CE 35, Winter 2022

Last name

First + middle name(s)

PID

Instructions:

- Read each problem completely and thoroughly before beginning
- All calculations need to be done on these sheets
- Put a box around your answer for each question. Make sure you list units!
- Answers without supporting calculations will receive zero credit

(1) (6 points)

Consider the circuit below. You may assume it is in steady state.

- a. Find the voltage v_a at time $t = \frac{\pi}{40}$.
- b. Find a time t_0 where the voltage v_a reaches its maximum value. If there are multiple possible answers, giving only one is sufficient.

The circuit is also copied on the next page for your convenience.

(2) (6 points)

Consider the circuit below. You may assume it has reached steady state. The phasor diagram shows the phasors of i_1 and i_2 (the angles are as shown; the magnitudes are not drawn to scale).

Each rectangular box represents a connection of mystery elements in series/parallel. The impedances of the two boxes are $Z_a = aj$ and $Z_b = b(1+j)$ but you are not told which one is which.

Note: you are given the values for a, b and |V|.

- (a) We want to build the impedance Z_b using two elements in series. What elements would you use and what are their values?
- (b) Consider the source $v_S(t)$. Find the value of X.
- (c) Between A and B, we add a third impedance Z_3 , such that the current $i_S(t)$ through the voltage source becomes equal to $i_1(t)$. What is the value of this impedance Z_3 ?

