

OUTLINE

- CUDA implementation(s) overview
- Single node performance
- Multi node performance
- Comparison to other architectures
- Conclusions/suggestions

CUDA IMPLEMENTATIONS

- I. Cusparse CSR
- II. Cusparse CSR + Matrix Reordering (graph coloring)
- III. Custom Kernels CSR + Matrix Reordering (graph coloring)
- IV. Custom Kernels ELL + Matrix Reordering (graph coloring)

GPU	#SMs	#Cores SP/DP		DP (Gflops)	Memory Clock	Memory Bus Width	Memory Bandwidth
Tegra K1	1	192/8	852	13.6	924	64-bit	14.7
Tesla K10	8	1536/64	745	95	2500	256-bit	160
Tesla K20x	14	2688/896	732	1310	2600	384-bit	250
Tesla K40	15	2880/960	875	1680	3000	384-bit	288

RESULTS - GPU SUPERCOMPUTERS

- ▶ Titan @ ORNL
 - Cray XK7, 18688 Nodes
 - ▶ 16-core AMD Interlagos + K20X
 - Gemini Network 3D Torus Topology
- Piz Daint @ CSCS
 - Cray XC30, 5272 Nodes
 - ▶ 8-core Xeon E5 + K20X
 - Aries Network Dragonfly Topology

RESULTS - GPU SUPERCOMPUTERS

- ▶ 1 GPU = 20.8 GFLOPS (ECC ON)
- > ~7% iteration overhead at scale
- ▶ Titan @ ORNL
 - > 322 TFLOPS (18648 K20X)
 - 89% efficiency (17.3 GF per GPU)
- Piz Daint @ CSCS
 - ▶ 97 TFLOPS (5265 K20X)
 - ▶ 97% efficiency (19.0 GF per GPU)

RESULTS - GPU SUPERCOMPUTERS

- ▶ DDOT (-10%)
 - MPI_Allreduce()
 - Scales as Log(#nodes)
- ► MG (-2%)
 - Exchange Halo (neighbor)
- \triangleright SPMV (-0%)
 - Overlapped w/Compute

REPRODUCIBILITY

- Residual Variance (reported in output file)
 - zero = deterministic order of floating point operations
- GPU Supercomputers bitwise reproducible up to full scale
 - except with network hardware-acceleration enabled on Cray XC30
- Parallel Dot Product
 - Local GPU routines bitwise reproducible
 - MPI_Allreduce()
 - reproducible with default MPI implementation
 - Non-reproducible with network offload (hardware atomics)

REPRODUCIBILITY

- CRAY XC30 MPI_Allreduce()
 - ▶ Default → reproducible results but lower performance
 - Min MPI_Allreduce time: 0.0296645
 Max MPI_Allreduce time: 0.153267
 Avg MPI_Allreduce time: 0.0916832
 - MPICH_USE_DMAPP_COL=1
 - Min DDOT MPI_Allreduce time: 0.0379143
 Max DDOT MPI_Allreduce time: 0.0379143
 Avg DDOT MPI_Allreduce time: 0.0379143
 - ▶ Residuals:

4.25079640861055e-08 4.25079640861032e-08 4.25079640861079e-08 4.25079640861054e-08

POWER CONSUMPTION

- ▶ Piz Daint (5208 K20X)
 - ▶ 99 TF / 1232 kW
 - ▶ 0.080 GF/W
- GK20A (Jetson TK1)
 - ▶ 1.4 GF / 8.3 Watts
 - ▶ 0.168 GF/W

PLATFORM COMPARISON

	MPI Tasks	# iteration		Total Memory BW	HPCG per task	Ratio	Ratio - RAW	HPCG rank
Thiane-2A	46080	57	580109	14745600	12.59 GF	3.90%	4.40%	1
K	82944	51	426972	5308416	5.14 GF	8.00%	8.19%	2
Titan	18648	55	317216	4654540	17.01 GF	6.80%	7.48%	3
Piz-Daint	5208	55	97280	1299916	18.67 GF	7.40%	8.21%	5

Data from ISC14

CONCLUSIONS/ SUGGESTIONS

- (C) GPUs proven effective for HPL, especially for power efficiency
 - High flop rate
- (C) GPUs also very effective for HPCG
 - High memory bandwidth (Stacked memory will give a huge boost)
- (S) Reduce the required runtime from 1h to at least 100 iterations
- (S) Change metric: DOF/s?
- (S) Include yaml files in the list
- (S) Add power consumption?

ACKNOWLEDGMENTS

- Oak Ridge Leadership Computing Facility (ORNL)
 - Buddy Bland, Jack Wells and Don Maxwell
- Swiss National Supercomputing Center (CSCS)
 - Gilles Fourestey and Thomas Schulthess
- ▶ NVIDIA
 - Lung Scheng Chien and Jonathan Cohen