Analyse d'une table d'annotations génomiques

Probabilités et statistique pour la biologie (STAT1)

Jacques van Helden 2017-11-09

Contents

But de ce TP
Rendu
Attendus pour le code
Attendus pour le rapport d'interprétation
Exemple historique: génome de la levure
Analyse de la longueur des gènes de la levure du boulanger
Tutoriel
Création d'un dossier pour le TP
Téléchargement du fichier GTF à partir d'EnsemblGenomes
Chargement d'un tableau de données
Exploration du contenu d'un tableau de données
Sélection de sous-ensembles d'un tableau
Sélection d'un sous-ensemble de lignes sur base du contenu d'une colonne
Décompte par valeur
Exercices
1. Spécifications du format GTF
2. Création d'un dossier local pour le TP
·
4. Téléchargement d'un fichier à partir d'un site ftp
5. Chargement d'une table de données en R
6. Calcul de la longueur des gènes codants
6. Histogramme de la longueur des gènes
7. Paramètres descriptifs
8. Intervalle de confiance
9. Distribution de la longueur des gènes
10. Distribution attendue au hasard pour la longueur des gènes
11. Avant de terminer : conservez la trace de votre session
Rendu 21

But de ce TP

Durant ce TP, vous serez amenés à effectuer les t^âches suivantes:

- 1. Manipuler une table de données génomique (les annotations du génome de la levure).
- 2. Sélectionner un sous-ensemble des données en filtrant les lignes sur base d'un critère déterminé (type d'annotation, chromosome).
- 3. Générer des graphiques pour représenter différents aspects liés à ces données.
- 4. Calculer les estimateurs de tendance centrale et dispersion.
- 5. Calculer un intervalle de confiance autour de la moyenne.

Rendu

A la fin du TP, vous déposerez deux fichiers sur Ametice.

- 1. Votre **code R**.
- 2. Un **rapport d'synthétique** qui inclura une présentation des principaux résultats (figures, statistiques descriptives) et votre interprétation.

Attendus pour le code

- 1. Le code doit être **lisible et compréhensible**: donnez à vos variables des noms indiquant explicitement ce qu'elles contiennent.
- 2. Le code devra être **correctement documenté** (le symbole # en début ou en milieu de ligne indique que le reste de cette ligne est un commentaire).
- avant chaque bloc de code, expliquer ce que vous comptez faire, à quoi sert ce bloc de code;
- si c'st utile, ajoutez quelques mots de commentaires pour justifier l'approche choisi;
- chaque fois que vous déinifissez une variable, ajoutez sur la même ligne un commentaire indiquant ce que cette variable représente.
- 3. Le code doit être **tansportable**: après l'avoir téléchargé, on doit pouvoir l'exécuter sur une autre machine. Je testerai systématiquement si les fichiers de code peuvent ^être exécutés sur ma machine. Evitez donc tout recours à des chemins absolus (nous indiquons ci-dessous comment définir des chemins relatifs par rapport à la racine de votre compte).

Attendus pour le rapport d'interprétation

Le rapport doit être synthétique (1 page de texte maximum + autant de figures et tables que vous le désirez).

Chaque question doit être exprimée explicitement avant de présenter les résultats qui y répondent et de fournir l'interprétation de ces résultats.

Chaque figure ou table doit être documentée par une légende permettant à un lecteur naïf de comprendre ce qu'elle représente. L'interprétation des résultats affichés sur une figure ou table se trouvera dans le texte principal (avec une référence au numéro de figure ou table).

Exemple historique: génome de la levure

- 1992: publication du premier chromosome eucaryote complet, le 3ème chromosome de la levure.
- 1996: publication du génome complet.

Sur base des gènes dU 3ème chromosome (échantillon) on peut estimer la taille moyenne d'un gène de levure.

Questions:

- (a) La moyenne d'échantillon (chromosome III) permettait-elle de prédire la moyenne de la population (génome complet) ?
 - Pour répondre à cette quesiton, nous imaginerons que nous sommes revenus en 1992, et utiliserons l'ensemble des gènes du chromosome III (considérés ici comme un échantillon du génome) pour estimer la taille moyenne des gènes pour l'ensemble du génome (la "population" de gènes").
- (b) Cet échantillon peut-il être qualifié de "simple et indépendant"?

Figure 1: Distribution of cds lengths for Saccharomyces cerevisiae.

Analyse de la longueur des gènes de la levure du boulanger

Tutoriel

Avant de passer aux exercices, nous vous montrons ici quelques éléments de base concernant la lecture, la manipulation et l'écriture des tableaux de données avec R.

