МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики Направление подготовки: «Фундаментальная информатика и информационные технологии»

ОТЧЕТ

Методы численного интегрирования

Выполнил: студе	Выполнил: студент группы 382006-		
Сухарев Артём Андреевич			
Эгамов Альберт Исмаилович	подпись		
Stamob i biboopi i iomanii obii i	подпись		

Нижний Новгород

Содержание

Введение	3
Постановка задачи	4
Способ задания функции	5
Формулы и методы численного интегрирования	7
Формула Симпсона	7
Формула «трех восьмых»	8
Четырехинтервальная формула Боде	8
Производство вычислений	10
Представление результатов и используемые технические средства	11
Результаты работы	13
Литература	14
Исхолный кол	15

Введение

Задача численного интегрирования заключается в нахождении значения определенного интеграла, с помощью некоторых методов.

Необходимость применять подобное вычисление интеграла возникает в нескольких случаях: когда подынтегральная функция не задана аналитически, когда для данной функции невозможно найти первообразную для вычисления значения по формуле Ньютона-Лейбница или даже когда вычисление этой первообразной очень сложно и трудозатратно.

Сами же сферы применения настолько разнообразны (от применения в исследованиях и разного рода вычислений и симуляций в физике и химии, до некоторых аспектов экономики и анализа данных), что потребность в данных методах невозможно переоценить.

Постановка задачи

При выполнении данной лабораторной работы я хочу изучить три метода численного интегрирования: формула Симпсона(метод парабол), формула «трех восьмых» (частный случай метода Ньютона-Котеса) и четырехинтервальную формулу Боде - а так же какую точность могут обеспечить данные методы при вычислении ими реальных функций для разных разбиений отрезка интегрирования.

Для этого мне необходимо реализовать программу на языке программирования python, в которой для разного количества отрезков в разбиении я смогу оценить среднюю относительную погрешность на некотором наборе функций.

Способ задания функции

Во-первых, когда мы определились, что мы будем рассматривать набор случайных функций, нам необходим способ их задания. В силу необязательности рассмотрения всех возможных функций, можно взять какойнибудь шаблон функции с некоторым количеством параметров. Тем не менее для большей объективности, по возможности нужно скомбинировать сразу несколько. Для этих целей я возьму следующий шаблон:

$$f(x) = a * \sin(b * x) + c * \cos(d * x) + e + f * x + g * x^{2} + h * x^{3} + k * x^{4}$$

В данном случае параметрами будут a,b,c,d,e,f,g,h,k (9 штук) и при разных значениях мы будем получать различные функции, и на разных участках х доминировать(задавать поведение) будут разные из них. В коде это можно реализовать следующим образом:

```
def gen_func():
   arr=[]
   for i in range(9):
       arr.append(random.uniform(-10,10))
   return arr
def function(arr,x):
   res = 0.0
   res += arr[0]*sin(arr[1]*x)
   res += arr[2]*cos(arr[3]*x)
   res += arr[4]+arr[5]*x+arr[6]*(x**2)+arr[7]*(x**3)+arr[8]*(x**4)
   return res
def antiderivative_function(arr,x):
   res = 0.0
   res += -arr[0]*cos(arr[1]*x)/arr[1]
   res += arr[2]*sin(arr[3]*x)/arr[3]
   res += arr[4]*x+arr[5]*(x**2)/2+arr[6]*(x**3)/3+arr[7]*(x**4)/4+arr[8]*(x**5)/5
   return res
```

То есть функция будет задаваться набором из 9 чисел, и по данному набору мы легко можем вычислить значение функции и её первообразную в какой-то точке.

Во-вторых, в большинстве случаев нам дается не сама функция, а лишь набор ее точек (абсцисс и ординат), и для большей реалистичности численный интеграл нужно вычислять именно по сформированному набору точек.

Для создания этого набора, нам нужно определиться с количеством интервалов, которые мы будем рассматривать и границы самого отрезка. Не уменьшая общности можно рассматривать отрезок [-40,40]. Но проблема может возникнуть с количеством интервалов, не вдаваясь пока в подробности

(это будет представлено далее) можно сказать, что одно вычисление для каждого метода учитывает разное число интервалов (2, 3 или 4), поэтому нам нужно брать только такое количество интервалов, которое кратно всем. Несложно заметить, что для этого нужно брать только кратные 12 количества (12, 24, 36 и т.д.).

