

Applications to Data Science

Ernesto Jiménez-Ruiz

Lecturer in Artificial Intelligence

Before we start...

Where are we?

- Introduction.
- ✓ RDF-based knowledge graphs.
- ✓ SPARQL 1.0
- ✓ RDFS Semantics and RDF(S)-based knowledge graphs.
- ✓ OWL (2) ontology language. Focus on modelling.

Where are we?

- Introduction.
- RDF-based knowledge graphs.
- ✓ SPARQL 1.0
- ✓ RDFS Semantics and RDF(S)-based knowledge graphs.
- ✓ OWL (2) ontology language. Focus on modelling.
- Application to Data Science (today).

Where are we?

- Introduction.
- RDF-based knowledge graphs.
- ✓ SPARQL 1.0
- ✓ RDFS Semantics and RDF(S)-based knowledge graphs.
- ✓ OWL (2) ontology language. Focus on modelling.
- Application to Data Science (today).
- SPARQL 1.1, OWL 2 profiles and entailment regimes.
- Ontology Alignment.
- Machine Learning and Knowledge Graphs.

The Knowledge Scientist

Tasks of a Data Scientist

- Understand the data and its context
- Reliability of the data (shared with Data Engineers)
- Data wrangling
- Data analytics

Tasks of a Data Scientist

- Understand the data and its context
- Reliability of the data (shared with Data Engineers)
- Data wrangling
- Data analytics

In Data Science, 80% of time spent prepare data, 20% of time spent complain about need for prepare data.

The Knowledge Scientist (i)

- Data Engineer: harnesses and collects data.
- Data Scientist: draws value from data.
- Knowledge Engineer: encodes domain expertise.
- Knowledge Scientist: adds context to the data to make it more useful, clean, reliable and ready to be used.

The Knowledge Scientist (ii)

- Bridges the data and the business requirements/questions.
- Outputs a data model (i.e., knowledge graph): how business users see the world.
- Drives a semantic-lifting of the data (from Data Engineers to Data Scientists)
- Relies on Semantic Web technology and skills (e.g., ontology modelling, data integration)

George Fletcher and others. Knowledge Scientists: Unlocking the data-driven organization, 2020

The Knowledge Scientist (iii)

Domain Expert

Data Scientist

Knowledge Scientist

Data Engineer

Aggregation
Data Analysis

Visualisation

Semantic lifting Transformation

Cleaning

Alignment

Adapted from: SIRIUS Centre for Scalable Data Access, https://sirius-labs.no/

Why Ontologies and Graphs of Knowledge?

Graph(s) of Knowledge / Knowledge Graphs

- Semantic Web in more controlled scenarios, e.g.,
 - Integrate and orchestrate data within an organisation
 - Enterprise data as a knowledge graph to drive products and make them more "intelligent"

Graph(s) of Knowledge / Knowledge Graphs

- Semantic Web in more controlled scenarios, e.g.,
 - Integrate and orchestrate data within an organisation
 - Enterprise data as a knowledge graph to drive products and make them more "intelligent"

– Not new:

- Graph data models extensively studied in Al...
- ... but Google has relaunched the interest on KGs in industry

Graph(s) of Knowledge / Knowledge Graphs

- Semantic Web in more **controlled scenarios**, *e.g.*,
 - Integrate and orchestrate data within an organisation
 - Enterprise data as a knowledge graph to drive products and make them more "intelligent"

– Not new:

- Graph data models extensively studied in Al...
- ... but Google has relaunched the interest on KGs in industry
- Availability of mature Semantic Web technology
 - Query engines
 - Modelling languages
 - Reasoning

Ontologies and Knowledge Graphs

- Core idea of knowledge graphs is the enhancement of the graph data model with...
 - "...an abstract symbolic representations of a domain expressed in a formal language"
- In this module: OWL-layered RDF-based knowledge graphs

Aidan Hogan and others. **Knowledge Graphs**. CoRR abs/2003.02320, 2020. Pim Borst, Hans Akkermans, and Jan Top. **Engineering ontologies**, 1999.

Why Ontologies and Knowledge Graphs?

- Independence of logical/physical schema: domain model
- Vocabulary closer to domain experts: more user-friendly
- Incomplete and semi-structured data: flexibility
- Integration of heterogeneous sources: unified view

♠ They can complement tabular data not necessarily substitute.

* **OL**: make your data available on the Web (in any format) under an open license.

- ⋆ OL: make your data available on the Web (in any format) under an open license.
- ** **RE**: make the data machine readable (excel instead of an scanned image).

