

Curso 3: Administração de Dados Complexos em Larga Escala

-- Online Analytical Processing --

Prof. Jose Fernando Rodrigues Junior

Objetivo: detalhes sobre o conceito de OLAP

OLAP

- Definição: uma categoria de software que visa à compreensão de dados por meio de agregação: SUM, MAX, MIN, COUNT, AVG, VAR, e outras;
- Provê: acesso rápido, consistente e interativo;
- DW e OLAP, em muitos casos, conceitos indissociáveis.

OLAP - FASMI

- FASMI: Fast Analysis of Multidimensional Information
 - Fast: agilidade em responder consultas
 - Analysis: versatilidade analítica
 - Shared: dados/analistas múltiplos
 - Multidimensional: orientado a dimensões de dados
 - Information: propósito fim

Cubo de dados

Cubo de dados

- Estrutura básica da prática de OLAP
- Observam-se:
 - As dimensões dos dados
 - As medidas sobre os dados
 - O cubo é orientado a planos (faces)
 - Apesar da complexidade dos sistemas OLAP, seus objetivos analíticos são básicos: contagem, média, máximo, mínimo, soma, ...
- □ Agregação, rápida e flexível, sobre grandes volumes de dados

- Pode ser interessante ver o cubo a partir de diferentes perspectivas (planos)
- Operações sobre o cubo: slicing, dicing e rotating (pivoting)

 A operação de slicing equivale a fatiar o cubo, definindo um novo plano de apreciação dos dados

 A operação geométrica é apenas uma analogia, o slicing dispara o processamento OLAP para calcular o novo plano

 A operação de slicing equivale a fatiar o cubo, definindo um novo plano de apreciação dos dados

 A operação geométrica é apenas uma analogia, o slicing dispara o processamento OLAP para calcular o novo plano

Dados calculados e acessíveis ao analista.

Exemplo de dado calculado: quantas TVs de plasma foram vendidas por região e por ano?

Via interação com o cubo, dispara-se o seguinte processamento:

SELECT regiao, ano, SUM(Nro_Unidades)
FROM VENDAS
WHERE produto = "TV Plasma"
GROUP BY regiao, ano

Exemplo de dado calculado: quantas TVs de plasma foram vendidas por região e por ano?

 A operação de dicing é semelhante ao slicing, mas usa dois, ou mais, planos de corte

Dados calculados e acessíveis ao analista. Dicing conseguido com 5 planos de corte.

Via interação com o cubo, dispara-se o seguinte processamento:

```
SELECT regiao, ano, SUM(Nro_Unidades)
FROM VENDAS
WHERE (produto = "TV Plasma" OR
    produto = "Notebooks" OR
    produto = "Celulares")
    AND
    (ano BETWEEN 2001 AND 2003)
    AND
    (regiao = "SE" OR regiao = "CO")
GROUP BY regiao, ano
```

Exemplo de dado calculado: quantos Notebooks, Celulares, e TVs foram vendidos entre 2001 e 2003 nas regiões SE e CO?

Cubo de dados - rotating

 A operação de rotating muda a perspectiva do analista, permitindo diferentes consultas.

Novo plano: Produto x Tempo Dados calculados e acessíveis ao analista.

Cubo de dados - rotating

Produto

O termo Cubo de Dados é usado apenas para fins didáticos – aplicações de DW/OLAP geralmente envolvem mais do que 3 dimensões, definindo hipercubos.

Exemplo:

Quantas vendas e qual valor de vendas ocorreram considerando Ano, Tipo de Produto e Região?

SELECT Tempo.Ano, Produto.Tipo, Local.Regiao, Sum(Nro_unidades), Sum(valor)

FROM Fatos, Tempo, Produto, Local

WHERE Fatos.t_chave = Tempo.t_chave AND

Fatos.p_chave = Produto.p_chave AND

Fatos.l_chave = Local.l_chave

GROUP BY Tempo.Ano, Produto.Tipo, Local.Regiao

	• •		
Tomas		p_chave	Local
Tempo		l_chave ———	 I_chave
t_chave ←		 Nro_unidades	Regiao
Ano		Valor	Cidade
Trimestre			
Mes		Assist_tecnica	Loja

Exemplo Snowflake

(Elmasri e Navathe, 2005)

- Cubo de dados: análise dimensional das medidas (dados)
- DW: modelo de dados dimensional
 - **Dimensões**: contexto aos fatos
 - Fatos: números transacionais

 Observe que as dimensões dos dados possuem uma hierarquia granular

Por exemplo:

Tempo(Ano, Trimestre, Mês)

- Hierarquia das dimensões: apreciação dos dados em diferentes granularidades. Exemplo:
 - Itens_vendidos(ano) > Itens_vendidos(Trimestre)
 - Itens_vendidos(Trimestre) > Itens_vendidos(Mês)
- Duas outras operações muito importantes
 - Drill down
 - Roll up

Drill-down e roll-up: navegação ao longo dos níveis
hierárquicos das dimensões

Exemplo
Itens_vendidos(Estado)
Roll-up
Drill-down
Itens_vendidos(Cidade)

- Drill-down ⇒ mais detalhamento
- Roll-up ⇒ menos detalhamento

Drill-down sobre as três dimensões simultaneamente.

