Analys System Develo Testing

Deploy

DevOps Value Stream Map

s	Cycle Time	VAT (hours)	Rework(hours)	#of	Qualit
	(hours)			employees	
sis	30	16	4	1	85%
n Design	40	20	6	1	80%
pm ent	120	36	12	5	65%
5	50	24	8	1	50%
yment	20	16	4	1	90%

Current state value stream map

testing

y rate	WIP
	8
	7
	12
	5
	3

1 worker	
C/T:30hrs 4(rework) VAT:16hrs	32 h
%C/A:85	
WIP:8	

Takt time = 40h/1 h/task Waiting time = 4

0 = 4

* WIP

Analysis: 0,15 * 8 = 1,2 => 4 * 1.2 = 4,8 |
Sys design: 0,2 * 7 = 1,4 => 6 * 1.4 = 8,4
Development: 0,35 * 12 = 4,2 => 12 * 4,2 = 5
Testing: 0,5 * 5 = 2.5 => 8 * 2,5 = 20 h
Deployment: 0,1 * 3 = 0,3 => 4 * 0,3 = 1,2
=> development and testing have highest re

Throu Available time

- * Analysis: 40 / 30 = '
- * System design: 40
- * Development: 40 *
- * Testing: 40 / 50 = 0.
- * Deployment: 40 / 20

Throughput is 0.8 ta

Process # of ellower # of ellow

Throughput : Available time (40 h) /

ighput = (40 h) / Cycle time

1.33 / 40 = 1 5 / 120 = 1.67 .8 0 = 2

isk/week if QR -> 100%

Adjusted Throughput(количество

выполнить за 40 h

Throughput *

* Analysis: 1.33 * 0.85 = 1.13 t

* System design: 1 * 0.8 = 0.8

* Development: 1.67 * 0.65 = 1

* Testing: 0.8 * 0.5 = 0.4 task/\

* Deployment: 2 * 0.9 = 1.8 tas

Throughput = 0.4 task/\

mployees	ļ		Prc
1 1 5 1	- 		Analy Syste Devel Testi Deplo

-' Cycle time р работы, которое команда может

'QR !ask/week task/week 1.09 task/week week <-(Bottleneck) sk/week

week (Testing)

We need to increase number of operators in testing

ocess	# of employees
/sis	 1
em Design	1
Lopment	4
ing	2
oyment	1 1

Adjusted Throughput(количество работы, которое команда может

выполнить за 40 h) = Throughout * QR

* Analysis: 40 / 30 = 1.33

* System design: 40 / 40 = 1 * Development: 40 * 4 / 120 * Testing: 40 * 2 / 50 = 1.6

* Deployment: 40 / 20 = 2

Throughput is 1 task/weel

= 1.33

k if QR -> 100%

We need to increase Quality Rate

System Design QR 80% - 90% Development QR 65% - 80% Testing QR 50% - 70%

Adjusted Throughput(количество работы, которое команда может

выполнить за 40 h) =

Throughput * QR

- * Analysis: 1.33 * 0.85 = 1.13 task/week
- * System design: 1 * 0.9 = 0.9 task/week
- * Development: 1.33 * 0.8 = 1.07 task/week
- * Testing: 1.6 * 0.7 = 1.12 task/week
- * Deployment: 2 * 0.9 = 1.8 task/week

Throughput = 0.9 task/week (System Design)

need to

imougiiput wit

- * Analysis: 1.33 * 0.85 = 1.13 task/week
- * System design: 1 * 0.8 = 0.8 task/week
- * Development: 1.33 * 0.65 = 0.87 task/week
- * Testing: 1.6 * 0.5 = 0.8 task/week
- * Deployment: 2 * 0.9 = 1.8 task/week

Throughput = 0.8 task/week (System Design and Testing)

9 operator * 40h = 360 h / week 360 h / week / 10 task = 36 hour / per task

o decrease rework (NVAT) and waiting time in cycle time

ideal C/T

L/T = 260 h + 34h rework + 140h buffer = 434 h

before

We need to decrease WIP

System Design WIP 7 - 6 Development WIP 12 - 10 Testing WIP 5 - 3.5

We need to decrease C/T

System Design C/T 40 - 34 Development C/T 120 - 100 Testing C/T 50 - 40

Waiting Time = Takt Time * WIP

- * Analysis: 4 * 8 = 32 h
- * System design: 4 * 6 = 24 h -- (28h)
- * Development: 4 * 10 = 40 h -- (48h)
- * Testing: 4 * 3.5 = 14 h -- (20h)
- * Deployment: 4 * 3 = 12 h

Waiting Time = Takt Time * WIP

- * Analysis: 30 h
- * System design: 34 h -- (40h)
- * Development: 100 h -- (120h)
- * Testing: 40 h -- (50h)
- * Deployment: 20 h

Total lead time: 260 + 140 + 34h rework
Total value add time: 112h

Proces effeciency: 112/434 = 25,80%

after

Fι

uture state value stream map

XOXO

Total lead time: 224 + 122 buffer + 34h rework Total value add time: 112h

Proces effeciency: 112/380 = 30%

Total lead time: 224 + 122 buffer + 34h rework Total value add time: 112h

Proces effeciency: 112/380 = 30%

12