Листок 11. Энтропия.

DM-ML 74. Покажите, что если $H[X] \le t$, то найдется такое значение b, что $\Pr[X = b] \ge 2^{-t}$.

DM-ML 75. Рассмотрим функцию $h(p) = p \log(\frac{1}{p}) + (1-p) \log(\frac{1}{1-p}),$ функция определена на [0,1], h(0) = h(1) = 0.

- (a) Покажите, что h(p) строго возрастает на $[0; \frac{1}{2}]$ и убывает на $[\frac{1}{2}; 1]$.
- (б) Покажите, что h вогнутая функция (в другой терминологии выпукла вверх).

DM-ML 76. Покажите, что $H[X,Y] \ge H[X]$.

Пусть есть бинарное дерево и в нем N листьев. Пусть $\ell_1, \ell_2, \dots, \ell_N$ это глубины всех листьев дерева.

- (a) Докажите, что $\sum_{i=1}^{N} 2^{-\ell_i} \le 1$. (б) Докажите, что если $\sum_{i=1}^{N} 2^{-\ell_i} \le 1$, то найдется дерево из N листьев с глубинами $\ell_1, \ell_2, \ldots, \ell_N$.

DM-ML 78. Пусть есть бинарное дерево и в нем N листьев.

- (a) Покажите, что глубина хотя бы одного листа не меньше $\log N$.
- (б) Покажите, что средняя глубина листа не меньше $\log N$. (Более строгая формулировка: рассмотрим случайную величину, которая выбирает случайный лист и выдает ее глубину, докажите, что математическое ожидание этой случайной величины не меньше $\log N$.)

DM-ML 79. Пусть \mathcal{F} — это семейство подмножеств $\{1, 2, ..., n\}$, а p_i это доля элементов \mathcal{F} , которые содержат элемент i. Докажите, что $|\mathcal{F}| \leq$ $2^{\sum_{i=1}^{n} h(p_i)}.$

Пусть $X:\Omega\to\mathbb{R}$ — случайная величина, $f:\mathbb{R}\to\mathbb{R}$. DM-ML 80. Покажите, что $H[f(X)] \le H[X]$. Когда достигается равенство?

DM-ML 81. Укажите явную биекцию между множеством бесконечных последовательностей чисел из множества $\{0,1,2\}$ и множеством бесконечных последовательностей из нулей и единиц.

 $|\mathbf{DM ext{-}ML}\;\mathbf{27.}|\;$ Правило ослабления позволяет вывести из дизъюнкта Aдизъюнкт $A \lor B$ для любого дизъюнкта B. Покажите, что если из дизъюнктов D_1, D_2, \ldots, D_n семантически следует дизъюнкт C (это значит, что любой набор значений переменных, который выполняет все дизъюнкты D_i , выполняет также и C), то C можно вывести из D_i с помощью применений правил резолюции и ослабления.

|DM-ML 28.

(в) Постройте схему размера O(n) и глубины $O(\log n)$, которая вычислит результаты сравнений чисел $\overline{a_i a_{i-1} \dots a_1}$ и $\overline{b_i' b_{i-1}' \dots b_1'}$ для всех i от 1 до n.

(г) Покажите, что существует схема для сложения двух n-битных чисел размера O(n) и глубины $O(\log n)$.

DM-ML 54.

(б) В связном графе степени всех вершин не менее двух. Докажите, что в нем можно удалить две соединенные ребром вершины без потери связности.

DM-ML 70. Покажите, что для формулы в КНФ, состоящей из m дизъюнктов, в которой любые три дизъюнкта можно одновременно выполнить, существует набор значений переменных, который выполняет как минимум $\frac{2}{3}m$ дизъюнктов.

DM-ML 73. Доминирующее множество в графе — это такое множество, что для каждой вершины либо она сама лежит в этом множестве, либо она соединена ребром с вершиной из этого множества. В графе G минимальная степень вершины равняется d>1. Докажите, что в G есть доминирующее множество размера не больше $n\frac{1+\ln(d+1)}{d+1}$. Подсказка: рассмотрите случайное подмножество вершин, в которое каждая вершина включается с вероятностью $p=\frac{\ln(d+1)}{d+1}$.