Exemplo:

Quantas vendas e qual valor de vendas ocorreram considerando Ano, Tipo de Produto e Região?

Drill Down em todas as dimensões

Quantas vendas e qual valor de vendas ocorreram considerando Trimestre, Fabricante e Cidade?

```
SELECT Tempo.Ano, Tempo.Trimestre, Produto.Tipo, Produto.Fabricante, Local.Regiao, Local.Cidade, Sum(Nro_unidades), Sum(valor)
```

```
FROM Fatos, Tempo, Produto, Local
```

WHERE Fatos.t_chave = Tempo.t_chave AND

Fatos.p chave = Produto.p chave AND

Fatos.l chave = Local.l chave

GROUP BY Tempo.Ano, Tempo.Trimestre, Produto.Tipo, Produto.Fabricante, Local.Regiao, Local.Cidade

```
S SE CO NE
Localização
```


Exemplo:

Quantas vendas e qual valor de vendas ocorreram considerando Ano, Tipo de Produto e Região?

Drill Down em todas as dimensões + slicing

□ Quantas vendas e qual valor de vendas ocorreram considerando Trimestre, Fabricante e Cidade e considerando um slicing de ano entre 2001 e 2002?

SELECT Tempo.Ano, Tempo.Trimestre, Produto.Fabricante, Local.Cidade, Sum(Nro_unidades), Sum(valor)

FROM Fatos, Tempo, Produto, Local

WHERE Fatos.t_chave = Tempo.t_chave AND

Fatos.p_chave = Produto.p_chave AND

Fatos.l chave = Local.l chave AND

Tempo. Ano between 2001 AND 2002

GROUP BY Tempo.Ano, Tempo.Trimestre, Produto.Fabricante, Local.Cidade

Localização

OLAP - Agregação

OLAP - Agregação

Mais do que cubinhos, o OLAP/DW é uma tecnologia sofisticada que visa responder às diferentes possibilidades e níveis de agregação de maneira rápida e precisa.

OLAP convencional single-node

- São menos escaláveis;
- Se baseiam em processamento não distribuído;
- Dependem de um hardware robusto para processamento difícil de escalar
- Bilhões de tuplas □ latência muito grande

Relational OLAP (ROLAP)

- MBA IA BAGA
- SQL:1999
 - GROUP BY CUBE

```
SELECT ....

FROM ....

WHERE ...

GROUP BY CUBE (trim, região)
```

ex: selecionar

- ✓ total geral de vendas
- ✓ total de vendas por região
- ✓ total de vendas por trim.
- ✓ total de vendas por trim. por região

Relational OLAP (ROLAP)

- O GROUP BY CUBE aplicado sobre k atributos
 - é equivalente ao agrupamento sobre cada um dos 2^k subconjuntos de atributos
 - ex: $k=2 \Rightarrow ...$ GROUP BY CUBE (a,b)
 - agrupamentos sobre: (a,b), (a), (b), (none)
 - agrupamento em (null) é o total geral de vendas
 - ex: $k=3 \Rightarrow ...$ GROUP BY CUBE (a,b,c)
 - agrupamentos sobre: (a,b,c), (a,b), (a,c), (b,c) (a), (b),(c), (none)

Relational OLAP (ROLAP)

Exemplo GROUP BY CUBE

```
SELECT Dept, Funcao,
COUNT(*), SUM(Salario)
```

FROM Empregados

GROUP BY CUBE(Dept, Funcao);

GROUP BY CUBE(Dept, Funcao) =

- GROUP BY Dept, Funcao;
- GROUP BY Dept;
- GROUP BY Funcao;
- GROUP BY none; (ie, sem cláusula)

Dept	Funcao	COUNT(*)	SUM(Salario)
10	Secretario	1	100
10	Gerente	1	500
10	Presidente	1	900
10		3	1500
20	Analista	2	700
20	Secretario	2	240
20	Gerente	1	800
20		5	1740
	Secretario	3	340
	Gerente	2	1300
	Presidente	1	900
	Analista	2	700
		8	3240