Administrative

- Reminder: tomorrow's office hours are 2-4, not 3-5
- TA can't do office hours this week, but can do makeup
- Switched the date of exam 3 as we discussed
- Review schedule I'd like to move Quiz 2 from next Monday to next Wednesday
 - -then it can cover this week's topics better prep for exam 2, which is 2 weeks from today
 - -Conflicts with other exams?
- Will post HW due next Monday on Trunk, and send email
- Will start uploading HW solutions, etc in preparation for the quiz

EE-125: Digital Signal Processing

Periodograms

Professor Tracey

Youtube version of today's lecture (Links are fixed now!)

Van Veen lectures relevant to today's lecture

are: Random processes:

https://youtu.be/Y2bab0U3Ji8

Periodogram:

https://youtu.be/Qs-Zai0F2Pw

INFO WE DIDN'T GET TO TODAY:

Averaged Periodogram: (not covered today!)

https://youtu.be/410EvKRDJiY

Examples: https://youtu.be/u6TzodpIeDQ

Reminder: last time

- The DFT/FFT have two main uses
 - -Fast FFT-based FIR filtering (overlap/add, etc)
 - -Spectrum estimation / spectral analysis
- We may want to do spectral analysis in order to:
 - Learn something about a signal, either by human or automated analysis of the frequency content
 - Do processing in frequency domain (mp3, etc), then go back to time domain
- We'll consider three main topics
 - Deterministic, non-time-varying signals, possibly in random noise
 - Random processes / noise (periodograms)
 - Time-varying but non-random signals (spectrograms)

Today's outline

- Overview where we are going
- Math preliminaries
- Simple approach unaveraged periodogram
 - Adjustments to maintain amplitude
 - Problems with variance
- Periodogram averaging: Bartlett, Welch methods
- Advanced methods exist: high-resolution spectrum estimates. See P&M if interested

Overview: Lecture in 3 slides

How to find frequency content of (random) signal above? 10,000 points of data

Overview: Lecture in 3 slides

How to find frequency content of (random) signal above? 10,000 points of data

A1) We could apply a window to extract part of signal, take DFT, and plot magnitude-squared

Works, but variance is very high!

Overview: Lecture in 3 slides

How to find frequency content of (random) signal

above? 10,000 points of data

A2) We could get take many windowed DFTs, and average their power to reduce the variance

Some math preliminaries...

- •Random processes used to model complex or noise-like signals
- Characterized by statistical properties
 - -Mean, Variance
 - -Autocorrelation
- We have to *estimate* these (example: sample mean, sample variance)
- •We like estimators that are:
 - **–Unbiased**: expected value of estimator = true value
 - -Asymptotically unbiased:
 estimate -> true value as # data points L -> infinity
 - -Consistent:
 - variance of estimator -> 0 as # data points L -> infinity
- •Example: https://onlinecourses.science.psu.edu/stat414/node/167

Ergodic signals

- •For ergodic signals, averaging over time is same as averaging over ensemble (of different realizations)
- generally means the signal's statistical characteristics aren't changing over time (wide-sense stationary means mean, var constant)

- Example ergodic signal:
 - -x = 2 + randn(1,1001)
- Example non-ergodic signal:
 - -x = (0:1000)./4 + randn(1,1001)

AWGN – Additive Gaussian White Noise

- Additive added to signal, passes through system $y = h^*(x+w_{in}) = h^*x + w$
- Gaussian each individual sample is drawn from a Gaussian distribution: $N(0, \sigma^2)$ (sigma*randn in Matlab)
- White temporally uncorrelated; each time sample is unrelated to previous or next, so get "white" spectrum

We saw that power spectrum is Fourier transform of autocorrelation

$$\gamma_{ww}(l) = \sigma_w^2 \delta(l)$$

Yet more math preliminaries... notation

- An <u>energy signal</u> is a signal with finite energy (basically, finite length signals)
- A power signal is a signal with finite power
 - -Power = energy / unit time
 - -Power signals can be infinitely long, but *average* energy is finite (example: infinitely long cosine signal)
- Energy Spectral Density is for an "energy signal"
 - $-S_{xx}(F) = |X(F)|^2$ (discussed in P&M 14.1)
- Power Spectral Density (PSD) is for a "power signal"
 - -Called $\Gamma_{xx}(F)$ (discussed in P&M 14.2)
 - For random processes, we are generally talking about PSD

A sample problem

- •We sample a random signal at Fs = 1000 Hz
- We want to use a Hanning window to suppress sidelobes
- We want to be able to resolve tones spaced 5 Hz apart, defining mainlobe width as distance between nulls
- How many seconds of data should we measure to get a periodogram whose quality factor is at least Q = 50, if....
 - we don't use any overlap?
 - we use 50% overlap?
- Does this answer change if we zero-pad the FFT's used to estimate the periodogram?

