

2(m17)

NTIS \$6.50

Technical Library, Bellcomm, Inc.

OCT 2 1970

This document is submitted as Type II data per S/A 500 for Contract NAS9-150,
Reference DRL Line Item Number 100.

SD 70-266
(VCN 24-1C)

SKYLAB PROGRAM
CSM VERIFICATION ANALYSIS REPORT

Part Name EPS Radiator

Part Number V37-458010 & V37-310010

Date September 1970

Prepared by:

J. L. Schaefer
H. A. Vanderveen

15 Sept. 1970
Date

Approved by:

R. Johnson Mgr.
System Engineering Title

17 Sept 1970
Date

E. Bailes Supr.
Design Assurance Title

9/18/70
Date

G. H. Wren Proj Engr
Project Engineering Title

9/18/70
Date

Space Division
North American Rockwell

N73-14860

(NASA-CR-129824) SKYLAB PROGRAM CSM
VERIFICATION ANALYSIS REPORT J. L.
Schaefer, et al (North American Rockwell
Corp.) Sep. 1970 88 p
CSCL 22B G3/31 37761 Unclassified

This document is submitted as Type II data per S/A 500 for Contract NAS9-150,
Reference DRL Line Item Number 100.

SD 70-266
(VCN 24-1C)

SKYLAB PROGRAM
CSM VERIFICATION ANALYSIS REPORT

Part Name EPS Radiator

Part Number V37-458010 & V37-310010

Date September 1970

Prepared by:

J L Ghaefel
H A Vandagrif

15 Sept 1970
Date

Approved by:

R C Johnson Mgr. 17 Sept 1970
System Engineering Title Date

E. Baris Supv 9/18/70
Design Assurance Title Date

G. Ellman Proj Engr 9/18/70
Project Engineering Title Date

Space Division
North American Rockwell

TECHNICAL REPORT INDEX/ABSTRACT

ACCESSION NUMBER					DOCUMENT SECURITY CLASSIFICATION UNCLASSIFIED	
TITLE OF DOCUMENT SKYLAB PROGRAM CSM VERIFICATION ANALYSIS REPORT						LIBRARY USE ONLY
AUTHOR(S) SCHAFFER, J.L.*VANDERPOL, G.A.						
CODE QN085282	ORIGINATING AGENCY AND OTHER SOURCES SPACE DIVISION, NR				DOCUMENT NUMBER SD70-266	
PUBLICATION DATE 14 SEPT 70	CONTRACT NUMBER					
DESCRIPTIVE TERMS *SKYLAB, *RADIATOR, *FUEL CELL, *TRANSIENT THERMODYNAMIC SIMULATION, *SINDA COMPUTER PROGRAM						

ABSTRACT
THIS DOCUMENT DESCRIBES THE APPLICATION OF THE SINDA COMPUTER PROGRAM FOR THE TRANSIENT THERMODYNAMIC SIMULATION OF THE APOLLO FUEL CELL/RADIATOR SYSTEM FOR THE LIMIT CONDITION OF THE PROPOSED SKYLAB MISSION. RESULTS ARE INCLUDED FOR THE THERMAL CONSTRAINTS IMPOSED UPON THE PRATT AND WHITNEY FUEL CELL POWER CAPABILITY BY THE BLOCK II EPS RADIATOR SYSTEM OPERATING UNDER THE SKYLAB FIXED ATTITUDE ORBITS.

PRECEDING PAGE BLANK NOT FILMED

FOREWORD

The thermal analysis of Skylab fuel cell and radiator system capability, in support of Contract SA500, NAS9-150, was conducted between October 1969 and June 1970. Results of this work are contained in this report, which was prepared by J. L. Schaefer and G. A. Vanderpol of CSM Operations Analysis, Mission Requirements and Evaluation group. The original models of the electrical power system (EPS) radiator and Block I fuel cell, and the CINDA computer program were furnished by H. Cazemier and W. Simon of NASA-MSC. Early checkout runs were limited to leased Univac 1108 service and IBM 7094 emulation, which were slow and expensive. With the assistance of P. Jepsen of Aero and Thermal Projects, Scientific Programming, the IBM 360/SINDA program was obtained and converted to Space Division's IBM 360 formats. E. R. Arnold provided considerable assistance in developing the Block II fuel cell model for the SINDA program.

Preceding page blank

PRECEDING PAGE BLANK NOT FILMED

CONTENTS

	Page
1. INTRODUCTION	1
1.1 Purpose of Analysis	1
1.2 Verification Analysis Requirements	1
2. CONCLUSIONS	3
3. RECOMMENDATIONS	5
4. ANALYSIS	7
4.1 Analytical Models	7
General Fuel Cell Model Considerations	7
Voltage Output	8
Primary Loop Thermodynamics	11
Condenser	16
Secondary Regenerator and Bypass Valve Models	18
Radiator System	20
Reactant Preheaters	25
Fuel Cell Heat Loss to Structure	31
4.2 Program Definition	31
4.3 Model and Program Input	32
Data Deck Setup	32
Sample Problem Input Data	36
Sample Problem Output	37
4.4 Analytical Results	41
5. REFERENCES	43
APPENDIX: INPUT DATA, MAIN PROGRAM LISTING, AND USER SUBROUTINE LISTINGS	45
Input Data	45
Main Program Listing	61
User Subroutine Listings	75

Preceding page blank

ILLUSTRATIONS

Figure		Page
1	Fuel Cell Fluid and Component Schematic	9
2	Water Pressure of KOH Electrolyte	14
3	Condenser Performance Curves	17
4	Secondary Regenerator Diagram	19
5	Secondary Regenerator Effectiveness	21
6	Secondary Bypass Valve Characteristics	22
7	Typical Radiator Panel Nodal Network	23
8	Density of Water-Glycol Mixture	26
9	Conductivity of Water-Glycol Mixture	26
10	Specific Heat of Water-Glycol Mixture	27
11	Viscosity of Water-Glycol Mixture	27
12	Relative Enthalpy of Water-Glycol Mixture	28
13	Water-Glycol Pump Characteristic	28
14	Oxygen Preheater Effectiveness	29
15	Hydrogen Preheater Effectiveness	30
16	Basic Flow Chart for Network Solution Subroutines	35
17	Sample Problem Output	39

TABLES

Table		Page
1	Summary of Results for Fuel Cell/Radiator Power Capability for an Earth Orbit of 235 Nautical Miles	3
2	Input Data for Bivariate Routine	10
3	Output Coefficients From Bivariate Routine	11
4	Capacitance and Conductance Values	24
5	System Temperatures for High Power Levels	42
6	System Temperatures for Low Power Levels	42

1. INTRODUCTION

1.1 PURPOSE OF ANALYSIS

The range of output power capability for the Apollo fuel cell system is established by the requirement to operate within the command module (CM) bus voltage range of 26.5 to 31 volts and by the thermal constraints imposed by the fuel cell stack, condenser, and radiator temperature limits. This report considers only the thermal constraints in establishing the fuel cell power capability for Skylab missions. Under high transient-power levels, CM voltage requirements may be more limiting.

Early in 1969, NASA-MSC personnel furnished for the Skylab study the computer program, the Chrysler Improved Numerical Differencing Analyzer for Third Generation computers (CINDA-3G) (Reference 1), and heat transfer models of the Block II electrical power system (EPS) and the Allis-Chalmers fuel cell system. Subsequently at NR several major changes were made to these models and the CINDA program. The preliminary Allis-Chalmers model became obsolete after the decision was made to use the Pratt and Whitney (PW) Block II fuel cell for the Skylab mission. Therefore, a completely new PW fuel cell model had to be developed for CINDA. Several modifications were made to the EPS radiator model to provide closer correlation with qualification test data (Reference 2) and to include heat transfer between the radiator panels and the service module (SM) structure. Finally, the original CINDA-3G program, which was developed for use on the Univac 1108, was replaced with an advanced program version, Systems Improved Numerical Differencing Analyzer for Third Generator Computers (SINDA-3G), which had been converted (Reference 3) for operation on the IBM 360/75 computer.

1.2 VERIFICATION ANALYSIS REQUIREMENTS

Verification analysis requirements consist of a computer simulation. The simulation determines the effect of the thermal constraints on power capability with one fuel cell and with two fuel cells and with full and five-eighths EPS radiator area operation under the two extremes for Skylab fixed orbit environmental conditions. The SINDA-3G computer program is required for the eight cases of computer simulation. Results for each of the eight cases must be within the acceptable fuel cell temperature limits stated for the flight measurements.

PRECEDING PAGE BLANK NOT FILMED

2. CONCLUSIONS

Analysis results indicate the EPS radiator subsystem has sufficient capability to reject the waste heat associated with the fuel cell power levels required for Skylab missions while maintaining the fuel cells within nominal temperature levels. The computer simulation considered sun-vector orbit plane angles (β) of 0.0 and 73.5 degrees for one and two fuel cells operating with full and five-eighths radiator areas. The maximum and minimum power levels evaluated in this study are listed in Table 1. Results are discussed in Section 4.4 of this report.

Table 1. Summary of Results for Fuel Cell/Radiator Power Capability for an Earth Orbit of 235 Nautical Miles

Fuel Cells (number operating)	Radiator Area (operating panels)	Minimum Total Current (amperes)	Maximum Total Current (amperes)
2	8	50	100
2	5	40	90
1	8	30	60
1	5	25	50

Preceding page blank

3. RECOMMENDATIONS

Based upon results of this analysis, qualification and development test results, and Block II flight data, Block II fuel cell and EPS radiator subsystem capabilities are sufficient to meet Skylab mission requirements. No further testing or analysis is recommended.

Preceding page blank

PRECEDING PAGE BLANK NOT FILMED

4. ANALYSIS

4.1 ANALYTICAL MODELS

General Fuel Cell Model Considerations

The Pratt and Whitney fuel cell combines oxygen and hydrogen to produce electricity, heat, and water. The overall chemical reaction can be written as

The quantity of reactants required to produce a given amount of energy can be determined from Faraday's Laws of Electrolysis. As stated in Reference 4, these are:

1. The mass of a substance liberated in an electrolysis cell is proportional to the quantity of electricity passing through the cell.
2. When the same quantity of electricity is passed through different cells, the masses of the substances liberated are proportional to their electrochemical equivalents.

The combined laws can be used to express the amount of water produced per unit time in terms of current flow:

$$\dot{W}_{H_2O} = I \cdot M / (F \cdot n) \quad (1)$$

where

I = current (amperes)

M = molecular weight

F = Faraday's constant—96500 amp-sec/gm equivalent

n = gm equivalent/gm mole

\dot{W} = weight flow per unit of time

Preceding page blank

The following values of specific fuel consumption have been determined from the above equation:

$$\begin{aligned} & 0.0230 \text{ lb H}_2\text{O per amp-hr} \\ & 0.0204 \text{ lb O}_2 \text{ per amp-hr} \\ & 0.00257 \text{ lb H}_2 \text{ per amp-hr} \end{aligned}$$

Figure 1 depicts the basic schematic of the fuel cell thermodynamic components. Two coolant loops are used to remove the excess heat and water. The stack contains the 31 individual fuel cell elements, each of which consists of two electrodes and the KOH electrolyte, where the chemical reaction of hydrogen and oxygen occurs. Electrically the cells are connected in series. Each is capable of approximately 1 volt, depending on electrolyte condition and load. The temperature of the stack is maintained in the range of 390 to 460 F by means of the primary regenerator and bypass valve. The condenser and water separator are responsible for the water removal and the resulting water concentration in the electrolyte. The temperature range at which water is nominally condensed is 155 to 165 F.

This temperature range is controlled by the secondary regenerator bypass valve and the secondary regenerator. After some of the waste heat is used to heat the incoming reactants in the oxygen and hydrogen preheaters, the EPS radiators reject the excess heat to space. The analytical modeling for each major component is discussed in more detail in the next sections.

Voltage Output

The fuel cell terminal voltage is a function of load current, stack temperature, and electrolyte (KOH) water concentration. Reference 5 provides nominal fuel cell performance curves that depict voltage as a function of current and parametric values of stack (surface) temperature. These curves were expressed in the general polynomial form

$$\begin{aligned} V_t = & A_1 + A_2 I + A_3 I^2 + A_4 I^3 + A_5 TS + A_6 (TS) (I) \\ & + A_7 (TS)(I^2) + A_8 TS^2 + A_9 (I)(TS^2) + A_{10} TS^3 \end{aligned} \quad (2)$$

where

V_t is voltage based on current and stack temperature (volts)

A_1, \dots, A_{10} are coefficients

I = load current (amperes)

TS = stack temperature ($^{\circ}\text{F}$)

Figure 1. Fuel Cell Fluid and Component Schematic

A standard least squares surface fit bivariate polynomial routine was used in calculating the coefficients of this equation. The input data for the bivariate routine, as shown in Table 2, are the Reference 5 data corrected to a common KOH-water concentration of 0.75. The coefficients established from these data are given in Table 3. The resulting value, V_t , is corrected for the KOH-water concentration effect in the SINDA program by the following equation:

$$V = V_t - 0.241 (0.75 - PCKOH) \quad (3)$$

where

V = fuel cell voltage based on current, stack temperature, and KOH-water concentration (volts)

V_t = voltage based on current and stack temperature (volts)

PCKOH = the weight ratio of KOH to KOH + water

The value of V is used in the program as the fuel cell terminal voltage.

Table 2. Input Data for Bivariate Routine

Current (amperes)	Stack Temperature ($^{\circ}$ F)				
	380	400	420	440	460
15.0	30.0	30.8	31.4	31.8	31.9
20.0	29.1	30.0	30.6	31.0	31.3
25.0	28.3	29.2	29.9	30.4	30.7
30.0	27.5	28.5	29.4	29.8	30.1
35.0	26.7	27.8	28.8	29.2	29.6
40.0	26.0	27.2	28.2	28.7	29.0
45.0	25.3	26.5	27.6	28.2	28.5
50.0	24.6	25.9	27.0	27.7	28.1

Table 3. Output Coefficients From Bivariate Routine

A_1	5.583364	A_6	4.686233×10^{-3}
A_2	-1.308438	A_7	-3.573639×10^{-7}
A_3	2.054927×10^{-3}	A_8	-1.525995×10^{-5}
A_4	-1.333418×10^{-5}	A_9	-4.889387×10^{-6}
A_5	9.694690×10^{-2}	A_{10}	-1.292755×10^{-7}

Primary Loop Thermodynamics

Excess heat and steam produced in the chemical reaction in the stack are removed by the recirculating stream of hydrogen and water. The energy balance computation for the stack is based upon the total energy of reaction as input to the stack and the electrical power, stack temperature change, recirculating fluid temperature change, and fuel cell heat loss as output energy. The reaction energy is determined by

$$QGENAT = 51600. * SFCH2 \quad (4)$$

where

$QGENAT$ = reaction energy (Btu/hr)

$SFCH2$ = hydrogen consumption rate (lb/hr)

51600 Btu/lb is the lower heating value of hydrogen

The heat balance on the stack is given by

$$QSTORD = QGENAT - QH2 - QO2 - QSELECT - QRS - QSM \quad (5)$$

where

$QSTORD$ = heat gained in the stack (Btu/hr)

$QGENAT$ = reaction energy (Btu/hr)

$QH2$ = heat gained by the consumed hydrogen (Btu/hr)

$QO2$ = heat gained by the consumed oxygen (Btu/hr)

QELECT = electrical energy output (Btu/hr)

QRS = heat gained by the recirculating hydrogen-water stream
(Btu/hr)

QSM = heat lost by the stack to the SM structure (Btu/hr)

A similar equation can be expressed for the primary loop heat balance:

$$QCOND = QGENAT - QELECT - QSM - QH2O \quad (6)$$

where

QCOND = heat transferred across the condenser (Btu/hr)

QH2O = energy in the condensed water above the 70 F datum
(Btu/hr)

QGENAT, **QELECT**, and **QSM** are as previously defined.

After the two equations are balanced, the temperature can be determined in the primary loop by the following three equations:

$$TSE = TSTACK + (QSTORD * DTIMEU / 30.) \quad (7)$$

where

TSE = the new stack temperature ($^{\circ}$ F)

TSTACK = the previous stack temperature ($^{\circ}$ F)

QSTORD = the stack heat gain (Btu/hr)

DTIMEU = the time step (hr)

30. = the stack mass-specific heat product (Btu/ $^{\circ}$ F)

$$TSI = TSE - QSR / (WDTCPI + WDTCP2) \quad (8)$$

where

TSI = recirculating stream temperature at stack inlet ($^{\circ}$ F)

TSE = recirculating stream temperature at stack outlet ($^{\circ}$ F)
(as well as the stack temperature)

QSR = heat gained by the recirculating hydrogen-water stream
(Btu/hr)

WDTCP1 = the mass-specific heat product of the water in the
recirculating stream

WDTCP2 = the mass-specific heat product of the hydrogen in the
recirculating stream

$$TCIP = TCEP - (QCOND - CONST2)/(WDTCP1 + WDTCP2) \quad (9)$$

where

TCIP = recirculating stream temperature at condenser primary
inlet ($^{\circ}$ F)

TCEP = recirculating stream temperature at condenser primary
outlet ($^{\circ}$ F)

CONST2 = heat of vaporization of the condensed water

QCOND, WDTCP1, WDTCP2 are as previously defined.

The TCEP is determined in the condenser subroutine, which is
described in the next section.

The mass balance in the primary loop is determined by assuming a
constant volume delivery of 3 cfm at 60 psia for the primary pump for cal-
culating the specific volume of the hydrogen and water at the stack inlet and
outlet and at the condenser inlet and outlet. The partial pressure of water
is first determined at the condenser exit, based upon the condenser exit
temperature and a saturated steam condition. At the stack, the recirculating
steam enters at this same condition and leaves at the temperature and the
partial pressure of water in the electrolyte. Figure 2 illustrates the relation-
ship of the electrolyte temperature, partial pressure of water, and KOH
concentration. The program computes the equilibrium water pressure at
the condition of electrolyte temperature and concentration at the beginning
of the time step. This pressure is assumed to equal the partial pressure of
water in the hydrogen-water stream at the stack exit at the end of the time
step. Thus, the water balance is determined from the following equations:

$$WH202P = I * 0.0230 * DTIMEU \quad (10)$$

Figure 2. Water Pressure of KOH Electrolyte

where

WH202P = weight of water produced within the time step (lb)

I = current (amps)

DTIMEU = time step (hours)

0.0230 is the conversion factor for pounds of water produced per ampere-hour

$$WH2025 = WH2026 + WH202P * RATE \quad (11)$$

where

WH2025 = weight of water in the electrolyte at the end of the time step (lb)

WH2026 = weight of water in the electrolyte at the start of the time step (lb)

RATE = the percent of water produced during the time step that remains in the stack. RATE is calculated by an iterative balance between the water specific volume at the stack inlet and at the stack outlet and the water production rate.

$$PCKOH = 22.0 / (22.0 + WH2025) \quad (12)$$

where

PCKOH = electrolyte concentration (ratio of KOH weight to total electrolyte weight)

KOH weight is 22.0 pounds

WH2025 is as previously defined

The mass balance of water at the condenser uses the specific volume of water determined at the stack outlet as the specific volume of water at the condenser inlet. The specific volume of water at the condenser outlet is determined by the condenser primary exit temperature, TCEP, and a saturated steam condition.

The amount of water condensed is found as follows:

$$DMASS = (180. / SVOL11) * DTIMEU - (180. / SVOL21) * DTIMEU \quad (13)$$

where

DMASS = water condensed (lb)

SVOL11 = specific volume of water at the condenser outlet
(cu ft/lb)

SVOL12 = specific volume of water at the condenser inlet
(cu ft/lb)

DTIMEU = time step (hours)

The mass balance for the reactants is based on providing the necessary flow to support the theoretical consumption rates without consideration of minor variations in regulated pressure:

$$SFCH2 = 8.292 * 10^{-5} * 31. * I \quad (14)$$

$$SFCO2 = 7.94 * SFCH2 \quad (15)$$

where

SFCH2 = hydrogen specific fuel consumption (lb/hr)

SFCO2 = oxygen specific fuel consumption (lb/hr)

The energy balance involving the consumed reactants is discussed in the Reactant Preheater section.

Condenser

The condenser is a counterflow heat exchanger interfacing the primary and secondary loops of the fuel cells. The condenser transfers the heat of the hydrogen-water mixture of the primary loop to the water-ethylene glycol mixture of the secondary loop. The normal operating range of the condenser exit temperature on the primary side (TCEP), which controls the secondary regenerator bypass valve, is 155 to 165 F.

Several schemes were considered for defining condenser performance. The method used, in view of simplicity of interface between the primary and secondary loops, was the balance of heat flow across the condenser. Data describing the condenser were obtained from Reference 6 and are provided in Figure 3 in the form of condenser performance curves. A multiple linear

Figure 3. Condenser Performance Curves

regression scheme was then used to curve-fit the data. The following equation was obtained:

$$TCEP - TCES = (1. / WDWG) * (49.229 + 0.68747 * QCOND + 9.0145E-7 * QCOND ** 2) \quad (16)$$

where

TCEP = condenser primary side exhaust temperature ($^{\circ}$ F)

TCES = condenser secondary side exhaust temperature ($^{\circ}$ F)

WDWG = water-glycol flow rate (lb/hr)

QCOND = heat flow across the condenser (Btu/hr)

The program makes successive approximations to balance the heat flow across the condenser. A value of QCOND is calculated from the primary loop parameters. Then the condenser glycol and gas exit temperatures are varied in accordance with Equation (16) until the heat lost to the glycol equals the QCOND calculated from the primary loop.

Secondary Regenerator and Bypass Valve Models

The secondary regenerator is modeled as a two-port network. The empirical relationships used for this model are typical for a counterflow heat exchanger and were taken from Reference 7. The hot outlet temperature, t_{h2} , can be written as

$$t_{h2} = (C_c / C_h) \epsilon (t_{c1} - t_{h1}) + t_{h1} \quad (17)$$

where

$$C_c = W_c C_p(T)$$

$$C_h = W_h C_p(T)$$

W_c , W_h = coolant flow rates on cold and hot sides (lb/hr)

$C_p(T)$ = coolant specific heat (a function of temperature)

ϵ = regenerator effectiveness

t_{c1} = cold side inlet temperature ($^{\circ}$ F)

t_{h1} = hot side inlet temperature ($^{\circ}$ F)

Figure 4 is a diagram of the regenerator with assigned terms.

Figure 4. Secondary Regenerator Diagram

From Equation (17), the capacity ratio, C_c/C_h , can be rewritten as

$$C_c/C_h = \frac{\dot{W}_c \left(\frac{1}{t_{c2} - t_{c1}} \right) \int_{t_{c1}}^{t_{c2}} C_p dT}{\dot{W}_h \left(\frac{1}{t_{h1} - t_{h2}} \right) \int_{t_{h2}}^{t_{h1}} C_p dT} = \frac{\dot{W}_c \Delta T_h \Delta h_c}{\dot{W}_h \Delta T_c \Delta h_h} \quad (18)$$

where

t_{c2} = cold-side outlet temperature ($^{\circ}\text{F}$)

ΔT = change in temperature ($^{\circ}\text{F}$)

Δh = change in enthalpy (Btu/lb)

Since the flow on the cold side of the regenerator is regulated by the secondary bypass valve, which is controlled by the primary condenser exit temperature, the portion of the cold-side flow that is bypassed must be considered. The relationship of the bypass flow rate, \dot{W}_{BP} , and the bypassed fraction, $\alpha = \dot{W}_{BP}/\dot{W}_h$, and the cold- and hot-side flow rates are given by the following equations:

$$\dot{W}_h = \dot{W}_c + \dot{W}_{BP} \quad (19)$$

$$\dot{W}_c/\dot{W}_h = 1 - \alpha \quad (20)$$

Equation (18) can then be rewritten by using the above expressions to give

$$C_c/C_h = (1 - \alpha) \frac{\Delta T_h \Delta h_c}{\Delta T_c \Delta h_h} = \beta \quad (21)$$

The parameters ϵ and β , together with the factor τ_{ij} , to represent the time response, define the relationship between the inlet and outlet temperatures of the regenerator:

$$\begin{bmatrix} t_{c2} \\ t_{h2} \end{bmatrix} = \begin{bmatrix} (1 - \epsilon)\tau_{11} & \epsilon\tau_{12} \\ \epsilon\beta\tau_{21} & (1 - \epsilon\beta)\tau_{22} \end{bmatrix} \begin{bmatrix} t_{c1} \\ t_{h1} \end{bmatrix} \quad (22)$$

This relation is solved in the program by a group of subroutines that update sliding arrays, move backward in the arrays to simulate delay, and perform integration. Figure 5 illustrates the relationship of the secondary regenerator cold-side inlet temperature to the regenerator effectiveness for various coolant flow rates. The data above an inlet of 70 degrees have been extrapolated.

