Теория вероятности и математическая статистика—1 Теоретический и задачный минимумы ФЭН НИУ ВШЭ

Винер Даниил @danya_vin

Версия от 29 сентября 2024 г.

Содержание

1	Теоретический минимум		2
	1.1	Сформулируйте классическое определение вероятности	2
	1.2	Выпишите формулу условной вероятности	2
	1.3	Дайте определение независимости (попарной и в совокупности) для n случайных событий .	2
	1.4	Выпишите формулу полной вероятности, указав условия её применимости	2
	1.5	Выпишите формулу Байеса, указав условия её применимости	3
2 Зад		ачный минимум	4
	2.1	$P(A) = 0.3, P(B) = 0.4, P(A \cap B) = 0.1 \dots$	4
	2.2	Карлсон выложил кубиками слово КОМБИНАТОРИКА	4
	2.3	В первой урне 7 белых и 3 черных шара, во второй — 8 белых и 4 черных шара, в третьей	
		-2 белых и 13 черных шаров	4
	2.4	В операционном отделе банка работает 80% опытных сотрудников и 20% неопытных	5
	2.5	TBA	5
	2.6	TBA	5
	2.7	TBA	5
	2.8	Пусть случайная величина X имеет распределение Пуассона с параметром $\lambda=100$	5
	2.9	В лифт 10-этажного дома на первом этаже вошли 5 человек	7
	2.10	При работе некоторого устройства время от времени возникают сбои	7

1 Теоретический минимум

1.1 Сформулируйте классическое определение вероятности

Имеет место, когда исходы равновероятны

Определение.

$$P(A) = \frac{|A|}{|\Omega|}$$

Определение.
$$P(A) = \sum_{\omega_i \in A} p(\omega_i)$$

1.2 Выпишите формулу условной вероятности

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \ \forall B : P(B) > 0$$

1.3 Дайте определение независимости (попарной и в совокупности) для n случайных событий

Определение. События A и B называются попарно независимыми, если:

$$P(A\cap B) = P(A)\cdot P(B)$$

$$P(A|B)P(B) = P(A)\cdot P(B) - \text{вытекает интуитивное определение}$$

Определение. События A_1, \ldots, A_n независимы в совокупности, если:

$$\forall i_1 < \ldots < i_k < \ldots < i_n \ \forall k = 1, \ldots, n:$$
$$P(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdot \ldots \cdot P(A_{i_k})$$

Примечание. Для A_1, A_2, A_3 :

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2)$$

$$P(A_2 \cap A_3) = P(A_2) \cdot P(A_3)$$

$$P(A_1 \cap A_3) = P(A_1) \cdot P(A_3)$$

$$P(A_1 \cap A_2 \cap A_3) = P(A_1) \cdot P(A_2) \cdot P(A_3)$$

1.4 Выпишите формулу полной вероятности, указав условия её применимости

2

Пусть $\{H_i\}$ — полная группа несовместных событий (разбиение Ω)

Должны быть выполнены такие свойства:

•
$$H_i \cap H_j = \emptyset \ \forall i \neq j$$
 — несовместность

$$ullet$$
 $\bigcup_{i=1}^n H_i = \Omega$ — полнота

Теорема. Тогда,
$$P(A) = \sum_{i=1}^{n} P(A|H_i)P(H_i)$$

Доказательство.

$$P(A) = P\left(\bigcup_{i=1}^{n} (A \cap H_i)\right)$$
$$= \sum_{i=1}^{n} P(A \cap H_i)$$
$$= \sum_{i=1}^{n} P(A|H_i) \cdot P(H_i)$$

1.5 Выпишите формулу Байеса, указав условия её применимости

Пусть H_1, H_2, \ldots — полная группа собътий, и A — некоторое собътие, вероятность которого положительна. Тогда условная вероятность того, что имело место событие H_k , если в результате эксперимента наблюдалось событие A, может быть вычислена по формуле

$$P(H_k|A) = \frac{P(A|H_k) \cdot P(H_k)}{P(A)}$$

$$= \frac{P(H_k \cap A)}{P(A)}$$

$$= \frac{P(A|H_k) \cdot P(H_k)}{\sum_{i=1}^{n} P(A|H_i)P(H_i)}$$

2 Задачный минимум

2.1
$$P(A) = 0.3, P(B) = 0.4, P(A \cap B) = 0.1$$

а) Найдите P(A|B)

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.1}{0.4} = 0.25$$

b) Найдите $P(A \cup B)$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.3 + 0.4 - 0.1 = 0.6$$

c) Являются ли события A и B независимыми?

