Design and Analysis of Algorithm Yu-Tai Ching

Department of Computer Science National Chiao-Tung University

- Lecture in English,
- Book, Introduction to Algorithms, 3rd edition, The MIT Press, by Cormen, etc.
- programming assignment.
- Maybe some quizzes, homework.
- ▶ Midterm exam and Final exam. 70%.

- We have a roll call for each class, purpose is to make sure who are in the class. Just in case there is confirmed case of new-coronavirus.
- Pickup a piece of paper I prepare for you, write down your id (or name) and the seat you take.
- ► Try to sit "as sparse as possible".
- ▶ And make sure I can see you, because I will take a picture of you. Just in case, I have to know the neighbors of a person.
- Wash your hands with soap before and after class, to protect others and yourself.

- An introduction, sorting algorithms, asymptotic notations, recursion,
- balance tree, red-black tree,
- divide and conquer, randomized algorithm (quick sort), prune and search, greedy approach, dynamic programming, amortized analysis,
- graph algorithms,
- lower bound to a computational problem, decision tree model, reduction,
- NP
- hopefully, parallel algorithm, ...

Algorithm

- Directions to solve a problem
- ▶ To build a DIY furniture
- ▶ How to come to NCTU from Taipei
- "directions" = steps

Algorithm

- ► In Computer Science, computer algorithms defined under the RAM model
- ▶ RAM, Random Access Machine, there are finite number of instructions, +, -, *, These instructions are basic enough (assembly language of X86). There are infinite number of memory, direct (random) access, retrieve and store in constant time.
- ► An algorithm, a sequence of finite number instructions, if follows, accomplish a specific task (a computational problem), (Solve a problem).

A Computational Problem, Sorting Problem

- ▶ Sorting Problem: Given *n* numbers, determine a permutation so that they are arranged in non-decreasing order.
- ▶ Given *n*=5 numbers 1, 10, 9, 4, and 5, this is an "instance" for the sorting problem.
- ▶ You design a sequence of instructions (instruction that can fit into machine instructions). Run the instructions (each instruction = a step) to solve the problem, (to arrange the numbers). Correct for all possible input *instances* of any size (how can you make sure?). Then you have a correct algorithm to sorting problem.

Algorithm and Program

- Algorithm will be translated into program to fit into a computer, or
- a program is an implementation of an algorithm
- Correctness of algorithm based on mathematics,
- correctness of algorithm doesn't imply the correctness of the program.

- How to evaluate the performance of an algorithm?
- ► Transfer algorithm to a program, run the program, and record the time?
- ► Time depends on a particular input instance.
- ▶ Time depends on the machine.

- Under RAM model
- Recall that, operators are basic enough, thus can be done in constant time; memory access in constant.
- ► Calculate the number of operations required and present the time required as a function of the input size.

- An insertion sort example draw a picture
- ▶ Given *n* numbers, stored in an array,
- initially, the first one is sorted,
- each iteration, we increase the length of the sorted list by 1.
- ▶ After the *i*th iteration, we have a sorted sequence of length *i*.

- ▶ How many steps does it take for the *i*th iteration?
- two parameters,
- How many are compared?
- ▶ How many basic operations does it take to compare one? To compare one, load from memory, compare, if > key then store in the next position, if i< key, done. Constant number of steps, c_1 , each step takes constant time, c_2 (clock cycle), one move takes $c_1 + c_2$ time, it still constant.

- How many are compared
- best case, compare one and no stores are required.
- worst case, each time you have a key which is smallest among the previous sorted list, and thus you have to compare all.
- generally follow the worst case convention.

▶ In the worst case, the *i*th iteration needs i-1 comparisons and moving i data (ignore constant)

$$\sum_{i}^{n-1} i = \frac{n(n-1)}{2}$$

- Correctness of the algorithm
- ▶ Obvious when the length if 1 and 2. Suppose it is correct to insertion sort i numbers, we have sorted sequence of length i. To process the i+1 number k, if k > A[i], done (sorted). If k < A[i], A[i] moves to A[i+1], we are inserting key to a sorted sequence of length i. Since the previous n-1 numbers are sorted, by induction, the algorithm correctly sort n numbers.

