НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЭЛЕКТРОБЕЗОПАСНОСТЬ

Классификация интерфейсов для оборудования, подсоединяемого к сетям информационных и коммуникационных технологий

Electrical safety. Classification of interfaces for equipment to be connected to information and communications technology networks

OKC 35.020*

здесь и далее. - Примечание изготовителя базы данных.

Дата введения 2014-07-01

Предисловие

- 1 ПОДГОТОВЛЕН Автономной некоммерческой организацией "Научнотехнический центр сертификации электрооборудования" (НТЦСЭ) "ИСЭП" на основе собственного аутентичного перевода на русский язык международного документа, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 452 "Безопасность аудио-, видео-, электронной аппаратуры, оборудования информационных технологий и телекоммуникационного оборудования"
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ <u>Приказом Федерального агентства</u> по техническому регулированию и метрологии от 29 ноября 2012 г. N 1334-ст
- 4 Настоящий стандарт идентичен международному документу IEC/TR 62102:2005* "Электробезопасность. Классификация интерфейсов для оборудования, подсоединяемого к сетям информационных и коммуникационных технологий" (IEC/TR 62102:2005 "Electrical safety Classification of interfaces for equipment to be connected to information and communications technology networks")

^{*} По данным официального сайта Росстандарта ОКС 35.020; 29.020,

^{*} Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить, перейдя по ссылке на сайт http://shop.cntd.ru. - Примечание изготовителя базы данных.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0-2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске информационного указателя стандарты". Соответствующая "Национальные информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (gost.ru)

Предисловие

Международная электротехническая комиссия (МЭК) является всемирной организацией по стандартизации, включающей все национальные комитеты комитеты МЭК). МЭК (Национальные Целью является международного сотрудничества по всем вопросам стандартизации в области электрической и электронной аппаратуры. По указанному и другим видам деятельности МЭК публикует международные стандарты. Их подготовка возлагается на технические комитеты. Любой национальный комитет МЭК, заинтересованный В данном вопросе, может участвовать работе. Международные, правительственные подготовительной неправительственные организации, сотрудничающие с МЭК, также участвуют в подготовительной работе. МЭК тесно сотрудничает с Международной организацией по стандартизации (ИСО) в соответствии с условиями, определенными в соответствующем соглашении между двумя организациями.

Официальные решения или соглашения МЭК по техническим вопросам выражают, насколько это возможно, международное согласованное мнение по относящимся к делу вопросам, так как каждый технический комитет имеет представителей от всех заинтересованных национальных комитетов.

Выпускаемые документы имеют форму рекомендаций для международного использования, публикуются в виде стандартов, технических отчетов или руководств и принимаются национальными комитетами именно в таком понимании.

В целях содействия международной унификации (единой системе) национальные комитеты МЭК обязуются при разработке национальных и региональных стандартов брать за основу международные стандарты МЭК, насколько это позволяют условия конкретной страны. Любое расхождение между стандартами МЭК и соответствующими национальными или региональными стандартами должно быть ясно обозначено в последних.

МЭК не предусматривает процедуры маркировки и не несет ответственности за любое оборудование, заявленное на соответствие одному из стандартов МЭК.

Необходимо обратить внимание на то, что некоторые элементы настоящего международного стандарта могут являться предметом патентного права. МЭК не несет ответственности за установление любого такого патентного права.

Настоящий международный стандарт подготовлен Техническим комитетом 108 "Безопасность электронного оборудования в пределах аудио-, видеоаппаратуры, оборудования информационных технологий и технологий связи".

Текст стандарта основан на следующих документах:

Рассматриваемый проект	Отчет о голосовании
108/128/DTR	108/130/RVC

Полную информацию о голосовании по утверждению настоящего стандарта можно найти в отчете о голосовании, указанном выше в таблице.

Международная электротехническая комиссия (МЭК) является всемирной организацией по стандартизации, включающей в себя все национальные комитеты. Целью МЭК является развитие международного сотрудничества по всем вопросам стандартизации в области электрической и электронной аппаратуры. По указанному и другим видам деятельности МЭК публикует международные стандарты. Их разработка возлагается на технические комитеты. Любой национальный комитет МЭК, заинтересованный данным вопросом, может участвовать этой подготовительной В Международные, правительственные и неправительственные организации, сотрудничающие с МЭК, также участвуют в подготовительной работе. МЭК тесно сотрудничает с Международной организацией по стандартизации (ИСО) в соответствии с условиями, определенными в соответствующем соглашении между двумя организациями.

Публикуемые документы имеют форму рекомендаций для международного использования, издаются в виде стандартов, технических отчетов или руководств и принимаются национальными комитетами.

В целях обеспечения международной унификации (единой системе) национальные комитеты МЭК разработку национальных и региональных стандартов осуществляют на основе международных стандартов МЭК, насколько это позволяют условия конкретной страны. Любое расхождение между стандартами МЭК и соответствующими национальными или региональными стандартами должно быть точно указано в национальных (региональных) стандартах.

Главной задачей технических комитетов МЭК является разработка международных стандартов. Тем не менее, технический комитет может предложить публикацию стандарта, когда собраны такие данные, которые могут быть опубликованы в качестве международного стандарта, например данные, отражающие современный технический уровень.

Международный документ МЭК/ТО 62102 подготовлен техническим комитетом МЭК 108 "Безопасность электронного оборудования в пределах аудио-, видеоаппаратуры, оборудования информационных технологий и технологий связи".

Текст международного документа основан на следующих документах:

Первая редакция	Отчет о голосовании
108/128/DTR	108/130/RVC

Полную информацию о голосовании по одобрению настоящего международного документа можно найти в протоколе голосования, указанном в приведенной выше таблице.

Публикация настоящего международного документа является плановой в соответствии с Директивами ИСО/МЭК, Часть 2.

