

Mark Scheme (Unused)

January 2022

Pearson Edexcel International A Level In Statistics S3 (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022

Question Paper Log Number P71859A

All the material in this publication is copyright

© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Question Number		Scheme	Marks				
1 (a)	Number	the 1200 students (1 – 1200)	B1				
	Use a random starting point between 1 and 20						
	Select e	very 20 th person on the list	B1				
			(3)				
(b)(i)	They on	ly need to generate one random number	B1				
(b)(ii)	It is not random as the list is ordered alphabetically or not all combinations of sampling units are possible						
	e.g. unli	kely siblings would be selected	A1				
		·	(2)				
(c)	Number	of Y9 students = $\frac{200}{1200} \times 60 = 10$	M1				
	The stra	tified sample gives a better proportion or is more representative oe	A1				
			(2)				
		Notes	Total 8				
1 (a)	B 1	numbering the students (Allow $0 - 1199$).					
	B1	using a random starting point. Must be between 1 and 20 (Allow 0 – 19).					
	B1	selecting every 20 th person.					
(b)(i)	B1	a suitable comment.					
(b)(ii)	M1	a suitable comment.					
	A1	a suitable example.					
(c)	M1	a suitable calculation to find the number of Y9 students e.g. $\frac{200}{1200} \times 60$					
	A1	a correct explanation.					

Question Number		Scheme	Marks				
2 (a)	Use of $\overline{x} \pm z \times \frac{1.9}{\sqrt{10}}$; $z = 1.96$						
		, 54.897) awrt 52.5 and 54.9	A1 A1				
	,		(4)				
(b)	Use of $1.5 > 2 \times z \times \frac{1.9}{\sqrt{n}}$ oe ; $z = 2.5758$ (or better)						
	$1.5 > \frac{9.7}{2}$	$\frac{\sqrt{8804}}{\sqrt{n}}$	dM1				
		8 So $n = 43$	A1				
			(4)				
		Notes	Total 8				
2 (a)	M1	for use of correct expression with 1.9, 10 and $1 < z < 3$					
	B1	for $z = 1.96$					
	A1	for awrt 52.5					
	A1	for awrt 54.9					
(b)	M1	use of $z \times \frac{1.9}{\sqrt{n}}$ in a correct inequality with 0.75 or 1.5 and 2 < z < 3 (allow written	n as an				
	D1	equation)					
	B1	for $z = 2.5758$ (or better)					
	dM1	dependent on 1 st M1, for solving a correct inequality for the width of the 99% CI (all equation rather than an inequality)	ow an				
	A1	cao					

Question Number	Scheme										Marks		
2 ()	Driver	A	В	C	D	E	F	G	Н	I	J		3.64
3 (a)	Rank F FP	QL 1	5 2	3	2	5	4 6	8 7	9	10	7		M1
	$\sum d^2 = 0$	0+9+0+4					0	/	0	9	10		M1
					1,,[20]							1411
	$r_s = 1 - \frac{1}{2}$	10(99)											dM1
	= 0.81	81818								8	awrt 0.8	318	A1
													(4)
(b)		$0, H_1: \rho > 0$											B1
	Critical V	Value $r_s = 0$.7455	or CR:	r_s ().7455							B1
	Reject H	or signific	ant or li	es in th	e critic	al regio	n						M1
	There is sufficient evidence of a positive correlation between factest qualifying lan									A1			
											(4)		
		ı			N	otes							Total 8
3 (a)	M1	attempt to	ank fast	est quali	ifying la	ap (at le	ast four	correct).				
	M1	finding the	differen	ce betw	een eac	h of the	ranks a	nd evalı	uating 2	$\sum d^2$			
	dM1	dM1 dependent on 1 st M1. Using $1 - \frac{6\sum d^2}{10(99)}$ with their $\sum d^2$											
	A1 $\frac{9}{11}$ or awrt 0.818												
(b)	B 1	both hypoti	heses co	rect. M	ust be in	n terms	of ρ . N	Aust be	attached	d to H ₀ a	and H ₁		
	B1	critical valu											
	M1	A correct s	tatement	compar	ing the	ir CV w	ith their	r_s - no	o contex	kt neede	ed but do	o not	allow
		contradicti											
	A1	correct con	clusion v	which is	rejectii	ng H ₀ , w	hich m	ust men	tion lap	time a	nd finis	hing	position.

