Subspace Based Meta-Learning

Yue Sun University of Washington

Joint work with:

Halil Ibrahim Gulluk (Bogazici University), Adhyyan Narang (Univ. of Washington), Samet Oymak (UC Riverside), Maryam Fazel (Univ. of Washington)

April 9, 2021

Task, feature in \mathbb{R}^d , label in \mathbb{R} . Task: $\boldsymbol{\beta} \sim \mathcal{N}(0, \boldsymbol{\Sigma}_{\boldsymbol{\beta}})$, $\boldsymbol{\Sigma}_{\boldsymbol{\beta}}$ approx low rank, Feature: $\boldsymbol{x} \sim \mathcal{N}(0, \boldsymbol{\Sigma}_{\boldsymbol{X}})$, Noise: $\boldsymbol{\varepsilon} \sim \mathcal{N}(0, \sigma_{\varepsilon})$, Label: $\boldsymbol{y} = \boldsymbol{x}^{\top} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$.

▶ **Two steps:** Representation learning, Few-shot learning

Task, feature in \mathbb{R}^d , label in \mathbb{R} .

Task: $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$, Σ_{β} approx low rank, Feature: $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{x}})$, Noise: $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon})$, Label: $\mathbf{y} = \mathbf{x}^{\top} \boldsymbol{\beta} + \varepsilon$.

- ▶ **Two steps:** Representation learning, Few-shot learning
- ▶ Rep learning: Sample $\beta_1,...,\beta_{n_{\text{task}}}$. For $i \in [n_{\text{task}}]$, Sample $\mathbf{x}_{i,1},...,\mathbf{x}_{i,n_{\text{spt}}}$. Evaluate y. Use x,y to estimate $\Sigma_{\boldsymbol{\beta}}$.

Task, feature in \mathbb{R}^d , label in \mathbb{R} .

Task: $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$, Σ_{β} approx low rank, Feature: $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{x}})$, Noise: $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon})$, Label: $\mathbf{y} = \mathbf{x}^{\top} \boldsymbol{\beta} + \varepsilon$.

- ▶ **Two steps:** Representation learning, Few-shot learning
- ▶ Rep learning: Sample $\beta_1,...,\beta_{n_{\text{task}}}$. For $i \in [n_{\text{task}}]$, Sample $\mathbf{x}_{i,1},...,\mathbf{x}_{i,n_{\text{spt}}}$. Evaluate y. Use x,y to estimate Σ_{β} .
- **Few-shot learning:** Sample β , $\mathbf{x}_1, ..., \mathbf{x}_{n_{\text{spt}}}$, evaluate y. Use x, y and estimate β in principal subspace of Σ_{β} .

Task, feature in \mathbb{R}^d , label in \mathbb{R} .

Task: $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$, Σ_{β} approx low rank, Feature: $x \sim \mathcal{N}(0, \Sigma_{X})$, Noise: $\varepsilon \sim \mathcal{N}(0, \sigma_{\varepsilon})$, Label: $y = x^{\top}\beta + \varepsilon$.

- ▶ **Two steps:** Representation learning, Few-shot learning
- ▶ Rep learning: Sample $\beta_1,...,\beta_{n_{\text{task}}}$. For $i \in [n_{\text{task}}]$, Sample $\mathbf{x}_{i,1},...,\mathbf{x}_{i,n_{\text{spt}}}$. Evaluate y. Use x,y to estimate $\Sigma_{\boldsymbol{\beta}}$.
- ▶ Few-shot learning: Sample β , $x_1, ..., x_{n_{\text{spt}}}$, evaluate y. Use x, y and estimate β in principal subspace of Σ_{β} .
- **Few-shot learning:** Sample β , $x_1, ..., x_{n_{fs}}$, evaluate y. Use x, y and a shaping matrix as a function of $\hat{\Sigma}_{\beta}$ to estimate β .

Meta-learning - Linear - Prior works

- ► Mei & Montanari. Double descent.
- Du et al. Matrix factorization type. No algorithm.
- Nong et al. Method of moment (MoM) estimator. $O(dr^2)$ samples for rep learning, O(r) samples for few-shot learning.
- ▶ Tripuraneni et al. MoM estimator and gradient descent. MoM: same sample complexity as above. GD: $O(dr^4)$ samples for rep learning
- Bartlett et al., Wu & Xu, Nakkiran et al. Overparameterized few-shot learning via optimal ridge regularization.

Overview

Representation learning - Linear

Few-shot learning - Linear

Meta learning - Nonlinear

Rep learning - learn Σ_eta

Task: $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$, Feature: $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$, Label: $\mathbf{y} = \mathbf{x}^{\top} \boldsymbol{\beta}$. Suppose rank $(\Sigma_{\mathbf{X}}) = r_f$, rank $(\Sigma_{\beta}) = r_t$. Suppose the principal subspaces of $\Sigma_{\mathbf{X}}$ and Σ_{β} align.

