

Learning objectives

- Describe three broad mechanisms malware uses to propagate.
- Understand the basic operation of viruses, worms, and Trojans.
- Describe four broad categories of malware payloads.
- Understand the different threats posed by bots, spyware, and rootkits.
- Describe some malware countermeasure elements.

Malware

NIST 800-83 defines malware as:

"a program that is inserted into a system, usually covertly, with the intent of compromising the confidentiality, integrity, or availability of the victim's data, applications, or operating system or otherwise annoying or disrupting the victim."

Malware terminology – I

Name	Description		
Advanced Persistent Threat (APT)	Cybercrime directed at business and political targets, using a wide variety of intrusion technologies and malware, applied persistently and effectively to specific targets over an extended period, often attributed to state-sponsored organizations.		
Adware	Advertising that is integrated into software. It can result in pop-up ads or redirection of a browser to a commercial site.		
Attack kit	Set of tools for generating new malware automatically using a variety of supplied propagation and payload mechanisms.		
Auto-rooter	Malicious hacker tools used to break into new machines remotely.		
Backdoor (trapdoor)	Any mechanism that bypasses a normal security check ; it may allow unauthorized access to functionality in a program, or onto a compromised system.		
Downloaders	Code that installs other items on a machine that is under attack. It is normally included in the malware code first inserted on to a compromised system to then import a larger malware package.		
Drive-by-download	An attack using code on a compromised website that exploits a browser vulnerability to attack a client system when the site is viewed.		
Exploits	Code specific to a single vulnerability or set of vulnerabilities.		
Flooders (DoS client)	Used to generate a large volume of data to attack networked computer systems, by carrying out some form of denial-of-service (DoS) attack.		
Keyloggers	Captures keystrokes on a compromised system.		
Logic bomb	Code inserted into malware by an intruder. A logic bomb lies dormant until a predefined condition is met; the code then triggers some payload.		

Malware terminology – II

Name	Description	
Macro virus	A type of virus that uses macro or scripting code, typically embedded in a document or document template, and triggered when the document is viewed or edited, to run and replicate itself into other such documents.	
Mobile code	Software (e.g., script and macro) that can be shipped unchanged to a heterogeneous collection of platforms and execute with identical semantics.	
Rootkit	Set of hacker tools used after attacker has broken into a computer system and gained root-level access .	
Spammer programs	Used to send large volumes of unwanted e-mail.	
Spyware	Software that collects information from a computer and transmits it to another system by monitoring keystrokes, screen data, and/or network traffic; or by scanning files on the system for sensitive information.	
Trojan horse	A computer program that appears to have a useful function , but also has a hidden and potentially malicious function that evades security mechanisms, sometimes by exploiting legitimate authorizations of a system entity that invokes it.	
Virus	Malware that, when executed, tries to replicate itself into other executable machine or script code; when it succeeds, the code is said to be infected. When the infected code is executed, the virus also executes.	
Worm	A computer program that can run independently and can propagate a complete working version of itself onto other hosts on a network, by exploiting software vulnerabilities in the target system, or using captured authorization credentials.	
Zombie, bot	Program installed on an infected machine that is activated to launch attacks on other machines.	

Classification of malware

Classified into two broad categories:

Based first on how it spreads or propagates to reach the desired targets

Then on the actions or payloads it performs once a target is reached

Also classified by:

Those that need a host program (parasitic code such as viruses)

Those that are independent, selfcontained programs (worms, trojans, and bots)

Malware that does not replicate (trojans and spam e-mail)

Malware that does replicate (viruses and worms)

Types of malicious software (malware)

Propagation mechanisms include:

- Infection of existing content by viruses that is subsequently spread to other systems
- Exploit of software vulnerabilities by worms or drive-bydownloads to allow the malware to replicate
- Social engineering attacks that convince users to bypass security mechanisms to install Trojans or to respond to phishing attacks

Payload actions performed by malware once it reaches a target system can include:

- Corruption of system or data files
- Theft of service/make the system a zombie agent of attack as part of a botnet
- Theft of information from the system/keylogging
- Stealthing/hiding its presence on the system

