Для подтверждения значимости венчурных инвестиций в развитии инновационного потенциала страны (и, соответственно, экономического роста) на основе собранных статистических данных была составлена эконометрическая модель. В данной модели в качестве зависимой переменной (у) выбран показатель расходов российских компаний на НИОКР, в качестве объясняющий переменной (х) — объем российских венчурных фондов. Исходные данные для построения модели приведены в Таблице 8 - Динамика объемов венчурных фондов и расходов на НИОКР.

Существенность влияния выбранного параметра подтверждается теснотой взаимосвязи — коэффициент корреляции между расходами на НИОКР и объемом венчурных фондов составляет 0,8784, что говорит о сильной и прямой связи.

Таблица 1 - Динамика объемов венчурных фондов и расходов на НИОКР $(2012-2018~{
m rr.})^1$

Год	Расходы на НИОКР (млн руб.)	Объем венчурных фондов (млн долл.)	Средневзвешенный курс за год	Объем венчурных фондов (млн руб.)
2012	918 418,30	4557	31,093	141690,80
2013	1 037 144,8	4634,75	31,848	147607,52
2014	1 173 828,3	4358	38,4217	167440,23
2015	1 166 778,4	3848	60,9579	234537,78
2016	1 359 421,1	3794	67,0349	254347,24
2017	1 406 064,1	3849	58,3529	224586,66
2018	1 463 271,6	4173	62,7078	261701,41

В результате проведенного регрессионного анализа получены коэффициенты модели и характеристики ее качества.

Таблица 2 – Регрессионная статистика рассматриваемой модели

Показатель	Значение
Множественный R	0,878353619
R-квадрат	0,771505079

¹ Источник: составлено автором на основе данных Федеральной службы государственной статистики и РАВИ.

Нормированный R-квадрат	0,725806095
Стандартная ошибка	105283,8142

Таблица 3 - Дисперсионный анализ рассматриваемой модели

Показатель	Df	SS	MS	F	Значимость F
Регрессия	1	1,87135E+11	1,87E+11	16,88232	0,009274627
Остаток	5	55423407666	1,11E+10		
Итого	6	2,42559E+11			

Таблица 4 – Характеристика коэффициентов регрессионной модели

		Стандартная	t-	P-	Нижние	Верхние	Нижние	Верхние
Показатель	Коэффициенты	ошибка	статистика	Значение	95%	95%	95,0%	95,0%
Y-								
пересечение	509757,1283	176869,1091	2,882115	0,034503	55100,60905	964413,6475	55100,60905	964413,6475
Переменная								
X 1	3,461545131	0,842468897	4,108811	0,009275	1,295909886	5,627180375	1,295909886	5,627180375

Таким образом, итоговое линейное уравнение регрессии, полученное на основе статистических данных, имеет следующий вид:

$$y = 509757,1283 + 3,4615x1$$

На основании исходных данных построена диаграмма рассеяния, на которую наложена полученная линейная регрессионная модель, которая совпадает с линией наилучшего соответствия данных. Видно, что линейная модель подобрана правильно и хорошо описывает исходные значения, так как сумма квадратов остатков является минимальной.

Рисунок 1 - Диаграмма рассеяния данных²

Полученный вывод о качестве уравнения подтверждает и коэффициент детерминации в модели. R-квадрат, равный 0,77, близок к 1, что говорит о высоком качестве модели и ее хорошей способности описывать данные. Оценка модели с помощью F-критерия Фишера позволяется сделать вывод о значимости и достоверности уравнения регрессии, так как $F_{\phi a \kappa \tau}$ (16,88232) > $F_{\kappa p \mu \tau}$ (6,61). Значение $F_{\kappa p \mu \tau}$ получено на основании данных таблицы Фишера для уровня значимости 0,05 при взятых значениях k1=1; k2=5.

Коэффициент регрессии равен +3,4615, что говорит о том, что увеличение объема венчурных фондов на 1 миллион рублей приведет к увеличению расходов компании на НИОКР на 3,5 миллиона рублей.

Коэффициент эластичности, рассчитанный как произведение коэффициента регрессии на отношение средней величины факторного признака к результативному, равен 0,58. Это говорит о том, что при увеличении объема венчурных фондов на 1% расходы на НИОКР возрастают на 0,58%.

Для оценки будущей динамики объема венчурных фондов и инновационности российского экономики необходимо наложить прогнозные

3

² Источник: составлено автором на основе исходных данных в таблице 1.

значения на данные в полученной модели. Спрогнозированная динамика объема венчурных фондов до 2021 года представлена на рисунке ниже.

Рисунок 2 - Прогноз объема венчурных фондов до 2021 года³

Подставив временной фактор в уравнение регрессии для объясняющего фактора, получаем, что объем венчурных фондов в 2021 году составит 333 326 млн рублей. Рассчитав объем расходов компаний на НИОКР, исходя из спрогнозированного объема венчурных фондов, получаем, что величина данных расходов в 2021 году составит 1663565,077 млн рублей.

Таким образом, инновационный сектор в современных цифровых реалиях является главным драйвером экономического развития любой страны, поэтому основной задачей государства является поиск инструментов мобилизации капитала в высокотехнологичные отрасли и сегменты.

³ Источник: составлено автором на основе данных таблицы 1.