Roll No. Total Pages: 4

300204

May 2019

B.Tech. (ECE/EIC/EEE/FAE) IInd Semester MATHEMATICS-II

(Calculus, Ordinary Differential Equations and Complex Variable)

(BSC106D)

Time: 3 Hours] [Max. Marks: 75

Instructions:

- It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- (ii) Answer any four questions from Part-B in detail.
- (iii) Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1. (a) Evaluate $\iint_{R} xydx dy$ where R is the region in first

quadrant bounded by x-axis, ordinate x = 2a and the curve $x^2 = 4ay$. (1.5)

- (b) Find the work done in moving a particle in the force field $\vec{F} = 3x^2\hat{i} + (2xz y)\hat{j} + z\hat{k}$ along a straight line from (0, 0, 0) to (2, 1, 3). (1.5)
- (c) Find the value of λ , for the differential equation $(xy^2 + \lambda x^2 y)dx + (x + y)x^2 dy = 0$ is exact. (1.5)
- (d) Solve $x^2 = 1 + p^2$. (1.5)
- (e) Solve $\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 9x = 0$. (1.5)
- (f) Show that $P_n(1) = 1$ for all n. (1.5)
- (g) Show that the function $u = e^{-2xy} \sin (x^2 y^2)$ is harmonic. (1.5)
- (h) Write C-R equations in polar form. (1.5)
- (i) Evaluate $\int_{0}^{1+i} (x^2 iy)dz$ along the path y = x. (1.5)
- (j) Find the residue at each pole of $f(z) = \frac{\sin z}{z \cos z}$ inside the circle |z| = 2. (1.5)

PART-B

2. (a) Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

(8)

- (b) Find by double integration, the centre of gravity of the area of the cardiod $r = a(1 + \cos \theta)$. (7)
- 3. (a) Solve $(y^3 2x^2y)dx + (2xy^2 x^3)dy = 0$. (8)
 - (b) Solve Bernoulli equation $x^2dy + y(x + y)dx = 0$. (7)
- 4. (a) Solve the differential equation in power series

$$2x(1-x)\frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} + 3y = 0.$$
 (8)

- (b) Using the Method of Variation of parameters, solve $y'' 2y' + y = e^x \log x$. (7)
- 5. (a) Determine the analytic function whose real part is e^{2x} ($x \cos 2y y \sin 2y$). (8)
 - (b) Find the bilinear transformation which maps the points z = 1, i, -1 into the points w = i, o, -i. Hence find the image of |z| < 1. (7)
- 6. (a) Evaluate $\oint_C \frac{3z^2 + 7z + 1}{z + 1} dz$, where C is the circle

(i)
$$|z| = 1.5$$
.

(ii)
$$|z+i|=1$$
. (8)

- (b) Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in the region
 - (i) |z| < 1.
 - (ii) 1 < |z| < 2.

$$(iii) \mid z \mid > 2. \tag{7}$$

- 7. (a) Verify Stoke's Theorem for the vector field $\vec{F} = (2x y)\hat{i} + yz^2\hat{j} + y^2z\hat{k}$ over the upper half surface of $x^2 + y^2 + z^2 = 1$, bounded by its projection in xy-plane.
 - (b) Show that $\frac{d}{dx}[x^{-n}J_n(x)] = -x^{-n}J_{n+1}(x)$.

August/September 2022

B.Tech (ME(Hindi Medium)/(ME/RAI)) - II SEMESTER

Mathematics-II (Calculus, Ordinary Differential Equations and Complex Variables)

(BSCH-106A/BSC-106A)

Time: 3 Hours Instructions:

Max. Marks:75

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part -A in short.
- 2. Answer any four questions from Part -B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.
- 4. The candidate is required to attempt the question paper in the language as per his/her medium of instruction.

PART -A

01 (a) Evaluate

(1.5)

$$\int_{0}^{a} \int_{0}^{\sqrt{a^2-x^2}} x^2 y \, dx \, dy$$

मूल्यांकन करो।

 $\int_0^a \int_0^{\sqrt{a^2 - x^2}} x^2 y \, dx \, dy$

(b) Find the area bounded between $r=2\sin\theta$ and $r=4\sin\theta$ $r=2 \ sin heta$ और $r=4 \ sin heta$ के बीच घिरा हुआ क्षेत्रफल ज्ञात कीजिए।

(1.5)

(c) Evaluate

(1.5)

$$\int_{0}^{1} \int_{0}^{2} \int_{1}^{2} x^{2} y z \, dx \, dy \, dz$$

मुल्यांकन करो।

$$\int_{0}^{1} \int_{0}^{2} \int_{1}^{2} x^{2} y z \, dx \, dy \, dz$$

(d) Find the integrating factor of the differential equation

(1.5)

 $(x^2-3xy)dx+(x^2-xy)dy=0$ विभेदक समीकरण का एकीकृत गुणांक ज्ञात कीजिये ।

$$(x^2 - 3xy)dx + (x^2 - xy)dy = 0$$

(e) Solve the following differential equation

(1.5)

$$p^2 - 7p + 12 = 0$$

 $p^2 - 7p + 12 = 0$ निम्नलिखित विभेदक समीकरण को हल कीजिये

$$p^2 - 7p + 12 = 0$$

(f) Solve the following differential equation

(1.5)

