Notas de Aula - Capítulo 3

Probabilidade

Caio Gomes Alves

06/05/2025

Esperança 1

Definição 1.1

Definition 1.1. Se X é uma variável aleatória com distribuição F, a esperança de X é definida por E(X = $\int_{-\infty}^{\infty}xdF(x),$ sempre que a integral estiver bem definida.

Convenção: Se $E(X) < \infty$, então X é integrável.

Nota: $\int_{-\infty}^{\infty} x dF(x)$ é bem definida se $\int_{0}^{\infty} x dF(x)$ ou $\int_{-\infty}^{0} x dF(x)$ for finita, já que $\int_{-\infty}^{\infty} x dF(x)$ = $\underbrace{\int_{-\infty}^{0} x dF(x)}_{\text{L} \geq 0} + \underbrace{\int_{0}^{\infty} x dF(x)}_{\text{L} \geq 0}. \text{ Assim, podemos separar em quatro casos:}$

- 1. Se I e II são finitos, então X é integrável;
- 2. Se **I** é finito e **II** = $+\infty$, então $E(X) = +\infty$;
- 3. Se II é finito e $I = -\infty$, então $E(X) = -\infty$;
- 4. Se $\mathbf{I} = -\infty$ e $\mathbf{II} = +\infty$, então E(X) é indefinida.

Propriedade: $E(|X|) = \int |x| dF(x)$. Logo, X é integrável se e somente se $E(|X|) < \infty$.

Example 1.1. $X \sim U(0,1), Y = \min(X, \frac{1}{2})$:

$$\begin{split} P\left(Y = \frac{1}{2}\right) &= P\left(X > \frac{1}{2}\right) = 1 - F_X\left(\frac{1}{2}\right) = 1 - \frac{1}{2} = \frac{1}{2} = P_Y\left(Y = \frac{1}{2}\right) \\ E(Y) &= \int_{-\infty}^{\infty} y dF(y) = \int_{0}^{1/2} y . 1 dy + \frac{1}{2} P_Y\left(Y = \frac{1}{2}\right) \\ &= \frac{y^2}{2} \Big|_{0}^{1/2} + \frac{1}{4} \\ &= \frac{1}{8} + \frac{1}{2} = \frac{3}{8} \end{split}$$

Proposition 1.1. $E(X) = \int_0^\infty (1 - F(x)) dx - \int_{-\infty}^0 F(x) dx$. Disso, temos que:

- a) $\int_0^\infty x dF(x) = \int_0^\infty (1 F(x)) dx;$ b) $\int_{-\infty}^0 x dF(x) = -\int_{-\infty}^0 F(x) dx;$

Prova. Vejamos (a): considere que $d(xF(x)) = F(x)dx + xd(F(x)) \Rightarrow xd(F(x)) = d(xF(x)) - F(x)dx$. Seja um b > 0:

$$\int_0^b x dF(x) = \int_0^b d(xF(x)) - \int_0^b F(x) dx$$
$$= xF(x) \Big|_0^b - \int_0^b F(x) dx$$
$$= bF(b) - \int_0^b F(x) dx$$
$$= \int_0^b [F(b) - F(x)] dx$$

Note que $\int_0^b x dF(x) \le \int_0^\infty [1 - F(x)] dx$, $\forall b > 0$. Basta notar que $F(b) - F(x) \le 1 - F(x)$ e que $\int_0^b [1 - F(x)] dx \le \int_0^\infty [1 - F(x)] dx$. Logo:

$$\int_0^\infty x dF(x) = \lim_{b \to \infty} \int_0^b x dF(x) \le \int_0^\infty [1 - F(x)] dx \Rightarrow \int_0^\infty x dF(x) \le \int_0^\infty [1 - F(x)] dx$$

Considere $\lambda > 0$ e b > 0, tais que:

$$\int_{0}^{b} [F(b) - F(x)] dx \ge \int_{0}^{\lambda} [1 - F(x)] dx = \int_{0}^{\lambda} [F(b) - 1] dx + \int_{0}^{\lambda} [1 - F(x)] dx$$
$$= \lambda [F(b) - 1] + \int_{0}^{\lambda} [1 - F(x)] dx$$
$$\int_{0}^{b} [F(b) - F(x)] dx \ge \lambda [F(b) - 1] + \int_{0}^{\lambda} [1 - F(x)] dx$$

Logo, como $\int_0^\infty x dF(x) = \lim_{b\to\infty} \int_0^b [F(b) - F(x)] dx \ge \lim_{b\to\infty} \{\lambda [F(b) - 1] + \int_0^\lambda [1 - F(x)] dx\} = \int_0^\lambda [1 - F(x)] dx$. Assim:

$$\int_0^\infty x dF(x) \ge \lim_{\lambda \to \infty} \int_0^\lambda [1 - F(x)] dx = \int_0^\infty [1 - F(x)] dx$$

E como $\int_0^\infty x dF(x) \le \int_0^\infty [1 - F(x)] dx$, temos que $\int_0^\infty x dF(x) = \int_0^\infty [1 - F(x)] dx$

Corollary 1.1. Se X é tal que $X(\omega) \ge 0 \ \forall \omega \in \mathbb{R} \Rightarrow E(X) = \int_0^\infty [1 - F(x)] dx = \int_0^\infty P(X \ge x) dx$.

