Tesi di Laurea TRE PROBLEMI IMPOSSIBILI

Sebastiano Ferraris

Università degli studi di Torino Facoltà di Scienze Matematiche Fisiche Naturali Corso di laurea in Matematica

Capitolo 1 COSTRUZIONI CON RIGA E COMPASSO

Costruzioni Euclidee: definizione

Definizione

Dato un piano e una distanza fissata U, una **costruzione euclidea** è una successione $(K_0, K_1, ..., K_n)$ i cui elementi possono essere punti, rette, o circonferenze nel piano, in modo che:

- **1** K_0 è un punto iniziale e K_1 , un punto a distanza U da K_0 .
- ② Se K_i per $2 \le i \le n$ è una retta, allora deve passare per due punti K_r K_s con r, s < i.
- **③** Se K_i per $2 \le i \le n$ è una circonferenza, allora ha centro un punto K_c e raggio il segmento K_rK_s , con c, r, s < i.
- **3** Se K_i per $2 \le i \le n$ è un punto, allora può essere o punto a distanza fissata U da un altro punto K_a , oppure può essere un'intersezione fra due circonferenze K_b , K_c , fra due rette K_d , K_e , o fra una retta ed una circonferenza K_f , K_g , con a, b, c, d, e, f, g < i.

Costruzioni Euclidee: osservazione sulla notazione

Osservazione

Si propone la seguente notazione per i diversi K_i della successione:

- Se K_i è uno dei due punti iniziali, allora si ha rispettivamente $K_0 := P_0$ e $K_1 := P_1$.
- Se K_i è una retta fra due punti P_r e P_s , allora $K_i := R_i(P_r, P_s)$;
- Se K_i è una circonferenza di centro P_c e di raggio il segmento avente per estremi i punti P_r e P_s , allora $K_i := C_i(P_c; \overline{P_r P_s})$;
- Se K_i è un punto di intersezione fra due circonferenze C_a , C_b , oppure di due rette R_a , R_b , oppure di una retta R_a e una circonferenza C_b , allora si ha rispettivamente $K_i := P_i(C_a, C_b)$, $K_i := P_i(R_a, R_b)$ oppure $K_i := P_i(R_a, C_b)$.

Costruzioni Euclidee: esempi fondamentali

Con il sistema appena definito è sempre possibile

- Costruire la retta perpendicolare ad una retta data.
- Costruire un sistema di assi cartesiani con ripartizioni di segmenti di lunghezza U.
- Costruire la bisettrice di un quadrante.
- Trovare il punto medio di un segmento.
- Costruire la retta parallela ad una retta data per un punto dato.

Costruzioni Euclidee: costruzione della retta parallela I

A titolo di esempio, si propone la costruzione della retta parallela ad una retta data per un punto dato:

Figura: Rette parallele

Costruzioni Euclidee: costruzione della retta parallela II

... Avvalendosi della notazione introdotta, al diagramma precedente corrisponde la successione:

$$\begin{split} S_{p} &= (P_{0}, P_{1}, R_{2}(P_{0}, P_{1}), P_{3}, C_{4}(P_{3}; \overline{P_{3}P_{0}}), P_{5}(R_{2}, C_{4}), C_{6}(P_{0}; \overline{P_{0}P_{3}}), \\ &C_{7}(P_{5}; \overline{P_{5}P_{3}}), P_{8}(C_{6}, C_{7}), R_{9}(P_{3}, P_{8}), P_{10}(R_{2}, R_{9}), \\ &C_{11}(P_{3}; \overline{P_{3}P_{10}}), P_{12}(R_{9}, C_{11}), C_{13}(P_{10}; \overline{P_{10}P_{12}}), \\ &C_{14}(P_{12}; \overline{P_{10}P_{12}}), P_{15}(C_{13}, C_{14}), R_{16}(P_{3}, P_{15})) \end{split}$$

Costruzioni Euclidee: manipolazione di due segmenti

Inoltre, dati due segmenti di lunghezza α e β , è sempre possibile

- Costruire il segmento di lunghezza $\alpha + \beta$ e $\alpha \beta$.
- Costruire il segmento di lunghezza $\alpha \cdot \beta$ e α/β .
- Costruire il segmento di lunghezza α^{-1}
- Costruire il segmento di lunghezza $\sqrt{\alpha}$.

