/home/nicole/Jupyter/JG3/Data/0.5/Q/10

```
;ls
In [4]:
        Correlation.G5.Q.C.txt
        Correlation.G5.O.J.txt
        Correlation.G5.Q.JC.txt
        G0.Genotype.ID
        G0.ID
        G0.noGenotype.ID
        G1.Genotype.ID
        G1.ID
        G1.noGenotype.ID
        G2.Genotype.ID
        G2.ID
        G2.noGenotype.ID
        G3.Genotype.ID
        G3.ID
        G3.noGenotype.ID
        G4.Genotype.ID
        G4.ID
        G4.noGenotype.ID
        G5.Genotype.ID
        G5.ID
        G5.noGenotype.ID
        PedAll.txt
        Phe.txt
        PheAll.txt
        OTLNF.txt
        Regression.G5.Q.C.txt
        Regression.G5.Q.J.txt
        Regression.G5.Q.JC.txt
        all.ID
        alphaEstimates
        genotype.ID
        meanOfSNPQAll
        meanOfSNPQG0
        meanOfSNPQG1
        meanOfSNPQG2
        meanOfSNPQG3
        meanOfSNPQG4
        meanOfSNPQG5
        noGenotype.ID
        sim.bv
        sim.phenotype
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
In [6]: ;awk '{print $1}' QTLNF.txt | sort -b > genotype.ID
In [7]: |;join -v1 all.ID genotype.ID > noGenotype.ID
In [8]: ;awk '{print $1,$2}' Phe.txt > sim.phenotype
        ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [9]:
```

```
In [10]: ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]: ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [12]:
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
         ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]:
         ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
         ; join G0.ID genotype.ID > G0.Genotype.ID
In [16]:
In [17]:
         ; join G1.ID genotype.ID > G1.Genotype.ID
In [18]:
         ; join G2.ID genotype.ID > G2.Genotype.ID
In [19]:
         ;join G3.ID genotype.ID > G3.Genotype.ID
In [20]:
         ; join G4.ID genotype.ID > G4.Genotype.ID
         ; join G5.ID genotype.ID > G5.Genotype.ID
In [21]:
In [22]:
         ; join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]:
         ; join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [24]:
         ; join -v1 G2.ID genotype.ID > G2.noGenotype.ID
         ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [26]:
         ; join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [27]:
         ; join -v1 G5.ID genotype.ID > G5.noGenotype.ID
In [28]:
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
          200
              200 1200 GO.Genotype.ID
          200
               200 1200 G1.Genotype.ID
              200 1200 G2.Genotype.ID
          200
              200 1200 G3.Genotype.ID
               200 1200 G4.Genotype.ID
          200
          8000 8000 48000 G5.Genotype.ID
```

```
In [29]:
         ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
                7800 46800 G0.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800 7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
In [30]:
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedia
         nothing
         df
                = read_genotypes("QTLNF.txt",numSSBayes)
         M Mats = make MMats(df,A Mats,ped);
                                                                                  # with
         y Vecs = make yVecs("sim.phenotype",ped,numSSBayes);
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         X_Mats, W_Mats = make_XWMats(Z_Mats,M_Mats,numSSBayes)
                                                                                  # no
         nothing
                = 0.583
In [31]: vRes
                = 0.583
         vG
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M_Mats,y_Vecs,Z_Mats,X_Mats,W_Mats,A_Mats, numSSBayes,vRes,vG,nIter,
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         2152.137023 seconds (22.99 G allocations: 723.034 GB, 8.23% gc time)
In [32]: betaHat
Out[32]: 1-element Array{Float64,1}:
          8.26496
In [33]: using DataFrames
In [34]: df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
```

```
In [35]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with (
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.901
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 1.014
Out[35]: 0.9011308465723951
In [36]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[36]: 1.528675776124485
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.834
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 1.156
Out[37]: 0.8341502822839643
In [38]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[38]: 2.5906482305911154
In [39]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',heade
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         reg3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.871
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.966
Out[39]: 0.8712983186136563
In [40]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[40]: 1.2836052097091086
```

```
In [41]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with ei
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.676
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.790
Out[41]: 0.6755446005699519
