

Gli elementi di memoria: i bistabili I registri

Bistabili Asincroni Bistabili Sincroni: Latch e Flip-Flop Registri

versione del 18/11/03

Circuiti sequenziali

- Nei circuiti sequenziali il valore delle uscite in un determinato istante dipende sia dal valore degli ingressi in quello stesso istante sia dal tempo.
 - Una stessa configurazione di ingresso applicata in due istanti di tempo successivi può produrre due valori d'uscita differenti.
- Un circuito sequenziale ha memoria degli eventi passati e, quindi, richiede degli elementi in grado di conservare informazioni.
 - In un generico istante t l'informazione relativa al "contenuto" di questa memoria è rappresentata nel *concetto di stato*.

- 2 -

Circuiti sequenziali e bistabili

- Gli elementi in grado di conservare informazioni sono detti bistabili.
 - Il termine bistabile deriva dal fatto che tale elemento è stabile in due stati (0 e 1) e che le transizioni di stato sono forzate da un segnale di ingresso.
 - Nota: i bistabili sono caratterizzati dalla volatilità cioè rispettano quanto indicato solo se alimentati.
- La differenza principale tra i vari tipi di elementi di memoria è costituita da:
 - Numero di ingressi dell'elemento di memoria.
 - Modo in cui gli ingressi ne determinano lo stato.

Bistabili: classificazione

- Classificazione dei bistabili:
 - Asincroni
 - Sono privi di un segnale di sincronizzazione e modificano il loro stato rispondendo direttamente ad eventi sui segnali di ingresso.
 - Sincroni
 - sono sensibili ad un segnale di controllo (spesso il clock) e la transizione da uno stato all'altro avviene solo in corrispondenza di un impulso del segnale di controllo.
 - · Ulteriore classificazione dei bistabili sincroni:
 - bistabili sincroni controllati (gated latch);
 - flip-flop.
 - » flip-flop master-slave (a livello o pulse-triggered)
 - » flip-flop edge-triggered (a fronte)

Bistabili asincroni: SR

- Il bistabile asincrono più semplice è il bistabile SR (Set-Reset)
 - Viene utilizzato come blocco base per realizzare bistabili più complessi.

SR

Asincrono

- 5 -

Bistabile asincrono SR - Analisi di funzionamento (1)

Analisi di funzionamento:

- Tempo $t = t_0 = 0$
 - Condizione iniziale: S=0, R=0 e Q=0, Q'=1
- Tempo t=t₁: evento S=1
 - La porta 1 ha in ingresso 1, 0 e in uscita, al tempo t2, Q'=0
- Tempo t=t₂
 - La porta 2 ha in ingresso 0, 0 e in uscita, al tempo t₃, Q=1
- Tempo $t = t_3$
 - La porta 1 ha in ingresso 1,1 e mantiene l'uscita a Q'=0 mentre la porta 2 ha in ingresso 0,0 e mantiene l'uscita a Q=1
- Tempo $t = t_{4}$: evento s = 0
 - La porta 1 ha in ingresso 0,1 e quindi mantiene l'uscita Q'=0 mentre la porta 2 ha in ingresso 0,0 e quindi mantiene l'uscita a Q=1.
 - Il circuito è stabile nello stato Q=1, Q'=0

- 6 -

Bistabile asincrono SR - Analisi di funzionamento (2)

Analisi di funzionamento (cont.):

- Tempo t= t₅: Evento R=1
 - La porta 2 ha in ingresso 1, 0 e in uscita, al tempo t₆, Q=0.
- Tempo t=t₆
 - La porta 1 ha in ingresso 0, 0 e in uscita, al tempo t₇, Q'=1.
- Tempo t=t₇
 - La porta 2 ha in ingresso 1,1 e mantiene l'uscita a Q=0 mentre la porta 1 ha in ingresso 0,0 e quindi mantiene l'uscita a Q'=1.
- Tempo t= t_s: evento R=0
 - La porta 2 ha in ingresso 0,1 e quindi mantiene l'uscita a Q=0 e la porta 1 ha in ingresso 0,0 e quindi mantiene l'uscita a Q'=1
 - Il circuito è stabile nello stato Q=0, Q'=1

Bistabili asincroni: SR

- □ I <mark>segnali</mark> S e R prendono il nome di *Set* e *Reset:*
 - Un 1 su Set porta o ad 1 mentre un 1 su Reset porta o a 0.
- Riassumendo:
 - Un valore 1 sull'ingresso S quando R ha valore 0 porta le uscite allo stato stabile Q=1, Q'=0; riportando a 0 l'ingresso S lo stato delle uscite non cambia;
 - Un valore 1 sull'ingresso R con S a valore 0 porta le uscite allo stato stabile Q=0, Q'=1; riportando a 0 l'ingresso R lo stato delle uscite non cambia.
 - Un valore 0 sugli ingressi S e R non modifica lo stato;
 - La configurazione S=1 e R=1 è una configurazione non ammissibile.
- Osservazione: nelle configurazioni valide le uscite Q e Q' sono complementari per costruzione.

