Question 2

 \mathbf{a}

From the definition of the Rademacher Complexity we get:

$$R(\hat{F} \circ S) = \frac{1}{m} E_{\sigma \sim \{\pm 1\}^m} [\sup_{\hat{f} \in \hat{F}} \sum_{i=1}^m \sigma_i \hat{f}(z_i)]$$

$$= \frac{1}{m} E_{\sigma \sim \{\pm 1\}^m} [\sup_{f \in F} \sum_{i=1}^m \sigma_i c \cdot f(z_i)]$$

$$case 1 \ c \ge 0:$$

$$^1 = \frac{1}{m} E_{\sigma \sim \{\pm 1\}^m} [c \cdot \sup_{f \in F} \sum_{i=1}^m \sigma_i f(z_i)]$$

$$^2 = c \cdot \frac{1}{m} E_{\sigma \sim \{\pm 1\}^m} [\sup_{f \in F} \sum_{i=1}^m \sigma_i f(z_i)]$$

$$= c \cdot R(F \circ S) = |c| \cdot R(F \circ S)$$

$$^3 = \frac{1}{m} E_{\sigma \sim \{\pm 1\}^m} [|c| \cdot \sup_{f \in F} \sum_{i=1}^m -\sigma_i f(z_i)]$$

$$^4 = |c| \cdot \frac{1}{m} E_{\sigma \sim \{\pm 1\}^m} [\sup_{f \in F} \sum_{i=1}^m -\sigma_i f(z_i)]$$

$$= |c| \cdot R(F \circ S)$$

¹Linearity of sup for positive integers.

 $^{^{2}}$ Linearity of Expectation.

³Linearity of sup for positive numbers. |c|

⁴Since $\sigma \in \{\pm 1\}$ multiplying the σ by -1 doesn't change the distribution and so doesn't change the value of the Expectation

b

Denote \hat{F}_1 to be the \hat{F} defined in part a From the definition of the Rademacher Complexity we get:

$$R(\hat{F} \circ S) = \frac{1}{m} E_{\sigma \sim \{\pm 1\}^m} [\sup_{\hat{f} \in \hat{F}} \sum_{i=1}^m \sigma_i \hat{f}(z_i)]$$

$$^1 = \frac{1}{m} E_{\sigma \sim \{\pm 1\}^m} [\sup_{f \in F} \sum_{i=1}^m \sigma_i (c \cdot f(z_i) + b)]$$

$$^2 = \frac{1}{m} E_{\sigma \sim \{\pm 1\}^m} [\sup_{f \in F} \sum_{i=1}^m \sigma_i c \cdot f(z_i) + \sum_{i=1}^m \sigma_i b]$$

$$^3 = \frac{1}{m} E_{\sigma \sim \{\pm 1\}^m} [\sup_{f \in F} \sum_{i=1}^m \sigma_i c \cdot f(z_i)] + \frac{1}{m} E_{\sigma \sim \{\pm 1\}^m} [\sum_{i=1}^m \sigma_i b]$$

$$^4 = R(\hat{F}_1 \circ S) + b \sum_{i=1}^m \frac{1}{m} E_{\sigma \sim \{\pm 1\}^m} [\sigma_i]$$

$$^5 = R(\hat{F}_1 \circ S)$$

$$^6 = |c| \cdot R(F \circ S)$$

¹substitute \hat{f} by $c \cdot f + b$

 $[\]sum_{i=1}^{m} \sigma_i b$ isn't dependant on f so can be taken out of the sup

³Linearity of Expectation

⁴Definition of $R(\hat{F}_1 \circ S)$ and ³

 $^{{}^{5}\}mathrm{E}[\sigma_{i}] = 0, \forall i$

⁶from a