Chapter II Analysis of the main equations of mathematical physics

§1 Some elements of functional analysis

1.1 Vector spaces

Let us recall several notions of analysis. A set E is called vector space (\mathbb{R} – vector space or \mathbb{C} – vector space) if E is supplied with two operations. The first operation, called addition +: $E \times E \to E$, takes any two vectors (elements of the set E) \mathbf{v} and \mathbf{w} and assigns to them the third vector $\mathbf{v} + \mathbf{w}$ called the sum of these two vectors. The second operation called scalar multiplication \cdot : $\mathbb{R} \times E \to E$ or $\mathbb{C} \times E \to E$, takes any real number or complex number α and any vector \mathbf{v} of E and assigns to them vector $\alpha \mathbf{v}$. These two operations adhere eight axioms:

A1. Associativity of addition:

$$\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in E$$
, $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.

A2. Comutativity of addition:

$$\forall \mathbf{u}, \mathbf{v} \in E , \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} .$$

A3. Identity element of addition (zero vector):

$$\exists \mathbf{0}_E \in E : \forall v \in E , \ \mathbf{v} + \mathbf{0}_E = \mathbf{0}_E + \mathbf{v} = \mathbf{v} .$$

A4. Invers elements of addition (additive inverse):

$$\forall \mathbf{v} \in E, \exists -\mathbf{v} \in E : \mathbf{v} + (-\mathbf{v}) = \mathbf{0}_E .$$

A5. Compatibility of scalar multiplication with the field multiplication in \mathbb{R} or \mathbb{C} :

$$\forall \alpha, \beta \in \mathbb{K}, \forall \mathbf{v} \in E, \alpha(\beta \mathbf{v}) = (\alpha \beta) \mathbf{v}$$
,

here and below \mathbb{K} stands for \mathbb{R} or \mathbb{C} .

A6. Identity element of scalar multiplication

$$\forall \mathbf{v} \in E , 1 \cdot \mathbf{v} = \mathbf{v}$$

(here 1 stands for the number 1).

A7. Distributivity of scalar multiplication with respect to the vector addition

$$\forall \alpha \in \mathbb{K}, \forall \mathbf{u}, \mathbf{v} \in E, \alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$$
.

A8. Distributivity of scalar multiplication with respect to field addition in $\mathbb R$ or $\mathbb C$:

$$\forall \alpha, \beta \in \mathbb{K}, \forall \mathbf{v} \in E, (\alpha + \beta)\mathbf{v} = \alpha\mathbf{v} + \beta\mathbf{v}$$
.

For instance, \mathbb{R}^d is an \mathbb{R} vector space, \mathbb{C}^d is a \mathbb{C} vector space.

1.2 Normed spaces

A vector space E is called normed vector space if it is supplied with a norm, that is a real-valued function defined on the vector space E and has the following properties:

- **N1.** $\forall x \in E$, $||x|| \ge 0$; $||x|| = 0 \Leftrightarrow x = 0_E$;
- **N2.** $\forall \alpha \in \mathbb{K}$, $\forall x \in E$, $||\alpha x|| = |\alpha| ||x||$;
- **N3.** $\forall x, y \in E, ||x + y|| \le ||x|| + ||y||$ (triangle inequality).

The last property yields $|||x|| - ||y||| \le ||x - y||$. As an example one can consider the so-called euclidean norm in \mathbb{R}^d :

$$||(x_1,...,x_d)||_2 = \sqrt{|x_1|^2 + ... + |x_d|^2}$$
.

Let $(x_n)_{n\in N}$ be a sequence, such that $x_n\in E$, where E is a normed space.

Definition 1.1. $(x_n)_{n\in N}$ converges to an element $\bar{x}\in E$ (denoted by $x_n\to \bar{x}$) if $||x_n-\bar{x}||\to 0$.

Let us formulate some direct consequences of the corresponding assertions for the convergence of numerical sequences in \mathbb{R} .

Theorem 1.1. If $(x_n)_{n\in\mathbb{N}}$ converges to \bar{x} then all subsequences $(x_{k_n})_{n\in\mathbb{N}}$ converge to the same limit \bar{x} .

Theorem 1.2. If $(x_n)_{n\in\mathbb{N}}$ converges to some limit then its limit is unique.

Theorem 1.3. If $(x_n)_{n\in\mathbb{N}}$ converges then it is bounded, i.e. the real-valued sequence $(||x_n||)_{n\in\mathbb{N}}$ is bounded.

Theorem 1.4. If $x_n \to \bar{x}$ then $||x_n|| \to ||\bar{x}||$.

Proof. $|||x_n|| - ||\bar{x}||| \le ||x_n - \bar{x}|| \to 0.$

Let E be a normed space, M, N two sets in E. M is called dense in N iff $\bar{M} \supset N$. Recall that \bar{M} is the closure of M defined as in section 2 of Chater I replacing \mathbb{R}^d by

E. M is called nowhere dense in E iff it is not dense in any ball.

Definition 1.2. A sequence $(x_n)_{n\in\mathbb{N}}$ is called a Cauchy sequence if

$$\forall \varepsilon > 0$$
, $\exists n_0 \in \mathbb{N}$ such that $\forall n, m \geq n_0, ||x_n - x_m|| < \varepsilon$.

Clearly any convergent sequence is a Cauchy sequence because if $x_n \to \bar{x}$ then

$$\forall \varepsilon > 0$$
, $\exists n_0 \in \mathbb{N}$ such that $\forall n \ge n_0, ||x_n - \bar{x}|| < \varepsilon/2$,

and so, $\forall n, m \geq n_0$

$$||x_n - x_m|| \le ||x_n - \bar{x}|| + ||x_m - \bar{x}|| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Definition 1.3. A normed space E is called complete space if every Cauchy sequence converges to some limit belonging to E.

Examples: $\mathbb R$ is complete. $\mathbb Q$ is not complete ($\mathbb Q$ is the field of rational numbers, $\{\frac{m}{l}|m,l\in\mathbb Z,l\neq 0\}$) because a sequence $(1+\frac{1}{n})^n\to e$, where the terms $(1+\frac{1}{n})^n$ are rational numbers while e is irrational. So this sequence is a Cauchy sequence, but its limit e is out of the space $\mathbb Q$, and so it is not a convergent sequence in $\mathbb Q$. This example shows that if some of Cauchy sequences have no limit we can "add" these missing limits and obtain a complete space: adding all irrational limits to $\mathbb Q$ we pass to $\mathbb R$, which is complete. The only problem is: how could we define these missing limits "living in $\mathbb Q$ ", so that we a priori don't know, what is an irrational number.

