Sparse Models

CMPUT 466/551

Ping Jin (pjin1@ualberta.ca)

Outline

Introduction to Dimension Reduction

Linear Regression and Least Squares (Review)

Subset Selection

Shrinkage Method

Beyond Lasso

Part 1: Introduction to Dimension Reduction

- · Introduction to Dimension Reduction
 - General notations
 - Motivations
 - Feature selection and feature extraction
 - Feature Selection
 - Wrapper method
 - Filter method
 - Embedded method
 - Feature Extraction
 - PCA, ICA...
- · Linear Regression and Least Squares (Review)
- Subset Selection
- · Shrinkage Method
- · Beyond Lasso

General Notations

Dataset

- **X**: columnwise centered $N \times p$ matrix
 - N: # samples, p: # features
- $y: N \times 1$ vector of labels(classification) or continous values(regression)

Basic Model

- · Linear Regression
 - Assumption: the regression function E(Y|X) is linear

$$f(X) = X\beta$$

- β : $p \times 1$ vector of coefficients

Motivations

- · Dimension reduction is about transforming data with high dimensionality into data of much lower dimensionality
 - Computational efficiency: less dimensions require less computations
 - Accuracy: lower risk of overfitting

· Categories

- Feature Selection:

- chooses a subset of features from the original feature set

- Feature Extraction:
 - transforms the original features into new ones, linearly or non-linearly
 - e.g. projects data from high dimensions to low dimensions

Feature Selection and Feature Extraction

Feature Selection

- Interpretation
- · Cost constraint: computation, cost, etc.

Feature Extraction

 More flexible. Feature selection is a spectial case of linear feature extraction

Feature Selection and Feature Extraction

Example 1: Prostate Cancer

- · Response: level of prostate-specific antigen (lpsa).
- · Inputs:

{lcavol, lweight, age, lbph, svi, lcp, gleason, pgg45}.

- · Task:
 - predict *lpsa* from measurements of features

Feature selection applies better

- · Cost: Measuring features cost money
- · Interpretation: Doctors can see which features are important

Feature Selection and Feature Extraction

Example 2: classification with fMRI data

- fMRI data are 4D images, with one dimension being the time slot.
- Each image is $\sim 50 \times 50 \times 50$ (spatial) $\times 200$ (times) = 25m dimensions

Feature extraction apllies better,

- · Interpretation is not very important in this task
- · Cost is not correlated with #features
- · Feature extraction offers more flexibility in transforming features, which potentially results in better accuracy

Feature Selection Methods

Wrapper Methods

- · search the space of feature subsets
- · use the training/validation accuracy of a particular classifier as the measure of utility for a candidate subset

Feature Selection Methods

Embedded Methods

- · exploit the structure of specific classes of learning models to guide the feature selection process
- · e.g. LASSO. It is embedded as part of the model construction process

Feature Selection Methods

Filter Methods

- · use some general rules/criterions to measure the feature selection results independent of the classifiers
- · e.g. mutual information based method

Feature Selection

Comparison

	WRAPPER	FILTER	EMBEDDED
Speed	Low	High	Mid
Chance of Overfitting	High	Low	Mid
Classifier-Independent	No	Yes	No

Feature Extraction

Principle Components Analysis

· A graphical explanation

- Each data sample has two features
- Often prefer the direction with larger variance
- Original features are transformed into new ones

· Example

- For fMRI images, we usually have millions of dimensions. PCA can project the data from millions of dimensions to only thousands of dimensions, or even less
- Other feature extraction methods: ICA, Kernel PCA, etc..

Part 2: Linear Regression and Least Squares (Review)

- Introduction to Dimension Reduction
- · Linear Regression and Least Squares (Review)
 - Least Square Fit
 - Gauss Markov
 - Bias-Variance tradeoff
 - Problems
- Subset Selection
- · Shrinkage Method
- · Beyond Lasso

Linear Regression and Least Squares (Review)

Least Squares Fit

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{T} (\mathbf{y} - \mathbf{X}\beta)$$
$$\frac{\partial RSS}{\partial \beta} = -2\mathbf{X}^{T} (\mathbf{y} - \mathbf{X}\beta) = 0$$
$$\hat{\beta} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{y}$$

Gauss Markov Theorem

The least squares estimates of the parameters β have the smallest variance among all linear unbiased estimates.

Question

Is it good to be unbiased?

Linear Regression and Least Squares (Review)

Bias-Variance tradeoff

$$MSE(\tilde{\theta}) = E[(\tilde{\theta} - \theta)^{2}]$$
$$= Var(\tilde{\theta}) + [E[\tilde{\theta}] - \theta]$$

where $\theta = \alpha^T \beta$. We can trade some bias for much less variance.

Problems of Least Squares

- **Prediction accuracy**: unbiased, but high variance compared to many biased estimators, overfitting noise and sensitive to outlier
- Interpretation: $\hat{\beta}$ involves all of the features. Better to have SIMPLER linear model, that involves only a few features...
- \cdot ($\mathbf{X}^T\mathbf{X}$) may be **not invertible** and thus no closed form solution

Part 3: Subset Selection

- · Introduction to Dimension Reduction
- · Linear Regression and Least Squares (Review)
- · Subset Selection
 - Best-subset selection
 - Forward stepwise selection
 - Forward stagewise selection
 - Problems
- · Shrinkage Method
- · Beyond Lasso

Best-subset selection

- Best subset regression finds for each $k \in \{0, 1, 2, ..., p\}$ the subset of features of size k that gives smallest residual sum of squares. Then cross validation is utilized to choose the best k
- An efficient algorithm, the leaps and bounds procedure (Furnival and Wilson, 1974), makes this feasible for *p* as large as 30 or 40.

