Nr. 48

Dipolrelaxation in Ionenkristallen

Sara Krieg sara.krieg@udo.edu Marek Karzel marek.karzel@udo.edu

Durchführung: 22.06.2020 Abgabe: 21.07.2020

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung							
2	Theorie2.1 Kristallstruktur und Dipole2.2 Messmethodik2.3 Berechnung der Aktivierungsenergie W	3						
3	Aufbau und Durchführung	6						
4	Auswertung 4.1 Bestimmung der Heizraten	e 7 8						
5 Diskussion								
Literatur								

1 Zielsetzung

Ziel des Versuches ist es, die Dipol
relaxation bei Ionenkristallen zu untersuchen. Explizit sind die Aktivierungsenergie W und die charakteristische Relaxationszeit τ_0 zu bestimmen.

2 Theorie

Zunächst werden die Kaliumbromid K⁺Br⁻ sowie Cäsiumiodid Cs⁺Jr⁻ Proben betrachtet, welche jeweils mit Strontium dotiert werden.

2.1 Kristallstruktur und Dipole

Beide proben kristallisieren in einem kubischen Gitter. Dabei nimmt das Kaliumbromid eine NaCl-Struktur an. Diese ist oktaedrisch und es sind je 6 Nachbarionen um jedes negativ geladene Brom angeordnet. Die Gitterkonstante beträgt $a=6,598\,\text{Å}$. Das Cäsiumiodid hingegen kristallisiert in einer CsCl-Struktur, bei der ein negatives Jodion von jeweils 8 Cäsiumionen umgeben ist. Die Gitterkonstante von Cäsiumiodid beträgt $a=4,566\,\text{Å}$.

Ein Ionenkristall ist aus abwechselnd positiv und negativen Ionen aufgebaut und somit von außen betrachtet neutral. Die Dotierung fügt doppelt positiv geladene Strontiumionen hinzu, sodass Kationen-Leerstellen entstehen, um die lokale Ladungsneutralität zu erhalten.

Die Richtung des Dipols wird durch den Vektor zwischen Strontium und Leerstelle bestimmt. Da die Gitterplätze diskret sind, sind auch die Ausrichtungsachsen diskret. Unter einer Temperatur T von ungefähr 500° ist eine Richtungsänderung durch Leerstellendiffusion möglich, welche bei der Aktivierungsenergie W auftritt. Diese Energie ist eine materialspezifische Größe. Die temperaturabhängige Energieverteilung, die diese Arbeit leisten kann, ist durch die Stefan-Boltzmann-Verteilung gegeben, welche die Form

$$E \approx \exp\left(\frac{W}{k_B T}\right)$$

hat. Die Relaxationszeit ist dann dementsprechend mit

$$\tau(T) = \tau_0 \exp\left(\frac{W}{k_B T}\right) \tag{1}$$

gegeben. Dabei entspricht die charakteristische Relaxationszeit τ_0 der Relaxationszeit für unendlich große Temperaturen.

2.2 Messmethodik

Die Probe befindet sich innerhalb eines Plattenkondensators. Durch das Anlegen eines starken äußeren Feldes wird die Probe zunächst polarisiert. Der Anteil

$$x'\left(T\right) = \frac{pE}{3k_BT} \tag{2}$$

der Dipole ist nun ausgerichtet. Dabei ist p das Dipolmoment. Als nächster Schritt wird die Temperatur auf T_0 abgesenkt, sodass die Polarisation der Probe bestehen bleibt. Das äußere Feld wird abgestellt und die übrige Ladung durch Kurzschließen entfernt. Der folgende Effekt der Dipolrelaxation hat nun einen induzierten Depolarisationsstrom $T_{\rm relax}(t)$ zur Folge, der eintritt, sobald das Material wieder geheizt wird. Die Heizrate ist linear mit

$$b = 2 \frac{K}{\min}$$

sodass sich eine Temperaturentwicklung von

$$T(t) = T_0 + b \cdot t(min)$$

ergibt. I(t) kann beschrieben werden durch

$$I(t) = x' \left(T_{\rm p}\right) p \frac{\mathrm{d}N}{\mathrm{d}t},$$

wobei = $x'(T_p)$ den Anteil x' der polarisierten Elemente bei der Polarisationstemperatur T_p und $\frac{\mathrm{d}N}{\mathrm{d}t}$ die pro Zeit und Volumeneinheit relaxierenden Dipole darstellt. Unter Verwendung der Gleichung (2) ergibt sich

