

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Modelos Matemáticos I Examen III

Los Del DGIIM, losdeldgiim.github.io

David Muñoz Gómez

Granada, 2025

Asignatura Modelos Matemáticos I.

Curso Académico 2024-25.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Maria José Cáceres Granados.

Descripción Prueba 1. Temas 0,1 y parte del 2.

Fecha 25 de abril de 2025.

Duración 2 horas.

Ejercicio 1 (3 puntos). Dada una sucesión $\{a_n\}_{n\geqslant 0}$ con $0\neq a_n\in\mathbb{R}$ para todo $n\in\mathbb{N}_0$. Se considera la ecuación en diferencias:

$$x_{n+1} = a_n x_n \tag{1}$$

1. Dado $x_0 \in \mathbb{R}$ determina x_n en función de la sucesión $\{a_n\}_{n\geqslant 0}$ para que $\{x_n\}_{n\geqslant 0}$ sea solución de la ecuación.

Dado $x_0 \in \mathbb{R}$ si $\{x_n\}_{n \geq 0}$ es solución de la ecuación, entonces verifica:

$$x_{n+1} = a_n x_n \ \forall n \in \mathbb{N}_0$$

Por tanto, podemos intuir que:

$$x_1 = a_0 x_0$$

$$x_2 = a_1 x_1 = a_1 a_0 x_0$$

$$\downarrow \downarrow$$

$$x_n = \prod_{k=0}^{n-1} a_k x_0$$

Lo demostramos por inducción:

 \blacksquare n=1

$$x_1 = a_0 x_0 = \prod_{k=0}^{0} a_k x_0$$

• Supuesto cierto para n, veamos para n+1

$$x_{n+1} = a_n x_n = a_n \prod_{k=0}^{n-1} a_k x_0 = \prod_{k=0}^n a_k x_0$$

Por tanto la solución es:

$$x_n = \prod_{k=0}^{n-1} a_k x_0$$

2. ¿Qué debe verificar la sucesión $\{a_n\}_{n\geqslant 0}$ para que la Ecuación 1 admita soluciones constantes no triviales? ¿Cuáles son las soluciones constantes en este caso?

Si buscamos las soluciones constantes de la ecuación Ecuación 1 vemos que $c = a_n c \Rightarrow c = 0$ (Pero esta solución es trivial) o bien $a_n = 1 \ \forall n \in \mathbb{N}$. En este caso la ecuación en diferencias pasa a ser:

$$x_{n+1} = x_n$$

donde $\{x_n\} = c \ \forall n \in \mathbb{N}_0 \text{ es solución constante } \forall c \in \mathbb{R}.$

3. Encuentra el término general de $\{x_n\}_{n\geqslant 0}$ en el caso de que $a_n=\frac{1}{2^n}$

4. En este caso la ecuación en diferencias pasa a ser: $x_{n+1} = \frac{1}{2^n} x_n$

Como en el apartado a hemos encontrado un término general en función de $\{a_n\}$ podemos aprovecharlo para este apartado, así sabemos que:

$$x_n = \prod_{k=0}^{n-1} \frac{1}{2^k} x_0$$

Es el término general de nuestra ecuación en diferencias, sin embargo para que el ejercicio esté enteramente bien debemos desarrollar la fórmula para encontrar una algo más simple.

$$x_{n} = \prod_{k=0}^{n-1} \frac{1}{2^{k}} x_{0}$$

$$\downarrow \qquad \qquad \downarrow$$

$$x_{n} = \frac{1}{2^{0}} \times \frac{1}{2^{1}} \times \frac{1}{2^{2}} \dots \frac{1}{2^{n-1}} x_{0}$$

$$x_{n} = \frac{1}{2^{\sum_{k=0}^{n-1} k}} x_{0}$$

$$\downarrow (*)$$

$$x_{n} = \frac{1}{2^{\frac{n(n-1)}{2}}} x_{0} = \frac{1}{\sqrt{2^{n(n-1)}}} x_{0}$$

Donde en (*) se ha utilizado la fórmula de la suma de los n primeros naturales.

