | 115385      | 0.16      |  |
| 57600        | 57692       | 0.16      |  |
| 38400        | 38400       | 0.00      |  |
| 28800        | 28846       | 0.16      |  |
| 19200        | 19200       | 0.00      |  |
| 14400        | 14423       | 0.16      |  |
| 9600         | 9600        | 0.00      |  |

Figure 17: UART Timing



**Table 19: UART Timing Specifications** 

| Reference | Characteristics                                            | Minimum | Typical | Maximum | Unit        |
|-----------|------------------------------------------------------------|---------|---------|---------|-------------|
| 1         | Delay time, BT_UART_CTS_N low to BT_UART_TXD valid         | _       | _       | 1.5     | Bit periods |
| 2         | Setup time, BT_UART_CTS_N high before midpoint of stop bit | _       | _       | 0.5     | Bit periods |
| 3         | Delay time, midpoint of stop bit to BT_UART_RTS_N high     | _       | _       | 0.5     | Bit periods |

# 5.4 I<sup>2</sup>S Interface

The BCM4375 supports an I<sup>2</sup>S digital audio port for Bluetooth audio. The I<sup>2</sup>S signals are:

■ I<sup>2</sup>S clock: BT\_I2S\_CLK

I<sup>2</sup>S Word Select: BT\_I2S\_WS

I<sup>2</sup>S Data Out: BT\_I2S\_DO

I<sup>2</sup>S Data In: BT\_I2S\_DI

BT\_I2S\_CLK and BT\_I2S\_WS become outputs in master mode and inputs in slave mode, whereas BT\_I2S\_DO always stays as an output. The channel word length is 16 bits, and the data is justified so that the MSB of the left-channel data is aligned with the MSB of the I<sup>2</sup>S bus, in accord with the I<sup>2</sup>S specification. The MSB of each data word is transmitted one bit clock cycle after the BT\_I2S\_WS transition, synchronous with the falling edge of the bit clock. Left-channel data is transmitted when BT\_I2S\_WS is low, and right-channel data is transmitted when BT\_I2S\_WS is high. Data bits sent by the BCM4375 are synchronized with the falling edge of BT\_I2S\_CLK and should be sampled by the receiver on the rising edge of BT\_I2S\_CLK.

The clock rate in master mode is either of the following:

48 kHz x 32 bits per frame = 1.536 MHz

48 kHz x 50 bits per frame = 2.400 MHz

The master clock is generated from the input reference clock using a N/M clock divider.

In the slave mode, any clock rate is supported to a maximum of 3.072 MHz.

# 5.4.1 I<sup>2</sup>S Timing

NOTE: Timing values specified in Table 20 are relative to high and low threshold levels.

Table 20: Timing for I<sup>2</sup>S Transmitters and Receivers

|                               | Transmitter         |                     |                     |      | Receiver            |                     |      |             |       |
|-------------------------------|---------------------|---------------------|---------------------|------|---------------------|---------------------|------|-------------|-------|
|                               | Lower Limit         |                     | Upper Limit         |      | Lower               | Lower Limit         |      | Upper Limit |       |
|                               | Min.                | Max.                | Min.                | Max. | Min.                | Max.                | Min. | Max.        | Notes |
| Clock period T                | T <sub>tr</sub>     | _                   | _                   | _    | T <sub>r</sub>      | _                   | _    | _           | а     |
| Master Mode: Clock generated  | by transmi          | tter or rece        | eiver               |      |                     |                     |      |             |       |
| HIGH t <sub>HC</sub>          | 0.35T <sub>tr</sub> | _                   | _                   | _    | 0.35T <sub>tr</sub> | _                   | _    | _           | b     |
| LOWt <sub>LC</sub>            | 0.35T <sub>tr</sub> | _                   | _                   | _    | 0.35T <sub>tr</sub> | _                   | _    | _           | b     |
| Slave Mode: Clock accepted by | transmitte          | r or receiv         | er                  |      |                     |                     |      | il.         | 1     |
| HIGH t <sub>HC</sub>          | _                   | 0.35T <sub>tr</sub> | _                   | _    | _                   | 0.35T <sub>tr</sub> | _    | _           | С     |
| LOW t <sub>LC</sub>           | _                   | 0.35T <sub>tr</sub> | _                   | _    | _                   | 0.35T <sub>tr</sub> | _    | _           | С     |
| Rise time t <sub>RC</sub>     | _                   | _                   | 0.15T <sub>tr</sub> | _    | _                   | _                   | _    | _           | d     |
| Transmitter                   |                     | 1                   |                     |      | 1                   |                     | 1    |             |       |
| Delay t <sub>dtr</sub>        | _                   | _                   | _                   | 0.8T | _                   | _                   | _    | _           | е     |
| Hold time t <sub>htr</sub>    | 0                   | _                   | _                   | _    | _                   | _                   | _    | _           | d     |
| Receiver                      | 1                   | 1                   | 1                   | 1    | 1                   | 1                   | 1    | 1           |       |
| Setup time t <sub>sr</sub>    | _                   | _                   | _                   | _    | _                   | 0.2T <sub>r</sub>   | _    | _           | f     |
| Hold time t <sub>hr</sub>     | _                   | _                   | _                   | _    | _                   | 0                   | _    | _           | f     |

- a. The system clock period T must be greater than T<sub>tr</sub> and T<sub>r</sub> because both the transmitter and receiver have to be able to handle the data transfer rate.
- b. At all data rates in master mode, the transmitter or receiver generates a clock signal with a fixed mark/space ratio. For this reason, t<sub>HC</sub> and t<sub>LC</sub> are specified with respect to T.
- c. In slave mode, the transmitter and receiver need a clock signal with minimum high and low periods so that they can detect the signal. So long as the minimum periods are greater than 0.35T<sub>r</sub>, any clock that meets the requirements can be used.
- d. Because the delay (t<sub>dtr</sub>) and the maximum transmitter speed (defined by T<sub>tr</sub>) are related, a fast transmitter driven by a slow clock edge can result in t<sub>dtr</sub> not exceeding t<sub>RC</sub> which means t<sub>htr</sub> becomes zero or negative. Therefore, the transmitter has to guarantee that t<sub>htr</sub> is greater than or equal to zero, so long as the clock rise-time t<sub>RC</sub> is not more than t<sub>RCmax</sub>, where t<sub>RCmax</sub> is not less than 0.15T<sub>tr</sub>.
- e. To allow data to be clocked out on a falling edge, the delay is specified with respect to the rising edge of the clock signal and T, always giving the receiver sufficient setup time.
- f. The data setup and hold time must not be less than the specified receiver setup and hold time.

**NOTE:** The time periods specified in Figure 18 and Figure 19 are defined by the transmitter speed. The receiver specifications must match transmitter performance.

Figure 18: I<sup>2</sup>S Transmitter Timing



T = Clock period

T<sub>tr</sub> = Minimum allowed clock period for transmitter

 $T = T_t$ 

\*  $t_{RC}$  is only relevant for transmitters in slave mode.

Figure 19: I<sup>2</sup>S Receiver Timing



T = Clock period

T<sub>r</sub> = Minimum allowed clock period for transmitter

 $T > T_r$ 

# Chapter 6: WLAN Global Functions and Interfaces

## 6.1 WLAN CPU and Memory Subsystem

The BCM4375 WLAN section includes an integrated ARM Cortex-R4 32-bit processor with internal RAM and ROM. The onchip memory for the CPU includes 1600 KB SRAM and 1216 KB ROM.

# 6.2 One-Time Programmable Memory

Various hardware configuration parameters may be stored in an internal one-time programmable (OTP) memory, which is read by the system software after device reset. In addition, customer-specific parameters, including the system vendor ID and the MAC address can be stored, depending on the specific board design. Up to 1150 bytes of user-accessible OTP are available.

The initial state of all bits in an unprogrammed OTP device is 0. After any bit is programmed to a 1, it cannot be reprogrammed to 0. The entire OTP array can be programmed in a single write cycle using a utility provided with the Broadcom WLAN manufacturing test tools. Alternatively, multiple write cycles can be used to selectively program specific bytes, but only bits which are still in the 0 state can be altered during each programming cycle.

Prior to OTP programming, all values should be verified using the appropriate editable nvram.txt file, which is provided with the reference board design package.

### 6.3 GPIO Interface

The BCM4375 has 21 general-purpose I/O (GPIO) pins in the WLAN section that can be used to connect to various external devices.

Upon power-up and reset, these pins become tristated. Subsequently, they can be programmed to be either input or output pins via the GPIO control register. In addition, the GPIO pins can be assigned to various other functions, see Table 39, GPIO Alternative Signal Functions.

### 6.4 External Coexistence Interface

An external handshake interface is available to enable signaling between the BCM4375 and an external collocated wireless device to manage wireless medium sharing for optimal performance.

Figure 20 shows the BCM4375 coexistence interface (including UART). See Table 39, GPIO Alternative Signal Functions for further details on multiplexed signals, such as the GPIO pins.

Baud rates are derived from crystal clock. For rates higher than [Crystal\_Frequency /16] the baud rate is an integer divide of the crystal frequency. For 37.4 MHz crystal:

| Division | XTAL    | Baud rate (Mbps) |
|----------|---------|------------------|
| 12       | 37.4/12 | 3.116667         |
| 13       | 37.4/13 | 2.876923         |
| 14       | 37.4/14 | 2.671429         |
| 15       | 37.4/15 | 2.493333         |
| 16       | 37.4/16 | 2.3375           |

Figure 20: Multipoint Global Coexistence Interface



# 6.5 Debug UART Interface

One 2-wire UART interface can be enabled by software as an alternate function on GPIO pins. Refer to Table 39, GPIO Alternative Signal Functions. Provided primarily for debugging during development, this UART enables the BCM4375 to operate as RS-232 data termination equipment (DTE) for exchanging and managing data with other serial devices. It is compatible with the industry standard 16550 UART, and provides a FIFO size of 64 × 8 in each direction.

### 6.6 FAST UART Interface

A high-speed 4-wire CTS/RTS UART interface can be enabled by software as an alternate function on GPIO pins. Refer to Table 39, GPIO Alternative Signal Functions. Provided primarily for control word exchange, this UART enables the chip to operate as RS-232 data termination equipment (DTE) for exchanging and managing data with other serial devices. It is compatible with the industry standard 16550 UART, and provides a FIFO size of 64 × 8 in each direction.

### 6.7 BSC Interface

A proprietary Broadcom Serial Control (BSC, an I<sup>2</sup>C-compatible interface) slave interface is available, as an alternate function on the GPIO lines, which supports data transfer rates up to 3.4 Mbps in high-speed mode. This can be primarily used to transfer data to a sensor hub in the host system. This interface supports 7-bit and 10-bit device addressing and an interrupt to the processor. Based on the device address matching, a device can be brought out of low-power state using this interface. This interface provides an internal FIFO depth of 32 bytes for both TX and RX with the ability to filter glitches on the clock and data lines.

#### 6.8 JTAG/SWD Interface

The BCM4375 supports IEEE 1149.1 JTAG boundary scan and reduced pin-count SWD mode to access the chip's internal blocks and backplane for system bring-up and debugging. This interface allows Broadcom to assist customers with proprietary debug and characterization test tools. It is highly recommended that access is provided to at least the SWD pins by using either test points or a header on all PCB designs.

The SWD interface uses two of the JTAG signals: TMS for bidirectional data (SWDIO) and TCK for the clock (SWCLK). The debug access port (DAP) embedded in the ARM processor supports both SWD and JTAG interfaces and can be switched from one to the other via a specific sequence on the TMS/SWD lines. In addition to the ARM debug interface, an internal JTAG master on the DAP allows access to test access points (TAPs) in the BCM4375 for hardware debugging.

Refer to Table 39, GPIO Alternative Signal Functions for JTAG pin assignments.

### 6.8.1 JTAG Timing

**Table 21: JTAG Timing Characteristics** 

| Signal Name | Period | Output<br>Maximum | Output<br>Minimum | Setup | Hold |
|-------------|--------|-------------------|-------------------|-------|------|
| TCK         | 125 ns | _                 | _                 | _     | _    |
| TDI         | _      | _                 | _                 | 20 ns | 0 ns |
| TMS         | _      | _                 | _                 | 20 ns | 0 ns |
| TDO         | _      | 100 ns            | 0 ns              | _     | _    |
| JTAG_TRST   | 250 ns | _                 | _                 | _     | _    |

# 6.8.2 SWD Timing

The probe outputs data to SWDIO (TMS) on the falling edge of SWDCLK (TCK) and captures data from SWDIO on the rising edge of SWDCLK. The target outputs data to SWDIO on the rising edge of SWDCLK and captures data from SWDIO on the rising edge of SWDCLK.

SWD timing is shown through the combination of Figure 21 and Table 22.

Figure 21: SWD Read and Write Timing



Table 22: SWD Read and Write Timing Parameters

| Parameter       | Description                                                  | Min. | Max. | Unit |
|-----------------|--------------------------------------------------------------|------|------|------|
| Тсус            | SWDCLK cycle time                                            | 125  | _    | ns   |
| Thigh           | SWDCLK high period                                           | 50   | _    | ns   |
| Tlow            | SWDCLK low period                                            | 50   | _    | ns   |
| T <sub>os</sub> | SWDIO output skew to the falling edge of SWDCLK              | -5   | 5    | ns   |
| T <sub>is</sub> | Input setup time between SWDIO and the rising edge of SWDCLK | 20   | _    | ns   |
| T <sub>ih</sub> | Input hold time between SWDIO and the rising edge of SWDCLK  | 0    | 100  | ns   |

# 6.9 PCI Express Interface

The PCI Express (PCIe) core on the BCM4375 is a high-performance serial I/O interconnect that is protocol compliant and electrically compatible with the *PCI Express Base Specification v3.0* running at Gen2 speeds.

Table 23 provides the PCIe interface parameters.

**Table 23: PCI Express Interface Parameters** 

| Parameter                                                          | Symbol                          | Comments                                                                                                          | Min.                                    | Тур. | Max. | Unit  |
|--------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------|------|-------|
| General <sup>a</sup>                                               |                                 |                                                                                                                   |                                         |      |      |       |
| Baud rate                                                          | BPS                             | _                                                                                                                 | _                                       | 5    | _    | Gbaud |
| Reference clock peak-to-peak differential <sup>b</sup>             | Vref                            | LVPECL, AC coupled                                                                                                | 0.95                                    | _    | _    | V     |
| Receiver                                                           |                                 |                                                                                                                   |                                         |      |      | ·     |
| Differential termination                                           | ZRX-DIFF-DC                     | Differential termination                                                                                          | 80                                      | 100  | 120  | Ω     |
| DC impedance                                                       | ZRX-DC                          | DC common-mode impedance                                                                                          | 40                                      | 50   | 60   | Ω     |
| Powered down termination (POS)                                     | ZRX-HIGH-IMP-DC-POS             | Power-down or RESET high impedance                                                                                | 100k                                    | _    | _    | Ω     |
| Powered down termination (NEG)                                     | ZRX-HIGH-IMP-DC-NEG             | Power-down or RESET high impedance                                                                                | 1k                                      | _    | _    | Ω     |
| Input voltage                                                      | VRX-DIFFp-p                     | AC coupled, differential p-p                                                                                      | 175                                     | _    | _    | mV    |
| Jitter tolerance                                                   | TRX-EYE                         | Minimum receiver eye width                                                                                        | 0.4                                     | _    | _    | UI    |
| Differential return loss                                           | RLRX-DIFF                       | Differential return loss                                                                                          | 10                                      | _    | _    | dB    |
| Common-mode return loss                                            | RLRX-CM                         | Common-mode return loss                                                                                           | 6                                       | _    | _    | dB    |
| Unexpected electrical idle enter detect threshold integration time | TRX-IDEL-DET-DIFF-<br>ENTERTIME | An unexpected electrical idle must be recognized no longer than this time to signal an unexpected idle condition. | _                                       | _    | 10   | ms    |
| Signal detect threshold                                            | VRX-IDLE-DET-<br>DIFFp-p        | Electrical idle detect threshold                                                                                  | 65                                      | _    | 175  | mV    |
| Transmitter                                                        |                                 |                                                                                                                   |                                         |      |      |       |
| Output voltage                                                     | VTX-DIFFp-p                     | Differential p-p, programmable in 16 steps                                                                        | 8.0                                     | _    | 1200 | mV    |
| Output voltage rise time                                           | VTX-RISE                        | 20% to 80%                                                                                                        | 0.125<br>(2.5 GT/s)<br>0.15<br>(5 GT/s) | _    | _    | UI    |
| Output voltage fall time                                           | VTX-FALL                        | 80% to 20%                                                                                                        | 0.125<br>(2.5 GT/s)<br>0.15<br>(5 GT/s) | _    | _    | UI    |
| RX detection voltage swing                                         | VTX-RCV-DETECT                  | The amount of voltage change allowed during receiver detection.                                                   | _                                       | _    | 600  | mV    |

Table 23: PCI Express Interface Parameters (Continued)

| Parameter                                                                     | Symbol                          | Comments                                                                                | Min.                              | Тур. | Max. | Unit |
|-------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------|------|------|------|
| TX AC peak common-mode<br>voltage<br>(5 GT/s)                                 | VTX-CM-AC-PP                    | TX AC common mode voltage (5 GT/s)                                                      | _                                 | _    | 100  | mV   |
| TX AC peak common-mode<br>voltage<br>(2.5 GT/s)                               | VTX-CM-AC-P                     | TX AC common mode voltage (2.5 GT/s)                                                    | _                                 | _    | 20   | mV   |
| Absolute delta of DC common-<br>mode voltage during L0 and<br>electrical idle | VTX-CM-DC-ACTIVE-<br>IDLE-DELTA | Absolute delta of DC common-<br>mode voltage during L0 and<br>electrical idle.          | 0                                 | _    | 100  | mV   |
| Absolute delta of DC common-<br>mode voltage between D+ and<br>D-             | VTX-CM-DC-LINE-DELTA            | DC offset between D+ and D-                                                             | 0                                 | _    | 25   | mV   |
| Electrical idle differential peak output voltage                              | VTX-IDLE-DIFF-AC-p              | Peak-to-peak voltage                                                                    | 0                                 |      | 20   | mV   |
| TX short circuit current                                                      | ITX-SHORT                       | Current limit when TX output is shorted to ground.                                      | _                                 |      | 90   | mA   |
| DC differential TX termination                                                | ZTX-DIFF-DC                     | Low impedance defined during signaling (parameter is captured for 5.0 GHz by RLTX-DIFF) | 80                                | _    | 120  | Ω    |
| Differential<br>return loss                                                   | RLTX-DIFF                       | Differential return loss                                                                | 10 (min) for<br>0.05:<br>1.25 GHz | _    | _    | dB   |
| Common-mode<br>return loss                                                    | RLTX-CM                         | Common-mode return loss                                                                 | 6                                 | _    | _    | dB   |
| TX eye width                                                                  | TTX-EYE                         | Minimum TX eye width                                                                    | 0.75                              | _    | _    | UI   |

a. For out-of-band PCIe signal specification, refer to Table 3, Recommended Operating Conditions and DC Characteristics.

b. The reference clock inputs comply with the requirements of the PCI Express CEM v2.0 Specification.

### **Chapter 7: Bluetooth RF Specifications**

NOTE: Values in this data sheet are design goals and are subject to change based on device characterization results.

Unless otherwise stated, limit values apply for the conditions specified in Table 2, Environmental Ratings and "Recommended Operating Conditions and DC Characteristics" on page 7.

Typical values apply for the following conditions:

- VBAT = 3.6V
- Ambient temperature +25°C

Figure 22: Port Locations for Bluetooth Testing



**NOTE:** The specifications in Table 24 are measured at the chip port input, unless otherwise defined.

Table 24: Bluetooth Receiver RF Specifications

| Parameter                        | Conditions                         | Minimum | Typical    | Maximum | Unit |
|----------------------------------|------------------------------------|---------|------------|---------|------|
| General                          |                                    |         |            |         |      |
| Frequency range                  | _                                  | 2402    | _          | 2480    | MHz  |
| Receive sensitivity in high      | 1 Mbps, GFSK BDR, 0.1% BER         | _       | -95        | _       | dBm  |
| performance mode (dLNA_HP)       | 2 Mbps, π/4-DQPSK EDR-2, 0.01% BER | _       | -97        | _       | dBm  |
| with dirty transmit off          | 3 Mbps, 8-DQPSK EDR-3, 0.01% BER   | _       | <b>-91</b> | _       | dBm  |
| Receive sensitivity in low power | 1 Mbps, GFSK BDR, 0.1% BER         | _       | -95        | _       | dBm  |
| mode (dLNA_LP) with dirty        | 2 Mbps, π/4-DQPSK EDR-2, 0.01% BER | _       | -97        | _       | dBm  |
| transmit off                     | 3 Mbps, 8-DQPSK EDR-3, 0.01% BER   | _       | <b>-91</b> | _       | dBm  |

Table 24: Bluetooth Receiver RF Specifications (Continued)

| Parameter                                | Conditions                                 | Minimum | Typical    | Maximum    | Unit |
|------------------------------------------|--------------------------------------------|---------|------------|------------|------|
| Receive sensitivity: LELR, BLE,          | 125 Kbps, LELR, 30.8% PER                  | _       | -110       | -107       | dBm  |
| and LE2 (dLNA_LP and                     | 500 Kbps, LELR, 30.8% PER                  | _       | -105       | -102       | dBm  |
| sLNA_LP) with dirty transmit             | 1 Mbps, GFSK BLE, 30.8% PER                | _       | -98        | -95        | dBm  |
| off.                                     | 2 Mbps, LE2, 30.8% PER                     | _       | -95        | -92        | dBm  |
| Input IP3 (max. LNA gain)                | _                                          | -24     |            | _          | dBm  |
| Maximum input at chip port               | Without damaging the chip                  | _       | _          | 13         | dBm  |
| Maximum receive level                    | BDR, EDR-2, EDR-3                          | -17     | _          | _          | dBm  |
|                                          | BLE, LELR, LE2                             | -7      | _          |            | dBm  |
| RX LO Leakage                            |                                            | ·       |            |            |      |
| 2.4 GHz band                             | _                                          | _       | -90        | _          | dBm  |
| Interference Performance <sup>a, b</sup> |                                            | '       |            |            |      |
| C/I co-channel                           | GFSK, 0.1% BER                             |         | _          | 11         | dB   |
| C/I 1 MHz adjacent channel               | GFSK, 0.1% BER                             | _       | _          | 0          | dB   |
| C/I 2 MHz adjacent channel               | GFSK, 0.1% BER                             |         | _          | -30        | dB   |
| C/I ≥ 3 MHz adjacent channel             | GFSK, 0.1% BER                             | _       |            | <b>-40</b> | dB   |
| C/I image channel                        | GFSK, 0.1% BER                             |         | _          | _9         | dB   |
| C/I 1-MHz adjacent to image channel      | GFSK, 0.1% BER                             | _       | _          | -20        | dB   |
| C/I co-channel                           | π/4-DQPSK, 0.1% BER                        | _       | _          | 13         | dB   |
| C/I 1 MHz adjacent channel               | π/4-DQPSK, 0.1% BER                        | _       | _          | 0          | dB   |
| C/I 2 MHz adjacent channel               | π/4-DQPSK, 0.1% BER                        | _       | _          | -30        | dB   |
| C/I ≥ 3 MHz adjacent channel             | π/4-DQPSK, 0.1% BER                        | _       | _          | -40        | dB   |
| C/I image channel                        | π/4-DQPSK, 0.1% BER                        | _       | _          | <b>-7</b>  | dB   |
| C/I 1 MHz adjacent to image channel      | π/4-DQPSK, 0.1% BER                        |         | _          | -20        | dB   |
| C/I co-channel                           | 8-DPSK, 0.1% BER                           | _       | _          | 21         | dB   |
| C/I 1 MHz adjacent channel               | 8-DPSK, 0.1% BER                           | _       | _          | 5          | dB   |
| C/I 2 MHz adjacent channel               | 8-DPSK, 0.1% BER                           | _       | _          | -25        | dB   |
| C/I ≥ 3 MHz adjacent channel             | 8-DPSK, 0.1% BER                           | _       | _          | -33        | dB   |
| C/I Image channel                        | 8-DPSK, 0.1% BER                           | _       | _          | 0          | dB   |
| C/I 1 MHz adjacent to image channel      | 8-DPSK, 0.1% BER                           | _       | _          | -13        | dB   |
| Out-of-Band Blocking Perforr             | nance (CW) <sup>b</sup>                    | ·       |            |            |      |
| 30–2000 MHz                              | 0.1% BER                                   | L       | -10        | _          | dBm  |
| 2000–2399 MHz                            | 0.1% BER                                   | _       | -27        | _          | dBm  |
| 2498–3000 MHz                            | 0.1% BER                                   | _       | -27        | _          | dBm  |
| 3000 MHz–12.75 GHz                       | 0.1% BER                                   | _       | -10        | _          | dBm  |
|                                          | nance, Modulated Interferer <sup>c d</sup> |         |            | <u> </u>   |      |
|                                          | GFSK (1 M                                  | bps)    |            |            |      |
| 698–716 MHz                              | WCDMA                                      | _       | <b>-</b> 5 | _          | dBm  |
| 776–794 MHz                              | WCDMA                                      |         | -5         |            | dBm  |

Table 24: Bluetooth Receiver RF Specifications (Continued)

| Parameter                  | Conditions                  | Minimum | Typical    | Maximum | Unit |
|----------------------------|-----------------------------|---------|------------|---------|------|
| 824-849 MHz                | GSM850                      | _       | -5         | _       | dBm  |
| 824-849 MHz                | WCDMA                       | _       | -5         | _       | dBm  |
| 880–915 MHz                | E-GSM                       |         | -5         | _       | dBm  |
| 880–915 MHz                | WCDMA                       | _       | <b>-</b> 5 | _       | dBm  |
| 1710–1785 MHz              | GSM1800                     | _       | -9         | _       | dBm  |
| 1710–1785 MHz              | WCDMA                       | _       | -11        | _       | dBm  |
| 1850–1910 MHz              | GSM1900                     | _       | <b>–11</b> |         | dBm  |
| 1850–1910 MHz              | WCDMA                       | _       | -13        |         | dBm  |
| 1880–1920 MHz              | TD-SCDMA                    | _       | -14        |         | dBm  |
| 1920–1980 MHz              | WCDMA                       | _       | -14        |         | dBm  |
| 2010–2025 MHz              | TD-SCDMA                    | _       | -16        |         | dBm  |
| 2500–2570 MHz              | WCDMA                       | _       | -21        | _       | dBm  |
| 2310 MHz                   | LTE band 40, TDD, 20 MHz BW | _       | -29        | _       | dBm  |
| 2330 MHz                   | LTE band 40, TDD, 20 MHz BW | _       | -30        | _       | dBm  |
| 2350 MHz                   | LTE band 40, TDD, 20 MHz BW | _       | -31        | _       | dBm  |
| 2370 MHz                   | LTE band 40, TDD, 20 MHz BW | _       | -31        | _       | dBm  |
| 2510 MHz                   | LTE band 7, FDD, 20 MHz BW  | _       | -28        | _       | dBm  |
| 2530 MHz                   | LTE band 7, FDD, 20 MHz BW  | _       | -27        | _       | dBm  |
| 2550 MHz                   | LTE band 7, FDD, 20 MHz BW  | _       | -27        | _       | dBm  |
| 2570 MHz                   | LTE band 7, FDD, 20 MHz BW  | _       | -26        | _       | dBm  |
| 2570–2620 MHz <sup>e</sup> | Band 38                     | _       | -23        | _       | dBm  |
| 2545–2575 MHz <sup>f</sup> | XGP Band                    | _       | -24        | _       | dBm  |
| 3400-3600 MHz              | LTE band 42, TDD, 20 MHz BW | _       | -14        | _       | dBm  |
| 3600-3800 MHz              | LTE band 43, TDD, 20 MHz BW | _       | -11        | _       | dBm  |
|                            | π/4-DPSK (2                 | Mbps)   |            |         |      |
| 698–716 MHz                | WCDMA                       | _       | -5         | _       | dBm  |
| 776–794 MHz                | WCDMA                       | _       | -5         | _       | dBm  |
| 824-849 MHz                | GSM850                      | _       | -5         | _       | dBm  |
| 824-849 MHz                | WCDMA                       | _       | <b>-</b> 5 | _       | dBm  |
| 880–915 MHz                | E-GSM                       | _       | <b>-</b> 5 |         | dBm  |
| 880–915 MHz                | WCDMA                       | _       | -5         |         | dBm  |
| 1710–1785 MHz              | GSM1800                     | _       | <b>-</b> 9 | _       | dBm  |
| 1710–1785 MHz              | WCDMA                       | _       | <b>–11</b> | _       | dBm  |
| 1850–1910 MHz              | GSM1900                     | _       | <b>–11</b> | _       | dBm  |
| 1850–1910 MHz              | WCDMA                       | _       | -13        |         | dBm  |
| 1880–1920 MHz              | TD-SCDMA                    |         | -14        |         | dBm  |
| 1920–1980 MHz              | WCDMA                       | _       | -14        |         | dBm  |
| 2010–2025 MHz              | TD-SCDMA                    |         | <b>–16</b> |         | dBm  |
| 2500–2570 MHz              | WCDMA                       | _       | -21        |         | dBm  |
| 2310 MHz                   | LTE band 40, TDD, 20 MHz BW |         | -29        |         | dBm  |
| 2330 MHz                   | LTE band 40, TDD, 20 MHz BW |         | -30        |         | dBm  |
| 2350 MHz                   | LTE band 40, TDD, 20 MHz BW | _       | -31        | _       | dBm  |

Table 24: Bluetooth Receiver RF Specifications (Continued)

| Parameter                  | Conditions                  | Minimum | Typical         | Maximum | Unit |
|----------------------------|-----------------------------|---------|-----------------|---------|------|
| 2370 MHz                   | LTE band 40, TDD, 20 MHz BW | _       | -31             | _       | dBm  |
| 2510 MHz                   | LTE band 7, FDD, 20 MHz BW  | _       | -28             |         | dBm  |
| 2530 MHz                   | LTE band 7, FDD, 20 MHz BW  | _       | -27             | _       | dBm  |
| 2550 MHz                   | LTE band 7, FDD, 20 MHz BW  | _       | -27             | _       | dBm  |
| 2570 MHz                   | LTE band 7, FDD, 20 MHz BW  | _       | -26             | _       | dBm  |
| 2570–2620 MHz <sup>e</sup> | Band 38                     | _       | -23             | _       | dBm  |
| 2545–2575 MHz <sup>f</sup> | XGP Band                    | _       | -24             | _       | dBm  |
| 3400-3600 MHz              | LTE band 42, TDD, 20 MHz BW | _       | -14             | _       | dBm  |
| 3600-3800 MHz              | LTE band 43, TDD, 20 MHz BW | _       | <b>–11</b>      | _       | dBm  |
|                            | 8-DPSK (3                   | Mbps)   |                 | ,       |      |
| 698-716 MHz                | WCDMA                       | _       | -5              | _       | dBm  |
| 776-794 MHz                | WCDMA                       | _       | -5              | _       | dBm  |
| 824-849 MHz                | GSM850                      | _       | -5              | _       | dBm  |
| 824-849 MHz                | WCDMA                       | _       | -5              | _       | dBm  |
| 880-915 MHz                | E-GSM                       | _       | -5              | _       | dBm  |
| 880-915 MHz                | WCDMA                       | _       | -5              | _       | dBm  |
| 1710-1785 MHz              | GSM1800                     | _       | -9              | _       | dBm  |
| 1710-1785 MHz              | WCDMA                       | _       | -11             | _       | dBm  |
| 1850-1910 MHz              | GSM1900                     | _       | -11             |         | dBm  |
| 1850-1910 MHz              | WCDMA                       | _       | -13             | _       | dBm  |
| 1880-1920 MHz              | TD-SCDMA                    | _       | -14             | _       | dBm  |
| 1920-1980 MHz              | WCDMA                       | _       | -14             | _       | dBm  |
| 2010-2025 MHz              | TD-SCDMA                    | _       | -16             | _       | dBm  |
| 2500-2570 MHz              | WCDMA                       | _       | -21             | _       | dBm  |
| 2310 MHz                   | LTE band 40, TDD, 20 MHz BW | _       | -29             | _       | dBm  |
| 2330 MHz                   | LTE band 40, TDD, 20 MHz BW | _       | -30             | _       | dBm  |
| 2350 MHz                   | LTE band 40, TDD, 20 MHz BW | _       | -31             | _       | dBm  |
| 2370 MHz                   | LTE band 40, TDD, 20 MHz BW | _       | <del>-</del> 31 |         | dBm  |
| 2510 MHz                   | LTE band 7, FDD, 20 MHz BW  | _       | -28             | _       | dBm  |
| 2530 MHz                   | LTE band 7, FDD, 20 MHz BW  | _       | -27             |         | dBm  |
| 2550 MHz                   | LTE band 7, FDD, 20 MHz BW  | _       | <b>–27</b>      | _       | dBm  |
| 2570 MHz                   | LTE band 7, FDD, 20 MHz BW  |         | -26             |         | dBm  |
| 2570–2620 MHz <sup>e</sup> | Band 38                     | _       | -23             | _       | dBm  |
| 2545–2575 MHz <sup>f</sup> | XGP Band                    |         | -24             | _       | dBm  |
| 3400-3600 MHz              | LTE band 42, TDD, 20 MHz BW | _       | -14             | _       | dBm  |
| 3600-3800 MHz              | LTE band 43, TDD, 20 MHz BW | _       | <b>–11</b>      |         | dBm  |

Table 24: Bluetooth Receiver RF Specifications (Continued)

| Parameter                       | Conditions | Minimum | Typical | Maximum    | Unit   |
|---------------------------------|------------|---------|---------|------------|--------|
| Spurious Emissions <sup>t</sup> |            | ·       | •       |            |        |
| 30 MHz-1 GHz                    |            | _       | -95     | -62        | dBm    |
| 1–12.75 GHz                     |            | _       | -70     | <b>-47</b> | dBm    |
| 851–894 MHz                     |            | _       | -147    | _          | dBm/Hz |
| 925–960 MHz                     |            | _       | -147    | _          | dBm/Hz |
| 1805–1880 MHz                   |            | _       | -147    | _          | dBm/Hz |
| 1930–1990 MHz                   |            | _       | -147    | _          | dBm/Hz |
| 2110–2170 MHz                   |            | _       | -147    | _          | dBm/Hz |

- a. The maximum value represents the actual Bluetooth specification required for Bluetooth qualification as defined in the version 4.1 specification.
- b. Applicable for all RX.
- c. Applicable for dLNA\_HP.
- d. The Bluetooth sensitivity levels for 1 Mbps, 2 Mbps, and 3 Mbps operation are -90.5 dBm, -92.5 dBm, and -86.5 dBm, respectively, in the presence of the blockers indicated.
- e. Interferer: 2580 MHz, BW = 10 MHz, measured at 2480 MHz.
- f. Interferer: 2555 MHz, BW = 10 MHz, measured at 2480 MHz.

