

Bu sinyali matematiksel olarak nasıl ifade edeceğiz?

Sinusoidal, sinüs veya kosinis formundaki sinyale verilen addır. Sinusaidal akım genelde alternatif akım (AC) olarak ifade edilir. (AC: Alternating Current)

Sinyalin kendisini tekrar ettiği süre, bu sinyalin 1 periyodudur. Saniye cinsinden ifade edilir.

T: Periyod

Bir saniyede kendini tekrar etme sayısına (çevrim - cycle) frekans denir. Birimi hertzdir. (Hz)

f: frekans

$$f = \frac{1}{T}$$

- Grafikte gösterilen sinyal $\sin(X)$ veya $\cos(X)$ şeklinde ifade edilebiliir.
- Sinyal sinüs fonksiyonu olsun.
- $\sin(X)$ fonksiyonu max 1 min -1 olabilirken, grafikteki sinyal ise max V_m , min $-V_m$ değerini alıyor.
- Bu durumda grafiğin fonksiyon $V_m \sin(X)$ şeklinde olur.

- f: frekans, 1 saniyede kaç çevrim tamamladığını ifade ediyor.
- t zamanında açı radyan cinsinden $2\pi ft$ olarak ifade edilebilir.
- Yukarıdaki sinyal bir sinüs sinyalidir. t anında sinyalin değeri $v(t) = V_m \sin(2\pi f t)$ ifadesiyle bulunur.
- $\omega = 2\pi f$ açısal frekantır. Birimi rad/san.
- $v(t) = V_m \sin(\omega t)$

Şekilde görüldüğü üzere v_2 sinyali v_1 sinyalinden ϕ derece öndedir. Bu açıya sinyalin faz açısı denir. Aynı zamanda v_1 sinyali v_2 sinyalinin ϕ derece gerisindedir şeklinde de ifade edilir.

Soru: $i_1(t) = 3\sin(100t + 10)$ ve $i_2(t) = 2\cos(100t - 40)$ sinyalleri arasındaki faz farkını bulunuz, hangi sinyalin önde olduğunu belirtiniz.

$$cos(\omega t) = sin(\omega t + 90), sin(\omega t) = cos(\omega t - 90)$$
 $i_1(t) = 3sin(100t + 10) = 3cos(100t + 10 - 90) =$
 $3cos(100t - 80)$
 $i_2(t) = 2cos(100t - 40)$

 i_2 sinyali i_1 sinyalinden 40 derece öndedir.

Sinüsoid

Soru: Bir sinusoidal maksimum genliği 20 A, periyodu 1 ms, t=0 anında akımının değeri 10 A'dir.

- a) Frekansı bulunuz. (Hz ve rad/sn cinsinden)
- b) i(t) fonksiyonunu cos türünden ifade ediniz...
- c) Akımın rms değerini bulunuz.

a)
$$T = 1 \text{ ms};$$
 $f = 1/T = 1000 \text{ Hz}.$
 $\omega = 2\pi f = 2000\pi \text{ rad/s}.$

b)
$$i(t) = I_m \cos(\omega t + \phi) = 20 \cos(2000\pi t + \phi)$$

 $i(0) = 10 \text{ A}$ $10 = 20 \cos \phi$ $\phi = 60^\circ$
 $i(t) = 20 \cos(2000\pi t + 60^\circ)$.

c)
$$I_m/\sqrt{2} = 20/\sqrt{2} = 14.14 \text{ A}$$

Sinüsoid

Soru: Aşağıda verilen v sinüsoidinin,

- a) ms cinsinden periyodunu, b) Hz cinsinden frekansını,
- c) = 2.778 ms'de değerini, d) rms değerini bulunuz.

$$v = 300 \cos (120\pi t + 30^{\circ})$$

a)
$$\omega = 120\pi \text{ rad/s}$$
 $\omega = 2\pi/T$ $T = 2\pi/\omega = \frac{1}{60} \text{ s}$