In order to define these missing limits staying inside an incomplete normed space E we will use a special algorithm called completion of E. Namely, we say that two Cauchy sequences $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ belong to the same equivalence class \tilde{x} if $\lim_{n\to\infty}||x_n-y_n||=0$. Then the set of all Cauchy sequences is presented as a partition of the equivalence classes: every Cauchy sequence belongs to some equivalence class, and it cannot belong to two different classes. Indeed, if \tilde{x} , \tilde{y} are some equivalence classes and if a Cauchy sequence $(x_n)_{n\in\mathbb{N}}\in\tilde{x}$ and $(x_n)_{n\in\mathbb{N}}\in\tilde{y}$ then for all sequences $(x_n')_{n\in\mathbb{N}}\in\tilde{x}$ and all sequences $(y_n')\in\tilde{y}$ we have:

$$||x'_n - y'_n|| \le ||x'_n - x_n|| + ||x_n - y'_n|| \to 0$$
.

So, $\tilde{x} = \tilde{y}$.

Every equivalence class can be associated to some sequence of this class, called a representant. In particular, we consider the equivalence classes \tilde{c} containing constant sequences $(c)_{n\in\mathbb{N}}=(c,c,c,\ldots)$. These constant equivalence classes are in one-to-one correspondence with the elements of the normed space E.

Denote \tilde{E} the set of equivalence classes, and \tilde{E}_c the set of constant equivalence classes. We see that $\tilde{E}_c \sim E$ (equivalent to E).

Let us define now the operations of addition and scalar multiplication in \tilde{E} :

- ▶ $\tilde{x} + \tilde{y}$ is the equivalence class containing $(x_n + y_n)_{n \in \mathbb{N}}$, where $(x_n)_{n \in \mathbb{N}} \in \tilde{x}$ and $(y_n)_{n \in \mathbb{N}} \in \tilde{y}$.
- $ightharpoonup lpha ilde{x}$ is the class containing $(\alpha x_n)_{n\in\mathbb{N}}$, where $\alpha\in\mathbb{R}$ or \mathbb{C} and $(x_n)_{n\in\mathbb{N}}\in\tilde{x}$.

One can check that these operations satisfy axioms A1 – A8 with $\tilde{\mathbf{0}}$ containing the zero sequence.

Then we introduce a norm in \tilde{E} : if $(x_n)_{n\in\mathbb{N}}\in\tilde{x}$ then $||\tilde{x}||_{\tilde{E}}=\lim_{n\to\infty}||x_n||.^2$ One can easily check that it satisfies the axioms N1 – N3 and is stable with respect to the choice of the representant $(x_n)_{n\in\mathbb{N}}$.

 $^{^2}$ Clearly, if $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence, then $(||x_n||)_{n\in\mathbb{N}}$ is also a Cauchy sequence in \mathbb{R} , and so it converges.

Indeed, if $(x_n)_{n\in\mathbb{N}}$ and $(x_n')_{n\in\mathbb{N}}$ are two representants then

$$\lim_{n \to +\infty} ||x_n|| = \lim_{n \to +\infty} ||x'_n + (x_n - x'_n)|| = \lim_{n \to +\infty} ||x'_n||.$$

It can be proved that \tilde{E} is complete, that \tilde{E}_c (a "copy" of E) is dense in \tilde{E} and is isometric to E (so that $||\tilde{c}||_{\tilde{E}} = ||c||_E$). So, the elements of \tilde{E} are considered as the "missing" limits.

Definition 1.4. A normed space E is called separable space if it contains a countable dense subset.

Recall that a countable set is in one to one correspondance to the set \mathbb{N} . The example of a countable set: \mathbb{Q} . The example of a separable space: \mathbb{R} . Note that a complete normed space is called Banach space.

1.3 Inner product spaces

Definition 1.5. A vector space E is called inner product space, or **pre-Hilbert** space, or Hausdorff pre-Hilbert space, if it is supplied with an inner product (\cdot, \cdot) which is a map $E \times E \to \mathbb{K}$ (\mathbb{K} is \mathbb{R} or \mathbb{C}) satisfying the following three axioms:

I1. Linearity in the first argument:

$$\forall \alpha, \beta \in \mathbb{K}, \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in E ,$$
$$(\alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w}) = \alpha(\mathbf{u}, \mathbf{w}) + \beta(\mathbf{v}, \mathbf{w}) .$$

I2. Symmetry or conjugate symmetry:

$$\forall \mathbf{x}, \mathbf{y} \in E$$
, $(\mathbf{x}, \mathbf{y}) = (\mathbf{y}, \mathbf{x})$ (case $\mathbb{K} = \mathbb{R}$),

or

$$\forall \mathbf{x}, \mathbf{y} \in E , \ (\mathbf{x}, \mathbf{y}) = (\overline{\mathbf{y}, \mathbf{x}}) \ (\text{case } \mathbb{K} = \mathbb{C}) \ .$$

13. $\forall \mathbf{x} \in E$, (\mathbf{x}, \mathbf{x}) is real and $(\mathbf{x}, \mathbf{x}) \geq \mathbf{0}$. $(\mathbf{x}, \mathbf{x}) = \mathbf{0}$ iff $\mathbf{x} = \mathbf{0}_E$.

An inner product space is supplied with the norm

$$||\mathbf{x}|| = \sqrt{(\mathbf{x},\mathbf{x})}$$
 .

Example. \mathbb{R}^d is an inner product space with $(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^d x_i y_i$. For \mathbb{C}^d the inner product is defined by the formula

$$(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{d} x_i \bar{y}_i .$$

Let us recall the main properties of an inner product.

P1. Cauchy–Bunyakovsky–Schwarz (CBS) inequality.

$$\forall \mathbf{x}, \mathbf{y} \in E , |(\mathbf{x}, \mathbf{y})| \le ||\mathbf{x}|| ||\mathbf{y}|| .$$

Proof.

For any $\lambda \in \mathbb{K}$, $\mathbf{x}, \mathbf{y} \in E$, $(\mathbf{x} - \lambda \mathbf{y}, \mathbf{x} - \lambda \mathbf{y}) \geq 0$, i.e.

$$(\mathbf{x}, \mathbf{x}) - \lambda(\mathbf{y}, \mathbf{x}) - \bar{\lambda}(\mathbf{x}, \mathbf{y}) + (\lambda \mathbf{y}, \lambda \mathbf{y}) \ge 0$$
.

