

# IMCP HTSXM032L-22 EVALUATION BOARD V2.0 Sigfox® Monarch RF System-in-Package Evaluation Board

Classification: PUBLIC

Doc. Type: DATASHEET

Revision: v.03

Date: 26/01/2021

Code: EVB-HTSXMO32L-22

## **SUMÁRIO**

| SUMÁRIO                   | 2           |
|---------------------------|-------------|
| DOCUMENT INFO             | 2           |
| 1. GENERAL DESCRIPTION    | 3           |
| 2.1. Key features         | 3           |
| 3. PINOUT INFORMATION     | 4<br>4<br>7 |
| 4. STATIC CHARACTERISTICS | 8           |
| 5. RF CHARACTERISTICS     | 9           |
| 6. JUMPERS                | 10          |
| 7. BOARD DIMMENSIONS      | 11          |
| 8. ORDERING INFORMATION   | 11          |
| ABBREVIATIONS             | 12          |
| LIST OF FIGURES           | 13          |
| LIST OF TABLES            | 13          |
| REVISION HISTORY          | 14          |
| CONTACT                   | 14          |
| DOCUMENT INFORMATION      | 14          |
| DICCI AIMED               | 14          |

## **DOCUMENT INFO**

This document provides the technical information about the iMCP HTSXMO32L-22 Evaluation Board.

EVB-HTSXMO32L-22 v.03

#### 1. GENERAL DESCRIPTION

The iMCP HTSXMO32L-22 Evaluation Board was designed to be a development platform and facilitate new users first contact with iMCP HT32SX as well as provide advanced user to start programming and developing products right away with minimal structure. All the HT32SX features are available on the evaluation board. Two supply options can be used: USB connection or an external battery. The evaluation board will automatically switch to USB power when it is available. The external battery makes the evaluation board portable, so it becomes easy to test the Sigfox connectivity anywhere you go.

#### 2. FEATURES AND BENEFITS

#### 2.1. KEY FEATURES

- iMCP HTSXMO32L-22
- 64kB of flash memory
- 8kB of RAM
- 32.768kHz external crystal for RTC applications
- Voltage regulator ranging from 2.7 to 6V
- USB to Serial converter
- External LiPoly Battery connector
- Compatibility with Adafruit Feather Wings
- SWD interface
- MCU bootloader
- 20 GPIOs
- 12-bit ADC
- 12-bit 1 channel DAC
- 2 USART, LPUART, USB 2.0, I<sup>2</sup>C
- UF.I Antenna connector
- User LED for general purpose
- User Button for general purpose

#### 2.2. Power consumption

• 1.4 mA (without HT32SX consumption)

#### 2.3. RF - FREQUENCY BANDS

| • RC1: | Europe, Middle East and Africa | 868.034 ~ 868.226 MHz |
|--------|--------------------------------|-----------------------|
| • RC2: | North America and Brazil       | 902.104 ~ 902.296 MHz |
| • RC3: | Japan                          | 923.104 ~ 923.296 MHz |
| • RC4: | Latin America and Asia Pacific | 920.704 ~ 920.896 MHz |
| • RC5: | South Korea                    | 923.204 ~ 923.396 MHz |
| • RC6: | India                          | 865.104 ~ 865.296 MHz |
| • RC7: | Russia                         | 868.704 ~ 868.896 MHz |

## 3. PINOUT INFORMATION

#### 3.1. PIN DIAGRAM



Figure 1: Pin Diagram

### 3.2. CONNECTIONS DESCRIPTION

Table 1: Detailed pin functions.

