NCU-Net: A Novel Retinal Vessel Segmentation technique based on U-Net Architecture

Submitted in partial fulfillment of the requirements for the degree of

Bachelor of Technology in Computer Science and Engineering

by

MOUKHIK MISRA 19BCE2190

Under the guidance of Prof. Aju D.

School of Computer Science and Engineering (SCOPE)
VIT, Vellore

May, 2023

DECLARATION

I hereby declare that the thesis entitled "NCU-Net: A Novel Retinal

Vessel Segmentation technique based on U-Net Architecture" submitted by me, for the

award of the degree of Bachelor of Technology in Computer Science and Engineering

to VIT is a record of bonafide work carried out by me under the supervision of Prof. Aju

D.

I further declare that the work reported in this thesis has not been submitted and will

not be submitted, either in part or in full, for the award of any other degree ordiploma in

this institute or any other institute or university.

Place : Vellore

Date : 17th May 2023 Name: Moukhik Misra

Moulchik Missa

Signature of the Candidate

CERTIFICATE

This is to certify that the thesis entitled "NCU-Net: A Novel Retinal Vessel

Segmentation technique based on U-Net Architecture" submitted by Moukhik Misra,

Reg No: 19BCE2190, School of Computer Science and Engineering (SCOPE),

VIT, for the award of the degree of Bachelor of Technology in Computer Science and

Engineering, is a record of bonafide work carried out by him / her under my supervision

during the period, 01. 07. 2022 to 30.04.2023, as per the VIT code of academic and

research ethics.

The contents of this report have not been submitted and will not be submitted

either in part or in full, for the award of any other degree or diploma in this institute or

any other institute or university. The thesis fulfills the requirements and regulations of

the University and in my opinion meets the necessary standards for submission.

Place: Vellore

Date : 18 May 2023

Signature of the Guide

Internal Examiner

External Examiner

Head of the Department: Dr. Vairamuthu S

Bachelor of Technology in Computer Science and Engineering

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest and sincere gratitude and appreciation to my guide and project supervisor Dr. Aju D. His expertise, insightful feedback, constant support, and invaluable guidance played an imperative role in determining the direction and quality of my project.

I would also like to extend my heartfelt thanks to the various faculty members like Dr. Arun Kumar G, Dr. Gopinath M.P. and Dr. Jitendra Kumar at the Vellore Institute of Technology, Vellore for imparting crucial knowledge that has been instrumental for enhancing my understanding of the core concepts underlying this project.

I am also grateful to Dr. Ramesh Babu K (Dean, School of Computer Science and Engineering), Dr. Vairamuthu S (HOD, Department of Software Systems, SCOPE) and the staff of the School of Computer and Engineering (SCOPE) at the Vellore Institute of Technology, Vellore for providing me a platform to embark on such an exciting research project. I am also indebted to the Vellore Institute of Technology, Vellore for enabling the conducive environment necessary for the success of my research.

Finally, I would like to thank my family for their motivation, guidance, and unwavering support over the years. Their support has been invaluable in the success of this project.

Moukhik Misra

Executive Summary

Retinal vessel segmentation is an important task in understanding the geometry and structure of blood vessels in the optical system. Segmentation is important for the early diagnosis of ocular diseases such as diabetic retinopathy, glaucoma, and other ocular diseases which in the worst cases can lead to complete vision loss. Finding effective ways to segment retinal vessels for diagnosis or research purposes is crucial. There are several postulated and developed methods for retinal vessel segmentation using existing machine learning and deep learning techniques. However, a recurrent issue in these techniques is inability to properly segment the complex retinal vasculature and they also fall short while segmenting the low contrast retinal images and are plagued by inadequate feature representations. To overcome these drawbacks, a Normalized Convolutional U-Net (NCU-Net) is proposed. The proposed system utilizes an encoder-decoder framework with normalized convolutions and multiple layers to obtain the necessary feature representations for effective performance and is lightweight through the use of Batch Normalization operations. The proposed system is trained and tested using the DRIVE and CHASE_DB1 retinal image datasets and it outperforms several state-of-the-art retinal image segmentation models in metrics such as accuracy, precision, recall, f1-score, Jaccard score and specificity.

	CONTENTS	Page
		No.
	Acknowledgement	i
	Executive Summary	ii
	Table of Contents	iii
	List of Figures	v
	List of Tables	vii
	Abbreviations	viii
	Symbols and Notations	ix
1.	INTRODUCTION	1
	1.1. Theoretical Background	1
	1.2. Motivation	3
	1.3. Aim of the Proposed Work	4
	1.4. Objective(s) of the Proposed Work	5
2.	Literature Survey	6
	2.1. Survey of the Existing Models/Work	6
	2.2. Summary/Gaps identified in the Survey	32
3.	Overview of the Proposed System	33
	3.1. Introduction and Related Concepts	33
	3.2. Framework, Architecture or Module for the Proposed System(with	34
	explanation)	
	3.3. Proposed System Model (Mathematical Modelling and Methodology)	35
	3.3.1.Pre-processing and Data Augmentation	36
	3.3.2.Proposed U-Net based model for Retinal Vessel Segmentation	36
	3.3.2.1. Encoder Network	36
	3.3.2.2. Skip Connections	37
	3.3.2.3. Decoder Network	38
	3.3.3.Model Training	39
	3.3.4. Testing and Evaluation	39
4	3.3.5.Dataset Details	40
4.		41
	4.1. Introduction	41
	4.2. Requirement Analysis 4.2.1.Functional Requirements	41 41
	4.2.1.1. Product Perspective	41
	4.2.1.1. Product Festures	41

6.	Conclusion	rics and Comparisons for Chase_Db1 Dataset	62				
	_	entation Maps for CHASE_DB1 Dataset rics and Comparisons for CHASE_DB1 Dataset	56 57				
	5.2. CHASE_DB1 Dataset		56 56				
		rics and Comparisons for DRIVE Dataset	51 56				
	_	entation Maps for DRIVE Dataset	50				
	5.1. DRIVE Dataset Result		50				
5.	Results and Discussions		50				
_	Software)		5 0				
		equirements (details about Application Specific	49				
	Hardware)		40				
		dequirements (details about Application Specific	49				
	4.2.3.System Requirem		49				
	4.2.2.3.9.	Inspectability	49				
	4.2.2.3.8.	Legality	49				
	4.2.2.3.7.	Sustainability	48				
	4.2.2.3.6.	Health and Safety	48				
	4.2.2.3.5.	Ethical	48				
	4.2.2.3.4.	Political	47				
	4.2.2.3.3. Social						
	4.2.2.3.2.	Environmental	47				
	4.2.2.3.1.	Economic	47				
	4.2.2.3. Operat	ional Requirements	47				
	4.2.2.2.2.	Engineering Standard Requirements	46				
	deplo	yment)					
	4.2.2.2.1.	Implementation Requirements (in terms of	46				
	4.2.2.2. Organi	zational Requirements	46				
	4.2.2.1.4.	Usability	45				
	4.2.2.1.3.	Portability	45				
	4.2.2.1.2.	Reliability	44				
	4.2.2.1.1.	Efficiency (in terms of Time and Space)	44				
		et Requirements	44				
	4.2.2.Non-Functional F		44				
		equirements	43				
		n Requirements	43				
		ption & Dependencies	42				
	4.2.1.3. User C	Characteristics	42				

List of Figures

Figure No.	Title	Page No.							
1	Architecture Diagram for proposed NCU-Net for Retinal	34							
1	Vessel Segmentation								
2	Detailed mathematical model and process diagram for	35							
2	proposed NCU-Net model.								
	First output which contains the generated segmentation map								
3	(right most) along with one of the original test 3-channel	50							
3	coloured image (left) and the test mask (centre) from the	30							
	DRIVE dataset.								
	Second output which contains the generated segmentation								
4	map (right most) along with one of the original test 3-channel	50							
4	coloured image (left) and the test mask (centre) from the	50							
	DRIVE dataset.								
	Third output which contains the generated segmentation map								
E	(right most) along with one of the original test 3-channel	51							
5	coloured image (left) and the test mask (centre) from the	31							
	DRIVE dataset.								
	Fourth output which contains the generated segmentation map								
6	(right most) along with one of the original test 3-channel	<i>E</i> 1							
6	coloured image (left) and the test mask (centre) from the	51							
	DRIVE dataset.								
7	Comparison of Accuracy Scores (DRIVE)	54							
8	Comparison of Precision Scores (DRIVE)	54							
9	Comparison of Jaccard Scores (DRIVE)	54							
10	Comparison of Recall (Sensitivity) Scores (DRIVE)	55							
11	Comparison of F1 Scores (DRIVE)	55							
12	Comparison of Specificity Scores (DRIVE)	55							
	First output which contains the generated segmentation map								
12	(right most) along with one of the original test 3-channel	56							
13	coloured image (left) and the test mask (centre) from the	56							
	CHASE_DB1 dataset.								

	Second output which contains the generated segmentation							
14	map (right most) along with one of the original test 3-channel	56						
14	coloured image (left) and the test mask (centre) from the							
	CHASE_DB1 dataset.							
	Third output which contains the generated segmentation map							
15	(right most) along with one of the original test 3-channel	57						
15	coloured image (left) and the test mask (centre) from the							
	CHASE_DB1 dataset.							
	Fourth output which contains the generated segmentation map							
1.0	(right most) along with one of the original test 3-channel	57						
16	coloured image (left) and the test mask (centre) from the							
	CHASE_DB1 dataset.							
17	Comparison of Accuracy Scores (CHASE_DB1)	60						
18	Comparison of Precision Scores (CHASE_DB1)	60						
19	Comparison of Recall (Sensitivity) Scores (CHASE_DB1)	60						
20	Comparison of F1 Scores (CHASE_DB1)	61						
21	Comparison of Specificity Scores (CHASE, DR1)	61						

List of Tables

Table No.	Title	Page No.
1	Literature Survey	6
2	Number of feature maps per layer of the proposed model.	38
3	Mean Performance Metrics for the DRIVE Dataset	52
4	Comparison of Performance Metrics with existing models (DRIVE)	52
5	Mean Performance Metrics for the CHASE_DB1 Dataset	58
6	Comparison of Performance Metrics with existing models (CHASE_DB1)	58

List of Abbreviations

NCU-Net Normalized Convolutional U-Net
BRVO Branch Retinal Vein Occlusion
RISUM Retinal Image Segmentation using

Unsupervised Methods

Area Under Curve

RISSM Retinal Image Segmentation using Supervised

Methods

DCNN Deep Convolutional Neural Network

GCN Graph Convolutional Network

DRIVE Digital Retinal Images for Vessel Extraction
CHASE Child Heart and Health Study in England

ReLU Rectified Linear Unit
CPU Central Processing Unit
GPU Graphics Processing Unit

OS Operating System
TP True Positive
TN True Negative
FN False Negative
FP False Positive

AUC

Symbols and Notations

Accuracy $A_{c} \\$ P Precision R Recall S_{n} Sensitivity F F1 Score J Jaccard Score \mathbf{S}_{p} Specificity Intersection Operation Λ Union Operation U

1. INTRODUCTION

1.1 THEORETICAL BACKGROUND

Vision is one of the most important senses for human beings. It enables us to perceive the surroundings around us. Vision is facilitated by the complex optical structure of the human visual system, involving the eyes, brain and associated nerves and blood vessels and this system enables us to understand most of the external information and all the visual stimuli[3]. In the visual system of human beings, retinal vessels play an important role in facilitating the blood flow and blood supply to the retinal neurons in the inner eye. The retina, which is responsible for transmitting incoming photons to the brain through neurons and allowing us to 'see', is supplied by these retinal vessels. Undoubtedly, the retinal vessels play a major role in the proper functioning of the human optical system. Therefore, any abnormalities in the parameter of the retinal vessels can be linked to onset of diseases which could have catastrophic consequences for vision. Some of the major diseases that can be associated with abnormalities in retinal vessels (often referred to as retinal vascular diseases) are Branch Retinal Vein Occlusion (BRVO), Juxta foveal Telangiectasia, Retinal Artery Microaneurysm, Glaucoma and Diabetic Retinopathy[4]. The early symptoms of these diseases involve blurred vision, dark regions in vision, and the final stage of all the mentioned diseases almost always is complete loss of vision[8]. Hence, proper study of retinal vessel structure and health is essential for early diagnosis of such diseases and could be imperative for the protection of human vision. Effective segmentation of retinal vessels provides both medical practitioners as well as scientists the opportunity to study the vessel structure and come to proper diagnosis and detection of disease or to check on signs that could possibly lead to such diseases that are mentioned above. It also allows for research to be conducted on these blood vessels that could possibly lead to more breakthroughs in cures.

Various old image segmentation techniques have been utilised for retinal vessel segmentation. These techniques include thresholding, clustering, and compression-based image segmentation techniques. Other techniques involve histogram methods and edge detection techniques[11]. Artificial intelligence and machine learning techniques have also been used for image segmentation purposes[9]. Recent advancements in artificial intelligence, machine learning, deep learning and image processing techniques have allowed for automated segmentation of retinal vessels with effective performance on established metrics[2]. Deep learning methods, particularly the use of convolution-based networks have gained significant popularity in the recent past, assuring a high degree of accuracy in segmentation tasks and

reducing the burden on professionals who before used to have to rely on colour fundus images for inspection of health of the retinal vessels. Currently there are two major areas in retinal vessel segmentation. The first major area is retinal image segmentation using unsupervised techniques, abbreviated as RISUM and the second major area is retinal image segmentation based on supervised techniques abbreviated as RISSM[14]. The unsupervised methods, that are RISUMs have notably two disadvantages. They assume independence of pixels thereby reducing pixel correlation for vascular feature encoding purposes. The second drawback is that unsupervised methods generally contain pixel-level localization and thereby ignore useful broader scope context and semantic information[15]. These two disadvantages harm the overall performance of unsupervised methods and bring down their overall accuracy. Supervised methods (RISSM) on the other hand, are generally more reliable and are better for distinguishing features in blood vessels and separation of foreground from background. There are different types of RISSMs, which can be based on machine learning or deep learning. These RISSMs depend heavily on effective feature selection to be effective and have issues in adapting to multi-scale features as well as sometimes struggle to extract central reflex and thin vessel features as well morphological changes to vessel structure thereby causing ineffective segmentation of the smaller capillaries and vessels[8].

