Chapter 30: Game Theory Applications

Game Theory Applications

- Games of Coordination
- Games of Competition
- Games of Coexistence
- Games of Commitment
- Bargaining Games

Games of Coordination

• These are games where the payoffs to the players are highest when they can coordinate their strategies.

- Examples you have already seen:
 - Prisoner's Dilemma
 - Battle of the Sexes Going to the movies
 - Assurance Games Buying a car
 - Chicken Cars driving at each other

Prisoner's Dilemma

- In this class of games, each player has a dominant strategy.
- This leads to a dominant strategy equilibrium (DSE)
- However, there is some other outcome that would leave all players better off, that is the DSE is not Pareto optimal.

		Joey	
		Confess	Deny
Chandler	Confess	-6	-12
		-6	-1
	Deny	-1	ψ
		-12	-3

Prisoner's Dilemma

- The Cournot game is also a Prisoner's Dilemma type game
- The dominant strategy equilibrium is {SQ: cheat; MH: cheat}

		Malaysia Airlines (MH)	
		Collude	Cheat
Singapore	Collude	1012.5 1012.5	1139.06 759.38
Airlines (SQ)	Cheat	759.38 1139.06	900

Prisoner's Dilemma

- In these games, how do we get to the better outcome?
 - {Chandler: Deny; Joey: Deny} and {SQ: Collude; MH: Collude}
- Have punishments for choosing the dominant strategy
 - We discussed the Nash Reversion Strategy and the "tit-for-tat" strategy

- In the examples of these games that we have seen, there are two players and two PSNE. Each player prefers a different PSNE
 - You prefer the "Star Wars" equilibrium
 - Your bae prefers the "Dumb Chick Flick" equilibrium

		Your bae		
		Star Wars	Dumb Chick Flick	
.,	Star Wars	10 20	-1	
You	Dumb Chick Flick	-1	20	

Ross wants to go to the museum and Rachel wants to go to Bloomingdales.

The two PSNE are: {Rachel: B, Ross: B} and {Rachel: M, Ross: M}

How about MSNE?

 π_R is the prob. that Rachel chooses B. π_S is the prob. that Ross chooses B.

$$EV_R(B) = 8\pi_S + 2(1 - \pi_S) = 2 + 6\pi_S$$

 $EV_R(M) = 2\pi_S + 4(1 - \pi_S) = 4 - 2\pi_S$
Rachel is indifferent if $EV_R(B) = EV_R(M)$, i.e. $\pi_S = 0.25$

 π_R is the prob. that Rachel chooses B. π_S is the prob. that Ross chooses B.

$$EV_R(B) = 8\pi_S + 2(1 - \pi_S) = 2 + 6\pi_S$$

 $EV_R(M) = 2\pi_S + 4(1 - \pi_S) = 4 - 2\pi_S$

Rachel is indifferent if $EV_R(B) = EV_R(M)$, i.e. $\pi_s = 0.25$

 π_R is the prob. that Rachel chooses B. π_S is the prob. that Ross chooses B.

$$EV_S(B) = 4\pi_R + 2(1 - \pi_R) = 2 + 2\pi_R$$

 $EV_S(M) = 2\pi_R + 8(1 - \pi_R) = 8 - 6\pi_S$
Ross is indifferent if $EV_S(B) = EV_S(M)$, i.e. $\pi_R = 0.75$

 π_R is the prob. that Rachel chooses B. π_S is the prob. that Ross chooses B.

Besides the two PSNE, there is an MSNE of $\pi_R = 0.75$, $\pi_S = 0.25$ 8,4 and 4,8

Assurance Games

- In the Assurance Games we've seen, there are two players and two PSNE. One of the PSNE gives a better payoff to BOTH players.
 - Ross and Phoebe have the best payoff when they both buy a Nano

		Phoebe	
		Hummer	Nano
	Hummer	2 2	-1
Ross	Nano	3 -1	4

Assurance Games

- The question in this type of game is, "How can each player give the other player *assurance* that the better PSNE will prevail?"
- Let's look at a new Assurance game: an arm's race

		Russia	
		Don't stockpile	Stockpile
Ukraine	Don't stockpile	5	1
	Stockpile	1 4	3

Assurance Games

• The Nash equilibria are:

		Russia	
		Don't stockpile	Stockpile
	Don't stockpile	5	4
Ukraine		5	1
	Stockpile	1	3
		4	3

- Communication might help us get to the better equilibrium
- What if Russia went first?

