

Shenzhen Hangshun Chip Technology Development Co., Ltd.

HK32F030x4/HK32F030x6/HK32F030x8 data sheet

Rev_{0.7}

Shenzhen Hangshun Chip Technology Development Co., Ltd.

targetrecord

His	tory	•••••		1
1		illust	trate	2
2		Produ	uct Overview	3
	2.1	F	Features	3
	2.2	[Device Overview	5
	2.3	(Ordering code	6
3		Feat	ures	8
	3.1	9	Structure diagram	
	3.2	ľ	Memory Map	9
	3.3	E	Built-in flash memory	9
	3.4	(CRCComputational Unit	9
	3.5	[DIVSQRTComputational Unit	10
		3.5.1	Description of the division operation	10
		3.5.2	Divide running time	11
		3.5.3	Description of square root operation	12
		3.5.4	Interruption	13
		3.5.5	Precautions	14
	3.6	9	SRAM	14
	3.7	1	NVIC	14
	3.8		EXTI	
	3.9		clock	15
	3.10	_	Bootmodel	
	3.11		Power supply scheme	1
	3.12		Power Monitor	
	3.13		Low Power Mode	
	3.14		DMA	
	3.15	_	RTCclock	
	3.16	_	Independent Watchdog	
	3.17		Window Watchdog	
	3.18		System TickTimer	
	3.19		Timer	
		3.19.1		
		3.19.2	'	
	3.20	3.19.3 1	3 Advanced TimerIICbus	
	3.21		USART	
	3.22		SPI	
	3.23		GPIO	
3.23		•	UI 10	

Shenzhen Hangshun Chip Technology Development Co., Ltd.

	3.24	ADC	5
	3.25	Temperature Sensor6	
	3.26	Internal voltage reference	6
	3.27	Debug interface6	
4		Performance7	7
	4.1	Absolute Maximum Ratings7	
		4.1.1 Limiting Voltage Characteristics	7
		4.1.2 Limiting Current Characteristics	7
		4.1.3 Extreme Temperature Characteristics	
	4.2	Working Parameters8	
		4.2.1 Recommended Operating Conditions	
		4.2.2 Reset and Low Voltage Detection	3
		4.2.3 Operating Current Characteristics	
		4.2.4 External Clock Features9	
		4.2.5 Internal Clock Characteristics	
		4.2.6 PLLcharacteristic10	
		4.2.7 Memory Features	
		4.2.8 IOPin Characteristics11	
		4.2.9 TIMCounter Features1	2
		4.2.10 ADCscharacteristic12	
		4.2.11 Temperature Sensor Characteristics	
5		Pin Definitions14	
6		Function Description1	
	6.1	AFFunction Description	1
	6.2	USARTPin Mapping1	
	6.3	I2CPin Mapping1	
	6.4	SPIPin Mapping1	
	6.5	Other function mappings1	
7		Package Parameters	1
	7.1	LQFP64 10x10mm, 0.5mm pitch1	
	7.2	LQFP48 7x7mm, 0.5mm pitch2	
	7.3	LQFP32 7x7mm, 0.8mm pitch	3
	7.4	TSSOP20 0.65mm pitch4	
8		Reflow Soldering Temperature Rise6	
9		Abbreviations7	
10		important hint8	

Shenzhen Hangshun Chip Technology Development Co., Ltd.

History

Version	Date	Description
1.0.0	2018/06/08	initial version
1.0.1~1.0.6		internal version
1.0.7	2019/06/10	correctflash programThe number of times is1K

Shenzhen Hangshun Chip Technology Development Co., Ltd.

1 illustrate

Shenzhen Hangshun Chip Technology Research Co., Ltd. is based on ARM Cortex-M0Developed and designed HK32F030, HK32F031, HK32F03XThree series of chips, collectively referred to as HK32F03xproduct line.

This document isHK32F030x4/HK32F030x6/HK32F030x8Chip data sheet.HK32F030The series chips are low power consumption developed by Shenzhen Haohan Skyline Processor Co., Ltd., a subsidiary of Shenzhen Hangshun Chip Technology Research Co., Ltd.MCUchip, please contact Shenzhen Haohan Skyline Processor Co., Ltd. to provide more related documents.

Shenzhen Hangshun Chip Technology Development Co., Ltd.

2 Product Overview

2.1 Features

- Operating voltage range
 - -Single Power Domain: Main PowerVDD 2.0V ~ 5.5V
- Typical operating current
 - Dynamic power consumption:120uA/MHz
 - StopStandby power consumption:10uA@3.3V
 - StandbyStandby power consumption:1.6uA@3.3V
- range of working temperature:-40°C ~ 105°C
- Chip clock source
 - externalHSE:support4~16MHzcrystal, typical8MHzCrystal external
 - LSE:32.768KHzcrystal oscillator
 - on-chipRCOscillator Clock:8MHz/14MHz/56MHz
 - Configurable on-chipLSIclock:40KHz PLLclock

-

- Chip pin input clock
- -Chip internal system clock source
 - All clock sources of the chip can be selected as system clocks, including slow clocksLSIandLSE. The user has the flexibility to select the system clock according to the power consumption and performance requirements of the application.

-reset

- External pin reset
- Power on reset
- software reset
- watchdog (IWDTandWWDT) timer reset low
- power mode reset
- Low voltage detection (PVD)
 - 8Stage detection voltage threshold adjustable
 - Rising and falling edge configurable
- ARM Cortex-M0 Core
 - Maximum clock frequency:72MHz
 - twenty fourbitSystem Ticktimer
 - supportCPU Eventsignal input toMCUpins, implemented with other board-levelSOC CPUlinkage

-memory

Shenzhen Hangshun Chip Technology Development Co., Ltd.

- Gundam64KByteofFlashmemory.CPUfrequency not higher than24MHz, support0Wait for a bus cycle. With
 code security protection function, read protection and write protection can be set separately; can be
 encryptedFlash instructions and data stored on theFlashContent is physically attacked. Gundam10KByte
- SRAM,noHW ParityFunction

-One12bitSAR ADCconverter

- Gundam16External analog signal input channels
- Maximum Converter Frequency:1Mbps
- Support automatic continuous conversion, scan conversion
- Temperature Sensor
 - -The analog output is internally connected toA/DConverter independent channel
- debug interface

-SWDdebug port

- Universal Serial Communication Interface
 - Gundam2indivualUSART, supports master syncSPIand modem control, withISO7816interface, LIN,IrDA
 Capability auto-baud rate detection and wake-up feature
 - Gundam2high speedSPI,have4to16programmable bit frames, multiplexedI2SInterface up to2
 - indivualI2C, supports extreme speed mode (1 Mbit/s) ,SMBus/PMBus, can be called from stop mode

-timer

- TIM1Advanced control timer, with6aislePWMoutput, as well as deadband generation and emergency stop
- functions TIM3/TIM14/TIM15/TIM16/TIM17General purpose timer TIM6basic timer

-General purpose input and outputIO

- Gundam55indivualGPIOpin
- allGPIOPin Configurable as External Interrupt Input
- provide the highest20mAdrive current
- five channelDMAcontroller, supportTimers,ADC,SPIs,I2Cs,USARTsand other peripheral triggers
- CRCcalculation module
- Fixed-point division/square root unit
 - support32Fixed-point division with quotient and remainder at the same time
 - support32High-precision square root of fixed-point number
- calendarRTC, with alarm to wake up from stop/standby cycle
- reliability
 - -pass throughHBM2000V/CDM500V/MM200V/LULevel test

Shenzhen Hangshun Chip Technology Development Co., Ltd.

2.2 Device overview

Peripherals	HK32F030			
package	LQFP64/LQFP48/LQFP32/TSSOP20			
Dynamic power consumption	120uA/MHz			
Power consumption	Sleep:60uA/MHz STOP:10.5uA Standby:1.6uA with 100us wakeup time			
clock source	32KHz OSC 32MHz OSC 40KHz RC 56MHz RC PLL			
System reset	POR PDR External RST IWDG WWDG Soft-Reset			
Analog peripherals	16aisleADC Temperature Sensor PVD			
CPUmain frequency	maximum72MHz			
VDDOperating Voltage	2.0~5.5V			
VBATinput pin	without			
Flash (KBytes)	64			
SRAM(KBytes)	10			
DMA	5aisle			
FSMC	without			
timer	TIM1/TIM3/TIM6/TIM14/TIM15/TIM16/TIM17			
SPI/I2S	2			
IIC	2			
USART	2			
USB	without			

Shenzhen Hangshun Chip Technology Development Co., Ltd.

CAN	without
SDIO	without
DIVSQRT	1

2.3 order code

specific model	Package	Minimum package quantity
HK32F030R8T6	tape orTrayplate	
HK32F030C8T6	tape orTrayplate	
HK32F030C6T6	tape orTrayplate	
HK32F030K6T6	tape orTrayplate	
HK32F030F4P6	tape orTrayplate	

The naming rules are as follows:

Shenzhen Hangshun Chip Technology Development Co., Ltd.

TR = tape and reel

Shenzhen Hangshun Chip Technology Development Co., Ltd.

3 Features

3.1 Structure diagram

ARMofCortex™-M0The processor is the latest generation of embedded32bitRISCprocessor, which is a low-cost, ultra-low-power MCUplatform while delivering superior computing performance and advanced system response to interrupts.HK32F030Series products have built-inCortex™-M0core, so it is compatible with allARMTools and software are compatible.

The functional block diagram of this series of products is as follows:

Shenzhen Hangshun Chip Technology Development Co., Ltd.

3.2 memory map

3.3 Built-in flash memory

Internally integrated up to 64 KByteFlash memory for storing programs and data.

3.4 CRCcomputing unit

Internally integrates an independent CRCThe hardware computing unit reduces the burden on user applications and provides the ability to accelerate processing.

