

MedMCQA

Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question

Answering

Ankit Pal (Aaditya Ura) Research Engineer, Saama AI Research Lab ankit.pal@saama.com Logesh Kumar Umapathi Research Engineer, Saama AI Research Lab logesh.umapathi@saama.com Malaikannan Sankarasubbu VP of AI, Saama AI Research Lab Malaikannan.Sankarasubbu@saama.com

About Authors

Ankit Pal (Aaditya Ura)

- Research Engineer @ Saama Al Research Lab
- Research interests involve
 Representation Learning on Graphs and
 Manifolds
- Interpretable Natural Language
 Processing,
 and their applications in Healthcare data
- Respiratory, Neurophysiological (EEG, ECG, EMG etc.)
 based Signal Processing

Email : ankit.pal@saama.com Website : aadityaura.github.io

twitter : @aadityaura

Logesh Umapathi

- Research Engineer @ Saama Al
 Research Lab
- Research interests involve information retrieval and their applications in Healthcare, clinical trials.

Email : logesh.umapathi@saama.com

Website: http://logeshumapathi.com

twitter : @logesh_umapathi

Outline

Introduction

MedMCQA Dataset

Sample data, Data Collection, Preprocessing & split criteria

Data statistics

Total questions, vocab etc

Data Analysis

- Difficulty and Diversity of Questions
- Answer types
- Subject & Topic Analysis
- Reasoning Types

Experiments

- Retriever
- Reader finetuning
- Results

Introduction

Dataset	# Question	# Subject	Publicly Available	Explanation	Split Type	Open Domain
MedQA	270,000		×	×	random	/
HEAD-QA	13,530	6	✓	×	yearwise	✓
$\mathbf{MedMCQA}$	193,155	21	✓	✓	exam-based	✓

Table 1: Comparison of MedMCQA with several existing MCQA datasets(MedQA(Zhang et al., 2018), HEAD-QA(Vilares and Gomez-Rodr, 2019)) in the medical domain. ✓ represents the dataset that has the feature and ✗ represents it does not

MedMCQA Dataset

The dataset is designed to address real-world medical entrance exam questions

- Question from AIIMS PG and NEET PG entrance exam
- 194k high-quality medical domain MCQs
- 2.4k healthcare topics
- 21 medical subjects
- Tests 10+ reasoning abilities

Dataset:

 $X = {Q,O}$, Q - questions, O - candidate options

 $O = \{O1,O2, ...,On\}.$

Label: $y \in \mathbb{R}^n$ where $y^i = \{0,1\}$, n is number of options

Objective: $f: X \rightarrow y$

Sample Data

Pharmacology

- A 40-year-old man has megaloblastic anemia and early signs of neurological abnormality. The drug most probably required is
- A
- a) Folic acid
- b) Iron sulphate
- c) Erythropoietin
- d) Vitamin B12 🗸
- Deficiency of vitamin B12 results in megaloblastic anemia and demyelination. It can cause subacute combined degeneration of the spinal cord and peripheral neuritis.

Surgery

- A five-year-old child presents with ballooning of prepuce after micturition. Examination reveals preputial adhesions.
 Which of the following is the best treatment?
- A
- a) Circumcision 🗸
- b) Dorsal slit
- c) Adhesiolysis & dilatation
- d) Conservative management
- The Treatment of phimosis in children is dependent on the parent's preference, however preputial if phimosis is causing ballooning of prepuce, circumcision is strongly considered.

