Introduction to differential gene expression, multiple testing and FDR

Zohar Yakhini, Leon Anavy,
Ben Galili – Reichman.
Partially based on slides from Zohar Yakhini,
Doron Lipson, Itai Sharon and others,
at the Technion

Breast Cancer BRCA1/BRCA2 data

The concept of p-value

Under a given <u>NULL MODEL</u>, what is the probability of observing a value for a <u>MEASURED QUANTITY</u> which is as or more extreme than the one actually measured in data?

We tossed a coin 100 times and observed 27 Hs.

Under a <u>FAIR INDEPENDENT COIN TOSSING</u> MODEL, what is the probability of observing a NUMBER OF Hs which is less than 27 out of 100.

Tall people

 What is the probability that the person sitting next to you on the bus going back home is >1.90m tall?

$$P(X > 1.9) = 0.01$$

- What is the probability of SOME person in the bus being >1.90m tall?
- What is the probability that someone on the ¬IDC campus is >1.90m tall?

Multiple testing

WE FOUND NO

WE FOUND NO

WE FOUND NO

A living cell

Zohar Yakhini, Doron Lipson

Central Dogma, information flow in living cells

Cells express different subsets of the (organismal) genes in different tissues and under different conditions

Pfizer COVID-19 mRNA vaccine

BioNTech CoVid19 vaccine is a 4,284nt mRNA which mimics coding of the pathogen's spike protein. The entire virus is coded by ~30Knt RNA genome

Differentially expressed genes

Postmortem measurement of gene expression in brain cells, Bi-Polar (BP) vs Control (Ctl)

PCR measurement

From:

Kidnapillai et al,

The use of a gene expression signature and connectivity map to repurpose drugs for bipolar disorder, Ken Walder's Lab,

Biological Psychiatry 2018

AHNAK

p = 0.014

Zohar Yakhini

Differentially expressed genes

Expression levels of plasma exosomal miRNA measured in patients with ovarian cancer (n=30) and healthy women (n=30) using RT-qPCR.

Zhang et al, Oncology Letters 2019

*P<0.05 and **P<0.01.

Zohar Yakhini

Differentially expressed genes

- t-Test
- WRS
- Other methods...

PLP1

Gene Expression Data, Matrix Representation

E(i,j) represents the expression level of the gene indexed by iin the experiment/sample indexed by j.

Classified Gene Expression Data, Informative Genes

- Examples:
 - Tumor vs Normal
 - Subtypes of a pathology
 - Prognosis(responders vs non-responders)
 - etc
- Informative genes: genes that sharply separate the two classes.

They are DIFFERENTIALLY EXPRESSED

 How do we assign DE scores to genes?

Samples, coming from several classes genes Expression levels, "Raw Data"

Lung Cancer Informative Genes

Dehan et al, (Kaminski Lab at Sheba), Lung Cancer 2007

- 24 tumors (various types and origins)
- 10 normals (normal edges and normal lung pools)

Wilcoxon Rank Sum test

Compute the sum of the ranks of the +s:

• In this case:

$$RS(+) = 1+2+5+6+7+13 = 34$$

- The null model: all +/- configurations are equiprobable
- The mean value under the null model is E(RS(+)) = ?
- The p-value of the deviation can be computed using normal approximations

Wilcoxon example

$$RS(+) = ?, p-val = ?$$

$$RS(+) = ?$$
, p-val = ?

$$E(RS(+)) = ?$$

Threshold Error Rate (TNoM) Score

Find the threshold that best separates tumors from normals, count the number of errors committed there.

Ex 2: A perfect single gene classifier gets a score of 0.

Threshold Error Rate (TNoM) Score

Consider the ordered vectors of labels below:

$$v1 = 00001001110$$

$$v2 = 00100100110$$

Compute the TNoM score for these.

BRCA1
Differential
Expression

Collab with NIH; Hedenfalk et al, NEJM 2001

Spurious Correlations

Number of people who drowned by falling into a pool correlates with

Films Nicolas Cage appeared in

Correlation: 66.6% (r=0.666004)

Data sources: Centers for Disease Control & Prevention and Internet Movie Database

BRCA1 Differential Expression: Overabundance Analysis

 $TNoM(3) \sim Binomial(pval(3), 3000)$

 $P(TNoM(3) \ge 250) = ?$

Lung Cancer Informative Genes

Dehan et al, (Kaminski Lab at Sheba), Lung Cancer 2007

- 24 tumors (various types and origins)
- 10 normals (normal edges and normal lung pools)

