Repræsentation af tal

DM573

Rolf Fagerberg

Mål

Målet for disse slides er at beskrive, hvordan tal repræsenteres som bitmønstre i computere.

Information = valg mellem forskellig muligheder.

Simpleste situation: valg mellem to muligheder. Kald dem 0 og 1. Denne valgmulighed kaldes en bit.

Information = valg mellem forskellig muligheder.

Simpleste situation: valg mellem to muligheder. Kald dem 0 og 1. Denne valgmulighed kaldes en bit.

Relevante for computere fordi to-delte valg er nemmest at repræsentere rent fysisk (1 = strøm, 0 = ikke strøm).

Information = valg mellem forskellig muligheder.

Simpleste situation: valg mellem to muligheder. Kald dem 0 og 1. Denne valgmulighed kaldes en bit.

Relevante for computere fordi to-delte valg er nemmest at repræsentere rent fysisk (1 = strgm, 0 = ikke strgm).

Større samling information: brug flere bits:

01101011 0001100101011011...

F.eks. 8 bits (= 1 byte): valg mellem $2^8 = 256$ muligheder.

Bitmønstre skal *fortolkes* for at have en betydning.

$$01101011 = ?$$

Der er brug for et system, som angiver, hvilken mening de forskellige bitmønstre skal tillægges.

Bitmønstre skal fortolkes for at have en betydning.

$$01101011 = ?$$

Der er brug for et system, som angiver, hvilken mening de forskellige bitmønstre skal tillægges.

Der er lavet sådanne systemer for f.eks.:

- ► Tal (heltal, kommatal)
- Bogstaver
- Pixels (billedfil)
- Amplitude (lydfil)
- Computerinstruktion (program)

Bitmønstre skal fortolkes for at have en betydning.

$$01101011 = ?$$

Der er brug for et system, som angiver, hvilken mening de forskellige bitmønstre skal tillægges.

Der er lavet sådanne systemer for f.eks.:

- ► Tal (heltal, kommatal)
- Bogstaver
- Pixels (billedfil)
- Amplitude (lydfil)
- Computerinstruktion (program)

Fokus i dag: systemer for heltal og kommatal.

Tital-systemet:

4532

Tital-systemet:

$$4532 \ = \ 4 \cdot 1000 \ + \ 5 \cdot 100 \ + \ 3 \cdot 10 \ + \ 2 \cdot 1$$

Tital-systemet:

Tital-systemet:

Grundtal: 10

Cifre: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (fordi $10 \cdot 10^{i} = 10^{i+1}$)

Tital-systemet:

Grundtal: 10

Cifre: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (fordi $10 \cdot 10^{i} = 10^{i+1}$)

Syvtal-systemet:

Tital-systemet:

Grundtal: 10

Cifre: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (fordi $10 \cdot 10^{i} = 10^{i+1}$)

Syvtal-systemet:

Grundtal: 7

Cifre: 0, 1, 2, 3, 4, 5, 6 (fordi $7 \cdot 7^i = 7^{i+1}$)

Total-systemet

Total-systemet

Relevante for computere fordi to-delte valg er nemmest at repræsentere rent fysisk (1 = strøm, 0 = ikke strøm).

Total-systemet kaldes også det binære talsystem.

Det giver en naturlig fortolkning af bitmønstre som ikke-negative hele tal.

Hexadecimalt talsystem

Også brugt i datalogi er 16-tal-systemet:

(fordi $16 \cdot 16^i = 16^{i+1}$)

Hexadecimal notation

16-tals systemet kan også bruges som en simpel/kort måde at beskrive bitstrenge. Gruppér bits i grupper af 4 (dvs. 16 forskellige muligheder):

0110 1010 1110 01...

Hexadecimal notation

16-tals systemet kan også bruges som en simpel/kort måde at beskrive bitstrenge. Gruppér bits i grupper af 4 (dvs. 16 forskellige muligheder):

```
0110 1010 1110 01...
```

Brug de 16 cifre til at beskrive disse muligheder:

```
0111
                   1111
0110
                  1110
                          Ε
0101
                  1101
0100
                  1100
0011
                  1011
                          В
0010
                  1010
                  1001
0001
                          9
0000
                  1000
                          8
```

 $\boxed{0110} \boxed{1010} \boxed{1110} \boxed{01...} = 6AE...$

Addition

Addition fungerer ens i alle talsystemer, blot med grundtal udskiftet.