Attack kits

- Initially the development and deployment of malware required considerable technical skills
- Development of virus-creation toolkits in the early 1990s and later of more general attack kits in the 2000s
 - Greatly assisted in the development and deployment of malware
 - Toolkits are often known as "crimeware"
 - Include a variety of propagation mechanisms and payload modules that even novices can deploy
 - Variants that can be generated by attackers using these toolkits creates a significant problem for those defending systems against them
- Examples are:
 - Zeus
 - Angler

Attack sources

 change from attackers being individuals often motivated to demonstrate their technical competence to more organized and dangerous attack sources such as:

- Implications:
 - Significant change in the resources available and motivation behind the rise of malware
 - development of a large underground economy involving the sale of attack kits, access to compromised hosts, and to stolen information

Advanced persistent threats (APTs)

- Well-resourced, persistent application of a wide variety of intrusion technologies and malware to selected targets (usually business or political)
- Typically attributed to state-sponsored organizations and criminal enterprises
- Differ from other types of attack by their careful target selection and persistent, stealthy intrusion efforts over extended periods
- High profile attacks include Aurora, RSA, APT1, and Stuxnet

Advanced persistent threats characteristics

Advanced

- Use a wide variety of intrusion technologies and malware including the development of custom malware if required
- The individual components may not necessarily be technically advanced but are carefully selected to suit the chosen target

Persistent

- Determined application of the attacks over an extended period against the chosen target in order to maximize the chance of success
- A variety of attacks may be progressively applied until the target is compromised

Threats

- Threats to the selected targets as a result of the organized, capable, and well-funded attackers intent to compromise the specifically chosen targets
- The active involvement of people in the process greatly raises the threat level from that due to automated attacks tools, and also the likelihood of successful attacks

Advanced persistent threats attacks

• Aims:

- theft of intellectual property
- theft of security and infrastructure related data
- physical disruption of infrastructure
- ..

• Techniques used:

- Social engineering
- · Spear-phishing email
- Drive-by-downloads from compromised websites likely to be visited by personnel in the target organization

• Intent:

- To infect the target with sophisticated malware with multiple propagation mechanisms and payloads
- Once they have gained initial access to systems in the target organization a further range of attack tools are used to maintain and extend their access

Review question

What are the different ways in which malware can be classified?

I proposed you two different ways, one older and one newer... why in your view we gave up to the old classification?

- Piece of software that infects programs
 - Modifies them to include a copy of the virus
 - Replicate and then infect other executables
 - Easily spread through computers, with the help of users that share programs
- When attached to an executable program a virus can do anything that the program can do
 - Executes secretly when the host program is run
 - Especially effective if no access control is used (as in the first PCs)
- Specific to operating system and hardware
 - Takes advantage of their details and weaknesses

Viruses

- Computer virus infections formed the majority of malware in the early personal computer era (around the '80s)
 - The Brain virus in 1986, was one of the first to target MSDOS systems, and resulted in a significant number of infections for this time.
 - programs shared on floppy disk make it easily spread
- In modern OS, the use of tighter access controls reduces the efficacy of traditional viruses
 - Hence viruses evolved in macrovirus
 - Documents are easily modified and not protected as executables in OS
- Currently, a viral mode of infection is one of several propagation mechanisms used by contemporary malware

Viruses

Infection mechanism

- Means by which a virus spreads or propagates
- Also referred to as the *infection vector*

Trigger

- Event or condition that determines when the payload is activated or delivered
- Sometimes known as a *logic bomb*

Payload

- What the virus does (besides spreading)
- May involve damage or benign but noticeable activity

Virus components

Dormant phase Not all viruses have this Will eventually be activated Virus is idle by some event stage Propagation phase Each infected program will now Virus places a copy of itself into May not be identical to the contain a clone of the virus other programs or into certain propagating version which will itself enter a system areas on the disk propagation phase Triggering phase Virus is activated to perform the function Can be caused by a variety of system for which it was intended events Execution phase Function is performed May be harmless or damaging

