A Model for Our Constrained Subproblem

Let's put to work what we learned

The Model Variables

Our pricing problem requires to build paths

We will model this by introducing a variable for each time step:

$$x_0, x_1, \dots x_{eoh-1}$$

In the domain of each variables, we include:

- One value for each node in the original graph
 - If $x_t = i$, then we visit node i at time t
- One special value to specify that the path has not yet started:
 - If $x_t = -1$, then the path has not yet started at time t
- One special value to specify that the path has finished early
 - If $x_t = -2$, then the path is already over at time t

Overall, we have
$$D_t = \{-2, -1, ..., n_v - 1\}$$

The Model Variables

We also need to track the path weight

We will introducing again a variable for each time step:

$$y_0, y_1, \ldots y_{eoh-1}$$

Where $y_t \in \{-M, ..., M\}$, with M being a vary large number

- Using a large number here is not a problems
- ...Since propagation will reduce the domains already at the root node

The total cost of a path can be obtained by summation

$$z = \sum_{t=0}^{eoh-1} y_i + \alpha$$

If we want paths with negative weight, we can just add the constraint z < 0

Allowed Transitions

We now need to model transitions:

- We can move only along arcs in the original graph
 - I.g. we can move from i to j iff $(i,j) \in E$
 - lacktriangleright ...Where E refers here to the set of arcs in the original graph
- ...But the special values make for an exception
 - We can always move from -1 to i
 - We can always move from i to -2

Overall, the allowed transitions are:

$$\{(i,j) \ \forall (i,j) \in E\} \cup \{(-1,i) \ \forall i \in V\} \cup \{(i,-2) \ \forall i \in V\}$$

Where $oldsymbol{V}$ refers here to the set of nodes in the original graph

Allowed Transitions

Let's use our graph as an example

The allowed transitions are:

$$(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (2,2), (3,3),$$

 $(-1,0), (-1,1), (-1,2), (-1,2),$
 $(0,-2), (1,-2), (2,-2), (3,-2)$

Transition Weights

When we move, we accumulate weight

Let n(t, i) and e(t, i, j) be the TUG indexes for pair (t, i) and triple (t, i, j)

- lacksquare When we move towards node i at time t, we accumulate $r^v_{n(t,i)} + \lambda_{n(t,i)}$
 - \blacksquare As an exception, moving towards -2 accumulates 0 weight
- When we move from node i at time 0, we also accumulate $r_{n(0,i)}^v + \lambda_{n(0,i)}$
- When we move from i to j at time t, we accumulate $r_{e(t,i,j)}^e$

In detail:

- If we move from i to j at time t > 0, we accumulate:
 - $r_{n(t,j)}^v + \lambda_{n(t,j)}$ for the destination node
 - $r_{n(t,i,j)}^e$ for the arc

Transition Weights

When we move, we accumulate weight

Let n(t, i) and e(t, i, j) be the TUG indexes for pair (t, i) and triple (t, i, j)

- lacksquare When we move towards node i at time t, we accumulate $r_{n(t,i)}^v + \lambda_{n(t,i)}$
 - \blacksquare As an exception, moving towards -2 accumulates 0 weight
- When we move from node i at time 0, we also accumulate $r_{n(0,i)}^v + \lambda_{n(0,i)}$
- When we move from i to j at time t, we accumulate $r_{e(t,i,j)}^e$

In detail:

- If we move from i to j at time t=0, we accumulate:
 - $\mathbf{r}_{n(t,i)}^{v} + \lambda_{n(t,i)}$ for the source node
 - $\mathbf{r}_{n(t,j)}^{v} + \lambda_{n(t,j)}$ for the destination node
 - $r_{n(t,i,j)}^e$ for the arc

Transition Weights

When we move, we accumulate weight

Let n(t, i) and e(t, i, j) be the TUG indexes for pair (t, i) and triple (t, i, j)

