

Digitalizing the evaluation of interlaboratory comparison

A Digital Metrological Expert software tool

<u>D. Hutzschenreuter</u>, W. El-Jaoua, D. Urban, M. Gafert, C. Brown

Motivation

- ☐ Improving consistency and integrity of outcomes
- ☐ Supporting suitable measurements and reporting
- ☐ Saving time for creation of reports
- ☐ Enabling non-IT experts to use emerging digital tools
- ☐ Emerging interdisciplinary use of comparison methods

Numbers estimated for participants under CIPM MRA and their customers

Digital Metrological Expert concept

- ☐ For standard work, e.g., evaluation of comparison, calculation of measurands, etc. (taking over tedious human work)
- ☐ Exchange information in environment of quality infrastructure (QI) through SI-based data and FAIR services
- ☐ Assess data and propose ways of processing including verification, filter, uncertainty propagation, use of AI, etc.
- □ Results as machine-actionable reports disclosing (metrological) traceability of outputs to inputs (utilizing PIDs)
- ☐ Itself digital standard in QI when operated and maintained by authoritative organizations

Example: Virtual Mass Comparison

Measured values

- -

 $x_n = 1.000000324 \text{ kg}$

 $U_{\rm n} = 4.5E - 8 \text{ kg}$

Reference value: weighted mean

 $x_{ref} = 1.0000002596 \text{ kg}$ $U_{ref} = 1.670E-8 \text{ kg}$

Outlier filter

 $|En| = |x_i - x_{ref}| / U(x_i - x_{ref}) > 1$

Concept of workflow(s)

round robin, star, petal, running KCRV →

draft A, B, final →

digital standards from the wider quality infrastructure

pre-normative

Generic data analysis process

DME Architecture

Web user interface for non-IT experts https://d-si.ptb.de/#/d-comparison API interface for IT-experts and machines to run and to control the comparison evaluation service Software modules for analysis and evaluation Reader Writer Service **Service** Domain Modules for KCRV, DoE, filter, Main specific KC consistency checks, mean for KC for Service analysis values, rounding, pre & post participant report services processing, conversions, ... input data creation Data models for storing all input data, interim results, and final evaluation outcomes, terminology, DCC data, ...

Conclusion & Outlook

- ☐ DME ready to accommodate and automate various comparison approaches
- ☐ Open-source tool and open for metrology community to use and extend
- ☐ First implementations accompanying virtual mass comparison and EURAMET loop of CCT-K11
- ☐ Starting implementation CCQM comparison use-case; utilizing NIST Decision Tree
- ☐ Testbed for ongoing digitalization in the quality infrastructure for interoperating SMART standards, BIPM's SI Digital Framework, etc.

Acknowledgements

Measurement: Sensors

Available online 24 December 2024, 101361

Project on a fully automated evaluation of a virtual comparison of mass using the Digital Calibration Certificate (DCC) schema

Beatrice Rodiek a $\overset{\triangle}{\nearrow}$ $\overset{\triangle}{\nearrow}$, Gregorio Álvarez Clara b $\overset{\triangle}{\nearrow}$, Clifford Brown a $\overset{\triangle}{\nearrow}$, Stuart Davidson c $\overset{\triangle}{\nearrow}$, Muhammed-Ali Demir a $\overset{\triangle}{\nearrow}$, Sascha Eichstädt a $\overset{\triangle}{\nearrow}$, Wafa El Jaoua a $\overset{\triangle}{\nearrow}$, Yin Hsien Fung d $\overset{\triangle}{\nearrow}$, Jean-Laurent Hippolyte c $\overset{\triangle}{\nearrow}$, Tobias Hoffmann a $\overset{\triangle}{\nearrow}$, Daniel Hutzschenreuter a $\overset{\triangle}{\nearrow}$, Moritz Jordan a $\overset{\triangle}{\nearrow}$, Beste Korutlu e $\overset{\triangle}{\nearrow}$, Naoki Kuramoto f $\overset{\triangle}{\nearrow}$, Sungwan Cho g $\overset{\triangle}{\nearrow}$, Zhengkun Li h $\overset{\triangle}{\nearrow}$, Andrea Malengo i $\overset{\triangle}{\nearrow}$, Nathan Murnaghan j $\overset{\triangle}{\nearrow}$, Luis Manuel Peña Pérez b $\overset{\triangle}{\nearrow}$, Shanna Schönhals a $\overset{\triangle}{\nearrow}$...Ian Smith c $\overset{\triangle}{\nearrow}$

Measurement: Sensors

Available online 7 January 2025, 101626

CCT K11 blackbody temperature from 34.5°C to 41.5°C – Reporting and evaluation in the EURAMET loop using digital calibration certificates

https://doi.org/10.1016/j.measen.2024.101361

https://doi.org/10.1016/j.measen.2024.101626

Thank you

CONTACT

<u>Daniel.Hutzschenreuter@ptb.de</u> | https://github.com/PTB-M4D/DME_Backend