Assignment 12 - Screened Coulomb Potential

SGTB Khalsa College, University of Delhi Ankur Kumar(2020PHY1113)(20068567010)

Unique Paper Code: 32221501

Paper Title: Quantum Mechanics

Submitted on: October 16, 2022

B.Sc(H) Physics Sem V

Submitted to: Dr. Mamta

	Page No
= (a)	Theory: $V(r) = -e^{2} e^{-r/a} = \sqrt{e^{-r/a}}$ $V(r) = -e^{2} e^{-r/a}$ $V(r) = -e^{2} e^{-r/a}$
	TISE, $ \begin{bmatrix} -\frac{1}{2} & \sqrt{2} + \sqrt{r^2} & \sqrt{r^2} & \sqrt{r^2} \\ -\frac{1}{2} & \sqrt{r^2} & \sqrt{r^2} & \sqrt{r^2} \end{bmatrix} $ $ \psi(\vec{r}) = \psi(r, \theta, \phi) $
	we anow, $ \nabla^{2} \psi = 1 \frac{\partial}{\partial r} \left(\frac{2}{r^{2}} \frac{\partial \psi}{\partial r} \right) + 1 \frac{\partial}{\partial r} \left(\frac{\partial \psi}{\partial \theta} \right) + 1 \frac{\partial^{2} \psi}{\partial \theta} $ $ + 1 \frac{\partial^{2} \psi}{\partial r^{2}} \frac{\partial^{2} \psi}{\partial r^{2}} $ $ + \frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial r^{2}} \frac{\partial^{2} \psi}{\partial r^{2}} $
7	$\frac{-h^2}{2m} \frac{1}{r^2} \frac{1}{dr} \left(\frac{r^2}{dr} \right) + \left(\frac{-h^2}{2m} \right) \frac{1}{r^2 sin 0} \frac{1}{d \theta} \left(\frac{sin 0}{d \theta} \right)$
	$\frac{f + \frac{\partial^2 \psi}{\partial x^2} \left(-\frac{k^2}{2m}\right) - V(r) \psi(r, \theta, \phi)}{= E \psi(r, \theta, \phi)}$ $= \frac{E \psi(r, \theta, \phi)}{2m} = \frac{E \psi(r, \phi)}{$
	Soub stitute in (1)

	Page No Date
2)	$\frac{-t^2}{2m} \frac{1}{\delta l} \left(\frac{l^2 \cdot \delta}{\delta l} \left(\frac{R_{ne}}{R_{ne}} \frac{\chi_{lm}}{lm} \right) \right) + \left(\frac{t^2}{2ml^2} \right)$ $= \frac{1}{2ml^2} \left(\frac{8m\theta}{l} \right) \frac{R_{ne}}{lm} \frac{\chi_{lm}}{lm} \frac{1}{lm} \frac{1}{lm}$
,	To 1 (8h0) Rne Yem) + Sh0 20 Rne Yem + V(r) Rne Yem = E Rne Yem
	× both sides by - 2mr² - 12
3)	J (12) (Rne Yem) + [J (Sin 8) (Rne Yem)) J (12) (Rne Yem) + [J (Sin 8) (Rne Yem))
	41 de (Rne Yem) - 2mr² V(r) Rne Yem 5020 dp2 t2
	=-2mr2 E(Rne Yem) th2 Rne(r) will only get diff. by 1
	Yen will get diff by I and I
>)	Yen [] (r2 d (Rne))], Rne [] (d (Sino 1 Yem))
	+ 1 32 (Yem) + 2mr2 (E=V(r)) Yem Rue - 0

	Page No. Date
	eq (D) in term of kne(r):
	=- k2 1 (r d2 (Une)) + 4ne Verr(r) = 4ne (r) E
7)	- k2 j2 (Une) + Une Vest (r) = Une (r) E -(3)
	rescaling t by 90 (Bonr's Radius).
	e avi av 478a,2 force prouded
	mvao = to (ii) by (5100mb) force?
	By (i) and (ii)
	$m \cdot t^2 = e^2$ $m^2 \cdot a_0^2 \cdot a_0 = u\pi \epsilon_0 \cdot a_0^2$
	=> 90= 471 % th ² me ² F
	Let (= 1 where 90
	writing 3 in terms of c
	$\frac{dr'=1}{dr} = \frac{du}{dr} = \frac{dr'}{dr'} = \frac{dr'}{dr'}$
	=> du du 1 => dr dr a ₆

