Table of Contents

- 1 Final Project Submission
- 2 Overview
 - 2.1 Initial Thoughts and Response to the Business Problem
- 3 Data Cleaning, Merging, and Aggregating
 - 3.1 Importing Modules and Relevent Datasets
 - 3.2 Cleaning Box Office Gross Data
 - 3.3 Cleaning 'Title Basics'.
 - 3.4 Cleaning 'Movie Budgets'
- 4 Q1 What are the Highest Grossing Genres from 2010-2018
- 5 Q2
 - 5.1 What Genres Have the Highest Revenue
 - 5.2 Which Genres Have the Highest ROI
 - 5.3 Q3 Does a Higher Budget Correlate with a Higher ROI
- 6 Conclusions
 - 6.1 Conclusions
 - 6.2 Areas For Further Investigation

1 Final Project Submission

Please fill out:

- · Student name: Daniel Ross-Leutwyler
- Student pace: self paced / part time / full time
- Scheduled project review date/time: 8/12/21, 5:00 PM
- · Instructor name: James Irving
- Blog post URL:

2 Overview

In this project I will make suggestions about what sort of movies Microsoft should make for the launch of their movie studio.

Using data from IMDB, Box Office Mojo, and The Numbers, I will look at historical data from 2010-2018 to analyze what sort of. movies perform the best at the box office.

2.1 Initial Thoughts and Response to the Business Problem

"Microsoft sees all the big companies creating original video content and they want to get in on the fun. They have decided to create a new movie studio, but they don't know anything about creating movies. You are charged with exploring what types of films are currently doing the best at the box office. You must then translate those findings into actionable insights that the head of Microsoft's new movie studio can use to help decide what type of films to create."

There are lots of metrics to measure success, however some are easier to objectively measure than others. With the data at hand the two main ways to judge the success of a movie are through analyzing key financial metrics (gross box office, and return-on-investment, for example), and critical response (as aggregated by the IMBD website).

By analyzing what, if any, attributes the top grossing movies all share, we can make informed suggestions about what sort of film Microsoft should pursue.

I will also explore the relationship between genre, budget, and gross revenue. The success of a blockbuster is in part dependent upon its ROI, as well.

The analysis performed here will attempt to answer these three questions:

- Q1) What are the highest grossing genres from 2010-2018?
- Q2) What genres have the highest revenue and ROI over that same time frame?
- Q3) Which genres have a lower production budget and a higher ROI?

These questions will help Microsoft make business savvy decisions about their entry into a crowded market.

3 Data Cleaning, Merging, and Aggregating

3.1 Importing Modules and Relevent Datasets

These are the data sets are relevant to answering the stakeholder questions, as they contain information related to gross sales, production budget, and genre.

These data sets are not relevant to the business question, due to outdated or incomplete data, or containing data that is beyond the scope of our business question.

imdb.title.ratings.csv.gz imdb.name.basics.csv imbd.title.akas.csv imdb.title.crew.csv imdb.principles.csv rt.movie_info.tsv rt.reviews.tsv tmdb.movies.csv

```
In [3]:
            # Defining functions to help with EDA
          1
          2
          3
            def prelim(df):
                """displays core information
          4
          5
                on a dataframe at the beginning of EDA
          6
          7
                accepts a DataFrame as input, and displays
                the head, info, and sum of all null values
          8
          9
                 for each column in that DataFrame
                 0.00
         10
         11
                 return (display(df.head()),
         12
                         display(df.info()),
         13
                         display(df.isna().sum()))
         14
         15
            def see nans(df, cols=None):
                 """accepts a data frame, and optionally columns
         16
         17
                 returns a data frame of all null values.
         18
         19
                Used for previewing missing data.
                Does not alter df in any way"""
         20
         21
         22
                 if cols is None:
                     cols = df.columns
         23
         24
                 return df[df[cols].isnull().any(axis=1)]
```

