Supplementary Material for Sample Complexity of Partially Observable Decentralized Q-learning for Cooperative Games

Overview

This document provides supplementary material for the paper titled "Adaptive Policy Selection in Multi-Agent Reinforcement Learning." It includes detailed proofs, derivations, and additional results referenced in the main text.

1 Appendix A

In this section, we provide the proof of Proposition 1. We remind the reader of the proposition.

Proposition 1. Given Assumption ??, if agent i follows the exploration strategy in Section ??, then $P(\lim_{k\to\infty} \pi_i^k \in \Pi_i^*) \stackrel{a.s.}{=} 1$.

Proof. We first introduce the concept of the empirical average reward, which serves as a key component in analyzing the convergence properties of policy selection by the agent.

Specifically, let
$$\hat{r}_i^k(\pi_i^k) = \frac{1}{T_i^k(\pi_i^k)} \sum_{n=1}^k \sum_{t=2nT+T}^{2nT+2T-1} r_i^t(s_i^t, \pi_i^n, \boldsymbol{\pi}_{-i}^n) \mathbb{I}(\pi_i^n = \pi_i^k)$$
 be the empirical average

reward of policy π_i^k up to episode k, where $T_i^k(\pi_i^k)$ is the number of times π_i^k is selected. At each episode k, the probability that agent i selects a suboptimal policy satisfies

$$P(\pi_i^k \notin \Pi_i^*) \le \frac{\beta_i^k |\Pi_i \setminus \{\Pi_i^*\}|}{|\Pi_i|} + \left(1 - \beta_i^k\right) P\left(\hat{r}_i^k(\pi_i^k) \ge \bar{r}_i^k(\pi_i^*)\right),\tag{1.1}$$

where β_i^k is the exploration rate in (??), $|\Pi_i \setminus \{\Pi_i^*\}|$ is the number of suboptimal policies, and $\bar{r}_i(\pi_i^k)$ is the long-term average reward of π_i^k under the limiting distribution of π_{-i}^k , defined as

$$\bar{r}_i^k(\pi_i^k) = \mathbb{E}_{\pi_{-i}^k \sim \pi_{-i}^\infty} \left[\frac{1}{T} \sum_{t=1}^T r_i^t(\pi_i^k, \pi_{-i}^k) \right]. \tag{1.2}$$

The inequality in (1.1) holds because $P\left(\hat{r}_i^k(\pi_i^k) \geq \hat{r}_i^k(\pi_i^\star)\right)$ includes all cases where π_i^k appears better than π_i^\star , even if it is suboptimal. We now present the following lemma, which establishes the convergence of the empirical reward. First, we recall a fundamental result on martingales: Doob's forward convergence theorem [?, p. 109].

Theorem 1. If X_n is a martingale with $\sup_n \mathbb{E}[|X_n|^p] < \infty$ where p > 1, then $X_n \stackrel{a.s.}{\to} X$ and in L^p , where $X = \limsup_n X_n$.

Lemma 1. Under weak stabilization of π_{-i}^k , for all $\pi_i^k \in \Pi_i$, $\lim_{k \to \infty} \hat{r}_i^k(\pi_i^k) \stackrel{a.s.}{=} \bar{r}_i(\pi_i^k)$.

Proof. We aim to show that $\hat{r}_i^k(\pi_i^k)$, the empirical average reward, converges almost surely (a.s.) to $\bar{r}_i(\pi_i^k)$, the long-term average reward.

First, the weak stabilization of π_{-i}^k (i.e., $\pi_{-i}^k \to \pi_{-i}^\infty$ as $k \to \infty$) follows because the policy space of the other agents, Π_{-i} , is finite. Since $\{\pi_{-i}^k\}$ lies in a compact subset of \mathbb{R}^{N-1} , it has a convergent subsequence by the Bolzano-Weierstrass Theorem [?, p.54]. By Assumption ??, the joint policy process (π_i^k, π_{-i}^k) induces an irreducible and aperiodic Markov chain with a unique stationary distribution. By the properties of finite-state Markov chains and weak stabilization, the marginal distribution of π_{-i}^k converges weakly to the stationary distribution, i.e., $\pi_{-i}^k \to \pi_{-i}^\infty$. Next, under weak stabilization, the time-average reward $\hat{r}_i^k(\pi_i^k)$ converges to the ensemble average $\bar{r}_i(\pi_i^k)$. To establish almost sure convergence, define the sequence $M^k = \hat{r}_i^k(\pi_i^k) - \bar{r}_i(\pi_i^k)$. This sequence forms a martingale with respect to the history \mathcal{H}^k since $\mathbb{E}[M^{k+1} \mid \mathcal{H}^k] = M^k$. Moreover, its increments are bounded. By Assumption 1, each reward is bounded by $r_i^t \leq r_{i,\max}$, which ensures that the cumulative reward within an episode satisfies $\hat{r}_i^k(\pi_i^k) \leq r_{i,\max}$. Consequently, the magnitude of the martingale satisfies $|M^k| \leq |r_{i,\max} - r_{i,\min}|$, ensuring that M^k is square-integrable since $\mathbb{E}[M^{k2}] < \infty$. By Theorem 1, $M^k \xrightarrow{a.s.} 0$, ensuring that $\hat{r}_i^k(\pi_i^k) \xrightarrow{a.s.} \bar{r}_i(\pi_i^k)$, completing the proof.

