

Figure 9.3: The top figure is $\{x \in \mathbb{R}^2 \mid ||x||_{\infty} \le 1\}$, while the bottom figure is $\{x \in \mathbb{R}^3 \mid ||x||_{\infty} \le 1\}$.

for all $x, y \in \mathbb{R}$ and all θ with $0 \le \theta \le 1$.

Since the case $\alpha\beta=0$ is trivial, let us assume that $\alpha>0$ and $\beta>0$. If we replace θ by 1/p, x by $p\log\alpha$ and y by $q\log\beta$, then we get

$$e^{\frac{1}{p}p\log\alpha + \frac{1}{q}q\log\beta} \le \frac{1}{p}e^{p\log\alpha} + \frac{1}{q}e^{q\log\beta},$$

which simplifies to

$$\alpha\beta \le \frac{\alpha^p}{p} + \frac{\beta^q}{q},$$

as claimed.

We will now prove that for any two vectors $u, v \in E$, (where E is of dimension n), we have

$$\sum_{i=1}^{n} |u_i v_i| \le ||u||_p ||v||_q. \tag{**}$$