# Syntaks og semantik

Lektion 4

14 februar 2008

Administrivia NFA NFA vs. RE Eksempel Transitionssystemer

## **Forord**

- Administrivia
- Non-deterministiske endelige automater
- NFAs og regulære udtryk
- Eksempel på delmængdekonstruktion
- **5** Transitionssystemer

Administrivia NFA NFA vs. RE Eksempel Transitionssystemer

## Syntaksopgaven

Et tip / ønske til syntaksopgaven:

Indfør 4 alfabeter:

$$\begin{split} & \Sigma_0 = \{0\} \\ & \Sigma_1 = \{1, 2, \dots, 9\} \\ & \Sigma_2 = \{a, \dots, z, A, \dots, Z\} \\ & \Sigma_3 = \{+, -, *\} \end{split}$$

Sæt  $\Sigma = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ , og betragt alle automater og udtryk over alfabetet  $\Sigma$ .

Brug  $\Sigma_0$ ,  $\Sigma_1$ ,  $\Sigma_2$ ,  $\Sigma_3$  som forkortelser på automaters pile og i udtrykkene.

3/24

Administrivia NFA NFA vs. RE Eksempel Transitionssystemer

### Planen

- i dag: afslutning på kursusdelen omhandlende regulære sprog
- og afslutning på syntaksopgavens del omhandlende regulære sprog
- næste gang: perspektivering og spørgetime!
- og start på kontekstfrie sprog



Definition 1.37: En nondeterministisk endelig automat (NFA) er en 5-tupel  $M = (Q, \Sigma, \delta, q_0, F)$ , hvor delene er

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet
- **3**  $\delta: \mathbf{Q} \times (\mathbf{\Sigma} \cup \{\varepsilon\}) \to \mathcal{P}(\mathbf{Q})$ : transitions-funktionen
- $q_0 \in Q$ : starttilstanden
- $\bullet$   $F \subseteq Q$ : mængden af accepttilstande

M siges at acceptere et ord  $w \in \Sigma^*$  hvis der findes  $m \in \mathbb{N}$  og  $y_1, y_2, \ldots, y_m \in \Sigma \cup \{\varepsilon\}$  og  $r_0, r_1, \ldots, r_m \in Q$  således at  $w = y_1 y_2 \ldots y_m$  og

- $0 r_0 = q_0,$
- 2  $r_{i+1} \in \delta(r_i, y_{i+1})$  for alle i = 0, 1, ..., m-1, og
- $oldsymbol{0}$   $r_m \in F$ .

5/24

Administrivia NFA NFA vs. RE Eksempel Transitionssystemer

- enhver DFA er også en NFA
- enhver NFA kan laves om til en DFA der genkender samme sprog (delmængdekonstruktionen)
- et sprog er defineret til at være regulært hvis der er en DFA der genkender det
- ⇒ et sprog er regulært hvis og kun hvis der er en NFA der genkender det
- regulære sprog er lukket under ∪, ∘, \* (vises ved at konstruere en ny NFA ud fra de givne NFAs)
- regulære sprog er lukket under ∩ og ⁻ (komplement) (vises ved at konstruere en ny DFA ud fra de givne DFAs; konstruktionerne virker kun for DFAs!)
- NFAs er generelt mere simple at fremstille
- NFA = abstraktion!

Administrivia NFA NFA vs. RE Eksempel Transitionssystemer

Lemma 1.55: Hvis et sprog beskrives ved et regulært udtryk, da er det regulært.

#### Bevises ved strukturel induktion:

- konvertér de basale regulære udtryk til NFAs
- brug lukningsegenskaber til at konvertere sammensætninger af regulære udtryk til sammensætninger af NFAs
- Smart!

I dag: Lemma 1.60: Hvis et sprog er regulært, da kan det beskrives ved et regulært udtryk.

(Bevises ved at *generalisere* NFAs til GNFAs.)

⇒ Sætning 1.54: Et sprog er regulært hvis og kun hvis det kan beskrives ved et regulært udtryk.

