

System Performance Monitoring and Optimization in Linux

Objective

- Monitor CPU and memory usage using tools like top, htop, and free.
- Understand system load, context switching, CPU usage, and IO wait times.
- Identify and manage resource-intensive processes.
- Adjust process priorities using nice and renice for performance optimization.

'top' for real-time CPU and memory usage monitoring.

'top' command

The top command displays a real-time summary of system processes, allowing users to monitor CPU and memory usage, among other metrics. To start using it, simply open a terminal and type:

Mem:	19069081		2.22	7, 0.0	O%ni,	99.0	tic	d, 0.	.0%wa,	0.0%hi,	0.3%si, 0.0%st
	TOOGOOK	tota	1,	3575	36k u	sed,	1	549372	2k free	, 213	80k buffers
Swap:	4095992k	tota	1,		0k us	sed,	4	095992	2k free	1888	28k cached
PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
1847	root	20	0	243m	4544	3508	S	0.7	0.2	0:03.52	vmtoolsd
2587	Abhi	20	0	15028	1224	936	R	0.7	0.1	0:00.29	top
4	root	20	0			0	S	0.3	0.0	0:00.19	ksoftirqd/0
7	root	20	0		0	0	S	0.3	0.0	0:00.96	events/0
247	root	20	0			0	S	0.3	0.0	0:00.17	mpt poll 0
1	root	20	0	19356	1572	1252	S	0.0	0.1	0:02.18	init
2	root	20	0			0	S	0.0	0.0	0:00.01	kthreadd
3	root	RT	0			0	S	0.0	0.0	0:00.00	migration/0
	root	RT	0	0	0		S	0.0	0.0		migration/0

'top' command

Common Options and Commands:

The 'top' command supports various options and interactive commands to customize its output:

Basic Commands:

- Sort by CPU Usage: Press Shift + P.
- Sort by Memory Usage: Press Shift + M.
- Sort by Running Time: Press Shift + T.
- Kill a Process: Press k, then enter the PID (Process ID).
- Highlight Running Processes: Press z to colorize the output for better visibility.
- Change Refresh Interval: Press d to set a new delay time between updates.

'top' command

Batch Mode:

To send output from the 'top' command to a file or another program, you can use:

```
top -b -n 1 > output.txt
```

This command runs 'top' in batch mode for one iteration and saves the output to a file named 'output.txt'.

+

×

Pop Quiz

Q. What does the load average in the top command represent?

А

The average number of processes waiting to run

B

The average CPU usage over time

Pop Quiz

Q. What does the load average in the top command represent?

A

The average number of processes waiting to run

B

The average CPU usage over time

'htop' for enhanced process visualization and user-friendly controls

'htop' command

'htop' is an advanced, interactive process viewer for Linux that enhances the functionality of the traditional top command. It provides a more user-friendly interface, allowing users to monitor system processes in real-time with greater ease and clarity.

CPU Mem Swp		Ш	Ш	111111	111111	111111	111		9	2.09 0.9M/481I 12K/962I	M] Load average: 0.56 1.02 0.54
PID	USER	PRI	NI	VIRT	RES	SHR	S C	W.	MEM%	TIME+	Command
1544	root	20	0	32220	4628	3736	R (0.7	0.9	0:00.33	htop
1122	user	20	0	105M	5452	4448	5 (0.7	1.1	0:00.70	sshd: user@pts/0
1	root	20	0	156M	8956	6620	5 (0.0	1.8	0:05.35	/sbin/init maybe-ubiquity
360	root	19		108M	13188	12496	5 (0.0	2.7	0:00.81	/lib/systemd/systemd-journald
373	root	20	0	46836	5552						/lib/systemd/systemd-udevd
374	root	20	0	97708	1932	1760	S (0.0	0.4	0:00.01	/sbin/lvmetad -f
473	systemd-t	20	0	138M	3220	2700	5 (0.0	0.7	0:00.00	/lib/systemd/systemd-timesyncd
449	systemd-t	20	0	138M	3220	2700	5 (0.0	0.7	0:00.12	/lib/systemd/systemd-timesyncd
631	systemd-n	20	0	80012	5216						/lib/systemd/systemd-networkd
641	systemd-r	20	0	70740	5064	4512	5 (0.0	1.0	0:00.14	/lib/systemd/systemd-resolved
693	root	20	0	70580	6012	5292	5 (0.0	1.2	0:00.15	/lib/systemd/systemd-logind

'htop' Command

Key Features of htop:

- Enhanced Visualization
- Interactive Controls
- Comprehensive Process List
- Process Management
- Customizable Layout

Pop Quiz

Q. What is htop primarily used for?

A

File management

B

Process management and system monitoring

Pop Quiz

Q. What is htop primarily used for?

A

File management

B

Process management and system monitoring

'free' command to check memory availability and swap usage

'free' Command

The 'free' command in Linux is a straightforward tool used to check memory availability and swap usage. It provides a quick overview of the system's memory status, including total, used, and free memory, as well as details about swap space.

