Using the Rips complex for topologically-certified manifold reconstruction

 ${\sf David} \,\, {\sf Salinas}^1 \quad \, {\sf Dominique} \,\, {\sf Attali}^1 \quad \, {\sf Andr\'e} \,\, {\sf Lieutier}^2$

¹Gipsa-lab, Grenoble

²Dassault-système, Aix en provence

Séminaire Geometrica-Titane

Data A finite point cloud $P \subset \mathbb{R}^D$ of a d-dimensional manifold M

- D: ambient dimension
- ▶ d : intrinsic dimension

Goal Find a simplicial complex K that approximates M in O(D)

Hypothesis $d \ll D$

Data A finite point cloud $P \subset \mathbb{R}^D$ of a d-dimensional manifold M

- D: ambient dimension
- ▶ d : intrinsic dimension

Goal Find a simplicial complex K that approximates M in O(D)

Hypothesis d << D

An example

Data A set of images 128×128 of a toy cat placed on a turntable and observed by a fixed camera.

An example

Data A set of images 128×128 of a toy cat placed on a turntable and observed by a fixed camera.

 \rightarrow A set of points in \mathbb{R}^{128^2} sampling a one-dimensional manifold.

Data A set of images 128×128 of a toy cat placed on a turntable and observed by a fixed camera.

 \rightarrow A set of points in \mathbb{R}^{128^2} sampling a one-dimensional manifold.

Goal Find a simplicial complex K that approximates M in O(D)

Topologically-certified Manifold reconstruction

Data A finite point cloud $P \subset \mathbb{R}^D$ of a d-dimensional manifold M

- Goal 1. Find conditions on the density of P such that an approximation K has the same topology as M
 - 2. Compute efficiently K (in O(D))

Same topology?

- ▶ K is **homeomorphic** to M if there exists $f: M \to K$ one-to-one such that f and f^{-1} are continuous. When this is the case, we denote it by $K \approx M$.
- K has the same homotopy type as M if M can be continuously deformed to K.

When this is the case, we denote it by $K \simeq M$.

We say that K has the same topology as M if K is homeomorphic to M or if K has the same homotopy type as M (weaker condition).

Previous work

- ▶ Many applications in machine learning, data analysis, ...
- Existing algorithms: ISOMAP, LLE, Laplacian eigenmaps, ...
 - \rightarrow few theoritical guarantees on the topology

Previous work - homeomorphism

Methods that guaranties homeomorphism

- ► First approach : using the Delaunay complex [Cheng Dey Ramos 05]
- ▶ With the witness complex [Boissonat Guibas Oudot 09]
- ► Tangential Delaunay complex [Boissonat Ghosh 10]

Previous work - homotopy type

Offset of points

Given $P \subset \mathbb{R}^D$ we denote $P^{\alpha} = \bigcup B(p, \alpha)$ the α -offset of P.

Homotopy type of the offset of points

- ▶ $P^{\alpha} \simeq M$ when P is dense enough and reach(M) > 0 [Niyogi Smale Weinberger 04]
- $P^{\alpha} \simeq M$ when P is dense enough and μ -reach(M) > 0 [Chazal Cohen-Steiner Lieutier 06]

Manifold reconstruction Reach

Manifold reconstruction Reach

Reach

Manifold reconstruction Reach

- ▶ MedialAxis(M) = { $x \in \mathbb{R}^D \mid x$ has at least two closest points on M}
- ▶ Reach(M) = d(M, MedialAxis(M))

Homotopy type of the offset

Theorem [Niyogi Smale Weinberger 08]

The lpha-offset P^{lpha} has the same homotopy type as M i.e. $P^{lpha} \simeq M$ when

$$\left\{ \begin{array}{c} d_{H}(P,M) \leq \varepsilon < (3-\sqrt{8}) \ \ {\sf reach}(M) \\ \alpha = (2+\sqrt{2})\varepsilon \end{array} \right.$$

Theorem [Niyogi Smale Weinberger 08]

The lpha-offset P^{lpha} has the same homotopy type as M i.e. $P^{lpha} \simeq M$ when

$$\left\{ \begin{array}{l} d_{H}(P,M) \leq \varepsilon < (3-\sqrt{8}) \ \operatorname{reach}(M) \\ \alpha = (2+\sqrt{2})\varepsilon \end{array} \right.$$

