Manual Trace of the Daltonization Algorithm		
Input RGB Image / Video Feed Frame		
Converting RGB image to LMS image		
Simulate color blindness on 'LMS Image' -> 'Simulated LMS Image'		
Compensate 'Simulated LMS Image' -> 'Simulated RGB Image'		
Convert 'Simulated RGB Image" to 'Compensated/Daltonized RGB Image'		
Output Daltonized RGB Image		

	Converting RGB image to LMS image	1	1.	1.		
	RGB2LMS = [[17.8824,43.5161,4.11935],	Line		J		
	[3.45565,27.1554,3.86714],	1	0			1st row
	[0.0299566,0.184309,1.46709]]	3		0		
		5-15			LMS multiplication	Row loop
1	i = 0	16		1		
2	WHILE i < height DO	5-15			LMS multiplication	
3	j = 0	16		2		
4	WHILE $j < width DO$ #(j, i) refer to pixel position					
5	R = RGB_image[j, i, 0]	16		width		
6	G = RGB_image[j, i, 1]	18	1			2nd row
7	B = RGB_image[j, i, 2]	3		0		
8		5-15			LMS multiplication	Row loop
9	L = RGB2LMS[0][0] * R + RGB2LMS[0][1] * G + RGB2LMS[0][2] * B	16		1		
10	M = RGB2LMS[1][0] * R + RGB2LMS[1][1] * G + RGB2LMS[1][2] * B					
11	S = RGB2LMS[2][0] * R + RGB2LMS[2][1] * G + RGB2LMS[2][2] * B	16		width		
12		18	2			3rd row
13	LMS_image[j, i, 0] = L	3		0		
14	LMS_image[j, i, 1] = M	5-15			LMS multiplication	Row loop
15	LMS_image[j, i, 2] = S	16		1		
16	j = j + 1					
17	END WHILE	16		width		
18	i = i + 1					
19	END WHILE	18	height			End
		Time	complexity	= O(heid	ght x width) = O(n)	

	Simulate color blindness on 'LMS Image' -> 'Simulated LMS Image'					
	colorblind_type = 0 # For example; 0 is for Protanope, 1 is for Deuteranope, and 2 is for Tritanope	Line	i	j		
	L, M, and S values from previous process	1	0			1st Row
1	i = 0	3		0		
2	WHILE i < height DO	9-34			LMS multiplication	Row loop
3	j=0	34		1		
4	WHILE j < width DO	9-34			LMS multiplication	
5	L = LMS_image[j, i, 0]	34		2		
6	M = LMS_image[j, i, 1]					
7	S = LMS_image[j, i, 2]	34		width		
8		36	1			2nd Row
9	IF colorblind_type == 0 THEN	3		0		
10	simulated_L = protanope_matrix[0][0] * L + protanope_matrix[0][1] * M + protanope_matrix[0][2] * S	9-34			LMS multiplication	Row loop
11	simulated_M = protanope_matrix[1][0] * L + protanope_matrix[1][1] * M + protanope_matrix[1][2] * S	34		1		
12	simulated_S = protanope_matrix[2][0] * L + protanope_matrix[2][1] * M + protanope_matrix[2][2] * S					
13		34		width		
14	ELSE IF colorblind_type == 1 THEN					
15	simulated_L = deuteranope_matrix[0][0] * L + deuteranope_matrix[0][1] * M + deuteranope_matrix[0][2] * S	36	height			End
16	simulated_M = deuteranope_matrix[1][0] * L + deuteranope_matrix[1][1] * M + deuteranope_matrix[1][2] * S	Time	complexi	ty = O(he	eight x width) = O(n)	
17	simulated_S = deuteranope_matrix[2][0] * L + deuteranope_matrix[2][1] * M + deuteranope_matrix[2][2] * S					
18						
19	ELSE IF colorblind_type == 2 THEN					
20	simulated_L = tritanope_matrix[0][0] * L + tritanope_matrix[0][1] * M + tritanope_matrix[0][2] * S					
21	simulated_M = tritanope_matrix[1][0] * L + tritanope_matrix[1][1] * M + tritanope_matrix[1][2] * S					
22	simulated_S = tritanope_matrix[2][0] * L + tritanope_matrix[2][1] * M + tritanope_matrix[2][2] * S					
23						
24	ELSE # original LMS values					
25	simulated_L = L					
26	simulated_M = M					
27	simulated_S = S					
28	END IF					
29						
30	simulated_image[j, i, 0] = simulated_L					
31	simulated_image[j, i, 1] = simulated_M					
32	simulated_image[j, i, 2] = simulated_S					
33						
34	j=j+1					
35	END WHILE					
36	i=i+1					
37	END WHILE					

