Copper Strand Thermal Shielding for Third-Scale Magnet

Aritra Biswas *July 13, 2015* – nEDM Collaboration Meeting

Third-Scale Magnet

- superconducting lead $(T_c = 7.2 \text{ K})$ for **B** field uniformity
- thermally-shielded warm bore to map B field
- copper plating on G-10 for insulation
- can't interfere with **B** field

Our Thermal Shield

Our Thermal Shield

- strands of copper held together by epoxy
- currents can't jump
 between insulated strands
- no large-scale eddy currents
- measure B field effect and compare with copper plate

gain:
$$\gamma \equiv \frac{B_0'}{B_0}$$
 phase shift: $\Delta \psi \equiv \psi' - \psi$

Predicting $\gamma(\omega)$ and $\Delta\psi(\omega)$

$$B_{x,\text{applied}} = B_0 \cos(\omega t + \psi)$$

induction on plate

$$I_i = \frac{\mathcal{E}_i}{R_i} \sim \frac{\partial}{\partial t} [B_{x, \text{applied}}]$$

$$B_{x, \text{induced}} \sim \frac{\partial B_{x, a}}{\partial t} = \alpha B_0 \sin(\omega t + \psi)$$

$$B_{x,\text{meas}} = B_{x,\text{appl}} + B_{x,\text{ind}}$$
$$= \gamma B_0 \cos(\omega t + \psi + \Delta \psi)$$

$$\gamma = \sqrt{\alpha^2 + 1}$$
 $\Delta \psi = -\arctan(-\alpha)$

Predicting $\gamma(\omega)$ and $\Delta\psi(\omega)$

$$B_{x,\text{applied}} = B_0 \cos(\omega t + \psi)$$

skin depth attenuation

$$\beta B_0 \cos(\omega t + \psi)$$

induction on plate

$$B_{x,\text{meas}} = \gamma B_0 \cos(\omega t + \psi + \Delta \psi)$$

$$\gamma = \sqrt{\alpha^2 + \beta^2}$$
 $\Delta \psi = -\arctan(-\alpha/\beta)$

Remarks

• gain from thermal shield, eddy current suppresion:

$$\lesssim 2 \times 10^{-3}$$
 deviation from 1

• attenuation parameters:

$$\beta \sim \frac{1 + e^{-c/\delta}}{2}$$
 $\alpha \sim \omega \delta e^{-c/2\delta} \sinh\left(\frac{c}{2\delta}\right)$

$$\delta = \sqrt{\frac{2\rho}{\omega\mu_r\mu_0}}$$