CRC(Cyclic Redundancy Check) computational unit uses a configurable polynomial from a32bits generated in the data word CRC code.

Shenzhen Hangshun Chip Technology Development Co., Ltd.

3.5 DIVSQRTcomputing unit

DVSQAccelerator support32/32unsigned division of (SDIV) and signed division (UDIV), and32Bit unsigned square root operation. Division operations are supported at the same timeMODOperation, after the operation is completed, the quotient and remainder are simultaneously updated to the corresponding registers for software to read.

- support32Bit signed and unsigned division, supports32Bit root operation. at the same moment,DVSQThe accelerator cannot support
 division and square root operations at the same time, and can only choose one of the two to execute.32/32Signed/unsigned integer
 division (gets both quotient and remainder). Unsigned square root operation, high precision square root operation can be selected by
- Pipeline design, done every clock2bitsoperation.
- The calculation time varies depending on the calculation data.
- Divide by zero interrupt and overflow interrupt are supported.

The structure is as follows:

3.5.1 Description of the division operation

division operation

result registerRESand remainder registerREMAINDERThe value held in is always in two's complement format. If performing an unsigned division operation, thenRESregister and REMAINDERThe values in the registers are all positive numbers. If you perform signed division, thenRESregister and REMAINDERThe sign bit of the register is determined by the input operand:

- The quotient is negative if the sign bits of the dividend and the divisor are different; otherwise, the quotient is positive. The
- sign bit of the remainder is always the same as the sign bit of the divisor.

Operating procedures

The division operation can be started in two ways, fast start and non-fast start and non-fast start. The operation flow diagram of the division operation is as follows:

Shenzhen Hangshun Chip Technology Development Co., Ltd.

3.5.2 Division running time

DVSQThe accelerator determines the operation time according to the dividend data, so as to obtain the operation result as soon as possible. The specific operation time is as follows, in which the operation time is defined as the number of clock cycles from the start of the operation to the operation result, that is CSR.BUSY for the high duration.

the absolute value of the dividend	Operation time [cycle
(01,1x)xx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx	17
00(01,1x)_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx	16
0000_(01,1x)xx_xxxx_xxxx_xxxx_xxxx_xxxx	15
0000_00(01,1x)_xxxx_xxxx_xxxx_xxxx_xxxx	14
0000_0000_(01,1x)xx_xxxxxxxx_xxxx_xxxx	13
0000_0000_00(01,1x)_xxxxxxxx_xxxx_xxxx	12
0000_0000_0000_(01,1x)xxxxxx_xxxx_xxxx_xxxx	11

Shenzhen Hangshun Chip Technology Development Co., Ltd.

0000_0000_0000_00(01,1x)xxxx_xxxx_xxxx_xxxx	10
0000_0000_0000_0000_(01,1x)xx_xxxx_xxxx_xxxx	9
0000_0000_0000_0000_0000_(01,1x)xx_xxxx_xxxx	8
0000_0000_0000_0000_(01,1x)xx_xxxx_xxxx	7
0000_0000_0000_0000_0000_00(01,1x)_xxxx_xxxx	6
0000_0000_0000_0000_0000_0000_(01,1x)xx_xxxx	5
0000_0000_0000_0000_0000_00(01,1x)_xxxx	4
0000_0000_0000_0000_0000_0000_(01,1x)xx	3
0000_0000_0000_0000_0000_0000_00(01,1x)	2
0000_0000_0000_0000_0000_0000_0000	1

3.5.3 Root operation description

DVSQThe accelerator can only perform unsigned square root, so when the square root operation is performedRADICANDandRES The values in are all unsigned numbers.

Operating procedures

square root run time

DVSQThe accelerator determines the operation time according to the squared number, and at the same timeCSR.HPRESQRTAlso affects the square root operation time. The specific time is as follows, where the operation time is defined as the number of clock cycles from the start of the operation to the result of the operation, that is,CSR.BUSYfor the high duration.

whenCSR.HPRESQRTfor0Time::

squared	Operation time [number of cycles]
(01,1x)xx_xxxx_xxxx_xxxx_xxxx_xxxxxxxxxxxx	17

Shenzhen Hangshun Chip Technology Development Co., Ltd.

00(01,1x)_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx	16
0000_(01,1x)xx_xxxx_xxxx_xxxx_xxxx_xxxx	15
0000_00(01,1x)_xxxx_xxxx_xxxx_xxxx_xxxxxxxxxxx	14
0000_0000_(01,1x)xx_xxxxxxxx_xxxx_xxxx	13
0000_0000_00(01,1x)_xxxxxxxx_xxxx_xxxx	12
0000_0000_0000_(01,1x)xxxxxx_xxxx_xxxx_xxxx	11
0000_0000_0000_00(01,1x)xxxx_xxxx_xxxx_xxxx	10
0000_0000_0000_0000_(01,1x)xx_xxxx_xxxx_xxxx	9
0000_0000_0000_0000_0000_(01,1x)xx_xxxx_xxxx	8
0000_0000_0000_0000_0000_(01,1x)xx_xxxx_xxxx	7
0000_0000_0000_0000_000(01,1x)_xxxx_xxxx	6
0000_0000_0000_0000_0000_(01,1x)xx_xxxx	5
0000_0000_0000_0000_0000_00(01,1x)_xxxx	4
0000_0000_0000_0000_0000_0000_(01,1x)xx	3
0000_0000_0000_0000_0000_0000_00(01,1x)	2
0000_0000_0000_0000_0000_0000_0000	1

whenCSR.HPRESQRTfor1Time:

squared	Operation time [number of cycles]
(01,1x)xx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx	33
00(01,1x)_xxxx_xxxx_xxxx_xxxx_xxxxxxxxxxxxxx	32
0000_(01,1x)xx_xxxx_xxxx_xxxx_xxxxxxxxxxxxxxxxx	31
0000_00(01,1x)_xxxx_xxxx_xxxx_xxxx_xxxx	30
0000_0000_(01,1x)xx_xxxxxxxx_xxxx_xxxx	29
0000_0000_00(01,1x)_xxxxxxxx_xxxx_xxxx_xxxx	28
0000_0000_0000_(01,1x)xxxxxx_xxxx_xxxx_xxxx	27
0000_0000_0000_00(01,1x)xxxx_xxxx_xxxx_xxxx	26
0000_0000_0000_0000_(01,1x)xx_xxxx_xxxx_xxxx	25
0000_0000_0000_0000_0000_(01,1x)xx_xxxx_xxxx	twenty four
0000_0000_0000_0000_0000_(01,1x)xx_xxxx_xxxx	twenty three
0000_0000_0000_0000_0000_00(01,1x)_xxxx_xxxx	twenty two
0000_0000_0000_0000_0000_0000_(01,1x)xx_xxxx	twenty one
0000_0000_0000_0000_0000_00000_00(01,1x)_xxxx	20
0000_0000_0000_0000_0000_0000_(01,1x)xx	19
0000_0000_0000_0000_0000_0000_0000_00(01,1x)	18
0000_0000_0000_0000_0000_0000_0000	1

3.5.4 interrupt

DVSQThe two interrupt sources inside the accelerator share the same interrupt number in the chip. When the system detects an interrupt request, it needs to read the interrupt request.CSRRegister to determine whether it is a divide-by-zero interrupt or an overflow interrupt. At the same time, only one of the divide-by-zero interrupt and the overflow interrupt can occur.

Signed division overflow breaks:

Shenzhen Hangshun Chip Technology Development Co., Ltd.

- can be configured byCSR.OV_INT_ENenable or disable. When the dividend of signed number division is
- 0x8000_0000, the divisor is0xFFFF_FFFF, the interrupt request will be set by hardware.
- This interrupt condition can be cleared by software or hardware:
 - Software configurationCSR.DV_FLAGfor0.
 - Start the next division or square root operation.

remove0Interrupt:

- can be configured byCSR.OV_INT_ENenable or disable. When the
- divisor is0, the interrupt request will be set by hardware.
- This interrupt request can be cleared by software or hardware:
 - Software configurationCSR.DZ_FLAGfor0.
 - Start the next division or square root operation.

3.5.5 Precautions

Division operation:

- because DIVIDEND register and DIVISORThe value of the register is not changed by hardware during the operation, so software
 needs to be careful when writing to these two registers by byte or halfword. such as software byte write DIVIDEND[7:0] back,
 DIVIDEND high in the register twenty four Bit is the value written in the last division operation, low8 bit is the newly written value.
- When division is configured for fast start, whether it is a byte write, half word write, or word writeDIVISORregister will start the
 division operation.

Square root operation:

Whether it is byte writing, half-word writing or word writingDIVISORregister will start the division operation.

The result reads:

- if inDVSQAccess when the operation has not been completedRESandREMAINDERThe register will make the bus
 in a waiting state, and it cannot be interrupted correspondingly in the waiting state. Software can pollCSR.BUSY
 state to judgeRESandREMAINDERwhether the value is ready.
- if inDVSQAccess when the operation has not been completedDIVIDEND/DIVISOR/RADICANDThe registers also hold the bus in a wait state.

3.6 SRAM

Internal integration up to 10 KByte SRAM, CPUFast read and write access with zero wait cycles meets the needs of most applications.

3.7 NVICs

Built-in nested vectored interrupt controller capable of handling up to 32 maskable interrupt channels (excluding 16 indivual $Cortex^{M}$ -M0the interrupt line) and 4 priority. The module provides flexible interrupt management capabilities with minimal interrupt latency.

- tightly coupledNVICInterrupt response processing with low latency
- Interrupt vector entry address directly into the kernel

Shenzhen Hangshun Chip Technology Development Co., Ltd.

