FINANCIAL ECONOMETRICS

- Week 3, Lecture 2 -

ESTIMATION AND ANALYSIS OF MULTIVARIATE GARCH MODELS

VU ECONOMETRICS AND DATA SCIENCE 2024-2025

PAOLO GORGI

Today's class

- Estimation of multivariate GARCH
 - Maximum likelihood estimation
 - Estimation with covariance targeting
 - Estimation of CCC equation by equation
- Financial analysis of multivariate GARCH
 - VaR of a portfolio
 - Dynamic portfolio optimization
 - Out-of-sample portfolio evaluation

Maximum likelihood estimation

Estimation with covariance targeting

Estimation of CCC aquation by aquati

Estimation of multivariate GARCH

ML estimation of multivariate GARCH (i)

Note: Multivariate GARCH models can be estimated by maximum likelihood

The ML estimator is naturally given by

$$\hat{\theta}_T = \arg\max_{\theta \in \Theta} L(y_1, ..., y_T, \theta).$$

The log-likelihood function is given by

$$L(y_1,...,y_T,\theta) = -\frac{1}{2} \sum_{t=1}^{T} \left(\log |\mathbf{\Sigma}_t| + \mathbf{y}_t^{\mathsf{T}} \mathbf{\Sigma}_t^{-1} \mathbf{y}_t \right).$$

The time-varying conditional covariance matrix Σ_t is filtered using the updating equation!

ML estimation of multivariate GARCH (ii)

Example: for a bivariate DVECH(1,1) we can use the following updating equations

$$\begin{split} &\sigma_{1,t}^2 = \omega_{11} + \beta_{11}\sigma_{1,t-1}^2 + \alpha_{11}y_{1,t-1}^2, \\ &\sigma_{2,t}^2 = \omega_{22} + \beta_{22}\sigma_{2,t-1}^2 + \alpha_{22}y_{2,t-1}^2, \\ &\sigma_{21,t} = \omega_{21} + \beta_{21}\sigma_{21,t-1}^2 + \alpha_{21}y_{1,t-1}y_{2,t-1}, \end{split}$$

where the updating equation can be initialized by setting Σ_1 equal to the sample covariance matrix!

In large samples: the ML estimator is normally distributed

$$\sqrt{T}(\hat{\theta}_T - \theta_0) \stackrel{app}{\sim} N(0, \mathcal{I}(\theta_0)^{-1}) \text{ as } T \to \infty.$$

The Fisher information $\mathcal{I}(\theta_0)$ can be estimated as discussed for the univariate GARCH.

Estimating a sDVECH(1,1) with R (i)

Example: bivariate scalar DVECH(1,1)

Note: Maximizing the log likelihood with R is the same as for the univariate case!

Question: How do we write the log-likelihood function?

 ${\bf R}$ files: estimation_sDVECH.R and llik_fun_sDVECH.R.

Input for llik_fun_sDVECH(): observed time series x and
parameter vector par;

Output from llik_fun_sDVECH(): average log-likelihood value llik.

Estimating a sDVECH(1,1) with R (ii)

First line: defines name of function and inputs

```
llik_fun_sDVECH <- function(par,x){</pre>
```

Next: define sample size and parameter values with appropriate link functions

```
w11 <- exp(par[1])
w12 <- par[2]
w22 <- exp(par[3])
a <- exp(par[4])/(1+exp(par[4]))
b <- exp(par[5])/(1+exp(par[5]))
d <- dim(x)
n <- d[1]</pre>
```

Estimating a sDVECH(1,1) with R (iii)

Initialize VECHt and llik value

```
VECHt <- matrix(0,nrow=n,ncol=3)</pre>
  llik <- 0
  C < - cov(x)
  VECHt[1.] < - c(C[1.1],C[1.2],C[2.2])
Run a for loop
  for(t in 2:n){
    VECHt[t,1] \leftarrow w11+b*VECHt[t-1,1]+a*x[t-1,1]^2
    VECHt[t,3] \leftarrow w22+b*VECHt[t-1,3]+a*x[t-1,2]^2
    VECHt[t,2] \leftarrow w12+b*VECHt[t-1,2]+a*x[t-1,1]*x[t-1,2]
    SIGMAt <- cbind(c(VECHt[t,1], VECHt[t,2]), c(VECHt[t,2], VECHt[t,3]))
    11ik < 11ik - 0.5*(log(det(SIGMAt)) + x[t,]%*%solve(SIGMAt)%*%t(t(x[t,])))/n
  }
```

Estimating a sDVECH(1,1) with R (iv)

Figure: Conditional variances and correlations estimated from IBM and Google log-returns.

