Rapport de stage Ingénieur

_

Implémentation d'un ordonnanceur temps réel sur plateforme multi-cœur hétérogène

BELPOIS Vincent 2023

Table des matières

P	résen	tation du stage	3
	0.1	Le L.I.A.S.	3
	0.2	Le sujet du stage	3
1	\mathbf{Sys}	tèmes d'exploitation compatibles avec la carte ROCK960	4
	1.1	Présentation de la carte de développement	4
	1.2	Installation d'un système d'exploitation	4
		1.2.1 Installation d'une image précompilée	4
		1.2.2 Compilation de Linux depuis le code source	4
		1.2.3 Compilation croisée	4
	1.3	Etude des versions de Linux compatibles	4
2	LIT	$^{ m cMUS^{RT}}$	5
	2.1	Présentation de LITMUST ^{RT}	5
	2.2	Présentation de feather-trace	5
	2.3	Implémentation d'un ordonanceur EDF partitioné	5
		2.3.1 Algorithme considéré	5
		2.3.2 Implémentation	5

Présentation du stage

- 0.1 Le L.I.A.S.
- 0.2 Le sujet du stage

Mon stage s'intéresse à l'implémentation d'un ordonanceur sur plateforme hétérogène[1]

1 Systèmes d'exploitation compatibles avec la carte ROCK960

- 1.1 Présentation de la carte de développement
- 1.2 Installation d'un système d'exploitation
- 1.2.1 Installation d'une image précompilée
- 1.2.2 Compilation de Linux depuis le code source
- 1.2.3 Compilation croisée
- 1.3 Etude des versions de Linux compatibles

2 LITMUS^{RT}

2.1 Présentation de LITMUST^{RT}

2.2 Présentation de feather-trace

2.3 Implémentation d'un ordonanceur EDF partitioné

2.3.1 Algorithme considéré

On cherche alors pour commencer a implémenter un algorithme d'ordonancement simple afin de se familiariser avec les méthodes et fonctions fourni par LITMUS^{RT}. J'ai donc choisi un algorithme partitioné pour la simplicité d'ordonancement par processeur que cela offre. Un algorithme EDF (*Earliest Deadline First*) est alors choisi pour la simplicité du choix de la tache a exécuter. Comme son nom l'indique, on choisi à chaque instant la tache ayant l'échéance la plus proche. On nomera par la suite cet algorithme P-EDF (*Partitionned Earliest Deadline First*).

Pour montrer le fonctionnement de cet algorithme, si l'on se place sur un même processeur, on peut visualiser l'éxécution de deux tache periodiques :

FIGURE 1 – Exemple de EDF à 2 taches

On a ici une première tache τ_1 avec un pire temps d'éxécution (Worst Case Execution Time) de 2 et une période de 5, et une seconde tache τ_2 avec un pire temps d'éxécution de 4 et une période de 15. On a alors préemption de la τ_2 à t=5 afin d'éxécuter τ_1 . Cela est dû au réveil de la tâche τ_1 (représenté par la flêche montante) et a la date d'échéance plus proche de cette dernière.

2.3.2 Implémentation

Expliquer ce qu'est un module dans le noyau linux.

- Montrer ce qui est propre a la définition du module
- Montrer l'emplacement des fichiers que l'on va créer dans le noyau
- Montrer les modification du make file

RÉFÉRENCES RÉFÉRENCES

Références

[1] Antoine Bertout, Joël Goossens, Emmanuel Grolleau, and Xavier Poczekajlo. Workload assignment for global real-time scheduling on unrelated multicore platforms. In *Proceedings of the 28th International Conference on Real-Time Networks and Systems*, pages 139–148, 2020.

TABLE DES FIGURES Glossaire

Table	e des figures			
1	Exemple de EDF à 2 taches			

5

Glossaire

processeur Ca c'est la définition. 5