NOTE: The specifications in this table are measured at the Bluetooth chip port output, unless otherwise defined.

Table 25: Bluetooth Transmitter RF Specifications

| Parameter                                                                                                | Conditions                                                  | Min. | Typical | Max. | Unit |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|---------|------|------|
| General – BT Output Power Mode                                                                           |                                                             |      |         |      |      |
| Frequency range                                                                                          | _                                                           | 2402 | _       | 2480 | MHz  |
| TX output power requirement in BT normal-                                                                | BDR, GFSK                                                   | 11.5 | 14      | 15.5 | dBm  |
| power mode:                                                                                              | EDR-2, π/4-DQPSK                                            | 7.5  | 10      | 11.5 | dBm  |
| TX power at chip output that meets <i>Bluetooth Test Specification RF.TS.4.0.0 ACP/EVM</i> requirements. | EDR-3, 8-DPSK                                               | 7.5  | 10      | 11.5 | dBm  |
|                                                                                                          | BLE, GFSK                                                   | 11.5 | 14      | 15.5 | dBm  |
|                                                                                                          | LE2                                                         | 11.5 | 14      | 15.5 | dBm  |
|                                                                                                          | LELR                                                        | 11.5 | 14      | 15.5 | dBm  |
| X output power requirement in BT high-                                                                   | BDR, GFSK                                                   | 17.5 | 20      | 21.5 | dBm  |
| power mode:                                                                                              | EDR-2, π/4-DQPSK                                            | 11.5 | 14      | 15.5 | dBm  |
| TX power at chip output that meets <i>Bluetooth</i>                                                      | EDR-3, 8-DPSK                                               | 11.5 | 14      | 15.5 | dBm  |
| Test Specification RF.TS.4.0.0 ACP/EVM requirements.                                                     | BLE, GFSK                                                   | 17.5 | 20      | 21.5 | dBm  |
|                                                                                                          | LE2                                                         | 17.5 | 20      | 21.5 | dBm  |
|                                                                                                          | LELR                                                        | 17.5 | 20      | 21.5 | dBm  |
| Chip shall meet all ACP/EVM requirements specified in <i>Bluetooth Test Specification</i> RF.TS.4.0.0    | _                                                           | -2   | _       | 2    | dB   |
| Power control step                                                                                       | _                                                           | _    | 4       | _    | dB   |
| Power control accuracy over process                                                                      | BDR, EDR-2, EDR-3                                           | -2   | _       | 1    | dB   |
| TX power control dynamic range                                                                           | Need to support BT normal power mode and BT high power mode | 32   | _       | _    | dB   |
| Gain control step                                                                                        | For setting output power                                    | _    | _       | 0.25 | dB   |
| Return loss at chip port TX                                                                              | $Z_0 = 50\Omega$ , across the TX dynamic range              | _    | 8       | _    | dB   |
| NOTE: Output power is with TCA and TSSI                                                                  | enabled.                                                    |      |         |      |      |
| GFSK In-Band Spurious Emissions                                                                          |                                                             |      |         |      |      |
| –20 dBc BW                                                                                               | _                                                           | _    | 0.93    | 1    | MHz  |
| EDR In-Band Spurious Emissions                                                                           |                                                             |      |         |      |      |
| 1.0 MHz <  M – N  < 1.5 MHz                                                                              | M - N = the frequency range for which                       |      | -38     | -26  | dBc  |
| 1.5 MHz <  M – N  < 2.5 MHz                                                                              | the spurious emission is measured                           | _    | -27     | -20  | dBm  |
| M – N  ≥ 2.5 MHz <sup>a</sup>                                                                            | relative to the transmit center frequency.                  | _    | -43     | -40  | dBm  |

Table 25: Bluetooth Transmitter RF Specifications (Continued)

| Parameter                                                             | Conditions                | Min. | Typical | Max. | Unit    |
|-----------------------------------------------------------------------|---------------------------|------|---------|------|---------|
| Out-of-Band Spurious Emissions                                        |                           |      |         |      |         |
| TX harmonics (HD2, HD3, HD4) in BT                                    | HD2 with TX at full power | _    | _       | -19  | dBm/MHz |
| normal-power mode                                                     | HD3 with TX at full power | _    | _       | -30  | dBm/MHz |
|                                                                       | HD4 with TX at full power | _    | _       | -44  | dBm/MHz |
| TX harmonics (HD2, HD3, HD4)                                          | HD2 with TX at full power | _    | _       | -13  | dBm/MHz |
| in BT high-power mode                                                 | HD3 with TX at full power | _    | _       | -17  | dBm/MHz |
|                                                                       | HD4 with TX at full power | _    | _       | -30  | dBm/MHz |
| Transmit spurious in BT normal-power and high-power modes             | 30 MHz to 1 GHz           | _    | _       | -50  | dBm/MHz |
|                                                                       | 1 GHz to 12.75 GHz        | _    | _       | -50  | dBm/MHz |
|                                                                       | 1.8 GHz to 1.9 GHz        | _    | _       | -50  | dBm/MHz |
|                                                                       | 5.15 GHz to 5.3 GHz       | _    | _       | -50  | dBm/MHz |
| VCO spurs at the fundamental frequency over the full TX dynamic range | BT normal-power mode      | _    | _       | -35  | dBm/MHz |
|                                                                       | BT high-power mode        | _    | _       | -32  | dBm/MHz |
| GPS Band Spurious Emissions                                           |                           |      |         |      |         |
| Spurious emissions                                                    | _                         | _    | -160    | _    | dBm     |
| Out-of-Band Noise Floor <sup>b</sup>                                  |                           |      |         |      |         |
| 65–108 MHz                                                            | FM RX                     | _    | -165    | _    | dBm/Hz  |
| 776–794 MHz                                                           | CDMA2000                  | _    | -163    | _    | dBm/Hz  |
| 869–960 MHz                                                           | cdmaOne, GSM850           | _    | -163    | _    | dBm/Hz  |
| 925–960 MHz                                                           | E-GSM                     | _    | -163    | _    | dBm/Hz  |
| 1570–1580 MHz                                                         | GPS                       | _    | -160    | _    | dBm/Hz  |
| 1805–1880 MHz                                                         | GSM1800                   | _    | -154    | _    | dBm/Hz  |
| 1930–1990 MHz                                                         | GSM1900, cdmaOne, WCDMA   | _    | -152    | _    | dBm/Hz  |
| 2110–2170 MHz                                                         | WCDMA                     | _    | -145    | _    | dBm/Hz  |
| 2500–2570 MHz                                                         | Band 7                    | _    | -133    | _    | dBm/Hz  |
| 2300–2400 MHz                                                         | Band 40                   | _    | -132    | _    | dBm/Hz  |
| 2570–2620 MHz                                                         | Band 38                   | _    | -135    | _    | dBm/Hz  |
| 2545–2575 MHz                                                         | XGP Band                  | _    | -134    | _    | dBm/Hz  |

a. The typical number is measured at ± 3 MHz offset.

b. Transmitted power in cellular and FM bands at the antenna port. See Figure 22 for the port location.

**Table 26: Local Oscillator Performance** 

| Parameter                                 | Minimum | Typical | Maximum | Unit      |
|-------------------------------------------|---------|---------|---------|-----------|
| LO Performance                            |         |         |         |           |
| Lock time                                 | _       | 72      | _       | μs        |
| Initial carrier frequency tolerance       | _       | ±25     | ±75     | kHz       |
| Frequency Drift <sup>a</sup>              |         |         |         |           |
| DH1 packet                                | _       | ±8      | ±25     | kHz       |
| DH3 packet                                | _       | ±8      | ±40     | kHz       |
| DH5 packet                                | _       | ±8      | ±40     | kHz       |
| Drift rate                                | _       | 5       | 20      | kHz/50 µs |
| Frequency Deviation <sup>a</sup>          |         |         |         |           |
| 00001111 sequence in payload <sup>b</sup> | 140     | 155     | 175     | kHz       |
| 10101010 sequence in payload <sup>c</sup> | 115     | 140     |         | kHz       |
| Channel spacing                           | _       | 1       | _       | MHz       |

- a. Applicable to BT nominal TX, BT HP TX, and BT 0 dBm TX.
- b. This pattern represents an average deviation in payload.
- c. Pattern represents the maximum deviation in payload for 99.9% of all frequency deviations.

### **Chapter 8: WLAN RF Specifications**

### 8.1 Introduction

The BCM4375 includes an integrated dual-band direct conversion radio that supports the 2.4 GHz and the 5 GHz bands. This section describes the RF characteristics of the 2.4 GHz and 5 GHz radios.

**NOTE:** Values in this section of the data sheet are design goals and are subject to change based on the results of device characterization.

Unless otherwise stated, limit values apply for the conditions specified in Table 2, Environmental Ratings and Table 3, Recommended Operating Conditions and DC Characteristics. Typical values apply for an ambient temperature +25°C.

Figure 23: Port Locations for WLAN Testing



### 8.2 2.4 GHz Band General RF Specifications

Table 27: 2.4 GHz Band General RF Specifications

| Item                              | Condition              | Minimum | Typical | Maximum | Unit |
|-----------------------------------|------------------------|---------|---------|---------|------|
| TX/RX switch time                 | Including TX ramp down | _       | _       | 5       | μs   |
| RX/TX switch time                 | Including TX ramp up   | _       | _       | 2       | μs   |
| Power-up and power-down ramp time | DSSS/CCK modulations   | _       | _       | < 2     | μs   |

### 8.3 WLAN 2.4 GHz Receiver Performance Specifications

NOTE: The values in Table 28 are specified at the chip RF port unless otherwise noted.

Table 28: WLAN 2.4 GHz Receiver Performance Specifications

| Parameter                                  | Condition/Notes                       | Min.     | Тур.        | Max. | Unit     |
|--------------------------------------------|---------------------------------------|----------|-------------|------|----------|
| Frequency range                            | _                                     | 2400     | _           | 2500 | MHz      |
| RX sensitivity IEEE 802.11b                | 1 Mbps DSSS                           | _        | -100.4      | _    | dBm      |
|                                            | 2 Mbps DSSS                           | _        | -97.2       | _    | dBm      |
|                                            | 5.5 Mbps DSSS                         | _        | -94.4       | _    | dBm      |
|                                            | 11 Mbps DSSS                          | _        | -91.4       | _    | dBm      |
| SISO RX sensitivity IEEE 802.11g           | 6 Mbps OFDM                           | _        | -95         | _    | dBm      |
| (10% PER for 1024 octet PSDU)              | 9 Mbps OFDM                           | _        | -93.9       | _    | dBm      |
|                                            | 12 Mbps OFDM                          | _        | -93         | _    | dBm      |
|                                            | 18 Mbps OFDM                          | _        | -90.4       | _    | dBm      |
|                                            | 24 Mbps OFDM                          | _        | -87.4       | _    | dBm      |
|                                            | 36 Mbps OFDM                          | _        | -84.1       | _    | dBm      |
|                                            | 48 Mbps OFDM                          | _        | -79.7       | _    | dBm      |
|                                            | 54 Mbps OFDM                          | _        | -78.2       | _    | dBm      |
| MIMO RX sensitivity IEEE 802.11g           | 6 Mbps OFDM                           | _        | -97         | _    | dBm/core |
| (10% PER for 1024 octet PSDU)              | 9 Mbps OFDM                           | _        | -95.9       | _    | dBm/core |
|                                            | 12 Mbps OFDM                          | _        | -95         | _    | dBm/core |
|                                            | 18 Mbps OFDM                          | <u> </u> | -93.4       | _    | dBm/core |
|                                            | 24 Mbps OFDM                          | _        | -90.4       | _    | dBm/core |
|                                            | 36 Mbps OFDM                          | _        | -87.1       | _    | dBm/core |
|                                            | 48 Mbps OFDM                          | _        | -82.7       | _    | dBm/core |
|                                            | 54 Mbps OFDM                          | _        | -81.2       | _    | dBm/core |
| SISO RX sensitivity IEEE 802.11n           | 20 MHz channel spacing for all MCS ra | ates     | ·           |      |          |
| (10% PER for 4096 octet PSDU) <sup>a</sup> | MCS0                                  | _        | <b>-</b> 95 |      | dBm      |
| Defined for default parameters: GF,        | MCS1                                  | _        | -93.2       | -    | dBm      |
| 800 ns GI, and non–STBC.                   | MCS2                                  | _        | -90.8       | _    | dBm      |
|                                            | MCS3                                  | _        | -87.2       | _    | dBm      |
|                                            | MCS4                                  | _        | -83.9       | _    | dBm      |
|                                            | MCS5                                  | _        | -79.4       | _    | dBm      |
|                                            | MCS6                                  | _        | -78         | _    | dBm      |
|                                            | MCS7                                  | _        | -76.3       |      | dBm      |

Table 28: WLAN 2.4 GHz Receiver Performance Specifications (Continued)

| Parameter                                                                      | Condition/Notes                   | Min.     | Тур.           | Max. | Unit         |
|--------------------------------------------------------------------------------|-----------------------------------|----------|----------------|------|--------------|
| MIMO RX sensitivity IEEE 802.11n                                               | 20 MHz channel spacing for all MC | S rates  |                |      |              |
| (10% PER for 4096 octet PSDU) <sup>a</sup>                                     | MCS0                              | _        | -97            | _    | dBm/core     |
| Defined for default parameters: GF,                                            | MCS1                              | _        | -95.2          | _    | dBm/core     |
| 800 ns GI, and non–STBC.                                                       | MCS2                              | _        | -92.8          | _    | dBm/core     |
|                                                                                | MCS3                              | _        | -89.2          | _    | dBm/core     |
|                                                                                | MCS4                              | _        | -86.9          | _    | dBm/core     |
|                                                                                | MCS5                              | _        | -82.4          | _    | dBm/core     |
|                                                                                | MCS6                              | _        | -81            | _    | dBm/core     |
|                                                                                | MCS7                              | _        | -79.3          | _    | dBm/core     |
|                                                                                | MCS8                              |          | -95.1          | _    | dBm/core     |
|                                                                                | MCS15                             | _        | -76.3          | _    | dBm/core     |
| SISO RX sensitivity IEEE 802.11ac                                              | 20 MHz channel spacing for all MC | S rates  |                |      | 3-1111 3-113 |
| (10% PER for 4096 octet PSDU) <sup>a</sup>                                     | MCS0, Nss 1                       |          | -95            |      | dBm          |
| Defined for default parameters: GF, 800 ns GI, and non–STBC                    | MCS1, Nss 1                       | _        | -92.8          | _    | dBm          |
|                                                                                | MCS2, Nss 1                       |          | -90.5          |      | dBm          |
|                                                                                | MCS3, Nss 1                       |          | _87            |      | dBm          |
|                                                                                | MCS4, Nss 1                       |          | -83.9          |      | dBm          |
|                                                                                | MCS5, Nss 1                       |          | -79.3          |      | dBm          |
|                                                                                | MCS6, Nss 1                       |          | -77.9          |      | dBm          |
|                                                                                | MCS7, Nss 1                       | <u> </u> | -77.3<br>-76.1 |      | dBm          |
| MIMO RX sensitivity IEEE 802.11ac                                              | 20 MHz channel spacing for all MC | S rates  | -70.1          |      | dbiii        |
| ·                                                                              | MCS0, Nss 1                       | o rates  | -97            |      | dBm/core     |
| (10% PER for 4096 octet PSDU) <sup>a</sup> Defined for default parameters: GF, | MCS1, Nss 1                       | _        | -94.8          |      | dBm/core     |
| 800 ns GI, and non-STBC                                                        | MCS2, Nss 1                       | _        | -94.8<br>-92.5 | _    | dBm/core     |
| occine Ci, and non Ci Be                                                       | ·                                 | _        |                | _    |              |
|                                                                                | MCS3, Nss 1                       | _        | -89<br>86.0    | _    | dBm/core     |
|                                                                                | MCS4, Nss 1                       |          | -86.9          | _    | dBm/core     |
|                                                                                | MCS5, Nss 1                       | _        | -82.3          | _    | dBm/core     |
|                                                                                | MCS6, Nss 1                       | _        | -80.9          | _    | dBm/core     |
|                                                                                | MCS7, Nss 1                       | _        | -79.1<br>-74.0 | _    | dBm/core     |
|                                                                                | MCS8, Nss 1                       | _        | -74.9          | _    | dBm/core     |
|                                                                                | MCS0, Nss 2                       | _        | -95            | _    | dBm/core     |
|                                                                                | MCS8, Nss 2                       | _        | -93            | _    | dBm/core     |
| SISO RX sensitivity IEEE 802.11ac 20 MHz channel spacing with LDPC             | MCS7, Nss 1                       | _        | -78.8          |      | dBm          |
| (10% PER for 4096 octet PSDU).a                                                | MCS8, Nss 1                       | _        | -74.8          |      | dBm          |
| Defined for default parameters: GF,                                            | MCS9, Nss 1                       | -        | -72.8          | _    | dBm          |
| 800 ns GI, LDPC coding, and non-<br>STBC.                                      |                                   |          |                |      |              |
| MIMO RX sensitivity IEEE 802.11ac                                              | MCS7, Nss 1                       | _        | -81.8          | _    | dBm/core     |
| 20 MHz channel spacing with LDPC                                               | MCS8, Nss 1                       | _        | -77.8          | _    | dBm/core     |
| 10% PER for 4096 octet PSDU)a.                                                 | MCS9, Nss 1                       | _        | -75.8          | _    | dBm/core     |
| Defined for default parameters: GF,                                            | MCS7, Nss 2                       | _        | -78.8          | _    | dBm/core     |
| 800 ns GI, LDPC coding, and non-<br>STBC.                                      | MCS8, Nss 2                       | _        | -74.8          | _    | dBm/core     |
| SIDO.                                                                          | MCS9, Nss 2                       |          | -72.8          |      | dBm/core     |

Table 28: WLAN 2.4 GHz Receiver Performance Specifications (Continued)

| Parameter                                                                                                  | Condition/Notes | Min. | Тур.  | Max. | Unit     |
|------------------------------------------------------------------------------------------------------------|-----------------|------|-------|------|----------|
| Full BW mode:                                                                                              | MCS0, Nss 1     | _    | -95.6 | _    | dBm      |
| SISO RX sensitivity IEEE 802.11ax                                                                          | MCS7, Nss 1     | _    | -78.3 | _    | dBm      |
| (10% PER for 4096 octet PSDU) <sup>a</sup> :<br>CP/LTF = 0.8 µs + 2 × LTF, LDPC,                           | MCS8, Nss 1     | _    | -73.8 | _    | dBm      |
| non-STBC, and 20 MHz BW                                                                                    | MCS9 Nss 1      | _    | -71.4 | _    | dBm      |
| Full BW mode:                                                                                              | MCS0, Nss 1     | _    | -97.6 | _    | dBm/core |
| MIMO RX sensitivity IEEE 802.11ax                                                                          | MCS7, Nss 1     | _    | -81.3 | _    | dBm/core |
| (10% PER for 4096 octet PSDU) <sup>a</sup> :<br>CP/LTF = 0.8 µs + 2 × LTF, LDPC,                           | MCS8, Nss 1     | _    | -76.8 | _    | dBm/core |
| non-STBC, and 20 MHz BW                                                                                    | MCS9, Nss 1     | _    | -74.4 | _    | dBm/core |
|                                                                                                            | MCS0, Nss 2     | _    | -95.6 | _    | dBm/core |
|                                                                                                            | MCS7, Nss 2     | _    | -78.3 | _    | dBm/core |
|                                                                                                            | MCS8, Nss 2     | _    | -73.8 | _    | dBm/core |
|                                                                                                            | MCS9, Nss 2     | _    | -71.4 | _    | dBm/core |
| 26 resource units (RU 26):                                                                                 | MCS0, Nss 1     | _    | -95.2 | _    | dBm      |
| SISO RX sensitivity IEEE 802.11ax                                                                          | MCS7, Nss 1     | _    | -76.7 |      | dBm      |
| $(10\% \text{ PER for } 4096 \text{ octet PSDU})^a$ :<br>CP/LTF = 0.8 $\mu$ s + 2 × LTF, LDPC,             | MCS8, Nss 1     | _    | -72.3 |      | dBm      |
| non-STBC, and 20 MHz BW                                                                                    | MCS9, Nss 1     | _    | -69.9 | _    | dBm      |
| 26 resource units (RU 26):                                                                                 | MCS0, Nss 1     | _    | -96.2 | _    | dBm/core |
| MIMO RX sensitivity IEEE 802.11ax                                                                          | MCS7, Nss 1     | _    | -79.7 | _    | dBm/core |
| 10% PER for 4096 octet PSDU) <sup>a</sup> :<br>CP/LTF = 0.8 µs + 2 × LTF, LDPC,<br>non-STBC, and 20 MHz BW | MCS8, Nss 1     | _    | -75.3 |      | dBm/core |
|                                                                                                            | MCS9, Nss 1     | _    | -72.9 | _    | dBm/core |
|                                                                                                            | MCS0, Nss 2     | _    | -95.2 | _    | dBm/core |
|                                                                                                            | MCS7, Nss 2     | _    | -76.7 | _    | dBm/core |
|                                                                                                            | MCS8, Nss 2     | _    | -72.3 | _    | dBm/core |
|                                                                                                            | MCS9, Nss 2     | _    | -69.9 | _    | dBm/core |
| 52 resource units (RU 52):                                                                                 | MCS0, Nss 1     | _    | -95.4 | _    | dBm      |
| SISO RX sensitivity IEEE 802.11ax                                                                          | MCS7, Nss 1     | _    | -77.2 |      | dBm      |
| $(10\% \text{ PER for } 4096 \text{ octet PSDU})^a$ :<br>CP/LTF = 0.8 $\mu$ s + 2 × LTF, LDPC,             | MCS8, Nss 1     | _    | -73.3 |      | dBm      |
| non-STBC, and 20 MHz BW                                                                                    | MCS9 Nss 1      | _    | -71.3 | _    | dBm      |
| 52 resource units (RU 52):                                                                                 | MCS0, Nss 1     | _    | -96.4 | _    | dBm/core |
| MIMO RX sensitivity IEEE 802.11ax                                                                          | MCS7, Nss 1     | _    | -80.2 | _    | dBm/core |
| $(10\% \text{ PER for } 4096 \text{ octet PSDU})^a$ :<br>CP/LTF = 0.8 $\mu$ s + 2 × LTF, LDPC,             | MCS8, Nss 1     | _    | -76.3 | _    | dBm/core |
| non-STBC, and 20 MHz BW                                                                                    | MCS9, Nss 1     | _    | -74.3 | _    | dBm/core |
|                                                                                                            | MCS0, Nss 2     | _    | -95.4 | _    | dBm/core |
|                                                                                                            | MCS7, Nss 2     | _    | -77.2 | _    | dBm/core |
|                                                                                                            | MCS8, Nss 2     | _    | -73.3 | _    | dBm/core |
|                                                                                                            | MCS9, Nss 2     | _    | -71.3 | _    | dBm/core |
| 106 resource units (RU 106):                                                                               | MCS0, Nss 1     | _    | -95.5 | _    | dBm      |
| SISO RX sensitivity IEEE 802.11ax                                                                          | MCS7, Nss 1     | _    | -77.3 | _    | dBm      |
| (10% PER for 4096 octet PSDU) <sup>a</sup> :<br>CP/LTF = 0.8 µs + 2 × LTF, LDPC,                           | MCS8, Nss 1     | _    | -73.6 | _    | dBm      |
| UL/LIE − U.O µS + Z ^ LIF, LDPU,                                                                           |                 |      |       |      |          |

Table 28: WLAN 2.4 GHz Receiver Performance Specifications (Continued)

| Parameter                                                                        | Condition/Notes                                |                      | Min. | Тур.         | Max. | Unit     |
|----------------------------------------------------------------------------------|------------------------------------------------|----------------------|------|--------------|------|----------|
| 106 resource units (RU 106):                                                     | MCS0, Nss 1                                    |                      | _    | -96.5        | _    | dBm/core |
| MIMO RX sensitivity IEEE 802.11ax                                                | MCS7, Nss 1                                    |                      | _    | -80.3        | _    | dBm/core |
| (10% PER for 4096 octet PSDU) <sup>a</sup> :<br>CP/LTF = 0.8 µs + 2 × LTF, LDPC, | MCS8, Nss 1                                    |                      | _    | -76.6        | _    | dBm/core |
| non-STBC, and 20 MHz BW                                                          | MCS9, Nss 1                                    |                      | _    | -74.3        | _    | dBm/core |
|                                                                                  | MCS0, Nss 2                                    |                      | _    | -95.5        | _    | dBm/core |
|                                                                                  | MCS7, Nss 2                                    |                      | _    | -77.3        | _    | dBm/core |
|                                                                                  | MCS8, Nss 2                                    |                      | _    | -73.6        |      | dBm/core |
|                                                                                  | MCS9, Nss 2                                    |                      |      | <b>-71.3</b> |      | dBm/core |
| Range Extension:                                                                 | MCS0, Nss1 (242 RI                             | 11)                  |      | N/A          |      | dBm      |
| SISO RX sensitivity IEEE                                                         | MCS1, Nss1 (242 R                              |                      |      | N/A          |      | dBm      |
| 302.11ax (10% PER for 4096                                                       | -                                              |                      | _    |              | _    |          |
| PSDU) <sup>a</sup> :                                                             | MCS2, Nss1 (242 RI                             | <u> </u>             | _    | N/A          | _    | dBm      |
| CP/LTF = 0.8 µs +2 × LTF                                                         | MCS0, Nss1 (106 RI                             | U)                   |      | N/A          | _    | dBm      |
| Range Extension:                                                                 | MCS0, Nss1 (242 R                              | U)                   | _    | N/A          |      | dBm/core |
| MIMO RX sensitivity IEEE                                                         | MCS1, Nss1 (242 R                              | U)                   | _    | N/A          | _    | dBm/core |
| 302.11ax (10% PER for 4096<br>PSDU) <sup>a</sup> :                               | MCS2, Nss1 (242 RU)                            |                      | _    | N/A          | _    | dBm/core |
| CP/LTF = 0.8 µs +2 × LTF                                                         | MCS0, Nss1 (106 R                              | U)                   | _    | N/A          | _    | dBm/core |
| Blocking level for 12 dB receive                                                 | 776–794 MHz                                    | CDMA2000             | _    | -7.3         |      | dBm      |
| ensitivity degradation at the chip                                               | 824–849 MHz <sup>c</sup>                       | cdmaOne              | _    | -7.7         | _    | dBm      |
| nput port (without external filtering) <sup>b</sup>                              | 824–849 MHz <sup>c</sup>                       | GSM850               | _    | -10.1        | _    | dBm      |
|                                                                                  | 880–915 MHz                                    | E-GSM                | _    | -5.7         | _    | dBm      |
|                                                                                  | 1710–1785 MHz                                  | GSM1800              | _    | -9.5         | _    | dBm      |
|                                                                                  | 1850–1910 MHz                                  | GSM1800              | _    | -7.9         | _    | dBm      |
|                                                                                  | 1850–1910 MHz                                  | cdmaOne              | _    | -21.4        | _    | dBm      |
|                                                                                  | 1850–1910 MHz                                  | WCDMA                | _    | -15.5        | _    | dBm      |
|                                                                                  | 1920–1980 MHz                                  | WCDMA                | _    | -17.8        | _    | dBm      |
|                                                                                  | 2500–2570 MHz                                  | Band 7               | _    | -21.7        | _    | dBm      |
|                                                                                  | 2300-2400 MHz                                  | Band 40              | _    | -24.5        | _    | dBm      |
|                                                                                  | 2570-2620 MHz                                  | Band 38              | _    | -21.3        | _    | dBm      |
|                                                                                  | 2545-2575 MHz                                  | XGP band             | _    | -17.2        | _    | dBm      |
| n-band static CW jammer immunity                                                 | RX PER < 1%, 54 M                              | bps OFDM,            | -80  | _            | _    | dBm      |
| fc - 8 MHz < fcw < + 8 MHz)                                                      | 1000 octet PSDU for                            | :                    |      |              |      |          |
|                                                                                  | (RxSense + 23 dB < Rxlevel < max. input level) |                      |      |              |      |          |
| nput in-band IP3                                                                 | Maximum LNA gain                               |                      | _    | -12          | _    | dBm      |
|                                                                                  | Minimum LNA gain                               |                      | _    | 7            | _    | dBm      |
| Maximum receive level                                                            | @ 1, 2 Mbps (8% PE                             | ER, 1024 octets)     | -3.5 | _            | _    | dBm      |
| @ 2.4 GHz                                                                        | @ 5.5, 11 Mbps (8%                             | PER, 1024 octets)    | -9.5 | _            | _    | dBm      |
|                                                                                  | @ 6-54 Mbps (10%                               | PER, 1024 octets)    | -9.5 | _            | _    | dBm      |
|                                                                                  | @ MCS0-7 rates (10                             | 0% PER, 4095 octets) | -9.5 | _            | _    | dBm      |
|                                                                                  | @ MCS8-9 rates (10                             | 0% PER, 4095 octets) | -11  | _            | _    | dBm      |

