Ecuaciones en derivadas parciales elípticas. Ejemplo ecuaciones de Laplace y Poisson

Bruno Juliá-Díaz (brunojulia@ub.edu)

Dpto. Física Quàntica i Astrofísica

Facultat de Física

Universitat de Barcelona

Curso 2016/2017

Fuente: Gerald / Wheatley

Perfil de temperaturas

Tenemos una placa metálica bidimensional de 30cm x 10cm con una condición de contorno consistente en fijar la temperatura de la placa en sus bordes.

Perfil de temperaturas

Buscamos encontrar el estado estacionario, esto es, consideramos la ecuación de difusión:

$$\frac{\partial T}{\partial t} = D \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

En el caso,
$$\frac{\partial T}{\partial t} = 0$$

T=0 grados
T=20 grados

Lx=30 cm

Se simplifica a resolver la ecuación de Laplace bidimensional:

$$\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) = 0$$

Método de paso finito

Utilizaremos un método sencillo de paso finito con el mismo valor de h para ambas coordenadas.

Ly=10 cm

Tendremos:

$$x = ih \quad y = jh$$

$$con i = 0, \dots, N_x, \quad j = 0, \dots, N_y$$

 $\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial u^2}\right) = 0$

Lx=30 cm

T=0 grados
T=20 grados

Con este discretizado tendremos un conjunto de valores de la temperatura discreto, una matriz:

$$T_{i,j} \equiv T(x_i, y_j)$$

Condiciones de contorno

Lx=30 cm

Las condiciones de contorno son en este caso:

$$T_{0,i} = T_{i,0} = 0$$

$$T_{i,N_y} = T_{N_x,j} = 20$$

Ly=10 cm

$$\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) = 0$$

T=0 grados T=20 grados

El operador derivada segunda lo discretizamos en 3 puntos, con esto tenemos el conjunto de ecuaciones:

$$T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1} - 4T_{i,j} = 0$$

 $i = 1, \dots, N_x - 1 \quad j = 1, \dots, N_y - 1$

Caso h=5 cm

Veamos un caso muy sencillo:

$$Nx = 30/5 = 6$$

$$Ny=10/5=2$$

- Incognitas
- Condiciones de
- contorno
- Irrelevantes

Tenemos en este caso 5 ecuaciones y cinco incognitas, por ejemplo, las dos primeras son:

$$4T_{1,1} - T_{0,1} - T_{2,1} - T_{1,0} - T_{1,2} = 0$$

$$4T_{2,1} - T_{1,1} - T_{3,1} - T_{2,0} - T_{2,2} = 0$$

Caso h=5 cm

La ecuaciones a resolver se pueden escribir como,

$$\begin{pmatrix} 4 & -1 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & -1 & 4 \end{pmatrix} \begin{pmatrix} T_{1,1} \\ T_{2,1} \\ T_{3,1} \\ T_{4,1} \\ T_{5,1} \end{pmatrix} = \begin{pmatrix} 20 \\ 20 \\ 20 \\ 20 \\ 40 \end{pmatrix}$$

Independientemente del valor de h utilizado, que es el que determina el tamaño de la matrix, este sistema de ecuaciones es diagonal dominante y puede solucionarse mediante métodos iterativos de forma eficiente

- Incognitas
- Condiciones de contorno
- Irrelevantes

Caso h=5 cm, Gauss Seidel

Para resolverlas iterativamente es conveniente reescribirlas de una forma explícita directamente relacionada con el esquema de derivación a 2 puntos.

T=0 grados T=20 grados

Reescribamos:

$$T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1} - 4T_{i,j} = 0$$

Como:

$$T_{i,j} = \frac{T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1}}{4}$$

En esta forma podemos ahora iterar.

Incognitas

Condiciones de contorno

Irrelevantes

Método de Gauss Seidel

$$T_{i,j} = \frac{T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1}}{4}$$

En esta forma podemos ahora iterar.

