Vp140 Recitation VIII

Haomeng ZHANG

SJTU Joint Institute zhanghaomeng@sjtu.edu.cn

July 25, 2019

Overview

The Gyroscopic Effect

2 Elasticity

Fluid

Nonrotating flywheel

Rotating flywheel

Rotating flywheel

Formula

$$\Omega = \frac{d\phi}{dt} = \frac{|\overrightarrow{dL}|/\overrightarrow{L}|}{dt} = \frac{\tau_z}{L_z} = \frac{wr}{I\omega}$$

Observation

- the angular speed of precession is inversely proportional to the angular speed of rotation (spinning) of the flywheel (in other words: a rapidly spinning gyroscope precesses slowly).
- We have ignored the contribution to the angular momentum due to precession (this component is along the z axis). Our simplified analysis is valid for a rapidly spinning flywheel.

Exercise I

The Gyroscopic Effect

The figure shows a top view of a spinning, cylindrical gyroscope wheel. The pivot is at O, and the mass of the axle is negligible.

- As seen from above, is the precession clockwise or counterclockwise?
- If the gyroscope takes 4.0 s for one revolution of precession, what is the angular speed of the wheel?

Conditions for Equilibrium

Formula

$$\sum \vec{F} = 0$$

$$\sum \vec{\tau} = 0$$

$$\sum ec{ au} = 0$$

How to solve problems

- Sketch the situation; identify the object (do not treat it as a point!) in equilibrium.
- Oraw a free-body diagram with forces attached to the points they act onto.
- Choose an appropriately placed coordinate system (can save calculations by eliminating torques of certain forces!).
- Write down equilibrium conditions for forces and torques.

Exercise II

Solving problems using equilibrium

The ladders weigh 480 N and 360 N, respectively, and the center of gravity of each is at its center. Assume that the floor is freshly waxed and frictionless.

- Find the upward force at the bottom of each ladder.
- 2 Find the tension in the rope.
- Find the magnitude of the force one ladder exerts on the other at point A.
- If an 800-N painter stands at point A, find the tension in the horizontal rope.

General Description

Hooke's Law

$$\frac{stress}{strain} = elastic modulus$$

Different Types

- Tensile and Compressive Stress and Strain
- Bulk Stress and Strain
- Shear Stress and strain

Tensile and Compressive Stress and Strain

Formula

$$Y = \frac{\text{Tensile stress}}{\text{Tensile strain}} = \frac{F_{\perp}/A}{\Delta I/I_0} = \frac{F_{\perp}}{A} \frac{I_0}{\Delta I}$$

Bulk Stress and Strain

Formula

$$B = \frac{\text{Bulk stress}}{\text{Bulk strain}} = -\frac{\Delta p}{\Delta V/V_0}$$

$$k \text{ (compressibility)} = \frac{1}{B} = -\frac{\Delta V/V_0}{\Delta p} = -\frac{1}{V_0} \frac{\Delta V}{\Delta p}$$

Pressure $= p_0$

Shear stress and strain

Formula

$$S = \frac{\text{Shear stress}}{\text{Shear strain}} = \frac{F_{\parallel}/A}{x/h} = \frac{F_{\parallel}}{A} \frac{h}{x}$$

Shear stress =
$$\frac{F_{\parallel}}{A}$$
 Shear strain = $\frac{x}{h}$

Pressure

Formula

$$p = p_0 + \varrho g h$$

U-shape tube

13 / 18

Pascal's law

Description

Pressure applied to an enclosed incompressible fluid is transmitted undiminished to every portion of the liquid and the walls of the container.

Application: Hydraulic lift

12.7 The hydraulic lift is an application of Pascal's law. The size of the fluid-filled container is exaggerated for clarity.

Buoyancy

Archimedes's principle

When a body is completely or partially immersed in a fluid, the fluid exerts an upward force on the body equal to the weight of the fluid displaced by the body.

Application: Hydrometer

The hydrometer floats higher in denser liquids than in less dense liquids.

Bernoulli's equation

Formula

$$p + \rho gy + \frac{1}{2}\rho v^2 = constant$$

Example from lectures

Example in the textbook

Fluid

Water enters a house through a pipe with an inside diameter of 2.0 cm at an absolute pressure of 4.0×10^5 Pa (4 atm). A 1.0-cm-diameter pipe leads to the second-floor bathroom 5.0 m above. When the flow speed at the inlet pipe is 1.5 m/s, find the flow speed, pressure, and volume flow rate in the bathroom.

The End

- Office hour: Wed 8:00-10:00 (Discussion Room 326I)
- Email: zhanghaomeng@sjtu.edu.cn