Rep learning: Sample $\beta_1,...,\beta_{n_{\mathrm{task}}}$. For $i \in [n_{\mathrm{task}}]$, Sample $\mathbf{x}_{i,1},...,\mathbf{x}_{i,n_{\mathrm{spt}}}$. Evaluate y. Use x,y to estimate $\Sigma_{\boldsymbol{\beta}}$.

Rep learning - learn Σ_eta

Task: $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$, Feature: $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$, Label: $\mathbf{y} = \mathbf{x}^{\top} \beta$. Suppose rank $(\Sigma_{\mathbf{X}}) = r_f$, rank $(\Sigma_{\beta}) = r_t$. Suppose the principal subspaces of $\Sigma_{\mathbf{X}}$ and Σ_{β} align.

Rep learning: Sample $\beta_1,...,\beta_{n_{\mathrm{task}}}$. For $i \in [n_{\mathrm{task}}]$, Sample $\mathbf{x}_{i,1},...,\mathbf{x}_{i,n_{\mathrm{spt}}}$. Evaluate y. Use x,y to estimate $\Sigma_{\boldsymbol{\beta}}$.

Interested in feature-task alignment.

E.g.,
$$\Sigma_{\beta} = \text{diag}(I_{r_t}, 0)$$
, $\Sigma_{X} = \text{diag}(I_{r_f}, \iota I_{d-r_f})$.

Motivating example: Multi-class classification

Motivation: classification of Gaussian mixture

Motivating example: Multi-class classification

Motivating example: Multi-class classification

Naive case: estimating $\Sigma_{\pmb{X}}$ is enough

- 1. $\Sigma_{\beta} = \Sigma_{X}$.
- 2. $\operatorname{span}(\Sigma_{\beta}) = \operatorname{span}(\Sigma_{X})$.
- 3. $\operatorname{span}(\Sigma_{\mathcal{B}}) \subset \operatorname{span}(\Sigma_{\mathcal{X}})$ but we are satisfied with $\operatorname{span}(\Sigma_{\mathcal{X}})$.

Naive case: estimating $\Sigma_{\pmb{X}}$ is enough

- 1. $\Sigma_{\beta} = \Sigma_{X}$.
- 2. $\operatorname{span}(\Sigma_{\beta}) = \operatorname{span}(\Sigma_{X})$.
- 3. $\operatorname{span}(\Sigma_{\pmb{\lambda}}) \subset \operatorname{span}(\Sigma_{\pmb{\lambda}})$ but we are satisfied with $\operatorname{span}(\Sigma_{\pmb{\lambda}})$.

MoM-F estimator:

$$\hat{\boldsymbol{\Sigma}}_{\boldsymbol{X}} = \frac{1}{n_{\text{tot}}} \sum_{i=1}^{n_{\text{spt}}} \sum_{i=1}^{n_{\text{task}}} \boldsymbol{x}_{ij} \boldsymbol{x}_{ij}^{\top}$$

Sample complexity: $\mathcal{O}(r_f)$. Error: $\mathcal{O}(\sqrt{r_f/n_{\mathrm{tot}}})$.

General case: MoM estimator

When $n_{\rm spt}$ is small.

$$\hat{\boldsymbol{Q}} = \frac{1}{n_{\text{task}}} \sum_{i=1}^{n_{\text{task}}} \frac{1}{n_{\text{spt}}} \sum_{i=1}^{n_{\text{spt}}} y_{ij}^2 \boldsymbol{x}_{ij} \boldsymbol{x}_{ij}^{\top}.$$

$$\hat{\boldsymbol{M}} = \frac{1}{n_{\mathrm{task}}} \sum_{i=1}^{n_{\mathrm{task}}} \frac{2}{n_{\mathrm{spt}}^2} \left[\sum_{j=1}^{n_{\mathrm{spt}}/2} y_{ij} y_{i(j+n_{\mathrm{spt}}/2)} \cdot (\boldsymbol{x}_{ij} \boldsymbol{x}_{i(j+n_{\mathrm{spt}}/2)}^\top + \boldsymbol{x}_{i(j+n_{\mathrm{spt}}/2)} \boldsymbol{x}_{ij}^\top) \right].$$

General case: MoM estimator

When $n_{\rm spt}$ is small.

$$\begin{split} \hat{\boldsymbol{Q}} &= \frac{1}{n_{\mathrm{task}}} \sum_{i=1}^{n_{\mathrm{task}}} \frac{1}{n_{\mathrm{spt}}} \sum_{j=1}^{n_{\mathrm{spt}}} y_{ij}^2 \boldsymbol{x}_{ij} \boldsymbol{x}_{ij}^{\top}. \\ \hat{\boldsymbol{M}} &= \frac{1}{n_{\mathrm{task}}} \sum_{i=1}^{n_{\mathrm{task}}} \frac{2}{n_{\mathrm{spt}}^2} \left[\sum_{i=1}^{n_{\mathrm{spt}}/2} y_{ij} y_{i(j+n_{\mathrm{spt}}/2)} \cdot (\boldsymbol{x}_{ij} \boldsymbol{x}_{i(j+n_{\mathrm{spt}}/2)}^{\top} + \boldsymbol{x}_{i(j+n_{\mathrm{spt}}/2)} \boldsymbol{x}_{ij}^{\top}) \right]. \end{split}$$

