A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 4EF

Bookmark

Show all steps: ON

ON

Problem

Let G be a group; let H and K be subgroups of G, with H a normal subgroup of G. Prove the following:

Every member of the quotient group HK/H may be written in the form Hk for some $k \in K$.

Step-by-step solution

Step 1 of 3

Suppose that G is any group and let H, K are the subgroups of G, with H a normal subgroup of G. Consider the following set:

$$HK = \{xy : x \in H, y \in K\}$$

Objective is to prove that elements of quotient group HK/H can be written in the form Hk for some k in K.

According to the definition of factor group, if G be a group and H is its normal subgroup then G/H is defined. The elements of quotient group G/H will be of the form:

$$G/H = \{Ha : a \in G\}$$

with the operation of multiplication as HaHb = Hab.

Comment

Step 2 of 3

By using the definition of elements of quotient group, one get

$$HK/H = \{Hx : x \in HK\}$$

Since $x \in HK$, therefore it will be the product of elements of H and K. That is,

$$x = hk$$

for some $h \in H$ and $k \in K$.

$HK/H = \{Hx : x \in HK\}$ $= \{Hhk : h \in H, k \in K\}$ $= \{Hk : k \in K\}.$	
Comment	
	Step 3 of 3

Hence, elements of quotient group HK/H can be written in the form Hk for some k in K.

Consider the following property of coset that states that,

Apply this here and get that if $h \in H$ then Hh = H. Thus,

Ha = H if and only if $a \in H$.

Comment