대 한 민 국 특 KOREAN INDUSTRIAL PROPERTY OFFICE

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Industrial Property Office.

특허출원 2000년 제 7602 호

Application Number

ЫÖ

2000년 02월 17일

Date of Application

CERTIFIED COPY OF 엘지정보통신주식회사 PRIORITY DOCUMENT

Applicant(s)

2000 11

COMMISSIONER

1020000007602 2000/11/2

【서류명】 특허출원서 특허 【권리구분】 【수신처】 특허청장 【참조번호】 0004 【제출일자】 2000.02.17 【발명의 명칭】 파일럿 패턴을 이용한 프레임 동기 확인 및 동기 실패 검 출 방법 【발명의 영문명칭】 Frame synchronization confirmation and out-of synchronization detection method using pilot pattern 【출원인】 【명칭】 엘지정보통신주식회사 【출원인코드】 1-1998-000286-1 【대리인】 [성명] 강용복 【대리인코드】 9-1998-000048-4 【포괄위임등록번호】 1999-057037-3 【대리인】 【성명】 김용인 【대리인코드】 9-1998-000022-1 【포괄위임등록번호】 1999-057038-1 【발명자】 【성명의 국문표기】 송영준 【성명의 영문표기】 SONG, Young Joon 【주민등록번호】 651214-1108619 【우편번호】 431-080

경기도 【주소】 안양시 동안구 호계동 570번지 럭키아파트 101동

903호

【국적】 KR

【취지】 특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대

리인

강용

복 (인) 대리인 김용인 (인)

【수수료】

【기본출원료】 20 면 29,000 원 【가산출원료】 11 면 11.000 원

【우선권주장료】0건0원【심사청구료】0항0원

【합계】 40,000 원

【첨부서류】 1. 요약서·명세서(도면)_1통

【요약서】

[요약]

본 발명은 차세대 이동통신 시스템에 관한 것으로, 특히 광대역 코드 분할 다중 접속 방식(이하, W-CDMA 라 약칭함)의 차세대 이동통신 시스템에서 파일럿 패턴의 상관 특성을 이용한 프레임 동기 확인(synchronization confirmation) 및 동기 실패(out-of synchronization) 검출 방법에 관한 것이다.

이에 대해 본 발명에서는 파일럿 패턴을 이용하는 모든 차세대 이동통신 시스템에서 프레임 동기를 확인하거나 프레임 동기 실패를 검출하는데 가장 큰 장점을 지닌 통일된 판단 기준을 제공하며, 보다 확실한 프레임 동기 확인 및 프레임 동기 실패 검출을 지원하는 프레임 동기 확인 및 동기 실패 검출 방법을 제공한다.

【대표도】

도 9

【색인어】

프레임 동기 확인, 프레임 동기 실패

【명세서】

【발명의 명칭】

파일럿 패턴을 이용한 프레임 동기 확인 및 동기 실패 검출 방법{Frame synchronization confirmation and out-of synchronization detection method using pilot pattern}

【도면의 간단한 설명】

도 1은 3GPP 무선 접속 네트워크(RAN) 규격에 따른 상향링크 전용 물리 채널(DPCH)의 구조를 나타낸 도면.

도 2는 3GPP 무선 접속 네트워크(RAN) 규격에 따른 하향링크 전용 물리 채널(DPCH)의 구조를 나타낸 도면.

도 3은 3GPP 무선 접속 네트워크(RAN) 규격에 따른 하향링크 전용 물리 채널(DPCH) 에서 STTD 엔코딩 원리를 설명하기 위한 도면.

도 4는 3GPP 무선 접속 네트워크(RAN) 규격에 따른 2차 공통제어물리채널(SCCPCH) 의 구조를 나타낸 도면.

도 5a는 $\alpha=2$ 일 경우에 3GPP 무선 접속 네트워크(RAN) 규격의 파일럿 패턴을 이용한 자기상관함수 특성을 나타낸 그래프.

도 5b는 $\alpha=2$ 일 경우에 3GPP 무선 접속 네트워크(RAN) 규격의 파일럿 패턴을 이용한 상호상관함수 특성을 나타낸 그래프.

도 6a는 $\alpha=4$ 일 경우에 3GPP 무선 접속 네트워크(RAN) 규격의 파일럿 패턴을 이용한 자기상관함수 특성을 나타낸 그래프.

도 6b는 $\alpha=4$ 일 경우에 3GPP 무선 접속 네트워크(RAN) 규격의 파일럿 패턴을 이용한 상호상관함수 특성을 나타낸 그래프.

도 7은 본 발명에 적용되는 프레임 동기 확인 임 동기 실패 검출을 위한 자기-상관 기의 구성을 나타낸 도면.

도 8은 본 발명에 적용되는 프레임 동기 확인 및 동기 실패 검출을 위한 상호-상관기의 구성을 나타낸 도면.

도 9는 본 발명에 따른 프레임 동기 확인 및 동기 실패 검출을 위한 상관기 구성을 나타낸 도면.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- <12> 본 발명은 차세대 이동통신 시스템에 관한 것으로, 특히 W-CDMA의 차세대 이동통신 시스템에서 파일럿 패턴의 상관 특성을 이용한 프레임 동기 확인 및 동기 실패 검출 방법에 관한 것이다.
- 최근 3세대 공동 프로젝트(Third Generation Partnership Project; 이하, 3GPP 라 약칭함)에서는 보다 진보된 차세대 이동통신을 위한 전송 채널(Transport channel)과 물리 채널(Physical channel)에 대한 정의 및 이에 대한 설명을 기술하고 있다.
- <14> 물리 채널에는 상향 링크 및 하향 링크에 전용 물리 채널(DPCH : Dedicated

Physical Channel)을 사용하며, 이 전용 물리 채널(DPCH)은 일반적으로 슈퍼 프레임 (Superframes), 무선 프레임(Radio frames) 및 타임 슬롯(Timeslots)의 3개의 계층 구조로 이루어진다.