1. Find conditions on the density of P such that an approximation K has the same topology as M

Theorem [Niyogi Smale Weinberger 08]

The lpha-offset P^{lpha} has the same homotopy type as M i.e. $P^{lpha} \simeq M$ when

$$\left\{ \begin{array}{l} d_{H}(P,M) \leq \varepsilon < (3-\sqrt{8}) \ \operatorname{reach}(M) \\ \alpha = (2+\sqrt{2})\varepsilon \end{array} \right.$$

1. Find conditions on the density of P such that an approximation K has the same topology as $M \to OK$

Theorem [Niyogi Smale Weinberger 08]

The α -offset P^{α} has the same homotopy type as M i.e. $P^{\alpha} \simeq M$ when

$$\left\{ \begin{array}{l} d_{H}(P,M) \leq \varepsilon < (3-\sqrt{8}) \ \operatorname{reach}(M) \\ \alpha = (2+\sqrt{2})\varepsilon \end{array} \right.$$

- 1. Find conditions on the density of P such that an approximation K has the same topology as $M \to OK$
- 2. Compute efficiently K (in O(D)) \rightarrow ?

Cech complex

- ▶ Nerve of a family : Nrv $F = \{ \sigma \subset F \mid \bigcap \sigma \neq \emptyset \}$
- ▶ Cech complex $C(P, \alpha) = Nrv\{B(p, \alpha) \mid p \in P\}$

Nerve theorem $P^{\alpha} \simeq \mathcal{C}(P, \alpha)$

Simplices of $\mathcal{R}(P, \alpha)$:

- cliques in the proximity graph $G(P, 2\alpha)$
- $\qquad \qquad \blacktriangleright \ \{0\}, \{1\}, \{2\}, \{3\}, \{0,1\}, \{1,2\}, \{2,3\}, \{3,1\}, \{1,2,3\}$

Simplices of $\mathcal{R}(P, \alpha)$:

- cliques in the proximity graph $G(P, 2\alpha)$
- $\blacktriangleright \ \{0\}, \{1\}, \{2\}, \{3\}, \{0,1\}, \{1,2\}, \{2,3\}, \{3,1\}, \{1,2,3\}$
- \odot Computation and storage in $O(|P|^2)$

Simplices of $\mathcal{R}(P, \alpha)$:

- cliques in the proximity graph $G(P, 2\alpha)$
- $\blacktriangleright \ \{0\}, \{1\}, \{2\}, \{3\}, \{0,1\}, \{1,2\}, \{2,3\}, \{3,1\}, \{1,2,3\}$
- \odot Computation and storage in $O(|P|^2)$
- $\ \odot\ \mathcal{R}(P, lpha)$ may not have the same topology as P^{lpha}

Proximity with the Cech complex

Fundamental interleaving

$$\mathcal{C}(P, \alpha) \subset \mathcal{R}(P, \alpha) \subset \mathcal{C}(P, \theta_D \alpha)$$
 where $\theta_D = \sqrt{\frac{2D}{D+1}}$

Proximity with the Cech complex

Fundamental interleaving

$$\mathcal{C}(P, \alpha) \subset \mathcal{R}(P, \alpha) \subset \mathcal{C}(P, \theta_D \alpha)$$
 where $\theta_D = \sqrt{\frac{2D}{D+1}}$

Question: Is it possible to find conditions on P such that $\mathcal{R}(P,\alpha) \simeq \mathcal{C}(P,\alpha)$?

