PENERAPAN ALGORITMA C4.5 UNTUK MEMPREDIKSI PENJUALAN LAPTOP

Muhammad Aqil Sadik¹, Ratih Friska Dwi Andini²

^{1,2,3}Pendidikan Teknik Informatika dan Komputer, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sebelas Maret

Email: ¹aqilsadik12@student.uns.ac.id, ²ratihfriska@student.uns.ac.id

Abstract.

Laptops are electronic devices that are very often used today, both children and even adults can use laptops for aspects of work in offices, homes, schools and industry. With the development of current technology, the types and brands of laptops are becoming more and more. There are various types of laptops with different prices and specifications to choose from. Therefore the seller must be able to distinguish which laptop has a lot of demand, so it is necessary to recommend the type of laptop using the data mining classification method C 4.5 algorithm. The data needed is price, specifications, color, and quality. C4.5 is a standard classification method based on decision trees. The C4.5 algorithm is built in several stages which include selecting the attribute as the root, creating a branch for each value and dividing the cases into branches.

Keywords: Laptop, data mining, Algorithm C4.5

Abstrak.

Laptop merupakan alat elektronik yang sangat sering digunakan saat ini, baik dari kalangan anak-anak bahkan dewasa penggunaan laptop bisa untuk aspek pekerjaan di perkantoran,rumah,sekolah maupun industri dengan berkembangnya teknologi saat ini jenis dan merk laptop menjadi semakin banyak . bermacam-macam jenis laptop dengan harga dan spesifikasi yang berbeda yang dapat dipilih. Oleh karena itu penjual harus bisa membedakan laptop mana yang memiliki banyak peminatnya, sehingga perlu perekomendasian jenis laptop dengan menggunakan data mining metode klasifikasi algoritma C 4.5 data yang diperlukan adalah harga, spesifikasi,warna, dan kualitas. C4.5 adalah metode klasifikasi standar berdasarkan pohon keputusan pohon keputusan. Algoritma C4.5 dibangun dengan beberapa tahap yang meliputi pemilihan atribut sebagai akar, membuat cabang untuk tiap-tiap nilai dan membagi kasus dalam cabang. Tahapantahapan ini akan diulangi untuk setiap cabang sampai semua kasus pada cabang memiliki kelas yang sama. Dari penyelesaian pohon keputusan maka nantinya akan didapatkan

beberapa rules

Kata Kunci: laptop, data mining, prediksi, Algoritma C 4.5

1. Pendahuluan

Perkembangan globalisasi saat ini sangat mempengaruhi berbagai bidang, salah satunya yaitu

teknologi. Laptop merupakan barang elektronik yang banyak digunakan, karena merupakan sebuah

komputer yang dapat dibawa kemana saja serta memiliki ukuran yang fleksibel dan juga enteng. Fungsi

laptop mirip dengan komputer desktop pada umumnya yaitu memudahkan pekerjaan dan tugas yang

sedang dikerjakan. Toko Sehati Solo beralamat di Gonilan no. 1 adalah toko yang menyediakan

bermacam-macam merk laptop dengan berbagai kriteria.

Penjualan laptop juga sudah meningkat sebanyak rata-rata 1,4% dari tahun 2018 dilansir oleh

lembaga riset Gartner setelah sebelumnya menurun selama 6 tahun terakhir dikarenakan banyak nya

jenis merk dan spesifikasi laptop sehingga konsumen bingung dalam memilih laptop sesuai dengan

kebutuhan, dari permasalahan yang ada ini dibutuhkan riset yang dapat membantu para konsumen untuk

memberikan rekomendasi terhadap laptop yang ingin digunakan.

Toko Sehati Solo termasuk salah satu toko yang ramai dikunjungi oleh banyak orang yang ingin

membeli atau sekedar bertanya karena toko ini sangat lengkap. Perkembangan teknologi komputer yang

selalu berkembang dalam usaha memenuhi kebutuhan manusia di bidang komunikasi, informasi dan

pengolahan data. Sebagai contoh penjualan laptop yang berkembang dan tumbuh sangat cepat. Dengan

semakin meningkatnya konsumen yang membutuhkan laptop, maka semakin banyak pula permasalahan

yang timbul di dalam memberikan pelayanannya kepada pembeli. Sistem persediaan laptop harus

disiapkan dengan maksimal agar penjual dapat memenuhi keinginan pembeli.

Untuk mempermudah penjual memilih laptop mana yang banyak diminati pembeli agar

disediakan stok untuk laptop tersebut, maka perlu diprediksi untuk penjualan laptop terbanyak dengan

metode klasifikasi menggunakan metode data mining algoritma C4.5.

