2018 年全国各地高考数学试题及解答分类汇编大全

(13 立体几何)

一、选择题

- 1. (2018 北京文、理) 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()
 - A. 1 B. 2 C. 3 D. 4

1. 【答案】C

【解析】由三视图可得四棱锥 P-ABCD, 在四棱锥 P-ABCD中, PD=2, AD=2, CD=2, AB=1,

由勾股定理可知, $PA = 2\sqrt{2}$, $PC = 2\sqrt{2}$, PB = 3, $BC = \sqrt{5}$,

则在四棱锥中, 直角三角形有,

 $\triangle PAD$, $\triangle PCD$, $\triangle PAB$ 共三个, 故选 C.

- 2. (2018 浙江) 某几何体的三视图如图所示(单位: cm), 则该几何体的体积(单位: cm³)是()
- A. 2 B. 4 C. 6

3. 答案: C

解答:该几何体的立体图形为四棱柱,

$$V = \frac{(1+2)\times 2}{2}\times 2 = 6.$$

3 (2018上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面 的四棱锥为阳马.设AA,是正六棱柱的一条侧棱,

如图, 若阳马以该正六棱柱的顶点为顶点, 以AA,为底面矩形的一边,则这样的阳马 的个数是()

(C) 12 (D) 16

【答案】D

【知识点】空间点、直线、面的关系

【考查能力】空间想象能力

【解析】符合题目条件的面有四个,每一个都有4个顶点,所以选择D

4. (2018 浙江) 已知四棱锥 S-ABCD 的底面是正方形,侧棱长均相等,E 是线段 AB 上的点(不含 端点),设 SE与 BC 所成的角为 θ_1 , SE与平面 ABCD 所成的角为 θ_2 , 二面角 S-AB-C 的平面角 为 θ_3 ,则(

- A. $\theta_1 \leq \theta_2 \leq \theta_3$ B. $\theta_3 \leq \theta_2 \leq \theta_1$ C. $\theta_1 \leq \theta_3 \leq \theta_2$ D. $\theta_2 \leq \theta_3 \leq \theta_1$

4.答案: D

解答:作SO垂直于平面ABCD,垂足为O,取AB的中点M,连接SM.过O作ON垂直于 直线 SM ,可知 $\theta_2 = \angle SEO$, $\theta_3 = \angle SMO$,

过SO固定下的二面角与线面角关系,得 $\theta_3 \ge \theta_2$.

易知, θ_3 也为BC 与平面SAB 的线面角,即OM 与平面SAB 的线面角,

根据最小角定理,OM 与直线SE 所成的线线角 $\theta_1 \ge \theta_3$,

所以 $\theta_2 \le \theta_3 \le \theta_1$.

5. (2018 全国新课标 I 文) 某圆柱的高为 2, 底面周长为 16, 其三视图如右图. 圆柱表面上的点 M在正视图上的对应点为A,圆柱表面上的点N

在左视图上的对应点为B,则在此圆柱侧面上, 从M 到N 的路径中,最短路径的长度为(

5. 答案: B

解答: 三视图还原几何体为一圆柱,如图, 将侧面展开,最短路径为M,N 连线的距离,

所以 $MN = \sqrt{4^2 + 2^2} = 2\sqrt{5}$, 所以选 B.

6. (2018 全国新课标 I 文) 在长方体 $ABCD - A_1B_1C_1D_1$ 中,AB = BC = 2, AC_1 与平面 BB_1C_1C 所 成的角为30°,则该长方体的体积为(

A. 8

B. $6\sqrt{2}$ C. $8\sqrt{2}$

D. $8\sqrt{3}$

6. 答案: C

解答:

连接 AC_1 和 BC_1 , : AC_1 与平面 BB_1C_1C 所成角为 30° , : $\angle AC_1B=30^\circ$, :

$$\frac{AB}{BC_1}$$
 = tan 30°, BC_1 = 2√3 , ∴ CC_1 = 2√2 , ∴ V = 2×2×2√2 = 8√2 , ∴ \pounds C.

7. (2018 全国新课标 I 理)已知正方体的棱长为 1,每条棱所在直线与平面 α 所成的角都相等,则 α 截此正方体所得截面面积的最大值为(

B. $\frac{2\sqrt{3}}{3}$ C. $\frac{3\sqrt{2}}{4}$ D. $\frac{\sqrt{3}}{2}$

7. 答案: A

解答:由于截面与每条棱所成的角都相等,所以平 面 α 中存在平面与平面 AB_iD_i 平行(如图),而在与 平面 AB,D, 平行的所有平面中,面积最大的为由各 棱的中点构成的截面 EFGHMN, 而平面 EFGHMN 的面积 $S = \frac{1}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} \times 6 = \frac{3\sqrt{3}}{4}$.

8. (2018 全国新课标 I 文) 已知圆柱的上、下底面的中心分别为 O_1 , O_2 , 过直线 O_1O_2 的平面截该 圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为(

A. $12\sqrt{2}\pi$

 \mathbf{B} . 12π

C. $8\sqrt{2}\pi$

D. 10π

8. 答案: B

解答: 截面面积为8, 所以高 $h=2\sqrt{2}$, 底面半径 $r=\sqrt{2}$, 所以表面积为 $S = \pi \cdot (\sqrt{2})^2 \cdot 2 + 2\pi \cdot \sqrt{2} \cdot 2\sqrt{2} = 12\pi$.

