Exercise Sheet 12

Discrete Mathematics, 2021.11.09

- 1. ([R], Page 172, Exercise 2(a)(b)(d)(e)) Determine whether each of these sets is countably infinite, or uncountable. For those that are countably infinite, exhibit a one-to-one correspondence between the set of positive integers and that set.
 - a) the integers greater than 10
 - b) the odd negative integers
 - d) the real numbers between 0 and 2
 - e) the set $A \times Z^+$ where $A = \{2, 3\}$
- 2. Prove that $[0,1) \times [0,1) \approx [0,1)$.
- 3. Prove that for any sets A, B and C, $(A \to (B \to C)) \approx (B \to (A \to C))$.
- 4. Prove that for any sets A, B and C, $(A \to B \times C) \approx (A \to B) \times (A \to C)$.
- 5. Prove that the set of all binary relations on \mathbb{R} is equinumerous to the set of all functions from \mathbb{R} into \mathbb{R} .
- 6. We call f a choice function of S if $f: S \to \bigcup S$ and $f(X) \in X$ for any $X \in S$. Thus, the axiom of choice actually says: if $\emptyset \not\in S$ then S has at least a choice function. Now, please determine whether f is a choice function of S in the following examples. (If yes, you only need to say yes. If no, briefly explain why.)
 - a) $S = \{\{0\}, \{1\}, \{2\}\}, f = \{(\{0\}, 0), (\{1\}, 1), (\{2\}, 2)\}\}$
 - b) $S = \{\{0\}, \{1\}, \{2\}\}, f = \{(0,0), (1,1), (2,2)\}$
 - c) $S = \emptyset$, $f = \emptyset$
 - d) $S = \mathcal{P}(\mathbb{N}), f = \{(\{m \in \mathbb{N} \mid m \ge n\}, n) \mid n \in \mathbb{N}\}$
- 7. Suppose R is an equivalence relation on A. Prove that there exists an injection from $\{[a]_R \mid a \in A\}$ into A, based on the axiom of choice.