Homework 10: Algorithms and Data Structure

Blen Daniel

Problem 10.1 *Understanding Red-Black Trees*

a) Using Preorder transversal (Root, Left, Right)

Normal Insertion:

1st insertion: array[0] = 13

Preorder (Root, Left, Right): [13]

3rd insertion: array[2] = 37

Preorder (Root, Left, Right): [13, 44, 37]

2nd insertion: array[1] = 44

Preorder (Root, Left, Right): [13, 44]

After fix:

Preorder (Root, Left, Right): [37, 13, 44]

4th insertion: array[3] =7

Preorder (Root, Left, Right): [37,13, 7, 44]

5th insertion: array[4] = 22

Preorder (Root, Left, Right): [37,13,7, 22, 44]

6th insertion: array[5] = 16

After fix:

Preorder (Root, Left, Right): [37,13,7, 44]

After fix:

Preorder (Root, Left, Right): [37, 22, 7, 13, 44]

After fix:

Preorder (Root, Left, Right): [37,13,7, 22, 16, 44]

b) There are only two cases for $\{1, 2, 3, 4\}$

Preorder (Root, Left, Right): [3,2,1, 4]

Preorder (Root, Left, Right): [2,1,3, 4]

Problem 10.2 *Implementing Red Black Trees*

Implementation can be found in the RBT folder.