- 전용 물리 채널(DPCH)은 두 가지 타입이 있는데, 이는 전용 물리 데이터 채널
 (DPDCH)과 전용 물리 제어 채널(DPCCH)이다. 전용 물리 데이터 채널(DPDCH)은 전용 데이터를 전달하기 위한 것이며, 나머지 전용 물리 제어 채널(DPCCH)은 제어 정보를 전달하기 위한 것으로, 제어 정보를 전달하는 전용 물리 제어 채널(DPCCH)은 파일럿 필드
 (Pilot), 전송 포맷 결합 표시자 필드(TFCI), 피이드백 정보 필드(FBI) 및 전송 전력 제어 필드(TPC)와 같은 여러 개의 필드로 구성된다.
- 특히 파일럿 필드(N_{pilot})에는 코히어런트 검출(Coherent detection)을 위한 채널
 추정(channel estimation)을 지원하는 파일럿 비트(또는 심볼)와 프레임 동기를 위한 파일럿 비트(또는 심볼)가 포함되어 있다.
- <17> 특히 차세대 이동통신 시스템의 수신측에서 상기한 파일럿 필드(N_{pilot})의 파일럿 패턴을 이용하여, 프레임 동기를 확인하고 또한 프레임 동기 실패를 검출하는 것이 매우 중요하다.
- <18> 따라서 종래 기술에서는 프레임 동기 확인 및 프레임 동기 실패 검출을 위해 파일 럿 패턴을 이용하여 상관 처리를 수행하였다.
- <19> 그 파일럿 패턴에 대한 상관 결과로부터 프레임 동기 확인 및 프레임 동기 실패 검출을 실시할 때, 기존에는 미리 임계치를 설정해 두도록 하였으며, 각 슬롯 당 산출되는 상관값과 그 임계치를 비교하여 동기 확인 또는 동기 실패를 검출하였다.

스크린데 종래에는 이러한 임계치를 단말기(UE) 또는 기지국(Node B)에 따라 임의로 설정하여 사용하므로, 단말기(UE)나 기지국(Node B)의 제조업체가 다를 경우에는 프레임 동기 확인이나 프레임 동기 실패 검출을 위한 판단 기준이 서로 통일되지 않을 것이 분명하다.

이는 차세대 이동통신 시스템이 추구하는 전세계적인 로밍(Roaming)에 있어 커다란 난점으로 작용할 수 있다. 따라서 프레임 동기 확인이나 프레임 동기 실패 검출을 위한 통일된 판단 기준이 요구되며, 보다 확실하게 프레임 동기를 확인하고 프레임 동기 실패 를 검출할 수 있는 방안이 요구된다.

【발명이 이루고자 하는 기술적 과제】

- 본 발명의 목적은 상기한 점을 감안하여 안출한 것으로, 파일럿 패턴을 이용하는 모든 차세대 이동통신 시스템에서 프레임 동기를 확인하거나 프레임 동기 실패를 검출하는데 가장 큰 장점을 지닌 통일된 판단 기준을 제공하며, 보다 확실한 프레임 동기 확인 및 프레임 동기 실패 검출을 지원하는 프레임 동기 확인 및 동기 실패 검출 방법을 제공한다.
- 상기한 목적을 달성하기 위한 본 발명에 따른 파일럿 패턴을 이용한 프레임 동기 확인 및 동기 실패 검출 방법의 특징은, 특정 패턴의 다수의 파일럿 시퀀스를 수신하는 단계와, 상기 수신된 파일럿 시퀀스들을 제1패턴의 시퀀스와 상관시킨 후 그 상관결과를 출력하는 단계와, 상기 수신된 파일럿 시퀀스들을 제2패턴의 시퀀스와 상관시킨 후 그 상관결과를 출력하는 단계와, 상기 출력된 제1패턴의 시퀀스에 의한 상관결과에 상기 출력된 제2패턴의 시퀀스에 의한 상관결과에 상기 출력된 제2패턴의 시퀀스에 의한 상관결과를 음(-)으로 합산하는 단계와, 상기 합산된 상관결과를 미리 설정된 임계치(β)와 비교하는 단계와, 상기 비교 결과에 따라 수신된 채

널에 대한 프레임 동기 성공 여부를 판단하여, 그 판단 결과를 보고하는 단계로 이루어 진다.

- '24' 바람직하게, 상기 제2패턴의 시퀀스는 상기 제1패턴의 시퀀스를 7비트만큼 순환 쉬 프트(cyclic shift)시키고, 또한 인버젼(inversion)시킨 패턴의 시퀀스이다.
- 또한 상기 합산 단계는 상기 출력된 제1패턴의 시퀀스에 의한 상관결과가 상기 제2패턴의 시퀀스에 의한 상관이 수행되는 동안 일정 슬롯 시간동안 지연된 후 상기 출력된 제2패턴의 시퀀스에 의한 상관결과와 합산된다.
- <26> 특히 상기 임계치(β)는 신호 대 잡음 비율(SNR)에 따라 0 또는 그 이상의 값으로 설정된다.

【발명의 구성 및 작용】

- <27> 이하, 본 발명에 따른 파일럿 패턴을 이용한 프레임 동기 확인 및 동기 실패 검출 방법에 대한 바람직한 일 실시 예를 첨부된 도면을 참조하여 설명한다.
- 본 발명에서는 하나의 결정 변수(Z)를 사용하여 프레임 동기 확인 및 프레임 동기 실패 검출을 실현한다. 이 결정 변수(Z)는 사용되는 파일럿 패턴의 자기상관함수 특성과 상호상관함수 특성을 결합하여 얻어진다.
- <29> 본 발명의 설명에 앞서 적용되는 각 채널 구조 및 그 채널에 대한 여러 정보에 대해 설명한다.
- <30> 도 1은 3GPP 무선 접속 네트워크(RAN) 규격에 따른 상향링크 전용 물리 채널(DPCH)
 의 구조를 나타낸 도면이다.
- <31> 다음 표 1은 상향링크 전용 물리 데이터 채널(DPDCH)의 각 필드 정보를 나타낸 것

이며, 다음 표 2는 상향링크 전용 물리 제어 채널(DPCCH)의 각 필드 정보를 나타낸 것이다.