Mean:

$$extbf{ extit{Q}} = 2 oldsymbol{\Sigma}_{ extbf{ extit{X}}} oldsymbol{\Sigma}_{ extbf{ extit{X}}} oldsymbol{\Sigma}_{ extbf{ extit{X}}} + ext{tr} ig(oldsymbol{\Sigma}_{oldsymbol{eta}} oldsymbol{\Sigma}_{ extbf{ extit{X}}} ig) oldsymbol{\Sigma}_{ extbf{ extit{X}}}.$$

$$M = \Sigma_X \Sigma_{\beta} \Sigma_X$$
.

Sample complexity:
$$\mathcal{O}(r_f r_t^2)$$
. Error: $\mathcal{O}(\sqrt{r_f r_t^2/n_{\text{tot}}} + \sqrt{r_t/n_{\text{task}}})$.

General case: MoM-TA estimator

We first define $\hat{\pmb{b}}_i = \sum_{j=1}^{n_{\mathrm{spt}}} y_{ij} \pmb{x}_{ij}$, for every $i=1,...,n_{\mathrm{task}}$.

$$\hat{\mathbf{B}} = [\hat{\mathbf{b}}_1, ..., \hat{\mathbf{b}}_{n_{\mathrm{task}}}],$$

 $\hat{\mathbf{G}} = n_{\mathrm{task}}^{-1} \hat{\mathbf{B}} \hat{\mathbf{B}}^{\top}.$

General case: MoM-TA estimator

We first define $\hat{\boldsymbol{b}}_i = \sum_{j=1}^{n_{\mathrm{spt}}} y_{ij} \boldsymbol{x}_{ij}$, for every $i = 1, ..., n_{\mathrm{task}}$.

$$\hat{\mathbf{B}} = [\hat{\mathbf{b}}_1, ..., \hat{\mathbf{b}}_{n_{\mathrm{task}}}],$$

 $\hat{\mathbf{G}} = n_{\mathrm{task}}^{-1} \hat{\mathbf{B}} \hat{\mathbf{B}}^{\top}.$

Mean:

$$m{G} = m{\Sigma}_{m{X}} m{\Sigma}_{m{eta}} m{\Sigma}_{m{X}} + n_{ ext{spt}}^{-1} (m{\Sigma}_{m{X}} m{\Sigma}_{m{eta}} m{\Sigma}_{m{X}} + ext{tr}(m{\Sigma}_{m{eta}} m{\Sigma}_{m{X}}) m{\Sigma}_{m{X}})$$

Sample complexity:

- 1. Generally $\mathcal{O}(r_f r_t^2)$.
- 2. $\mathcal{O}(r_f r_t)$ when $n_{\rm spt} \geq r_t$.

Rep learning - learn $\Sigma_{oldsymbol{eta}}$

Task: $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$, Feature: $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$, Label: $\mathbf{y} = \mathbf{x}^{\top} \beta$. Suppose $\mathrm{rank}(\Sigma_{\mathbf{X}}) = r_f$, $\mathrm{rank}(\Sigma_{\beta}) = r_t$. Suppose the principal subspaces of $\Sigma_{\mathbf{X}}$ and Σ_{β} align.

Rep learning: Sample $oldsymbol{eta}_1,...,oldsymbol{eta}_{n_{\mathrm{task}}}.$ For $i\in[n_{\mathrm{task}}],$ Sample

 $\mathbf{x}_{i,1},...,\mathbf{x}_{i,n_{\mathrm{spt}}}.$ Evaluate y. Use x,y to estimate $\Sigma_{\boldsymbol{\beta}}.$

Estimators: MoM, MoM-TA, MoM-F.

MoM: $\sum_{i,j} y_{ij}^2 \mathbf{x}_{ij} \mathbf{x}_{ij}^{\top}$.

MoM-TA: Let $\hat{\pmb{b}}_i = \sum_{j=1}^{n_{\mathrm{spt}}} y_{ij} \pmb{x}_{ij}$. $\hat{\pmb{B}} = [\hat{\pmb{b}}_1, ..., \hat{\pmb{b}}_{n_{\mathrm{task}}}]$. Need $n_{\mathrm{spt}} \geq r_t$.

MoM-F: $\sum_{i,j} \mathbf{x}_{ij} \mathbf{x}_{ij}^{\top}$.

 $\Sigma_{\beta} = \text{diag}(I_{r_t}, 0)$. Extra $(r_t/n_{\text{task}})^{1/2}$ term in MoM and MoM-TA ignored.

