

Copy available to DDC does not permit fully legible reproduction

COVI LIBRARY COPY

Copy No 184

Code No ____

NUSL Problem No A-403-00-00 SF_11_552_001-11284

NAVY UNDERWATER SOUND LABORATORY NEW LONDON, CONNECTICUT 06320

WEIGHTED LINEAR REGRESSION FOR TWO VARIABLES DDC

by

John/Skory and Robert C./Jennings

MAR 16 1977

NUSL Technical Memorandam No. 2070-451-69

LIDE COMPANY STATEMENT TO SERVICE STATEMENT SERVIC

INTRODUCTION

The primary purpose of linear regression is the prediction of Y from a given value of X by means of the regression equation Y=BX or Y=A+BX, and the estimation of confidence limits for true Y, A and B. Regression analysis for two variables may be made on a weighted or unweighted basis with the line passing through the origin or through the means.

NON-CONSTANT VARIANCE OF Y AND WEIGHTING

If Y is the dependent variable, the linear regression of Y on X may be calculated if X is measured without error and each single measurement of Y has the same variance over the whole range of X. When this is not the case deviations from the regression line will not be normally distributed and the prediction of Y from X will be suspect.

DISTRIBUTION STATE AND A

Approved for public release;
Distribution Unlimited

254 200

LB

When the variance requirement is not met, a transformation of Y to logarithms or square root, etc., may be tried whereby the variances at the lower end of the scale of X will be found to be non-significantly different from those at the upper. If repeat measurements of Y at one value of X are available, the reciprocal of the variance derived from such a cluster may be used as a weight in the analysis. If variable Y comprises both single measurements and averaged measurements, the number of measurements that were averaged should be used as a weight. If both the variances of Y and number of measurements per averaged Y are known the weights would be the number of measurements of Y at X₁ divided by the variance of Y at X₁. If the variance of Y at X₁ is a function of X then X₁⁻² may be used as a weight.

PROGRAM EXTENSIONS

Program REGRESS (S1281) was developed and written by J. Skory and Z. Ungar at the United Aircraft Corporate Systems Center for the IBM 1800. It has been adapted to the UNIVAC 1108 with the following modifications and additions:

(1) the maximum input sample size has been increased to 2000 observations.

the weighted mean X, weighted corrected sum of squares

| NATION | World 2 | Most 2

2

$$\overline{X}_{k} = \frac{\sum_{k}^{k} w_{i}}{\sum_{k}^{k} w_{i}} \qquad \overline{X}_{k-1} + \frac{w_{k}}{\sum_{k}^{k} w_{i}}$$

$$SSX_{k} = SSX_{k-1} + \frac{\sum_{k=1}^{k-1} w_{i}}{\sum_{k=1}^{k} w_{i}} w_{k} (x_{k} - \overline{x}_{k-1})^{2}$$

$$ssxy_k = ssxy_{k-1} + \frac{\sum_{k=1}^{k-1} w_i}{\sum_{k=1}^{k} w_i} \quad w_k (x_k - \overline{x}_{k-1}) (y_k - \overline{y}_{k-1})$$

with k interated from 1 to n for a sample of n

- (3) Confidence limits for true Y are calculated at the experimental X_i and post experimental X_i .
- (4) Effective N at X₁ is calculated for use in finding tolerance limits for Y. Effective N is a value such that average Y at a given X is predicted as accurately from the point on the regression line as if N observations had been actually made at that specified X.
- (5) Linear calibration formulas are given for prediction of X from Y with confidence limits for true X.
- (6) Formulas are given for the statistics necessary for the comparison of 2 regression lines. Tests are provided for homogeneity of variances about the lines, parallelism and coincidence.

(The last three items are calculated by the user after the program has been run.)

INPUT INFORMATION

The program reads all the following input data from the card reader (unit 3): (For I/O formats see Appendix A).

- (1) n the number of data points in the input sample.
- (2) IH an indicator, = 1 for regression through the origin (Y = BX) or = 2 for regression through the means (Y = A+BX).
- (3) IW an indicator, = 1 if all weights = 1 , or = 2 if $W_i = X_i^{-2}$, or = 3 if weights are given.
- (4) t Student's t for calculating confidence limits for true Y.
- (5) X₁...X_n the independent variable at n points equally or unequally spaced along the X axis and assumed to be controlled by the experimenter without error (or only with negligible error).
- (6) $Y_1...Y_n$ the dependent variable. Y_i is an associate of X_i and if Y is an individual single measurement $Var(Y_1) = Var(Y_2) = ... = Var(Y_n)$.
- (7) $W_1...W_n$ weights for Y_i given as input only if IH = 3.
- (8) P₁...P₁₀ ten points of X chosen post experimentally at which it is desired to predict Y and estimate its error as an exploratory step for future experimentation.

(9) $Q_1...Q_{10}$ ten weights associated with P_i .

COMPUTER ANALYSIS

Program REGRESS first sorts the points of the independent variable X into ascending order using a modified Shell sort embodied in SPRT, a Fortran subroutine (NUSL Program 1525) programmed by Lesick and Shores and modified to retain the Y_1 and W_1 associated with each X_1 . This is done in order to obtain the within groups sums of squares for use in a one-way analysis of variance.

The program then evaluates the equation Y=A+BX or Y=BX where A and B are weighted least squares estimates determined by minimizing the sums $\sum W_i (\gamma_i - \hat{\gamma}_i)^2$ or $\sum W_i (Z_i - \hat{Z}_i)^2$ where the Z_i are translates of Y_i . The program thus performs a weighted linear regression analysis through the means or through the origin.

The deviations of observed Y from the regression line are tested for normality using WTEST, a Fortran function (NUSL Program S1640), (References 2 and 3).

The program writes all output data on the line printer (Unit 4):

SUMWX and SUMWY sum of the weighted X_i and Y_i

SUMW sum of the weights

AVERX, AVERY weighted average of X_i and Y_i

SUMDX SUMDY SUMXY weighted sum of squares and products

about the mean or origin

B the regression coefficient

A	the intercept
Ŷ _i	predicted Y vector
Ŷei	predicted exploratory Y vector
$(\mathbf{Y_i} - \mathbf{\hat{Y}_i})$	vector of deviations of observed Y from
	the regression line
R ²	correlation coefficient squared
S	standard error of estimate
F	a variance ratio testing if B=R=O
	F(1,n-1), through the origin, is evaluated
	F(1,n-2), through the means, is evaluated
s_{B}	standard error of B
SA	standard error of A
F	another variance ratio testing if
	A=O (for case of through the means).
	F(1,n-2) is evaulated with 1 and $(n-2)$
	degrees of freedom
s Ŷ i	standard error of each predicted point on .
	the line at Xi
Sqei	standard error of each predicted exploratory
	(postulated) point on the line at post
	experimental X _i (=P _i)
s _{Yi}	standard error of each weighted newly
	observed Y or $(Y_i - \hat{Y}_i)$

$s_{\mathtt{Y_{ei}}}$	standard error of each weighted newly
	observed Y _{ei} or (Y _{ei} -Y _{ei})
t	Student's t for each deviation from
	regression:
	t(n-1) for regression through the origin
	t(n-2) for regression through the means
VARY	variance of Y within groups at one X
SSB	sum of squares due to B
SSDEV	sum of squares of deviations from the line
U	normal distribution test statistic
	(applicable only when all W_i are equal)
CL	confidence limits for true Y at
	experimental and post experimental X_i
N	effective N

The mathematical theory and derivation is presented, for example, in K.A. Brownlee (1960). In the calculations, many of the statistics are evaluated by alternate algebraically equivalent methods.

POST EXPERIMENTAL ESTIMATION

After an experiment is completed one may wish to estimate Y at some points of X(=P) not already tried in the experiment and obtain confidence limits for these estimates. In addition, one may wish to know how many repeat measurements, Q, are required at a specified value of X(=P) so that the error of a weighted newly observed Y is

less than θ at 95% confidence. This may be done by making $P_1 = P_2 = P_3$ and varying Q_1 , Q_2 , Q_3 widely and plotting the error against Q.

POST COMPUTER-ANALYSIS CALCULATIONS

From the computer output further calculations may be made by desk calculator to obtain the following five types of estimated information.

(1) Tolerance Limits

Using effective N in the manner of (4) (page 498) the tolerance limits for Y may be estimated. The following is the type of statement that would result; There is 95% confidence that, at the X specified, 99% of the population of <u>individual</u> measurements (observations) of Y, in future experimentation, will fall between the limits calculated.