Example 1.2. Seja $X \sim Exp(\lambda)$, qual a E(X)? Como o suporte de X é $(0, \infty)$, aplica-se o corolário anterior, de modo que:

$$F_X(x) = 1 - e^{-\lambda x} \Leftrightarrow P(X > x) = e^{-\lambda x}$$
$$E(X) = \int_0^\infty e^{-\lambda x} dx = -\frac{1}{\lambda} e^{-\lambda x} \Big|_0^\infty = \frac{1}{\lambda}$$

Nota: Suponha X discreta e $X(\omega) \ge 0 \ \forall \omega$. Então:

$$E(X) = \sum_{n=0}^{\infty} P(X > n) = \sum_{n=0}^{\infty} P(X \ge n + 1)$$
$$= \sum_{n=1}^{\infty} P(X \ge n)$$

Example 1.3. Considere o lançamento de uma moeda até a 1ª cara. Suponha p = probabilidade de cara e (1-p) = probabilidade de coroa, e X = número de lançamentos até a primeira cara. Tome o evento $[X \ge n]$, logo:

$$E(X) = \sum_{n=1}^{\infty} (1-p)^{n-1} = \sum_{n=0}^{\infty} (1-p)^n = \frac{1}{p}$$

Nota: Sendo X uma variável aleatória, temos pelo corolário 1.1 que:

$$E(|X|) = \int_0^\infty P(|X| > x) dx$$

$$= \int_0^\infty \left[P(X > x) + P(X < -x) \right] dx$$

$$= \int_0^\infty P(X > x) dx + \int_0^\infty P(X < -x) dx$$

$$= \int_0^\infty (1 - F(x)) dx + \int_0^\infty F((-x)^-) dx$$

Onde $F((-x)^-) = \lim_{u \uparrow -x} F(u)$, que caso F seja contínua, coincide com F(-x). Logo:

$$E(|X|) = \int_0^\infty (1 - F(x))dx + \int_0^\infty F(-x)dx$$

Já que F pode ser descontínua em uma coleção enumerável de pontos. Agora, tomando a transformação de variável $y = -x \Leftrightarrow dy = -dx$:

$$E(|X|) = \int_0^\infty (1 - F(x))dx + \int_{-\infty}^0 F(y)dy$$
$$= \int_0^\infty (1 - F(x))dx + \int_{-\infty}^0 F(x)dx$$

Utilizando os resultados a e b da proposição 1.1, temos que:

$$E(|X|) = \int_0^\infty x dF(x) - \int_{-\infty}^0 x dF(x)$$
$$= \int_0^\infty |x| dF(x) + \int_{-\infty}^0 |x| dF(x)$$
$$= \int_{-\infty}^\infty |x| dF(x)$$

Onde F é a acumulada de X, ao invés de |X|. Assim, a integrabilidade de X depende da finitude de $\int_0^\infty x dF(x)$ e $\int_{-\infty}^0 x dF(x)$, logo X é integrável se $E(|X|) < \infty$.

1.2 Propriedades da esperança

- $\mathbf{E_1}$: Se X = c, com c uma constante, E(X) = c;
- $\mathbf{E_2}$ (monotonia): Se X e Y são variáveis aleatórias, com $X \leq Y \Rightarrow E(X) \leq E(Y)$, caso ambas as esperanças estejam bem definidas;

Prova. Seja z um valor fixo. Se $Y \leq z \Rightarrow X \leq z$, logo $[Y \leq z] \subseteq [X \leq z]$, assim:

$$P(Y \le z) \le P(X \le z)$$

 $F_Y(z) \le F_X(z) \iff 1 - F_Y(z) \ge 1 - F_X(z)$

E pela proposição 1.1, temos que:

$$E(Y) = \int_0^\infty \left[1 - F_Y(z) \right] dz - \int_{-\infty}^0 F_Y(z) dz \ge \int_0^\infty \left[1 - F_X(z) \right] dz - \int_{-\infty}^0 F_X(z) dz = E(X)$$

$$E(Y) \ge E(X)$$

• E_3 (linearidade):

- (i) Se E(X) é bem definida, $a, b \in \mathbb{R}$, então E(aX + b) = aE(X) + b;

- (ii) E(aX + bY) = aE(X) + bE(Y), caso o termo aE(X) + bE(Y) esteja bem definido;

- Note que se $E(X) = \infty \Rightarrow E(X - X) \neq E(X) - E(X)$.