$$x'\left(T_{\mathbf{p}}\right)p = \frac{p^2 E}{3k_B T_{\mathbf{p}}}.$$

Da die Dipol
relaxation ein thermisch aktiver Prozess ist, stellt sich für
 $\frac{\mathrm{d}N}{\mathrm{d}t}$ eine Proportionalität zu Nmit der Relaxationsfrequen
z $\frac{1}{\tau}$ als Proportionalitätsfaktor gemäß

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\frac{N}{\tau(T)}$$

ein. Eine Integration dieses Terms führt zu

$$N = N_{\rm p} \exp\left(-\frac{1}{b} \int_{T_0}^T \frac{\mathrm{d}T'}{\tau(T')}\right)$$

mit $N_{\rm p}$ als Zahl der zu Beginn des Ausheizens vorhandenen orientierten Dipole pro Volumeneinheit. Für den Depolarisationsstrom I(T) ergibt sich

$$I(T) = \frac{p^2 E}{3k_B T_p} \frac{N_p}{\tau_0} \exp\left(-\frac{1}{b\tau_0} \int_{T_0}^T \exp\left(-\frac{W}{k_B T'}\right) dT'\right) \exp\left(-\frac{W}{k_B T}\right)$$
(3)

Es wird angenommen, dass das Maximum dieses Stroms bei $T_{\rm max}$ lieft. Diese ist unabhängig von der Starttemperatur.

$$T_m^2 = \frac{bW(T_{\text{max}})}{k}$$

Für den Grenzwert kleiner Temperaturen gilt damit

$$\ln\left(I\left(T\right)\right) = \text{const.} - \frac{W}{k_B T}.$$

Das Intergral über den Strom ist proportional zu der Zahl der Dipole pro Volumen. Es gilt somit

$$\int_{T_0}^{T_1} I(T) \mathrm{d}T = P_0 A = \frac{N p^2 E}{3 k_B T}$$

mit Querschnittsfläche A der Probe, und P_0 als Polarisation bei der Temperatur T_0 . Aus der Integration über die im Material verbliebenen, noch nicht ausgerichteten Dipole und die Multiplikation mit der Ausrichtungsrate ergibt sich

$$\tau T = \tau_0 \exp\left(\frac{W}{k_B T}\right) = \int_{I(T)}^{\infty} \frac{I(t') dt'}{I(T)},$$

und

$$\ln\left(\tau(T)\right) = \ln\left(\tau_0\right) + \frac{W}{k_B T} = \left(\ln\int_{I(T)}^{\infty} I(T') \,\mathrm{d}T'\right) - \ln\left(I(T)\right). \tag{4}$$

Dieses Integral ist im Versuch graphisch zu bestimmen. Diese Gleichung ist unabhängig von der Heizrate.

2.3 Berechnung der Aktivierungsenergie W

Es werden zwei verschieden Ansätze zur Berechnung der Aktivierungsenergie W betrachtet. Das erste Verfahren nimmt für das Integral

$$\int_{T_0}^T \exp\left(-\frac{W}{k_B T}\right) \approx 0$$

an. Diese Nährung folgt aus der Nährung für Temperaturen unterhalb der Aktivierungsenergie W. Für den Strom ergibt sich somit:

$$I(T) \approx \frac{p^2 E}{3k_B T_p} \frac{N_p}{\tau_0} \exp\left(-\frac{W}{k_B T}\right).$$

Wird nun eine logarithmische Darstellung gewählt, kann somit W berechnet werden. Das zweite Verfahren bestimmt W über den gesamten Kurvenverlauf. Für die zeitliche Änderung der Polarisation gilt

$$\frac{\mathrm{d}P}{\mathrm{d}t} = -\frac{P(t)}{\tau(T(t))}.$$

Diese erzeugt einen äußeren Strom pro Probenquerschnitt F

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{I(t)}{F}.$$

Da Teine lineare Funktion von t sein soll, ergibt sich aus den vorangegangenen Gleichungen

$$\tau(T) = \frac{\int_{T}^{\infty} j(T') dT'}{bI(T)}$$

und mit Ersetzen von $\tau(T)$

$$\frac{W}{k_B T} = \ln \left(\frac{\int_T^{\infty} I(T') dT'}{bI(T) \tau_0} \right). \tag{5}$$

Mit dieser Gleichung lässt sich nun W berechnen. In der Praxis wird die obere Integrationsgrenze von ∞ in T^* geändert, wobei $j(T^*) \approx 0$ gilt. T^* soll demnach groß genug sein, um eine Gleichverteilung der Dipole herbeizuführen.

