Division algorithm

Floating point representation

BCD adder

Memory Organization

Main Memory

- 1. RAM: Random Access Memory (volatile memory)
 - DRAM- Dynamic RAM, is made of capacitors and transistors, and must be refreshed every 10~100 ms. It is slower and cheaper than SRAM.
 - SRAM: Static RAM, has a six transistor circuit in each cell and retains data, until powered off.
 - NVRAM: Non-Volatile RAM, retains its data, even when turned off.
- 2. ROM:Read Only Memory (non volatile memory)
 - PROM(Programmable ROM)
 - EPROM(Erasable PROM)
 - EEPROM(Electrically Erasable PROM)

Auxiliary Memory

Magnetic Disks

Magnetic tapes

Associate Memory

Associative memory of m word, n cells per word:

One cell associative memory

Memory Address map

Component	Hexadecimal address	Address bus									
		10	9	8	7	6	5	4	3	2	1
RAM 1	0000-007F	0	0	0.	x	x	X	x	x	x	X
RAM 2	0080-00FF	0	0	1	X	X	x	X	X	X	X
RAM 3	0100-017F	0	1	0	X	X	X	X	X	X	X
RAM 4	0180-01FF	0	1	1	x	x	x	x	x	x	X
ROM	0200-03FF	1	x	x	x	x	X	x	X	X	X

Cache Memory

Main memory

- Cache hit
- Cache miss
- Page fault
- Page hit

Cache Performance

Hit ratio = hit / (hit + miss) = no. of hits/total accesses

Cache Mapping

Associative

Mapping

Direct Mapping

Set associative mapping

Cache Initialization

- The cache is initialized when the computer is switched on, or the computer is reset, or when the main memory is loaded with a set of programs from secondary memory.
- When the cache is initialized, all the valid bits are set to 0.
- When a word is loaded into cache from main memory, its corresponding valid bit is set to 1

Writing into Cache

- Write-Through (Store Through)
- Write-Bacк (Copy Back)

Cache Coherence

- Modified It means that the value in the cache is dirty, that is the value in current cache is different from the main memory.
- **Exclusive** It means that the value present in the cache is same as that present in the main memory, that is the value is clean.
- **Shared** It means that the cache value holds the most recent data copy and that is what shared among all the cache and main memory as well.
- **Owned** It means that the current cache holds the block and is now the owner of that block, that is having all rights on that particular blocks.
- Invalid This states that the current cache block itself is invalid and is required
 to be fetched from other cache or main memory.

Cache Coherence Protocols in multiprocessor system

- MSI protocol (Modified, Shared, Invalid)
- MOSI protocol (Modified, Owned, Shared, Invalid)
- MESI protocol (Modified, Exclusive, Shared, Invalid)
- MOESI protocol (Modified, Owned, Exclusive, Shared, Invalid)

Coherency mechanisms