EXERCICE 1.

Soit f la fonction définie sur \mathbb{R} par

$$f(x)=x^2\sin\frac{1}{x}\quad {\rm si}\quad x\neq 0\quad {\rm et}\quad f(0)=0.$$

Montrer que f est dérivable mais n'est pas de classe \mathcal{C}^1 sur \mathbb{R} .

EXERCICE 2.★

Calculer les dérivées des fonctions définies par les expressions suivantes. On précisera systématiquement sur quelle partie de \mathbb{R} ces fonctions sont dérivables.

- 1. $f(x) = \ln(\ln(x))$;
- **2.** $f(x) = \arctan(\ln(x))$;
- 3. $f(x) = \ln(\sqrt{1 2\sin^2(x)});$
- 4. $f(x) = \frac{\cos(x) + x \sin(x)}{\sin(x) x \cos(x)}$;
- **5.** $f(x) = \left(\cos^2(x) + \frac{3}{2}\right)\sin(2x);$
- **6.** $f(x) = \arctan\left(\sqrt{\frac{1-x}{1+x}}\right)$.

EXERCICE 3.

Soit P un polynome réel non-constant dont les racines sont réelles et simples.

- 1. Montrer que les racines de P' sont aussi réelles et simples.
- 2. En déduire que pour tout $\alpha > 0$ les racines de $P^2 + \alpha$ sont simples.

EXERCICE 4.★

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ dérivable admettant une limite ℓ en $+\infty$ et en $-\infty$. Prouver l'existence de $c \in \mathbb{R}$ tel que f'(c) = 0.

EXERCICE 5.★

Soient $n \in \mathbb{N}^*$, $a,b \in \mathbb{R}$, a < b et f une fonction de classe C^{n-1} sur [a,b], n fois dérivable sur]a,b[. Soient

$$a_0 = a < a_1 < \cdots < a_n = b$$

et supposons que

$$f(\alpha_0) = f(\alpha_1) = \cdots = f(\alpha_n).$$

Montrer qu'il existe alors $c \in]a, b[$ tel que $f^{(n)}(c) = 0$.

EXERCICE 6.

Soient f dérivable sur un intervalle I à valeurs dans \mathbb{R} , A et B deux points distincts de sa courbe représentative \mathcal{C} tels que B est sur la tangente à \mathcal{C} en A. Montrer qu'il existe un point M de \mathcal{C} , distinct de A, tel que A est sur la tangente à \mathcal{C} en M.

EXERCICE 7.

En utilisant le théorème des accroissement finis, montrer les inégalités suivantes :

- 1. $\forall x \in \mathbb{R}, |\sin(x)| \leq |x|$;
- **2.** $\forall x \ge 0$, $0 \le \ln(1+x) \le x$.

EXERCICE 8.★

Etudier la limite en $+\infty$ de l'expression

$$(x+1)e^{\frac{1}{x+1}}-xe^{\frac{1}{x}}.$$

Exercice 9.★★

Soient $(a,b) \in \mathbb{R}^2$, a < b, f et g deux fonctions de [a,b] dans \mathbb{R} continues sur [a,b] et dérivables sur [a,b[.

1. Montrer qu'il existe $c \in]a, b[$ tel que

$$g'(c)(f(b) - f(a)) = f'(c)(g(b) - g(a)).$$

2. Soient I un intervalle de \mathbb{R} , $x_0 \in I$, f et g deux fonctions définies et continues sur I, dérivables sur $I \setminus \{x_0\}$ telles que $\forall x \in I \setminus \{x_0\}$, $g'(x) \neq 0$ et telles que le rapport

$$\frac{f'(x)}{g'(x)}$$

tende vers $\ell \in \mathbb{R} \cup \{\pm \infty\}$ lorsque x tend vers x_0 . Montrer que le rapport

$$\frac{f(x) - f(x_0)}{g(x) - g(x_0)}$$

est défini pour tout $x \neq x_0$ et qu'il tend vers ℓ lorsque x tend vers x_0 . Le résultat démontré s'appelle la *règle de l'Hospital*.