Ejercicio 2 (3 puntos). Una empresa de pesticidas modela sus niveles de contaminación mediante la siguiente ecuación en diferencias:

$$x_{n+1} = \frac{x_n}{2} + b_n \tag{2}$$

Donde x_n representa el nivel de contaminación en el periodo n y $\{b_n\}_{n\geqslant 0}$ es una sucesión de números reales.

Se sabe que $\left\{\left(1+\frac{1}{n+1}\right)^{n+1}\right\}_{n\geqslant 0}$ es una solución particular de la Ecuación 2.

1. Determina una solución de la Ecuación 2 que cumple que $x_0 = 3$.

En primer lugar, la solución que nos otorgan cuando n=0 toma el valor 2, por tanto no nos sirve.

Sabemos que todas las soluciones de la Ecuación 2 se obtienen como suma de una solución de la parte homogénea y una solución particular.

La parte homogénea tiene por solución:

$$h_{n+1} = \frac{h_n}{2}$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow$$

$$h_n = \left(\frac{1}{2}\right)^n h_0$$

Así podemos afirmar que toda solución de la Ecuación 2 es de la forma:

$$x_n = h_0 \left(\frac{1}{2}\right)^n + \left(1 + \frac{1}{n+1}\right)^{n+1}$$

Si imponemos que $x_0 = 3 \Rightarrow 3 = h_0 + 2 \Rightarrow h_0 = 1$ Por tanto la solución que buscamos es:

$$x_n = \left(\frac{1}{2}\right)^n + \left(1 + \frac{1}{n+1}\right)^{n+1}$$

2. ¿Qué nivel de contaminación tendrá a largo plazo la empresa si en el periodo 0 el nivel de contaminación fue 3?

Nos preguntan por el comportamiento asintótico de x_n cuando $x_0 = 3$. Del ejercicio anterior sabemos que:

$$x_n = \left(\frac{1}{2}\right)^n + \left(1 + \frac{1}{n+1}\right)^{n+1}$$

Tomando límites:

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \left(\frac{1}{2}\right)^n + \left(1 + \frac{1}{n+1}\right)^{n+1} = e$$

Por tanto se espera que a largo plazo el nivel de contaminación de la empresa sea e

 Según este modelo. ¿Podría encontrarse un nivel de contaminación inicial para que a largo plazo el nivel de contaminación sea inferior a 1.8? Razona tu respuesta.

Nos preguntan por un valor de x_0 para que la contaminación a largo plazo calculada anteriormente sea inferior a 1.8.

Si cogemos la solución genérica de la ecuación:

$$x_n = h_0 \left(\frac{1}{2}\right)^n + \left(1 + \frac{1}{n+1}\right)^{n+1}$$

Como h_0 queda determinado por x_0 tomamos límite aquí para ver si encontramos alguna condición. Sin embargo:

$$\lim_{n \to \infty} \left(h_0 \left(\frac{1}{2} \right)^n + \left(1 + \frac{1}{n+1} \right)^{n+1} \right) = e$$

Como h_0 está multiplicado por $\frac{1}{2^n} \to 0$ no interviene en el valor a largo plazo. Por tanto da igual el valor de x_0 (que nos determina el valor de h_0) el valor de la contaminación a largo plazo siempre es e.

Ejercicio 3 (4 puntos). Se considera la ecuación en diferencias real

$$x_{n+1} = \sqrt{2x_n^2 - 2} \tag{3}$$

1. Determina las soluciones constantes de la Ecuación 3 y estudia su estabilidad. Notemos que la Ecuación 3 viene dada por $x_{n+1} = f(x_n)$ donde:

$$f: \mathbb{R}\setminus]-1,1[\longrightarrow \mathbb{R}_0^+$$

 $x \longmapsto \sqrt{2x^2-2}$

Buscamos un $c \in \mathbb{R} \setminus]-1,1[$ tal que:

$$c = \sqrt{2c^2 - 2} \Rightarrow c^2 = 2c^2 - 2$$
$$c = \pm\sqrt{2}$$

Sin embargo, como hemos visto, la imagen de f es \mathbb{R}_0^+ y por tanto tomando $x_0 = -\sqrt{2}$ tenemos que $x_1 = \sqrt{2}$ y por tanto no es solución constante. Por tanto nuestra única solución constante es $x_0 = \sqrt{2}$

