CS 3313 Foundations of Computing: Equivalence of Pushdown Automata & Context Free Grammars

http://gw-cs3313-2021.github.io

Next: Equivalence of PDAs and CFLs

- Do PDAs accept Context free languages ?
- Prove: Given any CFG, there is a PDA that accepts the language generated by the grammar.
- Prove: Given any PDA, there is a CFG that generates the language accepted by the PDA.

Language of a PDA

- The common way to define the language of a PDA is by final state.
 - the set of all strings that cause the PDA to halt in a final state, after starting in q₀ with an empty stack.
 - The final contents of the stack are irrelevant
 - As was the case with nondeterministic automata, the string is accepted if any of the computations cause it to halt in a final state
- If M is a PDA, then L(M) is the set of strings w such that (q_0, w, Z_0) \vdash^* (f, λ, α) for final state f and any $\alpha \in \Gamma^*$

Language of a PDA – Alternate Definition

- Another way to define acceptance of a language by a PDA is by empty stack.
- If M is a PDA, then N(M) is the set of strings w such that $(q_0, w, Z_0) \vdash^* (q, \lambda, \lambda)$ for any state q.

Equivalence of PDA Language Definitions

- If L = L(P), then there is another PDA P' such that L = N(P').
- 2. If L = N(P), then there is another PDA P" such that L = L(P").

Either type of PDA acceptance works!

Automata and Grammars/Languages

- When we talked about closure properties of regular languages, it was useful to be able to jump between RE and DFA representations.
 - Similarly, CFG's and PDA's are both useful to deal with properties of the CFL's.
- Also, PDA's, being "algorithmic," are often easier to use when arguing that a language is a CFL and easier to use to design an algorithm to accept a language.
 - Example: It is easy to see how a PDA can recognize balanced parentheses; not so easy as a grammar.

Assumptions: Equivalence of PDAs and CFGs

- Every context free grammar has an equivalent grammar in Chomsky Normal Form
 - We provided the algorithm to convert a CFG to CNF Grammar
 - Using CNF, designed CYK (parsing) algorithm
- Every context free grammar has an equivalent grammar in Greibach Normal Form (GNF)
 - Similar algorithmic process exists for converting to GNF
 - GNF: every production is of the form A → aα where a ∈ T, α ∈ V*
 - GNF derives strings using leftmost derivations
- Equivalence of PDAs and CFGs assumes (without los of generality) that the grammar is in GNF.

Derivations in GNF

- All productions of the form: $B \to a\alpha$ and $a \in T \alpha \in V^*$
 - Rewrite as: $B \rightarrow aA_1\alpha_1$ whenever α is not empty.
- If we follow a leftmost derivation (production applied to leftmost variable in sentential form) then:
- 1. $S \rightarrow a_1 A_1 \alpha_1$ where $a_1 \in T$, where $A_1 \in V$, $\alpha_1 \in V^*$
- 2. $S => a_1 A_1 \alpha_1 => a_1 a_2 A_2 \alpha_2 \alpha_1$ where $A_1 \rightarrow a_2 \alpha_2$ and $\alpha_2 \in V^*$
- 3. $S => a_1 A_1 \alpha_1 => a_1 a_2 A_2 \alpha_2 \alpha_1 => a_1 a_2 a_3 A_3 \alpha_3 \alpha_2 \alpha_1$
 - where $A_2 \rightarrow a_3 A_3 \alpha_3$ and $\alpha_3 \in V^*$
- 4. ... $S = >^* a_1 a_2 a_3 ... a_i A_i \alpha_i ... \alpha_2 \alpha_1$, where $a_i \in T$ and $\alpha_i \in V^*$
 - Leftmost derivation, at each step we generate terminal symbol a_i

Derivations in GNF and Moves in a PDA

- ... $S = >^* a_1 a_2 a_3 ... a_i A_i \alpha_i ... \alpha_2 \alpha_1$, where $a_i \in T$ and $\alpha_i \in V^*$
 - Leftmost derivation, at each step we generate terminal symbol ai
- PDA reads input from left to right
 - It reads $a_1 a_2 a_3 ... a_i$
- G derives: $S = >^* a_1 a_2 a_3 \dots a_i A_i \alpha_i \dots \alpha_2 \alpha_1$
 - Eventually $a_1a_2a_3...a_iA_i\alpha_i...\alpha_2\alpha_1 = >^* a_1a_2a_3...a_ix$
- *iff*
- PDA simulates $(q, a_1a_2a_3...a_ix, S) \vdash^* (q, x, A_i \alpha_i...\alpha_i\alpha_i)$

PDA for a Context Free Language

Theorem: For every context free language L, there exists a PDA M such that L= L(M).

