

WHAT ARE CLUSTERS IN A DATA SET?

WHAT ARE SOME APPLICATIONS OF CLUSTERING?

WHAT ARE SOME APPLICATIONS OF CLUSTERING?

WHAT ARE SOME APPLICATIONS OF CLUSTERING?

 $\begin{array}{c|cccc} X_1 & X_2 \\ \hline x_1 & 2 & 3.2 \\ \hline x_2 & 13.1 & 0.9 \\ \hline \vdots & & & & \\ \end{array}$

x_n 16.4 4.5

Our goal is to gather data instances into groups with high within-group similarity

 $\begin{array}{c|cccc} X_1 & X_2 \\ \hline x_1 & 2 & 3.2 \\ \hline x_2 & 13.1 & 0.9 \\ \hline \vdots & & & & \\ \end{array}$

x_n 16.4 4.5

Representative-based methods:

Find a representative that best represents each cluster, and group points based on their closest representative

 $\begin{array}{c|cccc} X_1 & X_2 \\ \hline x_1 & 2 & 3.2 \\ \hline x_2 & 13.1 & 0.9 \\ \hline \vdots & & & \\ \end{array}$

x_n 16.4 4.5

Representative-based methods:

Find a representative that best represents each cluster, and group points based on their closest representative

 $\begin{array}{c|cccc} X_1 & X_2 \\ \hline x_1 & 2 & 3.2 \\ \hline x_2 & 13.1 & 0.9 \\ \hline \vdots & & & & \\ \end{array}$

x_n 16.4 4.5

Density-based methods:

Find regions of high density (# points / some small volume)

 $\begin{array}{c|cccc} X_1 & X_2 \\ \hline x_1 & 2 & 3.2 \\ \hline x_2 & 13.1 & 0.9 \\ \hline \vdots & & & & \\ \end{array}$

x_n 16.4 4.5

Density-based methods:

Find regions of high density (# points / some small volume)

 $\begin{array}{c|cccc} X_1 & X_2 \\ \hline x_1 & 2 & 3.2 \\ \hline x_2 & 13.1 & 0.9 \\ \hline \vdots & & & \\ \end{array}$

x_n 16.4 4.5

Hierarchical methods:

Clusters within clusters

Spectral and subspace methods:

Find a lower dimensional space that better represents the clusters

Spectral and subspace methods:

Find a lower dimensional space that better represents the clusters

Adjacency matrix

	\mathbf{x}_1	X_2	* * *	$\mathbf{x}_{\mathbf{n}}$
\mathbf{x}_1	0	0	* * *	0
X2	0	0	* * *	1
•			•	
Xn	0	1	• • •	0

Graph-based methods:

Find subgraphs with high edge connectivity

	X_1	X_2
X 1	2	3.2
X2	13.1	0.9
•		

x_n 16.4 4.5

"Soft" clustering or probabilistic clustering:

Estimate the probability distribution that the points come from

CLUSTERING TECHNIQUES

Foundations

- ➤ Representative-based methods
- ➤ Density-based methods
- ➤ Hierarchical methods
- > Spectral methods
- ➤ Graph-based methods

Advanced topics and applications

- ➤ Parallel algorithms
- ➤ Subspace clustering
- ➤ Core sets
- ➤ Deep learning
- ➤ Document clustering
- ➤ Clustering for outlier detection

