

Rick Staals and Erwin van Duijnhoven (0716184, 0719562)

2WC09- Cryptography 1

Homework sheet 4

October 2, 2013

The input is two elements f and q. The steps of the algorithm is given in the form of a table containing a and b as in Algorithm 1. The answers are given as d, u and v as in Algorithm 1, i.e. $d = \gcd(f, g)$, and $d = u \cdot f + v \cdot g$. In exercise 3 and 4, the last step (4 in both cases) is the normalization step, i.e. $a \leftarrow \frac{a}{l}$ with l = LC(a[1]), the leading coefficient of a[1].

Question 1

Compute the extended gcd of 155 and 649 using Algorithm 1.

So d = 1, u = 67 and v = -16.

Question 2

Compute the extended gcd of 5007 and 6891 using Algorithm 1.

Step	a	b
0	[5007,1,0]	[6891,0,1]
1	[6891,0,1]	[5007,1,0]
2	[5007,1,0]	[1884,-1,1]
3	[1884, -1, 1]	[1239,3,-2]
4	[1239,3,-2]	[645, -4, 3]
5	[645, -4, 3]	[594,7,-5]
6	[594,7,-5]	[51,-11,8]
7	[51,-11,8]	[33,128,-93]
8	[33,128,-93]	[18,-139,101]
9	[18,-139,101]	[15,267,-194]
10	[15,267,-194]	[3,-406,295]
11	[3,-406,295]	[0,2297,-1669]

So d = 3, u = -406 and v = 295.

Question 3

Compute the extended gcd of $f(x) = x^5 + 3x^3 + x^2 + 2x + 1$ and $g(x) = x^4 - 5x^3 - 5x^2 - 5x - 6$ in $\mathbb{Q}[x]$ using Algorithm 1.

Step	a	b
0	$[x^5 + 3x^3 + x^2 + 2x + 1, 1, 0]$	$\left[x^4 - 5x^3 - 5x^2 - 5x - 6, 0, 1\right]$
1	$\left[x^4 - 5x^3 - 5x^2 - 5x - 6, 0, 1 \right]$	$[33x^3 + 31x^2 + 33x + 31, 1, -x - 5]$
2	$\left[33x^3 + 31x^2 + 33x + 31, 1, -x - 5\right]$	$\left[-\frac{458x^2}{1089} - \frac{458}{1089}, \frac{196}{1089} - \frac{x}{33}, \frac{x^2}{33} - \frac{31x}{1089} + \frac{109}{1089} \right]$
3	$\left[-\frac{458x^2}{1089} - \frac{458}{1089}, \frac{196}{1089} - \frac{x}{33}, \frac{x^2}{33} - \frac{31x}{1089} + \frac{109}{1089} \right]$	$\begin{bmatrix} 1 & 1089 & 1089 & 1089 & 33 & 33 & 1089 & 1089 \end{bmatrix}$ $[0, -\frac{1089(x^2 - 5x - 6)}{458}, \frac{1089(x^3 + 2x + 1)}{458}]$ $[0, \frac{1089(x^2 - 5x - 6)}{458}, \frac{1089(x^3 + 2x + 1)}{458}]$
4	$\left[x^2+1, \frac{1}{458}(33x-196), -\frac{1}{458}(33x^2-31x+109)\right]$	$\left[0, -\frac{1089(x^2 - 5x - 6)}{458}, \frac{1089(x^3 + 2x + 1)}{458}\right]$

So
$$d = x^2 + 1$$
, $u = \frac{1}{458} (33x - 196)$ and $v = -\frac{1}{458} (33x^2 - 31x + 109)$.

Question 4

Compute the extended gcd of $f(x) = x^{11} + x^9 + x^7 + x^4 + x^3 + x + 1$ and $g(x) = x^8 + x^5 + x^4 + x^3 + x + 1$ in $\mathbb{F}_2[x]$ using Algorithm 1.

Step	a	b
0	$[x^{11} + x^9 + x^7 + x^4 + x^3 + x + 1, 1, 0]$	$[x^8 + x^5 + x^4 + x^3 + x + 1, 0, 1]$
1		$ [x^3 + x^2 + x, 1, x^3 + x + 1] $
	$[x^3 + x^2 + x, 1, x^3 + x + 1]$	$\begin{bmatrix} x^2 + x + 1, x^5 + x^4 + x, x^8 + x^7 + x^6 + x^2 + x + 1 \end{bmatrix}$
	$[x^2 + x + 1, x^5 + x^4 + x, x^8 + x^7 + x^6 + x^2 + x + 1]$	
	$[x^2 + x + 1, x^5 + x^4 + x, x^8 + x^7 + x^6 + x^2 + x + 1]$	

So
$$d = x^2 + x + 1$$
, $u = x^5 + x^4 + x$ and $v = x^8 + x^7 + x^6 + x^2 + x + 1$.