Boston University Questrom School of Business

MF793 – Fall 2021

Eric Jacquier

Random Variables and Distributions

1 Random variable (RV)

- Definition,
- Discrete RV
- Cumulative distribution function (CDF)
- Probability density function (PDF)
 - Kernel and normalization constant of a pdf
- Multivariate RVs
 - Bayes Theorem for RVs, i.id samples

2 Location estimates of a RV

- Mean Squared Error criterion (MSE), loss function
- Mean, Median, Mode

3 Higher moments of a distribution

- Variance, covariance, correlation
- Basic moment relations
 - Variance of a portfolio
 - Chebishev
- Skewness, kurtosis, central vs non-central moments
- Moment generating function

4 Function of a RV

- Finding the CDF and PDF of a function of a RV
 - Monotone and non-monotone transformations
- Application: the Probability Inverse transform

1. Random variables (RV)

1.1 Definition

We often simplify the description of complex events by the use of a random variable.

This random variable (RV) summarizes what we are interested in

Definition: Random Variable:

Function from the sample space to the real numbers (can be multivariate)

- Sum of two dice: $x = d_1 + d_2$,
- Multivariate RV: keep track of each die: (d₁,d₂)
- Number of defective bulbs produced in a batch
- Fraction of defective bulbs produced
- \$/£, \$/¥ exchange rate
- IBM stock price ... or stock return, multivariate: (R_{IBM},R_{AAPL})
- Stock Index, CPI, GDP level ... or their % change
- Rare events: jump, crash a discrete 0/1 integer RV

Question:

Why do we always model the time series behavior of stock returns (**not** prices)? exchange rate % change (**not** levels), inflation (**not** CPI), growth rate of GDP (**not** level)?

1.2 Discrete Distributions

- X can take discrete values: x₁, x₂, ..., x_n
 ... with probabilities: p₁, p₂, ..., p_n
 - $\{p_i\}$ is a *probability function*: $\sum_{i=1}^n p_i = 1$, $p_i \ge 0 \ \forall i$, $p(X = x_i \cup X = x_j) = p_i + p_j$

also denoted probability mass function

- ... are useful for
 - Insurance
 - Some Economic scenario approaches
 - Capital budgeting (often uses scenarios)
 - Dividend forecasts (firm will / will not increase dividends)
- Discrete distributions are not practical for economic and financial series levels, prices, growth rates and returns
 - There a just too many possible outcomes
 - Continuous distributions are more practical in these cases

1.3 Cumulative Distribution Function (CDF) of a RV

<u>Definition:</u> Cumulative Distribution Function (CDF) of a RV X

Denoted by $F_X(X)$, it is defined by

$$F_X(x_0) = P_X(X \le x_0), \quad \forall x_0 \in D_X$$

X: the random variable

 x_0 : a specific value in D_x the domain of X

Observation: We defined the cumulative function first...

because it is well defined for both continuous and discrete RVs

Properties:

Denote LB and UB, the lower and upper bounds of the domain D_x . CDF has 3 obvious properties:

$$\lim_{x_0 \to UB} F_X(x_0) = 1 \quad \lim_{x_0 \to LB} F_X(x_0) = 0 \qquad \qquad \mathsf{F}_\mathsf{X}(\mathsf{x}_0) \text{ non-decreasing in } \mathsf{x}_0$$

Observation: CDF does not need to be continuous, it can have jumps

One more condition not written above is that it is right-continuous

Definition: A RV is **continuous** if its CDF is continuous

A RV is **discrete** if its CDF has jumps

1.4 Probability mass and probability density functions

- Discrete Distribution has a **Probability Mass Function** $p(x_0) = Prob.(X=x_0)$
 - CDF is the cumulative sum of Probability Mass up to and including x_0 .

We often first describe the Probability Mass, then the CDF if we need it.

• Continuous Distribution: Probability Density Function (PDF) $f(x_0) = \frac{d}{dx_0} F(x_0)$

Or ... the CDF is the partial integral of the PDF up to x_0

$$F(x_0) = \int_{LB}^{x_0} f(t)dt$$

We can write the analytical formula for the PDF of known densities.

