

Synchrone Zähler (üb. CNT)

Übungen Digitales Design

2 Zähler mit Zweierpotenz

2.1 Abwärtszähler

Erstellen Sie mit Hilfe von D-Flipflops und von kombinatorischen Logikgattern einen synchronen Abwärtszähler mit der Sequenz

$$15 \Rightarrow 14 \Rightarrow 13 \Rightarrow 12 \Rightarrow \dots 3 \Rightarrow 2 \Rightarrow 1 \Rightarrow 0 \Rightarrow 15 \Rightarrow 14 \Rightarrow \dots$$

Zeichnen Sie das vollständige Schema.

2.2 Abwärtszähler

Erstellen Sie mit Hilfe von T-Flipflops und von NAND-Gattern einen synchronen Abwärtszähler mit der Sequenz

$$7 \Rightarrow 6 \Rightarrow 5 \Rightarrow 4 \Rightarrow 3 \Rightarrow 2 \Rightarrow 1 \Rightarrow 0 \Rightarrow 7 \Rightarrow 6 \Rightarrow \dots$$

Zeichnen Sie das vollständige Schema.

3 Zähler um eine beliebige Zahl

3.1 Abwärtszähler

Erstellen Sie mit Hilfe von D-Flipflops und von NAND-Gattern einen Modulo-10 synchronen Abwärtszähler mit der Sequenz

$$9 \Rightarrow 8 \Rightarrow 7 \Rightarrow 6 \Rightarrow \dots 3 \Rightarrow 2 \Rightarrow 1 \Rightarrow 0 \Rightarrow 9 \Rightarrow 8 \Rightarrow \dots$$

Zeichnen Sie das vollständige Schema.

Zeichnen Sie des Zustandsgraph mit allen Zuständen, auch mit denjenigen ausserhalb der Hauptschleife.

3.2 Abwärtszähler

Erstellen Sie mit Hilfe von D-Flipflops und von Multiplexern einen synchronen Abwärtszähler mit der Sequenz

$$6 \Rightarrow 5 \Rightarrow 4 \Rightarrow 3 \Rightarrow 2 \Rightarrow 6 \Rightarrow \dots$$

Zeichnen Sie das vollständige Schema.

3.3 Johnson-Zähler

Die folgende Abbildung zeigt einen Johnson-Zähler.

Diese Art Zähler is von Interesse für Hochgeschwindigkeit-Systeme. Die Schaltung weist einen Nachteil vor: sie hat zwei unabhängige Sequenzen.

Schaffen Sie die kürzeste Sequenz ab, indem Sie die Eingangsfunktion D_B der zweiten Flipflop abändern.

4 Iterative Schaltkreise

4.1 Zähler mit synchroner Nullsetzung

Mit Hilfe von D-Flipflops und von NAND-Gattern erstellen Sie einen 4-Bit Zähler mit synchroner Nullsetzung.

Der Zähler hat einen Steuereingang reset. Ist reset = '1', so stellt sich die Schaltung auf Null bei der nächsten aktiven Taktflanke. Ist reset = '0', so zählt die Schaltung aufwärts.

4.2 Zähler mit Laden eines Wertes

Mit Hilfe von D-Flipflops und von NAND-Gattern erstellen Sie einen 4-Bit Zähler, in welchem man einen neuen Wert laden kann.

Der Zähler hat einen Steuereingang load und einen 4-Bit Dateneingang. Ist load = '1', so lädt die Schaltung den Dateneingang. Ist load = '0', so zählt die Schaltung aufwärts.

4.3 Aufwärts-Abwärtszähler

Erstellen Sie einen 4-Bit Aufwärts-Abwärtszähler mit Hilfe von D-Flipflops und von NAND-Gattern.

Der Aufwärts-Abwärtszähler hat einen Steuereingang $up\overline{down}$. Ist $up\overline{down} = '1'$, so zählt die Schaltung aufwärts. Ist $up\overline{down} = '0'$, so zählt die Schaltung abwärts.

4.4 Programmierbarer Zähler

Die folgende Abbildung zeigt das Schema eines programmierbaren Zählers.

Bestimmen Sie die Länge der Zählsequenz als Funktion der Eingangszahl $[P_1, P_0]$. Verändern Sie diese Schaltung, um die Nullsetzung kaskadierbar zu machen.