The secondary bypass valve characteristics are shown in Figure 6. The program keeps track of the TCE in ascending or descending order and correspondingly interpolates on the correct curve.

Radiator System

The fuel cell and radiator system consists of eight 5-square-foot panels located on the CSM fairing. For the Skylab mission only two of the fuel cell and radiator coolant loops will be filled and connected for two-fuel-cell operation. While the radiator model discussion in this section is for the basic three-fuel-cell operational mode, two-fuel-cell operation for Skylab is simulated by using a zero flow pump characteristic for the third cell. For one-fuel-cell contingency operation, zero flow pump characteristics are used for two of the three cells. Reduced radiator area operation for low-power operation for Skylab missions is the same as for other Apollo missions: The bypass valve is actuated, and the last three panels are bypassed, and five-panel (five-eighths) radiator operation is achieved.

The original radiator model was included with the data deck for the CINDA program received from NASA (Reference 8). The model included a nodal network for each of the eight radiator panels and the coolant delivery and bypass lines. Figure 7 illustrates the nodal model that is typical for a single radiator panel. The solid and fluid node and conductor numbers shown in this figure represent panel 1 in the radiator system model. The corresponding node capacitance and conductor valves are given in Table 4. The

Figure 5: Secondary Regenerator Effectiveness

GLYCOL TEMPERATURE = 130 F, PRESSURE 38 PSIG, TOTAL FLOW 80 PPH

Figure 6. Secondary Bypass Valve Characteristics

Figure 7. Typical Radiator Panel Nodal Network

Table 4. Capacitance and Conductance Values

Solid Node Number	Solid Node Capacitance $\mu C_p V$ (Btu/°F)	Solid Conductor Number	Conductor Value KA/L (Btu/Hr °F)
701	0.043269	701	0.199691
702	0.037088	702	0.176766
703	0.043269	703	0.090127
704	0.098515	704	0.121294
705	0.080002	705	3.111299
706	0.067608	706	3.927239
707	0.067608	707	3.422037
708	0.080002	708	0.106059
709	0.067608	709	0.182910
710	0.067608	710	0.072776
711	0.080002	711	0.010989
712	0.098515		
713	0.098515		
714	0.080002	Radiation Conductor Number	Conductor Value $\sigma\epsilon FA$ (Btu/hr °F ⁴)
715	0.067608		
716	0.067608	901	0.2298×10^{-9}
717	0.080002	902	0.1970×10^{-9}
718	0.067608	903	0.5234×10^{-9}
719	0.067608	904	0.2700×10^{-9}
720	0.080002	905	0.3591×10^{-9}
721	0.098515		
722	0.043269		
723	0.037088		
724	0.043269		
893	0.000000		

original values for the solid conductors were increased ten percent after it was found that the foil was two to three times thicker than required by the original specifications (Reference 9). Loss of heat through the radiator panel edges to the SM structure was accounted for by adding another solid node to the nodal network to represent the SM structure. Each of the solid-edge nodes of the eight radiator panels was tied to this SM structure node by a solid conductor. A structure temperature within a ±150 F range and an infinite capacitance is assigned the structure node, depending upon the environment being simulated.

The fuel cell/radiator coolant is a water-ethylene glycol solution composed of 62.5 percent ethylene glycol by weight. The coolant properties used in the analysis as functions of temperature are density (Figure 8); conductivity (Figure 9); specific heat (Figure 10); viscosity (Figure 11); and relative enthalpy (Figure 12). The coolant pump characteristic, flow versus pressure drop in the radiator loop, is shown as Figure 13. The pressure drop in the radiator loop is calculated by using the Fanning equation with a dynamic head loss factor in the subroutine (Reference 8).

Reactant Preheaters

In the secondary loop, the water-glycol, after exiting from the condenser, flows through the reactant preheaters before passing into the secondary regenerator. The basic equations simulating the reactant pre-heaters were taken from Reference 10, with corrections made to preserve compatibility with the secondary loop model.

The effectivity of the oxygen preheater is shown in Figure 14 and expressed as

$$EFF = 0.53 + 0.002 * WDWG + 0.018 * WDO2 \quad (23)$$

where

EFF = effectivity

WDWG = water-glycol flow rate (lb/hr)

WDO2 = oxygen flow rate (lb/hr)

The oxygen preheater outlet temperature can then be found from Equations (23) and (24):

$$TO2O = TO2I + (TWGOI - TO2I) * EFF \quad (24)$$

where

TO2O = oxygen outlet temperature ($^{\circ}$ R)

TO2I = oxygen inlet temperature assumed constant = 530° R

TWGOI = water-glycol temperature at condenser outlet ($^{\circ}$ R)

Space Division
North American Rockwell

Figure 9. Conductivity of Water-Glycol Mixture

Figure 8. Density of Water-Glycol Mixture

Space Division
North American Rockwell

Figure 10. Specific Heat of Water-Glycol Mixture

Figure 11. Viscosity of Water-Glycol Mixture

Figure 13. Water-Glycol Pump
Characteristic

Figure 12. Relative Enthalpy of Water-Glycol Mixture

(FROM P&WA MONTHLY PROGRESS REPORT, PWA - 2345, 25 MAY 1964)

Figure 14. Oxygen Preheater Effectiveness

From Equation (25), the change in enthalpy of the water-glycol flowing through the oxygen preheater can be obtained:

$$DHO_2 = (T_{O2I} - T_{O2O}) * (0.152 + 0.0000225 * (T_{O2O} + T_{O2I})) * WDO_2 / WD_{WG} \quad (25)$$

where

DHO_2 = enthalpy change of the water-glycol through the oxygen preheater (Btu/lb)

The temperature of the water-glycol (T_{WGHI}) exiting the oxygen preheater is found from the change in enthalpy and preheater water-glycol inlet temperature.

The effectivity of the hydrogen preheater is assumed constant at 0.75 (Figure 15). Equation (26) is similar to Equation (24) and gives the hydrogen preheater outlet temperature:

$$TH_{2O} = TH_{2I} + 0.75 * (TWGHI - TH_{2I}) \quad (26)$$

(FROM P&WA MONTHLY PROGRESS REPORT, PWA - 2332, 27 APRIL 1964)

Figure 15. Hydrogen Preheater Effectiveness

where

T_{H2O} = hydrogen outlet temperature ($^{\circ}R$)

T_{H2I} = hydrogen inlet temperature, assumed constant = $530^{\circ}R$

T_{WGHI} = water-glycol temperature at hydrogen preheater inlet ($^{\circ}R$)

The enthalpy change of the water-glycol flowing through the hydrogen preheater is then

$$DHH_2 = (T_{H2I} - T_{H2O}) * 3.47 * WDH_2 / WD_{WG} \quad (27)$$

where

WDH_2 = hydrogen flow rate (lb/hr)

DHH_2 = enthalpy change in the water-glycol through the hydrogen preheater (Btu/lb)

The temperature of the water-glycol exiting the hydrogen preheater can then be found from the enthalpy change and the water-glycol temperature

entering the preheater. The water-glycol exit temperature is taken as the inlet temperature of the hot side of the secondary regenerator.

Fuel Cell Heat Loss to Structure

The fuel cell heat loss to the SM structure is based upon information given in Reference 5. The data as shown in Reference 5 are plots of fuel cell heat loss as a function of stack temperature for three parametric structure temperatures: 30, 80 and 130 F. These data were replaced with the following linear equation, which is used in the SINDA fuel cell model:

$$QSM = 3.25 * TS - 1.6 * TA - 882. \quad (28)$$

where

QSM = fuel cell heat loss to structure (Btu/hr per cell)

TS = fuel cell stack temperature ($^{\circ}$ F)

TA = ambient structure temperature ($^{\circ}$ F)

The ambient temperature is assigned as an independent parameter, based upon space environmental conditions. A temperature of 30 F is selected for extreme cold conditions; 130 F for extreme hot conditions, and 80 F for nominal conditions. There is no attempt to determine the direct heat conduction through the fuel cell cone mount nor to determine the heat radiation from the pressure jacket and accessory package components. The program does not attempt to determine the changes in the ambient structure temperature resulting from such heating. The equation is accurate to within ± 4 percent of the data from Reference 5.

4.2 PROGRAM DEFINITION

The CINDA-3G (Chrysler Improved Numerical Differencing Analyzer for Third-Generation Computers) computer program was developed by the Thermodynamics Section of the Aerospace Physics Branch of the Chrysler Corporation Space Division at the National Aeronautics and Space Administration's Michoud Assembly Facility. The CINDA-3G program, written to run on the Univac 1108, was converted by the Computer Science Branch of the Idaho Nuclear Corporation to run on the IBM 360/75 computer. The converted program, called SINDA-3G (Systems instead of Chrysler), provides a variety of methods for the solution of thermal analog models presented in a network format. The network representation is unique in that it has a one-to-one correspondence to both the physical model and the mathematical model. The program allows the models to be developed through use of combinations of FORTRAN statements, user-initiated subroutines, and the numerous subroutines contained within the program. These program subroutines can be used for handling interrelated complex phenomena such as

sublimation; diffuse radiation within enclosures; simultaneous, one-dimensional, incompressible, fluid flow, including valving and transport delay effects; and similar areas associated with heat transfer and fluid flow.

In the hands of a competent engineering analyst, the SINDA-3G program is a powerful tool for analyzing thermal systems.

4.3 MODEL AND PROGRAM INPUT

Data Deck Setup

A SINDA-3G program deck contains two main blocks: a data block and an operations block. Each block is subdivided into four blocks. The four data blocks are entitled the NODE DATA, CONDUCTOR DATA, CONSTANTS DATA, and ARRAY DATA. The four operations blocks are designated EXECUTION, VARIABLES 1, VARIABLES 2, and OUTPUT CALLS.

Card columns 12 through 80 comprise the data field. The instruction field (operations blocks) consists of columns 12 through 72. The program processes the problem data into FORTRAN common data and converts instructions into FORTRAN source language. They are then passed on to the system FORTRAN compiler. Instruction cards containing an F in column 1 are passed on exactly as received. Discussion of the operations blocks will follow discussion of the data blocks.

Data input to the data blocks may be one or more integers, floating numbers (with or without the E exponent designation), or alphanumeric words of up to six characters each. The reading of a word or number continues until a comma is encountered. Then the next word or number is read. Words or numbers may not be broken between cards, and a new card is equivalent to starting with a comma. Therefore, no continuation designation is required. When sequential commas are encountered, the program places floating-point zero values between them. Reading continues until the terminal column is reached or a dollar sign is encountered. Comments for a data card can be placed after a dollar sign and are not processed by the program.

The first card in each of the four data blocks must be started in column 8 with the mnemonic code BCD (binary coded decimal), then an integer (1 through 9) in column 12, and the name of the data block starting in column 13. Each data block must be terminated with a mnemonic END card.

The NODE DATA block contains the data describing all nodes in the network. Each set of node data is grouped similar to the following code:

column 12

N#, Ti, Ca

where

N# = integer node number

Ti = initial node temperature

Ca = node capacitance

All nodes are numbered by the program sequentially (from 1 on) in the order received. The user input number is designated the actual node number. The program assigned number is termed the relative node number.

Second in the group of data blocks is the CONDUCTOR DATA block. In the nodal network, nodes are joined together with conductors. The three types of conductors used in the SINDA-3G program are conduction (solid), convection, and radiation conductors. Conductors are input to the program with the code.

column 12

G#, NA, NB, Cn

where

G# = integer conductor number

NA = one adjoining node number

NB = the other adjoining node number

Cn = conductance value

If more than one conductor has the same constant value, they may share the same conductor number and value. This is accomplished by placing two or more pairs of integer-adjoining node numbers between the conductor number and value.

The data for the CONSTANTS DATA block are always input as doublets, the constant name or number followed by its value. They are divided into two types, control constants and user constants, and may be intermingled within the block. User constants receive a number. Control constants have alphanumeric names.

The ARRAY DATA block is the last of the four data blocks. Input of data into this block is exceedingly simple. The array number is listed, followed by the sequential listing of the data, and terminated with an END (data END, not mnemonic). The interpolation and matrix subroutines of the program make extensive use of these arrays. The SPACE option in the ARRAY DATA block is an easy way for the user to specify a large number of locations, which are initialized by the preprocessor program as floating-point zeros. When this option is used, the array number is listed, followed by the word SPACE and the number of locations to be initialized, and terminated with an END.

While the four data blocks provide the data for the program, the four operations blocks determine the program control. This they do through the use of various operations and instructions. The four operations blocks, EXECUTION, VARIABLES 1, VARIABLES 2, and OUTPUT CALLS, are preprocessed by the SINDA-3G program and passed on to the system FORTRAN compiler as four separate subroutines entitled EXECTN, VARBL1, VARBL2, and OUTCAL, respectively. Figure 16 illustrates the basic flow diagram for the solution of the network.

When the FORTRAN compilation is successfully completed, control is passed to the EXECTN subroutine. It sequentially performs the operations in the same order as input by the user in the EXECUTION block. None of the operations specified in the other three blocks is performed unless it is called for either directly by name in the EXECUTION block or internally by some other called for subroutine. All operations and instructions listed in EXECUTION block and performed by the program are executed only once. Because of this feature, the EXECTN subroutine can be used to initialize constants and variables, fabricate new arrays, establish steady-state parameters, and perform other operations that are completed only once during the duration of the program.

The operations in the VARIABLES 1 block can be considered pre-solution operations. These operations may include construction of temperature arrays, establishment of heating rates, calculation of heating sources, or other basic operations required for solution of the thermal nodal network.

In the same respect, the VARIABLES 2 block operations may be thought of as post-solution operations. VARIABLES 2 allows the user to look at the recently solved network. Typical operations of the VARBL2 subroutine may include integration of flow rates, corrections of empirical relationships to reflect thermal solution of the nodal network, updating of conductances to account for changes in node temperatures, etc.

Figure 16. Basic Flow Chart for Network Solution Subroutines

The operations in the OUTPUT CALLS block are performed on the output interval specified by the user in the program. Since the operations are performed only at the output interval, OUTPUT CALLS typically contains only instructions for outputting information.

The aforementioned data and operations blocks constitute a SINDA-3G program data deck. The deck must be terminated with the following card:

```
column 8      12
          BCD  3END OF DATA
```

The user has the option to use the subroutines contained in the SINDA-3G library or to write his own. When non-SINDA-3G subroutines are being called, the data communication is obtained through subroutine arguments similar to any other subroutine.

Sample Problem Input Data

The listing of the sample input data is included in the appendix. The data are presented in the same order as stated in the Data Deck Setup section: the node data first, followed by the conductor data and constants data, and concluded with the array data.

The node data includes the solid temperature nodes for the eight radiator panels, the water-glycol fluid temperature nodes for the three-fuel-cell system, the fluid pressure nodes, and the edge sink and environmental sink nodes for the eight panels.

The 11 solid (conduction) conductors are the first of the data listed in the conductor data. Next are the convection conductors and the pressure and fluid flow conductors for the three systems. The conductor data are concluded with the five radiation conductors.

The constants data contain the 472 constants used in the program. These constants are listed by their actual number rather than the program-assigned relative numbers.

Listed in the last section of the problem input data are the array data. Eighty-four arrays are listed, with most arrays containing data and the remaining arrays using the SPACE option to allocate program storage locations.

Following the input data is a listing of the main program (EXECTN, VARBL1, VARBL2, and OUTCAL) and the 12 user-written subroutines.

Sample Problem Output

Figure 17 illustrates a typical problem output listing. The listing is headed with the title "Systems Improved Numerical Differencing Analyzer * SINDA * North American Rockwell Corporation - Space Division" and followed by 11 output interval data sets. Each output interval data set is started with four asterisks. The first data line contains five control constants with their values listed to the right of each constant. The last three constants have the relative node number enclosed in parentheses. The control constants are:

TIME	Present mission time (hr)
DTIMEU	Last time step used for transient network problem (hr)
CSGMIN	Most recent minimum stability criteria for the network
DTMPCC	Maximum diffusion temperature change calculated over the last time step
ARLXCC	Maximum arithmetic relaxation change calculated over the last iteration

The next four lines of output are associated with the primary loop operation. The first two lines list the titles, with the values following. The titles are defined as follows:

SYSTEM	Fuel cell system in operation (for Skylab configuration only two fuel cell systems are used, systems 1 and 3)
POWER	Fuel cell power output (watts)
CURRENT	Fuel cell output current (amps)
VOLTAGE	Fuel cell output voltage (volts)
TSI	Stack inlet temperature ($^{\circ}$ F)
TSE	Stack exit temperature ($^{\circ}$ F)
TCIP	Condenser inlet temperature, primary loop ($^{\circ}$ F)
TCEP	Condenser exit temperature, primary loop ($^{\circ}$ F)
QCOND	Heat flow across the condenser (Btu/hr)

W-COND	Weight rate of water condensed (lb/hr)
WS-RATE	Percent of water produced in the time interval that remains in the stack (%)
TO2	Oxygen reactant temperature at stack inlet (°F)
TH2	Hydrogen reactant temperature before mixing with the primary recirculation stream (°F)
PCKOH	Electrolyte concentration ratio

Secondary loop operations are listed in the next four lines, with the titles followed by their values. The titles represent:

FLOW RATE	Water glycol flow rate (lb/hr)
QRAD	Heat flow across the radiators (Btu/hr)
TRADIN	Temperature of the radiator inlet (°F)
TRADOUT	Temperature of the radiator outlet (°F)
DPRAD	Pressure drop through the radiator loop (psi)
TSRCI	Temperature of the secondary regenerator at the cold-side inlet (°F)
TSRCE	Temperature of the secondary regenerator at the cold-side exit (°F)
TSRHI	Temperature of the secondary regenerator at the hot-side inlet (°F)
TSRHE	Temperature of the secondary regenerator at the hot-side exit (°F)
TCIS	Condenser inlet temperature, secondary loop (°F)
TCES	Condenser exit temperature, secondary loop (°F)
BPFS	Bypassed ratio at the secondary regenerator

The final data group lists the radiator inlet and outlet temperature for the eight radiator panels for all three systems. The temperatures are listed in degrees Fahrenheit. The four asterisks following this data group designate the start of a new output interval data set.

SYSTEMS IMPROVED NUMERICAL DIFFERENCING ANALYZER * SINDA * NORTH AMERICAN ROCKWELL CORPORATION - SPACE DIVISION PAGE 2

* * * TIME 5.49999E-01 DTIMEU 1.67292E-03 CSGMIN(8)	3.06978E-03 DTMPCC(152)						1.12518E-01 APLXCC(196)	1.40869E-01
SYSTEM	POWER WATTS	CURRENT AMPS	VOLTAGE VOLTS	TSI DEGF	TSE DEGF	TCEP DEGF	QCOND BTU/HR	W-COND LB/HR	WS-RATE PERCENT	T02 DEGF	TH2 DEGF	PCTOH		
1	1303.97	45.00	28.98	357.50	437.05	234.16	135.62	2931.22	1.466	-41.60	133.78	137.48	0.735	
3	1303.97	45.00	28.98	357.50	437.05	234.18	135.65	2930.12	1.465	-41.54	133.80	137.51	0.735	
SYSTEM	FLOW RATE LB/HR	QRAD BTU/HR	TRADIN DEGF	TRADOUT DEGF	DPRAD PSI	TSRCI DEGF	TSRCE DEGF	TSRHI DEGF	TSRHE DEGF	TCIS DEGF	TPFS			
1	84.66	824.69	84.20	71.08	5.055	71.22	116.23	159.77	84.1	116.23	160.06	0.0		
3	84.62	819.52	84.57	71.53	5.128	71.66	116.26	159.81	84.4	116.26	160.10	0.0		
PANEL 1 IN OUT	PANEL 2 IN OUT	PANEL 3 IN OUT	PANEL 4 IN OUT	PANEL 5 IN OUT	PANEL 6 IN OUT	PANEL 7 IN OUT	PANEL 8 IN OUT							
83.8	83.4	82.8	82.2	80.4	79.7	77.0	75.4	74.5	73.7	73.0	72.2	71.6	71.0	71.1
69.4	69.0	55.4	54.5	47.0	44.4	28.5	26.8	39.5	38.3	57.5	56.3	50.1	49.5	67.4
84.2	84.0	83.0	82.2	80.4	78.7	77.5	76.3	75.1	73.9	73.1	72.4	71.9	71.5	71.5
* * * TIME 5.99999E-01 DTIMEU 1.66243E-03 CSGMIN(8)	3.07111E-03 DTMPCC(152)						9.87169E-02 APLXCC(196)	1.24390E-01
SYSTEM	POWER WATTS	CURRENT AMPS	VOLTAGE VOLTS	TSI DEGF	TSF DEGF	TCEP DEGF	QCOND BTU/HR	W-COND LB/HR	WS-RATE PERCENT	T02 DEGF	TH2 DEGF			
1	1305.09	45.00	29.00	357.19	437.49	234.69	135.40	2939.13	1.465	-41.59	133.70	137.43	0.735	
3	1305.08	45.00	29.00	357.19	437.49	234.71	135.44	2937.78	1.465	-41.51	133.72	137.45	0.735	

Figure 17. Sample Problem Output

-39, 40 -

4.4 ANALYTICAL RESULTS

Three temperature levels are monitored to determine if the fuel cells are operating within the specified limits. These temperatures are measured at the condenser primary exit, the radiator exit, and the stack. The nominal condenser primary exit temperature range is 155 to 165 F, with allowable cycling to 200 F. The caution and warning (C&W) alarms for the condenser exit are set for 150 F and 175 F. For the analysis, the acceptable minimum power operation was defined for condenser operation as between 150 and 155 F. The acceptable maximum power operation was defined as between 165 and 200 F. The stack and radiator exit temperatures are less limiting than the condenser exit temperature. This is evidenced by results in which seven of the eight cases reached the condenser exit limits. The remaining case was limited by the stack temperature.

The nominal stack temperature range is 390 to 460 F, with the C&W alarms at 360 F and 475 F. For the analysis, the acceptable minimum stack temperature range was 360 to 390 F. The maximum was defined as 460 to 475 F. The radiator exit-temperature nominal range is 0 to 120 F, with allowable high-temperature cycling to 180 F. The C&W alarm is set only for the minimum temperature condition of -30 F. Only the acceptable minimum radiator temperature range was defined for the analysis. This range, -30 to 0 F, was not encountered in any of the eight cases.

Two environmental heating profiles were used for the heat that is radiated to radiator panels. The hotter environment, which was used for the maximum power cases, has a β angle of 73.5 degrees for a circular earth orbit of 235 nautical miles with the vehicle in a Z-local vertical attitude hold. The colder environment for the minimum power cases uses a β angle of 0 degrees for the same orbit and attitude conditions.

The power levels shown in Tables 1, 5 and 6 represent the expected power requirements for the Skylab missions. One-fuel-cell operation and five-eighths radiator area are contingency operation modes that are considered irreversible. That is, once the contingency mode is selected, a return to normal two-fuel-cell or full-area operation is never required.