El método de Gauss-Seidel funciona del siguiente modo:

2) Utilizamos la ecuación de arriba para recalcular todos los valores:

$$T_{i,j}^{\text{nuevo}} = \frac{T_{i+1,j}^{\text{old}} + T_{i-1,j}^{\text{old}} + T_{i,j+1}^{\text{old}} + T_{i,j-1}^{\text{old}}}{4}$$

- Incognitas
- Condiciones de contorno
- Irrelevantes

Caso h=5 cm, Gauss Seidel, convergencia

Ite	T11	T21	T31	T41	T51
0	1.00000	1.00000	1.00000	1.00000	1.00000
1	5.25000	5.50000	5.50000	5.50000	10.25000
2	6.37500	7.68750	7.75000	8.93750	11.37500
3	6.92188	8.53125	9.15625	9.78125	12.23438
4	7.13281	9.01953	9.57812	10.34766	12.44531
5	7.25488	9.17773	9.84180	10.50586	12.58691
6	7.29443	9.27417	9.92090	10.60718	12.62646
7	7.31854	9.30383	9.97034	10.63684	12.65179
8	7.32596	9.32222	9.98517	10.65553	12.65921
9	7.33055	9.32778	9.99444	10.66109	12.66388
10	7.33195	9.33125	9.99722	10.66458	12.66527
11	7.33281	9.33229	9.99896	10.66562	12.66615
12	7.33307	9.33294	9.99948	10.66628	12.66641

Hemos resuelto correctamente las ecuaciones.

¿Hemos resuelto correctamente el problema original?

Caso h=0.5 cm, Gauss Seidel, convergencia

Caso h=0.2 cm, Gauss Seidel, convergencia

Caso h=0.05 cm, Gauss Seidel, convergencia

Método de Jacobi

$$T_{i,j} = \frac{T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1}}{4}$$

T=0 grados T=20 grados

El método de **Jacobi** funciona del siguiente modo:

- 1) Inicializamos la matriz $T_{i,j}$ con valores, por ejemplo 1, incluyendo las condiciones de contorno.
- 2) Utilizamos la ecuación de arriba para recalcular todos los valores. Pero ahora, utilizamos como valores "old" los valores ya recalculados en cada iteración:

$$T_{i,j}^{\text{nuevo}} = \frac{T_{i+1,j}^{\text{nuevo}} + T_{i-1,j}^{\text{nuevo}} + T_{i,j+1}^{\text{nuevo}} + T_{i,j-1}^{\text{nuevo}}}{4}$$

Caso h=0.05 cm, Jacobi vs Gauss Seidel

Tamaño: 300 x 200

Número de ecuaciones $599 \times 199 = 119201$

Tiempo de cálculo:

1m desktop Gfortran -O3

Caso h=0.05 cm, Jacobi vs Gauss Seidel

Número de ecuaciones:

 $599 \times 199 = 119201$

Tiempo de cálculo:

6minutos Gfortran -O3

Caso h=0.05 cm, Jacobi vs Gauss Seidel

Número de ecuaciones:

 $599 \times 199 = 119201$

6minutos Gfortran -O3

Algoritmo Gauss Seidel

- > Inicializamos dos matrices de temperaturas, TNEW(Nx,Ny) y TOLD(Nx,Ny), Incluyendo condiciones de contorno
- > Arrancamos un bucle hasta obtener una determinada tolerancia
 - > Recorremos todo el interior de la matriz de temperaturas, e.g. con dos bucles anidados,
 - + Calculamos TNEW a partir de TOLD
 - + Calculamos el error cometido, estimándolo a partir de las diferencias entre TNEW y TOLD
 - > Asignamos TOLD= TNEW y seguimos hasta tener la tolerancia

Algoritmo a la Jacobi

- > Inicializamos una matriz de temperaturas, TNEW(Nx,Ny). Incluyendo condiciones de contorno
- > Arrancamos un bucle hasta obtener una determinada tolerancia
 - > Recorremos todo el interior de la matriz de temperaturas, e.g. con dos bucles anidados,
 - + Calculamos TNEW(i,j) a partir de TNEW
 - + Calculamos el error cometido, estimandolo a partir de las diferencias entre TNEW(i,j) y TNEW(i,j) previo
 - > Seguimos hasta tener la tolerancia

