

DirectFET® Power MOSFET②

Typical values (unless otherwise specified)

-		
V _{DSS}	V _{GS}	R _{DS(on)}
100V min	±20V max	5.3mΩ @ 10V
Q _{g tot}	\mathbf{Q}_{gd}	$V_{gs(th)}$
36nC	13nC	2.9V

Applications and Benefits

- Ideal for High Performance Isolated Converter Primary Switch
- · Optimized for Synchronous Rectification
- RoHS Compliant, Halogen Free ②
- Lead-Free (Qualified up to 260°C Reflow) ①
- Low Conduction Losses
- High Cdv/dt Immunity
- Low Profile (<0.7mm)
- Dual Sided Cooling Compatible ①
- Compatible with existing Surface Mount Techniques ①
- Industrial Qualified

Applicable DirectFET® Outline and Substrate Outline ①

Description

The IRF7171MTRPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET® packaging to achieve the lowest on-state resistance in a package that has a footprint smaller than a D2PAK and only 0.7 mm profile. The DirectFET® package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET® package allows dual sided cooling to maximize thermal transfer in power systems. The IRF7171MTRPbF is optimized for high frequency switching and synchronous rectification applications. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance power converters.

MN

Ordering Information

Base part number	Package Type	Standard Pack		Orderable Part Number
		Form	Quantity	
IRF7171MTRPbF	DirectFET® Medium Can	Tape and Reel	4800	IRF7171MTRPbF

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{GS}	Gate-to-Source Voltage	±20	V
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited) @	93	
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited) @	59	•
$I_D @ T_A = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited) [®]	15	Α
I _{DM}	Pulsed Drain Current®	330	
E _{AS}	Single Pulse Avalanche Energy ®	86	mJ
I _{AR}	Avalanche Current ®	56	Α

Fig 1. Typical On-Resistance vs. Gate Voltage Notes

- ① Click on this section to link to the appropriate technical paper.
- ② Click on this section to link to the DirectFET® Website.
- 3 Surface mounted on 1 in. square Cu board, steady state.

Fig 2. Typical On-Resistance vs. Drain Current

- TC measured with thermocouple mounted to top (Drain) of part.
- © Repetitive rating; pulse width limited by max. junction temperature.
- © Starting $T_J = 25^{\circ}C$, $L = 55\mu H$, $R_G = 50\Omega$, $I_{AS} = 56A$.

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		40		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		5.3	6.5	mΩ	V _{GS} = 10V, I _D = 56A ⑦
$V_{GS(th)}$	Gate Threshold Voltage	2.0		3.6	V	V _{DS} = V _{GS} , I _D = 150μA
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Temp. Coefficient		-6.2		mV/°C	V _{DS} - V _{GS} , I _D - 130μA
I _{DSS}	Drain-to-Source Leakage Current			1	μA	V _{DS} = 80 V, V _{GS} = 0V
	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	$V_{GS} = -20V$
gfs	Forward Transconductance	80			S	$V_{DS} = 10V, I_{D} = 56A$
Q_g	Total Gate Charge		36	54		
Q_{gs1}	Pre– Vth Gate-to-Source Charge		6.9			V _{DS} = 50V
Q_{gs2}	Post– Vth Gate-to-Source Charge		2.4		nC	V _{GS} = 10V
Q_{gd}	Gate-to-Drain Charge		13		IIC	I _D = 56A
Q_{godr}	Gate Charge Overdrive		13.7			See Fig.8
Q_{sw}	Switch Charge (Q _{gs2 +} Q _{gd)}		15.4			
Q _{oss}	Output Charge		120		nC	$V_{DS} = 50V, V_{GS} = 0V$
R_G	Gate Resistance		1.0		Ω	
t _{d(on)}	Turn-On Delay Time		9.3			$V_{DD} = 50V, V_{GS} = 10V$
t _r	Rise Time		27			I _D = 56A
$t_{d(off)}$	Turn-Off Delay Time		15		ns	R_G = 1.8 Ω
t _f	Fall Time		20			
C _{iss}	Input Capacitance		2160			V _{GS} = 0V
Coss	Output Capacitance		970			V _{DS} = 50V
C _{rss}	Reverse Transfer Capacitance		60		pF	f = 1.0MHz
C _{oss}	Output Capacitance		4660			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		580			$V_{GS} = 0V, V_{DS} = 80V, f = 1.0MHz$

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			95	_	MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ©			330		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 56A, V_{GS} = 0V ?$
t _{rr}	Reverse Recovery Time		66		ns	$T_J = 25^{\circ}C$, $I_F = 56A$, $V_{DD} = 50V$
Q_{rr}	Reverse Recovery Charge		126		nC	di/dt = 100A/µs ⑦

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
$P_D @ T_C = 25^{\circ}C$	Power Dissipation @	104	
$P_D @ T_C = 100 ° C$	Power Dissipation ④	42	W
$P_D @ T_A = 25^{\circ}C$	Power Dissipation ③	2.8	
T_{P}	Peak Soldering Temperature	270	
T_J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		45	
$R_{\theta JA}$	Junction-to-Ambient ®	12.5		
$R_{\theta JA}$	Junction-to-Ambient	20		°C/W
$R_{\theta JC}$	Junction-to-Can 4 🕪		1.2	
R _{0JA-PCB}	Junction-to-PCB Mounted	1.0		

Notes:

- ③ Surface mounted on 1 in. square Cu board, steady state.
- \P T_C measured with thermocouple in contact with top (Drain) of part.
- ® Used double sided cooling, mounting pad with large heat sink.
- Mounted on minimum footprint full size board with metalized back and with small clip heat sink.
- $\tiny{\textcircled{\tiny{1}}}$ R $_{\theta}$ is measured at T $_{J}$ of approximately 90°C.

