Cheatsheet for 18.6501x by Blechturm Page 1 of x	$\mathbf{x}^T \mathbf{A} \mathbf{x}$ is negative for all $\mathbf{x} \in \mathbb{R}^d - \{0\}$.	Univariate Gaussians Parameters μ and $\sigma^2 > 0$, continuous	$F_X^{-1}(1-\alpha) = \alpha$	7 Covariance The Covariance is a measure of how
1 Algebra	Positive (or negative) definiteness implies	$f(x) = \frac{1}{\sqrt{(2\pi\sigma)}} exp(-\frac{(x-\mu)^2}{2\sigma^2})$	If $X \sim N(0, 1)$:	much the values of each of two corre- lated random variables determine each
Absolute Value Inequalities:	positive (or negative) semi-definiteness.	$V(2\pi\sigma) \qquad 2\sigma^2$ $\mathbb{E}[X] = \mu$	$\mathbb{P}(X > q_{\alpha}) = \alpha$	other
$ f(x) < a \Rightarrow -a < f(x) < a$ $ f(x) > a \Rightarrow f(x) > a \text{ or } f(x) < -a$	If the Hessian is positive definite then f	$Var(X) = \sigma^2$	5 Expectation $\mathbb{E}[X] = \int_{-inf}^{+inf} x \cdot f_X(x) dx$	$Cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$
2 Calculus	attains a local minimum at <i>a</i> (convex).	Invariant under affine transformation:	$\mathbb{E}[g(X)] = \int_{-inf}^{+inf} g(x) \cdot f_X(x) dx$	$Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$
Differentiation under the integral sign	If the Hessian is negative definite at a, then f attains a local maximum at a	$aX + b \sim N(X + b, a^2 \sigma^2)$		$Cov(X,Y) = \mathbb{E}[(X)(Y - \mu_Y)]$
$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{a(x)}^{b(x)} f(x,t) \mathrm{d}t \right) = f(x,b(x))b'(x) -$	(concave).	Symmetry:	$\mathbb{E}[X Y=y] = \int_{-inf}^{+inf} x \cdot f_{X Y}(x y) \ dx$	Possible notations:
$f(x,a(x))a'(x) + \int_{a(x)}^{b(x)} f_x(x,t) dt.$ Concavity in 1 dimension	If the Hessian has both positive and negative eigenvalues then <i>a</i> is a saddle point	If $X \sim N(0, \sigma^2)$, then $-X \sim N(0, \sigma^2)$	Integration limits only have to be over the support of the pdf. Discrete r.v. same	$Cov(X,Y) = \sigma(X,Y) = \sigma_{(X,Y)}$
If $g: I \to \mathbb{R}$ is twice differentiable in the	for f.3 Important probability distributions	$\mathbb{P}(X > x) = 2\mathbb{P}(X > x)$	as continuous but with sums and pmfs.	Covariance is commutative:
interval I: concave:	Bernoulli	Standardization:	Total expectation theorem:	Cov(X, Y) = Cov(Y, X)
if and only if $g''(x) \le 0$ for all $x \in I$	Parameter $p \in [0,1]$, discrete	$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$	$\mathbb{E}[X] = \int_{-inf}^{+inf} f_Y(y) \cdot \mathbb{E}[X Y = y] dy$	Covariance with of r.v. with itself is
strictly concave: if $g''(x) < 0$ for all $x \in I$	$p_X(k) = \begin{cases} p, & \text{if } k = 1\\ (1-p), & \text{if } k = 0 \end{cases}$	$\mathbf{P}(X \le t) = \mathbf{P}\left(Z \le \frac{t - \mu}{\sigma}\right)$	Expectation of constant <i>a</i> :	variance:
convex:	$\mathbb{E}[X] = p$ $Var(X) = p(1-p)$	Higher moments:	$\mathbb{E}[a] = a$	$Cov(X,X) = \mathbb{E}[(X - \mu_X)^2] = Var(X)$
if and only if $g''(x) \ge 0$ for all $x \in I$		$\mathbb{E}[X^2] = \mu^2 + \sigma^2$	Product of independent r.vs <i>X</i> and <i>Y</i> :	Useful properties:
strictly convex if: $g''(x)>0$ for all $x \in I$	Binomial Parameters <i>p</i> and <i>n</i> , discrete. Describes the number of successes in n indepen-	$\mathbb{E}[X^{3}] = \mu^{3} + 3\mu\sigma^{2}$ $\mathbb{E}[X^{4}] = \mu^{4} + 6\mu^{2}\sigma^{2} + 3\sigma^{4}$	$\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$	Cov(aX + h, bY + c) = abCov(X, Y)
	dent Bernoulli trials.		Product of dependent r.vs X and Y :	Cov(X, X + Y) = Var(X) + cov(X, Y)
Multivariate Calculus The Gradient ∇ of a twice differntiable	$p_{x}(k) = \binom{n}{k} p^{k} (1-p)^{n-k}, k = 1,, n$	Uniform Parameters a and b , continuous.	$\mathbb{E}[X \cdot Y] \neq \mathbb{E}[X] \cdot \mathbb{E}[Y]$	Cov(aX + bY, Z) = aCov(X, Z) +
function f is defined as: $\nabla f : \mathbb{R}^d \to \mathbb{R}^d$	$\mathbb{E}[X] = np$	$\mathbf{f}_{\mathbf{x}}(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a < x < b \\ 0, & \text{o.w.} \end{cases}$	$\mathbb{E}[X \cdot Y] = \mathbb{E}[\mathbb{E}[Y \cdot X Y]] = \mathbb{E}[Y \cdot \mathbb{E}[X Y]]$	bCov(Y,Z)
$\begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \begin{pmatrix} \frac{\partial f}{\partial \theta_1} \\ \frac{\partial f}{\partial f} \end{pmatrix}$	Var(X) = np(1-p)	$\mathbb{E}[X] = \frac{a+b}{2}$	Linearity of Expectation where <i>a</i> and <i>c</i>	If $Cov(X, Y) = 0$, we say that X and Y are uncorrelated. If X and Y are independent,
