${\mathbb R}$ المجموعات ${\mathbb N}$ و ${\mathbb Z}$ و ${\mathbb N}$ المجموعات

القدرات المنتظرة

- ·- إدراك العلاقات بين الأعداد والتمييز بين مختلف مجموعات الأعداد.
 - *- تحديد كتابة مناسبة لتعبير جبري حسب الوضعية المدروسة.

${\mathbb R}$ المجموعات ${\mathbb N}$ و ${\mathbb Z}$ و ID المجموعات

أنشطة

E تعني a عنصر من E و تقرأ a تنتمي الى $a \in E$

ضع العلامة × في الخانة المناسبة

1,33	$\sqrt{100}$	$\sqrt{2}$	π	$\frac{22}{7}$	-4	3,14	$-\frac{250}{3}$	5	
									$\in \mathbb{N}$
									∈ Z
									∈ ID
									$\in \mathbb{Q}$
									$\in {\rm I\!R}$

1- مجموعة الأعداد الصحيحة النسبية

تذكير

 $\mathbb{N} = \{0;1;2;3;4;5.....$ مجموعة الأعداد الصحيحة الطبيعية هي *

 \mathbb{Z} الاعداد الصحيحة الطبيعية و مقابلاتها تكون مجموعة الاعداد الصحيحة النسبية يرمز لها ب $\mathbb{Z}=\{\leftarrow,\dots,-4;-3;-2;-1;0;1;2;3;4;\dots,\rightarrow\}$ نكتب

 $-5 \in \mathbb{Z}$ عدد صحيح نسبي نکتب -5

 $\sqrt{3} \notin \mathbb{Z}$ ليس عددا صحيحا نسبيا نكتب $\sqrt{3}$

0 العدد الصحيح النسبي المنعدم

 \mathbb{Z}^* نرمز لمجموعة الاعداد الصحيحة النسبية الغيلر المنعدمة ب $\mathbb{Z}^* = \{\leftarrow; -4; -3; -2; -1; 1; 2; 3; 4; <math>\rightarrow \}$

ملاحظة: كل عدد صحيح طبيعي هو عدد صحيح نسبي

نقول ان المجموعة \mathbb{N} جزء من المجموعة \mathbb{Z} أو المجموعة \mathbb{N} ضمن المجموعة \mathbb{N} نكتب $\mathbb{N} \subset \mathbb{Z}$

2- مجموعة الأعداد العشرية النسبية

 $n\in\mathbb{N}$ و $a\in\mathbb{Z}$ حيث على شكل الاعداد التالية على شكل

-0,256 , -3 , 7 , 3,12

تعریف

کل عدد له کتابة کسریة علی شکل $\frac{a}{10^n}$ حیث $a \in \mathbb{Z}$ و $n \in \mathbb{N}$ یسمی عددا

عشريا نسبيا.

نرمز لُمجموعة الاعداد العشرية النسبية بـ <u>ID</u>

نتائج

أ – العدد العشري له كتابة بعدد منته من الأرقام على يمين الفاصلة.

 $(rac{a}{10^0}$ ب- کل عدد صحیح نسبی a هو عدد عشری نسبی (لأنه یمکن کتابته علی شکل

 $\mathbb{N} \subset \mathbb{Z} \subset ID$ إذن

3- مجموعة الأعداد الجذرية تعريف

b
eq 0 و $b \in \mathbb{Z}$ و $a \in \mathbb{Z}$ حيث $a \in \mathbb{Z}$ و العدد العدد الجدري هو كل عدد يمكن كتابته على شكل و منابقه على مرمز لمجموعة الاعداد الجذرية بـ \mathbb{Q}

لیس عددا جدریا $\sqrt{3}$

نتبحة

کل عدد عشري نسبي هو عدد جدري

 $\mathbb{N} \subset \mathbb{Z} \subset ID \subset \mathbb{Q}$ إذن

4- مجموعة الأعداد الحقيقية

بين أن $\sqrt{2}$ عدد لا جذري -

أرسم مربع ضلعه 1 و حدد طول قطره

- نصف محیط دائرة شعاعها 1 هو عدد لا جذري یرمز له بـ π توجد مقادیر لا یمکن التعبیر عنها بأعداد جذریة ، مثل هذه المقادیر نعبر عنها باعداد لا جذریة.

