Advanced Statistical Methods Hw8

Do Hyup Shin

2021-11-22

Problem 10.4

Verify formula (10.38) for the number of distinct bootstrap samples.

Solution

We'll show that the number of distinct bootstrap samples = $\binom{2n-1}{n}$. This problem is a duplicate combination problem. Let (x_1, x_2, \ldots, x_n) be the sample and the size of sample is n. Let the number of times each observation is chosen is $a_i \, \forall i = 1, 2, \ldots, n$. Then, $\sum_{i=1}^n a_i = n$ with $\forall 0 \leq a_i \leq n$ and $\forall a_i$ are nonnegative integer. We should find the number of combination a_i satisfying above condition. This problem is the same as following problem. Suppose that there exist n-1 bars(= |) and n dots(= ·). Let's arrange the two types of symbols in a row. Then, we can express the arranged line in this way ___ | __ | __ | __ | __ | __ | and ___ means where · can enter. There exists n separation which is ___.

Thus, we can correspond $\forall a_i$ to the number of \cdot in ith ____. We know that the number of permutations n-1 bars(= |) and n dots(= \cdot) is $\frac{(2n-1)!}{(n-1)!n!} = \binom{2n-1}{n}$.

Therefore, the number of distinct bootstrap samples is $\binom{2n-1}{n}$.

Problem 10.5

A normal theory least squares model (7.28)-(7.30) yields $\hat{\beta}$ (7.32). Describe the parametric bootstrap estimates for the standard errors of the components of $\hat{\beta}$.

Solution

The distribution of $\hat{\beta}$ is $\hat{\beta} \sim N(\beta, (X^TX)^{-1}\sigma^2)$. If we know the σ^2 , the standard errors of components of $\hat{\beta}$ are $se(\hat{\beta}_i) = \sigma(e_i^t(X^TX)^{-1}e_i)^{1/2} \quad \forall i=1,2,\ldots,p$ where e_i is the standard basis vector with ith element zero. But, if we don't know the σ^2 , then we replace $s^2 = MSE = \frac{1}{n-p-1}y^t(I-H)y = \frac{1}{n-p-1}\sum_{i=1}^n(y_i-\hat{y}_i)^2$ instead of σ^2 . Let the design matrix X be fixed.

Problem 10.7

Verify formula (10.70).

Solution

We'll show that the variance of sample mean of bootstrap sample $X^* = (x_1^*, x_2^*, \dots, x_n^*)$ is $\sum_{i=1}^n (x_i - \bar{x})^2/n^2$. Let $X = (x_1, x_2, \dots, x_n)$ be random sample from population F and define $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$. Let \hat{F} be the empirical probability distribution that puts probability 1/n on each point x_i . The bootstrap sample with replace from $\{x_1, x_2, \dots, x_n\}$ is $X^* = (x_1^*, x_2^*, \dots, x_n^*)$, i.e $x_i^* \stackrel{iid}{\sim} \hat{F}$. Then, $P(x_i^* = x_j) = \frac{1}{n} \quad \forall 1 \leq i, j \leq n$. So the expectation of x_i^* is $E_{\hat{F}}(x_i^*) = \sum_{j=1}^n x_j P(x_i^* = x_j) = \sum_{j=1}^n x_j \frac{1}{n} = \frac{1}{n} \sum_{j=1}^n x_j = \bar{x}$.

Define $\bar{x}^* = \frac{1}{n} \sum_{j=1}^n x_j^*$ which is sample mean of bootstrap sample. Then, the variance of \bar{x}^* is

$$\begin{split} var_{\hat{F}}(\bar{x}^*) &= E_{\hat{F}}((\bar{x}^* - E(\bar{x}^*))^2) = E_{\hat{F}}((\bar{x}^* - \bar{x})^2) \\ &= E_{\hat{F}}(\sum_{j=1}^n \frac{1}{n}(x_j^* - \bar{x}))^2 = \frac{1}{n^2} E_{\hat{F}}(\sum_{j=1}^n (x_j^* - \bar{x}))^2 \\ &= \frac{1}{n^2} E_{\hat{F}}(\sum_{j=1}^n (x_j^* - \bar{x})^2 + \sum_{i \neq j} (x_i^* - \bar{x})(x_j^* - \bar{x})) \\ &= \frac{1}{n^2} E_{\hat{F}}(\sum_{j=1}^n (x_j^* - \bar{x})^2) \quad (\because E_{\hat{F}}(x_i^* - \bar{x})(x_j^* - \bar{x}) = 0 \ \forall i \neq j) \\ &= \frac{1}{n^2} n E_{\hat{F}}(x_1^* - \bar{x})^2 \quad (\because \forall (x_j^* - \bar{x}) \ \text{are following independently identical distribution}) \\ &= \frac{1}{n} \sum_{j=1}^n (x_j - \bar{x})^2 P(x_1^* = x_j) = \frac{1}{n} \sum_{j=1}^n \frac{1}{n} (x_j - \bar{x})^2 \\ &= \frac{1}{n^2} \sum_{j=1}^n (x_j - \bar{x})^2 \end{split}$$

