част	факултетен номер	група	курс	специалност
1				СИ
Име:				

1. (1.5 т.) Намерете краен (недетерминиран) автомат, чийто език е равен на сечението на езиците на:

Δ	a	b		Δ	a	b
$\rightarrow s$	$\{p,q\}$	$\{s\}$		$\rightarrow^* s$	$\{s\}$	$\{p,q\}$
$\rightarrow^* p$	$\{s,p\}$	Ø	И	$\rightarrow p$	Ø	$\{s,p\}$
$\rightarrow q$	$\{s,q\}$	{ <i>p</i> }		$\rightarrow^* q$	{ <i>p</i> }	$\{s,q\}$

2. (1.5 т.) Докажете, че следният език не е регулярен:

$$L = \{xy \in \{a,b\}^* \mid |x| = |y| \& x$$
 съдържа $aa\}.$

3. (1.5 т.) Нека $\Sigma = \{a,b\}$. За всеки език $L \subseteq \Sigma^*$ означаваме:

$$\tilde{L} = \{ yx \mid xyy \in L \}.$$

Докажете, че ако Lе език, регулярен над $\Sigma,$ то такъв е и \tilde{L}

оценка = 1.5 +точки

част	факултетен номер	група	курс	специалност
1				СИ
Име:				

1. (1.5 т.) Намерете краен (недетерминиран) автомат, чийто език е равен на сечението на езиците на:

Δ	a	b
$\rightarrow s$	$\{p,q\}$	$\{s\}$
$\rightarrow^* p$	$\{s,p\}$	Ø
$\rightarrow q$	$\{s,q\}$	$\{p\}$

	Δ	a	b
1.7	$\rightarrow^* s$	$\{s\}$	$\{p,q\}$
И	$\rightarrow p$	Ø	$\{s,p\}$
	$\rightarrow^* q$	{ <i>p</i> }	$\{s,q\}$

2. (1.5 т.) Докажете, че следният език не е регулярен:

$$L = \{xy \in \{a,b\}^* \mid |x| = |y| \& x$$
 съдържа $aa\}.$

3. (1.5 т.) Нека $\Sigma = \{a,b\}$. За всеки език $L \subseteq \Sigma^*$ означаваме:

$$\tilde{L} = \{ yx \mid xyy \in L \}.$$

Докажете, че ако L е език, регулярен над Σ , то такъв е и \tilde{L} .

оценка = 1.5 +точки

част	факултетен номер	група	курс	специалност
1				СИ
Име:				

1. (1.5 т.) Намерете краен (недетерминиран) автомат, чийто език е равен на сечението на езиците на:

Δ	a	b
$\rightarrow s$	$\{p,q\}$	$\{s\}$
$\rightarrow^* p$	$\{s,p\}$	Ø
$\rightarrow q$	$\{s,q\}$	{ <i>p</i> }

	Δ	a	b
	$\rightarrow^* s$	$\{s\}$	$\{p,q\}$
И	$\rightarrow p$	Ø	$\{s,p\}$
	$\rightarrow^* q$	{ <i>p</i> }	$\{s,q\}$

2. (1.5 т.) Докажете, че следният език не е регулярен:

$$L = \{xy \in \{a, b\}^* \mid |x| = |y| \& x$$
 съдържа $aa\}.$

3. (1.5 т.) Нека $\Sigma=\{a,b\}.$ За всеки език $L\subseteq\Sigma^*$ означаваме:

$$\tilde{L} = \{ yx \mid xyy \in L \}.$$

Докажете, че ако L е език, регулярен над $\Sigma,$ то такъв е и $\tilde{L}.$

оценка = 1.5 +точки

част	факултетен номер	група	курс	специалност
2				СИ
Име:				

1. (1.5 т.) Намерете контекстно-свободна граматика, чийто език е равен на L^+ , където L е езикът на автомата:

Δ	a	b
$\rightarrow^* s$	$\{s\}$	$\{p,q\}$
$\rightarrow p$	Ø	$\{s,p\}$
$\rightarrow^* q$	{ <i>p</i> }	$\{s,q\}$

2. (1.5 т.) Докажете, че следният език е контекстносвободен:

$$L = \{a^n b^m \mid 2n = 3m + 1\}.$$

3. (1.5 т.) За всеки два езика L_1 и L_2 означаваме с $L_1 \oplus L_2 =$

$$= \{ w_1 w_2 | w_1 \in L_1 \& w_2 \in L_2 \& |w_1| = |w_2| \}.$$

Докажете, че ако L_1 и L_2 са регулярни, то $L_1 \oplus L_2$ е контекстно-свободен.

оценка = 1.5 +точки

част	факултетен номер	група	курс	специалност
2				СИ
Име:		•		

1. (1.5 т.) Намерете контекстно-свободна граматика, чийто език е равен на L^+ , където L е езикът на автомата:

Δ	a	b
$\rightarrow^* s$	$\{s\}$	$\{p,q\}$
$\rightarrow p$	Ø	$\{s,p\}$
$\rightarrow^* q$	{ <i>p</i> }	$\{s,q\}$

2. (1.5 т.) Докажете, че следният език е контекстносвободен:

$$L = \{a^n b^m \mid 2n = 3m + 1\}.$$

3. (1.5 т.) За всеки два езика L_1 и L_2 означаваме с $L_1 \oplus L_2 =$

$$= \{ w_1 w_2 | w_1 \in L_1 \& w_2 \in L_2 \& |w_1| = |w_2| \}.$$

Докажете, че ако L_1 и L_2 са регулярни, то $L_1 \oplus L_2$ е контекстно-свободен.

оценка
$$= 1.5 +$$
точки

част	факултетен номер	група	курс	специалност
2				СИ
Име:			,	

1. (1.5 т.) Намерете контекстно-свободна граматика, чийто език е равен на L^+ , където L е езикът на автомете:

Δ	a	b
$\rightarrow^* s$	$\{s\}$	$\{p,q\}$
$\rightarrow p$	Ø	$\{s,p\}$
$\rightarrow^* q$	{ <i>p</i> }	$\{s,q\}$

2. (1.5 т.) Докажете, че следният език е контекстносвободен:

$$L = \{a^n b^m \mid 2n = 3m + 1\}.$$

3. (1.5 т.) За всеки два езика L_1 и L_2 означаваме с $L_1 \oplus L_2 =$

$$= \{ w_1 w_2 | w_1 \in L_1 \& w_2 \in L_2 \& |w_1| = |w_2| \}.$$

Докажете, че ако L_1 и L_2 са регулярни, то $L_1 \oplus L_2$ е контекстно-свободен.

оценка
$$= 1.5 +$$
точки