第一章 高精度计算

【上机练习】

1、求 N! 的值(ni)

【问题描述】

用高精度方法,求 N! 的精确值(N以一般整数输入)。

【输入样例】

10

【输出样例】

3628800

2、求 A/B 高精度值(ab)

【问题描述】

计算 A/B 的精确值,设 A,B 是以一般整数输入,计算结果精确到小数后 20 位(若不足 20 位,末尾不用补 0)。

【输入样例1】

4 3

【输出样例1】

4/3=1.3333333333333333333333

【输入样例2】

6 5

【输出样例2】

6/5=1.2

3、求 n 累加和(ja)

【问题描述】

用高精度方法,求 s=1+2+3+······+n 的精确值(n以一般整数输入)。

【输入样例】

10

【输出样例】

55

4、阶乘和(sum)

【问题描述】

已知正整数 N(N<=100),设 S=1!+2!+3!+...N!。其中"!"表示阶乘,即 N!=1*2*3*······*(N-1)*N,如:3!=1*2*3=6。请编程实现:输入正整数 N,输出计算结果 S 的值。

【输入样例】

4

【输出样例】

33

5、高精度求积(multiply)

【问题描述】

输入两个高精度正整数 M 和 N (M 和 N 均小于 100 位)。

【问题求解】

求这两个高精度数的积。

【输入样例】

36

3

【输出样例】

108

6、天使的起誓(yubikili)

【问题描述】

TENSHI 非常幸运地被选为掌管智慧之匙的天使。在正式任职之前,她必须和其他新当选的天使一样,

【问题求解】

请帮助这位天使找到她想找的宝盒的编号。

【输入格式】

从文件 yubikili. in 的第一、二行分别读入正整数 n 和 m,其中 n、m 满足 $2 \le n \le 10^8$, $2 \le m \le 10^{1000}$

【输出格式】

把所求宝盒的编号输出到文件 yubikili. out,文件只有一行(包括换行符)。

【样例一】

yubikili.in	yubikili.out
7	2
9	

【样例二】

	yubikili.in	yubikili. out
	11	9
	108	

7、Hanoi 双塔问题(Noip2007)

【问题描述】

给定 A、B、C 三根足够长的细柱,在 A 柱上放有 2n个中间有孔的圆盘,共有 n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的 (下图为 n=3 的情形)。现要将这些圆盘移到 C 柱上,在移动过程中可放在 B 柱上暂存。要求:

- (1) 每次只能移动一个圆盘;
- (2) A、B、C 三根细柱上的圆盘都要保持上小下大的顺序;

任务: 设 A_n 为 2n个圆盘完成上述任务所需的最少移动次数,对于输入的n,输出 A_n 。

【输入格式】

输入文件 hanoi. in 为一个正整数 n,表示在 A 柱上放有 2n 个圆盘。

【输出格式】

输出文件hanoi. out仅一行,包含一个正整数,为完成上述任务所需的最少移动次数 A_n 。

【输入输出样例1】

hanoi.in	hanoi.out
1	2

【输入输出样例 2】

hanoi.in	hanoi.out
2	6

【限制】

对于 50%的数据, 1<=n<=25

对于 100%的数据, 1<=n<=200

【提示】设法建立A"与A。1的递推关系式。