Στις κορυφές ενός ισόπλευρου τριγώνου ΑΒΓ πλευράς a=0,3~cm, συγκρατούνται αρχικά ακίνητα τρία μικρά σφαιρίδια φορτισμένα με ίσα ηλεκτρικά φορτία $q_1=q_2=q_3=2~\mu C$. Στη συνέχεια απομακρύνουμε το φορτίο q_3 από την κορυφή Γ και διατηρούμε τα άλλα δύο στις κορυφές Α και Β δένοντας το κάθε ένα από αυτά στο άκρο αβαρούς και μη ελαστικού νήματος μήκους L=0,3~cm. Έτσι τελικά τα φορτία αυτά ισορροπούν σε λείο οριζόντιο δάπεδο σε απόσταση L=0,3~cm μεταξύ τους. Οι μάζες των φορτίων q_1 , q_2 είναι $m_1=5\cdot 10^{-5}~Kg$ και $m_2=2\cdot m_1$, αντίστοιχα. Κάποια στιγμή το νήμα κόβεται και τα δύο σφαιρίδια αρχίζουν να κινούνται λόγω των απωστικών ηλεκτρικών δυνάμεων που αναπτύσσονται μεταξύ τους.

4.1. Να προσδιορίσετε την ενέργεια του αρχικού συστήματος των τριών φορτίων.

Μονάδες 5

4.2. Αν $U_{\alpha\rho\chi}$ και $U_{\tau\varepsilon\lambda}$ οι δυναμικές ενέργειες του συστήματος των δύο φορτίων q_1 , q_2 όταν αυτά απέχουν μεταξύ τους απόσταση L και $2\cdot L$ αντίστοιχα, να προσδιορίσετε το λόγο: $\frac{U_{\alpha\rho\chi}}{U_{\tau\varepsilon\lambda}}$.

Μονάδες 5

4.3. Να προσδιορίσετε το λόγο των μέτρων των δύο ταχυτήτων $\frac{v_1}{v_2}$ που αποκτούν τα φορτία q_1 και q_2 στην απόσταση $2\cdot L$.

Μονάδες 7

4.4. Να προσδιορίσετε τα μέτρα των ταχυτήτων v_1 και v_2 .

Μονάδες 8

Δίνεται η σταθερά του νόμου Coulomb: $K_C = 9 \cdot 10^9 \frac{Nm^2}{C^2}$, ενώ αγνοούνται όλες οι δυνάμεις που μπορεί να δέχονται τα μικρά σφαιρίδια, εκτός από την ηλεκτρική τους αλληλεπίδραση.