Units in Magnetism

The International System of Units (Système International d'Unités) (SI) contains two types of units: base units and derived units. The seven base units are: meter, kilogram, second, ampere, kelvin, mole, and candela.

Some units relevant to magnetism have special names in the SI. They are the following, together with their expression in terms of other SI units:

Unit	Symbol	Equivalence	Quantity
weber	Wb	V s	Unit of magnetic flux
henry	Н	${ m Wb}~{ m A}^{-1}$	Unit of inductance
tesla	T	${ m Wb}~{ m m}^{-2}$	Unit of magnetic flux density

Table A.1. Table of magnetic units in the SI

The unit of magnetic field strength ${\bf H}$ has no special name; ${\bf H}$ is measured in amperes per meter (A m⁻¹).

The magnetic induction or magnetic flux density **B** (or simply B-field) has the tesla (T) as the unit and is related to the magnetic field intensity **H** through the magnetic constant or vacuum magnetic permeability μ_0 , that has a value of $4\pi \times 10^{-7}$ H m⁻¹ in the SI.

The relations between **B** and **H** in the two systems of units are:

$$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M}) \tag{SI}$$

$$\mathbf{B} = \mathbf{H} + 4\pi \mathbf{M} \tag{CGS}$$

In the last equation (in the centimeter-gram-second system (CGS)) **B** is measured in gauss (G) and the unit of **H** is the oersted (Oe). In the CGS system the constant 4π appears explicitly in the expression of **B**.

The magnetization **M** of a sample, defined as the total magnetic moment divided by the volume, is measured in A m⁻¹. A close concept is that of polarization $\mathbf{J} = \mu_0 \mathbf{M}$, measured in teslas (T).

The literature of magnetism contains results both in SI and CGS units. Some useful relations for conversion of CGS into the SI are:

$$1\,G = 10^{-4}\,T$$

$$1\,Oe = \frac{10^3}{4\pi}\,A\,m^{-1}\,\approx\!80\,A\,m^{-1}$$
 (A.2)
$$1\,emu\,g^{-1} = 1\,J\,T^{-1}kg^{-1}$$

Note that "emu" is not the name of a unit, it designates 1 erg gauss^{-1} .

The relative magnetic permeability μ_r of a material is dimensionless, and is defined as the ratio of the permeability of the material μ to the magnetic constant (or free-space permeability) μ_0 :

$$\mu_r = \frac{\mu}{\mu_0}.\tag{A.3}$$

The relative permeability of a material μ_r is measured by the same number in the SI and in the CGS. Its relation to the susceptibility $\chi = M/H$, however, is different in the two systems:

$$\mu_r = 1 + \chi \tag{SI}$$

$$\mu_r = 1 + 4\pi\chi \tag{CGS}$$

The expressions differ because the values of the susceptibilities are different in the two systems:

$$\chi_{\rm SI} = 4\pi \; \chi_{\rm CGS}. \tag{A.5}$$

Further Reading

R.A. Carman, Numbers and Units for Physics (Wiley, New York, 1969)

J. de Boer, Metrologia 31, 405 (1995)

P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 80, 633–730 (2008)

NIST Special Publication 811, 2008 edition, *Guide for the Use of the International System of Units (SI)*, ed. by Ambler Thompson Technology Services, B.N. Taylor, http://physics/nist/gov

Magnetic quantities and units. To obtain the values of the quantities in SI units, the corresponding CGS values should be

muniplied by the conversion factors				
Quantity	Symbol	CGS	IS	Conversion
				factor
Magnetic induction	В	Ð	T	10^{-4}
Magnetic field intensity	Н	Oe	$\mathrm{A}\mathrm{m}^{-1}$	$10^3/4\pi$
Magnetization	M	${ m erg}{ m G}^{-1}{ m cm}^{-3}$	$\mathrm{A}\mathrm{m}^{-1}$	10^{3}
		or emu cm $^{-3}$		
Magnetic polarization	r	1	T	1
Magnetic moment	ш	$\operatorname{erg} \operatorname{G}^{-1} (\equiv \operatorname{emu})$	$JT^{-1} (\equiv A m^2)$	10^{-3}
Specific magnetization	ь	$\mathrm{emu}\mathrm{g}^{-1}$	$A m^2 kg^{-1}(J T^{-1} kg^{-1})$	1
Magnetic flux	φ	Mx (Maxwell)	Wb (Weber)	10^{-8}
Magnetic energy density	Ш	${ m ergcm^{-3}}$	$\mathrm{J}\mathrm{m}^{-3}$	10^{-1}
Demagnetizing factor	$_{\rm p}^{ m p}$	I	1	$1/4\pi$
Susceptibility (volume)	×	1	1	4π
Mass susceptibility	×	${ m erg}{ m G}^{-1}{ m g}^{-1}{ m Oe}^{-1}$	$\mathrm{m}^{3}\mathrm{kg}^{-1}$	$4\pi \times 10^{-3}$
	,	or emu $\mathrm{g}^{-1}\mathrm{Oe}^{-1}$		
Molar susceptibility	$\chi_{ m mol}$	$emu mol^{-1}Oe^{-1}$	m^3 mol ⁻¹	$4\pi \times 10^{-6} \text{ m}^3 \text{mol}^{-1}$
Magnetic permeability	ユ .	${ m GOe^{-1}}$	$\mathrm{H}\mathrm{m}^{-1}$	$4\pi imes 10^{-7}$
Relative permeability	$\mu_{ m r}$	ı	I	1
Magnetic constant (vacuum permeability)	μ_0	${ m GOe^{-1}}$	$\mathrm{H}\mathrm{m}^{-1}$	$4\pi imes 10^{-7}$
Anisotropy constant	K	${ m ergcm^{-3}}$	$\mathrm{J}\mathrm{m}^{-3}$	10^{-1}
Exchange stiffness constant	A	${ m ergcm^{-1}}$	$\mathrm{J}\mathrm{m}^{-1}$	10^{5}
Specific domain wall energy	λ	${ m ergcm}^{-2}$	$ m Jm^{-2}$	10^{-3}
Gyromagnetic ratio	٨	$s^{-1} \mathrm{Oe}^{-1}$	${ m m}~{ m A}^{-1}~{ m s}^{-1}$	$4\pi 10^{-3}$

Physical Constants

Quantity	Symbol	Value	CGS	SI
Speed of light in vacuum	c	2.997925	$10^{10} \text{ cm s}^{-1}$	$10^8 \mathrm{m s^{-1}}$
Elementary charge	e	1.60218	4.80654×10^{-10} statC	10^{-19} C
Planck constant	h	6.62607	10^{-27} erg s	10^{-34} J s
	$\hbar = h/2\pi$	1.054572	10^{-27} erg s	10^{-34} J s
Avogadro's constant	$N_{\rm A}$	$\begin{array}{c} 6.02214 \\ \times 10^{23} \; \text{mol}^{-1} \end{array}$	Ü	
Atomic mass constant	$m_{ m u}$	1.66054	10^{-24} g	10^{-27} kg
Electron mass	$m_{\rm e}$	9.10939	10^{-28} g	10^{-31} kg
Proton mass	$m_{\rm p}$	1.67262	10^{-24} g	10^{-27} kg
Ratio of proton and	•			
electron masses	$m_{ m p}/m_{ m e}$	1836.153		
Electron gyromagnetic	c γ _e	1.760859770	$10^7 \mathrm{s}^{-1} \mathrm{G}^{-1}$	$10^{11} \text{ s}^{-1} \text{ T}^{-1}$
ratio				
Gilbert gyromagnetic	$\mu_0 \gamma_{ m e}$	2.2127606		$10^5 \text{ m A}^{-1} \text{s}^{-1}$
ratio				
Electron Compton wavelength	$\lambda_{ m c}$	2.42631	10^{-10} cm	10^{-12} m
Bohr radius	a_0	0.529177	10^{-8} cm	10^{-10} m
Bohr magneton	$\mu_{ m B}$	9.2740154	$10^{-21} \text{ erg G}^{-1}$	$10^{-24} \ \mathrm{JT^{-1}}$
Nuclear magneton	$\mu_{ m N}$	5.0507866	$10^{-24} \text{ erg G}^{-1}$	$10^{-27} \mathrm{JT}^{-1}$
Electronvolt	eV	1.60218	10^{-12} erg	$10^{-19} \mathrm{J}$
Boltzmann constant	k	1.380658	$10^{-16} \text{ erg K}^{-1}$	$10^{-23} \mathrm{JK^{-1}}$
Reciprocal of fine	$1/\alpha$	137.036		
structure constant				
Rydberg constant	$R_{\infty}hc$	2.179874	10^{-11} erg	$10^{-18} \mathrm{J}$
Molar gas constant	R	8.31451	$10^7 \text{ erg mol}^{-1} \text{ K}^{-1}$	$\mathrm{J}\ \mathrm{mol^{-1}}\ \mathrm{K^{-1}}$
Vacuum permittivity	ε_0	_	1	$10^7/4\pi c^2$
Magnetic constant				
(vacuum permeability)	μ_0		1	$4\pi \times 10^{-7} \text{ Hm}^{-1}$

Materials

[Co(6nm)Ag(6nm)] ₆₀ multilayer, GMR, 135	CoCoO core shell particle, 78
3d elements paramagnetism, 22	CoCr alloy for magnetic hard disk, 174
3d metals, exchange lengths, 5	CoCu layered nanowire, 164
4d elements paramagnetism, 22	CoCu multilayer nanowire, 166
5d elements paramagnetism, 22	CoCu multilayer, magnetotransport parameters, 139
actinides paramagnetism, 22	CoCu multilayer, oscillatory coupling, 123
α -Fe D_0 vortex critical diameter, 67	CoCu(001), effect of capping layer, 13
α -Fe D_1 vortex critical diameter, 67	CoFe used in spin valves, 178
α -Fe $D_{\rm cr}$ for inhomogeneous nucleation, 92	CoIrMn nanoring circulation, 160
alumina (Al ₂ O ₃) porous matrix, 161	CoO magnetization and hysteresis, 120
alumina template, 160	$CoOFe_2O_3$ particle H_c vs. diameter, 62
	CoPt μ_{orb} and $K_{\rm eff}$, vs. dimension, 14
BaFe ₁₂ O ₁₉ μmag. parameters, 23	CoPt moment, 15
12 1) (** ********************************	CoPt multilayer, for TAMR, 147
Co D_{cr} for inhomogeneous nucleation, 92	CoTaZr soft magnetic underlayer, 175
Co $l_{\rm ex}$, 5	CoZrNb soft magnetic underlayer, 175
Co μmag. parameters, 38	CrO ₂ half-metal behavior, 145
Co critical single-domain diameter, 49	CrO ₂ , band structure, 146
Co density of states, 129	2,
Co film crossed by e-beam, 97	Fe $l_{\rm ex}$, 5
Co film magnetization reversal, 116	Fe µmag. parameters, 38
Co film, anisotropy vs. thickness, 113	Fe critical single-domain diameter, 49
Co films, surface anisotropy, 76	Fe density of states, 129
Co grains in Cu anisotropy, 78	Fe film, interlayer coupling, 124
Co grains in Cu, anisotropy, 77	Fe films, enhanced moment, 14
Co mag. parameters, 24	Fe mag. parameters, 24
Co nanodisk spin structure, 60, 61, 66	Fe nanocrystalline alloys, 55
Co nanoparticle inverting probability, 72	Fe nanodisk μ_l in vortex core, 151
Co nanoring as memory element, 181	Fe particle H_c vs. diameter, 62
Co nanoring hysteresis, 159	Fe particle maximum H_c , 62
Co nanowire, 160, 164, 167	Fe particles, core-shell structure, 78
Co nanowire, rectangular, 160	Fe single-domain critical diameter, 67
Co nanowire, wall velocity, 167	Fe SPM critical diameter, 69
Co particle H_c vs. diameter, 62	Fe whisker magnetization, 124
Co particle maximum H_c , 62	$Fe_3O_4 \tau vs. T_B, 69$
Co SPM critical diameter, 69	Fe ₃ O ₄ nanoparticle relaxation, 77
Co ₉₀ Cu ₁₀ nanoparticles, interactions, 101	Fe ₈₀ Si ₂₀ single-domain critical diameter, 67
Co, radius and crystal structure, 15	Fe, moment vs. dimensionality, 12
Co/Al ₂ O ₃ /Co TMR, 145	Fe, spin wave in, 4
Co/Au/CoO, exchange bias, 117, 118	Fe-based nanocrystalline alloys, 54
Co/CoO, exchange bias, 117	Fe ₃ O ₄ SPM critical diameter, 69
Co/Cu multilayer, resistivity, 139	FeC particles, scaling, 71
Co/Cu multilayers parameters, 139	FeCoB soft magnetic underlayer, 175
(Co10 nm)/Cu10 nm)×500 multilayer,	FeCr miscibility in films, 107
GMR, 166	FeF ₂ exchange bias, 117
CoAg multilayer, magnetoresistance, 136	FeF ₂ , hysteresis, 118

