Assignment 8 MAT 347

Q1i: Consider the group C_n for n even. The subgroup $\langle \overline{2} \rangle$ is invariant under any automorphism, since previously we have characterized automorphisms of C_n with multiplication by any number coprime to n.

Q1ii: Consider the group Q_8 with normal subgroup $\langle i \rangle$. If we consider the map φ defined by $\varphi(i) = j, \varphi(j) = k, \varphi(k) = i$. This will be an automorphism since it simply relabels the generators of the group. However

$$\varphi(\langle i \rangle) = \langle j \rangle.$$

Thus this subgroup can not be characteristic. We now give another example of a normal subgroup that is not characteristic. Consider the group $G = (\mathbb{Q}, +)$, with subgroup $H = \{\frac{n}{2} : n \in \mathbb{Z}\}$. Since G is abelian we have that $H \subseteq G$. Consider the map $\varphi : G \to G$ defined by $\varphi(x) = 2x$. This is an linear operation so it must preserve the additive structure of \mathbb{Q} . Furthermore it is invertible since it is just multiplication by a scalar. We see that $\varphi(H) = \mathbb{Z}$. Hence H is not characteristic.