produces a perceptible but trifling effect, and the influence of the Earth and the other planets is insensible. Now it so happens that the periodic time of the meteors is related in a very remarkable way to those of Jupiter and Saturn, being nearly nine-eighths of the periodic time of Saturn, and still more nearly fourteenfifths of the periodic time of Jupiter. Accordingly, in the fiftythree revolutions of the meteors which have taken place since A.D. 126, Saturn and they have six times repeated somewhat similar cycles of relative positions, each, moreover, of a very special character; and Jupiter and they have ten times repeated almost exactly the same cycle of relative positions. Now, where simple numerical relations of this kind subsist, the situation of a meteor along the orbit—viz. whether it is near the head or the tail of the meteoric stream, still more if it be an outlying meteor in front or behind—is likely to have an appreciable effect on the apsidal shift which its orbit suffers. It is, therefore, of great importance to determine whether any such differences between the apsidal shift of meteors variously situated can be observed, in order that the observed amounts may be compared with those calculated on the supposition that Le Verrier's hypothesis is true. If the calculated and observed amounts accord, Le Verrier's hypothesis will be proved; if they do not accord, it will be disproved: in either case we shall know more about the history of the meteors than we do now.

Hence the great importance of this year commencing the task of determining the exact radiant points of different portions of the swarm, and the approximate times of their apparition in our atmosphere, so as to furnish to mathematicians the requisite data for their calculations. In this work it is obvious that eye observations should, as far as possible, be replaced by photographs.*

Galactic Longitude and Latitude of Poles of Binary-Star Orbits. By Alice Everett.

The data upon which the accompanying table is founded are not satisfactory. In the case of a very few stars there seems little doubt that the orbit determined is substantially correct, and in the case of a few more the elements obtained by different computers show some agreement. These will be recognised in the list by those familiar with the subject. But the greater number of orbits computed seem to be very uncertain.

From the results, such as they are, it does not seem that any decided tendency on the part of the poles of the orbits to favour any special region of the sphere can reasonably be deduced. (See summary appended to tables.)

^{*} A popular account of the discoveries made in connection with the last visit of the November meteors will be found in the Journal of the Royal Dublin Society of 1869 April 3, and in the Proceedings of the Royal Institution of 1879 February 14; and appended to it there is a list of the original memoirs in reference to the advances which were then made.

Downloaded from http://mnras.oxfordjournals.org/ at Florida International University on July 13, 2015

The stars considered were the following:

(1) Those for which I could find orbits published since 1890.

(2) Those of period less than 100 years, the orbits of which have not since been re-computed (fifteen in number), given in Mr. Gore's "Catalogue of Binary Stars for which Orbits have been computed" (published in 1890).

The latest orbit has been taken for each star when more than one exists. A few more obviously doubtful or fallacious orbits have been omitted.

I have collected the elements of 73 orbits of 45 stars published since 1890.

The computed galactic longitudes and latitudes of the poles of the orbits are given in the final columns of the table. There are two alternative results for each pole, corresponding to the two possible positions, equally inclined to the line of sight, for the plane of the orbit. The pole whose latitude is the lesser is placed first.

The R.A.'s and Decl.'s of the poles are shown in preceding columns, but here the result is given first for the case where *i*, the inclination, is assumed positive; second, where it is assumed negative. Hence the pole entered first in these columns is not necessarily that entered first in the columns containing the galactic coordinates.

The position assumed for the northern pole of the Milky Way was R.A. 190° 31′, Decl. +27° 16′ (1890), as according to Gould, which gives 62° 7′ as the inclination of the central line to the equator and 18h 42^m=280° 31′ as the R.A. of the ascending node, from which the galactic longitudes are reckoned.

Not knowing that formulæ for finding the R.A. and Decl. of the pole of an orbit had been published (Mr. Marth has since referred me to Encke's article in the Berliner Astr. Jahrbuch 1832), I deduced them for myself. A list of R.A.'s and Decl.'s of poles of binary-star orbits was published by Dr. Doberck in 1882 (Ast. Nach. 2433), and a sequel to it by Mr. Gore in 1888 in a paper on "The Position of the Planes of Binary Stars" (Jour. Liv. A.S. vol. vi.), of the existence of which I was not aware till I had finished my calculations. But nearly all the orbits here considered have been computed in more recent years.