Recent advancements in deep learning techniques have helped overcome the issues mentioned above to a certain extent, all by varying degrees of effectiveness. The advent of deep convolution networks (DCNN) and the combination of DCNNs along with graph convolutional networks (GCNs) have allowed for better outcomes in retinal vessel segmentation[18]. Particularly, marked improvements have been made in the sensitivity and specificity of the models which have been proposed and developed. However, one of the most important breakthroughs in biomedical image segmentation came in 2015 when the first proposed the U-Net architecture based on a fully convolutional network was developed its efficiency was verified by segmentation of HeLa cell images[7]. Since then, various forms of U-Net architecture and modified U-Net models have been created for various biomedical image segmentation tasks. Even for retinal vessel segmentation, the use of U-Net based models are a source of exciting and active research with marked improvements being made in various metrics depending on the focus on the authors' focus on their proposed systems. Various retinal image segmentation techniques along with their results have been elucidated in the literature review section.

To overcome the issues mentioned above, in this project, a deep learning method is proposed that utilizes the U-Net architecture as a backbone for retinal vessel segmentation. The proposed model implements an encoder-decoder framework that is capable of effective

propagation of context features of the target blood vessels to be segmented through optimized up-sampling and down-sampling via various convolution blocks. The general process is that of an encoder network which is based of convolution blocks that are generally arranged in a set structure followed by max pooling layers for efficient down-sampling for encoding of the retinal vessel images into feature representations using various layers. The second part of proposed system is a decoder network whose function is to reassemble the feature representations obtained from the encoder network and for semantic projections of important features. These discriminative features which are usually more rudimentary and low resolution are projected to obtain a dense classification, and thereby obtaining a higher resolution. The decoder section of the system is responsible for up-sampling, aggregation, concatenation, and this is followed by convolutions. The proposed system aims to overcome the issues faced by shallow convolutional networks or other machine learning and deep learning techniques such as discontinuous segmentation owing to insufficient feature representation. Other issues that the model aims to alleviate are the gradient errors in late training phase and irregular segmentation of complex retinal vessel structure. The proposed U-Net model also aims to improve segmentation accuracy by improving the feature extraction in the encoder phase and by enabling the model to properly distinguish between the retinal vessel foreground and the background which is complex due to the low contrast images. The proposed model will be verified using the DRIVE and CHASE DB1 datasets which contain retinal vessel images, and the performance will be evaluated using metrics such as accuracy, F1 score and AUC.

1.2 MOTIVATION

There are several real-world benefits associated with the creation of a robust and efficient automatic retinal segmentation model.

Firstly, it can be utilised in medical diagnosis and monitoring of several eye related diseases such as Glaucoma, Diabetic Retinopathy and Retinal Artery Microaneurysm among others. By effectively and accurately segmenting the retinal vessel structure, professionals can find and monitor abnormalities in said structures, assess the existence or progression of disease and make the necessary informed treatment.

Another motivating factor for the development of the NCU-Net model is for disease screening. The proposed model can be deployed for large scale disease screening situations for the identification of individuals at particular risk of developing any associated retinal related diseases.

The automated model can assist in early detection and make early intervention possible which will ultimately allow for reduced costs and overall better outcomes. The automation of segmentation tasks will reduce the workload of ophthalmologists and scientific researchers quite significantly which will enable them to focus their time on more important areas of diagnosis and treatment.

Automated retinal segmentation models are one of the most interesting and valuable tools for scientific researchers for disseminating the complex structure and function of eye vessels. By carefully segmenting the vessels, researchers can examine characteristics such as vessel tortuosity, branching patterns, and vessel diameter. This analysis can shed light on both systemic and ocular illnesses.

For the benefit of those who have vision difficulties, assistive technology or applications can make use of automated retinal vessel segmentation models. By increasing their visual perception, these models can assist people with impaired vision in navigating and interacting with their environment more successfully. They accomplish this by emphasising and enhancing retinal vasculature in images and films.

Overall, the improvement of eye disease diagnosis, screening effectiveness, research capabilities, and assistive technologies is the goal of the development of retinal vessel segmentation models. This will result in better patient outcomes, reduced healthcare costs, and improved quality of life for people with visual impairments.

1.3 AIM OF THE PROPOSED WORK

The primary aims of the proposed NCU-Net model for retinal vessel segmentation are:

- Segmentation accuracy and reliability. The proposed model should be able to
 accurately segment the complex retinal vessel structure and should be able to do so
 with a great degree of reliability. This is imperative for precise delineation as faculty
 segmentation could lead to potential wrong diagnoses.
- 2. The proposed model should be capable for effectively and efficiently segmenting the input retinal images thereby allowing it use in large diagnoses programs which will ultimately enable for overall reduction in medical costs.
- 3. The proposed model should be robust and generalizable, capable of handling various input retinal images from different sources and from a large input spectrum. This will ensure that the model shows good performance over a large variety of datasets and hence can be used in a wide range of scenarios.

- 4. The proposed model aims to improve the efficiency of clinicians and researchers by providing an automated retinal vessel segmentation model enabling them to focus on more crucial aspects of medical diagnosis.
- 5. The proposed model aims to perform well over various pre-existing and established metrics such as accuracy, precision, recall, f1-score and others.
- 6. The proposed model aims to improve upon the existing U-Net based models by the introduction of normalised convolutions which will enable for more accurate segmentation of the retinal structure.

1.4 OBJECTIVES OF THE PROPOSED WORK

The objectives of the proposed NCU-Net model for retinal vessel segmentation are as follows:

- 1. Implement a robust deep learning model based on U-Net architecture for retinal vessel segmentation.
- 2. Implement an encoder-decoder network that is capable of efficient down-sampling and up-sampling of input retinal vessel images.
- 3. Implement convolution blocks and max pooling layers for efficient down-sampling in the encoder network.
- 4. Implement up-sampling, aggregation and concatenation abilities and convolution blocks in the decoder network.
- 5. To overcome the issues faced by traditional machine learning techniques and shallow deep learning models in effectively segmenting retinal vessels in low contrast images.
- 6. Training and testing proposed model on publicly available datasets such as DRIVE and CHASE DB1.
- 7. Ensuring effective and accurate segmentation of target retinal vessel images and verifying performance through metrics such as accuracy, precision. F1-score, recall (sensitivity), specificity and Jaccard score.

2. LITERATURE SURVEY

2.1 SURVEY OF EXISTING MODELS/WORK

 Table 1: Literature Survey

Sr.	Title	Authors	Journal	Year	Overview/Summary	Results
No						
1	A Fundus	Xiuqin	IEEE	2019	The authors of this	DRIVE dataset:
	Retinal	Pan	Access		study use an enhanced	1. Accuracy:
	Vessels	, Qinrui			deep learning U-Net	0.9650
	Segmentat	Zhang,			Model to create a	2. Sensitivity:
	ion	Hong			deep learning model	0.9310
	Scheme	Zhang,			for segmenting retinal	3. Specificity
	Based on	and			vessels. The	: 0.9863
	the	Sumin			improved model	4. AUC:
	Improved	Li			combines U-net with	0.9811
	Deep				a residual module and	
	Learning				makes it possible to	
	U-Net				link the	
	Model				deconvolutional	
					layer's and	
					convolutional layer's	
					outputs. This	
					overcomes the issues	
					with low-level	
					information sharing	
					and distribution and	
					offers a fix for DCNN	
					performance decline	
					in residual networks	
					at very deep levels.	
					Using the DRIVE	
					dataset, the authors	

					have confirmed the		
					model's effectiveness.		
2	A Three-	Z. Yan,	IEEE	2019	In this paper, the	DRIVI	E dataset
	Stage	X.	Journal		authors propose a	1.	Sensitivity:
	Deep	Yang,	of		retinal vessel		0.7631
	Learning	and K.	Biomed		segmentation deep-	2.	Specificity
	Model for	T.	ical and		learning model that is		: 0.9820
	Accurate	Cheng	Health		of three stages for	3.	Accuracy:
	Retinal	_	Informa		addressing the		0.9538
	Vessel		tics		imbalance problem	4.	AUC:
	Segmentat				associated with the		0.9750
	ion				ratio of thick to thin		
					vessels (majorly thick	STAR	E dataset
					vessel pixels). The	1.	Sensitivity:
					authors have divided		0.7735
					vessel segmentation	2.	Specificity
					into three stages or		: 0.9857
					tasks. The first stage	3.	Accuracy:
					involves thick vessel		0.9638
					segmentation. This is	4.	AUC:
					followed by this		0.9833
					vessel segmentation.		
					The final stage is	CHAS	E_DB1
					vessel fusion. The	dataset	t
					final stage enables	1.	Sensitivity:
					further refinement of		0.7641
					results by identifying	2.	Specificity
					the non-vessel		: 0.9806
					regions and	3.	Accuracy:
					disregarding them		0.9607
					from segmentation.	4.	AUC:
					The authors have		0.9776
					used the DRIVE,		
					CHASE_DB1 and		

					STARE datasets for	
					their experiments.	
3	A Global	S. Lian,	IEEE/A	2021	In this paper, the	DRIVE dataset
	and Local	L. Li,	CM		authors develop an	1. Accuracy:
	Enhanced	G.	Transac		enhanced U-net	0.9692
	Residual	Lian,	tions on		based model that is	2. Sensitivity:
	U-Net for	X.	Comput		both globally and	0.8278
	Accurate	Xiao,	ational		locally enhanced for	3. Specificity
	Retinal	Z. Luo,	Biology		retinal vessel	: 0.9861
	Vessel	and S.	and		segmentation model.	4. Precision:
		Li	Bioinfo		This model utilized	4. Frecision. 0.8637
	Segmentat	LI				0.8037
	ion		rmatics		local information and	CTARE 1 4
					overcome the issue of	STARE dataset
					overlooking the	1. Accuracy:
					geometrical retinal	0.9740
					constraints that is	2. Sensitivity:
					specific to a	0.8342
					particular area of the	3. Specificity
					image or considered	: 0.9916
					patch. The developed	4. Precision:
					model uses a	0.8823
					weighted attention	
					mechanism for	
					determining the	
					region of interest for	
					segmentation	
					purposes. The	
					DRIVE and STARE	
					datasets have been	
					used by the authors	
					for the experiments.	
4	CRAUNet	F.	Comput	2022	In this paper, the	DRIVE dataset:
	: A	Dong,	ers in		authors develop a	1. Sensitivity:
	cascaded	D. Wu,	Biology		deep learning U-net	0.7954
	residual	C. Guo,	and		model that uses	2. F1 Score:
	attention	S.			cascaded residual	0.8302
				0		-

	U-Net for	Zhang,	Medici		attention (CRA)	3.	Precision:
	retinal	B.	ne		which abbreviates to		0.9212
	vessel	Yang,			CRAUNet. The	4.	Accuracy
	segmentati	and X.			model consists of sets		0.9586
	on	Gong,			of U-net models that	5.	AUC:
					enable		0.9830
					representations		
					ranging from coarse	CHAS	E_DB1
					to fine levels. It also	datase	t:
					uses DropBlock	1.	Sensitivity:
					regularisation to		0.8259
					overcome overfitting	2.	F1 Score:
					and the authors have		0.8156
					also developed an	3.	Precision:
					attention module that		0.8996
					is robust in exploring	4.	Accuracy
					and merging		0.9659
					important features	5.	AUC:
					and information. The		0.9864
					authors use the		
					DRIVE and		
					CHASE_DB1		
					datasets for their		
					experiments.		
5	Biomedica	K. Sun,	Biomed	2023	In this paper the	DRIV	E dataset:
	1 Signal	Y.	ical		authors develop an	1.	Sensitivity:
	Processing	Chen,	Signal		enhanced U-net		0.8293
	and	Y.	Process		model for retinal	2.	Specificity
	Control A	Chao,	ing and		vessel segmentation.		: 0.9807
	retinal	J.	Control		The developed model	3.	Accuracy:
	vessel	Geng,			boosts feature		0.9675
	segmentati	and Y.			transmissions, reduce	4.	AUC:
	on method	Chen			explosive gradients,		0.9832
	based				and improve overall		
	improved				feature extraction	STAR	E dataset:
					potential for various		

	U-Net				forms of retinal	1.	Sensitivity:
	model				vessels. Series		0.8973
					deformable	2.	Specificity
					convolutions are used		: 0.9903
					alongside an attention	3.	Accuracy:
					mechanism, and, on		0.9833
					this basis, the SDAU-	4.	AUC:
					Net is developed.		0.9963
					Two attention		
					mechanisms are	CHAS	E_DB1
					employed, one	datase	t:
					lightweight and	1.	Sensitivity:
					another dual		0.8321
					attention, both of	2.	Specificity
					which are used in the		: 0.9825
					decoder component	3.	Accuracy:
					and significantly		0.9732
					boosts the extraction	4.	AUC:
					of complicated		0.9858
					shapes and tiny		
					retinal vessels. The	IOSTA	AR dataset:
					DRIVE, STARE,	1.	Sensitivity:
					CHASE_DB1 and		0.8842
					IOSTAR datasets are	2.	Specificity
					used by the authors		: 0.9927
					for their experiments.	3.	Accuracy:
							0.9848
						4.	AUC:
							0.9961
6	Deep	V.	IEEE	2020	In this paper, the	DRIV	E dataset:
	Retinal	Cheruk	Transac		authors develop an	1.	F1 Score:
	Image	uri, V.	tions on		enhanced deep neural		0.8220
	Segmentat	K. Bg,	Image		network containing		

