6406532306465. **★** Range(*X*) will always increase with the increase in the number of observations of *X*.

Maths2

Section Id: 64065348502 **Section Number:** 4 Online Section type: Mandatory **Mandatory or Optional: Number of Questions:** 9 Number of Questions to be attempted: **Section Marks:** 25 **Display Number Panel:** Yes **Group All Questions:** No **Enable Mark as Answered Mark for Review and** Yes **Clear Response: Maximum Instruction Time:** 0 **Sub-Section Number:** 1 Sub-Section Id: 640653100808

Question Number : 50 Question Id : 640653689450 Question Type : MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

No

null

Time: 0

Correct Marks: 0

Question Shuffling Allowed:

Is Section Default?:

Question Label: Multiple Choice Question

THIS IS QUESTION PAPER FOR THE SUBJECT "FOUNDATION LEVEL: MATHEMATICS FOR DATA SCIENCE II (COMPUTER BASED EXAM)"

ARE YOU SURE YOU HAVE TO WRITE EXAM FOR THIS SUBJECT? CROSS CHECK YOUR HALL TICKET TO CONFIRM THE SUBJECTS TO BE WRITTEN.

(IF IT IS NOT THE CORRECT SUBJECT, PLS CHECK THE SECTION AT THE <u>TOP</u> FOR THE SUBJECTS REGISTERED BY YOU)

Options:

6406532306466. VYES

6406532306467. * NO

Sub-Section Number: 2

Sub-Section Id: 640653100809

Question Shuffling Allowed : Yes

Is Section Default?: null

Question Number: 51 Question Id: 640653689459 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2 Max. Selectable Options: 0

Question Label: Multiple Select Question

Which of the following functions are linear transformations?

Options:

6406532306486.
$$T: \mathbb{R} \to \mathbb{R}, T(x) = 2x + 1$$

6406532306487.
$$\checkmark T: \mathbb{R}^4 \to \mathbb{R}^2, T(x, y, z, w) = (x + y, z + w)$$

6406532306488.
$$\checkmark T: \mathbb{R}^3 \to \mathbb{R}^3, T(x, y, z) = (-y, -x, 0)$$

6406532306489. *
$$T: \mathbb{R} \to \mathbb{R}^2, T(x) = (x+1, x-1)$$

Question Number: 52 Question Id: 640653689460 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2 Max. Selectable Options: 0

Question Label: Multiple Select Question

Let T be a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 . $S \subset \mathbb{R}^2$ is a line passing through the origin. Which of the following are possible?

Options:

6406532306490. \checkmark T(S) could be the origin in \mathbb{R}^3 .

6406532306491. \checkmark T(S) could be a line passing through the origin in \mathbb{R}^3 .

6406532306492. * T(S) could be a plane passing through the origin in \mathbb{R}^3 .

6406532306493. * T(S) could be \mathbb{R}^3

Sub-Section Number: 3

Sub-Section Id: 640653100810

Question Shuffling Allowed: Yes

Is Section Default?: null

Question Number: 53 Question Id: 640653689451 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 3 Max. Selectable Options: 0

Question Label: Multiple Select Question

Let A and B be $n \times n$ matrices. Which of the following statement(s) is/are true?

Options:

6406532306468. \checkmark If A and B are similar, then nullity of A and nullity of B are equal.

Let A and B be similar matrices. Then the homogeneous system of linear equations Ax = 0 has a unique solution if and only if the homogeneous system of linear equations Bx = 0 has a unique solution.

6406532306469.

If A^k and B^k are similar for some positive integer k, then A and B 6406532306470. ** are similar.

If A and B are similar matrices where A is a scalar matrix, then 6406532306471. \checkmark A = B.

Question Number: 54 Question Id: 640653689458 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 3 Max. Selectable Options: 0

Question Label: Multiple Select Question

Let A be a $n \times n$ orthogonal matrix. Then which of the following statement(s) is/are true?

Options:

6406532306482. \checkmark The rows of A form an orthonormal basis for \mathbb{R}^n .

Suppose T is the linear transformation corresponding to A, then 6406532306483. \checkmark ||Tv|| = ||v|| for any $v \in \mathbb{R}^n$.

The system of linear equations Ax=b has a unique solution for 6406532306484. \checkmark every $b\in\mathbb{R}^n$.

The rows of A form an orthogonal basis but not an orthonormal basis for \mathbb{R}^n .

Sub-Section Number: 4

Sub-Section Id: 640653100811

Question Shuffling Allowed :

No

Is Section Default?:

null

Question Id: 640653689452 Question Type: COMPREHENSION Sub Question Shuffling

Allowed : No Group Comprehension Questions : No Question Pattern Type : NonMatrix

Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Question Numbers: (55 to 56)

Question Label: Comprehension

Let
$$L = \{(x, y) : y = x + 1\}$$
 and $L' = \{(x, x + z - 2, z) : x, z \in \mathbb{R}\}.$

Based on the above data, answer the given subquestions.

Sub questions

Question Number: 55 Question Id: 640653689453 Question Type: MSQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 2 Max. Selectable Options: 0

Question Label: Multiple Select Question

Choose the correct option from the following.

