Development of Accessible, Aesthetically-Pleasing Color Sequences

SciPy 2022

Matthew A. Petroff 2022-07-15

Center for Astrophysics, Harvard & Smithsonian

Outline

- Terminology and overview of color vision and color-vision deficiencies
- 2. Issues with existing color sequences
- 3. Generating accessible color sets
- 4. Aesthetic-preference survey and modeling
- 5. Results and best practices

Terminology

Colormap Continuous, e.g., Viridis

Color sequence Discrete, e.g., Category 10

- Also known as color cycles or color palettes
- Will be used in this talk when the order of the colors matters

Color set Will be used in this talk to refer to a groups of discrete colors when order does not matter

Overview of human color vision

- Photometry via cone cells sensitive to long (L), medium (M), and short (S) wavelengths
- Rod cells for low-light vision
- Higher-level functions: beyond the scope of this talk

What are color-vision deficiencies?

- Also known as colorblindness
- Anomalous trichromacy: shift in spectral response of cone
- Dichromacy: missing one type of cone

What are color-vision deficiencies?

- Also known as colorblindness
- Anomalous trichromacy: shift in spectral response of cone
- Dichromacy: missing one type of cone

Calculating perceptual distance

- CAM02-UCS is a perceptually-uniform color space, which was constructed with the intent that Euclidean distance in the color space is proportional to perceived color distance
- Machado et al. (2009) presented a method of simulating color-vision deficiencies (CVDs)
- Distance between simulation results in CAM02-UCS approximates perceptual distance for CVDs
- ightharpoonup Calculate distance between all color pairs for all CVDs and take minimum: min $\Delta E_{\rm cvd}$

	1	min
Color	\sim	Δ <i>E</i> ′
1 🔷	_	100.0

	1	2	min
Color	~	\sim	$\Delta E'$
1 ~	_		100.0
2 ~	65.7	_	65.7

	1	2	3	min
Color	~	~	~	$\Delta E'$
1 🔷	_			100.0
2 ~	65.7	_		65.7
3 ~	48.2	46.8	_	46.8

	1	2	3	4	5	6	7	8	9	10	min
Color	~	~	~	~	~	~	~	\sim	~	~	∆E ′
1 ~	_										100.0
2 ~	65.7	_									65.7
3 ~	48.2	46.8	_								46.8
4 🔷	63.0	26.1	59.2	_							26.1
5 🔷	26.9	53.0	57.7	44.6	_						26.1
6 ~	41.9	33.4	42.5	23.7	31.3	_					23.7
7 ~	46.3	38.1	60.3	32.9	22.9	32.1	_				22.9
8 🔷	26.7	39.4	32.6	40.2	25.3	20.2	31.7	_			20.2
9 🔷	60.4	29.0	25.1	50.6	59.8	43.6	52.7	37.7	_		20.2
10 🔷	27.0	59.7	37.0	67.9	41.1	49.8	49.6	29.6	45.3	_	20.2

Issues with existing color sequences

Typical	min ΔΕ΄		
\sim	100.0		
\sim	65.7		
\sim	46.8		
\sim	26.1		
\sim	26.1		
\sim	23.7		
\sim	22.9		
\sim	20.2		
\sim	20.2		
\sim	20.2		

Issues with existing color sequences

Category 10 (Matplotlib default)

Typical	min ΔΕ'	Deut	min ΔE _{deut}	Prot	min ΔE _{prot}	Trit	min ΔE _{trit}	min ΔE _{cvd}
\sim	100.0	\sim	100.0	\sim	100.0	******	100.0	100.0
\sim	65.7	\sim	61.2	******	54.1	******	59.9	54.1
\sim	46.8	\sim	16.7	\sim	3.4	\sim	13.4	3.4
\sim	26.1	\sim	5.2	\sim	3.4	******	13.4	3.4
\sim	26.1	\sim	5.2	\sim	2.0	\sim	13.4	2.0
\sim	23.7	\sim	5.2	\sim	2.0	\sim	13.4	2.0
\sim	22.9	\sim	5.2	\sim	2.0	\sim	12.7	2.0
\sim	20.2	\sim	5.2	\sim	2.0	\sim	11.1	2.0
\sim	20.2	\sim	4.5	******	2.0	\sim	11.1	2.0
\sim	20.2	\sim	4.3	\sim	2.0	******	11.1	2.0

**** clipped to displayable color gamut

Other considerations

- Minimum contrast
 - Colors that are too light are difficult to see
 - · Colors that are too dark have increased perceptual weight
- Grayscale compatibility
 - · Handle black & white printing and e-paper displays
 - Improve accessibility for monochromacy
 - · Trade off with color accessibility
- Color names
 - Favor easy-to-name colors, which have high color saliency
 - Avoid repeated basic color terms

Enforcing perceptual distance constraints

- 1. Start with random sRGB starting color
- 2. Randomly pick another color
- 3. If $\min \Delta E_{\text{cvd}}$ and $\min \Delta J'$ are greater than threshold, add new color to list
- 4. Repeat steps 2 and 3 until list is desired length or no sRGB color remain (restart from 1 in this case)

User survey for aesthetic preference

User survey for aesthetic preference

User survey for aesthetic preference

- Run December 2018 through December 2020
- ~22k responses
- ◆ ~2.2k user sessions
- ▲ Thanks to all those who participated!

