46th International Conference on Software Engineering

Coca: Improving and Explaining GNN-Based **Vulnerability Detection**

Sicong Cao¹, Xiaobing Sun¹, Xiaoxue Wu¹, David Lo², Lili Bo¹, Bin Li¹, and Wei Liu¹

¹ Yangzhou University ² Singapore Management University

Phase 1

Manual

Code Review, Reverse Engineering, Expertise

1960s

DL-based VD Workflow

DL-based VD Workflow

Explainable VD Workflow

Definition 1

Given an input program $P = \{s_1, \dots, s_m\}$ which is detected as vulnerable, the explanation is a set of crucial statements $\{s_i, \dots, s_i\}$ that are most relevant to the decision of the model.

```
File: openssl/crypto/asnl/asnl lib.c
Commit: https://github.com/openssl/openssl/blob/9b10986d7742a5105ac8c5f4cba8b103caf57ac9/
Vulnerability Type: Buffer Overrun
1 void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a,
                           int n, BN_ULONG *tmp)
       int i, j, max;
       const BN_ULONG *ap;
       BN_ULONG *rp;
       ap = a;
       rp = r:
       rp[0] = rp[max - 1] = 0;
       rp++;
       j = n;
       if (--i > 0) {
11
12
13
            rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
14
            rp += 2;
15
16 }
```

Target Sample

Feature Perturbation

Due to the weak robustness of existing DL-based vulnerability detectors, their explanations are easy to be altered due to small perturbations, or even random noise. As a result, explanations built on top of the detection results from such weakly-robust models just reveal spurious correlations, which are hard to be tolerated by security applications.

Program Reduction

Factual reasoning-based techniques favor a sufficient subset which contains enough information to make the same prediction as they do for the original program, while counterfactual explanations may only cover a small subset of the ground truth. As a result, existing GNN-specific explanation approaches fail to balance the effectiveness and conciseness.

Program
Reduction

Workflow of Coca

A General Optimization Framework for GNN-based Explainable Vulnerability Detection

- ☐ Combinatorial Contrastive Learning-based Robustness Enhancement
- ☐ Vulnerability Explanation via Dual-View Causal Inference

A General Optimization Framework for GNN-based Explainable Vulnerability Detection

- ☐ Combinatorial Contrastive Learning-based Robustness Enhancement
- Vulnerability Explanation via Dual-View Causal Inference

How to enhance the robustness of Classifier against random perturbations?

Perform data augmentation to construct functionally-equivalent variants.

No.	Name	Description
1	Identifier Renaming	Substitute the function/variable name with a random token.
2	Operand Swap	Swap the operands of binary logical operations.
3	Statement Permutation	Swap two lines of statements that have no dependency.
4	Loop Exchange	Replace for loops with while loops or vice versa.
5	Block Swap	Swap then block of a chosen if statement with its corresponding else block.
6	Switch to If	Replace a switch statement with its equivalent if statement.

A General Optimization Framework for GNN-based Explainable Vulnerability Detection

- ☐ Combinatorial Contrastive Learning-based Robustness Enhancement
- Vulnerability Explanation via Dual-View Causal Inference

How to enhance the robustness of Classifier against random perturbations?

- ➤ Perform data augmentation to construct functionally-equivalent variants.
- Combine self-supervised contrastive learning with supervised contrastive learning to optimize the learned feature representations.

$$\mathcal{L}_{total} = (1 - \lambda)\mathcal{L}_{con}^{self} + \lambda\mathcal{L}_{con}^{sup}$$

A General Optimization Framework for GNN-based Explainable Vulnerability Detection

- Combinatorial Contrastive Learning-based
- Vulnerability Explanation via Dual-View Causal Inference

How to make a trade-off between effectiveness and conciseness?

Combine factual inference with counterfactual inference to search the explanation subgraph.

A General Optimization Framework for GNN-based Explainable Vulnerability Detection

- Combinatorial Contrastive Learning-based
- Vulnerability Explanation via Dual-View Causal Inference

How to make a trade-off between effectiveness and conciseness?

minimize $C(M_k, F_k)$ Factual Inference subject to $S_f(M_k, F_k) > P(\hat{y}_{k,s} | A_k \odot M_k, X_k \odot F_k)$ $S_c(M_k, F_k) > -P(\hat{y}_{k,s} | A_k - A_k \odot M_k, X_k - X_k \odot F_k)$

