Tópicos de Física Moderna - 2º TESTE (A)

	•	` ,
Nome		N°

- **1.** As cristas adjacentes de uma onda que se propaga na água estão separadas de 5 cm. A onda propaga-se com a velocidade de 20 cm/s. Determine o período e a frequência da onda.
- **2.** A função de onda normalizada de uma partícula de massa m é dada por

$$\Psi(x) = \left(\frac{m\omega_0}{\hbar\pi}\right)^{1/4} e^{-(\sqrt{km}/2\hbar)x^2},$$

onde ω_0 e k são constantes características do sistema e os restantes símbolos têm o significado habitual. Na figura mostra-se o gráfico de $|\Psi|^2$.

Classifique cada uma das afirmações seguintes como verdadeira ou falsa. Justifique cuidadosamente as suas respostas.

- A. A probabilidade de encontrar a partícula entre x = 0 e $x = +x_0$ é maior que a probabilidade de encontrar a partícula entre $x = -x_0$ e x = 0.
- B. A probabilidade de encontrar a partícula entre $x = -x_0$ e $x = +x_0$ é igual a 1.
- C. É possível encontrar a partícula entre $x = +x_0$ e $x = +\infty$.
- $D. \int_{-\infty}^{+\infty} |\Psi|^2 dx = 1$

Tópicos de Física Moderna - 2º TESTE (B)

Nome_____No___

- **1.** Uma onda de frequência 10 Hz propaga-se na água com a velocidade de 20 cm/s. Determine a separação entre duas cristas adjacentes dessa onda.
- **2.** A função de onda normalizada de uma partícula de massa m é dada por

$$\Psi(x) = \left(\frac{m\omega_0}{\hbar\pi}\right)^{1/4} e^{-(\sqrt{km}/2\hbar)x^2},$$

onde ω_0 e k são constantes características do sistema e os restantes símbolos têm o significado habitual. Na figura mostra-se o gráfico de $|\Psi|^2$.

Classifique cada uma das afirmações seguintes como verdadeira ou falsa. Justifique cuidadosamente as suas respostas.

- A. $\int_{-\infty}^{+\infty} |\Psi|^2 dx > 1$
- B. A probabilidade de encontrar a partícula entre x = 0 e $x = x_0$ é igual à probabilidade de encontrar a partícula entre $x = -x_0$ e x = 0.
- C. A probabilidade de encontrar a partícula entre $x = -\infty$ e $x = +\infty$ é igual a 1.
- D. Não é possível encontrar a partícula entre $x = +x_0$ e $x = +\infty$.

Tópicos de Física Moderna - 2º TESTE (C)

Nome	N^{o}	

1. Duas fontes emitem ondas sinusoidais em fase e com o mesmo comprimento de onda λ . Uma das ondas propaga-se até ao ponto de observação que se encontra à distância ℓ_1 . A outra onda tem que viajar a distância ℓ_2 até chegar ao mesmo ponto de observação. No ponto de observação a amplitude é máxima se $|\ell_1-\ell_2|$ for (escolha a opção correta e justifique cuidadosamente a sua resposta):

A. um múltiplo ímpar de $\lambda/2$; B. um múltiplo ímpar de $\lambda/4$; C. um múltiplo de λ ; D. um múltiplo ímpar de $\pi/2$; E. um múltiplo de π

2. A função de onda normalizada de uma partícula numa caixa rígida (ou um poço de potencial infinito) a uma dimensão, com um tamanho a é:

$$\psi(x) = \begin{cases} 0, & x < -a/2, x > +a/2\\ \sqrt{2/a} \sin\left(\frac{n\pi}{a}x\right), & -a/2 \le x \le +a/2 \end{cases}$$

onde n é um inteiro. Qual é a probabilidade de encontrar a partícula entre x = -a/4 e x = +a/4, para n = 1? [Dado: $\int \sin^2(kx) dx = \frac{x}{2} - \frac{1}{4k} \sin(2kx)$]

Tópicos de Física Moderna - 2º TESTE (D)