Estimation with covariance targeting (i)

Important: VECH can be estimated by covariance targeting!

Idea:

- Estimate the unconditional covariance Σ using sample variance.
- Plug-in the estimated covariance $\hat{\Sigma}$ into the likelihood function.
- Optimize the likelihood over the remaining parameters.

Advantage: covariance targeting reduces the number of parameters in the likelihood optimization.

- Numerical optimization methods become time-consuming for large parameter vectors;
- Optimization over large parameter vectors often lead to numerical problems.

Estimation with covariance targeting (ii)

Example: sDVECH(1,1)

 \bullet The updating equation of sDVECH(1,1) is

$$\boldsymbol{\Sigma}_t = \boldsymbol{W} + \alpha_1 \, \boldsymbol{y}_{t-1} \boldsymbol{y}_{t-1}^{\mathsf{T}} + \beta_1 \, \boldsymbol{\Sigma}_{t-1}.$$

② The unconditional covariance $\Sigma = \mathbb{V}ar(\boldsymbol{y}_t) = \mathbb{E}(\boldsymbol{y}_t \boldsymbol{y}_t^{\mathsf{T}})$ is

$$\Sigma = (1 - \alpha_1 - \beta_1)^{-1} W$$
, therefore $W = (1 - \alpha_1 - \beta_1) \Sigma$.

3 Σ is estimated by sample variance $\hat{\Sigma} = T^{-1} \sum_{t=1}^{T} \boldsymbol{y}_{t} \boldsymbol{y}_{t}^{\mathsf{T}}$ and plugged-in into the updating equation:

$$\Sigma_t = (1 - \alpha_1 - \beta_1) \hat{\Sigma} + \alpha_1 \boldsymbol{y}_{t-1} \boldsymbol{y}_{t-1}^{\mathsf{T}} + \beta_1 \Sigma_{t-1}.$$

① Use this new updating equation to get the likelihood. This way the likelihood only depends on two parameters: α_1 and β_1 .

Covariance targeting sDVECH(1,1) with R (i)

```
R files: likelihood function with covariance targeting in
llik_CT_sDVECH.R and code to optimize it in CT_estimation_sDVECH.R.
Write likelihood: define input and output of llik_CT_sDVECH()
llik_CT_sDVECH <- function(par,x){</pre>
Define: parameters \alpha_1 and \beta_1
  a \leftarrow \exp(par[1])/(1+\exp(par[1]))
  b \leftarrow \exp(par[2])/(1+exp(par[2]))
  d < - dim(x)
  n < -d[1]
  VECHt <- matrix(0,nrow=n,ncol=3)</pre>
  11ik <- 0
```

Covariance $\overline{\text{targeting sDVECH}(1,1)}$ with R (ii)

Compute the sample covariance matrix

```
C \leftarrow cov(x)
VECHt[1,] \leftarrow c(C[1,1],C[1,2],C[2,2])
```

Run for loop and plug-in sample variance in updating equation

```
for(t in 2:n){
   VECHt[t,1] <- C[1,1]*(1-a-b)+b*VECHt[t-1,1]+a*x[t-1,1]^2
   VECHt[t,3] <- C[2,2]*(1-a-b)+b*VECHt[t-1,3]+a*x[t-1,2]^2
   VECHt[t,2] <- C[1,2]*(1-a-b)+b*VECHt[t-1,2]+a*x[t-1,1]*x[t-1,2]
   SIGMAt <- cbind(c(VECHt[t,1],VECHt[t,2]),c(VECHt[t,2],VECHt[t,3]))
   llik <- llik-0.5*(log(det(SIGMAt))+x[t,]%*%solve(SIGMAt)%*%t(t(x[t,])))/n
}</pre>
```

Important: the likelihood function $11ik_CT_sDVECH()$ can be optimized with respect to α_1 and β_1 only.