Création d'un dossier pour le TP

```
## Define a local forlder for this tutorial
## Print the complete list of environment variables
Sys.getenv()
__CF_USER_TEXT_ENCODING
                       0x81A:0x0:0x0
Apple_PubSub_Socket_Render
                       /private/tmp/com.apple.launchd.VxQazw6drN/Render
DISPLAY
                       /private/tmp/com.apple.launchd.TERxpoSYdM/org.macosforge.xquartz:0
DYLD_FALLBACK_LIBRARY_PATH
                       /Library/Frameworks/R.framework/Resources/lib
EDITOR
GIT_ASKPASS
                      rpostback-askpass
HOME
                       /Users/jvanheld
LANG
                       en_US.UTF-8
LC_CTYPE
                       en_US.UTF-8
LN_S
                       ln -s
LOGNAME
                       jvanheld
MAKE
                      make
```

```
NOT CRAN
                      true
PAGER.
                      /usr/bin/less
PATH
                      /usr/bin:/usr/sbin:/usr/local/bin:/opt/X11/bin:/Library/TeX/texbin
PWD
                      /Users/jvanheld/Documents/enseignement/bioinformatics_courses/stat1/practicals/02
R ARCH
R BROWSER
                      /usr/bin/open
                      /usr/bin/bzip2
R BZIPCMD
                      /Library/Frameworks/R.framework/Resources/doc
R_DOC_DIR
R_GZIPCMD
                      /usr/bin/gzip
                      /Library/Frameworks/R.framework/Resources
R_{-}HOME
R_INCLUDE_DIR
                      /Library/Frameworks/R.framework/Resources/include
                      /Library/Frameworks/R.framework/Versions/3.3/Resources/library
R_LIBS
R_LIBS_SITE
                      ~/Library/R/3.3/library
R_LIBS_USER
R_PAPERSIZE
                      a4
R_PAPERSIZE_USER
                      a4
                      /usr/bin/open
R_PDFVIEWER
R PLATFORM
                      x86_64-apple-darwin13.4.0
R_PRINTCMD
R QPDF
                      /Library/Frameworks/R.framework/Resources/bin/qpdf
R_RD4PDF
                      times, inconsolata, hyper
R_SESSION_TMPDIR
                      /var/folders/9s/0zkjn8tm8xj7wp0059bl3v9000020t/T//RtmpBIRV2G
                      /Library/Frameworks/R.framework/Resources/share
R_SHARE_DIR
R SYSTEM ABI
                      osx,gcc,gxx,gfortran,?
                      /usr/local/bin/texi2dvi
R_TEXI2DVICMD
R_UNZIPCMD
                      /usr/bin/unzip
R_ZIPCMD
                      /usr/bin/zip
RMARKDOWN_MATHJAX_PATH
                      /Applications/RStudio.app/Contents/Resources/resources/mathjax-26
RMARKDOWN_PREVIEW_DIR
                      /var/folders/9s/0zkjn8tm8xj7wp0059bl3v9000020t/T//RtmpnQv0gM
RS_RPOSTBACK_PATH
                       /Applications/RStudio.app/Contents/MacOS/rpostback
RS_SHARED_SECRET
                       d37c3707-07ce-4b27-9907-3b711f6292a3
RSTUDIO
RSTUDIO PANDOC
                      /Applications/RStudio.app/Contents/MacOS/pandoc
RSTUDIO_SESSION_PORT
                      37434
RSTUDIO_USER_IDENTITY
                      jvanheld
                      bin/winutils
RSTUDIO_WINUTILS
                      /usr/bin/sed
SED
                      /bin/bash
SHELL
SHLVL
                      /private/tmp/com.apple.launchd.S8TOJBXQUX/Listeners
SSH_AUTH_SOCK
TAR
                      /usr/bin/tar
                      /var/folders/9s/0zkjn8tm8xj7wp0059bl3v9000020t/T/
TMPDIR
                      jvanheld
USER
XPC_FLAGS
                      0x0
XPC_SERVICE_NAME
## Identify the home directory by getting the environment variable HOME
dir.home <- Sys.getenv("HOME")</pre>
print(dir.home)
```

```
## Define a variable containing the path of the results for this tutorial
dir.tuto <- file.path(dir.home, "stat1", "TP2")
print(dir.tuto)</pre>
```

[1] "/Users/jvanheld/stat1/TP2"

```
## Create the directory for this tutorial
dir.create(path = dir.tuto, showWarnings = FALSE, recursive = TRUE)

## Go to the tutorial directory
setwd(dir.tuto)

## List the files already present in the folder (if any)
list.files()
```

- [1] "3nt_genomic_Saccharomyces_cerevisiae-ovlp-1str.tab"
- [2] "chrom_sizes.tsv"
- [3] "Saccharomyces_cerevisiae.R64-1-1.37.gtf.gz"

Téléchargement du fichier GTF à partir d'EnsemblGenomes

Chargement d'un tableau de données

R comporte plusieurs types de structures tabulaires (matrix, data.frame, table).

La structure la plus couramment utilisée est le data.frame, qui consiste en un tableau de valeurs (numériques ou chaînes de caractères) dont les lignes et les colonnes sont associées à des noms.

La fonction read.table() permet de lire un fichier texte contenant un tableau de données, et de stocker le contenu dans une variable.