- tightly coupledNVICinterface
- Enable early processing of interrupts
- Handle late-arriving higher-priority interrupts
- Support interrupt tail link function
- Automatically save processor state
- Automatic recovery when interrupt returns without additional instruction overhead

3.8 EXTI

Extended Interrupt/Event Controller containstwenty fourRoot is used to generate interrupt/event requests and wake up the system on the edge-detected interrupt line. Each interrupt line can be independently configured to select a trigger event (rising edge, falling edge, or edge) and can be individually masked. Pending registers are used to hold the status of interrupt requests. EXTIExternal interrupt lines with pulse width less than the internal clock period can be detected. The external interrupt line has a maximum of 16 root, available from up to 39 individual GPIOselect Connect.

3.9 clock

The selection of the system clock is made at startup, and the internal56MHzofRCOscillator divided to8MHz, is selected as the defaultCPUclock, and then other clock sources can be selected as the system clock. existCSSAfter the function is turned on, when the externalHSEWhen the clock fails, it will be isolated and the corresponding interrupt will be generated. Likewise, when needed,PLL Clock complete interrupt management (eg when an external oscillator fails). Has multiple prescalers for configurationAHBfrequency, high speedAPB(APB2)and low speedAPB(APB1)area.AHBandAPBThe highest frequency is 72MHz.

PLLPrescaled input clockHSEandHSIOptional.

for CPUMore clock sources are designed for the operating frequency of the device, and it also provides customers with light, flexible and diverse working modes.

- 32KHz LSEcan be used asCPUclock
- 40KHz LSIcan be used asCPUclock
- 4roadGPIOpin (PA0/PA4/PA13/PA14) input can be used asCPUclock

The clock structure is as follows:

Shenzhen Hangshun Chip Technology Development Co., Ltd.

3.10 Bootmodel

At startup, the bootstrap pins are used to select one of three bootstrap modes

- Boot from user flash
- Bootstrapping from system memory
- from the insideSRAMbootstrapping

The bootloader is stored in system memory and can be accessed viaUSART1/USART2Reprogram the flash.

3.11Power supply scheme

- VDD = 2.0~5.5V:VDDpin isI/Opins and internalLDOpowered by VDDA = 2.0~
- 5.5V:forADC, The temperature sensor analog part provides power

3.12power monitor

Internally integrated power-on reset (POR)/Power-down reset (PDR)circuit, which is always in working condition to ensure that the system is powered over2Vtime work. whenVDDlower thanPOR/PDRWhen the threshold is set, the device is placed in the reset state without using an external reset circuit. The device also has a programmable voltage monitor (PVD), which monitorsVDDpowered and with the threshold VPVD compare whenVDDbelow or above the thresholdVPVDWhen an interrupt occurs, the interrupt handler can issue a warning message or put the microcontroller into safe mode.PVDThe function needs to be enabled through the program enable.

3.13low power mode

The chip supports multiple power consumption modes

Sleep Mode: sleep mode

in sleep modeonlyCPUStop, all peripherals are active and can wake up on interrupt/eventCPU.

Stop Mode: stop mode

in keepingSRAMand the register contents are not lost, the shutdown mode can achieve the lowest power consumption. In shutdown mode, all internal clocks are turned off,PLL,HSIandHSEofRCThe oscillator is turned off. can be configured by eitherEXTIsignal wakes the microcontroller from shutdown mode,EXTIsignal can be16externalI/O one of the mouths,PVD Output,RTCAlarm clock,UARTheader matching andI2CAddress matches.

Standby Mode: Standby mode

The lowest power consumption can be achieved in standby mode. internalLDOis closed, so all internal1.5VPart of the power supply is cut off;PLL,HSIandHSEofRCThe oscillator is also turned off; after entering standby mode,SRAMThe contents of the and register will disappear, but the contents of the backup register will remain, and the standby circuit will still work. The conditions for exiting from standby mode are:NRSTexternal reset signal on theIWDGreset,WKUPedge on the pin orRTC's alarm clock is up.

Wakeuppins have6pins are optional. they are, respectivelyPC13/PA0/PA6/PA7/PA9/PA10.

3.14 DMA

flexible5road generalDMAMemory-to-memory, device-to-memory, and memory-to-device data transfers can be managed.1indivualDMAThe controller supports the management of the ring buffer, avoiding the interruption when the controller transfer reaches the end of the buffer.

Shenzhen Hangshun Chip Technology Development Co., Ltd.

Dedicated hardware for each channelDMARequest logic, and each channel can be triggered by software at the same time; transmission length Both the source and destination addresses of the transfer can be individually set by software.DMAAvailable for major peripherals:SPI,I2C,USART, timerTIMx,SDIOandADC.

3.15 RTCclock

HK32F030series chipLQFP64,LQFP48,LQFP32,TSSOP20Packages are not independentVBAT pins, as long asVDDhave electricity,VBATdomain will still work fine, providingStandByLow power function.

RTCis an independentBCDTimer/Counter. Its main features are as follows:

- Calendar has subseconds, seconds, minutes, hours (12ortwenty fourFormat) , day of week, day, month, year in the formatBCD (binary decimal number).
- Auto Adjust Monthly Yes28,29(leap year),30still31sky. The programmable
- alarm clock has the ability to wake up from stop and standby modes.
- Runtime correction1arrive32767indivualRTCclock pulse. This can be used toRTCSynchronized with the master clock.
- The digital calibration circuit has 1 ppmresolution to compensate for quartz crystal inaccuracies.
- Two tamper detection pins have programmable filters. When a tampering event is detected, MCU stop and wake up from standby mode.
- The timestamp feature can be used to save calendar content. This function can be triggered by an event on the timestamp pin, or by a tampering event. When a timestamp event is detected, MCU Wake-up from stop and standby modes.
- Reference Clock Detection: A more accurate second clock source can be used (50or60Hz) to improve the accuracy of the calendar

3.16independent watchdog

The independent watchdog is based on a12bit down counter and a8bit prescaler, which consists of an internal independent40kHzofRC oscillator provides the clock because thisRCThe oscillator is independent of the main clock, so it can operate in shutdown and standby modes. It can be used as a watchdog to reset the entire system in the event of a problem, or as a free timer to provide time-out management for applications. The watchdog can be configured to be a software or hardware enabled watchdog by selecting the byte. In debug mode, the counters can be frozen.

3.17window watchdog

There is a window watchdog inside7bit down counter and can be set to free-running. It can be used as a watchdog to reset the entire system in the event of a problem. It is driven by the master clock and has an early warning interrupt function. In debug mode, the counter can be frozen.

3.18 System Ticktimer

This timer is dedicated to the operating system and can also be used as a standard down counter. It has the following properties.

- twenty fourbit down counter
- Reload function
- When the counter is0can generate a maskable interrupt when
- Programmable clock source

Shenzhen Hangshun Chip Technology Development Co., Ltd.

3.19timer

HK32F030x4/x6/x8The device includes up to five general purpose timers and one advanced control timer.

timer	Timer	counter	counter	prescaler	DMA	capture/Compare	Complementary output
Types of		Resolution	Types of	coefficient	request generation	aisle	
advanced control	TIM1	16bit	increase, decrease, increment/decrement	1and65536 any between	have	4	have
Universal	TIM3	16bit	increase, decrease,	1and65536 any between	have	4	without
	TIM14	16bit	increment	1and65536 any between	without	1	without
	TIM15	16bit	increment	1and65536 any between	have	2	without
	TIM16	16bit	increment	1and65536 any between	have	1	have
	TIM17	16bit	increment	1and65536 any between	have	1	have
basic	TIM6	16bit	increment	1and65536 any between	have	0	without

3.19.1basic timer

TIM6

TIM6is used to generateDACTrigger signal, can also be used as a general16Bit time base counter.

3.19.2General purpose timer

Every general purpose timer can be used to generatePWMoutput, or as a simple time base.

TIM3

TIM3based on a16Bit auto-reload up/down counters and a16bit prescaler. they all have4independent channels for input capture/output compare,PWM, Single-pulse mode output. In the largest package, up to12 input capture/output compare/PWM.

TIM3The general purpose timer can be linked with the timer link functionTIM1Advanced control timers work together to provide synchronization or event chaining capabilities.TIM3can generate independentDMAask. These timers are capable of handling quadrature (incremental) encoder signals as well as 1 arrive 3 digital output of a Hall-effect sensor. In debug mode, its counters can be frozen.

Shenzhen Hangshun Chip Technology Development Co., Ltd.

TIM14,TIM15

The timer is based on a16bit auto-reload incrementing counter and a16bit prescaler.TIM14has a single channel for input capture/output compare,PWMor single-pulse mode output. In debug mode, its counters can be frozen.TIM14can produceDMAask,TIM15not.

TIM16andTIM17

Two timers based on one16bit auto-reload incrementing counter and a16bit prescaler. They each have a single channel for input capture/output compare,PWMor single-pulse mode output.TIM16andTIM17Complementary outputs with dead time generation and independentDMARequest generation function. In debug mode, its counters can be frozen.

3.19.3Advanced Timer

Advanced Control Timer (TIM1)can be seen as assigned to6three-phase channelPWMThe generator can also be used as a complete general-purpose timer. Four independent channels can be used for:

- Input capture
- output comparison
- producePWM(edge or center alignment mode)
- Single pulse output
- ComplementaryPWMOutput, with programmable dead-band insertion function

configured as16bit standard timer, it is associated withTIMxA timer has the same function. configured as16bitPWMgenerator, it has full modulation capability (0~100%). In debug mode, the counter can be frozen. Many functions are the same as the standardTIMThe timer is the same, and the internal structure is also the same, so the advanced control timer can be connected with the timer link functionTIMTimers work together to provide synchronization or event chaining capabilities.

3.20 IICbus

2indivualI2Cbus interface, capable of working in multi-master and slave mode, supporting standard mode (up to 100 kbit/s) ,fast mode (maximum400 kbit/s) and Speed mode (maximum1 Mbit/s)have20mAoutput driver.

