Chapter 5. Regression

X

Data

Description

Annotations - 0.554 * LSTAT

LinearRegression

- 0.119 * CRIM+ 0.050 * ZN
- + 0.018 * INDUS
- + 2.433 * CHAS
- -16.919 * NOX
- + 3.670 * RM
- -0.002 * AGE
- -1.575 * DIS+ 0.296 * RAD
- -0.012 * TAX
- 0.920 * PTRATIO
- + 0.009 * B
- + 37.281

LinearRegression

- 0.119 * CRIM
- + 0.049 * ZN
- + 2.444 * CHAS
- -16.784 * NOX
- + 3.646 * RM
- -1.579 * DIS
- + 0.292 * RAD
- 0.011 * TAX
- 0.916 * PTRATIO
- + 0.009 * B
- 0.556 * LSTAT
- + 37.258

correlation

correlation: 0.822

Attribute	Coefficient	Std. Error	Std. Coeff	Tolerance	t-Stat	p-Value ↑	Code
LSTAT	-0.556	0.052	-0.432	0.490	-10.661	0	安安安安
RM	3.646	0.443	0.275	0.581	8.236	0.000	安安安
DIS	-1.579	0.199	-0.363	0.823	-7.928	0.000	***
(Intercept)	37.258	5.440	?	?	6.849	0.000	***
PTRATIO	-0.916	0.140	-0.213	0.793	-6.547	0.000	***
NOX	-16.784	3.794	-0.213	0.812	-4.424	0.000	***
RAD	0.292	0.068	0.276	0.769	4.318	0.000	***
ZN	0.049	0.014	0.128	0.877	3.465	0.001	***
TAX	-0.011	0.004	-0.208	0.749	-3.219	0.001	***
CRIM	-0.119	0.039	-0.103	0.843	-3.088	0.002	***
В	0.009	0.003	0.083	0.905	2.953	0.003	***
CHAS	2.444	0.905	0.068	0.991	2.701	0.007	***

Linear Regression Model. We can make an intuitive assessment that increase in *Ad spend* also increases *Sales*. Using the straight line, we may also be able to predict.

Linear Fit for a Binary outcome: Although we can make an intuitive assessment that increase in *Ad spend* increases *Response*, the switch is abrupt – around 0.6. Using the straight line, we cannot really predict outcome.

Logistic Regression Model. The S-shaped curve is clearly a better fit for *most* of the data. We can state *Ad spend* increases *Sales*, **and** we may also be able to predict using this model.

accuracy: 83.33%

	true N	true Y	class precision
pred. N	21	3	87.50%
pred. Y	2	4	66.67%
class recall	91.30%	57.14%	

accuracy: 83.33%

	true N	true Y	class precision
pred. N	20	2	90.91%
pred. Y	3	5	62.50%
class recall	86.96%	71.43%	

- Model 1 (Logistic Regression)
- Model 2 (Logistic Regression)
- Model 3 (Logistic Regression)
- Model 4 (Logistic Regression)
- Model 5 (Logistic Regression)
- Model 6 (Logistic Regression)
- Model 7 (Logistic Regression)
- Model 8 (Logistic Regression)
- Model 9 (Logistic Regression)
- Model 10 (Logistic Regression)

Weight Table

Support Vector Table

Kernel Model

Total number of Support Vectors: 100 Bias (offset): -2.291

```
w[BUSAGE] = 0.291
w[DAYSDELQ] = 1.951
```