Определение. События A и B называются независимыми, если $P(A \cap B) = P(A) \cdot P(B)$

Определение. События A и B называются несовместными, если $A \cap B = \emptyset$

Пусть $P(A) \neq 0, P(B) \neq 0$. Тогда, A и B несовместны, то A и B зависимы

$$0 = P(A \cap B) = P(A) \cdot P(B) \neq 0 \Longrightarrow A$$
 и B зависимы

2.2 Карлсон выложил кубиками слово КОМБИНАТОРИКА...

Способ №1 (С помощью формулы умножения вероятностей)

$$P(A_1 \cap ... \cap A_n) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 \cap A_2) \cdot ... \cdot P(A_n | A_1 \cap ... \cap A_{n-1})$$

Пусть имеются такие события:

$$A_1 := \{$$
первая буква — K $\}$

$$A_2 := \{$$
вторая буква — $O\}$

$$A_3 := \{ \text{третья буква} - P \}$$

$$A_4 := \{$$
четвертая буква — $T\}$

Тогда, искомая вероятность:

$$P(A_1 \cap A_2 \cap A_3 \cap A_4) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1 \cap A_2) \cdot P(A_4|A_1 \cap A_2 \cap A_3)$$

$$= \frac{2}{13} \cdot \frac{2}{12} \cdot \frac{1}{11} \cdot \frac{1}{10}$$

$$= \frac{1}{4290}$$

Способ №2 (комбинаторный)

$$P(A) = \frac{|A|}{|\Omega|}, \ \Omega = \{(a_1, a_2, a_3, a_4) : a_1 \in L, a_2 \in L, a_3 \in L, a_4 \in L, a_i \neq a_j \text{ при } i \neq j\}$$

$$|\Omega| = \frac{13!}{9!} = 17160$$

$$A = \{(K_1, O_1, P_1, T_1), (K_2, O_1, P_1, T_1), (K_1, O_2, P_1, T_1), (K_2, O_2, P_1, T_1)\} \longrightarrow 4$$
 исхода

Индекс у букв означают какой по счету встретилась буква в слове «КОМБИНАТОРИКА»

Тогда, искомая вероятность=
$$\frac{|A|}{|\Omega|} = \frac{4}{17160} = \frac{1}{4290}$$

2.3 В первой урне 7 белых и 3 черных шара, во второй — 8 белых и 4 черных шара, в третьей — 2 белых и 13 черных шаров

$$D_i := \{$$
выбираем i -ю урну $\}$, где $i = 1, 2, 3$ — разбиение Ω

Заметим, что урну мы выбираем равновероятно, то есть
$$P(D_1) = P(D_2) = P(D_3) = \frac{1}{3}$$

а) Вычислите вероятность того, что шар, взятый наугад из выбранной урны, окажется белым
 Формуа полной вероятности

$$P(A) = P(A|D_1) \cdot P(D_1) + \ldots + P(A|D_n) \cdot P(D_n)$$

В нашем случае, формула будет иметь вид

$$P(A) = P(A|D_1) \cdot P(D_1) + P(A|D_2) \cdot P(D_2) + P(A|D_3) \cdot P(D_3)$$

 $A := \{$ шар оказался белым $\}$

Заметим, что $P(A|D_1)=\frac{7}{10}, P(A|D_2)=\frac{2}{3}, P(A|D_3)=\frac{2}{15}$, тогда

$$P(A) = P(A|D_1) \cdot P(D_1) + P(A|D_2) \cdot P(D_2) + P(A|D_3) \cdot P(D_3)$$

$$= \frac{7}{10} \cdot \frac{1}{3} + \frac{2}{3} \cdot \frac{1}{3} + \frac{2}{15} \cdot \frac{1}{3}$$

$$= \frac{1}{2}$$

b)
$$P(D_1|A) = \frac{P(A|D_1) \cdot P(D_1)}{P(A|D_1)P(D_1) + P(A|D_2)P(D_2) + P(A|D_3)P(D_3)} = \frac{7}{15}$$