	Compensate 'Simulated LMS Image' -> 'Simulated RGB Image'					
	LMS2RGB = [[0.0809444479, -0.130504409, 0.116721066],	Line	i	j		
	[-0.0102485335, 0.0540193266, -0.113614708],	1	0			1st row
	[-0.000365296938, -0.00412161469, 0.693511405]]	3		0		
		5-15			RGB multiplication	Row loop
1	i = 0	16		1		
2	WHILE i < height DO	5-15			RGB multiplication	
3	j = 0	16		2		
4	WHILE j < width DO #(j, i) refer to pixel position					
5	L = LMS_image[j, i, 0]	16		width		
6	M = LMS_image[j, i, 1]	18	1			2nd row
7	S = LMS_image[j, i, 2]	3		0		
8		5-15			RGB multiplication	Row loop
9	R = LMS2RGB[0][0] * L + LMS2RGB[0][1] * M + LMS2RGB[0][2] * S	16		1		
10	G = LMS2RGB[1][0] * L + LMS2RGB[1][1] * M + LMS2RGB[1][2] * S					
11	B = LMS2RGB[2][0] * L + LMS2RGB[2][1] * M + LMS2RGB[2][2] * S	16		width		
12		18	2			3rd row
13	RGB_image[j, i, 0] = R	3		0		
14	RGB_image[j, i, 1] = G	5-15			RGB multiplication	Row loop
15	RGB_image[j, i, 2] = B	16		1		
16	j = j + 1					
17	END WHILE	16		width		
18	i = i + 1					
19	END WHILE	18	height			End
		Time o	complexit	y = O(h	eight x width) = O(n)	

1 i	= 0	Line	i	li		
2 \	NHILE i < height DO	1	0	ľ		1st row
3	j = 0	3		0		
4	WHILE j < width DO	5-19			Conversion process	Row loop
5	simulated_R = simulated_RGB_image[j, i, 0]	21		1		
6	simulated_G = simulated_RGB_image[j, i, 1]	5-19			Conversion process	
7	simulated_B = simulated_RGB_image[j, i, 2]	21		2		
8	# Isolate "invisible colors" (colors that people with a CVD can't see)					
9	error_R = R - simulated_R	21		width		
10	error_G = G - simulated_G	23	1			2nd row
11	error_B = B - simulated_B	3		0		
2	# Shift the colors towards the visible spectrum	5-19			Conversion process	Row loop
13	compensated_R = (0.0 * error_R) + (0.0 * error_G) + (0.0 * error_B)	21		1		
14	compensated_G = (0.7 * error_R) + (1.0 * error_G) + (0.0 * error_B)					
5	compensated_B = (0.7 * error_R) + (0.0 * error_G) + (1.0 * error_B)	21		width		
16	# Add compensation	23	2			3rd row
17	compensated_R = compensated_R + R	3		0		
18	compensated_G = compensated_G + G	5-19			Conversion process	Row loop
9	compensated_B = compensated_B + B	21		1		
20						
21	j=j+1	21		width		
22	END WHILE					
23	i=i+1	23	height			End
:4 E	END WHILE					