Tutorial 4 (Solutions)

Linear Algebra (IC104) Instructor: Dr. Avijit Pal

November 2022

Question 1

- Union of two subspaces need not be a subspace. Counterexample, Let $W_1 = \{(x,0) : x \in \mathbb{R}\}$ and $W_2 = \{(0,y) : y \in \mathbb{R}\}$ be two subspaces of \mathbb{R}^2 . Therefore their union include (3,0) and (0,8) both but the sum (3,0) + (0,8) = (3,8) is not in the union of W_1 and W_2 . Hence union need not be a subspace.
- We have on \mathbb{R}^n $\alpha \bigoplus \beta = \alpha \beta$ and $c\alpha = -c\alpha$. Then $(\mathbb{R}^n, \bigoplus, .)$ is not a vector space as it is not closed under multiplication by 1 because $1\alpha = \alpha \neq -1\alpha$.

Question 2

We have, $S = \{(x, y, z) \in \mathbb{R}^3 : x + 2y - 3 = 0, 2x - y + 3 = 0\}$. Clearly, (0, 0, 0) the identity element does not belongs to S. Therefore it is not a subspace.

Question 3

- (2,1,3)=0(1,1,0)+2(1,0,1)+1(0,1,1).
- (2,1,3)=2(1,0,0)+1(0,1,0)+3(0,0,1)

Question 4

We need to determine which of the following subsets S of the vector space V over $F = \mathbb{R}$ are subspaces. We know that a subset S of a vector space V is a subspace if and only if

- 1. $0 \in S$;
- 2. $\forall v_1, v_2 \in S$ and $\forall \alpha, \beta \in F$, we have $\alpha v_1 + \beta v_2 \in S$

(a)

It is given that, $S = \{(x_1, x_2, x_3) : x_1 = x_2, x_3 = 2x_1\}, V = \mathbb{R}^3$.

Here, $\mathbf{0} = (0,0,0)$ and it satisfies the above conditions, i.e., $(0,0,0) \in S$.

Let
$$\mathbf{x} = (x_1, x_2, x_3)$$
, $\mathbf{y} = (y_1, y_2, y_3) \in S$ and $\alpha, \beta \in \mathbb{R}$. Consider, $\alpha \mathbf{x} + \beta \mathbf{y}$, i.e., $\alpha \mathbf{x} + \beta \mathbf{y} = (\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2, \alpha x_3 + \beta y_3)$

Since, $x_1 = x_2$ and $x_3 = 2x_1$, we have

$$\alpha x_1 + \beta y_1 = \alpha x_2 + \beta y_2$$
$$\alpha x_3 + \beta y_3 = \alpha (2x_1) + \beta (2y_1)$$
$$= 2 (\alpha x_1 + \beta y_1)$$

Therefore, $\alpha \mathbf{x} + \beta \mathbf{y} \in S$.

Hence, S is a subspace of V.

(b)

It is given that, $S = \{(x_1, x_2, x_3) : x_1^2 + x_2^2 + x_3^2 = 0\}, V = \mathbb{R}^3.$

Here, $\mathbf{0} = (0,0,0)$ and it satisfies the above conditions, i.e., $(0,0,0) \in S$.

Note that, $\mathbf{0} = (0,0,0)$ is the only element in the set S. This is because for any $(x_1,x_2,x_3) \in \mathbb{R}^3$ such that $x_1^2 + x_2^2 + x_3^2 = 0$ implies that $x_1 = x_2 = x_3 = 0$ since if the sum of squares of 3 number is zero then all the numbers should be zero only.

Hence, S is a subspace of V namely the **zero space**.

Question 5

It is given that a_1, a_2, a_3, a_4 are linearly independent. Therefore, whenever

$$\alpha_1 a_1 + \alpha_2 a_2 + \alpha_3 a_3 + \alpha_4 a_4 = 0$$

for some scalars $\alpha_1, \alpha_2, \alpha_3$ and, α_4 then $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$.

We need to state whether the given statements are true or false.

(a)

We need check whether $a_1 + a_2$, $a_2 + a_3$, $a_3 + a_4$, $a_4 + a_1$ are linearly independent or not

For some scalars, a, b, c, d, let us consider,

$$a(a_1 + a_2) + b(a_2 + a_3) + c(a_3 + a_4) + d(a_4 + a_1) = 0$$
$$(d+a) a_1 + (a+b) a_2 + (b+c) a_3 + (c+d) a_4 = 0$$

Therefore, (d+a)=(a+b)=(b+c)=(c+d)=0, which is a system of 4 equations in 4 variables. In matrix form, it is

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Which can be row reduced to get,

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Therefore, -a = b = -c = d is the solution and if for some $\alpha \neq 0$, we take $-a = b = -c = d = \alpha$, then the above system of equation is satisfied, i.e. we are having a solution other than **0**.

Hence, $a_1 + a_2$, $a_2 + a_3$, $a_3 + a_4$, $a_4 + a_1$ are not linearly independent.

(b)

We need check whether $a_1 - a_2$, $a_2 - a_3$, $a_3 - a_4$, $a_4 - a_1$ are linearly independent or not.

For some scalars, a, b, c, d, let us consider,

$$a(a_1 - a_2) + b(a_2 - a_3) + c(a_3 - a_4) + d(a_4 - a_1) = 0$$
$$(a - d) a_1 + (b - a) a_2 + (c - b) a_3 + (d - c) a_4 = 0$$

Therefore, (a - d = 0) = (b - a) = (c - b) = (d - c) = 0, i.e., a = d; b = a; c = b; d = c. Therefore, a = b = c = d.