- b) 1/T, 60 Hz
- c) $120\pi t = 120 \times \pi \times 2.778 \times 10^{-3} = 1.047 \text{ rad} = 60^{\circ}$ $300\cos(60^{\circ} + 30^{\circ}) = 0 \text{ V}$
 - d) $V_{\text{rms}} = 300/\sqrt{2} = 212.13 \text{ V}.$

rms Değeri

 $v = V_m \cos(\omega t + \phi)$ fonksiyonunun rms değeri

$$V_{\rm rms} = \sqrt{\frac{1}{T} \int_{t_0}^{t_0+T} V_m^2 \cos^2(\omega t + \phi) dt}.$$

$$V_{\rm rms} = \frac{V_m}{\sqrt{2}}.$$

Bir sinusoidin rms değeri sadece genliğe (V_m) bağlıdır. Frekans veya faz açısının rms değerine etkisi yoktur.

rms değerleri daha sonra ayrtıntıı işleneceği için, bir sinüs veya kosinüs fonksiyonunun rms değeri sinyalin maksimum değerinin $\sqrt{2}$ 'ye bölünmesi olarak bilinmesi şu an için yeterlidir.

$$x^2 = -1$$
$$i = \sqrt{-1}$$

Elektrik Mühendisliğinde i harfi akım için kullanılmaktadır. Matematikçilerin karmaşık sayılar için kullandığı i yerine j harfi karmaşık sayılarda kullanılacaktır

Ödev: $z_1=8+j3$, $z_2=9-j2$ karmaşık sayıları için

- a. $z_1 + z_2$
- b. $z_1 z_2$
- c. $z_1 z_2$
- d. z_1/z_2

işlem sonuçlarını bulunuz.

z=x+jy sayısının kompleks eşleniği $\overline{z}=z^*=x-jy$ olarak ifade edilir.

$$(z_1 + z_2)^* = z_1^* + z_2^*$$

$$(z_1 - z_2)^* = z_1^* - z_2^*$$

$$(z_1 z_2)^* = z_1^* z_2^*$$

$$(\frac{z_1}{z_2})^* = \frac{z_1^*}{z_2^*}$$

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

Euler's Formula

$$z = x + jy$$

$$= r\cos(\phi) + jr\sin(\phi)$$

$$= r(\cos(\phi) + j\sin(\phi))$$

$$= re^{j\phi}$$

Karmaşık Sayıların Gösterimleri:

```
Kartezyen: z = x + jy
```

Trigonometrik: $z = r(\cos(\theta) + j\sin(\theta))$

Üstel: $z = re^{j\theta}$

Kutupsal (Polar): $z = r / \theta$

Polar Kartezyen Dönüşümü

 χ

$$z=x+jy$$
 karmaşık sayısını $z=r/\phi$ şeklinde ifade edelim.

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\phi = \tan^{-1}(y/x)$$

Örnek: z=3+j4 sayısını polar (kutupsal) forma dönüştürünüz.

$$r = |z| = \sqrt{x^2 + y^2} = \sqrt{3^2 + 4^2} = 5$$

$$z = 5/53.13^{\circ}$$

$$\phi = \tan^{-1}(y/x) = \tan^{-1}(4/3) = 53.13$$

Polar Kartezyen Dönüşümü

$$z=r/\phi$$
 karmaşık sayısını $z=x+jy$ şeklinde ifade edelim.

$$z = r\cos(\phi) + jr\sin(\phi)$$

Örnek: $z=10/36.87^{\circ}$ sayısını kartezyen forma dönüştürünüz.

$$z = r\cos(\phi) + jr\sin(\phi) = 10\cos(36.87) + j10\sin(36.87)$$
$$= 10 \cdot 0.8 + j10 \cdot 0.6 = 8 + j6$$

