Зміст

	4.5.2	Принцип максимуму гармонічних функцій	1
	4.5.3	Оператор Лапласа в циліндричній та сферичній си-	
		стемах координат	2
	4.5.4	Перетворення Кельвіна гармонічних функцій	4
	4.5.5	Гармонічність в нескінченно віддаленій точці та по-	
		ведінка гармонічних функцій на нескінченості	5
	4.5.6	Єдиність гармонічних функцій	6
4.6	Рівня	ння Гельмгольца, деякі властивості його розв'язків	10

4.5.2 Принцип максимуму гармонічних функцій

Теорема 4.5.2.1 (принцип максимуму гармонічних функцій)

Якщо гармонічна в скінченній області функція досягає у внутрішній точці цієї області свого максимального або мінімального значення, то ця функція є тотожна константа.

Доведення. Нехай u(x) гармонічна функція в обмеженій області Ω і досягає в точці $x_0 \in \Omega$ свого максимального значення. Розглянемо кулю $U(x_0,R_0)\subset \Omega$ максимально великого радіусу.

Оскільки $u(x_0) = \max_{x \in \Omega} u(x)$, то значення функції u(x), коли $x \in S(x_0, R_0)$ задовольняє нерівності $u(x) \le u(x_0)$.

Якщо хоча б у одній точці $S(x_0, R_0)$ нерівність строга, тобто $u(x) < u(x_0)$, то за рахунок неперервності гармонічних функцій ця нерівність буде збережена і в деякому околі цієї точки, а це означатиме, що

$$u(x_0) > \frac{1}{4\pi R_0^2} \iint_{S(x_0, R_0)} u(\xi) dS_{\xi}.$$
 (4.5.14)

Тобто ми прийшли до протиріччя з припущенням, що $\exists \xi \in S(x_0, R_0) : u(\xi) < u(x_0)$. Це означає, що $u(x) = u(x_0), x \in S(x_0, R_0)$.

Оскільки ця рівність має місце для кулі будь-якого радіусу $R \leq R_0$, то це означає, що $u(x) \equiv u(x_0)$ коли $x \in U(x_0, R_0)$.

Покажемо тепер, що функція $u(x) \equiv u(x_0)$ коли $x \in \Omega$.

Для цього виберемо довільну точку $x^* \in \Omega$, то з'єднаємо її з точкою x_0 ламаною. Побудуємо послідовність куль $\{U(x_i,R_i)\}_{i=0}^N$ з такими властивостями:

- центри куль x_i , $i = \overline{1..N}$ належать ламаній;
- $x_{i+1} \in U(x_i, R_i) \subset \Omega, i = \overline{1..N};$
- $x^* \in U(x_N, R_N)$.

Оскільки центр кожної наступної кулі з номером i+1, лежить всередині кулі з номером i, то використовуючи метод математичної індукції, ми можемо встановити властивість: якщо функція $u(x) \equiv u(x_0)$ коли $x \in U(x_i, R_i)$ то $u(x) \equiv u(x_0)$, коли $x \in U(x_{i+1}, R_{i+1})$. Це означає, що $u(x) \equiv u(x_0)$, коли $x \in U(x_N, R_N)$. Зокрема, це означає, що $u(x^*) = u(x_0)$.

Наслідок 4.5.2.1

Гармонічна функція відмінна від тотожної константи не досягає в скінченній області ні свого максимального ні свого мінімального значення.

Наслідок 4.5.2.2

Якщо функція гармонічна в області Ω і неперервна в $\overline{\Omega}$, то свої максимальне і мінімальне значення вона приймає на границі S області.

Наслідок 4.5.2.3

Якщо функція гармонічна в області Ω і неперервна в $\overline{\Omega}$, то $|u(x)| \le \max_{x \in S} |u(x)|$.

Наслідок 4.5.2.4

Нехай u(x), v(x) — гармонічні функції в області Ω і має місце нерівність $u(x) < v(x), x \in S$, тоді $u(x) < v(x), x \in \Omega$.

