Tabular Reinforcement Learning Methods Seminar

Oleksii Hrinchuk

Tabular RL

- Discrete state S and action A spaces
- Value function (Q-function) is represented as vector (matrix) which stores corresponding values for all states (state-action pairs)

$$V \in \mathbb{R}^{|\mathcal{S}|}, \quad Q \in \mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|}$$

Model-based methods

DP Policy Iteration

- 1. Set initial policy π (e.g. random policy)
- 2. (Iterative policy evaluation)
 - Initialize value function V_0^{π} (e.g. zeros)
 - Repeatfor each state $s \in S$:

$$\begin{split} V_{k+1}^{\pi}(\mathbf{s}) &= \mathbb{E}_{\mathbf{a}}[r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}'} V_k^{\pi}(\mathbf{s}')] \\ \Delta &= \max_{\mathbf{s} \in \mathcal{S}} \left| V_{k+1}^{\pi}(\mathbf{s}) - V_k^{\pi}(\mathbf{s}) \right| \\ k \leftarrow k+1 \\ \text{until } \Delta < \varepsilon \end{split}$$

3. (Greedy policy improvement)

$$\pi \leftarrow \operatorname{greedy}(V_{k+1}^{\pi})$$

4. If policy is good, return π , else go to step 2

Value Iteration

- 1. Initialize value function V_0 (e.g. zeros)
- 2. (Value iteration)
 - Repeat

for each state $s \in \mathcal{S}$:

$$\begin{aligned} V_{k+1}(\mathbf{s}) &= \max_{\mathbf{a} \in \mathcal{A}} \left[r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}'} V_k(\mathbf{s}') \right] \\ \Delta &= \max_{\mathbf{s} \in \mathcal{S}} \left| V_{k+1}(\mathbf{s}) - V_k(\mathbf{s}) \right| \\ k \leftarrow k + 1 \\ \text{until } \Delta < \varepsilon \end{aligned}$$

3. Return greedy policy w.r.t. V_{k+1}

$$\pi(\mathbf{a}|\mathbf{s}) = \begin{cases} 1, & \mathbf{a} = \arg\max_{\mathbf{a} \in \mathcal{A}} \left[r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}'} V_{k+1}(\mathbf{s}') \right] \\ 0, & \text{otherwise} \end{cases}$$

Model-free methods

MC Policy Iteration

- 1. Set initial policy π (e.g. random policy), initialize Q-function Q (e.g. zeros)
- 2. (Monte-Carlo policy evaluation)
 - Generate an episode $\tau_{\pi} = \{\mathbf{s}_0, \mathbf{a}_t, \mathbf{r}_0, \mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T\}$ using π
 - for each time step $t = 0, 1, \dots, T-1$

$$Z^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \mathbf{r}_t + \gamma \mathbf{r}_{t+1} + \dots$$

$$Q(\mathbf{s}_t, \mathbf{a}_t) \leftarrow Q(\mathbf{s}_t, \mathbf{a}_t) + \alpha [Z^{\pi}(\mathbf{s}_t, \mathbf{a}_t) - Q(\mathbf{s}_t, \mathbf{a}_t)]$$

3. (Epsilon-greedy policy improvement)

$$\pi(\mathbf{a}|\mathbf{s}) \leftarrow \begin{cases} 1 - \varepsilon, & \mathbf{a} = \arg\max_{\mathbf{a} \in \mathcal{A}} Q(\mathbf{s}, \mathbf{a}) \\ \varepsilon/(|\mathcal{A}| - 1), & \text{otherwise} \end{cases}$$

4. If policy is good, return π , else go to step 2 or greedy policy w.r.t. Q

TD Policy Iteration

- 1. Set initial policy π (e.g. random policy), initialize Q-function Q (e.g. zeros)
- 2. (SARSA policy evaluation step)
 - Make a step $\{s_t, a_t, r_t, s_{t+1}, a_{t+1}\}$ in the environment using π
 - Update Q-values with TD-targets

$$y(\mathbf{s}_t, \mathbf{a}_t) = \mathbf{r}_t + \gamma Q(\mathbf{s}_{t+1}, \mathbf{a}_{t+1})$$
$$Q(\mathbf{s}_t, \mathbf{a}_t) \leftarrow Q(\mathbf{s}_t, \mathbf{a}_t) + \alpha [y(\mathbf{s}_t, \mathbf{a}_t) - Q(\mathbf{s}_t, \mathbf{a}_t)]$$

3. (Epsilon-greedy policy improvement step)

$$\pi(\mathbf{a}|\mathbf{s}) \leftarrow \begin{cases} 1 - \varepsilon, & \mathbf{a} = \arg\max_{\mathbf{a} \in \mathcal{A}} Q(\mathbf{s}, \mathbf{a}) \\ \varepsilon/(|\mathcal{A}| - 1), & \text{otherwise} \end{cases}$$

4. If policy is good, return π , else go to step 2 or greedy policy w.r.t. Q

Online Q-learning

- 1. Set initial behavior policy π (e.g. random policy), initialize Q-function Q (e.g. zeros)
- 2. (Q-function update step)
 - Make a step $\{s_t, a_t, r_t, s_{t+1}\}$ in the environment using π
 - Update Q-values with TD-targets

$$y(\mathbf{s}_t, \mathbf{a}_t) = \mathbf{r}_t + \gamma \max_{\mathbf{a}' \in \mathcal{A}} Q(\mathbf{s}_{t+1}, \mathbf{a}')$$
$$Q(\mathbf{s}_t, \mathbf{a}_t) \leftarrow Q(\mathbf{s}_t, \mathbf{a}_t) + \alpha [y(\mathbf{s}_t, \mathbf{a}_t) - Q(\mathbf{s}_t, \mathbf{a}_t)]$$

3. (Behavior policy improvement)

$$\pi(\mathbf{a}|\mathbf{s}) \leftarrow \begin{cases} 1 - \varepsilon, & \mathbf{a} = \arg\max_{\mathbf{a} \in \mathcal{A}} Q(\mathbf{s}, \mathbf{a}) \\ \varepsilon/(|\mathcal{A}| - 1), & \text{otherwise} \end{cases}$$

4. If policy is good, return π , else go to step 2 or greedy policy w.r.t. Q

Problem set

1. Implement and test DP policy iteration

Plot the dependence of average reward on number of iterations / value sweeps. **Note:** to estimate average reward of a given policy, run it ~100 times after each policy improvement step.

2. Implement and test Value Iteration algorithm

Plot the dependence of value estimate error $\delta_k = \max_{\mathbf{s} \in \mathcal{S}} |V_k(\mathbf{s}) - V^*(\mathbf{s})|$ on number of value sweeps k. **Note:** ground truth value function V^* can be obtained from task 1.

3. Implement and test MC and TD policy iteration algorithms

Plot the dependence of average reward on number of Q-function updates. **Note:** you can either use rewards obtained with epsilongreedy policy during data collection, or run greedy policy for ~100 times after every let's say 1000 updates of Q-function.

Bonus problem

Pick favorite model-free RL method and apply to your environment

- 1. Plot the dependence of average reward on number of transitions made in the environment
- 2. Play with the size of your problem and the level of stochasticity in the environment and report the results of experiments in a form of a table or a plot.
- 3. Find parameters of the problem (size and stochasticity) when your off-policy methods fail (or take more than 3 minutes to find the solution). Add new feature to your environment which allows to run it in model-based setting. Solve the problem you did not manage to solve with your favorite model-based RL method.