Setting $\lambda = \frac{(\mathbf{x}, \mathbf{y})}{(\mathbf{y}, \mathbf{y})}$ (for $\mathbf{y} \neq \mathbf{0}_E$), we get

$$\begin{aligned} (\mathbf{x}, \mathbf{x}) & - \frac{(\mathbf{x}, \mathbf{y})(\overline{\mathbf{x}}, \overline{\mathbf{y}})}{(\mathbf{y}, \mathbf{y})} - \frac{(\overline{\mathbf{x}}, \overline{\mathbf{y}})(\mathbf{x}, \mathbf{y})}{(\mathbf{y}, \mathbf{y})} \\ & + \frac{\left| (\mathbf{x}, \mathbf{y}) \right|^2}{(\mathbf{y}, \mathbf{y})} \ge 0 \text{, i.e.} \\ (\mathbf{x}, \mathbf{x}) & - \frac{\left| (\mathbf{x}, \mathbf{y}) \right|^2}{(\mathbf{y}, \mathbf{y})} \ge 0 \text{, and so ,} \\ & \left| (\mathbf{x}, \mathbf{y}) \right|^2 \le ||\mathbf{x}||^2 ||\mathbf{y}||^2 \ . \end{aligned}$$

The case $y = 0_E$ is evident.

The assertion is proved.

P2. Continuity of the inner product.

If $x_n \to \bar{x}$, $y_n \to \bar{y}$, then

$$(x_n, y_n) \to (\bar{x}, \bar{y})$$
.

Proof.

$$\begin{array}{lcl} \left| (x_n, y_n) - (\bar{x}, \bar{y}) \right| & = & \left| (x_n - \bar{x}, y_n) + (\bar{x}, y_n - \bar{y}) \right| \\ \leq \left| (x_n - \bar{x}, y_n) \right| & + & \left| (\bar{x}, y_n - \bar{y}) \right| \\ \leq \left| |x_n - \bar{x}| \right| \left| |y_n| \right| & + & \left| |\bar{x}| \right| \left| |y_n - \bar{y}| \right| \end{array}.$$

The right-hand side tends to zero because

$$||x_n - \bar{x}|| \to 0$$
, $||y_n|| \to ||\bar{y}||$, $||y_n - \bar{y}|| \to 0$.

P3. Parallelogram identity.

$$\forall \mathbf{x}, \mathbf{y} \in E , ||\mathbf{x} + \mathbf{y}||^2 + ||\mathbf{x} - \mathbf{y}||^2 = 2(||\mathbf{x}||^2 + ||\mathbf{y}||^2) .$$

Proof.

$$||\mathbf{x} + \mathbf{y}||^{2} + ||\mathbf{x} - \mathbf{y}||^{2} = (\mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y}) + (\mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y})$$

$$= (\mathbf{x}, \mathbf{x}) + (\mathbf{y}, \mathbf{x}) + (\mathbf{x}, \mathbf{y}) + (\mathbf{y}, \mathbf{y})$$

$$+ (\mathbf{x}, \mathbf{x}) - (\mathbf{y}, \mathbf{x}) - (\mathbf{x}, \mathbf{y}) + (\mathbf{y}, \mathbf{y})$$

$$= 2||\mathbf{x}||^{2} + 2||\mathbf{y}||^{2}.$$

The completion of an inner product space is compatible with the inner product:

$$(\tilde{x}, \tilde{y})_{\tilde{E}} = \lim_{n \to +\infty} (x_n, y_n) ,$$

where $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ are representants of \tilde{x} and \tilde{y} respectively.

Definition 1.6. A complete inner product space E is called Hilbert space. We will consider separable Hilbert spaces.

1.4 Linear operators

Let us introduce linear operators. Let E, F be normed spaces. A mapping $A:E\to F$ is called linear operator if $\forall \alpha,\beta\in\mathbb{K},\mathbf{u},\mathbf{v}\in E$,

$$A(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha A \mathbf{u} + \beta A \mathbf{v} .$$

Linear operator A is called bounded operator if

$$\exists M \geq 0, \ \forall \mathbf{u} \in E, \ ||A\mathbf{u}||_F \leq M||\mathbf{u}||_E.$$

Linear operator A is called continuous operator if for any convergent sequence $(\mathbf{x}_n)_{n\in\mathbb{N}}$ of the space E, the sequence of the images $(A\mathbf{x}_n)_{n\in\mathbb{N}}$ converges to $A\mathbf{x}_0$, where \mathbf{x}_0 is the limit $(\mathbf{x}_n)_{n\in\mathbb{N}}$.

Theorem 1.5. *A* is continuous iff it is bounded.

Proof.

- 1. Assume that A is **bounded**. Let $(\mathbf{x}_n)_{n\in\mathbb{N}}$ be a sequence converging to \mathbf{x}_0 . So $\exists M\geq 0$ such that $||A(\mathbf{x}_n-\mathbf{x}_0)||_F\leq M||\mathbf{x}_n-\mathbf{x}_0||_E$. Taking into account that $||\mathbf{x}_n-\mathbf{x}_0||_E \to 0$ we derive that $A\mathbf{x}_n\to A\mathbf{x}_0$. So A is **continuous**.
- 2. Assume now that A is continuous. If A is not bounded then there exists a sequence $(\mathbf{x}_n)_{n\in\mathbb{N}}$ in E such that $||\mathbf{x}_n||_E=1$ and $||A\mathbf{x}_n||>n$. Consider the sequence $(\frac{1}{n}\mathbf{x}_n)_{n\in\mathbb{N}}\to\mathbf{0}_E$. However $||A\left(\frac{1}{n}\mathbf{x}_n\right)||_F>\frac{n}{n}=1$. So $A(\frac{1}{n}\mathbf{x})\not\to A\mathbf{0}_E=\mathbf{0}_E$. It is incompatible with the continuity of A. So A cannot be unbounded. Theorem is proved.

If A is a bounded operator, we can define its norm

$$||A||_{\mathcal{L}(E,F)} = \sup_{\mathbf{x} \neq \mathbf{0}_E} \frac{||A\mathbf{x}||_F}{||\mathbf{x}||_E} = \sup_{\mathbf{x}:||\mathbf{x}||_E = 1} ||A\mathbf{x}||_F .$$

One can easily check that it satisfies axioms N1-N3.