7/24

Administrivia NFA NFA vs. RE Eksempel Transitionssystemer

## Opgave 1.16

Konvertér følgende to NFAs til DFAs ved hjælp af delmængdekonstruktionen: (ved tavlen)



Transitions-systemer: en generalisering af endelige automater, både DFA og NFA:

Definition: Et transitionssystem er en 4-tupel  $(Q, \Sigma, T, q_0)$ , hvor delene er

- Q: en mængde af tilstande (endelig eller uendelig)
- $\Sigma$ : et alfabet (en endelig mængde)
- **3**  $T \subseteq Q \times \Sigma \times Q$ : transitions-relationen
- $q_0 \in Q$ : starttilstanden
  - En NFA er et endeligt transitionssystem med en specificeret mængde af accepttilstande, og med et specielt tegn  $\varepsilon \in \Sigma$
- En DFA er en NFA som opfylder følgende egenskaber:
  - **1** der er ingen transitioner  $(q, \varepsilon, q') \in T$
  - ② for alle  $q \in Q$  og alle  $a \in \Sigma$ , med  $a \neq \varepsilon$ , findes  $q' \in Q$  og entransition  $(q, a, q') \in T$
  - lacksquare hvis  $(q,a,q_1')\in T$  og  $(q,a,q_2')\in T$ , så er  $q_1'=q_2'$

9/24

NFA  $\Rightarrow$  RE

## Regulære og ikke-regulære sprog

- Regulære sprog genereres af regulære udtryk
- Ikke-regulære sprog

 $NFA \Rightarrow RE$  Ikke-regulære sprog

Lemma 1.60: Givet et alfabet  $\Sigma$  og et regulært sprog  $L \subseteq \Sigma^*$ , da findes et regulært udtryk R over  $\Sigma$  således at  $L = [\![R]\!]$ .

Nøgle til beviset: Ny slags maskiner der kombinerer NFA og regulære udtryk: generaliserede nondeterministiske endelige automater (GNFA)

Definition 1.64: En GNFA er en 5-tupel  $(Q, \Sigma, \delta, q_0, q_f)$ , hvor delene er

Q: en endelig mængde af tilstande

Σ : input-alfabetet

 $\bullet$   $\delta: (Q \setminus \{q_f\}) \times (Q \setminus \{q_0\}) \to \mathcal{R}$ : transitions-funktionen

 $q_0 \in Q$ : starttilstanden

Notation:  $\mathcal{R} = \mathcal{R}(\Sigma) =$  mængden af alle regulære udtryk over et givet alfabet  $\Sigma$ .

(Bemærk at GNFAs introduceres kun for det her bevis. De bruges ikke til andet.)

11/24

 $NFA \Rightarrow RE$ 

Ikke-regulære sprog

Definition 1.64: En GNFA er en 5-tupel  $(Q, \Sigma, \delta, q_0, q_f)$ , hvor delene er

- **③**  $\delta: (Q \setminus \{q_f\}) \times (Q \setminus \{q_0\}) \rightarrow \mathcal{R}$ : transitions-funktionen
- $oldsymbol{0}$   $q_f \in Q$ : accepttilstanden

Ligesom NFAs, men

- med kun én accepttilstand
- med regulære udtryk på transitionerne i stedet for tegn
- med transitioner fra enhver tilstand til enhver tilstand (også sig selv), bortset fra at
  - starttilstanden ikke har indgående transitioner, og at
  - accepttilstanden ikke har udgående transitioner



Endnu en speciel form for transitionssystem: alfabetet er  $\mathcal{R}(\Sigma)$ , så transitionerne er  $T \subseteq Q \times \mathcal{R}(\Sigma) \times Q$ .

Definition 1.64: En GNFA er en 5-tupel  $(Q, \Sigma, \delta, q_0, q_f)$ , hvor delene er

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet
- **③**  $\delta: (Q \setminus \{q_f\}) \times (Q \setminus \{q_0\}) \rightarrow \mathcal{R}$ : transitions-funktionen
- $q_0 \in Q$ : starttilstanden

GNFAen accepterer et ord  $w \in \Sigma^*$  hvis der findes  $m \in \mathbb{N}$  og  $y_1, y_2, \ldots, y_m \in \Sigma^*$  (!) og  $r_0, r_1, \ldots, r_m \in Q$  således at  $w = y_1 y_2 \ldots y_m$  og

- $0 r_0 = q_0,$
- 2  $y_{i+1} \in [\![\delta(r_i, r_{i+1})]\!]$  for alle i = 0, 1, ..., m-1, og

Bevisidé: konvertér en DFA til en GNFA og så GNFAen til et regulært udtryk ved at fjerne én tilstand ad gangen.