Fig 3. Typical Output Characteristics

Fig 5. Typical Transfer Characteristics

Fig 7. Typical Capacitance vs. Drain-to-Source Voltage

Fig 4. Typical Output Characteristics

Fig 6. Normalized On-Resistance vs. Temperature

Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 9. Typical Source-Drain Diode Forward Voltage

OPERATION IN THIS

AREA LIMITED BY RDS(on)

TC = 25°C

Tj = 150°C

Single Pulse

0.1

0.1

1 10 100

VDS, Drain-to-Source Voltage (V)

Fig 10. Maximum Safe Operating Area

Fig 11. Maximum Drain Current vs. Case Temperature

Fig 12. Typical Threshold Voltage vs. Junction Temperature

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14. Typical Avalanche Current vs. Pulse Width

Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Notes:

- 3 Surface mounted on 1 in. square Cu board, steady state.
- $\ \, \mbox{\it \textcircled{4}} \ \, \mbox{\it T}_{\mbox{\it C}}$ measured with thermocouple incontact with top (Drain) of part.
- © Repetitive rating; pulse width limited by max. junction temperature.
- ® Used double sided cooling, mounting pad with large heatsink.
- Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- \circledR R_{θ} is measured at T_J of approximately 90°C.

- ③ Surface mounted on 1 in. square Cu board (still air).
- Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)

Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 17a. Gate Charge Test Circuit

Fig 18a. Unclamped Inductive Test Circuit

Fig 19a. Switching Time Test Circuit

Fig 17b. Gate Charge Waveform

Fig 18b. Unclamped Inductive Waveforms

Fig 19b. Switching Time Waveforms

DirectFET®Board Footprint, MN Outline

Please see DirectFET® application note <u>AN-1035</u> for all details regarding the assembly of DirectFET®. This includes all recommendations for stencil and substrate designs.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

DirectFET[®] Outline Dimension, MN Outline (Medium Size Can, N-Designation).

Please see DirectFET® application note <u>AN-1035</u> for all details regarding the assembly of DirectFET®. This includes all recommendations for stencil and substrate designs.

	DIMENSIONS					
	MET	RIC	IMPE	RIAL		
CODE	MIN	MAX	MIN	MAX		
Α	6.25	6.35	0.246	0.250		
В	4.80	5.05	0.189	0.199		
С	3.85	3.95	0.152	0.156		
D	0.35	0.45	0.014	0.018		
E	0.78	0.82	0.031	0.032		
F	0.88	0.92	0.035	0.036		
G	1.38	1.42	0.054	0.056		
Н	0.88	0.92	0.035	0.036		
J	0.48	0.52	0.019	0.020		
K	1.17	1.27	0.046	0.050		
L	2.77	2.87	0.109	0.113		
M	0.535	0.595	0.021	0.023		
R	0.02	0.08	0.0008	0.0031		
Р	0.08	0.17	0.003	0.007		

Dimensions are shown in millimeters (inches)

DirectFET® Part Marking

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

DirectFET® Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF7171MTRPBF). For 1000 parts on 7" reel, order IRF7171MTR1PBF

	REEL DIMENSIONS							
S	STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000)							00)
	ME	TRIC	IMP	ERIAL	ME	TRIC	IMP	ERIAL
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
Α	330.0	N.C	12.992	N.C	177.77	N.C	6.9	N.C
В	20.2	N.C	0.795	N.C	19.06	N.C	0.75	N.C
С	12.8	13.2	0.504	0.520	13.5	12.8	0.53	0.50
D	1.5	N.C	0.059	N.C	1.5	N.C	0.059	N.C
Е	100.0	N.C	3.937	N.C	58.72	N.C	2.31	N.C
F	N.C	18.4	N.C	0.724	N.C	13.50	N.C	0.53
G	12.4	14.4	0.488	0.567	11.9	12.01	0.47	N.C
Н	11.9	15.4	0.469	0.606	11.9	12.01	0.47	N.C

LOADED TAPE FEED DIRECTION

NOTE: CONTROLLING DIMENSIONS IN MM

	DIMENSIONS						
	MET	TRIC	IMPE	RIAL			
CODE	MIN	MAX	MIN	MAX			
Α	7.90	8.10	0.311	0.319			
В	3.90	4.10	0.154	0.161			
С	11.90	12.30	0.469	0.484			
D	5.45	5.55	0.215	0.219			
E	5.10	5.30	0.201	0.209			
F	6.50	6.70	0.256	0.264			
G	1.50	N.C	0.059	N.C			
Н	1.50	1.60	0.059	0.063			

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

Qualification Level	Industrial ^{††} *				
Moisture Sensitivity Level	DirectFET [®] Medium Can	MSL1 (per JEDEC J-STD-020D ^{†††)}			
RoHS Compliant	Yes				

- Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- Applicable version of JEDEC standard at the time of product release. †††
- Industrial qualification standards except autoclave test conditions.

Revision History

Date	Comment
	 Updated R_{θJA} from "60°C/W" to "45°C/W" on page 3. Updated I_D @ T_A and P_D @T_A based on R_{θJA} corrected on page 1 & page 3.
3/25/2015	Added "FastIRFET" on page 1.

IR WORLD HEADQUARTERS: 101N Sepulveda Blvd, El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/