Question Number			Scheme				Marks			
_	H_0 : There is no association between type of property and the time taken to sell it									
4	· ·		ation between typ				B1			
	Expect	ed	Bungalow	Flat	House	Total				
		3 months	10.496	31.488	40.016	(82)	M1			
	More t	han 3 months	5.504	16.512	20.984 (43)		A1			
	Total		(16)	(48)	(61)	(125)				
	Ol	bserved	Expected		$\frac{(O-E)^2}{E} \qquad \frac{O^2}{E}$					
		7	10.496	1.164	14	4.6684				
		29	31.488	0.196	55	26.7085	dM1			
		46	40.016	0.894	l8	52.8788	A1			
		9	5.504	2.220)5	14.7165	A1			
		19	16.512	0.374		21.8628				
		15	20.984	1.706		10.7224				
			Tot	als 6.55	7	131.557				
	$\left[X^2 = \right] \sum \frac{(O-E)^2}{E} \text{or} \sum \frac{O^2}{E} - 125$									
	= 6.557 awrt 6.56									
	v = (2-1)(3-1) = 2									
	$c_2^2(0.05) = 5.991 \Rightarrow CR: X^2 5.991$									
	[in the CR/significant/Reject H ₀] There is sufficient evidence to suggest that there is an association between type of property and the time taken to sell it.									
				NT 4			(10)			
4	B1		es correct. Must men in terms of indep		roperty" and "t	ime taken" at least on	Total 10 ce.			
	M1	Some attempt	(Row Total)(Co	olumn Total) Ca	n be implied by	at least one correct I	E_i to 1dp			
	A1	All expected f	requencies correct							
	dM1	Dependent on 1 st M1 for at least 2 correct terms for $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ or correct expressions								
	A1	with their E_i Accept 2 sf accuracy. At least 3 correct $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ terms to 2dp or better. Allow truncated answers.								
	dM1	Dependent on 2 nd M1 For applying either $\sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 125$								
	A1									
	B1									
	B1	5.991	41 2rd 144 12rd	D1 4	1: 1	1 . 1.1	·			
	A1	Must mention		ntradictory stater	ments score A0.	e.g. "significant, do lation".	- 0			

