# Noisy HG Models of Eastern Andalusian Harmony

Aaron Kaplan University of Utah a.kaplan@utah.edu

Analyzing Typological Structure Sept. 22, 2018

#### 1 Introduction

- Noisy Harmonic Grammar (NHG) provides a range of ways to produce variation depending on the details of the formal implementation (Hayes 2017).
- ATR harmony in Eastern Andalusian presents a good test of these possibilities:
  - Variation instantiates almost all of Walker's (2011) licensing-based typology.
  - This variation is constrained by categorical requirements.
  - Depending on the constraint set, some attested forms are harmonically bounded.
- My argument: the best NHG model of Eastern Andalusian is one that cannot produce harmonically bounded forms. Therefore we must use constraints under which attested forms are not harmonically bounded.

### 2 Eastern Andalusian Harmony

- /s/-aspiration: word-final /s/ deletes, triggering laxing of adjacent vowel.
- These lax vowels trigger variable harmony on preceding vowels.
- The stressed vowel always harmonizes (data from Jiménez & Lloret 2007, Lloret & Jiménez 2009):
- 'thesis' (1)a. tesistési 'you have' b. tienestjέnε c. nenesnέnε 'babies' d. monosmána 'monkeys' 'far' lejos léha e. f. cesq 'weights' pesos'mouths' bókæ bocasg.

- Other post-tonic vowels optionally harmonize as a group:
- (2) a. treboles tréfole  $\sim tréfole$  'clovers' b. c'ometelos kómetelo  $\sim$  kómetelo 'eat them (for you)!' \*kómetelo, \*kómetelo
  - Pretonic vowels optionally harmonize as a group, but only with post-tonic harmony:
- (3)a. momentosmoménto ~ moménto 'instants' b. relojrel $5 \sim rel$ 5'watch' 'watches' c. relojes rel

  he  $\sim$  rel

  he coist moneðéro  $\sim coist$  mone 'purses' d. monederoscràéanom\*, cràéancm\* kohine  $\sim$  kohine 'pillows' cojinese. f. cotilloneskotizóne  $\sim$  kotizóne 'cotillions' rek<br/>óhelə  $\sim$  rek<br/>óhelə  $\sim$  rek<br/>óhelə recógelos 'pick them' g. \*rɛkɔ́helɔ
  - High vowels lax word finally but do not undergo harmony:
- a. crisis krisı 'crisis'
  b. muchos mú∫ο 'many'
  c. mios mio 'mine (pl.)'
  - Positional licensing (PL): [-ATR] must appear in the stressed syllable or in every syllable (Jiménez & Lloret 2007, Lloret 2018, Lloret & Jiménez 2009, Walker 2011; analyses below are based on this work).
  - Goal: assess which combinations of constraints and implementations of NHG best model Eastern Andalusian harmony.
    - Constraints: negative and positive versions of PL (Kaplan 2018).
    - NHG: 7 implementations from Hayes (2017).
  - Hayes's (2017) "classic NHG" does best for Eastern Andalusian: NHG cannot adequately distinguish "good" harmonically bounded candidates from "bad" ones. It needs help from the constraint set.
  - That help is provided by positive PL.

# 3 Positional Licensing Analyses

#### 3.1 Candidates of Interest

(5)

|    | Input       | Candidate | Attested?    | Neg. PL | Pos. PL |
|----|-------------|-----------|--------------|---------|---------|
| a. | /monedéros/ | moneðéro  |              |         |         |
|    | 'purses'    | moneðéro  |              |         |         |
|    |             | moneðéro  | ✓            |         |         |
|    |             | məneðérə  |              | Bounded | Bounded |
|    |             | moneðérə  |              | Bounded | Bounded |
|    |             | məneðérə  | ✓            |         |         |
| b. | /kómetelos/ | kómetelo  |              |         |         |
|    | 'eat them   | kómetelə  |              |         |         |
|    | (for you)!' | kómetelo  | $\checkmark$ | Bounded |         |
|    |             | kómetelo  |              | Bounded | Bounded |
|    |             | kómetelo  |              | Bounded | Bounded |
|    |             | kómetelo  | $\checkmark$ |         |         |
| c. | /rekógelos/ | rekóhelo  |              |         |         |
|    | 'pick them' | rekóhelə  |              |         |         |
|    |             | rekáhela  | $\checkmark$ | Bounded |         |
|    |             | rekáhela  | $\checkmark$ |         |         |
|    |             | rekáhela  |              | Bounded | Bounded |
|    |             | rekáhela  | $\checkmark$ |         |         |
| d. | /krisis/    | krisi     |              |         |         |
|    | 'crisis'    | krísi     | $\checkmark$ |         |         |
|    |             | krísi     |              |         |         |

