

Backtracking e branch-and-bound Projeto e Análise de Algoritmos

Bruno Prado

Departamento de Computação / UFS

- Classe de problemas difíceis para algoritmos
 - Soluções com complexidade exponencial

- Classe de problemas difíceis para algoritmos
 - Soluções com complexidade exponencial
 - Demandam tempo de resposta aceitável

- Classe de problemas difíceis para algoritmos
 - Soluções com complexidade exponencial
 - Demandam tempo de resposta aceitável
 - São uma classe de problemas muito relevantes

- Classe de problemas difíceis para algoritmos
 - Soluções com complexidade exponencial
 - Demandam tempo de resposta aceitável
 - São uma classe de problemas muito relevantes

Busca exaustiva ←→ Espaco exponencial

- Como evitar a busca exaustiva por soluções?
 - As técnicas de backtracking e branch-and-bound podem limitar ou reduzir este espaço de soluções

- Como evitar a busca exaustiva por soluções?
 - As técnicas de backtracking e branch-and-bound podem limitar ou reduzir este espaço de soluções
 - Neste paradigma, as soluções candidatas são geradas de forma incremental, buscando atender as restrições do problema e gerar novas soluções baseadas nestas soluções promissoras

- Como evitar a busca exaustiva por soluções?
 - As técnicas de backtracking e branch-and-bound podem limitar ou reduzir este espaço de soluções
 - Neste paradigma, as soluções candidatas são geradas de forma incremental, buscando atender as restrições do problema e gerar novas soluções baseadas nestas soluções promissoras
 - Apesar de bons resultados práticos, em uma análise de pior caso, estas abordagens podem recair no mesmo desempenho da busca exaustiva

- O que é backtracking?
 - ► Back = voltar + tracking = encaminhamento

- O que é backtracking?
 - ▶ Back = voltar + tracking = encaminhamento
 - O algoritmo constrói um conjunto de soluções parciais, sempre avaliando se as restrições impostas pelo problema são satisfeitas

- O que é backtracking?
 - ► Back = voltar + tracking = encaminhamento
 - O algoritmo constrói um conjunto de soluções parciais, sempre avaliando se as restrições impostas pelo problema são satisfeitas
 - Quando uma solução parcial parece promissora, ou seja, atende as restrições, são geradas novas soluções parciais a partir desta solução

- O que é backtracking?
 - ► Back = voltar + tracking = encaminhamento
 - O algoritmo constrói um conjunto de soluções parciais, sempre avaliando se as restrições impostas pelo problema são satisfeitas
 - Quando uma solução parcial parece promissora, ou seja, atende as restrições, são geradas novas soluções parciais a partir desta solução
 - Se nenhuma solução obtida atende as restrições, o algoritmo deve retroceder e avaliar a próxima solução parcial ainda não explorada, caso exista

- ▶ O que é branch-and-bound?
 - ► Branch = desviar + bound = limitar

- ▶ O que é branch-and-bound?
 - Branch = desviar + bound = limitar
 - Em problemas de otimização, as soluções geradas procuram minimizar ou maximizar alguma métrica do problema, atendendo as restrições do problema

- O que é branch-and-bound?
 - Branch = desviar + bound = limitar
 - Em problemas de otimização, as soluções geradas procuram minimizar ou maximizar alguma métrica do problema, atendendo as restrições do problema
 - As soluções parciais geradas são avaliadas e os cenários inválidos são descartados

- ▶ O que é branch-and-bound?
 - Branch = desviar + bound = limitar
 - Em problemas de otimização, as soluções geradas procuram minimizar ou maximizar alguma métrica do problema, atendendo as restrições do problema
 - As soluções parciais geradas são avaliadas e os cenários inválidos são descartados
 - O valor da melhor solução obtida até o momento armazenada, para que seja verificado se as próximas soluções geradas são melhores

- Busca em profundidade
 - As soluções candidatas ou promissoras que atendem as restrições são exploradas primeiro