- 7 -

Bistabili asincroni SR: ingressi non ammissibili

- Applicando contemporaneamente su S e R un valore 1 il circuito si porta in uno stato instabile con Q=0, Q'=0; tale configurazione non è ammissibile. Infatti
 - nel passaggio degli ingressi da 11 a 00, non è possibile identificare chi tra S o R cambia per primo;
 - il bistabile asincrono ritorna quindi in modo imprevedibile allo stato 0=0 e Q'=1 oppure allo stato Q=1 e Q'=0
 - Questa condizione è chiamata corsa critica (race condition) o transizione non-deterministica

Descrizione del comportamento dei bistabili

Tabella delle transizioni (o mappa di Karnaugh):

Per i bistabili sincroni spesso vengono riportate le sole configurazioni del clock attivo

- ingressi: ingressi primari i^t, stato presente Q^t
- uscita: stato prossimo Qt+1

Tabella delle eccitazioni

Per i bistabili sincroni spesso vengono riportate le sole configurazioni del clock attivo

- ingressi: stato presente Qt, stato prossimo Qt+1
- uscita: configurazione degli ingressi primari che realizza la transizione
- Equazione di funzionamento (espressione logica)
 - ricavata dalla tabella delle transizioni
 - se sono presenti anche le configurazioni per clock non attivo, in generale viene sintetizzata in modo separato per clock attivo e clock non attivo

- 9 -

- 10 -

Bistabili asincroni SR: descrizioni del comportamento

Rappresentazioni del comportamento di un bistabile SR

Tabella delle transizioni

Espressione logica

Q*: stato prossimo Q : stato presente

Tabella delle eccitazioni

Q	Q*	S	R
0	0	0	-
0	1	1	0
1	0	0	1
1	1	_	0

Diagramma Temporale

Sincronismo

- Un bistabile asincrono modifica il proprio stato solo in relazione ad eventi sugli ingressi
- Il progetto di circuiti digitali può richiedere che la modifica dello stato avvenga in modo controllato
 - Ad esempio, solamente in istanti di tempo ben precisi cosicché eventi transitori non costituiscano eventi significativi
- Questa esigenza impone l'aggiunta di un ingresso di controllo al bistabile
- Il segnale applicato all'ingresso di controllo può essere:
 - Aperiodico
 - Periodico (denominato Clock)
 - · nella maggior parte dei casi

Segnale di clock

- Il clock è un segnale indipendente caratterizzato da un periodo di clock (o ciclo di clock) T_{CK}.
 - Frequenza del clock: $f_{CK}=1/T_{CK}$
- □ Nel periodo T_{CK} il segnale assume il valore logico 1 per un tempo T_H e il valore logico 0 per un tempo T_I
 - Il rapporto T_H / T_{CK} è detto **duty-cycle**
- Il passaggio dal valore 0 al valore 1 è detto fronte di salita
- Il passaggio dal valore 1 al valore 0 è detto fronte di discesa

- 13 -

Tempi di Hold e Set-Up

- Per essere riconosciuto correttamente, un ingresso primario di un bistabile deve rimanere stabile all'interno di una finestra di tempo nell'intorno di un fronte del clock
- Tempo di Set-Up (T,)
 - Intervallo minimo che precede l'evento di clock durante il quale l'ingresso deve essere mantenuto stabile;
- □ Tempo di Hold (T_H)
 - Intervallo minimo che segue l'evento di clock durante il quale l'ingresso deve essere mantenuto stabile
- Ad esempio

 $\mathbf{T}_{\mathbf{H}}$: tempo di *Hold* $\mathbf{T}_{\mathbf{su}}$: tempo di *Set-Up*

T_{pro} : tempo di *propagazione*

- 14 -

Bistabili sincroni: Relazione ingresso-stato

I fattori che differenziano i bistabili sincroni riguardano due aspetti:

- La relazione ingresso-stato (quando gli ingressi sono efficaci)
- La relazione stato-uscita (quando vengono modificate le uscite)
- La relazione ingresso-stato (tipo di temporizzazione) definisce quando gli ingressi modificano lo stato (interno) del bistabile
 - basato sul livello del segnale di controllo
 - Durante tutto l'intervallo di tempo in cui il segnale di controllo è attivo, qualsiasi variazione sui segnali di ingresso influenza il valore dello stato interno del bistabile.
 - bistabili con commutazione a livello.
 - basato sul fronte del segnale di controllo
 - Il valore dello stato interno del bistabile viene aggiornato solamente in corrispondenza di un fronte del segnale di controllo.
 - bistabili con commutazione sul fronte (di salita oppure di discesa).

