

Jean Laneurit

jean.laneurit@inrae.fr

Roland Lenain

roland.lenain@inrae.fr

Goal

- Make available some off-road robotic platforms belonging to French research laboratories like INRAE, INRIA, CEA, LAAS, Xlim ...
- Provide codes needed to control them under ROS2 middleware
- Provide an experimental environment located to the INRAE Montoldre site

Robots

RE1. Robotized electric tractor - Alpo, SabiAgri -

	1100	00.20	-u c		
NEVA		1			
		E CV	A STATE	No.	
	and the				
**			TIES		
		W.			
					W. Cale

•	•
Locomot ion mode	2WS, 4WD
Weigth	800 kg (+500kg)
Size	2,5mx1mx 2,5m
Max Speed	2,5 m/s
Autonomy	4 H
Manipulat on type	Not yet equipped?
On-boarded sensors pkg	RTK-GPS [Drotek], IMU [Xsens], Odometry, Lidar sidk 1 layer

→ Autonomy, Ag work, implement (Greenhouse, row navigation)

RE2. Electric robot - Adap2E- INRAE

Locomot ion mode	4WS-D
Weigth	550 kg (+100)
Size	2,5mx1,5mx1,5m
Max Speed	5m/s tested (th: 8m/s)
Autonomy	6 H
Manipulat on type	UR10
On-boarded sensors pkg	RTK-GPS [Drotek], IMU [Xsens], Odometry, Lidar sick 1 layer

→ Mobile manipulation, autonomous navigation

RE3. Skid steer mobile manipulator - Campero platform

	p 0. 0 p . 0. 1
Locomot on mode	different al
Weigth	400kg (20kg)
Size	lmxlmxlm
Max Speed	2m/s
Autonomy	1H30
Manipulat on type	UR10
On-boarded sensors pkg	RTK-GPS [Drotek], IMU [Xsens], Odometry, 2 Lidar of 1 layer

→ Mobile manipulation, autonomous navigation

RE4. 2WS Robot - RobuFAST platform - INRAE

Locomot on mode	4WS-D
Weigth	550kg (10kg)
Size	1,2m
Max Speed	7m/s
Autonomy	2H
Manipulat on type	none
On-boarded sensors pkg	RTK-GPS [Drotek], IMU [Xsens], Odometry, 2 Lidar of 1 layer

→ High speed test, stability, regular ground

Robots

RE5. 2WS mobile robot - Agilex Platform - LAAS

Locomot in mode	2WS
Weigth	150kg
Size	1,2*1*0,8m
Max Speed	2m/s
Autonomy	4H
Manipulation type	none
On-boarded sensors pkg	4 realsense, 1lidar

RE6. 2WS mobile robot - Cinteo -Xlim

2WS
50kg (50kg)
0,8→ 1,6*1*1
1m/s
4H
none
4 realsense, 1lidar

RE7. 4WD mobile platform : Scouts minis – Xlim

Locomotion mode	4WD
Weight	20Kg
Size	0,63*0,55*0,25
Max Speed	5,5m/s
Autonomy	10Km
Manipulation type	none
Onboarded sensor- pkg	none

RE8. Husky -GT Lorraine

Locomotion mode	4WD
Weight	50Kg
Size	0,99*0,67*0,39
Max Speed	1m/s
Autonomy	8h
Manipulation type	none
Onboarded sensor- pkg	none

Base / ROS2

Robots	ROS2 Live	ROS2 simulation	Public
Alpo INRAE	Base OK Under tests	OK	Not yet
Adap2e INRAE	Base OK Under tests	OK	ОК
Campero IP	Base OK Under tests Arm not OK	Base OK Arm not OK	No yet
Robufast INRAE	Base OK Under tests	OK	OK

Base / ROS2

Robots	ROS2 Live	ROS2 simulation	Public
Agilex LAAS IIIROS	2024	2024	
Cinteo	Under development	Under development	
Scout-mini XLIM	2024	2024	
Husky GT Lorraine	2024	2024	

