NEURAL NETWORK DEEP LEARNING

ICP 3

700758238

AKHIL KASANAGOTTU

GitHub:

Repository URL for the source code: https://github.com/axk82380/NNPL/tree/main/ICP_4

Video Link:

https://drive.google.com/file/d/1ez2OFk3UxUAEP4xkR3sLdz9WaLqC0qPe/view?usp=sharing

1. Use the use case in the class:

- a. Add more Dense layers to the existing code and check how the accuracy changes.
- b. Change the data source to Breast Cancer dataset * available in the source code folder and make required changes. Report accuracy of the model.
- c. Normalize the data before feeding the data to the model and check how the normalization changes your accuracy (code given below). from sklearn. preprocessing import StandardScaler sc = StandardScaler()
- d. Breast Cancer dataset is designated to predict if a patient hasMalignant (M) or Benign = B

Cancer

18/18	os 3ms/step	- acc: 0.6723 - loss: 0.6269	
Epoch 93/100		_	
18/18 ——————————————————————————————————	0s 2ms/step	- acc: 0.6756 - loss: 0.6297	
the state of the s	── 0s 4ms/step	- acc: 0.6409 - loss: 0.6501	
Epoch 95/100	/ /		
18/18 ——————————————————————————————————	── 0s 3ms/step	- acc: 0.6352 - loss: 0.6545	
18/18	os 4ms/step	- acc: 0.6837 - loss: 0.6222	
Epoch 97/100 18/18	0s 2ms/stop	- acc: 0.6396 - loss: 0.6520	
Epoch 98/100	os zilis/scep	- acc: 0.0390 - 1055: 0.0320	
	os 4ms/step	- acc: 0.6791 - loss: 0.6284	
Epoch 99/100 18/18	0s 3ms/sten	- acc: 0.6661 - loss: 0.6410	
Epoch 100/100	оз эшэ, эсер	1033. 0.0410	
		- acc: 0.6407 - loss: 0.6528	
Model: "sequential_16"			
Layer (type)		Output Shape	Param #
dense_42 (Dense)		(None, 20)	180
dense_43 (Dense)		(None, 4)	84
		(None, 1)	5

Total params: 809 (3.16 KB)
Trainable params: 269 (1.05 KB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 540 (2.11 KB)

None 6/6 — 0s 4ms

6/6 0s 4ms/step - acc: 0.6580 - loss: 0.6528

[0.6727693676948547, 0.625]

√ 13s [D]

Epoch 1/100

Epoch 1/100

/usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Se super().__init__(activity_regularizer=activity_regularizer, **kwargs)

14/14

1s 2ms/step - acc: 0.6087 - loss: 63.8767

Epoch 2/100 14/14 Epoch 3/100 - **0s** 2ms/step - acc: 0.7260 - loss: 11.0967 14/14 — Epoch 4/100 14/14 — — **0s** 2ms/step - acc: 0.5885 - loss: 2.8690 - 0s 2ms/step - acc: 0.8702 - loss: 0.8847 14/14 Epoch 5/100 14/14 Epoch 6/100 14/14 Epoch 7/100 14/14 **─ 0s** 2ms/step - acc: 0.8911 - loss: 1.0527 **─ 0s** 3ms/step - acc: 0.8716 - loss: 0.6283 - 0s 7ms/step - acc: 0.9022 - loss: 0.6254 Epoch 8/100 14/14 Epoch 9/100 14/14 - **0s** 5ms/step - acc: 0.8462 - loss: 0.8862 **─ 0s** 6ms/step - acc: 0.8630 - loss: 0.8260 Epoch 10/100 14/14 - **0s** 6ms/step - acc: 0.8839 - loss: 0.6950 - 0s 7ms/step - acc: 0.8655 - loss: 0.8427 - 0s 4ms/step - acc: 0.8900 - loss: 0.6507 Epoch 13/100 14/14 - 0s 4ms/step - acc: 0.9004 - loss: 0.4464 Epoch 14/100 14/14 Epoch 15/100 - 0s 3ms/step - acc: 0.8622 - loss: 0.7535 — **0s** 10ms/step - acc: 0.8848 - loss: 0.6996

