Basic Statistical Concepts

Introduction

Importance of Probability Distributions in Statistics and Data Science

 A probability distribution is a mathematical function that provides the probabilities of occurrence of different possible outcomes of a random variable

Uses of Probability Distributions in Data Science

Descriptive Modeling

- Bernoulli: Models binary outcomes (e.g., success/failure, yes/no).
- Binomial: Repeated Bernoulli trials (e.g., number of heads in 10 coin flips).
- Normal: Continuous data with symmetric distribution (e.g., human height).
- Poisson: Count of events in a fixed interval (e.g., calls per hours).
- Exponential: Time between events (e.g., time until next customer arrives).

What is a Probability Distribution?

Layman Definition:- It's a way of showing all the possible outcomes of something uncertain (rolling dice) and how likely each one is

Basic concepts

It helps us predict, understand risks, and make better decisions in everyday life, business, and data science

Types: Discrete vs Continuous

 Discrete: Like counting apples — you can have 3 or 4 apples, not 3.5

Continuous: Like measuring water — you can have 2.5 liters,
3.75 liters, etc

Classification of Distributions

• Discrete:- Bernoulli, Binomial, Poisson

Continuous:- Normal, Exponential

Bernoulli Distribution

- Binary outcome: Success/Failure
- Used in binary experiments

Binomial Distribution

- Multiple Bernoulli trials
- Predicting outcomes over several attempts

Poisson Distribution

- Call center traffic
- Mean and variance are equal

Exponential Distribution

- Time until next customer arrives
- Lifetime of components

Ex....

Nvidia's Growth Spurt Continues

Quarterly revenue and net income of Nvidia*

* Nvidia's fiscal year ends on the last Sunday of January. Source: Nvidia

Normal Distribution

- Bell-shaped
- Symmetric curve

Python Libraries for Distributions

libraries like NumPy, SciPy, Matplotlib

Introduction to Correlation

Definition:- Correlation means how two things move together

Positive Correlation

- You're observing ice cream sales and temperature.
- On hotter days, ice cream sales go up.
- On colder days, sales go down.
- That's a positive correlation

Negative Correlation

- Negative correlation means that when one thing increases, the other decreases.
- They move in opposite directions.

Ex

- Sleep vs Stress
- Screen Time vs Eye Health

Zero Correlations

Definition:- Zero correlation means there is **no** relationship between two things **Ex.**

- Pizza toppings vs Exam marks
- Hat color vs Monthly salary

How It Works

Key Points:

Ranges from -1 to +1

- +1 → positive Correlation
- -1 → negative correlation
- 0 → No Correlations

Importance of Correlation Analysis

Applications:

Marketing: Ads vs sales

Finance: Stock price vs interest rate

Healthcare: Exercise vs blood pressure

Types of Correlation

Positive Correlation

Example:- More study hours → Higher grades

Negative Correlation

Example:- More exercise → Lower weight

Zero Correlation

Example: Shoe size and Intelligence

Positive vs Negative Correlation

Positive Correlation

Negative Correlation

No Correlation

Correlation Coefficient (r)

Also called as Pearson correlation

Scatterplots: Definition and Use

What is a Scatterplot?

- Def:- A scatterplot is a graphical representation that shows the relationship between two continuous variables.
- X-axis: Represents the independent variable
- Y-axis: Represents the dependent variable
- Each dot: Represents one data point's values for both variables

How to Interpret a Scatter Plot

Bubble Charts

Heatmaps for Correlation

Pairplots