En fortran (inicializamos)

```
implicit none
        double precision dx,lx,ly
        integer nx,ny,nkmax,igauss
c paso en x e y
        parameter (dx=0.05d0)
                                                   T=0 grados
c longitud de la caja en cm
                                                    T=20 grados
        parameter (1x=30.d0)
        parameter (ly=10.d0)
c numero de puntos en cada dirección
        parameter (nx=int(lx/dx))
        parameter (ny=int(ly/dx))
c numero de iteraciones de gauss seidel
        parameter (nkmax=100000)
c matrices de temperaturas
        double precision tnew(0:nx,0:ny),told(0:nx,0:ny),error,tol
       integer i,j,k
```

En fortran, condiciones de contorno

```
Igauss=1
c boundaries
        do i=0,nx
         told(i,0)=0.d0
         told(i,ny)=20.d0
        enddo
        do j=0, ny
         told(0,j)=0.d0
         told(nx,j)=20.d0
        Enddo
c Arrancamos todas las temperaturas a 1 (Excepto el contorno)
        do i=1,nx-1
        do j=1,ny-1
c todos menos los bordes puestos a 1
         told(i,j)=1.d0
        enddo
                                                    T=0 grados
        enddo
                                                    T=20 grados
```

En fortran, Gauss-Seidel / Jacobi

```
c iteracion de Gauss Seidel
            k=0
 10
           continue
            k=k+1
                                                                   T=0 grados
T=20 grados
C
        if (mod(k,100).eq.0) write(33,333) k-1,tnew(nx/2,ny/2),tnew(2,2)
         format(I5,2x,(20(e12.5,2x)))
333
c calcula los puntos siguientes
          do i=1,nx-1
             do j=1,ny-1
         If (igauss.eq.1) then
c Gauss Seidel
         tnew(i,j)=(told(i+1,j)+told(i-1,j)+told(i,j+1)+told(i,j-1))/4.d0
          else
c Jacobi
         tnew(i,j)=(tnew(i+1,j)+tnew(i-1,j)+tnew(i,j+1)+tnew(i,j-1))/4.d0
         endif
             enddo
          enddo
                    B. Juliá-Díaz, Física Computacional 2016/2017
```

En fortran, criterio de convergencia

```
c calcula error para ver la convergencia y
c told=tnew para la proxima iteracion
           error=0.d0
           do i=1,nx-1
                                                        T=0 grados
T=20 grados
           do j=1, ny-1
           error=error+abs(told(i,j)-tnew(i,j))/(told(i,j)+tnew(i,j))
           told(i,j)=tnew(i,j)
           enddo
           enddo
          if (mod(k,100).eq.0) write(50,*) k,error
c check de convergencia
          if (error.lt.tol.or.k.eq.nkmax) goto 20
          goto 10
c Iteracion de Gauss Seidel terminada
 20
         continue
```

Método de sobre-relajación sucesiva

$$T_{i,j} = \frac{T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1}}{4}$$

Existen algunos métodos que también funcionan en este problema que son los métodos de sobre-relajación de Southwell.

Una forma de derivarlos es la siguiente. Comencemos con esta versión:

$$T_{i,j}^{\text{nuevo}} = \frac{T_{i+1,j}^{\text{old}} + T_{i-1,j}^{\text{nuevo}} + T_{i,j+1}^{\text{old}} + T_{i,j-1}^{\text{nuevo}}}{4}$$

$$T_{i,j}^{\text{nuevo}} = T_{i,j}^{\text{old}} + \frac{T_{i+1,j}^{\text{old}} + T_{i-1,j}^{\text{nuevo}} + T_{i,j+1}^{\text{old}} + T_{i,j-1}^{\text{nuevo}} - 4T_{i,j}^{\text{old}}}{4}$$

Corrección

Cuando haya convergido, la corrección sera **ZERO**

Método de sobre-relajación sucesiva

$$T_{i,j}^{\text{nuevo}} = T_{i,j}^{\text{old}} + \frac{T_{i+1,j}^{\text{old}} + T_{i-1,j}^{\text{nuevo}} + T_{i,j+1}^{\text{old}} + T_{i,j-1}^{\text{nuevo}} - 4T_{i,j}^{\text{old}}}{4}$$

El método consiste en aplicar un factor multiplicativo a la corrección, para hacer que converja más rápidamente:

$$T_{i,j}^{\text{nuevo}} = T_{i,j}^{\text{old}} + \omega \frac{T_{i+1,j}^{\text{old}} + T_{i-1,j}^{\text{nuevo}} + T_{i,j+1}^{\text{old}} + T_{i,j-1}^{\text{nuevo}} - 4T_{i,j}^{\text{old}}}{4}$$

El parámetro ω tiene su valor óptimo entre 1 y 2. Para cada problema hay un valor óptimo. Algunos métodos refinan el valor de ω dependiendo de los valores de las primeras iteraciones.

