Min-Cuts Algorithms

Hu SiXing, Hakki Can Karaimer, Pan An, Philipp Keck, Taehoon Kim

National University of Singapore

March 9, 2016

Motivation

Motivation

This here is the introduction of Cut Problems.

Introduction 000

 $\begin{array}{c} {\rm Introduction} \\ {\rm 00} \\ \hline \end{array}$

Karger's Algorithm

- Contraction method is used.
- Randomized selection of Edges.
- Running multiple times of the algorithm will provide more accurate result.

Karger's Algorithm

- Basically one run of Karger's Algo takes $O(n^2)$ time.
- It achieves error probability of $\frac{1}{poly(n)}$ with $O(n^4 \log n)$ time.

Derivation will be given in the later part.

Karger's Algorithm

Algorithm

Karger's Algorithm:

repeat

choose an edge (v, w) uniformly at random from G;

let
$$G \leftarrow \frac{G}{(v,w)}$$

until G has 2 vertices;

uction ${f Method}$ Analysis Reference ${f o}ullet {f o}$

on Method Analysis References o●o

ntroduction Method Analysis Reference

ntroduction Method Analysis Reference

Results

MAZZZZZZZZZZZZZZ adddddddd ceelli BBBBBBBBBBBBBBBB

Fact 1 – Sum of Degrees

$$\sum_{u \in V} degree(u) = 2|E|$$

Every edge contributes exactly once to the degree of exactly two nodes.

Fact 2 – Average Degree

$$\begin{split} E(degree(X)) &= \sum_{u \in V} Pr(X = u) \cdot degree(u) \\ &= \frac{1}{n} \sum degree(u) = \frac{2|E|}{n} \end{split} \tag{1}$$

Fact 3 – Min-cut Size

The size of a min-cut is at most $\frac{2|E|}{n}$.

Fact 3 – Min-cut Size

The size of a min-cut is at most $\frac{2|E|}{n}$.

10 / 12

Analysis

Fact 3 – Min-cut Size

The size of a min-cut is at most $\frac{2|E|}{n}$.

Proof

- For every node u, we have a cut of size degree(u).
- Not all nodes can have degree above average, i.e.

$$\exists u \in V : degree(u) \leqslant \frac{2|E|}{n}$$

Fact 4 - Pr(edge across min-cut)

- Fix a certain min-cut in a graph.
- At most 2|E|/n of all edges are part of this min-cut.
- Choose a random edge out of all |E| edges.
- $Pr(edge crosses the cut) = \frac{2|E|/n}{|E|} = \frac{2}{n}$

References

