Задача А. Тестирующая система

Имя входного файла: ejudge.in
Имя выходного файла: ejudge.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Юный программист Саша написал свою первую тестирующую систему. Он так обрадовался тому, что она скомпилировалась, что решил пригласить школьных друзей на свой собственный контест.

Но в конце тура выяснилось, что система не умеет сортировать команды в таблице результатов. Помогите Саше реализовать эту сортировку.

Команды упорядочиваются по правилам АСМ:

- по количеству решённых задач в порядке убывания;
- при равенстве количества решённых задач по штрафному времени в порядке возрастания;
- при прочих равных по номеру команды в порядке возрастания.

Формат входных данных

Первая строка содержит натуральное число n ($1 \le n \le 100\,000$) — количество команд, участвующих в контесте. В i-й из следующих n строк записано количество решенных задач S ($0 \le S \le 100$) и штрафное время T ($0 \le T \le 100\,000$) команды с номером i.

Формат выходных данных

В выходной файл выведите *п* чисел — номера команд в отсортированном порядке.

ejudge.in	ejudge.out
5	5 2 1 3 4
3 50	
5 720	
1 7	
0 0	
8 500	

Задача В. Лишнее число

Имя входного файла: excess.in
Имя выходного файла: excess.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

В штаб секретной службы поступило сообщение от одного из агентов. Поступившее сообщение в зашифрованном виде представляет собой последовательность чисел, и лишь специальная программа способна расшифровать его и получить связный текст.

Обычно программа-расшифровщик быстро и бесшумно выдаёт связистам расшифрованный текст, но в этот раз вместо текста от программы поступил сигнал тревоги, свидетельствующий о том, что при пересылке сообщение было взломано или просто повреждено.

Корректное зашифрованное сообщение — это последовательность из $4 \cdot k$ целых чисел, в котором k различных чисел присутствуют по 4 раза каждое; для расшифровки даже не важны значения этих чисел, а важен лишь их порядок.

Однако, изучив зашифрованное сообщение, связисты обнаружили, что в нём $4 \cdot k + 1$ число. При этом ровно одно число является «лишним», то есть при его удалении зашифрованное сообщение становится корректным сообщением из $4 \cdot k$ чисел (возможно, четыре из них равны удалённому числу).

Связисты решили, что на будущее им нужна программа, которая находит такое «лишнее» число автоматически. Помогите им написать такую программу.

Формат входных данных

В первой строке входного файла задано число $N=4\cdot k+1$, где N и k целые, и $1\leqslant k\leqslant 10\,000$. В последующих N строках находятся числа A_1,A_2,\ldots,A_N , по одному числу в каждой—зашифрованное сообщение. Известно, что $0\leqslant A_i\leqslant 1\,000\,000$.

Формат выходных данных

В первую строку выходного файла выведите «лишнее» число из набора A_i .

excess.in	excess.out
5	1
4	
1	
4	
4	
4	

Задача С. Быстрый поиск в массиве

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дан массив из n целых чисел. Все числа от -10^9 до 10^9 .

Нужно уметь отвечать на запросы вида "Сколько чисел имеют значения от l до r?".

Формат входных данных

Число $n\ (1\leqslant n\leqslant 10^5)$. Далее n целых чисел.

Затем число запросов k $(1 \leqslant k \leqslant 10^5)$.

Далее k пар чисел l, r ($-10^9 \le l \le r \le 10^9$) — собственно запросы.

Формат выходных данных

Выведите k чисел — ответы на запросы.

стандартный ввод	стандартный вывод
5	5 2 2 0
10 1 10 3 4	
4	
1 10	
2 9	
3 4	
2 2	

Задача D. Для любителей статистики

Имя входного файла: queries.in Имя выходного файла: queries.out Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вы никогда не задумывались над тем, сколько человек за год перевозят трамваи города с десятимиллионным населением, в котором каждый третий житель пользуется трамваем по два раза в день?