Virus phases

NISTIR 7298 defines a macro virus as:

"a virus that attaches itself to documents and uses the macro programming capabilities of the document's application to execute and propagate"

- Macro viruses infect scripting code used to support active content in a variety of user document types
- They are threatening for a number of reasons:
 - They are platform independent
 - Infect documents, not executable portions of code
 - Are easily spread as the documents are normally shared, much more than programs
 - Traditional file system access controls are of limited use in preventing their spread: they infect user documents that need to be modified by users ...
 - Are much easier to write or to modify than traditional executable viruses

Macro and scripting viruses

macro Document Open disable Macro menu and some macro security features if called from a user document. copy macro code into Normal template file else copy macro code into user document being opened end if if registry key "Melissa" not present if Outlook is email client for first 50 addresses in address book send email to that address with currently infected document attached end for end if create registry key "Melissa" end if if minute in hour equals day of month insert text into document being opened end if

end macro

Melissa macro virus pseudo-code

it took only three days for Melissa to infect over 100,000 computers, compared to the months it took the Brain virus to infect a few thousand computers a decade before

By target

Encrypted virus

- Boot sector infector
 - Infects a master boot record or boot record and spreads when a system is booted from the disk containing the virus
- File infector
 - Infects files that the operating system or shell considers to be executable
- Macro virus
 - Infects files with macro or scripting code that is interpreted by an application
- Multipartite virus
 - Infects files in multiple ways

 A portion of the virus creates a random encryption key and encrypts the remainder of the virus

By concealment strategy

- Stealth virus
 - Explicitly designed to hide itself from anti-virus
- Polymorphic virus
 - A virus that mutates with every infection
- Metamorphic virus
 - A virus that mutates and rewrites itself completely at each iteration and may change behavior as well as appearance

Virus classification

- Program that actively seeks out more machines to infect
 - each infected machine serves as an automated launching pad for attacks on other machines
 - exploits software vulnerabilities in client or server programs
- Usually carries some form of payload
 Upon activation the payload may replicate and propagate the worm again
- First known (non-malicious) implementation was done in Xerox Palo Alto Labs in the early 1980s

Worm replication

Electronic mail or instant messenger facility

- Worm e-mails a copy of itself to other systems
- Sends itself as an attachment via an instant message service

File sharing

- Creates a copy of itself or infects a file as a virus on removable media (USB, CDs/DVD)
- Usually exploits autorun mechanism

Remote execution capability

- Worm executes a copy of itself on another system on the network
- by an explicit facility or by flaws in the other machine

Remote file access or transfer capability

 Worm uses a remote file access or transfer service to copy itself from one system to the other

Remote login capability

• Worm logs onto a remote system as a user and then uses commands to copy itself from one system to the other

Worm replication

A worm typically uses the same phases as a computer virus:

• dormant, propagation, triggering, execution.

The propagation phase generally performs the following functions:

- Search for access mechanisms to other systems to infect (Scanning phase)
- Scanning by examining local data:
 - host tables, address books, buddy lists, trusted peers,...;
 - by scanning possible target host addresses;
 - by searching for suitable removable media devices to use.
- Transfer (and run) a copy of itself to the remote system

The worm may to disguise its presence by naming itself as a system process

 Recent worms can even inject their code into existing processes on the system.

Target discovery

Scanning Can be:

- Random
 - Probes random addresses in the IP address space using a different seed
 - This produces a high volume of Internet traffic which may cause generalized disruption even before the actual attack is launched
- Hit-list
 - First compiles a long list of potential vulnerable machines
 - Then it begins infecting machines on the list
 - Each infected machine is provided with a portion of the list to scan
 - This results in a very short scanning period which may make it difficult to detect that infection is taking place
- Topological
 - Look for information on an infected victim machine to find more hosts to scan
- Local subnet
 - If a host can be infected behind a firewall that host then looks for targets in its own local network
 - The host uses the subnet address structure to find other hosts that would otherwise be protected by the firewall

Worm propagation model

- A well-designed worm (and a virus) can spread rapidly and infect massive numbers of hosts.
- Computer viruses and worms exhibit similar self-replication and propagation behavior to biological viruses.
- We can look to classic epidemic models for understanding computer virus and worm propagation behavior.