Настоящий международный документ является руководством для определения требований к интерфейсу для оборудования с точки зрения безопасности. Он содержит перечень обозначений интерфейсов и указание категории безопасности каждого из интерфейсов. Настоящий международный документ не содержит достаточных описаний для проверки на совместимость, кроме тех случаев, когда он применяется совместно со стандартами на продукцию, такими как МЭК 60950-1 и МЭК 60950-21.

МЭК 60950-1 и МЭК 60950-21 устанавливают требования для таких категорий цепей, как цепи безопасного сверхнизкого напряжения, цепи напряжения телекоммуникационной сети, телекоммуникационных цепей удаленного электропитания и цепей опасного напряжения. Оборудование с интерфейсом порта данных предназначено для подключения к другому оборудованию или локальной сети или через сеть. В этом случае, категории безопасности интерфейсов, подключаемых друг к другу, должны быть совместимы. В системах, где телекоммуникационное оборудование и оборудование для обработки данных подключено друг к другу через различные типы интерфейсов и сетей, категория интерфейса удаленного оборудования может быть неизвестна.

Необходимо классифицировать интерфейсы оборудования по конфигурациям в соответствии с применением и выбрать категорию безопасности для интерфейса оборудования и типа сети. Также интерфейсы должны быть классифицированы для обеспечения защиты от повреждения оборудования и сети. Аспекты защиты рассмотрены в МСЭ-Т, Рекомендации серии К.

1 Область применения

Настоящий стандарт распространяется на интерфейсы оборудования. Такие интерфейсы могут быть подключены к телекоммуникационным сетям, могут являться частью телекоммуникационной инфраструктуры сети или могут обеспечивать локальную передачу данных. Настоящий стандарт предоставляет собой руководство по классификации интерфейсов в соответствии с типами цепей, определенными в МЭК 60950-1 и МЭК 60950-21, с последующим анализом характеристик телекоммуникационной сети.

Настоящий стандарт распространяется только на подключенное соответствующим образом оборудование и не рассматривает повреждения, нанесенные одним оборудованием другому оборудованию, связанному с ним. В порядке исключения интерфейс может быть спроектирован для более высоких или низких уровней в целях особого применения.

В таких случаях необходимо убедиться, что подключаются только интерфейсы, имеющие ту же самую категорию безопасности и уровень защиты. Это обусловлено имеющимися техническими условиями изготовителей оборудования и сетевых провайдеров и информацией, касающейся категории установки главного интерфейса.

Настоящий стандарт предназначен для использования проектировщиками оборудования, операторами сети, сетевыми инспекторами/администраторами, разработчиками стандартов и монтажниками сетей. Настоящий стандарт применим для различных интерфейсов оборудования. Описание сетей - это не оборудование и поэтому не охватывается стандартами МЭК 60950-1 и МЭК 60950-21, а также настоящим стандартом. Тем не менее, необходимо рассмотрение характеристик, установки и описания телекоммуникационных сетей при определении требований, предъявляемых к интерфейсу оборудования (например, цепь БСНН, цепь HTC-1, цепь HTC-3 и т.д.).

Если при проектировании оборудования и его интерфейса используются не стандарты МЭК 60950-1 и МЭК 60950-21 (например, МЭК 62151 в сочетании с другими стандартами по безопасности продукции), тогда предпочтительно применение соответствующих требований других стандартов.

Если возникают противоречия между настоящим стандартом и более подробными спецификациями, то применяют последние.

Настоящий стандарт применяется независимо от права собственности или ответственности за установку и техническое обслуживание оборудования или сети.

Примечание - Терминальное оборудование часто подключается к абонентскому оборудованию с помощью кабеля при использовании в бизнессреде, поэтому существуют стандарты, охватывающие разводку кабелей.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие международные стандарты*, которые являются обязательными для применения. Для датированных ссылок применяется только приведенная редакция. Для недатированных ссылок применяется последняя редакция ссылочного документа (включая любые поправки).

МЭК 60950-1:2001 Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования (IEC 60950-1:2001, Information technology equipment - Safety - Part 1: General requirements)

МЭК 60950-21:2002 Оборудование информационных технологий. Требования безопасности. Часть 21. Удаленное электропитание (IEC 60950-21:2002, Information technology equipment - Safety - Part 21: Remote power feeding)

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями.

3.1 Определения по стандарту МЭК 60950-1

3.1.1 сеть электропитания переменного тока (AC mains supply): Внешняя система электропитания переменного тока, питающая оборудование. Эти источники электропитания включают в себя частные или общественные системы энергоснабжения и, если не указано особо в настоящем стандарте, эквивалентные источники, например, мотор-генераторы и источники бесперебойного электропитания.

[МЭК 60950-1, определение 1.2.8.1]

3.1.2 опасное напряжение (hazardous voltage): Напряжение, значение которого превышает 42,4 В пикового значения напряжения переменного тока или 60 В напряжения постоянного тока в цепи, не отвечающей требованиям, предъявляемым или к цепям с ограничением тока, или к цепям HTC.

[МЭК 60950-1, определение 1.2.8.5]

3.1.3 цепь с ограничением тока (limited current circuit): Цепь, сконструированная и защищенная так, что значение тока, протекающего в ней как в нормальных условиях эксплуатации, так и при единичной неисправности, не достигает опасного значения.

[МЭК 60950-1, определение 1.2.8.8]

3.1.4 первичная цепь (primary circuit): Цепь, непосредственно подключенная к сети электропитания переменного тока. Она включает в себя, например, средства для соединения с сетью электропитания переменного тока, первичные обмотки трансформаторов, электродвигателей и других нагрузочных устройств.

[МЭК 60950-1, определение 1.2.8.3]

^{*} Таблицу соответствия национальных стандартов международным см. по <u>ссылке</u>. - Примечание изготовителя базы данных.