4.5.3 Оператор Лапласа в циліндричній та сферичній системах координат

Замість прямокутних координат x, y, z введемо ортогональні криволінійні координати q_1, q_2, q_3 за допомогою співвідношень

$$q_i = f_i(x, y, z), \quad i = 1, 2, 3,$$
 (4.5.15)

які дозволяють записати обернені перетворення

$$x = \varphi_1(q_1, q_2, q_3), \quad y = \varphi_2(q_1, q_2, q_3), \quad z = \varphi_3(q_1, q_2, q_3).$$
 (4.5.16)

Загальний вигляд оператора Лапласа в криволінійних координатах має вигляд:

$$\Delta(u) = \frac{1}{H_1 H_2 H_3} \left(\frac{\partial}{\partial q_1} \left(\frac{H_2 H_3}{H_1} \frac{\partial u}{\partial q_1} \right) + \frac{\partial}{\partial q_2} \left(\frac{H_1 H_3}{H_2} \frac{\partial u}{\partial q_2} \right) + \frac{\partial}{\partial q_3} \left(\frac{H_1 H_2}{H_3} \frac{\partial u}{\partial q_3} \right) \right), \tag{4.5.17}$$

де

$$\begin{cases}
H_1^2 = \left(\frac{\partial \varphi_1}{\partial q_1}\right)^2 + \left(\frac{\partial \varphi_2}{\partial q_1}\right)^2 + \left(\frac{\partial \varphi_3}{\partial q_1}\right)^2, \\
H_2^2 = \left(\frac{\partial \varphi_1}{\partial q_2}\right)^2 + \left(\frac{\partial \varphi_2}{\partial q_2}\right)^2 + \left(\frac{\partial \varphi_3}{\partial q_2}\right)^2, \\
H_4^2 = \left(\frac{\partial \varphi_1}{\partial q_3}\right)^2 + \left(\frac{\partial \varphi_2}{\partial q_3}\right)^2 + \left(\frac{\partial \varphi_3}{\partial q_3}\right)^2.
\end{cases} (4.5.18)$$

• Для сферичної системи координат $q_1 = r, q_2 = \theta, q_3 = \varphi$, і формули (4.5.16), (4.5.18) мають вигляд $x = r \sin \theta \cos \varphi, y = r \sin \theta \sin \varphi, z = r \cos \theta, H_1 = 1, H_2 = r, H_3 = r \sin \theta.$

Таким чином оператор Лапласа у сферичній системі координат матиме вигляд.

$$\Delta_{r,\varphi,\theta} u = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \varphi^2}.$$
(4.5.19)

• Для циліндричної системи координат $q_1 = \rho$, $q_2 = \varphi$, $q_3 = z$, і формули (4.5.16), (4.5.18) мають вигляд $x = \rho \cos \varphi$, $y = \rho \sin \varphi$, z = z, $H_1 = 1$, $H_2 = \rho$, $H_3 = 1$.

Оператор Лапласа в циліндричній системі координат має вигляд:

$$\Delta_{\rho,\varphi,z}u = \frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial u}{\partial\rho}\right) + \frac{1}{\rho^2}\frac{\partial^2 u}{\partial\varphi^2} + \frac{\partial^2 u}{\partial z^2}.$$
 (4.5.20)

• Якщо функція u не залежить від змінної z, то отримуємо полярну систему координат і вираз оператора Лапласа в полярній системі координат:

$$\Delta_{\rho,\varphi} u = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 u}{\partial \varphi^2}. \tag{4.5.21}$$

4.5.4 Перетворення Кельвіна гармонічних функцій

Визначення 4.5.4.1. Нехай функція u гармонічна за межами кулі U(0,R), тоді функцію

 $v(y) = \left(\frac{R}{|y|}\right)^{n-2} \cdot u\left(\frac{R^2}{|y|^2} \cdot y\right) \tag{4.5.22}$

(тут використовується перетворення аргументу обернених радіус векторів $x = R^2/|y|^2 \cdot y$ або обернене $y = R^2/|x|^2 \cdot x$) будемо називати *перетворенням Кельвіна* гармонічної функції u(x) в n-вимірному евклідовому просторі.

Зауваження 4.5.4.1 - B подальшому будемо вважати, що R = 1, цього завжди можна досягти шляхом зміни масштабу.

