de:code 2019 DP01

Microsoft MVP for Data Platform

小澤真之

はじめに

本セッションは CTP 3.0 をベースとした内容となります。 Preview バージョンのため、製品出荷時には一部内容が異なっている可能性があります。 あらかじめご了承ください。

Introduction

SQL Server 2019 Big Data Cluster

- SQL Server 2019
 - 統合データプラットフォーム

- Database Engine
- Analysis Services
- Integration Services
- Reporting Services
- Machine Learning Services

- Big Data Cluster (BDC)
 - ・スケーラブルな大規模データ分析基盤

- SQL Server 2019 on Linux (Container)
- Kubernetes → 実行基盤
- HDFS → データストア
- Spark → データ操作

SQL Server 2019 新機能 (CTP 3.0)

PolyBase

- 新しいコネクタによる接続先の強化
 - SQL Server / Oracle / Teradata / MongoDB
 - ODBC

SQL Server on Linux

- レプリケーションのサポート
- Active Directory 統合の強化
- 3rd パーティーの AD プロバイダーによる OpenLDAP のサポート
- 分散トランザクション (MSDTC) のサポート
- コンテナーレジストリの変更
- RHEL の SQL Server on Linux のコンテナー

セキュリティ

- データの検出と分類
- Always Encrypted with Secure Enclaves
- 脆弱性評価
- SQL Server 構成マネージャーによる証明書管理
- 透過的データ暗号化 (TDE) による暗号化の一時停止/再開

高可用性

- AlwaysOn 可用性グループ on Kubernetes
- 同期レプリカの台数増加 (3 台 → 5 台)
- Read/Write Intent による任意のサーバーから プライマリへのリダイレクト

- データ仮想化
 - 新しい PolyBase を使用したデータ仮想化
- Data Lake / データ統合
 - HDFS を使用したスケーラブルストレージ
 - SQL Server Storage Pool
 - HDFS の階層化 (ADLS Gen2 / AWS S3)
- データマート
 - SOL Server Data Pool
- Spark を使用したデータ分析
- Azure Data Studio を使用したデータ分析
- R / Python / SSIS ジョブのアプリケーションの展開

Unicode

- char / varchar の UTF-8 サポート
 - UTF-8 をサポートした新しい照合順序(UTF8)
 - UTF-8 照合順序のレプリケーションサポート

SQL グラフ

- エッジ制約/カスケード削除
- MERGE DML で MATCH 句をサポート
- 派生テーブル / ビューの利用をサポート

Machine Learning

- SOL Server on Linux で ML Services をサポート
- 外部言語拡張による Java のサポート
- 入力データのパーティショニング

パフォーマンス

- クラスター化列ストアインデックスのオンライン操作
- 再開可能なオンラインインデックス作成
- Persistent Memory (PMEM) のサポート強化
 - Enlightened I/O による PMEM のアクセス
 - Hybrid buffer pool の構成として利用
- 高速データベース復旧
- 間接チェックポイントのスケーラビリティの向上
- メモリ最適化 tempdb メタデータ

Intelligent Query Processing

- 行ストアのバッチモード
- 行モード Memory Grant Feedback
- テーブル変数の遅延コンパイル
- 概算の COUNT DISTINCT
- スカラー UDF のインライン化

トラブルシューティング

- データの切り捨てメッセージの改善
- 軽量化クエリプロファイリングの既定での有効化
- 列ストアインデックスの圧縮効果の試算
- ページ情報の情報取得の改善
- 統計情報の同期的更新によるブロッキングの把握
- クエリストアのキャプチャポリシー

SQL Server Analysis Services

- 表形式モデルで計算グループによるデータ操作
- 表形式モデルで多対多のリレーションシップ
- メモリ設定のリソースガバナンス

SQL Server 2019 は、保有する"**全てのデータ**"を情報 / 資産として活用

全てのデータを統合

比類のないパフォーマンスで 全てのデータに対して 統一された方法でアクセス

全てのデータを管理

大小のデータを 容易かつ 安全に管理

全てのデータを分析

全てのデータを活用して インテリジェントなアプリケーションと AI を構築

統合された展開 / ガバナンス / ツールによる、シンプルな管理と分析

SQL Server 2019 のビッグデータの活用と分析

データ仮想化

データの移動やレプリケーションを行うことなく、複数のソースの データを組み合わせる

計算 / キャッシュをスケールアウトし、パフォーマンスを向上

管理された SQL Server / Spark / Data Lake

大量のデータを Data Lake に格納し、SQL または、Spark を使用して簡単にアクセス

管理サービス / 管理ポータル / 統合セキュリティによる容易な 管理

完全な AI プラットフォーム

様々なソースのデータを統合し、モデルの訓練に簡単に 提供できる

データ取り込み / 準備 / 訓練 / 保存 / 作成したモデルの操作を一つのシステムで実施

SQL Server 2019 Big Data Cluster

SQL Server 2019 Big Data Cluster Components

Big Data Cluster の展開

- Kubernetes (v1.10 以降) の環境さえあれば「mssqlctl」 ツールを実行するだけで容易に展開を行うことができる
 - Azure Kubernetes Service (AKS) / kubeadm / minikube の環境については、展開のためのテンプレートが提供されている
 - aks-dev-test.json / kubeadm-dev-test.json / minikube-dev-test.json の 3 種類のテンプレートが標準で提供されており、テンプレートをカスタマイズすることも可能
 - 次のコマンドを実行することで Kubernetes 上に Big Data Cluster が展開される