- ⋆ OL: make your data available on the Web (in any format) under an open license.
- ** **RE**: make the data machine readable (excel instead of an scanned image).
- $\star\star\star$ **OF**: use a non proprietary open format (*e.g.*, CSV).

- ⋆ OL: make your data available on the Web (in any format) under an open license.
- ** **RE**: make the data machine readable (excel instead of an scanned image).
- $\star\star\star$ **OF**: use a non proprietary open format (*e.g.*, CSV).
- * * ** **URI**: use URIs instead of strings (RDF).

- ⋆ OL: make your data available on the Web (in any format) under an open license.
- ** **RE**: make the data machine readable (excel instead of an scanned image).
- $\star\star\star$ **OF**: use a non proprietary open format (*e.g.*, CSV).
- * * ** **URI**: use URIs instead of strings (RDF).
- $\star\star\star\star\star$ **LOD**: link your data to other data to provide context.

- ⋆ OL: make your data available on the Web (in any format) under an open license.
- ** **RE**: make the data machine readable (excel instead of an scanned image).
- $\star\star\star$ **OF**: use a non proprietary open format (*e.g.*, CSV).
- * * ** **URI**: use URIs instead of strings (RDF).
- $\star\star\star\star\star$ **LOD**: link your data to other data to provide context.
 - ♠ This also applies within a company (intranet), not only for the Web. Ideally with an OL, but at least data accessible by everyone in the company.

Challenges:

- How to **expose** data (e.g., databases, csv files) as knowledge graphs?
- How to create (or reuse) and use (abstract) knowledge (i.e., Ontologies)?
- How to align different knowledge graphs? •
- How to check consistency and trust of the data and knowledge? ♠
- ♠ Better with things than with strings

Challenges:

- How to **expose** data (e.g., databases, csv files) as knowledge graphs?
 - RDF and Today's session (4-5 ★ data)
- How to create (or reuse) and use (abstract) knowledge (i.e., Ontologies)?
 - RDFS and OWL
- How to align different knowledge graphs?
 - Ontology Alignment: In two weeks time (5 ★ data)
- How to check consistency and trust of the data and knowledge?
 - Reasoning: Next week.
- ♠ Better with things than with strings

From (Tabular) Data to Knowledge Graphs: Towards 5 * data

General Semantic Web Architecture

Exposing data as an RDF-based Knowledge Graph

- ✓ End-users' friendly access to "unfriendly" tabular data.
- ✓ Pay as you go (modular) data integration via mappings.

Exposing data as an RDF-based Knowledge Graph

- ✓ End-users' friendly access to "unfriendly" tabular data.
- ✓ Pay as you go (modular) data integration via mappings.
- Option 1: Virtual exposure of data (OBDA)
 - Data remains in its original format.
 - Typically only over relational databases.

Exposing data as an RDF-based Knowledge Graph

- ✓ End-users' friendly access to "unfriendly" tabular data.
- ✓ Pay as you go (modular) data integration via mappings.
- Option 1: Virtual exposure of data (OBDA)
 - Data remains in its original format.
 - Typically only over relational databases.
- Option 2: Data Export/Materialization
 - Easy to exchange data (RDF).
 - Integration of data in disparate formats.
 - Data replication.
 - Due to size or privacy it may not be possible to export the data.

Exposing data as RDF: Architecture

Exposing data as RDF: Ingredients

- Ontology vocabulary. Custom and/or given by a public KG.
- Mappings. Define a transformation from the tabular data to RDF data.
- Ontology Axioms (optional)

Exposing data as RDF: W3C Mapping Standards

Relational Database to RDF:

- A Direct Mapping of Relational Data to RDF: https://www.w3.org/TR/rdb-direct-mapping/
- R2RML: RDB to RDF Mapping Language: https://www.w3.org/TR/r2rml/
- Each mapping involves the creation of a SQL query and the transformation of the results to RDF triples.

– CSV to RDF:

- Generating RDF from Tabular Data on the Web (CSV2RDF): https://www.w3.org/TR/csv2rdf/
- Each mapping is a (small) script that creates specific RDF triples from the CSV file (e.g., data frame).

Exposing data as RDF: Direct Mapping Example

Automatic triples:

ex:row1 ex:col1 "China"

ex:row1 ex:col2 "Beijing"

ex:row2 ex:col1 "Indonesia"

ex:row2 ex:col2 "Jakarta"

. . .