With the exception of Case 2, the power levels shown in Table 5 can be raised slightly by operation at the condenser C&W limit of 175 F. Operation to 200 F is acceptable for peak cycling conditions. However, once the nominal bypass limit of 165 F is exceeded, a slight increase in power results in a significant temperature rise. Case 3, one fuel cell, full area at 60 amperes, is the only case where the stack temperature limits the power. In this case, a greater increase in power is available if operated to the stack temperature C&W limit of 475 F.

For all of the minimum power cases listed in Table 6, slightly lower power capability is possible by operating down to the condenser C&W limit of 150 F. The temperatures shown in Tables 5 and 6 are orbital extremes except where differences occurred between fuel cells in two-fuel-cell operation. Then the value shown is the average between the two cells at the orbital extreme condition.

Table 5. System Temperatures for High Power Levels

Case	β Angle (deg)	Number of Fuel Cells in Operation	Radiator Area (operating panels)	Total Fuel Cell Current Level (amps)	System Temperatures ($^{\circ}$ F)			
					Condenser Exit	Stack	Radiator Inlet	Radiator Outlet
1	73.5	2	8	100.	168.45	455.93	189.87	150.58
2	73.5	2	5	90.	192.01	452.11	208.98	178.48
3	73.5	1	8	60.	163.77	470.24	190.24	138.04
4	73.5	1	5	50.	172.98	458.70	194.06	155.91

Table 6. System Temperatures for Low Power Levels

Case	β Angle (deg)	Number of Fuel Cells in Operation	Radiator Area (operating panels)	Total Fuel Cell Current Level (amps)	System Temperatures ($^{\circ}$ F)			
					Condenser Exit	Stack	Radiator Inlet	Radiator Outlet
5	0.	2	8	50.	154.30	418.25	52.85	33.03
6	0.	2	5	40.	151.46	412.36	66.11	49.82
7	0.	1	8	30.	155.06	426.05	47.12	19.08
8	0.	1	5	25.	153.41	419.54	46.71	24.57

5. REFERENCES

1. Chrysler Improved Numerical Differencing Analyzer for 3rd Generation Computers. Chrysler Corporation Space Division, New Orleans, Louisiana, Technical Note TN-AP-67-287 (20 October 1967).
2. EPS Radiator Thermal Vacuum Environment Qualification Test Block II. North American Rockwell Space Division, SID 66-1909 (1 March 1967).
3. Notes and Write-ups of IBM 360/75 version of SINDA-3G computer program, from K. R. Katsma, Idaho Nuclear Corporation, Idaho Falls, Idaho.
4. Thompson, R. A., and G. A. Swanson and R. H. Shaw. Fuel Cell System Thermodynamic Analysis. Pratt and Whitney Aircraft, Division of United Aircraft, East Hartford, Connecticut (18 December 1961).
5. CSM/LM Spacecraft Operation Data Book, Volume 1. North American Rockwell Space Division, SD 68-447-1A, Revision 2 (24 September 1969).
6. Weinstein, M. B. Apollo Fuel-Cell Condenser Heat Transfer Tests. NASA Lewis Research Center (123-34-02-01-22, 1966).
7. Giedt, Warren H. Principles of Engineering Heat Transfer. New York: D. Van Nostrand Company, Inc. (1957).
8. Personal communication from Harry J. Cazemier. "Development of a Thermal Analog Model of the Block II Electrical Power System Radiators for the Chrysler Improved Numerical Differencing Analyzer (CINDA) Computer Program," NASA Manned Spacecraft Center, Houston, Texas (February 1969).
9. "EPS CINDA Radiator Model," IL 695-202-110-69-099 by G. A. Vanderpol. North American Rockwell Space Division (23 October 1969).
10. Simulation of the Apollo Applications CSM Electrical Power System. North American Rockwell Space Division, SD 69-269 (December 1969).

APPENDIX: INPUT DATA, MAIN PROGRAM LISTING,
AND USER SUBROUTINE LISTINGS

INPUT DATA

PRECEDING PAGE BLANK NOT FILMED

BCD 3THERMAL SPCS	\$TTL0910
END	
BCD 3NODE DATA	
REM RADIATOR SOLID TEMPERATURE NODES (PANEL 1)	
701,100...,0432693,702,100...,0370880,703,100...,0432693	\$NOD0010
704,100...,0985149,705,100...,0800018,706,100...,0676083	\$NOD0020
707,100...,0676083,708,100...,0800018,709,100...,0676083	\$NOD0030
710,100...,0676083,711,100...,0800018,712,100...,0985149	\$NOD0040
713,100...,0985149,714,100...,0800018,715,100...,0676083	\$NOD0050
716,100...,0676083,717,100...,0800018,718,100...,0676083	\$NOD0060
719,100...,0676083,720,100...,0800018,721,100...,0985149	\$NOD0070
722,100...,0432693,723,100...,0370880,724,100...,0432693	\$NOD0080
REM RADIATOR SOLID TEMPERATURE NODES (PANEL 2)	
725,100...,0432693,726,100...,0370880,727,100...,0432693	\$NOD0090
728,100...,0985149,729,100...,0800018,730,100...,0676083	\$NOD0100
731,100...,0676083,732,100...,0800018,733,100...,0676083	\$NOD0110
734,100...,0676083,735,100...,0800018,736,100...,0985149	\$NOD0120
737,100...,0985149,738,100...,0800018,739,100...,0676083	\$NOD0130
740,100...,0676083,741,100...,0800018,742,100...,0676083	\$NOD0140
743,100...,0676083,744,100...,0800018,745,100...,0985149	\$NOD0150
746,100...,0432693,747,100...,0370880,748,100...,0432693	\$NOD0160
REM RADIATOR SOLID TEMPERATURE NODES (PANEL 3)	
749,100...,0432693,750,100...,0370880,751,100...,0432693	\$NOD0170
752,100...,0985149,753,100...,0800018,754,100...,0676083	\$NOD0180
755,100...,0676083,756,100...,0800018,757,100...,0676083	\$NOD0190
758,100...,0676083,759,100...,0800018,760,100...,0985149	\$NOD0200
761,100...,0985149,762,100...,0800018,763,100...,0676083	\$NOD0210
764,100...,0676083,765,100...,0800018,766,100...,0676083	\$NOD0220
767,100...,0676083,768,100...,0800018,769,100...,0985149	\$NOD0230
770,100...,0432693,771,100...,0370880,772,100...,0432693	\$NOD0240
REM RADIATOR SOLID TEMPFRATURE NODES (PANEL 4)	
773,100...,0432693,774,100...,0370880,775,100...,0432693	\$NOD0250
776,100...,0985149,777,100...,0800018,778,100...,0676083	\$NOD0260
779,100...,0676083,780,100...,0800018,781,100...,0676083	\$NOD0270
782,100...,0676083,783,100...,0800018,784,100...,0985149	\$NOD0280
785,100...,0985149,786,100...,0800018,787,100...,0676083	\$NOD0290
788,100...,0676083,789,100...,0800018,790,100...,0676083	\$NOD0300
791,100...,0676083,792,100...,0800018,793,100...,0985149	\$NOD0310
794,100...,0432693,795,100...,0370880,796,100...,0432693	\$NOD0320
REM RADIATOR SOLID TEMPERATURE NODES (PANEL 5)	
797,100...,0432693,798,100...,0370880,799,100...,0432693	\$NOD0330
800,100...,0985149,801,100...,0800018,802,100...,0676083	\$NOD0340
803,100...,0676083,804,100...,0800018,805,100...,0676083	\$NOD0350
806,100...,0676083,807,100...,0800018,808,100...,0985149	\$NOD0360
809,100...,0676083,810,100...,0800018,811,100...,0676083	\$NOD0370
812,100...,0676083,813,100...,0800018,814,100...,0985149	\$NOD0380
815,100...,0676083,816,100...,0800018,817,100...,0985149	\$NOD0390
818,100...,0432693,819,100...,0370880,820,100...,0432693	\$NOD0400
REM RADIATOR SOLID TEMPERATURE NODES (PANEL 6)	
821,100...,0432693,822,100...,0370880,823,100...,0432693	\$NOD0410
824,100...,0985149,825,100...,0800018,826,100...,0676083	\$NOD0420
827,100...,0676083,828,100...,0800018,829,100...,0676083	\$NOD0430
830,100...,0676083,831,100...,0800018,832,100...,0985149	\$NOD0440
833,100...,0985149,834,100...,0800018,835,100...,0676083	\$NOD0450
836,100...,0676083,837,100...,0800018,838,100...,0676083	\$NOD0460
839,100...,0676083,840,100...,0800018,841,100...,0985149	\$NOD0470
842,100...,0432693,843,100...,0370880,844,100...,0432693	\$NOD0480

Preceding page blank

- 45 -

REM RADIATOR SOLID TEMPERATURE NODES (PANEL 7)	\$NOD0560
845,100...0432693,846,100...0370880,847,100...0432693	\$NOD0570
848,100...0985149,849,100...0800018,850,100...0676083	\$NOD0580
851,100...0676083,852,100...0800018,853,100...0676083	\$NOD0590
854,100...0676083,855,100...0800018,856,100...0985149	\$NOD0600
857,100...0985149,858,100...0800018,859,100...0676083	\$NOD0610
860,100...0676083,861,100...0800018,862,100...0676083	\$NOD0620
863,100...0676083,864,100...0800018,865,100...0985149	\$NOD0630
866,100...0432693,867,100...0370880,868,100...0432693	\$NOD0640
REM RADIATOR SOLID TEMPERATURE NODES (PANEL 8)	\$NOD0650
869,100...0432693,870,100...0370880,871,100...0432693	\$NOD0660
872,100...0985149,873,100...0800018,874,100...0676083	\$NOD0670
875,100...0676083,876,100...0800018,877,100...0676083	\$NOD0680
878,100...0676083,879,100...0800018,880,100...0985149	\$NOD0690
881,100...0985149,882,100...0800018,883,100...0676083	\$NOD0700
884,100...0676083,885,100...0800018,886,100...0676083	\$NOD0710
887,100...0676083,888,100...0800018,889,100...0985149	\$NOD0720
890,100...0432693,891,100...0370880,892,100...0432693	\$NOD0730
REM FLUID TEMPERATURE ARITHMETIC NODES	\$NOD0750
617,116...-1..,616,119...-1..,615,119...-1..,614,122...-1.	
613,122...-1..,612,125...-1..,611,125...-1..,610,128...-1.	
609,128...-1..,608,131...-1..,607,131...-1..,606,134...-1.	
605,134...-1..,604,137...-1..,603,137...-1..,602,140...-1.	
635,116...-1..,634,119...-1..,633,119...-1..,632,122...-1.	
631,122...-1..,630,125...-1..,629,125...-1..,628,128...-1.	
627,128...-1..,626,131...-1..,625,131...-1..,624,134...-1.	
623,134...-1..,622,137...-1..,621,137...-1..,620,140...-1.	
653,116...-1..,652,119...-1..,651,119...-1..,650,122...-1.	
649,122...-1..,648,125...-1..,647,125...-1..,646,128...-1.	
645,128...-1..,644,131...-1..,643,131...-1..,642,134...-1.	
641,134...-1..,640,137...-1..,639,137...-1..,638,140...-1.	
REM FLUID TEMPERATURE NODES - MIXING (SYSTEMS 1,2,3)	\$NOD0880
618,116...-1..,636,116...-1..,654,116...-1.	
REM FLUID TEMPERATURE NODES - BOUNDARY (SYSTEMS 1,2,3)	\$NOD0900
-601,190...,-619,190...,-637,190..	\$NOD0910
REM FLUID PRESSURE NODES (SYSTEM 1)	\$NOD0920
-501,,,,-502,,,,-503,,,,-504,,,,-505,,,,-506,,,,-507,,,,-508,,	\$NOD0930
-509,,,,-510,,,,-511,,,,-512,,,,-513,,,,-514,,,,-515,,,,-516,,	\$NOD0940
-517,,,,-518,,,,-519,,,,-520,,,,-521,,,,-522,,,,-523,,,,-524,,	\$NOD0950
-525,,,,-526,,,,-527,0.	\$NOD0960
REM FLUID PRESSURE NODES (SYSTEM 2)	\$NOD0970
-528,,,,-529,,,,-530,,,,-531,,,,-532,,,,-533,,,,-534,,,,-535,,	\$NOD0980
-536,,,,-537,,,,-538,,,,-539,,,,-540,,,,-541,,,,-542,,,,-543,,	\$NOD0990
-544,,,,-545,,,,-546,,,,-547,,,,-548,,,,-549,,,,-550,,,,-551,,	\$NOD1000
-552,,,,-553,,,,-554,0.	\$NOD1010
REM FLUID PRESSURE NODES (SYSTEM 3)	\$NOD1020
-555,,,,-556,,,,-557,,,,-558,,,,-559,,,,-560,,,,-561,,,,-562,,	\$NOD1030
-563,,,,-564,,,,-565,,,,-566,,,,-567,,,,-568,,,,-569,,,,-570,,	\$NOD1040
-571,,,,-572,,,,-573,,,,-574,,,,-575,,,,-576,,,,-577,,,,-578,,	\$NOD1050
-579,,,,-580,,,,-581,0.	\$NOD1060
REM EDGE SINK TEMPERATURE NODE FOR PANELS 1 TO 8	
-893,-150..	
REM ENVIRONMENTAL SINK TEMPERATURE NODES FOR PANELS 1 TO 8	\$NOD1070
-901,-460...,-902,-460...,-903,-460...,-904,-460...,-905,-460..,	\$NOD1080
-906,-460...,-907,-460...,-908,-460..,	\$NOD1090
FND	\$NOD1110
BCD 3CONDUCTOR DATA	\$CNDO010
REM	\$CNDO020
REM	\$CNDO030
REM SOLID CONDUCTOR - NUMBER 701	\$CNDO040
REM	\$CNDO050
701,701,702,702,703,722,723,723,724	\$PANEL 1
725,726,726,727,746,747,747,748	\$PANEL 2
749,750,750,751,770,771,771,772	\$PANEL 3

773, 774, 774, 775, 794, 795, 795, 796	\$PANEL 4	\$CND0090
797, 798, 798, 799, 818, 819, 819, 820	\$PANEL 5	\$CND0100
821, 822, 822, 823, 842, 843, 843, 844	\$PANEL 6	\$CND0110
845, 846, 846, 847, 866, 867, 867, 868	\$PANEL 7	\$CND0120
869, 870, 870, 871, 890, 891, 891, 892, .1996911	\$PANEL 8	\$CND0130
REM SOLID CONDUCTOR - NUMBER 702		\$CND0140
702, 701, 704, 703, 712, 713, 722, 721, 724	\$PANEL 1	\$CND0150
725, 728, 727, 736, 737, 746, 745, 748	\$PANEL 2	\$CND0160
749, 752, 751, 760, 761, 770, 769, 772	\$PANEL 3	\$CND0170
773, 776, 775, 784, 785, 794, 793, 796	\$PANEL 4	\$CND0180
797, 800, 799, 809, 809, 818, 817, 820	\$PANEL 5	\$CND0190
821, 824, 823, 832, 833, 842, 841, 844	\$PANEL 6	\$CND0200
845, 848, 847, 856, 857, 866, 865, 868	\$PANEL 7	\$CND0210
869, 872, 871, 880, 881, 890, 889, 892, .1767663	\$PANEL 8	\$CND0220
REM SOLID CONDUCTOR - NUMBER 703		\$CND0230
703, 701, 705, 702, 708, 703, 711, 714, 722, 717, 723, 720, 724	\$PNL1 \$CND0240	
725, 729, 726, 732, 727, 735, 738, 746, 741, 747, 744, 748	\$PNL2 \$CND0250	
749, 753, 750, 756, 751, 759, 762, 770, 765, 771, 768, 772	\$PNL3 \$CND0260	
773, 777, 774, 780, 775, 783, 786, 794, 789, 795, 792, 796	\$PNL4 \$CND0270	
797, 801, 798, 804, 799, 807, 810, 818, 813, 819, 816, 820	\$PNL5 \$CND0280	
821, 825, 822, 828, 823, 831, 834, 842, 837, 843, 840, 844	\$PNL6 \$CND0290	
845, 849, 846, 852, 847, 855, 858, 866, 861, 867, 864, 868	\$PNL7 \$CND0300	
869, 873, 870, 876, 871, 879, 882, 890, 885, 891, 888, 892, .090127	\$PNL8 \$CND0310	
REM SOLID CONDUCTOR - NUMBER 704		\$CND0320
704, 701, 706, 702, 707, 702, 709, 703, 710	\$ PANEL 1	\$CND0330
715, 722, 716, 723, 718, 723, 719, 724	\$ PANEL 1	\$CND0340
725, 730, 726, 731, 726, 733, 727, 734	\$ PANEL 2	\$CND0350
739, 746, 740, 747, 742, 747, 743, 748	\$ PANEL 2	\$CND0360
749, 754, 750, 755, 750, 757, 751, 758	\$ PANEL 3	\$CND0370
763, 770, 764, 771, 766, 771, 767, 772	\$ PANEL 3	\$CND0380
773, 778, 774, 779, 774, 781, 775, 782	\$ PANEL 4	\$CND0390
787, 794, 788, 795, 790, 795, 791, 796	\$ PANEL 4	\$CND0400
797, 802, 798, 803, 798, 805, 799, 806	\$ PANEL 5	\$CND0410
811, 818, 812, 819, 814, 819, 815, 820	\$ PANEL 5	\$CND0420
821, 826, 822, 827, 822, 829, 823, 830	\$ PANEL 6	\$CND0430
835, 842, 836, 843, 838, 843, 839, 844	\$ PANEL 6	\$CND0440
845, 850, 846, 851, 846, 853, 847, 854	\$ PANEL 7	\$CND0450
859, 866, 860, 867, 862, 867, 863, 868	\$ PANEL 7	\$CND0460
869, 874, 870, 875, 870, 877, 871, 878	\$ PANEL 8	\$CND0470
883, 890, 884, 891, 886, 891, 887, 892, .121294	\$ PANEL 8	\$CND0480
REM SOLID CONDUCTOR - NUMBER 705		\$CND0490
705, 704, 705, 711, 712, 713, 714, 720, 721	\$PANEL 1	\$CND0500
728, 729, 735, 736, 737, 738, 744, 745	\$PANEL 2	\$CND0510
752, 753, 759, 760, 761, 762, 768, 769	\$PANEL 3	\$CND0520
776, 777, 783, 784, 785, 786, 792, 793	\$PANEL 4	\$CND0530
800, 801, 807, 808, 809, 810, 816, 817	\$PANEL 5	\$CND0540
824, 825, 831, 832, 833, 834, 840, 841	\$PANEL 6	\$CND0550
848, 849, 855, 856, 857, 858, 864, 865	\$PANEL 7	\$CND0560
872, 873, 879, 880, 881, 882, 888, 889, .3.111299	\$PANEL 8	\$CND0570
REM SOLID CONDUCTOR - NUMBER 706		\$CND0580
706, 705, 706, 707, 708, 708, 709, 710, 711	\$PANEL 1	\$CND0590
714, 715, 716, 717, 717, 718, 719, 720	\$PANEL 1	\$CND0600
729, 730, 731, 732, 732, 733, 734, 735	\$PANEL 2	\$CND0610
738, 739, 740, 741, 741, 742, 743, 744	\$PANEL 2	\$CND0620
753, 754, 755, 756, 756, 757, 758, 759	\$PANEL 3	\$CND0630
762, 763, 764, 765, 765, 766, 767, 768	\$PANEL 3	\$CND0640
777, 778, 779, 780, 780, 781, 782, 783	\$PANEL 4	\$CND0650
786, 787, 788, 789, 789, 790, 791, 792	\$PANEL 4	\$CND0660
801, 802, 803, 804, 804, 805, 806, 807	\$PANEL 5	\$CND0670
810, 811, 812, 813, 813, 814, 815, 816	\$PANEL 5	\$CND0680
825, 826, 827, 828, 828, 829, 830, 831	\$PANEL 6	\$CND0690
834, 835, 836, 837, 837, 838, 839, 840	\$PANEL 6	\$CND0700
849, 850, 851, 852, 852, 853, 854, 855	\$PANEL 7	\$CND0710
858, 859, 860, 861, 861, 862, 863, 864	\$PANEL 7	\$CND0720

873,874,875,876,876,877,878,879	\$PANEL 8	\$CND0730
882,883,884,885,885,886,887,888,3.927239	\$PANEL 9	\$CND0740
REM SOLID CONNECTOR - NUMBER 707		\$CND0750
707,706,707,709,710,715,716,718,719	\$PANEL 1	\$CND0760
730,731,733,734,739,740,742,743	\$PANEL 2	\$CND0770
754,755,757,758,763,764,766,767	\$PANEL 3	\$CND0780
778,779,781,782,787,788,790,791	\$PANEL 4	\$CND0790
802,803,805,806,811,812,814,815	\$PANEL 5	\$CND0800
826,827,829,830,835,836,838,839	\$PANEL 6	\$CND0810
850,851,853,854,859,860,862,863	\$PANEL 7	\$CND0820
874,875,877,878,883,884,886,887,3.422037	\$PANEL 8	\$CND0830
REM SOLID CONDUCTOR - NUMBER 708		\$CND0840
709,704,713,712,721,728,737,736,745	\$PANELS 1-2	\$CND0850
752,761,760,769,776,785,784,793	\$PANELS 3-4	\$CND0860
800,809,808,817,824,833,832,841	\$PANELS 5-6	\$CND0870
848,857,856,865,872,881,880,889,.106059	\$PANEL 8	\$CND0880
REM SOLID CONDUCTOR - NUMBER 709		\$CND0890
709,705,714,708,717,711,720	\$PANEL 1	\$CND0900
729,738,732,741,735,744	\$PANEL 2	\$CND0910
753,762,756,765,759,768	\$PANEL 3	\$CND0920
777,786,789,783,792	\$PANEL 4	\$CND0930
801,810,804,813,807,816	\$PANEL 5	\$CND0940
825,834,828,837,831,840	\$PANEL 6	\$CND0950
849,858,852,861,855,864	\$PANEL 7	\$CND0960
873,882,876,885,879,888,.1829098	\$PANEL 8	\$CND0970
REM SOLID CONDUCTOR - NUMBER 710		\$CND0980
710,706,715,707,716,709,718,710,719	\$PANEL 1	\$CND0990
730,739,731,740,733,742,734,743	\$PANEL 2	\$CND1000
754,763,755,764,757,766,758,767	\$PANEL 3	\$CND1010
778,787,779,788,781,790,782,791	\$PANEL 4	\$CND1020
802,811,803,812,805,814,806,815	\$PANEL 5	\$CND1030
826,835,827,836,829,838,830,839	\$PANEL 6	\$CND1040
850,859,851,860,853,862,854,863	\$PANEL 7	\$CND1050
874,883,875,884,877,886,878,887,.0727762	\$PANEL 8	\$CND1060
REM SOLID CONDUCTOR - NUMBER 711		
711,701,893,702,893,703,893,712,893,721,893,724,893,723,893		
722,893,713,893,704,893	\$PANEL 1	
725,893,726,893,727,893,736,893,745,893,748,893,747,893		
746,893,737,893,728,893	\$PANEL 2	
749,893,750,893,751,893,760,893,769,893,772,893,771,893		
770,893,761,893,752,893	\$PANEL 3	
773,893,774,893,775,893,784,893,793,893,796,893,795,893		
794,893,785,893,776,893	\$PANEL 4	
797,893,798,893,799,893,808,893,817,893,820,893,819,893		
818,893,809,893,800,893	\$PANEL 5	
821,893,822,893,823,893,832,893,841,893,844,893,843,893		
842,893,833,893,824,893	\$PANEL 6	
845,893,846,893,847,893,856,893,865,893,868,893,867,893		
866,893,857,893,848,893	\$PANEL 7	
869,893,870,893,871,893,880,893,889,893,892,893,891,893		
890,893,881,893,872,893,.0109890	\$PANEL 8	
REM		\$CND1070
REM CONVECTION CONDUCTORS		\$CND1080
REM		\$CND1090
1001,602,708,,1002,603,717,,1003,604,735,,1004,605,744,		\$CND1100
1005,606,753,,1006,607,762,,1007,608,780,,1008,609,789,		\$CND1110
1009,610,807,,1010,611,816,,1011,612,825,,1012,613,834,		\$CND1120
1013,614,852,,1014,615,861,,1015,616,879,,1016,617,888,		\$CND1130
1017,620,711,,1018,621,720,,1019,622,729,,1020,623,738,		\$CND1140
1021,624,756,,1022,625,765,,1023,626,783,,1024,627,792,		\$CND1150
1025,628,801,,1026,629,810,,1027,630,828,,1028,631,837,		\$CND1160
1029,632,855,,1030,633,864,,1031,634,873,,1032,635,882,		\$CND1170
1033,638,705,,1034,639,714,,1035,640,732,,1036,641,741,		\$CND1180
1037,642,759,,1038,643,768,,1039,644,777,,1040,645,786,		\$CND1190