3.2 Cleaning Box Office Gross Data

	title	studio	domestic_gross	foreign_gross	year
0	Toy Story 3	BV	415,000,000.00	652000000	2010
1	Alice in Wonderland (2010)	BV	334,200,000.00	691300000	2010
2	Harry Potter and the Deathly Hallows Part 1	WB	296,000,000.00	664300000	2010
3	Inception	WB	292,600,000.00	535700000	2010
4	Shrek Forever After	P/DW	238,700,000.00	513900000	2010

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3387 entries, 0 to 3386
Data columns (total 5 columns):
```

#	Column	Non-Null Count	Dtype
0	title	3387 non-null	object
1	studio	3382 non-null	object
2	domestic_gross	3359 non-null	float64
3	foreign_gross	2037 non-null	object
4	year	3387 non-null	int64
dtyp	es: float64(1),	int64(1), object	(3)

memory usage: 132.4+ KB

None

```
title 0
studio 5
domestic_gross 28
foreign_gross 1350
year 0
dtype: int64
```

Out[4]: (None, None, None)

gross_df is a DataFrame of movies from 2011-2018. Each row represents one movie, and each column contains the the following values:

'title', 'studio', 'domestic_gross', 'foreign_gross', and 'year'.

There are no null entries in the *title* column, which contains objects.

There are 5 null entries in the **studio** column, which contains objects.

There are 28 null values in the *domestic_gross* column, which contains numbers, specifically floats.

There are 1350 null values in the *foreign_gross* column, which contains objects, and will need to be cast as a float. The null values will need to be replaced.

*hypothesis: foreign_gross should be summed with domestic_gross, as the global nature of media today makes the foreign/domestic binary less important. *

There are no nulls in the *year* column, which contains integers.

Examining the 'foreign_gross' column:

```
1 # identifying existing ',' in the strings that needs to be replaced
In [5]:
         2 # these are literal strings, not the ',' from the .format in 3.1
         3 gross_df['foreign_gross'].str.contains(',').sum()
Out[5]: 5
In [6]:
           # removing commas to be able to cast as float and sanity check
           gross_df['foreign_gross'] = gross_df['foreign_gross'].str.replace(',','
         3 gross df['foreign gross'] = gross df['foreign gross'].astype(float)
            gross_df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 3387 entries, 0 to 3386
        Data columns (total 5 columns):
         #
            Column
                            Non-Null Count Dtype
        --- -----
            title
                                            object
         0
                            3387 non-null
         1
            studio
                            3382 non-null
                                            object
         2
            domestic_gross 3359 non-null
                                            float64
         3
            foreign gross
                            2037 non-null
                                            float64
             year
                            3387 non-null
                                            int64
        dtypes: float64(2), int64(1), object(2)
        memory usage: 132.4+ KB
```

Out[7]:

	title	studio	domestic_gross	foreign_gross	year
222	Flipped	WB	1,800,000.00	nan	2010
254	The Polar Express (IMAX re-issue 2010)	WB	673,000.00	nan	2010
267	Tiny Furniture	IFC	392,000.00	nan	2010
269	Grease (Sing-a-Long re-issue)	Par.	366,000.00	nan	2010
280	Last Train Home	Zeit.	288,000.00	nan	2010
287	Sweetgrass	CGld	207,000.00	nan	2010
291	Casino Jack and the United States of Money	Magn.	177,000.00	nan	2010
308	Alamar	FM	61,600.00	nan	2010
311	Hatchet 2	Vita.	52,600.00	nan	2010
319	Living in Emergency	Truly	32,200.00	nan	2010
323	The Taqwacores	Strand	11,400.00	nan	2010
324	Cherry	Abr.	11,400.00	nan	2010
325	Terkel in Trouble	Indic.	10,800.00	nan	2010
326	Kimjongilia	Lorb.	4,400.00	nan	2010
458	Courageous	TriS	34,500,000.00	nan	2011
473	Our Idiot Brother	Wein.	24,800,000.00	nan	2011
511	Straw Dogs (2011)	SGem	10,300,000.00	nan	2011
512	Prom	BV	10,100,000.00	nan	2011
524	Take Me Home Tonight	Rela.	6,900,000.00	nan	2011
525	Cedar Rapids	FoxS	6,900,000.00	nan	2011

A cursory search of the foreign box office receipts for several movies on this list demonstrates that while some of these movies did not have a foreign theatrical release (Flipped), it appears that some of the movies foreign box office receipts have already been counted in the domestic gross category (Courageous). Others have simply had that info omitted. On balance, the movies missing the foreign_gross data are not on the upper end of the the domestic_gross category, rendering their relevance minimal. In order to aggregate the data in the foreign_gross column, I will replace all the Nan values in this column with 0.

Out[8]:

title studio domestic_gross foreign_gross year

Out[9]:

	title	studio	domestic_gross	foreign_gross	year
1872	Star Wars: The Force Awakens	BV	936,700,000.00	1,131.60	2015
3080	Black Panther	BV	700,100,000.00	646,900,000.00	2018
3079	Avengers: Infinity War	BV	678,800,000.00	1,369.50	2018
1873	Jurassic World	Uni.	652,300,000.00	1,019.40	2015
727	Marvel's The Avengers	BV	623,400,000.00	895,500,000.00	2012

It is clear from looking at the domestic_gross sorted that the foreign_gross values are incorrect. It is not possible that there were only \$1,131 of receipts for Star Wars the Force Awakens, and IMDB confirms this.

It appears that the incorrect amount is due to an entry error, easily fixed by using a mapping dictionary.