Estimation of CCC equation by equation (i)

Important: CCC model can be estimated equation-by-equation!

Recall: the CCC is

$$\Sigma_t = D_t R D_t$$

with
$$\boldsymbol{D}_t = \operatorname{diag}(\sigma_{1,t}, \dots, \sigma_{n,t})$$
, and $\sigma_{i,t}^2 = \omega_i + \beta_i \sigma_{i,t-1}^2 + \alpha_i y_{i,t}^2$.

Idea:

- \bullet We can estimate n univariate GARCH models separately by ML.
- The constant correlation matrix R is then estimated using the standardized residuals obtained from the univariate GARCHs.

Estimation of CCC equation by equation (ii)

Note: the steps to estimate a **CCC model equation-by-equation** are the following:

- Estimate a univariate GARCH model for each series $\{y_{it}\}_{t=1}^T$, $i = 1, \ldots, n$.
- ② Obtain the standardized errors from each of these series $\hat{\varepsilon}_{it} = (y_{it} \hat{\mu}_i)/\hat{\sigma}_{it}, i = 1, ..., n.$
- **3** Estimate the correlation matrix from the residuals $\hat{\mathbf{R}} = T^{-1} \sum_{t=1}^{T} \hat{\boldsymbol{\varepsilon}}_{t} \hat{\boldsymbol{\varepsilon}}_{t}^{\mathsf{T}}$, where $\hat{\boldsymbol{\varepsilon}}_{t} = (\hat{\varepsilon}_{1t}, \dots, \hat{\varepsilon}_{nt})^{\mathsf{T}}$.

Advantage: no need to optimize the likelihood function over the full parameter vector: fast and more reliable estimation.

Estimating a CCC with R (i)

MATLAB file: estimation_CCC.R

Define initial parameter values to estimate univaraite GARCH

```
alpha_ini <- 0.2
beta_ini <- 0.6
omega_ini <- var(x[,1])*(1-alpha_ini-beta_ini)
par_ini <- c(log(omega_ini),log(alpha_ini/(1-alpha_ini)),log(beta_ini/(1-alpha_ini))</pre>
```

Obtain parameter estimates of univariate GARCH:

```
est1 <- optim(par=par_ini,fn=function(par)-llik_fun_GARCH(par,x[,1]))
est2 <- optim(par=par_ini,fn=function(par)-llik_fun_GARCH(par,x[,2]))</pre>
```

Estimating a CCC with R (ii)

Obtain the filtered variances from univariate GARCH:

```
n \leftarrow length(x[,1])
s1 \leftarrow rep(0,n)
s2 < - rep(0,n)
s1[1] < - var(x[,1])
s2[1] \leftarrow var(x[.2])
for(t in 2:n){
  s1[t] \leftarrow omega_hat1 + alpha_hat1*x[t-1,1]^2 + beta_hat1*s1[t-1]
  s2[t] \leftarrow omega_hat2 + alpha_hat2*x[t-1,2]^2 + beta_hat2*s2[t-1]
```

Estimating a CCC with R (iii)

Obtain residuals:

Calculate: the correlation between the residuals of the first and second series:

$$r \leftarrow cor(e1,e2)$$

Important: It is easy to extend this method to more than 2 series.

VaR of a portfolio

Dynamic portfolio optimization

Out of complementation evaluation

Financial analysis of multivariate GARCH

Financial analysis of multivariate GARCH

Question: why is all we have learned so far about multivariate GARCH models useful?

- Assess risk of multiple assets;
- Risk metrics for financial investment (VaR of large portfolios);
- Operation optimization: decide on which assets to invest.

Portfolio of financial assets (i)

Consider a portfolio of n assets.

Let $y_{i,t}$ denotes the return of asset i at time t.

 $\mathbf{y}_t = (y_{1,t}, \dots, y_{n,t})^{\mathsf{T}}$ is the vector of returns at time t.

 $k_{it} \in [0, 1]$ is the fraction our portfolio invested in asset i at time t. k_{it} is also called the weight of asset i.

 $\mathbf{k}_t = (k_{1t}, \dots, k_{nt})^{\mathsf{T}}$ is the vector of weights.

