Fisica sperimentale I

Riccardo Rasori

A.A. 2024/2025

Indice

1		duzione	_
	1.1	l metodo scientifico	3
	1.2	Grandezze fisiche	3
		2.1 Tempo	4
		2.2 Lunghezza	4
		2.3 Massa	4
	1.3	La notazione scientifica	4
		.3.1 Num cifre significative	4

Capitolo 1

Introduzione

1.1 Il metodo scientifico

La natura è complessa \to per capirla si fanno esperimenti Es. Tolta l'aria (nel vuoto) tutti i corpi cadono in maniera uguale

- \rightarrow Gli esperimenti formulano una teoria
- \rightarrow La fisica usa il linguaggio matematico per le teorie e le leggi

1.2 Grandezze fisiche

Definizione

Misurazione: si associa un numero (misura) a una grandezza fisica. Associa anche la sua attendibilità (errore).

Deve essere non ambigua e riproducibile.

Definizione

Grandezza fisica: è definita in relazione al procedimento/strumento utilizzato per misurare.

Non tutte le grandezze sono indipendenti (velocità $\frac{m}{s}$).

Sistema Internazionale Tempo (s) Lunghezza (m) Massa (kg) Quantità di materia (mol) Temperatura (K) Intensità di corrente elettrica (A) Intensità luminosa (cd)

1.2.1 Tempo

Grandezza fisica misurata con l'orologio.

Si usa l'orologio atomico basato sulla frequenza di una transizione iperfine all'atomo di ^{133}Cs (Cesio)

Definizione

Secondo: tempo che ci mette la luce emessa da ^{133}Cs per fare 9.192.631.770 vibrazioni.

1.2.2 Lunghezza

Si usa il regolo per misurarla

Definizione

 $\bf Metro:$ distanza percorsa dalla luce nel vuoto in $\frac{1}{299.792.458}$ di secondo.

1.2.3 Massa

Definizione

Massa: grandezza fisica misurata con bilancia a due bracci.

Campione di riferimento: kg \rightarrow cilindro di platino-iridio per definire la massa

1.3 La notazione scientifica

```
Vantaggi Lie formalmente compatta Lie evidente l'ordine di grandezza \rightarrow Potenza di 10 con cui è espresso il numero Lie evidente la precisione con cui è noto il valore numerico \rightarrow L'incertezza è espressa dal suo errore Es. l=(3,5\pm0,1)m L'errore ci dice quante cifre significative usare per rappresentare una gran-
```

L'errore ci dice quante cifre significative usare per rappresentare una grandezza

Es. $(4,5397 \pm 0,21) * 10^3 \leftarrow$ se già la prima cifra è incerta per l'errore, non ha senso precisare tutto quello che c'è dopo (397) \rightarrow va scritto $(4,54 \pm 0,21) * 10^3$

1.3.1 Num cifre significative

 $3m\to per$ l'errore può essere $3\pm 0,1$ m $(2,\ 3\ o\ 4)$ $3,0m\to per$ l'errore può essere $3,0\pm 0,1$ m $(2,9;\ 3,0;\ 3,1)$

$$\begin{array}{l} 0{,}003m \leftarrow 1 \text{ cifra significativa} \\ 0{,}0030m \leftarrow 2 \text{ cifre significative} \end{array}$$

Addizione

$$\begin{array}{r}
 18,0 \\
 + 0,0039 \\
 + 0,00002 \\
 \hline
 18,00392 \\
 = 18,0
 \end{array}$$

1

Moltiplicazione

Il risultato di norma deve contenere tante cifre significative quante ne sono contenute nel fattore con meno cifre significative

Es:
$$2,21$$
 $*0,3$ $0,663$ $= 0,7$

Es.
$$12, 4 * 84 = 1041, 6 = 1,04 * 10^3$$

Divisione

Vale la stessa regola della moltiplicazione

Es. 14,28/0,714 = 20 = 20,0 oppure $2,0*10^1$

Es. $0.032/0.004 = 8 = 0.8 * 10^{1}$

Es: $9,83/9,3^2 = 1,05698924731 = 1,06^3$

 $^{^{1}\}mathrm{deve}$ contenere un numero di cifre significative uguale a quello del numero con incertezza maggiore $^{2}2$ cifre, ma l'incertezza è circa dell'1% $^{\circ}$

 $^{^3{\}rm Se}$ avessi scritto 1,1 l'incertezza era circa del 10%, quindi metto 1,06 e l'incertezza rimane circa 1%