实验十一 16×16 点阵控制器接口

一、实验目的

- 1. 了解点阵的动态显示原理;
- 2. 熟悉 QuartusII软件的相关操作,掌握数字电路设计的基本流程;
- 3. 介绍 QuartusII软件,掌握基本的设计思想,软件环境的参数配置,仿真,管脚分配,下载等基本操作。

二、实验原理

8*8 点阵扫描控制电路的光点是从显示模块左上角像素点为起始点扫描,终止于右下角像素点。本实验系统所用的点阵是行共阴、列共阳,如下图所示。

当列共阳为低电平,行共阴为高电平,则所接的发光像素点点亮,反之,列 共阳为高电平,行共阴为低电平,则所接的发光像素处于截止状态不发光。

我们开发平台 16×16 LED 点阵由 4 个 8X8 的 LED 点阵级联而成。

它有 16 个共阴极输出端口,每个共阴极对应有 16 个 LED 显示灯。列选择信号为 col0,col1,col2,col3, 经过 4-16 线译码器输出 16 列。从左起为第 1 列,列选信号由一个 4 位向量 col[3..0]控制;行选信号为 row15~row0,是由 16 个行信号组成的。每一行由一个单独的位来控制,高电平有效。要使 16 点阵上某个点亮,如第 10 行第 4 列的 LED 点亮,只要让列选信号为"0100",从而选中第 4 列,再给第 10 行一个高电平,即可点亮该 LED。即采用逐列扫描的方法,当这样轮回的速度足够快(每秒 24 次以上),由于人眼的视觉暂留现象,就能够看到显示屏上稳定的图形了。

三、实验内容

- 1、用 VERILOG HDL 语言设计点阵显示器,实现汉字显示;
- 2、用 QUARTUS 软件进行编译、仿真、下载到实验平台上进行验证。

四、设计原理框图

分频模块需要注意的是,需要分得多大一个频率呢?这要根据人眼的视觉 残留来定,经测试,500Hz左右已经足够,注意实验平台上的模块为动态扫描。

Verilog 程序提示:

方法一:

module dot_matrix1

```
(input clk, reset, output reg [15:0] row, //行 output reg [3:0] col //列);
```

```
initial col=4'b0;
always @(posedge clk)
begin
   if (!reset)
              col < = 4'b0;
    else
              //利用计数器产生列的 16 种编码: 0000-1111
       begin
        0 0 0 0 0
always @(reset or col)
begin
 if (!reset) row<=16'b0;
 else
   begin
   case (col)
   4'b0000: row<=16'b010001000010100; //第1列
   4'b0001: row<=16'b0101110001011000; //第2列
   0000000
方法二:
always @(posedge clk)
begin
 r[0]=16'b0010000000010000;r[1]=16'b001000000010000;
 r[2]=16'b0010000000010000;r[3]=16'b0010001111010000;
end
always @(reset or col)
begin
 if (!reset) row<=16'b0;
 else
   begin
   case (col)
```

4'b0000: row=r[0]; 4'b0001: row=r[1];

五、引脚分配情况

下表为 B-ICE-EDA/SOPC-IEELS Platform 开发实验平台引脚分配表:

设计端口	EP3C55F484I7 芯片引脚	开发板模块	备注
clk	T1	sys_clk	系统时钟 50MHz
reset	N18	SW1	拨码开关:
			上: "1"下: "0"
col[3]	C4	COL4	16*16 点阵的列
col[2]	A16	COL3	信号
col[1]	A15	COL2	
col[0]	A14	COL1	
row[15]	A4	ROW1	16*16 点阵的行
row[14]	A5	ROW2	信号
row[13]	A6	ROW3	
row[12]	B6	ROW4	
row[11]	E11	ROW5	
row[10]	C13	ROW6	
row[9]	F11	ROW7	
row[8]	C15	ROW8	
row[7]	E14	ROW9	
row[6]	В7	ROW10	
row[5]	B8	ROW11	
row[4]	В9	ROW12	
row[3]	B10	ROW13	

row[2]	D10	ROW14	
row[1]	F9	ROW15	
row[0]	A13	ROW16	

六、实验结果:

扩展要求:

修改字库,实现四个字一屏一屏显示或者滚动显示。