- When we move towards node i at time t, we accumulate $r_{n(t,i)}^v + \lambda_{n(t,i)}$
 - \blacksquare As an exception, moving towards -2 accumulates 0 weight
- When we move from node i at time 0, we also accumulate $r_{n(0,i)}^v + \lambda_{n(0,i)}$
- When we move from i to j at time t, we accumulate $r_{e(t,i,j)}^e$

Let's see some examples:

- If we move from -1 to j at time t, we accumulate:
 - $r_{n(t,j)}^v + \lambda_{n(t,j)}$ for the destination node
- If we move from i to -2 at time t=0, we accumulate:
 - $r_{n(t,i)}^v + \lambda_{n(t,i)}$ for the source node
- If we move from i to -2 at time t > 0, we accumulate 0

Allowed Transitions

We can use this information to populate tables

...And use them within a set of ALLOWED constraints:

ALLOWED(
$$[x_0, x_1, y_0], T_0$$
) for time 0
ALLOWED($[x_1, x_2, y_1], T_1$) for time 1
...
ALLOWED($[x_{eoh-2}, x_{eoh-1}, y_{eoh-1}], T_{eoh-1}$) for time $eoh - 1$

- The constraints allow only feasible transitions
- ...And compute the corresponding cost

As a result of propagation

...A restriction on the cost may result in pruned values

This prevents us from considering many useless paths

Forbidden Transitions

We can handle the maximum wait restriction via forbidden transitions

...Using of course the FORBIDDEN constraint

- Let n_{ν} be the maximum number of allowed waits
- ...Then the forbidden transitions are:

$$\bar{T} = \{\{i\}_{h=0..n_w} \ \forall i \in V\}$$

I.e. any repetition of a node index for $n_w + 1$ times

Since we have $n_w = 2$ in our case, we forbid:

$$\{(0,0,0),(1,1,1),(2,2,2),(3,3,3)\}$$

I.e. we cannot spend 3 time steps on any node

Forbidden Transitions

We need to add $eoh - n_{\mu\nu}$ constraints using this table

...So as to prevent excessive waiting over all the time horizon

FORBIDDEN(
$$[x_0, ..., x_{n_w}], \bar{T}$$
) for time n_w
FORBIDDEN($[x_1, ..., x_{n_w+1}], \bar{T}$) for time $n_w + 1$

• • •

FORBIDDEN(
$$[x_{eoh-1-n_w}, \dots, x_{eoh-1}], T$$
)

for time eoh - 1

Both in this and in the previous case:

- The number of constraints grows linearly with *eoh*
- The table size is relatively limited

The code for this model is in the solve_pricing_problem_maxwaits function

We start by building a model using the Google Or-tools CP-SAT solver:

```
mdl = cp_model.CpModel()
```

Then we build the variables:

```
x = {i: mdl.NewIntVar(-2, mni, f'x_{i}') for i in range(eoh)}
c = {i: mdl.NewIntVar(minwgt, maxwgt, f'c_{i}') for i in range(1, eoh)}
z = mdl.NewIntVar(minwgt * eoh, maxwgt * eoh, 'z')
```

We are using integer variables even if have real weights:

- The trick is to rely on finite precision
- Given a weight w, we transform it as round(w*p)
- So that we obtain an integer, at the expense of some precision

The code for this model is in the solve_pricing_problem_maxwaits function

We add all ALLOWED constraints

```
for t in range(1, eoh):
    # Build the table
    ...
    mdl.AddAllowedAssignments([x[t-1], x[t], c[t]], alw)
```

Then the FORBIDDEN constraints

```
if max_waits is not None:
    for t in range(max_waits, eoh):
        # Build the table
        ...
        mdl.AddForbiddenAssignments(scope, frb)
```

The code for this model is in the solve_pricing_problem_maxwaits function

Finally, we define the total path weight:

```
mdl.Add(z == sum(c[i] for i in range(1, eoh)))
```

...And we define a constraint on the z variable:

```
mdl.Add(z < -round(alpha / prec))</pre>
```

- We do not need to minimize z (although we may)
- ...Since it is enough to search for paths with negative weight