```
In [10]:
             # creating dictionary to replace incorrect values.
           2
             # correct values taken from IMBD
           3
             mapping dict = \{1010.00 : 1009996733,
                             1019.40 : 1018130819,
           5
           6
                             1131.60 : 1132859475,
           7
                             1163.00 : 1162334379,
           8
                             1369.50 : 1369544272}
           9
          10
             gross_df['foreign_gross'] = gross_df['foreign_gross'].replace(mapping_d
```

Now we can aggregate data from the domestic and foreign gross columns to make inferences.

```
In [11]:

# exploring the difference in domestic and foreign gross
print(f"The domestic gross sum is: ${round(gross_df['domestic_gross'].s}
print(f"The domestic gross mean is: ${round(gross_df['domestic_gross'].s}
print(f"The domestic gross std is: ${round(gross_df['domestic_gross'].s}
print(f"The foreign gross sum is: ${round(gross_df['foreign_gross'].sum}
print(f"The foreign gross mean is: ${round(gross_df['foreign_gross'].me}
print(f"The foreign gross std is: ${round(gross_df['foreign_gross'].std}

The domestic gross sum is: $96,557,293,580.0
The domestic gross mean is: $28,745,845.0
The domestic gross std is: $66,982,498.0
The foreign gross sum is: $158,208,774,261.0
The foreign gross mean is: $46,710,592.0
The foreign gross std is: $120,344,901.0
```

Above we can see that the both the total foreign box office receipts (even with the 1350 replaced data points) and the foreign box office mean are *higher* than domestic.

This means it *may* warrant giving special consideration to movies that performed well in foreign markets.

I will also add an additional column for total_gross summing the domestic and foreign columns, as this is a feature that is absent in the original data.