Prova. Quando a = 0; E(aX + b) = E(b) = b = 0E(X) + b.

Quando $a>0,b>0; F_{aX+b}(x)=P(aX+b\leq x)=P\left(X\leq \frac{x-b}{a}\right)=F_X\left(\frac{x-b}{a}\right).$ Logo:

$$E(aX+b) = \int_0^\infty \left[1 - F_{aX+b}(x)\right] dx - \int_{-\infty}^0 F_{aX+b}(x) dx$$
$$= \int_0^\infty \left[1 - F_X\left(\frac{x-b}{a}\right)\right] dx - \int_{-\infty}^0 F_X\left(\frac{x-b}{a}\right) dx$$

Tome $y = \frac{x-b}{a} \Rightarrow dy = \frac{1}{a}dx$. Então:

$$\begin{split} E(aX+b) &= \int_{-b/a}^{\infty} a \big[1 - F_X(y) \big] dy - \int_{-\infty}^{-b/a} a F_X(y) dy \\ &= a \left\{ \int_{-b/a}^{\infty} \big[1 - F_X(y) \big] dy - \int_{-\infty}^{-b/a} F_X(y) dy \right\} \\ &= a \int_{0}^{\infty} \big[1 - F_X(y) \big] dy - a \int_{-\infty}^{0} F_X(y) dy + a \int_{-b/a}^{0} \big[1 - F_X(y) \big] dy + a \int_{-b/a}^{0} F_X(y) dy \\ &= a E(X) + a \int_{-b/a}^{0} dy \\ &= a E(X) + a \frac{b}{a} \\ &= a E(X) + b \end{split}$$

• $\mathbf{E_4}(\mathbf{Desigualdade\ de\ Jansen})$: Seja φ uma função convexa, definida na reta, com X integrável, então:

$$E(\varphi(X)) \ge \varphi(E(X)) \tag{1}$$

Nota: Caso φ seja côncava:

$$E(\varphi(X)) \le \varphi(E(X))$$

Prova para convexa. Tome x_0 e $\varphi(x_0)$. Então existe uma reta L tal que L passe por $\varphi(x_0)$ e φ fica por cima de L. Logo temos a seguinte equação da reta:

$$L(x) = \varphi(x_0) + \lambda(x - x_0)$$

Onde λ é alguma constante apropriada. Então para todo x temos:

$$\varphi(x) \ge L(x) = \varphi(x_0) + \lambda(x - x_0)$$

$$\Downarrow \mathbf{E_2}$$

$$E(\varphi(x)) \ge E(L(x)) \stackrel{\mathbf{E_1, E_3}}{=} \varphi(x_0) + \lambda \left[E(x) - x_0 \right]$$

Que vale para $x_0 = E(x)$, de modo que $E(\varphi(x)) \ge \varphi(E(x)) + \lambda [E(x) - E(x)]$, então:

$$E(\varphi(x)) > \varphi(E(x))$$

A prova para funções côncavas segue a mesma metodologia, com a inversão da desigualdade.

1.2.1 Critério de integrabilidade

Suponha que X é uma variável aleatória dominada por Y (ou seja, $X \leq Y$), sendo Y uma variável aleatória integrável. X é integrável? Temos que:

$$X \le Y \Rightarrow E(X) \le E(Y)$$

Se X e Y são tais que $Y \ge 0$ e Y é integrável e $|X| \le Y \Rightarrow 0 \le |X| \le Y$, e como consequência:

$$0 \le E(X) \le E(Y) < \infty \Longrightarrow X$$
 é integrável

De maneira similar, seja X uma variável aleatória qualquer. Então:

$$\sum_{n=1}^{\infty} P(|X| \ge n) \le E(|X|) \le 1 + \sum_{n=1}^{\infty} P(|X| \ge n)$$

Assim, X é integrável se e somente se $\sum_{n=1}^{\infty} P(|X| \ge n) < \infty$.