الاعداد الجذرية و الاعداد لا جذرية تكون مجموعة تسمى مجموعة الاعداد الحقيقية يرمز لها بـ $\mathbb R$

نتبحة

 $\mathbb{N} \subset \mathbb{Z} \subset ID \subset \mathbb{Q} \subset \mathbb{R}$ کل عدد جذری هو عدد حقیقی اذن

${\mathbb R}$ تمثيل المجموعة

 $\Delta(O;I)$ نمثل المجموعة $\mathbb R$ على مستقيم مدرج

ExcelBac.Com

كل نقطة من المستقيم $\Delta(O;I)$ تقبل عددا وحيدا أفصولا لها كل عدد حقيقي هو افصول لنقطة و حيدة من المستقيم $\Delta(O;I)$

 $A(\pi)$ مي النقطة ذات الافصول π نكتب A

العمليات في المجموعة ${\mathbb R}$ و خاصياتها (II

1 – أنشطة نشاط1

$$\frac{5+\frac{1}{3}}{2-\frac{3}{2}} \quad -\frac{2}{3}+\frac{7}{6}-\frac{1}{4}-2 \quad \text{and} \quad -1$$

2-لتكن a و b و a أعداد حقيقية أحسب -2(a+b-c)-3(a-b+c)+4(5a-b)

نشاط2

$$(\sqrt{3} + \sqrt{2} - \sqrt{5})(\sqrt{3} - \sqrt{2} + \sqrt{5})$$
 و $\sqrt{5^2 \times 3^3} + \sqrt{75} - 11\sqrt{3} + 2\sqrt{243}$ و $\sqrt{9 - 4\sqrt{5}}$ ثم بسط $(2 - \sqrt{5})^2$ المسبب أ-أ-2

$$\sqrt{7+2\sqrt{10}}$$
 ; $\sqrt{21-6\sqrt{6}}$ ب- بسط

$$\frac{2-\sqrt{3}}{1-\sqrt{3}}$$
 ; $\frac{1}{\sqrt{2}+1}$ اجعل المقام عددا جذريا للعددين الحقيقيين -3

$$\sqrt{7 + \sqrt{48}} + \sqrt{7 - \sqrt{48}} = 4$$
 -4

نشاط3

2- الجمع و الضرب

أ- الجمع

a+b=b+a \mathbb{R} الجمع تبادلي في \mathbb{R} : لكل a+b=b+a

$$(a+b)+c=a+(b+c)$$
 $\mathbb R$ الجمع تجميعي في $\mathbb R$ لكل a و b و b و a

$$0+a=a+0=a$$
 هو العنصر المحايد للجمع في $\mathbb R$: لكل a من a

$$-a+a=a+\left(-a\right)=0$$
 : $-a$ مقابل هو *

<u>ں- الطرح</u>

ج- الضرب

 $a \times b = b \times a$ \mathbb{R} الضرب تبادلي في \mathbb{R} : لكل $a \times b = b \times a$

$$(a \times b) \times c = a \times (b \times c)$$
 الضرب تجميعي في $\mathbb R$ لكل $a \in b$ و $b \in a$ لكل $*$

$$1 \times a = a \times 1 = a$$
 هو العنصر المحايد لضرب في $\mathbb R$: لكل a من a

$$a^{-1} \times a = a \times a^{-1} = 1$$
 : $\left(a^{-1}\right)$ هو مقلوب هو a منعدم a منعدم a خير منعدم $*$

$$\mathbb{R}$$
 الضرب توزيعي على الجمع في \mathbb{R} : لكل a و b و a ن $*$ ($b+c$) $\cdot a = ba + ca$; $a \cdot (b+c) = ab + ac$

د- الخارج

$$\frac{a}{b} = a \times \frac{1}{b}$$
 \mathbb{R}^* ليكن a من \mathbb{R} و a من a

