回帰分析

回帰モデルの考え方と推定

村田 昇

講義の内容

- ・第1回:回帰モデルの考え方と推定
- 第2回: モデルの評価
- ・ 第3回: モデルによる予測と発展的なモデル

回帰分析の考え方

回帰分析

- ある変量を別の変量で説明する関係式を構成
- 関係式: 回帰式 (regression equation)
 - 説明される側: 目的変数, 被説明変数, 従属変数, 応答変数
 - 説明する側: 説明変数, 独立変数, 共変量
- ・ 説明変数の数による分類:
 - 一つの場合: 単回帰 (simple regression)
 - 複数の場合: **重回帰** (multiple regression)

一般の回帰の枠組

- 説明変数: $x_1, ..., x_p$ (p 次元)
- 目的変数: y (1 次元)
- 回帰式: y を x_1, \ldots, x_p で説明するための関係式

$$y = f(x_1, \dots, x_p)$$

• 観測データ: n 個の (y, x_1, \ldots, x_p) の組

$$\{(y_i, x_{i1}, \dots, x_{ip})\}_{i=1}^n$$

線形回帰

- 任意の f では一般的すぎて分析に不向き
- f として 1 次関数を考える ある定数 $\beta_0, \beta_1, \dots, \beta_p$ を用いた式:

$$f(x_1,\ldots,x_p) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p$$

- 1 次関数の場合: 線形回帰 (linear regression)
- 一般の場合: 非線形回帰 (nonlinear regression)
- 非線形関係は新たな説明変数の導入で対応可能
 - 適切な多項式 $x_i^2, x_j x_k, x_j x_k x_l, \ldots$
 - その他の非線形変換 $\log x_j, x_i^{\alpha}, \dots$
 - 全ての非線形関係ではない

回帰係数

• 線形回帰式:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

- $-\beta_0,\beta_1,\ldots,\beta_p$: 回帰係数 (regression coefficients)
- β₀: 定数項 / 切片 (constant term / intersection)
- 線形回帰分析 (linear regression analysis):
 未知の回帰係数をデータから決定する分析方法

回帰の確率モデル

- 回帰式の不確定性:
 - データは一般に観測誤差などランダムな変動を含む
 - 回帰式がそのまま成立することは期待できない
- 確率モデル: データのばらつきを表す項 ϵ_i を追加

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \quad (i = 1, \dots, n)$$

- $-\epsilon_1,\ldots,\epsilon_n$: 誤差項 / 撹乱項 (error / disturbance term)
 - * 誤差項は独立な確率変数と仮定
 - * 多くの場合, 平均 0, 分散 σ^2 の正規分布を仮定
- **推定** (estimation): 観測データから $(\beta_0, \beta_1, \dots, \beta_p)$ を決定

回帰係数の推定

残差

- 残差 (residual): 回帰式で説明できない変動
- 回帰係数 $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p)^{\mathsf{T}}$ を持つ回帰式の残差:

$$e_i(\beta) = y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip})$$
 $(i = 1, \dots, n)$

• 残差 $e_i(\beta)$ の絶対値が小さいほど当てはまりがよい

最小二乗法

• 残差平方和 (residual sum of squares):

$$S(\boldsymbol{\beta}) = \sum_{i=1}^{n} e_i(\boldsymbol{\beta})^2$$

• 最小二乗推定量 (least squares estimator):

残差平方和 $S(\beta)$ を最小にする β

$$\hat{\boldsymbol{\beta}} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p)^{\mathsf{T}} = \arg\min_{\boldsymbol{\beta}} S(\boldsymbol{\beta})$$

行列の定義

• デザイン行列 (design matrix):

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

ベクトルの定義

• 目的変数, 誤差, 回帰係数のベクトル:

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}$$

行列・ベクトルによる表現

確率モデル:

$$y = X\beta + \epsilon$$

• 残差平方和:

$$S(\boldsymbol{\beta}) = (\boldsymbol{v} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{v} - X\boldsymbol{\beta})$$

解の条件

・ 解 β では残差平方和の勾配は零ベクトル

$$\frac{\partial}{\partial \boldsymbol{\beta}} S(\boldsymbol{\beta}) = \left(\frac{\partial S}{\partial \beta_0}(\boldsymbol{\beta}), \frac{\partial S}{\partial \beta_1}(\boldsymbol{\beta}), \dots, \frac{\partial S}{\partial \beta_p}(\boldsymbol{\beta})\right)^{\mathsf{T}} = \mathbf{0}$$

演習

問題

• 残差平方和 $S(\beta)$ をベクトル β で微分して解の条件を求めなさい

正規方程式

正規方程式

• 正規方程式 (normal equation):

$$X^{\mathsf{T}}X\boldsymbol{\beta} = X^{\mathsf{T}}y$$

- Gram 行列 (Gram matrix): X^TX
 - $-(p+1)\times(p+1)$ 行列 (正方行列)
 - 正定対称行列(固有値が非負)