Chicken

• You will see this game in your problem set this week.

Game Theory Applications

- Games of Coordination
- Games of Competition
- Games of Coexistence
- Games of Commitment
- Bargaining Games

Games of Competition

- These are games that are the pole opposite of cooperation. The payoff to one player is equal to the losses of the other.
- Example: Football Penalty Game

		Keeper	
		Defend Left	Defend Right
	Kick Left	-50	-80
Kicker		50	80
	Kick Right	-90	-20
		90	20

Game Theory Applications

- Games of Coordination
- Games of Competition
- Games of Coexistence
- Games of Commitment
- Bargaining Games

Games of Coexistence

 These are games used to model animal behavior, for example, how members of a species act towards each other.

Hawk-Dove Game

- A bear can either hawk (be aggressive) when it and another bear encounters food in the forest, or
- it can dove (be passive and share)

Hawk-Dove Game

Is there a NE in mixed strategies?

Are there NE in pure strategies?

Yes {1: Hawk, 2: Dove} and {1: Dove, 2: Hawk}.

Notice that purely peaceful coexistence is not a NE.

Coexistence Games; The Hawk-Dove Game

 π_1 is the prob. that 1 chooses Hawk. π_2 is the prob. that 2 chooses Hawk.

$$EV_1(H) = -5\pi_2 + 8(1 - \pi_2) = 8 - 13\pi_2$$

$$EV_1(D) = 0\pi_2 + 4(1 - \pi_2) = 4 - 4\pi_2$$

Bear 1 is indifferent when $EV_1(H) = EV_1(D)$, i. e. $\pi_2 = \frac{4}{9}$

Coexistence Games; The Hawk-Dove Game

 π_1 is the prob. that 1 chooses Hawk. π_2 is the prob. that 2 chooses Hawk.

$$EV_2(H) = -5\pi_1 + 8(1 - \pi_1) = 8 - 13\pi_1$$

$$EV_2(D) = 0\pi_1 + 4(1 - \pi_1) = 4 - 4\pi_1$$

Bear 1 is indifferent when $EV_2(H) = EV_2(D)$, i. e. $\pi_1 = \frac{4}{9}$

Hawk-Dove Game

We have a MSNE when both bears play Hawk with probability $\frac{4}{9}$.

Games of Coexistence

- What is the interpretation of mixed strategies here?
 - It isn't that the two bears that meet repeatedly in the forest and hawk with probability $\frac{4}{9}$.
 - It is that among all the bears, $\frac{4}{9}$ of them will be hawkish.
- Behavior is genetic. Bears have evolved over time to have "hawk-ish" and "dove-ish" behavior in such proportions.

Games of Coexistence

- Let's suppose that there were an equal proportion of hawk-ish and dove-ish bears, i.e. $\pi_1 = \pi_2 = 0.5 > \frac{4}{9}$
- What is the payoff from being hawk-ish and being dove-ish?
 - $EV_1(H) = 8 13\pi_2 = 1.5$
 - $EV_1(D) = 4 4\pi_2 = 2$
- It's better to be dove-ish, so over time, hawkish bears will evolve to become dove-ish until π_1 and π_2 lowers to $\frac{4}{9}$.

Games of Commitment

- These are sequential games.
- The first player chooses an action which is observed by the second player
- This action is irreversible and observable.
- The first player knows that his action is seen by the second player

General Han Xin goes to war

• Han Xin sent his soldiers to battle. What is the

Example: Han Xin goes to war

- General Han Xin knows that he cannot trust his soldiers. They might say they will fight but in reality they will run away.
- This is not the outcome he desires. To get the outcome he wants (his soldiers fighting), he has to create a commitment device.
- Han Xin places his soldiers backed up against a raging river. Now if they flee, they drown!

General Han Xin goes to war

• Drowning kills everyone, so fleeing is now the worst option!

Han Xin gets the outcome that he wants!

Example: Han Xin goes to war

• The commitment device of placing soldiers by the river changes their incentives, forcing them to obey their General.

• Simple question: In any game, how could you (minimally) change the payoffs to alter the outcome of the game?

Game Theory Applications

- Games of Coordination
- Games of Competition
- Games of Coexistence
- Games of Commitment
- Bargaining Games important

- Rubenstein Bargaining Model
 - This model looks at a sequence of choices and then solves for an equilibrium using backward induction.