3. Retrouver, en utilisant la règle de l'Hospital, les développements limités suivants au point 0,

$$\sin(x) = x + o(x), \quad \cos(x) = 1 - \frac{1}{2}x^2 + o(x^2),$$

 $\sin(x) = x - \frac{1}{6}x^3 + o(x^3).$

EXERCICE 10.★

Démontrer que :

- 1. $\forall \ 0 < x < 1$, $\arcsin(x) < \frac{x}{\sqrt{1-x^2}}$;
- 2. $\forall x > 0$, $\arctan(x) > \frac{x}{1+x^2}$.

Exercice 11.★★

Soit f, une application dérivable de [a,b] dans \mathbb{R} . On ne suppose pas que la dérivée f' est continue sur [a,b].

1. On considère les fonctions définies par

$$\phi(x) = \begin{cases} f'(\alpha) & \text{si } x = \alpha, \\ \frac{f(x) - f(\alpha)}{x - \alpha} & \text{si } \alpha < x \leqslant b. \end{cases}$$

 $_{
m et}$

$$\psi(x) = \begin{cases} f'(b) & \text{si } x = b, \\ \frac{f(b) - f(x)}{b - x} & \text{si } a \leqslant x < b. \end{cases}$$

Démontrer que ϕ et ψ sont continues sur [a, b].

2. Démontrer que l'application dérivée f' vérifie le théorème des valeurs intermédiaires : si f'(a) < 0 et f'(b) > 0, alors il existe a < c < b tel que f'(c) = 0.

EXERCICE 12.

Soient p et q, deux nombres réels et n, un entier strictement positif. Démontrer que le polynôme $X^n + pX + q$ ne peut avoir plus de trois racines réelles distinctes.

Exercice 13.★★

Soit f une fonction de $\mathbb R$ dans $\mathbb R$ dérivable telle que $f^2+(1+f')^2\leqslant 1.$ Montrer que f est nulle.

EXERCICE 14.

Soit f une application dérivable de [a,b] dans \mathbb{R} . On ne suppose pas que la dérivée f' est continue. On va cependant montrer que f' vérifie le théorème des valeurs intermédiaires.

Soit y un réel strictement compris entre f'(a) et f'(b). On souhaite donc montrer que f' prend la valeur y sur l'intervalle]a,b[. Pour simplifier, on supposera dans un premier temps f'(a) < f'(b).

- 1. On pose g(x) = f(x) xy pour $x \in [a, b]$. Justifier que g admet un minimum sur [a, b].
- 2. Montrer que ce minimum ne peut être atteint ni en a ni en b.
- 3. Conclure.
- 4. Traiter le cas où f'(a) > f'(b).

EXERCICE 15.

Déterminer les fonctions $f: \mathbb{R}_+^* \to \mathbb{R}$ dérivables vérifiant

$$\forall x, y \in \mathbb{R}_+^*, f(xy) = f(x) + f(y)$$

EXERCICE 16.

Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables en 0 telles que

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = e^x f(y) + e^y f(x)$$

Exercice 17.★★

Déterminer les fonctions $f:\mathbb{R}\longrightarrow\mathbb{R}$ dérivables telles que

$$\forall x \in \mathbb{R}, f(2x) = 2f(x).$$

EXERCICE 18.

Soit f, une application de \mathbb{R}_+ dans \mathbb{R}_+ , telle que f(0)=0 et vérifiant

$$\forall x \geqslant 0, \qquad f'(x) \leqslant f(x).$$

En étudiant les variations de la fonction $g:x\mapsto e^{-x}f(x)$, démontrer que la fonction f est identiquement nulle.

EXERCICE 19.

Soit $f:]0, +\infty[\longrightarrow \mathbb{R}$ une fonction \mathfrak{n} fois dérivable sur \mathbb{R}_+ $(\mathfrak{n} \ge 1)$.