<32> 【丑 1】

슬롯 포맷 #i	채널 비트 레이트 (kbps)	채널 심볼 레이트 (ksps)	확산인자 (SF)	프레임당 비트수	슬롯당 비 트수	N _{data}
0	15	15	256	150	10	10
1	30	30	128	300	20	20
2	60	60	64	600	40	40
3	120	120	32	1200	80	80
4	240	240	16	2400	160	160
5	480	480	8	4800	320	320
6	960	960	4	9600	640	640

<33> 【班 2】

슬롯 포맷 #i	채널 비트 레이트 (kbps)	채널 심볼 레이트 (ksps)	확산 인자 (SF)	프레임당 비트수	슬롯당 비트수		N _{TPC}	N _{TFCI}	N _{FBI}	프레임당 전 송 슬롯수
0	15	15	256	150	10	6	2	2	0	15
OA	15	15	256	150	10	5	2	3	0	10-14
OB	15	15	256	150	10	4	2	4	0	8-9
1	15	15	256	150	10	8	2	0	0	8-15
2	15	15	256	150	10	5	2	2	1	15
2A	15	15	256	150	10	4	2	3	1	10-14
2B	15	15	256	150	10	3	2	4	1	8-9
3	15	15	256	150	10	7	2	0	1	8-15
4	15	15	256	150	10	6	2	0	2	8-15
5	15	15	256	150	10	5	1	2	2	15
5A	15	15	256	150	10	4	1	3	2	10-14
5B	15	15	256	150	10	3	1	4	2	8-9

<34> 기본적으로 상향링크 전용 물리 채널(DPCH)은 전송 포맷 결합 표시자 필드(TFCI)를 갖는 경우와 전송 포맷 결합 표시자 필드(TFCI)를 갖지 않는 두 가지로 나누어진다.

<35> 상기한 표 2에 보인 바와 같이, 압축 모드에서는 전송 포맷 결합 표시자 필드

(TFCI)를 갖는 전용 물리 제어 채널(DPCCH)의 슬롯 포맷이 변경된다. 즉 압축 모드에서는 표 2에서와 같이 별도의 인덱스(A와 B)가 더해진 두 개의 모드가 더 존재한다. 또한표 2에서 채널 비트와 심볼 레이트는 확산 직전의 레이트이다.

다음의 표 3은 본 발명에 적용된 상향링크 전용 물리 제어 채널(DPCCH)의 파일럿 비트 패턴을 나타낸 것으로, 한 슬롯을 구성하는 파일럿 비트(N_{pilot})가 3, 4, 5 및 6비트인 파일럿 비트 패턴을 나타내었다. 또한 표 4에는 한 슬롯을 구성하는 파일럿 비트(N_{pilot})가 7비트 및 8비트인 경우의 상향링크 전용 물리 제어 채널(DPCCH)의 파일럿 비트 패턴을 나타내었다.

<37> 【班 3】

	3		$N_{pllot} = 4$		N _{pt}	lot E	5		N _{pliot}	= 6	
031311	2	0	高度 海量	3	10 11 112	2	1 3 1 24	0		3	44 3 6
	1	1		1	1 1 1 1	1	11/20	1		1	
0 0	1	1	0 0	1		1		1	2 449	1	9
0 11	1	1		1	108 Jill	1		1		1	
0 0	1	1		1	ag y o	1	0	1	0 0:	1	0 0
	1	1	AU 193	1	17 0	1		1		1	0.00
	1	1		1		1		1		1	
10 h	1	1	超過	1		1		1		1	
	1	1	10.0	1	1 0	1	0.0	1		1	
	1	1	[6] [1][1	10 THE	1		1		1	
	1	1		1	i i	1		1		1	
杨昌直	1	1	e e e	1	0 1	1	log is	1	10 1	1	io e i
11.0	1	1		1	i ja jo	1		1	0.00	1	
	1	1	1 6	1	ii) o	1		1	量。	1	0.0
0.20	1	1	lo los	1	0 0	1		1	510	1	
0 2 0	1	1	01.08	1	0.0	1		1	50 6	1	
			0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 0 0 0 0 0 1 1	0 0 1 1 0 0 1 1 0 0			O	10 10 1	O	10 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0

【丑 4】

	T	N _p	tot =	7					N _{pilot}	= 8			
비트#	0	5	3	44 55	6	0	AL ASS	2	339	4	125 E	6	274
슬롯 #0	1		1	14, 30	1	1		1		1		1	0
1	1	0 0	1	210:40	1	1	0	1	22	1		1	0
2	1		1	MOLECULE.	1	1	0.	1		1	0	1	
3	1		1	0, 0	1	1	0	1	19	1	0	1	0.
4	1		1	0 20	1	1		1	O.	1		1	
5	1		1	1 200	1	1		1		1		1	0
6	1		1	0 0	1	1		1		1		1	TO.
7	1	0.00	1		1	1		1		1	0	1	0
8	1	.0 .11.	1	15, 0	1	1	Ö	1		1		1	10-
9	1		1	Marie 1	1	1		1		1		1	
10	1	,0 - m	1	100	1	1	0	1		1	0	1	115
11	1		1		1	1		1	0	1		1	136
12	1		1	0 0	1	1	1	1		1	94	1	o,
13	1	0 0	1		1	1	0	1	- 2	1		1	
14	1	0. 10	1		1	1	Ŏ.	1		1	i i	1	Witt
		CAN Cit		ZCI MECH			E CTH		C		(Ca)		-C

상기 표 3 및 표 4의 파일럿 패턴에서 전체 파일럿 비트 중 음영 부분이 프레임 동
기를 위해 사용되는 것이며, 이를 제외한 다른 부분의 파일럿 비트는 '1'의 값을 갖는다.
모두 '1'의 비트값을 갖는 종렬 시퀀스는 코히어런트 검출(coherent detection)을 위한
채널 추정(channel estimation)에 사용된다.