Lung Cancer Overabundance Analysis

Tall people, Bonferroni

- What is the probability that the person sitting next to you on the bus this evening is >1.90m tall?
- What is the probability of SOME person in the bus being >1.90m tall?
- What is the probability that someone on the IDC campus is >1.90m tall?
- What is a possible naïve (and not very tight) correction? p/N

Bonferroni - cont

What is the probability of rejecting at least one TRUE hypothesis (each test is one hypothesis testing)? (FWER – Family-Wise Error Rate)

The probability if rejecting a specific TRUE hypothesis is at most p/N.

$$\text{FWER} = P\left\{ \bigcup_{i=1}^{N_0} \left(p_i \le \frac{\alpha}{N} \right) \right\} \le \sum_{i=1}^{N_0} \left\{ P\left(p_i \le \frac{\alpha}{N} \right) \right\} = N_0 \frac{\alpha}{N} \le \alpha$$

Bonferroni - cont

Assuming that we profiled 20K genes.

Is a DE p-value of $5 \cdot 10^{-6}$ significant (at 0.05)?

How many genes with a p-value at most $5 \cdot 10^{-6}$ are we expecting to see?

How are p-values distributed under the null model???

• Single Experiment:

- 1. Toss a fair coin 100 times
- 2. Compute $\hat{\theta} = \frac{\#1}{100}$
- 3. Compute the (one sided **left**) p-value of $\hat{\theta}$ under the fair coin null model $P(X \le #1)$ $X \sim Binom(0.5,100)$
- Repeat 5000 times:

$$(\hat{\theta}(1), p(1)), (\hat{\theta}(2), p(2)), \dots, (\hat{\theta}(5000), p(5000))$$

 $p(1) \le p(2) \le \dots p(5000)$

- Generating data using a coin with p = 0.3
- under a null model of p = 0.3

$$P(X \le #1)$$

- Generating data using a coin with p = 0.3
- under a null model of p = 0.32

$$P(X \le #1)$$

- Generating data using a coin with p = 0.3
- under a null model of p = 0.4

False Discovery Rate (FDR)

What fraction of the observed DE is expected at random (under a null-model)?

Observed: # of tests for which p-val $\leq p$

More events

What if two colors were linked at 0.05? Three?

More events

FDR(0.05) = ?

TURQUOISE JELLY

BEANS AND ACNE

(P>0.05).

WE FOUND NO

WOAHH

WE FOUND NO

FDR at any i

$$FDR(p) = \frac{pN}{O(p)}$$

$$FDR(i) = \frac{p(i)N}{i}$$

More events

$$FDR(2) = ?$$

WE FOUND NO

LINK BETWEEN

BROWN JELLY

(P>0.05).

P<0.05

BEANS AND ACNE

RED JELLY

WOAHH

BEANS AND ACNE

- Generating data using a coin with p = 0.3
- under a null model of p = 0.3

FDR

- Generating data using a coin with p = 0.3
- under a null model of p = 0.4

$$FDR(i) = p(i) \cdot N / i$$

Zohar Yakhini

A more subtle correction

RobFDR(i) =
$$\min_{j \ge i} \left(\frac{p(j) \cdot N}{j} \right)$$

WRS FDR: A \sim N(0,1) and B \sim N(0,1), n= 20,20

WRS FDR: A \sim N(0,1) and B \sim N(0.25,1), n= 20,20

WRS FDR: A \sim N(0,1) and B \sim N(?,1), n= 20,20

WRS FDR: A \sim N(0,1) and B \sim N(1,1), n= 20,20

Zohar Yakhini

FDR – the procedure

Yoav Benjamini and Yosef Hochberg 1995

Replace by the robust version

- Assume that we performed N measurements (comparisons, observations etc)
- Rank the computed significance of the findings: $p(1) \le p(2) \le p(3) \le p(4) \le \le p(N-1) \le p(N)$
- Under the null model, the expected number of observations with p-value better than p(i) is $p(i)\cdot N$
- The false discovery rate at i is therefore:

RobFDR(i) =
$$\min_{j \ge i} \left(\frac{p(j) \cdot N}{j} \right)$$

• A corrected hypothesis testing in this case would be to find the max i that satisfies FDR(i) $\leq \tau$, where τ (e.g 0.05) is the required false discovery rate.

In the context of DGE ...

We observed (say) 200 genes at FDR=0.05, using a WRS test

Multiple testing and FDR

- Greater data volumes require more careful inferential statistics approaches.
- Approaches to addressing multiple testing:
 - Bonferroni correction
 - Report FDR results
 - Simulations under a null

