МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені Тараса Шевченка ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ Кафедра програмних систем і технологій

Дисципліна «**Алгоритми та структури даних**»

Лабораторна робота № 2 «Бінарне дерево пошуку. Червоно-чорне дерево. АВЛ-дерево.»

Виконав:	Шевчук Максим Юрійович	Перевірив:	Бичков Олексій Сергійович
Група	ІΠ3-12/1	Дата перевірки	
Форма навчання	денна	Оцінка	
Спеціальність	121		

2022

Умова задачі

Використовуючи структуру даних: бінарне дерево пошуку, червоно-чорне дерево та АВЛ дерево реалізувати такі алгоритми:

- 1. Вставка вузла в дерево
- 2. Видалення вузла із дерева
- 3. Перефарбування двох однакових вузлів братів у протилежний колір
- 4. Лівий, правий повороти

Аналіз задачі

Для виконання роботи необхідно ознайомитись с теорією стосовно побудови бінарних дерев, оскільки саме вони ϵ основою для подальшої побудови **Червоно-Чорного дерева**, та **АВЛ-дерева**.

Всі ці види дерев використовуються при необхідності зберігання значних масивів даних у відсортованому вигляді, без необхідності постійно проводити їх сортуванням. Ця задача покладається на структуру даних Бінарне Дерево Пошуку. Червоно-Чорне дерево и АВЛ-дерево мають таке саме завдання, але їх також, алгоритми, що в них закладені мають ціль пришвидшити пошук даних в цих структурах за допомогою їх балансування, таким чином зменшуючи час пошуку, незалежно від того, шукаємо ми елемент в правому чи в лівому піддереві.

Структура основних вхідних та вихідних даних

Вхідні дані, якими заповнюються дерева ε цілі числа 1-1000. Це ε найгіршим випадком для цих дерев, оскільки, відповідно до алгоритму цих дерев, ми отримаємо одне велике піддерево, яке по своїй структурі буде нагадувати звичайний масив, і час пошуку в ньому буде довгий.

Цю проблему можуть вирішити лише Червоно-Чорне дерево та АВЛ-дерево, завдяки своїм алгоритмам балансування.

На виході ми отримаємо структуру даних Бінарне дерево/Червоно-Чорне дерево/АВЛ-дерево, де всі наші вхідні дані будуть відсортовані.

Алгоритм розв'язання задачі

Для початку необхідно вставити елементи відповідно до правил вставки у бінарне дерево пошуку

- 1. При вставці у Червоно-Чорне дерево, за необхідності, виконуютсья повороти та перефарбування. Середня кількість поворотів при найгіршому варіанті вставки 3.
- 2. При вставці у АВЛ-дерево, за необхідності, виконуються великі та малі повороти.

Текст програми

Текст програми наявний на GitHub

Набір тестів

Набір тестів - послідовність чисел від 1 до 1000.

В результаті, була отримана така порівняльна таблиця

Структура	Операція	Час
Бінарне дерево пошуку	Додавання 1000	0066326мс
	елементів	
Червоно-Чорне дерево	Додавання 1000	0006888мс
	елементів	
АВЛ-дерево	Додавання 1000	0156684мс
	елементів	
Бінарне дерево пошуку	Пошук максимального	<mark>0001557мс</mark>
	елемента	
Червоно-Чорне дерево	Пошук максимального	0001212мс
	елемента	
АВЛ-дерево	Пошук максимального	0005016мс
	елемента	
Бінарне дерево пошуку	Видалення всіх	0006334мс
	елементів	
АВЛ-дерево	Видалення всіх	0119343мс
	елементів	

Висновок

В результаті виконання лабораторної роботи №2 було реалізовано такі структури даних: Бінарне дерево пошуку, Червоно-Чорне дерево, АВЛ-дерево та були написані алгоритми, що забезпечують їх роботу.

Було отримано наступний результат: бінарне дерево пошуку показує середню часову ефективність при виконанні різноманітних операцій. Найкраще себе показує червоно-чорне дерево, яке має виграш у часі при будь-якій операції. Найгірше себе показує АВЛ-дерево.