- 1. On suppose dans cette question que n=1 et que f admet une limite finie en $+\infty$. Prouver à l'aide d'un contre-exemple que f' peut n'admettre aucune limite en $+\infty$.
- 2. On suppose que

$$\lim_{x \to +\infty} f'(x) = +\infty.$$

Etablir que

$$\lim_{x \to +\infty} f(x) = +\infty.$$

3. L'entier $\mathfrak n$ est désormais quelconque. On suppose que $\mathfrak f$ et $\mathfrak f^{(\mathfrak n)}$ admettent des limites finies en $+\infty$. Etablir que

$$\lim_{x \to +\infty} f^{(n)}(x) = 0.$$

EXERCICE 20.★

On pose pour tout entier naturel $n \ge 1$ et tout réel x strictement positif,

$$f_n(x) = x^{n-1}e^{1/x}$$
.

On pose $g_n = f_n^{(n)}$ pour tout $n \ge 1$.

1. Jusitifer l'existence de g_n et prouver que pour tout x positif,

$$g_{n+1}(x) = xg'_n(x) + (n+1)g_n(x).$$

2. Montrer que pour tout $n \ge 1$ et tout x positif,

$$g_n(x) = \frac{(-1)^n}{x^{n+1}}e^{1/x}.$$

EXERCICE 21.

Calculer la dérivée n-ième de la fonction de $\mathbb R$ dans $\mathbb R$ définie par $\forall x \in \mathbb R$, $f(x) = (x^2 + 1)e^x$.

EXERCICE 22.**

Soient $(a,b) \in \mathbb{R}^2$ et P_n la fonction polynôme définie sur \mathbb{R} par

$$x \longmapsto P_n(x) = (x - a)^n (x - b)^n$$
.

- 1. Calculer à l'aide de la formule de Leibniz $P_n^{(n)}(x)$ pour tout x dans \mathbb{R} .
- 2. Calculer d'une autre manière $P_n^{(n)}(x)$ pour tout $x \in \mathbb{R}$ lorsque a = b.
- 3. En déduire la formule de Vandermonde

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.$$

EXERCICE 23.

Soit f la fonction à valeurs réelles définie sur I =]-1, 1[par

$$f: x \in I \longmapsto \frac{1}{\sqrt{1-x^2}}.$$

1. Montrer que f est de classe \mathcal{C}^{∞} sur I et que , pout tout $\mathfrak{n}\in\mathbb{N}$, sa dérivée n-ème s'écrit

$$f^{(n)}(x) = \frac{P_n(x)}{(1-x^2)^{n+\frac{1}{2}}},$$

où P_n est un polynôme réel.

- 2. Montrer que le monôme de plus haut degré de P_n est $n!x^n$.
- 3. Prouver que $\forall x \in I$:

$$(1 - x^2)f'(x) - xf(x) = 0.$$

4. Prouver , en utilisant la formule de Leibniz , que pour tout $n\geqslant 1$ et $\forall x\in I$

$$P_{n+1}(x) = (2n+1)xP_n(x) + n^2(1-x^2)P_{n-1}(x).$$

- **5.** En déduire la valeur de $P_n(0)$ pour tout $n \in \mathbb{N}$ (On distinguera les cas n pair et n impair et on exprimera le résultat sous la forme d'un quotient de factorielles).
- **6.** Prouver que pour tout $n \ge 1$ et tout $x \in I$,

$$P'_n(x) = n^2 P_{n-1}(x).$$

7. En déduire une technique de calcul des polynômes P_n . A titre d'exemple , expliciter $f^{(5)}(x)$ pour tout x réel.

EXERCICE 24.

Soit $f: x \mapsto \arctan(x)$.

- 1. Démontrer que pour tout $n \in \mathbb{N}^*$, il existe un unique polynôme P_{n-1} tel que $\forall x \in \mathbb{R}$, $f^{(n)}(x) = \frac{P_{n-1}(x)}{(1+x^2)^n}$.
- 2. Préciser le degré, la parité et le coefficient dominant de P_n.
- 3. Déterminer les limites de $f^{(n)}$ en $-\infty$ et $+\infty$ pour $n \ge 1$.
- 4. Montrer que pour tout $n \in \mathbb{N}$, toutes les racines de P_n sont réelles et simples. Raisonner par récurrence en utilisant le théorème de Rolle.

EXERCICE 25.