Plusieurs fonctions dérivées de read.table() facilitent la lecture de différents types de formats:

- read.delim() pour les fichiers dont les colonnes sont délimitées par un caractère particulier (généralement la tabulation, représentée par ";).
- read.csv() pour les fichiers "comma-searated values".
- 1. Téléchargez le fichier suivant sur votre ordinateur:
- Saccharomyces_cerevisiae.R64-1-1.37.gtf
- 2. Chargez-le au moyen de la fonction read.table (pour cela vous devez remplacer le chemin ci-dessous par celui de votre ordinateur).

```
## Read a GTF file with yeast genome annotations

## Load the feature table
feature.table <- read.table(
    local.GTF,
    comment.char = "#",
    sep="\t",
    header=FALSE,
    row.names=NULL)

## The bed format does not contain any column header,
## so we set it manually based on the description of the format,
## found here:
## http://www.ensembl.org/info/website/upload/gff.html
names(feature.table) <- c("seqname", "source", "feature", "start", "end", "score", "strand", "frame", "</pre>
```

Exploration du contenu d'un tableau de données

La première chose à faire après avoir chargé un tableau de données est de vérifier ses dimensions

```
dim(feature.table) ## Dimensions of the tbale
[1] 43028 9
```

```
nrow(feature.table) ## Number of rows
```

[1] 43028

```
ncol(feature.table) ## Number of columns
```

[1] 9

L'affichage du tableau d'annotations complet ne serait pas très lisible, puisqu'il comporte des dizaines de milliers de lignes.

Nous pouvons afficher les premières lignes avec la fonction head().

```
## Display the 20 first rows of the feature table
head(feature.table, n = 20)
```

	seqname	source	feature	start	end	score	strand	frame
1	IV	SGD	gene	1802	2953		+	
2	IV	SGD	transcript	1802	2953		+	
3	IV	SGD	exon	1802	2953		+	
4	IV	SGD	CDS	1802	2950		+	0
5	IV	SGD	start_codon	1802	1804		+	0
6	IV	SGD	stop_codon	2951	2953		+	0
7	IV	SGD	gene	3762	3836		+	
8	IV	SGD	transcript	3762	3836		+	
9	IV	SGD	exon	3762	3836		+	
10	IV	SGD	CDS	3762	3833		+	0
11	IV	SGD	start_codon	3762	3764		+	0
12	IV	SGD	stop_codon	3834	3836		+	0
13	IV	SGD	gene	5985	7814		+	
14	IV	SGD	transcript	5985	7814		+	
15	IV	SGD	exon	5985	7814		+	
16	IV	SGD	CDS	5985	7811		+	0

```
17
        ΙV
              SGD start_codon 5985 5987
                  stop_codon 7812 7814
18
        ΙV
              SGD
                               8683 9756
19
        IV
              SGD
                         gene
20
              SGD transcript 8683 9756
        IV
1
2
                                                          gene_id YDL248W; transcript_id YDL248W; gene_n
3
                       gene_id YDL248W; transcript_id YDL248W; exon_number 1; gene_name COS7; gene_sour
   gene_id YDL248W; transcript_id YDL248W; exon_number 1; gene_name COS7; gene_source SGD; gene_biotype
5
                                          gene_id YDL248W; transcript_id YDL248W; exon_number 1; gene_n
6
                                          gene_id YDL248W; transcript_id YDL248W; exon_number 1; gene_n
7
8
                                                                                            gene_id YDL2
9
                                                        gene_id YDL247W-A; transcript_id YDL247W-A; exon
10
                                   gene_id YDL247W-A; transcript_id YDL247W-A; exon_number 1; gene_sour
11
                                                                             gene_id YDL247W-A; transcri;
12
                                                                             gene_id YDL247W-A; transcri
13
14
                                                          gene_id YDL247W; transcript_id YDL247W; gene_n
15
                       gene_id YDL247W; transcript_id YDL247W; exon_number 1; gene_name MPH2; gene_sour
16 gene_id YDL247W; transcript_id YDL247W; exon_number 1; gene_name MPH2; gene_source SGD; gene_biotype
17
                                          gene_id YDL247W; transcript_id YDL247W; exon_number 1; gene_n
18
                                          gene_id YDL247W; transcript_id YDL247W; exon_number 1; gene_n
19
20
                                                          gene_id YDL246C; transcript_id YDL246C; gene_n
```

La fonction tail() affiche les dernières lignes:

Display the 20 last rows of the feature table tail(feature.table, n = 20)

	seqname	source	feature	start	end	score	strand	frame
43009	Mito	Ensembl_Fungi	transcript	78533	78605		+	
43010	Mito	${\tt Ensembl_Fungi}$	exon	78533	78605		+	
43011	Mito	SGD	gene	79213	80022		+	
43012	Mito	SGD	transcript	79213	80022		+	
43013	Mito	SGD	exon	79213	80022		+	
43014	Mito	SGD	CDS	79213	80019		+	0
43015	Mito	SGD	${\tt start_codon}$	79213	79215		+	0
43016	Mito	SGD	1 -				+	0
43017	Mito	SGD	gene	85035	85112		+	
43018	Mito	SGD	transcript	85035	85112		+	
43019	Mito	SGD	exon	85035	85112		+	
43020	Mito	SGD	gene	85295	85777		+	
43021	Mito	SGD	transcript	85295	85777		+	
43022	Mito	SGD	exon	85295	85777		+	
43023	Mito	SGD	gene	85554	85709		+	
43024	Mito	SGD	transcript	85554	85709		+	•
43025	Mito	SGD	exon	85554	85709		+	
43026	Mito	SGD	CDS	85554	85706	•	+	0
43027	Mito	SGD	${\tt start_codon}$	85554	85556	•	+	0
43028	Mito	SGD	stop_codon	85707	85709	•	+	0

