Berner Fachhochschule BFH Hochschule für Technik und Informatik HTI Fachbereich Elektro- und Kommunikationstechnik EKT

Elektrotechnik Grundlagen

Kapitel 4

Theoreme

2004 Kurt Steudler

(/Modul_ET1_Kap_04.doc)

4.3 Das Theorem von Thévenin (Quellenersatzschaltung)

Der Strom durch ein passives Element in einem linearen Netzwerk ist gleich dem Strom der durch das betreffende Element fliesst, wenn dieses an einer realen Quelle, einer Ersatzquelle mit der Leerlaufspannung U_{Th} und dem Innenwiderstand R_r liegt.

Dabei ist U_{Th} die Leerlaufspannung zwischen den Anschlusspunkten des Elementes, das heisst jene Spannung die an den Klemmen gemessen werden kann, wenn sich das Element **nicht** in der Schaltung befindet.

R_r ist der von den Anschlusspunkten des Elementes aus nach rückwärts gemessene Widerstand. Das Element ist dabei nicht mit einbezogen.

Für die Bestimmung von R_r gelten Spannungsquellen als Kurzschluss und Stromquellen als Leerlauf.

Die reale Quelle mit U_{Th} und R_r ersetzt an den Anschlusspunkten des Elementes die gesamte Schaltung, die ausserhalb des betrachteten Elementes liegt.

Beispiel

Gegeben sind die Grössen U, R₁, R₂, R_L

Gesucht wird der Strom IL durch den Widerstand R_L.

Fig. 4-9 Thévenin

Ohne Element R_L werden

$$U_{AB leer} = U_{Th} = U \cdot \frac{R_2}{R_1 + R_2}$$

$$R_r = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

Fig. 4-10 Ersatzquelle nach Thévenin

Fig. 4-10 ersetzt die Schaltung nach Fig. 4-9 und es wird
$$I_L = \frac{U_{Th}}{R_r + R_L} = \frac{U \cdot R_2}{R_1 \cdot R_2 + R_L \cdot (R_1 + R_2)}$$

Jenes Element, an dem etwas gesucht wird, darf nicht in die Umwandlung in eine Ersatzquelle nach Thévenin einbezogen werden.

4.4 Das Theorem von Norton (Quellenersatzschaltung)

Der Strom durch ein passives Element in einem linearen Netzwerk ist gleich dem Strom der durch das betreffende Element fliesst, wenn dieses an einer realen Quelle, einer Ersatzquelle mit dem Kurzschlusstrom I_N und dem Innenwiderstand R_r liegt.

Dabei ist I_N jener Strom, der zwischen den Anschlusspunkten des Elementes fliesst, wenn das Element kurzgeschlossen wird.

R_r ist der von den Anschlusspunkten des Elementes aus nach rückwärts gemessene Widerstand. Das Element ist dabei nicht mit einbezogen. Für die Bestimmung von R_r gelten Spannungsquellen als Kurzschluss und Stromquellen als Leerlauf.

Die reale Quelle mit I_N und R_r ersetzt an den Anschlusspunkten des Elementes die gesamte Schaltung, die ausserhalb des betrachteten Elementes liegt.

Beispiel

Gegeben sind die Grössen U, R_1, R_2, R_L

Gesucht wird der Strom I_L durch den Widerstand R₁.

Fig. 4-11 Norton

Ohne Element R_L werden

$$I_{L \text{ kuzschluss}} = I_{N} = \frac{U}{R_{1}}$$

$$\boldsymbol{R}_r = \frac{\boldsymbol{R}_1 \cdot \boldsymbol{R}_2}{\boldsymbol{R}_1 + \boldsymbol{R}_2}$$

Fig. 4-12 Ersatzquelle nach Norton

$$\begin{aligned} \text{Fig. 4-12 ersetzt die Schaltung nach Fig. 4-11 und es wird} \\ I_{L} &= I_{N} \cdot \frac{R_{r}}{R_{r} + R_{L}} = \frac{U \cdot R_{2}}{R_{1} \cdot R_{2} + R_{L} \cdot \left(R_{1} + R_{2}\right)} \end{aligned}$$

Jenes Element, an dem etwas gesucht wird, darf nicht in die Umwandlung in eine Ersatzquelle nach Norton einbezogen werden.

Kurt Steudler 4 - 9 str