Math 381 - Fall 2022

Jay Newby

University of Alberta

Week 10

Last Week

- Least Squares problems (overdetermined and full rank)
- QR decomposition
- Gram-Schmidt orthogonalization
- 4 Householder reflections $F = I 2uu^T$

This Week

- Stability and accuracy of the Householder Triangularization Method for the QR decomposition
- 2 Conditioning of least squares problems
- 3 Stability and accuracy of least squares algorithms

Review from last week: Householder

Triangularization
$$QR: Q_nQ_{n-1} \cdots Q_2 Q_1 A = R$$

$$LU: L_{n-1} L_{n-2} \cdots L_2 L_1 A = U$$

The following modifies the elements of \bar{A} in place and stores the vectors V_1, \ldots, V_n .

Algorithm: Householder Triangularization method QR decomposition

for k in 1, 2, . . . , n: $x = A_{k \cdot m \cdot k}$ $v_k = \text{sign}(x_1) ||x||_2 e_1 + x$ $v_k = v_k / ||v_k||_2$ $A_{k \cdot m \cdot k \cdot n} = A_{k \cdot m \cdot k \cdot n} - 2v_k(v_k^T A_{k \cdot m \cdot k \cdot n})$

The vectors v_k are stored instead of forming Q explicitly (expensive). They can be used in an algorithm to compute Q^Tb for some vector b or Qx for some vector x. If forming Q is needed, then this algorithm can be applied to the canonical vectors e_i that form the columns of the identity matrix.

Example in Jupyter

A copy will be posted in the Week 10 notebook after lecture

Backward stability of Householder Triangularization

We want to understand the phenomena we observed in our experiment, the result

$$\frac{\|A-A_2\|}{\|A\|}=O(\epsilon),$$

where $A_2 = Q_2 R_2$. We will need to study backward stability.

Theorem:

Let the QR factorization A=QR of a matrix $A\in\mathbb{R}^{m\times n}$ be computed by Householder triangularization (on a computer with suitable finite precision arithmetic) to obtain \tilde{R} and the sequence of Householder reflection vectors \tilde{v}_k , $k=1,2,\ldots,n$. Let \tilde{Q} be the exactly unitary matrix corresponding to the vectors \tilde{v}_k (i.e., no approximation error in generating \tilde{Q} from the vectors \tilde{v}_k). Then we have that

$$\tilde{Q}\tilde{R} = A + \delta A, \qquad \frac{\|\delta A\|}{\|A\|} = O(\epsilon),$$

for some $\delta A \in \mathbb{R}^{m \times n}$.

Questions

The stability result is interesting, but our end goal is rarely to compute the QR decomposition.

- Does backward stability of Householder triangularization extend to other tasks that use the inaccurate Q and R matrices, like, for example, a least squares problem or even a nonsingular linear system?
- When do we need accuracy in Q and R individually?

How about for solving nonsingular linear systems?

Algorithm: Solving Ax = b using QR Factorization

Let $A \in \mathbb{R}^{n \times n}$ be nonsingular and $b \in \mathbb{R}^n$.

- \mathbf{O} QR = A with Householder Triangularization
- $\mathbf{Q} \ y = \mathbf{Q}^T \mathbf{b}$ (using the algorithm in the next slide)
- $\mathbf{S} = R^{-1}A$ solve the upper triangular linear system using Backward Substitution

Algorithm: transformations by Q^T using Householder reflectors

$$y = b.copy()$$

for k in $1, 2, ..., n$:
 $p = v_k^T y_{k:m}$
 $y_{k:m} = y_{k:m} - 2v_k p$

Backward Stability

Let $y = Q^T b$. The output of the above algorithm generates a \tilde{y} that exactly solves

$$(Q + \delta Q)\tilde{y} = b,$$

for some $\delta Q \in \mathbb{R}^{n \times n}$ such that $\|\delta Q\| = O(\epsilon)$.

Backward Stability of Backward Substitution

Let $R \in \mathbb{R}^{n \times n}$ be upper triangular and nonsingular, and let $x = R^{-1}y$ for some $y \in \mathbb{R}^n$. The output of Backward Substitution generates a \tilde{x} that exactly solves

$$(R + \delta R)\tilde{x} = y,$$

for some $\delta R \in \mathbb{R}^{n \times n}$ such that $\frac{\|\delta R\|}{\|R\|} = O(\epsilon)$.

If each step is backward stable, is the entire algorithm also backward stable?