FIGURE 3.5. All possible subset models for the prostate cancer example. At each subset size is shown the residual sum-of-squares for each model of that size.

Forward-STEPWISE selection

Instead of searching all possible subsets, we can seek a good path through them. This is a **sequential greedy** algorithm.

Forward-Stepwise Selection builds a model sequentially, adding one variable at a time.

- · Initialization
 - Active set $A = \emptyset$, $\mathbf{r} = \mathbf{y}$, $\beta = 0$
- · At each step, it
 - identifies the best variable (with the highest correlation with the residual error)

$$\mathbf{k} = argmax_j(|correlation(\mathbf{x}_j, \mathbf{r})|)$$

- $A = A \cup \mathbf{k}$
- then updates the least squares fit β , **r** to include all the active variables

Forward-STAGEWISE Regression

Suppose that **X** is columnwise centered

- · Initialize the fit vector $\mathbf{f} = 0$
- · For each time step
 - Compute the correlation vector $\mathbf{c} = (\mathbf{c}_1, \dots \mathbf{c}_p)$, \mathbf{c}_j represents the correlation between \mathbf{x}_j and the residual error
 - $k = argmax_{i \in \{1,2,...,p\}} |\mathbf{c}_i|$
 - Coefficients and fit vector are updated

$$\mathbf{f} \leftarrow \mathbf{f} + \alpha \cdot sign(\mathbf{c}_k)\mathbf{x}_k$$

$$\beta_k \leftarrow \beta_k + \alpha \cdot sign(\mathbf{c}_k)$$

where α is the learning rate

Comparison

- Forward-STEPWISE selection:
 - algorithm stops in p steps
- Forward-STAGEWISE selection:
 - is a slow fitting algorithm, at each time step, only β_k is updated. It can take more than p steps for the algorithm to stop
 - Forward stagewise is useful in high dimensional problem

- $\cdot N = 300$ Obervations
- p = 31 features
- · averaged over 50 simulations

Pros

- · More interpretable
- · More compact

Cons

- · It is a discrete process, and thus has high variance and sensitivity to the change in dataset.
 - If the dataset changes a little, the feature selection result may be very different
- · Thus may not be able to lower prediction error

Part 4 Shrinkage Method

- · Introduction to Dimension Reduction
- · Linear Regression and Least Squares (Review)
- · Subset Selection
- · Shrinkage Method
 - Ridge Regression
 - Formulations and closed form solution
 - Singular value decomposition
 - Degree of Freedom
 - Lasso
- · Beyond Lasso

· Least squares with quadratic constraints

$$\hat{\beta}^{ridge} = argmin_{\beta} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} \mathbf{x}_{ij} \beta_j)^2, s. t. \sum_{j=1}^{p} \beta_j^2 \le t$$

· Least squares with quadratic constraints

$$\hat{\beta}^{ridge} = argmin_{\beta} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} \mathbf{x}_{ij} \beta_j)^2, s. t. \sum_{j=1}^{p} \beta_j^2 \le t$$

· Its Lagrange form

$$\hat{\beta}^{ridge} = argmin_{\beta} \{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} \mathbf{x}_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \}$$

- The l_2 -regularization can be viewed as a Gaussian prior on the coefficients, and our estimates are the posterior means
- Solution

$$RSS(\lambda) = (\mathbf{y} - \mathbf{X}\beta)^{T}(\mathbf{y} - \mathbf{X}\beta) + \lambda\beta^{T}\beta$$
$$\hat{\beta}^{ridge} = (\mathbf{X}^{T}\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^{T}\mathbf{y}$$

Singular Value Decomposition (SVD)

SVD offers some additional insight into the nature of ridge regression.

· The SVD of X:

$$X = UDV^T$$

- U: $N \times p$ orthogonal matrix with columns spanning the column space of **X**. \mathbf{u}_j is the *j*th column of **U**
- V: $p \times p$ orthogonal matrix with columns spanning the row space of **X**. \mathbf{v}_j is the jth column of **V**
- D: p × p diagonal matrix with diagonal entries d₁ ≥ d₂ ≥... ≥ dp ≥ 0 being the singular values of X

Singular Value Decomposition (SVD)

· For least squares

$$\mathbf{X}\hat{\boldsymbol{\beta}}^{ls} = \mathbf{X}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$
$$= \mathbf{U}\mathbf{U}^{\mathrm{T}}\mathbf{y}$$

· For ridge regression

$$\mathbf{X}\hat{\boldsymbol{\beta}}^{ridge} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$
$$= \sum_{i=1}^{p} \mathbf{u}_{i} \frac{d_{j}^{2}}{d_{j}^{2} + \lambda} \mathbf{u}_{j}^{\mathsf{T}}\mathbf{y}$$

- Compared with the solution of least squares, we have an additional shrinkage term $\frac{d_j^2}{d_j^2 + \lambda}$, the smaller d is and the larger λ is, the more shrinkage we have.
- The SVD of the centered matrix *X* is another way of expressing the principal components of the variables in *X*.

