# Skills, Tasks and Technologies: Implications for Employment and Earnings

Daron Acemoglu & David Autor

Handbook of Labor Economics, January 2011, Part 2, pages 1118-1166

#### **Table of Contents**

- 1. Introduction
- 2. An Overview of Labor Market Trends
- 3. The Canonical Model
- 4. A Ricardian Model of the Labor Market
- 5. Comparative Advantange and Wages: An Empirical Approach
- 6. Concluding Remarks

## 4. A Ricardian Model of the Labor

Market

#### 4. A Ricardian model of the labor market

#### 4.1 Environment

- 4.2 Equilibrium without machines
- 4.3 Special cases
- 4.4 Comparative statics
- 4.5 Task replacing technologies
- 4.6 Endogenous choice of skill supply
- 4.7 Offshoring
- 4.8 Directed technical change

#### **Production technology**

- Static environment with a unique final good, Y.
- Y produced with a continuum of tasks on the interval [0, 1].
- Cobb-Douglas technology mapping tasks into the final good:

$$Y = \exp\left[\int_0^1 \ln y(i)di\right] \tag{11}$$

where y(i) is the service or production of task i.

• The final good is the numeraire,  $P \equiv 1$ .

#### Supply of skills to tasks

- There are 3 types of labor: low, medium and high skilled. Their supply is inelastic and given by *L*, *M*, *H*.
- Each task on the continuum is produced using:

$$y(i) = A_L \alpha_L(i) I(i) + A_M \alpha_M(i) m(i)$$
  
+  $A_H \alpha_H(i) h(i) + A_K \alpha_K(i) k(i)$  (12)

#### where:

- $A_L, A_M, A_H$  are skill productivity parameters.
- $\alpha_L(i), \alpha_M(i), \alpha_H(i)$  are task productivity schedules determining comparative advantage in task production.
- I(i), m(i), h(i) are the number of workers allocated to task i.

### Comparative advantage in task production

#### Assumption 1

 $\alpha_L(i)/\alpha_M(i)$  and  $\alpha_M(i)/\alpha_H(i)$  are continuously differentiable and strictly decreasing in i.

- This is an assumption about the *relative* productivity of workers in doing different tasks.
- This assumption results in the allocation of workers across tasks based on their comparative advantage (as in Roy [51]).
- The rationale is that higher i correspond to "more complex" tasks for which more skilled workers have a comparative advantage.

### Clearing factor markets

• Labor markets clearing requires:

$$\int_0^1 I(i)di = L \text{ and } \int_0^1 m(i)di = M \text{ and } \int_0^1 h(i)di = H$$
(13)

- The role of capital as a factor of production:
  - Equilibrium without machines (sections 4.2-4.4):  $\alpha_K(i) = 0$  for all i.
  - Task replacing technologies (section 4.5):  $\alpha_K(i) \neq 0$  for some i.

#### 4. A Ricardian model of the labor market

- 4.1 Environment
- 4.2 Equilibrium without machines
- 4.3 Special cases
- 4.4 Comparative statics
- 4.5 Task replacing technologies
- 4.6 Endogenous choice of skill supply
- 4.7 Offshoring
- 4.8 Directed technical change

#### Task thresholds

#### Lemma 1

In any equilibrium there exist  $I_L$  and  $I_H$  such that  $0 < I_L < I_H < 1$  and for any  $i < I_L$  we have that m(i) = h(i) = 0, for any  $i \in (I_L, I_H)$  we have that I(i) = h(i) = 0, and for any  $i > I_H$  we have that I(i) = m(i) = 0.

Thresholds  $I_L$ ,  $I_H$  determine the allocation of tasks to skill:

- $i < I_L$  will be performed by L workers (Manual).
- $I_L \le i \le I_H$  will be performed by M workers (Routine).
- $i > I_H$  will be performed by H workers (Abstract).

#### Task thresholds $I_L$ and $I_H$ must exist

• Given that  $\alpha_L(i)/\alpha_M(i)$  is strictly decreasing in i, there must exist a task  $I_L$  such that the unit cost of producing  $I_L$  is the same for L and M workers:

$$\frac{w_L}{A_L \alpha_L(I_L)} = \frac{w_M}{A_M \alpha_M(I_L)}$$

• Given that  $\alpha_M(i)/\alpha_H(i)$  is strictly decreasing in i, there must exist a task  $I_H$  such that the unit cost of producing  $I_H$  is the same for M and H workers:

$$\frac{w_M}{A_M \alpha_M(I_H)} = \frac{w_H}{A_M \alpha_M(I_H)}$$

### Three equilibrium conditions

- E1. Law of one price for skill.
- E2. Equal task cost shares.
- E3. No arbitrage across skills at task thresholds.
- E4. Price of the final good equals marginal cost.