9. (2018 全国新课标 I 理) 某圆柱的高为 2, 底面周长为 16, 其三视图如图. 圆柱表面上的点 M 在 正视图上的对应点为A,圆柱表面上的点N在左视图上的 对应点为B,则在此圆柱侧面上,从M 到N 的路径中,最

A. $2\sqrt{17}$ B. $2\sqrt{5}$

短路径的长度为(

C. 3

D. 2

9. 答案: B

解答: 三视图还原几何体为一圆柱,如图,将侧面展开, 最短路径为M,N连线的距离,

所以 $MN = \sqrt{4^2 + 2^2} = 2\sqrt{5}$, 所以选 B.

10. (**2018 全国新课标Ⅱ文**) 在正方体 *ABCD* – *A_iB_iC_iD_i* 中, *E* 为棱 *CC_i* 的中点,则异面直线 *AE* 与 *CD* 所成角的正切值为()

A.
$$\frac{\sqrt{2}}{2}$$
 B. $\frac{\sqrt{3}}{2}$

B.
$$\frac{\sqrt{3}}{2}$$
 C. $\frac{\sqrt{5}}{2}$ D. $\frac{\sqrt{7}}{2}$

10. 【答案】C

【解析】在正方体 $ABCD - A_iB_iC_iD_i$ 中, $CD/\!/AB$,所以异面直线 AE 与 CD 所成角为 $\angle EAB$, 设正方体边长为 2a , 则由 E 为棱 CC_1 的中点,可得 CE = a , 所以 $BE = \sqrt{5}a$,

则
$$\tan \angle EAB = \frac{BE}{AB} = \frac{\sqrt{5}a}{2a} = \frac{\sqrt{5}}{2}$$
. 故选 C.

11. (2018 全国新课标 II 理) 在长方体 $ABCD - A_iB_iC_iD_i$ 中,AB = BC = 1, $AA_i = \sqrt{3}$,则异面直线 AD_i 与 DB, 所成角的余弦值为(

A.
$$\frac{1}{5}$$

B.
$$\frac{\sqrt{5}}{6}$$

A.
$$\frac{1}{5}$$
 B. $\frac{\sqrt{5}}{6}$ C. $\frac{\sqrt{5}}{5}$ D. $\frac{\sqrt{2}}{2}$

D.
$$\frac{\sqrt{2}}{2}$$

11. 【答案】C

【解析】以 D 为坐标原点,DA,DC, DD_1 为x,y,z 轴建立空间直角坐标系,

$$\mathbb{N} D \left(0, 0, 0 \right) \text{,} \quad A \left(1, 0, 0 \right) \text{,} \quad B_{1} \left(1, 1, \sqrt{3} \right) \text{,} \quad D_{1} \left(0, 0, \sqrt{3} \right) \text{,} \quad \therefore \overrightarrow{AD_{1}} = \left(-1, 0, \sqrt{3} \right) \text{,} \quad \overrightarrow{DB_{1}} = \left(1, 1, \sqrt{3} \right) \text{,}$$

$$\because \cos <\overrightarrow{AD_1}, \overrightarrow{DB_1}> = \frac{\overrightarrow{AD_1} \cdot \overrightarrow{DB_1}}{\left|\overrightarrow{AD_1}\right| \left|\overrightarrow{DB_1}\right|} = \frac{-1+3}{2 \times \sqrt{5}} = \frac{\sqrt{5}}{5}, \quad \therefore$$
 异面直线 AD_1 与 DB_1 所成角的余弦值为 $\frac{\sqrt{5}}{5}$, 故选 C .

12. (2018 全国新课标III文、理)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头, 凹进部分叫卯眼,图中木构件右边的小长方体是榫头. 若如图摆放的木构件与某一带卯眼的木构 件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是(

12. 答案: A

解答:根据题意,A选项符号题意;

13. (2018 全国新课标Ⅲ文、理)设A,B,C,D是同一个半径为4的球的球面上四点, $\triangle ABC$ 为等边三角形且其面积为9√3,则三棱锥D-ABC体积的最大值为(

A.
$$12\sqrt{3}$$

B.
$$18\sqrt{3}$$

C.
$$24\sqrt{3}$$

A.
$$12\sqrt{3}$$
 B. $18\sqrt{3}$ C. $24\sqrt{3}$ D. $54\sqrt{3}$

13. 答案: B

解答:如图, ΔABC 为等边三角形,点O为A,B,C,D外接球的球心,G为 ΔABC 的重 心,由 $S_{\triangle ABC} = 9\sqrt{3}$,得AB = 6,取BC的中点H, $\therefore AH = AB \cdot \sin 60^\circ = 3\sqrt{3}$, \therefore

$$AG = \frac{2}{3}AH = 2\sqrt{3}$$
, ... 球心 O 到面 ABC 的距离为 $d = \sqrt{4^2 - (2\sqrt{3})^2} = 2$, ... 三棱锥 $D - ABC$ 体

积最大值 $V_{D-ABC} = \frac{1}{3} \times 9\sqrt{3} \times (2+4) = 18\sqrt{3}$.

二、填空

1. (2018 江苏) 如图所示,正方体的棱长为 2,以其所有面的中心为顶点的多面体的体积为 ▲ .

1.【答案】 $\frac{4}{3}$

【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为 1,底面正方形的边长等于 $\sqrt{2}$, 所以该多面体的体积为 $2 \times \frac{1}{3} \times 1 \times \left(\sqrt{2}\right)^2 = \frac{4}{3}$.

