

UNIVERSIDAD

NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE CIENCIAS

PROBLEMAS RESUELTOS

Automatas

Integrantes:

Yonathan Berith Jaramillo Ramírez. 419004640

Profesor: Lourdes del Carmen González Huesca Ayudantes: María Fernanda Mendoza Castillo

5 Octubre, 2021

Tarea 1

- 1. Sea $\Sigma = \{a,\,b\},$ da las definiciones formales de los siguientes lenguajes:
- a) Todas las cadenas de longitud mayor a 2 que empiecen y terminen con el mismo símbolo.
- b) Todas las cadenas de longitud par.

Respuestas:

- a) $L = \{ w \mid w = ava, a, v \in \Sigma, w \in \Sigma^* \}$
- b) $M = \{w \mid |w| = 2k, k \in \mathbb{N}, w \in \Sigma^*\}$

Tarea 2

- 1. Da la definición completa (no recursiva) del lenguaje que contenga las siguientes cadenas:
 - **"**1"
 - **"**01"
 - **"**11101"
 - **"**0101111"

```
Solution:
\Sigma = \{"01","1"\}
\{w \mid w = a^n, n \in \mathbb{N} \land a \in \Sigma\}
```

2. Sea $\Sigma = \{a, b\}$, definimos los lenguajes L_1, L_2, L_3 como sigue:

$$L_1 = \{\epsilon, "aa", "baaaa", "bb"\}$$

$$L_1 = \{\epsilon, "aa", "baaaa", "bb"\}$$

$$L_2 = \{"ababa", "bb", "aabaabaa", "abba", "aababbaa"\}$$

$$L_3 = \{ w \in \Sigma^* \mid \#_a(w) = n, \text{ n es par } \}$$

Escribe el resultado de las siguientes operaciones:

Solution:

- a) $L_1 \cup L_2 = \{\epsilon, "aa", "baaaa", "ababa", "bb", "aabaabaa", "abba", "aababbaa"\}$
- b) $L_2 \cap L_3 = \{"abba", "aababbaa"\}$
- c) $L_1 L_3 = \{\epsilon, "bb"\}$
- d) $\overline{L_3} = L = \{w = \Sigma^* \mid \#_a(w) = n, \text{ n es impar}\}\$

Examen 1

1. Sean $L_1 = \{aaa\}^*$, $L_2 = \{wxyz \mid w, x, y, z \in \{a, b\}\}$ y $L_3 = L_2^*$.

Describe con palabras (en español) las características de las cadenas en cada uno de estos lenguajes. Describe las cadenas que contienen los lenguajes $L_2 \cap L_3$ y $L_1 \cup L_3$.

Solution:

2. Sea $L = \{w \in \{a, b\}^* \mid \#_a(w) \text{ es impar y } \#_b(w) \text{ es par}\}.$

Demuestra que L^* es el conjunto de cadenas donde el número de b's es par.

Solution: Para solucionar el problema crearé dos lenguajes que cumplen con las reglas anteriores. Por ende:

$$\Sigma = \{\epsilon, a, b\}$$

$$L_1 = \{w \in \Sigma^* \mid \#_a(w) \text{ es impar }\}$$

$$L_2 = \{w \in \Sigma^* \mid \#_b(w) \text{ es par }\}$$

Por ende podriamos reescribir L como:

$$L = \{ w \in \{a, b\}^* \mid w \in (L_1 \cup L_2) \}$$

Si

- 3. Sean $\Sigma = \{a, b\}$ y L el lenguaje que contiene a todas las cadenas en cada uno de estos lenguajes tales que no terminan en b y no tienen a bb como subcadena.
 - Define de forma **no** recursiva a un lenguaje S de modo que $L = S^*$ es decir usando lenguajes y operaciones entre ellos.
- 4. La siguiente notación $|L_1L_2| = |L_1||L_2|$ denota que el número de cadenas en la concatención L_1L_1 es el mismo que el producto de dos números $|L_1|$ y $|L_2|$.
 - Si esta afirmación siempre es verdad para cualesquiera dos lenguajes, da argumentos formales para probarlo y si no, muestra dos lenguajes $|L_1|$ y $|L_2|$ tales que $|L_1L_2| \neq |L_1||L_2|$ (para el contraejemplo, puedes considerar que los lenguajes pertenecen a Σ^* donde $\Sigma = \{a, b\}$).