Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра прикладной математики

Курсовая работа по дисциплине «Численные методы»

Факультет: ПМИ

Группа: ПМ-73

Вариант: 41

Студент: Дергачев П.А.

Преподаватель: Персова М.Г.

Новосибирск 2019

1. Задание

МКЭ для двумерной краевой задачи для эллиптического уравнения в декартовой системе координат. Базисные функции билинейные на прямоугольниках. Краевые условия всех типов. Матрицу СЛАУ генерировать в разреженном строчном формате. Для решения СЛАУ использовать МСГ или ЛОС с неполной факторизацией.

2. Математическая модель

Пусть дана эллиптическая краевая задача, определяемая дифференциальным уравнением:

$$- div (\lambda grad u) + \gamma u = f (1)$$

С краевыми условиями на границах:

$$u|_{S_1}=u_g$$
- первое краевое условие *(2)*

$$\lambda \frac{\partial u}{\partial n}|_{S_2} = \theta$$
 - второе краевое условие (3)

$$(\lambda \frac{\partial u}{\partial n} + \beta (u - u_{\beta}))|_{s_3} = 0$$
- третье краевое условие (4)

2.1. Вариационная постановка в форме уравнения Галеркина

Умножим скалярно уравнение (1) на пробную функцию ψ и проинтегрируем обе части уравнения по всей области Ω :

$$\int_{\Omega} -div (\lambda grad(u)) \psi d\Omega + \int_{\Omega} \gamma u \psi d\Omega = \int_{\Omega} f \psi d\Omega,$$

Преобразуем первый интеграл по формуле Грина:

$$\int_{\Omega} -div(\lambda grad(u))\psi d\Omega = \int_{\Omega} (\lambda grad(u))grad(\psi)d\Omega - \int_{S} \lambda \frac{\partial u}{\partial n}dS$$

$$\int_{\Omega} \left(\lambda grad(u) \right) grad(\psi) d\Omega - \int_{S} \lambda \frac{\partial u}{\partial n} dS + \int_{\Omega} \gamma u \psi d\Omega = \int_{\Omega} f \psi d\Omega$$

Интеграл по границе S разобьем на три интеграла по границам S_1, S_2, S_3 , на которых заданы краевые условия:

$$\int_{\mathcal{S}_1}\lambda rac{\partial u}{\partial n}\psi=0$$
, функции ψ построим такие, что на границе \mathcal{S}_1 они равны 0.

 $\int_{S_2}\lambdarac{\partial u}{\partial n}\psi ds=\int_{S_2} heta\psi ds$ - учет второго краевого условия

$$\int_{\mathcal{S}_3}\lambda rac{\partial u}{\partial n}\psi ds=\int_{\mathcal{S}_3}eta(u-u_eta)\psi ds$$
 - учет третьего краевого условия

В итоге получим:

$$\int_{\Omega} (\lambda grad(u))grad(\psi)d\Omega + \int_{\Omega} \gamma u\psi d\Omega - \int_{S_2} \theta \psi ds - \int_{S_3} \beta (u - u_{\beta})\psi ds = \int_{\Omega} f\psi d\Omega$$

$$\int_{\Omega} \left(\lambda grad(u) \right) grad(\psi) d\Omega + \int_{\Omega} \gamma u \psi \mathrm{d}\Omega + \int_{S_3} \beta u \psi ds = \int_{\Omega} f \psi \mathrm{d}\Omega + \int_{S_2} \theta \psi ds + \int_{S_3} \beta u_\beta \psi ds$$

2.2 Построение дискретного аналога

Далее разобьем область $\Omega = igcup_k \Omega_k$

Решение задачи будем искать в виде: $u^h = \sum_{i=1}^n q_i * \psi_i$, перебирая $\psi = \psi_i$ получим:

$$\sum_{j=1}^{n} q_{j} \left(\int_{\Omega} \lambda * \operatorname{grad} \psi_{i} * \operatorname{grad} \psi_{j} d\Omega + \int_{\Omega} \gamma * \psi_{i} * \psi_{j} d\Omega + \beta * \int_{S_{3}} \psi_{i} * \psi_{j} dS \right) - \int_{S_{2}} \theta * \psi_{i} dS$$
$$- \int_{S_{3}} \beta * u_{\beta} * \psi_{i} dS = \int_{\Omega} f * \psi_{i} d\Omega$$

где функции ψ_i есть базисные функции, которыми аппроксимируются функция и и f. После суммирования по всем функциям ψ_i получим СЛАУ относительно весов q_i .

