Instrukcja obsługi algorytmu Forda-Fulkersona

Testowanie algorytmu Forda-Fulkersona

Testowanie i weryfikacja oprogramowania 2012/2013 — Projekt

Data 2012-12-18

Wersja 1.0

Autorzy MO, RW, TC, MM

1 Wstęp merytoryczny

Opracowywany w ramach projektu algorytm Forda-Fulkersona operuje na grafach spójnych, skierowanych, których krawędzie posiadają przypisane dwie wartości *przepływ* i *przepustowość*. Dodatkowo, algorytm jest kompletny, gdy graf, na którym operuje, spełnia trzy warunki:

- 1. *Ograniczenie przepustowości* Dla każdej krawędzi *przepływ* ma wartość nieujemną i nie przekracza wartości *przepustowości* tej krawędzi.
- 2. *Zachowanie przepływu* Dla każdego wierzchołka, suma przepływów wszystkich krawędzi wchodzących jest równa sumie przepływów wszystkich krawędzi wychodzących.
- 3. *Symetria przepływu krawędzi* Dla każdej krawędzi wartość przepływu krawędzi jest równa wartości ujemnej dla tej krawędzi w przeciwnym zwrocie.

Definicje pojęć wykorzystanych w opisie znajdują się paragrafie 4 na stronie 3. Szczegółowy opis działania algorytmu znajduje się w paragrafie 5 na stronie 4.

2 Instrukcja obsługi

2.1 Dane wejściowe

Algorytm Forda-Fulkersona opisany powyżej przyjmuje dwa argumenty:

- FlowNetwork graf przepływu sieci,
- Search metoda wykorzystywana do wyszukiwania ścieżek powiększających.

2.1.1 Graf przepływu FlowNetworkAdjacencyArray

Graf przepływu realizowany jest przy pomocy algorytmu z użyciem list powiązanych. Do każdego wierzchołka grafu przypisane są dwie listy krawędzi, przednich oraz tylnych. Rozwiązanie charakteryzuje się wysoką przejrzystością. Z powodu redundacji w postaci duplikowaniu listy krawędzie wykazuje niską wydajność pamięciową. Niezalecane jest stosowanie reprezentacji w przypadku dużych, gęstych grafów.

Argumenty wejściowe konstruktora FlowNetworkAdjacencyArray:

- int ilość wszystkich węzłów w grafie,
- int indeks węzła początkowego,

- int indeks węzła docelowego,
- Iterator<EdgesInfo> lista krawędzi wraz z ich przepustowością.

2.1.2 Krawędzie

Informacje o krawędziach grafu przechowywane jako kolekcji instancji klasy EgdeInfo. Zawierają informacje o wierzchołkach, pomiędzy którymi dana krawędź się znajduje oraz wartość jej przepustowości. Argumenty konstruktora EdgeInfo:

- int indeks węzła startowego
- int indeks węzła końcowego
- int wartość przepustowa krawędzi

2.2 Dane wyjściowe

Wyniki wyznaczania maksymalnego przepływu są zapisywane wewnątrz struktury reprezentującej graf. Instancja FlowNetwork posiada metodę toString(), która wyświetla aktualny stan grafu.

Wynik wywołania FlowNetwork.toString() przed i po wyznaczeniu maksymalnego przepływu jest zapisywany w formacie:

```
[indeks wezla startowego] -> [indeks wezla koncowego] przeplyw/przepustowosc
```

Przykładowy wydruk wywołania:

```
Przed:
[0] -> [1] 0/3 @ 0
[0] -> [2] 0/2 @ 0
[1] -> [3] 0/2 @ 0
[1] -> [4] 0/2 @ 0
[2] -> [4] 0/3 @ 0
[2] \rightarrow [3] 0/2 @ 0
[3] -> [5] 0/3 @ 0
[4] -> [5] 0/2 @ 0
[0] -> [1] 3/3 @ 0
[0] -> [2] 2/2 @ 0
[1] -> [3] 2/2 @ 0
[1] -> [4] 1/2 @ 0
[2] -> [4] 1/3 @ 0
[2] -> [3] 1/2 @ 0
[3] -> [5] 3/3 @ 0
[4] -> [5] 2/2 @ 0
```

3 Przykład użycia

W pierwszej kolejności ustalane są główne parametry grafu:

- liczba wezłów grafu (poza źródłem i ujściem),
- · indeks węzła źródłowego,
- indeks węzła docelowego.

```
int numVertices = 6;
int srcIndex = 0;
int sinkIndex = 5;
```

Następnie definiowane są poszczególne krawędzie grafu wraz z ich przepustowością:

- indeks węzła początkowego krawędzi,
- indeks węzła końcowego krawędzi,
- maksymalna przepustowość krawędzi.

```
ArrayList preIterator = new ArrayList();
EdgeInfo edge1 = new EdgeInfo(0, 1, 3);
EdgeInfo edge2 = new EdgeInfo(1, 3, 2);
EdgeInfo edge3 = new EdgeInfo(3, 5, 3);
EdgeInfo edge4 = new EdgeInfo(1, 4, 2);
EdgeInfo edge5 = new EdgeInfo(0, 2, 2);
EdgeInfo edge6 = new EdgeInfo(2, 4, 3);
EdgeInfo edge7 = new EdgeInfo(4, 5, 2);
EdgeInfo edge8 = new EdgeInfo(2, 3, 2);
preIterator.add(edge1);
preIterator.add(edge2);
preIterator.add(edge3);
preIterator.add(edge4);
preIterator.add(edge5);
preIterator.add(edge6);
preIterator.add(edge7);
preIterator.add(edge8);
Iterator<EdgeInfo> edges = preIterator.iterator();
```

Tworzony jest obiekt reprezentujący cały graf przepływu.

```
FlowNetworkAdjacencyList network = new FlowNetworkAdjacencyList(numVertices, srcIndex, sinkIndex, edges);

System.out.println(network.toString());
```

Wybierana jest funkcja wyszukująca i wykonywany jest algorytm Forda-Fulkersona.

```
//algorytm przeszukiwania wszerz
BFS_SearchList search = new BFS_SearchList(network);

//algorytm FORD—FULKERSON
FordFulkerson fordFulkerson = new FordFulkerson(network, search);

//wykonaj algorytm
fordFulkerson.compute();
```

Wyświetlenie wyznaczonego maksymalnego przepływu.

```
System.out.println("Wynik:");
System.out.println(network.toString());
```

4 Słownik pojęć

Pojęcie	Opis Sieć reprezentująca przepływy pomiędzy węzłem źródłowym i docelowym, z uwzględnieniem węzłów pośrednich.		
Sieć przepływowa			
Graf przepływu	Graf skierowany stanowiący abstrakcję sieci przepływowej, wierzchołki w grafie, odpowiadają węzłom sieci.		
Wierzchołek grafu przepływu	Wierzchołek w grafie przepływu reprezentuje węzeł w sieci przepływowej. Wierzch w grafie przepływu, z wyjątkiem wierzchołka źródłowego i docelowego, muszą spełr warunek, że suma $f(u,v)$ wszystkich krawędzi (u,v) we wpływie do wierzchołka u , m być równa sumie $f(u,w)$ wszystkich krawędzi w wypływie z wierzchołka u . Co oznacz żaden wierzchołek, poza wierzchołkami źródłowym i docelowym, nie mogą produkowani konsumować przepływu.		
Krawędź grafu prze- pływu	Krawędź w grafie przepływu łączy dwa wierzchołki. Wszystkie krawędzie w grafie prze- pływu są krawedziami skierowanymi.		
Przepustowość kra- wędzi	Przepustowość krawędzi wyraża ograniczenie, co do maksymalnej liczby jednostek, które mogą tą krawędzią przepłynąć.		
Przepływ krawędzi	Przepływ krawędzi definiuje liczbę jednostek przepływających z <i>u</i> do <i>v</i> (z punktu począt kowego krawędzi do jej punktu końcowego).		
Wierzchołek źródło- wy	Wierzchołek źródłowy (źródło, ang. source) to wierzchołek wytwarzający jednostki to warów, które przepływają przez krawędzi grafu do wierzchołka docelowego. Przyjmuj się, że wierzchołek źródłowy jest w stanie wytworzyć dowolną wymaganą liczbę jednostek towarów, które zostaną z niego odebrane.		
Wierzchołek docelo- wy	Wierzchołek docelowy(ujście, stacja końcowa, ang. target, terminus) to wierzchołek, który konsumuje otrzymane jednostki towarów dostarczone z wierzchołka źródłowego za pośrednictwem krawędzi grafu. Przyjmuje się, że wierzchołek źródłowy jest w stanie skonsumować dowolną liczbę jednostek towarów jakie zostaną do niego dostarczone.		
Ścieżka	Ścieżka oznacza niecykliczną ścieżkę w grafie z niepowtarzalnymi wierzchołkami, prowadzącą z wierzchołka źródłowego do wierzchołka docelowego.		
Ścieżka powiększa- jąca	Ścieżka powiększająca (ang. augmenting path) to taka ścieżka, do której można dodać więcej przepływu. Co oznacza, że dla każdej krawędzi w ścieżce, przepływ jest mniejszy od jej przepustowości.		

5 Analiza algorytmu

5.1 Opis algorytmu

Algorytm Forda-Fulkersona analizuje znalezioną ścieżkę powiększającą, obliczając maksymalny przepływ dostępny na tej ścieżce. Znajduje najmniejszy z maksymalnych dostępnych przepływów spośród krawędzi na ścieżce.