I2CInterface support7bit or10bit addressing,7Dual-slave addressing is supported in bit-slave mode.

I2CprovidedSMBUS 2.0andPMBUS 1.1Hardware support for:ARPCapability, Host Notification Protocol, Hardware CRC(PEC) generate/validate, timeout validation,ALERTProtocol management.

I2CThere is also an independentCPUclock domain clock, such thatI2CWake-up from stop mode on address match MCU.

Programmable analog and digital noise filters.

	analog filter	digital filter
Suppressed pulse width	≥ 50ns	from1arrive15indivualI2CProgrammable length of peripheral clock
advantage	Still available in stop mode	1.Additional filtering capabilityvsstandard requirements. 2.stable length
shortcoming	Variation with temperature, voltage, process	

Shenzhen Hangshun Chip Technology Development Co., Ltd.

3.21 USART

The device has built-in2A universal synchronous/asynchronous transceiver (USART1), with a communication rate of up to6 Mbit/s. it providesCTS,RTS,RS485 DEHardware management of signaling, multiprocessor communication modes, master synchronous communication, and single-wire half-duplex communication modes.USART1Also supports smart card communication (ISO 7816),IrDA SIR ENDEC,LINmaster/slave capability, auto-baud feature, withCPUClock-independent clock domain, wake-up from stop modeMCU. USARTinterface can be usedDMAcontroller.

USARTcharacteristic	USART1
Modem hardware flow control	support
useDMAfor continuous communication	support
multiprocessor communication	support
Sync mode	support
SmartCardmodel	support
Single-wire half-duplex communication	support
IrDA SIR ENDECmodule	support
LINmodel	support
Dual clock domains and wake-up from stop mode	support
Receiver Timeout Interrupt	support
Modbuscommunication	support
Automatic baud rate detection	support
driver enabled	support

3.22 SPI

HK32F030have2indivualSPIinterface, up to18 Mbit/sCommunication can be slave and master mode, full duplex and half duplex communication mode.3A bit prescaler can generate8main mode frequencies, the frame can be configured as4bit to16bit.

standardI2Sinterface (withSPIMultiplexing) supports four different audio standards and can work in master or slave half-duplex communication mode. It can be configured as16, twenty four,32bit transfer, yes16bit or32Bit data resolution, synchronized by dedicated signal. by 8Bit programmable linear prescaler settings8kHzto192kHzaudio sampling frequency. When working in master mode, it can output sampling frequency for external audio components256times the clock.

SPIcharacteristic	SPI
hardwareCRCcalculate	support
Rx/Tx FIFO	support
NSSpulse mode	support
I2Smodel	support
TImodel	support

Shenzhen Hangshun Chip Technology Development Co., Ltd.

3.23 GPIO

eachGPIOPins can be configured by software as outputs (push-pull or open-circuit), inputs (with or without pull-up or pull-down), or other peripheral function ports. mostGPIOPins are shared with digital or analog peripherals. allGPIOThe pins have the ability to pass large currents. In case of need,I/OThe peripheral functions of the pins can be locked by a specific operation to avoid accidental writesI/Oregister.

3.24 ADCs

inline1indivual12bit analog/digital converter (ADC), eachADCshare up to16external channels for single-shot or scan conversion. In sweep mode, conversion on a selected set of analog inputs occurs automatically.

ADCAdditional logical functions on the interface include:

- Simultaneous sample and hold
- Cross sample and hold
- Single sampling

ADCcan useDMAoperate. The analog watchdog function allows very precise monitoring of one, multiple or all selected channels, and will generate an interrupt when the monitored signal exceeds a preset threshold. by the standard timer (TIMx) and Advanced Control Timer (TIM1) generated events, which can be cascaded internally to the ADCstart trigger and injection trigger, the application can enable ADConversions are synchronized with the clock.

3.25Temperature Sensor

The temperature sensor produces a voltage that varies linearly with temperature. The temperature sensor is internally connected to ADC1_IN16 is used to convert the sensor output to a digital value on the input channel.

3.26Internal reference voltage

Internal reference voltage (VREFINT) for ADC and comparator provides a regulated voltage output. VREFINT Internally connected to ADC_IN17 input channel. The access mode is read-only.

3.27debug interface

 $in line ARM of SWJ-DP interface\ that\ can\ implement\ serial\ line SWDIO/SWCLK Debug\ interface.$

Shenzhen Hangshun Chip Technology Development Co., Ltd.

4 Performance

4.1 Absolute Maximum Ratings

Maximum ratings are only short-term pressure values. And it is not advisable for the chip to operate at this value or any other condition beyond this recommended value. Exceeding the following maximum ratings may cause permanent damage to the chip. Exposure to maximum ratings for extended periods of time may affect chip reliability.

4.1.1 Limiting Voltage Characteristics

symbol	describe	minimum	maximum value	unit
V _{DD} -V _{SS}	External mains supply voltage (includesVDDAandVDD)	- 0.5	6.0	V
VIN	input voltage on pin	VSS-0.3	VDD+4.0	V
ΔVDDx	Voltage difference between different supply pins	-	50	mV
Vssx-Vss	Voltage difference between different ground pins	-	50	1110

4.1.2 Limiting current characteristics

symbol	describe	maximum value	unit
Ivdd	go throughVbb/VbbaTotal current of the power cord (supply current)1	150	
Ivss	go throughVSSTotal current in ground wire (current flowing out)1	150	
	anyI/Oand the output sink current on the control pin	25	
IIO	anyI/Oand the output source current on the control pin	- 25	mA
Inj(pin) ²	Injection current on pin ₃	±5	
Σ Iinj(pin)	allI/Oand the total injected current on the CONTROL pin4	±25	

Note1: All power (VDD, VDDA) and ground (Vss, VssA) pins must always be connected to an external power supply within the allowable range.

 $\label{thm:local_problem} \textbf{Note2: Back-injected current can interfere with the analog performance of the device.}$

Note3:whenV_{IN}>V_{DD}, there is a forward injection current; whenV_{IN}< V_{SS}When there is a reverse injection current, the injection current must not exceed the specified range.

Note4: when severall/OWhen there is injected current at the same time, \(\sum_{\text{INNPIN}}\)The maximum value of is the sum of the instantaneous absolute values of the forward injection current and the reverse injection current.

4.1.3 Extreme temperature characteristics

symbol	describe	parameter value	unit
Тѕтс	Storage temperature range	- 45 to +150	°C
Tj	Maximum Junction Temperature	125	C

Shenzhen Hangshun Chip Technology Development Co., Ltd.

4.2 Working parameters

4.2.1 Recommended working conditions

symbol	describe	minimum	maximum value	unit
fнськ	internalAHBClock frequency	0	72	
f PCLK1	internalAPB1Clock frequency	0	72	MHz
f PCLK2	internalAPB2Clock frequency	0	72	
V _{DD}	Standard working voltage	2	5.5	V
V _{DDA} 1	Analog working voltage	2	5.5	V
Т	Operating temperature	- 40	105	°C

4.2.2 Reset and Low Voltage Detection

Table 4-1Power-on Reset Characteristics

symbol	parameter	condition	minimum	Typical value	maximum value	unit
Tdelay	rstnBuild time	-	-	40		us
VThreshold	reset threshold	-	-	1.75		٧

Table 4-2 PVDcharacteristic

symbol	parameter	condition	minimum	Typical value	maximum value	unit
		PLS[2:0]=000	2.183	2.188	2.196	
V PVD		PLS[2:0]=001	2.286	2.289	2.298	
		PLS[2:0]=010	2.393	2.399	2.407	
	Programmable Voltage Detector's	PLS[2:0]=011	2.502	2.508	2.518	
	Detection level selection (rising	PLS[2:0]=100	2.621	2.629	2.639	
	along)	PLS[2:0]=101	2.726	2.733	2.745	
		PLS[2:0]=110	2.839	2.846	2.855	
		PLS[2:0]=111	2.958	2.969	2.979	V
	Programmable Voltage Detector's Detection level selection (falling	PLS[2:0]=000	2.116	2.119	2.125	V
		PLS[2:0]=001	2.208	2.211	2.220	
		PLS[2:0]=010	2.305	2.310	2.320	
		PLS[2:0]=011	2.399	2.406	2.416	
		PLS[2:0]=100	2.506	2.512	2.521	
	along)	PLS[2:0]=101	2.596	2.602	2.613	
		PLS[2:0]=110	2.693	2.701	2.710	
		PLS[2:0]=111	2.798	2.805	2.817	

4.2.3 Operating current characteristics

Table 4-3Operating current characteristic

rame 4-30 per aunit cui rent characteristics					
	VDD@25°C		VDD@25°C		Unit
model	condition	2.0V	3.3V	5.0V	Offic

Shenzhen Hangshun Chip Technology Development Co., Ltd.