/	[10]		91/100							,	
13s				0s	2ms/step	-	acc:	0.9215	-	loss:	0.3542
	$\overline{\Rightarrow}$		92/100		3ms/step		2001	0.000		10001	0 2702
			93/100	05	siiis/scep	-	acc.	0.9298	-	1055.	0.2702
				05	2ms/step	_	acc:	0.9334	_	loss:	0.2907
			94/100		Ziiio, occp					1000.	0.250,
			•	0s	3ms/step	_	acc:	0.9318	_	loss:	0.2919
		Epoch	95/100								
		14/14		0s	2ms/step	-	acc:	0.9252	-	loss:	0.2938
			96/100								
				0s	2ms/step	-	acc:	0.9066	-	loss:	0.3054
			97/100							,	
				Ø\$	2ms/step	-	acc:	0.91/8	-	loss:	0.3415
			98/100	ac	2ms/step		2001	0.0410		1000	0 2126
			99/100	03	ziiis/ scep		acc.	0.5415		1033.	0.2120
			•	05	2ms/step	_	acc:	0.9273	_	loss:	0.2905
			100/100		Ziiio, occp			0.52,5		1000.	0.2505
		14/14		0s	2ms/step	-	acc:	0.8902	_	loss:	0.3319
		Model:	: "sequential_1"								

Layer (type)	Output Shape	Param #
dense_3 (Dense)	(None, 20)	620
dense_4 (Dense)	(None, 1)	21

Total params: 1,925 (7.52 KB) Trainable params: 641 (2.50 KB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 1,284 (5.02 KB) None

5/5 — 0s 4ms/step - acc: 0.8366 - loss: 0.8101 [0.6811095476150513, 0.8601398468017578]

```
√
11s [14] Epoch 1/100
         \frac{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal}\text{\uniformal}{\uniformal
                                                                                               1s 3ms/step - acc: 0.6019 - loss: 115.2636
                      14/14
                      Epoch 2/100
                      14/14
                                                                                             • 0s 3ms/step - acc: 0.5998 - loss: 54.6094
                      Epoch 3/100
                      14/14
                                                                                             • 0s 4ms/step - acc: 0.1657 - loss: 15.1049
                      Epoch 4/100
                      14/14 -
                                                                                             • 0s 4ms/step - acc: 0.2944 - loss: 9.6360
                      Epoch 5/100
                      14/14 -
                                                                                             - 0s 3ms/step - acc: 0.3421 - loss: 5.3422
                      Epoch 6/100
                      14/14
                                                                                              0s 4ms/step - acc: 0.4081 - loss: 3.9531
                      Epoch 7/100
                      14/14
                                                                                             • 0s 6ms/step - acc: 0.4959 - loss: 3.3488
                      Epoch 8/100
                      14/14 -
                                                                                            - 0s 7ms/step - acc: 0.5505 - loss: 2.3070
                      Epoch 9/100
                      14/14
                                                                                               0s 7ms/step - acc: 0.5780 - loss: 2.3237
                      Epoch 10/100
                      14/14
                                                                                              0s 7ms/step - acc: 0.6458 - loss: 1.6994
                      Epoch 11/100
                      14/14
                                                                                               0s 7ms/step - acc: 0.5880 - loss: 1.4381
                      Epoch 12/100
                      14/14
                                                                                               0s 10ms/step - acc: 0.6418 - loss: 1.0489
                      Epoch 13/100
                      14/14
                                                                                               0s 3ms/step - acc: 0.6976 - loss: 0.7873
                      Epoch 14/100
                      14/14
                                                                                               0s 2ms/step - acc: 0.7269 - loss: 0.7139
                      Epoch 15/100
                      14/14
                                                                                               0s 2ms/step - acc: 0.8422 - loss: 0.5445
                      Epoch 16/100
                                                                                               0s 2ms/step - acc: 0.8282 - loss: 0.4505
```


Use Image Classification on the hand written digits data set (mnist)

- 1. Plot the loss and accuracy for both training data and validation data using the history object in the source code.
- 2. Plot one of the images in the test data, and then do inferencing to

check what is the prediction of the model on that single image.