Let:

- I(t) be the number of computers infected at time t
- S(t) be the number of susceptible computers (vulnerable to infection but not yet infected)
- β be the infection rate
- N be the number of vulnerable computers (size of population), N = I(t) + S(t)

Then:

$$\frac{\partial I(t)}{\partial t} = \beta \cdot I(t) \cdot S(t)$$

Worm propagation model

Morris worm

- Earliest significant worm infection
- Released by Robert Morris in 1988
- Designed to spread on UNIX systems with a number of methods:
 - Attempted to crack local password file to use login/password to logon to other systems
 - Exploited a bug in the finger protocol which reports the whereabouts of a remote user
 - Exploited a trapdoor in the debug option of the remote process that receives and sends e-mails
- Successful attacks give access to the operating system command interpreter
 - Sent interpreter a bootstrap program to copy worm over and then logoff.
 - The bootstrap program restarts the worm on the new machine

Recent worm attacks

Melissa	1998	E-mail worm First to include virus, worm and Trojan in one package
Code Red	July 2001	Exploited Microsoft IIS bug Probes random IP addresses Consumes significant Internet capacity when active
Code Red II	August 2001	Also targeted Microsoft IIS Installs a backdoor for access
Nimda	September 2001	Had worm, virus and mobile code characteristics Spread using e-mail, Windows shares, Web servers, Web clients, backdoors
SQL Slammer	Early 2003	Exploited a buffer overflow vulnerability in SQL server compact and spread rapidly
Sobig.F	Late 2003	Exploited open proxy servers to turn infected machines into spam engines
Mydoom	2004	Mass-mailing e-mail worm Installed a backdoor in infected machines
Warezov	2006	Creates executables in system directories Sends itself as an e-mail attachment Can disable security related products
Conficker (Downadup)	November 2008	Exploits a Windows buffer overflow vulnerability Most widespread infection since SQL Slammer
Stuxnet	2010	Restricted rate of spread to reduce chance of detection Targeted industrial control systems

WannaCry

Ransomware attack in May 2017

- spread extremely fast over a period of hours to days,
- infecting hundreds of thousands of systems belonging to both public and private organizations in more than 150 countries

It spread as a worm

- by aggressively scanning both local and random remote networks,
- attempting to exploit a vulnerability in the SMB file sharing service on unpatched Windows systems

This rapid spread was only slowed by the accidental activation of a "kill-switch" domain by a UK security researcher

Once installed on infected systems, it also encrypted files, demanding a ransom payment to recover them

Worms: state of technology

Mobile code

- NIST SP 800-28 defines mobile code as:
 "programs that can be shipped unchanged to a heterogeneous collection of platforms and executed with identical semantics"
- Mobile code transmitted from a remote system to a local system and then executed on the local system
- Often acts as a mechanism for a virus, worm, or trojan horse
- Takes advantage of vulnerabilities to perform its own exploits
- Popular vehicles include:
 - Java applets
 - ActiveX
 - JavaScript
 - VBScript
- Most common ways of using mobile code for malicious operations on local system are:
 - Cross-site scripting
 - Interactive and dynamic Web sites
 - E-mail attachments
 - Downloads from untrusted sites or of untrusted software

Other malware

Mobile phone worms

- First was Cabir worm in 2004, then Lasco and CommWarrior in 2005
- Propagate through Bluetooth, Wi-Fi or MMS

Drive-by-download

- Exploit browser and plugin vulnerabilities by means of malware in a webpage
- Attacks when the user views the webpage and install malware on the system without the user's knowledge or consent

Watering-hole

- A variant of drive-by-download
- Aims at specific target, useful for Advanced Persistent Threats,
- May remain disabled for other system than the target

Malversiting

- Places malware on websites without actually compromising them
- Using paid advertisements that can be set and removed in a very short time