Proof:

- If L is a CFL then it is generated by some GNF grammar G=(V,T,P,S) with L(G)=L
- Key idea: construct a PDA that simulates leftmost derivations in G
- PDA M= $(\{q_0,q_1,q_2\}, T, V \cup \{z\}, \delta, q_0,\{q_2\})$
 - Stack alphabet = Set of Variables in G and the start stack symbol z
 - Alphabet = set of terminal symbols
 - $\delta(q_0, \lambda, z) = \{(q_1, Sz)\}$ /* push S to stack, goto q_1 and start simulation
 - $\delta(q_1, \lambda, z) = \{(q_2, z)\}$ /* if no input and 'empty stack' go to accept state
 - $\delta(q_1, a, A)$ contains (q_1, α) whenever $A \rightarrow a \alpha$ is a production in P
 - Simulate a derivation $A => a \alpha$

Proof – contd...

- Key idea: PDA reads a, pops A from stack, and pushes α to stack if A → a α is a production in the grammar
- PDA simulates leftmost derivations in G
 - Input is processed left to right
- Prove: $S = > *x \alpha$ (using leftmost derivation) if and only if $(q_1, x, Sz) \vdash *(q_1, \lambda, z)$
- Note: from definition of δ , $(q_0, x, z) \vdash (q_1, x, Sz)$
 - This starts PDA with S on TOS
- Proof by induction:
 - 1. If $(q_1, x, Sz) \vdash^* (q_1, \lambda, z)$ then $S = >^* x \alpha$
 - 2. If $S = >^* x \alpha$ then $(q_1, x, Sz) \vdash^* (q_1, \lambda, \alpha z)$

Proof: L(M) is in L(G) If $(q_1, x, Sz) \vdash^* (q_1, \lambda, \alpha z)$ then $S = >^* x \alpha$

- Induction on i the number of 'moves'/steps in PDA ⊢^I
- Basis: i=0..trivial
 - $(q_1, x, Sz) \vdash^0 (q_1, x, Sz)$ then $S = >^0 S$
- Ind.: Assume IH holds for <i steps.
 - Now consider $(q_1, x, Sz) \vdash^i (q_1, \lambda, \alpha z)$, we can write x=ya and
 - $(q_1, ya, Sz) \vdash^{i-1} (q_1, a, \beta z) \vdash (q_1, \lambda, \alpha z)$
 - From construction of PDA, $(q_1, a, \beta z) \vdash (q_1, \lambda, \alpha z)$ iff $\beta = A\gamma_1$ and $A \rightarrow a\gamma_2$ is a production in P (i.e., $\delta(q_1, a, A)$ contains (q_1, γ_2) .
 - From Ind.Hypo. $S = >^* y \beta$, and from production $A \rightarrow a\gamma_2$ we have $S = >^* y \beta = > ya \gamma_2 \gamma_1 = x \alpha$

Proof: L(G) is in L(M) If $S = > *x \alpha$ then $(q_1, x, Sz) + *(q_1, \lambda, \alpha z)$

- Induction on i the number of leftmost derivations in G
- Basis: i=0..trivial
 - then $S = >^0 S$ therefore $(q_1, x, Sz) \vdash^0 (q_1, x, Sz)$
 - Ind.: Assume IH holds for <i steps:
 - If $S = >^k x \alpha$ then $(q_1, x, Sz) \vdash^* (q_1, \lambda, \alpha z)$ for k < i
 - Now consider $S = >^{i-1} yA \gamma_1 = > ya \gamma_2 \gamma_1$
 - A \rightarrow a γ_2 is a production in P
 - From IH, we have: $(q_1, ya, Sz) \vdash^* (q_1, a, A \gamma_1 z)$
 - From construction of PDA, $(q_1, a, A \gamma_1 z) \vdash (q_1, \lambda, \gamma_2 \gamma_1 z)$ since $\delta(q_1, a, A)$ contains (q_1, γ_2) .
 - Therefore $(q_1, y_2, Sz) \vdash^* (q_1, \lambda, \gamma_2, \gamma_1, z)$proved.
 - Finally note from construction of PDA: $(q_1, \lambda, z) \vdash (q_2, \lambda, z)$
 - Therefore $S = >^* w$ iff $(q_0, w, z) \vdash^* (q_2, \lambda, z)$
 - Substituting $\alpha = \lambda$

