Exercise 2.28

The tensor product is defined as follows. Let $A=\sum_{i,j}a_{ij}|i\rangle\langle j|$ is a p imes q matrix and $B=\sum_{m,n}b_{mn}|m\rangle\langle n|$ is a r imes s matrix, then we have

$$A \otimes B = \sum_{i,m;j,n} a_{ij} b_{mn}(|i\rangle \otimes |m\rangle) (\langle j \otimes \langle n|)$$
(1)

If $|i\rangle,|j\rangle,|m\rangle,|n\rangle$ is $|0\rangle=(1\ 0)^t$ or $|1\rangle=(0\ 1)^t$, the result of tensor product eq. (1) can be re-written as

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1q}B \\ a_{21}B & a_{22}B & \cdots & a_{2q}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1}B & a_{p2}B & \cdots & a_{pq}B \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} & \cdots & a_{1q}b_{1s} \\ a_{11}b_{21} & a_{11}b_{22} & \cdots & a_{1q}b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1}b_{r1} & a_{p2}b_{r2} & \cdots & a_{pq}b_{rs} \end{pmatrix}$$
(2)

I will prove the following relations about tensor product,

$$(A \otimes B)^t = A^t \otimes B^t, (A \otimes B)^* = A^* \otimes B^*, (A \otimes B)^\dagger = A^\dagger \otimes B^\dagger$$
(3)

ullet For $(A\otimes B)^t$, eq. (2) tell us that $(A\otimes B)^t$ is given by

$$(A \otimes B)^{t} = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{21} & \cdots & a_{p1}b_{r1} \\ a_{11}b_{12} & a_{11}b_{22} & \cdots & a_{p2}b_{r2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1q}b_{1s} & a_{1q}b_{2s} & \cdots & a_{pq}b_{rs} \end{pmatrix}$$

$$(4)$$

If we write eq. (4) into a form like eq. (1),

$$(A \otimes B)^t = \sum_{i,m;j,n} a_{ji} b_{nm} (|i\rangle \otimes |m\rangle) (\langle j \otimes \langle n|)$$
 (5)

For $A^t\otimes B^t$, we have $A^t=\sum_{i,j}a_{ji}|i\rangle\langle j|$ and $B^t=\sum_{m,n}b_{nm}|m\rangle\langle n|$, then according to eq. (1), we have

$$A^t \otimes B^t = \sum_{i,m;j,n} a_{ji} b_{nm} (|i\rangle \otimes |m\rangle) (\langle j \otimes \langle n|)$$
 (6)

From eq. (5) and (6), we have $(A \otimes B)^t = A^t \otimes B^t$.

• For $(A\otimes B)^*$, according to eq. (1) , we have

$$(A \otimes B)^* = \sum_{i,m;i,n} a_{ij}^* b_{mn}^* (|i\rangle \otimes |m\rangle) (\langle j \otimes \langle n|)$$
 (7)

For $A^*\otimes B^*$, I notice that $A^*=\sum_{i,j}a^*_{ij}|i\rangle\langle j|$ and $B^*=\sum_{m,n}b^*_{mn}|m\rangle\langle n|$, then according to eq. (1), we have

$$A^* \otimes B^* = \sum_{i,m;j,n} a_{ij}^* b_{mn}^* (|i\rangle \otimes |m\rangle) (\langle j \otimes \langle n|)$$
 (8)

From eq. (7) and (8), we have $(A\otimes B)^*=A^*\otimes B^*$.

ullet For $(A\otimes B)^\dagger$, according to eq. (1), we have

$$(A \otimes B)^{\dagger} = \sum_{i,m;j,n} a_{ij}^* b_{mn}^* (|i\rangle \otimes |m\rangle) (\langle j \otimes \langle n|)$$

$$(9)$$

For $A^\dagger\otimes B^\dagger$, I notice that $A^\dagger=\sum_{i,j}a_{ji}^*|i\rangle\langle j|$ and $B^\dagger=\sum_{m,n}b_{nm}^*|m\rangle\langle n|$, then according to eq. (1), we have

$$A^{\dagger} \otimes B^{\dagger} = \sum_{i,m;j,n} a_{ji}^* b_{nm}^* (|i\rangle \otimes |m\rangle) (\langle j \otimes \langle n|)$$
 (10)

From eq. (9) and (10), we have $(A\otimes B)^\dagger=A^\dagger\otimes B^\dagger.$