正規方程式の解

- 正規方程式の基本的な性質
 - 正規方程式は必ず解をもつ(一意に決まらない場合もある)
 - 正規方程式の解は最小二乗推定量であるための必要条件
- 解の一意性の条件:
 - Gram 行列 X^TX が **正則**
 - X の列ベクトルが独立(後述)
- 正規方程式の解:

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{y}$$

最小二乗推定量の性質

解析の上での良い条件

- 最小二乗推定量がただ一つだけ存在する条件
 - X^TX が正則
 - X^TX の階数が p+1
 - X の階数が p+1
 - X の列ベクトルが 1 次独立
 - これらは同値条件

解析の上での良くない条件

- 説明変数が1次従属: **多重共線性** (multicollinearity)
- 多重共線性が強くならないように説明変数を選択
 - X の列 (説明変数) の独立性を担保する
 - 説明変数が互いに異なる情報をもつように選ぶ
 - 似た性質をもつ説明変数の重複は避ける

推定の幾何学的解釈

• あてはめ値 / 予測値 (fitted values / predicted values):

$$\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}} = \hat{\beta}_0 X_{\text{\tiny $\hat{\mathfrak{P}}$} 0 \text{ \tiny $\hat{\mathfrak{P}}$} 1} + \dots + \hat{\beta}_p X_{\text{\tiny $\hat{\mathfrak{P}}$} p \text{ \tiny $\hat{\mathfrak{P}}$}}$$

図 1: n = 3, p + 1 = 2 の場合の最小二乗法による推定

- 最小二乗推定量 ŷ の幾何学的性質:
 - L[X]: X の列ベクトルが張る \mathbb{R}^n の部分線形空間
 - X の階数が p+1 ならば L[X] の次元は p+1 (解の一意性)
 - $-\hat{y}$ は y の L[X] への直交射影
 - 残差 (residuals) $\hat{\epsilon} = y \hat{y}$ はあてはめ値 \hat{y} に直交

$$\hat{\boldsymbol{\epsilon}} \cdot \hat{\boldsymbol{y}} = 0$$

線形回帰式と標本平均

- $x_i = (x_{i1}, ..., x_{ip})^{\mathsf{T}}$: 説明変数の i 番目の観測データ
- 説明変数および目的変数の標本平均:

$$\bar{\boldsymbol{x}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i, \qquad \qquad \bar{\boldsymbol{y}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{y}_i,$$

• $\hat{\pmb{\beta}}$ が最小二乗推定量のとき以下が成立:

$$\bar{y} = (1, \bar{x}^{\mathsf{T}})\hat{\boldsymbol{\beta}}$$

演習

問題

- 最小二乗推定量について以下を示しなさい
 - 残差の標本平均が0となる

以下を示せばよい

$$\mathbf{1}^{\mathsf{T}}(\mathbf{y} - \hat{\mathbf{y}}) = \mathbf{1}^{\mathsf{T}} \hat{\boldsymbol{\epsilon}} = 0$$

ただし $\mathbf{1} = (1, ..., 1)^{\mathsf{T}}$ とする

- 同帰式が標本平均を通る

$$\bar{y} = (1, \bar{x}^{\mathsf{T}})\hat{\boldsymbol{\beta}}$$

残差の分解

最小二乗推定量の残差

• 観測値と推定値 Â による予測値の差:

$$\hat{\epsilon}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_p x_{ip}) \quad (i = 1, \dots, n)$$

- 誤差項 $\epsilon_1, \ldots, \epsilon_n$ の推定値
- 全てができるだけ小さいほど良い
- 予測値とは独立に偏りがないほど良い
- 残差ベクトル:

$$\hat{\boldsymbol{\epsilon}} = \mathbf{y} - \hat{\mathbf{y}} = (\hat{\epsilon}_1, \hat{\epsilon}_2, \dots, \hat{\epsilon}_n)^{\mathsf{T}}$$

平方和の分解

- 標本平均のベクトル: $\bar{\mathbf{y}} = \bar{\mathbf{y}} \mathbf{1} = (\bar{\mathbf{y}}, \bar{\mathbf{y}}, \dots, \bar{\mathbf{y}})^{\mathsf{T}}$
- いろいろなばらつき
 - $S_v = (y \bar{y})^{\mathsf{T}} (y \bar{y})$: 目的変数のばらつき
 - $S = (y \hat{y})^{\mathsf{T}} (y \hat{y})$: 残差のばらつき $(\hat{\epsilon}^{\mathsf{T}} \hat{\epsilon})$
 - $S_r = (\hat{\mathbf{y}} \bar{\mathbf{y}})^\mathsf{T} (\hat{\mathbf{y}} \bar{\mathbf{y}})$: あてはめ値 (回帰) のばらつき
- 3 つのばらつき (平方和) の関係

