# MUON INDUCED BACKGROUND FOR DAMIC 1KG

Mariangela Settimo

Status 27/05/2017





preliminary

#### OUTLINE

**Goal**: study the muon induced background in the shielding for different overburdens (or depths of the underground lab as Snolab, Modane and GranSasso)

- Detector geometry used here not complete but only the shielding is taken into account
- Save the particle informations after the lead shielding: they can be reused to generate only the DAMIC-detector part later on (if needed)
- Here only compare the total flux of secondaries and their energy distributions

#### MUON FLUX IN UNDERGROUND LABORATORY

**Goal**: study the muon induced background in the shielding for different overburdens (or depths of the underground lab as Snolab, Modane and GranSasso)

#### 1. Muon flux and lab depth

$$I(h) = (I_1 e^{(-h/\lambda_1)} + I_2 e^{(-h/\lambda_2)}), \tag{1}$$



| Site       | Total flux                                       | Depth                     |
|------------|--------------------------------------------------|---------------------------|
|            | $\mathrm{cm}^{-2}\mathrm{sec}^{-1}$              | km.w.e.                   |
| WIPP       | $(4.77\pm0.09)\times10^{-7}$ [6]                 | $1.585 \pm 0.011$         |
| Soudan     | $(2.0\pm0.2)\times10^{-7}$ [15]                  | $1.95 \pm 0.15$           |
| Kamioka    | $(1.58\pm0.21)\times10^{-7}$ [8]                 | $2.05 \pm 0.15^{\dagger}$ |
| Boulby     | $(4.09\pm0.15)\times10^{-8}$ [9]                 | $2.805 \pm 0.015$         |
| Gran Sasso | $(2.58\pm0.3) \times 10^{-8} [\text{this work}]$ | $3.1 \pm 0.2^{\dagger}$   |
|            | $(2.78\pm0.2)\times10^{-8}$ [16]                 | $3.05 \pm 0.2^{\dagger}$  |
|            | $(3.22\pm0.2)\times10^{-8}$ [17]                 | $2.96 \pm 0.2^{\dagger}$  |
| Fréjus     | $(5.47\pm0.1)\times10^{-9}$ [14]                 | $4.15 \pm 0.2^{\dagger}$  |
|            | $(4.83 \pm 0.5) \times 10^{-9}$ [this work]      | $4.2 \pm 0.2^{\dagger}$   |
| Homestake  | $(4.4 \pm 0.1 \times 10^{-9})$ [this work]       | $4.3 \pm 0.2$             |
| Sudbury    | $(3.77\pm0.41)\times10^{-10}$ [12]               | $6.011 \pm 0.1$           |

## MUON FLUX IN UNDERGROUND LABORATORY

2. Muon Energy distribution

3. Angular distribution



mostly dependent on the overburden and on the <atomic weight> of the rock

#### A SIMPLIFIED GEANT4 SIMULATION



sketch of the Lab geometry Lab walls 0.2 cm of concrete

- 6 CCDs also included in the simulation to store the hits but the vessel geometry not included
- 10k events generated for each site (same random seed)

- physics list as in std underground DM applications (basically livermore + HP neutron)
- muons injected from the top (concrete)
  wall following their energy and angular
  distribution (specific for each site)
- "potential bkg" particles stopped (and its info registered) as it enters the hollow LeadBox
- absolute flux of "potential bkg" from normalization to muon intensity

$$\Phi_{\text{bkg}} = I_{\mu}(h)^* N_{\text{bkg}} / N_{\mu,\text{gen}}$$



#### all particles



(\*)no neutrons found over 5k events. more statistics needed

all particles but muons, (normalized histo)



#### muons



#### electrons





#### **SOME COMMENTS/CONCERNS**

- Change vacuum (in the hollow poly and lead box) with nitrogen?
- Larger statistics needed, too time consuming for a laptop (move to a cluster)
- Look at the hits in the CCDs. Simulations with the full detector are possible (I added the shielding, energy and angular distributions for muons in my local version of Joao(@LPNHE) code). However:
  - Few things to be fixed in Joao's code (for the geometry)
  - Iong time consumption and not optimal choice for DAMIC 1kg purposes (if we change geometry). Thus at least:
    - ▶ I would modify LPNHE code in order to store particle's info after lead (before vessel) to simulate different detector geometries if needed.

# **SOME COMMENTS (II)**

- Interesting things to test
  - Add also neutron from the rock (to test if the Poly shielding is enough when changing site
    - energy and angular distribution (extrapolated from GS measurements)
      available —> easy to add to geant4 code (you can assume this done)
- "Parametrise" the rate of "potential bkg" (after lead) vs muon track length in the material to quickly extend this study to different shielding geometry/size?