MAE 292 Spring 2020 Homework 4

Due on May 14, 2020, at 11:59 PM

Problem 1: Analyze the mobility of following mechanisms (20 points)

$$m = 3 \cdot (6 - 1) - 2 \cdot 7$$
 $m = 1$

$$m=3.(6-1)-2.7$$
= $15-14$

$$m = 3 \cdot (6-1) - 2 \cdot 7$$

$$= 15 - 14$$

$$\boxed{m = 1}$$

Problem 2: Mechanism modeling in matlab (40 points)

Consider the following mechanism. The link lengths are given in the table

Lı	L2	L3	L4
4	Variable	[1, 2, 3, 4, 5]	10

- a. How many joints and links are there? Compute the mobility of the mechanism.
- b. Write out the loop-closure constraint equation for this system, f(x) = 0.
- c. Implement a matlab function that returns f(x).
- d. Use fsolve and the constraint equation to solve for the mechanism configuration with θs as the input.
- e. Compute the value of $\theta 1$ for $\theta 3 = [0:0.1:2\pi]$ for L3 = [1:5] and plot $\theta 1$ versus $\theta 3$ for all L3 lengths in one plot.
- f. Estimate numerically the max and min values of θt for each L3. Plot max(θt) and min(θt) verse L3.
- g. Extra credit: solve by hand the maximum and minimum values of θt for the range of L3 given in part f. Plot the exact solution with the estimated data.

a. 4 joints and 4 links. m=

b, (x,y)

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_2 & \cos \theta_1 \end{bmatrix} \begin{bmatrix} -\ln \theta_1 \\ -\ln \theta_2 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \theta_2 & -\sin \theta_3 \\ \sin \theta_2 & \cos \theta_3 \end{bmatrix} \begin{bmatrix} \ln \theta_1 \\ 0 \end{bmatrix}$$

L1 coso, +L2 sind, - L3 coso + L4 = 0

Problem 3: CAD and Simscape multibody (40 points)

Part 1: A variable stroke engine is shown to the left below and a schematic of the system is shown to the right below. Using the following parameters (dimensions are all in inches) construct a model of this system using simscape multibody or fsolve in matlab.

L1	L2	L3	R	L5	d	θ (deg.)
3	7	9	12.5	10	7	[35 - 70]

- 1. Plot the relationship between input angle and piston height for a range of stroke adjustment angles (θ) , choose a reasonable range.
- 2. Plot the vertical speed of the piston as a function of time, for a constant input angular speed $\omega=1$.
- 3. Plot the total stroke length of the piston (max(h) min(h)) as a function of θ .

