IDENTIFYING INCONSISTENT RESPONDERS

2024-01-04

Using inter-item standard deviation, we can identify whether respondents provided unusually inconsistent responses on different items within a single scale or measure

```
data <- read_csv("Cues to Infidelity - MEN ONLY 7.12.23.csv")</pre>
## Rows: 239 Columns: 554
## -- Column specification -------
## Delimiter: ","
         (6): StartDate, EndDate, RecordedDate, M_SC_MRSI_1, M_SC_MRSI_4_2, M_S...
## dbl (462): USE, CUES, SEX_CUES, EMO_CUES, MISC_CUES, REACT, SUS, SOI, VAI_A_...
## lgl (86): Q566_1, Q566_2, W_PDIS_A_1, W_PDIS_A_2, W_PDIS_A_3, W_PDIS_A_4, W...
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
STEP 1
Calculate the inter-item standard deviation for the desired composite variable and assign it to a new variable
df <- data.frame(data$M_MJSB1, data$M_MJSB2, data$M_MJSB3, data$M_MJSB4, data$M_MJSB5, data$M_MJSB6, da
df$EMO_SD <- apply(data[, 1:8], 1, sd, na.rm = TRUE)</pre>
head(df, 10)
      data.M_MJSB1 data.M_MJSB2 data.M_MJSB3 data.M_MJSB4 data.M_MJSB5
##
## 1
## 2
                 4
                              4
                                           3
                                                        4
                                                                      6
## 3
                              5
                                           3
                                                        5
                                                                      5
                              4
                                           4
                                                        5
                                                                      5
## 4
                 4
## 5
                 4
                              4
                                           5
                                                        5
                                                                      7
                 2
                              4
                                           1
                                                        4
                                                                      5
## 6
                 2
                              2
                                           3
## 7
                                                                      1
                                           2
                                                        6
                                                                      7
## 8
                              5
## 9
                                           7
                                                                      7
## 10
                 4
                              4
                                                                      5
##
      data.M_MJSB6 data.M_MJSB7 data.M_MJSB8
                                                EMO_SD
                                           6 1.6264492
## 1
                 4
                              4
                 7
                              7
## 2
                                           2 1.3689543
                 7
## 3
                              4
                                           4 1.2988612
## 4
                 7
                              7
                                           5 1.4822056
                 7
                              7
## 5
                                           5 1.6331448
                 7
                              6
## 6
                                           1 1.2068953
## 7
                 1
                              1
                                           1 0.5974367
                 7
                              7
## 8
                                           3 1.4798319
## 9
                 7
                              7
                                           5 1.7784922
```

5 1.7105110

10

STEP 2

Convert the new variable to a standardized score (i.e., z-score)

```
df$Z_EMO_SD <- (df$EMO_SD - mean(df$EMO_SD)) / sd(df$EMO_SD)</pre>
```

head(df, 10)

##		data.M_MJSB1	data.M_MJSB2	data.M_MJSB3	data.M_MJSB4	data.M_MJSB5
##	1	7	6	6	5	5
##	2	4	4	3	4	6
##	3	4	5	3	5	5
##	4	4	4	4	5	5
##	5	4	4	5	5	7
##	6	2	4	1	4	5
##	7	2	2	3	3	1
##	8	4	5	2	6	7
##	9	6	6	7	6	7
##	10	4	4	4	6	5
##		1-+- M MICDC	1 . W MIGDZ	1 . 14 14 76 70	T140 GD	
ππ		data.M_MJSB6	data.M_MJSB/	data.M_MJSB8	EMO_SD	Z_EMO_SD
##	1	data.M_MJSB6	data.M_MJSB/	data.M_MJSB8	-	Z_EMU_SD .59586535
	_	_		6	-	. 59586535
##	2	4		6 2	1.6264492 0	.59586535 .31465688
##	2	- 4 7	4	6 2 4	1.6264492 0 1.3689543 -0	.59586535 .31465688 .56251160
## ## ##	2 3 4	4 7 7	4	6 2 4 5	1.6264492 0 1.3689543 -0 1.2988612 -0 1.4822056 0	.59586535 .31465688 .56251160
## ## ## ##	2 3 4 5	4 7 7 7	4 7 4 7	6 2 4 5	1.6264492 0 1.3689543 -0 1.2988612 -0 1.4822056 0 1.6331448 0	.59586535 .31465688 .56251160 .08580862 .61954156
## ## ## ##	2 3 4 5 6	4 7 7 7 7	4 7 4 7 7	6 2 4 5 5	1.6264492 0 1.3689543 -0 1.2988612 -0 1.4822056 0 1.6331448 0	.59586535 .31465688 .56251160 .08580862 .61954156
## ## ## ## ##	2 3 4 5 6 7	4 7 7 7 7	4 7 4 7 7 6	6 2 4 5 5 1 1	1.6264492 0 1.3689543 -0 1.2988612 -0 1.4822056 0 1.6331448 0 1.2068953 -0 0.5974367 -3	.59586535 .31465688 .56251160 .08580862 .61954156
## ## ## ## ## ##	2 3 4 5 6 7 8	4 7 7 7 7 7	4 7 4 7 7 6	6 2 4 5 5 1 1	1.6264492 0 1.3689543 -0 1.2988612 -0 1.4822056 0 1.6331448 0 1.2068953 -0 0.5974367 -3	.59586535 .31465688 .56251160 .08580862 .61954156 .88771034 .04280379

