MAT224 Notes

Tianyu Du

January 2018

Info.	
TIIIO.	

Created: January. 9 2018 Last modified: March 28, 2018

Partial revision (Lec.1 - Lec.8): February 1, 2018

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Contents

1	\mathbf{Lec}	ture1 Jan.9 2018
	1.1	Vector spaces
	1.2	Examples of vector spaces
	1.3	Some properties of vector spaces
2	Lec	ture2 Jan.10 2018
	2.1	Some properties of vector spaces-Cont'd
	2.2	Subspaces
	2.3	Examples of subspaces
	2.4	Recall from MAT223
3	Lec	ture3 Jan.16 2018
	3.1	Linear Combination
	3.2	Combination of subspaces
4	Lec	ture4 Jan.17 2018
	4.1	Cont'd
		Linear Independence

5	Lect	ture5 Jan.23 2018	15
	5.1	Linear independence, recall definitions	15
		5.1.1 Alternative definitions of linear independency	15
	5.2	Basis	15
	5.3	Dimensions	18
		5.3.1 Consequences of fundamental theorem	19
		5.3.2 Use dimension to prove facts about linearly (in)dependent	-
		sets and subspaces	19
6	Lect	ture6 Jan.24 2018	20
	6.1	Basis and Dimension	20
7	Lect	ture7 Jan.30. 2018	23
	7.1	Linear Transformations	23
	7.2	Properties of linear transformations	24
	7.3	Definitions	26
8	Lect	ture8 Jan.31 2018	27
	8.1	Linear Transformations	27
	8.2	Applications of dimension theorem	29
9	Lect	ture9 Feb.6 2018	30
	9.1	Applications of dimension theorem	30
	9.2	Isomorphisms	32
	9.3	Coordinates	34
10		ture10 Feb.7 2018	35
	10.1	Matrix of linear transformation	35
11	lect	ure11 Feb. 13 2018	37
		Algebra of Transformation	37
		Matrix of composition	38
		Inverse transformations	39
	11.4	Change of basis	40
12	Lect	ture12 Feb. 14 2018	41
13	Lect	ture13 Feb. 27 2018	43
	-	Recall	43
	13.2	Diagonalization	43
		How to find eigenvalues and eigenvectors of T	43

14	Lecture14 Feb. 28 2018	45
	Lecture15 Mar. 6 2018 15.1 Fields	48 48
	15.2 Complex Numbers	49
	Lecture16 Mar. 7 2018 16.1 Vector space over a field	49 49 50
17	Lecture 17 Mar. 13 2018	50
18	Lecture 18 Mar. 14 2018	51
	18.1 Triangular form and Nilpotent transformations	
	18.3 Lecture 19 Mar. 20 2018	54
	Lecture21 Mar. 27 2018 19.1 Goal	55 55
20	Lecture22 Mar. 28 2018	60
	20.1 Examples on finding JCF	60
1	Lecture1 Jan.9 2018	
1.1	Vector spaces	

Definition A real 1 vector space is a set V together with two vector operations vector addition and scalar multiplication such that

- 1. **AC** Additive Closure: $\forall \vec{x}, \vec{y} \in V, \vec{x} + \vec{y} \in V$
- 2. **C** Commutative: $\forall \vec{v}, \vec{y} \in V, \vec{x} + \vec{y} = \vec{y} + \vec{x}$
- 3. **AA** Additive Associative: $\forall \vec{x}, \vec{y}, \vec{z} \in V, (\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- 4. **Z** Zero Vector: $\exists \vec{0} \in V s.t. \forall \vec{x} \in V, \vec{x} + \vec{0} = \vec{x}$
- 5. **AI** Additive Inverse: $\forall \vec{x} \in V, \exists -\vec{x} \in V s.t. \vec{x} + (-\vec{x}) = \vec{0}$
- 6. **SC** Scalar Closure: $\forall \vec{x}, c \in \mathbb{R}, c\vec{x} \in V$

¹A vector space is real if scalar which defines scalar multiplication is real.

- 7. **DVA** Distributive Vector Additions: $\forall \vec{x}, \vec{y} \in V, c \in \mathbb{R}, c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$
- 8. **DSA** Distributive Scalar Additions: $\forall \vec{x} \in V, c, d \in \mathbb{R}, (c+d)\vec{x} = c\vec{x} + d\vec{x}$
- 9. **SMA** Scalar Multiplication Associative: $\forall \vec{x} \in V, c, d \in \mathbb{R}, (cd)\vec{x} = c(d\vec{x})$
- 10. **O** One: $\forall \vec{x} \in V, 1\vec{x} = \vec{x}$

Note For V to be a vector space, need to know or be given operations of vector additions multiplication and check <u>all</u> 10 properties hold.

1.2 Examples of vector spaces

Example 1 \mathbb{R}^n w.r.t.² usual component-wise addition and scalar multiplication.

Example 2 $\mathbb{M}_{m \times n}(\mathbb{R})$ set of all $m \times n$ matrices with real entry. w.r.t. usual entry-wise addition and scalar multiplication.

Example 3 $\mathbb{P}_n(\mathbb{R})$ set of polynomials with real coefficients, of degree less or equal to n, w.r.t. usual degree-wise polynomial addition and scalar multiplication.

Note If define $\mathbb{P}_n^{\star}(\mathbb{R})$ as set of all polynomials of degree <u>exactly equal</u> to n w.r.t. normal degree-wise multiplication and addition.

Then it is **NOT** a vector space.

Explanation: $(1+x^n), (1-x^n) \in \mathbb{P}_n^{\star}(\mathbb{R})$ but $(1+x^n) + (1-x^n) = 2 \notin \mathbb{P}_n^{\star}(\mathbb{R})$

Example 4 Something unusual, define V as

$$V = \{(x_1, x_2) | x_1, x_2 \in \mathbb{R}\}\$$

with vector addition

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1 + 1, x_2 + y_2 + 1)$$

²w.r.t. is the abbreviation of "with respect to".

and scalar multiplication

$$c(x_1, x_2) = (cx_1 + c - 1, cx_2 + c - 1)$$

This is a vector space.

1.3 Some properties of vector spaces

Suppose V is a vector space, then it has the following properties.

Property 1 The zero vector is unique. *proof.*

Assume
$$\vec{0}, \vec{0^*}$$
 are two zero vectors in V WTS: $\vec{0} = \vec{0^*}$ Since $\vec{0}$ is the zero vector, by Z $\vec{0^*} + \vec{0} = \vec{0^*}$ Similarly, $\vec{0} + \vec{0^*} = \vec{0}$

Also,
$$\vec{0} + \vec{0^*} = \vec{0^*} + \vec{0}$$
 by commutative vector addition.
So, $\vec{0^*} = \vec{0}$

Property 2 $\forall \vec{x} \in V$, the additive inverse $-\vec{x}$ is unique. *proof.*

Exercise. (By Cancellation Law)

Property 3 $\forall \vec{x} \in V, 0\vec{x} = \vec{0}.$ proof.

By property of number 0:
$$0\vec{x} = (0+0)\vec{x}$$

By DSA: $0\vec{x} = 0\vec{x} + 0\vec{x}$
By AI, $\exists (-0\vec{x})s.t.$
 $0\vec{x} + (-0\vec{x}) = 0\vec{x} + 0\vec{x} + (-0\vec{x})$
By AA
 $\implies 0\vec{x} = \vec{0}$

Property 4 $\forall c \in \mathbb{R}, c\vec{0} = \vec{0}$ proof. $c\vec{0} = c(\vec{0} + \vec{0}) = c\vec{0} + c\vec{0}$

2 Lecture Jan. 10 2018

2.1 Some properties of vector spaces-Cont'd

Property 5 For a vector space V, $\forall \vec{x} \in V$, $(-1)\vec{x} = (-\vec{x})$. (we could use this property to find the <u>additive inverse</u> with scalar multiplication with (-1))³. proof.

$$(-\vec{x})=(-\vec{x})+\vec{0}$$
 By property of zero vector
$$=(-\vec{x})+0\vec{x}$$
 By property3
$$=(-\vec{x})+(1+(-1))\vec{x}$$
 By property of zero as real number
$$=(-\vec{x})+1\vec{x}+(-1)\vec{x}$$

$$=\vec{0}+(-1)\vec{x}$$

$$=(-1)\vec{x}$$

Property 6 For a vector space V, let $\vec{x} \in V$ and $c \in \mathbb{R}$, then,

$$c\vec{x} = \vec{0} \implies c = 0 \lor \vec{x} = \vec{0}$$

proof.

if
$$c = 0 \implies True$$

else $c^{-1}c\vec{x} = c^{-1} = \vec{0}$
 $\implies (c^{-1}c)\vec{x} = \vec{0}$
 $\implies 1\vec{x} = \vec{0}$
 $\implies \vec{x} = \vec{0}$
 $\implies True$

 $^{^{3}}$ The scalar multiplication here is the one defined in vector space V.

2.2 Subspaces

Loosely A subspace is a space contained within a vector space.

Definition Let V be a vector space and $W \subseteq V$, W is a **subspace** of V if W is itself a vector space w.r.t. operations of vector addition and scalar multiplication from V.

Theorem Let V be a vector space, and $W \subseteq V$, W has the <u>same</u>⁴ operations of vector addition and scalar multiplication as in V. Then, W is a subspace of V <u>iff</u>:

- 1. W is non-empty. $W \neq \emptyset$.
- 2. W is closed under addition. $\forall \vec{x}, \vec{y} \in W, \ \vec{x} + \vec{y} \in W$.
- 3. W us closed under scalar multiplication. $\forall \vec{x} \in W, c \in \mathbb{R}, c\vec{x} \in W$.

Proof.

Forward:

If W is a subspace

$$\implies \vec{0} \in W$$

$$\implies W \neq \emptyset$$

Also, additive and scalar multiplication closures \implies (ii), (iii)

Backward:

Let $W \neq \emptyset \land (ii) \land (iii)$

WTS. 10 axioms in definition of vector space hold

- $(ii) \implies \text{Additive Closure}$
- $(iii) \implies \text{Scalar Multiplication Clousure}$

Because $W \subseteq V$, and V is a vector space, so properties hold $\forall \vec{w} \in W$.

Additive inverse: by property 5 and scalar multiplication closure,

$$\forall \vec{x} \in W, -\vec{x} = (-1)\vec{x} \in W.$$

Also, existence of additive identity: $(-\vec{x}) + \vec{x} = \vec{0} \in W$.

⁴Other properties of vector spaces related to vector addition and scalar multiplication are immediately inherited from the parent vector space.

2.3 Examples of subspaces

Example 1 Let $V = \mathbb{M}_{n \times n}(\mathbb{R})$, V is a subspace.

Example 2 Define W as

$$W = \{A \in \mathbb{M}_{n \times n}(\mathbb{R}) | A \text{ is not symmetric} \}$$

Explanation: Let
$$A_1 = \begin{bmatrix} 0 & -2 \\ -1 & 0 \end{bmatrix}$$
 and $A_2 = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$ $A_1, A_2 \in W$ but

$$A_1 + A_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \notin W.$$

Since there's no additive identity in set W, so W failed to be a vector space, therefore W is not a subspace.

Example 3 Let $V = \mathbb{P}_2(\mathbb{R})$, is W defined as following,

$$W = \{ p(x) \in V | p(1) = 0 \}$$

a subspace of V? proof.

WTS: (i)

Let
$$z(x) = 0$$
 or $z(x) = x^2 - 1, \forall x \in \mathbb{R}$

$$\implies W \neq \emptyset$$

WTS: (ii)

Let $p_1, p_2 \in W$, which means $p_1(1) = p_2(1) = 0$

$$(p_1 + p_2)(1) = p_1(1) + p_2(1) = 0 + 0 = 0$$

$$\implies p_1 + p_2 \in W$$

 \implies W is closed under addition.

WTS: (iii) Let $p \in W$ and $c \in \mathbb{R}$

$$\implies p(1) = 0$$

Since
$$(c * p)(x) = c * p(x)$$
, we have $(c * p)(1) = c * p(1) = c * 0 = 0$
 $\implies cp \in W$.

 $\rightarrow cp \in W$.

So W is a subspace of V.

2.4 Recall from MAT223

Let $A \in \mathbb{M}_{m \times n}(\mathbb{R})$, then Nul(A) is a subspace of \mathbb{R}^n and Col(A) is a subspace of \mathbb{R}^m .

