Minería de Datos IIC2433

Algoritmos de Clustering Vicente Domínguez

¿Qué veremos esta clase?

- Diversos algoritmos de clustering

Aprendizaje **no supervisado**Clustering

Tarea para el computador:

Identificar grupos de elementos similares

Aprendizaje no supervisado

Clustering

Conjunto de datos **no etiquetados**

Clustering

- Técnica utilizada para análisis y visualización de datos.
- No necesita labels o clases.
- Permite identificar grupos en los datos, también posibles outliers.

Clasificación

Clustering

Clustering en mapas

Clustering de Galaxias

Clustering de Imágenes

K-Means

Buscar k centros y clusters, tales que cada centro sea la *media* o *centroide* de su respectivo cluster y cada elemento pertenezca a al cluster de su centro más cercano

Vemos cómo calcular el centroides

Video de ejecución

https://www.youtube.com/watch?v=5I3Ei69I40s

Algoritmo k-means

- Definir centros aleatorios
- Ejecutar los siguientes pasos iterativamente:
 - Asignar cada elemento del dataset al cluster de su centro más cercano
 - 2) Recalcular los centros de cada cluster
- Repetir 1) y 2) hasta que los centros "dejen de moverse"

Ejercicio

Suponga que tenemos 4 medicinas distintas y conocemos características para cada una de ellas (atributos).

Agrupe las medicinas en dos grupos distintos basándonos en las dos características:

Suponga que los valores iniciales de los centros son (1,1) y (2,1):

	x1	x2
Medicina A	1	1
Medicina B	2	1
Medicina C	4	3
Medicina D	5	4

K-Means

- Los cluster finales son muy dependientes de los puntos iniciales de los centros
- Un centroide puede no ser un punto de la base de datos (como los centroides iniciales)
- Se puede ejecutar varias veces el algoritmo y ver cuales son los clusters que más aparecen en promedio

K-Means

- ¿Siempre es bueno usar K-Means?
- ¿Cómo encuentro clusters que son tendencias en los datos?

Mean Shift

- Algoritmo que busca aglomeraciones de puntos que siguen una tendencia.
- No es necesario saber a priori la cantidad de clusters a encontrar pero si conocer la distribución de los datos
- Muy sensible a sus parámetros iniciales.

Mean Shift

Este algoritmo considera una vecindad local a cada centro y mueve el centro en la dirección de mayor aumento de densidad

Mean Shift Algoritmo

- Por cada punto, computo su vecindad a una distancia dada.
- Calculo la media de la vecindad.
- Me muevo a esa nueva posición de la media y vuelvo al paso anterior.
- Repetir hasta que converger a un punto.
- Finamente, todos los puntos que llegaron al mismo punto final son un cluster.

Video Mean Shift

https://www.youtube.com/watch?v=TMPEujQrY70

Mean Shift

Otro tipo de clustering

- Aparte de los algoritmo vistos anteriormente existen algoritmos que tratan de generar una jerarquía dentro de los datos
- Estos algoritmos son conocidos como clustering jerárquico

Clustering Jerárquico

Clusters y subclusters

Clustering Jerárquico

Clusters y subclusters

Clustering Jerárquico

Clusters y subclusters

Clustering Jerárquico Tipos

- Clustering Jerárquico divisivo
- Clustering Jerárquico aglomerativo

Clustering Jerárquico Divisivo

Ejemplo: k-means jerárquico

- Inicialmente cada elemento se considera un cluster
- Iterativamente se van juntando los clusters más cercanos

- 1. Calcular matriz de proximidad/similitud
- 2. Al comienzo cada punto es un cluster
- 3. Repetir:
 - a. Unir los dos clusters más cercanos
 - b. Actualizar la matriz de proximidad
- 4. Hasta: cuando la distancia entre los clusters a unir supere algún umbral predeterminado

Criterios de enlace

Complete-linkage (enlace completo)

$$D(C_a, C_b) = Max\{d(i, j)\}, i \in C_a, j \in C_b$$

Single-linkage (enlace único)

$$D(C_a, C_b) = Min\{d(i, j)\}, i \in C_a, j \in C_b$$

Distancia entre medias (mean distance)

$$D(C_a, C_b) = D(\mu_a, \mu_b)$$

Distancia promedio entre pares (average pairwise distance)

$$D(C_a, C_b) = avg\{d(i, j)\}, i \in C_a j \in C_b$$

Dendograma / Dendrograma

- Inicialmente cada elemento se considera un cluster
- Iterativamente se van juntando los clusters más cercanos

Ejemplo:

	x1	x2
Perro 1	1	1
Perro 2	2	1
Gato 1	4	3
Gato 2	5	4
Iguana 1	15	16
Iguana 2	15	15

¿Qué algoritmo usar?

¿Qué algoritmo utilizarían para este ejemplo?

DBScan

- Forma clusters de formas arbitrarias
- Se define un radio y un nivel de densidad de puntos en ese radio
- Si hay un conjunto de puntos que sean alcanzable en el radio y mantienen la densidad mínimo, me voy moviendo entre ellos.
- Un cluster está dado por el conjunto de puntos alcanzables en cadena.

DBScan

- Si hay un conjunto de puntos que sean alcanzable en el radio y mantienen la densidad mínimo, me voy moviendo entre ellos.
- Un cluster está dado por el conjunto de puntos alcanzables en cadena.

Comparación de algoritmos de clustering

