Elementi di Teoria della Computazione

Classe: Resto_2 - Prof.ssa Marcella Anselmo

Tutorato 01/06/2022 ore 14:00-16:00

Quarta Esercitazione

a cura della dott.ssa Manuela Flores

Esercizio: Relazioni tra L_1 ed L2

Siano L_1 ed L_2 due linguaggi su un alfabeto Σ . Per ognuna delle seguenti affermazioni dire se essa è vera o falsa. È necessario giustificare formalmente la risposta data. Risposte non giustificate non saranno valutate.

- (a) (5 punti) Se L_1 ed L_2 sono entrambi linguaggi NP-completi, allora $L_1 \leq_m L_2$ ed $L_2 \leq_m L_1$.
- (b) (5 punti) Se $L_1 \leq_P L_2$ ed $L_2 \leq_P L_1$, allora L_1 ed L_2 sono entrambi linguaggi NP-completi.
- (c) (5 punti) Se $L_1 \leq_P L_2$ ed L_2 è regolare, allora L_1 è regolare.

Lezione 32 pag. 17

NP - completezza

Vogliamo definire quando un linguaggio B è uno dei linguaggi «più difficili» della classe NP.

Abbiamo visto un modo per definire quando B è «più difficile» di A, ovvero quando A è di difficoltà «minore o uguale» a B:

$$A \leq_p B$$

Quindi B è uno dei linguaggi «più difficili» della classe NP.....

Definizione

Un linguaggio B è *NP-completo* se soddisfa le seguenti due condizioni:

- 1. B appartiene a NP
- 2. Per ogni linguaggio A in NP, A ≤ B (ovvero B è NP-hard)

Lezione 32 pag. 19

NP – completezza: teoremi fondamentali

Ma esistono linguaggi NP-completi? Ma esistono linguaggi indecidibili?

Come abbiamo dimostrato che Aтм, HALTтм, Етм, REGULARтм, EQтм e tanti altri linguaggi sono indecidibili? Abbiamo provato che:

- 1. Atm è indecidibile, dalla definizione, per assurdo
- 2. Se B è indecidibile e B \leq_m C allora anche C è indecidibile

Analogamente dimostreremo che:

- 1. SAT è NP-completo (Teorema di Cook-Levin)
- 2. Se B è NP-completo e $B \le_p C$, con $C \in NP$, allora anche C è NP-completo.

Nota: $\leq_m e \leq_p$

Lezione 32 pag. 21

NP – completezza: teoremi fondamentali

Teorema

Se B è NP-completo e $B \le_p C$, con $C \in NP$, allora C è NP-completo.

Dimostrazione

Per ipotesi:

- $1. C \in NP$
- 2. Per ogni $A \in NP$, $A \leq_{p} B$ (B è NP-completo)
- 3. $B \leq_{p} C$

Allora, utilizzando la proprietà transitiva di ≤ p:

- 1. C ∈ NP
- 5.(=2+3) Per ogni $A \in NP$, $A \leq_{p}C$

Cioè C è NP-completo.

Lezione 28 pag. 6

Risultati

Teorema

 $A \leq_m B$ se e solo se $\overline{A} \leq_m \overline{B}$.

Teorema

Se $A \leq_m B$ e B è decidibile, allora A è decidibile.

Teorema

Se $A \leq_m B$ e B è Turing riconoscibile, allora A è Turing riconoscibile.

Corollario

Se $A \leq_m B$ e A è indecidibile, allora B è indecidibile.

Corollario

Se $A \leq_m B$ e A non è Turing riconoscibile, allora B non è Turing riconoscibile.

Esercizio: A non si riduce ad E (es. 5.5) su elearning.informatica.unisa.it

Definire i linguaggi A_{TM} ed E_{TM} . Mostrare che A_{TM} non è riducibile mediante funziona a E_{TM} . Suggerimento: ragionare per assurdo e utilizzare risultati noti.

Lezione 25 pag. 36

Un problema indecidibile

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ è una MdT e } M \text{ accetta } w\}$$

 A_{TM} è il linguaggio associato al problema decisionale dell'accettazione di una macchina di Turing.

Teorema

Il linguaggio A_{TM} non è decidibile.

