HAF: An Operational, Event-driven Solar Wind Forecast Model

Murray Dryer murray.dryer@noaa.gov

Goal: Improve Space Weather Forecasting

Geomagnetic Storm Prediction System

<u>HAF Model Inputs: Ambient Solar Wind</u>

Steady State:

- Source surface (2.5 Rs)
- B, v synoptic maps

Maps from:

- SEC (Arge & Pizzo)
- Solar observatories (NSO, MWO, WSO)

HAF Model Inputs: Solar Events

Required Input	Observation
Start time eg., 20010825 1642	GOES X-ray or metric type II radio event start time
Location, eg., N20 W34	H-alpha or active region report
Initial shock speed, V _S	Metric type II radio report or spectra
Duration, $ au$	GOES X-ray flux temporal profile

"Fearless Forecast" Study

- NOAA/SEC, EXPI, GI/UAF
- February 1997 present
- Interplanetary shock arrival time (SAT) at Earth
- Ensemble of three models (HAF, ISPM, STOA)
- Benchmark forecast skill

"Fearless Forecast" Study

"April Fools Day" 2001 Events

Events

<u>FF#</u>	Start date/time	<u>Vs</u> <u>Locati</u>	<u>on</u>	
Comment				
254	20010327 1632	677 N22 E33	M2.2/1N	
255*	20010328 1240	1000* N18 E02	M4.3/SF	
256	20010329 1004	1300 N16 W12	X1.7/1N	
257*	20010330 1559	1850 S10 W90*	Blowout?	
258*	20010330 1620	1600 S10 E115?	Blowout?	

Forecast #256 issued 29 March 2001, 2055 UT

HAFv.2: Shock will overtake the two previous interplanetary ICMEs, and the combined structure's **shock will arrive at 1800 UT, 30 March 2001.** SSI = 1.0, and delta(dynamic pressure) = 13.2 nPa.

"FF" #255-258, issued

Mar. 28-30, 2001

Speed

Density

HAF Model Prediction

Dynamic pressure

 $Log(\Delta P/P)$

oration Physico 5 to Lational, Inc.

"April Fools Day" 2001 Event

"Bastille Day" 2000 Event

"Fearless Forecast" issued at 20:31 UT on July 14, 2000:

"Strong shock will arrive at 15 UT on July 15, 2000."

[Dryer et al., Solar Phys.,

"Fearless Forecast" Metrics

Contingency Table

	Observed	
Forecast	Yes	No
Yes	hit	false alarm
No	miss	correct null

"Fearless Forecast" Metrics Feb. 1997 - Oct. 2000

173 events, 68 observed shocks

- Success rate > 50 %
- False alarm rate ~ 50%
- Hit/Miss Ratio STOA best for strong shocks HAF best for medium, weak

shocks

- Heidke skill score $\sim .15 .20$
- RMS error ΔT (SAT_{PRED} SAT_{OBS}) $\sim 11 12$

hours

Solar Cycle 23 - Lessons Learned

CIRs produce shocks.

Dec. 25, 1998, 20 UT

Solar Cycle 23 - Lessons Learned

- Initial shock speed is the most important input to the SAT prediction.
- SAT forecast skill is best near Central Meridian.
- SAT forecast skill is worst for limb events lowpecause Metric Type II speeds are too

<u>Future of Operational, Real-Time,</u> <u>Sun-to-Earth Solar Wind Predictions</u>

Better Customer Collaboration:

Specify Needs

Improved Forecast Skill:

- Assimilate Data
- Predict B_z

Increased Customer Support:

Make Advanced Operational Decisions

"Fearless Forecast" Web Site

http://gse.gi.alaska.edu

Email: gfry@expi.com

Metric Type II Speed

<u>Hakamada-Akasofu-Fry (HAF)</u> <u>Solar Wind Model</u>

- Provides realistic background and event-driven solar wind conditions at L1 and elsewhere.
- Takes in solar observations and event reports.
- Uses "modified kinematic" approach to track solar wind fluid parcels.
- Predicts interplanetary shocks in the global heliosphere.
- Drives downstream empirical and first-principle