Preview

University of Georgia

D. Zack Garza

D. Zack Garza University of Georgia dzackgarza@gmail.com

 $Last\ updated \hbox{:}\ 2021\hbox{-}01\hbox{-}23$

Table of Contents

Contents

Table of Contents	2
1 Problem Set 1	3

Table of Contents

1 | Problem Set 1

Problem 1.0.1 (Weibel 1.1.2)

Show that a morphism $u: C \to D$ of chain complexes preserves boundaries and cycles respectively, hence inducing a map $H_n(C) \to H_n(D)$ for each n. Prove that $H_n: \operatorname{Ch}(R\operatorname{-mod}) \to R\operatorname{-mod}$ is a functor.

Solution:

Claim 1: The chain map u induces the following well-defined maps:

$$Z_n(u): Z_n(C) \to Z_n(D)$$

$$B_n(u): B_n(C) \to B_n(D).$$

Proof (of claim (1)).

We'll use the convention that $Z_n := \ker d_n$ and $B_n := \operatorname{im} d_{n+1}$ where we index chain complexes as $C_n := \left(\cdots \to C_{n+1} \xrightarrow{d_{n+1}^C} C_n \xrightarrow{d_n^C} C_{n-1} \to \cdots \right)$. Unraveling definitions, we would like to show the existence of maps

$$Z_n(u) : \ker d_n^C \to \ker d_n^D$$

 $B_n(u) : \operatorname{im} d_{n+1}^C \to \operatorname{im} d_{n+1}^D.$

It suffices to show

a.
$$x \in \ker d_n^C \Longrightarrow u_n(x) \in \ker d_n^D$$
, and
b. $y \in \operatorname{im} d_{n+1}^C \Longrightarrow u_n(y) \in \operatorname{im} d_{n+1}^D$.

Since u is a morphism of chain complexes, we have a commuting ladder where $u_{n-1} \circ d_n^C = d_n^D \circ u_n$:

Link to Diagram

To see that (a) holds, we compute

$$x \in \ker d_n^C \qquad \leq C_n$$

$$\iff d_n^C(x) = 0_R \qquad \in C_{n-1}$$

$$\iff (u_{n-1} \circ d_n^C)(x) = 0_R \quad \in D_{n-1} \quad \text{since } u_n \text{ is a ring morphism and sends } 0_r \to 0_R$$

$$\iff (d_n^D \circ u_n)(x) = 0_R \qquad \in D_{n-1} \qquad \text{using commutativity}$$

$$\iff x \in \ker(d_n^D \circ u_n) \qquad \leq D_{n-1}$$

$$\iff u_n(x) \in \ker d_n^D \qquad \leq D_n.$$

Similarly, for (b) we have

$$y \in \operatorname{im} d_{n+1}^{C} \iff \exists x \in C_{n+1} \text{ such that } d_{n+1}^{C}(x) = y$$

$$\implies u_{n+1}(x) \in D_{n+1}$$

$$\implies (d_{n+1}^{D} \circ u_{n+1})(x) \in \operatorname{im} d_{n+1}^{D} \leq D_{n}$$

$$\implies (u_{n} \circ d_{n+1}^{C})(x) \in \operatorname{im} d_{n+1}^{D} \leq D_{n} \qquad \text{using commutativity}$$

$$\iff u_{n}(y) \in \operatorname{im} d_{n+1}^{D} \qquad \text{using } d_{n+1}^{C}(x) = y.$$

Problem Set 1

Now noting that $H_n(C) := Z_n(C)/B_n(C)$, since u_n preserves Z_n there is a well-defined restriction of each $u_n : C_n \to D_n$ to $u_n : Z_n(C) \to Z_n(D)$. Composing with the projection $Z_n(D) \to Z_n(D)/B_n(D) := H_n(D)$ yields maps $u_n : Z_n(C) \to H_n(D)$.

Problem 1.0.2 (Weibel 1.1.4)

Show that for every $A \in R$ -mod and $C \in Ch(R\text{-mod})$ that $D := \operatorname{Hom}_{R\text{-mod}}(A, C)$ is a chain complex of abelian groups. Taking $A := Z_n$, show that $H_n(D) = 0 \implies H_n(C) = 0$. Is the converse true?

Problem 1.0.3 (Weibel 1.1.6: Homology of a graph)

Let Γ be a finite graph with vertices $V = \{v_1, \dots, v_V\}$ and edge $E = \{e_1, \dots, e_E\}$. Define the **incidence matrix** of Γ to be the $V \times E$ matrix A where

$$A_{ij} = \begin{cases} 1 & e_j \text{ starts at } v_i, \\ -1 & e_j \text{ ends at } v_i, \\ 0 & \text{else.} \end{cases}$$

Define a chain complex by taking free R-modules:

$$C_{\cdot} = (\cdots \to 0 \to C_1 := R[V] \xrightarrow{d} C_0 := R[V] \to 0 \to \cdots),$$

where $d: C_1 \to C_0$ is given by A. If Γ is connected, show that $H_0(C)$ and $H_1(C)$ are free R-modules of dimensions 1 and V - E - 1 respectively.

Hint: choose a basis $\{v_0, v_1 - v_0, \dots, v_V - v_0\}$ and use a path from $v_0 \rightsquigarrow v_i$ to produce an element $e \in C_1$ with $d(e) = v_i - v_0$.

Problem 1.0.4 (Weibel 1.1.7: Tetrahedra)

The **tetrahedron** T is a surface with 4 vertices, 6 edges, and 4 faces of dimension 2, and its homology is the homology of the complex

$$C_{\cdot} := (\cdots \to 0 \to R^4 \to R^6 \to R^4 \to 0 \to \cdots).$$

Write down the matrices in this complex and computationally verify that

$$H_*(T) = [R, 0, R, 0, \cdots].$$

Problem 1.0.5 (Weibel 1.2.3)

Let \mathcal{A} be the category Ch(R-mod) and let f be a chain map. Show that the complex ker f is a (categorical) kernel of f and that coker f is a (categorical) cokernel of f.

Verify exactness in the Snake Lemma in at least two other positions.

Problem 1.0.6 (Weibel 1.4.3)

Show that C is a split exact chain complex if and only if id_C is nullhomotopic.

Problem Set 1

Problem 1.0.7 (Weibel 1.4.5)

Show that chain homotopy classes of maps form a quotient category K of Ch(R-mod) and that the functors H_n factor through the quotient functor $Ch(R\text{-mod}) \to K$ using the following steps:

- 1. Show that chain homotopy equivalence is an equivalence relation on $\{f: C \to D \mid f \text{ is a chain map}\}$. Define $\operatorname{Hom}_K(C, D)$ to be the equivalence classes of such maps and show that it is an abelian group.
- 2. Let $f \simeq g : C \to D$ be two chain homotopic maps. If $u : B \to C, v : D \to E$ are chain maps, show that vfu, vgu are chain homotopic. Deduce that K is a category when the objects are defined as chain complexes and the morphisms are defined as in (1).
- 3. Let $f_0, f_1, g_0, g_1 : C \to D$ all be chain maps such that each pair $f_i \simeq g_i$ are chain homotopic. Show that $f_0 + f_1$ is chain homotopic to $g_0 + g_1$. Deduce that K is an additive category and $Ch(R\text{-}\operatorname{mod}) \to K$ is an additive functor.
- 4. Is K an abelian category? Explain.

Try at least two parts.