Prova. Seja $x \ge 0$. Tome [x] como a parte inteira de x. Então [|x|] = k se $k \le |x| < k+1$. Então:

$$0 \le [|x|] \le |x| \le [|x|] + 1$$

$$\Downarrow \mathbf{E_2}, \mathbf{E_3}$$

$$0 \le E([|x|]) \le E(|x|) \le E([|x|]) + 1$$

Pelo corolário 1.1, como [|x|] é discreta e não-negativa, temos que:

$$E([|x|]) = \sum_{n=1}^{\infty} P([|x|] \ge n)$$

$$= \sum_{n=1}^{\infty} P(|x| \ge n) \le E(|x|) \le \sum_{n=1}^{\infty} P(|x| \ge n) + 1$$

1.2.2 Casos de interesse

a) (Consistência absoluta) $\varphi(X) = |X|$:

$$E(|X|) \ge |E(X)|$$

b) (Consistência quadrática) $\varphi(X) = X^2$:

$$E(X^2) > [E(X)]^2$$

c) (Consistência absoluta de ordem p) $\varphi(X) = |X|^p, p \ge 1$:

$$E(|X|^p) \ge |E(X)|^p$$

Nota: φ só precisa ser convexa (ou côncava) em uma região de probabilidade 1. Por exemplo, se X é uma variável aleatória, tal que P(X>0)=1, ou o suporte da distribuição de X é $(0,\infty), \varphi(X)=\frac{1}{X}$ é convexa em $(0,\infty)\Rightarrow E\left(\frac{1}{X}\right)\geq \frac{1}{E(X)}$. De modo análogo, se P(X>0)=1 e $\varphi(X)=\ln(X), \varphi$ é côncava em $(0,\infty)$ logo $E(\ln(X))\leq \ln(E(X))$.

1.3 Esperança de funções de variáveis aleatórias

Seja X uma variável aleatória, φ uma função mensurável e $Y=\varphi(X)$. Assim, Y é uma variável aleatória, cuja esperança é $E(Y)=\int ydF_{\varphi(X)}(y)=\int_0^\infty [1-F_{\varphi(X)}(y)]dy-\int_{-\infty}^0 F_{\varphi(X)}(y)dy$.

Theorem 1.1. Se X é uma variável aleatória e φ uma função mensurável, com $Y = \varphi(X)$:

$$E(Y) = E(\varphi(X)) = \int \varphi(x)dF_X(x)$$

Prova para caso $\varphi(x) = x^k$. Note que a prova já foi feita para $\varphi(x) = |x|$. Vejamos que a prova é válida para $\varphi(x) = x^k$, com k = 1, 2, ..., em 2 casos: k par e k impar:

k par:

$$E(X^{k}) = \int_{0}^{\infty} P(X^{k} > t) dt$$

$$= \int_{0}^{\infty} P(X > \sqrt[k]{t}) dt + \int_{0}^{\infty} P(X < -\sqrt[k]{t}) dt$$

$$= \int_{0}^{\infty} \left[1 - F_{X}\left(\sqrt[k]{t}\right)\right] dt + \int_{0}^{\infty} F_{X}\left(-\sqrt[k]{t}\right) dt$$

Apliquemos as seguintes mudanças de variáveis: $s=t^{\frac{1}{k}}, ds=\frac{1}{k}t^{\frac{1}{k}-1}dt, dt=\frac{(ds)ks^k}{s}, u=-s, du=-ds$:

$$E(X^{k}) = \int_{0}^{\infty} [1 - F_{X}(s)] k s^{k-1} ds + \int_{0}^{\infty} F_{X}(-s) k s^{k-1} ds$$
$$= \int_{0}^{\infty} [1 - F_{X}(s)] k s^{k-1} ds - \int_{-\infty}^{0} F_{X}(u) k u^{k-1} du$$
$$= k \left\{ \int_{0}^{\infty} [1 - F_{X}(s)] s^{k-1} ds - \int_{-\infty}^{0} F_{X}(u) u^{k-1} du \right\}$$

Agora, mostremos que $E(X^k) = \int x^k dF_X(x)$:

$$\int_{-\infty}^{\infty} x^k dF_X(x) \stackrel{Def}{=} \int_0^{\infty} [1 - F_X(x)] d(x^k) - \int_{-\infty}^0 F_X(x) d(x^k)$$
$$= k \left\{ \int_0^{\infty} [1 - F_X(x)] x^{k-1} dx - \int_{-\infty}^0 F_X(x) x^{k-1} dx \right\}$$
$$= E(X^k)$$

Nota: A propriedade é também válida para polinômios, visto que a esperança opera de maneira linear.

Example 1.4. Seja $X \sim Exp(\lambda)$, vimos que $E(X) = \frac{1}{\lambda}$:

Calcular $E(X^2)$:

$$E(X^{2}) = 2 \int_{0}^{\infty} x e^{-\lambda x} dx = \frac{2}{\lambda} \int_{0}^{\infty} x \lambda e^{-\lambda x} dx$$
$$= \frac{2}{\lambda} E(X) = \frac{2}{\lambda^{2}}$$

Calcular $E(X^3)$:

$$E(X^3) = 3 \int_0^\infty x^2 e^{-\lambda x} dx = \frac{3}{\lambda} \int_0^\infty x^2 \lambda e^{-\lambda x} dx$$
$$= \frac{3}{\lambda} E(X^2) = \frac{3}{\lambda^3}$$

De modo que podemos observar o padrão emergente, e definir $E(X^k) = \frac{k!}{\lambda^k}$.

