Exercice 1:

- 1. Soit $z \in \mathbb{C}$. Exprimer $z^3 1$ sous forme d'un produit de deux facteurs.
- 2. En déduire les solutions complexes de l'équation $z^3=1$.
- 3. (a) Soit $z \in \mathbb{C}$. Montrer que z est solution de $z^3 = -5 + i\sqrt{2}$ si et seulement si $\frac{z}{1+i\sqrt{2}}$ est solution de $z^3 = 1$.
 - (b) En déduire les solutions complexes de $z^3 = -5 + i\sqrt{2}$.
- 4. De même, donner les solutions de $z^3 = 5 i\sqrt{2}$ puis celles de $z^3 = 5 + i\sqrt{2}$.

Exercice 2:

(Les deux questions sont indépendantes)

1. Soit $(p,q) \in \mathbb{R}^2$ et (A) l'équation $z^2 + pz + q = 0$ d'inconnue z.

On suppose que (A) admet deux solutions non réelles conjuguées.

Montrer que $p^2 = 4q\cos^2(\theta)$ où θ est un argument de l'une des solutions de (A).

2. Soit z un nombre complexe non réel tel que $1-z+z^2\neq 0$ et

$$\frac{1+z+z^2}{1-z+z^2} \in \mathbb{R}$$

Démontrer que |z| = 1.

Exercice 3:

On note (E) l'équation $1+z+z^2+z^3+z^4=0$ d'inconnue z.

1. Soit $z\in\mathbb{C}\backslash\{1\}.$ Rappeler une expression simple, sous forme de fraction, de

$$1 + z + z^2 + z^3 + z^4.$$

- 2. En déduire que $e^{\frac{2i\pi}{5}}$ est solution de (E).
- 3. Soit z une solution de (E). Montrer que si on pose $x=z+\frac{1}{z}$, alors $x^2+x-1=0$.
- 4. En déduire une expression explicite de $\cos\left(\frac{2\pi}{5}\right)$.
- 5. En s'inspirant de la méthode précédente, donner également une expression explicite de $\cos\left(\frac{4\pi}{5}\right)$.