Description of an Algorithm

- Pseudo code
- PASCAL or C liked code
- Mixed with natural language
- many details are ignored

- Another example, Selection Sort
- first iteration, find smallest from n numbers, n steps, 2nd iteration, find smallest from n-1 numbers, n-1 steps,

. . .

Find the smaller from the 2, and finally move the last to output list

$$\sum (n-1) = \frac{(n+1)*n}{2}$$

- Which one is more efficient, the insertion sort or the selection sort?
- ► Why?
- ▶ Is there a way to accurately convey this message?

Asymptotic Notation Θ notation Θ -Notation, asymptotic tight bound

Given a function g(n), $\Theta(g(n))$ is the set of functions $\Theta(g(n)) = \{f(n) | \exists \text{ positive constants } c_1, c_2, \text{ and } n_0 \text{ s.t. } 0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n), \forall n > n_0 \}$

Asymptotic Notation

- Insertion sort,
- ▶ in the worst case, $\Theta(n^2)$, best case is linear time, i.e., $\Theta(n^2)$ is not appropriate to describe the time complexity of the insertion sort.

Asymptotic Notation

- Selection sort.
 - Best case, find the minimum at the first time, and compare with all the others,
 - Worst case, find the largest at the first time, the you need to compare with all the others, and each time, you find a smaller one. So you will need swap.
 - ▶ both cases need n^2 operations.

Asymptotic Notation *O*-Notation, asymptotic upper bound

Given a function g(n), O(g(n)) is the set of functions that $O(g(n)) = \{f(n) | \exists \text{ positive constants } c \text{ and } n_0, \text{ s.t.} \\ 0 \le f(n) \le c \cdot g(n), \forall n \ge n_0 \}$

Asymptotic Notation Some Examples

- ▶ Insertion Sort: $O(n^2)$ best describes time required for insertion sort
- ► Binary Search: Given a sorted sequence stored in an array A. Given *x* and ask if *x* is in the set.

Binary Search

- ▶ Suppose x could fall in between i and j in array A
- compare x against $A\left[\frac{i+j}{2}\right]$
- if $x = A[\frac{i+j}{2}]$, done.
- ▶ if $x < A[\frac{i+j}{2}]$, if x presents, x can be in between i to $\frac{i+j}{2} 1$.
- ▶ if $x > A[\frac{i+j}{2}]$, if x presents, x can be in between $\frac{i+j}{2} + 1$ to j.

Binary Search

- ▶ How fast we can find x, or we can make sure x is not present?
- ► Best case?
- ▶ Worst case?
- ▶ Which one best describe the time required, $\Theta(\log n)$ or $O(\log n)$?

Merge Sort

- ▶ Need another array.
- ► Consider the problem to merge two sorted sequence of length *n*.
- ▶ draw a figure

Merge Sort

- How many data elements moved? How many data elements compared?
- ▶ What is the total time for merging? O(n) or $\Theta(n)$
- Question: How to get the 2 sorted lists?
- ▶ Given 2 sorted sequences of length $\frac{n}{4}$, merge them to get the sorted list of length $\frac{n}{2}$. Then how to get the sorted sequences of length $\frac{n}{4}$? ...
- draw the tree like figure

Merge Sort

- ▶ Each row "n moves" + "< n comparisons".
- ► How many rows?
- ▶ Which is the best to describe the time complexity, $O(n \log n)$ or $\Theta(n \log n)$?

Two Issues Need to Discuss

- ▶ Divide and Conquer: A technique to solve problem, very good especially when proving the correctness of the algorithm.
- Recursion: Fibonacci Series, define a function by itself.
- MergeSort, Solve a problem by solving same but smaller problem.

$$F(i) = F(i-1) + F(i-2), i > 2$$

 $F(0) = 0, F(1) = 1$
boundary condition

Divide and Conquer- Recursion

- ► Solve a problem by solving the same problems (obtained by dividing the original problem) with smaller problem size, then merge the solutions to get the solution to the original problem.
- ▶ Time required for merge sort n numbers = Solve two sub problems of size $\frac{n}{2}$, then merge the two in cn time.