1041,646,804,,1042,647,813,,1043,648,831,,1044,649,840,	\$CND1200
1045,650,849,,1046,651,858,,1047,652,876,,1048,653,885,	\$CND1210
REM	\$CND1220
REM PRESSURE CONDUCTORS (SYSTEM 1)	\$CND1230
REM	\$CND1240
501,501,502,	
502,502,503,	
503,503,504,	
504,504,505,	
505,505,506,	
506,506,507,	
507,507,508,	
508,508,509,	
509,509,510,	
510,510,511,	
511,511,512,	
512,512,513,	
513,513,514,	
514,514,515,	
515,515,516,	
516,516,517,	
517,517,518,	
518,518,519,	
519,519,520,	
520,520,521,	
521,521,522,	
522,522,523,	
523,523,524,	
524,524,525,	
525,525,526,	
526,526,527,	
527,516,526,	
REM	\$CND1260
REM PRESSURE CONDUCTORS (SYSTEM 2)	\$CND1270
REM	\$CND1280
REM	\$CND1290
528,528,529,	
529,529,530,	
530,530,531,	
531,531,532,	
532,532,533,	
533,533,534,	
534,534,535,	
535,535,536,	
536,536,537,	
537,537,538,	
538,538,539,	
539,539,540,	
540,540,541,	
541,541,542,	
542,542,543,	
543,543,544,	
544,544,545,	
545,545,546,	
546,546,547,	
547,547,548,	
548,548,549,	
549,549,550,	
550,550,551,	
551,551,552,	
552,552,553,	
553,553,554,	
554,543,553,	
REM	\$CND1310
REM	\$CND1320

Space Division
North American Rockwell

```
REM PRESSURE CONDUCTORS (SYSTEM 3)          $CND1330
REM                                         $CND1340
      555,555,556,
      556,556,557,
      557,557,558,
      558,558,559,
      559,559,560,
      560,560,561,
      561,561,562,
      562,562,563,
      563,563,564,
      564,564,565,
      565,565,566,
      566,566,567,
      567,567,568,
      568,568,569,
      569,569,570,
      570,570,571,
      571,571,572,
      572,572,573,
      573,573,574,
      574,574,575,
      575,575,576,
      576,576,577,
      577,577,578,
      578,578,579,
      579,579,580,
      580,580,581,
      581,570,580,
                                         $CND1360
REM
REM FLUID FLOW CONDUCTORS (SYSTEM 1)          $CND1370
REM                                         $CND1390
                                         $CND1400
      601,-601,602,
      602,-602,603,
      603,-603,604,
      604,-604,605,
      605,-605,606,
      606,-606,607,
      607,-607,608,
      608,-608,609,
      609,-609,610,
      610,-610,611,
      611,-611,612,
      612,-612,613,
      613,-613,614,
      614,-614,615,
      615,-615,616,
      616,-616,617,
      617,-617,618,
      618,-611,618,
                                         $CND1420
REM
REM FLUID FLOW CONDUCTORS (SYSTEM 2)          $CND1430
REM                                         $CND1440
                                         $CND1450
      619,-619,620,
      620,-620,621,
      621,-621,622,
      622,-622,623,
      623,-623,624,
      624,-624,625,
      625,-625,626,
      626,-626,627,
      627,-627,628,
      628,-628,629,
      629,-629,630,
```


630,-630,631,	
631,-631,632,	
632,-632,633,	
633,-633,634,	
634,-634,635,	
635,-635,636,	
636,-629,636,	
	\$CND1470
REM	
RFM FLUID FLOW CONDUCTORS (SYSTEM 3)	
REM	
637,-637,638,	
638,-638,639,	
639,-639,640,	
640,-640,641,	
641,-641,642,	
642,-642,643,	
643,-643,644,	
644,-644,645,	
645,-645,646,	
646,-646,647,	
647,-647,648,	
648,-648,649,	
649,-649,650,	
650,-650,651,	
651,-651,652,	
652,-652,653,	
653,-653,654,	
654,-647,654,	
	\$CND1520
REM	
REM RADIATION CONDUCTOR - NUMBER 901	
-901,701,901,703,901,722,901,724,901	
725,902,727,902,746,902,748,902	
749,903,751,903,770,903,772,903	
773,904,775,904,794,904,796,904	
797,905,799,905,818,905,820,905	
821,906,823,906,842,906,844,906	
845,907,847,907,866,907,868,907	
869,908,871,908,890,908,892,908,.229827E-9	
	\$PANEL 1 \$CND1550
REM	
REM RADIATION CONDUCTOR - NUMBER 902	
REM	
-902,702,901,723,901,726,902,747,902	
750,903,771,903,774,904,795,904	
798,905,819,905,822,906,843,906	
846,907,867,907,870,908,891,908,.196995E-9	
	\$PANEL 1-2 \$CND1660
	\$PANEL 3-4 \$CND1670
	\$PANEL 5-6 \$CND1680
	\$PANEL 7-8 \$CND1690
REM	
REM RADIATION CONDUCTOR - NUMBER 903	
REM	
-903,704,901,712,901,713,901,721,901	
728,902,736,902,737,902,745,902	
752,903,760,903,761,903,769,903	
776,904,784,904,785,904,793,904	
800,905,808,905,809,905,817,905	
824,906,832,906,833,906,841,906	
848,907,856,907,857,907,865,907	
872,908,880,908,881,908,889,908,.523268E-9	
	\$PANEL 1 \$CND1730
	\$PANEL 2 \$CND1740
	\$PANEL 3 \$CND1750
	\$PANEL 4 \$CND1760
	\$PANEL 5 \$CND1770
	\$PANEL 6 \$CND1780
	\$PANEL 7 \$CND1790
	\$PANEL 8 \$CND1800
REM	
REM RADIATION CONDUCTOR - NUMBER 904	
REM	
-904,705,711,901,711,901,711,901,711	
729,902,732,902,735,902,738,902,741,902,744,902	
753,903,756,903,759,903,762,903,765,903,768,903	
777,904,780,904,783,904,786,904,789,904,792,904	
801,905,804,905,807,905,810,905,813,905,816,905	
	\$PANEL 1 \$CND1810
	\$PANEL 2 \$CND1850
	\$PANEL 3 \$CND1860
	\$PANEL 4 \$CND1870
	\$PANEL 5 \$CND1880

825,906,828,906,831,906,834,906,837,906,840,906 \$PANEL 6 \$CND1890
849,907,852,907,855,907,858,907,861,907,864,907 \$PANEL 7 \$CND1900
873,908,876,908,879,908,882,908,885,908 \$CND1910
888,908,.270036E-9 \$CND1920
REM \$CND1930
PEM RADIATION CONDUCTOR - NUMBER 905 \$CND1940
REM \$CND1950
-905,706,901,707,901,709,901,710,901 \$PANEL 1 \$CND1960
715,901,716,901,718,901,719,901 \$PANEL 1 \$CND1970
730,902,731,902,733,902,734,902 \$PANEL 2 \$CND1980
739,902,740,902,742,902,743,902 \$PANEL 2 \$CND1990
754,903,755,903,757,903,758,903 \$PANEL 3 \$CND2000
763,903,764,903,766,903,767,903 \$PANEL 3 \$CND2010
778,904,779,904,781,904,782,904 \$PANEL 4 \$CND2020
787,904,788,904,790,904,791,904 \$PANEL 4 \$CND2030
802,905,803,905,805,905,806,905 \$PANEL 5 \$CND2040
811,905,812,905,814,905,815,905 \$PANEL 5 \$CND2050
826,906,827,906,829,906,830,906 \$PANEL 6 \$CND2060
835,906,836,906,838,906,839,906 \$PANEL 6 \$CND2070
850,907,851,907,853,907,854,907 \$PANEL 7 \$CND2080
859,907,860,907,862,907,863,907 \$PANEL 7 \$CND2090
874,908,875,908,877,908,878,908 \$PANEL 8 \$CND2100
883,908,884,908,886,908,887,908,.359122E-9 \$PANEL 8 \$CND2110
REM \$CND2120
END \$CND2130
BCD 3CONSTANTS DATA \$CNS0010
TIMEND, 6.2, OUTPUT, 0.05
1,3,6,2,28,3,15,4,10,5,27 \$K5 IS NO PRESSURE COND PEP SYSTEM \$CNS0030
6,85.,7,0,0.0001,8,0,0.0001 \$ WATER GLYCOL FLOW RATE
9,0,10,0,11,0 \$ BYPASS OPTION
REM CONSTANTS FOR INCIDENT HEAT -- PANELS 1-8 \$CNS0060
12,,13,,14,,15,39.,16,83.,17,82.,18,40.,19, \$CNS0070
20,24 \$ NUMBER OF NODES PER PANEL \$CNS0080
21.,374223E-3 \$ VOLUME OF FLUID CAPACITANCE NODES \$CNS0090
22,16 \$ NO. OF NODES PER SYSTEM WITH CAPACITANCE VALUES \$CNS0100
23,3.60 \$CNS0110
REM -K22 IS NO. OF CONVECTION CONDUCTORS PER SYSTEM \$CNS0120
24,18 \$ NO. OF THERMAL FLUID FLOW CONDUCTORS PER SYSTEM \$CNS0130
25.,6944444E-2 \$ CONVERSION FROM PSF TO PSI \$CNS0140
REM CONSTANTS USED IN OUTPUT CALLS \$CNS0150
26.,27,16,28,,29, STEMP,30,192,31,701,32,,33,NO USE\$
REM MULTIPLYING FACTORS FOR PRESSURE CONDUCTORS \$CNS0170
501,255.91,502,108.265,503,108.265,504,30.57,505,108.265 \$CNS0180
506,108.265,507,53.03,508,108.265,509,108.265,510,65.726 \$CNS0190
511,108.265,512,108.265,513,49.71,514,108.265,515,108.265 \$CNS0200
516,33.01,517,108.265,518,108.265,519,59.7692,520,108.265 \$CNS0210
521,108.265,522,58.0113,523,108.265,524,108.265,525,36.0373 \$CNS0220
526,55.2666,527,148.1534,528,285.9462,529,108.265 \$CNS0230
530,108.265,531,30.7636,532,108.265,533,108.265,534,67.6798 \$CNS0240
535,108.265,536,108.265,537,49.71,538,108.265,539,108.265 \$CNS0250
540,49.4174,541,108.265,542,108.265,543,66.5079,544,108.265 \$CNS0260
545,108.265,546,43.9479,547,108.265,548,108.265,549,59.3824 \$CNS0270
550,108.265,551,108.265,552,47.0735,553,68.8417,554,159.4818 \$CNS0280
555,295.3176,556,108.265,557,108.265,558,46.7802,559,108.265 \$CNS0290
560,108.265,561,52.0539,562,108.265,563,108.265,564,50.296 \$CNS0300
565,108.265,566,108.265,567,65.2422,568,108.265,569,108.265 \$CNS0310
570,43.5577,571,108.265,572,108.265,573,44.4363,574,108.265 \$CNS0320
575,108.265,576,73.8325,577,108.265,578,108.265,579,40.9204 \$CNS0330
580,68.8717,581,158.5055 \$CNS0340
REM COMPRESSED PRESSURE CONDUCTORS \$CNS0350
582,,583,,584,,585,,586,,587,,588,,589,,590,,591,,592,,593,, \$CNS0360
594,0,,595,7 \$CNS0370
598,150.0 \$INITIAL SOLID NODE TEMP

599,192	\$ NO. OF SOLID TEMPERATURE NODES	\$CNS0390
600, 6.2		
REM	CONSTANTS 601 TO 681 * 4/WP AND ARE USED IN RE NO. COMPUTATN	\$CNS0410
601,66,427,602,37,619,603,37,619,604,50,087,605,37,619	\$CNS0420	
606,37,619,607,50,087,608,37,619,609,37,619,610,50,087	\$CNS0430	
611,37,619,612,37,619,613,50,087,614,37,619,615,37,619	\$CNS0440	
616,50,087,617,37,619,618,37,619,619,50,087,620,37,619	\$CNS0450	
621,37,619,622,50,087,623,37,619,624,37,619,625,50,087	\$CNS0460	
626,50,087,627,50,087,628,66,427,629,37,619,630,37,619	\$CNS0470	
631,50,087,632,37,619,633,37,619,634,50,087,635,37,619	\$CNS0480	
636,37,619,637,50,087,638,37,619,639,37,619,640,50,087	\$CNS0490	
641,37,619,642,37,619,643,50,087,644,37,619,645,37,619	\$CNS0500	
646,50,087,647,37,619,648,37,619,649,50,087,650,37,619	\$CNS0510	
651,37,619,652,50,087,653,50,087,654,50,087,655,66,427	\$CNS0520	
656,37,619,657,37,619,658,50,087,659,37,619,660,37,619	\$CNS0530	
661,50,087,662,37,619,663,37,619,664,50,087,665,37,619	\$CNS0540	
666,37,619,667,50,087,668,37,619,669,50,087,670,37,619	\$CNS0550	
671,37,619,672,37,619,673,50,087,674,37,619,675,37,619	\$CNS0560	
676,50,087,677,37,619,678,37,619,679,50,087,680,50,087	\$CNS0570	
681,50,087,682,683,684,	\$CNS0580	
701,.080311,702,0.,703,0.,704,.042633,705,0.,706,0.	\$CNS0590	
707,.042633,708,0.,709,0.,710,.042633,711,0.,712,0.	\$CNS0600	
713,.042633,714,0.,715,0.,716,.042633,717,0.,718,0.	\$CNS0610	
719,.042633,720,0.,721,0.,722,.042633,723,0.,724,0.	\$CNS0620	
725,.023644,726,.0023271,727,.0472876,728,.080311	\$CNS0630	
729,0.,730,0.,731,.042633,732,0.,733,0.,734,.042633,735,0.	\$CNS0640	
736,0.,737,.042633,738,0.,739,0.,740,.042633,741,0.,742,0.	\$CNS0650	
743,.042633,744,0.,745,0.,746,.042633,747,0.,748,0.	\$CNS0660	
749,.042633,750,0.,751,0.,752,.023644,753,.0023271	\$CNS0670	
754,.0472876,755,.080311,756,0.,757,0.,758,.042633,759,0.	\$CNS0680	
760,0.,761,.042633,762,0.,763,0.,764,.042633,765,0.,766,0.	\$CNS0690	
767,.042633,768,0.,769,0.,770,.042633,771,0.,772,0.	\$CNS0700	
773,.042633,774,0.,775,0.,776,.042633,777,0.,778,0.	\$CNS0710	
779,.023644,780,.0023271,781,.0472876	\$CNS0720	
801,,802,,803, \$ FLUID HEAT LOSS PER SYSTEM	\$CNS0730	
804,.0265823\$(WP/4) FOR PANEL TURES	\$CNS0740	
REM	CONSTANTS FOR GR NUMBER = (WP/4)*(X/0)	\$CNS0750
805,.984934,806,4,725,807,.984934,808,4,725	\$CNS0760	
809,.984934,810,4,725,811,.984934,812,4,725	\$CNS0770	
813,.984934,814,4,725,815,.984934,816,4,725	\$CNS0780	
817,.984934,818,4,725,819,.984934,820,4,725	\$CNS0790	
821,,822,,823, \$ INVERSE FLOW RATE	\$CNS0800	
824,,825,,826, \$ SYSTEM PRESSURE DROP	\$CNS0810	
827,150,,828,150,,829,150.	\$ PREVIOUS TSRCE	
830, 22,, 831, 22,, 832, 22.	\$ MASS OF KOH	
833,.73,834,.73,835,.73	\$ PERCENT KOH IN STACK	
836, 160,, 837, 160,, 838, 160.	\$ TCE	
839, 85.8	\$ GAS CONSTANT - WATER	
840, 767.	\$ GAS CONSTANT H2	
841,180,,842,180,,843,180.	\$ VOLUMETRIC FLOW RATE	
844,340,,845,340,,846,340.	\$ STACK INLET TEMP	
847,420,,848,420,,849,420.	\$ STACK OUTLET TEMPS	
850,-.60, 851,-.60, 852,-.60	\$ PC H2O PROD. IN STACK	
853, 0.023	\$ H2O PRODUCTION RATE	
854,30,,855,0.,856,0.	\$ CURRENT - AMPS	
857, 0.01	\$ ACCEPTABLE ERROR FOR RATE	
858,,859,,860,	\$ CELL VOLTAGE	
861, 0.	\$ NOT USED	
862, 30.	\$ MCP OF STACK	
863, 0.	\$ NOT USED	
864,2.43E-3	\$VOL,FT**3,RAD OUT TO REG COLD INLET	
865,1.545E-2	\$VOL,FT**3,REG COLD SIDE	
866,3.76E-3	\$VOL,FT**3,COND GLYCOL SIDE	

867,4.63E-3 \$VOL,FT**3,COND OUTLET TO REG. INLET
868,2.431E-2 \$,FT**3,SECONDARY REG HOT SIDE
869,2.26E-3 \$VOL,FT**3,REG. TO RAD INLET
870,160.,871,160.,872,160. \$TCE, PREVIOUS TIME STEP
873,1,874,1,875,1 \$INTEGER POINTER FOR SFC RP VLV
876,,877,,878, \$ TEMP COND INLET
879,.5,880,.5,881,.5 \$SECONDARY BYPASSED FRACTION
882,130.,883,130.,884,130. \$SEC REG COLD OUTLET
885,.95 \$BYPASS FRACTION CUTOFF VALUE
886,,887,,888, \$INVERSE FLOW RATES
889,0.25 \$REG DELAY ADJ FACTOR
890,100.,891,100.,892,100. \$REG COLD SIDE INLET
893,175.,894,175.,895,175. \$COND GLY OUT TEMP
896,175.,897,175.,898,175. \$SEC REG HOT SIDE INLET
899,100.,900,100.,901,100. \$SEC REG HOT SIDE OUTLET
902,1.,903,1.,904,1. \$ INTEGERS USED FOR DO LOOPS
905,,906,,907, \$ INTEGFRS USED FOR BY PASS
908,150.07,909,150.07,910,150.07 \$ COND GLY INLET TEMP
911, 1. \$COND HEAT BAL TOLERANCE
912,200 \$ARRAY IC
913,199 \$ARRAY IC
914,20 \$ARRAY IC
915,40 \$ARRAY IC
916,30 \$ARRAY IC
917,,918,,919, \$ POWER - WATTS
920,77.29,921,77.29,922,77.29 \$ H2O SPECIFIC VOLUME
923,,924,,925, \$ PERCENT BY-PASS PRIMARY
926,,927,,928, \$ STACK EXIT PRESSURE
929,,930,,931, \$ PERCENT KDH
932,,933,,934, \$ H2O PRESSURE
935,,936,,937, \$ ENTHALPY OF STEAM
938,,939,,940, \$ INITIAL PRESSURE
941,,942,,943, \$ INITIAL SPECIFIC VOLUME
944,70.,945,70.,94-,70. \$ AMBIENT TEMP DEG F
947,0.00257 \$ H2 PRODUCTION RATE
948,5772.79 \$LOWER HEATING VALUE, H2
949,6824.42 \$HIGHER HEATING VALUE, H2
950,0.2 \$ERROR FOR STACK INLET
951, 5. \$INITIAL COND TEMP INCREMENT
952, +1 \$INTEGER INDICATOR FOR COND IMBAL
953,1.0 \$ERROR FOR HEAT BALANCE
954,0.2 \$ERROR FOR STACK INLET TEMP
955,,956,,957, \$WATER CONDENSED-LB/HR
958,,959,,960, \$STACK WATER STORAGE RATE
961,0.5,962,0.5,963,0.5 \$ SEC RP VLV STAT POS
964,530. \$ O2 INLET TEMP - DEGR
965,530. \$ H2 INLET TEMP - DEGR
966,0.48 \$ O2 FLOW RATE - LB/HR
967,0.06 \$ H2 FLOW RATE - LB/HR
968,100.,969,100.,970,100. \$ O2 REACTANT TEMP TO STACK
971,100.,972,100.,973,100. \$ H2 REACTANT TEMP TO STACK
974,,975,,976, \$ FLOW RATE FIX-UP

END \$CNS1050
BCD \$ARRAY DATA \$ARR0010
1 \$ DENSITY OF GLYCOL-WATER LBM/FT**3 \$ARR0020
-460.,75.09,-50.,69.54,-40.,69.4,-30.,69.25,-20.,69.1 \$ARR0030
-10.,68.93,0.,68.76,10.,68.58,20.,68.4,30.,68.2,40.,68.1 \$ARR0040
50.,67.83,60.,67.63,70.,67.43,80.,67.22,90.,67.,100.,66.78 \$ARR0050
110.,66.56,120.,66.34,130.,66.1,140.,65.85,150.,65.61 \$ARR0060
160.,65.35,170.,65.1,180.,64.84,190.,64.57,200.,64.23 \$ARR0070
250.,62.79,300.,61.23,350.,59.61,END \$ARR0080
2 \$ CONDUCTIVITY OF GLYCOL-WATER BTU/HR*FT*F \$ARR0090
-460.,2279.,-50.,2279.,-40.,2279.,-30.,2278.,-20.,2277 \$ARR0100

