Math136 - January 27'th, 2016 Rank, Solution Theorem, Matrices

Rank of a Matrix

Suppose A is a matrix with RREF R. The rank of A is the number of leading ones in R.

Theorem 2.2.4

If A is a $m \times n$ matrix, then Rank $A \leq \min(m, n)$.

Theorem 2.2.5

Let A be the coefficient matrix of a system of m linear equations in n unknowns with augmented matrix $\begin{bmatrix} A & | & \vec{b} \end{bmatrix}$

- 1. If the rank of A is less than the rank of the augmented matrix $\begin{bmatrix} A & | & \vec{b} \end{bmatrix}$, then the system is consistent.
- 2. If the system $A \mid \vec{b}$ is consistent, then the system contains (n-rank A) free variables.
- 3. Rank A=m iff the system is consistent for every $\vec{b} \in \mathbb{R}^m$

This is the **System-Rank Theorem**

Note: Suppose that A is the coefficient matrix or a system of equations with augmented matrix $\begin{bmatrix} A & | & \vec{b} \end{bmatrix}$. Then if A has RREF R, then $\begin{bmatrix} A & | & \vec{b} \end{bmatrix}$ will have RREF $\begin{bmatrix} R & | & \vec{r} \end{bmatrix}$ for some \vec{r}

Theorem 2.2.6

Let $\begin{bmatrix} A & | & \vec{b} \end{bmatrix}$ be a consistent system of m linear equations in n variables with RREF $\begin{bmatrix} R & | & \vec{b} \end{bmatrix}$. If rant A = k < n, then a vector equation of the solution set of $\begin{bmatrix} A & | & \vec{b} \end{bmatrix}$ has the form $\vec{x} = \vec{d} + t_1 \vec{v}_1 + \dots + t_{n-k} \vec{v}_{n-k}, t_1, \dots, t_{n-k} \in \mathbb{R}$ where $\vec{d} \in \mathbb{R}^n$ and $\{\vec{v}_1, \dots, \vec{v}_{n-k}\}$ is a linearly independent set of vectors in \mathbb{R}^n . So the solution set is an (n-k)-flat in \mathbb{R}^n

A system of linear equations is **homogeneous** if the right hand side is zero. The set of solutions to a homogeneous system is the solution space.

Note: A homogeneous system is always consistent since we get a solution by setting all vars = 0.

Matrices

A $m \times n$ matrix A is a rectangular array with m rows and n columns. We denote the entry in the ith row and jth column by a_{ij} , that is:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & & & \\ \vdots & & \ddots & & \\ a_{m1} & & & a_{mn} \end{bmatrix}$$

Addition and Scalar Multiplication

Let $A, B \in M_{m \times n}(\mathbb{R})$ and $c \in \mathbb{R}$. We define A + B and cA as:

$$(A+B)_{ij} = A_{ij} + B_{ij}$$
$$(cA)_{ij} = c(A)_{ij}$$

Theorem 3.1.1

The set of matrices in $M_{m\times n}(\mathbb{R})$ satisfy the properties analogous to those in theorem 1.1.1.