

Applications of Linear Programming

Dr. Antonio A. Trani
Associate Professor of Civil Engineering
Virginia Tech

Analysis of Air Transportation Systems

Falls Church, Virginia

Recall the Standard LP Form

Maximize
$$\sum_{j=1}^{n} c_j x_j$$

subject to:
$$\sum_{j=1} a_{ij} x_j \le b_i \quad \text{for} \quad i = 1, 2, ..., m$$

$$x_j \ge 0 \text{ for } j = 1, 2, ..., n$$

Suppose that now we wish to investigate how to handle Minimization problems:

Minimization Problem Formulation

Minimize
$$z = \sum_{j=1}^{\infty} c_j x_j$$

Reformulate as:

Maximize
$$-z = -\sum_{j=1}^{\infty} c_j x_j$$

Airline Scheduling Problem (ASP-1)

A small airline would like to use mathematical programming to schedule its flights to maximize profit. The following map shows the city pairs to be operated.

Airline Scheduling Problem

The airline has decided to purchase two types of aircraft to satisfy its needs: 1) the Embraer 145, a 45-seat regional jet, and 2) the Avro RJ-100, a four-engine 100 seater aircraft (see the following figure).

Aircraft Characteristics

Aircraft	EMB-145	Avro RJ-100
Seating capacity - n _k	50	100
Block speed (knots) - v_k	400	425
Operating cost ($\$/hr$) - c_k	1,850	3,800
Maximum aircraft utilization $(hr/day)^a - U_k$	13.0	12.0

a. The aircraft utilization represents the maximum number of hours an aircraft is in actual use with the engines running (in airline parlance this is the sum of all daily block times). Turnaround times at the airport are not part of the utilization variable as defined here.

Nomenclature

Define the following sets of decision variables:

No. of aircraft of type k in fleet = A_k

No. flights assigned from *i* to *j* using aircraft of type $k = N_{ijk}$

Minimum flight frequency between i and $j = (N_{ij})_{min}$

Based on expected load factors, the tentative fares between origin and destination pairs are indicated in the following table.

City pair designator	Origin- Destination	Average one- way fare (\$/seat)
ROA-CVG	Roanoke to Cincinnati	175.00
ROA-LGA	Roanoke to La Guardia	230.00
ROA-ATL	Roanoke to Atlanta	200.00

Problem # 1 ASP-1 Formulation

1) Write a mathematical programming formulation to solve the ASP-1 Problem with the following constraints:

Maximize **Profit**

subject to:

- aircraft availability constraint
- demand fulfillment constraint
- minimum frequency constraint

Problem # 2 ASP-1 Solution

- 1) Solve problem ASP-1 under the following numerical assumptions:
- a) Maximize profit solving for the fleet size and frequency assignment without a minimum frequency constraint. Find the number of aircraft of each type and the number of flights between each origin-destination pair to satisfy the two basic constraints (demand and supply constraints).
- b) Repeat part (a) if the minimum number of flights in the arc ROA-ATL is 8 per day (8 more from ATL-ROA) to establish a shuttle system between these city pairs.

c) Suppose the demand function λ_{ij} varies according to the number of flights scheduled between city pairs (see the following illustration). Reformulate the problem and explain (do not solve) the best way to reach an optimal solution.

Formulation of the problem.

Maximize **Profit**

subject to: (possible types of constraints)

- a) aircraft availability constraint
- b) demand fulfillment constraint
- c) Minimum frequency constraint
- d) Landing restriction constraint

Profit Function

P = Revenue - Cost

Revenue Function

Revenue =
$$\sum \lambda_{ij} f_{ij}$$

where: λ_{ij} is the demand from i to j (daily demand)

 f_{ij} is the average fare flying from i to j

Cost function

let N_{ijk} be the flight frequency from i to j using aircraft type k

let C_{ijk} be the total cost per flight from i to j using aircraft k

$$Cost = \sum_{i} N_{ijk} C_{ijk}$$

then the profit function becomes,

Profit =
$$\sum_{i,j} \lambda_{ij} f_{ij} - \sum_{i,j} \sum_{k} N_{ijk} C_{ijk}$$

Demand fulfillment constraint

Supply of seats offered > Demand for service

$$\sum_{k} n_k N_{ijk} \ge \lambda_{ij} \quad \text{for all } (i,j) \text{ city pairs or alternatively}$$

$$\sum_{k} (lf) n_k N_{ijk} \ge \lambda_{ij} \qquad \text{for all } (i,j) \text{ city pairs}$$

lf is the load factor desired in the operation (0.8-0.85)

Note: airlines actually overbook flights so they usually factor a target load factor in their schedules to account for some slack

Aircraft availability constraint

(block time) (no. of flights) < (utilization)(no. of aircraft)

$$\sum_{(i,j)} t_{ijk} N_{ijk} \leq U_k A_k$$

one constraint equation for every k aircraft type

Minimum frequency constraint

No. of flights between i and j > Minimum number of desired flights

$$\sum_{k} N_{ijk} \ge (N_{ij})_{min} \text{ for all } (i,j) \text{ city pairs}$$

Note: Airlines use this strategy to gain market share in highly traveled markets

Maximize Profit =
$$\sum_{i,j} \lambda_{ij} f_{ij} - \sum_{i,j} \sum_{k} N_{ijk} C_{ijk}$$

subject to

$$\sum_{k} n_k N_{ijk} \geq \lambda_{ij} \quad \text{for all } (i,j) \text{ city pairs}$$

$$\sum_{(i,j)} t_{ijk} N_{ijk} \leq U_k A_k \text{ for every } k \text{ aircraft type}$$

$$\sum_{k} N_{ijk} \ge (N_{ij})_{min} \text{ for all } (i,j) \text{ city pairs}$$

Demo with Excel

A small airline uses LP to allocate crew resources to minimize cost. The following map shows the city pairs to be operated.

