DEPARTMENT OF CHEMICAL & PROCESS ENGINEERING

Computer-aided Design of **Bio-inspired Nanoporous** Silica Materials

By André Crescenzo

Miguel Jorge

Supervisor Department of Chemical and Process Engineering

Alessia Centi

Supervisor Department of Chemical and Process Engineering

Carlos F. Rangel

Supervisor Department of Chemical and Process Engineering

Silica-surfactant materials

High Porosity
High Surface area

Generated by

MSU-V 1.2-diaminododecane

Synthesis

Nature

Self-Assembly structure

Molecular simulation

Molecular Dynamics

Newton's Law

$$m_i \frac{d^2 \vec{r}_i(t)}{dt^2} = \vec{F}_i(t)$$

"Leap-frog" Algorithm

$$\vec{r}_i(t + \Delta t) = \vec{r}_i(t) + \vec{v}_i(t + \Delta t/2)\Delta t$$

$$\vec{v}_i(t + \Delta t/2) = \vec{v}_i(t - \Delta t/2) + \frac{\vec{F}_i(t)}{m_i} \Delta t$$

Monte Carlo Simulations

Probability distribution function

$$\rho(\lambda) = \frac{\exp\left(-\frac{U(\lambda)}{kT}\right)}{\int_{V} \dots \int_{V} \exp\left(-\frac{U(\lambda)}{kT}\right) d\vec{r}_{1} d\vec{r}_{2} \dots d\vec{r}_{N}}$$

Metropolis Method

$$P_{1\mapsto 2} = \begin{cases} 1 & for \frac{\rho(\lambda_2)}{\rho(\lambda_1)} \geqslant 1\\ \frac{\rho(\lambda_2)}{\rho(\lambda_1)} & for \frac{\rho(\lambda_2)}{\rho(\lambda_1)} < 1 \end{cases}$$

Coarse-graining

MagiC: a systematic method

Boltzmann inversion

Inverse Monte Carlo

Atomistic Model

- Concentration
- pH
- Equilibrium Structure

- Standardized simulations
 - NPT
 - Over 100 ns

CG Modelling: Bead Size and Concentration

- Multiple Models
 - Model 1:

- Model 2:

- Multiple Concentrations
 - Low
 - Medium
 - High

CG Modelling: Charged Systems

- New Techniques for process efficiency
 - Simplified model

- Multi-states reference
- Changes on MagiC inputs

- Influence of Electrostatic forces
 - Integrated Electrostatics
 - Short range Electrostatics
 - Long range Electrostatics

CG Modelling: Silica introduction

 Ionic silica with neutral surfactant Ionic silica with singly charged surfactant

Conclusion

- (general conclusion)
- (still need to think)

- Ideas for the future
 - Artificial CG model
 - Multi-state IBI
 - More focus in pH value