Singular Value Decomposition (SVD)

·
$$N = 100, p = 10$$

$$\mathbf{X}\hat{\boldsymbol{\beta}}^{ls} = \mathbf{u}_{1} \times \mathbf{u}_{1}^{T}\mathbf{y} + \mathbf{u}_{2} \times \mathbf{u}_{2}^{T}\mathbf{y} + \dots + \mathbf{u}_{3} \times \mathbf{u}_{p}^{T}\mathbf{y}$$

Degree of Freedom

- In statistics, the number of degrees of freedom is the number of values in the final calculation of a statistic that are free to vary.
- · Computation

$$d(\lambda) = tr[\mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}]$$
$$= \sum_{i=1}^{p} \frac{d_{i}^{2}}{d_{i}^{2} + \lambda}$$

 The larger λ is, the less degree of freedom we have. And then our model will be more constrained.

Pros

- \cdot (**X**^T**X** + λ **I**) is invertible and thus the cloased form solution always exist
- Ridge regression controls the complexity with regularization term via λ , which is less prone to overfitting compared with least squares fit, e.g. sometimes a wildly large coefficient on one variable can be cancelled by another wildly large coefficient of a correlated variable
- · Possibly higher prediction accuracy, as the estimates of ridge regression trade a little bias for less variance, compared with least squares

Cons

· Interpretability and compactness: Though coefficients are shrunk, but not to zero. For high dimensional problem, it may cause efficiency issue.

Part4 Shrinkage Method - LASSO

- · Introduction to Dimension Reduction
- · Linear Regression and Least Squares (Review)
- · Subset Selection
- · Shrinkage Method
 - Ridge Regression
 - Lasso
 - Formulations
 - Comparisons with ridge regression and subset selection
 - Quadratic Programming
 - Least Angle Regression
 - Viewed as approximation for l_0 -regularization
- · Beyond Lasso

Linear regression with l_1 -regularization

- Formulations
 - Least squares with constraints

$$\hat{\beta}^{lasso} = argmin_{\beta} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} \mathbf{x}_{ij} \beta_j)^2, \quad s. t. \sum_{j=1}^{p} |\beta_j| \le t$$

- Its lagrange form

$$\hat{\beta}^{lasso} = argmin_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} \mathbf{x}_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

- The 1₁-regularization can be viewed as a Laplace prior on the coefficients

• $s = \frac{t}{\sum_{j=1}^{p} |\hat{\mathcal{G}}_{j}|}$, where $\hat{\beta}$ is the least square estimates.

· Redlines represent the s and $df(\lambda)$ with the best cross validation errors

- · Introduction to Dimension Reduction
- · Linear Regression and Least Squares (Review)
- · Subset Selection
- · Shrinkage Method
 - Ridge Regression
 - Lasso
 - Formulations
 - Comparisons with ridge regression and subset selection
 - Orthonormal inputs
 - Non-orthonormal inputs
 - Quadratic Programming
 - Least Angle Regression
 - Viewed as approximation for l_0 -regularization
- · Beyond Lasso

Comparison

- · Orthonormal Input X
 - **Best subset**: [Hard thresholding] Only keep the top M largest coefficients of $\hat{\beta}^{ls}$
 - **Ridge**: [Pure shrinkage] does proportional shrinkage of $\hat{\beta}^{ls}$
 - Lasso: [Soft thresholding] translates each coefficient of $\hat{\beta}^{ls}$ by λ towards 0, truncating at 0

Comparison

· Non-orthonormal Input X

Solid blue area: the constraints

· left: $|\beta_1| + |\beta_1| \le t$

· right: $\beta_1^2 + \beta_1^2 \le t^2$

 $\hat{\beta}$: least squares fit

Other unit circles for different p-norms

FIGURE 3.12. Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for given values of q.

	CONVEX	SMOOTH	SPARSE
<i>q</i> < 1	No	No	Yes
q > 1	Yes	Yes	No
q = 1	Yes	No	Yes

Here q = 0 is the pure variable selection procedure, as it is counting the **number of non-zero coefficients**.

Regularizations as priors

 $|\beta_j|^q$ can be viewed as the log-prior density for β_j , these three methods are bayes estimates with different priors

- Subset selection: corresponds to q = 0
- **LASSO**: corresponds to q = 1, Laplace prior, $density = (\frac{1}{\tau})exp(\frac{-|\beta|}{\tau}), \tau = \sigma/\lambda$
- Ridge regression: corresponds to q=2, Gaussian Prior, $\beta \sim N(0, \tau \mathbf{I})$, $\lambda = \frac{\sigma^2}{\tau^2}$

- · Introduction to Dimension Reduction
- · Linear Regression and Least Squares (Review)
- · Subset Selection
- · Shrinkage Method
 - Ridge Regression
 - Lasso
 - Formulations
 - Comparisons with ridge regression and subset selection
 - Quadratic Programming
 - Least Angle Regression
 - Viewed as approximation for l_0 -regularization
- · Beyond Lasso

Quadratic Programming

· Formulation

$$min_{\beta} \{ \frac{1}{2} (\mathbf{X}\beta - \mathbf{y})^{T} (\mathbf{X}\beta - \mathbf{y}) + \lambda \|\beta\|_{1} \}$$

is equivalent to

$$\min_{w,\xi} \left\{ \frac{1}{2} \left(\mathbf{X}\beta - \mathbf{y} \right)^T (\mathbf{X}\beta - \mathbf{y}) + \lambda \mathbf{1}^T \xi \right\}$$

$$s. t. \ \beta_j \le \xi_j$$

$$\beta_i \ge -\xi_i$$

· Note that QP can only solve LASSO for a given λ . Later in this slide, a method called least angle regression can solve LASSO for all λ

