Ridge vs. Lasso Regression

Ridge

- + Reduces Multicollinearity
- + Continuous Shrinking
- + Stable Solutions
- + Computationally Efficient
- No variable selection
- Interpretability
- Sensitive to scale

Lasso

- + Variable selection
- + Sparse models
- + Improves interpretability
- + Particularly useful for when p > n
- Collinearity issues
- Bias in coefficients (ℓ_1 penalty is harsher)
- Computationally intensive

luning

- K-fold Cross Validation
 - 1. Choose the number of folds *K*
 - 2. Split the data accordingly into training and testing sets.
 - 3. Define a grid of values for λ
 - 4. For each λ , calculate the validation MSE within each fold
 - 5. For each λ , calculate the overall cross-validation MSE
 - 6. Locate under which λ cross-validation MSE is minimized, i.e. minimum_cv λ
- Packages such as will glmnet do this automatically

