Dr. Andreas Stein

Dr. Francesca Bartolucci

Series 6

Throughout this exercise sheet, let $T \in (0, +\infty)$, let $(\Omega, \mathcal{F}, P, \mathbb{F}_{t \in [0,T]})$ be a stochastic basis, $m \in \mathbb{N}$, and let $W \colon [0,T] \times \Omega \to \mathbb{R}^m$ be a m-dimensional standard $(\Omega, \mathcal{F}, P, \mathbb{F}_{t \in [0,T]})$ -Brownian motion.

1. Let $d \in \mathbb{N}$, $\xi \in \mathcal{M}(\mathbb{F}_0, \mathcal{B}(\mathbb{R}^d))$ be a random variable, let $\mu \colon \mathbb{R}^d \to \mathbb{R}^d$ and $\sigma \colon \mathbb{R}^d \to \mathbb{R}^d$ be measurable mappings, and consider the SDE

$$dX_t = \mu(X_t) dt + \sigma(X_t) dW_t, \qquad t \in [0, T], \qquad X_0 = \xi.$$
(1)

(i) Let $M, N \in \mathbb{N}$. Write a MATLAB function EMMultiDim $(T, m, \xi, \mu, \sigma, W)$ with inputs $T \in (0, +\infty)$, $m \in \mathbb{N}$, $\xi \in \mathbb{R}^{Md}$, $\mu \colon \mathbb{R}^{d \times M} \to \mathbb{R}^{d \times M}$, $\sigma \colon \mathbb{R}^{d \times M} \to \mathbb{R}^{d \times Mm}$, and $W \in \mathbb{R}^{(N+1) \times mM}$, which returns M realizations $Y_T^N(\omega_i)$, $i = 1, 2, \ldots, M$, of the Euler-Maruyama approximation Y_T^N of X_T .

Note that μ and σ are extended versions of the SDE coefficients from $\mathbb{R}^{d\times M}$ into $\mathbb{R}^{d\times M}$ and $\mathbb{R}^{d\times Mm}$, respectively, and that $\xi\in\mathbb{R}^{Md}$ holds M realizations of the initial condition. Furthermore, the input parameter $W\in\mathbb{R}^{(N+1)\times Mm}$ is a realization of M independent m-dimensional Brownian motions at the equally spaced time points $\{n\Delta t: n=0,\ldots,N\}$. Hence, $W\in\mathbb{R}^{N+1,Mm}$ should be of the form

$$W = \begin{pmatrix} W_0^{\top}(\omega_1) & \dots & W_0^{\top}(\omega_M) \\ W_{\Delta t}^{\top}(\omega_1) & \dots & W_{\Delta t}^{\top}(\omega_M) \\ \vdots & \ddots & \vdots \\ W_{N\Delta t}^{\top}(\omega_1) & \dots & W_{N\Delta t}^{\top}(\omega_M) \end{pmatrix}$$

where for n = 0, ..., N and i = 1, ..., M we have

$$W_{n\Delta t}^{\top}(\omega_i) := \left(W_{n\Delta T}^{(1)}(\omega_i), W_{n\Delta T}^{(2)}(\omega_i), \dots, W_{n\Delta T}^{(m)}(\omega_i)\right) \in \mathbb{R}^{1 \times m}.$$

You may use the template EMMultiDim.m.

(ii) Investigate the strong error of the Euler–Maruyama scheme by fixing the parameters T=1, m=2,

$$\xi = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \qquad \mu(x_1, x_2) = \begin{pmatrix} 0.5x_1 \\ 2x_2 \end{pmatrix}, \qquad \sigma(x_1, x_2) = \begin{pmatrix} x_1 & 0 \\ 0 & 2x_2 \end{pmatrix},$$

and using $M=10^5$ and $N=N_\ell=10\cdot 2^\ell$ for $\ell\in\{0,1,\ldots,4\}$. To do so, generate M realizations for every $\ell\in\{0,1,\ldots,4\}$ of the Euler–Maruyama approximation $Y_T^{N_\ell}$ of X_T . Then, for every $\ell\in\{0,1,\ldots,4\}$ compute a Monte Carlo approximation

$$E_M^{\ell} := \frac{1}{M} \sum_{i=1}^{M} \|Y_T^{N_{\ell}}(\omega_i) - X_T(\omega_i)\|_{\mathbb{R}^2} \approx \mathbb{E}[\|Y_T^{N_{\ell}} - X_T\|_{\mathbb{R}^2}]$$

based on M samples, and determine the "experimental strong convergence rate" with respect to N_ℓ^{-1} . You may use the template ErrorEM2dGBM.m. Hints:

- To construct the matrix $W \in \mathbb{R}^{(N+1)\times 2M}$, first generate the $\mathbb{R}^{(N+1)\times M}$ -matrix that holds the realizations of $W^{(1)}$ on the discrete grid. Then repeat this procedure for $W^{(2)}$ and concatenate both matrices horizontally.
- You can derive the exact value X_T for the SDE (1) by Exercise 3 on Sheet 3.
- Estimate the convergence rate by a linear regression of $\log(E_M^\ell)$ on the log-stepsizes $\log(N_\ell^{-1})$. For this you may use the MATLAB function polyfit.
- **2.** Consider the setting from Exercise 1 with d=m=1 and let $f:\mathbb{R}\to\mathbb{R}$ be a given test function.
 - (i) Let the SDE (1) be given by

$$dX_t = \mu_0 X_t dt + \sigma_0 X_t dW_t, \qquad t \in [0, T], \qquad X_0 = \xi,$$
 (2)

where $\mu_0, \sigma_0 \in \mathbb{R}$ are constant and $\xi \in \mathcal{M}(\mathbb{F}_0, \mathcal{B}(\mathbb{R}^d))$ is such that $\xi \sim \mathcal{N}_{0,1}$. Show that (2) admits a unique strong solution X such that for all $p \in (0, \infty)$ there holds

$$\mathbb{E}_P[X_t^p] = \mathbb{E}_P[\xi^p] \exp\left(p\mu_0 t + \frac{\sigma_0^2}{2}(p^2 - p)t\right) \in \mathbb{R}.$$

- (ii) Let Y^N the Euler-Maruyama approximation of X with $N \in \mathbb{N}$ time steps and let $f(x) := x^n$ for $x \in \mathbb{R}$ and a fixed $n \in \mathbb{N}$. Prove that the sequence $(Y^N, N \in \mathbb{N})$ converges weakly to X for given f, i.e. show that $|\mathbb{E}(f(Y_N^N) f(X_T))| \leq CN^{-1}$ for a C > 0 and any $N \in \mathbb{N}$.
- 3. (i) Investigate the weak convergence of the Euler scheme for the SDE (2) with parameters T=1 and $\mu_0=0.5, \sigma_0=1$ for the test function $f(x)=x^2$. Generate $M=10^6$ samples of $f(Y_N^N)$ for each $N=N_\ell=10\cdot 2^\ell$ with $\ell\in\{0,1,\ldots,4\}$ and use the Monte Carlo approximations

$$E_M^{\ell} := \frac{1}{M} \sum_{i=1}^{M} f(Y_{N_{\ell}}^{N_{\ell}}(\omega_i)) \approx \mathbb{E}(f(Y_{N_{\ell}}^{N_{\ell}}))$$

and Exercise 2(i) to calculate the weak error $|\mathbb{E}(f(Y_N^N) - f(X_T))|$ for given N. You may use the template ErrorEMWeak.m.

Hints:

- You may modify the solution EulerMaruyama.m from Series 4, Exercise 1 to implement the Euler-Maruyama method in one dimension. Alternatively, you could also use your implementation of EMMulti from exercise 1(i).
- You may use the built-in function random(...) to sample the initial condition ξ .
- Estimate the convergence rate by a linear regression of $\log(E_M^\ell)$ on the log-stepsizes $\log(N_\ell^{-1})$. For this you may use the MATLAB function polyfit.
- (ii) Repeat part (i) with the same parameters, but using the Milstein scheme instead of the Euler-Maruyama scheme. Comment on the results.

 Hint: You may modify the solution Milstein1D.m from Series 5, Exercise 1 to implement the Milstein method in one dimension and modify the template/solution ErrorEMWeak.m from part (i).
- (iii) Repeat part (i) (again with the Euler scheme), but now with the deterministic initial value $\xi \equiv 1$ and for the test function $f(x) := \mathbf{1}_{\{x>5\}}$. Comment on the results.

Hint: Use the built-in function normcdf to calculate the exact mean $\mathbb{E}_P[f(X_1)]$.

Due: 16:00 o'clock, Monday, 31st October 2022

Webpage: https://moodle-app2.let.ethz.ch/course/view.php?id=17423

Organisation: Francesca Bartolucci, HG G 53.2