Note: the weights sum to 1, i.e. $\sum_{i=1}^{n} k_{it} = 1$.

Portfolio's return: the return of our portfolio at time t is

$$y_{p,t} = \sum_{i=1}^n k_{i,t} y_{i,t} = \boldsymbol{k}_t^{\mathsf{T}} \boldsymbol{y}_t.$$

Portfolio of financial assets (ii)

Multivariate GARCH: describes conditional distribution of vector of returns

$$\boldsymbol{y}_t|Y^{t-1} \sim N_n(\mathbf{0}, \boldsymbol{\Sigma}_t).$$

Hence: portfolio's conditional distribution is given by

$$y_{p,t}|Y^{t-1} \sim N(0,\sigma_{p,t}^2),$$

where:

$$\sigma_{p,t}^{2} = \mathbb{V}ar\left(y_{p,t}|Y^{t-1}\right)$$

$$= \mathbb{V}ar\left(\boldsymbol{k}_{t}^{\mathsf{T}}\boldsymbol{y}_{t}|Y^{t-1}\right)$$

$$= \boldsymbol{k}_{t}^{\mathsf{T}}\mathbb{V}ar\left(\boldsymbol{y}_{t}|Y^{t-1}\right)\boldsymbol{k}_{t}$$

$$= \boldsymbol{k}_{t}^{\mathsf{T}}\boldsymbol{\Sigma}_{t}\boldsymbol{k}_{t}.$$

Portfolio of financial assets: VaR

Simple example (n = 2): two-asset portfolio

Conditional variance $\sigma_{p,t}^2$ is given by

$$\begin{split} \boldsymbol{\sigma}_{p,t}^2 &= \boldsymbol{k}_t^{\mathsf{T}} \boldsymbol{\Sigma}_t \boldsymbol{k}_t \\ &= \begin{bmatrix} k_{1,t} & k_{2,t} \end{bmatrix} \begin{bmatrix} \sigma_{1,t}^2 & \sigma_{12,t} \\ \sigma_{12,t} & \sigma_{2,t}^2 \end{bmatrix} \begin{bmatrix} k_{1,t} \\ k_{2,t} \end{bmatrix} \\ &= k_{1,t}^2 \sigma_{1,t}^2 + k_{2,t}^2 \sigma_{2,t}^2 + 2k_{1,t}k_{2,t}\sigma_{12,t}. \end{split}$$

Finally: we obtain that the conditional α -VaR of the portfolio at time t

$$\alpha\text{-VaR}_t = z_\alpha \sigma_{p,t},$$

where: z_{α} is the quantile of level α of a standard normal.

VaR of a portfolio: conditional mean extension (i)

Consider a time-varying conditional mean: $\mu_t = (\mu_{1t}, \dots, \mu_{nt})^{\mathsf{T}}$.

Conditional distribution of returns: $y_t|Y^{t-1} \sim N_n(\mu_t, \Sigma_t)$.

- Use Vector AutoRegression (VAR) for conditional mean μ_t .
- Use multivariate GARCH for conditional variance Σ_t .
- ARMA-GARCH, ARMA-EGARCH, ARFIMA-NGARCH, etc.

Portfolio's conditional distribution: $y_{p,t}|Y^{t-1} \sim N(\mu_{p,t}, \sigma_{p,t}^2)$ where $\mu_{p,t} = \mathbb{E}(y_{p,t}|Y^{t-1}) = \mathbb{E}(\boldsymbol{k}_t^{\mathsf{T}}\boldsymbol{y}_t|Y^{t-1}) = \boldsymbol{k}_t^{\mathsf{T}}\mathbb{E}(\boldsymbol{y}_t|Y^{t-1}) = \boldsymbol{k}_t^{\mathsf{T}}\boldsymbol{\mu}_t$, and $\sigma_{p,t}^2 = \boldsymbol{k}_t^{\mathsf{T}}\mathbb{V}ar(\boldsymbol{y}_t|Y^{t-1})\boldsymbol{k}_t = \boldsymbol{k}_t^{\mathsf{T}}\boldsymbol{\Sigma}_t\boldsymbol{k}_t$.

