```
\label{eq:local_local_local_local_local_local} \begin{split} & \textit{In[*]} = \texttt{f[x\_]} := \texttt{Exp[-(x-a)^2]}; & (*Not normalized*) \\ & \textit{a = 2}; \\ & \textit{Plot[f[x], \{x, -2, 5\}, PlotRange} \rightarrow \textit{Full, PlotLegends} \rightarrow "Expressions"] \\ & \textit{NIntegrate[f[x], \{x, -\infty, \infty\}]} \\ & (*Area under \texttt{Exp[-(x-a)^2]} \text{ is } \sqrt{\pi} \text{ *}) \\ & \textit{N[Sqrt[Pi], 8]} \end{split}
```


Out[•]= 1.77245

Out[*]= 1.7724539

$$\label{eq:local_$$

Out[•]= 1.77245

Out[*]= 1.7724539

Out[*]= 1.39713

$$ln[\cdot]:= f[x_] := (1/Sqrt[\pi]) * Exp[-(x-a)^2];$$
 (*Normalized*)
 $a = 2;$

Plot[f[x], {x, -2, 5}, PlotRange \rightarrow Full, PlotLegends \rightarrow "Expressions"] NIntegrate[f[x], {x, - ∞ , ∞ }]

Out[•]= 1.

```
ln[@] := f[x_, k_] := Exp[-((x-a)^2)/k^2];
      (*Not normalized*) (*What do k do in the exponential*)
     a = 2;
     Plot[f[x, k = 0.5], {x, 0, 5}, PlotRange \rightarrow Full, PlotLegends \rightarrow "Expressions"]
     NIntegrate[f[x, k = 0.5], \{x, -\infty, \infty\}]
     2 * NIntegrate[f[x, k = 0.5], \{x, -\infty, \infty\}]
```


Out[*]= 0.886227

Out[•]= 1.77245

$$\begin{aligned} & \text{Im}[x] = \text{f}[x_{,k}] := \left(1 \middle/ \left(k \, \text{Sqrt}[\pi]\right)\right) \, \text{Exp}\left[-\left((x-a)^2\right) \middle/ k^2\right]; & (*\text{Normalized*}) \\ & \text{a = 2;} \\ & \text{Plot}[f[x, k = 0.5], \{x, 0, 5\}, \, \text{PlotRange} \rightarrow \text{Full}, \, \text{PlotLegends} \rightarrow \text{"Expressions"}] \\ & \text{NIntegrate}[f[x, k = 0.5], \{x, -\infty, \infty\}] \\ & \text{NIntegrate}[f[x, k = 0.05], \{x, -\infty, \infty\}] \end{aligned}$$

Out[•]= 1.

Out[\circ]= 1.

```
In[*]:= G[x_{-}] := (1/(\sigma * Sqrt[2Pi])) Exp[-((x-a)^2)/(2\sigma^2)];
(*What do \sigma do in the exponential*)
a = 2; \sigma = 0.4;
Plot[G[x], \{x, 0, 5\}]
```


$$\label{eq:local_$$

General: Exp[-799.918] is too small to represent as a normalized machine number; precision may be lost.

Out[σ]= 1.

Out[\circ]= 1.

 $lo[-]:= G2[x_, y_, \sigma_] := (1/((\sigma^2) * 2Pi)) Exp[-(((x-a)^2) + ((y-b)^2))/(2\sigma^2)];$ a = 2; b = 3;

Plot3D[G2[x, y, σ = 0.1], {x, 0, 3}, {y, 0, 4}, PlotPoints \rightarrow 100, PlotRange \rightarrow Full, AxesLabel \rightarrow {"x", "y"}, ColorFunction \rightarrow "Rainbow"]

 $ln[*] := G2[x_{,} y_{,} \sigma_{]} := (1/((\sigma^{2}) * 2 Pi)) Exp[-(((x-a)^{2}) + ((y-b)^{2}))/(2 \sigma^{2})];$ a = 2; b = 3;