Momentos de uma variável aleatória

- a) $E([X-b]^k)$: k-ésimo momento de X em torno de b;
- **b)** $E(X^k)$: k-ésimo momento em torno de 0;
- c) Se em (a), b = E(X), o momento é central;
- d) $t > 0, E(|X|^t)$: t-ésimo momento absoluto de X.

Definition 1.2 (Variância de uma variável aleatória).

$$Var(X) = E\{(X - E(X))^2\} \iff Var(X) = E(X^2) - (E(X))^2$$

Proposition 1.2. Se X é uma variável aleatória, $f(t) = [E(|X|^t)]^{\frac{1}{t}}$ é não-decrescente em t, t > 0.

Prova. Devemos provar que, se $0 < s < t, f(s) \le f(t)$ (ou $\{E(|X|^s)\}^{\frac{1}{s}} \le \{E(|X|^t)\}^{\frac{1}{t}}$). Para tanto, considerations eremos dois casos: a) $E(|X|^s) < \infty$, b) $E(|X|^s) = \infty$:

a) Defina $\varphi(y) = |y|^{\frac{t}{s}}$ (caso $\frac{t}{s} > 1, \varphi$ será convexa). Pela Desigualdade de Jansen:

$$E(\varphi(Y)) \ge \varphi(E(Y))$$
$$E\left(|Y|^{\frac{t}{s}}\right) \ge |E(Y)|^{\frac{t}{s}}$$

Tome $Y = |X|^s$. Substituindo temos:

$$E\left((|X|^s)^{\frac{t}{s}}\right) \ge |E(|X|^s)|^{\frac{t}{s}}$$

$$E\left(|X|^t\right) \ge \left\{E(|X|^s)\right\}^{\frac{t}{s}}$$

$$\left\{E(|X|^t)\right\}^{\frac{1}{t}} \ge \left\{E(|X|^s)\right\}^{\frac{1}{s}}$$

b) Como t>s>0, sabemos que $|X|^s\leq 1+|X|^t$. Como $E(|X|^s)=\infty$, então:

$$\infty = E(|X|^s) \le 1 + E(|X|^t) = \infty$$

Corollary 1.2. Se $E(|X|^t) < \infty \ \forall t \in (0, \infty) \Rightarrow E(|X|^s) < \infty \ \forall s, \ com \ 0 < s < t.$

Propriedades 1.4.1

• $\mathbf{E_5}$: Se X=c, com c uma constante, $\mathrm{Var}(X)=0$; • $\mathbf{E_6}$: $\mathrm{Var}(X+b)=\mathrm{Var}(X), \mathrm{Var}(aX+b)=a^2\mathrm{Var}(X),$ com $a,b\in\mathbb{R}$;

Prova.

$$\operatorname{Var}(aX + b) = E\left\{ \left[aX + b - E(aX + b) \right]^{2} \right\}$$

$$= E\left\{ \left[aX + b - aE(X) - b \right]^{2} \right\}$$

$$= E\left\{ a^{2} \left[X - E(X) \right]^{2} \right\}$$

$$= a^{2} E\left\{ \left[X - E(X) \right]^{2} \right\} = a^{2} \operatorname{Var}(X)$$

• E_7 (Desigualdade de Tchebychev): Seja X uma variável aleatória, com $X \ge 0$. Para todo $\lambda > 0$:

$$P(X \ge \lambda) \le \frac{E(X)}{\lambda} \tag{2}$$

$$\lambda P(X \ge \lambda) \le E(X) \Leftrightarrow P(X \ge \lambda) \le \frac{E(X)}{\lambda}$$

1.4.2 Consequências

a) Para todo $\lambda > 0$:

$$P(|X - E(X)| \ge \lambda) \le \frac{\operatorname{Var}(X)}{\lambda^2}$$

b) (Desigualdade de Markov) Seja X uma variável aleatória, para todo t:

$$P(|X| \ge \lambda) \le \frac{E(|X|^t)}{\lambda^t} \tag{3}$$

c) Se Z é uma variável aleatória, com $Z \ge 0$ e E(Z) = 0:

$$P(Z=0)=1$$
 (i.e., $Z=0$ quase certamente)

