Joo Hyun Lee

 ${\rm jhl} 504@nyu.edu$ NYUCSBR Summer 24-week

Question 5

Exercise 1.12.2

(b)

$$\frac{p \to (q \land r)}{\neg q} \\ \frac{\neg q}{\therefore \neg p}$$

1	$p \to (q \wedge r)$	hypothesis
2	$p \to q$	simplification, 1
3	$\neg q$	hypothesis
4	$\neg p$	modus tollens, 2, 3

(e)

$$\begin{array}{c}
p \wedge q \\
\neg p \vee r \\
\hline
\neg q \\
\vdots \\
r
\end{array}$$

1	$\neg p \lor r$	hypothesis
2	$p \lor q$	hypothesis
3	$q \vee r$	resolution, 1, 2
4	$\neg q$	hypothesis
5	r	disjunction syllogism, 3, 4

Exercise 1.12.3

(c)

$$\begin{array}{c} p \lor q \\ \hline \neg p \\ \hline \therefore q \end{array}$$

1	$p \lor q$	hypothesis
2	$\neg(\neg p)\vee q$	double negation, 1
3	$\neg p$	hypothesis
4	q	modus ponens, 2, 3

Exercise 1.12.5

$$\begin{split} j &= I \text{ get a job.} \\ c &= I \text{ will buy a new car.} \\ h &= I \text{ will buy a new house.} \end{split}$$

(c) "I will buy a new car and a new house only if I get a job." $=(c \land h) \rightarrow j$ "I am not going to get a job." $=\neg j$ "I will not buy a new car." $=\neg c$

$$\begin{array}{c} (c \wedge h) \rightarrow j \\ \\ \neg j \\ \\ \vdots \ \neg c \end{array}$$

j	h	c	$(c \wedge h) \to j$	$\neg j$	$\neg c$
Т	Т	Т	${ m T}$	F	F
Т	Τ	F	${ m T}$	F	Τ
Т	F	Т	${ m T}$	F	F
Т	F	F	${ m T}$	F	Τ
F	Τ	Т	\mathbf{F}	T	F
F	Τ	F	${ m T}$	T	Τ
F	F	Т	${ m T}$	T	F
F	F	F	F	T	Τ

The argument is invalid. When j=h=F and c=T, the hypotheses are true and the conclusion is false.

- (d) "I will buy a new car and a new house only if I get a job." = $(c \land h) \rightarrow j$
 - "I am not going to get a job." = $\neg j$
 - "I will buy a new house." = h
 - "I will not buy a new car." = $\neg c$

$$\begin{aligned} &(c \wedge h) \rightarrow j \\ \neg j \\ &\frac{h}{\cdot \cdot \neg c} \end{aligned}$$

j	h	c	$(c \wedge h) \rightarrow j$	$\neg j$	$\neg c$
Т	Т	Т	T	F	F
Т	Τ	F	${ m T}$	F	Τ
Т	F	Т	${ m T}$	F	\mathbf{F}
Т	F	F	${ m T}$	F	Τ
F	Τ	Т	F	T	\mathbf{F}
F	Τ	F	${ m T}$	Т	Τ
F	F	Т	${ m T}$	Т	F
F	F	F	F	Τ	Τ

The argument is valid. When h=T and c=j=F, the hypotheses are true and the conclusion is true.

Exercise 1.13.3

(b)

$$\frac{\exists x (P(x) \vee Q(x))}{\exists x \neg Q(x)}$$
$$\therefore \exists x P(x)$$

P(x) = F over the domain of $\{a,b\}$ because the conclusion must be false.

	Р	Q
a	F	
b	F	

if Q(a) = T, then Q(b) = F or vice versa because $\exists \neg Q(x)$ must be true.

	Р	Q
a	F	Т
b	F	F

Exercise 1.13.5

S(x): x is the student in the class. M(x): x misses a class. D(x): x gets a detention. A(x): x gets an A.

(d) Every student who missed class got a detention.

Penelope is a student in the class.

Penelope did not miss class.

: Penelope did not get a detention.

$$\forall x(M(x) \to D(x))$$

Penelope is a stduent in the class.
 $\neg M(\text{Penelope})$
 $\neg D(\text{Penelope})$

The argument is invalid. When M(x) = F and D(x) = T, the hypotheses are true and the conclusion is false.

(e) Every student who missed class or got a detention did not get an A.

Penelope is a student in the class.

Penelope got an A.

: Penelope did not get a detention.

$$\forall x((M(x) \lor D(x)) \to \neg A(x))$$

Penelope is a student in the class $\frac{A(\text{Penelope})}{\neg D(\text{Penelope})}$

The argument is valid.

1	$\forall ((M(x) \lor D(x)) \to \neg A(x))$	hypothesis
2	Penelope is a student in the class.	hypothesis
3	$(M(\texttt{Penelope}) \lor D(\texttt{Penelope})) \to \neg A(\texttt{Penelope})$	Universal Instantiation, 1, 2
4	A(Penelope)	hypothesis
5	$\neg(\neg A(\text{Penleope}))$	Double negation, 4
6	$\neg (M(\text{Penelope}) \lor D(\text{Penelope}))$	Modus tollens, 3, 5
7	$\neg M(\text{Penelope}) \land \neg D(\text{Penelope})$	De Morgan's Law, 6
8	$\neg D(\text{Penelope}) \land \neg M(\text{Penelope})$	Commutative Law, 7
9	$\neg D(\text{Penelope})$	Simplification, 8

Exercise 2.4.1

(d) The product of two odd integers is an odd integer.