## E1. Law of one price for skill

- Denote p(i) as the price of task i.
- All tasks by j = L, M, H workers must pay the same wage  $w_j$ :

$$w_j = p(i)A_j\alpha_j(i)$$
 for  $j = L, M, H$ 

This has a convenient implication:

$$p(i)\alpha_L(i) = p(i')\alpha_L(i') \equiv P_L \text{ for any } i,i' < I_L \tag{14}$$

$$p(i)\alpha_M(i) = p(i')\alpha_M(i') \equiv P_M \text{ for any } I_L < i, i' < I_H \quad (15)$$

$$p(i)\alpha_H(i) = p(i')\alpha_H(i') \equiv P_H \text{ for any } i > I_H$$
 (16)

## E2. Equal task cost shares within skill groups

Cobb-Douglas technology implies:

$$p(i)y(i) = p(i')y(i')$$
 for any  $i, i' \in [0, 1]$  (17)

• Within the group of *L* workers this implies:

$$p(i)\alpha_L(i)I(i) = p(i')\alpha_L(i')I(i')$$
 for any  $i, i' < I_L$ 

• From the law of one price for skill we had that:

$$p(i)\alpha_L(i) = p(i')\alpha_L(i') \equiv P_L$$

This implies:

$$I(i) = I(i')$$
 for any  $i, i' < I_L$ 

## E2. Equal task cost shares within skill group

Within skill groups, we had that:

$$I(i) = I(i')$$
 for any  $i, i' < I_L$   $m(i) = m(i')$  for any  $I_L < i, i' < I_H$   $h(i) = h(i')$  for any  $i, i' > I_H$ 

Using the market clearing conditions, this gives:

$$I(i) = \frac{L}{I_L} \text{ for any } i < I_L$$

$$m(i) = \frac{M}{I_H - I_L} \text{ for any } I_L < i < I_H$$

$$h(i) = \frac{H}{1 - I_H} \text{ for any } i > I_H$$

$$(20)$$

## E2. Equal task cost shares between skill group

Cobb-Douglas technology implies:

$$p(i)y(i) = p(i')y(i')$$
 for any  $i, i' \in [0, 1]$  (17)

Between M and H workers this implies:

$$p(i)\alpha_{M}(i)A_{M}m(i) = p(i')\alpha_{H}(i')A_{H}h(i')$$

• Using definitions and results from above:

$$\frac{P_M A_M M}{I_H - I_L} = \frac{P_H A_H H}{1 - I_H}$$

$$\frac{P_H}{P_M} = \left[\frac{A_H H}{1 - I_H}\right]^{-1} \left[\frac{A_M M}{I_H - I_L}\right] \tag{21}$$

### E2. Equal task cost shares between skill group

• We had that:

$$\frac{P_H}{P_M} = \left[\frac{A_H H}{1 - I_H}\right]^{-1} \left[\frac{A_M M}{I_H - I_L}\right] \tag{21}$$

• Similarly, comparing tasks between *L* and *M* workers gives:

$$\frac{P_M}{P_L} = \left[\frac{A_M M}{I_H - I_L}\right]^{-1} \left[\frac{A_L L}{I_L}\right] \tag{22}$$

 We can use these equations to solve for relative wages as a function of task thresholds.

#### E2. Equal task cost shares between skill group

• Using eq. (21), we get that:

$$\frac{w_H}{w_M} = \frac{P_H A_H}{P_M A_M} = \left[\frac{1 - I_H}{I_H - I_L}\right] \left[\frac{M}{H}\right] \tag{26}$$

• Using eq. (22), we get that:

$$\frac{w_M}{w_L} = \frac{P_M A_M}{P_L A_L} = \left[\frac{I_H - I_L}{I_L}\right] \left[\frac{L}{M}\right] \tag{27}$$

• Given  $I_L$  and  $I_H$ , these equations solve for relative wages.

### E3. No arbitrage across skills at task thresholds

• Unit cost to produce  $I_H$  must be the same for M or H:

$$\frac{w_H}{w_M} = \frac{A_H \alpha_H(I_H)}{A_M \alpha_M(I_H)} = \left[\frac{1 - I_H}{I_H - I_L}\right] \left[\frac{M}{H}\right] \tag{23}$$

• Unit cost to produce  $I_L$  must be the same for L or M:

$$\frac{w_M}{w_L} = \frac{A_M \alpha_M(I_L)}{A_L \alpha_L(I_L)} = \left[\frac{I_H - I_L}{I_L}\right] \left[\frac{L}{M}\right]$$
(24)

- These equations solve for  $I_L$  and  $I_H$ .
- This solves for I(i), m(i), h(i),  $P_H/P_M$ ,  $P_M/P_L$  and  $w_H/w_M$ ,  $w_M/w_L$ .

### Summary of equilibrium

#### Proposition 1

There exists a unique equilibrium summarized by  $(I_L, I_H, P_L, P_M, P_H, w_L, w_M, w_H)$ .

- There exist values of  $I_L$  and  $I_H$ . Still required is proof that these values are unique.
- Knowing  $I_L$  and  $I_H$  directly solves for I(i), m(i), h(i),  $P_H/P_M$ ,  $P_M/P_L$  and  $w_H/w_M$ ,  $w_M/w_L$ .
- Solving for  $P_H$ ,  $P_M$ ,  $P_L$  and  $w_H$ ,  $w_M$ ,  $w_L$  requires solving for the equilibrium price of the final good P.

## Uniqueness of $I_L$ and $I_H$

• Rewrite the no arbitrage condition for  $I_H$  as:

$$\frac{A_{M}\alpha_{M}(I_{H})M}{A_{H}\alpha_{H}(I_{H})H}\left[\frac{1-I_{H}}{I_{H}-I_{L}}\right]=1$$
(23')

Rewrite the no arbitrage condition for I<sub>L</sub> as:

$$\frac{A_L \alpha_L(I_L)L}{A_M \alpha_M(I_L)M} \left[ \frac{I_H - I_L}{I_L} \right] = 1$$
 (24')

• Both are upward sloping in  $(I_L, I_H)$ -space but eq. (23') is everywhere steeper than eq. (24') given Assumption 1.



Figure 22 Determination of equilibrium threshold tasks.