Nome_______N°_____

1. Duas fontes emitem ondas sinusoidais em fase e com o mesmo comprimento de onda λ . Uma das ondas propaga-se até ao ponto de observação que se encontra à distância ℓ_1 . A outra onda tem que viajar a distância ℓ_2 até chegar ao mesmo ponto de observação. No ponto de observação a amplitude é mínima se $|\ell_1-\ell_2|$ for (escolha a opção correta e justifique cuidadosamente a sua resposta):

A. um múltiplo ímpar de $\lambda/2$; B. um múltiplo ímpar de $\lambda/4$; C. um múltiplo de λ ; D. um múltiplo ímpar de $\pi/2$; E. um múltiplo de $\pi/4$; F. um múltiplo de π

2. A função de onda de uma partícula numa caixa rígida (ou um poço de potencial infinito) a uma dimensão, com um tamanho *a* é:

$$\psi(x) = \begin{cases} 0, & x < -a/2, x > +a/2\\ \sqrt{2/a} \sin\left(\frac{n\pi}{a}x\right), & -a/2 \le x \le +a/2 \end{cases}$$

onde n é um inteiro.

- a) Qual é o significado físico de $|\psi|^2$?
- b) Verifique que a função de onda está normalizada. [Dado: $\int \sin^2(kx) dx = \frac{x}{2} \frac{1}{4k} \sin(2kx)$]

Tópicos de Física Moderna - 2º TESTE (E)

Nome

- 1. Admita que luz com o comprimento de onda de 6.626×10⁻⁷ m incide num metal, levando à extração de eletrões por efeito fotoelétrico. O trabalho de extração (ou função trabalho) para este metal é de 2.5×10⁻¹⁹ J. Determine:
- a) a energia de um fotão da luz incidente;
- b) a energia máxima com que poderão ser ejetados os eletrões extraídos.
- **2.** A função de onda de uma partícula é:

$$\psi(x) = \begin{cases} 0, & x < 0 \\ 1/4, & 0 \le x < 7/2 \\ 3/4, & 7/2 \le x < 4 \\ 1/2, & 4 \le x \le 6 \\ 0, & x > 6 \end{cases}$$

onde x está expresso em nm.

- a) Verifique que a função de onda está normalizada.
- b) Determine a probabilidade de encontrar a partícula entre x = 1 nm e x = 5 nm.

Tópicos de Física Moderna - 2º TESTE (F)

Nome

- 1. Admita que luz com a frequência de (1/6.626)×10¹⁶ Hz incide num metal, levando à extração de eletrões por efeito fotoelétrico. O trabalho de extração (ou função trabalho) para este metal é de 6×10⁻¹⁹ J. Determine:
- a) a energia de um fotão da luz incidente;
- b) a energia máxima com que poderão sair os eletrões extraídos.
- 2. A função de onda de uma partícula é:

$$\psi(x) = \begin{cases} 0, & x < 0 \\ 1/3, & 0 \le x < 3 \\ 2/3, & 3 \le x < 4 \\ 1/3, & 4 \le x \le 6 \\ 0, & x > 6 \end{cases}$$

onde x está expresso em nm.

- a) Verifique que a função de onda está normalizada.
- b) Determine a probabilidade de encontrar a partícula entre x = -10 nm e x = 3 nm.

Tópicos de Física Moderna - 2º TESTE (G)

Nome	N'	o

1. O comprimento de onda (c.d.o.) da luz do feixe A é o dobro do c.d.o. da luz do feixe B. Sejam E_A e E_B as energias dos fotões dos feixes A e B, respetivamente. Das opções seguintes escolha a opção correta e justifique cuidadosamente a sua resposta.

A.
$$E_{\rm A} = E_{\rm B}/2$$

B.
$$E_A = E_B/$$

C.
$$E_A = E_B$$

D.
$$E_{A} = 2E_{B}$$

E.
$$E_A = 4E$$

A. $E_A = E_B/2$ B. $E_A = E_B/4$ C. $E_A = E_B$ D. $E_A = 2E_B$ E. $E_A = 4E_B$ F. nenhuma das opções anteriores está correta

2. Num certo instante a função de onda normalizada de uma partícula é:

$$\psi(x) = \begin{cases} 0, & x < 0 \\ \sqrt{\frac{2}{L}} e^{-x/L}, & x \ge 0 \end{cases}$$

onde L=1 nm. Determine a probabilidade de encontrar a partícula na região $x \ge 1$ nm.