3 Lecture 3Jan. 16 2018

3.1 Linear Combination

Definition Let V be a vector space, $\vec{v_1}, \ldots, \vec{v_n} \in V$, $a_1, \ldots, a_n \in \mathbb{R}$ the expression

$$c_1\vec{v_1} + \cdots + c_n\vec{v_n}$$

is called a linear combination of $\vec{v_1}, \ldots, \vec{v_n}$.

Theorem Let V be a vector space, W is a subspace of V, $\forall \vec{w_1}, \dots \vec{w_k} \in W, c_1, \dots, c_k \in \mathbb{R}$, we have

$$c_1\vec{w_1} + \dots + c_k\vec{w_k} \in W$$

Subspaces are <u>closed under linear combinations</u>, since subspaces are closed under scalar multiplication and vector addition.

Theorem Let V be a vector space, let $\vec{v_1}, \ldots, \vec{v_k} \in V$ then the set of all linear combination of $\vec{v_1}, \ldots, \vec{v_k}$

$$W = \{ \sum_{i=1}^{k} c_i \vec{v_i} | c_i \in \mathbb{R} \forall i \}$$

is a subspace of V. *proof.*

Consider
$$\vec{0} \in W$$

So, $W \neq \emptyset$

Let $c \in \mathbb{R}$, Let $\vec{x} \in W \land \vec{y} \in W$

By definition of span, we have,

$$\vec{x} = \sum_{i=1}^k a_i \vec{v_i}, \quad \vec{y} = \sum_{i=1}^k b_i \vec{v_i}$$

Consider, $\vec{x} + c\vec{y}$

$$\vec{x} + c\vec{y} = \sum_{i=1}^{k} a_i \vec{v_i} + c \sum_{i=1}^{k} b_i \vec{v_i} = \sum_{i=1}^{k} (a_i + cb_i) \vec{v_i} \in W$$

Definition Let V be a vector space, $\vec{v_1}, \ldots, \vec{v_k} \in V$, **span** of the set of vectors $\{\vec{v_i}\}_{i=1}^k$ is defined as the collection of all possible linear combinations of $\{\vec{v_i}\}_{i=1}^k$. By pervious theorem, span is a subspace.

3.2 Combination of subspaces

Definition Let W_1, W_2 be two sets, then the **union** of W_1, W_2 is defined as:

$$W_1 \cup W_2 = \{ \vec{w} \mid \vec{w} \in W_1 \lor \vec{w} \in W_2 \}$$

the **intersection** of W_1, W_2 is defined as:

$$W_1 \cap W_2 = \{ \vec{w} \mid \vec{w} \in W_1 \land \vec{w} \in W_2 \}$$

Now consider W_1, W_2 to be two subspaces of vector space V, then we have,

- 1. $W_1 \cup W_2$ is **not** a subspace.
- 2. $W_1 \cap W_2$ is a subspace.

proof.

Falsify the statement by providing counter-example:

Consider.

$$W_{1} = \{(x_{1}, x_{2}) \mid x_{1} \in \mathbb{R}, x_{2} = 0\}$$

$$W_{2} = \{(x_{1}, x_{2}) \mid x_{2} \in \mathbb{R}, x_{1} = 0\}$$

$$\binom{0}{1} \in W_{1} \cup W_{2} \quad \binom{1}{0} \in W_{1} \cup W_{2}$$

$$\text{But}, \quad \binom{0}{1} + \binom{1}{0} = \binom{1}{1} \notin W_{1} \cup W_{2}$$

proof.

Because W_1 and W_2 are both subspaces, so $\vec{0} \in W_1 \cap W_2 \implies W_1 \cap W_2 \neq \emptyset$ Let $\vec{x}, \vec{y} \in W_1 \cap W_2, c \in \mathbb{R}$ Consider, $\vec{x} + c\vec{y}$ Sine W_1, W_2 are subspaces, $\vec{x} + c\vec{y} \in W_1 \wedge \vec{x} + c\vec{y} \in W_2$ $\implies \vec{x} + c\vec{y} \in W_1 \cap W_2$ So, $W_1 \cap W_2$ is a subspace.

Definition Let W_1, W_2 be subspaces of vector space V, define the **sum** of two subspaces as:

$$W_1 + W_2 = \{ \vec{x} + \vec{y} \mid \vec{x} \in W_1 \land \vec{y} \in W_2 \}$$

Note Let $\vec{x} = \vec{0} \in W_1$, $\forall \vec{y} \in W_2$, $\vec{y} \in W_1 + W_2$ so that, $W_2 \subseteq W_1 + W_2$. Similarly, let $\vec{y} = 0 \in W_2$, $\forall \vec{x} \in W_1$, $\vec{x} \in W_1 + W_2$. so that, $W_1 \subseteq W_1 + W_2$. So we have $\forall \vec{v} \in W_1 \cap W_2$, $\vec{v} \in W_1 + W_2$. So that,

$$W_1 \cap W_2 \subseteq W_1 + W_2$$

Note $W_1 + W_2$ is a subspace of V. proof.

Let
$$\vec{x_1}, \vec{x_2} \in W_1, \vec{y_1}, \vec{y_2} \in W_2$$

By properties of subspaces,
 $\forall c \in \mathbb{R}, \vec{x_1} + c\vec{x_1} \in W_1 \land \vec{y_2} + c\vec{y_2} \in W_2$
Consider, $\vec{x_1} + \vec{y_1} \in W_1 + W_2, \vec{x_2} + \vec{y_2} \in W_1 + W_2$
 $(\vec{x_1} + \vec{y_1}) + c(\vec{x_2} + \vec{y_2})$
 $= (\vec{x_1} + c\vec{x_2}) + (\vec{y_1} + c\vec{y_2}) \in W_1 + W_2$

Definition(Unique Representation) Let W_1, W_2 be subspaces of vector space V, say V is **direct sum** of W_1 and W_2 , written as $V = W_1 \bigoplus W_2$, if every $\vec{x} \in V$ can be written <u>uniquely</u> as $\vec{x} = \vec{w_1} + \vec{w_2}$ where $\vec{w_1} \in W_1$ and $\vec{w_2} \in W_2$.

Equivalently Let W_1 and W_2 be subspaces of V, $V = W_1 \bigoplus W_2 \iff V = W_1 + W_2 \wedge W_1 \cap W_2 = \{\vec{0}\}.$

4 Lecture 4 Jan. 17 2018

4.1 Cont'd

Cont'd Proof of Theorem *proof.*

(Forward direction) Suppose
$$V = W_1 \bigoplus W_2$$

WTS. $V = W_1 + W_2 \wedge W_1 \cap W_2 = \{\vec{0}\}$

Let $V = W_1 \bigoplus W_2$
 $\Rightarrow \forall \vec{x} \in V$, can be written uniquely as $\vec{x} = \vec{w_1} + \vec{w_2}, \ \vec{w_1} \in W_1, \ \vec{w_2} \in W_2$
 $\Rightarrow V = W_1 + W_2$ by definition of sum .

Let $\vec{x} \in W_1 \cap W_2$

Decomposition, let $\vec{z} \in W_1, \vec{0} \in W_2$
 $\vec{z} = \vec{z} + \vec{0}, \ \vec{z} \in W_1, \vec{0} \in W_2$
 $\vec{z} = \vec{0} + \vec{z}, \ \vec{0} \in W_1, \vec{z} \in W_2$

Since decomposition is unique, $\vec{z} = \vec{0}$

So, $W_1 \cap W_2 = \{\vec{0}\}$

(Backward direction) Suppose $V = W_1 + W_2 \wedge W_1 \cap W_2 = \{\vec{0}\}$

WTS. $V = W_1 \bigoplus W_2$

Assume $\vec{x} = \vec{w_1} + \vec{w_2}, \ \vec{w_1} \in W_1, \vec{w_2} \in W_2$
 $\vec{x} = \vec{w_1}' + \vec{w_2}', \ \vec{w_1}' \in W_1, \vec{w_2}' \in W_2$
 $\Rightarrow \vec{w_1} + \vec{w_2} = \vec{w_1}' + \vec{w_2}'$
 $\Rightarrow \vec{w_1} - \vec{w_1}' = \vec{w_2}' - \vec{w_2}$

Where, by definition of subspace, $\vec{w_1} - \vec{w_1}' \in W_1 \wedge \vec{w_2}' - \vec{w_2} \in W_2$

So, $\vec{w_1} - \vec{w_1}' = \vec{w_2}' - \vec{w_2} \in W_1 \cap W_2$

Since $W_1 \cap W_2 = \{\vec{0}\}$
 $\Rightarrow \vec{w_1} = \vec{w_1}' \wedge \vec{w_2} = \vec{w_2}'$

So the decomposition is unique.

4.2 Linear Independence

Theorem (Redundancy theorem) Let V be a vector space, $\{\vec{x_1}, \dots \vec{x_n}\}$, let $\vec{x} \in \{\vec{x_1}, \dots \vec{x_n}\}$, then

$$span\{\vec{x_1}, \dots \vec{x_n}, \vec{x}\} = span\{\vec{x_1}, \dots \vec{x_n}\}$$

we say \vec{x} is the **redundant** vector that contributes nothing to the span. proof.

let
$$\vec{x} \in span\{\vec{x}, \dots, \vec{x_n}\}$$

$$\vec{x} = \sum_{i=1}^{n} c_i \vec{x_i} \text{ for } c_i \in \mathbb{R} \ \forall i$$
So, $span\{\vec{x_1}, \dots, \vec{x_n}, \vec{x}\} = \{\sum_{i=1}^{n} a_i \vec{x_i} + z \vec{x} \mid a_i, z \in \mathbb{R} \forall i\}$

$$= \{\sum_{i=1}^{n} a_i \vec{x_i} + z \sum_{i=1}^{n} c_i \vec{x_i} \mid a_i, c_i \in \mathbb{R} \forall i\}$$

$$= \{\sum_{i=1}^{n} (a_i + z c_i) \vec{x_i} \mid a_i, c_i \in \mathbb{R} \forall i\}$$

$$\text{Let } d_i = a_i + z c_i \in \mathbb{R}$$

$$= \{\sum_{i=1}^{n} d_i \vec{x_i} \mid d_i \in \mathbb{R} \forall i\}$$

$$= span\{\vec{x_1}, \dots, \vec{x_n}\}$$

Definition Let V be a vector space, let $\{\vec{x_1}, \dots, \vec{x_n}\} \in V$, we say $\{v_i\}_{i=1}^n$ is **linearly independent** if the only set of scalars $\{c_1, \dots, c_n\}$ that satisfies,

$$\sum_{i=1}^{n} c_i \vec{x_i} = 0$$

is $\{0, \dots, 0\}$.

Definition In contrast, we say a set of vector, with size n, is **linearly** dependent if

$$\exists \vec{c} \neq \vec{0} \in \mathbb{R}^n, \ s.t. \ \sum_{i=1}^n c_i \vec{v_i} = 0$$

Theorem Let V be a vector space, $\{\vec{v_i}\}_{i=1}^n \in V$ is linearly dependent if and only if,

$$\exists \vec{x} \in \{\vec{v_i}\}_{i=1}^n \ s.t. \ \vec{x_j} \in span\{\{\vec{v_i}\}_{i=1}^n \setminus \{\vec{x}\}\}\$$

Theorem Let V be a vector space, $\{\vec{v_i}\}_{i=1}^n \in V$ is linearly independent if and only if,

$$\forall \vec{x} \in \{\vec{v_i}\}_{i=1}^n, \ \vec{x_i} \notin span\{\{\vec{v_i}\}_{i=1}^n \setminus \{\vec{x}\}\}\$$

5 Lecture Jan. 23 2018

5.1 Linear independence, recall definitions

Acknowledgement: special thanks to Frank Zhao.

Definition Let $\{\vec{x_1}, \dots \vec{x_k}\}$ is **linearly independent** if only scalars $c_1 \dots c_k$ s.t.

$$\sum_{i=1}^{k} c_1 \vec{x_k} = 0(\star)$$

are $c_1 = \dots = c_k = 0$

linearly dependent means at least one $c_i \neq 0$, (\star) still holds.

5.1.1 Alternative definitions of linear independency

Definition(Alternative.1) $\{\vec{x_1} \dots \vec{x_k}\}$ is linearly independent iff none of them can be written as a linear combination of the remaining k-1 vectors.⁵

Definition(Alternative.2) $\{\vec{x_1} \dots \vec{x_k}\}$ is **linearly dependent** iff at least one of them can be written as a linear combination of the remaining k-1 vectors. ⁶

5.2 Basis

Definition Let V be a vector space, a non-empty⁷ set S of vectors from V is a **basis** for V if

1.
$$V = span\{S\}$$

⁵See theorem from the pervious lecture.