Karmaşık Sayılarda Toplama-Çıkarma, Çarpma Bölme

$$z_1 = x_1 + jy_1, \ z_2 = x_2 + jy_2 \Rightarrow$$

$$z_1 \pm z_2 = (x_1 \pm x_2) + j(y_1 \pm y_2)$$

$$z_1 = r_1 / \phi_1, \ z_2 = r_2 / \phi_2 \Rightarrow$$

$$z_1 \cdot z_2 = r_1 \cdot r_2 / \phi_1 + \phi_2$$

$$z_1/z_2 = r_1/r_2/\phi_1 - \phi_2$$

Karmaşık Sayılarda Toplama-Çıkarma, Çarpma Bölme

Soru: $z_1 = 10/53.13^{\circ}$ ve $z_2 = 5/-36.87^{\circ}$ ise $z_1 + z_2$ işleminin sonucunu kutupsal formda bulunuz.

$$z_1 = 10\cos(53.13) + j10\sin(53.13) = 6 + j8$$

$$z_2 = 5\cos(-36.87) + j5\sin(-36.87) = 4 - j3$$

$$z_1 + z_2 = 10 + j5$$

$$r = \sqrt{10^2 + 5^2} = 11.18$$

 $\theta = \tan^{-1}(5/10) = 26.57$
 $z_1 + z_2 = 10 + j5 = 11.18/26.57^{\circ}$

Karmaşık Sayılarda Toplama-Çıkarma, Çarpma Bölme

Soru:
$$n_1=8+j10$$
, $n_2=5-j4$ ise $n_1\cdot n_2$ 'yi bulunuz.

$$n_1 n_2 = (8 + j10)(5 - j4) = 40 - j32 + j50 + 40$$

 $= 80 + j18$
 $= 82/12.68^{\circ}.$
 $n_1 n_2 = (12.81/51.34^{\circ})(6.40/-38.66^{\circ})$
 $= 82/12.68^{\circ}$
 $= 80 + j18.$

Karmaşık Sayılarda Toplama-Çıkarma, Çarpma Bölme

Soru: $n_1 = 6 + j3$, $n_2 = 3 - j1$ ise n_1/n_2 'yi bulunuz.

$$\frac{n_1}{n_2} = \frac{6+j3}{3-j1} = \frac{(6+j3)(3+j1)}{(3-j1)(3+j1)} \qquad \frac{n_1}{n_2} = \frac{6.71 \cancel{26.57^{\circ}}}{3.16 \cancel{/}-18.43^{\circ}} = 2.12 \cancel{/}45^{\circ}$$

$$= \frac{18+j6+j9-3}{9+1} = 1.5+j1.5.$$

 $= 2.12 / 45^{\circ}$.

Karmaşık Sayılarda Toplama-Çıkarma, Çarpma Bölme

Soru: $n_1 = 10/53.13^{\circ}$, $n_2 = 5/-135^{\circ}$ ise $n_1 + n_2$ 'yi bulunuz.

$$n_1 + n_2 = 6 + j8 - 3.535 - j3.535$$

= $(6 - 3.535) + j(8 - 3.535)$
= $2.465 + j4.465 = 5.10 \angle 61.10^\circ$

Karmaşık Sayılarda Toplama-Çıkarma, Çarpma Bölme

Soru:
$$n_1 = 10/53.13^{\circ}$$
, $n_2 = 5/-135^{\circ}$ ise $n_1 - n_2$ 'yi bulunuz.

$$n_1 - n_2 = 6 + j8 - (-3.535 - j3.535)$$

= 9.535 + j11.535
= 14.966 \(\sum 50.42^\circ \).

Karmaşık Sayılarda Toplama-Çıkarma, Çarpma Bölme

Ödev: Aşağıdaki işlemlerin sonucunu bulunuz.