Table 28: WLAN 2.4 GHz Receiver Performance Specifications (Continued)

| Parameter                                                                                                                                        | Condition/Notes                             |                    | Min.      | Тур. | Max. | Unit |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------|-----------|------|------|------|--|--|
| LPF 3 dB bandwidth                                                                                                                               | _                                           |                    | _         | 9    | _    | MHz  |  |  |
| Adjacent channel rejection-DSSS                                                                                                                  | Desired and interferi                       | ng signal 30 MHz a | apart     |      |      |      |  |  |
| (Difference between interfering and                                                                                                              | 1 Mbps DSSS                                 | -74 dBm            | 35        | _    | _    | dB   |  |  |
| desired signal at 8% PER for 1024                                                                                                                | 2 Mbps DSSS                                 | -74 dBm            | 35        | _    | _    | dB   |  |  |
| octet PSDU with desired signal level as specified in Condition/Notes)                                                                            | Desired and interfering signal 25 MHz apart |                    |           |      |      |      |  |  |
| as specified in Condition/Notes/                                                                                                                 | 5.5 Mbps DSSS                               | 70 dBm             | 35        | _    | _    | dB   |  |  |
|                                                                                                                                                  | 11 Mbps DSSS                                | 70 dBm             | 35        | _    | _    | dB   |  |  |
| Adjacent channel rejection OFDM                                                                                                                  | 6 Mbps OFDM                                 | 79 dBm             | 16        | _    |      | dB   |  |  |
| difference between interfering and                                                                                                               | 9 Mbps OFDM                                 | 78 dBm             | 15        | _    |      | dB   |  |  |
| desired signal (25 MHz apart) at 10%                                                                                                             | 12 Mbps OFDM                                | 76 dBm             | 13        | _    | _    | dB   |  |  |
| PER for 1024 octet PSDU with desired signal level as specified in                                                                                | 18 Mbps OFDM                                | 74 dBm             | 11        | _    | _    | dB   |  |  |
| Condition/Notes)                                                                                                                                 | 24 Mbps OFDM                                | 71 dBm             | 8         | _    | _    | dB   |  |  |
|                                                                                                                                                  | 36 Mbps OFDM                                | 67 dBm             | 4         | _    |      | dB   |  |  |
|                                                                                                                                                  | 48 Mbps OFDM                                | 63 dBm             | 0         | _    |      | dB   |  |  |
|                                                                                                                                                  | 54 Mbps OFDM                                | 62 dBm             | <b>–1</b> | _    | _    | dB   |  |  |
| Adjacent channel rejection MCS0-7                                                                                                                | MCS0                                        | 79 dBm             | 16        | _    | _    | dB   |  |  |
| EEE 802.11n (Difference between                                                                                                                  | MCS1                                        | 76 dBm             | 15        | _    | _    | dB   |  |  |
| nterfering and desired signal (25<br>MHz apart) at 10% PER for 4096                                                                              | MCS2                                        | 74 dBm             | 13        | _    | _    | dB   |  |  |
| octet PSDU with desired signal level                                                                                                             | MCS3                                        | 71 dBm             | 11        | _    |      | dB   |  |  |
| as specified in Condition/Notes)                                                                                                                 | MCS4                                        | 67 dBm             | 8         | _    | _    | dB   |  |  |
|                                                                                                                                                  | MCS5                                        | 63 dBm             | 4         | _    | _    | dB   |  |  |
|                                                                                                                                                  | MCS6                                        | 62 dBm             | 0         | _    | _    | dB   |  |  |
|                                                                                                                                                  | MCS7                                        | 61 dBm             | <b>–1</b> | _    | _    | dB   |  |  |
| Adjacent channel rejection MCS0-9                                                                                                                | MCS0                                        | 82 dBm             | 16        | _    | _    | dB   |  |  |
| EEE 802.11ac (Difference between                                                                                                                 | MCS1                                        | 80 dBm             | 15        | _    |      | dB   |  |  |
| nterfering and desired signal (25<br>MHz apart) at 10% PER for 4096                                                                              | MCS2                                        | 77 dBm             | 13        | _    |      | dB   |  |  |
| octet PSDU with desired signal level                                                                                                             | MCS3                                        | 74 dBm             | 11        | _    |      | dB   |  |  |
| as specified in Condition/Notes)                                                                                                                 | MCS4                                        | 70 dBm             | 8         | _    | _    | dB   |  |  |
|                                                                                                                                                  | MCS5                                        | 66 dBm             | 4         | _    | _    | dB   |  |  |
|                                                                                                                                                  | MCS6                                        | 65 dBm             | 0         | _    | _    | dB   |  |  |
|                                                                                                                                                  | MCS7                                        | 64 dBm             | -1        | _    |      | dB   |  |  |
|                                                                                                                                                  | MCS8                                        | 59 dBm             | -2        | _    | _    | dB   |  |  |
|                                                                                                                                                  | MCS9                                        | 57 dBm             | -4        | _    | _    | dB   |  |  |
| Adjacent channel rejection MCS0-9                                                                                                                | MCS0                                        | 82 dBm             | 16        | _    | _    | dB   |  |  |
| EEE 802.11ax (Difference between                                                                                                                 | MCS1                                        | 80 dBm             | 15        | _    | _    | dB   |  |  |
| interfering and desired signal (25<br>MHz apart) at 10% PER for 4096<br>octet PSDU with desired signal level<br>as specified in Condition/Notes) | MCS2                                        | 77 dBm             | 13        | _    | _    | dB   |  |  |
|                                                                                                                                                  | MCS3                                        | 74 dBm             | 11        | _    | _    | dB   |  |  |
|                                                                                                                                                  | MCS4                                        | 70 dBm             | 8         | _    | _    | dB   |  |  |
|                                                                                                                                                  | MCS5                                        | 66 dBm             | 4         | _    | _    | dB   |  |  |
|                                                                                                                                                  | MCS6                                        | 65 dBm             | 0         | _    | _    | dB   |  |  |
|                                                                                                                                                  | MCS7                                        | 64 dBm             | -1        | _    | _    | dB   |  |  |
|                                                                                                                                                  | MCS8                                        | 59 dBm             | -2        | _    | _    | dB   |  |  |
|                                                                                                                                                  | MCS9                                        | 57 dBm             | -4        | _    | _    | dB   |  |  |

#### Table 28: WLAN 2.4 GHz Receiver Performance Specifications (Continued)

| Parameter                      | Condition/Notes                            | Min. | Тур. | Max. | Unit |
|--------------------------------|--------------------------------------------|------|------|------|------|
| Maximum receiver gain          | _                                          | _    | 62   | _    | dB   |
| Gain control step              | _                                          | _    | 3    | _    | dB   |
| RSSI accuracy <sup>d</sup>     | Range 90 dBm to 30 dBm                     | -2   | _    | 2    | dB   |
| •                              | Range above 30 dBm                         | -2   | _    | 2    | dB   |
| Return loss                    | Zo = $50\Omega$ , across the dynamic range | 10   | _    | 13   | dB   |
| Receiver cascaded noise figure | At maximum gain                            | _    | 4    | _    | dB   |

- a. Sensitivity degradations for alternate settings in MCS modes. MM: 0.5 dB drop, and SGI: 2 dB drop.
- b. The cellular standard listed for each band shows the modulation type to generate an interfering signal in that band for purpose of this test. It is not intended to indicate any specific usage of each band in any specific country.
- c. The blocking levels are valid for channels 1 to 11. (For higher channels, the performance may be lower due to third harmonic signals (3 × 824 MHz) falling within band.)
- d. The minimum and maximum values shown have a 95% confidence level.

# 8.4 WLAN 2.4 GHz Transmitter Performance Specifications

NOTE: The values shown in Table 29 are specified at the RF port unless otherwise noted.

Table 29: WLAN 2.4 GHz Transmitter Performance Specifications

| Parameter                                   | Condition/Notes                   |                            | Min. | Тур.   | Max. | Unit      |
|---------------------------------------------|-----------------------------------|----------------------------|------|--------|------|-----------|
| Frequency range                             | _                                 |                            | 2400 | _      | 2500 | MHz       |
| Transmitted power in cellular               | 76–108 MHz                        | FM RX                      | _    | N/A    | _    | dBm/Hz    |
| and FM bands                                | 776–794 MHz                       |                            | _    | -163.5 | _    | dBm/Hz    |
| at 18 dBm, 100% duty cycle,                 | 869–960 MHz                       | cdmaOne, GSM850            | _    | -161.2 | _    | dBm/Hz    |
| l Mbps CCK) <sup>a</sup>                    | 925–960 MHz                       | E-GSM                      | _    | -161.2 | _    | dBm/Hz    |
|                                             | 1570–1580 MHz                     | GPS                        | _    | -146.1 | _    | dBm/Hz    |
|                                             | 1805–1880 MHz                     | GSM1800                    | _    | -138.9 | _    | dBm/Hz    |
|                                             | 1930–1990 MHz                     | GSM1900, cdmaOne,<br>WCDMA | _    | -133.2 | _    | dBm/Hz    |
|                                             | 2110-2170 MHz                     | WCDMA                      | _    | -127.3 | _    | dBm/Hz    |
|                                             | 2500-2570 MHz                     | Band 7                     | _    | -102   | _    | dBm/Hz    |
|                                             | 2300-2400 MHz                     | Band 40                    | _    | -83.6  | _    | dBm/Hz    |
|                                             | 2570-2620 MHz                     | Band 38                    | _    | -118.2 | _    | dBm/Hz    |
|                                             | 2545-2575 MHz                     | XGP Band                   | _    | -116   | _    | dBm/Hz    |
| Harmonic level (at 18 dBm with              | 4.8–5.0 GHz                       | 2 <sup>nd</sup> harmonic   | _    | -33    | _    | dBm/1 MHz |
| 100% duty cycle)                            | 7.2–7.5 GHz                       | 3 <sup>rd</sup> harmonic   | _    | -60.8  | _    | dBm/1 MHz |
| X power at RF port for highest              |                                   | EVM Does Not Exceed        |      |        |      |           |
| power level setting at 25°C with            | 802.11b                           | -9 dB                      | 20   | 21     | _    | dBm       |
| spectral mask and EVM<br>compliance         | (DSSS/CCK)                        |                            |      |        |      |           |
| omphance                                    | OFDM, BPSK                        | –8 dB                      | 19   | 20     | _    | dBm       |
|                                             | OFDM, QPSK                        | –13 dB                     | 19   | 20     | _    | dBm       |
|                                             | OFDM, 16-QAM                      | –19 dB                     | 19   | 20     | _    | dBm       |
|                                             | OFDM, 64-QAM<br>(R = 3/4)         | –25 dB                     | 19   | 20     |      | dBm       |
|                                             | OFDM, 64-QAM<br>(R = 5/6)         | –27 dB                     | 19   | 20     | _    | dBm       |
|                                             | OFDM, 256-QAM<br>(R = 3/4, VHT20) | -30 dB                     | 17   | 18     |      | dBm       |
|                                             | OFDM, 256-QAM<br>(R = 5/6, VHT20) | -32 dB                     | 16   | 17     | _    | dBm       |
| X power control dynamic range               | _                                 |                            |      | 30     | _    | dB        |
| Closed-loop TX power variation <sup>b</sup> | Over the full temperate           | ure and voltage ranges     | _    | _      | ±1.5 | dB        |
| Carrier suppression                         | _                                 |                            | 15   | 32     | _    | dBc       |
| Gain control step                           | _                                 |                            | _    | 0.5    | _    | dB        |
| Return loss at chip port TX                 | Ζο = 50Ω                          |                            | TBD  | TBD    | _    | dB        |

a. The cellular standards listed only indicate the typical usages of that band in some countries: other standards may also be used within those bands.

b. Applies to an 8 dBm to 20 dBm TX power output range with production PA trimming. Applies to a –10 dBm to 20 dBm TX power output range with PA trimming and open-loop power control (OLPC) calibration in production.

# 8.5 WLAN 5 GHz Receiver Performance Specifications

NOTE: The values shown in Table 30 are specified at the RF port unless otherwise noted.

Table 30: WLAN 5 GHz Receiver Performance Specifications

| Parameter                                  | Condition/Notes                   | Min.    | Тур.  | Max. | Unit     |
|--------------------------------------------|-----------------------------------|---------|-------|------|----------|
| Frequency range                            | _                                 | 4900    | _     | 5845 | MHz      |
| SISO RX sensitivity IEEE 802.11g           | 6 Mbps OFDM                       |         | -95   | _    | dBm      |
| (10% PER for 1000 octet PSDU)              | 9 Mbps OFDM                       | _       | -93.5 | _    | dBm      |
|                                            | 12 Mbps OFDM                      | _       | -92.3 | _    | dBm      |
|                                            | 18 Mbps OFDM                      | _       | -89.9 | _    | dBm      |
|                                            | 24 Mbps OFDM                      | _       | -86.9 | _    | dBm      |
|                                            | 36 Mbps OFDM                      | _       | -83.4 | _    | dBm      |
|                                            | 48 Mbps OFDM                      | _       | -79   | _    | dBm      |
|                                            | 54 Mbps OFDM                      | _       | -77.5 | _    | dBm      |
| MIMO RX sensitivity IEEE 802.11g           | 6 Mbps OFDM                       | _       | -97   | _    | dBm/core |
| (10% PER for 1024 octet PSDU) <sup>a</sup> | 9 Mbps OFDM                       | _       | -95.5 | _    | dBm/core |
| ,                                          | 12 Mbps OFDM                      |         | -94.3 | _    | dBm/core |
|                                            | 18 Mbps OFDM                      | _       | -92.9 | _    | dBm/core |
|                                            | 24 Mbps OFDM                      | _       | -89.9 | _    | dBm/core |
|                                            | 36 Mbps OFDM                      | _       | -86.4 | _    | dBm/core |
|                                            | 48 Mbps OFDM                      | _       | -82   | _    | dBm/core |
|                                            | 54 Mbps OFDM                      | _       | -80.5 | _    | dBm/core |
| SISO RX sensitivity IEEE 802.11n           | 20 MHz channel spacing for all MC | S rates |       | ,    |          |
| (10% PER for 4096 octet PSDU) <sup>a</sup> | MCS0                              | _       | -94.8 | _    | dBm      |
| Defined for default parameters: GF,        | MCS1                              | _       | -92.3 | _    | dBm      |
| 800 ns GI, and non-STBC.                   | MCS2                              | _       | -90   | _    | dBm      |
|                                            | MCS3                              | _       | -86.4 | _    | dBm      |
|                                            | MCS4                              | _       | -83.2 | _    | dBm      |
|                                            | MCS5                              | _       | -78.8 | _    | dBm      |
|                                            | MCS6                              | _       | -77.2 | _    | dBm      |
|                                            | MCS7                              | _       | -75.5 | _    | dBm      |
| MIMO RX sensitivity IEEE 802.11n           | 20 MHz channel spacing for all MC | S rates |       |      | <u> </u> |
| (10% PER for 4096 octet PSDU) <sup>a</sup> | MCS0                              | _       | -96.8 | _    | dBm/core |
| Defined for default parameters: GF,        | MCS1                              | _       | -94.3 | _    | dBm/core |
| 800 ns GI, and non-STBC.                   | MCS2                              | _       | -92   | _    | dBm/core |
|                                            | MCS3                              | _       | -89.4 | _    | dBm/core |
|                                            | MCS4                              | _       | -86.2 | _    | dBm/core |
|                                            | MCS5                              | _       | -81.8 | _    | dBm/core |
|                                            | MCS6                              | _       | -80.2 | _    | dBm/core |
|                                            | MCS7                              | _       | -78.5 | _    | dBm/core |
|                                            | MCS8                              | _       | -94.8 | _    | dBm/core |
|                                            | MCS15                             | _       | -75.5 | _    | dBm/core |

Table 30: WLAN 5 GHz Receiver Performance Specifications (Continued)

| Parameter                                  | Condition/Notes                   | Min.     | Тур.           | Max. | Unit         |
|--------------------------------------------|-----------------------------------|----------|----------------|------|--------------|
| SISO RX sensitivity IEEE 802.11n           | 40 MHz channel spacing for all M0 | CS rates |                |      |              |
| (10% PER for 4096 octet PSDU) <sup>a</sup> | MCS0                              | _        | -92.4          | _    | dBm          |
| Defined for default parameters: GF,        | MCS1                              | _        | -89.8          | _    | dBm          |
| 800 ns GI, and non-STBC.                   | MCS2                              | _        | -87.2          | _    | dBm          |
|                                            | MCS3                              | _        | -83.6          | _    | dBm          |
|                                            | MCS4                              | _        | -80.3          | _    | dBm          |
|                                            | MCS5                              | _        | -76.1          | _    | dBm          |
|                                            | MCS6                              |          | -74.4          | _    | dBm          |
|                                            | MCS7                              | _        | -72.7          | _    | dBm          |
| MIMO RX sensitivity IEEE 802.11n           | 40 MHz channel spacing for all M0 | CS rates |                | I    |              |
| (10% PER for 4096 octet PSDU) <sup>a</sup> | MCS0                              | _        | -94.4          | _    | dBm/core     |
| Defined for default parameters: GF,        | MCS1                              | _        | -91.8          | _    | dBm/core     |
| 800 ns GI, and non-STBC.                   | MCS2                              | _        | -89.2          | _    | dBm/core     |
|                                            | MCS3                              | _        | -86.6          | _    | dBm/core     |
|                                            | MCS4                              | _        | -83.3          | _    | dBm/core     |
|                                            | MCS5                              | _        | -79.1          | _    | dBm/core     |
|                                            | MCS6                              | _        | -77.4          | _    | dBm/core     |
|                                            | MCS7                              | _        | -75.7          | _    | dBm/core     |
|                                            | MCS8                              |          | -92.4          | _    | dBm/core     |
|                                            | MCS15                             | _        | -72.7          | _    | dBm/core     |
| SISO RX sensitivity IEEE 802.11ac          | 20 MHz channel spacing for all M0 | CS rates |                |      |              |
| (10% PER for 4096 octet PSDU) <sup>a</sup> | MCS0, Nss 1                       | _        | -94.8          | _    | dBm          |
| Defined for default parameters: GF,        | MCS1, Nss 1                       | _        | -92.3          | _    | dBm          |
| 800 ns GI, and non-STBC                    | MCS2, Nss 1                       | _        | -90            | _    | dBm          |
|                                            | MCS3, Nss 1                       | _        | -86.4          | _    | dBm          |
|                                            | MCS4, Nss 1                       | _        | -83.2          | _    | dBm          |
|                                            | MCS5, Nss 1                       | _        | -78.8          | _    | dBm          |
|                                            | MCS6, Nss 1                       | _        | -77.2          |      | dBm          |
|                                            | MCS7, Nss 1                       |          | -75.5          | _    | dBm          |
| MIMO RX sensitivity IEEE 802.11ac          | 20 MHz channel spacing for all M0 | CS rates | 7 010          |      | <b>42111</b> |
| (10% PER for 4096 octet PSDU) <sup>a</sup> | MCS0, Nss 1                       | _        | -96.8          |      | dBm/core     |
| Defined for default parameters: GF,        | MCS1, Nss 1                       | _        | -94.3          | _    | dBm/core     |
| 800 ns GI, and non-STBC                    | MCS2, Nss 1                       |          | -92            |      | dBm/core     |
|                                            | MCS3, Nss 1                       |          | -89.4          |      | dBm/core     |
|                                            | MCS4, Nss 1                       |          | -86.2          |      | dBm/core     |
|                                            | MCS5, Nss 1                       |          | -81.8          | _    | dBm/core     |
|                                            | MCS6, Nss 1                       |          | -80.2          |      | dBm/core     |
|                                            | MCS7, Nss 1                       |          | -78.5          |      | dBm/core     |
|                                            | MCS8, Nss 1                       |          | -74.5          |      | dBm/core     |
|                                            | MCS9, Nss 1                       |          | -74.9          |      | dBm/core     |
|                                            | MCS0, Nss 2                       |          | -74.9<br>-94.8 |      | dBm/core     |
|                                            |                                   |          |                |      | dBm/core     |
|                                            |                                   |          |                |      | dBm/core     |
|                                            | MCS8, Nss 2<br>MCS9, Nss 2        | _        | -71.4<br>-72.1 |      |              |

Table 30: WLAN 5 GHz Receiver Performance Specifications (Continued)

| Parameter                                  | Condition/Notes                  | Min.       | Тур.  | Max. | Unit     |
|--------------------------------------------|----------------------------------|------------|-------|------|----------|
| SISO RX sensitivity IEEE 802.11ac          | 40 MHz channel spacing for all N | /ICS rates |       |      |          |
| (10% PER for 4096 octet PSDU)a             | MCS0, Nss 1                      | _          | -92.2 | _    | dBm      |
| Defined for default parameters: GF,        | MCS1, Nss 1                      | _          | -89.7 | _    | dBm      |
| 800 ns GI, and non-STBC.                   | MCS2, Nss 1                      | _          | -87.2 | _    | dBm      |
|                                            | MCS3, Nss 1                      | _          | -83.5 | _    | dBm      |
|                                            | MCS4, Nss 1                      | _          | -80.3 | _    | dBm      |
|                                            | MCS5, Nss 1                      | _          | -76   |      | dBm      |
|                                            | MCS6, Nss 1                      | _          | -74.4 |      | dBm      |
|                                            | MCS7, Nss 1                      | _          | -72.4 |      | dBm      |
| MIMO RX sensitivity IEEE 802.11ac          | 40 MHz channel spacing for all N | /ICS rates |       |      |          |
| (10% PER for 4096 octet PSDU) <sup>a</sup> | MCS0, Nss 1                      | _          | -94.2 |      | dBm/core |
| Defined for default parameters: GF,        | MCS1, Nss 1                      | _          | -91.7 | _    | dBm/core |
| 800 ns GI, and non-STBC.                   | MCS2, Nss 1                      | _          | -89.2 | _    | dBm/core |
|                                            | MCS3, Nss 1                      | _          | -86.5 | _    | dBm/core |
|                                            | MCS4, Nss 1                      | _          | -83.3 | _    | dBm/core |
|                                            | MCS5, Nss 1                      | _          | -79   | _    | dBm/core |
|                                            | MCS6, Nss 1                      | _          | -77.4 | _    | dBm/core |
|                                            | MCS7, Nss 1                      | _          | -75.4 | _    | dBm/core |
|                                            | MCS8, Nss 1                      | _          | -71.6 | _    | dBm/core |
|                                            | MCS9, Nss 1                      | _          | -69.8 |      | dBm/core |
|                                            | MCS0, Nss 2                      | _          | -92.2 |      | dBm/core |
|                                            | MCS8, Nss 2                      | _          | -66.8 | _    | dBm/core |
|                                            | MCS9, Nss 2                      | _          | -68.5 | _    | dBm/core |
| SISO RX sensitivity IEEE 802.11ac          | 80 MHz channel spacing for all N | ICS rates  |       |      | 1        |
| (10% PER for 4096 octet PSDU) <sup>a</sup> | MCS0, Nss 1                      | _          | -89.2 |      | dBm      |
| Defined for default parameters: GF,        | MCS1, Nss 1                      | _          | -86.7 |      | dBm      |
| 800 ns GI, and non-STBC.                   | MCS2, Nss 1                      | _          | -84.1 |      | dBm      |
|                                            | MCS3, Nss 1                      | _          | -80.4 | _    | dBm      |
|                                            | MCS4, Nss 1                      | _          | -77.2 | _    | dBm      |
|                                            | MCS5, Nss 1                      | _          | -73   | _    | dBm      |
|                                            | MCS6, Nss 1                      | _          | -71.4 | _    | dBm      |
|                                            | MCS7, Nss 1                      | _          | -69.9 | _    | dBm      |

Table 30: WLAN 5 GHz Receiver Performance Specifications (Continued)

| Parameter                                                         | Condition/Notes  |                          | Min. | Тур.  | Max. | Unit     |
|-------------------------------------------------------------------|------------------|--------------------------|------|-------|------|----------|
| MIMO RX sensitivity IEEE 802.11ac                                 | 80 MHz channel s | spacing for all MCS rate | s    |       |      |          |
| (10% PER for 4096 octet PSDU) <sup>a</sup>                        | MCS0, Nss 1      |                          | _    | -91.2 | _    | dBm/core |
| Defined for default parameters: GF,                               | MCS1, Nss 1      |                          | _    | -88.7 | _    | dBm/core |
| 800 ns Gl, and non-STBC.                                          | MCS2, Nss 1      |                          | _    | -86.1 | _    | dBm/core |
|                                                                   | MCS3, Nss 1      |                          | _    | -83.4 | _    | dBm/core |
|                                                                   | MCS4, Nss 1      |                          | _    | -80.2 | _    | dBm/core |
|                                                                   | MCS5, Nss 1      |                          | _    | -76   | _    | dBm/core |
|                                                                   | MCS6, Nss 1      |                          | _    | -74.4 | _    | dBm/core |
|                                                                   | MCS7, Nss 1      |                          | _    | -72.9 | _    | dBm/core |
|                                                                   | MCS8, Nss 1      |                          | _    | -68.7 | _    | dBm/core |
|                                                                   | MCS9, Nss 1      |                          | _    | -67.1 | _    | dBm/core |
|                                                                   | MCS0, Nss 2      |                          | _    | -89.2 | _    | dBm/core |
|                                                                   | MCS8, Nss 2      |                          | _    | -69.9 | _    | dBm/core |
|                                                                   | MCS9, Nss 2      |                          | _    | -65.7 | _    | dBm/core |
| SISO RX sensitivity IEEE 802.11ac                                 | MCS7, Nss 1      | 20 MHz                   | _    | -78.9 | _    | dBm      |
| 20/40/80 MHz channel spacing with                                 | MCS8, Nss 1      | 20 MHz                   | _    | -75.1 | _    | dBm      |
| LDPC                                                              | MCS9, Nss 1      | 20 MHz                   | _    | -71.2 | _    | dBm      |
| 10% PER for 4096 octet PSDU) <sup>a</sup> at                      | MCS7, Nss 1      | 40 MHz                   | _    | -76   | _    | dBm      |
| WLAN RF port. Defined for default parameters: GF, 800 ns GI, LDPC | MCS8, Nss 1      | 40 MHz                   | _    | -72.2 | _    | dBm      |
| coding, and non-STBC.                                             | MCS9, Nss 1      | 40 MHz                   | _    | -70.2 | _    | dBm      |
| •                                                                 | MCS7, Nss 1      | 80 MHz                   | _    | -73.2 | _    | dBm      |
|                                                                   | MCS8, Nss 1      | 80 MHz                   | _    | -69.5 | _    | dBm      |
|                                                                   | MCS9, Nss 1      | 80 MHz                   | _    | -67.4 | _    | dBm      |
| MIMO RX sensitivity IEEE 802.11ac                                 | MCS7, Nss 2      | 20 MHz                   | _    | -79   | _    | dBm/core |
| 20/40/80 MHz channel spacing with                                 | MCS8, Nss 2      | 20 MHz                   | _    | -75.2 | _    | dBm/core |
| _DPC                                                              | MCS9, Nss 2      | 20 MHz                   | _    | -75.2 | _    | dBm/core |
| (10% PER for 4096 octet PSDU) <sup>a</sup> at                     | MCS7, Nss 2      | 40 MHz                   | _    | -76.1 | _    | dBm/core |
| WLAN RF port. Defined for default parameters: GF, 800 ns GI, LDPC | MCS8, Nss 2      | 40 MHz                   | _    | -72.3 | _    | dBm/core |
| coding, and non-STBC.                                             | MCS9, Nss 2      | 40 MHz                   | _    | -70.3 | _    | dBm/core |
| 0.                                                                | MCS7, Nss 2      | 80 MHz                   | _    | -73.1 | _    | dBm/core |
|                                                                   | MCS8, Nss 2      | 80 MHz                   | _    | -69.6 | _    | dBm/core |
|                                                                   | MCS9, Nss 2      | 80 MHz                   | _    | -67.6 | _    | dBm/core |
| Range Extension:                                                  | MCS0, Nss1       | 242 RU                   | _    | TBD   | _    | dBm      |
| SISO RX sensitivity IEEE                                          | MCS1, Nss1       | 242 RU                   | _    | TBD   | _    | dBm      |
| 802.11ax (10% PER for 4096                                        | MCS2, Nss1       | 242 RU                   | _    | TBD   | _    | dBm      |
| PSDU) <sup>a</sup> :<br>CP/LTF = 0.8 µs +2 × LTF                  | MCS0, Nss1       | 106 RU                   | _    | TBD   | _    | dBm      |
| Range Extension                                                   | MCS0, Nss1       |                          |      |       |      | dBm/core |
| MIMO RX sensitivity IEEE                                          |                  | 242 RU                   | _    | TBD   | _    |          |
| 302.11ax (10% PER for 4096                                        | MCS1, Nss1       | 242 RU                   | _    | TBD   | _    | dBm/core |
| PSDU) <sup>a</sup> :                                              | MCS2, Nss1       | 242 RU                   |      | TBD   | _    | dBm/core |
| CP/LTF = 0.8 µs +2 × LTF                                          | MCS0, Nss1       | 106 RU                   | _    | TBD   | _    | dBm/core |

