Objectifs

Être capable:

- 1 de reconnaître une suite arithmétique ou géométrique;
- $\mathbf{2}$ de calculer le terme de rang n d'une suite arithmétique ou géométrique;
- 3 de représenter graphiquement une suite numérique.

I. Suite numérique

Définition

Une suite numérique est constituée de plusieurs nombres rangés dans un certain ordre. Ces nombres sont les termes de la suite. Le premier terme de la suite est noté u_1 (ou u_0), le deuxième u_2 (ou u_1), u_n est le n-ième (ou n+1-ième). Le terme suivant est noté u_{n+1} .

Exemple

On considère le prix d'un litre de gazole relevé dans une même station au premier janvier entre 1999 et 2008.

$$0,62;0,95;0,82;0,78;0,81;0,80;0,92;1,05;1,01;1,20$$

Le premier terme est 0,62; le deuxième terme est 0,95; le troisième est 0,82, ... On a $u_1=0,62,\,u_2=0,95,\,u_3=0,82$, ...

II. Suites arithmétiques

Activite La suite des nombres impairs

On considère la suite des nombres impairs, 1, 3, 5, 7, ..., que l'on note successivement u_1, u_2, u_3, u_4 ... Donc $u_1 = 1, u_2 = 3, u_3 = 5$...

- 1 Compléter: $u_4 =, u_7 = 15, u_{10} =$
- 2 Quel est le premier terme de la suite?
- 3 Comment passe-t-on d'un terme au suivant?
- 1 n est est nombre entier positif non nul, on s'intéresse au terme de rang n (donc le $n^{i\grave{e}me}$ nombre impair). Exprimer u_{n+1} en fonction de u_n .
- 5 Exprimer u_n en fonction de n.
- 6 Calculer u_{100} , u_{150} , u_{1000} .

1) Définition

Á retenir

Une suite arithmétique est une suite de nombres, où chaque terme, à partir du deuxième est obtenu en ajoutant au précédent un même nombre, la raison de la suite (notée r). On note :

$$u_{n+1} = u_n + r$$

Exemple

1 La suite (u_n) des entiers naturels :

On a $u_0 = 0$; $u_1 = 1$; $u_2 = 2$; $u_3 = 3$...

C'est une suite arithmétique de premier terme $u_0 = 0$ et de raison 1; $u_{n+1} = u_n + 1$

2 La suite (v_n) des entiers naturels pairs :

On a $v_0 = 0$; $v_1 = 2$; $v_2 = 4$; $v_3 = 6$...

C'est une suite arithmétique de premier terme $v_0=0$ et de raison 2,

 $v_{n+1} = v_n + 2$

Remarque

- Une suite arithmétique est définie par son terme initial et sa raison "r"
- Pour démontrer qu'une suite est arithmétique, il suffit de vérifier que la différence entre deux termes consécutifs $(u_{n+1}-u_n)$ est constante; cette constante est la raison "r".

2) Expression de u_n en fonction de n

Á retenir

Dans une suite arithmétique de raison r, le terme u_n est obtenu à partir du premier terme par la relation :

- $u_n = u_0 + nr$ (lorsque le terme initial est u_0)
- $u_n = u_1 + (n-1)r$ (lorsque le terme initial est u_1)

Exemple

 (u_n) est la suite des entiers naturels impairs :

On a $u_0 = 1$; $u_1 = 3$; $u_2 = 5$; $u_3 = 7$...

C'est une suite arithmétique de premier terme $u_0 = 1$ et de raison 2.

Calcul du centième nombre impair : On calcule donc $u_{99}\,$

$$u_{99} = u_0 + 99 \times r$$

= 1 + 99 \times 2
= 1 + 198
 $u_{99} = 199$

Le centième nombre impair est égal à 199.

Pour cette suite on a:

$$u_n = u_0 + n \times r$$

$$soit \quad u_n = 1 + n \times 2$$

$$u_n = 1 + 2n$$

$$u_{99} = 2n + 1$$

3

3) Représentation graphique

Exemple

La suite des nombres impairs est définie par : $u_n = 2n + 1$. On représente graphiquement les termes de la suite :

- La représentation graphique de la suite (u_n) est consituée de points alignés sur la droite d'équation y = 2x + 1.
- Le premier terme $u_0 = 1$ est l'ordonnée à l'origine de la droite et la raison r = 2 est son coefficient directeur

Á retenir

Représentation graphique La représentation graphique d'une suite arithmétique est constituée de points alignés. Il y a le même écart entre chaque couple de points consécutifs.

III. Suites géométrique

Activite Augmentation d'un loyer

Le loyer d'un appartement augmente chaque année de 3%. En 2005, le loyer annuel s'élève à 6000 \in . On note v_n , le montant du loyer annuel en 2005 + n

- 1 Calculer le montant du loyer en 2006, 2007, 2008 et 2009.
- 2 Quel est le premier terme de la suite?
- 3 Comment passe-t-on d'un terme au suivant?
- 4 Exprimer v_{n+1} en fonction de v_n .
- 5 Exprimer v_n en fonction de n.
- 6 Calculer V_{10} , u_{15} , u_{35} .

1) Définition

Á retenir

Une suite géométrique est une suite de nombres, où chaque terme, à partir du deuxième est obtenu multipliant le précédent par un même nombre, la raison de la suite (notée q).

On note:

$$u_{n+1} = u_n \times q$$

Exemple

- La suite (u_n) des puissances de 2 : On a $u_0 = 1$; $u_1 = 2$; $u_2 = 4$; $u_3 = 8$... C'est une suite géométrique de premier terme $u_0 = 1$ et de raison 3 ; $u_{n+1} = u_n \times 2$
- 2 La suite (v_n) définie par $v_n = \frac{1}{3^n}$:

On a
$$v_0 = \frac{1}{3^0} = \frac{1}{1} = 1$$
; $v_2 = \frac{1}{3^2} = \frac{1}{9}$; $v_1 = \frac{1}{3^1} = \frac{1}{3}$; $v_3 = \frac{1}{3^3} = \frac{1}{27}$...

C'est une suite géométrique de premier terme $v_0=1$ et de raison $\frac{1}{3}$, $v_{n+1}=v_n\times\frac{1}{3}$

5

Remarque

- Une suite arithmétique est définie par son terme initial et sa raison "q"
- Pour démontrer qu'une suite est géométrique, il suffit de vérifier que le rapport entre deux termes consécutifs $\left(\frac{u_{n+1}}{u_n}\right)$ est constante; cette constante est la raison "q".

2) Expression de u_n en fonction de n

Á retenir

Dans une suite géométrique de raison q, le terme u_n est obtenu à partir du premier terme par la relation :

- $u_n = u_0 \times q^n$ (lorsque le terme initial est u_0)
- $u_n = u_1 \times q^{n-1}$ (lorsque le terme initial est u_1)

x q		x q	x q		X	q	
	/						
	u _o	u ₁		u ₂		U ₃	 U _n
		$u_1 = u_0 \times q$		$u_2 = u_0 \times q^2$		$u_3 = u_0 \times q^3$	 $u_n = u_0 \times q^n$

	x q	k q x	q		
	\ /				
u_1	u ₂	u ₃	u ₄		u _n
	$u_2 = u_1 \times q$	$u_3 = u_1 \times q^2$	$u_4 = u_1 \times q^3$		$u_n = u_1 \times q^{n-1}$