ρ Ο(1;	, , ()	oubit,		
feature cov	$oldsymbol{\Sigma_{X}} = oldsymbol{I}$		$oldsymbol{\Sigma_{X}} = diag(oldsymbol{I_{r_f}}, 0)$	
estimator	min sample	error	min sample	error
MoM	dr_t^2	$(dr_t^2/n_{\mathrm{tot}})^{1/2}$	$r_f r_t^2$	$(r_f r_t^2 / n_{\rm tot})^{1/2}$
MoM-TA	dr _t	$(r_t/n_{\rm spt})^{1/2}$	$r_f r_t$	$(r_t/n_{\mathrm{spt}})^{1/2}$
MoM-F	-	-	r_f	$(r_f/n_{\rm tot})^{1/2}$

Tradeoff between $n_{ m spt}$ and $n_{ m task}$

 $n_{\rm spt}$: Sample per task $n_{\rm task}$: Number of tasks

 n_{tot} : Total samples = $n_{\text{spt}} n_{\text{task}}$.

Question: Fix n_{tot} and change n_{spt} , n_{task} .

Tradeoff between $n_{ m spt}$ and $n_{ m task}$

 $n_{\rm spt}$: Sample per task $n_{\rm task}$: Number of tasks

 n_{tot} : Total samples = $n_{\text{spt}} n_{\text{task}}$.

Question: Fix n_{tot} and change n_{spt} , n_{task} .

Overview

Representation learning - Linear

Few-shot learning - Linear

Meta learning - Nonlinear

Few-shot learning - learn $oldsymbol{eta}$

Task: $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$, Feature: $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$, Label: $y = \mathbf{x}^{\top} \beta$. Suppose rank $(\Sigma_{\mathbf{X}}) = r_f$, rank $(\Sigma_{\beta}) = r_t$. Few-shot learning: Sample β , $\mathbf{x}_1, ..., \mathbf{x}_{n_{\mathrm{fs}}}$, evaluate y. Use x, y and a shaping matrix as a function of $\hat{\Sigma}_{\beta}$ to estimate β .

Few-shot learning - learn $oldsymbol{eta}$

Task: $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$, Feature: $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$, Label: $y = \mathbf{x}^{\top}\beta$. Suppose rank $(\Sigma_{\mathbf{X}}) = r_f$, rank $(\Sigma_{\beta}) = r_t$. Few-shot learning: Sample β , $\mathbf{x}_1, ..., \mathbf{x}_{n_{\mathrm{fs}}}$, evaluate y. Use x, y and a shaping matrix as a function of $\hat{\Sigma}_{\beta}$ to estimate β .

Prior work: Restrict $\hat{\beta}$ in principal subspace of $\hat{\Sigma}_{\beta}$. Dimension $< n_{\rm fs}$.

Few-shot learning - learn $oldsymbol{eta}$

Task: $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$, Feature: $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$, Label: $y = \mathbf{x}^{\top} \beta$. Suppose rank $(\Sigma_{\mathbf{X}}) = r_f$, rank $(\Sigma_{\beta}) = r_t$. Few-shot learning: Sample β , $\mathbf{x}_1, ..., \mathbf{x}_{n_{\mathrm{fs}}}$, evaluate y. Use x, y and a shaping matrix as a function of $\hat{\Sigma}_{\beta}$ to estimate β .

Prior work: Restrict $\hat{\beta}$ in principal subspace of $\hat{\Sigma}_{\beta}$. Dimension $< n_{\mathrm{fs}}$.

Our work: An arbitrary dimension R, and set a shaping matrix $\Lambda \in \mathbb{R}^{R \times d}$ as a function of $\hat{\Sigma}_{\beta}$ that helps with few-shot learning.

How does shaping matrix work

Task: $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$, Feature: $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$, Label: $y = \mathbf{x}^{\top} \beta$. Suppose rank $(\Sigma_{\mathbf{X}}) = r_f$, rank $(\Sigma_{\beta}) = r_t$. Few-shot learning: Sample β , $\mathbf{x}_1, ..., \mathbf{x}_{n_{fs}}$, evaluate y. Use x, y and a shaping matrix as a function of $\hat{\Sigma}_{\beta}$ to estimate β .

Min norm solution with Λ .

$$\hat{m{lpha}}_{\Lambda} = \arg\min_{m{lpha}} \|m{lpha}\|_{\ell_{\mathbf{2}}} \ \text{s.t.} \ m{y} = m{X} \Lambda m{lpha}$$
 $\hat{m{eta}}_{\Lambda} = \Lambda \hat{m{lpha}}_{\Lambda} = \Lambda (m{X} \Lambda)^{\dagger} m{y}.$

How does shaping matrix work

Task: $\beta \sim \mathcal{N}(0, \Sigma_{\beta})$, Feature: $\mathbf{x} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}})$, Label: $y = \mathbf{x}^{\top} \beta$. Suppose rank $(\Sigma_{\mathbf{X}}) = r_f$, rank $(\Sigma_{\beta}) = r_t$. Few-shot learning: Sample β , $\mathbf{x}_1, ..., \mathbf{x}_{n_{\mathrm{fs}}}$, evaluate y. Use x, y and a shaping matrix as a function of $\hat{\Sigma}_{\beta}$ to estimate β .