다음 도 2는 3GPP 무선 접속 네트워크(RAN) 규격에 따른 하향링크 전용 물리 채널 (DPCH)의 구조를 나타낸 도면이다. 도시된 도 2에서 파라미터 k는 하향링크 전용 물리 채널(DPCH)에서 한 슬롯의 총 비트수를 나타낸다. 이 파라미터 k는 확산인자(SF: Spreading Factor)에 관계하며, 확산인자(SF)=512/2k가 되어 확산인자는 4~512로 결정된다.

<41> 다음 표 5는 하향링크 전용 물리 제어 채널(DPCCH)의 일부 필드 정보를 나타낸 것이다.

<42>【班 5】

仓吳 巫煛 倂	체널 비트 레이트 (kbps)	채널 심불 레이트 (ksps)	확산 인자 (SF)	슬롯당 비트수	DPI H] I	론당 DCII 트수		슬롯당 개의 비	트수	프레임당 전송 술롯수
					Noatet	N _{Data2}	NTPC	NTFCI	N _{ptiot}	
0	15	7.5	512	10	0	4	2	0	4	15
OA	15	7.5	512	10	0	4	2	0	4	8-14
08	30	15	256	20	0	8	4	0	8	8-14
1	15	7.5	512	10	0	2	2	2	4	15
1B	30	15	256	20	0	4	4	4	8	8-14
2	30	15	256	20	2	14	2	0	2	15
2A	30	15	256	20	2	14	2	0	2	8-14
28	60	30	128	40	4	28	4	0	4	8-14
3	30	15	256	20	2	12	2	2	2	15
3A	30	15	256	20	2	10	2	4	2	8-14
3B	60	30	128	40	4	24	4	4	4	8-14
4	30	15	256	20	2	12	2	0	4	15
4A	30	15	256	20	2	12	2	0	4	8-14
4B	60	30	128	40	4	24	4	0	8	8-14
5	30	15	256	20	2	10	2	4	4	15
5A	30	15	256	20	2	8	2	4	4	8-14
5B	60	30	128	40	4	20	4	0	8	8-14
				~						
14	480	240	16	320	56	232	8	8*	16	15
14A	480	240	16	320	56	224	8	16*	16	8-14
148	960	480	8	640	112	464	18	16*	32	8-14
15	960	480	8	640	120	488	8	8*	16	15
15A	960	480	8	640	120	480	8	16*	16	8-14
15B	1920	960	4	1280	240	976	16	16*	32	8-14
16	1920	960	4	1280	248	1000	8	8*	16	15
16A	1920	960	4	1280	248	992	8	16*	16	8-14

- 기본적으로 하향링크 전용 물리 채널(DPCH)은 전송 포맷 결합 표시자 필드(TFCI)를 갖는 경우와 전송 포맷 결합 표시자 필드(TFCI)를 갖지 않는 두 가지로 나누어진다.
- 특히 상기한 표 5에 보인 바와 같이, 압축 모드에서는 일반 모드와 다른 슬롯 포맷을 사용한다. 즉 압축 모드에서는 표 5에서와 같이 별도의 인덱스(A와 B)가 더해진 두 개의 모드가 더 존재한다. 여기서 A형 슬롯 포맷은 전송 시간을 줄이기 위한 방안 (Transmission Time Reduction Method)으로 사용되며, B형 슬롯 포맷은 확산 인자를 줄이기 위한 방안(Spreading Factor Reduction Method)으로 사용된다.
- <45> 하향링크 압축 모드에서 확산 인자를 줄이기 위한 방안(Spreading Factor Reduction Method)으로 B형 슬롯 포맷이 사용되는 경우에는, 전송 전력 제어 필드(TPC)

의 비트수와 파일럿 필드(pilot)의 비트수가 2배로 전송된다. 이 경우 심볼 반복이 사용되는데, 예로써 이들 두 필드의 비트가 일반 모드에서 x_1,x_2,x_3,\ldots,x_x 로 표시한다면, 압축 모드에서는 이에 해당되는 두 필드의 비트가 $x_1,x_2,x_1,x_2,x_3,x_4,x_3,x_4,\ldots,x_x,x_x$ 의 순서로 반복적으로 전송된다.

더음의 표 6은 본 발명에 적용된 하향링크 전용 물리 제어 채널(DPCCH)의 파일럿 심볼 패턴을 나타낸 것으로, 한 슬롯을 구성하는 파일럿 심볼(N_{pilot})이 2, 4, 8 및 16비트인 파일럿 심볼 패턴을 나타내었다.

<47> 【丑 6】

	N _{pilot} = 2	Noilo	. = 4		Npilot	= 8	······				Notto	= 16			
심블#	加壓0개量	0	5-12	0	加山縣	2	3 3	0	題聲	2	N. S.	4		6	376
순못 #0		11		11		11	.¥10	11	11.7	11	10	11		11	
1		11	00	11		11	10	11	00	11	10	11		11	
2	OE .	11	g.	11	.01	11	0	11	101	11	0)	11	10.	11	
3	oo ,	11	NO.	11	100	11	00	11		11	oo	11	301	11	10
4	10 (5	11		11	10	11	01	11		11	71	11	DI.	11	
5	Page 1	11		11		11	⊋10	11		11	10	11		11	
6		11		11	1112	. 11	00	11	Mill	11		11	10	11	
7	108	11	10	11	10	11	g e	11	102	11	-00	11	39	11	i i
8		11	OL.	11	jol.	11	100	11	101	11	10	11	00	11	
9		11	n.	11		11		11	氫	11	Ů,	11	00	11	
10		11	oi.	11	of	11	io.	11	Ot.	11	01.	11		11	310
11	10 👺	11	10	11	10	11	in.	11		11	nr.	11	00	11	10
12		11	6	11	看选	11	00	11		11	00	11	11	11	
13	00	11	.00	11	00	11		11	-00	11		11	3 5	11	- 60
14		11	.00	11	100	11		11		11		11		11	
	C.C.		100		CC		C.C.		CICA		CC		CCC		DAG

생가 표 6의 하향링크 파일럿 패턴에서 전체 파일럿 심볼 중 음영 부분이 프레임 동기를 위해 사용되는 것이며, 이를 제외한 다른 부분의 파일럿 심볼은 '1'의 값을 갖는다. 모두 '1'의 심볼값을 갖는 종렬 시퀀스는 코히어런트 검출(coherent detection)을 위한 채널 추정(channel estimation)에 사용된다.