Fe/GaAs film, dynamic coercivity, 116	Ni ₂₀ Fe ₈₀ , DW velocity, 168
FePt nanoparticle viscosity, 73, 74	NiCr/Cu/Co/Cu inverse GMR, 140
FePt nanoparticles, energy barriers, 74, 75	NiCu layered nanowire, 164, 165
FeSi in nanocrystalline alloy, 54	Ni/Cu(001) perpendicular magnetization,
FeSi particles, average anisotropy, 55	113
Finemet Fe alloys, 54	NiFe used in spin valves, 178
	NiFe ₂ O ₄ particle, spin disorder, 77, 78
γ -Fe ₂ O ₃ hysteresis, 76	NiFeCo nanoring, 157
γ -Fe ₂ O ₃ particles, interacting, 101	NiMnSb half-metal behavior, 145
hexaferrite remanent magnetization, 98, 99	permalloy µmag. parameters, 38
	permalloy disk as memory element, 180
lanthanides paramagnetism, 22	permalloy disk critical diameter, 150
	permalloy disk, critical velocity, 153, 154
maghemite nanoparticle $T_{\rm C}$ simulation, 58	permalloy disk, polarity inversion, 154
maghemite nanoparticle dimensionality, 19	permalloy dot, 111
magnetite in bacteria, 2	permalloy elliptical dot, 111
magnetite in pigeon beak, 2	permalloy film, antivortex, 153
MnF_2/Fe bilayer H_c , 121	permalloy for DW memory, 183
MnF ₂ /Fe EB in bilayers, 121	permalloy islands, 95
Nd Es Burnes normators 23	permalloy nanodisk hysteresis, 155
Nd ₂ Fe ₁₄ B μmag. parameters, 23	permalloy nanoparticles, vortex structure,
Ni D_{cr} for inhomogeneous nucleation, 92	150
Ni l_{ex} , 5	
Ni μmag. parameters, 38	permalloy nanowire, domain wall velocity 53
Ni critical single-domain diameter, 49	
Ni density of states, 129	permalloy ring, depinning, 160
Ni mag. parameters, 24	permalloy single-domain critical diameter 68
Ni magnetic moment in films, 109	
Ni moment in multilayers, 109	permalloy VRAM element, 180
Ni nanowire $T_C(d)$, 161	permalloy, critical nanodisk diameter, 157
Ni nanowire coercivity, 163	permalloy, critical nanoring diameter, 157
Ni nanowire exponent shift, 162	permalloy, exchange length, 150
Ni nanowire ratio E_B/k_BT , 163	perovskite, CMR in, 128
Ni SPM critical diameter, 69	
Ni _{0.8} Fe _{0.2} μmag. parameters, 38	Sm ₂ Co ₁₇ μmag. parameters, 23
Ni, moment vs. dimensionality, 12	SmCo ₅ μmag. parameters, 23
Ni/Al ₂ O ₃ /Ni TMR, 145	SmCo ₅ SPM critical diameter, 69

Symbols

A exchange stiffness constant, 5	δ_0 domain wall width, 5
a lattice parameter, 43	$\Delta d(12)$ variation of interplanar spacing, 107
α angle of the AFM magnetization, 120	δ_s out of equilibrium spin density, 132
α aspect ratio, 32	Δt magnetization reversal time, 94
α damping constant, 40	
α two-domain $E_{\rm ms}$ reduction factor, 49	e electron charge, 96
α volume geometric factor, 82	E_0 energy of the $n = 1$ level, 8
$\alpha_{\rm d}$ co-factor of dipolar sum, 100	$E_{\rm A}$ anisotropy energy, 32
$\alpha_{\rm F}$ spin asymmetry parameter, 132	$E_{\rm B}$ energy barrier height, 59
$\alpha_{F/N}$ spin asymmetry parameter, 139	$E_{\rm B}$ average barrier energy, 73
$\alpha_{\rm G}$ Gilbert damping constant, 40	$E_{\rm ex}$ exchange energy, 29
α_i direction cosines, 34	$E_{\rm ext}$ energy in external field, 35
	$E_{\rm F}$ Fermi energy, 8
<i>B</i> distance between recorded transitions, 175	$E_{\rm me}$ magnetoelastic energy, 34
B magnetoelastic coupling constant, 34	$E_{\rm ms}$ magnetostatic energy, 30
B magnetic induction, 22	ε strain, 33
β angle between μ and H , 102	$\varepsilon_{\rm d}$ dipolar energy, 100
β angle of the FM magnetization, 120	η efficiency of write head, 176
β non-adiabaticity parameter, 168	η field sweep rate, 115
$\beta_{\rm F}$ spin asymmetry parameter, 138	•
$B_J(x)$ Brillouin function, 25	g g-factor, 25
$B_{\rm m}$ molecular field, 25	g spin transfer function, 96
$B_{\rm me}$ magnetoelastic coupling coefficient,	g write head gap width, 176
113	γ domain wall energy, 6
	γ gyromagnetic ratio (Landau), 40
C Curie constant, 25	γ spin asymmetry parameter, 138
c vortex circulation, 151	γ surface energy, 106
C^* exchange field intensity parameter, 102	γ_e electron gyromagnetic ratio, 40
χ magnetic susceptibility, 22	$\gamma_{\rm G}$ Gilbert gyromagnetic ratio, 40
χ_P Pauli susceptibility, 12	7G
	H separation between tracks, 175
D particle size, 54	H magnetic field intensity, 22
D stiffness constant, 4	h reduced magnetic field, 87
d interparticle distance, 100	$H_{\rm c}^*$ dynamic coercivity, 115
D_0 characteristic length, 58	H_0 deep gap field, 176
D_0 single-domain critical diameter, 62	H _A anisotropy field, 36
D_1 critical diameter for vortex state, 67	H_c coercive field, 27
D_2 critical single-domain diameter for hard	H_c magnetic field at the head core, 176
magnet, 67	H_c^i intrinsic coercivity, 93
$D_{\rm cr}$ critical single-domain diameter, 5	$H_{\rm cr}^{vo}$ critical vortex field, 153
$d_{\rm cr}$ critical thickness, 114	
$D_{\rm cr}^{\rm inh}$ $D_{\rm cr}$ for inhomogeneous nucleation, 91	H _d demagnetizing field, 41
Dring mine emitted diameter for yenter, 157	H _d demagnetizing field, 30
$D_{\rm cr}^{\rm ring}$ ring critical diameter for vortex, 157	H _{dp} depinning field, 115
$D_{\rm cr}^{\rm vo}$ vortex critical diameter, 150	H _{eff} effective field, 36
D(E) density of states, 6	$H_{\rm g}$ magnetic field at the gap, 176
de equilibrium interplanar spacing, 107	H_{max} maximum field, 27
Δ domain wall width parameter, 5	$H_{\rm N}$ nucleation field, 63

$H_{\rm p}$ peak field, 52	$M_{\rm d}(H)$ DC remanence, 98
$H_{\rm sat}$ saturation field, 98	MR magnetoresistance, 127
$H_{\rm sw}$ switching field, 63	$M_{\rm r}$ retentivity, remanence, 27
$H_{\rm t}$ total magnetic field, 102	$M_{\rm r}(H)$ isothermal remanence, 98
	$M_{\rm s}$ saturation magnetization, 5
i current, 96	$m_{\rm inf}$ lower branch of magnetization, 98
	m_{sup} upper branch of magnetization, 98
J total angular momentum, 23	μ chemical potential, 132
J exchange integral, 29	μ domain wall mobility, 52
J magnetic polarization, 22	μ magnetic permeability, 22
j current density, 132	μ particle magnetic moment, 100
J_1 interlayer exchange coupling constant,	μ_0 magnetic constant or vacuum permeabil-
122	ity, 5
$J_{\rm c}$ critical current density, 169	μ_0 spin averaged chemical potential, 133
j_{\downarrow} spin down current density, 132	$\mu_{\rm B}$ Bohr magneton, 25
J_{int} interface coupling constant, 120	μ_J atomic magnetic moment, 25
j_s spin current density, 132	μ_r relative permeability, 23
j_{\uparrow} spin up current density, 132	μ_s out of equilibrium chemical potential, 133
J SF SF	μ_s spin accumulation, 133
K anisotropy constant, 5, 33	$\mu_{\rm s}$ spin magnetic moment, 26
k wavevector, 4	μ^z z component of the magnetic moment, 75
K_1 first anisotropy constant, 33	$m_{\rm vir}$ virgin magnetization, 98
K_2 second anisotropy constant, 33	vii C C
$\langle K \rangle$ average anisotropy, 54	N number of electron collisions, 128
κ hardness parameter, 37	N number of occupied electron states, 8
κ imaginary wave vector, 146	n electron density, 12
$k_{\rm B}$ Boltzmann constant, 4	n number of ions per unit volume, 25
$K_{\rm d}$ shape anisotropy energy, 85	n quantum number, 8
K_{eff} effective anisotropy constant, 34	n winding number, 155
$k_{\rm F}$ Fermi wavevector, 8	N_a demagnetizing factor, a axis, 93
$K_{\rm S}$ surface anisotropy constant, 76	$N_{\rm c}$ demagnetizing factor, c axis, 93
K_{vol} macroscopic anisotropy constant, 77	$N_{\rm d}$ demagnetizing factor, 31
Tivol macroscopic amsocropy constant, 77	$N_{\rm eff}$ effective demagnetizing factor, 36
ℓ core length, 176	NN number of nearest neighbors, 108
λ magnetostriction, 34	N_{\parallel} parallel demagneting factor, 36
λ shift exponent, 19, 162	$N_{\perp}^{"}$ perpendicular demagnetizing factor, 36
λ_F Fermi wavelength, 10	v frequency of jumps, 68
λ_m molecular field constant, 25	
$\lambda_{\rm m}$ molecular field parameter, 17	p dimensionality, 9
$\lambda_{\rm mfp}$ electron mean free path, 128	p vortex polarity, 151
λ_s saturation magnetostriction, 34	P_j electron current polarization, 132
l_{ex} exchange length, 5	P(t) probability of particle not inverting
l_{sd} spin diffusion length, 128	after t , 71
L(x) Langevin function, 75	2. 1.
E(N) Langevin function, 13	Q quality parameter, 37
M magnetization, 22	q skyrmion number, 155
m electron mass, 7	R_0 resistance without applied field, 127
m reduced magnetization, 29	$R_{\rm AP}$ resistance, antiparallel, 134
M_0 magnetization at $T = 0$ K, 25	$R_{\rm AP}$ resistance, antiparanet, 134 $R_{\rm c}$ vortex core radius, 151
m_0 magnetization at $r = 0$ K, 23	No voltex core faulus, 131

194 B Physical Constants

R_H resistance with applied field, 127 ρ density of reversed domains, 116 ρ reduced radius, 93 ρ_F bulk resistivity, 138 ρ_F^{\downarrow} resistivity, antiparallel, 138 ρ_F^{\uparrow} resistivity, parallel, 139 ρ_F^{\uparrow} resistivity, parallel, 138 R_P resistance, parallel, 134	$T_{\rm B}$ blocking temperature, 16 $T_{\rm C}$ Curie temperature, 17 $T_{\rm esc}$ escape temperature, 70 θ angle between H and FM anisotropy axis, 120 θ angle between particle anisotropy axis and H , 59 $\theta_{\rm P}$ paramagnetic Curie temperature, 25 $T_{\rm N}$ Néel temperature, 22
S entropy, 28 S magnetic viscosity, 73 S squareness ratio, or remanence squareness, 28 S total spin angular momentum, 29 \hat{s} current polarization unit vector, 96 S^* coercive squareness, 28 σ standard deviation of size distribution, 71 σ stress, 34 S_{\perp} spin perpendicular component, 76	U internal energy, 28 v volume in k -space of a triplet (k_x, k_y, k_z) , 8 V^* activation volume, 73 V_0 average particle volume, 71 v_c vortex core critical velocity, 154 $V_{\rm cr}^{\rm spm}$ superparamagnetic critical volume, 60 $v_{\rm F}$ Fermi velocity, 128 V_k volume of electrons in k -space, 9 v_p DW peak velocity, 52 V(r) potential, 6
T absolute temperature, 16 T^* dipolar energy/ k , 100 T_0 interaction temperature, 100 T_a apparent temperature, 100 τ relaxation time, 68 τ spin relaxation time, 128 τ_0 attempt period, 68	W width of recorded track, 175 w nanowire width, 167 x crystalline volume fraction, 54 x ratio of magnetic to thermal energy, 25 ξ correlation length, 18, 162

References

Preface

- 1. A.P. Guimarães, From Lodestone to Supermagnets: Understanding Magnetic Phenomena (Wiley, Berlin, 2005)
- J.A.C. Bland, B. Heinrich (eds.), Ultrathin Magnetic Structures, vols I–IV (Springer, Berlin, 2005)

- S. Odenbach, in *Ferrofluids*, ed. by K.H.J. Buschow. Handbook of Magnetic Materials, vol 16 (Elsevier, Amsterdam, 2006), pp. 127–208
- C. Alexiou, R. Jurgons, in *Magnetic Drug Targeting*, ed. by W. Andrä, H. Nowak. Magnetism in Medicine: A Handbook, 2nd edn. (Wiley, Weinheim, 2007), pp. 596–605
- R. Hergt, W. Andrä, in *Magnetic Hyperthermia and Thermoablation*, ed. by W. Andrä, H. Nowak. Magnetism in Medicine: A Handbook, 2nd edn. (Wiley, Weinheim, 2007), pp. 550–570
- 4. M.E. Evans, F. Heller, *Environmental Magnetism* (Academic Press, San Diego, 2003)
- 5. R. Wiltschko, W. Wiltschko, Magnetic Orientation in Animals (Springer, Berlin, 1995)
- G. Fleissner, B. Stahl, P. Thalau, G. Falkenberg, G. Fleissner, Naturwissenschaften 94, 631–642 (2007)
- D. Weller, T. McDaniel, in *Media for Extremely High Density Recording*, ed. by D. Sellmyer, R. Skomski. Advanced Magnetic Nanostructures (Springer, New York, 2006), pp. 295–324
- 8. R.F. Freitas, W.W. Wilcke, IBM J. Res. Dev. **52**, 439–447 (2008)
- P.P. Freitas, H. Ferreira, S. Cardoso, S. van Dijken, J. Gregg, in *Nanostructures for Spin Electronics*, ed. by D. Sellmyer, R. Skomski. Advanced Magnetic Nanostructures (Springer, New York, 2006), pp. 403–460
- J. Jorzick, C. Kramer, S.O. Demokritov, B. Hillebrands, B. Bartenlian, C. Chappert,
 D. Decanini, F. Rousseaux, E. Cambril, E. Sondergard, M. Bailleul, C. Fermon,
 A.N. Slavin, J. Appl. Phys. 89, 7091–7095 (2001)
- 11. V.E. Borisenko, S. Ossicini, What is What in the Nanoworld (Wiley, Weinheim, 2004)
- 12. S. Ohnishi, A.J. Freeman, M. Weinert, Phys. Rev. B 28, 6741–6748 (1983)