Min norm solution with Λ .

$$\hat{\boldsymbol{\alpha}}_{\Lambda} = \arg\min_{\boldsymbol{\alpha}} \|\boldsymbol{\alpha}\|_{\ell_2} \text{ s.t. } \boldsymbol{y} = \boldsymbol{X} \Lambda \boldsymbol{\alpha}$$

$$\hat{\boldsymbol{\beta}}_{\Lambda} = \Lambda \hat{\boldsymbol{\alpha}}_{\Lambda} = \Lambda (\boldsymbol{X} \Lambda)^{\dagger} \boldsymbol{y}.$$

$$\hat{\boldsymbol{\beta}}_{\Lambda} = \lim_{t \to 0} \operatorname{argmin}_{\boldsymbol{\beta}} \| \boldsymbol{X}^{\top} \boldsymbol{\beta} - \boldsymbol{y} \|^2 + t \boldsymbol{\beta}^{\top} \Lambda^{-2} \boldsymbol{\beta}$$

Risk function

$$\operatorname{risk}(\Lambda, \Sigma_{\beta}) = \boldsymbol{E}(y - \boldsymbol{x}^{\top} \hat{\beta}_{\Lambda})^{2}$$

= $\boldsymbol{E}(\hat{\beta}_{\Lambda} - \beta)^{\top} \Sigma_{\boldsymbol{X}} (\hat{\beta}_{\Lambda} - \beta).$

Risk function

$$\operatorname{risk}(\Lambda, \Sigma_{eta}) = \mathbf{E}(y - \mathbf{x}^{\top} \hat{eta}_{\Lambda})^{2} \ = \mathbf{E}(\hat{eta}_{\Lambda} - eta)^{\top} \Sigma_{\mathbf{X}} (\hat{eta}_{\Lambda} - eta).$$

Optimal shaping matrix

$$\Lambda^* = rg \min_{\Lambda' \in oldsymbol{S}_{\perp\perp}^d} \operatorname{risk}(\Lambda', oldsymbol{\Sigma}_{oldsymbol{eta}})$$

Risk function

$$\operatorname{risk}(\Lambda, \Sigma_{oldsymbol{eta}}) = oldsymbol{E}(y - oldsymbol{x}^{ op} \hat{eta}_{\Lambda})^2 \ = oldsymbol{E}(\hat{eta}_{\Lambda} - oldsymbol{eta})^{ op} \Sigma_{oldsymbol{X}} (\hat{eta}_{\Lambda} - oldsymbol{eta}).$$

Optimal shaping matrix

$$\Lambda^* = rg \min_{\Lambda' \in oldsymbol{S}_{\perp\perp}^d} \operatorname{risk}(\Lambda', oldsymbol{\Sigma}_{oldsymbol{eta}})$$

As we do not know Σ_{β} , define

$$\Lambda = rg\min_{oldsymbol{\Lambda}' \in oldsymbol{\mathcal{S}}_{++}^d} \mathsf{risk}ig(oldsymbol{\Lambda}', \hat{oldsymbol{\Sigma}}_{oldsymbol{eta}}ig)$$

Risk function

$$\operatorname{risk}(\Lambda, \Sigma_{oldsymbol{eta}}) = oldsymbol{E}(y - oldsymbol{x}^{ op} \hat{eta}_{\Lambda})^2 \ = oldsymbol{E}(\hat{eta}_{\Lambda} - oldsymbol{eta})^{ op} \Sigma_{oldsymbol{X}} (\hat{eta}_{\Lambda} - oldsymbol{eta}).$$

Optimal shaping matrix

$$\Lambda^* = rg \min_{\Lambda' \in oldsymbol{S}_{\perp\perp}^d} \operatorname{risk}(\Lambda', oldsymbol{\Sigma}_{oldsymbol{eta}})$$

As we do not know Σ_{β} , define

$$\Lambda = rg\min_{oldsymbol{\Lambda}' \in oldsymbol{S}_{\perp\perp}^d} \mathsf{risk}(oldsymbol{\Lambda}', \hat{oldsymbol{\Sigma}}_{oldsymbol{eta}})$$

Asymptotic: Let $n_{\rm fs}, d \to \infty$ and $n_{\rm fs}/d$ be fixed.

Computing shaping matrix

Asymptotic: Let $n_{\rm fs}, d \to \infty$ and $n_{\rm fs}/d$ be fixed.

