ECE5463: Introduction to Robotics

Lecture Note 10: Generalized Force and Statics of Open Chains

Prof. Wei Zhang

Department of Electrical and Computer Engineering
Ohio State University
Columbus, Ohio, USA

Spring 2018

Outline

Wrench

• Statics of Open Chains

Wrench

- Consider a rigid body with body frame and consider a force f acting on a point r on the rigid body
- Define an arbitrary stationary frame $\{a\}$ and let r_a and f_a be the $\{a\}$ -frame representations of r and f vectors. This force create a **torque or moment** $m_a \in \mathbb{R}^3$ in frame $\{a\}$

$$m_a = r_a \times f_a$$

• Similar to twist, we can merge the moment and force into a single 6D vector. This vector is called the **spatial force or wrench**.

$$\mathcal{F}_a = \left[egin{array}{c} m_a \ f_a \end{array}
ight]$$

Wrench-Twist Pair and Power

- ullet Recall that for a point mass with linear velocity v and linear force f. Then we know that the power (instantaneous work done by f) is given by $f \cdot v = f^T v$ $=|f||v|\cdot\cos\theta=v^{T}f$
- This relation can be generalized to spatial force (i.e. wrench) and spatial velocity (i.e. twist)
- Suppose a rigid body has a twist $\mathcal{V}_a = (\omega_a, v_a)$ expressed in $\{a\}$, and a force f is applied at a point r on the rigid body with wrench \mathcal{F}_a . Then the power is simply

$$\mathcal{V}_a \cdot \mathcal{F}_a = \mathcal{V}_a^T \mathcal{F}_a = \omega_a^T m_a + v_a^T f_a$$

Power =
$$\dot{v}_a$$
 · f_a
 $\dot{v}_a = w_a \times v_a + v_a$ $\Rightarrow \dot{v}_a$ · f_a = $(w_a \times v_a)^T f_a + v_a^T f_a$

$$= \int_a^T (w_a \times v_a) + v_a^T f_a$$

$$= w_a^T (v_a \times f_a) + v_a^T f_a$$

$$= w_a^T (v_a \times f_a) + v_a^T f_a$$

$$a^{T}(b \times c) = b^{T}(c \times a)$$

Rotational Power

- Consider a point mass with a pure rotational velocity $\omega_a=\dot{\theta}\hat{\omega}_a$, and a moment m_a , relative to frame $\{a\}$
- Our previous discussion indicates that its power is

$$\omega_a^T m_a = \dot{\theta} \cdot (\hat{\omega}_a^T m_a) \triangleq \dot{\theta} \cdot \tau$$

- $\tau = \hat{\omega}_a^T m_a = m_a^T \hat{\omega}_a$ is the projection of the moment onto the rotation axis, i.e. the effective part of the moment.
- Often times, τ is also referred to as "torque" with the understanding that it is a scalar quantifying the effectiveness of a moment (i.e. vector torque) relative to some rotation axis.

Wrench Representations in Different Frames

- The wrench \mathcal{F}_a can be expressed in another frame $\{c\}$, provided T_{ac} is known
- This is not simply rewriting the coordinates of the vectors m and f in {c}.

ullet We have to change the vector representation of the point r from r_a (vector from the origin of $\{a\}$ to r, expressed in $\{a\}$) to r_c (vector from the origin of {c} to r, expressed in {c})

$$\begin{aligned}
f_{a} &= \begin{bmatrix} m_{a} \\ f_{a} \end{bmatrix}, & \text{we know} & m_{a} &= \gamma_{a} \times f_{a} \\
f_{c} &= \begin{bmatrix} m_{c} \\ f_{c} \end{bmatrix} & f_{c} &= R_{ca} f_{a}, & \gamma_{c} &= R_{ca} \gamma_{a} + \gamma_{ca} \\
&\Rightarrow m_{c} &= \gamma_{c} \times f_{c} &= (R_{ca} \gamma_{a} + \gamma_{ca}) \times (R_{ca} f_{a}) \\
&= (R_{ca} \gamma_{a}) \times (R_{ca} f_{a}) + \gamma_{ca} \times (R_{ca} f_{a}) \\
&= R_{ca} \left(\gamma_{a} \times f_{a} \right) + \Gamma_{ca} R_{ca} \left(\gamma_{ca} f_{a} \right) \\
&= R_{ca} \left(\gamma_{ca} \chi_{ca} f_{a} \right) + \Gamma_{ca} R_{ca} \Gamma_{ca} \int_{R_{ac}} R_{ac} \int_{R_{ac}} R_{ac} \int_{R_{ac}} A d f_{a} \int_{R_{ac}} R_{ca} \int_{R_{ac}} A f_{a} \int_{R_{a$$