$$Aq = b$$

$$A_{ij} = \begin{cases} \int\limits_{\Omega} \lambda * grad \, \psi_{j} * grad \psi_{i} d\Omega + \int\limits_{\Omega} \gamma * \psi_{j} * \psi_{i} d\Omega + \beta * \int\limits_{S_{3}} \psi_{j} * \psi_{i} \, dS, i \in \mathbb{N}_{0} \\ \delta_{ij}, i \notin \mathbb{N}_{0} \end{cases}$$

$$b_{i} = \begin{cases} \int\limits_{S_{2}} \theta * \psi_{i} dS + \int\limits_{S_{3}} \beta * u_{\beta} * \psi_{i} dS + \int\limits_{\Omega} f * \psi_{i} d\Omega, i \in \mathbb{N}_{0} \\ u_{g}(x_{i}), i \notin \mathbb{N}_{0} \end{cases}$$

в которых символ δ_{ij} — символ Кронекера (δ_{ij} =1, если j=i иначе δ_{ij} =0) где матрица А представлена в виде суммы некоторых матриц.

$$G_{\!\scriptscriptstyle ij} = \int\limits_{\Omega} \lambda grad\psi_{i}grad\psi_{j}d\Omega$$
 - матрица жесткости

$$M_{ij} = \int\limits_{\Omega} \gamma \psi_i \psi_j d\Omega$$
 - матрица массы

$$F_i = \int\limits_{\Omega} f \psi_i d\Omega$$
. — вектор правой части.

3. Базисные функции

Разобьём область Ω на прямоугольники Ω_k : $\Omega = \bigcup_{k=1}^N \Omega_k$

Рассмотрим один элемент, пронумеруем вершины следующим образом:

Рассмотрим билинейные базисные функции. Эти функции определяются следующим образом:

$$X_1(x) = \frac{x_{p+1} - x}{h_x}$$
, $X_2(x) = \frac{x - x_p}{h_x}$, $h_x = x_{p+1} - x_p$

$$Y_1(y) = \frac{y_{s+1} - y}{h_y}$$
, $Y_2(y) = \frac{y - y_s}{h_y}$, $h_y = y_{s+1} - y_s$

Локальные базисные функции на конечном элементе Ω_k представляются в виде:

$$\psi_1(x, y) = X_1(x)Y_1(y)$$

$$\psi_2(x,y) = X_2(x)Y_1(y)$$

$$\psi_3(x,y) = X_1(x)Y_2(y)$$

$$\psi_4(x, y) = X_2(x)Y_2(y)$$

Таким образом каждая из функций равна 1 в одном из узлов и 0 в остальных. Значит вес q_i фактически является значением функции u в i - ом узле сетки.

4. Построение локальных матриц и локального вектора правой части.

Рассмотрим следующие локальные матрицы:

$$G_{ij}=\int_{\Omega}\;\lambda\left(rac{\partial\psi_{i}}{\partial x}rac{\partial\psi_{j}}{\partial x}+\;rac{\partial\psi_{i}}{\partial y}rac{\partial\psi_{j}}{\partial y}
ight)d\Omega$$
 — матрица жесткости

$$M_{ij} = \int_{\Omega} \; \gamma \; \psi_i \psi_j \; \, d\Omega$$
 – матрица массы

Матрица жёсткости:

$$G = \frac{\lambda h_{y}}{6 h_{x}} \begin{bmatrix} 2 & -2 & 1 & -1 \\ -2 & 2 & -1 & 1 \\ 1 & -1 & 2 & -2 \\ -1 & 1 & -2 & 2 \end{bmatrix} + \frac{\lambda h_{x}}{6 h_{y}} \begin{bmatrix} 2 & 1 & -2 & -1 \\ 1 & 2 & -1 & -2 \\ -2 & -1 & 2 & 1 \\ -1 & -2 & 1 & 2 \end{bmatrix}$$

<u>Матрица массы:</u>

$$M = \gamma \frac{h_x h_y}{36} \begin{bmatrix} 4 & 2 & 2 & 1 \\ 2 & 4 & 1 & 2 \\ 2 & 1 & 4 & 2 \\ 1 & 2 & 2 & 4 \end{bmatrix}$$

Вектор правой части:

$$F = \begin{bmatrix} M_{11}f_1 + M_{12}f_2 + M_{13}f_3 + M_{14}f_4 \\ M_{21}f_1 + M_{22}f_2 + M_{23}f_3 + M_{24}f_4 \\ M_{31}f_1 + M_{32}f_2 + M_{33}f_3 + M_{34}f_4 \\ M_{41}f_1 + M_{42}f_2 + M_{43}f_3 + M_{44}f_4 \end{bmatrix}$$

5. Сборка глобальной матрицы и вектора правой части

Для занесения результатов сборки локальной матрицы в глобальную необходимо установить соответствие между локальной нумерацией узлов и глобальной.

На рисунке показано соответствие между локальной и глобальной нумерациями. Таким образом, изменения глобальной матрицы будут иметь вид:

$$A_{m,m} = G_{11} + M_{11}$$

$$A_{m,m+1} = G_{12} + M_{12}$$

$$A_{m,k} = G_{13} + M_{13}$$

$$\dots \dots$$

$$A_{k,k+1} = G_{34} + M_{34}$$

$$A_{k+1,k+1} = G_{44} + M_{44}$$

Аналогично выполняется занесение результатов в вектор правой части.

