北京邮电大学 网络空间安全学院

《计算机组成与系统结构》实验报告二 双端口存储器实验:

姓	名	牛清	<u> </u>	
学	号	2022	211614	
班	— 级	2022	211801	
任课				

2023年12月

一、实验目的

- 1、了解双端口静态存储器 IDT7132 的工作特性及其使用方法,熟悉双端口通用寄存器 组的读写操作;
- 2、了解半导体存储器怎样存储和读取数据;
- 3、了解双端口存储器怎样并行读写;
- 4、熟悉 TEC-8 模型计算机中存储器部分的数据通路。

二、实验内容

- 1、从存储器地址 10H 开始,通过左端口连续向双端口 RAM 中写入 3 个数: 85H,60H,38H。在写的过程中,在右端口检测写的数据是否正确。
- 2、从存储器地址 10H 开始,连续从双端口 RAM 的左端口和右端口同时读出存储器的内容。

三、实验过程

微程序控制方式:

实验过程:

1、实验准备

将控制器转换开关拨到微程序位置,将编程开关设置为正常位置,打开电源。

- 2、进行存储器读、写实验
- (1)设置存储器读、写实验模式

按复位按钮 CLR,使 TEC-8 实验系统复位。指示灯 μA5[~]μA0 显示 00H。将操作模式开关设置为 SWC=1、SWB=1、SWA=0,进入双端口存储器实验。按 QD 开关运行一个机器周期。进入存储器读、写实验。

(2)设置存储器地址

此时,指示灯 μ A5~ μ A0 显示 0DH。在数据开关 SD7~SD0 上设置地址 10H。设置地址正确后,按一次 QD 按钮,将 SD7~SD0 上的地址写入地址寄存器 AR(左端口存储器地址) 和程序计数器 PC(右端口存储器地址)。

此时,第一个数据85H写入存储单元10H中。

(3)写入第 1 个数

指示灯 μA5[~]μA0 显示 1AH。指示灯 AR7[~]AR0(左端口地址)显示 10H,指示灯 PC7[~]PC0(右端口地址)显示 10H。在数据开关 SD7[~]SD0 上设置写入存储器的第 1 个数 85H。按一次 QD 按钮,将数 85H 通过左端口写入由 AR7[~]AR0 指定的存储器单元 10H。

(4)写入第 2 个数

指示灯 μ A5° μ A0 显示 1BH。指示灯 AR7°AR0(左端口地址)显示 11H,指示灯 PC7°PC0(右端口地址)显示 10H。观测指示灯 INS7°INS0 的值,它通过右端口读出的由 右地址 PC7°PC0 指定的存储器单元 10H 的值。在数据开关 SD7°SD0 上设置写入存储器的第 2 个数 60H。按一次 QD 按钮,将第 2 个数通过左端口写入由 AR7°AR0 指定的存储器单元 11H。

此时,第二个数据 60H 写入存储单元 11H 中 (5)写入第 3 个数

指示灯 μ A5° μ A0 显示 1CH。指示灯 AR7°AR0(左端口地址)显示 12H,指示灯 PC7°PC0(右端口地址)显示 11H。观测指示灯 INS7°INS0 的值,它是通过右端口读出的 由右地址 PC7°PC0 指定的存储器单元 11H 的值。在数据开关 SD7°SD0 上设置写入存储器的第 3 个数 38H。按一次 QD 按钮,将第 3 个数通过左端口写入由 AR7°AR0 指定的存储器单元 12H。

此时,第三个数据 38H 写入存储单元 12H 中 (6)重新设置存储器地址

指示灯 μA5~μA0 显示 1DH。指示灯 AR7~AR0(左端口地址)显示 13H,指示灯 PC7~PC0(右端口地址)显示 12H。观测指示灯 INS7~INSO 的值,它是通过右端口读出的 由右地址 PC7~PC0 指定的存储器单元 12H 的值。比较和通过左端口写入的数是否相同。 在数据开关 SD7~SD0 重新设置存储器地址 10H。按一次 QD 按钮,将 SD7~SD0 上的地址写入地址寄存器 AR(左端口存储器地址)和程序计数器 PC(右端口存储器地址),进入下一步。