Assume: x and y are odd integers.

Prove: xy is odd.

Proof: let x = 2k + 1 and y = 2j + 1 where k and j are integers.

$$xy = (2k+1)(2j+1)$$

$$= 4kj + 2j + 2k + 1$$

$$= 2(2kj + j + k) + 1$$

Since k and j are integers, 2kj + j + k is an integer.

xy = 2p + 1 where p = 2kj + j + k.

Therefore, xy is an od integer.

Exercise 2.4.3

(b) If x is a real number and $x \le 3$, then $12 - 7x + x^2 \ge 0$.

Assume: x is a real number and $x \leq 3$

Prove: $12 - 7x + x^2 \ge 0$.

Proof: $12 - 7x + x^2$ is factored into two binomials:

$$(x-4)(x-3) \ge 0$$

If x = 3, x - 4 = -1 and x - 3 = 0, then $12 - 7x + x^2 = 0$.

If x < 3, x - 4 < 0 and x - 3 < 0, then $12 - 7x + x^2 > 0$.

Therefore, if $x \leq 3$ where x is a real number, $12 - 7x + x^2 \geq 0$.

Exercise 2.5.1

(d) For every integer n, if $n^2 - 2n + 7$ is even, then n is odd.

Assume: n is an even integer.

Prove: $n^2 - 2n + 7$ is odd.

Proof: n = 2k where k is an integer.

$$n^{2} - 2n + 7 = (2k)^{2} - 2(2k) + 7$$

$$= 4k^{2} - 4k + 7$$

$$= 4k^{2} - 4k + 6 + 1$$

$$= 2(2k^{2} - 2k + 3) + 1$$

Since k is an integer, $2k^2 - 2k + 3$ is an integer.

 $n^2 - 2n + 7 = 2p + 1$ where $p = 2k^2 - 2k + 3$.

Therefore, $n^2 - 2n + 7$ is odd.

Exercise 2.5.4

(a) For every pair of real numbers x and y, if $x^3 + xy^2 \le x^2y + y^3$, then $x \le y$.

Assume: x > y when x and y are real numbers.

Prove: $x^3 + xy^2 > x^2y + y^3$.

Proof: Since x > y, $x \neq y \neq 0$.

$$x^3 + xy^2 > x^2y + y^3.$$

$$x^3 - xy^2 + xy^2 - y^3 > 0$$

$$x^{2}(x-y) + y^{2}(x-y) > 0$$

$$\big(x^2+y^2\big)(x-y)>0$$

Since x and y are real numbers, $x^2 > 0$, $y^2 > 0$, and $x^2 + y^2 > 0$.

Since x > y, x - y > 0.

Therefore, $(x^2 + y^2)(x - y)$ must be greater 0, hence, $x^3 + xy^2 > x^2y + y^3$.

(b) For every pair of real numbers x and y, if x + y > 20, then x > 10 or y > 10.

6

Assume: $x \le 10$ and $y \le 10$ when x and y are real numbers.

Prove: $x + y \le 20$.

Proof: when x = y = 10, then x + y = 20.

when x < 10 and y < 10, then x + y < 20.

Therefore, the sum of x and y cannot exceed 20.

Exercise 2.5.5

(c) For every non-zero real number x, if x is irrational, then $\frac{1}{x}$ is also irrational.

Method: Contrapositive

Assume: $\frac{1}{x}$ is rational where $x \neq 0$.

Prove: x is rational.

Proof: $\frac{1}{x} = \frac{a}{b}$ where a and b are rational numbers and $a \neq b \neq 0$. Since x and $\frac{1}{x}$ are reciprocal to each other, $x = \frac{b}{a}$. Since a and b are rational numbers, $\frac{b}{a}$ is rational.

Therefore, x is rational.

Exercise 2.6.6

(c) The average of three real numbers is greater than or equal to at least one of the numbers.

Assume: when x, y, and z are real numbers, the average of those numbers is less than all three numbers.

Proof:

$$\frac{x+y+z}{3} < x$$
 and $\frac{x+y+z}{3} < y$ and $\frac{x+y+z}{3} < z$

$$x+y+z < 3x$$
 and $x+y+z < 3y$ and $x+y+z < 3z$

When the three inequalities are added together, it gives:

$$3x + 3y + 3z < 3x + 3y + 3z$$

which sums up as 0 < 0.

the inequality above is a false statement. Therefore, the average of the three numbers is not less than all three numbers. \blacksquare

(d) There is no smallest integer.

Assume: there is a smallest integer.

Proof: let x be the smallest integer.

Since x is an integer, x - 1 is also an integer, hence, x - 1 < x.

This contradicts the assumption that x is the smallest integer.

Therefore, there is no smallest integer.

Exercise 2.7.2

(b) If integers x and y have the same parity, then x + y is even. The parity of a number tells whether the number is odd or even. If x and y have the same parity, they are either both even or both odd.

```
Case 1: x and y are both odd. x = 2k + 1 \text{ where k is a real number.}
y = 2j + 1 \text{ where j is a real number.}
x + y = 2k + 2j + 2 = 2(k + j + 1)
Since k and j are real numbers, k + j + 1 is a real number. Therefore, when x and y are odd, x + y is even.

Case 2: x and y are both even. x = 2k \text{ where k is a real number.}
y = 2j \text{ where j is a real number.}
x + y = 2k + 2j = 2(k + j)
Since k and k are real numbers, k + k is a real number. Therefore, when k and k are even, k and k is also even. k
```