대응 표 7에는 표 6에 나타낸 파일럿 심볼 패턴에 대해 시공 전송 다이버시티
(Space Time Transmit Diversity; 이하, STTD 라 약칭함)를 고려한 파일럿 심볼 패턴을
나타내었다.

<50> 【丑 7】

		Noilet = 2	N _{pi lot}	= 4		Notited	= 8					N _{pi lot}	= 16			
심불 4	,	MALOR 2	202	1	0	1210	2	E33	0	20.5	2	8,49	4	第5%	6	17.7
슬롯 #	0	101	101%	10	11	500	00	300	11	100	00	至10.0	11	1,00	00	E01
1		****	107	10	11	1	00	O.	11		00	-00	11	10	00	10
2		: 44		10	11	11)	00	0	11		00		11	200	00	
3		, (L)	FOR	10	11	100	00		11		00		11	(C) 4	00	
4		Ç.	Q.F	10	11		00	1	11	10.0	00	147	11		00	
5		0		10	11	ŧΨ	00	TO.	11	C)	00	$\mathcal{A}_{i}^{(i)}(b)$	11	17.4	00	
6		e di		10	11	10	00	10	11		00		11		00	
7	i		QF.	10	11	10	00		11	110	00		11		00	
8		a m	70	10	11	-00E	00	(Q)	11	10)	00		11	2012	00	01
9		e Orac	Ot 1	10	11	O.	00	10	11		00	繁雜	11	0	00	OL
10		Ψ_{α}		10	11	(O)	00		11		00	200 a	11	001	00	10
11		Cyri	9	10	11	100	00	100	11		00		11		00	
12		i ci	100	10	11		00		11	31,3	00		11	110	00	70
13		, il	1	10	11	100	00	1016	11		00	Q.	11	10)-	00	
14		mall back	7200	10	11	2019	00	102	11	100	00	101	11	all su	00	

- <51> 상기한 표 7의 파일럿 심볼 패턴은 STTD 엔코딩에 의해 생성된 파일럿 패턴으로, 도 3에는 STTD 엔코딩 원리를 나타내었다.
- 다음 도 4는 3GPP 무선 접속 네트워크(RAN) 규격에 따른 2차 공통제어물리채널
 (SCCPCH)의 구조를 나타낸 도면이다.
- <53> 도 4에 도시된 2차 공통제어물리채널(SCCPCH: Secondary Common Control Physical Channel)은 순방향 액세스 채널(FACH: Forward Access Channel)과 페이징 채널(Paging Channel)을 전송하기 위해 사용되는 채널이다.
- <54> 다음 표 8은 2차 공통제어물리채널(SCCPCH)의 필드 정보를 나타낸 것이다.

<55> 【丑 8】

슬롯 포맷 #i	채널 비트 레이트 (kbps)	채널 심볼 레이트	확산인자 (SF)	프레임당 비트수	슬롯당 비트수	N _{data}	N _{pilot}	N _{TFCI}
	(корз)	(ksps)	(51)					
0	30	15	256	300	20	20	0	0
1	30	15	256	300	20	12	8	0
2	30	15	256	300	20	18	0	2
3	30	15	256	300	20	10	8	2
4	60	30	128	600	40	40	0	0
5	60	30	128	600	40	32	8	0
6	60	30	128	600	40	38	0	2
7	60	30	128	600	40	30	8	2
8	120	60	64	1200	80	72	0	8*
9	120	60	64	1200	80	64	8	8*
10	240	120	32	2400	160	152	0	8*
11	240	120	32	2400	160	144	8	8*
12	480	240	16	4800	320	312	0	8*
13	480	240	16	4800	320	296	16	8*
14	960	480	8	9600	640	632	0	8*
15	960	480	8	9600	640	616	16	8*
16	1920	960	4	19200	1280	1272	0	8*
17	1920	960	4	19200	1280	1256	16	8*

다음의 표 9는 본 발명에 적용된 2차 공통제어물리채널(SCCPCH)의 파일럿 심볼 패턴을 나타낸 것으로, 한 슬롯을 구성하는 파일럿 심볼(Npilot)이 8비트 및 16비트인 파일
 럿 심볼 패턴을 나타내었다.

<57>

【班 9】

	ſ	Neilot	= 8					Npilot	= 16			
심분 #	0	1	2		0		2	-	4		6	# 7
仓吴 #0	11		11		11		11		11		11	
1	11		11		11		11	100	11		11	- 10°
2	11		11	可	11	55.7	11	OC:	11		11	
3	11		11		11		11	* 100	11	1	11	
4	11		11	-00	11	ilo.	11	z.) (#	11	- TO	11	
5	11		11	70°	11		11		11	. To	11	茅草
6	11		11	00E	11		11		11	30.	11	
7	11		11	靈	11		11	T	11	- 155	11	
8	11	1	11		11		11		11		11	
9	11	CE	11		11		11		11		11	
10	11		11	0	11	流	11		11		11	
11	11		11		11		11		11		11	
12	11		11		11		11		11		11	
13	11		11	行事	11	0	11		11		11	
14	11		11		11		11		11	The second secon	11	

상기 표 9의 하향링크 파일럿 패턴에서 전체 파일럿 심볼 중 음영 부분이 프레임 동기를 위해 사용되는 것이며, 이를 제외한 다른 부분의 파일럿 심볼은 '1'의 값을 갖는 다. 모두 '1'의 심볼값을 갖는 종렬 시퀀스는 코히어런트 검출(coherent detection)을 위한 채널 추정(channel estimation)에 사용된다.

<59> 다음 표 10에는 표 9에 나타낸 파일럿 심볼 패턴에 대해 STTD를 고려한 파일럿 심 볼 패턴을 나타내었다.

