ZHICHAO HOU

Web: https://chris-hzc.github.io Institute: AMSS, CAS

EDUCATION

North Carolina State University, Raleigh, United States

- PhD in Computer Science

- Research focus: Graph Neural Networks, Adversarial Attacks and Defense

Academy of Mathematics and Systems Science, Beijing, China

- MS in Applied Mathematics

- Research focus: Optimal Transport, Deep Learning, Bioinformatics

Beijing Normal University, Beijing, China

- BS in Applied Mathematics

- Liyun Class by the National Top-notch Talent Cultivation Plan

Tufts University, Medford and Somerville, Massachusetts, United States June 2018-August 2018

- Exchange Student (Coding Bootcamp)

SCHOLARSHIPS & AWARDS

First-class scholarship of Beijing Normal University	2017, 2018, 2019
Champion of Mingyue Cup Basketball Match of Beijing Normal University	2017, 2018
Second-class prize of BNU Mathematical Modeling Contest	2018
First-class prize of National Mathematical Modeling Contest	2018
Third-class prize of National Mathematics Competition	2018
Honorable Mention of MCM	2019
Outstanding graduates in Beijing Normal University	2020

RESEARCH EXPERIENCE

Robust Graph Neural Networks with Directed Graphs

North Carolina State University

March 2023 - Now

Advisor: Prof. Xiaorui Liu

September 2023-June 2028

September 2020-June 2023

September 2016 - June 2020

Advisor: Xiaorui Liu

Advisor: Lingyu Wu

GPA: 92.67/100

- · Constructed a high-level directed message passing scheme for undirected GNNs, such as GCN, GAT and APPNP.
- · Designed a novel directed adaptive attack to test the robustness of our model.
- · Our directed MP scheme is significantly robust to graph adversarial attacks both in both transferable and adaptive sense.

Equivariant Spatio-Temporal Attentive Graph Networks

Institute for AI Industry Research, Tsinghua University

Advisor: Prof. Wenbing Huang

May 2022 - December 2022

- · Designed a novel Equivariant Discrete Fourier Transform (EDFT) to extract periodic patterns
- · Constructed an Equivariant Spatial Module (ESM), and an Equivariant Temporal Module (ETM) with the attention mechanism, to process spatial and temporal message passing, respectively
- · Evaluated our model on three real datasets corresponding to the molecular level, protein level and macro level. Experimental results verify the the effectiveness of ESTAG compared to typical equivariant GNNs

PathExpSurv: Pathway Expansion for Explainable Survival Analysis and Disease Gene Discovery

Advisors: Prof. Lingyu Wu & Zheng Xia

Operations Research Laboratory, Academy of Mathematics and Systems Science

Computational Biology Laboratory, Oregon Health and Science University

- · Proposed a two-phase training scheme to pre-train bioinformed net with prior information and continue to train it to explore the possible expansion of prior pathways
- · Expanded the prior pathways based on trained link weights under 100 random experiments
- · Performed reliable downstream analyses to validate the model interpretability and effectiveness

SCARP: Single-Cell ATAC-seq analysis via Network Refinement with peaks location information Advisor: Prof. Lingyu Wu

Operations Research Laboratory, Academy of Mathematics and Systems Science

- · Constructed the relation matrix based on the cell-peak accessible relationships and peak-peak co-accessibility
- · Aggregated information with the Network Refinement (NR) diffusion method
- · Leveraged SCARP to improve cell clustering performance and reveal new significant cell subpopulations

Wasserstein Distributionally Robust Optimization (WDRO) Operations Research Laboratory, Academy of Mathematics and Systems Science August 2019 - June 2020

- · Studied the theory of WDRO and deduced the analytical form of dual DRO with a complete proof
- · Performed analysis of WDRO in classical ML problems (classification, regression, MLE, MMSE)
- · WDRO achieved better generalization and robustness against classical method (SVM, Gaussian MLE, KF)

Approximation Algorithms in Wasserstein Distance

Advisors: Prof. Li Cui & Jun Liu

May 2018 - May 2019

 $Computational\ Mathematics\ Laboratory,\ Beijing\ Normal\ University$

- \cdot Studied intensively on fundamental theories about the Sinkhorn and Gibbs-OT algorithms
- · Implemented Sinkhorn and Gibbs-OT algorithms in image registration problem

PUBLICATIONS & MANUSCRIPTS

- Zhichao Hou, Xitong Zhang, Wei Wang, Charu C. Aggarwal, Xiaorui Liu. Can Directed Graph Neural Networks be Adversarially Robust? Submitted to 2023 Neurips. Under review. [Arxiv]
- Wendi Yu, **Zhichao Hou**, Xiaorui Liu. Automated Polynomial Filter Learning for Graph Neural Networks. Submitted to *2023 CIKM*. Under review. [Arxiv]
- **Zhichao Hou**, Jirui Yuan, Wenbing Huang. Equivariant Spatio-Temporal Attentive Graph Networks for Physical Dynamics Simulation. Submitted to 2023 Neurips. Under review.
- Zhichao Hou, Jiacheng Leng, Jiating Yu, Zheng Xia, Ling-Yun Wu. PathExpSurv: Pathway Expansion for Explainable Survival Analysis and Disease Gene Discovery. Submitted to 2022 Bioinformatics. Under review. [BioRxiv]
- Jiating Yu, Duanchen Sun, **Zhichao Hou**, Ling-Yun Wu. Single-Cell ATAC-seq analysis via Network Refinement with peaks location information. Submitted to 2022 Nature Methods. Under review. [BioRxiv]

INDUSTRIAL EXPERIENCE

Spatial-Temporal Attentional GNN in Traffic Flow Prediction

Institute for AI Industry Research, Tsinghua University Intelligent Transportation Department, Baidu

March 2022 - June 2022

Mentor: Prof. Wenbing Huang

- · Proposed graph learner to learn the dynamic graph structure from traffic flow data
- · Constructed STAGNN to capture the spatial and temporal dependencies of the traffic spatial-temporal graph

· Achieved 25% performance improvement comparing to Baidu official baseline

Financial Time Series Data Generation with SigCWAN AI-Quant Ltd, Beijing

Mentor: Dr. Ge Wang June 2021 - Septemper 2021

- · Got insight into the drawbacks of GAN & WGAN in data generation
- \cdot Researched on SigCWGAN which leveraged path signature as a tool to improve WGAN
- \cdot Improved model training stability & robustness and the generated data passed six financial data tests

PROGRAMMING & LANGUAGE SKILLS

Programming Python, PyTorch, R, MATLAB, C, Keras, LaTeX

TOEFL iBT 99/120