	HCLK=96MHz, FLASH read3wait period,APB clockenable	21.505	22.63	22.85	mA
	HCLK=96MHz, FLASH				
	read3wait period,APB	12.908	13.232	13.301	mA
	clockdisable				
Run mode	HCLK=HSE 8MHz,				
Raninoac	FLASHread0wait week	3.151	3.418	3.533	mA
	Expect,APBclockenable				
	HCLK=HSE 8MHz,				
	FLASHread0wait week	2.316	2.559	2.653	mA
	Expect,APBclockdisable				
	HCLK=LSI 40KHz	196	208	212	uA
	HCLK=LSE 32.768KHz	190	205	215	uA
	HCLK=96MHz	5.199	5.441	5.483	mA
Class made	APBclockdisable	5.199	3.441	5.465	ША
Sleep mode	HCLK=HSI 8MHz	0.778	0.845	0.937	mA
	APBclockdisable	0.778	0.045	0.937	ША
	LDOWorking at full speed	126	128	130	uA
Stop mode	HSE/HSI/LSEclosure	120	120	130	uA
Stop mode	LDOlow power state	9.22	10.26	12.47	uA
	HSE/HSI/LSEclosure	3.22	10.20	12.47	αд
Standby mode	LSI and IDWG on	1.13	1.64	3.17	uA
RTC Power	RTC with LSE=32.768K	'_	1.0	'_	uA
consumption			1.0	_	uA

4.2.4 External Clock Features

Table 4-4External high-speed clock features

Tuble 4-42xee had high-speed clock reactives							
symbol	parameter	condition	minimum	Typical value	maximum value	unit	
fHSE_ext	Clock frequency	-	1	8	25	MHz	
VHSEH	input pin high		0.7V _{DD}	1	V _{DD}	V	
VHSEL	input pin low		Vss	-	0.3V _{DD}	V	
Tw(HSE)	Active high/low time		5	-	-		
Tr(HSE)	Rise/Fall Time		-	-	20	ns	
Tf(HSE)							
Cin(HSE)	Input capacitive reactance	-	-	5	-	pF	
DuCy(HSE)	duty cycle	-	45	-	55	%	

Table 4-5External low-speed clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
FLSE_ext	Clock frequency	-	-	32.76 8	1000	kHz
VLSEH	input pin high		0.7V _{DD}	-	V _{DD}	\/
VLSEL	input pin low		Vss	-	0.3V _{DD}	V

Shenzhen Hangshun Chip Technology Development Co., Ltd.

Tw(LSE)	Active high/low time		450	-	-	
Tr _(LSE)	Rise/Fall Time		-	-	50	Ns
Cin(LSE)	Input capacitive reactance	-	-	5	-	pF
DuCy(LSE)	duty cycle	-	30	-	70	%

4.2.5 Internal Clock Characteristics

Table 4-6Internal fast clock feature

			1				
Symbol	Parameter	Condi	tions	Min	Тур	Max	Unit
f _{HSI}	Clock frequency	-		-	8	-	MHz
DuCy(HSI)	duty cycle	-		45	-	55	%
		RCC_CRAfter register calibration		-	-	1	90
	Oscillator Accuracy	Factory calibrated Oscillator Accuracy	T _A = -40 to 105 °C	- 2	-	2.5	%
ACCHSI			T _A = -40 to 85 °C	- 1.5	-	2.2	%
			TA = 0 to 70 °C	- 1.3	-	2	%
			TA = 25 °C	- 1.1	-	1.8	%
T _{su(HSI)}	Oscillator start-up time	Vss≤Vin≤Vdd		1	-	2	us
Idd(HSI)	Oscillator power consumption			-	80	100	uA

Table 4-7Internal slow clock feature

Symbol	Parameter	Min	Тур	Max	Unit
flsi	Clock frequency	30	40	60-	kHz
tsu(LSI)	Oscillator start-up time	-	-	85	us
Idd(LSI)	Oscillator power consumption		0.65	1.2	uA

4.2.6 PLLcharacteristic

Table 4-8 PLLscharacteristic

Symbol	D			Unit	
	Parameter	Min	Тур	Max	Offic
_	input clock frequency	1	8.0	25	MHz
f _{PLL_IN}	Input clock duty cycle	40	-	60	%
fpll_out	output clock frequency	16	-	72	MHz
t lock	Phase lock time	-	-	200	us
Jitter	Cyclic jitter	-	-	300	ps

4.2.7 Memory characteristics

Table 4-9Memory characteristics

Shenzhen Hangshun Chip Technology Development Co., Ltd.

Symbol	Parameter	Min	Тур	Max	Unit
_	Half word write time		25		μs
Tprog	word writing time		33		μs
	Half Page Erase Time		9.2		ms
Terase	Page Erase Time		4.6		
	Chip Erase Time		38		ms
IDDprog	Nibble Write Current	-	-	5	mA
IDDerase	Page/Chip Erase Current	-	-	2	mA
10.0	read current @24MHz	-	2	3	mA
IDDread	read current @1MHz	-	0.25	0.4	mA
VIL	input low voltage	-		0.1V _{DD}	
VIH	input high voltage	0.9V _{DD}			
Vol	output low voltage			0.1V _{DD}	
Vон	output high voltage	0.9V _{DD}			
Nend	erasing life	1			thousand times
t ret	data retention time	20			year

 $[\]textbf{1.} \hspace{0.5cm} \textbf{Typical values} \hspace{0.2cm} \textbf{refer to 1.5V, TTP rocess and temperature 25°C Under conditions.} \\$

4.2.8 IOPin Characteristics

Table 4-10 IOPin DC Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vih		V _{DD} >2V	0.42*(VDD		5.5	٧
VIH	input high level	V _{DD} ≤2V	- 2V) + 1V		5.2	V
VIL	input low level		- 0.3		0.32*(V _{DD} - 2V)+0.75V	V
Vhys	Schmitt trigger voltage		5%V DD	-	-	mV
Ilkg	Input leakage current	V _{IN} =5V	-	-	3	uA
Rpu	weak pull-up equivalent resistor	V _{IN} =V _{SS}	30	40	50	ΚΩ
Rpd	weak pull-down equivalent resistor	V _{IN} V _{DD}	30	40	50	ΚΩ
Сю	I/O pin capacitance		-	5	-	pF

Table 4-2 IOPin AC Characteristics

Mode	Symbol	Parameter	Conditions	Min	Max	Unit
	fmax(IO)out	Maximum frequency		-	2	MHz
10	t f(IO)out	output high to low level fall time	CL=50pF, VDD=2V to 5.5V	-	125	
	tr(IO)out	output low to high level rise time		-	125	ns
01	fmax(IO)out	Maximum frequency	CL=50pF, VDD=2V to 5.5V	-	10	MHz

Shenzhen Hangshun Chip Technology Development Co., Ltd.

	t f(IO)out	output high to low level fall time		-	25	
	t r(IO)out	output low to high level rise time		-	25	ns
			CL=30pF, VDD=2.7V to 5.5V	-	50	
	fmax(IO)out	Maximum frequency	CL=50pF, VDD=2.7V to 5.5V		30	MHz
			CL=50pF, VDD=2V to 2.7V		20	
			CL=30pF, VDD=2.7V to 5.5V	-	5	
11	t f(IO)out	output high to low level fall time	C _L =50pF, V _{DD} =2 .7V to 5.5V		8	ns
		leverraii time	CL=50pF, VDD=2V to 2.7V		12	
			CL=30pF, VDD=2.7V to 5.5V	-	5	
	t r(IO)out	output high to low level rise time	CL=50pF, VDD=2.7V to 5.5V		8	ns
		ievei iise tiille	CL=50pF, VDD=2V to 2.7V		12	

4.2.9 TIMCounter Features

Table 4-3 TIMscountdevice characteristics

Symbol	Conditions	Min	Max	Unit	
Tres(TIM)	Timer resolution time	1	-	Ттімхськ	
Timer external clock		0	F /2	MHz	
FLAT	frequency on CH1 to CH4	U	Fтімхсік/2	IVII IZ	
RESTIM	Timer resolution	-	16	bit	
Tanuntar	16-bit counter clock period	1	65536	_	
Tcounter	when internal clock is selected	I I	05550	Ттімхсік	
TMAX_COUNT	Maximum possible count	_	65536x65536	Ттімхськ	

^{1.} $f_{TIMxCLK} = 72MHz$

4.2.10 ADCscharacteristic

Table 4-4 ADCscharacteristic

Parameter	Conditions	Min	Тур	Max	Unit
Full cools was as	SDIF=0	vrefn	-	vrefp	V
Full scale range	SDIF=1	2*	(vrefp-vref	fn)	V
Input signal common mode		(vrefp-vrefn)/2			V
Input sample capacitance	-	-	5	-	pF
Input switch equivalent impendence(Rs)	-	-	-	1000	Ohm
Positive reference voltage (vrefp)	-	AVDD	AVDD	AVDD	V
Negative reference voltage (vrefn)	-	0	0	0.1	٧
Analog Supply voltage	-	2.0	3.3	5.5	V
Digital Supply voltage	-	1.35	1.5	1.65	V
Current Consumption AVDD	SDIF=1,@	-	110	_	uA
Current Consumption VDD	1Msps	-	40	-	uA

Shenzhen Hangshun Chip Technology Development Co., Ltd.

Current Consumption vrefp		-	35	-	uA
Clock period(tclkp)		3333	71.4	23.8	Ns
The high level time of clock(tclkh)	-	40%	50%	60%	Tclkp
The time delay from rising edge of		0.8		3	ns
clock to rising edge of EOC(teocr)	-	0.6	-	<u> </u>	115
The time delay from rising edge of	_	0.8	_	3	ns
clock to falling edge of EOC (teocf)		0.0		J	113
The time delay from rising edge of EOC	_	1.2	_	4	ns
to the data is valid at data bus B(tdata)		1.2		7	113
The setup time of SOC(tsocs)	-	-	0.7	-	ns
The hold time of SOC(tsoch)	-	-	0.7	-	ns
The time of Sampling and converting			14		
(t _{sp+con})	_	_	14	_	t clkp
The time of sample(ts)	-	-	1.5	ı	t clkp
THD	-	-	- 72	-	db
SNDR	-	-	68	-	db
DNL	-	- 1	-	+ 1	LSB
INL	-	- 1.5	-	+ 1.5	LSB
offset error	-	- 16	-	16	LSB

4.2.11Temperature sensor characteristics

Table 4-5Temperature sensor characteristics

Parameter	Conditions	Min	Тур	Max	Unit	
Analog Supply voltage	-	2.2	3.3	5	V	
Digital Supply voltage	-	1.35	1.5	1.65	V	
Current Consumption	AVDD	-	150	-	uA	
Power down leakage current	en='0'	-	-	1		
Power switch control voltage	Power down	-	0	-	V	
(Ven)	Power on	-	1	-	Vddl	
Sensor linearity with temperature	-	-	±1	±2	°C	
Sensor output voltage	at 25°C	1.34	1.43	1.52	V	
Sensor Gain	-	4.0	4.3	4.6	mV/°C	
Output load capacitor	-	-	-	20	Pf	
Output current	-	- 40	-	+ 40	uA	
Power up time(tstart)	-	4	-	10	us	

Shenzhen Hangshun Chip Technology Development Co., Ltd.