- 3. We had used 2 hidden layers and Relu activation. Try to change the number of hidden layer and the activation to tanh or sigmoid and see what happens.
- 4. Run the same code without scaling the images and check the performance?

```
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
       11490434/11490434 -
                                              0s Ous/step
   → Epoch 1/20
       469/469 -
                                   - 14s 23ms/step - accuracy: 0.8685 - loss: 0.4438 - val accuracy: 0.9667 - val loss: 0.1061
       Epoch 2/20
       469/469
                                   — 20s 23ms/step - accuracy: 0.9682 - loss: 0.1046 - val_accuracy: 0.9745 - val_loss: 0.0806
       Epoch 3/20
       469/469 -
                                   – 9s 19ms/step - accuracy: 0.9781 - loss: 0.0678 - val_accuracy: 0.9781 - val_loss: 0.0734
       Epoch 4/20
       469/469
                                   - 12s 22ms/step - accuracy: 0.9822 - loss: 0.0544 - val_accuracy: 0.9777 - val_loss: 0.0802
       Epoch 5/20
                                   - 10s 22ms/step - accuracy: 0.9839 - loss: 0.0461 - val_accuracy: 0.9812 - val_loss: 0.0599
       469/469
       Epoch 6/20
                                   - 20s 21ms/step - accuracy: 0.9873 - loss: 0.0378 - val_accuracy: 0.9803 - val_loss: 0.0674
       469/469
       Epoch 7/20
       469/469
                                   - 10s 20ms/step - accuracy: 0.9895 - loss: 0.0306 - val accuracy: 0.9812 - val loss: 0.0616
       Epoch 8/20
       469/469
                                   - 13s 27ms/step - accuracy: 0.9904 - loss: 0.0289 - val_accuracy: 0.9820 - val_loss: 0.0702
       Epoch 9/20
       469/469
                                   - 10s 22ms/step - accuracy: 0.9925 - loss: 0.0227 - val_accuracy: 0.9836 - val_loss: 0.0677
       Epoch 10/20
                                   – 10s 22ms/step - accuracy: 0.9909 - loss: 0.0257 - val_accuracy: 0.9825 - val_loss: 0.0645
       469/469 -
       Epoch 11/20
       469/469 -
                                   - 8s 18ms/step - accuracy: 0.9932 - loss: 0.0215 - val_accuracy: 0.9809 - val_loss: 0.0763
       Epoch 12/20
       469/469 -
                                   - 10s 22ms/step - accuracy: 0.9926 - loss: 0.0226 - val accuracy: 0.9813 - val loss: 0.0684
       Epoch 13/20
       469/469
                                   - 10s 21ms/step - accuracy: 0.9942 - loss: 0.0174 - val_accuracy: 0.9827 - val_loss: 0.0707
       Epoch 14/20
       469/469
                                   - 9s 18ms/step - accuracy: 0.9945 - loss: 0.0171 - val_accuracy: 0.9808 - val_loss: 0.0810
       Epoch 15/20
                                   - 11s 23ms/step - accuracy: 0.9936 - loss: 0.0187 - val_accuracy: 0.9825 - val_loss: 0.0705
       469/469
       Epoch 16/20
                                   - 20s 22ms/step - accuracy: 0.9930 - loss: 0.0215 - val accuracy: 0.9840 - val loss: 0.0734
       469/469 ---
```



```
print( model prediction: , np.argmax(prediction))
√
3m [D]
       Epoch 1/20
   \overline{\pm}
        469/469