2. Tinjauan Pustaka

2.1 Data Mining

Menurut Hermawati (2013:3) data mining merupakan suatu proses yang mempekerjakan satu

atau lebih teknik pembelajaran komputer(machine learning) untuk menganalisis dan mengekstrak

pengetahuan(knowledge) secara otomatis. Data mining merupakan salah satu langkah dari proses KDD(

Knowledge Discovery in Databases) (Julnes, G. ,2001)

- (1) teknik dan sifat data mining: (a) Classification, (b)Clustering, (c) Association Rule Discovery, (d) Regression, (e) Deviation Detection.
- (2) tahapan data mining (a) pembersihan data, (b)integrasi data, (c)seleksi data, (d) transformasi data, (e) proses mining, (f) evaluasi pola, (g) representasi pengetahuan.

Data mining adalah sebuah proses, jadi prosesnya harus mengikuti prosedur yaitu proses CRISP-DM (Cross-Industry Standard Process for Data Mining) secara keseluruhan, pra-pemrosesan data, pembangunan model, evaluasi model dan akhirnya model. penerapan.

2.2 Algoritma C4.5

Algoritma C4.5 adalah metode algoritma yang digunakan untuk membangun suatu pohon keputusan. Pohon keputusan adalah metode klasifikasi dan prediksi yang sangat kuat dan terkenal. Metode pohon keputusan mengubah fakta yang sangat besar menjadi pohon keputusan yang merepresentasikan aturan. Aturan dapat dengan mudah dipahami dengan bahasa alami. Bisa juga diekspresikan dalam bentuk bahasa basis data seperti Structured Query Language untuk mencari record pada kategori tertentu.(Kusrini, 2018)

Cara algoritma C4.5 untuk membangun pohon keputusan yaitu: (a) Pilih atribut yang akan digunakan sebagai akar (b) Buatlah sebuah cabang untuk setiap nilai (c) Bagilah kasus dalam sebuah cabang (d) Ulangi proses untuk setiap cabang sampai semua kasus pada cabang memiliki kelas yang sama.

Ada beberapa tahap dalam membangun pohon keputusan dengan algoritma C4.5(Rahmadya, 2013)

1. Siapkan data training. Data ini diambil dari data yang sudah pernah ada sebelumnya dan sudah dibagi dalam kelas-kelas tertentu. 2. Kemudian tentukan akar pohon tersebut. Pilih akar dari atribut, metode ini menghitung nilai gain dari semua atribut,yang menjadi akar pertama adalah nilai gain yang paling. Sebelum menentukan nilai gain, terlebih dahulu hitung nilai entropy.

Pendekatan C4. 5 merupakan bentuk perluasan dari algoritma ID3 yang diusulkan oleh Quinlan, J. R. (1993) dimana kriteria gain ratio telah diadopsi untuk klasifikasi pohon keputusan atau decision tree classification alih-alih kriteria pembagian gain informasi. Decision tree dibangun dengan menerapkan strategi Divide dan Conquer, termasuk data yang kontinyu dan dapat menangani data yang hilang. Fungsi gain informasi dan entropi diformulasikan sebagai:

Gain (S, A) = Entropy (S) -
$$\sum_{j=1}^{v} \frac{|D_j|}{|D|} * Indo(D_j)$$

Entropy (S) =
$$\sum_{i=1}^{c} - P_i \log 2P_i$$

Ket:

D : partisi dataset

Entropy (S) : subset sebelum pemisahan v : nilai dataset

 P_i : proporsi dari nilai target ke-i dalam subset

2.3 Decision Tree

Pohon (tree) adalah sebuah struktur data yang terdiri dari *node* dan *edge*.Node dalam pohon dibagi menjadi tiga bagian: node akar, node cabang/internal, dan node daun.

Mirip dengan pohon, *decision tree* dihubungkan oleh cabang-cabang yang bergerak dari atas ke bawah mulai dari simpul akar dan berakhir di simpul daun. Node root ditempatkan di bagian atas pohon keputusan dan semua atribut node dievaluasi dan dapat bercabang. Setiap cabang dapat memasuki simpul lain atau dipindahkan ke simpul daun. Setiap node mewakili atribut, cabangnya mewakili nilai atribut, dan node daun mewakili kelas.

Pohon keputusan adalah representasi sederhana dari teknik klasifikasi untuk jumlah kelas yang terbatas. Keduanya diberi label dengan atribut. Tepi diberi label dengan kemungkinan nilai atribut dan simpul daun diberi label dengan kelas yang berbeda. (Hermawati. F. Astuti, 2013).

