支援向量機介紹 (Support Vector Machine, SVM)

國立屏東科技大學資訊管理系 吳庭育 教授 tyw@mail.npust.edu.tw

▼機器學習領域常見的類型

類型	線性迴歸分析	分類	分群
目的	趨勢預測分析	類別或等級的識別	類別或等級的區別
功能	連續值,預測數值為多少	非連續,負責識別出 哪一種	非連續,負責區別出 有幾群
學習 方式	提供解答(標籤)	提供解答(標籤)	沒有解答(標籤)
應用	 下次考試成績會得幾分 最高氣温預測冰品銷售量 最高氣温與尖峰用電量 下一季的銷售額有多少 投入廣告費與銷售額 	 哪一個品種:依花的長寬分類 鐵達尼號船難者是否生還:依性別及艙等分類 判別是不是垃圾電子郵件 貓狗的識別 人臉、車牌等識別 	 班上同學分為跑得快跟跑得慢:依百米賽跑的秒數及身體的體脂肪率 哪些植物屬於相同的品種:依花的長寬分群 哪些動物屬於相同的品種:依體重及身長分群 哪些觀眾喜歡同一種類型的音樂或電影
常見 的演 算法	線性迴歸 複迴歸分析	KNN 決策樹 隨機森林 支援向量機	K-means

https://www.youtube.com/watch?v=31iCbRZPrZA

SVM是怎麼得到那條很好的線呢?以直線來說,首先紅色的線會創造兩條黑色平行於紅色線的虛線,並讓黑線平移碰到最近的一個點,紅線到黑線的距離稱為Margin,而SVM

那要怎麼讓Margin最大呢?

• 假設紅線是 $w^*x = 0$ 在紅線上方的區域就是 $w^*x > 0$ 紅線下方的區域就是 $w^*x < 0$ 。

• 在左邊虛線上方的區域是w*x<-k 在右邊虛線下方的區域是w*x>k,虛線中間不會有資料點。

Margin =
$$\frac{W * \overline{X1 - X2}}{2||w||}$$

$$= \frac{2k}{2||w||}$$
Condition = $y*(w*x) >= k$

- 虚線上的點X1,X2 就是所謂的支援向量(Support Vector)
- •可以將X1向量-X2向量得到的向量投影到W 來計算 Margin
- ●接下來就是在Y*(W*X) ≥k 的條件下(虛線中間沒有點),來最大化Margin。

END !!