Plot3D[{G2[x, y, $\sigma = 0.4$], G2[x, y, $\sigma = 0.3$], G2[x, y, $\sigma = 0.2$], G2[x, y, $\sigma = 0.1$]}, {x, 0, 3}, {y, 0, 4}, PlotPoints \rightarrow 100, PlotRange \rightarrow Full,

AxesLabel \rightarrow {"x", "y"}, PlotStyle \rightarrow {Red, Green, Orange, Blue, Opacity[0.3]}]

 $\label{eq:local_$


```
ln[\cdot]:=R[x_{\sigma}]:=Piecewise[\{1/(2\sigma), -\sigma < x - a < \sigma\}, \{0, Modulus[x - a] > \sigma\}\}];
       (*Rectangular function*)
       a = 2;
      Plot[\{R[x, \sigma = 0.5], R[x, \sigma = 0.4], R[x, \sigma = 0.3],
          R[x, \sigma = 0.2], R[x, \sigma = 0.1], R[x, \sigma = 0.05], \{x, 0, 5\}, PlotRange \rightarrow Full,
        PlotStyle → {Black, Orange, Green, Red, Blue, Cyan}, PlotLegends → "Expressions"]
      NIntegrate [R[x, \sigma = 0.5], {x, -\infty, \infty}]
      NIntegrate [R[x, \sigma = 0.05], {x, -\infty, \infty}]
       10
                                                                               R(x, \sigma = 0.5)
                                                                               --- R(x, \sigma = 0.4)
                                                                                 -R(x, \sigma = 0.3)
Out[ • ]=
                                                                               R(x, \sigma = 0.2)
                                                                                 -R(x, \sigma = 0.1)
                                                                                  R(x, \sigma = 0.05)
       2
Out[ • ]= 1.
Out[ • ]= 1.
ln[*] = R[x_, \sigma_] := Piecewise[{{1/(3\sigma), -3\sigma/2 < x - a < 3\sigma/2}, {0, Modulus[x - a] > 3\sigma/2}}];
      Plot[\{R[x, \sigma = 0.5], R[x, \sigma = 0.4], R[x, \sigma = 0.3],
          R[x, \sigma = 0.2], R[x, \sigma = 0.1], R[x, \sigma = 0.05]\}, \{x, 0, 5\}, PlotRange \rightarrow Full,
        PlotStyle → {Black, Orange, Green, Red, Blue, Cyan}, PlotLegends → "Expressions"]
      NIntegrate [R[x, \sigma = 0.5], {x, -\infty, \infty}]
      NIntegrate [R[x, \sigma = 0.05], {x, -\infty, \infty}]
      7
      6
                                                                               R(x, \sigma = 0.5)
                                                                               R(x, \sigma = 0.4)
                                                                                  -R(x, \sigma = 0.3)
Out[ • ]=
                                                                                - R(x, σ = 0.2)
                                                                               R(x, \sigma = 0.1)
                                                                                  -R(x, \sigma = 0.05)
Out[ • ]= 1.
Out[\circ]= 1.
```

Out[\circ]= 1.

Out[-]= 1.

 $ln[*]:= s[x_] := sin[gx] / (πx);$ Limit[s[x], x → 0] g = 5;Plot[s[x], {x, -10, 10}, PlotRange → Full] σ

 $Out[\bullet] = \frac{\mathbf{g}}{\pi}$


```
ln[*]:= s[x_] := sin[\pi x] / (\pi x);
      Limit[s[x], x \rightarrow 0]
      Plot[s[x], \{x, -10, 10\}, PlotRange \rightarrow Full]
```

Out[•]= **1**

$$\begin{split} & \inf\{s\} = s[x_{_}, y_{_}] := \left(sin[g\,x] \,\middle/\, (\pi\,x)\right) \left(sin[g\,y] \,\middle/\, (\pi\,y)\right); \\ & \text{Limit}[s[x], x \to 0] \\ & g = 25; \\ & \text{Plot3D}[s[x,y], \{x, -1, 1\}, \{y, -1, 1\}, \text{PlotPoints} \to 100, \\ & \text{PlotRange} \to \text{Full}, \text{ColorFunction} \to \text{"TemperatureMap"}] \end{split}$$