Let the time for merge sort n numbers be T(n), then merge sort $\frac{n}{2}$ numbers takes $T(\frac{n}{2})$

Total time, T(n), can be written as:

$$T(n) = 2 \cdot T(\frac{n}{2}) + cn$$

What is T(n)?

To Solve the Recursion

- substitution method
- changing variable
- Recursion tree
- ▶ iteration method, to expand the recurrence

Solve
$$T(n) = 3T(\lfloor \frac{n}{4} \rfloor) + n$$

$$T(n) = n + 3T(\lfloor \frac{n}{4} \rfloor)$$

$$= n + 3(\lfloor \frac{n}{4} \rfloor + 3T(\lfloor \frac{n}{16} \rfloor)))$$

$$= n + 3(\lfloor \frac{n}{4} \rfloor + 3(\lfloor \frac{n}{16} \rfloor + 3T(\lfloor \frac{n}{64} \rfloor)))$$

$$= n + 3\lfloor \frac{n}{4} \rfloor + 9\lfloor \frac{n}{16} \rfloor + 27T(\lfloor \frac{n}{64} \rfloor)$$

$$T(n) \leq \left(\frac{3}{4}\right)^{0} n + \left(\frac{3}{4}\right)^{1} n + \left(\frac{3}{4}\right)^{2} n + \left(\frac{3}{4}\right)^{3} n + \dots + \left(\frac{3}{4}\right)^{\log_{4} n} n$$

$$\left(\frac{3}{4}\right)^{\log_{4} n} n = n^{\log_{4} \frac{3}{4}} n = n^{\log_{4} 3 - 1} n = n^{\log_{4} 3 - 1 + 1}$$

$$\leq n \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^{i} + \Theta(n^{\log_{4} 3})$$

$$\left(3^{\log_{4} n} = n^{\log_{4} 3}\right)$$

$$= 4n + o(n) = O(n)$$

o-notation

 $o(g(n)) = \{f(n)| \text{ for any positive constant } c > 0, \exists \text{ a constant } n_0 > 0 \text{ s.t. } 0 \le f(n) < cg(n) \ \forall n \ge n_0 \}$

What if T(n) = T(n/3) + T(2n/3) + n (balance partition) or

$$T(n) = 4T(\lfloor \frac{n}{3} \rfloor) + n?$$

A simplified Master Theorem

a, b, and c are non-negative constant that T(1)=b, and $T(n)=aT(\frac{n}{c})+bn$, n>1. What if a=c, a>c, or a<c?

Proof of the above theorem If n is a power of c, then

$$T(n) = bn \sum_{i=0}^{\log_c n} r^i$$
, where $r = a/c$.

If a < c, $\sum_{i=0}^{\infty} r^i$ converges, T(n) is O(n). If a = c, each term in the sum is unity, there are $O(\log n)$ term. Thus T(n) is $O(n \log n)$. If a > c, then

$$bn \sum_{i=0}^{\log_{c} n} r^{i} = bn \frac{r^{1 + \log_{c} n} - 1}{r - 1},$$

which is $O(a^{\log_c n}) = O(n^{\log_c a})$.

Changing Variable

- ► Solve $T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \lg n$
- ▶ Let $m = \lg n$.
- ▶ Then we have $T(2^m) = 2T(2^{\frac{m}{2}}) + m$
- $S(m) = 2S(\frac{m}{2}) + m$
- ► $S(m) = m \lg m$ or $T(n) = T(2^m) = S(m) = m \lg m = \lg n \lg \lg n$.

Divide and Conquer

- A technique to solve problem
- Solve a problem by dividing the problem into (two) smaller size subproblems,
- solve the small subproblems,
- combine the solutions to the subproblems to get the solutions to the original problem.