- 13. R. Wu, A.J. Freeman, Phys. Rev. Lett. **69**, 2867–2870 (1992)
- 14. C.A.F. Vaz, J.A.C. Bland, G. Lauhoff, Rep. Prog. Phys. 71, 056501–056578 (2008)
- S.N. Song, J. Ketterson, in *Ultrathin Films and Superlattices*, ed. by R.W. Cahn, P. Haasen, E.J. Kramer. Electronic and Magnetic Properties of Metals and Ceramics, vol 3A (Wiley, New York, 1991)
- 16. O. Fruchart, A. Thiaville, Compt. Rend. Phys. 6, 921–933 (2005)
- 17. M.J. Prandolini, Rep. Prog. Phys. **69**, 1235–1324 (2006)
- 18. K.H.J. Buschow (ed.), Concise Encyclopedia of Magnetic and Superconducting Materials, 2nd edn. (Elsevier, Amsterdam, 2005)
- I. Mertig, in *Thin Film Magnetism: Band Calculations*, ed. by K.H.J. Buschow. Concise Encyclopedia of Magnetic and Superconducting Materials, 2nd edn. (Elsevier, Amsterdam, 2005)
- M. Hosokawa, K. Nogi, M. Naito, T. Yokoyama, Nanoparticle Technology Handbook (Elsevier, Amsterdam, 2007)
- M. Le Bellac, Quantum and Statistical Field Theory (Oxford University Press, Oxford, 1991)
- 22. Y. Li, K. Baberschke, Phys. Rev. Lett. 68, 1208–1211 (1992)
- 23. F. Huang, M.T. Kief, G.J. Mankey, R.F. Willis, Phys. Rev. B 49, 3962–3971 (1994)
- 24. K. Chen, A.M. Ferrenberg, D.P. Landau, Phys. Rev. B 48, 3249–3256 (1993)
- 25. L. He, C. Chen, N. Wang, W. Zhou, L. Guo, J. Appl. Phys. **102**, 103911–103914 (2007)
- 26. S.D. Bader, Rev. Mod. Phys. 78, 1–15 (2006)
- 27. X. Batlle, A. Labarta, J. Phys. D: Appl. Phys. 35, R15–R42 (2002)
- 28. J.A.C. Bland, B. Heinrich, *Ultrathin Magnetic Structures* (Springer, Berlin, 2005)
- 29. J.F. Bobo, L. Gabillet, M. Bibes, J. Phys. Condens. Matter. 16, S471–S496 (2004)
- C. Chappert, A. Barthelémy, in *Nanomagnetism and Spin Electronics*, ed. by C. Dupas,
 P. Houdy, M. Lahmany. Nanoscience (Springer, Berlin, 2007), pp. 503–582
- C.L. Dennis, R.P. Borges, L.D. Buda, U. Ebels, J.F. Gregg, M. Hehn, E. Jouguelet, K. Ounadjela, I. Petej, I.L. Prejbeanu, M.J. Thornton, J. Phys. Condens. Matter. 14, R1175–R1262 (2002)
- 32. A. Enders, P. Gambardella, K. Kern, in *Magnetism of Low-Dimensional Metallic Structures*, ed. by H. Kronmüller, S. Parkin. Handbook of Magnetism and Advanced Magnetic Materials, vol 1 (Wiley, Chichester, 2007), pp. 577–639
- M.R. Fitzsimmons, S.D. Bader, J.A. Borchers, G.P. Felcher, J.K. Furdyna, A. Hoffmann, J.B. Kortright, I.K. Schuller, T.C. Schulthess, S.K. Sinha, M.F. Toney, D. Weller, S. Wolf, J. Magn. Magn. Mat. 271, 103–146 (2004)
- 34. C.P. Poole Jr., F.J. Owens, Introduction to Nanotechnology (Wiley, Hoboken, 2003)
- 35. R. Skomski, J. Phys. Condens. Matter. 15, R841–R896 (2003)

- 1. H. Kronmüller, in *General Micromagnetic Theory*, ed. by H. Kronmüller, S. Parkin. Handbook of Magnetism and Advanced Magnetic Materials, vol 2 (Wiley, Chichester, 2007), pp. 703–741
- 2. Landolt-Börnstein, *Tables of Magnetic Properties of 3d Elements*, New Series, vol 3 (Springer, Berlin, 1986)
- K.H.J. Buschow, F.R. de Boer, Physics of Magnetism and Magnetic Materials (Kluwer, New York, 2003)
- 4. C. Kittel, Rev. Mod. Phys. 21, 541–583 (1949)

- 5. J.A. Osborn, Phys. Rev. 67, 351–357 (1945)
- 6. A. Hubert, R. Schäfer, *Magnetic Domains. The Analysis of Magnetic Microstructures* (Springer, Berlin, 1999)
- 7. L. Néel, J. Phys. Rad. 15, 225–239 (1954)
- 8. A.P. Guimarães, Magnetism and Magnetic Resonance in Solids (Wiley, New York, 1998)
- 9. L.D. Landau, E. Lifshitz, Phys. Z. Sowjetunion 8, 153–169 (1935)
- 10. W.F. Brown, Phys. Rev. **58**, 736–743 (1940)
- 11. W.F. Brown, Phys. Rev. 60, 139–147 (1941)
- 12. W.F. Brown Jr., Magnetostatic Principles in Ferromagnetism (North-Holland, Amsterdam, 1962)
- 13. A. Aharoni, *Introduction to the Theory of Ferromagnetism*, 2 edn. (Oxford University Press, Oxford, 2000)
- 14. C.A.F. Vaz, J.A.C. Bland, G. Lauhoff, Rep. Prog. Phys. 71, 056501–056578 (2008)
- 15. P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 80, 633–730 (2008)
- 16. O. Fruchart, A. Thiaville, Compt. Rend. Phys. **6**, 921–933 (2005)
- 17. A.P. Malozemoff, J.C. Slonczewski, *Magnetic Domain Walls in Bubble Materials* (Academic Press, New York, 1979)
- 18. H. Kronmüller, M. Fähnle, *Micromagnetism and the Microstructure of Ferromagnetic Solids* (Cambridge University Press, Cambridge, 2003)
- 19. D. Goll, A.E. Berkowitz, H.N. Bertram, Phys. Rev. B 70, 184432 (2004)
- G.S.D. Beach, C. Nistor, C. Knutson, M. Tsoi, J.L. Erskine, Nat. Mater. 4, 741–744 (2005)
- 21. Y. Nakatani, A. Thiaville, J. Miltat, Nat. Mater. 2, 521–523 (2003)
- 22. E. Lewis, D. Petit, A.V. Jausovec, H.T. Zeng, D.E. Read, L.A. O'Brien, J. Sampaio, R.P. Cowburn (2009 to be published)
- 23. G. Herzer, J. Magn. Magn. Mater. **294**, 99–106 (2005)
- 24. Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. **64**, 6044–6046 (1988)
- 25. G. Bertotti, *Hysteresis in Magnetism* (Academic Press, San Diego, 1998)
- 26. R.C. O'Handley, *Modern Magnetic Materials* (Wiley, New York, 2000)
- R. Skomski, J.M.D. Coey, *Permanent Magnetism* (Institute of Physics Publishing, Bristol, 1999)
- 28. R. Skomski, J. Zhou, in *Nanomagnetic Models*, ed. by D. Sellmyer, R. Skomski. Advanced Magnetic Nanostructures (Springer, New York, 2006), pp. 41–90

- N. Pinna, S. Grancharov, P. Beato, P. Bonville, M. Antonietti, M. Niederberger, Chem. Mater. 17, 3044–3049 (2005)
- 2. O. Iglesias, A. Labarta, Phys. Rev. B 63, 184416 (2001)
- C.L. Dennis, R.P. Borges, L.D. Buda, U. Ebels, J.F. Gregg, M. Hehn, E. Jouguelet, K. Ounadjela, I. Petej, I.L. Prejbeanu, M.J. Thornton, J. Phys. Condens. Matter 14, R1175–R1262 (2002)
- 4. F.E. Luborsky, J. Appl. Phys. **32**, 171S–183S (1961)
- A. Aharoni, Introduction to the Theory of Ferromagnetism, 2nd edn. (Oxford University Press, Oxford, 2000)
- 6. G. Bertotti, Hysteresis in Magnetism (Academic Press, San Diego, 1998)
- 7. W.F. Brown Jr., J. Appl. Phys. 39, 993-994 (1968)
- 8. W.F. Brown Jr., Ann. N.Y. Acad. Sci. 147, 463–488 (1969)

- 9. A. Kákay, L.K. Varga, J. Appl. Phys. 97, 083901–083904 (2005)
- 10. J.L. Dormann, D. Fiorani, E. Tronc, Adv. Chem. Phys. 98, 283–494 (1997)
- G.F. Goya, T.S. Berquó, F.C. Fonseca, M.P. Moralesm, J. Appl. Phys. 94, 3520–3528 (2003)
- 12. A. Labarta, O. Iglesias, L. Balcells, F. Badia, Phys. Rev. B 48, 10240-10246 (1993)
- 13. W. Wernsdorfer, E.B. Orozco, B. Barbara, K. Hasselbach, A. Benoit, D. Mailly, B. Doudin, J. Meier, J.E. Wegrowe, J.P. Ansermet, N. Demoncy, H. Pascard, N. Demoncy, A. Loiseau, L. François, N. Duxin, M.P. Pileni, J. Appl. Phys. **81**, 5543–5545 (1997)
- 14. D. Givord, M.F. Rossignol, in *Coercivity*, ed. by J.M.D. Coey. Rare-Earth Iron Permanent Magnets (Clarendon Press, Oxford, 1996)
- N.T. Gorham, R.C. Woodward, T.G.St. Pierre, B.D. Terris, S. Sun, J. Magn. Magn. Mater. 295, 174–176 (2005)
- 16. A.P. Guimarães, Magnetism and Magnetic Resonance in Solids (Wiley, New York, 1998)
- 17. J.K. Vassiliou, V. Mehrotra, M.W. Russell, E.P. Giannelis, R.D. McMichael, R.D. Shull, R.F. Ziolo, J. Appl. Phys. **73**, 5109–5116 (1993)
- 18. X. Batlle, A. Labarta, J. Phys. D: Appl. Phys. 35, R15–R42 (2002)
- 19. F. Bødker, S. Mørup, S. Linderoth, Phys. Rev. Lett. **72**, 282–285 (1994)
- B.R. Pujada, E.H.C.P. Sinnecker, A.M. Rossi, C.A. Ramos, A.P. Guimarães, Phys. Rev. B 67, 024402–024406 (2003)
- 21. S.A. Majetich, Y. Jin, Science **284**, 470–473 (1999)
- 22. R.H. Kodama, A.E. Berkowitz, Phys. Rev. B **59**, 6321–6336 (1999)
- J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, M.D. Baró, Phys. Repts. 422, 65–117 (2005)
- S. Gangopadhyay, G.C. Hadjipanayis, B. Dale, C.M. Sorensen, K.J. Klabunde, V. Papaefthymiou, A. Kostikas, Phys. Rev. B 45, 9778–9787 (1992)
- 25. O. Iglesias, A. Labarta, X. Batlle, J. Phys.: Condens. Matter 19, 406232–406237 (2007)
- E.C. Stoner, E.P. Wohlfarth, Phil. Trans. Roy. Soc. A 240, 599–642 (1948). Reprinted in IEEE Trans. Magn. 27, 3475–3518 (1991)
- I.S. Jacobs, C.P. Bean, in *Fine Particles, Thin Films and Exchange Anisotropy (Effects of Finite Dimensions and Interfaces on the Basic Properties of Ferromagnets)*, ed. by G.T. Rado, H. Suhl. Magnetism, vol III (Academic Press, New York, 1963), p. 271–350
- 28. E. Kondorsky, J. Phys. Moscow 2, 161 (1940)
- 29. H. Kronmüller, K.-D. Durst, G. Martinek, J. Magn. Magn. Mater. 69, 149–157 (1987)
- C. Thirion, W. Wernsdorfer, M. Jamet, V. Dupuis, P. Mélinon, A. Pérez, D. Mailly, J. Magn. Magn. Mater. 242–245, 993–995 (2002)
- 31. Z.Z. Sun, X.R. Wang, Phys. Rev. Lett. 97, 077205-1–077205-4 (2006)
- 32. C. Tannous, J. Gieraltowski, Eur. J. Phys. 29, 475–487 (2008)
- 33. R. Skomski, J. Zhou, in *Nanomagnetic Models*, ed. by D. Sellmyer, R. Skomski. Advanced Magnetic Nanostructures (Springer, New York, 2006), pp. 41–90
- R.W. Chantrell, K. O'Grady, in *The Magnetic Properties of Fine Particles*, ed. by R. Gerber, C.C. Wright, G. Asti. Applied Magnetism (Kluwer, Dordrecht, 1994), pp. 113–164
- 35. A. Thiaville, Phys. Rev. B 61, 12221–12232 (2000)
- R. Skomski, J.M.D. Coey, *Permanent Magnetism* (Institute of Physics Publishing, Bristol, 1999)
- 37. E.H. Frei, S. Shtrikman, D. Treves, Phys. Rev. 106, 446–455 (1957)
- 38. A. Aharoni, J. Appl. Phys. **82**, 1281–1287 (1997)
- 39. R. Kikuchi, J. Appl. Phys. 27, 1352–1357 (1956)