3.1.5 вторичная цепь (secondary circuit): Цепь, не имеющая прямого подключения к первичной цепи и получающая электроэнергию через трансформатор, преобразователь или другое эквивалентное устройство или от батареи.

[МЭК 60950-1, определение 1.2.8.4]

3.1.6 цепь безопасного сверхнизкого напряжения; цепь БСНН (SELV circuit): Вторичная цепь, сконструированная и защищенная таким образом, что в нормальных условиях эксплуатации и в случае единичной неисправности значение напряжения не превышает безопасного значения.

[МЭК 60950-1, определение 1.2.8.7]

3.1.7 цепь напряжения телекоммуникационной сети; цепь HTC (TNV circuit): Цепь в оборудовании, для которой доступная зона контакта ограничена и которая спроектирована и защищена так, что при нормальных условиях эксплуатации и при единичной неисправности значение напряжения не превышает предельно допустимого значения.

[МЭК 60950-1, определение 1.2.8.10]

- **3.1.8 телекоммуникационая сеть** (telecommunication network): Передающая среда, заканчивающаяся проводной линией, предназначенной для связи между оборудованием, которое может быть размещено в различных зданиях, исключая:
- магистральную систему для электропитания, передачи и распределения электрической энергии, если она используется как передающая среда связи;
 - системы кабельного распределения;
 - цепи БСНН, соединяющие модули оборудования обработки данных. Примечания
- 1 Термин "телекоммуникационная сеть" определяет функциональное назначение, а не электрические характеристики сети. Телекоммуникационную сеть не классифицируют саму по себе как цепь БСНН или цепь НТС. Такая классификация относится только к цепям оборудования.
- 2 Телекоммуникационная сеть может быть:
 - общественной или частной;
- подвергнутой перенапряжениям от переходных процессов, вызываемых атмосферными разрядами и неисправностями в системах электропитания;
- подвергнутой продольным (общим несимметричным) напряжениям, наводимым от проходящих рядом линий электросети или городского электротранспорта.
- 3 Примерами телекоммуникационных сетей являются:
 - общие телефонные сети коммутационного типа (PSTN);
 - сети общественной информации;
 - интегрированные служебные цифровые сети (ISDN);
- частные сети, характеристики электрического сопряжения которых аналогичны приведенным выше.

[МЭК 60950-1, определение 1.2.13.8]

- **3.1.9 система кабельного распределения** (cable distribution system): Электрически связанная система передачи, обычно предназначенная для передачи сигналов изображения и/или звука между отдельными строениями или между уличной антенной и строением, кроме:
- сетевых систем для электропитания, передачи и распределения электроэнергии, используемых в качестве передающей среды;
- телекоммуникационных сетей;
- цепей БСНН, соединяющих части оборудования информационных технологий.

Примечания

- 1 Примеры систем кабельного распределения:
- локальная кабельная сеть, объединяющая антенные телевизионные системы и главные антенные телевизионные системы;
- уличные антенны, в том числе спутниковые "тарелки", приемные антенны и другие аналогичные устройства.
- 2 Системы кабельного распределения могут быть подвергнуты большим переходным процессам, чем телекоммуникационные сети.

[МЭК 60950-1, определение 1.2.13.14]

- **3.1.11 обслуживающий персонал** (service person): Лица, имеющие соответствующую техническую подготовку и опыт, осознающие опасность, которой они могут быть подвергнуты при выполнении задания, и владеющие способами снижения этой опасности для себя и других лиц.
- **3.1.11* пользователь** (user): Любое лицо, не относящееся к обслуживающему персоналу. Термин "пользователь" в настоящем стандарте полностью соответствует термину "оператор", и оба этих термина взаимозаменяемы.

3.2 Определения по стандарту МЭК 60950-21

3.2.1 УПТ цепь (телекоммуникационная цепь удаленного электропитания) [RFT circuit (remote feeding telecommunication circuit)]: Вторичная цепь в оборудовании, предназначенная для обеспечения и получения питания напряжением постоянного тока от телекоммуникационной сети, значение которого превышает пределы, установленные для НТС цепей и цепей, в которых возможны перенапряжения от телекоммуникационных сетей.

[МЭК 60950-21, определение 3.1]

3.2.2 УПТ-Т цепь (RFT-C circuit): УПТ цепь, которая спроектирована и защищена так, что при нормальных условиях эксплуатации и в условиях единичной неисправности значения тока в цепи не превышают установленных.

[МЭК 60950-21, определение 3.2]

3.2.3 УПТ-Н цепь (RFT-V circuit): УПТ цепь, которая разработана и защищена так, что при нормальных условиях эксплуатации и в условиях единичной неисправности значения напряжения являются ограниченными; ограничена также область, доступная для контакта.

[МЭК 60950-21, определение 3.3]

^{*} Нумерация соответствует оригиналу. - Примечание изготовителя базы данных.

3.3 Дополнительные определения настоящего стандарта

- **3.3.1 интерфейс антенны** (antenna interface): Порт для связи радиочастотной антенны с оборудованием.
- **3.3.2 интерфейс коаксиального кабеля** (coaxial cable interface): Порт для соединения коаксиального кабеля, предназначенного для асимметричной передачи, с оборудованием.

Примечание - Использование коаксиального кабеля для внутренней установки и кабеля для наружной установки рассматриваются по отдельности.

- **3.3.3 точка сетевого оконечного устройства** (network termination point): Физическая точка на границе сети для присоединения сетевого оборудования или для сопряжения с другой сетью.
- **3.3.4 двухпроводной интерфейс** (paired conductor interface): Порт для соединения кабеля, предназначенного для симметричной передачи (например, витой пары), с оборудованием.

Примечание - Использование коаксиального кабеля для внутренней установки и кабеля для наружной установки рассматриваются по отдельности.

