Domain Adaptation for Time Series Under Feature and Label Shifts

Juyun Wee

Unsupervised domain adaptation (UDA)

: enables the transfer of models trained on source domains to unlabeled target domains

Unsupervised domain adaptation (UDA)

: enables the transfer of models trained on source domains to unlabeled target domains

Feature shifts

: in the time and frequency representations

Label shifts

: label distributions of tasks in the source and target domains can differ significantly, posing difficulties in addressing label shifts and recognizing labels unique to the target domain

What makes DA difficult?

to achieve <u>robustness</u> to domain shifts, model must learn highly <u>generalizable features</u>; however,

"Private Labels"

- : classes that exist in the target domain but not in the source domain
- → In UDA, a model must generalize across domains when labels from the target domain are not available during training

Unsupervised domain adaptation (UDA)

Methods needed

 produce generalizable representations robust to feature and label shifts

 expand the scope of existing DA methods by supporting both closed-set and universal DA

What makes DA difficult in "time-series"?

1) Domain shifts can occur in both the time and frequency features of time series

: shift that highly perturbs time features while frequency features are relatively unchanged, or vice versa may occur

2) Short cut learning

(leading to limited poor performance on data unseen during training)

RAINCOAT

fRequency-augmented AllgN-then-Correct for dOmain Adaptation for Time series

: a novel domain adaptation method for time series data that can handle both feature and label shifts

the first to address both closed-set and universal domain adaptation for time series

has the unique capability of handling feature and label shifts

Notation

Dataset (source, target):

$$\mathcal{D}^s = \{(\mathbf{x}_i^s, y_i^s)\}_{i=1}^{n_s} \qquad \mathcal{D}^t = \{(\mathbf{x}_i^t)\}_{i=1}^{n_t}$$

• Label Sets : \mathcal{C}^s and \mathcal{C}^t

• Sample distributions :

$$\mathcal{D}^s \sim p_s(\mathbf{x}^s, y^s)$$
 and $\mathcal{D}^t \sim p_t(\mathbf{x}^t, y^t)$

Domain shifts

feature shift

occurs when marginal probability distributions of \boldsymbol{x} differ :

$$p_s(\mathbf{x}) \neq p_t(\mathbf{x})$$

while conditional probability distributions remain constant

$$p_s(y|\mathbf{x}) = p_t(y|\mathbf{x})$$

Property

feature shifts may occur in both time and frequency spectra

label shift

occurs when marginal probability distributions of y differ:

$$p_s(y) \neq p_t(y)$$

1) Closed-set Domain Adaptation

$$\mathcal{C}^s = \mathcal{C}^t$$

train a classifier f on Ds such that f generalizes to Dt

⇒ In real-world application?

Private labels in either the source or target domain may exist!

$$\bar{\mathcal{C}}^s = \mathcal{C}^s \setminus \mathcal{C}^t$$
 $\bar{\mathcal{C}}^t = \mathcal{C}^t \setminus \mathcal{C}^s$ $\mathcal{C}^{s,t} = \mathcal{C}^s \cap \mathcal{C}^t$

2) UniDA (universal)

$$ar{\mathcal{C}}^s = \mathcal{C}^s \setminus \mathcal{C}^t \qquad \quad ar{\mathcal{C}}^t = \mathcal{C}^t \setminus \mathcal{C}^s \qquad \quad \mathcal{C}^{s,t} = \mathcal{C}^s \cap \mathcal{C}^t$$

- train a classifier f on Ds such that f generalizes to Dt
- identify samples in private target classes, as unknown samples

$$\mathbf{x}_i \sim \mathcal{D}^t[ar{\mathcal{C}}^t]$$

RAINCOAT

: an unsupervised method for closed set and universal domain adaptation in time series

- time-frequency encoding
- feature alignment
- unknown sample detection
- training and inference

consist of three modules:

time-frequency encoder G_{TF} , classifier H , decoder U_{TF}

Time-Frequency Feature Encoder

: RAINCOAT encodes both time and frequency features in its representations

- source: $\mathbf{e}_{\mathrm{F},i}^{s}$ and $\mathbf{e}_{\mathrm{T},i}^{s}$
- target: $\mathbf{e}_{\mathrm{F},i}^t$ and $\mathbf{e}_{\mathrm{T},i}^t$

"frequency shift"

: another type of feature shift

$$(p_s(y|DFT(\mathbf{x}^s)) = p_t(y|DFT(\mathbf{x}^t)))$$
$$(p(DFT(\mathbf{x}^s)) \neq p(DFT(\mathbf{x}^t)))$$

Time-Frequency Feature Encoder

STEPS

- 1) smooth: $\mathbf{x}_i = \operatorname{Smooth}(\mathbf{x}_i)$
- 2) DFT: $\mathbf{v}_i = \mathrm{DFT}(\mathbf{x}_i)$
- 3) convolution: $\tilde{\mathbf{v}}_i = \mathbf{B} * \mathbf{v}_i$
- 4) Transform : $\mathbf{a}_i, \mathbf{p}_i \leftarrow \tilde{\mathbf{v}}_i$
- 5) Extract: $\mathbf{e}_{\mathrm{F},i} = [\mathbf{a}_i; \mathbf{p}_i]$

latent representation \mathbf{z}_i : concatenation of frequency and time features $[\mathbf{e}_{\mathrm{F},i};\mathbf{e}_{\mathrm{T},i}]$