- J.G. Zhu, in *Magnetization Reversal Dynamics*, ed. by K.H.J. Buschow. Concise Encyclopedia of Magnetic and Superconducting Materials, 2nd edn. (Elsevier, Amsterdam, 2005), pp. 754–760
- 41. M. Bauer, J. Fassbender, B. Hillebrands, R.L. Stamps, Phys. Rev. B 61, 3410–3416 (2000)
- 42. Q.F. Xiao, B.C. Choi, J. Rudge, Y.K. Hong, G. Donohoe, J. Appl. Phys. **101**, 24306 (2007)
- 43. J.-G. Zhu, X. Zhu, Y. Tang, IEEE Trans. Magn. 44, 125–131 (2008)
- 44. J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1-L7 (1996)
- 45. L. Berger, Phys. Rev. B **54**, 9353–9358 (1996)
- 46. X.R. Wang, Z.Z. Sun, Phys. Rev. Lett. 98, 077201–077204 (2007)
- 47. Z. Li, S. Zhang, Phys. Rev. B 68, 024404–024410 (2003)
- 48. W. Weber, S. Riesen, H.C. Siegmann, Science **291**, 1015–1018 (2001)
- 49. S. Thamm, J. Hesse, J. Magn. Magn. Mater. **154**, 254–262 (1996)
- 50. S. Thamm, J. Hesse, J. Magn. Magn. Mater. 184, 245–255 (1998)
- Z.V. Golubenko, A.Z. Kamzin, L.P. Ol'khovik, M.M. Khvorov, Z.I. Sizova, V.P. Shabatin, Phys. Solid. State 44, 1698–1702 (2002)
- 52. E.P. Wohlfarth, J. Appl. Phys. **29**, 595–596 (1958)
- 53. O. Henkel, Phys. Stat. Solidi. 7, 919–929 (1964)
- P.E. Kelly, K. O'Grady, P.I. Mayo, R.W. Chantrell, IEEE Trans. Magn. 25, 3881–3883 (1989)
- 55. J. García-Otero, M. Porto, J. Rivas, J. Appl. Phys. 87, 7376–7381 (2000)
- P. Allia, M. Coisson, P. Tiberto, F. Vinai, M. Knobel, M.A. Novak, W.C. Nunes, Phys. Rev. B 64, 14420 (2001)
- 57. S. Shtrikman, E.P. Wohlfarth, Phys. Lett. A 85, 467 (1981)
- J.L. Dormann, R. Cherkaoui, L. Spinu, M. Nogués, L. Lucari, F. D'Orazio, D. Fiorani,
 A. Garcia, E. Tronc, J.P. Olivet, J. Magn. Magn. Mater. 187, L139–L144 (1998)
- 59. M. El-Hilo, R.W. Chantrell, K. O'Grady, J. Appl. Phys. **84**, 5114–5122 (1998)
- 60. D. Kechrakos, K.N. Trohidou, J. Magn. Magn. Mater. 177, 943–944 (1998)
- 61. B.D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, Reading, 1972)
- A.B. Denison, L.J. Hope-Weeks, R.W. Meulenberg, in *Quantum Dots*, ed. by M. di Ventra, S. Evoy, J.R. Heflein. Introduction to Nanoscale Science and Technology (Springer, New York, 2004), p. 183
- 63. D. Fiorani (ed.), Surface Effects in Magnetic Nanoparticles (Springer, New York, 2005)
- S. Mørup, M.F. Hansen, in *Superparamagnetic Particles*, ed. by H. Kronmüller, S. Parkin. Handbook of Magnetism and Advanced Magnetic Materials, vol 4 (Wiley, Chichester, 2007), pp. 2159–2176
- 65. J. Stöhr, H.C. Siegmann, Magnetism From Fundamentals to Nanoscale Dynamics (Springer, Berlin, 2006)
- 66. W. Wernsdorfer, in *Molecular Nanomagnets*, ed. by D. Sellmyer, R. Skomski. Advanced Magnetic Nanostructures (Springer, New York, 2005), pp. 147–181
- 67. E.P. Wohlfarth, in *Fine Particle Magnetism*, ed. by L. Falicov, J. Moran-Lopez. Magnetic Properties of Low-Dimensional Systems (Springer, Berlin, 1986)

- 1. S.N. Piramanayagam, J. Appl. Phys. **102**, 011301 (2007)
- 2. G. Cao, Nanostructures and Nanomaterials (Imperial College Press, London, 2004)

- 3. H. Kronmüller, S. Parkin (eds.), Handbook of Magnetism and Advanced Magnetic Materials (Wiley, Chichester, 2007)
- 4. F.J. Himpsel, J.E. Ortega, G.J. Mankey, R.F. Willis, Adv. Phys. 47, 511–597 (1998)
- H.L. Davis, J.B. Hannon, K.B. Ray, E.W. Plummer, Phys. Rev. Lett. 68, 2632–2635 (1992)
- 6. R.C. O'Handley, *Modern Magnetic Materials* (Wiley, New York, 2000)
- 7. J. Tersoff, L. Falikov, Phys. Rev. B 26, 6186–6200 (1982)
- 8. U. Gradmann, in *Magnetism in Ultrathin Transition Metal Films*, ed. by K.H.J. Buschow. Handbook of Magnetic Materials, vol 7 (North Holland, Amsterdam, 1993), pp. 1–96
- 9. J. Fassbender, D. Ravelosona, Y. Samson, J. Phys. D: Appl. Phys. 37, R179–R196 (2004)
- 10. R.P. Cowburn, M.E. Welland, Science **287**, 1466–1468 (2000)
- D. Hrabovsky, D. Ciprian, J. Jaworowicz, M. Gmitra, D. Horvarth, I. Vavra, A.R. Fert, J. Pistora, Trans. Magn. Soc. Jpn. 2, 240–243 (2002)
- 12. D.A. Allwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, R.P. Cowburn, Science **309**, 1688–1692 (2005)
- A. Imre, G. Csaba, L. Ji, A. Orlov, G.H. Bernstein, W. Porod, Science 311, 205–208 (2006)
- 14. R.P. Cowburn, Science **311**, 183–184 (2006)
- 15. L. Néel, J. Phys. Rad. 15, 225–239 (1954)
- B.N. Engel, C.D. England, R.A. Van Leeuwen, M.H. Wiedmann, C.M. Falco, Phys. Rev. Lett. 67, 1910–1913 (1991)
- 17. P. Grünberg, J. Magn. Magn. Mater. 226, 1688–1693 (2001)
- 18. S. Middelhoek, J. Appl. Phys. **34**, 1054–1059 (1963)
- 19. I. Ruiz-Feal, T.A. Moore, L. Lopez-Diaz, J.A.C. Bland, Phys. Rev. B 65, 054409 (2002)
- 20. R.P. Cowburn, J. Ferré, S.J. Gray, J.A.C. Bland, Phys. Rev. B 58, 507 (1998)
- 21. R. Kikuchi, J. Appl. Phys. **27**, 1352–1357 (1956)
- 22. C.H. Back, R. Allenspach, W. Weber, S.S.P. Parkin, D. Weller, E.L. Garwin, H.C. Siegmann, Science 285, 864–867 (1999)
- 23. J. Nogués, I.K. Schuller, J. Magn. Magn. Mater. **192**, 203–232 (1999)
- 24. W.H. Meiklejohn, C.P. Bean, Phys. Rev. **102**, 1413–1414 (1956)
- 25. M.J. Prandolini, Rep. Prog. Phys. **69**, 1235–1324 (2006)
- 26. W.H. Meiklejohn, J. Appl. Phys. **33**, 1328–1335 (1962)
- 27. M. Takahashi, A. Yanai, S. Taguchi, T. Suzuki, Jpn. J. Appl. Phys. 19, 1093–1106 (1980)
- 28. C. Binek, A. Hochstrat, W. Kleemann, J. Magn. Magn. Mater. 234, 353–358 (2001)
- 29. M. Kiwi, J. Magn. Magn. Mater. 234, 584–595 (2001)
- 30. R.L. Stamps, J. Phys. D: Appl. Phys. 33(23), R247–R268 (2000)
- 31. R.L. Stamps, J. Phys. D: Appl. Phys. **34**(3), 444 (2001)
- 32. N.C. Koon, Phys. Rev. Lett. 78, 4865-4868 (1997)
- 33. A.P. Malozemoff, Phys. Rev. B 35, 3679–3682 (1987)
- 34. D. Mauri, H.C. Siegmann, P.S. Bagus, E. Kay, J. Appl. Phys. 62, 3047-3049 (1987)
- 35. C. Leighton, J. Nogués, B.J. Jönsson-Åkerman, I.K. Schuller, Phys. Rev. Lett. **84**, 3466–3469 (2000)
- 36. M.D. Stiles, J. Magn. Magn. Mater. **200**, 322–337 (1999)
- D.H. Mosca, F. Petroff, A. Fert, P.A. Schroeder Jr., W.P. Pratt, R. Laloee, J. Magn. Magn. Mater. 94, L1–L5 (1991)
- 38. J. Unguris, R.J. Celotta, D.T. Pierce, Phys. Rev. Lett. **67**, 140–143 (1991)
- 39. D.E. Burgler, S.O. Demokritov, P. Grünberg, M.T. Johnson, in *Interlayer Exchange Coupling in Layered Magnetic Structures*, ed. by K.J.H. Buschow. Handbook of Magnetic Materials, vol 13 (Elsevier, Amsterdam, 2001), p. 1

- 40. B. Heinrich, J.F. Cochran, in *Magnetic Ultrathin Films*, ed. by H. Kronmüller, S. Parkin. Handbook of Magnetism and Advanced Magnetic Materials, vol 4 (Wiley, Chichester, 2007), pp. 2285–2305
- 41. A. Imre, G. Csaba, L. Ji, A. Orlov, G.H. Bernstein, W. Porod, Science **311**, 205–208 (2006)
- 42. J.C. Lodder, in *Patterned Nanomagnetic Films*, ed. by D. Sellmyer, R. Skomski. Advanced Magnetic Nanostructures (Springer, New York, 2005), pp. 295–324
- J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, M.D. Baró, Phys. Repts. 422, 65–117 (2005)
- 44. J. Slonczewski, in *Theory of Spin-Polarized Current and Spin-Transfer Torque in Magnetic Multilayers*, ed. by H. Kronmüller, S. Parkin. Handbook of Magnetism and Advanced Magnetic Materials, vol 5 (Wiley, Chichester, 2007), pp. 2648–2667
- 45. M.D. Stiles, in *Interlayer Exchange Coupling*, ed. by B. Heinrich, J.A.C. Bland. Ultrathin Magnetic Structures III (Springer, Berlin, 2004), pp. 99–137
- 46. C.A.F. Vaz, J.A.C. Bland, G. Lauhoff, Rep. Prog. Phys. 71, 056501–056578 (2008)
- 47. M. Wuttig, X. Liu, *Ultrathin Metal Films* (Springer, Berlin, 2004)

- C.L. Dennis, R.P. Borges, L.D. Buda, U. Ebels, J.F. Gregg, M. Hehn, E. Jouguelet, K. Ounadjela, I. Petej, I.L. Prejbeanu, M.J. Thornton, J. Phys. Condens. Matter 14, R1175–R1262 (2002)
- 2. J. Bass, W.P. Pratt Jr., J. Phys.: Condens. Matter 19, 183201–183241 (2007)
- 3. E.L. Wolf, Nanophysics and Nanotechnology (Wiley, Weinheim, 2006)
- J.S. Moodera, T.S. Santos, T. Nagahama, J. Phys.: Condens. Matter 19(16), 165202 (2007)
- 5. M. Johnson, R.H. Silsbee, Phys. Rev. B 37, 5312–5325 (1988)
- 6. N.F. Mott, Proc. Roy. Soc. Lond. Ser. A 153, 699–717 (1936)
- 7. N.F. Mott, Proc. Roy. Soc. Lond. Ser. A **156**, 368–382 (1936)
- 8. N.F. Mott, Adv. Phys. 13, 325–422 (1964)
- I.A. Campbell, A. Fert, in *Transport Properties of Ferromagnets*, ed. by E.P. Wohlfarth. Handbook of Magnetic Materials, vol 3 (North-Holland, Amsterdam, 1982), pp. 747–804
- M. Baibich, J.M. Broto, A. Fert, V.D. Nguyen, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472–2475 (1988)
- 11. J. Bass, W.P. Pratt Jr., J. Magn. Magn. Mater. **200**, 274–289 (1999)
- 12. M.R.J. Gibbs, E.W. Hill, P. Wright, in *Magnetic Microelectromechanical Systems:MagMEMS*, ed. by K.H.J. Buschow. Handbook of Magnetic Materials (Elsevier, Amsterdam, 2008), pp. 457–526
- H. Yanagihara, K. Pettit, M.B. Salamon, S.S.P. Parkin, E. Kita, J. Appl. Phys. 81, 5197–5199 (1997)
- M.E. Brubaker, J.E. Mattson, C.H. Sowers, S.D. Bader, Appl. Phys. Lett. 58, 2306–2308 (1991)
- 15. K. Shintaku, Y. Daitoh, T. Shinjo, Phys. Rev. B 47, 14584–14587 (1993)
- 16. S.S.P. Parkin, N. More, K.P. Roche, Phys. Rev. Lett. **64**, 2304–2307 (1990)
- Q.Y. Jin, M. Lu, Q.S. Bie, Y.B. Xu, H.R. Zhai, Y.H. Shen, J. Magn. Magn. Mater. 140– 144, 565–566 (1995)
- 18. T. Matsudai, H. Sato, W. Abdul-Razzaq, C. Fierz, P.A. Schroeder, J. Phys. Condens. Matter 6, 6151–6162 (1994)

