Ensemble C_n^k des parties à k éléments de l'ensemble $\mathcal{E}_n = \{1, 2 \dots n\}$.

partie = sous-ensemble

$$\mathcal{E}_4 = \{ \quad , \quad \quad , \quad \quad \}$$

$$\mathcal{E}_4=\{\ 1,\quad 2,\quad 3,\quad 4\}$$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$\mathcal{C}_4^2 = \{ \qquad , \qquad \qquad , \qquad \qquad , \qquad \qquad \}$$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,\},$$
 , , , ,

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,1\},$$
, , , , , }

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,1\},$$
 , , , ,

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\},$$
 , , , , }

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \}$$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,\}, \}$$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,1\}, \}$$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,1\}, \}, \}$$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \}$$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \}$$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \}$$

La complexité de l'algorithme naïf qui construit toutes les parties à **deux** éléments d'un ensemble à *n* éléments est dans

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \}$$

La complexité de l'algorithme na \ddot{i} f qui construit toutes les parties à deux éléments d'un ensemble à n éléments est dans $\Theta(n^2)$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \}$$

La complexité de l'algorithme na \ddot{i} f qui construit toutes les parties à **trois** éléments d'un ensemble à n éléments est dans $\Theta()$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \}$$

La complexité de l'algorithme na \ddot{i} f qui construit toutes les parties à **trois** éléments d'un ensemble à n éléments est dans $\Theta(n^3)$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \}$$

La complexité de l'algorithme na \ddot{i} f qui construit toutes les parties à k éléments d'un ensemble à n éléments est dans $\Theta()$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \}$$

La complexité de l'algorithme na \ddot{i} f qui construit toutes les parties à k éléments d'un ensemble à n éléments est dans $\Theta(n^k)$

$$\mathcal{E}_4 = \{ 1, 2, 3, 4 \}$$

$$C_4^2 = \{ \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\} \}$$

La complexité de l'algorithme na \ddot{i} f qui **imprime** toutes les parties à k éléments d'un ensemble à n éléments est dans $\Theta(n^k \times k)$

Quel est le coût minimum de l'algorithme d'impression?

Quel est le coût minimum de l'algorithme d'impression?

Coût d'impression d'un élément

 \times

Nombre d'éléments

Quel est le coût minimum de l'algorithme d'impression?

Coût d'impression d'un élément $\Theta(k)$

 \times

Nombre d'éléments

Quel est le coût minimum de l'algorithme d'impression?

Coût d'impression d'un élément $\Theta(k)$

X

Nombre d'éléments C_n^k

Quel est le coût minimum de l'algorithme d'impression?

Coût d'impression d'un élément $\Theta(k)$

X

Nombre d'éléments C_n^k

 $\Theta(k.C_n^k)$

Quel est le coût minimum de l'algorithme d'impression?

Coût d'impression d'un élément $\Theta(k)$

Nombre d'éléments C_n^k

$$\Theta(k.C_n^k)$$

L'algorithme na \ddot{i} f est en $\Theta(k \times n^k)$, le coût minimum est en $\frac{n!}{(k-1)!(n-k)!}$

algorithme naïf :
$$\Theta(k \times n^k)$$

coût minimum :
$$\frac{n!}{(k-1)!(n-k)!}$$

$$\frac{n!}{(n-k)!} =$$

$$\frac{n!}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{(n-k)!} =$$

$$\frac{n!}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)}$$

coût minimum : $\frac{1}{(k-1)!}$

$$\frac{n!}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2 \times ... \times (n-k)} = \frac{1 \times 2 \times ... \times (n-k)}{1 \times 2$$

$$\frac{n!}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)}$$
$$= \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \prod_{i=0}^{i=k-1} (n-i)$$

$$\begin{split} \frac{n!}{(n-k)!} &= \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} \\ &= \frac{\cancel{1} \times \cancel{2} \times ... \times \cancel{N} / \cancel{N} / \cancel{N}}{\cancel{1} \times \cancel{2} \times ... \times \cancel{N} / \cancel{N} / \cancel{N}} = \prod_{i=0}^{i=k-1} (n-i) \end{split}$$