- (a) Tolerance limits at experimental X_i equals $Y_i \pm (ru)_i S$ (Using N_i)
- (b) Tolerance limits at post experimental X_i $\hat{Y}_{ei} \pm (ru)_{ei} S$ (Using \hat{N}_{ei})
- (c) Tolerance limits for W_i newly observed Y at experimental X_i $\hat{Y}_i \pm (ru)_i S \qquad (Using N_i)$
- (d) Tolerance limits for Q_i newly observed Y at post experimental X_i $\hat{Y}_{ei} \pm (ru)_{ei} S \qquad (Using N_{ei})$

(2) Linear Calibration: Prediction of X from Y

- A. Sample Unweighted: Line Through the Means
 - (1) Confidence limits for true X at a weighted newly observed Y

$$\overline{X} + \frac{Y - \overline{Y}}{B} \pm t F^{-.5} \left(\left(\frac{1}{W} + \frac{1}{n} \right) \sum_{i}^{n} (\chi_{i} - \overline{X})^{2} + \frac{(Y - \overline{Y})^{2}}{B^{2}} \right)^{1/2} = X$$

where t = Student's t for (n-2) degrees of freedom

F comes from test of significance for B.

If F41 results may not be meaningful.

- W is the number of Y's averaged to give the new observation Y.
- (2) Standard error of $X = \frac{\text{upper limit-lower limit}}{2t}$
- B. Sample Unweighted: Line Through the Origin

+ 2

(1) Confidence limits for true X at a weighted newly

observed Y
$$\chi = \frac{Y}{B} \pm t F^{-.5} \left(\frac{\sum_{i}^{n} \chi_{i}^{2}}{W} + \frac{Y^{2}}{B^{2}} \right)^{1/2}$$

with t at (n-1) degrees of freedom.

- (2) Standard error of $X = \frac{\text{upper limit-lower limit}}{2t}$
- C. Sample Weighted: Line Through the Means
 - (1) Confidence limits for true X at a weighted newly

(2) Standard error of $X = \frac{\text{upper limit-lower limit}}{2t}$

- D. Sample Weighted: Line Through the Origin
 - (1) Confidence limits for true X at a weighted newly

observed Y
$$X = \frac{Y}{B + tS(\frac{1}{W} + \frac{1}{n})^{\frac{1}{2}}}$$

- (2) Standard error of $X = \frac{\text{upper limit-lower limit}}{2t}$
- (3) Comparison of Two Regression Lines (Wi=1)

Given the estimates: ,

Line 1:
$$\overline{X}_1$$
 \overline{Y}_1 B_1 n_1 S_1^2 f_1 $\sum (X-\overline{X}_1)^2$ $\sum (Y-\overline{Y}_1)^2$

Line 2:
$$\overline{X}_2$$
 \overline{Y}_2 B_2 n_2 S_2^2 f_2 $\sum (X-\overline{X}_2)^2$ $\sum (Y-\overline{Y}_2)^2$

A. Test If
$$S_1^2 = S_2^2$$
.

Make 2-sided F test with larger S2 in the numerator.

If
$$S_1^2$$
 is larger:

$$F = \frac{S_1^2}{S_2^2} \quad \text{with } (f_1, f_2)$$

B. Test If $B_1 = B_2$ (A Test of Parallelism)

If S_1^2 is not significantly different from S_2^2 they are

$$s^2 = \frac{\mathbf{f_1}s_1^2 + \mathbf{f_2}s_2^2}{\mathbf{f_1} + \mathbf{f_2}}$$

Then

$$\frac{\beta_1 - \beta_2}{S\left(\frac{1}{\Sigma(X - \bar{X}_1)^2} + \frac{1}{\Sigma(X - \bar{X}_2)^2}\right)^{\frac{1}{2}}} = t(f_1 + f_2)$$

C. Test If the Two Lines Are Coincidental (if $\overline{X}_1 = \overline{X}_2$; $\overline{Y}_1 = \overline{Y}_2$; given $B_1 = B_2$)

Pooled estimate of B

$$\frac{B_{1}\sum_{i}^{n_{1}}(X_{i}-\overline{X}_{1})^{2}+B_{2}\sum_{i}^{n_{2}}(X_{i}-\overline{X}_{2})^{2}}{\sum_{i}^{n_{1}}(X_{i}-\overline{X}_{1})^{2}+\sum_{i}^{n_{2}}(X_{i}-\overline{X}_{2})^{2}}=B$$

Pooled variance of estimate = S^2 =

$$\frac{\sum_{i=1}^{n_1} (Y_i - \overline{Y}_1)^2 + \sum_{i=1}^{n_2} (Y_i - \overline{Y}_2)^2 - \beta^2 \left(\sum_{i=1}^{n_1} (X_i - \overline{X}_1)^2 + \sum_{i=1}^{n_2} (X_i - \overline{X}_2)^2\right)}{f_1 + f_2 + 1}$$

Then

$$\frac{\overline{Y}_{1} - \overline{Y}_{2} - B(\overline{X}_{1} - \overline{X}_{2})}{S\left(\frac{1}{n_{1}} + \frac{1}{n_{2}} + \frac{(\overline{X}_{1} - \overline{X}_{2})^{2}}{\sum_{i=1}^{n_{2}} (X_{i} - \overline{X}_{1})^{2} + \sum_{i=1}^{n_{2}} (X_{i} - \overline{X}_{2})^{2}}\right)^{1/2} = t(f_{1} + f_{2} + 1)$$

(4) Analysis of Variance

The computer output contains the necessary information to perform a one-way analysis of variance.

(5) Simultaneous Tolerance Intervals

These intervals are calculated as $\hat{Y}_{ei} \pm c^{**}S\hat{Y}_{ei}$ with c^{**} tabled and its use explained in 4.7.4 of Reference 5.

John Story JOHN SKORY

Robert C. Jannings

REFERENCES

- 1. Brownlee, K.A., 1960. Statistical Theory and Methodology in Science and Engineering. John Wiley and Sons, New York.
- 2. Shapiro, S.S., and Wilk, M.B., 1965. An Analysis of Variance Test for Normality. Biometrika, 52, 3 and 4, 591-611.
- 3. Skory, J., 1969. Variance Test for Normality. NUSL Tech Memo 2211-343-69.
- 4. Weissberg, A., and Beatty, G.H., 1960. Tables of Tolerance-Limit Factors for Normal Distributions. Technometrics Vol 2, No. 4.
- 5. Hillier, F.S., and Lieberman, G.J., 1968. Introduction to Operations Research. Holden-Day, Inc.

APPENDIX A

NOMENCLATURE TABLE

Fortran Variable Name & Type	Meaning
X real array	The independent variable of the input.
Y real array	The dependent variable of the input.
W real array	The vector of weights associated with the independent variable X .
P real array	The vector of post-experimental points of the independent variable X .
Q real array	The vector of weights associated with P
N integer	The number of observations in the input variables X and Y .
IH integer	An indicator for regression through the means or through the origin.
IW integer	An indicator for the weights W .
STUDET real	Student's t for calculation of confident levels.
TITLE real array	An array used to store the Hollerith characters of the title card.
SUM double precision	The sum of the weights W .
SUMMX double precision	The weighted sum of X .
SUMMX2 double precision	The weighted sum of x^2 .
SUMMY double precision	The weighted sum of Y .

NOMENCIATURE TABLE (Cont'd)

Fortran Variable Name & Type	Meaning
SUMMIZ double precision	The weighted sum of Y^2 .
SUMERXY double precision	The weighted sum of XY .
AVERX double precision	The weighted mean of X .
AVERY double precision	The weighted mean of Y .
SULDX double precision	The weighted corrected sum of squares of X .
SUMDY double precision	The weighted corrected sum of squares of Y .
SURCY double precision	The weighted corrected sum of products of X and Y.
B double precision	The regression coefficient.
A double precision	The regression intercept.
YHAT real array	The predicted Y of regression.
RECRY real array	The deviations of Y from the regression line.
SUARS double precision	The weighted sum of squares of the deviations.
RSQD double precision	The multiple and simple correlation coefficient squared.
SSB double precision	The weighted sum of squares due to B .
S double precision	The standard error of estimate.
AWL double precision	Multiplier for intercept variance.
SYHAT real array	The standard error of each predicted point.
SY real array	The standard error of each predicted point assuming these points are newly observed Y with weights = W .

NOMENCLATURE TABLE (Cont'd)

Fortran Variable Name & Type	Meaning
T real array	Student's t for each deviation. from the regression line.
CLYIH real array	The upper confidence limits for true Y at each experimental X_i .
CLYLL real array	The lower confidence limits for true Y at each experimental X_i .
CLY2H real array	The upper confidence limits for true Y at each experimental X_1 assuming these points are newly observed Y with weights = W.
CLY2L real array	The lower confidence limits for true Y at each experimental X _i assuming these points are newly observed Y with weights = W .
NHAT real array	Effective N for tolerance limits at each experimental X_i .
NI <u>real</u> array	Effective N for tolerance limits at each experimental X, assuming these points are newly observed Y with weights = W.
YSUBE real array	The predicted exploratory Y after regression.
SYHE real array	The standard error of each predicted exploratory point.
SEYE real array	The standard error of each predicted exploratory point assuming these points are newly observed Y _e with weights = Q
CLYELH real array	The upper confidence limits for true Y at each post-experimental $X_{\mbox{ei}}$.
CLYELL real array	The lower confidence limits for true Y at each post-experimental X_{ei} .