Therefore, $var_{\hat{F}}(\bar{x}^*) = \frac{1}{n^2} \sum_{j=1}^n (x_j - \bar{x})^2$. Suppose that there exist B bootstrap samples. Then, We can calculate \bar{x}^{*j} for each jth bootstrap sample. So the estimate of $var_{\hat{F}}(\bar{x}^*)$ is $v\hat{a}r_{boot}(\bar{x}^*) = \frac{1}{B-1} \sum_{j=1}^B (\bar{x}^{*j} - \bar{x}_{(\cdot)})^2$ where $\bar{x}_{(\cdot)} = \frac{1}{B} \sum_{j=1}^B \bar{x}^{*j}$.

In conclusion,
$$v\hat{a}r_{boot}(\bar{x}^*) = \frac{1}{B-1}\sum_{j=1}^B (\bar{x}^{*j} - \bar{x}_{(\cdot)})^2 \to var_{\hat{F}}(\bar{x}^*) = \frac{1}{n^2}\sum_{j=1}^n (x_j - \bar{x})^2$$
 as $B \to \infty$.

Problem 10.9

A survey in a small town showed incomes x_1, x_2, \ldots, x_m for men and y_1, y_2, \ldots, y_n for women. As an estimate of the differences,

$$\hat{\theta} = median\{x_1, x_2, \dots, x_m\} - median\{y_1, y_2, \dots, y_n\}$$

was computed.

- (a) How would you use nonparametric bootstrapping to assess the accuracy of $\hat{\theta}$?
- (b) Do you think your method makes full use of the bootstrap replications?

Solution

(a)

Let $X=(x_1,x_2,\ldots,x_m)$ and $Y=(y_1,y_2,\ldots,y_n)$ be the samples of men and women, respectively. Some large number B of bootstrap samples are independently drawn. Let $X^{*j}=(x_1^{*j},x_2^{*j},\ldots,x_m^{*j})$ and $Y^{*j}=(y_1^{*j},y_2^{*j},\ldots,y_n^{*j})$ be the Bth bootstrap sample of X and Y, respectively. The corresponding bootstrap replications are calculated, say $\hat{\theta}^{*j}=median\{x_1^{*j},x_2^{*j},\ldots,x_m^{*j}\}-median\{y_1^{*j},y_2^{*j},\ldots,y_n^{*j}\}$. Then, the bootstrap estimate of standard error for $\hat{\theta}$ is $\hat{se}_{boot}(\hat{\theta})=(\frac{1}{B-1}\sum_{i=1}^B(\hat{\theta}^{*i}-\hat{\theta}_{(\cdot)})^2)^{1/2}$. So, we can assess the accuracy of $\hat{\theta}$ by above process.

(b)

Problem 11.1

We observe $y \sim \lambda G_{10}$ to be y = 20. Here λ is an unknown parameter while G_{10} represents a gamma random variable with 10 degrees of freedom $(y \sim G(10, \lambda))$ in the notation of Table 5.1). Apply the Neyman constructions as in Figure 11.1 to find the confidence limit endpoints $\hat{\lambda}(0.025)$ and $\lambda(0.975)$.

Solution

Problem 11.3

Suppose \hat{G} in (11.33) was perfectly normal, say $\hat{G} \sim N(\hat{\mu}, \hat{\sigma}^2)$. What does $\hat{\theta}_{BC}(\alpha)$ reduce to in this case, and why does this make intuitive sense?

Solution

Problem 11.5

Suppose $\hat{\theta} \sim Poisson(\theta)$ is observed to equal 16. Without employing simulation, compute the 95% central BCa interval for θ . (You can use the good approximation $z_0 = a = 1/(6\hat{\theta}^{1/2})$.)

Solution

Problem 11.6

Use the R program bcajack (available with its help file from efron.web.stanford.edu under "Talks") to find BCa confidence limits for the student score eigenratio statistic as in Figure 10.2.

Solution