<60>

【丑 10】

		N _{pi lot}	= 8					Npilot	~ 16			
심분#	0	100	2	33	0		2	43	4	7	6	
合吳 #0	11	20	00	100	11	00	00		11	N.C.	00	E 00
1	11	900	00		11		00		11	700	00	
2	11		00	100	11		00	W.	11	NO.	00	
3	11		00		11	10 2	00		11		00	鐡
4	11		00		11		00		11		00	
5	11		00		11		00		11		00	
6	11		00		11		00	A)	11		00	
7	11		00		11		00		11		00	
8	11		00		11		00	100	11	- O.	00	题
9	11		00		11		00		11		00	
10	11	题	00	00	11		00		11		00	
11	11		00	三	11		00		11	-102	00	
12	11		00	EUE.	11		00		11		00	
13	11		00		11	亚	00		11		00	
14	11		00	劉原	11		00	西岸	11		00	西湖

61> 상기한 표 10의 파일럿 심볼 패턴은 STTD 엔코딩에 의해 생성된 파일럿 패턴으로, 네트워크측에 다이버시티 안테나가 존재할 경우와 2차 공통제어물리채널(SCCPCH)이 오픈 루프 전송 다이버시티(Open loop transmit diversity)를 사용하여 전송될 경우에, 2차 공통제어물리채널(SCCPCH)의 심볼들은 도 3에 도시된 바와 같이 STTD 엔코딩된다.

<62> 차세대 이동통신 시스템의 수신측에서는 지금까지 나열된 채널들의 파일럿 패턴을 이용하여 프레임 동기를 이루는 것이 매우 중요하다.

(63) 다음 표 11은 상향링크 및 하향링크의 물리 채널에 사용되는 프레임 동기 워드 (frame synchronization words)를 나타내었다.

<64>

【丑 11】

프레임 동기	워드(Frame Synchronization Words)
$C_1 = ($	1 0 0 0 1 1 1 1 0 1 0 1 1 0 0)
$C_2 = (1)^{-1}$	1 0 1 0 0 1 1 0 1 1 1 0 0 0 0)
$C_3 = C_3$	1 1 0 0 0 1 0 0 1 1 0 1 0 1 1)
$C_4 = (0$	0 0 1 0 1 0 0 0 0 1 1 1 0 1 1)
$C_5 = ($	1 1 1 0 1 0 1 1 0 0 1 0 0 0 1)
$C_6 = ($	1 1 0 1 1 1 0 0 0 0 1 0 1 0 0)
$C_7 = ($	1 0 0 1 1 0 1 0 1 1 1 1 0 0 0)
C ₈ = ((0 0 0 0 1 1 1 0 1 1 0 0 1 0 1)

성기한 표 11의 각 파일럿 시퀀스들은 다음 식 1과 같은 자기상관함수
 (auto-correlation function) 특성을 갖는다.

<66> 【수학식 1】

$$R_i(\tau) = \begin{cases} 15, & \tau = 0 \\ -1, & \tau \neq 0 \end{cases}, \quad i = 1, 2, \dots, 8$$

- $^{<\!67>}$ 상기 식 1 에서 $^{R_i(au)}$ 는 파일럿 시퀀스 C_i 의 자기상관함수이다.
- (68) 특히 상기한 표 11의 파일럿 시퀀스들은 다음 식 2와 같은 4개의 클래스(class)로 구분된다.

<69> 【수학식 2】

$$E = \{C_1, C_2\}, F = \{C_3, C_4\}, G = \{C_5, C_6\}, H = \{C_7, C_8\}$$

조 11의 파일럿 시퀀스들을 식 2와 같이 4개의 클래스로 구분할 때, 각 클래스에 속한 시퀀스 쌍들은 다음 식 3과 식 4와 같은 상호상관함수(cross-correlation function) 특성을 갖는다. 이는 각 클래스에서 쌍을 이루는 하나의 시퀀스가 다른 하나의 시퀀스를 7비트만큼 순환 쉬프트(cyclic shift)시키고 또한 인버젼(inversion)시킨

패턴을 가지기 때문이다. 예로써 C_2 는 C_1 을 7비트만큼 순환 쉬프트(cyclic shift)시키고 또한 인버젼(inversion)시킨 시퀀스이다.

<71> 【수학식 3】

$$R_{i,j}(\tau) = \begin{cases} -15, & \tau = 7 \\ 1, & \tau \neq 7 \end{cases}$$

<72> 【수학식 4】

$$R_{j,i}(\tau + 1) = \begin{cases} -15, & \tau = 7 \\ 1, & \tau \neq 7 \end{cases}$$

- <73> 여기서 i,j=1,2,...,8이며, $R_{i,j}(\tau)$ 는 각 클래스(E,F,G,H)의 시퀀스 쌍에 해당되는 두 개의 시퀀스 간 상호상관함수이다.
- 주4> 결국 상기한 식 1의 자기상관함수 특성에 따른 프레임 동기 워드의 적절한 조합에 의해 다음 식 5와 같은 상관 결과를 얻을 수 있으며, 상기한 식 3, 식 4의 상호상관함수 특성에 따라 각 클래스별 파일럿 시퀀tm들을 상호 적절히 조합하여 다음 식 6과 같은 상 과 결과를 얻을 수 있다.

<75> 【수학식 5】

$$\sum_{i=1}^{\alpha} R_i(\tau) = \begin{cases} \alpha \cdot 15, & \tau = 0 \\ -\alpha, & \tau \neq 0 \end{cases}, \quad \alpha = 1, 2, 3, \dots, 8$$

<76> 【수학식 6】

$$\sum_{i=1}^{\alpha/2} (R_{2i-1,2i}(\tau) + R_{2i,2i-1}(\tau+1)) = \begin{cases} -\alpha \cdot 15, & \tau = 7 \\ \alpha, & \tau \neq 7 \end{cases}, \quad \alpha = 2,4,6,8$$

도 5a는 상기한 식 5에서 α=2일 경우에 대한 자기상관결과를 나타낸 것이며, 도
5b는 상기한 식 6에서 α=2일 경우에 동일한 클래스의 파일럿 시퀀스들 간의 상호상관
결과를 나타낸 것이다.