Let $\Sigma_{\pmb{\mathcal{X}}} = \pmb{I}$ and $\Sigma_{\pmb{\beta}}$ be diagonal. Let ξ solve

$$n_{\rm fs} = \sum_{i=1}^d \left(1 + (\xi \Sigma_{Xi})^{-1}\right)^{-1}.$$

Define $\theta \in \mathbb{R}^d$ to be $\theta_i = \frac{\xi \Lambda_i^2}{1 + \xi \Lambda_i^2}$, and the risk is

$$\mathsf{risk}(\mathsf{\Lambda}, \hat{\Sigma}_{\boldsymbol{\beta}}) = \frac{1}{n_{\mathrm{fs}} - \|\boldsymbol{\theta}\|^2} \left(\frac{n_{\mathrm{fs}}}{d} \sum_{i=1}^d (1 - \boldsymbol{\theta}_i)^2 \hat{\Sigma}_{\boldsymbol{\beta}i} + \|\boldsymbol{\theta}\|^2 \sigma_{\varepsilon}^2 \right).$$

We denote the right hand side as $f(\theta; \hat{\Sigma}_{\beta})$.

Computing shaping matrix

Asymptotic: Let $n_{\rm fs}, d \to \infty$ and $n_{\rm fs}/d$ be fixed.

Let $\Sigma_{\pmb{\mathcal{X}}} = \pmb{I}$ and $\Sigma_{\pmb{\beta}}$ be diagonal. Let ξ solve

$$n_{\rm fs} = \sum_{i=1}^d \left(1 + (\xi \Sigma_{Xi})^{-1} \right)^{-1}$$
.

Define $\theta \in \mathbb{R}^d$ to be $\theta_i = \frac{\xi \Lambda_i^2}{1+\xi \Lambda^2}$, and the risk is

$$\mathsf{risk}(\mathsf{\Lambda},\hat{\boldsymbol{\Sigma}}_{\boldsymbol{\beta}}) = \frac{1}{n_{\mathrm{fs}} - \|\boldsymbol{\theta}\|^2} \left(\frac{n_{\mathrm{fs}}}{d} \sum_{i=1}^d (1 - \boldsymbol{\theta}_i)^2 \hat{\boldsymbol{\Sigma}}_{\boldsymbol{\beta}i} + \|\boldsymbol{\theta}\|^2 \sigma_{\varepsilon}^2 \right).$$

We denote the right hand side as $f(\theta; \hat{\Sigma}_{\beta})$.

Computation of optimal representation:

$$oldsymbol{ heta}^* = rg \min_{oldsymbol{ heta}} \ f(oldsymbol{ heta}; \hat{oldsymbol{\Sigma}}_{oldsymbol{eta}}), \ ext{s.t.} \ \underline{ heta} \leq oldsymbol{ heta} < 1, \sum_{i=1}^d oldsymbol{ heta}_i = n_{ ext{fs}}.$$
 $\Lambda_i^* = ((1/oldsymbol{ heta}_i^* - 1)\xi)^{-2}$

Double descent

Error of meta-learning

Suppose ${\mathcal E}$ is the error of representation learning.

$$\mathsf{risk}(\mathsf{\Lambda}, \mathbf{\Sigma}_{oldsymbol{eta}}) \leq \mathsf{risk}(\mathsf{\Lambda}^*, \mathbf{\Sigma}_{oldsymbol{eta}}) + \mathcal{O}\left(rac{n_{\mathrm{fs}}^2 \cdot \mathcal{E}}{(d - n_{\mathrm{fs}})(2n_{\mathrm{fs}} - d\underline{ heta})\underline{ heta}}
ight)$$

Error of meta-learning

Suppose ${\mathcal E}$ is the error of representation learning.

$$\mathsf{risk}(\mathsf{\Lambda}, \mathbf{\Sigma}_{oldsymbol{eta}}) \leq \mathsf{risk}(\mathsf{\Lambda}^*, \mathbf{\Sigma}_{oldsymbol{eta}}) + \mathcal{O}\left(rac{n_{\mathrm{fs}}^2 \cdot \mathcal{E}}{(d - n_{\mathrm{fs}})(2n_{\mathrm{fs}} - d\underline{ heta})\underline{ heta}}
ight)$$

We have presented $\Lambda \in \mathbb{R}^{d \times d}$. We can similarly define a $\mathbb{R}^{R \times d}$ representation Λ_R for arbitrary $R > n_{\mathrm{fs}}$ by projecting onto a subspace.

Error of meta-learning

Suppose \mathcal{E} is the error of representation learning.

$$\mathsf{risk}(\mathsf{\Lambda}, \mathbf{\Sigma}_{oldsymbol{eta}}) \leq \mathsf{risk}(\mathsf{\Lambda}^*, \mathbf{\Sigma}_{oldsymbol{eta}}) + \mathcal{O}\left(rac{n_{\mathrm{fs}}^2 \cdot \mathcal{E}}{(d - n_{\mathrm{fs}})(2n_{\mathrm{fs}} - d\underline{ heta})\underline{ heta}}
ight)$$

We have presented $\Lambda \in \mathbb{R}^{d \times d}$. We can similarly define a $\mathbb{R}^{R \times d}$ representation Λ_R for arbitrary $R > n_{\mathrm{fs}}$ by projecting onto a subspace.