China Beijing Indonesia Jakarta Congo Kinshasa Brazil Congo Brazzaville

Exposing data as RDF: Enhanced Mapping/Transformation (i)

- We know the semantics of the data.
- Potential automatic triples:

```
ex:China rdf:type ex:Country
ex:Beijing rdf:type ex:City
ex:China ex:hasCapital ex:Beijing
...
```


Exposing data as RDF: Enhanced Mapping/Transformation (ii)

Return capital of China (for \mathcal{G} below):

```
PREFIX ex: <http://example.org/>
SELECT DISTINCT ?capital WHERE {
    ex:China ex:hasCapital ?capital .
}
```


Exposing data as RDF: Enhanced Mapping/Transformation (ii)

Return capital of China (for G below): Query Result= {ex:Beijing}

```
PREFIX ex: <http://example.org/>
SELECT DISTINCT ?capital WHERE {
    ex:China ex:hasCapital ?capital .
}
```


Mapping or Transformation $\varphi \leadsto \psi$

- $-\varphi$: query over database or CSV extraction
- $-\psi$: RDF triple template

Mapping or Transformation $\varphi \leadsto \psi$

- $-\varphi$: query over database or CSV extraction
- $-\psi$: RDF triple template
- RDB to RDF mapping:

```
SELECT col1 FROM TABLE \leadsto ex:{col1} rdf:type ex:Country
```

Mapping or Transformation $\varphi \leadsto \psi$

- $-\varphi$: query over database or CSV extraction
- $-\psi$: RDF triple template
- RDB to RDF mapping:

```
SELECT col1 FROM TABLE → ex:{col1} rdf:type ex:Country
```

– CSV to RDF mapping:

```
for value in data_frame[col1]: (\varphi) subject = "ex:" + value #e.g., ex:China create_triple(subject rdf:type ex:Country) (\psi)
```

Mapping or Transformation $\varphi \leadsto \psi$

- $-\varphi$: query over database or CSV extraction
- $-\psi$: RDF triple template
- RDB to RDF mapping:

```
SELECT col1 FROM TABLE \leadsto ex:{col1} rdf:type ex:Country
```

CSV to RDF mapping: (in this module)

```
for value in data_frame[col1]: (\varphi)

subject = "ex:" + value #e.g., ex:China

create_triple(subject rdf:type ex:Country) (\psi)
```

Semantic Understanding of Tabular Data

Semantic enrichment or augmentation

- Semi-automatic process.
- Key for an enhanced transformation to RDF triples.
- But also for other tasks with independence of a final KG creation.
 - Tabular data in the form of CSV files is the common input format in a data analytics pipeline.
 - The lack of semantics and context in datasets hinders their usability.
 - Gaining semantic understanding will be very valuable for data integration, data cleaning, data mining, machine learning and knowledge discovery tasks.

Contribution of Semantics in Data Wrangling Challenges

- Data parsing, e.g. converting csv's or tables.
- (+++)Data dictionary: basic types and semantic types.
- − (++) Data integration from multiple sources (foreign key discovery).
- -(++)*Entity resolution*: duplication and record linkage.
- (+) Format variability: e.g. for dates and names.
- (+)Structural variability in the data.
- (++)Identifying and repairing *missing data*.
- (+) Anomaly detection and repair.
- -(+++) Metadata/contextual information. (Semantic) data governance.

AIDA Project: https://www.turing.ac.uk/research/research-projects/artificial-intelligence-data-analytics-aida

Adding Semantics to Tabular Data: Basic Tasks

- Matching a cell to a KG entity (CEA task Cell-Entity Annotation)
- Assigning a semantic type (e.g., a KG class) to an (entity) column (CTA task - Column-Type Annotation)
- Assigning a KG property to the relationship between two columns (CPA task - Columns-Property Annotation)

Ernesto Jiménez-Ruiz and others. SemTab 2019: Resources to Benchmark Tabular Data to Knowledge Graph Matching Systems. ESWC 2020

Adding Semantics to Tabular Data: Basic Tasks

- Matching a cell to a KG entity (CEA task Cell-Entity Annotation)
- Assigning a semantic type (e.g., a KG class) to an (entity) column (CTA task - Column-Type Annotation)
- Assigning a KG property to the relationship between two columns (CPA task - Columns-Property Annotation)
- † For a semi-automatic process, we assume the existence of a (possibly incomplete) **Knowledge Graph (KG)** relevant to the domain.
- ‡ When transforming to RDF, if no KG matching then create a fresh entity URI.

Ernesto Jiménez-Ruiz and others. SemTab 2019: Resources to Benchmark Tabular Data to Knowledge Graph Matching Systems. ESWC 2020

Adding Semantics to Tabular Data: Basic Tasks (with DBPedia)

Semantic Understanding of Tabular Data: SemTab Challenge

SemTab Challenge

- Provides a systematic evaluation framework of Tabular Data to KG matching systems.
- Evaluates the three basic tasks: CTA, CEA and CPA.
- Relies on:
 - an automatic dataset generator, and
 - manually curated datasets.
- Target KGs: DBPedia (2019) and Wikidata (2020)
- Co-organised an sponsored by IBM Research.

