	Broblem Set 3.
	Xuangi Wei
	10093J3209 Q4
proof:	Let n.m&M. and n<2 ^m .
	WTS: 7m, n & 1/1, n < 2 ^m , calling r Cm, n) terminates and Post Cm, n).
	l'm proving using complete incluction on m. Base Case: m = 0.
	Since ne/N and $n<2^m=2^o=1$, gives $n=0$.
	In this case, from the question, calling r(0,0) terminates and return (), gives ()
	is a tuple of zero bits, which satisfies Post (0.0). as. $n = 0 = \frac{1}{120} D Eil = 2$
	l've proved the base case is true
	Inductive Step: Let me M, m > 0
	Inductive Hypothesis: HeM. 0 < k < m, calling r(k.n) with n<2 th terminates and Post Ck.n)
	WTS: calling r Cm.n) with nx2 m terminates and Post Cm,n). Let ne M. nx2 m
	According to the Python function, calling r(m, n) result in a recursive call of
	$\Gamma(m-1, n/2)$, which $\Gamma(m-1, \lfloor \frac{n}{2} \rfloor)$, and a finite number of steps, as $m \neq 0$.
	Since m& W, m70, gives m-161N. also, from property of natural number, m-12m.
	Since $n < 2^m$, divides 2 on both sides, give $\frac{n}{2} < 2^{m-1}$
	Since $L^{\frac{n}{2}} \leq \frac{n}{2}$, gives $L^{\frac{n}{2}} \leq 1 < 2^{m-1}$ (n % $2 = L^{\frac{n}{2}} \leq 1$).
	From l.H., gives the recursive call terminates, returning a tuple of m-1 bits b
	with $\lfloor \frac{n}{2} \rfloor = \sum_{i=0}^{m-1} b \bar{\iota} i] \cdot 2^i$ fact 1.
	According to quotient-renceinder theorem, since no M, no M, and 20 M.
	gives $\exists x.y. GHR. S.t. n=2x+y$, where $0 \le y < 2$. as n can only congruent to
	O ot 1 modular 2.
	Since $n \equiv y \pmod{2}$, gives $\lfloor \frac{n}{2} \rfloor = \frac{n-y}{2}$.

From fact 1, gives, $\frac{n-y}{2} = \lfloor \frac{n}{2} \rfloor = \sum_{n=1}^{\infty} b\overline{L}i \cdot 1 \cdot 2^{n}$; which $n-y=2\cdot \sum_{i=0}^{m-1}b\overline{L}i\overline{J}-2^i=\sum_{j=0}^{m-1}b\overline{L}i\overline{J}\cdot 2^{i+1}=\sum_{j=1}^{m-1}b\overline{L}i-1\overline{J}\cdot 2^i$ Thus, r(m-1, n1/2) returns a tuple of m-1 bits b (from bo to burs), with. $n-y = \sum_{i=1}^{\frac{n}{2}} b(i-1) \cdot 2^{i}$ Since we know from the code that r(m, n). will give a tuple (n%2) +r(m-1, n 1/2), since y=n%2, gives. (y,)+r(m-1,n1/2), which when adding the tuples together give the index in r(m-1, n/12) will increase by 1. Also the 'y' in tuple will have the index o, which is bo. Since (y,) has I kits b and r(m-1, n1/2) has m-1 bits b, the added tuple has 1+m-1=m bits b, where bo=y and r(m-1, n 1/2) provides m-1 bits & from b, to bm-1, which to summarize, $N = N - y + y = \sum_{i=1}^{m-1} b \overline{L}i \overline{J} \cdot 2^i + y = \sum_{i=1}^{m-1} b \overline{L}i \overline{J} \cdot 2^i + b_0 \cdot 2^0 = \sum_{i=0}^{m-1} b \overline{L}i \overline{J} \cdot 2^i$, which the tuple is returned by r(m,n). I've proved the induction step. Therefore, Ove shown 7m, no/1/1, n<2m, calling r(m,n) terminates and Post (m, n).