- Busca em profundidade
 - As soluções candidatas ou promissoras que atendem as restrições são exploradas primeiro
 - ▶ É feito o incremento de solução, sempre atendendo as regras impostas pelo problema

- Busca em profundidade
 - As soluções candidatas ou promissoras que atendem as restrições são exploradas primeiro
 - ▶ É feito o incremento de solução, sempre atendendo as regras impostas pelo problema
 - Este processo pode levar a uma solução completa, mas não existe uma garantia

- Busca em profundidade
 - As soluções candidatas ou promissoras que atendem as restrições são exploradas primeiro
 - É feito o incremento de solução, sempre atendendo as regras impostas pelo problema
 - Este processo pode levar a uma solução completa, mas não existe uma garantia

As soluções parciais que não atendem as restrições são desprezadas

- Busca em profundidade
 - As soluções candidatas ou promissoras que atendem as restrições são exploradas primeiro
 - É feito o incremento de solução, sempre atendendo as regras impostas pelo problema
 - Este processo pode levar a uma solução completa, mas não existe uma garantia

As soluções parciais que não atendem as restrições são desprezadas

Espaço de Busca reduzido

Problema das n-rainhas: colocar n rainhas em um tabuleiro de dimensões n x n, de forma que nenhuma das rainhas esteja em linhas de ataque diagonais, horizontais e verticais, sem limite de alcance

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

Solução O

Nenhuma rainha posicionada

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

Solução O

Nenhuma rainha posicionada Sem violação de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha I foi posicionada em (0,0)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha l foi posicionada em (0,0) Sem violação de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 2 foi posicionada em (1, 0)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 2 foi posicionada em (1, 0) Existe violação de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 2 foi posicionada em (1,1)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 2 foi posicionada em (1, 1) Existe violação de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 2 foi posicionada em (1, 2)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 2 foi posicionada em (1, 2) Sem violação de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 3 foi posicionada em (2, 0)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 3 foi posicionada em (2,0) Existe violação de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 3 foi posicionada em (2, 1)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 3 foi posicionada em (2, 1) Existe violação de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 3 foi posicionada em (2, 2)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 3 foi posicionada em (2, 2) Existem violações de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 3 foi posicionada em (2, 3)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 3 foi posicionada em (2, 3) Existe violação de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

Backtrack: a rainha 2 foi reposicionada em (1, 3)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

<u>Backtrack</u>: a rainha 2 foi reposicionada em (1, 3) Sem violação de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 3 foi posicionada em (2, 0)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 3 foi posicionada em (2, 0) Existe violação de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 3 foi posicionada em (2,1)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 3 foi posicionada em (2,1) Sem violação de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 4 foi posicionada em (3,0)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 4 foi posicionada em (3, 0) Existem violações de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 4 foi posicionada em (3,1)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 4 foi posicionada em (3,1) Existem violações de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 4 foi posicionada em (3, 2)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 4 foi posicionada em (3, 2) Existe violação de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 4 foi posicionada em (3, 3)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 4 foi posicionada em (3, 3) Existem violações de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

Backtrack: a rainha I foi reposicionada em (O, I)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

<u>Backtrack</u>: a rainha l foi reposicionada em (O, l) Sem violação de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 2 foi posicionada em (1, 3)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 2 foi posicionada em (1, 3) Sem violação de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 3 foi posicionada em (2, 0)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 3 foi posicionada em (2, 0) Sem violação de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 4 foi posicionada em (3, 2)

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

A rainha 4 foi posicionada em (3, 2) Sem violação de ataque

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

Em uma busca exaustiva, seriam necessárias que todas as $n^n = 4^+ = 256$ soluções fossem avaliadas para verificar quais atendem às regras do problema

Problema das 4-rainhas: em um tabuleiro 4 x 4, cada rainha é posicionada em linhas distintas

Aplicando a técnica de Backtracking, foram exploradas apenas 8 soluções (cerca de 3% do espaço total)

