ДЕКАРТОВО ПРОИЗВЕДЕНИЕ МНОЖЕСТВ

Пусть A и B — два произвольных множества. Декартовым (или прямым) произведением множеств A на B называют множество упорядоченных пар, первая компонента которых принадлежит множеству A, вторая множеству B. $A \times B = \{(a,b)/a \in A, b \in B\}$

Пары упорядочены, т.е.
$$(a,b) \neq (b,a) \implies A \times B \neq B \times A \implies$$
 прямое произведение не коммутативно

Если A = B, то пишут $A \times A = A^2$

Примеры:

- 1) Пусть $A = \{1,2\}, B = \{a,b,c\}$ $A \times B = \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)\}$
- 2) Пусть $A = \{1, 2, ..., 31\}$, $B = \{$ январь, февраль, ..., декабрь $\} \Longrightarrow A \times B$ есть множество дат вида «2 марта»
- 3) Множество [0,1] есть множество всех действительных чисел между 0 и 1.
 - $[0,1] \times [0,1] = [0,1]^2$ есть множество пар чисел, которым соответствуют точки плоскости, заполняющие квадрат

ДЕКАРТОВО ПРОИЗВЕДЕНИЕ МНОЖЕСТВ

В общем случае, прямое произведение множеств $A_1, A_2, ..., A_n$ есть множество упорядоченных последовательностей вида c, где первый элемент принадлежит множеству A_1 , второй множеству A_2 , и т.д.

$$A_1 \times A_2 \times \cdots \times A_n = \{(x_1, x_2, \dots, x_n) /, x_1 \in A_1, x_2 \in A_2, \dots, x_n \in A_n\}$$

Произведение n одинаковых $A_1 = A_2 = \cdots = A_n = A$ называют n-ой декартовой степенью множества A и обозначают A^n .

Например, множество $[0,1]^3$ - есть множество всех точек куба в трехмерном пространстве.

Бинарные отношения (БО). Основные понятия и определения.

1. *Бинарным отношением* R между элементами множеств A и B называют любое подмножество $A \times B$. T.e. $R \subseteq A \times B$

Eсли A = B, то R есть BO на A.

Запись $(a,b) \in R$ равносильна записи aRb.

Читается как: элемент a находится в отношении R с элементом b

2. Область определения БО:

 $\delta = \{a \mid \text{существует } b, \text{ что } (a,b) \in R\}$

Область значений БО:

 $\rho = \{b \mid \text{существует } a, \text{что } (a,b) \in R\}.$

То есть область определения есть *множество первых компонент* пар (a,b). Область значений — *множество вторых компонент*.

3. *Пустое БО* есть пустое подмножество декартового произведения множеств A и B. *Универсальное БО* между элементами множеств A и B есть все декартово произведение этих множеств.

Способы задания БО

- 1. С помощью характеристического признака
- 2. Списком
- 3. Матрицей
- 4. Графом

Примеры БО

Пример1
$$A = \{1, 2, 3, 4, 5\}, B = \{1, 2, 3\}, R = \{(a, b) : 0 \le a - b \le 2\}.$$

$$R = \{(1,1), (2,1), (3,1), (2,2), (3,2), (4,2), (3,3), (4,3), (5,3)\}$$

Пример 2 $A = B = \mathbf{R}, R = \{(x, y): y = x^2\}.$

Матричный способ задания БО

Пусть БО $R \subseteq A \times B$, где A и B — конечные множества, |A| = n, |B| = m. Тогда матрица БО есть матрица размерности $n \times m$, каждый элемент которой определяется следующим образом:

$$c_{ij} = egin{cases} 1, ext{если } a_i R b_j \ 0, ext{в противном случа} e \end{cases}$$

Пример. Пусть $M=\{1,2,3,4,5,6\}$, $R \subseteq M^2$, aRb \iff a и b имеют общий делитель, не равный 1. Составить матрицу отношения.

	1	2	3	4	5	6
1	0	0	0	0	0	0
2	0	1	0	1	0	1
3	0	0	1	0	0	1
4	0	1	0	1	0	1
5	0	0	0	0	1	0
6	0	1	1	1	0	1

Графическое представление БО

Пусть $R \subseteq A \times B$, где A и B – конечные множества

Каждому элементу из множества $A \cup B$ ставится в соответствие точка (вершина графа). Если xRy – рисуем стрелку от вершины x к вершине y.

Пример: рассмотрим отношение делимости R на множестве $A = \{1,2,3,4,5,6\}$ $xRy \Leftrightarrow {}^{y}/_{x}$ — целое число

ОПЕРАЦИИ НАД БИНАРНЫМИ ОТНОШЕНИЯМИ

- **1.** Объединение БО: $R \cup S = \{(a, b) \mid (a, b) \in R \lor (a, b) \in S\}.$
- **2.** Пересечение БО: $R \cap S = \{(a, b) \mid (a, b) \in R \land (a, b) \in S\}.$
- 3. Разность БО: $R S = \{(a, b) \mid (a, b) \in R \land (a, b) \notin S\}.$
- **4.** Дополнение **БО**: $\bar{R} = U R = \{(a, b) \mid (a, b) \in U \land (a, b) \notin R\}$, где $U = A \times B$ универсальное множество.
- **5.** *Обращение* бинарного отношения: $R^{-1} = \{(a, b) : (b, a) \in R\}$.

