Ensuring Fairness with Transparent Auditing of Quantitative Bias in Al Systems

袁至誠

Chih-cheng Rex Yuan rexyuan.com

Institute of Information Science, Academia Sinica

Friday 30th August, 2024

Al Bias

- Al is widely used in decision making:
 - School admission.
 - Loan approval.
 - Hiring.
 - Policing.
 - Censorship.
 - etc..
- Decision making by AI may be biased.
- Bias can come from several sources:
 - Biased data. ML is deisgned to replicate this.
 - Missing data. The datasets might not be representative.
 - Biased algorithms. The objective functions might introduce bias.
 - Sensitive attributes: Age, Gender, ..., etc...

Protected Attributes

What are the protected(sensitive) attributes?

Age	Gender	Occupation	Income	Education
28	М	Engineering	\$80,000	Master
28	F	Engineering	\$65,000	Master
45	M	Medicine	\$100,000	Doctorate
40	F	Legal	\$150,000	Law Degree
32	М	Education	\$55,000	Bachelor

Table: Example Dataset

Fairness Through Unawareness

The most straightforward solution to fairness seems to be that just simply dropping all the protected columns.

- This is called fairness through unawareness.
- Formally it's

$$X_i = X_j \rightarrow \hat{Y}_i = \hat{Y}_j$$

where i,j are individuals; X is the set of attributes except protected attributes; and \hat{Y} is the prediction.

Also known as fairness through blindness and anti-classification.

Fairness Through Unawareness

The downside of this is there could still be "proxy" attributes that correlate with protected attributes: like Occupation still correlates with Income.

Age	Gender	Occupation	Income	Education
28	M	Engineering	\$80,000	Master
28	F	Engineering	\$65,000	Master
45	₩	Medicine	\$100,000	Doctorate
40	F	Legal	\$150,000	Law Degree
32	M	Education	\$55,000	Bachelor

Table: Example Dataset

Demographic Parity

Formally, it requires that

$$|P[\hat{Y} = 1|S = 1] - P[\hat{Y} = 1|S \neq 1]| \le \epsilon$$

where $\hat{Y}=1$ represents acceptance(positive); S=1 represents privileged group; $S\neq 1$ represents unprivileged group where S is some protected attributes.

Let's set $\epsilon=0.2$. If for some job opening, male is the privileged group and there are 10 female applicants and 100 male applicants, and there are 8 accepted females and 90 accepted males:

$$|8/10-90/100|=0.1<\epsilon$$
 so this is fair

while if there were 1 accepted females and 50 accepted males:

$$|1/10-50/100|=0.4>\epsilon$$
 so this is unfair

Disadvantages of Demographic Parity

- A fully accurate classifier may be considered unfair.
- The notion permits that we accept the qualified applicants in one demographic, but random individuals in another, so long as the percentages of acceptance match.
- For example, the case with 90 qualified males and only 1 qualified females.

Equalized Odds

- Equalized odds is designed to address the downsides of the previous two by taking into accounts the "ground truths" and consider the difference between false-positive rates and true-positive rates of the groups.
- Formally, it requires that

$$|P[\hat{Y} = 1|S = 1, Y = 0] - P[\hat{Y} = 1|S \neq 1, Y = 0]| \le \epsilon$$

 $|P[\hat{Y} = 1|S = 1, Y = 1] - P[\hat{Y} = 1|S \neq 1, Y = 1]| \le \epsilon$

where Y represents ground truths.

 A fully accurate classifier will necessarily satisfy the two equalized odds constraints.

Equal Opportunity

- It is a relaxation of equalized odds.
- Formally, it requires that

$$|P[\hat{Y} = 1|S = 1, Y = 1] - P[\hat{Y} = 1|S \neq 1, Y = 1]| \le \epsilon$$

where Y represents ground truths.

COMPAS

recidivism noun the tendency of a convicted criminal to reoffend.

- Prior Offenses: 2 armed robberies, 1 attempted armed robbery
- Subsequent Offenses: 1 grand theft
- Risk Score: 3

- Prior Offenses: 4 juvenile misdemeanors
- Subsequent Offenses: None
- Risk Score: 8

COMPAS

- COMPAS is an algorithm used by U.S. courts for predicting recidivism based on a questionaire and background information.
- In 2016, ProPublica found that the algorithm is biased.
 Black defendants were often predicted to be at a higher risk of recidivism than they actually were. White defendants were often predicted to be less risky than they were.
- The false-positive rates vary significantly across black people and white people, violating equalized odds.
- Supreme Court ruled that it can be considered by judges during sentencing, but there must be warnings about the tool's "limitations and cautions."

Rex (IIS,AS) Fairness Friday 30th August, 2024 11/23

¹(Link) ProPublica - How We Analyzed the COMPAS Recidivism Algorithm

²(Link) Vsauce2 - The Dangerous Math Used To Predict Criminals > () > () > ()