13/24

 $NFA \Rightarrow RE$ 

Ikke-regulære sprog

Lemma 1.60: Givet et alfabet  $\Sigma$  og et regulært sprog  $L \subseteq \Sigma^*$ , da findes et regulært udtryk R over  $\Sigma$  således at  $L = [\![R]\!]$ .

Bevis: Lad  $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$  være en DFA med [M] = L.

- **1** Konvertér *M* til en GNFA  $G = (Q, \Sigma, \delta, q_0, q_f)$ :
  - (a) Lav en ny starttilstand  $q_0$  og en ny accepttilstand  $q_f$ , med  $\varepsilon$ -transitioner fra  $q_0$  til den gamle starttilstand og fra alle gamle accepttilstande til  $q_f$ .
  - (b) Erstat transitioner med flere end ét label med én transition der som label har foreningen af disse labels.
  - (c) Indsæt ∅-transitioner hvor der mangler pile.

NFA ⇒ RE Ikke-regulære sprog

Lemma 1.60: Givet et alfabet  $\Sigma$  og et regulært sprog  $L \subseteq \Sigma^*$ , da findes et regulært udtryk R over  $\Sigma$  således at  $L = [\![R]\!]$ .

Bevis: Lad  $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$  være en DFA med [M] = L.

- Konvertér M til en GNFA  $G = (Q, \Sigma, \delta, q_0, q_f)$ :
  - (a) Lav en ny starttilstand  $q_0$  og en ny accepttilstand  $q_f$ , med  $\varepsilon$ -transitioner fra  $q_0$  til den gamle starttilstand og fra alle gamle accepttilstande til  $q_f$ .
  - (b) Erstat transitioner med flere end ét label med én transition der som label har foreningen af disse labels.
  - (c) Indsæt Ø-transitioner hvor der mangler pile.

$$Q = Q_1 \cup \{q_0, q_f\}$$

$$\delta(q,q') = \begin{cases} \varepsilon & \text{hvis } q = q_0 \text{ eller } q' = q_f \\ a_1 \cup a_2 \cup \dots \cup a_k & \text{hvis } q,q' \in Q_1 \text{ og } \delta_1(q,a_i) = q' \\ & \text{for alle } i = 1,2,\dots,k \end{cases}$$

$$\emptyset & \text{hvis } q,q' \in Q_1 \text{ og } \delta_1(q,a) \neq q'$$

$$\text{for alle } a \in \Sigma$$

15/24

 $NFA \Rightarrow RE$ 

Ikke-regulære sprog

Lemma 1.60: Givet et alfabet  $\Sigma$  og et regulært sprog  $L \subseteq \Sigma^*$ , da findes et regulært udtryk R over  $\Sigma$  således at  $L = [\![R]\!]$ .

Bevis: Lad  $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$  være en DFA med [M] = L.

- **1** Konvertér *M* til en GNFA  $G = (Q, \Sigma, \delta, q_0, q_f)$
- 2 Konvertér G til et regulært udtryk R:

CONVERT(G):

- Lad k = |Q| antallet af tilstande i G.
- ② Hvis k = 2, returnér  $\delta(q_0, q_f)$ .
- 3 Vi har k > 2. Lad  $q_{\mathsf{rip}} \in Q \setminus \{q_0, q_f\}$ . Lad  $Q' = Q \setminus \{q_{\mathsf{rip}}\}$ , og definér  $\delta' : (Q' \setminus \{q_f\}) \times (Q' \setminus \{q_0\}) \to \mathcal{R}$  på følgende måde:



NFA ⇒ RE Ikke-regulære sprog

Lemma 1.60: Givet et alfabet  $\Sigma$  og et regulært sprog  $L \subseteq \Sigma^*$ , da findes et regulært udtryk R over  $\Sigma$  således at  $L = [\![R]\!]$ .