- Positive PL: no attested candidate is harmonically bounded.
- Negative PL: two attested candidates are harmonically bounded: kómetelə, rekóhelə.
- Both: some unattested candidates are harmonically bounded; other are not.
- NHG with negative PL must produce kómetelə, rekóhelə without producing other harmonically bounded forms.

### 3.2 Negative PL

- To avoid pathologies in HG, PL must be gradient: Negative Gradient PL (NG-PL; Kaplan 2018):
- (6) LICENSE([-ATR],  $\dot{\sigma}$ ): assign -1 for each [-ATR] that does not coincide with  $\dot{\sigma}$  and -1 for each syllable that intervenes between [-ATR] and the nearest  $\dot{\sigma}$ .
  - This accounts for harmony up to the licensor.

- Pretonic harmony: Maximal Licensing (Walker 2011) requires [-ATR] to appear in every syllable.
- IDENT(ATR) disfavors harmony.

c.

- These constraints produce post-tonic and pretonic harmony, but forms with no post-tonic harmony are harmonically bounded.
- LICENSE penalizes unharmonized post-tonic vowels in kómetelo, rekóhelo to avoid pathologies (Kaplan 2018).
- $\blacksquare$  = attested;  $\times$  = harmonically bounded

| (7) | a. | /monedéros/   | LICENSE | MaxLic | IDENT | Comments                                       |
|-----|----|---------------|---------|--------|-------|------------------------------------------------|
|     |    | a. moneðérə   | -1      | -3     | -1    |                                                |
|     |    | r b. moneðéra |         | -2     | -2    |                                                |
|     |    | 🖙 c. məneðérə |         |        | -4    |                                                |
|     |    | × d. məneðérə |         | -1     | -3    | collectively bounded <sup>1</sup> by (b) & (c) |
|     |    | × e. moneðéro |         | -1     | -3    | collectively bounded by (b) & (c)              |

| b. | /kómetelos/            | LICENSE | MaxLic | IDENT | Comments                          |
|----|------------------------|---------|--------|-------|-----------------------------------|
|    | a. kómetelə            | -3      | -3     | -1    |                                   |
|    | × <b>☞</b> b. kómetelo | -2      | -2     | -2    | collectively bounded by (a) & (c) |
|    | 🖙 c. kómetelo          |         |        | -4    |                                   |
|    | × d. kómetelo          | -1      | -1     | -3    | collectively bounded by (a) & (c) |
|    | × e. kómetelo          | -1      | -1     | -3    | collectively bounded by (a) & (c) |

| /rekóhelos/                                     | LICENSE | MAXLIC | IDENT | Comments                          |
|-------------------------------------------------|---------|--------|-------|-----------------------------------|
| a. rekóhelə                                     | -2      | -3     | -1    |                                   |
| × <b>☞</b> b. rekóhelo                          | -1      | -2     | -2    | collectively bounded by (a) & (c) |
| rekáhela c. rekáhela                            |         | -1     | -3    |                                   |
| rekáhelo de |         |        | -4    |                                   |
| × e. rɛkɔ́helɔ                                  | -1      | -1     | -3    | bounded by (c)                    |

<sup>&</sup>lt;sup>1</sup>Collective harmonic bounding: Samek-Lodovici & Prince (1999)

• High vowels: \*[+hi, -ATR] prevents harmony, MAX(-ATR) forces laxing word-finally.

| (8) | /kri̇́sis/ | *[+hi, -ATR] | Max(-ATR) | LICENSE | MaxLic | IDENT |
|-----|------------|--------------|-----------|---------|--------|-------|
|     | a. krísi   |              | -1        |         |        |       |
|     | r b. krísı | -1           |           | -1      | -1     | -1    |
|     | c. krísi   | -2           |           |         |        | -2    |

- What to do about the harmonically bounded attested forms?
  - Nothing: let NHG deal with them.
  - Revise PL: Positive Gradient PL (PG-PL; Kaplan 2018)

#### 3.3 Positive PL

- (9) LICENSE([-ATR],  $\dot{\sigma}$ ): assign +1 for each [-ATR] that coincides with  $\dot{\sigma}$  and +1 for each additional syllable that [-ATR] appears in.
  - This subsumes MAXLIC; we need IDENT(ATR)-pretonic to block pretonic harmony.