Обращение БО есть множество пар, для которых вторая компонента пары находится в отношении R с первой компонентой пары.

Свойства обращения: 1) $(R^{-1})^{-1} = R$; 2) если R = S, то $R^{-1} = S^{-1}$.

ПРИМЕРЫ

Пусть
$$A = \{a,b,c\}, B = \{0,1\}$$
 $R_1 = \{(a,0),(a,1),(b,1),(c,1)\}$ $R_2 = \{(a,0),(b,0),(c,1)\}$

1) $R_1 \cup R_2 = \{(a, 0), (a, 1), (b, 1), (c, 1), (b, 0)\}$

0

ПРИМЕРЫ

Пусть
$$A = \{a, b, c\}, B = \{0, 1\}$$
 $R_1 = \{(a, 0), (a, 1), (b, 1), (c, 1)\}$

4)
$$R_1^{-1} = \{(0, a), (1, a), (1, b), (1, c), (0, b)\}$$

Пусть
$$A = B = \mathbb{R}$$
, $R = \{(x, y): y = x^2\}$. Найти R^{-1}

$$R^{-1} = \{(x, y) | x = y^2\}$$

ОПЕРАЦИИ НАД БИНАРНЫМИ ОТНОШЕНИЯМИ

6. Произведение бинарных отношений.

Пусть $R \subseteq A \times B$, $S \subseteq B \times C$. Тогда произведение $R \circ S \subseteq A \times C$ есть новое БО: $R \circ S = \{(a,c)/\exists b \in B: (a,b) \in R, (b,c) \in S\}$

Пример 5. $P, Q \subseteq \mathbb{R}^2$, $P = \{(x,y)| y = x^2 + 1\}$, $Q = \{(x,y)| y = 2x\}$. Найти $P \circ Q$.

Решение: по определению

$$P \circ Q = \{(x,y) \mid \exists z \in \mathbb{R}: (x,z) \in P, (z,y) \in Q\}$$

$$(x, z) \in P \qquad \Rightarrow \qquad z = x^2 + 1$$

$$(z, y) \in Q \qquad \Rightarrow \qquad y = 2z$$

исключаем z

 $y = 2(x^2 + 1)$

$$P \circ Q = \{(x,y) | y=2(x^2+1)\}$$

Это и есть искомое произведение

СВОЙСТВА БИНАРНЫХ ОТНОШЕНИЙ

Бинарное отношение R заданное на некотором непустом множестве A называется:

- 1. Рефлексивным, если xRx для всех $x \in A$
- 2. **Иррефлексивным**, если $xRy \rightarrow x \neq y$ для всех $x, y \in A$
- 3. Симметричным, если $xRy \rightarrow yRx$
- 4. Антисимметричным, если $(xRy\ u\ yRx\) \rightarrow x = y$
- 5. **Транзитивным**, если $(xRy\ u\ yRz\) \rightarrow xRz$

Пример: $A = \{1,2,3,4,5,6\}$ $xRy \Leftrightarrow {}^{y}/_{x}$ — целое число

Отношение R: рефлексивно, не иррефлексивно, не симметрично, антисимметрично, транзитивно.

ПРИМЕР 6. $R \subset A^2$, $A = \{1,2,3,4\}$, $R = \{(1,1), (1,2), (2,2), (2,3), (2,4)\}$

Рефлексивность

• Высказывание $(x,x) \in R$ для всех $x \in A$ ложно. Контрпример: $x=3, 3 \in A$, но $(3,3) \notin R$. Следовательно, отношение R не является рефлексивным.

Иррефлексивность

• Высказывание $(x,x) \notin R$ для всех $x \in A$ ложно. Контрпример: x=1, но $(1,1)\in R$. Следовательно, отношение R не является ирррефлексивным.

Симметричность

• Высказывание если $(x,y) \in R => (y,x) \in R$ ложно. Контрпример: $(1,2) \in R$, но $(2,1) \notin R$. Следовательно, отношение R не является симметричным.

Антисимметричность

• Высказывание если $(x,y) \in R$ $u(y,x) \in R => x = y$ истинно. Контрпример подобрать невозможно. Нет подходящих пар. Следовательно отношение R является антисимметричным.

Транзитивность

• Высказывание если $(x,y) \in R$ $u(y,z) \in R => (x,z) \in R$ ложно. Контрпример: пары $(1,2),(2,3) \in R$, но пара $(1,3) \notin R$. Следовательно отношение R не является транзитивным.