gene_id ENSRNA049602365; transcript_id ENSRNA04960 gene_id ENSRNA049602365; transcript_id ENSRNA049602365-T1; exon_number 1; gene_name tRNA-Val;

```
43011
43012
                                                           gene_id Q0275; transcript_id Q0275; gene_name
43013
                          gene_id Q0275; transcript_id Q0275; exon_number 1; gene_name COX3; gene_sourc
43014 gene_id Q0275; transcript_id Q0275; exon_number 1; gene_name COX3; gene_source SGD; gene_biotype
43015
                                           gene_id Q0275; transcript_id Q0275; exon_number 1; gene_name
43016
                                            gene_id Q0275; transcript_id Q0275; exon_number 1; gene_name
43017
43018
43019
                                                                         gene_id tM(CAU)Q2; transcript_i
43020
43021
43022
                                                                                       gene_id RPM1; tran
43023
43024
                                                                                                  gene_id
43025
                                                                 gene_id Q0297; transcript_id Q0297; exo
43026
                                             gene_id Q0297; transcript_id Q0297; exon_number 1; gene_sou
43027
                                                                                  gene_id Q0297; transcr
43028
                                                                                  gene_id Q0297; transcr
```

If you are using the **RStudio** environment, you can display the table in a dynamic viewer pane with the function View().

```
## In RStudio, display the table in a separate tab
View(feature.table)
```

Sélection de sous-ensembles d'un tableau

Sélection d'une ligne par son indice.

feature.table[12,]

```
seqname source feature start end score strand frame 12 IV SGD stop codon 3834 3836 . + 0
```

12 gene_id YDL247W-A; transcript_id YDL247W-A; exon_number 1; gene_source SGD; gene_biotype protein_cod. Sélection d'une colonne par son indice (affichage des premières valeurs seulement.

head(feature.table[,3])

[1] gene transcript exon CDS start_codon stop_codon Levels: CDS exon gene start_codon stop_codon transcript

Selection d'une cellule par indices de ligne et colonne.

feature.table[12, 3]

[1] stop_codon

Levels: CDS exon gene start_codon stop_codon transcript

Sélection d'un bloc de colonnes et/ou de lignes.

feature.table[100:105, 1:6]

	seqname	source	feature	start	end	score
100	IV	SGD	CDS	34240	36477	
101	IV	SGD	start_codon	36475	36477	
102	IV	SGD	stop_codon	34237	34239	
103	IV	SGD	gene	36797	38173	

```
104 IV SGD transcript 36797 38173 .
105 IV SGD exon 36797 38173 .
```

Sélection de colonnes "à la carte" (ici, les coordonnées génomiques de chaque "feature"): chromosome, début, fin, brin.

feature.table[100:105, c(1,4,5,7)]

```
      seqname
      start
      end
      strand

      100
      IV
      34240
      36477
      -

      101
      IV
      36475
      36477
      -

      102
      IV
      34237
      34239
      -

      103
      IV
      36797
      38173
      +

      104
      IV
      36797
      38173
      +

      105
      IV
      36797
      38173
      +
```

Sélectionner une colonne sur base de son nom.

```
## Select the "start" column and print the 100 first results
head(feature.table$start, n=100)
```

```
1802 1802 1802 1802
 [1]
                              1802
                                     2951
                                           3762
                                                 3762
                                                       3762
                                                             3762
                                                                   3762
[12]
      3834
            5985 5985 5985
                                     5985
                                           7812
                                                 8683
                              5985
                                                       8683
                                                             8683
                                                                   8686
      9754 8683 11657 11657 11657 11660 13358 11657 16204 16204 16204
[34] 16204 16204 17224 17577 17577 17577 17580 18564 17577 18959 18959
[45] 18959 18959 18959 19310 20635 20635 20635 20635 20635 21004 22471
[56] 22471 22471 22474 22606 22471 22823 22823 22823 22823 22823 25874
 [67] 26403 26403 26403 26406 28773 26403 28985 28985 28985 28988 30452
[78] 28985 30657 30657 30657 30657 30657 31827 32296 32296 32296 32296
 [89] 32296 33232 33415 33415 33415 33418 33916 33415 34237 34237 34237
[100] 34240
```

Print the 20 first values of the "feature" field, which indicates the feature type head(feature.tablefeature, n=20)

```
[1] gene
                 transcript
                             exon
                                          CDS
                                                      start_codon
                                                      CDS
 [6] stop_codon
                 gene
                             transcript
                                          exon
[11] start_codon stop_codon gene
                                          transcript
                                                      exon
[16] CDS
                 start codon stop codon gene
                                                      transcript
Levels: CDS exon gene start_codon stop_codon transcript
```

Sélection de plusieurs colonnes sur base de leurs noms.

```
## Select the "start" column and print the 100 first results
feature.table[100:106, c("seqname", "start", "end", "strand")]
```

```
seqname start
                     end strand
100
         IV 34240 36477
101
         IV 36475 36477
102
         IV 34237 34239
103
         IV 36797 38173
104
         IV 36797 38173
105
         IV 36797 38173
         IV 36797 38170
106
```

Note: il est également possible de nommer les lignes d'un data frame mais le tableau GTF ne se prête pas à cela. Nous verrons d'autres exemples ultérieurement.