We now examine the behavior of policy switches. The exploration rate $\beta_i^k \sim \frac{1}{j}$, where j is the number of consecutive plays of the current policy, implies that the expected number of exploration-driven switches up to episode k is $S_{\text{explore}}^k \sim \sum_{j=1}^k \beta_i^j \sim \sum_{j=1}^k \frac{1}{j} \sim \log k$, yielding $S_{\text{explore}}^k = O(\log k)$. During exploitation $(1-\beta_i^k)$, policy switches occur when the empirical average reward suggests switching from the current policy to another one. By Lemma 1, $\hat{r}_i^k(\pi_i^k)$ converges almost surely to $\bar{r}_i(\pi_i^k)$, and the convergence rate depends on the number of times a policy is played, denoted by $T_i^k(\pi_i^k)$. For a policy π_i^k played $T_i^k(\pi_i^k)$ times, the probability of incorrectly switching due to empirical reward errors decreases exponentially. Specifically, by Hoeffding's inequality, $P(\hat{r}_i^k(\pi_i^k) \geq \hat{r}_i^k(\pi_i^k)) \leq e^{-\theta T_i^k(\pi_i^k)}$, where $\theta>0$ is a constant. Since the total number of plays for a policy scales as $T_i^k(\pi_i^k) \sim \frac{k}{|\Pi_i|}$ under uniform exploration, the likelihood of exploitation-driven switches decays rapidly. This ensures that the number of exploitation-driven switches satisfies $S_{\text{explore}}^k = O(\log k)$ and $S_{\text{explore}}^k = O(\log k)$, the total number of policy switches satisfies $S_k^k \to 0$ as $k \to \infty$.

To formalize the relationship between the sublinear growth of policy switches and the decay of the exploration rate, we present the following lemma.

Lemma 2. Suppose that the number of policy switches S_k grows sublinearly such that $S_k = O(\log k)$. Then $\lim_{k\to\infty} \beta_i^k \stackrel{a.s.}{=} 0$.

Proof. If $\max\{j \geq 1 : \pi_i^{1,k-j+1} = \pi_i^{1,k}\} \to \infty$, $\beta_i^k \to 0$. If $\max\{j \geq 1 : \pi_i^{1,k-j+1} = \pi_i^{1,k}\}$ is reset infinitely often, $S_k \to \infty$. Sublinear growth $S_k = O(k)$ implies $j \geq k/S_k \to \infty$, so $\beta_i^k \to 0$.

Now, we are ready to finalize the proof of Proposition 1.Recall the starting inequality (1.1), the first term, $\frac{\beta_i^k |\Pi_i \setminus \{\Pi_i^*\}|}{|\Pi_i|}$, represents the probability of selecting a suboptimal policy during exploration. By Lemma 1, $\beta_i^k \to 0$, thus

$$\lim_{k \to \infty} \frac{\beta_i^k |\Pi_i \setminus \{\Pi_i^*\}|}{|\Pi_i|} = 0.$$

The second term, $(1 - \beta_i^k) P(\hat{r}_i^k(\pi_i^k) \ge \hat{r}_i^k(\pi_i^*))$, represents the probability of selecting a suboptimal policy during exploitation. If $\pi_i^k \notin \Pi_i^*$, then by Lemma 2, there exists a constant $\theta > 0$ such that

$$P\left(\hat{r}_i^k(\pi_i^k) \ge \hat{r}_i^k(\pi_i^*)\right) \le e^{-\theta T_i^k(\pi_i^k)}.$$

This exponential bound relies on the boundedness of rewards (Assumption ??) and the convergence of empirical means (Lemma 2). Furthermore, because of uniform exploration, we have $T_i^k(\pi_i^*) \geq \frac{k}{|\Pi_i|}$. Hence, $e^{-\theta T_i^k(\pi_i^k)} = O(e^{-\theta \frac{k}{|\Pi_i|}}) = O(\frac{1}{k})$, implying that the second term in (1.1) also vanishes as $k \to \infty$. Putting these two terms together, we have

$$P(\pi_i^k \notin \Pi_i^{\star}) \le \frac{\beta_i^k |\Pi_i \setminus \{\Pi_i^{\star}\}|}{|\Pi_i|} + (1 - \beta_i^k) e^{-\theta T_i^k (\pi_i^{\star})}.$$

As $k \to \infty$, Lemma 2 ensures $\beta_i^k \to 0$. Furthermore, since $T_i^k(\pi_i^{\star}) \to \infty$, it follows that $e^{-\theta T_i^k(\pi_i^{\star})} \to 0$. Therefore, $\lim_{k \to \infty} P(\pi_i^k \in \Pi_i^{\star}) = 1$.

