Machine Learning, Machine Learning (extended)

1 - Introduction

Kashif Rajpoot

k.m.rajpoot@cs.bham.ac.uk

School of Computer Science

University of Birmingham

Outline

- What is machine learning?
- Applications
- Aims
- Learning outcomes
- Assessment
- Relevant texts
- Plagiarism
- Basics of machine learning
- What is the learning problem?
- Classes of learning
- Common terminology

What is machine learning?

- Algorithms (i.e. computational methods) that enable computers to learn from examples
- Algorithms learn from example observations of objects
 - Speech?
 - Image?
 - Health symptoms?
 - Stock prices?
 - Personal choices?
 - Gene characteristics?

What is machine learning?

Given example observations of objects:

- Can we find similar objects?
- Can we make predictions about objects?
- Can we learn something about the objects?
- Can we group the objects?

What is machine learning?

"Why the change? Well, I could see where the future was going..."

Machine learning

- Myriad of algorithms
- Hard to use
 - Often the algorithm parameters need to be tuned
- Important to understand them
- We will discuss a very small selection of algorithms...
 - ..but covering variety

Applications

- Speech recognition
- Computer vision
- Robot control
- Text or document classification (spam)
- Language translation
- Natural language processing
- Recommender systems
- Personal software assistant
- Image understanding
- Disease diagnosis
- Driverless cars (autonomous vehicles)
- Game playing (e.g. chess, go, backgammon)

• • • • • •

ML in industry

- Companies with lots of data for which traditional models don't exist:
 - Google (in almost everything)
 - Microsoft (e.g. personal assistant)
 - Amazon (e.g. recommendation system)
 - Facebook (e.g. friends suggestion, face tagging)
 - Uber (e.g. driverless navigation)

Aims

- Introduce the basic concepts and terminology of machine learning
- 2. Give an overview of the main approaches to machine learning
- 3. Show similarities and differences between different approaches
- 4. Present basic principles for the classification of approaches to machine learning
- Give practical experience of applying machine learning algorithms to classification and data analysis problems
- (ML extended only) Develop skills of literature surveying and critical thinking in an area of machine learning

Learning outcomes

On successful completion, the student should be able to:

- Demonstrate a knowledge and understanding of the main approaches to machine learning
- Demonstrate the ability to apply the main approaches to unseen examples
- Demonstrate an understanding of the differences, advantages and problems of the main approaches in machine learning
- 4. Demonstrate an understanding of the main limitations of current approaches to machine learning, and be able to discuss possible extensions to overcome these limitations
- Demonstrate a practical understanding of the use of machine learning algorithms
- (ML extended only) Survey and discuss the research literature in one subfield of machine learning

Module focus

- Understanding the fundamental principles
 - Common algorithms
 - Common pitfalls
 - Common practical sense (for ML)
 - Categories of algorithms
- NOT a module on ML software packages

Assessment: machine learning

- Continuous assessment (20%)
 - Class test (15%)
 - Home test (5%)
- Examination (80%)
 - 90 minutes written exam
 - Closed-book and closed-notes exam

Assessment: machine learning (extended)

- Continuous assessment (40%)
 - Class test (15%)
 - Home test (5%)
 - Computer based tests (20%)
- Examination (60%)
 - 90 minutes written exam
 - Closed-book and closed-notes exam

Assessment schedule (tentative)

Week	Test (ML)	Test (ML extended) + including Test (ML)
1		
2		Computer based test 1 given
3		
4		Computer based test 1 due
5	Home test given	Computer based test 2 given
6		
7		Computer based test 2 due
8	Home test due	Computer based test 3 given
9	Class test due	
10		Computer based test 3 due
11		

Module website

- Module Canvas page
 - https://canvas.bham.ac.uk/courses/21807
- Lecture slides will be uploaded weekly
- Announcements/discussions
- Home exercise submission
- Computer based test submission (ML extended only)

Office hours

- Tuesday 9.30am-11am
- Location: LG06d (lower ground floor)

Relevant texts

Plagiarism

- https://intranet.birmingham.ac.uk/as/studentservice s/conduct/plagiarism/index.aspx
- https://intranet.birmingham.ac.uk/as/studentservice s/conduct/plagiarism/guidance-students.aspx
- http://www.birmingham.ac.uk/Documents/universit y/legal/plagiarism.pdf