| Connector | Number | Name         | Alt. Functions | Туре           | Description                                |
|-----------|--------|--------------|----------------|----------------|--------------------------------------------|
| CN1       | -      | Antenna      | -              | RF I/O         | RF input and output signal                 |
| CN2       | -      | Micro<br>USB | -              | -              | USB connection for power and communication |
| CN3       | -      | Battery      | -              | Power          | Input power from external battery          |
|           | 1      | VBAT         | -              | Power          | Battery output power                       |
|           | 2      | ENABLE       | -              | Input          | Voltage regulator Enable                   |
|           | 3      | VUSB         | -              | Power          | Output power from USB Bus                  |
|           | 4      | PB10         | LPUART1_TX     | Digital<br>I/O | USART interface                            |
|           | 4      |              | TIM2_CH3       | Digital<br>I/O | General-purpose timer                      |
|           |        |              | ADC_IN5        | Analog I       | ADC external input 5                       |
| CN4       | 5      | PA5          | TIM2_CH1       | Digital<br>I/O | General-purpose timer                      |
|           | 5      | PAS          | TIM2_ETR       | Digital<br>I/O | General-purpose timer                      |
|           |        |              | COMP1_INM5     | Analog I       | Comparator input                           |
|           | 6      | ( DAG        | USART1_CK      | Digital<br>I/O | USART interface                            |
|           |        | PA8          | USB_CSR_SYNC   | Digital<br>I/O | USB                                        |

v.03

|     |    |        | event_out  | Digital<br>I/O |                                                             |
|-----|----|--------|------------|----------------|-------------------------------------------------------------|
|     |    |        | I2C1_SMBA  | Digital<br>I/O | I2C interface                                               |
|     | 7  | PB5    | LPTIM1_IN1 | Digital<br>I/O | Low-power timer                                             |
|     |    |        | TIM22_CH2  | Digital<br>I/O | General-purpose timer                                       |
|     |    |        | ADC_IN0    | Analog I       | ADC external input 0                                        |
|     | 8  | PB0    | VREF_OUT   | Analog<br>I/O  | Output reference voltage                                    |
|     |    |        | LPUART1_RX | Digital<br>I/O | Low-power USART interface                                   |
|     | 9  | PB11   | TIM2_CH4   | Digital<br>I/O | General-purpose timer                                       |
|     |    |        | EVENTOUT   | Digital<br>I/O |                                                             |
|     |    |        | USART1_CTS | Digital<br>I/O | USART interface                                             |
|     | 10 | PA11   | USB_DM     | Digital<br>I/O | USB                                                         |
|     |    |        | COMP1_OUT  | Analog<br>O    | Comparator output                                           |
|     |    |        | event_out  | Digital<br>I/O |                                                             |
|     |    |        | I2C1_SCL   | Digital<br>I/O | I2C interface                                               |
|     | 11 | PB6    | USART1_TX  | Digital<br>I/O | USART interface                                             |
|     |    |        | LPTIM1_ETR | Digital<br>I/O | Low-power timer                                             |
|     |    |        | I2C1_SDA   | Digital<br>I/O | I2C interface                                               |
|     | 12 | PB7    | USART1_RX  | Digital<br>I/O | USART interface                                             |
|     |    |        | LPTIM1_IN2 | Digital<br>I/O | Low-power timer                                             |
|     | 1  | NRESET | -          | I/O            | Bidirectional reset pin with embedded weak pull-up resistor |
|     | 2  | 3V3    | -          | Power          | -                                                           |
|     | 3  | NC     | -          | -              | -                                                           |
| CN5 | 4  | GND    | _          | Ground         | -                                                           |
|     | 5  |        | DAC_OUT    | Analog<br>O    | DAC analog output                                           |
|     |    | PA4    | ADC_IN4    | Analog I       | ADC external input 4                                        |
|     |    |        | USART2_CK  | Digital<br>I/O | USART interface                                             |

