

Computer vision

Computer Vision Problems

Image Classification

Deep Learning on large images

Edge detection example

Computer Vision Problem

Andrew Ng

Vertical edge detection

103x1 + 1x1 +2+1 + 0x0 + 5x0 +7x0+1x7 +8x-1+2x-1=-5

3	0	1	2	7	4	Convolution				
1	5	8		3	1-1		-5	-4	0	8
2		2	5	1	3	*	-10	-2	2	3
01	1	3	1	7	8-1		0	-2	-4	-7
4	2	1	6	2	8	3×3	-3	-2	-3(-16
2	4	5	2	3	9	-> filta		4x	4	<u>, </u>
		6×6	•			kenel				

Vertical edge detection

1					
10	10	10	0	O	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
•		6 x			

	<u></u>	
1	0	<u>-1</u>
1	0	-1
1	0	-1
	3×3	

*

<u> </u>						
0	30	30	0			
0	30	30	0			
0	30	30	0			
0	30	30	0			
14x4						

More edge detection

Vertical edge detection examples

*

0	30	30	0			
0	30	30	0			
0	30	30	0			
0	30	30	0			

	>		

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

Andrew Ng

Vertical and Horizontal Edge Detection

1 1 1 0 0 0 -1 -1 -1

Horizontal

0 0	_
	0
-1 -1	-1

30 10 -10 -30 30 0 0 0

Learning to detect edges

3	0	17	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

M	0	-3
0	0	0
3	→	-3

Padding

Valid and Same convolutions

"Valid":
$$n \times n$$
 \times $f \times f$ \longrightarrow $\frac{n-f+1}{4} \times n-f+1$ $6 \times 6 \times 3 \times 3 \times 3 \longrightarrow 4 \times 4$

"Same": Pad so that output size is the <u>same</u> as the input size.

Strided convolutions

Strided convolution

Andrew Ng

Summary of convolutions

$$n \times n$$
 image $f \times f$ filter padding p stride s

$$\left[\frac{n+2p-f}{s}+1\right] \times \left[\frac{n+2p-f}{s}+1\right]$$

Technical note on <u>cross-correlation</u> vs. convolution

Convolution in math textbook:

		(3		
2	3	7 ⁵	4	6	2
69	60	94	8	7	4
3	4	83	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

$$(A \times B) \times C = A \times (B \times C)$$

Convolutions over volumes

Convolutions on RGB images

Convolutions on RGB image

Multiple filters

Pooling layers

Pooling layer: Max pooling

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

Pooling layer: Max pooling

Pooling layer: Average pooling

1	3	2	1	
2	9	1	1	
1	4	2	3	
5	6	1	2	

Summary of pooling

Hyperparameters:

f: filter size s: stride

Max or average pooling

No parameters to learn.

$$\begin{array}{c}
N_{H} \times N_{W} \times N_{C} \\
N_{H} - f + 1 \\
\times N_{C}
\end{array}$$

Convolutional neural network example

Neural network example CONVZ POOLS POOL (DNV) Mospool 28×28×6 10×10×16 32232436 0,1,2,....9 NH, NW (120,400)

CONU-POOL-CONV-POOL-EC-EC- EC- SOFTMAX

(170)

Andrew Ng

Neural network example

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	$-3,072$ $a^{(6)}$	0
			

Why convolutions?

Why convolutions

Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.

→ **Sparsity of connections:** In each layer, each output value depends only on a small number of inputs.

Putting it together

Cost
$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Use gradient descent to optimize parameters to reduce J

Case Studies

Why look at case studies?

Outline

Classic networks:

- LeNet-5 <
- AlexNet <
- VGG <

```
ResNet (152)
```

Inception

Case Studies

Classic networks

Andrew Ng

Case Studies

Residual Networks (ResNets)

Residual Network Plain ResNet training error training error reality"

theory

Andrew Ng

layers

layers

Case Studies

Network in Network and 1×1 convolutions

Why does a 1×1 convolution do?

Using 1×1 convolutions

Case Studies

Inception network motivation

The problem of computational cost

Case Studies

Inception network

Inception module

Object Detection

Object localization

What are localization and detection?