Dataset

Dataset	# Vul	# Non-vul	# Total	% Ratio
Devign	11,888	14,149	26,037	45.66
ReVeal	1,664	16,505	18,169	9.16
Big-Vul	11,823	253,096	264,919	4.46
CrossVul	6,884	127,242	134,126	5.13
CVEFixes	8,932	159,157	168,089	5.31
Merged	29,844	305,827	335,671	8.89

Baselines

- Devign (NeurIPS'19)
- ReVeal (TSE'21)
- DeepWuKong (TOSEM'21)

Config	Loss	Approach	Acc	Pre	Rec	F1
Default	CE	Devign ReVeal DeepWuKong	89.74 86.05 87.21	32.59 31.43 28.55	31.40 38.45 26.04	31.98 34.59 27.24
	Ours	Devign ReVeal DeepWuKong	88.15 87.42 88.30	34.68 35.96 30.07	37.12 40.61 34.79	35.86 38.14 32.26
$COCA_{Tra}$	InfoNCE	Devign ReVeal DeepWuKong	86.33 84.95 86.20	28.38 29.64 25.99	30.11 34.27 24.83	29.22 31.78 25.40
	NCE	Devign ReVeal DeepWuKong	83.97 81.52 83.06	26.15 26.73 22.40	27.69 31.76 21.46	26.90 29.03 21.92

Dataset

Dataset	# Vul	# Non-vul	# Total	% Ratio
Devign	11,888	14,149	26,037	45.66
ReVeal	1,664	16,505	18,169	9.16
Big-Vul	11,823	253,096	264,919	4.46
CrossVul	6,884	127,242	134,126	5.13
CVEFixes	8,932	159,157	168,089	5.31
Merged	29,844	305,827	335,671	8.89

Baselines

- Devign (NeurIPS'19)
- ReVeal (TSE'21)
- DeepWuKong (TOSEM'21)

Config	Loss	Approach	Acc	Pre	Rec	F1
Default	СЕ	Devign ReVeal DeepWuKong	86.05	32.59 31.43 28.55	31.40 38.45 26.04	31.98 34.59 27.24
	Ours	Devign ReVeal DeepWuKong	87.42	34.68 35.96 30.07	37.12 40.61 34.79	35.86 38.14 32.26
$Coca_{Tra}$	InfoNCE	Devign ReVeal DeepWuKong	86.33 84.95 86.20	28.38 29.64 25.99	30.11 34.27 24.83	29.22 31.78 25.40
	NCE	Devign ReVeal DeepWuKong	83.97 81.52 83.06	26.15 26.73 22.40	27.69 31.76 21.46	26.90 29.03 21.92

Dataset

Dataset	# Vul	# Non-vul	# Total	% Ratio
Devign	11,888	14,149	26,037	45.66
ReVeal	1,664	16,505	18,169	9.16
Big-Vul	11,823	253,096	264,919	4.46
CrossVul	6,884	127,242	134,126	5.13
CVEFixes	8,932	159,157	168,089	5.31
Merged	29,844	305,827	335,671	8.89

Baselines

- Devign (NeurIPS'19)
- ReVeal (TSE'21)
- DeepWuKong (TOSEM'21)

Config	Loss	Approach	Acc	Pre	Rec	F1
Default	CE	Devign ReVeal DeepWuKong	86.05	32.59 31.43 28.55	31.40 38.45 26.04	31.98 34.59 27.24
	Ours	Devign ReVeal DeepWuKong	88.15 87.42 88.30	34.68 35.96 30.07	37.12 40.61 34.79	35.86 38.14 32.26
$COCA_{Tra}$	InfoNCE	Devign ReVeal DeepWuKong	86.33 84.95 86.20	28.38 29.64 25.99	30.11 34.27 24.83	29.22 31.78 25.40
	NCE	Devign ReVeal DeepWuKong	83.97 81.52 83.06	26.15 26.73 22.40	27.69 31.76 21.46	26.90 29.03 21.92

Dataset

Dataset	# Vul	# Non-vul	# Total	% Ratio
Devign	11,888	14,149	26,037	45.66
ReVeal	1,664	16,505	18,169	9.16
Big-Vul	11,823	253,096	264,919	4.46
CrossVul	6,884	127,242	134,126	5.13
CVEFixes	8,932	159,157	168,089	5.31
Merged	29,844	305,827	335,671	8.89

Baselines

- Devign (NeurIPS'19)
- ReVeal (TSE'21)
- DeepWuKong (TOSEM'21)

