

SEQUENCE LISTING

<110> Kramer, Michael

<120> Regulatory Protein pKe#83 from Human
Keratinocytes

<130> km-3/PCT

<140> PCT/DE99/03732

<141> 1999-11-19

<150> DE19854672.6

<151> 1998-11-26

<150> DE19856301.9

<151> 1998-12-07

<160> 8

<170> PatentIn Ver. 2.1

<210> 1

<211> 2667

<212> DNA

<213> Homo sapiens

<400> 1

gttttggtag gcaaaaagag actattgaaa gctgagactt tagaatttag tgacttat 6

0

gttagtgata agaagaagga tatgtctcca ccctttat tt gtgaggagac agatgaacaa 1
20

aagcttc当地 ctcttagacat cggtagtaac ttggagaaag aaaaatttga gaattccaga 1
80

tccttagaat gcagatcaga tccagaatct cctatcaaaa aaacaagttt atctcctact 2
40

tctaaacttg gatactcata tagtagagat ctagaccctt ctaagaaaa acatgcttcc 3
00

ctgaggcaga cggagtctga tccagatgct gatagaacca ctttaaatca tgcagatcat 3
60

tcatcaaaaa tagtccagca tcgattgtta tctagacaag aagaacttaa ggaaagagca 4
20

agagttctgc ttgagcaagc aagaagagat gcagccttaa aggcggggaa taagcacaat 4
80

accaacacag ccaccccatt ctgcaacagg cagctaagtg atcagcaaga tgaagagcga 5
40

cgtcgccagc tgagagagag agctcgtag ctaatagcag aagctcgatc tggagtgaag 6

00 atgtcagaac ttcccagcta tggtgaaatg gctgcagaaa agttgaaaga aaggtcaaag 6
60 gcatctggag atgaaaatga taatatttag atagatacta acgaggagat ccctgaaggc 7
20 tttgtttag gaggtggaga tgaacttact aacttagaaa atgaccttga tactccgaa 7
80 caaaacagta agttggtgga cttgaagctg aagaagctcc tagaagttca gccacaggtg 8
40 gcaaattcac cctccagtgc tgcccagaaa gctgtaactg agagctcaga gcaggacatg 9
00 aaaagtggca cagaagatct ccggactgaa cgattacaaa aaacaacaga acgttttaga 9
60 aatcctgttg tgttcagcaa agattctaca gtcagaaaaa ctcaacttca gtcttcagc 1
020 caatatattg agaatagacc agagatgaaa aggagagat caatacagga agatacaaag 1
080 aaaggaaatg aggagaaggc agcgataact gaaactcaga ggaagccatc agaagatgaa 1
140 gtgcttaata aagggttcaa agacaccgt cagtatgtag taggagaatt ggcagcacta 1
200 gagaatgagc aaaagcaaat tgacacccgt gccgcgctgg tggagaagcg cttcgctat 1
260 ctcatggaca caggaaggaa cacagaagaa gaagaagcta tcatgcagga atggttatg 1
320 ttagttaata agaaaaatgc cttataagg agaatgaatc agctctctct tctggaaaaa 1
380 gaacatgatt tagaacgacg gtatgagctg ctgaaccggg aattgagggc aatgctagcc 1
440 attgaagact ggcagaagac cgaggcccag aagcgacgac aacagttct gctagatgag 1
500 ctggggcccc tggtgaacaa gcgcgatgac ctcgtcaggg acctggacgc gcaggagaag 1
560 caggccgaag aagaagatga gcatttggag cgaactctgg agcaaaacaa aggcaagatg 1
620 gccaagaaag aggagaaatg tgttcttcag tagccatcag atcagaaaga atctctccca 1
680 acattttaga gtcttgcttc ccaaaccaga aaaagtcaga ctcattgttgc atttaaaact 1
740 tttaacattt tgttggctg gattgtacta cttaacctct actttaccac caccaccctt 1
800 ttccctccctc cttccaaat aatatacaga actccaaat agttcattt aaggattttt 1
860 ttgtgagttt acaatttcct taaaatcctg taaaatagat ttgcacagac accttgtgag 1
920 tgattggat tggaggtgtt caagaaaactg ttcaaaaaag aacaaaaaca cttccctcgt 1
980 tattttctct catttttga tgagagaaaa atttggaaaca ttattcttgc tgttgttgg 2

040
aatagcataa tgacagtggg aggggtacaa gggataaga aaaatgtcat gattttttc 2
100
cggtcctgcc acatgtaca cttactctgt tacctaaatt ttatagttag atcatatcca 2
160
atctacttat taaaactgtgt tctatattacc agtggagttt ttctgcagtg gttgcgttc 2
220
actgtaaaggta taatggagtt cctctcctct gcttcctca gaggatggtc cttaacata 2
280
gccagaaaaca agccctgtgg tttgaaggtg agctgtgagg atgggactaa ttgatatgca 2
340
ccagtttaca aagacagtct tatcatccga gaatacacca tcttttctc tggataatta 2
400
tttcttacat catgcttgat tcctacattt tggtgggttt caacattggc tcacgaatgc 2
460
tgttaatatt tattctgtat tgataaaaaag tctgtcttgc cactacaagt aaatccccca 2
520
ttaatattt tcttcttag catagcactg tcatttttg tgaaaatggc tatgtttatt 2
580
tattacaata ctgagtcata tataaatttt caataaaagc agaaacttcc ttaccttaaa 2
640
aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaa 2
667