- · Introduction to Dimension Reduction
- · Linear Regression and Least Squares (Review)
- · Subset Selection
- · Shrinkage Method
 - Ridge Regression
 - Lasso
 - Formulations
 - Comparisons with ridge regression and subset selection
 - Quadratic Programming
 - Least Angle Regression
 - Viewed as approximation for l_0 -regularization
- · Beyond Lasso

Least Angle Regression

Notations

- \cdot A_k : active set, the set of features we already included in the model at time step k
- β_{A_k} : coefficients vector at the beginning of time step k
- $\beta_{A_k}(\alpha)$: coefficients vector in time step k w.r.t. α ,
- \mathbf{f}_k : the fit vector at the beginning of time step k, $\mathbf{f}_0 = 0$
- $\mathbf{f}_k(\alpha)$: the fit vector in time step k w.r.t. α
- \mathbf{r}_k : residual vector at the beginning of time step k, $\mathbf{r}_0 = \mathbf{y} \bar{\mathbf{y}}$
- $\mathbf{r}_k(\alpha)$: residual vector in time step k, w.r.t. α

LAR Algorithm

- · Initialization:
 - Standardized all predictors s.t. $\bar{\mathbf{x}}_j = 0$, $\mathbf{x}_i^T \mathbf{x}_j = 1$; $\mathbf{r}_0 = \mathbf{y} \bar{\mathbf{y}}$; $\beta = \mathbf{0}$; $\mathbf{f}_0 = \mathbf{0}$; $\mathcal{A}_k = \emptyset$
 - $k = argmax_j | \mathbf{x}_i^T \mathbf{r}_0 |, \mathcal{A}_1 = \{k\}$
- · Main
 - for time step t
 - $\mathbf{r}_t = \mathbf{y} \mathbf{X}_{\mathcal{A}_t} \boldsymbol{\beta}_{\mathcal{A}_t}$, $\mathbf{f}_t = \mathbf{X}_{\mathcal{A}_t} \boldsymbol{\beta}_{\mathcal{A}_t}$
 - Search α
 - $\beta_{\mathcal{A}_t}(\alpha) = \beta_{\mathcal{A}_t} + \alpha \cdot \delta_t$, where $\delta_t = (\mathbf{X}_{\mathcal{A}_t}^{\mathsf{T}} \mathbf{X}_{\mathcal{A}_t})^{-1} \mathbf{X}_{\mathcal{A}_t}^{\mathsf{T}} \mathbf{r_t}$
 - Concurrently, $\mathbf{f}_t(\alpha) = \mathbf{f}_t + \alpha \cdot \mathbf{u}_t$, where $\mathbf{u}_t = \mathbf{X}_{A_t} \delta_t$
 - Until $|\mathbf{X}_{\mathcal{A}_t} \mathbf{r}_t(\alpha)| = \max_{\mathbf{x}_j \in \bar{\mathcal{A}}_t} |\mathbf{x}_j^T \mathbf{r}_t(\alpha)|$
 - $k = argmax_{j \in \bar{\mathcal{A}}_t} |\mathbf{x}_j \mathbf{r}_t(\alpha)|$
 - $\mathcal{A}_{t+1} = \mathcal{A}_t \cup \{k\}$

Initialization:

- Standardized all predictors

- s.t.
$$\bar{\mathbf{x}}_j = 0$$
, $\mathbf{x}_j^T \mathbf{x}_j = 1$

-
$$\mathbf{r}_0 = \mathbf{y} - \bar{\mathbf{y}}$$
;

-
$$\beta = (0,0)^T$$
;

-
$$\mathcal{A}_0 = \emptyset$$

- \mathbf{f}_0 is the current fit at time 0 and $\mathbf{f}_0 = (0,0)^T$

·
$$k = argmax_j |\mathbf{x}_j^T \mathbf{r}_0| = 1$$

$$\cdot \ \mathcal{A}_1 = \{1\}$$

$$\cdot \mathbf{r}_1 = \mathbf{y} - \mathbf{X}_{A_1} \boldsymbol{\beta}_{A_1}$$

$$\cdot \delta_1 = (\mathbf{X}_{\mathcal{A}_1}^{\mathsf{T}} \mathbf{X}_{\mathcal{A}_1})^{-1} \mathbf{X}_{\mathcal{A}_1}^{\mathsf{T}} \mathbf{r}_1$$

$$\cdot \mathbf{u}_1 = \mathbf{X}_{\mathcal{A}_1} \delta_1$$

Explanations

· Search α

-
$$\beta_{A_1}(\alpha) = \beta_{A_1} + \alpha \cdot \delta_1$$
,

-
$$\mathbf{f}_1(\alpha) = \mathbf{f}_1 + \alpha \cdot \mathbf{u}_1$$

-
$$\mathbf{r}_1(\alpha) = \mathbf{y} - \mathbf{X}_{\mathcal{A}_1} \boldsymbol{\beta}_{\mathcal{A}_1}(\alpha)$$

· Until
$$|\mathbf{X}_{A_1} \mathbf{r}_1(\alpha)| = \max_{i \in \bar{A}_1} |\mathbf{x}_i^T \mathbf{r}_1(\alpha)|$$

·
$$2 = argmax_{i \in \bar{A}_1} |\mathbf{x}_i^T \mathbf{r}_1(\alpha)|$$

$$A_2 = \{1, 2\}$$

Comments

• f_t is approaching $f_t^{LeastSquares}$, but never reaches it, except for the final step

Explanations

$$\cdot \mathbf{r}_2 = \mathbf{y} - \mathbf{X}_{\mathcal{A}_2} \boldsymbol{\beta}_{\mathcal{A}_2}$$

$$\cdot \ \delta_2 = (\mathbf{X}_{A_2}^{\mathsf{T}} \mathbf{X}_{A_2})^{-1} \mathbf{X}_{A_2}^{\mathsf{T}} \mathbf{r}_2$$

$$\cdot \mathbf{u}_2 = \mathbf{X}_{\mathcal{A}_2} \delta_2$$

Comments

T₁ the direction $\mathbf{u}_k = \mathbf{X}_{\mathcal{A}_k} \delta_k$ that our fit $\mathbf{f}_k(\alpha)$ increases actually has the same angle with any $\mathbf{x}_i \in \mathcal{A}_k$.