 $^{^6\}mathrm{See}$ theorem from the pervious lecture.

⁷Specially, for an empty set, we define $span\{\emptyset\} = \{\vec{0}\}$

2. S is linearly independent.

Theorem (characterization of basis) A non-empty subset $S = \{\vec{x_i}\}_{i=1}^n$ of vector space V is basis for V iff every $\vec{x} \in V$ can be written <u>uniquely</u> as linear combination for vectors in S.

proof.

Forwards

Suppose S is a basis for V

So every $\vec{x} \in V$ can be written as a linear combination of vectors in S

To prove the uniqueness, assume two expressions of $\vec{x} \in V$

$$\vec{x} = \begin{cases} c_1 \vec{x_1} + \dots + c_k \vec{x_k} \\ b_1 \vec{x_1} + \dots + d_k \vec{x_k} \end{cases}$$

Consider.

$$c_1\vec{x_1} + \dots + c_k\vec{x_k} - (b_1\vec{x_1} + \dots + d_k\vec{x_k}) = \vec{0}$$

$$\iff \sum_{i=1}^{k} (c_i - b_i) \vec{x_1} = \vec{0}$$

Since vectors in basis S are linear independent,

$$c_i = b_i \forall i \in \mathbb{Z} \cap [1, k]$$

So the representation is unique.

Backwards

Suppose every $\vec{x} \in V$ can be written uniquely as linear combination of vectors in S.

WTS: $V = span\{S\} \land S$ is linearly independent

By the assumption, spanning set is shown.

All we need to show is linear independence.

Consider,

$$\sum_{i=1}^{n} c_i \vec{x}_i = \vec{0}$$

Also, we know

$$\sum_{i=1}^{n} 0\vec{x_i} = \vec{0}$$

By the uniqueness of representation

We have identical expression
$$\sum_{i=1}^{n} c_i \vec{x}_i = \sum_{i=1}^{n} 0 \vec{x}_i$$

$$\therefore c_i = 0 \ \forall i \in \mathbb{Z} \cap [1, n]$$

Example

$$V = \{(x_1, x_2) \mid x_1, x_2 \in \mathbb{R}\}$$
$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1 + 1, x_2 + y_2 + 1)$$
$$c(x_1, x_2) = (cx_1 + c - 1, cx_2 + c - 1)$$

Show that $\{(1,0),(6,3)\}$ is a basis of V.

By theorem, $\{(1,0),(6,3)\}$ is basis if every $(a,b) \in V$ can be written uniquely as linear combination of $\{(1,0),(6,3)\}$.

 \exists unique scalars $c_1, c_2 \in \mathbb{R}$ s.t. $c_1(1,0) + c_2(6,3) = (a,b)$

proof.

By definition of scalar multiplication and vector addition in this space,

Consider
$$(a, b) = c_1(1, 0) + c_2(6, 3) = (2c_1 - 1, c_1 - 1) + (7c_2 - 1, 4c_2 - 1)$$

= $(2c_1 + 7c_2 - 1, c_1 + 4c_2 - 1)$

Consider the coefficients of variables

$$\begin{cases} 2c_1 + 7c_2 - 1 = a \\ c_1 + 4c_2 - 1 = b \end{cases}$$

WTS, the above system of linear equations has unique solution for all a, b

The system has a unique solution $\forall a, b \in \mathbb{R}$

Since the coefficient matrix has rank 2

$$rank(\begin{pmatrix} 2 & 7 \\ 1 & 4 \end{pmatrix}) = 2$$

Since obviously the columns are linearly independent.

5.3 Dimensions

Definition For a vector space V, the **dimension** of V is the minimum number of vectors required to span V.

Fundamental Theorem if V vector space is spanned by m vectors, then any set of more than m vectors from V must be <u>linearly dependent</u>.

Fundamental Theorem (Alternative) If V is vector space spanned by m vectors, then any <u>linearly independent</u> set in V must contain less or equal to m vectors.

5.3.1 Consequences of fundamental theorem

Theorem if $S = \{\vec{v}_i\}_{i=1}^k$ and $T = \{\vec{w}_i\}_{i=1}^l$ are two bases of vector space V then l = k. Bases have the same size.

proof.

Since S spans V and T is linearly independent

$$\therefore l \leq k$$

(flip) Since T spans V and S is linearly independent

Definition So we can define the **dimension** of V, as dim(V) as the number vectors in <u>any</u> basis for V. For special case $V = \{\vec{0}\}$, dim(V) = 0.

Example

- $dim(\mathbb{R}^n) = n$
- $dim(\mathbb{P}_n(\mathbb{R})) = n+1$
- $dim(\mathbb{M}_{m\times n}(\mathbb{R})) = m\times n$

5.3.2 Use dimension to prove facts about linearly (in)dependent sets and subspaces

Theorem If V is a vector space, dim(V) = n, $S = \{\vec{x_k}\}_{i=1}^k$ is subset of V, if k > n then S is <u>linearly dependent</u>.

Note $k \leq n \Rightarrow S$ is linear dependent.

Theorem If W is subspace of vector space V, then

- 1. $dim(W) \leq dim(V)$
- 2. $dim(W) = dim(V) \iff W = V$

proof.

(1) Suppose
$$dim(V) = n, dim(W) = k$$

WTS, $k \le n$

Any basis for W is a linearly independent set of k vectors from V.

Since V is spanned by n vectors, since dim(V) = n

By fundamental theorem, $k \leq n$

$$\iff dim(W) \leq dim(V)$$

(2) By contradiction, assume dim(V) = dim(W) = n but $V \neq W$ Then $\exists \vec{x} \in V \land \vec{x} \notin W$

Take S as a basis of W, then $\vec{x} \notin span\{S\}$

Then $S \cup \vec{x}$ is linearly independent

 $\implies S \cup \{\vec{x}\}\$ is linearly independent in V containing n+1 vectors

This contradicts the assumption by fundamental theorem since dim(V) = n so it could not contain more than n linearly independent vectors

6 Lecture 6 Jan. 24 2018

6.1 Basis and Dimension

Theorem Let V be a vector space, S is a spanning set of V, and I is a linearly independent subset of V, s.t. $I \subseteq S$, then \exists basis B for V s.t. $I \subseteq B \subseteq S$.

Explaining

- 1. Any spanning set for V cab be **reduced** to basis for V by removing the linearly dependent(redundant) vector in the spanning set, using <u>redundancy theorem</u> to get a linearly independent spanning set.
- 2. Linear independent set can be enlarged to a basis for V.

proof.

omitted.

20

Corollary Let V be a vector space and dim(V) = n, any set of n linearly independent vectors from V is a basis for V.

proof. If n linearly independent vectors did not span V, then could be enlarged to a basis of V by pervious theorem, but then have a basis containing more than n vectors from V, which is impossible by the fundamental theorem since we given the dim(V) = n, proven by contradiction.

Example Let $V = P_2(\mathbb{R})$, $p_1(x) = 2 - 5x$, $p_2(x) = 2 - 5x + 4x^2$, find $p_3 \in P_2(\mathbb{R})$ s.t. $\{p_1(x), p_2(x), p_3(x)\}$ is basis for $P_2(\mathbb{R})$

Note Since $dim(P_2(\mathbb{R})) = 3$ so any 3 linearly independent vectors from $P_2(\mathbb{R})$ will be a basis for $P_2(\mathbb{R})$.

Solutions e.g. constant function $p_3(x) = 1$, since $1 \notin span\{p_1(x), p_2(x)\}$, so $\{p_1(x), p_2(x), p_3(x)\}$ is a basis of $P_2(\mathbb{R})$. e.g. $p_3(x) = x$, since $x \notin span\{p_1(x), p_2(x)\}$

Theorem Let U and W be subspaces of vector space V, then we have

$$dim(U+W) = dim(U) + dim(W) - dim(U \cap W)$$

proof.

Let
$$\{\vec{v_i}\}_1^k$$
 be basis for $U \cap W$
 $\implies dim(U \cap W) = k$

Since $\{\vec{v_i}\}_1^k$ is basis for $U \cap W$ then it's a linearly independent subset of U So it could be enlarged to basis for U, $\{\vec{v_1}, \dots, \vec{v_k}, \vec{y_1}, \dots, \vec{y_r}\}$

So
$$dim(U) = k + r$$

We also could enlarge a basis for W $\{\vec{v_1}, \dots, \vec{v_k}, \vec{z_1}, \dots, \vec{z_s}\}$

$$\implies dim(V) = k + s$$

WTS. $\{\vec{v_1}, \dots, \vec{v_k}, \dots, \vec{y_1}, \dots, \vec{y_r}, \vec{z_1}, \dots, \vec{z_s}\}$ is a basis for U + W

(If we could show this) dim(U+W)=k+r+s=(k+r)+(k+s)-k

$$= dim(U) + dim(W) - dim(U \cap W)$$

Obviously, the above set spans U+W

WTS. $\{\vec{v_1}, \dots, \vec{v_k}, \dots, \vec{y_1}, \dots, \vec{y_r}, \vec{z_1}, \dots, \vec{z_s}\}$ is linearly independent

Consider $a_1 \vec{v_1} + \dots + a_k \vec{v_k} + b_1 \vec{y_1} + \dots + b_r \vec{y_r} + c_1 \vec{z_1} + \dots + c_s \vec{z_s} = \vec{0} (\star)$

From
$$(\star) \implies \sum (c_i \vec{z_i}) = -\sum (a_i \vec{v_i}) - \sum b_i \vec{y_i}$$

 $\implies \sum (c_i \vec{z_i}) \in U \land \sum (c_i \vec{z_i}) \in W$
 $\iff \sum (c_i \vec{z_i}) \in U \cap W$

Since $\{\vec{v_i}\}$ is a basis for $U \cap W$

$$\Longrightarrow \sum (c_i \vec{z_i}) = \sum (d_i \vec{v_i})$$

$$\iff \sum (c_i \vec{z_i}) - \sum (d_i \vec{v_i}) = \vec{0} \in W$$

 $\implies c_i = d_i = 0 \text{ since } \{\vec{z_i}, \vec{v_i}\} \text{ is a basis}$ Rewrite (\star)

$$\sum (a_i \vec{v_i}) + \sum b_i \vec{y_i} = 0 \in U$$

 $\implies a_i = b_i = 0 \text{ since } \{\vec{v_i}, \vec{y_i}\} \text{ is a basis for } U$

Corollary For direct sum, since the intersection is $\{\vec{0}\}$

$$dim(U \bigoplus W) = dim(U) + dim(W)$$

Example Let U, W are subspaces of \mathbb{R}^3 such shat dim(U) = dim(W) = 2, why is $U \cap W \neq \{\vec{0}\}$

Solutions Geometrically, U and W are planes through origin then the intersection would be a line through $\operatorname{origin}(U \neq W)$ or a plane through $\operatorname{origin}(U = W)$, so shown.

Question V is a vector space, dim(V) = n, $U \neq W$ are subspaces of V but dim(U) = dim(V) = (n-1), proof:

- 1. V = U + W
- 2. $dim(U \cap W) = (n-z)$

7 Lecture 7 Jan. 30, 2018

7.1 Linear Transformations

Definition Let V, W be vector spaces, a function $T: V \to W$ is a **linear transformation**⁸ if

1.
$$T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y}) \ \forall \vec{x}, \vec{y} \in V^9$$

2.
$$T(c\vec{x}) = cT(\vec{x}) \ \forall \vec{x} \in V, \ c \in \mathbb{R}^{10}$$

Linear transformation preserves <u>vector additions and saclar multiplications</u> on vector spaces.

Theorem(Alternative definition) Transformation $T: V \to W$ is linear if and only if

$$T(c\vec{x} + d\vec{y}) = cT(\vec{x}) + dT(\vec{y}), \ \forall \vec{x}, \vec{y} \in V, c, d \in \mathbb{R}$$

Linear transformations preserves <u>linear combinations</u>.

Example (form 223) Rotation through angle θ about the origin in \mathbb{R}^2 .

⁸In some textbooks, this is annotated as linear mapping.

 $^{^{9}}$ Notice that the vector additions on the left and right sides of the equation are defined in different vector spaces, in V and W respectively.

 $^{^{10}}$ Notice that the scalar multiplication on the left and right sides of the equation are defined in different vector spaces, in V and W respectively.

