Hybrid Dynamical Type Theory

Paul Gustafson (Wright State University)
jww Jared Culbertson (AFRL), Dan Koditschek (Penn), Peter Stiller (TAMU)

Can we make behaviors modular?

Robot Whisperer:

English	Type Theory
True	1
False	0
A and B	$A \times B$
$A ext{ or } B$	A + B
If A then B	$A \rightarrow B$
A if and only if B	$(A \to B) \times (B \to A)$
Not A	A o 0

Big Picture

- Composition invariably leads to categories (either explicit or implicit)
 - Interfaces <-> types <-> objects
 - Controllers <-> terms <-> morphisms
- What is the right category of hybrid systems?
- How can we incorporate safety and liveness constraints into this categorical framework?
- How can we develop interoperability with the very successful LTL-based synthesis approaches?

Hybrid systems

A **hybrid system** *H* consists of

- ightharpoonup a directed graph $G = (V, E, \mathfrak{s}, \mathfrak{t})$;
- ightharpoonup for each **mode** $v \in V$,
 - ightharpoonup an ambient smooth system (M_{ν}, X_{ν})
 - ightharpoonup an active set $I_{\nu} \subset M_{\nu}$
 - ightharpoonup a flow set $F_v \subset I_v$
- ▶ for each **reset** $e \in E$, a **guard set** $Z_e \subset I_{\mathfrak{s}(e)}$ and an associated **reset map** $r_e \colon Z_e \to I_{\mathfrak{t}(e)}$.

Morphisms: hybrid semiconjugacies

"execution-preserving maps"

Cf. Lerman. "A category of hybrid systems." arXiv:1612.01950.

Image source: Lygeros et al., "Dynamical properties of hybrid automata." IEEE Transactions on automatic control, 2003.

Anchoring body Templates (Sec. 3.1) Sagittal plane biped Tail-energized SLIP Tail-energized monoped

Templates and anchors

De, Avik, and Daniel E. Koditschek. "Parallel composition of templates for tail-energized planar hopping." 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015.

Anchoring a limit cycle in a vertical hopper

A **template-anchor pair** is a span $T \stackrel{p}{\leftarrow} S \stackrel{i}{\rightarrow} A$ such that

- p is a hybrid subdivision;
- ▶ *i* is a hybrid embedding;
- ightharpoonup i(S) is attracting in A.

Hierarchical composition

Theorem (CGKS). Template-anchor pairs are weakly associatively composable.

Sequential composition

Goal: define a class of "funnel-like" hybrid systems closed under sequentially composition

Burridge, Robert R., Alfred A. Rizzi, and Daniel E. Koditschek. "Sequential composition of dynamically dexterous robot behaviors." *The International Journal of Robotics Research* 18.6 (1999): 534-555.

A "navigate-to-goal" funnel

Theorem 3. The piecewise continuously differentiable "move-to-projected-goal" law in (11) leaves the robot's free space \mathcal{F} (1) positively invariant; and if Assumption 2 holds, then its unique continuously differentiable flow, starting at almost 1 any configuration $x \in \mathcal{F}$, asymptotically reaches the goal location x^* , while strictly decreasing the squared Euclidean distance to the goal, $\|x - x^*\|^2$, along the way.

Arslan, Omur, and Daniel E. Koditschek. "Sensor-based reactive navigation in unknown convex sphere worlds." *The International Journal of Robotics Research* (2019).

How to define ``funnel-like" systems?

- Problem: the naive measure-theoretic and topologically notions of "almost all" are incompatible with fully general sequential composition
- Example:

Directed systems

A directed hybrid system $H: H_i \rightsquigarrow H_f$ is a tuple (H, η_i, η_f) consisting of

- a metric hybrid system H,
- ightharpoonup embeddings $\eta_i \colon H_i \to H$ and
- ▶ a hybrid embedding $\eta_f \colon H_f \to H$ such that each component $(\eta_f)_V$ is a diffeomorphism, and $G(H_f)$ is a sink in G(H)

such that for all ε , T > 0 and $x \in H$, there exists an (ε, T) -chain from x to some $y \in H_f$.

Image source: Alongi and Nelson, Recurrence and Topology. AMS, 2007.

A double category of hybrid systems

V. Vasilopoulos, D.E. Koditschek (2018). Reactive Navigation in Partially Known Non-Convex Environments. In WAFR 2018.

Linear dependent type theory

- 1. Assign dynamic input and output conditions + safety specs to sensor-parametrized subcontrollers
- 2. Linear fragment
 - a. Manages resources and liveness
 - b. Types and terms correspond to directed systems under sequential composition
- 3. Nonlinear fragment
 - a. Manages with sensor-dependent parameters and safety
 - b. Internal language of presheaves over the sensorium
 - i. Example: in this open set of sensor readings, d(robot, O_i) > ε

Navigation example types

```
go:(g:X,n:\mathbb{N})\to Free\otimes(s:See(n))\multimap(At(g)\otimes See(n))\oplus Interrupt(s)
  Interrupt: See(n) \rightarrow Free \otimes (NewObs(See(n+1)) \oplus LoseObs(See(n-1)) \oplus TimeStep))
      detect: See(n) \rightarrow See(n-1) \oplus See(n) \oplus See(n+1)
nearestObs: See(n) \rightarrow List(X)
  projGoal : ConvHull(n) \rightarrow X \rightarrow X
    voronoi: See(n) \rightarrow ConvHull
  ConvHull = List(X)
       Safe = (s : See(n)) \rightarrow d(x, nearestObs(s)) > R
 controller: (g:X) \to (c:Free \otimes See(n) \multimap At(g) \otimes (m:\mathbb{N}, See(m)), Safe(c))
```

Semantics of simple types

Type	Template	Presheaf (evaluated at $U \subset B$)
See(n)	$(X^n \times \mathbb{R}^n, 0)$	$ \pi_0(f^{-1}([0, M]) = n \text{ for all } f \in \pi_{C(S^1, \overline{\mathbb{R}}_{>0})}(U)$
Free	(*,*)	Т
At(g)	$(X, \nabla x - g ^2)$	$\sup_{x\in U} d(x,g) < \epsilon$
Safe	$(X, -\sum_i \nabla x - o_i ^2)$	$\sup_{x \in U, o \in \bigcup_i O_i} d(x, o) > r$

Integration with LTL-based controller synthesis

- 1. What LTL buys you
 - a. Automatic synthesis
 - b. Provable safety/finite-time task completion for particular control systems
- 2. What dependent LL buys you
 - a. Correct-by-construction composition of subcontrollers
 - b. Physical grounding
 - i. Extend safe/unsafe sets with dynamic interfaces between behaviors
- 3. Complementary -- embed LTL specs into dependent linear types
 - a. Example: "Eventually(Always(g))" becomes "(A → B) and g(supp(B))"
 - b. Use synthesized controllers in correct-by-construction composite controllers

Operational semantics

- No simple notion of abstract machine/lambda calculus for operational semantics
- 2. Can we define a "gradual" version of operational semantics based on successive template embeddings?
 - a. Examples
 - i. Anchor At(g) point attractor template in a differential drive robot
 - ii. Anchor See(n) template inside navigation + sensing product corresponds to stabilizing sensor readings