<210> 2
<211> 2547
<212> DNA
<213> Homo sapiens

<220>
<223> splice variant

<400> 2
gttttggtag gcaaaaagag actattgaaa gctgagactt tagaattgag tgacttat 6
0
gttagtgata agaagaagga tatgtctcca ccctttattt gtgaggagac agatgaacaa 1
20
aagttcaaa ctctagacat cggttagtaac ttggagaaag aaaaattaga gaattccaga 1
80
tccttagaat gcagatcaga tccagaatct cctatcaaaa aaacaagttt atctcctact 2
40
tctaaacttg gatactcata tagtagagat ctagaccttg ctaagaaaa acatgcttcc 3
00
ctgaggcaga cggagtctga tccagatgct gatagaacca cttaaatca tgcagatcat 3
60
tcatcaaaaa tagtccagca tcgattgtta tctagacaag aagaacttaa ggaaagagca 4
20

agagttctgc ttgagcaagc aagaagagat gcagccttaa aggcggggaa taagcacaat 4
80
accaacacag ccacccatt ctgcaacagg cagctaagtg atcagcaaga tgaagagcga 5
40
cgtcggcagc tgagagagag agctcgtag ctaatagcag aagctcgatc tggagtgaag 6
00
atgtcagaac ttcccagcta tggtaaatg gctgcagaaa agttgaaaga aaggtcaaag 6
60
caaaacagta agttggtgga cttgaagctg aagaagctcc tagaagttca gccacaggtg 7
20
gcaaattcac cctccagtgc tgcccagaaa gctgtaactg agagctcaga gcaggacatg 7
80
aaaagtggca cagaagatct ccggactgaa cgattacaaa aaacaacaga acgtttttaga 8
40
aatcctgttg tgttcagcaa agattctaca gtcagaaaaa ctcaacttca gtcttcagc 9
00
caatatattg agaatacgacc agagatgaaa aggtagatgaa caatacagga agatacaaag 9
60
aaaggaaatg aggagaaggc agcgataact gaaactcaga ggaagccatc agaagatgaa 1
020
gtgcttaata aagggttcaa agacaccagt cagtagttag taggagaatt ggcagcacta 1
080
gagaatgagc aaaagcaaat tgacacccgt gccgcgctgg tggagaagcg cttcgctat 1
140
ctcatggaca caggaaggaa cacagaagaa gaagaagcta ttagtgcagga atggtttatg 1
200
ttagtttaata agaaaaatgc cttataagg agaatgaatc agctctctct tctggaaaaa 1
260
gaacatgatt tagaacgacg gtatgagctg ctgaaccggg aattgagggc aatgctagcc 1
320
atngaagact ggcagaagac cgaggcccag aagcgacgacg aacagttct gctagatgag 1
380
ctggggcccc tggtgaacaa ggcgcgtgcg ctcgtcaggg acctggacgc gcaggagaag 1
440
caggccgaag aagaagatga gcattggag cgaactctgg agcaaaacaa aggcaagatg 1
500
gccaaagaaag aggagaaatg tgttcttcag tagccatcag atcagaaaga atctctccca 1
560
acatttttaga gtcttgcttc ccaaaccaga aaaagtcaga ctcattgttg atttaaaact 1
620
tttaacattt tgttggctg gattgtacta cttaacctct actttaccac caccaccctt 1
680
ttcctccctc cttaacaaat aatatacaga actccaaat agttcattt aaggattttt 1
740
ttgtgagttt acaatttcct tgaaatcctg tgaaatagat ttgcacagac accttgtgag 1
800
tgattggat tggaggtgtt caagaaactg ttgcggaaag aacaaaaaca cttccctcgt 1
860

tattttctct catttttga tgagaggaaa atttcaaaca ttattcttgt tggtgttggt 1
 920
 aatagcataa tgacagtggg aggggtacaa gggataaga aaaatgtcat gatttttttc 1
 980
 cggtcctgcc acatgtaaca ctactctgt tacctaaatt ttatagttag atcatatcca 2
 040
 atctacttat taaactgtgt tctatattacc agtggagttt ttctgcagtg gttgcgttcc 2
 100
 actgtaagga taatggagtt cctctcctct gcttcctca gaggatggtc cttaacata 2
 160
 gccagaaaca agccctgtgg tttgaaggtg agctgtgagg atggactaa ttgatatgca 2
 220
 ccagtttaca aagacagtct tatcatccga gaatacacca tcttttctc tggataatta 2
 280
 tttcttacat catgcttcat tcctacattt tggtgggttt caacattggc tcacgaatgc 2
 340
 tgttaatatt tattctgtat tgataaaaag tctgtcttgc cactacaagt aaatccccca 2
 400
 tttaatattt tcttctttag catagcactg tcatttttg tgaaaatggg tatgtttatt 2
 460
 tattacaata ctgagtcata tataaatttt caataaaagc agaaactttc ttaccttaaa 2
 520
 aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2
 547

<210> 3
 <211> 523
 <212> PRT
 <213> Homo sapiens

<220>
 <223> Phosphorylation sites: 9x Protein kinase, 15x
 Caseine kinase, 2x Tyrosine kinase

<220>
 <223> Prenylation site (CAAX-box)

<400> 3
 Met Ser Pro Pro Phe Ile Cys Glu Glu Thr Asp Glu Gln Lys Leu Gln
 1 5 10 15
 Thr Leu Asp Ile Gly Ser Asn Leu Glu Lys Glu Lys Leu Glu Asn Ser
 20 25 30
 Arg Ser Leu Glu Cys Arg Ser Asp Pro Glu Ser Pro Ile Lys Lys Thr