6. Краевые условия.

6.1. Краевые условия первого рода.

Для учета первых краевых условий в глобальной матрице и глобальном векторе находим соответствующую глобальному номеру краевого узла строку, и ставим вместо диагонального элемента глобальной матрицы достаточно большое число, а вместо элемента с таким номером в вектор правой части это число, умноженное на значение краевого условия.

Пусть в і-том узле задано первое краевое условие, тогда то i -е уравнение СЛАУ примет вид $q_i \cdot 10^{20} = u_g \cdot 10^{20}$, или $q_i = u_g$.

6.2. Краевые условия второго рода

Учет краевого условия второго рода осуществляется за счет добавления в глобальный вектор правой части слагаемого $\int\limits_{\Gamma_k} \theta \psi_i dS$, где ребро Γ_k принадлежит конечному элементу Ω_k и содержит узлы с номерами k_1 , k_2 . Вклад в вектор правой части будем вычислять по формуле:

$$b^{S_2} = \frac{h}{6} \begin{bmatrix} 2\theta_1 + \theta_2 \\ \theta_1 + 2\theta_2 \end{bmatrix}$$

Вклад в матрицу:

После вычисления вектора его компоненты заносятся в глобальный вектор на позиции k_1 и k_2 .

6.3. Краевые условия третьего рода.

При учете третьих краевых условий формируются локальная матрица и вектор правой части, которые заносятся в СЛАУ аналогично локальной матрицы конечного элемента и локального вектора правой части конечного элемента.

$$A^{S_3} = \frac{\beta h}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Вклад в вектор правой части, при представлении u_{β} на Г в виде разложения по базисным функциям ψ_1 и ψ_2 :

$$b^{S_3} = \frac{h}{6} \begin{bmatrix} 2u_{\beta 1} + u_{\beta 2} \\ u_{\beta 1} + 2u_{\beta 2} \end{bmatrix}$$

7. Формирование портрета глобальной матрицы.

Портрет глобальной матрицы формируется при помощи дополнительного массива, в который заносятся все связи между узлами (назовем узлы связанными, если существует конечный элемент, содержащий каждый из них), затем под каждую пару связанных узлов выделяется память в глобальной матрице, построенной в разреженном строчном формате.