Example (from 223) <u>Matrix transformation</u>, let $A \in M_{m \times n}(\mathbb{R})$, transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ defined as

$$T(\vec{x}) = A\vec{x}$$

is linear.

Example Derivative $T: P_n(\mathbb{R}) \to P_{n-1}(\mathbb{R})$ defined by

$$T(\vec{p}(x)) = \vec{p}'(x)$$

Example Matrix transpose $T: M_{m \times n}(\mathbb{R}) \to M_{n \times m}(\mathbb{R})$ defined by

$$T(A) = A^T$$

7.2 Properties of linear transformations

Property(i) Linear transformation $T: V \to W$ are <u>uniquely</u> defined by their values on <u>any</u> basis for V.

proof.

Let
$$\{\vec{v_1}, \dots, \vec{v_k}\}$$
 be any basis for V

Every vector $\vec{x} \in V$ can be uniquely written as some linear combination of the $\{\vec{v}_i\}_{i=1}^k$

$$\vec{x} = \sum_{i=1}^{k} c_i \vec{v_i}, \ c_i \in \mathbb{R}, \text{ and } c_i \text{ are uniquely determined } \forall \vec{x} \in V$$

$$\implies T(\vec{x}) = T(\sum_{i=1}^{k} c_i \vec{v_i})$$

 $= \sum_{i=1}^{k} c_i T(\vec{v_i}) \text{ since the transformation } T \text{ is linear.}$

Since c_i s are uniquely determined by $\{\vec{v_i}\}_{i=1}^k$

so the value of $T(\vec{x})$ is uniquely determined by its value on basis vectors $\{\vec{v_i}\}_{i=1}^k$.

Property(ii) Let $T: V \to W$ be a linear transformation, let A be a subspace of vector space V, then the **image** T(A) defined as

$$T(A) = \{ T(\vec{x}) \mid \vec{x} \in A \}$$

called the image of A under linear transformation T is a subspace of W. Linear transformation maps subspaces of V to subspaces of W.

proof.

Since A is a subspace so it's non-empty, therefore $\exists T(\vec{x}), \ \vec{x} \in A$

$$\operatorname{So} \operatorname{T}(A) \neq \emptyset$$
 Let $\vec{w_1}, \vec{w_2} \in T(A)$
$$\Longrightarrow \vec{w_1} = T(\vec{x_1}), \vec{w_2} = T(\vec{x_2}), \ \vec{x_1}, \vec{x_2} \in A$$

$$\Longrightarrow \vec{w_1} + \vec{w_2} = T(\vec{x_1}) + T(\vec{x_2}) = T(\vec{x_1} + \vec{x_2}) \text{ since } T \text{ is linear.}$$
 Since $\vec{x_1} + \vec{x_2} \in A$ by the definition of subspaces.

$$\implies \vec{w_1} + \vec{w_2} \in T(A)$$

So T(A) is closed under vector addition.

Let
$$\vec{w} \in T(A)$$

$$\implies \vec{w} = T(\vec{x}), \vec{x} \in A$$
Let $c \in \mathbb{R}$
Consider $c\vec{w} = cT(\vec{x}) = T(c\vec{x})$
Since $c\vec{x} \in A$
So $c\vec{w} \in T(A)$

So T(A) is closed under scalar multiplication.

Property(derived from the definition) For all linear transformation $T: V \to W$, we have ¹¹

$$T(\vec{0}) = \vec{0}$$

Property(iii) Let transformation $T: V \to W$ be linear, let B be a subspace of W, then its **pre-image** defined as

$$T^{-1}(B) = \{ \vec{x} \in V \mid T(x) \in B \}$$

is a subspace of V. ¹²

¹¹In the equation, clearly, the zero vector on the left side of the equation is in space V and the zero vector on the right side is in space W.

 $^{^{12}}$ The pre-image and inverse share the same notation, but in this case, transformation T is not necessarily invertible.

proof.

Let
$$\vec{w_1}, \vec{w_2} \in T^{-1}(B)$$

$$\implies T(\vec{w_1}), T(\vec{w_2}) \in B$$

$$\implies aT(\vec{w_1}) + b(\vec{w_2}) \in B, \ \forall a, b \in \mathbb{R} \text{ since } B \text{ is a subspace.}$$

$$\implies T(a\vec{w_1} + b\vec{w_2}) \in B$$

$$\implies a\vec{w_1} + b\vec{w_2} \in T^{-1}(B)$$

So $T^{-1}(B)$ is closed under both vector addition and scalar multiplication, So $T^{-1}(B)$ is a subspace.

7.3 Definitions

Let $T: V \to W$ to be a linear transformation,

Definition the **Image** of transformation T is defined as

$$Im(T) = T(V) = \{T(\vec{x}) \mid \vec{x} \in V\}$$

Definition the **Rank** of transformation T is defined as

$$Rank(T) = dim(Im(T))$$

Definition the **Kernel** of transformation T is defined as

$$Ker(T) = T^{-1}(\{\vec{0}\}) = \{\vec{x} \in V \mid T(\vec{x}) = \vec{0}\}\$$

Definition the **Nullity** of transformation T is defined as

$$Nullity(T) = dim(ker(T))$$

Example $T: P_3(\mathbb{R}) \to P_3(\mathbb{R})$ is <u>linear</u> defined by

$$T(\vec{p}(x)) = \vec{p}(2x+1) - 8\vec{p}(x)$$

find Ker(T).

Theorem Let $T: V \to W$ be a linear transformation, let $\{\vec{v_1}, \dots, \vec{v_k}\}$ be the spanning set of V^{13} , then $\{T(\vec{v_1}), \dots, T(\vec{v_k})\}$ spans Im(T)

proof.

Let
$$\vec{w} \in Im(T)$$

Since
$$V = span\{\vec{v_1}, \dots, \vec{v_k}\}$$

For any $\vec{x} \in V$ can be written as

$$\vec{x} = \sum_{i=1}^{k} c_i \vec{v_i}, \ c_i \in \mathbb{R}$$

$$\implies \vec{w} = T(\vec{x}) = T(\sum_{i=1}^{k} c_i \vec{v_i})$$

$$= \sum_{i=1}^{k} c_i T(\vec{v_i})$$

as a linear combination of $\{T(\vec{v_1}), \ldots, T(\vec{v_k})\}$

So
$$Im(T) = span\{T(\vec{v_1}), \dots, T(\vec{v_k})\}$$

8 Lecture 8 Jan. 31 2018

8.1 Linear Transformations

Example $T: P_3(\mathbb{R}) \to P_3(\mathbb{R})$

$$T(p(x)) = p(2x+1) - 8p(x)$$

Find the image of T.

We know $B = \{1, x, x^2, x^3\}$ is the standard basis for $P_3(\mathbb{R})$, consider the set P(B)

$$P(B) = \{-7, 1 - 6x, 1 + 4x - 4x^2, 1 + 6x + 12x^2\}$$

spans Im(T). Notice the first three vectors in the set is linearly independent, the last vector is clearly dependent to the pervious three.¹⁴. So by the redundancy theorem we could remove the last vector. There we have

$$Im(T) = span\{-7, 1 - 6x, 1 + 4x - 4x^2\}$$

 $^{^{13}}$ The set is only the spanning set of V, it's not necessarily to be a basis of V.

¹⁴Notice that the first three vectors is a basis of $P_2(\mathbb{R})$.

as basis.

In this example, the dimension of Ker(T) is 1 and the dimension of Im(T) is 3, and dimension of $P_3(\mathbb{R})$ is 4. We have, $dim(P_3(\mathbb{R})) = Nullity(T) + Rank(T)$

Theorem(Dimension Theorem) Let $T: V \to W$ be a linear transformation,

$$dim(V) = Nullity(T) + Rank(T)$$

Proof.

Say
$$dim(V) = n$$

Let $\{\vec{v_1}, \dots, \vec{v_k}\}$ be a basis for Ker(T)

Since Ker(T) is a subspace of V, the set $\{\vec{v_i}\}_1^k$ is a subset of V,

It can be extended to a basis $\{\vec{v_i}\}_1^k \cup \{\vec{v_i}\}_{k+1}^n$ for V.

Claim:
$$\{T(\vec{v_{k+1}}), \dots, T(\vec{v_n})\}\$$
 is basis for $Im(T)$

If the claim is true, this prove the theorem since

$$\dim(Ker(T))+\dim(Im(T))=k+n-k=n=\dim(V)$$

$$T(\vec{v_i}) = \vec{0}, \ \forall i \in \mathbb{Z}_1^k$$

and by the definition of kernel of linear transformation,

$$\therefore \{T(\vec{v_i})\}_{k+1}^n \text{ spans } Im(T)$$

Show if
$$\sum_{i=k+1}^{n} c_i T(\vec{v_i}) = \vec{0} \implies c_i = 0$$

$$\implies T(\sum_{i=k+1}^{n} c_i \vec{v_i}) = \vec{0}$$

$$\implies \sum_{i=k+1}^{n} c_i \vec{v_i} \in Ker(T)$$

$$\implies \sum_{i=k+1}^{n} c_i \vec{v_i} = \sum_{i=1}^{k} c_i \vec{v_i}$$

$$\implies c_1 \vec{v_1} + \dots + c_k \vec{v_k} - c_{k+1} \vec{v_{k+1}} - \dots - c_n \vec{v_n} = \vec{0}$$

Since $\{\vec{v_i}\}_i^n$ is a basis for V.

$$\implies c_i = 0 \ \forall i$$

8.2 Applications of dimension theorem

Definition A linear transformation $T: V \to W$ is called **injective**(one-to-one) if and only if

$$T(\vec{v_1}) = T(\vec{v_2}) \implies \vec{v_1} = \vec{v_2}$$

Definition A linear transformation $T: V \to W$ is called **surjective**(onto) if and only if

$$Im(T) = W$$

Every vector in W has a pre-image in V.

Definition A linear transformation $T: V \to W$ is called **bijective** if it's both injective and surjective.

Theorem Let transformation $T: V \to W$ is linear, T is injective if and only if dim(Ker(T)) = 0.

Proof.

Exercise

Theorem T is surjective if and only if dim(Im(T)) = dim(W).

Example $T: P_2(\mathbb{R}) \to \mathbb{R}^2$ defined by

$$T(p(x)) = \begin{pmatrix} p(1) \\ p(2) \end{pmatrix}$$

is T injective? surjective?

Not injective but surjective.

Solution

$$Ker(T) = span\{(x-1)(x-2)\}$$

So T has nullity of 1 and since $dim(P_2(\mathbb{R})) = 3$, by the <u>dimension theorem</u> we have Rank(T) = 2 and since Im(T) is a subspace of \mathbb{R}^2 which has dimension of 2, we could conclude that $Im(T) = \mathbb{R}^2$.

9 Lecture 9 Feb. 6 2018

9.1 Applications of dimension theorem

Recall Dimension Theorem $T: V \to W$ is linear transformation,

$$dim(V) = dim(Ker(T)) + dim(Im(T))$$

Recall T is **injective** if and only if dim(Ker(T)) = 0.

Recall T is surjective if and only if dim(Im(T)) = dim(W).

Example $T: P_2(\mathbb{R}) \to \mathbb{R}^3$ defined by

$$T(p(x)) = (p(1), p(2), p(3))$$

Take $p(x) = a + bx + cx^2 \in P_2(\mathbb{R}), p(x) \in Ker(T) \text{ iff } T(p(x)) \in \vec{0}.$ Let $p(x) \in Ker(T),$

Obviously the only solution for the system

$$\begin{cases} a+b+c = 0 \\ a+2b+4c = 0 \\ a+3b+9c = 0 \end{cases}$$

is a = b = c = 0, So dim(Ker(T)) = 0. Therefore, T is **injective**. By $dimension\ theorem$,

$$dim(V) = 3 = 0 + dim(Im(T)) \implies dim(Im(T)) = 3 = dim(\mathbb{R}^3)$$

therefore T is surjective. Therefore, T is called **bijective**.

Question $T: P_n(\mathbb{R}) \to P_n(\mathbb{R})$

$$T(p(x)) = xp'(x)$$

Solution Not injective because any constant function in $P_n(\mathbb{R})$ is mapped onto $\vec{0} \in P_n(\mathbb{R})$. Also not surjective by the dimension theorem.

Theorem Let $T: V \to W$ be an <u>injective</u> linear transformation, if $\{\vec{v_i}\}_{i=1}^k$ is linearly independent in V, then the set $\{T(\vec{v_i})\}_{i=1}^k$ is linearly independent in W.

 $\label{linear linear linear$

Proof.

