Modelo predictivo de ventas Grupo Modelo

Raúl Peralta y José Antonio Sánchez

Agenda

- Análisis exploratorio
- Modelo predictivo
 - Justificación
 - Metodología
 - Estimaciones
 - Resultados del modelo
- Evaluación de modelo (Insights)
 - Variables omitidas del modelo
 - Perfil de canastas de consumo
 - Perfil geográfico
 - Perfil de demanda
 - Relaciones entre SKUs
- Estrategia
 - Inventario poco efectivo
 - Ubicación de subdelegaciones (establecimientos ancla)
 - o Planes de financiamiento para planeación

Tabla resumen (metodología)

Error del modelo pronosticando febrero 2018	0.324	
Herramientas utilizadas	R, Python, Prophet, pandas, geopandas, ggmap, ggplot, jupyterlab, joblib, readxl, tidytext, stringr, tidyr, scikit-learn	
Información externa utilizada	DNUE, google maps	
Transformación de variables	k-means, PCA, agregación por áreas de influencia	

Análisis exploratorio

Resumen de tablas

- Conteo de observaciones
 - 554,466 registros en el historial de ventas
 - 100 Subagencias en el catálogo con latitud y longitud
 - Existen 8,943 combinaciones entre subagencias y SKUs
- Observaciones con compra
 - Existen subagencias que nunca venden ciertos SKUs. De los 276 SKUs, 131 nunca se han vendido.
- Irregularidades
 - Hay dos Subagencias con coordenadas en el mar (10209 y 10059)

Serie de tiempo de las subagencias

Posibles factores estacionales:

- -Durante la primera mitad del año (temperaturas más altas) y en fechas decembrinas, se observa un alza en la venta de hectolitros
- -Existe una caída pronunciada durante enero de todos los años (stock-up de detallistas)

Hectolitros mensuales vendidos por Subagencia

Serie de tiempo de las subagencias

Si bien existe un patrón temporal general, los SKUs presentan comportamientos diferenciados. Esto complica el modelaje serie por serie.

SKU: 00000025 (patrón estacional)

SKU: 00000016 (patrón no estacional)

Modelo predictivo

Modelo predictivo (justificación)

-Restricciones:

- -Series de tiempo con tendencias y estacionalidades diferentes por subagencia y producto
- -Factores no observables
 - -Variables operativas
 - -Nuevos productos complementarios y sustitutos introducidos
 - -Promociones

-Alternativa:

- -Modelo de regresión no lineal capaz de aprender patrones temporales
- -Este modelo nos permite estimar la venta de hectolitros sólo explotando la dimensión temporal

Modelo predictivo (metodología)

Se utiliza un modelo de series de tiempo compuestas. Este puede ser desagregado en tres elementos:

- Tendencia: cantidad aditiva de hectolitros vendidos a través del tiempo
- Estacionalidad: Saltos periódicos dependientes de ciclos temporales

Modelo predictivo (metodología)

- La predicción está modelada matemáticamente de la siguiente manera
 - $\circ Y(t) \sim g(t) + s(t);$
 - Donde Y representa la venta en el tiempo T, g es una función del tiempo que representa cambios periódicos, y s es una función del tiempo que representa cambios no periódicos o irregulares.
- Ventajas del modelo aditivo:
 - Permite incluir factores que sólo suceden una vez en la serie. Por ejemplo stock-up por parte de los detallistas
 - Permite producir agregaciones de tendencias anuales.
- Método de estimación:
 - Método basado en Hamiltonian Montecarlo models, (No U-Turn Sampler).

Modelo predictivo (Estimaciones)

Subagencia 10003 SKU 00000038

Puntos observados en negro. La línea azul representa la estimación del modelo sin usar esos periodos para el entrenamiento

Negro: Puntos observados, verde: predicción, gris: IC

Modelo predictivo (Estimaciones)

Resultados del modelo

Periodo	Error relativo medio		
Diciembre 2017	0.319		
Enero 2018	0.392		
Febrero 2018	0.324		
Predicción <i>benchmark</i> con media por SKU/tienda	1.16		

Se eliminaron las observaciones de diciembre a febrero para realizar el entrenamiento y evaluar estos meses en una prueba "ciega"

El error relativo de enero es más alto. podría ser efecto de stock-up por los clientes luego de las altas ventas de diciembre.

Por cada subagencia/producto se calculó la media total y se predijeron observaciones aleatorias con ésta

Evaluación de modelo (insights)

Variables omitidas del modelo

- Perfil de canastas de consumo de subagencias
 - ¿Qué productos se consumen en cada una?
- Perfil de demanda de productos
 - ¿Quiénes son los clientes más probables de las subagencias?
- Perfil geográfico de subagencias
 - ¿Dónde están las subagencias más difíciles de predecir?
- Perfil de relaciones entre SKUS
 - ¿Qué SKUS tienden a subir y bajar juntos?

Modelado (PGM)

Perfil de canastas de consumo

Segmentación no supervisada basada en la la distribución de proporciones de productos por subagencia

Perfil de canastas de consumo

SKUs más representativos por cluster

Cada punto representa una subagencia. Entre más cercano esté el punto a un SKU, más porcentaje representa éste de la venta total

Perfil geográfico

La venta de hectolitros es mayor en áreas metropolitanas.

Perfil geográfico (error del modelo)

¿El lugar de la subagencia impacta a la estimación de ventas? El modelo no es capaz de identificarlo

Cluster de perfil de producto	Error relativo medio
Rojo	0.34
Verde	0.50
Turquesa	0.265
Morado	0.39

Concentración geográfica de errores (región noroeste)

Relación entre tendencias de SKUs

Un modelo más sofisticado podría incluir predicciones por productos que tiendan a fluctuar juntos

Existen productos que tienen correlación negativa en el tiempo. Esto puede deberse a que se trata de bienes sustitutos.

Los SKU con alta correlación positiva, es probable que pertenezcan al mismo producto

Perfil de demanda

Usando el DNUE podemos observar que existe una correlación entre el número de comercios que venden cerveza a un radio de 5km y la cantidad de hectolitros que se venden. A partir de esta información se puede identificar qué zonas pueden tener alto potencial para explorar posibilidades de nuevas subagencias

Estrategia

Costo de oportunidad de expansión por tipo de cliente

A partir del total de las subagencias, podemos estimar la aportación que tiene un establecimiento potencial para la subagencia.

Tipo de establecimiento	Efecto en Hectolitros mensuales de un establecimiento adicional	Valor P
Comercio al por mayor de abarrotes	19,817	0.0
Comercio al por mayor de cerveza	24,123	0.175
Comercio al por menor de cerveza	5,092	0.0
Comercio al por menor en supermercados	17,646	0.0
Restaurantes con servicio de preparación de alimentos a la carta o de comida corrida	6,699	0.0
Centros nocturnos, bares, cantinas y similares	1,052	0.0

Planes de financiamiento en fin de año

Los clientes están transfiriendo su consumo de enero a diciembre. Una posible solución podría ser proveer de planes de financiamiento, que incentivaran a dosificar su gasto. Este modelo de suscripción haría más fácil la planeación de operaciones, por tener una venta asegurada a final de año.

Inventario poco efectivo

- Problema: Existen 131 productos en el inventario que no se han vendido una sola vez en el periodo analizado. Estos productos seguramente producen costos de almacenaje y producción
- Esto nos dejaría con 145 productos efectivos