- Example: Cake division
 - Chandler and Rachel have to divide a cake between them.
 - They each alternate making offers, with Chandler making the first offer.
 - If Rachel accepts the offer, the game ends immediately.
 - If Rachel rejects the offer, then it is her turn to make an offer
 - Chandler and Rachel agree that there will be a maximum of *k* offers.
 - If no agreement is made by round *k*, neither player gets any cake

- Let's solve for this game when k=3.
- Chandler's discount factor is $0 < \alpha < 1$
- Rachel's discount factor is $0 < \beta < 1$
 - Discount factor: \$1 in the next period is worth α today.
- If a player is indifferent between accepting the offer and not, he/she will choose the option preferred by the opponent.
- The idea is the opponent can give an "arbitrarily small amount" to the other player to make him/her accept the option preferred by the opponent. This arbitrarily small amount is rounded to zero

Strategic Bargaining

- Backwards induction:
- Start with period 3.
- Chandler makes an offer.
- If Rachel rejects the offer, she gets 0.
- Chandler knows this, so he what will he offer Rachel?
- He can offer her 0 and take 1, and she will accept the offer.

- Backwards induction:
- Now in period 2.
- Rachel makes an offer.
- If Chandler rejects the offer, he knows he gets 1 in the next period.
- Rachel knows this, so what will she offer Chandler?
- She must make him indifferent between 1 in the next period and the amount he receives now. The PV of 1 in period 3 to Chandler is α .
- Rachel offers α to Chandler and he will accept.

- Backwards induction:
- Now in period 1.
- Chandler makes an offer.
- If Rachel rejects the offer, she knows she gets 1α in the next period.
- Chandler knows this, so what will he offer Rachel?
- He must make her indifferent between 1α in the next period and the amount she receives now. The PV of 1α in period 2 is $\beta(1 \alpha)$.
- Chandler offers $\beta(1-\alpha)$ and Rachel accepts.

- The game ends in the first period!
- Rachel gets $\beta(1-\alpha)$ of the cake
- Chandler gets $1 \beta(1 \alpha)$ of the cake
- The more patient you are, the more cake you get.

- Let's change the game.
- If no agreement is reached by the third round, they each split the pie equally.

Strategic Bargaining

- In period 3:
 - Chandler makes an offer
 - If Rachel rejects the offer, she gets $\frac{1}{2}$.
 - Chandler knows this so he will offer Rachel $\frac{1}{2}$ and he receives $\frac{1}{2}$.

- Now in period 2:
 - Rachel makes an offer
 - If Chandler rejects the offer, he receives $\frac{1}{2}$ in period 3 which he values at $\frac{1}{2}\alpha$ in period 2.
 - Rachel knows this so she will offer Chandler $\frac{1}{2}\alpha$ and Chandler will accept.

- Now in period 1
 - Chandler makes an offer.
 - If Rachel rejects the offer she will receive $1 \frac{1}{2}\alpha$ which she values at $\beta(1 \frac{1}{2}\alpha)$ in period 1.
 - Chandler knows this so he will offer Rachel $(1 \frac{1}{2}\alpha)\beta$ and she will accept
- The game ends in the first period:
 - Chandler getting $1 \beta \left(1 \frac{1}{2}\alpha\right)$
 - Rachel getting $\beta \left(1 \frac{1}{2}\alpha\right)$

- We see that when the failure to reach an agreement leads to a (0,0) allocation:
 - Rachel receives $\beta(1 \alpha)$
- When the failure to reach an agreement leads to a $\left(\frac{1}{2}, \frac{1}{2}\right)$ allocation:
 - Rachel receives $\beta(1-\frac{1}{2}\alpha)$

$$\beta\left(1-\frac{1}{2}\alpha\right) > \beta(1-\alpha)$$

- By giving Rachel a better allocation in the event of a failure to reach an agreement, (she receives $\frac{1}{2}$ instead of 0) we increase her bargaining power, giving her a better allocation in the end.
- Even though Chandler also has a better allocation in the event of a failure to reach agreement, he is worse off.
- The allocation in the event of a failure to reach an agreement is only relevant to the person accepting/rejecting the offer in the final period.

• What if Rachel and Chandler were allowed to bargain for 4 rounds instead of 3?

Each round the value may change, aka car diminishes over time
What if each round the person makes 2 offers, and then the next round the other person makes 2 offers?