无线通信实验在线开放课程

主讲人: 吴光 博士

广东省教学质量工程建设项目

Lab 8: Phase Shift Keying

主讲人: 吴光 博士

Email: wug@sustech.edu.cn

Demo: M-PSK Image Transmission

BPSK

$$s_{RF0}(t) = cos(2\pi f_c t)$$

$$s_{RF1}(t) = cos(2\pi f_c t + \pi)$$

QPSK

$$s_{RF0}(t) = \sqrt{2}cos(2\pi f_c t + \frac{\pi}{4})$$

$$s_{RF1}(t) = \sqrt{2}cos(2\pi f_c t + \frac{3\pi}{4})$$

$$s_{RF2}(t) = \sqrt{2}cos(2\pi f_c t + \frac{5\pi}{4})$$

$$s_{RF3}(t) = \sqrt{2}cos(2\pi f_c t + \frac{7\pi}{4})$$

$$S_{RF0}(t) = \sqrt{2}cos\left(2\pi f_c t + \frac{\pi}{4}\right) = I \cdot cos(2\pi f_c t) - Q \cdot sin(2\pi f_c t)$$

QPSK		
bits	Symbols	
00	1+1j	
01	-1+1j	
11	-1-1j	
10	(-141j) - j	

Demo: BPSK/QPSK Simulation

最次生成器

将此待封装成数据包、 01011... 01011... 数据包 封装 比特流 ····> 眼图 符号 **PSK PSK** 噪声信道 星座图 映射表 调制器 解调器 脉冲 同步 生成器

Demo: 2/4-PSK Image Transmission

Demo: 8/16-PSK Simulation

$$s_{RF0}(t) = \frac{\sqrt{2+\sqrt{2}}}{2}cos\left(2\pi f_c t + \frac{\pi}{8}\right) = \mathbf{I} \cdot cos(2\pi f_c t) - \mathbf{Q} \cdot sin(2\pi f_c t)$$

I + Qj

011•	Im ● 001		
010●	● 000		
110•	● 100	Re	
111 ●	● 101		
Const	tellation		

8-PSK		
bits	Symbols	
000	$\frac{\sqrt{2+\sqrt{2}}}{2} + \frac{\sqrt{2-\sqrt{2}}}{2} \mathbf{j}$	
001	$\frac{\sqrt{2-\sqrt{2}}}{2} + \frac{\sqrt{2+\sqrt{2}}}{2} \mathbf{j}$	
111	$-\frac{\sqrt{2-\sqrt{2}}}{2}-\frac{\sqrt{2+\sqrt{2}}}{2}\mathbf{j}$	

$$\varepsilon_s = E\left[|I_k|^2\right] = \sum_{k=1}^M \frac{|I_k|^2}{M} = 1$$

$$E_b/N_0 = \frac{\varepsilon_b}{N_0} = \frac{\varepsilon_s}{\log_2(M) \cdot N_0}$$

$$N_A = \sqrt{\frac{N_0}{2}} = \frac{\sqrt{\varepsilon_s}}{\sqrt{2 \cdot log_2(M) \cdot 10^{\frac{E_b/N_0(dB)}{10}}}}$$

Question ?