Example: PDA for Grammar

- $S \rightarrow aA$
- $A \rightarrow aABC \mid bB \mid a$
- \blacksquare B \rightarrow b
- \blacksquare $C \rightarrow c$

- $\delta(q_0, \lambda, z) = \{ (q_1, Sz) \}$ startup the PDA, push S to stack
- $\delta(q_1, \lambda, z) = \{ (q_2, z) \}$ accept if no input and empty stack
- $S \rightarrow aA$ therefore $\delta(q_1, a, S) = \{ (q_1, A) \}$
- $A \rightarrow aABC \mid bB \mid a$ therefore
 - $\delta(q_1, a, A) = \{ (q_1, ABC), (q_1, \lambda) \}$
 - $\delta(q_1, b, A) = \{ (q_1, B) \}$

Example:

- $S \rightarrow aA$ $A \rightarrow aABC \mid bB \mid a$ $B \rightarrow b$ $C \rightarrow c$
- Input w = aabbc -- trace PDA on input w, and show leftmost derivation

PDA to CFG

- Theorem: If L =L(M) for a PDA M, then there is a context free grammar G such that L(G)=L(M)
- Proof: Read theorem 7.2 in textbook.
- Outline given a PDA, we want to generate a grammar that simulates PDA via leftmost derivations
- The proof is rarely used to construct grammars its purpose is to show the equivalence of the two formalisms CFG and PDA

CFG to PDA Conversion "Algorithm"

- The constructive proof can be implemented as an algorithm that takes a GNF Grammar G and generates a PDA
- We can then feed this PDA to a program that simulates/implements any PDA
 - We have an automated process for "writing" a parser!
- BUT.....the conversion/proof may lead to a nondeterministic PDA
 - We want our algorithms to be deterministic...i.e., parser should be deterministic
 - Question: Can we convert the grammar to a deterministic PDA?

Deterministic Pushdown Automata

- A deterministic pushdown automata (DPDA)never has a choice in its move
- Restrictions on dpda transitions:
 - Any (state, symbol, stack top) configuration may have at most one (state, stack top) transition definition
 - If the DPDA defines a transition for a particular (state, λ , stack top) configuration, there can be no input-consuming transitions out of state s with a at the top of the stack
- Unlike the case for finite automata, a λ-transition does not necessarily mean the automaton is nondeterministic

Deterministic Context-Free Languages

- A context-free language L is deterministic (DCFL) if there is a dpda to accept L
- Sample deterministic context-free languages:

```
\{ a^n b^n : n \ge 0 \}
\{ wcw^R : w \in \{a, b\}^* \}
```

- Theorem: Deterministic and nondeterministic pushdown automata are not equivalent: there are some context-free languages for which no DPDA exists that accepts the language
 - Syntax of most programming languages is deterministic context free
- We will return to a discussion of DPDA and DCFLs after discussion of properties of CFLs

Next: Properties of Context Free Languages

- What are the properties of CFLs?
- What types of languages are CFL?
 - Can all properties/semantics of a programming language be captured by a CFL ?
 - Can natural languages be described by CFGs?
 - Can we determine ambiguity and remove ambiguity?
 - Can we parse natural languages using a CFG for the syntax?
- If we combine CFLs using set operations, is the resulting language CFL?
- How do we prove if a language is not context free?
 - Pumping lemma for CFLs !!

Exercise: PDA for Grammar

- $S \rightarrow aSBBC \mid aBBC$
- \blacksquare B \rightarrow b
- $C \rightarrow cC \mid c$
- Input w = abbcc -- trace PDA on input w, and show leftmost derivation