35	40	45
Ser Leu Ser Pro Thr Ser Lys Leu Gly Tyr Ser Tyr Ser Arg Asp Leu		
50	55	60
Asp Leu Ala Lys Lys Lys His Ala Ser Leu Arg Gln Thr Glu Ser Asp		
65	70	75
80		
Pro Asp Ala Asp Arg Thr Thr Leu Asn His Ala Asp His Ser Ser Lys		
85	90	95
Ile Val Gln His Arg Leu Leu Ser Arg Gln Glu Glu Leu Lys Glu Arg		
100	105	110
Ala Arg Val Leu Leu Glu Gln Ala Arg Arg Asp Ala Ala Leu Lys Ala		
115	120	125
Gly Asn Lys His Asn Thr Asn Thr Ala Thr Pro Phe Cys Asn Arg Gln		
130	135	140
Leu Ser Asp Gln Gln Asp Glu Glu Arg Arg Arg Gln Leu Arg Glu Arg		
145	150	155
160		
Ala Arg Gln Leu Ile Ala Glu Ala Arg Ser Gly Val Lys Met Ser Glu		
165	170	175
Leu Pro Ser Tyr Gly Glu Met Ala Ala Glu Lys Leu Lys Glu Arg Ser		
180	185	190
Lys Ala Ser Gly Asp Glu Asn Asp Asn Ile Glu Ile Asp Thr Asn Glu		
195	200	205
Glu Ile Pro Glu Gly Phe Val Val Gly Gly Asp Glu Leu Thr Asn		
210	215	220
Leu Glu Asn Asp Leu Asp Thr Pro Glu Gln Asn Ser Lys Leu Val Asp		
225	230	235
240		
Leu Lys Leu Lys Lys Leu Leu Glu Val Gln Pro Gln Val Ala Asn Ser		
245	250	255
Pro Ser Ser Ala Ala Gln Lys Ala Val Thr Glu Ser Ser Glu Gln Asp		
260	265	270
Met Lys Ser Gly Thr Glu Asp Leu Arg Thr Glu Arg Leu Gln Lys Thr		
275	280	285

Thr Glu Arg Phe Arg Asn Pro Val Val Phe Ser Lys Asp Ser Thr Val
 290 295 300
 Arg Lys Thr Gln Leu Gln Ser Phe Ser Gln Tyr Ile Glu Asn Arg Pro
 305 310 315 320
 Glu Met Lys Arg Gln Arg Ser Ile Gln Glu Asp Thr Lys Lys Gly Asn
 325 330 335
 Glu Glu Lys Ala Ala Ile Thr Glu Thr Gln Arg Lys Pro Ser Glu Asp
 340 345 350
 Glu Val Leu Asn Lys Gly Phe Lys Asp Thr Ser Gln Tyr Val Val Gly
 355 360 365
 Glu Leu Ala Ala Leu Glu Asn Glu Gln Lys Gln Ile Asp Thr Arg Ala
 370 375 380
 Ala Leu Val Glu Lys Arg Leu Arg Tyr Leu Met Asp Thr Gly Arg Asn
 385 390 395 400
 Thr Glu Glu Glu Ala Met Met Gln Glu Trp Phe Met Leu Val Asn
 405 410 415
 Lys Lys Asn Ala Leu Ile Arg Arg Met Asn Gln Leu Ser Leu Leu Glu
 420 425 430
 Lys Glu His Asp Leu Glu Arg Arg Tyr Glu Leu Leu Asn Arg Glu Leu
 435 440 445
 Arg Ala Met Leu Ala Ile Glu Asp Trp Gln Lys Thr Glu Ala Gln Lys
 450 455 460
 Arg Arg Glu Gln Leu Leu Asp Glu Leu Val Ala Leu Val Asn Lys
 465 470 475 480
 Arg Asp Ala Leu Val Arg Asp Leu Asp Ala Gln Glu Lys Gln Ala Glu
 485 490 495
 Glu Glu Asp Glu His Leu Glu Arg Thr Leu Glu Gln Asn Lys Gly Lys
 500 505 510
 Met Ala Lys Lys Glu Glu Lys Cys Val Leu Gln
 515 520

<211> 481

<212> PRT

<213> Homo sapiens

<220>

<223> Phoshorylation sites: 9x Protein kinase, 15x
Caseine kinase, 2x Tyrosine kinase

<220>

<223> Prenylation site (CAAX-box)