Properties of the convexity defect function $c_P(t)$ for a compact set P

- $ightharpoonup c_P(t) = 0 \Leftrightarrow P \text{ is convex}$
- ▶ c_P non decreasing
- $ightharpoonup c_P(t) \leq t$
- ▶ $c_P(t) = t \Leftrightarrow t$ is a critical value of d(., P)

Properties of the convexity defect function $c_P(t)$ for a compact set P

- $ightharpoonup c_P(t) = 0 \Leftrightarrow P \text{ is convex}$
- ► c_P non decreasing
- $ightharpoonup c_P(t) \leq t$
- $ightharpoonup c_P(t) = t \Leftrightarrow t \text{ is a critical value of } d(.,P)$

Properties of the convexity defect function $c_P(t)$ for a compact set P

- $ightharpoonup c_P(t) = 0 \Leftrightarrow P \text{ is convex}$
- ► c_P non decreasing
- $ightharpoonup c_P(t) \leq t$
- $ightharpoonup c_P(t) = t \Leftrightarrow t \text{ is a critical value of } d(.,P)$

Properties of the convexity defect function $c_P(t)$ for a compact set P

- $ightharpoonup c_P(t) = 0 \Leftrightarrow P \text{ is convex}$
- ► c_P non decreasing
- $ightharpoonup c_P(t) \leq t$
- $ightharpoonup c_P(t) = t \Leftrightarrow t \text{ is a critical value of } d(.,P)$

Properties of the convexity defect function $c_P(t)$ for a compact set P

- $ightharpoonup c_P(t) = 0 \Leftrightarrow P \text{ is convex}$
- ► c_P non decreasing
- $ightharpoonup c_P(t) \leq t$
- $ightharpoonup c_P(t) = t \Leftrightarrow t \text{ is a critical value of } d(.,P)$

Homotopy type of the Rips complex

A condition to ensure that the Rips complex has the same homotopy than the Cech complex

Theorem [Attali Lieutier Salinas 2011]

If $c_P(\theta_D \alpha) < (2 - \theta_D)\alpha$ then $\mathcal{R}(P, \alpha) \simeq \mathcal{C}(P, \alpha)$.

The condition on c_P is optimal (at least in low dimension).

Homotopy type of the Rips complex

A bound on the convexity defect for a manifold

Theorem

If
$$d_H(P, M) \leq \varepsilon$$
 then, $\forall t < \operatorname{reach}(M) - \varepsilon$

$$c_P(t) \le \operatorname{reach}(M) - \sqrt{\operatorname{reach}(M)^2 - (t+\varepsilon)^2} + 2\varepsilon$$

Homotopy type of the Rips complex

Reconstruction constant

Theorem

If
$$d_H(P,M) \leq \varepsilon$$
 and $\frac{\varepsilon}{\operatorname{reach}(M)} < \lambda$ and $\rho = \frac{\alpha}{\varepsilon}$ then $\mathcal{R}(P,\alpha) \simeq M$

Complex	dimension	λ	ρ
Cech complex [NSW04]	$\forall D$	$3-\sqrt{8}\approx 0.17$	$2+\sqrt{2}\approx 3.41$
Rips complex	2	0.063	5.00
	3	0.055	5.46
	10	0.041	6.50
	100	0.035	7.22
	$+\infty$	$\frac{2\sqrt{2-\sqrt{2}}-\sqrt{2}}{2+\sqrt{2}}\approx .0340$	7.22

Reconstruction with the Rips complex

Overview

Point cloud $P \subset \mathbb{R}^D$ that approximates a manifold M

Reconstruction with the Rips complex

Overview

Point cloud $P \subset \mathbb{R}^D$ that approximates a manifold M

Under good sampling conditions $\mathcal{R}(P,\alpha) \simeq M$

Reconstruction with the Rips complex

Overview

Point cloud $P \subset \mathbb{R}^D$ that approximates a manifold M

Under good sampling conditions $\mathcal{R}(P, \alpha) \simeq M$

But in general $\mathcal{R}(P, \alpha) \not\approx M$

Reconstruction with the Rips complex

Overview

Point cloud $P \subset \mathbb{R}^D$ that approximates a manifold M

Under good sampling conditions $\mathcal{R}(P, \alpha) \simeq M$

But in general $\mathcal{R}(P, \alpha) \not\approx M$

Is it possible to simplify $\mathcal{R}(P,\alpha)$ to a complex homeomorphic to the manifold?

We consider two simplification operations :

- \blacktriangleright the edge contraction of an edge σ
- the collapse of a simplex σ

These two operations preserve the homotopy type when a (local) condition is verified on the link of σ .

