Linear Programming: Chapter 14 Network Flows: Applications

Robert J. Vanderbei

October 22, 2007

Operations Research and Financial Engineering Princeton University Princeton, NJ 08544 http://www.princeton.edu/~rvdb

Transportation Problem

Each node is one of two types:

- source (supply) node
- destination (demand) node

Every arc has:

- its tail at a supply node
- its head at a demand node

Such a graph is called *bipartite*.

Solving with Pivot Tool

Best to arrange:

- supply nodes vertically on left
- demand nodes horizontally across top

Note that arc data appears as a neat table.

Data:

Tree Solution

Leaving arc: (a,b) Entering arc: (i,h) Etc., etc., etc.

Assignment Problem

Transportation problem in which

- Equal number of supply and demand nodes.
- Every supply node has a supply of one.
- Every demand node has a demand for one.
- Each supply node is connected to every demand node (called a *complete bipartite graph*).
- Solution is required to be all integers.

Notes:

- These problems are very common.
- They are notoriously degenerate (2n constraints but only n nonzero flows).

Shortest Paths Problem

Given:

- Network: $(\mathcal{N}, \mathcal{A})$
- Costs = Travel Times: c_{ij} , $(i, j) \in \mathcal{A}$
- ullet Home (root): $r \in \mathcal{N}$

Problem: Find shortest path from every node in \mathcal{N} to root.

Network Flow Formulation

Put

$$b_i = \begin{cases} 1 & i \neq r \\ -(m-1) & i = r \end{cases}$$

- Solve min-cost network flow problem.
- ullet Shortest path from i to r: follow tree arcs.
- Length (of time) of shortest path = $y_r^* y_i^*$.

Notation Used in Following Algorithms

- Put $v_i = \min$. time from i to r
 - Called *label* in networks literature.
 - Called value in dynamic programming literature.

Label Correcting Algorithm

Dynamic Programming

• Bellman's Equation = Principle of Dynamic Programming

$$v_r = 0$$

$$v_i = \min\{c_{ij} + v_j : (i, j) \in \mathcal{A}\}$$

$$T = \{(i, j) \in \mathcal{A} : v_i = c_{ij} + v_j\}$$
 - not necessarily a tree (3)

Method of Successive Approximation

$$- \text{ Initialize: } v_i^{(0)} = \begin{cases} 0 & i = r \\ \infty & i \neq r \end{cases}$$

$$- \text{ Iterate: } v_i^{(k+1)} = \begin{cases} 0 & i = r \\ \min\{c_{ij} + v_j^{(k)} : (i,j) \in \mathcal{A}\} & i \neq r \end{cases}$$

- Stop: when a pass leaves v_i 's unchanged.

Label Correcting Algorithm—Complexity

- $v_i^{(k)} = \text{length of shortest path having } k \text{ or fewer arcs.}$
- \bullet Requires at most m-1 passes.
- \bullet *n* adds/compares per pass.
- mn operations in total.

Label Setting Algorithm

Dijkstra's Algorithm

Notations:

- F = set of finished nodes (labels are set).
- h_i , $i \in \mathcal{N} = \text{next node to visit after } i$ (heading).

Dijkstra's Algorithm:

• Initialize:

$$F = \emptyset, \qquad v_j = \begin{cases} 0 & j = r \\ \infty & j \neq r \end{cases}$$

- Iterate:
 - While unfinished nodes remain, select the one with smallest v_k . Call it j. Add it to set of finished nodes F.
 - For each unfinished node i having an arc connecting it to j:

* If
$$c_{ij} + v_j < v_i$$
, then set

$$v_i = c_{ij} + v_j \tag{4}$$

$$h_i = j \tag{5}$$

Dijkstra's Algorithm—Complexity

- Each iteration finishes one node: *m* iterations
- Work per iteration:
 - Selecting an unfinished node:
 - * Naively, m comparisons.
 - * Using appropriate data structures, a heap, $\log m$ comparisons.
 - Update adjacent arcs.
- Overall: $m \log m + n$.