Bistabili sincroni: Relazione stato-uscita

- La relazione stato-uscita definisce quando lo stato aggiorna le uscite
 - basato sul livello del segnale di controllo
 - Durante tutto l'intervallo di tempo in cui il segnale di controllo è attivo un cambiamento dei segnali di ingresso modifica oltre allo stato interno anche le uscite.
 - Bistabili con questa relazione stato-uscita sono denominati LATCH
 - Il segnale di controllo è solitamente chiamato enable.
 - · Le uscite cambiano quando cambiano gli ingressi
 - basato sul fronte del segnale di controllo
 - Le uscite vengono aggiornate su di un fronte del segnale di sincronismo.
 - Bistabili con questa relazione stato-uscita sono denominati FLIP-FLOP
 - Le uscite cambiano in corrispondenza di un evento del clock

- 15 -

Tabella riassuntiva

		Relazione <i>Stato-Uscita</i>			
		Livello	Fronte		
yresso-Stato	Fronte		Flip-Flop edge-triggered		
Relazione Ingresso-Stato	Livello	Latch con Enable	Flip-Flop Master-Slave		

- 17 -

C

Latch: SR

- Il latch SR è ottenuto aggiungendo al bistabile asincrono SR un circuito di controllo.
 - Sul livello alto di C una variazione sugli ingressi modifica lo stato interno e lo stato interno modifica le uscite Q e Q'.
 - C=1 modalità trasparente;
 - C=0 modalità opaca;

Tabella delle transizioni

Tabella delle eccitazioni

- 18 -

Espressione logica

				-	\wedge		S	וסד
S	R	○ *		LV	Q.,	C	۵	Л
<u> </u>	11	V		0	0	0	_	_
-	-	Q		1	1	۰		
				Ι	Ι	U	-	-
U	0	Q	hold	<u> </u>	Λ	1	Λ.	
Ω	1		reset	0	U		U	_
U	_	0	TCBCC	l n	1	1	1	n
1	Λ	1 1	set	"	-		_	۰
_	U		BCC	1 1	Ω	1	Ω	1
1	1	_	not allowed	-	•	_	•	-
<u> </u>	т.		110c allowed	1 1	1	1	_	0

Q*=C'Q+C(S+R'Q)

Latch: D

- □ II *latch D* è ottenuto a partire da un *latch SR* imponendo che S=R′
 - D: Delay o Data
 - C=1 modalità trasparente;
 - Q segue l'ingresso.
 - · C=0 modalità opaca;
 - Q mantiene l'ultimo ingresso letto.

Tabella delle transizioni

Tabella delle eccitazioni

Q*=C	'Q+CD

C	D	Q*
0	-	Q
1	0	0
1	1	1

Q Q* C D 0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1

Espressione logica

C J K Q*

0 - - Q

1 0 0 Q hold

1 0 1 0 reset

1 1 0 1 set

1 1 1 Q' toggle

Tabella delle transizioni

MILASS OF THE CHICAGO

Latch: JK

- □ II latch JK è simile ad un SR, ma con la configurazione J=K=1 (con C=1) il valore dello stato viene invertito
 - Per J=K=1 si ottiene Q*=Q'

Tabella delle eccitazioni Espressione logica

Q	Q*	С	J	K
0	0	0	-	-
1	1	0	-	-
0	0	1	0	-
0	1	1	1	-
1	0	1	-	1
1	1	1	-	0

Q*=C'Q+C(K'Q+JQ')

- I latch, spesso, non consentono di garantire un comportamento affidabile nella realizzazione di una data funzionalità.
- Esempio 1: analisi del comportamento del latch JK

- Per J=K=1 il bistabile ha un comportamento instabile
 - Le uscite Q e Q'hanno un comportamento oscillatorio ed il valore risultante quando J, K o C cambiano non è noto a priori (corsa critica)
- Per un funzionamento corretto con gli ingressi J=K=1:
 - Un solo cambiamento di stato per ciclo di clock per evitare l'effetto di propagazione indesiderato tra uscite ed ingresso.