Tital-systemet:

Addition

Addition fungerer ens i alle talsystemer, blot med grundtal udskiftet.

Tital-systemet:

$$\begin{array}{r}
 1111 \\
 5432 \\
 +96781 \\
 = 102213
 \end{array}$$

Total-systemet:

$$\begin{array}{r}
111 \\
1110_2 \\
+11100_2 \\
\hline
= 101010_2
\end{array}$$

Addition

Addition fungerer ens i alle talsystemer, blot med grundtal udskiftet.

Tital-systemet:

$$\begin{array}{r}
 1111 \\
 5432 \\
 +96781 \\
\hline
 = 102213
 \end{array}$$

Total-systemet:

$$\begin{array}{r}
111 \\
1110_2 \\
+11100_2
\end{array}$$
= 101010₂

Subtraktion, multiplikation, division fungerer også ens. F.eks.

$$1010_2 \cdot 1110_2 = 10001100_2$$
 (Check: $10 \cdot 14 = 140$) $1101011_2 : 101_2 = 10101_2$, rest 10_2 (Check: $107 : 5 = 21$, rest 2)

Konvertering mellem talsystemer

Fra andre grundtal: brug definitionen af talsystemer.

$$1011_{2} = 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0}$$

$$= 1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1$$

$$= 11$$

$$4532_{7} = 4 \cdot 7^{3} + 5 \cdot 7^{2} + 3 \cdot 7^{1} + 2 \cdot 7^{0}$$

$$= 4 \cdot 343 + 5 \cdot 49 + 3 \cdot 7 + 2 \cdot 1$$

$$= 1640$$

Konvertering mellem talsystemer

Fra andre grundtal: brug definitionen af talsystemer.

$$1011_{2} = 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0}$$

$$= 1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1$$

$$= 11$$

$$4532_{7} = 4 \cdot 7^{3} + 5 \cdot 7^{2} + 3 \cdot 7^{1} + 2 \cdot 7^{0}$$

$$= 4 \cdot 343 + 5 \cdot 49 + 3 \cdot 7 + 2 \cdot 1$$

$$= 1640$$

Til andre grundtal: brug gentagen heltalsdivision. Husk hvordan heltalsdivision fungerer:

Heltals division	Kvotient	Rest	Som ligning
31:7	4	3	$31 = 7 \cdot 4 + 3$
25:2	12	1	$25 = 2 \cdot 12 + 1$

Konvertering mellem talsystemer

Fra andre grundtal: brug definitionen af talsystemer.

$$1011_{2} = 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0}$$

$$= 1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1$$

$$= 11$$

$$4532_{7} = 4 \cdot 7^{3} + 5 \cdot 7^{2} + 3 \cdot 7^{1} + 2 \cdot 7^{0}$$

$$= 4 \cdot 343 + 5 \cdot 49 + 3 \cdot 7 + 2 \cdot 1$$

$$= 1640$$

Til andre grundtal: brug gentagen heltalsdivision. Husk hvordan heltalsdivision fungerer:

Heltalsdivision	Kvotient	Rest	Som ligning
31:7	4	3	$31 = 7 \cdot 4 + 3$
25:2	12	1	$25 = 2 \cdot 12 + 1$

Detaljer for grundtal to: næste side.

Konvertering til binært talsystem

Følgende algoritme finder cifrene fra højre til venstre i den binære representation af et positivt heltal N:

```
X = N
Sålænge X > 0 gentag:
Næste ciffer = rest ved heltalsdivision X:2
X = kvotient ved heltalsdivision X:2
```

Konvertering til binært talsystem

Følgende algoritme finder cifrene fra højre til venstre i den binære representation af et positivt heltal N:

$$X = N$$

Sålænge $X > 0$ gentag:
Næste ciffer = rest ved heltalsdivision $X:2$
 $X =$ kvotient ved heltalsdivision $X:2$

Eksempel: N = 25:

Heltalsdivision	Kvotient	Rest	
25:2	12	1	
12:2	6	0	OF 11001
6:2	3	0	$25 = 11001_2$
3:2	1	1	
1:2	0	1	

Heltalsdivision	Kvotient	Rest	
25:2	12	1	
12:2	6	0	OF 11001
6:2	3	0	$25 = 11001_2$
3:2	1	1	
1:2	0	1	

Heltalsdivision	Kvotient	Rest	
25:2	12	1	
12:2	6	0	$25 = 11001_2$
6:2	3	0	$25 = 11001_2$
3:2	1	1	
1:2	0	1	

Heltalsdiv 25:2 12:2 6:2 3:2 1:2	ision Kvotie 12 6 3 1 0	nt Rest	25 = 11001 ₂
25 = 2 = 2	$12 + \frac{1}{2}$		

Hel	ltalsdivision	Kvotient	Rest	
	25 :2	12	1	
	12:2	6	0	05 11001
	6:2	3	0	$25 = 11001_2$
	3:2	1	1	
	1:2	0	1	
25	$= 2 \cdot 12 - 4$ $= 2(2 \cdot 6)$ $= 2(2(2 \cdot 6))$		+1	

Heltalso	division	Kvotient	Rest	
25	:2	12	1	
12	:2	6	0	25 — 11001
6:	2	3	0	$25 = 11001_2$
3:	2	1	1	
1:	2	0	1	
=				- 1

Heltalsdi	vision	Kvotient	Rest	
25:2	2	12	1	
12:2	2	6	0	OF 11001
6:2		3	0	$25 = 11001_2$
3:2		1	1	
1:2		0	1	
= 2 = 2	2(2 · 6 - 2(2(2 · 3 2(2(2(2	$ \begin{array}{c} 1 \\ +0) + 1 \\ 3 + 0) + 0 \\ \cdot 1 + 1) + \\ (2 \cdot 0 + 1) \end{array} $	(0) + (0) - (0)	

Heltalsd	ivision	Kvotient	Rest	
25:	2	12	1	
12:	2	6	0	OF 11001
6:2	2	3	0	$25 = 11001_2$
3:2	2	1	1	
1:2	2	0	1	
= = =	2(2 · 6 - 2(2(2 · 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2	(+0) + 1 (3+0) + 0 (+1) + 1 $(2 \cdot 0 + 1)$	$\binom{0}{+1}$ + $\binom{0}{+1}$ + $\binom{0}{+1}$	

Heltalsdivi	sion Kvotient	Rest	
25 :2	12	1	
12:2	6	0	$25 = 11001_2$
6:2	3	0	$23 = 11001_2$
3:2	1	1	
1:2	0	1	
= 2(= 2(= 2($(2 \cdot 6 + 0) + 1$ $(2(2 \cdot 3 + 0) + 0)$ $(2(2(2 \cdot 1 + 1) + 0)$ $(2(2(2(2 \cdot 0 + 1) + 0))$	0) + 0) + 0 + 1 + 0	

Bemærk at sidste division altid er 1:2 (med kvotient 0 og rest 1). Fordi X bliver 1 på et tidspunkt, da man ved en heltalsdivision med 2 hele tiden gør X mindre, men ikke kan komme fra heltal ≥ 2 til heltal ≤ 0 .

Repræsentation af heltal

Talrepræsentationer bruger (næsten altid) et fast antal bits (så operationer kan implementeres effektivt).

k bits = 2^k forskellige bitmønstre

Repræsentation af heltal

Talrepræsentationer bruger (næsten altid) et fast antal bits (så operationer kan implementeres effektivt).

$$k$$
 bits = 2^k forskellige bitmønstre

Positive heltal: det binære talsystem giver en naturlig repræsentation.

k = 4:	0111	7	1111	15
	0110	6	1110	14
	0101	5	1101	13
	0100	4	1100	12
	0011	3	1011	11
	0010	2	1010	10
	0001	1	1001	9
	0000	0	1000	8

Repræsentation af heltal

Talrepræsentationer bruger (næsten altid) et fast antal bits (så operationer kan implementeres effektivt).

$$k$$
 bits = 2^k forskellige bitmønstre

Positive heltal: det binære talsystem giver en naturlig repræsentation.