```
gross_df['total_gross'] = (gross_df['domestic_gross'] +
In [12]:
          1
           2
                                         gross_df['foreign_gross'])
          3
           4
             # creating top 100 x dataframes
          5
             top_100_domestic = gross_df.sort_values('domestic gross',
          6
           7
                                                      ascending=False)[:100]
             top 100 foreign = gross df.sort values('foreign gross', ascending=False
          8
          9
             top_100_total = gross_df.sort_values('total_gross', ascending=False)[:1
         10
             display(top_100_domestic.head(10))
         11
             display(top_100_foreign.head(10))
          12
          13
            display(top_100_total.head(10))
```

	title	studio	domestic_gross	foreign_gross	year	total_gross
1872	Star Wars: The Force Awakens	BV	936,700,000.00	1,132,859,475.00	2015	2,069,559,475.00
3080	Black Panther	BV	700,100,000.00	646,900,000.00	2018	1,347,000,000.00
3079	Avengers: Infinity War	BV	678,800,000.00	1,369,544,272.00	2018	2,048,344,272.00
1873	Jurassic World	Uni.	652,300,000.00	1,018,130,819.00	2015	1,670,430,819.00
727	Marvel's The Avengers	BV	623,400,000.00	895,500,000.00	2012	1,518,900,000.00
2758	Star Wars: The Last Jedi	BV	620,200,000.00	712,400,000.00	2017	1,332,600,000.00
3082	Incredibles 2	BV	608,600,000.00	634,200,000.00	2018	1,242,800,000.00
2323	Rogue One: A Star Wars Story	BV	532,200,000.00	523,900,000.00	2016	1,056,100,000.00
2759	Beauty and the Beast (2017)	BV	504,000,000.00	759,500,000.00	2017	1,263,500,000.00
2324	Finding Dory	BV	486,300,000.00	542,300,000.00	2016	1,028,600,000.00
	title	studio	domestic_gross	foreign_gross	year	total_gross
3079	Avengers: Infinity War	BV	678,800,000.00	1,369,544,272.00	2018	2,048,344,272.00
1874	Furious 7	Uni.	353,000,000.00	1,162,334,379.00	2015	1,515,334,379.00
1872	Star Wars: The Force Awakens	BV	936,700,000.00	1,132,859,475.00	2015	2,069,559,475.00
1873	Jurassic World	Uni.	652,300,000.00	1,018,130,819.00	2015	1,670,430,819.00
2760	The Fate of the Furious	Uni.	226,000,000.00	1,009,996,733.00	2017	1,235,996,733.00
328	Harry Potter and the Deathly Hallows Part 2	WB	381,000,000.00	960,500,000.00	2011	1,341,500,000.00
1875	Avengers: Age of Ultron	BV	459,000,000.00	946,400,000.00	2015	1,405,400,000.00
727	Marvel's The Avengers	BV	623,400,000.00	895,500,000.00	2012	1,518,900,000.00
3081	Jurassic World: Fallen Kingdom	Uni.	417,700,000.00	891,800,000.00	2018	1,309,500,000.00
1127	Frozen	BV	400,700,000.00	875,700,000.00	2013	1,276,400,000.00
	title	studio	domestic_gross	foreign_gross	year	total_gross

	title	studio	domestic_gross	foreign_gross	year	total_gross
1872	Star Wars: The Force Awakens	BV	936,700,000.00	1,132,859,475.00	2015	2,069,559,475.00
3079	Avengers: Infinity War	BV	678,800,000.00	1,369,544,272.00	2018	2,048,344,272.00
1873	Jurassic World	Uni.	652,300,000.00	1,018,130,819.00	2015	1,670,430,819.00
727	Marvel's The Avengers	BV	623,400,000.00	895,500,000.00	2012	1,518,900,000.00
1874	Furious 7	Uni.	353,000,000.00	1,162,334,379.00	2015	1,515,334,379.00
1875	Avengers: Age of Ultron	BV	459,000,000.00	946,400,000.00	2015	1,405,400,000.00
3080	Black Panther	BV	700,100,000.00	646,900,000.00	2018	1,347,000,000.00
328	Harry Potter and the Deathly Hallows Part 2	WB	381,000,000.00	960,500,000.00	2011	1,341,500,000.00
2758	Star Wars: The Last Jedi	BV	620,200,000.00	712,400,000.00	2017	1,332,600,000.00
3081	Jurassic World: Fallen Kingdom	Uni.	417,700,000.00	891,800,000.00	2018	1,309,500,000.00

In this section we have cleaned, aggregated, and sorted the data so we can attempt to answer questions about the gross sales of different movies across the domestic and foreign markets.

▼ 3.3 Cleaning 'Title Basics'.

