

# Generative Multi-hop Retrieval

Hyunji Lee, Sohee Yang, Hanseok Oh, Minjoon Seo KAIST AI

# Limitations of Bi-Encoder in Multi-hop!



1.BE performance (y-axis) degrades as the input gets longer since the input is encoded into a fixed-sized vector (bottleneck problem). It becomes severe as the input length increases with number of hops (x-axis). Red is BE and Black is GMR.

|     | Minor |       |       | Major |       |       |  |  |
|-----|-------|-------|-------|-------|-------|-------|--|--|
|     | Str   | Exp   | Ent   | Str   | Exp   | Ent   |  |  |
| BE  | 23.6% | 46.9% | 14.0% | 71.2% | 91.1% | 55.1% |  |  |
| GMR | 1.7%  | 49.3% | 11.1% | 20.7% | 75.8% | 39.6% |  |  |

2. It is highly vulnerable to error propagation

## **Generative Multi-hop Retrieval**



GMR is an encoder-decoder model that performs multi-hop retrieval by *iteratively generating the entire target sequences*. It overcomes the bottleneck problem by interacting in the *whole parametric space of the model* rather than the L2 or inner product space as in the bi-encoder approach.

#### **Contributions**

- 1. We show the limitations of bi-encoder retrieval in multi-hop retrieval tasks
- 2. We show that Generative Multi-hop Retrieval (GMR) which is especially strong in multi-hop retrieval settings close to real-world scenarios and datasets with a low unseen rate.
- 3. We introduce multi-hop memorization which effectively memorizes the target corpus and improves the performance of GMR.

### Two Memorization Methods of GMR

We propose memorization methods to *reduce the* unseen rate.

- (1) **LM Memorization**: intermediate task of training on all retrieval candidates with *standard LM objective*
- (2) **Multi-hop Memorization**: augments the training data with *pseudo-multi-hop queries*.

## **Experimental Results**

|               | EntailTree |      |         | StrategyQA |      |         | EG-Open |      |      | RT-Open* |         |      |      |         |
|---------------|------------|------|---------|------------|------|---------|---------|------|------|----------|---------|------|------|---------|
|               | ST5        | GMR  | $GMR_L$ | ST5        | GMR  | $GMR_L$ | $GMR_M$ | ST5  | GMR  | $GMR_L$  | $GMR_M$ | ST5  | GMR  | $GMR_L$ |
| Fixed R@5     | 31.5       | 53.6 | 54.3    | 37.4       | 44.9 | 45.5    | 45.6    | 27.0 | 32.9 | 32.4     | 34.6    | -    | -    | -       |
| Dynamic F1@5  | 24.9       | 48.2 | 47.4    | 38.1       | 41.9 | 42.6    | 43.1    | 25.0 | 35.5 | 35.7     | 36.2    | -    | -    | -       |
| Dynamic F1@10 | 19.4       | 52.1 | 51.7    | 36.9       | 44.3 | 45.0    | 45.2    | 24.6 | 40.0 | 40.8     | 42.1    | -    | -    | 100     |
| Dynamic F1@20 | 16.9       | 52.5 | 52.2    | 36.5       | 46.6 | 47.1    | 47.9    | 25.4 | 41.5 | 41.3     | 42.6    | 17.0 | 51.0 | 65.5    |

| Method | DPR  | MDR- | MDR  | fix-GMR | fix-GMR <sub>L</sub> |
|--------|------|------|------|---------|----------------------|
| Top-2  | 25.2 | 59.9 | 65.9 | 57.7    | 55.0                 |
| Top-10 | 45.4 | 70.6 | 77.5 | 68.8    | 65.3                 |
| Top-20 | 52.1 | 73.1 | 80.2 | 73.9    | 71.4                 |

Across all five multi-hop datasets, GMR consistently achieves comparable or higher performance than bi-encoder models while demonstrating *more efficient GPU memory usage (-79.5%) and storage footprint (-69.7%).*GMR show especially high performance on settings close to real-world scenarios (*Dynamic F1*).

| Model       | EntailTree | StrategyQA | EG-Open |  |
|-------------|------------|------------|---------|--|
| atomic-DSI* | 28.0       |            | 23.4    |  |
| naive-DSI*  | 7.7        | -          | 8.6     |  |
| fix-GMR     | 53.6       | 44.9       | 32.9    |  |

We also show the *importance of explicitly generating all retrieval sequences on multi-hop* retrieval tasks by comparing the performance with DSI, where GMR consistently shows higher performance