Introduction

2017-12-06

14.23

An example

- · Hand writing recognition: machine learning is a kind of method of
- Curve Fitting:

o
$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

o Root-mean-square error (RMS-Error)

•
$$E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$$

- To prevent over fitting
 - o More data
 - By regularization (正则化)

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

1.1	Example: Polynomial Curve Fitting
1.2	Probability Theory
	1.2.1 Probability densities
	1.2.2 Expectations and covariances
	1.2.3 Bayesian probabilities
	1.2.4 The Gaussian distribution
	1.2.5 Curve fitting re-visited
	1.2.6 Bayesian curve fitting
1.3	Model Selection
1.4	The Curse of Dimensionality
1.5	Decision Theory
	1.5.1 Minimizing the misclassification rate
	1.5.2 Minimizing the expected loss
	1.5.3 The reject option
	1.5.4 Inference and decision
	1.5.5 Loss functions for regression
1.6	Information Theory
1.0	1.6.1 Relative entropy and mutual information
	Total Company and Internation 111111111111111111111111111111111111

Introduction

- Suggest: taking the available data and partitioning it into a training set, used to determine the
 coefficients w, and a separate validation set, also called a hold-out set, used to optimize the
 model complexity (either M or λ). However it is a kind of wasting training data
- 这一部分作为导入很贴切,基本说明了是在用什么思路解决什么问题、解决问题中可能遇到的瓶颈以及常用的解决策略

Probability Theory

0.基本概念

• Sum rule of probability (加法法则 边缘概率)

$$p(X = x_i) = \sum_{j=1}^{L} p(X = x_i, Y = y_j) \quad _{1} = \frac{c_i}{N}.$$

• conditional probability (条件概率)

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}.$$

• Joint probability (联合概率)

$$o \quad p(X=x_i,Y=y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$$

$$= p(Y=y_j|X=x_i)p(X=x_i)$$

p(X,Y) = p(X|Y)p(Y) = p(Y|X)p(X) = p(Y,X)

p(Y|X) = p(X|Y)p(Y)/p(X)

• Productive rule (乘法法则)

• Bayes' theorem

- Prior probability (先验概率):在随机变量的值确定前获得的概率。如从蓝色盒子中抽取的概率是40%
- Posterior probability (后验概率):在随机变量的值确定后推算出的概率。如已知抽取到的是苹果,推算出之前是从蓝盒子中抽取的概率。

1.概率密度(当随机变量的取值是连续型时)

• The probability that x will lie in an interval (a, b) is then given by

$$o$$
 $p(x \in (a, b)) = \int_{a}^{b} p(x) dx$.

and hence

• 原本要求p(y)需要用 p_y ,在知道随机变量x和y之间的关系后,能将原问题转化成用 p_x 来求

Under a nonlinear change of variable, a probability density transforms differently from a simple function, due to the Jacobian factor. For instance, if we consider a change of variables x=g(y), then a function f(x) becomes $\widetilde{f}(y)=f(g(y))$. Now consider a probability density $p_x(x)$ that corresponds to a density $p_y(y)$ with respect to the new variable y, where the suffices denote the fact that $p_x(x)$ and $p_y(y)$ are different densities. Observations falling in the range $(x, x + \delta x)$ will, for small

values of δx , be transformed into the range $(y, y + \delta y)$ where $p_x(x)\delta x \simeq p_y(y)\delta y$,

? 这里的约等于关系是怎么来的

? 这里的约等于关系是怎么来的

$$p_{y}(y) = p_{x}(x) \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right|$$
$$= p_{x}(g(y)) |g'(y)|. \tag{1.27}$$

- 如果随机变量的取值是离散的,那么将p(X)称为概率质量函数probability mass function
- 对于连续型变量,其概率的加法公式和乘法公式为

$$\begin{array}{ccc} & p(x) & = & \int p(x,y) \,\mathrm{d}y \\ \circ & p(x,y) & = & p(y|x)p(x). \end{array}$$

2.Expectations and covariance 期望和协方差

• 在知道一个函数自变量取值的概率分布情况下,可以求该函数的期望

$${\circ} \quad \mathbb{E}[f] = \sum_{x} p(x) f(x)$$

$$\circ \quad \mathbb{E}[f] = \int p(x) f(x) \, \mathrm{d}x.$$

• 方差

$$\circ \quad \text{var}[f] = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)]\right)^2\right]$$

$$E[(f(x) - E[f(x)])^2] = E[f(x)^2 - 2f(x)E(f(x)) + E[f(x)]^2]$$

$$= E[f(x)^2] - 2E[f(x)]^2 + E[f(x)]^2 = E[f(x)^2] - E[f(x)]^2$$