3 Aufbau und Durchführung

Abbildung 1: Schematische Darstellung der Messvorichtung zur Dipolrelaxation [1].

Im Folgenden wird die Kaliumbromidprobe betrachtet. Die Probe ist auf den Boden des Rezipienten aufgekittet. Der Rezipient ist vakuumiert, um Kondensation von Wasser und eine daraus resultierende Verfälschung zu verhindern. Zusammen mit einer Metallplatte, die sich auf der Probe befindet, bildet der Rezipient ein Plattenkondensator. Dieser ist zunächst mit einer Gleichspannungsquelle und später mit einem Pikoamperemeter verschaltet. Die Temperatur der Probe lässt sich mit Hilfe einer Heizspule über ein Netzgerät erhöhen. Das Abkühlen der Probe erfolgt über einen Kühlfinger aus Kupfer, welcher auf der einen Seite in Stickstoff gebadet werden kann.

Zunächst wird die Probe auf 320 K erhitzt, während ein E-Feld mit einer Spannung von 950 V anliegt. So sollen möglichst viele Dipole ausgerichtet werden. Während die Probe auf 230 K abgekühlt wird, bleibt die Dipolausrichtung unverändert. Im nächsten Schritt wird das E-Feld abgestellt und der Kondensator für 5 Minuten kurz geschlossen. Dies wird durchgeführt, weil es sich um sehr kleine Ströme handelt, die von den Anschlüssen fern gehalten sollen. Danach wird die Probe möglichst gleichmäßig auf 330 K erwärmt.

Dabei wird jede Minute die Probentemperatur mit einem Thermofühler, sowie der Depolarisationsstrom mithilfe eines Picoamperemeters gemessen. Die Heizrate sollte dabei nicht $2\,\mathrm{K/min}$ überschreiten.

4 Auswertung

4.1 Bestimmung der Heizraten

Zur Bestimmung der Heizrate H wird der Temperaturgradient zwischen den jeweiligen Messschritten gemittelt:

$$H = \frac{\sum_{k=0}^{k_{\text{max}}} |T(t_{k+1}) - T(t_k)|}{k_{\text{max}}} \frac{K}{\min} .$$
 (6)

Die Heizraten der beiden Messreihen ergeben sich also zu

$$\begin{split} H_1 &= (1{,}60 \pm 0{,}28) \, \frac{\mathrm{K}}{\mathrm{min}} \\ H_2 &= (1{,}65 \pm 0{,}25) \, \frac{\mathrm{K}}{\mathrm{min}} \; . \end{split}$$

4.2 Bestimmung der Aktivierungsenergie ${\cal W}$ nach der Approximationsmethode

Die Messdaten der beiden Messreihen sind in den Tabellen 1 und 2 aufgeführt. In den Abbildungen 3 und 4 wird der Depolarisationsstrom I natürlich logarithmiert und in Abhängigkeit der Temperatur T aufgetragen.

Zur Bestimmung der Aktivierungsenergie W werden die Graphen in den Temperaturintervallen

$$I_1 = [221,35\,\mathrm{K},\ 253,75\,\mathrm{K}]$$

$$I_2 = [224,35\,\mathrm{K},\ 257,15\,\mathrm{K}]$$

gemäß der Exponentialfunktion

$$f(x) = b \cdot e^{a/x} \tag{7}$$

mittels der Funktion $scipy.optimize.curve_fit$ aus der Python-Bibliothek SkiPy genähert. Die Fitparameter a in den Exponenten ergeben sich also zu

$$\begin{split} a_1 &= (-7.04 \pm 0.16) \cdot 10^3 \mathrm{K} \\ a_2 &= (-6.52 \pm 0.15) \cdot 10^3 \mathrm{K} \; . \end{split}$$