(a)
$$[(5 + j2)(-1 + j4) - 5/60^{\circ}]$$
*

(b)
$$\frac{10 + j5 + 3/40^{\circ}}{-3 + j4} + 10/30^{\circ} + j5$$

(a)
$$-15.5 - j13.67$$
, (b) $8.293 + j7.2$.

$$j^{2} = -1$$

$$jx = x/90^{\circ}$$

$$-jx = x/-90^{\circ}$$

$$1/j = -j$$

$$(r/\phi)^{n} = r^{n}/n\phi$$

- Cosinüs formunda verilen bir sinyal: $v(t) = V_m \cos(\omega t + \phi)$
- Euler formülü: $e^{j\phi} = \cos(\phi) + j\sin(\phi)$
- $\cos(\phi)$, $e^{j\phi}$ nin reel kısmıdır.
- $v(t) = \Re\{V_m e^{j(\omega t + \phi)}\} = V_m \cos(\omega t + \phi) = \Re\{V_m e^{j\omega t} e^{j\phi}\}$
- ullet $e^{j\omega t}$ zaman bağımlılığını gösteren ifadedir.
- $V_m e^{j\phi}$ sinüsoidalın genlik ve faz açısını gösteren kompleks bir büyüklüktür. Bu kompleks büyüklük sinüsoidalın fazörüdür.
- $\mathbf{V} = V_m e^{j\phi} = V_m/\phi$
- $v(t) = \Re{\{\mathbf{V}e^{j\omega t}\}}$

Soru: Verilen sinüsoidleri fazörlere çeviriniz.

(a)
$$i = 6 \cos(50t - 40^\circ)$$
 A

(b)
$$v = -4 \sin(30t + 50^{\circ}) \text{ V}$$

$$\mathbf{I} = 6 / -40^{\circ} \,\mathrm{A}$$

$$\mathbf{V} = 4/140^{\circ} \,\mathrm{V}$$

Not:
$$-1/0 = 1/180$$

$$j = 1/90$$

$$1/j = -j = 1/-90$$

Ödev: Verilen sinüsoidleri fazörlere çeviriniz.

(a)
$$v = 7 \cos(2t + 40^{\circ}) \text{ V}$$

(b) $i = -4 \sin(10t + 10^{\circ}) \text{ A}$

(a)
$$V = 7/40^{\circ} V$$
, (b) $I = 4/100^{\circ} A$.

Soru: Verilen fazörleri sinüsoidlere çeviriniz.

(a)
$$I = -3 + j4 A$$

(b)
$$V = j8e^{-j20^{\circ}} V$$

(a)
$$I = -3 + j4 = 5/126.87^{\circ}$$

$$i(t) = 5 \cos(\omega t + 126.87^{\circ}) A$$

(b)
$$\mathbf{V} = j8 / (-20^\circ) = (1/90^\circ)(8/(-20^\circ))$$

= $8/90^\circ - 20^\circ = 8/70^\circ \text{ V}$

$$v(t) = 8\cos(\omega t + 70^{\circ}) V$$

Soru: Verilen fazörleri sinüsoidlere çeviriniz.

(a)
$$V = -10/30^{\circ} V$$

(b)
$$I = j(5 - \overline{j12}) A$$

(a)
$$v(t) = 10 \cos(\omega t + 210^{\circ}) \text{ V or } 10 \cos(\omega t - 150^{\circ}) \text{ V},$$

(b)
$$i(t) = 13 \cos(\omega t + 22.62^{\circ}) \text{ A}.$$

Soru: Verilen sinyallerin toplamını bulunuz. $(i_1(t) + i_2(t))$

$$i_1(t) = 4\cos(\omega t + 30^\circ)$$
 $i_2(t) = 5\sin(\omega t - 20^\circ)$

$$I_1 = 4/30^{\circ}$$

$$i_2 = 5\cos(\omega t - 20^\circ - 90^\circ) = 5\cos(\omega t - 110^\circ)$$
 $I_2 = 5/-110^\circ$

$$\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2 = 4/30^{\circ} + 5/-110^{\circ}$$