Question Number		Scheme	Marks					
5 (a)(i)		$\left[\frac{10}{0}\right] \Rightarrow \left[\overline{x} = 72.2\right] \qquad s_x^2 = \frac{260955.6 - 50(72.2)^2}{50 - 1} = 6.4$	B1; M1 A1					
5(a)(ii)	$\left[\overline{y} = \frac{2585}{50} \Rightarrow \right] \overline{y} = 51.7 \qquad s_y^2 = \frac{133757.2 - 50(51.7)^2}{50 - 1} = 2.3$							
			(5)					
(1-)	$H_0: \mu_x -$	$\mu_y = 20$	D1					
(b)	$H_1: \mu_x -$	$\mu_y > 20$	B1					
	'72.2	2'-'51.7'-20						
	$z = \frac{1}{\sqrt{1}}$	6.4' '2.3'	M1 M1					
	$\sqrt{-}$	$\frac{2'-51.7'-20}{6.4'+2.3'} = \frac{6.4'+2.3'}{50}$						
	=1.198		A1					
		ed c.v. Z = 1.6449 or CR: Z1.6449	B1					
	Not in C	R/Not significant/Do not reject H ₀	M1					
		ficant evidence to support Tammy's belief	A1					
		11	(7)					
(c)	Since the	e sample is large the CLT applies.	M1					
	No need	to assume (the weights) are normally distributed.	A1					
			(2)					
(d)	A = = 1 = = = = = = = = = = = = = = = =	I that $s^2 = \sigma^2$	B1					
(4)	Assumed	titut 5 = 0						
(4)	Assumed		(1)					
		Notes						
5 (a)(i)	B1	Notes $\overline{x} = 72.2$	(1) Total 15					
	B1	Notes	(1) Total 15					
		Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$	(1) Total 15					
	B1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii))	(1) Total 15					
5 (a)(i)	B1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$	(1) Total 15					
	B1 M1 A1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3	(1) Total 15					
5 (a)(i)	B1 M1 A1 B1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ	(1) Total 15					
5 (a)(i) 5(a)(ii)	B1 M1 A1 B1 A1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a)	(1) Total 15					
5 (a)(i) 5(a)(ii)	B1 M1 A1 B1 A1 B1 B1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ	(1) Total 15					
5 (a)(i) 5(a)(ii)	B1 M1 A1 B1 A1 B1 M1 M1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) $\frac{6.4}{\overline{y} = 51.7}$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a) An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a , b , c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown	(1) Total 15					
5 (a)(i) 5(a)(ii)	B1 M1 A1 B1 A1 B1 M1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) $\frac{6.4}{\overline{y} = 51.7}$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a) An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a , b , c or d correct. Allow \pm $\frac{a^2-b^2-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ awrt 1.20 Allow 1.2 if no incorrect working shown 1.6449 or better (seen)	(1) Total 15					
5 (a)(i) 5(a)(ii)	B1 M1 A1 B1 A1 B1 M1 M1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) $\frac{6.4}{\overline{y} = 51.7}$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a) An attempt at $\frac{a-b-20}{\sqrt{50}+\frac{d}{50}}$ with at least 2 of a , b , c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown $1.6449 \text{ or better (seen)}$ A correct statement – need not be contextual but do not allow contradicting non corcomments.	Total 15					
5 (a)(i) 5(a)(ii)	B1 M1 A1 B1 A1 B1 M1 M1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a) An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a , b , c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown $1.6449 \text{ or better (seen)}$ A correct statement – need not be contextual but do not allow contradicting non correct.	Total 15					
5 (a)(i) 5(a)(ii)	M1 A1 B1 A1 B1 M1 M1 M1 A1 B1 M1 M1 M1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a) An attempt at $\frac{a-b-20}{\sqrt{50}+\frac{d}{50}}$ with at least 2 of a , b , c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown 1.6449 or better (seen) A correct statement – need not be contextual but do not allow contradicting non corcomments. A correct contextual statement. Allow the difference in mean weights is not gr 20 kg A suitable comment that mentions large and CLT	Total 15					
5 (a)(i) 5(a)(ii) (b)	B1 M1 A1 B1 A1 B1 M1 M1 A1 A1 A1 A1 A1	Notes $\overline{x} = 72.2$ A correct method for finding an unbiased estimate of the variance e.g. $\frac{\sum x^2 - n(\overline{x})}{n-1}$ (May be seen in (i) or (ii)) 6.4 $\overline{y} = 51.7$ 2.3 Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ For correct standard error. Follow through their values from (a) An attempt at $\frac{a-b-20}{\sqrt{\frac{c}{50}+\frac{d}{50}}}$ with at least 2 of a , b , c or d correct. Allow \pm awrt 1.20 Allow 1.2 if no incorrect working shown 1.6449 or better (seen) A correct statement – need not be contextual but do not allow contradicting non corcomments. A correct contextual statement. Allow the difference in mean weights is not graphs	Total 15					