Sensors / ROS2

Robots	Sensors	ROS2 Live	ROS2 simulation
Alpo	Ublox RTK GPS	OK	OK
INRAE	Xsens IMU Mti10	OK	OK
Adap2e INRAE	Ublox RTK GPS Xsens IMU Mti10 Sick LMS 150	OK OK OK	OK OK OK
Campero IP	Ublox RTK GPS	OK	OK
	Xsens IMU Mti10	OK	OK
	Sick LMS 150	OK	OK
Robufast INRAE	Ublox RTK GPS	OK	OK
	Xsens IMU Mti10	OK	OK
	Sick TiM31	OK	OK

Sensors / ROS2

	Robots	Sensors	ROS2 Live	ROS2 simulation
Agilex LAAS	iii ROS			
Cinteo XLIM	ELATE C	Ublox RTK GPS Xsens IMU Robotsense 16 Nap 2 cameras RGB, 2 NiR	OK OK ?? ??	OK OK ?? ??
Scout-mini XLIM				
Husky GT Lorraine				

ROS2 developments

- Codes :
 - https://github.com/Romea
 - Core :
 - Low level :
 - · Sensor data processing
 - · Mobile base kinematics
 - High level :
 - · Localisation algorithms
 - · Path following algotrithms

ROS:

- ROS interface for core codes
- ROS interfaces for devices (sensors, manipulators, robots ...)
- Simulation (gazebo)
- https://github.com/Tirrex-Roboterrium
 - · Launch packages used to start easily demonstration for each robot
- Entry point :
 - https://github.com/Tirrex-Roboterrium/tirrex_demo/tree/main/doc

agricultural tasks

algorithms

core

demos

interfaces

tools

Core librairies

Device interfaces packages

Tools packages

Demo packages

Algorithms packages

Agricultural tasks packages

Contributions du projet Ninsar

Demo packages

Demo organization

Demo organization

URDF description :

ros2 run romea_demo robot_description.py mode:live or simulation robot_namespace:adap2e robot_configuration_directory:robot_directory_path

Launch:

ros2 launch romea_demo robot.launch.py
mode:=live or simulation
robot_namespace:=adap2e
robot_configuration_directory:=robot_directory_path
urdf_description:= user_description (optional, by default
urdf_description parameter is the result of urdf description script)

More info:

tirrex_demo package

Examples:

-ros2 run tirrex_demo robot_description.py mode:live robot_namespace:adap2e robot_configuration_directory:path_to_demo/config/robot > robot.urdf -ros2 launch tirrex_demo robot.launch.py mode:=live robot_namespace:=adap2e robot_configuration_directory:=path_to_demo/config/robot (warning in simulation mode gazebo must be launch before by using ros2 launch gazebo ros gazebo.launch.py)

Mobile base

Meta-description:

```
name: "adap2e"
configuration:
type: adap2e
model: fat
records:
joint_states: true
controller/odom: true
controller/dometry: true
controller/kinematic: true
simulation:
initial_xyz: [0.0, 0.0, 0.0] # meters
initial_rpy: [0.0, 0.0, 0.0] # degrees
```

Supported robots:

- <u>adap2e</u> (fat and slim models)
- alpo (pom and 4x4 models)
- aroco
- campero (rubber model)
- ceol
- robucar

Mobile base

URDF Description:

ros2 run romea_mobile_base_bringup urdf_description.py mode: live or simulation robot_namespace:adap2e meta_description_file_path:path to base meta-description file

Launch:

ros2 run romea_mobile_base_bringup mobile_base.launch.py mode:=live or simulation robot_namespace:=adap2e meta_description_file_path:=path to base meta-description_file

More info:

- romea mobile base stack

Examples:

-ros2 run romea_mobile_base_bringup urdf_description.py mode:live robot_namespace:adap2e meta_description_file_path:path_to_demo/config/robot/base.yaml > base.urdf -ros2 launch romea_mobile_base_bringup robot.launch.py mode:=live robot_namespace:=adap2e meta_description_file_path:=path_to_demo/config/robot/base.yaml (warning in simulation mode gazebo must be launch before by using ros2 launch gazebo ros gazebo.launch.py)