If $\sum c_i T(\vec{v_i}) = \vec{0}$, then we have $T(\sum c_i \vec{v_i}) = \vec{0}$, which means $\sum c_i v_i \in Ker(T)$. By definition of injective transformation, $\sum c_i v_i = \vec{0}$. Since $\{\vec{v_i}\}_{i=1}^k$ is linearly independent, so $c_i = 0$, $\forall i$.

Theorem $T: V \to W$ is a linearly transformation, $\{\vec{v_i}\}_{i=1}^n$ is a basis for V then, if $\{T(\vec{v_i})\}_{i=1}^n$ is linear independent, then T is <u>injective</u>. A criteria for T to be injective based on image of a basis.

Proof.

Let
$$\{\vec{v_i}\}_{i=1}^n$$
 be a basis of V
Consider $T(\vec{x}) = \vec{0}$
Since $\{\vec{v_i}\}_{i=1}^n$ is a basis
Let $x = \sum c_i \vec{v_i}$
 $T(\vec{x}) = \vec{0} \iff T(\sum c_i \vec{v_i}) = \vec{0}$
 $\implies \sum c_i T(\vec{v_i}) = \vec{0} \implies c_i = 0$
 $\therefore \vec{x} = \sum 0 \vec{v_i} = \vec{0}$
Therefore $Ker(T) = \{\vec{0}\}$
Therefore $dim(Ker(T)) = 0$
 \implies injective

Theorem Let $T: V \to W$ be a linear transformation,

- 1. If dim(V) > dim(W), then T cannot be injective.
- 2. If dim(V) < dim(W), then T cannot be surjective.

For a linear transformation between spaces with different dimension, it could not be bijective.

Proof.

$$\begin{aligned} \dim(V) &= \dim(Ker(T)) + \dim(Im(T)) \\ & \because \dim(Im(T)) \leq \dim(W) \\ & \therefore \dim(V) \leq \dim(Ker(T) + \dim(W)) \\ & \Longrightarrow \dim(Ker(T)) \geq \dim(V) - \dim(W) \\ & \Longrightarrow \dim(Ker(T)) > 0 \\ & \text{So } T \text{ could not be injective} \\ \dim(V) &= \dim(Ker(T)) + \dim(Im(T)) \\ & \because \dim(Ker(T)) \geq 0 \\ & \therefore \dim(V) \geq \dim(Im(T)) \\ & \Longrightarrow \dim(Im(T)) < \dim(W) \\ & \text{So } T \text{ could not be surjective} \end{aligned}$$

Theorem Half is good enough Let $T: V \to W$ is linear, and dim(V) = dim(W). T is injective if and only if surjective.

Proof.

By dimension theorem
$$dim(V) = dim(Ker(T)) + dim(Im(T)) = dim(W)$$
 If injective
$$dim(Ker(T)) = 0$$

$$\implies dim(Im(T)) = dim(W)$$
 So surjective
$$\text{If surjective } dim(Im(T)) = dim(W) = dim(V)$$

$$\implies dim(Ker(T)) = 0$$
 So injective

9.2 Isomorphisms

Recall If $T: V \to W$ is both injective and surjective, say T is bijective.

Definition If $T:V\to W$ is bijective, we call T an **isomorphism**. If there exists an isomorphism $T:V\to W$ say V and W are **isomorphic** vector spaces.

Theorem V, W are isomorphic iff dim(V) = dim(W).

Proof.

$$\rightarrow V, W \text{ isomorphic } \implies dim(V) = dim(W)$$

Isomorphic means there exists a bijective transformation T

By dimension theorem dim(V) = dim(Ker(T)) + dim(Im(T))

$$= 0 + dim(W)$$

$$\leftarrow dim(V) = dim(W) \implies V, W \text{ isomorphic}$$

Equivalently, find a bijective transformation

Let
$$\{\vec{v_i}\}_{i=1}^n$$
 be basis for V

Let
$$\{\vec{w_i}\}_{i=1}^n$$
 be basis for W

Claim $T: V \to W$ is linear and s.t.

 $T(\vec{v_i}) = \vec{w_i}$ is an isomorphism.

If
$$\vec{x} \in Ker(T) \subseteq V$$

$$x = \sum c_i \vec{v_i}$$

$$\vec{0} = T(\vec{x})$$

$$= \sum c_i T(\vec{v_i})$$

$$= \sum (c_i \vec{w_i})$$

 $\implies c_i = 0$ since $\vec{w_i}$ are basis.

$$\implies \vec{x} = \vec{0}$$

$$\implies dim(Ker(T)) = 0$$

 \implies injective \iff surjective

Note if $T: V \to W$ is an isomorphism, then T maps a basis for V to a basis for W.

Example $T: P_2(\mathbb{R}) \to \mathbb{R}^3$,

$$T(p(x)) = (p(1), p(2), p(3))$$

is an isomorphism. And $P_2(\mathbb{R})$ and \mathbb{R}^3 are isomorphic.

Example $T: P_2(\mathbb{R}) \to \mathbb{R}^3$,

$$T(1) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ T(x) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ T(x^2) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

is an isomorphism.

Example $M_{2\times 2}(\mathbb{R}), P_3(\mathbb{R})$ and \mathbb{R}^4 are isomorphic.

Theorem Any n-dim vector space V is isomorphic to \mathbb{R}^n . What is an isomorphism $T: V \to \mathbb{R}^n$

Procedure:

Let $\{\vec{v_i}\}_{i=1}^n$ be any basis for V We know that $\forall \vec{x} \in V$, By property of basis,

$$\vec{x} = \sum c_i \vec{v_i}$$

Then
$$T(\vec{x}) = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n$$
 is an isomorphism.

9.3 Coordinates

Definition Let V be a vector space, $\alpha = \{\vec{v_1}, \dots, \vec{v_n}\}$ be nay basis for V, $\forall \vec{x} \in V$ can be written uniquely as

$$\vec{x} = c_1 \vec{v_1} + \dots + c_n \vec{v_n}$$

then $c1, \ldots, c_n$ is called the **coordinates** for \vec{x} relative to α , with notation

$$[\vec{x}]_{\alpha} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \iff \vec{x} = \sum c_i \vec{v_i}$$

Claim $[\vec{x} + c\vec{y}]_{\alpha} = [\vec{x}]_{\alpha} + c[\vec{y}]_{\alpha} \quad \forall \vec{x}, \vec{y} \in V, \ c \in \mathbb{R}.$

Note if α, α' are any two bases for V then generally $[\vec{x}]_{\alpha} \neq [\vec{x}]_{\alpha'}$ (except $\vec{0}$).

10 Lecture 10 Feb. 7 2018

10.1 Matrix of linear transformation

Recall Let V be a vector space, let α be any basis for V.

$$\forall \vec{x} \in V, x = \sum c_i \vec{v_i}$$

$$[\vec{x}]_{\alpha} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

So transformation $\vec{x} \to [\vec{x}]_{\alpha}$ is an isomorphism that $V \to \mathbb{R}^n$.

Say W is a vector space and let $\beta = \{\vec{w_i}\}_1^m$ be any basis of W, say $T: V \to W$ is linear.

$$T(\vec{x}) = \sum c_i T(\vec{v_i})$$

So that

$$[T(\vec{x})]_{\beta} = [\sum c_i T(\vec{v_i})]_{\beta} = \sum c_i [T(\vec{v_i})]_{\beta}$$

$$= \begin{bmatrix} [T(\vec{v_1})]_{\beta} & \dots & [T(\vec{v_n})]_{\beta} \end{bmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

 $[[T(\vec{v_1})]_{\beta}$... $[T(\vec{v_n})]_{\beta}]$ is called the <u>the matrix of T w.r.t.</u> α, β . Denoted as $[T]_{\alpha}^{\beta}$

$$[T(\vec{x})]_{\beta} = [T]_{\alpha}^{\beta} [\vec{x}]_{\alpha}$$

Example $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$

$$T(p(x)) = xp(x)$$

$$\alpha = \{1 - x, 1 - x^2, x\}, \ \beta = \{1, 1 + x, 1 + x + x^2, 1 - x^3\}$$

Find $[T]^{\beta}_{\alpha}$.

$$T(1-x) = x(1-x) = x - x^{2}$$

$$x - x^{2} = (-1)(1) + 2(1+x) + (-1)(1+x+x^{2}) + 0(1-x^{3})$$

$$[T(1-x)]_{\beta} = (-1,2,-1,0)$$

$$T(1-x^{2}) = x - x^{3}$$

$$[T(1-x^{2})]_{\beta} = (-2,1,0,1)$$

$$[T(x)] = x^{2}$$

$$[T(x)]_{\beta} = (0,-1,1,0)$$

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} -1 & -2 & 0\\ 2 & 1 & -1\\ -1 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix}$$

Picture V, W are vectors spaces, $\alpha = \{\vec{v_1}, \dots, vecv_n\}$ is a basis for V and $\beta = \{\vec{w_1}, \dots, vecw_m\}$ is a basis for W.

$$V \longrightarrow^{T} W$$

$$\downarrow^{[\]_{\alpha}} \qquad \downarrow^{[\]_{\beta}}$$

$$\mathbb{R}^{n} \rightarrowtail^{[T]_{\alpha}^{\beta}} \mathbb{R}^{m}$$

Note

$$1. \ \vec{x} \in Ker(T) \iff T(\vec{x}) = \vec{0} \iff [T(x)]_{\beta} = [\vec{0}]_{\beta} \in \mathbb{R}^{m} \iff [T]_{\alpha}^{\beta}[\vec{x}]_{\alpha} = 0 \iff [\vec{x}]_{\alpha} \in Ker([T]_{\alpha}^{\beta})$$

2.
$$\vec{w} \in Im(T) \iff [\vec{w}]_{\beta} \in Col([T]_{\alpha}^{\beta})$$

Theorem(Rank nullity for transformation matrix)

$$\dim(Ker([T]_{\alpha}^{\beta}))+\dim(Col([T]_{\alpha}^{\beta}))=n$$

Example $T: P_2(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$

$$T(a+bx+c^{2}) = \begin{bmatrix} c & -c \\ a-c & a+c \end{bmatrix}$$

And given bases $\alpha = \{x^2 - x, x - 1, x^2 + 1\}$ and $\beta = \{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}\}$

Answer

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 0 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$Nul([T]_{\alpha}^{\beta}) = span \left\{ \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

$$Nul(T) = span \left\{ 2x \right\}$$

$$Col([T]_{\alpha}^{\beta}) = span \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -1 \\ 0 \end{pmatrix} \right\}$$

$$Col(T) = span \left\{ \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -1 & -1 \end{bmatrix} \right\}$$

11 lecture11 Feb. 13 2018

11.1 Algebra of Transformation

Recall Let $T: V \to W$ be a linear transformation, where $\alpha = \{\vec{v_1}, \dots, \vec{v_n}\}$ and $\beta = \{\vec{w_1}, \dots, \vec{w_m}\}$ are bases for V, W respectively.

$$\vec{x} \in Ker(T) \iff [\vec{x}]_{\alpha} \in Ker([T]_{\alpha}^{\beta})$$

 $\vec{x} \in Im(T) \iff [\vec{x}]_{\beta} \in Col([T]_{\alpha}^{\beta})$

Definition $T_1, T_2: V \to W$ are linear transformations, define

$$(T_1 + T_2)(\vec{x}) = T_1(\vec{x}) + T_2(\vec{x}) \forall \vec{x} \in V$$
$$(cT_1)(\vec{x}) = c(T_1(\vec{x})) \forall \vec{x} \in V, \ c \in \mathbb{R}$$

And, let α and β be bases for V, W respectively, then,

$$[T_1]^{\beta}_{\alpha} + [T_2]^{\beta}_{\alpha} = [T_1 + T_2]^{\beta}_{\alpha}$$

 $c[T_1]^{\beta}_{\alpha} = [cT_1]^{\beta}_{\alpha}$

Definition $T: V \to W$ and $S: W \to U$ are linear transformations, then the **composition** $ST: V \to U$ is defined as

$$(ST)(\vec{x}) = S(T(\vec{x})) \quad \forall \vec{x} \in V$$

Note If S, T are linear then the composition ST is also linear. Check

Let
$$a, b \in \mathbb{R}, \ \vec{x}, \vec{y} \in V$$

$$ST(a\vec{x} + b\vec{y})$$

$$= S(T(a\vec{x} + b\vec{y}))$$

$$= S(aT(\vec{x}) + bT(\vec{y}))$$

$$= a(ST(\vec{x})) + b(ST(\vec{y}))$$

Example

omitted

11.2 Matrix of composition

Consider $T:V\to W$ and $S:W\to U$ as linear transformations, let α , β , γ be bases of V, W, U respectively. We know how to compute $[T]^{\beta}_{\alpha}$ and $[S]^{\gamma}_{\beta}$. Now want to find $[ST]^{\gamma}_{\alpha}$.

$$\begin{aligned} \forall \vec{x} \in V, [ST]_{\alpha}^{\gamma}[\vec{x}]_{\alpha} \\ &= [(ST)(\vec{x})]_{\gamma} \\ &= [S(T(\vec{x}))]_{\gamma} \\ &= [S]_{\beta}^{\gamma}[T(\vec{x})]_{\beta} \\ &= [S]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}[\vec{x}]_{\alpha} \end{aligned}$$
 This holds true for all $\vec{x} \in V$

$$\therefore [ST]_{\alpha}^{\gamma} = [S]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}$$

Conclusion the matrix of $ST = \text{matrix of } S \times \text{matrix of } T$.