```
In [13]: 1 title_basics_df = pd.read_csv(title_basics)
2 prelim(title_basics_df)
```

•	ar	· I	runtin	me_	min	utes				gen	res
	13	}			17	5.00		Actio	on,Crin	ne,Dra	ma
	19)			11	4.00		В	iograp	hy,Dra	ma
	18	}			12	2.00				Dra	ma
	18	}				nan			Come	dy,Dra	ma
	17	,			8	0.00	Co	medy	,Drama	a,Fant	asy

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 146144 entries, 0 to 146143
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	tconst	146144 non-null	object
1	<pre>primary_title</pre>	146144 non-null	object
2	original_title	146123 non-null	object
3	start_year	146144 non-null	int64
4	runtime_minutes	114405 non-null	float64
5	genres	140736 non-null	object

dtypes: float64(1), int64(1), object(4)
memory usage: 6.7+ MB

None

tconst 0
primary_title 0
original_title 21
start_year 0
runtime_minutes 31739
genres 5408

dtype: int64

Out[13]: (None, None, None)

The title basics table appears to contain a data frame primarily of movies from 2010-2021, but also with some titles from *THE FUTURE*. Each row represents one movie, and contains columns with the following values:

'tconst', 'primary_title', 'original_title', 'start_year', 'runtime_minutes', 'genres'

There are no null entries in the tconst column, which is an object, as I would expect, and this column can be used as the index to *join this of with other offs that are similarly formatted*.

There are no null entries in the start_year column, which is an integer, as I would expect. *This column will require cleaning to deal with movies from the future.*

There are significant null entires in the runtime_minutes column, which may be of questionable use. *It may be worth exploring the relationship between movie length and box office success.*

There are 5408 null values in the genres column. This column will require more exploration as we will need it to help make decisions about what kind of movies Microsoft should be making.

I will first merge this DataFrame with the gross_df to focus our analysis on movies that we have complete gross sales data on. There are two potential columns in the title_basics_df that we can use to merge: 'primary_title' and 'original_title'. Below are two different dfs that show us which column has more overlap with the gross df.

3366

The 'primary_title' series has more overlap with gross_df. This is the merged df that we will use for the rest of our EDA in this section.

Exploring the 'genre' column:

```
In [15]:
              df pri['genres'].value counts()
Out[15]: Drama
                                       392
          Documentary
                                       168
          Comedy, Drama, Romance
                                       138
          Comedy, Drama
                                       137
          Drama, Romance
                                       115
          Biography, Comedy
                                         1
          History
                                         1
          Documentary, Drama, Music
                                         1
                                         1
          Comedy, Mystery, Sci-Fi
          Adventure, Drama, Sport
                                         1
          Name: genres, Length: 331, dtype: int64
```

```
In [16]:
          1
             # splitting the genres into lists in a new column
           2
           3
            df = df_pri.copy()
           4
             df['genres'] = df['genres'].str.split(',')
           5
             # 'exploding' the 'genres split' list to get multiple entries for each
           7
            df = df.explode('genres')
          8
          9
             # cleaning redundencies in genre
          10
          11
             df['genres'] = df['genres'].str.replace('Musical', 'Music')
          12
          13
            # sanity check
          14
             df['genres'].value_counts()
```

```
Out[16]: Drama
                         1876
         Comedy
                          965
         Action
                          664
         Romance
                          483
         Thriller
                          479
         Adventure
                          446
         Crime
                          390
         Documentary
                          334
         Biography
                          306
         Horror
                          261
         Mystery
                          221
         Fantasy
                          177
         Animation
                          157
         History
                          149
         Sci-Fi
                          139
         Family
                          129
         Music
                          117
         Sport
                           57
         War
                           53
         Western
                           22
         News
         Name: genres, dtype: int64
```

In this section we have cleaned, aggregated, and sorted the data so we can attempt to answer questions about the average gross sales of different genres.

3.4 Cleaning 'Movie Budgets'

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross
0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5782 entries, 0 to 5781
Data columns (total 6 columns):
```

#	Column	Non-Null Count	Dtype
0	id	5782 non-null	int64
1	release_date	5782 non-null	object
2	movie	5782 non-null	object
3	<pre>production_budget</pre>	5782 non-null	object
4	domestic_gross	5782 non-null	object
5	worldwide_gross	5782 non-null	object

dtypes: int64(1), object(5)
memory usage: 271.2+ KB

None

```
id 0
release_date 0
movie 0
production_budget 0
domestic_gross 0
worldwide_gross 0
dtype: int64
```

Out[17]: (None, None, None)

The budget_df contains data about the release date, movie title, production budget, and box office gross. Since we already have cleaned gross data, we will be merging only the production budget and movie name with our existing df.