How to Use the free Command:

1. Basic Command:

To display memory and swap usage, simply enter:

free +

'free' Command

2. Human-Readable Format:

For easier interpretation, you can use the -h option to display the output in a human-readable format (e.g., MB, GB):

```
free -h
```

3. Display in Megabytes or Gigabytes:

You can specify the unit of measurement using options like '-m' for megabytes or '-g' for gigabytes:

```
free -m free -g
```

'free' Command

4. Continuous Monitoring:

To monitor memory usage continuously at specified intervals, use the -s option followed by the number of seconds:

```
free -s 5
```

5. Total Summary:

To include a total summary of physical memory and swap space, you can add the -t option:

```
free -t
```


Example Output:

Running 'free -h' might yield an output like this:

	total	used	free	shared
buff/cache	available			
Mem:	15G	7.2G	4.1G	440M
4.0G	7.6G			
Swap:	2.0G	126M	1.9G	

Pop Quiz

Q. What command is used to check memory availability and swap usage in Linux?

free

B

top

Pop Quiz

Q. What command is used to check memory availability and swap usage in Linux?

free

B

top

Hands-on examples for interpreting output from these tools.

1. Using the 'top' Command

To start monitoring processes, type the following command in your terminal: 'top'

Interpreting the Output:

top - 1 Tasks: Cpu(s): Mem:	1906908k	ap 6 l, , 0. tota	min, l ru 3%sy l,	unning, y, 0.0 35753	, 123 0%ni, 36k u:	sleem 99.0 sed,	pin %i	ng, d, 0. 549372	0 stop .0%wa, 2k free	oped, 0 0.0%hi, e, 213	
PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
1847	root	20	0	243m	4544	3508	S	0.7	0.2	0:03.52	vmtoolsd
2587	Abhi	20		15028	1224	936	R	0.7	0.1	0:00.29	top
4	root	20					5	0.3	0.0	0:00.19	ksoftirqd/0
	root	20						0.3	0.0	0:00.96	events/0
247	root	20					S	0.3	0.0	0:00.17	mpt poll 0
1	root	20		19356	1572	1252		0.0	0.1	0:02.18	init
	root	20						0.0	0.0	0:00.01	kthreadd
	root	RT					S	0.0	0.0	0:00.00	migration/0
	root	RT	0	0	0	0	S	0.0	0.0	0:00.00	migration/0

2. Using the 'htop' Command

The 'htop' interface displays a colorful representation of system resources:

Interpreting the Output:

CPU Mem Swp		Ш	Ш	1111111	111111	ШШ	11111	9	2.0%] Tasks: 29 , 18 thr; 1 running Load average: 0.56 1.02 0.54 Uptime: 00:05:31
PID	USER	PRI	NI	VIRT	RES	SHR S	CPU%	MEM%	TIME+ Command
1544	root	20	0	32220	4628	3736 R	0.7	0.9	0:00.33 htop
1122	user	20	0	105M	5452	4448 S	0.7	1.1	0:00.70 sshd: user@pts/0
1	root	20	0	156M	8956	6620 S	0.0	1.8	0:05.35 /sbin/init maybe-ubiquity
360	root	19			13188	12496 S	0.0	2.7	0:00.81 /lib/systemd/systemd-journald
373	root	20	0	46836	5552	3084 S	0.0	1.1	0:03.92 /lib/systemd/systemd-udevd
374	root	20	0	97708	1932	1760 S	0.0	0.4	0:00.01 /sbin/lvmetad -f
473	systemd-t	20	0	138M	3220	2700 S	0.0	0.7	0:00.00 /lib/systemd/systemd-timesyncd
449	systemd-t	20	0	138M	3220	2700 S	0.0	0.7	0:00.12 /lib/systemd/systemd-timesyncd
631	systemd-n	20	0	80012	5216	4624 S	0.0	1.1	0:00.10 /lib/systemd/systemd-networkd
641	systemd-r	20	0	70740	5064	4512 S			0:00.14 /lib/systemd/systemd-resolved
693	root	20	0	70580	6012	5292 S	0.0	1.2	0:00.15 /lib/systemd/systemd-logind

3. Using the 'free' Command

To check memory availability and swap usage:

free -h

Interpreting the Output:

	total	used	free	shared
buff/cache	available			
Mem:	15Gi	10Gi	2Gi	<1Gi
2Gi	4Gi			
Swap:	2Gi	<1Gi	<1Gi	

system load average and explain its significance in Linux.