3.3.5 точка подключения оконечного оборудования (terminal connection port): Физическая точка оконечного оборудования, предназначенная для соединения с сетью.

3.4 Сокращения

В настоящем стандарте (см. раздел 4, приложение В и приложение С) применены следующие сокращения:

ADSL - асимметричная цифровая абонентская линия;

DLL - цифровая местная линия;

DSL - цифровая абонентская линия;

HPNA - архитектура организации сети домашней телефонной линии;

ISDN - цифровая сеть с интеграцией обслуживания;

POTS - обычная аналоговая телефонная линия;

ЛВС (LAN) - локальная вычислительная сеть;

ПК (РС) - персональный компьютер:

КИМ (РСМ) - кодово-импульсная модуляция;

ТСОП (PSTN) - телефонная сеть общего пользования;

УПТ (RFT) - телекоммуникационное оборудование удаленного питания;

УИП (RPS) - удаленный источник питания;

СЦИ (SDH) - синхронная цифровая иерархия;

УПАТС (РАВХ) - учрежденческо-производственная автоматическая телефонная станция;

USB - универсальная последовательная шина;

ТСОУ (NTP) - точка сетевого оконечного устройства;

ТПОО (ТСР) - точка подключения оконечного оборудования;

ЭСР (ESD) - электростатический разряд;

АДТС - архитектура домашней телефонной сети;

БДП - преобразователь, базовый доступ;

БДСОУ - сетевое оконечное устройство, базовый доступ;

БСО - блок сетевого окончания;

VGA - стандарт мониторов и видеоадаптеров;

ЛОУ - линейное оконечное устройство;

ОС - оператор сети;

ОУ - оконечное устройство;

РС - рекомендуемый стандарт;

СОП - сеть общего пользования;

СОУ - сетевое оконечное устройство:

ТА - терминальный адаптер;

ТКС - точка клеммового соединения;

ТСП - точка сетевого подключения.

4 Базовая конфигурация

Возможная конфигурация "сетевых облаков", дающих примеры типов оборудования, охватываемых настоящим стандартом, показана на рисунке 1. Некоторое оборудование будет иметь интерфейсы только одного или двух типов, другое - нескольких типов. Некоторые из "сетевых облаков" будут элементами ТСОП (в которой присутствует возможность существования более одного ОС), а другие - частными сетями. Оборудование, связанное с таким "сетевым облаком", и часть самого "сетевого облака" могут быть любого типа, охватываемого областью применения настоящего стандарта.

Настоящий стандарт служит основой для требований безопасности и уровней защиты, ссылки на конкретные примеры даны на рисунках 1 и 2. Нерассмотренные конфигурации должны выполняться с использованием таких же принципов.

Рисунок 1 - Базовая конфигурация

Рисунок 1 - Базовая конфигурация

Рисунок 2 - Примеры сетевых конфигураций

Пример 1

Пример 2

Если оборудование имеет два или более интерфейса различного типа, необходимо обеспечить безопасное разделение внутри устройства между этими интерфейсами в соответствии со стандартами МЭК 60950-1 и МЭК 60950-21.

Примеры возможных сетевых конфигураций показаны на рисунке 2. Учитываются некоторые элементы сети, связанные с такими сетями и показателями различных коммерческих организаций, как СОП и ОС, которые обычно (общественные или частные) включаются в инфраструктуру сетевого обеспечения для обслуживания конечного клиента.

5 Категории безопасности интерфейсов, предназначенных для подсоединения к сетям информационных и коммуникационных технологий

Примечание - Первичные и вторичные сети могут подвергаться воздействию динамического перенапряжения (см. МЭК 60950-1).

5.1 Цепи БСНН

Требования для цепей БСНН приведены в стандарте МЭК 60950-1.

5.2 Цепи НТС

Требования для цепей НТС приведены в стандарте МЭК 60950-1. Цепи НТС подразделяются на цепи НТС-1, НТС-2 и НТС-3 в зависимости от номинального рабочего напряжения и степени подверженности воздействию динамического перенапряжения.

5.3 Информация пользователя

Классификация по безопасности (например, цепей БСНН, НТС-1, НТС-2 и НТС-3) портов для сетей и любые ограничения, касающиеся топологии сети (например, или для сетевой среды 0, или для сетевой среды 1, см. пп.6.1 и 6.2), должны быть указаны в документации производителя, поставляемой вместе с оборудованием, если неопределенность может представлять угрозу безопасности (см. МЭК 60950-1, пункт 1.7.2).

Примечание - В зависимости от конструкции интерфейса существует возможность того, что один порт подходит более чем для одного типа цепи другого оборудования. Например, рассматривая цепь в оборудовании, которое требованиям HTC удовлетворяет цепей В которой интерфейс телекоммуникационного порта имеет разделение между цепями соответствии с п.6.2.1 стандарта МЭК-60950-1, то такой интерфейс телекоммуникационного порта будет для соединения с БСНН цепью или цепью НТС-1.

Для оборудования, предназначенного для установки пользователем, рекомендуется следующее:

- обеспечить интерфейс телекоммуникационных портов схемой, предназначенной для подсоединения к сетевой среде 1 (например, цепь HTC-1 вместо цепи БСНН или цепь HTC-3 вместо цепи HTC-2);
- обеспечить достаточную информацию в пользовательских инструкциях во избежание подсоединения к телекоммуникационной сети в сетевой среде 1.

5.4 Цепи УПТ

Требования к цепям УПТ приведены в стандарте МЭК 60950-21.

6 Процессы, влияющие на безопасность интерфейса портов

Приложение А устанавливает количество процессов, некоторые из которых могут повлиять на телекоммуникационную сеть таким образом, что перенапряжение может быть вызвано и передано через порт интерфейса оборудованию. Такие процессы обычно не зависят от нормального рабочего напряжения цепи, но могут подвергаться воздействию импеданса сети.

