4. Sintaxe do Cálculo de Predicados

- **4.1** Seja $L=(\{0,f,g\},\{R\},\mathcal{N})$ o tipo de linguagem tal que $\mathcal{N}(0)=0,\ \mathcal{N}(f)=1,\ \mathcal{N}(g)=2,$ $\mathcal{N}(R)=2.$
 - a) Explicite a definição indutiva do conjunto dos termos de tipo L.
 - b) Indique quais das seguintes sequências de símbolos constituem termos de tipo L:
 - i) 0.

- $ii) \quad f(0)$
- **iii)** f(1).

- iv) $g(f(x_1,x_0),x_0)$.
- **v)** $g(x_0, f(x_1)).$
- **vi)** $R(x_0, x_1)$.
- c) Explicite a definição por recursão estrutural em termos de tipo L da função VAR (que a cada termo de tipo L faz corresponder o conjunto de váriáveis que nele ocorrem).
- d) Para cada um dos termos t que se seguem, calcule VAR(t).
 - i) 0.
- ii) $q(x_1, f(x_1)).$
- **iii)** $g(x_1, x_2)$.
- **iv)** $g(x_1, g(x_2, x_3)).$
- e) Para cada um dos termos t da alínea anterior, calcule subt(t).
- f) Para cada um dos termos t da alínea d), calcule $t[g(x_0,0)/x_1]$.
- g) Dê exemplos de termos t, t_1 e t_2 de tipo L tais que:
 - i) $(t[t_1/x_1])[t_2/x_2] = (t[t_2/x_2])[t_1/x_1].$
- ii) $(t[t_1/x_1])[t_2/x_2] \neq (t[t_2/x_2])[t_1/x_1]).$
- h) Sejam t_1 e t_2 termos de tipo L tais que $x_1 \notin VAR(t_2)$ e $x_2 \notin VAR(t_1)$. Mostre que, para todo o termo t de tipo L, $(t[t_1/x_1])[t_2/x_2] = (t[t_2/x_2])[t_1/x_1]$.
- **4.2** Seja $L = (\{0, -\}, \{P, <\}, \mathcal{N})$ em que $\mathcal{N}(0) = 0$, $\mathcal{N}(P) = 1$ e $\mathcal{N}(-) = \mathcal{N}(<) = 2$.
 - a) Dê exemplos de termos de tipo L. Justifique.
 - b) Dê exemplos de fórmulas atómicas de tipo L. Justifique.
 - c) Justifique que cada uma das seguintes palavras é uma fórmula de tipo L.
 - i) $x_2 0 < x_1$.
 - ii) $\exists x_0 \forall x_1(x_1 x_0 < 0).$
 - iii) $\forall x_1 \exists x_0 (x_1 < x_0) \land P(x_1)$.
 - iv) $\forall x_0(x_0 < x_1) \lor \exists x_1(x_1 < x_0).$
 - d) Para cada fórmula da alínea anterior, calcule o conjunto das suas subfórmulas.
 - e) Calcule os conjuntos de variáveis livres e de variáveis ligadas de cada uma das fórmulas da alínea c).
 - f) A proposição "Para todo $\varphi \in \mathcal{F}_L$, LIV $(\varphi) \cap \text{LIG}(\varphi) = \emptyset$ " é verdadeira?

- **4.3** Para cada uma das fórmulas φ do exercício 4.2 c), calcule $\varphi[x_2 x_0/x_1]$.
- **4.4** Considere o tipo de linguagem L do exercício 4.2. Indique quais das seguintes afirmações são verdadeiras.
 - a) A variável x_1 está livre para o termo x_2 na fórmula $x_1 < x_2$.
 - **b)** A variável x_1 está livre para o termo x_2 na fórmula $\exists x_2(x_1 < x_2)$.
 - c) A variável x_1 está livre para o termo 0 na fórmula $\exists x_2(x_1 < x_2)$.
 - d) A variável x_1 está livre para o termo x_2 na fórmula $\forall x_1 \exists x_2 (x_1 < x_2)$.
 - e) A variável x_2 está livre para qualquer termo de tipo L na fórmula $\exists x_2(x_1 < x_2)$.
 - f) A variável x_1 está livre para qualquer termo de tipo L na fórmula $\exists x_2(x_1 < x_2)$.
 - g) A variável x_2 está livre para o termo x_1 em $\exists x_2(x_1 < x_2) \lor \exists x_1(x_1 < x_2)$.
 - h) Toda a variável está livre para o termo $x_1 x_3$ em $\exists x_2 (x_1 < x_2)$.
- 4.5 Escreva as seguintes afirmações como fórmulas para um tipo de linguagem apropriado.
 - a) Todo aquele que é persistente aprende Lógica.
 - b) Quem quer vai, quem não quer manda.
 - c) Nem todos os pássaros voam.
 - d) Se toda a gente consegue, também o João consegue.
 - e) Para todo o número natural que é maior do que 6, o seu dobro é maior do que 12.
 - f) Quaisquer dois conjuntos que têm os mesmos elementos são iguais.
 - g) Existe um inteiro positivo menor do que qualquer inteiro positivo.
 - h) Todo o inteiro positivo é menor do que algum inteiro positivo.
 - Não há barbeiro que barbeie precisamente aqueles homens que não se barbeiam a si próprios.