- S.S.P. Parkin, R.F.C. Farrow, R.F. Marks, A. Cebollada, G.R. Harp, R.J. Savoy, Phys. Rev. Lett. 72, 3718–3721 (1994)
- 20. B. Rodmacq, G. Palumbo, P. Gerard, J. Magn. Magn. Mater. 118, L11–L16 (1993)
- 21. R. Nakatani, T. Dei, Y. Sugita, J. Appl. Phys. **73**, 6375–6377 (1993)
- 22. S. Araki, J. Appl. Phys. **73**, 3910–3916 (1993)
- 23. S.S.P. Parkin, R. Bhadra, K.P. Roche, Phys. Rev. Lett. **66**, 2152–2155 (1991)
- R. Schad, C.D. Potter, P. Belien, G. Verbanck, J. Dekoster, G. Langouche, V.V. Moshchalkov, Y. Bruynseraede, J. Magn. Magn. Mater. 148, 331–332 (1995)
- M.A.M. Gijs, in Experiments on the Perpendicular Giant Magnetoresistance in Magnetic Multilayers, ed. by U. Hartmann. Magnetic Multilayers and Giant Magnetoresistance (Springer, Berlin, 2000), pp. 129–177
- 26. T. Valet, A. Fert, Phys. Rev. B 48, 7099–7113 (1993)
- J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey, Phys. Rev. Lett. 74, 3273–3276 (1995)
- 28. I. Zutic, J. Fabian, S.D. Sarma, Rev. Mod. Phys. 76, 323-410 (2004)
- 29. M. Jullière, Phys. Lett. A **54**, 225–226 (1975)
- P. Grünberg, D.E. Burgler, H. Dassow, A.D. Rata, C.M. Schneider, Acta Mater. 55, 1171– 1182 (2007)
- 31. M.B. Stearns, J. Magn. Magn. Mater. 5, 167–171 (1977)
- 32. E.Y. Tsymbal, N. Mryasov, P.R. LeClair, J. Phys. Condens. Matter 15, R109-R142 (2003)
- S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488–1495 (2001)
- 34. J.C. Slonczewski, Phys. Rev. B 39, 6995–7002 (1989)
- B.G. Park, J. Wunderlich, D.A. Williams, S.J. Joo, K.Y. Jung, K.H. Shin, K. Olejnik, A.B. Shick, T. Jungwirth, Phys. Rev. Lett. 100, 087204–087207 (2008)
- 36. K. Hathaway, E. Dan Dahlberg, Am. J. Phys. **75**, 871–880 (2007)
- 37. J. Slonczewski, in *Theory of Spin-Polarized Current and Spin-Transfer Torque in Magnetic Multilayers*, ed. by H. Kronmüller, S. Parkin. Handbook of Magnetism and Advanced Magnetic Materials, vol 5 (Wiley, Chichester, 2007), pp. 2648–2667
- 38. S.A. Wolf, A.Y. Chtchekalnova, D.M. Treger, IBM J. Res. Dev. 50, 101–110 (2006)

- 1. C.L. Chien, F.Q. Zhu, J.-G. Zhu, Phys. Today 60, 40–45 (2007)
- 2. W. Scholz, K.Y. Guslienko, V. Novosad, D. Suess, T. Schrefl, R.W. Chantrell, J. Fidler. J. Magn. Magn. Mater. 155–163 (2003)
- 3. V.P. Kravchuk, D.D. Sheka, Y.B. Gaididei, J. Magn. Magn. Mater. 310, 116-125 (2007)
- 4. K. Nakamura, T. Ito, A.J. Freeman, Phys. Rev. B 68, 180404–180408 (2003)
- 5. A. Hubert, R. Schäfer, Magnetic Domains. The Analysis of Magnetic Microstructures (Springer, Berlin, 1999)
- 6. N.A. Usov, S.E. Peschany, Phys. Met. Metall. 12, 13–24 (1994)
- 7. R. Höllinger, A. Killinger, U. Krey, J. Magn. Magn. Mater. **261**, 178–189 (2003)
- 8. A.S. Arrott, in *Introduction to Micromagnetics*, ed. by B. Heinrich, J.A.C. Bland. Ultrathin Magnetic Structures IV (Springer, Berlin, 2005), pp. 101–148
- L.D. Barron, in *Chirality at the Sub-Molecular Level: True and False Chirality*, ed. by W.J. Lough, I.W. Wainer. Chirality in Natural and Applied Science (Blackwell, Victoria, 2002), pp. 53–86

- K. Shigeto, T. Okuno, K. Mibu, T. Shinjo, T. Ono, Appl. Phys. Lett. 80, 4190–4192 (2002)
- 11. N.D. Mermin, Rev. Mod. Phys. **51**, 591–648 (1979)
- S.-B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stohr, H.A. Padmore, Science 304, 420–422 (2004)
- 13. H. Wang, C.E. Campbell, Phys. Rev. B **76**, 220407 (2007)
- B. Van Waeyenberge, A. Puzic I, H. Stoll, K.W. Chou, T. Tyliszczak, R. Hertel, M. Fähnle, H. Brückl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C.H. Back, G. Schütz I, Nature 444, 461–464 (2006)
- K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Ono, A. Thiaville, T. Ono, Nat. Mater. 6, 269–273 (2007)
- 16. L. Berger, Phys. Rev. B **54**, 9353–9358 (1996)
- 17. J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1-L7 (1996)
- 18. N.L. Schryer, L.R. Walker, J. Appl. Phys. **45**, 5406–5420 (1974)
- 19. K.Y. Guslienko, K.-S. Lee, S.-K. Kim, Phys. Rev. Lett. 100, 027203-027204 (2008)
- 20. O.A. Tretiakov, O. Tchernyshyov, Phys. Rev. B **75**, 012408–012409 (2007)
- K.S. Buchanan, P.E. Roy, M. Grimsditch, F.Y. Fradin, K.Y. Guslienko, S.D. Bader, V. Novosad, Nat. Phys. 1, 172–176 (2005)
- C.A.F. Vaz, T.J. Hayward, J. Llandro, F. Schackert, D. Morecroft, J.A.C. Bland, M. Kläui, M. Laufenberg, D. Backes, U. Rüdiger, F.J. Castaño, C.A. Ross, L.J. Heyderman, F. Nolting, A. Locatelli, G. Faini, S. Cherifi, W. Wernsdorfer, J. Phys. Condens. Matter 19, 255207–255214 (2007)
- 23. J.-G. Zhu, Y. Zheng, G.A. Prinz, J. Appl. Phys. 87, 6668–6673 (2000)
- 24. M.M. Miller, G.A. Prinz, S.-F. Cheng, S. Bounnak, Appl. Phys. Lett. **81**, 2211–2213 (2002)
- 25. F.J. Castaño, C.A. Ross, A. Eilez, W. Jung, C. Frandsen, Phys. Rev. B 69, 144421 (2004)
- Y.G. Yoo, M. Kläui, C.A.F. Vaz, L.J. Heyderman, J.A.C. Bland, Appl. Phys. Lett. 82, 2470–2472 (2003)
- M. Kläui, C.A.F. Vaz, J.A.C. Bland, E.H.C.P. Sinnecker, A.P. Guimarães, W. Wernsdorfer, G. Faini, E. Cambril, L.J. Heyderman, C. David, Appl. Phys. Lett. 84, 951–953 (2004)
- 28. T. Yang, M. Hara, A. Hirohata, T. Kimura, Y. Otani, Appl. Phys. Lett. 90, 022504 (2007)
- 29. W. Jung, F.J. Castaño, C.A. Ross, Phys. Rev. Lett. 97, 247209 (2006)
- M. Kläui, in Magnetic Rings: A Playground to Study Geometrically Confined Domain Walls, ed. by B. Azzerboni, G. Asti, L. Pareti, M. Ghidini. Magnetic Nanostructures in Modern Technology (Springer, Dordrecht, 2008), pp. 85–104
- 31. M. Kläui, H. Ehrke, U. Rüdiger, T. Kasama, R.E. Dunin-Borkowski, D. Backesb, L.J. Heyderman, C.A.F. Vaz, J.A.C. Bland, G. Faini, E. Cambril, W. Wernsdorfer, Appl. Phys. Lett. **87**, 102509 (2005)
- M. Laufenberg, D. Bedau, H. Ehrke, M. Kläui, U. Rudiger, D. Backes, L.J. Heyderman,
 F. Nolting, C.A.F. Vaz, J.A.C. Bland, T. Kasama, R.E. Dunin-Borkowski, S. Cherifi,
 A. Locatelli, S. Heun, Appl. Phys. Lett. 88, 212510–212513 (2006)
- 33. M. Vázquez, in *Advanced Magnetic Nanowires*, ed. by H. Kronmüller, S. Parkin. Handbook of Magnetism and Advanced Magnetic Materials, vol 4 (Wiley, Chichester, 2007), pp. 2193–2226
- 34. S. Ono, M. Saito, H. Asoh, Electrochim. Acta **51**, 827–833 (2005)
- 35. M. Darques, A. Encinas, L. Vila, L. Piraux, J. Phys. D: Appl. Phys. 37, 1411–1416 (2004)
- C.L. Dennis, R.P. Borges, L.D. Buda, U. Ebels, J.F. Gregg, M. Hehn, E. Jouguelet, K. Ounadjela, I. Petej, I.L. Prejbeanu, M.J. Thornton, J. Phys. Condens. Matter 14, R1175–R1262 (2002)

- 37. D.J. Sellmyer, M. Zheng, R. Skomski, J. Phys. Condens. Matter **13**, R433–R460 (2001)
- U. Ebels, A. Radulescu, Y. Henry, L. Piraux, K. Ounadjela, Phys. Rev. Lett. 84, 983–986 (2000)
- 39. L. Sun, Y. Hao, C.L. Chien, P.C. Searson, IBM J. Res. Dev. 49, 79–102 (2005)
- 40. A.F. Khapikov, J. Appl. Phys. **89**, 7454–7456 (2001)
- 41. M. Chen, P.C. Searson, C.L. Chien, J. Appl. Phys. **93**, 8253–8255 (2003)
- 42. R. Skomski, J. Zhou, in *Nanomagnetic Models*, ed. by D. Sellmyer, R. Skomski. Advanced Magnetic Nanostructures (Springer, New York, 2006), pp. 41–90
- J.D.L.T. Medina, M. Darques, T. Blon, L. Piraux, A. Encinas, Phys. Rev. B 77, 014417–014419 (2008)
- L. Piraux, J.M. George, J.F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela,
 A. Fert, Appl. Phys. Lett. 65, 2484–2486 (1994)
- L. Thomas, S. Parkin, in *Current Induced Domain-Wall Motion in Magnetic Nanostructures*, ed. by H. Kronmüller, S. Parkin. Handbook of Magnetism and Advanced Magnetic Materials (Wiley, Chichester, 2007), pp. 942–982
- H. Forster, T. Schrefl, W. Scholz, D. Suess, V. Tsiantos, J. Fidler, J. Magn. Magn. Mater. 249, 181–186 (2002)
- M. Hayashi, L. Thomas, Y.B. Bazaliy, C. Rettner, R. Moriya, X. Jiang, S.S.P. Parkin, Phys. Rev. Lett. 96, 197207 (2006)
- 48. G. Tatara, H. Kohno, Phys. Rev. Lett. **92**, 086601–086604 (2004)
- 49. A. Thiaville, Y. Nakatani, J. Miltat, Y. Suzukim, Europhys. Lett. **69**, 990–996 (2005)
- G.S.D. Beach, C. Knutson, M. Tsoi, J.L. Erskine, J. Magn. Magn. Mater. 310, 2038–2040 (2007)
- 51. A. Fert, L. Piraux, J. Magn. Magn. Mater. 200, 338–358 (1999)
- C.A. Ross, F.J. Castaño, D. Morecroft, W. Jung, H.I. Smith, T.A. Moore, T.J. Hayward, J.A.C. Bland, T.J. Bromwich, A.K. Petford-Long, J. Appl. Phys. 99, 08S501–08S506 (2006)
- 53. T.L. Wade, J.E. Wegrowe, Eur. J. Appl. Phys. 29, 3–22 (2005)

- T. Thomson, L. Abelman, H. Groenland, in *Magnetic Storage: Past, Present and Future*, ed. by B. Azzerboni, G. Asti, L. Pareti, M. Ghidini. Magnetic Nanostructures in Modern Technology (Springer, Dordrecht, 2008), pp. 237–306
- 2. H.J. Richter, J. Phys. D: Appl. Phys. 40, R149–R177 (2007)
- 3. H.N. Bertram, *Theory of Magnetic Recording* (Cambridge University Press, Cambridge, 1994)
- 4. O. Karlqvist, Trans. Roy. Inst. Technol. Stockholm. 86, 3–27 (1954)
- P.P. Freitas, H. Ferreira, S. Cardoso, S. van Dijken, J. Gregg, in *Nanostructures for Spin Electronics*, ed. by D. Sellmyer, R. Skomski. Advanced Magnetic Nanostructures (Springer, New York, 2006), pp. 403–460
- 6. J.-G. Zhu, X. Zhu, Y. Tang, IEEE Trans. Magn. 44, 125–131 (2008)
- A. Knoll, P. Bachtold, J. Bonan, G. Cherubini, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, C. Hagleitner, D. Jubin, M.A. Lantz, A. Pantazi, H. Pozidis, H. Rothuizen, A. Sebastian, R. Stutz, P. Vettiger, D. Wiesmann, E.S. Eleftheriou, Microelectron. Eng. 83, 1692–1697 (2006)
- 8. S. Kawata, Y. Kawata, Chem. Rev. **100**, 1777–1788 (2000)