· If
$$p = 2$$

- $\mathbf{f}_2 = \mathbf{f}_2^{LeastSquares}$

• The absolute values of correlations of $\mathbf{x}_j \in \mathcal{A}_k, \forall j$ with the residual error $\mathbf{r}_t \alpha$ are tied and decrease at the same rate during searching α .

LAR

More Comments

- The procedure of searching is approaching the least-squares coefficients of fitting y on A_k
- · LAR solves the subset selection problem for all $t, s. t. ||\beta|| \le t$
- · Actually, α can be computed instead of searching
- · LAR algorithm ends in min(p, N 1) steps

Result compared with LASSO

Observations

When the blue line coefficient cross zero, LAR and LASSO become different.

Result compared with LASSO

Modification for LASSO

During the searching procedure, if a non-zero coefficient hits zero, drop this variable from A_k , and recompute the direction δ_k

LAR

Some heuristic analysis

· At a certain time point, we know that all $\mathbf{x}_j \in \mathcal{A}$ share the same absolute values of correlations with the residual error. That is

$$\mathbf{x}_{i}^{T}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \boldsymbol{\gamma} \cdot \boldsymbol{s}_{j}, \forall j \in \mathcal{A}$$

where $s_j \in \{-1, 1\}$ indicates the sign of the left hand inner product and γ is the common value. We also know that $|\mathbf{x_i}(\mathbf{y} - \mathbf{X}\beta)| \le \gamma, \forall \mathbf{x}_i \notin \mathcal{A}$

· Consider LASSO for a fixed λ . Let \mathcal{B} be the set of indices of non-zero coefficients, then we differentiate the objective function w.r.t. those coefficients in \mathcal{B} and set the gradient to zero. We have

$$\mathbf{x}_{j}^{T}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \lambda \cdot sign(\boldsymbol{\beta}_{j}), \forall j \in \mathcal{B}$$

• They are identical only if $sign(\beta_j)$ matches the sign of the lefthand side. In \mathcal{A} , we allow for the β_j , where $sign(\beta_j) \neq sign(\mathbf{x}_j^T(\mathbf{y} - \mathbf{X}\beta))$, while this is forbidden in \mathcal{B} .

LAR

Some heuristic analysis

· For LAR, we have

$$|\mathbf{x}_j^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})| \leq \gamma, \forall \mathbf{x}_j \notin \mathcal{A}$$

· According to the stationary conditions, for LASSO, we have

$$|\mathbf{x}_j^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})| \le \lambda, \forall \mathbf{x}_j \notin \mathcal{B}$$

· These two algorithms match for variables with zero coefficients too.

- · Introduction to Dimension Reduction
- · Linear Regression and Least Squares (Review)
- · Subset Selection
- · Shrinkage Method
 - Ridge Regression
 - Lasso
 - Formulations
 - Comparisons with ridge regression and subset selection
 - Quadratic Programming
 - Least Angle Regression
 - Viewed as approximation for l_0 -regularization
- · Beyond Lasso

Viewed as approximation for l_0 -regularization

Pure variable selection

$$\hat{\beta}^{ridge} = argmin_{\beta} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} \mathbf{x}_{ij} \beta_j)^2, s. t. \#nonzero\beta_j \le t$$

Actually $\#nonzero\beta_i = \|\beta\|_0$, where

$$\|\beta\|_{0} = \lim_{q \to 0} \left(\sum_{j=1}^{p} |\beta_{j}|^{q} \right)^{\frac{1}{q}} = card(\{\beta_{j}|\beta_{j} \neq 0\})$$

Viewed as approximation for l_0 -regularization

Problem

 l_0 -norm is not convex, which makes it very hard to optimize.

Solutions

- LASSO: Approximated objective function (l_1 -norm), with exact optimization
- Subset selection: Exact objective function, with approximated optimization (greedy strategy)

Part5 Beyond LASSO

- · Introduction to Dimension Reduction
- · Linear Regression and Least Squares (Review)
- · Subset Selection
- · Shrinkage Method
- · Beyond LASSO
 - Elastic-Net
 - Fused Lasso
 - Group Lasso
 - $l_1 lp$ norm
 - Graph-guided Lasso

Beyond LASSO - Elastic Net

Problems with Lasso

- · Lasso tends to rather arbitrarily select one of a group of highly correlated variables (see how LAR works). Sometimes, it is better to select all the relevant varibles in a group
- · Lasso selects at most N variables, when p > N, which may be undisirable when p >> N
- · The performance of Ridge dominates that of Lasso, when N > p and variables are correlated

Elastic Net

· Penalty Term

$$\lambda \sum_{j=1}^{p} (\alpha \beta_j^2 + (1 - \alpha) |\beta_j|)$$

which is a compromise between ridge regression and LASSO.