Esempio 2: shift-register

- Due problemi:
 - Non produce una singola traslazione di un bit (non rispetta le specifiche)
 - Il risultato dipende:
 - sia dal ritardo di propagazione dei latch;
 - sia dalla durata del valore alto su C.

- 21 -

- 22 -

Flip-Flop

- Per evitare l'effetto di propagazione indesiderata, i bistabili sincroni vengono modificati in modo che lo stato possa modificare le uscite solo in corrispondenza di un evento (fronte) del segnale di controllo
- Flip-Flop:
 - Relazione stato-uscita (aggiornamento della uscita):
 - sul fronte
 - Relazione *ingresso-stato* (aggiornamento dello stato):
 - · a livello (Flip-Flop master-slave)
 - · a fronte (Flip-Flop edge-triggered)

Flip-Flop: SR Master-Slave

- I flip-flop master-slave vengono realizzati utilizzando due latch in cascata che hanno il segnale di sincronismo in contrapposizione di fase
 - Il primo latch sincrono è chiamato latch principale (*master*).
 - Il secondo latch sincrono è chiamato latch ausiliario (slave).
 - I due latch lavorano in contrapposizione di fase
 - · Il percorso di propagazione ingresso uscita non è continuo

Flip-flop master-slave SR (fronte di discesa)

- 23 -

Flip-Flop: D Master-Slave

Flip-flop master-slave D (fronte di discesa)

Tabella delle transizioni

Tabella delle eccitazioni

Espressione logica

D	Q*
0	0
1	1

Q	Q*	D
0	0	0
0	1	1
1	0	0
1	1	1

- 25 -

GUNCHOO)

Flip-Flop: JK Master-Slave

Flip-flop master-slave JK (fronte di discesa)

Tabella delle transizioni

Tabella delle eccitazioni

Espressione logica

J	K	Q*		
0	0	Q	hold	
0	1	0	reset	C=1
1	0	1	set	_
1	1	Q′	toggle	

Q	Q*	J	K	
0	0	0	-	
0	1	1	-	
1	0	-	1	
1	1	-	0	

Q*=JQ'+K'Q

- 26 -

Flip-Flop: T(oggle) Master-Slave

Flip-flop master-slave T (fronte di discesa)

Tabella delle transizioni

Tabella delle eccitazioni

Espressione logica

Т	Q*	
0	Q	
1	Q′	

Q	Q*	Т
0	0	0
0	1	1
1	0	1
1	1	0

Flip-Flop: Master-Slave

Funzionamento:

- Segnale di sincronismo sul livello alto.
 - Il latch *master* è trasparente e modifica il valore dello stato interno al Flip-Flop in relazione ai valori assunti dai segnali di ingresso.
 - Il latch *slave* è opaco e non consente che le uscite vengano modificate.
- Segnale di sincronismo passa al livello basso (fronte di discesa)
 - Il latch master passa da trasparente a opaco mantenendo stabile il valore dello stato interno.
 - Il latch slave passa da opaco a trasparente e lo stato interno aggiorna le uscite.

Il comportamento complessivo vede dunque due fasi:

- Durante il livello attivo alto del segnale di sincronizzazione il valore degli ingressi (ad esempio, S e R) determinano il valore dello stato interno del latch master.
- Sul fronte di discesa del segnale di clock viene aggiornato il valore delle uscite del bistabile che rimane fisso fino al successivo fronte di discesa.

- 27 -

Flip-Flop: Edge-Triggered

- I flip-flop Edge-Triggered vengono realizzati producendo, o fisicamente o funzionalmente, la derivata del segnale di clock
 - Genera un impulso (fisico o funzionale) in corrispondenza di un fronte

Flip-Flop: Edge-Triggered

 Flip-Flop D Edge-Triggered costituito da 3 latch con comportamento globale equivalente a quello prima visto

Flip-Flop D Edge-Triggered

- 30 -

Flip-Flop: Edge-Triggered

- Funzionamento:
 - Per C=1 gli ingressi di Latch SR 3 sono S=0 e R=0
 - Durante C=1→0, il valore su D attiva il latch SR 1 e, successivamente, il latch SR 2 viene attivato.
 - Se D=1, il segnale Q del latch SR 1 viene portato a 1; se D=0 il segnale Q del latch SR 1 resta a 0
- Nota:
 - per C=1 il Latch SR 1 può trovarsi nella conzione instabile 11 (a cui consegue Q=Q'=0); tale situazione viene risolta nel passaggio di C da 1 a 0 producendo uno stato stabile e deterministico che dipende solo dal valore assunto da D durante la transizione.
 - I tempi di *Hold* e *Set-Up* devono essere rispettati.