 n^k est beaucoup plus grand que $\prod_{i=0}^{i=k-1}(n-i)$

$$\frac{n!}{(n-k)!} = \frac{1 \times 2 \times \dots \times (n-k) \times (n-k+1) \times \dots \times n}{(n-k)!} = \frac{1 \times 2 \times \dots \times (n-k) \times (n-k+1) \times \dots \times n}{1 \times 2 \times \dots \times (n-k)}$$

$$= \frac{1 \times 2 \times \dots \times (n-k) \times (n-k+1) \times \dots \times n}{1 \times 2 \times \dots \times (n-k)} = \prod_{i=0}^{i=k-1} (n-i)$$

 n^k est beaucoup plus grand que $\prod_{i=0}^{i=k-1} (n-i)$

Donc le rapport du coût de l'algorithme naïf au coût minimal

$$\frac{\frac{n!}{(n-k)!}}{=} \frac{\frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{(n-k)!}}{\frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)}}{=} \frac{\frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)}}{\frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)}}{=} \Pi_{i=0}^{i=k-1}(n-i)$$

 n^k est beaucoup plus grand que $\prod_{i=0}^{i=k-1} (n-i)$

Donc le rapport du coût de l'algorithme naïf au coût minimal

$$\frac{\underset{i=0}{\overset{k\times n^k}{-1}}}{\frac{\prod_{i=0}^{i=k-1}(n-i)}{(k-1)!}} =$$

$$\begin{split} \frac{n!}{(n-k)!} &= \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} \\ &= \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \prod_{i=0}^{i=k-1} (n-i) \end{split}$$

 n^k est beaucoup plus grand que $\prod_{i=0}^{i=k-1}(n-i)$

Donc le rapport du coût de l'algorithme naïf au coût minimal $\frac{k \times n^k}{\prod_{\substack{i=0\\i=0\\(k-1)!}}^{l=k-1}(n-i)} = \frac{n^k}{\prod_{\substack{i=0\\i=0}}^{l=k-1}(n-i)} \times k! \text{ est supèrieur à } k!$

$$\begin{split} \frac{n!}{(n-k)!} &= \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{(n-k)!} = \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} \\ &= \frac{1 \times 2 \times ... \times (n-k) \times (n-k+1) \times ... \times n}{1 \times 2 \times ... \times (n-k)} = \prod_{i=0}^{i=k-1} (n-i) \end{split}$$

 n^k est beaucoup plus grand que $\prod_{i=0}^{i=k-1}(n-i)$

Donc le rapport du coût de l'algorithme naïf au coût minimal $\frac{k \times n^k}{\prod_{i=0}^{l=k-1} (n-i)} = \frac{n^k}{\prod_{i=0}^{l=k-1} (n-i)} \times k! \text{ est supèrieur à } k!$