The results were checked by graphic means with the help of a globe, the graphic results generally agreeing with the theoretical to within a degree or two. A globe is, of course, useful in all spherical trigonometrical work in clearing the ideas and showing at sight in what quadrant the angle corresponding to a given trigonometrical function should lie. I bought mine unmounted from the maker in its original simple state before the map and outer coating had been applied, and drew the necessary circles and points of reference upon it. Pencil marks can be written and rubbed out quite well upon the smooth white surface, or sponged off when many accumulate. In default of a spherical sector, spherical angles can be measured as arcs along great circles polar to their apices.

No.	Stars in order of Right Ascension.	R.A. and star R.A.	Decl of 1890. Decl.	Galactic Lat. of Long.	Long. and star.	Period in Years.	Computer.
_	¥ 0060	h m s	0 /	84 [°] .5	٥		C
1. 2.	Σ 3062 Σ 2	0 0 30	+ 57 49 + 79 7	88·1	- 45 + 16.5	104 · 6 166·2	See Glasenapp
	η Cassiop.	0 42 27	+ 57 14	90·I	- 5·5	195·8	See
	36 Androm.	•	• • •	92.I		2081	$egin{array}{c} { m Lewis} \\ { m Lewis} \end{array}$
4. 5.	₹ 186	0 49 5 1 50 12	+ 23 2 + 1 18	1226	- 39·7 - 57·1	137·5 150·8	Glasenapp
6.	γ Androm.	1 57 8	+41 48	104.4	-18.8	54.8	$\operatorname{Burnham}$
7.	≥ 228	2 7 0	+46 59	104.7	-13.3	88.7	Gore
8.	20 Persei	2 46 46	+ 37 46	115.6	- 18· 7	20.8	Glasenapp Burnham
	40 Eridani	4 10 13	- 7 49	168.2	- 37 2	176 2	Glasenapp
	OΣ 82 β 883 = Lal. 9091	4 16 29 4 45 6	+ 14 48	147.8	-23·I	158 [.] 4 16 [.] 4	Glasenapp
	OΣ 149	4 45 6 6 29 34	+ 10 53 + 29 22	155.7 152.3	+ 10 [.] 5	85.9	Glasenapp Glasenapp
	Sirius	6 40 18	- 16 34	1946	- 7.9	21.1	Zwiers
	Σ 1037	7 5 57	+ 27 26	157.4	+ 17.0	15.0	Mädler
	9 Argûs	7 46 41	-13 36	199.6	+ 7.6	22.0	See
	ζ Caneri	8 5 54	+ 17 59	172.4	+ 26.4	24:0	Seeliger See
	Σ 3121 ω Leonis	9 11 2 2 9 22 34	+ 29 2 + 9 32	164 [.] 8 190 [.] 8	+ 43 [.] 9 + 39 [.] 9	34.0 116 2	See
	ϕ Ursæ Maj.	9 44 37	+ 54 35	127.2	+ 47.9	91.9	Glasenapp
20.	8 Sextantis	9 47 4	- 7 35	213.0	+ 35.2	93.9	Glasenapp
21.	ξ Ursæ Maj.	11 12 19	+ 32 9	160 5	+ 70 0	60.0	See
	Leonis	11 18 11	+ 11 8	215.3	+64.2	1786	Everett
	OΣ 234 OΣ 235	11 24 53 11 26 6	+41 55 +61 41	102.0 135.1	+ 68.5	63.5	Gore Doberck
	γ Centauri	12 35 27	-48 2I	268·9	+ 53·3 + 14 4	94°4 88°0	See
26.	γ Virginis	12 36 5	- o 58	266·8	+61.7	194.0	See
	42 Comæ Beren.	13 4 38	+ 18 7	307.4	+81.8	25.7	O. Struve & Doubiago
	OΣ 269	13 27 53	+ 35 29	42.9	+77.3	47.7	Gore
	β 612 = B.A.C. 4559 Σ 1785	13 34 10 13 44 6	+11 18 + 27 32	310.0	+ 69·9 + 76·2	30.0	Glasenapp Gore
	*			4.7	•	125.5	
-	α Centauri Σ 1879	14 32 10 14 40 51	-60 23 +10 8	283 [.] 2 334 [.] 2	- 0.5 + 57.2	81 2 146 9	Roberts—Se Lewis
33.	OZ 285	14 41 22	+42 50	406	+61.3	76.7	See
34.	ξ Bootis	14 46 19	+ 19 33	351.6	+ 60 6	128 o	See
35.	μ^2 Boötis	15 20 20	+ 37 46	27.8	+ 55.3	2194	See
30.	η Cor. Bor. O Σ 298	15 18 40 15 32 3	+ 30 41 + 40 12	31.2 12.3	+ 55 [.] 8 + 52 [.] 8	41.6 56.7	Doberck Celoria
38.	γ Cor. Bor.	15 32 3 15 38 7	+ 26 39	9·5	+ 51.0	23.0	See
	ξ Scorpii	15 58 19	-11 4	327 9	+ 28.9	95·9	Doberck
40.	σ Cor. Bor.	16 10 33	+ 34 8	22.3	+ 45 2	370.0	See
	(Herculis	16 37 8	+ 31 48	19.8	+ 39.2	350	See
	β 416 = B.A.C. 5825	17 11 28	-3452	319.2	+ I.I	33.0	See
43.	Σ 2173 μ^1 Herculis	17 24 45 17 42 7	- 0 59 + 2 7 47	350·0 19·9	+ 16 [.] 7 + 24 [.] 6	46.0 48.7	See Celoria
45.	70 Ophiuchi	17 59 54	+ 2 32	357.4	+ 10.2	88.4	Schur
	99 Herculis	18 2 54	+ 30 33	24.4	+ 21.3	54 [.] 5	See
	& Sagitt.	18 55 37	-30 2	334.0	- 15.9	18.9	See
	γ Cor. Aust.	18 58 59	-3713	327.2	-19.2	152.7	See
	Σ 2525 β Delphini	19 22 4	+27 6	28·5 26·3		138.5	Gore
	β Delphini 4 Aquarii	20 32 33 20 45 30	$+ 14 13 \\ - 6 2$	9.3	- 30·1	27·7 126·7	See See
52.	δ Equulei	21 9 7	+ 9 34	27 [.] 9		11.45	See
53.	τ Cygni	21 10 24	+ 37 35	50.3			Burnham
	к Pegasi	21 39 40	+ 25 8	45.9	-21.6	11.42	See
55.	85 Pegasi	23 56 25	+ 26 30	77.5	-35·I	24.0	See
		A.N. =	Astronomisc	ne Nachri	cnten; M.	N = Mon	ntily Notices, i

