

دانشگاه تهران پردیس دانشکدههای فنی دانشکدهٔ برق و کامپیوتر

مخابرات ديجيتال

گزارش تمرین کامپیوتری ۲

سيد عليرضا جاويد

۸۱۰۱۹۸۳۷۵

استاد

دكتر ربيعي

۱ اردیبهشت ۱۴۰۱

فهرست مطالب

١																									,	الب	مط	ت	رس	(
۲															I	Ra	ais	ec	1-	Co	osi	ne	ں ج	بالس	د پ	تولي		,	1	
٣																			(الى	رس	ل ا	گناز	سيًّ	د ،	تولي		١	1	
٣																	A١	W	G	Ν	ال	کان	ی آ	باز	س ر	مدر		۲	•	
٣																				ها	مبل	س	ی	ساز	ئار،	آشك		١	5	
۴																			١	بط	<u>-</u> ر	مال	حت	ا ا	اسب	مح		Č)	
۵											,	یگ	د	ی	يا	۵,	β	ای	بر	بى	نهاب	ج ذ	تاي	ه ن	اسب	مح		9	>	
٩																			,	٠.	، گ	۔ حه	نتد	9 4	سا	مقا		١	/	

۱ تولید یالس Raised-Cosine

ابتدا برای پارامتر های به شرح زیر نتایج را بدست آورده و سپس مطابق خواسته انتهایی به ازای β های دیگر نیز تکرار کرده و مقایسه و نتیجه گیری می کنیم.

$$\beta=0.5$$
 , $T=1$, $interval=12T$, $F_s=10$, $\epsilon=[0~0.1T~0.2T]$

با استفاده از تابع كمكي RC_pulse.m مطابق پيوست و استفاده از تعريف زير براي پالس

$$p_R(t) = \begin{cases} sinc(\frac{t}{T}) \times \frac{cos(\frac{\pi\beta t}{T})}{1 - (\frac{2\beta t}{T})^2} & t \neq \pm \frac{T}{2\beta} \\ \frac{\pi}{4} \times sinc(\frac{1}{2\beta}) & t = \pm \frac{T}{2\beta} \end{cases}$$
(1)

شبیه سازی را در متلب انجام داده و نتیجه زیر را بدست می آوریم.

 $\beta=0.5$ شکل ۱: پالس های تولید شده برای

۲ تولید سیگنال ارسالی

برای تولید modulated_symbols ابتدا از الگوریتم زیر بهره می بریم.

```
for i=1:length(bits)
    if ( bits(1,i) == 1 )
    modulated_symbols(1, i) = 1 ;
    else
    modulated_symbols(1, i) = -1;
    end
    end
```

سیس با upsample کردن به کمک راهنمایی سوال در انتها با

```
1 for i = 1:3
2 transmitted_signal(i,:) = conv(upsampled_symbols, pulse(i,:));
3 end
```

مى توانيم سيگنال ارسالى (transmitted_signal) را بدست آوريم.

۳ مدل سازی کانال AWGN

مطابق فرض سوال داريم:

$$SNR = \frac{1}{\eta} \quad \rightarrow \quad \eta = \frac{1}{SNR}$$

همچنین باید نویز تولید شده توسط تابع randn را در $\frac{\eta}{2}$ ضرب کنیم.

از آنجایی که سایز بردار نویز و η متناسب نیست ابتدا باید به کمک توابع مناسب متلب این دو را هم سایز کنیم. برای این کار از کد زیر بهره می بریم

```
noise = randn(1,length(transmitted_signal(1,:)));
noise = diag(sqrt(eta./2))*repmat(noise,11,1);
received_signal1 = repmat(transmitted_signal(1,:),11,1)+noise;
received_signal2 = repmat(transmitted_signal(2,:),11,1)+noise;
received_signal3 = repmat(transmitted_signal(3,:),11,1)+noise;
```

به این شکل توانستیم سیگنال دریافتی (received_signal) را برای هر ۳ حالت بدست آوریم.

