Определение 1. Подграф H орграфа D называется эйлеровым, если входящая степень $d_H^-(v)$ каждой вершины v подграфа H в H равна его исходящей степени $d_H^+(v)$. H назывется чётным, если он имеет чётное число рёбер, иначе он называется нечётным. Пусть EE(D) и EO(D) означают количество эйлеровых чётных и эйлеровых нечётных подграфов D соответственно.

Основной результат:

Теорема 1 (Алон — Тарси). Пусть D = (V, E) - орграф. Пусть для каждой вершины $v \in V$ S(v) означает множество из $d_H^+(v) + 1$ различных целых чисел. Если $EE(D) \neq EEO(D)$, то существует правильная вершинная раскраска $c: v \to \mathbb{Z}$, такая что $c(v) \in S(v)$ для любой $v \in V$

Давайте я напишу ещё что-нибудь:

Определение 2. Пусть D - ориентация графа G. Многочленом графа называется однородный многочлен $\epsilon(G)$ от переменных $\{x_v:v\in V(G)\}$. определяемый как:

$$\epsilon(G) = \prod_{uv \in E(D)} (x_u - x_v).$$

Определение 3. Пусть у нас есть функция $a:V(G) \to \mathbb{N}$. Граф G называется a-списочно раскрашиваемым, если для любого набора множеств $\{L(v): v \in G\}$, такого что |L(v)| = a(v) существует правильная раскраска вершин графа G, такая что каждая вершина v покрашена в цвет из L(v).

Очень похожая теорема:

Теорема 2 (Алон — Тарси). Пусть $a:V(G)\to \mathbb{N}$. Если коэффициент при $\prod_{v\in V(G)} x_v^{a(v)-1}$ в $\epsilon(G)$ ненулевой, тогда G - a-списочно раскрашиваемый.

Для чего всё это нужно?

Определение 4. Пусть G - мультиграф. Его рёберным графом L(G) называется граф, такой что V(L(G)) = E(G), и в графе L(G) между вершинами е и f проведено ребро, если в графе G рёбра е и f имеют общую вершину.

Замечание 1. Таким образом, каждая пара параллельных ребер G соединена двумя рёбрами в L(G).

Гипотеза 1 (List Edge Colouring Conjecture). Если мультиграф G является k-рёберно раскрашиваемым, то он является и k-рёберно списочно раскрашиваемым.

Возможно, вот это вот всё поможет кому-то её доказать