2. (2018 天津文)如图,已知正方体 $ABCD-A_1B_1C_1D_1$ 的棱长为 1,则四棱柱 $A_1-BB_1D_1D$ 的体积为

2. 【答案】 $\frac{1}{3}$

【解析】如图所示,连结 A_1C_1 ,交 B_1D_1 于点 O,很明显 A_1C_1 上平面 BDD_1B_1 ,则 A_1O 是四棱锥的高,

且
$$A_1O = \frac{1}{2}A_1C_1 = \frac{1}{2}\sqrt{1^2+1^2} = \frac{\sqrt{2}}{2}$$
, $S_{$ 四边形 $BDD_1B_1} = BD \times DD_1 = \sqrt{2} \times 1 = \sqrt{2}$,

结合四棱锥体积公式可得其体积为 $V = \frac{1}{3}Sh = \frac{1}{3} \times \sqrt{2} \times \frac{\sqrt{2}}{2} = \frac{1}{3}$.

3. **(2018 天津理)**已知正方体 $ABCD - A_1B_1C_1D_1$ 的棱长为 1,除面 ABCD 外,该正方体其余各面的中心分别为点 E, F, G, H, M(如图),则四棱锥 M - EFGH 的体积为______.

第(11)题图

3. 【答案】 $\frac{1}{12}$

【解析】由题意可得,底面四边形 EFGH 为边长为 $\frac{\sqrt{2}}{2}$ 的正方形,

其面积
$$S_{EFGH} = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2}$$
,

顶点 M 到底面四边形 EFGH 的距离为 $d = \frac{1}{2}$,

由四棱锥的体积公式可得 $V_{M-EFGH} = \frac{1}{3} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{12}$.

- 4. **(2018 全国新课标 II 文)** 已知圆锥的顶点为 S ,母线 SA , SB 互相垂直, SA 与圆锥底面所成角为 30°,若 $\triangle SAB$ 的面积为 S ,则该圆锥的体积为______.
- 4. 【答案】8π

【解析】如下图所示,
$$\angle SAO = 30^{\circ}$$
 , $\angle ASB = 90^{\circ}$, 又 $S_{\triangle SAB} = \frac{1}{2}SA \cdot SB = \frac{1}{2}SA^2 = 8$,

解得
$$SA = 4$$
, 所以 $SO = \frac{1}{2}SA = 2$, $AO = \sqrt{SA^2 - SO^2} = 2\sqrt{3}$, 所以该圆锥的体积为

$$V = \frac{1}{3} \cdot \pi \cdot OA^2 \cdot SO = 8\pi.$$

- 5. **(2018 全国新课标 II 理)**已知圆锥的顶点为 S ,母线 SA , SB 所成角的余弦值为 $\frac{7}{8}$, SA 与圆锥底面所成角为 45 °,若 $\triangle SAB$ 的面积为 $5\sqrt{15}$,则该圆锥的侧面积为_______.
- 5.【答案】40√2π

【解析】因为母线 SA, SB 所成角的余弦值为 $\frac{7}{8}$, 所以母线 SA, SB 所成角的正弦值为 $\frac{\sqrt{15}}{8}$,

因为 $\triangle SAB$ 的面积为 $5\sqrt{15}$,设母线长为l,所以 $\frac{1}{2} \times l^2 \times \frac{\sqrt{15}}{8} = 5\sqrt{15}$, $\therefore l^2 = 80$,

因 SA 与圆锥底面所成角为 45° , 所以底面半径为 $l\cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}l$,

因此圆锥的侧面积为 $\pi r l = \frac{\sqrt{2}}{2} \pi l^2 = 40 \sqrt{2} \pi$.

三、解答题

1.(**2018** 北京文)如图,在四棱锥 P-ABCD中,底面 ABCD 为矩形,平面 PAD 上平面 ABCD, PA 上 PD, PA = PD, E, F 分别为 AD, PB 的中点.

- (1) 求证: *PE* ⊥ *BC*;
- (2) 求证: 平面 *PAB* 上平面 *PCD*;
- (3) 求证: EF//平面 PCD.

- 1. 【答案】 (1) 见解析; (2) 见解析; (3) 见解析. 【解析】 (1) $\therefore PA = PD$, 且 $E \to AD$ 的中点,
- $\therefore PE \perp AD$
- ∵底面 ABCD 为矩形, ∴ BC//AD, ∴ PE ⊥ BC.
- (2) ::底面 *ABCD* 为矩形, :: *AB* ⊥ *AD*,
- :: 平面 $PAD \perp$ 平面 ABCD, $:: AB \perp$ 平面 PAD,
- ∴ $AB \perp PD$. $\bigvee PA \perp PD$, $\because PD \perp \overline{\Upsilon}$ $\cong PAB$, $\therefore \overline{\Upsilon}$ $\cong PAB \perp \overline{\Upsilon}$ $\cong PCD$.
- (3) 如图,取PC中点G,连接FG,GD.

- :: F , G 分别为 PB 和 PC 的中点, :: FG//BC , 且 $FG = \frac{1}{2}BC$,
- : 四边形 ABCD 为矩形,且 E 为 AD 的中点, : ED//BC , $DE = \frac{1}{2}BC$,
- $\therefore ED//FG$,且 ED = FG, \therefore 四边形 EFGD 为平行四边形,
- ∴ EF//GD, $\nabla EF \not\subset \Psi$ in PCD, $GD \subset \Psi$ in PCD,
- ∴ EF // $\overline{\Psi}$ $\overline{\underline{m}}$ PCD.