۴ آشکارسازی سمبلها

ابتدا به کمک راهنمایی سوال زمان های مشخص برای نمونه برداری را پیدا کرده و در متغیر samples مطابق پیوست استفاده ذخیره می کنیم. همچنین در این قسمت از تابع کمکی symbol_detection.m مطابق پیوست استفاده می کنیم. این تابع با مقایسه مقادیر سیگنال دریافتی با آستانه بهینه مقادیر ۱ و -1 را به سمبل ها نسبت می دهد.

۵ محاسبه احتمال خطا

در نهایت باید احتمال خطا را مطابق تعریف زیر بدست آوریم.

$$P_{e} = \frac{number\ of\ errors}{total\ number\ of\ symbols\ (N)}$$

ابتدا باید سایز modulated_symbols را متناسب کنیم برای این موضوع از تابع repmat استفاده

کرده و تابع بدست آمده را در repeated_symbols ذخیره می کنیم. کرده و تابع بدست آمده را در repeated_symbols ذخیره می کنیم. همچنین در این بخش از تابع کمکی Error_probability.m مطابق پیوست استفاده می کنیم. این تابع با دریافت repeated_symbols و detected_symbols با معیار ارزیابی

repeated_symbols ≠ detected_symbols

تعداد خطا های هر ستون را پیدا می کند و در انتها در N تقسیم می کند. با بدست آوردن احتمال خطا SNR_d در نهایت می توانیم احتمال خطا را به صورت زیر بر حسب مقادیر مختلف SNR_dB رسم نماییم.

 $\beta=0.5$ برای SNR_dB شکل ۲: احتمال خطا برای مقادیر مختلف

محاسبه نتایج نهایی برای β های دیگر δ

برای $\beta=0$ و $\beta=0$ مراحل بالا را تکرار میکنیم اما صرفا نتایح نهایی را در این بخش ذکر می کنیم. برای $\beta=1$:

 $\beta=1$ شکل ۳: پالس های تولید شده برای

 $\beta=1$ برای SNR_dB شکل با: احتمال خطا برای مقادیر مختلف

 $: \beta = 0$ برای

 $\epsilon=0.2T$ (ج) پالس تولیدی با $\beta=0$ شکل ۵: پالس های تولید شده برای

 $\beta=0$ برای SNR_dB شکل و: احتمال خطا برای مقادیر مختلف

۷ مقایسه و نتیجه گیری

شكل ٧: تمام احتمال خطا و پالس هاي توليد شده

با دقت در شکل ۷ می توان مشاهدات زیر را بدست آورد:

- ۱. ابتدا مشاهده می شود برای Roll-off factors یا β کوچکتر، ریپل و اعوجاج های بیشتری در شکل پالس RC داریم.
- Y. برای Roll-off factors یا β کوچکتر حساسیت نسبت به خطای نمونه برداری بیشتر است. به صورتی که برای $\beta=0$ در $\beta=0$ در $\beta=0$ احتمال خطا تقریبا $\delta=0$ برابر شده که در مقایسه با حالت $\beta=0$ که احتمال خطا در $\delta=0$ نهایتا ۱۰۰ برابر می شود، مقدار بسیار بزرگتری است. علت این موضوع در قسمت ۱ نیز اشاره شد، بدلیل ریپل های بیشتر پالس RC در حالت با $\delta=0$ تابع دارای تغییرات تیز تری است و کمی خطای نمونه برداری می تواند مقدار ISI را به مقدار زیادی افزایش داده و موجب احتمال خطای بزرگی شود.
- فایل متلب مربوط به این تمرین در پیوست به نام ca2_simulation.mlx موجود می باشد. همچنین تابع های کمکی معرفی شده در گزارش نیز با نام های گفته شده در انتهای این فایل پیوست وجود دارد.