RealState Prediction

September 7, 2023

To explain various steps in ML project. We will use "Real estate price prediction" data set . The Kaggle link for the data set

https://www.kaggle.com/datasets/quantbruce/real-estate-price-prediction

This dataset has 414 sample data . We will create a ML model to predict the price per unit area of a house based on -

- 1. Age of the house
- 2. Distance from nearest MRT satiation
- 3. Number of convenience stores

STEP 1 - Data Collection

4

We will used python panda library to load data (collected from Kaggle)

```
[3]: import pandas as pd
     df=pd.read_csv("/content/drive/MyDrive/Python/AI/datasets/Real estate.csv")
     df.head()
```

[3]:	No	X1 transaction date X	2 house age	\		
0	1	2012.917	32.0			
1	2	2012.917	19.5			
2	3	2013.583	13.3			
3	4	2013.500	13.3			
4	5	2012.833	5.0			
	ХЗ	distance to the nearest	MRT station	X4 number of convenience stores \		
0			84.87882	10		
1		306.59470 9				
2		561.98450 5				
3		561.98450 5				

390.56840

5

	X5 latitude	X6 longitude	Y house price of unit ar	ea
0	24.98298	121.54024	37	.9
1	24.98034	121.53951	42	.2
2	24.98746	121.54391	47	.3
3	24.98746	121.54391	54	.8
4	24.97937	121.54245	43	.1

STEP 2 - Data Cleaning

Logically Colums like - 1. transaction date 2. latitude 3. longitude

Should not have any influence on the outcome (price per unit). Hence, we should remove them

```
[4]: df=df.drop(['No','X1 transaction date', 'X5 latitude','X6 longitude'], axis=1)
```

STEP 3 - Data Preparation

In this step we will select input and result data and create train and test data sample.

In current example we will consider

input x -> age of the house, distance from nearest MRT satiation, number of convenience stores output y ->house price per unit area

```
[5]: x=df.iloc[:,0:3]
y=df.iloc[:,3:4]
```

Using Python library for creating train and test split .2 = 80-20% split

```
[6]: from sklearn import model_selection

X_train, X_test, y_train, y_test=model_selection.train_test_split(x,y,test_size=0.

$\times 2$, random_state=2$)
```

STEP 4 - Model Selection

Process of fitting the dataset into a standard ML model algorithm . Our current dataset is best fit for Linear Regression algorithm. We will use standard Python sklearn "Linear Regression" ML model algorithm

```
[7]: from sklearn import linear_model model=linear_model.LinearRegression()
```

STEP 5 - Model Training

We will used standard libraray method to train our model with train data set created in step-3

```
[]: model.fit(X_train,y_train)
```

STEP 6 - Model Evaluation

We will used sample test data created in step-3 to evaluate the model performance. Model's standard methods will be used.

```
[9]: y_predict=model.predict(X_test)
```

Depending on the use-case and type of the model selection various performance matrices will be collected to evaluate the accuracy of the model. (standard libraried will be used)

```
[10]: from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score
MAE = mean_absolute_error(y_test,y_predict)
MSE = mean_squared_error(y_test,y_predict)
R2_score = r2_score(y_test,y_predict)
print('MAE -> ',MAE)
print('MSE -> ',MSE)
print('R2 score -> ',R2_score)
```

```
MAE -> 6.362370630628733
MSE -> 119.36009326395077
R2 score -> 0.4615959935866515
```

```
[]: model.predict([[16,100,7]])
```

STEP 7 - Model deployment

Trained model will be exported. This will be used in web framework to host the model as API

```
[12]: import pickle
with open('/content/drive/MyDrive/Python/AI/models/model.pkl', 'wb') as file:
    pickle.dump(model, file)
```