Sélection d'un sous-ensemble de lignes sur base du contenu d'une colonne

```
## Select subset of features having "cds" as "feature" attribute
cds <- subset(feature.table, feature=="cds")
nrow(feature.table) ## Count the number of features</pre>
```

[1] 43028

```
nrow(cds) ## Count the number of cds
```

[1] 0

Décompte par valeur

La fonction table() permet de compter le nombre d'occurrences de chaque valeur dans un vecteur ou un tableau. Quelques exemples d'utilisation ci-dessous.

```
## Count the number of featues per chromosome
table(feature.table$seqname)
```

```
I II III IV IX Mito V VI VII VIII X XI XII XIII XIV 759 2912 1210 5374 1567 327 2159 946 3856 2054 2617 2231 3789 3311 2774 XV XVI 3846 3296
```

```
## Count the number of features per type
table(feature.table$feature)
```

```
CDS exon gene start_codon stop_codon transcript 7050 7872 7445 6700 6516 7445
```

On peut calculer des tables de contingence en comptant le nombre de combinaisons entre 2 vecteurs (ou 2 colonnes d'un tableau).

```
## Table with two vectors
table(feature.table$feature, feature.table$seqname)
```

```
I II III IV IX Mito
                                      V VI VII VIII
                                                       X XI XII XIII
CDS
            122 492 194 895 255
                                 59 345 151 619
                                                 346 422 361 615
            137 525 224 961 288
                                 94 400 180 710
                                                 373 480 404 698
exon
                                                                  610
            132 494 213 914 274
                                 62 383 167 676
                                                 349 458 388 658 573
gene
start_codon 119 464 185 853 243
                                 28 328 143 593
                                                 325 406 348 586
                                                                  514
stop codon 117 443 181 837 233
                                 22 320 138 582
                                                 312 393 342 574
transcript 132 494 213 914 274
                                 62 383 167 676 349 458 388 658 573
           XIV XV XVI
           458 623 549
CDS
exon
           500 689 599
           475 665 564
gene
start_codon 438 607 520
stop_codon 428 597 500
transcript 475 665 564
```

Same result with a 2-column data frame table(feature.table[, c("feature", "seqname")])

```
segname
feature
                  II III
                          ΙV
                              IX Mito
                                          V
                                            VI VII VIII
                                                            Х
                                                             XI XII XIII
  CDS
              122 492 194 895 255
                                     59 345 151 619
                                                     346 422 361 615
                                                                       544
  exon
              137 525 224 961 288
                                     94 400 180 710
                                                     373 480 404 698
              132 494 213 914 274
                                                     349 458 388 658
  gene
                                     62 383 167 676
                                                                       573
  start_codon 119 464 185 853 243
                                     28 328 143 593
                                                     325 406 348
                                                                 586
                                                                       514
              117 443 181 837 233
                                     22 320 138 582
                                                     312 393 342 574
                                                                       497
  stop_codon
              132 494 213 914 274
                                     62 383 167 676
                                                     349 458 388 658
  transcript
                                                                       573
             seqname
feature
              XIV XV XVI
  CDS
              458 623 549
              500 689 599
  exon
  gene
              475 665 564
  start_codon 438 607 520
  stop_codon
              428 597 500
  transcript 475 665 564
```

Exercices

1. Spécifications du format GTF

Lisez les spécifications du format GTF.

- Ensembl (http://www.ensembl.org/info/website/upload/gff.html)
- UCSC (https://genome.ucsc.edu/FAQ/FAQformat.html#format4)

2. Création d'un dossier local pour le TP

Créez un dossier local (par exemple: stat1/TP_levure à partir de la racine de votre compte). Nous vous suggérons d'utiliser les fonctions suivantes:

- Sys.getenv("HOME") (Linnux et Mac OS X), pour obtenir la racine de votre compte utilisateur;
- file.path() pour construire un chemin;
- dir.create() pour créer le dossier de ce TP. Lisez attendivement les options de cette fonction avec help(dir.create)

3. Localisation du fichier d'annotations

Localisez le fichier d'annotations du génome de la levure en format GTF dans ce dossier local.

- Site Ensembl Fungi: http://fungi.ensembl.org/
- Cliquez "Downloads" pour accéder au site ftp
- Dans la boîte de recherche, tapez "saccharomyces cerevisiae" et suivez le lien "GTF"
- COpiez l'adresse (URL) du ichier Saccharomyces_cerevisiae.R64-1-1.37.gtf.gz

4. Téléchargement d'un fichier à partir d'un site ftp

Fonctions suggérées:

• download.file() (lisez l'aide pour conna^tre les arguments)

5. Chargement d'une table de données en R

Ecrivez un script qui charge la table de données dans une variable nommée feature.table, en utilisant la fonction R read.delim().

Veillez à ignorer les lignes de commentaires (qui commencent par un caractère #).