We most often cannot write an analytical formula for their CDF

Interval probability:
$$P(a < X < b) = F(b) - F(a) = \int_a^b f(t) dt$$

$$\alpha$$
% Confidence (or credibility) interval $P(a < X < b) = \alpha$

- To be a proper pdf, a pdf function must:
 - i. be ≥0 everywhere to guarantee that all its partial integrals, i.e. interval probabilities, are ≥0
 - ii. integrate to 1 over the domain: $\int_{LB}^{UB} f(t)dt = 1$
- Say you have a function f(t) with $\int_{LB}^{UB} f(t)dt = \frac{1}{c} \neq 1$?

Then:
$$\int_{-\infty}^{+\infty} C f(t) dt = 1$$
 [1]

It works! A non-negative function with finite integral can be rescaled as a proper pdf.

Normalization Constant and Kernel of a PDF

If we have f(x), we can find **C** with the integration above. Then a proper pdf $p(x_0)$ is:

$$p(x) = C \times f(x)$$
pdf of x
Normalization Kernel
Constant

f(x): Kernel. As the sole function of x it completely determines the shape of the density

C: Computed by solving [1]. C scales the kernel to sum to 1, C is not a function of x

1.5 Multivariate RV: joint density, conditional density, marginal density

CDF of a multivariate random variable (X,Y), aka the joint CDF

$$F_{X,Y}(x_0, y_0) = P_{XY}(X \le x_0, Y \le y_0), \quad \forall x_0, y_0 \in D_{xy}$$

• PDF of a multivariate density: $p_{X,Y}(x_0,y_0) = \frac{d}{dx_0 dy_0} F(x_0,y_0)$

$$F_{X,Y}(x_0, y_0) = \int_{LBx}^{x_0} \int_{LBy}^{y_0} p_{X,Y}(t, s) dt ds$$

Bayes theorem applies to pdfs the same way it applies to probabilities of outcomes:

$$p(x,y) = p(y|x) p(x) = p(x|y) p(y)$$

• Same for the Total Probability Theorem: $P(A) = \sum_{i=1}^{n} P(A \text{ and } B_i) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$ p(x) the marginal density of x is: $p(x) = \int p(x,y) \, dy = \int p(x|y) \, p(y) \, dy$

Independently Identically Distributed RVs: i. i. d. random samples
 If n RVs (X₁, ..., X_i, ..., X_n) are independently distributed with the same pdf p(X_i), then:

$$p(X_1, ..., X_n) = \prod_{i=1}^n p_i(X_i) = \prod_{i=1}^n p(X_i)$$

2 Location Estimates of a Distribution

- For a RV, X with pdf p(X), what number would we use to describe its location?
- This has nothing to do with estimating parameters from data! Here we define potentially interesting parameters as ways to describe a distribution.
- We do not say (yet) how to best use data to estimate these parameters (will be next notes).

2.1 The MEAN - fundamental property (why we like it!)

Want a number θ which is "best" at predicting where X is likely to be.

What is "best"? Need a criterion for "best".

<u>Definition:</u> Mean Squared Error (MSE) of prediction of RV X: $E[(\tilde{X}-\theta)^2]$

Goal: Find θ with the lowest MSE, minimize $E[(\tilde{X} - \theta)^2]$: $E[(\tilde{X} - \theta)^2] = \int (x - \theta)^2 p(x) dx$ We can do it two ways

Set first derivative with respect to θ equal to 0.

$$0 = \int -2(x-\theta)p(x)dx =$$

$$=> \theta = E(X)$$

Note: Bounds are not a function of θ , otherwise we would need to use full Leibniz rule

• Or: Let
$$\mu = E(X)$$
 $E[(X - \theta)^2] = E[(X - \mu + \mu - \theta)^2]$

$$= E[(X - \mu)^2] + E[(\mu - \theta)^2] + E[(X - \mu)(\mu - \theta)]$$

$$= E[(X - \mu)^2] + E[(\mu - \theta)^2] + E[(X - \mu)(\mu - \theta)]$$

The Mean minimizes the mean squared error of prediction

Note again: Not about estimating the mean from data, this is a property of the true mean as it describes where the RV may be.

