Department of Electronic and Telecommunication Engineering University of Moratuwa

Sri Lanka

EN1060 SIGNALS AND SYSTEMS: TUTORIAL 05 *

August 22, 2018

1. A discrete-time periodic signal x[n] is real valued and has a fundamental period N=5. The nonzero Fourier series coefficients for x[n] are

$$a_0 = 1$$
, $a_2 = a_2^* = e^{j\pi/4}$, $a_4 = a_4^* = 2e^{j\pi/3}$.

Express x[n] in the form

$$x[n] = A_0 + \sum_{k=1}^{\infty} A_k \sin(\omega_k n + \phi_k)$$

2. Use the discrete-time Fourier series analysis equation to evaluate the numerical values of one period of the Fourier series coefficients of the periodic signal

$$x[n] = \sum_{m=-\infty}^{\infty} \left\{ 4\delta[n-4m] + 8\delta[n-1-4m] \right\}$$

3. Let x[n] be a real and odd periodic signal with period N = 7 and Fourier coefficients a_k . Given that

$$a_{15} = j$$
, $a_{16} = 2j$, $a_{17} = 3j$,

determine the values of a_0 , a_1 , a_{-2} , and a_{-3} .

- 4. Suppose we are given the following information about a signal x[n]:
 - (a) x[n] is a real and even signal.
 - (b) x[n] has period N = 10 and Fourier coefficients a_k .
 - (c) $a_{11} = 5$.
 - (d) $\frac{1}{10} \sum_{n=0}^{9} |x[n]|^2 = 50.$

Show that $x[n] = A\cos(Bn + C)$, and specify numerical values for the constants A, B, and C.

^{*}All the questions are from Oppenheim et al. chapter 4.