Divide and Conquer- merge sort MERGESORT n numbers consists of the following 3 steps.

- ▶ DIVIDE: divide the problem into 2 sub-problems of the same size.
- ► CONQUER: merge sort the two subproblems
- ► COMBINE: merge the two sorted sequences

Divide and Conquer- quick sort

- ► DIVIDE: array A[p..r] is partitioned into nonempty A[p..q] and A[q+1..r] s.t. A[p..q] is less than or equal to each element of A[q+1..r].
- CONQUER: quick sort the two arrays.
- ► COMBINE: Since the subarrays are sorted in place, no further work is needed to combine them.

```
(A,p,r)
if (p<r) then {
  q = PARTITION (A,p,r);
  QUICKSORT (A,p,q);
  QUICKSORT (A,q+1,r)
A[q] is pivot, after Partition, q is in the final position (rank of
the pivot). Pivot is generally the first one in the array
draw a picture
Run time for PARTITION (A,p,r) is \Theta(n), n = r - p + 1.
```

```
Partition (A,p,r)
1 x = A[r]
2 i = p-1
3 for i=p to r-1
     if A[j] \leq x
5
       i=i+1
6
       exchange A[i] to A[i]
   exchange A[i+1] with A[r]
   return i+1
```

Quick Sort- Worst Case

$$T(n) = T(n-1) + \Theta(n)$$

$$= \sum_{k=1}^{n} \Theta(k)$$

$$= \Theta(\sum_{k=1}^{n} k)$$

$$= \Theta(n^{2})$$

draw a tree like structure

Quick Sort-Best case

Partition produces two subarrays of same length $\frac{n}{2}$

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

= $\Theta(n \log n)$

Quick Sort- Balance Partition

- ► Suppose partition always produces 9-1 split
- $T(n) = T(\frac{9}{10}) + T(\frac{1}{10}) + n$

Quick Sort- Average case

- average case, expected computing time.
- need an assumption, all permutations of input numbers are equally likely
- or we say ranks of the pivot have equal probability
- ▶ Most of the time (80%) more balance than 9-1, 20% less balance than 9-1. An intuition that the average case will be $O(n \log n)$.

Quick Sort- Average Case Analysis

$$T(n) = \frac{1}{n}(T(1) + T(n-1) + \sum_{q=1}^{n-1}(T(q) + T(n-q))) + \Theta(n)$$

$$= \frac{1}{n}\sum_{q=1}^{n-1}(T(q) + T(n-q)) + \Theta(n)$$

$$= \frac{2}{n}\sum_{k=1}^{n-1}T(k) + \Theta(n)$$

The following, assume $T(n) \le an \lg n + b$ for some a > 0, b > 0, to be determined.

By substitution we can show

$$T(n) \leq \frac{2a}{n} \sum_{k=1}^{n-1} k \lg k + \frac{2b}{n} (n-1) + \Theta(n)$$

Then to show $\sum_{k=1}^{n-1} k \lg k \le \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2$.

Finally, using the bound to show $T(n) \le an \lg n + b$

Randomized Quick Sort

- What is the bad input?
- ▶ A randomized quick sort, need a random number generator, randomly choose a pivot. (Choose a pivot, swap with the first one).
- Question: What is the wost case time complexity for randomized quick sort?
- Question: Is there bad input?

Some remarks regarding the Quick Sort

- It is fast, performance is the best, since it moves only when necessary.
- Mix quick sort and insertion sort to obtain a faster algorithm: to sort array A[p..q], if the length of A[p..q] is less than a given constant, then stop. Otherwise partition A[p..q]. Finally, insertion sort the whole array A.

Heap Sort

- ► In selection sort, can we make the selection of minimum (maximum) faster?
- ► Need a priority queue
- Priority queue is implemented using the data structure heap.