Tradeoff: when R increases, risk $(\Lambda_R^*, \Sigma_\beta)$ decreases, \mathcal{E} increases.

Empirical observation

We plot the error of few-shot learning versus varying dimension of Λ . Different curves correspond to different sample size for rep learning.

Empirical observation

We plot the error of few-shot learning versus varying dimension of Λ . Different curves correspond to different sample size for rep learning.

When rep learning sample size $=\infty$, $\hat{\Sigma}_{\beta}=\Sigma_{\beta}$, smallest error at R=d.

Empirical observation

We plot the error of few-shot learning versus varying dimension of Λ . Different curves correspond to different sample size for rep learning.

When rep learning sample size $=\infty$, $\hat{\Sigma}_{\beta}=\Sigma_{\beta}$, smallest error at R=d. Finite sample, $\hat{\Sigma}_{\beta}\neq\Sigma_{\beta}$, smallest error when R is slightly smaller than d.

Overview

Representation learning - Linear

Few-shot learning - Linear

Meta learning - Nonlinear

Meta-learning - Linear

Motivating example: Multi-class classification

Meta-learning - Nonlinear - Dataset

- Fix a matrix $\mathbf{W} \in \mathbb{R}^{r \times d}$ satisfying $\mathbf{W} \mathbf{W}^{\top} = \mathbf{I}$.
- ▶ The *i*-th task is associated with function $f^i : \mathbb{R}^r \to \mathbb{R}$.
- For Given input $\mathbf{x} \in \mathbb{R}^d$, the label y is distributed as $p_i(y|\mathbf{x}) = p_i(y|\mathbf{W}\mathbf{x})$ and the expectation satisfies $\mathbf{E}(y) = f^i(\mathbf{W}\mathbf{x})$.

In words, the label depends on the relevant features induced by $oldsymbol{W}$.

Meta-learning - Nonlinear - Dataset

- ► Fix a matrix $\mathbf{W} \in \mathbb{R}^{r \times d}$ satisfying $\mathbf{W} \mathbf{W}^{\top} = \mathbf{I}$.
- ▶ The *i*-th task is associated with function $f^i : \mathbb{R}^r \to \mathbb{R}$.
- ▶ Given input $\mathbf{x} \in \mathbb{R}^d$, the label y is distributed as $p_i(y|\mathbf{x}) = p_i(y|\mathbf{W}\mathbf{x})$ and the expectation satisfies $\mathbf{E}(y) = f^i(\mathbf{W}\mathbf{x})$.

In words, the label depends on the relevant features induced by \boldsymbol{W} .

Example: Generalized linear models (GLM), which include logistic/linear regression, can be modeled by choosing f^i to be parameterized by a vector $\boldsymbol{\beta}_i \in \mathbb{R}^r$ and a link function $\phi : \mathbb{R} \to \mathbb{R}$ as $f^i(\boldsymbol{W}\boldsymbol{x}_{ij}) := \phi((\boldsymbol{W}\boldsymbol{x}_{ij})^\top \boldsymbol{\beta}_i)$.

- logistic regression, multi-class classification, etc.

Meta-learning - Nonlinear

Representation learning

Moment estimator of covariance.

$$\hat{\mathbf{M}} = \sum_{i=1}^{k} \frac{2}{n_i^2} \left[\left(\sum_{j=1}^{n_i/2} y_{ij} \mathbf{x}_{ij} \right) \left(\sum_{j=n_i/2+1}^{n_i} y_{ij} \mathbf{x}_{ij} \right)^{\top} + \left(\sum_{j=n_i/2+1}^{n_i} y_{ij} \mathbf{x}_{ij} \right) \left(\sum_{i=1}^{n_i/2} y_{ij} \mathbf{x}_{ij} \right)^{\top} \right]$$

Define

$$\mathbf{h}^{i}(\mathbf{W}) : \mathbb{R}^{r \times d} \to \mathbb{R}^{d} = \mathbf{E}_{\mathbf{x}}[f^{i}(\mathbf{W}\mathbf{x})\mathbf{x}]$$

$$\mathbf{M} := \mathbf{W}^{\top}\mathbf{W}\left(\frac{1}{k}\sum_{i=1}^{k}\mathbf{h}^{i}(\mathbf{W})(\mathbf{h}^{i}(\mathbf{W}))^{\top}\right)\mathbf{W}^{\top}\mathbf{W}.$$

Representation learning - Result

Suppose $y\mathbf{x}$ is a subGaussian random vector with covariance upper bounded by $\|\operatorname{Cov}(y\mathbf{x})\| \leq \sigma^2$. (These conditions hold when $|f^i(\mathbf{x})| < \sigma$.) Let $\epsilon \in (0,1)$. Then there exists a constant c>0 such that

$$k \gtrsim \frac{cd}{\min\{n_i\}\epsilon^2} \Rightarrow \|\hat{\boldsymbol{M}} - \boldsymbol{M}\| \leq \epsilon \sigma^2$$

with probability at least $1 - \delta$. If $\lambda_r(\mathbf{M}) > \epsilon \sigma^2$, then for some orthonormal matrix $\mathbf{Q} \in \mathbb{R}^{r \times r}$,

$$\|\hat{\boldsymbol{W}} - \boldsymbol{Q}\boldsymbol{W}\| \leq \epsilon \sigma^2 (\lambda_r(\boldsymbol{M}) - \epsilon \sigma^2)^{-1}.$$

