Modelo de clasificación: Suscripción

Samuel Calderon, Kevin Arenas, Jose Torres

1 Introducción

PUCP

1.1 Cargado de librerías

Se decidió usar R en lugar de Python. Para este trabajo solo se necesitan dos librerías. tidyverse para la lectura, limpieza, y análisis de data, y tidymodels para la definición y ejecución de modelos de machine learning.

library(tidyverse)
library(tidymodels)

1.2 Lectura de datos

Al leer los datos, se aprovecha para hacer la limpieza respectiva. En este caso solo se necesita convertir las variables de tipo texto en "factor" (categóricas).

```
# Data de entrenamiento
suscripcion <- read_csv("data/train.csv") |>
    mutate_if(is.character, as.factor)

# Data de test
validacion <- read_csv("data/test_x.csv") |>
    mutate_if(is.character, as.factor)
```

Las funciones de R suelen soportar el operador pipe (| >), que permite pasar el output de una función como primer parámetro de la siguiente.

O PUCP

4/28

```
dim(suscripcion)

[1] 32538 22

dim(validacion)

[1] 12769 21
```

Se puede ver las dimensiones de cada conjunto de datos.

1.3 Flujo de trabajo de tidymodels

Figure 1

1.4 Data splitting

Dividimos suscripcion en un conjunto de entrenamiento (75%) y uno de test (25%).

```
set.seed(42)

data_split <- initial_split(suscripcion, prop = 3/4)

train_data <- training(data_split)
test_data <- testing(data_split)</pre>
```

Alternativamente, preparamos un conjunto para validación cruzada de 10 sub-grupos. Estratificamos según la variable dependiente para evitar demasiado *inbalance*. Esto se utilizará más adelante.

```
folds_cv <- vfold_cv(suscripcion, strata = `Subscripcion Deposito`, v = 10)</pre>
```

2 Regresión logística

2.1 Plantilla de preprocesamiento

Para el pre procesamiento empezamos definiendo la fórmula del modelo. El punto hace referencia a todo el resto de variables.

```
my_recipe <- recipe(`Subscripcion Deposito` ~ ., data = suscripcion) |>
    update_role(Id, Duracion, new_role = "ignored") |>
    step_dummy(all_nominal_predictors()) |>
    step_normalize(all_numeric_predictors()) |>
    step_zv(all_predictors())
```

Esta plantilla se va a utilizar también para otros modelos.

2.2 Plantilla de modelo

Para el primer ejemplo, usamos la regresión logística. set_engine() y set_mode() permiten personalizar la implementación del modelo.

```
my_model <- logistic_reg() |>
   set_engine("glm") |>
   set_mode("classification")
```

2.3 Definición de workflow

Para poder combinar ambas plantillas, las agregamos a un mismo workflow.

```
my_workflow <- workflow() |>
  add_model(my_model) |>
  add_recipe(my_recipe)
```

2.4 Fit

Para entrenar el modelo, tomamos el workflow como punto de partida, y le hacemos fit() usando la data de entrenamiento.

```
suscripcion_fit <- my_workflow |>
  fit(data = train_data)
```

El siguiente gráfico muestra las 12 variables con mayores coeficientes.

O PUCP

12/28

► Code

2.5 Validación

Para esto, mostramos el cálculo del AUC y su gráfico correspondiente. Esto se obtiene a partir de hacer predicciones con el modelo entrenado, usando la data de test.