Provas. a) Se $Y=[X-E(X)]^2$, aplicamos $\mathbf{E_7}$ usando $\lambda^2:P(Y\geq\lambda^2)\leq\frac{E(Y)}{\lambda^2}$. Note que $E(Y)=E([X-E(X)]^2)=\mathrm{Var}(X)$. Logo:

$$P(|X - E(X)| \ge \lambda) = P(|X - E(X)|^2 \ge \lambda^2) = P(Y \ge \lambda^2) \le \frac{E(Y)}{\lambda^2} = \frac{\operatorname{Var}(X)}{\lambda^2}$$

b) Seja $Y = |X|^t$, aplicamos $\mathbf{E_7}$ a Y e λ^t : $P(Y \ge \lambda^t) \le \frac{E(Y)}{\lambda^t}$. Note que $E(Y) = E(|X|^t)$ e que $P(Y \ge \lambda^t) = P(|X|^t \ge \lambda^t) = P(|X| > \lambda)$. Logo:

$$P(|X| \ge \lambda) \le \frac{E(|X|^t)}{\lambda^t}$$

c) Z=0 quase certamente, usamos $\mathbf{E_7}$ na variável Z e em $\lambda=\frac{1}{n}$, então:

$$P\left(Z \ge \frac{1}{n}\right) \le E(Z).n \stackrel{Hip}{=} 0$$

Temos que $[Z>0]=\bigcup_n \left[Z\geq \frac{1}{n}\right],$ de modo que:

$$P(Z>0) = P\left(\bigcup_{n} \left[Z \ge \frac{1}{n}\right]\right) = \lim_{n \to \infty} P\left(Z \ge \frac{1}{n}\right) = 0 \Rightarrow P(Z=0) = 1 - P(Z>0) = 1$$

Nota: Se X é uma variável tal que Var(X) = 0, temos que $Var(X) = 0 \Leftrightarrow E([X - E(X)]^2) = 0$, ou seja, se definirmos $Z = [X - E(X)]^2, Z \ge 0$ e E(Z) = 0. Logo, por c), P(Z = 0) = 1, ou seja, $P([X - E(X)]^2 = 0)$ $(0) = 1 \Leftrightarrow P(X = E(X)) = 1$, ou seja, X = E(X) quase certamente.

Example 1.5. Se X e Y são variáveis aleatórias tais que $E(|X|^t) < \infty$ e $E(|Y|^t) < \infty$, então $E(|X+Y|^t) < \infty$

- (i) A finitude de $E(|X|^t)$ leva à finitude de $E(|aX|^t)$;
- (ii) Se X e Y forem integráveis (com t=1), então X+Y é integrável. Se X e Y tem variâncias finitas (t=2), então X+Y tem variância finita.

Proposition 1.3. Seja X uma variável aleatória integrável e $\mu = E(X) \Rightarrow \mu$ minimiza $E([X-c]^2)$, com $c \in \mathbb{R}$.

Prova. Temos que $(X-c)^2 = (X-\mu+\mu-c)^2 = (X-\mu)^2 + 2(\mu-c)(X-\mu) + (\mu-c)^2$. Logo, pelas propriedades lineares do valor esperado:

$$E([X-c]^2) = E([X-c]^2) + 2(\mu - c)E(X-\mu) + (\mu - c)^2$$

= Var(X) + (\mu - c)^2

Proposition 1.4. Seja X uma variável aleatória e m sua mediana. Assim, m minimiza $E(|X-c|), c \in \mathbb{R}$. Ou seja:

$$E(|x - m|) = \min_{c \in \mathbb{R}} E(|X - c|)$$

Prova. Considere a definição de mediana: $P(X \le m) = P(X > m) = \frac{1}{2}$. Suponha que X é integrável, logo X-c também o será para todo c constante real. Vamos ver que, com m < c (o caso em que m > c segue analogamente):

- $X \le m \Rightarrow |X c| |X m| = \lambda$, onde $\lambda = c m$; $X > m \Rightarrow |X c| |X m| \ge \lambda$.

Seja c tal que m < c. Defina $\lambda = c - m > 0$. Então:

- Se $x \le m \Rightarrow |x-c| = |x-m| + \lambda \Rightarrow |x-c| |x-m| = \lambda$;
- Se x > m e x > c (os casos intermediários são decorrências), então $x > c \Rightarrow \lambda + |x c| = |x m| \Rightarrow$ $|x - c| - |x - m| \ge -\lambda.$

Defina
$$Y = |X - c| - |X - m| = \begin{cases} \lambda & \text{se } X \leq m, \\ y & \text{se } X > m. \end{cases}$$
 Assim, temos que $y \geq -\lambda$, e que $Y = \begin{cases} \lambda & P(X \leq m) \geq \frac{1}{2}, \\ y & P(X > m) \leq \frac{1}{2}. \end{cases}$ Logo, $Y \geq \lambda I_{[X \leq m]} - \lambda I_{[X > m]} \Rightarrow E(Y) \geq \lambda E(I_{[X \leq m]}) - \lambda E(I_{[X > m]}) = \lambda P(X \leq m) - \lambda P(X > m) > 0$

Como
$$E(Y) \ge 0 \Rightarrow E(|X - c|) \ge E(|x - m|) \ \forall c, \text{ com } m < c.$$