$\theta_1 = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \longrightarrow \begin{pmatrix} \frac{\partial \theta_1}{\partial \theta_2} \\ \frac{\partial \theta_2}{\partial \theta_2} \end{pmatrix}$	Multinomial	$Var(X) = \frac{(b-a)^2}{12}$	are given scalars:	their Covariance is zero. The converse is not always true. It is only true if <i>X</i> and
$\theta = \begin{bmatrix} \frac{\partial}{\partial 2} \\ \vdots \\ \frac{\partial}{\partial d} \end{bmatrix} \mapsto \begin{bmatrix} \frac{\partial f}{\partial \theta_2} \\ \vdots \\ \frac{\partial}{\partial f} \end{bmatrix}$	Parameters $n > 0$ and p_1, \dots, p_r .	Maximum of n iid uniform r.v.	$\mathbb{E}[aX + cY] = a\mathbb{E}[X] + c\mathbb{E}[Y]$	Y form a gaussian vector, ie. any linear combination $\alpha X + \beta Y$ is gaussian for all
$\left(\frac{\theta_d}{\partial \theta_d}\right) \left(\frac{\partial f}{\partial \theta_d}\right) \Big _{\theta}$	$p_X(x) = \frac{n!}{x_1!,\dots,x_n!} p_1,\dots,p_r$	Minimum of n iid uniform r.v.	If Variance of <i>X</i> is known:	$(\alpha, \beta) \in \mathbb{R}^2$ without $\{0, 0\}$.
Hessian	$\mathbb{E}[X_i] = n * p_i$ $Var(X_i) = np_i(1 - p_i)$		$\mathbb{E}[X^2] = var(X) - \mathbb{E}[X]$	8 Law of large Numbers and Central Li- mit theorem univariate
The Hessian of f is a symmetric matrix	Poisson	Cauchy continuous, parameter <i>m</i> ,	6 Variance	Let $X_1,,X_n \stackrel{iid}{\sim} P_{\mu}$, where $E(X_i) = \mu$ and
of second partial derivatives of f	Parameter λ . discrete, approximates the binomial PMF when n is large, p is small,	$f_m(x) = \frac{1}{\pi} \frac{1}{1 + (x - m)^2}$	Variance is the squared distance from the mean.	$Var(X_i) = \sigma^2$ for all $i = 1, 2,, n$ and
$\mathbf{H}h(\theta) = \nabla^2 h(\theta) = \begin{pmatrix} \frac{\partial^2 h}{\partial \theta_1 \partial \theta_1}(\theta) & \cdots & \frac{\partial^2 h}{\partial \theta_1 \partial \theta_d}(\theta) \end{pmatrix}$	and $\lambda = np$.	$\mathbb{E}[X] = notdefined!$ Var(X) = notdefined!	$Var(X) = \mathbb{E}[(X - \mathbb{E}(X))^2]$	$\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i.$
$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$	$\mathbf{p}_{\mathbf{x}}(k) = exp(-\lambda)\frac{\lambda^k}{k!}$ for $k = 0, 1, \dots$		$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$	Law of large numbers:
$ \left \begin{array}{ccc} \vdots \\ \frac{\partial^2 h}{\partial \theta_A \partial \theta_1}(\theta) & \cdots & \frac{\partial^2 h}{\partial \theta_A \partial \theta_A}(\theta) \end{array} \right ^{\in \mathbb{R}} $	$\mathbb{E}[X] = \lambda$ $Var(X) = \lambda$	$\operatorname{med}(X) = P(X > M) = P(X < M)$ $= 1/2 = \int_{1/2}^{\infty} \frac{1}{\pi} \cdot \frac{1}{1 + (x - m)^2} dx$	Variance of a product with constant a :	$\overline{X_n} \xrightarrow[n \to \infty]{P,a.s.} \mu$.
A symmetric (real-valued) $d \times d$ matrix A	Exponential	$J_{1/2} \pi = 1 + (x - m)^2$ 4 Quantiles of a Distribution	$Var(aX) = a^2 Var(X)$	$\frac{1}{n}\sum_{i=1}^{n}g(X_i)\xrightarrow[n\to\infty]{P,a.s.}\mathbb{E}[g(X)]$
is: Positive semi-definite:	Parameter λ , continuous $f_x(x) = \begin{cases} \lambda exp(-\lambda x), & \text{if } x >= 0 \\ 0, & \text{otherwise} \end{cases}$	Let α in (0, 1). The quantile of order $1 - \alpha$ of a random variable X is the number q_{α}	Variance of sum of two dependent r.v.:	Central Limit Theorem:
T . $-d$	10. 0.W.	such that:	Var(X + Y) = Var(X) + Var(Y) + 2Cov(X,Y)	$\sqrt{(n)} \xrightarrow{\overline{X_n} - \mu} \xrightarrow{(d)} N(0,1)$
Positive definite:	$F_X(x) = \begin{cases} 1 - exp(-\lambda x), & \text{if } x >= 0\\ 0, & \text{o.w.} \end{cases}$	$q_{\alpha} = \mathbb{P}(X \le q_{\alpha}) = 1 - \alpha$		***
$\mathbf{x}^{T} \mathbf{A} \mathbf{x} > 0$ for all non-zero vectors $\mathbf{x} \in \mathbb{R}^{n}$	$\mathbb{E}[X] = \frac{1}{\lambda}$	$\mathbb{P}(X \ge q_{\alpha}) = \alpha$	Variance of sum of two independent r.v.:	$\sqrt{(n)}(\overline{X_n} - \mu) \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$
Negative semi-definite (resp. negative definite):	$Var(X) = \frac{1}{\lambda^2}$	$F_X(q_\alpha) = 1 - \alpha$	Var(X + Y) = Var(X) + Var(Y)	Variance of the Mean:

Cheatsheet for 18.6501x by Blechturm Page 2 of x $Var(\overline{X_n}) =$

 $(\frac{\sigma^2}{n})^2 Var(X_1 + X_2, ..., X_n) = \frac{\sigma^2}{n}$. Expectation of the mean:

 $E[\overline{X_n}] = \frac{1}{n} E[X_1 + X_2, ..., X_n] = \mu.$

contains all possible outcomes of X

 $\{\mathbb{P}_{\theta}\}_{\theta\in\Theta}$ is a family of probability distributions on E. Θ is a parameter set, i.e. a set consisting of some possible values of Θ .

 θ is the true parameter and unknown. In a parametric model we assume that $\Theta \subset \mathbb{R}^d$, for some $d \ge 1$. Identifiability:

$$\theta \neq \theta' \Rightarrow \mathbb{P}_{\theta} \neq \mathbb{P}_{\theta'}$$
$$\mathbb{P}_{\theta} = \mathbb{P}_{\theta'} \Rightarrow \theta = \theta'$$

A Model is well specified if:

$$\exists \theta \ s.t. \ \mathbb{P} = \mathbb{P}_{\theta}$$
11 Estimators
A statistic is any measurable functionof

mator of θ is any statistic which does not depend on θ . An estimator $\hat{\theta}_n$ is weakly consistent

the sample, e.g. $\overline{X_n}$, $max(X_i)$, etc. An Esti-

if: $\lim_{n\to\infty} \hat{\theta}_n = \theta$ or $\hat{\theta}_n \xrightarrow[n\to\infty]{P} \mathbb{E}[g(X)]$. If

the convergence is almost surely it is strongly consistent.

Asymptotic normality of an estimator:

variance of a single X_i . If the estimator

is a function of the sample mean the **Delta Method** is needed to compute

the Asymptotic Variance. Asymptotic

Variance ≠ Variance of an estimator.

Bias of an estimator:

 $Bias(\hat{\theta}_n = \mathbb{E}[\hat{\theta_n}] - \theta$

$$\sqrt{(n)}(\hat{\theta}_n - \theta) \xrightarrow[n \to \infty]{(d)} N(0, \sigma^2)$$

 σ^2 is called the **Asymptotic Variance** of $\hat{\theta_n}$. In the case of the sample mean it the

If I take a function of the mean and want to make it converge to a function of the $\sqrt{n}(g(\widehat{m}_1) - g(m_1(\theta)))$

$$\mathcal{N}(0, g'(m_1(\theta))^2 \sigma^2)$$
13 Hypothesis tests

Onesided **Twosided**

Ouadratic risk of an estimator:

 $R(\hat{\theta}_n) = \mathbb{E}[(\hat{\theta}_n - \theta)^2] = Bias^2 + Variance$

Let $(E,(\mathbb{P}_{\theta})_{\theta\in\Theta})$ be a statistical model based on observations $X_1,...X_n$ and