► Code

.metric .estimator .estimate roc_auc binary 0.7773887

► Code

3 Prueba con otros modelos

3.1 Workflow múltiple

Se mantiene la plantilla de pre-procesamiento, pero creamos un listado de plantillas de modelos. Para poder, comparar, incluímos la plantilla de regresión logística.

```
nuevo_workflow <- workflow_set(
    preproc = list(
        recipe = my_recipe
),
    models = list(
        logistica = logistic_reg(mode = "classification"),
        arbol_decision = decision_tree(mode = "classification"),
        random_forest = rand_forest(mode = "classification"),
        boosted_tree = boost_tree(mode = "classification")
)
)</pre>
```

3.2 Entrenamiento múltiple

Para el entrenamiento, se usa el workflow múltiple y el split hecho para cross validation.

```
set.seed(42) # volvemos a usar semilla por el random forest

suscripcion_fit_multiple <- workflow_map(
   object = nuevo_workflow,
   fn = "fit_resamples",
   resamples = folds_cv, # generado en el data splitting
   control = control_resamples(save_workflow = TRUE),
   verbose = TRUE
)</pre>
```

Con ello, se obtuvieron 10 resultados para evaluar cada modelo.

El siguiente gráfico muestra el desempeño según tres indicadores.

► Code

También es posible mirar a los promedios (con barra de error) de los tres indicadores. En general, los cuatro están bastante cercanos entre sí, y en varios casos sus errores se superponen.

► Code

Nos podemos concentrar en el promedio del indicador **AUC** para elegir el modelo. En este caso, *boosted_tree* ocupa el primer lugar.

► Code

modelo	roc_auc	rank
boosted_tree	0.7975378	1
logistica	0.7858089	2
random_forest	0.7840145	3
arbol_decision	0.7029308	4

4 Entrenamiento final

PUCP

4.1 Nuevo entrenamiento

Ahora que sabemos que boosted_tree tuvo mejor desempeño. Entrenamos el 100% de los datos con este algoritmo.

```
my_boosted_tree <- workflow() |>
  add_recipe(my_recipe) |>
  add_model(boost_tree(mode = "classification")) |>
  fit(data = suscripcion)
```

42 Predicciones

Para predecir, usamos la función `augment()`, que añade las predicciones al como nuevas columnas en el conjunto de datos

```
resultados <- my boosted tree |>
           augment(validacion)
# A tibble: 12,769 \times 24
                                     Id Edad Trabajo
   .pred class .pred no .pred si
                                                           `Estado Civil` Educacion
                            <dbl> <dbl> <fct>
   <fct>
                   <dbl>
                                                          <fct>
                                                                          <fct>
                  0.914
                           0.0859
                                            30 trabajado... casado
 1 no
                                                                          primaria...
 2 no
                  0.952
                           0.0482
                                            39 servicios soltero
                                                                          secundar...
 3 no
                  0.931
                           0.0692
                                            25 servicios casado
                                                                          secundar...
                           0.0596
                  0.940
                                            38 servicios casado
 4 no
                                                                          primaria...
 5 no
                  0.958
                           0.0419
                                            47 administr... casado
                                                                          grado un...
                  0.739
                                            32 servicios soltero
                           0.261
 6 no
                                                                          grado_un...
 7 no
                  0.652
                           0.348
                                            32 administr... soltero
                                                                          grado_un...
                  0.958
 8 no
                           0.0424
                                            41 emprended... casado
                                                                          grado un...
                                            31 servicios divorciado
 9 no
                  0.952
                           0.0479
                                                                          curso pr...
                  0.972
                           0.0280
                                            35 trabajado... casado
10 no
                                                                          primaria...
# i 12,759 more rows
# i 16 more variables: `Credito por Defecto` <fct>, `Prestamo Vivienda` <fct>,
   `Prestamo Personal` <fct>, Contacto <fct>, Mes <fct>, `Dia Semana` <fct>,
```


.

4.3 Guardar resultados

Guardamos los resultados en un nuevo archivo para ser subidos a Kaggle.

```
resultados |>
  select(Id, `Subscripcion Deposito` = .pred_si) |>
  write_csv("resultados.csv")
```

4.4 Posibles mejoras

- Tunear los parámetros del modelo
- Selección de características post comparación de modelos
- Limpieza/imputación de datos En realidad se predijo con todos los modelos presentados. En la plataforma, los resultados de random_forest obtuvieron mayor puntaje.

Gracias!

