Solutions to Some Exercises

Geoffrey Matthews

December 30, 2016

Note: These problems are all solved in the book. I include their solutions here to demonstrate how to typeset them in LATEX.

Chapter 1 Exercises

Section 1.1

1.
$$\{5x-1: x \in \mathbb{Z}\} = \{..., -11, -6, -1, 4, 9, 14, 19, 24, 29, ...\}$$

13.
$$\{x \in \mathbb{Z} : |6x| < 5\} = \{0\}$$

Section 1.2

1. (a)
$$A \times B = \{(1, a), (1, c), (2, a)(2, c), (3, a), (3, c), (4, a), (4, c)\}$$

Section 1.4

A. Find the indicated sets.

3.
$$\mathcal{P}(\{\{a,b\},\{c\}\}) = \{\emptyset,\{\{a,b\}\},\{\{c\}\},\{\{a,b\},\{c\}\}\}\}$$

B. Suppose that |A| = m and |B| = n. Find the indicated cardinalities.

13.
$$|\mathcal{P}(\mathcal{P}(\mathcal{P}(A)))| = 2^{(2^{(2^m)})}$$

15.
$$|\mathcal{P}(A \times B)| = 2^{mn}$$

Section 1.5

3. Suppose $A = \{0, 1\}$ and $B = \{1, 2\}$. Find:

(a)
$$A \cup B = \{1, 3, 4, 5, 6, 7, 8, 9\}$$

(b)
$$A \cap B = \{4, 6\}$$

Section 1.6

1. Suppose $A = \{4, 3, 6, 7, 1, 9\}$ and $B = \{5, 6, 8, 4\}$ have the universal set $U = \{n \in \mathbb{Z} : 0 \le n \le 10\}$

$$\overline{\overline{A} \cap B} = \{0, 1, 2, 3, 4, 6, 7, 9, 10\}$$

Section 1.8

5(a) $\bigcup_{i\in\mathbb{N}}[i,i+1]=[1,\infty)$ or:

$$\bigcup_{i\in\mathbb{N}}[i,i+1]=[1,\infty)$$

5(b) $\bigcap_{i\in\mathbb{N}}[i,i+1]=\emptyset$ or:

$$\bigcap_{i\in\mathbb{N}}[i,i+1]=\emptyset$$

1

Chapter 2 Exercises

Section 2.2 Express each statement as one of the forms $P \wedge Q$, $P \vee Q$, or $\sim P$. (I will also accept $\neg P$.)

9.
$$x \in A - B$$

$$(x \in A) \land \neg (x \in B)$$

Section 2.5

5. Write a truth table for $(P \land \neg P) \lor Q$

P	Q	$(P \land \neg P)$	$(P \land \neg P) \lor Q$
T	T	F	T
T	F	F	F
F	T	F	T
F	F	F	F

Chapter 3 Exercises

Section 3.3

1. Suppose a set A has 37 elements. How may subsets of A have 10 elements? How many subsets have 30 elements? How many have 0 elements?

Answers:
$$\binom{37}{10} = 348, 330, 136$$
; $\binom{37}{30} = 10, 295, 472$; $\binom{37}{0} = 1$.

Chapter 4 Exercises

7. Suppose $a, b \in \mathbb{Z}$. If $a \mid b$, then $a^2 \mid b^2$.

Proof. Suppose $a \mid b$.

By definition of divisibility, this means b = ac for some integer c.

Squaring both sides of this equation produces $b^2 = a^2c^2$.

Then $b^2 = a^2 d$, where $d = c^2 \in \mathbb{Z}$.

By definition of divisibility, this means $a^2 \mid b^2$.

Chapter 5 Exercises

9. Proposition Suppose $n \in \mathbb{Z}$. If $3 \nmid n^2$, then $3 \nmid n$.

Proof. (Contrapositive) Suppose it is not the case that $3 \nmid n$, so $3 \mid n$. This means that n = 3a for some integer a. Consequently $n^2 = 9a^2$, from which we get $n^2 = 3(3a^2)$. This shows that there is an integer $b = 3a^2$ for which $n^2 = 3b$, which means $3 \mid n^2$. Therefore it is not the case that $3 \nmid n^2$.

21. Proposition Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b \mod n$, then $a^3 \equiv b^3 \mod n$.

Proof. (Direct) Suppose $a \equiv b \mod n$. This means $n \mid (a - b)$, so there is an integer c for which a - b = nc. Then:

$$a - b = nc$$

$$(a - b)(a^{2} + ab + b^{2}) = nc(a^{2} + ab + b^{2})$$

$$a^{3} + a^{2}b + ab^{2} - ba^{2} - ab^{2} - b^{3} = nc(a^{2} + ab + b^{2})$$

$$a^{3} - b^{3} = nc(a^{2} + ab + b^{2}).$$

Since $a^2 + ab + b^2 \in \mathbb{Z}$, the equation $a^3 - b^3 = nc(a^2 + ab + b^2)$ implies $n \mid (a^3 - b^3)$, and therefore $a^3 \equiv b^3 \mod n$.

Chapter 9 Exercises

27. The equation $x^2 = 2^x$ has three real solutions.

Proof. By inspection, x=2 and x=4 are two solutions of this equation. But there is a third solution. Let m be the real number for which $m2^m = \frac{1}{2}$. Then negative number x=-2m is a solution, as follows.

$$x^{2} = (-2m)^{2} = 4m^{2} = 4\left(\frac{m2^{m}}{2^{m}}\right)^{2} = 4\left(\frac{\frac{1}{2}}{2^{m}}\right)^{2} = \frac{1}{2^{2m}} = 2^{-2m} = 2^{x}$$

Chapter 10 Exercises

1. For every integer $n \in \mathbb{N}$, it follows that

$$1+2+3+4+\ldots+n=\frac{n^2+n}{2}$$

or

$$\sum_{i=1}^{n} i = \frac{n^2 + n}{2}$$

In this proof I use the second notation. The book shows the solution in the first notation.

Proof. we will prove this with mathematical induction.

- (1) Observe that if n=1, this statement is $1=\frac{1^2+1}{2}$, which is obviously true.
- (2) Consider any integer $k \geq 1$. We must show that S_k implies S_{k+1} . In other words, we must show that if

$$\sum_{i=1}^{k} i = \frac{k^2 + k}{2}$$

is true, then

$$\sum_{i=1}^{k+1} i = \frac{(k+1)^2 + (k+1)}{2}$$

is also true. We use direct proof.

Suppose $k \geq 1$ and

$$\sum_{i=1}^{k} i = \frac{k^2 + k}{2}$$

We observe that

$$\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$$
 (isolating the last term in the sum)
$$= \frac{k^2 + k}{2} + (k+1)$$
 (by the inductive hypothesis)
$$= \frac{k^2 + k + 2(k+2)}{2}$$

$$= \frac{k^2 + 2k + 1 + k + 1}{2}$$

$$= \frac{(k+1)^2 + (k+1)}{2}$$

Therefore we have shown that

$$\sum_{i=1}^{k+1} i = \frac{(k+1)^2 + (k+1)}{2}$$