## BUSSMANN SERIES

# STS521XXXBXXX TVS Diode ESD suppressor



#### **Product features**

- Compact package size 0.063" x 0.032" (1.6 mm x 0.8 mm)
- · Protects one bi-directional I/O line
- · Low clamping voltage
- Meets moisture sensitivity level (MSL) 3
- Molding compound flammability rating: UL 94V-0
- · Termination finish: Tin

#### **Applications**

- · Cellular handsets and accessories
- Microprocessor based equipment
- · Portable electronics
- · Notebooks, desktops, and servers
- · Portable instrumentation
- Peripherals
- · Digital cameras

## Environmental compliance and general specifications

- IEC61000-4-2 (ESD)
  - Up to ±30 kV (air)
  - Up to ±30 kV (contact)
- IEC61000-4-5 (Lightning) Up to 20 A (8/20 μs)







#### Ordering part number



#### Pin out/functional diagram



SOD-523



Pin Configuration



**Absolute maximum ratings** (+25 °C, RH=45%-75%, unless otherwise noted)

| Parameter                                        | Symbol           | Value             |               |               |               |               | Unit |
|--------------------------------------------------|------------------|-------------------|---------------|---------------|---------------|---------------|------|
|                                                  |                  | STS521050BL90     | STS521050B250 | STS521050B750 | STS521033B950 | STS521050B331 |      |
| Peak pulse power dissipation on 8/20 µs waveform | P <sub>pp</sub>  | 20                | 40            | 100           | 60            | 350           | W    |
| ESD per IEC 61000-4-2 (Air)                      | $V_{\rm ESD}$    | +/-15             | +/-20         | +/-30         | +/-30         | +/-25         | kV   |
| ESD per IEC 61000-4-2 (Contact)                  |                  | +/-8              | +/-15         | +/-30         | +/-25         | +/-20         |      |
| Lead soldering temperature                       | T <sub>L</sub>   | +260 (10 seconds) |               |               |               | °C            |      |
| Operating junction temperature range             | T <sub>J</sub>   | -55 to +125       |               |               | °C            |               |      |
| Storage temperature range                        | T <sub>STG</sub> |                   | -55 to +150   |               |               | °C            |      |

#### **Electrical characteristics**

(+25 °C)

#### STS521050BL90

| Parameter                 | Test condition                       | Minimum | Typical | Maximum | Symbol (Units)       |
|---------------------------|--------------------------------------|---------|---------|---------|----------------------|
| Reverse working voltage   | -                                    | -       | -       | 5.0     | V <sub>RWM</sub> (V) |
| Reverse breakdown voltage | I <sub>T</sub> = 1 mA                | 6.0     | -       | -       | V <sub>BR</sub> (V)  |
| Reverse leakage current   | $V_{RWM} = 5 V$                      | -       | -       | 1       | I <sub>R</sub> (μΑ)  |
| Clamping voltage          | $I_{pp} = 1 A,$ $t_{p} = 8/20 \mu s$ | -       | -       | 13      | V <sub>c</sub> (V)   |
| Junction capacitance      | $V_{RWM} = 0V, f = 1 MHz$            | -       | 0.9     | 1.5     | C <sub>J</sub> (pF)  |

| S | TS52 | 10 | 50 | В2 | 50 |  |
|---|------|----|----|----|----|--|
| _ |      | -  |    |    |    |  |

| Parameter                 | Test condition                                     | Minimum | Typical | Maximum | Symbol (Units)       |
|---------------------------|----------------------------------------------------|---------|---------|---------|----------------------|
| Reverse working voltage   | -                                                  | -       | -       | 5.0     | V <sub>RWM</sub> (V) |
| Reverse breakdown voltage | I <sub>T</sub> = 1 mA                              | 6.0     | -       | -       | V <sub>BR</sub> (V)  |
| Reverse holding voltage   | -                                                  | -       | -       | 0.15    | V <sub>R</sub> (V)   |
| Reverse leakage current   | V <sub>RWM</sub> = 5 V                             | -       | -       | 2       | I <sub>R</sub> (μΑ)  |
| Clamping voltage          | I <sub>pp =</sub> 2 A,<br>t <sub>p</sub> = 8/20 μs | -       | 12.5    | 13.5    | V <sub>c</sub> (V)   |
| Junction capacitance      | $V_{RWM} = 0V$ , $f = 1 MHz$                       | -       | 2.5     | 4       | C <sub>J</sub> (pF)  |