If $F = \mathbb{R}$ or \mathbb{C} then A is called linear form or linear functional.

Theorem 1.6. (Riesz–Fréchet representation theorem.)

Let H be a Hilbert space. For every continuous linear functional $\varphi:H\to\mathbb{K}$ there exists a unique element $\mathbf{y}\in H$ such that for all $\mathbf{x}\in H$

$$\varphi(\mathbf{x}) = (\mathbf{x}, \mathbf{y})$$

and moreover

$$||\mathbf{y}||_H = ||\varphi||_{\mathcal{L}(H,\mathbb{K})}$$
.

The space of continuous linear functionals is called **dual to** H and is denoted H^* .

Definition 1.7. A sequence $(\mathbf{x}_n) \in \mathbb{N}$ is called weakly convergent in H to the element \mathbf{x}_0 if for all continuous linear functionals $\varphi \in H^*$,

$$\varphi(\mathbf{x}_n) \to \varphi(\mathbf{x}_0)$$
.

It means that for all elements $\mathbf{y} \in H$,

$$(\mathbf{x}_n, \mathbf{y}) \to (\mathbf{x}_0, \mathbf{y})$$
.

Clearly, every convergent sequence weakly converges to its limit. The inverse assertion is not true.

Theorem 1.7. (Banach–Alaoglu theorem for a separable Hilbert space.)

The closed unit ball $\overline{B}(\mathbf{0}_H,1)$ in a separable Hilbert space H is relatively weakly compact. It means that every sequence in $\overline{B}(\mathbf{0}_H,1)$ has a weakly convergent subsequence.

§2 Sobolev spaces

2.1 Auxiliary spaces

Let G be a bounded domain in \mathbb{R}^d . Let us introduce some vector spaces.

- 1) $C(\bar{G})$ is the set of continuous functions $\bar{G} \to \mathbb{R}$ (extendable to $C(\bar{B})$, where B is a ball in \mathbb{R}^d containing \bar{G}).
- 2) $C^{(k)}(\bar{G})$ is the set of k times continuously differentiable functions $\bar{G} \to \mathbb{R}$, also extendable to $C^{(k)}(\bar{B})$.

Remark. For $G \subset B$, $\tilde{u} : B \to \mathbb{R}$ is an extension of a function $u : \bar{G} \to \mathbb{R}$ if $\forall x \in \bar{G}$, $\tilde{u}(x) = u(x)$. In this case u is called restriction of \tilde{u} .

3) $C_0(G)$, $C_0^{(k)}(G)$ are the subspaces of $C(\bar{G})$ and $C^{(k)}(\bar{G})$ such that their functions vanish in some neighborhood G_{ε} of the boundary ∂G :

$$G_{\varepsilon} = \{ x \in G | \operatorname{dist}(x, \partial G) < \varepsilon \}$$

with some $\varepsilon>0$ depending on the function from $C_0(G)$ or $C_0^{(k)}(G)$. Such function is called compact support function, i.e. $\overline{\operatorname{supp}\, f}\subset G$, where $\operatorname{supp}\, f=\{x\in G|f(x)\neq 0\}$. Here $\operatorname{dist}\,(x,A)$ is a distance between the point x and the set A. It is defined as follows:

dist
$$(x, A) = \inf_{y \in A} ||x - y||_2$$
.

Let us recall the definition of L^p space, $1 \leq p < +\infty$ (Lebesgue spaces). For a bounded domain $G, L^p(G)$ is the vector space of functions $f: G \to \mathbb{R}$ having finite Lebesgue's integral

$$\int_{C} |f(x)|^{p} dx .$$

 $L^p(G)$ is supplied with the norm

$$||f||_{L^p(G)} = \left(\int_G |f(x)|^p dx\right)^{1/p}$$
 (2.2.1)

 $L^p(G)$ can be equivalently defined as a completion of $C(\bar{G})$ or $C_0^{(\infty)}(G)$ with respect to the norm (2.2.1).

So, $L^p(G)$ is a Banach space such that every function $f \in L^p(G)$ is a limit of a sequence $(f_n)_{n \in \mathbb{N}}$, where $f_n \in C(\bar{G})$ or $C_0^{(\infty)}(G)$.

According to the Weierstrass theorem, every continuous function is the limit of a sequence of polynomials in the sense of $\|\cdot\|_{C(\bar{G})}$ -norm, and so, also in the sense of L^p -norm, because

$$||f||_{L^{p}(G)} = \left(\int_{G} |f(x)|^{p} dx \right)^{1/p} \le \left(\int_{G} \max_{x \in \bar{G}} |f(x)|^{p} dy \right)^{1/p}$$
$$= \max_{x \in \bar{G}} |f(x)| (\text{mes}G)^{1/p} = ||f||_{C(\bar{G})} (\text{mes}G)^{1/p} .$$

Also, every polynomial is the limit of a sequence of polynomials with rational coefficients.

So, the set $\mathbb{Q}[X]$ of polynomials with rational coefficients is dense in L^p . Thus, $L^p(G)$ is a separable space.

If p=2, we can introduce an inner product in $L^2(G)$:

$$(f,g) = \int_{G} f(x)g(x)dx, \qquad (2.2.2)$$

so $L^2(G)$ is a separable Hilbert space.

Finally let us define $L^\infty(G)$ as the space of functions $f:G\to\mathbb{R}$ such that $\exists M\geq 0$ such that $|f(x)|\leq M$ almost everywhere, i.e. for all $x\in G$ except for a subset E having measure zero. This space is supplied with the L^∞ -norm:

$$||f||_{L^{\infty}(G)} = \text{vrai } \max_{x \in G} |f(x)|$$

called also $\operatorname{ess\,sup}_{x\in G}|f(x)|$ which is

$$\inf_{E \subset G, \text{mes } E = 0} \left\{ \sup_{x \in G \setminus E} |f(x)| \right\}.$$

 $L^{\infty}(G)$ is a non-separable Banach space.

2.2 Sobolev space H^1

Consider a bounded domain G with Lipschitz boundary ∂G . It means that ∂G can be covered by a finite set of open bounded sets $O_1, ..., O_N$ such that in each O_i in some local coordinate system obtained from the original one by rotations, $\partial G \cap O_i$ is a graph of a Lipschitz function. (f is called L - Lipschitz on G if $\forall x, y \in G$,

$$|f(x) - f(y)| \le L||x - y||_2.$$

Similarly we define $C^{(k)}$ -smooth boundary.