展開用コマンド

mssqlctl cluster create --config-file <JSON ファイル> --accept-eula yes

Cluster Administration Portal

- 専用の管理ポータルが組み込まれている
 - Pod の稼働状況 (Administration Portal)
 - ホストノード / SQL Server のメトリクスの確認 (Grafana + InfluxDB)
 - ログの確認 (Kibana + Elastic Search)

Azure Data Studio

- Big Data Cluster の操作は Azure Data Studio で実施できる
 - Azure Data Studio = クロスプラットフォームで動作するデータベースツール
 - SQL Server 2019 向けの拡張機能を追加することで Big Data Cluster の操作が可能
 - Master Instance に接続することで次の操作が可能
 - Master Instance に対してSQL の実行
 - Big Data Cluster の HDFS の操作
 - Spark ジョブのサブミット / ジョブの実行状況確認
 - Notebook の起動 (SQL / PySpark / Scala / SparkR / Python3)
 - 外部テーブルの作成

Demo: Big Data Cluster Management

Big Data Cluster の特徴

- 1. Data Virtualization
- 2. Data Store
- 3. Integrated Data Access

Data Virtualization

外部データを統合するための二つの方法

データ移動 (ETL / ELT)

データ移動は、あるソースから、別のソースにデータの移動または、 コピーを行うことで、クエリから利用をする

→ データのリアルタイム性が低く、洞察の正確性が低下する

データ仮想化

データ仮想化は「**データの複製または移動をすることなく**」クエリで データを統合

→データを抽象化し、最新のデータを使用することで洞察の正確性が向上

	データ移動	データ仮想化
コスト	重複するストレージコスト データパイプラインを構築 / 維持するための作業コスト	ストレージコストの削減 データ統合のための開発時間の短縮
速度	統合されたデータが使用可能となるまでに遅延が発生 データのレイテンシーの増加	迅速な繰り返しと、タイムリーなデータによるプロトタイプの作成
セキュリティ	攻撃対象の増加 一貫性のないセキュリティモデル	攻撃対象の削減 一貫性のあるセキュリティモデル
品質	ETL パイプラインを作成することによるデータ品質の問題	最新で正確なデータ
コンプライアンス	データのガバナンスに対しての問題の増加	容易なデータのガバナンスの実現

SQL Server をデータ統合のためのハブとして利用

- リレーショナルデータと、非リレーショナルデータを容易に 組み合わせて活用することができる
 - 「PolyBase」を使用することで、外部データをテーブルとしてアクセス可能
 - SQL Server on Windows の PolyBase では、ODBC による外部ソース接続が可能

参考) PolyBase とリンクサーバーの違い

- PolyBase とリンクサーバーには下表のような違いがある
 - PolyBase は大量の外部データの読み取りに適している
 - リンクサーバーはスケールアウトできないが PolyBase はスケールアウトが可能
 - ・ リンクサーバーは少数の外部データの読み取り / 書き込みに適している

	PolyBase	リンクサーバー
オブジェクトスコープ	データベース スコープ オブジェクト (ユーザーデータベースに含まれるオブジェクト)	インスタンス スコープ オブジェクト (システムデータベースに含まれるオブジェクト)
接続方式	ODBC ドライバーを利用 (ODBC ドライバーをネイティブに利用)	OLEDB プロバイダーを利用 (ODBC ドライバーを OLEDB プロバイダー経由で利用)
操作方法	読み取り操作のみサポート (Hadoop / Data Pool に対してのみ Insert 操作が可能)	読み取りと書き込みの両方をサポート
スケーラビリティ	リモートデータソースへのクエリ実行をスケールアウト可能	リモートデータソースへのクエリ実行をスケールアウト不可
プッシュダウン	述語のプッシュダウンをサポート	述語のプッシュダウンをサポート
認証方式	基本認証 (SQL Server 認証) のみ	基本 / 統合認証
シナリオ	大量の行を処理する分散クエリに適している	単一または少数の行を取得する OLTP クエリに適している
トランザクション	外部表を使用するクエリは分散トランザクションに参加できない	分散クエリは分散トランザクションに参加できる

