Föreläsning 2 Klassisk komponent-uppdelning

Trend- och säsongsjustering Kapitel 2,4,2

Åter till ex med Sold, antal sålda hus över tiden.

- Typ av trend
- Typ av säsongsvariation
- Additivt eller multiplikativt mönster
- Statiskt eller dynamiskt mönster
- Tolka serien eller beräkna prognos

Time Series Decomposition Plot for Sold Multiplicative Model

Variable
Actual
Fits
Trend

Accuracy Measures MAPE 17,0198 MAD 0,9058 MSD 1,6179 Denna metod fungerar bra om tidsserien uppvisar ett statiskt mönster. Det är fyra komponenter i modellen:

Multiplikativ modell:

$$y_t = TR_t \cdot SN_t \cdot CL_t \cdot IR_t$$

Additiv modell:

$$y_t = TR_t + SN_t + CL_t + IR_t$$

där

- TR_t = Trendkomponent
- SN_t = Säsongkomponent
- CL_t = Cykliska komponent
- IR_t = Slumpkomponent

Beteckna den <u>skattade</u> trendkomponenten TR med tr, <u>skattad</u> säsongskomponent SN med sn <u>skattad</u> cyklisk komponent CL med cl (Denna ska vi inte inkludera) samt den <u>skattade</u> slumpkomponenten IR med ir.

Idén är nu att vi ska skatta en komponent i taget och därefter rensa bort den. Detta görs tills det endast finns slump kvar dvs IR.

Detta görs helt annorlunda jämfört med tidsserieregression där alla komponenter skattas samtidigt.

En metod då alla parametrar/komponenter skattas samtidigt är att föredra!!

Skattning och rensning av komponenter

Säsongsrensning: Borttagandet av säsongsvariation

y_t - sn_t i den additiva modellen

y_t / sn_t i den multiplikativa modellen

Säsongsvariation överskuggar ofta andra relevanta komponenter. Genom säsongrensningen kan man alltså enklare se trender och andra komponenter.

Allmänt om glidande medelvärden beskrivs på tavlan.

Skattning av säsongskomponenten samt säsongsrensning

Säsongrensning:

Serien rensas från säsongkomponenten genom beräkning av centrerade och viktade glidande medelvärden (centered moving averages, CMA):

$$CMA_{t} = \frac{y_{t-(L/2)} + 2y_{t-(L/2-1)} + \dots + 2y_{t} + \dots + 2y_{t+(L/2-1)} + y_{t+(L/2)}}{2L}$$

där L = Säsongslängden i serien. Ex: L=2 för halvårsdata, 4 för kvartalsdata och 12 för månadsdata. OBS Formeln ovan gäller när L är ett jämnt tal.

Exempel (sold data från tidigare) Multiplikativ modell

tid	månad	antal	CMA	
1	1	2	*	
2	2	6	*	(2+
3	3	5	*	/+(2)6+(2)5+(2)5+(2)10+(2)8+(2)10+
4	4	5	*	
5	5	10	*	$/ +2 \cdot 11 + 2 \cdot 4 + 2 \cdot 7 + 2 \cdot 3 + 2 \cdot 3 +$
6	6	8	* /	$+3)/(2\cdot12)$
7	7	10	6.21	
8	8	11	6.08	
9	9	4	5.95	
10	10	7	••••	
11	11	3		
12	12	3		
13	1	\3		
14	2	2		
15	3	6		

En första skattning av så kallade grova säsongkomponenter erhålls genom att beräkna

- y_t/CMA_t i en multiplikativ modell
- $y_t CMA_t$ i en additiv modell

och sen beräkna medelvärden för alla värden som avser samma säsong. (t.ex. alla januari-värden av y_t /CMA, etc.) \rightarrow Totalt L medelvärden.

