Class 07: Machine Learning 1

Nicolò (PID: 18109144)

Clustering

We will start today's lab with clustering methods, in particular so called K-means. The main function for this in R is kmeans().

Let's try it on some made up data where we know what the answer should be.

```
x <- rnorm(10000, mean = 3)
hist(x)</pre>
```

Histogram of x

60 points

```
tmp <- c(rnorm(30, mean=3), rnorm(30, -3))
x <- cbind(x=tmp, y=rev(tmp))
head(x)</pre>
```

```
x y
[1,] 4.845509 -2.107112
[2,] 3.271581 -3.135705
[3,] 4.977079 -3.178183
[4,] 3.949020 -2.689814
[5,] 3.125689 -3.491067
[6,] 2.123138 -4.342631
```

We can pass this to the base R plot() function for a quick.

```
plot(x)
```



```
k <- kmeans(x, centers = 2, nstart = 20)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

```
Cluster means:
      X
1 -3.105751 3.087085
2 3.087085 -3.105751
Clustering vector:
Within cluster sum of squares by cluster:
[1] 52.89167 52.89167
(between_SS / total_SS = 91.6 %)
Available components:
[1] "cluster"
            "centers"
                      "totss"
                                 "withinss"
                                           "tot.withinss"
[6] "betweenss"
            "size"
                      "iter"
                                "ifault"
   Q1. How many points are in each cluster?
 k$size
[1] 30 30
   Q2. Cluster membership?
 k$cluster
```

- - Q3. Cluster centers?

k\$centers

x y 1 -3.105751 3.087085 2 3.087085 -3.105751

Q4. Plot my clustering results

Q5. Cluster the data again with kmeans() into 4 groups and plot the results.

```
k4 <- kmeans(x, centers = 4, nstart = 20)
plot(x, col=k4$cluster, pch=16)</pre>
```


K-means is very popular mostly because it is fast and relatively straightforward to run and understand. It has a big limitation in that you need to tell it how many groups (k, or centers) you want.

Hierarchical clustering

The main function in base R is called hclust(). YOu have to pass it in a "distance matrix" not just your input data.

You can generate a distance matrix with the dist() function.

```
hc <- hclust( dist(x) )
hc</pre>
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

plot(hc)

Cluster Dendrogram

dist(x)
hclust (*, "complete")

To find clusters (cluster membership vector) from a hclust() result we can "cut" the tree at a certain height that we like. For this we use the cutree() function.

```
plot(hc)
abline(h=8, col="red")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

```
grps <- cutree(hc, h=8)

table(grps)

grps
1 2
30 30</pre>
```

Q6. Plot our hclust results.

```
plot(x, col=grps, pch=16)
```


#Principal Component Ananlysis

PCA of UK food data

Read data showing the consumption in grams (per person, per week) of 17 different types of food-stuff measured and averaged in the four countries of the United Kingdom.

Let's see how PCA can help us but first we can try conventional analysis.

Data import

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
x</pre>
```

	X	England	Wales	Scotland	N.lreland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93

5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	${ t Fresh_potatoes}$	720	874	566	1033
8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187
11	Processed_Veg	360	365	337	334
12	Fresh_fruit	1102	1137	957	674
13	Cereals	1472	1582	1462	1494
14	Beverages	57	73	53	47
15	${ t Soft_drinks}$	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	Confectionery	54	64	62	41

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

dim(x)

[1] 17 5

Checking your data

Preview the first 6 rows

head(x)

	Х	${\tt England}$	Wales	${\tt Scotland}$	${\tt N.Ireland}$
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139

We are first assigning names to the rows using the data in the first column, and then removing the first column.

```
# Note how the minus indexing works rownames(x) <- x[,1]
```

```
x \leftarrow x[,-1]
head(x)
```

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Let's check the dimensions again.

dim(x)

[1] 17 4

An alternative approach to setting the correct row-names in this case would be to read the data file again and this time set the row.names argument of read.csv() to be the first column (i.e. use argument setting row.names=1), see below:

```
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

I prefer the second approach as it won't keep removing the first column of the x table if run again.

Spotting major differences and trends

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


Q3: Changing what optional argument in the above barplot() function results in the following plot?

We can change the beside argument to FALSE.

