CLAIMS

Having thus described our invention, what we claim as new and desire to secure by Letters Patent is as follows:

1	1. A method of outlier detection comprising the steps of:
2	reducing an outlier detection problem to that of a classification
3	learning problem using unlabeled normal data as positive examples and
4	randomly generated synthesized examples as negative examples, and
5	then selectively sampling normal and synthesized examples based on
6	uncertainty of prediction to further reduce an amount of data required for data
7	analysis, resulting in enhanced predictive performance while minimizing
8	computational resources including storage requirements.
1	2. The method of outlier detection recited in claim 1, wherein the step of
2	selectively sampling includes the step of setting sampling probability equal to
3	a measure of uncertainty of prediction for the example.
1	3. The method of outlier detection recited in claim 2, wherein the measure of
2	uncertainty of prediction is binomial.
1 .	4. The method of outlier detection recited in claim 2, wherein the measure of
2	uncertainty of prediction is Gaussian.
1	5. The method of outlier detection recited in claim 1, wherein the step of
2	selectively sampling includes the step of setting sampling probability
3	proportional to a product of a measure of uncertaint6y and a measure of cust
4	of mis-classifying the same example.

1	6. The method of outlier detection recited in claim 5, wherein the measure of
2	uncertainty is binomial.
1	7. The method of outlier detection recited in claim 5, wherein the measure of
2	uncertainty is Gaussian.
1	8. The method of outlier detection recited in claim 5, wherein the measure of
2	cost is determined as a relative cost of mis-classifying the example in the
3	training data.
1	9. The method of outlier detection recited in claim 1, wherein the
2	classification learning problem employs an arbitrary algorithm for
3	classification.
1	10. The method of outlier detection recited in claim 9, wherein the arbitrary
2	algorithm for classification is selected from the group consisting of decision
3	tree learning algorithms, naïve Bayes method, logistic regression method and
4	neural network training algorithms.
1	11. The method of outlier detection recited in claim 1, further comprising the
2 .	steps of:
3	reading a storing normal data at T-real;
4	generating and storing synthesized data as T-syn; and
5	wherein the step of selective sampling is performed on data
6	T := T-real T -sym

ı	12. The method of outlier detection recited in claim 11, wherein the step of
2	selective sampling uses an underlying, arbitrary classification learning
3	algorithm and proceeds iteratively.
1	13. The method of outlier detection recited in claim 12, wherein each iteration
2	comprises the steps of:
3	selecting a smaller sub-sample from the input data;
4	training of the underlying classification algorithm with the selected
5	data; and
6	storing a classifier output by the classification algorithm.
1	14. The method of outlier detection recited in claim 13, wherein the step of
2	selecting is done by choosing examples that are harder to classify with the
3	classifiers obtained in preceding iterations.
1	15. The method of outlier detection recited in claim 13, further comprising the
2	step of outputting an output hypothesis as a voting function of classifiers
3	obtained in the iterations.
1	16. The method of outlier detection recited in claim 13, wherein the step of
2	selecting is done by choosing each example with a sampling probability which
3 .	is set equal to a measure of uncertainty of predicting a label of that example by
4	a collection of hypotheses obtained by calls to the classification algorithm in
5	earlier iterations.
1	17. The method of outlier detection recited in claim 13, wherein the step of
2	selecting is done by choosing each example with a sampling probability which
3	is set proportional to a product of a measure of uncertainty of predicting a

4	label of that example by a collection of hypotheses obtained by calls to the
5	classification algorithm in earlier iterations and a measure of cost of mis-
6	classifying the same example.
1	10 4 1 4
1	18. A data processing system for outlier detection comprising:
2	a top control module controlling overall control flow, making use of
3	various sub-components of the system;
4	a learning algorithm storage module storing a representation of an
5	algorithm for classification learning;
. 6	a model output module storing models obtained as a result of applying
7	the learning algorithm stored in learning algorithm storage module to training
8	data and outputting a final model by aggregating these models; and
9	a selective sampling module accessing data stored in a data storage
10	module, selectively sampling a relatively small subset of the data, and passing
11	the obtained sub-sample to the top control module.
1	19. The data processing system for outlier detection recited in claim 18,
2	wherein the learning algorithm storage module stores an arbitrary algorithm
3	for classification.
1	20. The data processing system for outlier detection recited in claim 19,
2 .	wherein the arbitrary algorithm for classification is selected from the group
3 —	consisting of decision tree learning algorithms, naïve Bayes method, logistic
4	regression method and neural network training algorithms.
1	21. The data processing system for outlier detection recited in claim 18,
2	wherein the data storage module comprises two separate modules and face

- storing real data corresponding to "normal" data, and the other for storing synthesized data corresponding to "abnormal" data.
- 1 22. The data processing system for outlier detection recited in claim 18,
- wherein the data storage module comprises a single data storage module
- 3 providing two logical data storage modules in a single physical data storage
- 4 module, one for storing real data corresponding to "normal" data, and the
- 5 other for storing synthesized data corresponding to "abnormal" data.