	R.	A. and Decl. of	N. Pole of				ad Lat. of Pole	of Orbit	
Source.	Inclinat	I. ion positive.	Inclinati	II. ion negative.	Pole of les	A. sser Lat.	Pole of gre	B ater Lat.	No.
	R.A.	N. Decl.	RA.	N. Decl.	Long.	Lat.	Long.	Lat.	
. 3292	2 65	62	ဒ္ဓိဝ	° 20	58	+ 31	294	+ 39	I.
. 3145	112	24	299	15	202	9	£62	20	2.
355	274	6o	42	18,					
i. vol. lv. 19	270	59	42	16;	59	28	309	37	3.
I. vol. li. 46 2	54	55	169	15	I 14	O	207	66	4.
. 246	326	52	267	51	2 44	2	45	2 9	5.
l. vol. liv. 119	169	53	182	3 3	116	60	142	81	6.
e's Cat.	224	62	217	24	66	49	3 58	66	7.
and A. vol. xii [ay, June, and lick Obs. vol. ii.	l 149	47	177	22	138	52	198	76	8.
· 3357	. y 126	29	170	35	162	34	150	71	9.
. 3193	48	57	254	28	290	J#	17	35	IO.
. 3110	59	37	261	16	308	11	-6	24	II.
e's Cat.	132	45	73	8	340	20	143	4 [12.
. 3336	65	12	325	37	235	12	331	24	13.
e's Cat.	186	30	227	9	338	51	1 50	85	14.
ī. 3297	129	64	194	84	90	33	4 1 G	37	15.
e's Cat.	119	29	123	7	1 84	23	160	28	16.
. 349	48	32	20	16	304	21	283	46	17.
[. 3311	205	34	2 66	24	17	23	32	76	1 8.
. 3119	203	49	103	36	1 48	18	69	67	19.
[. 3119	165	18	306	33	220	4	196	-65	2 0.
j. 3323	243	81	338	23	236	31	18	33	21.
7. vol. lv. 440	102	41 67	43	30	143	19	301	25	22.
e's Cat. e's Cat.	248	65 58	327	0	63	38	206	40	2 3.
	341	58 18	166	2	255	I	223	55	24.
· 3339 · 352	300 168	22	83 30	23 24	331 292	4 35	205 188	9 69	25. 26.
e's Cat.	103	10	103	10	172	33 7	172	7	2 7.
7. vol. lii. 550	82	45	70	34	316	7	I32	7	2 8.
ınd A. 466	7	5	222	26	263	<u>5</u> 8	5	62	2 9.
I. vol. liii. 333	243	46	181	2	40	45	249	-63	3Ó.
(. 3175 V. vol. liv. 102)	155	3	145	22	210	48	a 78	48	31.
V. lvi. 33	159	62	78	49	128	7	112	49	32.
356	155	70	239	4	342	39	106	43	33.
3334	273	4	166	20	O.	9	193	66	34.
. 3309	284	36	188	1 7	35	13	257	79	35∙
e's Cat.	157	35	101	4	177	2	a 56	€0	36.
e's Cat.	161	17	303	14	203	1.3	194	61	37.
. 376 e's Cat.	5	62	2 I	50	268	0	277	12	3 8.
L	173 181	7	130 282	15	179	33	227	64	3 9·
· 3339 · 357	183	44 47	108	4	4	0	112 104	72 69	40.
. 372	108	47 10	30	5 48	179	9 11	283	1 6	41. 42.
i. 3311	340	26	.Jr G	2 4	175 239	30	2 59	36	43.
e's Cat.	175	66	114	3 T	156	25	100		44.
. 3231	314	50	60	4 6	57	-3 -2	296		45.
. 366	271	3 1	27 I	31	24	2₫	24		4 6.
. 355	2 6 z	34	211	70	25	30	80		47.
T. 3323	95	4	131	68	35.3	3	114	37	48 .
V. vol. liii. 44	245	77	121	2 6	163	29	77		49.
- 357	245	10	9	3	353	3 6	2 68	59	5ó.
. 341	20	O	.63	5	336	31	289	61	51.
I. 3290	235	23	212	20	5	50	343	69	52.
k Obs. vol. ii.	17	3 6	271	15	9	15	276	27	53.
1. 3285	83	60	105	48	120	16	137	22	54.
· 3339	63	66	155	24	109	12	178	58	55.
. = Astronomical	Journal	A. and A.	= Astronoi	my and Ast	ro-Physics				