Table 30: WLAN 5 GHz Receiver Performance Specifications (Continued)

| Parameter                                                                        | Condition/Notes |        | Min. | Тур.  | Max. | Unit |
|----------------------------------------------------------------------------------|-----------------|--------|------|-------|------|------|
| Full BW mode:                                                                    | MCS0, Nss 1     | 20 MHz | _    | -95.3 | _    | dBm  |
| SISO RX sensitivity IEEE 802.11ax                                                | MCS7, Nss 1     | 20 MHz | _    | -78.1 | _    | dBm  |
| (10% PER for 4096 octet PSDU) <sup>a</sup> :<br>CP/LTF = 0.8 µs + 2 × LTF, LDPC, | MCS8, Nss 1     | 20 MHz | _    | -73.2 | _    | dBm  |
| non-STBC, and 20/40/80 MHz BW                                                    | MCS9, Nss 1     | 20 MHz | _    | -71.3 | _    | dBm  |
|                                                                                  | MCS10, Nss 1    | 20 MHz | _    | -67   | _    | dBm  |
|                                                                                  | MCS11, Nss 1    | 20 MHz | _    | -63.8 | _    | dBm  |
|                                                                                  | MCS0, Nss 1     | 40 MHz | _    | -93   | _    | dBm  |
|                                                                                  | MCS7, Nss 1     | 40 MHz | _    | -75.3 | _    | dBm  |
|                                                                                  | MCS8, Nss 1     | 40 MHz | _    | -71   | _    | dBm  |
|                                                                                  | MCS9, Nss 1     | 40 MHz | _    | -69.2 | _    | dBm  |
|                                                                                  | MCS10, Nss 1    | 40 MHz | _    | -65   | _    | dBm  |
|                                                                                  | MCS11, Nss 1    | 40 MHz | _    | -61.7 | _    | dBm  |
|                                                                                  | MCS0, Nss 1     | 80 MHz | _    | -89.8 | _    | dBm  |
|                                                                                  | MCS7, Nss 1     | 80 MHz | _    | -72.3 | _    | dBm  |
|                                                                                  | MCS8, Nss 1     | 80 MHz | _    | -67.2 | _    | dBm  |
|                                                                                  | MCS9, Nss 1     | 80 MHz | _    | -66   | _    | dBm  |
|                                                                                  | MCS10, Nss 1    | 80 MHz | _    | -61.5 | _    | dBm  |
|                                                                                  | MCS11, Nss 1    | 80 MHz | _    | -58.3 | _    | dBm  |
| Full BW mode:                                                                    | MCS0, Nss 2     | 20 MHz | _    | -95.3 | _    | dBm  |
| MIMO RX sensitivity IEEE 802.11ax                                                | MCS7, Nss 2     | 20 MHz | _    | -78.1 | _    | dBm  |
| (10% PER for 4096 octet PSDU) <sup>a</sup> :<br>CP/LTF = 0.8 µs + 2 × LTF, LDPC, | MCS8, Nss 2     | 20 MHz | _    | -73.2 | _    | dBm  |
| non-STBC, and 20/40/80 MHz BW                                                    | MCS9, Nss 2     | 20 MHz | _    | -71.3 | _    | dBm  |
|                                                                                  | MCS10, Nss 2    | 20 MHz | _    | -67   | _    | dBm  |
|                                                                                  | MCS11, Nss 2    | 20 MHz | _    | -63.8 | _    | dBm  |
|                                                                                  | MCS0, Nss 2     | 40 MHz | _    | -93   | _    | dBm  |
|                                                                                  | MCS7, Nss 2     | 40 MHz |      | -75.3 | _    | dBm  |
|                                                                                  | MCS8, Nss 2     | 40 MHz | _    | -71   | _    | dBm  |
|                                                                                  | MCS9, Nss 2     | 40 MHz | _    | -69.2 | _    | dBm  |
|                                                                                  | MCS10, Nss 2    | 40 MHz |      | -65   | _    | dBm  |
|                                                                                  | MCS11, Nss 2    | 40 MHz | _    | -61.7 | _    | dBm  |
|                                                                                  | MCS0, Nss 2     | 80 MHz | _    | -89.8 | _    | dBm  |
|                                                                                  | MCS7, Nss 2     | 80 MHz | _    | -72.3 | _    | dBm  |
|                                                                                  | MCS8, Nss 2     | 80 MHz | _    | -67.2 | _    | dBm  |
|                                                                                  | MCS9, Nss 2     | 80 MHz | _    | -66   | _    | dBm  |
|                                                                                  | MCS10, Nss 2    | 80 MHz | _    | -61.5 | _    | dBm  |
|                                                                                  | MCS11, Nss 2    | 80 MHz | _    | -58.3 | _    | dBm  |

Table 30: WLAN 5 GHz Receiver Performance Specifications (Continued)

| Parameter                                                                        | Condition/Notes | Min. | Тур.  | Max. | Unit     |
|----------------------------------------------------------------------------------|-----------------|------|-------|------|----------|
| 26 resource units (RU 26):                                                       | MCS0, Nss 1     | _    | -95   | _    | dBm      |
| SISO RX sensitivity IEEE 802.11ax                                                | MCS7, Nss 1     | _    | -76.3 | _    | dBm      |
| (10% PER for 4096 octet PSDU) <sup>a</sup> :<br>CP/LTF = 0.8 μs + 2 × LTF, LDPC, | MCS8, Nss 1     | _    | -72.2 | _    | dBm      |
| non-STBC, and 20 MHz BW                                                          | MCS9 Nss 1      | _    | -70.1 | _    | dBm      |
|                                                                                  | MCS10, Nss 1    | _    | N/A   | _    | dBm      |
|                                                                                  | MCS11, Nss 1    | _    | N/A   | _    | dBm      |
| 26 resource units (RU 26):                                                       | MCS0, Nss 1     | _    | -97   | _    | dBm/core |
| MIMO RX sensitivity IEEE 802.11ax                                                | MCS7, Nss 1     | _    | -79.3 | _    | dBm/core |
| (10% PER for 4096 octet PSDU) <sup>a</sup> :<br>CP/LTF = 0.8 µs + 2 × LTF, LDPC, | MCS8, Nss 1     | _    | -75.2 | _    | dBm/core |
| non-STBC, and 20 MHz BW                                                          | MCS9, Nss 1     | _    | -73.1 | _    | dBm/core |
|                                                                                  | MCS10, Nss 1    | _    | N/A   | _    | dBm/core |
|                                                                                  | MCS11, Nss 1    | _    | N/A   | _    | dBm/core |
|                                                                                  | MCS0, Nss 2     | _    | -95   | _    | dBm/core |
|                                                                                  | MCS7, Nss 2     | _    | -76.3 | _    | dBm/core |
|                                                                                  | MCS8, Nss 2     | _    | -72.2 | _    | dBm/core |
|                                                                                  | MCS9, Nss 2     | _    | -70.1 | _    | dBm/core |
|                                                                                  | MCS10, Nss 2    | _    | N/A   | _    | dBm/core |
|                                                                                  | MCS11, Nss 2    | _    | N/A   | _    | dBm/core |
| 52 resource units (RU 52):                                                       | MCS0, Nss 1     | _    | -95.3 | _    | dBm      |
| SISO RX sensitivity IEEE 802.11ax                                                | MCS7, Nss 1     | _    | -76.7 | _    | dBm      |
| 10% PER for 4096 octet PSDU) <sup>a</sup> :<br>CP/LTF = 0.8 µs + 2 × LTF, LDPC,  | MCS8, Nss 1     | _    | -73   | _    | dBm      |
| non-STBC, and 20 MHz BW                                                          | MCS9 Nss 1      | _    | -70.9 | _    | dBm      |
|                                                                                  | MCS10, Nss 1    | _    | N/A   | _    | dBm      |
|                                                                                  | MCS11, Nss 1    | _    | N/A   | _    | dBm      |
| 52 resource units (RU 52):                                                       | MCS0, Nss 1     | _    | -97.3 | _    | dBm/core |
| MIMO RX sensitivity IEEE 802.11ax                                                | MCS7, Nss 1     | _    | -79.7 | _    | dBm/core |
| 10% PER for 4096 octet PSDU) <sup>a</sup> :<br>CP/LTF = 0.8 µs + 2 × LTF, LDPC,  | MCS8, Nss 1     | _    | -76   | _    | dBm/core |
| non-STBC, and 20 MHz BW                                                          | MCS9, Nss 1     | _    | -73.9 | _    | dBm/core |
|                                                                                  | MCS10, Nss 1    | _    | N/A   | _    | dBm/core |
|                                                                                  | MCS11, Nss 1    | -    | N/A   | _    | dBm/core |
|                                                                                  | MCS0, Nss 2     | _    | -95.3 | _    | dBm/core |
|                                                                                  | MCS7, Nss 2     | _    | -76.7 | _    | dBm/core |
|                                                                                  | MCS8, Nss 2     | _    | -73   | _    | dBm/core |
|                                                                                  | MCS9, Nss 2     | _    | -70.9 | _    | dBm/core |
|                                                                                  | MCS10, Nss 2    | _    | N/A   | _    | dBm/core |
|                                                                                  | MCS11, Nss 2    | _    | N/A   | _    | dBm/core |

Table 30: WLAN 5 GHz Receiver Performance Specifications (Continued)

| Parameter                                                                                                   | Condition/Notes |              | Min. | Тур.  | Max. | Unit     |
|-------------------------------------------------------------------------------------------------------------|-----------------|--------------|------|-------|------|----------|
| 106 resource units (RU 106):                                                                                | MCS0, Nss 1     |              | _    | -95.4 | _    | dBm      |
| SISO RX sensitivity IEEE 802.11ax                                                                           | MCS7, Nss 1     |              | _    | -77.1 | _    | dBm      |
| (10% PER for 4096 octet PSDU) <sup>a</sup> :<br>CP/LTF = 0.8 μs + 2 × LTF, LDPC,<br>non-STBC, and 20 MHz BW | MCS8, Nss 1     |              | _    | -72.7 | _    | dBm      |
|                                                                                                             | MCS9 Nss 1      |              | _    | -71.1 | _    | dBm      |
|                                                                                                             | MCS10, Nss 1    |              | _    | N/A   | _    | dBm      |
|                                                                                                             | MCS11, Nss 1    |              | _    | N/A   | _    | dBm      |
| 106 resource units (RU 106):                                                                                | MCS0, Nss 1     |              | _    | -97.4 | _    | dBm/core |
| MIMO RX sensitivity IEEE 802.11ax                                                                           | MCS7, Nss 1     |              | _    | -80.1 | _    | dBm/core |
| (10% PER for 4096 octet PSDU) <sup>a</sup> :<br>CP/LTF = 0.8 µs + 2 × LTF, LDPC,                            | MCS8, Nss 1     |              | _    | -75.7 | _    | dBm/core |
| non-STBC, and 20 MHz BW                                                                                     | MCS9, Nss 1     |              | _    | -74.1 | _    | dBm/core |
|                                                                                                             | MCS10, Nss 1    | MCS10, Nss 1 |      | N/A   | _    | dBm/core |
|                                                                                                             | MCS11, Nss 1    |              | _    | N/A   | _    | dBm/core |
|                                                                                                             | MCS0, Nss 2     |              | _    | -95.4 |      | dBm/core |
|                                                                                                             | MCS7, Nss 2     |              | _    | -77.1 |      | dBm/core |
|                                                                                                             | MCS8, Nss 2     |              |      | -72.7 | _    | dBm/core |
|                                                                                                             | MCS9, Nss 2     |              | _    | -71.1 | _    | dBm/core |
|                                                                                                             | MCS10, Nss 2    |              | _    | N/A   | _    | dBm/core |
|                                                                                                             | MCS11, Nss 2    |              | _    | N/A   | —    | dBm/core |
| 242 resource units (RU 242):                                                                                | MCS0, Nss 1     | 40 MHz       | _    | -92.9 | _    | dBm      |
| SISO RX sensitivity IEEE 802.11ax (10% PER for 4096 octet PSDU) <sup>a</sup> :                              | MCS7, Nss 1     | 40 MHz       | _    | -75   |      | dBm      |
| CP/LTF = 0.8 µs + 2 × LTF, LDPC,                                                                            | MCS8, Nss 1     | 40 MHz       | _    | -69.7 | _    | dBm      |
| non-STBC, and 40/80 MHz BW                                                                                  | MCS9, Nss 1     | 40 MHz       | _    | -68.2 | _    | dBm      |
|                                                                                                             | MCS10, Nss 1    | 40 MHz       | _    | -63.8 | _    | dBm      |
|                                                                                                             | MCS11, Nss 1    | 40 MHz       | _    | -60.8 | _    | dBm      |
|                                                                                                             | MCS0, Nss 1     | 80 MHz       | _    | -89.7 | _    | dBm      |
|                                                                                                             | MCS7, Nss 1     | 80 MHz       | _    | -71.2 | _    | dBm      |
|                                                                                                             | MCS8, Nss 1     | 80 MHz       | _    | -66.3 | _    | dBm      |
|                                                                                                             | MCS9, Nss 1     | 80 MHz       | _    | -65.1 | _    | dBm      |
|                                                                                                             | MCS10, Nss 1    | 80 MHz       | _    | -60.4 | _    | dBm      |
|                                                                                                             | MCS11, Nss 1    | 80 MHz       | _    | -56.9 | _    | dBm      |

Table 30: WLAN 5 GHz Receiver Performance Specifications (Continued)

| Parameter                                                                                                       | Condition/Notes |        | Min. | Тур.  | Max. | Unit     |
|-----------------------------------------------------------------------------------------------------------------|-----------------|--------|------|-------|------|----------|
| 242 resource units (RU 242):                                                                                    | MCS0, Nss 1     | 40 MHz | _    | -94.9 | _    | dBm/core |
| MIMO RX sensitivity IEEE 802.11ax                                                                               | MCS7, Nss 1     | 40 MHz | _    | -78   | _    | dBm/core |
| (10% PER for 4096 octet PSDU) <sup>a</sup> :<br>CP/LTF = 0.8 µs + 2 × LTF, LDPC,                                | MCS8, Nss 1     | 40 MHz | _    | -72.7 | _    | dBm/core |
| non-STBC, and 40/80 MHz BW                                                                                      | MCS9, Nss 1     | 40 MHz | _    | -71.2 | _    | dBm/core |
|                                                                                                                 | MCS10, Nss 1    | 40 MHz | _    | -66.8 | _    | dBm/core |
|                                                                                                                 | MCS11, Nss 1    | 40 MHz | _    | -63.8 | _    | dBm/core |
|                                                                                                                 | MCS0, Nss 1     | 80 MHz | _    | -91.7 | _    | dBm/core |
|                                                                                                                 | MCS7, Nss 1     | 80 MHz | _    | -74.2 | _    | dBm/core |
|                                                                                                                 | MCS8, Nss 1     | 80 MHz | _    | -69.3 | _    | dBm/core |
|                                                                                                                 | MCS9, Nss 1     | 80 MHz | _    | -68.1 | _    | dBm/core |
|                                                                                                                 | MCS10, Nss 1    | 80 MHz | _    | -63.4 | _    | dBm/core |
|                                                                                                                 | MCS11, Nss 1    | 80 MHz | _    | -59.9 | _    | dBm/core |
|                                                                                                                 | MCS0, Nss 2     | 40 MHz | _    | -92.9 | _    | dBm/core |
|                                                                                                                 | MCS7, Nss 2     | 40 MHz | _    | -75   | _    | dBm/core |
|                                                                                                                 | MCS8, Nss 2     | 40 MHz | _    | -69.7 | _    | dBm/core |
|                                                                                                                 | MCS9, Nss 2     | 40 MHz | _    | -68.2 | _    | dBm/core |
|                                                                                                                 | MCS10, Nss 2    | 40 MHz | _    | -63.8 | _    | dBm/core |
|                                                                                                                 | MCS11, Nss 2    | 40 MHz | _    | -60.8 | _    | dBm/core |
|                                                                                                                 | MCS0, Nss 2     | 80 MHz | _    | -89.7 | _    | dBm/core |
|                                                                                                                 | MCS7, Nss 2     | 80 MHz | _    | -71.2 | _    | dBm/core |
|                                                                                                                 | MCS8, Nss 2     | 80 MHz | _    | -66.3 | _    | dBm/core |
|                                                                                                                 | MCS9, Nss 2     | 80 MHz | _    | -65.1 | _    | dBm/core |
|                                                                                                                 | MCS10, Nss 2    | 80 MHz | _    | -60.4 | _    | dBm/core |
|                                                                                                                 | MCS11, Nss 2    | 80 MHz | _    | -56.9 | _    | dBm/core |
| 484 resource units (RU 484):                                                                                    | MCS0, Nss 1     | 80 MHz | _    | -89.6 | _    | dBm      |
| SISO RX sensitivity IEEE 802.11ax (10% PER for 4096 octet PSDU) <sup>a</sup> : CP/LTF = 0.8 µs + 2 × LTF, LDPC, | MCS7, Nss 1     | 80 MHz | _    | -71.1 | _    | dBm      |
|                                                                                                                 | MCS8, Nss 1     | 80 MHz | _    | -66.3 | _    | dBm      |
| non-STBC, and 80 MHz BW                                                                                         | MCS9, Nss 1     | 80 MHz | _    | -65.2 | _    | dBm      |
|                                                                                                                 | MCS10, Nss 1    | 80 MHz | _    | -60.3 | _    | dBm      |
|                                                                                                                 | MCS11, Nss 1    | 80 MHz | _    | -57.8 | _    | dBm      |

Table 30: WLAN 5 GHz Receiver Performance Specifications (Continued)

| Parameter                                                                          | Condition/Notes          |          | Min. | Тур.         | Max. | Unit     |
|------------------------------------------------------------------------------------|--------------------------|----------|------|--------------|------|----------|
|                                                                                    | MCS0, Nss 1              | 80 MHz   | _    | -91.6        | _    | dBm/core |
| MIMO RX sensitivity IEEE 802.11ax                                                  | MCS7, Nss 1              | 80 MHz   | _    | -74.1        | _    | dBm/core |
| 10% PER for 4096 octet PSDU) <sup>a</sup> :<br>CP/LTF = 0.8 µs + 2 × LTF, LDPC,    | MCS8, Nss 1              | 80 MHz   | _    | -69.3        | _    | dBm/core |
| non-STBC, and 80 MHz BW                                                            | MCS9, Nss 1              | 80 MHz   | _    | -68.2        | _    | dBm/core |
|                                                                                    | MCS10, Nss 1             | 80 MHz   | _    | -63.3        | _    | dBm/core |
|                                                                                    | MCS11, Nss 1             | 80 MHz   |      | -60.8        | _    | dBm/core |
|                                                                                    | MCS0, Nss 2              | 80 MHz   |      | -89.6        | _    | dBm/core |
|                                                                                    | MCS7, Nss 2              | 80 MHz   |      | <b>-71.1</b> |      | dBm/core |
|                                                                                    | MCS8, Nss 2              | 80 MHz   |      | _66.3        |      | dBm/core |
|                                                                                    |                          |          | _    |              |      |          |
|                                                                                    | MCS9, Nss 2              | 80 MHz   | _    | -65.2        | _    | dBm/core |
|                                                                                    | MCS10, Nss 2             | 80 MHz   | _    | -60.3        |      | dBm/core |
|                                                                                    | MCS11, Nss 2             | 80 MHz   | _    | -57.8        | _    | dBm/core |
| Blocking level for 12 dB RX sensitivity                                            | 776–794 MHz              | CDMA2000 | _    | -4.4         | _    | dBm      |
| legradation at the chip input port without external filtering) <sup>b</sup>        | 824–849 MHz <sup>c</sup> | cdmaOne  | _    | -2.2         | _    | dBm      |
| without external intering)                                                         | 824–849 MHz <sup>c</sup> | GSM850   | _    | -2.2         | _    | dBm      |
|                                                                                    | 880–915 MHz              | E-GSM    | _    | -4.7         | _    | dBm      |
|                                                                                    | 1710–1785 MHz            | GSM1800  | _    | -1.8         | _    | dBm      |
|                                                                                    | 1850–1910 MHz            | GSM1800  | _    | -0.7         | _    | dBm      |
|                                                                                    | 1850–1910 MHz            | cdmaOne  | _    | -0.7         | _    | dBm      |
|                                                                                    | 1850–1910 MHz            | WCDMA    | _    | -0.4         | _    | dBm      |
|                                                                                    | 1920–1980 MHz            | WCDMA    | _    | -2.6         | _    | dBm      |
|                                                                                    | 2500–2570 MHz            | Band 7   | _    | -8.5         | _    | dBm      |
|                                                                                    | 2300–2400 MHz            | Band 40  | _    | -10.6        | _    | dBm      |
|                                                                                    | 2570-2620 MHz            | Band 38  | _    | -8.5         | _    | dBm      |
|                                                                                    | 2545-2575 MHz            | XGP Band | _    | -8.2         | _    | dBm      |
| nput in-band IP3                                                                   | Maximum LNA gair         | n        | _    | -10          | _    | dBm      |
|                                                                                    | Minimum LNA gair         | 1        | _    | 7            | _    | dBm      |
| laximum receive level                                                              | @ 6, 9, 12 Mbps          |          | _    | -9           | _    | dBm      |
|                                                                                    | @ 18, 24, 36, 48, 5      | 54 Mbps  |      | -9           |      | dBm      |
|                                                                                    | MCS0 to MCS9             | 802.11ac | _    | -9           | _    | dBm      |
| .PF 3 dB bandwidth                                                                 | _                        |          | 9    | _            | 36   | MHz      |
| Adjacent channel rejection – OFDM                                                  | 6 Mbps OFDM              | –79 dBm  | 16   | _            | _    | dB       |
| Difference between interfering and lesired signal (20 MHz apart) at 10%            | 9 Mbps OFDM              | –78 dBm  | 15   | _            |      | dB       |
| PER for 1000 octet PSDU with desired signal level as specified in Condition/Notes) | 12 Mbps OFDM             | –76 dBm  | 13   | _            | _    | dB       |
|                                                                                    | 18 Mbps OFDM             | -74 dBm  | 11   | _            | _    | dB       |
|                                                                                    | 24 Mbps OFDM             | –71 dBm  | 8    | _            | _    | dB       |
|                                                                                    | 36 Mbps OFDM             | –67 dBm  | 4    | _            | _    | dB       |
|                                                                                    | 48 Mbps OFDM             | -63 dBm  | 0    | _            | _    | dB       |
|                                                                                    | 54 Mbps OFDM             | –62 dBm  | -1   | _            | _    | dB       |
|                                                                                    | 65 Mbps OFDM             | -61 dBm  | -2   | _            | _    | dB       |

Table 30: WLAN 5 GHz Receiver Performance Specifications (Continued)

| Parameter                                                                      | Condition/Notes |           | Min. | Тур. | Max. | Unit |
|--------------------------------------------------------------------------------|-----------------|-----------|------|------|------|------|
| Adjacent channel rejection – OFDM                                              | 6 Mbps OFDM     | –78.5 dBm | 32   | _    | _    | dB   |
| (Difference between interfering and                                            | 9 Mbps OFDM     | -77.5 dBm | 31   | _    | _    | dB   |
| desired signal (40 MHz apart) at 10% PER for 1000 <sup>d</sup> octet PSDU with | 12 Mbps OFDM    | –75.5 dBm | 29   | _    | _    | dB   |
| desired signal level as specified in                                           | 18 Mbps OFDM    | -73.5 dBm | 27   | _    | _    | dB   |
| Condition/Notes)                                                               | 24 Mbps OFDM    | -70.5 dBm | 24   |      |      | dB   |
|                                                                                | 36 Mbps OFDM    | -66.5 dBm | 20   | _    | _    | dB   |
|                                                                                | 48 Mbps OFDM    | -62.5 dBm | 16   | _    |      | dB   |
|                                                                                | 54 Mbps OFDM    | -61.5 dBm | 15   | _    | _    | dB   |
|                                                                                | 65 Mbps OFDM    | -60.5 dBm | 14   |      |      | dB   |
| Adjacent channel rejection MCS0-7                                              | MCS0            | –79 dBm   | 16   |      | -    | dB   |
| EEE 802.11n                                                                    | MCS1            | –76 dBm   | 13   | _    | _    | dB   |
| Difference between interfering and desired signal (20 MHz apart) at 10%        | MCS2            | -74 dBm   | 11   | _    | _    | dB   |
| PER for 4096 octet PSDU with                                                   | MCS3            | -71 dBm   | 8    | _    | _    | dB   |
| desired signal level as specified in                                           | MCS4            | -67 dBm   | 4    | _    | _    | dB   |
| Condition/Notes)                                                               | MCS5            | –63 dBm   | 0    | _    |      | dB   |
|                                                                                | MCS6            | –62 dBm   | -1   | _    | _    | dB   |
|                                                                                | MCS7            | -61 dBm   | -2   | _    | _    | dB   |
| Adjacent channel rejection MCS0-9                                              | MCS0            | -82 dBm   | 16   | _    | _    | dB   |
| EEE 802.11ac                                                                   | MCS1            | -80 dBm   | 13   | _    | _    | dB   |
| Difference between interfering and desired signal (20 MHz apart) at 10%        | MCS2            | –77 dBm   | 11   | _    | _    | dB   |
| PER for 4096 octet PSDU with                                                   | MCS3            | -74 dBm   | 8    | _    | _    | dB   |
| desired signal level as specified in                                           | MCS4            | -70 dBm   | 4    | _    | _    | dB   |
| Condition/Notes)                                                               | MCS5            | –66 dBm   | 0    | _    | _    | dB   |
|                                                                                | MCS6            | -65 dBm   | -1   | _    | _    | dB   |
|                                                                                | MCS7            | -64 dBm   | -2   | _    | _    | dB   |
|                                                                                | MCS8            | -59 dBm   | -7   | _    | _    | dB   |
|                                                                                | MCS9            | –57 dBm   | _9   | _    | _    | dB   |
| Adjacent channel rejection MCS0-9                                              | MCS0            | -82 dBm   | 16   | _    | _    | dB   |
| EEE 802.11ax                                                                   | MCS1            | -80 dBm   | 13   | _    | _    | dB   |
| Difference between interfering and desired signal (20 MHz apart) at 10%        | MCS2            | –77 dBm   | 11   | _    | _    | dB   |
| PER for 4096 octet PSDU with                                                   | MCS3            | -74 dBm   | 8    | _    | _    | dB   |
| desired signal level as specified in                                           | MCS4            | –70 dBm   | 4    | _    | _    | dB   |
| Condition/Notes)                                                               | MCS5            | –66 dBm   | 0    | _    | _    | dB   |
|                                                                                | MCS6            | –65 dBm   | -1   | _    | _    | dB   |
|                                                                                | MCS7            | –64 dBm   | -2   | _    | _    | dB   |
|                                                                                | MCS8            | -59 dBm   | -7   | _    | _    | dB   |
|                                                                                | MCS9            | –57 dBm   | -9   | _    | _    | dB   |
|                                                                                | MCS10           | –53 dBm   | -12  | _    | _    | dB   |
|                                                                                | MCS11           | -50 dBm   | -14  | _    | _    | dB   |
| Maximum receiver gain                                                          |                 |           |      | 62   |      | dB   |

#### Table 30: WLAN 5 GHz Receiver Performance Specifications (Continued)

| Parameter                                               | Condition/Notes          | Min. | Тур. | Max. | Unit |
|---------------------------------------------------------|--------------------------|------|------|------|------|
| Gain control step                                       | _                        | _    | 3    | _    | dB   |
| RSSI accuracy                                           | Range –90 dBm to –30 dBm | 2    | _    | 2    | dB   |
|                                                         | Range above –30 dBm      | 2    | _    | 2    | dB   |
| Return loss $Z_0 = 50\Omega$ , across the dynamic range |                          | 10   | _    | 13   | dB   |
| Receiver cascaded noise figure                          | At maximum gain          | _    | 4    | _    | dB   |

- a. The cellular standard listed for each band indicates the type of modulation used to generate the interfering signal in that band for the purpose of this test. It is not intended to indicate any specific usage of each band in any specific country.
- b. The cellular standard listed for each band indicates the type of modulation used to generate the interfering signal in that band for the purpose of this test. It is not intended to indicate any specific usage of each band in any specific country.
- c. The blocking levels are valid for channels 1 to 11. (For higher channels, the performance may be lower due to third harmonic signals (TBD × TBD MHz) falling within band.)

### 8.6 WLAN 5 GHz Transmitter Performance Specifications

NOTE: The values in Table 31 are specified at the RF port unless otherwise noted.

Table 31: WLAN 5 GHz Transmitter Performance Specifications

| Parameter                                                        | Condition/Notes                 |                            | Min.     | Тур.   | Max. | Unit    |
|------------------------------------------------------------------|---------------------------------|----------------------------|----------|--------|------|---------|
| Frequency range                                                  | _                               |                            | 4900     | _      | 5845 | MHz     |
| Transmitted power in cellular                                    | 76–108 MHz                      | FM RX                      | _        | TBD    | _    | dBm/Hz  |
| and FM bands (at 18 dBm) <sup>a</sup>                            | 776–794 MHz                     |                            | _        | -169.8 | _    | dBm/Hz  |
|                                                                  | 869–960 MHz                     | cdmaOne, GSM850            | _        | -170   | _    | dBm/Hz  |
|                                                                  | 925–960 MHz                     | E-GSM                      | _        | -170   | _    | dBm/Hz  |
|                                                                  | 1570–1580 MHz                   | GPS                        | _        | -170   | _    | dBm/Hz  |
|                                                                  | 1805–1880 MHz                   | GSM1800                    | _        | -170   | _    | dBm/Hz  |
|                                                                  | 1930–1990 MHz                   | GSM1900, cdmaOne,<br>WCDMA | _        | -169   |      | dBm/Hz  |
|                                                                  | 2110-2170 MHz                   | WCDMA                      | _        | -170   | _    | dBm/Hz  |
|                                                                  | 2400-2483 MHz                   | BT/WLAN                    | _        | -170   | _    | dBm/Hz  |
|                                                                  | 2500-2570 MHz                   | Band 7                     | _        | -168.5 | _    | dBm/Hz  |
|                                                                  | 2300-2400 MHz                   | Band 40                    | _        | -169   | _    | dBm/Hz  |
|                                                                  | 2570-2620 MHz                   | Band 38                    | _        | 168.5  | _    | dBm/Hz  |
|                                                                  | 2545-2575 MHz                   | XGP Band                   | _        | -169   | _    | dBm/Hz  |
| Harmonic level<br>(at 17 dBm)                                    | 9.8–11.570 GHz                  | 2 <sup>nd</sup> harmonic   | _        | -60    | _    | dBm/MHz |
| General spurs                                                    | 1–8 GHz                         |                            | _        | -40    | _    | dBm/MHz |
| TX power at RF port for highest power level setting at 25°C with |                                 | EVM Does Not<br>Exceed     |          |        |      |         |
| spectral mask and EVM                                            | OFDM, QPSK                      | –13 dB                     | 2        | 5.2    | _    | dBm     |
| compliance                                                       | OFDM, 16-QAM                    | –19 dB                     | 2        | 5.2    | _    | dBm     |
|                                                                  | OFDM, 64-QAM<br>(R = 3/4)       | –25 dB                     | 2        | 5.2    | _    | dBm     |
|                                                                  | OFDM, 64-QAM<br>(R = 5/6)       | –27 dB                     | 2        | 5.2    | _    | dBm     |
|                                                                  | OFDM, 256-QAM<br>(R = 3/4, VHT) | -30 dB                     | 2        | 4      | _    | dBm     |
|                                                                  | OFDM, 256-QAM<br>(R = 5/6, VHT) | –32 dB                     | 2        | 2      | _    | dBm     |
| TX power control dynamic range                                   | e —                             |                            | _        | 30     | _    | dB      |
| Closed-loop TX power variation <sup>b</sup>                      | Over the full tempera           | ature and voltage ranges   | <u> </u> | _      | ±1.5 | dB      |
| Carrier suppression                                              | _                               |                            | 15       |        | _    | dBc     |
| Gain control step                                                | _                               |                            | _        | 0.25   | _    | dB      |
| Return loss                                                      | Zo = 50Ω                        |                            | _        | TBD    | _    | dB      |

a. The cellular standards listed indicate only typical usages of that band in some countries. Other standards may also be used within those bands.

b. Applies to an 8 dBm to 20 dBm TX power output range with production PA trimming. Applies to a –10 dBm to 20 dBm TX power output range with PA trimming and open-loop power control (OLPC) calibration in production.