Твердження 4.5.4.1

Для n=3 перетворення Кельвіна v(y) гармонічної функції u(x) є гармонічною функцією аргументу y.

Доведення. Легко показати, що перший доданок в операторі Лапласа (4.5.19) може бути записаний у вигляді

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial u}{\partial r}\right) = \frac{1}{r}\frac{\partial^2(ru)}{\partial r^2}.$$
(4.5.23)

Таким чином при n=3, R=1, (4.5.22) має вигляд

$$v(y) = \frac{1}{|y|} \cdot u\left(\frac{y}{|y|^2}\right).$$
 (4.5.24)

Оскільки $y=x/|x|^2$, а $x=y/|y|^2$, то |y|=1/|x|, або $v(y)=|x|\cdot u(x)$.

Твердження 4.5.4.2

Функція $v(r',\theta,\varphi)=r\cdot u(r,\theta,\varphi)$, де r=1/r', задовольняє рівнянню Лапласа, якщо $u(r,\theta,\varphi)$ — гармонічна функція.

Доведення. Дійсно,

$$0 = r \cdot \Delta_{r,\varphi,\theta} u = \frac{\partial^{2}(ru)}{\partial r^{2}} + \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} \left(\sin \theta \cdot \frac{\partial u}{\partial \theta} \right) + \frac{1}{\sin \theta} \frac{\partial^{2} u}{\partial \varphi^{2}} \right) =$$

$$= \frac{\partial^{2} v}{\partial r^{2}} + \frac{1}{r^{2} \sin \theta} \left(\frac{\partial}{\partial \theta} \left(\sin \theta \cdot \frac{\partial v}{\partial \theta} \right) + \frac{1}{\sin \theta} \frac{\partial^{2} v}{\partial \varphi^{2}} \right) =$$

$$= (r')^{2} \cdot \frac{\partial}{\partial r'} \left((r')^{2} \frac{\partial v}{\partial r'} \right) +$$

$$+ \frac{(r')^{2}}{\sin \theta} \left(\frac{\partial}{\partial \theta} \left(\sin \theta \cdot \frac{\partial v}{\partial \theta} \right) + \frac{1}{\sin \theta} \frac{\partial^{2} v}{P} \partial \varphi^{2} \right) =$$

$$= (r')^{4} \Delta_{r',\varphi,\theta} v(r',\theta,\varphi). \tag{4.5.25}$$

При отриманні останньої рівності було враховано що

$$\frac{\partial v}{\partial r} = -(r')^2 \frac{\partial v}{\partial r'}, \quad \frac{\partial^2 v}{\partial r^2} = (r')^2 \frac{\partial}{\partial r'} \left((r')^2 \frac{\partial v}{\partial r'} \right). \tag{4.5.26}$$

Зауваження 4.5.4.2 — Аналогічно тому, як було показана гармонічність

$$v(y) = \frac{1}{|y|} \cdot u\left(\frac{y}{|y|}^2\right) \tag{4.5.27}$$

у тривимірному евклідовому просторі, можна показати гармонічність функції

$$v(y) = u\left(\frac{y^2}{|y|}\right) \tag{4.5.28}$$

у двовимірному евклідовому просторі.

4.5.5 Гармонічність в нескінченно віддаленій точці та поведінка гармонічних функцій на нескінченості

Визначення 4.5.5.1. Будемо говорити, що функція u(x) є *гармонічною* функцією в нескінченно віддаленій точці, якщо функція

$$v(y) = \begin{cases} \frac{1}{|y|} \cdot u\left(\frac{y}{|y|^2}\right), & n = 3, \\ u\left(\frac{y}{|y|^2}\right), & n = 2, \end{cases}$$

$$(4.5.29)$$

є гармонічною функцією в точці нуль.

Легко бачити, що

$$v(y) = \begin{cases} |x| \cdot u(x), & n = 3, \\ u(x), & n = 2. \end{cases}$$
 (4.5.30)

Теорема 4.5.5.1 (про поведінку гармонічних функцій в нескінченно віддалені точці в просторі)

Якщо при n=3 функція u(x) гармонічна в нескінченно віддаленій точці, то при $|x|\to\infty$ функція прямує до нуля не повільніше 1/|x|, а частинні похідні ведуть себе як $D^{\alpha}u(x)=O(1/|x|^{1+|\alpha|}$.

