Question Number	Scheme	Marks
3(a)	$AM = \sqrt{6^2 + 8^2} = 10$	M1
	$AE = \sqrt{14^2 + 10^2} = \sqrt{296} = 17.20 = 17.2 \mathrm{cm}$	M1A1 (3)
(b)	$\tan \phi = \frac{EM}{MA} = \frac{14}{10}$, $\phi = 54.46 = 54.5^{\circ}$ or using another trig function	M1A1ft,A1(3)
(c)	$\tan \theta = \frac{EM}{\frac{1}{2}CD} = \frac{14}{8}, \theta = 60.255^{\circ} = 60.3^{\circ}$	M1A1ft,A1 (3)
		[9]

Part	Mark	Notes		
(a)		Applies Pythagoras theorem to find the length of AM		
	M1	$AM = \sqrt{6^2 + 8^2} = 10 \text{ or } AM = \frac{\sqrt{12^2 + 16^2}}{2} = 10$		
		Applies Pythagoras to find the length of one of the sloping edges		
	M1	$AE = \sqrt{14^2 + 10^2} = \sqrt{296} = \dots$		
		For the correct length of either AE, DE, CE or BE		
	A1	$AE = 17.2 \mathrm{cm}$ rounded correctly		
	ALT			
	N/1N/1	Applies Pythagoras in 3D		
	M1M1	$AE = \sqrt{14^2 + 6^2 + 8^2} = \sqrt{296} = \dots$		
(b)	M1	For applying any acceptable trigonometry to find the required angle.		
		$\tan \phi = \frac{EM}{MA} = \frac{14}{10}$, or $\sin \phi = \frac{14}{\sqrt{296}}$, or $\cos \phi = \frac{10}{\sqrt{296}} \implies \phi =$		
	A1ft	For the correct trigonometry if they use sine or cosine following through their $\sqrt{296}$		
	A1	Required angle = 54.5° Rounded correctly		
(c)	M1	For applying trigonometry to find the required angle.		
		$\tan \theta = \frac{EM}{\frac{1}{2}CD} = \frac{14}{8} \Rightarrow \theta = \dots$		
		OR		
		The length of the perpendicular from E to the mid-point of AD is $\sqrt{260}$		
		$\sin \theta = \left(\frac{14}{\sqrt{260}}\right), \text{ or } \cos\left(\frac{8}{\sqrt{260}}\right) \Rightarrow \theta = \dots$		
	A1ft	Ft their $\sqrt{260}$		
	A1	$\theta = 60.3^{\circ}$		
Round	Rounding: Penalise rounding only the first time it occurs in either (b) or (c)			