EVB-HTSXMO32L-22

v.03

|    |       | TIM22_ETR     | Digital<br>I/O | General-purpose timer     |
|----|-------|---------------|----------------|---------------------------|
|    |       | COMP1_INM4    | Analog I       | Comparator input          |
|    |       | ADC_IN3       | Analog I       | ADC external input 3      |
|    |       | USART2_RX     | Digital<br>I/O | USART interface           |
| 6  | PA3   | TIM2_CH4      | Digital<br>I/O | General-purpose timer     |
|    |       | TIM21_CH2     | Digital<br>I/O | General-purpose timer     |
|    |       | ADC_IN1       | Analog I       | ADC external input 1      |
|    |       | USART2_RTS_DE | Digital<br>I/O | USART interface           |
| 7  | PA1   | COMP1_INP     | Analog I       | Comparator input          |
| /  | PAI   | TIM21_ETR     | Digital<br>I/O | General-purpose timer     |
|    |       | EVENT_OUT     | Digital<br>I/O |                           |
|    |       | ADC_IN6       | Analog I       | ADC external input 6      |
|    | 8 PA6 | LPUART1_CTS   | Digital<br>I/O | USART interface           |
| 8  |       | TIM22_CH1     | Digital<br>I/O | General-purpose timer     |
|    |       | COMP1_OUT     | Analog<br>O    | Comparator output         |
|    |       | EVENT_OUT     | Digital<br>I/O |                           |
|    |       | ADC_IN2       | Analog I       | ADC external input 2      |
|    | 9 PA2 | USART2_TX     | Digital<br>I/O | USART interface           |
| 9  |       | TIM21_CH1     | Digital<br>I/O | General-purpose timer     |
|    |       | TIM2_CH3      | Digital<br>I/O | General-purpose timer     |
|    |       | ADC_IN0       | Analog I       | ADC external input 0      |
|    |       | WKUP1         | Digital I      | MCU external wakeup input |
| 10 | PA0   | USART2_CTS    | Digital<br>I/O | USART interface           |
|    |       | TIM2_CH1      | Digital<br>I/O | General-purpose timer     |
|    |       | SWCLK         | Digital O      | Serial wire clock output  |
| 11 | PA14  | USART2_TX     | Digital<br>I/O | USART interface           |
| 12 | PA13  | SWDIO         | Digital<br>I/O | Serial wire               |
| ۱Z | rA13  | USB_NOE       | Digital<br>I/O | USB                       |

|    | PA12  | USART1_RTS_DE | Digital<br>I/O | USART interface |                |
|----|-------|---------------|----------------|-----------------|----------------|
| 13 |       | USB_DP        | Digital<br>I/O | USB             |                |
|    |       |               |                | EVENT_OUT       | Digital<br>I/O |
| 14 | PA9   | USART1_TX     | Digital<br>I/O | Serial wire     |                |
| 15 | PA10  | USART1_RX     | Digital<br>I/O | Serial wire     |                |
| 16 | воото | -             | Digital I      | Boot selection  |                |

#### 3.3. POWER PINS

EVB-HTSXMO32L-22

Table 2: Power pins description.

| Pins | Description                                                                                            |  |  |  |  |  |
|------|--------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| VBAT | Positive voltage is available from external battery or an external power supply can be used            |  |  |  |  |  |
| VUSB | Positive 5V from USB is available when the USB cable is connected                                      |  |  |  |  |  |
| EN   | Phis pin is pulled up to enable voltage regulator. If connected to the ground the voltage regulator is |  |  |  |  |  |
| CIN  | turned off                                                                                             |  |  |  |  |  |
| CN3  | JST-PH connector for external Lipoly battery                                                           |  |  |  |  |  |
| 3V3  | Output voltage from voltage regulator. A peak of 500mA can be supplied                                 |  |  |  |  |  |
| GND  | Common ground for the board and components.                                                            |  |  |  |  |  |



Figure 2: Power pins

### 3.4. OTHER PINS

Table 3: Other pins description.

|       | Table of ourself pind decemparem                                                                                                                                |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pins  | Description                                                                                                                                                     |
| l²C   | Serial interface. Alternative functions are also available on these pins. These pins can also be used as GPIO                                                   |
| SWD   | Serial Wire Debug interface to programming and debug the HT32SX. These pins can also be used as GPIO                                                            |
| TX/RX | These pins can be used to communicate with HT32SX through Serial 1. Alternative functions are also available on these pins. These pins can also be used as GPIO |

Boot0

This pin is pulled down. When connected to VDD during HT32SX powering up allow access to programming HT32SX flash memory through the serial interface.



Figure 3: Other pins.