- Redução do espaço de soluções
 - Esta técnica procura deduzir quais caminhos não irão conduzir o algoritmo para encontrar uma solução

- Redução do espaço de soluções
 - Esta técnica procura deduzir quais caminhos não irão conduzir o algoritmo para encontrar uma solução
 - Não existe garantia de se obter o melhor resultado possível (ótimo), entretanto, a solução gerada atende a todas as restrições definidas pelo problema

- Redução do espaço de soluções
 - Esta técnica procura deduzir quais caminhos não irão conduzir o algoritmo para encontrar uma solução
 - Não existe garantia de se obter o melhor resultado possível (ótimo), entretanto, a solução gerada atende a todas as restrições definidas pelo problema

Definição de limitantes inferiores ou superiores

- Redução do espaço de soluções
 - Esta técnica procura deduzir quais caminhos não irão conduzir o algoritmo para encontrar uma solução
 - Não existe garantia de se obter o melhor resultado possível (ótimo), entretanto, a solução gerada atende a todas as restrições definidas pelo problema

Definição de limitantes inferiores ou superiores

+

Armazenamento do valor da melhor solução obtida

- Problema de alocar n pessoas para n trabalhos
 - Cada pessoa pode realizar somente um trabalho
 - A matriz armazena o valor que cada pessoa (linhas) recebe para realizar um trabalho (colunas)

- Problema de alocar n pessoas para n trabalhos
 - Cada pessoa pode realizar somente um trabalho
 - A matriz armazena o valor que cada pessoa (linhas) recebe para realizar um trabalho (colunas)

Minimização do custo total para realização dos trabalhos

- Problema de alocar n pessoas para n trabalhos
 - Como parte da estratégia de minimização, o menor custo de cada pessoa (linha) para um trabalho (coluna) é selecionado para obter o limite inferior

No cálculo deste limitante, uma pessoa pode realizar múltiplos trabalhos, pois não é Buscada uma solução

- Problema de alocar n pessoas para n trabalhos
 - Como parte da estratégia de minimização, o menor custo de cada pessoa (linha) para um trabalho (coluna) é selecionado para obter o limite inferior

O limite inferior é 2 + 3 + 1 + 4 = 10

- ▶ Problema de alocar *n* pessoas para *n* trabalhos
 - ▶ É feita a alocação da pessoa P1

- Problema de alocar n pessoas para n trabalhos
 - ▶ É feita a alocação da pessoa P1

- Problema de alocar n pessoas para n trabalhos
 - É feita a alocação da pessoa P1

- Problema de alocar n pessoas para n trabalhos
 - É feita a alocação da pessoa P1

- Problema de alocar n pessoas para n trabalhos
 - ▶ É feita a alocação da pessoa P1

- Problema de alocar n pessoas para n trabalhos
 - ▶ É feita a alocação da pessoa P1

A solução parcial mais promissora aloca a pessoa Pl para o trabalho T2

- Problema de alocar n pessoas para n trabalhos
 - ▶ É feita a alocação da pessoa P2

- Problema de alocar n pessoas para n trabalhos
 - ▶ É feita a alocação da pessoa P2

- Problema de alocar n pessoas para n trabalhos
 - ▶ É feita a alocação da pessoa P2

- Problema de alocar n pessoas para n trabalhos
 - ▶ É feita a alocação da pessoa P2

- Problema de alocar n pessoas para n trabalhos
 - É feita a alocação da pessoa P2

A solução parcial mais promissora aloca a pessoa P2 para o trabalho TI

- Problema de alocar n pessoas para n trabalhos
 - É feita a alocação da pessoa P3

- Problema de alocar n pessoas para n trabalhos
 - É feita a alocação da pessoa P3

- Problema de alocar n pessoas para n trabalhos
 - É feita a alocação da pessoa P3

- Problema de alocar n pessoas para n trabalhos
 - ▶ É feita a alocação da pessoa P3