Clickjacking

- Also known as a user-interface (UI) redress attack
- the user is cheated by a fake interface on the web and clicks (and is redirected to malware)

"Tricking" users to assist in the compromise of their own systems

Spam

Unsolicited bulk e-mail

Significant carrier of malware

Used for phishing attacks

Trojan horse

Program or utility containing harmful hidden code

Used to accomplish functions that the attacker could not accomplish directly

Mobile phone Trojans

First appeared in 2004 (Skuller)

Target is the smartphone

Social engineering

Chernobyl virus

First seen in 1998

Example of a destructive parasitic memory-resident Windows 95 and 98 virus

Infects executable files when they are opened. When it reaches a trigger date, it deletes data on the infected system by overwriting the first megabyte of the hard drive with zeroes, resulting in massive corruption of the entire file system

Klez

Mass mailing worm infecting Windows 95 to XP systems

First seen in October 2001

Spreads by e-mailing copies of itself to addresses found in the address book and in files on the system

It can stop and delete some anti-virus programs running on the system

On trigger date causes files on the hard drive to become empty

Ransomware

Encrypts the user's data and demands payment of a ramson in order to access the key needed to recover the information

PC Cyborg Trojan (1989)

Mid-2006 a number of worms and Trojans appeared that used publickey cryptography with increasingly larger key sizes to encrypt data

Even recent cases (health system in region Lazio in Italy in 2020...)

Payload – system corruption

Real-world damage

- Causes damage to physical equipment
 - Chernobyl virus also rewrites BIOS code
- Stuxnet worm
 - Targets specific industrial control system software
- There are concerns about using sophisticated targeted malware for industrial sabotage

Logic bomb

 Code embedded in the malware that is set to "explode" when certain conditions are met Payload – system corruption

WannaCry

- Infected a large number of systems in many countries in May 2017
- It encrypted a large number of files and then demanded a ransom payment in Bitcoins to recover them
- Targets widened beyond personal computer systems to include mobile devices and Linux servers
- Use of tactics to put pressure on the victim to pay up:
 - threatening to publish sensitive personal information
 - permanently destroy the encryption key after a short period of time,...
- Alternative recovery only with good backups and an appropriate incident response and disaster recovery plan

Payload – Ransomware

- Takes over an Internet-attached computer and uses that computer to launch or manage attacks
- Botnet collection of bots capable of acting in a coordinated manner
- Uses:
 - Distributed denial-of-service (DDoS) attacks
 - Spamming
 - Sniffing traffic
 - Keylogging
 - Spreading new malware
 - Installing advertisement add-ons and browser helper objects (BHOs)
 - Attacking IRC chat networks
 - Manipulating online polls/games

Payload – attack agent bots

Microsoft takes down botnet that infected nine million devices

Necurs was one of the largest botnets ever By Rob Thubron on March 11, 2020, 8:15 AM | 7 comments

Payload – attack agent bots

- Difference between a bot and a worm:
 - Worm propagates itself and activates itself
 - Bot is initially controlled from some central facility
- Typical means of implementing the remote control facility is on an IRC server
 - Bots join a specific channel on this server and treat incoming messages as commands
 - More recent botnets use covert communication channels via protocols such as HTTP
 - Distributed control mechanisms use peer-to-peer protocols to avoid a single point of failure

Remote control facility

Keyloggers

- Captures keystrokes to allow attacker to monitor sensitive information
- Typically uses some form of filtering mechanism that only returns information close to keywords ("login", "password")

Spyware

- monitors a wide range of activities on the system
- E.g. web browsing

Phishing

- Exploits social engineering to leverage the user's trust by masquerading as communication from a trusted source
- Include a URL in a spam e-mail that links to a fake Web site that mimics the login page of a banking, gaming, or similar site
- Suggests that urgent action is required by the user to authenticate their account
- Attacker exploits the account using the captured credentials

Spear-phishing

- Recipients are carefully researched by the attacker
- E-mail is crafted to specifically suit its recipient, often quoting a range of information to convince them of its authenticity