<400> 4

Met Ser Pro Pro Phe Ile Cys Glu Glu Thr Asp Glu Gln Lys Leu Gln
1 5 10 15

Thr Leu Asp Ile Gly Ser Asn Leu Glu Lys Glu Lys Leu Glu Asn Ser
20 25 30

Arg Ser Leu Glu Cys Arg Ser Asp Pro Glu Ser Pro Ile Lys Lys Thr
35 40 45

Ser Leu Ser Pro Thr Ser Lys Leu Gly Tyr Ser Tyr Ser Arg Asp Leu
50 55 60

Asp Leu Ala Lys Lys Lys His Ala Ser Leu Arg Gln Thr Glu Ser Asp
65 70 75 80

Pro Asp Ala Asp Arg Thr Thr Leu Asn His Ala Asp His Ser Ser Lys
85 90 95

Ile Val Gln His Arg Leu Leu Ser Arg Gln Glu Glu Leu Lys Glu Arg
100 105 110

Ala Arg Val Leu Leu Glu Gln Ala Arg Arg Asp Ala Ala Leu Lys Ala
115 120 125

Gly Asn Lys His Asn Thr Asn Thr Ala Thr Pro Phe Cys Asn Arg Gln
130 135 140

Leu Ser Asp Gln Gln Asp Glu Glu Arg Arg Arg Gln Leu Arg Glu Arg
145 150 155 160

Ala Arg Gln Leu Ile Ala Glu Ala Arg Ser Gly Val Lys Met Ser Glu
165 170 175

Leu Pro Ser Tyr Gly Glu Met Ala Ala Glu Lys Leu Lys Glu Glu Gln

180	185	190	
Asn Ser Lys Leu Val Asp Leu Lys Leu Lys Lys Leu Leu Glu Val Gln			
195	200	205	
Pro Gln Val Ala Asn Ser Pro Ser Ser Ala Ala Gln Lys Ala Val Thr			
210	215	220	
Glu Ser Ser Glu Gln Asp Met Lys Ser Gly Thr Glu Asp Leu Arg Thr			
225	230	235	240
Glu Arg Leu Gln Lys Thr Thr Glu Arg Phe Arg Asn Pro Val Val Phe			
245	250	255	
Ser Lys Asp Ser Thr Val Arg Lys Thr Gln Leu Gln Ser Phe Ser Gln			
260	265	270	
Tyr Ile Glu Asn Arg Pro Glu Met Lys Arg Gln Arg Ser Ile Gln Glu			
275	280	285	
Asp Thr Lys Lys Gly Asn Glu Glu Lys Ala Ala Ile Thr Glu Thr Gln			
290	295	300	
Arg Lys Pro Ser Glu Asp Glu Val Leu Asn Lys Gly Phe Lys Asp Thr			
305	310	315	320
Ser Gln Tyr Val Val Gly Glu Léu Ala Ala Leu Glu Asn Glu Gln Lys			
325	330	335	
Gln Ile Asp Thr Arg Ala Ala Leu Val Glu Lys Arg Leu Arg Tyr Leu			
340	345	350	
Met Asp Thr Gly Arg Asn Thr Glu Glu Glu Ala Met Met Gln Glu			
355	360	365	
Trp Phe Met Leu Val Asn Lys Lys Asn Ala Leu Ile Arg Arg Met Asn			
370	375	380	
Gln Leu Ser Leu Leu Glu Lys Glu His Asp Leu Glu Arg Arg Tyr Glu			
385	390	395	400
Leu Leu Asn Arg Glu Leu Arg Ala Met Leu Ala Ile Glu Asp Trp Gln			
405	410	415	
Lys Thr Glu Ala Gln Lys Arg Arg Glu Gln Leu Leu Leu Asp Glu Leu			
420	425	430	
Val Ala Leu Val Asn Lys Arg Asp Ala Leu Val Arg Asp Leu Asp Ala			
435	440	445	

Gln Glu Lys Gln Ala Glu Glu Glu Asp Glu His Leu Glu Arg Thr Leu
450 455 460

Glu Gln Asn Lys Gly Lys Met Ala Lys Lys Glu Glu Lys Cys Val Leu
465 470 475 480

Gln

<210> 5

<211> 2559

<212> DNA

<213> Homo sapiens

<220>

<223> splice variant

<400> 5

gttttgttag gcaaaaagag actattgaaa gctgagactt tagaatttag tgacttatat 6
0

gttagtgata agaagaagga tatgtctcca ccctttattt gtgaggagac agatgaacaa 1
20

aagcttcaaa ctctagacat cggtagtaac ttggagaaag aaaaattaga gaattccaga 1
80

tccttagaat gcagatcaga tccagaatct cctatcaaaa aaacaagttt atctcctact 2
40

tctaaacctg gatactcata tagtagagat ctagaccttg ctaagaaaaa acatgcttcc 3
00

ctgagggcaga cggagtctga tccagatgct gatagaacca ctttaaatca tgcagatcat 3
60

tcatcaaaaa tagtccagca tcgattgtta tctagacaag aagaacttaa ggaaagagca 4
20

agagttctgc ttgagcaagc aagaagagat gcagccttaa aggccccgaa taagcacaat 4
80

accaacacag ccacccatt ctgcaacagg cagctaagtg atcagcaaga tgaagagcga 5
40

cgtcgccagc tgagagagag agctcgtag ctaatagcag aagctcgatc tggagtgaag 6
00

atgtcagaac ttcccagcta tggtaaatg gctgcagaaa agttgaaaga aaggtcaaag 6
60

gcatctggag aacaaaacag taagttggtg gacttgaagc tgaagaagct cctagaagtt 7
20

cagccacagg tggcaaattc accctccagt gctgccaga aagctgtaac tgagagctca 7
80

gagcaggaca tgaaaagtgg cacagaagat ctccggactg aacgattaca aaaaacaaca 8
40

gaacgttta gaaatcctgt tgtgttcagc aaagattcta cagtcagaaa aactcaactt 9
00

cagtcTTTca gccaatatata tgagaataga ccagagatga aaaggcagag atcaatacag 9
60
gaagatacaa agaaaggaaa tgaggagaag gcagcgataa ctgaaactca gaggaagcca 1
020
tcagaagatg aagtgcTTaa taaagggttc aaagacacca gtcagtatgt agtaggagaa 1
080
ttggcAGCAC tagagaatga gcaAAAGCAA attgacaccc gtGCCGCGCT ggtggagaag 1
140
cgcCTTCGCT atctcatgga cacaggaagg aacacagaag aagaagaAGC tatgatgcag 1
200
gaatggTTta tgTTAGTTaa taagaaaaat gcTTAATAA ggagaatgaa tcagCTCT 1
260
cttCTGGAAA aagaACATGA ttTAGAACGA CGGTATGAGC TGCTGAACCG ggaATTGAGG 1
320
gcaATGCTAG ccATTGAAGA CTGGCAGAAG ACCGAGGCC AGAACGACG CGAACAGCTT 1
380
ctgCTAGATG agCTGGTGGC CCTGGTGAAC AAGCGCGATG CGCTCGTCAG GGACCTGGAC 1
440
gcgcAGGAGA AGCAGGCCGA AGAAGAAGAT GAGCATTGG AGCAGACTCT GGAGCAAAAC 1
500
aaAGGCAAGA TGGCCAAGAA AGAGGAGAAA TGTGTTCTTC AGTAGCCATC AGATCAGAAA 1
560
gaatCTCTCC caACATTta gagTCTTGCT TCCCAAACCA gaaaaAGTC gACTCATTGT 1
620
tgatttaaaa ctttaACAT tttgtttggc tggattgtac tactttacct ctactttacc 1
680
accaccACCC ttttcctccc tcctttccaa ataatacaca gaACTCCAAA ATAGCTTCAT 1
740
ttaaggattt ttttgtgagt taacaATTc CTTGAAATCC TGTGAAATAG ATTGcacAG 1
800
acacCTTGTG agtGATTGgtt attggaggTG ttcaAGAAAC TGTGAAATAG ATTGcacAG 1
860
cactCCCTC gttatTTCT CTCATTTT gatgagAGGA AAATTGAAA CATTATTCTT 1
920
gttGTTGTTG gtaATAGCAT aatgacAGTG ggAGGGGTAC aAGGGATAA gaaaaATGTC 1
980
atgATTTTT TCCGGTCCTG CCACATGTA CACTTACTCT GTTACCTAA TTTTATAGTT 2
040
agatcatATC caATCTACTT attAAACTGT GTTCTATTa CCAGTGGAGT TTTCTGCAG 2
100
tggTTGCGTT tcactGTAAG gataATGGAG ttccTCTCCT CTGCTTCCT cAGAGGATGG 2
160
tcctttaACA tagCCAGAAA CAAGCCCTGT ggTTGAAGG tgAGCTGTGA gGATGGACT 2
220
aattGATATG caccAGTTA caaAGACAGT CTTATCATCC gagaataCAC catCTTTTC 2
280
tctggataat tatttCTTAC atcatGCTTG attcCTACAT tttgttgggt ttcaACATTG 2
340

gctcacgaat gctgttaata tttattctgt attgataaaa agtctgtctt gccactacaa 2
400
gtaaatcccc catttaatat tttcttcctt agcatagcac tgtcatttt tgtaaaaatg 2
460
gttatgttta tttattacaa tactgagtca tatataaaatt ttcaataaaa gcagaaaactt 2
520
tcttacctta aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2
559

