

PLANO DE ENSINO - 2024 / 2º SEMESTRE				
Curso: Ciência da Computação (Bacharelado)		Disciplina: Projeto de Linguagens de Programação		
	Turno: Diurno / Noturno	C/H Semestral: 60		
PROFESSOR RESPONSÁVEL		PROFESSOR EXECUTOR		
Kadidia Valoria Peginaldo de Oliveira				

EMENTA

Estudo dos fundamentos teóricos e práticos que compõem os processos de projeto, compilação e interpretação para linguagens de programação.

REQUISITOS

Não se aplica

OBJETIVOS			
Cognitivos	Adquirir conhecimentos sobre o processo de desenvolvimento de linguagens de programação por meio da aplicação dos conceitos práticos de linguagens formais usadas em compiladores e interpretadores. Analisar criticamente diferentes linguagens de programação, identificando suas características, pontos fortes e limitações. Aplicar conceitos teóricos na prática, projetando gramáticas formais e definindo regras de análise léxica e sintática.		
Habilidades	Projetar e implementar linguagens de programação, considerando aspectos como a definição de gramáticas formais, análise léxica, sintática e semântica. Avaliar e selecionar linguagens de programação apropriadas para tarefas específicas, levando em conta fatores como expressividade, eficiência e suporte a paradigmas de programação.		
Atitudes	Trabalhar de forma colaborativa, demonstrando habilidades de comunicação e trabalho em equipe durante projetos de planejamento e projeto de linguagens de programação. Demonstrar curiosidade e interesse em explorar e compreender diferentes linguagens de programação. Desenvolver uma mentalidade de aprendizagem contínua, acompanhando a evolução das linguagens de programação e explorando tendências emergentes.		

UNID.	C/H	CONTEÚDO
I	6	Introdução a compilação Gramáticas e linguagens. Organização de um compilador. Aplicações.
II	9	Análise lexica Linguagens regulares e expressões regulares. Tipos de analisadores Lexicos.
III	9	Análise sintática Arvores de expressão. Gramáticas livres de conexto. Tipos de analisadores sintáticos.
IV	9	Verificação de tipos Sistema de tipos, equivalências e polimorfismo.
V	9	Ambientes em tempo de execução Organização de memória, acesso a nomes, parâmetros e tabela de simbolos.
VI	9	Geração de código intermediário Linguagens intermediárias, declarações, atribuições e expressões
VII	9	Projeto e desenvolvimento de um Parser GNU Flex e GNU Bison. Construção de gramáticas.

ESTRATÉGIA DE ENSINO

Exposição de conteúdo, disponibilização de conteúdo no Blackboard. Exercícios de fixação de aprendizagem desenvolvidos individualmente e/ou em grupo. Aplicação de conceitos em atividades práticas com cenários para resolução de problemas. Entrega de atividades por meio do Ambiente Virtual de Aprendizagem (Blackboard).

RECURSOS DISPONÍVEIS

Ambiente virtual de aprendizagem (AVA Blackboard), sala de aula, laboratório de informática, bibliotecas virtuais.

AVALIAÇÃO

O semestre letivo é composto por 02 (duas) avaliações de aprendizagem, com conteúdos cumulativos: - Avaliação Regimental (A1): 5,0 (cinco) - Avaliação Docente (A2): 5,0 (cinco) Para as disciplinas que não possuem PR as avaliações A1 e A2 são de responsabilidade de cada docente. A Nota Final (NF) é obtida pelo somatório de A1 e A2. Assim: A1 A2 = NF Para aprovação o estudante deverá obter NF igual ou superior a 6,0 (seis) e, no mínimo, 75% (setenta e cinco por cento) de presenças. Se a NF for inferior a 6,0 (seis) e o estudante tiver obtido ao menos 1,0 (um) na A1 ou na A2, poderá realizar uma Avaliação Final (AF), correspondente a 5,0 (cinco). Neste caso, a AF substituirá a menor nota lançada no sistema, seja A1 ou A2.

BIBLIOGRAFIA BÁSICA	BIBLIOGRAFIA COMPLEMENTAR
	STALLINGS, W. Arquitetura e Organização de Computadores, São Paulo: Pearson, 2017. (E-Book)
LOUDEN, K. C. Compiladores: princípios e práticas. São Paulo: Cengage Learning, 2004. E-book.	Capron, H.L.Johnson, J.A. Introdução à Informática. São Paulo: Pearson Prentice Hall, 2004. (E-Book)
LANGLOIS, P. R. S. T. Compiladores: da teoria à prática. 1. ed. Rio de Janeiro: LTC, 2018. E-book.	CORRÊA, A. G.D. (org.) Organização e arquitetura de computadores. São Paulo: Pearson Education do Brasil, 2016. E-book. (E-Book)
	TANENBAUM, A. S.; ZUCCHI, W. L. Organização estruturada de computadores. 6. ed. São Paulo: Pearson Prentice Hall, 2013. E-book. (E-Book)
	ASCENCIO, A. F. G.; CAMPOS, E. A. V. Fundamentos da programação de computadores: algoritmos, Pascal, C/C ++ e Java. 3. ed. São Paulo: Pearson, 2012. E-book. (E-Book)