Priority Queue

- abstract data type, define the data type as well as its operations, detail implementations are ignored.
- ▶ a priority queue, a data structure stores *key*, the operations are "insert arbitrary" and "delete the minimum (maximum)" lead.
- Priority queue can be implemented by using unsorted array, sorted array, or a heap.

Priority Queue

- What if implemented using a unsorted array?
- What if implemented using a sorted array?
- ▶ Implemented using a heap, delete minimum and inserted arbitrary are done in $O(\log n)$ time.

Heap Structure

- ▶ A heap is a *complete binary tree*
- ▶ The tree is stored in an array.
- ► A max-heap, for any subtree, the root of the subtree is the maximum.
- ► An example, 16, 14, 10, 8, 7, 9, 3, 2, 4, 1. draw the max-heap

Heap Structure

- ► In a tree, children of a node or parent of a node should be accessed in constant time.
- ▶ A node i (the index of the array), it root is $\lfloor \frac{i}{2} \rfloor$. Its children are 2i and 2i + 1 if $2i \le n$ or $2i + 1 \le n$, where n is the number of nodes in the heap.
- ▶ Height of the heap is $\Theta(\log n)$.

Maintain the heap property

- ► A function HEAPIFY
- ▶ Apply HEAPIFY to a tree, *T*, only when *T* meets the conditions, both left subtree and right subtree of *T* are maximum heap; root of *T* is not the maximum.
- ► HEAPIFY moves the root down to the place it should go, and makes *T* a max-heap again.
- show an example
- ▶ What is the time complexity, Θ or O.

Heap Sort

- ▶ Suppose that there is a max-heap of *n* numbers, we are going to sort these *n* numbers.
- ▶ Move the root (the maximum) to the end of the array (move to the place it should go), and move the last one, p, to the root. p may not be the maximum, we then need to modify (maintain) the heap- HEAPIFY. Note that the size of the heap is reduced by one.

- ▶ After Hepaify, we have a max-heap of n-1 nodes.
- ▶ We then go to the first step and then iterate the steps until there are no nodes.
- What is the cost? Θ or O

Build the Heap

Input of the Heap Sort is an unsorted array. The first step is to build the Max-heap.

- ▶ Given a heap of size n, how many are leaves? $\lceil \frac{n}{2} \rceil$
- ► These leaves are max-heap.
- ▶ for $(\lceil \frac{n}{2} \rceil 1)$ down to 1 do HEAPIFY. a quick example
- ► Time complexity: each Hepaify takes $O(\log n)$ time, there are $\frac{n}{2}$ HEAPIFIES, so the total cost is $O(n \log n)$??
- accurate analysis leads to linear time upper bound.

Build a Heap

Time required to by HEAPIFY a sub-tree of height h is O(h)

leaves $\left\lceil \frac{n}{2} \right\rceil$ height 1 $\left\lceil \frac{n}{2^2} \right\rceil$ height 2 $\left\lceil \frac{n}{2^3} \right\rceil$

. . .

height $h \left\lceil \frac{n}{2^{h+1}} \right\rceil$

So the total cost is

$$\sum_{h=0}^{\lfloor \lg n \rfloor} ch \lceil \frac{n}{2^{h+1}} \rceil \leq cn \left(\sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h} \right)$$

$$\leq cn \sum_{h=0}^{\infty} \left(\frac{h}{2^h} \right)$$

$$\leq cn \cdot 2$$

$$= O(n)$$

Building the Heap To get
$$\sum_{h=0}^{\infty}(\frac{h}{2^h})$$
, Eq. ((A.8) or (3.6)) $\sum_{k=0}^{\infty}kx^k=\frac{x}{(1-x)^2}$ Substituting $x=\frac{1}{2}$ yields $\sum_{k=0}^{\infty}k\frac{1}{2^k}$

- ▶ So building a max-heap actually takes O(n) time.
- ▶ Question: Do you think accurate analysis of heap sort leads better time complexity $(o(n \log n) \text{ time})$??

Can you beat $n \log n$ bound for Sorting Problem?

