PHYS 232C Tables, figures, and calculations for lab

Updated: April 20, 2022

Contents

Lab 1 Fluids	2
Lab 2 Bernoulli's law	3
Lab 3 Specific heat capacity	4
Lab 4 Mechanical equivalent of heat	5
Lab 5 Discovering electricity	6
Lab 6 Coulomb's law	7
Lab 7 Equipotentials and the electric field	8
Lab 8 EMF and Ohms law	9
Lab 9 RC and LR circuits	10

Lab 1 Fluids

Procedure

Part II

 $Figure\ 1.\ Experimental\ setup$

Data

Part I

Table 1. Density of water (includes m_c, m_{cw}, V)

Figures: None

Part II

Tables 2-4. Archimedes' principle, objects 1-3 (includes relevant dimensions and force measurements)

Figure 2. Sample plot of force vs time with mean.

Figure 3. Plot of V vs F_B with linear fit.

Calculations

I. Part I

- 1. Density of water
- 2. Relative errors for m_c , m_{cw} , V
- 3. Error propagation for density of water

II. Part II

- 4. Volumes for objects 1-3
- 5. Density of water
- 6. Error propagation for density of water

Lab 2 Bernoulli's law

Procedure

Figure 1. Experimental setup

Data

Tables

Table 1. H, D, d, three values per experiment

Table 2. \overline{H} , \overline{D} , average over all experiments

Table 3. \overline{d} , T, a_0 , t_0 , y_0 , one value per experiment

Figures

Figure 2-5. Plots of y vs t with (t_0, y_0) labeled and fit to find T and a_0 .

Figure 6. Plot of T vs $1/d^2$ with linear fit. Give predicted value of slope with error in figure caption. See calculation 4.

Figure 7. Plot of $a_0^{1/4}$ vs d with linear fit. Give predicted value of slope with error in figure caption. See calculation 5.

- 1. Derivation of y as a function of t
- 2. Derivation of T as a function of d for small d
- 3. Derivation of $a_0^{1/4}$ as a function of d for small d
- 4. Predicted slope of T vs $1/d^2$ graph with error
- 5. Predicted slope of $a_0^{1/4}$ vs d graph with error

Lab 3 Specific heat capacity

Procedure

Figure 1. Experimental setup

Data

Tables

Below we indicate the inner cup, water, and unknown metal as c, w, and m, respectively. Table 1. $m_c, m_w, m_m, T_{wi}, T_{mi}, T_{fH}, T_{fL}$, proposed substance, needed for each metal

Figures

Figure 2-4. Plots of T vs t with (t_i, T_{wi}) labeled and fits to find T_{fH} and T_{fL} , needed for each metal.

- 1. Derivation of formula for heat capacity of unknown metal
- 2. Relative errors
- 3. Heat capacity of unknown metal (one sample calculation)
- 4. Error propagation on heat capacity (one sample calculation)

Lab 4 Mechanical equivalent of heat

Procedure

Figure 1. Experimental setup

Data

Tables

Figures

Figures. No figures needed in data section

- 1. Derivation of formula for J
- 2. Calculation for J
- 3. Relative errors
- 4. Calculation for σ_J
- 5. Sample linear interpolation to find T_0 from R_0

Lab 5 Discovering electricity

Data

Data consists of qualitative observations.

Calculations

None.

Lab 6 Coulomb's law

Procedure

Figure 1. Experimental setup

Data

Table 1. l, m, w, r (m from lab handout) Figure 2. Plot of $\ln \tan \theta$ vs $\ln r$ with fit to determine $\bar{n} \pm \sigma_n$.

- 1. Derivation of formula for $\ln \tan \theta$ vs $\ln r$.
- 2. Derivation for x and $\tan\theta$ in terms of measured quantities.
- 3. Calculation for q and q/e.
- 4. Calculation for F_E/F_G .

Lab 7 Equipotentials and the electric field

Procedure

Figure 1. Experimental setup

Data

Tables

Table 1. Charge distribution, location, $\Delta s, \, \Delta V, \, E$

Figures

Figure 2-4. Plot of charge distribution with (labeled) equipotentials and electric field lines. Indicate location where electric field strength calculated. (To be referenced in Table 1.)

Calculations

 $1. \ {\bf Sample\ calculation\ of\ electric\ field\ strength}.$

Lab 8 EMF and Ohm's law

Procedure

Figure 1. Resistors in series: Experimental setup Figure 2. Resistors in parallel: Experimental setup

Data

Tables

Table 1. Resistors in series: $\Delta V_{\rm bat}, R, R_{\rm s}, I_0, I_{\rm s}$ with error estimates Table 2. Resistors in parallel: $\Delta V_{\rm bat}, R, R_{\rm p}, I_0, I_{\rm p}$ with error estimates

Figures

None

- I. Resistors in series
 - 1. Derive formula for r and \mathcal{E}
 - 2. Relative errors
 - 3. Calculation for r and σ_r
 - 4. Calculation for \mathcal{E} and $\sigma_{\mathcal{E}}$
- II. Resistors in parallel
 - 5. Derive formula for r and \mathcal{E}
 - 6. Relative errors
 - 7. Calculation for r and σ_r
 - 8. Calculation for \mathcal{E} and $\sigma_{\mathcal{E}}$

Lab 9 RC and LR circuits

Procedure

Figure 1. RC circuit: Experimental setup Figure 2. RL circuit: Experimental setup Figure 3. RLC circuit: Experimental setup

Data

Tables

 $\begin{array}{ll} \text{Table 1. } RC \text{ circuit: } R,C,\tau,\tau_{\text{meas}} \\ \text{Table 2. } RL \text{ circuit: } R,L,\tau,\tau_{\text{meas}} \end{array}$

Table 3. RLC circuit: $R, L, C, \tau, \omega, \tau_{\text{meas}}, \omega_{\text{meas}}$

Figures

Figure 4-6. RC circuit: Plot of voltage vs time with fit to find $\tau_{\rm meas}$ Figure 7-9. RL circuit: Plot of voltage vs time with fit to find $\tau_{\rm meas}$

Figure 10. RLC circuit: Plot of voltage vs time with fit to find $\tau_{\rm meas}$ and $\omega_{\rm meas}$

- I. RC circuit
 - 1. Derive formula for voltage as function of time
 - 2. Relative errors
 - 3. Calculation for τ and σ_{τ}
- II. RL circuit
 - 4. Relative errors
 - 5. Calculation for τ and σ_{τ}
- III. RLC circuit
 - 6. Relative errors
 - 7. Calculation for τ and σ_{τ}
 - 8. Calculation for ω and σ_{ω}