我们先证一些定理:	Thm 8.17
Thm 8.16	$K = \{e_6\}$ iff f is injective
f: G-)H & group home w kerf JG	(包证过一千遍)
Pf. ① 首先, gray hom 的 kerf-定是 subgroup of G	Thm &18 if [N < G]
Bb Va, b & kerf, f(a) = CH, f(b)= CH	then w: G -> G/N是-t surj group hom
fia)-f(b) = eH => f(ab) = eH	A kerti=N
=) ab e kerf	() C. C. S. L. A. arrryn larm
②然后我们证明 berf O G	Oπ; G→G/N & group hom
要证kerf a G, 即证 Vg EG, g Tkg. Sk 即 Vg EG, g Tkg EK	$\frac{Pf}{\pi(g_1g_2)} = g_1g_2N = (g_1N)*(g_2N)$
$f(g^{-1}kg) = f(g^{-1}) f(k) f(g) = f(g^{-1}g) = f(e_{a})$ $E = e_{H}$	② π is surj Pf. \forall teG/N, t= Na for some a e 6, so wrsider $\alpha \vdash^{\pi}$, Na
→ <u>□</u>	3 if m(a) = Ne = N
	$\supset \alpha \in N \rightarrow \ker \pi : N$

oup hom

Third Iso Thm Ling) ② PA-tring, In-tideal of R PU DPRATETIES subring, DIA/I API HS Subring. ③ 每1 R/2 的 subring 新港 [A/I] for some Subring A of R. ③ 分果 J是R的-行言I的ideal, 例 J/1是 R/I的-行ideal. ⑤ 分果 J是 R的-介含I的ideal, 例 [R/I] 与 R/J 日 DI/I 与 R/	Fourth Iso Thm Cring) 取住意ideal I of mp R. 取注之: G = { Ph有 3 I Ho submigs of R} N = { BH有 R/I Ho submigs} PU (G = N) (Y: G → N sending A → A/N 为-Tisomorphism)