2.2 Other location estimates: The Median

Median
$$P(X \le m) = P(X \ge m) = 0.5$$
 (Continuous distribution)

• Convenient property:

If m is the median of x, then g(m) is the median of y = g(x) for g monotone

Median is invariant to transformations

What is the median best for ?

The Median minimizes the Mean Absolute Error (MAE) of prediction $E[X - \theta]$

MAE =
$$\int_{LB}^{UB} |x - \theta| p(x) dx = \int_{LB} (x - \theta) p(x) dx + \int^{UB} (x - \theta) p(x) dx$$

$$\frac{\partial MAE}{\partial \theta} =$$

Bounds are now a function of t, We need to use Leibniz rule:

$$\frac{d}{d\theta} \int_{L(\theta)}^{U(\theta)} f(x,\theta) dx = \int_{L(\theta)}^{U(\theta)} f'(x,\theta) dx + f(x = U(\theta),\theta) U'(\theta) - f(x = L(\theta),\theta) L'(\theta)$$

$$\frac{\partial MAE}{\partial \theta} =$$

2.3 Third location estimates: Mode: $p(Mode) = Max_x p(x)$

Can show: The mode minimizes the 0/1 prediction error function: $L(X,\theta) = I_{x\neq \theta}$

I: indicator function (I=1 if $X=\theta$, 0 otherwise)

 $L(X, \theta)$: Loss function of using θ as a predictor of X

CONCLUSION:

Three Loss functions => three different optimal location parameters.

The loss function is a fundamental tool in Decision Theory

3 Spread of a Distribution: Second Moments

3.1 Variance, covariance, correlation

• Variance: $V(x) = E(x-\mu)^2 = \int (x-\mu)^2 p(x) dx = \sigma_x^2$

 $V(x) = E(x^2) - [E(x)]^2$ prove it

• Covariance: $Cov(X,Y) = E(X - \mu_X)(Y - \mu_Y)$ Expectation over joint density $p_{XY}(x,y)$

Notation: we write $\sigma_{X,Y}$

 $\sigma_{X,Y} = E(XY) - \mu_X \mu_Y$ prove it $\sigma_{x}^2 = Cov(x,x)$

Covariance has an intuitive sign, not an intuitive magnitude

• Correlation: $Cor(X,Y) = \sigma_{X,Y} / \sigma_X \sigma_Y$ Notation: we write ρ_{XY}

Schwartz inequality: $[E(UV)]^2 \le E(U^2)E(V^2)$ No proof

Then we can show: $[Cov(X,Y)]^2 \le Var(X) Var(Y)$ prove it

 $|\rho_{XY}| < 1!$

Correlation has an intuitive magnitude on [0,1]

3.2 Basic moment relations

$$E(a \widetilde{X} + b \widetilde{Y} + c) = a E(\widetilde{X}) + b E(\widetilde{Y}) + c$$

$$Var(a \widetilde{X} + b) = a^2 Var(\widetilde{X})$$

- Standard deviation $\sigma_x = \sqrt{Var(X)}$ is linear in X.
- Standardization:

if R ~
$$(\mu, \sigma)$$
 then $(R-\mu)/\sigma \sim (0,1)$

• Covariance is a bi-linear operator $Cov(a\tilde{X}, b\tilde{Y}) = ab \sigma_{X,Y}$

Cov
$$(a\widetilde{X}, b\widetilde{Y}) = ab \sigma_{X,Y}$$

• Correlation is a measure of linear dependence: if Y = -|a| X + b, then $\rho_{XY} = -1$