Para estudiar su estabilidad podemos calcular f'(x) para aplicar el criterio de la primera derivada:

$$f'(x) = \frac{4x}{2\sqrt{2x^2 - 2}}$$

Por lo que $f'(\sqrt{2}) = 2 > 1$ lo que nos indica que la solución constante $x_0 = \sqrt{2}$ es inestable.

2. Para la Ecuación 3 ¿Existen ciclos no triviales? Razona tu respuesta.

Hagamos unas observaciones sobre la función f.

Para empezar, dado $x_0 \leqslant -1 \Rightarrow x_1 = f(x_0) > 0$ Y como $Im(f) = \mathbb{R}_0^+$ Necesariamente $x_n \geqslant \forall n \in \mathbb{N} : n \geqslant 1$

Por tanto los $x_0 \leq -1$ no pueden formar n-ciclos de ningún tipo.

Ahora bien, si $x_0 \ge 1$ el razonamiento es diferente. Ahora usaremos que f es una función creciente ya que es composición de crecientes. Por tanto:

- Si $f(x_0) < x_0$ Estaríamos diciendo que $x_1 < x_0$ y por tanto $f(x_1) < f(x_0) \Rightarrow x_2 < x_1$. Inductivamente la sucesión x_n es decreciente y por tanto no admite ciclos de ningún tipo.
- Si $f(x_0) > x_0$ Sucede lo mismo pero en este caso la sucesión x_n es creciente y tampoco admite ciclos de ningún tipo.

Por tanto no existen ciclos distintos de los triviales para la Ecuación 3

3. Dada una solución $\{x_n\}_{n\geqslant 0}$ de la Ecuación 3 considera el cambio de variable $y_n:=x_n^2$. Prueba que la sucesión $\{y_n\}_{n\geqslant 0}$ verifica una ecuación lineal de primer orden y resuélvela.

Realizamos el cambio de variable:

$$y_{n+1} = x_{n+1}^2 = 2x_n^2 - 2 = 2y_n - 2$$
$$y_{n+1} = 2y_n - 2$$

Para resolverla buscamos una solución particular, en este caso constante nos sirve y la solución de su parte homogénea.

$$c = 2c - 2 \iff c = 2$$

Por tanto la solución de y_n es:

$$y_n = 2^n c_0 + 2$$

Para dejarla en términos de y_0 calculamos c_0 en función suya:

$$y_0 = c_0 + 2 \iff c_0 = y_0 - 2$$

Y tenemos que la solución es:

$$y_n = 2^n(y_0 - 2) + 2$$

4. Utilizando el apartado anterior, demuestra que si $x_0 \in (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$. Entonces la solución de la Ecuación 3 con ese dato inicial cumple que $x_n > \sqrt{2}$ para todo $n \ge 1$

Dado $x_0 \in (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty) \Rightarrow x_0^2 = y_0 \in (2, \infty)$ Por tanto veamos que $y_n > 2 \ \forall n \geqslant 1$ Y por tanto $x_n > \sqrt{2} \ \forall n \geqslant 1$

Como
$$y_0 > 2 \Rightarrow 2^n(y_0 - 2) > 0 \Rightarrow 2^n(y_0 - 2) + 2 > 2$$

Si tenemos que $y_n > 2 \Rightarrow |x_n| > \sqrt{2} \quad \forall n \geqslant 1$ Pero realmente este valor absoluto es innecesario pues con $n \geqslant 1$ necesariamente $x_n = f(x_{n-1}) > 0$ y por tanto se tiene lo que queríamos demostrar.