- Machine learning using artificial neural networks
- Sets and sequences handled separately
- Issues to address
 - How to handle color sets / sequences with variable length?
 - How to train a model that produces a numeric score with pairwise binary survey responses?
 - How to fully utilize limited, noisy data?

- Bootstrap aggregation used to maximize use of training data while still checking for overfitting
 - Data randomly split into train and test portions multiple times
 - Each train split used to train a separate model copy; test split used to check for overfitting
 - · Model outputs averaged for final output
- Simultaneous training on six- and eight-color sets / sequences
- Ten-color sets / sequences used for model validation

Final metric

- Color sets
 - · Multiply aesthetic model score with saliency score
- Color sequences
 - Accessibility score: favors orderings with larger perceptual and lightness differences and darker colors toward the beginning
 - Only use orderings where the first color matches the first color of the sequence most favored by the aesthetic model
 - Orderings where basic color terms are repeated earlier than necessary are eliminated
 - · Multiply aesthetic model score with accessibility score

Results

Six	min ΔE _{cvd}	Eight	min ΔE _{cvd}	Ten	min ΔE _{cvd}
~	100.0	\sim	100.0	\sim	100.0
\sim	57.1	\sim	66.9	\sim	56.8
\sim	21.3	\sim	18.2	\sim	33.4
\sim	21.3	\sim	18.1	\sim	22.3
\sim	21.3	\sim	18.1	\sim	18.3
\sim	20.5	\sim	18.1	\sim	16.4
		\sim	18.1	\sim	16.3
		\sim	18.1	\sim	16.1
				\sim	16.1
				\sim	16.1

Best practices

- Do not rely solely on color to convey information
 - Use different marker shapes for scatter plots and different line styles for line plots
 - Convey this additional information in figure captions, e.g.,
 "the dashed blue line shows", not "the blue line shows"
 - Additionally use visual depictions if possible, e.g., refer to "blue circles ●" and "orange squares ■"
 - Use colormaps with lightness gradients:
 Rainbow colormaps such as Jet and Turbo are not accessible
- Preview in grayscale
 - But avoid combination of black and red, since this gives poor contrast for protanopes

Best practices

Y position

- Do not rely solely on color to convey information
 - Use different marker shapes for scatter plots and different line styles for line plots
 - Convey this additional information in figure captions, e.g., "the dashed blue line shows", not "the blue line shows"
 - Additionally use visual depictions if possible, e.g., refer to "blue circles ●" and "orange squares ■"
 - Use colormaps with lightness gradients:
 Rainbow colormaps such as Jet and Turbo are not accessible
- Preview in grayscale
 - But avoid combination of black and red, since this gives poor contrast for protanopes
 rods
 cones

Best practices

Y position

- Do not rely solely on color to convey information
 - · Use different marker shapes for scatter plots and different line styles for line plots
 - · Convey this additional information in figure captions, e.g., "the dashed blue line shows", not "the blue line shows"
 - · Additionally use visual depictions if possible, e.g., refer to "blue circles ●" and "orange squares ■"
 - · Use colormaps with lightness gradients: Rainbow colormaps such as *Jet* and *Turbo* are not accessible
- Preview in grayscale
 - But avoid combination of black and red, since this gives poor contrast for protanopes rods

cones

Conclusions

- New color-vision-deficiency-friendly color sequences developed using algorithmically-enforced accessibility constraints and machine-learning-based aesthetic-preference model
- Pre-print: Accessible Color Sequences for Data Visualization https://arxiv.org/abs/2107.02270

- Code & data (including hex triplets): https://github.com/mpetroff/accessible-color-cycles
- Aspirational goal: accessible defaults

Conclusions

- New color-vision-deficiency-friendly color sequences developed using algorithmically-enforced accessibility constraints and machine-learning-based aesthetic-preference model
- Pre-print: Accessible Color Sequences for Data Visualization https://arxiv.org/abs/2107.02270

▲ Aspirational goal: accessible defaults

Ouestions?