-10.,.2275,0.,.2273,10.,.2270,20.,.2266,30.,.2262,40.,.2258	\$ARR0110
50.,.2252,60.,.2246,70.,.2240,80.,.2233,90.,.2225,100.,.2217	\$ARR0120
110.,.2208,120.,.2199,130.,.2189,140.,.2178,150.,.2167	\$ARR0130
160.,.2156,170.,.2143,180.,.2130,190.,.2117,200.,.2103	\$ARR0140
340.,.1844,END	\$ARR0150
3 \$ SPECIFIC HEAT OF GLYCOL-WATER BTU/LBM*F	\$ARR0160
-460.,.033,-50.,.606,-40.,.618,-30.,.631,-20.,.643	\$ARR0170
-10.,.655,0.,.666,10.,.677,20.,.688,30.,.698,40.,.708	\$ARR0180
50.,.718,60.,.729,70.,.737,80.,.746,90.,.754,100.,.762	\$ARR0190
110.,.770,120.,.777,130.,.784,140.,.791,150.,.797,160.,.803	\$ARR0200
170.,.809,180.,.814,190.,.819,200.,.824,230.,.84	\$ARR0210
270.,.86,310.,.878,END	\$ARR0211
4 \$ VISCOSITY OF GLYCOL-WATER E-3 LBM/FT*SEC	\$ARR0220
-450.,.500000.,-50.,.245.,-40.,.135.,-30.,.80.,-20.,.51.9,-10.	\$ARR0230
34.,.0.,.24.5,10.,.16.5,20.,.12.2,30.,.9.3,40.,.7.3,50.,.5.75	\$ARR0240
60.,.4.65,70.,.3.75,80.,.3.05,90.,.2.58,100.,.2.08,110.,.1.87	\$ARR0250
120.,.1.61,130.,.1.4,140.,.1.22,150.,.1.11,160.,.96,170.,.86	\$ARR0260
180.,.77,190.,.69,200.,.625,250.,.406,300.,.303	\$ARR0270
350.,.216,END	\$ARR0271
5,SPACE,28,END	\$ARR0280
6,SPACE,29,END	\$ARR0290
7,SPACE,28,END	\$ARR0300
8,SPACE,81,END	\$ARR0310
9,SPACE,54,END	\$ARR0320
10 \$BYPASSED FRACTION -- SECONDARY BP VLV-ASCENDING TCE	
157.,0.0,157.25,0.165,157.5,0.245,157.75,0.3,158.,0.34	
158.25,0.38,158.5,0.41,158.75,0.43,159.,0.445,159.25,0.46	
159.5,0.47,159.75,0.474,160.,0.48,160.25,0.485,160.5,0.49	
160.75,0.493,161.,0.498,161.25,0.5,161.5,0.51,161.75,0.52	
162.,0.534,162.25,0.555,162.5,0.58,162.75,0.615,163.,0.65	
163.25,0.71,163.5,0.8,163.75,0.935,164.,1.0,END	
11 \$BYPASSED FRACTION -- SECONDARY BP VLV-DESCENDING TCE	
154.,0.0,154.25,0.12,154.5,0.195,154.75,0.255,155.,0.31	
155.25,0.365,155.5,0.4,155.75,0.425,156.,0.44,156.25,0.457	
156.5,0.467,156.75,0.475,157.0,0.48,157.25,0.485,157.5,0.488	
157.75,0.492,158.,0.5,158.25,0.506,158.5,0.512,158.75,0.522	
159.,0.535,159.25,0.554,159.5,0.58,159.75,0.62,160.,0.665	
160.25,0.74,160.5,0.88,160.75,0.94,161.,1.0,END	
12.,145833.,.125000.,.145833.,.332031.,.171347.,.227875.,.227875	\$ARR0350
.171347.,.227875.,.227875.,.171347.,.332031.,.171347	\$ARR0360
.227875.,.227875.,.171347.,.227875.,.227875.,.171347.,.332031	\$ARR0370
.145833.,.125000.,.145833,END	\$ARR0380
REM THE FOLLOWING ARRAYS PROVIDE FOR VARIABLE INCIDENT HEAT FLUX	\$ARR0390
13 \$ INCIDENT HEAT FOR PANEL 1 - BTU/HR FT**2	\$PANEL1
0.00,07.09,0.05,15.67,0.10,23.90,0.15,31.45,0.20,38.00	\$PANEL1
0.25,43.30,0.30,47.13,0.35,49.33,0.40,49.81,0.45,48.55	\$PANEL1
0.50,45.60,0.55,41.09,0.60,35.20,0.65,28.16,0.70,20.27	\$PANEL1
0.75,11.84,0.80,07.09,1.55,07.09,END	\$PANEL1
14 \$ INCIDENT HEAT FOR PANEL 2 - BTU/HR FT**2	\$PANEL2
0.00,00.27,0.05,15.58,0.10,30.26,0.15,43.73,0.20,55.43	\$PANEL2
0.25,64.88,0.30,71.71,0.35,75.63,0.40,76.48,0.45,74.24	\$PANEL2
0.50,68.98,0.55,60.94,0.60,50.42,0.65,37.86,0.70,23.77	\$PANEL2
0.75,08.74,0.80,00.27,1.55,00.27,END	\$PANEL2
15 \$ INCIDENT HEAT FOR PANEL 3 - BTU/HR FT**2	\$PANEL3
0.00,00.00,0.05,16.82,0.10,32.96,0.15,47.75,0.20,60.61	\$PANEL3
0.25,71.00,0.30,78.50,0.35,82.81,0.40,83.75,0.45,81.28	\$PANEL3
0.50,75.51,0.55,66.66,0.60,55.11,0.65,41.31,0.70,25.83	\$PANEL3
0.75,09.31,0.80,00.00,1.55,00.00,END	\$PANEL3
16 \$ INCIDENT HEAT FOR PANEL 4 - BTU/HR FT**2	\$PANEL4
0.00,08.91,0.05,16.24,0.10,23.28,0.15,29.74,0.20,35.34	\$PANEL4
0.25,39.88,0.30,43.15,0.35,45.03,0.40,45.44,0.45,44.36	\$PANEL4
0.50,41.84,0.55,37.99,0.60,32.94,0.65,26.93,0.70,20.18	\$PANEL4
0.75,12.97,0.80,08.91,1.55,08.91,END	\$PANEL4

17 \$ INCIDENT HEAT FOR PANEL 5 - BTU/HR FT**2	\$ARR0480
0.00,32.37,0.05,35.41,0.10,38.32,0.15,41.00,0.20,43.32	\$PANEL5
0.25,45.20,0.30,46.56,0.35,47.34,0.40,47.51,0.45,47.06	\$PANEL5
0.50,46.02,0.55,44.41,0.60,42.33,0.65,39.83,0.70,37.04	\$PANEL5
0.75,34.05,0.80,35.82,0.85,43.35,0.90,32.37,1.45,32.37	\$PANEL5
1.50,40.76,1.55,32.37,END	\$PANEL5
18 \$ INCIDENT HEAT FOR PANEL 6 - BTU/HR FT**2	\$ARR0500
0.00,49.71,0.05,54.38,0.10,58.86,0.15,62.97,0.20,66.54	\$PANEL6
0.25,69.42,0.30,71.50,0.35,72.70,0.40,72.96,0.45,72.28	\$PANEL6
0.50,70.67,0.55,68.22,0.60,65.01,0.65,61.18,0.70,56.88	\$PANEL6
0.75,52.29,0.80,56.54,0.85,71.47,0.90,49.71,1.45,49.71	\$PANEL6
1.50,66.34,1.55,49.71,END	\$PANEL6
19 \$ INCIDENT HEAT FOR PANEL 7 - BTU/HR FT**2	\$ARR0520
0.00,56.74,0.05,62.08,0.10,67.19,0.15,71.88,0.20,75.96	\$PANEL7
0.25,79.25,0.30,81.62,0.35,82.99,0.40,83.29,0.45,82.50	\$PANEL7
0.50,90.67,0.55,77.87,0.60,74.21,0.65,69.84,0.70,64.93	\$PANEL7
0.75,59.69,0.80,64.60,0.85,81.75,0.90,56.74,1.45,56.74	\$PANEL7
1.50,75.86,1.55,56.74,END	\$PANEL7
20 \$ INCIDENT HEAT FOR PANEL 8 - BTU/HR FT**2	\$ARR0540
0.00,31.81,0.05,34.80,0.10,37.66,0.15,40.29,0.20,42.57	\$PANEL8
0.25,44.42,0.30,45.75,0.35,46.52,0.40,46.68,0.45,46.25	\$PANEL8
0.50,45.22,0.55,43.65,0.60,41.60,0.65,39.15,0.70,36.40	\$PANEL8
0.75,33.46,0.80,35.13,0.85,42.39,0.90,31.81,1.45,31.81	\$PANEL8
1.50,39.90,1.55,31.81,END	\$PANEL8
21,SPACE,56,END	\$ARR0560
22,SPACE,81,END \$ REYNOLDS NUMBER	\$ARR0570
23,SPACE,81,END	\$ARR0580
24 \$RELATIVE ENTHALPY OF GLYCOL-WATER,BTU/LRM	
-460.,0.0,-50.,131.0,-40.,137.12,-30.,143.36,-20.,149.73	
-10.,156.22,0.0,162.83,10.,169.54,20.,176.37,30.,183.3	
40.,190.33,50.,197.46,60.,204.69,70.,212.01,80.,219.43	
90.,226.93,100.,234.51,110.,242.17,120.,249.9,130.,257.71	
140.,265.58,150.,273.52,160.,281.52,170.,289.58,180.,297.7	
190.,305.86,200.,314.08,230.,339.04,270.,373.04,310.,407.8	
END	
25,SPACE,48,END	\$ARR0600
26 \$ DO LOOP INDICES - INITIAL VALUE	
0.,1.,6.2,1.,END	
27 \$ DO LOOP INDICES - TEST VALUE	
0.,1.,6.2,1.,END	
28 \$ DO LOOP INDICES - INCREMENT	
0.,1.,6.2,1.,END	
29,SPACE,10,END	\$ NOT USED
30,SPACE,10,END	\$ NOT USED
31,SPACE,10,END	\$ NOT USED
32,SPACE,10,END	\$ NOT USED
33,SPACE,10,END	\$ NOT USED
34,SPACE,10,END	\$ NOT USED
35 \$ BYPASS OPTION - SYSTEM 1	
0.,0.,3.1,0.,3.101,1.,6.2,1.,END	
36 \$ BYPASS OPTION - SYSTEM 2	
0.,0.,6.2,0.,END	
37 \$ BYPASS OPTION - SYSTEM 3	
0.,0.,6.2,0.,END	
38 \$ HEAT TRANSFER COEFFICIENT - AREA TERM	
11,11,50.,-20.,0.,20.,40.,60.,80.,100.,120.,140.,160.,180.	\$TVA0001
120.,209.,243.,265.,289.,318.,345.,377.,0.,0.,0.,0.	\$TVA0002
130.,205.,238.,258.,281.,308.,333.,362.,404.,0.,0.,0.	\$TVA0003
140.,202.,234.,253.,275.,300.,323.,350.,387.,0.,0.,0.	\$TVA0004
150.,199.,230.,248.,269.,293.,315.,339.,374.,408.,0.,0.	\$TVA0005
160.,197.,227.,244.,264.,287.,307.,330.,363.,395.,0.,0.	\$TVA0006
170.,195.,226.,241.,260.,282.,301.,323.,353.,383.,417.,0.	\$TVA0007
180.,193.,221.,237.,256.,276.,295.,315.,344.,371.,404.,0.	\$TVA0008
190.,190.,218.,234.,251.,272.,289.,308.,335.,361.,391.,417.	\$TVA0009

200.,189.,216.,231.,249.,268.,285.,303.,329.,354.,381.,406.	\$TVA0010
210.,189.,216.,231.,248.,268.,284.,303.,329.,354.,381.,406.	\$TVA0011
220.,187.,214.,229.,245.,264.,280.,298.,323.,346.,372.,395.	\$TVA0012
11,11,55.,-20.,0.,20.,40.,60.,80.,100.,120.,140.,160.,180.	\$TVA0013
120.,223.,263.,287.,312.,342.,373.,409.,0.,0.,0.,0.	\$TVA0014
130.,220.,258.,280.,304.,332.,360.,393.,434.,0.,0.,0.	\$TVA0015
140.,216.,254.,275.,297.,323.,349.,380.,417.,0.,0.,0.	\$TVA0016
150.,213.,250.,270.,291.,316.,340.,369.,403.,438.,0.,0.	\$TVA0017
160.,211.,246.,265.,285.,309.,332.,359.,391.,423.,0.,0.	\$TVA0018
170.,208.,243.,262.,281.,304.,325.,351.,381.,411.,449.,0.	\$TVA0019
180.,206.,240.,258.,276.,298.,319.,343.,371.,399.,435.,0.	\$TVA0020
190.,203.,237.,254.,272.,293.,313.,335.,362.,388.,421.,452.	\$TVA0021
200.,202.,234.,251.,269.,289.,308.,330.,356.,381.,412.,441.	\$TVA0022
210.,202.,234.,251.,269.,289.,308.,330.,355.,380.,411.,440.	\$TVA0023
220.,200.,232.,248.,265.,285.,303.,324.,348.,372.,402.,429.	\$TVACC24
11,11,60.,-20.,0.,20.,40.,60.,80.,100.,120.,140.,160.,180.	\$TVA0025
120.,240.,285.,310.,334.,365.,398.,438.,0.,0.,0.,0.	\$TVA0026
130.,236.,279.,303.,325.,354.,384.,421.,462.,0.,0.,0.	\$TVA0027
140.,233.,274.,296.,318.,345.,373.,407.,444.,0.,0.,0.	\$TVA0028
150.,230.,270.,291.,311.,337.,363.,395.,429.,467.,0.,0.	\$TVA0029
160.,227.,266.,286.,306.,330.,355.,385.,417.,452.,0.,0.	\$TVA0030
170.,225.,263.,282.,301.,324.,348.,376.,407.,439.,478.,0.	\$TVA0031
180.,222.,259.,278.,296.,319.,341.,368.,396.,426.,463.,0.	\$TVA0032
190.,220.,256.,274.,292.,313.,335.,360.,387.,415.,449.,483.	\$TVA0033
200.,218.,253.,271.,288.,309.,330.,354.,380.,407.,439.,472.	\$TVA0034
210.,218.,253.,271.,288.,309.,330.,354.,380.,406.,439.,470.	\$TVA0035
220.,216.,252.,268.,285.,305.,325.,348.,372.,398.,429.,459.	\$TVA0036
11,11,65.,-20.,0.,20.,40.,60.,80.,100.,120.,140.,160.,180.	\$TVA0037
120.,256.,305.,331.,354.,385.,421.,462.,0.,0.,0.,0.	\$TVA0038
130.,252.,299.,324.,345.,374.,407.,445.,488.,0.,0.,0.,0.	\$TVA0039
140.,248.,294.,317.,338.,364.,395.,430.,470.,0.,0.,0.,0.	\$TVA0040
150.,245.,289.,311.,331.,356.,385.,418.,454.,494.,0.,0.	\$TVA0041
160.,242.,285.,307.,325.,349.,377.,408.,442.,477.,0.,0.	\$TVA0042
170.,240.,281.,302.,320.,343.,369.,399.,431.,465.,505.,0.	\$TVA0043
180.,237.,278.,298.,315.,337.,362.,390.,420.,452.,489.,0.	\$TVA0044
190.,234.,274.,294.,310.,331.,355.,382.,410.,440.,474.,511.	\$TVA0045
200.,233.,272.,291.,307.,327.,350.,376.,403.,432.,464.,499.	\$TVA0046
210.,232.,272.,291.,306.,327.,350.,376.,403.,431.,464.,498.	\$TVA0047
220.,231.,269.,287.,303.,323.,345.,369.,395.,423.,454.,486.	\$TVA0048
11,11,70.,-20.,0.,20.,40.,60.,80.,100.,120.,140.,160.,180.	\$TVA0049
120.,266.,322.,350.,373.,403.,441.,484.,0.,0.,0.,0.	\$TVA0050
130.,262.,316.,343.,364.,392.,427.,467.,512.,0.,0.,0.	\$TVA0051
140.,258.,310.,336.,356.,382.,415.,452.,493.,0.,0.,0.	\$TVA0052
150.,255.,306.,330.,349.,374.,405.,439.,478.,521.,0.,0.	\$TVA0053
160.,252.,301.,325.,343.,367.,396.,428.,465.,505.,0.,0.	\$TVA0054
170.,249.,298.,320.,337.,360.,389.,419.,453.,491.,529.,0.	\$TVA0055
180.,247.,294.,316.,332.,354.,381.,410.,442.,477.,513.,0.	\$TVA0056
190.,244.,290.,311.,327.,348.,374.,401.,432.,465.,498.,536.	\$TVA0057
200.,242.,287.,308.,324.,344.,369.,395.,425.,456.,488.,524.	\$TVA0058
210.,242.,287.,308.,323.,344.,368.,395.,424.,456.,487.,523.	\$TVA0059
220.,240.,284.,305.,320.,339.,363.,389.,417.,447.,477.,510.	\$TVA0060
11,11,75.,-20.,0.,20.,40.,60.,80.,100.,120.,140.,160.,180.	\$TVA0061
120.,266.,334.,366.,389.,420.,460.,504.,0.,0.,0.,0.	\$TVA0062
130.,262.,328.,358.,379.,408.,446.,486.,535.,0.,0.,0.	\$TVA0063
140.,258.,322.,351.,371.,398.,433.,470.,515.,0.,0.,0.	\$TVA0064
150.,255.,317.,345.,364.,390.,423.,458.,499.,546.,0.,0.	\$TVA0065
160.,252.,313.,340.,358.,383.,414.,447.,486.,529.,0.,0.	\$TVA0066
170.,250.,309.,335.,353.,376.,406.,437.,474.,515.,552.,0.	\$TVA0067
180.,247.,305.,330.,347.,370.,399.,428.,463.,501.,536.,0.	\$TVA0068
190.,245.,301.,326.,342.,364.,391.,419.,452.,488.,520.,559.	\$TVA0069
200.,243.,299.,322.,338.,359.,386.,413.,445.,479.,510.,546.	\$TVA0070
210.,243.,299.,322.,338.,359.,386.,413.,445.,479.,509.,546.	\$TVA0071
220.,241.,296.,319.,334.,354.,380.,406.,437.,469.,498.,533.	\$TVA0072

11.,11.,80.,-20.,0.,20.,40.,60.,80.,100.,120.,140.,160.,180.	\$TVA0073
120.,254.,339.,376.,401.,434.,477.,522.,0.,0.,0.,0.	\$TVA0074
130.,250.,333.,368.,392.,423.,463.,504.,555.,0.,0.,0.	\$TVA0075
140.,247.,327.,361.,384.,413.,450.,488.,536.,0.,0.,0.	\$TVA0075
150.,244.,322.,355.,377.,404.,439.,475.,519.,568.,0.,0.	\$TVA0077
160.,242.,318.,350.,370.,397.,430.,464.,506.,552.,0.,0.	\$TVA0078
170.,239.,314.,345.,365.,390.,422.,455.,494.,537.,574.,0.	\$TVA0079
180.,237.,310.,340.,359.,384.,415.,445.,483.,523.,557.,0.	\$TVA0080
190.,235.,307.,336.,354.,378.,407.,436.,472.,510.,542.,581.	\$TVA0081
200.,233.,304.,333.,350.,373.,402.,430.,464.,501.,531.,568.	\$TVA0082
210.,233.,304.,332.,350.,373.,401.,430.,464.,500.,530.,567.	\$TVA0083
220.,231.,301.,329.,346.,368.,396.,423.,456.,491.,519.,554.	\$TVA0084
11.,11.,85.,-20.,0.,20.,40.,60.,80.,100.,120.,140.,160.,180.	\$TVA0085
120.,230.,335.,380.,410.,447.,493.,540.,0.,0.,0.,0.	\$TVA0086
130.,227.,329.,372.,401.,436.,478.,521.,574.,0.,0.,0.	\$TVA0087
140.,224.,324.,365.,393.,426.,465.,506.,555.,0.,0.,0.	\$TVA0088
150.,222.,319.,359.,385.,417.,454.,492.,538.,589.,0.,0.	\$TVA0089
160.,220.,315.,354.,379.,410.,445.,481.,524.,572.,0.,0.	\$TVA0090
170.,218.,312.,350.,374.,403.,437.,471.,512.,557.,596.,0.	\$TVA0091
180.,216.,309.,345.,369.,397.,429.,462.,501.,543.,579.,0.	\$TVA0092
190.,215.,305.,341.,363.,390.,422.,453.,490.,529.,563.,603.	\$TVA0093
200.,213.,302.,337.,359.,386.,416.,447.,482.,520.,552.,590.	\$TVA0094
210.,213.,302.,337.,359.,385.,416.,446.,482.,519.,552.,589.	\$TVA0095
220.,212.,299.,334.,355.,381.,410.,439.,473.,510.,540.,580.	\$TVA0096
11.,11.,90.,-20.,0.,20.,40.,60.,80.,100.,120.,140.,160.,180.	\$TVA0097
120.,199.,322.,377.,414.,459.,507.,558.,0.,0.,0.,0.	\$TVA0098
130.,197.,317.,370.,405.,447.,492.,539.,592.,0.,0.,0.	\$TVA0099
140.,194.,312.,363.,397.,437.,479.,523.,572.,0.,0.,0.	\$TVA0100
150.,193.,308.,358.,390.,428.,468.,510.,556.,606.,0.,0.	\$TVA0101
160.,191.,305.,353.,384.,421.,459.,490.,542.,589.,0.,0.	\$TVA0102
170.,190.,301.,348.,379.,414.,451.,489.,530.,574.,618.,0.	\$TVA0103
180.,189.,298.,344.,374.,408.,443.,479.,518.,560.,601.,0.	\$TVA0104
190.,187.,295.,340.,369.,401.,435.,470.,507.,546.,585.,626.	\$TVA0105
200.,186.,293.,337.,365.,397.,430.,463.,499.,537.,574.,613.	\$TVA0106
210.,186.,293.,337.,365.,397.,430.,463.,499.,537.,574.,613.	\$TVA0107
220.,185.,290.,333.,361.,392.,424.,456.,490.,527.,562.,598.	\$TVA0108

END

39 \$ SPECIFIC VOLUME OF STEAM - FT**3/LBM

130.00, 157.34, 132.00, 149.66, 134.00, 142.42, 136.00, 135.58
138.00, 129.12, 140.00, 123.01, 142.30, 117.23, 144.00, 111.77
146.00, 106.60, 148.00, 101.71, 150.00, 97.07, 152.00, 92.68
154.00, 88.52, 156.00, 84.58, 158.00, 80.84, 160.00, 77.29
162.00, 73.92, 164.00, 70.73, 166.00, 67.69, 168.00, 64.80
170.00, 62.06, 172.00, 59.45, 174.00, 56.97, 176.00, 54.61
178.00, 52.37, 180.00, 50.23, 182.00, 48.19, 184.00, 46.25
186.00, 44.40, 188.00, 42.64, 190.00, 40.96, 192.00, 39.36
194.00, 37.83, 196.00, 36.37, 198.00, 34.97, 200.00, 33.64
202.00, 32.37, 204.00, 31.15, 206.00, 29.99, 208.00, 28.88, END

40 \$ SATURATION PRESSURE OF STEAM - PSIA

130.00, 2.22, 132.00, 2.34, 134.00, 2.47, 136.00, 2.60
138.00, 2.74, 140.00, 2.89, 142.00, 3.04, 144.00, 3.20
146.00, 3.36, 148.00, 3.54, 150.00, 3.72, 152.00, 3.91
154.00, 4.10, 156.00, 4.31, 158.00, 4.52, 160.00, 4.74
162.00, 4.97, 164.00, 5.21, 166.00, 5.46, 168.00, 5.72
170.00, 5.99, 172.00, 6.72, 174.00, 6.56, 176.00, 6.87
178.00, 7.18, 180.00, 7.51, 182.00, 7.85, 184.00, 8.20
186.00, 8.57, 188.00, 8.95, 190.00, 9.34, 192.00, 9.75
194.00, 10.17, 196.00, 10.61, 198.00, 11.06, 200.00, 11.53
202.00, 12.01, 204.00, 12.51, 206.00, 13.03, 208.00, 13.57, END