1.5 Esperanças e funções de vetores

Theorem 1.2. Seja $\underline{X} = (X_1, \dots, X_n)$ um vetor aleatório e $\varphi : \mathbb{R}^n \to \mathbb{R}$ mensurável. Então:

$$E(\varphi(\underline{X})) = \int y dF_{\varphi(\underline{X})}(y) = \int_{\mathbb{R}^n} \varphi(\underline{x}) dF_{\underline{X}}(\underline{x})$$
$$= \int \cdots \int \varphi(x_1, \dots, x_n) dF_{\underline{X}}(x_1, \dots, x_n)$$

Caso discreto: Seja \underline{X} discreto, tomando valores $\underline{X}_i = (x_{i1}, \dots, x_{in})$, com probabilidade $P(\underline{X}_i) = \sum_i P(x_i) = 1$. Então:

$$E(\varphi(\underline{X})) = \sum_{i} \varphi(\underline{x}_{i}) P(\underline{x}_{i})$$

Caso contínuo: Seja \underline{X} contínuo, com densidade $f(x_1, \ldots, x_n)$. Então:

$$E(\varphi(\underline{X})) = \int \cdots \int f(x_1, \dots, x_n) dx_1 \dots dx_n$$

Example 1.6. Lembrando a propriedade $E_3: E(X+Y) = E(X) + E(Y)$ desde que existam E(X) e E(Y). Seja $\varphi(x,y) = x + y$ e defina $\varphi_1(x,y) = x$ e $\varphi_2(x,y) = y$. Teremos pelo teorema que:

$$E(X + Y) = E(\varphi(x, y)) = \int \int (x + y) dF_{X,Y}(x, y) = \int \int x dF_{X,Y}(x, y) + \int \int y dF_{X,Y}(x, y)$$
$$= E(\varphi_1(x, y)) + E(\varphi_2(x, y))$$
$$= E(X) + E(Y)$$

Se $\{X_i\}_{i=1}^n$ é conjuntamente independente, com densidades f_1, \ldots, f_n , sendo a densidade conjunta dada por $f = \prod_{i=1}^n f_i$, então:

$$E(\varphi(\underline{X})) = \int \cdots \int \varphi(x_1, \dots, x_n) f_1(x_1) \dots f_n(x_n) dx_1 \dots dx_n$$
$$= \int \cdots \int \varphi(x_1, \dots, x_n) dF_{X_1}(x_1) \dots dF_{X_n}(x_n)$$

Proposition 1.5. Sejam $\{X_i\}_{i=1}^n$ conjuntamente independentes e integráveis. Então:

$$E\left(\prod_{i=1}^{n} X_i\right) = \prod_{i=1}^{n} E(X_i)$$

Prova (para n=2). Seja $\varphi(X,Y)=X.Y$:

$$\begin{split} E(X.Y) &= E(\varphi(X,Y)) = \int \int \varphi(x,y) dF_X(x) dF_Y(y) \\ &= \int [y.x dF_X(x)] dF_Y(y) \\ &= \int y E(X) dF_Y(y) \\ &= E(X) \int y dF_Y(y) = E(X) E(Y) \end{split}$$

Definition 1.3. A covariância entre X e Y será definida por:

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

Sempre que X e Y sejam integráveis. Assim:

$$Cov(X,Y) = E\{XY - E(Y)X - E(X)Y + E(X)E(Y)\}\$$

= $E(XY) - E(X)E(Y) - E(X)E(Y) + E(X)E(Y)$
= $E(XY) - E(X)E(Y)$

Note que X e Y podem ter Cov(X,Y) = 0 e mesmo assim $X \not\perp Y$.

Notas:

- A existência da covariância entre variáveis integráveis depende da existência de E(XY);
- Cov(X,Y) = 0 é interpretado como "X e Y são não-correlacionados";
- Há casos onde Cov(X,Y)=0 implica independência, como na Normal Bivariada, por exemplo.

Proposition 1.6. Sejam X_1, \ldots, X_n variáveis aleatórias integráveis tais que $Cov(X_i, X_j) = 0 \ \forall i \neq j$. Então

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i)$$

Prova.

