STSCI 4780 Hierarchical/graphical models for measurement error

Tom Loredo, CCAPS & SDS, Cornell University

© 2020-04-23

Recap: Beta-binomial MLM

Terminology: θ are hyperparameters, $\pi(\theta)$ is the hyperprior

Population and member estimates

Lower level estimates

Bayesian outlook

- Marginal posteriors are *narrower* than likelihoods
- Point estimates tend to be closer to true values than MLEs (averaged across the population)
- Joint distribution for $\{\alpha_i\}$ is dependent

Frequentist outlook

- Point estimates are biased
- Reduced variance → estimates are closer to truth on average (lower MSE in repeated sampling)
- Bias for one member estimate depends on data for all other members

Lingo

- Estimates *shrink* toward prior/population mean
- Estimates "muster and borrow strength" across population (Tukey's phrase); increases accuracy and precision of estimates
- Efron* describes shrinkage as a consequence of accounting for indirect evidence

^{*}Bradley Efron (2010): "The Future of Indirect Evidence"

Competing data analysis goals

"Shrunken" member estimates provide improved & reliable estimate for population member properties

But they are under-dispersed in comparison to the true values \rightarrow not optimal for estimating population properties*

No point estimates of member properties are good for all tasks!

We should view population data tables/catalogs as providing descriptions of member likelihood functions, not "estimates with errors"

*Louis (1984); Eddington noted this in 1940!

Another conjugate MLM: Gamma-Poisson

Goal: Learn a distribution of event rates from event counts a.k.a.: Estimating a *number-size distribution*

Examples: learn infection rates from area-specific disease counts; learn a star or galaxy brightness dist'n from photon counts

Gamma-Poisson population and member estimates

Simulations: N=60 sources from gamma with $\langle F \rangle = 100$ and $\sigma_F=30$; exposures spanning dynamic range of $\times 16$

Measurement error perspective

If the data provided *precise* $\{\alpha_i\}$ values (coin measurements, flip physics), we could easily model them as points drawn from a (beta) population PDF with params θ :

$$egin{aligned} D &= \{lpha_i\} \ &p(D| heta) = \prod_i p(lpha_i| heta) \ &= \prod_i \mathrm{Beta}(lpha_i| heta) \end{aligned}$$

(A binomial point process)

Here the finite number of flips provide *noisy measurements of* each α_i , described by the member likelihood functions $\ell_i(\alpha_i)$;

This is a prototype for measurement error problems

Agenda

- Density estimation with measurement error (density deconvolution)
- Regression with measurement error (next lecture)

Agenda

1 Density estimation with measurement error

Accounting For Measurement Error

Introduce latent/hidden/incidental parameters

Suppose $f(x|\theta)$ is a distribution for an observable, x (scalar or vector, $\vec{x} = (x, y, ...)$)

From N precisely measured samples, $\{x_i\}$, we can infer θ from

$$\mathcal{L}(\theta) \equiv p(\{x_i\}|\theta) = \prod_i f(x_i|\theta)$$
$$p(\theta|\{x_i\}) \propto p(\theta)\mathcal{L}(\theta) = p(\theta,\{x_i\})$$

A binomial point process (Poisson if N is random)

Graphical representation

Joint distribution:

$$p(\theta, \{x_i\}) = p(\theta) p(\{x_i\}|\theta) = p(\theta) \prod_i f(x_i|\theta)$$

Posterior from BT:

$$p(\theta|\{x_i\}) = \frac{p(\theta,\{x_i\})}{p(\{x_i\})}$$

But what if the x data are *noisy*, $D_i = \{x_i + \epsilon_i\}$?

 $\{x_i\}$ are now uncertain (latent) parameters We should somehow incorporate $\ell_i(x_i) = p(D_i|x_i)$:

$$p(\theta, \{x_i\}, \{D_i\}) = p(\theta) p(\{x_i\}|\theta) p(\{D_i\}|\{x_i\})$$
$$= p(\theta) \prod_i f(x_i|\theta) \ell_i(x_i)$$

Marginalize over $\{x_i\}$ to summarize inferences for θ .

Marginalize over θ to summarize inferences for $\{x_i\}$.

Graphical representation

$$p(\theta, \{x_i\}, \{D_i\}) = p(\theta) p(\{x_i\}|\theta) p(\{D_i\}|\{x_i\})$$

$$= p(\theta) \prod_i f(x_i|\theta) p(D_i|x_i) = p(\theta) \prod_i f(x_i|\theta) \ell_i(x_i)$$

(sometimes called a "two-level MLM" or "two-level hierarchical model")

Joint for everything

$$p(\theta, \{x_i\}, \{D_i\}) = p(\theta) \prod_i f(x_i|\theta) \ \ell_i(x_i)$$

Population-level inference

Condition on data, marginalize over latent member params:

$$p(\theta|\{D_i\}) \propto p(\theta) \prod_{i=1}^N \int \mathrm{d}x_i \, f(x_i|\theta) \, \ell_i(x_i)$$

Conditional independence \rightarrow the O(N)-D integral over $\{x_i\}$ is the product of N independent low-D integrals

Member-level inference

Condition on data, marginalize over population dist'n params:

$$p(x_j|\{D_i\}) \propto \int \mathrm{d} \theta \; p(\theta) \, f(x_j|\theta) \, \ell_j(x_j) imes \prod_{i \neq i} \int \mathrm{d} x_i \; f(x_i|\theta) \, \ell_i(x_i)$$

Key point: Maximizing over x_i (treating best-fit values as if they were precise) and integrating over x_i can give very different results!