A solução parcial mais promissora aloca a pessoa P3 para o trabalho T3

- Problema de alocar n pessoas para n trabalhos
 - ▶ É feita a alocação da pessoa P4

- Problema de alocar n pessoas para n trabalhos
 - ▶ É feita a alocação da pessoa P4

- Problema de alocar n pessoas para n trabalhos
 - ▶ É feita a alocação da pessoa P4

A solução completa mais promissora aloca a pessoa P4 para o trabalho T4

Problema de alocar n pessoas para n trabalhos

Na Busca exaustiva, em um cenário de pior caso, seriam geradas até n! = 4! = 24 soluções válidas

Problema de alocar n pessoas para n trabalhos

Limitando o espaço de Busca com Branch-and-Bound é Gerada apenas | solução (cerca de 4% das soluções)

- Problema da mochila com branch-and-bound
 - O limitante superior é definido pela utilização da capacidade W = 6 que maximiza o valor total
 - É feito o cálculo da relação entre o valor e o peso $\frac{V_i}{W_i}$ de cada item de forma ordenada na tabela

i	1	2	3	4
Wi	2	3	5	1
∨ _i	44	36	55	0
v _i /w _i	22	12	II	Ю

- Problema da mochila com branch-and-bound
 - O limitante superior é definido pela utilização da capacidade W = 6 que maximiza o valor total
 - É feito o cálculo da relação entre o valor e o peso $\frac{V_i}{W_i}$ de cada item de forma ordenada na tabela

i	1	2	3	4
Wi	2	3	5	1
∨ _i	44	36	55	0
v _i /w _i	22	12	II	Ю

$$L = max(W \times \frac{V_i}{W_i}) = 132$$

i	- 1	2	3	4
ω_{i}	2	3	5	ı
∨ _i	44	36	55	0
v _i /w _i	22	12	II	Ю

i	-	2	3	4
wi	2	3	5	1
v _i	44	36	55	Ю
v _i /w _i	22	12	II	Ю

- A empresa de tecnologia Poxim Tech está desenvolvendo um robô humanoide que é capaz de se deslocar de forma totalmente autônoma e sem precisar do conhecimento prévio do ambiente físico no qual está localizado
 - Durante o seu deslocamento, que é feito um passo por vez, podem ser realizadas as seguintes operações, listadas em ordem de prioridade
 - Direita (D)
 - Frente (F)
 - Esquerda (E)
 - ► Trás (T)

- A medida que vai explorando o ambiente, o robô cria uma mapa interno para as rotas exploradas
 - Caso uma rota não gere uma solução, outro caminho deve ser escolhido para ser explorado até que a solução seja obtida ou que não existam mais opções (finalizando no ponto de partida)
 - Para demonstrar suas habilidades exploratórias, são criados labirintos com exatamente 1 entrada e até 1 saída, com tamanho máximo de 100 por 100 posições
 - É possível que nenhuma rota seja possível para atravessar o labirinto criado, mas quando existe uma saída, é sempre um espaço livre na borda do labirinto que não é o ponto de partida

- Formato do arquivo de entrada
 - ► #NL
 - ► [Largura] × [Altura]
 - $ightharpoonup M_{x,y} = 0 \, (espaço) \, , \, 1 \, (parede) \, , \, X \, (partida)$

```
M_{0,0} \cdots M_{0,L-1}
\vdots \ddots \vdots
M_{A-1,0} \cdots M_{A-1,L-1}
```

- Formato do arquivo de saída
 - A rota é descrita pelas coordenadas visitadas

```
LO:
   INICIO@2,2
   F@2,2->1,2
   D@1,2->1,3
   BT@1,2<-1,3
   E@1,2->1,1
   T@1.1 -> 2.1
   BT@1,1<-2,1
   BT@1,2<-1,1
   BT@2,2 < -1,2
10
   T@2,2->3,2
11
   SAIDA@3,2
12
13
   L1:
14
   INICIO@1,1
   T@1,1->2,1
15
   BT@1,1<-2,1
16
   SEM_SAIDA
17
```