

Mathématiques et calculs 1 11 janvier 2016

Correction du Contrôle Continu 3

On rappelle les développements limités suivants. Ils pourront être utilisés au cours de ce contrôle continu. Ils sont donnés au voisinage de 0 (n et p sont des entiers quelconques).

$$\exp(x) = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} + o(x^n)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^n}{n} + o(x^n)$$

$$\cos(x) = 1 - \frac{x^2}{2} + \dots + (-1)^p \frac{x^{2p}}{(2p)!} + o(x^{2p})$$

$$\operatorname{sh}(x) = x + \frac{x^3}{6} + \dots + \frac{x^{2p+1}}{(2p+1)!} + o(x^{2p+1})$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + o(x^n)$$

Exercice 1 Soient (x_n) et (y_n) les deux suites définies par

$$x_{n+1} = \frac{x_n - y_n}{2}$$
 et $y_{n+1} = \frac{x_n + y_n}{2}$,

pour tout n, et dont les termes initiaux sont $x_0 = 2$ et $y_0 = 0$.

On définit la suite à valeurs complexes de terme général $z_n = x_n + iy_n$.

- (1) Calculer z_0 et z_1 .
- (2) Pour tout n, calculer z_{n+1} en fonction de z_n .
- (3) En déduire la nature de la suite (z_n) et donner sa raison sous forme trigonométrique.
- (4) Calculer le terme général de la suite (z_n) et en déduire les termes généraux de (x_n) et (y_n) .
- (5) Calculer les limites de (x_n) et (y_n) .

${\bf Correction:}$

(1)
$$z_0 = 2 + i \times 0 = 2$$
 et $z_1 = \frac{2-0}{2} + i\frac{2+0}{2} = 1 + i$

(2)

$$z_{n+1} = x_{n+1} + iy_{n+1}$$

$$= \frac{x_n - y_n}{2} + i\frac{x_n + y_n}{2}$$

$$= \frac{1}{2}x_n(1+i) + \frac{1}{2}y_n(-1+i)$$

$$= \frac{1}{2}x_n(1+i) + \frac{1}{2}y_n \times i(i+1)$$

$$= \frac{1}{2}(1+i)(x_n + iy_n)$$

$$= \frac{1+i}{2}z_n$$

(3) La suite z_n est une suite géométrique de raison $q = \frac{1+i}{2}$

On a
$$|q| = \sqrt{(\frac{1}{2})^2 + (\frac{1}{2})^2} = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}$$
. Donc $q = \frac{\sqrt{2}}{2}(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i) = \frac{\sqrt{2}}{2}e^{i\frac{\pi}{4}}$.

(4) Le terme général de
$$(z_n)$$
 est $z_n = 2(\frac{\sqrt{2}}{2})^n e^{i\frac{n\pi}{4}}$
Donc $x_n = \Re(z_n) = 2(\frac{\sqrt{2}}{2})^n \cos(\frac{n\pi}{4})$ et $y_n = \Im(z_n) = 2(\frac{\sqrt{2}}{2})^n \sin(\frac{n\pi}{4})$

(5)
$$\forall n \in \mathbb{N}, -1 \leqslant \cos(\frac{n\pi}{4}) \leqslant 1$$
 et $2(\frac{\sqrt{2}}{2})^n \geqslant 0$ donc $-2(\frac{\sqrt{2}}{2})^n \leqslant x_n \leqslant 2(\frac{\sqrt{2}}{2})^n$. Or $|\frac{\sqrt{2}}{2}| < 1$ donc $\pm 2(\frac{\sqrt{2}}{2})^n \longrightarrow 0$ quand n tend vers $+\infty$. D'après le théorème d'encadrement des limites, $x_n \longrightarrow 0$ quand n tend vers $+\infty$. De même, le sinus est compris entre -1 et 1, donc la suite $y_n \longrightarrow 0$ quand n tend vers $+\infty$.