Efecto de ω

Estudiemos la convergencia del valor central como función de ω Criterio de convergencia: máximo error local 0.00001d0

H=0.05 cm

Fórmulas de orden superior

Las fórmula a 5 puntos se suele escribir con la siguiente notación: (error h²)

$$\nabla^2 T_{i,j} = \frac{1}{h^2} \left\{ 1 \quad -4 \quad 1 \right\} T_{i,j} = 0$$
$$T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1} - 4T_{i,j} = 0$$

Se puede derivar una fórmula a 9 puntos, con estructura: (error h⁶)

$$\nabla^2 T_{i,j} = \frac{1}{6h^2} \begin{cases} 1 & 4 & 1 \\ 4 & -20 & 4 \\ 1 & 4 & 1 \end{cases} T_{i,j} = 0$$

$$T_{i+1,j+1} + T_{i-1,j+1} + T_{i+1,j-1} + T_{i-1,j-1} + 4T_{i+1,j} + 4T_{i-1,j} + 4T_{i,j+1} + 4T_{i,j+1} - 20T_{i,j} = 0$$

Ecuación de Poisson

Las mismas técnicas pueden aplicarse para resolver la ecuación de Poisson 2D

$$\nabla^2 u(x,y) = \rho(x,y)$$
 e.g Fuente de calor Cargas Masas
$$\nabla^2 u_{i,j} = \frac{1}{h^2} \left\{ 1 \quad -4 \quad 1 \right\} u_{i,j} = \rho_{i,j}$$

Y podremos utilizar los mismos métodos iterativos para resolver el sistema de ecuaciones.

Poisson

Veamos un ejemplo, siguiendo el Gerald/Wheatley, de ecuación de Poisson

Resolvamos el problema: (phi(x,y)=0 en el contorno)

$$\nabla^2 \phi(x, y) + 2 = 0$$

Aparece la "h"

Utilizando la fórmula a 5 puntos habitual tendremos:

$$\phi_{i+1,j} + \phi_{i-1,j} + \phi_{i,j+1} + \phi_{i,j-1} + 2h^2 - 4\phi_{i,j} = 0$$

Que hacemos explícita para utilizar métodos iterativos:

$$\phi_{i,j} = \frac{\phi_{i+1,j} + \phi_{i-1,j} + \phi_{i,j+1} + \phi_{i,j-1} + 2h^2}{4}$$

Poisson

Utilicemos Gauss-Seidel, en este caso:

Indica la iteración

Si quisiéramos utilizar Jacobi tendríamos:

(si suponemos que recorremos la matriz con i y j ascendentes)

$$\phi_{i,j}^{k+1} = \frac{\phi_{i+1,j}^k + \phi_{i-1,j}^{k+1} + \phi_{i,j+1}^k + \phi_{i,j-1}^{k+1} + 2h^2}{4}$$

Poisson, G-S

Utilicemos Gauss-Seidel, en este caso:

$$\phi_{i,j}^{k+1} = \frac{\phi_{i+1,j}^k + \phi_{i-1,j}^k + \phi_{i,j+1}^k + \phi_{i,j-1}^k + 2h^2}{4}$$

h=1 cm,

GS requiere (sin tener en cuenta simetrías), unas **80** iteraciones para tolerancia 0.001 Jacobi requiere unas **25** para tener la misma precisión.

Valor de Phi(x,y) (en color)

Poisson, G-S

Poisson, G-S

Condiciones de Neumann

Hasta ahora hemos considerado condiciones de contorno de Dirichlet, ¿Cómo podemos incorporar condiciones de Neumann?

