Parcial punto 3 y 5

Eddy Herrera Daza

25 de agosto de 2018

Punto 3

El rendimiento de una cosecha de cereal se considera bueno si es superior a 15 kg por área de cultivo y malo si no llega a dicha cantidad. Se hacen determinaciones en parcelas donde se ha sembrado cereales de tipo A y cereales tipo B y se clasifican como se muestra en la tabla ¿Son igualmente efectivos para el cultivo los cereales A y B?. justifique su respuesta

```
datos3<-matrix(c(40,98,50,75),nrow=2,byrow=T)
dimnames(datos3)<-list(c("M","B"), c("A","B"))
datos3</pre>
```

```
## A B
## M 40 98
## B 50 75
```

 H_0 : Clase Independiente del tipo de cereal

 H_0 : La clase No es independiente del cereal

La prueba que se aplicará es Chi.
cuadrado, el resultado de la prueba con p-value = 0.08011 mayor que el valor de significa
ncia α indica que No se rechaza la hipótesis nula, osea que no hay evidencias significativas que indiquen que hay dependencia entre los factores

```
prueba3=chisq.test(datos3)
prueba3
```

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: datos3
## X-squared = 3.0626, df = 1, p-value = 0.08011
```

Punto 5

Cargar el paquete MASS

```
library(MASS)
```

```
## Warning: package 'MASS' was built under R version 3.4.4
```

Cargar el data swiss.

** Swiss Fertility and Socioeconomic Indicators (1888) Data**

Medición estandarizada de la fecundidad e indicadores socioeconómicos para cada una de las 47 provincias de Suiza alrededor de 1888.

swiss

##		Fertility	Agriculture	${\tt Examination}$	Education	${\tt Catholic}$
##	Courtelary	80.2	17.0	15	12	9.96
##	Delemont	83.1	45.1	6	9	84.84
##	Franches-Mnt	92.5	39.7	5	5	93.40
##	Moutier	85.8	36.5	12	7	33.77

	N :33	70.0	40 5	47	4.5	F 40
	Neuveville	76.9	43.5	17	15	5.16
	Porrentruy	76.1	35.3	9	7	90.57
##	Broye	83.8	70.2	16	7	92.85
##	Glane	92.4	67.8	14	8	97.16
##	Gruyere	82.4	53.3	12	7	97.67
##	Sarine	82.9	45.2	16	13	91.38
##	Veveyse	87.1	64.5	14	6	98.61
##	Aigle	64.1	62.0	21	12	8.52
##	Aubonne	66.9	67.5	14	7	2.27
##	Avenches	68.9	60.7	19	12	4.43
##	Cossonay	61.7	69.3	22	5	2.82
##	Echallens	68.3	72.6	18	2	24.20
##	Grandson	71.7	34.0	17	8	3.30
##	Lausanne	55.7	19.4	26	28	12.11
##	La Vallee	54.3	15.2	31	20	2.15
##	Lavaux	65.1	73.0	19	9	2.84
##	Morges	65.5	59.8	22	10	5.23
##	Moudon	65.0	55.1	14	3	4.52
##	Nyone	56.6	50.9	22	12	15.14
##	Orbe	57.4	54.1	20	6	4.20
##			71.2	12		2.40
	Oron	72.5			1	
##	Payerne	74.2	58.1	14	8	5.23
##	Paysd'enhaut	72.0	63.5	6	3	2.56
	Rolle	60.5	60.8	16	10	7.72
##	Vevey	58.3	26.8	25	19	18.46
##	Yverdon	65.4	49.5	15	8	6.10
##	Conthey	75.5	85.9	3	2	99.71
##	Entremont	69.3	84.9	7	6	99.68
##	Herens	77.3	89.7	5	2	100.00
##	Martigwy	70.5	78.2	12	6	98.96
##	Monthey	79.4	64.9	7	3	98.22
##	St Maurice	65.0	75.9	9	9	99.06
##	Sierre	92.2	84.6	3	3	99.46
##	Sion	79.3	63.1	13	13	96.83
##	Boudry	70.4	38.4	26	12	5.62
##	La Chauxdfnd	65.7	7.7	29	11	13.79
##	Le Locle	72.7	16.7	22	13	11.22
##	Neuchatel	64.4	17.6	35	32	16.92
##	Val de Ruz	77.6	37.6	15	7	4.97
##	ValdeTravers	67.6	18.7	25	7	8.65
##	V. De Geneve	35.0	1.2	37	53	42.34
##	Rive Droite	44.7	46.6	16	29	50.43
##	Rive Gauche	42.8	27.7	22	29	58.33
##		Infant.Mortal	itv			
##	Courtelary		2.2			
	Delemont	2	2.2			
##	Franches-Mnt	2	0.2			
##	Moutier	2	0.3			
	Neuveville		0.6			
	Porrentruy		6.6			
	Broye		3.6			
	Glane		4.9			
	Gruyere		1.0			
	Sarine		4.4			
a 11	~~~ -110	2				