Image classification

" Car"

Classification with localization

"Car

Object

Detection

Classification with localization

4 - background

Defining the target label y

- 1 pedestrian
- 2 car <
- 3 motorcycle
- 4 background \leftarrow

$$\begin{cases}
(\dot{y}_{1}, y_{1})^{2} + (\dot{y}_{2} - y_{2})^{2} \\
+ \dots + (\dot{y}_{8} - y_{8})^{2} & \text{if } y_{1} = 1 \\
(\dot{y}_{1} - y_{1})^{2} + (\dot{y}_{2} - y_{2})^{2}
\end{cases}$$

Pc is there any object?

by by by by by by by by by

Need to output b_x , b_y , b_h , b_w , class label (1-4)

Object Detection

Landmark detection

Landmark detection

 b_x , b_y , b_h , b_w

ConvNet ConvNet

129

lix, liy,

ii
l314 l224

deeplearning.ai

Object Detection

Object detection

Car detection example

Training set:

Sliding windows detection Corportation cost

Object Detection

Convolutional implementation of sliding windows

Turning FC layer into convolutional layers

Convolution implementation of sliding windows

[Sermanet et al., 2014, OverFeat: Integrated recognition, localization and detection using convolutional networks]

Andrew Ng

Convolution implementation of sliding windows

Object Detection

Intersection over union

Evaluating object localization

More generally, IoU is a measure of the overlap between two bounding boxes.

Object Detection

Non-max suppression

Non-max suppression example

Non-max suppression example

19x19

Non-max suppression example

Pc

Non-max suppression algorithm

Each output prediction is:

Discard all boxes with $p_c \leq 0.6$

- ->> While there are any remaining boxes:
 - Pick the box with the largest p_c Output that as a prediction.
 - Discard any remaining box with $IoU \ge 0.5$ with the box output in the previous step

Object Detection

Anchor boxes

Overlapping objects:

$$\mathbf{y} = \begin{bmatrix} b_c \\ b_x \\ b_y \\ b_h \\ b_w \\ c_1 \\ c_2 \\ c \end{bmatrix}$$

Anchor box 1:

Anchor box 2:

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Anchor box algorithm

Previously:

Each object in training image is assigned to grid cell that contains that object's midpoint.

With two anchor boxes:

Each object in training image is assigned to grid cell that contains object's midpoint and anchor box for the grid cell with highest IoU.

(grid cell, chihor box)

(april cell, chihor box)

$$3 \times 3 \times 16$$
 $3 \times 3 \times 2 \times 8$

Andrew Ng

Anchor box example

Anchor box 1: Anchor box 2:

Andrew Ng

Object Detection

Putting it together: YOLO algorithm

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Andrew Ng

Making predictions

Outputting the non-max supressed outputs

- For each grid call, get 2 predicted bounding boxes.
- Get rid of low probability predictions.
- For each class (pedestrian, car, motorcycle) use non-max suppression to generate final predictions.

Face recognition

What is face recognition?

Face recognition

[Courtesy of Baidu] Andrew Ng

Face verification vs. face recognition

- >> Verification
 - Input image, name/ID
 - Output whether the input image is that of the claimed person
- -> Recognition
 - Has a database of K persons
 - Get an input image
 - Output ID if the image is any of the K persons (or "not recognized")

Face recognition

One-shot learning

One-shot learning

Learning from one example to recognize the person again

Learning a "similarity" function

→ d(img1,img2) = degree of difference between images

If
$$d(img1,img2) \leq \tau$$
 "some" $> \tau$ "Orfferent"

Face recognition

Siamese network

Siamese network

Goal of learning

Parameters of NN define an encoding $f(x^{(i)})$

Learn parameters so that:

If
$$x^{(i)}$$
, $x^{(j)}$ are the same person, $\|f(x^{(i)}) - f(x^{(j)})\|^2$ is small.

If $x^{(i)}$, $x^{(j)}$ are different persons, $\|f(x^{(i)}) - f(x^{(j)})\|^2$ is large.