Когда же мы определились со всеми нужными значениями, можно преступить к вычислению, а конкретно если границы отрезка [1,r], а число интервалов n, то точки будут иметь следующие значения абсцисс:

$$X = l + i * \frac{r - l}{n}, i = \overline{1, n + 1}$$

```
def gen_vector(arr,1,r,n):
    vector=[]
    len = (r-1)/n
    for i in range(n+1):
        vector.append(function(arr,1+i*len))
    return vector
```

Формулы и методы численного интегрирования

Формула Симпсона

Этот метод подсчета является двухинтервальным, то есть для нахождения значения нужно разбить отрезок на два интервала тремя точками. Поскольку нам может быть дано большее число интервалов и точек, то их можно разбить на блоки по нужному нам количеству и считать на каждом блоке по 2 интервала отдельно, а позже просуммировать полученные значения.

Теперь рассмотрим один блок, состоящий из двух интервалов:

Пусть у нас есть 3 точки x_i , x_{i+1} и x_{i+2} и посчитанные в них значения f_i , f_{i+1} и f_{i+2} . Тогда интеграл в этом блоке можно посчитать следующим образом:

$$I_i = \int_{x_i}^{x_{i+2}} f(x) dx = rac{h}{3} (f_i + 4 * f_{i+1} + f_{i+2})$$
, где $h = rac{r-l}{n}$ длина интервала

Сумма по всем $\frac{n}{2}$ блокам и даст нам интеграл, который мы хотим найти:

$$I = \sum_{i=0}^{\frac{n}{2}-1} I_{i*2}$$

```
def simpson(arr,n,len):
    res = 0.0
    for i in range(0,(n+1)-2,2):
        res += arr[i] + 4*arr[i+1] + arr[i+2]
    res = res * len * 2 / 6
    return res
```

Формула «трех восьмых»

Это трехинтервальная формула на четырехточечном шаблоне. В данном случае блок будет рассматриваться из трех интервалов.

Итак теперь у нас есть 4 точки x_i , x_{i+1} , x_{i+2} и x_{i+3} и посчитанные в них значения f_i , f_{i+1} , f_{i+2} и f_{i+3} . Тогда интеграл в этом блоке можно посчитать следующим образом:

$$I_i = \int_{x_i}^{x_{i+3}} f(x) dx = rac{3h}{8} (f_i + 3*f_{i+1} + 3*f_{i+2} + f_{i+3}),$$
 где $h = rac{r-l}{n}$ длина интервала

А также поскольку количество блоков изменится, то и сумма тоже:

$$I = \sum_{i=0}^{\frac{n}{3}-1} I_{i*3}$$

```
def three_eights(arr,n,len):
    res = 0.
    for i in range(0,(n+1)-3,3):
        res += arr[i] + 3*arr[i+1] + 3*arr[i+2] + arr[i+3]
    res = res * len * 3 / 8
    return res
```

Четырехинтервальная формула Боде

Это четырехинтервальная формула на пятиточечном шаблоне. То есть в данном случае блок будет рассматриваться из четырех интервалов.

В данной формуле у нас есть 5 точек $x_i, x_{i+1}, x_{i+2}, x_{i+3}$ и x_{i+4} и посчитанные в них значения $f_i, f_{i+1}, f_{i+2}, f_{i+3}$ и f_{i+4} . Тогда интеграл в этом блоке можно посчитать следующим образом:

$$I_i = \int_{x_i}^{x_{i+4}} f(x) dx = rac{4h}{90} (7*f_i + 32*f_{i+1} + 12*f_{i+2} + 32*f_{i+3} + 7*f_{i+4}),$$
 где $h = rac{r-l}{n}$ длина интервала

Аналогично изменится и сумма:

$$I = \sum_{i=0}^{\frac{n}{4}-1} I_{i*4}$$

```
def five_points(arr,n,len):
    res = 0.0
    for i in range(0,(n+1)-4,4):
        res += 7*arr[i] + 32*arr[i+1] + 12*arr[i+2] + 32*arr[i+3] + 7*arr[i+4]
    res = res * len * 4 / 90
    return res
```

Производство вычислений

Для проведения сверок с верным значением определенного интеграла нам необходимо его вычислить, а так как у нас определена функция вычисления первообразной в точке, то можно вычислить интеграл с помощью формулы Ньютона-Лейбница.

```
def right_integr(arr,l,r):
    return antiderivative_function(arr,r)-antiderivative_function(arr,l)
```