- 9. S. Raoux, G.W. Burr, M.J. Breitwisch, C.T. Rettner, Y.-C. Chen, R.M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, C.H. Lam, IBM J. Res. Dev. 52, 465–479 (2008)
- G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, R.S. Shenoy, IBM J. Res. Dev. 52, 449–464 (2008)
- 11. S.K. Kim, K.S. Lee, Y.S. Yu, Y.S. Choi, Appl. Phys. Lett. 92, 022509 (2008)
- S. Bohlens, B. Krüger, A. Drews, M. Bolte, G. Meier, D. Pfannkuche, Appl. Phys. Lett. 93, 142508 (2008)
- 13. J.-G. Zhu, Y. Zheng, G.A. Prinz, J. Appl. Phys. 87, 6668–6673 (2000)
- T. Yang, A. Hirohata, L. Vila, T. Kimura, Y. Otani, Phys. Rev. B 76, 172401–172404 (2007)
- 15. X.F. Han, Z.C. Wen, H.X. Wei, J. Appl. Phys. **103**, 07E933–07E939 (2008)
- 16. X. Zhu, J.-G. Zhu, IEEE Trans. Magn. 39, 2854–2856 (2003)
- 17. C. Chappert, A. Fert, F. Nguyen Van Dau, Nat. Mater. **6**, 813–823 (2007)
- 18. S.S.P. Parkin, M. Hayashi, L. Thomas, Science **320**, 190–194 (2008)
- 19. W.H. Doyle, in *Magnetic Recording Technologies: Future Technologies*, ed. by K.H.J. Buschow. Concise Encyclopedia of Magnetic and Superconducting Materials, 2nd edn. (Elsevier, Amsterdam, 2005), pp. 539–548
- 20. Y. Li, A.K. Menon, in *Magnetic Recording Technologies: Overview*, ed. by K.H.J. Buschow. Concise Encyclopedia of Magnetic and Superconducting Materials, 2nd edn. (Elsevier, Amsterdam, 2005), pp. 627–634
- J. Shi, in *Magnetization Reversal in Patterned Magnetic Nanostructures*, ed. by
 B. Heinrich, A.C. Bland. Ultrathin Magnetic Structures, vol 4 (Springer, Berlin, 2004),
 pp. 307–331

Author Index

Aharoni (1997), 93	Buchanan et al. (2005), 156
Aharoni (2000), 36, 55 , 63	Bürgler et al. (2001), 125
Alexiou and Jurgons (2007), 2	Burr et al. (2008), 179
Allia et al. (2001), 100, 101	Buschow (2006), 14
Allwood et al. (2005), 110, 111	Buschow and de Boer (2003), 24
Ambler Thompson and Taylor (2008), 186	Bødker et al. (1994), 77
Araki (1993), 137	
Arrott (2005), 151	Campbell and Fert (1982), 132
D. I. (1000) 116	Cao (2004), 106, 108, 125
Back et al. (1999), 116	Carman (1969), 186
Bader (2006), 19	Castaño et al. (2004), 157, 159
Baibich et al. (1988), 134	Chantrell and O'Grady (1994), 90, 102
Barron (2002), 152 Bass and Pratt (1999), 136, 139, 141, 142	Chappert and Barthelémy (2007), 19
Bass and Pratt (2007), 129, 140, 147	Chappert et al. (2007), 183
Batlle and Labarta (2002), 19 , 77, 102	Chen et al. (1993), 19
Bauer et al. (2000), 94, 95	Chen et al. (2003b), 165
Beach et al. (2005), 53	Chien et al. (2007), 150, 158, 159, 170
Beach et al. (2007), 168	Choe et al. (2004), 153
Bellac (1991), 17	Cowburn (2006), 111
Berger (1996), 96, 153	Cowburn and Welland (2000), 111
Bertotti (1998), 55 , 63, 65, 66, 102	Cowburn et al. (1998), 116
Bertram (1994), 176, 183	Cullity (1972), 102
Binek et al. (2001), 121	Cullity (1772), 102
Bland and Heinrich (2005), VIII, 19, 195	
Bobo et al. (2004), 19	Darques et al. (2004), 160
Bohlens et al. (2008), 180	Davis et al. (1992), 108
Borisenko and Ossicini (2004), 7	de Boer (1995), 186
Brown (1940), 35	Denison et al. (2004), 102
Brown (1941), 35	Dennis et al. (2002), 19 , 61, 70, 102, 128,
Brown (1962), 35	160
Brown (1968), 66	Dormann et al. (1997), 69, 101, 102
Brown (1969), 66	Dormann et al. (1998), 101
Brubaker et al. (1991), 137	Doyle (2005), 183

Hölinger et al. (2003), 151

Ebels et al. (2000), 161 Iglesias and Labarta (2001), 58 Iglesias et al. (2007), 79 El-Hilo et al. (1998), 101 Enders et al. (2007), 19 Imre et al. (2006), 111 Engel et al. (1991), 113 Evans and Heller (2003), 2 Jacobs and Bean (1963), 82, 102 Jin et al. (1995), 137 Fassbender et al. (2004), 111 Johnson and Silsbee (1988), 131 Fert and Piraux (1999), 170 Jorzick et al. (2001), 4 Fiorani (2005), 102 Jullière (1975), 143 Fitzsimmons et al. (2004), 19 Jung et al. (2006), 160 Fleissner et al. (2007), 2 Forster et al. (2002), 167 Karlqvist (1954), 176 Frei et al. (1957), 92 Kawata end Kawata (2000), 179 Freitas and Wilcke (2008), 3 Kechrakos and Trohidou (1998), 102 Freitas et al. (2006), 3, 178, **183** Kelly et al. (1989), 99 Fruchart and Thiaville (2005), 15, 19, 41 Khapikov (2001), 162 Kikuchi (1956), 94, 116 Kim et al. (2008), 180 Gangopadhyay et al. (1992), 78 Kittel (1949), 30, 34, 35 García-Otero et al. (2000), 100 Kiwi (2001), 122 Gibbs et al. (2008), 136, 137 Gijs (2000), 140 Kläui (2008), 160, **170** Givord and Rossignol (1996), 73 Kläui et al. (2004), 159, 160 Goll et al. (2004), 50 Kläui et al. (2005), 160 Golubenko et al. (2002), 99 Knoll et al. (2006), 179 Kodama and Berkowitz (1999), 77, 78 Gorham et al. (2005), 74, 75 Kondorsky (1940), 85 Goya et al. (2003), 69, 70 Grünberg (2001), 112, 122, 124, **125** Koon (1997), 122 Gradmann (1993), 109, 112, 125 Kravchuk et al. (2007), 150, 157 Kronmüller (2007), 23, 38, 50, 56 Grünberg et al. (2007), 144 Guimarães (1998), 34, 55, 75 Kronmüller and Fähnle (2003), 48, 56 Kronmüller and Parkin (2007), 106 Guimarães (2005), VIII, 195 Guslienko et al. (2008), 154 Kronmüller et al. (1987), 85 Kákay and Varga (2005), 67, 68 Han et al. (2008), 181, 182 Labarta et al. (1993), 71 Hathaway and Dan Dahlberg (2007), Landau and Lifshitz (1935), 35 147 Landolt-Börnstein (1986), 24 Hayashi et al. (2006), 168, 169 Laufenberg et al. (2006), 160 He et al. (2007), 19 Leighton et al. (2000), 121 Heinrich and Cochran (2007), 125 Lewis et al. (2009), 53 Henkel (1964), 99 Li and Baberschke (1992), 18 Hergt and Andrä (2007), 2 Li and Menon (2005), 183 Herzer (2005), 53–55, **55** Li and Zhang (2003), 97 Himpsel et al. (1998), 106, 107 Lodder (2005), 125 Hosokawa et al. (2007), 16 Luborsky (1961), 62 Hrabovsky et al. (2002), 111 Huang et al. (1994), 18 Hubert and Schäfer (1999), 33, 42, 56, 151 Majetich and Jin (1999), 77

Malozemoff (1987), 122

Malozemoff and Slonczewski (1979), 45,	Rodmacq et al. (1993), 137
51, 52, 56	Ross et al. (2006), 170
Mauri et al. (1987), 122	Ruiz-Feal et al. (2002), 115, 116
Medina et al. (2008), 166	
Meiklejohn (1962), 120-122	Sato et al. (1994), 137
Meiklejohn and Bean (1956), 117	Schad et al. (1995), 137
Mermin (1979), 153	Scholz et al. (2003), 150
Mertig (2005), 15	Schryer and Walker (1974), 56, 154
Middelhoek (1963), 114, 115	Sellmyer et al. (2001), 163, 164, 170
Miller et al. (2002), 157	Shi (2004), 183
Mohr et al. (2008), 40, 186	Shigeto et al. (2002), 153
Moodera et al. (1995), 143	Shintaku et al. (1993), 137
Moodera et al. (2007), 130	Shtrikman and Wohlfarth (1981), 100
Mosca et al. (1991), 123	Skomski (2003), 19
Mott (1936a), 131	Skomski and Coey (1999), 56 , 91
Mott (1936b), 131	Skomski and Zhou (2006), 56 , 89, 164
Mott (1964), 131	Slonczewski (1989), 145
Mørup and Hansen (2007), 102	Slonczewski (1996), 96, 153
, 1	Slonczewski (2007), 125 , 147
Nakamura et al. (2003), 151	Song and Ketterson (1991), 12
Nakatani et al. (1993), 137	Stamps (2000), 122
Nakatani et al. (2003), 53	Stamps (2001), 122
Néel (1954), 112	Stearns (1977), 145
Néel (1954), 33	Stiles (1999), 123, 124
Nogués and Schuller (1999), 118, 120	Stiles (2004), 125
Nogués et al. (2005), 125	Stoner and Wohlfarth (1948), 79
Nogués et al. (2005), 79	Stöhr and Siegmann (2006), 102
	Sun and Wang (2006), 87
O'Handley (2000), 56 , 109, 114, 125	Sun et al. (2005), 161–163, 170
Odenbach (2006), 1	T. I. I I. (1000), 100
Ohnishi et al. (1983), 12, 13	Takahashi et al. (1980), 120
Ono et al. (2005), 161	Tannous and Gieraltowski (2008), 88, 102
Osborn (1945), 32	Tatara and Kohno (2004), 168
	Tersoff and Falicov (1982), 109
Park et al. (2008), 147	Thamm and Hesse (1996), 98
Parkin et al. (1990), 137	Thamm and Hesse (1998), 98
Parkin et al. (1991), 137	Thiaville (2000), 90
Parkin et al. (1994), 137	Thiaville et al. (2005), 168, 169
Parkin et al. (2008), 182	Thirion et al. (2002), 86
Pinna et al. (2005), 58	Thomas and Parkin (2007), 167, 168, 170
Piramanayagam (2007), 106	Thomson et al. (2008), 173, 178, 183
Piraux et al. (1994), 166	Tretiakov and Tchernyshyov (2007), 155
Poole and Owens (2003), 19	Tsymbal et al. (2003), 145, 147
Prandolini (2006), 14, 117, 118	Unguris et al. (1991), 124, 125
Pujada et al. (2003), 77	Usov and Peschany (1994), 151
Pujada et al. (2003b), 78	Usov and reschany (1994), 131
	Valet and Fert (1993), 141
Raoux et al. (2008), 179	Vassiliou et al. (1993), 76
Richter (2007), 174, 175, 183	Vaz et al. (2007), 156, 170, 171
\// - /	···· (// - */ */

210 Author Index

Vaz et al. (2008), 13, 14, 18, **19**, 38, **125** Vazquez (2007), 160, **170**

Wade and Wegrowe (2005), **170**Waeyenberge et al. (2006), 153
Wang and Campbell (2007), 153
Wang and Sun (2007), 96
Weber et al. (2001), 97
Weller and McDaniel (2005), 2
Wernsdorfer (2005), 103
Wernsdorfer et al. (1997), 72
Wiltschko and Wiltschko (1995), 2
Wohlfarth (1958), 99
Wohlfarth (1986), 103
Wolf (2006), 130
Wolf et al. (2001), 146

Wolf et al. (2006), **147** Wu and Freeman (1992), 12, 13 Wuttig and Liu (2004), **125**

Yamada et al. (2007), 153, 154 Yanagihara et al. (1997), 137 Yang et al. (2007), 159 Yang et al. (2007b), 181 Yoo et al. (2003), 158 Yoshizawa et al. (1988), 54

Zhu (2005), 94 Zhu and Zhu (2003), 181 Zhu et al. (2000), 157, 159, 181 Zhu et al. (2008), 96, 179 Zutic et al. (2004), 144, **147**

