Al in News

Applying Generative AI in Production with Confidence

Agenda

- 9:00 10:30: Improve generation results with RAG, prompt engineering, and Chain-of-thought
- 11:00 12:30: Comprehensive Evaluation and Hallucination Detection
- 14:00 15:30: Explore instruction fine-tuning techniques and understand QLoRa
- 16:00 17:30: Bridging the Gap in News Production: Aligning Al Models

RAG and prompt engineering

Information retrieval for RAG

- Task: Identify and retrieve information (text, document) relevant to the given query
- Essential for good performance of the system
- Finds relevant, supporting information

Semantic search

Idea: Instead of looking for the same words look for the same meaning

- 1. Transform each text you want to use to a vector representation
- 2. Transform query to a vector representation
- 3. Compare query's vector with vectors in your database
- Select closest ones.

Semantic search – text embeddings

- Numerical representation of the text
- You can obtain it using one of many language models:
 - Small ones like BERT-based:
 - Useful library: SentenceTransformers
 - Easy to run locally
 - From major LLM providers:
 - Just make any API call
 - Paid service

Semantic search – text embeddings

Semantic search – distance

What does it mean: Select closest ones?

- To find similar vectors we need to define similarity metric first
- Most commonly used: cosine similarity
- $cosine\ similarity = \frac{ab}{||a||\ ||b||}$
- It's a cosine of the angle between the vectors
- The higher cosine similarity the more similar the vectors are

Vector store (DB)

- Optimized for vector search
- Often use approximate k-NN search for low latency (e.g. HNSW)
- Supports additional fields for traditional filtering

Hybrid search

- Semantic search is cool, but exact word match can be useful
- Let's add key-word method to a semantic search and merge it
- Helps when we have unusual words in our corpus

Reciprocal Rank Fusion

How to combine two search results?

- Create ranked lists with results for both methods (sorted from the most to the least similar)
- Calculate reciprocal rank for each item
 - $reciprocal\ rank = \frac{1}{rank(i)+k}$ for i th item
- Sum ranks for each item, the sum is a final score
- Sort the list by final score

Generation

- Zero-shot prompting
- In-context learning: one or few-shot learning:
 - Provide new data during the inference instead of retraining the model
 - Use high quality data to improve quality or relevancy of the response
 - Easy method for domain adaptation

Chain of Thoughts

- Instructs model to break down ("think about") the problem before returning the answer
- Prompt includes instruction like "Let's think step by step"
- Can include multiple interactions with the model
- Zero or few-shot

... of Thoughts

Chain of thoughts is just the beginning

- Many thought generation techniques were proposed since
 - Multiple chain of thoughts
 - Tree of thoughts
 - Graph of thoughts
 - ..

The Prompt Report: A Systematic Survey of Prompting Techniques

Sander Schulhoff^{1,2*} Michael Ilie^{1*} Nishant Balepur¹ Konstantine Kahadze¹
Amanda Liu¹ Chenglei Si⁴ Yinheng Li⁵ Aayush Gupta¹ HyoJung Han¹ Sevien Schulhoff¹
Pranav Sandeep Dulepet¹ Saurav Vidyadhara¹ Dayeon Ki¹ Sweta Agrawal¹² Chau Pham¹³
Gerson Kroiz Feileen Li¹ Hudson Tao¹ Ashay Srivastava¹ Hevander Da Costa¹ Saloni Gupta¹
Megan L. Rogers⁸ Inna Goncearenco⁹ Giuseppe Sarli^{9,10} Igor Galynker¹¹
Denis Peskoff⁷ Marine Carpuat¹ Jules White⁶ Shyamal Anadkat³ Alexander Hoyle¹ Philip Resnik¹

¹ University of Maryland ² Learn Prompting ³ OpenAI ⁴ Stanford ⁵ Microsoft ⁶ Vanderbilt ⁷ Princeton

⁸ Texas State University ⁹ Icahn School of Medicine ¹⁰ ASST Brianza

¹¹ Mount Sinai Beth Israel ¹² Instituto de Telecomunicações ¹³ University of Massachusetts Amherst

sschulho@umd.edu milie@umd.edu resnik@umd.edu

Query expansion

- Query and texts in our database can be quite different
- This can harm a semantic search
- Ideas:
 - Use LLM to generate new, more similar text based on the query
 - Use LLM to paraphrase query and use all of those to run a search

Practical notes

- Use LLMs to create great projects!
- Leverage their functionalities and external libraries
 - Structured output for communication with your program
 - Human in the loop approach to interact with users
 - ..