Correction Step in RAINCOAT

correction step helps reduce negative transfer by rejecting target unknown samples $\mathbf{x}_i \sim \mathcal{D}^t[\bar{\mathcal{C}}^t]$

HOW?

update the encoder GTF and decoder UTF by solving a reconstruction task on target samples (minimizing reconstruction loss)

* target features (before/ after) : $\mathbf{z}_{a,i}^t$ and $\mathbf{z}_{c,i}^t$

RESULT

target features of common samples $\mathbf{x}^t \sim \mathcal{D}^t[\mathcal{C}^{s,t}]$ should change less in the latent space than those of unknown samples

Inference: Detect Target Private Samples

detects target unknown samples by determining the movement of target features before and after the correction step

feature vector \mathbf{z}_i^t : input to classifier \mathbf{H} , which consists of prototypes for each class $\mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_C]$

 \Rightarrow distance : $d(\mathbf{z}_i^t, \mathbf{w}_c)$

RESULT

difference of target features' distance to the assigned prototype before and after correction:

$$d_i^{ac} = |d(\mathbf{z}_{a,i}^t, \mathbf{w}_c) - d(\mathbf{z}_{c,i}^t, \mathbf{w}_c)|$$

EXPERIMENTS

for closed-set DA

EXPERIMENTS

for UNIDA

Source \mapsto Target	UAN	DANCE	OVANet	UniOT	RAINCOAT
WISDM $3 \mapsto 2$	0	0	0.07	0.11	0.51
WISDM $3 \mapsto 7$	0	0	0.2	0.22	0.52
WISDM $13 \mapsto 15$	0	0.14	0.33	0.36	0.50
WISDM $14 \mapsto 19$	0.24	0.28	0.31	0.28	0.55
WISDM $27 \mapsto 28$	0.07	0.07	0.23	0.35	0.59
WISDM $1 \mapsto 0$	0.41	0.39	0.38	0.40	0.43
WISDM $1 \mapsto 3$	0.46	0.49	0.45	0.43	0.51
WISDM $10 \mapsto 11$	0	0	0.34	0.41	0.53
WISDM $22 \mapsto 17$	0.13	0	0.32	0.41	0.52
WISDM $27 \mapsto 15$	0.43	0.51	0.46	0.52	0.57
WISDM Avg	0.17	_ 0 .1 9 _	0.31	- $ 0.35$ $ -$	0.52
WISDM Std of Avg	0.04	0.05	0.04	0.05	0.04
$W \rightarrow H \ 4 \mapsto 0$	0	0.14	0.15	0.19	0.49
$W\rightarrow H 5 \mapsto 1$	0.24	0.22	0.25	0.28	0.53
$W\rightarrow H 6 \mapsto 2$	0.14	0.12	0.20	0.25	0.55
$W\rightarrow H7 \mapsto 3$	0	0.15	0.04	0.14	0.51
$W\rightarrow H 17 \mapsto 4$	0.35	0.28	0.41	0.45	0.57
$W\rightarrow H 18 \mapsto 5$	0.20	0.27	0.29	0.32	0.47
$W\rightarrow H 19 \mapsto 6$	0.19	0.22	0.25	0.28	0.51
$W\rightarrow H 20 \mapsto 7$	0.11	0.17	0.35	0.41	0.49
$W\rightarrow H 23 \mapsto 8$	0.21	0.28	0.47	0.51	0.57
$W \rightarrow H Avg$	$\overline{0}.\overline{16}$	$\overline{0.21}$	0.24	$ \overline{0.28}$ $ -$	0.52
W→H Std of Avg	0.03	0.02	0.03	0.02	0.02

$H\rightarrow W 0 \mapsto 4$	0.23	0.28	0.33	0.37	0.45
$H\rightarrow W 1 \mapsto 5$	0.19	0.31	0.38	0.42	0.47
$H\rightarrow W 2 \mapsto 6$	0.04	0.17	0.23	0.29	0.39
$H \rightarrow W 3 \mapsto 7$	0.25	0.32	0.34	0.40	0.42
$H\rightarrow W 4 \mapsto 17$	0.31	0.39	0.41	0.40	0.51
$H\rightarrow W 5 \mapsto 18$	0.28	0.34	0.37	0.36	0.48
$H\rightarrow W 6 \mapsto 19$	0.42	0.42	0.46	0.47	0.49
$H\rightarrow W 7 \mapsto 20$	0.39	0.41	0.41	0.44	0.52
$H\rightarrow W \ 8 \mapsto 23$	0.19	0.28	0.32	0.35	0.46
$\overline{H} \rightarrow \overline{W} \overline{Avg}$	0.26	$\overline{0}.3\overline{2}$	0.36	$ \overline{0.39}$ $ -$	0.47
H→W Std of Avg	0.05	0.05	0.03	0.04	0.03
	6355500				

Higher H-score is better. Best performance is indicated in bold.