ASSIGNMENT 2

1

GROUP 20

SOPHIE RAIN (01425316), LUCAS UNTERBERGER (01325438), PETER STROPPA (01326468).

datasets

 $\widehat{2}$

CONGRESS

AMAZON

WINE

MUSHROOMS

distribution of classes

datasets overview

Dataset	# samples	# attributes	Missing values?	# classes	classes eq. important?	Types of attributes
Amazon	750	10 000	no	50	yes	ordinal
Congress	217	18	yes (unknown)	2	yes	categorical (2 values)
Wine	1599	11	no	11	no	numeric
Mushrooms	8124	22	yes	2	no	categorical (2-10)

methods

K-Nearest-Neighbors

Support Vector Machines

Random Forest

pre-processing

scaling and selection

encoding

- Min-Max-Scaling
- Z-Score-Scaling
- Feature Selection
- Custom weighted scaling

- Ordinal Encoding
- One Hot Encoding

TF-IDF

pre-processing

Weighted scaling

If correlation < 0:

 $\frac{max(feature)-feature}{max(feature)*|correlation|}$

If correlation > 0:

• $\frac{feature}{max(feature)*|correlation|}$

TF-IDF (text frequency - inverse document frequency)

- Upweighting rare words (important)
- Downweighting frequent words (syntactic)

 $tfidf(w,R)=ln(\frac{\#reviews}{1+\#reviews\ containing\ w})*n(w,R)$

results

\circ	- 1
×	
\mathbf{C}	
$\overline{}$	
	1

Best result	<u>knn</u>	Random Forest	<u>SVM</u>
Wine		perfectly	perfectly
Congress			97% accuracy
Mushroom	perfectly	perfectly	perfectly
Amazon		67% accuracy	

conclusion

different datasets

- kNN disappointing
 - o high hopes kNN + TF-IDF
- SVM highly dependent on kernel
- Don't forget human intuition

Different methods

- SVM & RF outperformed
- kNN troubles with many classes

 only RF can handle heterogeneous data