Exercice 2 Déterminer les limites suivantes :

$$(1) \lim_{x \to 0} \frac{\cos(x) - 1}{x}$$

$$(2) \lim_{x \to +\infty} x^2 \left(\exp(-\frac{1}{x^2}) - 1 \right)$$

(3)
$$\lim_{x \to 0} \frac{\sinh(2x) - 2\ln(1+x)}{x^2}$$

Correction

Trection
$$(1) \frac{\cos(x) - 1}{x} = \frac{1}{x} (1 - \frac{x^2}{2} + o(x) - 1) = -\frac{x}{2} + o(x)$$

$$\operatorname{Donc} \lim_{x \to 0} \frac{\cos(x) - 1}{x} = \lim_{x \to 0} -\frac{x}{2} = 0$$

$$(2) x^2 \left(\exp(-\frac{1}{x^2}) - 1 \right) = x^2 \times (1 - \frac{1}{x^2} + o(\frac{1}{x^2}) - 1) = -1 + o(1)$$

$$\operatorname{Donc} \lim_{x \to +\infty} x^2 \left(\exp(-\frac{1}{x^2}) - 1 \right) = -1$$

$$(3) \frac{\sinh(2x) - 2\ln(1+x)}{x^2} = \frac{1}{x^2} (2x + o(x^2) - 2x + \frac{2x^2}{2} + o(x^2)) = \frac{1}{x^2} (x^2 + o(x^2)) = 1 + o(1)$$

$$\operatorname{Donc} \lim_{x \to 0} \frac{\sinh(2x) - 2\ln(1+x)}{x^2} = 1$$

Exercice 3 Le but de cet exercice est de calculer la limite $\lim_{x\to 0} \frac{1}{x^3} \left(\arcsin(\frac{2x}{1+x^2}) - 2x \right)$ Les parties I et II sont indépendantes.

On rappelle les dérivées suivantes : $\forall x \in]-1,1[, \arcsin'(x) = \frac{1}{\sqrt{1-x^2}} \text{ et } \forall x \in \mathbb{R}, \arctan'(x) = \frac{1}{1+x^2}.$

Partie I. Étude de la fonction
$$f: \left\{ \begin{array}{ccc}]-1,1[& \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \arcsin(\frac{2x}{1+x^2}) \end{array} \right.$$

- (1) Montrer que $\forall x \in]-1,1[\ ,\ -1<\frac{2x}{1+x^2}<1.$ On pourra étudier $x\longmapsto \frac{2x}{1+x^2}$ sur [-1,1].
- (2) En déduire que la fonction f est bien définie sur]-1,1[et calculer f(0).
- (3) Montrer que f est dérivable et calculer f'.
- (4) On pose la fonction $g(x) = f(x) 2\arctan(x)$, définie sur] -1,1[. Montrer que g est constante. Déterminer cette constante.
- (5) En déduire que $\forall x \in]-1,1[$, $\arcsin(\frac{2x}{1+x^2})=2\arctan(x)$.

Partie II. Développement limité de la fonction $x \mapsto \arctan(x)$.

- (1) Donner le développement limité d'ordre 4 en 0 de $\frac{1}{1+x^2}$ à partir de celui de $\frac{1}{1-x}$.
- (2) En déduire le développement d'ordre 5 en 0 de la fonction $\arctan(x)$.

Partie III. Grâce aux résultats des parties I et II, calculer la limite

$$\lim_{x\to 0}\frac{1}{x^3}\left(\arcsin(\frac{2x}{1+x^2})-2x\right).$$

Correction:

Partie I.

(1) On pose la fonction $h: \begin{cases} [-1,1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{2x}{1+x^2} \end{cases}$ qui est définie et dérivable sur [-1,1] en tant que quotient de fonctions dérivables.