6. Calcul de la longueur des gènes codants

• Ajoutez à la table d'annotations (feature.table) une colonne intitulée "length" qui indique la longueur de chaque élément génomique annoté.

```
## Add a colmn with feature lengths
feature.table[, "length"] <- feature.table[, "end"] - feature.table[, "start"] + 1
## Add a colmn with feature lengths: equivalent result with simpler notation
feature.table$length <- feature.table$end - feature.table$start + 1</pre>
```

- Comptez le nombre de lignes de la table correspondant à chaque type d'annotation (3ème colonne du GTF, "feature").
 - fonction table()

```
~table(feature.table$feature)
```

~table(feature.table\$feature)

- Sélectionnez les lignes correspondant à des régions codantes ("CDS")
 - fonction subset()

```
cds <- subset(feature.table, feature=="CDS")</pre>
```

- Comptez le nombre de CDS par chromosome.
 - fonction table()

table(cds\$seqname)

```
Ι
      ΙI
          III
                 ΙV
                       IX Mito
                                   V
                                       VI
                                           VII VIII
                                                         Χ
                                                              XΙ
                                                                  XII XIII
                                                                             XIV
122
     492
          194
                895
                      255
                            59
                                 345
                                      151
                                            619
                                                 346
                                                       422
                                                             361
                                                                  615
                                                                        544
                                                                             458
ΧV
     XVI
623
     549
```

• Chargez la table des tailles de chromosomes chrom_sizes.tsv, et calculez la densité de gènes pour chaque chromosome (nombre de gènes par Mb).

```
## Download tab-delimited file with chromosome sizes (unless already there)
annot.url <- "http://jvanheld.github.io/stat1/data/Saccharomyces_cerevisiae/chrom_sizes.tsv"
chrom.size.file <- file.path(dir.tuto, "chrom_sizes.tsv")

if (!file.exists(chrom.size.file)) {
    download.file(annot.url, destfile = chrom.size.file)
}

## Read chromosome sizes
chrom.size <- read.delim(
    file = chrom.size.file,
    header = FALSE, row.names = 1)</pre>
```

```
## Assign a name to the columns
names(chrom.size) <- c("chromID", "size")
# View(chrom.size)

## print the size of hte third chromosome
chrom.size["III", "size"]</pre>
```

[1] 316617

6. Histogramme de la longueur des gènes

Au moyen de la fonction hist(), dessinez un histogramme représentant la distribution de longueur des CDS.

hist(cds\$length)

Choisissez les intervalles de classe de façon à ce que l'histogramme soit informaatif (ni trop ni trop peu de classes).

Histogram of cds\$length

Récupérez le résultat de hist() dans une variable nommée cds.length.hist.

Define breaks exactly in the way you wish
cds.length.hist <- hist(cds\$length, breaks=seq(from=0, to=max(cds\$length)+100, by=100))</pre>

Imprimez le résultat à l'écran (print()) et analysez la structure de la variable cds.length.hist (il s'agit d'une variable de type liste).

Fonctions utiles:

Foncti	Fonctions utiles:												
	1 0			sed to	draw	the hi	stogr	am					
<pre>print(cds.length.hist)</pre>													
\$breaks													
[1]	0	100	200	300	40	0 500	60	0 70	00	800	900	100	00
[12]	1100	1200	1300	1400	150	0 1600	170	0 180	00	1900	2000	210	00
[23]	2200	2300	2400	2500	260	0 2700	280	290	00	3000	3100	320	00
[34]	3300	3400	3500	3600	370	0 3800	390	0 400	00	4100	4200	430	00
[45]	4400	4500	4600	4700	480	0 4900	500	510	00	5200	5300	540	00
[56]	5500	5600	5700	5800	590	0 6000	610	0 620	00	6300	6400	650	00
[67]	6600	6700	6800	6900	700	0 7100	720	730	00	7400	7500	760	00
[78]	7700	7800	7900	8000	810	0 8200	830	3 840	00	8500	8600	870	00
[89]	8800	8900	9000	9100	920	0 9300	940	950	00	9600	9700	980	00
[100]	9900	10000	10100	10200	1030	0 10400	1050	0 1060	00 1	.0700	10800	1090	00
[111]						0 11500							
						0 12600							
[133]						0 13700		0 1390	00 1	4000	14100	1420	00
[144]	14300	14400	14500	14600	1470	0 14800							
\$coun													
						282 317							
[18]	190 1	70 128	131 1	09 99	81	81 72	80	51 5	53	39	39 38	45	40

```
[35]
         27
               28
                    26
                          14
                                17
                                     40
                                           27
                                                 12
                                                      14
                                                            17
                                                                 12
                                                                       13
                                                                                   10
                                                                                              11
                                                                                                     6
                                                                             11
 Γ521
          3
                3
                      7
                           1
                                       8
                                            3
                                                  2
                                                             3
                                                                   2
                                                                        0
                                                                              2
                                                                                    3
                                                                                         3
                                                                                               4
                                                                                                     0
                                 4
                                                        1
 [69]
          1
                0
                      0
                           2
                                 1
                                       0
                                            4
                                                  0
                                                        0
                                                             0
                                                                   1
                                                                        0
                                                                              1
                                                                                    0
                                                                                          1
                                                                                               1
                                                                                                     0
 [86]
                                                                                                     0
          0
                0
                      0
                                 0
                                       0
                                            0
                                                  2
                                                       0
                                                             1
                                                                   0
                                                                        0
                                                                              0
                                                                                         0
                                                                                               0
                           1
                                                                                    1
[103]
          0
                0
                      0
                           0
                                 0
                                       0
                                            0
                                                  0
                                                        0
                                                             0
                                                                   1
                                                                        0
                                                                              0
                                                                                    0
                                                                                         0
                                                                                               0
                                                                                                     0
[120]
          0
                0
                                       0
                                            0
                                                  0
                                                        0
                                                             0
                                                                   0
                                                                        0
                                                                              0
                                                                                    0
                                                                                          0
                                                                                               0
                                                                                                     0
                      0
                           1
                                 0
Γ1377
          0
                0
                      0
                           0
                                       0
                                                  0
                                                             0
                                                                   0
                                 0
                                            0
                                                        0
                                                                         1
```