11.3 Inverse transformations

Definition $T: V \to W$ is $isomorphism^{15}$ if and only if there exists function $S: W \to V$ such that

$$(ST)(\vec{v}) = \vec{v} \ \forall \vec{v} \in V \land (TS)(\vec{w}) = \vec{w} \ \forall \vec{w} \in W$$

And S is called the **inverse** of T, written as T^{-1} .

 $proof. \to T$ is an isomorphism means every vector in W has an unique preimage in V the function $S: W \to V$ maps every vector in W to its unique pre-image in V, so S is the inverse of T.

 $proof. \leftarrow \text{Assume } S: W \to V \text{ is the inverse of } T: V \to W \text{ then } T(S(\vec{y})) = \vec{y} \ \forall \vec{y} \in V, \text{ this means } T \text{ is surjective since every } \vec{y} \in W \text{ has pre-image under } T, \text{ that's } S(\vec{y}) \in V. \text{ Now suppose } T(\vec{x_1}) = T(\vec{x_2}), \text{ apply transformation } S \text{ on both sides of the equation, } S(T(\vec{x_1})) = S(T(\vec{x_2})) \text{ we have } \vec{x_1} = \vec{x_2}.$ This implies the transformation is injective. Therefore, transformation T is bijective, that's isomorphism.

Note $T^{-1}(\vec{y})$ is the <u>unique</u> vector \vec{x} , s.t. $T(\vec{x}) = \vec{y}$. That's

$$T(\vec{x}) = \vec{y} \iff T^{-1}(\vec{y}) = \vec{x}$$

¹⁵Recall that isomorphism is equivalent to bijective.

Theorem If $T: V \to W$ is an isomorphism then the inverse of T, T^{-1} , then $T^{-1}: W \to V$ is linear.¹⁶

 ${\it Proof.}$

WTS
$$T^{-1}(a\vec{w_1} + b\vec{w_2}) = aT^{-1}(\vec{w_1}) + bT^{-1}(\vec{w_2}) \forall a, b \in \mathbb{R}, \forall \vec{w_1}, \vec{w_2} \in W$$

$$T^{-1}(\vec{w_1}) \text{ is the unique } \vec{x_1} \text{ s.t. } T(\vec{x_1}) = \vec{w_1}$$

$$T^{-1}(\vec{w_2}) \text{ is the unique } \vec{x_2} \text{ s.t. } T(\vec{x_2}) = \vec{w_2}$$

$$T^{-1}(a\vec{w_1} + b\vec{w_2}) \text{ is the unique } \vec{x} \text{ s.t. } T(\vec{x}) = a\vec{w_1} + b\vec{w_2}$$

$$\therefore T(\vec{x}) = a\vec{w_1} + b\vec{w_2}$$

$$= aT(\vec{x_1}) + bT(\vec{x_2})$$

$$= T(a\vec{x_1} + b\vec{x_2})$$

$$\therefore \vec{x} = a\vec{x_1} + b\vec{x_2}$$

$$Also T(\vec{x}) = a\vec{w_1} + b\vec{w_2}$$

$$\therefore \vec{x} = T^{-1}(a\vec{w_1} + b\vec{w_2}) = a\vec{x_1} + b\vec{x_2}$$

$$= aT^{-1}(\vec{w_1}) + bT^{-1}(\vec{w_2})$$

Theorem $T: V \to W$ is <u>isomorphism</u>, then let α and β are bases of V and W representing then $[T]^{\beta}_{\alpha}$ is <u>invertible</u>, and

$$([T]_{\alpha}^{\beta})^{-1} = [T^{-1}]_{\alpha}^{\beta}$$

Proof. omitted

11.4 Change of basis

What's the effect of a change of basis on coordinate of a vector and matrix of transformation.

Theorem Let α and α' be two bases of V, then

$$[I]^{\alpha'}_{\alpha}[\vec{x}]_{\alpha} = [\vec{x}]_{\alpha'}$$

 $^{^{16}\}mathrm{Note}$: the conclusion could be changed into isomorphism.

Proof.

Let
$$\vec{x} \in V$$

$$I(\vec{x}) = \vec{x}$$

$$[I(\vec{x})]_{\alpha'} = [\vec{x}]_{\alpha'}$$

$$[I]_{\alpha}^{\alpha'}[\vec{x}]_{\alpha} = [\vec{x}]_{\alpha'}$$

 $[I]^{\alpha'}_{\alpha}$ is called the change of basis matrix from α to α' .

Computation Let $\alpha = \{\vec{a_1}, \dots, \vec{a_n}\}$, then

$$[I]_{\alpha}^{\alpha'} = [[\vec{a_1}]_{\alpha'} \mid \dots \mid [\vec{a_n}]_{\alpha'}]$$

12 Lecture 12 Feb. 14 2018

Recall Let α and β be bases for V and $I:V\to V$ is the identity transformation, then

$$[I]^{\beta}_{\alpha}[\vec{x}]_{\alpha} = [\vec{x}]_{\beta}$$

Also,

$$[I]^{\alpha}_{\beta}[\vec{x}]_{\beta} = [\vec{x}]_{\alpha}$$

Example Let $\alpha = \{x^2, 1+x, x+x^2\}$ and β be bases for $P_2(\mathbb{R})$ and

$$[I]_{\alpha}^{\beta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix} \text{ and } [\vec{p(x)}]_{\beta} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Solution omitted

Theorem Suppose $[T]_V^W$ is linear, α and α' are any two bases for V and β and β' are any two bases of W, then,

$$[T]_{\alpha'}^{\beta'} = [I]_{\beta}^{\beta'} [T]_{\alpha}^{\beta} [I]_{\alpha'}^{\alpha}$$

Proof.

Recall
$$T = ITI$$

Consider let $\vec{x} \in V$
 $[I]^{\beta'}_{\beta}[T]^{\beta}_{\alpha}[I]^{\alpha}_{\alpha'}[\vec{x}]_{\alpha'}$
 $= [I]^{\beta'}_{\beta}[T]^{\beta}_{\alpha}[\vec{x}]_{\alpha}$
 $= [I]^{\beta'}_{\beta}[T(\vec{x})]_{\beta}$
 $= [T(\vec{x})]_{\beta'}$
 $= [T]^{\alpha'}_{\beta'}[\vec{x}]_{\alpha'}$
 $\Longrightarrow [T]^{\alpha'}_{\beta'} = [I]^{\beta'}_{\beta}[T]^{\beta}_{\alpha}[I]^{\alpha}_{\alpha'}$

Also,

$$[T]^{\beta}_{\alpha} = [I]^{\beta}_{\beta'}[T]^{\beta'}_{\alpha'}[I]^{\alpha'}_{\alpha}$$

Special Case Consider when V = W, $\alpha = \beta$ and $\alpha' = \beta'$. we have

$$[T]_{\alpha'}^{\alpha'} = [I]_{\alpha}^{\alpha'} [T]_{\alpha}^{\alpha} [I]_{\alpha'}^{\alpha}$$

where

$$([I]^{\alpha'}_{\alpha})^{-1} = [I]^{\alpha}_{\alpha'}$$

the equation becomes

$$[T]_{\alpha'}^{\alpha'} = ([I]_{\alpha}^{\alpha'})^{-1} [T]_{\alpha}^{\alpha} [I]_{\alpha'}^{\alpha}$$

and can be written in the form of

$$B = P^{-1}AP$$

Definition Two matrices A and B are **similar** if there exists an <u>invertible</u> matrix P s.t.

$$B = P^{-1}AP$$

A and B representing the same transformation relative to different bases and P is the change of basis matrix if and only if A and B are similar.

Example Omitted

13 Lecture 13 Feb. 27 2018

13.1 Recall

Omitted.

13.2 Diagonalization

Definition Consider a linear operator $T: V \to V$ is **diagonalizable** if and only \exists a basis β for V s.t.

$$[T]^{\beta}_{\beta}$$

is diagonal.

Note Let $\beta = \{\vec{v_1}, \dots, \vec{v_n}\}$ be a basis, $T: V \to V$ is diagonalizabel if and only it's in form $\begin{bmatrix} \lambda_1 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & \lambda_n \end{bmatrix}$

Definition $T: V \to V$ is a linear operator on V, a non-zero vector $\vec{x} \in V$ is an **eigenvector** of $T(\vec{x}) = \lambda \vec{x}$ for some $\lambda \in \mathbb{R}$. λ is called the **eigenvalue** of T corresponding to vector \vec{x} .

Theorem Linear operator $T: V \to V$ is diagonalizable if and only exist a basis of V consisting of eigenvectors of T. If T is diagonalizable, the diagonal entries of $[T]^{\beta}_{\beta}$ are corresponding eigenvalues of T, in the same order.

13.3 How to find eigenvalues and eigenvectors of T

Definition The **determinant** of T is defined as $det([T]^{\alpha}_{\alpha})$ for any basis α for V.

Note The determinant of linear operator T does <u>not</u> depends on the choice of basis of α for V, since similar matrices have the same determinant.

Theorem $\lambda \in \mathbb{R}$ is an eigenvalue of T if and only if

$$det(T - \lambda I) = 0$$

 $Proof.\lambda$ is an eigenvalue of T

$$\iff \exists \vec{x} \in V, \ \vec{x} \neq \vec{0}, \ s.t. \ T(\vec{x}) = \lambda \vec{x}$$

$$\iff T(\vec{x}) - \lambda \vec{x} = \vec{0}$$

$$\iff (T - \lambda I)(\vec{x}) = \vec{0}$$

$$\iff \vec{x} \in Ker(T - \lambda I)$$

$$\therefore Ker(T - \lambda I) \neq \{\vec{0}\}$$

$$\iff (T - \lambda I) \text{ is not injective}$$

$$\iff [T - \lambda I]^{\alpha}_{\alpha} \text{ is not injective}$$

$$\iff det([T - \lambda I]^{\alpha}_{\alpha}) = det(T - \lambda I) = 0$$

Note $det(T - \lambda I) = 0$ is called the **characteristic polynomial** of T, written as $P_T(\lambda) := det(T - \lambda I)$, the degree os $P_T(\lambda)$ is the dimension of V.

Note λ is an eigenvalue $\iff \lambda$ is a root of $P_T(\lambda)$.

Theorem $T: V \to V$ is a linear operator and λ is an eigenvalue of T, \vec{x} is an eigenvector of T corresponding to eigenvalue λ , if and only if

$$\vec{x} \neq \vec{0} \land \vec{x} \in Ker(T - \lambda I)$$

Proof.

Exercise, using definition

Definition $Ker(T - \lambda I)$ is called the **eigenspace** of T corresponding to eigenvalue λ , noted as $E_{\lambda}(T)$, which is a subspace of V.

Note To find eigenvalues and eigenvectors of $T: V \to V$, choose any basis β for V, \vec{x} is an eigenvector with corresponding eigenvalue λ if and only if $[\vec{x}]_{\beta}$ is an eigenvector of $[T]_{\beta}^{\beta}$ with corresponding eigenvalue λ .