Ça vaut le coup de tenter quelque chose par exemple quand $k pprox rac{n}{2}$

$$\mathcal{E}_5 = \{1,\ 2,\ 3,\ 4,\ 5\}$$

$$\mathcal{E}_5 = \{1,\ 2,\ 3,\ 4,\ 5\}$$

$$C_3^5 = \{$$

$$\mathcal{E}_5 = \{1,\ 2,\ 3,\ 4,\ 5\}$$

$$C_3^5 = \{(\ ,\ ,\),$$

$$\mathcal{E}_5 = \{1,\ 2,\ 3,\ 4,\ 5\}$$

$$C_3^5 = \{(1,2,3),$$

$$\mathcal{E}_5 = \{1,\ 2,\ 3,\ 4,\ 5\}$$

$$C_3^5 = \{(1,2,3),(,,)\}$$

$$\mathcal{E}_5 = \{1, 2, 3, 4, 5\}$$

$$C_3^5 = \{(1,2,3),(1,2,)\}$$

$$\mathcal{E}_5 = \{1, 2, 3, 4, 5\}$$

$$C_3^5 = \{(1,2,3), (1,2,4)\}$$

$$\mathcal{E}_5 = \{1, 2, 3, 4, 5\}$$

$$C_3^5 = \{(1,2,3), (1,2,4)(1,2,5),$$

$$\mathcal{E}_5 = \{1,\ 2,\ 3,\ 4,\ 5\}$$

$$C_3^5 = \{(1,2,3),(1,2,4)(1,2,5),(1,,)\}$$

$$\mathcal{E}_5 = \{1,\ 2,\ 3,\ 4,\ 5\}$$

$$\mathcal{C}_3^5 = \{(1,2,3), (1,2,4)(1,2,5), (1,3,4)(1,3,5), (2,3,4)(2,3,5)(3,4,5)\}$$

$$\mathcal{E}_5 = \{1, 2, 3, 4, 5\}$$

$$\mathcal{C}_3^5 = \{(1,2,3), (1,2,4)(1,2,5), (1,3,4)(1,3,5), (2,3,4)(2,3,5)(3,4,5)\}$$

On construit naturellement \mathcal{S}_3^5 quand on veut construire \mathcal{C}_3^5

Algorithme Dernier

Données:

- deux entiers $k \le n$
- T un tableau de k éléments

Résultat: Un booléen qui indique si ce tableau représente la dernière (au sens de l'ordre lexicographique) des suites ordonnées de k éléments sur l'ensemble $\{1, 2, \ldots n\}$

Complexité:

Algorithme Dernier

Données:

- deux entiers $k \le n$
- T un tableau de k éléments

Résultat: Un booléen qui indique si ce tableau représente la dernière (au sens de l'ordre lexicographique) des suites ordonnées de k éléments sur l'ensemble $\{1, 2, \ldots n\}$

Complexité : ⊖()

Algorithme Dernier

Données:

- deux entiers $k \le n$
- T un tableau de k éléments

Résultat: Un booléen qui indique si ce tableau représente la dernière (au sens de l'ordre lexicographique) des suites ordonnées de k éléments sur l'ensemble $\{1, 2, \ldots n\}$

Complexité : $\Theta(k)$

Quel est (avec n = 8) la suite suivant la suite

[12345]

Quel est (avec n = 8) la suite suivant la suite

[1 2 3 4 5] [1 2 3 4 6]

```
[1 2 3 4 5] [1 2 3 4 6]
[1 5 6 7 8] [2 3 4 5 6]
```

```
[1 2 3 4 5] [1 2 3 4 6]
[1 5 6 7 8] [2 3 4 5 6]
[1 2 3 4 8] [1 2 3 5 6]
```

```
      [1 2 3 4 5]
      [1 2 3 4 6]

      [1 5 6 7 8]
      [2 3 4 5 6]

      [1 2 3 4 8]
      [1 2 3 5 6]

      [1 2 3 7 8]
      [1 2 4 5 6]
```

Suivant

Données: Un tableau de taille *k*

Résultat: Un tableau de taille k

Complexité :

Suivant

Données: Un tableau de taille *k* représentant une suite ordonnée

de k entiers de $\{1 \ldots n\}$

Résultat: Un tableau de taille k

Complexité :

Suivant

Données: Un tableau de taille *k* représentant une suite ordonnée

de k entiers de $\{1 \dots n\}$

Résultat: Un tableau de taille k représentant la suite ordonnée suivante

Complexité :

Suivant

Données: Un tableau de taille k représentant une suite ordonnée

de k entiers de $\{1 \dots n\}$

Résultat: Un tableau de taille k représentant la suite ordonnée suivante

Complexité : $\Theta()$

Suivant

Données: Un tableau de taille k représentant une suite ordonnée

de k entiers de $\{1 \dots n\}$

Résultat: Un tableau de taille k représentant la suite ordonnée suivante

Complexité : $\Theta(k)$

Suivant

Données: Un tableau de taille k représentant une suite ordonnée

de k entiers de $\{1 \dots n\}$

Résultat: Un tableau de taille k représentant la suite ordonnée suivante

Complexité : $\Theta(k)$

Reste à l'écrire

Suivant

Données: Un tableau de taille k représentant une suite ordonnée

de k entiers de $\{1 \dots n\}$

Résultat: Un tableau de taille k représentant la suite ordonnée suivante

Complexité : $\Theta(k)$

Reste à l'écrire ce qui est laissé en exercice.

