

Institut für Stochastik

Prof. Dr. D. Hug · Dr. F. Nestmann

Stochastische Geometrie (SS2019)

Übungsblatt 5

Aufgabe 1 (Schätzung der Intensität)

Es sei $\gamma > 0$ und ξ ein Poisson-Prozess in \mathbb{R}^d mit Intensitätsmaß $\gamma \lambda_d$.

(a) Es sei $B \in \mathcal{B}(\mathbb{R}^d)$ mit $0 < \lambda_d(B) < \infty$. Zeigen Sie, dass

$$\widehat{\gamma}_B := \frac{\xi(B)}{\lambda_d(B)}$$

ein erwartungstreuer Schätzer für γ ist.

(b) Zeigen Sie, dass der Schätzer aus (a) schwach konsistent in folgendem Sinne ist: Ist $(B_n)_{n\in\mathbb{N}}$ ein Folge messbarer Mengen in \mathbb{R}^d mit $0 < \lambda_d(B_n) < \infty$, $n \in \mathbb{N}$, und $\lambda_d(B_n) \to \infty$, dann gilt für alle $\varepsilon > 0$

$$\lim_{n\to\infty} \mathbb{P}(|\widehat{\gamma}_{B_n} - \gamma| > \varepsilon) = 0.$$

(c) Zeigen Sie, dass der Schätzer aus (a) stark konsistent in folgendem Sinne ist: Ist $(B_n)_{n\in\mathbb{N}}$ eine aufsteigende Folge kompakter Mengen in \mathbb{R}^d mit $0 < \lambda_d(B_n) < \infty$, $n \in \mathbb{N}$, und $\lambda_d(B_n) \to \infty$, dann gilt

$$\lim_{n\to\infty} \widehat{\gamma}_{B_n} = \gamma \qquad \mathbb{P}\text{-fast sicher.}$$

Aufgabe 2 (Abbildungsprinzip)

Seien \mathbb{X} und \mathbb{Y} separable metrische Räume mit σ -Algebra \mathcal{X} bzw. \mathcal{Y} . Sei weiter Φ ein Poisson-Prozess auf \mathbb{X} mit Intensitätsmaß Θ und $g \colon \mathbb{X} \to \mathbb{Y}$ eine messbare Abbildung mit der Eigenschaft, dass $\Theta \circ g^{-1}$ ein lokal-endliches Maß auf \mathbb{Y} ist. Zeigen Sie:

- (a) $\Psi := \Phi \circ g^{-1}$ ist ein Poissonprozess mit Intensitätsmaß $\Lambda := \Theta \circ g^{-1}$.
- (b) Sei $A \in \mathcal{X}$. Dann ist die Restriktion $\Phi_A := \Phi(\cdot \cap A)$ von Φ auf A ein Poisson-Prozess auf X. Außerdem sind Φ_A und Φ_B unabhängig, wenn $A \in \mathcal{X}$ und $B \in \mathcal{X}$ disjunkte Mengen sind.

Aufgabe 3

Zeigen Sie, dass K^* aus Definition 2.2.8 ein stochastischer Kern von N(X) nach $N(X \times Y)$ ist.

Aufgabe 4 (*p*-Verdünnungen)

Es seien $p: \mathbb{X} \to [0,1]$ eine messbare Abbildung, Φ ein Punktprozess auf \mathbb{X} und Φ_p die p-Verdünnung von Φ (siehe Definition 2.2.14).

- (a) Sei $A \in \mathcal{X}$. Zu Φ sei $\Phi_A := \Phi(\cdot \cap A)$ die Restriktion von Φ auf A. Kann man Φ_A als eine p-Verdünnung von Φ interpretieren? Falls ja, wie muss p gewählt werden?
- (b) Zeigen Sie, dass sich Φ für beliebiges $n \in \mathbb{N}$ stets als Überlagerung geeigneter identisch verteilter Punktprozesse Φ_1, \ldots, Φ_n schreiben lässt mit der Eigenschaft, dass aus $\mathbb{P}(\Phi(\mathbb{X}) \geq 1) > 0$ folgt, dass

$$\mathbb{P}(\Phi_i(\mathbb{X}) \ge 1) > 0, \quad i = 1, \dots, n.$$

- (c) Zeigen Sie, dass (b) falsch ist, wenn man zusätzlich fordert, dass die Φ_i unabhängig sein sollen.
- (d) Zeigen Sie, dass ein Poisson-Prozess Φ mit lokal-endlichem Intensitätsmaß Λ unbegrenzt teilbar ist, d.h. für jedes $n \in \mathbb{N}$ gilt

$$\Phi \stackrel{d}{=} \Phi_1 + \ldots + \Phi_n$$

mit geeignet gewählten unabhängigen, identisch verteilten Φ_1, \dots, Φ_n .