Question 1. (11 points)

The switch in the circuit below switches from a 3 V source to a 15 V source at t = 0. Find $v_c(t)$ for $t \ge 0$

(a)
$$v_c(t) = 12 - 8e^{-t}$$

(b)
$$v_c(t) = 12 - 10e^{-t}$$

(c)
$$v_c(t) = 10 - 8e^{-t}$$

(d)
$$v_c(t) = 10 - 10e^{-t}$$

(e)
$$v_c(t) = -6 + 8e^{-t}$$

(f)
$$v_c(t) = -6 + 10e^{-t}$$

(g)
$$v_c(t) = -8 + 8e^{-t}$$

(h)
$$v_c(t) = -8 + 10e^{-t}$$

Thursday, March 25, 2021

Question 2. (11 points)

Given: f(t)=tu(t-1) and $g(t)=\delta(t-1)$. Compute f(t)*g(t) at t=2.5. Hint: $f(t)*g(t)=\int_{-\infty}^{\infty}f(\tau)g(t-\tau)d\tau$

- (a) 0
- (b) 0.5
- (c) 1
- (d) 1.5
- (e) 2.0
- (f) 2.5
- (g) 3.0
- (h) 3.5

Question 3. (11 points)

Given $f[n]=\{\underline{5},3,2,1\}$ and $g[n]=\{\underline{1}\ 2\ 3\}$, compute f[n]*g[n] for n=4.

Hint: $f[n]*g[n] = \sum_{m=-\infty}^{\infty} f[m]g[n-m]$, furthermore, function definitions start at zero (i.e. f[0]=5 and g[0]=1).

- (a) 3
- (b) 5
- (c) 7
- (d) 8
- (e) 14
- (f) 15
- (g) 21
- (h) 23

Question 4. (11 points)

The unit step response of an LTI system (i.e. response to a unit step input) is $y_u(t) = e^{-4t}u(t)$. Find the response y(t) of the system to an input of $x(t) = 3e^{-t}u(t)$. Hint: use y(t) = x(t) * h(t).

(a)
$$4e^{-4t}u(t) - 4e^{-t}u(t)$$

(b)
$$-4e^{-4t}u(t) + 4e^{-t}u(t)$$

(c)
$$4e^{-4t}u(t) - 7e^{-t}u(t)$$

(d)
$$-4e^{-4t}u(t) + 7e^{-t}u(t)$$

(e)
$$e^{-4t}u(t) - 4e^{-t}u(t)$$

(f)
$$-e^{-4t}u(t) + 4e^{-t}u(t)$$

(g)
$$4e^{-4t}u(t) - e^{-t}u(t)$$

(h)
$$-4e^{-4t}u(t) + e^{-t}u(t)$$

Question 5. (11 points)

The convolution of two pulses f(t) = u(t+2) - u(t-2) and g(t) = u(t+1) - u(t-1) is shown in the bottom plot of the figure below. What is the value of a and b in the x and y axis tick marks?

- (a) a=1 b=1/2
- (b) a=2 b=1/2
- (c) a=4 b=1/2
- (d) a=1 b=1
- (e) a=2 b=1
- (f) a=4 b=1
- (g) a=1 b=2
- (h) a=2 b=2

Question 6. (11 points)

Find the Laplace transform of $(t-4)e^{-4t}u(t)$ at s = 1.

Operation	g(t) =	G(s) =
Differentiation	$\frac{d}{dt}f(t)$	$sF(s) - f(0^-)$
Integration	$\int_{-\infty}^t f(\tau) \ d\tau$	$\frac{F(s)}{s} + \frac{\int_{-\infty}^{0^{-}} f(\tau) \ d\tau}{s}$
Time-shift	$f(t-t_0)$	$e^{-st_0}F(s)$
Frequency-shift	$e^{-at}f(t)$	F(s+a)

f(t)	F(s)	ROC
$\delta(t)$	1	all s
u(t)	$\frac{1}{s}$	$Re\{s\} > 0$
tu(t)	$\frac{1}{s^2}$	$Re\{s\} > 0$
$e^{-at}u(t)$	$\frac{1}{s+a}$	$Re\{s\} > Re\{a\}$
$te^{-at}u(t)$	$\frac{1}{(s+a)^2}$	$Re\{s\} > Re\{a\}$
$\cos(\omega_0 t)u(t)$	$\frac{s}{s^2 + \omega_0^2}$	$Re\{s\} > 0$
$sin(\omega_0 t)u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$Re\{s\} > 0$

- (a) -0.04
- (b) 0.04
- (c) -0.75
- (d) 0.75
- (e) -0.76
- (f) 0.76
- (g) -0.80
- (h) 0.80

Question 7. (11 points)

Find the inverse Laplace transform of $\frac{9}{s^3 + 3s^2}$.