We consider two simplification operations :

- \blacktriangleright the edge contraction of an edge σ
- the collapse of a simplex σ

These two operations preserve the homotopy type when a (local) condition is verified on the link of σ .

We consider two simplification operations :

- ightharpoonup the edge contraction of an edge σ
- the collapse of a simplex σ

These two operations preserve the homotopy type when a (local) condition is verified on the link of σ .

K: a simplicial complex

 σ : a simplex of K

Link of
$$\sigma$$
: Lk_K $(\sigma) = \{ \tau \in K \mid \tau \cap \sigma = \emptyset \text{ and } \tau \cup \sigma \in K \}$
Star of σ : St_K $(\sigma) = \{ \tau \in K \mid \sigma \subset \tau \}$

$$\mathsf{Lk}_{\mathcal{K}}(\sigma) = \{2, 3, 4, 23, 34\} \ \mathsf{St}_{\mathcal{K}}(\sigma) = \{01, 012, 0123, 01234, ...\}$$

We consider two simplification operations :

- ightharpoonup the edge contraction of an edge σ
- the collapse of a simplex σ

These two operations preserve the homotopy type when a (local) condition is verified on the link of σ .

K: a simplicial complex

 σ : a simplex of K

Link of
$$\sigma$$
: Lk_K $(\sigma) = \{ \tau \in K \mid \tau \cap \sigma = \emptyset \text{ and } \tau \cup \sigma \in K \}$
Star of σ : St_K $(\sigma) = \{ \tau \in K \mid \sigma \subset \tau \}$

$$\mathsf{Lk}_{\mathcal{K}}(\sigma) = \{2, 3, 4, 23, 34\} \ \mathsf{St}_{\mathcal{K}}(\sigma) = \{01, 012, 0123, 01234, ...\}$$

Edge contraction

A condition on the link to ensure that an edge contraction preserves the homotopy type

- ► Contracting an edge = identify two vertices in the complex
- ► May change the homotopy type

Theorem [Attali Lieutier Salinas 2011]

Let K be a simplicial complex and ab an edge of K.

If $Lk_K(a) \cap Lk_K(b) = Lk_K(ab)$ then the edge contraction $ab \mapsto c$ preserves the homotopy type.

Collapse

Let K be a simplicial complex and σ a simplex of K.

 \triangleright Removing the star of σ may change the homotopy type

Removing $\operatorname{St}_{\mathcal K}(\sigma)$ preserves the homotopy type

Removing $\mathsf{St}_{\mathcal{K}}(\sigma)$ changes the homotopy type

- If the link of σ is a the closure of a simplex then removing the star of σ preserves the homotopy type
- ▶ In this case, we say that removing $St_K(\sigma)$ from K is a **collapse**

Warm-up: reconstruction of 0-manifold

▶ Point cloud $P \subset \mathbb{R}^D$ that approximates a point o

- ▶ Find conditions on P such that $\mathcal{R}(P,\alpha) \simeq o$
- ▶ Find efficiently a sequence of reduction from $\mathcal{R}(P, \alpha)$ to o.

Complexity of deciding if a complex can be reduced to a point

It it really a warm-up?

A complex is said:

- contractible if it has the homotopy type of a point
- ▶ collapsible if it can be reduced to a point by a finite sequence of collapses

Complexity of deciding if a complex can be reduced to a point It it really a warm-up?

A complex is said:

- contractible if it has the homotopy type of a point
- ▶ collapsible if it can be reduced to a point by a finite sequence of collapses

Bad news:

© recognizing a contractible complex is undecidable

Complexity of deciding if a complex can be reduced to a point It it really a warm-up?

A complex is said:

- contractible if it has the homotopy type of a point
- ▶ collapsible if it can be reduced to a point by a finite sequence of collapses

Bad news:

- © recognizing a contractible complex is undecidable
- © recognizing a collapsible complex is NP-complete

Complexity of deciding if a complex can be reduced to a point

It it really a warm-up?

A complex is said:

- contractible if it has the homotopy type of a point
- ▶ collapsible if it can be reduced to a point by a finite sequence of collapses

Bad news:

- © recognizing a contractible complex is undecidable
- © recognizing a collapsible complex is NP-complete

Good news:

 \odot if $P \subset \mathbb{R}^2$, deciding if $\mathcal{R}(P, \alpha)$ is contractible can be done in polynomial time [Chambers Silva Erickson Ghrist 2010]

Complexity of deciding if a complex can be reduced to a point

It it really a warm-up?