Calcul de la dérivée : $h'(x) = \frac{2(1+x^2)-2\times 2x}{(1+x^2)^2} = 2\times \frac{1-x^2}{(1+x^2)^2}$ h' est du même signe que $1-x^2$ donc $\forall x\in]-1,1[,h'(x)>0.$

Ainsi h est strictement croissante sur]-1,1[. De plus h(-1)=-1 et h(1)=1 et donc

$$\forall x \in]-1,1[,-1 < \frac{2x}{1+x^2} < 1$$

- (2) La fonction arcsinus est définie sur [-1,1] et la fonction $x \mapsto \frac{2x}{1+x^2}$ prend ses valeurs dans l'intervalle]-1,1[donc la fonction f est bien définie. On a $f(0) = \arcsin(0) = 0$.
- (3) La fonction arcsinus est dérivable sur]-1,1[donc par composition de fonction dérivables, f est dérivable et $\forall x \in]-1,1[$

$$f'(x) = \arcsin'(h(x)) \times h'(x)$$

$$= \frac{1}{\sqrt{1 - \left(\frac{2x}{1 + x^2}\right)^2}} \times 2 \times \frac{1 - x^2}{(1 + x^2)^2}$$

$$= \sqrt{\frac{(1 + x^2)^2}{(1 + x^2)^2 - (2x)^2}} \times 2 \times \frac{1 - x^2}{(1 + x^2)^2}$$

$$= \frac{1 + x^2}{\sqrt{1 - 2x^2 + x^4}} \times 2 \times \frac{1 - x^2}{(1 + x^2)^2} \quad \text{car } 1 + x^2 > 0$$

$$= \frac{1}{\sqrt{(1 - x^2)^2}} \times 2 \times \frac{1 - x^2}{1 + x^2} \quad \text{or } 1 - x^2 > 0 \text{ d'où}$$

$$= \frac{2}{1 + x^2}$$

(4) En tant que différence de fonctions dérivables, g est dérivable sur $]-1,1[:g'(x)=f'(x)-2\arctan'(x)=\frac{2}{1+x^2}-2\times\frac{1}{1+x^2}=0$

Donc g est constante sur]-1,1[et vaut $g(0)=f(0)-2\arctan(0)=0-2\times 0=0.$

(5) On sait que g(x) = 0 donc $f(x) = 2\arctan(x)$. D'où le résultat :

$$\forall x \in]-1,1[, \arcsin(\frac{2x}{1+x^2})=2\arctan(x)$$

(1)
$$\frac{1}{1-x} = 1 + x + x^2 + o(x^2)$$
 donc $\frac{1}{1+x^2} = 1 - x^2 + x^4 + o(x^4)$.

(2) En intérgrant le développement limité ci-dessus, on obtient

$$\arctan(x) - \arctan(0) = x - \frac{x^3}{3} + \frac{x^5}{5} + o(x^5)$$

or $\arctan(0) = 0$ done $\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + o(x^5)$

Partie III.

Partie III. On sait que
$$\arcsin(\frac{2x}{1+x^2}) = 2\arctan(x) = 2x - \frac{2x^3}{3} + o(x^3)$$

$$\operatorname{Donc} \frac{1}{x^3} \left(\arcsin(\frac{2x}{1+x^2}) - 2x \right) = \frac{1}{x^3} (2x - \frac{2x^3}{3} + o(x^3) - 2x) = \frac{1}{x^3} (-\frac{2x^3}{3} + o(x^3)) = -\frac{2}{3} + o(1)$$

$$\operatorname{D'où} \lim_{x \to 0} \frac{1}{x^3} \left(\arcsin(\frac{2x}{1+x^2}) - 2x \right) = -\frac{2}{3}$$

Exercice 4 Algèbre linéaire

Les parties I, II et III de cet exercice sont indépendantes, mais il est conseillé de les traiter dans l'ordre pour en faciliter la résolution.

Partie I. Résolution d'un système

Soit le système (S)
$$\begin{cases} x + y - z = 1 \\ 2x + z = 2 \\ 2x + y - z = 3 \end{cases}$$

- (1) Mettre le système (S) sous forme matricielle AX = B en explicitant A, X et B.
- (2) Inverser la matrice A. (On admettra que la matrice A est inversible.)
- (3) Résoudre le système (S).

Partie II. Espace vectoriel

Soient
$$u = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
, $v = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ et $w = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$ des éléments de l'espace vectoriel \mathbb{R}^3 .