Hvordan skal disse 2^k bitmønstre fordeles, hvis vi vil repræsentere alle heltal, både negative og positive?

En mulig repræsentation af både negative og positive heltal er følgende:

	0111	7	1111	-1
	0110	6	1110	-2
	0101	5	1101	-3
k = 4:	0100	4	1100	-4
K = 4:	0011	3	1011	-5
	0010	2	1010	-6
	0001	1	1001	-7
	0000	0	1000	-8

Dette kaldes "two's complement" (af grunde, som ikke er relevante her).

En mulig repræsentation af både negative og positive heltal er følgende:

```
0111
                                 1111
                                       -1
                0110
                                 1110 -2
                0101
                                1101 -3
                0100
                                1100 -4
k=4:
                0011
                                1011 -5
                0010
                                1010 -6
                0001
                                1001 -7
                0000
                                1000 -8
```

Dette kaldes "two's complement" (af grunde, som ikke er relevante her).

Det kan også beskrives som at højeste ciffer tæller $-(2^{k-1})$ i stedet for 2^{k-1} :

$$1101_2 = 1 \cdot (-(2^3)) + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$$

= 1 \cdot (-8) + 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1
= -3

Repræsentationen two's complement har mange gode egenskaber:

Repræsentationen two's complement har mange gode egenskaber:

1. Fortegn kan ses af første bit.

Repræsentationen two's complement har mange gode egenskaber:

- 1. Fortegn kan ses af første bit.
- 2. Simpel metode til at skifte fortegn findes:

Kopier bits fra højre til venstre, til og med første 1-bit. Resten af bits inverteres (dvs. 1 sættes til 0 og omvendt).

(Eksempel:
$$6 = 0110 \rightarrow 1010 = -6$$
)

Repræsentationen two's complement har mange gode egenskaber:

- 1. Fortegn kan ses af første bit.
- 2. Simpel metode til at skifte fortegn findes:

Kopier bits fra højre til venstre, til og med første 1-bit. Resten af bits inverteres (dvs. 1 sættes til 0 og omvendt).

(Eksempel:
$$6 = 0110 \rightarrow 1010 = -6$$
)

3. Den almindelige metode til addition virker også for negative tal. Ingen ekstra logiske kredsløb for disse (sparer transistorer på CPU).

Repræsentationen two's complement har mange gode egenskaber:

- 1. Fortegn kan ses af første bit.
- 2. Simpel metode til at skifte fortegn findes:

Kopier bits fra højre til venstre, til og med første 1-bit. Resten af bits inverteres (dvs. 1 sættes til 0 og omvendt).

```
(Eksempel: 6 = 0110 \rightarrow 1010 = -6)
```

- 3. Den almindelige metode til addition virker også for negative tal. Ingen ekstra logiske kredsløb for disse (sparer transistorer på CPU).
- 4. Subtraktion kan laves ved at vende fortegn og addere. Ingen logiske kredsløb for subtraktion (sparer transistorer på CPU).

Repræsentationen two's complement har mange gode egenskaber:

- 1. Fortegn kan ses af første bit.
- 2. Simpel metode til at skifte fortegn findes:

Kopier bits fra højre til venstre, til og med første 1-bit. Resten af bits inverteres (dvs. 1 sættes til 0 og omvendt).

```
(Eksempel: 6 = 0110 \rightarrow 1010 = -6)
```

- 3. Den almindelige metode til addition virker også for negative tal. Ingen ekstra logiske kredsløb for disse (sparer transistorer på CPU).
- 4. Subtraktion kan laves ved at vende fortegn og addere. Ingen logiske kredsløb for subtraktion (sparer transistorer på CPU).

[Her er 1) og 4) er klare, mens 2) og 3) kræver bevis (ikke pensum).]