A complex is said:

- contractible if it has the homotopy type of a point
- **collapsible** if it can be reduced to a point by a finite sequence of collapses

Bad news:

- © recognizing a contractible complex is undecidable
- © recognizing a collapsible complex is NP-complete

Good news:

- \odot if $P \subset \mathbb{R}^2$, deciding if $\mathcal{R}(P, \alpha)$ is contractible can be done in polynomial time [Chambers Silva Erickson Ghrist 2010]
- \odot if K is convex and dim(K) \leq 3 then K is collapsible [Chillingworth 67]

Collapsing a Rips complex that approximates a convex

Assume that $d_H(\text{Hull }P,P)$ is small regarding to α .

Can you ensure that $\mathcal{R}(P, \alpha)$ is contractible or even collapsible?

Collapsing a Rips complex that approximates a convex

Assume that $d_H(\text{Hull }P,P)$ is small regarding to α .

Can you ensure that $\mathcal{R}(P, \alpha)$ is contractible or even collapsible?

Theorem [Attali Lieutier Salinas 2013]

If $d_H(\operatorname{Hull} P, P) < (2 - \theta_D)\alpha$ then $\mathcal{R}(P, \alpha)$ is collapsible.

The constant $(2 - \theta_D)$ is optimal at least in low dimensions.

Collapsing a Rips complex that approximates a convex

Assume that $d_H(\text{Hull }P,P)$ is small regarding to α .

Can you ensure that $\mathcal{R}(P, \alpha)$ is contractible or even collapsible?

Theorem [Attali Lieutier Salinas 2013]

If $d_H(\operatorname{Hull} P, P) < (2 - \theta_D)\alpha$ then $\mathcal{R}(P, \alpha)$ is collapsible. The constant $(2 - \theta_D)$ is optimal at least in low dimensions.

But the proof does not give an efficient algorithm

Reducing a complex to a point

- We propose three efficient strategies to try to reduce a complex L to a point:
 - ► SWEEP(*L*) (vertex and edge collapses)
 - ► COMPLETE(*L*) (edge collapses)
 - ► EDGE_CONTRACTIONS(L)
- ► Each one of these strategies return true if it manages to reduce *L* to a point with topological-preserving elementary operations and false otherwise

Reducing a complex to a point

- We propose three efficient strategies to try to reduce a complex L to a point:
 - ► SWEEP(L) (vertex and edge collapses)
 - ► COMPLETE(*L*) (edge collapses)
 - ► EDGE_CONTRACTIONS(L)
- Each one of these strategies return true if it manages to reduce L to a point with topological-preserving elementary operations and false otherwise

Theorem

```
If \emptyset \neq \text{Hull } P \subset P^{(2-\sqrt{3})\alpha} then \mathrm{SWEEP}(\mathcal{R}(P,\alpha)) and \mathrm{COMPLETE}(\mathcal{R}(P,\alpha)) are true
```

Reducing a complex to a point

- We propose three efficient strategies to try to reduce a complex L to a point:
 - SWEEP(L) (vertex and edge collapses)
 - ► COMPLETE(*L*) (edge collapses)
 - ► EDGE_CONTRACTIONS(L)
- ► Each one of these strategies return true if it manages to reduce *L* to a point with topological-preserving elementary operations and false otherwise

Theorem

If
$$\emptyset \neq \text{Hull } P \subset P^{(2-\sqrt{3})\alpha}$$
 then $\text{SWEEP}(\mathcal{R}(P,\alpha))$ and $\text{COMPLETE}(\mathcal{R}(P,\alpha))$ are true

► In practice, the most efficient strategy to reduce a complex to a point is EDGE_CONTRACTIONS

Simplification of a Rips complex that approximates a manifold $_{\mbox{\scriptsize Reconstruction algorithm}}$

- ▶ Build a Rips complex such that $\mathcal{R}(P, \alpha) \simeq M$
- ▶ Keep collapsing the largest edge whose link can be reduced to a point