Teleoperation

Meta-description:

```
cmd_output:
    message_type:    romea_mobile_base_msgs/
TwoAxleSteeringCommand
    message_priority: 100
cmd_range:
    maximal_linear_speed:
    slow_mode: 1.0 # m/s
    turbo_mode: 2.0 # m/s
    #maximal_front_steering_angle: 20.0 # degree, optional
    #maximal_rear_steering_angle: 0.0 # degree, optional
```

Supported command type:

- one axle steering (alpo)
- two alxle steering (aroco,robucar,adap2e)
- skid steering (campero rubber, ceol)
- omni steering (campero mecanum)

Teleoperation

Joystick mapping (TODO):

ros2 run romea_teleop_bringup joystick_remapping.py base_meta_description_file_path: path to mobile base metadescription file

joystick_meta_description_file_path: path to joystick metadescription file

teleop_configuration_file_path: path to teleop configuration file

Launch:

ros2 launch romea_teleop_bringup mobile_base_teleop.launch.py robot_namespace:adap2e

base_meta_description_file_path: path to mobile base metadescription file

joystick_meta_description_file_path: path to joystick metadescription file

teleop_configuration_file_path: path to teleop configuration file

More info:

- romea teleop stack

Examples:

-ros2 launch romea_teleop_bringup mobile_base_teleop.launch.py robot_namespace:=adap2e base_meta_description_file_path:=path_to_demo/config/robot/base.yaml joystick meta_description_file_path:=path_to_demo/config/robot/devices/remote_controller.joytick.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path:=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path=path_to_demo/config/robot/teleop.yaml_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path=path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configuration_file_path_teleop_configura

Devices selection

Devices configuration:

```
remote controller:
 type: joystick
 available mode: all
lms151
type: lidar
 available mode: live
ublox:
type: gps
 available mode: none
xsens:
 type: imu
 available mode: none
transceiver0:
 tvpe: rtls
 available mode: simulation
transceiver1:
 tvpe: rtls
 available mode: simulation
```

More info:

tirrex_demo package

Examples:

Joystick

Meta-description:

```
name: "joystick"
driver:
pkg: "joy"
device: "/dev/input/js0"
autorepeat_rate: 10.0
deadzone: 0.1
configuration:
type: xbox
records:
joy: true
```

Supported driver packages:

- <u>- joy</u>
- ds4 driver

Supported joysticks:

- xbox (360, one)
- dualshock4

Joystick

Launch:

ros2 launch romea_joy_bringup joystick_driver.launch.py robot_namespace:=adap2e (optional, default = "") meta_description_file_path:= path to joystick metadescription file

More infos:

-romea joy stack

Example:

GPS

Meta-description:

name: "gps" driver. pkg: "romea ublox driver" device: "/dev/ttvACM0" baudrate: 115200 ntrip: # optional pkg: "ntrip client" host: caster.centipede.fr port: 2101 username: centipede # optional password: centipede # optional mountpoint: MAGC configuration: type: drotek model: f9p rate: 10 # hz geometry: parent link: "base link" xyz: [0.0, 0.0, 1.5] #meters records nmea sentence: true qps fix: false vel: false

Supported driver packages :

- nmea navsat driver
- romea ublox driver
- ntrip_client

Supported GPS receivers

- ublox (drotek fp9, ublox evk m8)
- ashtech proflex800

GPS

URDF Description:

ros2 run roma_gps_bringup urdf_description.py robot_namespace:adap2e meta_description_file_path: absolute path to gps meta-description file

Launch:

ros2 run roma_gps_bringup gps_driver.launch.py robot_namespace:=adap2e meta_description_file_path:= absolute path to gps meta-description file

More info:

- <u>romea gps</u> stack

Examples:

-ros2 run romea_gps_bringup urdf_description.py robot_namespace:adap2e meta_description_file_path:path_to_demo/config/robot/ublox.gps.yaml > ublox.urdf -ros2 launch romea_gps_bringup gps_driver.launch.py robot_namespace:=adap2e meta_description_file_path:=path_to_demo/config/robot/ublox.gps.yaml