Meta-learning - Nonlinear

Few-shot learning - Metric

Let $\mathscr{P}_{x,y}$ be the joint distribution of x,y. We introduce population risk \mathcal{L} and empirical risk \mathcal{L}_e based on any single loss function between model prediction and true label.

$$\mathcal{L}(f; \mathbf{P}) = \mathbf{E}_{\mathscr{P}_{x,y}} \operatorname{loss}(f(\mathbf{P}\mathbf{x}), y)$$
$$\mathcal{L}_{e}(f; \mathbf{P}) = \frac{1}{n} \sum_{i=1}^{n} \operatorname{loss}(f(\mathbf{P}\mathbf{x}_{i}), y_{i}).$$

We make the following assumption on the population risk.

1. \mathcal{L} is L Lipschitz in $\mathbf{P}\mathbf{x}$. 2. $\min_{\mathbf{P}} \mathcal{L}(f; \mathbf{P}) = \mathcal{L}(f; \mathbf{W})$.

Few-shot learning - Metric

Let $\mathscr{P}_{x,y}$ be the joint distribution of x,y. We introduce population risk \mathcal{L} and empirical risk \mathcal{L}_e based on any single loss function between model prediction and true label.

$$\mathcal{L}(f; \mathbf{P}) = \mathbf{E}_{\mathscr{P}_{x,y}} \operatorname{loss}(f(\mathbf{P}\mathbf{x}), y)$$
$$\mathcal{L}_{e}(f; \mathbf{P}) = \frac{1}{n} \sum_{i=1}^{n} \operatorname{loss}(f(\mathbf{P}\mathbf{x}_{i}), y_{i}).$$

We make the following assumption on the population risk.

1. \mathcal{L} is L Lipschitz in $\mathbf{P}\mathbf{x}$. 2. $\min_{\mathbf{P}} \mathcal{L}(f; \mathbf{P}) = \mathcal{L}(f; \mathbf{W})$.

Example: Suppose there are n samples, f is an L-Lipschitz function with range in (0,1). The cross entropy function satisfies the assumptions.

$$\mathcal{L}(f; \mathbf{P}) = -\mathbf{E}_{\mathscr{P}_{\mathbf{x}, \mathbf{y}}}(y \log f(\mathbf{P}\mathbf{x}) + (1 - y) \log(1 - f(\mathbf{P}\mathbf{x})))$$

$$\mathcal{L}_{e}(f; \mathbf{P}) = -\frac{1}{n} \sum_{i=1}^{n} (y_{i} \log(f(\mathbf{P}\mathbf{x}_{i})) + (1 - y_{i}) \log(1 - f(\mathbf{P}\mathbf{x}_{i}))).$$

Few-shot learning

In the few-shot learning phase, suppose $\mathbf{x}, y \sim \mathscr{P}_{\mathbf{x},y}$ satisfy $\mathbf{E}[y \mid \mathbf{x}] = f^*(\mathbf{W}\mathbf{x})$. Let \mathcal{F} be a family of functions as the search space for few-shot learning model. We search for the solution

$$\hat{f}_e = \operatorname{argmin}_{f \in \mathcal{F}} \mathcal{L}_e(f; \hat{\boldsymbol{W}})$$

Few-shot learning - Result

Suppose we have n i.i.d. examples with ground-truth model $f^*(\mathbf{x}) = \phi((\mathbf{W}\mathbf{x})^{\top}\theta^*)$ where $\|\theta^*\| \leq a$. Let \mathcal{F} be the family of functions of \mathbf{x} expressed as $\{\phi((\hat{\mathbf{W}}\mathbf{x})^{\top}\theta) : \|\theta\| \leq a\}$, we solve for

$$\hat{f}_e = \operatorname{argmin}_{f \in \mathcal{F}} \mathcal{L}_e(f; \hat{\boldsymbol{W}})$$

There exist constants c>1, $\delta\in(0,1)$, with probability at least $1-n^{-c+1}-\delta$,

$$\begin{split} & \mathcal{L}(\hat{f}_{e}; \hat{\boldsymbol{W}}) - \mathcal{L}(f^{*}; \boldsymbol{W}) \\ & \leq \frac{caL(\sqrt{r} + \log(n))(1 + \sqrt{\log(1/\delta)})}{\sqrt{n}} + L\sqrt{r}\|\hat{\boldsymbol{W}} - \boldsymbol{W}\|. \end{split}$$

¹bounded norm for Rademacher complexity analysis.