Для определения состояния безопасности цепи внутри оборудования для подсоединения к определенной сети необходимо знать:

- нормальное рабочее напряжение сети (обусловленное рассматриваемой цепью и напряжением, поступающим от телекоммуникационной сети);
 - интенсивность и частоту перенапряжения;
 - присутствует ли энергетический опасный фактор;
 - происходит ли питание сети от источника ограниченной мощности.

6.1 Сетевая среда 0

Телекоммуникационная сеть рассматривается в сетевой среде 0, если все участки сети отвечают следующим условиям:

- а) было уменьшено возможное воздействие непрямой молнии (более подробно см. приложение С, пункт 1);
- b) была уменьшена вероятность наличия разных потенциалов земли (более подробно см. приложение C, пункт 2);

- с) была уменьшена вероятность перекрещивания проводов источника питания (более подробно см. приложение С, пункт 3);
- d) была уменьшена вероятность вынужденных переходных процессов и напряжений (более подробно см. приложение С, пункты 4 и 5).

6.2 Сетевая среда 1

Телекоммуникационная сеть рассматривается в сетевой среде 1, если не выполняется одно или более требований для сетевой среды 0.

7 Определение типа цепи

Для того чтобы определить, какой тип цепи соответствует определенному интерфейсу, необходимо знать:

- рабочее напряжение (или текущее для конкретной цепи) при нормальных условиях или условии единичной неисправности в оборудовании;
 - сеть принадлежит к сетевой среде 0 или сетевой среде 1. Примечания
- 1 Требования по отделению цепей БСНН, НТС и УПТ от опасного напряжения установлены в стандартах МЭК 60950-1 и МЭК 60950-21. Опасное напряжение может возникнуть в первичных и вторичных цепях.
- 2 При определении типа цепей используют вольтовые характеристики, используемые при описании сетей, такие как метод изоляции, предельный ток, предельная мощность, перенапряжение и переходные процессы. См. требования к цепи для более подробной информации.

Рисунок 3 - Блок-схема для определения типа цепи

Рисунок 3 - Блок-схема для определения типа цепи

Примеры конкретных интерфейсов сети приведены в приложении В. Диапазон напряжений для цепей БСНН и НТС указан в приложении D.

Приложение A (справочное). Анализ признаков интерфейса

Приложение А (справочное)

Таблица А.1 - Анализ признаков интерфейса

Признак	Рассматриваемый порт интерфейса	Существующий стандарт/другие документы	Анализ безопасности
Нормальное рабочее напряжение	Внешний двухпроводной		Цепи НТС-1 (если не превышены предельные значения для цепей БСНН) или НТС-3 (если не превышены предельные значения для цепей НТС-3) или цепи УПТ (если не превышены предельные значения для цепей УПТ) в результате наведенного перенапряжения или опасного напряжения
	Внешний коаксиальный кабель		Цепи НТС-1 (если не превышены предельные значения для цепей БСНН) или НТС-3 (если не превышены предельные значения для цепей НТС-3) в результате наведенного перенапряжения или опасного напряжения
	Внутренний двухпроводной		Могут быть цепи БСНН, НТС-1, НТС- 2, НТС-3, или цепи УПТ или опасное напряжение
	Внутренний коаксиальный кабель		Могут быть цепи БСНН, НТС-1, НТС- 2, НТС-3, или опасное напряжение

	<u>!</u>	<u> </u>	
	Сеть электропитания переменного тока		Первичная цепь, опасное напряжение
	Внешняя антенна	Руководство МЭК 112	Охватывается испытанием перенапряжением согласно стандарту МЭК 60065, п.10.1. Могут быть цепи НТС-1 (если не превышены предельные значения для цепей БСНН) или НТС-3 (если не превышены предельные значения для цепей НТС-3)
Наведенная помеха в результате молнии	Внешний двухпроводной		Инсталляция сети должна ограничиваться импульсными помехами до 1,5 кВ в соответствии со стандартами серии МЭК 60950
	Внешний коаксиальный кабель		Инсталляция сети должна ограничиваться импульсными помехами до 4 кВ для сигналов, до 5 кВ для повторителей питания и до 10 кВ при подсоединении к внешней антенне согласно стандартам серии МЭК 60950

	Внутренний двухпроводной	МЭК 61312-1	Если инсталляция предусматривает достаточную защиту средств, то рассматриваются требования стандартов серии МЭК 60950 к импульсным помехам 1,5 кВ для цепей НТС-1 и НТС-3
	Внутренний коаксиальный кабель	МЭК 61312-1	Если инсталляция предусматривает достаточную защиту средств, то рассматриваются требования стандартов серии МЭК 60950 к импульсным помехам 1,5 кВ для цепей HTC-1 и HTC-3
	Сеть электропитания переменного тока		Рассматривается в стандарте МЭК 60664-1
Прямой удар молнии	Внешний двухпроводной		Напряжения, прогнозируемые как результат прямого удара молнии в двухпроводной кабель, превышают рассматриваемые в стандартах серии МЭК 60950 и находятся за пределами области применения настоящего стандарта

	Внешний коаксиальный кабель	Охватывается методами заземления сетевого оператора, которые находятся за пределами области применения настоящего стандарта
	Антенна	Внешние антенны требуют защитное заземление, обеспечение которого достигается методами заземления сетевого оператора или национальным кодом, которые находятся за пределами области применения настоящего стандарта
Под действием электропитания или систем тяги	Внешний двухпроводной	Требования директивы МСЭ-Т, том VI, рассматривались в момент разработки стандартов серии МЭК 60950, таким образом, последующие действия для цепей HTC-1, HTC-3 и УПТ не предусматриваются