Options:

The subspace associated with the affine space L is the line 6406532306472. ** y = x + 1.

The subspace associated with the affine space L is given by 6406532306473. \checkmark $\{(x,x)\colon x\in\mathbb{R}\}.$

The subspace associated with the affine space L' is given by $\{(x,y,z)\colon x-y+z=0\}$

The subspace associated with the affine space L' is the 6406532306475. $\!\!\!\!*$ xz- plane. Question Number: 56 Question Id: 640653689454 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 1

Question Label: Short Answer Question

If the dimension of L is m and

the dimension of L' is n,

then m+n is

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

3

Sub-Section Number: 5

Sub-Section Id: 640653100812

Question Shuffling Allowed: No

Is Section Default?: null

Question Id: 640653689455 Question Type: COMPREHENSION Sub Question Shuffling

Allowed : No Group Comprehension Questions : No Question Pattern Type : NonMatrix

Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Question Numbers : (57 to 58)

Question Label: Comprehension

Let $W = \{(x, y, z) : x + 2y - z = 0\}.$

Based on the above data, answer the given subquestions.

Sub questions

Question Number: 57 Question Id: 640653689456 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 1

Question Label: Multiple Choice Question

Which of the following is a basis

 β for W?

Options:

```
6406532306477. * {(1, 0, −1),(0, 1, 2)}
6406532306478. √ {(1, 0, 1),(0, 1, 2)}
6406532306479. * {(1, 0, 1),(0, 1, 1)}
6406532306480. * {(−1, 0, −1),(0, 2, 1)}
```

Question Number: 58 Question Id: 640653689457 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 3

Question Label: Short Answer Question

If γ is the orthonormal basis of

W obtained from the basis β by

using the Gram Schmidt process

with respect to the usual inner

product and (a, b, c) is the projection

of (1,3,1) onto W,

then what is a + b + c?

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

Question Id: 640653689461 Question Type: COMPREHENSION Sub Question Shuffling

Allowed : No Group Comprehension Questions : No Question Pattern Type : NonMatrix

Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Question Numbers : (59 to 60)

Question Label: Comprehension

Consider the following system of linear equations:

$$x + 3y - 2z = 0$$
$$y - z = 0$$
$$x + y = 0$$

Let A be the coefficient matrix corresponding to this system.

Based on the above data, answer the given subquestions.

Sub questions

Question Number: 59 Question Id: 640653689462 Question Type: MCQ Is Question

Mandatory : No Calculator : None Response Time : N.A Think Time : N.A Minimum Instruction

Time: 0

Correct Marks: 2

Question Label: Multiple Choice Question

Which of the following is the nullspace of *A*?

Options:

```
6406532306494.  span{(-1, 1, 1)}
6406532306495.  span{(1, 1, 0)}
6406532306496.  span{(1, 0, 1),(0, 1, -1)}
6406532306497.  span{(1, 1, 0),(0, 1, -1)}
```

Question Number: 60 Question Id: 640653689463 Question Type: SA Calculator: None

Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Correct Marks: 2

Question Label: Short Answer Question

Let *B* be a square matrix of order 3. What is the smallest value that the nullity of *BA* could take?

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas : PlainText

Possible Answers:

1

Question Id: 640653689464 Question Type: COMPREHENSION Sub Question Shuffling

Allowed : No Group Comprehension Questions : No Question Pattern Type : NonMatrix

Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction Time: 0

Question Numbers: (61 to 62)

Question Label: Comprehension

Consider a vector space V with bases $\beta = \{v_1, v_2\}$ and $\gamma = \{v_1 + v_2, v_1 - v_2\}$.

T is a linear transformation from V to itself such that $T(v_1) = v_1 + 2v_2$

and $T(v_2) = 2v_1 - v_2$.

Based on the above data, answer the given subquestions.

Sub questions

Question Number: 61 Question Id: 640653689465 Question Type: MCQ Is Question

Mandatory: No Calculator: None Response Time: N.A Think Time: N.A Minimum Instruction

Time: 0

Correct Marks: 3

Question Label: Multiple Choice Question

Find the matrix corresponding to T

if γ is used as the basis for both

the domain and co-domain.

Options:

$$\begin{bmatrix} 2 & 1 \\ 1 & -2 \end{bmatrix}$$

6406532306500. *
$$\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$

6406532306501. *****
$$\begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix}$$

6406532306502. *****
$$\begin{bmatrix} 1.5 & 0.5 \\ -0.5 & 1.5 \end{bmatrix}$$

Question Number: 62 Question Id: 640653689466 Question Type: MCQ Is Question

Mandatory : No Calculator : None Response Time : N.A Think Time : N.A Minimum Instruction

Time: 0

Correct Marks: 1

Question Label : Multiple Choice Question

Is *T* an isomorphism?

Options:

6406532306503. **✓** Yes

6406532306504. * No

Statistics2

Section Id: 64065348503

Section Number: 5

Section type: Online

Mandatory or Optional: Mandatory