# Clicker Survey

How do you feel about the first test?

- (a) Great
- (b) Good
- (c) Average
- (d) No so good
- (e) Terrible

Inverse Functions

## Clicker Survey

Do you think you need to:

- (a) Study about the same for the next test
- (b) Study harder for the next test
- (c) Study less for the next test
- (d) Study Sooner for the next test

Inverse Functions 2 / 11

We have already used inverse functions to solve things such as tan(arcsin(3/5)) = ?

We now wish to take advantage of the fact that

$$f(f^{-1}(x)) = x$$

to find some derivatives of new functions. Let's practice the idea on something we already know:

If 
$$f(x) = \sqrt{x}$$
, then  $(f(x))^2 = x$ .

Take the derivative of both sides:

$$2(f(x))\frac{df}{dx}=1$$

Therefore, 
$$\frac{df}{dx} = \frac{1}{2f(x)} = \frac{1}{2\sqrt{x}}$$

as expected.

Inverse Functions 3 / 11

# The Derivative of ln(x)

We use the chain rule to differentiate an identity involving  $\ln x$ . Since  $e^{\ln x} = x$ , we can differentiate both sides. On the one hand we have:

$$\frac{d}{dx}e^{\ln x} = \frac{d}{dx}x = 1.$$

Also, by the chain rule,

$$\frac{d}{dx}e^{\ln x} = e^{\ln x}\frac{d}{dx}\ln(x) = x\frac{d}{dx}\ln(x)$$

Thus, dividing by x,

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

- 4 ロ ト 4 部 ト 4 き ト 4 き - り Q ()

Inverse Functions 4 / 11

## Clicker Question

Find the derivative of  $ln(x^2 + 2)$ .

(a) 
$$f'(x) = \frac{1}{\ln(x^2+2)}$$

(b) 
$$f'(x) = \frac{1}{2x}$$

(c) 
$$f'(x) = \frac{1}{x^2+2}$$

(d) 
$$f'(x) = \frac{1}{x^2+2}2x$$

Inverse Functions 5 / 11

#### Derivative of a<sup>x</sup> Revisited

In Section 3.2, we saw that the derivative of  $a^x$  is proportional to  $a^x$ . Now we see another way of calculating the constant of proportionality. We use the identity

$$ln(a^x) = x ln a$$

Differentiating both side, using the chain rule, and remembering that In *a* is a constant, we obtain:

$$\frac{d}{dx}(\ln a^{x}) = \frac{1}{a^{x}} \frac{1}{a^{x}} \frac{d}{dx} a^{x} = \ln a$$

So, we have the result from Section 3.2 that

$$\frac{d}{dx}a^{x} = a^{x} \ln a$$

◆ロ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□

Inverse Functions 6 / 11

# Derivatives of Inverse Trigonometric Functions

To find  $\frac{d}{dx}(\arctan x)$ , we use the identity  $\tan(\arctan x) = x$ . Differentiating both sides gives

$$\frac{d}{dx}(\tan(\arctan x)) = \frac{d}{dx}x = 1$$

But also, from the chain rule,

$$\frac{d}{dx}(\tan(\arctan x)) = \frac{1}{\cos^2(\arctan x)} \frac{d}{dx}(\arctan x)$$

So,

$$\frac{d}{dx}(\arctan x) = \cos^2(\arctan x)$$

Now, using the identity  $1+\tan^2\theta=1/\cos^2(\theta)$ , and setting  $\theta=\arctan x$ , we find

$$\cos^2(\arctan x) = \frac{1}{1+\tan^2\theta} = \frac{1}{1+\tan^2(\arctan x)} = \frac{1}{1+x^2}$$

Inverse Functions 7 / 11

## Derivative of the Arcsine and Examples

By a similar argument, we obtain the result

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}}$$

#### Examples

- (a) Differentiate  $f(t) = \arctan(t^2)$ .
- (b) Differentiate  $g(\theta) = \arcsin(\tan \theta)$ .

Solution: Use the chain rule.

$$\frac{d}{dt}\arctan(t^2) = \frac{1}{1+(t^2)^2}\frac{d}{dt}(t^2) = \frac{2t}{1+t^4}$$
 (1)

Also,

$$\frac{d}{d\theta}\arcsin(\tan\theta)=\frac{1}{\sqrt{1-\tan^2\theta}}\frac{d}{d\theta}(\tan\theta)=\frac{1}{\sqrt{1-\tan^2\theta}}\frac{1}{\cos^2\theta}$$



### Derivative of a General Inverse Function

In general, if a function f has a differentiable inverse,  $f^{-1}$ , we find its derivative by differentiating  $f(f^{-1}(x)) = x$  by using the chain rule, yielding the following result:

$$\frac{d}{dx}(f^{-1}(x)) = \frac{1}{f'(f^{-1}(x))}$$

#### <u>Exercise</u>

Use the table and the fact that f(x) is invertible and differentiable everywhere to find  $(f^{-1})'(3)$ 

| Х | f(x) | f'(x) |  |
|---|------|-------|--|
| 3 | 1    | 7     |  |
| 6 | 2    | 10    |  |
| 9 | 3    | 5     |  |

**Solution** Note that 
$$f^{-1}(3) = 9$$
, since  $f(9) = 3$ . Then  $(f^{-1})'(3) = 1/f'(9) = 1/5$ .

(ロト (日) (量) (量) (量) (量) (量) (量) (量) (型) (1) (Inverse Functions

## Clicker Question

If f(x) is given by the followin table, what is  $\frac{d}{dx}(f^{-1}(x))$  evaluated at x = 1?

| х     | -2 | -1 | 0 | 1 | 2 |
|-------|----|----|---|---|---|
| f(x)  | 3  | 1  | 4 | 2 | 0 |
| f'(x) | 1  | 2  | 5 | 3 | 4 |

Inverse Functions

# Challenge Problem

$$f(x) = \arctan\left(\frac{\sin^2((\ln(x) + 3))}{3}\right)$$

Find f'(x).



Inverse Functions 11 / 11