```
## Veveyse
                             24.5
## Aigle
                             16.5
## Aubonne
                             19.1
## Avenches
                             22.7
## Cossonay
                             18.7
## Echallens
                             21.2
## Grandson
                             20.0
## Lausanne
                             20.2
## La Vallee
                             10.8
## Lavaux
                             20.0
## Morges
                             18.0
## Moudon
                             22.4
## Nyone
                             16.7
## Orbe
                             15.3
## Oron
                             21.0
## Payerne
                             23.8
## Paysd'enhaut
                             18.0
## Rolle
                             16.3
## Vevey
                             20.9
## Yverdon
                             22.5
## Conthey
                             15.1
## Entremont
                             19.8
## Herens
                             18.3
## Martigwy
                             19.4
## Monthey
                             20.2
## St Maurice
                             17.8
## Sierre
                             16.3
## Sion
                             18.1
## Boudry
                             20.3
## La Chauxdfnd
                             20.5
## Le Locle
                             18.9
## Neuchatel
                             23.0
## Val de Ruz
                             20.0
## ValdeTravers
                             19.5
## V. De Geneve
                             18.0
## Rive Droite
                             18.2
## Rive Gauche
                             19.3
```

a. Calcule e interprete la matriz de correlación

Primero veamos si las variables podrían estar relacionadas linealmente con la variable respuesta: Fetilida

swiss data

Para el cálculo de la matriz, se hace necesario dos pasos:

- i. . Esto es para que las magnitudes no afecten el resultado.
- ii. Verificar si los datos se agustan a una distribución normal. Esto es para determinar si el coeficiente a utilizar "Pearson" ó "Spearman"

Por ejemplo, la variable agricultura no se distribuye normal, ya que se rechaza la hipótesis nula

shapiro.test(swiss\$Agriculture)

```
##
## Shapiro-Wilk normality test
##
## data: swiss$Agriculture
## W = 0.96643, p-value = 0.193
```

i.Matriz de correlación (coeficiente de Spearman)con datos estandarizados

cor(scale(swiss), method = "spearman")

```
##
                     Fertility Agriculture Examination
                                                         Education
## Fertility
                     1.0000000
                                 0.2426643 -0.66090300 -0.44325769
## Agriculture
                     0.2426643
                                 1.0000000 -0.59885994 -0.65046381
## Examination
                    -0.6609030 -0.5988599 1.00000000
                                                       0.67460383
## Education
                    -0.4432577
                                -0.6504638 0.67460383
                                                        1.00000000
## Catholic
                                 0.2886878 -0.47505753 -0.14441631
                     0.4136456
## Infant.Mortality
                    0.4371367 -0.1521287 -0.05915436 -0.01898137
                       Catholic Infant.Mortality
##
                                      0.43713670
## Fertility
                     0.41364556
## Agriculture
                     0.28868781
                                     -0.15212866
## Examination
                    -0.47505753
                                     -0.05915436
```

```
## Education
                    -0.14441631
                                      -0.01898137
## Catholic
                     1.00000000
                                       0.06611714
## Infant.Mortality 0.06611714
                                       1.00000000
** Pruebas de Correlación**
cor.test(swiss$Fertility, swiss$Agriculture, method = "spearman")
## Warning in cor.test.default(swiss$Fertility, swiss$Agriculture, method =
## "spearman"): Cannot compute exact p-value with ties
##
##
   Spearman's rank correlation rho
##
## data: swiss$Fertility and swiss$Agriculture
## S = 13099, p-value = 0.1003
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
         rho
## 0.2426643
Luego, la correlación entre fertilidad y agricultura No es significativa
cor.test(swiss$Fertility, swiss$Education, method = "spearman")
## Warning in cor.test.default(swiss$Fertility, swiss$Education, method =
## "spearman"): Cannot compute exact p-value with ties
  Spearman's rank correlation rho
##
## data: swiss$Fertility and swiss$Education
## S = 24963, p-value = 0.001806
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
          rho
## -0.4432577
Correlación significativa entre fertilidad y educación
cor.test(swiss$Fertility, swiss$Infant.Mortality, method = "spearman")
## Warning in cor.test.default(swiss$Fertility, swiss$Infant.Mortality, method
## = "spearman"): Cannot compute exact p-value with ties
##
    Spearman's rank correlation rho
##
## data: swiss$Fertility and swiss$Infant.Mortality
## S = 9735.3, p-value = 0.002124
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
         rho
## 0.4371367
Correlación es significativa entre fertilidad y con mortalidad infantil
cor.test(swiss$Fertility, swiss$Catholic, method = "spearman")
## Warning in cor.test.default(swiss$Fertility, swiss$Catholic, method =
```