### Equilibrium allocation of skills to tasks

• Rewrite the no arbitrage condition for  $I_H$  as:

$$\frac{A_H H}{A_M M} = \frac{1 - I_H}{I_H - I_L} \frac{\alpha_M(I_H)}{\alpha_H(I_H)} \tag{29}$$

which is decreasing in  $I_H$  for given  $I_L$ .

• Rewrite the no arbitrage condition for  $I_L$  as:

$$\frac{A_M M}{A_L L} = \frac{I_H - I_L}{I_L} \frac{\alpha_L(I_L)}{\alpha_M(I_L)}$$

which is decreasing in  $I_L$  for given  $I_H$ .



Figure 23 Equilibrium allocation of skills to tasks.

## E.4 Price of the final good equals marginal cost

Profit maximization implies:

$$P = MC = \exp\left[\int_0^1 \ln(p(i))di\right] \equiv 1$$

Rewriting gives:

$$\ln P = \int_{0}^{I_{L}} [\ln(P_{L}) - \ln(\alpha_{L}(i))] di + \int_{I_{L}}^{I_{H}} [\ln(P_{M}) - \ln(\alpha_{M}(i))] di + \int_{I_{H}}^{1} [\ln(P_{H}) - \ln(\alpha_{H}(i))] di = 0$$
(28)

which, together with eqs. (21)-(22), solves for  $P_L$ ,  $P_M$ ,  $P_H$ .

• This solves for  $w_i = P_i A_i$  for j = L, M, H.

#### 4. A Ricardian model of the labor market

- 4.1 Environment
- 4.2 Equilibrium without machines
- 4.3 Special cases
- 4.4 Comparative statics
- 4.5 Task replacing technologies
- 4.6 Endogenous choice of skill supply
- 4.7 Offshoring
- 4.8 Directed technical change

#### **Special cases**

- We discuss 2 special cases:
  - 1. A model with a fixed task set for L-type workers.
  - 2. Assuming two skill groups and simple versions of comparative advantage schedules (as in Acemoglu & Zilibotti [01]).
- There are other interesting cases:
  - Assuming a discrete set of tasks instead and a continuum of skills (as in Autor, Levy & Murnane [03]).
  - Assuming CES instead of Cobb-Douglas task production function (as in Acemoglu & Restrepo [18,19])

## Special case 1: Fixed task set for L-type workers

- Assume 3 types of workers: L, M, H.
- Assume the following comparative advantage schedule for low skill workers:

$$\alpha_L(i) = \begin{cases} \tilde{\alpha}_L & \text{if } i \leq \tilde{I}_L \\ 0 & \text{if } i > \tilde{I}_L \end{cases}$$

where  $\tilde{\alpha}_L$  is large and  $\tilde{I}_L$  is small.

- This fixes  $I_L = \tilde{I}_L$  while  $I_H$  is determined as before from an arbitrage condition.
- This is essentially a two-skill version of the model.



Figure 24 Determination of threshold high skill task ( $I_H$ ) with task assignment for low skilled workers fixed.

## Special case 2: Assuming two skill groups

- Assume there are only 2 types of workers, low and high skill.
- Assume the following comparative advantage schedules:

$$\alpha_L(i) = 1 - i$$
 and  $\alpha_H(i) = i$ 

• This model is isomorphic to the canonical model with  $\sigma = 2$ :

$$\omega \equiv \frac{w_H}{w_L} = \left[\frac{A_H}{A_L}\right]^{\frac{1}{2}} \left[\frac{H}{L}\right]^{-\frac{1}{2}}$$

$$= \left[\frac{A_H}{A_L}\right]^{\frac{\sigma-1}{\sigma}} \left[\frac{H}{L}\right]^{-\frac{1}{\sigma}}$$
(5)

## Special case 2: Assuming two skill groups

Equal division of labor among tasks within skill groups gives:

$$I(i) = \frac{L}{I}$$
 and  $h(i) = \frac{H}{1 - I}$ 

Comparing tasks between skill groups gives:

$$\frac{P_H}{P_L} = \left[\frac{A_H H}{1 - I}\right]^{-1} \left[\frac{A_L L}{I}\right]$$

• The relative wage is given by:

$$\frac{w_H}{w_L} = \frac{P_H A_H}{P_L A_L} = \left[\frac{H}{1 - I}\right]^{-1} \left[\frac{L}{I}\right]$$

## Special case 2: Assuming two skill groups

No arbitrage across skill gives:

$$\frac{A_L \alpha_L(I)L}{I} = \frac{A_H \alpha_H(I)H}{1 - I}$$

• Re-writing and using that  $\alpha_L(I) = 1 - I$  and  $\alpha_H(I) = I$  gives:

$$\frac{1-I}{I} = \left[\frac{A_H H}{A_L L}\right]^{\frac{1}{2}}$$

Re-writing the relative wage gives using this expression gives:

$$\frac{w_H}{w_L} = \left[\frac{A_H}{A_L}\right]^{\frac{1}{2}} \left[\frac{H}{L}\right]^{-\frac{1}{2}}$$

#### 4. A Ricardian model of the labor market

- 4.1 Environment
- 4.2 Equilibrium without machines
- 4.3 Special cases

#### 4.4 Comparative statics

- 4.5 Task replacing technologies
- 4.6 Endogenous choice of skill supply
- 4.7 Offshoring
- 4.8 Directed technical change

## **Basic comparative statics**

• Taking logs of eq. (23') gives:

$$\ln(A_{M}/A_{H}) + \beta_{H}(I_{H}) + \ln(M/H) + \ln([1 - I_{H}]/[I_{H} - I_{L}]) = 0$$
(32)

with  $\beta_H(I_H) \equiv \ln(\alpha_M(I_H)/\alpha_H(I_H))$ .

