Wasserstein Distance

Tong Zhou

November 30, 2020

Contents

1	Definitions	2
2	Properties of Wasserstein distance	2
2	Relation to Other Metrics	2

1 Definitions

The *p*-Wasserstein distance between probability measures μ and ν on \mathbb{R}^d is defined as

$$W_{p}\left(\mu,\nu\right)=\inf_{\substack{X\sim\mu\\Y\sim\nu}}\left(\mathrm{E}\left[\|X-Y\|^{p}\right]\right)^{1/p},\ \ p\geqslant1.$$

Usually, $W_p(\mu, \nu)$ is also denoted by $W_p(X, Y)$.

Remark.

- If a general metric space (X, ρ) is complete and separable, the above norm in the definition is replaced by $\rho(X, Y)$.
- W_p is a proper metric: it is nonnegative, symmetric and satisfies triangle inequality.

2 Properties of Wasserstein distance

Let *X* and *Y* be random variables taking values in $X = \mathbb{R}^d$; the notation $(X, \| \cdot \|)$ is maintained.

- For any real number a, $W_p(aX, aY) = |a| W_p(X, Y)$.
- For any fixed vector $x \in X$, $W_p(X + x, Y + x) = W_p(X, Y)$.
- For any fixed $x \in X$, we have $W_2^2(X + x, Y) = ||x + E[X] E[Y]|| + W_2^2(X, Y)$.
- For product measures and when p=2, we have $W_2^2\left(\otimes_{i=1}^n\mu_i,\otimes_{i=1}^n\nu_i\right)=\sum_{i=1}^nW_2^2(\mu_i,\nu_i)$ in the analytic notation.

3 Relation to Other Metrics

For random variables X and Y on X, let Ω be the union of their ranges and set

$$D = \sup_{x,y \in \Omega} \|x-y\|, \quad d_{\min} = \inf_{x \neq y \in \Omega} \|x-y\|$$

It possesses the following properties:

- If $p \le q$, then $W_p \le W_q$, by Jensen's inequality.
- On the other hand, $W_q^q \leq W_p^p D^{q-p}$.
- Duality arguments yield the particularly useful *Kantorovich-Rubinstein* representation for *W*₁ as

$$W_1(X,Y) = \sup_{\|f\|_{\mathsf{Lip}} \le 1} |\mathrm{E}[f(X)] - \mathrm{E}[f(Y)]|, \quad \|f\|_{\mathsf{Lip}} = \sup_{x \ne y} \frac{|f(x) - f(y)|}{\|x - y\|},$$

• This shows that W_1 is larger than the *Bounded Lipschitz* (BL) metric

$$W_1(X,Y) \geqslant \mathsf{BL}(X,Y) = \sup_{\|f\|_{\infty} + \|f\|_{\mathsf{Lip}} \leqslant 1} |\mathrm{E}[f(X)] - \mathrm{E}[f(Y)]|$$

that metrises convergence in distribution.

- Let *P* denote the Prokhorov distance. Then $P^2(X, Y) \le W_1(X, Y) \le (D+1)P(X, Y)$.
- For the class of random variables supported on a fixed bounded subset $K \subset X$, BL and W_1 are equivalent up to constant, and all metrics W_p are topologically equivalent.
- The Wasserstein distances W_p can be bounded by a version of total variation TV. A weaker but more explicit bound for p = 1 is $W_1(X, Y) \le D \times \mathsf{TV}(X, Y)$.
- For discrete random variables, there is an opposite bound $TV \leq \frac{W_1}{d_{min}}$.
- The total variation between convolutions with a sufficiently smooth measure is abounded above by W_1 .
- The *Toscani* (or *Toscani-Fourier*) distance is also bounded above by W_1 .

$$\boldsymbol{\beta}_{\lambda}\left(\mathcal{T},\boldsymbol{W}\right) = \left(\boldsymbol{W}\boldsymbol{X}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{W}^{\mathsf{T}} + \lambda\boldsymbol{I}\right)^{-1}\boldsymbol{W}\boldsymbol{X}\boldsymbol{y},$$

We may now calculate the bias and variance of the model described above via the following formulations:

$$\mathsf{Bias}_{\lambda}\left(\boldsymbol{\theta}\right)^{2} = \mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{\mathcal{T},\boldsymbol{W}}\left[f_{\lambda}\left(\boldsymbol{x};\mathcal{T},\boldsymbol{W}\right)\right] - f_{0}(\boldsymbol{x})\right]^{2},$$

$$\mathsf{Variance}_{\lambda}(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{x}}\left[\mathsf{Var}_{\mathcal{T},\boldsymbol{W}}\left(f_{\lambda}\left(\boldsymbol{x};\mathcal{T},\boldsymbol{W}\right)\right)\right].$$