$Bauch Model_Default Params High Movement$

Sophie Wulfing

05 July, 2023, 11:31

Table 1: Parameter values used in this analysis

Parameter	Population_1	Population_2	Def
r	0.06	0.06	Fish net growth
S	0.8	0.8	Supply and demand
h	0.1	0.1	Harvesting efficiency
k	0.17	0.17	Social learning rate
W	1	1	Conservation cost
c	0.6	0.6	Rarity valuation
d	0.3	0.3	Social norm strength (within pop)
i	0	0	Fish immigration (from opposite patch)
rho	0	0	Social norm strength (opposite pop)

Table 2: Starting values used in this analysis

Parameter	Population_1	Population_2
F	0.406	0.406
X	0.240	0.240

SCENARIO: OSCILLATIONS

Function:

$$\begin{split} &\frac{dP_1}{dt} = r_1 P_1 (1-P_1) - \frac{h_1 * P_1 (1-X_1)}{P_1 + s_1} - e_1 P_1 + i_1 P_2 \\ &\frac{dP_2}{dt} = r_2 P_2 (1-P_2) - \frac{h_2 * P_2 (1-X_2)}{P_2 + s_2} - e_2 P_2 + i_2 P_1 \\ &\frac{dX_1}{dt} = k_1 X_1 (1-X_1) [\frac{1}{P_1 + c_1} - w_1 + d_1 (2X_1 - 1) + prop_1 (2X_2 - 1)] \\ &\frac{dX_2}{dt} = k_2 X_2 (1-X_2) [\frac{1}{P_2 + c_2} - w_2 + d_2 (2X_2 - 1) + prop_2 (2X_1 - 1)] \end{split}$$

Figure 1: New Model with default paramters

Figure 2: r - Net growth/fecundity, range 0 to 1

Figure 3: s - supply and demand, range 0.1 to 1

X2 and F2 have low supply and demand, therefore look like first graph X1 and F1 are low and look more like the 5th graph

Figure 4: h - Harvesting efficiency, range 0 to 0.1. Note, default is .075

Figure 5: K - Social learning rate 0 to 1

Low social learning: increased frequency of oscilltations?

Figure 6: w - conservation costs

High conservation costs = more feedback

Figure 7: c - rarity valuation param

Perceived as more rare: fish survive

Figure 8: d - social norm strength

Higher internal social pressure eventually leads to stock collapse?>

Figure 9: i - fish immigration

Makes sense because they're both increasing

Issue mentioned earlier where listening to outside sources tanks system

Figure 10: rho - Population influence on the other

```
DLSODA- Warning..Internal T (=R1) and H (=R2) are
##
##
         such that in the machine, T + H = T on the next step
##
        (H = step size). Solver will continue anyway.
  In above message, R1 = 398.569, R2 = 2.65876e-14
##
##
  DLSODA- Warning..Internal T (=R1) and H (=R2) are
         such that in the machine, T + H = T on the next step
##
##
        (H = step size). Solver will continue anyway.
   In above message, R1 = 398.569, R2 = 2.65876e-14
##
##
##
  DLSODA- Warning..Internal T (=R1) and H (=R2) are
##
         such that in the machine, T + H = T on the next step
##
        (H = step size). Solver will continue anyway.
   In above message, R1 = 398.569, R2 = 2.20235e-14
##
##
  DLSODA- Warning..Internal T (=R1) and H (=R2) are
##
##
         such that in the machine, T + H = T on the next step
        (H = step size). Solver will continue anyway.
##
  In above message, R1 = 398.569, R2 = 2.20235e-14
##
## DLSODA- Warning..Internal T (=R1) and H (=R2) are
##
         such that in the machine, T + H = T on the next step
        (H = step size). Solver will continue anyway.
## In above message, R1 = 398.569, R2 = 2.20235e-14
```


Figure 11: R parameter planes

i generally seems to have more interesting planes

```
(H = step size). Solver will continue anyway.
## In above message, R1 = 404.097, R2 = 1.41264e-14
##
  DLSODA- Warning..Internal T (=R1) and H (=R2) are
##
##
         such that in the machine, T + H = T on the next step
        (H = step size). Solver will continue anyway.
##
  In above message, R1 = 404.097, R2 = 1.41264e-14
##
## DLSODA- Above warning has been issued I1 times.
##
        It will not be issued again for this problem.
  In above message, I1 = 10
##
  DLSODA- At current T (=R1), MXSTEP (=I1) steps
##
##
         taken on this call before reaching TOUT
## In above message, I1 = 5000
##
  In above message, R1 = 404.097
##
##
```


Figure 12: S parameter planes

Figure 13: h parameter planes

Figure 14: K parameter planes ranging from 0-1

Figure 15: w parameter planes

Figure 16: c parameter planes

Figure 17: d parameter planes

```
## In above message, R1 = 614.224, R2 = 1.78279e-15
##
  DLSODA- Above warning has been issued I1 times.
##
        It will not be issued again for this problem.
##
##
   In above message, I1 = 10
##
  DLSODA- At T (=R1) and step size H (=R2), the
         corrector convergence failed repeatedly
##
##
         or with ABS(H) = HMIN
##
  In above message, R1 = 986.917, R2 = 7.62939e-10
```


Figure 18: i parameter planes

```
## In above message, R1 = 404.097, R2 = 1.41264e-14
##
  DLSODA- Above warning has been issued I1 times.
##
        It will not be issued again for this problem.
##
##
   In above message, I1 = 10
##
## DLSODA- At current T (=R1), MXSTEP (=I1) steps
         taken on this call before reaching TOUT
##
## In above message, I1 = 5000
##
##
   In above message, R1 = 404.097
##
```


Figure 19: rho parameter planes

Figure 20: r population planes

```
## DLSODA- Warning..Internal T (=R1) and H (=R2) are
##
         such that in the machine, T + H = T on the next step
##
        (H = step size). Solver will continue anyway.
##
  In above message, R1 = 396.592, R2 = 2.66468e-14
##
## DLSODA- Warning..Internal T (=R1) and H (=R2) are
         such that in the machine, T + H = T on the next step
##
##
        (H = step size). Solver will continue anyway.
   In above message, R1 = 396.592, R2 = 2.66468e-14
##
##
  DLSODA- Warning..Internal T (=R1) and H (=R2) are
         such that in the machine, T + H = T on the next step
##
        (H = step size). Solver will continue anyway.
##
  In above message, R1 = 396.592, R2 = 2.20725e-14
##
##
##
  DLSODA- Warning..Internal T (=R1) and H (=R2) are
         such that in the machine, T + H = T on the next step
##
        (H = step size). Solver will continue anyway.
##
##
  In above message, R1 = 396.592, R2 = 2.20725e-14
##
## DLSODA- Warning..Internal T (=R1) and H (=R2) are
         such that in the machine, T + H = T on the next step
##
##
        (H = step size). Solver will continue anyway.
```


Figure 21: s population planes

Figure 22: h population planes

Figure 23: k population planes 0 to 1 $\,$

Figure 24: w population planes

Figure 25: c population planes

Figure 26: d population planes

Figure 27: i population planes

Figure 28: rho population planes

Figure 29: increasing only the i2 parameter

Figure 30: increasing only the rho2 parameter