# SFWR ENG 4E03

Kemal Ahmed Fall 2015

Instructor: Vincent Maccio

Note: material covered in <u>Stats 3Y03 Summary</u> will not be covered in this summary. To find a unit CTRL-F "[<unit>]", e.g. for Number of jobs in system, CTRL-F "[N]"

# Contents

| Statistics                | 2        |
|---------------------------|----------|
| Variance                  | 2        |
| Exponential               | 2        |
| Uniform                   | 2        |
| Binomial                  | 2        |
| Operations Analysis       | 3        |
| Visitation Trick          |          |
| Summation Equations       |          |
| DTMC                      | 5        |
| Balance Equations         |          |
| Matrices                  | 6        |
| СТМС                      | 6        |
| Poisson Process           | 6        |
| Kendall notation          | 6        |
| Variations                | 6        |
| M/M/1                     |          |
| M/M/1/N                   |          |
| M/M/C                     |          |
| M/M/∞                     |          |
| Queuing                   |          |
| Square Root Staffing Rule | <u>c</u> |
| e.g.)                     | <u>c</u> |
| Jackson Networks          | <u>c</u> |
| Traffic Equations         | 10       |
| Mean Value Analysis       |          |

# **Statistics**

Poisson parameter [ $\lambda$ ]: rate

Service rate  $[\mu]$ :

**Continuous Random Variable (CRV):** 

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Think chemistry, i.e. cancelling units

## Variance

$$\operatorname{var}(X) = E[X^2] - (E[X])^2$$

• <u>Don't change probability</u>, but square X for calculation only

$$var(x) = E[(X - \mu)^{2}]$$

$$= \sigma^{2}$$

$$= \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx$$

$$= \int x^{2} f(x) dx - \mu^{2}$$

The higher your variance, the worse your system will perform.

## Exponential

- Mean [E[X]]: 1/λ
  - o a.k.a. Expected value
- Variance: 1/λ²
- Probability Distribution Function (PDF)  $[P(X=x)]: \lambda e^{-\lambda x}/x!$
- Cumulative Distribution Function (CDF) [f(x)]: CDF =  $\int PDF$ , i.e.  $1 e^{-\lambda x}$
- Memoryless
- not always for time

#### Uniform

- **Variance**: (b–a)<sup>2</sup>/12
- Mean: (a+b)/2
- **PDF**: 1/(b-a),  $a \le x \le b$
- **CDF**: x-a/b-a
- Uniform Distribution: no memoryless property

#### Binomial

- **Mean** [E[X]]: n × probability
- Variance:  $n \times p \times (1 p)$
- Probability Distribution Function (PDF) [P(X)]:  $(n c x)p^x(1-p)^{n-x}$

• Cumulative Distribution Function (CDF) [f(x)]:  $\sum_{i=0}^{\lfloor x \rfloor} \binom{n}{i} p_i (1-p)^{n-i}$ 

# **Operations Analysis**

**Device** [i]: units that are in terms of *i* are specific to an individual device or node within a system **Total devices** [k]:

Service Time [S]: time per specific job  $1/\mu$ 

**Visitation** [V]: given or projected visits/jobs (closed system); cannot be calculated; basically a probability [E(V)]: calculated visit/job ratio P(visit)·total visits in previous node

Demand [D]: total service time for all jobs

$$D_i = E[S_i] \cdot V_i$$

$$D = \sum_{i=0}^{k} D_i$$

Bottleneck [D<sub>max</sub>]: device with largest demand, utilization

**Time in system** [T]: time the job is in the system

$$E[T] = \frac{N}{X}$$

$$E[T] \ge \max(D, ND_{\max} - E[Z])$$

If 
$$E[Z] = 0$$
,  $T = R$ 

**Response Time** [R]: time the job is *being processed* in the system

If 
$$E[Z] = 0$$
,  $R = T$ 

M/M/1:  $E[R] = 1/(\mu - \lambda)$ M/M/1/N:  $E[R] = E[N]/\lambda'$ M/M/C:  $E[R] = E[R_Q] + E[S]$ 

Users [M]:

Optimal users [M\*]:

$$M^* = \frac{D + E[Z]}{D_{\text{bottleneck}}}$$

Total Jobs [N]: N=M in a closed system

- Little's Law:  $E[N] = \lambda E[T], \lambda = X$
- $E[N] = \lambda E[R], \lambda = X$
- M/M/1:
  - $\circ$  E[N] =  $\lambda/(\mu-\lambda)$  =  $\rho/(1-\rho)$ , if you have overall system λ

$$\circ$$
 E[N] =  $\sum_{i=0}^{\infty} i\pi_i$  ← probability × #jobs, if your λ or μ is different for each state

• M/M/1/N: E[N] is expected # jobs, N is max # jobs

$$E[N] = \sum_{i=0}^{N} i\pi_i = \pi_0 \frac{\lambda}{\mu} \left( \frac{N\left(\frac{\lambda}{\mu}\right)^{N-1} - \left(N+1\right)\left(\frac{\lambda}{\mu}\right)^{N} + 1}{1 - \left(\frac{\lambda}{\mu}\right)^2} \right)$$

• M/M/C: go through Little's law

$$\circ$$
 E[N] = E[N<sub>Q</sub>] +  $\rho$ 

- M/M/∞:
- Jackson Network:  $E[N] = \Sigma E[N_i] = \Sigma P \lambda / (\mu_i P \lambda) = \Sigma (\lambda_i / (\mu_i \lambda_i))$

**Think time** [Z]: time it takes the user to put a request in and start, it's kinda like the frequency that users put in requests (seconds / request)

$$E[Z] = E[T] - E[R]$$

Throughput [X]: out-rate, max jobs / hour of full system

$$X \le \min\left(\frac{1}{D_{\max}}, \frac{N}{D + E[Z]}\right)$$

Note:  $\frac{1}{D_{\max}}$  and  $\frac{N}{D+E\big[Z\big]}$  converge at their lowest point, so equate them

$$X_i = E[V_i]X$$

**Utilization** [ρ]: ratio that the time is busy

$$\rho_i = X_i E[S_i]$$

$$\rho_i = XD_i$$

$$\rho = \lambda/c_i\mu$$

## Visitation Trick

If determining visitation at a node, establish a reference node from one of the incoming nodes, usually the user node, that has a returning percentage



 $V_{user} = 1 = 0.1 \cdot V_{CPU}$ 

## **Summation Equations**

**Geometric Series**:  $\sum_{i=0}^{\infty} r^i = \frac{1}{1-r}$ , where  $0 \le r \le 1$  (because otherwise it would be unstable)

$$\sum_{i=0}^{\infty} r^{i+1} = \sum_{i=1}^{\infty} r^{i} = \frac{r}{1-r}$$

$$\sum_{i=1}^{\infty} r^i = \sum_{i=0}^{\infty} r^i - 1$$

Geometric Sequence:  $S_n = \sum_{i=0}^n r^i = \frac{1-r^{n+1}}{1-r}$ 

$$S_n = \sum_{i=1}^n r^i = \frac{r(1-r^n)}{1-r}$$

Removing the annoying factors:

$$\sum_{i=0}^{\infty} i(i+1)\rho^{i}$$

Take out a value so the integral takes out the i and i+1

$$= \rho \sum_{i=0}^{\infty} i (i+1) \rho^{i-1}$$

$$= \rho \frac{\mathrm{d}\rho}{\mathrm{d}i} \left( \sum_{i=0}^{\infty} (i+1) \rho^{i} \right)$$

$$= \rho \frac{\mathrm{d}\rho^2}{\mathrm{d}^2 i} \left( \sum_{i=0}^{\infty} \rho^{i+1} \right)$$

$$= \rho \frac{\mathrm{d}\rho^2}{\mathrm{d}^2 i} \left( \sum_{i=1}^{\infty} \rho^i \right)$$

$$= \rho \frac{\mathrm{d}\rho^2}{\mathrm{d}^2 i} \left( \sum_{i=0}^{\infty} \rho^i - \rho^0 \right)$$

$$= \rho \frac{\mathrm{d}\rho^2}{\mathrm{d}^2 i} \left( \frac{1}{1-\rho} - 1 \right)$$

# **DTMC**

# **Discrete Time Markov Chains (DTMC):**

[n]: number of tasks in queue / system

Steady state: n->∞

For discrete: use the sum of the X's, so  $E[X] = \Sigma(P(X=i)\cdot X_i)$  and  $E[X^2] = \Sigma(P(X=i)\cdot X_i^2)$ 

# **Balance Equations**

$$\pi_n = \frac{\prod_{i=0}^n \lambda_i}{\prod_{i=0}^n \mu_i} \pi_0$$

^think of it like series / parallel, where you add multiple connections out in different directions (parallel) and multiply connections stacked onto each other (series)

 $OR jobs_{in} = jobs_{out}$ 

#### Matrices

Rows: equations for nodes going out (add up to 1)

Columns: equations for nodes coming in

## **CTMC**

#### Poisson Process

**Counting Process**: a way of determining the time between consecutive occurrences of an event **Poisson Process**: a *counting process*, whose time between arrivals uses Exponential Distribution

•  $\lambda_{total} = \Sigma \lambda_i$ 

 $\circ$  you can also split up  $\lambda$  into multiple  $\lambda$ s

- Not only do you see each second as time independent, each stream of probabilities is independent
- $P(x;\lambda) = e^{-\lambda} \lambda^x / x!$ 
  - ⊘ [x]: things will happen
  - $\circ$  [λ]: rate;  $\lambda = \alpha t$
- $[\alpha]$ : expected number of events during unit interval
- [t]: time interval length
- $\bullet \quad P_X(t) = \frac{e^{-\alpha t} \cdot (\alpha t)^X}{X!}$

#### Kendall notation

**Job Processing time** [ $\mu$ ]: rate of jobs leaving system (jobs/sec)  $\mu = 1$ / processing\_time\_per\_job

M/M/1 Queue

[M]: time between arrivals is Markovian (Memoryless)  $\sim \exp(\lambda)$ 

[M]: job processing times are Markovian (Memoryless)  $\sim \exp(\mu)$ 

[1]: single server

 $(\Sigma p_{out}) \times \pi_i = \Sigma p_i \pi_i$ , j=0..n, j≠i

 $\pi_0$ : percent of time that the queue is empty

#### Attributes:

- FIFO
- Infinite buffer

#### Variations

- M/M/2 Queue: same, except 2 servers
- M/M/C Queue: C servers
- M/E<sub>k</sub>/C: Erlang k, i.e. series of exponential

• H()/M/C: hyperexpontial distribution

• PH/M/C: phase type, i.e. any combination of any number of exponentials with any rate

• M/G/C: General distribution

• G/G/1: has not been solved yet

• M/M/1/1: 1 server, 1 job

[c]: number of servers

Think: one queue goes to multiple servers

$$\xrightarrow{\lambda}$$
] $\stackrel{\lambda}{\searrow} M_2$ 

#### M/M/1

$$\pi_0 = 1 - \lambda/\mu$$

#### M/M/1/N

When you can only have up to N jobs in system queue.

 $[\lambda']$ : rate jobs enter the system, until the queue is full

$$\lambda' = \lambda(1 - \pi_N)$$

$$\pi_0 = \frac{1 - \frac{\lambda}{\mu}}{1 - \left(\frac{\lambda}{\mu}\right)^N} = \frac{1}{1 + \sum_{i=1}^N \left(\frac{\lambda}{\mu}\right)^i}$$

$$\pi_i = \left(\frac{\lambda}{\mu}\right)^i$$

Waiting: jobs put into the queue

**Blocked**: jobs not allowed in the queue

# M/M/C

Useful if multiple jobs are sharing the same queue

Does the  $\mu$  you use for equations double in M/M/2? No, but you'll see jobs coming out of a system at a rate of c· $\mu$ .

$$\pi_{0} = \left[1 + \sum_{i=1}^{c-1} \frac{1}{i!} \left(\frac{\lambda}{\mu}\right)^{i} + \frac{1}{c!} \left(\frac{\lambda}{\mu}\right)^{c} \left(\frac{1}{1-\rho}\right)\right]^{-1}$$

$$\pi_{i} = \begin{cases} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^{n} \pi_{0}, & n < c \\ \frac{1}{c!c^{n-c}} \left(\frac{\lambda}{\mu}\right)^{n} \pi_{0}, n \ge c \end{cases}$$

#### M/M/∞

Same as M/M/C, except:

$$\pi_0 = e^{-\frac{\lambda}{\mu}}$$

and just find the unit

## Queuing

**Blocking Probability**  $[P_Q]$ : probability that a process will be blocked when entering the system and be placed in the queue

Given  $\lambda$  and  $\mu$ , what should c be so  $P_Q < \rho$ 

Waiting time in queue [Ro]: response time of queue

$$E\left[R_{Q}\right] = \frac{1}{\lambda} P_{Q}\left(\frac{\rho}{1-\rho}\right)$$

M/M/1: 
$$E[R_Q] = \frac{1}{\mu - \lambda} - \frac{1}{\mu}$$

M/M/C: 
$$E[R_Q] = \left(\frac{(\lambda/\mu)^c \mu}{(c-1)!(c\mu-\lambda)^2}\right)\pi_0$$

$$M/M/\infty$$
:  $E[R_Q] = 0$ 

Number of jobs in queue  $[N_Q]$ :

$$M/M/1: \rho^2/(1-\rho)$$

M/M/C: 
$$E[N_Q] = \pi_0 \frac{\lambda \mu \rho^{c+1}}{(c-1)!(c\mu - \lambda)^2}$$

$$M/M/\infty$$
:  $E[N_Q] = 0$ 

You need to know what is in the progression of each step

e.g.