Теорема 4.5.5.2 (про поведінку гармонічних функцій в нескінченно віддалені точці на площині)

Якщо при n=2 функція u(x) гармонічна в нескінченно віддаленій точці, то при $|x| \to \infty$ функція обмежена, а частинні похідні ведуть себе як $D^{\alpha}u(x) = O(1/|x|^{1+|\alpha|})$.

Визначення 4.5.5.2. Гармонічні функції які мають поведінку на нескінченості визначену теоремами 4.5.5.1 та 4.5.5.2 для тривимірного і двовимірного просторів називають регулярними на нескінченості гармонічними функціями, а відповідні оцінки — умовами регулярності на нескінченості.

4.5.6 Єдиність гармонічних функцій

Нехай U(x) — гармонічна функція в обмеженій області Ω з границею S, тоді має місце рівність Діріхле

$$\iiint\limits_{\Omega} |\nabla U|^2 \, \mathrm{d}x = \iint\limits_{S} U \frac{\partial U}{\partial \vec{n}} \, \mathrm{d}S. \tag{4.5.31}$$

Нехай U(x) — гармонічна функція області $U(0,R)\setminus\Omega$ з границями S та S(0,R), де R — як завгодно велике число, тоді має місце рівність Діріхле

$$\iiint_{\Omega} |\nabla U|^2 dx = \iint_{S} U \frac{\partial U}{\partial \vec{n}} dS + \iint_{S(0,R)} U \frac{\partial U}{\partial \vec{n}} dS.$$
 (4.5.32)

Для доведення рівності Діріхле (4.5.31) достатньо записати очевидний ланцюжок рівностей:

$$0 = \iint_{\Omega} U(x)\Delta U(x) dx = \iint_{\Omega} U(x)\nabla \cdot (\nabla U(x)) dx =$$

$$= \iint_{S} U(x) \langle \nabla U(x), \vec{n} \rangle dS - \iint_{\Omega} |\nabla U(x)|^{2} dx.$$
(4.5.33)

Аналогічно можна довести і рівність (4.5.32).

При формулюванні теорем єдиності гармонічних функцій ми скрізь будемо припускати існування відповідної гармонічної функції, хоча сам факт існування гармонічної функції ми доведемо пізніше.

Теорема 4.5.6.1 (Перша теорема єдиності гармонічних функцій)

Якщо в обмеженій області Ω , (або в області $\Omega' = \mathbb{R}^3 \setminus \Omega$) існує гармонічна функція (або гармонічна функція регулярна на нескінченості), яка приймає на поверхні S задані значення, то така функція єдина.

Доведення. Припустимо, що в області Ω існує принаймні дві гармонічні функції, які приймають на поверхні S однакові значення:

$$\begin{cases} \Delta u_i(x) = 0, & x \in \Omega, \\ u_i|_{x \in S} = f, & i = 1, 2. \end{cases}$$

$$(4.5.34)$$

Для функції $u(x) = u_1(x) - u_2(x)$ будемо мати задачу

$$\begin{cases} \Delta u(x) = 0, & x \in \Omega, \\ u|_{x \in S} = 0. \end{cases}$$
 (4.5.35)

Застосуємо рівність Діріхле для функції u(x). Будемо мати

$$\iiint\limits_{\Omega} |\nabla u|^2 \, \mathrm{d}x = \iint\limits_{S} u \cdot \frac{\partial u}{\partial \vec{n}} \cdot \mathrm{d}S = 0. \tag{4.5.36}$$

Звідси маємо, що $\nabla u(x) \equiv 0$, $x \in \Omega$. Остання рівність означає, що $u(x) \equiv \text{const}$, $x \in \overline{\Omega}$ а оскільки u(x) = 0, $x \in S$ то $u(x) \equiv 0$, $x \in \Omega$. Тобто ми маємо, що $u_1(x) \equiv u_2(x)$.