The code for this model is in the solve_pricing_problem_maxwaits function

We build a solver and set a time limit:

```
slv = cp_model.CpSolver()
slv.parameters.max_time_in_seconds = time_limit
```

We tell the solver not to stop after the first solution:

```
slv.parameters.enumerate_all_solutions = True
```

We define a callback to store all solutions:

```
class Collector(cp_model.CpSolverSolutionCallback):
```

...And the we solve the problem:

```
status = slv.SolveWithSolutionCallback(mdl, collector)
```

Maximum Wait Pricing in Action

Let's test our new code in an enumeration task

```
In [6]: ncosts n, npaths n = util.solve pricing problem maxwaits(tug, rflows n, rpaths n,
                                                     node counts n, arc counts n, max waits=2,
                                                     cover duals=mvc duals.
                                                      alpha=alpha, filter paths=False, max paths=10)
        print('COST: PATH')
        util.print solution(tug, ncosts n, npaths n, sort='ascending')
        COST: PATH
        0.20: 0.0 > 1.0 > 2.1 > 3.0
        0.20: 2.1 > 3.0
        0.20: 2.1 > 3.2
        0.20: 0.0 > 1.0 > 2.1 > 3.2
        0.28: 1.1 > 2.1 > 3.2
        0.28: 1.1 > 2.1 > 3.0
        0.34: 0.0 > 1.1 > 2.1 > 3.0
        0.34: 0.0 > 1.1 > 2.1 > 3.2
        0.48: 1,0 > 2,1 > 3,2
        0.76: 0.1 > 1.0 > 2.1 > 3.2
        0.76: 0.1 > 1.0 > 2.1 > 3.0
```

■ Paths with more than 2 consecutive visits to the same node are not built

Maximum Wait Pricing in Action

Let's test our new code in an enumeration task

```
In [7]: ncosts_n, npaths_n = util.solve_pricing_problem_maxwaits(tug, rflows_n, rpaths_n, node_counts_n, arc_counts_n, max_waits=2, cover_duals=mvc_duals, alpha=alpha, filter_paths=True, max_paths=10)
print('FLOW: PATH')
util.print_solution(tug, ncosts_n, npaths_n, sort='ascending')

FLOW: PATH
-0.00: 1,0 > 2,0 > 3,2
-0.00: 1,0 > 2,0 > 3,3
-0.00: 2,0 > 3,0
-0.00: 2,0 > 3,2
-0.00: 2,0 > 3,2
-0.00: 2,3 > 3,3
-0.00: 2,0 > 3,3
-0.00: 0,0 > 1,0 > 2,3 > 3,3
-0.00: 0,0 > 1,0 > 2,3 > 3,3
```

- Some paths (erroneously) have negative waits due to the use of finite precision
- Our column generation code can handle this issue

Column Generation with Maximum Waits

Finally, we can test the column generation code itself

```
In [19]: rflows_cg, rpaths_cg = util.trajectory_extraction_cg(tug, node_counts_n, arc_counts_n,
                                             alpha=alpha, min vertex cover=mvc, max iter=30,
                                             verbose=1, max paths per iter=10, max waits=2, solver='
         print('FLOW: PATH')
         util.print solution(tug, rflows cg, rpaths cg, sort='descending', max paths=6)
         sse = util.get reconstruction error(tug, rflows cg, rpaths cg, node counts n, arc counts n)
         print(f'RSSE: {np.sqrt(sse):.2f}')
         It.0, sse: 209.13, #paths: 27, new: 11
         It.1, sse: 202.55, #paths: 38, new: 11
         It.2, sse: 141.07, #paths: 45, new: 7
         It.3, sse: 131.99, #paths: 51, new: 6
         It.4, sse: 103.51, #paths: 59, new: 8
         It.5, sse: 83.07, #paths: 59, new: 0
         FLOW: PATH
         8.29: 3.3
         5.76: 0,2
         5.39: 2,3
         4.56: 3,2
         3.29: 0.1 > 1.1 > 2.0 > 3.0
         3.05: 1,2
         RSSE: 9.11
```