System load average

System Load Average is a metric used in Linux to measure the average number of processes that are either actively being executed by the CPU or are waiting to be executed over a specific period of time.

• It is typically represented as three values corresponding to the last 1, 5, and 15 minutes, providing insight into the system's performance and workload trends.

System load average

Significance of Load Average in Linux:

- 1. Performance Monitoring
- 2. Resource Management
- 3. Troubleshooting
- 4. Capacity Planning

Context switching and how excessive switches impact performance.

Context Switching

Context Switching is the process by which an operating system saves the state of a currently running process or thread, allowing it to resume execution later, while switching to another process or thread.

 This mechanism is crucial in multitasking environments where multiple processes share the same CPU.

Significance of Context Switching:

- Multitasking
- Resource Management
- Handling Interrupts

Context Switching

Impact of Excessive Context Switching on Performance:

While context switching is vital for multitasking, excessive switches can negatively impact system performance due to:

- Overhead costs
- Cache Trashing
- Decreased Throughput

CPU usage breakdown (user, system, idle, etc.) using practical examples.

CPU usage breakdown

CPU Usage Breakdown refers to the distribution of CPU time across various categories of activity, typically including user processes, system processes, idle time, and I/O wait time.

Key components:

- 1. User CPU time
- 2. System CPU time
- 3. Idle time
- 4. I/O wait time

CPU usage breakdown

Practical Example:

Consider a scenario where you run the 'top' command on your Linux system:

```
%Cpu(s): 20.0 us, 5.0 sy, 0.0 ni, 75.0 id, 0.0 wa
```

- 20.0 us (User): The CPU spends 20% of its time executing user processes.
- 5.0 sy (System): The CPU spends 5% of its time executing kernel processes.
- **75.0** id (Idle): The CPU is idle 75% of the time, indicating low overall usage.
- 0.0 wa (I/O Wait): There are no delays waiting for I/O operations.

I/O wait and how it indicates disk or network bottlenecks

I/O wait

I/O Wait (Input/Output Wait) refers to the percentage of time that the CPU is idle while waiting for I/O operations, such as disk reads or writes, to complete.

Significance of I/O wait:

- 1. Indicates bottlenecks
- 2. Performance impact
- 3. Monitoring & Troubleshooting

I/O wait

Practical Example:

If you run the top command and see an output like this:

```
%Cpu(s): 10.0 us, 5.0 sy, 0.0 ni, 85.0 id, 0.0 wa
```

- The wa value (I/O wait) is at 0.0%, indicating that the CPU is not waiting for any I/O operations and is mostly idle.
- If the wa value were significantly higher (e.g., 30%), it would imply that a considerable amount of CPU time is spent waiting for I/O, suggesting potential performance issues related to disk or network operations.

Take A 5-Minute Break!

- Stretch and relax
- **Hydrate**
- Clear your mind
- Be back in 5 minutes

Identifying resource-heavy processes using top and htop.

To identify resource-heavy processes using top and htop, follow these practical steps: Using the top Command:

1. Launch 'top':

top

2. Sort by CPU Usage:

By default, top sorts processes by CPU usage. The %CPU column shows how much CPU each process is using. Look for processes with high values (e.g., above 50%).

3. Sort by Memory Usage:

To sort processes by memory usage, press:

This will rearrange the list to show processes consuming the most memory at the top, indicated in the '%MEM' column.

4. Identify Resource-Heavy Processes:

Look for processes that consistently appear at the top of the list in either sorting. For example, if you see a process like 'mysqld' using 80% CPU, it may need further investigation.

5. Kill a Process:

If you identify a resource-heavy process that needs to be terminated, note its PID (Process ID), press k, enter the PID, and hit Enter to kill it.

Using the 'htop' Command:

1. Launch 'htop':

htop

2. Sort by CPU or Memory Usage:

- To sort by CPU usage, press: 'F6' then select '%CPU'
- To sort by memory usage, press: 'F6' then select '%MEM'

3. Visual Indicators:

The interface displays colored bars representing CPU and memory usage, making it easier to spot resource-heavy processes at a glance.

4. Filter Processes:

You can filter processes by pressing 'F3', allowing you to search for specific applications or services consuming resources.

5. Terminate a Process:

To kill a process directly from htop, navigate to the process using arrow keys, press 'F9', select the signal (e.g., 15 for TERM), and confirm.