Покажемо справедливість теореми для області $\Omega' = \mathbb{R}^3 \setminus \Omega$.

Припускаючи існування двох регулярних гармонічних функцій які приймають на поверхні S однакові значення

$$\begin{cases} \Delta u_i(x) = 0, & x \in \Omega', \\ u_i|_{x \in S} = f, & i = 1, 2. \end{cases}$$
 (4.5.37)

отримаємо для функції $u(x) = u_1(x) - u_2(x)$ задачу

$$\begin{cases} \Delta u(x) = 0, & x \in \Omega', \\ u|_{x \in S} = 0, \\ u(x) = O\left(\frac{1}{|x|}\right), & |x| \to \infty. \end{cases}$$

$$(4.5.38)$$

Застосуємо для u(x) рівність (4.5.32):

$$\iiint_{U(0,R)\backslash\Omega} |\nabla u|^2 dx = \iint_S u \cdot \frac{\partial u}{\partial \vec{n}} \cdot dS + \iint_{S(0,R)} u \cdot \frac{\partial u}{\partial \vec{n}} \cdot dS =$$

$$= \iint_{S(0,R)} u \cdot \frac{\partial u}{\partial \vec{n}} \cdot dS.$$
(4.5.39)

Спрямуємо радіус кулі R до нескінченності і врахуємо умову регулярності на нескінченості:

$$\iiint_{\Omega'} |\nabla u|^2 dx = \lim_{R \to \infty} \iint_{S(0,R)} u \cdot \frac{\partial u}{\partial \vec{n}} \cdot dS =$$

$$= \lim_{R \to \infty} O\left(\frac{1}{R^3}\right) \iint_{S(0,R)} dS = 0.$$
(4.5.40)

Таким чином $u(x) \equiv \text{const}, x \in \Omega'$ а оскільки $u(x) = 0, x \in S$ то $u_1(x) \equiv u_2(x)$.

Теорема 4.5.6.2 (Друга теорема єдиності гармонічних функцій)

Якщо в обмеженій області Ω , (або в області $\Omega' = \mathbb{R}^3 \setminus \Omega$) існує гармонічна функція (або гармонічна функція регулярна на нескінченості), яка приймає на поверхні S задані значення своєї нормальної похідної $\frac{\partial u}{\partial \vec{n}}\big|_{x\in S}$, то в області Ω вона визначається с точністю до адитивної константи, а в області Ω' вона єдина.

Доведення. Припустимо, що в області Ω існує принаймі дві гармонічні функції, які приймають на поверхні S однакові значення нормальної похідної

$$\begin{cases}
\Delta u_i(x) = 0, & x \in \Omega, \\
\frac{\partial u_i}{\partial \vec{n}}\Big|_{x \in S} = f, & i = 1, 2.
\end{cases}$$
(4.5.41)

Для функції $u(x) = u_1(x) - u_2(x)$ будемо мати задачу

$$\begin{cases} \Delta u(x) = 0, & x \in \Omega, \\ \frac{\partial u}{\partial \vec{n}} \Big|_{x \in S} = 0. \end{cases}$$
(4.5.42)

Для функції u(x) використаємо рівність Діріхле:

$$\iiint_{\Omega} |\nabla u|^2 dx = \iint_{S} u \cdot \frac{\partial u}{\partial \vec{n}} \cdot dS = 0, \qquad (4.5.43)$$

тобто $\nabla u(x) \equiv 0, x \in \Omega, u(x) \equiv \text{const.}$ Константа залишається невизначеною і таким чином $u_1(x) = u_2(x) + \text{const.}$

Покажемо справедливість теореми для області Ω' .