SemTab: Semantic Web Challenge on Tabular Data to Knowledge Graph Matching: http://www.cs.ox.ac.uk/isg/challenges/sem-tab/

SemTab Rounds and Datasets

Stats		Tough Tables			
	Round 1	Round 2	Round 3	Round 4 (AG)	Round 4 (2T)
Tables	34,295	12,173	62,614	22,207	180
Avg. rows	7.3	6.9	6.3	21	1,080
Avg. cols	4.9	4.6	3.6	3.5	4.5

- Tables and ground truth: http://www.cs.ox.ac.uk/isg/challenges/sem-tab/
- SemTab 2019: Resources to Benchmark Tabular Data to Knowledge Graph Matching Systems. Extended Semantic Web Conference (ESWC). 2020.
- Tough Tables: Carefully Evaluating Entity Linking for Tabular Data. International Semantic Web Conference (ISWC). 2020
- Results of SemTab 2020. ISWC 2020

SemTab Participation

The community is active and growing

Participants	Round 1	Round 2	Round 3	Round 4
2019	17	11	9	8
2020*	18	16	18	10
CEA	10	10	9	10§
CTA	15	13 [†]	16 [‡]	9§
CPA	9	11	8	7

^{*} One system from a MSc student at City Outliers:

^{† 3} systems with F-score < 0.3

^{‡ 8} systems with F-score < 0.3

^{§ 1} system with F-score < 0.3

SemTab Results Overview: Average F1-score[†]

- Noise in synthetic datasets not challenging enough.
- The 2T dataset brings additional complexity.

Task		Tough Tables			
	Round 1	Round 2	Round 3	Round 4 (AG)	Round 4 (2T)
CEA	0.93	0.95	0.94	0.92	0.54
CTA	0.83	0.93	0.94	0.92	0.59
CPA	0.93	0.97	0.93	0.96	-

† Averages of top-10 systems without outliers

Semantic Understanding of Tabular Data: Techniques

Common Techniques

- Pre-processing: spelling error, stopwords, unicode fixing, etc.
- Regular expressions to identify data formats (e.g., numbers, phones, dates, names).

Common Techniques

- Pre-processing: spelling error, stopwords, unicode fixing, etc.
- Regular expressions to identify data formats (e.g., numbers, phones, dates, names).
- Fuzzy search over a KG
 - Via online services
 - Or local indexes
- Access to the KG's SPARQL Endpoint (local or online)

Common Techniques

- Pre-processing: spelling error, stopwords, unicode fixing, etc.
- Regular expressions to identify data formats (e.g., numbers, phones, dates, names).
- Fuzzy search over a KG
 - Via online services
 - Or local indexes
- Access to the KG's SPARQL Endpoint (local or online)
- Lexical similarity (e.g., Levenshtein)
- Word and KG embeddings

Common Knowledge Graphs

Wikidata: https://www.wikidata.org/

- >90 million entities
- Free and public (anyone can edit)

DBPedia: https://dbpedia.org/

- >900 million triples
- Extracted from Wikipedia

Google KG: https://developers.google.com/knowledge-graph

- Private, only accessible via look-up
- >1,000 million entities

Fuzzy Search: KG look-up Services

- Given a string (e.g., "Congo")
- Return a set of candidate KG entities, e.g., http://dbpedia.org/resource/Republic_of_the_Congo http://dbpedia.org/resource/Congo_River
- Typical starting point for CEA and CTA tasks
- DBPedia, Wikidata and Google KG provide look-up services via a REST API.
- Some systems have built their own local index for fuzzy search.

GitHub repositories: https://github.com/city-knowledge-graphs

Lexical Processing and Similarity

- Datatype prediction, e.g., ptype: https://github.com/alan-turing-institute/ptype
- Spelling corrector: https://norvig.com/spell-correct.html

Lexical Processing and Similarity

- Datatype prediction, e.g., ptype: https://github.com/alan-turing-institute/ptype

- Spelling corrector: https://norvig.com/spell-correct.html

– Lexical similarity:

- Levenshtein distance:
 - levenshtein('Congo', 'Republic of Congo')=12
- Jaro Winkler:

```
jaro_winkle('Congo', 'Republic of Congo')=0.0
jaro_winkle('Congo', 'Congo Republic')=0.893
```

