The Judicious Wine A wine quality prediction system

Kaylee Pham, Shant Melikyan, Hovik Hovakimyan, Narbeh Movsesian, Bezan Lilauwala

COMP 542
Department of Computer Science
California State University, Northridge

Outline

- Introduction
- Data Exploration
- Data Preprocessing
- Data Processing
- Result
- Q&A

Introduction

Motivation

- Strong passion for sciences and wine
- Help Companies produce higher quality wine

Problem to solve

- Production is a very competitive
- Understand the science behind

Solution

Knowing the particular characteristics that affect the quality of the wine

Open dataset from Kaggle and UCI Machine Learning

Out[16]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
	4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

- Task: Classification, Regression
- Algorithms use :
 - Support Vector Machine
 - o Random Forest
 - K-Nearest Neighbor
- Python libraries: Numpy, Pandas, Sklearn, Seaborn, Matplotlib.pyplot
- Jupyter Notebook

Data Exploration - Info

Data_red.shape # Returns rows and columns(1599, 12)

data_red.info() # Returns data types and null value count

RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	pH	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

Data Exploration - Description

data_red.describe() # Data Summary

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311113	0.658149	10.422983
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	0.169507	1.065668
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	0.330000	8.400000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	0.550000	9.500000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	0.620000	10.200000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400000	0.730000	11.100000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003690	4.010000	2.000000	14.900000

Data Exploration - Skewness

- **Skewness:** Skewness, in statistics, is the degree of distortion from the symmetrical bell curve in a probability distribution. Distributions can exhibit right (positive) skewness or left (negative) skewness to varying degrees. Data lean to the left is positive vs. lean to the right is negative
- data_red.drop(columns='quality').skew(axis = 0) # Returns skewness of each independent feature

TATANAN AND THE TATANAN SAND	
fixed acidity	0.982751
volatile acidity	0.671593
citric acid	0.318337
residual sugar	4.540655
chlorides	5.680347
free sulfur dioxide	1.250567
total sulfur dioxide	1.515531
density	0.071288
pH	0.193683
sulphates	2.428672
alcohol	0.860829
dtype: fleat64	

Skewness

- data_red.drop(columns='qu ality').plot(kind='density', subplots=True, layout=(4,3),figsize=(16, 12), sharex= plt.show() # Returns a density plot

Data Exploration - Correlation

- plt.figure(figsize=(12, 12))corr = data_red.corr()sns.heatmap(corr, annot=True) plt.show()
 - # Returns a heatmap correlation matrix

-0.8

- 0.6

-0.4

- 0.2

- 0.0

Data Exploration - Count Target Feature

- sns.countplot(x='quality', data = data_red) plt.show()
- # Returns a count plot of the target feature

data.quality.value_counts() #count target feature

5 681
6 638
7 199
4 53
8 18
3 10
Name: quality, dtype: int64

Data Exploration - Boxplots

- colum_names = ['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides', 'free sulfur dioxide', 'total sulphur dioxide', 'density', 'pH', 'sulphates', 'alcohol']
- train = data_red[colum_names]
- plt.style.use('ggplot')
- for i in colum_names:

```
plt.figure(figsize=(13, 7))
plt.title(str(i) + " with " + str('quality'))
sns.boxplot(x=data_red.quality, y=train[i])
plt.show()
```


Data Preprocessing

- Remove Outliers
- Data Normalization
- Features Selection

Dataset	Red Wine Quality
Missing Value	None
Original Shape	1599 rows and 12 columns
Outliers	372
Shape after remover outlier	1451 rows and 12 columns

0 -

0.5

1.0

1.5

2.0

Feature Selection

```
#Filter method
# Pearson correlation coefificient
# Creating set to hold the correlated features
corr_features = set()
corr_threshold = 0.5
for i in range(len(corr.columns)):
    for j in range(i):
        if abs (corr.iloc[i,j]) > corr_threshold:
            colname = corr.columns[i]
            corr_features.add(colname)
```

```
corr_features
{'citric acid', 'density', 'pH', 'total sulfur dioxide'}
```

Original features:	Important Features:	
1. Fixed acidity	1. Citric acid	
2. Volatile acidity	2. Total sulfur dioxide	
3. Citric acid	3. Density	
4. Residual sugar	4. pH	
5. Chlorides		
6. Free sulfur dioxide		
7. Total sulfur dioxide		
8. Density		
9. pH		
10. Sulfates		
11. Alcohol		

Data Processing

- Split data: 80% Training and 20% Testing
- Using Holdout and K-fold Cross-Validation methods
- Three models:
 - Random Forest (RF)
 - Support Vector Machine (SVM)
 - K-Nearest Neighbor (KNN)