8. Код программы.

```
#include <iostream>
#include <fstream>
#include <iomanip>
#include <locale.h>
#include <memory.h>
#include "math.h"
using namespace std;
#define STR 15
                                    // количество выводимых знаков после запятой
#define EPS 1e-15
                                        // точность решения СЛАУ
#define MAX ITER 1000
                                      // количество итераций
#define MEMORY 200000
                              // объем памяти
typedef double real;
real* global;
real* GridX;
                        // указатель области памяти
                 // сетка для X
// сетка для У
real* GridY;
real* di;
real* ggl;
                              // диагональ исходной матрицы
                                 // нижний треугольник исходной матрицы
real* ggu;
                                  // верхний треугольник исходной матрицы
                          // вспомогательный вектор
// вектор решения
real* r;
real* x;
real* f;
                            // вектор правой части
                           // вспомогательный вектор
// вспомогательный вектор
// вспомогательный вектор
// вспомогательный вектор
real* p;
real* z;
real* z;
real* q;
real* L;
real* U;
real* diag;
real* s;
                            // нижний треугольник обусловленной матрицы // верхний треугольник обусловленной матрицы
                           // диагональ обусловленной матрицы
real* s;
real* sout;
                            // вспомогательный вектор
                            // вспомогательный вектор
real eps;
                                  // точность решения
                      // портрет матрицы
int* ig;
int* jg;
                      // позиции элементов матрицы
```

```
int N;
                        // размерность СЛАУ
int Nx;
                        // количество по Х
int Ny;
                        // количество по Y
int
        LU();
                            // функция факторизации
void
        assembling();
                       // сборка глобальной матрицы
                       // получение параметов
        get_info();
void
                      // чтение сетки
void
        read_grid();
        AddToMatrix(int, int, real);
void
                                              // добаление в матрицу
                                                  // коэффициент лямбда
real
        GetLambda(real, real);
                                                  // коэффициент гамма
        GetGamma(real, real);
real
        GetF(real, real);
                                                          // правая часть
real
real
        GetU_(real, real);
                                                  // точное решение
void
        GaussL(real*, real*);
                                                  // Решение СЛАУ
          GaussU(real*, real*);
void
                                                  // Решение СЛАУ
          MultMatrixOnVector(real*, real*);
                                                  // Умножение матрицы на вектор
void
        ScalarMult(real*, real*);
                                                          // Скалярное произведение векторов
real
real
        sum(int, int);
                                              // Скалярное произведение факторизации
        method();
                                                              // Сборка метода
void
void
        run();
                                                      // Выполнение метода
void
        result();
                                              // Вывод результата в файл
        Задание парамметров и функции
real GetLambda(real x, real y)
{
        return 1.0;
}
real GetGamma(real x, real y)
{
        return 0.;
}
real GetF(real x, real y) // F
{
        return 1.;
}
real GetU_(real x, real y) // U
{
        return x+y;
}
void method()
        int i, k;
        // Получение информации о задаче
        global = new double[MEMORY];
                                                                                  // выделение памяти
        memset(global, 0, MEMORY * sizeof(double));
                                                      // заполнение нулями
        get_info();
        // Настройка указателей
        ig = (int*)global;
        jg = (int*)(global + N + 1);
        // Генерация количества элементов матрицы
        int istep = 0;
        for (i = 0; i < N + 1; i++)
        {
                ig[i] = istep;
                istep += i;
        }
        // Генерация позиций элементов матрицы
        istep = 0;
        for (i = 0; i < N; i++)
                for (k = 0; k < i; k++)
                {
                        jg[istep] = k;
                        istep++;
                }
                Настройка указателей
        ggl = global + N + 1 + ig[N];
```

```
ggu = global + 2 * (ig[N]) + N + 1;
di = global + 3 * (ig[N]) + N + 1;
        f = di + N;
        r = f + N;
        z = r + N;
        p = z + N;
        q = p + N;
        diag = q + N;
        L = diag + N;
        U = L + ig[N];
        x = U + ig[N];
        s = x + N;
        sout = s + N;
        GridX = sout + N;
        GridY = GridX + Nx;
        // Чтение сетки
        read_grid();
        // Сборка глобальной матрицы
        assembling();
}
void get_info()
{
        ifstream file("Area.txt");
        file >> Nx >> Ny;
        N = Nx * Ny;
                                                            // размер матрицу СЛАУ
        file.close();
}
void read_grid()
        // Чтение сетки по оси Х
        ifstream flie_x("GridX.txt");
        for (int i = 0; i < Nx; i++)
                flie_x >> GridX[i];
        flie_x.close();
        // Чтение сетки по оси У
        ifstream flie_y("GridY.txt");
        for (int i = 0; i < Ny; i++)
                 flie_y >> GridY[i];
        flie_y.close();
}
void assembling()
{
        int i, k, i1, k1;
        int Index[4]; // номера узлов
        real lambda, gamma, px, y, xp, yp, hx, hy;
                                                            // параметры КЭ
        real tmp, hx2, hy2, ud, u1, u2, u3;
        real fv[4];
                                  // значения правой части
                         // матрица жёсткости
        real B[4][4];
                        // матрица масс
        real C[4][4];
        real F[4];
                                  // вектор правой части
        // Процедура ассемблирования глобальной матрицы
        for (k = 0; k < Ny - 1; k++)
for (i = 0; i < Nx - 1; i++)
                          px = GridX[i]; // опорная точка
                         y = GridY[k];
                          // верхние точки
                          xp = GridX[i + 1];
                          yp = GridY[k + 1];
                          // шаги
                         hx = xp - px;
hy = yp - y;
hx2 = hx * hx;
                          hy2 = hy * hy;
```

```
// коэффициенты
lambda = GetLambda(px + hx / 2.0, y + hy / 2.0);
gamma = GetGamma(px + hx / 2.0, y + hy / 2.0);
// значения правой части
fv[0] = GetF(px, y);
fv[1] = GetF(xp, y);
fv[2] = GetF(px, yp);
fv[3] = GetF(xp, yp);
// Задаём значения матрицы жёсткости
tmp = 1.0 / (hx * hy);
ud = (hx2 + hy2) * tmp / 3;
u1 = (hx2 - 2 * hy2) * tmp / 6;

u2 = -(2 * hx2 - hy2) * tmp / 6;
u3 = -(hx2 + hy2) * tmp / 6;
B[0][0] = ud;
B[0][1] = u1;
B[0][2] = u2;
B[0][3] = u3;
B[1][0] = u1;
B[1][1] = ud;
B[1][2] = u3;
B[1][3] = u2;
B[2][0] = u2;
B[2][1] = u3;
B[2][2] = ud;
B[2][3] = u1;
B[3][0] = u3;
B[3][1] = u2;
B[3][2] = u1;
B[3][3] = ud;
// Задаём значения матрицы масс
ud = hx * hy / 9.0;
u1 = hx * hy / 18.0;
u2 = u1;
u3 = hx^* hy / 36.0;
C[0][0] = ud;
C[0][1] = u1;
C[0][2] = u2;
C[0][3] = u3;
C[1][0] = u1;
C[1][1] = ud;
C[1][2] = u3;
C[1][3] = u2;
C[2][0] = u2;
C[2][1] = u3;
C[2][2] = ud;
C[2][3] = u1;
C[3][0] = u3;
C[3][1] = u2;
C[3][2] = u1;
C[3][3] = ud;
//Задаём значения вектора правой части
for (int j = 0; j++; j < 4)
        F[j] = 0;
for (int j = 0; j < 4; j++)
        for (int k = 0; k < 4; k++)
