

AON7934

30V Dual Asymmetric N-Channel AlphaMOS

General Description

- Latest Trench Power AlphaMOS (αMOS LV) technology
- Very Low RDS(on) at 4.5V_{GS}
- Low Gate Charge
- High Current Capability
- RoHS and Halogen-Free Compliant

Product Summary

 $\begin{array}{cccc} & \underline{Q1} & \underline{Q2} \\ V_{DS} & 30V & 30V \\ I_D \ (at \ V_{GS} = 10V) & 16A & 18A \\ R_{DS(ON)} \ (at \ V_{GS} = 10V) & <10.2 m\Omega & <7.7 m\Omega \\ R_{DS(ON)} \ (at \ V_{GS} = 4.5V) & <15.8 m\Omega & <11.6 m\Omega \end{array}$

100% UIS Tested 100% Rg Tested

Top View

Application

- DC/DC Converters in Computing, Servers, and POL
- Isolated DC/DC Converters in Telecom and Industrial

Power DFN3x3A

Top View Bottom View

Bottom View

Parameter		Symbol	Max Q1	Max Q2	Units	
Drain-Source Voltage		V_{DS}	30		V	
Gate-Source Voltage		V_{GS}	±20	±20	V	
Continuous Drain	T _C =25℃		16	18		
Current ^G	T _C =100℃	I _D	12	14	Α	
Pulsed Drain Current ^Ċ		I_{DM}	64	72		
Continuous Drain	T _A =25℃	I _{DSM}	13	15	^	
Current	T _A =70℃		7.8	9	А	
Avalanche Current C		I _{AS}	19	25	Α	
Avalanche Energy L=0.05mH ^C		E _{AS}	9	16	mJ	
V _{DS} Spike	Spike 100ns		36	36	V	
	T _C =25℃	P _D	23	25	W	
Power Dissipation ^B	T _C =100℃		9	10	VV	
	T _A =25°C		2.5	2.5	10/	
Power Dissipation ^A	T _A =70℃	P _{DSM}	0.9	0.9	W	
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to	${\mathcal C}$		

Thermal Characteristics							
Parameter		Symbol	Typ Q1	Max Q1	Typ Q2	Max Q2	Units
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{ heta JA}$	40	50	40	50	℃/W
Maximum Junction-to-Ambient AD	Steady-State	ТејА	70	90	70	90	€/W
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	4.5	5.4	4.2	5	€/W

Q1 Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units	
STATIC PARAMETERS								
BV_{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		30			V	
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =30V, V_{GS} =0V				1	μА	
DSS			T _J =55℃			5	μΑ	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V				100	nA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		1.2	1.8	2.2	V	
	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =13A			8.3	10.2	mΩ	
$R_{DS(ON)}$			T _J =125℃		11.2	13.7	11122	
		V_{GS} =4.5V, I_D =10A			12.4	15.8	mΩ	
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =13A		50		S		
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.7	1	V		
Is	Maximum Body-Diode Continuous Curr	ent ^G			16	Α		
DYNAMIC	PARAMETERS							
C _{iss}	Input Capacitance			485		pF		
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz			235		pF	
C_{rss}	Reverse Transfer Capacitance			32		pF		
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1	0.9	1.8	2.7	Ω		
SWITCHI	NG PARAMETERS							
Q _g (10V)	Total Gate Charge	-V _{GS} =10V, V _{DS} =15V, I _D =13A			8	11	nC	
Q _g (4.5V)	Total Gate Charge				3.9	5.3	nC	
Q_{gs}	Gate Source Charge				1.1		nC	
Q_{gd}	Gate Drain Charge				2.1		nC	
t _{D(on)}	Turn-On DelayTime	V_{GS} =10V, V_{DS} =15V, R_L =1.2 Ω , R_{GEN} =3 Ω			3.5		ns	
t _r	Turn-On Rise Time				2.8		ns	
t _{D(off)}	Turn-Off DelayTime				16.3		ns	
t _f	Turn-Off Fall Time				3		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =13A, dI/dt=500A/μs			9.9		ns	
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =13A, dI/dt=500A/μs			12.9		nC	

A. The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on $R_{\theta JA}$ t $\leq 10s$ value and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design.

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150° C. Ratings are based on low frequency and duty cycles to keep initial T_J =25° C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.

G. The maximum current rating is limited by package.

H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with TA=25° C.

Q1-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Q1-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Q1-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s)
Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note H)

Pulse Width (s)
Figure 15: Normalized Maximum Transient Thermal Impedance (Note H)

Q2 Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units	
STATIC PARAMETERS								
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		30			V	
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =30V, V_{GS} =0V				1	μА	
·D88			T _J =55℃			5	μπ	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V				100	nA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		1.2	1.8	2.2	V	
		V_{GS} =10V, I_D =15A			6.3	7.7	mΩ	
$R_{DS(ON)}$	Static Drain-Source On-Resistance		T _J =125℃		8.4	10.3	11177	
		V_{GS} =4.5V, I_D =10A			9.1	11.6	mΩ	
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =15A		100		S		
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.7	1	V		
Is	Maximum Body-Diode Continuous Curr	ximum Body-Diode Continuous Current ^G				18	Α	
DYNAMIC	PARAMETERS							
C _{iss}	Input Capacitance			807		pF		
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz			314		pF	
C _{rss}	Reverse Transfer Capacitance			40		pF		
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1	0.6	1.3	2	Ω		
SWITCHI	NG PARAMETERS							
Q _g (10V)	Total Gate Charge			12.9	17.5	nC		
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =15A			6	8.5	nC	
Q_{gs}	Gate Source Charge	V _{GS} -10V, V _{DS} -13V, 1		2.1		nC		
Q_{gd}	Gate Drain Charge]			3		nC	
t _{D(on)}	Turn-On DelayTime				4.8		ns	
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =1 Ω , R_{GEN} =3 Ω			3.3		ns	
t _{D(off)}	Turn-Off DelayTime				18.8		ns	
t _f	Turn-Off Fall Time				3.3		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =15A, dI/dt=500A/μs			11.3		ns	
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =15A, dI/dt=500A/μs			15		nC	

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on $R_{\theta JA}$ t $\leq 10s$ value and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design.

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150° C. Ratings are based on low frequency and duty cycles to keep initial T_J =25° C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.

G. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C.

Q2-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Q2-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Q2-CHANNEL: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note G)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