MU

Meta-description:

```
name: "imu"
driver:
    pkg: "xsens_driver"
    device: "/dev/ttyUSB0"
    baudrate: 115200
configuration:
    type: xsens
    model: mti
    rate: 100 #hz
geometry:
    parent_link: "base_link"
    xyz: [0.0, 0.0, 1.0] #meters
    rpy: [0.0, 0.0, 0.0] #degrees
records:
    data: true
```

Supported driver packages:

- bluespace ai xsens mti driver
- xsens_driver

Supported IMU sensors:

- xsens (models mti and mti6xx)

MU

URDF Description:

ros2 run roma_imu_bringup urdf_description.py robot_namespace:adap2e meta_description_filename:path to imu metadescription file

Launch:

ros2 run roma_imu_bringup imu_driver.launch.py robot_namespace:=adap2e meta_description_filename:=path to imu metadescription file

More info:

- romea imu stack

Examples:

-ros2 run romea_imu_bringup urdf_description.py robot_namespace:adap2e meta_description_filanem:path_to_demo/config/robot/devices/xsens.imu.yaml > xsens.urdf -ros2 launch romea_imu_bringup imu_driver.launch.py robot_namespace:=adap2e meta_description_file_path:=path_to_demo/config/robot/devices/xsens.imu.yaml

LIDAR

Meta-description:

```
name: "lidar"
driver
 pkg: "sick scan"
 ip: "192.168.1.112"
port: 2112
configuration:
type: sick
model: lms151
rate: 50 # hz
resolution: 0.5 # degree
geometry:
 parent link: "base link"
xyz: [2.02, 0.0, 0.34] # meters
rpy: [0.0, 0.0, 0.0] # degrees
records
 scan: true
cloud: false
```

Supported driver packages:

- <u>sick_scan</u>

Supported lidars:

- sick (lms1xx,tim5xx)

LIDAR

URDF Description:

ros2 run roma_lidar_bringup urdf_description.py robot_namespace:adap2e meta_description_filename:path to lidar metadescription file

Launch:

ros2 run roma_lidar_bringup lidar_driver.launch.py robot_namespace:=adap2e meta_description_filename:=path to lidar metadescription file

More info:

- romea lidar stack

Examples:

-ros2 run romea_lidar_bringup urdf_description.py robot_namespace:adap2e meta_description_file_path:path_to_demo/config/robot/lms151.lidar.yaml > lms151.urdf -ros2 launch romea_lidar_bringup lidar_driver.launch.py robot_namespace:=adap2e meta_description_file_path:path_to_demo/config/robot/lms151.lidar.yaml

Camera

Meta-description:

```
name: camera
driver: coming soon
configuration:
type: axis
model: p1346
frame_rate: 30 # hz
resolution: 1280x720
geometry:
parent_link: "base_link"
xyz: [1.02, 0.0, 1.34] # meters
rpy: [0.0, 20.0, 0.0] # degrees
records:
camera_info: false
image_raw: true
```

Supported driver packages:

coming soonSupported cameras:

- axis 134x

Camera

URDF Description:

ros2 run romea_camera_bringup urdf_description.py robot_namespace:adap2e meta_description_filename:path to camera metadescription file

Launch:

ros2 run romea_camera_bringup camera_driver.launch.py robot_namespace:=adap2e meta_description_filename:=path to camera metadescription file

More info:

romea camera stack

Examples:

-ros2 run romea_camera_bringup urdf_description.py robot_namespace:adap2e meta_description_file_path:path_to_demo/config/robot/axis.camera.yaml > axis.urdf -ros2 launch romea_camera_bringup camera_driver.launch.py robot_namespace:=adap2e meta_description_file_path:path_to_demo/config/robot/axis.camera.yaml