Regulariza bala, tion under and V. Geometric Monga Priors First component is a representation network that enables the learning of geometric features from the input images. The second component is a novel residual task network that uses the geometric features obtained from the first component (representation network) for pixellevel segmentation. The authors also develop two novel constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DBI datasets are used by	ion with	R.	Process	two components. The	2.	Accuracy:
tion under Geometric Monga Priors Representation network that enables the learning of geometric features from the input images. The second component is a novel residual task network that uses the geometric features obtained from the first component (representation network) for pixellevel segmentation. The authors also develop two novel constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1	Regulariza	Bala,	ing			0.9563
the learning of geometric features from the input images. The second component is a novel residual task network that uses the geometric features obtained from the first component (representation network) for pixellevel segmentation. The authors also develop two novel constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1	_	and V.		representation	3.	AUC:
geometric features from the input images. The second component is a novel residual task network that uses the geometric features obtained from the first component (representation network) for pixellevel segmentation. The authors also develop two novel constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DBI	Geometric	Monga		network that enables		0.9814
from the input images. The second component is a novel residual task network that uses the geometric features obtained from the first component (representation network) for pixellevel segmentation. The authors also develop two novel constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DBI	Priors			the learning of		
from the input images. The second component is a novel residual task network that uses the geometric features obtained from the first component (representation network) for pixellevel segmentation. The authors also develop two novel constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DBI				geometric features	STAR	E dataset:
images. The second component is a novel residual task network that uses the geometric features obtained from the first component (representation network) for pixellevel segmentation. The authors also develop two novel constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				from the input	1.	F1 Score:
component is a novel residual task network that uses the geometric features obtained from the first component (representation network) for pixellevel segmentation. The authors also develop two novel constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1						0.8364
residual task network that uses the geometric features obtained from the first component (representation network) for pixellevel segmentation. The authors also develop two novel constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				_		Accuracy:
geometric features obtained from the first component (representation network) for pixellevel segmentation. The authors also develop two novel constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1						J
obtained from the first component (representation network) for pixel- level segmentation. The authors also develop two novel constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The CHASE_DB1 CHASE_DB1 1. F1 Score: 2. Accuracy: 0.972 3. AUC: The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				that uses the	3.	AUC:
obtained from the first component (representation network) for pixel- level segmentation. The authors also develop two novel constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				geometric features		0.9903
(representation network) for pixellevel segmentation. The authors also develop two novel constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				obtained from the first		
(representation network) for pixellevel segmentation. The authors also develop two novel constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				component	CHAS	E DB1
level segmentation. The authors also develop two novel constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The authors also 2. Accuracy: 0.972 3. AUC: The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				(representation	datase	t:
level segmentation. The authors also develop two novel constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The authors also 2. Accuracy: 0.972 3. AUC: The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				network) for pixel-	1.	F1 Score:
develop two novel constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				level segmentation.		.8211
constraint features. The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				The authors also	2.	Accuracy:
The first is an orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				develop two novel		0.972
orientation constraint for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				constraint features.	3.	AUC:
for curvilinear geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				The first is an		0.9833
geometric feature diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				orientation constraint		
diversity and the second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				for curvilinear		
second is a noise regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				geometric feature		
regularization constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				diversity and the		
constraint that is adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				second is a noise		
adaptive to input data and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				regularization		
and enables proper penalty for false positives. The DRIVE, STARE and CHASE_DB1				constraint that is		
penalty for false positives. The DRIVE, STARE and CHASE_DB1				adaptive to input data		
positives. The DRIVE, STARE and CHASE_DB1				and enables proper		
DRIVE, STARE and CHASE_DB1				penalty for false		
CHASE_DB1				positives. The		
				DRIVE, STARE and		
datasets are used by				CHASE_DB1		
				datasets are used by		

					the authors for their		
					experiments.		
7	ELEMEN	E. O.	IEEE	2020	In this paper, the	DRIV	E dataset:
	T: Multi-	Rodrig	Journal		authors develop a	1.	Accuracy:
	Modal	ues, A.	of		novel multi-modal		0.9740
	Retinal	Conci,	Biomed		framework for retinal	2.	AUC:
	Vessel	and P.	ical and		vessel segmentation		0.9936
	Segmentat	Liatsis	Health		called ELEMENT.	3.	F1 Score:
	ion Based		Informa		Utilizing deep		0.8579
	on a		tics		learning methods and		
	Coupled				region growing	STAR	E dataset:
	Region				techniques, this	1.	Accuracy:
	Growing				framework comprises		0.9827
	and				of feature extraction	2.	AUC:
	Machine				and pixel-based		0.9946
	Learning				categorization which	3.	F1 Score:
	Approach				enables refined data		0.8910
					collection based on		
					vessel connection and	CHAS	E-DB
					grey level qualities.	datase	t:
					During the	1.	Accuracy:
					classification step,		0.9778
					the information is	2.	AUC:
					smoothly sent across		0.9923
					the pixels which	3.	F1 Score:
					allows for		0.8448
					increased segmentati		
					on throughput is and	VAME	PIRE
					decreased	datase	t:
					inconsistency. The	1.	Accuracy:
					DRIVE, STARE and		0.9834
					CHASE-DB,	2.	AUC:
					VAMPIRE, IOSTAR		0.9956
					and RC-SLO datasets	3.	F1 Score:
					are used by the		0.8935

					authors for their		
					experiments.	IOSTA	AR dataset:
					_	1.	Accuracy:
							0.9804
						2.	AUC:
							0.9959
						3.	F1 Score:
							0.8635
						RC-SI	O dataset:
						1.	Accuracy:
							0.9835
						2.	AUC:
							0.9936
						3.	F1 Score:
							0.9187
8	Hard	D.	IEEE	2020	In this paper, the	DRIV	E dataset:
	Attention	Wang,	Journal		authors develop a	1.	Sensitivity:
	Net for	A.	of		hard attention net to		0.7991
	Automatic	Haytha	Biomed		overcome the issues	2.	Specificity
	Retinal	m, J.	ical and		incurred in the		: 0.9813
	Vessel	Pottenb	Health		segmentation of thin	3.	Accuracy:
	Segmentat	urgh,	Informa		retinal vessels and		0.9581
	ion	O.	tics		those regions which	4.	AUC:
		Saeedi,			contain uncertain		0.9823
		and Y.			boundaries. The	5.	F1 Score:
		Tao			developed model is		0.8293
					made up of three		
					decoder networks, the	STAR	E dataset
					first of which	1.	Sensitivity:
					identifies and locates		0.8186
					segmentation regions	2.	Specificity
					and assigns a		: 0.9844
					difficulty (hard or	3.	Accuracy:
					easy) to it. The other		0.9673

	two networks	4.	AUC:
	segment the hard and		0.9881
	easy regions. An	5.	F1 Score:
	attention mechanism		0.8379
	is used to enable		
	better segmentation	CHAS	E_DB1
	of hard regions. The	datase	t:
	outputs from the	1.	Sensitivity:
	three decoder		0.8239
	networks are merged	2.	Specificity
	to form a final		: 0.9813
	segmentation map.	3.	Accuracy:
	The DRIVE, STARE,		0.9670
	CHASE_DB1, HRF	4.	AUC:
	and IOSTAR datasets		0.9871
	are used by the	5.	F1 Score:
	authors for		0.8191
	experimentation.		
		HRF d	ataset:
		1.	Sensitivity:
			0.7803
		2.	Specificity
			: 0.9843
		3.	Accuracy:
			0.9654
		4.	AUC:
			0.9837
		5.	F1 Score:
			0.8074
		IOSTA	AR dataset
		1.	Sensitivity:
			0.7538
		2.	Specificity
			: 0.9893

						3.	Accuracy:
							0.9652
						4.	AUC:
							0.9859
						5.	F1 Score:
							0.8161
9	Genetic	Wei,	IEEE	2022	In this paper, the	DRIV	E dataset:
	U-Net:	Jiahong	Transac		authors have	1.	Accuracy:
	Automatic	Zhu,	tions on		developed a novel		0.9707
	ally	Guijie	Medica		deep network based	2.	Sensitivity:
	Designed	Fan,	1		on U-net that uses a		0.8300
	Deep	Zhun	Imagin		genetic algorithm for	3.	Specificity
	Networks	Liu,	g		retinal vessel		: 0.9843
	for Retinal	Jinchao			segmentation. The	4.	F1 Score:
	Vessel	Rong,			developed model is		0.8314
	Segmentat	Yibiao			more automated	5.	AUROC:
	ion Using	Mo,			compared to		0.9885
	a Genetic	Jiajie			traditional deep		
	Algorithm	Li,			learning methods and	STAR	E dataset:
		Wenji			gives better	1.	Accuracy:
		Chen,			performance with		0.9792
		Xinjian			fewer architecture-	2.	Sensitivity:
					oriented variables. A		0.8658
					traditional U-net	3.	Specificity
					based backbone is		: 0.9886
					used to ensure a	4.	F1 Score:
					flexible search space		0.8630
					and an enhanced	5.	AUROC:
					genetic algorithm is		0.9942
					employed to identify		
					those architectural	CHAS	E_DB1
					parameters providing	datase	t:
					better performance in	1.	Accuracy:
					said search space.		0.9769
					The DRIVE, STARE,		

	Γ				CHACE DD1 1		C :4::4
					CHASE_DB1 and	2.	Sensitivity:
					HRF datasets are		0.8463
					used by the authors	3.	Specificity
					for their experiments.		: 0.9857
						4.	F1 Score:
							0.8223
						5.	AUROC:
							0.9914
						HRF d	ataset:
						1.	Accuracy:
							0.9715
						2.	Sensitivity:
							0.8220
						3.	Specificity
							: 0.9839
						4.	F1 Score:
							0.8179
						5.	AUROC:
						3.	0.9891
							0.7071
10	Graph-	Shi,	Simulat	2022	In this paper, the	Combi	ined dataset:
10	based	Cao	ion	2022	authors have		Accuracy:
	convolutio	Xu,	Modelli		developed a graph-	1.	0.9679
	n feature	Canhui			based convolution	2	Precision:
			ng				
	aggregatio	He,	Practice		feature aggregation		0.8189
	n for	Jianfei	and		network for retinal	3.	Recall:
	retinal	Chen,	Theory		vessel segmentation.	4	0.7521
	vessel	Yinong			(GFCAN). The	4.	Dice:
	segmentati	Cheng,			GFCAN focuses on		0.7825
	on	Yuanzh			the segmentation task		
		i			as well as		
		Yang,			enhancement of non-		
		Qi			vessel regions and		
		Qiu,			uses graph methods		
		Haitao			for propagation and		

congregation of features from different layers. It consists of a feature extraction module, a low-level aggregation module and a high- level aggregation module. The first module extracts feature representations. The low-level module focuses on boundary data for vessel segmentation whereas the high-level module uses more semantic data for segmentation. The DRIVE,	
consists of a feature extraction module, a low-level aggregation module and a high- level aggregation module. The first module extracts feature representations. The low-level module focuses on boundary data for vessel segmentation whereas the high-level module uses more semantic data for segmentation.	
consists of a feature extraction module, a low-level aggregation module and a high- level aggregation module. The first module extracts feature representations. The low-level module focuses on boundary data for vessel segmentation whereas the high-level module uses more semantic data for segmentation.	
extraction module, a low-level aggregation module and a high-level aggregation module. The first module extracts feature representations. The low-level module focuses on boundary data for vessel segmentation whereas the high-level module uses more semantic data for segmentation.	
low-level aggregation module and a high- level aggregation module. The first module extracts feature representations. The low-level module focuses on boundary data for vessel segmentation whereas the high-level module uses more semantic data for segmentation.	
module and a high- level aggregation module. The first module extracts feature representations. The low-level module focuses on boundary data for vessel segmentation whereas the high-level module uses more semantic data for segmentation.	
level aggregation module. The first module extracts feature representations. The low-level module focuses on boundary data for vessel segmentation whereas the high-level module uses more semantic data for segmentation.	
module. The first module extracts feature representations. The low-level module focuses on boundary data for vessel segmentation whereas the high-level module uses more semantic data for segmentation.	
module extracts feature representations. The low-level module focuses on boundary data for vessel segmentation whereas the high-level module uses more semantic data for segmentation.	
feature representations. The low-level module focuses on boundary data for vessel segmentation whereas the high-level module uses more semantic data for segmentation.	
representations. The low-level module focuses on boundary data for vessel segmentation whereas the high-level module uses more semantic data for segmentation.	
low-level module focuses on boundary data for vessel segmentation whereas the high-level module uses more semantic data for segmentation.	
focuses on boundary data for vessel segmentation whereas the high-level module uses more semantic data for segmentation.	
data for vessel segmentation whereas the high-level module uses more semantic data for segmentation.	
segmentation whereas the high-level module uses more semantic data for segmentation.	
the high-level module uses more semantic data for segmentation.	
uses more semantic data for segmentation.	
data for segmentation.	
The DRIVE	
CHASE_DB1,	
IOSTAR and HRF	
datasets are processed	
and combined into a	
single dataset for	
experimentation.	
11 Joint Yan, IEEE 2018 In this paper the DRIVE dataset:	ataset:
segment- Zengqi Transac authors propose a 1. Sensitivity	nsitivity:
level and ang tions on novel segment-level 0.7653	7653
pixel-wise Yang, Biomed loss for retinal vessel 2. Specificity	ecificity
losses for Xin ical segmentation using : 0.9818	0.9818
deep Cheng, Engine deep learning 3. Accuracy:	ccuracy:
learning Kwang ering methods. The 0.9542	9542
based Ting proposed loss focuses 4. AUC:	UC:
retinal on the consistency of 0.9752	9752
vessel the thickness of	

	segmentati				particularly thin	STAR	E dataset:
	on				retinal vessels. The	1.	Sensitivity:
					proposed loss is better		0.7581
					at learning features	2.	Specificity
					and brings about		: 0.9846
					performance	3.	Accuracy:
					enhancement for		0.9612
					neural network	4.	AUC:
					architectures without		0.9801
					increasing model		
					complexity. The	CHAS	E_DB1
					DRIVE, STARE and	dataset	t:
					CHASE_DB1	1.	Sensitivity:
					datasets are used for		0.7633
					experiments.	2.	Specificity
							: 0.9809
						3.	Accuracy:
							0.9610
						4.	AUC:
							0.9781
12	MFI-Net:	Y. Ye,	IEEE	2022	In this paper, the	DRIVI	E dataset:
	Multiscale	C. Pan,	Journal		authors develop an	1.	AUC:
	Feature	Y. Wu,	of		MFI-Net which		0.9884
	Interaction	S.	Biomed		stands for multiscale	2.	Accuracy:
	Network	Wang,	ical and		feature interaction		0.9699
	for Retinal	and Y.	Health		network. The MFI-	3.	Specificity
	Vessel	Xia	Informa		Net is based on a U-		: 0.9847
	Segmentat		tics		Net backbone	4.	Sensitivity:
	ion				(effectively a U-CNN		0.8166
					architecture). This	5.	F1 Score:
					network contains a		0.8249
					pyramid excitation		
					module, coarse to fine	STAR	E dataset:
					module and is capable	1.	AUC:
					of deep-level		0.9919

					supervision and	2. Accuracy:
					fusion of features. A	1
					multichannel	: 0.9874
					attention mechanism	1
					is employed to handle	
					the varying retinal	5. F1 Score:
					vessel thickness. The	0.8280
					coarse to fine module	
					is enhanced for	CHASE_DB1
					residual feature map	dataset:
					generation and re-	1. AUC:
					processing with the	0.9897
					objective of greater	2. Accuracy:
					vessel preservation	0.9693
					while decoding. The	3. Specificity
					DRIVE, STARE,	: 0.9847
					CHASE_DB1 and	4. Sensitivity:
					HRF datasets are used	0.8317
					by the authors for	5. F1 Score:
					their experiments.	0.8424
					1	
						HRF dataset:
						1. AUC:
						0.9880
						2. Accuracy:
						0.9713
						3. Specificity
						: 0.9836
						4. Sensitivity:
						0.8236
						5. F1 Score:
						0.8159
4.5	-		.	000-		
13	ResDO-	Y. Liu,	Biomed	2022	In this paper, the	DRIVE dataset:
	UNet: A	J. Shen,	ical		authors develop a	