Latch & Flip-Flop: Pre-set e Clear

- Spesso, nei Flip Flop e nei Latch sono presenti degli ingressi diretti che sono utilizzati per scavalcare gli ingressi dati
 - Gli ingressi diretti sono asincroni
 - Sono utili per:
 - Stabilire lo stato iniziale del Flip-Flop o del Latch;
 - Mantenere il Flip-Flop o il Latch in uno stato particolare indipendentemente dai dati presenti ai terminali di ingresso.

Esempio di simbolo standard con ingressi diretti di Pre-Set e Clear. (FF D su fronte di discesa)

- 31 -

Latch e flip flop

- Tabella riassuntiva conclusiva:
 - Nota: i bistabili *Latch* e *M/S* considerati sono attivi a livello alto. Analoghe considerazioni possono essere effettuale per elementi attivi a livello basso.

Tipo	Ingressi stabili	Quando le uscite sono valide
latch senza clock	Sempre	Ritardo di propagazione dal cambiamento degli ingressi
Latch sensibile a livello	Clock alto (T _{su} e T _H prima del fronte di discesa)	Ritardo di propagazione dal cambiamento degli ingressi
Flip-Flop master/slave	Clock alto (T _{SU} e T _H prima del fronte di discesa)	Ritardo di propagazione dal fronte di discesa del clock
Flip-Flop attivo sul fronte di salita	Transizione 0→1 del Clock (T _{SU} e T _H attorno al fronte di salita)	Ritardo di propagazione dal fronte di salita del clock
Flip-Flop attivo sul fronte di discesa	Transizione 1→0 del Clock (T _{SU} e T _H attorno al fronte di discesa)	Ritardo di propagazione dal fronte di discesa del clock

- 33 -

Tabelle delle Transizioni e delle Eccitazioni

Tabelle delle Transizioni:

S	R	0*	J	K	I
0	0	Q	0	0	Ī
0	1	0	0	1	
1	0	1	1	0	
1	1	_	1	1	

D	
0	
1	

Tabelle delle Eccitazioni:

Q	Q*	ន	R
0	0	0	-
0	1	1	0
1	0	0	1
1	1	-	0

Q	Q*	J	K
0	0	0	-
0	1	1	_
1	0	-	1
1	1	-	0

Q	Q*	D
0	0	0
0	1	1
1	0	0
1	1	1

Q	Q*	Т
0	0	0
0	1	1
1	0	1
1	1	0

Registri

Introduzione

- Circuiti sequenziali speciali
 - Esiste una classe di circuiti sequenziali la cui progettazione potrebbe seguire il processo "classico" di sintesi ma che è più conveniente analizzare in altro modo.

- 34 -

- A questa classe appartengono:
 - · Registri
 - Memorizzano una definita quantità di informazione
 - Possono operare sul contenuto una o più semplici trasformazioni.
 - » Shift destro/sinistro
 - » Caricamento parallelo/seriale
 - Contatori
 - Attraversano ripetutamente un numero definito di stati
 - » Contatori sincoroni
 - » Contatori asincorni

- Un registro è un elemento di memoria in grado di conservare un insieme di bit, denominato parola, su cui può eventualmente operare una o più semplici trasformazioni.
 - Benché si possa utilizzare un qualunque tipo di bistabile, per realizzare i registri si preferisce utilizzare *FF D* (*master-slave* o *edge-triggered*).
- I registri si distinguono sulla base dei seguenti aspetti:
 - Modalità di caricamento dati
 - Parallelo
 - Seriale
 - Modalità di lettura dati
 - Parallelo
 - Seriale
 - Operazioni di scorrimento sui dati:
 - · a destra e/o a sinistra (aritmetico o non aritmetico) e circolare.

- 37 -

Registro parallelo-parallelo

- Esempio di registro a 4 bit.

- 38 -

Registri

- Registro serie-serie (Shift Register Registro a Scorrimento)
 - Esempio di registro a 4 bit

Registri

- Registro serie-parallelo
 - Esempio di registro a 4 bit

- 39 -

Registro parallelo-serie

- Esempio a 4 bit con shift-aritmetico (Shift Destro)
 - In fase di traslazione, ricopia il bit più significativo nella posizione più significativa (estensione del segno)

Registro circolare a 4 bit

- Esempio a 4 bit con rotazione a destra
 - In fase di traslazione, trasferisce il bit meno significativo al posto di quello più significativo, spostando i rimanenti di una posizione a destra.

- 41 -