\$density

[1] 4.085106e-04 3.347518e-04 4.141844e-04 9.773050e-04 5.588652e-04 [6] 4.567376e-04 4.695035e-04 4.000000e-04 4.496454e-04 4.255319e-04 [11] 4.184397e-04 4.141844e-04 3.546099e-04 4.482270e-04 3.304965e-04 [16] 3.049645e-04 2.751773e-04 2.695035e-04 2.411348e-04 1.815603e-04 [21] 1.858156e-04 1.546099e-04 1.404255e-04 1.148936e-04 1.148936e-04 [26] 1.021277e-04 1.134752e-04 7.234043e-05 7.517730e-05 5.531915e-05 [31] 5.531915e-05 5.390071e-05 6.382979e-05 5.673759e-05 3.829787e-05 [36] 3.971631e-05 3.687943e-05 1.985816e-05 2.411348e-05 5.673759e-05 [41] 3.829787e-05 1.702128e-05 1.985816e-05 2.411348e-05 1.702128e-05 [46] 1.843972e-05 1.560284e-05 1.418440e-05 5.673759e-06 1.560284e-05 [51] 8.510638e-06 4.255319e-06 4.255319e-06 9.929078e-06 1.418440e-06 [56] 5.673759e-06 1.134752e-05 4.255319e-06 2.836879e-06 1.418440e-06 [61] 4.255319e-06 2.836879e-06 0.000000e+00 2.836879e-06 4.255319e-06 [66] 4.255319e-06 5.673759e-06 0.000000e+00 1.418440e-06 0.000000e+00 [71] 0.000000e+00 2.836879e-06 1.418440e-06 0.000000e+00 5.673759e-06 [76] 0.000000e+00 0.000000e+00 0.000000e+00 1.418440e-06 0.000000e+00 [81] 1.418440e-06 0.000000e+00 1.418440e-06 1.418440e-06 0.000000e+00 [86] 0.000000e+00 0.000000e+00 0.000000e+00 1.418440e-06 0.000000e+00 [91] 0.000000e+00 0.000000e+00 2.836879e-06 0.000000e+00 1.418440e-06 [96] 0.000000e+00 0.000000e+00 0.000000e+00 1.418440e-06 0.000000e+00 [101] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 [106] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 [111] 0.000000e+00 0.000000e+00 1.418440e-06 0.000000e+00 0.000000e+00 [116] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 [121] 0.000000e+00 0.000000e+00 1.418440e-06 0.000000e+00 0.000000e+00 [126] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 [131] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 [136] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 [141] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 [146] 0.000000e+00 0.000000e+00 1.418440e-06

\$mids

[1] Γ12] [23] [34] [45] [56] [67] [78] [89] [100] 9950 10050 10150 10250 10350 10450 10550 10650 10750 10850 10950 [111] 11050 11150 11250 11350 11450 11550 11650 11750 11850 11950 12050 [122] 12150 12250 12350 12450 12550 12650 12750 12850 12950 13050 13150 [133] 13250 13350 13450 13550 13650 13750 13850 13950 14050 14150 14250

Figure 2: Boîte à moustache indiquant la distribution de longueur des gènes par chromosome.

• attributes(cds.length.hist)

D'autres types de graphiques permettent d'explorer la distribution d'un ensemble des données. En particulier, les boîtes à moustaches (box plots) affichent, pour une série de données, la médiane, l'écart interquartile, un intervalle de confiance et les valeurs aberrantes.

```
boxplot(length ~ seqname, data = cds, col="palegreen", horizontal=TRUE, las=1, xlab="Gene length", yla
```

7. Paramètres descriptifs

Calculez les paramètres de tendance centrale (moyenne, médiane, mode) et de dispersion (variance, écart-type, écart inter-quartile)

- pour les gènes du chromosome III;
- pour l'ensemble des gènes de la levure.

```
x <- subset(cds, seqname == "III", select = "length")
dim(x)</pre>
```

[1] 194 1

class(x) ## Ah ah, this is not a vector but a data.frame

[1] "data.frame"

```
## Convert the data frame into a vector
x <- unlist(x)
class(x)</pre>
```