Exams

- Sources of the dataset are from
 - All India Institute of Medical Sciences Post Graduate Exam (AIIMS PG)
 - National Eligibility cum Entrance Test (NEET PG)

• Eligibility

- o a Bachelor of Medicine and Bachelor of Surgery (MBBS) from a recognized institute
- Completed a 12 months of mandatory rotating Internship
- Merit candidates of these exams score an average of 90% marks

Data Collection & Preprocessing

Source:

- Historical Exam questions from official websites AIIMS & NEET PG (1991- present)
- The raw data is collected from open websites and books

Quality Checks:

- Questions with an inconsistent format were excluded
- Questions with no best answer and missing or null candidates were also omitted.
- Questions containing images or tables
- Keywords: "equation", "India", "graph", "map"

Preprocessing:

- Heuristics rules to clean HTML tags, Special symbols, URLs, Missing options
- 'Grammarly' was used to fix the grammar, punctuation, and spelling mistakes.
- Duplicates were removed

Split Criteria

Rationale for exam based split:

- To ensure the evaluation is closer to the real world examinations, model generalizability, and reusability
- Similar questions from train, test and dev set were removed based on similarity

Exam based split:

- 1. Training set: Mock & online test series 183K examples
- 2. Test set: Real AIIMS exam MCQs (years 1991- present) 6K examples
- 3. Dev set: NEET exam MCQs (years 2001- present) 4K examples

Data Statistics

Difficulty and Diversity of Questions:

- majority of the dataset questions are non-factoid and open-ended in nature
- mean length of 12.77 words

	Train	Test	Dev	Total
Question #	182,822	6,150	4,183	193,155
Vocab	94,231	11,218	10,800	97,694
Max Q tokens	220	135	88	220
Max A tokens	38	21	25	38
Max E tokens	3,155	651	695	3,155
Avg Q tokens	12.77	9.93	14.09	12.71
Avg A tokens	2.69	2.58	3.19	2.70
Avg E tokens	67.52	46.54	38.44	66.22

Data Statistics

Data Statistics

Answering and Reason types

Baseline

Experiment Design:

Motivation :

- Adequacy of the current models in answering multiple-choice questions meant for human domain experts
- understand the level of domain specificity required in the models
- To evaluate the need for external domain specific knowledge source:
 - No KB
 - Wikipedia
 - Pubmed
- To evaluate the effectiveness of pretraining source:
 - out of domain pretrained models (BERT (Devlin et al., 2019))
 - Mixed domain pretrained models (SciBERT (Beltagy et al., 2019) & BioBERT (Lee et al., 2020)
 - In-domain pretrained models (PubmedBERT (Gu et al., 2022))

Baseline

Retriever Models:

- Wikipedia: Dense passage retrieval (Karpukhin et al., 2020)
- Pubmed: PubmedBERT (Gu et al., 2022)

Reader Models:

- BERT (Devlin et al., 2019) Out of domain pretraining
- SciBERT (Beltagy et al., 2019) & BioBERT (Lee et al., 2020) Mixed domain pretraining
- PubmedBERT (Gu et al., 2022) In domain pretraining

Baseline

Baseline Results

Model	w/o Context		Wiki		\mathbf{PubMed}	
	Test	Dev	Test	Dev	Test	Dev
$Bert_{Base}$	0.33	0.35	0.33	0.35	0.37	0.35
BioBert	0.37	0.38	0.39	0.37	0.42	0.39
SciBert	0.39	0.39	0.38	0.39	0.43	0.41
PubMedBERT	0.41	0.40	0.42	0.41	0.47	0.43

Baseline Results - evaluation per medical subject

Subject Name	Test	Dev
Anaesthesia	0.47	0.26
Anatomy	0.40	0.39
Biochemistry	0.48	0.49
Dental	0.43	0.36
ENT	0.47	0.52
FM	0.48	0.35
O&G	0.54	0.39
Medicine	0.49	0.47
Microbiology	0.50	0.44
Ophthalmology	0.60	0.51
Orthopaedics		0.33
Pathology	0.53	0.46
Pediatrics	0.39	0.45
Pharmacology	0.46	0.46
Physiology	0.47	0.47
Psychiatry	0.67	0.56
Radiology	0.42	0.31
Skin	0.50	0.29
PSM	0.44	0.35
Surgery	0.50	0.43
Unknown	0.44	1.0

Questions?

Thanks!

ankit.pal@saama.com, Logesh.umapathi@saama.com

twitter: @aadityaura, @logesh_umapathi