CURSO DE AMBIENTACIÓN INGRESO 2016 FACULTAD DE INGENIERÍA ÁREA MATEMÁTICA

Trabajo práctico nº 3:

FUNCIONES REALES

- Reconocer analítica y gráficamente distintas funciones reales.
- Representar gráficamente funciones polinómicas
- Determinar en forma gráfica dominio, imagen y raíces de las mismas.
- Resolver problemas de aplicación.

Parte A

- Funciones reales: Dominio- Conjunto imagen- Raíces
- Funciones polinómicas
- 1- Interpretación de gráficos:

1-1 El gasoil que hay en un depósito de un autobús viene representado por la siguiente gráfica:

- a) Cuántos litros tenía el depósito al salir
- b) Cuántos litros tenía a su llegada
- c) Cuántos litros consumió durante el viaje
- d) Qué ocurrió en el km. 250
- e) Cuándo puso el conductor por primera vez gasoil
- f) Corresponde el gráfico a una función

1-2 El nivel de ruido de un aeropuerto se ve bruscamente modificado cuando aterriza o despega un avión. A lo largo del día se va midiendo dicho nivel (que está tabulado según frecuencia y decibeles) los registros se muestran en el siguiente gráfico.

- a) Cuál es el dominio y conjunto imagen de la función.
- b) En qué intervalos la función es creciente
- c) En qué intervalos la función es decreciente
- d) Qué ocurre a las 10 hs.
- e) Qué ocurre a las 8 hs y 14 hs.
- 1-3 En un laboratorio comenzaron a las 0 horas a medir la temperatura de una sustancia. La medición se hizo durante el resto del día y se obtuvo un gráfico que relaciona la temperatura con el tiempo.
- a) En que horario se registraron temperaturas sobre cero.
- b) En que horario se registraron temperaturas bajo cero.
- c) Cuál fue la temperatura al inicio de la medición.
- d) Durante qué horas se midió un descenso de temperatura

UNIVERSIDAD DE MENDOZA

e) Cuál es la máxima temperatura registrada. A qué hora se hizo la medición

CURSO DE AMBIENTACIÓN INGRESO 2015 FACULTAD DE INGENIERÍA ÁREA MATEMÁTICA

2- Dadas las siguientes funciones cuadráticas:

i.
$$f(x) = -x^2 - 3x + 4$$

ii.
$$f(x) = -2 x^2 + 18$$

iii.
$$f(x) = 3 x^2 + \frac{9}{2} x - 3$$

- a) Encontrar el vértice
- b) Hallar las raíces
- c) Graficar teniendo en cuenta el vértice y las raíces (si es posible) d) Factorizar
- e) Expresar en forma factorizada y canónica

3- Hallar la fórmula de definición de las siguientes funciones cuadráticas utilizando los datos dados:

a) Raíces:
$$2y - 3$$
, $f(0) = 2$

b) Vértice
$$(1, 2)$$
 y $f(0) = -1$

c) Raíces: - 2 y 4 y ordenada del vértice y
$$v = 1$$

4- Relacionar la función polinómica dada con una de las siguientes gráficas :

$$f(x) = -x^3 + 2x^2 g(x)$$
= $x^3 - 4x h(x) = -x^5$
+ $5x^3 - 4x$

$$t(x) = -x^4 + 4x^2$$

5- Dadas las siguientes funciones polinómicas de grado mayor a dos :

i.
$$f(x) = x^3 + 2x^2 - 3x$$

ii.
$$f(x) = x^4 - 4x^3 + 4x^2$$

iii.
$$f(x) = -x^5 + 3x^3$$

- a) Hallar las raíces y conjuntos de positividad y negatividad
- b) Graficar aproximadamente teniendo en cuenta las raíces y su multiplicidad algebraica

6- Problemas de aplicación:

I- Suponga que un fabricante puede comprar un componente a un proveedor a un precio de \$8 por unidad, o bien puede invertir \$ 40.000 en equipos y producir ese componente a un costo de \$ 3 por unidad. Determine la cantidad de unidades para las que los costos totales son iguales en la alternativa de fabricar o comprar. Cuál es la alternativa de costo mínimo si se requieren 15.000 unidades. ¿Cuál es el costo?

- II- Una estación de servicio describe el beneficio semanal, de acuerdo a las litros de nafta sin plomo que vendió según la siguiente fórmula: $\mathbf{B}(\mathbf{x}) = -\mathbf{x}^2 + \mathbf{46x} \mathbf{205}$. El beneficio se expresa en pesos y x en miles de litros. Interesa conocer:
 - a) Cuánto dinero pierde si no vende esa clase de nafta a la semana.
 - b) Cuántos litros se deberían vender para que la actividad sea rentable.
 - c) Cuántos litros se deben vender para que el beneficio sea máximo
- III- Un agricultor dispone de 400 metros de cerca y desea rodear un área rectangular con ella.
 - a) Exprese al área A del rectángulo como una función de su anchura
 - b) ¿Cuál es el dominio de A?
 - c) Realice la gráfica del área "A" en función de la anchura "x": A(x)
 - d) ¿Para qué valor de x es mayor el área? ¿Cuál es el área mayor?
 - 2) Un estudio de productividad en el turno matinal de una cierta fábrica, indica que un trabajador medio que llega al trabajo a las 8:00 hs. habrá ensamblado:
 - $f(x) = -x^3 + 6x^2 + 15x$ equipos de audio x horas después.
 - a) ¿Cuál es el dominio de la función en el contexto del problema?
 - b) ¿Cuántos equipos habrá ensamblado tal trabajador medio a las 10:00 hs.?
 - c) ¿Cuántos equipos de audio habrá ensamblado entre las 9:00 y las 11:00 hs.?