NOMENCLATURE TABLE (Cont'd)

Fortran Variable Name & Type	Meaning
CLYE2H real array	The upper confidence limits for true Y at each post-experimental X ei assuming
	these points are newly observed Ye with
	weights = Q .
CLYE2L real array	The lower confidence limits for true Y at each post-experimental Xei assuming
	these points are newly observed Ye with
	weights = Q .
NEHAT real array	Effective N for tolerance limits for each post-experimental \mathbf{X}_{ei} .
NE <u>real</u> array	Effective N for tolerance limits for each post-experimental X _{ei} assuming
	these points are new Y_e with weights = Q.
F12B double precision	The F test for $R = B = 0$.
SB double precision	The standard error of the regression coefficient.
SA double precision	The standard error of the regression intercept.
F12A	The F test for $A = 0$.
U real	W-test for normality of the deviations.
SUM integer	The degrees of freedom within groups.
SUMSQ double precision	The sum of squares within groups.
MGRØUP integer	The size of each group.
SSY double precision	The variance of each group.
YBAR double precision	The mean of each group.

APPENDIX B

I/O FORMATS

The program reads (TITLE(1), 1 = 1,14) from the first card in 13A6, AZ format.

The program reads N, IH, IW, and STUDNT from the second card:

Variable	Columns	Format
N	1-5	I5
IH	6-10	15
IW	11-15	I5
STUDNT	16-30	E15.8

The program then reads the input variables X,Y,W (only if IW = 3), P, and Q separately from cards in 5E15.8 format.

The program writes all output data on the line printer in 7E17.8 format.

APPENDIX C

•	000001	·	REGRESSPROGRAM FOR TWO-VARIABLE WEIGHTED REGRESSION (THROUGH	н
	000002	C	THE ORIGIN AND THROUGH THE MEANS)	
	000003		DIMENSION (ITEE(14), X(2000), Y(2000), W(2006), YHAT(2000),	
	000004		1 YSUBE (4800), REGRY (2000), SYHAT (2000), SY (2000), T(2000)	
	000005		2 P(10), G(10), SEYE(10), SYHE(10)	
	000006		UIMENSIUM CLYIH(2000), CLYIL(2000), CLYE1H(2000), CLYE1L(2000).
	000007		CLY2H(2000), CLY2L(2000), CLYE2H(2000), CLYE2L(2000),	
	80000		NHAT(2000), NEHAT(2000), NI(2000), NE(2000)	
	000009		REAL NHATENLENEMATINE	
	000010		INTEGER SUMMI, DEGFB1, DEGFC	
	000011		DOUBLE PRECISION SUMW, SUMWX, SUMWX2, SUNWY, SUMWY2, SUMXY, ST	UMWX
	000012		1 . SUMDA, SUMDY, SUMRS, RSQD, S. SA, SB, A. B. AVERA, AVER	RY,
	000013		FIZA, FIZB, AWI, SZ, SSB, SUMY, SSY, SUMSQ, YBAR, MNSQB,	
	000014		5 MINSOBL. MINSOC, BI. F2, C. BESMSG. SMGRPY	
	000015	1000	READ (3,700,ENJ=999) (TITLE(1),1=1,14)	
	000016		READ (3,5) N. IH, I # STUDNT	
	000017		READ(3,6) (A(1),1=1,iv)	
	000018		MEAU(3,0)(1(1),1=1,4)	
	000019		IF (IW .EG. 3) READ(3,6) (N(I) · I=1,N)	
4	000020		READ(3,0)(P(1),1=1,10)	
	000021		KEAU(3,0)(W(1),(=1,10)	
	000022		00 10 (15,10,17), In	
	000023	1:	0 00 10 1=1+1-	
	000024		A(1) = 1.0	
a	000025	10	S CONTINUE	
	000026		60 10 17	
	000027	10	30 19 1-1.4	.8

•	000028		*(1) = k(1)**(-2)
	000029	19	CONTINUE
	000030	17	CALL SURTS (A.Y. a. 1, N. TRUE.)
	000031		1F (III .Ew. 2) 60 10 27
	000032		#R1[E(4,67)
	000033		60 TU 20
	000034	27	WRITE(4+7)
	000035	28	WRITE(4,800) (TITLE(1),1=1,14)
	000036		WRITE(4,12)N, IH, IW, STUDINT
	000057		MRITE (4,25)
	000038		MR.TE (+,50) (X(1),[=1,N)
	000039		WRITE(4+8)
	000040		#RITE(4,50)(Y(I),I=1,N)
	000041		wRITE(4,24)
	000042		wRITE(4,50)(W(I),I=1,N)
	000043		WRITE(4,21)
	000044		WRITE(4,50)(F(1),1=1,10)
	000045		ARITE (4.25)
	000046		*RITE(4,50)(G(1),I=1,10)
	000047		SUN. = 0.000
	000048		SUMMX = 0.000
	000049		SUMMAZ = 0.000
	000050		SUMMY = 0.000
	000051		SUMMYE = U.ULU
	000052		SUMMAY = 0.000
	000053		AVERX = 0.000
•	000054		AVERY = 0.000
	000055		SUMDX = 0.000
	000056		SUMUY = 0.000

```
000057
                       SUMAY = 0.000
000058
                       IF ( 11. . Lu. 2 ) GU TO 31
000059
                       JU 29 1=10W
000060
                       SUMMX=SUMMA+K(1)+X(1)
000061
                       SUMBAR = SUMBAR + #(1)*X(1)*X(1)
000002
                       SUMMY=SUMMY+W(I)+Y(1)
000063
                       SUMMY2 = SUMMY2 + #(1)+Y(1)+Y(1)
000064
                       SUMWXY = SUMWXY + W(I)*X(I)*Y(I)
000065
                       SUMMESUMW+#(I)
                    29 CONTINUE
000066
000067
                       SUMDX = SUMWX2
000068
                       SUMUY = SUMMY2
000069
                       SUMAY = SUMWXY
000070
                       GO TU SE
000071
                    31 00 26 1=1.N
000072
                       SUMDX = SUMDX + SUMM/(SUMM+W(I)) + W(I) + (X(I)-AVERX)++2
000073
                       SUMDY = SUMDY + SUMM/(SUMW+N(I)) + N(I) + (Y(I)-AVERY)++2
000074
                       SUMXY = SUMXY + SUMW/(SUMW+W(I)) * W(I)*(X(I)-AVERX)*(Y(I)-AVERY)
000075
                       AVERX = SUMA/(SUMW+A(I)) + AVERX + H(1)+X(1)/(SUMW+W(1))
000076
                       AVERY = SUMM/(SUMW+#(I)) + AVERY + W(1)*Y(1)/(SUMW+#(1))
000077
                       SUMMX=SUMMX+K(I)+X(1)
000078
                       SUMWAZ = SUMWAZ + W(1)*X(1)*X(1)
000079
                       SUMMY=50MWY+#(1)*Y(1)
000080
                       JUANYE = SUMMY2 + W(1)*Y(1)*Y(1)
                       SUMMAY = SUMMAY + W(I) + X(I) + Y(I)
000081
000082
                        SUMM=SUMM+m(I)
000083
                    26 CONTINUL
000084
                    32 JESUMXY/SUMUX
000085
                        A=AVERY-B*AVERX
```

```
SUMMS = 0.000
000086
000087
                        JO 13 1=1014
                        THAI (1) = A+ + + X(I)
000088
                        REGRY(1) = Y(1) - YMAT(1)
000089
                        SUMMS = SUMMS + &(I) *(Y(I) - YHAT(I)) **2
000090
000091
                     13 CONTINUE
000092
                        RSGU= (SUMDI-SUMRS)/SUMDY
                        SSU=RSQU+SUINY
000093
                        52=(1.000-K5GL) +SUMDY/(N-IH)
000094
000095
                        5=5GRT (52)
000096
                        AW1=1.0/SUMM
                        IF ( IH .EW. 1 ) AW1 = 0.000
000097
000098
                        DO 41 1=1+N
000099
                        SYMAT(1) = 5 + SQRT( AW1 + (X(1)-AVERX)++2/SUMUX )
000100
                        SY(1) = 5 * SQRT( 1./W(1) + AW1 + (X(1)-AVERX)++2/SUMDX )
000101
                        1(1)=KEGKY(1)/SY(1)
                        CLY1H(I) = THAT(I) + STUDNT+SYHAT(I)
000102
                        CLY1L(1) = THAT(1) - STUDNT+SYHAT(1)
000103
000104
                        CLY2H(1) = YHAT(1) + STUDNT+SY(1)
                        CLYLL(1) = THAT(1) - STUDNT+SY(1)
000105
000106
                        S**(1) TAHY2 \ 56 = (1) TAHN
000107
                        NI(1) = 52 / 5Y(1) ++2
                     41 CONTINUE
000108
000109
                        DO 46 I=1,10
000110
                        YSUBE(1)=A+0*P(1)
                        SYME(1) = 5 + 50KT( AW1 + (P(1)-AVENX) ++2/SUMDX )
000111
                        SEYE(1) = 5 * 5 ART( 1./4(1) + AW1 + (P(1)-AVERX) +*2/SUMUX )
000112
                        CLYETH(1) = YSUBE(1) + STUDNT*SYHE(1)
000113
                                                                                      21
                        CLYELL(1) = YSUBE(1) - STUDINT*SYHE(1)
000114
```