	Внешний коаксиальный кабель		Требования директивы МСЭ-Т, том VI, рассматривались в момент разработки стандартов серии МЭК 60950, таким образом, последующие действия для цепей НТС-1 и НТС-3 не предусматриваются
ESD			Находится за пределами области применения настоящего стандарта
Перенапряжение в результате коммутации высоковольтных цепей	Сеть электропитания переменного тока	МЭК 60664-1	Рассматривается в МЭК 60664-1
Разница в потенциале земли	Внешний двухпроводной		Необходимо убедиться, что интерфейсы отделены от земли согласно п.п.6.2.1 с) стандарта МЭК 60950-1
	Внешний коаксиальный кабель		Необходимо убедиться, что или инсталляция отвечает требованиям рекомендаций МСЭ-Т К.27 или МСЭ-Т К.31, предусмотренных для инсталляции, или интерфейсы отделены от земли согласно п.п.6.2.1 с) стандарта МЭК 60950-1

	Внутренний двухпроводной		Охватывается рассмотрением сетевой среды, которая относится к эквипотенциальному соединению в соответствии со стандартом МЭК 60364. Для сетевой среды 1 интерфейсы должны рассматриваться как внешние двухпроводные
	Внутренний коаксиальный кабель		Охватывается рассмотрением сетевой среды, которая относится к эквипотенциальному соединению в соответствии со стандартом МЭК 60364. Для сетевой среды 1 интерфейсы должны рассматриваться как для внешних коаксиальных кабелей
Источник питания (прямой контакт)	Внешний двухпроводной	Рекомендации МСЭ-Т К.20, МСЭ-Т К.21	
	Внешний коаксиальный кабель		

Сеть электропитания	Внешний двухпроводной	Необходимо убедиться, что инсталляция отвечает требованиям рекомендаций МСЭ-Т К.27 или МСЭ-Т К.31, предусмотренных для инсталляции
	Внешний коаксиальный кабель	Необходимо убедиться, что или инсталляция отвечает требованиям рекомендаций МСЭ- Т К.27 или МСЭ-Т К.31, предусмотренных для инсталляции
	Внутренний двухпроводной	Необходимо убедиться, что инсталляция отвечает требованиям рекомендаций МСЭ-Т К.27 или МСЭ-Т К.31, предусмотренных для инсталляции
	Внутренний коаксиальный кабель	Необходимо убедиться, что инсталляция отвечает требованиям рекомендаций МСЭ- Т К.27 или МСЭ-Т К.31, предусмотренных для инсталляции

Приложение В (справочное). Рассчитанные примеры конкретных сетевых интерфейсов

Приложение В (справочное)

В таблице В.1 представлены некоторые примеры с решениями для универсальных сетевых интерфейсов. Таблица учитывает, что интерфейсы для информационных и коммуникационных технологических сетей часто стандартизованы на региональном или национальном уровне, а не на международном. Это не означает, что данный перечень является полным. Таблица В.1 - Примеры с решениями для определенных сетевых интерфейсов

Интерфейс или точка подключения	Соответствующие документы для интерфейса	Заземление a)	Сетевая среда согласно п.6	Категория цепи по стандартам серии МЭК 60950
"48 В" станционная батарея	ETSI EN 300 132-2 ANSI T1.315-1994	да/нет	0	БСНН
"60 В" станционная батарея	ETSI EN 300 132-2	да/нет	0	HTC-2
1394a	IEEE 1394а и 1394-1995 (IEEE 139ta)	да	0	БСНН
1394b	IEEE 1394b (IEEE 139ta)	нет	1	HTC-1
Аналог батареи ТСОП 48 В	ETSI EN 300 001, ETSI TBR 21	да/нет	1	HTC-3
Аналог батареи ТСОП 60 В	ETSI EN 300 001 ETSI TBR 21	да/нет	1	HTC-3
Центроникс/ параллельный интерфейс (ПК)	Технические условия изготовителя	да/нет	0	БСНН ^{d)}
[неструктурированный] Е1	ETSI EN 300 416 ETSI EN 300 247	нет	1/0	HTC-1/ БСНН ^{d)}
Ethernet 10Base2	ISO/IEC 8802-3	нет	0	БСНН
Ethernet 10Base5	ISO/IEC 8802-3	нет	1	HTC-1

Ethernet 10BaseT	ISO/IEC 8802-3	нет	0	БСНН
G.703	ITU T Rec. G.703	да/нет	1/0	HTC-1/ БСНН ^а)
HPNA	HPNA 1M8 PHY spec	да/нет	1	HTC-3
ISDN DLL (предшествующий ISDN UK0)	ETSITS 102 080	да/нет	1	HTC-3
Шина ISDN S0	ETSI EN 300 012-1	нет	1/0	HTC-1/ БСНН ^а)
Клавиатура (тип PS/2, 6 pin DIN)	Технические условия изготовителя	да	0	БСНН
LEPM V2M (LTU side)	ETSI EN 300 233 ITU-T Rec. G.703	нет	0	БСНН
Монитор (VGA DB 15- контактный)	Технические условия изготовителя	да	0	БСНН
Мышь (тип PS/2, 6 pin DIN)	Технические условия изготовителя	да	0	БСНН
PCM11TA TIn (NTU side), аналог PSTN	ETSI EN 300 001 ETSI TBR 21	нет	1	HTC-3
PCM11VA TIn (LTU side)	ETSI EN 300 001 ETSI TBR 21	да	0	HTC-2
PCM11VA SISA (LTU side)	QD2 TS 0076/96	да	0	БСНН