Bevis: Lad  $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$  være en DFA med [M] = L.

- **1** Konvertér *M* til en GNFA  $G = (Q, \Sigma, \delta, q_0, q_t)$
- 2 Konvertér G til et regulært udtryk R: CONVERT(G):
  - Lad k = |Q| antallet af tilstande i G.
  - 2 Hvis k = 2, returnér  $\delta(q_0, q_f)$ .
  - 3 Vi har k > 2. Lad  $q_{\text{rip}} \in Q \setminus \{q_0, q_f\}$ . Lad  $Q' = Q \setminus \{q_{\text{rip}}\}$ , og definér  $\delta' : (Q' \setminus \{q_f\}) \times (Q' \setminus \{q_0\}) \to \mathcal{R}$  på følgende måde:



For  $q \in Q' \setminus \{q_f\}$  og  $q' \in Q' \setminus \{q_0\}$  lad  $R_1 = \delta(q, q_{\text{rip}}), R_2 = \delta(q_{\text{rip}}, q_{\text{rip}}), R_3 = \delta(q_{\text{rip}}, q')$  og  $R_4 = \delta(q, q')$ , og lad  $\delta'(q, q') = R_4 \cup R_1(R_2)^*R_3$ .

**4** Returnér CONVERT( $G' = (Q', \Sigma, \delta', q_0, q_f)$ )

17/24

 $NFA \Rightarrow RE$ 

Ikke-regulære sprog

Lemma 1.60: Givet et alfabet  $\Sigma$  og et regulært sprog  $L \subseteq \Sigma^*$ , da findes et regulært udtryk R over  $\Sigma$  således at  $L = [\![R]\!]$ .

Bevis: Lad  $M = (Q_1, \Sigma, \delta_1, q_1, F_1)$  være en DFA med [M] = L.

- **1** Konvertér *M* til en GNFA  $G = (Q, \Sigma, \delta, q_0, q_f)$
- Konvertér G til et regulært udtryk R.
- **3** Vis at [M] = [R]:
  - Vis at  $\llbracket M \rrbracket = \llbracket G \rrbracket$ : nemt
  - ② Vis at [G] = [R]:
    - Hvis k = |Q| = 2:  $Q = \{q_0, q_f\}$ , og  $R = \delta(q_0, q_f) \Rightarrow \checkmark$
    - **2** Hvis k > 2: Vis at ||G|| = ||G'||
- 4 Done!

 $NFA \Rightarrow RE$  Ikke-regulære sprog

*Ikke alle sprog er regulære.* F.x. sproget  $\{0^n1^n \mid n \in \mathbb{N}\}$ :



– en uendelig automat!

Pumping Lemma: en egenskab ved alle regulære sprog.

⇒ Hvis et sprog ikke har den egenskab, kan det ikke være regulært.

19/24

NFA  $\Rightarrow$  RE

Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A findes der et (naturligt) tal p således at ethvert ord  $s \in A$  der har længde mindst p kan opsplittes i tre stykker, s = xyz, med

- |y| > 0 og  $|xy| \le p$ ,
- og således at ordene  $xy^iz \in A$  for alle  $i \in \mathbb{N}_0$ .

### En gang til:

```
For ethvert regulært sprog A findes p \in \mathbb{N}_0 således at for ethvert s \in A med |s| \geq p findes en opsplitning s = xyz således at |y| > 0 og |xy| \leq p og for alle i \in \mathbb{N}_0 xy^iz \in A.
```

NFA  $\Rightarrow$  RE

Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A findes der et (naturligt) tal p således at ethvert ord  $s \in A$  der har længde mindst p kan opsplittes i tre stykker, s = xyz, med

- |y| > 0 og  $|xy| \le p$ ,
- og således at ordene  $xy^iz \in A$  for alle  $i \in \mathbb{N}_0$ .