Prove it: compute
$$\rho_{XY}$$

• (X,Y) independent => $\sigma_{X,Y} = \rho_{XY} = 0$

Converse is not true! Think of
$$Y = X^2$$

Variance of a combination:

$$Var(a X + b Y) = a^{2} \sigma_{x}^{2} + b^{2} \sigma_{x}^{2} + 2 ab \sigma_{xy}$$

$$= \left[\left(aX - aM_{x} \right) + \left(aX - aM_{x} \right) + 2 \left(a_{x} - aM_{x} \right) \left(b_{y} - b_{y} \right) \right]$$
Variance of a portfolio's return:

$$R_P = \sum_{1}^{n} w_i R_i$$

$$Var(\sum_{i=1}^{n} w_i R_i) = \sum_{i=1}^{n} w_i^2 Var(R_i) + \sum_{i=1}^{n} \sum_{j \neq i} w_i w_j Cov(R_i, R_j)$$

Matrix form

$$Var(w^TR) = w^T\Omega w$$

 Ω : covariance matrix of the vector of random variables R = (R₁, ..., R_n),

$$\Omega = E[(R-\mu_R)(R-\mu_R)^T]$$

Moments vs Central Moments

- Non central moment: E[X^k]
- Central moment about the mean: E[(X-μ)^k]

3.3 Less basic (but no less important) relations

- Inequalities $X \sim (\mu, \sigma) > 0$
 - o Markov inequality $P(X > c) < \mu/c$, for c > 0

$$P(X \ge k\mu) < \frac{1}{k}$$

Chebyshev

P (
$$|X-\mu| \ge c \sigma$$
) $\le 1/c^2$

Prove from [1]

- Often not very tight: Try c = 1, 2, 3 and compare to normal density.
- .. But it is important for convergence results
- .. And it applies no matter the density of X.
- Jensen if g(x) is a convex function, $E(g(X)) \ge g(E(X))$

$$E(X^2) \ge E(X)^2 !$$

 $E(U(w)) \le U(E(w))$

- Iterated Expectation and other rules
 - $\circ E(Y) = E_X [E_{Y|X} (Y | X)]$
 - \circ Var(Y) = E_X[Var(Y|X)] + Var_X[E(Y|X)]
 - o If (.. X_i ...) are independent $E(\prod_{i=1}^n X_i) = \prod_{i=1}^n E(X_i)$

prove it

3.4 Higher Moments: Skewness and Kurtosis

• Skewness: $Sk = E\left(\frac{R-\mu}{\sigma}\right)^3$

No asymmetry: Sk = 0

Negative Skewness Sk < 0

Positive Skewness Sk > 0

- We like positive skewness
 We do not like negative skewness: Higher volatility on negative outcomes.
 Leverage Effect
- Kurtosis $K = E \left(\frac{R-\mu}{\sigma}\right)^4$

A

Normal Distribution: K = 3

► Fat tails: K > 3. more risky than the normal, important for risk management especially at short horizons (daily, weekly, ..)

3.5 **Moment Generating Function**

• $M_X(t) = E[e^{tX}]$ is the *moment generating function* of X

• Result:
$$E[X^n] = \frac{d^n}{dt^n} M_X(t) \Big|_{t=0}$$
Proof:
$$\frac{d}{dt} M_X(t) = \frac{d}{dt} \int_L^U e^{tx} f(x) dx = \int_L^U \frac{d}{dt} (e^{tx}) f(x) dx = \int_L^U \int_L^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{$$

- Recall from integration calculus:
 - 1. Exchanging integral and differentiation (aka differentiating inside the integral) requires smoothness of the derivative. See Casella & Berger
 - 2. Bounds in [1] are not a function of t, special case of Leibniz rule. Don't forget the general Leibniz rule:

$$\frac{d}{d\theta} \int_{L(\theta)}^{U(\theta)} f(x,\theta) dx = \int_{L(\theta)}^{U(\theta)} f'(x,\theta) dx + f(x = U(\theta), \theta) U'(\theta) - f(x = L(\theta), \theta) L'(\theta)$$

• The MGF is often a very convenient way to compute moments of densities or functions of densities.