Config	Loss	Approach	Acc	Pre	Rec	F1
		Devign	89.74	32.59	31.40	31.98
Default	CE	ReVeal	86.05	31.43	38.45	34.59
		DeepWuKong	87.21	28.55	26.04	27.24
		Devign	88.15	34.68	37.12	35.86
	Ours	ReVeal	87.42	35.96	40.61	38.14
		<u>DeepWuKong</u>	88.30	<u>30.0</u> 7	<u>34.79</u>	32.26
$Coca_{Tra}$		Devign	86.33	28.38	30.11	29.22
$COCA_{Tra}$	InfoNCE	ReVeal	84.95	29.64	34.27	31.78
		DeepWuKong	86.20	25.99	24.83	25.40
		Devign	83.97	26.15	27.69	26.90
	NCE	ReVeal	81.52	26.73	31.76	29.03
	<u>L</u>	DeepWuKong	83.06	22.40	21.46	21.92

Baselines

- mVulPreter (TDSC'22)
- IVDetect (ESEC/FSE'21)
- P2IM (ESEC/FSE'21)

Evaluation Metrics

- Mean Statement Precision (MSP)
- Mean Statement Recall (MSR)
- Mean Intersection over Union (MIoU)

Explanation Performance

Config	Approach	MSP	MSR	MIoU
Default	mVulPreter IVDetect P2IM (Devign) P2IM (ReVeal) P2IM (DeepWuKong) CocA _{Exp} (Devign) CocA _{Exp} (ReVeal) CocA _{Exp} (DeepWuKong)	25.86 32.54 27.99 31.04 26.57 33.84 35.61 29.77	29.01 23.79 43.85 46.10 38.12 44.06 52.94 40.16	22.88 17.06 22.56 28.94 23.11 30.89 34.36 25.83
CocATra	IVDetect P2IM (Devign) P2IM (ReVeal) P2IM (DeepWuKong) Coca _{Exp} (Devign) Coca _{Exp} (ReVeal) Coca _{Exp} (DeepWuKong)	39.81 33.01 40.62 32.97 43.61 49.52 40.33	31.64 48.33 55.73 44.85 52.98 58.39 47.61	25.19 29.27 36.29 28.10 39.64 44.97 34.22

Conclusion

Explainable VD Workflow

Our approach: COCA

Injection Sites	Functionally Equivalent	Self-Supervised Contrastive Learning
Localization	Variants	Sample 1
Augmentation		Sample 1* Projection Leaf
Operator Selection		
Transformation Application		Supervised Contrastive Learning
Application		Sample 1
1	+	Sample 1* → E F P
	. TA	Sample 1 Projecto
	lalala	Sample k

No.	Name	Description			
1	Identifier Renaming	Substitute the function/variable name with a random token.			
	2 Operand Swap	Swap the operands of binary logical erations.			
3	Statement Permutation	Swap two lines of statements that have no dependency.			
4	Loop Exchange	Replace for loops with while loops or vice versa.			
5	Block Swap	Swap then block of a chosen if sta ment with its corresponding else blo			
6	Switch to If	Replace a switch statement with equivalent if statement.			

Challenge of Explainable VD

Performance of COCA

Baselines

- mVulPreter (TDSC'22)
- IVDetect (ESEC/FSE'21)
- P2IM (ESEC/FSE'21)

Evaluation Metrics

- Mean Statement Precision (MSP)
- Mean Statement Recall (MSR)
- . Mean Intersection over Union (MIoU)

Explanation Performance

Config	Approach	MSP	MSR	MIoU
Default	mVulPreter	25.86	29.01	22.88
	IVDetect	32.54	23.79	17.06
	P2IM (Devign)	27.99	43.85	22.56
	P2IM (ReVeal)	31.04	46.10	28.94
	P2IM (DeepWuKong)	26.57	38.12	23.11
	CocaExp (Devign)	33.84	44.06	30.89
	Coca _{Exp} (ReVeal)	35.61	52.94	34.36
	Coca _{Exp} (DeepWuKong)	29.77	40.16	25.83
CocATra	IVDetect	39.81	31.64	25.19
	P2IM (Devign)	33.01	48.33	29.27
	P2IM (ReVeal)	40.62	55.73	36.29
	P2IM (DeepWuKong)	32.97	44.85	28.10
	Coca _{Exp} (Devign)	43.61	52.98	39.64
	Coca _{Exp} (ReVeal)	49.52	58.39	44.97
	Coca _{Exp} (DeepWuKong)	40.33	47.61	34.22
		1		N

46th International Conference on Software Engineering

Thanks for listening!

- **Sicongcao1996@gmail.com**
- https://github.com/CocaVul/Coca