5 Pin Definition

HK32F030DefinedLQFP64/LQFP48/LQFP32/TSSOP20Four packages, the pin definitions are as follows.

LQFP64packagePin-out

LQFP48packagePin-out

Shenzhen Hangshun Chip Technology Development Co., Ltd.

LQFP32packagePin-out

TSSOP20packagePin-out

Shenzhen Hangshun Chip Technology Development Co., Ltd.

The pin definitions are as follows

The pin definitions are as follows Pin number		u3 10110W3	Pin Name		Din functions			
FIIII	Pin number			(Function after reset)		Pin functions		
LQFP64	LQFP48	LQFP32	TSSOP20	(Function after reset)	Pin type	Alternate functions	Additional functions	
1	1	-	-	VDD	S	Power Supply		
2	2	-	-	PC13	I/O	-	RTC_TAMP1	
							RTC_TS	
							RTC_OUT	
							WKUP2	
3	3	-	-	PC14	I/O	-	OSC32_IN	
4	4	ı	-	PC15	I/O	-	OSC32_OUT	
5	5	2	2	PF0	I/O	I2C1_SDA	OSC_IN	
6	6	3	3	PF1	I/O	I2C1_SCL	OSC_OUT	
7	7	4	4	NRST	I/O	Reset input/internal res	set output, active low	
8	-	ı	-	PC0	I/O	EVENTOUT	ADC_IN10	
9		-	-	PC1	I/O	EVENTOUT	ADC_IN11	
10		-	-	PC2	I/O	EVENTOUT	ADC_IN12	
						SPI2_MISO		
11		-	-	PC3	I/O	EVENTOUT	ADC_IN13	
						SPI2_MOSI		
12	8	-	-	VSSA	S	Analogy ground		
13	9	5	5	VDDA	S	Analogy Power Supply		
14	10	6	6	PA0	I/O	USART1_CTS	ADC_IN0	
							RTC_TAMP2	
							WKUP1	
							CKI_4	
15	11	7	7	PA1	I/O	USART1_RTS	ADC_IN1	
						USART2_RTS		
						EVENTOUT		
						TIM15_CH1N		
16	12	8	8	PA2	I/O	USART1_TX	ADC_IN2	
						USART2_TX	WKUP4	
						TIM15_CH1		
17	13	9	9	PA3	I/O	USART1_RX	ADC_IN3	
						USART2_RX		
						TIM15_CH2		
18	-	-	-	PF4	I/O	EVENTOUT	-	
19	-	-	-	PF5	I/O	EVENTOUT	-	
20	14	10	10	PA4	I/O	SPI1_NSS	ADC_IN4	
						USART1_CK	CKI_1	
						USART2_CK		
						TIM14_CH1		

Shenzhen Hangshun Chip Technology Development Co., Ltd.

twenty on	15	11	11	PA5	I/O	SPI1_SCK	ADC_IN5
twenty dn		12	12	PA6	I/O	SPI1_MISO	ADC_IN6
twenty tw	· 10	12	12	PAO	1/0		WKUP10
						TIM3_CH1	WKOPIU
						TIM1_BKIN	
						TIM16_CH1	
	17	12	12	DA7	1/0	EVENTOUT	ADC INT
twenty thr	reel /	13	13	PA7	I/O	SPI1_MOSI	ADC_IN7
						TIM3_CH2	WKUP11
						TIM14_CH1	
						TIM1_CH1N	
						TIM17_CH1	
						EVENTOUT	
				DC4	1/0	MCO	ADC IN14
twenty for		-	-	PC4	I/O	EVENTOUT	ADC_IN14
25	10	-	-	PC5	I/O	TIMO CUO	ADC_IN15
26	18	14	-	PB0	I/O	TIM3_CH3	ADC_IN8
						TIM1_CH2N	
27	40	4.5	4.4	DD4	7.00	EVENTOUT	100 110
27	19	15	14	PB1	I/O	TIM3_CH4	ADC_IN9
						TIM14_CH1	
20	20			DD2	7.00	TIM1_CH3N	
28	20	-	-	PB2	I/O	I2C1_SMBA	-
20				DD10	7.0	I2C2_SMBA	
29	twenty o	ne -	-	PB10	I/O	I2C1_SCL	-
						I2C2_SCL	
20				DD44	7.0	SPI2_SCK	
30	twenty to	vo-	-	PB11	I/O	I2C1_SDA	-
						I2C2_SDA	
24		1.0		\/CC	7.00	EVENTOUT	
31		16	-	VSS	I/O	Ground	
32		our 17	16	VDD	I/O	Digital power supply	
33	25	-	-	PB12	I/O	SPI1_NSS	
						SPI2_NSS	
						TIM1_BKIN	
						EVENTOUT	
						I2C2_SMBA	
34	26	-	-	PB13	I/O	SPI1_SCK	
						SPI2_SCK	
						TIM1_CH1N	
						I2C2_SCL	
35	27	-	-	PB14	I/O	SPI1_MISO	
						SPI2_MISO	
						TIM1_CH2N	
						TIM15_CH1	

						I2C2_SDA	
36	28	-	-	PB15	I/O	SPI1_MOSI	RTC_REFIN
						SPI2_MOSI	
						TIM1_CH3N	
						TIM15_CH1N	
						TIM15_CH2	
37	ı	-	-	PC6	I/O	TIM3_CH1	
38	1	-	-	PC7	I/O	TIM3_CH2	
39	1	-	-	PC8	I/O	TIM3_CH3	
40	1	-	-	PC9	I/O	TIM3_CH4	
41	29	18	-	PA8	I/O	USART1_CK	-
						TIM1_CH1	
						EVENTOUT	
						MCO	
42	30	19	17	PA9	I/O	USART1_TX	WKUP12
						TIM1_CH2	
						TIM15_BKIN	
						I2C1_SCL	
						MCO	
43	31	20	18	PA10	I/O	USART1_RX	WKUP13
						TIM1_CH3	
						TIM17_BKIN	
						I2C1_SDA	
						I2C1_SDA	
44	32	twenty one	-	PA11	I/O	USART1_CTS	-
						TIM1_CH4	
						EVENTOUT	
						I2C2_SCL	
45	33	twenty two	-	PA12	I/O	USART1_RTS	-
						TIM1_ETR	
						EVENTOUT	
						I2C2_SDA	
46	34	twenty three	19	PA13	I/O	IR_OUT	CKI_2
						SWDIO	
47	35	-	-	PF6	I/O	I2C1_SCL	-
						I2C2_SCL	
48	36	-	-	PF7	I/O	I2C1_SDA	-
						I2C2_SDA	
49	37	twenty four	20	PA14	I/O	USART1_TX	CKI_3
						USART2_TX	
						SWCLK	
50	38	25	-	PA15	I/O	SPI1_NSS	-
						USART1_RX	
						USART2_RX	

Shenzhen Hangshun Chip Technology Development Co., Ltd.

EVENTOUT	
52 PC11 I/O PC12 -	
53 PC12 I/O FD2 - FD2	
54 PD2 I/O TIM3_ETR - 55 39 26 - PB3 I/O SPI1_SCK EVENTOUT - 56 40 27 - PB4 I/O SPI1_MISO TIM3_CH1 EVENTOUT BKIN - 57 41 28 - PB5 I/O SPI1_MOSI I2C1_SMBA TIM16_BKIN TIM3_CH2 - 58 42 29 - PB6 I/O I2C1_SCL USART1_TX TIM16_CH1N - 59 43 30 - PB7 I/O I2C1_SDA USART1_RX -	
55 39 26 - PB3 I/O SPI1_SCK - EVENTOUT	
EVENTOUT	
56 40 27 - PB4 I/O SPI1_MISO TIM3_CH1 EVENTOUT BKIN - 57 41 28 - PB5 I/O SPI1_MOSI IZC1_SMBA TIM16_BKIN TIM3_CH2 - 58 42 29 - PB6 I/O I2C1_SCL USART1_TX TIM16_CH1N - 59 43 30 - PB7 I/O I2C1_SDA USART1_RX -	
TIM3_CH1 EVENTOUT BKIN 57 41 28 - PB5 I/O SPI1_MOSI - I2C1_SMBA TIM16_BKIN TIM3_CH2 58 42 29 - PB6 I/O I2C1_SCL USART1_TX TIM16_CH1N 59 43 30 - PB7 I/O I2C1_SDA USART1_RX	
EVENTOUT BKIN 57 41 28 - PB5 I/O SPI1_MOSI I2C1_SMBA TIM16_BKIN TIM3_CH2 58 42 29 - PB6 I/O I2C1_SCL USART1_TX TIM16_CH1N 59 43 30 - PB7 I/O I2C1_SDA USART1_RX	
Second S	
57 41 28 - PB5 I/O SPI1_MOSI I2C1_SMBA TIM16_BKIN TIM3_CH2 - 58 42 29 - PB6 I/O I2C1_SCL USART1_TX TIM16_CH1N - 59 43 30 - PB7 I/O I2C1_SDA USART1_RX -	
I2C1_SMBA TIM16_BKIN TIM3_CH2	
TIM16_BKIN TIM3_CH2 58 42 29 - PB6 I/O I2C1_SCL USART1_TX TIM16_CH1N 59 43 30 - PB7 I/O I2C1_SDA USART1_RX	
58 42 29 - PB6 I/O I2C1_SCL - USART1_TX TIM16_CH1N - - USART1_RX - 59 43 30 - PB7 I/O I2C1_SDA - USART1_RX - USART1_RX - -	
58 42 29 - PB6 I/O I2C1_SCL - USART1_TX TIM16_CH1N - TIM16_CH1N - - 59 43 30 - PB7 I/O I2C1_SDA - USART1_RX - USART1_RX - -	
USART1_TX TIM16_CH1N 59 43 30 - PB7 I/O I2C1_SDA USART1_RX	
TIM16_CH1N	
59 43 30 - PB7 I/O I2C1_SDA - USART1_RX	
USART1_RX	
USART4_CTS	
60 44 31 1 Boot0 I Boot memory selection	
61 45 PB8 I/O I2C1_SCL -	
TIM16_CH1	
62 46 PB9 I/O I2C1_SDA	
IR_OUT	
TIM17_CH1	
EVENTOUT	
SPI2_NSS	
63 47 32 15 VSS S Ground	
64 48 1 16 VDD S Digital power supply	

Notes:

name	abbreviation	definition
pin type	S	power supply
	I	enter
	I/O	input Output

1.Unless otherwise specified, during and after reset, allI/OAll set to floating input

2.Red function pins in the above table, more pins are providedremapFunction. Please refer toGPIO Alternate Function.

