Reprezentacja Lucasa

Ciąg liczb naturalnych $(L_n)_{n\in\mathbb{N}}$ zdefiniowany warunkami

$$L_1 = 1,$$
 $L_2 = 3,$ $L_n = L_{n-1} + L_{n-2},$ $n \ge 3$

nazywamy ciągiem Lucasa. Początkowymi wyrazami ciągu są

$$1, \quad 3, \quad 4, \quad 7, \quad 11, \quad 18, \quad 29, \quad 47, \quad 76, \quad 123, \quad 199, \quad \dots$$

Oczywiście każdą liczbę naturalną n można przedstawić jako sumę pewnych elementów ciągu Lucasa, gdyż $n = L_1 + L_1 + \ldots + L_1$, przy czym po prawej stronie wyraz L_1 występuje n razy. Przedstawieniem liczby n będziemy nazywać każdy skończony ciąg liczb całkowitych

$$c_1, \quad c_2, \quad \dots \quad c_k,$$

dla którego

$$n = \sum_{i=1}^{k} c_i L_i = c_1 L_1 + c_2 L_2 + \dots + c_k L_k.$$

Piszemy wtedy $n=(c_1,c_2,\ldots,c_k)_L$. Długością przedstawienia (c_1,c_2,\ldots,c_k) nazywamy sumę

$$\sum_{i=1}^{k} |c_i|.$$

Różnych przedstawień może być oczywiście dużo, na przykład

$$2 = 2L_1 = (2)_L = -L_1 + L_2 = (-1,1)_L = L_1 - L_2 - L_3 + L_4 = (1,-1,-1,1)_L,$$

$$9 = L_1 + 2L_3 = (1,0,2)_L = -L_1 + L_2 + L_4 = (-1,1,0,1)_L,$$

$$14 = 2L_4 = (0,0,0,2)_L = L_2 + L_5 = (0,1,0,0,1)_L.$$

Twoim zadaniem jest dla zadanej liczby n znaleźć dowolną z jej najkrótszych reprezentacji (może być wiele).

Wejście

- ullet W pierwszym wierszu znajduje się jedna liczba całkowita dodatnia t, będąca liczbą przypadków do rozwiązania.
- W każdym z kolejnych t wierszy znajduje się jedna liczba całkowita dodatnia a_i , dla której należy znaleźć długość jej możliwie najkrótszej reprezentacji.

Można założyć, że

- $1 \le t \le 10^4$,
- $1 \le a_i < 2^{128}$.

Wyjście

Program ma wypisać dokładnie t wierszy. W i-tym z nich powinna się znaleźć długość najkrótszej reprezentacji liczby a_i .

Przykład

Plik wejściowy:	Oczekiwany wynik:
3	2
2	3
9	2
14	