- (1) Montrer que la famille $\{u, v, w\}$ est libre.
- (2) Donner sans justifier la dimension de \mathbb{R}^3 .
- (3) En déduire que la famille $\{u, v, w\}$ est une base de \mathbb{R}^3 .

Partie III. Sous-espace vectoriel

Soit
$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x - z = 0\}.$$

- (1) Montrer que F est un sous-espace vectoriel de \mathbb{R}^3 .
- (2) Montrer que $v \in F$ et $w \in F$, où v et w sont les vecteurs définis en partie II.
- (3) Donner une base de F et déterminer la dimension de F.

Correction:

Partie I.

(1) Le système (S) peut se mettre sous la forme matricielle AX = B avec

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \\ 2 & 1 & -1 \end{pmatrix}, \qquad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \qquad \text{et} \qquad B = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

(2) Pour inverser la matrice A, supposée inversible, on utilise la méthode du pivot de Gauss :

$$\begin{pmatrix} \boxed{1} & 1 & -1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 & 1 & 0 \\ 2 & 1 & -1 & 0 & 0 & 1 \end{pmatrix} \Longrightarrow \begin{pmatrix} 1 & 1 & -1 & 1 & 0 & 0 \\ 0 & \boxed{-2} & 3 & -2 & 1 & 0 \\ 0 & -1 & 1 & \boxed{-2} & 0 & 1 \end{pmatrix}$$

$$\Longrightarrow \begin{pmatrix} 2 & 0 & -1 & 0 & 1 & 0 \\ 0 & -2 & 3 & -2 & 1 & 0 \\ 0 & 0 & \boxed{-1} & \boxed{-2} & -1 & 2 \end{pmatrix} \Longrightarrow \begin{pmatrix} 2 & 0 & 0 & \boxed{-2} & 0 & 2 \\ 0 & -2 & 0 & \boxed{-8} & -2 & 6 \\ 0 & 0 & -1 & \boxed{-2} & -1 & 2 \end{pmatrix}$$

Finalement,

$$A^{-1} = \left(\begin{array}{rrr} -1 & 0 & 1 \\ 4 & 1 & -3 \\ 2 & 1 & -2 \end{array} \right).$$

(3) Pour résoudre le système (S), on calcule le produit

$$X = A^{-1}B,$$

et on trouve x = 2, y = -3 et z = -2.

Partie II.

(1) Soient α , β et γ trois réels tels que :

$$\alpha u + \beta v + \gamma w = 0 \Longleftrightarrow \alpha \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \gamma \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\iff A \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longleftrightarrow \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Donc la famille $\{u, v, w\}$ est libre.

- $(2) \dim(\mathbb{R}^3) = 3.$
- (3) La famille $\{u, v, w\}$ est libre et son cardinal est égal à la dimension de \mathbb{R}^3 , donc c'est bien une base de \mathbb{R}^3 .

Partie III.

(1) L'élément nul
$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 de \mathbb{R}^3 est bien dans F . Soient $u_1 = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$ et $u_2 = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$ deux $\begin{pmatrix} \alpha x_1 + x_2 \end{pmatrix}$

vecteurs de F et α un réel, on vérifie que $\alpha u_1 + u_2 = \begin{pmatrix} \alpha x_1 + x_2 \\ \alpha y_1 + y_2 \\ \alpha z_1 + z_2 \end{pmatrix}$ est bien dans F car

$$(\alpha x_1 + x_2) - (\alpha z_1 + z_2) = \alpha (x_1 - z_1) + (x_2 - z_2) = 0.$$

Donc F est un sous-espace vectoriel de \mathbb{R}^3 .

- (2) Les coordonnées de v et w vérifient bien la relation linéaire définissant F donc $v \in F$ et $w \in F$.
- (3) F est inclus strictement dans \mathbb{R}^3 donc $\dim(F) < 3$. Or les vecteurs v et w sont dans F et sont indépendants. C'est donc une base F qui est de dimension 2. (On peut aussi montrer que la famille $\{v, w\}$ est génératrice de F).