Capitolo 2 NUMERI EUCLIDEI

Numeri euclidei: definizioni

Definizione

Un punto Q di $\mathbb{R} \times \mathbb{R}$ che compare in una costruzioni euclidee nel piano reale, è detto punto euclideo o costruibile. L'insieme di tutti i punti euclidei sarà indicato con E.

Definizione

 $\gamma \in \mathbb{R}$ è detto **numero reale euclideo** se esiste una costruzione euclidea nel piano reale nella quale compare un segmento di lunghezza $|\gamma|$.

Definizione

 $a+ib\in\mathbb{C}$ è detto numero complesso euclideo se il corrispondente punto $(a,b)\in\mathbb{R}\times\mathbb{R}$ appartiene ad una costruzione euclidea nel piano reale.

Numeri euclidei: caratterizzazione algebrica di E

Proprietà

Dato E, insieme dei punti euclidei del piano reale, si ha che

- i) $\mathbb{Z} \subset E$
- ii) $\mathbb{Q} \subset E$
- iii) E è un campo.

Osservazione

Dalla possibilità di costruire $\sqrt{\alpha}$ per α segmento già costruito, segue che se un numero z è euclideo allora lo è anche la sua radice quadrata.

$$\forall z \in E \Rightarrow \sqrt{z} \in E$$

Numeri euclidei: conseguenze

Teorema (fondamentale)

Un numero complesso α è euclideo se e solo se esiste una successione di campi

$$\mathbb{Q} = \mathbb{E}_0 \subseteq \mathbb{E}_1 \subseteq ... \subseteq \mathbb{E}_{n+1}$$

tale che $\alpha \in \mathbb{E}_{n+1}$ ed $[\mathbb{E}_{j+1} : \mathbb{E}_j] \leq 2$ per j = 0, 1, ..., n

Corollario

Se $\alpha \in \mathbb{C}$ è euclideo, allora α è algebrico di grado 2^k per un opportuno naturale k.

Corollario

Se un numero reale β è radice di un polinomio irriducibile di grado n che non è una potenza di 2, allora β non è un numero euclideo.

Capitolo 3 ESTENSIONI CICLOTOMICHE

Estensioni ciclotomiche: introduzione

Per quali $n \in \mathbb{N}$ è possibile costruire il poligono regolare di n lati con riga e compasso?

Osservazione

Il problema è equivalente a quello di costruire le soluzioni di $x^n-1=0$. Infatti tale equazione polinomiale ha esattamente n soluzioni distinte nel piano di Gauss:

$$\delta_n^k := e^{\frac{2k\pi i}{n}} = \cos(\frac{2k\pi i}{n}) + i\sin(\frac{2k\pi i}{n}) \quad k = 0\dots n-1$$

Per tutti gli n tali che il numero complesso δ_n^1 è euclideo.

Estensioni ciclotomiche: definizioni

Definizione

Una radice n-esima dell'unità δ_n^k si dice **primitiva**, se $(\delta_n^k)^n = 1$.

Ci sono esattamente $\phi(n)$ radici n-esime primitive dell'unità.

Definizione

Il campo di spezzamento del polinomio x^n-1 su $\mathbb Q$ è detto estensione ciclotomica.

Dato che ci sono esattamente $\phi(n)$ radici n-esime primitive dell'unità, l'estensione ciclotomica ha grado $\phi(n)$:

$$[\mathbb{Q}(\delta_n^1):\mathbb{Q}] = \phi(n)$$

Estensioni ciclotomiche: teoremi

Teorema

Un poligono regolare di n lati è costruibile se e solo se esiste un intero positivo h tale che $\phi(n) = 2^h$.

Teorema

Un poligono di n lati è costruibile se e solo se i primi dispari che compaiono nella fattorizzazione hanno tutti esponente 1 e sono primi del tipo $2^{2^n}+1$. Cioè la fattorizzazione di n è del tipo

$$n=2^kp_1p_2\ldots p_s$$

con p_1, p_2, \ldots, p_s numeri distinti del tipo $2^{2^n} + 1$.

I numeri del tipo $F_n = 2^{2^n} + 1$, che in questo contesto assumono un'importanza particolare, sono detti **numeri di Fermat**.

