AV-LocoFiLM: Audio-Visual Speech Enhancement with Early FiLM Fusion and Local-Global Transformers

Shafique Ahmed

Jen-Cheng Hou

Yu Tsao

1 System Architecture

Pre-processing. 16 kHz waveforms are transformed to *complex* spectrograms by a 512-point STFT with 50 % overlap (256-sample hop). The four resulting channels—real, imaginary, magnitude and wrapped phase—are stacked into $\mathbf{X} \in \mathbb{R}^{4 \times T \times F}$ (F = 257). Video is cropped to a 96 × 96 mouth ROI at 25 fps.

Fusion stem.

- Audio branch. A 3×3 Conv2D (4 \rightarrow 128) with GroupNorm₃₂ and PReLU converts **X** to $\mathbf{X}_a \in \mathbb{R}^{128 \times T \times F}$.
- Visual front-end. A single-channel clip $\mathbf{V} \in \mathbb{R}^{1 \times T_v \times 96 \times 96}$ passes through:
 - 1. 3-D Conv (5,7,7) $(1\rightarrow64)$ with stride (1,2,2);
 - 2. MaxPool $(1,3,3) \Rightarrow T_v = T, H = W = 12;$
 - 3. three ResNet layers (64-64-128) acting per frame;
 - 4. a five-layer temporal CNN built from depth-separable 1-D blocks.

This yields $\mathbf{Z} \in \mathbb{R}^{64 \times T}$.

- FiLM conditioning. A 1×1 Conv1D doubles **Z** to $(\gamma_{\text{raw}}, \beta)$. After rescaling $\gamma = 1 + \gamma_{\text{raw}}$ and broadcasting along F, feature-wise modulation is applied: $\tilde{\mathbf{X}}_a = \gamma \odot \mathbf{X}_a + \beta$.
- Refinement. A 1 × 1 Conv2D (128 \rightarrow 128) + PReLU completes the stem, producing $\mathbf{H}^{(0)} \in \mathbb{R}^{128 \times T \times F}$.

Local–Global Transformer stack. Four identical *Loco-Transformer* blocks propagate $\mathbf{H}^{(0)} \mapsto \mathbf{H}^{(4)}$. Each block contains:

- 1. Intra-frequency module: Conv-FFN (kernel 4, hidden 192) \rightarrow MHSA_{freq} (8 heads, 128 dim) with rotary positional embedding; RMS-GroupNorm and residual scaling (0.5).
- 2. Inter-time module: identical Conv-FFN + $MHSA_{time}$.
- 3. Frame aggregator: mean over $F \to \text{LayerNorm} \to \text{temporal MHSA}$ (4 heads).

RMS normalisation prevents FP16 overflow; sequence lengths up to T = 750 run without gradient scale drops.

Output heads. Three deconvolutions (kernel 3, pad 1) act on $\mathbf{H}^{(4)}$:

- complex mask $\hat{\mathbf{M}}_c \in \mathbb{R}^{2 \times T \times F}$,
- magnitude mask $\hat{\mathbf{M}}_m = \sigma_{\beta=1.2}(\cdot) \in [0, 1.2]^{1 \times T \times F}$,
- phase unit vector $(\sin \hat{\varphi}, \cos \hat{\varphi}) \in \mathbb{R}^{2 \times T \times F}$.

Enhanced STFT: $\hat{\mathbf{S}} = \hat{\mathbf{M}}_c \odot \mathbf{X} + \hat{\mathbf{M}}_m \odot |\mathbf{X}| e^{j\hat{\varphi}}$, followed by inverse STFT.

Complexity. Total parameters: $\approx 6.1 \text{ M}$.

2 Training Procedure

Twenty epochs on the official training split with AdamW (lr 3×10^{-4} , 5 k warm-up, weight-decay 10^{-2}), automatic mixed precision and gradient clipping (5). Objective = SI-SDR_{neg} + $\lambda = 0.5 \cdot L_1$ spectral loss. Training uses two 2080TI GPUs, batch 4, and reaches $1.2\times$ real-time per GPU.

3 Development-Set Results

System	SI-SDR↑	PESQ↑	STOI↑
AV-LocoFiLM	$10.9~\mathrm{dB}$	2.20	0.84