000115		CLYE2H(1) = YSUJE(1) + STUDNT*SEYE(1)
000116		CLYESE(1) = YSUBE(1) - STUDNT*SEYE(1)
000117		NEHAT(1) = 52 / SYHE(1) **2
000118		NE(1) = S2 / SEYE(1) **2
000119	46	CONTINUE
000120		F128=(N-IH) #RSQJ/(1.0-RSQD)
000121		SB=A85(B)/SWRT(F12B)
000122		SA = S * SGRT(AW1 + AVERX**2/SUMDX)
000123		IF (IH .E4. 2) F12A = A**2/SA**2
000124		WRITE (4,102) SUMAX, SUMWY, SUMW
000125		WRITE(4.103)AVERX,AVERY
000126		WRITE(4,104)SUMOX,SUMDY
000127		WRITE(4,105)SUMXY
000128		WRITE(4,100)B,SSB
000129		WRITE(4,10/)A
000130		WRITE(4,126)A,8
000131		WRITE(4,100)
000132		WRITE(4,50)(YHAT(I), I=1,N)
000133		wR1TE(4,109)
000134		WRITE(4,50)(YSUBE(1),1=1,10)
000135		WRITE(4,110)
000136		wRITE(4,50)(REGRY(I),I=1,N)
000137		WRITE(4,111)RSQD
000138		WRITE(4,112)S,SUMRS
000139		WRITE(4,113) IH, F128
000140		WRITE(4,114)SB
000141		WRITE (4,115)SA
000142		U = WTEST(KEGRY, N, . FALSE.)
000143		IF(1H-2)144,147,147

000144	147	#R1TE(4-110) IH-+12A
000145	144	WRITE(4,11/)
000146		wRITE(4.50)(SYHAT(I).I=1.N)
000147		WRITE(4,110)
000148		#RITE(4.50)(SYME(I).I=1.10)
000149		WR11E(4.119)
000150		wRite(4,50)(SY(1),1=1,N)
000151		WRITE(4,125)
000152		WRITE(4.50) (SEYE(1).1=1.10)
000153		#RITE(4+121)IH
000154		write(4.51)(T(1).1=1,N)
000155		WRITE(4+124) U
000156		WRITE(4,123)
000157		wR1TE(4,53)(CLY1H(1),CLY1L(1),I=1,N)
000158		WRITE(4.124)
000159		wRiTE(4,53)(CLYE1H(1),CLYE1L(1),I=1,10)
000160		WRITE(4,120)
000161		WRITE(4,53)(CLY2H(I),CLY2L(I),I=1,N)
000162		wR1TE(4,12/)
000163		wRiTe(4.53)(CLYE2H(1).CLYE2L(1).1=1.10)
000164		wRITE(4,13U)
000165		#RIFE (4,50) (MHA ((1),121,N)
000166		ARITE(4.131)
000167		#RITE(4.50)(NEHAT(I).1=1,10)
000166		#RITE(4.132)
000169		WRITE(4,50)(NI(I), [=1,N)
000176		4K1TE(4+133)
000171		ARTTE (4,50) (NE(1),1=1,10)
000172		WRITE(4,134)

```
000173
                         SUMIN = U
 000174
                         SUMSQ = 0.0
 000175
                         NUMGRP = 0
                         SMGRPY = 0.000
 000176
                         365MSQ = 0.000
 000177
 000178
                         1 = 1
 000179
                      39 NGROUP = 1
 000186
                         ISTART = I
                      36 I = I+1
 000181
 000182
                         IF (I .LE. 11) 50 TO 35
 000183
                         IF (NGROUP .GT. 1) GO TO 40
 000184
                         60 TO 42
                      35 IF (X(15TAKT)-X(1)) 34, ,34
 000185
. 000186
                         NGROUP = NGROUP+1
                         GO TO 36
 000187
- 000188
                      34 IF (NGROUP .LE. 1) GO TO 39
                      40 SSY = 0.000
 000189
 000190
                         YBAR = 0.000
                         SUMY = U. OUU
 000191
 000192
                         SUM# = 0.000
 000193
                         ISTOP=15TAKT+NGROUP-1
 000194
                         DO 38 J=ISTART, ISTOP
                         SSY = SSY + SUMA/(SUMW++(J)) + N(J) + (Y(J)-YBAK)++2
 000195
 000196
                         YBAR = SUMW/(SUMW+W(J)) * YBAR + W(J)*Y(J)/(SUMW+W(J))
 000197
                         SUMY = SUMY + W(J)*Y(J)
 000198
                         SUNW = SLIMW + W(J)
 000199
                      38 CONTINUE
                         NUMBER = NUMBER+1
 000200
 000201
                         SUMSQ=SUMSQ+SSY
```

			No. 2070-451	1-69
000202		557 = 557/(MGROUP-1)		
000203		SUm: = Summ+NGROUP=1		
000204		865H5W = 605H5G + 5UAY##2/H6ROUP		
000205		SMGRPY = SMGRPY + SUMY		
000206		WRITE(4,135) X(15TART), HGROUP, SUMY, SSY		
000207		50 10 39		
000208	42	NMIH = H-IH		
000209		MNSQB = SUMKS/ABS (NMIH)		
000210		81 = SNGL(SUMRS) - SNGL(SUMSQ)		
000211		DEGFEL = NMIH-SUMN,		
000212		IF (DEGF81 .NE. 0) GO TO 45		
000213		MNSQB1 = 0.000		
000214		GO TO 48		
000215	45	MNS@81 = 81/DEGF81		
000216	40	IF (SUMN .EG. 0) GO TO 43		
000217		BGSMSQ = BGSMSQ - SMGRPY##2/(SUMN+NUMGRP)		
000218		NUMBRP = NUMBRP-1		
000219		WRITE(4,130) SUMN, SUMSQ, NUMGRP, GSMSQ		
000220		MNSGB2 = SUMSG/SUMN		
000221		IF (DEGF61 .EQ. 0) GO 10 47		
000222		F2 = D1+SUMN / (SUMSQ*DEGFB1)		
000223		60 10 44		
000224	43	#RITE(4,130)		
000225		MNSGB2 = 0.000		
000226	47	F2 = 0.000		
000227	44	C = 550+SUMMS		
000228		DEGRE = 1+min		
000229		MNSGC = C/DEGFC		
000230		WRITE (4,13/) 55: 558: F120, NMIH. SUMRS, MNSGE	DEGFEL I	81,

	000231	1 MASGBI, F2, SUMA, SUMSG, MASGB2, DEGFC, C. MASGC
	000232	30 10 1000
	000233	999 STOP
	000234	700 FONHAT (13A0, A2)
	000235	5 FORMAT (315, £15.3)
	000236	6 FORMAT (5E15.8)
	000237	67 FORMAT (GOHIREGRESSION ANALYSIS FOR TWO VARIABLES (THROUGH THE ORI
	000238	16IN))
	000239	7 FORMAT (59H1REGRESSION ANALYSIS FOR TWO VARIABLES (THROUGH THE MEA
	000240	1145))
	000241	800 FORMAT (1H0,13A6,A2)
	000242	12 FORMAT(//10x,4Hit = +15,10x,5HlH = +15,10x,5HlW = +15,10x,14HSTUDEN
	000243	11'S T = ,E15.8)
	000244	23 FORMAT (//1UA, 37HINPUT VECTOR X (INDEPENDENT VARIABLE))
	000245	SU FORMAT (/E1/.8)
	000246	8 FORMAT (//1UX, 35HINPUT VECTOR Y (DEPENDENT VARIABLE))
	000247	24 FORMAT(//10x, 24HINPUT VECTOR W (WEIGHTS))
	000248	21 FORMAT (//10%, 78HINPUT VECTOR P (POST EXPERIMENTAL EXPLORATORY POIN
	000249	ITS OF X VARIABLE-ALWAYS TEN))
	000250	25 FORMAT(//10x,48HPOST EXPERIMENTAL WEIGHTS & ASSOCIATED WITH P(1))
	000251	52 FORMATI//101,50 STUDENT'S T FOR CALCULATION OF CONFIDENCE LEVELS =
	000252	1,E14.8)
	000253	102 FORMAT(////10%,15H5UM OF WX(I) = ,E15.8,5%,15HSUM OF WY(I) = ,E15.
	000254	18.5%.14mSUM OF (1) = .E15.6)
	000255	103 FORMAT(/10A:12HBEAN OF X = ,815.8:24X,12HMEAN OF Y = ,815.8)
	000256	104 FORMAT (/10A.29HSS OF DEV. FROM MEAN OF WX = ,E15.8,/10X,29HSS OF D
No.	000257	LEV. FRUM MEAN OF WY = (E15.6)
	000258	105 FORMAT(/10A+24HSUM OF CROSS-PRODUCTS = +c15.8)

