Aide mémoire sur la file M/M/1

On considère une file d'attente simple avec 1 serveur. On suppose que le processus d'arrivée est un processus de Poisson de paramètre λ . Les temps de services sont supposés indépendants de même loi exponentielle de paramètre λ .

FIG. 1 – File M/M/1

Le processus aléatoire $\{N_t\}_{t\in\mathbb{R}}$, nombre de clients dans la file à l'instant t est un processus de Markov en temps continu à valeur dans \mathbb{N} .

FIG. 2 – Graphe d'état associé au processus $\{N_t\}_{t\in\mathbb{R}}$ associé à la file M/M/1.

Charge On définit la charge de la file par $\rho = \frac{\lambda}{\mu}$. La file est stable si et seulement si $\rho < 1$.

Taux d'utilisation du serveur = ρ

Distribution stationnaire Soit π_n la probabilité stationnaire d'avoir n clients dans la file lorsque celle-ci est stable.

$$\pi_n = (1 - \rho)\rho^n$$

Nombre moyen de clients Soit \overline{N} le nombre moyen de clients dans la file à l'état stationnaire.

$$\overline{N} = \frac{\rho}{1-\rho}$$

Temps moyen de réponse Soit W le temps de réponse d'un client à l'état stationnaire. Pour une file FIFO, W est de loi exponentielle de paramètre $\mu - \lambda$. Dans le cas d'une discipline de service quelconque on applique la formule de Little $\overline{N} = \lambda \overline{W}$.

$$\overline{W} = \frac{1}{\mu - \lambda}$$

Dépassement de capacité Soit $D(\rho, K)$ la probabilité de dépasser K clients dans la file à l'état stationnaire (approximation du taux de perte pour une capacité K grande).

$$D(\rho, K) = \rho^K$$

Période d'activité Soit \overline{B} la durée moyenne d'activité du serveur.

$$\overline{B} = \frac{1}{\mu - \lambda}$$

Aide mémoire sur la file M/M/1/C

On considère une file d'attente simple avec 1 serveur et une capacité C. Les hypothèses sont les mêmes que pour la file M/M/1, un client arrivant et trouvant la file pleine est rejetté.

FIG. 3 – File M/M/1/C

Le processus aléatoire $\{N_t\}_{t\in\mathbb{R}}$, nombre de clients dans la file à l'instant t est un processus de Markov en temps continu à valeur dans $\{0, 1, \cdots, C\}$.

$$0 \xrightarrow{\lambda} 1 \xrightarrow{\lambda} 3 \xrightarrow{\lambda} 4 \xrightarrow{\lambda} C -1 \xrightarrow{\lambda} C$$

FIG. 4 – Graphe d'état associé au processus $\{N_t\}_{t\in\mathbb{R}}$ associé à la file M/M/1/C.

Charge On définit la charge de la file par $\rho = \frac{\lambda}{\mu}$. La file sera toujours stable.

Taux d'utilisation du serveur =
$$\frac{1-\rho}{1-\rho^{C+1}}$$

Distribution stationnaire Soit π_n la probabilité stationnaire d'avoir n clients dans la file lorsque celle-ci est stable.

$$\pi_n = \begin{cases} \frac{1-\rho}{1-\rho^{C+1}} \rho^n & \text{pour } 0 \leqslant n \leqslant C \text{ et } \lambda \neq \mu, \\ \frac{1}{C+1} & \text{pour } 0 \leqslant n \leqslant C \text{ si } \lambda = \mu. \end{cases}$$

Nombre moyen de clients Soit \overline{N} le nombre moyen de clients dans la file à l'état stationnaire.

$$\overline{N} = \begin{cases} \frac{\rho}{1-\rho} \frac{1 - (C+1)\rho^C + C\rho^{C+1}}{1-\rho^{C+1}} & \text{si } \lambda \neq \mu, \\ \frac{C}{2} & \text{si } \lambda = \mu. \end{cases}$$

Temps moyen de réponse Soit W le temps de réponse d'un client à l'état stationnaire. Pour une file FIFO, W une composée de lois exponentielles de transformée de Laplace, ic pour $\lambda \neq \mu$:

$$\mathcal{L}_W(t) = \mathbb{E}e^{-tW} = \frac{1-\rho}{1-\rho^{C+1}} \frac{\mu}{t+\mu} \frac{1-\frac{\lambda}{t+\mu}}{1-\left(\frac{\lambda}{t+\mu}\right)^{C+1}}.$$

Pour le temps de réponse moyen on peut également utiliser la formule de Little.

Télécom 2A

module Evaluation de Performances

Saturation La probabilité que le système soit plein, c'est également la probabilité de rejet d'un client

$$\mathbb{P}(Saturation) = \pi_C = \left\{ \begin{array}{ll} \frac{1-\rho}{1-\rho^C+1}\rho^C & \text{pour } 0 \leqslant n \leqslant C \text{ et } \lambda \neq \mu, \\ \frac{1}{C+1} & \text{pour } 0 \leqslant n \leqslant C \text{ si } \lambda = \mu. \end{array} \right.$$

Convergence vers le régime stationnaire En ce qui concerne le comportement transitoire, on étudie le spectre du générateur infinitésimal Q

$$Q = \begin{bmatrix} -\lambda & \lambda & 0 & \dots & 0 \\ \mu & -(\lambda + \mu) & \lambda & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \mu & -(\lambda + \mu) & \lambda \\ 0 & \dots & \dots & 0 & \mu & -\mu \end{bmatrix}$$

Les valeurs propres de la matrice Q sont

$$\alpha_i = -(\lambda + \mu) \pm 2\sqrt{\lambda\mu}\cos\left(\frac{k\pi}{C}\right).$$