• Taking logs of eq. (24') gives:

$$\ln(A_L/A_M) + \beta_L(I_L) + \ln(L/M) + \ln([I_H - I_L]/I_L) = 0$$
(33)

with  $\beta_L(I_L) \equiv \ln(\alpha_L(I_L)/\alpha_M(I_L))$ .



Figure 25 Comparative statics.



Figure 26 Changes in equilibrium allocation.

## Proposition 2.1: The response of task allocation to $A_H$ , H

1. Task range of *H* workers:

$$\frac{dI_H}{d\ln(A_H)} = \frac{dI_H}{d\ln(H)} < 0$$

2. Task range of L workers:

$$\frac{dI_L}{d\ln(A_H)} = \frac{dI_L}{d\ln(H)} < 0$$

3. Task range for M workers:

$$\frac{d(I_H - I_L)}{d\ln(A_H)} = \frac{d(I_H - I_L)}{d\ln(H)} < 0$$

## Proposition 2.1: The response of task allocation to $A_L$ , L

1. Task range of *H* workers:

$$\frac{dI_H}{d\ln(A_L)} = \frac{dI_H}{d\ln(L)} > 0$$

2. Task range of L workers:

$$\frac{dI_L}{d\ln(A_L)} = \frac{dI_L}{d\ln(L)} > 0$$

3. Task range for M workers:

$$\frac{d(I_H - I_L)}{d\ln(A_L)} = \frac{d(I_H - I_L)}{d\ln(L)} < 0$$

## **Proposition 2.1:** The response of task allocation to $A_M$ , M

1. Task range of *H* workers:

$$\frac{dI_H}{d\ln(A_M)} = \frac{dI_H}{d\ln(M)} > 0$$

2. Task range of L workers:

$$\frac{dI_L}{d\ln(A_M)} = \frac{dI_L}{d\ln(M)} < 0$$

3. Task range for M workers:

$$\frac{d(I_H - I_L)}{d\ln(A_M)} = \frac{d(I_H - I_L)}{d\ln(M)} > 0$$

## Proposition 2.2: Response of relative wages to skill supplies

1. An increase in H:

$$\frac{d\ln(w_H/w_M)}{d\ln(H)} < 0 \text{ and } \frac{d\ln(w_H/w_L)}{d\ln(H)} < 0$$

2. An increase in M:

$$rac{d \ln(w_H/w_M)}{d \ln(M)} > 0$$
 and  $rac{d \ln(w_M/w_L)}{d \ln(M)} < 0$ 

3. An increase in L:

$$\frac{d \ln(w_M/w_L)}{d \ln(L)} > 0$$
 and  $\frac{d \ln(w_H/w_L)}{d \ln(L)} > 0$ 

## Proposition 2.3: Response of relative wages to $A_H$ , $A_M$ , $A_L$

1. An increase in  $A_H$ :

$$\frac{d \ln(w_H/w_M)}{d \ln(A_H)} > 0$$
 and  $\frac{d \ln(w_H/w_L)}{d \ln(A_H)} > 0$ 

2. An increase in  $A_M$ :

$$\frac{d\ln(w_H/w_M)}{d\ln(A_M)} < 0 \text{ and } \frac{d\ln(w_M/w_L)}{d\ln(A_M)} > 0$$

3. An increase in  $A_I$ :

$$\frac{d\ln(w_M/w_L)}{d\ln(A_L)} < 0 \text{ and } \frac{d\ln(w_H/w_L)}{d\ln(A_L)} < 0$$

## **Propositions 2.2 and 2.3: Response of** $W_H/W_L$ **to** $M, A_M$

 This depends critically on the comparative advantages of marginal H and L workers in doing M tasks, given by:

$$\beta_H(I_H) \equiv \ln(\alpha_M(I_H)/\alpha_H(I_H))$$
$$\beta_L(I_L) \equiv \ln(\alpha_L(I_L)/\alpha_M(I_L))$$

Define:

$$\beta'_{L}(I_{L})I_{L} \equiv \partial \beta_{L}(I_{L})/\partial I_{L}$$
$$\beta'_{H}(I_{H})I_{H} \equiv \partial \beta_{H}(I_{H})/\partial I_{H}$$

• If  $\beta'_H(I_H)$  is high relative to  $\beta'_L(I_L)$  in absolute value, H workers have a relatively strong comparative advantage for tasks above  $I_H$  compared to L workers for tasks below  $I_L$ .

## Propositions 2.2 and 2.3: Response of $w_H/w_L$ to $M, A_M$

• An increase in *M*:

$$\frac{d\ln(w_H/w_L)}{d\ln(M)} \gtrless 0 \text{ iff } |\beta_H'(I_H)(1-I_H)| \gtrless |\beta_L'(I_L)I_L|$$

• An increase in  $A_M$ :

$$\frac{d\ln(w_H/w_L)}{d\ln(A_M)} \geqslant 0 \text{ iff } |\beta'_H(I_H)(1-I_H)| \geqslant |\beta'_L(I_L)I_L|$$

• If  $\beta'_H(I_H)$  is high relative to  $\beta'_L(I_L)$  in absolute value, an increase in M or  $A_M$  displaces L workers more than H workers (and  $I_L$  falls more than  $I_H$  rises) such that  $w_H/w_L$  rises.