000259

106 FORMAT (//1UA, 29 REGRESSION COEFFICIENT = 8 = .E15.8.104,32hSSB = 5

000260	TUM OF SQUARLS DUE TO B = .E15.8)
000261	10/ FORMAT (//10A.16HINTERCEPT = A = .E15.8)
000262	120 FORMAT (//104,27HEGUATION = YHAT = A + BX = ,E15.8,5H + ,E15.8,2H
000263	i X)
000264	100 FORMAT (//10X, 18HPREDICTED Y = YHAT)
000265	109 FORMAT(//104.33HPREDICTED EXPLORATORY Y = Y SUB E)
000266	110 FORMAT (//104,45HDEVLATIONS OF Y FROM REGRESSION LINE (Y-YHAT))
000267	111 FORMAT(//1UA,47HMULT. AND SIMPLE CORR. COEFF. SQUARED = R**2 = .E1
000268	15.6)
000269	112 FORMAT (//104,29HSTD. ERROR OF ESTIMATE = S = ,E15.6,10X,46HSSDEV =
000270	I SUM SQUARES OF DEVIATIONS FROM LINE = .E15.8)
000271	115 FORMAT(//lux,6HF(1,N-,11,1H),1X,26HAS A TEST IF R = B = 0, = ,E15.
000272	10)
000273	114 FORMAT (//10%, 28HSTD. ERROR OF B = S SUB B = ,E15.8)
000274	115 FORMAT (//1UX, 28HSTD. ERROR OF A = S SUB A = , £15.8)
000275	116 FORMAT (//10x.6HF(1,N-,II,1H),1X,82HAS A TEST IF A (INTERCEPT) = 0.
000276	1 OK THAT REGRESSION LINE GOES THROUGH THE ORIGIN = .E15.8)
000277	117 FORMAT (//LUX. 76HSTD. ERKOR OF EACH PREDICTED POINT (ON THE LINE), (
000278	IYHAT) AI EAPERIMENTAL X(I))
000279	118 FORMAT (//144+107HSTD. ERROR OF EACH PREDICTED EXPLORATORY POINT (0
000580	IN THE LINE ! (THAT SUB E) AT POST EXPERIMENTAL X(I) OR P(I))
000281	119 FORMAT(//10%,61HSTD. ERROR OF EACH OBSERVED Y. (Y-YHAT) AT EXPERIM
000282	TENTAL X(I)./10X.70HASSUMING THESE Y(I) ARE NEWLY OBSERVED INDIVIDU
000283	ZALS WITH WEIGHTS = W(1))
000284	125 FORMAT (//144,104HSTD. ERROR OF EACH OBSERVED Y SUB E OR OF EACH (Y
000285	1 SUB & - YHAT SUB E) AT POST EXPERIMENTAL X(I) UR P(I)./10x.70HASS
000286	ZUMING THESE Y(I) ARE NEWLY OBSERVED INDIVIDUALS WITH WEIGHTS = Q(I
000287	3))
000288	121 FORMAT (//10x,4HT (N-,11,1H),1X,41HAS TEST OF LACH DEVIATION FROM RE

BEST AVAILABLE COPY

000289	19Rc55104)
000290	51 FORMAT (7F15.3)
000291	122 FORMAT (//1UX, 30 MORMALIZATION STATISTIC = U = ,E15.8)
000292	125 FORMAT (//10x, 49) CONFIDENCE LIMITS FOR TRUE Y AT EXPERIMENTAL X(I))
000293	124 FORMAT (//104, 62HCONFIDENCE LIMITS FOR THUE Y AT POST EXPERIMENTAL
000294	1X(I) 0R P(I))
000295	126 FORMAT (//10x, 49HCONFIDENCE LIMITS FOR THUE Y AT EXPERIMENTAL X(I)/
000296	1104,70HASSUMING THESE Y(I) ARE NEWLY OBSERVED INDIVIDUALS WITH WEI
000297	26HTS = W(1))
000298	127 FORMAT (//104,62HCONFIDENCE LIMITS FOR THUE Y AT POST EXPERIMENTAL
000299	14(1) OR P(1)/10x, 70HASSUMING THESE Y(1) ARE NEWLY OBSERVED INDIVID
000300	2UALS WITH WEIGHTS = Q(I))
000301	53 FORMAT(3(E17.8.2H ,.E17.8.2H ;))
000302	130 FORMAT (//10% 11HEFFECTIVE N//10% 4HNHAT)
000303	131 FORMAT (//1UA+10HNHAT SUB E)
000304	132 FORMAT (//1UX+1Hi)
000305	135 FORMAT (//10A, 7HM SUD E)
000306	134 FORMAT (///10%, 64HVARY = VARIANCE OF Y WITHIN GROUPS AT ONE X, GROU
000307	IP SIZE, Y TOTAL)
000308	135 FORMAT(//T10, 'AT X = ',E13,6,6X, 'N =',14,6X, 'SUM Y = ',E13,8,6X,
000309	1 'VARIANCE = ', £13.8,' ;')
000310	136 FORMAT(//T11, WITHIN GROUPS DEGREES OF FREEDOM AND SUM OF SQUARES*
000311	* * BETHEEN GROUPS LEGREES OF FREEDOM AND SUM OF SQUARES!
000312	2 [04, ***/28%, 15, 14X, E13, 8, T64, ***, 20x, 15, 14X, E13, 8/ T64, ***)
000313	137 FORMAT(1H1726, 'ANALYSIS OF VARIANCE'/1X, 131(***) // BX, *SOURCE OF *,
000314	1 'VARIATION', 11A, *DEGREES OF FREEDOM', 9X, *SUM OF SQUARES', 15X,
000315	2 "MEAN SQUARE", 15X, "F"/1X, 131("*")//T6, "SLOPE OF THE LINE",
000316	3 21A, 11', 20 A, E13. 8, 14 X, E13. 8, 9 X, E13. 8//T6, "DEVIATIONS FROM ",
000317	4 'The LINE", 10x, 15, 20x, 613, 6, 14x, 613, 8//112, GROUP MEANS ",

000318	5 'FNOM LINE' 104, 15, 20x, E13.8, 14x, E13.8, 9x, E13.8//T12,
000319	e 'althin GROUPS', 18x, 15, 20X, E13.8, 14x, E13.8/1X, 131('-')/T6,
000320	7 'IUTALS',20X,15,20X,E13.8,14X,E13.6)
000321	138 FORMAT (//TLL. TIERE ARE NO REPLICATES OF Y AT ANY SINGLE VALUE
006322	1 'OF X')
000323	ENC

S1281 PROGRAM REGRESS

NUSL Tech Memo No. 2070-451-69

U. S. Navy Underwater Sound Laboratory NP24 - 38758 - 4 - 70 Official Photograph Confidential

NUSL Tech Memo No. 2070-451-69

NUSL Tech Memo No. 2070-451-69

NUSL Tech Memo No. 2070-451-69

REGRESSION AWALTSES FOR THU VARIABLES -- (THROUGH THE MEANS)

PAGE 324 NO GROUP VARIANCE EXAMPLE FOR PRUGNAM REGRESS FROM URUM LEE

.750000000+02 .3u000000+02 .700000000+02 .200000000+02 .45410000+01 INPUT VECTOR P. (PUST EXPERIMENTAL EXPLORATORY POINTS OF X VARIABLE-ALMAYS TEN) .1000c00c+02 .57800000+02 .1194U00U+02 .100000000+01 STUDENT'S T = .100000000+02 .488000001+02 .10630000+02 .100000000+01 2 .10000000+62 .10 11 ž INPUT VECTOR A (INDEPENDENT VARIABLE) 10+00000058. .10+000000010T -80000000a-02 INPUT VECTOR F (DEPENDENT VAXIABLE)
GGGG+U1 .35100000+01 • PUBL EAFENIME VIAL ACTORIS .100000000+02 ANDUT VECTOR & (METGATS)
UNDUCTUT
.ZGucungu+01 -0400000000· 11 11 0 .37050000+U1 .100000000+0z -24-00000cuz. .10000000+nc -0+00000000° ** Z