Repræsentationen two's complement har mange gode egenskaber:

- 1. Fortegn kan ses af første bit.
- 2. Simpel metode til at skifte fortegn findes:

Kopier bits fra højre til venstre, til og med første 1-bit. Resten af bits inverteres (dvs. 1 sættes til 0 og omvendt).

```
(Eksempel: 6 = 0110 \rightarrow 1010 = -6)
```

- 3. Den almindelige metode til addition virker også for negative tal. Ingen ekstra logiske kredsløb for disse (sparer transistorer på CPU).
- 4. Subtraktion kan laves ved at vende fortegn og addere. Ingen logiske kredsløb for subtraktion (sparer transistorer på CPU).

```
[Her er 1) og 4) er klare, mens 2) og 3) kræver bevis (ikke pensum).]
```

Two's complement vælges derfor ofte som repræsentation for heltal. I Java er typen int heltal i two's complement (k = 32). I Python er dette også grundtypen for heltal.

Repræsentationer af kommatal

Talrepræsentationer bruger (næsten altid) et fast antal bits.

$$k$$
 bits = 2^k forskellige bitmønstre

Hvordan bruge k bits til at beskrive kommatal?

Repræsentationer af kommatal

Talrepræsentationer bruger (næsten altid) et fast antal bits.

$$k$$
 bits = 2^k forskellige bitmønstre

Hvordan bruge k bits til at beskrive kommatal?

Fra tital-systemet kendes

- ► Fast decimalpunkt (45.32)
- ► Flydende decimalpunkt (-6.87 · 10⁻⁶)

Disse kan nemt gentages i total-systemet (grundtal 2). Se næste sider.

Repræsentationer af kommatal

Talrepræsentationer bruger (næsten altid) et fast antal bits.

$$k$$
 bits = 2^k forskellige bitmønstre

Hvordan bruge k bits til at beskrive kommatal?

Fra tital-systemet kendes

- ► Fast decimalpunkt (45.32)
- ► Flydende decimalpunkt (-6.87 · 10⁻⁶)

Disse kan nemt gentages i total-systemet (grundtal 2). Se næste sider.

I computere bruges oftest flydende decimalpunkt (med grundtal 2). For at forstå disse skal man forstå fast decimalpunkt (med grundtal 2) først.

I Java er typerne float (k=32) og double (k=64) kommatal i flydende decimalpunkt. I Python er typen float det samme (k=64).

Fast decimalpunkt

Tital-systemet:

Fast decimalpunkt

Tital-systemet:

Det binære talsystem:

$$10110.111_{2} = 1 \cdot 2^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2^{1} + 0 \cdot 2^{0} + 1 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3}$$

$$= 1 \cdot 16 + 0 \cdot 8 + 1 \cdot 4 + 1 \cdot 2 + 0 \cdot 1 + 1 \cdot 1/2 + 1 \cdot 1/4 + 1 \cdot 1/8$$

$$= 22\frac{7}{8}$$

$$= 22.875$$

Tital-systemet: få kommaet til at stå efter første ciffer $\neq 0$.

$$2340000.0 = 2.34 \cdot 10^6$$
 $0.000456 = 4.56 \cdot 10^{-4}$ $-0.0987 = -9.87 \cdot 10^{-2}$

Tital-systemet: få kommaet til at stå efter første ciffer $\neq 0$.

 $2340000.0 = 2.34 \cdot 10^6 \quad 0.000456 = 4.56 \cdot 10^{-4} \quad -0.0987 = -9.87 \cdot 10^{-2}$

Fortegn: plus Fortegn: plus Fortegn: minus Eksponent: 6 Eksponent: -4 Eksponent: -2 Mantisse: 2.34 Mantisse: 4.56 Mantisse: 9.87

Tital-systemet: få kommaet til at stå efter første ciffer $\neq 0$.

$$2340000.0 = 2.34 \cdot 10^6$$
 $0.000456 = 4.56 \cdot 10^{-4}$ $-0.0987 = -9.87 \cdot 10^{-2}$

Fortegn: plus Fortegn: plus Fortegn: minus Eksponent: 6 Eksponent: -4 Eksponent: -2 Mantisse: 2.34 Mantisse: 4.56 Mantisse: 9.87

Total-systemet: få kommaet til at stå efter første ciffer $\neq 0$ (er altid 1).