12 - 23

Summary.

If the sphere be divided into equal-surface zones of galactic latitude, the distribution of the poles of the orbits according to the above results would be as follows:

	Number of Pole		
Zone of Galactic Latitude.	A. When, for each Star, the orbit correspond- ing to the pole of lesser latitude is taken.	B. When, for each Star, the orbit corresponding to the pole of greater latitude is taken.	Mean of numbers in two preceding columns. $\frac{A+B}{2}$
°11-0	19	. 4	II $\frac{1}{2}$

13

24 - 37		13	3	11	12
37 - 53		8	3	11	$9\frac{1}{2}$
53-90		2	2	24	13
TC	• •	, ,	7 .	C	. 70/011 - 337

5

If we consider only stars lying not far from the Milky Way, say, for example, those whose galactic latitude is under 40°, then these numbers become:

Number	of	Poles	$_{ m in}$	each	Zone.

Zone of Galactic Latitude.	A.	В.	Mean of numbers in two preceding columns. $\frac{A+B}{2}$
$\overset{\circ}{\text{O}}$ - 1 $\overset{\circ}{\text{I}}$	10	2	6
12-23	8	4	6
24-37	11	8	$9\frac{1}{2}$
37 – 53	5	7	6
53-90	I	14	71/2

Kgi. Astrophysikalisches Observatorium zu Potsdam: 1896 June.

On the Corrections to the Right Ascensions of Stars derived from Observations of the Sun made at Greenwich during the years 1836-1895. By W. G. Thackeray.

If a comparison be made between the values of the proper motions in right ascension for the fundamental stars as given by Professor Newcomb in his standard right ascensions, and by Dr. Auwers from his re-reduction of Bradley's observations, it will be found that Professor Newcomb's proper motions are on the average nearly sooi larger than those given by Dr. Auwers. It would therefore seem that the epoch correction of one or other