Einführung in die diskrete Mathematik

Arthur Henninger

October 10, 2024

Contents

Kapitel I	Grundlagen	Seite 2
Kapitel 2	Bäume und Arboreszenzen	Seite 6
Kapitel 3	Kürzeste Wege	Seite 7
Kapitel 4	Netzwerkflüsse	Seite 8
Kapitel 5	Kostenminimale Flüsse	Seite 9
Kapitel 6	NP-Vollständigkoit	Soito 10

Grundlagen

Definition 1.1: Ungerichtete Graphen

Ein ungerichteter Graph ist ein Tripel (V, E, Ψ) , wobei V, E endliche Mengen, $V \neq \emptyset$ und

$$\Psi: E \to \{x \subset V | |X| = 2\} =: \binom{n}{2}.$$

Definition 1.2: Gerichtete Graphen

Ein gerichteter Graph (Digraph) ist ein Tripel (V, E, Ψ) , wobei V, E endliche Mengen, $V \neq \emptyset$ und

$$\Psi: E \to \{(v,y) \in V \times V | x \neq y\}.$$

Definition 1.3: Graph

Ein Graph ist ein gerichteter oder ungerichteter Graph.

Notation 1.1

Wir nennen V die Menge der Knoten (engl. "verticies") und E die Menge der Kanten (engl. "edges").

Beispiel 1.1 (Graphen)

ungerichteter bzw. gerichteter Graph:

Figure 1.1: ungerichteter Graph

Figure 1.2: gerichteter Graph

Definition 1.4: parallele Kanten

Zwei Kanten $e, e' \in E$ heißen parallel, wenn $\Psi(e) = \Psi(e')$.

Definition 1.5: einfacher Graph

Ein Graph heißt einfach, wenn er keine parallelen Kanten besitzt.

Notation 1.2

In diesem Fall identifizieren wir $e \in E$ mit $\Psi(e)$. Der Graph (V, E, Ψ) reduziert sich zu G = (V, E).

Notation 1.3 Sprachgebrauch

- $e = \{x, y\}$ oder e = (x, y) Kante
- e verbindet x und y
- \bullet x und y sind benachbart/adjazent
- x ist Nachbar von y
- x und y sind mit e inzident
- $G = (V, E), X, Y \subseteq V(G)$ Ungerichtete Graphen:

```
\begin{split} E(X,Y) &:= \{\{x,y\} \in E(G) | x \in X \setminus Y \text{ und } y \in Y \setminus X\} \\ \delta(X) &:= E(X,V(G) \setminus X) \\ \delta(x) &:= \delta(\{x\}) \text{ für } x \in V(G) \\ |\delta(x)| &: \underline{\text{Grad von }} x. \end{split}
```

Gerichtete Graphen:

```
E^{+}(X,Y) := \{(x,y) \in E(G) | x \in X \setminus Y \text{ und } y \in Y \setminus X\}
\delta^{+}(X) := E^{+}(X,V(G) \setminus X)
\delta^{-}(X) := E^{+}(V(G) \setminus X,X)
\delta(X) := \delta^{+}(X) \cup \delta^{-}(X)
\delta^{+}(x) = \delta^{+}(\{x\})
\delta^{-}(x) = \delta^{-}(\{x\})
\delta(x) = \delta(\{x\})
|\delta^{+}(x)| : \underbrace{\text{Ausgangsgrad}}_{\text{busgehende Kanten}}
\delta^{-}(x) : \underbrace{\text{Eingangsgrad}}_{\text{eingehende Kanten}}
\delta^{-}(x) : \underbrace{\text{eingehende Kanten}}_{\text{eingehende Kanten}}
```

- K-regulärer Graph: $|\delta(x)| = K \forall x \in V(G)$.
- Ein Knoten vom Grad 0 heißt isolierter Knoten.
- Falls mehrere Graphen betrachtet werden: G, H, F, füge Graphen als Index hinzu: $\delta_G(x), \delta_H(x), \ldots$

Satz 1.1

Für jeden Graphen G = (V, E) gilt:

$$\sum_{x \in V(G)} |\delta(x)| = 2 \cdot |E|.$$

Korollar 1.2

In jedem Graphen ist die Anzahl an Knoten mit ungeradem Grad gerade.

Satz 1.3

Für jeden Digraphen G = (V, E) gilt

$$\sum_{x \in V(G)} \delta^-(x) = \sum_{x \in V(G)} \delta^+(x).$$

Definition 1.6: Teilgraph

Ein Graph H=(V(H),E(H)) ist ein <u>Teilgraph</u> (Subgraph, Untergraph) eines Graphen G=(V(G),E(G)), falls

$$V(H) \subseteq V(G)$$
 und $E(H) \subseteq E(G)$.

Wir sagen auch: G enthält H (als Teilgraph).

- Falls V(H) = V(G), so ist H ein aufspannender Teilgraph.
- \bullet Der Graph H ist induzierter Teilgraph von G, falls

$$V(H)\subseteq V(G) \text{ und } E(H)=\left\{\{x,y\}\in E(G)|x,y\in V(H)\right\}.$$

Bemerkung 1.1 捧

Ein induzierter Teilgraph ist insbesondere durch die Knotenmenge festgelegt.

Notation 1.4

"H ist der von V(H) induzierte Teilgraph von G"

$$H:=G[V(H)].$$

Für $x \in V(G)$ definiere:

$$G - x := G[V(G) \setminus \{x\}].$$

Für $e \in E(G)$ definiere:

$$G - e := (V(G), E(G) \setminus \{e\}).$$

Für $e \in \binom{V(G)}{2}$ mit $e \notin E(G)$.

$$G+e.=(V(G),E(G)\cup\{e\}).$$

Definition 1.7: vollständiger Graph

$$\left(V, \binom{V}{2}\right) := K_n, \text{ falls } |V| = n.$$

Definition 1.8: Isomorphie

Zwei Graphen G und H heißen isomorph, falls es eine Bijektion $\varphi: V(G) \to V(H)$ gibt, sodass

$$\varphi(\{x,y\}) := \{\varphi(x), \varphi(y)\}$$

eine Bijektion zwischen E(G) und E(H) darstellt. φ ist Isomorphismus.

Notation 1.5 isomorphe Graphen

 $G \cong H$ oder G = H

Bemerkung: Für G=(V(G),E(G)) und H=(V(H),E(H)) müssen $\varphi:V(G)\to V(H)$ und $\sigma:E(G)\to E(H)$ "kompatible" Bijektionen sein.

Bäume und Arboreszenzen

Kürzeste Wege

Netzwerkflüsse

Kostenminimale Flüsse

NP-Vollständigkeit