- 2. **(2018 北京理)** 如图,在三棱柱 $ABC-^{A_1}B_1C_1$ 中, CC_1 上平面 ABC,D,E,F,G 分别为 AA_1 ,AC, A_1C_1 , BB_1 的中点, $AB=BC=\sqrt{5}$, $AC=^{AA_1}=2$.
 - (I) 求证: AC 上平面 BEF;
 - (II) 求二面角 $B-CD-C_1$ 的余弦值;
 - (III) 证明: 直线 FG 与平面 BCD 相交.

(2) $B-CD-C_1$ 的余弦值为 $-\frac{\sqrt{21}}{21}$; (3) 证明过程见解析.

【解析】(1) 在三棱柱 $ABC - A_1B_1C_1$ 中, $: CC_1 \perp$ 平面 ABC ,

- :. 四边形 A_iACC_i 为矩形. 又 E , F 分别为 AC , A_iC_i 的中点,
- $\therefore AC \perp EF$, $\therefore AB = BC$, $\therefore AC \perp BE$,
- $\therefore AC \perp \stackrel{\mathbf{T}}{=} BEF$.
- (2) 由 (1) 知 $AC \perp EF$, $AC \perp BE$, $EF//CC_1$.

 $\therefore BE \subset \overline{+}$ in ABC, $\therefore EF \perp BE$.

如图建立空间直角坐称系E-xyz.

由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1),

 $\vec{CD} = (2,0,1)$, $\vec{CB} = (1,2,0)$, 设平面 BCD 的法向量为 n = (a,b,c),

令 a=2,则 b=-1, c=-4, :: 平面 BCD 的法向量 n=(2,-1,-4),

- (3) 平面 BCD 的法向量为 n = (2,-1,-4), : G(0,2,1), F(0,0,2),
- $\therefore \overrightarrow{GF} = (0, -2, 1), \quad \therefore \overrightarrow{n} \cdot \overrightarrow{GF} = -2, \quad \therefore \overrightarrow{n} = \overrightarrow{GF} \wedge \overrightarrow{\pi} = 1$
- :: GF 与平面 BCD 不平行且不在平面 BCD 内,:: GF 与平面 BCD 相交.

- (1) 设圆锥的母线长为 4, 求圆锥的体积;
 - (2) 设 PO=4, OA, OB 是底面半径,

且 $\angle AOB$ =90°, M为线段AB的中点,

如图,求异面直线 PM与 OB 所成的角的大小.

【答案】(1) $\frac{8\sqrt{3}}{3}\pi$, (2) $\arctan\sqrt{17}$

【知识点】空间点、直线、面的关系

【考查能力】空间想象能力

(1).
$$V = \frac{1}{3} \times 4\pi \times 2\sqrt{3} = \frac{8\sqrt{3}}{3}\pi$$

(2)、取OA 中点为N,即求 $\angle PMN$, MN=1, $PN=\sqrt{17}$, 所成角大小为 $\arctan\sqrt{17}$ 。

(2) 平面 $ABB_1A_1 \perp$ 平面 A_1BC .

4. 【答案】(1) 见解析; (2) 见解析. 【解析】(1) 在平行六面体 *ABCD-A,B,C,D*, 中,

 $AB//A_1B_1$.

(2) 在平行六面体 $ABCD - A_lB_lC_lD_l$ 中,四边形 ABB_lA_l 为平行四边形.

又因为 $AA_1 = AB$,所以四边形 ABB_1A_1 为菱形,

因此 $AB_1 \perp A_1B$. 又因为 $AB_1 \perp B_1C_1$, $BC//B_1C_1$, 所以 $AB_1 \perp BC$.

又因为 $A,B \cap BC = B$, $A,B \subset \overline{\Upsilon}$ 面A,BC, $BC \subset \overline{\Upsilon}$ 面A,BC,

所以 $AB_1 \perp$ 平面 A_1BC . 因为 $AB_1 \subset$ 平面 ABB_1A_1 ,

所以平面 $ABB_1A_1 \perp$ 平面 A_1BC .

- 5. (2018 江苏) 如图,在正三棱柱 ABC- $A_1B_1C_1$ 中,AB= AA_1 =2,点 P,Q 分别为 A_1B_1 ,BC 的中点.
 - (1) 求异面直线 BP 与 AC_1 所成角的余弦值;
 - (2) 求直线 CC_1 与平面 AQC_1 所成角的正弦值.

5. 【答案】(1)
$$\frac{3\sqrt{10}}{20}$$
; (2) $\frac{\sqrt{5}}{5}$.

【解析】如图,在正三棱柱 $ABC - A_1B_1C_1$ 中,设 AC, A_1C_1 的中点分别为O, O_1 ,则 $OB \perp OC$, $OO_1 \perp OC$, $OO_1 \perp OB$,以 $\left\{\overrightarrow{OB}, \overrightarrow{OC}, \overrightarrow{OO_1}\right\}$ 为基底,建立空间直角 坐标系 O-xyz. 因为 $AB=AA_1=2$,

所以 A(0,-1,0), $B(\sqrt{3},0,0)$, C(0,1,0), $A_1(0,-1,2)$, $B_1(\sqrt{3},0,2)$, $C_1(0,1,2)$.

(1) 因为P为 A_1B_1 的中点,所以 $P\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}, 2\right)$

从而
$$\overrightarrow{BP} = \left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}, 2\right), \overrightarrow{AC_1} = (0, 2, 2),$$

$$|\overrightarrow{BP}, \overrightarrow{AC_1}\rangle| = \frac{|\overrightarrow{BP} \cdot \overrightarrow{AC_1}|}{|\overrightarrow{BP}| \cdot |\overrightarrow{AC_1}|} = \frac{|-1+4|}{\sqrt{5} \times 2\sqrt{2}} = \frac{3\sqrt{10}}{20}.$$

因此,异面直线 $BP = AC_1$ 所成角的余弦值为 $\frac{3\sqrt{10}}{20}$.

