Lesson 17 (Neural Network Playground–1)

Over-Fitting Using Feature Engineering: In this lesson we see what happens when feature engineering is used to commit the cardinal sin of machine learning—over-fitting.

1. Go to playground.tensorflow.org and set-up configuration 1 shown in the table below.

configuration	1	2	3	4
data	2-cluster			
train-test split	50%			
noise	0			
batch size	10			
features	x_1, x_2			
hidden layers	0			
nodes	0			
learning rate	0.03			
activation function	linear			
regularization	none			
regularization rate	0			
problem type	classification			
discretize output	yes			

- 2. Click the REGENERATE button in the bottom left corner to generate a new data set. Then begin training the network by clicking the play button in the upper left corner.
 - (a) What is the final training error?
 - (b) What is the final testing error?
 - (c) What are the values of the weights for this trained logistic regression network?
- 3. Increase Noise to 50.

Click the REGENERATE button in the bottom left corner to generate a new data set. Then begin training the network by clicking the play button in the upper left corner.

- (a) What is the final training error?
- (b) What is the final testing error?
- (c) What are the values of the weights for this trained logistic regression network?
- 4. Do **not** click the REGENERATE button. Use the same data set used in part 3 above. Click the rewind button (upper left corner) to reset the network. Try to reduce testing error by *engineering* new features to include: x_1^2 , x_2^2 , x_1x_2 , $\sin(x_1)$ and $\sin(x_2)$. Then begin training the network by clicking the play button in the upper left corner.
 - (a) What is the final training error?
 - (b) What is the final testing error?
 - (c) What are the values of the weights for this trained logistic regression network?