Study Report on Methods in Data Mining

JJ, Rendan, Tutu, Guabao

Department of Statistics United International College, Guangdong 519085, China

DM Group Project, 2013

Outline of topics

This study is to set up a classification model to predict whether income exceeds 50K/yr based upon his characters by using data mining techniques.

The data source is from UCI.

Goal

Extraction was done by Barry Becker from the 1994 Census database.

# of Instances	48842	Area	Social	Attribute Characteristics	Categorical, Integer
# of Attributes	s 14 Date Donated 96-05-01 Missi		Missing Values	Yes	

The part of samples are listed below:

Data Preview

age	workclass	fnlwgt	education	education_num	marital_status	income
64	Private	66634	Bachelors	13	Divorced	1
55	Private	327589	HS-grad	9	Divorced	0
50	Private	104729	HS-grad	9	Divorced	0
39	Private	32146	Some-college	10	Never-married	0
22	Private	109815	Some-college	10	Never-married	0
38	Private	188503	Some-college	10	Never-married	0
45	Self-emp-inc	34091	Bachelors	13	Married-civ-spouse	1
42	Self-emp-not-inc	119207	HS-grad	9	Never-married	0
45	Private	301802	Bachelors	13	Married-civ-spouse	1
60	Private	152369	Assoc-voc	11	Married-civ-spouse	0

Data Preview

Listing of attributes: income: > 50K, $\le 50K$ age, workclass, fnlwgt, education, education-num, marital-status, occupation, relationship, race, sex, capital-gain, capital-loss, hours-per-week, native-country.

- Polish missing value: workclass, occupation, native_country
- Remove ineffective attributes: fnlwgt, education_num
- Oraw 5000 training and 1000 testing sample
- Discrete continues variables: age, hours_per_week, capital_gain, capital_loss

Association Rule

This is association rules. Find frequent set. Pick out the high frequent combinations filter out the rhs income and lift=1.2 filter out the rhs income and lift=1.2 sort the rules by confi.

```
This is Decision Tree.
tree1=rpart(income .,data=train,method="class",cp=0.005)
printcp(tree1)
plotcp(tree1)
print(tree1)
summary(tree1)
plot(tree1,uniform=TRUE)
text(tree1,use.n=TRUE,all=TRUE, cex=.8)
post(tree1,file=train)
tree2=prune(tree1,cp=0.01)
plot(tree2)
text(tree2)
Prediction=predict(tree2,newdata=test)
Pre=vector()
```

Naïve Bayes Classifier

```
This is Naïve Bayes Classifier.

mm=naiveBayes(income .,data=train)

Pre2=predict(mm,test)

Pre2[1:20]

error2=sum(Ori!=Pre2)

errorratio2=error2/1000
```

Artificial Neural Network

```
This is Artificial Neural Network.
nn=nnet(income .,data=train,size=2,rang=0.1,maxit=1000)
Pre3=predict(nn, test, type = "class")
error3=sum(Ori!=Pre3)
errorratio3=error3/1000
```

```
This is Bagging and Boosting. c_{\bar{i}}\text{-rbind}(\text{train},\text{test})\\ m_{\bar{i}}\text{-dim}(c)\\ \text{income}_{\bar{i}}\text{-as.factor}(c[\ ,m[2]])\\ c_{\bar{i}}\text{-data.frame}(c[\ ,-m[2]],\text{income})\\ \text{bagging}_{\bar{i}}\text{-bagging}(\text{income}\ .,\ \text{data}\text{=}c[1:5000,]\ ,\ \text{mfinal}\text{=}10)\\ \text{boosting}_{\bar{i}}\text{-boosting}(\text{income}\ .,\ \text{data}\text{=}c[1:5000,],\ \text{boos}\text{=}\text{TRUE},\\ \text{mfinal}\text{=}10)\\ \text{pre5}_{\bar{i}}\text{-predict.bagging}(\text{bagging},\ \text{newdata}\text{=}c[5001:6000,\ ])\\ \text{pre6}_{\bar{i}}\text{-predict.boosting}(\text{boosting},\ \text{newdata}\text{=}c[5001:6000,\ ])
```

Prediction Error Rate

Decision Tree has the least error rate.

Method	Decision Tree	NBayes	ANN	Bagging	Boosting
Timing	15%	15%	15%	15%	15%

Modellng Timing

Decision Tree takes the least time in modelling.

Method	Decision Tree	NB	ANN	Bag	Boost
Timing	1s	1s	1s	1s	1s

Prediction Consistance

This is Prediction Consistance.

Discusion

Conclusion

The limit is packages. Date mining is good.

```
COMPUTER
```

```
OS OS X 10.8.3 (12D78)
Processor 2.26 GHz Intel Core 2 Duo
 Memory 5 Gb 1067 Mhz DDR3
```

R PACKAGES

```
R 3.0.0
  class 7.3-7
 e1071 1.6-1
  rpart
  nnet
Matrix
 lattice
 arules
adabag
```

Bibliography

Bibliography

C L Blake, C J Merz. UCI repository of machine learning databases University of California, Irvine, Department of Information and Computer Sciences. 1998