Tid	Mån.	Sold	CMA	Grova	Tid	Mån.	Sold	CMA	Grova
				säs.kom.					säs.kom.
1	1	2	*	*	25	1	2	7.00000	0.28571
2	2	6	*	*	26	2	4	7.04167	0.56805
3	3	5	*	*	27	3	9	7.25000	1.24138
4	4	5	*	*	28	4	5	7.33333	0.68182
5	5	10	*	*	29	5	11	7.29167	1.50857
6	6	8	*	*	30	6	8	7.25000	1.10345
7	7	10	6.20833	1.61074	31	7	12	7.29167	1.64571
8	8	11	6.08333	1.80822	32	8	12	7.29167	1.64571
9	9	4	5.95833	0.67133	33	9	6	7.20833	0.83237
10	10	7	6.04167	1.15862	34	10	7	7.20833	0.97110
11	11	3	6.04167	0.49655	35	11	6	7.29167	0.82286
12	12	3	5.95833	0.50350	36	12	5	7.16667	0.69767
13	1	3	6.08333	0.49315	37	1	3	7.08333	0.42353
14	2	2	6.16667	0.32432	38	2	3	7.12500	0.42105
15	3	6	6.08333	0.98630	39	3	8	7.08333	1.12941
16	4	6	6.08333	0.98630	40	4	6	7.08333	0.84706
17	5	9	6.25000	1.44000	41	5	12	*	*
18	6	7	6.50000	1.07692	42	6	4	*	*
19	7	14	6.54167	2.14013	43	7	14	*	*
20	8	9	6.58333	1.36709	44	8	11	*	*
21	9	4	6.79167	0.58896	45	9	6	*	*
22	10	7	6.87500	1.01818	46	10	7	*	*
23	11	7	6.91667	1.01205	47	11	6	*	*
24	12	5	7.04167	0.71006					

Medelvärden av grova säsongskomponenter:

Juli: $(1.61074+2.14013+1.64571)/3 \approx 1.7989$

Aug: $(1.80822+1.36709+1.64571)/3 \approx 1.6070$

Sep: $(0.67133+0.58896+0.83237)/3 \approx 0.6976$

Okt: $(1.15862+1.01818+0.97110)/3 \approx 1.0493$

Nov: $(0.49655+1.01205+0.82286)/3 \approx 0.7772$

Dec: $(0.50350+0.71006+0.69767)/3 \approx 0.6371$

Jan: $(0.49315+0.28571+0.42353)/3 \approx 0.4008$

Feb: $(0.32432+0.56805+0.42105)/3 \approx 0.4378$

Mar: $(0.98630+1.24138+1.12941)/3 \approx 1.1190$

Apr: $(0.98630+0.68182+0.84706)/3 \approx 0.8384$

Maj: $(1.44000+1.50857)/2 \approx 1.4743$

Juni: $(1.07692+1.10345)/2 \approx 1.0902$

Obs! Bara två värden här!

...och här!

Medelvärdena måste sedan justeras så att de

- vid multiplikativ modell får medelvärde 1, (dvs summan av alla justerade säsongmedelvärden ska bli L)
- vid additiv modell fås medelvärde 0, (dvs summan av alla justerade säsongmedelvärden ska bli 0.)

De justerade värdena kallas för säsongskomponenter $sn_1,...,sn_L$

Summan av de beräknade medelvärdena:

$$1.7989 + 1.6070 + 0.6976 + 1.0493 + 0.7772 + 0.6371 + 0.4008 + 0.4378 + 1.1190 + 0.8384 + 1.4743 + 1.0902 $\approx 11.9276$$$

Summan ska bli *L*=12

För att få den till 12 multipliceras samtliga medelvärden med

 $12/11.9276 \approx 1.00607$

Slutligt skattade säsongkomponenter:

Jan: $sn_1 = 0.4008 \cdot 1.00607 \approx 0.403$

Feb: $sn_2 = 0.4378 \cdot 1.00607 \approx 0.440$

Mar: $sn_3 = 1.1190 \cdot 1.00607 \approx 1.126$

Apr: $sn_a = 0.8384 \cdot 1.00607 \approx 0.843$

Maj: $sn_5 = 1.4743 \cdot 1.00607 \approx 1.483$

Juni: $sn_6 = 1.0902 \cdot 1.00607 \approx 1.097$

Juli: $sn_7 = 1.7989 \cdot 1.00607 \approx 1.809$

Aug: $sn_8 = 1.6070 \cdot 1.00607 \approx 1.617$

Sep: $sn_9 = 0.6976 \cdot 1.00607 \approx 0.702$

Okt: $sn_{10} = 1.0493 \cdot 1.00607 \approx 1.056$

Nov: $sn_{11} = 0.7772 \cdot 1.00607 \approx 0.782$

Dec: $sn_{12} = 0.6371 \cdot 1.00607 \approx 0.641$

Tidsserien säsongrensas genom:

•
$$d_t = y_t / sn_t$$
 vid multiplikativ modell

• $d_t = y_t - sn_t$ vid additiv modell

där
$$Sn_t$$
 är något av värdena Sn_1, \ldots, Sn_L

beroende på vilken av säsongerna som t motsvarar.