Wrench Representations in Different Frames

- The power generated by an $(\mathcal{F}, \mathcal{V})$ pair must be the same regardless of the frame in which it is represented.
- Consider two frames {a} and {c}. We must have

$$\boxed{\mathcal{V}_{c}^{T}\mathcal{F}_{c}} = \mathcal{V}_{a}^{T}\mathcal{F}_{a} = \left(\left[\operatorname{Ad}_{T_{ac}} \right] \mathcal{V}_{c} \right)^{T} \mathcal{F}_{a} = \boxed{\mathcal{V}_{c}^{T} \left(\left[\operatorname{Ad}_{T_{ac}} \right] \right)^{T} \mathcal{F}_{a}}$$

ullet Since the above relation should hold for all possible twist \mathcal{V}_c , we must have

$$\mathcal{F}_c = \left[\operatorname{Ad}_{T_{ac}} \right]^T \mathcal{F}_a$$

• We are often interested in fixed space frame $\{s\}$ and body frame $\{b\}$, we can define a **spatial wrench** \mathcal{F}_s and **body wrench** \mathcal{F}_b . They are related by

$$\mathcal{F}_b = \left[\operatorname{Ad}_{T_{sb}} \right]^T \mathcal{F}_s$$

Example of Wrench

The robot hand is holding an apple with a mass of $0.1 \mathrm{kg}$ in a gravitational field $g = 10 m/s^2$ (rounded to keep the numbers simple) acting downward on the page. The mass of the hand is $0.5 \mathrm{kg}$. What is the force and torque measured by the six-axis forcetorque sensor between the

W/rench

Lecture 10 (ECE5463 Sp18)

Wei Zhang(OSU)

Statics of Open Chains

- Now consider an open-chain robot with n joints. Let $\tau \in \mathbb{R}^n$ be the joint torques vector.
- Applying torques to joints will result in motion of the robot and forces of the end effector. By conservation of power:

Power at the joints=(Power to move the robot)+(Power at the end-effector)

• At static equilibrium (i.e. no power is used to move the robot), we have

$$\underbrace{\boldsymbol{\tau}^T \dot{\boldsymbol{\theta}}}_{\boldsymbol{\tau}, \boldsymbol{\dot{\theta}}, \boldsymbol{+}} = \mathcal{F}_b^T \mathcal{V}_b = \underbrace{\mathcal{F}_b^T J_b(\boldsymbol{\theta})}_{\boldsymbol{\theta}} \dot{\boldsymbol{\theta}}$$

ullet We can pick $\dot{ heta}$ infinitesimally small, but in arbitrary direction in \mathbb{R}^n .

$$\Rightarrow \underbrace{\tau} = J_b^T(\theta) \underbrace{\mathcal{F}_b} \in \mathbb{R}^6$$

$$\in \mathbb{R}^n$$

$$\underbrace{\tau}_{b \times n}^T$$

ullet If we use the fixed space frame, we will have $au = J_s^T(heta) \mathcal{F}_s$

End-Effector Force Analysis

ullet If an external wrench $\mathcal F$ is applied to the end-effector, the joint torques that can generate opposing wrench $-\mathcal F$ is given by

$$\tau = J^{T}(\theta)(-\mathcal{F})$$

$$(6xn)^{T} = (nx6)$$

- What is the end-effector wrench generated by a given joint torque vector τ ?
 - the answer is $\left(J^T(\theta)\right)^{-1} \tau$ provided $J^T(\theta)$ is invertible
 - If $J^T(\theta)$ is not invertible, the problem is not well defined.
 - An interesting case is when $J^T(\theta)$ has a nontrivial null space:

$$Null(J^{T}(\theta)) = \{ \mathcal{F} \in \mathbb{R}^6 : J^{T}(\theta)\mathcal{F} = 0 \}$$

- The wrench that lies in the null space causes no torques, i.e., the balance equation is satisfied with $\tau=0$; the resisting forces are supplied completely by the robot's mechanical structure.

Example of Statics of Open Chains

What are the wrenches that can be resisted by the manipulator with $\tau = 0$?

RPR:

By our discussion from last stide. the wrench that can be resisted with T=0 lie in the Mul (Jb (0))

(onsider the 0=0 (ase:
$$\Rightarrow J_b(0) = [B_1, B_2, B_3]$$
)
$$B_3 = (W_{b3}, V_{b3}), \quad W_{b3} = (0,0,1), \quad Q_{b3} = (0,-L_30) \Rightarrow V_{b3} = -W_{b3} \times Q_{b3} = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} \times \begin{bmatrix} 0 \\ -L \\ 0 \end{bmatrix}$$

$$B_2 = (W_{b2}, V_{b3}), \quad W_{b2} = (0,0,0), \quad V_{b3} = (0,1,0)$$

$$B_1 = (W_{b1}, V_{b1}), \quad W_{b1} = (0,1,0), \quad V_{b1} = [0,0,0)$$

$$\Rightarrow J_b(0) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -L \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow Mull((J_b^T(0)) = Mull(\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -L \\ 0 & 0 & -L \\ 0 & 0 & 0 \end{bmatrix} + d_3 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
Statics of Open Chains

Lecture 10 (ECE5463 Sp18)

Statics of Open Chains

More Discussions

Tab and $\{s\}$ -coordinate as are related by $a_s = \{k_{ab}, \gamma_{ab}\}$ $a_s = \{k_{ab}, \gamma_{ab}\}$

1°: what's velocity of q(+)? It's 'mst qs+)

2°: What's the body velocity ? (Ws, v_s) \iff $\frac{\dot{q}_s(t)}{\dot{q}_s(t)} = w_s \times q_s(t) + v_s$ If we choose the q as the origin of $\{b\}$ \implies $q(t) = P_{sb}(t)$ $\implies \dot{P}_{sb} = w_s \times \gamma_{sb} + v_s \implies v_s = \dot{\gamma}_{sb} + w_s \times (-\gamma_{sb})$

3°: Note: $W_s = R_{sb} W_b$ 4°: q(t) $\frac{ds}{ds}$ $\frac{ds}{ds}$

More Discussions