Operation	g(t) =	G(s) =
Differentiation	$rac{d}{dt}f(t)$	$sF(s) - f(0^-)$
Integration	$\int_{-\infty}^t f(\tau) \ d\tau$	$\frac{F(s)}{s} + \frac{\int_{-\infty}^{0^{-}} f(\tau) \ d\tau}{s}$
Time-shift	$f(t-t_0)$	$e^{-st_0}F(s)$
Frequency-shift	$e^{-at}f(t)$	F(s+a)

f(t)	F(s)	ROC
$\delta(t)$	1	all s
u(t)	$\frac{1}{s}$	$Re\{s\} > 0$
tu(t)	$\frac{1}{s^2}$	$Re\{s\} > 0$
$e^{-at}u(t)$	$\frac{1}{s+a}$	$Re\{s\} > Re\{a\}$
$te^{-at}u(t)$	$\frac{1}{(s+a)^2}$	$Re\{s\} > Re\{a\}$
$\cos(\omega_0 t)u(t)$	$\frac{s}{s^2 + \omega_0^2}$	$Re\{s\} > 0$
$sin(\omega_0 t)u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$Re\{s\} > 0$

(a)
$$(3 + e^{-3t})u(t)$$

(b)
$$(-1 + e^{-3t})u(t)$$

(c)
$$(3t + e^{-3t})u(t)$$

(d)
$$(-t + e^{-3t})u(t)$$

(e)
$$(3 - t + e^{-3t})u(t)$$

(f)
$$(-1 + 3t + e^{-3t})u(t)$$

(g)
$$(3 + t - e^{-3t})u(t)$$

(h)
$$(1 + 3t + e^{-3t})u(t)$$

Question 8. (11 points)

Find the Laplace transform of the inductor current for the RLC circuit below. (assume: $i_L(0)=0~A~and~v_c(0)=0~V$)

f(t)	F(s)	ROC
$\delta(t)$	1	all s
u(t)	$\frac{1}{s}$	$Re\{s\} > 0$
tu(t)	$\frac{1}{s^2}$	$Re\{s\} > 0$
$e^{-at}u(t)$	$\frac{1}{s+a}$	$Re\{s\} > Re\{a\}$
$te^{-at}u(t)$	$\frac{1}{(s+a)^2}$	$Re\{s\} > Re\{a\}$
$\cos(\omega_0 t)u(t)$	$\frac{s}{s^2 + \omega_0^2}$	$Re\{s\} > 0$
$sin(\omega_0 t)u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$Re\{s\} > 0$

(a)
$$\frac{1}{\left(s^2 + \frac{s}{4} + \frac{1}{2}\right)}$$

(b)
$$\frac{1}{(s+4)(s^2+\frac{s}{4}+\frac{1}{2})}$$

(c)
$$\frac{4s}{\left(s^2 + \frac{s}{4} + \frac{1}{2}\right)}$$

(d)
$$\frac{4s}{(s+4)\left(s^2 + \frac{s}{4} + \frac{1}{2}\right)}$$

(e)
$$\frac{s/4}{\left(s^2 + \frac{s}{4} + \frac{1}{2}\right)}$$

(f)
$$\frac{s/4}{(s+4)(s^2+\frac{s}{4}+\frac{1}{2})}$$

(g)
$$\frac{s}{\left(s^2 + \frac{s}{4} + \frac{1}{2}\right)}$$

(h)
$$\frac{s}{(s+4)\left(s^2+\frac{s}{4}+\frac{1}{2}\right)}$$

Question 9. (11 points)

Find the transfer function of $i_L(t)$ for the circuit below.

- (a) $\frac{1/6}{s + \frac{1}{6}}$
- (b) $\frac{1}{s + \frac{1}{6}}$
- (c) $\frac{6}{s + \frac{1}{6}}$
- (d) $\frac{4s}{s+\frac{1}{6}}$
- (e) $\frac{1/6}{(s+6)}$
- (f) $\frac{1}{(s+6)}$
- (g) $\frac{6}{(s+6)}$
- (h) $\frac{4s}{(s+6)}$