– I-Sub:

isub('Congo', 'Republic of Congo')=0.727

Access to KG SPARQL Endpoint

- Get additional contextual information:
 - Additional type information
 - Entity Relationships
 - Members of a type
- Access via SPARQL queries (no fuzzy search)
- Typically required for:
 - the CPA task
 - disambiguation in CTA and CEA tasks

GitHub repositories: https://github.com/city-knowledge-graphs

Word and KG Embeddings: Capturing Context

- Embeddings: representation in the form of a real-valued vector.
- Very useful to capture the meaning/semantics of a word (or a KG entity).
- Comparison among vectors via Cosine similarity (e.g., between vectors for 'Congo' and 'Republic of Congo')

Word and KG Embeddings: Capturing Context

- Embeddings: representation in the form of a real-valued vector.
- Very useful to capture the meaning/semantics of a word (or a KG entity).
- Comparison among vectors via Cosine similarity (e.g., between vectors for 'Congo' and 'Republic of Congo')

Precomputed word embeddings:

- https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
- https://fasttext.cc/docs/en/pretrained-vectors.html

Precomputed KG embeddings:

- Wikidata: http://139.129.163.161/index/toolkits#pretrained-embeddings
- DBPedia: http://www.kgvec2go.org/

Word Embeddings: Example

Systems like Word2Vec require a corpus of documents as training.

Example from: https://dsgiitr.com/blogs/word_embeddings/

Knowledge Graph Embeddings: Example

KG Embedding Systems exploit the neighbourhood of an entity to calculate its vector.

Example from: https://docs.ampligraph.org/en/1.0.3/

OWL2Vec*: Embedding of OWL Ontologies. https://arxiv.org/pdf/2009.14654.pdf

OpenRefine

- https://openrefine.org/
- Previously known as Google Refine.
- Interface to support the cleaning and transformation of messy data.
- Includes a reconciliation service to link the data with a KG (e.g., Wikidata is default installation).
- In this module we will not use OpenRefine, but perform our own reconciliation programmatically.

Applications

Examples of Applications of KGs and Semantics

- Data Wrangling (Alan Turing Institute)
- Data Access in Oil & Gas Industry
- Data Access and Prediction in Ecotoxicology
- Data Access of Geological Images

AIDA project: Data Wrangling with DataDiff

- The structure of a dataset may change after an update
- Changes may break the analytical pipeline.
- Datadiff identifies and patches these changes.
- Limitation: exhaustive comparison of columns.
- Semantic table understanding may limit the comparison.

Data Diff: Interpretable, Executable Summaries of Changes in Distributions for Data Wrangling. C. Sutton, T. Hobson, J. Geddes and R. Caruana. In KDD 2018.

Data Access in Oil & Gas Industry

- Data access currently takes 30-70% of the engineers' time.
- Data cannot be moved from the original sources.
- The EU project Optique advocated for an Ontology-Based Data Access (OBDA) process. Requirements:
 - Domain ontology.
 - Mappings to create a virtual KG.

Ontology Based Data Access in Statoil. Journal of Web Semantics, 44, pp. 3-36 https://openaccess.city.ac.uk/id/eprint/22959/

Data Access in Oil & Gas Industry: Limitations

Problem when the information needs fall outside predefined-queries

Data Access in Oil & Gas Industry: Limitations

The process may take several days

Data Access in Oil & Gas Industry: Optique Solution

Optique solution

Optique Solution

- 1. Mediator to create ontology-driven queries (SPARQL).
- 2. Mediator to translate SPARQL queries into SQL queries.
- 3. Effort required to create the ontology and maintain the mappings (modular approach).

TERA: A KG for Ecotoxicology. Integration and Data Access.

- Integrates disparate sources about species, chemicals and effect data.
- Enhances data access.

TERA: A KG for Ecotoxicology. Prediction.

 Drives the prediction of adverse biological effects of chemicals via KG embeddings.

Resources and publications: https://github.com/NIVA-Knowledge-Graph/

TERA: A KG for Ecotoxicology. Prediction.

 Drives the prediction of adverse biological effects of chemicals via KG embeddings.

Resources and publications: https://github.com/NIVA-Knowledge-Graph/

A KG for Semantic Data Access of Geological Images

- Hard to search for specific images.
- Describe the information within the images in a KG.

Resources: https://sws.ifi.uio.no/project/sirius-geo-annotator/

A KG for Semantic Data Access of Geological Images

Resources: https://sws.ifi.uio.no/project/sirius-geo-annotator/

Laboratory: From CSV to a KG

Support Codes

- https://github.com/city-knowledge-graphs
- Lookup
- SPARQL Endpoint
- Lexical similarity
- CSV management