SPECT reconstruction with STIR

B. Marti Fuster, C. Falcon, C. Tsoumpas, L. Livieratos, P. Aguiar, A. Cot, D. Ros and K. Thielemans

Anaheim, 1st November 2012

$$p_j = \sum_i A_{ji} \, q_i$$

$$p_j = \sum_i A_{ji} \, q_i$$

$$p_j = \sum_i A_{ji} q_i$$

$$p_j = \sum_i A_{ji} q_i$$

$$p_j = \sum_i A_{ji} \, q_i$$

$$p_j = \sum_i A_{ji} q_i$$

PSF tends to a Gaussian distribution

PSFs are spatially variant

2D-PSF correction

PSF tends to a Gaussian distribution

PSFs are spatially variant

2D-PSF correction

PSF tends to a Gaussian distribution

PSFs are spatially variant

2D-PSF correction

PSF tends to a Gaussian distribution

PSFs are spatially variant

2D-PSF correction

PSF tends to a Gaussian distribution

PSFs are spatially variant

2D-PSF correction

3D-PSF correction

Requirements for PSF correction:

Characterization of each collimator

Parallel:

$$\sigma = A \cdot d + B$$

ECAM (SIEMENS) Infinia Hawkeye (GE Healthcare) Elscint

Fan-beam collimator:

$$\sigma$$
 (d,θ)

Elscint

D. Pareto et al. Geometrical Response Modeling in Fan-beam collimators. A numerical simulation, $Trans.\ Nucl.\ Sci.,\ 49$ (February 2002), pp. 17 – 24.

STIR/SimSET/ASIM User's Meeting

Generation of transition matrices

ATTENUATION MODELLING

$$A_{ji} = a_{ji}^{PSF} \cdot a_{ji}^{att}$$

$$a_{ji}^{att} = \exp(-\sum_{k} \mu_{k} d_{k})$$

Simple correction

Full correction

Requirements:

- reconstruction dimensions
- μ_k in cm⁻¹

$$A_{ji} = a_{ji}^{PSF} \cdot a_{ji}^{att}$$

$$a_{ji}^{att} = \exp(-\sum_{k} \mu_{k} d_{k})$$

Simple correction

Full correction

Requirements:

- reconstruction dimensions
- μ_k in cm⁻¹

$$A_{ji} = a_{ji}^{PSF} \cdot a_{ji}^{att}$$

$$a_{ji}^{att} = \exp(-\sum_{k} \mu_{k} d_{k})$$

Simple correction

Full correction

Requirements:

- reconstruction dimensions
- μ_k in cm⁻¹

$$A_{ji} = a_{ji}^{PSF} \cdot a_{ji}^{att}$$

$$a_{ji}^{att} = \exp(-\sum_{k} \mu_{k} d_{k})$$

Simple correction

Full correction

Requirements:

- reconstruction dimensions
- μ_k in cm⁻¹

$$A_{ji} = a_{ji}^{PSF} \cdot a_{ji}^{att}$$

$$a_{ji}^{att} = \exp(-\sum_{k} \mu_{k} d_{k})$$

Simple correction

Full correction

Requirements:

- reconstruction dimensions
- μ_k in cm⁻¹

$$A_{ji} = a_{ji}^{PSF} \cdot a_{ji}^{att}$$

$$a_{ji}^{att} = \exp(-\sum_{k} \mu_{k} d_{k})$$

Simple correction

Full correction

Requirements:

- reconstruction dimensions
- μ_k in cm⁻¹

$$A_{ji} = a_{ji}^{PSF} \cdot a_{ji}^{att}$$

$$a_{ji}^{att} = \exp(-\sum_{k} \mu_{k} d_{k})$$

Simple correction

Full correction

Requirements:

- reconstruction dimensions
- μ_k in cm⁻¹

$$A_{ji} = a_{ji}^{PSF} \cdot a_{ji}^{att}$$

$$a_{ji}^{att} = \exp(-\sum_{k} \mu_{k} d_{k})$$

Simple correction

Full correction

Requirements:

- reconstruction dimensions
- μ_k in cm⁻¹

$$A_{ji} = a_{ji}^{PSF} \cdot a_{ji}^{att}$$

$$a_{ji}^{att} = \exp(-\sum_{k} \mu_{k} d_{k})$$

Simple correction

Full correction

Requirements:

- reconstruction dimensions
- μ_k in cm⁻¹

$$A_{ji} = a_{ji}^{PSF} \cdot a_{ji}^{att}$$

$$a_{ji}^{att} = \exp(-\sum_{k} \mu_{k} d_{k})$$

Simple correction

Full correction

Requirements:

- reconstruction dimensions
- μ_k in cm⁻¹

$$A_{ji} = a_{ji}^{PSF} \cdot a_{ji}^{att}$$

$$a_{ji}^{att} = \exp(-\sum_{k} \mu_{k} d_{k})$$

Simple correction

Full correction

Requirements:

- reconstruction dimensions
- μ_k in cm⁻¹

Generation of transition matrices

Matrix Parameters File

- Parameters are read and assigned sequentially
- % is a comment
- # and % are comments delimiters
- Double vertical bar indicates encoded options.
- Double slash into braces to separate encoded options. Encoded options are case sensitive.
- Single slash indicates alternatives depending on previous parameters.

SIMULATION DATA

SimSET Simulation

SRL-UB matrices

Transition matrices:

- no Correction
- PSF Correction
- Attenuation Correction
- PSF and Attenuation Correction (8 subsets -128x128x64 -3.32x3.32x3.32 mm³)

STIR reconstruction

OSEM/OSSPS (8 subsets - 10 it \approx 80 it)

- no Correction
- PSF Correction
- Attenuation Correction
- PSF and Attenuation Correction

Activity/Attenuation map:

- 256x256x200
- 1x1x1 mm³

Simulation parameters:

- Infinia Hawkeye GE
- Rotation radius = 15 cm
- Planar detector
- $2.5 \cdot 10^7$ counts

SIMULATION DATA

SimSET Simulation

SRL-UB matrices

Transition matrices:

- no Correction
- PSF Correction
- Attenuation Correction
- PSF and Attenuation Correction $(8 \text{ subsets } -128 \times 128 \times 64 -3.32 \times 3.32 \times 3.$

STIR reconstruction

OSEM/OSSPS (8 subsets - 10 it \approx 80 it)

- no Correction
- PSF Correction
- Attenuation Correction
- PSF and Attenuation Correction

SimSET

STIR with Att + PSF

SIMULATION DATA

SimSET Simulation

SRL-UB matrices

Transition matrices:

- no Correction
- PSF Correction
- Attenuation Correction
- PSF and Attenuation Correction (8 subsets -128x128x64 -3.32x3.32x3.32 mm³)

STIR reconstruction

OSEM/OSSPS (8 subsets - 10 it \approx 80 it)

- no Correction
- PSF Correction
- Attenuation Correction
- PSF and Attenuation Correction

SIMULATION DATA

OSEM(it 5) No C PSF C Att C Att + PSF C

STIR/SimSET/ASIM User's Meeting

SIMULATION DATA

 C_v (Coefficient of variation)= σ/μ

OSEM it 80

 $C_v=6.8\%$

OSSPS it 80

 $C_v=2.5\%$

ACQUISITION DATA

Hawkeye Rec

SRL-UB - STIR

SIMULATION DATA

Attenuation correction effect:

Linear profiles:

- no Correction
- Attenuation Correction

STIR/SimSET/ASIM User's Meeting

SIMULATION DATA

PSF correction effect:

Circular profiles:

- no Correction
- PSF Correction

STIR/SimSET/ASIM User's Meeting

SIMULATION DATA

PSF correction effect:

Circular profiles:

- no Correction
- PSF Correction

Contrasts:

- no Correction
- PSF Correction

$$CON = \left| \frac{A_i - A_{ref}}{A_i + A_{ref}} \right|$$

Cylinder 4 (3mm)

Cylinder 5 (4mm)

Cylinder 6 (5mm)

0.71

0.80

0.84

0.91

0.91

0.92

0.75

0.84

0.89

0.93

0.92

0.93

Possible Extensions

Small animal reconstruction

Pin-hole reconstruction

Scatter correction using SimSET

Absolute quantification in dopaminergic A. Cot, et al. neurotransmission SPET imaging using a monte carlo-based scatter correction and fully 3D reconstruction, J. Nucl. Med., (46)(2005), pp. 1497–1504.

MIP Mouse SPECT

Parallel collimator