Durch den Vergleich mit Gleichung (3) ergeben sich die Aktivierungsenergien

$$\begin{split} W_1 &= -a_1 \cdot k_{\rm B} = (0.606 \pm 0.014) \, \mathrm{eV} \\ W_2 &= -a_2 \cdot k_{\rm B} = (0.562 \pm 0.013) \, \mathrm{eV} \; . \end{split}$$

Die gemittelten Temperaturen der Depolarisationsstrommaxima lassen sich als

$$T_{\text{max},1} = (250.3 \pm 0.8) \text{ K}$$

 $T_{\text{max},2} = (259.3 \pm 0.7) \text{ K}$

berechnen.

Daraus ergeben sich die materialspezifischen Relaxationszeiten durch Umstellung der Gleichung (4) zu

$$\begin{split} \tau_{0,1} &= (0.46 \pm 0.30) \cdot 10^{-12} \mathrm{s} \\ \tau_{0,2} &= (8.00 \pm 5.00) \cdot 10^{-12} \mathrm{s} \; . \end{split}$$

4.3 Bestimmung der Aktivierungsenergie W nach der Integrationsmethode

Für diese Methode werden erneut die Werte in den Tabellen 1 und 2 verwendet. Um die Integration nicht von dem gemessenen exponentiellen Untergrund verfälschen zu lassen, wird dieser nach der Form

$$bgr(T) = c \cdot e^{d \cdot T} \tag{8}$$

gefittet. Dazu werden für die erste Messreihe der zweite bis achte und 43. Messwert in Abbildung 5 als Stützpunkte gewählt und für die zweite Messreihe der zweite bis achte und 44. in Abbildung 6. In beiden Abbildungen ist der Depolarisationsstrom I(T) gegen die Temperatur T aufgetragen. Zur Approximation dient erneut die Funktion $scipy.optimize.curve_fit$ aus der Python-Bibliothek SkiPy.

Die Parameter ergeben sich zu:

$$\begin{split} c_1 &= (1{,}63 \pm 0{,}35) \cdot 10^-6 \mathrm{pA} \\ d_1 &= 0{,}0462 \pm 0{,}00081 \frac{1}{\mathrm{K}} \\ c_2 &= (6{,}0 \pm 0{,}8) \cdot 10^-6 \mathrm{pA} \\ d_2 &= 0{,}0411 \pm 0{,}00051 \frac{1}{\mathrm{K}} \; . \end{split}$$

Nach Approximationsvorschrift (7) und Gleichung (5) ergeben sich die Fitparameter

$$a_{1,\text{int}} \approx -18,134 \cdot 10^3 \text{K}$$

 $a_{2,\text{int}} \approx -18,763 \cdot 10^3 \text{K}$,

die Aktivierungsenergien

$$\begin{split} W_{1,\mathrm{int}} &= -a_1 \cdot k_{\mathrm{B}} \approx 1{,}563\,\mathrm{eV} \\ W_{2,\mathrm{int}} &= -a_2 \cdot k_{\mathrm{B}} \approx 1{,}617\,\mathrm{eV} \end{split}$$

und materialspezifischen Relaxationszeiten durch Umstellung der Gleichung (4) zu

$$\begin{split} \tau_{0,1} &\approx 6.64 \cdot 10^{-32} \mathrm{s} \\ \tau_{0,2} &\approx 7.55 \cdot 10^{-32} \mathrm{s} \; . \end{split}$$

Zur Integration dient das Paket scipy.integrate aus der Python-Bibliothek SkiPy.

4.4 Temperaturabhängigkeit der Relaxationszeiten

Zum Vergleich der für die Heizraten H_1 und H_2 nach den beiden Methoden und Gleichung (1) berechneten Relaxationszeiten $\tau(T)$ sind diese in Abbildung 2 abgebildet.