-1

-3

• All attested forms are now possible winners.

× e. moneðéro

| (10) | a. | /monedéros/   | LICENSE | IDENT-pretonic | IDENT |
|------|----|---------------|---------|----------------|-------|
|      |    | a. moneðéro   |         |                | -1    |
|      |    | r b. moneðéro | +2      |                | -1    |
|      |    | 🖙 c. məneðérə | +4      | -2             | -4    |
|      |    | × d. məneðérə | +3      | -1             | -3    |

| b. | /kómetelos/   | LICENSE | IDENT-pretonic | IDENT |
|----|---------------|---------|----------------|-------|
|    | a. kómetelə   |         |                | -1    |
|    | 🖙 b. kómetelə | +2      |                | -2    |
|    | 🖙 c. kómetelə | +4      |                | -4    |
|    | × d. kómetelə | +3      |                | -3    |
|    | × e. kómetεlo | +3      |                | -3    |

+3

| c. | /rekóhelos/          | LICENSE | IDENT-pretonic | IDENT |
|----|----------------------|---------|----------------|-------|
|    | a. rekóhelə          |         |                | -1    |
|    | 🖙 b. rekóhelo        | +2      |                | -2    |
|    | rekáhɛlə             | +3      |                | -3    |
|    | rekáhela d. rekáhela | +4      | -1             | -4    |
|    | × e. rεkóhelo        | +3      | -1             | -3    |

| d. | /kri̇́sis/ | *[+hi, -ATR] | Max(-ATR) | LICENSE | IDENT-pretonic | IDENT |
|----|------------|--------------|-----------|---------|----------------|-------|
|    | a. krisi   |              | -1        |         |                |       |
|    | 🖙 b. krisı | -1           |           |         |                | -1    |
|    | 🖙 c. krísi | -2           |           | +2      |                | -2    |

- (11) Core weighting requirements:
  - a. Harmony on  $\dot{\sigma}$  only: 2w(LICENSE) > w(IDENT) > w(LICENSE)
  - b. Full post-tonic harmony: w(IDENT) + w(IDENT-pre) > w(LICENSE) > w(IDENT)
  - c. Maximal harmony: w(LICENSE) > w(IDENT) + w(IDENT-pretonic)
  - d. High vowels: w(MAX(-ATR)) > w(\*[+hi, -ATR]) + w(IDENT) > 2w(LICENSE)
  - <u>Summary</u>: 2 ways to produce the variation in Eastern Andalusian:
    - 1. NG-PL: NHG responsible for variation and relieving harmonic bounding.
    - 2. PG-PL: NHG responsible for variation only.
- (12) Constraint inventories:

| NG- $PL$            | PG- $PL$            |
|---------------------|---------------------|
| LICENSE             | LICENSE             |
| IDENT(ATR)          | IDENT(ATR)          |
| *[+hi, -ATR]        | *[+hi, -ATR]        |
| Max(-ATR)           | Max(-ATR)           |
| MAXLICENSE          | IDENT(ATR)-pretonic |
| IDENT(ATR)-pretonic | ·                   |

# 4 Simulations

- Monte Carlo simulations following Hayes (2017): 7 variants of NHG; NG-PL and PG-PL.
  - 1. Noise at the constraint level
    - (a) Noise added before multiplication of penalties by weights: penalty\*(weight+noise)

- (b) Noise added after multiplication of penalties by weights, no noise allowed if penalty = 0: (penalty \* weight) + noise
- (c) Noise added after multiplication of penalties by weights, noise allowed if penalty = 0: (penalty \* weight) + noise

#### 2. Noise at the cell level

- (a) Noise added before multiplication of penalties by weights: penalty\*(weight+noise)
- (b) Noise added after multiplication of penalties by weights, no noise allowed if penalty = 0: (penalty \* weight) + noise
- (c) Noise added after multiplication of penalties by weights, noise allowed if penalty = 0: (penalty \* weight) + noise
- 3. Noise at the candidate level
- 100,000 trials per simulation. Negative constraint weights were disallowed.
- Target: low probabilities for illicit forms and high probabilities for attested ones
- Most successful arrangement: Hayes's classic NHG (option 1a) with PG-PL:

#### /krísis/ /kómetelos/ 1.00 -0.75 -0.50 -**Generated Frequency** 0.25 -0.00 **KOME**telO kómetelő kómetelő kómetElő KOMETEIO kómetelő Krisi Krisi Krisl Attested Unattested /monedéros/ /rekógelos/ 1.00 -0.75 -0.50 -0.25 -0.00 monedÉrO monedÉro rEkôhelo rEKOHEIO monEdÉrO monEdÉro monedéro rekóhelo rekohelo monedéro rekohelo rekohElo Candidate

PG-PL: Classic NHG

Figure 1: Results of a simulation using PG-PL & variety 1a

- In particular simulation shown here, all and only attested forms produced. Not a minor accomplishment: some illicit forms are not harmonically bounded.
- Subsequent simulations: unattested forms produced rarely. Worst result: krisi produced 38 times out of 100,000 trials. 2 other illicit forms produced: kómɛtelə, monɛðérə
- Because classic NHG produces harmonically bounded candidates only under special circumstances,<sup>2</sup> the comparable simulation with NG-PL fares poorly:

# NG-PL: Classic NHG



Figure 2: Results of a simulation using NG-PL & variety 1a

- Attested [kómetelo], [rekóhelo] cannot be produced.
- $\bullet$  Unattested [moneðérə], [kómetelə], [rekóhelə] appear at a  $\sim 22\%$  rate.
- Not surprisingly, classic NHG succeeds only when no attested form is harmonically bounded. Under those conditions, it performs very well on Eastern Andalusian.

<sup>&</sup>lt;sup>2</sup>If I understand Hayes (2017) correctly, with only positive constraint weights, a harmonically bounded candidate is selected under classic NHG only when it ties with a rival. Ties occurred very rarely in my simulations (for the simulation in Figure 1, ties occurred in 125 out of 66,565,284 chances), so I take it to be a reasonable approximation to say that classic NHG does not produce harmonically bounded candidates. Indeed, in none of my simulations with classic NHG did a harmonically bounded candidate win.