Non asymptotic confidence interval of

Any random interval I, depending on

the sample $X_1, \dots X_n$ but not at θ and

Confidence interval of asymptotic level

es do not depend on θ and such that:

Let $X_1,...,X_n = \tilde{X}$ and $\tilde{X} \stackrel{iid}{\sim} P_{\theta}$. A two-sided CI is a function depending on

 \hat{X} giving an upper and lower bound

in which the estimated parameter lies

 $\mathcal{I} = [l(\tilde{X}, u(\tilde{X}))]$ with a certain probabi-

lity $\mathbb{P}(\theta \in \mathcal{I}) \geq 1 - q_{\alpha}$ and conversely

Since the estimator is a r.v. depending

on \tilde{X} it has a variance $Var(\hat{\theta}_n)$ and a

 $\mathcal{I} = \hat{\theta}_n + \left[\frac{-q_{\alpha/2}\sqrt{Var(X_i)}}{\sqrt{n}}, \frac{q_{\alpha/2}\sqrt{Var(X_i)}}{\sqrt{n}}\right]$

This expression depends on the real

variance $Var(X_i)$ of the r.vs, the variance

has to be estimated. Three possible me-

thods: plugin (use sample mean), solve

(solve quadratic inequality), conservative

(use the maximum of the variance).

 $\lim_{n\to\infty} \mathbb{P}_{\theta}[\mathcal{I}\ni\theta] \geq 1-\alpha, \ \forall \theta\in\Theta$

Any random interval \mathcal{I} whose boundari- CDF of \mathbf{X} :

12 Confidence intervals

level $1 - \alpha$ for θ :

such that:

assume $\Theta \subseteq \mathbb{R}$. Let $\alpha \in (0,1)$.

 $\mathbb{P}_{\theta}[\mathcal{I} \ni \theta] \ge 1 - \alpha, \ \forall \theta \in \Theta$

Two-sided asymptotic CI

 $\mathbb{P}(\theta \notin \mathcal{I}) < \alpha$

Delta Method

P-Value

14 Random Vectors
A random vector
$$\mathbf{X} = (X^{(1)}, \dots, X^{(d)})^T$$

of dimension $d \times 1$ is a vector-valued function from a probability space ω to

$$\mathbb{R}^{n}:$$

$$\mathbf{X}: \Omega \longrightarrow \mathbb{R}^{d}$$

$$\begin{pmatrix} X^{(1)}(\omega) \\ X^{(2)}(\omega) \end{pmatrix}$$

$$\omega \longrightarrow \begin{pmatrix} X^{(1)}(\omega) \\ X^{(2)}(\omega) \\ \vdots \\ X^{(d)}(\omega) \end{pmatrix}$$
 where each $X^{(k)}$, is a (scalar) random variable on Ω .

 \mathbb{R}^d :

PDF of X: joint distribution of its components $X^{(1)}, \ldots, X^{(d)}$.

 $\mathbb{R}^d \to [0,1]$ $\mathbf{x} \mapsto \mathbf{P}(X^{(1)} < x^{(1)}, \dots, X^{(d)} < x^{(d)}).$

The sequence
$$X_1, X_2, \dots$$
 converges in probability to X if and only if each compo-

nent of the sequence $X_1^{(k)}, X_2^{(k)}, \dots$ converges in probability to $X^{(k)}$. Every Covariance matrix is positive **Expectation of a random vector** definite.

The expectation of a random vector is

the elementwise expectation. Let X be a

random vector of dimension $d \times 1$. $(\mathbb{E}[X^{(1)}])$ mean $\mathbb{E}[\hat{\theta}_n]$. After finding those it is possible to standardize the estimator using the CLT. This yields an asymptotic CI: $\mathbb{E}[\mathbf{X}^{(d)}]$

(if they exist):

The expectation of a random matrix is the expected value of each of its elements. Let $X = \{X_{ij}\}$ be an $n \times p$ random matrix. Then $\mathbb{E}[X]$, is the $n \times p$ matrix of numbers

$$\mathbb{E}[X] = \begin{bmatrix} \mathbb{E}[X_{11}] & \mathbb{E}[X_{12}] & \dots & \mathbb{E}[X_{1p}] \\ \mathbb{E}[X_{21}] & \mathbb{E}[X_{22}] & \dots & \mathbb{E}[X_{2p}] \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{E}[X_{n1}] & \mathbb{E}[X_{n2}] & \dots & \mathbb{E}[X_{np}] \end{bmatrix}$$

Let X and Y be random matrices of the Let X and Y be random matrices of the same dimension, and let A and B be conformable matrices of constants. $f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)},$ conformable matrices of constants.

 $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$ $\mathbb{E}[AXB] = A\mathbb{E}[X]B$ Covariance Matrix

Let *X* be a random vector of dimension $d \times 1$ with expectation μ_X .

Matrix outer products! $\Sigma = \mathbb{E}[(X - \mu_X)(X - \mu_X)^T] =$

$$\mathbb{E} \begin{bmatrix} X_1 - \mu_1 \\ X_2 - \mu_2 \\ \dots \\ X_d - \mu_d \end{bmatrix} [X_1 - \mu_1, X_2 - \mu_2, \dots, X_d - \mu_d]$$

$$\Sigma = Cov(X) = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_{dd} \end{bmatrix}$$

The covariance matrix Σ is a $d \times d$ matrix.

It is a table of the pairwise covariances of

the elemtents of the random vector. Its diagonal elements are the variances of the elements of the random vector, the off-diagonal elements are its covariances. Note that the covariance is commutative e.g. $\sigma_{12} = \sigma_{21}$

 $\Sigma = \mathbb{E}[XX^T] - \mathbb{E}[X]\mathbb{E}[X]^T =$ $= \mathbb{E}[XX^T] - \mu_X \mu_Y^T$

Alternative forms:

Let the random vector
$$X \in \mathbb{R}^d$$
 and A and B be conformable matrices of constants.

 $Cov(AX + B) = Cov(AX) = ACov(X)A^{T} =$ $A\Sigma A^{T}$

$$\Sigma < 0$$

Gaussian Random Vectors

A random vector $\mathbf{X} = (X^{(1)}, \dots, X^{(d)})^T$ is a Gaussian vector, or multivariate Gaussian or normal variable, if any linear combination of its components is a (univariate) Gaussian variable or a constant (a "Gaussian"variable with zero variance), i.e., if $\alpha^T \mathbf{X}$ is (univariate) Gaussian or constant for any constant non-zero vector $\alpha \in \mathbb{R}^d$. **Multivariate Gaussians**

The distribution of, X the d-dimensional

Gaussian or normal distribution, is completely specified by the vector mean $\mu = \mathbb{E}[\mathbf{X}] = (\mathbb{E}[X^{(1)}], \dots, \mathbb{E}[X^{(d)}])^T$ and the $d \times d$ covariance matrix Σ . If Σ is invertible, then the pdf of *X* is:

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^T \sum^{-1} (\mathbf{x} - \mu)},$$

vector.

Where $\det(\Sigma)$ is the determinant of Σ , $\sqrt{n}(\mathbf{g}(\mathbf{T}_n) - \mathbf{g}(\vec{\theta})) \xrightarrow{(d)} \nabla \mathbf{g}(\vec{\theta})^T \mathbf{T}$ which is positive when Σ is invertible. If $\mu = 0$ and Σ is the identity matrix, then With multivariate Gaussians and Sample X is called a standard normal random mean:

 $X \sim N_d(\mu, \Sigma)$ with conformable matrices A and B is a gaussian: $AX + B = N_d(A\mu + b, A\Sigma A^T)$

If the covariant matrix Σ is diagonal,

the pdf factors into pdfs of univariate

Gaussians, and hence the components

The linear transform of a gaussian

Multivariate CLT
Let
$$X_1,...,X_d \in \mathbb{R}^d$$
 be in

are independent.

and $Cov(X) = \Sigma$

Let $X_1,...,X_d \in \mathbb{R}^d$ be independent copies of a random vector X such that $\mathbb{E}[x] = \mu \ (d \times 1 \text{ vector of expectations})$

$$\begin{split} &\sqrt{(n)(\overline{X_n} - \mu)} \xrightarrow[n \to \infty]{(d)} N(0, \Sigma) \\ &\sqrt{(n)} \Sigma^{-1} \frac{\overline{X_n} - \mu}{\sqrt{(\sigma^2)}} \xrightarrow[n \to \infty]{(d)} N(0, I_d) \\ &\text{Where } \Sigma^{-1/2} \text{ is the } d \times d \text{ matrix such that } \\ &\Sigma^{-1/2} \Sigma^{-1/2} = \Sigma^1 \text{ and } I_d \text{ is the identity} \end{split}$$

matrix.

Multivariate Delta Method

Gradient Matrix of a Vector Function:

Given a vector-valued function $f: \mathbb{R}^d \to \mathbb{R}^k$, the gradient or the gradient matrix of f, denoted by ∇f , is the $d \times k$

General statement, given

known as the Jacobian matrix J_f of f.

- $(\mathbf{T}_n)_{n\geq 1}$ a sequence of random vectors
- satisfying $\sqrt{n} \left(\mathbf{T}_n \vec{\theta} \right) \xrightarrow{(d)} \mathbf{T}$,
- a function $\mathbf{g}: \mathbb{R}^d \to \mathbb{R}^k$ that is continuously differentiable at $\vec{\theta}$,