Tópicos de Física Moderna - 2º TESTE (H)

Nome

1. A energia dos fotões do feixe de luz A é metade da energia dos fotões do feixe de luz B. Sejam λ_A e λ_B os comprimentos de onda da luz dos feixes A e B, respetivamente. Das opções seguintes escolha a opção correta e justifique cuidadosamente a sua resposta.

A.
$$\lambda_{\rm A} = \lambda_{\rm B}/2$$

B.
$$\lambda_{\rm A} = \lambda_{\rm B}/4$$

C.
$$\lambda_A = \lambda_B$$

A.
$$\lambda_A = \lambda_B/2$$
 B. $\lambda_A = \lambda_B/4$ D. $\lambda_A = 2\lambda_B$ E. $\lambda_A = 4\lambda_B$

E.
$$\lambda_A = 4\lambda_B$$

2. Num certo instante a função de onda de uma partícula é dada por: $\psi(x)=\begin{cases} 0 & x<0\\ Ae^{-x/(2L)} & x\geq 0 \end{cases}$

$$\psi(x) = \begin{cases} 0 & x < 0 \\ Ae^{-x/(2L)} & x > 0 \end{cases}$$

onde L é uma constante.

- a) Escreva a função densidade de probabilidade.
- b) Determine a constante de normalização A.

Tópicos de Física Moderna - 2º TESTE (I)

	1	
lome		N^{o}

- 1. Num certo instante uma partícula de poeira suspensa no ar, visível a olho nu, com a massa de 6.626×10⁻¹² kg, desloca-se com uma velocidade de 1 mm/s. Classifique cada uma das afirmações seguintes como verdadeira ou falsa. Justifique cuidadosamente as suas respostas.
- O comprimento de onda de de Broglie da partícula de poeira é:
- A. da mesma ordem de grandeza que o seu próprio tamanho;
- B. muito menor que o de um eletrão que se desloque com a mesma velocidade;
- C. da mesma ordem de grandeza do tamanho de um átomo de hidrogénio;
- D. da mesma ordem de grandeza que o comprimento de onda da luz visível;
- 2. A função de onda de uma partícula é:

$$\psi(x) = \begin{cases} 0, & x < 0 \\ A/4, & 0 \le x < 1 \\ A/2, & 1 \le x < 2 \\ A/4, & 2 \le x \le 3 \\ 0, & x > 3 \end{cases}$$

onde x está expresso em nm e A é a constante de normalização.

- a) Qual é a probabilidade de encontrar a partícula sobre o eixo dos xx (entre $-\infty$ e $+\infty$)? Justifique.
- b) Determine o valor de *A*.

Tópicos de Física Moderna - 2º TESTE (J)

Nome	 Nº	

- 1. Num certo instante um neutrão ($m = 1.67 \times 10^{-27}$ kg) desloca-se com uma velocidade de 1 m/s. Classifique cada uma das afirmações seguintes como verdadeira ou falsa. Justifique cuidadosamente as suas respostas.
- O neutrão tem um comprimento de onda de de Broglie:
- A. muito menor que o de um homem que se desloque com a mesma velocidade;
- B. muito menor que o de um eletrão ($m = 9.1 \times 10^{-31}$ kg) que se desloque com a mesma velocidade;
- C. muito maior que o tamanho do átomo de hidrogénio;
- D. da mesma ordem de grandeza que o comprimento de onda da luz visível;
- 2. A função de onda de uma partícula é:

$$\psi(x) = \begin{cases} 0, & x < 0 \\ 1/3, & 0 \le x < 2 \\ \sqrt{7}/3, & 2 \le x \le 3 \\ 0, & x > 3 \end{cases}$$

onde x está expresso em nm.

- a) Verifique que a função de onda está normalizada.
- b) Determine a probabilidade de encontrar a partícula entre x = 0 e x = 2.5 nm.