### STS521XXXBXXX TVS Diode ESD suppressor

| STS521 | 050B750 |
|--------|---------|
| _      |         |

| Parameter                 | Test condition                                     | Minimum | Typical | Maximum | Symbol (Units)       |
|---------------------------|----------------------------------------------------|---------|---------|---------|----------------------|
| Reverse working voltage   | -                                                  | -       | -       | 5.0     | V <sub>RWM</sub> (V) |
| Reverse breakdown voltage | I <sub>T</sub> = 1 mA                              | 5.5     | -       | -       | V <sub>BR</sub> (V)  |
| Reverse holding voltage   | $I_{H} = 50 \text{ mA}$                            | 5.5     | -       |         | V <sub>R</sub> (V)   |
| Reverse leakage current   | V <sub>RWM</sub> = 5 V                             | -       | -       | 0.1     | I <sub>R</sub> (μΑ)  |
| Clamping voltage          | I <sub>pp =</sub> 1 A,<br>t <sub>o</sub> = 8/20 μs | -       | 9       | 10      | V <sub>c</sub> (V)   |
|                           | $I_{pp} = 5 \text{ A},$ $t_p = 8/20  \mu\text{s}$  |         | 13      | 15.5    | V <sub>c</sub> (V)   |
| Junction capacitance      | $V_{RWM} = 0V, f = 1 MHz$                          | -       | 7.5     | 15      | C <sub>J</sub> (pF)  |

| STS521033B950<br>Parameter | Test condition                                      | Minimum | Typical | Maximum | Symbol (Units)       |
|----------------------------|-----------------------------------------------------|---------|---------|---------|----------------------|
| Reverse working voltage    | -                                                   | -       | -       | 3.3     | V <sub>RWM</sub> (V) |
| Reverse breakdown voltage  | I <sub>T</sub> = 1 mA                               | 3.6     | -       | -       | V <sub>BR</sub> (V)  |
| Reverse holding voltage    | I <sub>H</sub> = 50 mA                              | 3.5     | -       | -       | V <sub>R</sub> (V)   |
| Reverse leakage current    | V <sub>RWM</sub> = 3.3 V                            | -       | -       | 1       | I <sub>R</sub> (μΑ)  |
| Clamping voltage           | $I_{pp} = 1 \text{ A},$ $t_p = 8/20  \mu \text{s}$  | -       | 6       | 8       | V <sub>c</sub> (V)   |
|                            | $I_{pp} = 4.5 \text{ A},$ $t_p = 8/20  \mu\text{s}$ | -       | 9       | 12      | V <sub>c</sub> (V)   |
| Junction capacitance       | V <sub>RWM</sub> = 0V, f = 1 MHz                    | =       | 9.5     | 15      | C <sub>J</sub> (pF)  |

| STS521050B331<br>Parameter | Test condition                                     | Minimum | Typical | Maximum | Symbol (Units)       |
|----------------------------|----------------------------------------------------|---------|---------|---------|----------------------|
| Reverse working voltage    | -                                                  | -       | -       | 5.0     | V <sub>RWM</sub> (V) |
| Reverse breakdown voltage  | I <sub>T</sub> = 1 mA                              | 5.5     | -       | -       | V <sub>BR</sub> (V)  |
| Reverse leakage current    | V <sub>RWM</sub> = 5 V                             | -       | -       | 1       | I <sub>R</sub> (μΑ)  |
| Clamping voltage           | $I_{pp} = 1 A,$ $t_p = 8/20 \ \mu s$               | -       | 7.5     | 9.0     | V <sub>c</sub> (V)   |
|                            | $I_{pp} = 20 \text{ A},$ $t_p = 8/20  \mu\text{s}$ |         | 12      | 18      | V <sub>c</sub> (V)   |

33

75

 $C_J$  (pF)

 $V_{RWM} = 0V, f = 1 MHz$ 

Junction capacitance

#### Mechanical parameters, pad layout- mm/inches



**Land Pattern** 

| Millimeters |         | Inc     | hes     |         |
|-------------|---------|---------|---------|---------|
| Dimension   | Minimum | Maximum | Minimum | Maximum |
| A           | 0.50    | 0.70    | 0.020   | 0.028   |
| В           | 0.25    | 0.35    | 0.010   | 0.014   |
| С           | 0.07    | 0.20    | 0.0028  | 0.0079  |
| D           | 1.10    | 1.30    | 0.043   | 0.051   |
| E           | 0.70    | 0.90    | 0.028   | 0.035   |
| F           | 1.50    | 1.70    | 0.059   | 0.067   |
| G           | 0.15    | 0.25    | 0.006   | 0.010   |
| P1          | 0.40    |         | 0.01    | 6       |
| P           | 1.80    |         | 0.07    | 2       |
|             |         |         |         |         |

#### Part marking



#### Packaging information mm/inches

Drawing not to scale.

