Sweet Cython code for planet search finding

@dfm & @mirca

February 16, 2018

1 Why period search algorithms are important?

1.1 Statistical assumptions

We assume that $y_i \sim \mathcal{N}(m(t_i), \sigma_i), i = 1, 2, ..., n$, where

$$m(t_i) = \begin{cases} l, & \text{if } t_0 \le t_i \le t_0 + w, \\ h, & \text{otherwise.} \end{cases}$$
 (1)

such that h > l, in which t_0 is the transit time, w is the transit duration, h is the mean (not quite) flux level out-of-transit, l is the mean (not quite) flux level in-transit.

Then the log-likelihood function of $\mathbf{y} \triangleq (y_1, y_2, ..., y_n)$, assuming y_i 's are pair-wise idependent, can be written as

$$\log p(\boldsymbol{y}) = -\frac{1}{2} \sum_{i=1}^{n} \left(\frac{y_i - m(t_i)}{\sigma_i} \right)^2, \tag{2}$$

up to an additive constant.

Note further that, the log-likelihood function can be expressed as

$$\log p(\mathbf{y}) = -\frac{1}{2} \left[\sum_{i \in I} \left(\frac{y_i - l}{\sigma_i} \right)^2 + \sum_{i \in I^c} \left(\frac{y_i - h}{\sigma_i} \right)^2 \right], \tag{3}$$

in which $I \triangleq \{i | t_0 \leq t_i \leq t_0 + w\}$ and I^c denotes the complement of I.

And the maximum likelihood estimator for h and l, denoted as h^{\star} and l^{\star} , respectively, can be written as

$$l^{\star}(\boldsymbol{y}) = \frac{\sum_{i \in I} \frac{y_i}{\sigma_i^2}}{\sum_{i \in I} \frac{1}{\sigma_i^2}}, \quad h^{\star}(\boldsymbol{y}) = \frac{\sum_{i \in I^c} \frac{y_i}{\sigma_i^2}}{\sum_{i \in I^c} \frac{1}{\sigma_i^2}}.$$
 (4)

Note that

$$\operatorname{var}(l^{\star}(\boldsymbol{y})) = \frac{\sum_{i \in I} \frac{\operatorname{var}(y_{i})}{\sigma_{i}^{4}}}{\left(\sum_{i \in I} \frac{1}{\sigma_{i}^{2}}\right)^{2}} = \left(\sum_{i \in I} \frac{1}{\sigma_{i}^{2}}\right)^{-1}$$

$$\operatorname{var}(h^{\star}(\boldsymbol{y})) = \frac{\sum_{i \in I^{c}} \frac{\operatorname{var}(y_{i})}{\sigma_{i}^{4}}}{\left(\sum_{i \in I^{c}} \frac{1}{\sigma_{i}^{2}}\right)^{2}} = \left(\sum_{i \in I^{c}} \frac{1}{\sigma_{i}^{2}}\right)^{-1}$$

$$(5)$$

$$\operatorname{var}(h^{\star}(\boldsymbol{y})) = \frac{\sum_{i \in I^{c}} \frac{\operatorname{var}(y_{i})}{\sigma_{i}^{4}}}{\left(\sum_{i \in I^{c}} \frac{1}{\sigma_{i}^{2}}\right)^{2}} = \left(\sum_{i \in I^{c}} \frac{1}{\sigma_{i}^{2}}\right)^{-1}$$
(6)

The maximum likelihood for the transit depth, denoted as d^{\star} , can then be written as

$$d^{\star}(\boldsymbol{y}) = h^{\star}(\boldsymbol{y}) - l^{\star}(\boldsymbol{y}). \tag{7}$$

Then the variance on d^* can be expressed as

$$\operatorname{var}(d^{\star}) = \operatorname{var}(h^{\star}) + \operatorname{var}(l^{\star}) \tag{8}$$

$$= \left(\sum_{i \in I} \frac{1}{\sigma_i^2}\right)^{-1} + \left(\sum_{i \in I^c} \frac{1}{\sigma_i^2}\right)^{-1} \tag{9}$$