RGBD Camera

Meta-description:

name: rgbd camera driver: coming soon configuration Type: realsense model: d435 rgb_camera: frame rate: 30 # hz resolution: 1280x720 infrared camera: frame rate: 30 # hz resolution: 1280x720 depth camera: frame rate: 30 # hz resolution: 1280x720 geometry. parent link: "base link" xyz: [1.02, 0.0, 1.34] # meters **rpy**: [0.0, 20.0, 0.0] # degrees records: camera info: false image raw: true

Supported driver packages:

- coming soon

Supported cameras:

- realsense d43x
- zed 1 and 2

Robot configuration

RGBD Camera

URDF Description:

ros2 run romea_rgbd_camera_bringup urdf_description.py robot_namespace:adap2e meta_description_filename:path to camera meta-description file

Launch:

ros2 run romea_rgbd_camera_bringup rgbd_camera_driver.launch.py robot_namespace:=adap2e meta_description_filename:=path to camera meta-description file

More info:

- romea rgbd camera stack

Examples:

-ros2 run romea_rgbd_camera_bringup urdf_description.py robot_namespace:adap2e meta_description_file_path:path_to_demo/config/robot/realsense.yaml > realsense.urdf -ros2 launch romea_rgbd_camera_bringup camera_driver.launch.py robot_namespace:=adap2e meta_description_file_path:path_to_demo/config/robot/realsense.yaml

Robot configuration

Bridge (Campero, Alpo....)

Adap2e

Meta-description:

```
name: "lidar"
driver:
 pkg: "sick scan"
 ip: "192.168.1.112"
 port: 2112
configuration:
 type: sick
 model: lms151
 rate: 50 # hz
resolution: 0.5 # degree
geometry:
 parent link: "base link"
 xyz: [2.02, 0.0, 0.34] # meters
rpy: [0.0, 0.0, 0.0] # degrees
records:
 scan: true
 cloud: false
```

Campero

```
Meta-description:
name: "front_lidar"
configuration:
type: sick
model: lms151
rate: 50 # hz
resolution: 0.5 # degree
geometry:
parent_link: "base_link"
xyz: [0.490, -0.300, 0.3513] # meters
rpy: [180.0, 0.0, -45.0] # degrees
records:
scan: true
bridge:
scan: /campero_bridge/front_laser/scan
```

Complete remapping used by algorithms, applications... /robot_name/front_lidar/scan : /campero_bridge/front_laser/scan

Robot Simulation

Nodes graph

Record/Replay

Records configuration:

directory: ~/dev/records # records directory
config: true # save config directory

debug: true# save cvs debug files into debug directorylog: true# save node log files into log directory

csv: true # save package versions and source codes diff

Examples:

- ros2 launch tirrex adap2e adap2e.launch.py mode:=simulation record:= true

- ros2 launch tirrex_adap2e adp2e.launch.py mode:=simulation record:= true
- ros2 launch tirrex demo replay.launch.py replay directory:=~dev/records/tirrex adap2e/22-12-15-51

Record/Replay

Examples:

- ros2 launch tiirex_adap2e adap2e.launch.py mode:=simulation records:= true
- ros2 launch romea_demo replay.launch.py replay_directory:~dev/records/rtirrex_adap2e/22-12-12-15-51

Simulation configuration

Simulation configuration:

world_package: romea_simulation_gazebo_worlds
world name: romea_small_vineyard.world

More Info:

romea simulation stack

Examples:

WGS84 reference point configuration

WGS84 anchor:

latitude: 45.76265802 longitude: 3.11000985 Altitude: 405.839

Localisation configuration

Localisation configuration:

```
core:
    pkg: romea_robot_to_world_localisation_core
    launch: robot_to_world_localisation.launch.py
plugins:
```

odo:

pkg: romea_localisation_odo_plugin
launch: odo_plugin.launch.py

imu:

pkg: romea_localisation_imu_plugin

launch: imu_plugin.launch.py

input_sensor_meta_description_filename: xsens
qps:

pkg: romea_localisation_gps_plugin

launch: gps_plugin.launch.py

input_sensor_meta_description_filename: ublox

Localisation configuration

Localisation configuration

