Stochastic Processes Session 17

Troels Pedersen and Carles Navarro Manchón

Section Wireless Communication Networks, Department of Electronic Systems, Aalborg University

Fall 2016

Standard form and Elements of an Estimation Problem

Standard Form of an Estimation Problem:

Given
$$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_N \end{bmatrix}$$
 estimate θ .

Elements:

- ▶ A set of random observations: $\mathbf{X} = [X_1, X_2, ..., X_N]^T$
- ightharpoonup A parameter heta whose value we want to estimate
- ▶ A model relating X to θ : e.g. the conditional pdf $p(X|\theta)$
- ▶ Possibly, some prior information on θ : $p(\theta)$
- An estimator $g(\cdot)$ yielding the estimate: $\hat{\theta} = g(X)$
- ▶ Typically, $g(\cdot)$ is designed to satisfy and *optimality criterion*

- 1. Identify the elements of the problem:
 - —What are the unknowns (θ) and the data (X)?
 - —How do they relate?

- 1. Identify the elements of the problem:
 - —What are the unknowns (θ) and the data (X)?
 - —How do they relate?
- 2. Extract all information available from the problem:
 - —What information is provided $(\mu_{\theta}, \sigma_{\theta}^2, p(\theta), p(\mathbf{X}|\theta),...)$?
 - —What information can we obtain $(\mu_{X}, C_{X\theta}, C_{XX}, p(\theta|X),...)$?

- 1. Identify the elements of the problem:
 - —What are the unknowns (θ) and the data (X)?
 - —How do they relate?
- 2. Extract all information available from the problem:
 - —What information is provided $(\mu_{\theta}, \sigma_{\theta}^2, p(\theta), p(\mathbf{X}|\theta),...)$?
 - —What information can we obtain $(\mu_{\mathbf{X}}, \mathbf{C}_{\mathbf{X}\theta}, \mathbf{C}_{\mathbf{X}\mathbf{X}}, p(\theta|\mathbf{X}), \dots)$?
- 3. Based on the info at hand, choose and estimator and compute it:
 - —If $p(\theta|\mathbf{X})$ is known, we can(?) compute the MMSE estimator.
 - —If only means, variances and covariances are known, we can use the LMMSE estimator.

- 1. Identify the elements of the problem:
 - —What are the unknowns (θ) and the data (X)?
 - —How do they relate?
- 2. Extract all information available from the problem:
 - —What information is provided $(\mu_{\theta}, \sigma_{\theta}^2, p(\theta), p(\mathbf{X}|\theta),...)$?
 - —What information can we obtain $(\mu_{\mathbf{X}}, \mathbf{C}_{\mathbf{X}\theta}, \mathbf{C}_{\mathbf{X}\mathbf{X}}, p(\theta|\mathbf{X}), \dots)$?
- 3. Based on the info at hand, choose and estimator and compute it:
 - —If $p(\theta|\mathbf{X})$ is known, we can(?) compute the MMSE estimator.
 - —If only means, variances and covariances are known, we can use the LMMSE estimator.
- 4. Assess the estimator:
 - —Compute bias and MSE of the estimator.
 - —Implement and run Monte Carlo simulations.
 - —Evaluate complexity.

- 1. Identify the elements of the problem:
 - —What are the unknowns (θ) and the data (X)?
 - —How do they relate?
- 2. Extract all information available from the problem:
 - —What information is provided $(\mu_{\theta}, \sigma_{\theta}^2, p(\theta), p(\mathbf{X}|\theta),...)$?
 - —What information can we obtain $(\mu_{X}, C_{X\theta}, C_{XX}, p(\theta|X),...)$?
- 3. Based on the info at hand, choose and estimator and compute it:
 - —If $p(\theta|\mathbf{X})$ is known, we can(?) compute the MMSE estimator.
 - —If only means, variances and covariances are known, we can use the LMMSE estimator.
- 4. Assess the estimator:
 - —Compute bias and MSE of the estimator.
 - —Implement and run Monte Carlo simulations.
 - -Evaluate complexity.
- 5. Are we satisfied?:
 - —NO: go back to previous steps and refine.
 - —YES: We are done!

LMMSE Estimation – Advantages of LMMSE Estimation

The LMMSE estimator has some nice properties which makes it widely used:

- ▶ It is *very simple to implement*: once the optimal coefficients have been calculated only *N* + 1 multiplications and additions are needed to compute an estimate.
- The optimal coefficients depend only on *first-order moments* (μ_{θ} and μ_{X}) and *second-order central moments* ($C_{X\theta}$ and C_{XX}) of the parameter of interest θ and the observations X, and not on their full joint distribution.
- ▶ With the additional knowledge of σ_{θ}^2 , the theoretical MSE of the LMMSE estimates can be easily evaluated.
- The LMMSE estimator is the fundamental building block for the Kalman filter.