河北师范大学软件学院 教 学 进 度 表

(2013~2014 学年度第二学期)

课程名称:	数据库原理	
课程类别:	必修	
任课教师:_反	成少雷 赵洋	
任课班级: 软件	件工程 2012 级	_
采用教材:数	据库系统概述(第	四版)
总学时数:	72	
周学时数:	4	

软件学院制表

教学进度表填写要求

一、基本信息填写

- 1、学院: 指教师所在学院, 学院名可适当简写。
- 2、任课班级:填写所任课程的所有班级。
- 3、课程名称:填写课程的完整名称,不可简写。
- 4、课程类别:指必修课、专业选修课、任意选修课等。

二、内容填写

1、周次

教学周次以当学年的校历为准(教学周数 17 周)。有军训和实习的年级,应从军训、实习后实际授课时间开始填写。

2、教学内容

此栏教师可依据教学大纲规定的教学内容、同时根据教学需要,经教研主管同意予以适当调整填写, 应写明章、节的扼要内容。

3、教学时数

教学时数应填写教学所需的学时数,周学时要与教师教学任务书保持一致。

4、教学形式

填写时要实事求是,精心安排,要服从教学的需要,提供形式多样的教学方法。教学形式包括讲授、实验、习题课、讨论、自学指导、演示、录像示教、辅导答疑、上机实习、实地考察和参观等。

5、考核形式

填写为实现本门课程的教学目标,教师所安排设计的考查考核方式,包括阶段性的测试和期中期末考试,考试的方法、形式、范围、标准等。

三、其它

- 1、教学进度表是教师授课进程的基本安排,也是学校进行教学检查、评价课堂教学质量的依据之一。请任课教师在认真分析课程大纲、教材和学生现状的基础上科学制订教学进度表,并经教研室主管和学院(系)教学副院长(主任)审定。教学内容和总进度相同的课堂,应有较统一的教学进度表。
 - 2、本计划一式三份,教师、学院各保存一份,开学后一周内报教务部一份存档。

课程简介

数据库是数据管理的最新技术,是计算机科学的重要分支。《数据库原理与应用》课程是在学生学习了Windows程序设计(例如C#)、Web程序设计(例如Asp.Net)等基础课后的一门专业必修课。通过该门课程的学习,使学生深入理解数据库基础理论知识、基本具备数据库管理与维护能力、熟练掌握数据库应用系统设计与开发技术。

目标实现

通过本课程的学习,要求学生达到下列目标:

- 1. 深入理解数据库基础理论知识
- 1.1 理解数据库基本术语,数据模型(概念模型及 E-R 图,关系模型,概念模型向关系模型的转换),数据库系统结构,数据库系统的组成
- 1.2 了解 SQL 语言的发展过程和特点,深入理解并能熟练运用数据定义(创建数据库、表、索引,实现完整性约束),数据查询,数据更新,视图
- 1.3 了解计算机安全性,理解并掌握数据库安全性控制,能够运用视图机制实现安全性,了解审计、数据加密、统计数据库安全
- 1.4 能够深入理解并实现实体完整性、参照完整性、用户定义的完整性,了解完整性约束命名子句,能够理解并运用触发器实现完整性控制
- 1.5 理解数据库设计问题,理解 1NF、2NF、3NF、BCNF,能够运用投影分解法进行规范化
- 1.6 了解数据库设计概况,了解需求分析,全面理解概念结构设计、逻辑结构设计、 数据库的物理设计,了解数据库的实施和维护
 - 1.7 能够理解、掌握并使用存储过程,理解 ODBC、OLE DB、JDBC 的工作原理
- 1.8 深入理解事务的基本概念,能够运用事务,理解故障的种类及相应的恢复实现技术和恢复策略
- 1.9 了解并发控制,理解封锁、活锁和死锁、并发调度的可串行性,了解两段锁协议
 - 2. 熟练掌握相关软件、工具

2. 1

熟练使用 PowerDesigner 进行 CDM 设计(概念模型), 学会使用 PowerDesigner 检测 CDM 模型的方法:

掌握使用 PowerDesigner 将 CDM 转化为 PDM 的方法(概念模型向关系模型的转换);

能够配置并运行 C/S 模式和 B/S 模式应用,理解数据库系统组成,能够配置课程设计所需环境。

2.2

1. 创建数据库、表,实施完整性约束

能够使用 PowerDesigner 生成数据库创建脚本并自动创建数据库,熟练掌握利用 PowerDesigner 进行数据库实施的方法;

掌握使用 DBMS 提供的可视化工具创建并维护数据库、表,实施完整性约束; 了解使用 SQL 命令创建并维护数据库、表,实施完整性约束。

2. 索引

掌握使用 DBMS 提供的可视化工具创建、修改、删除索引:

了解使用 SQL 命令创建、修改、删除索引。

3. 数据查询

掌握使用 SQL 命令进行数据查询;

了解使用 DBMS 提供的可视化工具进行数据查询。

4. 数据更新

掌握使用 SQL 命令进行数据更新;