Soit $n \in \mathbb{N}$. On considère l'équation différentielle d'inconnue y suivante :

(E):
$$y' - (nx - 1)y = 0$$

- 1. Résoudre (E) et déterminer la solution f_n telle que $f_n(0) = 1$.
- 2. Trouver l'extremum de cette fonction. On note (u_n, v_n) les coordonnées du point correspondant sur le graphe de f_n .
- 3. Déterminer les limites u et v des suites (u_n) et (v_n) et donner un équivalent de v_n-v .
- 4. En utilisant la formule de Leibniz, montrer que $f_n^{(2n+1)}\left(\frac{1}{n}\right)=0.$

EXERCICE 26.

Soit f la fonction définie sur \mathbb{R} par

$$\forall t \in \mathbb{R}, \ f(t) = \begin{cases} e^{-\frac{1}{t}} & \text{si } t > 0 \\ 0 & \text{si } t \leqslant 0 \end{cases}$$

1. Montrer que pour tout $n \in \mathbb{N}$, il existe $P_n \in \mathbb{R}[X]$ tel que

$$\forall t \in \mathbb{R}_+^*, \ f^{(n)}(t) = \frac{P_n(t)e^{-\frac{1}{t}}}{t^{2n}}$$

2. Montrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R} .

EXERCICE 27.

- 1. Soient p et q deux fonctions continues sur $\mathbb R$ telles que $\mathfrak p \leqslant \mathfrak q$ sur $\mathbb R$. Soient u et $\mathfrak v$ deux fonctions de classe $\mathcal C^2$ telles que $\mathfrak u''+\mathfrak p\mathfrak u=0$ et $\mathfrak v''+\mathfrak q\mathfrak v=0$. On suppose que $\mathfrak u$ s'annule en des réels $\mathfrak a$ et $\mathfrak b$ avec $\mathfrak a<\mathfrak b$ mais qu'elle ne s'annule pas sur $\mathfrak a$, $\mathfrak b$ [.
 - a. On pose W = u'v uv'. Déterminer W'.
 - **b.** En déduire que ν s'annule sur [a, b].
- **2.** Application. Soient r une fonction continue sur \mathbb{R} , f de classe \mathcal{C}^2 sur \mathbb{R} telle que f'' + rf = 0 et $M \in \mathbb{R}_+^*$.
 - a. On suppose $r \ge M^2$. Montrer que tout intervalle fermé de longueur $\frac{\pi}{M}$ contient au moins un zéro de f.
 - **b.** On suppose $r \leq M^2$. On suppose que f s'annule en des réels a et b tels que a < b mais qu'elle ne s'annule pas sur a, b. Montrer que $b a \geqslant \frac{\pi}{M}$.

EXERCICE 28.★★

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ de classe C^{∞} tel que f(0) = 1 et $\forall x \ge \frac{1}{2}$, f(x) = 0.

- 1. Montrer que $\forall n \in \mathbb{N}$, $\sup_{\mathbb{R}_+} |f^{(n)}| \geqslant 2^n n!$.
- 2. Montrer que pour $n \geqslant 1$, $\sup_{\mathbb{R}_+} \left| f^{(n)} \right| > 2^n n!$.

Exercice 29.★★

Soit $f:\mathbb{R}\to\mathbb{R}$ de classe \mathcal{C}^∞ telle que $\forall n\in\mathbb{N}, f^{(n)}(0)=0$. On suppose de plus que :

$$\exists \lambda > 0, \forall n \in \mathbb{N}, \sup_{\mathbb{R}} \left| f^{(n)} \right| \leqslant \lambda^n n!$$

Montrer que f est nulle sur $]-\frac{1}{\lambda};\frac{1}{\lambda}[$ puis sur \mathbb{R} .

EXERCICE 30.

Soit f une fonction de classe C^n sur [a,b] et n+1 fois dérivable sur]a,b[. Montrer qu'il existe $c \in]a,b[$ tel que

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1}$$

On appliquera le théorème de Rolle à la fonction φ définie par

$$\varphi(x) = f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} (b - x)^{k} + A \frac{(b - x)^{n+1}}{(n+1)!}$$

avec une constante A bien choisie.

Remarque. La formule établie plus haut s'appelle $formule\ de\ Taylor-Lagrange.$

EXERCICE 31.