Payload information theft

- Also known as a trapdoor
- Secret entry point into a program allowing the attacker to gain access and bypass the security access procedures
- Maintenance hook is a backdoor used by Programmers to debug and test programs
- Difficult to implement operating system controls for backdoors in applications

Payload

Stealthing
backdoor

- Set of hidden programs installed on a system to maintain covert access to that system
- Hides by subverting the mechanisms that monitor and report on the processes, files, and registries on a computer
- Gives administrator (or root) privileges to attacker
 - Can add or change programs and files, monitor processes, send and receive network traffic, and get backdoor access on demand

Persistent
/
Memory based

User mode / Kernel mode

Virtual machine based / External mode

Payload Stealthing rootkit

(a) Normal kernel memory layout

(b) After knark install

System Call table modification by rootkit

Kernel– mode rootkit

Countermeasures

Malware counter-measure approach

• Ideal solution to the threat of malware is prevention

Four main elements of prevention:

- Policy
- Awareness
- Vulnerability mitigation
- Threat mitigation
- If prevention fails, technical mechanisms can be used to support the following threat mitigation options:
 - Detection
 - Identification
 - Removal

Malware counter-measure approach

If removal is not possible, then rollback to a clean backup

Requirements for effective malware countermeasures:

- **Generality:** The approach taken should be able to handle a wide variety of attacks.
- **Timeliness:** The approach should respond quickly so as to limit the number of infected programs or systems and the consequent activity.
- **Resiliency:** The approach should be resistant to evasion techniques employed by attackers to hide the presence of their malware.
- **Minimal denial-of-service costs:** The approach should result in minimal reduction in capacity or service due to the actions of the countermeasure software and should not significantly disrupt normal operation.
- **Transparency:** The countermeasure software and devices should not require modification to existing (legacy) OSs, application software, and hardware.
- **Global and local coverage:** The approach should be able to deal with attack sources both from outside and inside the enterprise network.

Achieving all these requirements often requires the use of multiple approaches.

Generations of anti-virus software

First generation: simple scanners

- Requires a malware signature to identify the malware
- Limited to the detection of known malware

Second generation: heuristic scanners

- Uses heuristic rules to search for probable malware instances
- Another approach is integrity checking of executables

Third generation: activity traps

 Memory-resident programs that identify malware by its actions rather than its structure in an infected program

Fourth generation: full-featured protection

- Packages consisting of a variety of anti-virus techniques used in conjunction
- Include scanning and activity trap components and access control capability

Sandbox analysis

- Running potentially malicious code in an emulated sandbox or on a virtual machine
- Allows the code to execute in a controlled environment where its behavior can be closely monitored without threatening the security of a real system
- Running potentially malicious software in such environments enables the detection of complex encrypted, polymorphic, or metamorphic malware
- The most difficult design issue with sandbox analysis is to determine how long to run each interpretation
 - Malware can delay its activity, use logic bombs or even disable itself is running in a sandbox or in a virtual environment

Host-based behavior-blocking software

- Integrates with the operating system of a host computer and monitors program behavior in real time for malicious action
 - Blocks potentially malicious actions before they have a chance to affect the system
 - Blocks software in real time so it has an advantage over anti-virus detection techniques such as fingerprinting or heuristics

Limitations

 Because malicious code must run on the target machine before all its behaviors can be identified, it can cause harm before it has been detected and blocked

Perimeter scanning approaches

- Anti-virus software typically included in e-mail and Web proxy services running on an organization's firewall
 - Limited to scanning malware
- May also be included in the traffic analysis component of an IDS (intrusion detection sensor)
- May also include intrusion prevention measures, blocking the flow of any suspicious traffic

Ingress monitors

Located at the border between the enterprise network and the Internet

One technique is to look for incoming traffic to unused local IP addresses

Egress monitors

Located at the egress point of individual LANs as well as at the border between the enterprise network and the Internet

Monitors outgoing traffic for signs of scanning or other suspicious behavior

Two types of monitoring software

Summary

- Types of malicious software (malware)
 - Broad classification of malware
 - Attack kits
 - Attack sources
- Advanced persistent threat
- Propagation-vulnerability exploit-worms
 - Target discovery
 - Worm propagation model
 - The Morris Worm
 - Brief history of worm attacks
 - State of worm technology
 - Mobile code
 - Mobile phone worms
 - Client-side vulnerabilities
 - Drive-by-downloads
 - Clickjacking
- Propagation-social engineering-span Email, Trojans
 - Spam E-mail
 - Trojan horses
 - Mobile phone Trojans

- Payload-stealthing-backdoors, rootkits
 - Backdoor
 - Rootkit
 - Kernel mode rootkits
 - Virtual machine and other external rootkits
- Payload-system corruption
 - Data destruction
 - Real-world damage
 - Logic bomb
- Payload-attack agent-zombie, bots
 - Uses of bots
 - Remote control facility
- Payload-information theft-keyloggers, phishing, spyware
 - Credential theft, keyloggers, and spyware
 - Phishing and identity theft
 - Reconnaissance, espionage, and data exfiltration
- Countermeasures
 - Malware countermeasure approaches
 - Host-based scanners
 - Signature-based anti-virus
 - Perimeter scanning approaches
 - Distributed intelligence gathering approaches

Consider the following fragment of a virus:

Solution (example):

```
mov eax, 7F add eax, ebx call [eax]
```

Produce a methamorphic version of the fragment.

1) Consider the following fragments of pseudo-code:

What kind of malware are they?

1) Consider the following fragments of pseudo-code:

What kind of malware is it?

Question 4: classify this e-mail

Your password is **chessa**. I know a lot more things about you than that.

How?

I placed a mαlware on the porn website αηd guess what, you visited this web site to have fun (you know what I mean). While you were watching the video, your web browser acted as an RDP (Remote Desktop) αηd a keylogger, which proided me access to your display screen and webcam. Right after that, my software gathered all your contacts from your Messenger, Facebook account, and email account.

What exactly did I do?

I made a split-screen video. The first part recorded the video you were viewing (you'e got an exceptional taste haha), and the next part recorded your webcam (Yep! τ 's you \ doing nasty things!).

What should you do?

Well, I believe, \$2000 is α fair price for our little secret. You'll make the payment via Bitcoin to the below address (if you don't know this, search "how to buy Bitcoin" in Google).

Bitcoin Address:

bc1qefhduyej38vmyvctynutr4k7vxmhkxknkm3sw5

(It is cAsE sensitive, so copy and paste it)

Important:

You have 24 hours to make the payment. (I have α unique pixel within this email message, and right now I know that you have read this email). If I don't get the payment, I will send your video to α II of your contacts, including relatives, coworkers, and so forth. Nonetheless, if I do get paid, I will erase the video immediately. If you want evidence, reply with "Yes!" and I will send your video recording to your five friends. This is α non-negotiable offer, so don't waste my time and yours by replying to this email.

Sayre Laperriere

Still about e-mails...

BRT Corriere Espresso

2022 © Tutti i diritti riservati

Still about e-mails...

Sezione di P.G - Polizia di Stato Tribunale per i minorenni - Tribunale Ordinario di Roma

Uff.Pers.-Serv.Soc (Réf. ROM-Prot. :0005648/RitD) Oggetto : CONVOCAZIONE POLIZIA GIUDIZIARIA Alla fua affenzione.