2 Appendix B

We restate Theorem 1 for clarity,

Theorem 2. Consider a partially observable discounted cooperative SG. Let Assumptions?? and?? hold. Suppose that each agent updates its policy using Algorithm??. Then:

(i) For any $0 < \delta < 1$, $|Q_i^t - Q_i^{\star}| < \epsilon$ holds with probability exceeding $1 - \delta$ for all

$$t > t_{mix} + \frac{C}{\epsilon^2} \log \left(\frac{|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}{\delta - \exp\left(-\frac{(kT - t_{mix})(\Delta_{\rho,i})^2}{2\sigma_2^2}\right)} \right), \tag{2.1}$$

where $C = \max\left(\frac{443}{\mu_{\min}}, \frac{2\sigma_1^2}{\mu_{\min}}, \frac{(\gamma V_i^* \eta_{i,\max})^2}{2}, \frac{2\sigma_2^2}{\mu_{\min}(1-(1-\eta_i^t)^T)^2}\right)$, and $\Delta_{\rho,i} = \rho^* - \rho^{2,k}$. Here, σ_1^2 is the variance of the reward deviation caused by non-stationarity, satisfying $\sigma_1^2 \leq (C^t)^2 \eta_{i,\max}^2 (r_{\max} - r_{\min})^2$, and σ_2^2 is the variance of the feedback error, bounded by $\sigma_2^2 \leq \left(\frac{C^t \eta_{i,\max}}{2}\right)^2$.

(ii) Additionally, $P(\lim_{t\to\infty} Q_i^t = Q_i^*) \stackrel{a.s.}{=} 1$.

Proof. In order to define the Multi-Agent decomposition error term we first define the error term for each agent i as the difference between the Q-function at time t and the optimal Q-function,

$$\Delta_{i}^{t} := Q_{i}^{t} - Q_{i}^{\star}
= (1 - \eta_{i}^{t})Q_{i}^{t-1} + \eta_{i}^{t} \left(r_{i} + \gamma P^{t}V_{i}^{t-1}\right) - Q_{i}^{\star}
= (1 - \eta_{i}^{t})(Q_{i}^{t-1} - Q_{i}^{\star}) + \eta_{i}^{t} \left(r_{i} + \gamma P^{t}V_{i}^{t-1} - Q_{i}^{\star}\right)
\stackrel{(*)}{=} (1 - \eta_{i}^{t})\Delta_{i}^{t-1} + \eta_{i}^{t} \left(\xi_{r}^{t} + \beta_{i}^{k}(2\mathbb{I}(t) - 1) + \gamma \left(P^{t}V_{i}^{t-1} - PV^{\star}\right)\right)
= (1 - \eta_{i}^{t})\Delta_{i}^{t-1} + \eta_{i}^{t}\xi_{r}^{t} + \eta_{i}^{t}\beta(2\mathbb{I}(t) - 2) + \eta_{i}^{t}\gamma \left(P^{t} - P\right)V^{\star}
+ \eta_{i}^{t}\gamma P^{t} \left(V_{i}^{t-1} - V^{\star}\right),$$
(2.2)

where (*) is due to the fact that the optimal policy is consistent during the entire episode $\pi_i^{1,*} = \pi_i^{2,*}$ and $\xi_r^t = r_i(s_i^t, a_i^t, \boldsymbol{a}_{-i}^t) - r_i^{\star}(s_i^t, a_i^t, \boldsymbol{a}_{-i}^t)$, where $r_i^{\star}(s_i^t, \pi_i^{\star}, \boldsymbol{\pi}_{-i}^{\star})$ is an optimal reward given a joint optimal policy $\boldsymbol{\pi}^{\star}$.

Next, by applying the recursion iteratively by expressing Δ_i^{t-1} in terms of Δ_i^{t-2} , and continuing until we reach Δ_i^0 , we obtain:

$$\Delta_{i}^{t} = \underbrace{\prod_{j=1}^{t} (1 - \eta_{i}^{j}) \Delta_{i}^{0}}_{e_{0}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \xi_{r}^{l}}_{e_{1}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma \left(P^{l} - P\right) V^{\star}}_{e_{2}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma \left(P^{l} - P\right) V^{\star}}_{e_{3}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma \left(P^{l} - P\right) V^{\star}}_{e_{4}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma \left(P^{l} - P\right) V^{\star}}_{e_{4}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma \left(P^{l} - P\right) V^{\star}}_{e_{4}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma \left(P^{l} - P\right) V^{\star}}_{e_{4}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma \left(P^{l} - P\right) V^{\star}}_{e_{4}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma \left(P^{l} - P\right) V^{\star}}_{e_{4}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma \left(P^{l} - P\right) V^{\star}}_{e_{4}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma \left(P^{l} - P\right) V^{\star}}_{e_{4}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma \left(P^{l} - P\right) V^{\star}}_{e_{4}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma \left(P^{l} - P\right) V^{\star}}_{e_{4}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma P^{l} \left(V_{i}^{l-1} - V^{\star}\right)}_{e_{4}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma P^{l} \left(V_{i}^{l-1} - V^{\star}\right)}_{e_{4}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma P^{l} \left(V_{i}^{l-1} - V^{\star}\right)}_{e_{4}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma P^{l} \left(V_{i}^{l-1} - V^{\star}\right)}_{e_{4}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma P^{l} \left(V_{i}^{l-1} - V^{\star}\right)}_{e_{4}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma P^{l} \left(V_{i}^{l-1} - V^{\star}\right)}_{e_{4}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j})\right) \eta_{i}^{l} \gamma P^{l} \left(V_{i}^{l-1} - V^{\star}\right)}_{e_{4}^{t}} + \underbrace{\sum_{l=1}^{t} \left(\prod_{$$

By the triangle inequality, we have

$$|\Delta_i^t| \le |e_0^t| + |e_1^t| + |e_2^t| + |e_3^t| + |e_4^t| \tag{2.4}$$

To bound $|\Delta_i^t|$, we analyze each error term $e_0^t, e_1^t, e_2^t, e_3^t$, and e_4^t individually. We start with e_0^t following a similar proof technique as in [?].