Out[•]= 1


```
ln[@] := S[x_] := Sin[g(x-a)] / (\pi(x-a));
      Limit[s[x], x \rightarrow 0]
      a = 2; g = 5;
      Plot[s[x], \{x, -10, 10 + a\}, PlotRange \rightarrow Full, PlotLegends \rightarrow "Expressions"]
Out[ • ]=
          2 π
```

1.5 1.0 Out[•]= 0.5

 $Out[\sigma]$ = ConditionalExpression[Indeterminate, $x \in \mathbb{R}$]


```
ln[@]:= s[x_, g_] := sin[g(x-a)] / (\pi(x-a));
      a = 2;
     Plot[s[x, g = 10], \{x, -10, 10 + a\}, PlotRange \rightarrow Full,
       PlotStyle → Cyan, PlotLegends → "Expressions"]
     Plot[s[x, g = 20], \{x, -10, 10 + a\}, PlotRange \rightarrow Full, PlotStyle \rightarrow Green]
     Plot[s[x, g = 50], \{x, -10, 10 + a\}, PlotRange \rightarrow Full, PlotStyle \rightarrow Blue]
     Plot[s[x, g = 100], \{x, -10, 10 + a\}, PlotRange \rightarrow Full, PlotStyle \rightarrow Orange]
     Plot[s[x, g = 1000], \{x, -10, 10 + a\}, PlotRange \rightarrow Full, PlotStyle \rightarrow Purple]
     Plot[s[x, g = 1000], \{x, -10, 10 + a\}, PlotRange \rightarrow Full, PlotStyle \rightarrow Red]
```


In[*]:= f[x_] := DiracDelta[x - a]; a = 2; Plot[f[x], $\{x, -5, 5\}$, AxesOrigin $\rightarrow \{0, -1\}$]

