SQL Request from Yandex Practicum course project.

Implementation in Python with usage of visualization.

Cohort analysis of churn rate for users who registered in 2019

```
In [1]:
        import pandas as pd
         %load ext sql
         %sql postgresql://postgres:sqltest123@localhost/test
In [ ]: %%sql result <<</pre>
        WITH
        prof AS ( SELECT DISTINCT tso.user id,
                   DATE TRUNC('month', MIN(tse.event time))::date AS cohort start
                   FROM tools_shop.orders AS tso
                   LEFT JOIN tools_shop.events AS tse ON tso.user_id = tse.user_id
                   GROUP BY 1),
         sess AS ( SELECT cohort start,
                   DATE_TRUNC('month', tse.event_time)::date AS session_dt,
                   COUNT(DISTINCT tse.user_id) AS c_users
                   LEFT JOIN tools shop.events AS tse ON prof.user id = tse.user id
                   GROUP BY 1,2),
         fin AS ( SELECT cohort start::varchar,
                  session dt::varchar,
                  c users,
                  LAG(c users) OVER(PARTITION BY cohort start ORDER BY session dt) AS
                  FROM sess )
         SELECT *,
        ROUND((1 - c users::numeric/p users::numeric)*100*-1 , 2)::numeric AS churn
        WHERE cohort_start >= '2019-01-01'
         AND cohort start < '2020-01-01'
        ORDER BY 1,2
In [3]: #displaying results for SQL request
         df = result.DataFrame()
         display(df.head(6))
           cohort_start session_dt c_users p_users churn_rate
             2019-01-01 2019-01-01
                                     306
                                             NaN
                                                       None
             2019-01-01 2019-02-01
                                            306.0
                                                      -79.74
         2
             2019-01-01 2019-03-01
                                      63
                                             62.0
                                                        1.61
         3
             2019-01-01 2019-04-01
                                             63.0
                                      42
                                                      -33.33
         4
             2019-01-01 2019-05-01
                                      40
                                             42.0
                                                       -4.76
             2019-01-01 2019-06-01
                                      29
         5
                                             40.0
                                                      -27.50
```

```
cohort_group = df['cohort_start']
cohort_month = df['session_dt']
```

In [4]: #preparing table with required information for visualization

	cohort_group	cohort_month	cohort_users	churn_rate
0	2019-01-01	2019-01-01	306	0.00
1	2019-01-01	2019-02-01	62	-79.74
2	2019-01-01	2019-03-01	63	1.61
3	2019-01-01	2019-04-01	42	-33.33
4	2019-01-01	2019-05-01	40	-4.76
5	2019-01-01	2019-06-01	29	-27.50

```
In [5]: def cohort_period(df2):
    # changing cohort_sessions type into periods
    df2['cohort_month'] = np.arange(len(df2)) + 0
    return df2

import numpy as np
    cohorts_df = df2.groupby('cohort_group').apply(cohort_period)
    cohorts_df.head(6)
```

Out[5]: cohort_group cohort_month cohort_users churn_rate 0 2019-01-01 0 306 0.00 2019-01-01 62 -79.74 2019-01-01 2 63 1.61 3 2019-01-01 3 42 -33.33 4 2019-01-01 4 40 -4.76 2019-01-01 29 -27.50

```
In [6]: #first visualization is aimed at number of active users among cohorts
        import seaborn as sb
        import matplotlib.pyplot as plt
        cohort month = cohorts df['cohort month']
        churn_r1 = list(zip(cohort_group, cohort_month, cohort_users))
        df3 = pd.DataFrame(churn r1, columns = ['cohort group',
                                                  'cohort month',
                                                  'cohort users'])
        df heatmap = df3.pivot('cohort group',
                                'cohort month',
                                'cohort users')
        plt.figure(figsize=(20,10), dpi=80)
        sb.heatmap(df heatmap,
                    annot=True,
                    robust=True,
                    cmap='Blues',
                    fmt='',
```

Heatmap of users activity among cohorts

Cohort analysis of users activity															
2019-01-01 -	306.0	62.0	63.0	42.0	40.0	29.0	12.0	3.0	1.0	1.0	1.0	1.0			
2019-02-01 -	296.0	75.0	42.0	34.0	37.0	32.0	11.0	2.0	1.0	1.0					
2019-03-01 -	379.0	79.0	74.0	68.0	56.0	38.0	8.0	5.0	2.0	1.0	1.0	2.0			
2019-04-01 -	318.0	91.0	54.0	34.0	36.0	25.0	7.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2019-05-01 -	348.0	71.0	51.0	48.0	36.0	30.0	12.0	1.0	1.0	1.0					
Ohor tr 5013-02-01 - 5013-02-01 - 5013-02-01 -	373.0	95.0	69.0	54.0	37.0	24.0	11.0	1.0	1.0	1.0	3.0				
2019-07-01 -	371.0	92.0	55.0	53.0	50.0	25.0	7.0	1.0	1.0						
2019-08-01 -		95.0	55.0	55.0	51.0	31.0	11.0	3.0	1.0	1.0	1.0	1.0			
2019-09-01 -	370.0	84.0	62.0	54.0	42.0	30.0	13.0	2.0	1.0	1.0					
2019-10-01 -	407.0	79.0	81.0	61.0	35.0	34.0	17.0	4.0	1.0	2.0					
2019-11-01 -	402.0	101.0	61.0	45.0	49.0	42.0	16.0	2.0	1.0	1.0					
2019-12-01 -	374.0	88.0	54.0	64.0	38.0	27.0	26.0	2.0	1.0	1.0	1.0	1.0			
	ò	i	2	å	4	5	ė Co	[†] ohort perio	s d	9	10	11	12	13	14

Churn rate is the rate at which customers stop doing business with a company over a given period of time