Definition 2.1. The Sobolev space $H^1(G)$ is a completion of $C^{(\infty)}(\bar{G})$ with respect to the inner product

$$(f,g) = \int_{G} (f(x)g(x) + \nabla f(x) \cdot \nabla g(x)) dx. \qquad (2.2.3)$$

Arguing as for L^p we can prove that $H^1(G)$ is separable Hilbert space. Note that in the definition $C^{(\infty)}(\bar{G})$ can be replaced by $C^{(1)}(\bar{G})$. The norm in $H^1(G)$ is defined as

$$||f||_{H^{1}(G)} = \sqrt{(f,f)} = \sqrt{\int_{G} |f(x)|^{2} + ||\nabla f||_{2}^{2} dx}$$
$$= \sqrt{||f||_{L^{2}(G)}^{2} + ||\nabla f||_{L^{2}(G)}^{2}}.$$

So, $||f||_{H^1(G)} \ge ||f||_{L^2(G)}$.

Definition 2.2. $H_0^1(G)$ is a completion of $C_0^{(\infty)}(G)$ with respect to the inner product (2.2.3).

So $H_0^1(G)$ is a subspace of $H^1(G)$ "vanishing at the bord".

Note that definition 2.2 is still valid for any bounded domain G.

Let f be a function of $H^1(G)$. Then there exists a sequence $f_n \in C^{(\infty)}(\bar{G})$ convergent to f (because $C^{(\infty)}(\bar{G})$ is dense in $H^1(G)$). This sequence is a Cauchy sequence in $H^1(G)$ and so, $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N}$ such that $\forall n, m \geq n_0$,

$$\sqrt{\|f_n - f_m\|_{L^2(G)}^2 + \sum_{i=1}^d \|\frac{\partial f_n}{\partial x_i} - \frac{\partial f_m}{\partial x_i}\|_{L^2(G)}^2} < \varepsilon.$$

So, $(f_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in $L^2(G)$ and $\left(\frac{\partial f_n}{\partial x_i}\right)_{n\in\mathbb{N}}$ for all i=1,...,d are as well Cauchy sequences in $L^2(G)$. As $L^2(G)$ is complete, these sequences have limits: $f_n\to f, \ \frac{\partial f_n}{\partial x_i}\to w_i, \ f, \ w_i\in L^2(G)$. Functions w_i are called weak partial derivatives of f, denoted $\frac{\partial f}{\partial x_i}$.

Theorem 2.1. $\forall f \in H^1(G), v \in C_0^{(\infty)}(G), \forall i = 1, ..., d$

$$\int_{G} f(x) \frac{\partial v}{\partial x_{i}}(x) dx = -\int_{G} \frac{\partial f}{\partial x_{i}}(x) v(x) dx . \qquad (2.2.4)$$

Proof.

Let $(f_n)_{n\in\mathbb{N}}$ be a sequence convergent to f in $H^1(G)$. For every n, integrating by parts and taking into consideration that v vanishes in the neighborhood of ∂G , we get:

$$\int_{G} f_n(x) \frac{\partial v}{\partial x_i}(x) dx = -\int_{G} \frac{\partial f_n}{\partial x_i}(x) v(x) dx .$$

Passing to the limit in this equality, we get (2.2.4).

Remark 2.1. Let v be a function of $H^1_0(G)$. Then, considering a sequence $(v_n)_{n\in\mathbb{N}}$ in $C_0^{(\infty)}(G)$ convergent to v and passing to the limit we prove that (2.2.4) is still valid for $v\in H^1_0(G)$.

Theorem 2.2. If $f \in H^1(G)$ and $w_i \in L^2(G)$ such that $\forall v \in H^1_0(G)$,

$$\int_{G} f(x) \frac{\partial v}{\partial x_{i}} dx = -\int_{G} w_{i}(x) v(x) dx .$$

Then $w_i = \frac{\partial f}{\partial x_i}$ (so $\frac{\partial f}{\partial x_i}$ is uniquely defined).

Proof.

Theorem 2.1 yields

$$\int_{G} f(x) \frac{\partial v}{\partial x_{i}}(x) dx = -\int_{G} \frac{\partial f}{\partial x_{i}} v(x) dx .$$

So,

$$\int_{G} \left(w_i - \frac{\partial f}{\partial x_i} \right) v(x) dx = 0$$

for all $v \in H^1_0(G)$. $H^1_0(G)$ is dense in $L^2(G)$ because $C_0^{(\infty)}(G)$ is dense in $L^2(G)$. So, $w_i - \frac{\partial f}{\partial x_i}$ is orthogonal to all functions of $L^2(G)$. So, $w_i - \frac{\partial f}{\partial x_i} = 0$.

Comment. Theorems 2.1, 2.2 show that the definition of the weak partial derivatives $\frac{\partial f}{\partial x_i}$ is equivalent to the following one: $w_i \in L^2(G)$ is a weak partial derivative $\frac{\partial f}{\partial x_i}$ of the function $u \in L^2(G)$ if and only if $\forall v \in C_0^{(\infty)}(G)$,

$$\int\limits_G f(x) \frac{\partial v}{\partial x_i}(x) dx = -\int\limits_G w_i v(x) dx \ .$$

This definition allows us to introduce the Sobolev space $H^1(G)$ as the space of functions of $L^2(G)$ such that for all i=1,...,d they have weak partial derivatives $\partial/\partial x_i$ belonging to $L^2(G)$.

For the functions of $H^1(G)$ with Lipschitz ∂G one can introduce the notion of the trace of a function on ∂G . Let us show it in the case of G-parallelepiped

$$\Pi = \{x = (x_1, ..., x_d) | 0 < x_i < l_i, i = 1, ..., d\} .$$

Denote $x' = (x_2, ..., x_d)$,

$$\Gamma = \{x_1 = 0, \ 0 < x_i < l_i, \ i = 2, ..., d\}$$

a part of ∂G . Let u be a function of $H^1(\Pi)$, define the trace of u on Γ .