Abbildung 2: Die nach den Näherungs- und Integrationsmethode bestimmten Relaxationszeiten für die Heizraten H_1 und H_2

Abbildung 3: Exponentiell gefittete I(T)-Messwertemit der Heizrate $H_1=(1,\!60\pm0,\!28)\,\mathrm{K/min}$

Abbildung 4: Exponentiell gefittete I(T)-Messwertemit der Heizrate $H_2=(1.65\pm0.25)\,\mathrm{K/min}$

Abbildung 5: Integrierte I(T)-Messwerte mit der Heizrate $H_1 = (1{,}60 \pm 0{,}28)\,\mathrm{K/min}$

Abbildung 6: Integrierte I(T)-Messwerte mit der Heizrate $H_2=(1.65\pm0.25)\,\mathrm{K/min}$

Tabelle 1: Messwerte der Temperatur T und des Depolarisationsstromes I(T) in Abhängigkeit von der Zeit t für eine Heizrate von $H_1=(1,60\pm0,28)\,\mathrm{K/min}$

t / \min	<i>T</i> / °C	$I(T) / 10^{-11} \mathrm{A}$	t / \min	<i>T</i> / °C	$I(T) / 10^{-11} \mathrm{A}$
0	-65,2	-0,045	39	-5,2	-0,650
1	-64,6	-0,030	40	-3,3	-0,560
2	-63,1	-0,030	41	-1,7	-0,520
3	-61,2	-0,030	42	-0,2	-0,485
4	-59,0	-0,030	43	1,5	-0,490
5	-56,3	-0,035	44	3,1	-0,500
6	-54,6	-0,035	45	4,4	-0,500
7	-53,6	-0,030	46	5,6	-0,505
8	-52,6	-0,030	47	7,1	-0,510
9	-51,8	-0,028	48	8,4	-0,525
10	-50,5	-0,030	49	10,0	-0,540
11	-48,8	-0,032	50	11,4	-0,560
12	-47,3	-0,035	51	13,1	-0,580
13	-45,9	-0,040	52	14,7	-0,600
14	-44,5	-0,047	53	16,3	-0,610
15	-43,2	-0,055	54	18,0	-0,635
16	-41,5	-0,070	55	19,8	-0,650
17	-39,8	-0,087	56	21,6	-0,660
18	-38,0	-0,115	57	23,2	-0,670
19	-36,2	-0,150	58	24,9	-0,670
20	-34,5	-0,190	59	26,7	-0,670
21	-33,0	-0,240	60	28,2	-0,680
22	-31,4	-0,300	61	30,1	-0,690
23	-29,8	-0,370	62	31,8	-0,720
24	-28,2	-0,460	63	33,7	-0,750
25	-26,7	-0,570	64	35,3	-0,790
26	-25,2	-0,670	65	37,0	-0,840
27	-23,6	-0,780	66	38,6	-0,870
28	-22,1	-0,900	67	40,2	-0,900
29	-20,7	-1,000	68	42,0	-0,915
30	-19,4	-1,100	69	43,6	-0,920
31	-17,8	-1,200	70	$45,\!5$	-0,900
32	-16,3	-1,250	71	47,3	-0,860
33	-14,8	-1,250	72	49,1	-0,790
34	-13,3	-1,200	73	51,0	-0,700
35	-11,7	-1,150	74	53,0	-0,600
36	-10,1	-1,050	75	54,8	-0,510
37	-8,3	-0,900	76	56,6	-0,435
38	-6,7	-0,750			

Tabelle 2: Messwerte der Temperatur T und des Depolarisationsstromes I(T) in Abhängigkeit von der Zeit t für eine Heizrate von $H_2=(1,65\pm0,25)\,\mathrm{K/min}$