Flight Number	O-D Pair	Time of Day
100	DEN-DFW	Morning
200	DFW-DEN	Afternoon
300	DFW-MEX	Afternoon
400	MEX-DFW	Night
500	DFW-JFK	Morning
600	JFK-DFW	Night
700	DEN-JFK	Afternoon
800	JFK-DEN	Afternoon

Definition of terms:

- a) Rotations consists of 1 to 2 flights (to make the problem simple)
- b) Rotations cost \$2,500 if terminates in the originating city
- c) Rotations cost \$3,500 if terminating elsewhere

Example of a feasible rotations are (100, 200), (500,800),(500), etc.

R _i	Single Flight Rotations	Cost (\$)	R _i	Two-flight Rotations	Cost (\$)
1	100	3,500	9	100,200	2,500
2	200	3,500	10	100,300	3,500
3	300	3,500	11	500,800	3,500
4	400	3,500	12	500,600	2,500
5	500	3,500	13	300,400	2,500
6	600	3,500	14	200,100	3,500
7	700	3,500	15	600,300	3,500

Decision variables:

$$R_i = \begin{pmatrix} 1 & \text{if } i \text{ rotation is used} \\ 0 & \text{if } i \text{ rotation is not used} \end{pmatrix}$$

Min Cost

subject to: (possible types of constraints)

a) each flight belongs to a rotation (to a crew)

Min

$$z = 3500 R_1 + 3500 R_2 + 3500 R_3 + 3500 R_4 + 3500 R_5 +$$

$$3500 R_6 + 3500 R_7 + 3500 R_8 + 2500 R_9 + 3500 R_{10}$$

$$3500 R_{11} + 2500 R_{12} + 2500 R_{13} + 3500 R_{14} +$$

$$3500 R_{15}$$

$$3500 R_{16} + 3500 R_{17} + 3500 R_{18} + 3500 R_{19} + 3500$$
 R_{20}

s.t. (Flt. 100)
$$R_1 + R_9 + R_{10} + R_{14} + R_{18} = 1$$

(Flt. 200)
$$R_2 + R_9 + R_{14} + R_{16} = 1$$

(Flt. 300)
$$R_3 + R_{10} + R_{13} + R_{15} = 1$$

(Flt. 400)
$$R_4 + R_{13} = 1$$

(Flt. 500)
$$R_5 + R_{11} + R_{12} + R_{17} = 1$$

(Flt. 600)
$$R_6 + R_{12} + R_{15} + R_{16} + R_{17} +$$

$$R_{19} = 1$$

(Flt. 700)
$$R_7 + R_{19} + R_{20}$$

$$=$$
 \hat{x}

(Flt. 800)
$$R_8 + R_{11} + R_{18} + R_{20}$$

$$= 1$$

Problem statistics:

- a) 20 decision variables (rotations)
- b) 8 functional constraints (one for each flight)
- c) All constraints have equality signs

Crew Scheduling Problem (Solver)

Demo in Excel

Human Resource Assignment Problem (ATC Application)

Linear programming problems are quite useful for solving staffing problems where human resources are typically scheduled over periods of varying activities. Consider the case of the staffing requirements of a busy Air Route Traffic Control Center (ARTCC) where Air Traffic Control (ATC) personnel monitor and direct flights over large regions of airspace in the Continental U.S.

Given that traffic demands vary over the time of day ATC controller staffing requirements vary as well. Take for example Jacksonville ARTCC comprised of 35 sector

boundaries (see the Figure below). Each sector is managed by one or more controllers depending on the traffic load.

ATC Resource Allocation

Jacksonville ARTCC Sectorization at 40,000 ft.

Relevant Questions

A task analysis study estimates the staffing requirements for this ARTCC (see Table 1). Let x_i be the number of ATC controllers that start their workday during the ith hour $(x_2, ..., i)$.

a) Formulate this problem as a linear programming problem to find the least number of controllers to satisfy the staffing constraints based on traffic demands expected at this FAA facility. Assume controllers work shifts of 8 hours (no overtime is allowed for now).

- b) Find the minimum number of controllers needed to satisfy the staffing requirements using Excel or Matlab. Comment on the solution obtained.
- c) Human factors studies suggest ATC controllers take one hour of rest during their 8-hour work period to avoid excessive stress. The ATC manager at this facility instructs all personnel to take the one-hour rest period after working four consecutive hours. Reformulate the problem and find the new optimal solution.
- **d)** The average salary for ATC personnel is \$100,000 for normal operation hours (5:00 -19:00 hours) with a 15% higher compensation for those working the night shift (19:00 until 5:00 hours). **Reformulate** the problem to

allocate ATC controllers to minimize the cost of the operation. Assume the one-hour break rule applies.

TABLE 1. Expected Staffing Requirements at Jacksonville ARTCC Center (Jacksonville, FL).

Time of Day (EST)	Staff Needs	Remarks
0:00 - 2:00	30	Light traffic
2:00 - 5:00	25	Light traffic - few air- line flights
5:00 - 7:00	35	Moderate traffic
7:00 - 10:00	48	Heavy traffic (morning "push")
10:00 - 13:00	35	Moderate traffic
13:00 - 17:00	31	Moderate traffic
17:00 - 21:00	42	Heavy evening traffic
21:00 - 24:00	34	Moderate traffic