(7)左、右两 2 个端口同时显示同一个存储器单元的内容。

指示灯 μΑ5[~]μΑ0 显示 1FH。指示灯 AR7[~]ARO(左端口地址)显示 10H,指示灯 PC7[~]PCO(右端口地址)显示 10H。观测指示灯 INS7[~]INSO 的值,它是通过右端口读出的 由右地址 PC7[~]PCO 指定的存储器单元 10H 的值。观测指示灯 D7[~]DO 的值,它是从左端口读出的由 AR7[~]ARO 指定的存储器单元 10H 的值。按一次 QD 按钮,地址寄存器 AR 加 1,程序计数器 PC 加 1,在指示灯 D7[~]DO 和指示灯 INS7[~]INSO 上观测存储器的内容。继续按 QD 按钮,直到存储器地址 AR7[~]ARO 为 12H 为止。

再按一次 QD 按钮,试验结束。 独立方式之后统一写实验数据与心得

独立方式

- (注,之前在微程序模式中操作步骤已经较为详细,故在此不再细化分析)
 - 1、将"控制转换"开关拨到中间位置既"独立"灯亮,双端口存储器实验;【操作模式:1110】,拨动编程开关到正常位置
 - 2、按接线图进行连线: 开关与控制信号之间的接线图

K15	K14	K13	K12	K11	K10	K9
SBUS	ARINC	LAR	MEMW	MBUS	PCINC	LPC

3、设置左端口地址为 10H, b)操作: SBUS = 1,数据开关置 10H; LAR, LPC = 1。 地址 10H 便可以通过 DBUS 数据总线写入地址寄存器 AR 和程序计数器 PC 之中。按QD 执行。

K15	K14	K13	K12	K11	K10	К9	D7	D6	D5	D4	D3	D2	D1	D0
1		1				1				1				

4、写入第一个数 85H, 其中, 我们要求 MEMW 打开, 为了在

连续的三个存储单元中写入数据,我们打开 ARINC 信号使其自增,为了在右端口检验写入的数据书否正确,我们使右端口控制读出的程序计数器 PC 的地址比左端口控制写入的地址寄存器 AR 的地址小 1,也就是说在这一步仅让 AR +1,下一步再让 AR +1,PC +1,来实现此功能要求。

本步骤信号: SBUS = 1, 数据开关置 85H; MEMW = 1; ARINC = 1

K15	K14	K13	K12	K11	K10	K9
1	1		1			

D7	D6	D5	D4	D3	D2	D1	D0
1					1		1

85H 被写入地址 10H 的存储单元中

5、同理,按照 4 步骤中的说明,写入第二个数 60H。

此步骤的控制信号及数据: SBUS = 1,数据开关置 60H; MEMW = 1; ARINC = 1, PCINC = 1;

K15	K14	K13	K12	K11	K10	К9	D7	D6	D5	D4	D3	D2	D1	D0
1	1		1					1	1					

6、同理,写入 38H

7、重置 AR = PC = 10: 关闭 MEMW = 0; 关闭 PCINC, ARINC = 0; 打开 LPC, LAR = 1; SBUS = 1, 数据开关置 10H。读出 10 存储单元的数据 85H, 继续让左端口与右端口均读出 11H 存储单元的数据 60H 以及 12H 存储单元的数据。38H

实验结束

实验数据:

实验数	汝据	实验结果							
	通过左	第一次从 读出	人右端口 的数	同时读出时的读出结果					
左端口存 储器地址	端口写 入的数 据	右端 口存 储器 地址	读出的数	左端 口存 储器 地址	读出的数	右端 口存 储器 地址	读出的数		
10H	85H	10H	85H	10H	85H	10H	85H		
11H	60H	11H 60H		11H	60H	11H	60H		
12H	38H	12H	38H	12H	38H	12H	38H		

对实验的说明:

1、结合实验现象,在每一实验步骤中,对下述信号所起的作用进行解释: SBUS、MBUS、LPC、PCINC、LAR、ARINC、MEMW。并说明在该步骤中,哪些信号是必需的,哪些信号不是必需的,哪些信号必需采用实验中使用的值,哪些信号可以不采用实验中使用的值。

首先先明确每一个信号的功能:

名称	功能说明
D7~D0	数据总线 DBUS 上的数。
PCINC	=1 时,在 T3 的上升沿 PC 加 1。
AR7~AR0	双端口 RAM 左端口存储器地址。
ARINC	=1 时,在 T3 的上升沿, AR 加 1。
PC7~PC0	双端口 RAM 右端口存储器地址。SBUS
SBUS	=1 时,数据开关 SD7~SDO 的数送数据总线 DBUS。
MBUS	=1 时,将双端口 RAM 的左端口数据送到数据总线 DBUS。
INS7~INS0	从双端口 RAM 右端口读出的指令,本实验中作为数据使用。
LAR	=1 时,在 T3 的上升沿,将数据总线 DBUS 上的 D7~D0 写入地址寄存器
	AR _o
LPC	当它为 1 时,在 T3 的上升沿,将数据总线 DBUS 上的 D7~D0 写入程序
	计数器 PC。
MEMW	=1 时,在 T2 为 1 期间将数据总线 DBUS 上的 D7~D0 写入双端口 RAM
	写入的存储器单元由 AR7~ARO 指定。
LIR	=1 时,在 T3 的上升沿将从双端口 RAM 的右端口读出的指令 INS7~INS0
	写入指 令寄存器 IR。读出的存储器单元由 PC7~PC0 指定。

本实验微程序控制部分的实验步骤:

- (1)设置存储器读、写实验模式按复位按钮 CLR, 使实验箱实验系统进行复位。指示灯 μΑ5~μΑ0 显示 00H。将操作模式开关设置为 SWC=1、SWB=1、SWA=0, 准备进入双端口存储器实验。按一次 QD 按钮, 进入存储器读、写实验。
- (2)设置存储器地址,在数据开关 SD7~SD0 上设置地址 10H。在设置地址正确后,按一次 QD 按钮,将 SD7~SD0 上的地址写入地址寄存器 AR 和程序计数器 PC,进入下一步。其中,SBUS = 1 必须打开,而数据 10H 可以采用别的地址值。LAR,LPC = 1 必须打开,以便于向 AR 和 PC 传入数据;MBUS 必须关闭,否则会发生总线冲突;MEMW 必须关闭,否则会在错误的存储单元位置写入错误数据;PCINC,ARINC 必须关闭,不能在LAR,LPC 打开的同时打开此二信号,会发生冲突。

(3)写入第 1 个数:

指示灯 AR7~AR0 显示 10H, 指示灯 PC7~PC0 显示 10H。在数据开关 SD7~SD0 上设

置写入存储器的第 1 个数 85H。按一次 QD 按钮,将数 85H 通过左端口写入由 AR7~AR0 指定的存储器单元 10H。其中,SBUS = 1 必须打开,数据开关 85H 也可以为别的数据。 LAR,LPC = 1 必须关闭;MBUS 必须关闭,否则会发生总线冲突;ARINC 应该打开,为后续步骤提供正确的写入地址,PCINC 应当在此步关闭,这样才能保证在下一步中,右端口能够显示此步骤写入的数据;

(4)写入第 2 个数

在数据开关 SD7~SD0 上设置写入存储器的第 2 个数 60H。按一次 QD 按钮,将第 2 个数通过左端口写入由 AR7~AR0 指定的存储器单元 11H。SBUS = 1 必须打开,数据开关 60H 也可以为别的数据。 LAR,LPC = 1 必须关闭; MBUS 必须关闭,否则会发生总线冲突; ARINC 应当打开,否则不能为后续步骤提供正确的写入地址,PCINC 应当打开,这样才能保证在下一步中,右端口能够显示此步骤写入的数据;

(5) 写第三个数: 在数据开关 SD7~SD0 上设置写入存储器的第 3 个数 38H。按一次 QD 按钮,将第 3 个数通过左端口写入由 AR7~AR0 指定的存储器单元 12H。信号与上一个步骤相同。

(6)重新设置存储器地址

简而言之,本实验部分信号处理如下图:

指示灯 AR7~AR0 显示 13H,指示灯 PC7~PC0 显示 12H。观测指示灯 INS7~INS0 的值,它是通过右端口读出的由右地址 PC7~PC0 指定的存储器单元 12H 的值。比较和通过左端口写入的数是否相同。在数据开关 SD7~SD0 重新设置存储器地址 10H。按一次 QD 按钮,将 SD7~SD0 上的地址写入地址寄存器 AR 和程序计数器 PC,进入下一步。在重新设置地址时,PCINC,ARINC 必须关闭,LPC,LAR 必须打开,以保障不发生冲突,SBUS 必须打开,MBUS 必须关闭,MEMW 应当关闭。

(7)左、右两 2 个端口同时显示同一个存储器单元的内容。

指示灯 AR7~AR0 显示 10H,指示灯 PC7~PC0 显示 10H。观测指示灯 INS7~INS0 的值,它是通过右端口读出的由右地址 PC7~PC0 指定的存储器单元 10H 的值。观测指示灯 D7~D0 的值,它是从左端口读出的由 AR7~AR0 指定的存储器单元 10H 的值。按一次 QD 按钮,地址寄存器 AR 加 1,程序计数器 PC 加 1,在指示灯 D7~D0 和指示灯 INS7~INS0 上观测存储器的内容。继续按 QD 按钮,直到存储器地址 AR7~AR0 为 12H 为止。在连续读出数据时,PCINC,ARINC 应当打开,相对的 LPC,LAR 必须关闭。左端口读出数据需要 MBUS 打开,相对的 SBUS 必须关闭,否则发生总线冲突。

	SBUS	MBUS	LPC	PCINC	LAR	ARINC	MEMW
设置存储器地址	SBUS=1, 控制数据 读入总线 DBUS	必=0止器入发突 が储流线冲	为1,读 取总线 数据	必须=0	为1,读 取总线 数据	必须=0	必须=0
写入第 1 个数	SBUS=1. 控制数据 读入总线 DBUS	必=0止器流线冲 须防储据总生	必须=0	为 1, 准备+1 执 分 条 令	必须=0	为 1, 准 备 +1 执 一 条	为 1, 读取总线数据
写入第2个数	SBUS=1, 控制数据 读入总线 DBUS	必=0止器流线冲 外存数入发突	必须=0	为 1, 准 4, 1 1 1 1 1 1 1 2 2	必须=0	为 4 +1	为 1, 读取总 线数据
写入第3个数	SBUS=1, 控制数据 读入总线 DBUS	必=0止器流线冲 の防储据总生	必须=0	为 1, 准备+1 执行条 令	必须=0	为 1, 准备+1 执行条 令	为 1, 读取总 线数据

四、思考与心得

可探究性问题:

1. 在通过左端口向双端口 RAM 写数时,在右端口可以同时观测到左端口写入的数吗? 为什么?

答:不可以,在真正的双端口存储器结构中。如果两个端口同时存取一个单元,并且至少有一个为写入时,会发生读写冲突。为此特地设置标志来为读写顺序仲裁。有一个端口会优先进行操作,而另一个被延迟的端口置标志。在优先端口完成操作时,滞后端口才开始存取操作。

和同学讨论后,有同学认为,左右端口地址相同就可以同时观察到,我认为,如果左右端口指定相同的地址,可能会导致冲突和不确定的行为,因为它们共享相同的存储单元,同时进行读写可能会引起竞争条件和数据一致性问题。所以我认为不可以。

实验心得:

在进行这个双端口存储器实验的过程中,我收获了许多关于存储器工作原理和双端口存储器特性的重要知识。

通过实际操作双端口存储器,我深入理解了存储器是如何存储和读取数据的。了解 半导体存储器的基本原理,包括写入和读取的过程,使我对计算机系统中数据存储的核 心概念有了更清晰的认识。

双端口存储器的设计使得在同一时刻可以同时进行读和写操作,从而提高了存储器的并发性。通过从地址 10H 开始连续写入数据,我深入了解了双端口存储器的并行写入能力,并通过右端口检测写入的数据,确保了写操作的准确性。

实验中使用的 TEC-8 模型计算机提供了一个实际的应用场景,使我能够将理论知识应用于实际的计算机体系结构中。熟悉存储器数据通路,加深了我对计算机内部运作的整体理解。

总的来说,这个实验为我提供了一个深入了解存储器操作的机会,同时也让我体验 了在实际硬件上工作的过程。通过将理论知识与实践相结合,我对计算机系统的存储器 部分有了更为全面和深入的认识。