MA327 - Álgebra Linear

Resumo Teórico

1 de abril de 2021

Conteúdo

1	Matrizes1.1 Matriz Inversa1.2 Operações Elementares1.3 Sistemas Lineares	3 3 3
2	Corpos	5
3	Espaços Vetorias 3.1 Subespaços Vetoriais	6
4	Combinação Linear 4.1 Soma e Intersecção de Subespaços	7 7
5	Dependência e Independência Linear5.1 Bases e Dimensão	8
6	Mudança de Coordenadas 6.1 Transformações Lineares	9
7	Transformações 7.1 Núcleo 7.2 Imagem 7.3 Injeção 7.4 Sobrejeção 7.5 Bijeção 7.6 Teorema do Núcleo e da Imagem 7.7 Matriz de Transformação	10 10 10 10 11
8	Produto Interno 8.1 Produto Interno Usual	12
9	Norma 9.1 Normas Usuais	
10	8	14
11		16
12	3 0	

13 Autovalores e Autovetores	19
14 Matrizes Especiais	20
14.1 Matriz Hermitiana	20
14.2 Matriz Simétrica	
14.3 Matriz Unitária	
14.4 Matriz Ortogonal	20
14.5 Matriz Idempontente	
14.6 Matriz Reflexiva	
14.7 Matriz Positiva Definida	
14.8 Matrizes Semelhantes	
15 Diagonalização	22
15.1 Teorema Espectral Complexo	22
15.2 Teorema Espectral Real	
16 Interpretação de Autovalores e Autovetores	23
16.1 Classificação de Pontos Críticos	23
16.2 Cônicas	

1. Matrizes

1.1. Matriz Inversa

Definição Uma matriz quadrada A_n será inversível se houver uma única matriz quadrada B_n que satisfaz a operação abaixo, onde I_n será a matriz identidade quadrada de tamanho n:

$$A \times B = I$$

Propriedade Considerando que uma matriz A é inversível e que $B=A^{-1}$ temos que:

1. Se A e B são inversíveis o produto AB também seré inversível;

$$(AB)^{-1} = B^{-1}A^{-1}$$

2. Transposição e Inversão são comutativos;

$$(A^T)^{-1} = (A^{-1})^T$$

1.2. Operações Elementares

1. **Permutação** da *i-ésina* linha pela *j-ésima* linha;

$$l_i \leftrightarrow l_j$$

2. Multiplicação da *i-ésima* linha por um escalar $\lambda \neq 0$;

$$l_i = l_i \cdot \lambda$$

3. **Substituição** da *i-ésima* linha pela soma da *i-ésima* linha com a *j-ésima* linha multiplicada por λ ;

$$l_i = l_i + l_i \cdot \lambda$$

Definição Sejam A_n e B_n , dizemos que A e B serão equivalentes se B é obtida de A através de operações elementares.

Definição Dada uma matriz $A_{m \times n}$ e R, a forma escada de A, definimos o Posto de A como sendo o N^o de linhas não nulas de R. Detona-se o posto de A por p(A).

Definição Dada uma matriz $A_{m \times n}$, com seus elementos denotados por $A = [a_{ij}]$ está será anti-simétrica se $A^T = -A$.

1.3. Sistemas Lineares

Definição Seja $A = (a_{ij})$ uma matriz $m \times n$ e y_1, \dots, y_n escalares então um Sistema Linear com n-equações e n-incógnitas é dada pela família:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + & \cdots + a_{1n}x_n = y_1 \\ a_{21}x_1 + a_{22}x_2 + & \cdots + a_{2n}x_n = y_2 \\ & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + & \cdots + a_{mn}x_n = y_n \end{cases}$$

Classificação Sistemas, em alguns casos, permitem interpretações geométricas, pois as soluções podem representam a intersecção das equações.

- 1. O Sistema Possível e Determinado representam equações com solução única;
- 2. O Sistema Possível e Indeterminado representam equações com infinitas soluções;
- 3. O Sistema Impossível representam equações que não apresentam solução;

Teorema Seja $A_{m \times n}, \, Y_{m \times 1}$ e $X_{1 \times n}$ então:

- 1. O Sistema Possível e Determinado se p([A|Y]) = p(A) = n2. O Sistema Possível e Indeterminado se p([A|Y]) = p(A) < n
- 3. O Sistema Impossível se p(A) < p([A|Y]);

2. Corpos

Definição Um corpo será um conjunto \mathbb{F} de elementos abritários que apresente 2 operações básicas, normalmente referidas como a soma e o produto, e possua as propriedades derivadas enuciadas abaixo:

- 1. +: $\mathbb{F} \times \mathbb{F} \to \mathbb{F}$, usalmente soma;
 - (a) Associatividade: (x + y) + z = x + (y + z);
 - (b) Comutatividade: x + y = y + x;
 - (c) Elemento Neuro: $\exists ! 0 \in \mathbb{F} : x + 0 = x, x \in \mathbb{F};$
 - (d) Elemento Inverso: Dado $x \in \mathbb{F}$; $\exists ! x \in \mathbb{F}$; x + (-x) = 0;
- 2. $: \mathbb{F} \times \mathbb{F} \to \mathbb{F}$, usalmente produto;
 - (a) Associatividade: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$;
 - (b) Comutatividade: $x \cdot y = y \cdot x$;
 - (c) Elemento Neutro: $\exists ! 1 \in \mathbb{F} : 1 \cdot x = x, \forall x \in \mathbb{F};$
 - (d) Elemento Inverso: Dado $x \in \mathbb{F}; x \neq 0, \exists ! x^{-1}; x \cdot (x^{-1}) = 1;$
- 3. Propriedade comum as operações $\forall x,y,z\in\mathbb{F};x\cdot(y+z)=x\cdot y+x\cdot z;$

3. Espaços Vetorias

Definição Considerando um conjunto que satisfaz as seguintes propriedades:

- 1. Conjunto V não vazio;
- 2. Corpo \mathbb{F} de escalares, usualmente os \mathbb{R} ou \mathbb{C} ;
- 3. Duas operaçõs:
 - (a) Soma Vetorial: $+: V \times V \to V$;
 - (b) Multiplicação por Escalar: $\cdot : \mathbb{F} \times V \to V$;
- 4. Propriedades Internas
 - (a) Associatividade: u + (r + w) = (u + v) + w;
 - (b) Comutatividade: u + r = r + u;
 - (c) Elemento Neutro: $\exists 0_V; u + 0_V = u;$
 - (d) Elemento Inverso: Dado $u \in \mathbb{V}; \exists -u \in \mathbb{V}; u + (-u) = 0_V;$
- 5. Propriedades Externas
 - (a) Asso. entre Escalar e Vetor: $(\alpha\beta) \cdot u = \alpha(\beta \cdot u)$
 - (b) Asso. entre Escalar e Vetor: $\alpha(\beta + u) = \alpha\beta + \alpha u$
 - (c) Asso. entre Escalar e Vetor: $(\alpha + \beta)u = \alpha u + \beta u$
 - (d) Elemento Neutro: $1 \cdot u = u, \forall u \in \mathbb{V}$

Nomenclatura Se $\mathbb{F} = \mathbb{R}$ dizemos que \mathbb{V} é *Espaço Vetorial Real* enquanto se $\mathbb{F} = \mathbb{C}$ dizemos que \mathbb{V} é *Espaço Vetorial Complexo*

Teorema Dado um espaço vetorial V, o *Elemento Inverso* e o *Elemento Neutro* são únicos.

Teorema As seguintes equações são válidas:

- 1. Cancelamento: $u + v = w + v \rightarrow u = w$
- 2. $0_{\mathbb{F}}v = 0_{\mathbb{V}}$
- 3. $\alpha 0_{\mathbb{V}} = 0_{\mathbb{V}}$
- 4. $(-\alpha)v = -(\alpha v) = \alpha(-v)$
- 5. Se $\alpha u = 0$, então $\alpha = 0_{\mathbb{F}}$ ou $u = 0_V$
- 6. Se $\alpha u = \alpha v$ e $\alpha \neq 0_{\mathbb{F}} \to u = v$
- 7. Se $\alpha v = \beta v$ e $v \neq 0_{\mathbb{V}} \rightarrow \alpha = \beta$
- 8. -(u+v) = -u + (-v) = -u v

3.1. Subespaços Vetoriais

Definição Seja \mathbb{V} em espaço vetorial sobre um corpo \mathbb{F} . Um Subespaço Vetorial de \mathbb{V} é um conjunto $\mathbb{W} \subset \mathbb{V}$ dotado das seguintes propriedades:

- 1. O subespaço vetorial não poderá ser vazio;
- 2. O subespaço vetorial V deve ser fechado para soma;
- 3. O subespaço vetorial V deve ser fechado para multiplicação por escalar;

Teorema Um subconjunto $\mathbb W$ de um espaço vetorial $\mathbb V$ é um subespaço vetorial de $\mathbb F$ se, e somente se:

$$\alpha u + \beta v \in \mathbb{W}$$

$$\forall \alpha, \beta \in \mathbb{F}$$

$$\forall v, u \in \mathbb{W}$$

4. Combinação Linear

Definição Seja V um espaço vetorial sobre \mathbb{F} . Dizemos que $u \in V$ será Combinação Linear de $v_1, \ldots, v_n \in V$ se existem escalares $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$;

$$u = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

Seja $S=v_1,\ldots,v_n$ o subconjunto $u\in V; u=\alpha_1,v_1+\cdots+\alpha_nv_n,\alpha_i\in\mathbb{F}$ é um subespaço vetorial de V, denominado Subespaço Gerado por S. O cojunto S é dito ser os Geradores, ou Sistema de Geradores. O conjunto denotado é representado por:

 $[S]; [v_1, \dots v_n]; \langle S \rangle$

Definição Dizemos que um espaço vetorial V é Finitamente Gerado se existe $S=v_1,\ldots,v_n\subset V$ tal que V=[S].

4.1. Soma e Intersecção de Subespaços

Teorema 1 Seja V espaço vetorial sobre \mathbb{F} e U, W subespaços de U. Então o conjunto $U \cap W = \{v \in V : v \in U, v \in W\}$ é um subespaço vetorial.

Corolário A interseção de uma coleção arbritária de subespaços vetoriais é um subespaço vetorial.

Teorema 2 Sejam V espaço vetorial sobre \mathbb{F} e U,W subespaços vetoriais. O conjunto V=U+W definido como $\{v\in V \text{ onde } v=u+w, \text{ com } u\in U \text{ e } w\in W \text{ tal que } v=u+w\}$ é subespaço vetorial de \mathbb{F} .

Definição O conjunto U+W acima é denominado como *Soma de U e W*. A soma de U+W é dita *Soma Direta* se $U\cap W=0_v$, representada por:

 $U \oplus W$

Proposição Sejam U,W subespaços vetoriais de V. Então $V=U\oplus W$ se, e somente se, todo $v\in V$ tem decomposição v=u+w tais que $u\in U$ e $w\in W$ única.

Definição Considerando S_U e S_V como os sistemas de geradores de U e V, respectivamente, então o conjunto definido por U+V terá $[S_U \cup S_V]$ como sistema de geradores.

5. Dependência e Independência Linear

Definição Sejam V um espaço vetorial sobre \mathbb{F} e $S=u_1,\ldots,u_n\subset V$. Dizemos que S é *Linearmente Independente* se a combinação linear:

$$\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n = 0_V$$

Onde $\alpha_i \in \mathbb{F}$ implica que:

$$\alpha_1 = \alpha_2 = \dots = \alpha_n = 0_{\mathbb{F}}$$

Dizemos que S é Linearmente Dependente se não é linearmente independente, ou seja, existem $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{F}$ não nulos tais que:

$$\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n = 0_V$$

Propriedades Sejam $S = u_1, \dots, u_n$ conjunto finito em V, então temos que:

- 1. Todo conjunto que contém um subconjunto LD será LD;
- 2. Todo subconjunto de um conjunto LI será LI;
- 3. Todo conjunto que contém o elemento neutro, 0_V , é LD;
- 4. Um conjunto será LI se, e somente se, todos os seus subconjuntos forem LI;
- 5. O conjunto vazio é considerado LI;

Teorema 1 Sejam V espaço vetorial sobre \mathbb{F} e $S = u_1, \dots, u_n \subset V$. Então S é linearmente dependente se, e somente se, um elemento de S for combinação linear dos demais.

Teorema 2 Sejam $f_1, \ldots, f_n \in C^n([a, b])$, então o conjunto $S = \{f_1, \ldots, f_n\}$ é linearmente dependente se, e somente se, $W(f_1, \ldots, f_n)(x) = 0$ onde o Wronskiano é dado por:

$$W(f_1, \dots, f_n)(x) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f_1^1(x) & f_2^1(x) & \dots & f_n^1(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{n-1}(x) & f_2^{n-1}(x) & \dots & f_n^{n-1}(x) \end{vmatrix} = 0, \quad \forall x \in [a, b]$$

5.1. Bases e Dimensão

Definição Seja V um espaço vetorial sobre \mathbb{F} . Uma base de V é um conjunto de elementos linearmente independentes que gera V.

Teorema 2.2 Seja V um espaço vetorial sobre \mathbb{F} . Se V é gerado por $S = \{u_1, \dots, u_n\}$, então podemos extrair uma base de S.

Teorema 2.3 Seja V um espaço vetorial finitamente gerado $S = \{u_1, \dots, u_n\}$. Então, todo conjunto linearmente independente de V é finito e tem no máximo n elementos.

Definição Um espaço vetorial V sobre \mathbb{F} é dito ter $Dimens\~oes$ Finita se possui uma base finita. A $Dimens\~oes$ de V, denotada por dim(V), é por definição o número de elementos de uma base de V.

Teorema 2.4 Seja V espaço vetorial de dimensão finita. Se $s \subset V$ é um subconjunto linearmente independente finito, então s é parte de uma base de V.

Definição Seja V um espaço vetorial sobre \mathbb{F} e U,W sejam subconjuntos do espaço V. A dimensão da soma pode ser obtida através da seguinte relação:

$$dim(U+W) = dim(U) + dim(W) - dim(U \cap W)$$

6. Mudança de Coordenadas

Definição Seja $\beta = \{v_1, \dots, v_n\}$ base ordenada de um espaço vetorial \mathbb{V} , a *Matriz de Coordenadas* de $v \cap V$, se e somente se $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$, será:

$$[v]_{\beta} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$

Teorema 1.1 Seja \mathbb{V} um espaço vetorial de dimensão finita sobre uma base \mathbb{F} e $\beta = \{v_1, \ldots, v_n\}, \gamma = 0$ $\{w_1,\ldots,w_n\}$ bases ordenadas de V. Então existe uma **única** matriz $P=M_n(\mathbb{F})$, inversível como consequência da reciprocidade, tal que:

$$\begin{array}{l} 1. \ \ [v]_{\gamma} = P \cdot [v]_{\beta} \\ 2. \ \ [v]_{\beta} = P^{-1} \cdot [v]_{\gamma} \end{array}$$

Definição Sejaqm V e W espaços vetorias sobre \mathbb{F} com dimensão finita. Se $\alpha = \{v_1, \dots, v_n\}$ e $\beta =$ $\{w_1,\ldots,w_n\}$ formam bases de V e W respectivamente então a Matriz Mudança de Base será definida, onde $[w_i]_{\alpha}$ são vetores da base β escritos na base α , como:

$$[I]_{\alpha}^{\beta} = \begin{bmatrix} | & | \\ [w_1]_{\alpha} & \cdots & [w_n]_{\alpha} \\ | & | \end{bmatrix}$$

6.1. Transformações Lineares

Definição Dizemos que uma função $T: V \to W$, onde $V \in W$ são espaços vetorias sobre \mathbb{F} , será TransformaçãoLinear se não influenciar as propriedades básicas de espações vetorias descritos a seguir $\forall v, w \in V$ e $\lambda \in \mathbb{F}$:

- 1. Fechado para soma: T(v+w) = T(v) + T(w);
- 2. Fechado para multiplicação por escalar: $T(\lambda v) = \lambda T(v)$;
- 3. Distributiva: T(av + bw) = aT(v) + bT(w);

Propriedades Consequentemente temos que $\forall v_1, \ldots, v_n \in V$ e $\lambda \in \mathbb{F}$

- 1. $T(0_v) = 0_w;$ 2. $T\left(\sum_{i=1}^n a_i v_i\right) = \sum_{i=1}^n a_i T(v_i);$

Necessário resaltar que uma transformação será linear se $T(0_v) = 0_w$, entretanto isso não implica que se $T(v) = 0_w$ então $v = 0_v$.

Transformações Usuais Considere \mathbb{R}^2 como espaço vetorial. Então as seguintes transformações serão line-

- 1. Dado $\lambda \in \mathbb{R}$, $T_{\lambda} : \mathbb{R}^2 \to \mathbb{R}^2$ então $T_{\lambda}(x_{\lambda}, y_{\lambda}) = \lambda(x, y)$ será dita *Produto por Escalar*;
 - (a) Se $\lambda > 1$ então T_{λ} realiza uma Expansão;
 - (b) Se $0 < \lambda < 1$ então T_{λ} realiza uma Contração;
 - (c) Se $-1 < \lambda < 0$ então T_{λ} realiza uma Contração com Reversão;
 - (d) Se $\lambda < -1$ então T_{λ} realiza uma Expansão com Reversão;
- 2. A transformação $I_v: V \to V$ dada por $I_v(w) = w$ será a operação *Identidade*;
- 3. A transformação $I_v: V \to V$ dada por $T(v) = 0_V$ será a operação Nula;
- 4. Dado $c = \{c_1, \dots, c_n\} \in \mathbb{R}^n$ conjunto fixo, então $T_c(x_1, \dots, x_n) = \sum_{i=1}^n c_i x_i$ será dita *Produto Escalar* de x

Teorema Sejam V e W espaços vetoriais sobre \mathbb{F} com dim(V) = n. Se $\beta = \{v_1, \dots, v_n\}$ é base ordenada de $V \in w_1, \ldots, w_n \in W$ são elementos arbitrários, então existe uma única transformação linear $T: V \to W$ tal que $T(v_i) = w_i, \forall i = 1, \dots, n.$

7. Transformações

7.1. Núcleo

Definição Seja $T:V\to W$ uma transformação linear entre subsespaços vetorias V e W então define-se o N'acleo como o conjunto de todos os zeros da transformação T, formalmente descrito como:

$$Ker(T) = \{ v \in V; \quad T(v) = 0_W \}$$

Definição Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} e a transformação $T:V\to W$ linear então define-se a Nulidade de T como:

dim(Ker(T))

7.2. Imagem

Definição Seja $T:V\to W$ uma transformação linear entre subsespaços vetorias V e W então define-se a Imagem como o conjunto de todos os elementos de W obtidos através da transformação de um dos elementos de V, formalmente descrito como:

$$\boxed{Im(T) = \{w \in W; \ T(v) = w\}}$$

Definição Sejam V e W espaços vetoriais sobre o corpo $\mathbb F$ e a transformação $T:V\to W$ linear então define-se o Posto de T como:

dim(Im(T))

7.3. Injeção

Definição Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} e a transformação $T:V\to W$ linear então T será Injetora se, e somente se, $T(u)=T(v)\iff u=v \ \forall u,v\in V$, implicando:

1.
$$Ker(T) = \{0_W\}$$
, ou seja, $dim(Ker(T)) = 0$;

7.4. Sobrejeção

Definição Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} e a transformação $T:V\to W$ linear então T será Sobrejetora se, e somente se, $\forall w\in W \ \exists v\in V \ T(v)=w$, implicando:

1.
$$Im(T) = W$$
, ou seja, $dim(Im(T)) = dim(W)$;

7.5. Bijeção

Definição Uma transformação $T:V\to W$ linear será um *Isomorfismo* se T for injetora e sobrejetora, isto é, *Bijetora*. Neste caso V e W são *Isomorfos*. Assim define-se a *Transformação Inversa* $T^{-1}:W\to U$ tal que $T^{-1}(w)=v\iff T(v)=w$.

Teorema Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} e se a transformação linear $T:V\to W$ for um isomorfismo, então T^{-1} também será um isomorfismo.

Teorema Sejam V e W espaços vetoriass sobre o corpo \mathbb{F} . Então V e W são isomorfos se, e somente se, dim(V) = dim(W).

Teorema Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} . Se dim(V) = dim(W), então a transformação linear $T: V \to W$ será injetora se, e somente se, for sobrejetora.

7.6. Teorema do Núcleo e da Imagem

Teorema Sejam V e W espaços vetoriais sobre o corpo $\mathbb F$ onde V apresente dimensão finita. Caso $T:V\to W$ seja linear então:

$$dim(V) = dim(Ker(T)) + dim(Im(T))$$

1. Dimensão Real \mathbb{R}^n :

$$dim(\mathbb{R}^n) = n$$

2. Dimensão Complexa \mathbb{C}^n :

$$dim(\mathbb{C}^n) = 2n$$

3. Dimensão Polinomial $P_n(\mathbb{R})$:

$$dim(P_n(\mathbb{R})) = n+1$$

4. Dimensão Matricial $M_n(\mathbb{R})$:

$$dim(M_n(\mathbb{R})) = 2n$$

Corolário Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} e $T:V\to W$ uma transformação linear onde dim(V) = dim(W) então T será injetora se, e somente se, for sobrejetora.

7.7. Matriz de Transformação

Definição Sejam V e W espaços vetoriais sobre o corpo \mathbb{F} com $\alpha = \{v_1, \dots, v_n\}$ e $\beta = \{w_1, \dots, w_n\}$ respectivamente bases de V e W e $T:V\to W$ uma transformação linear unicamente determinada pelos seus valores em α , podendo ser escrita como:

$$T(v_j) = \sum_{i=1}^n a_{ij} w_i, \text{ onde } [T]^{\alpha}_{\beta} = \begin{bmatrix} v_1 \\ v_1 \\ 0 \end{bmatrix}^{\beta} \cdots \begin{bmatrix} v_n \\ 0 \end{bmatrix}^{\beta}$$

Onde $a_{ij} \in \mathbb{F}$ e $[T]^{\alpha}_{\beta} = (a_{ij})$ representa a Matriz de Transformação da base α para base β de T. Assim pode-se representar a transformação, em termo de matriciais, como:

$$T(v)]_{\beta} = [T]_{\beta}^{\alpha}[v]_{\beta}$$

Teorema Sejam V e W espaços vetoriais sobre o corpo $\mathbb F$ com dimensão finita e α e β bases ordenadas respectivamente de V e W. Se as transformações $T, P: V \to W$ forem lineares então:

- $\begin{array}{l} 1. \ [T+P]^{\alpha}_{\beta} = [T]^{\alpha}_{\beta} + [P]^{\alpha}_{\beta}; \\ 2. \ [\lambda T]^{\alpha}_{\beta} = \lambda [T]^{\alpha}_{\beta}; \\ 3. \ \mathrm{Se} \ V = W, \ \mathrm{ent\tilde{a}o} \colon \ [I_{V}]^{\alpha}_{\beta} = [I_{W}]^{\alpha}_{\beta}; \end{array}$

Teorema Sejam U, V e W espaços vetorias sobre o corpo \mathbb{F} com dimensão finita e γ, β e α bases ordenadas respectivamente de U, V e W. Se as transformações $T:U\to V$ e $P:V\to W$ forem lineares então a transformação composta $P \cdot T : U \to W$ será linear e representada por:

$$P \circ T_{\alpha}^{\gamma} = [P]_{\alpha}^{\beta} [T]_{\beta}^{\gamma}$$

Corolário Sejam U e W espaços vetorias sobre o corpo \mathbb{F} se $T:U\to W$ for um isomorfismo então:

$$T^{-1}]_{\beta}^{\gamma} = \left([T]_{\gamma}^{\beta} \right)^{-1}$$

8. Produto Interno

Definição Seja V um espaço vetorial, apenas real ou complexo, então o *Produto Interno* será uma operação definida por $\langle \cdot, \cdot \rangle : V \times V \to$, \mathbb{R} ou \mathbb{C} , se satisfizer as seguintes propriedades:

- 1. Simetria: $\langle u, v \rangle = \langle v, u \rangle$, caso \mathbb{R} , ou $\langle u, v \rangle = \overline{\langle v, u \rangle}$, caso \mathbb{C} ;
- 2. Positividade: $\langle u, u \rangle \geq 0 \quad \forall u \in U \rightarrow \langle u, u \rangle = 0$ se, e somente se, u = 0;
- 3. Linearidade: $\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle \quad \forall u,v,w\in V;$
- 4. Associatividade: $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$;

8.1. Produto Interno Usual

Definição Considerando os seguintes espaços vetoriais, define-se os *Produtos Internos Usuais* como as seguintes operações sobre as condições necessárias enuciadas acima:

1. Espaços Vetoriais Reais \mathbb{R}^n , Produto Interno Euclidiano:

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \cdot y_i$$

2. Espaços Vetoriais Complexos \mathbb{C}^n :

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \cdot \overline{y_i}$$

3. Espaços Vetoriais Polinomiais Continuas C([a,b]):

$$\left| \langle f, g \rangle = \int_{a}^{b} f(x)g(x)dx \right|$$

4. Espaços Vetoriais Matriciais $\mathbb{M}_n(\mathbb{R})$:

$$\langle A, B \rangle = tr(B^T \times A) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} b_{ij}$$

8.2. Matriz de Produto Interno

Definição Seja V um espaço vetorial, real ou complexo, com $\langle \cdot, \cdot \rangle$ um produto interno em V e seja $\beta = \{v_1, \dots, v_n\}$ uma base de V.

Então considerando $v = \sum_{i=1}^{n} a_i v_i$ e $u = \sum_{j=1}^{n} b_j v_j$ pode-se definir a *Matriz do Produto Interno* com relação a base β como:

$$\langle u, v \rangle = \underbrace{\begin{bmatrix} \overline{a_1} & \cdots & \overline{a_n} \end{bmatrix}}_{[v]_{\beta}^T} \underbrace{\begin{bmatrix} \langle v_1, v_1 \rangle & \cdots & \langle v_n, v_1 \rangle \\ \vdots & \ddots & \vdots \\ \langle v_1, v_n \rangle & \cdots & \langle v_n, v_n \rangle \end{bmatrix}}_{\mathbf{A} = [a_{ij}] = [\langle v_j, v_i \rangle]}_{[\mathbf{u}]_{\beta}} \underbrace{\begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}}_{[\mathbf{u}]_{\beta}}, \text{ onde } [v]_{\beta} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} e [u]_{\beta} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

8.3. Desigualdade de Cauchy Schwarz

Definição Seja V um espaço vetorail real com produto interno $\langle \cdot, \cdot \rangle$. Então, dados $u, v \in V$ teremos a seguinte designaldade:

$$\langle u,v\rangle^2 \leq \langle u,u\rangle\langle v,v\rangle \qquad |\langle u,v\rangle| \leq ||u||\cdot||v|| \qquad \langle u,v\rangle^2 \leq ||u||^2\cdot||v||^2$$

Em que a igualdade será possível se, e somente se, u e v forem L.D..

9. Norma

Definição Seja V um espaço vetorial sobre o corpo \mathbb{F} , então sua Norma em V será a aplicação da seguinte transformação linear, satisfazendo as propriedades abaixo:

$$\boxed{||\cdot||:V\to\mathbb{R}^+}$$

- 1. Positividade: ||u|| > 0, $u \neq 0$ e $||u|| = 0 \iff u = 0$;
- 2. Associatividade: $||\lambda \cdot u|| = |\lambda| \cdot ||u||, \forall u \in V \text{ e } \lambda \in \mathbb{F};$
- 3. Deesigualdade Triangular: $||u+v|| \ge ||u|| + ||v||$;

9.1. Normas Usuais

Definição Considerando o espaço \mathbb{R}^n define-se genericamente *Norma P* como a equação abaixo, sendo usualmente utilizadas as normas descritas abaixo:

$$||x||_p = \left[\sum_{i=1}^n |x_i|^p\right]^{\frac{1}{p}} \quad p \in \mathbb{N}_*$$

1. Norma Infinita:

$$||x||_{\infty} = \max\{|x_i|; 1 \le i \le n\}$$

2. Norma Pitagórica:

$$||x||_2 = \sqrt{|x_1|^2 + \dots + |x_n|^2}$$

3. Norma Unitária:

$$||x||_1 = \sum_{i=1}^n |x_i||$$

Teorema Seja V um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$, então a aplicação $\delta : V \to \mathbb{R}$ tal que $\delta(u) = \sqrt{\langle u, u \rangle}$ será por definição uma *Norma*.

$$||u|| = \sqrt{\langle u, u \rangle}$$

9.2. Distância

Definição Seja V um espaço vetorial sobre o corpo \mathbb{F} dotado de uma aplicação que satisfaça as propriedades abaixo, então esta será denominada $M\'{e}trica$ ou Distância e será definida por:

$$\boxed{d:V\times V\to\mathbb{R}}$$

- 1. Positividade: $d(u, v) \ge 0$ com d(u, v) = 0 se, e somente se, u = v;
- 2. Linearidade: d(u, v) = d(v, u);
- 3. Designaldade Triangular: $d(u,v) \geq d(u,w) + d(w,v) \quad \forall u,v,w \in V;$

Teorema Seja V um espaço vetorial normado, isto é, dotado de $||\cdot||$ em V, então a seguinte relação será uma métrica:

$$d(u,v) = ||u - v||$$

10. Ângulo entre Vetores

Definição Seja V um espaço vetorial com produto interno definido $\langle \cdot, \cdot \rangle$, então, utilizando Cauchy-Schwarz, temos a seguinte relação:

$$-1 \leq \frac{\langle u,v \rangle}{||u||\cdot||v||} \leq 1 \quad \ \forall u,v \in V \text{ tais que } u \neq 0 \neq v$$

Isso implica que existe um único $\theta \in [0, \pi]$ que representa o ângulo entre dois vetores não nulos u e v e este será dado por:

$$\cos \theta = \frac{\langle u, v \rangle}{||u|| \cdot ||v||}$$

- 1. Ortogonalidade: Se $\langle u, v \rangle = 0$, então u e v são ortogonais e representados por \bot ;
- 2. Nulidade: Se $v \perp u \quad \forall u \in V \rightarrow v = 0_V$, pois $0_V \perp v \quad \forall v \in V$;
- 3. Comutatividade: $u \perp v \rightarrow v \perp u$;
- 4. Associatividade: Se $v \perp w$ e $u \perp w$ então $v + u \perp w$
- 5. Linearidade: Se $v \perp u$ então $\lambda v \perp u \quad \forall \lambda \mathbb{F}$

10.1. Ortogonalidade

Definição Seja um conjunto $S = \{v_1, \ldots, v_n\}$ de um espaço vetorial V com produto interno $\langle \cdot, \cdot \rangle$, este será Ortogonal se cada combinação dois a dois for ortogonal, ou seja, $\langle v_i, v_j \rangle = 0 \ \forall i \neq j \in \langle v_i, v_i \rangle \neq 0 \ \forall i$, e será Ortonormal se for ortogonal e $\langle v_i, v_i \rangle = 1 \ \forall i$.

Teorema Seja V um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$ e S seja um conjunto ortogonal, então S será L.I..

10.2. Pitágoras

Definição Se $u, v \in V$ são ortogonais, então:

$$\boxed{||u+v||^2 = ||u||^2 + ||v||^2}$$

10.3. Lei do Paralelogramo

Definição Seja V um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$, então a norma associada satisfaz:

$$\boxed{ ||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2)}$$

10.4. Lei dos Cossenos

Definição Se $u \cdot u$ é norma induzida por um produto interno $\langle \cdot, \cdot \rangle$, então:

$$||u \pm v||^2 = ||u||^2 + ||v||^2 \pm 2||u|| \cdot ||v|| \cos \theta$$

14

11. Base Ortogonal

Definição Seja V um espaço vetorial de dimensão finita com produto interno $\langle \cdot, \cdot \rangle$, então uma base $\beta = \{v_1, \dots, v_n\}$ será Ortogonal, se atender aos dois primeiros requisitos, ou Ortonormal, se atender a todos os resquisitos.

- 1. $\langle v_i, v_j \rangle = 0 \quad \forall i \neq j;$
- $2. \langle v_i, v_i \rangle \neq 0 \quad \forall i;$
- 3. $\langle v_i, v_i \rangle = 1 \quad \forall i;$

Definição Se V é um espaço vetorial de dimensão finita com produto interno $\langle \cdot, \cdot \rangle$ e com base ortogonal $\beta = \{v_1, \cdots, v_n\}$ então dado $u \in V$ temos que as coordenadas de u são relacionadas a base β através dos Coeficientes de Fourier denotados abaixo:

$$\alpha_i = \frac{\langle u, v_i \rangle}{\langle v_i, v_i \rangle}$$

Teorema Se V é um espaço vetorial de dimensão finita com produto interno $\langle \cdot, \cdot \rangle$ e com base ortogonal $\beta = \{v_1, \dots, v_n\}$ então dado $u \in V$ temos que as coordenadas de u são relacionadas a base β como segue:

$$u = \frac{\langle u, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \dots + \frac{\langle u, v_n \rangle}{\langle v_n, v_n \rangle} v_n$$

Definição Se $A \in \mathbb{M}_n(\mathbb{R})$, então está será *Ortogonal* se suas colunas, consequentemente suas linhas pela transposição, formam conjuntos ortogonais, ou seja, $A^T = A^{-1}$.

11.1. Projeção Ortogonal

Definição Seja $S \in V$ um subespaço vetorial de dimensão finita do espaço vetorial V, também com dimensão finita, com produto interno $\langle \cdot, \cdot \rangle$, então a $Projeção\ Ortogonal\ de\ V$ em S será uma transformação linear $P:V \to S$ descrita abaixo onde $\{u_1, \cdots, u_n\} \in S$ é base ortogonal:

$$P(V) = \sum_{i=1}^{n} \frac{\langle v, u_i \rangle}{\langle u_i, u_i \rangle} u_i$$

Pela unicidade da decomposição da soma direta o resultado dessa transformação será unicamente determinado, satisfazendo as seguintes propriedades:

- 1. $P \circ P = P$;
- 2. $\langle P(v), w \rangle = \langle v, P(w) \rangle$

11.2. Processo de Gram-Schmidt

Definição Considere V um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$ e seja uma base $\alpha = \{\alpha_1, \dots, \alpha_n\}$ em V, então existe uma base ortogonal, única a menos de um escalar, $\beta = \{\beta_1, \dots, \beta_n\}$ L.I. obtidos recursivamente:

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\langle \alpha_{2}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{1} \rangle} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\langle \alpha_{3}, \beta_{2} \rangle}{\langle \beta_{2}, \beta_{2} \rangle} \beta_{2} - \frac{\langle \alpha_{3}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{1} \rangle} \beta_{1}$$

$$\vdots$$

$$\beta_{n} = \alpha_{n} - \frac{\langle \alpha_{n}, \beta_{n-1} \rangle}{\langle \beta_{n-1}, \beta_{n-1} \rangle} \beta_{n-1} - \dots - \frac{\langle \alpha_{2}, \beta_{1} \rangle}{\langle \beta_{1}, \beta_{1} \rangle} \beta_{1}$$

$$\beta_i = \alpha_i - \sum_{j=1}^{i-1} \frac{\langle \alpha_i, \beta_j \rangle}{\langle \beta_j, \beta_j \rangle} \beta_j$$

Corolário Todo espaço V de dimensão finita com produto interno e base ortogonal $\alpha = \{\alpha_1, \dots, \alpha_n\}$ admite base ortonormal β , encontrada através da ortonormalização da base α como segue:

$$\beta = \left\{ \frac{\alpha_1}{||\alpha_1||_2}, \dots, \frac{\alpha_n}{||\alpha_n||_2} \right\}$$

11.3. Complemento Ortogonal

Definição Seja V um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$, define-se $S \subset V$ como um conjunto não vazio e denota-se S Perpendicular como o conjunto:

$$\boxed{S^{\perp} = \{ v \in V; \quad \langle v, u \rangle = 0; \quad \forall u \in S \}}$$

Se S é um subespaço vetorial então S^{\perp} , espaço composto apenas por elementos perpendiculares aos elementos de S, será denominado $Complemento\ Ortogonal\ de\ S$.

Teorema Seja V um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$, define-se $S \in V$ como um conjunto não vazio, temos que S^{\perp} será subespaço vetorial.

Teorema Seja V um espaço vetorial de dimensão finita e $U, W \in V$ são subespaços, então:

$$\boxed{(U+W)^{\perp} = U^{\perp} \cap W^{\perp}}$$

11.4. Decomposição Ortogonal

Teorema Seja V um espaço vetorial com produto interno $\langle \cdot, \cdot \rangle$, define-se $S \in V$ como subespaço de dimensão finita, então:

$$V = S \oplus S^{\perp}$$

Isso implica que se $U \in V$ puder ser escrito como $U = U_1 + U_2 \in S + S^{\perp}$, então:

$$\boxed{||U||^2 = ||U_1||^2 + ||U_2||^2}$$

Corolário Considerando que $dim(V) < +\infty$, então:

$$dim(V) = dim(S) + dim(S^{\perp})$$

Teorema Considerando que $dim(V) < +\infty$, então:

1.
$$(U^{\perp})^{\perp} = U$$

2.
$$(U \cap W)^{\perp} = U^{\perp} + W^{\perp}$$

12. Transformação Adjunta

Proposição Seja V um espaço vetorial com dimensão finita e produto interno $\langle \cdot, \cdot \rangle$ e $f: V \to \mathbb{F}$ linear, ou seja, f é um Funcional Linear, uma transformação linear de subespaço vetorial para um corpo qualquer, então existe um único $u \in V$ tal que $f(v) = \langle v, u \rangle \ \forall v \in V$.

Definição Seja $T:V\to W$ uma transformação linear, onde V e W são espaços vetoriais de dimensão finita com produtos internos $\langle\cdot,\cdot\rangle_V$ e $\langle\cdot,\cdot\rangle_W$ respectivamente. Assim a *Adjunta de T* será a única transformação $T^*:W\to V$ definida por:

$$\langle T(v), w \rangle_W = \langle v, T^*(w) \rangle_V \quad \forall v \in V \ \forall w \in W$$

Se $\beta = \{v_1, \dots, v_n\}$ e $\gamma = \{w_1, \dots, w_m\}$ são bases ortonormais de V e W respectivamente então:

- 1. $[T]^{\beta}_{\gamma} = [\langle T(v_j), w_i \rangle];$
- 2. $[T^*]^{\gamma}_{\beta} = \left[\overline{[T]^{\beta}_{\gamma}} \right]^t$;

Propriedades

- 1. $(S+T)^* = S^* + T^*$;
- 2. $(\alpha T)^* = \overline{\alpha} T^*$;
- 3. $(S \circ T)^* = T^* \circ S^*$;
- 4. $(T^*)^* = T$;
- 5. $I^* = I$:

Teorema Toda transformação linear entre espaços vetoriais de dimensão finita com produtos internos admite adjunta.

Teorema Sejam V e W são espaços vetoriais de dimensão finita com produtos internos complexo, caso seja real pode-se desconsiderar o asterisco, $\langle \cdot, \cdot \rangle_V$ e $\langle \cdot, \cdot \rangle_W$ respectivamente e a transformação linear $T^*: W \to V$ então:

$$Ker(T) = Im(T^*)^{\perp} \text{ e } V = Ker(T) \oplus Im(T^*)$$

$$\boxed{Ker(T^*) = Im(T)^{\perp} \in W = Ker(T^*) \oplus Im(T)}$$

12.1. Transformações Simétricas e Hermitianas

Definição Sejam $V \in W$ espaços vetoriais reais, ou complexos, com dimensão finita, então a transformação linear $T: V \to W$ será Simétrica, ou Hermitiana se $T = T^*$, implicando:

$$\langle T(v), w \rangle = \langle v, T(w) \rangle \quad \forall v \in V \ \forall w \in W$$

Teorema Seja V espaço vetoria de dimensão finita com produto interno $\langle \cdot, \cdot \rangle$ e seja β base ortonormal de V, então a transformação linear $T: V \to V$ será simétrica, ou hermitiana, se, e somente se, a matriz $[T]^{\beta}_{\beta}$ for simétrica.

Teorema Os autovalores desta transformação são reais.

12.2. Transformações Anti-Simétricas e Anti-Hermitianas

Definição Seja V espaço vetorial de dimensão finita com produto interno $\langle \cdot, \cdot \rangle$ e seja β base ortonormal de V, então a transformação linear $T: V \to V$ será Anti-Simétrica, ou Anti-Hermitiana, se $T^* = -T$.

$$\boxed{\langle T(v),w\rangle = -\langle v,T(w)\rangle \quad \forall v\in V \ \forall w\in V}$$

Teorema Seja a transformação linear $T:V\to V$ no espaço vetorial de dimensão finita V com produto interno $\langle\cdot,\cdot\rangle$. T será anti-simétrica, ou anti-hermitiana, se, somente se, a matriz $[T]^{\beta}_{\beta}$ for anti-simétrica, ou anti-hermitiana, para alguma base β ortonormal.

Teorema Os autovalores desta transformação são imaginários puros.

12.3. Transformações Ortogonais

Definição Seja a transformação linear $T:V\to W$ nos espaços vetoriais U e W com produto interno $\langle\cdot,\cdot\rangle$ será Ortogonal se o produto escalar, consequentemente o ângulo, for preservado:

$$\langle T(v), T(w) \rangle = \langle v, w \rangle \quad \forall v \in V \ \forall w \in V$$

Sendo notável:

- 1. T será isomorfismo, caso dim(V) seja finita;
- 2. T será isometria, isto é, $||T(v)|| = ||v|| \quad \forall v$;
- 3. No caso complexo: $T^* = T^{-1}$. No caso real: $T^T = T^{-1}$;

Teorema Seja a transformação linear $T: V \to V$ ortogonal se, e somente se, $[T]^{\beta}_{\beta}$ for ortogonal, se $A \times A^{T}$, para alguma base β ortonormal.

13. Autovalores e Autovetores

Definição Seja V um espaço vetorial sobre o corpo \mathbb{F} e a transformação linear $T:V\to V$, então o escalar $\lambda\in\mathbb{F}$ será **Autovalor** de T se existe vetor $v\neq 0\in V$, denominado **Autovetor** de T, tal que:

$$T(v) = \lambda v$$

Autovalores são solução do **Polinômio Característico** de T em uma base α qualquer, enquanto o subespaço vetorial V_{λ} será **Autoespaço** associado a um autovalor λ de T. Demonstrados nas seguintes equações:

$$p(\lambda) = \det([T]_{\alpha}^{\alpha} - \lambda I_n) = 0 \quad V_{\lambda} = \{v \in V; T(v) = \lambda v\}$$

- 1. Multiplicidade Algébrica: Repetições de um autovalor λ de T como raíz;
- 2. Multiplicidade Geométrica: Dimensão de $V_{\lambda};5$

14. Matrizes Especiais

Definição Dado $x \in \mathbb{R}^n$, então $x = (x_1, \dots, x_n)$ pode ser representado com relação a base canônica $\beta = \{e_1, \dots, e_n\}$ por combinação linear. Desse modo, o produto interno usual será dado por:

$$\boxed{\langle x,y\rangle = \sum_{i=1}^n x_i \overline{y}_i = \begin{bmatrix} \overline{y}_1, \cdots, \overline{y}_n \end{bmatrix} \times \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = Y^*X}$$

14.1. Matriz Hermitiana

Definição Sejam $A \in \mathbb{M}_n(\mathbb{C})$ e $X, Y \in \mathbb{C}^n$. Caso A seja **Hermitiana**, ou **Auto-Adujunta**, seus autovalores são reais e seus autovetores associados a autovalores distintos são ortogonais, então:

$$\boxed{\langle AX,Y\rangle=\langle X,A^*Y\rangle}$$
, caso A seja **Hermitiana**: $\boxed{\langle AX,Y\rangle=\langle X,AY\rangle}$
Matriz **Hermitiana**: $\boxed{A=\overline{A^T}}$

14.2. Matriz Simétrica

Definição Sejam $A \in \mathbb{M}_n(\mathbb{R})$ e $X, Y \in \mathbb{R}^n$. Caso A seja **Simétrica**, ou **Auto-Adujunta**, seus autovalores são reais e seus autovetores associados a autovalores distintos são ortogonais, então:

$$\boxed{\langle AX,Y\rangle=\langle X,A^TY\rangle}, \text{ caso } A \text{ seja } \textbf{Sim\'etrica} : \boxed{\langle AX,Y\rangle=\langle X,AY\rangle}$$
 Matriz $\textbf{Sim\'etrica} : \boxed{A=A^T}$

14.3. Matriz Unitária

Definição Seja $A \in \mathbb{M}_n(\mathbb{C})$ e $X, Y \in \mathbb{C}^n$. Caso A seja **Unitária**, seus autovalores são $|\lambda| = 1$, pois $\det(A) = \pm 1$, e seus autovetores associados a autovalores distintos são ortogonais, então:

$$\boxed{\langle AX,AY\rangle=\langle X,Y\rangle}, ext{ caso } A ext{ seja } \mathbf{Unit\'{a}ria}: \boxed{||Ax||=||x||}$$

Matriz $\mathbf{Unit\'{a}ria}: \boxed{A^{-1}=\overline{A^T}}$

14.4. Matriz Ortogonal

Definição Seja $A \in \mathbb{M}_n(\mathbb{R})$ e $X, Y \in \mathbb{R}^n$. Caso A seja **Ortogonal**, seus autovalores são $|\lambda| = 1$, pois $\det(A) = \pm 1$, e seus autovetores associados a autovalores distintos são ortogonais, então:

$$\boxed{\langle AX,AY\rangle=\langle X,Y\rangle}, ext{ caso } A ext{ seja Ortogonal: } \boxed{||Ax||=||x||}$$

Matriz Ortogonal: $\boxed{A^{-1}=A^T}$

14.5. Matriz Idempontente

Definição Seja $A \in \mathbb{M}(\mathbb{F})$. Caso A seja **Idempotente**, seus autovalores são 0 e 1, então:

Matriz **Idempontente**:
$$A \times A = A$$

14.6. Matriz Reflexiva

Definição Seja $A \in \mathbb{M}(\mathbb{F})$. Caso A seja **Reflexiva**, seus autovalores são ± 1 , então:

Matriz **Reflexiva**:
$$A \times A = I$$

14.7. Matriz Positiva Definida

Definição Seja $A \in \mathbb{M}_n(\mathbb{C})$ Hermitiana, A será Positiva Definida se, e somente se, seus autovalores são todos positivos, e Positiva Semi-Definida, respectivamente, se:

$$\langle AX, X \rangle > 0, \quad \langle AX, X \rangle \ge 0, \qquad \forall X \ne 0 \in \mathbb{C}^n$$

14.8. Matrizes Semelhantes

Definição Sejam $A, B \in M_n(\mathbb{F})$, então $A \in B$ são **Semelhantes** se $\exists P \in M_n(\mathbb{F})$ invertível tal que:

$$\boxed{B = P^{-1}AP}$$

15. Diagonalização

Teorema Seja $A \in M(\mathbb{F})$ e γ uma base ordenada de \mathbb{F}_n . Se T_A é a transformação linear associada à A, então:

$$[T_A]^{\alpha}_{\alpha} = P^{-1}AP$$

Onde P é uma matriz mudança da base γ para a base canônica β .

Teorema Seja V espaço vetorial de dimensão finita sobre o corpo \mathbb{F} e β uma base ordenada de V. Se $T:V\to V$ é linear e $B\in\mathbb{M}_n(\mathbb{F})$ é uma matriz semelhante a $[T]^\beta_\beta$. Então existe base β de V tal que $[T]^\gamma_\gamma=B$.

Definição Uma transformação linear $T:V\to V$ é dita ser **Diagonalizável** se existe base β de V tal que $[T]^{\beta}_{\beta}$ é diagonal.

Corolário A matriz $A \in \mathbb{M}_n(\mathbb{F})$ é diagonalizável se, e somente se, T_A for diagonalizável.

Definição A matriz $A \in \mathbb{M}_n(\mathbb{F})$ é dita ser **Simples** se possui um conjunto de vetores linearmente independentes. Isso ocorre se, e somente se, A for diagonalizável.

Teorema Seja V um espaço vetorial sobre o corpo \mathbb{F} e $T:V\to V$ uma transformação linear. Se $\lambda_1,\ldots,\lambda_n$ são autovalores de T com autovetores associados v_1,\ldots,v_n , então v_1,\ldots,v_n será linearmente independente.

Corolário Se $dim(V) < \infty$ e $T: V \to V$ uma transformação linear que possui dim(V) autovalores distintos, então T será diagonalizável.

Teorema A transformação T será diagonalizável se, e somente se, V possuir base de autovetores de T se, e somente se, a soma das multiplicidades geométricas for igual a dim(V).

15.1. Teorema Espectral Complexo

Definição Seja $A \in M_n(\mathbb{C})$ uma matriz **Hermitiana**, ou seja $A = \overline{A^T}$, portanto diagonalizável, então existe uma matriz **Unitária** P, ou seja $A^{-1} = \overline{A^T}$, composta pelos autovetores de A, e uma matriz **Diagonal** D, ou seja $d_{ij} = 0 \quad \forall i \neq j$, composta pelos autovalores de A, tal que:

$$P^{-1}AP = D \to A = PD\overline{P^T}$$

$$A = \begin{bmatrix} V_{\lambda_1} \end{bmatrix} & \cdots & \begin{bmatrix} V_{\lambda_n} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} \begin{bmatrix} & \overline{V_{\lambda_1}} & \\ & \vdots & \\ & \overline{V_{\lambda_n}} & \end{bmatrix} \end{bmatrix}$$

15.2. Teorema Espectral Real

Definição Seja $A \in M_n(\mathbb{R})$ uma matriz **Simétrica**, ou seja $A = A^T$, portanto diagonalizável, então existe uma matriz **Ortogonal** P, ou seja $A^{-1} = A^T$, composta pelos autovetores de A, e uma matriz **Diagonal** D, ou seja $d_{ij} = 0 \quad \forall i \neq j$, composta pelos autovalores de A, tal que:

$$P^{-1}AP = D \rightarrow A = PDP^T$$

$$A = \begin{bmatrix} V_{\lambda_1} \end{bmatrix} & \cdots & \begin{bmatrix} V_{\lambda_n} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} \begin{bmatrix} V_{\lambda_1} & \\ \vdots & \\ V_{\lambda_n} & \end{bmatrix} \end{bmatrix}$$

16. Interpretação de Autovalores e Autovetores

16.1. Classificação de Pontos Críticos

Definição Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função qualquer, seus máximos ou mínimos locais podem ser determinados a partir dos pontos críticos, obtidos pela seguinte equação:

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)\right) = 0$$

Estes pontos são classificados através da Matriz Hessiana como descrito a seguir:

$$H(x,y) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial x^2} \end{bmatrix}, \text{ onde: } \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

Reformulação Note que esta matriz é simétrica e, portanto, diagonalizável. Assim os resultados de autovalores e autovetores são válidos. Considerando a aproximação de Taylor para um ponto crítico (x_c, y_c) temos que:

$$f(x,y) - f(x_c, y_c) \approx \frac{1}{2} \langle H(x_c, y_c)(x, y), (x, y) \rangle = \frac{1}{2} \begin{bmatrix} x & y \end{bmatrix} H(x_c, y_c) \begin{bmatrix} x \\ y \end{bmatrix}$$

Pontos máximos e mínimos poderão ser diferenciados pelos autovalores da matriz Hessiana. Desta maneira, estes pontos são classificados pela seguinte equação:

$$\lambda_{H(x_c,y_c)} \begin{cases} \text{Estritamente Positivos}, & \text{Ponto de Mínimo} \\ \text{Estritamente Negativos}, & \text{Ponto de Máximo} \\ \text{Positivos e Negativos}, & \text{Ponto de Cela} \end{cases}$$

16.2. Cônicas

Definição Seja um conjunto de pontos $(x, y) \in \mathbb{R}^2$, representando diferente cortes de um cone por um plano. Ou seja, satisfazendo a seguinte equação:

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

Esta equação poderá ser representada matricialmente da seguinte maneira:

$$\begin{bmatrix} x & y \end{bmatrix} \underbrace{\begin{bmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{X} + \underbrace{\begin{bmatrix} d & e \end{bmatrix}}_{B} \begin{bmatrix} x \\ y \end{bmatrix} + fI_{2} = 0$$

Reformulação Nota-se que A é simétrica e, portanto, será diagonalizável. Se $\alpha = \{e_1, e_2\}$ é a base canônica de \mathbb{R}^2 , então existe $\beta = \{v_1, v_2\}$ base ortonormal de \mathbb{R}^2 tal que a seguinte expressão seja **Ortogonal**:

$$I^{\alpha}_{\beta}AI^{\beta}_{\alpha} = D = \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix}$$

Deseja-se simplificar a expressão inicial para sua equivalente rotacionada de tal forma que a equação característica seja canônica. Assim, considera-se $v \in \mathbb{R}^2$, pertencente a cônica, tal que $v = x_1v_1 + y_1v_2$, então:

$$[v]_{\alpha} = I_{\alpha}^{\beta}[v]_{\beta} \to \boxed{\begin{bmatrix} x \\ y \end{bmatrix}} = I_{\alpha}^{\beta} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

$$[x \quad y] = \begin{bmatrix} x \\ y \end{bmatrix}^T = \begin{pmatrix} I_{\alpha}^{\beta} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \end{pmatrix}^T \to \boxed{\begin{bmatrix} x \quad y \end{bmatrix}} = \begin{bmatrix} x_1 \quad y_1 \end{bmatrix} I_{\beta}^{\alpha}$$

Note que $I^{\alpha}_{\beta} = (I^{\beta}_{\alpha})^{-1} = (I^{\beta}_{\alpha})^{T}$, pois, como as bases α e β são ortonormais, I^{α}_{β} será ortonormal. Assim, aplicando estas substituições temos o seguinte equação:

$$\begin{bmatrix} x_1 & y_1 \end{bmatrix} I_{\beta}^{\alpha} A I_{\alpha}^{\beta} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} d & e \end{bmatrix} I_{\alpha}^{\beta} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + f I_2 = 0$$

Toma-se as substituições $D=I^{\alpha}_{\beta}AI^{\beta}_{\alpha}$ e $\begin{bmatrix}g&h\end{bmatrix}=\begin{bmatrix}d&e\end{bmatrix}I^{\beta}_{\alpha}$ temos:

$$\begin{bmatrix} x_1 & y_1 \end{bmatrix} D \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} g & h \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + fI_2 = 0$$

Finalmente, a equação genérica das cônicas, após rotação, pode ser expressa, em função das respectivas bases e autovalores, pela seguinte equação:

$$\lambda_1 x_1^2 + gx_1 + \lambda_2 y_1^2 + hy_1 + f = 0$$

Casos Diferentes combinações de autovalores geram diferentes cônicas, como descrito a seguir:

- 1. Autovalores $\lambda_1 \neq 0$ e $\lambda_2 \neq 0$:
 - (a) Caso $\lambda_1 \cdot \lambda_2 > 0$, a cônica será uma eclipse, sua forma degenerada; um ponto, ou vazio;
 - (b) Caso $\lambda_1 \cdot \lambda_2 < 0$, a cônica será uma hipérbole, sua forma degenerada; um par de retas concorrentes, ou vazio.;

Completando quadrados:

$$\lambda_1 \underbrace{\left(x_1 + \frac{g}{2\lambda_1}\right)^2}_{x_2} + \lambda_2 \underbrace{\left(y_1 + \frac{h}{2\lambda_2}\right)^2}_{y_2} + \underbrace{f - \frac{g^2}{4\lambda_1} - \frac{h^2}{4\lambda_2}}_{r} = 0$$

Realizando as substituições acima, obtêm-se:

$$\lambda_1 x_2^2 + \lambda_2 y_2^2 + r = 0$$

2. **Autovalores** $\lambda_1 \neq 0$ e $\lambda_2 = 0$ ou $\lambda_1 = 0$ e $\lambda_2 \neq 0$: Neste caso a cônica será uma parábola, sua forma degenerada; uma reta ou duas retas paralelas, ou vazio. Completando quadrados:

$$\lambda_1 \underbrace{\left(x_1 + \frac{g}{2\lambda_1}\right)^2}_{x_2} + h \underbrace{y_1}_{y_2} + \underbrace{f - \frac{g^2}{4\lambda_1}}_{r} = 0 \qquad g \underbrace{x_1}_{x_2} + \lambda_2 \underbrace{\left(y_1 + \frac{h}{2\lambda_2}\right)^2}_{y_2} + \underbrace{f - \frac{h^2}{4\lambda_2}}_{r} = 0$$

Realizando as substituições acima, obtêm-se:

$$\boxed{\lambda_1 x_2^2 + h y_2 + r = 0}$$

$$\boxed{g x_2 + \lambda_2 y_2^2 + r = 0}$$