deep	L.	Signal	novel retinal vessel	1	Sensitivity:
residual	Yang,	Process	segmentation network		0.7985
network	G.	ing and	based on U-net. The		Specificity
for	Bian,	Control			: 0.9791
		Control	1		
accurate	and H.		overcomes the issue	3.	Accuracy:
retinal	Yu		of information loss		0.9561
vessel			occurring due to	4.	F1 Score:
segmentati			multiple pooling and		0.8229
on from			the issue of		
fundus			insufficient process	STAR	E dataset:
images			for local feature	1.	Sensitivity:
			context. The		0.7963
			developed model uses	2.	Specificity
			an overparameterized		: 0.9792
			convolution layer	3.	Accuracy:
			which changes depth-		0.9567
			wise (DO-conv). The	4.	F1 Score:
			main backbone is		0.8172
			formed of a residual		
			network which is	CHAS	E_DB1
			combined with the	datase	t:
			Do-conv to form the	1.	Sensitivity:
			ResDO-conv		0.8020
			network. Multiple	2.	Specificity
			max pool and avg.		: 0.9794
			pooling layers are	3.	Accuracy:
			nonlinearly fused		0.9672
			using a custom block		F1 Score:
			(PFB). There also		0.8236
			exists an attention		0.0230
			fusion block for		
			obtaining sufficient		
			local feature context.		
			The DRIVE, STARE		
			and CHASE_DB1		

					datasets are used for		
					experiments.		
1.4	Retinal	Т	IEEE	2022	-	DDIV	E dataset:
14		Tan,		2022	In this paper, the		
	Vessel	Yubo	Transac		authors develop a	1.	Sensitivity:
	Segmentat	Yang,	tions on		network called		0.8323
	ion with	Kai-fu	Medica		SkelCon for retinal	2.	Specificity
	Skeletal	Zhao,	1		vessel segmentation.		: 0.9859
	Prior and	Shi-	Imagin		The developed	3.	Accuracy:
	Contrastiv	xuan	g		system is focused on		0.9461
	e Loss	Li,			improving the		
		Yong-			discovery of features	STAR	E dataset:
		jie			in retinal images and	1.	Sensitivity:
					to improve the		0.8610
					segmentation of thin	2.	Specificity
					vessels particularly.		: 0.9905
					Thin vessel	3.	Accuracy:
					segmentation is		0.9691
					boosted using a		
					skeletal fitting	IOSTA	AR dataset:
					module which	1.	Sensitivity:
					improves thin vessel		0.8057
					completeness. Both	2.	Specificity
					contrastive and prior		: 0.9703
					loss are introduced to	3.	Accuracy:
					segregate vessel from		0.9548
					background and a		
					custom data		
					augmentation		
					technique is applied		
					for better robustness		
					of the model. The		
					model is verified		
					using DRIVE,		
					STARE and IOSTAR		
					datasets.		
					-		

15	SPNet: A	Xu,	Neuroc	2022	In this paper, the	DRIV	E dataset:
	novel deep	Geng-	omputi		authors develop a	1.	Sensitivity:
	neural	Xin	ng		deep neural network		0.8821
	network	Ren,			for retinal vessel	2.	Specificity
	for retinal	Chuan-			segmentation. This		: 0.9716
	vessel	Xian			novel network is	3.	Accuracy:
	segmentati				based on pyramid loss		0.9601
	on based				and utilizes a shared	4.	AUC:
	on shared				decoder which is used		0.9787
	decoder				for multiscale		
	and				semantic information	STAR	E dataset:
	pyramid-				capture. For more	1.	Sensitivity:
	like loss				defined		0.8859
					characterization of	2.	Specificity
					retinal vessels,		: 0.9842
					particularly their	3.	Accuracy:
					edges, a residual		0.9739
					pyramid structure is	4.	AUC:
					utilized whose		0.9909
					function is to		
					understand spatial	CHAS	E_DB1
					information while	dataset	t:
					decoding. The	1.	Sensitivity:
					purpose of the		0.8906
					pyramid loss function	2.	Specificity
					is for compensation		: 0.9817
					for possible	3.	Accuracy:
					segmentation errors.		0.9725
					The DRIVE, STARE	4.	AUC:
					and CHASE_DB1		0.9857
					datasets are used by		
					the authors for their		
					experiments.		
16	A refined	Y.	Neuroc	2021	In this paper, the	DRIV	E dataset:
	equilibriu	Zhou,	omputi		authors develop a	1.	Accuracy:
	m	Z.	ng		synthetic neural		0.9563

	generative	Chen,			network which have	2. F1 Score:
	adversarial	Н.			the capacity for	0.8345
	network	Shen,			enhance thin vessel	3. AUC:
	for retinal	X.			segmentation. The	0.9830
	vessel	Zheng,			developed model	
	segmentati	R.			consists of a	STARE dataset:
	on	Zhao,			symmetric	1. Accuracy:
		and X.			equilibrium GAN	0.9671
		Duan			(SEGAN) with	2. F1 Score:
					multiple refine blocks	0.8359
					which are multi-scale	3. AUC:
					as well as contains an	0.9863
					attention mechanism.	
					The developed	CHASE_DB1
					framework is	dataset:
					optimized for local	1. Accuracy:
					detail in images by	0.9630
					maximizing feature	2. F1 Score:
					representation and	0.8218
					can maintain high-res	3. AUC:
					image information.	0.9872
					The refine blocks	
					optimize the merging	HRF dataset:
					of features and the	1. Accuracy:
					attention mechanism	0.9559
					enhance feature	2. F1 Score:
					discrimination. The	0.8211
					DRIVE, STARE,	3. AUC:
					CHASE_DB1 and	0.9693
					HRF datasets are used	
					by the authors for	
					experimentation.	
17	BSEResU	D. Li	Comput	2021	In this paper, the	DRIVE dataset:
	-Net: An	and S.	er		authors develop a	1. AUC:
	attention-	Rahardj	Method		novel residual U-net	0.9820
	based	a	s and		that utilizes squeeze	

	before-		Progra		and excitation	2.	Accuracy:
	activation		ms in		technique before		0.9574
	residual		Biomed		activation (BSEResu-	3.	Sensitivity:
	U-Net for		icine		Net) to overcome the		0.8324
	retinal				imbalance problems	4.	Specificity
	vessel				in retinal vessel		: 0.9757
	segmentati				segmentation tasks		
	on				such as ratio of thick	STAR	E dataset:
					to thin vessels or	1.	AUC:
					background to		0.9912
					foreground problems.	2.	Accuracy:
					The BSE blocks use		0.9759
					an attention module in	3.	Sensitivity:
					conjunction to the		0.8391
					regular skip	4.	Specificity
					connection to		: 0.9887
					facilitate optimized		
					performance of the	HRF d	ataset:
					model. Also	1.	AUC:
					implemented is a		0.9637
					dropblock mechanism	2.	Accuracy:
					and a joint loss		0.8067
					function for better and	3.	Sensitivity:
					more balanced		0.9796
					segmentation. The	Specif	icity: 0.8044
					DRIVE, STARE and		
					HRF datasets are used		
					by the authors for		
					their experiments.		
18	Attention-	Wang,	Comput	2022	In this paper, the	DRIVI	E dataset:
	inception-	Huaden	ers and		authors develop a	1.	Accuracy:
	based U-	g	Electric		novel retinal vessel		0.9611
	Net for	Xu,	al		segmentation	2.	AUC:
	retinal	Guang	Engine		technique aimed at		0.9829
	vessel	Pan,	ering		overcoming issues	3.	F1 Score:
	segmentati	Xipeng			such as loss of		0.8397

	on with	Liu,			microvasculature	
	advanced	Zhenbi			information and	STARE dataset:
	residual	ng			interference of	1. Accuracy:
		Tang,			exudate. The authors	0.9796
		Ningni			have developed a AR-	2. AUC:
		ng			SA U-Net which uses	0.9902
		Lan,			residual modules	3. F1 Score:
		Rushi			alongside dilated	0.8394
		Luo,			convolutions. An	
		Xiaona			attention mechanism	CHASE_DB1
		n			and an inception	dataset:
					module are also	1. Accuracy:
					present. The DRIVE,	0.9662
					STARE and	2. AUC:
					CHASE_DB1	0.9873
					datasets have been	3. F1 Score:
					used by the authors	0.8340
					for experimentation.	
19	Dual	Y. Li,	IEEE	2022	In this paper, the	DRIVE dataset:
	Encoder-	Y.	Transac		authors develop a	1. Accuracy:
	Based	Zhang,	tions on		dynamic-channel	0.9705
	Dynamic-	W. Cui,	Medica		GCN deep learning	2. Sensitivity:
	Channel	B. Lei,	1		model that uses dual	0.8359
	Graph	X.	Imagin		encoders along wide	3. Specificity
	Convoluti	Kuang,	g		edge enhancement	: 0.9826
	onal	and T.			techniques for the	4. AUC:
	Network	Zhang			purposes of retinal	0.9866
	with Edge				vessel segmentation.	
	Enhancem				The proposed method	STARE dataset:
	ent for				takes into	1. Accuracy:
	Retinal				consideration	0.9751
	Vessel				dynamic topological	2. Sensitivity:
	Segmentat				correlations between	0.8405
	ion				the different feature	3. Specificity
					representations which	: 0.9861
					allows the system to	

					produce better results 4. AUC:
					through effective 0.9899
					channel
					characterization. The CHASE DB1
					develop model can dataset:
					preserve edge details 1. Accuracy:
					even after image 0.9762
					down sampling. The 2. Sensitivity:
					dynamic-channel 0.8400
					GCN can create 3. Specificity features from the : 0.9856
					channel 4. AUC: characterizations in 0.9898
					the topological space.
					The accuracy of thin HRF dataset:
					vessel segmentation 1. Accuracy:
					is improved by the 0.9695
					dual encoder 2. Sensitivity:
					architecture. The 0.8169
					DRIVE, STARE, 3. Specificity
					CHASE_DB1, HRF : 0.9825
					and IOSTAR datasets 4. AUC:
					are used for 0.9845
					experiments.
					IOSTAR dataset:
					1. Accuracy:
					0.9714
					2. Sensitivity:
					0.8372
					3. Specificity
					: 0.9830
					4. AUC:
					0.9881
20	Edge-	Y.	Biomed	2022	In this paper, the DRIVE dataset:
	aware U-	Zhang,	ical		authors develop an

net	with	J. Fang,	Signal	edge-awa	re I	J-Net	1	Sens	sitivity:
gate		Y.	Process	model wh			1.	0.77	-
					nen serv		2		
	volutio	Chen,	ing and	increase	C	the	2.	_	cificity
n fo		and L.	Control	sensitivity			_	: 0.9	
retir		Jia		model	to	fine	3.		uracy:
vess	sel			capillary	_	The		0.97	
segr	nentati			developed	d sy	stem	4.	F1	Score:
on				also con	itains g	gated		0.80	21
				convoluti	ons w	hich	5.	AUG	C:
				serve to	o opti	mize		0.88	95
				edge pres	entation	n and			
				places v	weight	and	STARI	E data	aset:
				emphasis	on the e	edges	1.	Sens	sitivity:
				of vesse	ls. Fea	tures		0.69	12
				are extra	cted in	the	2.	Spec	eificity
				encoder p	oath and	d the		: 0.9	911
				decoder	pro	ocess	3.	Acc	uracy:
				refines		the		0.96	91
				segmenta	tion		4.	F1	Score:
				outcomes	.	The		0.75	52
				DRIVE,	STARE	and	5.	AUG	C:
				CHASE_	DB1			0.83	91
				datasets	•	been			
				used by			CHAS	E DI	B1
				for experi			dataset	_	
				101 0114 011					sitivity:
							1.	0.85	· ·
							2		cificity
							۷.	: 0.9	
							2		
							3.		uracy:
								0.98	
							4.		Score:
								0.76	
							5.	AUG	
								0.91	42

21	MSCNN-	Fu,	IEEE	2020	In this paper, the DRIVE dataset:
	AM: A	Qilong	Access		authors develop a 1. Accuracy:
	multi-	Li,			multi-scale CNN 0.9555
	scale	Shuqiu			network with added 2. AUC:
	convolutio	Wang,			attention modules, 0.9795
	nal neural	Xin			aimed specifically at 3. F1 Score:
	network				improving 0.8267
	with				segmentation
	attention				accuracy and STARE dataset:
	mechanis				sensitivity. The 1. Accuracy:
	ms for				developed method 0.9658
	retinal				used varying dilation 2. AUC:
	vessel				rates for effective 0.9863
	segmentati				capture of tiny vessel 3. F1 Score:
	on				information and uses 0.8401
					attention modules to
					decrease false CHASE_DB1
					positive rates and dataset:
					effectively segment 1. Accuracy:
					retinal vessels instead 0.9644
					of the background. 2. AUC:
					The DRIVE, STARE 0.9839
					and CHASE_DB1 3. F1 Score:
					datasets are used by 0.8237
					the authors for their
					experiments.
22	MD-Net:	Shi,	Biomed	2021	In this paper the DRIVE dataset:
	A multi-	Zhengji	ical		authors propose a 1. Accuracy:
	scale	n	Signal		deep learning 0.9676
	dense	Wang,	Process		technique using 2. Sensitivity:
	network	Tianyu	ing and		multiscale dense 0.8065
	for retinal	Huang,	Control		network for the 3. Specificity
	vessel	Zheng			purposes of retinal : 0.9826
	segmentati	Xie,			vessel segmentation.
	on	Feng			The developed model STARE dataset:
					aims at improving