.70000000007. SUM OF W(I) = .71014286+01 .49710000+02 MEAN OF Y = SUM OF WY(I) = \$0+00001647. . J556371++02 1 1714" TO NOC TERES OF A II

.1199128o+04 .65023630+02 11 11 . . SO OF CEN. TRUE MEAN OF SO OF CEN. FROM MEAN OF . 7740015+03 מו מושטאליינטטרי יים היים SSB = SUM OF SUUARES JUE TO B = .23140149+00 AGUNGSSAUN LUCKFACIENT = 8 =

.64209320+02

-. 11331589+01 ** 1 11 11. LENCER

FMEDICIEU Y = YHAT

-,11351589+01

CUCALLU. - THAT = A + BA =

.23140149+00 x

.13907936+02 .12750931+02 PREDICTEL EXPLORATORT T = Y 5UB E 14550491 .15374950+01 .10+36916+02 19504-02 .17374950+02 .17378960+02 10+000000011. -113/0900+UZ

.12241847+02

.10159234+02

·82386016+01

.39243601+01

.15004946+02

.16221953+02

3

-,30184734+00 .47076595+00 DEVIAILORS OF Y FROM REGRESSION LINE (Y-YHAT) .31139839+00 -. +1458000+0u 1144444411

.94747662+00 MULI. And SIMPLE CURN. CUEFF. SQUAREU = R**2

11

11 STU. ERICK OF

.81431600+00

SSDEV = SUM SQUARES OF DEVIATIONS FROM LINE = .52099776+00 11 S ESTIMATE

.23655185+03

* .

11

O

11

x

-

A 1257

FILLINGS AS

.15045374-01

11

2

SUB

S

11 a

5

STU. ERICH

.57046517+00 11 1 E S SUB 4 SIU. ERNUN UF

.39456935+01 A TEST IF A LIMTERCEPT) = 0. OR THAT REGRESSION LINE GOES THROUGH THE ORIGIN = FILLINGS MS

STW. EKKON OF EACH PREDICTED POINT (ON THE LINE).(YHAT) AT EXPERIMENTAL X(I). 80999400 .21120221400 .21034160400 .27982835400 .38791939400 30+66094006.

.62484326+00 510. EMACH OF EACH PREDICTED EXPLORATORY POINT (ON THE LINE),(THAT SUB E) AT POST EXPERIMENTAL X(I) OR P(I)
508/1140 .36/01340+UU .29293142400 .41677025400 .48430260+00 .55395732400 .6248432640 00+1/600204. ים בסים בסיבם ב

.64955376+00 SIU. ERNOR OF EACH COSENVED 1: (Y-YHAT) AT EXPERIMENTAL X(I).
ASSUMAND THESE :(I) ARE NEALY OBSERVED INDIVIDUALS WITH WEIGHTS = W(I).
.UO94+JU .S9139037+00 .649553 つつ+まれつつナつとま。

.63204198+00 3]U. EMACK UF EACH GOSEMVED (SUB E OR OF EACH (Y SUB E — YHAT SUB E) AT POST EXPERIMENTAL X(I) OR P(I).
ASSUBLING THESE (1) ARE NEWLY OBSERVED INDIVIDUALS WITH WEIGHTS = Q(I).
714524UU .402302314UU .3340843440U .4481588040U .5116349940U .5660747740U .6998350540U .4047145440 * / U144554+00

IN-CI AS TEST OF EACH DEVIATION FROM REGRESSION

-.465

.90305037+00 11 NUMBELLALION STATISTIC = J

.91937636+01 .49652449+01 ; .6883924401 , CONTINUE LIMIS FOR TRUE Y AT 10031401 ; 9955402 ; 96565536401 ; . 49750051+01

.67122814+00 1 CONFIDENCE LIMITS FOR THUE Y AT POST EXPERIMENTAL X(1) OR P(1)

. 10+115c++1c.

.11767117+02 .

.72834395+01 ;

.91067142+01 1

NUSL Tech Memo No. 2070-451-69

יים: בסומביטים	.12549425+02 ; .14215517+02 ;	.56872128+01 #	.89107568+01 ; .12494400+02 ; .14206683+02 ;			.69523165+00		.67948499+00	
			•••			.88454331+06		.84707938+00	
	.17580466+02	.10789990+02	11963075+02 .17635491+02 .20551238+02		18030015+01	.11568969+01 .8	.64334137+00	.10369343+01	
	.11708357+02 ; .14215517+02 ;	*ITH WEIGHTS = W(1) *39961258+01 } *92922237+01 }	(I) OR P(I) WITH WEIGHTS = Q(I) *51100871+00 ; *11584604+02 ; *14193477+02 ;						
	••	υ	IMENTAL X(1) IVIDUALS WITH +01 + 51 +62 + 11		.34664767+01	.15626647+01	.77610968+00	.13514745+01	
	.16107519+02 .20542404+02	AT EXPERIMENTAL X(I) Y OBSERVED INDIVIDUALS 78530475+01 ' 15191471+02 '	TRUE Y AT POST EXPERIMENTAL X(I) OR P(I) E NEWLY OBSERVED INDIVIDUALS WITH WEIGHT 8+00; .41647143+01; .511008714 2+02; .16231272+02; .115846044 3+02; .20564444+02; .141934774		.61350846+01	.31032957+01 .55931256+60	00+05788459.	.24U31103+01 .55d99991+UU	
	.10656350+62 # .13364540+02 # .14215517+02 #	CONFIDENCE LIMITS FON TRUE Y ASSUMING THESE (I) ARE MEMLY 3940401 , 14517488401 ; 4735404401 ;	CONFIDENCE LIMIS FOR TRUE Y ASSUMING THESE Y(I) ARE NEWLY WEXTAUL - \$2005058+00; 0020+02; 0055+02; 005	Z	10+06+21000.	.20120021+01 .5593120+00	10+57500061.	10+1421110 68	
	.14643512+02 . .19059366+02 . .20542404+02 .	CONFIDENCE ASSUMING 1 .5/093940+01.	CONFIDENCE ASSUMING T .3282447411. .14786020462. .19092055402.	EFFECTIVE N	1944LT 30005.		10+05860021.	. 3000 K	

WART = JANJANCE OF Y JUNIOR SHOOPS AT ONE X+ GROUP SIZE, Y TOTAL

THENE AND METLICATES OF T AT ANY SINGLE VALUE OF X

NUSI Tech Memo No. 2070-451-69

ANCE
VARIANCE
5
SIS
ANALIS
¥

	.16255909+02	.65023636+02	7	TOIALS
	00000000	000000000 00000000000000000000000000000	ن	ALTHIN GROUPS
00000000	.27143867+00	00+00915418.	2	GROUP MEANS FROM LINE
	.27143867+00	.81431600+00	•	DEVIATIONS FROM THE LINE
.23655185+03	.64209320+02	.64209320+02	1	SLUPE OF THE LINE
***************************************	MEAN SQUARE	SUM OF SQUARES	JEGREES OF FREEDOM	SUM OF SQUARES MEAN SQUARE FREEDOM SUM OF SQUARES MEAN SQUARE FREEDOM FREEDOM SQUARE FREEDOM SQU
	***	***	***	据事情被亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲亲

THE MEANS)
-
VARIAGLES(THROUGH
1.0
10.1
ANALYSIS
REGRESSION

EXAMPLE FOR PROGRAM REGRESS FROM BROWNLEE PAGE 324

						BEST	AVA	AIL/	BL	E (COPY	(
	.57600000+02	.11940000+02	.10000000+01	.75000000+02	.30000000+02	00+01		.64209320+02			.12241847+02	.16221953+02
.33650000+01	.48800000+02	.10630000+02	.1000000000	.700000000+02	.20000000000	10+000000000. = (1)		TO 8 =			.10159234+02	.15064946+02
STUDENT'S T = .3	*40500000+02	.85500000+01	.100000000401	POINTS OF X VARIABLE-ALWAYS TEN)	.100000000+02	.49710000+02 SUM OF W(I)		SUM OF SWUARES DUE		× 00+	.62386016+01	.13907938+02
-	.30500000+02	.520000u0+01	.1000000000		P(I) •10000000+02	11 F		SSB ::		.23140149+00 X	.59245667+01	.12750931+02
II MI	VARIABLE)	**IABLE)	.1000000001.	4_NTAL EXPLORATORY •50000000+02 •80000000+02	SSOCIATE. WITH P .100000000+02 .10000000+04	193 SUM OF WY(I)	= .11991266+04 = .65252286+02 .<7745015+03	= .23140149+00	10+6	-,11331589+01 +	10+19854565.	.10436910+02 .17378900+02
" LT	INPUT VECTOR X (INCEPENCENT . CUSUUUUU402	INPUT VECTOR Y (LEPENDENT VARI .392uuGuu+01 .365u000u+01 .	1NPUL VECTOR # (AELGNTS) .1u00u0u0+01 .100u000u+01	INPUT V_LION P (POST EXPERIMENTAL EXPLORATORY *15000000+02 *50000000+02 *50000000+02 *800000000+02	POST LAPENIMENTAL MEIGHTS & .10000000402 .40000000402 .1000000403	SUG OF ACT 1 . 2+910000+03	SS OF DEV. TRUM MEAN OF MY A SUM OF LINE FROM SEAN OF LINES SUM OF LANGES - PROJECTS TO SUM OF LANGES - PROJECTS - PRO	KENKESSAUN COEFFACTENT = 10 =	INIENCER! = A = -,11551589+01	EGUALLON = FINAT = A + BA =	.3010371/+01 .36105/1/+01	PREDICTED EXFLORMION(Y = Y .11800501+01 .235/8050401 .175/8900+02