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{2x}$$

दोहरे अभिन्न का उपयोग करके $y=2$	$2-x$ और x^2	$+y^2=4$ से घिरे क्षेत्र
में से छोटे को ज्ञात कीजिए।		

Q3 (a) Solve the following differential equation: $(x^2 y^2 + xy + 1) y dx + (x^2 y^2 - xy + 1) x dy = 0$

निम्निखित विभेदंक समीकरण को हल कीजिये

$$(x^2y^2 + xy + 1)y dx + (x^2y^2 - xy + 1)x dy = 0$$

(b) Solve the following differential equation:

 $x^{2} \left(\frac{dy}{dx}\right)^{2} - 2xy \frac{dy}{dx} + 2y^{2} - x^{2} = 0$

(8)

(7)

(8)

(7)

(8)

(7)

निम्नलिखित विभेदक समीकरण को हल कीजिये

$$x^{2} \left(\frac{dy}{dx}\right)^{2} - 2xy \frac{dy}{dx} + 2y^{2} - x^{2} = 0$$

Q4 (a) Solve the following differential equation:

 $2 \frac{d^2y}{dx^2} + 5 \frac{dy}{dx} + 2y = 5 + 2x$

निम्नलिखित विभेदक समीकरण को हल कीजिये

$$2 \frac{d^2y}{dx^2} + 5 \frac{dy}{dx} + 2y = 5 + 2x$$

(b) Apply the method of variation of parameters to solve the equation:

 $(1-x)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = (1-x)^2$

समीकरण को हल करने के लिए मापदंडों की भिन्नता की विधि लागू करें:

$$(1-x)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = (1-x)^2$$

Q5 (a) Using the Cauchy – Riemann equations, show that:

(i). $f(z) = |z|^2$ is not analytic at any point.

(ii). $f(z) = \overline{z}$ is not analytic at any point.

कौची - रीमैन समीकरणों का उपयोग करके, दिखाएं कि:

- (i). $f(z) = |z|^2$ किसी भी बिंदु पर विश्लेषणात्मक नहीं है।
- (ii). $f(z) = \overline{z}$ किसी भी बिंदु पर विश्लेषणात्मक नहीं है।
- (b) Evaluate the integral:

 $\oint \frac{z^2 + 1}{z(2z - 1)} dz \; ; \; c : |z| = 1$

अभिन्न का मूल्यांकन करें:

$$\oint \frac{z^2 + 1}{z(2z - 1)} dz \; ; \; c : |z| = 1$$

Q6 (a) Find all possible Taylor's and Laurent series expansions for the function $f(z) = \frac{1}{(1-z)} \quad about \ z = 0$ फ़ंक्शन के लिए सभी संभव टेलर और लॉरेंट श्रृंखला विस्तार खोजें $f(z) = \frac{1}{(1-z)} \quad about \ z = 0$

(8)

(7)

(8)

(7)

- (b) Show that the function
 - (i). cosec z has a simple pole at z = 0.
 - (ii). $\frac{1}{z^2-1}$ has simple pole at z=1 and z=-1. दिखाएँ कि फ़ंक्शन
 - (i). cosec z में z = 0 पर एक सरल ध्रुव है।
 - (ii). $\frac{1}{z^2-1}$ में z=1 और z=-1 पर सरल ध्रुव है।
- Q7 (a) Solve the following differential equation:

 $x^2 \frac{d^2y}{dx^2} + 8x \frac{dy}{dx} + 13y = \log x$ निमृलिखित विभेदक समीकरण को हल कीजिए:

$$x^2 \frac{d^2y}{dx^2} + 8x \frac{dy}{dx} + 13y = \log x$$

- Compute the residues at all the singular points of the following functions:
 - (i). $f(z) = z \sin(\frac{1}{z})$
 - (ii). $f(z) = z \cos(\frac{1}{z})$ निमृलिखित फलन के सभौ एकवचन बिंदुओं पर अवशेषों की गणना करें:

(i). $f(z) = z \sin(\frac{1}{z})$

(ii). $f(z) = z \cos(\frac{1}{z})$

$$\frac{dy}{dx} - y = 5 \sin x. \tag{1.5}$$

- What is the general form of the Bessel's differential (1.5)equation?
- Find the integrating factor of the following differential equation:

$$(x^3 + xy^4) dx + 2y^3 dy = 0.$$

- $(x^3 + xy^4) dx + 2y^3 dy = 0.$ e Green's Thorem. (h) State Green's Thorem.
- (i) Evaluate the integral $\int_{0}^{1} \int_{0}^{2} x(x+y) \, dy \, dx.$ (1.5)
- Find the general solution of the following differential equation:

equation:

$$y = y = (x - a)p - p^{2}, \text{ where } p = \frac{dy}{dx}.$$

(1.5)

PART-B

$$y = (x - a) + (x - a) +$$

- 2. (a) Evaluate the integral $\int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$ by changing the order of integration.
 - Evaluate the integral $\iint \vec{F} \cdot \vec{n} + ds = yz\vec{l} + zx\vec{j} + xy\vec{k}$ and S is part of the surface $x^2 + y^2 + z^2 = 1$, which lies in the first octant.