For any two probability distributions μ and ν , let $d_{\text{TV}}(\mu, \nu)$ denote their total variation distance. Consider a time-homogeneous, uniformly ergodic Markov chain $\{s_i^0, s_i^1, s_i^2, \dots\}$ on a finite state space \mathcal{S}_i with transition kernel P and stationary distribution μ . We denote by $P^t(\cdot \mid s_i^0)$ the distribution of s_i^t given the initial state s_i^0 . The mixing time t_{mix} of this Markov chain is defined by

$$t_{\text{mix}}(\epsilon) := \min \left\{ t \mid \max_{x \in \mathcal{X}} d_{\text{TV}}(P^t(\cdot \mid s_i^0), \mu) \le \epsilon \right\};$$

$$t_{\text{mix}} := t_{\text{mix}}(1/4).$$
(2.5)

In what follows, we restate Lemma 8 in [?], which addresses the concentration of the empirical distribution of a uniformly ergodic Markov chain, highlighting the importance of the mixing time.

Lemma 3. Consider the above-mentioned Markov chain. For any $0 < \delta < 1$, if

$$t \ge \frac{443t_{mix}}{\mu_{\min}} \log \frac{4|\mathcal{X}|}{\delta},$$

then for any $s_i^1 \in \mathcal{S}_i$, one has

$$P_{s_i^1} \left\{ \exists s_i^t \in \mathcal{S}_i : \left| \sum_{i=1}^t \mathbb{I}\{s_i^t\} - t\mu(s_i^t) \right| \ge \frac{1}{2} t\mu(s_i^t) \right\} \le \delta.$$

Lemma 4. For any $\delta > 0$, suppose $t > \frac{443t_{\text{mix}}}{\mu_{min}} \log \frac{4|\mathcal{S}||\mathcal{A}||\mathcal{N}|}{\delta}$. Then with probability greater than $1 - \delta$ one has

$$|e_0^t| \le (1 - \eta_i^t)^{\frac{1}{2}t\mu_{min}} |\Delta_i^0| \tag{2.6}$$

Proof. From the definition of e_0^t and the Q-learning update rule in (??), one can easily see that,

$$\left| \prod_{j=1}^{t} (1 - \eta_i^j) \Delta_i^0 \right| = \prod_{j=1}^{C^t(s_i, a_i)} (1 - \eta_i^j) |\Delta_i^0|$$

$$\leq (1 - \eta_{i, min}^t)^{C^t(s_i, a_i)} |\Delta_i^0|,$$
(2.7)

Now using Lemma 3, and applying union bound over the state space S_i , the action space A_i and the set of agents N, one has, with probability greater than $1 - \delta$, that,

$$C^t(s_i, a_i) \ge t\mu_{min}/2 \tag{2.8}$$

Using the fact that, any aperiodic and irreducible Markov chain on a finite state space is uniformly ergodic [?]. Thus, (2.8) holds uniformly over all (s_i, a_i) and all agents $i \in \mathcal{N}$ and all $\frac{443t_{\text{mix}}}{\mu_{min}} \log \frac{4|\mathcal{S}||\mathcal{A}||\mathcal{N}|}{\delta} \leq t \leq T$, where μ_{min} is the stationary distribution of the Markov chain (s_i^0, s_i^1, \ldots) . Then, we have, $|e_0^t| \leq (1 - \eta_{i,\min})^{\frac{t\mu_{min}}{2}} |\Delta_i^0|$.

For learning rates $\eta_i^j \in (0,1)$ with $\eta_{i,\max} = \max_j \eta_i^j$, and $\eta_{i,\min} = \min_j \eta_i^j$, the following inequality holds, $\sum_{l=1}^t \left(\prod_{j=l+1}^t (1-\eta_i^j)\right) \eta_i^l \leq C^t \eta_{i,\max}$. To derive this result, we first bound the product term as follows $\prod_{j=l+1}^t (1-\eta_i^j) \leq (1-\eta_{i,\min})^{t-l}$. Substituting this bound into the summation and utilizing the definition of C^t , we obtain

$$\sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_i^j) \right) \eta_i^l \leq \eta_i^l \frac{1 - (1 - \eta_{i,\min})^{C^t}}{\eta_{i,\min}}$$

$$\stackrel{(*)}{\leq} \eta_{i,\max} \cdot \frac{C^t \eta_{i,\min}}{\eta_{i,\min}}$$

$$= C^t \eta_{i,\max}.$$
(2.9)

Here, (*) follows from Bernoulli's inequality, $(1 - \eta_{i,\min})^{C^t} \ge 1 - C^t \eta_{i,\min}$, which yields $1 - (1 - \eta_{i,\min})^t \le C^t \eta_{i,\min}$.