Estensioni ciclotomiche: tabella

Numero di lati	Fattorizzazione	Costruibilità
3	2+1	sì
4	2^{2}	sì
5	$2^2 + 1$	sì
6	2 · 3	sì
7		no
8	2^{3}	sì
9	3 · 3	no
10	$2 \cdot 5$	sì
11		no
12	$2^2 \cdot 3$	sì
13		no
14	$2 \cdot 7$	no
15	3 · 5	sì
16	2^{4}	sì
17	$2^4 + 1$	sì

Estensioni ciclotomiche: costruzione del decagono

Figura: Costruzione del decagono

Estensioni ciclotomiche: costruzione dell'eptadecagono

Figura: Costruzione dell'eptadecagono

Capitolo 4 TRE PROBLEMI IMPOSSIBILI

Tre problemi impossibili: duplicazione del cubo

Dato un cubo di lato 1, per costruirne uno di volume doppio di lato L, si deve tracciare un segmento che soddisfi la seguente equazione

$$L^3 = 2 \Rightarrow L = \sqrt[3]{2}$$

Questo implica che L soddisfa il polinomio x^3-2 irriducibile su \mathbb{Q} . Ma il grado dell'estensione $\mathbb{Q}(\sqrt[3]{2})$ è 3, quindi il lato L non è costruibile.

Tre problemi impossibili: trisezione dell'angolo

Sia $\alpha=3\theta=\pi/3$; costruire l'angolo di $\theta=\pi/9$ equivale a costruire $cos(\pi/9)$. Dalle note relazioni trigonometriche si ottiene

$$\cos(3\theta) = 4\cos^3(\theta) - 3\cos(\theta)$$

Da cui per $3\theta = \pi/3$, si ha che

$$1/2 = 4\cos^3(\pi/9) - 3\cos(\pi/9)$$

Quindi $cos(\pi/9)$ soddisfa l'equazione polinomiale

$$8x^3 - 6x - 1 = 0$$

irriducibile su \mathbb{Q} , di grado 3. Quindi $cos(\pi/9)$ non è costruibile.

Tre problemi impossibili: trascendenza di π

Carl Louis Ferdinand von Lindemann (Hannover, 1852 - Gottinga, 1939) nel 1882 scoprì la trascendenza di π .

Inizialmente dimostrò che se x_1, x_2, \ldots, x_n sono numeri algebrici distinti, reali o complessi e se p_1, p_2, \ldots, p_n sono numeri algebrici non tutti nulli, allora la somma

$$p_1e^{x_1} + p_2e^{x_2} + \cdots + p_ne^{x_n}$$

è sempre diversa da zero. Per n=2, $p_1=p_2=1$ e $x_2=0$ si ha

$$e^{x_1}+1\neq 0$$

per ogni x_1 algebrico. Ma per la formula di Eulero $e^{i\pi}+1=0$ si ha che $i\pi$ deve essere trascendente, e dato che i è algebrico, si ha che π è trascendente.

Tre problemi impossibili: quadratura del cerchio e rettificazione della circonferenza

- Risolvere il problema della quadratura del cerchio equivale a costruire un quadrato di area uguale a quella di un cerchio assegnato di area 1. Si deve quindi costruire un segmento di lunghezza $\sqrt{\pi}$ ma tale numero non appartiene a nessun ampliamento di $\mathbb Q$ avente grado una potenza di due.
- Risolvere il problema della rettificazione della circonferenza equivale a costruire un segmento di lunghezza uguale alla lunghezza di una circonferenza di raggio unitario. Si deve quindi costruire un segmento di lunghezza 2π . Ma come nel caso precedente 2π non è costruibile in virtù della trascendenza di π .

Bibliografia essenziale

- Michael Artin, Algebra, Prentice Hall of India, New Delhi 2007
- Morris Kline Storia del pensiero matematico, dal settecento ad oggi, volume secondo, Einaudi editore 1991.
- Thomas Koshy, *Elementary Number Theory with applications*, Accademic Press, Elzevier, 2007.
- Mario Livio, L'equazione impossibile, ed. BUR 2007.
- Giulia Maria Piacentini Cattaneo, *Algebra, un approccio algoritmico*, Zanichelli 2007, prima ed. 1996.
- Claudio Procesi, Elementi di teoria di Galois, Zanichelli 2008.
- Margherita Roggero, Appunti ed esercizi di Matematica Discreta, Quaderni didattici dell'Università di Torino, 2005.
- lan Stewart, *Galois Theory*, Chapman and Hall 1973, prima ed. 2006.