But then for any $\alpha \neq 0$ and $a = b = c = d = \alpha$, the above equation always holds.

Hence, $a_1 - a_2$, $a_2 - a_3$, $a_3 - a_4$, $a_4 - a_1$ are not linearly independent.

(c)

We need check whether $a_1 + a_2$, $a_2 + a_3$, $a_3 + a_4$, $a_4 - a_1$ are linearly independent or not

For some scalars, a, b, c, d, let us consider,

$$a(a_1 + a_2) + b(a_2 + a_3) + c(a_3 + a_4) + d(a_4 - a_1) = 0$$
$$(a - d) a_1 + (a + b) a_2 + (b + c) a_3 + (c + d) a_4 = 0$$

Therefore, (a-d) = (a+b) = (b+c) = (c+d) = 0, which is a system of 4 equations in 4 variables. In matrix form, it is

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Which can be row reduced to get,

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Therefore, a = b = c = d = 0 is the only solution.

Hence, $a_1 + a_2$, $a_2 + a_3$, $a_3 + a_4$, $a_4 + a_1$ are linearly independent.

(d)

We need check whether $a_1 + a_2$, $a_2 + a_3$, $a_3 - a_4$, $a_4 - a_1$ are linearly independent or not.

For some scalars, a, b, c, d, let us consider,

$$a(a_1 + a_2) + b(a_2 + a_3) + c(a_3 - a_4) + d(a_4 - a_1) = 0$$
$$(a - d) a_1 + (a + b) a_2 + (b + c) a_3 + (d - c) a_4 = 0$$

Therefore, (a-d) = (a+b) = (b+c) = (d-c) = 0, which is a system of 4 equations in 4 variables. In matrix form, it is

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Which can be row reduced to get,

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Therefore, a = -b = c = d is the solution and if for some $\alpha \neq 0$, we take $a = -b = c = d = \alpha$, then the above system of equation is satisfied, i.e. we are having a solution other than **0**.

Hence, $a_1 + a_2$, $a_2 + a_3$, $a_3 + a_4$, $a_4 + a_1$ are not linearly independent.

Question 6.

Since any three linearly independent vectors form a basis of \mathbb{R}^3 . So we need to check whether the vectors $a_1 = (1, 1, 0), a_2 = (1, 0, 1), a_3 = (0, 1, 1)$ form linearly independent set.

Consider the linear combination

$$x_1(1,1,0) + x_2(1,0,1) + x_3(0,1,1) = 0.$$

This is equivalent to the matrix equation

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

Vectors are linearly independent if and only if det is non-zero.

$$\begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} = -2 \neq 0.$$

Hence a_1, a_2, a_3 are linearly independent and form a basis for \mathbb{R}^3 .

Question 7.

Consider the linear combination $x_1c_1a_1 + x_2c_2a_2 + \cdots + x_nc_na_n = 0$.

Let $x_i c_i = y_i$, for $i = 1, 2, \dots, n$. Then $y_1 a_1 + y_2 a_2 + \dots + y_n a_n = 0$, since $\{a_1, a_2, \dots, a_n\}$ is a basis, so $y_i = 0$, for $i = 1, 2, \dots, n$.

This implies $x_i c_i = 0$, but $c_i \neq 0$. for $i = 1, 2, \dots, n$ Therefore $x_i = 0$. Hence $\{c_1 a_1, c_2 a_2, \dots, c_n a_n\}$ is linearly independent and forms basis of V.

Question 8

Given that a_1, a_2, a_3 be linearly independent then there exist c_1, c_2, c_3 such that

$$c_1 a_1 + c_2 a_2 + c_3 a_3 = 0$$

where $c_1 = c_2 = c_3 = 0$. Now we have to find the value of k such that $a_2 - a_1, ka_3 - a_2, a_1 - a_3$ are linearly independent. Thus

$$c_1(a_2 - a_1) + c_2(ka_3 - a_2) + c_3(a_1 - a_3) = 0$$

$$c_1a_2 - c_1a_1 + kc_2a_3 - c_2a_2 + c_3a_1 - c_3a_3 = 0$$

$$a_1(c_3 - c_1) + a_2(c_1 - c_2) + a_3(kc_2 - c_3) = 0$$

Then we have

$$c_3 - c_1 = 0 (1)$$

$$c_1 - c_2 = 0 (2)$$

$$kc_2 - c_3 = 0. (3)$$

After solving (1),(2) we get $c_1 = c_2 = c_3$ and putting in (3), we get

$$kc_3 - c_3 = 0$$

 $c_3(k-1) = 0.$

So when $k \neq 1$, we get $c_3 = 0$ and hence $c_1 = c_2 = c_3 = 0$. Consequently, when $k \neq 1$ the vectors $a_2 - a_1, ka_3 - a_2, a_1 - a_3$ are linearly independent.

Question 9

Part 1: Verify the subspace test, i.e.,

- (a) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in W$.
- (b) Let $A = \begin{pmatrix} a_1 & b_1 \\ b_1 & c_1 \end{pmatrix} \in W$ and $B = \begin{pmatrix} a_2 & b_2 \\ b_2 & c_2 \end{pmatrix} \in W$ then $A + kB \in W$ and $\forall k \in \mathbb{R}$ (field).

Part 2: Take an arbitrary matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix} \in W$. Then,

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Thus $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ span W.

Next we show this spanning set is linearly independent. Writing

$$a_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + a_3 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \implies \begin{pmatrix} a_1 & a_2 \\ a_2 & a_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Thus, $a_1 = a_2 = a_3 = 0$, hence the set $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ is linearly independent and consequently form a basis for W.