Next, we analyze the deviation between the observed reward and the optimal reward under the joint optimal policy:

$$\xi_r^k = r_i(s_i^t, a_i^t, \mathbf{a}_{-i}^t) - r_i^{\star}(s_i^t, a_i^t, \mathbf{a}_{-i}^t), \tag{2.10}$$

where $r_i^{\star}(s_i^t, a_i^t, \boldsymbol{a}_{-i}^t)$ represents the optimal reward under the optimal policy which satisfies, $r_i^{\star}(s_i^t, a_i^t, \boldsymbol{a}_{-i}^t) = \bar{r}_i^k(\pi_i^k)$, with $\bar{r}_i^k(\pi_i^k)$ given in (1.2).

Lemma 5. Let $\delta > 0$ and $\epsilon > 0$ be the confidence and error thresholds, respectively. Then, for any $\delta > 0$ and $\epsilon > 0$, one has $|e_1^t| \leq \epsilon$ with probability at least $1 - \delta$, $\forall i \in \mathcal{N}$, $s_i \in \mathcal{S}_i$, $a_i \in \mathcal{A}_i$, and $t \geq t_{\text{mix}} + \frac{2\sigma_1^2}{\mu_{\text{min}}\epsilon^2} \log\left(\frac{2|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}{\delta}\right)$, where $\sigma_1^2 = Var[e_1^t] \leq (C^t \eta_{i,max}(r_{\text{max}} - r_{\text{min}}))^2$.

Proof. Observe that the error term ξ_r^t is bounded, $|\xi_r^t| \leq r_{\text{max}} - r_{\text{min}}$, therefore e_1^t has a well-defined variance $\text{Var}[e_1^t] = \sigma_1^2 \leq (C^t \eta_{i,\text{max}}(r_{\text{max}} - r_{\text{min}}))^2$.

From Lemma 1, the error term ξ_r^t can be viewed as nearly zero-mean once the environment is effectively stationary beyond t_{mix} . Informally, for large l, $\mathbb{E}[\xi_r^l|\mathcal{H}^{k-1}] \approx 0$. Therefore, $\{e_1^t\}$ forms a martingale difference sequence with $\mathbb{E}[e_1^t \mid \mathcal{H}_i^{k-1}] = 0$, hence the partial sum of these centered increments satisfies a classical martingale-based concentration principle for Bernstein's inequality, thus we have

$$P\left(|e_1^t| > \epsilon\right) \le 2\exp\left(\frac{-C^t \epsilon^2}{2\sigma_1^2 + \frac{2}{3}(r_{\text{max}} - r_{\text{min}})\epsilon}\right). \tag{2.11}$$

We extend the probability bound over all agents and state-action pairs using the union bound:

$$P\left(\max_{i,s_i,a_i}|e_1^t| > \epsilon\right) \le 2|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i| \exp\left(\frac{-C^t \epsilon^2}{2\sigma_1^2 + \frac{2}{3}(r_{\max} - r_{\min})\epsilon}\right). \tag{2.12}$$

From Lemma 1, the error term ξ_r^t behaves as a martingale difference sequence once the Markov chain has mixed sufficiently, i.e., once $t \geq t_{\text{mix}}$. Before t_{mix} , the chain may still be in a transient phase, meaning the empirical state-action visitation frequencies are not yet well-approximated by the stationary distribution. Thus, we cannot immediately assume that each state-action pair (s_i, a_i) is visited in proportion to $\mu(s_i, a_i)$.

However, beyond t_{mix} , Lemma 3 ensures that the empirical frequency of visits to any (s_i, a_i) is at least half of its expected stationary fraction. Applying this bound to the total visit count, we obtain

$$C^t(s_i, a_i) \ge \frac{1}{2}\mu(s_i, a_i)(t - t_{\text{mix}})$$

with high probability for sufficiently large t.

Since $\mu_{\min} = \min_{s_i, a_i} \mu(s_i, a_i)$, we generalize this bound over all state-action pairs, $C^t \approx \mu_{\min}(t - t_{\min})$ up to constant factors. This approximation is crucial in solving for t in the final probability bound.

Solving for t, given $C^t \approx \mu_{\min}(t - t_{\min})$, we require

$$2|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i| \exp\left(-\frac{\mu_{\min}(t - t_{\min})\epsilon^2}{2\sigma_1^2 + \frac{2}{2}(r_{\max} - r_{\min})\epsilon}\right) \le \delta.$$
(2.13)

Solving for t, we obtain

$$t \ge t_{\text{mix}} + \frac{1}{\mu_{\text{min}}} \log \left(\frac{2|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}{\delta} \right) \times \max \left\{ \frac{2\sigma_1^2}{\epsilon^2}, \frac{3(r_{\text{max}} - r_{\text{min}})}{\epsilon} \right\}. \tag{2.14}$$

Since the term $\frac{2\sigma_1^2}{\epsilon^2}$ dominates when ϵ is sufficiently small. Thus, to simplify the expression and ensure the bound holds in this regime, we express it as

$$t \ge t_{\text{mix}} + \frac{2\sigma_1^2}{\mu_{\text{min}}\epsilon^2} \log \left(\frac{2|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}{\delta} \right). \tag{2.15}$$

Thus, for any t satisfying the lower bound in (2.15), the error satisfies, $|e_1^t(s_i, a_i)| \leq \epsilon$, with probability at least $1 - \delta$ for all i, s_i , and a_i .