# 8.7 General Spurious Emissions Specifications

Table 32: General Spurious Emissions Specifications

| Parameter               | Condition/Notes        | Condition/Notes |      | Тур. | Max. | Unit |
|-------------------------|------------------------|-----------------|------|------|------|------|
| Frequency range         | _                      |                 | 2400 | _    | 2500 | MHz  |
| General Spurious Emissi | ons                    |                 | ·    |      |      | ·    |
| TX emissions            | 30 MHz < f < 1 GHz     | RBW = 100 kHz   | _    | TBD  |      | dBm  |
|                         | 1 GHz < f < 12.75 GHz  | RBW = 1 MHz     | _    | TBD  | _    | dBm  |
|                         | 1.8 GHz < f < 1.9 GHz  | RBW = 1 MHz     | _    | TBD  | _    | dBm  |
|                         | 5.15 GHz < f < 5.3 GHz | RBW = 1 MHz     | _    | TBD  | _    | dBm  |
| RX/standby emissions    | 30 MHz < f < 1 GHz     | RBW = 100 kHz   | _    | TBD  | _    | dBm  |
|                         | 1 GHz < f < 12.75 GHz  | RBW = 1 MHz     | _    | TBD  | _    | dBm  |
|                         | 1.8 GHz < f < 1.9 GHz  | RBW = 1 MHz     | _    | TBD  | _    | dBm  |
|                         | 5.15 GHz < f < 5.3 GHz | RBW = 1 MHz     | _    | TBD  | _    | dBm  |

## **Chapter 9: System Power Consumption**

**NOTE:** Values in this data sheet are design goals and are subject to change based on the results of device characterization.

Unless otherwise stated, these values apply for the conditions specified in Table 3, Recommended Operating Conditions and DC Characteristics.

### 9.1 WLAN Current Consumption

The WLAN current consumption measurements are shown in Table 33.

All values in Table 33 are with the Bluetooth core in reset (that is, Bluetooth is off).

**Table 33: Typical WLAN Power Consumption** 

| Mode                                           | Bandwidth<br>(MHz) | Band<br>(GHz) | V <sub>bat</sub> = 3.6V<br>mA | V <sub>io</sub> = 1.8V<br>mA <sup>a</sup> |
|------------------------------------------------|--------------------|---------------|-------------------------------|-------------------------------------------|
| Sleep Modes                                    |                    |               |                               |                                           |
| OFF <sup>b</sup>                               | _                  | _             | 0.03                          | 0.0                                       |
| Sleep <sup>c</sup>                             | _                  | _             | 0.27                          | 0.06                                      |
| IEEE power save, DTIM 1 1 RX core <sup>d</sup> | 20                 | 2.4           | 1.55                          | 0.08                                      |
| IEEE power save, DTIM 3 1 RX core <sup>d</sup> | 20                 | 2.4           | 0.55                          | 0.08                                      |
| IEEE power save, DTIM 1 1 RX core <sup>d</sup> | 20                 | 5             | 1.7                           | 0.08                                      |
| IEEE power save, DTIM 3 1 RX core <sup>d</sup> | 20                 | 5             | 0.7                           | 0.08                                      |
| IEEE power save, DTIM 1 1 RX core <sup>d</sup> | 40                 | 5             | 1.7                           | 0.08                                      |
| IEEE power save, DTIM 3 1 RX core <sup>d</sup> | 40                 | 5             | 0.7                           | 0.08                                      |
| IEEE power save, DTIM 1 1 RX core <sup>d</sup> | 80                 | 5             | 1.8                           | 0.08                                      |
| IEEE power save, DTIM 3 1 RX core <sup>d</sup> | 80                 | 5             | 1.03                          | 0.08                                      |
| Active Modes                                   |                    | '             |                               |                                           |
| Transmit                                       |                    |               |                               |                                           |
| CCK 1 chain <sup>e</sup>                       | 20                 | 2.4           | 450                           | 3.2                                       |
| 1×1 MCS7, HT20                                 | 20                 | 2.4           | 320                           | 3.2                                       |
| 2×2 MCS15, HT20                                | 20                 | 2.4           | 550                           | 3.2                                       |
| 1×1 MCS7, HT20                                 | 20                 | 5             | 66                            | 3.2                                       |
| 2×2 MCS15, HT20                                | 20                 | 5             | 100                           | 3.2                                       |
| 1×1 MCS7, HT40                                 | 40                 | 5             | 70                            | 2.8                                       |
| 2×2 MCS15, HT40                                | 40                 | 5             | 105                           | 2.8                                       |
| MCS9, VHT80, NSS = 1                           | 80                 | 5             | 78                            | 2.5                                       |
| MCS9, VHT80, NSS = 2                           | 80                 | 5             | 120                           | 2.5                                       |

Table 33: Typical WLAN Power Consumption (Continued)

| Mode                 | Bandwidth<br>(MHz) | Band<br>(GHz) | V <sub>bat</sub> = 3.6V<br>mA | V <sub>io</sub> = 1.8V<br>mA <sup>a</sup> |  |
|----------------------|--------------------|---------------|-------------------------------|-------------------------------------------|--|
| Receive              |                    |               |                               |                                           |  |
| 1×1 MCS7 HT20        | 20                 | 2.4           | 28.3                          | 1.45                                      |  |
| 2×2 MCS15 HT20       | 20                 | 2.4           | 36.2                          | 1.45                                      |  |
| 1×1 MCS7 HT20        | 20                 | 5             | 49                            | 1.6                                       |  |
| 2×2 MCS15 HT20       | 20                 | 5             | 66                            | 1.6                                       |  |
| 1×1 MCS7 HT40        | 40                 | 5             | 55                            | 1.7                                       |  |
| 2×2 MCS15 HT40       | 40                 | 5             | 76                            | 1.7                                       |  |
| MCS9, VHT80, NSS = 1 | 80                 | 5             | 65                            | 1.9                                       |  |
| MCS9, VHT80, NSS = 2 | 80                 | 5             | 94                            | 1.9                                       |  |
|                      |                    |               |                               |                                           |  |

- a. Specified with all pins idle (not switching) and not driving any loads.
- b. WL\_REG\_ON, BT\_REG\_ON both low.
- c. Idle, not associated, or inter-beacon.
- d. Beacon Interval is 102.4 ms. Beacon duration is 1 ms at 1 Mbps (for 2.4 GHz) and 6 Mbps (for 5 GHz). Average current over 10 DTIM intervals.
- e. Output power per core at the chip RF port = TBD dBm.

## 9.2 Bluetooth Current Consumption

The Bluetooth and BLE current consumption measurements are shown in Table 34.

**NOTE**: The WLAN core is in reset (WL REG ON = low) for all measurements provided in Table 34.

NOTE: The BT current consumption numbers are measured based on GFSK TX output power = 13 dBm.

Table 34: Bluetooth and BLE Current Consumption

| Operating Mode              | VBAT (VBAT = 3.6V)Typical | VDDIO (VDDIO = 1.8V) Typical | Units |
|-----------------------------|---------------------------|------------------------------|-------|
| Sleep                       | 38                        | 168                          | μΑ    |
| Standard 1.28s inquiry scan | 205                       | 180                          | μA    |
| 500 ms sniff master         | 190                       | 180                          | μΑ    |
| DM1/DH1                     | 14                        | 0.28                         | mA    |
| DM3/DH3                     | 17                        | 0.28                         | mA    |
| DM5/DH5                     | 19                        | 0.28                         | mA    |
| 3DH5/3DH1 master            | 17                        | 0.28                         | mA    |
| HV3 SCO                     | 7                         | 0.20                         | mA    |
| BLE scan                    | 152                       | 180                          | μΑ    |
| BLE adv. unconnectable 1s   | 130                       | 180                          | μΑ    |
| BLE connected 1s            | 107                       | 180                          | μA    |

# **Chapter 10: Package Information**

### 10.1 WLCSP Coordinates

Table 35 lists the BCM4375 WLCSP coordinates by bump number. The table pertains to a bump-side view (that is, with the die facing up).

Table 35: BCM4375 WLCSP Coordinates by Bump Number

|      |               | Package Bump Side View (0, 0 center of die) |          |  |  |
|------|---------------|---------------------------------------------|----------|--|--|
| Bump | Net Name      | X-COORD                                     | Y-COORD  |  |  |
| 1    | VSS           | 2722.320                                    | 2952.405 |  |  |
| 2    | VDD_AUX       | -2477.520                                   | 2952.405 |  |  |
| 3    | VSS           | -2232.720                                   | 2952.405 |  |  |
| 4    | VSS           | -1987.920                                   | 2952.405 |  |  |
| 5    | VSS           | -1695.726                                   | 2952.405 |  |  |
| 6    | RF_SW_CTRL_12 | -1495.728                                   | 2952.405 |  |  |
| 7    | RF_SW_CTRL_11 | -1295.730                                   | 2952.405 |  |  |
| 8    | RF_SW_CTRL_10 | -1095.732                                   | 2952.405 |  |  |
| 9    | VSS           | -895.734                                    | 2952.405 |  |  |
| 10   | VDD_TOP       | 286.254                                     | 2899.971 |  |  |
| 11   | VSS           | -2895.714                                   | 2779.011 |  |  |
| 12   | VSS           | -2599.920                                   | 2779.011 |  |  |
| 13   | VSS           | -2355.120                                   | 2779.011 |  |  |
| 14   | VSS           | -1924.020                                   | 2761.200 |  |  |
| 15   | VDD_AUX       | -1578.726                                   | 2752.407 |  |  |
| 16   | RF_SW_CTRL_13 | -1178.730                                   | 2752.407 |  |  |
| 17   | VDDIO_RF      | -978.732                                    | 2752.407 |  |  |
| 18   | VSS           | -778.734                                    | 2752.407 |  |  |
| 19   | VDD_TOP       | -95.742                                     | 2744.973 |  |  |
| 20   | GPIO_16       | 104.256                                     | 2744.973 |  |  |
| 21   | VDD_TOP       | -295.740                                    | 2725.173 |  |  |
| 22   | MODEHV        | -495.738                                    | 2699.973 |  |  |
| 23   | GPIO_19       | 304.254                                     | 2699.973 |  |  |
| 24   | VSS           | -1378.728                                   | 2662.407 |  |  |
| 25   | VSS           | -1756.620                                   | 2637.000 |  |  |
| 26   | VSS           | -1227.519                                   | 2499.975 |  |  |
| 27   | VDDP_RF       | -895.734                                    | 2499.975 |  |  |
| 28   | VSS           | -695.736                                    | 2499.975 |  |  |
| 29   | VDDP_RF       | -495.738                                    | 2499.975 |  |  |
| 30   | VSS           | -295.740                                    | 2499.975 |  |  |
| 31   | VDD_AON       | -95.742                                     | 2499.975 |  |  |

Table 35: BCM4375 WLCSP Coordinates by Bump Number (Continued)

|      |                 | Package Bump Side View (0, 0 center of die) |          |  |  |
|------|-----------------|---------------------------------------------|----------|--|--|
| Bump | Net Name        | X-COORD                                     | Y-COORD  |  |  |
| 32   | VSS             | 104.256                                     | 2499.975 |  |  |
| 33   | VDD_AUX         | 304.254                                     | 2499.975 |  |  |
| 34   | VSS             | -1237.230                                   | 2299.977 |  |  |
| 35   | VDD_AON         | -1037.232                                   | 2299.977 |  |  |
| 36   | VDD_AUX         | -695.736                                    | 2299.977 |  |  |
| 37   | VDDIO_RF        | -495.738                                    | 2299.977 |  |  |
| 38   | RF_SW_CTRL_18   | -295.740                                    | 2299.977 |  |  |
| 39   | VDD_AUX         | -95.742                                     | 2299.977 |  |  |
| 10   | GPIO_15         | 104.256                                     | 2299.977 |  |  |
| 11   | GPIO_20         | 304.254                                     | 2299.977 |  |  |
| 12   | VDD_RET_WL      | 1304.244                                    | 2299.977 |  |  |
| 43   | RF_SW_CTRL_14   | -1095.732                                   | 2099.979 |  |  |
| 14   | RF_SW_CTRL_15   | -895.734                                    | 2099.979 |  |  |
| 15   | RF_SW_CTRL_16   | -695.736                                    | 2099.979 |  |  |
| 16   | RF_SW_CTRL_17   | -495.738                                    | 2099.979 |  |  |
| 17   | RF_SW_CTRL_19   | -295.740                                    | 2099.979 |  |  |
| 18   | GPIO_14         | 104.256                                     | 2099.979 |  |  |
| 19   | GPIO_18         | 304.254                                     | 2099.979 |  |  |
| 50   | PCI_PME_L       | 1304.244                                    | 2099.979 |  |  |
| 51   | PCIE_CLKREQ_L   | 1504.242                                    | 2099.979 |  |  |
| 52   | PERST_L         | 1704.240                                    | 2094.507 |  |  |
| 53   | VDD_AUX         | 2104.236                                    | 2094.507 |  |  |
| 54   | VDD18_UPI       | 2304.234                                    | 2094.507 |  |  |
| 55   | VDD_TOP         | -1237.230                                   | 1899.981 |  |  |
| 56   | VSS             | -1037.232                                   | 1899.981 |  |  |
| 57   | VDDIO_RF        | -495.738                                    | 1899.981 |  |  |
| 58   | VSS             | -295.740                                    | 1899.981 |  |  |
| 59   | VDDIO           | -95.742                                     | 1899.981 |  |  |
| 60   | GPIO_13         | 104.256                                     | 1899.981 |  |  |
| 61   | GPIO_17         | 304.254                                     | 1899.981 |  |  |
| 62   | VSS             | 504.252                                     | 1899.981 |  |  |
| 63   | VDD_AUX         | 704.250                                     | 1899.981 |  |  |
| 64   | VDD_AUX         | 1104.246                                    | 1899.981 |  |  |
| 35   | PACKAGEOPTION_0 | 1304.244                                    | 1899.981 |  |  |
| 66   | PACKAGEOPTION_1 | 1504.242                                    | 1899.981 |  |  |
| 67   | VDD_AON         | 1704.240                                    | 1894.509 |  |  |
| 88   | PACKAGEOPTION_2 | 1904.238                                    | 1894.509 |  |  |
| 69   | VDD_AUX         | 2104.236                                    | 1894.509 |  |  |
| 70   | VDDIO           | 2394.234                                    | 1899.981 |  |  |
| 71   | VSS             | 2594.232                                    | 1894.581 |  |  |

Table 35: BCM4375 WLCSP Coordinates by Bump Number (Continued)

|      |            | Package Bump Side View (0, 0 center of die) |          |  |
|------|------------|---------------------------------------------|----------|--|
| Bump | Net Name   | X-COORD                                     | Y-COORD  |  |
| 72   | FLL_VDDIO  | 2826.990                                    | 1762.983 |  |
| 73   | VSS        | -1237.230                                   | 1699.983 |  |
| 74   | VSS        | -1037.232                                   | 1699.983 |  |
| 75   | VSS        | -837.234                                    | 1699.983 |  |
| 76   | VSS        | -637.236                                    | 1699.983 |  |
| 77   | VSS        | -437.238                                    | 1699.983 |  |
| 78   | VSS        | -95.742                                     | 1699.983 |  |
| 79   | VSS        | 104.256                                     | 1699.983 |  |
| 80   | VDDIO      | 304.254                                     | 1699.983 |  |
| 81   | VSS        | 704.250                                     | 1699.983 |  |
| 82   | VDD_TOP    | 904.248                                     | 1699.983 |  |
| 83   | JTAG_SEL   | 1104.246                                    | 1699.983 |  |
| 84   | VSS        | 1304.244                                    | 1699.983 |  |
| 85   | VDDIO      | 1504.242                                    | 1699.983 |  |
| 86   | GPIO_8     | 1904.238                                    | 1694.511 |  |
| 87   | GPIO_7     | 2104.236                                    | 1694.511 |  |
| 88   | GPIO_6     | 2394.234                                    | 1699.983 |  |
| 89   | VSS        | 2626.992                                    | 1558.485 |  |
| 90   | VDD_TOP    | 2826.990                                    | 1558.485 |  |
| 91   | VSS        | -1062.972                                   | 1499.985 |  |
| 92   | VSS        | -862.974                                    | 1499.985 |  |
| 93   | VSS        | -662.976                                    | 1499.985 |  |
| 94   | VSS        | -462.978                                    | 1499.985 |  |
| 95   | VSS        | -262.980                                    | 1499.985 |  |
| 96   | VSS        | -62.982                                     | 1499.985 |  |
| 97   | VDD_MAIN   | 137.016                                     | 1499.985 |  |
| 98   | VSS        | 337.014                                     | 1499.985 |  |
| 99   | VSS        | 737.010                                     | 1499.985 |  |
| 100  | VSS        | 937.008                                     | 1499.985 |  |
| 101  | VSS        | 1137.006                                    | 1499.985 |  |
| 102  | VDD_DIG    | 1337.004                                    | 1499.985 |  |
| 103  | GPIO_11    | 1537.002                                    | 1499.985 |  |
| 104  | VDD_AON    | 1936.998                                    | 1494.513 |  |
| 105  | GPIO_10    | 2136.996                                    | 1494.513 |  |
| 106  | GPIO_9     | 2381.994                                    | 1499.985 |  |
| 107  | GPIO_1     | 2626.992                                    | 1358.487 |  |
| 108  | GPIO_0     | 2826.990                                    | 1358.487 |  |
| 109  | VSS        | -1240.470                                   | 1299.987 |  |
| 110  | VSS        | -1040.472                                   | 1299.987 |  |
| 111  | VDD_RET_WL | -840.474                                    | 1299.987 |  |

Table 35: BCM4375 WLCSP Coordinates by Bump Number (Continued)

|      |            | Package Bump Side View (0, 0 center of die) |          |  |
|------|------------|---------------------------------------------|----------|--|
| Bump | Net Name   | X-COORD                                     | Y-COORD  |  |
| 112  | VDD_MAIN   | -462.978                                    | 1299.987 |  |
| 113  | VSS        | 337.014                                     | 1299.987 |  |
| 114  | LHL_GPIO1  | 537.012                                     | 1299.987 |  |
| 115  | VDD_AON    | 937.008                                     | 1299.987 |  |
| 116  | VDD_RET_WL | 1137.006                                    | 1299.987 |  |
| 117  | GPIO_12    | 1337.004                                    | 1299.987 |  |
| 118  | VDDIO      | 1537.002                                    | 1299.987 |  |
| 119  | VSS        | 1737.000                                    | 1299.987 |  |
| 120  | VDD_AON    | 2136.996                                    | 1294.515 |  |
| 121  | GPIO_2     | 2381.994                                    | 1299.987 |  |
| 122  | VSS        | 2559.492                                    | 1158.489 |  |
| 123  | VDD_TOP    | 2759.490                                    | 1158.489 |  |
| 124  | VSS        | -1240.470                                   | 1099.989 |  |
| 125  | VDD_MAIN   | -1040.472                                   | 1099.989 |  |
| 126  | VSS        | -840.474                                    | 1099.989 |  |
| 127  | VSS        | -462.978                                    | 1099.989 |  |
| 128  | VSS        | -262.980                                    | 1099.989 |  |
| 129  | VSS        | -62.982                                     | 1099.989 |  |
| 130  | VSS        | 137.016                                     | 1099.989 |  |
| 131  | VSS        | 337.014                                     | 1099.989 |  |
| 132  | LHL_GPIO0  | 537.012                                     | 1099.989 |  |
| 133  | LHL_GPIO2  | 737.010                                     | 1099.989 |  |
| 134  | VSS        | 937.008                                     | 1099.989 |  |
| 135  | VSS        | 1137.006                                    | 1099.989 |  |
| 136  | OTP_VDD1P8 | 1337.004                                    | 1099.989 |  |
| 137  | VDD_DIG    | 1537.002                                    | 1099.989 |  |
| 138  | VSS        | 1737.000                                    | 1099.989 |  |
| 139  | GPIO_4     | 1936.998                                    | 1099.989 |  |
| 140  | GPIO_3     | 2136.996                                    | 1094.517 |  |
| 141  | VSS        | 2336.994                                    | 1099.989 |  |
| 142  | VDD_AON    | -1240.470                                   | 899.991  |  |
| 143  | VSS        | -840.474                                    | 899.991  |  |
| 144  | VSS        | -462.978                                    | 899.991  |  |
| 145  | vss        | -262.980                                    | 899.991  |  |
| 146  | vss        | -62.982                                     | 899.991  |  |
| 147  | VSSC       | 337.014                                     | 899.991  |  |
| 148  | LHL_VDDO   | 537.012                                     | 899.991  |  |
| 149  | LHL_GPIO3  | 737.010                                     | 899.991  |  |
| 150  | VSS        | 1137.006                                    | 899.991  |  |
| 151  | VSS        | 1337.004                                    | 899.991  |  |

Table 35: BCM4375 WLCSP Coordinates by Bump Number (Continued)

| Bump | Net Name  | Package Bump Side View (0, 0 center of die) |         |
|------|-----------|---------------------------------------------|---------|
|      |           | X-COORD                                     | Y-COORD |
| 52   | VDD_TOP   | 1936.998                                    | 899.991 |
| 53   | GPIO_5    | 2136.996                                    | 894.519 |
| 54   | VSS       | -1240.470                                   | 699.993 |
| 55   | VSS       | -1040.472                                   | 699.993 |
| 56   | VSS       | -840.474                                    | 699.993 |
| 57   | VSS       | -462.978                                    | 699.993 |
| 158  | VSS       | -262.980                                    | 699.993 |
| 159  | VSS       | -62.982                                     | 699.993 |
| 160  | VSS       | 137.016                                     | 699.993 |
| 61   | LPO_IN    | 337.014                                     | 699.993 |
| 62   | VSSC      | 537.012                                     | 699.993 |
| 163  | VSSC      | 937.008                                     | 699.993 |
| 64   | VDD_TOP   | 1137.006                                    | 699.993 |
| 65   | VSS       | 1337.004                                    | 699.993 |
| 66   | VDD_DIG   | 1537.002                                    | 699.993 |
| 167  | VSS       | 1737.000                                    | 699.993 |
| 68   | VSS       | 1936.998                                    | 699.993 |
| 69   | VDD_AON   | 2236.995                                    | 699.993 |
| 70   | VDD_TOP   | -1240.470                                   | 499.995 |
| 71   | VSS       | -1040.472                                   | 499.995 |
| 72   | VSS       | -840.474                                    | 499.995 |
| 173  | VDD_AON   | -462.978                                    | 499.995 |
| 74   | VDD_TOP   | -262.980                                    | 499.995 |
| 75   | VSS       | 137.016                                     | 499.995 |
| 76   | VSSC      | 337.014                                     | 499.995 |
| 77   | VSSC      | 937.008                                     | 499.995 |
| 78   | VSS       | 1337.004                                    | 499.995 |
| 79   | VSS       | 1737.000                                    | 499.995 |
| 80   | VSS       | 1936.998                                    | 499.995 |
| 81   | VSS       | 2136.996                                    | 499.995 |
| 82   | VSS       | -1240.470                                   | 299.997 |
| 83   | VSS       | -862.974                                    | 299.997 |
| 84   | VDD_MAIN  | -662.976                                    | 299.997 |
| 85   | VSS       | -462.978                                    | 299.997 |
| 86   | VSS       | -262.980                                    | 299.997 |
| 87   | VDD_MAIN  | 137.016                                     | 299.997 |
| 88   | VSSC      | 337.014                                     | 299.997 |
| 89   | LHL_XTALO | 537.012                                     | 299.997 |
| 90   | LHL_XTALI | 737.010                                     | 299.997 |
| 191  | VDD_AON   | 937.008                                     | 299.997 |

Table 35: BCM4375 WLCSP Coordinates by Bump Number (Continued)

| Bump | Net Name     | Package Bump Side View (0, 0 center of die) |          |
|------|--------------|---------------------------------------------|----------|
|      |              | X-COORD                                     | Y-COORD  |
| 192  | VSS          | 1337.004                                    | 299.997  |
| 93   | VDD_DIG      | 1537.002                                    | 299.997  |
| 94   | VDD_TOP      | 1936.998                                    | 299.997  |
| 95   | VSS          | 2236.995                                    | 299.997  |
| 96   | VSS          | -1240.470                                   | 99.999   |
| 97   | VSS          | -1040.472                                   | 99.999   |
| 98   | VSS          | -840.474                                    | 99.999   |
| 99   | VSS          | -462.978                                    | 99.999   |
| 200  | VSS          | -262.980                                    | 99.999   |
| 201  | VSS          | 137.016                                     | 99.999   |
| 202  | PAD AVDD1P0  | 337.014                                     | 99.999   |
| 203  | VSSC         | 537.012                                     | 99.999   |
| 204  | VSSC         | 737.010                                     | 99.999   |
| 205  | VSS          | 937.008                                     | 99.999   |
| 206  | VSS          | 1137.006                                    | 99.999   |
| 207  | VSS          | 1337.004                                    | 99.999   |
| 208  | VSS          | 1537.002                                    | 99.999   |
| 209  | VSS          | 1737.000                                    | 99.999   |
| 210  | VSS          | 1936.998                                    | 99.999   |
| 11   | VSS          | 2136.996                                    | 99.999   |
| 212  | VSS          | -1040.472                                   | -99.999  |
| 213  | VSS          | -840.474                                    | -99.999  |
| 214  | VSS          | -462.978                                    | -99.999  |
| 215  | VSS          | -262.980                                    | -99.999  |
| 216  | VSS          | -62.982                                     | -99.999  |
| 217  | VSS          | 137.016                                     | -99.999  |
| 218  | PAD_AVSS     | 337.014                                     | -99.999  |
| 19   | VSS          | 537.012                                     | -99.999  |
| 220  | VSS          | 737.010                                     | -99.999  |
| 21   | VSS          | 937.008                                     | -99.999  |
| 222  | VSS          | 1137.006                                    | -99.999  |
| 223  | VSS          | 1337.004                                    | -99.999  |
| 224  | VDD_DIG      | 1737.000                                    | -99.999  |
| 25   | VSS          | 2136.996                                    | -99.999  |
| 26   | vss          | 2426.994                                    | -99.999  |
| 227  | RF_SW_CTRL_0 | 2649.492                                    | -99.999  |
| 228  | VDDIO_RF     | 2871.990                                    | -99.999  |
| 229  | VSS          | -1162.971                                   | -299.997 |
| 230  | VSS          | -962.973                                    | -299.997 |
| 231  | VDD_MAIN     | -762.975                                    | -299.997 |

Table 35: BCM4375 WLCSP Coordinates by Bump Number (Continued)

|      |              | Package Bump Side View (0, 0 center of die) |          |
|------|--------------|---------------------------------------------|----------|
| Bump | Net Name     | X-COORD                                     | Y-COORD  |
| 232  | VDD_MAIN     | -462.978                                    | -299.997 |
| 233  | VSS          | -262.980                                    | -299.997 |
| 234  | VSS          | -62.982                                     | -299.997 |
| 235  | VDD_MAIN     | 316.377                                     | -299.997 |
| 236  | VDD_TOP      | 937.008                                     | -299.997 |
| 237  | VDD_AON      | 1337.004                                    | -299.997 |
| 238  | VSS          | 1737.000                                    | -299.997 |
| 239  | VSS          | 1936.998                                    | -299.997 |
| 240  | RF_SW_CTRL_1 | 2136.996                                    | -299.997 |
| 241  | VSS          | 2871.990                                    | -299.997 |
| 242  | VDD AON      | -1083.609                                   | -499.995 |
| 243  | VSS          | -883.611                                    | -499.995 |
| 244  | VSS          | -683.613                                    | -499.995 |
| 245  | VSS          | -283.617                                    | -499.995 |
| 246  | VSS          | -83.619                                     | -499.995 |
| 247  | VSS          | 316.377                                     | -499.995 |
| 248  | VDD_AON      | 516.375                                     | -499.995 |
| 249  | VSS          | 916.371                                     | -499.995 |
| 250  | VSS          | 1116.369                                    | -499.995 |
| 251  | VSS          | 1316.367                                    | -499.995 |
| 252  | VSS          | 1716.363                                    | -499.995 |
| 253  | VDD_RET_WL   | 1916.361                                    | -499.995 |
| 254  | RF_SW_CTRL_4 | 2116.359                                    | -499.995 |
| 255  | RF_SW_CTRL_2 | 2427.894                                    | -499.995 |
| 256  | VDD_AON      | 2649.492                                    | -499.995 |
| 257  | VDD_DIG      | 2872.890                                    | -499.995 |
| 258  | VDD_TOP      | -1083.609                                   | -699.993 |
| 259  | VSS          | -883.611                                    | -699.993 |
| 260  | VSS          | -683.613                                    | -699.993 |
| 261  | VSS          | -283.617                                    | -699.993 |
| 262  | VSS          | -83.619                                     | -699.993 |
| 263  | VSS          | 316.377                                     | -699.993 |
| 264  | VSS          | 516.375                                     | -699.993 |
| 265  | VDD_MAIN     | 716.373                                     | -699.993 |
| 266  | VSS          | 916.371                                     | -699.993 |
| 267  | VSS          | 1316.367                                    | -699.993 |
| 268  | VDD_TOP      | 1516.365                                    | -699.993 |
| 269  | VSS          | 1716.363                                    | -699.993 |
| 270  | VSS          | 1916.361                                    | -699.993 |
| 271  | VSS          | 2116.359                                    | -699.993 |