$$101100.0_2 = 1.011_2 \cdot 2^5$$
 $-0.01101_2 = -1.101_2 \cdot 2^{-2}$

Tital-systemet: få kommaet til at stå efter første ciffer $\neq 0$.

$$2340000.0 = 2.34 \cdot 10^6$$
 $0.000456 = 4.56 \cdot 10^{-4}$ $-0.0987 = -9.87 \cdot 10^{-2}$

Fortegn: plus Fortegn: plus Fortegn: minus 6 Eksponent: -4Eksponent: -2Eksponent: Mantisse: Mantisse: 4.56 Mantisse: 2.34 9.87

Total-systemet: få kommaet til at stå efter første ciffer $\neq 0$ (er altid 1).

$$101100.0_2 = 1.011_2 \cdot 2^5 \qquad \qquad -0.01101_2 = -1.101_2 \cdot 2^{-2}$$

Der afsættes et fast antal bits til hver af: fortegn, eksponent, mantisse. For k=8 vælger vi: 1, 3 og 4 bits. Eksponent kan være positiv eller negativ, vi bruger two's complement til den. Mantisse fyldes om nødvendigt op med 0'er til højre. Eksempel: for -0.01101_2 fås

Fortegn: 1 (1 for negativt tal, 0 for positivt)
Eksponent: 110 (-2 i two's complement (3 bits))
Mantisse bits: (1.)1010 (første bit skrives ikke, da den altid er 1)

Tital-systemet: få kommaet til at stå efter første ciffer $\neq 0$.

$$2340000.0 = 2.34 \cdot 10^6$$
 $0.000456 = 4.56 \cdot 10^{-4}$ $-0.0987 = -9.87 \cdot 10^{-2}$

Total-systemet: få kommaet til at stå efter første ciffer $\neq 0$ (er altid 1).

$$101100.0_2 = 1.011_2 \cdot 2^5 \qquad \qquad -0.01101_2 = -1.101_2 \cdot 2^{-2}$$

Der afsættes et fast antal bits til hver af: fortegn, eksponent, mantisse. For k=8 vælger vi: 1, 3 og 4 bits. Eksponent kan være positiv eller negativ, vi bruger two's complement til den. Mantisse fyldes om nødvendigt op med 0'er til højre. Eksempel: for -0.01101_2 fås

Fortegn: 1 (1 for negativt tal, 0 for positivt)

Eksponent: 110 (-2 i two's complement (3 bits))

Mantisse bits: (1.)1010 (første bit skrives ikke, da den altid er 1)

 $Så -0.01101_2$ repræsenteres som 1110 1010.

Heltal og kommatal er uendelige talmængder. Hvis der afsættes et fast antal (k) bits fås et endeligt antal (2^k) forskellige bitmønstre.

Heltal og kommatal er uendelige talmængder. Hvis der afsættes et fast antal (k) bits fås et endeligt antal (2^k) forskellige bitmønstre.

Ikke alle tal kan repræsenteres!

Heltal og kommatal er uendelige talmængder. Hvis der afsættes et fast antal (k) bits fås et endeligt antal (2^k) forskellige bitmønstre.

Ikke alle tal kan repræsenteres!

Viser sig f.eks. ved

- Overflow
 - maxInt + maxInt = ?
- Rounding errors
 - Stort tal x + meget lille tal y = samme store tal x
 - $(x + y) + z \neq x + (y + z)$ hvis f.eks. x + y ikke kan repræsenteres eksakt.

Heltal og kommatal er uendelige talmængder. Hvis der afsættes et fast antal (k) bits fås et endeligt antal (2^k) forskellige bitmønstre.

Ikke alle tal kan repræsenteres!

Viser sig f.eks. ved

- Overflow
 - maxInt + maxInt = ?
- Rounding errors
 - Stort tal x + meget lille tal y = samme store tal x
 - $(x + y) + z \neq x + (y + z)$ hvis f.eks. x + y ikke kan repræsenteres eksakt.

I praksis opleves sjældent problemer pga. et stort antal bits i talrepræsentationerne.

Alternativt findes programmeringsbiblioteker, der implementerer f.eks. vilkårligt store heltal (under brug af variabelt antal bits, samt tab af effektivitet). Dette sker automatisk i Python for typen int.