Next, we want to analyze e_2^t .

Lemma 6. For any $\delta > 0$, with probability at least $1 - \delta$, $|e_2^t| \leq \epsilon$, for all

$$t \ge t_{\text{mix}} + \frac{2(\gamma V^{\star})^2}{\mu_{\text{min}} \epsilon^2} \ln \left(\frac{2|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}{\delta} \right)$$
 (2.16)

where $V^* = \frac{r_{max}}{1-\gamma}$.

Proof: We begin with the error bound for e_2^t :

$$|e_{2}^{t}| = \left| \sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j}) \right) \eta_{i}^{l} \gamma(P^{l} - P) V_{i}^{\star} \right|$$

$$\leq \sum_{l=1}^{t} \left| \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j}) \right) \eta_{i}^{l} \gamma(P^{l} - P) V_{i}^{\star} \right|$$

$$= \sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j}) \right) \eta_{i}^{l} \gamma \|(P^{l} - P) V_{i}^{\star}\|$$

$$\leq \sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j}) \right) \eta_{i}^{l} \gamma \|V_{i}^{\star}\|_{i' \in \mathcal{N}, s_{i'} \in \mathcal{S}_{i'}, a_{i'} \in \mathcal{A}_{i'}} \|P^{l} - P\|_{1}$$

$$\leq \gamma V^{\star} \left(\max_{i' \in \mathcal{N}, s_{i'} \in \mathcal{S}_{i'}, a_{i'} \in \mathcal{A}_{i'}} \|P^{l} - P\|_{1} \right) \sum_{l=1}^{t} \left(\prod_{j=l+1}^{t} (1 - \eta_{i}^{j}) \right) \eta_{i}^{l}$$

$$(2.17)$$

We use the known identity that for any sequence $\eta_i^j \in (0,1)$, $\sum_{l=1}^t \left(\prod_{j=l+1}^t (1-\eta_i^j)\right) \eta_i^l = 1 - \prod_{j=1}^t (1-\eta_i^j) \le 1$. Applying this bound to inequality (2.17):

$$|e_2^t| \le \gamma V^* \max_{i \in \mathcal{N}, s_i \in \mathcal{S}_i, a_i \in \mathcal{A}_i} ||P^l - P||_1.$$
 (2.18)

By Hoeffding's inequality and a union bound, with probability at least $1 - \delta$, for all $l \ge t_{\text{mix}}$ and all (s_i, a_i) , we have $||P^l - P||_1 \le \epsilon_0$ if $C^l(s_i, a_i) \ge \frac{1}{2\epsilon_0^2} \ln\left(\frac{2|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}{\delta}\right)$. To ensure $|e_2^t| \le \epsilon$, we set $\gamma V^* \epsilon_0 = \epsilon$, so $\epsilon_0 = \frac{\epsilon}{\gamma V^*}$. Substituting ϵ_0 into the visit count condition and using the approximation $C^t(s_i, a_i) \approx \mu_{\min} (t - t_{\min})$ for $t \ge t_{\min}$, we require:

$$\mu_{\min}\left(t - t_{\min}\right) \ge \frac{\left(\gamma V^{\star}\right)^{2}}{2\epsilon^{2}} \ln\left(\frac{2\left|\mathcal{N}\right|\left|\mathcal{S}_{i}\right|\left|\mathcal{A}_{i}\right|}{\delta}\right). \tag{2.19}$$

Solving for t yields the sample complexity bound:

$$t \ge t_{\text{mix}} + \frac{2(\gamma V^{\star})^2}{\mu_{\text{min}} \epsilon^2} \ln \left(\frac{2|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}{\delta} \right). \tag{2.20}$$

Thus, with this choice of t, we ensure that with probability at least $1 - \delta$, $|e_2^t| \leq \epsilon$.

Lemma 7 (Probabilistic Bound for e_3^t). Let $\delta > 0$ and $\epsilon > 0$ be the confidence and error thresholds, respectively. Then, for any episode index k > 0, the error term e_3^t satisfies:

$$P\left(\left|e_3^t\right| \le \epsilon\right) \ge 1 - \delta,\tag{2.21}$$

for all

$$t \ge t_{\text{mix}} + \frac{1}{\mu_{\text{min}}(1 - (1 - \eta_i)^T)^2} \cdot \frac{2\sigma_2^2}{\epsilon^2} \log\left(\frac{2|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}{\delta}\right). \tag{2.22}$$

Proof. The key challenge is bounding the deviations of the exploration term e_3^t while accounting for the retention of policies due to global feedback ϕ^k .