Supplied in tape and reel packaging, 5,000 parts per 7" diameter reel (EIA-481 compliant)



| Comple of | Millimeter | Inches |
|-----------|------------|--------|
| Symbol    | Тур.       | Тур.   |
| Α         | 0.90       | 0.035  |
| В         | 1.94       | 0.076  |
| С         | 0.73       | 0.029  |
| d         | Ф1.50      | Ф0.059 |
| E         | 1.75       | 0.069  |
| F         | 3.50       | 0.138  |
| P0        | 4.00       | 0.157  |
| Р         | 2.00       | 0.079  |
| P1        | 2.00       | 0.079  |
| W         | 8.00       | 0.315  |
| D         | Ф178       | Ф7.008 |
| D1        | 54.40      | 2.142  |
| D2        | 13.00      | 0.512  |
| G         | R78.00     | R3.071 |
| Н         | R25.60     | R1.008 |
| ı         | R6.50      | R0.256 |
| W1        | 9.50       | 0.374  |
| W2        | 12.30      | 0.484  |

#### Ratings and V-I characteristic curves (+25 °C unless otherwise noted)

#### V- I curve characteristics (Bi-directional)



#### Pulse derating curve



#### Pulse waveform (8/20 µs)



#### **ESD** waveform



#### Solder reflow profile



Table 1 - Standard SnPb solder (T<sub>C</sub>)

| Package<br>thickness | Volume<br>mm3<br><350 | Volume<br>mm3<br>≥350 |
|----------------------|-----------------------|-----------------------|
| <2.5 mm              | 235 °C                | 220 °C                |
| ≥2.5 mm              | 220 °C                | 220 °C                |

Table 2 - Lead (Pb) free solder (T<sub>C</sub>)

| Package<br>thickness | Volume<br>mm³<br><350 | Volume<br>mm³<br>350 - 2000 | Volume<br>mm³<br>>2000 |
|----------------------|-----------------------|-----------------------------|------------------------|
| <1.6 mm              | 260 °C                | 260 °C                      | 260 °C                 |
| 1.6 – 2.5 mm         | 260 °C                | 250 °C                      | 245 °C                 |
| >2.5 mm              | 250 °C                | 245 °C                      | 245 °C                 |

#### Reference J-STD-020

| Profile feature                                                                                   | Standard SnPb solder     | Lead (Pb) free solder    |
|---------------------------------------------------------------------------------------------------|--------------------------|--------------------------|
| Preheat and soak • Temperature min. (T <sub>smin</sub> )                                          | 100 °C                   | 150 °C                   |
| • Temperature max. (T <sub>smax</sub> )                                                           | 150 °C                   | 200 °C                   |
| • Time (T <sub>smin</sub> to T <sub>smax</sub> ) (t <sub>s</sub> )                                | 60-120 seconds           | 60-120 seconds           |
| Ramp up rate T <sub>L</sub> to T <sub>p</sub>                                                     | 3 °C/ second max.        | 3 °C/ second max.        |
| Liquidous temperature ( $T_L$ ) Time ( $t_L$ ) maintained above $T_L$                             | 183 °C<br>60-150 seconds | 217 °C<br>60-150 seconds |
| Peak package body temperature (Tp)*                                                               | Table 1                  | Table 2                  |
| Time (t <sub>p</sub> )* within 5 °C of the specified classification temperature (T <sub>C</sub> ) | 20 seconds*              | 30 seconds*              |
| Ramp-down rate (T <sub>p</sub> to T <sub>L</sub> )                                                | 6 °C/ second max.        | 6 °C/ second max.        |
| Time 25 °C to peak temperature                                                                    | 6 minutes max.           | 8 minutes max.           |

<sup>\*</sup> Tolerance for peak profile temperature  $(T_p)$  is defined as a supplier minimum and a user maximum.

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.

Eaton Electronics Division 1000 Eaton Boulevard Cleveland, OH 44122

Cleveland, OH 44122 United States Eaton.com/electronics

© 2020 Eaton All Rights Reserved Printed in USA Publication No. 11153 BU-MC20135 September 2020

Eaton is a registered trademark.

All other trademarks are property of their respective owners.











