CIS 121—Data Structures and Algorithms with Java - Fall 2015

Lab Problem Solutions

Problem 1

Order the following functions such that if f precedes g, then f(n) is O(g(n)).

$$\sqrt{n}$$
, n , $n^{1.5}$, n^2 , $n \lg n$, $n \lg \lg n$, $n \lg n^2$, $2^{n/2}$, 2^n , $\lg(n!)$, $n^2 \lg n$, n^3 , 2^{2^n}

Solution.

$$\sqrt{n}$$
, n , $n \lg \lg n$, $n \lg n$, $\lg(n!)$, $n \lg n^2$, $n^{1.5}$, n^2 , $n^2 \lg n$, n^3 , $2^{n/2}$, 2^n , 2^{2^n}

Problem 2

Provide a runtime analysis of the following loop. That is, find both Big-Oh and Big- Ω :

```
for(int i = 0; i < n; i++)
    for (int j = i; j <= n; j++)
        for (int k = i; k <= j; k++)
        sum++;</pre>
```

Solution.

Observe that for fixed values of i, j, the innermost loop runs $\max\{1, j-i+1\} \le n$ times. For instance, when i=j=0, the innermost loop evaluates once. When i=0, j=n, the innermost loop evaluates n+1 times. The middle loop runs a total number of $O((n-i)^2)$ times. Therefore, the entire block of code runs in $O(n^3)$.

To find a lower bound on the running time, we consider smaller subsets of values for i, j and lower-bound the running time for the algorithm on these subsets. (A lower bound there would also be a lower bound for the original code's runtime!) Consider the values of i such that $0 \le i \le n/4$ and values of j such that $3n/4 \le j \le n$. For each of the $n^2/16$ possible combinations of these values of i and j, the innermost loop runs at least n/2 times. Therefore, the running time is at least

$$(n^2/16)(n/2) = \Omega(n^3)$$

Alternate Solution for Big-Oh.

One could solve this using exact sums, but we will leverage some Big-Oh notation. We know that the innermost loop runs in at most (j - i + 1) time for fixed i, j (see other solution). Therefore the body of the middle loop runs at most c(j - i + 1) times. Therefore, we can express the runtime of the code shown as

$$\sum_{i=0}^{n} \sum_{j=i}^{n} c(j-i+1) = O(n^{3})$$

Problem 3

In this problem, you are **not** allowed to use the theorems about Big-Oh stated in the lecture notes. Your proof should follow exclusively from the definition of Big-Oh.

Prove or disprove the following statement:

$$f(n) + g(n)$$
 is $\Theta(\max\{f(n), g(n)\})$, where $f, g : R \to R^+$.

1

Solution.

We show both Big-Oh and Big- Ω separately.

Let
$$c = 2, n_0 = 1$$
. $f(n) + g(n) \le 2 \max\{f(n), g(n)\}, \ \forall n \ge 1$. Therefore, $f(n) + g(n) = O(\max\{f(n), g(n)\})$.

Let
$$c = 1, n_0 = 0$$
. $f(n) + g(n) \ge \max\{f(n), g(n)\}, \ \forall n \ge 0$. Therefore, $f(n) + g(n) = \Omega(\max\{f(n), g(n)\})$.

Therefore, as we have shown Big-Oh and Big- Ω , we have shown Big- Θ .

Problem 4

Prove or disprove the following statement:

$$2^n$$
 is $O(n!)$.

Solution.

We want to show that $2^n \le c(n!) \ \forall n \ge n_0$, for a positive real-valued c and integer n_0 .

Proof.

$$2^{n} \le c(n!)$$

$$\lg(2^{n}) \le \lg c + \lg(n!)$$

$$n \le \lg c + \lg(n \cdot (n-1) \cdot (n-2) \dots 2)$$

$$n \le \lg c + \sum_{i=0}^{n} \lg i$$

$$n \le \sum_{i=n/2}^{n} \lg i \le \lg c + \sum_{i=0}^{n} \lg i$$

$$n \le n/2 \lg(n/2) \le \sum_{i=n/2}^{n} \lg i$$

$$2 \le \lg(n/2)$$

It is clear that choosing any $n_0 \ge 8$ and c > 0 will suffice! To check our work, let $n_0 = 8$ and c = 1.

$$2^8 \le 8! \to 256 < 40320$$

A particularly obvious result, but it doesn't hurt to check.

Problem 5

Provide a runtime analysis of the following loop:

Problem 6

Prove or disprove the following statement:

$$\lg(n!)$$
 is $\Theta(n \lg n)$.