Припускаючи існування двох регулярних гармонічних функцій які приймають на поверхні S однакові значення нормальної похідної

$$\begin{cases}
\Delta u_i(x) = 0, & x \in \Omega', \\
\frac{\partial u_i}{\partial \vec{n}}\Big|_{x \in S} = f, & i = 1, 2.
\end{cases}$$
(4.5.44)

отримаємо для функції $u(x) = u_1(x) - u_2(x)$ задачу

$$\begin{cases} \Delta u(x) = 0, & x \in \Omega', \\ \frac{\partial u}{\partial \vec{n}}\Big|_{x \in S} = 0. \end{cases}$$
(4.5.45)

Застосуємо для u(x) рівність (4.5.32):

$$\iiint_{U(0,R)\backslash\Omega} |\nabla u|^2 dx = \iint_S u \cdot \frac{\partial u}{\partial \vec{n}} \cdot dS + \iint_{S(0,R)} u \cdot \frac{\partial u}{\partial \vec{n}} \cdot dS =$$

$$= \iint_{S(0,R)} u \cdot \frac{\partial u}{\partial \vec{n}} \cdot dS.$$
(4.5.46)

Спрямуємо радіус кулі R до нескінченності і врахуємо умову регулярності на нескінченості:

$$\iiint_{\Omega'} |\nabla u|^2 dx = \lim_{R \to \infty} \iint_{S(0,R)} u \cdot \frac{\partial u}{\partial \vec{n}} \cdot dS =$$

$$= \lim_{R \to \infty} O\left(\frac{1}{R^3}\right) \iint_{S(0,R)} dS = 0.$$
(4.5.47)

Таким чином $u(x) \equiv \text{const}, x \in \Omega'$ а оскільки $\lim_{x \to \infty} u(x) = 0$, то $u(x) \equiv 0$, а $u_1(x) \equiv u_2(x)$.

Теорема 4.5.6.3 (Третя теорема єдиності гармонічних функцій)

Якщо в обмеженій області Ω , (або в області $\Omega' = \mathbb{R}^3 \setminus \Omega$) існує гармонічна функція (або гармонічна функція регулярна на нескінченості), яка приймає на поверхні S задані значення лінійної комбінації нормальної похідної та функції $\frac{\partial u}{\partial \vec{n}} + \alpha(x) \cdot u\big|_{x \in S}, \ \alpha \geq 0$ то в області Ω та в області Ω' вона визначається єдиним чином.

Вправа 4.5.6.1. Останню теорему довести самостійно.

4.6 Рівняння Гельмгольца, деякі властивості його розв'язків

Приклад 4.6.0.1

Розглянемо задачу

$$\begin{cases} a^2 \Delta u(x,t) - \frac{\partial^2 u}{\partial t^2} = -F(x,t), & x \in \Omega, \\ \ell_i u|_{x \in S} = f(x,t). \end{cases}$$
(4.6.1)

Зауваження 4.6.0.1 — В цій задачі відсутні початкові умови у зв'язку з тим, що розглядаються спеціальні значення функції F(x,t) та f(x,t). А саме ми вважаємо, що ці функції є періодичними по аргументу t з однаковим періодом.

Розв'язок. Покладемо, що

$$\begin{cases} F(x,t) = F_1(x)\cos(\omega t) - F_2(x)\sin(\omega t), \\ f(x,t) = f_1(x)\cos(\omega t) - f_2(x)\sin(\omega t). \end{cases}$$
(4.6.2)

Можна очікувати, що в результаті доволі тривалої дії таких збурень розв'язок задачі при будь-яких початкових умовах теж буде періодичним, тобто

$$u(x,t) = V_1(x)\cos(\omega t) - V_2(x)\sin(\omega t).$$
 (4.6.3)

Підставляючи цей розв'язок у задачу (4.6.1), отримаємо

$$\begin{cases}
\left(\Delta V_1 + \frac{\omega^2}{a^2} V_1\right) \cos(\omega t) - \left(\Delta V_2 + \frac{\omega^2}{a^2} V_2\right) \sin(\omega t) = \\
= -\frac{F_1}{a^2} \cos(\omega t) - \frac{F_2}{a^2} \sin(\omega t), \\
\cos(\omega t) \ell_i V_1|_{x \in S} - \sin(\omega t) \ell_i V_2|_{x \in S} = \\
= f_1 \cos(\omega t) - f_2 \sin(\omega t).
\end{cases} (4.6.4)$$