Simplification of a Rips complex that approximates a manifold Reconstruction algorithm

- ▶ Build a Rips complex such that $\mathcal{R}(P, \alpha) \simeq M$
- ▶ Keep collapsing the largest edge whose link can be reduced to a point

SIMPLIFY(Simplicial complex K)

```
Q= edges of K sorted by length while Q \neq \emptyset do Remove the edge ab from Q with highest length if REDUCIBLE (\mathsf{Lk}_K(ab)) then K=K\setminus\mathsf{St}_K(ab)
```

Simplification of a Rips complex that approximates a manifold Reconstruction algorithm

- ▶ Build a Rips complex such that $\mathcal{R}(P, \alpha) \simeq M$
- ▶ Keep collapsing the largest edge whose link can be reduced to a point

SIMPLIFY(Simplicial complex K)

```
Q= edges of K sorted by length while Q \neq \emptyset do Remove the edge ab from Q with highest length if REDUCIBLE (\mathsf{Lk}_K(ab)) then K=K\setminus\mathsf{St}_K(ab)
```

Proposition [Attali Lieutier Salinas 2013]

Let M be a 1-dimensional manifold and $P \subset M$ a finite point cloud. If $d_H(P,M) < \alpha < \operatorname{reach}(M)/2$ then $\operatorname{SIMPLIFY}(\mathcal{R}(P,\alpha))$ returns a complex homeomorphic to M.

Experimental results

Data-sets

- $\qquad \qquad \textbf{Data}: \text{ a point cloud } P \in \{\texttt{Cat}, \texttt{Ramses}, \texttt{SO3}\} \text{ sampling a d-manifold M}$
 - ► Cat: 72 images of size 128×128
 - ▶ Ramses: A scan of a statue that consists in 200000 points in \mathbb{R}^3
 - ▶ S03: 10000 points in \mathbb{R}^9 that samples rotational matrices

Experimental results

Data-sets

 $\blacktriangleright \ \, \mathsf{Data}: \ \, \mathsf{a} \ \, \mathsf{point} \ \, \mathsf{cloud} \ \, P \in \{\mathsf{Cat}, \mathsf{Ramses}, \mathsf{SO3}\} \, \, \mathsf{sampling} \, \, \mathsf{a} \, \, \mathsf{d}\text{-manifold} \, \, M$

► Cat: 72 images of size 128×128

ightharpoonup Ramses: A scan of a statue that consists in 200000 points in \mathbb{R}^3

 \blacktriangleright S03: 10000 points in \mathbb{R}^9 that samples rotational matrices

▶ Input of the simplification algorithm : $\mathcal{R}(P, \alpha)$ such that $\mathcal{R}(P, \alpha) \simeq M$

Р	d	D	$dim(\mathcal{R}(P, lpha))$
Cat	1	16384	19
Ramses	2	3	14
S03	3	9	16

Experimental results

Data-sets

▶ Data : a point cloud $P \in \{\text{Cat}, \text{Ramses}, \text{SO3}\}$ sampling a d-manifold M

Cat: 72 images of size 128×128

ightharpoonup Ramses: A scan of a statue that consists in 200000 points in \mathbb{R}^3

▶ S03: 10000 points in \mathbb{R}^9 that samples rotational matrices

▶ Input of the simplification algorithm : $\mathcal{R}(P, \alpha)$ such that $\mathcal{R}(P, \alpha) \simeq M$

Р	d	D	$dim(\mathcal{R}(P, lpha))$
Cat	1	16384	19
Ramses	2	3	14
S03	3	9	16

▶ Output after simplification K_{out}

Р	$dim(K_{out})$	$K_{\rm out} \approx M$	running time
Cat	1	YES	2 s
Ramses	2	YES	150 min
S03	3	NO	7 min

Conclusion

The Rips complex:

- can be computed and stored efficiently
- has the same homotopy type than a sampled manifold under good sampling conditions
- > can be simplified (experimentally) to a complex homeomorphic to the manifold

Future work

- Prove that the Rips complex can simplified to a complex homeomorphic to the manifold
- Extend these results for :
 - Manifold with boundary
 - Non-uniform density, presence of outliers