<210> 6
<211> 487
<212> PRT
<213> *Homo sapiens*

<220>
<223> Phosphorylation sites: 8x Protein kinase, 12x
Caseine kinase, 2x Tyrosine kinase

<220>
<223> Prenylation site (CAAX-box)

<400> 6
Met Ser Pro Pro Phe Ile Cys Glu Glu Thr Asp Glu Gln Lys Leu Gln
1 5 10 15

Thr Leu Asp Ile Gly Ser Asn Leu Glu Lys Glu Lys Leu Glu Asn Ser
20 25 30

Arg Ser Leu Glu Cys Arg Ser Asp Pro Glu Ser Pro Ile Lys Lys Thr
35 40 45

Ser Leu Ser Pro Thr Ser Lys Leu Gly Tyr Ser Tyr Ser Arg Asp Leu
50 55 60

Asp Leu Ala Lys Lys His Ala Ser Leu Arg Gln Thr Glu Ser Asp
 65 70 75 80

Pro Asp Ala Asp Arg Thr Thr Leu Asn His Ala Asp His Ser Ser Lys
85 90 95

Ile Val Gln His Arg Leu Leu Ser Arg Gln Glu Glu Leu Lys Glu Arg
100 105 110

Ala Arg Val Leu Leu Glu Gln Ala Arg Arg Asp Ala Ala Leu Lys Ala
 115 120 125

Gly Asn Lys His Asn Thr Asn Thr Ala Thr Pro Phe Cys Asn Arg Gln
 130 135 140

Leu Ser Asp Gln Gln Asp Glu Glu Arg Arg Arg Gln Leu Arg Glu Arg
 145 150 155 160

Ala Arg Gln Leu Ile Ala Glu Ala Arg Ser Gly Val Lys Met Ser Glu
 165 170 175

Leu Pro Ser Tyr Gly Glu Met Ala Ala Glu Lys Leu Lys Glu Arg Ser
 180 185 190

Lys Ala Ser Gly Glu Gln Asn Ser Lys Leu Val Asp Leu Lys Leu Lys
 195 200 205

Lys Leu Leu Glu Val Gln Pro Gln Val Ala Asn Ser Pro Ser Ser Ala
 210 215 220

Ala Gln Lys Ala Val Thr Glu Ser Ser Glu Gln Asp Met Lys Ser Gly
 225 230 235 240

Thr Glu Asp Leu Arg Thr Glu Arg Leu Gln Lys Thr Thr Glu Arg Phe
 245 250 255

Arg Asn Pro Val Val Phe Ser Lys Asp Ser Thr Val Arg Lys Thr Gln
 260 265 270

Leu Gln Ser Phe Ser Gln Tyr Ile Glu Asn Arg Pro Glu Met Lys Arg
 275 280 285

Gln Arg Ser Ile Gln Glu Asp Thr Lys Lys Gly Asn Glu Glu Lys Ala
 290 295 300

Ala Ile Thr Glu Thr Gln Arg Lys Pro Ser Glu Asp Glu Val Leu Asn
 305 310 315 320

Lys Gly Phe Lys Asp Thr Ser Gln Tyr Val Val Gly Glu Leu Ala Ala
 325 330 335

Leu Glu Asn Glu Gln Lys Gln Ile Asp Thr Arg Ala Ala Leu Val Glu
 340 345 350

Lys Arg Leu Arg Tyr Leu Met Asp Thr Gly Arg Asn Thr Glu Glu
 355 360 365

Glu Ala Met Met Gln Glu Trp Phe Met Leu Val Asn Lys Lys Asn Ala

370	375	380
Ile Arg Arg Met Asn Gln Leu Ser Leu Leu Glu Lys Glu His Asp		
	390	395
		400
Glu Arg Arg Tyr Glu Leu Leu Asn Arg Glu Leu Arg Ala Met Leu		
	405	410
		415
Ile Glu Asp Trp Gln Lys Thr Glu Ala Gln Lys Arg Arg Glu Gln		
	420	425
		430
Leu Leu Asp Glu Leu Val Ala Leu Val Asn Lys Arg Asp Ala Leu		
	435	440
		445
Arg Asp Leu Asp Ala Gln Glu Lys Gln Ala Glu Glu Glu Asp Glu		
	450	455
		460
Leu Glu Arg Thr Leu Glu Gln Asn Lys Gly Lys Met Ala Lys Lys		
	470	475
		480
Glu Lys Cys Val Leu Gln		
	485	

