Lecture 9

Network interface.

Department of Computer Systems FIT, Czech Technical University in Prague ©Jan Trdlička, 2010

Network models

ISO/OSI model

- from theory to practice
- 7 layers
- not very popular

. TCP/IP model

- form practice to theory
- 5 layers
- Model = structure
- Layer = function
- Protocol = rules

Protocols

- sets of rules
- for TCP/IP model are defined by RFC (Request For Comments)

Network models

ISO/OSI Model

Application layer

Presentation layer

Session layer

Transport layer

Network layer

Data link layer

Physical layer

TCP/IP Model

Application layer

Transport layer

Internet layer

Network interface layer

Hardware layer

Encapsulation

Hardware

. Topologies

- bus Ethernet using coaxial cable
- star Ethernet using twisted pair
- ring Token ring

Network communication

- circuit switch data
 - connection is made across the network between the two different points
 - all the network resources are available for the exclusive use of these two parties whether they are sending data or not.
 - e.g. ATM
- packet switch data
 - improve the efficiency of the transfer of bursts of data, by sharing the one communications channel with other similar users
 - e.g. Ethernet, Token Ring, FDDI

Hardware

- Types of networks
 - . LAN (Local Area Network)
 - MAN (Metropolitan Area Network)
 - . WAN (Wide Area Network)

LAN system components

Repeater, hub

- operates at the hardware layer
- simply retransmits incoming electrical signals

Switch, bridge

- operates at the network interface layer (using MAC addresses)
- connects two separate networks to form a single large continuous LAN
- The bridge only divides the network up into two segments, each with its own collision domain and each retaining its full bandwidth

Router

operates at the internet layer (using IP addresses)

providing communication between nodes on the same network using frames

using MAC (Media Access Control) addresses

Structure of a frame:

Preamble	Destination address	Source address	Туре	Data	Cyclic redundancy check (CRC)
----------	---------------------	-------------------	------	------	----------------------------------

Example of protocols

- IEEE 802.3 Ethernet
- IEEE 802.11 WiFi

. . .

- SLIP (Serial Line IP)
- PPP (Point to Point Protocol)
- ARP (Address Resolution Protocol)
- RARP (Reverse Address Resolution Protocol)

How to display MAC address

```
$ifconfig -a
```

Io0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232 index 1 inet 127.0.0.1 netmask ff000000

bge0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4>
mtu 1500 index 2 inet 147.32.192.154 netmask fffff000
broadcast 147.32.207.255 ether 00:04:76:A4:DF:9B

bge3: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4>
mtu 1500 index 3 inet 172.16.16.17 netmask ffff0000
broadcast 172.16.255.255 ether 00:04:76:A4:AF:02

How to display statistics

\$ netstat -i

Name	Mtu	Net/Dest	Address	Ipkts	Ierrs	Opkts	Oerrs	Collis	Queue
100	8232	loopback	localhost	198159	7 0	19815	597 0	0	0
e1000	g0 15(00 fray1	fray1	730867	8 0	77112	202 0	0	0
e1000	g3 15(00 fray1-e1000g	g3 fray1-e1000g3	732084	2 0	59153	331 0	0	0

- Primary functions:
 - Routing data between networks
 - Fragmenting and reassembly of data

- Using logical addresses (IPv4 and IPv6):
 - define address of subnet
 - define address of node
- Example of protocols:
 - IP (Internet Protocol)
 - ICMP (Internet Control Message Protocol)

How to display IP address: ifconfig -a

Test the reachability of a host on IP network ping

```
$ ping www.google.com
www.google.com is alive
$ ping -s www.google.com
```

PING www.google.com: 56 data bytes

64 bytes from nf-in-f103.google.com (64.233.183.103): icmp_seq=0. time=24.8 ms

64 bytes from nf-in-f103.google.com (64.233.183.103): icmp_seq=1. time=24.7 ms

^C

----www.google.com PING Statistics----

2 packets transmitted, 2 packets received, 0% packet loss round-trip (ms) min/avg/max/stddev = 24.7/24.7/24.8/0.045

Logical address – host name

- simple host name (e.g. fray1)
- fully qualified domain name (FQDN) (e.g. fray1.fit.cvut.cz)
- How to translate?
 - local database /etc/hosts
 - name services: DNS, NIS, NIS+, LDAP
- file /etc/nsswitch.conf defines which database will be used

Routing

- process of selecting paths in a network along which to send network traffic
- routing directs packet forwarding, the transit of logically addressed packets from their source toward their ultimate destination through intermediate nodes
- routing is implemented by routing table in the Unix kernel
- routing table is created
 - statically by command route
 - dynamically by protocols: RIP, OSPF, BGP,...

Netmask

define splitting of IP address into subnet address and host

• Listing of routing table: netstat -r (Solaris) or route (Linux)

\$ netstat -r

Routing Table: IPv4

Destination	Gateway	Flags	Ref	Use I	nterface
default	gw129.fit.cvut.cz	UG	1	2082	
147.32.232.128	fray1	U	1	319	e1000g0
172.16.0.0	fray1-e1000g3	U	1	1129	e1000g3
localhost	localhost	UH	10	36269	100

Test of routing path: traceroute

```
$ traceroute sunray1.felk.cvut.cz
```

traceroute: Warning: Multiple interfaces found; using 147.32.192.154 @ bge0
traceroute to sunray1.felk.cvut.cz (147.32.80.36), 30 hops max, 40 byte packets
1 147.32.192.1 (147.32.192.1) 0.946 ms 0.650 ms 0.696 ms
2 rlde-fel.net.cvut.cz (147.32.252.29) 0.557 ms 0.726 ms 0.711 ms

Transport layer

Using ports to identify services running on the given host

Protocols

- TCP (Transmission Control Protocol), RFC 793,...
 - provides reliable, ordered delivery of a stream of bytes from a program on one computer to another program on another computer
- UDP (User Datagram Protocol), RFC 768
 - provides not reliable delivery of a stream of bytes from a program on one computer to another program on another computer

Ports

- 2¹⁶ ports for TCP, 2¹⁶ ports for UDP
- ports 0-1023 are privileged ports (only processes with EUID=0 can use them)
- well-known ports /etc/services are assigned to widely-used types of network services j (IANA = Internet Assigned Numbers Authority)
- dynamically assigned ports are registered by port mapper server (e.g. rpcbind, portmap process)

Application layer

Application startup

- manually
- automatically during system startup
- at request of service by process inetd

Program inetd

- started during system startup
- listening on designated ports (e.g. /etc/inetd.conf)
- when a TCP packet or UDP packet arrives with a particular destination port number, inetd launches the appropriate server program to handle the connection

Application layer

. Listing of active network connections: netstat -a