Face recognition

Triplet loss

Learning Objective

[Schroff et al., 2015, FaceNet: A unified embedding for face recognition and clustering]

Andrew Ng

Loss function

Training set: 10k pictures of 1k persons

Choosing the triplets A,P,N

During training, if A,P,N are chosen randomly, $d(A,P) + \alpha \le d(A,N)$ is easily satisfied. $\|f(A) - f(P)\|^2 + \lambda \le \|f(A) - f(N)\|^2$

Choose triplets that're "hard" to train on.

$$\mathcal{L}(A,P) + \mathcal{L} \leq \mathcal{L}(A,N)$$

$$\mathcal{L}(A,P) \sim \mathcal{L}(A,N)$$

$$\mathcal{L}(A,N)$$

Training set using triplet loss

Face recognition

Face verification and binary classification

Learning the similarity function

Face verification supervised learning

[Taigman et. al., 2014. DeepFace closing the gap to human level performance]

Neural Style Transfer

What is neural style transfer?

Neural style transfer

Neural Style Transfer

What are deep ConvNets learning?

Visualizing what a deep network is learning

Pick a unit in layer 1. Find the nine image patches that maximize the unit's activation.

Repeat for other units.

Visualizing deep layers

Layer 2

Layer 3

Layer 4

Layer 5

Layer 4

Layer 5

Layer 2

Layer 3

Layer 4

Layer 5

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 5

Visualizing deep layers: Layer 4

Layer 4

Layer 5

Visualizing deep layers: Layer 5

Layer 5

Neural Style Transfer

Cost function

Neural style transfer cost function

$$J(G) = d J_{content}(G, G)$$

$$+ \beta J_{style}(S, G)$$

[Gatys et al., 2015. A neural algorithm of artistic style. Images on slide generated by Justin Johnson]

Find the generated image G

1. Initiate G randomly

G:
$$100 \times 100 \times 3$$

1 R (1 B

2. Use gradient descent to minimize J(G)

$$G:=G-\frac{\lambda}{2G}J(G)$$

Neural Style Transfer

Content cost function

Content cost function

$$\underline{J(G)} = \alpha \underline{J_{content}(C,G)} + \beta J_{style}(S,G)$$

- Say you use hidden layer *l* to compute content cost.
- Use pre-trained ConvNet. (E.g., VGG network)
- Let $\underline{a^{[l](C)}}$ and $\underline{a^{[l](G)}}$ be the activation of layer l on the images
- If $a^{[l](C)}$ and $a^{[l](G)}$ are similar, both images have similar content $\int_{Content} \left(C_{C,C} \right) = \frac{1}{2} \left[\left(\frac{1}{2} \left(C_{C} \right) \right) \right]^{2} dC_{C}$

Andrew Ng

Neural Style Transfer

Style cost function

Meaning of the "style" of an image

Say you are using layer *l*'s activation to measure "style." Define style as correlation between activations across channels.

How correlated are the activations across different channels?

Intuition about style of an image

Generated Image

Style matrix

Let
$$a_{i,j,k}^{[l]} = activation at (i, j, k)$$
. $G^{[l]} ext{ is } n_c^{[l]} ext{ is } n_$

$$\int_{S}^{(1)} (S, G) = \frac{1}{(S, G)} \left\| G_{1}(S) - G_{2}(G) \right\|_{F}^{2}$$

$$\int_{S}^{(1)} (S, G) = \frac{1}{(S, G)} \left\| G_{1}(S) - G_{2}(G) \right\|_{F}^{2}$$

$$= \frac{1}{(S, G)} \left\|$$

Gatys et al., 2015. A neural algorithm of artistic style

Style cost function

$$J_{style}^{[l]}(S,G) = \frac{1}{\left(2n_H^{[l]}n_W^{[l]}n_C^{[l]}\right)^2} \sum_{k} \sum_{k'} (G_{kk'}^{[l](S)} - G_{kk'}^{[l](G)})$$

Convolutional Networks in 1D or 3D

1D and 3D generalizations of models

Convolutions in 2D and 1D

3D convolution