then

Cheatsheet for 18.6501x by Blechturm Page 3 of x	Estimator of KL divergence: $\binom{n_{\text{ex}}(Y)}{1}$	Loglikelihood:	$\operatorname{argmax}_{\theta \in \Theta} \sum_{i=1}^{n} \ln p_{\theta}(X_i) =$	Asymptotic normality of the maximum li- kelihood estimator
	$\mathrm{KL}(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta}) = \mathbb{E}_{\theta^*} \left[\ln \left(\frac{p_{\theta^*}(X)}{p_{\theta}(X)} \right) \right],$	$\ell_n = \sum_{j=2}^n T_j \ln(p_j)$		Under certain conditions (see slides) the
Let $T_n = \overline{X}_n$ where \overline{X}_n is the sam-	E (1	Poisson	$\operatorname{argmax}_{\theta \in \Theta} \ln \left(\prod_{i=1}^{n} p_{\theta}(X_{i}) \right)$	MLE is asymptotically normal. This applies even if the MLE is not the sample
ple average of $X_1,,X_n \stackrel{iid}{\sim} X$, and	$\widehat{KL}(\mathbf{P}_{\theta_*}, \mathbf{P}_{\theta}) = const - \frac{1}{n} \sum_{i=1}^{n} log(p_{\theta}(X_i))$	Likelihood:	$\prod_{i=1}^{n} p_{\theta}(X_i)$	average.
$\vec{\theta} = \mathbb{E}[X]$. The (multivariate) CLT then gives $T \sim \mathcal{N}(0, \Sigma_X)$ where Σ_X is	16 Likelihood Let $(E, \{P_{\theta}\}_{\theta \in \Theta})$ denote a discrete or continuous attaining model. Let P_{θ}	$L_n(x_1,\ldots,x_n,\lambda) = \prod_{i=1}^n \frac{\lambda^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!} e^{n\lambda}$	Gaussian Maximum-loglikelihood estimators:	The asymptotic variance of the MLE is the inverse of the fisher information.
the covariance of X . In this case, we have:	tinuous statistical model. Let p_{θ} denote the pmf or pdf of P_{θ} . Let $X_1,, X_n \stackrel{iid}{\sim} P_{\theta^*}$ where the parameter θ^* is unknown.	Loglikelihood: $\ell_n(\lambda) =$	MLE estimator for $\sigma^2 = \tau$: $\hat{\tau}_n^{MLE} = \frac{1}{n} \sum_{i=1}^n X_i^2$	$\sqrt{(n)}(\widehat{\theta}_n^{\text{MLE}} - \theta^*) \xrightarrow[n \to \infty]{(d)} N_d(0, \mathcal{I}(\theta^*)^{-1})$
$\sqrt{n} \left(\mathbf{g}(\mathbf{T}_n) - \mathbf{g}(\vec{\theta}) \right) \xrightarrow[n \to \infty]{(d)} \nabla \mathbf{g}(\vec{\theta})^T \mathbf{T}$	where the parameter θ^* is unknown. Then the likelihood is the function	$= -n\lambda + \log(\lambda)(\sum_{i=1}^{n} x_i)) - \log(\prod_{i=1}^{n} x_i!)$ Gaussian		17 Method of Moments
$\nabla \mathbf{g}(\vec{\theta})^T \mathbf{T} \sim \mathcal{N}\left(0, \nabla \mathbf{g}(\vec{\theta})^T \Sigma_{\mathbf{X}} \nabla \mathbf{g}(\vec{\theta})\right)$	$L_n: E^n \times \Theta$	Likelihood:	MLE estimators:	Let $X_1,, X_n \stackrel{iid}{\sim} \mathbf{P}_{\theta^*}$ associated with model $(\mathbb{E}, \{\mathbf{P}_{\theta}\}_{\theta \in \Theta})$, with $\mathbb{E} \subseteq \mathbb{R}$ and $\Theta \subseteq \mathbb{R}$,
,	$L_n(x_1, \dots, x_n, \theta) = \prod_{i=1}^n P_{\theta}[X_i = x_i]$	7)	$\hat{\mu}_n^{MLE} = \frac{1}{n} \sum_{i=1} (x_i)$	for some $d \ge 1$
$(\mathbf{T} \sim \mathcal{N}(0, \Sigma_{\mathbf{X}}))$, ,	$L(x_1x_n;\mu,\sigma^2) = $	16.1 Fisher Information	Population moments:
15 Distance between distributions Total variation	Loglikelihood: $\ell_n(\theta) = \ln(L(x_1,, x_n \theta)) =$	$= \frac{1}{\left(\sigma\sqrt{2\pi}\right)^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right)$	The Fisher information, captures the negative of the expected curvature of the loglikelihood function.	$m_k(\theta) = \mathbb{E}_{\theta}[X_1^k], 1 \le k \le d$
The total variation distance TV between the propability measures <i>P</i> and <i>Q</i> with a	$= ln(\prod_{i=1}^{n} f_{\theta}(x_i)) =$ = $\sum_{i=1}^{n} ln(f_{\theta}(x_i))$	Loglikelihood:	Let $(\mathbb{R}, \{\mathbf{P}_{\theta}\}_{\theta \in \mathbb{R}})$ denote a continuous statistical model. Let $f_{\theta}(x)$ denote the	Empirical moments:
sample space E is defined as:	Bernoulli	$\ell_n(\mu, \sigma^2) =$	pdf (probability density function) of the	$\widehat{m_k}(\theta) = \overline{X_n^k} = \frac{1}{n} \sum_{i=1}^n X_i^k$
$TV(\mathbf{P}, \mathbf{Q}) = \max_{A \subset E} \mathbf{P}(A) - \mathbf{Q}(A) ,$	Likelihood 1 trial: $L_1(p) = p^x (1-p)^{1-x}$	$=-nlog(\sigma\sqrt{2\pi})-\frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i-\mu)^2$ Exponential	continuous distribution P_{θ} . Assume that $f_{\theta}(x)$ is twice-differentiable as a function	Convergence of empirical moments:
Calculation with f and g :		Likelihood:	of the parameter θ .	P,a.s.
	Loglikelihood 1 trial: $\ell_1(p) = xlog(p) + (1-x)log(1-p)$	$L(x_1x_n;\lambda) = \lambda^n \exp\left(-\lambda \sum_{i=1}^n x_i\right)$	Formula for the calculation of Fisher	$\widehat{m_k} \xrightarrow[n \to \infty]{P,a.s.} m_k$
$TV(\mathbf{P}, \mathbf{Q}) = \begin{cases} \frac{1}{2} \sum_{x \in E} f(x) - g(x) , & \text{discr} \\ \frac{1}{2} \int_{x \in E} f(x) - g(x) dx, & \text{cont} \end{cases}$	$c_1(p) = x \log(p) + (1 - x) \log(1 - p)$	Loglikelihood:	Information of <i>X</i> :	$(\widehat{m_1},\ldots,\widehat{m_d}) \xrightarrow[n \to \infty]{P,a.s.} (m_1,\ldots,m_d)$
Symmetry:	Likelihood n trials:	Uniform	$(\partial f_{\theta}(x))^2$	MOM Estimator M is a map from the pa-
$d(\mathbf{P}, \mathbf{Q}) = d(\mathbf{Q}, \mathbf{P})$	$L_n(x_1,\ldots,x_n,p) =$	Likelihood:	$\mathcal{I}(\theta) = \int_{-\infty}^{\infty} \frac{\left(\frac{\partial f_{\theta}(x)}{\partial \theta}\right)^{2}}{f_{\theta}(x)} dx$	rameters of a model to the moments of
nonnegative:	$= p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}$	$L(x_1 \dots x_n; b) = \frac{1(\max_i(x_i \le b))}{b^n}$		its distribution. This map is invertible,
$d(\mathbf{P}, \mathbf{Q}) \ge 0$ definite:		U	Models with one parameter (ie. Bernulli):	(ie. it results into a system of equations that can be solved for the true parameter
$d(\mathbf{P}, \mathbf{Q}) = 0 \iff \mathbf{P} = \mathbf{Q}$	Loglikelihood n trials:	Loglikelihood:	$\mathcal{I}(\theta) = Var(\ell'(\theta))$	vector θ^*). Find the moments (as many
triangle inequality:	$\ell_n(p) =$	Maximum likelihood estimation		as parameters), set up system of equati- ons, solve for parameters, use empirical
$d(\mathbf{P}, \mathbf{V}) \le d(\mathbf{P}, \mathbf{Q}) + d(\mathbf{Q}, \mathbf{V})$ If the support of P and Q is disjoint:	$= \sum_{i=1}^{n} x_i \ln(p) + \left(n - \sum_{i=1}^{n} x_i\right) \ln(1-p)$	Cookbook: take the log of the likelihood	$\mathcal{I}(\theta) = -\mathbf{E}(\ell''(\theta))$	moments to estimate.
$d(\mathbf{P}, \mathbf{V}) = 1$	$\mathcal{L}_{i=1}$ if (P) (P)	function. Take the partial derivative of the loglikelihood function with respect	Models with multiple parameters (ie.	$\psi:\Theta o\mathbb{R}^d$
TV between continuous and discrete r.v: $J(\mathbf{p}, \mathbf{v}) = 1$		to the parameter. Set the partial derivati-	Gaussians):	$\theta \mapsto (m_1(\theta), m_2(\theta), \dots, m_d(\theta))$
$d(\mathbf{P}, \mathbf{V}) = 1$ KL divergence	Likelihood:	ve to zero and solve for the parameter.	$\mathcal{I}(\theta) = -\mathbb{E}\left[\mathbf{H}\ell(\theta)\right]$, , , , , , , , , , , ,
the KL divergence (also known as rela-	$L_n(x_1,\ldots,x_n,p,n) =$	If an indicator function on the pdf/pmf does not depend on the parameter, it can		$M^{-1}(m_1(\theta^*), m_2(\theta^*), \dots, m_d(\theta^*))$
tive entropy) KL between between the	$= nC_x p^x (1-p)^{n-x} = p^{x_i} (1-p)^{1-x_i}$	be ignored. If it depends on the parame-	Cookbook:	The MOM estimator uses the empirical moments:
propability measures P and Q with the common sample space E and pmf/pdf		ter it can't be ignored because there is an discontinuity in the loglikelihood functi-	Better to use 2nd derivative.	
functions f and g is defined as:	Eogine into di	on. The maximum/minimum of the X_i is		$M^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}, \frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}, \dots, \frac{1}{n}\sum_{i=1}^{n}X_{i}^{d}\right)$
	$\ell_n(p,n) = \frac{1}{2} (n \cdot p) + \frac{1}{2} (n \cdot p) +$	then the maximum likelihood estimator. Maximum likelihood estimator:	 Find loglikelihood 	Assuming M^{-1} is continuously differen-
$KL(\mathbf{P}, \mathbf{Q}) = \begin{cases} -x \in \mathbb{R}^{n}, & (\eta(x)) \\ (n(x)) \end{cases}$	$= \ln(nC_x) + x \ln(p) + (n-x) \ln(1-p)$	maximum inclinood estillator.	• Take second derivative (=Hessian	tiable at $M(0)$, the asymptotical variance
	C is a constant from n choose k, disap-	Let $\{E, (\mathbf{P}_{\theta})_{\theta \in \Theta}\}$ be a statistical model as-	if multivariate)	of the MOM estimator is:
Not a distance! Sum over support of <i>P</i> !	pears after differentiating.	sociated with a sample of i.i.d. random	 Massage second derivative or Hes- 	
Asymetric in general:	Multinomial Parameters # > 0 and n. n. Sample	variables $X_1, X_2,, \hat{X}_n$. Assume that there exists $\theta^* \in \Theta$ such that $X_i \sim \mathbf{P}_{\theta^*}$.	sian (isolate functions of X_i to use	$\sqrt{(n)}(\widehat{\theta_n^{MM}} - \theta) \xrightarrow[n \to \infty]{(d)} N(0,\Gamma)$
$KL(\mathbf{P}, \mathbf{Q}) \neq KL(\mathbf{Q}, \mathbf{P})$	Parameters $n > 0$ and $p_1,, p_r$. Sample space= $E = 1, 2, 3,, j$	The maximum likelihood estimator is the	with $-\mathbb{E}(\ell''(\theta))$ or $-\mathbb{E}[\mathbf{H}\ell(\theta)]$.	11 700
Nonnegative: $KL(\mathbf{P}, \mathbf{Q}) \ge 0$		(unique) θ that minimizes $KL(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta})$	 Find the expectation of the functi- ons of X_i and substitute them back 	T
Definite:	Likelihood:	over the parameter space. (The minimizer of the KL divergence is unique due	into the Hessian or the second de-	$\Gamma(\theta) = \left[\frac{\partial M^{-1}}{\partial \theta}(M(\theta))\right]^{T} \Sigma(\theta) \left[\frac{\partial M^{-1}}{\partial \theta}(M(\theta))\right]^{T}$
if $P = Q$ then $KL(P,Q) = 0$ Does not satisfy triangle inequality in	$p_X(x) = \prod_{i=1}^n p_i^{T_i}$, where $T^j = \mathbb{1}(X_i = j)$	to it being strictly convex in the space of	rivative. Be extra careful to subsitute the right power back. $\mathbb{E}[X_i] \neq$	$\Gamma(\theta) = \nabla_{\theta} (M^{-1})^T \Sigma \nabla_{\theta} (M^{-1})$
general:	is the count how often an outcome is	distributions once is fixed.)	$\mathbb{E}[X_i^2].$	Σ_{θ} is the covariance matrix of the
$KL(\mathbf{P}, \mathbf{V}) \not\leq KL(\mathbf{P}, \mathbf{Q}) + KL(\mathbf{Q}, \mathbf{V})$	seen in trials.	$\widehat{\theta}_{n}^{MLE} = \widehat{Q}_{n}^{T} (\mathbf{P}_{n}, \mathbf{P}_{n})$		random vector of the moments
		$\operatorname{argmin}_{\theta \in \Theta} \widehat{KL}_n(\mathbf{P}_{\theta^*}, \mathbf{P}_{\theta}) =$	 Don't forget the minus sign! 	$(X_1^1, X_1^2, \dots, X_1^d).$

18 M-estimation

Generalization of maximum likelihood estimation. No statistical model needs to be assumed to perform M-estimation.

Median

19 Hubert loss

$$h_{\delta}(x) = \begin{cases} \frac{x^2}{2} & \text{if } |x| < \delta \\ \delta(|x| - \delta/2) & \text{if } |x| > \delta \end{cases}.$$

the derivative of Huber's loss is the clip function :

$$\begin{array}{ll} \operatorname{clip}_{\delta}(x) & := & \frac{d}{dx}h_{\delta}(x) & = \\ \delta & \operatorname{if} x > \delta \\ x & \operatorname{if} - \delta \le x \le \delta \end{array}$$