                 F[j] += C[j][k] * fv[k];
//Сборка глобальной матрицы
Index[0] = Nx * k + i;
```

```
 \begin{split} & \text{Index}[1] = \text{Nx * k + i + 1;} \\ & \text{Index}[2] = \text{Nx * (k + 1) + i;} \\ & \text{Index}[3] = \text{Nx * (k + 1) + i + 1;} \\ \end{aligned} 
                             for (i1 = 0; i1 < 4; i1++)
                                       for (k1 = 0; k1 < 4; k1++)
                                                 AddToMatrix(Index[i1], Index[k1], lambda * B[i1][k1] + gamma *
C[i1][k1]);
                                       f[Index[i1]] += F[i1];
                             }
                   }
          // Учёт краевых условий первого рода
         for (i = 0; i < Nx; i++)
                                                           // параллельно оси Х
                   px = GridX[i];
                   y = GridY[0];
                   di[i] = 1.0e+50;
                   f[i] = 1.0e+50 * GetU_(px, y);
                   y = GridY[Ny - 1];
                   di[Nx * (Ny - 1) + i] = 1.0e+50;
f[Nx * (Ny - 1) + i] = 1.0e+50 * GetU_(px, y);
          }
          for (k = 0; k < Ny; k++)
                                                          // параллельно оси Ү
                   y = GridY[k];
                   px = GridX[0];
                   di[k * Nx] = 1.0e+50;
f[k * Nx] = 1.0e+50 * GetU_(px, y);
                   px = GridX[Nx - 1];
di[(k + 1) * Nx - 1] = 1.0e+50;
f[(k + 1) * Nx - 1] = 1.0e+50 * GetU_(px, y);
          }
}
//
         Добавление элементов в матрицу
void AddToMatrix(int i, int j, real el)
{
          int k;
          if (i == j) di[i] += el;
          else
          {
                   if (i > j)
                             for (k = ig[i]; k < ig[i + 1]; k++)
                                       if (jg[k] == j) ggl[k] += el;
                   }
                   else
                             for (k = ig[j]; k < ig[j + 1]; k++)
                                       if (jg[k] == i) ggu[k] += el;
                    }
         }
//-----L0C-----
//
         Факторизация
int LU()
{
          int i, j;
          for (i = 0; i < N; i++)
          {
                   for (j = ig[i]; j < ig[i + 1]; j++)
                             L[j] = (ggl[j] - sum(i, jg[j]));
                             U[j] = (ggu[j] - sum(jg[j], i)) / diag[jg[j]];
                    diag[i] = di[i] - sum(i, i);
          return 0;
```

```
}
        Решение нижнего треугольника
//
void GaussL(real* in, real* out)
        int i, j;
        real result;
        for (i = 0; i < N; i++)
                result = 0;
                for (j = ig[i]; j < ig[i + 1]; j++)
                         result += L[j] * out[jg[j]];
                out[i] = (in[i] - result) / diag[i];
        }
}
        Решение верхнего треугольника
//
void GaussU(real* in, real* out)
        int i, j;
for (i = 0; i < N; i++) out[i] = in[i];</pre>
        for (i = N - 1; i >= 0; i--)
        {
                for (j = ig[i]; j < ig[i + 1]; j++)
                         out[jg[j]] -= U[j] * out[i];
                }
        }
}
//
        Умножение матрицы на вектор
void MultMatrixOnVector(real* in, real* out)
        int i, j;
        real* out1;
        out1 = new real[N];
        for (i = 0; i < N; i++)
                out1[i] = di[i] * in[i];
                for (j = ig[i]; j < ig[i + 1]; j++)
                         out1[i] += ggl[j] * in[jg[j]];
                         out1[jg[j]] += ggu[j] * in[i];
                 }
        }
        for (i = 0; i < N; i++)
                out[i] = out1[i];
        delete[] out1;
}
//
        Скалярное произведение
real ScalarMult(real* v1, real* v2)
        int i;
        real result;
        result = 0;
        for (i = 0; i < N; i++)
                result += v1[i] * v2[i];
        return result;
}
        Скалярное произведение для факторизации
real sum(int i, int j)
{
        int k, l, find;
        real result;
        result = 0.0;
        if (i == j)
                for (k = ig[i]; k < ig[i + 1]; k++)
                         result += U[k] * L[k];
        }
        else
```

```
{
                 // верхний треугольник
                 if (i > j)
                 {
                           for (k = ig[j]; k < ig[j + 1]; k++)
                                   find = 0;
                                   for (1 = ig[i]; 1 < ig[i + 1] \&\& find == 0; 1++)
                                   {
                                            if (jg[1] == jg[k])
                                                     result += U[k] * L[1];
                                                     find = 1;
                                            }
                                   }
                          }
                 // нижний треугольник
                 else
                  {
                          for (l = ig[i]; l < ig[i + 1]; l++)
                                   find = 0;
                                   for (k = ig[j]; k < ig[j + 1] \&\& find == 0; k++)
                                   {
                                            if (jg[1] == jg[k])
                                                     result += U[k] * L[1];
                                                     find = 1;
                                            }
                                   }
                          }
                 }
         return result;
}
//
        Основная функция метода
void run()
         int iter;
         int i, check, stop;
        real alpha, alphazn, alphach, beta, betach, betazn, CheckExit;
         // Факторизация
        check = LU();
         if (check != 0) cout << "Нельзя выполнить факторизацию" << check + 1 << endl;
        // Инициализация
         stop = 0;
         for (i = 0; i < N; i++) x[i] = 0;
        GaussL(f, r);
         GaussU(r, z);
        MultMatrixOnVector(z, q);
        GaussL(q, p);
         // Процесс решения СЛАУ
        for (iter = 0; iter < MAX_ITER && stop == 0; iter++)</pre>
         {
                  alphach = ScalarMult(p, r);
                  alphazn = ScalarMult(p, p);
                  alpha = alphach / alphazn;
                 for (i = 0; i < N; i++) x[i] += alpha * z[i];
for (i = 0; i < N; i++) r[i] -= alpha * p[i];
                  GaussU(r, s);
                 MultMatrixOnVector(s, sout);
                 GaussL(sout, q);
                  betazn = ScalarMult(p, p);
                 betach = ScalarMult(p, q);
                 beta = -betach / betazn;
                  //GaussU(r,s);
                 for (i = 0; i < N; i++) z[i] = beta * z[i] + s[i]; for (i = 0; i < N; i++) p[i] = beta * p[i] + q[i];
                 CheckExit = ScalarMult(r, r);
                 if (CheckExit < EPS) stop = 1;</pre>
         }
```

```
}
void result()
         int i, k, num = 0;
         real px, y, func, res = 0.0, norm = 0.0, tmp;
         ofstream output("result.txt");
         output << "X" << setw(STR + 8) << "Y" << setw(STR + 8) << "U" << setw(STR + 8) << "U*" << setw(STR + 8) << "U*" - U" << endl;
         for (k = 0; k < Ny; k++)
                  for (i = 0; i < Nx; i++)
                            px = GridX[i];
                            y = GridY[k];
                            func = GetU_(px, y);
tmp = fabs(x[num] - func);
                            res += tmp * tmp;
                            norm += func * func;
                            output << setprecision(STR) << px</pre>
                                      << setw(STR + 8) << y
<< setw(STR + 8) << x[num]</pre>
                                      << setw(STR + 8) << func;
                            output << setw(STR + 8) << tmp << endl;</pre>
                            num++;
         output << "\n ||U-U*|| / ||U*|| = " << scientific << sqrt(res / norm) << endl;
         output.close();
}
//
         Главная функция
int main()
{
         setlocale(LC_CTYPE, "russian");
         method();
         run();
         result();
         return 0;
```

9. Тестирование.

Tecm 1

Условия:

$$\lambda = 1$$
 $\gamma = 0$ $f = -4$

Исходная функция:

$$u(x,y) = x^2 + y^2$$

Сетка: Y={0;1;2} X={0;2;4;6}

Цель теста:

Проверка правильного составления матрицы жесткости с постоянным коэффициентом.

Х	Y	U	U*	U* - U	<i>U*-U</i> / <i>U</i> *
0	0	2,00E-50	0	2,00E-50	
2	0	4	4	0	5,02E-17
4	0	16	16	0	

6	0	36	36	0	
0	1	1	1	0	
2	1	5	5	8,88E-16	
4	1	17	17	3,55E-15	
6	1	37	37	0	
0	2	4	4	0	
2	2	8	8	0	
4	2	20	20	0	
6	2	40	40	0	

Tecm 2

Условия:

$$\lambda = 1 \ \gamma = 1 \ f = x^2 + y^2 - 4$$

Исходная функция:

$$u(x,y) = x^2 + y^2$$

Сетка: Y={0;1;2} X={0;2;4;6}

Цель теста:

Проверка совместного составления матрицы жесткости и матрицы масс.

Х	Υ	U	U*	U* - U	<i> U*-U</i> / <i>U</i> *
0	0	1,17E-50	0	1,17E-50	
2	0	4	4	0	
4	0	16	16	0	
6	0	36	36	0	
0	1	1	1	0	
2	1	5	5	0	1,60E-52
4	1	17	17	0	1,006-32
6	1	37	37	0	
0	2	4	4	0	
2	2	8	8	0	
4	2	20	20	0	
6	2	40	40	0	

Tecm 3

Условия:

$$\lambda = 1 \ \gamma = 1 \ f = x(x^2 - 6) + y(y^2 - 6)$$

Исходная функция:

$$u(x,y) = x^3 + y^3$$

Сетка: Y={0;1;2} X={0;2;4;6}

Цель теста:

Проверка точного приближения базисными функциями полинома третьего порядка.

Х	Y	U	U*	U* - U	<i>U*-U</i> / <i>U</i> *
0	0	1,50E-50	0	1,50E-50	
2	0	8	8	0	
4	0	64	64	0	
6	0	216	216	0	
0	1	1	1	0	
2	1	9	9	1,78E-15	7 175 17
4	1	65	65	2,84E-14	7,17E-17
6	1	217	217	0	
0	2	8	8	0	
2	2	16	16	0	
4	2	72	72	0	
6	2	224	224	0	,

Вывод:

Действительно, полиномы третьего порядка приближаются с точностью до 13 знаков базисными функциями на любой сетке.

Tecm 4

Условия:

$$\lambda = 1 \ \gamma = 0 \ f = -12x^2 - 12y^2$$

Исходная функция:

$$u(x,y) = x^4 + y^4$$

Цель теста:

Проверка приближения бикубическими функциями полиномы четвертого порядка.

Сетка 1: Y={0;1;2} X={0;2;4;6}

Х	Y	U	U*	U* - U	<i>U*-U</i> / <i>U</i> *
0	0	2,73E-50	0	2,73E-50	
2	0	16	16	0	
4	0	256	256	0	3,35E-03
6	0	1296	1296	0	
0	1	1	1	0	

2	1	11,545455	17	5,45E+00
4	1	251,54545	257	5,45E+00
6	1	1297	1297	0
0	2	16	16	0
2	2	32	32	0
4	2	272	272	0
6	2	1312	1312	0

Сетка 2: Y={0; 0.5; 1; 1.5;2} X={0;1;2;3;4;5;6}

Х	Y	U	U*	U* - U	<i> </i>
0	0	-2,12E-52	0	2,12E-52	
1	0	1	1	0	
2	0	16	16	0	
3	0	81	81	0	
4	0	256	256	0	
5	0	625	625	5,45E+00	
6	0	1296	1296	5,45E+00	
0	0,5	0,0625	0,0625	0	
1	0,5	0,261734	1,0625	8,01E-01	
2	0,5	15,14864	16,0625	9,14E-01	
3	0,5	80,13150	81,0625	9,31E-01	
4	0,5	255,1486	256,0625	9,14E-01	
5	0,5	624,2617	625,0625	8,01E-01	
6	0,5	1296,063	1296,063	0	
0	1	1	1	0	
1	1	0,957945	2	1,04E+00	
2	1	15,78054	17	1,22E+00	2 005 04
3	1	80,76026	82	1,24E+00	2,09E-04
4	1	255,7805	257,0000	1,22E+00	
5	1	624,9579	626	1,04E+00	
6	1	1297	1297	0	
0	1,5	5,0625	5,0625	0	
1	1,5	5,2617	6,0625	8,01E-01	
2	1,5	20,14864	21,0625	9,14E-01	
3	1,5	85,13150	86,06250	9,31E-01	
4	1,5	260,1486	261,0625	9,14E-01	
5	1,5	629,2617	630,0625	8,01E-01	
6	1,5	1301,063	1301,063	0	
0	2	16	16	0	
1	2	17	17	0	
2	2	32	32	0	
3	2	97	97	0	
4	2	272	272	0	
5	2	641	641	0	

6	2	1312	1312	0	
---	---	------	------	---	--

Сетка 3: Y={0; 0.25; 0.5; 0.75; 1; 1.25; 1.5; 1.75; 2} X={0; 0.5; 1; 1.5; 2; 2.5; 3; 3.5; 4; 4.5; 5; 5.5; 6}

Х	Y	U	U*	U* - U	<i> U*-U</i> / <i>U</i> *
0	0	-1,48E-52	0	1,48E-52	
0,5	0	0,0625	0,0625	0	
1	0	1	1	0	
1,5	0	5,0625	5,0625	0	
2	0	16	16	0	
2,5	0	39	39	0	
3	0	81	81	0	
3,5	0	150,063	150,063	0	
4	0	256	256	0	
4,5	0	410,063	410,063	0	
5	0	625	625,0000	0	
5,5	0	915,063	915,063	0	
6	0	1296,000	1296,000	0	
0	0,25	0,003906	0,003906	0	
0,5	0,25	-0,015992	0,066406	0,082398	
1	0,25	0,891582	1,003910	1,12E-01	
1,5	0,25	4,940540	5,066410	1,26E-01	
2	0,25	15,87220	16	1,32E-01	
2,5	0,25	38,93220	39,06640	1,34E-01	
3	0,25	80,86910	81,00390	1,35E-01	1,30E-05
3,5	0,25	149,9320	150,0660	0,134179	
4	0,25	255,8720	256,0040	0,131749	
4,5	0,25	409,9410	410,0660	1,26E-01	
5	0,25	624,8920	625,0040	1,12E-01	
5,5	0,25	914,9840	915,0660	8,24E-02	
6	0,25	1296	1296	0	
0	0,5	0,0625	0,062500	0	
0,5	0,5	-0,007883	0,125000	0,132883	
1	0,5	0,873026	1,062500	0,189474	
1,5	0,5	4,910710	5,125000	0,214295	
2	0,5	15,83730	16,06250	0,225196	
2,5	0,5	38,89530	39,12500	0,229681	
3	0,5	80,83160	81,06250	0,230895	
3,5	0,5	149,8950	150,1250	0,229681	
4	0,5	255,8370	256,0630	0,225196	
4,5	0,5	409,9110	410,1250	0,214295	
5	0,5	624,8730	625,0630	0,189474	
5,5	0,5	914,9920	915,1250	0,132883	
6	0,5	1296,060	1296,060	0	