That's

$$T(\vec{x}) = \lambda \vec{x}$$

$$\implies [T(\vec{x})]_{\beta} = [\lambda \vec{x}]_{\beta}$$

$$\iff [T]_{\beta}^{\beta} [\vec{x}]_{\beta} = \lambda [\vec{x}]_{\beta}$$

Note Consider diagonalization in MAT223,

$$D = P^{-1}AP$$

Let D and A representing the same linear operator $[T]_V^V$ and let β be a basis of V consisting of eigenvectors of T and α is another basis of V. Then, the above equation is

$$[T]^{\beta}_{\beta} = ([I]^{\alpha}_{\beta})^{-1} [T]^{\alpha}_{\alpha} [I]^{\alpha}_{\beta}$$

14 Lecture 14 Feb. 28 2018

Theorem Suppose λ_0 is an eigenvalue of linear operator $T: V \to V$, let $dim(E_{\lambda 0}) = k$, then $(\lambda - \lambda_0)^k$ divides $P_T(\lambda)$

Proof.

Let
$$\{\vec{v_1}, \dots, \vec{v_k}\}$$
 be basis for E_{λ_0}
Let $dim(V) = n$
Extend basis of E_{λ_0} to basis of V .
 $\alpha = \{\vec{v_1}, \dots, \vec{v_k}\} \cup \{\vec{v_{k+1}}, \dots, \vec{v_n}\}$
Since $\vec{v_i} \in E_{\lambda_0}$,
Therefore $T(\vec{v_i}) = \lambda_0 \vec{v_i}$
 $[T]_{\alpha}^{\alpha} = \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$
Where $A = diag(\lambda_0, \dots, \lambda_0) \in \mathbb{M}_{k \times k}(\mathbb{R})$
And $B \in \mathbb{M}_{k \times n-k}(\mathbb{R}), D \in \mathbb{M}_{n-k \times n-k}(\mathbb{R})$
 $P_T(\lambda) = det(A - \lambda I) * det(D - \lambda I)$
 $= (\lambda_0 - \lambda)^k * det(D - \lambda I)$
Therefore $(\lambda - \lambda_0)^k \mid P_T(\lambda)$

Definition The **multiplicity** of eigenvalue λ_0 is the number of times $(\lambda - \lambda_0)$ appears as a factor in $P_T(\lambda)$.

Note If eigenvalue λ has multiplicity m, the above theorem says

$$1 \leq dim(E_{\lambda}) \leq m$$

if m = 1, then $dim(E_{\lambda}) = 1$.

Theorem If $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of $T: V \to V$ and $\alpha = \{\vec{x_1}, \ldots, \vec{x_k}\}$ are corresponding eigenvectors, then the set α is linearly independent.

Proof.

Exercise

(*)**Theorem** Let $\lambda_1, \ldots, \lambda_k$ be distinct eigenvalues of T, suppose the characteristic polynomial is in form

$$P_T(\lambda) = \prod_{i=1}^k (\lambda - \lambda_i)^{m_i}$$

the T is diagonalizable if and only if

$$dim(E_{\lambda_i}) = m_i, \ \forall i$$

Note Also,
$$\sum_{i=1}^{k} m_i = dim(V) = n$$

Proof.

$$\leftarrow$$
 Assume $dim(E_{\lambda_i}) = m_i \ \forall i$ Consider E_{λ_i}

Take basis for E_{λ_i} , as $\{v^{\vec{i}}_1, \dots, v^{\vec{i}}_{m_i}\}$

Claim: the union of bases of $E_{\lambda_i} \, \forall i$ gives a basis consisting of eigenvectors of T.

Note
$$|\bigcup_{i=1}^k \{\vec{v_{i_1}}, \dots, \vec{v_{m_i}}\}| = \sum_{i=1}^k m_i = dim(V)$$

All we need to show is linear independence.

Consider
$$\sum_{i=1}^{k} \sum_{j=1}^{m_i} c_{ij} \vec{v_j^i} = \vec{0}(\star)$$

Consider $\sum_{j=1}^{m_i} c_{ij} \vec{v_j^i} \in E_{\lambda_i} = \vec{x_i}$
So (\star) becomes $\sum_{i=1}^{k} \vec{x_i} = \vec{0}$ where $\vec{x_i} \in E_{\lambda_i}$, $\forall i$

Since $\vec{x_i}$ is eigenvectors for T, corresponding to different eigenvalues,

Therefore, $\{\vec{x_{i1}}, \dots, \vec{x_{ik}}\}$ is linearly independent

So
$$\vec{x_i} = \vec{0} \ \forall i$$

That's $\sum_{j=1}^{m_i} c_{ij} \vec{v_j^i} = \vec{x} = \vec{0} \ \forall i$
 $\implies c_{ij} = 0 \ \forall i, j$

Therefore linearly independent, so exists basis for V consisting of eigenvectors, Therefore T is diagonalizable.

 \rightarrow

Suppose T is diagonalizable,

Since T is diagonalizable, then exists basis for V consisting of eigenvectors, say α

Consider
$$[T]^{\alpha}_{\alpha} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_1 & \dots & 0 \\ 0 & \dots & \lambda_2 & \ddots & 0 \\ \dots & \dots & \dots & \dots \end{bmatrix}$$

Where λ_1 takes first m_1 rows, λ_1 takes the next m_2 rows, etc.

$$P_T(\lambda) = \det([T]_{\alpha}^{\alpha} - \lambda I)$$

$$= \prod_{i=1}^{k} (\lambda_i - \lambda)^{m_i}$$
Since $1 \le \dim(E_{\lambda_i}) \le m_i \ \forall i$

$$\implies \dim(E_{\lambda_i}) = m_i \ \forall i$$

15 Lecture 15 Mar. 6 2018

15.1 Fields

Definition A **field** is a set F together with two operations, addition+ and $multiplication \times$) that satisfies the following properties.

1.
$$\forall x, y \in F, x + y = y + x$$

2.
$$\forall x, y, z \in F, (x + y) + z = x + (y + z)$$

3.
$$\exists 0 \in F$$
, s.t. $\forall x \in F$, $0 + x = x$

4.
$$\forall x \in F, \exists (-x) \in F \ s.t. \ x + (-x) = 0$$

5.
$$\forall x, y \in F, xy = yx$$

6.
$$\forall x, y, z \in F, (xy)z = x(yz)$$

7.
$$\exists 1 \in F, \ s.t. \ \forall x \in F, 1 \times x = x$$

8.
$$\forall x \in F, \ x \neq 0, \exists x^{-1} \ s.t. \ x \times x^{-1} = 1$$

Note Every field has at least 2 elements: 0, the *additive identity* and 1, the *multiplicative identity*.

Examples

- 1. \mathbb{R} is a field.
- 2. \mathbb{Z} is not a field.
- 3. \mathbb{N} is not a field.
- 4. \mathbb{Q} is a field.
- 5. Irrational numbers is not a field.

15.2 Complex Numbers

Definition The set of **complex number** \mathbb{C} is the set of <u>ordered pair</u> of real numbers together with the following basic operations.

- 1. Addition: (a, b) + (c, d) = (a + c, b + d)
- 2. Multiplication: (a,b) + (c,d) = (ac bd, ad + bc)

With set notation we define complex numbers as

$$\mathbb{C} = \{(a, b) \mid a, b \in \mathbb{R}\}\$$

* altogether with operations of addition and multiplication defined above.

Note Connection to \mathbb{R} Any complex number with second component as 0, (a,0) is identified as $a \in \mathbb{R}$, therefore, $\mathbb{R} \subset \mathbb{C}$

Notation
$$\mathbb{C} = \{a + ib\} \mid a, b \in \mathbb{R} \wedge i^2 = -1\}$$

Definition Let $w, z \in \mathbb{C}$, we define w equals z as,

$$w = z \iff \Re(z) = \Re(w) \land \Im(z) = \Im(w)$$

Definition Let $z = a + ib \in \mathbb{C}$ then the **conjugate** of z is $\overline{z} = a + i(-b)$, and if $z \neq 0$, then the **inverse** of z is

$$z^{-1} = \frac{\overline{z}}{z\overline{z}}$$

Definition A field F is **algebraically closed** is every polynomial of degree n in F has n roots in F. (Counting multiplicities)

Examples \mathbb{C} is algebraically closed and \mathbb{R} is not.

16 Lecture 16 Mar. 7 2018

16.1 Vector space over a field

Definition A vector space over field F is a set V together with two operations, addition and scalar multiplication s.t. [Very similar to those those defining properties for real vector space.]

16.2 Complex vector space

Complex vector space $\mathbb{C}^n = \{(z_1, \ldots, z_n) | z_1, \ldots, z_n \in \mathbb{C}\}$ is a vector space over \mathbb{C} , with dimension n and standard basis $\{\vec{e_1}, \ldots, \vec{e_n}\}$

Let F be a field, then

$$F^n = \{(x_1, \dots, x_n) | x_1, \dots, x_n \in F\}$$

and

$$dim(F^n) = n$$

 F^n is a vector space over field F w.r.t. usual coordinate wise addition and scalar multiplication.

Definition Let V vector space over field F, then $\{\vec{x_1}, \dots, \vec{x_n}\}$ is **linearly independent** if and only if

$$\sum_{i=1}^{i} c_i \vec{x_i} = \vec{0}, \ c_1, \dots, c_n \in F \implies c_1 = \dots = c_2 = 0 \in F$$

Definition span $\{\vec{x_1}, \dots, \vec{x_n}\}$ is defined as

$$\{\sum_{i=1}^n c_i \vec{x_i} | c_1, \dots, c_n \in F\}$$

Definition Consider V, W as two vector spaces over fields F then transformation $T:V\to F$ is **linear** if and only if

$$\forall \vec{v_1}, \vec{v_2} \in V, c, d \in F, T(c\vec{v_1} + d\vec{v_2}) = cT(\vec{v_1}) + dT(\vec{v_2})$$

17 Lecture 17 Mar. 13 2018

Theorem Let $T: V \to V$ be a linear operator, and β is a basis for vector space V. Let W_i be the span of first i vectors in β , then $[T]^{\beta}_{\beta}$ is upper-triangular if and only if

$$T(W_i) \subset W_i, \ \forall i$$

Definition Let $T: V \to V$ be a linear operator, a subspace W of V is called **invariant** under T (T-invariant) if $T(W) \subset W$.

Examples For linear operator T, 17

- 1. (Trivial invariant subspaces) V, $\{\vec{0}\}$
- 2. Ker(T)
- 3. Im(T)
- 4. $E_{\lambda}(T)$ for any eigenvalue λ of T
- 5. $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined as

$$T((x, y, z)) = (3x + 2y, y - z, 4x + 2y - z)$$

Then subspace of \mathbb{R}^3 : $W = \{(x, y, x) \mid x, y \in \mathbb{R}\}$ is T-invariant.

Theorem Let $T: V \to V$ be a linear operator, $\beta = \{\vec{x_1}, \dots, \vec{x_k}\}$ is a basis for V, then $[T]^{\beta}_{\beta}$ is upper-triangular if and only if W_i is T-invariant for all $i \leq k$.

Note
$$\{\vec{0}\} \subset W_1 \subset W_2 \subset W_3 \cdots \subset W_k = V$$

Definition Linear operator $T: V \to V$ is said to be **triangularizable** if there exists a basis β for V such that $[T]^{\beta}_{\beta}$ is upper-triangular.

Note If $[T]^{\beta}_{\beta}$ is upper-triangular, the characteristic polynomial $P_T(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n)$ where λ_i are entries on the main diagonal.

Problem Entries above main diagonal are **not** uniquely determined by T, it's also depends on the choice of basis β .

18 Lecture 18 Mar. 14 2018

18.1 Triangular form and Nilpotent transformations

Theorem Let V be a vector space over field F, let $T:V\to V$ be a linear operator suppose the characteristic polynomial has dim(V) roots in F, then there exists β as a basis of V such that $[T]^{\beta}_{\beta}$ is upper-triangular. This is true when field F is algebraically closed, e.g. $F=\mathbb{C}$

¹⁷Proofs are omitted.

Fact Any transformation $T:V\to V$ whose eigenvalues all have multiplicity of 1, then T is diagonalizable. (Since there would be dim(V) unique eigenvalues.)

Contra-positive of above fact non-diagonalizable $\implies \exists \lambda_i$ with multiplicity greater than 1.

Consider Break down the problem Linear operator $T: V \to V$

- 1. Case 1 T has only eigenvalue 0 with multiplicity of dim(V).
- 2. Case 2 T has only eigenvalue λ with multiplicity of dim(V). *If T has only eigenvalue λ then $S = T \lambda I$ has eigenvalue 0 only, as in case 1.
- 3. Case 3 T has multiple eigenvalues. the direct sum of single eigenvalue case.

18.2 Nilpotent Transformation

Theorem Let V be a vector space over \mathbb{C} and linear operator $T: V \to V$ has only eigenvalue 0 if and only if $T^k = 0$ ¹⁸ for some $k \in \mathbb{Z}^+$.