Eksempel 1.73: Sproget  $B = \{0^n 1^n \mid n \in \mathbb{N}\}$  er ikke regulært.

Bevis (ved modstrid; kortere end i bogen!): Antag at B er regulært, og lad p være pumpelængden. Lad  $s = 0^p 1^p$ , da er  $|s| \ge p$ .

Lad s = xyz være en opsplitning af s som opfylder pumpelemmaets betingelser. Pga.  $|xy| \le p$  kan y kun indeholde 0er, og pga. |y| > 0 indeholder y mindst ét 0.

Sidste betingelse i lemmaet siger bl.a. at ordet  $xyyz \in A$ , men dette ord indeholder for mange 0er. Modstrid!

21/24

NFA  $\Rightarrow$  RE

Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A findes der et (naturligt) tal p således at ethvert ord  $s \in A$  der har længde mindst p kan opsplittes i tre stykker, s = xyz, med

- |y| > 0 og  $|xy| \le p$ ,
- og således at ordene  $xy^iz \in A$  for alle  $i \in \mathbb{N}_0$ .

Bevis: Lad  $M = (Q, \Sigma, \delta, q_0, F)$  være en DFA der genkender A, og lad p = |Q|. Lad  $s = s_1 s_2 \dots s_n \in A \text{ med } |s| \geq p$ .

Mens M læser s, kommer den igennem en følge af n+1 tilstande. Men n+1>p, så der er flere tilstande i følgen end der er i M! Dvs. der er en tilstand der optræder to gange i følgen – en løkke! Hvis vi tager x til at være den del af s der læses før løkken, y den del der læses i løkken, og z den del der læses efter løkken, kan vi gennemløbe løkken i gange og genkende strengen  $xy^iz$ .  $NFA \Rightarrow RE$  Ikke-regulære sprog

Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A findes der et (naturligt) tal p således at ethvert ord  $s \in A$  der har længde mindst p kan opsplittes i tre stykker, s = xyz, med

- |y| > 0 og  $|xy| \le p$ ,
- og således at ordene  $xy^iz \in A$  for alle  $i \in \mathbb{N}_0$ .

Bevis: Lad  $M = (Q, \Sigma, \delta, q_0, F)$  være en DFA der genkender A, og lad p = |Q|. Lad  $s = s_1 s_2 \dots s_n \in A \text{ med } |s| \ge p$ .

Lad  $r_1, r_2, \ldots, r_{n+1} \in Q$  således at  $r_1 = q_0, r_{n+1} \in F$ , og  $r_{i+1} = \delta(r_i, s_i)$  for alle i.

Vi har  $n+1 \ge p+1$ , og |Q|=p. Derfor findes indices j og  $\ell$  således at  $1 \le j < \ell \le p+1$  og  $r_j=r_\ell$ .

Lad  $x = s_1 \dots s_{j-1}$ ,  $y = s_j \dots s_{\ell-1}$ ,  $z = s_\ell \dots s_n$ . Pga.  $j < \ell$  har vi  $|y| \ge 0$ , og  $\ell \le p+1$  medfører  $|xy| \le p$ .

Eftersom  $\delta(r_{\ell-1}, s_{\ell-1}) = r_j$ , er enhver følge  $(r_1, \ldots, r_{j-1})(r_j, \ldots, r_{\ell-1})^i(r_\ell, \ldots, r_{n+1})$  en accepterende følge for M, og ordet den genkender er  $xy^iz$ .

23/24

NFA  $\Rightarrow$  RE

### Eksempel 1.74: Sproget

 $C = \{w \mid \text{antallet af 0 i } w \text{ er lig med antallet af 1} \} \subseteq \{0, 1\}^* \text{ er ikke regulært.}$ 

(Samme bevis som for eksempel 1.73)

Bemærkning (opgave 1.48): Sproget

 $D = \{w \mid \text{antallet af 01 i } w \text{ er lig med antallet af 10}\} \subseteq \{0, 1\}^* \text{ er regulært!}$ 

(Men kun over alfabetet  $\{0,1\}$ ; hvis alfabetet f.x. er  $\{0,1,2\}$ , er D ikke regulært . . . )

Bevis:

