Exercise 8.

A block of information is transmitted repeated over a noisy channel until an error-free block is received. Let $M \geq 1$ be the number of blocks required for a transmission. Define the following sets

- (i) $A = \{M \text{ is even}\}$
- (ii) $B = \{M \text{ is a multiple of 5}\}$
- (iii) $C = \{M \text{ is less than or equal to } 7\}$

Assume that the probability of requiring one additional block is half of the probability without the additional block. That is:

$$\mathbb{P}[M=k] = \left(\frac{1}{2}\right)^k, \qquad k = 1, 2, \dots$$

Determine the following probabilities

(a)
$$\mathbb{P}[A]$$
, $\mathbb{P}[B]$, $\mathbb{P}[C]$, $\mathbb{P}[C^c]$

(b)
$$\mathbb{P}[A \cap B]$$
, $\mathbb{P}[A \setminus B]$, $\mathbb{P}[A \cap B \cap C]$

- (c) $\mathbb{P}[A \mid B]$, $\mathbb{P}[B \mid A]$
- (d) $\mathbb{P}[A \mid B \cap C]$, $\mathbb{P}[A \cap B \mid C]$

Hint: $\mathbb{P}[A] \neq \frac{1}{2}$. $\mathbb{P}[A] = \sum_{k=\text{even}} \mathbb{P}[M=k]$.

$$P[A] = (\frac{1}{2})^{2} + (\frac{1}{2})^{4} + \dots + (\frac{1}{2})^{2n}$$

$$P[A] = (\frac{1}{2})^{5} + (\frac{1}{2})^{6} + \dots + (\frac{1}{2})^{2n}$$

$$P[A] = (\frac{1}{2})^{1} + (\frac{1}{2})^{1} + \dots + (\frac{1}{2})^{2n}$$

A.
$$P[A] = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{2n}$$
, $P[b] = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{5n}$, $P[c] = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n}$, $P[c^{\circ}] = \sum_{n=8}^{\infty} \left(\frac{1}{2}\right)^{n}$

B.
$$P[A \cap B] = \sum_{n=1}^{\infty} (\frac{1}{2})^{lon}, P[A \setminus B] =$$
, $P[A \cap B \cap C] = 0$

B.
$$P[A \cap B] = \sum_{n=1}^{\infty} (\frac{1}{2})^{10n}$$
, $P[A \setminus B] =$

C. $P[A \mid B] = \frac{P[A \cap B]}{P[A]} = \frac{\sum_{n=1}^{\infty} (\frac{1}{2})^{10n}}{\sum_{n=1}^{\infty} (\frac{1}{2})^{2n}} = \sum_{n=1}^{\infty} (\frac{1}{2})^{8n}$, $P[B \mid A] = \sum_{n=1}^{\infty} (\frac{1}{2})^{5n}$