Теперь можем создать функцию, которая проводит серию тестов и вычисляет среднюю относительную погрешность. Создадим выборку из 5000 тестовых случайных функций и посчитаем эту погрешность:

$$R = \frac{\sum_{i=0}^{5000} \left| \frac{best - curr}{best} \right|}{5000}$$

```
def calc_for_num_lines(n,flag):
   k=5000
   a,b,c = 0,0,0
   r = 40
   1 = -40
   for i in range(k):
       arr = gen_func()
       vector = gen_vector(arr, 1, r, n)
        best = right_integr(arr, 1, r)
        simp = simpson(vector, n, (r-1)/n)
        te = three_eights(vector, n, (r-1)/n)
        fp = five_points(vector, n, (r-1)/n)
        a+=abs((simp-best)/best)
       b+=abs((te-best)/best)
        c+=abs((fp-best)/best)
   a/=k
   b/=k
   c/=k
   if flag==1:
       return a
   if flag==2:
       return b
   if flag==3:
       return c
```

На вход функции так же подадим специальный флаг, который будет показывать какой именно из результатов нам нужен.

Представление результатов и используемые технические средства

Для визуализации результатов я загнал полученные данные в виде графика и таблицы.

```
x = arange(24, 181, 12)
simpsonarr = [calc_for_num_lines(i,1) for i in x]
tearr * [calc_for_num_lines(i,2) for i in x]
fparr = [calc_for_num_lines(i,3) for i in x]

plt.figure(figsize=(10, 5))
plt.plot(x, simpsonarr, label='Simpson')
plt.plot(x, simpsonarr, label='Five_points')
plt.plot(x, fparr, label='Five_points')
plt.plot(x, fparr, label='Five_points')
plt.legend(loc='best', fontsize=12)
plt.show()

table * PrettyTable(["Kon-mo merephanoe","Формула Симпсона","Формула \"трех мосьмых\"","Четырехинтернальная формула Боде"])
for i in range(len(simpsonarr)):
    table.add_row([x[i],simpsonarr[i],tearr[i],fparr[i]])
print(table)
```

При запуске программы будет показан график с полученными значениями средней относительной погрешности для каждого метода.

Так же данные будут выведены в таблицу, так как график не может в полном масштабе отобразить погрешности при больших количествах интервалов.

Кол-во интервалов	Формула Симпсона	Формула "трех восьмых"	Четырехинтервальная формула Боде
24	3.27688175245744e-05	7.27945369342977e-05	8.391216491109294e-07
36	6.585011877407569e-06	1.4418558939355947e-05	1.1099125820275123e-06
48	2.1696087329836253e-06	4.62785253407116e-06	4.708564557610132e-07
60	1.04969600065069e-06	5.4210416911836384e-06	5.516201475522363e-07
72	8.466943886830738e-07	1.0694338001266955e-06	6.755035750241294e-07
84	5.662475808408027e-07	8.774902722455966e-07	1.8402912193493145e-06
96	3.387708242885494e-07	4.252611658969434e-07	3.0997665602997117e-07
108	4.480305825617925e-07	5.293082567059864e-07	2.6218665723184286e-07
120	2.500952573386287e-07	2.3502488191328841e-07	1.678558795928935e-07
132	9.821448090916796e-08	1.231577002269926e-07	1.1191774626196133e-07
144	8.7804822045704e-08	9.39885493717251e-08	7.940907947197127e-08
156	2.1677096264138565e-07	7.679487620077179e-08	1.1980167161455374e-07
168	5.0783227606130764e-08	7.589960449397044e-08	5.2395052173942296e-08
180	5.164517833525874e-08	5.574347270254278e-08	6.091204933850562e-08

Так же стоит заметить, что для получения случайных значений, создания таблицы и графика я использовал дополнительные модули. А именно модули numpy, math, matplotlib и prettytable, поэтому при необходимости запуска стоит убедится, что они у вас установлены.

Так же стоит учесть, что набор функций для тестов большой и для выполнения программы нужно определенное время. На моем компьютере это занимает около минуты(если вам нужна быстрая программа снизьте количество тестов, то есть значение k).

Результаты работы

По проведенным результатам можно увидеть, что даже при небольших количествах интервалов и точек можно достичь хорошей оценки интеграла.