$$(y - \bar{y})^{\mathsf{T}}(y - \bar{y}) = (y - \hat{y})^{\mathsf{T}}(y - \hat{y}) + (\hat{y} - \bar{y})^{\mathsf{T}}(\hat{y} - \bar{y})$$

$$S_{v} = S + S_{r}$$

演習

問題

- 以下の関係式を示しなさい
 - あてはめ値と残差のベクトルが直交する

$$\hat{\mathbf{y}}^{\mathsf{T}}(\mathbf{y} - \hat{\mathbf{y}}) = \hat{\mathbf{y}}^{\mathsf{T}} \hat{\boldsymbol{\epsilon}} = 0$$

- 残差平方和の分解が成り立つ

$$S_v = S + S_r$$

決定係数

回帰式の寄与

• ばらつきの分解:

$$S_y$$
 (目的変数) = S (残差) + S_r (あてはめ値)

• 回帰式で説明できるばらつきの比率:

(回帰式の寄与率) =
$$\frac{S_r}{S_v}$$
 = $1 - \frac{S}{S_v}$

• 回帰式のあてはまり具合を評価する代表的な指標

決定係数 (R^2 値)

• 決定係数 (R-squared):

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

• 自由度調整済み決定係数 (adjusted R-squared):

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- 不偏分散で補正している

解析の事例

データについて

- 気象庁より取得した東京の気候データ
 - 気象庁 https://www.data.jma.go.jp/gmd/risk/obsdl/index.php
 - $\tilde{\mathcal{T}}$ - \mathcal{P} https://noboru-murata.github.io/multivariate-analysis/data/tokyo_weather.csv

東京の8月の気候の分析

気候(気温,降雨,日射,降雪,風向,風速,気圧,湿度,雲量)
 に関するデータ(の一部)

	${\tt month}$	day	day_of_week	temp	rain	solar	snow	wdir	wind	press	humid	cloud
214	8	1	Sat	26.1	0.5	19.79	0	NE	2.6	1009.3	77	7.8
215	8	2	Sun	26.3	0.0	19.53	0	SSE	2.4	1011.0	75	5.5
216	8	3	Mon	27.2	0.0	24.73	0	SSE	2.4	1011.0	74	3.8
217	8	4	Tue	28.3	0.0	24.49	0	SSE	2.9	1012.2	77	4.3
218	8	5	Wed	29.1	0.0	24.93	0	S	2.9	1013.4	76	3.3
219	8	6	Thu	28.5	0.0	24.02	0	SSE	3.9	1010.5	79	7.8
220	8	7	Fri	29.5	0.0	22.58	0	S	3.4	1005.0	71	7.5

221	8	8	Sat	28.1	0.0	15.49	0	SE	2.7	1006.1	79	8.3
222	8	9	Sun	28.7	0.0	19.96	0	SSE	2.4	1006.9	77	9.5
223	8	10	Mon	30.5	0.0	20.26	0	SE	2.4	1010.3	73	10.0
224	8	11	Tue	31.7	0.0	25.50	0	S	4.0	1009.7	67	2.8
225	8	12	Wed	30.0	0.5	18.24	0	SSE	2.5	1009.0	79	6.8
226	8	13	Thu	29.4	21.5	19.01	0	N	2.2	1006.4	82	5.0
227	8	14	Fri	29.4	0.0	19.85	0	SE	2.8	1005.5	78	2.0

- 気温を説明する4つの線形回帰モデルを検討する
 - モデル 1: 気温 = F(気圧)
 - モデル 2: 気温 = F(気圧, 日射)
 - モデル 3: 気温 = F(気圧, 日射, 湿度)
 - モデル 4: 気温 = F(気圧, 日射, 雲量)
- 関連するデータの散布図

図 2: 散布図

- モデル1の推定結果
- モデル2の推定結果
- 観測値とあてはめ値の比較
- 決定係数・自由度調整済み決定係数
 - モデル 1: 気温 = F(気圧)
 - [1] "R2: 0.0169; adj. R2: -0.017"
 - モデル 2: 気温 = F(気圧, 日射)

図 3: モデル 1

図 4: モデル 2

図 5: モデルの比較

[1] "R2: 0.32; adj. R2: 0.271"

- モデル 3: 気温 = F(気圧, 日射, 湿度)

[1] "R2: 0.422; adj. R2: 0.358"

- モデル 4: 気温 = F(気圧, 日射, 雲量)

[1] "R2: 0.32; adj. R2: 0.245"

次週の予定

• 第1回: 回帰モデルの考え方と推定

・ 第 2 回: モデルの評価

• 第3回: モデルによる予測と発展的なモデル