```
barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))
```


Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

pairs(x, col=rainbow(10), pch=16)

If the point lies on the diagonal, it means that the consumption of that particular food matches between the two countries.

Q6. What is the main differences between N. Ireland and the other countries of the UK in terms of this data-set?

It seems like the plots show more off-diagonal points when N.Ireland is compared to the rest of the countries of the UK than when the Great Britain countries are compared between themselves.

Principal Component Analysis (PCA)

PCA can help us make sense of these types of datasets. Let's see how it works.

The main function in "base" R is called prcomp(). In this case we want to first take the transpose if our input x so the columns are the food types and the countries are the rows.

	Cheese	Carcass_meat	Other_meat	Fish	Fats_and	_oils	Sugars
England	105	245	685	147		193	156
Wales	103	227	803	160		235	175

Scotland	103	242		750	122		184	147
N.Ireland	66	267		586	93		209	139
	Fresh_potatoes	Fres	n_Veg	Other	_Veg	Processed	d_potat	oes
England	72	20	253		488			198
Wales	87	' 4	265		570			203
Scotland	56	66	171		418			220
N.Ireland	103	33	143		355			187
	Processed_Veg	Fresh	_fruit	Cere	als	Beverages	Soft_d	rinks
England	360)	1102	2	1472	57		1374
Wales	365	<u>, </u>	1137	7	1582	73		1256
Scotland	337	•	957	7	1462	53		1572
N.Ireland	334	Ŀ	674	1	1494	47		1506
	Alcoholic_drin	ıks Coı	nfectio	onery				
England		375		54				
Wales		475		64				
Scotland		458		62				
N.Ireland		135		41				

```
pca <- prcomp( t(x) )
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	3.176e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

pca\$x

	PC1	PC2	PC3	PC4
England	-144.99315	-2.532999	105.768945	-4.894696e-14
Wales	-240.52915	-224.646925	-56.475555	5.700024e-13
Scotland	-91.86934	286.081786	-44.415495	-7.460785e-13
N.Ireland	477.39164	-58.901862	-4.877895	2.321303e-13

Q7. Complete the code below to generate a plot of PC1 vs PC2. The second line adds text labels over the data points.

```
# Plot PC1 vs PC2
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x))
```


Q8. Customize your plot so that the colors of the country names match the colors in our UK and Ireland map and table at start of this document.

```
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x), col=c("orange", "red", "blue", "darkgreen"))
```


We can use the square of pca\$sdev , which stands for "standard deviation", to calculate how much variation in the original data each PC accounts for.

```
v <- round( pca$sdev^2/sum(pca$sdev^2) * 100 )
v

[1] 67 29 4 0

## or the second row here...
z <- summary(pca)
z$importance</pre>
```

This information can be summarized in a plot of the variances (eigenvalues) with respect to the principal component number (eigenvector number), which is given below.

Principal Component

The "loadings" tell us how much the original variables (in our case the foods) contribute to the new variables i.e. the PCs

head(pca\$rotation)

```
PC1
                                   PC2
                                               PC3
                                                            PC4
Cheese
              -0.056955380 0.01601285 0.02394295 -0.694538519
Carcass_meat
               0.047927628 0.01391582 0.06367111
                                                    0.489884628
Other_meat
              -0.258916658 -0.01533114 -0.55384854 0.279023718
Fish
              -0.084414983 -0.05075495 0.03906481 -0.008483145
Fats_and_oils -0.005193623 -0.09538866 -0.12522257
                                                    0.076097502
              -0.037620983 -0.04302170 -0.03605745 0.034101334
Sugars
```

```
## Lets focus on PC1 as it accounts for > 90% of variance
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```


Q9: Generate a similar 'loadings plot' for PC2. What two food groups feature prominantely and what does PC2 maniply tell us about?

```
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,2], las=2 )
```


Fresh potatoes and soft drinks are the most prominent in PC2. PC2 shows the food that have the second most variance between the countries.