NYCU Introduction to Machine Learning, Homework 4 110550168, 賴御安

Part. 1, Coding (50%):

For this coding assignment, you are required to implement some fundamental parts of the <u>Support Vector Machine Classifier</u> using only NumPy. After that, train your model and tune the hyperparameter on the provided dataset and evaluate the performance on the testing data.

(50%) Support Vector Machine

Requirements:

- Implement the *gram_matrix* function to compute the <u>Gram matrix</u> of the given data with an argument **kernel function** to specify which kernel function to use.
- Implement the *linear_kernel* function to compute the value of the linear kernel between two vectors.
- Implement the *polynomial_kernel* function to compute the value of the <u>polynomial kernel</u> between two vectors with an argument <u>degree</u>.
- Implement the *rbf_kernel* function to compute the value of the <u>rbf_kernel</u> between two vectors with an argument **gamma**.

Tips:

 Your functions will be used in the SVM classifier from <u>scikit-learn</u> like the code below.

```
svc = SVC(kernel='precomputed')
svc.fit(gram_matrix(X_train, X_train, your_kernel), y_train)
y_pred = svc.predict(gram_matrix(X_test, X_train, your_kernel))
```

• For hyperparameter tuning, you can use any third party library's algorithm to automatically find the best hyperparameter, such as <u>GridSearch</u>. In your submission, just give the best hyperparameter you used and do not import any additional libraries/packages.

Criteria:

1. (10%) Show the accuracy score of the testing data using *linear_kernel*. Your accuracy score should be higher than 0.8.

```
Accuracy of using linear kernel (C = 0.01): 0.83
```

2. (20%) Tune the hyperparameters of the *polynomial_kernel*. Show the accuracy score of the testing data using *polynomial_kernel* and the hyperparameters you used.

```
Accuracy of using polynomial kernel (C = 1, degree = 3): 0.98
```

3. (20%) Tune the hyperparameters of the *rbf_kernel*. Show the accuracy score of the testing data using *rbf_kernel* and the hyperparameters you used.

Accuracy of using rbf kernel (
$$C = 1$$
, gamma = 2): 0.99

The following table is the grading criteria for question 2 and 3:

Points	Testing Accuracy
20 points	0.98 <= acc
15 points	0.90 <= acc < 98
10 points	0.85 <= acc < 0.90
5 points	0.8 <= acc < 0.85
0 points	acc < 0.8

Part. 2, Questions (50%):

1. (20%) Given a valid kernel $k_1(x, x')$, prove that the following proposed functions are or are not valid kernels. If one is not a valid kernel, give an example of k(x, x') that the corresponding K is not positive semidefinite and shows its eigenvalues.

a.
$$k(x, x') = k_1(x, x') + exp(x^T x')$$

b.
$$k(x, x') = k_1(x, x') - 1$$

7. (b)
$$|2(X,X^T)| = |2,(X,X')| - 1$$
 $\Rightarrow assume X = \{X_1, X_2\} \quad |X_1 = [\frac{1}{3}] \quad |X_2 = [\frac{1}{4}] \}$
 $|X = [\frac{10}{4}] \quad |X_3| \quad |X_4 = [\frac{1}{3}] \quad |X_4 = [\frac{1}{4}] \}$
 $|X = [\frac{10}{4}] \quad |X_4 = [\frac{10}{3}] \quad |X_4 = [\frac{1}{3}] \quad |X_4 = [\frac{1}{4}] \}$
 $|X = [\frac{10}{4}] \quad |X_4 = [\frac{10}{3}] \quad |X_4 = [\frac{1}{3}] \quad |X_4 =$

c.
$$k(x, x') = exp(||x - x'||^2)$$

1. (c)
$$V(X,X') = \exp(1|X-X'|1^2)$$
 \Rightarrow assume $X = \{X_1,X_2\}$, $X_1 = [\frac{1}{3}]$, $X_2 = [\frac{2}{3}]$
 $V = \{\exp(5)\} \exp(5)\}$
 $V = \{\exp(5)\} \exp(5)$
 $V = \{\exp(5)\} \exp(5)\}$
 $V = \{\exp(5)\} \exp(5)$
 $V = \{\exp(5)\} \exp(5)\}$
 $V = \{\exp(5)\} \exp(5)$
 $V = \{\exp(5$