VaR of a portfolio: conditional mean extension (ii)

Extension of simple example (n = 2): two assets

$$\begin{split} \mu_{p,t} &= \pmb{k}_t^{\intercal} \pmb{\mu}_t = k_{1,t} \mu_{1,t} + k_{2,t} \mu_{2,t} \\ \sigma_{p,t}^2 &= k_{1,t}^2 \sigma_{1,t}^2 + k_{2,t}^2 \sigma_{2,t}^2 + 2k_{1,t} k_{2,t} \sigma_{12,t} \end{split}$$

Hence: the portfolio's conditional α -VaR at time t is given by

$$\alpha$$
-VaR_t = $\mu_{p,t} + z_{\alpha}\sigma_{p,t}$

Note: conditional VaR sequence depends on:

- ① Time-varying conditional means $\mu_{1,t}$, $\mu_{2,t}$;
- ② Time-varying conditional variances $\sigma_{1,t}^2$, $\sigma_{2,t}^2$;
- **③** Time-varying conditional covariance $\sigma_{12,t}$;
- Weights $k_{1,t}$ and $k_{2,t}$ (weight adjustment is crucial!).

Dynamic portfolio optimization (i)

Portfolio optimization: selection of portfolio composition or weights k_{it} that optimize the performance of the portfolio according to some measure of interest!

Example (minimize variance):

- Weights k_{1t} and $k_{2t} = 1 k_{1t}$: two-asset portfolio;
- Measure of performance: minimize variance (risk);
- Assumption: uncorrelated returns $\sigma_{12t} = 0$.

Question: Find the weights k_{1t} and $k_{2t} = 1 - k_{1t}$ that minimizes the variance of the portfolio σ_{pt}^2 .

Dynamic portfolio optimization (ii)

Answer (example):

Given that $\sigma_{12t} = 0$, we obtain that the variance of the portfolio is

$$\begin{split} \sigma_{pt}^2 &= \mathbb{V}\operatorname{ar}(y_{pt}|Y^{t-1}) = k_{1t}^2\sigma_{1t}^2 + k_{2t}^2\sigma_{2t}^2 + 2k_{1t}k_{2t}\sigma_{12t} \\ &= k_{1t}^2\sigma_{1t}^2 + k_{2t}^2\sigma_{2t}^2 \\ &= k_{1t}^2\sigma_{1t}^2 + (1 - k_{1t})^2\sigma_{2t}^2 \end{split}$$

Find k_{1t} that minimizes variance: $\operatorname{arg\,min}_{k_{1t}} \sigma_{pt}^2$

Set derivative to zero: $2k_{1t}\sigma_{1t}^2 - 2(1-k_{1t})\sigma_{2t}^2 = 0$

Optimal weights: $k_{1t} = \sigma_{2t}^2/(\sigma_{1t}^2 + \sigma_{2t}^2)$ and $k_{2t} = \sigma_{1t}^2/(\sigma_{1t}^2 + \sigma_{2t}^2)$.

For instance: If $\sigma_{2t}^2 = 1$ and $\sigma_{2t}^2 = 2$, then $k_{1t} = 2/3$ and $k_{2t} = 1/3$.

Dynamic portfolio optimization: Sharpe ratio

Important performance measure: Sharpe ratio

$$S_{p,t} = \frac{\mu_{p,t}}{\sigma_{p,t}}$$

Optimize k_t : maximize the Sharpe ration

- **1** Maximize portfolio returns $\mu_{p,t}$;
- ② Minimize financial volatility (risk) Σ_t ;

$$\max_{\boldsymbol{k}_t} \frac{\boldsymbol{k}_t^{\top} \boldsymbol{\mu}_t}{\sqrt{\boldsymbol{k}_t^{\top} \boldsymbol{\Sigma}_t \boldsymbol{k}_t}}, \quad \text{s.t. } \sum_{i=1}^n k_{i,t} = 1, \ k_{it} \ge 0$$

Simple case: Sharpe ratio can be maximized analytically.

In practice: maximize Sharpe ratio using R.