Lemma 2.1. Let $u \in C^{(\infty)}(\bar{\Pi})$, then $\forall \delta > 0$, $\delta < l_1$,

$$\int_{\Gamma} u^2(0,x')dx' \le \frac{2}{\delta} \int_{Q_{\delta}(\Gamma)} u^2(x)dx + \delta \int_{Q_{\delta}(\Gamma)} (\partial u/\partial x_1)^2 dx ,$$

$$Q_{\delta}(\Gamma) = \{ x \in \Pi | x_1 \in (0, \delta) \} .$$

Proof.

$$\int_{\Gamma} u^{2}(0, x') dx' = \frac{1}{\delta} \int_{Q_{\delta}(\Gamma)} \left[-u(x) + \int_{0}^{x_{1}} \frac{\partial u(\tau, x')}{\partial \tau} d\tau \right]^{2} dx$$

$$\leq \frac{2}{\delta} \int_{Q_{\delta}(\Gamma)} u^{2}(x) dx + \frac{2}{\delta} \int_{\Gamma} \left\{ \int_{0}^{\delta} \left(\int_{0}^{x_{1}} \frac{\partial u(\tau, x')}{\partial \tau} d\tau \right)^{2} dx_{1} \right\} dx'$$

$$\leq \frac{2}{\delta} \int_{Q_{\delta}(\Gamma)} u^{2}(x) dx + \frac{2}{\delta} \int_{\Gamma} \left\{ \int_{0}^{\delta} x_{1} \int_{0}^{\delta} \left(\frac{\partial u(\tau, x')}{\partial \tau} \right)^{2} d\tau dx_{1} \right\} dx' ,$$

where we used the CBS inequality

$$\left(\int_{0}^{x_1} \varphi(\tau) d\tau\right)^2 = \left(\int_{0}^{x_1} 1\varphi(\tau) d\tau\right)^2 \le \int_{0}^{x_1} 1^2 d\tau \cdot \int_{0}^{x_1} (\varphi(\tau))^2 d\tau \le x_1 \int_{0}^{\delta} (\varphi(\tau))^2 d\tau$$

and Young's inequality $(A+B)^2 \le 2A^2 + 2B^2$.

So,

$$\int_{\Gamma} u^2(0,x')dx' \leq \frac{2}{\delta} \int_{Q_{\delta}(\Gamma)} u^2(x)dx + \delta \int_{Q_{\delta}(\Gamma)} \left(\frac{\partial u}{\partial x_1}\right)^2 dx.$$

This lemma shows that every Cauchy sequence $(u_n)_{n\in\mathbb{N}}\in C^{(\infty)}(\bar{\Pi})$ generates the sequence of traces $(u_n(0,x'))_{n\in\mathbb{N}}$ which is a Cauchy sequence in $L^2(\Gamma)$ and so, it converges to some function of $L^2(\Gamma)$.

Now, let $(u_n)_{n\in\mathbb{N}}$ be convergent to $u\in H^1(\Pi)$, denote $u|_{\Gamma}$ the function of $L^2(\Gamma)$ which is the limit of the Cauchy sequence of traces $(u_n(0,x'))_{n\in\mathbb{N}}$. This function $u|_{\Gamma}$ is called the trace of the function u.

§3 Poincaré's inequalities

3.1 Poincaré-Friedrichs inequality

Theorem 3.1 Poincaré–Friedrichs inequality. There exists $C_{PF} \geq 0$ such that $\forall u \in H_0^1(G)$,

$$||u||_{L^2(G)} \le C_{\text{PF}} ||\nabla u||_{L^2(G)},$$
 (2.3.1)

where
$$\|\nabla u\|_{L^2(G)} = \sqrt{\int\limits_G \sum\limits_{i=1}^d \left(rac{\partial u}{\partial x_i}
ight)^2 dx},$$

$$C_{\rm PF} = \frac{{\rm diam} \ G}{\sqrt{2}} \ ,$$

(diam $G = \sup_{x,y \in G} |x-y|$). This inequality is called Poincaré–Friedrichs (PF) inequality.

Proof.

1) Let $\Pi \supset G$ be the parallelepiped

$$\Pi = (a_1, b_1) \times ... \times (a_d, b_d)$$
 and $\forall i = 1, ..., d, b_i - a_i \leq \text{diam } G$.

Without loss of generality assume $a_1 = 0$.

Consider $u \in C_0^{(\infty)}(\bar{\Pi})$. Then

$$u(x_1, x_2, ..., x_d) = \int_{0}^{x_1} \frac{\partial u}{\partial \tau}(\tau, x') d\tau , \quad x' = (x_2, ..., x_n) .$$

So, applying the CBS inequality, we obtain

$$||u||_{L^{2}(\Pi)}^{2} = \int_{\Pi} \left(\int_{0}^{x_{1}} \frac{\partial u}{\partial \tau}(\tau, x') d\tau \right)^{2} dx$$

$$\leq \int_{\Pi} \left\{ \int_{0}^{x_{1}} 1^{2} dx_{1} \int_{0}^{x_{1}} \left(\frac{\partial u}{\partial \tau}(\tau, x') \right)^{2} d\tau \right\} dx_{1} dx'$$

$$\leq \int_{a_{2}} \dots \int_{a_{d}}^{b_{d}} \int_{a_{1}}^{b_{1}} x_{1} \int_{a_{1}}^{b_{1}} \left(\frac{\partial u}{\partial \tau}(\tau, x') \right)^{2} d\tau dx_{1} dx'$$

$$= \frac{(b_{1} - a_{1})^{2}}{2} \int_{\Pi} \left(\frac{\partial u}{\partial x_{1}} \right)^{2} dx \leq C_{\mathrm{PF}}^{2} ||\nabla u||_{L^{2}(\Pi)}^{2}.$$

- 2) Let u be a function of $C_0^{(\infty)}(G)$. Extend it by zero to $\Pi \backslash G$. The extension $\tilde{u} \in C_0^{(\infty)}(\Pi)$ and we obtain for it (2.3.2). On the other hand, $\|\tilde{u}\|_{L^2(\Pi)} = \|u\|_{L^2(G)}$ and $\|\nabla \tilde{u}\|_{L^2(\Pi)} = \|\nabla u\|_{L^2(G)}$. So, we get (2.3.1) for $u \in C_0^{(\infty)}(G)$.
- 3) Let u be a function of $H^1_0(G)$. Let $(u_n)_{n\in\mathbb{N}}$ be a sequence of functions of $C_0^{(\infty)}(G)$ convergent to u; for all n,

$$||u_n||_{L^2(G)} \le C_{PF} ||\nabla u_n||_{L^2(G)}$$
.

Passing to the limit and using the continuity of a norm, we get (2.3.1).

The theorem is proved.

3.2 Poincaré's inequality in a parallelepiped

Let G be a parallelepiped $(0, a_1) \times ... \times (0, a_d) \subset \mathbb{R}^d$.