Additionally we will have to clean and recast the production_budget column.

```
In [18]:
          1
             # merge dfs
           2
           3
             df = pd.merge(df, budget_df, left_on='primary title', right_on='movie')
           4
           5
             # clean, recast budget column as float
             df['production budget'] = df['production budget'].str.strip(
                  '$').str.replace(',','').astype(float)
           7
          8
          9
             # dropping irrelevent columns
             df = df.drop(['id', 'release_date', 'movie', 'domestic_gross_y',
          10
          11
                            'worldwide_gross', 'start_year', 'original_title',
          12
                           'primary_title', 'studio'], axis=1)
         13
         14
             # and sanity check
          15
             df.sort_values('production_budget', ascending=False).head()
```

Out[18]:

	tconst	runtime_minutes	genres	title	domestic_gross_x	foreign_gross	year	
928	tt1298650	136.00	Action	Pirates of the Caribbean: On Stranger Tides	241,100,000.00	804,600,000.00	2011	1,(
929	tt1298650	136.00	Adventure	Pirates of the Caribbean: On Stranger Tides	241,100,000.00	804,600,000.00	2011	1,(
930	tt1298650	136.00	Fantasy	Pirates of the Caribbean: On Stranger Tides	241,100,000.00	804,600,000.00	2011	1,(
2797	tt2395427	141.00	Sci-Fi	Avengers: Age of Ultron	459,000,000.00	946,400,000.00	2015	1,4
2796	tt2395427	141.00	Adventure	Avengers: Age of Ultron	459,000,000.00	946,400,000.00	2015	1,∠

In order to deepen our understanding of the profitability of movies I will engineer two new features to our DataFrame:

revenue, defined as total_gross - production_budget

ROI, expressed as a percentage, defined as (revenue / production_budget) * 100

This DataFrame is now in its final form that we will use to solve for our question and to create plots.

4 Q1 What are the Highest Grossing Genres from 2010-2018

Previously we cleaned and sorted our data to see which movies are the top grossing across both the domestic and foreign markets.

```
In [20]:
             # plotting bar charts for the top 10 movies, by gross
           1
             fig, (ax1, ax2, ax3) = plt.subplots(1,3, figsize=(20,10))
           2
           3
             sns.barplot(data=top_100_domestic.head(10), x='title',
           4
           5
                          y='domestic_gross', ax=ax1)
             sns.barplot(data=top_100_foreign.head(10), x='title',
           6
           7
                          y='foreign_gross', ax=ax2)
             sns.barplot(data=top_100_total.head(10), x='title',
           8
           9
                          y='total_gross', ax=ax3)
         10
             ax1.set title('Domestic')
          11
             ax1.set ylabel('hundred millions')
          12
          13
             ax1.set_xticklabels(ax1.get_xticklabels(),rotation=45, ha='right')
          14
          15
             ax2.set_title('Foreign')
             ax2.set ylabel('billions')
          16
          17
             ax2.set xticklabels(ax2.get xticklabels(),rotation=45, ha='right')
          18
          19
             ax3.set title('Total')
             ax3.set ylabel('billions')
          20
          21
             ax3.set xticklabels(ax3.get xticklabels(),rotation=45, ha='right')
          22
          23
             plt.tight layout()
          24
             plt.suptitle('Top 10 Movies by Domestic, Foreign, and Total Gross', y=1
          25
```

Out[20]: '

Top 10 Movies by Domestic, Foreign, and Total Gross

The selected data demonstrates that the top grossing movies between 2010-2018 are, overwhelmingly, part of a series. In fact, out of the top 10 by total sales only one movie, Black Panther, is not part of a series.

It is hard to make any recommendations based on this data. Both the Marvel and DC brands have strong existing relationships with particular studios, as do the Star Wars, Jurassic Park, Harry Potter, and Fast and Furious franchises. It is important to recognize the barriers to entry in creating a blockbuster movie that is part of a series.