Index

2CSR, see two-current series-resistor model	energy, in film, 112
	energy, in orthorhombic symmetry, 33
activation volume, see volume, activation	energy, shape, 85
adiabatic limit, 168	energy, solid under stress, 34
alumina porous template, 160, 161	energy, two minima, 68
anisotropy, 32	energy, uniaxial, 32, 44, 82
AFM layer, 121	energy, unidirectional, 119
average, 54	energy, unidirectional (figure), 120
axis, 51 , 59, 80, 81, 83, 84, 120, 121	energy, vs. k_BT , 4
constant, 5, 33 , 59, 77, 81	energy, vs. dimension, 14, 15
constant, effective, 54, 112	field, 82, 83, 84
constant, out of plane, 112	
crystalline, 54, 160	in thin film, 112
crystalline, in nanowires, 160	interface, 33, 112
direction, nanowire, 160	local, 54
effective, 54, 55, 77	magnetocrystalline, 53
effective, in thin film (figure), 113	magnetoelastic term, 113
energy, 28, 34, 63, 112	perpendicular, 114
energy as barrier height, 68	perpendicular, in film, 114
energy at surface, 76	random, 53, 54
energy barrier, 178	shape, 81, 112
energy density, 34, 36	shape, nanowire, 160, 163
energy in interacting particles, 102	shape, of nanodot, 155
energy minima, 82	surface, 33, 36, 76, 77, 112, 113
energy vs. θ , 59	surface, in film, 112
energy vs. k_BT , 16	surface, in film (figure), 114
energy vs. dimensionality, 15	tensor, 33
energy, axial, 35	uniaxial, 32
energy, cubic, 33	unidirectional, 119, 120
energy, curves, 119	anisotropy contributions (table), 34
energy, expression, 32, 112	
energy, from area of hysteresis curve, 33	anisotropy field, 36
energy, in DW, 41, 43, 44, 46, 47, 64	antiferromagnet
energy, in energy functional, 35	magnetization (figure), 24

antivortex, 114, 153, 153 , 155	blocking
magnetization, 153	temperature, 16, 69, 70, 100, 101
structure, 152	temperature, exchange bias, 122
winding number, 155	temperature, in nanowires, 164
aspect ratio, 165, 166	volume, 89
aspect ratio, ellipsoid, 32	Bohr magneton, 25
aspect ratio, nanowire, 160, 164, 165	boundary condition, 36
astroid, 85, 86, 95, 153	Brillouin
atomic force microscopy, 179	function, 17, 25, 25 , 60, 75
attempt frequency, see frequency, attempt	Brown
	equations, 36
	rotation, 60
bacteria	Brown's
magnetostatic, 2	paradox, 81
ballistic regime, 128	buckling, 60, 90, 92
barrier	bucking, 60, 90, 92
energy distribution, 74	. 1 2 12
energy distribution (figure), 75	capping layer, 3, 13
	catalysis, 16
energy maximum, 82	CGS system of units, 23, 30–32, 39, 113,
energy near E_c , 70	185–187
energy vs. $k_{\rm B}T$, 88	characteristic length, see length,
energy vs. k_BT , 162	characteristic
energy, average, 73	chemical potential, 132, 133
energy, for $H = 0, 59$	spin averaged, 133, 134
energy, for single particle, 100	chirality, 152
energy, in S-W model, 87	difference in usage, 152
energy, in viscosity, 73	in arrays of nanorings, 122
energy, inhomogeneous sample, 72, 73	
	vortex, 153
energy, nanoparticle, 59	CIDM, see domain wall motion, current-
energy, reduced by H , 93	induced
energy, vs. θ , 88	circulation, 151
energy, vs. $k_{\rm B}T$, 60, 68	control, in nanoring, 160
height, 82	coercive field, 27, 61–63, 63 , 81, 82, 86, 87,
height, in TMR, 146	93, 158
bilinear coupling, 122	in exchange bias samples, 121
biomagnetic separation, 57	coercive field in nanowires, 164
biomineralization, 2	coercive force, 27
biquadratic coupling, 123	coercivity, 27
bit cell, 174	dynamic, 115, 116
bit-patterned recording, 149, 150	FM layer, 121
Bloch	intrinsic, 93
$T^{3/2}$ law, 147	nanodisk, 154
domain wall, 38, 42, 43, 45–48, 114, 115	nanowire, 163, 164
domain wall (figure), 44	sweep rate dependence, 88
line, 46	vs. concentration, 102
Bloch wall	vs. size, 61, 62
direction of rotation, 46	coercivity and exchange field, 121
blocked	coercivity, reduced
regime, 69	in Stoner–Wohlfarth model, 87
· Ø **	

conductance	data storage, 160
multilayer, 136	demagnetization tensor, 31
conductance, tunnel, 143	demagnetizing factor, 31, 80, 93, 193
conduction electron polarization, 168	effective, 36, 81
confinement	general expression, 32
electronic, 11	oblate ellipsoid, 32
quantum, 10	parallel, 49
constriction in nanoring, 160	prolate ellipsoid, 32
coordination of surface atoms, 14	sphere, 49, 91
core memory, 156	symmetrical ellipsoid, 32
core-shell structure, 77–79	values, 31
correlation length, see length, correlation	demagnetizing field, 30, 31, 37, 82, 113, 116
CPP geometry, 134–137, 139, 145, 159, 166,	absence of, 93
180	non-ellipsoidal sample, 41
critical index, see exponent, critical	density
critical single-domain diameter, see	electron, 12
diameter, single-domain critical	density of states, 6, 7, 9–12, 14, 26, 143, 145
critical thickness, thin film, 114	half-metal, 145
cross-tie domain wall, see domain wall,	of spin up and spin down electrons, 134
cross-tie	density of states at E_F , 8, 12
cubic symmetry, 33	density of states at E _F , 6, 12 density of states, in TMR, 144
Curie	density of states, in TMR, 144 density of states, tunneling, 143, 145
constant, 25	density of states, tullicing, 143, 143 density, areal, 2, 3, 173, 175, 181
Law, 25	density, diear, 2, 3, 173, 173, 181 density, linear, 175
temperature, 17, 19, 22, 23, 25, 39, 58,	density, track, 175
162	depinning field, 115, 116, 160
temperature, nanowire, 161, 162	
temperature, paramagnetic, 25	deposition regime
temperature, thin film, 109	equilibrium, 107
temperature, thin film (figure), 109	non-equilibrium, 107
Curie-Weiss law, 25	diameter
curling, 60, 90–92	critical, inhomogeneous nucleation, 91, 92
angular dependence, 93	critical, multidomain, 67
as energy minimum state, 63	critical, nanowire, 163
curling, in nanowire, 166	critical, single-domain, 4–6, 21, 37, 38,
current	48–50, 57, 60, 66–68
critical, 96	critical, superparamagnetic, 4, 69, 82
polarized, 96	critical, vortex in nanodisk, 150
current density, 132	critical, vortex in nanoring, 157
current density, critical, 169	critical, vortex state, 67
current in plane (CIP) geometry, 134	diffusion length, 142
current perpendicular to the plane (CPP)	diffusive regime, 128
geometry, 134, 135, 137	dipolar
current-induced DW motion, see domain	energy, 30, 35
wall motion, current-induced	direction cosine, 32–34
	disk access time, 179, 183
damping constant, 40, 94, 169	disk, hard, 2, 3, 93, 105, 106, 173, 174, 178,
damping constant, Gilbert, 40	179, 183
damping factor, zero, 94	displacement exponent, see exponent, shift

domain, 41	energy functional, 35
'C', 41	escape temperature, 70
'S', 41	exchange
'flower', 41	bias, 79, 105, 117–121, 160
'leaf', 41	bond, 3
closure, 41	constant, 29, 30
form, 41	energy, 28, 29, 34, 35
domain wall, 41 , 64	energy, expression, 30, 44
180°, 153	energy, in DW, 44–47
360°, in nanoring, 157	energy, in nanoparticle, 60, 64
cross-tie, 114, 115	energy, in uniform case, 30, 43
electron reflection, 168	energy, in vortex center, 151
electron torque, 168	energy, vortex core, 157
energy, 5, 6, 46–50	integral, 43
film, 114	interaction, 28
head-to-head, 168	stiffness constant, 5, 30, 37, 38, 43, 45,
mobility, 48	54, 92
motion, 50, 51, 60, 111, 149, 154, 167	exchange bias, 122, 178
motion mechanism, 50	exchange bias field (figure), 118
motion, current-induced, 168	exchange bias, application, 122
peak velocity, 52	exchange bias, models, 122
tail-to-tail, 168	exchange field and coercivity, 121
thickness, 44, 45	exchange length, see length, exchange
transverse, 53, 167	exponent
transverse, critical dimensions, 167	critical, 17, 17 , 18
transverse, in nanoring, 158	shift, 19, 19
transverse, velocity, 169	shift, in nanowires, 162
velocity, 51-53, 167-169	sinit, in hanowires, 102
velocity, current-driven, 169	6
velocity, in nanowire, 167	fanning, 60, 90, 91
vortex, see vortex wall	Fermi
width, 4, 5, 37, 42, 46	energy, 8, 26, 133, 146
width parameter, 5, 37, 65	gas, 6
domain wall, Bloch, see Bloch domain wall	level, 8, 9, 12, 26, 123, 128, 131, 134, 145
domain wall, Néel, see Néel domain wall	statistics, 132
dot, see nanodisk	surface, 124
drug delivery, 2, 57	velocity, 128
	wavelength, 4, 10, 12, 12 , 146
Earth field, 2	wavevector, 8
eddy current, 41	ferrimagnet
efficiency, write head, 175, 176	magnetization (figure), 24
electrochemistry, 160, 166	ferrofluid, 1, 57
electronic structure, 14	ferromagnet
ellipsoid	magnetization (figure), 24
spin configurations (figure), 48	strong, 131
emu, 23, 186, 187	FIB, see focused ion beam
energy	field cooled (FC) hysteresis, 118
magnetostatic, 37	field, deep gap, 176, 177
energy barrier, see barrier, energy, 178	field, depinning, see depinning field

field, effective, 35, 36	Heisenberg
field, inversion, see inversion field	3D model, 19
field, nucleation, see nucleation field	hamiltonian, 29
Finemet, 54	Henkel plot, 99
flux closure, 42, 156, 179	hyperthermia, 57
focused ion beam (FIB), 111	magnetic, 2
Frank-van der Merwe growth, 107, 108	hysteresis
free electron	rotational, 120
gas, 9, 12, 26	sweep rate dependence, 116
model, 6	hysteresis curve, 21, 27 , 98
free electron gas	film, 118
density of states, 26	in S-W model, 87, 88
wavefunctions (figure), 8	nanodisk, 154
free energy, 107	nanoring, 158, 159
free magnetic pole, 41	hysteresis curve (figure), 27, 118
free-electron	hysteresis loop, 27, 27, 116
model, 124	in S-W model, 87
free-electron-like band, 145	shift, 117, 121
frequency, attempt, 68, 93	
frequency, switching, 68	inhomogeneous nucleation, 91
frustration, 3	interaction between particles, 97–102
	interactions in magnetic materials, 28
g-factor, 25	interface
electron, 26, 168	compensated, 117
gap magnetic field, 176	uncompensated, 117
gap, write head, 174–177	interface conductance parameters, 139
gauss, 23, 185	interface roughness, 123
Gibbs free energy, 28	interlayer exchange coupling, 105, 122, 124
Gilbert	constant, 122
equation, 40	inversion field, 63
gyromagnetic ratio, 40	Ising model, 18
GMR, see magnetoresistance, giant	T 1125
gyromagnetic ratio, 40	Jullière
gyromagnetic ratio, electron, 40	formula, 145
gyrotropic motion, 153, 180	model, 143, 145, 146
-	Karlqvist head, 177
half-metal, 145	Kondorsky reversal, 85
half-metal (figure), 146	Trondording Teversari, se
HAMR, see magnetic recording, heat	Landau
assisted	state, 151
handedness, see chirality	Landau-Gilbert equation, 96
hard magnetic material, 27, 28, 37, 39, 63,	Landau–Lifshitz–Gilbert equation, 94, 96
66, 67	Landau-Lifshitz-Gilbert equation, 40
hardness parameter, 37, 63, 67	Langevin
HDD, see disk, hard	function, 60, 74, 75, 75 , 90, 99–101
head, read, 175, 177, 178, 182	lattice parameter, 43, 107
head, recording, 174	length
head, write, 175–178	characteristic, 1, 3–5, 37–39
heat-assisted recording, 178	characteristic (Table 1.1), 4

correlation, 18, 18	anisotropic (AMR), 122, 127, 128
correlation, in nanowires, 162	ballistic (BMR), 128, 146
exchange, 4, 5, 21, 23, 37, 37, 38, 39, 54,	colossal (CMR), 128
60, 65–67, 92, 150, 151, 154, 157,	domain wall (DWMR), 128
166, 167	extraordinary (EMR), 128
exchange (Eq. 1.2), 5	giant, 177, 180, 181
exchange, 3d metals, 5	giant (GMR), 122, 127, 128, 134, 137,
LLG equation, see Landau-Lifshitz-Gilbert	138, 140, 142, 145
equation	giant (GMR) model, 141
log-normal distribution, 71, 71	giant (GMR), inverse, 140, 141
log-normal distribution (figure), 72	giant (GMR), normal, 140
logic gate, 110, 111	giant (GMR), origin of, 127
majority, 111	giant GMR (figure), 135
Lorentz	giant, in nanowire, 166
magnetoresistance, 127, 128	ordinary (OMR), 128
microscopy, 77	tunnel, 177, 181
	tunnel (TMR), 122, 127, 128, 142, 143,
macrospin model, 79	145–147
magnetic circuit, 106, 174, 175	tunneling anisotropic (TAMR), 128, 147
magnetic constant, 22, 40	types of, 127, 128
magnetic constant or vacuum permeability,	magnetoresistance, Lorentz, see Lorentz
5, 22, 185, 186, 193	magnetoresistance
magnetic field	magnetoresistance
reduced, 87	see magnetic random access memory
rotating, 153	magnetostatic energy, 30, 30 , 31, 34, 37, 39,
magnetic field pulse, 153	41, 49, 112
magnetic flux density, 22	
magnetic force microscopy (MFM), 60, 61,	and flux closure, 42
151, 152, 161	and pole avoidance, 41
magnetic history, 60	ellipsoid, 31
magnetic induction, 22, 22	for sphere, 64 in domain wall, 45
magnetic material, 22	
magnetic moments vs. dimensionality, 12	in ellipsoid, 49, 79
magnetic polarization, 22	in magnetization reversal, 90, 91
magnetic random access memory, 181, 182	in multidomain case, 49
magnetic recording, 1–3, 73, 93, 94, 105,	in multidomain sample, 41
113, 115, 150, 156, 173, 174	in Néel DW, 47
longitudinal, 174–176	in single-domain structure, 64
perpendicular, 174, 175	reduction factor, 50
technology, 93, 173	magnetostriction, 34
magnetic resonance imaging (MRI), 57	saturation, 34, 113
magnetic storage, 2, 16, 122, 159	magnetron sputtering, 106
magnetic viscosity, see viscosity, magnetic	magnon, 131, 147
magnetization, 22, 186	majority spin, 26
saturation, 5	majority spin tunneling, 143
magnetoelastic coupling constants, 34	MAMR, see magnetic recording, microwave
magnetoelastic energy, 33, 34	assisted
magnetomotive force, 176	mass, effective, 132
magnetoresistance, 127	Maxwell's equation, 30