FIGURE 3.13. Contours of constant value of $\sum_j |\beta_j|^q$ for q=1.2 (left plot), and the elastic-net penalty $\sum_j (\alpha \beta_j^2 + (1-\alpha)|\beta_j|)$ for $\alpha=0.2$ (right plot). Although visually very similar, the elastic-net has sharp (non-differentiable) corners, while the q=1.2 penalty does not.

Beyond LASSO - Elastic Net

Advantages

- · Solves above problems
- · elects variables like lasso, and shrinks together the coefficients of correlated predictors like ridge.
- · has considerable computational advantages over the l_q penalties. See 18.4 [Elements of Statistical Learning]

Elastic Net

· Penalty Term

$$\lambda \sum_{j=1}^{p} (\alpha \beta_j^2 + (1 - \alpha) |\beta_j|)$$

which is a compromise between ridge regression and LASSO.

FIGURE 3.13. Contours of constant value of $\sum_j |\beta_j|^q$ for q=1.2 (left plot), and the elastic-net penalty $\sum_j (\alpha \beta_j^2 + (1-\alpha)|\beta_j|)$ for $\alpha=0.2$ (right plot). Although visually very similar, the elastic-net has sharp (non-differentiable) corners, while the q=1.2 penalty does not.

Elastic Net - A simple illustration

· Two independent "hidden" factors \mathbf{z}_1 and \mathbf{z}_2

$$\mathbf{z}_1 \sim U(0,20), \quad \mathbf{z}_2 \sim U(0,20),$$

- Generate the response vector $\mathbf{y} = \mathbf{z}_1 + 0.1\mathbf{z}_2 + N(0, 1)$
- · Suppose the observed features are

$$\mathbf{x}_1 = \mathbf{z}_1 + \epsilon_1, \quad \mathbf{x}_2 = -\mathbf{z}_1 + \epsilon_2, \quad \mathbf{x}_3 = \mathbf{z}_1 + \epsilon_3$$

$$\mathbf{x}_4 = \mathbf{z}_2 + \epsilon_4, \quad \mathbf{x}_5 = -\mathbf{z}_2 + \epsilon_5, \quad \mathbf{x}_6 = \mathbf{z}_2 + \epsilon_6$$

- Fit the model on data (X, y)
- · A good model should identify that $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ are important

Elastic Net - A simple illustration

Beyond LASSO - Fused Lasso

Fused Lasso

· Intuition

- Fused lasso is a generalization that is designed for problems with features that can be ordered in some meaningful way.
- The fused lasso penalizes the L_1 -norm of both the coefficients and their successive differences.

Example

 Classification with fMRI data: each voxel has about 200 measurements over time. The coeefficients for adjacent voxels should be similar

· Formulation

$$\hat{\beta} = \operatorname{argmin}_{\beta} \{ \|\mathbf{X}\beta - \mathbf{y}\|_{2}^{2} \}$$

$$s. t. \|\beta\| \le s_{1} \quad \text{and} \quad \sum_{j=2}^{p} |\beta_{j} - \beta_{j-1}| \le s_{2}$$

Beyond LASSO - Fused Lasso

Fused Lasso

Fig. 2. Schematic diagram of the fused lasso, for the case N > p = 2: we seek the first time that the contours of the sum-of-squares loss function (\bigcirc) satisfy $\Sigma_j |\beta_j| = s_1$ (\blacklozenge) and $\Sigma_j |\beta_j - \beta_{j-1}| = s_2$ (\blacklozenge)

Fused Lasso - Simulation results

- p = 100. Black lines are the true coefficients.
- · (a) Universate regression coefficients (red), a soft threshold version of them (green)
- (b) Lasso solution (red), $s_1 = 35.6$, $s_2 = \infty$
- (c) Fusion estimate, $s_1 = \infty$, $s_2 = 26$
- · (d) Fused Lasso, $s_1 = \sum |\beta_j|, s_2 = \sum |\beta_j \beta_{j-1}|$

Beyond LASSO - Group Lasso

Group Lasso

- · Intuition
 - Features are divided into L groups
 - Features within the same group should share similar coefficients

· Example

- Binary dummy variables from one single discrete variable, e.g. $stage_cancer \in \{1, 2, 3\}$ can be translated into three binary dummy variables (stage1, stage2, stage3)
- · Formulations

$$obj = \|\mathbf{y} - \sum_{l=1}^{L} \mathbf{X}_{l} \beta_{l} \|_{2}^{2} + \lambda_{1} \sum_{l=1}^{L} \|\beta_{l}\|_{2} + \lambda_{2} \|\beta\|_{1}$$

Group Lasso - Simulation Results

- · Generate n = 200 observations with p = 100, divided into ten blocks equally
- The last 5 blocks of coefficients β_i , $\forall j \in \{51, 52, ..., 100\}$ are all 0
- The number of non-zero coefficients in the first five blocks are 10, 8, 6, 4, 2 respectively. The coefficients are either -1 or +1, with the sign being chosen randomly.
- The predictors are standard Gaussian with correlation 0.2 within a group and zero otherwise
- · A Gaussian noise with standard deviation 4.0 was added to each observation

Group Lasso - Simulation Results

Beyond LASSO - l_1 - l_p penalization

l_1 - l_p penalization

• Applies to multi-task learning, where the goal is to estimate predictive models for several related tasks.

