Introducción Fundamentos Teóricos Metodología Resultados Conclusiones

Reducción de escala de datos satelitales a través del modelo de Bosque Aleatorio

Matías Palma Manterola

Universidad de La Frontera

Octubre, 2022

- Introducción
- 2 Fundamentos Teóricos
- Metodología
- 4 Resultados
- Conclusiones

Contexto y descripción del problema

- Almacén de aguas subterráneas.
 - Calidad.
 - Cantidad.
 - Ampliamente distribuidas.
- Sobrexplotación.
 - Disminución del nivel.
- Monitoreo de cuencas.
- Satélite GRACE.
 - Estimación del agua total presente.

Satélite GRACE

- Gravity Recovery And Climate Experiment.
- Satélites que orbitan sobre la Tierra.
 - 200 Km de distancia entre ellos.
- Captar movimientos de las aguas.
 - Tiene como objetivo contrarrestar:
 - Sequías.
 - Inundaciones.
 - Socavones.
- Mediciones a baja resolución.

Figura 1: Misión GRACE lanzada el año 2002.

Anomalías TWS

- Terrestrial Water Storage
- Agua almacenada sobre y debajo de la superficie.
 - Agua de dosel.
 - Ríos y lagos.
 - Humedad de suelo.
 - Aguas subterráneas.

Anomalía TWS

$$TWS_t = \frac{TWS_t - \mu}{\delta}, \quad \mu, \delta \in \mathbb{R}$$

Downscaling

- Inferir información de alta resolución.
 - Datos satelitales.
 - Imágenes.
- Enfoques dinámicos o estadísticos.
 - Meteorología.
 - Climatología
 - Teledetección

Figura 2: Reducción de escala.

Objetivo general y específicos

Objetivo general

 Implementar un aumento de resolución a datos satelitales proporcionados por GRACE a través de un modelo predictivo para obtener productos grillados en Chile a alta resolución.

Objetivos específicos

- Definir la metodología.
- Recolectar datos necesarios.
- Preprocesar los datos.
- Implementar y entrenar el modelo predictivo.
- Validar predicciones en base a observaciones in situ.

- Introducción
- 2 Fundamentos Teóricos
- Metodología
- 4 Resultados
- Conclusiones

Random Forest

Indice de Correlación de Pearson

• Busca cuantificar la similitud lineal en las tasas de crecimiento.

Indice de Correlación

Sean S_1 y S_2 dos series temporales con observaciones u_1,\cdots,u_p y v_1,\cdots,v_p , respectivamente, entonces

$$R^{2}(S_{1}, S_{2}) = \frac{\sum_{j=1}^{p} \sum_{i=1}^{p} (u_{i} - u_{j})(v_{i} - v_{j})}{\sqrt{\sum_{i=1}^{p} (u_{i} - u_{j})^{2}} \sqrt{\sum_{i=1}^{p} (v_{i} - v_{j})^{2}}} \in [-1, 1]$$

- Introducción
- Pundamentos Teóricos
- 3 Metodología
- 4 Resultados
- Conclusiones

Downscaling of GRACE-Derived Groundwater Storage Based on the Random Forest Model

GRACE TWS

ERA5-Land

 $(CR)^2$ -met

Dirección General de Aguas

Conjunto de entrenamiento y de prueba

- Alta variabilidad climatológica en el territorio.
- Estratificación de datos.
 - Disminución de sesgo.
 - Predicciones coherentes respecto a la naturaleza de las variables.

- Introducción
- 2 Fundamentos Teóricos
- Metodología
- 4 Resultados
- Conclusiones

Introducción Fundamentos Teóricos Metodología Resultados

Métricas de validación Productos finales Validación de datos

Introducción
Fundamentos Teóricos
Metodología
Resultados

Métricas de validaci Productos finales Validación de datos

Introducción Fundamentos Teóricos Metodología Resultados

Métricas de validació Productos finales Validación de datos

Introducción Fundamentos Teóricos Metodología Resultados Conclusiones

- Introducción
- 2 Fundamentos Teóricos
- 3 Metodología
- Resultados
- Conclusiones

Introducción Fundamentos Teóricos Metodología Resultados Conclusiones