Table 35: BCM4375 WLCSP Coordinates by Bump Number (Continued)

| Bump | Net Name     | Package Bump Side View (0, 0 center of die) |           |
|------|--------------|---------------------------------------------|-----------|
|      |              | X-COORD                                     | Y-COORD   |
| 272  | RF_SW_CTRL_7 | 2316.357                                    | -699.993  |
| 273  | RF_SW_CTRL_3 | 2516.355                                    | -699.993  |
| 274  | VDD_TOP      | 2716.353                                    | -699.993  |
| 275  | VSS          | -1083.609                                   | -899.991  |
| 276  | VSS          | -883.611                                    | -899.991  |
| 277  | VSS          | -683.613                                    | -899.991  |
| 278  | VSS          | -283.617                                    | -899.991  |
| 279  | VSS          | -83.619                                     | -899.991  |
| 280  | VSS          | 116.379                                     | -899.991  |
| 281  | VSS          | 316.377                                     | -899.991  |
| 282  | VSS          | 516.375                                     | -899.991  |
| 283  | VSS          | 916.371                                     | -899.991  |
| 284  | VSS          | 1316.367                                    | -899.991  |
| 285  | VSS          | 1716.363                                    | -899.991  |
| 286  | RF_SW_CTRL_9 | 2116.359                                    | -899.991  |
| 287  | RF_SW_CTRL_6 | 2316.357                                    | -899.991  |
| 288  | VDDP_RF      | 2516.355                                    | -899.991  |
| 289  | VSS          | 2716.353                                    | -899.991  |
| 290  | VSS          | -1083.609                                   | -1099.989 |
| 291  | VSS          | -683.613                                    | -1099.989 |
| 292  | VSS          | -283.617                                    | -1099.989 |
| 293  | VDD_MAIN     | 716.373                                     | -1099.989 |
| 294  | VSS          | 916.371                                     | -1099.989 |
| 295  | VSS          | 1116.369                                    | -1099.989 |
| 296  | VSS          | 1316.367                                    | -1099.989 |
| 297  | VSS          | 1516.365                                    | -1099.989 |
| 298  | VDD_DIG      | 1716.363                                    | -1099.989 |
| 299  | VSS          | 1916.361                                    | -1099.989 |
| 300  | VDD_RET_WL   | 2116.359                                    | -1099.989 |
| 301  | RF_SW_CTRL_8 | 2316.357                                    | -1099.989 |
| 302  | RF_SW_CTRL_5 | 2643.354                                    | -1099.989 |
| 303  | VDD_AON      | -1083.609                                   | -1299.987 |
| 304  | VSS          | -683.613                                    | -1299.987 |
| 305  | VDD_MAIN     | -283.617                                    | -1299.987 |
| 306  | VSS          | -83.619                                     | -1299.987 |
| 307  | VSS          | 116.379                                     | -1299.987 |
| 308  | VSS          | 316.377                                     | -1299.987 |
| 309  | VSS          | 516.375                                     | -1299.987 |
| 310  | VSS          | 716.373                                     | -1299.987 |
| 311  | VSS          | 916.371                                     | -1299.987 |

Table 35: BCM4375 WLCSP Coordinates by Bump Number (Continued)

| Bump | Net Name      | Package Bump Side View (0, 0 center of die) |           |
|------|---------------|---------------------------------------------|-----------|
|      |               | X-COORD                                     | Y-COORD   |
| 312  | VSS           | 1516.365                                    | -1299.987 |
| 313  | VSS           | 1716.363                                    | -1299.987 |
| 314  | VDDIO_RF      | 2116.359                                    | -1299.987 |
| 315  | RF_SW_CTRL_20 | 2316.357                                    | -1299.987 |
| 316  | VDDP_RF       | 2516.355                                    | -1299.987 |
| 317  | MODEHV1       | 2716.353                                    | -1299.987 |
| 318  | VSS           | -1083.609                                   | -1499.985 |
| 319  | VSS           | -883.611                                    | -1499.985 |
| 320  | VSS           | -683.613                                    | -1499.985 |
| 321  | VSS           | -283.617                                    | -1499.985 |
| 322  | VSS           | -83.619                                     | -1499.985 |
| 323  | VSS           | 116.379                                     | -1499.985 |
| 324  | vss           | 716.373                                     | -1499.985 |
| 325  | VSS           | 916.371                                     | -1499.985 |
| 326  | VSS           | 1116.369                                    | -1499.985 |
| 327  | VDD_AON       | 1316.367                                    | -1499.985 |
| 328  | VSS           | 1516.365                                    | -1499.985 |
| 329  | VDD_RET_WL    | 1716.363                                    | -1499.985 |
| 330  | VSS           | 1916.361                                    | -1499.985 |
| 331  | VDD_DIG       | 2316.357                                    | -1499.985 |
| 332  | VSS           | 2516.355                                    | -1499.985 |
| 333  | VDD_AON       | 2716.353                                    | -1499.985 |
| 334  | VSS           | -1083.609                                   | -1699.983 |
| 335  | VSS           | -683.613                                    | -1699.983 |
| 336  | VDD_MAIN      | -483.615                                    | -1699.983 |
| 337  | VSS           | -283.617                                    | -1699.983 |
| 338  | VSS           | -83.619                                     | -1699.983 |
| 339  | BT_VDDC       | 116.379                                     | -1699.983 |
| 340  | BT_VSSC       | 316.377                                     | -1699.983 |
| 341  | BT_VSSC       | 516.375                                     | -1699.983 |
| 342  | BT_VSSC       | 716.373                                     | -1699.983 |
| 343  | BT_VSSC       | 1316.367                                    | -1699.983 |
| 344  | VSS           | 1516.365                                    | -1699.983 |
| 345  | vss           | 1806.363                                    | -1699.983 |
| 346  | VDD_TOP       | 2006.361                                    | -1699.983 |
| 347  | RF_SW_CTRL_21 | 2206.359                                    | -1699.983 |
| 348  | RF_SW_CTRL_22 | 2406.357                                    | -1699.983 |
| 349  | RF_SW_CTRL_24 | 2606.355                                    | -1699.983 |
| 350  | RF_SW_CTRL_23 | 2806.353                                    | -1699.983 |
| 351  | VDD_TOP       | -1083.609                                   | -1899.981 |

Table 35: BCM4375 WLCSP Coordinates by Bump Number (Continued)

| Bump | Net Name       | Package Bump Side View (0, 0 center of die) |           |
|------|----------------|---------------------------------------------|-----------|
|      |                | X-COORD                                     | Y-COORD   |
| 352  | BT_VSSC        | -883.611                                    | -1899.981 |
| 353  | VSS            | -683.613                                    | -1899.981 |
| 354  | VSS            | -483.615                                    | -1899.981 |
| 355  | VSS            | -238.617                                    | -1899.981 |
| 356  | BT_VDDCLDO     | 268.875                                     | -1899.981 |
| 357  | BT_VSSC        | 493.875                                     | -1899.981 |
| 358  | BT_VSSC        | 716.373                                     | -1899.981 |
| 359  | BT_VSSC        | 916.371                                     | -1899.981 |
| 360  | BT_VSSC        | 1116.369                                    | -1899.981 |
| 361  | BT_VSSC        | 1316.367                                    | -1899.981 |
| 362  | BT_GPIO_3      | 1516.365                                    | -1899.981 |
| 363  | BT_VSSC        | 1806.363                                    | -1899.981 |
| 364  | BT_VDDC_AAON   | 2006.361                                    | -1899.981 |
| 365  | BT_VDDCLDO     | 2206.359                                    | -1899.981 |
| 366  | BT_SLIMBUS_DT  | 2406.357                                    | -1899.981 |
| 367  | BT_VDDCG       | 2606.355                                    | -1899.981 |
| 368  | BT_SLIMBUS_CK  | 2806.353                                    | -1899.981 |
| 369  | VSS            | -1062.630                                   | -2099.979 |
| 370  | BT_VDDCLDO     | 916.371                                     | -2099.979 |
| 371  | BT_VSSC        | 1116.369                                    | -2099.979 |
| 372  | BT_VDDCLDO     | 1316.367                                    | -2099.979 |
| 373  | BT_AJTAG_TCK   | 1516.365                                    | -2099.979 |
| 374  | BT_VDDCLDO     | 1716.363                                    | -2099.979 |
| 375  | BT_I2S_CLK     | 2006.361                                    | -2099.979 |
| 376  | BT_UART_CTS_N  | 2206.359                                    | -2099.979 |
| 377  | BT_HOST_WAKE   | 2406.357                                    | -2099.979 |
| 378  | BT_VSSC        | 2606.355                                    | -2099.979 |
| 379  | BT_VDDO        | 2806.353                                    | -2099.979 |
| 380  | VDD_TOP        | -1062.630                                   | -2299.977 |
| 381  | BT_VDDC        | 916.371                                     | -2299.977 |
| 382  | BT_VSSC        | 1116.369                                    | -2299.977 |
| 383  | BT_I2S_DO      | 1316.367                                    | -2299.977 |
| 384  | BT_PCM_SYNC    | 1516.365                                    | -2299.977 |
| 385  | BT_VSSC        | 1806.363                                    | -2299.977 |
| 886  | BT_VDDMEMLPLDO | 2006.361                                    | -2299.977 |
| 387  | BT_PCM_CLK     | 2206.359                                    | -2299.977 |
| 388  | BT_UART_RTS_N  | 2406.357                                    | -2299.977 |
| 389  | BT_UART_TXD    | 2606.355                                    | -2299.977 |
| 390  | BT_VDDC        | 2806.353                                    | -2299.977 |
| 391  | VDD_AON        | -1062.630                                   | -2499.975 |

Table 35: BCM4375 WLCSP Coordinates by Bump Number (Continued)

| Bump | Net Name         | Package Bump Side View (0, 0 center of die) |           |
|------|------------------|---------------------------------------------|-----------|
|      |                  | X-COORD                                     | Y-COORD   |
| 392  | BT_VSSC          | 916.371                                     | -2499.975 |
| 393  | BT_VSSC          | 1116.369                                    | -2499.975 |
| 394  | BT_VSSC          | 1316.367                                    | -2499.975 |
| 395  | BT_VSSC          | 1516.365                                    | -2499.975 |
| 396  | BT_VDDC          | 1806.363                                    | -2499.975 |
| 397  | BT_PCM_OUT       | 2006.361                                    | -2499.975 |
| 398  | BT_PCM_IN        | 2206.359                                    | -2499.975 |
| 399  | BT_UART_RXD      | 2406.357                                    | -2499.975 |
| 400  | BT_I2S_WS        | 2606.355                                    | -2499.975 |
| 401  | BT_I2S_DI        | 2806.353                                    | -2499.975 |
| 402  | VSS              | -1062.630                                   | -2699.973 |
| 403  | BT_AJTAG_TDO     | 1806.363                                    | -2739.501 |
| 404  | BT_AJTAG_TDI     | 2006.361                                    | -2739.501 |
| 405  | BT_AJTAG_TMS     | 2206.359                                    | -2739.501 |
| 406  | BT_TM1           | 2406.357                                    | -2739.501 |
| 407  | BT_VSSC          | 2606.355                                    | -2739.501 |
| 408  | BT_DEV_WAKE      | 2824.353                                    | -2739.501 |
| 409  | VSS              | -1062.630                                   | -2899.971 |
| 410  | BT_GPIO_2        | 1681.488                                    | -2939.499 |
| 411  | BT_CLK_REQ       | 1881.486                                    | -2939.499 |
| 412  | BT_GPIO_4        | 2081.484                                    | -2939.499 |
| 413  | BT_GPIO_5        | 2281.482                                    | -2939.499 |
| 414  | BT_VSSC          | 2481.480                                    | -2939.499 |
| 415  | BT_VDDO          | 2685.978                                    | -2939.499 |
| 416  | BT_VDDB          | -31.617                                     | -1899.981 |
| 417  | PAD_I_TVDD1P0    | 2692.706                                    | 318.393   |
| 418  | PAD_I_PVDD1P0    | 2692.706                                    | 718.389   |
| 419  | PAD_O_TDP0       | 2892.704                                    | 318.393   |
| 420  | PAD_O_TESTP      | 2492.708                                    | 118.395   |
| 421  | PAD_I_RGND       | 2892.704                                    | 918.392   |
| 422  | PAD_I_RVDD1P0    | 2692.706                                    | 918.392   |
| 423  | PAD_I_REFCLKN    | 2492.708                                    | 518.391   |
| 424  | PAD_I_RDP0       | 2892.704                                    | 718.389   |
| 425  | PAD_I_RDN0       | 2892.704                                    | 518.391   |
| 426  | PAD_I_REFCLKP    | 2492.708                                    | 718.389   |
| 427  | PAD_I_TGND       | 2692.706                                    | 118.395   |
| 428  | PAD_O_TDN0       | 2892.704                                    | 118.395   |
| 429  | PAD_I_PGND       | 2492.708                                    | 918.392   |
| 430  | PAD_O_TESTN      | 2492.708                                    | 318.393   |
| 431  | VDDOUT_RFLDO_SNS | 504.252                                     | 2948.499  |

Table 35: BCM4375 WLCSP Coordinates by Bump Number (Continued)

| Bump | Net Name         | Package Bump Side View (0, 0 center of die) |          |
|------|------------------|---------------------------------------------|----------|
|      |                  | X-COORD                                     | Y-COORD  |
| 432  | ASR_VDDBAT5      | 2104.236                                    | 2948.499 |
| 433  | CSR_VDDBAT5      | 2304.234                                    | 2694.501 |
| 434  | CSR_VDDBAT5      | 2304.234                                    | 2494.503 |
| 435  | PVSSC            | 2704.230                                    | 2694.501 |
| 436  | LDO_VDD0P9       | 2904.228                                    | 2694.501 |
| 437  | PVSSA            | 1704.240                                    | 2948.499 |
| 438  | CSR_VLX          | 2504.232                                    | 2694.501 |
| 439  | PVSSA            | 1704.240                                    | 2694.501 |
| 440  | ASR_VLX          | 1904.238                                    | 2948.499 |
| 441  | PVSSC            | 2704.230                                    | 2494.503 |
| 442  | VDDOUT_MISCLDO   | 1304.244                                    | 2548.503 |
| 443  | CSR_VLX          | 2504.232                                    | 2948.499 |
| 444  | VSSC             | 1504.242                                    | 2348.505 |
| 445  | VDDOUT_SWCORE    | 2904.228                                    | 2494.503 |
| 446  | CSR_VLX          | 2504.232                                    | 2294.505 |
| 447  | PVSSC            | 2704.230                                    | 2094.507 |
| 448  | BT_REG_ON        | 904.248                                     | 2148.507 |
| 449  | VDDOUT_BTLDO_SNS | 1104.246                                    | 2948.499 |
| 450  | PMU_AVSS         | 1504.242                                    | 2548.503 |
| 451  | VDDOUT_BT3P3     | 1104.246                                    | 2548.503 |
| 452  | VDDOUT_BT3P3     | 1104.246                                    | 2748.501 |
| 453  | VDDOUT_RF3P3     | 504.252                                     | 2148.507 |
| 454  | WL_REG_ON        | 704.250                                     | 2148.507 |
| 455  | PMU_VDDIOP       | 1504.242                                    | 2748.501 |
| 456  | LDO_VDDBAT5      | 704.250                                     | 2348.505 |
| 457  | VDDOUT_RF3P3     | 504.252                                     | 2348.505 |
| 458  | VDDOUT_RF3P3     | 504.252                                     | 2748.501 |
| 459  | VDDOUT_RF3P3     | 504.252                                     | 2548.503 |
| 460  | CSR_VLX          | 2504.232                                    | 2494.503 |
| 461  | PVSSC            | 2704.230                                    | 2294.505 |
| 462  | CSR_VLX          | 2504.232                                    | 2094.507 |
| 463  | PMU_VDDIOA       | 1304.244                                    | 2748.501 |
| 464  | VDDOUT_MEMLPLDO  | 1304.244                                    | 2948.499 |
| 465  | VDDOUT_AON       | 2904.228                                    | 2294.505 |
| 466  | PVSSA            | 1704.240                                    | 2494.503 |
| 467  | VDDOUT_BT3P3     | 1104.246                                    | 2348.505 |
| 468  | LDO_VDDBAT5      | 704.250                                     | 2748.501 |
| 469  | LDO_VDDBAT5      | 704.250                                     | 2948.499 |
| 470  | LDO_VDDBAT5      | 704.250                                     | 2548.503 |
| 471  | LDO VDDBAT5      | 904.248                                     | 2348.505 |

Table 35: BCM4375 WLCSP Coordinates by Bump Number (Continued)

|      |                             | Package Bump Side View (0, 0 center of die) |           |
|------|-----------------------------|---------------------------------------------|-----------|
| Bump | Net Name                    | X-COORD                                     | Y-COORD   |
| 472  | LDO_VDDBAT5                 | 904.248                                     | 2548.503  |
| 473  | LDO_VDDBAT5                 | 904.248                                     | 2748.501  |
| 474  | LDO_VDDBAT5                 | 904.248                                     | 2948.499  |
| 475  | NC                          | 1104.246                                    | 2148.507  |
| 476  | CSR_VDDBAT5                 | 2304.234                                    | 2948.499  |
| 477  | ASR_VDDBAT5                 | 2104.236                                    | 2494.503  |
| 478  | ASR_VDDBAT5                 | 2104.236                                    | 2694.501  |
| 479  | ASR_VLX                     | 1904.238                                    | 2494.503  |
| 480  | ASR_VLX                     | 1904.238                                    | 2294.505  |
| 481  | ASR_VLX                     | 1904.238                                    | 2094.507  |
| 482  | LDO_VDD1P12                 | 1504.242                                    | 2948.499  |
| 483  | ASR_VLX                     | 1904.238                                    | 2694.501  |
| 484  | PVSSC                       | 2704.230                                    | 2948.499  |
| 485  | PVSSA                       | 1704.240                                    | 2294.505  |
| 486  | VSSC                        | 2104.236                                    | 2294.505  |
| 487  | PMU_AVSS                    | 2304.234                                    | 2294.505  |
| 488  | VDD_V1P8_CORE1_MAIN         | -1693.823                                   | -605.633  |
| 489  | VDD_V1P8_CORE0_MAIN         | -2211.561                                   | -2952.504 |
| 490  | PMU_TX_VDD_V1P12_CORE0_MAIN | -2473.628                                   | -2952.504 |
| 491  | PMU_TX_VDD_V1P12_CORE1_MAIN | -1985.117                                   | -605.633  |
| 492  | AFE_VDD_V1P12_CORE0_MAIN    | -2342.664                                   | -2801.214 |
| 493  | AFE_VDD_V1P12_CORE1_MAIN    | -1537.826                                   | -731.817  |
| 494  | RADIO_GND                   | -2247.611                                   | -368.667  |
| 495  | RADIO_GND                   | -1553.391                                   | 2264.508  |
| 496  | RADIO_GND                   | -1706.207                                   | 1682.136  |
| 497  | RADIO_GND                   | -2432.840                                   | 593.609   |
| 498  | RADIO_GND                   | -2847.618                                   | -145.652  |
| 499  | RADIO_GND                   | -2150.528                                   | 337.518   |
| 500  | RADIO_GND                   | -2150.519                                   | 66.911    |
| 501  | RADIO_GND                   | -2150.528                                   | 660.146   |
| 502  | RADIO_GND                   | -2350.526                                   | 924.138   |
| 503  | RADIO_GND                   | -2905.029                                   | 465.827   |
| 504  | RADIO_GND                   | -1553.391                                   | 80.771    |
| 505  | RADIO_GND                   | -1512.936                                   | -2738.403 |
| 506  | RADIO_GND                   | -2150.528                                   | 885.951   |
| 507  | RADIO_GND                   | -2293.128                                   | 1399.113  |
| 508  | RADIO_GND                   | -1737.738                                   | -350.492  |
| 509  | RADIO_GND                   | -2905.029                                   | 2215.832  |
| 510  | VCO_VDD_V1P12_MAIN          | -1618.295                                   | -1538.897 |
| 511  | PMU_VDD_V3P3_CORE1_MAIN     | -1381.829                                   | -605.633  |

Table 35: BCM4375 WLCSP Coordinates by Bump Number (Continued)

| Bump | Net Name                | Package Bump Side View (0, 0 center of die) |           |
|------|-------------------------|---------------------------------------------|-----------|
|      |                         | X-COORD                                     | Y-COORD   |
| 512  | SYNTH_VDD_V1P12_MAIN    | -1822.136                                   | -1516.248 |
| 513  | PMU_VDD_V3P3_CORE0_MAIN | -2623.293                                   | -2819.691 |
| 514  | RADIO_GND               | -1312.938                                   | -2738.403 |
| 515  | RADIO_GND               | -1512.936                                   | -1107.189 |
| 516  | RADIO_GND               | -1312.938                                   | -1107.189 |
| 517  | RADIO_GND               | -1363.131                                   | -2196.855 |
| 518  | RADIO_GND               | -1356.485                                   | -1710.230 |
| 519  | RADIO_GND               | -2505.033                                   | -1821.654 |
| 520  | RADIO_GND               | -2026.665                                   | -1407.969 |
| 521  | RADIO_GND               | -2905.029                                   | -1821.654 |
| 522  | RADIO_GND               | -2705.031                                   | -1821.654 |
| 523  | RADIO_GND               | -2246.544                                   | -782.933  |
| 524  | RADIO_GND               | -2752.488                                   | -845.217  |
| 525  | RADIO_GND               | -1857.515                                   | -760.212  |
| 526  | RADIO_GND               | -2668.293                                   | -2364.669 |
| 527  | RADIO_GND               | -2461.811                                   | -2353.262 |
| 528  | RADIO_GND               | -2584.877                                   | -2045.741 |
| 529  | RADIO_GND               | -2584.877                                   | -985.946  |
| 530  | RADIO_GND               | -2668.293                                   | -1304.874 |
| 531  | RADIO_GND               | -1937.736                                   | -350.492  |
| 532  | RADIO_GND               | -2847.618                                   | 1604.354  |
| 533  | PAOUT_5G_CORE0_MAIN     | -2905.029                                   | -2366.046 |
| 534  | RFIN_5G_CORE0_MAIN      | -2905.029                                   | -2166.048 |
| 535  | GPAIO_CORE0_MAIN        | -1865.556                                   | -2608.947 |
| 536  | RADIO_GND               | -2150.528                                   | 2617.506  |
| 537  | RADIO_GND               | -2447.609                                   | -368.667  |
| 538  | RADIO_GND               | -2604.951                                   | 695.543   |
| 539  | RADIO_GND               | -1886.625                                   | -18.257   |
| 540  | RADIO_GND               | -2808.770                                   | 117.333   |
| 541  | TSSI5G_CORE0_MAIN       | -1665.558                                   | -2608.947 |
| 542  | GPAIO_CORE1_MAIN        | -1865.556                                   | -1236.645 |
| 543  | TSSI5G_CORE1_MAIN       | -1665.558                                   | -1236.645 |
| 544  | RADIO_GND               | -2905.029                                   | -2793.488 |
| 545  | PAOUT_5G_CORE1_MAIN     | -2905.029                                   | -1306.251 |
| 546  | PA_VDD_V3P3_CORE1_MAIN  | -2731.923                                   | -1591.686 |
| 547  | RADIO_GND               | -2153.196                                   | -2688.953 |
| 548  | SYNTH_VDD_V3P3_MAIN     | -1713.231                                   | -2350.814 |
| 549  | RADIO_GND               | -2509.425                                   | -2651.481 |
| 550  | RADIO_GND               | -2150.528                                   | 2087.505  |
| 551  | RADIO_GND               | -1537.740                                   | -350.492  |

Table 35: BCM4375 WLCSP Coordinates by Bump Number (Continued)

| Bump | Net Name               | Package Bump Side View (0, 0 center of die) |           |
|------|------------------------|---------------------------------------------|-----------|
|      |                        | X-COORD                                     | Y-COORD   |
| 552  | PA_VDD_V3P3_CORE0_MAIN | -2731.923                                   | -2651.481 |
| 553  | RADIO_GND              | -2023.304                                   | -2424.294 |
| 554  | RADIO_GND              | -2209.491                                   | -1921.653 |
| 555  | VCO_VDD_V3P3_MAIN      | -1776.623                                   | -2160.590 |
| 556  | RADIO_GND              | -1761.764                                   | -1710.230 |
| 557  | RADIO_GND              | -2461.811                                   | -1293.467 |
| 558  | RADIO_GND              | -2509.425                                   | -1591.686 |
| 559  | RADIO_GND              | -2253.731                                   | -1719.486 |
| 560  | PA2G_VDD_V3P3_C0_AUX   | -2358.950                                   | 39.321    |
| 561  | RADIO_GND              | -1553.391                                   | 280.769   |
| 562  | RADIO_GND              | -2604.951                                   | 2445.548  |
| 563  | RADIO_GND              | -2808.770                                   | 1867.338  |
| 564  | RFIN_5G_CORE1_MAIN     | -2905.029                                   | -1106.253 |
| 565  | RADIO_GND              | -2150.528                                   | 2297.858  |
| 566  | RADIO_GND              | -2432.840                                   | 2343.614  |
| 567  | RADIO_GND              | -1553.391                                   | 2064.510  |
| 568  | RADIO_GND              | -1805.027                                   | 713.376   |
| 569  | RADIO_GND              | -1886.625                                   | 2363.504  |
| 570  | RADIO_GND              | -1455.026                                   | 990.500   |
| 571  | RADIO_GND              | -2905.029                                   | 1000.440  |
| 572  | RADIO_GND              | -2842.938                                   | 1190.858  |
| 573  | AFE_VDD_V1P12_AUX      | -2642.931                                   | 1188.761  |
| 574  | RADIO_GND              | -2705.022                                   | 998.640   |
| 575  | RADIO_GND              | -2264.324                                   | -2424.407 |
| 576  | PA2G_VDD_V3P3_C1_AUX   | -2358.950                                   | 1789.326  |
| 577  | RADIO_GND              | -2264.324                                   | -1364.612 |
| 578  | RADIO_GND              | -1759.622                                   | 952.182   |
| 579  | RADIO_GND              | -2093.139                                   | 1415.471  |
| 580  | RADIO_GND              | -1906.205                                   | 1682.136  |
| 581  | TX_VDD_V1P12_C0_AUX    | -2388.623                                   | 334.062   |
| 582  | RADIO_GND              | -1553.391                                   | 1864.512  |
| 583  | RADIO_GND              | -1553.391                                   | 480.767   |
| 584  | TX_VDD_V1P12_C1_AUX    | -2388.623                                   | 2084.067  |
| 585  | PAOUT_5G_C1_AUX        | -2795.342                                   | 2383.187  |
| 586  | GENERAL_VDD_V3P3_AUX   | -2493.126                                   | 1322.159  |
| 587  | PA2G_VDD_V3P3_C0_AUX   | -2679.939                                   | -36.045   |
| 588  | PA2G_VDD_V3P3_C1_AUX   | -2679.939                                   | 1713.960  |
| 589  | PMU_VDD_V1P12_AUX      | -2150.528                                   | 1112.850  |
| 590  | RFIN_2G_C0_AUX         | -2847.618                                   | -359.150  |
| 591  | RFIN 2G C1 AUX         | -2847.618                                   | 1390.856  |

Table 35: BCM4375 WLCSP Coordinates by Bump Number (Continued)

|      |                        | Package Bump Side View (0, 0 center of die) |           |
|------|------------------------|---------------------------------------------|-----------|
| Bump | Net Name               | X-COORD                                     | Y-COORD   |
| 592  | AFE_VDD_V1P8_C0_AUX    | -1455.026                                   | -119.228  |
| 593  | AFE_VDD_V1P8_C1_AUX    | -1455.026                                   | 2464.506  |
| 594  | EXT_TSSIA_C0_AUX       | -1886.625                                   | 426.740   |
| 595  | EXT_TSSIA_C1_AUX       | -1886.625                                   | 1918.508  |
| 596  | EXT_TSSIG_GPAIO_C0_AUX | -1886.625                                   | 226.742   |
| 597  | EXT_TSSIG_GPAIO_C1_AUX | -1886.625                                   | 2118.506  |
| 598  | RFIN_5G_C1_AUX         | -2905.029                                   | 2550.447  |
| 599  | PAOUT_2G_C0_AUX        | -2771.033                                   | 317.327   |
| 600  | PAOUT_2G_C1_AUX        | -2771.033                                   | 2067.332  |
| 601  | PAOUT_5G_C0_AUX        | -2795.342                                   | 633.182   |
| 602  | RFIN_5G_C0_AUX         | -2905.029                                   | 800.442   |
| 603  | TX_VDD_V3P3_C0_AUX     | -2247.611                                   | -133.088  |
| 604  | TX_VDD_V3P3_C1_AUX     | -2247.611                                   | 1616.918  |
| 605  | VCO_VDD_V1P12_AUX      | -1425.024                                   | 1548.248  |
| 606  | SYNTH_VDD_V1P12_AUX    | -1455.026                                   | 790.502   |
| 607  | TX_VDD_V1P12_C0_AUX    | -2583.108                                   | 389.097   |
| 608  | TX_VDD_V1P12_C1_AUX    | -2583.108                                   | 2139.102  |
| 609  | RADIO_GND              | -1404.639                                   | -2505.780 |
| 610  | RADIO_GND              | -1735.493                                   | -2901.645 |
| 611  | RADIO_GND              | -2253.731                                   | -2121.651 |
| 612  | RADIO_GND              | -1559.124                                   | -2047.388 |
| 613  | RADIO_GND              | -1735.493                                   | -943.547  |
| 614  | RADIO_GND              | -2646.414                                   | -645.219  |
| 615  | RADIO_GND              | -2184.570                                   | -582.935  |
| 616  | RADIO_GND              | -2384.568                                   | -976.676  |
| 617  | RADIO_GND              | -2218.280                                   | -1088.829 |
| 618  | RADIO_GND              | -1312.938                                   | -907.191  |
| 619  | RADIO_GND              | -1284.111                                   | -1510.232 |
| 620  | RADIO_GND              | -1312.938                                   | -2938.401 |
| 621  | RADIO_GND              | -2846.412                                   | -645.219  |
| 622  | RADIO_GND              | -2774.129                                   | -2952.504 |
| 623  | I_PAD_BT_RFVSS         | -789.444                                    | -2769.125 |
| 624  | I_PAD_BT_RFVSS         | -739.782                                    | -2407.352 |
| 625  | I_PAD_BT_LDOVDD_V1P12  | -729.482                                    | -2202.503 |
| 626  | O_PAD_BT_RFOP          | -690.017                                    | -2952.504 |
| 627  | I_PAD_BT_RFVSS         | -512.681                                    | -2492.901 |
| 628  | O_PAD_BT_13DBMOP       | -486.990                                    | -2724.399 |
| 629  | O_PAD_BT_RFTEST        | -325.859                                    | -2086.704 |
| 630  | O_PAD_BT_20DBMOP       | -151.110                                    | -2772.063 |
| 631  | I PAD BT IFVSS         | -121.401                                    | -2086.704 |

Table 35: BCM4375 WLCSP Coordinates by Bump Number (Continued)

| Bump |                      | Package Bump Side View (0, 0 center of die) |           |  |
|------|----------------------|---------------------------------------------|-----------|--|
|      | Net Name             | X-COORD                                     | Y-COORD   |  |
| 632  | I_PAD_BT_VCOVSS      | -84.357                                     | -2324.187 |  |
| 633  | I_PAD_BT_PAVSS       | -80.132                                     | -2580.935 |  |
| 634  | I_PAD_BT_PAVSS       | -40.271                                     | -2952.504 |  |
| 635  | I_PAD_BT_PAVSS       | 68.553                                      | -2784.699 |  |
| 636  | I_PAD_BT_VCOVSS      | 118.742                                     | -2427.804 |  |
| 637  | I_PAD_BT_IFVSS       | 158.076                                     | -2086.704 |  |
| 638  | I_PAD_BT_PAVDD_V3P3  | 203.535                                     | -2952.504 |  |
| 639  | I_PAD_BT_PAVSS       | 303.795                                     | -2650.896 |  |
| 640  | I_PAD_BT_IFVS\$      | 358.074                                     | -2086.704 |  |
| 641  | I_PAD_BT_PAVDD_V3P3  | 403.533                                     | -2952.504 |  |
| 642  | I_PAD_BT_PAVSS       | 582.696                                     | -2845.350 |  |
| 643  | I_PAD_BT_PLLVSS      | 584.672                                     | -2086.704 |  |
| 644  | I_PAD_BT_PLLVSS      | 608.738                                     | -2404.179 |  |
| 645  | I_PAD_XTAL_GND       | 844.979                                     | -2947.104 |  |
| 646  | O_PAD_XTAL_XON       | 1044.977                                    | -2952.504 |  |
| 647  | I_PAD_XTAL_GND       | 1044.977                                    | -2752.506 |  |
| 648  | I_PAD_XTAL_XOP       | 1244.975                                    | -2952.504 |  |
| 649  | I_PAD_XTAL_GND       | 1244.975                                    | -2752.506 |  |
| 650  | I_PAD_VDD_XTAL       | 1444.973                                    | -2952.504 |  |
| 651  | I_PAD_XTAL_VDD_V1P12 | 1444.973                                    | -2752.506 |  |

# 10.2 Signal Descriptions

Table 36 provides the signal name, type, and description of each pin in the BCM4375. The symbols shown under Type indicate pin directions (I/O = bidirectional, I = input, O = output) and the internal pull-up/pull-down characteristics (PU = weak internal pull-up resistor and PD = weak internal pull-down resistor), if any.