41 \$ CURRENT - AMPS - SYSTEM 1

0.,30.,3.1,30.,3.101,25.,6.2,25.,END

42 \$ CURRENT - AMPS - SYSTEM 2

0.,0.,6.2,0.,END

43 \$ CURRENT - AMPS - SYSTEM 3
0.,0.,6.2,0.,END
44 \$ PARTICAL PRESSURE OF WATER IN STACK - PSIA
8, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90
350.0, 27.0, 15.0, 8.0, 3.7, 1.6, 0.0, 0.0, 0.0
380.0, 36.0, 21.0, 11.4, 5.6, 2.4, 1.0, 0.0, 0.0
400.0, 47.0, 29.0, 16.0, 8.0, 3.4, 1.4, 0.0, 0.0
420.0, 61.0, 38.0, 21.4, 10.8, 4.8, 1.9, 0.0, 0.0
440.0, 79.0, 51.0, 29.0, 14.6, 6.6, 2.7, 1.0, 0.0
460.0, 102.0, 66.0, 38.0, 19.0, 8.9, 3.6, 1.3, 0.0
480.0, 128.0, 86.0, 50.0, 25.0, 11.9, 4.8, 1.7, 0.0
500.0, 160.0, 104.0, 65.0, 32.5, 15.6, 6.3, 2.2, 0.0
520.0, 200.0, 134.0, 83.0, 42.0, 20.6, 8.4, 3.0, 1.2
540.0, 250.0, 170.0, 104.0, 55.0, 27.5, 11.3, 4.2, 1.6
560.0, 310.0, 210.0, 130.0, 70.0, 36.0, 15.0, 5.9, 2.1
580.0, 380.0, 260.0, 160.0, 89.0, 46.0, 20.0, 8.0, 2.8
600.0, 470.0, 320.0, 195.0, 113.0, 60.0, 27.0, 10.7, 3.7,END
45 \$ ENTHALPY OF SUPERHEATED STEAM - BTU/LBM
5, 126.08, 152.97, 170.06, 182.86, 193.21
200.0, 1150.0, 1149.2, 1148.3, 1147.5, 1146.6
220.0, 1159.1, 1158.5, 1157.7, 1157.0, 1156.2
240.0, 1168.2, 1167.6, 1167.0, 1166.3, 1165.7
260.0, 1177.3, 1176.8, 1176.3, 1175.7, 1175.1
280.0, 1186.5, 1186.0, 1185.5, 1185.0, 1184.5
300.0, 1195.6, 1195.2, 1194.7, 1194.3, 1193.9
320.0, 1204.8, 1204.4, 1204.0, 1203.6, 1203.2
340.0, 1213.9, 1213.6, 1213.2, 1212.9, 1212.5
360.0, 1223.1, 1222.8, 1222.5, 1222.2, 1221.9
380.0, 1232.3, 1232.1, 1231.8, 1231.5, 1231.2
400.0, 1241.6, 1241.3, 1241.1, 1240.8, 1240.6,END
46,SPACE,1,END
47,SPACE,30,END
48,SPACE,30,END
49,SPACE,60,END SENTHALPY GLYCOL-WATER VS TEMP
50,SPACE,199,END \$SAVED TIME STEPS
51,SPACE,20,END \$RAD OUTLET TEMPS
52,SPACE,20,END
53,SPACE,20,END
54,SPACE,200,END \$SECONDARY REGEN COLD INLET TEMPS
55,SPACE,200,END
56,SPACE,200,END
57,SPACE,200,END \$SECONDARY BYPASS VALVE POSITION
58,SPACE,200,END
59,SPACE,200,END
60,SPACE,40,END \$GLYCOL OUTLET TEMPS FROM CONDENSER
61,SPACE,40,END
62,SPACE,40,END
63,SPACE,200,END \$SECONDARY REGEN HOT INLET TEMPS
64,SPACE,200,END
65,SPACE,200,END
66,SPACE,200,END \$SECONDARY REGEN GAINS, SYS 1
67,SPACE,200,END
68,SPACE,200,END
69,SPACE,200,END
70,SPACE,200,END \$SECONDARY REGEN GAINS, SYS 2
71,SPACE,200,END
72,SPACE,200,END
73,SPACE,200,END
74,SPACE,200,END \$SECONDARY REGEN GAINS, SYS 3
75,SPACE,200,END
76,SPACE,200,END
77,SPACE,200,END
78,SPACE,200,END \$SECONDARY REGEN COLD SIDE DELAYS

```
79,SPACE,200,END
80,SPACE,200,END
81,SPACE,20,END      $SECONDARY REGEN HOT OUTLET TEMPS
82,SPACE,20,END
83,SPACE,20,END
84      $ SYSTEM FLOW RATE VERSUS RAD PRESS DROP
    0.,88.0,  5.,84.7, 10.,81.5, 15.,78.2, 20.,75.0, 25.,71.7
    30.,68.4, 35.,65.2, 40.,61.9, 45.,58.7, 50.,55.4, 55.,52.2
    60.,48.9, 65.,45.6, 70.,42.4, 75.,39.1, 80.,35.9, 85.,32.6
    90.,29.3, 95.,26.1,100.,22.8,105.,19.6,110.,16.3,115.,13.0
   120., 9.8,125., 6.5,130., 3.3,END
END
```


MAIN PROGRAM LISTING

```

BCD EXECUTION
COMMON/ALPHA/ WH2026(3)
COMMON/BRAVO/QCOND(3), DMASS(3), WTH230(3)
COMMON/CHARLE/J,M,N
COMMON/DELTA/ INDEX1
COMMON/ECHO/ IPOINT
DIMENSION X(1000)
DIMENSION XK(1)
EQUIVALENCE (XK(1),K(1))
NDIM=1000
NTH=0
      SCLDEPI(A4,K1) $SCALE VISCOSITY
      SPLIT(K2,A1+1,A5+1,A6+1) $SEPARATE DENSITY FROM TEMP
      ARYINV(K2,A6+1) $INVERT DENSITY
      JOIN(K2,A5+1,A6+1,A1+1) $ INVERSE DENSITY VS TEMP
      SPLIT(K2,A2+1,A5+1,A6+1) $SEPARATE CONDUCTIVITY FROM TEMP
      SPLIT(K2,A3+1,A5+1,A7+1) $SEPARATE SPECIFIC HEAT FROM TEMP
      DIVARY(K2,A6+1,A7+1,A7+1) $CONDUCTIVITY / SPECIFIC HEAT
      JOIN(K2,A5+1,A7+1,A21+1) $CONDUCTIVITY/SPECIFIC HEAT VS TEMP
      SPLIT(K2,A4+1,A5+1,A6+1) $SEPARATE VISCOSITY FROM TEMP
      ARYINV(K2,A6+1) $ INVERT VISCOSITY
      JOIN(K2,A5+1,A6+1,A4+1) $INVERSE VISCOSITY VS TEMP
      SPLIT(K916,A24+1,A47+1,A49+1) $SEPARATE TEMP FROM ENTHALPY
      JOIN(K916,A48+1,A47+1,A49+1) $ENTHALPY VS TEMP
REM
REM DATA ARRAY IS NOW IN PROPER FORM FOR PROGRAM USAGE
REM
REM THE FOLLOWING INITIALIZES THE ENTIRE SOLID TEMPERATURE
REM NETWORK TO COMPENSATE FOR VARYING INITIAL CONDITIONS. THE
REM TEMPERATURE VALUE IS INPUT AS CONSTANT NUMBER K598.
      STFSQS(K598,K599,T701)
IPONT = 1
INDEX1 = 0
J = XK(398) + 0.0001
M = XK(399) + 0.0001
N = XK(400) + 0.0001
DO 100 I = J, M, N
WH2026(I) = (XK(I + 325)/XK(I + 326)) - XK(I + 325)
100 CONTINUE
      REM*****BEGIN INITIALIZATION OF SECONDARY LOOP COMPONENTS*****
      REM FIRST INITIALIZE CONSTANT LOCATIONS
DO 110 I=J,M,N
      REM INITIALIZE SEC BP VLV STAT POS TO INITIAL DYNAMIC VALUE
      XK(I+456)=XK(I+374)
      XK(I+365)=XK(I+331)
      RTEST=XK(I+331)
      D1DEG1(RTEST,AL0,TTEST)
      XK(I+374)=TTEST
      XK(I+381)=(1./XK(I+51))
      REM SET REG HOT INLET = COND GLY OUT
110  XK(I+391)=XK(I+388)
      REM SET REG COLD INLET = RAD OUTLET
      STFSQS(T618,1,K890)
      STFSQS(T636,1,K891)
      STFSQS(T654,1,K892)
      REM TIME STEP
      STFSQS(.002,K913,A50+1)
      REM NOW SOLVE SYSTEM IN STEADY STATE
DO 300 I=J,M,N
      IF(I-2) 120,130,140

```

```

120      D3DEG1(K890,K896,K6,A38,RTEST)
          D1DEG1(K890,A3,STEST)
          D1DEG1(K896,A3,TTEST)
          GO TO 145                                F
130      D3DEG1(K891,K897,K7,A38,RTEST)
          D1DEG1(K891,A3,STEST)
          D1DEG1(K897,A3,TTEST)
          GO TO 145                                F
140      D3DFG1(K892,K898,K8,A38,RTEST)
          D1DFG1(K892,A3,STEST)
          D1DEG1(K898,A3,TTEST)
145 FLOWC=(1.-XK(I+374))*XX(I+5)                F
      UA=RTEST
      CPC=STEST
      CPH=TTEST
      CC=FLOWC*CPC
      CH=XK(I+5)*CPH
      BETA=CC/CH
      RNTU=UA/CC
      ET=EXP(-RNTU*(1.-BETA))
      EFF=(1.-ET)/(1.-BETA*ET)
      RTEST=1.-EFF
      STEST=EFF
      TTEST=EFF*BETA
      UTEST=1.-TTEST
      XK(I+377)=RTEST*XK(I+385) + STEST*XX(I+391)
      XK(I+394)=TTEST*XK(I+385) + UTEST*XX(I+391)
      IF(XK(I+374).GT.XK(381)) GO TO 147
      VTEST=(1./FLOWC)*67.*XX(361)
      GO TO 150
147 VTEST=1000.
150 CONTINUE
      IF(I-2) 155,160,165
155      STFSQS(RTEST,K912,A66+1)
          STFSQS(STEST,K912,A67+1)
          STFSQS(TTEST,K912,A68+1)
          STFSQS(UTEST,K912,A69+1)
          STFSQS(VTEST,K912,A78+1)
          GO TO 170                                F
160      STFSQS(RTEST,K912,A70+1)
          STFSQS(STEST,K912,A71+1)
          STFSQS(TTEST,K912,A72+1)
          STFSQS(UTEST,K912,A73+1)
          STFSQS(VTEST,K912,A79+1)
          GO TO 170                                F
165      STFSQS(RTEST,K912,A74+1)
          STFSQS(STEST,K912,A75+1)
          STFSQS(TTEST,K912,A76+1)
          STFSQS(UTEST,K912,A77+1)
          STFSQS(VTEST,K912,A80+1)
170 CONTINUE
      REM INITIALIZE REMAINDER OF CONSTANTS
      REM COND GLY IN = REG COLD OUT
      XK(I+403)=XK(I+377)
      REM INITIALIZE REMAINING ARRAYS
      IF(I-2) 200,210,220                                F
200      STFSQS(K890,K914,A51+1)  $RAD OUT
          STFSQS(K890,K912,A54+1)  $REG COLD IN
          STFSQS(K879,K912,A57+1)  $BP VLV FRAC
          STFSQS(K893,K915,A60+1)  $COND GLY OUT
          STFSQS(K893,K912,A63+1)  $REG HOT IN
          STFSQS(K899,K914,A81+1)  $REG HOT OUT
          GO TO 230                                F

```



```

210      STFSQS(K891,K914,A52+1)
        STFSQS(K891,K912,A55+1)
        STFSQS(K880,K912,A58+1)
        STFSQS(K894,K915,A61+1)
        STFSQS(K894,K912,A64+1)
        STFSQS(K900,K914,A82+1)
        GO TO 230
220      STFSQS(K892,K914,A53+1)
        STFSQS(K892,K912,A56+1)
        STFSQS(K881,K912,A59+1)
        STFSQS(K895,K915,A62+1)
        STFSQS(K895,K912,A65+1)
        STFSQS(K901,K914,A83+1)
230  CONTINUE
        REM  END OF INITIALIZATION LOOP*****
300  CONTINUE
        VARBL2 $ ANALYZE PRESSURE NETWORK AND OBTAIN FLOW RATES
        CNFRWD $ PERFORM TRANSIENT ANALYSIS
        END
        BCD 3VARIABLES 1
COMMON/ALPHA/ WH2026(3)
COMMON/BRAVO/QCOND(3),DMASS(3),WTH230(3)
COMMON/CHARLE/J,M,N
COMMON/FOXTRT/ PCKOH(3)
DIMENSION SVOL11(3),WH202P(3),PRES31(3),SVOL31(3),
1          WH2030(3),SVOL21(3),DSPVOL(3),SFCH2(3),SFCD2(3),
2          QGENAT(3),QH2(3),QO2(3),QSELECT(3),PARPH2(3),SVOL32(3),
3          WDTCP2(3),QRS(3),QSTDORD(3),SVOL12(3),QSM(3),
4          QRFACT(3),QH2D(3),QOUT(3),QIN(3),DETAQ(3),
5          TSKIN1(3),DTEMP(3),TSKIN2(3),WH2D20(3),DIFF(3),
6          WDTCP1(3),WH2025(3)
DIMENSION XK(1)
EQUIVALENCE (XK(1),K(1))
REM INTERPOLATE DO LOOP INDEX ARRAYS
        D1DEG1(TIMEN,A26,K902)           $ J
        D1DEG1(TIMEN,A27,K903)           $ M
        D1DEG1(TIMEN,A28,K904)           $ N
REM CHANGE INDICES FROM FLOATING POINT TO INTEGER
        FIX(K902,K26)       $ J
        FIX(K903,K28)       $ M
        FIX(K904,K32)       $ N
J=K(26)
M=K(28)
N=K(32)
DO 667 I = 1,3
667  XK(I + 469) = XK(I + 5)
DO 668 I = 1, 3
668  XK(I + 5) = 0.0001
DO 669 I = J, M, N
669  XK(I + 5) = XK(I + 469)
        D1DEG1(TIMEN,A41,K854)           $ SYSTEM 1
        D1DEG1(TIMEN,A42,K855)           $ SYSTEM 2
        D1DEG1(TIMEN,A43,K856)           $ SYSTEM 3
DO 500 I = J, M, N
DT = 10.
IF (I - 2) 1, 2, 3
1      D1DEG2(K836, A39, K920)
        D1DEG2(K836, A40, K932)
        GO TO 4
2      D1DEG2(K837, A39, K921)
        D1DEG2(K837, A40, K933)
        GO TO 4
3      D1DEG2(K838, A39, K922)
        D1DEG2(K838, A40, K934)

```

```

4 CONTINUE          F
SVOL11(I) = XK(I+415)          F
DRATE = 0.05          F
IOLD = 1          F
DO 90 JJ = 1, 100          F
WH202P(I) = XK(349)*XK(I+349)*DTIMEU          F
WH2025(I) = WH2026(I) + XK(I + 345)*WH202P(I)          F
PCKOH(I) = XK(I+325)/(XK(I+325) + WH2025(I))          F
XK(I+424) = PCKOH(I)          F
IF (I - 2) 21, 22, 23          F
21      D2DEG2(K929, K847, A44, K926)          F
GO TO 24          F
22      D2DEG2(K930, K848, A44, K927)          F
GO TO 24          F
23      D2DEG2(K931,K849,A44,K928)          F
24 CONTINUE          F
PRES31(I) = XK(I+421)          F
SVOL31(I) = (XK(335)*(XK(I+342)+460.1)/(PRES31(I)*144.)          F
DMASS(I) = (1.0-XK(I+345))*WH202P(I)          F
WH2030(I) = XK(I+336)*DTIMEU/SVOL31(I)          F
WH2020(I) = WH2030(I) - DMASS(I)          F
SVOL21(I) = XK(I+336)*DTIMEU/WH2020(I)          F
DSPVOL(I) = SVOL11(I) - SVOL21(I)          F
IF (ABS(DSPVOL(I)) - XK(353)) 100, 100, 35          F
35 IF (DSPVOL(I)) 45, 100, 50          F
45 IMULT = 1          F
INEW = IOLD          F
IOLD = -1          F
GO TO 60          F
50 IMULT = -1          F
INEW = IOLD          F
IOLD = 1          F
60 XK(I + 345) = XK(I + 345) + DRATE*IMULT          F
IF (INEW - IOLD) 70, 90, 70          F
70 DRATE = DRATE/2.0          F
90 CONTINUE          F
WRITE (6, 95)          F
95 FORMAT ( 79H ITERATIVE SCHEME DID NOT FIND A SOLUTION WITHIN SPECIF
IFIED NUMBER OF ITERATIONS)          F
100 CONTINUE          F
WH2026(I) = WH2025(I)
XK(I+353) = 5.57364 - 1.21E-138*XK(I+341)
1 + 2.654927E-3*XK(I+349)**2 - 1.3304E-2*XK(I+341)**4
2 + 9.69469E-2*XK(I+342) + 4.686233E-3*XK(I+349)*X(I+42)
3 - 3.573639E-7*XK(I+349)**2 + 2*XK(I+342) - 1.525995E-5*XK(I+342)**2
4 - 4.889387E-6*XK(I+349)*XK(I+342)**2 - 1.292758E-7*XK(I+342)**3
XK(I + 353) = XK(I + 353) - 24.1*(7.75 - PCKOH(I))
XK(I + 412) = XK(I + 349)*XK(I + 353)
SFCH2(I) = 8.292E-5*31.*XK(I+349)
SFCO2(I) = 7.94*SFCH2(I)
QGENAT(I) = 51600.*SFCH2(I)
QH2(I) = SFCH2(I)*3.43*(XK(I + 342) - XK(I + 463))
QD2(I) = SFCO2(I)*0.219*(XK(I + 342) - XK(I + 466))
QELECT(I) = 3.41276*XK(I+349)*XK(I+353)
PARPH2(I) = 60. - PRES31(I)
SVOL32(I) = (XK(336)*(XK(I + 342) + 460.1)/(PARPH2(I)*144.)
WDTCP1(I) = (XK(I+336)/SVOL31(I))*0.445
WDTCP2(I) = (XK(I+336)/SVOL32(I))*3.48
QRS(I) = (WDTCP1(I)+WDTCP2(I))*(XK(I+342)-XK(I+339))
QSM(I) = 3.25*XK(I + 342) - 1.6*XK(I + 439) - 882.
QSTDORD(E) = QGENAT(I) - QH2(I) - QD2(I) - QELECT(I) - QRS(I) -
1 QSM(I)
XK(I+342) = XK(I+342) + (QSTDORD(I)*DTIMEU)/XK(358)          F

```



```
SVOL12(I) = (XK(3361*(XK(I+331)+460.))/({PARPH2(I)*144.}) F
WTH230(I) = (XK(I+336)/SVOL12(I)-XK(I+349)*XK(443))*DTIMEU F
QREACT(I) = (XK(445)*DMASS(I))/DTIMEU + F
1      XK(444)*(XK(I + 349)*XK(349) - DMASS(I)/DTIMEU) F
QH20(I) = (DMASS(I)*(XK(I + 331) - XK(I + 439))*1.0)/DTIMEU F
CONST1 = 3.44*WTH230(I)/DTIMEU+XK(I+336)/XK(I+415)*1.0 F
1      + DMASS(I)*1.0/DTIMEU F
CONST2 = 1160.*DMASS(I)/DTIMEU F
CONST3 = ((XK(I+336)/SVOL12(I))*3.44+(XK(I+336)/SVOL11(I))*1.0)/ F
1      ((WTH230(I)/DTIMEU)*3.44+(WH2030(I)/DTIMEU)*1.0) F
CONST4 = -1.2*XK(I + 342) + 882. F
150 XK(I + 371) = XK(I + 342) - (XK(I + 339) - XK(I + 331))*CONST3 F
QCOND(I) = (XK(I + 371) - XK(I + 331))*CONST1 + CONST2 F
QOUT(I) = QREACT(I) F
QIN(I) = QCOND(I) + QH20(I) + QSELECT(I) + QSM(I) + QSTORD(I) F
DELTAQ(I) = QOUT(I) - QIN(I) F
IF (ABS(DELTAQ(I)) = XK(449)) 180, 180, 160 F
160 IF (ABS(CONST4 - XK(I + 339)) = XK(450)) 180, 180, 165 F
165 IF (ABS(CONST4 - CONST5) = ABS(CONST4 - XK(I + 339))) 168,168,170F
168 DT = -DT/2. F
170 CONST5 = XK(I + 339) F
XK(I + 339) = XK(I + 339) + DT F
GO TO 150 F
180 CONTINUE F
XK(I+450) = DMASS(I)/DTIMEU F
XK(I+453) = XK(I+345)*100. F
500 CONTINUE F
REM INTERPOLATE BYPASS OPTION ARRAY
D1DEG1(TIMEN,A35,K905)           $ SYSTEM 1
D1DFG1(TIMEN,A36,K905)           $ SYSTEM 2
D1DEG1(TIMEN,A37,K907)           $ SYSTEM 3
REM CHANGE BYPASS FROM FLOATING POINT TO INTEGER
FIX(K905,K9)          $ SYSTEM 1
FIX(K906,K10)          $ SYSTEM 2
FIX(K907,K11)          $ SYSTEM 3
REM INTERPOLATE HEAT FLUX ARRAYS
RTEST = TIMEM F
IF(TIMEM.GE.1.55) RTEST = TIMEM - 1.55*FLOAT({FIX(TIMEM/1.55)}) F
D11CYL(K600,RTEST,A13,K12)        $ PANEL 1
D11CYL(K600,RTEST,A14,K13)        $ PANEL 2
D11CYL(K600,RTEST,A15,K14)        $ PANEL 3
D11CYL(K600,RTEST,A16,K15)        $ PANEL 4
D11CYL(K600,RTEST,A17,K16)        $ PANEL 5
D11CYL(K600,RTEST,A18,K17)        $ PANEL 6
D11CYL(K600,RTEST,A19,K18)        $ PANEL 7
D11CYL(K600,RTEST,A20,K19)        $ PANEL 8
REM APPLY INCIDENT HEAT
REM
ARYMPY(K20,A12+1,K12,0701) SPANEL 1
ARYMPY(K20,A12+1,K13,0725) SPANEL 2
ARYMPY(K20,A12+1,K14,0749) SPANEL 3
ARYMPY(K20,A12+1,K15,0773) SPANEL 4
ARYMPY(K20,A12+1,K16,0797) SPANEL 5
ARYMPY(K20,A12+1,K17,0821) SPANEL 6
ARYMPY(K20,A12+1,K18,0845) SPANEL 7
ARYMPY(K20,A12+1,K19,0869) SPANEL 8
REM
REM BUILD A TEMPERATURE ARRAY TO EVALUATE THERMAL FLUID FLOW COND
REM
BLDARY(A9+1,T601,T602,T603,T604,T605,T606,T607,T608,T609
T610,T611,T612,T613,T614,T615,T616,T617,T611
T619,T620,T621,T622,T623,T624,T625,T626,T627)
BLDARY(A9+28,T628,T629,T630,T631,T632,T633,T634,T635,T629
```

```

REM EVALUATE GR NUMBER
REM
REM EVALUATE CONVECTION CONDUCTORS
REM
REM COMPUTE CONVECTION CONDUCTORS
REM
REM EVALUATE CONDUCTION CONDUCTORS
REM
REM EVALUATE FLUID FLOW CONDUCTORS - G = MG
REM
REM COMPUTE SYSTEM 1
DLDIMI(K22,A9+2,A21,K805,G1001) $SYSTEM 1
DLDIMI(K22,A9+20,A21,K805,G1017) $SYSTEM 2
DLDIMI(K22,A9+38,A21,K805,G1033) $SYSTEM 3
ARMPY(K22,G1001,K821,G1001) $SYSTEM 1
ARMPY(K22,G1017,K822,G1017) $SYSTEM 2
ARVMPY(K22,G1033,K823,G1033) $SYSTEM 3
DO 40 I=12,59
40 G(I)=46.1235+(1953/(G(I)+0.015*(G(I)**.33333333)))
REM
REM COMPUTE SYSTEM 2
DLDIMI(K22,A9+2,A21,K805,G1001) $SYSTEM 1
DLDIMI(K22,A9+20,A21,K805,G1017) $SYSTEM 2
DLDIMI(K22,A9+38,A21,K805,G1033) $SYSTEM 3
ARMPY(K22,G1001,K821,G1001) $SYSTEM 1
ARMPY(K22,G1017,K822,G1017) $SYSTEM 2
ARVMPY(K22,G1033,K823,G1033) $SYSTEM 3
IF(K(9)) 10,10,11
10 G(158) = 0.
11 CONTINUE
11 G(176) = 0.
12 IF(K(10)) 13,13,14
12 STFSQS(K594,K595,G611)
13 G(176) = 0.
14 CONTINUE
14 G(194) = 0.
15 IF(K(11)) 16,16,17
15 STFSQS(K594,K595,G629)
16 G(194) = 0.
17 CONTINUE
17 G(194) = 0.
18 CONTINUE
18 STFSQS(K594,K595,G647)
COMMO/BRAVO/OCOND(3),OMASS(3),WTHZ30(3)
COMMON/CHARLE/, J, M, N
COMMON/DELTA/, INDEX1
COMMON/DIMEN/, DIMENSION XX(11)
COMMON/EQUIL/, EQUILANCE (XX(1),XX(1))
COMMON/TEMPERATURE ARRAY FOR USE IN COMPUTING CONDUCTANCES
REM BUILT A TEMPERATURE ARRAY FOR USE IN COMPUTING CONDUCTANCES
BLDARY(A8+28,1619,1620,1621,1621,1622,1623,1624,1625
T613,1614,1615,1615,1616,1617,1617,1618,1619
T607,1608,1609,1609,1610,1611,1611,1612,1613
BLDARY(A8+28,1619,1620,1621,1621,1622,1623,1624,1625
T625,1626,1627,1627,1628,1629,1630,1631
T631,1632,1633,1634,1635,1636,1629
T643,1644,1645,1645,1646,1647,1647,1648,1649
BLDARY(A8+55,1637,1638,1639,1639,1640,1641,1641,1642,1643
T649,1650,1651,1651,1652,1653,1653,1654,1647)
REM COMPUTE REYNOLDS NUMBERS
REMLDML(AB,A8+1,A4,K601,A22+1) *(4/(P+VIS))
REMLDML(AB,A8+1,A4,K601,A22+1) *(4/(P+VIS))
ARMPY(K5,A22+55,K8,A22+55) $RE FOR SYSTEM 2
ARMPY(K5,A22+28,K7,A22+28) $RE FOR SYSTEM 1
ARMPY(K5,A22+1,K6,A22+1) $RE FOR SYSTEM 1
REM COMPUTE REYNOLDS NUMBERS
REMLDML(AB,A8+1,A4,K601,A22+1) *(4/(P+VIS))
REMLDML(AB,A8+1,A4,K601,A22+1) *(4/(P+VIS))
ARMPY(K5,A22+55,K8,A22+55) $RE FOR SYSTEM 3
ARMPY(K5,A22+28,K7,A22+28) $RE FOR SYSTEM 2
ARMPY(K5,A22+1,K6,A22+1) $RE FOR SYSTEM 1
REM COMPUTE REYNOLDS NUMBERS
REMLDML(AB,A8+1,A4,K601,A22+1) *(4/(P+VIS))
REMLDML(AB,A8+1,A4,K601,A22+1) *(4/(P+VIS))
ARMPY(K5,A22+55,K8,A22+55) $RE FOR SYSTEM 3
ARMPY(K5,A22+28,K7,A22+28) $RE FOR SYSTEM 2
ARMPY(K5,A22+1,K6,A22+1) $RE FOR SYSTEM 1