But .. a density may have moments but no well defined MGF !! (e.g., lognormal density)

4 Distribution of a Function of a RV

4.1 Principle of change of variable

Often need the density of a function g of a RV: Y = g(X)

We estimate a parameter, we want a function of the parameter We want to forecast a function of a RV for which we have the predictive density

How to do this: Associate an inverse mapping to g(X), from Y back to X

$$g^{-1}(\{y\}) = \{x : g(x) = y\}$$

and

$$P(Y \in A) = P(g(X) \in A) = P(X \in g^{-1}(A))$$

- Easy for discrete RV: A is countable, $g^{-1}(A)$ is countable $P_y(Y=y) = \sum_{x \in g^{-1}(y)} P_x(X=x)$
- Continuous RV:

$$F_Y(y_0) = Pr.(Y \le y_0) = Pr.(g(X) \le y_0)$$

$$= \int_{\{g(x) \le y_0\}} p(x) dx \qquad \text{can be hard to compute for general g !}$$

Easiest if g(x) is monotone increasing: $g(x) \le y_0 \iff x \le g^{-1}(y_0)$

• Result: if X has CDF $F_X(x)$, then the CDF of Y = g(X) is

If g is an increasing function on D_x : $F_Y(y_0) = F_X (g^{-1}(y_0))$ [1]

If g is a decreasing function on D_x : $F_Y(y_0) = 1 - F_X (g^{-1}(y_0))$

• We most often want the PDF of y: use the chain rule on [1]

$$p_Y(y_0) = p_X(g^{-1}(y_0)) | \frac{d}{dy} g^{-1}(y_0) |$$

The term in the absolute value is the Jacobian of the inverse transformation

Applies to the multivariate case.

$$\begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} \xrightarrow{\frac{1}{2}} \begin{cases} \chi = g(\chi_1 \chi_2) \\ \chi_2 = f(\chi_1 \chi_2) \end{cases}$$

4.2 Transformation with non-monotone functions

Idea: break the domain in sets where the transform is monotone

• Result: If we can partition X in $A_1, A_2,...A_N$, with $f_X(x)$ continuous on each A_i , and $g_i(x)$ monotone in A_i .

Then:
$$p_{Y}(y) = \sum_{i=1}^{n} p_{X}(g_{i}^{-1}(y)) |\frac{d}{dy}g_{i}^{-1}(y)|$$

• Example: Square of a unit normal $p(x) = \frac{1}{\sqrt{2\Pi}}e^{-\frac{x^2}{2}}, \quad y = g(x) = x^2$.

$$x<0$$
 $g^{-1}(y) = -\sqrt{y}$ $x>0$ $g^{-1}(y) = \sqrt{y}$

$$p(y) = \left| \frac{-1}{2\sqrt{y}} \right| \frac{1}{\sqrt{2\Pi}} e^{-\frac{y}{2}} + \left| \frac{1}{2\sqrt{y}} \right| \frac{1}{\sqrt{2\Pi}} e^{-\frac{y}{2}} = \frac{1}{\sqrt{y}} \frac{1}{\sqrt{2\Pi}} e^{-\frac{y}{2}}, \qquad 0 < y < \infty.$$

The Chi-Square distribution with 1 degree of freedom!

4.3 Fundamental Application: Probability Inverse Transform

• X has CDF $F_X(x)$, it is continuous and *strictly* increasing (for technical reasons).

Think of the transformation $y = F_X(x)$

Then y is a random variable on (0,1) obvious

y is uniformly distributed on (0,1) ... not obvious ! $F_Y(y_0) = P(Y \le y_0) = y_0$?

$$F_{Y}(y_0) = P(Y \le y_0) = y_0$$

Proof:
$$P(Y \le y_0) = P(F_X(X) \le y_0)$$

= $P(X \le F^{-1}_X(y_0))$
= $F_X(F^{-1}_X(y_0))$
= y_0

Application: Random number generation by Inverse Transform

Want to generate random numbers from X with CDF $F_X(x)$

- 1. Generate a uniform number u_0 from $U\sim(0,1)$
- 2. Compute x_0 : $F_X(x_0) = u_0$. That is, compute $x_0 = F_{X^{-1}}(u_0)$

.... The Inverse Transform Method