CONFIDENCE LIAIS FOR THE Y AT POST EXPERIMENTAL X(I) OR P(I)

		10+09						BES	T AV	Allab	LE (COF	γ
30184734+00		INE = .10429660+01				.51344615+01	.34006012+00	. X(I) OR P(I) .54775368+00	.56941556+00	1) OR P(I).	9		.53013958+01 ;
.47076595+00		DEVIATIONS FROM LINE				THE ORIGIN =	.24530473+00	POST EXPERIMENTAL ,48561325+00	.51642802+00	EXPERIMENTAL X(I) OR P(I).	906		.65477775+01 , .53(
.31139839+00	1+00	= SUM SQUARES OF				U. OR THAT REGRESSION LINE GOES THROUGH THE ORIGIN	EXPERIMENTAL X(I) .18439103+00	(ON THE LINE) (YHAT SUB E) AT .36535678+00 .42462225+00	X(1), WEIGHTS = W(1) +00 .49253756+00	THAT SUB E) AT POST IGHTS = Q(1) .44851240+00	.632		
(Y-YHAT) 6+0072458667+00	R**2 = .98401641+00	5+00 SSDEV	.30782077+03	-01	00+	OR THAT REGRESSION	014T (UN THE LINE) (YHAT) AT EXPERIMENTAL X(I) 18519769+00 .18519769+00 .18439103+00		T EXPERIMENTAL DIVIDUALS WITH .492840204	OF EACH (Y SUB E - YHAT SUB E) . INDIVIDUALS WITH WEIGHTS ≈ @(I) . .39286754+00 .448512.	GRESSION -1.470	00+6+	NTAL X(I) .27241816+01 19+01 , .76181258+01
N LINE 1045866	SQUAREL =	= S = .45672005+00	= e = 0. =	. 13189162-01	A = .50008445+00	= (1430)	<u>a</u> •	1.CTED EXPLORATORY POINT .25679122+00		SUB E UR OBSERVED •294620184	UEVIATION FROM REGRESSION212	= U = .93771549+00	HUE Y AT LXPEKIMENTAL) +U1 ; ,44969619+01 +U1 ; ,88590773+01
UEVIAIIUNS OF Y FROM REGRESSIO 2627+00 ,39428264-01	MULT. AND SIMPLE CORR. COEFF.	SID. EHHOR OF ESTINATE	F(1014-2) AS A TEST IF R	KRUK OF B = S SUB	STU. EHAUN OF A = S SUB A	F(1114-2) AS A TEST IF A LINTER	STU. ERAUR OF EACH PREDICTED 1402+JU .26J41402+UU	510. EKNUK UF EACH PREDICTED 4595+UU .321/56/140U 92/8+UU .61009278+UU	STU. ERAUN OF EACH COSENVED T ASSUMING THESE 1(1) ARE GENELY SCSS+UU .S2723655+UU	SID. EKNOK OF EACH ODSERVED Y ASSUMING THESE TID ARE WEMLY 2746+UU "35.006304UU 4736+UU "01.0364+UU	1(N-2) AS TEST OF EACH UEVIAT)	HORMALIZATION STATISTIC =	
UEVIATI .30942627+00	MULT. A	SID. EF	F11011-2	STU. ERROR OF	STU. EN	FLLING	570. EM.	510. ck. 004595400. 0046726400.	STU. ER. ASSUMIN. .5272355400	310. Eh. ASSUNIN. .4J502746+UU.	1 (N-2)	"CHEAL	.44969619+01 . .654777/5+01 .

BEST AVAILABLE COPY

ND SUM OF SQUARES . 29756249+01	DEGREES OF FREEDOM AND	BETWEEN GROUPS DEGREES	SUM OF SQUARES .	FREEDOM AND SI	ATTAN GROUPS DEGREES OF	o Maria
1 00+0	VARIANCE = .19220000+00	.11020000+02	SUM Y =	= 2	-0+0000000000 = v	7
3-01 1	VARIANCE = .36450003-01	.75700000+01	SUM Y	N II Z	200000000+02	, 14 , 14
		S12E, Y TOTAL	ONE X. GROUP SI	SKOUPS AT	= VANTANCE OF Y ALHIER	VANT II VA
00+0058%6200+00	3+01 .84707937+00	45+01 .10369343+01	+01 .13514745+01 +0u	.24U311c3+01 .55699991+00	.16771297+01 .35624160+00	. 1207/646+01 . 55159965+01
0 .64334137+00	0+00 .77610988+00	62+00 . 85984730+00	+00 .85879162+00	.85079182+00	. /50.007.xa+0v	. 75056790+ub
0 .69523164+00	9+01 .88454330+00	47+01 ,11568969+01	+01 .15626647+01 +0u	.31032957+01 .55931257+00	.5590125/+U.	WHA! SUU 145184/5401 65252693400
1 .16038015+01	6+01 34664767+01	29+01 .61350846+01	.60817429+01	•60917429+01	.300661/++01	14441 100000-
					2	LFFECTIVE.
.94455189+01 ; .13395112+02 ; .15316240+02 ;	.11426313+02 ; .16734779+02 ; .19439680+02 ;	OR P(1) H WEIGHTS = Q(1) 1511338+01 1 2398694+02 1 5309662+02 1	T POST EXPERIMENTAL X(I) 0BSERVED INDIVIDUALS WIT .35245922401 , .1 .15417142402 , .1 .19448259402 , .1	Y AT POST *LY OBSERVE ; 352; ; 154; ; 194;	CONFIDE.(CE LIMIIS FOR TRUE ASSUMING THESE Y(I) ARE NET 1924+01	CONF 1UE. (ASSUNING -25457924+U1 -14072954+U2 -18046579+U2 -1545+516+U2
.42661794+01 ; .84147239+01 ;	.75829939+01 ,	WITH WEIGHTS = W(I) .18364141+01 ; .65812128+01 ;	T EXPERIMENTAL X(I) 0BSERVED INDIVIDUALS WI) .53847293+01 ,98559904+01 ,	٠٠٠- الم	CONFIDENCE LIMITS FOR TRUE ASSUMING THESE Y(I) ARE NET 7293+01	CONFIDENC ASSUMING .55847255411 .7582953941 .1415/931+02
.95728134+01 ; .13430857+02 ; .15323979+02 ;	.11301018+02 , .16699034+02 , .19433941+02 , .	.12552128+01 # .12479084+02 # .15323979+02 #	.34205142+01 , .15336792+02 , .19433941+02 , .		94626a14-UI .11521505+U2 .14376762+U2 .15323979+U2	.13980356+02 .15980356+02 .16065144+02 .19433941+02
No. 2070-451-69						

NUSL Tech Memo No. 2070-451-69

ANALYSIS OF VARIANCE

SOURCE OF VARIATION DEGREES OF FREEDOM SUM OF SQUARES	UEGREES OF FREEDOM	SUM OF SQUARES	MEAN SQUARE	A
SLUPE OF THE LINE	-	.64209320+02	.64209320+02	.30782077+03
DEVIATIONS FROM THE LINE	ıo	.10429660+01	.20859320+00	
GHOUP MEANS FROM LINE	ю	.81431599+00	.27143866+00	.23742721+01
NATININ GROUPS	(N	.22865001+00	.11432500+00	
TOTALS	9	.6525286+02	.10875381+02	

BEST_AVAILABLE COPY

=	
S	
9	
Z.	
0	
¥	
=	S
I	3
<u> </u>	õ
ಕ	9
¥	-
=	E
ĭ	3
,	7
ü	5
3	3
4	S
¥	7
•	ı ı
0	œ
×	2
_	=
ž	E
ī	=
^	*
7	-
-	5
ŧ.	
ž	×
	4
5	9
EGRESSION ANALISIS FOR 1%0 VARIABLES (THROUGH THE ORIGIN	IEM TEST CASE FUR MEIGHTED REGRESSION WITH GROUPS
n	Ĭ,
¥	-
9	-
	=