```



```
REM COMPUTE (K-FACTOR)/(2*DENSITY*(A**2))
D101M1(A8,A8+1,A1,K701,A23+1)
DIVARY(A23,G501,A22+1,G501)
ADDARY(A23,A23+1,G501,G501).
REM - ALL CONSTANTS FOR PRESSURE DROP HAVE BEEN COMPUTED -- SUM
REM FOR RESPECTIVE SYSTEMS AND SOLVE FOR DELP
REM
REM IN THE FOLLOWING SYSTEMS COMPRESSIONS A FLAG HAS BEEN SET
REM TO INDICATE FLOW DIRECTION THROUGH THE BYPASS VALVES -- THE
REM SYSTEM CONDUCTANCE IS CALCULATED ACCORDINGLY
REM      FLAG FOR SYSTEM 1 = K9 (0-RADIATOR , 1-BYPASS)
REM      FLAG FOR SYSTEM 2 = K10(0-RADIATOR , 1-BYPASS)
REM      FLAG FOR SYSTEM 3 = K11(0-RADIATOR , 1-BYPASS)
REM
REM COMPRESS PRESSURE NETWORK FOR SYSTEM 1
REM
SUMARY(K3,G501,K582)
SUMARY(K4,G516,K583)
IF(K(9).EQ.0) K(117)=K(116) F
IF(K(9).EQ.1)XK(117)=G(86) F
ADD(K582,K584,G526,K585)
REM
REM COMPRESS PRESSURE NETWORK FOR SYSTEM 2
REM
SUMARY(K3,G528,K586)
SUMARY(K4,G543,K587)
IF(K(10).EQ.0) K(121)=K(120) F
IF(K(10).EQ.1)XK(121)=G(113) F
ADD(K586,K588,G553,K589)
REM
REM COMPRESS PRESSURE NETWORK FOR SYSTEM 3
REM
SUMARY(K3,G555,K590)
SUMMARY(K4,G570,K591)
IF(K(11).EQ.0) K(125)=K(124) F
IF(K(11).EQ.1)XK(125)=G(140) F
ADD(K590,K592,G580,K593)
SCALE(K25,K585,K585,K589,K589,K593,K593)
ARINDV(3,K6,1.,K821) $INVERT FLOW RATES
REM SAVE TIME STEP
REM FIRST TIME STEP, DTIMEU=0., SO DON'T STORE IT
IF(DTIMEU.EQ.0.) GO TO 5 F
SLPARY(DTIMEU,A50)
5 CONTINUE
DO 700 I=J,M,N F
IF(I-21 10,11,12 F
10 SLPARY(T618,A51)
D1DEG1(T618,A1,RTEST)
MLTPLY(K821,RTEST,K864,TTEST)
DELAY1(A50,A51,TTEST,K890,ITEST)
SLPARY(K890,A54)
ARYSTO(K912,VTEST,A57+1)
GO TO 13 F
11 SLPARY(T636,A52)
D1DEG1(T636,A1,RTEST)
MLTPLY(K822,RTEST,K864,ITEST)
DELAY1(A50,A52,TTEST,K891,ITEST)
SLPARY(K891,A55)
ARYSTO(K912,VTEST,A58+1)
GO TO 13 F
12 SLPARY(T654,A53)
D1DEG1(T654,A1,RTEST)
MLTPLY(K823,RTEST,K864,TTEST)
```

```

        DELAY1(A50,A53,TTEST,K892,ITEST)
        SLPARY(K892,A56)
        ARYSTO(K912,VTEST,A59+1) F
13 CONTINUE
    REM DETERMINE BYPASSED FRACTION F
    RTEST=XX(I+331) F
    STEST=XX(I+365) F
    VTEST = XK(I+456) F
    IF(K(I+368)) 20,30,30 F
20 IF(RTEST.LE.STEST) GO TO 35 F
25     D1DEG1(RTEST,A10,UTEST) F
    IF(UTEST.LE.VTEST) GO TO 39 F
    K(I+368)= 1 F
        D1DEG1(RTEST,A10,UTEST) F
    VTEST=UTEST F
    GO TO 39 F
30 IF(RTEST.GE.STEST) GO TO 25 F
35     D1DEG1(RTEST,A11,UTEST) F
    IF(UTEST.GE.VTEST) GO TO 39 F
    K(I+368)= -1 F
        D1DEG1(RTEST,A11,UTEST) F
    VTEST=UTEST F
39 CONTINUE F
    XK(I+456) = VTEST F
    IF(I-2) 40,41,42 F
40     SLPARY(VTEST,A57) F
        CNVLTN(A50,A57,0,2,K879) F
    GO TO 43 F
41     SLPARY(VTEST,A58) F
        CNVLTN(A50,A58,0,2,K880) F
    GO TO 43 F
42     SLPARY(VTEST,A59) F
        CNVLTN(A50,A59,0,2,K881) F
43 CONTINUE F
    REM DETERMINE COLD SIDE REGENERATOR FLOW F
    FLORGc = (1.-XK(I+374))*XK(I+51) F
    REM DETERMINE REGENERATOR COLD SIDE DELAY F
    REM IF RP FRACTION IS LARGE, SET FLORGc TO A SMALL FINITE VALUE F
    IF(XK(I+374).GT.XK(381)) FLORGc=(1.-XK(381))*XK(I+51) F
    TTEST=(XK(I+385) + XK(I+377))/2. F
        D1DEG1(TTEST,A1,RTEST) F
    TTEST=XX(385)*(1./FLORGc)*RTEST*XK(361) F
    REM SLIDE DELAY INTO ARRAY AND DETERMINE DELAY, COND. OUTLET TO F
    REM REGEN HOT INLET F
    IF(I-2) 70,80,90 F
70     SLPARY(TTEST,A78) F
        D1DEG1(K893,A1,RTEST) F
        MLTPLY(K821,RTEST,K867,TTEST) F
    TTEST=TTEST-DTIMEU F
    REM DELAY1(A50,A60,TTEST,K896,ITEST) DELETED DUE TO INSTABILITY F
        CNVLTN(A50,A60,0,2,K896) F
    XK(392) = XK(392) + 460. F
    XK(464) = XK(460) + (XK(392) - XK(460))*(.53 + .002*XK(6) + .018* F
1 XK(462)) F
    DH = (XK(460) - XK(464))*(.152 + .0000225*(XK(464) + XK(460))) F
1 *XK(462)/XK(6) F
    X = 116440.5 + 2401.364*DH + XK(392)*(682.4676 + XK(392)) F
    TDW = SQRT(X) - 341.2338 F
    XK(467) = XK(461) + .75*(TDW - XK(461)) F
    DH = (XK(461) - XK(467))*3.47*XK(463)/XK(6) F
    X = 116440.5 + 2401.364*DH + TDW*(682.4676 + TDW) F
    XK(392) = SQRT(X) - 341.2338 - 460. F
    XK(464) = XK(464) - 460. F
    XK(467) = XK(467) - 460. F

```



```
      SLPARY(K896,A63)
  GO TO 100
80      SLPARY(TTEST,A79)
      D1DEG1(K894,A1,RTEST)
      MLTPLY(K822,RTEST,K867,TTEST)
      TTEST=TTEST-DTIMEU
      REM DELAY1(A50,A61,TTEST,K897,TEST) DELETED DUE TO INSTABILITY
      CNVLTN(A50,A61,0,2,K897)
      XK(393) = XK(393) + 460.
      XK(465) = XK(460) + (XK(393) - XK(460))*(.53 + .002*XK(7) + .018*
1 XK(462))
      DH = (XK(460) - XK(465))*(.152 + .0000225*(XK(465) + XK(460)))
1 *XK(462)/XK(7)
      X = 116440.5 + 2401.364*DH + XK(393)*(682.4676 + XK(393))
      TOW = SQRT(X) - 341.2338
      XK(468) = XK(461) + .75*(TOW - XK(461))
      DH = (XK(461) - XK(468))*3.47*XK(463)/XK(7)
      X = 116440.5 + 2401.364*DH + TOW*(682.4676 + TOW)
      XK(393) = SQRT(X) - 341.2338 - 460.
      XK(465) = XK(465) - 460.
      XK(468) = XK(468) - 460.
      SLPARY(K897,A64)
  GO TO 100
90      SLPARY(TTEST,A80)
      D1DEG1(K895,A1,RTEST)
      MLTPLY(K823,RTEST,K867,TTEST)
      TTEST=TTEST-DTIMEU
      REM DELAY1(A50,A62,TTEST,K898,TEST) DELETED DUE TO INSTABILITY
      CNVLTN(A50,A62,0,2,K898)
      XK(394) = XK(394) + 460.
      XK(466) = XK(460) + (XK(394) - XK(460))*(.53 + .002*XK(8) + .018*
1 XK(462))
      DH = (XK(460) - XK(466))*(.152 + .0000225*(XK(466) + XK(460)))
1 *XK(462)/XK(8)
      X = 116440.5 + 2401.364*DH + XK(394)*(682.4676 + XK(394))
      TOW = SQRT(X) - 341.2338
      XK(469) = XK(461) + .75*(TOW - XK(461))
      DH = (XK(461) - XK(469))*3.47*XK(463)/XK(8)
      X = 116440.5 + 2401.364*DH + TOW*(682.4676 + TOW)
      XK(394) = SQRT(X) - 341.2338 - 460.
      XK(466) = XK(466) - 460.
      XK(469) = XK(469) - 460.
      SLPARY(K898,A65)
100 CONTINUE
      REM COMPUTE REGEN HOT SIDE DELAY
      TTEST=(XK(I+394) + XK(I+391))/2.
      D1DEG1(TTEST,A1,RTEST)
      XK(33)=XK(385)*XK(I+316)*RTEST*XK(364)
      REM FIND TERMINAL ENTHALPIES AND UA OF EACH REGENERATOR
      IF(I-2) 110,120,130
110      D3DEG1(K890,K896,K6,A38,RTEST)      $UA
      D1DEG1(K896,A24,STEST)      $HH1
      D1DEG1(K899,A24,TTEST)      $HH2
      D1DEG1(K890,A24,UTEST)      $HC1
      D1DEG1(K882,A24,VTEST)      $HC2
  GO TO 140
120      D3DEG1(K891,K897,K7,A38,RTEST)      $UA
      D1DEG1(K897,A24,STEST)      $HH1
      D1DEG1(K900,A24,TTEST)      $HH2
      D1DEG1(K891,A24,UTEST)      $HC1
      D1DEG1(K883,A24,VTEST)      $HC2
  GO TO 140
```


130 D3DFG1(K892,K898,K8,A38,RTEST) \$1A
 D1DEG1(K898,A24,STEST) \$HH1
 D1DEG1(K901,A24,TTEST) \$HH2
 D1DEG1(K892,A24,UTEST) \$HC1
 D1DEG1(K884,A24,VTEST) \$HC2

140 CONTINUE F
 RFM COMPUTE TEMPERATURE AND ENTHALPY DROPS ON EACH SIDE F
 UA=RTEST F
 HH1=STEST F
 HH2=TTTEST F
 HC1=UTEST F
 HC2=VTEST F
 DHH=ABS(HH1-HH2) F
 DHC=ABS(HC1-HC2) F
 DTH=ABS(XK(I+391)-XK(I+394)) F
 DTC=ABS(XK(I+385)-XK(I+377)) F
 CC=FLORG0*(1./DTC)*DHC F
 CH=XK(I+5)*(1./DTH)*DHH F
 BETA=CC/CH F
 RNTU=UA/CC F
 ET=EXP(-RNTU*(1.-BFTA)) F
 FFF=(1.-FT)/(1.-BETA*ET) F
 REM COMPUTE REGEN GAINS BASED ON REGEN INLET CONDITIONS F
 RTEST=1.-EFF F
 STEST=EFF F
 TTEST=EFF*BETA F
 UTEST=1.-TTEST F
 REM SLIDE GAIN CONSTANTS INTO ARRAYS AND F
 REM DETERMINE TRANSIENT OUTLET TEMPS F
 IF(I-2) 150,160,170

150 SLPARY(RTEST,A66) \$SYSTEM 1
 SLPARY(STEST,A67)
 SLPARY(TTEST,A68)
 SLPARY(UTEST,A69)
 DELAY2(A50,A54,A78,VTEST,JTEST)
 CNVLTE(A50,A54,A66,JTEST,1,RTEST) \$OUTPUT T11
 CNVLTE(A50,A63,A67,0,1,STEST) \$OUTPUT T12
 DELAY1(A50,A63,K33,VTEST,JTEST)
 CNVLTE(A50,A54,A68,0,1,TTEST) \$OUTPUT T21
 CNVLTF(A50,A63,A69,JTEST,1,UTEST) \$OUTPUT T22

 VTFST=TTEST+UTEST F
 SLPARY(VTEST, A81)
 GO TO 180 F

160 SLPARY(RTEST,A70)
 SLPARY(STEST,A71)
 SLPARY(TTEST,A72)
 SLPARY(UTEST,A73)
 DELAY2(A50,A55,A79,VTEST,JTEST)
 CNVLTE(A50,A55,A70,JTEST,1,RTEST) \$OUTPUT T11
 CNVLTE(A50,A64,A71,0,1,STEST) \$OUTPUT T12
 DELAY1(A50,A64,K33,VTEST,JTEST)
 CNVLTE(A50,A55,A72,0,1,TTEST) \$OUTPUT T21
 CNVLTF(A50,A64,A73,JTEST,1,UTEST) \$OUTPUT T22

 VTEST=TTEST + UTEST F
 SLPARY(VTEST, A82)
 GO TO 180 F

170 SLPARY(RTEST,A74) \$SYSTEM 3
 SLPARY(STEST,A75)
 SLPARY(TTEST,A76)
 SLPARY(UTEST,A77)
 DELAY2(A50,A56,A80,VTEST,JTEST)
 CNVLTE(A50,A56,A74,JTEST,1,RTEST) \$OUTPUT T11
 CNVLTE(A50,A65,A75,0,1,STEST) \$OUTPUT T12
 DELAY1(A50,A65,K33,VTEST,JTEST)

CNVLTE(A50,A56,A76,0,1,TTEST) \$OUTPUT T21
CNVLTE(A50,A65,A77,JTEST,1,UTEST) \$OUTPUT T22
VTEST=TTEST + UTEST F
SLPARY(VTEST,A83)
REM COLD + HOT TRANSIENT OUTLET TEMPS
180 XK(I+377)=RTEST + STFST F
XK(I+394)=TTEST + UTEST F
TTEST = (XK(I + 391) + XK(I + 394))/2. F
D1DEG1(TTEST,A3,UTEST) \$ SEC REG HOT CP F
TTEST = (XK(I + 377) + XK(I + 385))/2. F
D1DEG1(TTEST,A3,VTEST) \$ SEC REG COLO CP F
XK(I + 377) = XK(I + 385) + ((XK(I + 391) - XK(I + 394))*UTEST)/ F
L ((I. - XK(I + 374))*VTEST) F
IF (XK(I + 377).GT.XK(I + 391)) XK(I + 377) = XK(I + 391) F
XK(I + 377) = (XK(I + 377) + XK(I + 322))/2. F
XK(I + 322) = XK(I + 377) F
REM COMPUTE DELAY TO RAD INLET AND SET RAD INLET TEMP F
IF(I-2) 190,200,210 F
190 D1DEG1(K899,A1,RTEST) F
MLTPLY(K821,RTEST,K869,TTEST) F
DELAY1(A50,A81,TTEST,T601,TTEST) F
GO TO 220 F
200 D1DEG1(K900,A1,RTEST) F
MLTPLY(K822,RTEST,K869,TTEST) F
DELAY1(A50,A82,TTEST,T619,TTEST) F
GO TO 220 F
210 D1DEG1(K901,A1,RTEST) F
MLTPLY(K823,RTEST,K869,TTEST) F
DELAY1(A50,A83,TTEST,T637,TTEST) F
220 CONTINUE F
REM COMPUTE CONDENSER INLET TEMP F
IF(XK(I+374).GT.XK(381)) GO TO 290 F
RTEST=XK(I+385) F
STEST=XK(I+377) F
D1DEG1(RTEST,A24,TTEST) \$ENTHALPY BYPASS F
D1DEG1(STEST,A24,UTEST) \$REGEN ENTHALPY F
260 VTEST=TTFST*XK(I+374) + UTEST*(1.-XK(I+374)) F
D1DEG1(VTEST,A49,RTEST) \$TEMP OUT OF VALVE F
XK(I+403)*RTEST F
GO TO 300 F
290 XK(I+403)=XK(I+385) F
300 CONTINUE F
IF (INDEX1) 450, 450, 301 F
301 INDEX2 = 1 F
DTMP=XK(447) F
ISGN=K(448) F
XK(I + 365) = XK(I + 331) F
310 T2OLD=XK(I+331) F
T4OLD=XK(I+388) F
IFT(I-2) 320,330,340 F
320 D1DEG1(K908,A24,RTEST) F
D1DEG1(K893,A24,STEST) F
GO TO 350 F
330 D1DEG1(K909,A24,RTEST) F
D1DEG1(K894,A24,STEST) F
GO TO 350 F
340 D1DEG1(K910,A24,RTEST) F
D1DEG1(K895,A24,STEST) F
350 CONTINUE F
IF (INDEX2 - 100) 354, 354, 445 F
354 QGLY = XK(I + 5)*(STEST - RTEST) F
DTGAS=XK(I+371)-XK(I+331) F
351 QGAS = DTGAS*(3.44*WTH230(I)/DTIMEU + XK(I + 336)/XK(I + 415)*1.0)F
I +(DMASS(I)*1160.+DMASS(I)*DTGAS*1.0)/DTIMEU F

```

352 XK(I + 331) = XK(I + 388) - XK(I + 316)*149.2287949 +
1          0.697469198*QGAS + 9.0145E-7*QGAS**21      F
1 IF(ABS(QGLY-QGAS).LT.XK(407)) GO TO 450      F
1 ISGN=ISGN      F
1 IF(QGLY.LT.QGAS) ISGN=+1      F
1 IF(QGLY.GT.QGAS) ISGN=-1      F
1 TINCR=DTEMP*ISGN      F
1 IF(ISGN.EQ.ISGNV) GO TO 440      F
1 XK(I+331)=T2OLD      F
1 XK(I+388)=T4OLD      F
1 DTEMP=DTEMP/2.0      F
1 INDEX2 = INDEX2 + 1      F
1 GO TO 310      F
440 XK(I+388)=XK(I+388)+TINCR      F
1 INDEX2 = INDEX2 + 1      F
1 GO TO 310      F
445 WRITE (6, 446)      F
446 FORMAT (1HO, 74HCONDENSER HEAT BALANCE NOT COMPLETED WITHIN SPECIFIED
1     NUMBER OF ITERATIONS)      F
450 QCOND(I)=QGAS      F
1 IF(I-2) 451,452,453      F
451     SLPARY(K893,A60)      F
1 GO TO 700      F
452     SLPARY(K894,A61)      F
1 GO TO 700      F
453     SLPARY(K895,A62)      F
1 REM END OF LOOP*****      F
700 CONTINUE      F
1 INDEX1 = 1      F
1 REM*****      F
1 END      F
1 BCD 3BPUT CALLS      F
1 COMMON/BRAVO/QCOND(3),DMASS(3),WTH230(3)      F
1 COMMON/CHARLE/J, M, N      F
1 COMMON/ECHO/IPOINT      F
1 COMMON/FOXTRT/PCKOH(3)      F
1 DIMENSION ATEMP(50)      F
1 DIMENSION XK(1)      F
1 DIMENSION CRTAR1(200), CRTAR2(200), CRTAR3(200), CRTAR4(200), CRTAR5(72),
1 CRTAR6(72), CRTAR7(63)      F
1 DIMENSION DATE(2)      F
1 DATA ITIT/0/      F
1 DATA CRTAR5/ 'MISS','ION ','TIME',' - ',' MIN', 13*' '/
1 DATA CRTAR6/ 'SYST','EM T','EMPE','RATU','RES ',' . ','DEG ',
1 'F ', 10*' '/
1 EQUIVALENCE (XK(1),K(1))      F
1 CALL CAMRAV(9)      F
1 TIME = 0.0      F
1 DO 100 N1 = 1, 63      F
1 CRTAR7(N1) = TIME      F
1 TIME = TIME + 3.0      F
100 CONTINUE      F
1 REM SOLVE FOR RADIATOR PRESSURE DROP
1 MLTPLY(K6,K6,K585,K682) $RADIATOR PRESSURE DROP FOR SYSTEM 1
1 MLTPLY(K7,K7,K589,K683) $RADIATOR PRESSURE DROP FOR SYSTEM 2
1 MLTPLY(K8,K8,K593,K684) $RADIATOR PRESSURE DROP FOR SYSTEM 3
1 D1DEGI(K682,A84,K6)      $ FLOW RATE - SYSTEM 1
1 D1DEGI(K683,A84,K7)      $ FLOW RATE - SYSTEM 2
1 D1DEGI(K684,A84,K8)      $ FLOW RATE - SYSTEM 3
1 REM FLUID HEAT LOSS FOR SYSTEM 1
1 QMTRI(16,A9+1,G601,A25+1)
1 REM FLUID HEAT LOSS FOR SYSTEM 2
1 QMTRI(16,A9+19,G619,A25+17)