Так же по данным таблицы и графика можно увидеть, что формула Боде дает меньшую погрешность по сравнению с формулой Симпсона, а формула Симпсона лучшую погрешность по сравнению с методом «трех восьмых». Причем данная тенденция распространяется при всех количествах интервалов.

Отсюда можно сделать вывод, что самый вариант из этих трех это четырехинтервальная формула Боде.

Литература

- 1) Лекция.Методычисленногоинтегрирования.http://dep805.ru/education/portal/4/to/l13_4tochm.pdf
- 2) https://cyclowiki.org/wiki/Формула_трёх_восьмых
- 3) https://ru.wikipedia.org/wiki/Численное интегрирование

Исходный код

```
from numpy import random, arange
from math import sin, cos
import matplotlib.pyplot as plt
from prettytable import PrettyTable
# function = arr[0] * sin(arr[1]*x) + arr[2] * cos(arr[3]*x) +
        + arr[4] + arr[5]*x + arr[6]*x^2 + arr[7]*x^3 + arr[8]*x^4
def gen_func():
  arr=[]
  for i in range(9):
    arr.append(random.uniform(-10,10))
  return arr
def function(arr,x):
  res = 0.0
  res += arr[0]*sin(arr[1]*x)
  res += arr[2]*cos(arr[3]*x)
  res += arr[4]+arr[5]*x+arr[6]*(x**2)+arr[7]*(x**3)+arr[8]*(x**4)
  return res
def antiderivative_function(arr,x):
  res = 0.0
  res += -arr[0]*cos(arr[1]*x)/arr[1]
  res += arr[2]*sin(arr[3]*x)/arr[3]
  res += arr[4]*x+arr[5]*(x**2)/2+arr[6]*(x**3)/3+arr[7]*(x**4)/4+arr[8]*(x**5)/5
  return res
```

```
def gen_vector(arr,l,r,n):
  vector=[]
  len = (r-l)/n
  for i in range(n+1):
    vector.append(function(arr,l+i*len))
  return vector
def right_integr(arr,l,r):
  return antiderivative_function(arr,r)-antiderivative_function(arr,l)
def simpson(arr,n,len):
  res = 0.0
  for i in range(0,(n+1)-2,2):
    res += arr[i] + 4*arr[i+1] + arr[i+2]
  res = res * len * 2 / 6
  return res
def three_eights(arr,n,len):
  res = 0.
  for i in range(0,(n+1)-3,3):
    res += arr[i] + 3*arr[i+1] + 3*arr[i+2] + arr[i+3]
  res = res * len * 3 / 8
  return res
def five_points(arr,n,len):
  res = 0.0
  for i in range(0,(n+1)-4,4):
    res += 7*arr[i] + 32*arr[i+1] + 12*arr[i+2] + 32*arr[i+3] + 7*arr[i+4]
```

```
res = res * len * 4 / 90
  return res
def calc_for_num_lines(n,flag):
  k=5000
  a,b,c = 0,0,0
  r = 40
  I = -40
  for i in range(k):
    arr = gen_func()
    vector = gen_vector(arr, I, r, n)
    best = right_integr(arr, I, r)
    simp = simpson(vector, n, (r-l)/n)
    te = three_eights(vector, n, (r-l)/n)
    fp = five_points(vector, n, (r-l)/n)
    a+=abs((simp-best)/best)
    b+=abs((te-best)/best)
    c+=abs((fp-best)/best)
  a/=k
  b/=k
  c/=k
  if flag==1:
    return a
  if flag==2:
    return b
  if flag==3:
```

return c

```
x = arange(24, 181, 12)
simpsonarr = [calc_for_num_lines(i,1) for i in x]
tearr = [calc_for_num_lines(i,2) for i in x]
fparr = [calc_for_num_lines(i,3) for i in x]
plt.figure(figsize=(10, 5))
plt.plot(x, simpsonarr, label='Simpson')
plt.plot(x, tearr, label='Three_eights')
plt.plot(x, fparr, label='Five_points')
plt.legend(loc='best', fontsize=12)
plt.show()
table = PrettyTable(["Кол-во интервалов","Формула Симпсона","Формула \"трех
восьмых\"","Четырехинтервальная формула Боде"])
for i in range(len(simpsonarr)):
  table.add_row([x[i],simpsonarr[i],tearr[i],fparr[i]])
print(table)
```