#### 4. STATIC CHARACTERISTICS

#### 4.1. GENERAL OPERATING RANGE

Table 4: General operating conditions.

| Parameter               | Conditions | Min | Тур. | Max    | Unit |
|-------------------------|------------|-----|------|--------|------|
| Supply Voltage          | -          | 2.7 | 3.3  | 6.0    | V    |
| Supply Current          | -          | -   | -    | 500    | mA   |
| Operating Temperature   | _          | -20 | -    | 70     | °C   |
| External XTAL Frequency | -          | -   | -    | 32.768 | kHz  |

**Remark:** the voltage regulator can handle an input ranging from 1.5 to 6.0V. However, the iMCP operation voltages range is from 2.7 to 3.6V. The evaluation board is provided with a resistor pair that sets the voltage regulator output to 3.3V, therefore, consider the supply voltage informed above to get a proper operation from the iMCP HT32SX.

#### 4.2. POWER CONSUMPTION

Characteristics measured over recommended operating conditions unless otherwise specified. Typical values are referred to 25 °C temperature, output regulator voltage 3.3 V.

Table 5: Power Consumption.

|                | I .                        |     |      |     |      |
|----------------|----------------------------|-----|------|-----|------|
| Parameter      | Conditions                 | Min | Тур. | Max | Unit |
| Supply current | JP4 Open (iMCP turned off) | -   | 1.4  | -   | mA   |

iMCP HT32SX V2.2 current consumption depends on the operation mode. To get complete HT32SX V2.2 information, please refer to HT32SX datasheet.

#### 4.3. EXTERNAL CLOCK RESONATOR

The external clock resonator can be of high speed (1-25MHz) or low speed (32.768kHz), which can be connected to pins 25 and 26 of the iMCP HT32SX V2.2. On the Evaluation Board, it is provided a 32.768kHz clock resonator, which can be changed by a high speed one, according to the application necessity. The connection diagram is shown below. For CL10 and CL11, it is recommended to use high-quality ceramic capacitors in the 5pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. CL1 and CL2 include PCB and the MCU pin capacitances.



Figure 4: Oscillator position.



Figure 5: Oscillator circuit diagram.

#### 5. RF CHARACTERISTICS

An external LC matching network is added to the board to improve the output power level of the antenna pin in the HT32SX version 2.2 (series inductor and shunt capacitor). The recommended values and specifications are shown below.

- SMD ceramic inductor 5.6nH +-0.3nH 0402 size
- SMD ceramic capacitor 4.7pF +-0.1pF 0402 size

The reference PCB material specification is a two-layer FR4 1.6mm 1 Oz copper.

Table 6: Expected TX max. output power. TA = 25°C based on characterization; not tested in production.

Output voltage regulator set to 3.3V;

| Parameter            | Min   | Тур.  | Max   | Unit |
|----------------------|-------|-------|-------|------|
| RF Characteristics   |       |       |       |      |
| RF Frequency         | 865.2 | 902.2 | 923.3 | MHz  |
| Tx max. output power | 13.2  | 25.1  | 12.2  | dBm  |

EVB-HTSXMO32L-22

For detailed information about HT32SX V2.2 RF characteristics, please refer to HT32SX V2.2 datasheet.



Figure 6: uFL connector positioning.

## 6. JUMPERS

Table 7: Jumpers identification.

| Jumper | Identification       | Description                                                             |
|--------|----------------------|-------------------------------------------------------------------------|
| JP1    | USB/Serial Converter | This jumper provides the reset function for the USB to Serial converter |
| JFI    | Reset                | when short-circuited.                                                   |
| JP2    | iMCP Current         | This jumper can be used to measure the current consumption drained only |
| JFZ    | Measurement          | by the iMCP HT32SX on different operation conditions.                   |
| IP3    | User LED             | This jumper allows the disconnection of User LED from PA5 to avoid      |
| JF3    | Oser LED             | disturbances when using this Pin as GPIO for other purposes.            |
| IDA    | User Button          | This jumper allows the disconnection of User Button from PA6 to avoid   |
| JP4    | Oser bullon          | disturbances when using this Pin as GPIO for other purposes.            |



Figure 7: Jumpers positioning.

## 7. BOARD DIMMENSIONS



Figure 8: Board dimensions.

