STA 303/1002-Methods of Data Analysis II Sections L0101& L0201, Winter 2018

Shivon Sue-Chee

March 29, 2018

Example I Exercises

Use the related R Markdown file to achieve the following objectives

- ► Learning Objectives
 - ▶ Define fixed and random effects
 - ▶ Write out the models used and the assumptions for inference
 - ▶ Develop a statistical toolbox for analyzing linear mixed models
 - ▶ Interpret the respective R outputs
- ► Reference: SJS, Chapter 10

Example I: Write out the fitted models (tabulate their parameters)

Example I: Compare models 10.6 and 10.5 (Refer to notes in R Morkdown file)

- ► Hypotheses:
- ► Test statistic
- ▶ Distribution of test statistic under *H*₀
- p-value:
- ► Conclusion:
- ► Other statistics : A(C , B(C

Comparing models

► Can any other pairs of models be compared?

Models must be based on the same Y&X varying by Var-Cov. Structure only.

$$\rho_{IC} = \frac{Cov(Y_{ijk}, Y_{ijn})}{\sqrt{Var(Y_{ijk})Var(Y_{ijn})}} = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_e^2}$$

Fir	nd the int	raclass correlation coefficients by sex	7, 7, 7, 74
	Intraclass (Correlation Coefficient:	/T1 (T1) TT3 TT4 T
		$\rho_{IC} = \frac{Cov(Y_{ijk}, Y_{ijn})}{\sqrt{Var(Y_{ijk})Var(Y_{ijn})}} = \frac{\sigma_u^2 \sigma_u^2}{\sigma_u^2 + \sigma_e^2}$	$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix}$
	Model	Intraclass Correlation Coefficient, ρ_{IC}	3
7	10.6	GIC = 1.8167 = 0.635	14/ 1
7	10.5	EM = 1.8482 = 0.55 Pr = 1.84	= 0.85

Females only

10.5c

Males only

LME Example I Worksheet

Draw the Variance-Covariance Structure of Model 10.5

