National University of Computer and Emerging Sciences

Lab Manual

Computer Organization and Assembly Language

Lab 04

Instructors Haiqa Saman,

Sarosh Humayun

Class CS3

Sections D

Semester Fall 2023

Fast School of Computing

FAST-NU, Lahore, Pakistan

Note for all questions: You can make as many memory variables as you need

ACTIVITY 1:

Initialize AX with last 4 digits of your roll number (for example, if your roll number is 16L-1105 then AX should be initialized with 1105).

Once initialized, write a program to swap every pair of bits in the AX register as shown in **Table** below:

AX	Contents of AX (Your Roll #)				
Before	0000	0100	0101	0001	
After	0000	1000	1010	0010	

ACTIVITY 2:

Modify your program in Activity 1 to swap two bits as shown in **Table** below:

AX	Contents of AX (Your Roll #)				
Before	0000	0100	0101	0001	
After	0000	0001	0101	0100	

ACTIVITY 3

Modify your program in Activity 1 & 2 to swap two nibbles as shown in **Table** below:

AX	Contents of AX (Your Roll #)			
Before	0000	0100	0101	0001
After	0100	0000	0001	0101

ACTIVITY 4:

Initialize AX with last 4 digits of your roll number (for example, if your roll number is 16L-1105 then AX should be initialized with 1105). Store \overline{AX} in BX. Make a 32-bit memory variable f, initialize it with 0 and compute

$$f = (A \times B) + \{A, B\}$$

 \times is **Multiplication** operation, + is **Addition** operation whereas $\{A, B\}$ concatenates 16-bit **A** and **B** to form a 32-bit number.