### 4. A Ricardian model of the labor market

- 4.1 Environment
- 4.2 Equilibrium without machines
- 4.3 Special cases
- 4.4 Comparative statics
- 4.5 Task replacing technologies
- 4.6 Endogenous choice of skill supply
- 4.7 Offshoring
- 4.8 Directed technical change

## Automation of routine labor tasks done by M-type workers

- Labor tasks most subject to machine displacement are routine or codifiable.
- These tasks are primarily done by *M*-type workers.
- Assume a range of tasks  $[I', I''] \subset [I_L, I_H]$  for which  $\alpha_K(i)$  increases sufficiently (with fixed cost of capital r) so that they are now more economically performed by machines.
- For all  $i \notin [I', I'']$ , continue to assume that  $\alpha_K(i) = 0$ .

## Changes in task thresholds

## **Proposition 3**

Suppose we start with an equilibrium characterized by thresholds  $[I_L, I_H]$  and technical change implies that the tasks in the range  $[I', I''] \subset [I_L, I_H]$  are now performed by machines.

#### Then:

After the introduction of machines, there exists a new equilibrium characterized by new thresholds  $\hat{l}_L$  and  $\hat{l}_H$  such that  $0 < \hat{l}_L < l' < l'' < \hat{l}_H < 1$  and for any  $i < \hat{l}_L$  we have that m(i) = h(i) = 0 and  $l(i) = L/\hat{l}_L$ ; for any  $i \in (\hat{l}_L, l') \cup (l'', \hat{l}_H)$ , l(i) = h(i) = 0 and  $m(i) = M/(\hat{l}_H - l'' + l' - \hat{l}_L)$ ; and for any  $i > \hat{l}_H$ , l(i) = m(i) = 0 and  $h(i) = H/(1 - \hat{l}_H)$ .

## Changes in relative wages

## **Proposition 4**

Suppose we start with an equilibrium characterized by thresholds  $[I_L, I_H]$  and technical change implies that the tasks in the range  $[I', I''] \subset [I_L, I_H]$  are now performed by machines.

#### Then:

- 1.  $w_H/w_M$  increases;
- 2.  $w_M/w_I$  decreases;
- 3.  $w_H/w_L \ge 0$  if and only if  $|\beta'_H(I_H)(1-I_H)| \ge |\beta'_L(I_L)I_L|$ .

## Automation of routine labor tasks done by M-type workers

- Focal case:
  - Routine tasks are of average complexity for humans.
  - Strong comparative advantage of H relative to L workers.
- If so, there is wage and employment polarization:
  - 1. Wages:
    - Middle wages fall relative to top and bottom.
    - Top rises relative to bottom.
  - 2. Employment:
    - Declining labor input in middling routine tasks.
    - Middle-skill workers move disproportionately downward.

## Ricardian model: Summary

- Model's inputs:
  - 1. Explicit distinction between skills and tasks.
  - 2. Comparative advantage among workers in different tasks.
  - 3. Multiple sources of competing task supplies.
- What the model delivers:
  - 1. A natural concept of occupations.
  - 2. Sorting of skill to tasks based on comparative advantage.
  - 3. Reallocation of skill across tasks as technology changes.
  - 4. Polarization of wages and employment.
  - 5. Technological progress can decrease wage levels.

### 4. A Ricardian model of the labor market

- 4.1 Environment
- 4.2 Equilibrium without machines
- 4.3 Special cases
- 4.4 Comparative statics
- 4.5 Task replacing technologies
- 4.6 Endogenous choice of skill supply
- 4.7 Offshoring
- 4.8 Directed technical change

## Endogenous choice of skill supply

- We have focussed on the substitution of skills across tasks.
- A complementary force is substitution of workers across skills.
- In response to changes in technology or factor supplies, workers may change the types of skills they supply.
- If machines replace medium skill workers, the supply to especially low skills will increase.
- This gives a richer explanation of observed wage and job polarization.

#### **Environment**

- Each worker j is endowed with some amount of low skill  $l^j$ , medium skill  $m^j$  and high skill  $h^j$ .
- Workers have one unit of time subject to a skill allocation constraint:

$$t_l^j + t_m^j + t_h^j \leqslant 1$$

• The worker's income is:

$$w_L t_l^j l_j + w_M t_m^j m_j + w_H t_h^j h_j$$

• A worker will prefer to allocate all her time to one skill.

## Supply to skills

• The supply to skills is given by:

$$L = \int_{j \in E_I} l^j dj$$
;  $M = \int_{j \in E_m} m^j dj$ ;  $H = \int_{j \in E_h} h^j dj$ 

with  $E_l$ ,  $E_m$ ,  $E_h$  the sets of workers choosing to supply their labor to low, medium and high skills respectively.

• A worker will choose to be in set  $E_h$  only if:

$$\frac{l^j}{h^j} \le \frac{w_H}{w_L}$$
 and  $\frac{m^j}{h^j} \le \frac{w_H}{w_M}$ 

with similar inequalities for sets  $E_m$  and  $E_l$ .

## Comparative advantage in skill

## **Assumption 2**

 $h^j/m^j$  and  $m^j/l^j$  are both strictly decreasing in j and  $\lim_{i\to 0}h^j/m^j=\infty$  and  $\lim_{i\to 1}m^j/l^j=0$ 

- Lower indexed workers have a comparative advantage in high skill and higher indexed workers have a comparative advantage in low skill.
- At the extremes these comparative advantages are strong enough that there will always be some workers choosing to supply high and low skills.