Theorem 3.2. Poincaré's inequality. There exists a positive constant C_P such that $\forall u \in H^1(G)$,

$$||u||_{L^2(G)}^2 \le \frac{1}{\operatorname{mes}(G)} \left(\int_G u(x) dx \right)^2 + C_P ||\nabla u||_{L^2(G)}^2.$$

Proof.

1. Consider $u \in C^{(\infty)}(\bar{G}), x, y \in G$. Then

$$(u(y) - u(x))^{2} = \left(\int_{x_{1}}^{y_{1}} \frac{\partial u}{\partial \theta_{1}}(\theta_{1}, x_{2}, ..., x_{d}) d\theta_{1} + ... + \int_{x_{d}}^{y_{d}} \frac{\partial u}{\partial \theta_{d}}(y_{1}, ..., y_{d-1}, \theta_{d}) d\theta_{d} \right)^{2}$$

$$\leq d \left\{ \left(\int_{x_{1}}^{y_{1}} \frac{\partial u}{\partial \theta_{1}} d\theta_{1} \right)^{2} + ... + \left(\int_{x_{d}}^{y_{d}} \frac{\partial u}{\partial \theta_{d}} d\theta_{d} \right)^{2} \right\}$$

(by Cauchy–Schwarz inequality $(a_1+...+a_d)^2 \le d(a_1^2+...+a_d^2)$), and so it is smaller than (CSB):

$$d\left\{a_1\int\limits_0^{a_1}\left(\frac{\partial u}{\partial\theta_1}\right)^2d\theta_1+\ldots+a_d\int\limits_0^{a_d}\left(\frac{\partial u}{\partial\theta_d}\right)^2d\theta_d\right\}\;.$$

Integrating the inequality in $x, y \in G$, we get:

$$\begin{split} &\int\limits_G \int\limits_G (u(y)-u(x))^2 dx dy \\ &\leq d \left\{ a_1^2 \text{ mes } G\int\limits_G \left(\frac{\partial u}{\partial x_1}(x)\right)^2 dx + \ldots + a_d^2 \text{ mes } G\int\limits_G \left(\frac{\partial u}{\partial x_d}(x)\right)^2 dx \right\} \\ &\leq d \text{ mes } G\max_{1\leq j\leq d} a_j^2 \|\nabla u\|_{L^2(G)}^2 \ . \end{split}$$

The left-hand side is:

$$\begin{split} &\int\limits_G \int\limits_G (u(y))^2 dx dy - 2 \int\limits_G \int\limits_G u(y) u(x) dx dy + \int\limits_G \int\limits_G (u(x))^2 dx dy \\ &= 2 \text{ mes } G \|u\|_{L^2(G)}^2 - 2 \left(\int\limits_G u(x) dx\right)^2 \ . \end{split}$$

Finally we get

$$||u||_{L^2(G)}^2 \le \frac{1}{\text{mes } G} \left(\int_G u(x) dx \right)^2 + \frac{d}{2} \max_{1 \le j \le d} a_j^2 ||\nabla u||_{L^2(G)}^2.$$

So, $C_P = \frac{d}{2} \max_{1 < j < d} a_j^2$.

2. Consider $u \in H^1(G)$. Let $(u_n)_{n \in \mathbb{N}}$ be a sequence such that $u_n \in C^{(\infty)}(\bar{G})$ and $u_n \to u$ in H^1 -norm. Then we get:

$$||u_n||_{L^2(G)} \to ||u||_{L^2(G)}, ||\nabla u_n||_{L^2(G)} \to ||\nabla u||_{L^2(G)}.$$

In the first part of the proof we have obtained:

$$||u_n||_{L^2(G)}^2 \le \frac{1}{\text{mes }(G)} \left(\int_G u_n(x) dx \right)^2 + C_P ||\nabla u_n||_{L^2(G)}^2.$$

The continuity of a norm yields:

$$||u_n - u||_{L^2(G)}^2 + ||\nabla u_n - \nabla u||_{L^2(G)}^2 = ||u_n - u||_{H^1(G)}^2 \to 0$$
,

and so,

$$\left| \int_{G} u_{n} dx - \int_{G} u dx \right| = \left| \int_{G} (u_{n} - u) 1 dx \right| \le \sqrt{\int_{G} 1^{2} dx ||u_{n} - u||_{L^{2}(G)}} \to 0.$$

So, finally, $\int\limits_G u_n dx$ also converges to $\int\limits_G u(x) dx$.

Theorem is proved.

§4 Stationary conductivity equation

Consider the following problem:

$$-\text{div}(A(x)\nabla u) = f(x) , x \in G ,$$
 (2.4.1)

$$u\big|_{\partial G} = 0 \quad , \tag{2.4.2}$$

where G is a bounded domain in \mathbb{R}^d , f is a function of $L^2(G)$ and

$$A(x) = (A_{ij}(x))_{1 \le i,j \le d}$$
 is $d \times d$

symmetric, positive definite matrix, satisfying

(i)
$$\forall x \in G$$
, $\forall i, j \in \{1, ..., d\}$, $A_{ij}(x) = A_{ji}(x)$,

(ii)
$$\exists \kappa > 0 : \forall x \in G, \forall \boldsymbol{\xi} = (\xi_1, ..., \xi_d),$$

$$\sum_{i,j=1}^{d} A_{ij}(x)\xi_{j}\xi_{i} \ge \kappa \sum_{i=1}^{d} \xi_{i}^{2}.$$

Currently we assume that $A_{ij} \in C^{(1)}(\bar{G})$, however further we will define a weak solution, and it will be valid for any bounded measurable functions A_{ij} .

Namely, the notion of the classical solution, satisfying equation (2.4.1) in each point $x \in G$ and vanishing on ∂G , can be generalized for the case of non-smooth coefficients by means of a **weak formulation**.

Function $u \in H^1_0(G)$ is called a **weak solution** of problem (2.4.1), (2.4.2), if $\forall v \in C_0^{(\infty)}(G)$ the following integral identity holds:

$$\int_{G} A(x)\nabla u \cdot \nabla v dx = \int_{G} f(x)v(x)dx . \qquad (2.4.3)$$

Evidently, if A_{ij} are smooth functions and u is a classical solution then multiplying equation (2.4.1) by a test function $v \in C_0^{(\infty)}(G)$ we integrate it over G, integrate the left-hand side by parts and obtain (2.4.3).