				705	705	BES	Personnia	AV.	All	AB	LE.		PY	80
				.800000000+02	***************************************	20+02				.28139535+03				.20465116+02
.20000000+01	***************************************	*80000000+01	10+00000001*	.75000000+02	*35000000+02	100000000000000000000000000000000000000				10 B =			.10232558+02	.19186046+02
STUDENT'S T =	-20000000+02	.400000000+01	.200000000+01	POINTS OF X VARIABLE—ALWAYS TEN)	.30000000+02	.53000000+02 SUM OF W(1)	7 = .00006000			SUM OF SQUARES DUE		× 00+	.51162791+01	.17906977+02
n	*20000000+05	*0+00000009*	T0+0000000£*		WITH P(I) -02 .25000000+02 -02	11	MEAN OF	03		= 8SB =		+ ,25581395+00	.51162791+01	.16627907+02
	** VARIABLE) ************************************	VARIABLE) .7000000+01	.104000000401	RIMENTAL EXPLORATORY . 600000000000000000000000000000000000	. ASSOCIATED WIT . 20000000+02 . 55000000+02	30+63 SUM OF WY(I)		x = .43060000+04	.11000000+04	u = .25561395+00	000	000000000 =	.51162791+01	Y SUB E •15548837+02 •24-002325+02
II E	INPUT VECTOR X (INDEPENDENT VOGGO+U2 .10060000+02	INPUT VECTOR Y (DEPENDENT DOGG+U1 .50000066+01	INPLI VECTOR W (WEIGHTS) 0000+01 .20000000+01	.10k P (POST EXPERIM .55uJOUGU+02 .96GUGUGU+02	POST EXPERIMENTAL WEIGHTS UGUUTUZ ISOUUGULOZ UDUUTUZ SOUUGULOZ	+00000061. = (1)	00000000 = 4	SS OF DLV. FROM MEAN OF WX SS OF DLV. FROM MEAN OF AT	SUN OF CRUSS-PRODUCIS #	MEGNESSAUN COEFFICIENT = 1	0000000000	LEUALLON = YMAT = A + DA :	PREDICTO Y = YHAT 1395+01 .25501590+01	EXPLORATORY Y = .1400970/+02 .230c325040c
, ,,	בט+טטטטטטינ.	INPUT VEC	INPUT VEC	10FU1 VECTOR	POST EXPE .lugguduutuz .hugguduutuz	SUM OF ACLUS	MEAN OF A I	55 OF U.S.	2 42 52	ME ONE SSA	INTERCEFI	LEUKIION	PRED10161 .20081395+01	PREDICTED 1279698+02 -2174+100+02

.37358942+01

\$

.11207663+02 .14009603+02 .16811524+02

BEST

		.256			
22325581+01		SSDEV = SUM SQUARES OF DEVIATIONS FROM LINE =			
-,11162791+01	00	= SUM SQUARES OF			
.88372093+00	- ,91659723+00	SSDEV	45+02		
ON LINE (Y-YHAT)	SQUARED = R**2	.22629472+01	0. = .54950045+02	.34509622-01	00000000
JEVIATIONS OF Y FROM RECKESSION LINE (Y-YHAT)55813953+00 .24418605+01 .16437209+01	MULT. AND SIMPLE CORM, CUEFF, SQUARED = R**2 =	STID. ERAUR OF ESTIMATE = S =	F(10N-1) AS A TEST IF R = B = 0. =	STU. ERROR OF 6 = S SUB 6 =	STU. EKAUR OF A = S SUB A =

604651+02

No. 2070-451-69

NUSL Tech Memo

.27607698+01 STU. EMACK OF EACH PREDICTED EXPLORATORY POINT (ON THE LINE). (YHAT SUB E) AT POST EXPERIMENTAL X(I) OR P(I) 44011+01 .18980292401 .20705773401 .22431254401 .24156735401 .25682216401 .27607698401741401 .26507343+01 .17426505+01 SID. ERROR OF EACH USSENVED Y. (Y-YHAT) AT EXPERIMENTAL X(I).
ASSUMING THESE Y(I) ARE MEMLY OBSERVED INTIVIDUALS WITH WEIGHTS # W(I)
MU93+cl .16509351+01 .23658605+01 .14776137+01. .25333178+01 £2691093+01

13803849+01

510. EKACK OF EACH PREDICTED POINT (ON THE LINE),(YHAT) AT EXPERIMENTAL X(I) 19022+00 .34509022+00 .69019244+00 .69019244+00

.345096c+tu

.27838593+01 SID. LKNOW OF EACH OBSERVED Y SUB E OR OF EACH (Y SUB E - YHAT SUB E) AT POST EXPERIMENTAL X(I) OR P(I).
ASSUMING THESE Y(I) ARE NEALY OBSERVED INDIVIDUALS WITH WEIGHTS = Q(I)
POSTATUI .19059280+01 .21315105+01 .22883288401 .24507501+01 .26163340+01 .278385 .32925836+01 .31223104+01 18673677+01 .29520517+01

-.641 I(N-1) AS TEST OF EACH DEVIATION FROM REGRESSION -.244

-.845

.95420499+00 11 NUKHALIZATION STATISTIC = U

.19489992+02 .24362489+02 .29234987+02 .64966639+01 x(I) OR P(I) .10273709+02 .13075630+02 .15877550+02 .18679471+01 POST EXPERIMENTAL .32483320+01 . .64966639+01 . .17865826+02 · .22738324+02 · .27610821+02 · LIMIIS FUR TRUE Y AT . 10079471+01 # . 37358942+01 # LIMITS FOR TRUE Y 10+450796664. .12141056+02 CONF 1UE WILL CONF IDE52463320+01 . . 1624100U+u2 . .25986650+02

.17745497+U2

30459154+02

.14943577+02

BEST AVAILABLE COPY

NUSL Tech Memo No. 2070-451-69

.38455814+00 # .49310895+01 #	.11085816+02 # .13953378+02 # .16778635+02 #		.67187500+00		.66077603+00				SUM OF SQUARES .3000000000000000000000000000000000000
	•••	.26875000+01	.7644445+00	.72681357+00	.74610489+00		***************************************	= .37500000+01	OF FREEDOM AND
rS = W(1) .00 i .98479999+01 .01 i .15534027+02	S = 0(1)	.10750000+02	.67755103+00	.16862745+01	.65261071+00	IAL.	1+02 VARIANCE)+02 VARIANCE	BETWEEN GROUPS DEGREES OF FREEDOM AND SUM OF SQUARES
IDUALS WITH WEIGHTS 1171573064+00 11 - 16309781+01	ENTAL X(I) OR P(I) IDUALS WITH WEIGHTS: 12	.10750000+02	.10177515+01	.234545+01	.97793952+00	X. GROUP SIZE, Y TOTAL	SUM Y = .12000000+02	SUM Y = .33000000+02	SUM OF SQUARES # BETWE!
Y AT EXPERIMENTAL X(I) ILY OBSERVED INDIVIDUALS 5.58320097+01 6.86015800+01	Y AT POST EXPERIMENTAL ILY OBSERVED INDIVIDUALS 1 .22408477+02 . 1 .27649469+02 .	.10750000+02	.11944445+01	.91+89363+00	.11271298+01 .47236231+00	WITHIN SHOUPS AT ONE X	N II Z	11 12	UF FREEDOM AND SUM OF
CONFIDENCE LIMITS FOR TRUE Y ASSUMING THESE Y(I) ARE MEMLY 3582+0120200792+01 ; 5065+0121610516+01 ;	CONFIDENCE LIMIIS FOR TRUE Y ASSUMING THESE Y(I) ARE NEWLY 6055401 I 4564402 I 12051244402 I 6255402 I 1495402 I 7195402 I	70+000000c+•	. 53086420404	10+111111151*	.12584393+01	VART = VARIANCE OF Y WITHIN	-10000000+uz	= .20000000+02	#ITHIN SKOUPS DEGREES OF FR
CONFIDENCE ASSUMING .71363582+01 .	CONFIDENCE ASSUMING *16526073+02 *21204564+02 *25032855+02 *30487493+02	eFFECTIVE N WHAT	.17200000401 .59515572+00	.97727275+00	N SUB E.	VART = VA	A TA =	4 J4	althlic of

NUSL Tech Memo No. 2070-451-69

SOURCE OF VARIATION DEGREES OF FREEDOM SUM OF SQUARES	UEGREES OF FREEDOM	SUM OF SQUARES	MEAN SQUARE	F
SLUPE OF THE LINE		,28139535+03	.28139535+03	.54950045+02
DEVIATIONS FROM THE LINE	'n	.25604651+02	.51209302+01	
GROUP MEANS FROM LINE	N	.12104651+02	.60523255+01	.13449612+01
WITHIN GROUPS	n	.13500000+02	.45000000+01	
T01ALS .3070000+03	9	.30700000403	.51166667+02	.51166667+02