#### Worker thresholds

#### Lemma 2

For any ratios of wages  $w_H/w_M$  and  $w_M/w_L$ , there exist  $J^*(w_H/w_M)$  and  $J^{**}(w_M/w_L)$  such that:

- $t_h^j = 1$  for all  $j < J^*(w_H/w_M)$
- $t_m^j = 1$  for all  $j \in (J^*(w_H/w_M), J^{**}(w_M/w_L))$
- $t_l^j = 1$  for all  $j > J^{**}(w_M/w_L)$

 $J^*(w_H/w_M)$  and  $J^{**}(w_M/w_L)$  are both strictly increasing in their arguments.

 $J^*(w_H/w_M)$  and  $J^{**}(w_M/w_L)$  are defined such that:

$$\frac{m^{J^*(w_H/w_M)}}{h^{J^*(w_H/w_M)}} = \frac{w_H}{w_M} \text{ and } \frac{I^{J^{**}(w_M/w_L)}}{m^{J^{**}(w_M/w_L)}} = \frac{w_M}{w_L}$$

## Relative supply of skill

The supply to skills is given by:

$$L = \int_{J^{**}(w_M/w_L)}^1 f^j dj; M = \int_{J^*(w_H/w_M)}^{J^{**}(w_M/w_L)} m^j dj; H = \int_0^{J^*(w_H/w_M)} h^j dj$$

- An increase in  $w_H/w_M$ , given  $w_M/w_L$ , increases H/M given that  $J^*(w_H/w_M)$  is increasing in  $w_H/w_M$ .
- An increase in  $w_M/w_L$ , given  $w_H/w_M$ , increases M/L given that  $J^{**}(w_M/w_L)$  is increasing in  $w_M/w_L$ .

We have two upward sloping relative supply curves.

## Equilibrium with endogenous supply of skill

## **Proposition 5**

In the model with endogenous supplies, there exists a unique equilibrium summarized by  $(I_L, I_H, P_L, P_M, P_H, w_L, w_M, w_H, J^*(w_H/w_M), J^{**}(w_M/w_L), L, M, H)$ .

Proof: To prove uniqueness of the equilibrium requires a little more work and is relegated to the Theoretical Appendix.

## Comparative statics and interpretation

- Following the automation of routine tasks, the reallocation of skills across tasks resulted in wage and employment polarization.
- In response to these changes, some workers will also change their skill supply away from medium skills.
- If the more elastic margin is between medium and low skills, a significant fraction of workers previously supplying medium skills will now supply low skill.
- This gives a richer explanation of observed wage and employment polarization.

### 4. A Ricardian model of the labor market

- 4.1 Environment
- 4.2 Equilibrium without machines
- 4.3 Special cases
- 4.4 Comparative statics
- 4.5 Task replacing technologies
- 4.6 Endogenous choice of skill supply
- 4.7 Offshoring
- 4.8 Directed technical change

## Offshoring

- Besides technical progress, international trade is believed to have a major impact on labor markets.
- Instead of simply trading finished products, there has been a greater tendency to engage in trade in tasks through offshoring.
- Our analysis of technological progress directly translates to offshoring of routine and codifiable tasks (Proposition 6).
- The task-based model provides a rich and unified framework to analyse the impacts of labor supply, technological change, and trade on labor markets.

### 4. A Ricardian model of the labor market

- 4.1 Environment
- 4.2 Equilibrium without machines
- 4.3 Special cases
- 4.4 Comparative statics
- 4.5 Task replacing technologies
- 4.6 Endogenous choice of skill supply
- 4.7 Offshoring
- 4.8 Directed technical change

## Directed technical change

- We have rewritten the canonical model by allowing for the endogenous allocation of skill groups across tasks.
- We have further extended the model by also allowing for the endogenous allocation of workers across skill groups.
- Another significant aspect of the economic environment absent from the canonical model is the endogeneity of technological progress to changes in supply.
- This is known as endogenous or directed technical change.

## Directed technical change

In our Ricardian model, there can be different types of directed technical change in response to changes in supply:

- 1.  $A_L$ ,  $A_M$ ,  $A_H$  respond to changes in skill supplies. This idea is analyzed in Acemoglu & Zilibotti [01] for the special case of our model discussed in section 4.3.
- Comparative advantage schedules respond to changes in skill supplies:

$$\alpha_L(i|\theta), \alpha_M(i|\theta), \alpha_H(i|\theta)$$

with  $\theta$  a variable that captures the endogenous choice of technology in the economy.

## Factor biases in directed technical change

• An increase in the supply of factor f = L, M, H induces technical change that is **weakly biased** towards f if:

$$\frac{\partial w_f(E_{-f}, E_f | \theta)}{\partial \theta} \frac{d\theta}{dE_f} \ge 0$$

• An increase in the supply of factor f = L, M, H induces technical change that is **strongly biased** towards f if:

$$\frac{dw_f(E_{-f}, E_f|\theta)}{dE_f} = \frac{\partial w_f(E_{-f}, E_f|\theta)}{\partial E_f} + \frac{\partial w_f(E_{-f}, E_f|\theta)}{\partial \theta} \frac{d\theta}{dE_f} > 0$$

## Weakly biased directed technical change

## **Proposition 7**

Under regularity conditions (which ensure the existence of a locally isolated equilibrium), an increase in the supply of factor f (for  $f \in L, M, H$ ) will induce technical change **weakly biased** towards that factor.