- 또한 도 6a는 상기한 식 5에서 α=4일 경우에 대한 자기상관결과를 나타낸
 것이며, 도 6b는 상기한 식 6에서 α=4일 경우에 클래스 E와 클래스 F에 해당되는 두
 시퀀스 쌍의 파일럿 시퀀스들 간의 상호상관결과를 나타낸 것이다.
- 예로써 도 6a를 통해 알 수 있듯이, 표 11에 나타낸 프레임 동기 워드의 자기상관함수는 슬롯 시간지연이 '0'인 시점(r=0)에서 최대 상관 결과를 나타내며, 슬롯 시간지연이 '0'인 시점(r=0)을 제외한 나머지 슬롯 시간지연 시점인 사이드로브(Sidelobe)에서 최소 상관 결과를 나타낸다. 또한 도 6b를 통해 알 수 있듯이, 표 11에 나타낸 프레임 동기 워드에서 동일 클래스의 각 시퀀스 쌍에 대한 상호상관함수는 슬롯 시간지연의중간 지점(r=7)에서 음(-)의 극성의 최대 상관 결과를 나타내며, 이 슬롯 시간지연의중간 지점(r=7)을 제외한 슬롯 시간지연 시점에서 최소 상관 결과를 나타낸다.
- 《80》 결국 상기에서 설명된 자기상관특성과 상호상관특성을 조합하여 동시에 사용할 경우에는, 프레임 동기 확인 및 프레임 동기 실패 검출에 있어 이중 체크(Double check)가 가능하다. 즉 도 7에 도시된 자기-상관기와 도 8에 도시된 상호-상관기의 출력을 동시에 참조하면 한 프레임에서 이중 체크를 실현할 수 있다.
- <81> 도 7은 본 발명에 적용되는 프레임 동기 확인 임 동기 실패 검출을 위한 자기-상관기의 구성을 나타낸 도면으로, 도 5a나 도 6a에 도시된 형태의 자기상관결과를 이용하여 프레임 단위로 프레임 동기를 확인한다. 이 때는 자기-상관기의 출력을 미리 설정된 양

(+)의 임계치와 비교하여 프레임 동기 확인이 이루어진다.

- < 도 8은 본 발명에 적용되는 프레임 동기 확인 및 동기 실패 검출을 위한 상호~상관기의 구성을 나타낸 도면으로, 도 5b나 도 6b에 도시된 형태의 상호상관결과를 이용하여 프레임 단위로 프레임 동기를 확인한다. 이 때는 상호~상관기의 출력을 미리 설정된 음</p>

 (-)의 임계치와 비교하여 프레임 동기 확인이 이루어진다.
- <83> 이들 도 7 및 도 8의 상관기에서 T_{frame}은 한 프레임 시간을 나타내며, 현재 3GPP 규격에서는 10msec이다.
- 스러나 도 7 및 도 8에 도시된 상관기를 개별적으로 사용하면, 프레임 동기 확인 및 동기 실패 검출에 있어 기존과 별 차이점이 없기 때문에, 본 발명에서는 기본적으로 도 7의 자기-상관기 출력과 도 8의 상호-상관기 출력을 조합하여 프레임 동기 확인 및 동기 실패 검출에 사용한다. 특히 본 발명에서는 다음 식 7에 나타낸 결정 변수(Z)를 사용하여 프레임 동기 확인의 성공 여부를 판단한다.

<85> 【수학식 7】

$$Z = \sum_{i=1}^{n} R_i(0) - \sum_{i=1}^{n/2} (R_{2i-1,2i}(7) + R_{2i,2i-1}(8)), \quad \alpha = 2,4,6,8$$

- 생하 상기한 식 7은 무선 채널 상에 왜곡이 전혀 없음을 전제로 하며, 결정 변수(Z)는 프레임 동기 확인이 성공했는지 또는 실패했는지를 판단하는 기준이다.
- -87> 만약 잡음이 전혀 없는 상태에서 프레임 동기 성공이 확인될 경우에는 결정 변수
 (Z)가 다음 식 8과 같은 값을 갖는다.

<88> 【수학식 8】

$$Z = \alpha/2 \cdot (30 - (-30)) = \alpha \cdot 30$$

〈89〉 식 8의 결정 변수값이 미리 정해진 일정 임계치(β)보다 클 경우에는, 프레임 동기 성공으로 판단한다. 반면에 그 값이 임계치(β)보다 작을 경우에는 프레임 동기 실패로 판단한다.

- 여기서, 임계치(β)는 신호 대 잡음 비율(SNR : Signal to Noise Ratio)에 따라 유연성 있게 설정되어 임의의 값을 가진다. 즉 현재 신호 대 잡음 비율(SNR)이 높으면 임계치(β)를 더 높게 설정하고, 신호 대 잡음 비율(SNR)이 낮아지면 임계치(β)를 더 낮게 설정한다.
- 본 발명에서는 일 예로써 임계치(β)를 '0'으로 설정한다. 이렇게 임계치(β)를 '0'으로 설정하는 이유는 양(+)의 최대 상관값을 나타내는 자기 상관값이 음(-)의 최대 상관값인 상호 상관값보다 작아지는 경우나 음(-)의 최대 상관값인 상호 상관값이 양(+)의 최대 상관값을 나타내는 자기 상관값보다 커지는 경우에 대비한 것으로, 이러한 경우는 극히 드문 매우 열악한 채널 환경에서 발생될 수 있으며, 이 때 임계치(β)를 '0'으로 설정함으로써 프레임 동기가 틀어졌음을 알 수 있도록 한다.
- <92> 다음 도 9에는 상기 식 7의 결정 변수(Z)를 사용하여 프레임 동기를 확인하는데 적당한 본 발명의 장치 구성을 나타내었다.
- <93> 도 9는 본 발명에 따른 프레임 동기 확인 및 동기 실패 검출을 위한 상관기 구성을 나타낸 도면으로, 도 9의 상관기 구성을 참조하여 본 발명에 대해 보다 상세히 설명한 다. 도 9의 상관기 구성은 α=2 인 경우이다.
- <94> 제1상관기(correlator1)(1)와 제2상관기(correlator2)(2)는 수신된 프레임 동기 워드에 대해 자기상관(auto correlation)을 취하며, 제3상관기(correlator3)(3)와 제4상관

기(correlator4)(4)는 수신된 프레임 동기 워드에 대해 상호상관(cross correlation)을 취한다.