#### 4.1 Constraint-Level Noise

# PG-PL: Constraint-Level Noise Post-Multiplicative, No Noise with Zero Violations



Figure 3: Results of a simulation using PG-PL & option 1b

#### NG-PL: Constraint-Level Noise Post-Multiplicative, No Noise with Zero Violations



Figure 4: Results of a simulation using NG-PL & option 1b

# PG-PL: Constraint-Level Noise Post-Multiplicative, Noise Allowed with Zero Violations



Figure 5: Results of a simulation using PG-PL & option 1c

#### NG-PL: Constraint-Level Noise Post-Multiplicative, Noise Allowed with Zero Violations



Figure 6: Results of a simulation using NG-PL & option 1c

#### 4.2 Cell-Level Noise

#### PG-PL: Cell-Level Pre-Multiplicative Noise



Figure 7: Results of a simulation using PG-PL & variety 2a

## NG-PL: Cell-Level Pre-Multiplicative Noise



Figure 8: Results of a simulation using NG-PL & variety 2a

#### PG-PL: Cell-Level Post-Multiplicative Noise No Noise with Zero Violations



Figure 9: Results of a simulation using PG-PL & option 2b

#### NG-PL: Cell-Level Post-Multiplicative Noise No Noise with Zero Violations



Figure 10: Results of a simulation using NG-PL & option 2b

#### PG-PL: Cell-Level Post-Multiplicative Noise Noise Allowed with Zero Violations



Figure 11: Results of a simulation using PG-PL & option 2c

#### NG-PL: Cell-Level Post-Multiplicative Noise Noise Allowed with Zero Violations



Figure 12: Results of a simulation using NG-PL & option 2c

#### 4.3 Candidate-Level Noise

#### PG-PL: Noise Added to Candidates after Harmony Computation



Figure 13: Results of a simulation using PG-PL & variety 3

### NG-PL: Noise Added to Candidates after Harmony Computation



Figure 14: Results of a simulation using NG-PL & variety 3

## 5 Discussion

- /krisis/: no variation here, so weights approximating "Max(-ATR) > \*[+hi, -ATR] > everything else" can be established.
- For this reason, forms with no lax vowels (e.g. moneðéro) never win.
- Classic NHG with PG-PL works best: this implementation makes it easy to set weights that strictly or effectively rule out illicit candidates.
  - No attested form is harmonically bounded.
  - Candidates with partial pretonic/post-tonic harmony, and pretonic harmony without post-tonic harmony, are harmonically bounded and therefore impossible to select.
  - This leaves forms with no lax vowels (e.g. moneðéro), which are ruled out by high-weighted Max(-ATR), and forms with no harmony (moneðéro), which is ruled out by ensuring (11a) cannot be subverted.
  - This is borne out in the weights found under this simulation:
- (13) 46.000 Max(-ATR) 27.000 \*[+hi, -ATR] 11.655 LICENSE 11.345 IDENT(ATR) 0.251 IDENT(ATR)-pretonic
  - Other implementations of NHG make it easier to subvert these arrangements: harmonically bounded candidates can win, or crucial weighting relationships can be reversed (e.g. by adding noise unequally to candidates).
  - The nature of Eastern Andalusian's optionality is tailor-made for classic NHG:
    - Post-tonic vowels harmonize in "lockstep" (Hayes 2017), as do pretonic vowels; local optionality is disallowed.
    - Classic NHG produces only lockstep candidates (if the alternatives are harmonically bounded).
    - But what counts as a bounded non-lockstep candidate depends on constraints:

| (14) | /kómetelos/            | LICENSE | IDENT |
|------|------------------------|---------|-------|
|      | lockstep a. kómetelə   | -3      | -1    |
|      | × 🔊 b. kómetelo        | -2      | -2    |
|      | × c. kómetelo          | -1      | -3    |
|      | × d. kómetelo          | -1      | -3    |
|      | lockstep • e. kómetelo |         | -4    |

| (15) | /kómetelos/            | LICENSE 2 | IDENT 3 | Н  |
|------|------------------------|-----------|---------|----|
|      | lockstep a. kómetelə   |           | -1      | -3 |
|      | r b. kómetelo          | +2        | -2      | -2 |
|      | × c. kómetelo          | +3        | -3      | -3 |
|      | × d. kómetelo          | +3        | -3      | -3 |
|      | lockstep 🖙 e. kómetelə | +4        | -4      | -4 |

- NHG cannot relieve the lockstep problem on its own: opening the door to one bounded candidate opens the door to others.
- Better to let the constraints identify viable candidates that NHG can choose from.

#### 6 Conclusion

- These results provide support for classic NHG and positive constraints.
- Implications for local optionality: it may be wiser to let constraints make all licit candidates available (Kaplan 2016) than to undermine harmonic bounding.
  - At the very least, that route is more compatible with other non-local optionality.
- Small changes make a big difference.

#### References

Hayes, Bruce (2017) Varieties of Noisy HG. In *Proceedings of AMP 2016*, Karen Jesney, Charlie O'Hara, Caitlin Smith, & Rachel Walker, eds., Washington, DC: Linguistic Society of America.

Jiménez, Jesús & Maria-Rosa Lloret (2007) Andalusian Vowel Harmony: Weak Triggers and Perceptibility. paper presented at the 4th Old World Conference in Phonology, Workshop on Harmony in the Languages of the Mediterranean, Rhodes, January 18-21, 2007.

Kaplan, Aaron (2016) Local Optionality with Partial Orders. Phonology 33(2): 285–324.

Kaplan, Aaron (2018) Positional Licensing, Asymmetric Trade-Offs, and Gradient Constraints in Harmonic Grammar. *Phonology* **35**: 247–286.

Lloret, Maria-Rosa (2018) Andalusian Vowel Harmony at the Phonology-Morphology Interface. Talk presented at the 2015 Old World Conference on Phonology, London, January 12-14.

Lloret, Maria-Rosa & Jesús Jiménez (2009) Un Análisis *Óptimo* de la Armonía Vocálica del Andaluz. *Verba* **36**: 293–325.

Samek-Lodovici, Vieri & Alan Prince (1999) Optima. ROA-363, Rutgers Optimality Archive, http://roa.rutgers.edu.

Walker, Rachel (2011) Vowel Patterns in Language. New York: Cambridge University Press.