[1] "numeric"

```
head(x)
```

```
length1 length2 length3 length4 length5 length6
741 1845 1374 780 630 525
```

```
## Compute the mean, either manually or with the ad hoc R function
n <- length(x)
print(paste("Chromosome III contains", n, "CDS"))</pre>
```

[1] "Chromosome III contains 194 CDS"

```
message("Chromosome III contains ", n, " CDS")
m <- mean(x)
print(m)</pre>
```

[1] 1169.521

```
message("mean(x) = ", round(m, digits = 1))

## Compute the mean manually to compare the result
m.recalc <- sum(x)/n
message("Manually computed sample mean: ", round(digits=1, m.recalc))

## Compute manually standard dev of the sample
sample.var <- sum((x - m)^2)/ n
sample.sd <- sqrt(sample.var)
message("Sample standard dev =", round(digits=1, sample.sd))

## Compute an estimate of the population standard deviation
pop.sd.est <- sqrt(sum((x - m)^2) / (n-1))
message("Sample-based estimate of population standard dev =", round(digits=1, pop.sd.est))

## Compute the standard deviation with R function sd()
R.sd <- sd(x)
message("Result of R sd() function =", round(digits=1, R.sd))</pre>
```

Ah ah! (skeptical tone) The R function sd() does not compute the standard deviation of the input numbers (s), but the estimate of the standard deviation of the population $(\hat{\sigma})$

Affichez ces paramètres sur l'histogramme de la longueur des gènes, en utilisant la fonction arrows()

8. Intervalle de confiance

A partir des gènes du chromosome III (considérés comme l'échantillon disponible en 1992), calculez un intervalle de confiance autour de la moyenne, et formulez l'interprétation de cet intervalle de confiance. Evaluez ensuite si cet intervalle de confiance recouvrait ou non la moyenne de la population (tous les gènes du génome de la levure, qui devint disponible 4 ans après le chromosome III).

$$\bar{x} \pm \frac{\hat{\sigma}}{\sqrt(n)} \cdot t_{1-\alpha/2}^{n-1}$$

```
## Define alpha, the risk
alpha <- 0.05

## Let us get the critical value for the t distribution
help("TDist")

## Which value corresponds to alpha/2

## Beware ! by default the qt() function return the lower tail
qt(p = alpha/2, df = n - 1)</pre>
```

[1] -1.972332

Dessinez un polygnone des fréquences indiquant le nombre de gènes par classe (milieux de classe).

Frequency polygon

9. Distribution de la longueur des gènes

- A partir du résult de hist(), récupérez un tableau (dans une variable de type data.frame) indiquant les fréquences absolues (count) en fonction de la taille médiane des classes (mids),
- Ajoutez à ce tableau une colonne indiquant la fréquence relative de chaque classe de longueurs de gènes.
- Ajoutez à ce tableau des colonnes indiquant la fonction de répartition empirique des longueuurs de gènes (nombre de gènes d'une taille inférieure ou égale à chaque valeur x observée, et fréquence relative de ce nombre).
 - fonction de base: cumsum()
 - fonction avancée; ecdf ()
- Au moyen des fonctions plot() et lines(), dessinez un graphe représentant la fréquence absolue par classe (médianes de classes en X, comptages en Y), et la fonction de répartition empirique.
 - suggestion: superposez les utilisez le type de lignes "h" pour les fréquences de classe, et "l" ou "s" pour la fonction de répartition.

10. Distribution attendue au hasard pour la longueur des gènes

Sur base de la taille du génome (12.156.679 bp) et des fréquences génomiques de codons définies ci-dessous, calculez la distribution de longueurs de gènes attendue au hasard, et ajoutez-là au graphique.

Vous pouvez télécharger les fréquences génomiques de tous les trinucléotides ici: 3nt_genomic_Saccharomyces_cerevisiae-ovlp-1str.tab

Alternative: créez une variable freq.3nt et assignez-y manuellement les valeurs pour les 4 nucléotides nécessaires, à partir de la table ci-dessous.

sequence	frequency	occurrences
AAA	0.0394	478708
ATG	0.0183	221902
TAA	0.0224	272041
TAG	0.0129	156668
TGA	0.0201	244627

11. Avant de terminer : conservez la trace de votre session

La traçabilité constitue un enjeu essentiel en sciences. La fonction R sessionInfo() fournit un résumé des conditions d'une session de travail: version de R, système opérateur, bibliothèques de fonctions utilisées.

sessionInfo()

```
R version 3.3.2 (2016-10-31)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: macOS Sierra 10.12.6
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats
              graphics grDevices utils
                                            datasets methods
                                                                base
other attached packages:
[1] knitr_1.17
loaded via a namespace (and not attached):
 [1] backports_1.1.1 magrittr_1.5
                                     rprojroot_1.2
                                                     tools_3.3.2
 [5] htmltools_0.3.6 yaml_2.1.14
                                     Rcpp_0.12.13
                                                     stringi_1.1.5
 [9] rmarkdown_1.6 highr_0.6
                                     stringr_1.2.0
                                                     digest_0.6.12
[13] evaluate_0.10.1
```

Rendu