HW₃

Mingxi Chen 999019482

Nr.1

State encoding:

FSM for X:

 s_i : state in which A has been 1 for i cycles, if the next states make X=1 (4 $\,$ 1 in total occurs, reset to s0) (Y =0 if not be shown on the arc)

	s0	s1	s2	s3
S0	0	0	0	0
S1	0	0	1	1
S2	0	1	0	1

FSM for Y:

 s_i : state in which A has been 1 consectively for i cycles. (3 $\,$ 1 consectively occurs, reset to s0)

	s0	s1	s2
S0	0	0	0
S1	0	0	1
S2	0	1	0

State transition diagram:

X, Y=0 if it's omitted on the arc.

State transiion table:

FSM for X:

X	S[0:1]	А	s`	S`[0:1]
0	00	0	s0 s1	00 01
0	01	0	s1	01
0	10	0	s2 s2	10
0		1	s3	11
0	11	0	s3 s0	11 00

$$S_0' = S_0 S_1 A + S_0 S_1 + S_0 S_1 A$$

$$\begin{split} S_0' &= \bar{S}_0 S_1 A + S_0 \bar{S}_1 + S_0 S_1 \bar{A} \\ S_1' &= \overline{S_0 S_1} A + \bar{S}_0 S_1 \bar{A} + S_0 \bar{S}_1 A + S_0 S_1 \bar{A} \end{split}$$

FSM for Y:

Υ	S[0:1]	А	s`	S`[0:1]
0	00	0	s0	00
0		1	s1	01
0	01	0	s0	00
0		1	s2	10
1	10	0	s0	00
0		1	s0	00

 $S_0' = \bar{S}_0 S_1 A \ S_1' = \overline{S}_0 S_1 A \ Y = S_0 \bar{S}_1 \bar{A}$

schematic

Nr.2

States encoding:

 s_0 : pattern $\,$ occurs

 s_1 : pattern $\, {\it o}_{\it 1} \,$ occurs

 s_2 : pattern 010 occurs

 s_3 : pattern 0100 or 0111 occurs

 s_4 : pattern 011 occurs

 s_5 : pattern 1 occurs

A: input

X: output

We consider the FST for pattern recognition task is cylic(for asylic situation just ending in the s_3).

	s0	s1	s2	s3	s4	s5
SO SO	0	0	0	0	1	1
S1	0	0	1	1	0	0
S2	0	1	0	1	0	1

States transition diagram:

Initial state can be s_0 or s_5

Only output 1 when s_3 is reached, then reset.(for acyclic siutation, end here)

States transition table:

Х	S	S[2:0]	S`[2:0]	s`	А
0	s0	000	001	s 1	0
0			000	s0	1
0	s1	001	010	s2	0
0			100	s4	1
1	s2	010	011	s3	0
0			001	s 1	1
0	s3	011	000	s0	0
0			101	s5	1
0	s4	100	000	s0	0
1			011	s3	1
0	s5	101	000	s0	0
0			101	s5	1

Next state:

$$S_0 = \overline{S_0 S_1 S_2} A + \bar{S}_0 S_1 \bar{S}_2 + S_0 S_1 \bar{S}_2 A + \bar{S}_1 S_2 A$$

$$S_1 = S_0 \overline{S_1 S_2 A} + \bar{S}_0 S_1 \bar{S}_2 \bar{A}$$

$$S_2 = S_0 \overline{S_1 S_2} A + S_0 S_1 \overline{S}_2 A + S_0 \overline{S}_1 S_2 A$$

Output:

$$X = \bar{S}_0 \bar{S}_1 \bar{S}_2 A + \bar{S}_0 \bar{S}_1 S_2 A$$

Nr.3

This is usually considered as a mealy machine, in which the output depend both on inputs and current states. But taking input as part of states makes it a moore machine.

States encoding:

 $s_0: A_{n-1} = 0$

 $s_1:\mathcal{A}_{n-1}=1$

 $s_0: S=0, s_1: S=1$

States transition diagram:

Notice that A_{n-1} is equvalent to S

Ouput $Z=Sar{B}+SAB$, which is not shown in graph because it's just $combinatoric_func(S,A,B)$

States transition table:

S	Bn	An(S`)	Zn
0	0	0	0
0	1	0	0
1	0	0	0
<u>'</u>		1	1
1	1	0	0 1

Next states and output:

$$S' = A_n$$

$$Z_n = A_{n-1}\bar{B}_n + A_{n-1}A_nB_n$$

Schematic:

Nr.4

Prove that any Moore machine can be transformed into an equivalent Mealy machine:

For Moore machine, $\exists f: s_i \to Y$, we can easily associate a boolean function and input x such that $bool(s_i, x) = f(s_i)$, the new relation of output with x and s_i implies it's a mealy machine now.

Prove that any Mealy machine can be transformed into an equivalent Moore machine:

We again use a construction to prove any mealy machine can be transformed.

 $orall s_i, x_i, f(x_i, s_i)$ where x_i is input ,f()is output, we define new states:

$$\begin{split} s_i' &= s_i x_i \;, s_i'' = s_i \bar{x}_i. \\ \text{Let } f'(s_i') &= f(s_i, x_i), f''(s_i') = f(s_i, \bar{x}_i) \end{split}$$

Now we get a moore machine with the same evaluation of the mealy machine.

Program explaination:

see the main.py which implement the functionality specified in the assignment.

Notice:

The count of minterms in s_i is count of 1 in it. Because the min-terms are those $bool_{s_k}$ such that $S_0(i,j)=1$

Usage:

python main.py

Test:

python main.py

The input matrix is:

- [2, 3, 1, 0] [1, 3, 2, 1]
- [2, 3, 3, 1]
- [3, 3, 3, 3]

The s0 matrix is:

- [0, 1, 1, 0]
- [1, 1, 0, 1]
- [0, 1, 1, 1]
- [1, 1, 1, 1]

The count of min-terms in s0 is 12

The s1 matrix is:

- [1, 1, 0, 0]
- [0, 1, 1, 0]
- [1, 1, 1, 0]
- [1, 1, 1, 1]

The count of min-terms in s1 is 11