Lezione 27 pag. 28

Problema del vuoto

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una TM e } w \in L(M) \}$$

$$E_{TM} = \{ \langle M \rangle \mid M \text{ è una } TM \text{ e } L(M) = \emptyset \}$$

Proviamo che

$$A_{TM} \leq_m \overline{E_{TM}}$$

Consideriamo $f: \Sigma^* \to \Sigma^*$ tale che $f(\langle M, w \rangle) = \langle M_1 \rangle$ dove M_1 su un input x:

- 1. Se $x \neq w$ allora M_1 si ferma e rifiuta x.
- 2. Se x = w allora M_1 simula M su w e accetta x se M accetta w.

Quindi
$$L(M_1) = \begin{cases} \{w\} & \text{se } \langle M, w \rangle \in A_{TM} \\ \emptyset & \text{altrimenti} \end{cases}$$

Lezione 27 pag. 19

Teoremi

Teorema

 $A \leq_m B$ se e solo se $\overline{A} \leq_m \overline{B}$.

Dimostrazione

Per ipotesi $A \leq_m B$, quindi esiste una riduzione di A a B.

Poiché f è una riduzione, f è calcolabile e inoltre

$$\forall w \in \Sigma^* \quad w \in A \Leftrightarrow f(w) \in B$$

Proviamo che f è anche una riduzione da \overline{A} a \overline{B} .

Lezione 26 pag. 12

Insiemi numerabili: Σ^* e MdT

Esempio. L'insieme Σ^* di tutte le stringhe sull'alfabeto Σ è numerabile.

Possiamo elencare le stringhe secondo l'ordine radix, cioè per lunghezza e, a parità di lunghezza, in ordine lessicografico.

Per esempio: $\Sigma = \{0, 1\}$, $w_0 = \epsilon$, $w_1 = 0$, $w_2 = 1$, $w_3 = 00$, ...

Esempio. L'insieme

 $\{\langle M \rangle \mid M \text{ è una MdT sull'alfabeto } \Sigma\}$

è numerabile.

Abbiamo visto che è possibile codificare le MdT tramite stringhe su un alfabeto (anche binario).

E l'insieme di tutte le stringhe su un alfabeto è numerabile.

Lezione 28 pag. 6

Risultati

Teorema

 $A \leq_m B$ se e solo se $\overline{A} \leq_m \overline{B}$.

Teorema

Se $A \leq_m B$ e B è decidibile, allora A è decidibile.

Teorema

Se $A \leq_m B$ e B è Turing riconoscibile, allora A è Turing riconoscibile.

Corollario

Se $A \leq_m B$ e A è indecidibile, allora B è indecidibile.

Corollario

Se $A \leq_m B$ e A non è Turing riconoscibile, allora B non è Turing riconoscibile.

Lezione 27 pag. 30

Indecidibilità del problema del vuoto

Teorema

E_{TM} è indecidibile.

Infatti $A_{TM} \leq_m \overline{E_{TM}}$ e A_{TM} indecidibile $\Rightarrow \overline{E_{TM}}$ indecidibile.

Corollario E_{TM} è indecidibile.

Infatti la classe dei linguaggi decidibili è chiusa per complemento.

Nota. Non si conosce una riduzione da A_{TM} a E_{TM} .

Esercizio: A non si riduce ad E (es. 5.5)

su elearning.informatica.unisa.it

Definire i linguaggi A_{TM} ed E_{TM} . Mostrare che A_{TM} non è riducibile mediante funziona a E_{TM} . Suggerimento: ragionare per assurdo e utilizzare risultati noti.

5.5 Supponiamo per assurdo che $A_{\mathsf{TM}} \leq_{\mathsf{m}} E_{\mathsf{TM}}$ tramite la riduzione f. Dalla definizione di riducibilità mediante funzione segue che $\overline{A_{\mathsf{TM}}} \leq_{\mathsf{m}} \overline{E_{\mathsf{TM}}}$ tramite la stessa funzione di riduzione f. Tuttavia $\overline{E_{\mathsf{TM}}}$ è Turing-riconoscibile (vedere la soluzione dell'Esercizio 4.5) e $\overline{A_{\mathsf{TM}}}$ non è Turing-riconoscibile, contraddicendo il Teorema 5.28.

Se $A \leq_m B$ e B è Turing riconoscibile, allora A è Turing riconoscibile.