HK32F030/HK32F031/HK32F03Xseries of chips are collectively referred to asHK32F03xseries, it is moreSThe corresponding model of the brand has more functions and more flexible pin remapping function.

Function	illustrate

Melseyn	DAGO/DAG/DAZ/DAG WI//UDIG 2-403
Wakeup	PA10/PA9/PA7/PA6 WKUP[13:10]:pass throughPWRregister enable
external system	PA0/PA14/PA13/PA4 CKI_[4:1]:pass throughRCCregister enable
clock input	
MCOoutput	PA7 MCOfunction: passGPIO.AFSEL[3:0] = 4'b1111
	PA9 MCOFunction:HK32F030,HK32F031With this feature,Sbrand only030xChave this function
EventOut	PC[4:0] EventoutFunction:
Eventout	HK32F030,HK32F031With this feature,Sbrand only030have this function
USART1	PA4[4:0] USART1 CK/RX/TX/RTS/CTSFunction:
OSAKTI	HK32F030x4/HK32F030x6/HK32F031have this feature
	PA[15:14] USART1 RX/TXFunction: HK32F030x4/
	HK32F030x6/HK32F031have this feature
USART2	
USAKIZ	PA4[4:0] USART2 CK/RX/TX/RTS/CTSFunction: HK32F030x8have this feature
	PA[15:14] USART2 RX/TXFunction:
T71.40	HK32F030x8have this feature
TIM3	PC[9:6] TIM3_CH[4:1]Function:
	HK32F030,HK32F031With this feature,Sbrand only030xChave this function
TIM15	PA1 TIM15_CH1NFunction:
	HK32F030,HK32F031With this feature,Sbrand only030xChave this function
TIM17	PB4 TIM17_BKINFunction:
	HK32F030,HK32F031With this feature,Sbrand only030xChave this function
SPI1/I2S1	PB[15:12] SPI1 MOSI/MISO/SCK/NSSFunction: HK32F030x4/
	HK32F030x6/HK32F031have this feature PB[15:12] I2S1 SD/
	MCK/CK/WSFunction: HK32F030x4/HK32F030x6/HK32F031have
	this feature SPIandI2Sfunctionpinis multiplexed bySPIregister to
	select.
SPI2/I2S2	PC2 SPI2_MISO/PC3 SPI2_MOSI/PB10 SPI2_SCK/PB9 SPI2_NSSFunction: HK32F030,
	HK32F031With this feature,Sbrand only030xChave this function PB[15:12] SPI2
	MOSI/MISO/SCK/NSSFunction: HK32F030x8have this feature
	PB[15:12] I2S2 SD/MCK/CK/WSFunction:
	HK32F030x8have this feature
	SPIandI2Sfunctionpinis multiplexed bySPIregister to select.
I2C1	PF[1:0] I2C1 SCL/SDAFunction:
1201	HK32F030,HK32F031With this feature,Sbrand only030xChave this function
	PB2 I2C1 SMBAFunction: Pass
	GPIO.AFSEL[3:0] = 4'b1111 enable this function,
	HK32F030x4/HK32F030x6/HK32F031With this feature,SBrands do not have this
	feature PB[11:10] I2C1 SDA/SCLFunction: HK32F030x4/HK32F030x6/HK32F031have
	this feature PA[10:9] I2C1 SDA/SCLFunction:
	HK32F030,HK32F031With this feature,Sbrand only030x4/030x6/ 030xCseries and 031series
	have this function

	PF[7:6] I2C1 SDA/SCLFunction: HK32F030x4/
	HK32F030x6/HK32F031have this feature
I2C2	PB2 I2C2 SMBAFunction:
	pass throughGPIO.AFSEL[3:0] = 4'b1111enable this function,HK32F030x8With this feature,S Brands do not
	have this feature
	PB[11:10] I2C2 SDA/SCLFunction:
	HK32F030x8have this feature
	PB12 I2C2 SMBAFunction:
	pass throughGPIO.AFSEL[3:0] = 4'b1111enable this function,HK32F030x8With this feature,S Brands do not
	have this feature
	PB[14:13] I2C2 SDA/SCLFunction:
	HK32F030have this function,Sbrand only030xChave this
	function PA[12:11] I2C2 SDA/SCLFunction:
	HK32F030have this function,Sbrand only030xChave this function
	PF[7:6] I2C2 SDA/SCLFunction: HK32F030x8have this feature
	I2C2Optionally use internalRCAs a clock source, it can stillSTOPwake up.SBrands do not have this
	feature.

6 Function Description

6.1 AFFunction Description

GPIOA Port Alternate Functionchoose

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF15
PA0		USART1_CTS						
		USART2_CTS						
PA1	EVENTOUT	USART1_RTS				TIM15_CH1N		
		USART2_RTS						
PA2	TIM15_CH1	USART1_TX						
		USART2_TX						
PA3	TIM15_CH2	USART1_RX						
		USART2_RX						
PA4	SPI1_NSS	USART1_CK			TIM14_CH1			
	I2S1_WS	USART2_CK]					
PA5	SPI1_SCK							
	I2S1_CK							
PA6	SPI1_MISO	TIM3_CH1	TIM1_BKIN			TIM16_CH1	EVENTOUT	
	I2S1_MCK							
PA7	SPI1_MOSI	TIM3_CH2	TIM1_CH1N		TIM14_CH1	TIM17_CH1	EVENTOUT	MCO
	I2S1_SD							
PA8	MCO	USART1_CK	TIM1_CH1	EVENTOUT				

PA9	TIM15_BKIN	USART1_TX	TIM1_CH2		I2C1_SCL	MCO	
PA10	TIM17_BKIN	USART1_RX	TIM1_CH3		I2C1_SDA		
PA11	EVENTOUT	USART1_CTS	TIM1_CH4			I2C2_SCL	
PA12	EVENTOUT	USART1_RTS	TIM1_ETR			I2C2_SDA	
PA13	SWDIO	IR_OUT					
PA14	SWCLK	USART1_TX					
		USART2_TX					
PA15	SPI1_NSS	USART1_RX		EVENTOUT			
	I2S1_WS	USART2_RX					

GPIOB Port Alternate Functionchoose

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF15
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N					
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N					
PB2								I2C1_SMBA
								I2C2_SMBA
PB3	SPI1_SCK	EVENTOUT						
	I2S1_CK							
PB4	SPI1_MISO	TIM3_CH1	EVENTOUT			TIM17_BKIN		
	I2S1_MCK							
PB5	SPI1_MOSI	TIM3_CH2	TIM16_BKIN	I2C1_SMBA				
	I2S1_SD							
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N					
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N					
PB8		I2C1_SCL	TIM16_CH1					

PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT	SPI2_NSS	
					I2S2_WS	
PB10		I2C1_SCL			SPI2_SCK	
		I2C2_SCL			I2S2_CK	
PB11	EVENTOUT	I2C1_SDA				
		I2C2_SDA				
PB12	SPI1_NSS/I2S1_WS	EVENTOUT	TIM1_BKIN		TIM15_BKIN	I2C2_SMBA
	SPI2_NSS/I2S2_WS					
PB13	SPI1_SCK/I2S1_CK		TIM1_CH1N		I2C2_SCL	
	SPI2_SCK/I2S2_CK					
PB14	SPI1_MISO/I2S1_MCK	TIM15_CH1	TIM1_CH2N		I2C2_SDA	
	SPI2_MISO/I2S2_MCK					
PB15	SPI1_MOSI/I2S1_SD	TIM15_CH2	TIM1_CH3N	TIM15_CH1N		
	SPI2_MOSI/I2S2_SD					

GPIOC Port Alternate Functionchoose

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PC0	EVENTOUT							
PC1	EVENTOUT							
PC2	EVENTOUT	SPI2_MISO/I2S2_MCK						
PC3	EVENTOUT	SPI2_MOSI/I2S2_SD						
PC4	EVENTOUT							
PC5								
PC6	TIM3_CH1							
PC7	TIM3_CH2							
PC8	TIM3_CH3							

PC9	TIM3_CH4				
PC10					
PC11					
PC12					
PC13					
PC14					
PC15					

GPIOD Port Alternate Functionchoose

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PD2	TIM3_ETR							

GPIOF Port Alternate Functionchoose

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PF0		I2C1_SDA						
PF1		I2C1_SCL						
PF4	EVENTOUT							
PF5	EVENTOUT							
PF6		I2C1_SCL						
		I2C2_SCL						
PF7		I2C1_SDA						
		I2C2_SDA						

Shenzhen Hangshun Chip Technology Development Co., Ltd.

