Data Structures and Algorithms

(ESO207)

Lecture 3:

- Time complexity, Big "O" notation
- Designing Efficient Algorithm
 - Maximum sum subarray Problem

Three algorithms

	Algorithm for $F(n) \mod m$	No. Instructions in RAM model
	RFib(n,m)	$> 2^{(n-2)/2}$
	IterFib (n,m)	3n
	Clever_Algo_Fib(n,m)	$35 \log_2 (n-1) + 11$

Which algorithm turned out to be the best experimentally?

Lesson 1 from Assignment 1?

No. of instructions executed by algorithm in **RAM** model

Time taken by algorithm in real life

May be different for different input

Dependence on input

Time complexity of an algorithm

Definition:

the **worst case** number of instructions executed as a **function** of the **input** <u>size</u> (or a parameter defining the input size)

The number of bits/bytes/words

Examples to illustrate input size:

Problem	Input size
Computing $\mathbf{F}(n)\mathbf{mod}\ m$ for any positive integers n and m	$\log_2 n + \log_2 m$ bits
Whether an array storing j numbers (each stored in a word) is sorted?	<i>j</i> words
Whether a $n \times m$ matrix of numbers (each stored in a word) contains "14"?	<i>nm</i> words

Homework: What is the time complexity of Rfib, IterFib, Clever-Algo-Fib?

Example:

Whether an array **A** storing **j** numbers (each stored in a word) is sorted?

```
IsSorted(A)
                                                                  1 time
   i \leftarrow 1;
   flag← true;
                                                                  1 time
    while (i < j) and flag == true
          If (A[i] < A[i-1]) flag \leftarrow false;
                                                                      1 times in the worst case
         i \leftarrow i + 1;
   Return flag;
                                                                1 time
                                 Time complexity = 2j + 1
```

Example:

Time complexity of matrix multiplication

```
Each element of the matrices
Matrix-mult(C[n, n], D[n, n])
                                                  occupies one word of RAM.
  for i = 0 to n - 1
                                                         n times
   { for j = 0 to n - 1
                                                         n times
             M[i,j] \leftarrow 0;
              for k=0 to n-1
                     M[i,j] \leftarrow M[i,j] + C[i,k] * D[k,j]; -n + 1 instructions
                                                        1 time
   Return M
                         Time complexity = n^3 + n^2 + 1
```

Lesson 2 learnt from Assignment 1?

Algorithm for $F(n) \mod m$	No. of Instructions
RFib(n,m)	$> 2^{(n-2)/2}$
IterFib (n,m)	3n
Clever_Algo_Fib (n,m)	100 $\log_2(n-1) + 1000$

Question: What would have been the outcome if

No. of instructions of Clever_Algo_Fib $(n,m) = 100 \log_2 (n-1) + 1000$

Answer: Clever_Algo_Fib would still be the fastest algorithm for large value of n.

COMPARING EFFICIENCY OF ALGORITHMS

Comparing efficiency of two algorithms

Let A and B be two algorithms to solve a given problem.

Algorithm A has time complexity: $2 n^2 + 125$

Algorithm B has time complexity : $5 n^2 + 67 n + 400$

Question: Which algorithm is more efficient?

Obviously A is more efficient than B

Comparing efficiency of two algorithms

Let A and B be two algorithms to solve a given problem.

Algorithm A has time complexity: $2n^2 + 125$

Algorithm B has time complexity: 50 n + 125

Question: Which one would you prefer based on the efficiency criteria?

Answer : A is more efficient than **B** for n < 25

B is more efficient than **A** for n > 25

Time complexity is really an issue only when the input is of large size

Rule 1

Compare the **time complexities** of two algorithms for asymptotically large value of input size only

Comparing efficiency of two algorithms

Algorithm B with time complexity 50 n + 125

is certainly more efficient than

Algorithm A with time complexity: $2n^2 + 125$

A judgment question for you!

Algorithm A has time complexity $f(n) = 5 n^2 + n + 1250$ Researchers have designed two new algorithms B and C

- Algorithm B has time complexity $g(n) = n^2 + 10$
- Algorithm C has time complexity $h(n) = 10 n^{1.5} + 20 n + 2000$

$$\lim_{n\to\infty} \frac{\mathbf{g}(n)}{\mathbf{f}(n)} = 1/5$$

$$\lim_{n\to\infty} \frac{\mathbf{h}(n)}{\mathbf{f}(n)} = \mathbf{G}$$
C is an improvement over A in the true sense.