Simple Example: Sharpe ratio

Example: maximize portfolio's Sharpe ratio with two assets:

$$\max_{k_{1t}} \frac{k_{1t}\mu_{1t} + (1-k_{1t})\mu_{2t}}{\sqrt{k_{1t}^2\sigma_{1t}^2 + (1-k_{1t})^2\sigma_{2t}^2 + 2k_{1t}(1-k_{1t})\sigma_{12t}}}, \quad \text{s.t. } 0 \leq k_{1t} \leq 1$$

Note: a closed form solution is known for the optimal weights when the constraint $k_{1t}, k_{2t} \ge 0$ is not imposed!

this makes sense if you are allowed to hold a *short position* on a stock (negative weights! contrary of *long*)

$$k_{1t} = \frac{\mu_{1t}\sigma_{2t}^2 - \mu_{2t}\sigma_{12t}}{\mu_{1t}\sigma_{2t}^2 + \mu_{2t}\sigma_{1t}^2 - (\mu_{1t} + \mu_{2t})\sigma_{12t}},$$

$$k_{2t} = 1 - k_{1t}$$

Dynamic portfolio optimization with R (i)

Objective: optimize portfolio with R (maximize Sharpe Ratio)

R file: portfolio_CCC.R

Note:

- We consider a bivariate CCC model for the conditional covariance matrix Σ_t ;
- The conditional mean μ_t is assumed to be constant $\mu_t = \mu$.

Means: mu1 and mu2 contain μ_1 and μ_2 , respectively.

Vectors that store conditional variances: s1, s2 and s12 contain σ_{1t}^2 , σ_{2t}^2 and σ_{12t} respectively for $t = 1, \dots, T$

Dynamic portfolio optimization with R (ii)

Portfolio optimization steps:

- Define matrix kt to store the optimal portfolio weights over time.
- **Run** for loop to obtain the portfolio weights at time each time t from t = 1, ..., T.
 - Use the function max_SR_portfolio() (max_SR_portfolio.R).
 - This function requires the expected returns μ_t and their covariance Σ_t as input.
 - It returns the optimal weights that maximize the Sharpe Ratio under the constraint that all weights are non-negative.

Dynamic portfolio optimization with R (iii)

For loop:

```
kt = matrix(0,nrow=n,ncol=2)
mu1 <- mean(x[,1])
mu2 <- mean(x[,2])
mut <- cbind(mu1,mu2)

for(t in 1:n){
    SIGMAt <- cbind(c(s1[t],s12[t]),c(s12[t],s2[t]))
    kt[t,] <- max_SR_portfolio(mut,SIGMAt)
}</pre>
```

Dynamic portfolio optimization with R (iv)

Figure: Optimal portfolio weights obtained using Microsoft and IBM monthly log-returns.

Out-of-sample portfolio evaluation (i)

In practice: The optimal weights depends on the multivariate GARCH model we use. A portfolio strategy based on the CCC model gives different weights that a strategy based on the DVECH.

Question: how can we decide which portfolio strategy is best?

Answer: we can consider a sub-sample of the observed data and see how different strategies perform in this sub-sample.

- Split dataset $\{\boldsymbol{y}_t\}_{t=1}^T$ into two sub-samples: in-sample dataset $\{\boldsymbol{y}_t\}_{t=1}^{T_1}$ and out-of-sample dataset $\{\boldsymbol{y}_t\}_{t=T_1+1}^{T}$.
- Use *in-sample* dataset to estimate the models and *out-of-sample* dataset to evaluate the performance of the portfolio strategies.

Out-of-sample portfolio evaluation (ii)

Out-of-sample portfolio evaluation:

- **①** Estimate a multivariate GARCH model using the in-sample dataset, $t = 1, ..., T_1$.
- ② For the out-of-sample dataset, obtain an estimate of μ_t and Σ_t using the GARCH model estimated in-sample.
- **③** For the out-of-sample dataset, obtain the log-returns of the optimal portfolio $\{y_{p,t}\}_{t=T_1+1}^T$.
- Estimate of the sharpe ratio of the portfolio as

$$\hat{S}_p = \frac{\bar{y}_p}{\hat{\sigma}_p}, \text{ where } \bar{y}_p = \frac{1}{T - T_1} \sum_{t=T_1+1}^T y_{p,t}, \hat{\sigma}_p^2 = \frac{1}{T - T_1} \sum_{t=T_1+1}^T (y_{p,t} - \bar{y}_p)^2.$$

① Choose strategy with largest out-of-sample Sharpe ratio.