Step 1: Global Feedback Failure Probability As noted in Remark ??, even when the optimal policy is selected (guaranteed by Proposition 1), retaining it depends on the global performance metric ρ . The global reward gap is defined as:

$$\Delta_{\rho,i} = \rho^* - \rho(\pi_i, \boldsymbol{\pi}_{-i}), \tag{2.23}$$

where ρ^* is the optimal global metric. Using Hoeffding's inequality, the probability of failing to retain the policy due to $\phi^k = 0$ satisfies:

$$P\left(\phi^k = 0\right) \le \exp\left(-\frac{(kT - t_{\text{mix}})(\Delta_{\rho,i})^2}{2\sigma_2^2}\right). \tag{2.24}$$

This defines the joint failure probability $\delta_{joint}(k)$ as:

$$\delta_{joint}(k) = \exp\left(-\frac{(kT - t_{\text{mix}})(\Delta_{\rho,i})^2}{2\sigma_2^2}\right). \tag{2.25}$$

Step 2: Union Bound Across All Agents, States, and Actions To ensure the probabilistic bound holds uniformly across all agents, states, and actions, we apply a union bound. For any specific state-action pair, the probability of error satisfies:

$$P\left(\exists (i, s_i, a_i) : |e_3^t| > \epsilon\right) \le \frac{\delta}{|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}.$$
(2.26)

Combining the probabilities, the total failure probability is bounded by:

$$P(|e_3^t| > \epsilon) \le \delta_{joint}(k) + \frac{\delta}{|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}.$$
 (2.27)

Taking the complement, the probability of satisfying $|e_3^t| \leq \epsilon$ is:

$$P\left(|e_3^t| \le \epsilon\right) \ge 1 - \delta_{total},\tag{2.28}$$

where

$$\delta_{total} = \delta_{joint}(k) + \frac{\delta}{|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}.$$
 (2.29)

Step 3: Relating $\delta_{joint}(k)$ to ϵ From Hoeffding's inequality, we have:

$$\delta_{joint}(k) = \exp\left(-\frac{(kT - t_{\text{mix}})(\Delta_{\rho,i})^2}{2\sigma_2^2}\right). \tag{2.30}$$

Assume the reward gap $\Delta_{\rho,i}$ is proportional to the error threshold ϵ , i.e., $\Delta_{\rho,i} \geq \epsilon$. Substituting this into $\delta_{joint}(k)$:

$$\delta_{joint}(k) = \exp\left(-\frac{(kT - t_{\text{mix}})\epsilon^2}{2\sigma_2^2}\right). \tag{2.31}$$

For the total failure probability to satisfy $\delta_{total} \leq \delta$, we need:

$$\exp\left(-\frac{(kT - t_{\text{mix}})\epsilon^2}{2\sigma_2^2}\right) + \frac{\delta}{|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|} \le \delta. \tag{2.32}$$

Neglecting the second term (for simplicity in scaling), we require:

$$\exp\left(-\frac{(kT - t_{\text{mix}})\epsilon^2}{2\sigma_2^2}\right) \le \delta. \tag{2.33}$$

Taking the natural logarithm:

$$-\frac{(kT - t_{\text{mix}})\epsilon^2}{2\sigma_2^2} \le \log(\delta). \tag{2.34}$$

Rearranging for $kT - t_{\text{mix}}$:

$$kT - t_{\text{mix}} \ge \frac{2\sigma_2^2}{\epsilon^2} |\log(\delta)|. \tag{2.35}$$

Step 4: Incorporating Learning Retention Factor The retention factor $(1 - (1 - \eta_i)^T)^2$ influences the effective bound on t. To account for this:

$$(1 - (1 - \eta_i)^T)^2 t \ge t_{\text{mix}} + \frac{2\sigma_2^2}{\epsilon^2} |\log(\delta)|.$$
 (2.36)

Rearranging:

$$t \ge t_{\text{mix}} + \frac{1}{\mu_{\text{min}}(1 - (1 - \eta_i)^T)^2} \cdot \frac{2\sigma_2^2}{\epsilon^2} |\log(\delta)|.$$
 (2.37)

Conclusion Thus, for any $t \geq t_0$, where:

$$t_0 = t_{\text{mix}} + \frac{1}{\mu_{\text{min}}(1 - (1 - \eta_i)^T)^2} \cdot \frac{2\sigma_2^2}{\epsilon^2} \log\left(\frac{2|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}{\delta}\right), \tag{2.38}$$

we have $|e_3^t| \le \epsilon$ w.p. at least $1 - \delta$.

For e_4^t one can easily notice that,

$$|P^{l}(V_{i}^{l-1} - V^{\star})| \le |V_{i}^{l-1} - V^{\star}| \le |Q_{i}^{l-1} - Q^{\star}| = |\Delta_{i}^{l-1}|$$
 (2.39)

Thus we can write,

$$|\Delta_i^t| \le \left[(1 - \eta)^{\frac{1}{2}t\mu_{\min}} + C^t \eta_{i,\max} \gamma \right] |\Delta_i^0| + |e_1^t| + |e_2^t| + |e_3^t|. \tag{2.40}$$

To ensure $|\Delta_i^t| \leq \epsilon$, we bound each term in the inequality:

$$|\Delta_i^t| \le \left[(1 - \eta)^{\frac{1}{2}t\mu_{\min}} + C^t \eta_{i,\max} \gamma \right] |\Delta_i^0| + |e_1^t| + |e_2^t| + |e_3^t|,$$

by $\frac{\epsilon}{4}$:

1. Bounding e_0^t : The term $e_0^t = \prod_{j=1}^t (1-\eta_i^j) \Delta_i^0$ decays as $(1-\eta)^{\frac{1}{2}t\mu_{\min}}$. For $e_0^t \leq \frac{\epsilon}{4}$, we require:

$$t \ge \frac{2}{\mu_{\min}} \log \left(\frac{4|\Delta_i^0|}{\epsilon} \right).$$

