

AIRLINE PASSENGER SATISFACTION

АНАЛІЗ ГОЛОВНИХ КОМПОНЕНТ

ДАНІ

CODEBOOK

Airline Passenger Satisfaction

Team Four

1 Variable Information

Nº	Variable	Attribute Type	Label	Units of measurement	Details
1.	id	numerical	id number of the passengers	-	not used in our research
2.	Satisfaction	binary class label	airline satisfaction level	-	2 class labels: "dissatisfied" and "satisfied"
3.	Gender	nominal	gender of the passengers	-	2 terms: "female" and "male"
4.	Customer type	nominal	the customer type	-	2 terms: "loyal customer" and "disloyal customer"
5.	Age	numerical	the actual age of the passengers	year	integer numbers from 7 to 85
6.	Type of travel	nominal	purpose of the flight of the passengers	-	2 terms: "personal travel" and "business travel"
7.	Class	nominal	travel class in the plane of the passengers	-	3 terms: "eco", "business" and "eco plus"
8.	Flight distance	ordinal	the flight distance of this journey	km	integer from 56 to 4893
9.	Inflight Wi-Fi service	ordinal	*	-	from 0 = least satisfied to 5 = most satisfied
10.	Departure/Arrival time convenient	ordinal	*	-	from 0 = least satisfied to 5 = most satisfied

ДОЦІЛЬНІСТЬ ПРОВЕДЕННЯ РСА

Нульова гіпотеза тесту Бартлетта стверджує, що дисперсії залежної змінної однакові для всіх груп. Якщо *p-value* менше заданого рівня значущості, то ми відхиляємо нульову гіпотезу і стверджуємо, що дисперсії неоднорідні.

Bartlett's test: p-value = 0

Результати показують, що значення р < 0,001 і є статистично значущим. РСА можна застосувати.

SCREE PLOTS

МЕТОДИ ОЦІНКИ ОПТИМАЛЬНОЇ КІЛЬКОСТІ КОМПОНЕНТ. МЕТОД 1

Eigenvalues							
	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5	Dim.6	Dim.7
Variance	4.372	2.958	2.011	0.929	0.725	0.562	0.467
% of var.	31.227	21.130	14.362	6.635	5.177	4.014	3.339
Cumulative % of var.	31.227	52.356	66.719	73.354	78.531	82.545	85.884

Для **бізнес-класу три** змінні описують кумулятивну дисперсію на рівні 66%.

Eigenvalues							
	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5	Dim.6	Dim.7
Variance	3.436	2.242	2.114	1.145	1.057	0.906	0.711
% of var.	24.542	16.015	15.102	8.177	7.547	6.474	5.082
Cumulative % of var.	24.542	40.557	55.659	63.837	71.383	77.857	82.939

В економ-класі такий самий рівень дисперсії описують п'ять змінних.

МЕТОДИ ОЦІНКИ ОПТИМАЛЬНОЇ КІЛЬКОСТІ КОМПОНЕНТ. МЕТОД 2

Parallel Analysis Results

Method: pca

Number of variables: 14 Sample size: 62147

Number of correlation matrices: 300

Seed: 42

Percentile: 0.95

Parallel Analysis Results

Method: pca

Number of variables: 14 Sample size: 58293

Number of correlation matrices: 300

Seed: 42 Percentile: 0.95

Component <dbl></dbl>	Mean «dbl»	0.95 <dbl></dbl>	num [1:14]
1	1.025	1.030	4.372
2	1.019	1.023	2.958
3	1.015	1.018	2.011
4	1.011	1.014	0.929
5	1.008	1.011	
6	1.005	1.007	0.725
7	1.002	1.004	•••
8	0.998	1.001	
9	0.995	0.998	
10	0.992	0.995	

Component	Maan	0.05	
Component <dbl></dbl>	Mean <dbl></dbl>	0.95 <dbl></dbl>	num [1:14]
1	1.026	1.030	3.44
2	1.020	1.024	2.24
3	1.016	1.019	2.11
4	1.012	1.015	1.14
5	1.008	1.011	1.06
6	1.005	1.008	1.00
7	1.001	1.004	•••
8	0.998	1.001	
9	0.995	0.997	
10	0.992	0.994	

Parallel analysis

Parallel analysis, also known as Horn's parallel analysis, is a statistical method used to determine the number of components to keep in a principal...

w Wikipedia / Aug 18, 2022

REPRESENTATION QUALITY

REPRESENTATION QUALITY

BUSINESS

PROJECTION OF VARIABLES

PROJECTION OF VARIABLES

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

«Business Intelligence in Airline Passenger Satisfaction Study — A Fuzzy-Genetic Approach with Optimized Interpretability-Accuracy Trade-Off» - Marian B. Gorzałczany, Filip Rudzi'nsk, and Jakub Piekoszewski, Department of Electrical and Computer Engineering, Kielce University of Technology, Poland, 2021

- 2. «Investigating airline passenger satisfaction: Data mining method» Tri Noviantoro, Jen-Peng Huang, College of Business, Southern Taiwan University of Science and Technology, Taiwan, 2022.
- 3. «Feature Analysis on Airline Passenger Satisfaction using Orange Tool» Hannah Susan Mathew,

Department of Computer Science, Rajagiri College of Social Sciences, Kochi, India, 2022.