To estimate x_1 :

$$\begin{split} p(x_1|\{D_2,\ldots\}) & \propto & \int \mathrm{d}\theta \; p(\theta) \, f(x_1|\theta) \, \ell_1(x_1) \times \prod_{i=2}^N \int \mathrm{d}x_i \; f(x_i|\theta) \, \ell_i(x_i) \\ & = & \ell_1(x_1) \int \mathrm{d}\theta \; \left[p(\theta) \, \mathcal{L}_{\mathrm{marg},\check{1}}(\theta) \right] \, f(x_1|\theta) \\ & \qquad \qquad \text{with } \mathcal{L}_{\mathrm{marg},\check{1}}(\theta) \equiv \prod_{i=2}^N \int \mathrm{d}x_i \; f(x_i|\theta) \, \ell_i(x_i) \\ & \approx & \ell_1(x_1) \, f(x_1|\hat{\theta}_{\check{1}}), \quad \text{(using a plug-in approx'n for } \theta) \end{split}$$

with $\hat{\theta}_{\check{1}} = \arg\max \mathcal{L}_{\max,\check{1}}(\theta)$ determined by the remaining data $f(x_1|\hat{\theta})$ behaves like a prior that shifts the x_1 estimate away from the peak of $\ell_1(x_i)$; learning it from the data can lead to *shrinkage*

Algorithms

Consider the posterior PDF for θ and $\{\alpha_i\}$ in the beta-binomial MLM:

$$p(\theta, \{\alpha_i\} | \{n_i\}) \propto \pi(\theta) \prod_{i=1}^{N_{\text{mem}}} \text{Beta}(\alpha_i | \theta) \text{ Binom}(n_i | \alpha_i)$$

For each member, the $\operatorname{Beta} \times \operatorname{Binom}$ factor is ∞ a beta distribution for α_i ; but as a function of θ (e.g., (a, b) or (μ, σ)) it is not simple

The full posterior has a product of $N_{\rm mem}$ such factors specifying its θ dependences \Rightarrow even for a conjugate model for the lower levels, the overall model is typically analytically intractable

Posterior sampling over the joint population/member parameter space is challenging; Stan does it all-at-once using *Hamiltonian Monte Carlo* (HMC)

Two approaches exploit *conditional independence of member-level* parameters

Member marginalization

$$p(\theta|\{D_i\}) \propto p(\theta) \prod_{i=1}^N \int \mathrm{d}x_i \, f(x_i|\theta) \, \ell_i(x_i)$$

- Analytically or numerically integrate over {x_i} → explore the reduced-dimension marginal for θ via MCMC → {θ_i} ~ p(θ|D)
- If x_i are of interest, sample them from their conditionals, conditioned on θ_i:
 - ▶ Pick a θ from $\{\theta_i\}$
 - ▶ Draw $\{x_i\}$ by *independent* sampling from their conditionals (give θ)
 - Iterate

GPUs can accelerate this for application to large datasets

Only useful for low-dimensional latent parameters x_i

Seldom used in *B* literature; frequently used in *F* "random effects" literature

Metropolis-within-Gibbs algorithm

Block the full parameter space:

- Block of m population parameters, θ
- N blocks of (latent) member parameters, x_i

Get posterior samples by iterating back and forth between:

- m-D Metropolis-Hastings sampling of θ from $p(\theta|\{x_i\}, D)$ This requires a problem-specific proposal distribution
- *N* independent samples of x_i from the conditional $p(x_i|\theta, D_i)$

This can often exploit conjugate structure

E.g., Beta-binomial: $\alpha_i \sim \text{Beta}(\alpha_i | \theta) \text{ Binom}(n_i | \alpha_i)$, which is just a Beta for α_i

MWG explicitly displays the feedback between population and member inference

Takeaways

- "Density deconvolution" Estimating a PDF when the "points" are measured with error
- Hierarchical/multilevel models treat density estimation with measurement error via latent parameters — the uncertain true values underlying noisy measurements
- Hierarchical Bayes marginalizes over everything; empirical Bayes optimizes over the population-level parameters (to estimate the item/member params)
- Computational methods: Monolithic (Stan), member marginalization, Metropolis-within-Gibbs