

Linear Algebra (MT-1004)

Lecture # 20

Linear Combination in a Vector Space

Linear combination:

A vector \mathbf{u} in a vector space V is called a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in V if \mathbf{u} can be written in the form

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k,$$

where $c_1, c_2, ..., c_k$ are real-number scalars

Spanning Set

- This section introduces the spanning set, this notion is associated with the representation of any vector in a vector space as a linear combination of a selected set of vectors in that vector space.
- Spanning Set:
 If S={v₁,v₂,...., v_k} is a set of vectors in a vector space W of V consisting of all linear combinations of the vectors in S is called space spanned by v₁, v₂,....,v_k and we say that the vectors v₁, v₂,....,v_k span W. It is denoted by

$$W = Span(S)$$
 or $W = Span\{v_1, v_2, \dots, v_k\}$

• Theorem Span(S) is a subspace of V

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a set of vectors in a vector space V, then

- (a) span(S) is a subspace of V
- (b) $\operatorname{span}(S)$ is the smallest subspace of V that contains S, i.e., every other subspace of V containing S must contain $\operatorname{span}(S)$

Problem Let $\mathbf{v}_1 = (2,5)$ and $\mathbf{v}_2 = (1,3)$. Show that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a spanning set for \mathbb{R}^2 .

Take any vector $\mathbf{w} = (a, b) \in \mathbb{R}^2$. We have to check that there exist $r_1, r_2 \in \mathbb{R}$ such that

$$\mathbf{w} = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2 \iff \begin{cases} 2r_1 + r_2 = a \\ 5r_1 + 3r_2 = b \end{cases}$$

Coefficient matrix:
$$C = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$$
. $\det C = 1 \neq 0$.

Since the matrix C is invertible, the system has a unique solution for any a and b.

Thus
$$\operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2) = \mathbb{R}^2$$
.

A Procedure for Identifying Spanning Sets

- Step 1. Let $S = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_r\}$ be a given set of vectors in V, and let \mathbf{x} be an arbitrary vector in V.
- Step 2. Set up the augmented matrix for the linear system that results by equating corresponding components on the two sides of the vector equation

$$k_1 \mathbf{w}_1 + k_2 \mathbf{w}_2 + \dots + k_r \mathbf{w}_r = \mathbf{x} \tag{2}$$

Step 3. Use the techniques developed in Chapters 1 and 2 to investigate the consistency or inconsistency of that system. If it is consistent for all choices of x, the vectors in S span V, and if it is inconsistent for some vector x, they do not.

Go through all examples

Theorem 4.3.2

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ and $S' = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$ are nonempty sets of vectors in a vector space V, then

$$\operatorname{span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_r\}=\operatorname{span}\{\mathbf{w}_1,\mathbf{w}_2,\ldots,\mathbf{w}_k\}$$

if and only if each vector in S is a linear combination of those in S', and each vector in S' is a linear combination of those in S.