		Liu,			segmentation	1	Accuracy:
		Zihong			accuracy particularly	1.	0.9732
		Wang,			for the challenging	2	Sensitivity:
		Bolun			morphology of tiny	۷.	0.8290
						2	
		Xu,			capillaries. The model	3.	Specificity
		Jing			uses a custom feature		: 0.9866
					fusion mechanism	~** . ~	E
					and pyramid pooling		E_DB1
					for improving feature	datase	
					representation. The	1.	Accuracy:
					concatenation step is		0.9731
					also boosted by the	2.	Sensitivity:
					use of a squeeze and		0.7504
					excite mechanism.	3.	Specificity
					The DRIVE, STARE		: 0.9889
					and CHASE_DB1		
					datasets are used by		
					the authors for their		
					experiments.		
23	Retinal	Toptaş,	Biomed	2021	In this paper a pixel-	DRIV	E dataset:
	blood	Buket	ical		based feature vector	1.	Sensitivity:
	vessel	Hanbay	Signal		technique is		08400
	segmentati	, Davut	Process		employed by the	2.	Specificity
	on using		ing and		authors to facilitate		: 0.9716
	pixel-		Control		retinal vessel	3.	Accuracy:
	based				segmentation. The		0.9618
	feature				technique involves	4.	Jaccard:
	vector				pixel-level feature		0.6148
					extraction and group	5.	Dice:
					aggregation as well as		0.7609
					edge detection and		
					Hessian matrix	STAR	E dataset:
					features. The DRIVE	1.	Sensitivity:
					and STARE datasets		06308
					were used by the	2.	Specificity
					_		: 0.9824
i	1			I	1		

					authors for	3.	Accuracy:
					experiments.		0.9456
					-	4.	Jaccard:
							0.5296
						5.	Dice:
							0.6860
24	ILU-Net:	Zhu,	Optik	2022	In this paper, the	DRIV	E dataset:
	Inception-	Zifan			authors develop a	1.	Accuracy:
	Like U-	An,			novel retinal vessel		0.9733
	Net for	Qing			segmentation	2.	Sensitivity:
	retinal	Wang,			technique based on U-		0.7919
	vessel	Zhiche			Net that utilizes two	3.	Specificity
	segmentati	ng			different types of		: 0.9895
	on	Li,			Inception blocks	4.	F1 Score:
		Qian			while encoding and		0.8296
		Fang,			decoding. One set of		
		Нао			Inception blocks are	STAR	E dataset:
		Huang,			used for up-sampling	1.	Accuracy:
		Zhengh			while the other is used		0.9651
		ua			for down-sampling.	2.	Sensitivity:
					The authors have also		0.8353
					developed a customs	3.	Specificity
					skip connection for		: 0.9918
					better feature	4.	F1 Score:
					representation at a		0.8449
					low-level and thereby		
					producing better		
					segmentation results.		
					The DRIVE and		
					STARE datasets are		
					used by the authors		
					for their experiments.		
25	Prompt	Arsalan	IEEE/A	2022	In this paper, the	DRIV	E dataset:
	Deep	,	CM		authors have	1.	Sensitivity:
	Light-		Transac		developed a light-		0.8250

weight	Muham	tions on	weight segmentation	2.	Specificity
Vessel	mad	Comput	network for retinal		: 0.9837
Segmentat	Khan,	ational	vessel segmentation.	3.	Accuracy:
ion	Tariq	Biology	The proposed model		0.9678
Network	M.	and	uses prompt blocks to	4.	AUC:
(PLVS-	Naqvi,	Bioinfo	bridge semantic		0.9815
Net)	Syed S.	rmatics	differences between		
	Nawaz,		the encoder and	STAR	E dataset:
	Mehmo		decoder networks.	1.	Sensitivity:
	od		The developed		0.8190
	Razzak,		systems also takes int	2.	Specificity
	Imran		account contextual		: 0.9874
			features of the retinal	3.	Accuracy:
			vessel geometry. The		0.9727
			prompt block contain	4.	AUC:
			a combination of		0.9706
			asymmetric,		
			separable, and	CHAS	E_DB1
			ordinary convolutions	dataset	::
			for feature extraction.	1.	Sensitivity:
			The DRIVE, STARE		0.8485
			and CHASE_DB1	2.	Specificity
			datasets are used by		: 0.9887
			the authors for their	3.	Accuracy:
			experiments.		0.9749
				4.	AUC:
					0.9841

2.2 SUMMARY/GAPS IDENTIFIED IN THE SURVEY

Recent advancement in deep learning have enable the creation of effective automated retinal segmentation models. Nowadays, there are broadly two different types of automated segmentation models, The first is unsupervised and the other is supervised. Unsupervised techniques often abbreviated as RISUM (Retinal Image Segmentation using Unsupervised Methods) primarily face two drawbacks. In order to reduce pixel correlation for vascular feature encoding, they assume that pixels are independent. The second problem is that unsupervised algorithms frequently use pixel-level localisation, which ignores useful context and semantic information with a wider application. Unsupervised algorithms suffer from these two drawbacks, which lower their overall performance and accuracy. The supervised models often abbreviated as RISSM (Retinal Image Segmentation using Supervised Methods) also come with their own set of drawbacks. The supervised methods surveyed above demonstrate a distinct lack of sufficient feature representation leading to the issue of discontinuous segmentation. Another issue currently plaguing supervised models are gradient errors occurring in the late training phase as well as irregular segmentation of the complex retinal vessel structure. Another important issue plaguing supervised models is the limited availability of annotated ground truths for basing the models upon.

Other general issues faced by developed models is the lack of adaptability of the developed models to a wide array of input data. The surveyed methods have also demonstrated a large degree of unwarranted sensitivity to input data originating from different sources. The existing models seem to struggle while segmenting low quality images often leading to inconsistencies in the final segmentation map. The proposed models also suffer from limited generalizability and hence cannot be readily applied to new datasets resulting in a setback to the large-scale adoption of automated retinal vessel segmentation models. The existing supervised models in particular are to very effective against pathological changes and are hence lacking when there are defects and diseases present in the input image. The recent models also suffer from being too heavy and having a large amount of computational complexity which limits their practicality. The proposed NCU-Net model aims to overcome some of the issues faced by the existing models by providing a relatively lightweight, robust, accurate and efficient model for retinal vessel segmentation.

3. OVERVIEW OF THE PROPOSED SYSTEM

3.1 INTRODUCTION AND RELATED CONCEPTS

The proposed NCU-Net architecture for Retinal Vessel Segmentation is based on the U-Net model proposed by Ronneberger et al [26] in 2015. The proposed architecture consists of a multi-level encoder-decoder framework (as shown in Fig 2.) with each layer consisting of a set of convolutional layers followed by associated activation functions and normalizations if required. The main purpose of the proposed architecture is to first down-sample the image into smaller sections and obtain more feature maps as we progress down the layers of the encoder network. This is followed by a decoder network seeking to up-sample the obtained feature maps into the required segmentation maps for the output.

The U-Net is so called because of its diagrammatic U shape which consists of an encoder part followed by a decoder section both of which are interconnected by means of a bottleneck. The encoder is responsible for feature extraction from input images and is also used for contextual understanding and the decoder network is generally used for up sampling for image generation. Both the encoder and decoder networks contain a variety of convolution based networks followed by pooling layers. The U-Net architecture also contains skip connection responsible for low-level and high-level feature fusion thereby facilitating a high quality segmentation.

The U-Net architecture is designed for both local and global feature extraction and retention due to which it is extremely popular for segmentation tasks both semantic and instance based segmentation. The U-Net architecture also facilitates exceptional and accurate boundary localization. The U-Net architecture is widely used for biomedical image segmentation but its also popular for other tasks as well. Variations of the U-Net are being worked upon by researchers by introducing methods such as residual connections, attention mechanisms and other methods. In our proposed NCU-Net architecture, normalised convolutional layers are used for efficient segmentation of the input retinal vessel images. The proposed architecture also consists of an encoder-decoder framework that differs from the original U-Net architecture by using Batch Normalization and ReLu to enable both robust and accurate retinal image segmentation.

3.2 FRAMEWORK, ARCHITECTURE OR MODULE FOR THE PROPOSED SYSTEM(WITH EXPLANATION)

Fig. 1: Architecture Diagram for proposed NCU-Net for Retinal Vessel Segmentation

In the proposed NCU-Net, an encoder-decoder framework is used. First, the input images are pre-processed and augmented by vertical, horizontal flips and rotations, and these images are fed to the encoder phase of the architecture. The encoder phase which corresponds to the first half of the network is the contracting phase whose function is to reduce the size of fed image patch (down-sampling) and increase number of distinguishable feature maps as we move into deeper levels. The decoder phase, which corresponds to the second half of the network is the expanding phase and is responsible for up-scaling as well as concatenation of represented features and aggregation of obtained feature maps into high resolution output. The encoderdecoder network form of backbone of the proposed architecture. Each level in the encoder and decoder first consists of a 3x3 2-d convolutional layer with ReLU activation followed by batch normalization to prevent overfitting. This is followed by another 3x3 2-d convolution layer with ReLU activation. All levels of the encoder network, apart from the last level are then passed through a 2x2 max pooling layer for down-sampling which reduces the size of the images. In the decoder network, after passing through the two convolution layers, the obtained feature maps are up sampled by using 2x2 transposed convolutions to obtain higher resolution feature maps (aggregation of features). The encoder network layers are also concatenated to the decoder network layers by means of skip connections to overcome degradation problems. The final convolution provides the final 2-D Output Segmentation Map.

3.3 PROPOSED SYSTEM MODEL (MATHEMATICAL MODELLING AND METHODOLOGY)

Fig. 2: Detailed mathematical model and process diagram for proposed NCU-Net model.

The figure presented above (Fig. 2) is a mathematical representation of the process flow of the proposed NCU-Net model. From the above figure, it can be observed that the sample input image is first passed through a normalised convolution block to generate 64 feature maps and is passed through another convolution block in the same encoder layer. Post this, it goes through max pooling layers and into a deeper encoder level. Following the encoder is the bottleneck layer to the decoder framework. The decoder up samples the image to produce the final segmentation map. The detailed methodology and procedure is provided below.

3.3.1 Pre-processing and Data Augmentation

Even before the model is created, the pre-processing of input data as well as data augmentation processes must be carried out. These processes are carried out on the DRIVE and CHASE_DB1 datasets (both publicly available). The dataset contains both actual retinal images as well as ground truth (mask) images. The retinal images consist of 3 channel image data of which each channel correspond to one of the RGB colour scheme. The mask images are only 1 channel as they are in greyscale. The pre-processing of both the retinal vessel and mask images consist of resizing the available image to a 512x512 pixel size so that it can be used as input for the model. The image processing operations are done using the opency python library.

Following the standardising of the image sizes is the data augmentation stage. As the amount of base input data is quite low, data augmentation techniques need to be applied in order to provide more training data and ensuring optimal training and results. For data augmentation, the retinal vessel and mask images are flipped vertically, horizontally as well as rotated by 45 degreed to provide more training samples. The training images are also transposed (in matrix form) while reading the dataset to make then channel first which allows them to be compatible with deep neural network architectures created using the pytorch library.

3.3.2 Proposed U-Net based model for Retinal Vessel Segmentation

The proposed model is based on a multi-level encoder-decoder framework. Each level of the proposed model consists of two convolutional layers along with activation function and batch normalization. A detailed description of the encoder and decoder network is provided below.

3.3.2.1 Encoder Network

The encoder network is a 4-layer complex convolution-based architecture followed by a final layer that is necessary for the down-sampling of images for extensive feature map generation.

Each layer of the encoder network comprises of two sets of convolution functions and a skip connection. The first convolution function (or block) consists of a 3x3 2-d convolutional layer accompanied by ReLU activation and is followed by Batch Normalization to avoid overfitting. The Batch Normalization also serves to make the model faster and more stable during training and removes the need for using dropout layers. It also allows for the use of higher training rates. The second convolution block only consists of the 3x3 2-d convolution layer with ReLU activation.

In the first layer of the encoder network the input image, which has been pre-processed to 512x512 pixels, is fed to the model. This first layer (two convolution blocks) is used to generate 64 feature maps from the input which only contains 1 annotated map (mask or ground truth). Following this is a 2x2 max pooling layer which is used to down-sample the image into 256x256 pixels and the after the output of the max pooling is then fed to the second encoder layer.

In the second layer, the 256x256 input from the previous max pooling layer is passed through the two convolutional blocks to generate 128 feature maps. This is then passed through another max pooling layer to generate 128x128 input for the third encoder layer. In the third layer 256 feature maps are generated from the 128x128 input and post max pooling is a 64x64 output which is fed to the fourth layer. The fourth layer generates 512 feature maps and further decreases the size to 32x32 to the final encoder layer. The final encoder layer generates 1024 feature maps from the initial input image and the output of this layer is then fed to the decoder network.

3.3.2.2 Skip Connections

Each layer of the encoder network consists of two convolution blocks and a skip connection. The skip connection ensures that there exists no degradation and gradient flow (vanishing gradient) issues in the model. As the input image passes through the various layers of the encoder and decoder network there is a tendency for the network to 'forget' its purpose and lose factors of dimensionality and important spatial features while down-sampling and upsampling. The skip connections tackle these issues and ensures that features with identical dimensionality can be re-used through the layers. Long skip connections (as between the 1st encoding layer and last decoding layer in Fig. 2) are useful for retaining spatial features from the encoding network and passing them on to the decoding network through feature concatenation. The shorter skip connections enable the utilization of features again and have purposes for enhancing training stability.

3.3.2.3 Decoder Network

The decoder network is a 4-layer convolution-based network that is responsible for upsampling the feature maps obtained from the encoder network and eventually providing the output segmentation maps. Each layer of the decoder network consist of two sets of convolution functions and a corresponding skip function. The convolution functions (or blocks) are identical to those found in the encoder network with the only difference being that the input channels and output channels are reversed (as the encoder network creates more feature maps and the decoder network combines feature maps).

The last layer of the encoder network contains 1024 feature maps. This is passed through a transpose convolutional layer (or up convolutional layer) for up-sampling the features to obtain the required output. The feature maps from the corresponding skip connection (512 features) are also concatenated to the up-sampled feature maps (to make a total 1536 feature maps). This is then passed through the two convolutional blocks to obtain 512 aggregated feature maps.

The 512 feature maps are passed through a transposed convolution layer and concatenated with the 256 features from the skip connection (768 features in total). This is passed through the two convolution blocks to get an aggregated 256 feature maps which is subsequently upsampled and further concatenated with additional 128 feature maps from the skip connection to form 384 feature maps which are passed through the convolution blocks to obtain 128 aggregated feature maps.

In the final decoder layer, the 128 aggregated feature maps are passed through a transposed convolutional layer and concatenated with 64 features from the skip connection. The combined 192 features are passed through the two convolution blocks to obtain a final set of 64 feature maps. The 64 feature maps are passed through a final convolutional layer to obtain the final segmentation map.

Table 2: Number of feature maps per layer of the proposed model.