· Examples

- Example 1: recognize speech of different speakers, or handwriting of different writers,
- Example 2: learn to control a robot for grasping different objects or drive in different landscapes, etc.

· Assumptions about the tasks

- sufficiently different that learning a specific model for each task results in improved performance
- similar enough that they share some common underlying representation that should make simultaneous learning beneficial.
- focus on the scenario where the different tasks share a subset of relevant features selected from a large common space of features.

Beyond LASSO - l_1 - l_p penalization

l_1 - l_p penalization

- Formulation
 - X_l : $N \times p$ input matrix for task l and L is the total number of tasks
 - β : $p \times L$ coefficient matrix
 - \mathbf{y} : $N \times L$ output matrix
 - objective function

$$obj = \sum_{l=1}^{L} J(\beta_{:l}, \mathbf{X}_{l}, \mathbf{y}_{:l}) + \lambda \sum_{j=1}^{p} \|\beta_{j:}\|_{2}$$

where J is some loss function and $\sum_{j=1}^{p} \|\beta_{j}\|_{2}$ is the l_{1} norm of vector $(\|\beta_{1}\|_{2}, \|\beta_{2}\|_{2}, \dots, \|\beta_{p}\|_{2})$.

Beyond LASSO - $l_1 - l_p$ penalization

$l_1 - l_p$ penalization -Coefficient matrix

Beyond LASSO - $l_1 - l_p$ penalization

$l_1 - l_p$ penalization -Norm ball

Figure 2: Norm ball induced on the coefficients (β_{12}, β_{22}) for task 2 as feature coefficients for task 1 vary: thin red contour for $(\beta_{11}, \beta_{21}) = (0,1)$ and thick green contour for $(\beta_{11}, \beta_{21}) = (0.5, 0.5)$.

$l_1 - l_p$ penalization - Experiment Result

- · Dataset: handwritten words dataset collected by Rob Kassel
 - Contains writings from more than 180 different writers.
 - For each writer, the number of each letter we have is between 4 and 30
 - The letters are originally represented as 8×16
- Task: build binary classiers that discriminate between pairs of letters. Specically concentrat on the pairs of letters that are the most di±cult to distinguish when written by hand.
- · Experiment: learned classications of 9 pairs of letters for 40 different writers

$l_1 - l_p$ penalization - Experiment Result

- Candidate methods
 - Pooked l_1 : a classifier is trained on all data regardless of writers
 - Independent l_1 regularization: For each writer, a classifier is trained
 - l_1/l_1 -regularization:

$$obj = \sum_{l=1}^{L} J(\beta_{:l}, \mathbf{X}_{l}, \mathbf{y}_{:l}) + \lambda \sum_{l=1}^{L} \|\beta_{:l}\|_{1}$$

- l_1/l_2 -regularization:

$$obj = \sum_{l=1}^{L} J(\beta_{:l}, \mathbf{X}_{l}, \mathbf{y}_{:l}) + \lambda \sum_{i=1}^{p} \|\beta_{j:}\|_{2}$$

$l_1 - l_p$ penalization - Experiment Result

	strokes : error(%)				pixels: error (%)			
Task	ℓ_1/ℓ_2	ℓ_1/ℓ_1	$\mathrm{sp}.\ell_1$	pool	ℓ_1/ℓ_2	ℓ_1/ℓ_1	$\mathrm{sp}.\ell_1$	pool
c/e	2.5	3.0	3.3	3.0	4.0	8.5	9.0	4.5
	2.0	3.5	3.3	2.5	3.5	7.8	10.3	4.5
g/y	8.4	11.3	8.1	17.8	11.4	16.1	17.2	18.6
	10.3	10.3	9.3	16.9	11.6	9.7	10.9	21.4
g/s	3.3	3.8	3.0	10.7	4.4	10.0	10.3	6.9
	3.8	4.0	2.5	12.0	4.7	6.7	5.0	6.4
m/n	4.4	4.4	3.6	4.7	2.5	6.3	6.9	4.1
	4.1	5.8	3.6	5.3	1.9	2.8	4.1	
a/g	1.4	2.8	2.2	2.8	1.3	3.6	4.1	3.6
	0.8	1.6	1.3	2.5	0.8	1.7	1.4	3.9
i/j	8.9	9.5	9.5	11.5	12.0	14.0	14.0	11.3
	9.2	9.8	11.1	11.3	10.3	12.7	13.5	11.5
a/o	2.0	2.9	2.3	3.8	2.8	4.8	5.2	4.2
	2.7	2.7	1.9	4.3	2.1	3.1	3.5	4.2
f/t	4.0	5.0	6.0	8.1	5.0	6.7	6.1	8.2
	5.8	4.1	5.5	7.5	6.4	11.1	9.6	7.1
h/n	0.9	1.6	1.9	3.4	3.2	14.3	18.6	5.0
	0.9	0.6	0.3	3.7	1.8	3.6	5.0	5.0

- · First row contains results for feature selection, the second row uses random projections to obtain a common subspace
- · Bold: best of l_1/l_2 , l_1/l_1 , indpt l_1 or pooled l_1 , Boxed: best of cell

Beyond LASSO - Graph-Guided Fused LASSO

Graph-Guided Fused LASSO (GFlasso)

· Example

Figure 1: Illustrations of (a) lasso, (b) graph-guided fused lasso.