Exploring how this data relates to genre will allow for more direct suggestions to be made.

```
In [21]:
             # calculating the mean value by genre, and ordering by sales for our pl
           1
             df sales = df.groupby('genres').mean()
           2
           3
             df_sales = df_sales.sort_values('total_gross', ascending=False)
             sales order = df sales.head(10).index
           4
           5
             # plotting top 10 genres by avg. sales
           6
           7
             fig, ax = plt.subplots(figsize=(15,8))
             sns.barplot(data=df.sort values('total gross', ascending=False),
           8
           9
                                              x= 'genres', y='total_gross', ci=68, ax
          10
                          order=sales order)
          11
             ax.set title('Top 10 Genres by Average Gross Sales', y=1.05)
             ax.set xlabel('Genres')
          12
             ax.set ylabel('Mean Gross, in 100m USD')
          13
             ax.set xticklabels(ax.get xticklabels(),rotation=45, ha='right');
          14
```

Top 10 Genres by Average Gross Sales

The key take away is that sci-fi, adventure, and animated films all perform exceptionally well at the box office. The second tier of genres are action, fantasy, and family movies. If Microsoft's emphasis is on gross sales these are the genres I recommend they focus on.

However, given the crowded nature of these genres (the dominance of top grossing movies by series, franchises, and existing studios), it is important to look at both revenue and ROI as supplementary measures of success.

▼ 5 Q2

▼ 5.1 What Genres Have the Highest Revenue

```
In [22]:
           1
             # calculating the mean value by genre, and ordering by revenue for our
           2
             df_revenue = df.groupby('genres').mean()
             df revenue = df revenue.sort_values('revenue', ascending=False)
           3
             revenue_order = df_revenue.head(10).index
           5
           6
             fig, ax = plt.subplots(figsize=(15,8))
           7
             sns.barplot(data=df.sort_values('revenue',ascending=False),
           8
                                              x= 'genres', y='revenue', ci=68, ax=ax,
           9
                        order=revenue order)
          10
             ax.set_title('Top 10 Genres by Revenue', y=1.05)
          11
             ax.set xlabel('Genres')
             ax.set_ylabel('Mean Gross, in 100m USD')
          12
             ax.set_xticklabels(ax.get_xticklabels(),rotation=45, ha='right');
```

3.0 - Gross, in 100m USD
2.0 - Gross, in 100m USD
3.0 - Gross, in 100m

Top 10 Genres by Revenue

Perhaps unsurprisingly, the plot of genres by revenue very closely mirrors the plot of genres by gross sales. *If Microsoft is interested in making movies that have high revenue, my recommendation would be to invest in making movies in the Animation, Sci-Fi, and Advenure genres*

Genres

0.0

Adventure

Action

5.2 Which Genres Have the Highest ROI

```
# calculating the mean value by genre, and ordering by ROI for our plot
In [23]:
           1
             df_ROI = df.groupby('genres').mean()
             df_ROI = df_ROI.sort_values('ROI', ascending=False)
             ROI order = df ROI.head(10).index
           5
           6
             fig, ax = plt.subplots(figsize=(15,8))
           7
             sns.barplot(data=df.sort_values('ROI', ascending=False),
                                              x= 'genres', y='ROI', ci=68, ax=ax,
           8
           9
                         order=ROI_order)
             ax.set title('Top 10 Genres by ROI', y=1.05)
          10
          11
             ax.set_xlabel('Genres')
             ax.set_ylabel('Mean Gross, in 100m USD')
          12
             ax.set xticklabels(ax.get_xticklabels(),rotation=45, ha='right');
          13
```

Top 10 Genres by ROI

When genres are sorted by their ROI, we see a completely different set of genres. Granted, **the exceptionally large standard deviation of the top 4 genres here suggest there are outliers that are disproportionately skewing these results** but it is interesting to note that that the top 4 genres do not even place in the top 5 by gross sales or revenue.

If Microsoft wanted to take a more conservative, risk averse approach to their movie studio, I would recommend making movies in the Mystery, Horror, Thriller, or Sport genre.

