EDS241: Assignment 1

Halina Do-Linh

01/19/2022

For Assignment 1, we are exploring the variables CensusTract, TotalPopulation, CaliforniaCounty, LowBirthWeight, PM25, and Poverty from CalEnviroScreen 4.0, a mapping and data tool produced by the California Office of Environmental Health Hazards Assessment (OEHHA). The data comes from a variety of sources and covers all 8,035 census tracts in California.

Read in and Clean data

The following code loads and cleans the data.

Question A

The code chunk below shows how to produce the average concentration of PM2.5 across all census tracts in California.

```
mean_pm25_all <- mean(ces_clean$pm2_5)</pre>
```

Answer: The average concentration of PM2.5 across all census tracts in California is 10.15.

Question B

The code chunk below shows how to produce the county with the highest level of poverty in California.

```
max_poverty_county <- ces_clean %>%
  filter(poverty != is.na(poverty)) %>%
  group_by(california_county) %>%
  summarize(weighted_mean_poverty = weighted.mean(poverty, total_population))
```

Answer: The county with the highest level of poverty in California is Tulare.

Question C

The code chunks below show how to produce histograms of LowBirthWeight and PM25.

```
# histogram PM2.5
pm2_5_hist <- ces_clean %>%
    ggplot(aes(x = pm2_5)) +
    geom_histogram() +
    theme_cowplot(14) +
    labs(x = expression(paste("PM 2.5 ", "(", mu, "g/", cm^3, ")")),
        y = "")
```

Left: Distribution of Percentage of Low Birth Weight

Right: Distribution of PM 2.5 ($\mu g/cm^3$)

Question D

The code chunk below shows how to produce an OLS regression of LowBirthWeight on PM25.

$$lowbirthweight_i = \beta_0 + \beta_1 pm 2.5_{1i} + u_i \tag{1}$$

	(1)	
(Intercept)	3.801 ***	
	(0.089)	
$pm2_5$	0.118 ***	
	(0.008)	
N	7808	
R2	0.025	
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$.		

Answer: The estimated β_1 slope coefficient is 0.118 and its heteroskedasticity-robust standard error is 0.008. The estimated β_1 slope coefficient tells us that for every 1 $\mu g/cm^3$ increase in PM2.5 we expect the percentage of low birth weights to increase by 0.118. The effect of PM25 on LowBirthWeight is statistically significant at a significance level of 1% and therefore at 5% as well.

Question F

The code chunk below shows how to produce a multiple linear regression of LowBirthWeight with PM25 and poverty as explanatory variables.

$$lowbirthweight_i = \beta_0 + \beta_1 pm 2.5_{1i} + \beta_2 poverty_{2i} + u_i$$
(2)

model2 <- lm_robust(formula = low_birth_weight ~ pm2_5 + poverty, data = ces_clean)
huxreg(model2)</pre>

	(1)	
(Intercept)	3.544 ***	
	(0.085)	
pm2_5	0.059 ***	
	(0.008)	
poverty	0.027 ***	
	(0.001)	
N	7805	
R2	0.117	

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

Answer: The estimated β_2 coefficient on poverty tells us that for every 1% increase in poverty we expect the percentage of low birth weight to increase by 0.027. The estimated β_1 coefficient on PM 2.5 went down by half compared to the estimated β_1 coefficient in model1 from Question D. This is due to omitted variables bias. And in this case, model1 from Question D was exaggerating the effect of PM 2.5 since model2 shows that poverty also has a significant effect on LowBirthWeight.

Question G

The code chunk below is using hypothesis testing to test the null hypothesis that the effect of PM25 is equal to the effect of poverty based on model2.

```
# test that pm2_5 = poverty or pm2_5 - poverty = 0
linearHypothesis(model2, c("pm2_5=poverty"), white.adjust = "hc2")
```

Res.Df	Df	Chisq	Pr(>Chisq)
7.8e+03			
7.8e+03	1	13.5	0.000243

Answer: We reject the null hypothesis that the effect of PM25 is equal to the effect of poverty because the p-value is statistically significant at the 1% significance level.