$2.4~~{ m B}$ операционном отделе банка работает 80% опытных сотрудников и 20% неопытных

Обозначим сотрудников так:

$$D_1 := \{$$
опытный сотрудник $\}$
 $D_2 := \{$ неопытный сотрудник $\}$

Пусть $A := \{$ совершена ошибка $\}$

Тогда, условия задачи можно записать так:

$$P(A|D_1) = 0.01$$

 $P(A|D_2) = 0.1$

a)
$$P(A) = P(A|D_1) \cdot P(D_1) + P(A|D_2) \cdot P(D_2) = 0.01 \cdot 0.8 + 0.1 \cdot 0.2 = 0.028$$

b)
$$P(D_2|A) = \frac{P(A|D_2) \cdot P(D_2)}{P(A)} = 0.714$$

Заметим, что события $(D_2|A)$ и $(D_1|A)$ образуют полную группу вероятностей, то есть

$$P(D_2|A) + P(D_1|A) = 1 \Longrightarrow P(D_1|A) = 0.286$$

- 2.5 TBA
- 2.6 TBA
- 2.7 TBA

2.8 Пусть случайная величина X имеет распределение Пуассона с параметром $\lambda=100$

Имеется случайная величина $X \sim \text{Pois}(\lambda = 100)$

a)
$$\mathbb{P}(\{X=0\}) = \frac{\lambda^0}{0!}e^{-\lambda} = e^{-\lambda} = e^{-100}$$

6)
$$\mathbb{P}(\{X>0\}) = 1 - \mathbb{P}(\{x=0\}) = 1 - e^{-100}$$

$$\mathbf{b)} \ \mathbb{P}\left(\left\{X<0\right\}\right) = \mathbb{P}\left(\varnothing\right) = 0$$

 Γ) По определению, $\mathbb{E}[X] = \lambda$. Докажем

$$\mathbb{E}[X] = \sum_{k=0}^{\infty} k \cdot \mathbb{P}(\{x = k\})$$

$$= \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda}$$

$$= \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} e^{-\lambda}$$

$$= \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}$$

$$= \left(\sum_{l=0}^{\infty} \frac{\lambda^l}{l!}\right) \lambda e^{-\lambda}$$

$$= \lambda$$

д) Для того, чтобы посчитать дисперсию X сначала посчитаем мат.ожидание X^2 , а для этого посчитаем $\mathbb{E}\left[X(X-1)\right]$:

$$\mathbb{E}\left[X(X-1)\right] = \sum_{k=0}^{\infty} k(k-1)\mathbb{P}\left(\left\{x=k\right\}\right)$$

$$= \sum_{k=2}^{\infty} k(k-1)\frac{\lambda^k}{k!}e^{-\lambda}$$

$$= \lambda^2 e^{-\lambda} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!}e^{-\lambda}$$

$$= \lambda^2 e^{-\lambda} \sum_{l=0}^{\infty} \frac{\lambda^l}{l!}$$

$$= \lambda$$

Тогда, $\lambda^2 = \mathbb{E}\left[X(X-1)\right] = \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right] \Longrightarrow \mathbb{E}\left[X^2\right] = \lambda + \lambda^2$