- Proof: Acemoglu [07]
- This is a strong theoretical reason to expect that the increase in educational attainment has induced the development of technologies favoring skilled workers.
- It does not necessarily imply that the wage of skilled workers must have increased.

## Strongly biased directed technical change

## **Proposition 8**

Under regularity conditions (which ensure the existence of a locally isolated equilibrium), an increase in the supply of factor f (for  $f \in L, M, H$ ) will induce technical change **strongly biased** towards that factor - thus increasing the wage of that factor - if and only if the aggregate production possibilities set of the economy is locally nonconvex in factor f and technology  $\theta$ .

- Proof: Acemoglu [07]
- Local nonconvexity in f and  $\theta$  is common in models of endogenous technological change.
- The endogenous technology (or "long-run") demand for skill is upward sloping.

5. Comparative Advantage and

Wages: An Empirical Approach

#### Relative returns to skill versus tasks

- The model predicts that following automation,  $w_L/w_M \uparrow$  and  $w_H/w_M \uparrow$ , even as workers reallocate across tasks.
- However, changes in relative wages are not the same as changes in relative task prices (e.g. they can be different for tasks that are reallocated between skill groups).
- Regarding automation, the price of automatable tasks is expected to declined relative to abstract and manual tasks.
- But tasks and task prices are not directly observed in data.

## Occupations as proxies for tasks

- Let  $\gamma_{sejk}^A$ ,  $\gamma_{sejk}^R$ ,  $\gamma_{sejk}^S$  be the employment shares of Abstract, Routine and Service occupations in demographic group sejk (gender, education, age, region) in 1959.
- By construction, we have that:

$$\gamma_{\mathit{sejk}}^{\mathit{A}} + \gamma_{\mathit{sejk}}^{\mathit{R}} + \gamma_{\mathit{sejk}}^{\mathit{S}} = 1$$

 Assume that in 1959 these groups have self-selected into task specialities according to comparative advantage, taking as given overall skill supplies and task demands (reflecting also available technologies and trade opportunities).

## Wages, skill and tasks

- Let  $w_{sejkt}$  be the mean log wage of a demographic group in year t and  $\Delta w_{sejk\tau}$  the change in w in decade  $\tau$ .
- Estimate the regression model:

$$\Delta w_{\text{sejk}\tau} = \sum_{t} \beta_{t}^{A} \gamma_{\text{sejk}}^{A} 1[\tau = t] + \sum_{t} \beta_{t}^{S} \gamma_{\text{sejk}}^{S} 1[\tau = t]$$

$$+ \delta_{\tau} + \phi_{e} + \lambda_{j} + \pi_{k} + e_{\text{sejk}\tau}$$

$$(40)$$

- $\beta_t^A$  and  $\beta_t^S$  are decade specific slopes on the initial occupation shares in wage changes by demographic group (relative to the omitted routine task shares with effects absorbed by  $\delta_{\tau}$ ).
- We expect that  $\beta_t^A$  and  $\beta_t^S$  will rise, and that  $\delta_t$  will decline.

Table 10 OLS stacked first-difference estimates of the relationship between demographic group occupational distributions in 1959 and subsequent changes in demographic groups' mean log wages by decade, 1959-2007.