Предположим, что на планете Земля n городов, в которых есть трамваи. Любители статистики подсчитали для каждого из этих городов, сколько человек перевезено трамваями этого города за последний год. Из этих данных была составлена таблица, в которой города были отсортированы по алфавиту. Позже выяснилось, что для статистики названия городов несущественны, и тогда их просто заменили числами от 1 до n. Поисковая система, работающая с этими данными, должна уметь быстро отвечать на вопрос, есть ли среди городов с номерами от l до r такой, что за год трамваи этого города перевезли ровно x человек. Вам предстоит реализовать этот модуль системы.

Формат входных данных

В первой строке дано целое число $n, 0 < n < 70\,000$. В следующей строке приведены статистические данные в виде списка целых чисел через пробел, i-е число в этом списке — количество человек, перевезенных за год трамваями i-го города. Все числа в списке положительны и не превосходят 10^9-1 . В третьей строке дано количество запросов $q, 0 < q < 70\,000$. В следующих q строках перечислены запросы. Каждый запрос — это тройка целых чисел l, r и x, записанных через пробел $(1 \le l \le r \le n, 0 < x < 10^9)$.

Формат выходных данных

Выведите строку длины q, в которой i-й символ равен 1, если ответ на i-й запрос утвердителен, и 0 в противном случае.

queries.in	queries.out
5	10101
123 666 314 666 434	
5	
1 5 314	
1 5 578	
2 4 666	
4 4 713	
1 1 123	

Задача Е. Гирлянда

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Гирлянда состоит из n лампочек на общем проводе. Один её конец закреплён на заданной высоте A мм $(h_1 = A)$. Благодаря силе тяжести гирлянда прогибается: высота каждой неконцевой лампы на 1 мм меньше, чем средняя высота ближайших соседей $(h_i = \frac{(h_{i-1} + h_{i+1})}{2} - 1$ для 1 < i < N). Требуется найти минимальную высоту второго конца B $(B = h_n)$ при условии, что ни одна из лампочек не должна лежать на земле $(h_i > 0$ для $1 \le i \le N)$.

Формат входных данных

В первую строке входного файла содержится два числа n и A ($3 \leqslant n \leqslant 1000, n$ —целое, $10 \leqslant A \leqslant 1000, A$ —вещественное).

Формат выходных данных

Вывести одно вещественное число B с двумя знаками после запятой.

стандартный ввод	стандартный вывод
8 15	9.75

Задача F. Количество инверсий

Имя входного файла: inverse.in Имя выходного файла: inverse.out Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Напишите программу, которая для заданного массива $A = \langle a_1, a_2, \dots, a_n \rangle$ находит количество пар (i, j) таких, что i < j и $a_i > a_j$.

Формат входных данных

Первая строка входного файла содержит натуральное число n $(1 \le n \le 50\,000)$ — количество элементов массива. Вторая строка содержит n попарно различных элементов массива A.

Формат выходных данных

В выходной файл выведите одно число — ответ на задачу.

inverse.in	inverse.out
4	0
1 2 4 5	
4	6
5 4 2 1	

Задача G. K-best

Имя входного файла: kbest.in
Имя выходного файла: kbest.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

У Демьяны есть n драгоценностей. Каждая из драгоценностей имеет ценность v_i и вес w_i . С тех пор, как её мужа Джонни уволили в связи с последним финансовым кризисом, Демьяна решила продать несколько драгоценностей. Для себя она решила оставить лишь k лучших. Лучших в смысле максимизации достаточно специфического выражения: пусть она оставила для себя драгоценности номер i_1, i_2, \ldots, i_k , тогда максимальной должна быть величина

$$\frac{\sum\limits_{j=1}^{k} v_{i_j}}{\sum\limits_{i=1}^{k} w_{i_j}}$$

Помогите Демьяне выбрать k драгоценностей требуемым образом.

Формат входных данных

На первой строке n и k ($1 \le k \le n \le 100\,000$).

Следующие n строк содержат пары целых чисел v_i , w_i ($0 \le v_i \le 10^6$, $1 \le w_i \le 10^6$, сумма всех v_i не превосходит 10^7 , сумма всех w_i также не превосходит 10^7).

Формат выходных данных

Выведите k различных чисел от 1 до n — номера драгоценностей. Драгоценности нумеруются в том порядке, в котором перечислены во входных данных. Если есть несколько оптимальных ответов, выведите любой.

kbest.in	kbest.out
3 2	1
1 1	2
1 2	
1 3	