Table 36: BCM4375 WLCSP Signal Descriptions

| Signal Name                                    | Bump | Type | Description                                                       |  |  |  |
|------------------------------------------------|------|------|-------------------------------------------------------------------|--|--|--|
| WLAN and Bluetooth Receive RF Signal Interface |      |      |                                                                   |  |  |  |
| EXT_TSSIA_C0_AUX                               | 594  | 0    | 5 GHz TSSI CORE0 auxiliary                                        |  |  |  |
| EXT_TSSIA_C1_AUX                               | 595  | 0    | 5 GHz TSSI CORE1 auxiliary                                        |  |  |  |
| EXT_TSSIG_GPAIO_C0_AUX                         | 596  | 0    | GPIO or 2.4 GHz TSSI CORE0 auxiliary                              |  |  |  |
| EXT_TSSIG_GPAIO_C1_AUX                         | 597  | 0    | GPIO or 2.4 GHz TSSI CORE1 auxiliary                              |  |  |  |
| GPAIO_CORE0_MAIN                               | 535  | I/O  | Core 0 analog GPIO (main slice)                                   |  |  |  |
| GPAIO_CORE1_MAIN                               | 542  | I/O  | Core 1 analog GPIO (main slice)                                   |  |  |  |
| PAOUT_2G_C0_AUX                                | 599  | 0    | 2.4 GHz WLAN auxiliary CORE0 PA output                            |  |  |  |
| PAOUT_2G_C1_AUX                                | 600  | 0    | 2.4 GHz WLAN auxiliary CORE1 PA output                            |  |  |  |
| PAOUT_5G_C0_AUX                                | 601  | 0    | 5 GHz WLAN auxiliary CORE0 PA output                              |  |  |  |
| PAOUT_5G_C1_AUX                                | 585  | 0    | 5 GHz WLAN auxiliary CORE1 PA output.                             |  |  |  |
| PAOUT_5G_CORE0_MAIN                            | 533  | 0    | 5 GHz WLAN main CORE0 PA output                                   |  |  |  |
| PAOUT_5G_CORE1_MAIN                            | 545  | 0    | 5 GHz WLAN main CORE1 PA output                                   |  |  |  |
| RFIN_2G_C0_AUX                                 | 590  | I    | 2.4 GHz Bluetooth and WLAN auxiliary CORE0 receiver shared input. |  |  |  |
| RFIN_2G_C1_AUX                                 | 591  | I    | 2.4 GHz Bluetooth and WLAN auxiliary CORE1 receiver shared input. |  |  |  |
| RFIN_5G_C0_AUX                                 | 602  | I    | 5 GHz WLAN auxiliary CORE0 receiver input                         |  |  |  |
| RFIN_5G_C1_AUX                                 | 598  | I    | 5 GHz WLAN auxiliary CORE1 receiver input                         |  |  |  |
| RFIN_5G_CORE0_MAIN                             | 534  | I    | 5 GHz WLAN main CORE0 receiver input                              |  |  |  |
| RFIN_5G_CORE1_MAIN                             | 564  | I    | 5 GHz WLAN main CORE1 receiver input                              |  |  |  |
| TSSI5G_CORE0_MAIN                              | 541  | 0    | 5 GHz TSSI CORE0 main                                             |  |  |  |
| TSSI5G_CORE1_MAIN                              | 543  | 0    | 5 GHz TSSI CORE1 main                                             |  |  |  |

Table 36: BCM4375 WLCSP Signal Descriptions (Continued)

| Signal Name             | Bump | Туре | Description                                                                                 |
|-------------------------|------|------|---------------------------------------------------------------------------------------------|
| RF Switch Control Lines |      |      |                                                                                             |
| RF_SW_CTRL_0            | 227  | 0    | Programmable RF switch control lines. The control lines are programmable via the driver and |
| RF_SW_CTRL_1            | 240  | 0    | NVRAM file.                                                                                 |
| RF_SW_CTRL_2            | 255  | 0    |                                                                                             |
| RF_SW_CTRL_3            | 273  | 0    |                                                                                             |
| RF_SW_CTRL_4            | 254  | 0    |                                                                                             |
| RF_SW_CTRL_5            | 302  | 0    |                                                                                             |
| RF_SW_CTRL_6            | 287  | 0    |                                                                                             |
| RF_SW_CTRL_7            | 272  | 0    |                                                                                             |
| RF_SW_CTRL_8            | 301  | 0    |                                                                                             |
| RF_SW_CTRL_9            | 286  | 0    |                                                                                             |
| RF_SW_CTRL_10           | 8    | 0    |                                                                                             |
| RF_SW_CTRL_11           | 7    | 0    |                                                                                             |
| RF_SW_CTRL_12           | 6    | 0    |                                                                                             |
| RF_SW_CTRL_13           | 16   | 0    |                                                                                             |
| RF_SW_CTRL_14           | 43   | 0    |                                                                                             |
| RF_SW_CTRL_15           | 44   | 0    |                                                                                             |
| RF_SW_CTRL_16           | 45   | 0    |                                                                                             |
| RF_SW_CTRL_17           | 46   | 0    |                                                                                             |
| RF_SW_CTRL_18           | 38   | 0    |                                                                                             |
| RF_SW_CTRL_19           | 47   | 0    |                                                                                             |
| RF_SW_CTRL_20           | 315  | 0    |                                                                                             |
| RF_SW_CTRL_21           | 347  | 0    |                                                                                             |
| RF_SW_CTRL_22           | 348  | 0    |                                                                                             |
| RF_SW_CTRL_23           | 350  | 0    |                                                                                             |
| RF_SW_CTRL_24           | 349  | 0    |                                                                                             |

Table 36: BCM4375 WLCSP Signal Descriptions (Continued)

| Signal Name                | Bump                       | Туре  | Description                                                                                                                                                                                                                                                                                           |  |  |  |
|----------------------------|----------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| WLAN PCI Express Interface | WLAN PCI Express Interface |       |                                                                                                                                                                                                                                                                                                       |  |  |  |
| PAD_I_RDN0                 | 425                        | I     | Receiver differential pair (×1 lane).                                                                                                                                                                                                                                                                 |  |  |  |
| PAD_I_RDP0                 | 424                        | I     |                                                                                                                                                                                                                                                                                                       |  |  |  |
| PAD_I_REFCLKN              | 423                        | I     | PCIe differential clock inputs (negative and positive). 100 MHz differential.                                                                                                                                                                                                                         |  |  |  |
| PAD_I_REFCLKP              | 426                        | I     |                                                                                                                                                                                                                                                                                                       |  |  |  |
| PAD_O_TDN0                 | 428                        | 0     | Transmitter differential pair (×1 lane).                                                                                                                                                                                                                                                              |  |  |  |
| PAD_O_TDP0                 | 419                        | 0     |                                                                                                                                                                                                                                                                                                       |  |  |  |
| PAD_O_TESTP                | 430                        | _     | PCIe test pins.                                                                                                                                                                                                                                                                                       |  |  |  |
| PAD_O_TESTN                | 420                        | _     |                                                                                                                                                                                                                                                                                                       |  |  |  |
| PCI_PME_L                  | 50                         | OD    | PCI power management event output. Used to request a change in the device or system power state. The assertion and deassertion of this signal are asynchronous to the PCIe reference clock. This signal has an open-drain output structure, as per the PCI Bus Local Bus Specification, revision 2.3. |  |  |  |
| PCIE_CLKREQ_L              | 51                         | OD    | PCIe clock request signal which indicates when the REFCLK to the PCIe interface can be gated.  1 = the clock can be gated.  0 = the clock is required.                                                                                                                                                |  |  |  |
| PERST_L                    | 52                         | I(PU) | PCIe system reset. This input is the PCIe reset as defined in the PCIe base specification version 1.1.                                                                                                                                                                                                |  |  |  |

Table 36: BCM4375 WLCSP Signal Descriptions (Continued)

| Signal Name    | Bump                                                                                                             | Туре | Description                                                                                                                                                                                                                   |
|----------------|------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | exed via software and the JTAG_SEL<br>PIO Signals and Strapping Options" of<br>Functions for additional details. |      |                                                                                                                                                                                                                               |
| GPIO_0         | 108                                                                                                              | I/O  | Programmable GPIO pins.                                                                                                                                                                                                       |
| GPIO_1         | 107                                                                                                              | I/O  |                                                                                                                                                                                                                               |
| GPIO_2         | 121                                                                                                              | I/O  |                                                                                                                                                                                                                               |
| GPIO_3         | 140                                                                                                              | I/O  |                                                                                                                                                                                                                               |
| GPIO_4         | 139                                                                                                              | I/O  |                                                                                                                                                                                                                               |
| GPIO_5         | 153                                                                                                              | I/O  |                                                                                                                                                                                                                               |
| GPIO_6         | 88                                                                                                               | I/O  |                                                                                                                                                                                                                               |
| GPIO_7         | 87                                                                                                               | I/O  |                                                                                                                                                                                                                               |
| GPIO_8         | 86                                                                                                               | I/O  |                                                                                                                                                                                                                               |
| GPIO_9         | 106                                                                                                              | I/O  |                                                                                                                                                                                                                               |
| GPIO_10        | 105                                                                                                              | I/O  |                                                                                                                                                                                                                               |
| GPIO_11        | 103                                                                                                              | I/O  |                                                                                                                                                                                                                               |
| GPIO_12        | 117                                                                                                              | I/O  |                                                                                                                                                                                                                               |
| GPIO_13        | 60                                                                                                               | I/O  |                                                                                                                                                                                                                               |
| GPIO_14        | 48                                                                                                               | I/O  |                                                                                                                                                                                                                               |
| GPIO_15        | 40                                                                                                               | I/O  |                                                                                                                                                                                                                               |
| GPIO_16        | 20                                                                                                               | I/O  |                                                                                                                                                                                                                               |
| GPIO_17        | 61                                                                                                               | I/O  |                                                                                                                                                                                                                               |
| GPIO_18        | 49                                                                                                               | I/O  |                                                                                                                                                                                                                               |
| GPIO_19        | 23                                                                                                               | I/O  |                                                                                                                                                                                                                               |
| GPIO_20        | 41                                                                                                               | I/O  |                                                                                                                                                                                                                               |
| JTAG Interface |                                                                                                                  |      |                                                                                                                                                                                                                               |
| JTAG_SEL       | 83                                                                                                               | I/O  | JTAG select: pull high to select the JTAG interface. If the JTAG interface is not used this pin may be left floating or connected to ground.  NOTE: See Table 39, GPIO Alternative Signal Functions for the JTAG signal pins. |

Table 36: BCM4375 WLCSP Signal Descriptions (Continued)

| Signal Name                    | Bump                                    | Туре | Description                                                                                             |
|--------------------------------|-----------------------------------------|------|---------------------------------------------------------------------------------------------------------|
| XTAL                           |                                         |      |                                                                                                         |
| I_PAD_VDD_XTAL                 | 650                                     | I    | Power supply to the XTAL.                                                                               |
| I_PAD_XTAL_GND                 | 645, 647, 649                           | I    | XTAL oscillator GND.                                                                                    |
| I_PAD_XTAL_VDD_V1P12           | 651                                     | I    | Power supply to the XTAL.                                                                               |
| I_PAD_XTAL_XOP                 | 648                                     | 0    | XTAL oscillator input.                                                                                  |
| O_PAD_XTAL_XON                 | 646                                     | I    | XTAL oscillator output                                                                                  |
| Clocks                         |                                         |      |                                                                                                         |
| BT_CLK_REQ                     | 411                                     | I/O  | Reference clock request (shared by BT and WLAN). If not used, this can be no-connect.                   |
| LPO_IN                         | 161                                     | I    | External sleep clock input (32.768 kHz).                                                                |
| Bluetooth Receiver/Transceiver |                                         |      |                                                                                                         |
| O_PAD_BT_13DBMOP               | 628                                     | 0    | Bluetooth radio output                                                                                  |
| O_PAD_BT_20DBMOP               | 630                                     | 0    | Bluetooth radio output                                                                                  |
| O_PAD_BT_RFOP                  | 626                                     | I/O  | Bluetooth radio shared input/output                                                                     |
| O_PAD_BT_RFTEST                | 629                                     | 0    | Bluetooth radio test port                                                                               |
| Bluetooth PCM                  | ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( |      |                                                                                                         |
| BT_PCM_CLK                     | 387                                     | I/O  | PCM clock; can be master (output) or slave (input).                                                     |
| BT_PCM_IN                      | 398                                     | I    | PCM data input.                                                                                         |
| BT_PCM_OUT                     | 397                                     | 0    | PCM data output.                                                                                        |
| BT_PCM_SYNC                    | 384                                     | I/O  | PCM sync; can be master (output) or slave (input).                                                      |
| Bluetooth UART                 |                                         |      |                                                                                                         |
| BT_UART_CTS_N                  | 376                                     | I    | UART clear-to-send. Active-low clear-to-send signal for the HCI UART interface.                         |
| BT_UART_RTS_N                  | 388                                     | 0    | UART request-to-send. Active-low request-to-send signal for the HCI UART interface. BT LEC control pin. |
| BT_UART_RXD                    | 399                                     | I    | UART serial input. Serial data input for the HCI UART interface.                                        |
| BT_UART_TXD                    | 389                                     | 0    | UART serial output. Serial data output for the HCI UART interface.                                      |

Table 36: BCM4375 WLCSP Signal Descriptions (Continued)

| Signal Name                | Bump | Туре | Description                                                                                                                                                                                                                                                                                                          |
|----------------------------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bluetooth I <sup>2</sup> S | ·    |      | ·                                                                                                                                                                                                                                                                                                                    |
| BT_I2S_CLK                 | 375  | I/O  | I <sup>2</sup> S clock, can be master (output) or slave (input).                                                                                                                                                                                                                                                     |
| BT_I2S_DI                  | 401  | I/O  | I <sup>2</sup> S data input.                                                                                                                                                                                                                                                                                         |
| BT_I2S_DO                  | 383  | I/O  | I <sup>2</sup> S data output.                                                                                                                                                                                                                                                                                        |
| BT_I2S_WS                  | 400  | I/O  | I <sup>2</sup> S WS; can be master (output) or slave (input).                                                                                                                                                                                                                                                        |
| Bluetooth GPIOs            |      |      |                                                                                                                                                                                                                                                                                                                      |
| BT_GPIO_2                  | 410  | I/O  | Bluetooth general-purpose I/O.                                                                                                                                                                                                                                                                                       |
| BT_GPIO_3                  | 362  | I/O  | Bluetooth general-purpose I/O.                                                                                                                                                                                                                                                                                       |
| BT_GPIO_4                  | 412  | I/O  | Bluetooth general-purpose I/O.                                                                                                                                                                                                                                                                                       |
| BT_GPIO_5                  | 413  | I/O  | Bluetooth general-purpose I/O.                                                                                                                                                                                                                                                                                       |
| Bluetooth SLIMbus          |      |      |                                                                                                                                                                                                                                                                                                                      |
| BT_SLIMBUS_CK              | 368  | I/O  | Bluetooth SLIMbus clock.                                                                                                                                                                                                                                                                                             |
| BT_SLIMBUS_DT              | 366  | I/O  | Bluetooth SLIMbus data.                                                                                                                                                                                                                                                                                              |
| Miscellaneous              |      |      |                                                                                                                                                                                                                                                                                                                      |
| BT_AJTAG_TCK               | 373  | I/O  | Bluetooth serial I/F                                                                                                                                                                                                                                                                                                 |
| BT_AJTAG_TDI               | 404  | I/O  | Bluetooth serial I/F                                                                                                                                                                                                                                                                                                 |
| BT_AJTAG_TDO               | 403  | I/O  | Bluetooth serial I/F                                                                                                                                                                                                                                                                                                 |
| BT_AJTAG_TMS               | 405  | I/O  | Bluetooth serial I/F                                                                                                                                                                                                                                                                                                 |
| BT_DEV_WAKE                | 408  | I/O  | Bluetooth DEV_WAKE.                                                                                                                                                                                                                                                                                                  |
| BT_HOST_WAKE               | 377  | I/O  | Bluetooth HOST_WAKE.                                                                                                                                                                                                                                                                                                 |
| BT_REG_ON                  | 448  | I    | Used by PMU to power up or power down the internal BCM4375 regulators used by the Bluetooth section. Also, when deasserted, this pin holds the Bluetooth section in reset. This pin has an internal 50 k $\Omega$ pull-down resistor that is auto-enabled and disabled when the input is low and high, respectively. |
| BT_TM1                     | 406  | I/O  | Bluetooth test mode pin                                                                                                                                                                                                                                                                                              |
| LHL_GPIO0                  | 132  | I/O  | Misc. GPIO                                                                                                                                                                                                                                                                                                           |
| LHL_GPIO1                  | 114  | I/O  | Misc. GPIO                                                                                                                                                                                                                                                                                                           |
| LHL_GPIO2                  | 133  | I/O  | Misc. GPIO I/F                                                                                                                                                                                                                                                                                                       |
| LHL_GPIO3                  | 149  | I/O  | Misc. GPIO                                                                                                                                                                                                                                                                                                           |

Table 36: BCM4375 WLCSP Signal Descriptions (Continued)

| Signal Name                 | Bump            | Туре | Description                                                                                                                                                                                                                                                                                              |
|-----------------------------|-----------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LHL_XTALI                   | 190             | I/O  | External clock input                                                                                                                                                                                                                                                                                     |
| LHL_XTALO                   | 189             | I/O  | Output                                                                                                                                                                                                                                                                                                   |
| MODEHV                      | 22              | I    | Connect to GND to support 1.8V RF_CW_CTRL pads. Connect to 3.3V to support 3.3V RF_SW_CTRL pads.                                                                                                                                                                                                         |
| MODEHV1                     | 317             | I    | Connect to GND to support 1.8V RF_CW_CTRL pads. Connect to 3.3V to support 3.3V RF_SW_CTRL pads.                                                                                                                                                                                                         |
| NC                          | 65, 66, 68, 475 | I    | No connect                                                                                                                                                                                                                                                                                               |
| WL_REG_ON                   | 454             | I    | Used by the PMU to power up or power down the internal BCM4375 regulators used by the WLAN section. When deasserted, this pin holds the WLAN section in reset. This pin has an internal 50 k $\Omega$ pull-down resistor that is auto-enabled and disabled when the input is low and high, respectively. |
| Bluetooth Supplies          |                 |      |                                                                                                                                                                                                                                                                                                          |
| I_PAD_BT_LDOVDD_V1P12       | 625             | PWR  | Bluetooth LDO 1.12V power supply.                                                                                                                                                                                                                                                                        |
| I_PAD_BT_PAVDD_V3P3         | 638, 641        | PWR  | Bluetooth PA 3.3V power supply.                                                                                                                                                                                                                                                                          |
| WLAN Supplies               |                 |      |                                                                                                                                                                                                                                                                                                          |
| AFE_VDD_V1P12_AUX           | 573             | PWR  | WLAN radio 1.12V auxiliary supply.                                                                                                                                                                                                                                                                       |
| AFE_VDD_V1P8_C0_AUX         | 592             | PWR  | WLAN radio 1.8V auxiliary core 0 supply                                                                                                                                                                                                                                                                  |
| AFE_VDD_V1P8_C1_AUX         | 593             | PWR  | WLAN radio 1.8V auxiliary core 1 supply                                                                                                                                                                                                                                                                  |
| AFE_VDD_V1P12_CORE0_MAIN    | 492             | PWR  | WLAN radio 1.12V main core 0 supply                                                                                                                                                                                                                                                                      |
| AFE_VDD_V1P12_CORE1_MAIN    | 493             | PWR  | WLAN radio 1.12V main core 1 supply                                                                                                                                                                                                                                                                      |
| PA_VDD_V3P3_CORE0_MAIN      | 552             | PWR  | WLAN radio PA 3.3V main core 0 supply                                                                                                                                                                                                                                                                    |
| PA_VDD_V3P3_CORE1_MAIN      | 546             | PWR  | WLAN radio PA 3.3V main core 1 supply                                                                                                                                                                                                                                                                    |
| PA2G_VDD_V3P3_C0_AUX        | 560, 587        | PWR  | WLAN radio PA 3.3V PA auxiliary core 0 supply (ePA version only)                                                                                                                                                                                                                                         |
| PA2G_VDD_V3P3_C1_AUX        | 576, 588        | PWR  | WLAN radio PA 3.3V auxiliary core 1 supply (ePA version only)                                                                                                                                                                                                                                            |
| PMU_TX_VDD_V1P12_CORE0_MAIN | 490             | PWR  | WLAN radio 1.12V main core 0 supply                                                                                                                                                                                                                                                                      |
| PMU_TX_VDD_V1P12_CORE1_MAIN | 491             | PWR  | WLAN radio 1.12V main core 1 supply                                                                                                                                                                                                                                                                      |
| PMU_VDD_V1P12_AUX           | 589             | PWR  | WLAN radio 1.12V supply (auxiliary slice)                                                                                                                                                                                                                                                                |
| PMU_VDD_V3P3_CORE0_MAIN     | 513             | PWR  | WLAN radio 3.3V core 0 supply (main slice)                                                                                                                                                                                                                                                               |
| PMU VDD V3P3 CORE1 MAIN     | 511             | PWR  | WLAN radio 3.3V core 1 supply (main slice)                                                                                                                                                                                                                                                               |

Table 36: BCM4375 WLCSP Signal Descriptions (Continued)

| Signal Name            | Bump                       | Туре | Description                               |
|------------------------|----------------------------|------|-------------------------------------------|
| SYNTH_VDD_V1P12_AUX    | 606                        | PWR  | WLAN radio 1.12V auxiliary supply         |
| SYNTH_VDD_V1P12_MAIN   | 512                        | PWR  | WLAN radio 1.12V main supply              |
| SYNTH_VDD_V3P3_MAIN    | 548                        | PWR  | WLAN radio 3.3V main supply               |
| TX_VDD_V1P12_C0_AUX    | 581, 607                   | PWR  | WLAN radio 1.12V auxiliary core 0 supply  |
| TX_VDD_V1P12_C1_AUX    | 584, 608                   | PWR  | WLAN radio 1.12V auxiliary core 1 supply  |
| TX_VDD_V3P3_C0_AUX     | 603                        | PWR  | WLAN radio 3.3V auxiliary core 0 supply   |
| TX_VDD_V3P3_C1_AUX     | 604                        | PWR  | WLAN radio 3.3V auxiliary core 1 supply   |
| VCO_VDD_V1P12_AUX      | 605                        | PWR  | WLAN radio 1.12V supply (auxiliary slice) |
| VCO_VDD_V1P12_MAIN     | 510                        | PWR  | WLAN radio 1.12V supply (main slice)      |
| VCO_VDD_V3P3_MAIN      | 555                        | PWR  | WLAN radio 3.3V supply (main slice)       |
| VDD_V1P8_CORE0_MAIN    | 489                        | PWR  | WLAN radio 1.8V main core 0 supply        |
| VDD_V1P8_CORE1_MAIN    | 488                        | PWR  | WLAN radio 1.8V main core 1 supply        |
| Miscellaneous Supplies |                            |      |                                           |
| BT_VDDB                | 416                        | 0    | Supply monitor pin for BT                 |
| BT_VDDC                | 339, 381, 390, 396         | PWR  | 1.1V core supply for BT                   |
| BT_VDDC_AAON           | 364                        | 0    | Supply monitor pin for BT                 |
| BT_VDDCG               | 367                        | 0    | Supply monitor pin for BT                 |
| BT_VDDCLDO             | 356, 365, 370, 372,<br>374 | PWR  | 0.9V supply for BT                        |
| BT_VDDMEMLPLDO         | 386                        | PWR  | 0.8V retention supply for BT              |
| BT_VDDO                | 379, 415                   | PWR  | 1.8V supply for BT I/O                    |
| FLL_VDDIO              | 72                         | PWR  | 1.8V supply for WLAN                      |
| GENERAL_VDD_V3P3_AUX   | 586                        | PWR  | WLAN radio 3.3V supply                    |
| LHL_VDDO               | 148                        | PWR  | 1.8 supply for LHL                        |
| OTP_VDD1P8             | 136                        | PWR  | OTP 1.8V supply                           |
| PAD_I_PVDD1P0          | 418                        | PWR  | 1.0V PCIe supply                          |
| PAD_I_RVDD1P0          | 422                        | PWR  | 1.0V PCIe supply                          |
| PAD_I_TVDD1P0          | 417                        | PWR  | 1.0V PCIe supply                          |
| VDD18_UPI              | 54                         | PWR  | 1.8V supply to UPI block                  |

Table 36: BCM4375 WLCSP Signal Descriptions (Continued)

| Signal Name       | Bump                                                                                                                   | Туре | Description                                |
|-------------------|------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------|
| VDD_AON           | 31, 35, 67, 104, 115,<br>120, 142, 169, 173,<br>191, 237, 242, 248,<br>256, 303, 327, 333,<br>391                      | PWR  | 0.9V core supply for WLAN/BT               |
| VDD_AUX           | 2, 15, 33, 36, 39, 53,<br>63, 64, 69                                                                                   | PWR  | 0.9V core supply for WLAN                  |
| VDD_DIG           | 102, 137, 166, 193,<br>224, 257, 298, 331                                                                              | PWR  | 0.9V core supply for WLAN                  |
| VDD_MAIN          | 97, 112, 125, 184, 187,<br>231, 232, 235, 265,<br>293, 305, 336                                                        | PWR  | 0.9V core supply for WLAN                  |
| VDD_RET_WL        | 42, 111, 116, 253, 300,<br>329                                                                                         | PWR  | 0.9V core supply for WLAN                  |
| VDD_TOP           | 10, 19, 21, 55, 82, 90, 123, 152, 164, 170, 174, 194, 236, 258, 268, 274, 346, 351, 380                                | PWR  | 0.9V core supply for WLAN/BT               |
| VDDIO             | 59, 70, 80, 85, 118                                                                                                    | PWR  | 1.8V supply for WLAN I/O                   |
| VDDIO_RF          | 17, 37, 57, 228, 314                                                                                                   | PWR  | 3.3V I/O supply for RF switch control pads |
| VDDP_RF           | 27, 29, 288, 316                                                                                                       | PWR  | 1.8V supply to RF switch control pads      |
| Ground            |                                                                                                                        |      |                                            |
| BT_VSSC           | 340, 341, 342, 343,<br>352, 357, 358, 359,<br>360, 361, 363, 371,<br>378, 382, 385, 392,<br>393, 394, 395, 407,<br>414 | GND  | Core ground for Bluetooth.                 |
| I_PAD_BT_IFVSS    | 631, 637, 640                                                                                                          | GND  | Bluetooth IF ground.                       |
| I_PAD_BT_PAVSS    | 633, 634, 635, 639,<br>642                                                                                             | GND  | Bluetooth PA ground.                       |
| I_PAD_BT_PLLV\$\$ | 643, 644                                                                                                               | GND  | Bluetooth PLL ground.                      |
| I_PAD_BT_RFVSS    | 623, 624, 627                                                                                                          | GND  | Bluetooth RF ground.                       |

Table 36: BCM4375 WLCSP Signal Descriptions (Continued)

| Signal Name     | Bump                                                                                                                                  | Туре | Description              |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------|
| I_PAD_BT_VCOVSS | 632, 636                                                                                                                              | GND  | Bluetooth VCO ground.    |
| PAD_AVDD1P0     | 202                                                                                                                                   | PWR  | Baseband PLL supply      |
| PAD_I_PGND      | 429                                                                                                                                   | GND  | PCIe ground              |
| PAD_I_RGND      | 421                                                                                                                                   | GND  | PCIe ground              |
| PAD_I_TGND      | 427                                                                                                                                   | GND  | PCIe ground              |
| PAD_AVSS        | 218                                                                                                                                   | PWR  | Baseband PLL ground      |
| PMU_AVSS        | 450, 487                                                                                                                              | I    | Analog ground            |
| PVSSA           | 437, 439, 466, 485                                                                                                                    | I    | ABUCK power stage ground |
| PVSSC           | 435, 441, 447, 461,<br>484                                                                                                            | I    | CBUCK power stage ground |
| RADIO_GND       | 494, 509, 514, 532, 536, 540, 544, 547, 549, 550, 551, 553, 554, 556, 559, 561, 563, 565, 572, 574, 575, 577, 580, 582, 583, 609, 622 | GND  | Radio ground             |

Table 36: BCM4375 WLCSP Signal Descriptions (Continued)

| Signal Name | Bump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Type | Description           |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------|
| VSS         | 1, 3, 4, 5, 9, 11, 14, 18, 24, 26, 28, 30, 32, 34, 56, 58, 62, 71, 73, 79, 81, 84, 89, 91, 96, 98, 101, 109, 110, 113, 119, 122, 124, 126, 131, 134, 135, 138, 141, 143, 146, 150, 151, 154, 160, 165, 167, 168, 171, 172, 175, 178, 183, 185, 186, 192, 195, 201, 205, 217, 219, 223, 225, 226, 229, 230, 233, 234, 238, 239, 241, 243, 247, 249, 252, 259, 264, 266, 267, 269, 270, 271, 275, 285, 289, 290, 292, 294, 297, 299, 304, 306, 313, 318, 326, 328, 330, 332, 334, 335, 337, 338, 344, 345, 353, 355, 369, 402, 409 |      | Core ground for WLAN. |
| VSSC        | 147, 162, 163, 176,<br>177, 188, 203, 204,<br>444, 486                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GND  | Core ground for WLAN. |

Table 36: BCM4375 WLCSP Signal Descriptions (Continued)

| Signal Name                   | Bump                                      | Туре | Description                                                                                                         |
|-------------------------------|-------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------|
| Integrated Voltage Regulators |                                           |      |                                                                                                                     |
| ASR_VDDBAT5                   | 432, 477, 478                             | I    | Battery supply for ABUCK power stage                                                                                |
| ASR_VLX                       | 440, 479, 480, 481,<br>483                | 0    | ABUCK output to inductor                                                                                            |
| CSR_VDDBAT5                   | 433, 434, 476                             | I    | Battery supply for CBUCK power stage                                                                                |
| CSR_VLX                       | 438, 443, 446, 460,<br>462                | 0    | CBUCK output to inductor.                                                                                           |
| LDO_VDD0P9                    | 436                                       | I    | Sense pin for CBUCK                                                                                                 |
| LDO_VDD1P12                   | 482                                       | I    | Input for MISCLDO and sense pin for ABUCK                                                                           |
| LDO_VDDBAT5                   | 456, 468, 469, 470,<br>471, 472, 473, 474 | I    | Clean battery supplies for BTLDO3P3 and RFLDO3P3. Quiet supplies for CBUCK and ABUCK. PMU internal always-on domain |
| PMU_VDDIOA                    | 463                                       | I    | 1.8V analog supply (AVDD1P8) from system platform.                                                                  |
| PMU_VDDIOP                    | 455                                       | I    | 1.8V analog supply (AVDD1P8) from system platform.                                                                  |
| VDDOUT_AON                    | 465                                       | 0    | Output for VMUX                                                                                                     |
| VDDOUT_BT3P3                  | 451, 452, 467                             | 0    | BTLDO3P3 output                                                                                                     |
| VDDOUT_BTLDO_SNS              | 449                                       | I    | Sense pin for BTLDO3P3. This pin must be star-connected with VDDOUT_BT3P3 at board output cap. terminal.            |
| VDDOUT_MEMLPLDO               | 464                                       | 0    | MEMLPLDO output                                                                                                     |
| VDDOUT_MISCLDO                | 442                                       | 0    | MISCLDO output                                                                                                      |
| VDDOUT_RF3P3                  | 453, 457, 458, 459                        | 0    | RFLDO3P3 output for RF FEM and ePA (optional).                                                                      |
| VDDOUT_RFLDO_SNS              | 431                                       | I    | RFLDO3P3 output sense. This pin must be star-connected with VOUT_RF3P3 at the board output cap. terminal.           |
| VDDOUT_SWCORE                 | 445                                       | 0    | Power-switch output                                                                                                 |

## 10.3 WLAN/BT GPIO Signals and Strapping Options

The pins listed in Table 37 and Table 38 are sampled at power-on reset (POR) to determine the various operating modes. Sampling occurs a few milliseconds after an internal POR or deassertion of the external POR. After the POR, each pin assumes the GPIO or alternative function specified in the signal descriptions table. Each strapping option pin has an internal pull-up (PU) or pull-down (PD) resistor that determines the default mode. To change the mode, connect an external PU resistor to VDDIO or a PD resistor to GND, using a 10 k $\Omega$  resistor or less.