Note that (2.4.1) can be rewritten as

$$-\sum_{i,j=1}^{d} \frac{\partial}{\partial x_i} \left(A_{ij}(x) \frac{\partial u}{\partial x_j} \right) = f(x) , \qquad (2.4.1')$$

and (2.4.3) as

$$\int_{G} \sum_{i,j=1}^{d} A_{ij}(x) \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} dx = \int_{G} f(x)v(x)dx. \qquad (2.4.3')$$

Note that due to the density of $C_0^{(\infty)}(G)$ in $H_0^1(G)$, (2.4.3') is valid $\forall v \in H_0^1(G)$. So, weak solution is more general: it can be considered in the case of discontinuous coefficients.

Let us prove the following

Theorem 4.1. For any function $f \in L^2(G)$ a weak solution u exists, is unique and satisfies the inequality

$$||u||_{H^1(G)} \le C_D ||f||_{L^2(G)}$$
, (2.4.4)

where the constant

$$C_D = \frac{\sqrt{2}}{\kappa} \max\{C_{PF}, C_{PF}^2\}$$
 (2.4.5)

Proof.

1. Consider the space $H_0^1(G)$ supplied with a new inner product

$$[u,v] = \int_{C} \sum_{i,j=1}^{d} A_{ij}(x) \frac{\partial u}{\partial x_j} \frac{\partial v}{\partial x_i} dx.$$

It is easy to check its linearity with respect to the first argument and symmetry. Moreover $[v,v]\geq 0$ for all $v\in H^1_0(G)$ because of the property (ii) of coefficients A_{ij} . If [v,v]=0 then due to (ii) $\|\nabla v\|^2_{L^2(G)}=0$, and then due to the PF inequality $\|v\|^2_{L^2(G)}=0$. So, v=0.

The norm $\big[|v|\big]=\sqrt{[v,v]}$ is equivalent to the norm $H^1(G)$, i.e. there exist constants $C_1,C_2>0$ such that for all $v\in H^1_0(G)$,

$$C_1||v||_{H^1(G)} \le [|v|] \le C_2||v||_{H^1(G)}$$
.

Denote H the space $H_0^1(G)$ supplied with the inner product [u,v].

2. Consider the linear functional $\Phi: H \to \mathbb{R}$, such that

$$\Phi(v) = \int_{G} f(x)v(x)dx .$$

Clearly, $\forall \alpha, \beta \in \mathbb{R}, \forall v_1, v_2 \in H$,

$$\Phi(\alpha v_1 + \beta v_2) = \alpha \Phi(v_1) + \beta \Phi(v_2) .$$

 Φ is a bounded (i.e. continuous) functional. Indeed, $\forall v \in H$,

$$|\Phi(v)| \le ||f||_{L^2(G)} ||v||_{L^2(G)}$$

due to CBS inequality, so

$$|\Phi(v)| \le ||f||_{L^2(G)} C_{PF} ||\nabla v||_{L^2(G)} ,$$
 (2.4.6)

$$|\Phi(v)| \le ||f||_{L^2(G)} C_{PF} \frac{1}{\sqrt{\kappa}} [|v|]$$
 (2.4.7)

(we applied the PF inequality and then (ii)).

3. So, due to the Riesz–Frechet theorem, there exists a unique $u \in H$ such that

$$\forall v \in H , \ \Phi(v) = [u, v] ,$$

i.e. $\forall v \in H^1_0(G)$ (2.4.3) holds, and the existence and uniqueness of a weak solution is proved.

4. Taking v = u, we get:

$$[u, u] = \Phi(u) \le C_{PF} \frac{1}{\sqrt{\kappa}} ||f||_{L^2(G)} \sqrt{[u, u]}$$

(see (2.4.7)). So,

$$\left[|u|\right] \le \frac{C_{PF}}{\sqrt{\kappa}} ||f||_{L^2(G)} .$$

On the other side.

$$\begin{split} \left[|u| \right] &= \sqrt{[u,u]} & \geq & \sqrt{\kappa} \sqrt{\|\nabla u\|_{L^2(G)}^2} = \sqrt{\kappa} \|\nabla u\|_{L^2(G)} \\ & \geq & \sqrt{\kappa} \frac{1}{C_{PF}} \|u\|_{L^2(G)} \ , \end{split}$$

and so,

$$\left[|u|\right] \geq \frac{\sqrt{\kappa}}{\sqrt{2}} \min\left\{1, \frac{1}{C_{PF}}\right\} \|u\|_{H^1(G)} \; .$$

So, the theorem is proved:

$$||u||_{H^1(G)} \le \frac{\sqrt{2}}{\kappa} C_{PF} \max \{C_{PF}, 1\} ||f||_{L^2(G)}$$
.

Remark 4.1. Consider formally equation (2.4.1) with the right-hand side

$$f(x) = f_0(x) - \sum_{i=1}^d \frac{\partial f_i}{\partial x_i}(x) , \qquad (2.4.8)$$

where $f_0, f_i (i=1,...,d)$ belong to $L^2(G)$. Let us define a weak solution of the problem (2.4.1), (2.4.2) as a function $u \in H^1_0(G)$ such that $\forall v \in C_0^{(\infty)}$,

$$\int_{C} A(x)\nabla u \cdot \nabla v dx = \int_{C} f_0(x)v(x) + \sum_{i=1}^{d} f_i(x)\frac{\partial v}{\partial x_i}(x)dx.$$
 (2.4.9)

Then Theorem 4.1 remains valid for this case and (2.4.4) is modified as

$$||u||_{H^{1}(G)} \leq C'_{D} \left\{ C_{PF} ||f_{0}||_{L^{2}(G)} + \sqrt{\sum_{i=1}^{d} ||f_{i}||_{L^{2}(G)}^{2}} \right\} ,$$

$$C'_{D} = \frac{\sqrt{2}}{\kappa} \max\{1, C_{PF}\} . \tag{2.4.10}$$

Remark 4.2. In the case of regular right-hand side f and piecewise smooth coefficients A_{ij} having discontinuities at some smooth surfaces Σ , the weak solution satisfies equation (2.4.1) everywhere out of Σ and the interface conditions

$$[u]_{\Sigma} = 0$$
, $\left[\sum_{i,j=1}^{d} A_{ij} \frac{\partial u}{\partial x_j} n_i \right]_{\Sigma} = 0$

at Σ . If ∂G is smooth then the weak solution satisfies the boundary condition (2.4.2), and so the weak solution coincides with the classical one. The theorems providing this assertion are called Agmon–Duglis–Nirenberg (ADN) theorems.