#### 助教: 雷凡丁、乔同

# Lab2 深度神经网络

北京航空航天大学计算机学院

### 1 实验目标

搭建深度神经网络,并在给定数据集上进行训练与测试。具体要求:

- 1. 使用深度学习框架(TensorFlow、PyTorch、Caffe 等)完成网络搭建,推荐使用 tensorflow-1.15
- 2. 不限制编程语言,推荐使用 Python 语言
- 3. 数据集可以使用提供的 MINIST 数据集,也可自行调用神经网络框架相应接口下载并加载 MINIST 数据集
- 4. 可使用提供的模板项目 (TF-Mnist-Template), 在其基础上进行修改完善, 也可以重新编写代码。模板提供了框架, 包括数据 IO 与模型训练以及测试, 同学们的主要任务为模型定义与参数调整

# 2 数据集获取与使用

本次实验采用 Mnist 官方数据集<sup>1</sup>,模板项目的 dataset 目录下亦有相关文件。 首先观察 mnist 的文件结构,以 train-images.idx3-ubyte 文件为例:

| 表 1: 数据集文件内容                                       |                |                            |                   |
|----------------------------------------------------|----------------|----------------------------|-------------------|
| TRAINING SET IMAGE FILE (train-images-idx3-ubyte): |                |                            |                   |
| [offset]                                           | [type]         | [value]                    | [description]     |
| 0000                                               | 32 bit integer | $0 \times 000000803(2051)$ | magic number      |
| 0004                                               | 32 bit integer | 60000                      | number of images  |
| 0008                                               | 32 bit integer | 28                         | number of rows    |
| 0012                                               | 32 bit integer | 28                         | number of columns |
| 0016                                               | unsigned byte  | ??                         | pixel             |
| 0017                                               | unsigned byte  | ??                         | pixel             |
|                                                    |                |                            |                   |
| XXXX                                               | unsigned byte  | ??                         | pixel             |

前面若干字节为文件参数信息,包括了图片数量,图片行列大小等。从第 16 个字节起是图片的像素信息。

数据集文件总览(以 tensorflow 为例):

- t10k-images-idx3-ubyte.gz: 训练集图片数组,使用 tensorflow 的 input\_data.read\_data\_sets 函数读取后,其 shape 为 (60000, 28, 28),共三个维度,分别表示图片的数量、存储图片像素的数据
- t10k-labels-idx1-ubyte.gz: 训练集标签数组, 使用 tensorflow 的 input\_data.read\_data\_sets 函数读取后, 其 shape 为 (60000, ), 只有一个维度,表示训练集中相对应的图片的正确标签
- train-images-idx3-ubyte.gz: 测试集图片数组,使用 tensorflow 的 input\_data.read\_data\_-sets 函数读取后,其 shape 为 (10000, 28, 28)

<sup>&</sup>lt;sup>1</sup>http://yann.lecun.com/exdb/mnist/

• train-labels-idx1-ubyte.gz: 测试集标签数组,使用 tensorflow 的 input\_data.read\_data\_sets 函数读取后,其 shape 为 (10000,)

#### 3 网络要求

- 1. 网络输入: (batch\_size, 28, 28, 1) 的数组, 其中 batch\_size 为每批次中包含图片的数量, 这个数值可以根据自己硬件条件进行确定; 28 \* 28 为给定的图片尺寸。
- 2. 网络输出: 10 个输出节点,分别代表 0~9 这 10 个数字。本次作业不对精度做特别的要求,只需在合理范围内即可。
- 3. 网络模型: 建议采用 LeNet, 也可以采用其他自己定义的网络模型, 调参并对比效果。

## 4 作业提交

- 1. 保存模型和权重数据, 让结果可以复现。
- 2. 需撰写结果报告,包括但不限于网络结构介绍、关键代码介绍、测试精度结果截图等。更多细节参考"实验报告撰写格式"。
- 3. 将代码、权重数据、报告打包成压缩文件,命名格式: 学号 + 姓名,如 XXXXXXXXXX + 张 三 + 作业二。



图 1: 打开 Tensorboard 命令

### 5 其他

#### 5.1 模板项目使用说明

- 本次作业使用的 MNIST 数据集中包含训练集 60000 张图片, 如果在 CPU 上训练时间过长, 可以考虑采用 GPU, 或者减少训练集的大小(但会降低训练后的模型精度)。
- 模板项目基于 tensorflow-1.15.0 编写
- 代码文件说明:
  - input\_data.py: 读取数据集文件, 用于加载 mnist 数据集
  - tf minist.py: 主文件,包含训练、测试流程以及模型保存的实现
  - data object.py:数据类文件,包含数据处理的实现
  - tf\_network.py: 网络结构文件, 包含网络结构实现
  - tf\_test\_model.py: 测试参数固化后保存的模型准确率



图 2: Tensorboard 页面

#### 5.2 Tensorboard 数据可视化

TensorBoard 提供机器学习实验所需的可视化功能和工具,建议学习和使用该工具<sup>2</sup>: 模板代码中已经写入了 tensorboard 相关语句,程序运行结束后工程目录下将会生成 logs 文 件夹,接下来执行以下两步打开 tensorboard:

- 在终端中输入: tensorboard --logdir=./logs
- 按照提示在浏览器中输入获得的网址打开 tensorboard

如图 2所示即是打开后的示例,能够清晰地观察训练过程 loss 以及 acc 变化曲线:

 $<sup>^2</sup> https://www.tensorflow.org/tensorboard/get\_started?hl=zh-cn$