d. $k(x, x') = exp(k_1(x, x')) - k_1(x, x')$

1.(d)
$$k(x,x') = \exp(k_1(x,x')) - k_1(x,x')$$

The taylor series of $\exp(k_1(x,x'))$ is

1 to $k_1(x,x') + (k_1(x,x'))^2 + (k_1(x,x'))^n$

1 to $k_1(x,x') + (k_1(x,x'))^2 + (k_1(x,x'))^n$

2!

1 to $k_1(x,x') + (k_1(x,x'))^2 + (k_1(x,x'))^n$

2!

1 to $k_1(x,x') + k_1(x,x') + k_1(x,x')$

for constant 1. $K_2(X,X')$, X = 1, K = 1 $det(K-\lambda I) = 0$ $\lambda = 1$ K is positive semidefinite by b.16 we can know that- $|C(X,X')| = exp(K_1(X,X')) - |C_1(X,X')|$ is valid kernel. 2. (15%) One way to construct kernels is to build them from simpler ones. Given three possible "construction rules": assuming $K_1(x, x')$ and $K_2(x, x')$ are kernels then so are

a. (scaling)
$$f(x)K_1(x, x')f(x')$$
, $f(x) \in R$

b. (sum)
$$K_1(x, x') + K_2(x, x')$$

c. (product)
$$K_1(x, x')K_2(x, x')$$

Use the construction rules to build a normalized cubic polynomial kernel:

$$K(x, x') = \left(1 + \left(\frac{x}{||x||}\right)^T \left(\frac{x'}{||x'||}\right)\right)^3$$

You can assume that you already have a constant kernel $K_0(x, x') = 1$ and a linear kernel $K_1(x, x') = x^T x'$. Identify which rules you are employing at each step.

DATE

DATE

DATE

DATE

DATE

10.

2. ① by scaling
$$f(x) = \frac{1}{||x||}$$
 the linear Lernel $\frac{1}{||x||}$ $\frac{1}{||x||}$
 $\Rightarrow x^T x' \Rightarrow \frac{1}{||x||} x^T x' \frac{1}{||x'||} = \left(\frac{x}{||x||}\right)^T \left(\frac{x'}{||x||}\right)$

Date

10.

2. ② by scaling $f(x) = \frac{1}{||x||}$ $\frac{1}{||x'||} = \frac{1}{||x||} \left(\frac{x'}{||x||}\right)^T \left(\frac{x'}{||x||}\right)^T$

- 3. (15%) A social media platform has posts with text and images spanning multiple topics like news, entertainment, tech, etc. They want to categorize posts into these topics using SVMs. Discuss two multi-class SVM formulations: `One-versus-one` and `One-versus-the-rest` for this task.
 - a. The formulation of the method [how many classifiers are required]
 - b. Key trade offs involved (such as complexity and robustness).
 - c. If the platform has limited computing resources for the application in the inference phase and requires a faster method for the service, which method is better.

one-versus-one it u	lassified a pair of classes
if we need to class:	fy n classes, we
if we need to classifiers	-0110 300
subject to VIIII may	1 State Stat
one - versus - rest . it	classified one class
others, so if we	need to classify n
es, we only need n	classifiers

3. (b) Key trade off:

Lomplexity: For one-versus-one. the complexity
is high if the number of the
classes is large yince we need
to calculate more classifiers,
for n classes to not classes.

we need not classifiers.
But for one-versus-vest the
complexity is more efficient for
n classes to not classes, we
need I classifiers only
bust: One-versus-one is stronger since
the classifiers compare between a

Robust: One-versus-one is stronger since the classifiers compare between a pair of classes, but for one-versus-rust the classifiers need to seperate one class from other classes.

3. (1) By the discussion above. I think that

one-versus-vest is better. The first veason is

that the complexity is smaller. so that we can

use limit resources and get a good model.

Also, we require a fast method but not a

stronger method. so one-versus-rest perfectly

fit the request.