How to terminate processes with kill or interactively using htop.

SKILLS

How to terminate processes with kill or interactively using htop.

Using the kill Command:

1. Identify the Process ID (PID):

 First, you need to find the PID of the process you want to terminate. You can use commands like ps, top, or pgrep to list processes.

2. Terminate the Process:

Use the kill command followed by the PID. The basic syntax is:

```
kill [signal] PID
```


SKILLS

How to terminate processes with kill or interactively using htop.

To gracefully terminate a process (default signal is SIGTERM):

kill 1234

To forcefully terminate a process (using SIGKILL):

kill -9 1234

Killing Multiple Processes:

You can also kill multiple processes at once by specifying multiple PIDs:

kill 1234 5678 91011

How to terminate processes with kill or interactively using htop.

Using htop:

1. Launch htop:

htop

2. Navigate to the Process:

Use the arrow keys to scroll through the list of processes and highlight the one you want to terminate.

3. Kill the Process:

- 1. Press F9 to bring up the kill menu.
- 2. Select a signal (e.g., SIGTERM or SIGKILL) using the arrow keys.
- 3. Press Enter to confirm and terminate the selected process.

Pop Quiz

Q. Which signal is sent by default when using the kill command without specifying a signal?

A
SIGTERM

B
SIGKILL

Pop Quiz

Q. Which signal is sent by default when using the kill command without specifying a signal?

A
SIGTERM

B
SIGKILL

Introducing nice and renice to adjust process priorities

Nice Command: This command is used to start a new process with a specified priority level, known as the "niceness" value. The niceness value ranges from -20 (highest priority) to 19 (lowest priority).

- A lower niceness value means higher priority, allowing the process to receive more CPU time.
- Example: To start a new process with a higher priority:

```
nice -n -10 command_name
```


Renice Command: Unlike nice, which sets the priority for new processes, renice modifies the priority of already running processes. This flexibility allows system administrators to adjust priorities dynamically based on current system load.

Example: To change the priority of an existing process with PID 1234:

sudo renice -n 5 -p 1234

Impact of Priority Changes on Process Execution:

- Resource Allocation
- System Performance
- User Experience

Hands-On Examples for Modifying Priorities:

1. Starting a Process with Nice:

To start a new instance of 'gnome-terminal' with a lower priority:

```
nice -n 10 gnome-terminal
```

This sets the niceness value to 10, lowering its execution priority.

K

2. Checking Current Nice Value:

To check the current nice value of a running process, use:

Replace <PID> with the actual process ID.

3. Changing Priority of a Running Process with Renice:

First, find the PID of the process you want to modify (e.g., using 'ps' or 'top'). Then run:

This command raises the priority of the specified process by changing its niceness value to -5.

4. Changing Priority for All Processes of a User:

To change the priority of all processes owned by a specific user (e.g., user "john"):

```
sudo renice -n 15 -u john
```

This sets all processes owned by "john" to a lower priority.

Pop Quiz

Q. What is the primary purpose of the 'nice' command in Linux?

A

To adjust the priority of a running process

В

To start a process with a specified priority

Pop Quiz

Q. What is the primary purpose of the 'nice' command in Linux?

A

To adjust the priority of a running process

B

To start a process with a specified priority

Real-world scenario where system performance is degraded due to a resource hog

Real-world scenarios

A real-world scenario illustrating degraded system performance due to a resource hog can be observed in a web hosting company, WebServe, which experienced significant slowdowns during peak traffic hours.

Scenario: WebServe's Performance Degradation

Context

WebServe is a web hosting provider that hosts numerous websites for small to medium-sized businesses. As their customer base grew, they noticed that during peak hours, their servers were becoming increasingly sluggish, leading to slow website loading times and customer complaints.

Real-world scenarios

Identification of the Resource Hog:

- Upon investigation, the system administrators used monitoring tools like 'top' and 'htop' to identify processes consuming excessive CPU and memory resources.
- They discovered that a single instance of a content management system (CMS)
 application was using over 90% of the CPU during peak traffic, significantly impacting
 the performance of other hosted sites.

Real-world scenarios

Impact of the Resource Hog:

- 1. Decreased Response Times
- 2. Increased Load Times
- 3. Customer Complaints
- 4. Resource Starvation

Resolution:

To resolve the issue, WebServe took several steps:

- 1. Process Optimization
- 2. Load Balancing
- 3. Resource Allocation

Time for case study!

Important

- Complete the post-class assessment
- Complete assignments (if any)
- Practice the concepts and techniques taught in this session
- Review your lecture notes
- Note down questions and queries regarding this session and consult the teaching assistants

BSKILLS (S