(2) 因为Q为BC的中点,所以 $Q\left(\frac{\sqrt{3}}{2},\frac{1}{2},0\right)$,

因此
$$\overrightarrow{AQ} = \left(\frac{\sqrt{3}}{2}, \frac{3}{2}, 0\right)$$
, $\overrightarrow{AC_1} = (0, 2, 2)$, $\overrightarrow{CC_1} = (0, 0, 2)$.

设
$$\mathbf{n} = (x, y, z)$$
 为平面 AQC_1 的一个法向量,则
$$\left\{ \overline{AQ} \cdot \mathbf{n} = 0 \atop \overline{AC_1} \cdot \mathbf{n} = 0 \right\} \begin{cases} \overline{\sqrt{3}} x + \frac{3}{2} y = 0 \\ 2y + 2z = 0 \end{cases}$$

不妨取 $\mathbf{n} = (\sqrt{3}, -1, 1)$, 设直线 CC_1 与平面 AQC_1 所成角为 θ ,

$$|\nabla | \sin \theta = \left| \langle \cos \overline{CC_1}, \boldsymbol{n} \rangle \right| = \frac{\left| \overline{CC_1} \cdot \boldsymbol{n} \right|}{\left| \overline{CC_1} \right| \cdot \left| \boldsymbol{n} \right|} = \frac{2}{\sqrt{5} \times 2} = \frac{\sqrt{5}}{5},$$

所以直线 CC_1 与平面 AQC_1 所成角的正弦值为 $\frac{\sqrt{5}}{5}$.

- (I)证明: AB_1 上平面 $A_1B_1C_1$;
- (II) 求直线 AC_1 与平面 ABB_1 所成的角的正弦值.

6. 答案: (1) 略; (2)
$$\frac{\sqrt{39}}{13}$$

解答: (1) : $AB = B_1B = 2$,且 $B_1B \perp$ 平面 ABC,

$$\therefore B_1 B \perp AB, \quad \therefore AB_1 = 2\sqrt{2}.$$

同理,
$$AC_1 = \sqrt{AC^2 + C_1C^2} = \sqrt{(2\sqrt{3})^2 + 1^2} = \sqrt{13}$$
.

过点 C_1 作 B_1B 的垂线段交 B_1B 于点G,则 $C_1G=BC=2$

$$\coprod B_1G=1, \quad \therefore B_1C_1=\sqrt{5}.$$

$$\triangle AB_1C_1 + AB_1^2 + B_1C_1^2 = AC_1^2$$

$$\therefore AB_1 \perp B_1C_1$$
, 1

$$M B_1 H = AB = 2$$
, $A_1 H = 2$, $A_1 B_1 = 2\sqrt{2}$.

$$\pm \Delta A_1 B_1 A + A_1 = A B_1^2 + A_1 B_1^2$$

 $\therefore AB_1 \perp A_1B_1$, ②

综合①②,: $A_1B_1 \cap B_1C_1 = B_1$, $A_1B_1 \subset$ 平面 $A_1B_1C_1$, $B_1C_1 \subset$ 平面 $A_1B_1C_1$,

 $\therefore AB_1 \perp \overline{+} \overline{\mathrm{m}} A_1B_1C_1$.

(2) 过点 B 作 AB 的垂线段交 AC 于点 I , 以 B 为原点,以 AB 所在直线为 x 轴,以 BI 所在 直线为y轴,以 B_1B 所在直线为z轴,建立空间直角坐标系B-xyz.

 $\mathbb{N} B(0,0,0)$, A(-2,0,0), $B_1(0,0,2)$, $C_1(1,\sqrt{3},1)$, 设平面 ABB_1 的一个法向量 $\vec{n} = (a,b,c)$,

$$\overrightarrow{X} : \overrightarrow{AC_1} = (3, \sqrt{3}, 1), \quad \cos < \overrightarrow{n}, \overrightarrow{AC_1} > = \frac{\sqrt{3}}{1 \times \sqrt{13}} = \frac{\sqrt{39}}{13}$$

由图形可知,直线 AC_1 与平面 ABB_1 所成角为锐角,

设 AC_1 与平面 ABB_1 夹角为 α .

$$\therefore \sin \alpha = \frac{\sqrt{39}}{13}.$$

- 7. (2018 天津文)如图,在四面体 ABCD中, $\triangle ABC$ 是等边三角形,平面 ABC 上平面 ABD,点 M为棱 AB 的中点,AB=2,AD= $2\sqrt{3}$, $\angle BAD=90^{\circ}$.
- (I) 求证: *AD*⊥*BC*;
- (II) 求异面直线 BC 与 MD 所成角的余弦值;
- (III) 求直线 CD 与平面 ABD 所成角的正弦值.

【解析】(1)由平面 ABC 上平面 ABD

 Ψ in $ABC \cap \Psi$ in ABD = AB, $AD \perp AB$,

可得 $AD \perp$ 平面 ABC, 故 $AD \perp BC$.

(2) 取棱 AC 的中点 N, 连接 MN, ND. 又因为 M 为棱 AB 的中点, 故 MN//BC. 所以 $\angle DMN$ (或其补角)为异面直线BC与MD所成的角.