Оскільки функції $\cos(\omega t), \sin(\omega t)$ — лінійно незалежні, то для амплітуди $V_i(x), i=1,2$ отримаємо рівняння Гельмгольца

$$\begin{cases} \Delta V_j + \frac{\omega^2}{a^2} V_j = -\frac{F_j}{a^2}, & x \in \Omega, \quad j = 1, 2, \\ \ell_i V_j|_{x \in S} = f_j. \end{cases}$$

$$(4.6.5)$$

Зауваження 4.6.0.2 — Аналогічний результат можна отримати, якщо ввести комплексну амплітуду $V = V_1 + iV_2$, комплексну зовнішню силу $F = F_1 + iF_2$ та комплексну амплітуду граничної умови $f = f_1 + if_2$.

Шукаючи розв'язок (4.6.1) у вигляді $U(x,t)=V(x)e^{i\omega t}$, отримаємо для комплексної амплітуди задачу

$$\begin{cases} \Delta V(x) + \frac{\omega^2}{a^2} = -\frac{F}{a^2}, & x \in \Omega, \\ \ell_i V|_{x \in S} = f. \end{cases}$$
(4.6.6)

Другим джерелом виникнення рівняння Гельмгольца є стаціонарне рівняння дифузії при наявності в середовищі процесів, що ведуть до розмноження речовини.

Приклад 4.6.0.2

Такі процеси наприклад виникають, наприклад, при дифузії нейтронів. Рівняння має вигляд:

$$\Delta V(x) + \frac{c}{D} \cdot V(x) = 0, \tag{4.6.7}$$

де D — коефіцієнт дифузії, c — швидкість розмноження нейтронів.

Зауваження 4.6.0.3 — Суттєва відмінністю граничних задач для рівняння Гельмгольца від граничних задач рівняння Лапласа полягає в можливому порушенні єдиності розв'язку як для внутрішніх так і для зовнішніх задач.

Приклад 4.6.0.3

Розглянемо таку граничну задачу:

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + 2k^2 y = 0, & 0 < x, y < \pi, \\ u(0, y) = u(\pi, y) = u(x, 0) = u(x, \pi) = 0. \end{cases}$$
(4.6.8)

Pозв'язок. При k=0 ця задача має лише тривіальний розв'язок, що випливає з першої теореми єдності гармонічних функцій.

Нехай тепер k — ціле число. Неважко перевірити, що в цьому разі задача має нетривіальний розв'язок $u(x,y)=\sin(kx)\sin(ky)$, а це в свою чергу означає, що задача з неоднорідними граничними умовами та неоднорідне рівняння Гельмгольца

$$\begin{cases} \frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + 2k^{2}u = -F(x, y), & 0 < x, y < \pi, \\ u(0, y) = \varphi_{1}(y), \\ u(\pi, y) = \varphi_{2}(y), \\ u(x, 0) = \psi_{1}(x), \\ u(x, \pi) = \psi_{2}(x) \end{cases}$$
(4.6.9)

має неєдиний розв'язок, який визначається з точністю до розв'язку однорідного рівняння, тобто з точністю до функції $A \sin(kx) \sin(ky)$.

Приклад 4.6.0.4

Розглянемо зовнішню задачу для однорідного рівняння Гельмгольца

$$\begin{cases} \Delta u(x) + k^2 u = 0, & |x| > \pi, \quad x = (x_1, x_2, x_3), \\ u(x)|_{|x|=\pi} = 0, \\ u(x) \xrightarrow[|x| \to \infty]{} 0. \end{cases}$$
(4.6.10)

Pозв'язок. При k=0 гранична задача має лише тривіальний розв'язок тотожно рівний нулю, що випливає з другої теореми єдиності гармонічних функцій.

У випадку, коли k — ціле ми маємо, що розв'язком останньої граничної задачі окрім тотожного нуля буде функція

$$u(x) = \frac{\sin(k|x|)}{4\pi|x|}. (4.6.11)$$

Легко перевірити, що ця функція задовольняє як однорідному рівнянню Гельмгольца (це уявна частина фундаментального розв'язку) так і граничній умові на сфері і умові на нескінченості.

Наявність нетривіального розв'язку у однорідної задачі означає неєдиність розв'язку відповідної неоднорідної задачі.