ذ- قواعد

$$a+c=b+c$$
 لتكّن $a=b:\mathbb{R}$ من *

$$ac = bc$$
 تکافئ $a = b$ تکافئ $*$

$$\mathbb{R}$$
لکل a و b و b من $*$

$$a+c=b+d$$
 فان $c=d$ و $a=b$

$$ac = bd$$
 و $a = b$ فان $a = b$

$$b=0$$
 أو $a=0$ تكافئ $ab=0$ *

$$b \neq 0$$
 و $a \neq 0$ تكافئ $ab \neq 0$

$$\mathbb{R}^*$$
لکل a و a من \mathbb{R} و a من $*$

$$ad = bc$$
 تكافئ $\frac{a}{c} = \frac{b}{d}$

$$\mathbb{R}^*$$
و من \mathbb{R} و من \mathbb{R} و من a *

$$\frac{a}{c} \times \frac{b}{d} = \frac{ab}{cd}$$
 , $\frac{a}{c} + \frac{b}{d} = \frac{ad + bc}{cd}$

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c}$$
 ، $\frac{1}{b} = \frac{c}{b}$ \mathbb{R}^* کاک \mathbb{R} کا

2- الجذور المربعة

أ- تعريف

$$\mathbb{R}^+$$
لیکن x من

x العدد الحقيقي الموجب y الذي يحقق y الذي يحقق y الغدد الموجب

 \sqrt{x} برمز للجذر مربع للعدد

$$x\in\mathbb{R}^+$$
 ; $y=\sqrt{x}$ تكافئ $y\geq 0$; $x=y^2$

ب- نتائج

 \mathbb{R}^+ لیکن x و y من*

$$\sqrt{x}\sqrt{y} = \sqrt{xy}$$
 ; $\sqrt{x^2} = x$; $(\sqrt{x})^2 = x$
 $(y \neq 0)$ $\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}$

$$x = y$$
 تكافئ $\sqrt{x} = \sqrt{y}$

$$\sqrt{x^2} = -x$$
 إذا كان x سالبا فان *

 $-\sqrt{a}$ و \sqrt{a} امه a يوجد عددان حقيقيان مربعهما يساوي a هما a عدد حقيقي ملاحظة:

$$\mathbb{N}^*$$
 لیکن a من \mathbb{R} و a من $*$

$$(a \neq 0) \qquad a^{-n} = \frac{1}{a^n} \qquad \qquad a^n = \underbrace{a \times a \times a \times \dots \times a}_{\text{Note } n}$$

n العدد a^n يسمى قوة العدد a^n العدد -n يسمى قوة العدد a ذات الأس a^{-n}

 $a^0 = 1$ \mathbb{R}^* ليكن a من a ليكن a

 \mathbb{Z} من m و لکل n و x من x -*

$$x^{n}x^{m} = x^{n+m}$$
 $\frac{x^{n}}{x^{m}} = x^{n-m}$ $(xy)^{n} = x^{n}y^{n}$

$$\left(x^{n}\right)^{m} = x^{n \cdot m}$$
 $\frac{x^{n}}{y^{n}} = \left(\frac{x}{y}\right)^{n}$ $x^{-n} = \left(\frac{1}{x}\right)^{n}$

 $\sqrt{x^n} = \sqrt{x}^n$: لکل عدد حقیقی موجب *

ج- الكتابة العلمية لعدد عشري

خ**اصية** (مقبولة)

a و موجب یکتب علی شکل a عدد عشری b عدد صحیح نسبی و کل عدد عشری $1 \le a \le 10$ عدد عشري يحقق

b هذه الكتابة تسمى الكتابة العلمية للعدد

 1.74×10^6 هي 1740000 الكتابة العلمية للعدد

 $3,25 \times 10^{-4}$ هي 0,000325 الكتابة العلمية للعدد

a و عدد صحیح نسبی و عدد عشری b عدد عشری مسلل علی شکل a عدد صحیح نسبی و عدد عشری علی عدد عشری aعدد عشري يحقق $1 \le a \le 10$ عدد عشري $-0,000325 = -3,25 \times 10^{-4}$ $-1,74 \times 10^{6} = -1740000$

4- متطابقات هامة

$$(a-b)^{2} = a^{2} - 2ab + b^{2} \qquad (a+b)^{2} = a^{2} + 2ab + b^{2} \qquad \mathbb{R}$$

$$a^{2} - b^{2} = (a-b)(a+b)$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

5- النشر و التعميل

نشر جداء هو تحويله إلى مجموع تعميل مجموع هو تحويله إلى جداء