

Bayesian Inference

Naive Bayes Models

- Sometimes, a single cause directly influences a number of effects, all of which are conditionally independent, given the cause
- The full joint distribution can be written as

$$P(Cause, Effect_1, ..., Effect_n) = P(Cause) \prod_i P(Effect_i | Cause)$$

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost (Manhattan distance)
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green
- Sensors are noisy, but we know P(Color | Distance)

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)			
0.05	0.15	0.5	0.3			

Prior distribution over ghost location: P(G)

.........

• Let's say this uniform: P(G=(i,j)) = 1/N, with N being the number of grid cells

Figure 2. PacMan board with a hidden ghost.

- Sensor reading model: P(R | G)
 - We know what our sensors do (e.g. P(R=green | G=(0,0))

Figure 3. PacMan board with a hidden ghost.

 We don't know where the ghost is located, so we will update the probability of each position being the ghost location

$$P(G = (i, j) | R_{4,6} = green) = \frac{P(R_{4,6} = green | G = (i, j)) P(G = (i, j))}{P(R_{4,6} = green)}$$

Complete sensor model

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
G	0.05	0.05	0.15	0.30	0.30	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00	1.00	1.00
Υ	0.05	0.15	0.25	0.50	0.55	0.30	0.25	0.25	0.25	0.20	0.15	0.15	0.10	0.05	0.00	0.00	0.00
0	0.15	0.55	0.50	0.15	0.10	0.10	0.10	0.05	0.05	0.05	0.05	0.00	0.00	0.00	0.00	0.00	0.00
R	0.75	0.25	0.10	0.05	0.05	0.05	0.05	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Figure 4. Complete sensor model

Knowledge Check 1

What is the probability of the reading $R_{3,5}$ at row 3, column 5 returning green given that the ghost is located at row 2, column 4?

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
G	0.05	0.05	0.15	0.30	0.30	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00	1.00	1.00
Υ	0.05	0.15	0.25	0.50	0.55	0.30	0.25	0.25	0.25	0.20	0.15	0.15	0.10	0.05	0.00	0.00	0.00
0	0.15	0.55	0.50	0.15	0.10	0.10	0.10	0.05	0.05	0.05	0.05	0.00	0.00	0.00	0.00	0.00	0.00
R	0.75	0.25	0.10	0.05	0.05	0.05	0.05	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Figure 5. Complete sensor model

$$A$$
 $P(R_{3,5} = \text{green} \mid G = (2,4)) = 15\%$

B
$$P(R_{3,5} = green \mid G = (2,4)) = 25\%$$

$$Arr$$
 P(R_{3,5} = green | G = (2,4)) = 30%

$$P(R_{3,5} = green \mid G = (2,4)) = 5\%$$

Figure 6. PacMan board with a hidden ghost

Figure 7. PacMan board with a hidden ghost

Figure 8. PacMan board with a hidden ghost

Figure 9. PacMan board with a hidden ghost

Figure 10. PacMan board with a hidden ghost

Figure 11. PacMan board with a hidden ghost

Figure 12. PacMan board with a hidden ghost

Knowledge Check 2

Can we stop sensing the environment and assume the ghost is located at row 5 column 11?

Figure 13. PacMan board with a hidden ghost

You have reached the end of the lecture.

Image/Figure References

Figure 2-3. PacMan board with a hidden ghost

Figure 4-5. Complete sensor model.

Figure 6-13. PacMan board with a hidden ghost

Figure 14. PacMan board with a hidden ghost. The noisier the sensor, the more measurements are needed to reduce the uncertainty.

Other images were purchased from Getty Images and with permission to use.