Local convergence of tensor methods

Nikita Doikov

Joint work with Yurii Nesterov

UCLouvain, Belgium

Workshop on Advances in Continuous Optimization, EUROPT July 7, 2021

The Classical Newton Method

Optimization Problem:

$$f^* = \min_{x \in \mathbb{R}^n} f(x)$$

f is a convex differentiable function

The Newton Method [Newton, 1669; Raphson, 1690; Fine, 1916; Bennett, 1916; Kantorovich, 1948]:

$$x_{k+1} = \underset{y}{\operatorname{argmin}} \left\{ \langle \nabla f(x_k), y - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(y - x_k), y - x_k \rangle \right\}$$
$$= x_k - (\nabla^2 f(x_k))^{-1} \nabla f(x_k), \qquad k \ge 0.$$

Local quadratic convergence: $\mathcal{O}(\log_2\log_2\frac{1}{\varepsilon})$ iterations to find an ε -solution. Assumptions:

- **1.** Strong convexity. $\forall x : \nabla^2 f(x) \succeq \mu I$
- 2. Lipschitz Hessian. $\forall x, y : \|\nabla^2 f(x) \nabla^2 f(y)\| \le L_2 \|x y\|$
- 3. x_0 is close to x^*

Newton Method with Cubic Regularization

Cubic Newton Method [Nesterov-Polyak, 2006]:

$$x_{k+1} = \underset{y}{\operatorname{argmin}} \left\{ \langle \nabla f(x_k), y - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k) (y - x_k), y - x_k \rangle + \frac{H}{6} \|y - x\|^3 \right\}$$
$$= x_k - \left(\nabla^2 f(x_k) + \frac{H \|x_{k+1} - x_k\|}{2} I \right)^{-1} \nabla f(x_k), \qquad k \ge 0.$$

- $ightharpoonup H := 0 \Rightarrow$ The Classical Newton (no global convergence).
- ▶ $H := L_2$ \Rightarrow Global convergence: $f(x_k) f^* \leq \mathcal{O}(1/k^2)$.

For strongly convex functions: local quadratic rate as well.

Tensor Method

Taylor's polynomial of degree p at point x:

$$f(y) \approx \Omega_p(x;y) \stackrel{\text{def}}{=} f(x) + \sum_{i=1}^p \frac{1}{i!} D^i f(x) [y-x]^i.$$

Tensor Method of order p > 1:

$$x_{k+1} = \underset{y}{\operatorname{argmin}} \Big\{ \Omega_p(x_k; y) + \frac{H}{(p+1)!} \|y - x_k\|^{p+1} \Big\}, \qquad k \geq 0.$$

- ightharpoonup p = 1: The Gradient Method. p = 2: The Cubic Newton.
- Let pth derivative be Lipschitz continuous:

$$||D^p f(x) - D^p f(y)|| \le L_p ||x - y||, \quad \forall x, y.$$

Set $H := L_p \Rightarrow \text{Global rate}$: $f(x_k) - f^* \leq \mathcal{O}(1/k^p)$ [Baes, 2009].

How to solve the subproblem?

Convex Tensor Model

Note: $\Omega_p(x; y)$ is **nonconvex** for $p \ge 3$.

► Theorem [Nesterov, 2018]:

Let $f(\cdot)$ be a convex function and $H \geq pL_p$. Then $\forall x$ the model

$$M(y) := \Omega_p(x; y) + \frac{H}{(p+1)!} ||y - x||^{p+1}$$

is convex in y

▶ For p = 3: efficient implementation using only <u>second-order</u> oracle is available [Nesterov, 2019]. The cost is $\mathcal{O}(n^3) + \tilde{\mathcal{O}}(n)$.

Some Recent Results

- ▶ Accelerated Tensor Methods: $F(x_k) F^* \le O(1/k^{p+1})$ [Baes, 2009; Nesterov, 2018]
- ▶ Optimal Tensor Methods: $F(x_k) F^* \le O(1/k^{\frac{3p+1}{2}})$ [Gasnikov et al., 2019; Kamzolov-Gasnikov-Dvurechensky, 2020] The oracle complexity matches the lower bound (up to logarithmic factor) from [Arjevani-Shamir-Shiff, 2017]
- ▶ Universal Tensor Methods: [Grapiglia-Nesterov, 2019], [Cartis-Gould-Toint, 2020]
- Stochastic Tensor Methods: [Lucchi-Kohler, 2019]
- **>** . . .

Uniformly Convex Functions

f is called **uniformly convex** of degree $q \ge 2$ iff $\forall x, y$

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq \sigma_q ||x - y||^q.$$

 $\sigma_q > 0$ is a parameter.

- ▶ Strongly convex functions: q = 2
- **Example**: $f(x) = \frac{1}{q} ||x x_0||^q$ is uniformly convex of degree q with constant $\sigma_q = 2^{2-q}$
- Sum of convex and uniformly convex functions gives uniformly convex

Local Superlinear Convergence

Tensor Method of order $p \geq 2$:

$$x_{k+1} = \underset{y}{\operatorname{argmin}} \Big\{ \Omega_p(x_k; y) + \frac{H}{(p+1)!} \|y - x_k\|^{p+1} \Big\}, \qquad k \geq 0.$$

ightharpoonup Set $H:=pL_p$.