3. Metode Penelitian

3.1 Menentukan Objek Observasi

kegiatan observasi ini dilakukan dengan tujuan untuk memprediksi penjualan laptop. metode ini dilakukan sebagai tolak ukur penjual dalam mempersiapkan stok laptop. Sehingga penjual kedepannya dapat menyediakan laptop yang banyak diminati agar selalu ada stok.

3.2 Pengumpulan Data

Data yang digunakan sebagai penelitian adalah data sampel yang diambil dari toko Sehati Solo

No.	Harga	Spesifikasi	Ukuran	Berat	Warna	Minat
1	Murah	Sedang	Sedang	Ringan	Hitam	Banyak
2	Murah	Sedang	Besar	Berat	Hitam	Banyak
3	Murah	Rendah	Besar	Berat	Silver	Banyak
4	Mahal	Sedang	Besar	Berat	Hitam	Sedikit
5	Murah	Rendah	Besar	Berat	Hitam	Banyak
6	Mahal	Sedang	Sedang	Ringan	Hitam	Banyak
7	Mahal	Tinggi	Besar	Berat	Hitam	Banyak
8	Mahal	Sedang	Besar	Ringan	Hitam	Banyak
9	Mahal	Tinggi	Besar	Ringan	Silver	Banyak
10	Mahal	Tinggi	Sedang	Berat	Cream	Sedikit
11	Murah	Sedang	Sedang	Ringan	Hitam	Banyak

No.	Harga	Spesifikasi	Ukuran	Berat	Warna	Minat
12	Mahal	Tinggi	Sedang	Ringan	Silver	Banyak
13	Mahal	Tinggi	Sedang	Ringan	Cream	Banyak
14	Mahal	Sedang	Besar	Ringan	Silver	Banyak
15	Mahal	Tinggi	Sedang	Berat	Hitam	Sedikit
16	Murah	Rendah	Sedang	Ringan	Hitam	Banyak
17	Murah	Sedang	Besar	Berat	Silver	Banyak
18	Mahal	Tinggi	Besar	Berat	Silver	Banyak
19	Murah	Sedang	Sedang	Berat	Hitam	Sedikit
20	Murah	Rendah	Sedang	Berat	Silver	Banyak
21	Murah	Rendah	Besar	Berat	Silver	Sedikit
22	Mahal	Tinggi	Besar	Ringan	Hitam	Banyak
23	Murah	Sedang	Sedang	Ringan	Silver	Banyak
24	Mahal	Sedang	Sedang	Ringan	Silver	Banyak
25	Mahal	Sedang	Besar	Ringan	Cream	Sedikit
26	Murah	Rendah	Sedang	Berat	Cream	Sedikit
27	Mahal	Tinggi	Sedang	Ringan	Hitam	Banyak
28	Murah	Rendah	Besar	Berat	Cream	Sedikit
29	Mahal	Sedang	Sedang	Ringan	Cream	Banyak
30	Mahal	Tinggi	Besar	Berat	Cream	Banyak

Tabel.1 Data Laptop

Pada tabel 1 terdapat 30 penilaian dari 6 penilaian yang menuntut minat konsumen terhadap laptop yang ingin dibeli.

4. Hasil dan Pembahasan

Node			Jumlah	Sedikit	Banyak	Entropy	Gain
	Total		30	8	22	0,8366	
	Harga	Mahal	17	4	13	0,7871	
1		Murah	13	4	9	0,8905	
1	Spesifikasi						0,03
		Tinggi	10	2	8	0,7219	
		Sedan					
		g	13	3	10	0,7793	

		Renda						
		h	7	3	4	0,9852		
	Ukuran	Besar	15	4	11	0,8366		
	Okuran	Sedan						
		g	15	4	11	0,8366		
	Berat							
		Berat	15	7	8	0,9968		
		Ringa						
		n	15	1	14	0,3534		
	Warna	Hitam	13	3	10	0,7793	0,11	
		Silver	10	1	9	0,469	0,11	
		Cream	7	4	3	0,9852		

Tabel 2. Perhitungan entropy dan gain

pada tabel 2 dapat diketahui bahwa gain tertinggi adalah berat sebesar 0,66. Tetapi, berat dapat menjadi node akar karena memiliki 2 atribut yaitu berat dan ringan sehingga diperlukan perhitungan kembali.

Berat	Harga	Spesifikasi	Ukuran	Warna	Minat
Berat	Murah	Rendah	Besar	Silver	Banyak
Berat	Murah	Rendah	Besar	Silver	Sedikit
Berat	Murah	Sedang	Besar	Silver	Banyak
Berat	Mahal	Tinggi	Besar	Silver	Banyak
Berat	Murah	Rendah	Sedang	Silver	Banyak
Berat	Murah	Rendah	Besar	Hitam	Banyak
Berat	Mahal	Sedang	Besar	Hitam	Sedikit
Berat	Murah	Sedang	Besar	Hitam	Banyak
Berat	Mahal	Tinggi	Besar	Hitam	Banyak
Berat	Murah	Sedang	Sedang	Hitam	Sedikit
Berat	Mahal	Tinggi	Sedang	Hitam	Sedikit
Berat	Murah	Rendah	Besar	Cream	Sedikit
Berat	Mahal	Tinggi	Besar	Cream	Banyak
Berat	Murah	Rendah	Sedang	Cream	Sedikit
Berat	Mahal	Tinggi	Sedang	Cream	Sedikit

Tabel 3. Data dari atribut "berat"

Nod			Jumla	Sediki	Banya	Entrop	Gai
e			h	t	k	у	n
	Total		15	7	8	0,9968	
	Harga	Mahal	6	1	5	0,65	0,19
		Murah	9	6	3	0,9183	
	Spesifikas i	Tinggi	5	4	1	0,7219	0,23
1.1		Sedang	4	2	2	1	
		Renda					
1.1		h	6	1	5	0,65	
	Ukuran	Besar	10	3	7	0,8813	0,17
		Sedang	5	4	1	0,7219	
	Warna						
		Hitam	6	3	3	1	0,14
		Silver	5	4	1	0,7219	
		Cream	4	3	1	0,8113	

Tabel 4. Hasil perhitungan atribut "berat"

pada tabel 4 dapat diketahui bahwa gain tertinggi adalah spesifikasi sebesar 0,23. Namun di dalam atribut spesifikasi memiliki 3 atribut lagi yang diperlukan perhitungan kembali. Begitu Pula dengan tabel-tabel selanjutnya yang diperlukan penghitungan untuk atribut dengan nilai gain tertinggi dan atribut yang masih memiliki atribut lagi di dalamnya.

Dari perhitungan diatas dapat dibuat sebuah decision tree sebagai berikut

4.1 Mengubah tree menjadi rules

- **R1**: IF berat = berat ^ spesifikasi = tinggi ^ warna = hitam ^ ukuran = besar THEN minat = banyak
- **R2:** IF berat = berat ^ spesifikasi = tinggi ^ warna = hitam ^ ukuran = sedang THEN minat = sedikit
- **R3:** IF berat = berat ^ spesifikasi = tinggi ^ warna = silver THEN minat = banyak
- **R4:** IF berat = berat ^ spesifikasi = tinggi ^ warna = cream ^ ukuran = besar THEN minat = banyak
- **R5:** IF berat = berat ^ spesifikasi = tinggi ^ warna = cream ^ ukuran = sedang THEN minat = sedikit
- **R6:** IF berat = berat ^ spesifikasi = sedang ^ harga = mahal THEN minat = sedikit
- **R7:** IF berat = berat ^ spesifikasi = sedang ^ harga = murah ^ ukuran = besar THEN minat = banyak
- **R8:** IF berat = berat ^ spesifikasi = sedang ^ harga = murah ^ ukuran = sedang

THEN minat = sedikit

R9: IF berat = berat ^ spesifikasi = rendah ^ warna = hitam

THEN minat = banyak

R10: IF berat = berat ^ spesifikasi = rendah ^ warna = silver ^ ukuran = besar

THEN minat = sedikit

R11: IF berat = berat ^ spesifikasi = rendah ^ warna = silver ^ ukuran = sedang

THEN minat = banyak

R12: IF berat = berat ^ spesifikasi = rendah ^ warna = cream

THEN minat = sedikit

R13: IF berat = ringan ^ warna = hitam

THEN minat = banyak

R14: IF berat = ringan ^ warna = silver

THEN minat = banyak

R15: IF berat = ringan ^ warna = cream ^ ukuran = besar

THEN minat = sedikit

R16: IF berat = ringan ^ warna = cream ^ ukuran = sedang

THEN minat = banyak

5. Kesimpulan

Berdasarkan penelitian yang sudah dilakukan, maka dapat disimpulkan pembelian laptop menggunakan metode data mining algoritma C4.5 bermanfaat dalam proses untuk mengambil keputusan untuk menentukan sebuah laptop dengan kriteria tertentu memiliki peminat yang banyak atau sedikit. Hasil yang diperoleh dapat diimplementasikan untuk menyusun strategi kriteria-kriteria laptop yang akan diperjualbelikan.