Question Number			Sche				Marks		
6 (a)	$0\times1+1$	<10+2>	$\begin{array}{c} \times 23 + 3 \times 15 + 4 \times \\ 80 \end{array}$	$19 + 5 \times 9 + 6 \times 3$	= 3 *		B1		
(b)	$r = e^{-3} \times 80 = 3.983$ $s = \frac{e^{-3} \times 3^5}{5!} \times 80$;= 8.066								
	t = 80 - (r + 11.949 + 17.923 + 17.923 + 13.443 + s); = 6.713								
					,		(4)		
	H _o : Pois	sson (dis	stribution) is a re	asonable/suitable	e/ sensible (mod	lel)			
(c)	· ·			a /reasonable/sui			B1		
	Numb		Combined	Combined		· · · · · · · · · · · · · · · · · · ·			
	ema		Observed	Expected	$\frac{(O-E)^2}{E}$	$\frac{O^2}{E}$			
	CINC		11	15.932	1.5267	7.5947			
	2		23	17.923	1.4381	29.5151			
	3		15	17.923	0.4767	12.5537	M1		
	4		19	13.443	2.2971	26.8541	1112		
	5		9	8.065	0.1083	10.0433			
			3	6.714	2.0544	1.3404			
				Totals	7.901	87.901			
	$X^2 = \sum$	$\frac{O-E}{E}$	$\frac{D^2}{E}$ or $\sum \frac{O^2}{E}$	- 80			M1		
	= 7.9	901				awrt 7.90) A1		
	v = 6 - 1	-1 = 4					B1		
	$c_4^2(0.10)$	= 7.779	\Rightarrow CR: X^2	7.779			B1		
				hen there is suffi	cient evidence to	n reject H l			
				pisson is not a rea		o reject Π_0 j	A1		
	Sufficien	it evidei	ice to say that FC	oissoii is not a rea	isonable model		/ - >		
				Notes			(7) Total 12		
6 (a)	B1	For a c	orrect method to s	shown that the mea	n is 3		1011112		
0 (4)	D1								
(b)	M1					wer for either r or s			
	A1	r = 3.9	983 and $s = 8.0$	66 (allow $r = 3.9$	984 and s = 8.06	64 as these come from	tables)		
	M1			sures that expected					
	A1			714 if tables used	,				
(c)	B1		<i>y</i> 1	Must mention Poi					
	M1					nd expected frequencies			
	M1 A1					values (to awrt 2dp)			
	B1								
	B1	7.779	I III I III III CUII UC	implied by a collection	or orrecon various of				
	A1	1	ect conclusion bas	ed on their X^2 va	lue and their v^2	critical value			
	AI	11 00110	ce conclusion das	ca on men A va	ide and then χ	orrandar varue			

Question Number		Scheme	Marks			
7 (a)	Let X rep	present $B_1 + B_2 - C_1$				
, ()		0.268, 0.015633) awrt 0.0156	M1 A1			
	`	$P\left(Z < \frac{0 - 0.268}{\sqrt{0.015633}} (= -2.14)\right)$	M1			
		(=1-0.9838)=0.0162	A1			
			(4)			
(b)	Let Y rep	present $2.5B_1 + 3C_1 + 3C_2$				
	<i>Y</i> □ N(6	.918,0.071478) awrt 6.92, 0.0715	M1 A1			
		$= P\left(Z > \frac{7 - "6.918"}{\sqrt{"0.071478"}} (= 0.31)\right)$	M1			
		(=1-0.6217) = 0.3783 (Calculator gives 0.3795) $0.378-0.380$	A1			
			(4)			
(c)	Mean = 2.94w					
	Standard deviation = $0.084\sqrt{5} w$ (= $0.188w$)					
			(2)			
(d)	$\frac{6 - 2.94}{0.084\sqrt{5}}$	$\frac{w}{w}$, -1.2816	M1;B1			
	-1.2816	$\times 0.084\sqrt{5} \ w + 2.94w \dots 6$	dM1			
		2 So $w = 2.23$	A1			
	.,		(4)			
		Notes	Total 14			
7 (a)	M1	for setting up normal distribution with mean 0.268				
	A1	for a correct expression for variance (= 0.015633) or for standard deviation (= 0.125 .)			
	M1	for standardising with 0, 0.268 and their standard deviation				
	A1	awrt 0.0162 (Allow awrt 0.0160 as this comes from a calculator)				
(b)	M1	for setting up normal distribution with mean awrt 6.92				
	A1	for a correct expression for variance (= 0.071478) or for standard deviation (= 0.267 .)			
	M1	for standardising with 7, 0.071478 and their standard deviation				
	A1	for answer between $0.378 - 3.80$				
(c)	B1	for 2.94w				
	B1	for $0.084\sqrt{5}w$ or awrt $0.188w$				
(d)	M1	for standardising using their mean and their standard deviation = z where $1 < z < 1$.	5			
	B1	for -1.28				
	dM1	dependent on M1, for solving their inequality				
-	A1	awrt (£)2.23				