在 Rt $\triangle DAM$ 中, AM = 1, 故 $DM = \sqrt{AD^2 + AM^2} = \sqrt{13}$. 因为AD上平面ABC,

在等腰三角形 DMN 中, MN=1 ,可得 $\cos \angle DMN = \frac{\frac{1}{2}MN}{2} = \frac{\sqrt{13}}{2}$

所以,异面直线 BC = MD 所成角的余弦值为 $\frac{\sqrt{13}}{26}$

(3) 连接 CM ,因为 $\triangle ABC$ 为等边三角形, M 为边 AB 的中点,故 $CM \perp AB$, $CM = \sqrt{3}$. 又因为 平面 $ABC \perp$ 平面 ABD, 而 $CM \subset$ 平面 ABC, 故 $CM \perp$ 平面 ABD. 所以, $\angle CDM$ 为直线 CD 与平面 ABD 所成的角。

在 Rt $\triangle CAD$ 中, $CD = \sqrt{AC^2 + AD^2} = 4$. 在 Rt $\triangle CMD$ 中, $\sin \angle CDM = \frac{CM}{CD} = \frac{\sqrt{3}}{4}$

所以,直线 CD 与平面 ABD 所成角的正弦值为 $\frac{\sqrt{3}}{4}$.

- 8. (2018 天津理) 如图,AD//BC 且 AD=2BC, $AD\perp CD$,EG//AD 且 EG=AD,CD//FG 且 CD=2FG,DG 上平面ABCD,DA=DC=DG=2.
 - (I) 若M为CF的中点,N为EG的中点,求证: MN//平面CDE;
 - (II) 求二面角 E-BC-F 的正弦值;
 - (III) 若点 P 在线段 DG 上,且直线 BP 与平面 ADGE 所成的角为 60° , 求线段 DP 的长.

8. 【答案】(1) 证明见解析; (2) $\frac{\sqrt{10}}{10}$; (3) $\frac{\sqrt{3}}{3}$.

【解析】依题意,可以建立以D为原点,

分别以 \overrightarrow{DA} , \overrightarrow{DC} , \overrightarrow{DG} 的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),

$$E(2,0,2)$$
, $F(0,1,2)$, $G(0,0,2)$, $M(0,\frac{3}{2},1)$, $N(1,0,2)$.

(1) 依题意 $\vec{DC} = (0,2,0)$, $\vec{DE} = (2,0,2)$.

设
$$\mathbf{n}_0 = (x, y, z)$$
 为平面 CDE 的法向量,则
$$\begin{cases} \mathbf{n}_0 \cdot \overrightarrow{DC} = 0 \\ \mathbf{n}_0 \cdot \overrightarrow{DE} = 0 \end{cases}$$
 即
$$\begin{cases} 2y = 0 \\ 2x + 2z = 0 \end{cases}$$

不妨令 z = -1,可得 $\mathbf{n}_0 = (1,0,-1)$.

又
$$\overrightarrow{MN} = \left(1, -\frac{3}{2}, 1\right)$$
,可得 $\overrightarrow{MN} \cdot \mathbf{n}_0 = 0$,

又因为直线 MN ⊄平面 CDE, 所以 MN // 平面 CDE.

(2) 依题意,可得 $\overrightarrow{BC} = (-1,0,0)$, $\overrightarrow{BE} = (1,-2,2)$, $\overrightarrow{CF} = (0,-1,2)$

设
$$\mathbf{n} = (x, y, z)$$
 为平面 BCE 的法向量,则 $\begin{cases} \mathbf{n} \cdot \overrightarrow{BC} = 0 \\ \mathbf{n} \cdot \overrightarrow{BE} = 0 \end{cases}$ $\begin{cases} -x = 0 \\ x - 2y + 2z = 0 \end{cases}$

不妨令z=1,可得n=(0,1,1).

设
$$\mathbf{m} = (x, y, z)$$
为平面 BCF 的法向量,则 $\begin{cases} \mathbf{m} \cdot \overrightarrow{BC} = 0 \\ \mathbf{m} \cdot \overrightarrow{BF} = 0 \end{cases}$ 即 $\begin{cases} -x = 0 \\ -y + 2z = 0 \end{cases}$,

不妨令z=1,可得m=(0,2,1).

因此有
$$\cos < m, n > = \frac{m \cdot n}{|m||n|} = \frac{3\sqrt{10}}{10}$$
 ,于是 $\sin < m, n > = \frac{\sqrt{10}}{10}$

所以,二面角E-BC-F的正弦值为 $\frac{\sqrt{10}}{10}$.

(3) 设线段 DP 的长为 $h(h \in [0,2])$,则点 P 的坐标为(0,0,h),

可得 $\overrightarrow{BP} = (-1, -2, h)$. 易知, $\overrightarrow{DC} = (0, 2, 0)$ 为平面ADGE的一个法向量,

曲题意,可得 $\frac{2}{\sqrt{h^2+5}} = \sin 60^\circ = \frac{\sqrt{3}}{2}$,解得 $h = \frac{\sqrt{3}}{3} \in [0,2]$.

所以线段 DP 的长为 $\frac{\sqrt{3}}{3}$.

- 9. **(2018 全国新课标 I 文)** 如图,在平行四边形 ABCM 中,AB = AC = 3, $\angle ACM = 90^{\circ}$,以 AC 为 折痕将 \triangle ACM 折起,使点 M 到达点 D 的位置,且 $AB \perp DA$.
 - (1) 证明: 平面 ACD 上平面 ABC;
 - (2) Q为线段 AD 上一点,P 为线段 BC 上一点,

且
$$BP = DQ = \frac{2}{3}DA$$
, 求三棱锥 $Q - ABP$ 的体积.

9.