Other Measures

Fairness Measure	Definition		
Disparate Impact	$rac{P[\hat{\mathbf{Y}}=1 S eq 1]}{P[\hat{\mathbf{Y}}=1 S=1]}\geq 1-\epsilon$		
Demographic Parity	$ P[\hat{Y} = 1 S = 1] - P[\hat{Y} = 1 S \neq 1] \le \epsilon$		
Conditional Statistical Parity	$ P[\hat{Y} = 1 S = 1, L = I] - P[\hat{Y} = 1 S \neq 1, L = I] \le \epsilon$		
Overall Accuracy Equality	$ P[Y = \hat{Y} S = 1] - P[Y = \hat{Y} S \neq 1] \le \epsilon$		
Mean Difference	$ E[\hat{Y} S=1] - E[\hat{Y} S \neq 1] \le \epsilon$		
Equalized Odds	$ P[\hat{Y} = 1 S = 1, Y = 0] - P[\hat{Y} = 1 S \neq 1, Y = 0] \le \epsilon$		
Equalized Odds	$ P[\hat{Y}=1 S=1, Y=1] - P[\hat{Y}=1 S \neq 1, Y=1] \le \epsilon$		
Equal Opportunity	$ P[\hat{Y}=1 S=1, Y=1] - P[\hat{Y}=1 S \neq 1, Y=1] \le \epsilon$		
Predictive Equality	$ P[\hat{Y}=1 S=1, Y=0] - P[\hat{Y}=1 S \neq 1, Y=0] \le \epsilon$		
Conditional Use Accuracy Equality	$ P[Y=1 S=1, \hat{Y}=1] - P[Y=1 S \neq 1, \hat{Y}=1] \le \epsilon$		
Conditional Ose Accuracy Equanty	$ P[Y=0 S=1, \hat{Y}=0] - P[Y=0 S \neq 1, \hat{Y}=0] \le \epsilon$		
Predictive Parity	$ P[Y=1 S=1, \hat{Y}=1] - P[Y=1 S \neq 1, \hat{Y}=1] \le \epsilon$		
Equal Calibration	$ P[Y=1 S=1, \hat{V}=v] - P[Y=1 S \neq 1, \hat{V}=v] \le \epsilon$		
Positive Balance	$ E[\hat{V} Y=1, S=1] - E[\hat{V} Y=1, S \neq 1] \leq \epsilon$		
Negative Balance	$ E[\hat{V} Y=0, S=1] - E[\hat{V} Y=0, S \neq 1] \leq \epsilon$		

Table: Fairness measures.

Framework

We made a tool to calculate these measures.

Our framework consists of 3 parties: data provider, model maker, and auditor.

- Data provider has access to the real world data. For example, a census bureau.
- Model maker designs AI models that is to be used on data. They can
 use our tool on their in-house data to test their models.
- Auditor is some 3rd-party that takes real data and a model or model result. They can use our tool to determine the fairness of the model.

Predicate

We first introduce the idea of a predicate.

- A <u>predicate</u> is a decider that determines if some condition holds for some given input.
- ullet Formally, it is a function that takes some type lpha and returns True or False.
- For example, an "adult(x)" predicate might take a person x's data and returns if they are over 18 year old.

Abstraction

Our framework tool abstracts the fairness measures:

- A <u>row</u> is a lookup table or dictionary. $r_n(\text{"sex"}) = \text{"Female" means } r_n\text{'s sex is female.}$
- A <u>privileged predicate</u> R takes a row and determines if it belongs to the privileged group. For example, $R(r_i) := r_i(\text{"race"}) == \text{"Caucasian"}$ means the privileged group is those with race being Caucasian.
- A <u>positive predicate</u> \hat{P} takes a row and determines if its prediction is positive. For example, $\hat{P}(r_i) := \text{int}(r_i(\text{"score"})) > 7$ means a row's prediction is positive if its score is greater than 7.
- A ground truth predicate T takes a row and gives the ground truth of the result. For example, $T(r_i) := r_i(\text{"recid"}) == \text{True indicates a row's actual recidivism.}$

Definition

We can use these abstractions to define fairness measures. For equal opportunity, recall its formal definition:

$$|P[\hat{Y} = 1|S = 1, Y = 1] - P[\hat{Y} = 1|S \neq 1, Y = 1]| \le \epsilon$$

To model Y, \hat{Y} , and S, we define the corresponding T, \hat{P} , and R.

- ullet Y=1 if and only if T is true
- $ullet \hat{Y}=1$ if and only if \hat{P} is true
- ullet S=1 if and only if R is true
- and vice versa

This way, we can calculate equal opportunity as a function:

equal_opportunity
$$(\epsilon, R, \hat{P}, T)$$

Definition

equal_opportunity
$$(\epsilon, R, \hat{P}, T)$$

This is implemented in our tool as a Python function:

```
def equal_opportunity(
   ratio,
   privileged_predicate,
   positive_predicate,
   truth_predicate):
   ...
```

For demonstration, we analyzed the COMPAS dataset. Let's set the predicates:

$$R(r_i) := r_i(\text{"race"}) \neq \text{"African-American"}$$

 $\hat{P}(r_i) := r_i(\text{"score_text"}) \in \{\text{"Medium"}, \text{"High"}\}$
 $T(r_i) := r_i(\text{"two_year_recid"}) == \text{True}$

These predicates can be published for transparency.

```
R(r_i) := r_i(\text{"race"}) \neq \text{"African-American"}

\hat{P}(r_i) := r_i(\text{"score\_text"}) \in \{\text{"Medium"}, \text{"High"}\}

T(r_i) := r_i(\text{"two\_year\_recid"}) == \text{True}
```

These predicates can then be encoded with Python functions:

Figure: Unprivileged Group: African-American

Figure: Unprivileged Group: Caucasian

Figure: Unprivileged Group: Asian (32 rows)

Conclusion

- Decision making by AI may be biased.
- With our framework tool, auditors can comprehensively review the fairness of an Al system.

This slides is available at https://github.com/RexYuan/Shu.