Io sottoscritto Isp. C. for le Luizi PRADELLA, Ufficiale di P.G. in collaborazione con la Sigra Catherine De Bolle, Direttore di EUROPOL e Capo della Brigata Protezione Minori (BPM) visti gli articoli 20 21-1 e da 75 a 78 del Codice di Procedura Penale. Ti inviamo questo mandato poco dopo un sequestro informatico dell'infiltrazione informatica per informarti che sei oggetto di diversi procedimenti legali in vigore. Dal 1998 sono punibili in patria i cittadini italiani che commettono crimini sessuali contro i minori e sono punite le iniziative turistiche volte allo sfruttamento della prostituzione minorile. L'Autorità Garante per l'infanzia e l'adolescenza - AGIA - è stata istituita dalla legge n.112 del 12 luglio 2011 che la descrive quale figura specificatamente deputata ad operare per assicurare la piena attuazione e la tutela dei diritti e degli interessi di bambini e adolescenti. Dal 2006 operano due organismi : il CN.C.P.O - Centro Nazionale per il Contrasto alla Pedopornografia On-Line - presso la Polizia Postale e delle Comunicazioni - e O.C.P.P.M.D.P.O - l'Osservatorio per il Contrasto alla Pedofilia e alla Pornografia Minorile presso il Dipartimento per le Pari Opportunità. In applicazione di quanto disposto dall'articolo 414 bis cp (R.D. 19 ottobre 1980, n.1398) "Istigazione alla pedofilia e alla pedopornografia - Salvo che il fatto costituisca più grave reato, chiunque, con qualsiasi mezzo e con qualsiasi forma di espressione, pubblicamente istiga a commettere, in danno di minorenni, uno o più delitti previsti dagli articoli 600 bis, 600 ter e 600 quater, anche se relativi al materiale pornografico di cui all'articolo 600 quater 1, 600 quinquies, 609 bis, 609 quater e 609 quinquies è punito con la reclusione da un anno e sei mesi a cinque anni e una multa di €75.000,00. Alla stessa pena soggiace anche chi pubblicamente fa l'apologia di uno o più delitti previsti dal primo comma. Non possono essere invocate, a propria scusa, ragioni o finalità di carattere artistico, letterario, storico o di costume. La legge nr.38 del 6 febbraio 2006 affida al "Centro Nazionale per il Contrasto della Pedopornografia sulla rete Internet' la lotta a questo odioso crimine. E' istituito presso il Servizio Polizia poste e delle Comunicazioni del Dipartimento della Pubblica Sicurezza, e si occupa di prevenzione e repressione di questi reati. Avviamo procedimenti legali contro di te poco dopo un sequestro informatico diCyberinfiltration per:

> Pomografia Infantile Pedofilia - Esibizionismo Cyberpomografia Offesa Alla Decenza Traffico Sessuale

Per tua informazione, la legge aumenta le sanzioni quando proposte, aggressioni sessuali o stupri potrebbero essere stati commessi utilizzando Internet. Hai commesso il reato dopo essere stato preso di mira su Internet (sito pubblicitario), la visualizzazione di video pedopomografici, foto / video nudi di minori sono stati registrati dal nostro cyber-poliziotto e costituiscono la prova dei tuoi reati. Questa convocazione è obbligatoria. L'ufficiale di polizia giudiziaria può costringere a comparire le persone che non hanno risposto a una citazione a comparire, o che si può temere che non rispondano a tale citazione, con la forza della legge, previa autorizzazione del pubblico ministero. Nell'interesse della riservatezza, le inviamo questa e-mail, e le chiediamo di farsi sentire via e-mail scrivendo le sue giustificazioni in modo che possano essere esaminate e verificate per valutare le sanzioni; questo entro un termine rigoroso di 72 ore. Dopo questo periodo, saremo obbligati a trasmettere il nostro rapporto al procuratore della Repubblica presso il tribunale di prima istanza e specialista in criminalità informatica per stabilire un mandato di arresto contro di voi, vi invieremo in questo caso una lettera raccomandata con ricevuta di ritorno (arresto immediato) dalla Carabinieri più vicina al vostro luogo di residenza e sarete archiviati nel registro nazionale degli autori di reati sessuali. In questo caso, il suo dossier sarà anche trasmesso alle associazioni che lottano contro la pedofilia e ai media per la pubblicazione come persona sul C.N.C.P.O e O.C.P.P.M.D.P.O.

Centro Europeo per Criminalità Informatica - EC3 e INTERPOL

Il documento ufficiale pubblicato dall'Ufficio di Polizia Giudiziaria

Consider this methamorphic fragment of a virus:

What is the original fragment of the virus?

nop
mov ebx, 007F
push ebx
nop
pop ebx
swap ebx, eax
push eax
pop eax
call [eax]
nop
add ebx, eax