$$= 3.464 + j2 - 1.71 - j4.698 = 1.754 - j2.698$$

$$= 3.218/-56.97^{\circ} \text{ A}$$

Ödev: Verilen sinyallerin toplamını bulunuz. $(v_1(t) + v_2(t))$

$$v_1 = -10 \sin(\omega t - 30^\circ)$$
 $v_2 = 20 \cos(\omega t + 45^\circ)$

$$v(t) = 12.158 \cos(\omega t + 55.95^{\circ})$$

Fazör bölgesinde türev ve integral

$$v(t) = V_m \cos(\omega t + \phi)$$

$$\frac{dv}{dt} = -\omega V_m \sin(\omega t + \phi) = -\omega V_m \cos(\omega t + \phi - 90)$$

$$= \omega V_m \cos(\omega t + \phi - 90 + 180) = \omega V_m \cos(\omega t + \phi + 90)$$

$$\frac{dv}{dt} \iff j\omega \mathbf{V}$$

$$\int vdt \iff \frac{\mathbf{V}}{j\omega}$$

Fazör bölgesinde türev ve integral

Soru: Verilen integrodiferansiyel denklemi fazör yaklaşımıyla çözünüz.

$$4i + 8 \int i \, dt - 3 \frac{di}{dt} = 50 \cos(2t + 75^\circ)$$

$$4\mathbf{I} + \frac{8\mathbf{I}}{j\omega} - 3j\omega\mathbf{I} = 50/75^{\circ}$$
 $\omega = 2$,

$$I(4 - j4 - j6) = 50/75^{\circ}$$

$$\mathbf{I} = \frac{50/75^{\circ}}{4 - j10} = \frac{50/75^{\circ}}{10.77/-68.2^{\circ}} = 4.642/143.2^{\circ} \,\text{A}$$

$$i(t) = 4.642 \cos(2t + 143.2^{\circ}) A$$

Not: kararlı durum çözümüdür.

Fazör bölgesinde türev ve integral

Odev: Verilen integrodiferansiyel denklemi fazör yaklaşımıyla çözünüz.

$$2\frac{dv}{dt} + 5v + 10 \int v \, dt = 50 \cos(5t - 30^\circ)$$

$$v(t) = 5.3 \cos(5t - 88^{\circ}) \text{ V}.$$

Fazör (frekans) bölgesinde pasif devre elemanları

Direnç V-I ilişkisi

$$i = I_m \cos(\omega t + \theta_i)$$

$$v = R[I_m \cos(\omega t + \theta_i)]$$

$$= RI_m[\cos(\omega t + \theta_i)],$$

$$\mathbf{V} = RI_m e^{j\theta_i} = RI_m \underline{/\theta_i}.$$

$$\mathbf{V} = R\mathbf{I},$$

Fazör (frekans) bölgesinde pasif devre elemanları

Bobin V-I ilişkisi

$$v = L \frac{di}{dt} \iff \mathbf{V} = Lj\omega\mathbf{I}$$

 $\mathbf{V} = j\omega L\mathbf{I}$

Kapasitör V-I ilişkisi

$$i = C \frac{dv}{dt} \iff \mathbf{I} = Cj\omega \mathbf{V}, \ \mathbf{V} = \frac{1}{j\omega C}\mathbf{I}$$

$$\frac{dv}{dt} \iff j\omega \mathbf{V}$$

Gerilim-Akım İlişki Özeti

Eleman

R

L

C

Zaman Bölgesi

$$v = Ri$$

$$v = L \frac{di}{dt}$$

$$i = C \frac{dv}{dt}$$

Frekans Bölgesi

$$V = RI$$

$$\mathbf{V} = j\omega L\mathbf{I}$$

$$\mathbf{V} = \frac{\mathbf{I}}{j\omega C}$$

Frekans bölgesinde akım voltaj ilişkileri şu şekilde ifade edilir:

$$V = RI$$

$$\mathbf{V} = j\omega L\mathbf{I}$$

$$\mathbf{V} = Z\mathbf{I},$$

$$\mathbf{V} = \frac{\mathbf{I}}{j\omega C}$$

 ${\bf Z}$ 'ye empedans denir. Birimi ohmdur. (Ω)

- ullet Direncin empedansı: R
- Bobinin empedansı: $j\omega L$
- Kapasitörün empedansı: $1/j\omega C$

$$\mathbf{Z} = R + jX$$

R: resistans, X: reaktans olarak isimlendirilir.

$$X>0$$
 olmak üzere,

$$\mathbf{Z} = R + jX$$
 şeklinde ise indüktif devre

$$\mathbf{Z} = R - jX$$
 şeklinde ise kapasitif devre denir.