PCM11VA UB (LTU side)	ETSI EN 300 132-2	да	0	HTC-2
PCM2FA UK0	ITU-T Rec. G.703	нет	1	HTC-3
PCM2TA TIn (NTU side)	ETSI EN 300 001 ETSI TBR 21 ETSI EN 300 659-2	нет	1	HTC-3
PCM2TA UK0 (NTU side)	ITU-T Rec. G.703	нет	1	HTC-3
PCM2VA TIn (LTU side)	ETSI EN 300 001 ETSI TBR 21	да	0	HTC-2
PCM2VA UK0 (LTU side)	ITU-T Rec. G.703	нет	1	HTC-3
УПТ-Т удаленный источник электропитания	МЭК 60950-21	да/нет	1	УПТ-Т
УПТ-Н удаленный источник электропитания	МЭК 60950-21	да/нет	1	УПТ-Н
УПТ-Н удаленный источник электропитания	МЭК 60950-21	да/нет	1	УПТ-Н
RPS удаленный источник питания	МЭК 60950-21	нет	1	HTC-3
RS 232 C/V.28	ITU-T Rec. V.28	да/нет	0	БСНН
RS 422	ITU-T Rec. V.11	да/нет	1/0	HTC-1/ БСНН ^{d)}

RS 423	ITU-T Rec. V.10	да/нет	1/0	HTC-1/ БСНН ^{d)}
RS 485	ITU-T Rec. V.11	да/нет	1/0	HTC-1/ БСНН ^d)
SCSI (стандартный, широкий и ультраширокий)	SCSI системный интерфейс для малых компьютеров (STA)	да	0	БСНН
USB (универсальная последовательная шина)	Технические условия изготовителя USB 1.0 или 2.0	нет	0	БСНН
V 5.1	ETSI EN 300 324-1	нет	1	HTC-1
V 5.2	ETSI EN 300 347-1	нет	1	HTC-1
Видеоинтерфейс (ПК)	Технические условия изготовителя	да/нет	0	БСНН
X26/V10	ITU-T V.10	да/нет	1/0	HTC-1/ БСНН ^{d)}
X27/V11	ITU-T V.11	да/нет	1/0	HTC-1/ БСНН ^{d)}
xDSL	МЭК ТС 62367	нет	1	HTC-1
хDSL на основе ISDN или с электропитанием для базовых или встроенных систем/ сервисов	МЭК ТС 62367	нет	1	HTC-3

xDSL на основе POTS	МЭК ТС 62367	нет	1	HTC-3

USB, 1394a, VGA, Клавиатура, Мышь и SCSI порты интерфейсов всех системных источников питания на периферии, с присоединенным хабом или свитчем. Единый вид обеспечивает предохранитель или защитный компонент, которые делают цепь цепью ограниченной мощности.

"Да" в столбце "заземление" указывает на то, что интерфейс функционально заземлен или снабжен заземленным экраном.

Некоторые аудиоцепи ПК с интегральными усилителями превышают предельные значения напряжения открытых цепей для цепей БСНН. В соответствии с МЭК 60065 эти выходные цепи отвечают требованиям для предельных значений для БСНН-цепей при испытании с сетями, имеющими импеданс типичный для громкоговорителей.

Напряжение соответствует совместному использованию проводов аналоговой TCOH и/или DSL. Вклад HPNA не превышает 5 В.

Примечания

- 1 Ссылочный документ, приводимый во втором столбце, может не включать в себя подлинное наименование интерфейса, приведенное в первом столбце, но может содержать описание аналогичного интерфейса.
- 2 БСНН, поступающее из сети питания переменного тока с емкостным фильтром, рассматривают как имеющее незначительные уровни перенапряжения.
- 3 В США проводник телекоммуникационной сети рассматривают как Сетевую среду 1, если возможен случайный контакт с сетью питания переменного тока с напряжением более 300 В среднеквадратичного значения относительно земли.
- Функциональное и защитное заземление, если особо не отмечено в таблице.
- b) Интерфейсы, питающиеся от напряжения постоянного тока, поступающего от любого другого оборудования, например, оборудование передачи данных в средствах телекоммуникации, также рассматриваются в ESTI EH 300 132-2.
- вызывной сигнал.
- Может потребоваться дополнительная информация от изготовителя (см. 5.3).

Приложение С (справочное). Параметры для сетевой среды 0

Приложение С (справочное)

- 1) Вероятное воздействие непрямой молнии (например, молния, которая не попадает непосредственно на сетевые проводники, но при этом наводит в них напряжение) было уменьшено с помощью мер, описанных в стандарте МЭК 61312-1, зона защиты 33С 1.
- 2) Вероятность наличия разных потенциалов земли, находящихся на различных точках сети, была уменьшена до уровня, при котором поражение электрическим током маловероятно, например, подключением всего оборудования в сети к аналогичной системе уравновешивания потенциалов (см. МЭК 60364).

Примечания

- 1 Равнопотенциальная зона обеспечивает защиту людей от поражения электрическим током, но защита соединительных кабелей от перегрузок по току не обязательна. Такие перегрузки могут являться причиной перегрева с возможностью возникновения огня. Примеры мер, которые могут быть приняты для предупреждения перегрузок по току, включают снижение уровня разности потенциалов подходящей разводкой кабелей в здании (см. рекомендации МСЭ-Т К.27 или МСЭ-Т К.31 в зависимости от размещения) и изоляции интерфейсов оборудования от земли.
- 2 В США сетевой телекоммуникационный проводник рассматривается в сетевой среде 1, когда существует вероятность случайного контакта с сетью электропитания переменного тока, работающей от эффективного напряжения более 300 В относительно земли.
- 3) Возможность перекрестного контакта источника питания между сетью и сетью электропитания переменного тока маловероятна и предотвращается, например, подходящими методами установки или проверкой, что проводники сети электропитания переменного тока, или проводники сети, или и те и другие, изолированы от наибольшего номинального напряжения сети электропитания переменного тока, как описано в МЭК 60364.
- 4) Возможность переходных процессов, вызванных сетью, скачков и неисправностей в электроснабжении вследствие емкостной, индуктивной или общей импедансной связи маловероятна из-за электрической изоляции и физического взаимодействия сетевых проводников и проводки сети электропитания переменного тока.
- 5) Возможность разности потенциалов, вызванной электрической тягой, маловероятна вследствие значительного расстояния между телекоммуникационной сетью и такой системой тяги.

