LISTA 5 Solução numérica de EDP

(As questões sinalizadas com (**) deverão ser entregues até o 18 de Novembro)

1. Determine uma aproximação para a solução da EDP seguinte utilizando o método BTCS

$$\pi^2 \frac{\partial u}{\partial t}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = 0 \quad t > 0; \quad 0 \le x \le 1$$
$$u(0,t) = u(1,t) = 0, \quad t > 0$$
$$u(x,0) = \cos(\pi(x - \frac{1}{2})) \quad (0 \le x \le 1)$$

- (a) Use $\Delta t=0.04,\,\Delta x=0.01$ e compare os resultados obtidos em $t=0.5,\,$ com a solução exata $u(x,t)=e^{-t}\cos(\pi(x-\frac{1}{2}))$
- (b) Seja $\Delta t = 0.06$, quais são os valores posíveis de Δx , tal que o método FTCS não explode mesmo para valores muito grandes do tempo t?.
- 2. (**) Uma área importante onde equações parabólicas são usadas é no estudo da evolução espaço-temporal de populações biológicas. Populações tendem a comportar-se como o calor, no sentido de que elas se espalham ou propagam desde áreas com altas densidades até áreas com densidades mais baixas. Além de, obviamente, crescer e morrer. Para modelar a densidade u(x,t) da população no tempo t ($0 \le t \le L$)e na posição x ($0 \le x \le L$), considere o seguinte modelo dado por uma EDP de reação-difusão:

$$u_t = cu_{xx} + du \quad c, d \in \mathbb{R}$$

$$u(x,0) = \sin^2(\frac{\pi}{2}x) \quad (0 \le x \le L)$$

$$u(0,t) = 0, \quad t > 0$$

$$u(L,t) = 0, \quad t > 0$$

O termo difusivo cu_{xx} causa que a população se espalhe ao longo da direção x. O termo du (reação) contribui com o crescimento da população na razão d. As condições de fronteira representam o fato de que a população vive no espaço $0 \le x \le L$. Se a população sobrevive ou segue em direção à extinção vai depender dos valores de $c, d \in L$.

- (a) Prove que o método BTCS, aplicado a essa EDP, é convergente.
- (b) Utilize o método BTCS para elaborar um programa computacional que tenha como entrada: $c, d, L, T, \Delta t, \Delta x$ e que a saída seja o gráfico da solução u(x,t) para $(x,t) \in [0 \ L] \times [0 \ T]$.
- (c) Pode-se provar que para a população sobreviver tem que ser $d > \pi^2 \frac{c}{L^2}$. Comprove computacionalmente esse resultado teórico. Para isto considere L=1, c=1, e confirme computacionalmente que para d=9.5 a população tende à extinção com o passar do tempo, e que para d=10 a população aumenta no transcorrer do tempo.
- (d) Os resultados computacionais dependem dos valores Δt , Δx utilizados? Justifique.
- (e) Ecologistas que estudam sobrevivência de espécies frequentemente estão interessados em conhecer o menor valor de L tal que a população não fique extinta. Suponha que sejam conhecidos c=d=1. Determine, usando simulações no computador, esse valor mínimo de L. Compare com o resultado teórico do item c.
- 3. Determine todos os autovalores e autovetores da matriz tridiagonal $A = [a_{ij}] \in \mathbb{R}^{m \times m}$ dada por

$$a_{ij} = \begin{cases} \sigma & j = i - 1 \text{ e } j = i + 1\\ 1 - 2\sigma & j = i\\ 0 & \text{caso contrário} \end{cases}$$

1

4. Seja a matriz tridiagonal $A = [a_{ij}] \in \mathbb{R}^{m \times m}$ dada por

$$a_{ij} = \begin{cases} -\sigma & j = i - 1 \text{ e } j = i + 1\\ 1 + 2\sigma & j = i\\ 0 & \text{caso contrário} \end{cases}$$

Para quais valores de σ , $\lim_{k\to\infty}A^k=0$?.

5. O método Crank-Nicolson para a EDP do calor é dado por:

$$-vU_{j-1}^{i} + (2+2v)U_{j}^{i} - vU_{j+1}^{i} = vU_{j-1}^{i-1} + (2-2v)U_{j}^{i-1} + vU_{j+1}^{i-1}; \quad (v = \frac{ck}{h^{2}})$$

Demonstre que esse método é convergente.