	Page No
	$\frac{d^2u}{dr^2} = \frac{d}{dr} \left(\frac{du}{dr} \right)$ $= \int d \left(\frac{du}{dr} \right)$
	= 1 d (dh) $= 0 d (dh)$ $= 0 d (dh)$
	$\frac{1}{a_{D}} \frac{d}{dr'} \left(\frac{du}{dr'} \frac{1}{18} \right)$
100	$= \frac{1}{a_0^2} \frac{d^2 u}{ds^{12}}$
	$U_{ne}(r) = U_{ne}(r')$

Scanned with CamScanner

	Page No.
	Date
-	V(eff)(r) = V(r) + R(R+1) to 2
1	2m/2
	$= -e^{2} e^{-7q} + Q(l+1) + \frac{1}{4}$
	471 Eor 2m(90 r1)2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Put value of 90
	$V_{\text{off}}(r') = me^{\frac{r'q_0}{r'}} \qquad $
	(4780)2 -h2 L (1) 2(r/)2
1	energy of ground state,
	1E, 1 = me4
	[E, 1 = me4] 2 to 2 (471 co) 2
	eg. becomes:
	12 () (0
	- 2 Kng (r') +2 [-1 e a , l(l+1)] une (r') d(r')2
	= Kne(r') E(2(4700) to) me4
	dinensionless energy dimensionless potential
	e= E V= -2 e a + l(l+1)
	1E1 ((')?]

Scanned with CamScanner

Programming

```
1 from scipy.linalg import eigh
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from scipy.integrate import simps
5 import pandas as pd
8 def matrix_formation(a, b, N, f, alpha):
      x_range = np.linspace(a, b, N+2)
10
      h = x_range[1] - x_range[0]
11
12
13
     X = x_range[1: -1]
      g = f(X, alpha)
14
15
16
      l = np.zeros(len(X))
      d = np.zeros(len(X))
17
18
      u = np.zeros(len(X))
19
      for i in range(0, len(X)):
           d[i] = -(-2/h**2) - 1*g[i]
21
           l[i] = -(1/h**2)
23
           u[i] = -(1/h**2)
24
25
      diagonal = np.diag(d, k = 0)
      off_diag_l = np.diag(l[:-1], k = -1)
26
      off_diag_u = np.diag(u[:-1], k = 1)
27
28
      matrix = diagonal + off_diag_l + off_diag_u
29
30
      return matrix, X
31
32
33 def pot_col(x, alpha):
     potential = []
34
35
      for j in x:
               val = 2*((1/j))
36
37
               potential.append(val)
38
39
      return potential
40
41 def pot_screen(x, alpha):
42
     potential = []
      for j in x:
43
               val = 2*((1/j)*np.exp(-j/alpha))
45
               potential.append(val)
46
47
     return potential
48
50 def normalize(x, u):
      return u/np.sqrt(simps(u**2, x))
52
53 def V_r(x):
      return -2/x
55
67 def V_screening(x, alpha):
58
59
      return (-2/x)*np.exp(-x/alpha)
60
62 r_range = np.linspace(0.1, 2, 500)
63 \text{ alpha\_vals} = [2, 5, 10, 20, 100]
65 plt.plot(r_range, V_r(r_range), label = 'V(Coulomb) for 1=0 ')
```

```
66 for i in alpha_vals:
       plt.plot(r\_range\,,\ V\_screening(r\_range\,,\ i)\,,\ label\ =\ f'V(screening)\ for\ alpha\ =\ \{
       i}')
69 plt.title('Potential Plots')
70 plt.xlabel(r"$\xi$")
71 plt.ylabel("V")
72 plt.legend()
73 plt.grid()
74 plt.show()
76 ground_state_vals = []
77
78 for i in alpha_vals:
79
       matrix, X = matrix_formation(0, 200, 1000, pot_screen, i)
80
81
       e , vec = eigh(matrix)
82
       print(f'Energy Eigen Values(alpha={i}) = ', e[:5])
83
84
       ground_state_vals.append(e[0])
86
87
88 ground_state_energy = np.multiply(ground_state_vals, 13.6)
89
90 data = {
91
92
     'alpha': alpha_vals,
     'Ground_State_Energy(eV)': ground_state_energy
93
94
95 }
96
97 df = pd.DataFrame(data)
98 print(df)
101 x_range = np.linspace(0, 20, 1000)
matrix1, X1 = matrix_formation(0, 20, 1000, pot_col, 0)
104 e1 , vec1 = eigh(matrix1)
norm1 = normalize(X1, vec1.T[0])
106
107 plt.scatter(X1, norm1,s = 5, label = 'Coulomb Potential')
108
109 for i in alpha_vals:
       matrix2, X2 = matrix_formation(0, 20, 1000, pot_screen, i)
112
       e2 , vec2 = eigh(matrix2)
       norm2 = normalize(X2, vec2.T[0])
       plt.plot(X2, norm2, label = f'Screening Potential for alpha = {i}')
plt.title('Ground State WaveFunction')
plt.xlabel(r"$\xi$")
plt.ylabel("K_nl")
plt.legend()
120 plt.grid()
plt.show()
matrix1, X1 = matrix_formation(0, 20, 1000, pot_col, 0)
125 e1 , vec1 = eigh(matrix1)
norm1 = normalize(X1, vec1.T[0])
127
128 plt.scatter(X1, norm1**2,s = 5, label = 'Coulomb Potential')
129
130 for i in alpha_vals:
```

```
matrix2, X2 = matrix_formation(0, 20, 1000, pot_screen, i)
133
       e2 , vec2 = eigh(matrix2)
       norm2 = normalize(X2, vec2.T[0])
134
135
       plt.plot(X2, norm2**2, label = f'Screening Potential for alpha = {i}')
136
plt.title('Ground State Probability Density')
plt.xlabel(r"xi^2")
plt.ylabel("K_nl")
140 plt.legend()
plt.grid()
142 plt.show()
143
plt.plot(alpha_vals, ground_state_energy)
plt.scatter(alpha_vals, ground_state_energy, color = "red")
plt.title('Ground State Energy Vs Alpha')
plt.xlabel(r"Alpha")
148 plt.ylabel("E0(eV)")
149 plt.grid()
plt.show()
```

