Funció característica d'una variable aleatòria unidimensional

Sigui X una v.a. real. Anomenam **funció característica** de X a una aplicació dels nombres reals en els complexos definida com:

$$\begin{array}{cccc} \Phi_X & : & \mathbb{R} & \longrightarrow & \mathbb{C} \\ & \omega & \longrightarrow & \Phi_X(\omega) = E(e^{j\omega X}) \end{array}$$

Si descomposam l'exponencial amb la fòrmula d'Euler obtenim:

$$\Phi_X(\omega) = E(e^{j\omega X}) = E(\cos(\omega X) + j\sin(\omega X)) = E(\cos(\omega X)) + jE(\sin(\omega X))$$

Propietats.

• Cas discret, amb $X(\Omega) = \{x_1, x_2, \dots\}$:

$$\Phi_X(\omega) = E(e^{j\omega X}) = \sum_{x_i} e^{j\omega x_i} f_X(x_i)$$

on f_X és la funció de probabilitat de X.

Si $X(\Omega) = \mathbb{Z}$ llavors

$$\Phi_X(\omega) = \sum_{k=-\infty}^{+\infty} e^{j\omega k} f_X(k)$$

i, a més, $\Phi_X(\omega)$ és periòdica de període 2π : $\Phi_X(\omega) = \Phi_X(\omega + 2\pi)$.

• Cas continu:

$$\Phi_X(\omega) = E(e^{j\omega X}) = \int_{-\infty}^{+\infty} f_X(x)e^{j\omega X}dx$$

on f_X és la funció de densitat de X. Aquesta integral és la **transformada inversa de Fourier** de f_X .

Exemples.

Exemple 1. Calcular la funció característica d'una v.a. $X \sim \text{Ge}(p)$ amb $X(\Omega) = \{0, 1, 2, \dots\}$.

$$\Phi_X(\omega) = \sum_{k=0}^{\infty} pq^k e^{j\omega k} = p \sum_{k=0}^{\infty} (qe^{j\omega})^k = p \frac{1}{1 - qe^{j\omega}}$$

Exemple 2. Calcular la funció característica d'una v.a. $X \sim \text{Exp}(\lambda)$.

$$\Phi_X(\omega) = \int_0^\infty \lambda e^{-\lambda x} e^{j\omega x} = \lambda \int_0^\infty e^{(j\omega - \lambda)x} dx = \frac{\lambda}{j\omega - \lambda} \left[e^{(j\omega - \lambda)x} \right]_0^\infty = \frac{\lambda}{j\omega - \lambda} (0 - 1) = \frac{\lambda}{\lambda - j\omega}$$

El següent teorema ens diu que les funcions de probabilitat i de distribució es poden calcular a partir de la funció característica.

Teorema. La funció característica d'una v.a. determina de manera única la seva funció de distribució. Dues v.a. amb la mateixa funció característica tenen la mateixa distribució.

• si X és v.a. discreta amb $X(\Omega) = \mathbb{Z}$:

$$f_X(k) = \frac{1}{2\pi} \int_0^{2\pi} \Phi_X(\omega) e^{-j\omega k} d\omega \qquad \omega \in \mathbb{Z}$$

Nota. Els valors de f_X coincideixen amb els coeficients de la sèrie de Fourier de la funció periòdica $\Phi_X(\omega)$.

1

ullet si X és v.a. contínua:

$$f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_X(\omega) e^{-j\omega x} d\omega$$

Aquesta és l'expressió de la transformada de Fourier de $\Phi_X(\omega)$.

Exemple. Sigui $X \sim \mathcal{U}(0,1)$ i $Y = -\ln X$. Calcular la funció característica de Y.

$$\Phi_Y(\omega) = E(e^{j\omega Y}) = \int_0^1 e^{-j\omega \ln x} \cdot 1 \cdot dx = \int_0^1 (e^{\ln x})^{-j\omega} dx = \int_0^1 x^{-j\omega} dx = \frac{x^{-j\omega+1}}{-j\omega+1} \bigg|_0^1 = \frac{1}{1-j\omega}$$

Aquesta funció característica és igual a la d'una v.a. exponencial amb paràmetre $\lambda = 1$ (veure l'exemple 2 de la secció anterior), per tant, pel teorema anterior podem afirmar que $Y = -\ln X = \text{Exp}(1)$.

Taula de funcions característiques habituals

Variable aleatòria	Funció característica
$X \sim \mathrm{N}(\mu, \sigma^2)$	$\Phi_X(\omega) = e^{j\mu\omega - \sigma^2\omega^2/2}$
$X \sim \operatorname{Exp}(\lambda)$	$\Phi_X(\omega) = \frac{\lambda}{\lambda - j\omega}$
$X \sim \mathcal{U}(a,b)$	$\Phi_X(\omega) = \frac{e^{j\omega b} - e^{j\omega a}}{\mathrm{J}\omega(b-a)}$

Funció generadora de probabilitat d'una variable aleatòria unidimensional

Sigui X una v.a. **discreta** que pren valors no negatius. Anomenam **funció generadora de probabilitat** de X a l'aplicació següent:

$$G_X(z) = E(z^X) = \sum_{k=0}^{\infty} z^k P(X = k)$$

Teorema. La funció generadora de probabilitat d'una v.a. determina de manera única la seva funció de distribució. Dues v.a. amb la mateixa funció generadora de probabilitat tenen la mateixa distribució.

Taula de funcions generadores de probabilitat habituals

Variable aleatòria	Funció generadora de probabilitat
$X \sim \mathrm{B}(n,p)$	$G_X(z) = ((1-p) + pz)^n$
$X \sim \text{Po}(\lambda)$	$G_X(z) = e^{\lambda(z-1)}$
$X \sim \operatorname{Ge}(p)$ $X(\Omega) = \{1, 2, \dots\}$ $X(\Omega) = \{0, 1, \dots\}$	$G_X(z) = \frac{pz}{1 - (1-p)z}$ $G_X(z) = \frac{p}{1 - (1-p)z}$