### 8. ORDERING INFORMATION

Table 8: Detailed pin functions.

| Type number | Package              |                                    |         |
|-------------|----------------------|------------------------------------|---------|
| Type number | Name                 | Description                        | Version |
| EVB-SXF-02  | Sigfox HT32SX-22 EVB | iMCP HTSXMO32L-22 Evaluation Board | 2.0     |

## **ABBREVIATIONS**

Table 9: Abbreviations

| Acronym | Description                                         |  |  |
|---------|-----------------------------------------------------|--|--|
| ADC     | Analog to Digital Converter                         |  |  |
| AES     | Advanced Encryption Standard                        |  |  |
| API     | Application Program Interface                       |  |  |
| CLK     | Clock                                               |  |  |
| EEPROM  | Electrically-Erasable Programmable Read Only Memory |  |  |
| FIFO    | First in First Out                                  |  |  |
| GPIO    | General Purpose Input Output                        |  |  |
| ID      | Identification                                      |  |  |
| IF      | Intermediate frequency                              |  |  |
| Ю       | Input Output                                        |  |  |
| MSL     | Moisture sensitivity level                          |  |  |
| PCB     | Printed-Circuit Board                               |  |  |
| PHY     | Physical                                            |  |  |
| SPI-bus | Serial Peripheral Interface -bus                    |  |  |
| PWM     | Pulse Width Modulation                              |  |  |
| RAM     | Random Access Memory                                |  |  |
| RC      | Remote Control                                      |  |  |
| RF      | Radio Frequency                                     |  |  |
| RoHS    | Restriction of Hazardous Substances                 |  |  |
| RSSI    | Receive Signal Strength Indication                  |  |  |
| RX      | Receiver                                            |  |  |
| SCL     | Serial Clock                                        |  |  |
| SDA     | Serial Data                                         |  |  |
| TX      | Transmitter                                         |  |  |

## LIST OF FIGURES

| Figure 1: Pin Diagram                                                                 |                                   |
|---------------------------------------------------------------------------------------|-----------------------------------|
| Figure 2: Power pins                                                                  |                                   |
| Figure 1: Pin Diagram<br>Figure 2: Power pins<br>Figure 3: Other pins                 |                                   |
| Figure 4: Oscillator position                                                         |                                   |
| Figure 5: Oscillator circuit diagram                                                  |                                   |
| Figure 5: Oscillator circuit dilagram                                                 | 10                                |
| Figure 7: Jumpers positioning                                                         | 10                                |
| Figure 8: Bord dimensions                                                             | 11                                |
| LIST OF TABLES                                                                        |                                   |
| Table 1: Detailed pin functions                                                       |                                   |
| Table 2: Power pins description                                                       | 7                                 |
| Table 3: Other pins description                                                       |                                   |
| Table 4: General operating conditions                                                 |                                   |
| Table 5: Power ConsumptionTable 5: Power Consumption                                  | 8                                 |
| Table 6: Expected TX max. output power. TA = $25^{\circ}$ C based on characterization | ; not tested in production. Outpu |
| voltage regulator set to 3.3V;<br>Table 7: Jumpers identification                     | C                                 |
| Table 7: Jumpers identification                                                       | 10                                |
| Table 8: Detailed pin functions                                                       | 11                                |
| Table 9: Abbreviations                                                                | 12                                |

#### **REVISION HISTORY**

| Version | Date       | Changes                            | Authors |
|---------|------------|------------------------------------|---------|
| 00      | 03/12/2020 | - Initial draft                    | MC      |
| 01      | 18/12/2020 | - Review and updates               | WH      |
| 02      | 12/01/2020 | - Corrections and template update. | MC      |
| 03      | 26/01/2020 | - Classification changed to Public | MC      |

## **CONTACT**

HT MICRON SEMICONDUTORES S.A. Av. Unisinos, 1550 | 93022-750 | São Leopoldo | RS | Brasil www.htmicron.com.br

#### **DOCUMENT INFORMATION**

Document Title: iMCP HTSXM032L-22 Evaluation Board V2.0

Document Subtitle: Sigfox® Monarch RF System-in-Package Evaluation Board

Classification: PUBLIC

Doc. Type: DATASHEET

Revision: v.03

Date: 26/01/2021

Code: EVB-HTSXMO32L-22

#### **DISCLAIMER**

This document in a property of HT Micron and cannot be reproduced without its consent.

HT Micron does not assume any responsibility for use what is described.

This document is subject to change without notice.