Empedansın tersi admittans olarak adlandırılır.

$$\mathbf{Y} = \frac{\mathbf{I}}{\mathbf{V}} = \frac{1}{\mathbf{Z}}$$

Admittansın birimi Mho veya Siemens (S)'dir

Soru: 0.1 H bobinin terminallerindeki gerilim $v(t) = 12\cos(60t + 45)$ ise i(t) kararlı durum akımını bulunuz.

$$\mathbf{V} = j\omega L\mathbf{I}$$
 $\omega = 60 \text{ rad/s}$ $\mathbf{V} = 12/45^{\circ} \text{ V}.$

$$\mathbf{I} = \frac{\mathbf{V}}{j\omega L} = \frac{12/45^{\circ}}{j60 \times 0.1} = \frac{12/45^{\circ}}{6/90^{\circ}} = 2/-45^{\circ} \,\text{A}$$

$$i(t) = 2\cos(60t - 45^{\circ}) \text{ A}$$

Ödev: $50\mu {\rm F}$ kapasitöre $v(t)=\cos(100t+30)$ voltaj uygulanmışsa, kapastöredeki akımı hesaplayınız.

$$50 \cos(100t + 120^{\circ}) \text{ mA}.$$

Soru: Verilen devrede v(t) ve i(t) değerlerini bulunuz.

$$\omega = 4$$
 $\mathbf{V}_s = 10 / 0^{\circ} \, \text{V}$
 $\mathbf{Z} = 5 + \frac{1}{j\omega C} = 5 + \frac{1}{j4 \times 0.1} = 5 - j2.5 \, \Omega$

$$\mathbf{I} = \frac{\mathbf{V}_s}{\mathbf{Z}} = \frac{10/0^{\circ}}{5 - j2.5} = \frac{10(5 + j2.5)}{5^2 + 2.5^2}$$
$$= 1.6 + j0.8 = 1.789/26.57^{\circ} \text{ A}$$

$$\mathbf{I} = \frac{\mathbf{V}_s}{\mathbf{Z}} = \frac{10/0^{\circ}}{5 - j2.5} = \frac{10(5 + j2.5)}{5^2 + 2.5^2}$$
$$= 1.6 + j0.8 = 1.789/26.57^{\circ} \text{ A}$$

$$\mathbf{V} = \mathbf{IZ}_C = \frac{\mathbf{I}}{j\omega C} = \frac{1.789/26.57^{\circ}}{j4 \times 0.1}$$
$$= \frac{1.789/26.57^{\circ}}{0.4/90^{\circ}} = 4.47/-63.43^{\circ} \,\mathrm{V}$$

$$\mathbf{V} = \mathbf{IZ}_C = \frac{\mathbf{I}}{j\omega C} = \frac{1.789/26.57^{\circ}}{j4 \times 0.1}$$
$$= \frac{1.789/26.57^{\circ}}{0.4/90^{\circ}} = 4.47/-63.43^{\circ} \,\mathrm{V}$$

$$I = 1.789/26.57^{\circ} A$$

$$i(t) = 1.789 \cos(4t + 26.57^{\circ}) \text{ A}$$

 $v(t) = 4.47 \cos(4t - 63.43^{\circ}) \text{ V}$

Ödev: Verilen devrede v(t) ve i(t) değerlerini bulunuz.

$$v(t) = 8.944 \sin(10t + 93.43^{\circ}) \text{ V}$$

$$i(t) = 4.472 \sin(10t + 3.43^{\circ}) A$$