ML EXAM-1
Name: Vrom Pathak
I.D.: 96703101
Al) Answer in Tulia fele
X = [1 0 -2; 1 0 -1; 1 0 0; 1 1 0; 1 2 0]; y = [3;1;1;3;2]; theta = X\y; display(theta);
- O T
(A2) (a) Here P(y) is denoted as the probability
of seeing a farticular class'c'.
= > Thus P(y=i) = Ni
\sim
where, Nc = No. of documents belonging
to class '°', for i=1,, K
where, $N_c = No. of documents belonging to class 'i', for i=1,, K P N= Fotal No. of documents.$
6 Consider the frequency count we have $x = [x_1, x_2,, x_n]$.
$x = [x_1, x_2, \dots, x_n].$

=) When we combine this with the
distribution of P with fraction
of document belonging to each class
property brown o to b' brown bron , i,
$P(i) \propto T_{c} \frac{ u }{T} P(i)^{3}$
In order to avoid understour us will
use the sun of log's:
$P(i) \propto \log \left(\frac{ V }{ V } + \frac{ V }{ V } \right)$
C) Hore of a more (wearth)
Eron the above

Organization (1)
we got [] Joa [] SOD = [] 2 DOG P(C(i)) where c=1,...K (oner Conver Not-Conner Corver

AS) Hore to incorporate the censored value, we introduce during variable as a placeholder. E. P. (i) P = 1 (i) P - 9-i introducing the during variables $(Z_{(1)}, \ldots, Z_{(n-p)})$, we got the Qt: minimise Sign (gow xi) + $\leq \frac{1}{1-p+1} \left(\frac{1}{2(n-p)} - \frac{1}{2} \frac{1}{2(n-p)} \right)^{2}$ Subject to z(°)>D, î=1,..., n-P where the variables are Wand Zin, i=1,..., N-P, which are Optimized Los it is a corner problem

A6)
$$P(y|x) = \frac{\lambda}{2} e^{\lambda}$$
; $\lambda = e^{\lambda}0$

Let there be in datapoints

Such that $(y_1, y_2, ..., y_n)$ for

respective $(x_1, x_2, ..., x_n)$.

Likelihood $(0) = \frac{\lambda}{1} e^{\lambda}$
 $\frac{\lambda}{1} e^{\lambda}$

o's MIE is déféndad follows Marcianite & 4° dogni - 2° i °EI - log 4° i =) Taking the first durinating $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$ -5 1 = 0 =>

We have, log(P(x,0)) = log(a(0)) $\Theta' \Phi(\mathcal{X})$ $=-\log\left(\sum_{x\in X} \mathcal{O}(x)\right)$ (x)Li Bri mest be graff (E offine, 1st torn is concorre, As-me-pol-9V- et à la function consposed with affine function of that of the

I With half of Hossian, re can Show that f(0)=log(P(x;0)) \$> Concare [Ear more general case of a dansety f.]. Defining e(0,x)= ext(0T\$(x)) Second Bretiel derevolère is: $\frac{1}{\sqrt{2}} = ((\sqrt{2}) \cdot (x) \cdot$ JO: JO; $-\left(S_{\chi} \oplus_{i}(x) \oplus_{i}(x) \otimes_{i}(x) \otimes_{i}(x)\right)$ $\left(S_{\chi} \otimes_{i}(x) \otimes_{i}(x) \otimes_{i}(x) \otimes_{i}(x)\right)$ $\left(\int_X o(o^2x) dx\right)_{S}$ => Px E (D,GC), ..., Pr(GC)); for one vector ve Pr

 $= V \left((0) \right)^{T} U =$ $(\beta_{x}(\xi; V; \phi; (x)) e(0, x) (dx))$ $-\left(\beta^{2}\left(\xi^{\prime},\Lambda^{\prime},\psi^{\prime}(x)\right)_{\xi}^{\prime}O\left(\sigma^{\prime}x\right)qx\right)$ $\left(2sc e(0sx)dx\right)^{2}$ =) Fron Couchy Schwarz inequality for function $g(x) = \left(\sum_{i} v_{i} \varphi_{i}(x)\right) \sqrt{\varphi(\varphi_{i}x)}$ $\frac{\partial \mathcal{C}}{\partial v} = \frac{\partial \mathcal{C}}{\partial v} = \frac{\partial \mathcal{C}}{\partial v}$ we get, $v \in \mathcal{C}$

Thus, as Hessian is regative servitlefinite, so log(r(x;o))