答案: (1) 见解析(2) 1

解答:

(2)过点Q作 $QH \perp AC$, $\overline{\nabla}$ AC 于点H, \therefore $AB \perp$ 平面ACD, \therefore AB **②** , $\overline{\nabla}$ \therefore $CD \perp AC$,

$$\therefore CD \perp \text{Tim } ABC, \therefore \frac{HQ}{CD} = \frac{AQ}{AD} = \frac{1}{3}, \therefore HQ = 1, \therefore BC = 3\sqrt{2}, BC = AM = AD = 3\sqrt{2}, \therefore$$

$$BP = 2\sqrt{2}$$
,又: $\triangle ABC$ 为等腰直角三角形, $\therefore S_{\triangle ABP} = \frac{1}{2} \cdot 3 \cdot 2\sqrt{2} \cdot \frac{\sqrt{2}}{2} = 3$, \therefore

$$V_{Q-ABD} = \frac{1}{3} \cdot S_{\Delta ABD} \cdot HQ = \frac{1}{3} \times 3 \times 1 = 1.$$

- 10. (**2018 全国新课标 I 理**) 如图,四边形 ABCD 为正方形,E,F 分别为 AD,BC 的中点,以 DF 为折痕把 $\triangle DFC$ 折起,使点 C 到达点 P 的位置,且 $PF \perp BF$.
 - (1) 证明: 平面 PEF 上平面 ABFD;
 - (2) 求 DP 与平面 ABFD 所成角的正弦值.

10. 答案: (1) 略; (2) $\frac{\sqrt{3}}{4}$.

解答: (1) E, F 分别为 AD, BC 的中点,则 EF / AB, $\therefore EF \perp BF$,

 $\nabla PF \perp BF$, $EF \cap PF = F$, $\therefore BF \perp \Psi \equiv PEF$,

 $BE \subset \overline{\Upsilon}$ mathred ABFD, $\therefore \overline{\Upsilon}$ $mathred PEF \perp \overline{\Upsilon}$ mathred ABFD.

(2) $PF \perp BF$, BF / /ED, $\therefore PF \perp ED$,

 $\nabla PF \perp PD$, $ED \cap DP = D$, $\therefore PF \perp \overrightarrow{P} \equiv PED$, $\therefore PF \perp PE$,

设 AB = 4,则 EF = 4, PF = 2, $\therefore PE = 2\sqrt{3}$,

过P作 $PH \perp EF$ 交EF 于H 点,

由平面 PEF 上平面 ABFD,

∴ PH ⊥平面 ABFD, 连结 DH,

则 ZPDH 即为直线 DP与平面 ABFD 所成的角,

$$\overrightarrow{m}PD = 4$$
, $\therefore \sin \angle PDH = \frac{PH}{PD} = \frac{\sqrt{3}}{4}$,

- $\therefore DP$ 与平面 ABFD 所成角的正弦值 $\frac{\sqrt{3}}{4}$.
- 11. **(2018 全国新课标** II 文) 如图,在三棱锥 P ABC 中, $AB = BC = 2\sqrt{2}$, PA = PB = PC = AC = 4, O 为 AC 的中点.
 - (1) 证明: PO L 平面 ABC;
 - (2) 若点M 在棱BC上,且MC=2MB, 求点C到平面POM的距离.
- 11. 【答案】(1) 见解析; (2) $\frac{4\sqrt{5}}{5}$.

【解析】(1) 因为AP = CP = AC = 4, O为AC的中点,所以 $OP \perp AC$, 且 $OP = 2\sqrt{3}$. 连结OB.

因为 $AB = BC = \frac{\sqrt{2}}{2}AC$,所以 $\triangle ABC$ 为等腰直角三角形,

$$\mathbb{H} OB \perp AC$$
, $OB = \frac{1}{2}AC = 2$.

 $\oplus OP^2 + OB^2 = PB^2 \not \Box$, $OP \perp OB$.

 $\oplus OP \perp OB$, $OP \perp AC$ 知 $PO \perp$ 平面 ABC.

(2) 作 $CH \perp OM$, 垂足为 H . 又由(1)可得 $OP \perp CH$, 所以 $CH \perp$ 平面 POM . 故 CH 的长为点 C 到平面 POM 的距离.

由题设可知
$$OC = \frac{1}{2}AC = 2$$
, $CM = \frac{2}{3}BC = \frac{4\sqrt{2}}{3}$, $\angle ACB = 45^{\circ}$.

所以
$$OM = \frac{2\sqrt{5}}{3}$$
 , $CH = \frac{OC \cdot MC \cdot \sin \angle ACB}{OM} = \frac{4\sqrt{5}}{5}$. 所以点 C 到平面 POM 的距离为 $\frac{4\sqrt{5}}{5}$.

- 12. (**2018 全国新课标 II 理**) 如图,在三棱锥 P-ABC 中, $AB=BC=2\sqrt{2}$,PA=PB=PC=AC=4 ,O为 AC 的中点.
 - (1) 证明: PO L 平面 ABC;
 - (2) 若点M 在棱BC上,且二面角M-PA-C为30°, 求PC与平面PAM所成角的正弦值.
- 12. 【答案】(1) 见解析; (2) $\frac{\sqrt{3}}{4}$.

【解析】(1) 因为AP = CP = AC = 4, O为AC的中点,所以 $OP \perp AC$, 且 $OP = 2\sqrt{3}$,

连结 OB. 因为 $AB = BC = \frac{\sqrt{2}}{2}AC$,所以 $\triangle ABC$ 为等腰

直角三角形,且
$$OB \perp AC$$
, $OB = \frac{1}{2}AC = 2$,

(2) 如图,以O为坐标原点, \overrightarrow{OB} 的方向为x轴正方向,建立空间直角坐标系O-xyz.