On pose $u_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$ pour $n \geqslant 1$.

- 1. Soit $f: x \mapsto \ln(1+x)$. Déterminer par récurrence une expression de $f^{(n)}$ pour tout $n \in \mathbb{N}^*$.
- 2. En appliquant l'inégalité de Taylor-Lagrange entre 0 et 1, montrer que $|u_n-\ln(2)|\leqslant \frac{1}{n+1} \text{ pour tout } n\in\mathbb{N}^*.$
- 3. En déduire la convergence et la limite de (u_n) .

EXERCICE 32.

Soit f une fonction de classe \mathcal{C}^2 sur $\mathbb{R}.$ On suppose que f, f' et f'' sont bornées sur \mathbb{R} et on pose

$$M_0 = \sup_{t \in \mathbb{R}} |f(t)| \qquad \qquad M_1 = \sup_{t \in \mathbb{R}} |f'(t)| \qquad \qquad M_2 = \sup_{t \in \mathbb{R}} |f''(t)|$$

On souhaite montrer que $M_1 \leq 2\sqrt{M_0M_2}$.

- 1. Démontrer l'inégalité demandée dans le cas où $M_0=0$ ou $M_2=0$. Dans la suite de l'énoncé on supposera M_0 et M_2 strictement positifs.
- **2.** Soient $x \in \mathbb{R}$ et h > 0. Justifier que

$$|f(x+h) - f(x) - f'(x)h| \le \frac{M_2h^2}{2}$$

3. En déduire que

$$|f'(x)| \leqslant \frac{2M_0}{h} + \frac{M_2h}{2}$$

- **4.** Soient \mathfrak{a} , \mathfrak{b} deux réels strictements positifs. On pose $g: \mathfrak{t} \in \mathbb{R}_+^* \mapsto \frac{\mathfrak{a}}{\mathfrak{t}} + \mathfrak{b}\mathfrak{t}$. Etudier les variations de g sur \mathbb{R}_+^* . En déduire que g admet un minimum sur \mathbb{R}_+^* et calculer celui-ci en fonction de \mathfrak{a} et \mathfrak{b} .
- **5.** Conclure.

EXERCICE 33.

Soient R>0 et $f:I\to\mathbb{R}$ de classe \mathcal{C}^{∞} avec I=]-R,R[. On suppose que

$$\forall n \in \mathbb{N}, \forall x \in I, f^{(n)}(x) \geqslant 0$$

Pour $n \in \mathbb{N}$ et $x \in I$, on pose $S_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k$ et $R_n(x) = f(x) - S_n(x)$.

- 1. Soit $r \in]0, R[$ et $x \in]-r, r[$. Montrer que $|R_n(x)| \leq \frac{|x|^{n+1}}{r^{n+1}} R_n(r)$ pour tout $n \in \mathbb{N}$.
- **2.** En déduire que pour tout $x \in I$, $(S_n(x))_{n \in \mathbb{N}}$ converge vers f(x).

EXERCICE 34.

Soit f une fonction de classe \mathcal{C}^2 sur [0,1] nulle en 0. On pose $S_n = \sum_{k=0}^n f\left(\frac{k}{n^2}\right)$ pour $n \geqslant 1$. Etudier la limite de (S_n) . On pourra utiliser l'inégalité de Taylor-Lagrange.

EXERCICE 35.

On dit qu'une fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ admet une dérivée symétrique en $\mathfrak{a} \in \mathbb{R}$ lorsque le rapport

$$\frac{f(\alpha+h)-f(\alpha-h)}{2h}$$

admet une limite lorsque h tend vers 0.

- 1. Prouver que la dérivabilité en $\mathfrak a$ est une condition suffisante de dérivabilité symétrique en $\mathfrak a$.
- 2. Est-ce une condition nécessaire?

EXERCICE 36.

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ de classe \mathcal{C}^2 . Soit $x_0 \in \mathbb{R}$. Déterminer la limite en 0 du quotient

$$\frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0)}{h^2}.$$

Exercice 37.★

Etablir que

$$\forall x \in \mathbb{R}, \qquad \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^k}{k!} = e^x.$$

EXERCICE 38.