|         | Males                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B. Females                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1)     | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1)                                                                                                                                                                                                                                                                                                                                                                                                                  | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.021   | 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.146                                                                                                                                                                                                                                                                                                                                                                                                                | 0.159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (0.044) | (0.104)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.041)                                                                                                                                                                                                                                                                                                                                                                                                              | (0.081)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -0.129  | -0.123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.054                                                                                                                                                                                                                                                                                                                                                                                                               | -0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (0.044) | (0.105)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.036)                                                                                                                                                                                                                                                                                                                                                                                                              | (0.079)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.409   | 0.407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.143                                                                                                                                                                                                                                                                                                                                                                                                                | 0.174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (0.046) | (0.106)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.033)                                                                                                                                                                                                                                                                                                                                                                                                              | (0.079)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.065   | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                | 0.107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (0.049) | (0.109)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.033)                                                                                                                                                                                                                                                                                                                                                                                                              | (0.079)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.198   | 0.194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.075                                                                                                                                                                                                                                                                                                                                                                                                                | 0.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (0.051) | (0.11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.033)                                                                                                                                                                                                                                                                                                                                                                                                              | (0.08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -0.836  | -1.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.359                                                                                                                                                                                                                                                                                                                                                                                                                | 0.404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (0.278) | (0.303)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.064)                                                                                                                                                                                                                                                                                                                                                                                                              | (0.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -0.879  | -0.991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.304                                                                                                                                                                                                                                                                                                                                                                                                                | 0.363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (0.295) | (0.316)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.065)                                                                                                                                                                                                                                                                                                                                                                                                              | (0.091)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.007   | 0.917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.143                                                                                                                                                                                                                                                                                                                                                                                                               | -0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (0.332) | (0.349)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.074)                                                                                                                                                                                                                                                                                                                                                                                                              | (0.096)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.202   | 0.143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.117                                                                                                                                                                                                                                                                                                                                                                                                                | 0.221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (0.378) | (0.39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.086)                                                                                                                                                                                                                                                                                                                                                                                                              | (0.104)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.229   | 0.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.056                                                                                                                                                                                                                                                                                                                                                                                                               | 0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (0.398) | (0.408)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.094)                                                                                                                                                                                                                                                                                                                                                                                                              | (0.109)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.274   | 0.274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.120                                                                                                                                                                                                                                                                                                                                                                                                                | 0.046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (0.031) | (0.037)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.021)                                                                                                                                                                                                                                                                                                                                                                                                              | (0.032)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.084   | 0.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.083                                                                                                                                                                                                                                                                                                                                                                                                               | -0.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (0.033) | (0.038)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.020)                                                                                                                                                                                                                                                                                                                                                                                                              | (0.033)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -0.287  | -0.283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.011                                                                                                                                                                                                                                                                                                                                                                                                               | -0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (0.036) | (0.041)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.021)                                                                                                                                                                                                                                                                                                                                                                                                              | (0.034)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -0.002  | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.061                                                                                                                                                                                                                                                                                                                                                                                                                | -0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (0.039) | (0.045)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.022)                                                                                                                                                                                                                                                                                                                                                                                                              | (0.035)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (continu                                                                                                                                                                                                                                                                                                                                                                                                             | ed on next p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | 0.021<br>(0.044)<br>-0.129<br>(0.044)<br>0.409<br>(0.046)<br>0.065<br>(0.049)<br>0.198<br>(0.0578)<br>-0.879<br>(0.278)<br>-0.879<br>(0.278)<br>0.202<br>(0.378)<br>0.202<br>(0.378)<br>0.202<br>(0.398)<br>0.202<br>(0.398)<br>0.202<br>(0.398)<br>0.202<br>(0.046)<br>0.202<br>(0.398)<br>0.202<br>(0.398)<br>0.202<br>(0.398)<br>0.202<br>(0.398)<br>0.202<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.203<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398)<br>0.003<br>(0.398 | 0.021 0.033<br>(0.044) (0.104)<br>-0.129 -0.123<br>(0.044) (0.105)<br>0.409 0.407<br>(0.046) (0.106)<br>0.065 0.066<br>(0.049) (0.109)<br>0.198 0.194<br>(0.051) (0.11)<br>-0.836 -1.014<br>(0.278) (0.303)<br>-0.879 -0.991<br>(0.295) (0.349)<br>0.202 0.143<br>(0.378) (0.39)<br>0.229 0.212<br>(0.398) (0.408)<br>0.274 0.274<br>(0.031) (0.038)<br>-0.877 -0.283<br>(0.038)<br>-0.287 -0.283<br>(0.036) (0.041) | 0.021 0.033 0.146 (0.044) (0.104) (0.041) -0.129 -0.123 -0.054 (0.044) (0.105) (0.036) 0.409 0.407 0.143 (0.044) (0.106) (0.033) 0.198 0.194 0.075 (0.051) (0.11) (0.033) 0.198 0.194 0.075 (0.051) (0.11) (0.033) 0.198 0.194 0.075 (0.051) (0.11) (0.033) 0.198 0.194 0.075 (0.051) (0.11) (0.033) 0.198 0.194 0.075 (0.051) (0.11) (0.033) 0.198 0.194 0.075 (0.051) (0.11) (0.033) 0.066 0.194 0.278 (0.303) (0.064) 0.0279 (0.316) (0.065) 1.007 0.917 -0.143 (0.332) (0.349) (0.074) 0.202 0.143 0.117 (0.378) (0.399) (0.086) 0.229 0.212 -0.056 (0.398) (0.408) (0.094) 0.224 0.274 0.274 0.274 0.274 0.208 (0.031) (0.037) (0.021) 0.084 0.085 -0.083 (0.033) (0.038) (0.030) (0.039) (0.040) 0.027 -0.287 -0.283 -0.011 (0.036) (0.041) (0.021) 0.002 0.002 0.061 (0.039) (0.045) (0.042) |

Table 10 (continued)

|                                                | A. Males          |                   | B. Females        |                   |
|------------------------------------------------|-------------------|-------------------|-------------------|-------------------|
|                                                | (1)               | (2)               | (1)               | (2)               |
| 1999-2007                                      | -0.157<br>(0.041) | -0.157<br>(0.046) | -0.073<br>(0.024) | -0.171<br>(0.036) |
| Education, age group, and region main effects? | No                | Yes               | No                | Yes               |
| R-squared                                      | 0.789             | 0.821             | 0.793             | 0.844             |
| N                                              | 400               | 400               | 400               | 400               |

Source: Census IPUMS 1960, 1970, 1980, 1990 and 2000, and American Community Survey 2008. Each column presents a separate OLIS regression of stacked changes in mean log real hourly wages by demographic group and year, where demographic groups are defined by sex, education group (high school dropout, high school graduate, some college, college degree, post-college degree,) age group (25-34, 35-44, 45-54, 55-64), and region of residence (Northeast, South, Midwest, Wess). Models are weighted by the mean start and end-year share of employment of each demographic group for each decadal change. Occupation shares are calculated for each demographic group in 1959 (using the 1960 Census) and interacted with decade dummies. Occupations are grouped into three exhaustive and mutually exclusive groups: (1) abstract—professional, managerial and technical occupations; (2) service—protective service, food service and cleaning, and personal services occupations; (3) routine—clerical, sales, administrative support, production, operative and laborer occupations. The routine group is the omitted category in the regression models.

# 6. Concluding Remarks

#### **Conclusions**

- Declining real wages for some workers and job and wage polarization are problematic for the canonical model.
- A task-based framework, in which tasks are the basic unit of production and the allocation of skills to tasks is endogenous, provides a fruitful alternative theory.
- The basic framework can be extended to include e.g. worker's choice of skill supply and directed technological change.
- These models generate new ideas that can be tested empirically, but more needs to be done.