```
## "spearman"): Cannot compute exact p-value with ties
##
##
   Spearman's rank correlation rho
##
## data: swiss$Fertility and swiss$Catholic
## S = 10142, p-value = 0.003851
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
         rho
##
## 0.4136456
Correlación significativa
cor.test(swiss$Fertility, swiss$Examination, method = "spearman")
## Warning in cor.test.default(swiss$Fertility, swiss$Examination, method =
## "spearman"): Cannot compute exact p-value with ties
##
   Spearman's rank correlation rho
##
##
## data: swiss$Fertility and swiss$Examination
## S = 28727, p-value = 4.282e-07
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##
         rho
## -0.660903
Correlación significativa
** Modelos de Regresión Múltiple**
b. Corra el modelo de regresión y decida cuál es el mejor modelo porque
modelo5a=summary(lm(Fertility~Examination+Education,data=swiss))
modelo5a
##
## Call:
## lm(formula = Fertility ~ Examination + Education, data = swiss)
## Residuals:
                     Median
       Min
                  1Q
                                    3Q
## -15.9935 -6.8894 -0.3621
                               7.1640 19.2634
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 85.2533
                           3.0855 27.630
                                             <2e-16 ***
## Examination -0.5572
                            0.2319 - 2.402
                                             0.0206 *
## Education -0.5395
                            0.1924 -2.803 0.0075 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.982 on 44 degrees of freedom
## Multiple R-squared: 0.5055, Adjusted R-squared: 0.483
## F-statistic: 22.49 on 2 and 44 DF, p-value: 1.87e-07
```

Este modelo tiene un R^2 de 0.483 y las variables examination y education son significativas

```
modelo5b=summary(lm(Fertility ~ . , data = swiss))
modelo5b
##
## Call:
## lm(formula = Fertility ~ ., data = swiss)
##
## Residuals:
##
       Min
                  1Q
                     Median
                                   3Q
                                           Max
## -15.2743 -5.2617 0.5032
                               4.1198 15.3213
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   66.91518 10.70604 6.250 1.91e-07 ***
## Agriculture
                   -0.17211
                             0.07030 -2.448 0.01873 *
                   -0.25801
## Examination
                               0.25388 -1.016 0.31546
                   -0.87094
                               0.18303 -4.758 2.43e-05 ***
## Education
## Catholic
                    0.10412
                               0.03526 2.953 0.00519 **
## Infant.Mortality 1.07705
                               0.38172 2.822 0.00734 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.165 on 41 degrees of freedom
## Multiple R-squared: 0.7067, Adjusted R-squared: 0.671
## F-statistic: 19.76 on 5 and 41 DF, p-value: 5.594e-10
En este modelo las variables son todas significativas, excepto la variable examination y hay un R^2 de 0.671
modelo5c=summary(lm(Fertility~Infant.Mortality+Education+Agriculture+Catholic ,data=swiss))
modelo5c
## Call:
## lm(formula = Fertility ~ Infant.Mortality + Education + Agriculture +
       Catholic, data = swiss)
##
##
## Residuals:
       Min
                 1Q
                      Median
                                   3Q
                                            Max
## -14.6765 -6.0522
                      0.7514
                               3.1664 16.1422
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                   62.10131
                             9.60489 6.466 8.49e-08 ***
## Infant.Mortality 1.07844
                               0.38187
                                         2.824 0.00722 **
                               0.14814 -6.617 5.14e-08 ***
## Education
                   -0.98026
                               0.06819 -2.267 0.02857 *
                   -0.15462
## Agriculture
## Catholic
                    0.12467
                               0.02889
                                        4.315 9.50e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.168 on 42 degrees of freedom
## Multiple R-squared: 0.6993, Adjusted R-squared: 0.6707
## F-statistic: 24.42 on 4 and 42 DF, p-value: 1.717e-10
Como se puede ver el modelo las variables son todas significativas, hay un R^2 de 0.6707
```

Modelo Seleccionado

Y = 62.1 - 0.15X1 - 0.98X3 + 0.12X4 + 1.08X5

c. Verifique que los residuos cumplen los supuestos de normalidad y de homocedasticidad generar los residuos del modelo seleccionado 5c y probar que se distribuyen normal y que las varianzas son constantes

```
shapiro.test(modelo5c$residuals)
##
##
    Shapiro-Wilk normality test
##
## data: modelo5c$residuals
## W = 0.97657, p-value = 0.459
Como el valor de p es mayor que alfa entonces, los residuos se distribuyen normal
** Prueba de Heterocedasticidad**
Esta prueba de varianzas constantes, para esto se carga la libreria de "car"
library(car)
## Warning: package 'car' was built under R version 3.4.4
## Loading required package: carData
ncvTest(lm(Fertility~Infant.Mortality+Education+Agriculture+Catholic ,data=swiss))
## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 0.4687214, Df = 1, p = 0.49358
```

Por lo tanto, los residuales cumplen el principio de heterocedasticidad