

Department of Mathematical Modeling and Machine Learning (DM³L)

Climplicit

embedding

Dr. Damien Robert

Prof. Dr. Jan Dirk Wegner Dr. Lukas Drees

Climplicit: Climatic Implicit Embeddings for Global Ecological Tasks

Climatic rasters

- + Essential to ecology
- Storage requirements
- Learn features from scratch

Neural Networks

- + Feature learning
- Compute requirements
- Technical Know-How

Motivation

Climplicit

- + Ready-to-use climatic features
- + Anywhere on
- **+** Low memory
- + Low compute
- + Little know-how

Global, dense climatic raster²

- 11 climatic variables
- Monthly mean 1981-2010
- 1km resolution at equator

- Climate Moisture Index
- Near-surface relative humidity
- Potential evapotranspiration
- Precipitation amount
- Surface downwelling shortwave
- flux in air
- Near-surface wind speed
- Mean daily maximum 2m air temperature
 - Mean daily air temperature
- Mean daily minimum air temperature
- Total cloud cover
- Vapor pressure deficit

 $[\lambda, \varphi, \sin(2\pi * m/12), \cos(2\pi * m/12)] \in [-1,1]^4$ with longitude $\lambda \in$ [-1,1], latitude $\phi \in$ [-1,1] and month $m \in \{1, ..., 12\}$

Deep SIREN¹ residual connections

Classic residual connections

Output of layer j

Application

Results

Comparison with training "from-scratch" and other pretrained geolocation representations

•	•	•	
Model	Biomes (% F1 ↑)	SDM (% Acc ↑)	Plant traits (% $\mathbb{R}^2 \uparrow$)
FS Loc	73.9 ± 2.4	2.0 ± 0.4	42.2 ± 0.0
FS CH	71.8 ± 1.9	2.5 ± 0.1	60.0 ± 0.3
FS Loc + CH	$\textbf{79.6}\pm\textbf{1.7}$	2.5 ± 0.1	64.8 ± 0.4
$SATCLIP^4$	68.3 ± 0.4	1.3 ± 0.1	61.6 ± 0.1
TAXABIND	59.3 ± 0.1	3.1 ± 0.0	56.9 ± 0.0
SINR	63.1 ± 0.3	1.7 ± 0.0	63.5 ± 0.1
CSP	58.6 ± 0.4	1.6 ± 0.1	49.7 ± 0.3
GEOCLIP	62.7 ± 0.1	$\textbf{3.5}\pm\textbf{0.0}$	57.9 ± 0.1
CLIMPLICIT (Ours)	78.4 ± 0.3	3.2 ± 0.0	$\textbf{70.0}\pm\textbf{0.1}$

Ablation of various model & training choices

\mathbf{Model}	Biomes (% F1 \uparrow)	SDM ($\%$ Acc \uparrow)	Plant traits ($\% R^2 \uparrow$)
CLIMPLICIT	$\textbf{78.4}\pm\textbf{0.3}$	3.2 ± 0.0	$\textbf{70.0}\pm\textbf{0.1}$
SIREN	77.5 ± 0.2	3.1 ± 0.0	68.8 ± 0.2
CONCAT MONTHS	75.9 ± 0.3	2.6 ± 0.0	66.0 ± 0.1
MARCH-ONLY	78.2 ± 0.2	2.9 ± 0.0	62.8 ± 0.1
No H-SIREN	77.9 ± 0.2	$\textbf{3.6}\pm\textbf{0.0}$	69.1 ± 0.1
REC-CHELSA	61.5 ± 0.2	1.5 ± 0.0	55.4 ± 0.1
CH-CLIP	76.5 ± 0.6	2.3 ± 0.1	66.9 ± 0.4
$\mathrm{ERA5}$	63.7 ± 0.5	1.9 ± 0.1	68.6 ± 0.2

References

- V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein. Implicit neural representations with periodic activation functions. Advances in neural information processing systems, 33:7462-7473, 2020.
- D. N. Karger, O. Conrad, J. Böhner, T. Kawohl, H. Kreft, R. W. Soria-Auza, N. E. Zimmermann, H. P. Linder, and M. Kessler. Climatologies at high resolution for the earth's land surface areas. Scientific data, 4(1):1-20, 2017.
- D. M. Olson, E. Dinerstein, E. D. Wikramanayake, N. D. Burgess, G. V. Powell, E. C. Underwood, J. A. D'amico, I. Itoua, H. E. Strand, J. C. Morrison, et al. Terrestrial ecoregions of the world: A new map of life on earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience, 51(11):933–938, 2001.
- K. Klemmer, E. Rolf, C. Robinson, L. Mackey, and M. Rußwurm. Satclip: Global, general-purpose location embeddings with satellite imagery. arXiv preprint arXiv:2311.17179, 2023.