013202/295/111/10

Find the series solution in series of power of x of the following differential equation:

$$4x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0. {(8)}$$

4. (a) Solve the following differential equation:

$$p^2 + 2xp - 3x^2 = 0$$
where $p = \frac{dy}{dx}$.

- Sp. dn (7)

(b) Solve the differential equation:

$$(2x - y)dy + (2y + x) dx.$$
 (8)

Show that the function $u(x, y) = 2x + y^3 - 3x^2y$ is harmonic. Find its conjugate harmonic function v(x, y) and the corresponding analytic function f(z).

(7)

(8)

(b) Find the image of the closed half disk

$$|z| \le 1$$
, Im $z \ge 0$

under the bilinear transformation

$$w = \frac{z}{z+1}.$$

013202/295/111/10

O

August/September-2022 B.Tech.(ECE/ENC/EEIOT)- II SEMESTER (Calculus, Ordinary Differential Equation and Complex Variations: It is compulsory to appear to the complex of the complex variations: 1.	Sr. No 015201	
Time: 3 Hours		
Instructions: 1. It is commut-	ole)(BSC-106D)	
Instructions: 1. It is compulsory to answer all the questions (1.5 marks each) of Par 2. Answer any four questions from Part -B in detail. 3. Different sub-parts of a question are to be attempted adjacent to each.	Max. Markette	
PART-A	other,	
Que.1(a) Evaluate $\int_{0}^{1} \int_{y}^{y^{2}+1} x^{2} y dx dy$		
(b) Find the area lying between the	(1.5)	
(b) Find the area lying between the parabola $y = 4x - x^2$ and the line $y = x^2$	(1.5) (1.5)	
(AC) Solve (xv3+v)dv+(2v2-3	,	
$V = 2p_{V+1}q_{V}^2$	(1.5)	
$y = 2px+p^4x^2$ (solvable for y). (e) Solve (D^4+6D^2+9) $y = 0$, where $D = d/dx$.	(1.5)	
Write the Bessel's differential equation of order r. (8) State C-R Equations,	(1.5) (1.5)	
(b) Define conformal mapping.	(1.5)	
(i) State Cauchy's integral theorem and Cauchy's	(1,5)	
(j) State Cauchy's Residue Theorem. (15)	(1.5)	
PART-B	(1.5)	
Que.2 (a)Change the order of integration in the given integral and then evaluate		
and then evaluate the given integral and then evaluate	te $\int dudx$	
(b) Verify the Green's theorem in the plane for $\oint_C (3x^2 - 8y^2) dx + (4y - 6xy) dy$ boundary of the region defined by $y = 0$, $y = 0$	$\int_{0}^{\infty} \int_{0}^{\infty} dy dx$	
and Green's theorem in the plane for $\oint (3x^2 - 8y^2) dx + (4y - 6xy) dy$	whom Q:	
boundary of the region defined by $x = 0, y = 0, x + y = 1$. Que.3 (a) Solve the differential against $(x, y) = 0$.	, where C is the	
Que.3 (a) Solve the differential equation (2) $x + y = 1$.	(8)	
Que.3 (a) Solve the differential equation $(2y\sin x + 3y^4 \sin x \cos x) dx - (4y^3 \cos^2 x + \cos^2 x) dx$	$\cos(x) dy = 0$	
(e) solve the differential equation: $y = 2ny + y^2 n^3 (C_0) + y + y + y^2 n^3 (C_0) + y + y + y + y + y + y + y + y + y + $	(7) 12/62	
Que.4 (a) Using variation of parameter, solve (D ² - 6D + 9)y = $\frac{e^{3x}}{x^2}$, where D = d/(b) Express $4x^3 - 2x^2 - 3x + 8$ in terms of Legendre's	(8)	
(b) Express $4x^3 - 2x^2 - 2x + 0$; where D = d	dx(7) (7)	
(b) Express $4x^3 - 2x^2 - 3x + 8$ in terms of Legendre's polynomial. Que. 5 (a) Show that the function $y = e^{-2xy} \sin(y^2 + z^2)$ is 1		
and express utives an analytic feature similar system armonic. Find the conjugate	gate function (v)	
(b) Under the transformation $w = 1/z$, find the image of the given curve: $ z - 2i $	1=2(2) (7)	
6	= 2(8) (8)	
1, 50/	()	

Que.6 (a) Expand $\frac{e^{2x}}{(x-1)^3}$ about the singularity z=1 in Laurent's series. (7)

(b)Evaluate $\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta}$ using Residue theorem. (8)

Que.7 (a) Find the volume bounded by the cylinder $x^2+y^2=4$ and the planes y+z=4 and z=0.

(b) Find the sum of the residues of the function $f(z) = \frac{\sin z}{z\cos z}$ at its poles inside the circle |z| = 2