Теперь можем выразить дисперсию через известное равенство:

$$\mathbb{D}\left[X\right] = \mathbb{E}\left[X^{2}\right] - \left(\mathbb{E}\left[X\right]\right)^{2} = \lambda + \lambda^{2} - \lambda^{2} = \lambda$$

e) Предположим, что X = k и есть наиболее вероятное значение, принимаемое X. При этом, $k \in \{0,1,2,\ldots\}$. Так как k — дискретная, то дифференцированием мы воспользоваться не можем, тогда посчитаем $\frac{\mathbb{P}\left(\{X=k+1\}\right)}{\mathbb{P}\left(\{X=k\}\right)}$:

$$\frac{\mathbb{P}\left(\left\{X=k+1\right\}\right)}{\mathbb{P}\left(\left\{X=k\right\}\right)} = \frac{\frac{\lambda^{k+1}}{(k+1)!}e^{-\lambda}}{\frac{\lambda^k}{k!}e^{-\lambda}}$$
$$= \frac{\lambda}{k+1}$$
$$= \frac{100}{k+1}$$

Теперь проанализируем при каких k это отношение будет больше, меньше или равно 1:

•
$$\frac{100}{k+1} > 1 \Longrightarrow k < 99$$

$$\bullet \ \frac{100}{k+1} < 1 \Longrightarrow k > 99$$

$$\bullet \ \frac{100}{k+1} = 1 \Longrightarrow k = 99$$

Значит, 99 и 100 — наиболее вероятные значения, принимаемые случайной величиной X

2.9 В лифт 10-этажного дома на первом этаже вошли 5 человек

- а) Пусть $\xi_i = \begin{cases} 1, & \text{если } i\text{-} \ddot{\mathbf{n}} \text{ } nacca \varkappa cup \text{ вышел на шестом этаже} \\ 0, & \text{иначе} \end{cases}$. При этом $i \in \{1, 2, 3, 4, 5\}$ Тогда, $\xi = \xi_1 + \ldots + \xi_5$ число $nacca \varkappa cupoe$, которые вышли на шестом этаже Заметим, что ξ_1, \ldots, ξ_5 независимые, а также $\xi_i \sim \text{Be}\left(p = \frac{1}{9}\right)$. Тогда, $\xi \sim \text{Bi}\left(n = 5, p = \frac{1}{9}\right)$ $\mathbb{P}\left(\{\xi > 0\}\right) = 1 \mathbb{P}\left(\{\xi = 0\}\right) = 1 \left(\frac{8}{9}\right)^5$
- **6)** $\mathbb{P}(\{\xi=0\}) = C_n^k p^k q^{n-k} = C_5^0 \left(\frac{1}{9}\right)^0 \left(\frac{8}{9}\right)^5 = \left(\frac{8}{9}\right)^5$
- в) Пусть $\eta_i = \begin{cases} 1, & \text{если } i\text{-} \Briting{i} & \text{пассажсир вышел на 6 этаже или выше} \\ 0, & \text{иначе} \end{cases}$. При этом $i \in \{1, 2, 3, 4, 5\}$ Тогда, $\eta = \eta_1 + \ldots + \eta_5$ число nacca жсиров, которые вышли на шестом этаже и выше Заметим, что η_1, \ldots, η_5 независимые, а также $\eta_i \sim \text{Be}\left(p = \frac{5}{9}\right)$. Тогда, $\eta \sim \text{Bi}\left(n = 5, p_1 = \frac{5}{9}\right)$ $\mathbb{P}\left(\{\eta = 5\}\right) = C_5^5 \cdot p_1^5 \cdot q^0 = \left(\frac{5}{9}\right)^5$

2.10 При работе некоторого устройства время от времени возникают сбои

 $\xi_i \sim \mathrm{Pois}(\lambda=3)$ — число сбоев за i-е сутки

a) $\mathbb{P}(\{\xi_i > 0\}) = 1 - \mathbb{P}(\{\xi_i = 0\})$ $= 1 - \frac{\lambda^0}{0!}e^{-\lambda}$ $= 1 - e^{-3}$

б) Требуется вычислить вероятность того, что за двое суток не произойдет ни одного сбоя. То есть нужно найти вероятность двух событий: $\{\xi_1=0\}$ и $\{\xi_2=0\}$. Заметим, что эти события независимы. Формально:

$$\mathbb{P}(\{\xi_1 = 0\} \cap \{\xi_2 = 0\}) = \mathbb{P}(\{\xi_1 = 0\}) \cdot \mathbb{P}(\{\xi_2 = 0\})$$
$$= e^{-3} \cdot e^{-3}$$