Dla krawędzi przednich dostępny przepływ obliczamy jako różnicę przepustowości i wykorzystanego przepływu (u.v). przepustowość-(u.v). przepływ. Dla krawędzi tylnych dostępny przepływ jest równy wyko-

rzystanemu przepływowi (do przodu) na tej krawędzi (u,v). przepływ. Przepływ tylny krawędzi jest pojęciem abstrakcyjnym na potrzeby prowadzonych obliczeń, a biorąc pod uwagę, że przepływ musi być nieujemny, dostępny przepływ tylny dla krawędzi jest równy wykorzystanemu przepływowi do przodu dla tej krawędzi.

Po przeanalizowaniu maksymalnej ścieżki powiększającej i obliczeniu maksymalnego przepływu dostępnego na tej ścieżce, aktualizujemy przepływy krawędzi. Dla krawędzi przednich, powiększamy przepływ krawędzi o obliczoną wartość (u,v).przepływ+=delta. Dla krawędzi tylnych, pomniejszamy przepływ krawędzi o obliczoną wartość (u,v).przepływ-=delta. Dopóki możliwe jest znalezienie ścieżki powiększającej, kontynuujemy obliczanie maksymalnego przepływu dostępnego na kolejnych ścieżkach i aktualizujemy przepływy na poszczególnych krawędziach tych ścieżek.

Algorytm zakończy swoją pracę w momencie, kiedy nie istnieją już żadne ścieżki powiększające, tj zostanie wykorzystana maksymalna przepustowość sieci ze źródła do ujścia.

5.2 Kroki algorytmu

- 1. Sprawdź czy istnieje ścieżka powiększająca w grafie.
- 2. Jeśli nie istnieje ścieżka powiększająca w grafie, zakończ działanie algorytmu. Algorytm jest kompletny dla grafów z nieujemnymi wartościami przepływów i przepustowości [Ford i Fulkerson, 1962].
- 3. Zacznij od krawędzi kończącej się w ujściu (v=ujście).
- 4. Ustaw przepływ znalezionej ścieżki na nieskończoność (delta=inf).
- 5. Jeśli koniec aktualnej krawędzi znajduje się w wierzchołku źródłowym v==źródło to i przejdź do punktu 12.
- 6. Ustaw początek krawędzi (u) na wierzchołek poprzedzający wierzchołek końcowy aktualnej krawędzi (v).
- 7. Jeśli aktualna krawędź (u, v) nie jest krawędzią przednią, przejdź do punktu 9.
- 8. Jeśli maksymalny przepływ analizowanej ścieżki jest większy niż różnica przepustowości aktualnej krawędzi i jej przepływu, to zmniejsz wartość delty do różnicy przepustowości i przepływu aktualnej krawędzi delta=MIN((u,v).przepustowość-(u,v).przepływ, delta) i przejdź do punktu 10.
- 9. Jeśli przepływ aktualnej krawędzi, jest mniejszy niż delta, to zmień wartość delty na przepływ aktualnej krawędzi delta=MIN((u,v).przepływ,delta).
- 10. Zamień wierzchołek końcowy krawędzi na wierzchołek początkowy, zacznij analizować wcześniejszą krawędź.
- 11. Przejdź do punktu 5.
- 12. Zacznij od krawędzi kończącej się w ujściu (v=ujście).
- 13. Jeśli koniec aktualnej krawędzi znajduje się w wierzchołku źródłowym v==źródło to przejdź do punktu 1.
- 14. Ustaw początek krawędzi (u) na wierzchołek poprzedzający wierzchołek końcowy aktualnej krawędzi (v).
- 15. Jeśli aktualna krawędź (u, v) nie jest krawędzią przednią, przejdź do punktu 17.
- 16. Zwiększ przepływ na krawędzi o maksymalny przepływ znalezionej ścieżki (u,v).przepływ+=delta i przejdź do punktu 18.

- 17. Zmniejsz przepływ na krawędzi o maksymalny przepływ znalezionej ścieżki (u, v). przepływ-=delta.
- 18. Zamień wierzchołek końcowy krawędzi na wierzchołek początkowy, zacznij analizować wcześniejszą krawędź.
- 19. Przejdź do punktu 13.

6 Historia dokumentu

Data	Wersja	Autor	Szczegóły
2012-12-12	0.1	МО	Utworzono wstępną wersję instrukcji.
2012-12-14	0.2	ММ	Dodano rozdział <i>Przykład użycia</i> .
2012-12-16	0.3	RW	Dodano rozdział Słownik pojęć.
2012-12-16	0.4	RW	Dodano rozdział Kroki algorytmu.
2012-12-17	0.5	RW	Dodano skrócony opis algorytmu. Dodano opis algoryt- my w języku naturalnym.
2012-12-17	0.5.1	МО	Poprawiono literówki i formatowanie.
2012-12-18	1.0	TC	Zatwierdzono.