了解使用 DBMS 提供的可视化工具进行数据更新。

5. 视图

掌握使用 DBMS 提供的可视化工具创建和维护视图;

了解使用 SQL 命令创建视图。

- 2.3 数据库安全性
- 1. 掌握 DBMS 数据库安全性控制

身份验证: 掌握使用 DBMS 提供的可视化工具进行登录帐号和数据库用户的管理;

存取控制:掌握使用 DBMS 提供的可视化工具进行存取控制,了解使用 SQL 命令进行存取控制:

角色:掌握使用 DBMS 提供的可视化工具进行角色管理。

- 2. 能够运用视图机制实现安全性。
- 2.4 掌握基于具体 DBMS 创建并维护触发器以实现完整性控制

- 2.5 分析数据库课程设计中所创建的数据库的规范化程度
- 2.6 了解数据库课程设计的需求分析;

数据库的物理设计中,基于具体的 DBMS 实现数据分区;

了解数据库的实施和维护,掌握不同 DBMS 之间的数据交换技术。

- 2.7 掌握基于具体 DBMS 产品创建、使用、维护存储过程
- 2.8 掌握具体 DBMS 产品中事务的定义,能够运用事务,掌握具体 DBMS 产品的数据库备份和恢复技术
- 2.9 掌握具体 DBMS 产品中事务隔离级别的设定,了解具体 DBMS 产品中事务模式及锁模式
 - 3. 熟练掌握数据库应用系统设计与开发技术

完成一个课程设计

一、课堂教学进度计划

田場	教 学 内 容 安 排 备			备注
周次	章节	内容	作业	
1 第1章 绪论		数据库系统概述		
	第1章 绪论	数据库系统结构		
		数据库系统的组成		
		概念模型		
2	第2章 关系数据库	关系模型		
		关系代数		
3 第 3 章 关系数据库标准 言 SQL	笠 2 辛 子系粉据房标准语	SQL 概述		
		学生-课程数据库		
		数据定义		
4	第 3 章 关系数据库标准语	数据查询		
4	言 SQL			
5	第 3 章 关系数据库标准语	数据查询		
<i>J</i>	言 SQL	ᄴᄱᄇᄤ		
6	第 3 章 关系数据库标准语	数据查询		
	言SQL			
7	第 3 章 关系数据库标准语	数据更新		
	言 SQL	视图		
		计算机安全性概述		
		数据库安全性控制		
8	第4章 数据库安全性	视图机制		
		审计		
		数据加密		
		统计数据库安全		
		实体完整性		
	第5章 数据库完整性	参照完整性		
9	77.5 中 30.417 71 正正	用户定义的完整性		
		完整性约束命名子句		
		触发器		
1.0	第 1 章 绪论—E-R 图及 PowerDesigner 的使用	使用 PowerDesigner 进行 CDM 设		
10		计 W. F. H. T. () (不 ht T. ()		
		数据模型(关系模型)		
11	第 1 章 绪论—E-R 图及	概念模型向关系模型转换		
	PowerDesigner 的使用	CDM 转化为 PDM		
12	第6章 关系数据理论	规范化		
	第7章 数据库设计	数据库设计概述		
13		需求分析		
		概念结构设计		
		逻辑结构设计		
		数据库的物理设计		
		数据库的实施和维护		

14	第7章 数据库设计 第8章 数据库编程	数据库的物理设计 数据库的实施和维护 存储过程
15	第8章 数据库编程 第10章 数据库恢复技术	存储过程 0DBC 编程 事务的基本概念
16	第 10 章 数据库恢复技术	数据库恢复概述 故障的种类 恢复的实现技术 恢复策略 具有检查点的恢复技术 数据库镜像
17	第 11 章 并发控制	并发控制概述 封锁 活锁和死锁 并发调度的可串行性 两段锁协议 封锁的粒度
18	复习	

二、课程设计进度计划

5、6周,学生分组、选题 7至16周,系统实现、测试 17周,交付评分

三、作业设计

题目的类型: 书面作业

作业的形式:纸质

作业的数量:根据教学内容进行安排

作业的来源: 课后练习题

作业的提交:每周交上周的作业

作业的检查:全改全批。

作业的成绩: 百分制, 占总成绩的 5%

四、实验设计

实践的内容: 本次课实践教学内容和实践练习内容

实践的形式:每个学生独立完成 实践的时间:教师规定的时间内

测验的成绩: 百分制, 占总成绩的 15%。采用抽查方式, 每次抽查 20%, 每个学生抽查 3 次。

五、课堂测验活动安排

测验的内容: SQL语言测验的形式: 要求闭卷试题的数量: 5~10 道题测验的时间: 20 分钟

测验的成绩:百分制,占总成绩的10%

六、课程设计活动安排

以小组的方式开展,每个小组不超过 3 人。项目评分百分制,占总成绩的 10%。个人得分为项目分数乘以个人贡献系数 $(0\sim1)$ 。