•	0.75	0.246406	0.246406	۱ ۵
0	0,75	0,316406	0,316406	0
0,5	0,75	0,218237	0,378906	0,16067
1	0,75	1,082180	1,316410	0,23423
1,5	0,75	5,112160	5,378910	0,266746
2	0,75	16,03540	16,31640	0,280974
2,5	0,75	39,09210	39,37890	0,286837
3	0,75	81,02800	81,31640	0,288422
3,5	0,75	150,0920	150,3790	0,286837
4	0,75	256,0350	256,3160	0,280974
4,5	0,75	410,1120	410,3790	0,266746
5	0,75	625,0820	625,3160	0,23423
5,5	0,75	915,2180	915,3790	0,16067
6	0,75	1296,320	1296,320	0
0	1	1	1	0
0,5	1	0,892925	1,0625	0,169575
1	1	1,751120	2	0,248883
1,5	1	5,778380	6,0625	0,284121
2	1	16,70050	17	0,299516
2,5	1	39,75660	40,0625	0,305862
3	1	81,69240	82	0,307579
3,5	1	150,7570	151,063	0,305862
4	1	256,7000	257	0,299516
4,5	1	410,7780	411,063	0,284121
5	1	625,7510	626	0,248883
5,5	1	915,8930	916,063	0,169575
6	1	1297	1297	0
0	1,25	2,441410	2,441410	0
0,5	1,25	2,343240	2,503910	0,16067
1	1,25	3,207180	3,441410	0,23423
1,5	1,25	7,237160	7,503910	0,266746
2	1,25	18,16040	18,44140	0,280974
2,5	1,25	41,21710	41,50390	0,286837
3	1,25	83,15300	83,44140	0,288422
3,5	1,25	152,2170	152,5040	0,286837
4	1,25	258,1600	258,4410	0,280974
4,5	1,25	412,2370	412,5040	0,266746
5	1,25	627,2070	627,4410	0,23423
5,5	1,25	917,3430	917,5040	0,16067
6	1,25	1298,440	1298,440	0
0	1,5	5,062500	5,062500	0
0,5	1,5	4,992120	5,125000	0,132883
1	1,5	5,873030	6,062500	0,189474
1,5	1,5	9,910710	10,12500	0,214295
2	1,5	20,83730	21,06250	0,214233
2,5	1,5 1,5	43,89530	44,12500	0,229681
۷,5	1,5	45,05550	44,12300	0,223001

3	1,5	85,83160	86,06250	0,230895
3,5	1,5	154,8950	155,1250	0,229681
4	1,5	260,8370	261,0630	0,225196
4,5	1,5	414,9110	415,1250	0,214295
5	1,5	629,8730	630,0630	0,189474
5,5	1,5	919,9920	920,1250	0,132883
6	1,5	1301,060	1301,060	0
0	1,75	9,378910	9,378910	0
0,5	1,75	9,359010	9,441410	0,082398
1	1,75	10,26660	10,37890	0,112324
1,5	1,75	14,31550	14,44140	0,125867
2	1,75	25,24720	25,37890	0,131749
2,5	1,75	48,30720	48,44140	0,134179
3	1,75	90,24410	90,37890	0,134835
3,5	1,75	159,3070	159,4410	0,134179
4	1,75	265,2470	265,3790	0,131749
4,5	1,75	419,3160	419,4410	0,125867
5	1,75	634,2670	634,3790	0,112324
5,5	1,75	924,3590	924,4410	0,082398
6	1,75	1305,380	1305,380	0
0	2	16	16	0
0,5	2	16,0625	16,0625	0
1	2	17	17	0
1,5	2	21,0625	21,0625	0
2	2	32	32	0
2,5	2	55,0625	55,0625	0
3	2	97	97	0
3,5	2	166,063	166,063	0
4	2	272	272	0
4,5	2	426,063	426,063	0
5	2	641	641	0
5,5	2	931,063	931,063	0
6	2	1312	1312	0