Proof.

$$\leftarrow \text{Suppose } T^k = 0 \text{ for some } k \in \mathbb{Z}^+$$

$$\text{If } T(\vec{x}) = \lambda \vec{x} \text{ for some } \vec{x} \neq \vec{0}$$

$$T^2(\vec{x}) = \lambda^2 \vec{x}$$

$$(\text{Inductively }) T^k(\vec{x}) = \lambda^k \vec{x}$$

$$\text{Since } \vec{x} \neq \vec{0} \wedge T^k(\vec{x}) = \vec{0}$$

$$\implies \lambda^k = 0$$

$$\implies \lambda = 0$$

 \rightarrow Suppose only eigenvalue of T is 0.

We know there exists basis for V...

so the matrix of T relative to this basis is upper-triangular... with 0 along diagonal.

And matrix of T^2 relative to this basis has 0 on the super diagonal And with every composition of additional T,...

the zero diagonal is pushed up for at least one step.

Eventually, for the worst case we could guarantee $T^{\dim(V)}=0$

Note: the actual value of k might be smaller than dim(V),...

and k is bounded above by dim(V).

Definition A linear operator $T: V \to V$ is called **nilpotent** if

$$\exists k \in \mathbb{Z}^+ \ s.t. \ T^k = 0$$

the smallest possible k that $T^k = 0$ is called the **order/ index** of T.

Theorem (Same as above theorem) A linear operator $T:V\to V$ is nilpotent if and only if T has only eigenvalue 0.

¹⁸The 0 here stands for zero transformation.

Example 1 Let $T: P_n(\mathbb{C}) \to P_n(\mathbb{C})$ and T(p(x)) = p'(x), T is nilpotent with order n+1.

Example 2 Let $T: P_4(\mathbb{C}) \to P_4(\mathbb{C})$ and T(p(x)) = p''(x) + p'''(x), T is nilpotent with order 3.

Example 3 If $T^{k-1}(\vec{x}) \neq \vec{0}$ for non-zero \vec{x} , and $T^k(\vec{x}) = \vec{0}$, then $\{T^{k-1}(\vec{x}), \dots, T(\vec{x}), \vec{x}\}$ is linearly independent.

Proof.

If
$$(\star) = c_{k-1}T^{k-1}(\vec{x}) + \dots + c_1T(\vec{x}) + c_0\vec{x} = \vec{0}$$

Then $T^{k-1}(\star) = T^{k-1}(\vec{0}) = \vec{0}$
 $\implies c_0T^{k-1}(\vec{0}) = \vec{0}$
 $\implies c_0 = 0$
Recursively, $c_i = 0 \forall i \in \mathbb{Z}_0^{k-1}$

Theorem Let $T: V \to V$ be a nilpotent with degree n = dim(V), then there exists $\vec{x} \in V$ (not necessarily unique) such that

$$\beta = \{T^{n-1}(\vec{x}, \dots, T(\vec{x})), \vec{x}\}$$

is a basis for V. And $[T]^{\beta}_{\beta}$ is upper-triangular with zero on main diagonal entries and one on super-diagonal, and zero elsewhere.

Proof.

Since
$$T^n = 0 \wedge T^{n-1} \neq 0$$

Therefore β is linearly independent by result from example 3 And β contains n vectors, so β is a basis for V.

18.3 Lecture 19 Mar. 20 2018

Next Goal If $T: V \to V$ is nilpotent in order between 1 and dim(V), then the matrix of T relative to some basis is in the form of

$$\begin{pmatrix} J_{m_1} & 0 & \dots & 0 \\ 0 & J_{m_2} & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & J_{m_k} \end{pmatrix}$$

where $J_{m_i} \in \mathbb{M}_{m_i \times m_i}(F)$ in the form with ones on super-diagonal and zeros elsewhere.

Essential procedures Identify vectors

- 1. in Ker(T)
- 2. in $Ker(T^2)$ but not in Ker(T)
- 3. in $Ker(T^3)$ but not in $Ker(T^2)$

Theorem Let $T: V \to V$ is nilpotent of order k, let W be a subspace of $Ker(T^k)$ s.t. $W \cap Ker(T^{k-1}) = \{\vec{0}\}$

19 Lecture 21 Mar. 27 2018

19.1 Goal

Goal Prove for all $T:V\to V$ can decompose V into direct sum of two invariant subspaces s.t. on one subspace, T has only single eigenvalue λ and on other no eigenvalue of T is λ .

Definition λ is an eigenvalue of $T:V\to V$ the **generalized eigenspace** corresponding to eigenvalue λ is

$$K_{\lambda} = \{ \vec{x} \in V \mid (T - \lambda I)^{i}(\vec{x}) = \vec{0} \text{ for some } i \in \mathbb{Z}^{+} \}$$

In the definition, i might be different for different \vec{x} .

Note 1 $K_{\lambda} = Ker(T - \lambda I)^k$ for some k. Since

$$\{\vec{0}\} \subset Ker(T - \lambda I) \subset Ker(T - \lambda I)^2 \dots$$

the chain cannot grow forever must eventually stabilize. That's, \exists (smallest) k s.t. $Ker(T - \lambda I)^k = Ker(T - \lambda I)^{k+1}$, more generally the $Ker(T - \lambda I)^l = Ker(T - \lambda I)^k$, $\forall l > k$. k is the degree where kernel gets stabilized.

Note 2 K_{λ} is T invariant. \iff $(\vec{v} \in K_{\lambda} \implies T(\vec{v}) \in K_{\lambda})$

Proof.

Consider
$$(T - \lambda I)^{k+1}(\vec{v}) = (T - \lambda I)^k (T - \lambda I)(\vec{0})$$

$$= (T - \lambda I)^k T(\vec{v}) - \lambda (T - \lambda I)^k (\vec{v})$$

$$= (T - \lambda I)^k T(\vec{v}) - \vec{0}$$

$$= (T - \lambda I)^k T(\vec{v})$$

$$= \vec{0}$$

Note 3 The only eigenvalue of T on K_{λ} is λ . Show

$$T(\vec{v}) = \mu \vec{v} \implies \mu = \lambda$$

Proof.

Consider $(T-\lambda I)^i(\vec{v}) = (\mu-\lambda)^i(\vec{v}) = \vec{0}$ by definition of generalized eigenspace.

Since
$$\vec{v} \neq \vec{0}$$
 $\implies \mu = \lambda$

Note 4
$$V = Ker(T - \lambda I)^k \oplus Im(T - \lambda I)^k$$

Check: $Im(T - \lambda I)^k$ is T-invariant

Proof.

By dimension theorem,
$$dim(V) = dim(Ker(T-\lambda)^k) + dim(Im(T-\lambda)^k)$$
 So to prove direct sum only need to show
$$Ker(T-\lambda)^k \cap Im(T-\lambda)^k = \{\vec{0}\}$$
 Let $\vec{v} \in Ker(T-\lambda)^k \cap Im(T-\lambda)^k = \{\vec{0}\}$
$$\implies \vec{v} = (T-\lambda)^k (\vec{v}) \in Ker(T-\lambda)^k$$

$$\implies (T-\lambda)^k (\vec{v}) = (T-\lambda)^k ((T-\lambda)^k (\vec{v}))$$

$$= (T-\lambda)^{2k} (\vec{v}) = \vec{0} \text{ since } 2k > k$$

$$\implies \vec{v} \in Ker(T-\lambda)^{2k} = Ker(T-\lambda)^k$$

$$\implies \vec{v} = \vec{0}$$

$$\implies Ker(T-\lambda)^k \cap Im(T-\lambda)^k = \{\vec{0}\}$$

Note 5 $T: V \to V$ is a linear operator and λ is an eigenvalue of T with multiplicity m, then

$$dim(Ker(T-\lambda)^k) = m$$

In generally, the dimension of generalized eigenspace is equal to the multiplicity of λ

Proof.

By Note 4,
$$V = Ker(T - \lambda I)^k \oplus Im(T - \lambda I)^k$$

Let α, β be respective bases for $Ker(T - \lambda I)^k$, $Im(T - \lambda I)^k$

$$\implies \gamma = \alpha \cup \beta$$
 is a basis for V

$$[T]_{\gamma}^{\gamma} = \begin{bmatrix} [T|_{Ker}]_{\alpha}^{\alpha} & 0\\ 0 & [T|_{Im}]_{\beta}^{\beta} \end{bmatrix}$$

$$\implies P_T(x) = P_{T|_{Ker}}(x) * P_{T|_{Im}}(x)$$

Since multiplicity of eigenvalue λ is m, factoring out,

$$\implies P_T(x) = (x - \lambda I)^m q(x), \ q(\lambda) \neq 0$$

Since λ is the only eigenvalue for $T|_{Ker}$

$$P_{T|_{Ker}} = (x - \lambda I)^l$$

Now WTS
$$m = l$$

For $T|_{Im}$ no eigenvalue equals λ

Let
$$\vec{v} \in Im(T - \lambda I)^k$$
 and $T(\vec{v}) = \lambda \vec{v}$

$$\vec{v} = (T - \lambda I)^k(\vec{w})$$
 for some \vec{w}

$$\implies T(\vec{v}) = T(T - \lambda I)^k(\vec{w}) = \lambda (T - \lambda I)^k(\vec{w})$$
$$\implies (T - \lambda I)^k(\vec{w}) \in E_\lambda \subset Ker(T - \lambda I)^k$$

$$\implies (T - \lambda I)^k(\vec{w}) \in Ker(T - \lambda I)^k \cap Im(T - \lambda I)^k = \{\vec{0}\}\$$

Contradict the fact that eigenvector cannot be zero vector,

Therefore λ cannot be an eigenvalue of $T|_{Im}$

$$\implies P_{T|_{Im}}(\lambda) \neq 0$$

So $(x - \lambda)^m q(x) = (x - \lambda)^l P_{T|_{Im}}$
Where $q(\lambda) \neq 0 \land P_{T|_{Im}}(\lambda) \neq 0$

 $\implies l = m$

Goal / crucial idea $T: V \to V$ is a linear operator with λ as an eigenvalue with multiplicity m, then

$$V = Ker(T - \lambda I)^k \oplus Im(T - \lambda I)^k = K_\lambda \oplus Im(T - \lambda I)^k$$

and both $Ker(T-\lambda I)^k$ and $Im(T-\lambda I)^k$ are invariant under T, the only eigenvalue of $T|_{Ker(T-\lambda I)^k}$ is λ and no eigenvalue of $T|_{Im(T-\lambda I)^k}$ is equal to λ . Also $dim(K_\lambda)=m$.

Implication Let V be a vector space over \mathbb{C} , and $T: V \to V$ be a linear operator with distinct eigenvalues $\{\lambda_i, \ldots, \lambda_l\}$ then

$$V = \bigoplus_{i=1,\dots,l} K_{\lambda_i}$$

Proof(Sketch).

$$V = K_{\lambda_1} \oplus Im(T - \lambda_1 I)^k$$

Apply induction on dim(V)

Keep splitting, one-by-one, until there are no more eigenvalues left.

So V is a vector space over \mathbb{C} , $T:V\to V$ has matrix (in some basis)

$$\begin{pmatrix} B_{\lambda_1} & 0 & 0 & 0 \\ 0 & B_{\lambda_2} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & B_{\lambda_i} \end{pmatrix}$$

where B_{λ_i} is a Jordan block. And the matrix is called **Jordan canonical** form of T, and is unique up to ordering of Jordan blocks.

And two matrices are similar (i.e. representing same transformation relative to different bases) if and only if they have same JCF.

Note If T is diagonalizable, then

$$V = E_{\lambda_1} \oplus E_{\lambda_2} \oplus \cdots \oplus E_{\lambda_l}$$

Diagonal form is one of Jordan canonical form.

20 Lecture 22 Mar. 28 2018

20.1 Examples on finding JCF.

Example 1 Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be a linear transformation and T has matrix A relative to standard basis of \mathbb{R}^4 ,

$$A = \begin{pmatrix} 2 & -2 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Find Jordan canonical form for T and a canonical basis.

Solution:

Omitted

Example 2 Let $T: \mathbb{R}^6 \to \mathbb{R}^6$ has matrix

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 & 0 & 0 \\ 1 & 1 & 1 & 2 & 0 & 0 \\ 1 & 1 & 1 & 1 & 3 & 0 \\ 1 & 1 & 1 & 1 & 1 & 3 \end{pmatrix}$$

Find the Jordan Canonical Form of T.

Solution:

Omitted