5.3 Q3 Does a Higher Budget Correlate with a Higher ROI

I will identify possible outliers in order to better identify which genres offer a higher ROI and a lower

production budget.

```
In [24]:
                df['ROI'].std()
Out[24]: 1392.6096666012793
In [25]:
                # eliminating outliers that fall outside of 2 standard deviations
             1
                df corrected = df.loc[df['ROI'] <= 2* df['ROI'].std()]</pre>
In [26]:
                df corrected.tail()
Out[26]:
                     tconst runtime minutes
                                                         title
                                            genres
                                                              domestic_gross_x foreign_gross
                                                                                                     to
                                                       Instant
            3718 tt7401588
                                    118.00
                                           Comedy
                                                                  67,400,000.00
                                                                               53,200,000.00
                                                                                            2018
                                                                                                  120,6
                                                       Family
                                                       Instant
            3719 tt7401588
                                    118.00
                                             Drama
                                                                  67,400,000.00
                                                                               53,200,000.00
                                                                                            2018
                                                                                                  120,6
                                                       Family
                                    127.00
                                                                  44,100,000.00
                                                                               35,300,000.00
            3720
                 tt7784604
                                             Drama
                                                    Hereditary
                                                                                            2018
                                                                                                   79,4
                 tt7784604
                                    127.00
                                                    Hereditary
                                                                  44,100,000.00
                                                                               35,300,000.00
                                                                                            2018
                                                                                                   79,4
            3721
                                             Horror
            3722 tt7784604
                                    127.00
                                                    Hereditary
                                                                  44,100,000.00
                                                                               35,300,000.00 2018
                                            Mystery
                                                                                                   79,4
In [27]:
             1
                # dropping irrelevant columns
                df corrected = df corrected.drop(['runtime minutes', 'domestic gross x'
             2
             3
                                                           'foreign_gross', 'year', 'total_gross
                                                          'revenue', 'tconst'], axis=1)
             4
                df_corrected = df_corrected.groupby('genres').corr(method='pearson')
In [28]:
             1
In [29]:
                df_corrected.loc[df_corrected['ROI'] < 0].sort_values('ROI')</pre>
Out[29]:
                                           production budget
                                                              ROI
                  genres
                                                        1.00
                                                            -0.31
                 Mystery
                         production budget
                                                        1.00 -0.23
                  Horror
                         production_budget
                                                        1.00 -0.15
                Romance
                         production budget
                                                        1.00 -0.15
                  Thriller
                         production budget
                                                        1.00 -0.09
                  Drama
                         production_budget
                 Fantasy
                         production budget
                                                        1.00 -0.09
                                                       1.00 -0.08
            Documentary
                         production budget
                                                        1.00 -0.08
                  Sci-Fi
                         production_budget
                Comedy
                         production_budget
                                                        1.00 -0.02
                                                        1.00 -0.00
                 History production budget
```

correlation between production budget and ROI are Mystery, Horror, and Thriller.

If Microsoft is interested in making movies in lower risk genres, where the production budget has a lower correlation with gross sales, these are excellent genres to explore.

6 Conclusions

6.1 Conclusions

In this project I have analyzed, cleaned, and interpreted data in order to make suggestions about what types of movies Microsoft should be making for the launch of their new movie studio.

The two primary metrics used to measure success in this project are 'total gross sales' (domestic box office gross + foreign box office gross) and return on investment ((total gross sales - production budget) / production budget).

Using these metrics I have determined that the genres of movie with the highest total gross sales are:

Sci-Fi

Adventure

Animation

However, during the investigation of top grossing films, it is clear that the majority of these movies are part of a series. Unless there is a home-run series that Microsoft already has in its back pocket, it is unreasonable to expect that a new series would immediately be a commercial success.

Upon examining the ROI plotted against production budget, it becomes clear that certain genres of movie have a higher ROI than others. These genres, having the most 'bang for the buck are:

Mystery

Horror

Thriller

These are the types of movies that I think it is most prudent for Microsoft to make.

6.2 Areas For Further Investigation

Given the number of blockbuster movies that are in the top 10 by total sales, it would be interesting to determine the box office success of stand-alone movies, and to also look at the performance of the first movie in a series. These insights could help inform Microsoft's decision to make movies in those genres.