Приложение D (справочное). Диапазоны напряжений для цепей безопасного сверхнизкого напряжения и цепей напряжения телекоммуникационной сети

Таблица D.1 - Диапазоны для цепей БСНН и HTC

Возможно перенапряжение телекоммуникационной сети?	ЛИ ОТ	Нормальное рабочее напряжение	
		В пределах для цепи БСНН	Превышение пределов для цепей БСНН, но в пределах для цепей HTC
Да		Цепь HTC-1	Цепь HTC-3
Нет		Цепь БСНН	Цепь HTC-2
Примечание - См. МЭК 60950-1 для дополнительной информации.			

Приложение ДА (справочное). Сведения о соответствии ссылочных международных стандартов ссылочным национальным стандартам Российской Федерации

Приложение ДА (справочное)

Таблица ДА.1

Обозначение ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего национального стандарта
МЭК 60950-1:2001	IDT	ГОСТ Р МЭК 60950-1-2005 "Оборудование информационных технологий. Требования безопасности. Часть 1. Общие требования"
МЭК 60950-21:2002	IDT	ГОСТ Р МЭК 60950-21-2005 "Оборудование информационных технологий. Требования безопасности. Часть 21. Удаленное электропитание"

Примечание - В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

IDT - идентичные стандарты.

Библиография

[1]	IEC 60065		Audio, video and similar electronic apparatus - Safety requirements
[2]	IEC 60364 (all parts)		Electrical installations of buildings
[3]	IEC 60664-1		Insulation coordination for equipment within low-voltage systems - Part 1: Principles, requirements and tests
[4]	IEC 6131	2-1	Protection against lightning electromagnetic impulse - Part 1: General principles
[5]	IEC 62151		Safety of equipment electrically connected to a telecommunication network
[6]	IEC 62367		Safety aspects for xDSL signals on circuits connected to telecommunication networks (DSL: Digital Subscriber Line)
[7]	IEC Guide 112		Guide on the safety of multimedia equipment
[8]	i] ISO/IEC 8802-3		Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications
[9]	ITU-T G.703	Recommendation	Physical /electrical characteristics of hierarchical digital interfaces
[10]	ITU-T K.20	Recommendation	Resistibility of telecommunication equipment installed in a telecommunications centre to overvoltages and overcurrents
[11]	ITU-T K.21	Recommendation	Resistibility of telecommunication equipment installed in customer premises to overvoltages and overcurrents

[12]	ITU-T K.27	Recommendation	Bonding configurations and earthing inside a telecommunication building
[13]	ITU-T K.31	Recommendation	Bonding configurations and earthing of telecommunication installations inside a subscriber's building
[14]	ITU-T V.10	Recommendation	Electrical characteristics for unbalanced double-current interchange circuits operating at data signalling rates nominally up to 100 kbit/s
[15]	ITU-T V.11	Recommendation	Electrical characteristics for balanced double- current interchange circuits operating at data signalling rates up to 10 Mbit/s
[16]	ITU-T V.28	Recommendation	Electrical characteristics for unbalanced double-current interchange circuits
[17]	ANSIT1.	315-2001	Telecommunications - Voltage Levels for DC-Powered Equipment - Used in the Telecommunications Environment Deutsche Telekom AG, TS 0076/96, QD2-Interface
[18]	ETSIEN	300 001	Attachments to the Public Switched Telephone Network (PSTN); General technical requirements for equipment connected to an analogue subscriber interface in the PSTN
[19]	ETSIEN	300 012-1	Integrated Services Digital Network (ISDN); Basic User Network Interface (UNI); Part 1: Layer 1 specification
[20]	ETSIEN	300 132-2	Environmental Engineering (EE); Power supply interface at the input to telecommunications equipment; Part 2: Operated by direct current (dc)
[21]	ETSIEN	300 233	Integrated Services Digital Network (ISDN); Access digital section for ISDN primary rate

[22]	ETSI EN 300 247	Business Telecommunications (BT); Open Network Provision (ONP) technical requirements; 2 048 kbit/s digital unstructured leased line (D2048U) Connection characteristics
[23]	ETSI EN 300 324-1	V interfaces at the digital Local Exchange (LE); V5.1 interface for the support of Access Network (AN); Part 1: V5.1 interface specification
[24]	ETSI EN 300 347-1	V interfaces at the digital Local Exchange (LE); V5.2 interface for the support of Access Network (AN); Part 1: V5.2 interface specification
[25]	ETSI EN 300 416	Network Aspects (NA); Availability Performance of Path Elements of International Digital Paths
[26]	ETSI EN 300 659-2	Access and Terminals (AT); Analogue Access to the Public Switched Telephone Network (PSTN); Subscriber Line Protocol over the Local Loop for Display (and Related) Services; Part 2: Off-Hook Data Transmission
[27]	ETSITBR 21	Attachment requirements for pan-European approval for connection to the analogue Public Switched Telephone Networks (PSTNs) of TE (excluding TE supporting the voice telephony service) in which network addressing, if provided, is by means of Dual Tone Multi Frequency (DTMF) signaling
[28]	ETSITS 102 080	Transmission and Multiplexing (TM); Integrated Services Digital Network (ISDN) basic rate access; Digital transmission system on metallic local lines
[29]	IEEE 1394 series	Standard for a High Performance Serial Bus

УДК 621.317.799:006.354

OKC 35.020

Ключевые слова: БСНН, интерфейс, HTC, система кабельного распределения, телекоммуникационная сеть, УПТ

Электронный текст документа подготовлен АО "Кодекс" и сверен по: официальное издание

М.: Стандартинформ, 2014