STEP 3

Determine whether your data contains any cases with particularly inconsistent responders (z-score > 3) and consider removing these cases from your data

head(df[order(-df\$Z_EMO_SD),], 10)

##		data.M_MJSB1	data.M_MJSB2	data.M_MJSB3	data.M_MJSB4	data.M_MJSB5
##	88	5	- 6	7	7	7
##	34	6	6	7	7	7
##	98	7	7	5	7	7
##	161	7	7	7	7	7
##	100	4	7	6	7	7
##	118	4	5	5	6	7
##	66	4	4	4	7	7
##	46	5	5	4	6	7
##	58	4	7	4	7	7
##	83	7	4	4	7	7
##		${\tt data.M_MJSB6}$	${\tt data.M_MJSB7}$	${\tt data.M_MJSB8}$	EMO_SD Z_EM	O_SD
##	88	7	7	7	2.446306 3.49	4944
##	34	7	7	7	2.188182 2.58	2196
##	98	7	7	5	2.012948 1.96	2555
##	161	7	7	4	2.009800 1.95	1425
##	100	7	7	7	2.001971 1.92	3740
##	118	7	7	4	1.982793 1.85	5925
##	66	7	7	7	1.964522 1.79	1319

```
## 58
                  7
                                7
                                             7 1.932010 1.676352
## 83
                  7
                                7
                                             6 1.897859 1.555592
df_no_outliers <- df[-(which(df$Z_EMO_SD > 3)),]
head(df_no_outliers[order(-df_no_outliers$Z_EMO_SD),], 10)
       data.M_MJSB1 data.M_MJSB2 data.M_MJSB3 data.M_MJSB4 data.M_MJSB5
## 34
                  6
## 98
                  7
                                7
                                             5
                                                           7
                                                                        7
                  7
                                7
                                             7
                                                           7
                                                                        7
## 161
                                7
                                             6
                                                           7
                                                                        7
## 100
                  4
                                5
                                             5
                                                                        7
## 118
                  4
                                                           6
                                                                        7
## 66
                  4
                                4
                                             4
                                                           7
                                                                        7
## 46
                  5
                                                           6
## 58
                  4
                                7
                                             4
                                                           7
                                                                        7
                  7
                                                           7
                                                                        7
## 83
## 168
                  7
                                                           7
       data.M_MJSB6 data.M_MJSB7 data.M_MJSB8
                                                 EMO_SD Z_EMO_SD
## 34
                                7
                                             7 2.188182 2.582196
                  7
                  7
                                7
## 98
                                             5 2.012948 1.962555
## 161
                  7
                                7
                                             4 2.009800 1.951425
## 100
                  7
                                7
                                             7 2.001971 1.923740
                  7
                                7
                                             4 1.982793 1.855925
## 118
## 66
                  7
                                7
                                             7 1.964522 1.791319
                                7
## 46
                  7
                                             5 1.956121 1.761611
## 58
                  7
                                7
                                             7 1.932010 1.676352
                                7
## 83
                  7
                                             6 1.897859 1.555592
                                             3 1.887019 1.517262
## 168
```

5 1.956121 1.761611

46