Random Forest Model - Used Holdout evaluation method

Support Vector Machine Model - Used K-fold evaluation

	Origi	nal I	Data	a				Re	move	ed Ou	ıtlier	Removed Outlier and Normalized							
o - 0 0	0	2	0	0	- 100	0	0	1	10	0	0	- 100	0 -	0	9	2	0	0	- 8
⊣ - 0 0	3	8	0	0	- 80	н-		50	67	0	0	- 80			86	31	0		- 6
v - 0 0	51	84	0	0	- 60	2 -		18	104	0	0	- 60	N -		56	58	8		- 9
n - 0 0	32	110	0	0	- 40				-2-1			- 40				10000			
- 0 0	1	26		0	- 20	m -		3	34	0	0	- 20	m -			20	8	0	
- 0 0	0			0		4 -		2	2	0	0		4 -			2	2		H
0 1	2	3	4	5	-0	88	Ó	1	2	3	4	-0	"	0	1	2	3	4	-
	precision	rec	all fi	l-score	support			pre	cision	recall	f1-score	support			prec	ision	recall	f1-score	suppoi
3	0.00	_	.00	0.00	2			4	0.00	0.00	0.00	11			4	0.00	0.00	0.00	
4	0.00		.00	0.00	11			5	0.68	0.43	0.52	117			5	0.54	0.74	0.62	1
5	0.59		.38	0.46	135			6	0.48	0.85	0.61	122			6	0.51	0.48	0.49	1
0	0.47		.77	0.59	142			7	0.00	0.00	0.00	37			7	0.44	0.22	0.29	
8	0.00 0.00		.00 .00	0.00	27 3			8	0.00	0.00	0.00	4			8	0.00	0.00	0.00	
accuracy				0.50	320		accurac	y			0.53	291		accurac	y			0.52	2
macro avg	0.18	0	.19	0.17	320	n	acro av	/g	0.23	0.26	0.23	291	- 31	nacro av	g	0.30	0.29	0.28	29
weighted avg	0.46	0	.50	0.45	320	weig	hted av	g	0.47	0.53	0.47	291	wei	ghted av	g	0.49	0.52	0.49	29
Accuracy: 49.797% Std: (4.609%)							Accuracy: 47.414% Std: (3.226%)							Accuracy: 55.172% Std: (4.152%)					

K-Nearest Neighbor Model - Used K-fold evaluation

	100 H	Origi	nal D	ata	1			E	Rei	nove	ed Ou	ıtlier	Removed Outlier and Normalized								
o · 0	0	1	1	0	0	- 90 - 80	0 -	0	6	2	3	0	- 70	0 -	2	6	3	0	0	- 70	
- O	0	10	1	0	0	- 70 - 60	1	0	78	34	5	0	- 60 - 50	н :	1	75	38	3	0	- 60 - 50	
N - 0	0	90	43	2		- 50	2	0	56	61	5		- 40	2 -	2	53	5.	. 14	0	- 40	
m - 0	2	74	55	11		- 40 - 30	m -	0	16	18	3	0	- 30	m -	0	8	16	12	1	- 30	
4 - 0	1	4	13	9		- 20	m ·	v	10	10		v	- 20			·		-		- 20	
n - 0	0	0	1	2		-10 -0	4	0	1	2		0	- 10 - 0	4 -	0	0	3	1	0	-10	
ó	i	2	3	4	5	0		Ó	1	2	3	4			Ó	1	2	3	4		
	р	recision	recal	l f1-	score	support			pre	cision	recall	f1-score	support			prec	ision	recall	f1-score	support	
	3	0.00	0.0		0.00	2			4	0.00	0.00	0.00	11			4	0.40	0.18	0.25	11	
	4	0.00	0.0		0.00	11			5	0.50	0.67	0.57	117			5	0.53	0.64	0.58	117	
	5	0.50	0.6		0.57	135			6	0.52	0.50	0.51	122			6	0.47	0.43	0.45	122	
	6	0.48	0.3	3	0.43	142			7	0.18	0.08	0.11	37			7	0.40	0.32	0.36	37	
	7 8	0.38 0.00	0.3 0.0	5	0.35 0.00	27 3			8	0.00	0.00	0.00	4			8	0.00	0.00	0.00	4	
					0. 40	220	ž.	accurac	y ·			0.49	291	1	accurac	y			0.49	291	
accur		0.23	0.2	o o	0.48	320 320	1	nacro av	g	0.24	0.25	0.24	291	п	acro av	g	0.36	0.32	0.33	291	
macro weighted		0.23	0.4		0.45	320	weig	ghted av	g	0.44	0.49	0.46	291	weig	hted av	g	0.47	0.49	0.48	291	
Accu		cy: td:	49.				Ac	Accuracy: 47.500% Std: (3.543%)								Accuracy: 50.690% Std: (2.241%)					
	2	ca:	(4.	30.	<u> </u>				500	. (3.34	(80)				Std	. (2.24	10)		

Improvement

- Hyper Parameters Tuning
- GridSearchCV

Improving accuracy score

```
▶ rfc = RandomForestClassifier()

    parameters = {
       "n estimators": [5,10,50,100,250],
        "max depth": [2,4,8,16,32,None]
 M cv = GridSearchCV(rfc,parameters,cv=5)
                                                                 # CV=5 --> 5-fold
    cv.fit(X train orig,y train orig.ravel())
GridSearchCV(cv=5, estimator=RandomForestClassifier(),
                 param_grid={'max_depth': [2, 4, 8, 16, 32, None],
                             'n estimators': [5, 10, 50, 100, 250]})
   def display(results):
        print(f'Best parameters are: {results.best params }')
        print("\n")
        mean score = results.cv results ['mean test score']
        std score = results.cv results ['std test score']
        params = results.cv results ['params']
        for mean, std, params in zip(mean score, std score, params):
            print(f'{round(mean,3)} + or -{round(std,3)} for the {params}')
   display(cv)
```

Best parameters are: {'max depth': None, 'n estimators': 100}

Result

- Random Forest is the best model
 - Accuracy score: 75.312%
- Original dataset

```
#Create a Gaussian Classifier
rf = RandomForestClassifier(max_depth=None, n_estimators= 100)  #Original data
#Train the model using the training sets y_pred=clf.predict(X_test)
rf.fit(X_train_orig,y_train_orig)

rf_y_pred = rf.predict(X_test_orig)
# Using Holdout evalution method
# Model Accuracy, how often is the classifier correct?
print("RF-Accuracy-Orig:%.3f%%" %(metrics.accuracy_score(y_test_orig, rf_y_pred)*100))
```

THANKS!

Any questions?

