

CONTENTS

- ➤ Background to 3D modelling at the French Geological Survey (BRGM)
- > BRGM/Modellers' needs
- Why integrate 3D modelling into a 2DGIS and Why BRGM is integrating its3D modelling tools into QGIS
- > BRGM 3D developments in QGIS
- ➤ What's next

BACKGROUND TO 3D GEOLOGICAL MODELING AT BRGM

- 50 years of experience
- continuous production of multi-purpose 3D geological models
 - geological knowledge
 - applications towards predictive geosciences
- « home-made » innovative (but legacy) solutions:
 - GDM Suite
 - GeoModeller
 - and others standalone developments...
- common DNA / characteristics:
 - operational purposes: tools implement both algorithms and practical know-how
 - field mapping
 - downstream (quantitative) applications
 - geostatistics

BACKGROUND TO 3D GEOLOGICAL MODELING AT BRGM

Geological Data Modeling

- a set of complementary components:
 - delivery processing, Viewer geological data
 - interpolation
 geostatistical toolbox, data modeling and exploration
 - 2,5D modeling stratigraphical pile to combine multiple layers: interpolated thicknesses and/or elevations with an explicit description (i.e. z=f(x,y))
- a focus on geological data management
 - cross validation tools...

Bouillante geothermal field, Guadeloupe Calcagno et al., 2012

BACKGROUND TO 3D GEOLOGICAL MODELING AT BRGM

3D Geological Modeling

- originally developed for 3D geological cartography
 - 3D description of complex geological architectures: erosions, fault networks, intrusions…
 - co-kriging of both interfaces location and orientation data
 - pioneered the use of implicit geological modeling
- geophysical forward and inverse modeling (Monte Carlo approach)
- some developments on unstructured mesh generation for simulation applications

BRGM'S NEEDS

- □ Need to better understand and model the under ground geology
 - for the energy transition and decarbonization
 - Enabling responsible use of mineral resources
 - Managing soil and subsoil risks
 - Preserving groundwater resources
 - Geothermal ressources

Before : Geological maps
Only the surface representation

Need a 3D vision

MODELLERS' NEEDS

- ☐ Other data
 - seismic
 - electrical profiles
 - gravimetry
 - magnetism

- ☐ Modeling algorithms
- ☐ Tools to communicate the results to the stakeholders

WHY INTEGRATE 3D MODELLING INTO A 2D GIS AND WHY BRGM IS INTEGRATING ITS 3D MODELLING TOOLS INTO QGIS

- Advance of open source GIS software, driven by extremely innovative communities
- Software bricks as plugins in a GIS, providing
 - An operational alternative to historical tools
 - Modular and scalable environment
 - can be recomposed according to production needs
 - adapted to modern computing resources
 - serving as an incubator for research projects

HR Lidar data

- GIS software mainly designed for 2D applications
 - the move towards 3D representation and use driven by emergence of new needs: Building Information Modelling, use of large point clouds (Lidar)

WHY QGIS?

- a lot of people use GIS on a daily basis
 - more than (geo-)modelling software
- free software GIS system
 - a powerful toolbox to handle georeferenced data
 - seamless and easy connection to data sources and web services (WMS, WFS...)
- widely used solution
 - a vibrant community : QField, QFieldCloud...
 - promoted as default GIS system at BRGM
- extension capacities through « plugins » (easily written in python)
- Many plugins targeting geological applications are developed by the community

- ForGEO plugin:
 - Stratigraphic pile
 - defines the architecture of the geological model
 - Interaction between the geological formations
 - Fault network
 - defines the interfaces that offset or do not offset geological tormations
 - Model
 - models volumes and the geometry of the geological formations

- pvGIS plugin
 - 3D representation

Managing plugins external dependencies

package-installer-qgis

Fault network

Fault network

Fault network

•3D Viewer : pvGIS Plugin

Elevation profile

contributing to QGis core on cross-section tools (3D points edition, cross-section representation...) in cooperation with Oslandia

-breakingpoint inside cross-section

WHAT'S NEXT

new contributions to QGis core: collaborative fundings? collaborations?

- oimprovement in Elevation profile
 - Save elevation profiles parameters
 - olnsert picture as background: seismic, electrical profile, geological cross-section, ...
- olmprovement of cross-section viewer capacities : slices in 3D cubes
- Native 3D viewer

Move forward 3D: community

Visio workshops

Needs can be shared

THANK YOU FOR YOUR ATTENTION

s.lopez@brgm.fr n.clausolles@brgm.fr Nicolas Clausolles I.quimerch@brgm.fr t.janvier@brgm.fr I.capar@brgm.fr

Simon Lopez, Léana Quimerc'h Thomas Janvier Laure Capar