<210> 7
<211> 4914
<212> DNA
<213> *Homo sapiens*

```
<400> 7
ggcgggggag ccctccagaa taccatcat atagcccctg aggtggcatg gtgatgtctc 6
0
catgaggaa ccccttccca ctctatactg tcacgtatat catagtgttc ttgactggc 1
20
cattcatcta agatgggatt taccctgtga aacaggaga agacttatgg accccaagca 1
80
tcatttcaag ttgaagttga gttttaaaaa gccatccatg caaagttcct ttgctttgga 2
40
ccctctgcat tattaaagct gctgtattgc taacccagaa ctgctccagt gtcttgactg 3
00
atcatcatgg cttagtttg gaagagactg cagcgtgtgg gaaaacatgc atccaagttc 3
60
cagtttgtgg cctcctacca ggagctcatg gttgagtgtta cgaagaaatg gtaaccagat 4
20
aaactgggtgg tagttggac cagaagaagc cgaaggaagt cttctaaggc acatagctgg 4
80
caacctggaa taaaaaatcc ctatcggtt gttgttgtt ggctgttcc tgaaaacatt 5
40
gaaatcactg taacactttt taaggatcct catgcggaaag aatttgaaga caaagagtgg 6
00
```

acatttgtca tagaaaatga atccccttct ggtcgaagga aagctcttgc tactagcagc 6
60
atcaatatga aacagtatgc aagccctatg ccaactcaga ctgatgtcaa gttaaaattc 7
20
aagccattat ctaaaaaagt tgtatctgcc gctcttcagt tttcattatac ttgcatttt 7
80
ctgagggaaag gaaaagccac agatgaagac atgcaaagtt tggctagttt ggtgagttatg 8
40
aagcaggctg acattggcaa ttttagatgac ttcaagaagaa ataatgaaga tgatgtgag 9
00
aacagagtga accaagaaga aaaggcagct aaaattacag agcttatcaa caaacttaac 9
60
tttttggatg aagcagaaaa ggacttggcc accgtgaatt caaatccatt tgatgtcct 1
020
gatgctgcag aattaaatcc atttggagat cctgactcag aagaacctat cactgaaaca 1
080
gcttcaccta gaaaaacaga agactcttt tataataaca gctataatcc cttaaagag 1
140
gtgcagactc cacagtattt gaaccattc gatgagccag aagcatttg gaccataaag 1
200
gattctcctc cccagtctac aaaaagaaaa aatataagac ctgtggatat gagcaagtac 1
260
ctctatgctg atagttctaa aactgaagaa gaagaattgg atgaatcaaa tccttttat 1
320
gaacctaaat caactcctcc tccaaataat ttggtaaatac ctgttcaaga actagaaact 1
380
gaaaggcgag tgaaaagaaa ggccccggct ccaccagtcc tctcaccaaa aacaggagta 1
440
ttaaatgaaa acacagttc tgcaggaaaa gatctctcta cttctcctaa gccaagccct 1
500
ataccaagtc ctgtttggg gcgaaagcca aatgctagtc agtcttgct tgtatgggt 1
560
aaagaagtta caaagaacta ccgaggagta aaaatcacca attttactac atcgtggaga 1
620
aatggtttat cttttgtc aatattacac cacttagac cagatttaat tgactacaag 1
680
tctctgaatc ctcaagatat taaagagaac aacaaaaagg catacgatgg atttgccagc 1
740
ataggaattt cccgattatt ggaaccccttct gatatggat tattagcaat tcctgataaa 1
800
ctgactgtta tgacttatct ctatcaaata agggcacatt tcagtggcca agaactaaat 1
860
gtcgttcaga tagagggaaa cagcagtaaa agcacatata aagttggaaa ctatgaaaca 1
920
gatacaaaca gttctgttga tcaagaaaa ttctatgcag agcttagtga tctgaagcgg 1
980
gagcctgaac tacaacagcc tatcagcggc gcagtagact tcttatcaca ggatgactct 2
040

gtatttgtaa atgatagcgg gttggagag tcagaaagtgcgcatcaa 2
100 caccttagtc caagcacagc ctccccttac tgtcgcagga ctaaaagtga cacagaaccc 2
160 cagaagtctc agcagagctc tggaaggact tcaggatctg atgaccctgg aatatgttcc 2
220 aatacagatt caacccaagc acaggaaaa tttaggaaaa agagactatt gaaagctgag 2
280 actttagaat tgagtgactt atatgttagt gataagaaga aggatatgtc tccacccttt 2
340 atttgtgagg agacagatga acaaaaagctt caaactctag acatcggtag taacttggag 2
400 aaagaaaaat tagagaattc cagatcctta gaatgcagat cagatccaga atctcctatc 2
460 aaaaaaacaa gtttatctcc tacttctaaa cttggatact catatagtag agatctagac 2
520 ctgcctaaga aaaaacatgc ttccctgagg cagacggagt ctgatccaga tgctgataga 2
580 accacttaa atcatgcaga tcattcatca aaaatagtcc agcatcgatt gttatctaga 2
640 caagaagaac ttaaggaaag agcaagagtt ctgcttgagc aagcaagaag agatgcagcc 2
700 ttaaaggcgg ggaataagca caataccaaac acagccaccc cattctgcaa cagggcagcta 2
760 agtgcgcgc aagatgaaga gcgcacgtcg cagctgagag agagagctg tcagctaata 2
820 gcagaagctc gatctggagt gaagatgtca gaacttccca gctatggta aatggctgca 2
880 gaaaagttga aagaaaggc aaggcatct ggagatgaaa atgataatat tgagatagat 2
940 actaacgagg agatccctga aggcttgggt gtggaggtg gagatgaact tactaactta 3
000 gaaaatgacc ttgatactcc cgaacaaaac agtaagttgg tggacttgaa gctgaagaag 3
060 ctccatagaag ttccagccaca ggtggcaaat tcaccctcca gtgctgccca gaaagctgta 3
120 actgagagct cagagcagga catgaaaagt ggcacagaag atctccggac tgaacgatta 3
180 caaaaaaaaa cagaacgttt tagaaatcct gttgtttca gcaaagattc tacagtcaga 3
240 aaaactcaac ttcaatcttt cagccaatat attgagaata gaccagagat gaaaaggcag 3
300 agatcaatac aggaagatac aaagaaagga aatgaggaga aggcagcgt aactgaaact 3
360 cagaggaagc catcagaaga tgaagtgcct aataaagggt tcaaagacac cagtcagtat 3
420 gtagtaggag aattggcagc actagagaat gagcaaaagc aaattgacac ccgtgcccg 3
480