Layer	Feature Maps	Feature Maps in Decoder	Feature Maps in		
No:	generated in Encoder	Network layer (with skip	Decoder Network layer		
	Network layer	connection	(after passing through		
		concatenation)	the two convolutional		
			blocks)		
1	64	1536	512		
2	128	768	256		

3	256	384	128
4	512	192	64
5 (final	1024	-	1 (output segmentation
layer)			map)

Table 2 shows the number of feature maps present in each layer of the encoder and decoder network as well as total number of feature maps after including skip connections in the decoder network. Note that the final layers should be considered as such and are not entirely part of the encoder and decoder networks. The final layer in each case is two convolutional blocks as described earlier (see III. B 1. Encoder Network). The encoder network consists of 4 layers and the output of the final encoder layer is passed through two convolutional blocks to obtain the final encoder feature maps (1024 feature maps). Similarly in the decoder network the final layer isn't a layer as such but just a combination two convolutional blocks resulting in the final segmentation map.

3.3.3 Model Training

The model as defined above is trained on input retinal vessel images which are coloured, that is they consist of three channels, each corresponding to one of the RGB colours. The Adam optimizer is used for training the model. The training and test data is split 50-50. In the DRIVE dataset, there are 20 base images for training along with their ground truth masks and 20 for testing. The training data is then augmented to 80 samples as described previously which effectively creates a 75-25 division of train-test split. The model accepts images of 512x512 pixels dimensions. Other hyperparameters considered are batch size, which is set as 2, learning rate, which is set at 1e-04. The model is also trained for 50 epochs. Following model training, it is saved to a defined path as a .pth file (weights file) and hence it can be used for testing at any time without having to train the model repeatedly.

3.3.4 Testing and Evaluation

The sample test images from the DRIVE dataset along with their ground truth masks are passed into the model and the output segmentation map is obtained. The proposed model is also evaluated using popular metrics such as Accuracy, F1 Score, Precision, Recall and Jaccard Similarity Index.

The considered metrics are defined below:

1. Accuracy (A_c):
$$\frac{\text{Number of Correct Predictions}}{\text{Total Number of Predictions}} \quad \text{or} \quad \frac{\text{TP+TN}}{\text{TP+TN+FP+FN}}$$
 [1]

2. Precision (P):
$$\frac{TP}{TP+FP}$$
 [3]

3. Recall (R) or Sensitivity (S_n):
$$\frac{TP}{TP+FN}$$
 [11]

4. Specificity (S_p):
$$\frac{TN}{TN+FP}$$
 [9]

5. F1 Score (F):
$$\frac{2xPxR}{P+R}$$
 [8]

Where TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative

6. Jaccard Similarity Index J (A,B):
$$\frac{|A \cap B|}{|A \cup B|}$$
 [23]

Where A and B are two sets. In this case set A represents output segmentation map and set B represents ground truth map.

3.3.5 Dataset Details

The proposed U-Net based model is trained and tested on two publicly available datasets, namely DRIVE and CHASE_DB1.

- 1. DRIVE Dataset: The Digital Retinal Images for Vessel Extraction (DRIVE) dataset contains 40 colour fundus images of which 7 possess abnormalities. Each image is 584*565 pixels with three colour channels. The dataset comes pre-divided into 20 training images and 20 test images. The test set also contains ground truth values for evaluation purposes.
- 2. CHASE_DB1 Dataset: The CHASE_DB1 dataset contains 28 retinal images, each of whose dimensions are 999x960 pixels. The images are collected from both left and right eyes of 14 children. Each image in the dataset comes with manual annotation by experts.

4. PROPOSED SYSTEM ANALYSIS AND DESIGN

4.1 INTRODUCTION

The proposed NCU-Net system is based on the U-Net architecture and consist of an encoderdecoder framework. In the encoder part, each layer consists of 2 convolution blocks. The first convolution block consists of a convolution layer followed by a ReLU activation and a Batch Normalization layer. The first convolution layer is used to extract features from the input image into that layer. This is followed by a convolution block with just ReLU activation which is used for context understanding instead of feature extraction. This is followed by a max pooling layer which leads to the next layer of the encoder network. The max pooling layer is responsible for down sampling the image to a lower resolution, The next layer also consists of a similar structure as described above. The input image goes through the encoder layer and finally transitions through a bottleneck to arrive at the decoder layer. The decoder layer also consists of a similar structure to the encoder layer. However, instead of max pooling layers for down sampling, the decoder layer contains transposed convolutions which upscale the image to a higher resolution. As the image passes through the decoder network it is upscaled to finally generate the segmentation map. The system also contains skip connection between corresponding encoder-decoder layers which are primarily used to retain the dimensionality of the image through the layers. The detailed requirement analysis with function, nonfunctional, organizational, operational and system requirements of the proposed NCU-Net system are provided below.

4.2 REQUIREMENT ANALYSIS

4.2.1 Functional Requirements

4.2.1.1 Product Perspective

The proposed NCU-Net model for retinal vessel segmentation model should pay close attention to crucial factors such as robust and accurate segmentation of target input retinal images. The other factors that need oversight are data acquisition and pre-processing of the input images form a variety of sources to enable a standardised input to the model.

Model development should be a crucial focus for development and the model training and validation should be of core importance. This is followed by potential integration of the developed model to large scale public health databases and easy deploy ability of the model

on various platforms. The product should also be fairly user friendly for clinicians and researchers to access. Another important area of focus is to ensure the performance and efficiency of said model by vigorous testing though various metrics. The developed model should be tested using metrics such as accuracy, precision, recall, f1 score, Jaccard score and specificity. A proper chain of documentation should also be kept for a future reference as well as for troubleshooting.

4.2.1.2 Product Features

The proposed NCU-Net model is designed to enable the robust and accurate segmentation of input retinal vessel images to assist clinicians and medical researchers. The proposed system is trained on the DRIVE and CHASE_DB1 datasets and can be fed target retinal vessel images. The system then generates a segmentation map for the input images and a mesh f images which consist of the original retinal vessel image, the annotated map and the generated segmentation map. The product also displays the performance metrics of the validation phase. The metrics which are being considered are accuracy, precision, recall, f1 score, Jaccard score and specificity.

4.2.1.3 User Characteristics

The developed model is aimed primarily towards ophthalmologists and other eye care professionals who have concrete understanding for the retinal structure and are of need for these segmentation maps for medical diagnosis.

The proposed system is also designed for medical researcher who intend to study ophthalmology and complex retinal structure. The developed model can also be used by technicians and assistants to handle the process the retinal vessel imaging. They may do the work of uploading target images to the model and submitting the output to the clinician.

The developed model can also be used by software engineers who can e responsible for maintenance and upgrades, as they have technical understanding of the underlying concepts. Finally, students can be a target audience as they seek knowledge of both retinal structure and deep learning methods.

4.2.1.4 Assumptions and Dependencies

The use of the proposed model is based on certain assumption and dependencies as listed below:

- 1. The quality of input images is good enough for accurate retinal vessel segmentation.
- 2. The input images for training and testing are pre-processed properly to meet the standards for the developed model.

- 3. The ground truth masks for the retinal images are available for the training of the model.
- 4. The training data is representative of the vast array of retinal vessel structures though a variety of public population and condition thereby ensuring the models applicability.
- 5. The developed model is generalizable and can be extended and scaled to accommodate new data.
- 6. The computational and algorithmic limitations and dependencies are well established.
- 7. Limitations and dependency on the hardware and computational resources available for model training.
- 8. The developed model is updated regularly and is well maintained by a dedicated team.
- 9. The proposed model can be extrapolated and integrated into existing large scale public health infrastructure.

4.2.1.5 Domain Requirements

The domain requirements for the proposed NCU-Net model for retinal vessel segmentation are elucidated below:

- 1. The proposed model should be able to accurately segment the target retinal images and produce high quality segmentation maps. It should be capable of segmenting the capillary structure precisely.
- 2. The developed model should be able to handle target images form a diverse array of inputs and populations and be able to segment them effectively.
- 3. The developed model should be robust and efficient in its segmentation tasks and be able to handle variations in target image quality. It should also have a good level of generalizability.
- 4. The computational complexity of the developed model should be such that it should be able to handle near real time segmentation of target retinal vessel images.
- 5. The proposed model should also be capable of horizontal and vertical scaling whilst maintaining similar levels of performance.
- 6. The proposed model should also be capable of integration with existing public health infrastructure.

4.2.1.6 User Requirements

The proposed model should be able to provide the user with an accurate segmentation map of complex retinal structure. For the target user which are medical professionals and researchers, it is imperative that the proposed model be effective so that they make the correct diagnosis, or the researchers make correct inferences for their study. The proposed model should also be fairly easy to use as complicating the automated segmentation tasks to a certain extent defeats its purpose. The proposed system should also be able to provide to the user, a low processing

time for the generation of segmentation maps. It should also have wide generalizability for a variety of applications and be compatible with various hosting platforms and health records. Another requirement is for the model to handle various image types and formats. Finally, the user also expects the model to be well maintained and updated.

4.2.2. Non-Functional Requirements

4.2.2.1 Product Requirements

4.2.2.1.1. Efficiency (in terms of Time and Space)

The efficiency of the proposed model is of crucial importance to the proper functioning of the model. It is imperative for the model to be efficient in its segmentation tasks. The model should have low computational complexity to enable faster segmentation. For the proposed model a lightweight architecture using defined convolutional blocks are used followed by max pooling layers. The training of the model is also accelerated using the local machine's GPU. Other accelerators can also be used such as those available on cloud services such as AWS and Azure.

The proposed model also use Batch Normalization which optimizes the input data and hastens the training of our proposed model. It also allows for more stability in model training as it recentres and scales the input layers and allows for batch processing to occur, thereby increasing the efficiency of the model. The proposed model is also memory efficient a sit provides computation in float data type thereby reducing the memory footprint.

The model is trained, and the weights are saved, thereby the model doesn't have to be trained multiple times. The model is also algorithmically efficient by use of convolution layers and ReLu activation along with Batch Normalization. The input data is also processed efficiently by standardising the size to 512x512 pixels. The local machine's GPU's parallel processing enables for faster processing time. The libraries and frameworks used for the model are meticulously chosen and redundancies are removed.

4.2.2.1.2. Reliability

The proposed model should be reliable and provide consistently accurate outputs. The developed model should be evaluated for its performance reliability by testing using metrics such as accuracy, precision, recall (sensitivity), f1 score, Jaccard score and specificity. The model should also be trained using reliable ground truths and its quality should be monitored and maintained. The model should also be robust and generalizable which adds to its reliability. The model should not be sensitive to input variations as well as to minute changes

in parameters. Overall, to maintain the reliability of the model, it should be regularly maintained and updated. Another important step to maintain reliability is to acquire the feedback of potential user base.

4.2.2.1.3 Portability

For the proposed model to attain widespread availability and usage, it is essential for the system to be highly portable in nature. This portability is attained though enabling multiplatform compatibility as well through platform independence. The proposed system should be able to run with minimal setup on several operating systems and should be runnable on a variety of hardware architectures. The model is also developed using PyTorch which adds to its language independence as well non-framework dependence. This also enables it to integrate far easier into different programming environments. Another advantage is that the model is developed using Python which is a widely supported language. The developed model also can run across various hardware configurations of GPU, CPU etc. Having minimal external dependencies and running on python supported libraries, the developed model can be extremely portable. Another factor which adds to the portability of the model is the standardised inputs through pre-processing enabling the use of the model in a wide variety of areas.

4.2.2.1.4 Usability

The usability of the proposed model comes down to whether it can satisfy the requirement for generating accurate and precise segmentation maps of the input retinal vessel images. This will enable the target user base which primarily consist of medical professional sand scientific researchers to use the developed model effectively and hence it will be utilized to assist in their diagnoses. The proposed model should also be fairly simple to use without too many steps involved and without requiring too many manual inputs on the user side to generate the target output. The model should also be able to robustly generate the segmentation map with relatively small processing time i.e., the model should be efficient. The model should also perform well on a wide range of performance metrics such as accuracy, precision, f1 score among others. The proposed model should facilitate an intuitive design as well as enable user friendly interactions. The proposed model will also be able to gain widespread usability if it is compatible with existing public health infrastructure. The proposed model should also be able to integrate seamlessly into pre-existing images and formats by using standardised image formats and pre-processing to enable widespread usage. The usability of the model is also predicated on its responsiveness and performance while performing the complex retinal vessel segmentation tasks.

4.2.2.2 Organizational Requirements

4.2.2.2.1 Implementation Requirements (in terms of deployment)

The proposed automated retinal vessel segmentation model (NCU-Net) has very minimal implementation requirements from a technical stack standpoint. The entire model and system is designed using Python 3.9 as the language and the interpreter. The model also utilizes the popular PyTorch library for the NCU-Net model. Other popular libraries utilized by the system are os, time, numpy, time, sklearn, opency and other popular python libraries. As mentioned, the model is developed using PyTorch. The database and arrays are handles using numpy and the image data is handled using opency. For implementation of the designed system, it is required for a local machine to be capable of running Python 3.9 as well as have all the required libraries associated with the model. The model is designed to be operating system independent and can be accessed by means of Windows, MacOSX and Linux. The only requirement being a Python supporting local machine. The training and validation images are obtained from the DRIVE and CHASE DB1 datasets both of which are publicly available. The pre-processing of the input images is done using developed code to standardise the inputs. The training data is also augmented by means of horizontal, vertical and 45-degree rotations of the input images. The model is also trained using a set of hyper parameters which is mentioned in the methodology section and its performance is evaluated using popular metrics.

4.2.2.2.2 Engineering Standard Requirements

Setting certain engineering standard requirements in as important section of the development of any application. In regard to the proposed NCU-Net model, the engineering standard requirements that are to be followed are provided below:

- 1. Extensive documentation that provides information of various aspects of the developed system ranging from data pre-processing to model evaluation.
- 2. Developing a modular system which consists of several defined section. In the proposed system, a pre-processing module is present as well as an encoder and then a decoder module.
- 3. Following the best coding practices to ensure ease of modification as well as easy maintenance and changes to the codebase.
- 4. Exhaustive testing of the system to ensure that all aspects of the model are performing their required actions and culminate in the required final output segmentation image.
- 5. Optimization of the model by improving training times, learning rate and reaching better performance metric scores.

4.2.2.3. Operational Requirements

4.2.2.3.1 Economic

The economic applicability of the proposed NCU-Net model lies in efficient diagnosis and treatment. The robust and precise retinal segmentation model will allow ophthalmologists to make better decisions and thereby detect possible diseases such as glaucoma. This will lead to overall reduction in medical costs as there is overall less manual labour involved in the process (no manual annotations are necessary). The proposed model could also bring benefits to remote healthcare applications thereby reducing travel costs. It can also have benefits in research where medical researchers can utilize the model to better study the retinal vessel structure. It will also assist in equipment development and can also be used in large scale public health programs thereby benefiting the general population.