Pre-requisites

- Mathematical techniques for computer science (or equivalent)
- Introduction to AI (or equivalent)
- Math refresher material is available on Canvas
 - Linear algebra
 - Probability theory

Math refreshers

- Linear Algebra
 - Canvas
 (https://canvas.bham.ac.uk/files/3224546/download?
 download_frd=1)
 - A First Course in Machine Learning (section 1.3)
- Probability theory
 - Canvas
 (https://canvas.bham.ac.uk/files/3224547/download?
 download frd=1)
 - A First Course in Machine Learning (sections 2.2 to 2.6)

MATLAB Tutorials

- MATLAB basics (vectors, matrices, loops, plotting, etc)
 - http://www.cyclismo.org/tutorial/matlab/
 - http://users.rowan.edu/~shreek/networks1/matlabintro
 .html
- MATLAB primer (by Mathworks)
 - http://au.mathworks.com/help/pdf_doc/matlab/getst art.pdf

Basics of machine learning

- Ability to improve performance (or to make accurate predictions) through experience to perform a task
 - Improve at task T, with respect to performance measure P, based on experience E
- Task?
- Performance measure?
- Experience?

- Learning to play checkers
- Task T?
- Performance measure P?
- Experience E?

Learning to recognize handwritten words

Task T?

Sincerely, Albert

Performance measure P?

- Learning to recognize faces
- Task T?

Performance measure P?

- Learning to drive autonomously
- Task T?

Performance measure P?

- Learning to find clusters in data
- Task T?

Performance measure P?

Learning to interpret image scene

Task T?

1: art gallery

2: restaurant

3: computer room 4: biology laboratory

5: picnic area

Performance measure P?

Classes of learning

- Regression: learning a continuous function from a set of past examples
 - Predict a real value target for a future example
 - e.g. predict winning time in Olympic race

- Classification: Learning a function that can separate past examples of different types from one another
 - Assign a discrete target label/type for a future example
 - e.g. document classification

Classes of learning

- Clustering: partition examples into groups, each group having similar examples
 - e.g. brain regions with similar activation

 Dimensionality reduction: transform highdimensional data into a lower-dimensional

preserving representation

 e.g. reducing unnecessary attributes

Training experience

- Direct or indirect feedback may be available
 - Chess game move
 - Digit recognition
 - Face recognition
- With or without a teacher
 - Examples (i.e. experience) with or without target labels
- Is the training experience representative of the performance goal?
 - How well the training examples distribution represent the true examples distribution?

Forms of machine learning

- Supervised learning: learner receives set of labelled examples (i.e. direct feedback) in order to learn to classify unseen examples
 - Classification, regression
- Unsupervised learning: learner receives set of unlabelled examples (i.e. no teacher) in order to learn to categorize unseen examples
 - Clustering
- Dimensionality reduction: transform highdimensional data into a lower-dimensional preserving representation

Forms of machine learning

- Semi-supervised learning: learner receives set of labelled and unlabelled examples to learn predict unseen examples
- Reinforcement learning: learner actively interacts with the environment and receives a short-term reward for each action. The objective is to maximize long-term reward over a course of actions and iterations.

ML research questions

- How much training data is sufficient?
- What algorithms exist for learning general target functions from specific training examples?
- Can we transfer what is learned from one task to improve learning in other related tasks?
- What is the relationship between different learning algorithms, and which should be used when?

ML research questions

- Can we build never ending learners?
- Can machine learning theories and algorithms help explain human learning?
- Can we design programming language containing machine learning primitives?

Common terminology

- Examples: items of data used for learning or evaluation
- Features: attributes associated to an example
- Labels: values or categories assigned to examples
- Performance: measure of prediction accuracy of an algorithm
- Task: a prediction activity that the algorithm needs to learn
- Experience: past examples which can be used in learning
- Training: learning to predict from examples
- Testing: predicting previously unseen examples

Common terminology

- Cross validation: distribute data into k-folds to train and evaluate algorithm performance
- Training samples: examples used to train algorithm
- Validation samples: examples used to tune algorithm parameters
- Test samples: examples used to evaluate algorithm
- Loss function: performance (loss) measure function
- Learner function/model: a function or model that is learnt to predict labels from features
- Hypothesis set: set of functions mapping features to labels

$C_3 R_1 E_1 D_2 I_1 I_1 S_1$

Author's material (Simon Rogers)

Ata
 Kaban's
 material
 from
 previous
 years

Thankyou