- <95> 자기상관출력들인 제1상관기(correlator1)(1)의 출력 R₁(0)와 제2상관기 (correlator2)(2)의 출력 R₂(0)를 합산한 값 'R₁(0)+R₂(0)'과, 상호상관출력들인 제3상관 기(correlator3)(3)의 출력 R_{1,2}(7)와 제4상관기(correlator4)(4)의 출력 R_{2,1}(8)을 합산한 값 'R_{1,2}(7)+R_{2,1}(8)'이 출력되면 결정 변수(Z)가 계산된다.
- 결정 변수(Z)는 상기 합산된 자기상관출력 'R₁(0)+R₂(0)'에 상기 합산된 상호상관출력 'R_{1,2}(7)+R_{2,1}(8)'을 음(-)으로 더함으로써 계산된다. 이는 식 7에 나타낸 바와 같다.
- 이로 인해 본 발명에서는 식 8에 보인 바와 같이 α=2 인 경우에 기존 상관결과보다 2배의 상관값을 얻을 수 있다. 따라서 보다 확실한 프레임 동기 확인이 가능해진다.
- <98> 이후 상기에서 계산된 결정 변수(Z)를 미리 설정된 임계치(β)와 비교한다.
- 아 이 때 만약 결정 변수(Z)가 임계치(β)보다 크면 프레임 동기 성공으로 판단하고, 반면에 결정 변수(Z)가 임계치(β)보다 작으면 프레임 동기 실패로 판단한다. 이후 수신 측은 상기 판단된 결과를 상위 계층에 보고한다.

【발명의 효과】

- <100> 이상에서 설명한 바와 같이 본 발명에서는 다음과 같은 효과를 얻어낼 수 있게 된다.
- <101> 본 발명에서는 파일럿 패턴의 자기상관함수 특성과 상호상관함수 특성을 동시에 고려하여 적절히 결합함으로써, 프레임 동기 확인 및 프레임 동기 실패 검출에 보다 용이하다. 따라서 연속되는 프레임에 대한 동기화가 보다 신속하게 이루어진다는 장점을 가

진다.

- <102> 특히 본 발명의 파일럿 패턴을 이용하는 모든 차세대 이동통신 시스템에서 프레임 동기를 확인하거나 프레임 동기 실패를 검출하는데 있어 보다 확실한 상관출력이 적용되므로, 이를 적절히 이용하면 동일한 파일럿 패턴을 사용하는 시스템에 동일 판단 기준으로 적용시킬 수 있다.
- <103> 이상 설명한 내용을 통해 당업자라면 본 발명의 기술 사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다.
- <104> 따라서, 본 발명의 기술적 범위는 실시 예에 기재된 내용으로 한정하는 것이 아니라 특허 청구 범위에 의해서 정해져야 한다.

【특허청구범위】

【청구항 1】

특정 패턴의 다수의 파일럿 시퀀스를 수신하는 단계와;

상기 수신된 파일럿 시퀀스들을 제1패턴의 시퀀스와 상관시킨 후 그 상관결과를 출력하는 단계와;

상기 수신된 파일럿 시퀀스들을 제2패턴의 시퀀스와 상관시킨 후 그 상관결과를 출 력하는 단계와;

상기 출력된 제1패턴의 시퀀스에 의한 상관결과에 상기 출력된 제2패턴의 시퀀스에 의한 상관결과를 음(-)으로 합산하는 단계와;

상기 합산된 상관결과를 미리 설정된 임계치(β)와 비교하는 단계와;

상기 비교 결과에 따라 수신된 채널에 대한 프레임 동기 성공 여부를 판단하여, 그 판단 결과를 보고하는 단계로 이루어지는 것을 특징으로 하는 파일럿 패턴을 이용한 프레임 동기 확인 및 동기 실패 검출 방법.

【청구항 2】

제 1 항에 있어서, 상기 제2패턴의 시퀀스는 상기 제1패턴의 시퀀스를 7비트만큼 순환 쉬프트(cyclic shift)시키고, 또한 인버젼(inversion)시킨 패턴의 시퀀스임을 특징 으로 파일럿 패턴을 이용한 프레임 동기 확인 및 동기 실패 검출 방법.

【청구항 3】

제 1 항에 있어서, 상기 합산 단계는 상기 출력된 제1패턴의 시퀀스에 의한 상관결과가 상기 제2패턴의 시퀀스에 의한 상관이 수행되는 동안 일정 슬롯 시간동안 지연된

후 상기 출력된 제2패턴의 시퀀스에 의한 상관결과와 합산되는 것을 특징으로 하는 파일 럿 패턴을 이용한 프레임 동기 확인 및 동기 실패 검출 방법.

【청구항 4】

제 1 항에 있어서, 상기 임계치(β)는 신호 대 잡음 비율(SNR)에 따라 0 또는 그이상의 값으로 설정되는 것을 특징으로 하는 파일럿 패턴을 이용한 프레임 동기 확인 및 동기 실패 검출 방법.

【도면】

【도 1】

[도 2]

[도 3]

[도 4]

[도 5a]

 $R_1(\tau)+R_2(\tau)$

【도 5b】

 $R_{1,2}(r)+R_{2,1}(r+1)$

[도 6a]

 $R_1(\tau) + R_2(\tau) + R_3(\tau) + R_4(\tau)$

[도 6b]

 $R_{1,2}(\tau)+R_{2,1}(\tau+1)+R_{3,4}(\tau)+R_{4,3}(\tau+1)$

[도 7]

[도 8]

[도 9]