2. Bounding e_1^t : From Lemma 1, $|e_1^t| \leq \frac{\epsilon}{4}$ w.p. $1 - \frac{\delta}{3}$ for:

$$t \ge t_{\min} + \frac{2\sigma_2^2}{\mu_{\min}\epsilon^2} \log\left(\frac{6|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}{\delta}\right).$$

3. Bounding e_2^t : From Lemma 2, $|e_2^t| \leq \frac{\epsilon}{4}$ w.p. $1 - \frac{\delta}{3}$ for:

$$t \ge t_{\min} + \frac{1}{\mu_{\min}} \frac{1}{(1 - (1 - \eta_i)^{C^t})^2} \log \left(\frac{6|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}{\delta} \right).$$

4. Bounding e_3^t : From Lemma 3, $|e_3^t| \leq \frac{\epsilon}{4}$ w.p. $1 - \frac{\delta}{3}$ for:

$$t \ge t_{\min} + \frac{1}{\mu_{\min}} \frac{1}{(1 - (1 - \eta_i)^T)^2} \log \left(\frac{6|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}{\delta} \right).$$

5. Combining the Bounds: Using the union bound, the total failure probability is δ . The overall sample complexity T_k is determined by the slowest-decaying term among e_0^t , e_1^t , e_2^t , and e_3^t . Thus:

$$T_k = \left(\frac{T^2(\Delta_{\rho,i})^2}{2\sigma_2^2}\log\left(\frac{3}{\delta}\right) + \frac{T^2}{t_{\text{mix}}}\right) \cdot \max\left\{\frac{32\sigma_2^2\log(6/\delta)}{\mu_{\text{min}}\epsilon^2}, \frac{16\gamma^2(V^\star)^2\log(6|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|/\delta)}{\mu_{\text{min}}\epsilon^2(1 - (1 - \eta_i)^T)^2}\right\}.$$

Lemma 8 (Probabilistic Bound for e_3^t). Let $\delta > 0$ and $\epsilon > 0$ be the confidence and error thresholds, respectively. Then, for any episode index k > 0, the error term e_3^t satisfies:

$$P\left(|e_3^t| \le \epsilon\right) \ge 1 - \delta,\tag{2.41}$$

for all

$$t \ge t_{\text{mix}} + \frac{1}{2\mu_{\text{min}}\epsilon^2} \ln\left(\frac{2|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}{\delta_{total}}\right),$$
 (2.42)

where δ_{total} is given by:

$$\delta_{total} = \delta_{joint}(k) + \frac{\delta}{|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}, \tag{2.43}$$

and $\delta_{joint}(k)$ represents the probability of failure due to global feedback, defined as:

$$\delta_{joint}(k) = \exp\left(-\frac{(kT - t_{\text{mix}})(\Delta_{\rho,i})^2}{2\sigma_2^2}\right). \tag{2.44}$$

Proof

The key steps in the proof are to correctly account for the failure probabilities due to: 1. The local exploration term. 2. The global feedback mechanism.

We need to bound the total failure probability $P(|e_3^t| > \epsilon)$ by considering both sources of deviation.

Step 1: Bounding the Local Failure Probability Using Hoeffding's inequality, the failure probability for any specific agent i, state s_i , and action a_i is:

$$P(|e_3^t| > \epsilon) \le 2 \exp(-2\mu_{\min}t\epsilon^2)$$
.

By applying the union bound over all agents, states, and actions, we obtain:

$$P\left(\exists (i, s_i, a_i) : |e_3^t| > \epsilon\right) \le \frac{\delta}{|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}.$$

Step 2: Bounding the Global Failure Probability The global failure due to feedback (captured by ϕ^k) depends on the global reward gap $\Delta_{\rho,i}$:

$$\delta_{joint}(k) = \exp\left(-\frac{(kT - t_{\text{mix}})(\Delta_{\rho,i})^2}{2\sigma_2^2}\right).$$

Thus, the total failure probability becomes:

$$P(|e_3^t| > \epsilon) \le \delta_{joint}(k) + \frac{\delta}{|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}.$$

Step 3: Complementing the Probability Taking the complement, we get:

$$P\left(|e_3^t| \le \epsilon\right) \ge 1 - \delta_{total},$$

where:

$$\delta_{total} = \delta_{joint}(k) + \frac{\delta}{|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}.$$

Step 4: Time Bound for t For the bound to hold, we solve for t in the expression:

$$2\exp\left(-2\mu_{\min}t\epsilon^2\right) = \frac{\delta}{|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}.$$

Taking the natural logarithm and solving for t, we have:

$$t \ge \frac{1}{2\mu_{\min}\epsilon^2} \ln\left(\frac{2|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}{\delta}\right).$$

Including the influence of $\delta_{joint}(k)$, the overall time bound becomes:

$$t \ge t_{\text{mix}} + \frac{1}{2\mu_{\text{min}}\epsilon^2} \ln\left(\frac{2|\mathcal{N}||\mathcal{S}_i||\mathcal{A}_i|}{\delta_{total}}\right),$$

where δ_{total} includes both local and global failure contributions.