• Formulation Graph-Guided Lasso applies to multi-task settings

$$obj = \sum_{l=1}^{L} loss(\beta_{:l}, \mathbf{X}_{l}, \mathbf{y}_{:l}) + \lambda \|\beta\|_{1} + \gamma \sum_{e=(a,b)\in E}^{p} \tau(r_{ab}) \sum_{j=1}^{p} |\beta_{ja} - sign(r_{a,b})\beta_{jb}|$$

where $r_{a,b} \in \mathbb{R}$ denotes the weight of the edge and $\tau(r)$ can be any positive monotonically increasing function of |r|, e.g. $\tau(r) = |r|$.

Beyond LASSO - Graph-Guided Fused LASSO

Graph-Guided Fused LASSO

· (a) The true regression coefficients

· (b) lasso

• (c) l_1/l_2 -regularized multi-task regression

· (d) GFlasso

Outline

- **Introduction to Dimension Reduction**
- **Linear Regression and Least Squares (Review)**
- **Subset Selection**
- **Shrinkage Method**
- **Beyond Lasso**

Part 1: Introduction to Dimension Reduction

- · Introduction to Dimension Reduction
 - General notations
 - Motivations
 - Feature selection and feature extraction
 - Feature Selection
 - Wrapper method
 - Filter method
 - Embedded method
 - Feature Extraction
 - PCA, ICA...
- · Linear Regression and Least Squares (Review)
- Subset Selection
- · Shrinkage Method

Part 2: Linear Regression and Least Squares (Review)

- · Introduction to Dimension Reduction
- · Linear Regression and Least Squares (Review)
 - Least Square Fit
 - Gauss Markov
 - Bias-Variance tradeoff
 - Problems
- · Subset Selection
- · Shrinkage Method
- · Beyond Lasso

Part 3: Subset Selection

- · Introduction to Dimension Reduction
- · Linear Regression and Least Squares (Review)
- · Subset Selection
 - Best-subset selection
 - Forward stepwise selection
 - Forward stagewise selection
 - Problems
- · Shrinkage Method
- · Beyond Lasso

Part 4 Shrinkage Method - Ridge Regression

- · Introduction to Dimension Reduction
- · Linear Regression and Least Squares (Review)
- Subset Selection
- · Shrinkage Method
 - Ridge Regression
 - Formulations and closed form solution
 - Singular value decomposition
 - Degree of Freedom
 - Lasso
- · Beyond Lasso

Part4 Shrinkage Method - LASSO

- · Introduction to Dimension Reduction
- · Linear Regression and Least Squares (Review)
- Subset Selection
- · Shrinkage Method
 - Ridge Regression
 - Lasso
 - Formulations
 - Comparisons with ridge regression and subset selection
 - Quadratic Programming
 - Least Angle Regression
 - Viewed as approximation for l_0 -regularization
- · Beyond Lasso

Part5 Beyond LASSO

- · Introduction to Dimension Reduction
- · Linear Regression and Least Squares (Review)
- · Subset Selection
- · Shrinkage Method
- · Beyond LASSO
 - Elastic-Net
 - Fused Lasso
 - Group Lasso
 - $l_1 lp$ norm
 - Graph-guided Lasso

More on the topics skipped here

- · More on feature extraction methods:
 - http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
 - Imola K. Fodor, A survey of dimension reduction techniques
 - Christopher J. C. Burges, Dimension Reduction: A Guided Tour
 - Ali Ghodsi, Dimensionality Reduction A Short Tutorial
- · Mutual-info-based feature selection:
 - Gavin Brown, Adam Pocock, Ming-Jie Zhao, Mikel Luján; Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection
 - Howard Hua Yang, John Moody. Feature Selection Based on Joint Mutual Information
 - Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
- Beyond Lasso
 - http://webdocs.cs.ualberta.ca/~mahdavif/ReadingGroup/

Sparse Models

Thank You!

Reference

- Trevor Hastie, Robert Tibshirani and Jerome Friedman. Elements of Statistical Learning [p7, p15, p16, p18, p19, p21-22, p26-27, p29-30, p33, p35-37, p42-p43, p50-p54, p56, p59]
- · Temporal Sequence of FMRI scans (single slice): from http://www.midwest-medical.net/mri.sagittal.head.jpg [p8]
- · Three Dimensional Image of Brain Activation from http://www.fmrib.ox.ac.uk/fmri_intro/brief.html [p8]
- http://en.wikipedia.org/wiki/Feature_selection [p10-12]
- http://en.wikipedia.org/wiki/Normal distribution [p38]
- http://en.wikipedia.org/wiki/Laplacian_distribution [p38]
- http://webdocs.cs.ualberta.ca/~mahdavif/ReadingGroup/Papers/LARS.pdf [p20]
- · Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani. Least Angle Regression [p20]

Reference

- · Prof.Schuurmans' notes on Lasso [p40]
- · Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection [p8]
- · Hui Zou and Trevor Hastie. Regularization and Variable Selection via the Elastic Net [p59-62]
- http://www.stanford.edu/~hastie/TALKS/enet_talk.pdf [p59-62]
- · Robert Tibshirani and Michael Saunders, Sparsity and smoothness via the fused lasso [P63-p65]
- · Jerome Friedman Trevor Hastie and Robert Tibshirani. A note on the group lasso and a sparse group lasso [p66-68]
- · Guillaume Obozinski, Ben Taskar, and Michael Jordan. Multi-task feature selection [p69-70, p72-p75]
- · Xi Chen, Seyoung Kim, Qihang Lin, Jaime G. Carbonell, Eric P. Xing. Graph-Structured Multi-task Regression and an Efficient Optimization Method for General Fused Lasso [p76-77]