Demo: Data Virtualization

Data Store

Big Data Cluster 内のデータストア

- SQL Server Master Instance
 - 従来の SQL Server の DB をホストすることができる
- Data Plane 上の分散データストア
 - Storage Pool : HDFS を使用した Data Lake の作成
 - 各 Storage Pool の HDFS に分散してデータを格納
 - HDFS に外部ストレージをマウント (HDFS 階層化)
 - Azure Data Lake Storage (ADL) Gen2 / AWS S3 をマウント
 - Data Pool : Scale-out Data Mart へのデータ取り込み / キャッシュ
 - 各 Data Pool の SQL Server のデータベースに分散してデータを格納
 - テーブルには列ストアインデックスが設定され、列指向で圧縮される

Distributed Data Store

- Data Plane の 2 種類のデータストアは分散データストアとなる
 - 各データストアは、複数の Pod に分散してデータを格納

Storage Pool: Data Lake

Data Pool: Scale-out Data Mart

Demo: Data Store

- Storage PoolData Pool

統合されたデータへのアクセス

- Master Instance を介して様々なデータにアクセスが可能
 - SQL Server がアクセスできるデータ = 分析に使用できるデータ
 - ML Services の分析対象として様々なデータを活用できる
 - R / Python / Java と PolyBase を組み合わせたデータ分析
- Notebook を使用したデータ分析
 - Spark Platform を使用したデータの分析
 - PySpark / Scala / SparkR によるデータ分析
 - Spark ジョブによるデータ操作
- アプリケーションを展開することで API 経由でデータを提供
 - Python / R / SSIS / MLeap のアプリケーションを Big Data Cluster に展開

Integrated Data Access

訓練済み モデルの デプロイ 学習内容の提供

分析 活用

Demo: Integrated Data Access

SQL Server 2019 のビッグデータの活用と分析

データ仮想化

データの移動やレプリケーションを行うことなく、複数のソースの データを組み合わせる

計算 / キャッシュをスケールアウトし、パフォーマンスを向上

管理された SQL Server / Spark / Data Lake

大量のデータを Data Lake に格納し、SQL または、Spark を使用して簡単にアクセス

管理サービス / 管理ポータル / 統合セキュリティによる容易な 管理

完全な AI プラットフォーム

様々なソースのデータを統合し、モデルの訓練に簡単に 提供できる

データ取り込み / 準備 / 訓練 / 保存 / 作成したモデルの操作を一つのシステムで実施

Appendix

参考資料

- What you'll love about SQL Server 2019
 - https://www.microsoft.com/en-us/sql-server/sql-server-2019
- Frequently asked questions
 - https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-faq?view=sql-server-ver15
- Microsoft SQL Server 2019 and Big Data—a technical white paper
 - https://info.microsoft.com/ww-landing-SQL-Server-2019-Big-Data-WhitePaper.html
- What are SQL Server big data clusters?
 - https://docs.microsoft.com/en-us/sql/big-data-cluster/big-data-cluster-overview?view=sqlallproducts-allversions
- Workshop: Microsoft SQL Server big data clusters Architecture
 - https://github.com/Microsoft/sqlworkshops/tree/master/sqlserver2019bigdataclusters
- SQL Server big data clusters
 - https://github.com/Microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-cluster
 - https://www.slideshare.net/TravisWright4/microsoft-ignite-2018-sql-server-2019-big-data-clusters-deep-dive-session
- Deploying apps for on-premises and hybrid ML+AI on SQL Server 2019 big data clusters
 - https://techcommunity.microsoft.com/t5/Microsoft-Build-Content/Deploying-apps-for-on-premises-and-hybrid-ML-Al-on-SQL-Server/m-p/476863
- Introduction to SQL Server 2019
 - https://info.microsoft.com/ww-landing-introduction-to-sql-server-2019-video.html?wt.mc_id=undefined
- Three Ways to Gain Insights with SQL Server 2019 Big Data Clusters
 - https://info.microsoft.com/webinar-three-ways-to-gain-insights-with-sql-server-2019-big-data-clusters-ondemandregistration.html?lcid=en-us
- SQL 2019 Big Data Architecture Overview
 - https://sqlbits.com/Sessions/Event18/SQL_2019_Big_Data_Architecture_Overview
- BRK2229 The future of SQL Server and big data
 - ${\color{blue} \underline{ https://myignite.techcommunity.microsoft.com/sessions/65956}}$
- BRK4021 Deep dive on SQL Server and big data
 - https://myignite.techcommunity.microsoft.com/sessions/65967
- BRK3097 Deploying apps for on-premises and hybrid ML+AI on SQL Server 2019 big data clusters
 - https://mybuild.techcommunity.microsoft.com/sessions/76984?source=sessions

© 2019 Microsoft Corporation. All rights reserved. 本情報の内容 (添付文書、リンク先などを含む) は、de:code 2019 開催日 (2019年5月29~30日) 時点のものであり、予告なく変更される場合があります。 本コンテンツの著作権、および本コンテンツ中に出てくる商標権、団体名、ロゴ、製品、サービスなどはそれぞれ、各権利保有者に帰属します。