Introduction to Real Analysis - MAT337 Course Notes

Yuchen Wang

May 8, 2019

Contents

1	Construction of Real Numbers		2
	1.1	Decimal Expansion	2
	1.2	Definition and Existence of Supremum and Infimum	4
	1.3	Construction of Real Numbers Using Cauchy Sequence	4

2

Construction of Real Numbers 1

Decimal Expansion

Definition 1 Let $r \in \mathbb{R}^+$. Then r is called

- 1. Terminating DE if $r = q.d_1 \dots d_n 0$
- 2. Repeating DE if $r = q.d_1...d_kd_{k+1}...d_nd_{k+1}...d_nd_{k+1}...$

Proposition 1 $x = \frac{l}{m}$ is <u>rational</u> if x has a DE that is either terminating or repeating.

 $\frac{proof:}{\text{Let } x} \in \mathbb{R}^+.$

1. Assume x has a DE that is terminating, then

$$x = q.d_1...d_n0 = q + \sum_{m=1}^{n} \frac{d_m}{10^m} \in \mathbb{Q}$$

2. Assume x has a DE that is repeating, then

$$x = q.d_1 \dots d_k \overline{d_{k+1} \dots d_n}$$

= $q.d_1 \dots d_k 0 + 0.0 \dots 0 \overline{d_{k+1} \dots d_n}$

We know that the former number $\in \mathbb{Q}$, so we only need to show the rationality of the latter number.

$$0.0...0\overline{d_{k+1}...d_{n}} = 10^{-k} \left(\sum_{m=1}^{n} \sum_{l=0}^{\infty} \frac{d'_{m}}{10^{nl+m}} \right)$$

$$(\text{denote } d'_{0}, ..., d'_{n} \text{ be the repeated digits})$$

$$= 10^{-k} \sum_{m=1}^{n} d'_{m} 10^{-m} \left(\sum_{l=0}^{\infty} 10^{nl+m} \right) \qquad (\text{decompose})$$

$$= 10^{-k} \sum_{m=1}^{n} d'_{m} 10^{-m} (1 - 10^{-n})^{-1} \qquad (\text{geometric series})$$

$$= \sum_{m=1}^{n} \frac{d'_{m} 10^{n}}{10^{m+k} (10^{n} - 1)} \qquad (\text{make it look nicer})$$

$$\in \mathbb{Q}$$

3

 \Leftarrow : Assume $x \in \mathbb{Q}$, we'll show that its DE is either terminating or repeating.

Idea

By Euclidean division we write

$$l = qm + r_0$$

Again by ED,

$$10r_0 = d_1m + r_1$$

$$\rightarrow \frac{r_0}{m} = \frac{d_1}{10} + \frac{r_1}{10m} \rightarrow \frac{l}{m} = q + \frac{r_0}{m} = q + \frac{d_1}{10} + \frac{r_1}{10m}$$

Repeat this using induction.

Base Case:

$$\frac{1}{m} = q + \frac{d_1}{10} + \frac{r_1}{10m}$$

Inductive Step:

Assume
$$\frac{l}{m} = q + \frac{d_1}{10} + \ldots + \frac{r_n}{10^n m}$$
. By ED.

$$10r_n = d_{n+1}m + r_{n+1}$$

$$\begin{array}{l} \rightarrow \frac{r_n}{m10^n} = \frac{d_{n+1}}{10^{n+1}} + \frac{r_{n+1}}{10^{n+1}m} \\ \rightarrow \frac{l}{m} = q + \frac{d_1}{10} + \ldots + \frac{r_{n+1}}{10^{n+1}m} \\ \underline{\textbf{Case 1}} \ r_h = 0 \ \text{for some} \ h > 0 \Rightarrow \text{then DE is terminating} \end{array}$$

Case 2 $r_h > 0 \,\forall l > 0$

WTS DE is repeating.

$$r_h \in \{0, \dots, m-1\} \, \forall h > 0$$

Fix
$$h$$
, then $\exists n \text{ s.t. } r_n = r_h \text{ for } n > h$

Then
$$\begin{cases} 10r_n = d_{n+1}m + r_{n+1} \implies d_{n+1} = d_{h+1} \\ 10r_h = d_{h+1}m + r_{h+1} \end{cases} \qquad \text{(by uniqueness of ED)}$$

$$\implies \text{ED is repeating.}$$

Definition 2 $x \in \mathbb{R}$ is called <u>irrational</u> if $\nexists \frac{l}{m}$ such that $x = \frac{l}{m}$. Denote as $x \in \mathbb{Q}^C$.

Proposition 2 $x \in \mathbb{Q}^C \iff$ the decimal expansion of x neither terminates nor repeats.

4

Fact 1 $\mathbb{R} = \mathbb{Q} \cup \mathbb{Q}^C$

- ${f 1.2}$ Definition and Existence of Supremum and Infimum Trivial.
- 1.3 Construction of Real Numbers Using Cauchy Sequence Next lecture.