Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-11. (cancelled)

- 12. (new) A jet propulsion engine for a watercraft comprising:
 a rotor and a housing, the rotor having an inner portion
 with blades, the housing receiving the rotor, the rotor being
 rotationally connected to the housing by a bearing, wherein the
 bearing comprises carbide that is resistant to sea-water.
- 13. (new) The jet propulsion engine of claim 12, wherein the bearing comprises silicon carbide or aluminum carbide.
- 14. (new) The jet propulsion engine of claim 12, wherein the bearing consists exclusively of carbide.
- 15. (new) The jet propulsion engine of claim 12, wherein the bearing is a slide bearing.
- 16. (new) The jet propulsion engine of claim 12, wherein the bearing is a plurality of segments.
- 17. (new) The jet propulsion engine of claim 16, wherein a portion of the plurality of segments are spaced on one side of the rotor and another portion of the plurality of segments are spaced on another side of the housing so that a pumping effect

is achieved and produces a defined flow.

- 18. (new) The jet propulsion engine of claim 16, wherein the plurality of segments are connected in a positive-locking manner to the housing or the rotor.
- 19. (new) The jet propulsion engine of claim 18, wherein the plurality of segments are connected to the housing or the rotor via adhesive.
- 20. (new) The jet propulsion engine of claim 12, wherein the housing encloses the rotor in a tube-like manner defining a hollow space between an outside of the rotor and an inside of the housing, and wherein an electric ring motor is positioned in the hollow space.
- 21. (new) The jet propulsion engine of claim 12, wherein the bearing has a diameter equal to or larger than 200 mm.
- 22. (new) The jet propulsion engine of claim 12, wherein the bearing has a diameter of between 200 mm to 2500 mm.
- 23. (new) A jet propulsion engine for a watercraft comprising:
 a rotor and a housing, the rotor having an inner portion
 with blades, the housing receiving the rotor, the rotor being
 rotationally connected to the housing by a bearing, wherein the
 bearing comprises carbide that is resistant to sea-water,
 wherein the bearing is a plurality of segments and wherein the
 plurality of segments of the bearing are spaced on the rotor or
 housing and produce a pumping effect via centrifugal force.
- 24. (new) The jet propulsion engine of claim 23, wherein the

bearing comprises silicon carbide or aluminum carbide.

- 25. (new) The jet propulsion engine of claim 23, wherein the bearing consists exclusively of carbide.
- 26. (new) The jet propulsion engine of claim 23, wherein the bearing is a slide bearing.
- 27. (new) The jet propulsion engine of claim 23, wherein a portion of the plurality of segments are spaced on one side of the rotor and another portion of the plurality of segments are spaced on another side of the rotor or housing so that the pumping effect achieved is a defined flow.
- 28. (new) The jet propulsion engine of claim 23, wherein the plurality of segments are connected in a positive-locking manner to the housing or the rotor.
- 29. (new) The jet propulsion engine of claim 23, wherein the plurality of segments are connected to the housing or the rotor via adhesive.
- 30. (new) The jet propulsion engine of claim 23, wherein the housing encloses the rotor in a tube-like manner defining a hollow space between an outside of the rotor and an inside of the housing, and wherein an electric ring motor is positioned in the hollow space.
- 31. (new) A method for producing a bearing on a jet propulsion engine of a water craft comprising:

providing a plurality of bearing segments made of carbide;

positively locking a first portion of the plurality of bearing segments to a rotor;

applying adhesive between the first portion of the plurality of bearing segments and the rotor;

grinding at least two bearing surfaces that are substantially perpendicular to each other of the first portion of the plurality of bearing segments;

positively locking a second portion of the plurality of bearing segments to a housing;

applying adhesive between the second portion of the plurality of bearing segments and the housing; and

grinding at least two bearing surfaces that are substantially perpendicular to each other of the second portion of the plurality of bearing segments.