MBE, see molecular beam epitaxy	domain wall motion, 169
mean free path, 128	domain walls, 167
melt-spinning, 54	exponent shift, 162
memory	hysteresis, 164, 166
magnetic, 159	hysteresis loop, 163, 165
memory effect, 122	MMF image, 161
metastable state, 60	multilayer, 164, 166
MFM, see magnetic force microscopy	shape anisotropy, 160, 163, 164, 166
micromagnetism, 21, 35	single domain, 161
microwave-assisted recording, 96, 178	nanowire ratio E_B/k_BT , 163
minority spin, 146	nanowire, cobalt, 160
misfit	nanowire, magnetism, 164
lattice parameter, 107, 109	Néel
strain energy, 107	domain wall, 42, 43, 47, 48, 114, 115
mobility, 52	domain wall energy, 48
domain wall, 115	domain wall width, 48
molecular beam epitaxy (MBE), 106	rotation, 60
molecular field parameter, 17	temperature, 22 , 117
Monte Carlo simulation, 58, 77, 100–102	Néel–Arrhenius Law, 68
Moore's Law, 2	non-equilibrium
Mott model, 131	deposition regime, 107
MQT, see quantum tunneling, macroscopic	non-local energy term, 28
MRAM, see magnetic random access	nucleation field, 63, 63 , 82, 83
memory	curling, 91
MRI, see magnetic resonance imaging	nucleation field expression, 81
Mössbauer spectroscopy, 68, 69	nucleation field in Brown's paradox, 81
120	nucleation field with $K_2 \neq 0$, 82
nanocontact, 128	
nanocrystalline	nucleation field, curling, 166
alloys, 53–55	nucleation field, equivalence to H_A , 83
material, 54	nucleation field, in homogeneous reversal, 91
nanodisk, 149–153, 156, 157, 173 micromagnetic simulation (figure), 61	
nanodot, <i>see</i> nanodisk	nucleation field, inhomogeneous nucleation, 93
shape anisotropy, 155	93
nanodot, elliptic, 155	
nanomagnetism, 1	oersted, 23, 185
nanopillar, 160	Oersted field, 181
nanoring, 149, 150, 156–160, 173	Ohm's Law, 133
nanoring circulation, 160	onion state, 157
nanoring memory, 179	nanoring, 157–160, 180
nanoring stack, 159	onion structure
nanoring, broad, 158	in nanoring, 158
nanowire, 10, 149, 160–164, 166–168, 173	optical storage, 179
3d metal, 163	orange peel effect, 122
DW velocity, 168	orbital moment, 15
size effects, 161–163	orbital moment, and dimension, 14
anisotropy axis, 163	orthorhombic symmetry, 33
coercivity, 163	oscillatory coupling, 123, 124

paramagnet, 22	random access memory, 179
susceptibility (figure), 24	random anisotropy
parameters, micromagnetic, 23	model, 53
patterned media, 178	random walk, 128
Pauli	rare-earth, 32, 124
paramagnet (figure), 24	recording, digital, 173
paramagnetism, 26	recording, magnetic, see magnetic recording
principle, 8	relative magnetic permeability, 186
susceptibility, 12, 26	relaxation time, 88, 178
PCRAM, see phase-change random access	relaxation, magnetic, 40, 94
memory	remanence curve
PEEM, see Photoemission Electron	DC, 98
Microscopy	isothermal, 98
permalloy, 28	remanence, magnetic, 27
nanowire, 52, 53	remanence, measurement at, 27
permanent magnet, 73	remanent magnetization, 98
permeability	DC, 99
magnetic, 22	isothermal, 99
nanocrystalline alloys, 55	resistance network model (GMR), 134–136
permeability, vacuum, <i>see</i> magnetic constant	resistance, renormalized, 139
perpendicular current geometry (CPP), 145	resistivity, interface, 138
perpendicular magnetization, 113, 114	retentivity, 27
perpendicular recording, 105	reversal
perpendicular recording disk, 106	current-induced, 96, 97
phase-change random access memory, 179	magnetization, 16, 87, 93
photochromic crystal, 179	magnetization trajectory (figure), 95
Photoemission Electron Microscopy	magnetization, and barrier height, 74
(PEEM), 152	magnetization, as function of ψ , 88
pinhole, 146	magnetization, by buckling, 92
pinning, 48	magnetization, by curling, 92
pinning center, 51	magnetization, by pulsed field, 94
pinning potential, 51	magnetization, coherent, 79, 90, 92
polarization, 35, 145 , 146, 147	magnetization, current-induced, 96
polarization, 93, 143, 140, 147	magnetization, cylinder, 90–92
polarized current, 105	magnetization, described with LLG
pole avoidance, 41	equations, 93
precessional switching, see reversal,	magnetization, film (figure), 117
precessional precessional	magnetization, for $\alpha = 0, 94$
probe-based storage, 179	magnetization, for $\alpha = 0, 94$
pseudo spin valve, 181	magnetization, for $\theta \neq 0$, 94
ψ wavefunction, 6	magnetization, generalized, 89
ψ wavefulletion, σ	magnetization, homogenous, 57, 91
quality parameter (Q), see hardness	magnetization, in film, 115, 116
parameter (Q), see hardness	magnetization, in nanoparticle, 59, 82
quantum dot, 10, 11	magnetization, in nanowires, 162, 166
quantum well, 10, 11	magnetization, in S-W model, 93
quantum wen, 10, 11	magnetization, in superparamagnet, 16
racetrack magnetic memory, 182	magnetization, in thin film, 114
RAM, see random access memory	magnetization, inhomogeneous, 90, 91
KAIVI, SEE TAHUUHI ACCESS HICHIUI Y	magnetization, mnomogeneous, 90, 91

magnetization, interacting particles, 100	equilibrium, 130
magnetization, microwave field, 96	non-equilibrium, 130
magnetization, minimum time, 94	spin relaxation time, 128
magnetization, nanowire, 166	spin valve, 96, 177, 180, 181
magnetization, precessional (figure), 95	exchange-biased, 140, 141
magnetization, process, 90	spin valve, application of exchange bias, 122
magnetization, pulsed field, 94, 95	spin valve, pseudo, 122
magnetization, thin film, 116	spin wave, 4
magnetization, time, 116	spin wave spectrum, 4
magnetization, time interval, 94	spin-dependent scattering, 128
precessional, 94, 95	spin-polarized current, 127, 129, 153, 159,
vortex core magnetization, 153, 154	168, 180–182
vortex core magnetization, current-	spin-switching, 153
induced, 154	spin-transfer torque, 96, 127, 147, 181
RKKY, see Ruderman-Kittel-Kasuya-Yosida	spintronic
interaction	devices, 3
Ruderman-Kittel-Kasuya-Yosida (RKKY)	spintronics, VII, 105, 127, 134
interaction, 97	squareness ratio, 28
Ruderman-Kittel-Kasuya-Yosida (RKKY)	squareness, coercive, 28
interaction, 123	squareness, remanence, 28
model, 124	stiffness constant, 4
rugosity, chemical, 139	stiffness, exchange constant, see exchange,
	stiffness constant
saturation magnetization, 5, 36	Stoner-Wohlfarth
Schrödinger equation, 6, 7, 26	expression, 82
SI system, 5, 22, 23, 32, 39, 40, 113, 154,	hysteresis curve, 88
185–187	model, 60, 79 , 86, 87, 90, 93, 98, 99
signal to noise ratio, 178	model, $E(\theta)$, 83, 86
single-domain sample, 41	model, $E_{\rm B}(\psi)$, 89
skyrmion number, 155	model, $H_{\rm sw}(\theta, 86)$
Slonczewski model, 145	regime, 60
soft magnetic material, 27, 37, 39, 61, 63,	theory, 57
66, 67, 105, 150	treatment, 79
soft magnetic underlayer, 106, 174, 175, 177	Stoner-Wohlfarth
spanning vector, 124	model, 35
specific resistance, multilayer, 139	strain, film, 113
specific surface area, 16	Stranski-Krastonov growth, 107, 108
spin accumulation, 133, 134	stray field, 157
spin asymmetry parameter, 132, 138, 139	stray field energy, 30
spin current density, 132	stray field, medium, 177, 178
spin density	stress, 34, 107
out of equilibrium, 132	stress, film, 113
spin diffusion length, 4, 128, 128 , 129–131,	stripe, magnetic, 173
133, 141, 142	STT, see spin-transfer torque
spin disorder, 77, 78	SUL, see soft magnetic underlayer
spin filter, 130	superparamagnet, 60
spin glass, 77, 78	superparamagnetic
spin injection, 130, 131	behavior, in nanoparticles, 79, 89
spin polarization	behavior, in nanowires, 162

particle, 99	training effect, 121
particle, contribution to M , 90	transition
regime, 63, 68 , 69, 178	thermally activated, 68
regime, $M(T)$, 74	translation symmetry, 112
regime, critical volume, 69	breaking, 1, 3, 6, 13
regime, in distribution of V , 71	transmission electron microscope, 57
regime, transition to, 82	transmission electron microscopy, 77
state, 102	transmission electron microscopy (TEM),
system, 76	166
superparamagnetism, 4, 16, 57, 68, 74	trilemma, magnetic recording, 178
surface	tunnel
effects, 76	effect, 142
energy, 106, 107	junction, 142–145, 181, 182
free energy, 106	tunnel junction, conductance, 142
surface anisotropy, <i>see</i> anisotropy, surface	tunnel magnetoresistance, see magnetoresis-
surface to volume ratio, 16	tance, tunnel
susceptibility	tunneling
magnetic, 17, 22, 22 , 23, 25, 26, 69, 186	macroscopic quantum, 70
susceptibility, Pauli, see Pauli susceptibility	tunneling current, 145
sweep rate	tunneling scheme, 144
magnetic field, 115	twisted state
sweep rate dependence, <i>see</i> coercivity or	nanoring, 157, 159, 180, 181
hysteresis, sweep rate dependence	two-current series-resistor model, 138,
swirl, see vortex	140–142
switching, see also reversal, magnetization	two-domain structure, 63
field, 63, 63 , 71, 85–87, 94	two-domain structure, 03
precessional, 93	units in magnetism, 185
process, 87	units, conversion factors, 23
switching frequency, 88	units, magnetic, 23
switching frequency, 88 switching speed, 97	units, magnetic, 25
symmetry breaking, 76	vacuum magnetic permeability, see magnetic
symmetry breaking, 70	constant
TAMP saa magnetoresistance tunneling	
TAMR, see magnetoresistance, tunneling	Valet-Fert model, 140–142
anisotropic	van den Berg construction, 41, 42 vapor deposition, 106
tesla, 22	
thermal fluctuations, 4	virgin curve, 98
thermal reservoir, 94	viscosity for $H = H_c$, 73
thin films and multilayers, 105	viscosity, magnetic, 73, 73, 74, 88, 164
time	Vogel–Fulcher equation, 100
measurement, 68–70	Volmer-Weber growth, 107, 108
relaxation, 68, 69, 72, 100	volume
relaxation, in nanowires, 163	activation, 73
waiting, 71	activation, in nanowires, 164
time dependent phenomena, 77	critical, 69, 89
time scale, 68, 70	critical, superparamagnetic, 60
TMR, see magnetoresistance, tunnel	nucleation, in nanowires, 164
torque, 96	vortex, 42 , 60, 66, 154, 155
current-induced, 96	annihilation, 153
torque magnetization, 119	arrangement, 150

as energy minimum state, 49, 63, 66	magnetization, 151, 153
as energy minimum state (figure), 64, 65	motion, 153
as limit in Landau structure, 151	polarity inversion, 153
as nanodot ground state, 179	precession, 153
chirality, 152, 180	radius, 151, 154
chirality, data encoding, 180	trajectory, 153
circulation, 151, 152, 180	velocity, 153
circulation, data encoding, 179	critical velocity, 153, 154
configuration, 57, 65	magnetization, 151
critical field, 153	vortex state in nanoring, 158, 159
dynamic behavior, 156	vortex wall, 167
evolution from onion state, 158	vortex wall, in nanoring, 158, 160
in cross-tie wall, 114	vortex wall, in nanowire, 167
in cylindrical coordinates, 66	vortex-antivortex pair, 155
in hard magnet, 66	vortex-based random access memory
in nanodisks, 151	(VRAM), 179, 180
in nanoring, 157–160	VRAM, see vortex-based random access
minor, 158, 160	memory
polarity, 151 , 152, 155	
polarity, data encoding, 179, 180	Walker
profile, 151	breakdown, 51 , 53, 154, 169
sense of rotation, 151, 152	breakdown field, 51 , 52
shape, 151	breakdown suppression, 53
structure, 63, 150, 152	field, 51 , 167
winding number, 155	limit, 169
vortex center	velocity, 51 , 154
disk, 150	Weiss model, 17, 25
vortex core, 151, 153, 157	winding number, 152, 153, 153 , 155
(figure), 150	winding number, of antivortex, 153
frequency, 153	Wohlfarth relation, 99
in applied field, 153	
inversion, 153	Zeeman energy, 35