ctgggtggaga aggcgccttcg ctatctcatg gacacaggaa ggaacacaga agaagaagaa 3
540
gctatgatgc aggaatggtt tatgttagtt aataagaaaa atgccttaat aaggagaatg 3
600
aatcagctct ctcttctgga aaaagaacat gatttagaac gacggtatga gctgctgaac 3
660
cgccaattga gggcaatgct agccattgaa gactggcaga agaccgaggc ccagaagcga 3
720
cgcaacagc ttctgctaga tgagctggtg gccctggta acaagcgcga tgcgctcgtc 3
780
agggacctgg acgcgcagga gaagcaggcc gaagaagaag atgagcattt ggagcgaact 3
840
ctggagcaaa acaaaggcaa gatggccaag aaagaggaga aatgtgttct tcagtagcca 3
900
tcagatcaga aagaatctct cccaacattt tagagtcttg cttcccaaac cagaaaaagt 3
960
cagactcatt gttgatttaa aactttAAC attttGTTG gctggattgt actactttac 4
020
ctctacttta ccaccaccac cctttcctc ctccttcc aaataatata cagaactcca 4
080
aaatagcttc atttaaggat tttttgtga gttaacaatt tcctgaaat cctgtgaaat 4
140
agatttgcac agacaccttg tgagtgattt gtattggagg tttcaagaa actgttcgaa 4
200
aaagaacaaa aacactccc tcgttatttt ctctcattt ttgatgagag gaaaatttga 4
260
aacatttattt ttgttGTTG tggtaatagc ataatgacag tgggaggGGT acaaggGGat 4
320
aagaaaaatg tcatgatttt tttccggtcc tgccacatgt aacacttact ctgttaccta 4
380
aattttatag ttagatcata tccaaatctac ttatTAact gtgttctatt taccagtgg 4
440
gttttctgc agtgggtgcg tttcactgtt aggataatgg agttcctctc ctctgcttc 4
500
ctcagaggat ggtcctttaa catagccaga aacaagccct gtggttgaa ggtgagctgt 4
560
gaggatggga ctaattgata tgcaccagtt tacaaagaca gtcttatcat ccgagaatAC 4
620
accattttt tctctggata attatttctt acatcatgt tgattcctac attttgttgg 4
680
gtttcaacat tggctcacga atgctgttaa tatttattct gtattgataa aaagtctgtc 4
740
ttgccactac aagtaaatcc cccatttaat attttcttct ttagcatagc actgtcattt 4
800
tttgtgaaaa tggttatgtt tatttattac aatactgagt catatataaa tttcaataa 4
860
aagcagaaac tttcttaccc taaaaaaaaaa aaaaaaaaaa aaaaaaaaaa a*nd 4
914

<210> 8
<211> 1076
<212> PRT
<213> Homo sapiens

<220>
<223> Phosphorylation sites: 24x Protein kinase, 29x Caseine kinase, 5x Tyrosine kinase

<220>
<223> 8 Myristylation sites

<400> 8
Met Lys Gln Tyr Ala Ser Pro Met Pro Thr Gln Thr Asp Val Lys Leu
1 5 10 15

