CAPSTONE PROJECT

PREDICTING ELIGIBILITY FOR NSAP SCHEME USING MACHINE LEARNING

Presented By:

 Shweta Shitalkumar Mudakude- KLE College Of Engineering & Technology Chikodi-MCA

OUTLINE

- Problem Statement (Should not include solution)
- Proposed System/Solution
- System Development Approach (Technology Used)
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

- The National Social Assistance Program (NSAP) provides financial assistance to BPL individuals who are elderly, widowed, or disabled.
- Identifying the appropriate scheme manually is time-consuming, error-prone, and often leads to delays.
- Incorrect scheme allocation can prevent deserving beneficiaries from receiving timely aid.
- There is a need for a more reliable and faster method of categorizing applicants.

PROPOSED SOLUTION

- To address inefficiencies in manual screening, we propose an Al-based multi-class classification system that predict the appropriate NSAP sub scheme based on applicant data. Uses the demographic and socio-economic features as input. Ensures faster, more accurate scheme categorization. Is deployed on IBM Cloud Lite for scalability and accessibility
- Data Collection: Uses the AI Kosh dataset on NSAP scheme.
- Data Preprocessing: Clean and preprocess the collected data to handle missing values, outliers, and inconsistencies.
- Machine Learning Algorithm: Train classification model (e.g decision tree, random forest or SVM).
- Evaluation: Validate the model using accuracy, precision, recall, and F1 score.

SYSTEM APPROACH

The "System Approach" section outlines the overall strategy and methodology for developing and implementing the predicting the eligibility for NSAP scheme using machine learning. Here's a suggested structure for this section:

- System requirements
 - IBM Cloud (Mandatory)
 - IBM Watson studio for model development and deployment.
 - IBM cloud object storage for dataset handling

ALGORITHM & DEPLOYMENT

 In the Algorithm section, describe the machine learning algorithm chosen for predicting eligibility for NSAP scheme using ML. Here's an example structure for this section:

Algorithm Selection:

 Used Auto AI on IBM Watson to choose the best multi-class classifier (e.g., Random Forest), suited for predicting NSAP schemes from structured data.

Data Input:

Inputs include finyear, Igdstatecode, statename, Igddistrictcode, districtname, totalbeneficiaries, totalmale, totalfeamle
and other socio-economic factors from the Al Kosh dataset.

Training Process:

 Performed data cleaning, encoding, and an 80-20 train-test split. Auto Al handled hyperparameter tuning and model evaluation using cross-validation.

Prediction Process:

 Deployed model on IBM Watson Machine Learning as an API. Takes applicant data and predicts the eligible NSAP scheme in real time.

RESULT

Pipeline leaderboard ▽

	Rank ↑	Name	Algorithm	Specialization	Accuracy (Optimized) Cross Validation	Enhancements		i
*	1	Pipeline 5	Batched Tree Ensemble Classifier (Snap Random Forest Classifier)	INCR	0.984	HPO-1 FE HPO-2 BATCH	00:00:43	П
	2	Pipeline 4	O Snap Random Forest Classifier		0.984	HPO-1 FE HPO-2	00:00:40	
	3	Pipeline 3	O Snap Random Forest Classifier		0.984	HPO-1 FE	00:00:31	~
								w

RESULT

Pipeline leaderboard ▽

	Rank ↑	Name	Algorithm	Specialization	Accuracy (Optimized) Cross Validation	Enhancements	Build time	î
*	1	Pipeline 5	Batched Tree Ensemble Classifier (Snap Random Forest Classifier)	INCR	0.984	HPO-1 FE HPO-2 BATCH	00:00:43	
	2	Pipeline 4	O Snap Random Forest Classifier		0.984	HPO-1 FE HPO-2	00:00:40	
	3	Pipeline 3	O Snap Random Forest Classifier		0.984	HPO-1 FE	00:00:31	_

RESULT

Prediction results r rediction type Multiclass classification

	Prediction	Confidence
1	IGNOAPS	70%
2	IGNOAPS	100%
3	IGNDPS	100%
4	IGNDPS	100%
5	IGNDPS	100%
6	IGNWPS	100%
7		
8		
9		
0		
1		
2		
3		
4		
5		
6		

CONCLUSION

- The proposed system offers a reliable and automated way to classify NSAP applicants.
- Reduces human error and improves processing speed
- Enhances transparency and helps ensure timely assistance to eligible citizens
- Built and deployed using IBM's suite of cloud-based AI tools

FUTURE SCOPE

- Integrate biometric or Aadhaar-based verification for added accuracy
- Expand model to include fraud detection
- Enable regional language interfaces for broader accessibility
- Collaborate with government agencies for pilot deployment
- Incorporate feedback loop for model retraining and adaptation

REFERENCES

- National Social Assistance Programme (NSAP) –
 https://aikosh.indiaai.gov.in/web/datasets/details/district_wise_pension_data_under_the_national_social_assistance_programme_nsap_1.html
- Al Kosh Dataset https://aikosh.indiaai.gov.in/account/login
- IBM Cloud https://cloud.ibm.com/
- IBM Watson Studio https://cloud.ibm.com/catalog/services/watsonxai-studio
- GitHub Repository Link -https://github.com/Shweta50102/Predicting-Eligibilityfor-NSAP-using-Machine-Learning

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Shweta Mudakude

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 16, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/d05d4f47-f375-46af-9199-1243838addbd

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Shweta Mudakude

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 16, 2025 Issued by: IBM SkillsBuild

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Shweta Mudakude

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

5

THANK YOU

