AMAZON REVIEWS: PREDICTING HELPFUL VOTES

NIRMAL BUDHATHOKI 09/26/2018

PROBLEM STATEMENT

- The e-commerce and online shopping is now taking over the world
- Some users leave product reviews after purchase
- Not all the reviews are helpful
- Amazon provides an option to vote whether the review was helpful or not
- Ranks the reviews based on:

helpfulness score = helpful votes/total votes

helpful votes = helpfulness score * total votes

- Most of the good reviews do not have enough helpful votes
- Can we resolve this issue by machine learning?

AMAZON REVIEWS

★★★★★ Best CrossFit Shoes!!

April 29, 2018

Size: 8 M US | Color: Purple Camo | Verified Purchase

These are my favorite CrossFit shoes yet! I have tried Metcons and Nanos but they hurt my feet. These are expensive but worth every penny for me since I wear them 4-5 times a week. I get a lot of compliment on the fun purple camo print. I wear a size 8 shoe and they fit perfectly.

14 people found this helpful

Helpful

Not Helpful

Comment | Report abuse

DATASET

- UCSD Professor Julian McAuley has collected about 142.8 million amazon reviews spanning from May 1996 to July 2014.
- For this project, we were given 200K training reviews, and 14K test reviews.
- Data fields:
 - Categoryid the product category, mapped to an integer
 - Category human-readable list of categories for each product
 - Itemid ID of the item
 - Reviewerid ID of the reviewer
 - Rating star rating (out of 5)
 - Reviewtext text of the user's review
 - Summary summary text from the review
 - Reviewtime human-readable review time
 - Unixreviewtime machine-readable review time
 - Price price in dollars
 - Helpful helpfulness score: Dependent Variable
 - Outof total votes: given in separate csv for user- item pair

MACHINE LEARNING PIPELINE

- About 40% of the training samples have total votes equal to zero: Dropped
- About 60% of price data is missing: Imputed by average price per category
- Almost all reviews has ratings (1 to 5)
- Review Text can lead us to useful features: length of review, number of positive/ negative words, use of CAPS letters and special characters to signify more importance. Example:

FEATURE ENGINEERING

- One of the most important steps in any data science project.
- Features used:
 - ratings
 - total votes
 - review text word counts
 - review text caps count
 - review text special character count
 - review text readability index
 - review text positive and negative words difference
 - Category ID: one hot encoded

MODELING

- Models tried initially: simple linear, polynomial, elastic net, random forest and gradient boosting
- Performance not too good
- Back to EDA, and learned that dataset is heavily skewed by total votes
- After performing some tests, I divided the data into two sets as:
 - training set with high votes: 15 to 150 -> ElasticNet
 - training set with low votes: 1 to 14 -> Gradient Boosting
- Ensemble of two models

MODEL EVALUATION

Mean Absolute Error (MAE):

$$\frac{1}{n}\sum_{1}^{n}|y_{i}-\hat{y}_{i}|$$

- Robust for outliers, and equal punishment for low or high difference
- kFold CrossValidation (k=10)
- GridSearch for parameters tuning

RESULTS

Public I	Leaderboa	rd Private Leaderboa	ard —				
			approximately 50% of the test derboard reflects the final standing			⊘ Re	efresh
#	△pub	Team Name	Kernel	Team Members	Score @	Entries	La
1	~ 20	TravisBickle			0.16142	4	
2	2 0	horkos			0.16314	17	
3	^1	UkrainianThunder			0.16457	37	
4	▲ 11	Jared			0.16600	27	
5	▲ 15	susram			0.16614	13	
6	▲ 13	pavanj			0.16814	25	
7	▲ 11	w9yan		-	0.16828	61	
8	2 3	suman gunnala		9	0.16957	10	
9	2 1	peeta		9	0.17157	43	
10	▼ 2	pleasememyfriend		9	0.17171	49	
11	▼ 6	XiaSong		9	0.17185	70	
12	▼ 10	A53227688		9	0.17200	49	
13	▼ 10	l'mjustguessing		9	0.17214	38	

FUTURE WORK

- Using NLTK/ natural language processing to improve upon the text features
- Selection of features using filter/ wrapper methods
- Turning the problem to classification: when helpfulness score ≥ 0.5
 predict 1 else 0 then count votes by unique Item_ID
- More analysis on overfitting, try some regularization techniques

THANK YOU