Etablir que

$$\forall x \leqslant 0, \quad 1+x \leqslant e^x \leqslant 1+x+\frac{x^2}{2}.$$

EXERCICE 39.

On considère la fonction f définie par :

$$f(x) = \frac{1}{1 + x^2}.$$

- 1. Montrer que f est indéfiniment dérivable sur \mathbb{R} .
- 2. Soit n un entier naturel. On pose

$$P_n(x) = (1 + x^2)^{n+1} f^{(n)}(x)$$

où $f^{(n)}$ désigne la dérivée n-ième de f.

a. Montrer que l'on a :

$$(1+x^2)P'_n(x) = 2(n+1)xP_n(x) + P_{n+1}(x).$$

- **b.** Etablir que P_n est un polynôme dont le terme de plus haut degré est égal à $(-1)^n(n+1)!x^n$.
- 3. Soit $\mathfrak a$ un réel et $\mathfrak g$ une fonction continue sur l'intervalle $[\mathfrak a,+\infty[$, dérivable sur l'intervalle $]\mathfrak a,+\infty[$ et qui vérifie

$$g(a) = 0$$
 et $\lim_{x \to +\infty} g(x) = 0$.

a. On considère la fonction G définie sur l'intervalle [0, 1] par :

$$G: x \mapsto \left\{ \begin{array}{lll} g(1/x + \alpha - 1) & \mathrm{si} & x \in]0, 1] \\ 0 & \mathrm{si} & x = 0 \end{array} \right.$$

Montrer que G est continue sur [0,1] et dérivable sur]0,1[.

- **b.** Montrer que G' s'annule en un point de]0,1[. En déduire que g' s'annule en un point de $]a,+\infty[$.
- **4.** Soit h une fonction qui est continue sur l'intervalle $]-\infty,\alpha]$, dérivable sur l'intervalle $]-\infty,\alpha[$, telle que

$$h(a) = 0$$
 et telle que $\lim_{x \to -\infty} h(x) = 0$.

Montrer que la fonction h' s'annule en un point de l'intervalle $]-\infty,\alpha[$.

5. Montrer par récurrence sur n que le polynôme P_n admet n racines réelles distinctes.

EXERCICE 40.

Soit $P \in \mathbb{R}[X]$ scindé sur \mathbb{R} à racines simples.

- 1. Montrer qu'il en est de même de P'.
- 2. Montrer que le polynôme $P^2 + 1$ n'a que des racines simples dans \mathbb{C} .

EXERCICE 41.

Pour tout $n \in \mathbb{N}$, on note $Q_n = (X^2 - 1)^n$ et $P_n = \frac{1}{2^n n!} Q_n^{(n)}$. On pourra confondre polynôme et fonction polynomiale associée.

- 1. Calculer P_0 , P_1 , P_2 et P_3 .
- **2.** Quel est le degré de P_n ?
- 3. Montrer que P_n a la parité de n. En déduire $P_n(0)$ pour n impair et $P'_n(0)$ pour n pair.
- 4. En utilisant la formule du binôme de Newton, calculer $P_n(0)$ pour n pair et $P_n'(0)$ pour n impair. On exprimera les résultats à l'aide de factorielles.
- 5. a. Vérifier que

$$\forall n \in \mathbb{N}, (X^2 - 1)Q'_n = 2nXQ_n$$

b. En dérivant n+1 fois cette relation, montrer que

$$\forall n \in \mathbb{N}, (X^2 - 1)P''_n + 2XP'_n = n(n+1)P_n$$

- **6.** a. Montrer que $Q_n^{(k)}(-1) = Q_n^{(k)}(1) = 0$ pour tout $k \in [0, n-1]$.
 - **b.** En appliquant le théorème de Rolle et à l'aide d'une récurrence, montrer que P_n admet exactement n racines réelles distinctes dans]-1,1[.

EXERCICE 42.

Étudier la suite définie par la relation de récurrence

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{2 - u_n}$.

EXERCICE 43.

Étudier la suite définie par

$$\forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{4 + 3u_n}.$$

EXERCICE 44.

Étudier la suite définie par

$$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{4} \sin\left(\frac{1}{u_n}\right) + 1.$$