In[•]:= Exit

```
(*Ramp function*)
    der[x_, \sigma] =
      D[F[x, \sigma], x];
    (*Derivative of Ramp function is Rectangular function R∗)
    a = 2;
    Plot[F[x, \sigma = 0.5], {x, 0, 4}, PlotRange \rightarrow Full]
    Plot[der[x, \sigma = 0.5], {x, 0, 4}, PlotRange \rightarrow Full]
    1.0
    0.8
    0.6
Out[ • ]=
    0.4
    0.2
    1.0
    0.8
    0.6
Out[ • ]=
    0.4
    0.2
```

```
ln[*] = F[x_, \sigma_] := Piecewise[{\{0, x < a - \sigma\}, \{(1/(2\sigma)) (x - a + \sigma), -\sigma < x - a < \sigma\}, \{1, x > a + \sigma\}}];
      a = 2;
      Plot[\{F[x, \sigma = 0.5], F[x, \sigma = 0.4], F[x, \sigma = 0.3],
         F[x, \sigma = 0.2], F[x, \sigma = 0.1], F[x, \sigma = 0.01], \{x, 0, 5\}, PlotRange \rightarrow Full,
        PlotStyle → {Black, Orange, Green, Red, Blue, Cyan}, PlotLegends → "Expressions"]
      1.0
      0.8
                                                                             — F(x, \sigma = 0.5)
                                                                             — F(x, \sigma = 0.4)
      0.6
                                                                             — F(x, \sigma = 0.3)
Out[ • ]=
                                                                             — F(x, \sigma = 0.2)
      0.4
                                                                             — F(x, \sigma = 0.1)
                                                                                 F(x, \sigma = 0.01)
      0.2
In[ ]:= Exit
log[*] = F[x_, \sigma_] := Piecewise[{\{0, x < a - \sigma\}, \{(1/(2\sigma)) (x - a + \sigma), -\sigma < x - a < \sigma\}, \{1, x > a + \sigma\}}];
      H[x_, a_] =
         Limit[F[x, \sigma], \sigma \rightarrow 0];
       (*For limit \sigma \rightarrow 0 Ramp function becomes Heaviside unit step function*)
      H[x, a]
      delta[x_, a_] =
         D[H[x, a], x];
       (*Derivative of dicontinuous Heaviside unit step function is Dirac delta function*)
      delta[x, a]
      Integrate[delta[x, a = 2], {x, -5, 5}]
                            a < x
       Indeterminate True
                            a - x < 0 \mid \mid a - x > 0
       [ Indeterminate True
Out[ • ]= 0
```

```
In[ • ]:= a = 2;
      Plot[H[x, a], \{x, 0, 3\}, PlotStyle \rightarrow \{Red, Thick\},
       PlotLegends \rightarrow "H(x-2):Heaviside unit step function,\ndiscontinuous function"]
      DiscretePlot[delta[x, a], \{x, -5, 5, 0.2\}, PlotStyle \rightarrow \{Red, Thick\},
       PlotLegends \rightarrow "\delta(x-2): Dirac delta function"]
      1.0
      0.8
      0.6
                                                                       H(x-2):Heaviside unit step function,
Out[ • ]=
                                                                       discontinuous function
      0.4
      0.2
                 0.5
                           1.0
                                     1.5
                                               2.0
                                   1.0
                                   0.5
                                                                   •• \delta(x-2): Dirac delta function
                                  -0.5
                                  -1.0
lo(a):= Plot[UnitStep[x-2], \{x, 0, 3\}, PlotStyle \rightarrow \{Red, Thick\},
       PlotLegends \rightarrow "H(x-2):Heaviside unit step function"]
      1.0
      0.8
      0.6
Out[ • ]=
                                                                       H(x-2):Heaviside unit step function
      0.4
      0.2
                 0.5
                                     1.5
                                               2.0
                           1.0
                                                         2.5
                                                                   3.0
In[ ]:= Exit
```

```
In[*]:= (*psi[x_]:=Exp[-Abs[x]];*)
      psi[x_] := Piecewise[{{Exp[-(x)], x >= 0}, {Exp[-(-x)], x < 0}}];
      derpsi[x_] = D[psi[x], x]
      derderpsi[x] = D[derpsi[x], x]
      Plot[psi[x], \{x, -5, 5\}, PlotRange \rightarrow Full]
      Plot[derpsi[x], \{x, -5, 5\}, PlotRange \rightarrow Full]
      Plot[derderpsi[x], \{x, -5, 5\}, PlotRange \rightarrow Full, PlotStyle \rightarrow \{Red, Thick\}]
                         x < 0
       - e<sup>-x</sup>
                          x > 0
      Indeterminate True
                          x < 0
                          x > 0
        Indeterminate True
                                  0.6
Out[ • ]=
                                  0.4
                                  0.2
                        -2
                                  1.0
```

0.5

-0.5

Out[•]= -

$$\label{eq:local_$$

$$Out[*] = \frac{1}{1-z} + \frac{z}{(1-z)^2}$$

$$\text{Out[*]=} \left\{ \begin{array}{ll} -1 & x < 2 \\ 1 & x > 2 \\ \text{Indeterminate} & \text{True} \end{array} \right.$$

$$\text{Out[s]=} \left\{ \begin{array}{ll} 0 & x < 2 \ | \ | \ x > 2 \end{array} \right.$$
 Indeterminate True

-1.0

```
ln[@]:= G3[x_, y_, z_] :=
       (1/((\sigma^3)*(2Pi)^(3/2))) Exp[-(((x-a)^2)+((y-b)^2)+((z-x)^2))/(2\sigma^2)];
     a = 2; b = 3; c = 2, \sigma = 0.1;
     ContourPlot3D[G3[x, y, z], \{x, 0, 5\},
      \{y, 0, 5\}, \{z, 0, 5\}, PlotPoints \rightarrow 100, PlotRange \rightarrow Full]
ln[-]:= f[x_] := Piecewise[{{-x, x < 0}, {x, x > 0}}];
     g[x_{-}] := Piecewise[{{x, x < 0}, {-x, x > 0}}];
     Plot[\{f[x], g[x], (f[x] + g[x])\}, \{x, -3, 3\},
      PlotStyle → {Directive[Green, Thick], Directive[Orange, Thick], Directive[Red, Thick]}
```

