Math101 Homework 2

Jeff Carney

January 25, 2017

1

It is given that a > 0 and -a < x < a. WTS: $x^2 < a^2$

$$\begin{array}{l} \underline{\text{Case 1:}} \ x > 0 \\ -a < x < a \Rightarrow -a^2 < ax < a^2 \\ -a < x < a \Rightarrow -ax < x^2 < ax \\ \Rightarrow x^2 < ax < a^2 \\ \Rightarrow x^2 < a^2 \end{array}$$

$$\underline{\text{Case 2:}}\ x<0$$

$$\begin{array}{l} -a < x < a \Rightarrow -ax > x^2 > ax \\ -a < x < a \Rightarrow -a^2 < ax < a^2 \Rightarrow a^2 > -ax > -a^2 \end{array}$$

$$-a < x < a \Rightarrow -a < ax < a \Rightarrow a > -ax > -a$$

$$\Rightarrow a^2 > -ax > x^2$$

$$\Rightarrow a^2 > x^2$$

$$\Rightarrow a^2 > x^2$$

$$\underline{\text{Case 3:}} \ x = 0$$

$$0^{2} = 0, a > 0 \Rightarrow a^{2} > 0$$

$$a^{2} > 0^{2}$$

$$a^2 > 0^2$$

$$\therefore a^2 > x^2$$

2

Let a > 0 and suppose that $x^2 < a^2$.

WTS: -a < x < a

Suppose $x \leq a$:

$$ax \geq a^2$$

$$\frac{ax \ge a^2}{ax^2 \ge ax}$$

$$\Rightarrow a^2 \ge x^2$$

 $\begin{array}{l} \Rightarrow a^2 \geq x^2 \\ \Rightarrow \Leftarrow \text{ because we assumed that } x^2 < a^2 \end{array}$

Suppose $x \le -a$:

$$\frac{1}{x^2 \ge -ax \text{ and } -ax \ge a^2}$$

$$\Rightarrow a^2 \ge x^2$$

$$\Rightarrow a^2 > x^2$$

 $\Rightarrow \Leftarrow$ because we assumed that $x^2 < a^2$

3

Let p(n) = a natural number n has the form 3k, 3k + 1, or 3k + 2 for some non-negative integer k.

Base Case: $n_0 = 1$

Let k = 0. 1 = 3k + 1

Inductive Step:

Suppose p(n) is true for some $n \in N$.

WTS: the natural number n+1 has the form 3k, 3k+1, or 3k+2 for some non-negative integer k.

Case 1: n = 3k

$$\Rightarrow n+1=3k+1$$

Case 2: n = 3k + 1 $\Rightarrow n+1=3k+2$

Case 3: n = 3k + 2

 $\Rightarrow n+1=3k+3$

 $\Rightarrow n+1=3(k+1)$ and $(k+1)\in Z_+$

2

4

Prove that $\sqrt{3}$ is irrational

This can be proved by contradiction. Suppose $\sqrt{3}$ is rational. By definition of $\sqrt{x}, \sqrt{3} \ge 0$ and we know $\sqrt{3} > 0$. Thus, $\exists p, q \in N$ s.t. $\sqrt{3} = \frac{p}{q}$ and p and q have no common factors (otherwise we could cancel the common factor). Now $3q^2 = p^2$.

```
\begin{array}{l} \underline{\text{Case 1}} \colon q \text{ is even} \\ \Rightarrow q^2 \text{ is even} \\ \Rightarrow p^2 = 3 \cdot \text{even} \Rightarrow p^2 \text{ is even} \Rightarrow p \text{ is even} \end{array}
```

If p, q are both even then they at least have a common factor of 2. So $\frac{p}{q}$ can be reduced further $\Rightarrow \Leftarrow$ because $\frac{p}{q}$ should be fully reduced.

√

```
<u>Case 2</u>: q is odd \Rightarrow q^2 is odd \Rightarrow p^2 = 3 \cdot \text{ odd} \Rightarrow p^2 is odd \Rightarrow p is odd.
```

Let $k, j \in \mathbb{Z}$ s.t. p = 2k + 1 and q = 2j + 1.

```
\begin{aligned} &3q^2=p^2\\ &3(2k+1)^2=(2j+1)^2\\ &3(4k^2+4k+1)=4j^2+4j+1\\ &12k^2+12k+3=4j^2+4j+1\\ &12k^2+12k+2=4j^2+4j\\ &2(6k^2+6k+1)=2(2j^2+2j)\\ &6k^2+6k+1=2j^2+2j\\ &6k^2+6k+1=2(j^2+j) \text{ call this equation (*)} \end{aligned}
```

Note $6k^2 + 6k + 1 = 2(3k^2) + 2(3k) + 1$ has the form even+even+odd = odd. $2(j^2 + j)$ is even.

Thus the equation (*) has the form odd = even $\Rightarrow \Leftarrow$.