4.2.2.3.2 Environmental

The environmental applicability of the proposed model lies in reduced paper usage in the digital retinal vessel segmentation method. This ultimately leads to less physical waste as well as assists in environment conservation. The automated retinal vessel segmentation process is also energy efficient by streamlining the healthcare workflow in general. Less use of physical infrastructure in remote medicine applications as well efficient resource usage by automation of early screening steps which minimizes the environmental impact. By accelerating digital medical research, a more sustainable approach to diagnosis and treatment can be obtained.

4.2.2.3.3 Social

The social applicability of the proposed model lies in providing access to healthcare facility to all aspects of the population by means of both large medical institutions as well as through remote medicine applications. It also enables a state of healthcare equity among the population by in general improving the quality and efficiency of obtained healthcare. The automated retinal vessel segmentation model can also assist in early disease detection and lead to overall reduced malaise progression and better quality of life. It can also narrow the gap between the haves and the have nots and the healthcare outcomes in various demographics. The automated model can be used for education and awareness purposes as well as for research and scientific development.

4.2.2.3.4 Political

The development of the proposed model can have political applicability in informing healthcare policies directly associated with eye diseases and health. The output can allow policymakers to understand the effect and severity of eye diseases and can address public health requirements. The model can also be used for large scale public health programs for the general public. The automation of medicine can enable a more effective distribution of resources in the healthcare sector as well as can lead to opportunities for international collaborations on eye health thereby addressing its challenges. It will also spread awareness among the public thereby driving the policymakers to take effective steps to address healthcare policies.

4.2.2.3.5 Ethical

The ethical applicability of the developed model lies in preserving the patient privacy and confidentiality of the retinal vessel images as they are private heath records. Robust security measures should be implemented to protect patient data. The concept of informed consent should also be applied, and patients should understand the risks and benefits of any advice provided. The proposed model would also provide a fair assessment without any applicable bias thereby not discriminating against any demographic group. Ethical guidelines should be created for the use and deployment of automated medical models. The models will also be built to promote overall well-being and prevent harm as well as provide healthcare equity and increased accessibility.

4.2.2.3.6 Health and Safety

The health and safety applicability of the developed model lies in its ability to make accurate and robust segmentation maps of the input retinal vessel images thereby enabling accurate diagnosis and improving treatment efficiency. The automates model will also allow for less errors made while diagnosing diseases as the medical professionals can use the output as a basis to make correct decisions. The developed model also can be applied in patient monitoring as well as in follow up appointments as the records being digital will still be available. The consistency of segmentation will allow professionals to stop misdiagnosis as well as aid in planning of necessary treatment methods and to see if surgical intervention is necessary. They will also improve safety by integrating seamlessly with the existing workflow thereby reducing manual labour and chances of errors.

4.2.2.3.7 Sustainability

The sustainability applicability of the proposed model also lies in reduced paper usage overall. As a result, there is less physical waste produced, and the digital method also helps with a sustainable approach to healthcare documentation. By improving the whole healthcare procedure, the automated retinal vascular segmentation technique is also energy efficient. Remote medical applications employ less physical infrastructure, and effective resource management through early screening phase automation reduces environmental impact and

increases sustainability of the entire process. The use of cloud architecture will further enhance the sustainable approach by enabling storage optimization and data handling effectiveness. By accelerating digital medical research, a more sustainable approach to medical diagnosis can be found. Collaborations and sharing of data can also improve sustainability considerably.

4.2.2.3.8 Legality

The development of an automated model as proposed (NCU-Net) will most likely involve serious consideration about intellectual property rights as the underlying code is proprietary and needs to be protected. There also comes considerations for data protection and data privacy based on government policies. There are also existing regulation for medical devices as well as liability and malpractice problems that could arise. The concept of informed consent should also be taken seriously for legal applicability. The patient data should be protected, and the documentation should be maintained properly. There should also be compliance with international laws regarding medical laws and frameworks.

4.2.2.3.9 Inspectability

The outputs of the developed model should be interpretable and available to the relevant medical professionals. The process taken to arrive at the results should also be transparent. The internal working and the model processes should be explainable to address any potential issues of bias and unfairness. The model training and architecture in general should be available and transparent. The efficiency of the model as well as its performance in metrics such as accuracy, precision, f1 score and others should be available. The developed model should also be open to external audits. Accurate documentation of the process involve should also be maintained as well as the upholding of compliance and government policies.

4.2.3 System Requirements

4.2.3.1. Hardware Requirements (details about Application Specific Hardware)

- 1. **CPU:** Intel(R) Core(TM) i5-9300H CPU @ 2.40GHz
- 2. **RAM:** 8 GB
- 3. **GPU:** NVIDIA GeForce GTX 1650 (4096 MB GDDR5)
- 4. Accelerator: CPU, GPU (CUDA)

4.2.3.2. Software Requirements (details about Application Specific Software)

- 1. **OS:** Windows 11, MacOS 10.14, Linux
- 2. **Programming Language:** Python
- 3. **Interpreter:** Python 3.9

- 4. **IDE:** PyCharm
- 5. Important Libraries: opency, pytorch, os, tqdm, imageio, albumenations, numpy, sklearn

5. RESULTS AND DISCUSSIONS

5.1 DRIVE DATASET RESULTS

5.1.1. Generated Segmentation Maps for DRIVE Dataset

The output of the designed NCU-Net model is a black and white segmentation map of the retinal vessel structure. The generated segmentation map will be created for each of the test images for the DRIVE dataset. The output images will be concatenated along with the original test image and test mask to highlight and accentuate the generated output further and to make visual comparisons easier. A few of the said outputs from the DRIVE dataset are given below.

Fig. 3: First output which contains the generated segmentation map (right most) along with one of the original test 3-channel coloured image (left) and the test mask (centre) from the DRIVE dataset.

Fig. 4: Second output which contains the generated segmentation map (right most) along with one of the original test 3-channel coloured image (left) and the test mask (centre) from the DRIVE dataset.

Fig. 5: Third output which contains the generated segmentation map (right most) along with one of the original test 3-channel coloured image (left) and the test mask (centre) from the DRIVE dataset.

Fig. 6: Fourth output which contains the generated segmentation map (right most) along with one of the original test 3-channel coloured image (left) and the test mask (centre) from the DRIVE dataset.

Fig. 3,4,5,6 show the result generated by the developed program and model on the DRIVE dataset. The developed program generates a collection of result images from each provided test image. Each such results consists of the test image which is seen as the coloured image on the left (3-channel RGB) and its black and white mask in the centre (1-channel). The rightmost image is that of the generated segmentation map from the proposed model. This layout enables easier distinction and macro visual comparison between the ground truth(mask) and the generated retinal vessel segmentation mask.

5.1.2. Performance Metrics and Comparisons for DRIVE Dataset

The proposed model is evaluated using standard evaluation metrics such as Accuracy, Precision, Recall, F1 Score, Jaccard Score and Specificity. The evaluation metrics considered are the mean evaluation metrics averaged over all the test images. Table with the performance metrics for the DRIVE dataset is provided below.

Table 3: Mean Performance Metrics for the DRIVE Dataset

Accuracy	Precision	Recall (Sensitivity)	F1-Score	Jaccard	Specificity
0.9657	0.8740	0.8271	0.8374	0.6641	0.9840

Table 3 contains the mean evaluation metrics for the DRIVE dataset. The accuracy obtained is 0.9657 which is extremely significant and proves the proposed models' effectiveness. The model scores 0.8740 for precision, 0.8271 for recall (sensitivity), 0.8374 for f1 score, 0.6641 for the Jaccard score and 0.9840 for specificity. The performance metrics are on par and surpass several cutting-edge retina vessel segmentation methods on the DRIVE dataset. The comparison of obtained metrics with existing models for retinal vessel segmentation on the DRIVE dataset is given in the table below (Table 4).

Table 4: Comparison of Performance Metrics with existing models (DRIVE)

Model	Accuracy	Precision	Recall	F1-Score	Jaccard	Specificity
			(Sensitivity)			
Xiuqin et	0.9650	-	0.9310	-	-	0.9863
al. [1]						
Yan et al	0.9750	-	0.7631	-	-	0.9820
[2]						
Lian et al.	0.9692	0.8637	0.8278	-	-	0.9861
[3]						
Dong et	0.9586	0.9212	0.7954	0.8302	-	-
al. [4]						
Sun et al.	0.9675	-	0.8293	-	-	0.9807
[5]						
Cherukuri	0.9563	-	-	0.8220	-	-
et al. [6]						
Rodrigues	0.9740	-	-	0.8579	-	-
et al. [7]						
Wang et	0.9581	-	0.7991	0.8293	-	0.9813
al. [8]						
Jiahong et	0.9707		0.8300	0.8314		0.9843
al. [9]						
Yan et al.	0.9542	-	0.7653	-	-	0.9818
[11]						

Model						
Proposed	0.9657	0.8740	0.8271	0.8374	0.6641	0.9840
al. [25]						
Arsalan et	0.9678	-	0.8250	-	-	0.9837
[24]						
Zhu et al.	0.9733	-	0.7919	0.8296	-	0.9895
al. [23]						
Toptas et	0.9618	-	0.8400	-	0.6148	0.9716
[22]						
Shi et al.	0.9676	-	0.8065	-	-	0.9826
[21]						
Fu et al.	0.9555	-	-	0.8267	-	-
al. [20]						
Zhang et	0.9701	-	0.7719	0.8021	-	0.9799
[19]						
Li et al.	0.9705	-	0.8359	-	-	0.9826
al. [18]						
Wang et	0.9611	-	-	0.8397	-	-
[17]						
Li et al.	0.9574	-	0.8324	-	-	0.9757
al. [16]						
Zhou et	0.9563	-	-	0.8345	-	-
[15]						
Xu et al.	0.9601	-	0.8821	-	-	0.9716
[14]						
Tan et al.	0.9461	-	0.8323	-	-	0.9859
[13]						
Liu et al.	0.9561	-	0.7985	0.8229	-	0.9791
[12]						
Ye et al.	0.9699	-	0.8166	0.8249	-	0.9847

From the table above (Table 4), it can be observed that the proposed model outperforms several existing models in a variety of metrics. A brief overview is that the existing model outperforms Fu et al.[21] and others (some are [23], [17], [16], [15], [14], [11], [6], [1], [4] and more). The full comparison can be viewed in Table 3. The proposed model performs marginally worse than Yan et al. [2] (0.9750 vs 0.9657) and a few others ([25], [24], [19] and

others) in terms of accuracy. With regards to the precision metric, the proposed model performs better than Lian et al. [3] but falls short of Dong et. al [4]. With regards to the recall (sensitivity) metric, the proposed model outperforms several existing models such as Arsalan et al. [25], Zhu et al. [24] and others ([22], [20], [13], [12], [11], [8], [4], [2]. The proposed model significantly falls short of Xiuqin et al. [1] however in terms of recall (sensitivity). With regards to the Jaccard metric, the proposed model significantly outperforms Toptas et al. [23] (0.6641 vs 0.6148). Finally with respect to specificity, the proposed model again outperforms various existing model such as Xu et al. [15], Liu et al. [13], Yan et al. [2] among others ([5], [8], [11], [19], [22], [23] ad a few others. It however falls short of Zhu et al. [24] (0.9895 vs 0.9840). The bar charts corresponding to the performance obtained by all models by metric is provided below (Fig. 7, Fig. 8, Fig 9, Fig. 10, Fig. 11, and Fig. 12). From the figures provided, it can be observed that the proposed model performs effectively over a wide range of metrics.

Fig. 7: Comparison of Accuracy Scores (DRIVE)

Comparison of Jaccard Scores (DRIVE)

0.67
0.66
0.65
0.64
0.63
0.62
0.61
0.6
0.59

Toptas et al. [23] Proposed Model
Models

Fig. 8: Comparison of Precision Scores (DRIVE)

Fig. 9: Comparison of Jaccard Scores (DRIVE)

Fig. 10: Comparison of Recall (Sensitivity) Scores (DRIVE)

Fig. 11: Comparison of F1 Scores (DRIVE)

Fig. 12: Comparison of Specificity Scores (DRIVE)

The bar charts shown above provide a visualization of the performance of the proposed NCU-Net as compared to other state of the art automatic retinal vessel segmentation models across the performance metrics of accuracy, precision, recall (sensitivity), f1-score, Jaccard score and specificity. The comparison provided in the bar charts represent the performance of various model including the proposed model on the DRIVE Dataset. It is evident from the charts and the table that the proposed model is extremely efficient and performs extremely well on the DRIVE dataset.

5.2 CHASE DB1 DATASET RESULTS

5.2.1 Generated Segmentation Maps for CHASE_DB1 Dataset

The output of the designed NC-UNet model is a black and white segmentation map of the retinal vessel structure. The generated segmentation map will be created for each of the 14 test images for the CHASE_DB1 dataset. Similar to the outputs obtained in the previous section, a collage of original image with original mask and the final segmentation map is provided. A few of the said outputs from the CHASE_DB1 dataset are given below.

Fig. 13: First output which contains the generated segmentation map (right most) along with one of the original test 3-channel coloured image (left) and the test mask (centre) from the CHASE_DB1 dataset.

Fig. 14: Second output which contains the generated segmentation map (right most) along with one of the original test 3-channel coloured image (left) and the test mask (centre) from the CHASE_DB1 dataset.

Fig. 15: Third output which contains the generated segmentation map (right most) along with one of the original test 3-channel coloured image (left) and the test mask (centre) from the CHASE_DB1 dataset.

Fig. 16: Fourth output which contains the generated segmentation map (right most) along with one of the original test 3-channel coloured image (left) and the test mask (centre) from the CHASE_DB1 dataset.

Fig. 13,14,15,16 show the result generated by the proposed NCU-Net model on the CHASE_DB1 dataset. The developed model generates a collection of result images from each provided test image. The layout of the results includes a coloured test image on the left (RGB), a black and white mask in the centre (1-channel), and the generated segmentation map on the right. This arrangement allows for clear differentiation and a broad visual comparison between the ground truth mask and the retinal vessel segmentation generated by the model. The layout facilitates easy interpretation and analysis of the results by presenting the components side by side.