**NOTE:** Refer to the reference board schematics for more information.

Table 37: BT GPIO Functions and Strapping Options

| Pin Name | Default<br>Function | Description                             |
|----------|---------------------|-----------------------------------------|
| BT_GPIO2 | 0                   | 1: BT Serial Flash is present.          |
|          |                     | 0: BT Serial Flash is absent (default). |

NOTE: Not valid on wireless charging platform.

Table 38 provides the BCM4375 GPIO strapping options.

Table 38: BCM4375 GPIO Strapping Options

| Pin Name       | Default Pull<br>During Strapping | Description                        |
|----------------|----------------------------------|------------------------------------|
| GPIO_7         | 0                                | Debug access port select (DAP SEL) |
|                |                                  | 0: Not selected                    |
|                |                                  | 1: Selected                        |
| GPIO_17        | 0                                | OTP select                         |
|                |                                  | 0: OTP                             |
|                |                                  | 1: Reserved                        |
| GPIO_20        | 1                                | Reserved                           |
| GPIO_14        | 0                                | Bluetooth over UART select         |
|                |                                  | 0: Reserved                        |
|                |                                  | 1: BT over UART                    |
| GPIO_16        | 1                                | Internal PA (iPA) gain select      |
| MODEHV/MODEHV1 | 0                                | VDDIO_RF voltage select            |
|                |                                  | 0: 1.8V support on RF_SW_CTRL pads |
|                |                                  | 1: 3.3V support on RF_SW_CTRL pads |

# 10.4 GPIO Alternative Signal Functions

**Table 39: GPIO Alternative Signal Functions** 

|         |                                      | Function Name and Number    |         |                           |                |                 |                 |              |          |                  |                           |        |     |     |     |     |
|---------|--------------------------------------|-----------------------------|---------|---------------------------|----------------|-----------------|-----------------|--------------|----------|------------------|---------------------------|--------|-----|-----|-----|-----|
|         | Power-On<br>Default                  | Pin Name                    | GPIO-0  | FAST_<br>UART/<br>GPIO 1  | GCI-0          | GCI-1           | DBG_<br>UART    | SPI/I2C      | Reserved | MISC-0           | MISC-1                    | MISC-2 | IND | PDN | PUP | TRI |
| Pin     | 0                                    | 1                           | 2       | 3                         | 4              | 5               | 6               | 7            | 8        | 9                | 10                        | 11     | 12  | 13  | 14  | 15  |
| GPIO_0  | TRISTATE_IND                         | WL_HOST_<br>WAKE/<br>GPIO_0 | GPIO_8  |                           | GCI_<br>GPIO_0 | GCI_<br>GPIO_11 | _               | _            | _        | _                | _                         | _      | _   | -   |     | _   |
| GPIO_1  | TRISTATE_IND                         | WL_DEV_W<br>AKE/<br>GPIO_1  | GPIO_9  |                           | GCI_<br>GPIO_1 | GCI_<br>GPIO_12 | _               | _            | _        | RF_<br>DISABLE_L |                           | _      |     | _   | _   | _   |
| GPIO_2  | JTAG_SEL?<br>TCK:<br>TRISTATE_IND    | GPIO_2                      | GPIO_10 | FAST_<br>UART_RX          | GCI_<br>GPIO_2 | GCI_<br>GPIO_13 | UART_<br>DBG_RX | _            |          | TCK              | MUXED_<br>RF_SW_<br>CTRL0 | _      |     | _   |     |     |
| GPIO_3  | JTAG_SEL?<br>TMS:<br>TRISTATE_IND    | GPIO_3                      | GPIO_11 | FAST_<br>UART_TX          | GCI_<br>GPIO_3 | GCI_<br>GPIO_14 | UART_<br>DBG_TX | _            | _        | TMS              | MUXED_<br>RF_SW_<br>CTRL1 | _      |     | _   | _   | _   |
| GPIO_4  | JTAG_SEL?<br>TDI:<br>TRISTATE_IND    | GPIO_4                      | GPIO_12 | FAST_<br>UART_<br>CTS_IN  | GCI_<br>GPIO_4 | GCI_<br>GPIO_15 | _               | _            | _        | TDI              | MUXED_<br>RF_SW_<br>CTRL2 | _      | _   | _   |     | _   |
| GPIO_5  | JTAG_SEL?<br>TDO:<br>TRISTATE_IND    | GPIO_5                      | GPIO_13 | FAST_<br>UART_<br>RTS_OUT | GCI_<br>GPIO_0 | GCI_<br>GPIO_5  | _               | _            | _        | TDO              | MUXED_<br>RF_SW_<br>CTRL3 | _      |     | _   | _   | _   |
| GPIO_6  | JTAG_SEL?<br>TRST_L:<br>TRISTATE_IND | GPIO_6                      | GPIO_14 |                           | GCI_<br>GPIO_1 | GCI_<br>GPIO_6  | UART_<br>DBG_RX | _            |          | TRST_L           | MUXED_<br>RF_SW_<br>CTRL4 | _      | _   | _   |     |     |
| GPIO_7  | TRISTATE_IND                         | GPIO_7                      | GPIO_15 | _                         | GCI_<br>GPIO_2 | GCI_<br>GPIO_7  | UART_<br>DBG_TX | _            |          | PMU_<br>TEST_O   | SWD/<br>JTAG<br>SELECT.   | _      |     | _   | _   | _   |
| GPIO_8  | TRISTATE_IND                         | GPIO_8                      | GPIO_0  | FAST_<br>UART_RX          | GCI_<br>GPIO_3 | GCI_<br>GPIO_8  | _               | GSIO_<br>SDI | _        | _                | _                         | _      | _   | _   | _   |     |
| GPIO_9  | TRISTATE_IND                         | GPIO_9                      | GPIO_1  | FAST_<br>UART_TX          | GCI_<br>GPIO_4 | GCI_<br>GPIO_9  | _               | GSIO_<br>SDO | _        | _                | _                         | _      | _   |     |     |     |
| GPIO_10 | TRISTATE_IND                         | GPIO_10                     | GPIO_2  | FAST_<br>UART_<br>CTS_IN  | GCI_<br>GPIO_0 | GCI_<br>GPIO_10 | UART_<br>DBG_RX | GSIO_<br>CSN | _        | _                | _                         | _      | _   | _   |     | _   |
| GPIO_11 | TRISTATE_IND                         | GPIO_11                     | GPIO_3  | FAST_<br>UART_<br>RTS_OUT | GCI_<br>GPIO_1 | GCI_<br>GPIO_11 | UART_<br>DBG_TX | GSIO_<br>CLK | _        | _                | _                         | _      | _   | _   | -   | _   |

Table 39: GPIO Alternative Signal Functions (Continued)

|                   |                     | Function Name and Number |         |                         |            |                 |                 |              |          |              |        |        |     |     |     |     |
|-------------------|---------------------|--------------------------|---------|-------------------------|------------|-----------------|-----------------|--------------|----------|--------------|--------|--------|-----|-----|-----|-----|
|                   | Power-On<br>Default | Pin Name                 | GPIO-0  | FAST<br>UART/<br>GPIO 1 | GCI-0      | GCI-1           | DBG_<br>UART    | SPI/I2C      | Reserved | MISC-0       | MISC-1 | MISC-2 | IND | PDN | PUP | TRI |
| Pin               | 0                   | 1                        | 2       | 3                       | 4          | 5               | 6               | 7            | 8        | 9            | 10     | 11     | 12  | 13  | 14  | 15  |
| GPIO_12           | TRISTATE_IND        | WL_LED1/<br>GPIO_12      | GPIO_4  | _                       | GCI_GPIO_2 | GCI_<br>GPIO_12 | UART_<br>DBG_RX | _            | _        | _            | _      | _      | _   | _   | _   | _   |
| GPIO_13           | TRISTATE_IND        | WL_LED0/<br>GPIO_13      | GPIO_5  | _                       | GCI_GPIO_3 | GCI_<br>GPIO_13 | UART_<br>DBG_TX | SDIO_<br>CLK | Reserved | _            | _      | _      | _   | _   | _   | _   |
| GPIO_14           | TRISTATE_IND        | GPIO_14                  | GPIO_6  | _                       | GCI_GPIO_4 | GCI_<br>GPIO_14 | _               | _            | _        | _            | _      | _      | _   | _   | _   | _   |
| GPIO_15           | TRISTATE_IND        | GPIO_15                  | GPIO_7  | _                       | _          | GCI_<br>GPIO_15 | _               | SDIO_<br>CMD | Reserved | _            | _      | _      | _   | _   | _   | _   |
| GPIO_16           | TRISTATE_IND        | GPIO_16                  | GPIO_11 | _                       | GCI_GPIO_0 | _               | _               | SDIO_D0      | _        | _            | _      | _      | _   | _   | _   | T-  |
| GPIO_17           | TRISTATE_IND        | GPIO_17                  | GPIO_12 | _                       | GCI_GPIO_1 | _               | _               | SDIO_D1      | _        | _            | _      | _      | _   | _   | _   | _   |
| GPIO_18           | TRISTATE_IND        | GPIO_18                  | GPIO_13 | _                       | GCI_GPIO_2 | _               | _               | SDIO_D2      | Reserved | _            | _      | _      | _   | _   | _   | _   |
| GPIO_19           | TRISTATE_IND        | GPIO_19                  | GPIO_14 | _                       | GCI_GPIO_3 | _               | _               | SDIO_D3      | Reserved | _            | _      | _      | _   | _   | _   | _   |
| GPIO_20           | TRISTATE_IND        | GPIO_20                  | GPIO_15 | _                       | GCI_GPIO_4 | _               | _               | _            | _        | _            | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_0  | RF_SW_<br>CTRL_0    | RF_SW_<br>CTRL_0         | _       | _                       | _          | _               | _               | _            | _        | _            | _      | _      | _   | _   |     |     |
| RF_SW_<br>CTRL_1  | RF_SW_<br>CTRL_1    | RF_SW_<br>CTRL_1         | _       | _                       | _          | _               | _               | _            | _        | _            | _      | _      | _   | _   | _   |     |
| RF_SW_<br>CTRL_2  | RF_SW_<br>CTRL_2    | RF_SW_<br>CTRL_2         | _       | _                       | _          | _               | _               | _            | _        | _            | _      | _      | _   | _   |     | _   |
| RF_SW_<br>CTRL_3  | RF_SW_<br>CTRL_3    | RF_SW_<br>CTRL_3         | _       | _                       | _          | _               | _               | _            | _        | _            | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_4  | RF_SW_<br>CTRL_4    | RF_SW_<br>CTRL_4         | _       | _                       | _          | _               | _               | _            | _        | _            | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_5  | RF_SW_<br>CTRL_5    | RF_SW_<br>CTRL_5         | _       | _                       | _          | _               | _               | _            | _        | _            | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_6  | RF_SW_<br>CTRL_6    | RF_SW_<br>CTRL_6         | GPIO_8  | GPIO_0                  | _          | GCI_<br>GPIO_8  | _               | GSIO_<br>SDI | _        | _            | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_7  | RF_SW_<br>CTRL_7    | RF_SW_<br>CTRL_7         | GPIO_9  | GPIO_1                  | _          | GCI_<br>GPIO_9  | _               | GSIO_<br>SDO | _        | _            | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_8  | RF_SW_<br>CTRL_8    | RF_SW_<br>CTRL_8         | GPIO_10 | GPIO_2                  | _          | GCI_<br>GPIO_10 | UART_<br>DBG_RX | GSIO_<br>CSN | _        | _            | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_9  | RF_SW_<br>CTRL_9    | RF_SW_<br>CTRL_9         | GPIO_11 | GPIO_3                  | _          | GCI_<br>GPIO_11 | UART_<br>DBG_TX | GSIO_<br>CLK | _        | PALDO_<br>PU | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_10 | RF_SW_<br>CTRL_10   | RF_SW_<br>CTRL_10        | _       | _                       | _          | _               | _               | _            | _        | _            | _      | _      | _   | _   |     | _   |

Table 39: GPIO Alternative Signal Functions (Continued)

|                   |                     |                   |                |                         |       | Fun             | ction Name      | and Numi     | ber      |              |        |        |     |     |     |     |
|-------------------|---------------------|-------------------|----------------|-------------------------|-------|-----------------|-----------------|--------------|----------|--------------|--------|--------|-----|-----|-----|-----|
|                   | Power-On<br>Default | Pin Name          | GPIO-0         | FAST<br>UART/<br>GPIO 1 | GCI-0 | GCI-1           | DBG_<br>UART    | SPI/I2C      | Reserved | MISC-0       | MISC-1 | MISC-2 | IND | PDN | PUP | TRI |
| Pin               | 0                   | 1                 | 2              | 3                       | 4     | 5               | 6               | 7            | 8        | 9            | 10     | 11     | 12  | 13  | 14  | 15  |
| RF_SW_<br>CTRL_11 | RF_SW_<br>CTRL_11   | RF_SW_<br>CTRL_11 | _              | _                       | _     | _               | _               | _            | _        | _            | _      | -      | _   | _   |     | -   |
| RF_SW_<br>CTRL_12 | RF_SW_<br>CTRL_12   | RF_SW_<br>CTRL_12 | _              | _                       | _     | _               | _               | _            | _        | _            | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_13 | RF_SW_<br>CTRL_13   | RF_SW_<br>CTRL_13 | _              | _                       | _     | _               | _               | _            | _        | _            | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_14 | RF_SW_<br>CTRL_14   | RF_SW_<br>CTRL_14 | _              | _                       | _     | _               | _               | _            | _        | _            | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_15 | RF_SW_<br>CTRL_15   | RF_SW_<br>CTRL_15 | _              | _                       | _     |                 | _               | _            | _        | _            | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_16 | RF_SW_<br>CTRL_16   | RF_SW_<br>CTRL_16 | GPIO_12        | GPIO_4                  | _     | GCI_<br>GPIO_12 | _               | GSIO_<br>CLK | _        | _            | _      | _      |     | _   | _   | _   |
| RF_SW_<br>CTRL_17 | RF_SW_<br>CTRL_17   | RF_SW_<br>CTRL_17 | GPIO_13        | GPIO_5                  | _     | GCI_<br>GPIO_13 | _               | GSIO_<br>CSN | _        | _            | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_18 | RF_SW_<br>CTRL_18   | RF_SW_<br>CTRL_18 | GPIO_14        | GPIO_6                  | _     | GCI_<br>GPIO_14 | UART_<br>DBG_TX | GSIO_<br>SDO | _        | _            | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_19 | RF_SW_<br>CTRL_19   | RF_SW_<br>CTRL_19 | GPIO_15        | GPIO_7                  | _     | GCI_<br>GPIO_15 | UART_<br>DBG_RX | GSIO_<br>SDI | _        | PALDO_<br>PD | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_20 | RF_SW_<br>CTRL_20   | RF_SW_<br>CTRL_20 | _              | _                       | _     | _               | _               | _            | _        | _            | _      | _      | _   | _   | _   |     |
| RF_SW_<br>CTRL_21 | RF_SW_<br>CTRL_21   | RF_SW_<br>CTRL_21 | _              | _                       | _     | _               | _               | _            | _        | _            | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_22 | RF_SW_<br>CTRL_22   | RF_SW_<br>CTRL_22 | _              | _                       | _     | _               | _               | _            | _        | _            | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_23 | RF_SW_<br>CTRL_23   | RF_SW_<br>CTRL_23 | RFFE_<br>SCLK  | _                       | _     | _               | _               | _            | _        | _            | _      | _      | _   | _   | _   | _   |
| RF_SW_<br>CTRL_24 | RF_SW_<br>CTRL_24   | RF_SW_<br>CTRL_24 | RFFE_<br>SDATA | _                       | _     | _               | _               | _            | _        | _            | _      | _      | _   | _   | _   | _   |

Table 40 defines the status for all BCM4375 GPIOs based on the tristate test mode.

#### Table 40: GPIO Status Versus Test Modes

| Test Mode    | Function Select |
|--------------|-----------------|
| TRISTATE_IND | 12              |
| TRISTATE_PDN | 13              |
| TRISTATE_PUP | 14              |
| TRISTATE     | 15              |

## **10.5 I/O States**

The following notations are used in Table 41:

- I: Input signal
- O: Output signal
- I/O: Input/Output signal
- PU = Pulled up
- PD = Pulled down
- NoPull = Neither pulled up nor pulled down
- Where applicable, the default value is shown in brackets (for example, [default value])

Table 41: WLAN-Side of PMIO States

| Name      | 1/0 | Keeper | Active Mode                                  | Low-Power State/Sleep<br>(All Power Present) | Power-down<br>(BT REG ON and<br>WL_REG_ON Held Low) | Out-of-Reset; Before<br>SW Download<br>(BT REG ON High;<br>WL_REG_ON High) | (WL REG ON High and<br>BT REG ON = 0) and<br>VDDIOs are Present | Power Rail |
|-----------|-----|--------|----------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|------------|
| WL_REG_ON | I   | N      | I: PD                                        | I: PD                                        | I: PD (of 50K)                                      | I: PD (of 50K)                                                             | I: PD (of 50K)                                                  | _          |
| BT_REG_ON |     |        | Pull-down auto disabled                      | Pull-down auto disabled                      |                                                     |                                                                            |                                                                 |            |
| GPIO_0    | I/O | Y      | I/O: PU, PD, NoPull<br>Programmable [PD]     | I/O: PU, PD, NoPull<br>Programmable [PD]     | High-Z, NoPull                                      | I: PD                                                                      | I: PD                                                           | VDDIO      |
| GPIO_1    | I/O | Y      | I/O: PU, PD, NoPull<br>Programmable [NoPull] | I/O: PU, PD, NoPull<br>Programmable [NoPull] | High-Z, NoPull                                      | I: NoPull                                                                  | I: NoPull                                                       | VDDIO      |
| GPIO_2    | I/O | Y      | I/O: PU, PD, NoPull<br>Programmable [NoPull] | I/O: PU, PD, NoPull<br>Programmable [NoPull] | High-Z, NoPull                                      | I: NoPull <sup>a</sup>                                                     | I: NoPull                                                       | VDDIO      |
| GPIO_3    | I/O | Y      | I/O: PU, PD, NoPull<br>Programmable [NoPull] | I/O: PU, PD, NoPull<br>Programmable [NoPull] | High-Z, NoPull                                      | I: NoPull <sup>a</sup>                                                     | I: NoPull                                                       | VDDIO      |
| GPIO_4    | I/O | Υ      | I/O: PU, PD, NoPull<br>Programmable [NoPull] | I/O: PU, PD, NoPull<br>Programmable [NoPull] | High-Z, NoPull                                      | I: NoPull <sup>a</sup>                                                     | I: NoPull                                                       | VDDIO      |
| GPIO_5    | I/O | Y      | I/O: PU, PD, NoPull<br>Programmable [NoPull] | I/O: PU, PD, NoPull<br>Programmable [NoPull] | High-Z, NoPull                                      | I: NoPull <sup>a</sup>                                                     | I: NoPull                                                       | VDDIO      |
| GPIO_6    | I/O | Y      | I/O: PU, PD, NoPull<br>Programmable [NoPull] | I/O: PU, PD, NoPull<br>Programmable [NoPull] | High-Z, NoPull                                      | I: NoPull <sup>a</sup>                                                     | I: NoPull                                                       | VDDIO      |
| GPIO_7    | I/O | Y      | I/O: PU, PD, NoPull<br>Programmable [NoPull] | I/O: PU, PD, NoPull<br>Programmable [NoPull] | High-Z, NoPull                                      | I: NoPull                                                                  | I: NoPull                                                       | VDDIO      |
| GPIO_8    | I/O | Y      | I/O: PU, PD, NoPull<br>Programmable [NoPull] | I/O: PU, PD, NoPull<br>Programmable [NoPull] | High-Z, NoPull                                      | I: NoPull                                                                  | I: NoPull                                                       | VDDIO      |
| GPIO_9    | I/O | Y      | I/O: PU, PD, NoPull<br>Programmable [PU]     | I/O: PU, PD, NoPull<br>Programmable [PU]     | I: PU                                               | I: NoPull                                                                  | I: NoPull                                                       | VDDIO      |

Table 41: WLAN-Side of PMIO States (Continued)

| Name         | 1/0 | Keeper | Active Mode                                  | Low-Power State/Sleep<br>(All Power Present) | Power-down<br>(BT REG ON and<br>WL_REG_ON Held Low) | Out-of-Reset; Before<br>SW Download<br>(BT REG ON High;<br>WL REG_ON High) | (WL REG ON High and<br>BT REG ON = 0) and<br>VDDIOs are Present | Power Rail |
|--------------|-----|--------|----------------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|------------|
| GPIO_10      | I/O | Υ      | I/O: PU, PD, NoPull<br>Programmable [NoPull] | I/O: PU, PD, NoPull<br>Programmable [NoPull] | High-Z, NoPull                                      | I: NoPull                                                                  | I: NoPull                                                       | VDDIO      |
| GPIO_11      | I/O | Y      | I/O: PU, PD, NoPull<br>Programmable [PU]     | I/O: PU, PD, NoPull<br>Programmable [PU]     | I: PU                                               | I: NoPull                                                                  | I: NoPull                                                       | VDDIO      |
| GPIO_12      | I/O | N      | I/O: PU, PD, NoPull<br>Programmable [NoPull] | I/O: PU, PD, NoPull<br>Programmable [NoPull] | High-Z, NoPull                                      | I: NoPull                                                                  | I: NoPull                                                       | VDDIO      |
| GPIO_13      | I/O | N      | I/O: PU, PD, NoPull<br>Programmable [NoPull] | I/O: PU, PD, NoPull<br>Programmable [NoPull] | High-Z, NoPull                                      | I: NoPull                                                                  | I: NoPull                                                       | VDDIO      |
| GPIO_14      | I/O | Y      | I/O: PU, PD, NoPull<br>Programmable [NoPull] | I/O: PU, PD, NoPull<br>Programmable [NoPull] | High-Z, NoPull                                      | I: NoPull                                                                  | I: NoPull                                                       | VDDIO      |
| GPIO_15      | I/O | Y      | I/O: PU, PD, NoPull<br>Programmable [NoPull] | I/O: PU, PD, NoPull<br>Programmable [NoPull] | High-Z, NoPull                                      | I: NoPull                                                                  | I: NoPull                                                       | VDDIO      |
| GPIO_16      | I/O | Y      | I/O: PU, PD, NoPull<br>Programmable [NoPull] | I/O: PU, PD, NoPull<br>Programmable [NoPull] | High-Z, NoPull                                      | I: NoPull                                                                  | I: NoPull                                                       | VDDIO      |
| GPIO_17      | I/O | Y      | I/O: PU, PD, NoPull<br>Programmable [NoPull] | I/O: PU, PD, NoPull<br>Programmable [NoPull] | High-Z, NoPull                                      | I: NoPull                                                                  | I: NoPull                                                       | VDDIO      |
| GPIO_18      | I/O | Y      | I/O: PU, PD, NoPull<br>Programmable [NoPull] | I/O: PU, PD, NoPull<br>Programmable [NoPull] | High-Z, NoPull                                      | I: NoPull                                                                  | I: NoPull                                                       | VDDIO      |
| GPIO_19      | I/O | Y      | I/O: PU, PD, NoPull<br>Programmable [NoPull] | I/O: PU, PD, NoPull<br>Programmable [NoPull] | High-Z, NoPull                                      | I: NoPull                                                                  | I: NoPull                                                       | VDDIO      |
| RF_SW_CTRL_X | 0   | N      | O: NoPull                                    | O: NoPull                                    | High-Z, NoPull                                      | O: NoPull                                                                  | O: NoPull                                                       | VDDIO_RF   |

a. When JTAG is not enabled on the GPIO.

## 10.6 Ball Map and Keep-Out Areas

Figure 24 shows the BCM4375 WLCSP PCB layout keep-out areas.

Figure 24: BCM4375 WLCSP PCB Layout Keep-Out Areas (Package Top View, Bumps Facing Down)



# 10.7 Mechanical Drawing

Figure 25 is the mechanical drawing for the BCM4375.

Figure 25: BCM4375 WLCSP Mechanical Drawing



# **Chapter 11: Ordering Information**

**Table 42: Ordering Information** 

| Part Number             | Package                                                         | Description                                                                | Ambient<br>Operating<br>Temperature |
|-------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------|
| Pre-Production Ordering |                                                                 |                                                                            |                                     |
| BCM4375B1XKWBG-TE       | B1 Revision, 651-bump WLCSP (6.225 mm × 6.130 mm, 0.2 mm pitch) | Dual-band 2.4 GHz and 5 GHz WLAN, and Bluetooth (TSMC Fab., ASE Assembly)  | –30°C to 85°C                       |
| BCM4375B1XKWBG-TN       | B1 Revision, 651-bump WLCSP (6.225 mm × 6.130 mm, 0.2 mm pitch) | Dual-band 2.4 GHz and 5 GHz WLAN, and Bluetooth (TSMC Fab., SPIL Assembly) | –30°C to 85°C                       |
| BCM4375B4XKFFBG         | B1 Revision, 394-ball FCFBGA<br>(10 mm x 10 mm, 0.40 mm pitch)  | Dual-band 2.4 GHz and 5 GHz WLAN, and Bluetooth (TSMC Fab., SPIL Assembly) | –30°C to 85°C                       |
| BCM4375B0XKWBG-TE       | B0 Revision, 651-bump WLCSP (6.225 mm × 6.130 mm, 0.2 mm pitch) | Dual-band 2.4 GHz and 5 GHz WLAN, and Bluetooth (TSMC Fab., ASE Assembly)  | –30°C to 85°C                       |
| Production Ordering     |                                                                 |                                                                            |                                     |
| BCM4375B1XKWBG          | B1 Revision, 651-bump WLCSP (6.225 mm × 6.130 mm, 0.2 mm pitch) | Dual-band 2.4 GHz and 5 GHz WLAN, and Bluetooth                            | –30°C to 85°C                       |

## **Revision History**

### 4375-DS104; August 14, 2018

■ Updated Table 42, Ordering Information.

### 4375-DS103; July 6, 2018

- Updated Table 25, Bluetooth Transmitter RF Specifications.
- Updated Table 28, WLAN 2.4 GHz Receiver Performance Specifications.
- Updated Table 29, WLAN 2.4 GHz Transmitter Performance Specifications.
- Updated Table 30, WLAN 5 GHz Receiver Performance Specifications.
- Updated Table 31, WLAN 5 GHz Transmitter Performance Specifications.
- Updated Table 33, Typical WLAN Power Consumption.
- Updated Table 34, Bluetooth and BLE Current Consumption.

### 4375-DS102; April 27, 2018

Updated Electrostatic Discharge Specifications.

### 4375-DS101; April 17, 2018

- Updated Figure 1, BCM4375 Functional Block Diagram.
- Updated the Features on page 2.
- Updated Table 3, Recommended Operating Conditions and DC Characteristics.
- Updated Power Supplies and Power Management.
- Updated Crystal Interface and Clock Generation.
- Updated Figure 21, Port Locations for Bluetooth Testing.
- Updated Table 25, Bluetooth Transmitter RF Specifications.
- Updated Figure 22, Port Locations for WLAN Testing.
- Updated Table 28, WLAN 2.4 GHz Receiver Performance Specifications.
- Updated Table 29, WLAN 2.4 GHz Transmitter Performance Specifications.
- Updated Table 30, WLAN 5 GHz Receiver Performance Specifications.
- Updated Table 31, WLAN 5 GHz Transmitter Performance Specifications.
- Updated Table 33, Typical WLAN Power Consumption.
- Updated Table 34, Bluetooth and BLE Current Consumption.
- Updated Table 36, BCM4375 WLCSP Signal Descriptions.
- Updated Table 42, Ordering Information.

### 4375-DS100; July 13, 2017

Initial release.

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the Alogo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU. Copyright © 2017–2018 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com. Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.