Esercizio: A non si riduce ad E (es. 5.5)

su elearning.informatica.unisa.it

Definire i linguaggi A_{TM} ed E_{TM} . Mostrare che A_{TM} non è riducibile mediante funziona a E_{TM} . Suggerimento: ragionare per assurdo e utilizzare risultati noti.

- 4.5 Sia s_1, s_2, \ldots la lista di tutte le stringhe in Σ^* . La seguente TM riconosce $\overline{E_{\text{TM}}}$.
 - "Su input $\langle M \rangle$, dove M è una TM:
 - 1. Ripete per i = 1, 2, 3, ...
 - 2. Esegue M per i passi su ogni input, s_1, s_2, \ldots, s_i .
 - 3. Se *M* ne ha accettato almeno uno, *accetta*. Altrimenti, continua."

SAT-MON appartiene ad NP

- 4. Una formula booleana ϕ è monotona se ϕ è una variabile booleana oppure ϕ si ottiene da due formule booleane monotone ϕ_1 , ϕ_2 , applicando l'operazione AND oppure OR, cioè $\phi = (\phi_1 \vee \phi_2)$ oppure $\phi = (\phi_1 \wedge \phi_2)$. Una formula booleana monotona ϕ è soddisfacibile se esiste un insieme di valori 0 o 1 per le variabili di ϕ che renda la formula uguale a 1.
 - Definire il problema della soddisfacibilità di una formula booleana monotona. Definire il linguaggio SAT-MON associato a tale problema.
 - (2) Definire la classe NP. Stabilire se SAT-MON appartiene alla classe NP, giustificando la risposta.

Lezione 30 pag. 15

La classe NP

Definizione

NP è la classe dei linguaggi verificabili in tempo polinomiale.

- Esempi.
- Per HAMPATH un certificato per una stringa $\langle G, s, t \rangle \in HAMPATH$ è un cammino Hamiltoniano da s a t.
- Per *COMPOSITES* un certificato per una stringa $\langle x \rangle \in COMPOSITES$ è uno dei divisori di x.

Nota: NP non è l'abbreviazione di tempo Non Polinomiale. Il nome deriva dalla seguente caratterizzazione.

Lezione 30 pag. 21

Esempi di linguaggi in NP

Teorema $SUBSET-SUM \in NP$

Dimostrazione.

Un algoritmo V che verifica SUBSET-SUM in tempo polinomiale: $V = \text{"Sull'input } \langle \langle S, t \rangle, c \rangle$:

- 1 Verifica se c è un insieme di numeri la cui somma è t, altrimenti rifiuta.
- Verifica se S contiene tutti i numeri in c, accetta in caso affermativo; altrimenti rifiuta."

$$\exists c : \langle \langle S, t \rangle, c \rangle \in L(V) \Leftrightarrow \langle S, t \rangle \in SUBSET-SUM$$

DOMINATING-SET appartiene ad NP

Un sottoinsieme D di vertici di un grafo non orientato G = (V, E) è un insieme dominante per G se ogni vertice in $V \setminus D$ è adiacente a un vertice in D (cioè i due vertici sono connessi mediante un arco in E). Si consideri il seguente problema di decisione:

Dati un grafo non orientato G = (V, E) e un intero positivo k, esiste un insieme dominante D di cardinalità k?

(a) Definire il linguaggio DOMINATING-SET associato a tale problema e dimostrare che DOMINATING-SET è in NP.

Lezione 30 pag. 19

Esempi di linguaggi in NP

Teorema $CLIQUE \in NP$

Dimostrazione.

Un algoritmo V che verifica CLIQUE in tempo polinomiale: $V = \text{``Sull'input'} \langle \langle G, k \rangle, c \rangle$:

- ① Verifica se c è un insieme di k nodi di G, altrimenti rifiuta.
- 2 Verifica se per ogni coppia di nodi in c, esiste un arco in G che li connette, accetta in caso affermativo; altrimenti rifiuta."

$$\exists c: \langle\langle G, k \rangle, c \rangle \in L(V) \Leftrightarrow \langle G, k \rangle \in CLIQUE$$

Prova alternativa: utilizzare le macchine di Turing non deterministiche.

Prossimo tutorato

Prima del preappello di giugno: data da definire, la troverete pianificata su questo canale del Team... ... buono studio e in bocca al lupo per la prova intercorso di mercoledì prossimo ©