Lys Phe Lys Pro Leu Ser Lys Lys Val Val Ser Ala Ala Leu Gln Phe
20 25 30

Ser Leu Ser Cys Ile Phe Leu Arg Glu Gly Lys Ala Thr Asp Glu Asp
35 40 45

Met Gln Ser Leu Ala Ser Leu Val Ser Met Lys Gln Ala Asp Ile Gly
50 55 60

Asn Leu Asp Asp Phe Glu Glu Asp Asn Glu Asp Asp Asp Glu Asn Arg
65 70 75 80

Val Asn Gln Glu Glu Lys Ala Ala Lys Ile Thr Glu Leu Ile Asn Lys
85 90 95

Leu Asn Phe Leu Asp Glu Ala Glu Lys Asp Leu Ala Thr Val Asn Ser
100 105 110

Asn Pro Phe Asp Asp Pro Asp Ala Ala Glu Leu Asn Pro Phe Gly Asp
115 120 125

Pro Asp Ser Glu Glu Pro Ile Thr Glu Thr Ala Ser Pro Arg Lys Thr
130 135 140

Glu Asp Ser Phe Tyr Asn Asn Ser Tyr Asn Pro Phe Lys Glu Val Gln
145 150 155 160

Thr Pro Gln Tyr Leu Asn Pro Phe Asp Glu Pro Glu Ala Phe Val Thr
 165 170 175

Ile Lys Asp Ser Pro Pro Gln Ser Thr Lys Arg Lys Asn Ile Arg Pro
 180 185 190

Val Asp Met Ser Lys Tyr Leu Tyr Ala Asp Ser Ser Lys Thr Glu Glu
 195 200 205

Glu Glu Leu Asp Glu Ser Asn Pro Phe Tyr Glu Pro Lys Ser Thr Pro
 210 215 220

Pro Pro Asn Asn Leu Val Asn Pro Val Gln Glu Leu Glu Thr Glu Arg
 225 230 235 240

Arg Val Lys Arg Lys Ala Pro Ala Pro Pro Val Leu Ser Pro Lys Thr
 245 250 255

Gly Val Leu Asn Glu Asn Thr Val Ser Ala Gly Lys Asp Leu Ser Thr
 260 265 270

Ser Pro Lys Pro Ser Pro Ile Pro Ser Pro Val Leu Gly Arg Lys Pro
 275 280 285

Asn Ala Ser Gln Ser Leu Leu Val Trp Cys Lys Glu Val Thr Lys Asn
 290 295 300

Tyr Arg Gly Val Lys Ile Thr Asn Phe Thr Thr Ser Trp Arg Asn Gly
 305 310 315 320

Leu Ser Phe Cys Ala Ile Leu His His Phe Arg Pro Asp Leu Ile Asp
 325 330 335

Tyr Lys Ser Leu Asn Pro Gln Asp Ile Lys Glu Asn Asn Lys Lys Ala
 340 345 350

Tyr Asp Gly Phe Ala Ser Ile Gly Ile Ser Arg Leu Leu Glu Pro Ser
 355 360 365

Asp Met Val Leu Leu Ala Ile Pro Asp Lys Leu Thr Val Met Thr Tyr
 370 375 380

Leu Tyr Gln Ile Arg Ala His Phe Ser Gly Gln Glu Leu Asn Val Val
 385 390 395 400

Gln Ile Glu Glu Asn Ser Ser Lys Ser Thr Tyr Lys Val Gly Asn Tyr
 405 410 415

Glu Thr Asp Thr Asn Ser Ser Val Asp Gln Glu Lys Phe Tyr Ala Glu
 420 425 430

Leu Ser Asp Leu Lys Arg Glu Pro Glu Leu Gln Gln Pro Ile Ser Gly
 435 440 445

Ala Val Asp Phe Leu Ser Gln Asp Asp Ser Val Phe Val Asn Asp Ser
 450 455 460

Gly Val Gly Glu Ser Glu Ser Glu His Gln Thr Pro Asp Asp His Leu
 465 470 475 480

Ser Pro Ser Thr Ala Ser Pro Tyr Cys Arg Arg Thr Lys Ser Asp Thr
 485 490 495

Glu Pro Gln Lys Ser Gln Gln Ser Ser Gly Arg Thr Ser Gly Ser Asp
 500 505 510

Asp Pro Gly Ile Cys Ser Asn Thr Asp Ser Thr Gln Ala Gln Val Leu
 515 520 525

Leu Gly Lys Lys Arg Leu Leu Lys Ala Glu Thr Leu Glu Leu Ser Asp
 530 535 540

Leu Tyr Val Ser Asp Lys Lys Asp Met Ser Pro Pro Phe Ile Cys
 545 550 555 560

Glu Glu Thr Asp Glu Gln Lys Leu Gln Thr Leu Asp Ile Gly Ser Asn
 565 570 575

Leu Glu Lys Glu Lys Leu Glu Asn Ser Arg Ser Leu Glu Cys Arg Ser
 580 585 590

Asp Pro Glu Ser Pro Ile Lys Lys Thr Ser Leu Ser Pro Thr Ser Lys
 595 600 605

Leu Gly Tyr Ser Tyr Ser Arg Asp Leu Asp Leu Ala Lys Lys Lys His
 610 615 620

Ala Ser Leu Arg Gln Thr Glu Ser Asp Pro Asp Ala Asp Arg Thr Thr
 625 630 635 640

Leu Asn His Ala Asp His Ser Ser Lys Ile Val Gln His Arg Leu Leu
 645 650 655

Ser Arg Gln Glu Glu Leu Lys Glu Arg Ala Arg Val Leu Leu Glu Gln
 660 665 670

Ala Arg Arg Asp Ala Ala Leu Lys Ala Gly Asn Lys His Asn Thr Asn

675	680	685
Thr Ala Thr Pro Phe Cys Asn Arg Gln Leu Ser Asp Gln Gln Asp Glu		
690	695	700
Glu Arg Arg Arg Gln Leu Arg Glu Arg Ala Arg Gln Leu Ile Ala Glu		
705	710	720
Ala Arg Ser Gly Val Lys Met Ser Glu Leu Pro Ser Tyr Gly Glu Met		
725	730	735
Ala Ala Glu Lys Leu Lys Glu Arg Ser Lys Ala Ser Gly Asp Glu Asn		
740	745	750
Asp Asn Ile Glu Ile Asp Thr Asn Glu Glu Ile Pro Glu Gly Phe Val		
755	760	765
Val Gly Gly Gly Asp Glu Leu Thr Asn Leu Glu Asn Asp Leu Asp Thr		
770	775	780
Pro Glu Gln Asn Ser Lys Leu Val Asp Leu Lys Leu Lys Lys Leu Leu		
785	790	795
Glu Val Gln Pro Gln Val Ala Asn Ser Pro Ser Ser Ala Ala Gln Lys		
805	810	815
Ala Val Thr Glu Ser Ser Glu Gln Asp Met Lys Ser Gly Thr Glu Asp		
820	825	830
Leu Arg Thr Glu Arg Leu Gln Lys Thr Thr Glu Arg Phe Arg Asn Pro		
835	840	845
Val Val Phe Ser Lys Asp Ser Thr Val Arg Lys Thr Gln Leu Gln Ser		
850	855	860
Phe Ser Gln Tyr Ile Glu Asn Arg Pro Glu Met Lys Arg Gln Arg Ser		
865	870	875
Ile Gln Glu Asp Thr Lys Lys Gly Asn Glu Glu Lys Ala Ala Ile Thr		
885	890	895
Glu Thr Gln Arg Lys Pro Ser Glu Asp Glu Val Leu Asn Lys Gly Phe		
900	905	910
Lys Asp Thr Ser Gln Tyr Val Val Gly Glu Leu Ala Ala Leu Glu Asn		
915	920	925
Glu Gln Lys Gln Ile Asp Thr Arg Ala Ala Leu Val Glu Lys Arg Leu		
930	935	940

Arg Tyr Leu Met Asp Thr Gly Arg Asn Thr Glu Glu Glu Glu Ala Met
945 950 955 960

Met Gln Glu Trp Phe Met Leu Val Asn Lys Lys Asn Ala Leu Ile Arg
965 970 975

Arg Met Asn Gln Leu Ser Leu Leu Glu Lys Glu His Asp Leu Glu Arg
980 985 990

Arg Tyr Glu Leu Leu Asn Arg Glu Leu Arg Ala Met Leu Ala Ile Glu
995 1000 1005

Asp Trp Gln Lys Thr Glu Ala Gln Lys Arg Arg Glu Gln Leu Leu Leu
1010 1015 1020

Asp Glu Leu Val Ala Leu Val Asn Lys Arg Asp Ala Leu Val Arg Asp
1025 1030 1035 1040

Leu Asp Ala Gln Glu Lys Gln Ala Glu Glu Glu Asp Glu His Leu Glu
1045 1050 1055

Arg Thr Leu Glu Gln Asn Lys Gly Lys Met Ala Lys Lys Glu Glu Lys
1060 1065 1070

Cys Val Leu Gln
1075

1

26