t / \min	<i>T</i> / °C	$I(T) / 10^{-11} \mathrm{A}$	t / \min	<i>T</i> / °C	$I(T) / 10^{-11} \mathrm{A}$
0	-70,1	-0,035	39	-5,1	-0,670
1	-69,1	-0,030	40	-3,3	-0,580
$\frac{1}{2}$	-67,1	-0,030	41	-3,3 -1,7	-0,520
3	-65,1	-0,033	42	-0.3	-0,490
4	-62,9	-0,035	43	0,3 1,3	-0,480
5	-60,9	-0,035	44	$^{1,3}_{2,9}$	-0,490
6	-59,9	-0,035	45	$\frac{2,3}{4,6}$	-0,510
7	-58,3	-0,033	46	6,3	-0,540
8	-56,6	-0,030	47	8,0	-0,560
9	-54,4	-0,030	48	9,6	-0,590
10	-52,3	-0,033	49	11,3	-0,610
11	-50,3	-0,035	50	12,8	-0,630
12	-48,8	-0,035	51	14,3	-0,650
13	-47,2	-0,040	52	16,3	-0,670
14	-45,6	-0,050	53	18,3	-0,700
15	-43,9	-0,065	54	20,1	-0,720
16	-42,0	-0,080	55	22,0	-0,740
17	-40,1	-0,100	56	23,6	-0,750
18	-38,2	-0,115	57	25,1	-0,750
19	-36,6	-0,145	58	27,0	-0,750
20	-34,9	-0,180	59	28,6	-0,750
21	-33,3	-0,220	60	29,9	-0,760
$\frac{-}{22}$	-31,8	-0,275	61	31,4	-0,770
23	-30,4	-0,340	62	32,8	-0,780
24	-28,9	-0,410	63	34,3	-0,820
25	-27,3	-0,490	64	36,1	-0,870
26	-25,7	-0,600	65	38,6	-0,920
27	-24,0	-0,720	66	39,6	-0,970
28	-22,4	-0,850	67	41,2	-1,010
29	-20,7	-1,000	68	43,0	-1,050
30	-19,2	-1,150	69	44,6	-1,050
31	-17,6	-1,250	70	46,2	-1,010
32	-16,0	-1,300	71	47,7	-0,950
33	-14,5	-1,310	72	49,3	-0,900
34	-13,1	-1,270	73	50,8	-0,800
35	-11,5	-1,200	74	52,4	-0,680
36	-9,9	-1,100	75	$53,\!6$	-0,580
37	-8,3	-0,950	76	55,2	-0,500
38	-6,7	-0,800		56,7	-0,430

5 Diskussion

Relative Fehler der Mesergebnisse werden im Folgenden gemäß der Formel

$$\Delta x = \left| \frac{x_{\text{mess}} - x_{\text{theo}}}{x_{\text{theo}}} \right| \tag{9}$$

bestimmt.

Von dem Theoriewert der Aktivierungsenergie $W_{\rm theo}=(0.66\pm0.01)\,{\rm eV}$ weichen die Ergebnisse der Approximationsmethode um

$$\Delta W_1 = 8.18 \%$$

 $\Delta W_2 = 14.85 \%$

und die der Integrationsmethode um

$$\begin{split} \Delta W_1 &= 136,\!82\,\% \\ \Delta W_2 &= 145,\!00\,\% \end{split}$$

ab.

Es ist zu beobachten, dass die Ergebnisse der Integrationsmethode sehr viel stärker vom Theoriewert abweichen, als die der Näherungsmethode. Mögliche Fehlerquellen sind die numerische Natur der Integration, sowie Abweichungen der Heizraten der einzelnen Messschritte von ihrem Mittelwert. Zudem ist der Fit der Daten komplexer als bei der Näherungsmethode. Aufgrund des sehr unsicher bestimmten Fitparameters a, konnten dort keine aussagekräftigen Fehlerangaben gemacht werden.

Dies spiegelt sich auch in den Relaxationszeiten wieder, die mit den Werten der Aktivierungsenergie berechnet wurden. Die nach der Integrationsmethode bestimmten Werte

$$\tau_{0,1} \approx 6.64 \cdot 10^{-32} s$$

$$\tau_{0,2} \approx 7.55 \cdot 10^{-32} s \ .$$

weichen um achtzehn Größenornungen vom Theoriewert $\tau_{0,\mathrm{theo}} = (4\pm2)\,\mathrm{s}$ nach unten ab. Zum Teil kann dafür die hohe Abhängigkeit der Relaxationszeitberechnung von den gemessenen Maximaltemperaturen T_{max} Ursache sein.

Die nach der Näherungsmethode bestimmten Relaxationszeiten weichen nur um eine Größenordung ab.

Weiterhin ist zu beachten, dass in den gemessenen Spektren zwei Peaks vorkommen. Die höheren sind auf Relaxationsprozesse höherer Ordnung durch Wechselwirkung nicht direkter Nachbarn der Ionen im Gitter zurückzuführen.

Literatur

[1] TU Dortmund. Versuchsanleitung V48-Dipolrelaxation in Ionenkristallen. URL: https://moodle.tu-dortmund.de/pluginfile.php/1136044/mod_resource/content/1/V48.pdf.