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = E\left\{\left[X_{1} + \dots + X_{n}\right] - E\left[X_{1} + \dots + X_{n}\right]^{2}\right\}$$

$$= E\left\{\sum_{i=1}^{n} \left[X_{i} - E\left(X_{i}\right)\right]^{2} + 2\sum_{i < j} \left(X_{i} - E\left(X_{i}\right)\right)\left(X_{j} - E\left(X_{j}\right)\right)\right\}$$

$$= \sum_{i=1}^{n} E\left[\left(X_{i} - E\left(X_{i}\right)\right)^{2}\right] + 2\sum_{i < j} E\left[\left(X_{i} - E\left(X_{i}\right)\right)\left(X_{j} - E\left(X_{j}\right)\right)\right]$$

$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i < j} \operatorname{Cov}(X_{i}, X_{j})$$

$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i})$$

Corollary 1.3. Sejam X_1, \ldots, X_n variáveis aleatórias independentes e integráveis. Então:

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{Var}(X_i)$$

Definition 1.4. Para X e Y variáveis aleatórias, o coeficiente de correlação de Pearson é definido por:

$$\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

Com $\sigma_X = \sqrt{\operatorname{Var}(X)}$ e $\sigma_Y = \sqrt{\operatorname{Var}(Y)}$, sempre que $\operatorname{Var}(X)$ e $\operatorname{Var}(Y)$ sejam finitas e maiores que 0.

Proposition 1.7. Sob os supostos da definição 1.4:

- a) -1 ≤ ρ_{X,Y} ≤ 1;
 b) ρ_{X,Y} = 1 ⇔ P(Y = aX + b) = 1, para algum a > 0 e b ∈ ℝ;
 c) ρ_{X,Y} = -1 ⇔ P(Y = aX + b) = 1, para algum a < 0 e b ∈ ℝ.

Prova. Note primeiramente que $Cov(X,Y) = E\{(X - E(X))(Y - E(Y))\}, logo:$

$$\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y} = E\left\{ \frac{(X - E(X))}{\sigma_X} \frac{(Y - E(Y))}{\sigma_Y} \right\}$$

Observe que $E\left(\frac{X-E(X)}{\sigma_X}\right)=0$ e Var $\left(\frac{X-E(X)}{\sigma_X}\right)=1$, e analogamente para Y. Assim:

a)

$$0 \leq \left(\frac{(X - E(X))}{\sigma_X} - \frac{(Y - E(Y))}{\sigma_Y}\right)^2$$

$$0 \leq E\left\{\left(\frac{(X - E(X))}{\sigma_X} - \frac{(Y - E(Y))}{\sigma_Y}\right)^2\right\}$$

$$0 \leq E\left(\left[\frac{X - E(X)}{\sigma_X}\right]^2\right) + E\left(\left[\frac{Y - E(Y)}{\sigma_Y}\right]^2\right) - \frac{2}{\sigma_X\sigma_Y}E((X - E(X))(Y - E(Y)))$$

$$0 \leq \frac{\operatorname{Var}(X)}{\sigma_X^2} + \frac{\operatorname{Var}(Y)}{\sigma_Y^2} - \frac{2\operatorname{Cov}(X, Y)}{\sigma_X\sigma_Y}$$

$$0 \leq 2 - 2\rho_{X,Y}$$

$$\rho_{X,Y} \leq 1$$

Tomando a diferença ao invés da soma, chegamos que $\rho_{X,Y} \geq -1$.

b)

Suponha $\rho_{X,Y} = 1 \Leftrightarrow E\left\{ \left[\frac{X - E(X)}{\sigma_X} - \frac{Y - E(Y)}{\sigma_Y} \right]^2 \right\} = 0$. Pela propriedade E_7 , temos que:

$$P\left(\frac{X - E(X)}{\sigma_X} = \frac{Y - E(Y)}{\sigma_Y}\right) = 1$$

Ou seja, $Y \stackrel{q.c}{=} E(Y) + \frac{\sigma_Y}{\sigma_X}(X - E(X))$, então $a = \frac{\sigma_Y}{\sigma_X} > 0, b = E(Y) - \frac{\sigma_Y}{\sigma_X}E(X)$.

Nota: Se P(Y = aX + b) = 1, sendo $a \neq 0$, pelo desenvolvimento da prova de (a), temos que:

$$\rho_{X,Y} = E\left\{ \left(\frac{X - E(X)}{\sigma_X} \right) \left(\frac{aX + b - aE(X) - b}{\sqrt{a^2 \sigma_X^2}} \right) \right\}$$
$$= \frac{a}{|a|} E\left\{ \left[\frac{X - E(X)}{\sigma_X} \right]^2 \right\}$$
$$= \frac{a}{|a|} = \operatorname{sgn}(a) = \pm 1$$

1.6 Convergência

Theorem 1.3 (Teorema da convergência monótona). Sejam X_1, X_2, \ldots e X variáveis aleatórias em (Ω, \mathcal{A}, P) . Se $0 \leq X_n \underset{n \to \infty}{\uparrow} X$ (ou seja, $X_n(\omega) \geq 0, \forall \omega \in \Omega$ e $X_n(\omega) \underset{n \to \infty}{\uparrow} X(\omega), \forall \omega \in \Omega$). Então $E(X_n) \underset{n \to \infty}{\uparrow} E(X)$.