由己知得 O(0,0,0), B(2,0,0), A(0,-2,0), C(0,2,0), $P(0,0,2\sqrt{3})$, $\overrightarrow{AP} = (0,2,2\sqrt{3})$, 取平面 PAC 的法向量 $\overrightarrow{OB} = (2,0,0)$, 设 $M(a,2-a,0)(0 < a \le 2)$,则 $\overrightarrow{AM} = (a,4-a,0)$, 设 平面 PAM 的法向量为 n = (x,y,z).由 $\overrightarrow{AP} \cdot n = 0$, $\overrightarrow{AM} \cdot n = 0$,

得
$$\left\{ \begin{aligned} 2y + 2\sqrt{3}z &= 0 \\ ax + (4-a)y &= 0 \end{aligned} \right.$$
,可取 $\mathbf{n} = \left(\sqrt{3}(a-4), \sqrt{3}a, -a\right)$,

$$\therefore \cos < \overrightarrow{OB}, \mathbf{n} > = \frac{2\sqrt{3}(a-4)}{2\sqrt{3(a-4)^2 + 3a^2 + a^2}}, \quad \Box \Xi \Xi |\cos < \overrightarrow{OB}, \mathbf{n} > = \frac{\sqrt{3}}{2},$$

$$\therefore \frac{2\sqrt{3}|a-4|}{2\sqrt{3(a-4)^2+3a^2+a^2}} = \frac{\sqrt{3}}{2}, \quad \text{解得} \ a = -4 \quad (\, \text{含去}), \quad a = \frac{4}{3},$$

$$\therefore \mathbf{n} = \left(-\frac{8\sqrt{3}}{3}, \frac{4\sqrt{3}}{3}, -\frac{4}{3}\right), \quad \mathbf{X} : \overrightarrow{PC} = \left(0, 2, -2\sqrt{3}\right), \quad \mathbf{M} : \mathbf{X} : \overrightarrow{PC} = \left(0, 2, -2\sqrt{3}\right), \quad \mathbf{M} : \mathbf{X} : \mathbf{X}$$

所以PC与平面PAM所成角的正弦值为 $\frac{\sqrt{3}}{4}$.

- 13. (**2018 全国新课标Ⅲ文**) 如图,矩形 ABCD 所在平面与半圆弧 CD 所在平面垂直,M 是 CD 上 异于 C ,D 的点.
 - (1) 证明: 平面 *AMD* 上平面 *BMC*;
 - (2) 在线段 AM 上是否存在点 P, 使得 MC // 平面 PBD? 说明理由.

解答: (1) : 正方形 ABCD 上半圆面 CMD,

- ∴ $AD \perp \#$ 圆面 CMD, ∴ $AD \perp \#$ 面 MCD.
- :: CM 在平面 MCD 内, $:: AD \perp CM$, $\bigvee :: M$ 是半圆弧 CD 上异于 C,D 的点, $:: CM \perp MD$.
- 又 $: AD \cap DM = D$, $:: CM \perp$ 平面 ADM , :: CM 在平面 BCM 内, :: 平面 BCM \perp 平面 ADM .
 - (2) 线段 AM 上存在点 $P \perp P \rightarrow AM$ 中点,证明如下:

连接 BD, AC 交于点 O,连接 PD, PB, PO; 在矩形 ABCD 中, O 是 AC 中点, P 是 AM 的 中点;

∴ OP //MC, ∵ OP 在平面 PDB 内, MC 不在平面 PDB 内, ∴ MC // 平面 PDB.

- 14. (2018 全国新课标Ⅲ理) 如图,边长为 2 的正方形 ABCD 所在的平面与半圆弧 CD 所在平面垂直, $M \neq CD$ 上异于 C , D 的点.
 - (1) 证明: 平面 *AMD* 上平面 *BMC*;
 - (2) 当三棱锥 M ABC 体积最大时,

求面 MAB 与面 MCD 所成二面角的正弦值.

14. 答案: 见解答

解答: (1) ∵正方形 ABCD ⊥半圆面 CMD,

 $∴ AD \bot 半圆面 CMD$, $∴ AD \bot 平面 MCD$.

- 又 $: AD \cap DM = D$, $:: CM \perp$ 平面 ADM, :: CM 在平面 BCM 内, :: 平面 $BCM \perp$ 平面 ADM.
 - (2) 如图建立坐标系:
 - $:S_{\Lambda ABC}$ 面积恒定,
 - \therefore $MO \perp CD$, V_{M-ABC} 最大.

M(0,0,1), A(2,-1,0), B(2,1,0), C(0,1,0), D(0,-1,0),

设面 MAB 的法向量为 $\vec{m} = (x_1, y_1, z_1)$, 设面 MCD 的法向量为 $\vec{n} = (x_2, y_2, z_2)$,

$$\overrightarrow{MA} = (2, -1, -1)$$
, $MB = (2, 1, -1)$,

$$MC = (0,1,-1)$$
, $MD = (0,-1,-1)$,

$$\begin{cases} 2x_1 - y_1 - z_1 = 0 \\ 2x_1 + y_1 - z_1 = 0 \end{cases} \Rightarrow \overrightarrow{m} = (1, 0, 2),$$

同理 $\vec{n} = (1,0,0)$,,

$$\therefore \cos \theta = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}, \quad \therefore \quad \sin \theta = \frac{2\sqrt{5}}{5}.$$