Suivant

Données: Un tableau de taille *k* représentant une suite ordonnée

de k entiers de $\{1 \dots n\}$

Résultat: Un tableau de taille k représentant la suite ordonnée suivante

Complexité : $\Theta(k)$

Reste à l'écrire ce qui est laissé en exercice.

Premier:

Suivant

Données: Un tableau de taille k représentant une suite ordonnée

de k entiers de $\{1 \dots n\}$

Résultat: Un tableau de taille k représentant la suite ordonnée suivante

Complexité : $\Theta(k)$

Reste à l'écrire ce qui est laissé en exercice.

Premier:

Résultat: Un tableau de taille k représentant la première suite ordonnée **Complexité** :

Suivant

Données: Un tableau de taille k représentant une suite ordonnée

de k entiers de $\{1 \dots n\}$

Résultat: Un tableau de taille k représentant la suite ordonnée suivante

Complexité : $\Theta(k)$

Reste à l'écrire ce qui est laissé en exercice.

Premier:

Résultat: Un tableau de taille k représentant la première suite ordonnée

Complexité : $\Theta()$

Suivant

Données: Un tableau de taille k représentant une suite ordonnée

de k entiers de $\{1 \dots n\}$

Résultat: Un tableau de taille k représentant la suite ordonnée suivante

Complexité : $\Theta(k)$

Reste à l'écrire ce qui est laissé en exercice.

Premier:

Résultat: Un tableau de taille k représentant la première suite ordonnée

Complexité : $\Theta(k)$

```
Données: k \le n deux entiers

Résultat: \mathcal{C}_n^k a été imprimé

T \leftarrow \mathsf{Premier}();

Imprimer T;

tant que non \mathsf{Dernier}(T) faire

T \leftarrow \mathsf{Suivant}(T);

Imprimer(T);

fin
```

```
Données: k \le n deux entiers

Résultat: C_n^k a été imprimé

\Theta(k) T \leftarrow \text{Premier}();

\Theta(k) Imprimer T;

tant que non Dernier(T) faire

T \leftarrow \text{Suivant}(T);

ImprimerT;
```

```
Données: k \le n deux entiers

Résultat: C_n^k a été imprimé

\Theta(k) T \leftarrow \text{Premier}();

\Theta(k) Imprimer T;

tant que non Dernier(T) faire

| \Theta(k) | T \leftarrow \text{Suivant}(T);

| \Theta(k) | \text{Imprimer}(T);

fin
```

```
Données: k \le n deux entiers

Résultat: C_n^k a été imprimé

\Theta(k) T \leftarrow \text{Premier}();

\Theta(k) Imprimer T;

tant que non Dernier(T) faire

| \Theta(k) | T \leftarrow \text{Suivant}(T);

| \Theta(k) | Imprimer(T);

fin
```

On passe dans la répétitive fois

```
Données: k \le n deux entiers

Résultat: C_n^k a été imprimé

\Theta(k) T \leftarrow \text{Premier}();

\Theta(k) Imprimer T;

tant que non Dernier(T) faire

| \Theta(k) | T \leftarrow \text{Suivant}(T);

| \Theta(k) | Imprimer(T);

fin
```

On passe dans la répétitive C_n^k fois

```
Données: k \le n deux entiers

Résultat: C_n^k a été imprimé

\Theta(k) T \leftarrow \text{Premier}();

\Theta(k) Imprimer T;

tant que non Dernier(T) faire

| \Theta(k) | T \leftarrow \text{Suivant}(T);

| \Theta(k) | Imprimer(T);

fin
```

On passe dans la répétitive C_n^k fois

La complexité $\Theta(k \times C_n^k)$ est optimale!

