2 Непрекъснатост

2.1 Дефиниция

Нека $a \in D_f$.

Казваме, че f е непрекъсната в a, ако

- f има граница в a и $\lim_{x \to a} f(x) = f(a)$
- ullet а не е точка на сгъстяване за D_f , т.е. има $\delta>0$, за което $D_f\cap(a-\delta,\,a+\delta)=\{a\}$
- Дефиниция 1 (Хайне)

Казваме, че f е непрекъсната в a, ако за всяка редица $\{x_n\}_1^\infty$, за която $x_n \in D_f$ и $\lim_{n\to\infty} x_n = a$, е изпълнено $\lim_{n\to\infty} f\left(x_n\right) = f(a)$.

• Дефиниция 2 (Коши)

Казваме, че f е непрекъсната в a, ако за всяко $\varepsilon>0$ има $\delta>0$ такова, че за всяко $x\in D_f$, с $|x-a|<\delta$, е изпълнено $|f(x)-f(a)|<\varepsilon$.

2.2 Примери

ullet $\chi_{\mathbb{Q}}$ е прекъсната във всяка точка

- [x] и $\{x\}$ са прекъснати в целите числа, а в останалите са непрекъснати
- $f(x) = \begin{cases} \sin\frac{1}{x} & \text{за} & x \neq 0 \\ 0 & \text{за} & x = 0 \end{cases}$ е прекъсната само в 0

2.3 Локални свойства

- локална ограниченост
- локална постоянност на знака
- аритметични действия
- съставна функция от непрекъснати е непрекъсната

2.4 Непрекъснатост на основните "елементарни" функции

- непрекъснати навсякъде в дефиниционната си област
- рационални функции
- експонента и логаритъм
- тригонометрични функции

• непрекъснатост на обратната функция – след глобални свойства

2.5 Глобални свойства

2.5.1 Теорема на Вайерщрас

Нека f е непрекъсната във всяка точка на интервала [a, b] (**краен и затворен**). Тогава

- f е ограничена в [a, b]
- f има най-малка и най-голяма стойност в [a, b] подробно съществуват $x_{min} \in [a, b]$ и $x_{max} \in [a, b]$, за които $f(x_{min}) \leq f(x) \leq f(x_{max})$ за всяко $x \in [a, b]$.

Условията за интервала не могат да бъдат отслабени

2.5.2 Теорема за междинните стойности

Нека f е непрекъсната във всяка точка на интервала [a,b] (**краен и затворен**) и l е число между f(a) и f(b) (l=tf(a)+(1-t)f(b) за някое $t\in[0,1]$). Тогава съществува $c\in[a,b]$, за което f(c)=l.

Основен вариант: Нека f е непрекъсната във всяка точка на интервала [a, b] и f(a) < 0 < f(b). Тогава съществува $c \in (a, b)$, за което f(c) = 0.

2.5.3 Следствия:

- Образът на интервал е интервал.
- Образът на краен и затворен интервал е краен и затворен интервал.
- Примери: x^n , e^x , $\sin x$, $\cos x$, $\operatorname{tg} x$, $\operatorname{ctg} x$

2.5.4 Монотонност на непрекъсната и обратима функция

Нека f е непрекъсната (във всяка точка на) и обратима в интервал J. Тогава f е строго монотонна в J.

Основна лема: Нека $u \in J$, $v \in J$ и $x \in J$ като u < v и f(u) < f(v). Тогава

- Ako x < u < v, to f(x) < f(u) < f(v)
- Ako u < x < v, to f(u) < f(x) < f(v)
- Ako u < v < x, to f(u) < f(v) < f(x)

Основна лема (втора формулировка): Нека $u \in J, v \in J$ и $x \in J$ като u < x < v. Тогава

- или f(u) < f(x) < f(v)
- или f(v) < f(x) < f(u)
- ullet Доказателство: или f(u) < f(v), или f(v) < f(u). За случая f(u) < f(v) Не е възможно f(x) < f(u) < f(v)

He е възможно и f(u) < f(v) < f(x)

2.5.5 Непрекъснатост на обратната функция

Нека f е непрекъсната (във всяка точка на) и обратима в интервал J. Тогава обратната и́ g е непрекъсната в интервала f(J).

2.5.6 Следствия

- $\bullet \quad \lim_{x \to 0} \frac{\arcsin x}{x} = 1$
- $\bullet \quad \lim_{x \to 0} \frac{\arctan x}{x} = 1$
- $\bullet \quad \lim_{x \to 0} \frac{\ln\left(x + \sqrt{x^2 + 1}\right)}{x} = 1$

2.6 Равномерна непрекъснатост

2.6.1 Дефиниция

Казваме, че функцията f е **равномерно непрекъсната** в интервала J, ако за всяко $\varepsilon>0$ съществува $\delta>0$ такова, че за всеки $x,\ y\in J$ и $|x-y|<\delta$ е изпълнено $|f(x)-f(y)|<\varepsilon$.

Отрицание

Функцията f не е равномерно непрекъсната в интервала J, ако съществува $\varepsilon_0>0$ такова, че за всяко $\delta>0$ съществуват $x_\delta,\ y_\delta\in J$, за които $|x_\delta-y_\delta|<\delta$ и $|f(x_\delta)-f(y_\delta)|\geq \varepsilon_0$.

Ако f е равномерно непрекъсната в интервала J, то f е непрекъсната във всяка точка на интервала J.

Примери:

- x^2 не е равномерно непрекъсната в $[0, +\infty)$
- x^2 е равномерно непрекъсната в [0, A] (A > 0)
- $\frac{1}{x}$ не е равномерно непрекъсната в $(0, +\infty)$
- $\frac{1}{x}$ е равномерно непрекъсната в $[A, +\infty)$ (A > 0)
- Нека $J=J_1\cup J_2$ (интервали). f е равномерно непрекъсната в интервала J тогава и само тогава, когато f е равномерно непрекъсната в интервала J_1 И f е равномерно непрекъсната в интервала J_2
- Равномерно непрекъснатите функции в даден интервал са линейно пространство.

2.6.2 Теорема за равномерната непрекъснатост

Нека f е непрекъсната във всяка точка на интервала [a,b] (**краен и затворен**). Тогава f е равномерно непрекъсната в интервала [a,b].

Схема на доказателството:

- Допускаме противното
- има $\varepsilon_0 > 0$ и две редици $\{x_n\}$, $\{y_n\} \subset [a, b]$, за които $|x_n y_n| < \frac{1}{n}$ и $|f(x_n) f(y_n)| \ge \varepsilon_0$.
- има подредица $\{x_{n_k}\}$, която $\lim_{k\to\infty}x_{n_k}=x_0\in[a,\,b]$
- тогава $\lim_{k\to\infty}y_{n_k}=x_0$ и $\lim_{k\to\infty}\left(f\left(x_{n_k}\right)-f\left(y_{n_k}\right)\right)=0$, противоречие

2.6.3 Приложения

- ullet Периодична и непрекъсната в $\mathbb R$ функция е равномерно непрекъсната в $\mathbb R$.
- $\operatorname{arctg} x$ е равномерно непрекъсната в \mathbb{R} .
- $\sqrt[3]{x}$ е равномерно непрекъсната в \mathbb{R} .
- Въпрос: съществува ли ограничена и непрекъсната в \mathbb{R} функция, която HE е равномерно непрекъсната в \mathbb{R} ?