Rule 2

An algorithm **X** is superior to another algorithm **Y** if the **ratio** of time complexity of **X** and time complexity of **Y** approaches **0** for asymptotically large input size.

Some Observations

Algorithm A has time complexity $f(n) = 5(n^2) + n + 1250$ Researchers have designed two new algorithms B and C

- Algorithm B has time complexity g(n) = n² + 10
 Algorithm C has time complexity h(n) = 10(n^{1.5}) + 20 n + 2000

Algorithm **C** is **the most efficient** of all.

Observation 1:

multiplicative or additive **Constants** do **not** play any role.

Observation 2:

The highest order term governs the time complexity asymptotically.

ORDER NOTATIONS

A mathematical way
to capture the intuitions developed till now.
(reflect upon it yourself)

Order notation

Definition: Let f(n) and g(n) be any two increasing functions of n.

f(n) is said to be of the order of g(n)

if there exist constants c and n_0 such that

Order notation:

•
$$20 n^2 = O(n^2)$$

•
$$100 n + 60 = O(n^2)$$
 Loose

•
$$100 n + 60 = O(n)$$

•
$$10 n^2 = O(n^{2.5})$$

• 2000 = O(1)

Simple observations:

If $\mathbf{f}(n) = \mathbf{O}(\mathbf{g}(n))$ and $\mathbf{g}(n) = \mathbf{O}(\mathbf{h}(n))$, then

$$f(n) = O(h(n))$$

If $\mathbf{f}(n) = \mathbf{O}(\mathbf{h}(n))$ and $\mathbf{g}(n) = \mathbf{O}(\mathbf{h}(n))$, then $\mathbf{f}(n) + \mathbf{g}(n) = \mathbf{O}(\mathbf{h}(n))$

Loose

These observations can be helpful for simplifying time complexity.

c = 1,
$$n_0$$
 = 160

$$c = 160, n_0 = 1$$

 $c = 20, n_0 = 1$

While analyzing time complexity of an algorithm accurately, our aim should be to choose the g(n) which is not loose. Later in the course, we shall refine & extend this notion suitably.

Prove these observation as Homeworks

A neat description of time complexity

• Algorithm B has time complexity $g(n) = n^2 + 10$ Hence $g(n) = O(n^2)$

- Algorithm C has time complexity $\mathbf{h}(n) = 10 \ n^{1.5} + 20 \ n + 2000$ Hence $\mathbf{h}(n) = \mathbf{O}(n^{1.5})$
- Algorithm for multiplying two $n \times n$ matrices has time complexity $n^3 + n^2 + 1 = O(n^3)$

Homeworks:

- $g(n) = 2^n$, $f(n) = 3^n$. Is f(n) = O(g(n))? Give proof.
- What is the time complexity of selection sort on an array storing n elements?
- What is the time complexity of Binary search in a sorted array of n elements?

HOW TO DESIGN EFFICIENT ALGORITHM?

(This sentence captures precisely the goal of theoretical computer science)

Designing an efficient algorithm

Facts from the world of algorithms:

- 1. No formula for designing efficient algorithms.
- 2. Every new problem demands a **fresh** approach.
- 3. Designing an efficient algorithm or data structure requires
 - 1. Ability to make **key observations**.
 - 2. Ability to ask **right kind of questions**.
 - 3. A **positive attitude** and ...
 - 4. a lot of perseverance.

Max-sum subarray problem

Given an array A storing n numbers, find its **subarray** the sum of whose elements is maximum.

Max-sum subarray problem: A trivial algorithm

```
A_trivial_algo(A)
\{ \max \leftarrow A[0]; 
  For i=0 to n-1
    For j=i to n-1
             temp \leftarrow compute_sum(A,i,j);
             if max< temp then max← temp;
 return max;
                                                           Homework: Prove that its
                                                           time complexity is O(n^3)
compute_sum(A, i,j)
\{ sum \leftarrow A[i]; 
   For k=i+1 to j sum \leftarrow sum +A[k];
   return sum;
```

Max-sum subarray problem:

Question: Can we design O(n) time algorithm for Max-sum subarray problem?

Answer: Yes.

Think over it with a fresh mind
We shall design it together in the next class... ©