6.2 USARTpin mapping

USARTMultiplexing function

Group	Pin	USART1	USART2
1	PA2/PA3	only030x4/030x6/031to provide	030x8to provide
2	PA9/PA10	030x4/030x6/030x8/031can provide	Not provided
3	PA14/PA15	only030x4/030x6/031to provide	030x8to provide
4	PB6/PB7	030x4/030x6/030x8/031can provide	Not provided

6.3 I2Cpin mapping

I2CMultiplexing function

Group	Pin	I2C1	I2C2
1	PF0/PF1	030x4/030x6/030x8/031can provide	Not provided
2	PB10/PB11	only030x4/030x6/031to provide	030x8to provide
3	PB13/PB14	Not provided	030x4/030x6/030x8can provide
4	PA9/PA10	030x4/030x6/030x8/031can provide	Not provided
5	PA11/PA12	Not provided	030x4/030x6/030x8can provide
6	PF6/PF7	only030x4/030x6/031to provide	030x8to provide
7	PB6/PB7	030x4/030x6/030x8/031can provide	Not provided
8	PB8/PB9	030x4/030x6/030x8/031can provide	Not provided

6.4 SPIpin mapping

SPIMultiplexing function

3F1Wultiplexility	Tunction		
Group	Pin	SPI1/I2S1	SPI2/I2S2
1	PC2/PC3/PB10/PB9	030x4/030x6/030x8can provide	Not provided
2	PA4/PA5/PA6/PA7	030x4/030x6/030x8can provide	Not provided
3	PB12/PB13/PB14/PB15	only030x4/030x6/031before you can	030x8to provide
		supply	
4	PA15/PB3/PB4/PB5	030x4/030x6/030x8can provide	Not provided

Shenzhen Hangshun Chip Technology Development Co., Ltd.

6.5 Other function mapping

GPIO Port	PMU	RCC	ADC	RTC
diforoit	TIVIO	Rec	Input	KIC
PA0	WKUP1	CKI_4	AIN0	RTC_TAMP2
PA1	WINOTT	CIU_4	AIN1	1(1C_1/1(1)) 2
PA2			AIN2	
PA3			AIN3	
PA4		CKI_1	AIN4	
PA5		CIU_I	AIN5	
PA6	WKUP10		AIN6	
PA7	WKUP11		AIN7	
PA8	··········		7 (21 (7)	
PA9	WKUP12			
PA10	WKUP13			
PA11	Witter 15			
PA12				
PA13		CKI_2		
PA14		CKI_3		
PA15		C. (1_5		
PB0			AIN8	
PB1			AIN9	
PB2			712.43	
PB3				
PB4				
PB5				
PB6				
PB7				
PB8				
PB9				
PB10				
PB11				
PB12				
PB13				
PB14				
PB15		RTC_REFIN		
PC0		_	AIN10	
PC1			AIN11	
PC2			AIN12	
PC3			AIN13	
PC4			AIN14	
PC6				
		<u> </u>	<u> </u>	

PC7			
PC8			
PC9			
PC10			
PC11			
PC12			
PC13	WKUP2	RTC_TAMP2	
		RTC_TS	
		RTC_OUT	
PC14			
PC15		LSE_CKI	
PD2			
PF0		HSE_CKI	
PF1			
PF2			
PF3			
PF4			
PF5			
PF6			
PF7			

Shenzhen Hangshun Chip Technology Development Co., Ltd.

Package parameters

7.1 LQFP64 10x10mm, 0.5mm pitch

	NTIFICATION		<u>→ ~ ←</u>				
Combal		millimeters	neters inches ⁽¹⁾		inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max	
Α	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	-	12.000	-	-	0.4724	-	
D1	-	10.000	-	-	0.3937	-	
D3	-	7.500	-	-	0.2953	-	
E	-	12.000	-	-	0.4724	-	
E1	-	10.000	-	-	0.3937	-	
E3	-	7.500	-	-	0.2953	-	
е	-	0.500	-	-	0.0197	-	
K	0°	3.5°	7°	0°	3.5°	7°	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
ccc	-	-	0.080	-	-	0.0031	

Shenzhen Hangshun Chip Technology Development Co., Ltd.

7.2 LQFP48 7x7mm,0.5mm pitch

<i>**</i> * =	m =		毫米		英寸 ⁽¹⁾		
符号	最小值	典型值	最大值	最小值	典型值	最大值	
Α			1.600			0.0630	
A1	0.050		0.150	0.0020		0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090		0.200	0.0035		0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3		5.500			0.2165		
E	8.800	9.000	9.200	0.3465	0.3543	0.3622	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	

Shenzhen Hangshun Chip Technology Development Co., Ltd.

<i>**</i> -		毫米		英寸 ⁽¹⁾			
符号 最小值		典型值	最大值	最小值	典型值	最大值	
E3		5.500			0.2165		
е		0.500			0.0197		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1		1.000			0.0394		
k	0°	3.5°	7°	0°	3.5°	7°	
ccc		0.080			0.0031		

7.3 LQFP32 7x7mm,0.8mm pitch

Shenzhen Hangshun Chip Technology Development Co., Ltd.

符号	毫米			英寸 ⁽¹⁾		
	最小值	典型值	最大值	最小值	典型值	最大值
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622

符号		毫米			英寸 ⁽¹⁾	
10.5	最小值	典型值	最大值	最小值	典型值	最大值
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.600	-	-	0.2205	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.600	-	-	0.2205	-
е	-	0.800	-	-	0.0315	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
ccc	-	-	0.100	-	-	0.0039

7.4 TSSOP20 0.65mm pitch

符号	毫米			英寸 ⁽¹⁾		
	最小值	典型值	最大值	最小值	典型值	
А			1.2			0.0472
A1	0.05		0.15	0.002		0.0059
A2	0.8	1	1.05	0.0315	0.0394	0.0413
b	0.19		0.3	0.0075		0.0118
С	0.09		0.2	0.0035		0.0079
D ⁽²⁾	6.4	6.5	6.6	0.252	0.2559	0.2598
E	6.2	6.4	6.6	0.2441	0.252	0.2598
E1 ⁽³⁾	4.3	4.4	4.5	0.1693	0.1732	0.1772
е		0.65			0.0256	
L	0.45	0.6	0.75	0.0177	0.0236	0.0295
L1		1			0.0394	
k	0.0°		8.0°	0.0°		8.0°
aaa			0.1			0.0039

Shenzhen Hangshun Chip Technology Development Co., Ltd.

8 Reflow Soldering Temperature Rise Curve

 $for \ reliable SMT welding, HK32F030 The\ recommended\ temperature\ rise\ curve\ of\ the\ series\ products\ is\ as\ follows:$

Shenzhen Hangshun Chip Technology Development Co., Ltd.

9 abbreviation

term	Definition		
RTC	real time clock		
IIC	Inter-Integrated Circuit Interface		
CPU	Center process unit		
PLL	Phase lock loop		
LDO	Low voltage drop output		
RISC	Reduced Instruction-Set Computer		
UART	Universal Asynchronous Receiver Transmitter		
SPI	Serial peripheral interface		
USB	Universal Serial Bus		
GPIO	General purpose input output		
CAN	Controller Area Network		
I/O	Input output		
ADC	Analogue to digital converter		
MCU	Micro controller unit		
HSE	High-speed external		
HSI	High-speed internal		
LSE	Low-speed external		
LSI	Low-speed internal		
SAR	Successive Approximation Analog-to-Digital Converter		
USART	Universal Synchronous Asynchronous Receiver Transmitter		
PVD	Power voltage detect		
SOC	System on chip		
JTAG	Joint Test Action Group		
PWM	Pulse Width Modulation		
DMA	Direct Memory Access		
SDIO	Secure Digital Input Output		
POR	Power on reset		
PDR	Power down reset		
CRC	Cyclic Redundancy Check		
HK32F030	AirlineCortex-M0series chip		
HK32F031	AirlineCortex-M0series chip		
HK32F03X	AirlineCortex-M0series chip		

Shenzhen Hangshun Chip Technology Development Co., Ltd.

10important hint

Without the consent of Shenzhen Hangshun Chip Technology R&D Co., Ltd., the company's product specifications shall not be modified in any form or way.

any section and subsection in the grid and data table. Shenzhen Hangshun Chip Technology R&D Co., Ltd. reserves the right to:

Modify data sheets and/or products, discontinue any product, or discontinue service without notice; customers are advised to obtain the latest version of the relevant information information, and verify it before placing an order to ensure the timeliness and completeness of the information. All products are available upon order confirmation are sold under the terms of the sales contract, including the scope of warranty, intellectual property rights and liability.

The company deems it necessary to maintain this warranty and uses testing and other quality control techniques. In addition to government mandates, other instruments

No special test is necessary for the measurement table.

Shenzhen Hangshun Chip Technology R&D Co., Ltd. guarantees that during the sales period, the performance of the product is guaranteed according to the company's standard. male

The customer recognizes that the design and production of the company's products do not involve life support or other dangerous activities

Or in other systems or products in the environment. A malfunctioning product can cause personal injury, property or environmental damage (collectively, high-risk

Activity). The artificial use of the company's products in high-risk activities, the company does not guarantee, and will not be responsible for customers or third parties.

responsible.

Section includes design, development or debugging on purchased circuit boards or other applications). Hereby declare that for all technical support support, marketability, or for a particular purpose, and that circuit boards and other applications may operate or function without error in the supporting technology,

The company will not make any warranty about such support technology, and will not be responsible for your use of this support service.

All copyrights belong to Shenzhen Hangshun Chip Technology R&D Co., Ltd.2015 - 2018