                                    - 11s 20ms/step - accuracy: 0.8627 - loss: 0.4575 - val accuracy: 0.9686 - val loss: 0.1000
        Epoch 2/20
        469/469
                                    • 11s 21ms/step - accuracy: 0.9670 - loss: 0.1036 - val_accuracy: 0.9733 - val_loss: 0.0819
        Epoch 3/20
                                     10s 22ms/step - accuracy: 0.9782 - loss: 0.0702 - val_accuracy: 0.9784 - val_loss: 0.0726
        469/469 -
        Fnoch 4/20
                                    - 9s 18ms/step - accuracy: 0.9820 - loss: 0.0547 - val accuracy: 0.9793 - val loss: 0.0694
        469/469 -
        Epoch 5/20
        469/469
                                     10s 22ms/step - accuracy: 0.9857 - loss: 0.0451 - val_accuracy: 0.9800 - val_loss: 0.0682
        Epoch 6/20
                                    - 10s 22ms/step - accuracy: 0.9884 - loss: 0.0366 - val_accuracy: 0.9820 - val_loss: 0.0612
        469/469
        Epoch 7/20
        469/469
                                    • 9s 18ms/step - accuracy: 0.9884 - loss: 0.0329 - val_accuracy: 0.9799 - val_loss: 0.0685
        Epoch 8/20
        469/469
                                     10s 18ms/step - accuracy: 0.9888 - loss: 0.0337 - val_accuracy: 0.9842 - val_loss: 0.0595
        Epoch 9/20
                                    - 13s 24ms/step - accuracy: 0.9917 - loss: 0.0239 - val_accuracy: 0.9825 - val_loss: 0.0631
        469/469 -
        Epoch 10/20
        469/469 -
                                    - 10s 22ms/step - accuracy: 0.9921 - loss: 0.0225 - val accuracy: 0.9828 - val loss: 0.0655
        Epoch 11/20
        469/469
                                     10s 22ms/step - accuracy: 0.9938 - loss: 0.0191 - val_accuracy: 0.9823 - val_loss: 0.0723
        Epoch 12/20
        469/469
                                    - 9s 18ms/step - accuracy: 0.9928 - loss: 0.0215 - val_accuracy: 0.9830 - val_loss: 0.0702
        Epoch 13/20
        469/469
                                    · 10s 22ms/step - accuracy: 0.9931 - loss: 0.0212 - val accuracy: 0.9812 - val loss: 0.0717
        Epoch 14/20
        469/469
                                     10s 21ms/step - accuracy: 0.9942 - loss: 0.0174 - val_accuracy: 0.9825 - val_loss: 0.0720
        Epoch 15/20
                                     9s 18ms/step - accuracy: 0.9941 - loss: 0.0168 - val_accuracy: 0.9847 - val_loss: 0.0657
        469/469 -
        Epoch 16/20
        469/469
                                    • 11s 20ms/step - accuracy: 0.9946 - loss: 0.0167 - val_accuracy: 0.9855 - val_loss: 0.0679
        Epoch 17/20
```


1 hidden layer with tanh - Test loss: 0.0672, Test accuracy: 0.9803

1 hidden layer with sigmoid - Test loss: 0.0605, Test accuracy: 0.9819

2 hidden layers with tanh - Test loss: 0.0703, Test accuracy: 0.9816

2 hidden layers with sigmoid - Test loss: 0.0685, Test accuracy: 0.9822

1 hidden layer with tanh - Test loss: 0.1931, Test accuracy: 0.9411

Epoch

1 hidden layer with sigmoid - Test loss: 0.1430, Test accuracy: 0.9569

2 hidden layers with tanh - Test loss: 0.1265, Test accuracy: 0.9597

2 hidden layers with sigmoid - Test loss: 0.1079, Test accuracy: 0.9669