```



```
REM FLUID HEAT LOSS FOR SYSTEM 3
QMTRI(16,A9+37,G637,A25+33)
IF(K(9).EQ.1) GO TO 1
SUMARY(16,A25+1,K801)
F
GO TO 2
F
1 CONTINUE
F
    SUMMARY(10,A25+1,K801)
F
2 IF(K(10).EQ.1) GO TO 3
F
    SUMMARY(16,A25+17,K802)
F
    GO TO 4
F
3 CONTINUE
F
    SUMMARY(10,A25+17,K802)
F
4 IF(K(11).EQ.1) GO TO 5
F
    SUMMARY(16,A25+33,K803)
F
    GO TO 6
F
5 CONTINUE
F
    SUMMARY(10,A25+33,K803)
F
6 CONTINUE
F
    CALL DATOUT
F
    WRITE(6,11)
F
11 FORMAT(5X,99HSYSTEM POWER CURRENT VOLTAGE TSI TSE
      1 TCIP TCEP QCOND W-COND WS-RATE, 3X,
      2 12HT02 TH2)
F
      WRITE(6,12)
F
12 FORMAT(14X,99HWATTS AMPS VOLTS DEGF DEGF DEGF
      1 DEGF BTU/HR LB/HR PERCENT, 3X, 12HDEGF DEGF, /)
F
      DO 13 I=J,M,N
F
13 WRITE(6,14) I,XK(I+412),XK(I+349),KK(I+353),XK(I+339),XK(I+342),
      1 XK(I+371),XK(I+331),QCOND(I),XK(I+450),XK(I+453),
      2 XK(I+463),XK(I+466),PCKOH(I)
F
14 FORMAT(6X,12,4X,2F8.2,1X,5F).2,F10.2,F10.3,2F9.2,F8.2,F9.3)
F
      WRITE(6, 15)
F
15 FORMAT(//)
F
      WRITE(6,16)
F
16 FORMAT(5X,114HSYSTEM FLOW RATE QRAD TRADIN TRADDOUT DPRAF
      1 TSRCI TSRCE TSRHE TSRHE TCIS TCES BPFSI
      WRITE(6,17)
F
17 FORMAT(16X,95HLB/HR BTU/HR DEGF DEGF PSIA DEGF
      1 DEGF DEGF DEGF DEGF, /)
F
      DO 18 I=J,M,N
F
18 WRITE(6,19) I,XK(I+5),XK(I+296),T(I+243),T(I+240),XK(I+212),
      1 XK(I+385),XK(I+377),XK(I+391),XK(I+394),XK(I+403),
      2 XK(I+389),XK(I+374)
F
19 FORMAT(6X,12,5X,F8.2,1X,2F9.2,F10.2,F8.3,6F9.2,F8.4)
F
      WRITE(6, 20)
F
20 FORMAT(//7X,120HPANEL 1 PANEL 2 PANEL 3 PAF
      1NEL 4 PANEL 5 PANEL 6 PANEL 7 PANEF
      2L 8, /, 5X, 123HTN OUT IN OUT IN OUT IN OUT IN F
      3N OUT IN OUT IN OUT IN OUT IN OUT IN F
      4 OUT, /)
F
      DO 21 I1 = 193,208
F
      J1 = 209 - I1
F
21 ATEMP(J1) = T(I1)
F
      DO 22 I2 = 209,224
F
      J2 = 241 - I2
F
22 ATEMP(J2) = T(I2)
F
      DO 23 I3 = 225,240
F
      J3 = 273 - I3
F
23 ATEMP(J3) = T(I3)
F
      WRITE(6, 25) (ATEMP(KT), KT = 1, 16)
F
      WRITE(6, 25) (ATEMP(KT), KT = 17, 32)
F
      WRITE(6, 25) (ATEMP(KT), KT = 33, 48)
F
25 FORMAT(1X, 16F8.1)
F
      NP = 125
F
```

```

CRTAR1([POINT) = XK(343)          F
CRTAR2([POINT) = XK(332)          F
CRTAR3([POINT) = T(244)           F
CRTAR4([POINT) = T(241)           F
IF ([POINT.EQ.NP) GO TO 30       F
[POINT = [POINT + 1              F
GO TO 50                         F
30 CONTINUF                      F
IF ([ITIT.EQ.0) CALL CDATEV(DATE) F
IF ([ITIT.GT.0) GO TO 50          F
CALL GRF3TV(-1,38,CRTAR5,CRTAR6,-63,CRTAR7,CRTAR1(1),200.,0.,
1 500.,0.)                         F
CALL RITE2V(331,1010,1023,90,2,20,1,'SYSTEM 1 - 30 AMPS',IBLY) F
CALL PRNTV(8,DATE,943,995)          F
CALL GRF3TV( 0,63,CRTAR5,CRTAR6,-63,CRTAR7,CRTAR2(1),200.,0.,
1 500.,0.)                         F
CALL GRF3TV( 0,55,CRTAR5,CRTAR6,-63,CRTAR7,CRTAR3(1),200.,0.,
1 500.,0.)                         F
CALL GRF3TV( 0,44,CRTAR5,CRTAR6,-63,CRTAR7,CRTAR4(1),200.,0.,
1 500.,0.)                         F
CALL GRF3TV(-1,38,CRTAR5,CRTAR6,-63,CRTAR7,CRTAR1(63),200.,0.,
1 500.,0.)                         F
CALL RITE2V(331,1010,1023,90,2,20,1,'SYSTEM 1 - 25 AMPS',IBLY) F
CALL PRNTV(8,DATE,943,995)          F
CALL GRF3TV( 0,63,CRTAR5,CRTAR6,-63,CRTAR7,CRTAR2(63),200.,0.,
1 500.,0.)                         F
CALL GRF3TV( 0,55,CRTAR5,CRTAR6,-63,CRTAR7,CRTAR3(63),200.,0.,
1 500.,0.)                         F
CALL GRF3TV( 0,44,CRTAR5,CRTAR6,-63,CRTAR7,CRTAR4(63),200.,0.,
1 500.,0.)                         F
ITIT = 2                           F
50 CONTINUE                         F
END                                F

```


USER SUBROUTINE LISTINGS

```
0001      SUBROUTINE CNVLTN(NDT,V1,NST,NFCN,V2)
0002      DOUBLE PRECISION DTDP,DTNS,V1J,V1JP1,VAV,TMT,TMTO,V2DP,XSFER,
0003          SCALE,RISB,RMXSB
0004      DIMENSION DT(1),V1(1)
0005      EQUIVALENCE(D,N)
C
C      V1 MUST BE DIMENSIONED NOT LONGER THAN
C      (DIMENSION OF DT)+1
C
0005      D = DT(1)
0006      IDT = N
0007      D = V1(1)
0008      IV1 = N
0009      NT = IDT+1-IV1
0010      IF(NT) 169,5,5
0011      5 IF(NST) 15,15,25
0012      15 NST = IDT+1
0013      25 V2DP = 0.0000
0014      TMT = 0.0000
0015      ****
0016      MXSB = 10
0017      ****
0018      RMXSB = MXSB
0019      NSTM1 = NST-1
0020      DO 80 I=1,NSTM1
0021      J = NST-I+1
0022      DTDP = DT(J)
0023      JS = J-NT
0024      V1J = V1(JS)
0025      V1JP1 = V1(JS+1)
0026      DTNS = DTDP/RMXSB
0027      TMTO = TMT
0028      DO 70 ISB=1,MXSB
0029      IF(ISB-1) 30,30,40
0030      30 TMT = TMT+0.5000*DTNS
0031      40 TMT = TMT+DTNS
0032      45 RISB = ISB
0033      SCALE = RISB/RMXSB
0034      VAV = V1JP1+(V1JP1-V1J)*SCALE
0035      70 V2DP = V2DP+XSFER(NFCN,TMT)*VAV*DTNS
0036      TMT = TMTO+DTDP
0037      80 CONTINUE
0038      V2 = V2DP
0039      RETURN
0040      169 WRITE(6,170)
0041      170 FORMAT(43H ERROR IN DIMENSIONING OF ARRAYS FOR CNVLTN)
0042      RETURN
0042      END
```

```

0001      SUBROUTINE CNVLTE(DT,V1,GAIN,NST,NFCN,V2)
0002      DOUBLE PRECISION DTDP,DTNS,V1J,V1JP1,VAV,GJ,GJP1,GAV,TNT,TMTO,
0003      V2DP,XSFER,SCALF,RISB,RMXSB
0004      DIMENSION DT(1),V1(1),GAIN(1)
0004      EQUIVALENCE(D,N)

C      V1 AND GAIN MUST BE DIMENSIONED EQUAL LENGTH AND MAY
C      NOT BE LONGER THAN (DIMENSION OF DT)+1
C

0005      D = DT(1)
0006      IDT = N
0007      D = V1(1)
0008      IV1 = N
0009      D = GAIN(1)
0010      IG = N
0011      NT = IDT+1-IV1
0012      IF(NT) 169,5,5
0013      5 NT = IDT+1-IG
0014      IF(NT) 169,10,10
0015      10 IF(IG-IV1) 169,15,169
0016      15 IF(NST) 20,20,25
0017      20 NST = IDT+1
0018      25 V2DP = 0.0D00
0019      TMT = 0.0D00
0020      C ****
0020      MXSB = 10
0021      C ****
0021      RMXSB = MXSB
0022      NSTM1 = NST-1
0023      DO 80 I=1,NSTM1
0024      J = NST-I+1
0025      DTDP = DT(J)
0026      JS = J-NT
0027      V1J = V1(JS)
0028      V1JP1 = V1(JS+1)
0029      GJ = GAIN(JS)
0030      GJP1 = GAIN(JS+1)
0031      DTNS = DTDP/RMXSB
0032      TMTO = TMT
0033      DO 70 ISB=1,MXSB
0034      IF(ISB-1) 30,30,40
0035      30 TMT = TMT+0.5D00*DTNS
0036      GO TO 45
0037      40 TMT = TMT+DTNS
0038      45 RISB = ISB
0039      SCALE = RISB/RMXSB
0040      VAV = V1JP1+(V1JP1-V1J)*SCALE
0041      GAV = GJP1+(GJP1-GJ)*SCALE
0042      70 V2DP = V2DP+XSFER(NFCN,TMT)*VAV*GAV*DTNS
0043      TMT = TMTO+DTDP
0044      80 CONTINUE
0045      V2 = V2DP
0046      RETURN
0047      169 WRITE(6,170)
0048      170 FORMAT(43H ERROR IN DIMENSIONING OF ARRAYS FOR CNVLTE)
0049      RETURN
0050      END

```



```
0001      SUBROUTINE DELAY1(TAR, ARR, TAU, VAL, INDX)
0002      DIMENSION TAR(1), ARR(1)
0003      EQUIVALENCE(D,N)
0004      D = TAR(1)
0005      ITAR = N + 1
0006      D = ARR(1)
0007      IARR = N + 1
0008      JTAR = ITAR
0009      JARR = IARR
0010      DT = TAU - TAR(JTAR)
0011      10 JTAR = JTAR - 1
0012      IF (JTAR - 2) 100, 20, 20
0013      20 JARR = JARR - 1
0014      IF (JARR - 2) 200, 30, 30
0015      30 IF (DT) 60, 60, 40
0016      40 DT = DT - TAR(JTAR)
0017      GO TO 10
0018      60 INDX = JARR
0019      VAL = ARR(JARR)
0020      RETURN
C
C      ERROR MESSAGES
C
0021      100 WRITE (6, 101)
0022      101 FORMAT (50H DELAY1 ERROR--TAU EXCEEDS SUM OF SAVED TIME STEPS)
0023      INDX = 2
0024      VAL = ARR(2)
0025      RETURN
0026      200 WRITE (6, 201)
0027      201 FORMAT (28H DELAY1 ERROR--ARR TOO SMALL)
0028      INDX = 2
0029      VAL = ARR(2)
0030      WRITE (6, 250) DTIMEU
0031      250 FORMAT (12H THE TIME IS , F10.5)
0032      RETURN
0033      END
0001      SUBROUTINE DELAY2(TAR, ARR, TAU, VAL, INDX)
0002      DIMENSION TAR(1), ARR(1), TAU(1)
0003      EQUIVALENCE(D,N)
C
C      TAR MUST BE DIMENSIONED ONE LESS THAN ARR AND TAU
C
0004      D = TAR(1)
0005      ITAR = N
0006      D = ARR(1)
0007      IARR = N
0008      D = TAU(1)
0009      ITAU = N
0010      SUMDT = 0.0
0011      TAUITG = 0.0
0012      J = ITAR + 1 - IARR
0013      IF(J) 69,10,69
0014      10 IF(IARR - ITAU) 69,20,69
0015      20 DO 50 I = 1,ITAR
0016      M = ITAR + 2 - I
0017      SUMDT = SUMDT + TAR(M)
0018      TAUAVI = (TAU(M) + TAU(M + 1))/2.0
0019      TAUITG = TAUITG + TAUAVI*TAR(M)
0020      TAUAVC = (1./SUMDT)*TAUITG
0021      IF (ISUMDT - TAUAVC) 50, 60, 60
0022      50 CONTINUE
0023      WRITE (6, 51)
```

```
0024      51 FORMAT (43H MEAN TAU OUT OF RANGE OF TAR SUM IN DELAY?)  
0025      60 VAL = ARR(M)  
0026      INDEX = M  
0027      RETURN  
0028      69 WRITE (6, 70)  
0029      70 FORMAT (43H ERROR IN DIMENSIONING OF ARRAYS FOR DELAY2)  
0030      RETURN  
0031      END
```

```

0001      SUBROUTINE SLPARY(ARYN,ARY)
0002      DIMENSION ARY(1)
0003      EQUIVALENCE(D,N)
0004      D=ARY(1)
0005      IC=N
0006      DO 10 I=2,IC
0007      10 ARY(I)=ARY(I+1)
0008      ARY(IC+1)=ARYN
0009      RETURN
0010      END

```

```

0001      SUBROUTINE ARYSTO(N,X,A)
0002      DIMENSTON A(1)
0003      X = A(N)
0004      RETURN
0005      END

```

```

0001      DOUBLE PRECISION FUNCTION XSFER(NFCN,T)
0002      DOUBLE PRECISION T
0003      XSFER = 0.0000
0004      C ****
0005      C NFCN=1 IS SECONDARY REGENERATOR FUNCTION
0006      IF(NFCN.NE.1) GO TO 10
0007      IF(T.GT.0.5277D00) RETURN
0008      XSFER = (1.000/0.5277D-02)*DEXP(-T/0.5277D-02)
0009      RETURN
0010      C ****
0011      10 CONTINUE
0012      C ****
0013      NFCN=2 IS SECONDARY BYPASS VALVE FUNCTION
0014      IF(NFCN.NE.2) GO TO 20
0015      IF(T.GT.0.2833D00) RETURN
0016      XSFER = (1.000/0.2833D-02)*DEXP(-T/0.2833D-02)
0017      RETURN
0018      C ****
0019      20 CONTINUE
0020      RETURN
0021      END

```

```

0001      SURROUTINE DATOUT
0002      COMMON/FIXCON/ N
0003      DIMENSION N(1)
0004      IF (N(28).GE.58.OR.N(29).EQ.0) CALL HEADING
0005      N(29) = N(28) + 4
0006      WRITE (6, 100) N(1), N(2), N(35), N(17), N(36), N(15), N(37),
1 N(30)
0007      100 FORMAT (/1X, 10H* * * /1X, 4HTIME, 1PE13.5, 1X, 6HDTIMEU,
1 1PE13.5, 1X, 7HCSGMINT, 15, 1H), 1X, 1PE13.5, 1X, 7HOTMPCC, 15,
2 1H), 1X, 1PE13.5, 1X, 7HARLXCC, 15, 1H), 1X, 1PE13.5 //)
0008      RETURN
0009      END

```

```

0001      SURROUTINE HEADING
0002      COMMON/FIXCON/ N
0003      COMMON/TITLE/ H
0004      DIMENSION N(1), H(20)
0005      N(28) = 15
0006      N(29) = N(28) + 1
0007      WRITE (6, 100) N(29), H
0008      100 FORMAT (1H1, 116X, 4HPAGE, 2X, 17 / 4X, 121HSYSTEMS IMPROVED NUMER
1ICAL DIFFERENCING ANALYZER * SINDA * NORTH AMERICAN ROCKWE
2LL CORPORATION - SPACE DIVISION, //, 5X, 20A6//)
0009      RETURN
0010      END

```

```

0001      SUBROUTINE GRF3TVIL,ISYM,BCDX,BCDY,NP,X,Y,XMAX,XMIN,YMAX,YMINI   GPF00010
C
C      GRAF3V PLOTS 1,2, OR 3 GRIDS PER PAGE ON THE SC 4020               GPF00020
C
C      *** NOTATION ***
C
C      L      NO. OF GRAPHS PER FRAME(1,2,OR3).                           GPF00030
C      IF L IS NEGATIVE - FRAME WILL BE ADVANCED AND NP POINTS           GPF00040
C      WILL BE PLOTTED ON GRID NO.1                                       GPF00050
C      IF L IS POSITIVE - NP POINTS WILL BE PLOTTED ON GRID 2 OR 3     GPF00060
C      IF L IS ZERO - NP POINTS WILL BE PLOTTED ON PREVIOUS GRID        GPF00070
C
C      ISYM    PLOTTING SYMBOL                                         GPF00080
C
C      BCDX    ALPHA-NUMERIC CHARACTERS FOR THE X AXIS & Y AXIS. THESE   GPF00090
C      RCDY    ARRAYS ARE LIMITED TO 72 CHARACTERS EACH AND THE LAST       GPF00100
C
C      NP      NUMBER OF POINTS TO BE PLOTTED                            GPF00110
C      IF NP IS NEGATIVE - THE POINTS WILL BE CONNECTED, THUS THE       GPF00120
C      VALUES OF X MUST BE IN ASCENDING ORDER                           GPF00130
C
C      XMAX    MAXIMUM & MINIMUM VALUES OF X & Y.  IF BOTH MINIMUM AND   GPF00140
C      XMIN    MAXIMUM VALUES OF X ARE ZERO, THE ARRAY IS SEARCHED FOR     GPF00150
C      YMAX    THE APPROPRIATE VALUES.  THE SAME PROCEDURE IS FOLLOWED     GPF00160
C      YMIN    FOR MINIMUM & MAXIMUM Y                                     GPF00170
C
C      DIMENSION X(500),Y(500),BCDX(18),BCDY(18)                         GPF00180
C      NZ = IABS(NP)                                                       GPF00190
C      IF(NZ .EQ. 0) GO TO 60                                              GPF00200
C      IF(L .EQ. 0 ) GO TO 30                                             GPF00210
C      XL = XMIN                                                          GPF00220
C      XR = XMAX                                                          GPF00230
C      IF((XL .NE. 0.0) .OR. (XR .NE. 0.0)) GO TO 15                     GPF00240
C      XL = X(1)                                                          GPF00250
C      XR = X(1)                                                          GPF00260
C      DO 10 K = 1,NZ                                                       GPF00270
C      XL = AMIN1(X(K),XL)                                                 GPF00280
C      10 XR = AMAX1(X(K),XR)                                               GPF00290
C      15 YR = YMIN                                                       GPF00300
C      YT = YMAX                                                          GPF00310
C      IF((YT .NE. 0.0) .OR. (YB .NE. 0.0)) GO TO 25                     GPF00320
C      YT = Y(1)                                                          GPF00330
C      DO 20 J = 1,NZ                                                       GPF00340
C      YT = AMIN1(Y(J),YB)                                                 GPF00350
C      20 YB = AMAX1(Y(J),YT)                                               GPF00360
C      25 IF(L .LT. 0 ) L1 = 1                                              GPF00370
C      IF(L .GT. 0 ) L1 = 2                                              GPF00380
C      NCX = NBLANC(BCDX,18)                                                GPF00390
C      NCY = NBLANC(BCDY,18)                                                GPF00400
C      LGO = IABS(L1)                                                       GPF00410
C      DCX = 10.0                                                          GPF00420
C      DCY = 10.0                                                          GPF00430
C      INCRY = -14                                                         GPF00440
C      CALL MARGNP (L,ICY)                                                 GPF00450
C      IX = 524 - 4*NCX                                                     GPF00460
C      IY = ICY +7*NCY                                                    GPF00470
C      IF(LGO .EQ. 1) IY1 = 0                                              GPF00480
C      IF(LGO .EQ. 2) IY1 = ICY - 253                                      GPF00490
C      IF(LGO .EQ. 3) IY1 = ICY - 169                                      GPF00500
C      CALL DXDYV(1,XL,XR,DX,N,I,NX,DCX,IER)                                GPF00510
C      CALL DXDYV(2,YB,YT,DY,M,J,NY,DCY,IER)                                GPF00520
C      CALL GRIDIV(L1,XL,XR,YB,YT,DX,DY,N,M,I,J,NX,NY)                   GPF00530
C      CALL PRINTV(NCX,BCDX,IX,IY1)                                           GPF00540
C      CALL APRNTV(0,INCRY,NCY,BCDY,0,IY)                                    GPF00550
C      30 CALL APLOTV(NZ,X,Y,1,1,1,ISYM,IER)                                 GPF00560
C      IF (NP .GT. 0) GO TO 60                                              GPF00570
C      DO 50 KK = 1,NZ                                                       GPF00580
C      NXA = NXV(X(KK))                                                   GPF00590
C      NYA = NYV(Y(KK))                                                   GPF00600
C      IF(KK .LT. 2) GO TO 40                                              GPF00610
C      CALL LINEV(NXA,NYA,NXA,NYA)                                         GPF00620
C      40 NXD = NXA                                                       GPF00630
C      NYD = NYA                                                       GPF00640
C      50 CONTINUE                                                       GPF00650
C      60 RETURN                                                       GPF00660
C      END

```

0001	SUBROUTINE MARGNR(L1,ML3)	MARG0010
C	'MARGNR' SETS THE MARGINS FOR PLOTTING 1,2, OR 3 GRIDS PER FRAME	MARG0020
C	DIMENSION L(6,3),IN(3)	MARG0030
0002	DATA L /24,357,690,24,524,24,690,357,24,524,24,24,178,511,844,262,	MARG0040
0003	L 762,512/, IN /5,3,0/	MARG0050
0004	IF(L1 .GE. 0) GO TO 10	MARG0060
0005	K = -L1	MARG0070
0006	N = 1	MARG0080
0007	10 IC = N + IN(K)	MARG0090
0008	ML3 = LI(IC,3)	MARG0100
0009	CALL SETMIV(24,0,L(IC,1),L(IC,2))	MARG0110
0010	N = N + 1	MARG0120
0011	RETURN	MARG0130
0012	END	MARG0140
		MARG0150
		MARG0160
0001	FUNCTION NBLANC(WORD,N)	NBLK0010
C	'NBLANC' DETERMINES NO. OF CHARACTERS IN A HOLLERITH LABEL	NBLK0020
C	IF THERE ARE NO CHARACTERS, NBLANC = 0	NBLK0030
C	DIMENSION WORD(18)	NBLK0040
0002	DATA BLANK /* */	NBLK0050
0003	DO 10 M = 1,N	NBLK0060
0004	I = N - M	NBLK0070
0005	IF((WORD(I)-BLANK) .NE. 0.0) GO TO 20	NBLK0080
0006	10 CONTINUE	NBLK0090
0007	I = 0	NBLK0100
0008	20 NBLANC = 4*I	NBLK0110
0009	RETURN	NBLK0120
0010	END	NBLK0130
0011		NBLK0140
		NBLK0150
		NBLK0160