5.2.2. Performance Metrics and Comparisons for CHASE DB1 Dataset

The proposed NCU-Net model is evaluated for the CHASE_DB1 dataset using evaluation metrics such as Accuracy, Precision, Recall, F1 Score, Jaccard Similarity Index and Specificity. The evaluation metrics considered are the mean evaluation metrics averaged over all the test images. Table with the performance metrics for the CHASE_DB1 dataset is provided below.

Table 5: Mean Performance Metrics for the CHASE DB1 Dataset

Accuracy	Precision	Recall (Sensitivity)	F1-Score	Jaccard	Specificity
0.9742	0.8825	0.8367	0.8352	0.7026	0.9853

Table 5 contains the mean evaluation metrics for the CHASE_DB1 dataset. The accuracy obtained is 0.9742 which denotes the designed model's efficiency and performance. The precision, recall (sensitivity) and F1 scores are also provided in the table above along with the Jaccard Similarity and specificity metrics. The model scores 0.8825 for precision, 0.8367 for recall (sensitivity), 0.8352 for f1 score, 0.7026 for the Jaccard score and 0.9853 for specificity. The performance metrics are on par and surpass several cutting-edge retina vessel segmentation methods on the CHASE_DB1 dataset. The comparison of obtained metrics with existing models for retinal vessel segmentation on the CHASE_DB1 dataset is given in the table below (Table 6).

Table 6: Comparison of Performance Metrics with existing models (CHASE_DB1)

Model	Accuracy	Precision	Recall	F1-Score	Jaccard	Specificity
			(Sensitivity)			
Yan et al	0.9607	-	0.7641	-	-	0.9806
[2]						
Dong et	0.9659	0.8996	0.8259	0.8156	-	-
al. [4]						
Sun et al.	0.9732	-	0.8321	-	-	0.9825
[5]						
Cherukuri	0.9720	-	-	0.8211	-	-
et al. [6]						
Rodrigues	0.9778	-	-	0.8448	-	-
et al. [7]						
Wang et	0.9670	-	0.8239	0.8191	-	0.9813
al. [8]						
Jiahong et	0.9769		0.8463	0.8223		0.9857
al. [9]						
Yan et al.	0.9610	-	0.7633	-	-	0.9809
[11]						
Ye et al.	0.9693	-	0.8317	0.8424	-	0.9847
[12]						

Liu et al.	0.9672	-	0.8020	0.8236	-	0.9794
[13]						
Xu et al.	0.9725	-	0.8906	-	-	0.9817
[15]						
Zhou et	0.9630	-	-	0.8218	-	-
al. [16]						
Wang et	0.9662	-	-	0.8340	-	-
al. [18]						
Li et al.	0.9762	-	0.8400	-	-	0.9856
[19]						
Zhang et	0.9811	-	0.8506	0.7662	-	0.9981
al. [20]						
Fu et al.	0.9644	-	-	0.8237	-	-
[21]						
Shi et al.	0.9731	-	0.7504	-	-	0.9889
[22]						
Arsalan et	0.9749	-	0.8485	-	-	0.9887
al. [25]						
Proposed	0.9742	0.8825	0.8367	0.8352	0.7026	0.9853
Model						

From the table above, it is evident that the proposed NCU-Net model outperforms several state-of-the-art retinal vessel segmentation models over a wide range of performance metrics. In terms of accuracy, the proposed model outperforms the likes of Fu et al. [21], Wang et al. [18], Zhou et al [16] and others ([6], [8], [5] and more). The proposed model does fall slightly short of Arsalan et al. [25] and is most significantly beaten by Zhang et al [20] in terms of accuracy (0.9811 vs 0.9742) In term of precision the model performs slightly worse than Dong et al. [4] (0.8996 vs 0.8825). In terms of recall (sensitivity), the model beats the likes of Ye et al. [12], Yan et. al [11] and others ([13] and more). However, it most significantly falls short against Xu et al. [15] (0.8906 vs 0.8367). In terms of F1 score, the model outperforms the likes of Fu et al. [21] and Zhang et al. [20] among others ([13], [8] and more). It is most heavily beaten by Rodrigues et al. [7] (0.8448 vs 0.8352). The model score a 0.7026 Jaccard score with no available comparison measures. Finally, in terms of specificity, the model outperforms Xu et al [15] and Liu et al [13] and others. It is most significantly beaten by Zhang et al. [20] (0.9981 vs 0.9853) The bar charts which show a visual representation of the comparisons for the CHASE DB1 dataset are provided below.

Fig. 17: Comparison of Accuracy Scores (CHASE_DB1)

Fig. 18: Comparison of Precision Scores (CHASE_DB1)

Fig. 19: Comparison of Recall (Sensitivity) Scores (CHASE_DB1)

Fig. 20: Comparison of F1 Scores (CHASE_DB1)

Fig. 21: Comparison of Specificity Scores (CHASE DB1)

The bar charts shown above (Fig. 17, Fig. 18, Fig. 19, Fig. 20, and Fig. 21) provide a visualization of the performance of the proposed NCU-Net as compared to other state of the art automatic retinal vessel segmentation models across the performance metrics of accuracy, precision, recall (sensitivity), f1-score, Jaccard score and specificity. The comparison provided in the bar charts represent the performance of various model including the proposed model on the CHASE_DB1 Dataset. It is evident from the charts and the table that the proposed model is extremely efficient and performs extremely well on the CHASE_DB1 dataset.

6. CONCLUSION

The developed NC-UNet model displays effective performance over a wide range of metrics such as accuracy, precision, recall, f1 score, specificity and Jaccard score on two publicly available datasets namely DRIVE and CHASE DB1. The proposed model can compete with and exceed the performance of several recently developed state of the art models for retinal vessel segmentation. By utilising the power of the encoder decoder framework provided by the UNet architecture, along with normalised convolution operations, the proposed model can perform highly accurate and robust segmentation of retinal vessel images. The proposed method has the ability for enhanced feature extraction whilst overcoming the various obstacles faced by other proposed models for extracting feature from retinal images. The use of normalised convolution operations as a basis for the model enables it to improve overall segmentation performance and enhance the model's ability to capture the fine details in the retinal vessel structure as well as improving the efficiency of the model by making the model more lightweight through the use of Batch Normalization operation. The effectiveness of the model is furthermore demonstrated by its ability to segment retinal vessels in low contrast images. The obtained results for the DRIVE dataset of accuracy: 0.9657, precision: 0.8740, recall (sensitivity): 0.8271, f1 score: 0.8374 Jaccard score: 0.6641 and specificity: 0.9840 give quantitative evidence of the effectiveness and robustness of the model. Similarly, the performance metrics of the NCU-Net model for the CHASE DB1 dataset which are accuracy: 0.9742, precision: 0.8825, recall (sensitivity): 0.8367, f1 score: 0.8352, Jaccard score: 0.7026 and specificity: 0.9853, also prove the effectiveness of the model and showcase its adaptability to variation in input. In conclusion, the Normalised Convolutional UNet (NC-UNet) holds significant promise to improve retinal disease detection and treatment, which will eventually be advantageous to both patients and medical professionals. Future work can involve optimizing the training parameters to potentially obtain better results and the incorporation of the proposed model into computer-aided diagnosis systems to determine how well it performs on larger and custom datasets and in real-world scenarios.

7. REFERENCES

- [1] P. Xiuqin, Q. Zhang, H. Zhang, and S. Li, "A fundus retinal vessels segmentation scheme based on the improved deep learning u-net model," IEEE Access, vol. 7, pp. 122634–122643, 2019, doi: 10.1109/ACCESS.2019.2935138.
- [2] Z. Yan, X. Yang, and K. T. Cheng, "A Three-Stage Deep Learning Model for Accurate Retinal Vessel Segmentation," IEEE J. Biomed. Heal. Informatics, vol. 23, no. 4, pp. 1427–1436, 2019, doi: 10.1109/JBHI.2018.2872813.
- [3] S. Lian, L. Li, G. Lian, X. Xiao, Z. Luo, and S. Li, "A Global and Local Enhanced Residual U-Net for Accurate Retinal Vessel Segmentation," IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 18, no. 3, pp. 852–862, 2021, doi: 10.1109/TCBB.2019.2917188.
- [4] F. Dong, D. Wu, C. Guo, S. Zhang, B. Yang, and X. Gong, "CRAUNet: A cascaded residual attention U-Net for retinal vessel segmentation," Comput. Biol. Med., vol. 147, no. May, p. 105651, 2022, doi: 10.1016/j.compbiomed.2022.105651.
- [5] K. Sun, Y. Chen, Y. Chao, J. Geng, and Y. Chen, "Biomedical Signal Processing and Control A retinal vessel segmentation method based improved U-Net model," Biomed. Signal Process. Control, vol. 82, no. August 2022, p. 104574, 2023, doi: 10.1016/j.bspc.2023.104574.
- [6] V. Cherukuri, V. K. Bg, R. Bala, and V. Monga, "Deep Retinal Image Segmentation with Regularization under Geometric Priors," IEEE Trans. Image Process., vol. 29, pp. 2552– 2567, 2020, doi: 10.1109/TIP.2019.2946078.
- [7] E. O. Rodrigues, A. Conci, and P. Liatsis, "ELEMENT: Multi-Modal Retinal Vessel Segmentation Based on a Coupled Region Growing and Machine Learning Approach," IEEE J. Biomed. Heal. Informatics, vol. 24, no. 12, pp. 3507–3519, 2020, doi: 10.1109/JBHI.2020.2999257.
- [8] D. Wang, A. Haytham, J. Pottenburgh, O. Saeedi, and Y. Tao, "Hard Attention Net for Automatic Retinal Vessel Segmentation," IEEE J. Biomed. Heal. Informatics, vol. 24, no. 12, pp. 3384–3396, 2020, doi: 10.1109/JBHI.2020.3002985.
- [9] J. Wei et al., "Genetic U-Net: Automatically Designed Deep Networks for Retinal Vessel Segmentation Using a Genetic Algorithm," IEEE Trans. Med. Imaging, vol. 41, no. 2, pp. 292–307, 2022, doi: 10.1109/TMI.2021.3111679.
- [10] C. Shi et al., "Graph-based convolution feature aggregation for retinal vessel segmentation," Simul. Model. Pract. Theory, vol. 121, no. 61806107, p. 102653, 2022, doi: 10.1016/j.simpat.2022.102653.

- [11] Z. Yan, X. Yang, and K. T. Cheng, "Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation," IEEE Trans. Biomed. Eng., vol. 65, no. 9, pp. 1912–1923, 2018, doi: 10.1109/TBME.2018.2828137.
- [12] Y. Ye, C. Pan, Y. Wu, S. Wang, and Y. Xia, "MFI-Net: Multiscale Feature Interaction Network for Retinal Vessel Segmentation," IEEE J. Biomed. Heal. Informatics, vol. 26, no. 9, pp. 4551–4562, 2022, doi: 10.1109/JBHI.2022.3182471.
- [13] Y. Liu, J. Shen, L. Yang, G. Bian, and H. Yu, "ResDO-UNet: A deep residual network for accurate retinal vessel segmentation from fundus images," Biomed. Signal Process. Control, vol. 79, no. P1, p. 104087, 2022, doi: 10.1016/j.bspc.2022.104087.
- [14] Y. Tan, K. Yang, S. Zhao and Y. Li, "Retinal Vessel Segmentation with Skeletal Prior and Contrastive Loss," IEEE Transactions on Medical Imaging, vol. 41, no. 9, pp. 2238–2251, 2022.
- [15] G.-X. Xu and C.-X. Ren, "SPNet: A novel deep neural network for retinal vessel segmentation based on shared decoder and pyramid-like loss," Neurocomputing, vol. 523, pp. 199–212, 2022, doi: 10.1016/j.neucom.2022.12.039.
- [16] Y. Zhou, Z. Chen, H. Shen, X. Zheng, R. Zhao, and X. Duan, "A refined equilibrium generative adversarial network for retinal vessel segmentation," Neurocomputing, vol. 437, pp. 118–130, 2021, doi: 10.1016/j.neucom.2020.06.143.
- [17] D. Li and S. Rahardja, "BSEResU-Net: An attention-based before-activation residual U-Net for retinal vessel segmentation," Comput. Methods Programs Biomed., vol. 205, 2021, doi: 10.1016/j.cmpb.2021.106070.
- [18] H. Wang et al., "Attention-inception-based U-Net for retinal vessel segmentation with advanced residual," Comput. Electr. Eng., vol. 98, no. November 2021, p. 107670, 2022, doi: 10.1016/j.compeleceng.2021.107670.
- [19] Y. Li, Y. Zhang, W. Cui, B. Lei, X. Kuang, and T. Zhang, "Dual Encoder-Based Dynamic-Channel Graph Convolutional Network with Edge Enhancement for Retinal Vessel Segmentation," IEEE Trans. Med. Imaging, vol. 41, no. 8, pp. 1975–1989, 2022, doi: 10.1109/TMI.2022.3151666.
- [20] Y. Zhang, J. Fang, Y. Chen, and L. Jia, "Edge-aware U-net with gated convolution for retinal vessel segmentation," Biomed. Signal Process. Control, vol. 73, no. November 2021, p. 103472, 2022, doi: 10.1016/j.bspc.2021.103472.
- [21] Q. Fu, S. Li, and X. Wang, "MSCNN-AM: A multi-scale convolutional neural network with attention mechanisms for retinal vessel segmentation," IEEE Access, vol. 8, pp. 163926–163936, 2020, doi: 10.1109/ACCESS.2020.3022177.

- [22] Z. Shi et al., "MD-Net: A multi-scale dense network for retinal vessel segmentation," Biomed. Signal Process. Control, vol. 70, no. November 2020, p. 102977, 2021, doi: 10.1016/j.bspc.2021.102977.
- [23] B. Toptaş and D. Hanbay, "Retinal blood vessel segmentation using pixel-based feature vector," Biomed. Signal Process. Control, vol. 70, no. July, 2021, doi: 10.1016/j.bspc.2021.103053.
- [24] Z. Zhu, Q. An, Z. Wang, Q. Li, H. Fang, and Z. Huang, "ILU-Net: Inception-Like U-Net for retinal vessel segmentation," Optik (Stuttg)., vol. 260, no. March, p. 169012, 2022, doi: 10.1016/j.ijleo.2022.169012.
- [25] M. Arsalan, T. M. Khan, S. S. Naqvi, M. Nawaz, and I. Razzak, "Prompt Deep Lightweight Vessel Segmentation Network (PLVS-Net)," IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. XX, no. Xx, pp. 1–9, 2022, doi: 10.1109/TCBB.2022.3211936.
- [26] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. ArXiv. https://doi.org/10.48550/arXiv.1505.04597