Tid	Mån.	Sold y_t	sn_t^{ν}	$^{*}d_{t}$	Tid	Mån.	Sold y_t	sn_t	$ ightharpoonup d_t$
1	1	2	0.403	4.963	25	1	2	0.403	4.963
2	2	6	0.44	13.636	26	2	4	0.44	9.091
3	3	5	1.126	4.440	27	3	9	1.126	7.993
4	4	5	0.843	5.931	28	4	5	0.843	5.931
5	5	10	1.483	6.743	29	5	11	1.483	7.417
6	6	8	1.097	7.293	30	6	8	1.097	7.293
7	7	10	1.809	5.528	31	7	12	1.809	6.633
8	8	11	1.617	6.803	32	8	12	1.617	7.421
9	9	4	0.702	5.698	33	9	6	0.702	8.547
10	10	7	1.056	6.629	34	10	7	1.056	6.629
11	11	3	0.782	3.836	35	11	6	0.782	7.673
12	12	3	0.641	4.680	36	12	5	0.641	7.800
13	1	3	0.403	7.444	37	1	3	0.403	7.444
14	2	2	0.44	4.545	38	2	3	0.44	6.818
15	3	6	1.126	5.329	39	3	8	1.126	7.105
16	4	6	0.843	7.117	40	4	6	0.843	7.117
17	5	9	1.483	6.069	41	5	12	1.483	8.092
18	6	7	1.097	6.381	42	6	4	1.097	3.646
19	7	14	1.809	7.739	43	7	14	1.809	7.739
20	8	9	1.617	5.566	44	8	11	1.617	6.803
21	9	4	0.702	5.698	45	9	6	0.702	8.547
22	10	7	1.056	6.629	46	10	7	1.056	6.629
23	11	7	0.782	8.951	47	11	6	0.782	7.673
24	12	5	0.641	7.800					

Seasonal Analysis for Sold

Decomposition Fit for Sold

Därefter skattas trendkomponenten Trendanalys

 ${f \cdot}$ Oavsett om tidsserien har säsongsvariation eller annan variation så kan vi göra en analys av trenden. Trendfunktonen betecknas TR

Data med endast linjär trend:

$$y_{t} = TR_{t} + \varepsilon_{t} = \beta_{0} + \beta_{1} \cdot t + \varepsilon_{t}$$

Data med kvadratisk trend:

$$y_{t} = TR_{t} + \varepsilon_{t} = \beta_{0} + \beta_{1} \cdot t + \beta_{2} \cdot t^{2} + \varepsilon_{t}$$

Data med kubisk trend:

$$y_t = TR_t + \varepsilon_t = \beta_0 + \beta_1 \cdot t + \beta_2 \cdot t^2 + \beta_3 \cdot t^3 + \varepsilon_t$$

Trend Line Equation

Yt = 5.77613 + 4.30E-02*t

Seasonal Indices

Trend Line Equation

Yt = 5.77613 + 4.30E - 02*t

Seasonal Indices

Period	Index		Period	Index
1	0.425997		1	-4.09028
2	0.425278	multiplikativ	2	-4.13194
3	1.14238	•	3	0.909722
4	0.856404		4	-1.09028
5	1.52471		5	3.70139
6	1.10138		6	0.618056
7	1.65646		7	4.70139
8	1.65053	1.1	8	4.70139
9	0.670985	additiv —	9	-1.96528
10	1.02048		10	0.118056
11	0.825072		11	-1.29861
12	0.700325		12	-2.17361

SAC på residualer Additiv modell

Prognoser i statiska modeller

Decomposition Fit for Sold

Prognoser i en klassisk komponentuppdelningsmodell

Trend Line Equation

Yt = 5.77613 + 4.30E-02*t

Seasonal Indices

Period	Index
1	0.425997
2	0.425278
3	1.14238
4	0.856404
5	1.52471
6	1.10138
7	1.65646
8	1.65053
9	0.670985
10	1.02048
11	0.825072
12	0.700325

Prognos för december 1999 tid t=48, säsong=1

multiplikativ modell

$$\hat{y} = (5.776 + 0.043 \cdot 48) \cdot 0.7 = 5.49$$

Prognos för januari 2000:

$$\hat{y} = (5.776 + 0.043 \cdot 49) \cdot 0.426 = 3.36$$

Detta var genomgång av:

• Kapital 2,4,2