Result and Discussion

Figure 1: Potential Plots

It can be seen that as the value of alpha goes on increasing the screening potential approaches the coulomb potential.

```
Energy Eigen Values(alpha=2) = [-2.88282673e-01 2.59378573e-04 1.00161822e-03 2.25401620e-03
4.00802272e-03]
Energy Eigen Values(alpha=5) = [-6.44164957e-01 -2.38633586e-02 2.73217297e-04 1.09286655e-03
2.45850699e-03]
Energy Eigen Values(alpha=10) = [-8.04420603e-01 -9.93092588e-02 -6.35896479e-03 3.11183804e-04
1.24730025e-03]
Energy Eigen Values(alpha=20) = [-8.93870908e-01 -1.62942216e-01 -3.86000697e-02 -6.16096121e-03
1.08212757e-04]
Energy Eigen Values(alpha=100) = [-0.97036434 -0.22996686 -0.09227568 -0.04467415 -0.02330694]
```

Figure 2: Eigen Value Variation with Alpha

There are finite number of bound states. It can be seen that the Eigen values for higher values

of n becomes positive which physically does not equate to a bound state. As we increase the value of alpha the number of bound states go on increasing.

	alpha	Ground_State_Energy(eV)
0	2	-3.920644
1	5	-8.760643
2	10	-10.940120
3	20	-12.156644
4	100	-13.196955

Figure 3: Ground State Energy Variation with Alpha

It can be seen that as the value of alpha increases the ground state energy approaches the ground state energy for coulomb potential(-13.6eV).

Figure 4: Ground State Wave Functions

This is the ground state wavefunction, it can be seen that for smaller values of alpha graph shows variation but as we approach higher values of alpha the lines start to coincide with the coulomb potential.

Figure 5: Ground State Probability Densities

A similar observation can be seen for the probability density as for the wavefunction.

Figure 6: Ground State Energy as a function of Alpha

It can be seen that as we increase the value of alpha the ground state energy approaches the ground state energy for coulomb potential(-13.6eV).