

Machine Learning Assisted Cyclic Coordinate Descent Algorithm For Scalable Black-box Optimization

Muyi Song

Advisor:

Prof. Nikolaos V. Sahindis, Dr. Jonggeol Na

DEPARTMENT OF CHEMICAL ENGINEERING
DECEMBER 2, 2019

Contents

- 1. Introduction and Motivation
- 2. Proposed Algorithm
- 3. Problem Statement
- 4. Results and Discussion
- 5. Conclusion

Introduction and Motivation

Black-box optimization

- Given a set of potential power plant layouts, how do we find the best layout defined against a set of Quantities of Interest?
- Given a steam turbine, how do we configure its geometry to achieve the best efficiency?
- Given design variables of a machine, how do we know its life? And how do they connect to the damage?

Introduction and Motivation

Traditional optimization

- A physical problem can be mathematically expressed as a function
- Optimum solution (either minimum or maximum) of the objective function can be obtained using the concept of derivative
- Common methods:
 - Direct search
 - Gradient-based search

Black-box optimization

- Unsolvable using conventional approaches because of non-smoothness or discontinuities, etc
- Unaffordable cost of function evaluations (experimental or industrial situations)

Proposed Algorithm

Cyclic Coordinate


```
1: Set a tolerance \epsilon > 0;

2: Let d^1, d^2, \dots, d^n be the coordinate directions;

3: Initialize starting point x^0;

4: Set k = 1 and i = 1;

5: while ||x^{k+1} - x^k|| \ge \epsilon do

6: Set y_1 = x_k;

7: for i = 1, 2, \dots, n do

8: x_i^k = argminf(x_1^k, \dots, x_{i-1}^k, x_i, x_{i+1}^{k-1}, \dots, x_n^{k-1});

9: y_{i+1} = y_i + \lambda_i d_i;

10: end for

11: Let X_{k+1} = y_{k+1};

12: k = k + 1;

13: end while
```


Proposed Algorithm

Sampling Methods

Proposed Algorithm

Problem Statement

100 Black box models

Variables	smoothness		Convexity		total
	Smooth	Nonsmooth	Convex	Nonconvex	total
1-10	36	37	28	45	73
10-50	11	12	18	5	23
50-300	4	0	3	1	4

Problem Statement

The Single Mixed Refrigerant Liquefaction Process Simulation

Results and Discussion

Percentage of solved problems v.s. Number of evaluations

Halton

Hammersley

Van Der Corput

Latin

Sobol

Results and Discussion

Observations:

- Better performance in smooth models
- Tend to be stuck in local optimal points in nonsmooth models
- Global optimal can be expected for smooth-convex models

Discussions:

- Difference performances of quasirandom sequence sampling
- Impact from smoothness and convexity

Results and Discussion

SMR liquefaction process simulation result

Fail to optimize the SMR simulator

Discussions:

- Discontinuous hidden constraints
- Pre-defined constraints from relationship between variables based on physical configuration

Potential solutions:

- Search globally
- Block coordinate search

Conclusions

- Surrogate modeling has been proved that it is a flexible and useful method in black-box optimization problems
- Different sampling methods has shown different performances depending on smoothness, convexity and the dimensions of surrogate model
- Sobol sequence has the best solutions combining with cyclic coordinate search algorithm
- Proposed algorithm is not able to solve problems with discontinuous hidden constraints and linked variables deriving from industrial problem; global sampling and block coordinate search probably are expected to be applied

Question and Answer

Carnegie Mellon University