# Discussion 6 Second-Order Circuits



### **Overview**

#### Second-Order Circuits

- Initial and final values
- Source-Free RLC Circuits
  - Series
  - Parallel
- Step Response of RLC Circuits
  - Series
  - Parallel
- Second-Order Op Amp Circuits

## Application

automobile ignition circuit

## **Second Order Circuits**



Different storage element



Same storage element

#### **Second Order Circuits**

- This time, though we will only consider DC independent sources
- •Steps to find a solution x(t):
  - Step one: Find initial and final values.
  - Step two: Extract the second-order differential equation out of the circuit.
  - Step three: Solve the second-order ODE and get the general solution of homogeneous equation --  $x_t(t)$ .
  - Step four:  $x(t) = x_{ss} + x_t(t)$  where  $x_{ss}$  is the final state value.
  - Step five: Substitute the initial values in and confirm the coefficients.

#### **Initial and final values**

- Use methods of analysis you have learned before to find the capacitor voltage and the inductor current on initial and final states
- Regard the capacitor as open circuit and inductor as short circuit.
- Example:



**Initial state**:  $i_l(0^+) = i_l(0^-) = 0$  $v_c(0^+) = v(0^-) = 50V$ 

Final state:  $i_l(\infty) = 0$  $v_c(\infty) = 100V$ 

#### **Source Free Second Order Circuits**



KVL: 
$$Ri + L\frac{di}{dt} + v = 0$$
  
But  $i = C\frac{dv}{dt}$   
So:  $\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{1}{LC}i = 0$ 



$$KCL: \frac{v}{R} + C \frac{dv}{dt} + i = 0$$

$$But v = L \frac{di}{dt}$$

$$So: \frac{d^2v}{dt^2} + \frac{1}{RC} \frac{dv}{dt} + \frac{1}{LC} v = 0$$

# **Step Response of RLC Circuits**

When there is a DC source, the ODE becomes Inhomogeneous:



KVL: 
$$Ri + L\frac{di}{dt} + v = V_S$$
  
But  $i = L\frac{dv}{dt}$   
So:  $\frac{d^2v}{dt^2} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = \frac{V_S}{LC}$ 



$$KCL: \frac{v}{R} + C \frac{dv}{dt} + \frac{1}{L} \int_{-\infty}^{t} v dt$$

$$But v = C \frac{di}{dt}$$

$$So: \frac{d^{2}i}{dt^{2}} + \frac{1}{RC} \frac{di}{dt} + \frac{1}{LC} i = \frac{I_{S}}{LC}$$



Initial state:

$$i(0^+) = i(0^-) = 0$$

$$v(0^+) = v(0^-) = 0$$

Final state:

$$\mathrm{i}\left(\infty\right) = \frac{V_{\mathrm{S}}}{R_{\mathrm{2}}}$$

$$v\left(\infty\right)=V_{S}$$



Since we got a circuit with voltage source, so generate the differential equation in terms of **capacitor voltage** *v*. Apply KVL we obtain:

$$v + L\frac{di}{dt} = V_s \quad \text{(1)}$$

Then we rewrite i in terms of v:

$$i = C\frac{dv}{dt} + \frac{v}{R_2} - \frac{(V_S - v)}{R_1} \quad \textcircled{2}$$

Substitute ② into ① then

$$\frac{d^2v}{dt^2} + \left(\frac{1}{R_1} + \frac{1}{R_2}\right) \frac{1}{LC} \frac{dv}{dt} + \frac{1}{LC} v = \frac{1}{LC} V_S$$



$$\frac{d^2v}{dt^2} + \left(\frac{1}{R_1} + \frac{1}{R_2}\right) \frac{1}{C} \frac{dv}{dt} + \frac{1}{LC} v = \frac{1}{LC} V_S$$

Firstly we solve the homogeneous equation  $\ensuremath{\Im}$  to find the general solution.

$$\frac{d^2v}{dt^2} + \left(\frac{1}{R_1} + \frac{1}{R_2}\right) \frac{1}{C} \frac{dv}{dt} + \frac{1}{LC}v = 0 \quad (3)$$

Is the circuit **overdamped**, **critically damped or underdamped**?



It depends on the coefficients 
$$\alpha=rac{1}{2}\Big(rac{1}{R_1}+rac{1}{R_2}\Big)rac{1}{c}$$
 and  $\omega_0=rac{1}{\sqrt{LC}}$ 

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

 $\alpha > \omega_0 \Rightarrow$  two distinct real solutions  $\Rightarrow v_t(t) = Ae^{s_1t} + Be^{s_2t}$  overdamped

$$\alpha = \omega_0 \Rightarrow$$
 only one real root r

$$\Rightarrow v_t(t) = Ae^{s_1t} + Bte^{s_2t}$$
 critically damped

$$\alpha < \omega_0 \Rightarrow$$
 two complex conjugate roots  $\Rightarrow v_t(t) = Ae^{s_1t} + Be^{s_2t}$  underdamped

$$\Rightarrow v_t(t) = Ae^{-\alpha t}\cos(\omega_d t) + Be^{-\alpha t}\sin(\omega_d t) \text{ where } \omega_d = \sqrt{\omega_0^2 - \alpha^2}$$

Lecture 7

信息科学与技术学院 School of Information Science and Technology





13

# **Example**



We know that  $v(\infty) = V_s$ So

$$v(t) = v_{S} + v_{t}(t)$$

Then substitute the initial values in and confirm the coefficients A and B.

$$i(0^+) = i(0^-) = 0$$
  $v(0^+) = v(0^-) = 0$ 

#### **Second Order Circuits**

- Please think: what if the voltage source is an AC source?
  - Is there still a steady state?
  - How to solve the ODE?

Lecture 7

## **Overview**

#### Second-Order Circuits

- Initial and final values
- Source-Free RLC Circuits
  - Series
  - Parallel
- Step Response of RLC Circuits
  - Series
  - Parallel
- Second-Order Op Amp Circuits

## Application

automobile ignition circuit

Discussion 5



# **Second-Order Op Amp Circuits**

Determine the differential equation in terms of  $v_o$ .

For the first op amp:

$$\frac{v_0 - 0}{R} = C \frac{dv_1}{dt}$$

For the second op amp:

$$\frac{-v_1 - 0}{R} = C \frac{dv_2}{dt}$$

But

$$v_0 = -v_2$$

So

$$\frac{d^2v_o}{dt^2} - \frac{1}{R^2C^2}v_o = 0$$



### **Overview**

#### Second-Order Circuits

- Initial and final values
- Source-Free RLC Circuits
  - Series
  - Parallel
- Step Response of RLC Circuits
  - Series
  - Parallel
- Second-Order Op Amp Circuits

## Application

• automobile ignition circuit

Discussion 5

# **Application: Automobile Ignition System**

- Mechanism: generate a voltage much higher than the voltage source through the transient response of the inductor.
- Please think:
  - What's different between (1) and (2)?
  - Which one is better?
  - Is the circuit (2) overdamped, critically damped or underdamped when we could get a much higher voltage?
  - How to choose the value of R, C and L?





# **Application: Automobile Ignition System**

• Regard the spark plug as open circuit. It becomes a series RLC circuit, in which:

$$\cdot \frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{1}{LC}i = 0$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\bullet \omega_d = \sqrt{\omega_0^2 - \alpha^2}$$

$$i_{SS} = 0$$

• 
$$i(t) = Ae^{-\alpha t}\cos(\omega_d t) + Be^{-\alpha t}\sin(\omega_d t)$$

• 
$$v(t) = L \frac{di(t)}{dt}$$



(2)

## **End**

Lecture 7