New result: Theorem. Assume the objective is uniformly convex of degree

$$q \in [2, p+1)$$

with parameter $\sigma_q > 0$. Let

$$f(x_0) - f^* \le \mathcal{O}\left(\left[\frac{\sigma_q^{p+1}}{L_p^q}\right]^{\frac{1}{p-q+1}}\right)$$
 (the local region).

Then, the Tensor Method needs $K = \mathcal{O}(\log_{\frac{p}{q-1}} \log_2 \frac{1}{\varepsilon})$ iterations to find an ε -solution.

Composite Optimization

Composite Optimization Problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \Big\{ F(\mathbf{x}) \quad \stackrel{\text{def}}{=} \quad f(\mathbf{x}) + \psi(\mathbf{x}) \Big\}$$

- ψ is a *simple* convex function taking values in $\mathbb{R} \cup \{+\infty\}$
- f is convex and differentiable (the difficult part)

Examples:

- 1. Let Q be a simple convex set, $\psi(x) = \begin{cases} 0, & x \in Q \\ +\infty, & \text{otherwise.} \end{cases}$
- 2. $\psi(x) = \lambda ||x||_1$ (adding ℓ_1 -Regularizer to the problem).

Local Superlinear Convergence: Composite Case

Composite Tensor Method, $p \ge 2$:

$$x_{k+1} \ = \ \operatorname{argmin}_y \Big\{ \Omega_p \big(x_k; y \big) + \tfrac{H}{(p+1)!} \| y - x_k \|^{p+1} + \psi(y) \Big\}, \ k \geq 0.$$

Let the full objective be uniformly convex of degree $q \in [2, p+1)$:

$$\langle G_x - G_y, x - y \rangle \ \geq \ \sigma_q \|x - y\|^q, \quad \forall G_x \in \partial F(x), \ G_y \in \partial F(y),$$

and the smooth part have Lipschitz continuous pth derivative:

$$||D^p f(x) - D^p f(y)|| \le L_p ||x - y||.$$

Theorem. Let $F(x_0) - F^* \leq \mathcal{O}\left(\left[\frac{\sigma_q^{p+1}}{L_p^p}\right]^{\frac{1}{p-q+1}}\right)$ (the local region). Then the Composite Tensor Method needs $K = \mathcal{O}\left(\log_{\frac{p}{q-1}}\log_2\frac{1}{\varepsilon}\right)$ iterations to find an ε -solution.

We also established the convergence in terms of the minimal subgradient $\eta(x) \stackrel{\text{def}}{=} \min_{g \in \partial \psi(x)} \|\nabla f(x) + g\|_*$.

Application: Proximal-Point Method

$$f^* = \min_{x \in \mathbb{R}^n} f(x)$$

Proximal-Point Algorithm [Rockafellar, 1976]:

$$x_{k+1} = \underset{y}{\operatorname{argmin}} \Big\{ f(y) + \frac{1}{2a_{k+1}} \|y - x_k\|^2 \Big\}, \qquad k \geq 0.$$

- If f is convex, the objective of the subproblem $h_{k+1}(y) = f(y) + \frac{1}{2a_{k+1}} ||y x_k||^2$ is strongly convex.
- ▶ The Gradient Method needs $\tilde{\mathcal{O}}(a_{k+1}L_1)$ iterations to minimize h_{k+1} .
- ▶ It is enough to use for x_{k+1} an inexact minimizer of h_{k+1} .

[Solodov-Svaiter, 2001; Schmidt-Roux-Bach, 2011; Salzo-Villa, 2012]

Set
$$a_{k+1} = \frac{1}{L_1}$$
. Then $f(\bar{x}_k) - f^* \le \frac{L_1 ||x_0 - x^*||^2}{2k}$.

What about High-Order methods?

Globalizing the Local Convergence

$$h_{k+1}(y) = f(y) + \frac{1}{2a_{k+1}} ||y - x_k||^2 \rightarrow \min_{y}$$

Idea: Choose $a_{k+1} > 0$ to ensure that x_k in the region of local convergence of the Tensor Method, $p \ge 2$.

$$\boxed{ a_{k+1} \approx \left(\frac{1}{\|\nabla f(x_k)\|_*}\right)^{\frac{p-1}{p}} \cdot \left(\frac{1}{L_p}\right)^{\frac{1}{p}}} \quad (*)$$

Then we can solve the subproblem very efficiently.

Theorem. For the inexact Proximal-Point algorithm with (*), we have:

$$f(\bar{x}_k)-f^* \leq \mathcal{O}\left(\frac{L_p\|x_0-x^*\|^{p+1}}{k^{\frac{p+1}{2}}}\right).$$

- ▶ For the Gradient Method we had $\mathcal{O}(1/k)$.
- $ightharpoonup \mathcal{O}(1/k^{\frac{p+1}{2}})$ is worse than the rate of the direct TM: $\mathcal{O}(1/k^p)$.

Conclusions

- 1. We need to use regularization for high-order ($p \ge 3$) Taylor's approximation of the objective
 - ► Ensures convexity of the model
 - ▶ Efficient implementation for p = 3 (no need to store tensors)
- 2. Local superlinear convergence of the Composite Tensor Method, $p \ge 2$:
 - ▶ Rate: $\mathcal{O}(\log_{\frac{p}{g-1}}\log \frac{1}{\varepsilon})$ bigger base in the logarithm
 - ▶ Degree of uniform convexity $q \in [2, p+1)$ wider class of functions
- 3. Globalize the local method by doing Proximal-Point iterations
 - ► Accelerated Methods ?

Thank you for your attention!