Set 3: Paired Data, Scatter Plots, Correlation

Stat 260 A01: May 15, 2024

We have previously seen univariate data, which consists of observations of a single characteristic/attribute, and is typically denoted as x_1, x_2, \ldots, x_n .

Data that arises in pairs is referred to as **bivariate data**, often denoted as:

Example 1: A biologist captures 5 loggerhead sea turtles (Caretta caretta) and records their head-to-tail lengths (in cm) and their blood plasma arsenic levels (in ppb).

Length (cm)		Arsenic (ppb)	ctalles comme
Turtle	75 4	→ 4	75,4	Standard deviation of $1L$ $5_{1L} = 17.67$
Turtle 2	110 🚄	→ 5	110, 5	Standard deviation of y sy = 3.05
Turtle 3	90 🚄	~ 7	90,7	₹ = 100
Turtle 4	105 🚄	→ 11	105,11	ÿ = 7.4
Tortles	120 🚄	> 10	120,10	v

Default Graph Title

Covariance

Covariance is a measure of the association between two random variables.

Recall: sample variance
$$s^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1} = S_{xx}$$
 always ≥ 0

Recall: sample variance
$$s^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1} = S_{xx} \angle \text{always} \ge 0$$
For bivariate data, we can calculate the sample covariance:
$$S_{xx} \angle \text{always} \ge 0$$

$$S_{xx} \angle \text{always} \ge 0$$
For bivariate data, we can calculate the sample covariance:
$$S_{xx} \angle \text{always} \ge 0$$

$$S_{xx} \angle$$

Example 1 Continued... Determine the covariance for loggerhead turtle data.

76;	۶. ا	X;- ₹	y, ⁻য়	(ni-死) (yi -資)
75	4	- 25	- 3.4	85
110	5	10	-2.4	-24
90	7	-10	-0.4	4
105	н	5	3.6	18
(20	10	20	12.6	52
				Total = 135

Cov $(x_i, y_i) = \frac{1}{5-1} (135) = 33.75$

Positive covariance indicates a positive relationship between the variables (likewise, angative covariance indicates a negative relationship)

Like variance, a single covariance does not fell us as much about the strength of that relationship

The **correlation coefficient**, r, measures the strength of the linear relationship between x and y.

- \bullet r close to +1 indicates a strong positive linear relationship.
- $\bullet\ r$ close to -1 indicates a strong negative linear relationship.
- \bullet r close to 0 indicates no linear relationship.

The **correlation coefficient**, r, measures the strength of linear relationship between x and y;

$$r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}} = \frac{\text{S} \text{ xy}}{\text{S}_{\text{NL}} \cdot \text{Sy}} \circ \frac{\text{Covariance of (n.y)}}{\text{Std detiation of x. Standard deviation of y}}$$

Example 1 Continued... Determine the correlation coefficent of the loggerhead turtle data.

Length (cm)	Arsenic (ppb)	Szy = 33.75 , 5x = 17.67,5y = 3.05
75	4	y
110	5	5,46 33.75 0.726
90	7	$r = \frac{5xy}{5x \cdot 5y} - \frac{33.75}{17.67 \cdot 3.05} = 0.629$
105	11	Sz. Sy 17.67.3.05
120	10	-> Some indication of a positive linear relationship
		Since 0.629 isnt very close to litis likely a fairly weak linear relationship

Warnings about r:

Tris very strongly influenced by outliers
or is good for values close to -1,0,+1 but
everything inbetween is more difficult to c

Textbook Readings: Swartz 2.5. EPS 7.8

Practice problems: Swartz: Produce scatterplots and compute the sample correlation using your calculator for the data given in 7.1, 7.3, 7.5. Comment on your findings. [Answers r=.312, .986, .707]