Ly=10 cm

Grad T=-15°C/cm
T=20 °C

Imaginemos el problema con Condiciones:

$$\left. \frac{\partial T(x,y)}{\partial x} \right|_{x=0} = -15 \text{C/cm}$$

$$T(x, y = 0) = T(x = L_x, y) = T(x, y = L_y) = 20C$$

Condiciones de Neumann

Para implementar la condición de Neumann:

- > Añadimos una columna de puntos (en este caso)
- > Utilizamos una formula a dos puntos para la derivada en esos puntos:

$$f'_{n} = \frac{f_{n+1} - f_{n-1}}{2h}$$

$$f_{n-1} = f_{n+1} - 2hf'_{n}$$

$$\downarrow$$

$$T_{-1,1} = T_{1,1} - 2h15$$

$$\left. \frac{\partial T(x,y)}{\partial x} \right|_{x=0} = -15 \text{C/cm}$$

Punto auxiliar

Poisson + Neumann

Veamos un ejemplo, siguiendo el Gerald/Wheatly, de ecuación de Poisson con condiciones de Neumann.

Una placa de 8x4 cm, 1cm de grosor, calentada homogéneamente con,

Q cal /(s cm³). La placa tiene una conductividad de k=0.16 cal /(s cm²) °C/cm. Consideraremos Q=5 u otros valores. Tenemos en este casó la ecuación de Poisson para el estado estacionario:

$$k
abla^2 T(x,y) = -Q(x,y)$$
 $Q(x,y) = Q(x,y)$ $Q(x,y) = Q(x,y)$ $Q(x,y) = Q(x,y)$

$$Q(x,y) \equiv Q$$

$$\frac{Q}{\kappa} = \frac{5}{0.16} \frac{\text{grados}}{\text{cm}^2}$$

Supongamos que perdemos calor por los bordes superior e inferior

$$\left. \frac{\partial T(x,y)}{\partial y} \right|_{x=0} = -15 \text{C/cm}$$

Poisson + Neumann

Tendremos el siguiente sistema de ecuaciones, Para los puntos interiores y frontera de Neumann:

$$k\nabla^2 T(x,y) = -Q(x,y)$$

$$T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1} - 4T_{i,j} = -h^2Q/\kappa$$

Utilizando para los puntos auxiliares:

$$T_{i,N_y+1} = T_{i,N_y-1} - 2h15$$

$$T_{i,-1} = T_{i,1} - 2h15$$

Poisson + Neumann

En el caso de la figura tendremos el sistema con:

15 ecuaciones de 5 puntos:

$$T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1} - 4T_{i,j} = -h^2Q/\kappa$$

10 ecuaciones para los puntos auxiliares

$$T_{i,N_y+1} = T_{i,N_y-1} - 2h15$$

$$T_{i,-1} = T_{i,1} - 2h15$$

Gauss-Seidel, Q=2

Gauss-Seidel, Q=1

H=0.05 cm

Temperatura (grados)

H=0.02 cm

Jacobi vs GS vs relaxation

NUMERO DE ITERACIONES (TOLERANCIA=0.00001)

Condición inicial: H=0.02	T=1	T=0
Gauss-Seidel	198624	204319
Jacobi	121893	124747
SORelajación 1.5	52621	53576
SORelajacion 1.9	11802	11645

- > Más de un factor 10 de mejora utilizando métodos de sobrerelajación
- > Dependencia menor en las condiciones iniciales

Jacobi vs GS vs relaxation

Jacobi vs GS vs relaxation (Q=1)

Para hacer esta representación con gnuplot. Un "fichero.dat"

```
TEMPERATURA
     y1
X1
          T11
X1
     y2
          T12
    yNx
           T<sub>1</sub>N
Linea en blanco
     y1
          T11
X2
     y2
          T12
     yNx
           T1N
```

Comando:

plot "fichero.dat" w image

Jacobi vs GS vs relaxation (Q=1)

Comando:

sp "fichero.dat" w pm3d

Para hacer esta representación con gnuplot. Un "fichero.dat"

```
TEMPERATURA
     y1
           T11
X1
     y2
           T12
     yNx
            T<sub>1</sub>N
Linea en blanco
     y1
           T11
X2
     y2
           T12
X2
     yNx
            T<sub>1</sub>N
```


Jacobi vs GS vs relaxation (Q=5)

sp "fichero.dat" w pm3d

Para hacer esta representación con gnuplot. Un "fichero.dat"

```
TEMPERATURA
     y1
X1
          T11
X1
     y2
          T12
     yNx
           T<sub>1</sub>N
Linea en blanco
     y1
          T11
X2
     y2
          T12
     yNx
           T1N
```