In [42]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[42]: 0.16005280662786908
In [43]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with e;
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.763
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.982
Out[43]: 0.7633624831992133
In [44]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[44]: 0.8456902330377847
In [45]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         reg5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with ep
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.753
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 1.033
Out[45]: 0.7525997800240751
In [46]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[46]: 1.4110122004114154
```

```
In [47]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with ei
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.761
         SSBRJC from Gibbs - G3.ID: regression of TBV on GEBV = 1.096
Out[47]: 0.7606249853695097
In [48]: GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[48]: 1.8715913930214485
In [49]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with e;
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.759
         SSBRJC from Gibbs - G4.ID: regression of TBV on GEBV = 1.117
Out[49]: 0.758692492856506
In [50]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[50]: 2.258799359361339
In [51]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with ep
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.814
         SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = 1.116
Out[51]: 0.8138684703580782
In [52]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[52]: 2.6249086642870534
```

```
In [53]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         \#TBV = a[posAi]
         \#GEBV = aHat1[posAi]
         \#reg = linreg(X,Y)
         \#reg = linreg(GEBV, TBV)[2,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.847
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 1.157
Out[53]: 0.8465419755514995
In [54]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[54]: 1.6378734634721417
In [55]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         \#TBV = a[posAi]
         #GEBV = aHat1[posAi]
         \#reg = linreg(X,Y)
         \#reg = linreg(GEBV, TBV)[2,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation =
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 0.917
Out[55]: 0.7759980792808138
In [56]: | GEBV = aHat1[posAi]
         mean (GEBV)
Out[56]: 2.06912047395065
In [57]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.780
         SSBRJC from Gibbs - G2.Genotype.ID: regression of TBV on GEBV = 1.009
Out[57]: 0.7797393458015985
```

```
In [58]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[58]: 2.3671817295544555
In [59]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         corl1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.783
         SSBRJC from Gibbs - G3.Genotype.ID: regression of TBV on GEBV = 0.966
Out[59]: 0.7831183217394547
In [60]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[60]: 2.587157135081036
In [61]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.677
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 0.779
Out[61]: 0.6766125591630399
In [62]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[62]: 2.921491003059793
In [63]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.814
         SSBRJC from Gibbs - G5.Genotype.ID: regression of TBV on GEBV = 1.116
Out[63]: 0.8138684703580782
In [64]: | writedlm("Correlation.G5.Q.N.txt",cor13)
```

```
In [65]: writedlm("Regression.G5.Q.N.txt",reg13)
In [66]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[66]: 2.6249086642870534
In [67]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.655
         SSBRJC from Gibbs - G0.noGenotype.ID: regression of TBV on GEBV = 0.803
Out[67]: 0.6553441932359483
In [68]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[68]: 0.1221599692728877
In [69]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.745
         SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = 0.991
Out[69]: 0.7447249373640316
In [70]: | GEBV = aHat1[posAi]
         mean(GEBV)
Out[70]: 0.8143202268605318
In [71]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.737
         SSBRJC from Gibbs - G2.noGenotype.ID: regression of TBV on GEBV = 1.034
Out[71]: 0.7368404560062765
```

```
In [72]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[72]: 1.386495032997491
In [73]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.748
         SSBRJC from Gibbs - G3.noGenotype.ID: regression of TBV on GEBV = 1.086
Out[73]: 0.7482875188439817
In [74]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[74]: 1.8532435534814589
In [75]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.748
         SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 1.106
Out[75]: 0.7480410893763791
In [76]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[76]: 2.241807265933174
In [77]: numSSBayes
Out[77]: SSBR.NumSSBayes(54932,45932,9000,40000,39000,1000,50)
```