When you have varying

$$\pi_n = (n+1) \left(\frac{\lambda}{\mu}\right)^n \pi_0$$

$$1 = \sum_{i=0}^{\infty} (i+1) \rho^{i} \pi_{0}$$

$$= \pi_{0} \sum_{i=1}^{\infty} (i+1) \rho^{i}$$

$$= \pi_{0} \frac{\mathrm{d}}{\mathrm{d}\rho} \left( \sum_{i=0}^{\infty} \rho^{i+1} \right)$$

$$= \pi_{0} \frac{\mathrm{d}}{\mathrm{d}\rho} \left( \sum_{i=1}^{\infty} \rho^{i} \right)$$

$$= \pi_{0} \frac{\mathrm{d}}{\mathrm{d}\rho} \left( \sum_{i=0}^{\infty} \rho^{i+1} \right)$$

# Square Root Staffing Rule

Given an M/M/c queue with arrival rate,  $\lambda$ , server speed,  $\mu$ , and  $\rho$  is *large* (assume this means over 100, but we don't actually know what it means),  $\alpha$  is a bound on P<sub>Q</sub>, let  $c_{\alpha}^*$  denote the least # of servers needed to ensure that P<sub>Q</sub> <  $\alpha$ . Then

$$c_{\alpha}^{*} pprox 
ho + k \sqrt{
ho}$$
 , where k = is the solution to

$$\frac{k\Phi(k)}{\phi(k)} = \frac{1-\alpha}{\alpha}$$
, where  $\Phi(\cdot)$  is the CDF of the standard normal and  $\Phi(\cdot)$  is its pdf

[K]: minimum # servers to stay stable  $\lambda/\mu$  or  $\rho$ 

[k]: a constant...just assume 1 for now

e.g.)

| α   | k     | $\rho + k\sqrt{\rho}$ |
|-----|-------|-----------------------|
| 0.8 | 0.178 | 10, 018               |
| 0.5 | 0.506 | 10, 051               |
| 0.2 | 1.06  | 10, 106               |
| 0.1 | 1.42  | 10, 142               |

[Q]: transition matrix

$$q_{ii} = -\sum_{i=i} q_{ij}$$

$$q_{ij} = \lim_{\Delta t \to 0} \frac{P\left\{X_{t+\Delta t} = j \mid X_{t} = i\right\}}{\Delta t}$$

Replace i <--> j to get q<sub>ii</sub> and q<sub>ii</sub>.

# Jackson Networks

$$P(N_1 = n_1) = \pi_{\bar{n}} = P_1^{n_1} (1 - \rho_1) \rho_2^{n_2} (1 - \rho_2) \cdots \rho_k^{n_k} (1 - \rho_k)$$

$$\pi_{n^{\sim}}$$
 = P(state of system  $n^{\sim}$ ) =  $\prod_{i=1}^{k}$  P(n jobs at node i) =  $\prod_{i=1}^{k} \rho_{i}^{n_{i}} (1 - \rho_{i})$ 

**Poisson Arrivals See Time Averages property (PASTA)**: the probability of the state (i.e.  $\pi_i$ ) as seen by an outside random observer is the same as the probability of the state seen by an arriving customer

 $\lambda_{total} = \Sigma \lambda_{in,i}$ 

# **Traffic Equations**

For each node, what is the number of jobs entering?  $\lambda_x = R + \Sigma P_{i,entering} \cdot \lambda_{i,entering}$ 

response rate + probability of each job entering

# Mean Value Analysis

- Performs better than balance equations or Jackson Network, but can't find steady state distribution or PDF
- Recursive algorithm
- Only finds E[N], i.e. mean queue length

The higher your variance, the worse your system will perform.

Pareto distribution: an exponential which doesn't start at 0 (a.k.a. zipfian)

Just think: 99% controls 50% and 1% controls the rest