- Linear decision tree model: a binary tree, internal nodes are comparisons, leaves are solutions
- computation: proceed by comparing in the internal nodes, outcome decides the branching directions, when the computation reach a leave, a solution is obtained
- ► The number of operations = the path from root to the leaf (result).

- ▶ the number of leaves = the all possible results. For sorting problem (to decide a permutation that meets a certain property), if the input size is *n*, there are *n*! possible results.
- ▶ the least possible path length (in the worst case) is at least log n! which is greater than $n \log n$, $(n! \ge (\frac{n}{e})^n)$, Stirling's approximation)
- \triangleright $n \log n$ is the best possible result.

Ω -notation- Asymptotic Lower Bound

For a given g(n), $\Omega(g(n))$ is the set of functions $\Omega(g(n)) = \{ f(n) | \exists \text{ positive constants } c \text{ and } n_0, \text{ s.t.}$ $0 \le cg(n) \le f(n), \forall n \ge n_0 \}$ For any two functions f(n) and g(n), $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

The Master Theorem

Let $a \ge 1$ and $b \ge 1$ be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurence

$$T(n) = aT(n/b) + f(n).$$

T(n) can be bounded asymptotically as

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Sorting in Linear Time

- ▶ Assume that each of the *n* input elements is an integer in the range 1 to *k*.
- ▶ When k = O(n), the sort runs in O(n) time.
- basic idea, for each input element x, how many are less than x- counting sort.

- ▶ input sequence is (3, 6, 4, 1, 3, 4, 1, 4), we consider the sequence as (3¹, 6², 4³, 1⁴, 3⁵, 4⁶, 1⁷, 4⁸) where the superscript is the position of the key in the input sequence.
- stable: a sorting algorithm is stable if the order of two elements having identical keys is preserved after applying the algorithm.
- \blacktriangleright i.e., we get the result, $(1^4, 1^7, 3^1, 3^5, 4^3, 4^6, 4^8, 6^2)$.

Counting Sort

First Iteration, calculate the number of occurences of a key.

That recruited, edicates the number of occurrences of									u neg.		
Number of Occurences	0	2	0	2	3	0	1	0	0	0	
Key		1	2	3	4	5	6	7	8	9	

Second Iteration, Calculate the "positions" of the keys after sorting.

,						,				
Position	0	2	2	4	7	7	8	8	8	8
Key	0	1	2	3	4	5	6	7	8	9

Combine these two tables, we know, for examples, there are 2 1s (from first table), the last 1 will be at position 2 after sorted (from second table), or there are three 4s (from first table), the last 4 will be at position 7 after sorted (from second table).

Radix Sort

- ► A *d*-digit number is considered *d* keys.
- most significant digit first
- ▶ least significant digit first
- ▶ an example 329, 457, 657, 839, 436, 720, 355

Discussion on the lower bound

- Why radix sort beats the lower bound?
- ▶ the operation used is not "comparison", thus it is beyond the the linear decision tree model.
- powerful operator could reduce the time required

Minimum Gap and Maximum Gap

- ▶ Minimum Gap: Given a set $A = \{a_1, a_2, ..., a_n\}$, determine i and j that $|a_i a_j|$ is minimum.
- Maximum Gap: Given a set $A = \{a_1, a_2, ..., a_n\}$, determine i and j that there is no a_k , $a_i < a_k < a_j$ and $|a_i a_j|$ is maximized.
- ▶ Both have $\Omega(n \log n)$ lower bound under linear decision tree model.
- Maximum can be solved in O(n) time when floor function is allowed.

Linear time algorithm for Max-Gap

- Given $A = \{a_1, a_2, ..., a_n\}$, find the maximum gap.
- ▶ normalize the numbers into the range [0,1].
- ▶ Equally divide the range into n+1 intervals.
- put these n number into the buckets

- by pigeon hole principle, there must be at least an empty bucket
- ► The maximum gap cannot be determined by the element in the same bucket
- maximum gap can be determined by the largest in a bucket and the smallest in the next non-empty bucket.
- a linear time algorithm