State Space Models with Longitudinal Data

Zach Baucom

Introduction

- State Space Models have been primarily used for time series data with a large number of time points and only a small number of chains observed.
- We are working to apply these models to a small number of time points and a large number of subjects.
 - ullet Small t and large n are typically what we see in observational data.
- We wish to show that the State Space Model can be more flexible and robust than the commonly used mixed effect models (Laird and Ware, 1983; Diggle, Liang and Zeger, 1994).

Computation Consideration

- State space models can be computationally intensive.
- We will compare different state space model estimation methods to find the best balance of computational efficiency and accuracy.
 - State space model in matrix form.
 - Partitioned state space model.
 - Bayesian state space model.

State Space Model

A general linear state space model can be denoted as:

$$y_t = F_t \mu_t + v_t$$
$$\mu_t = G_t \mu_{t-1} + w_t$$

where at time t,

- y_t is the an $n \times 1$ observation vector.
- μ_t is the $q \times 1$ latent state vector, where q is the number of latent states.
- F_t is the $n \times q$ observation matrix.
- G_t is the $q \times q$ state transition matrix.

We assume v_t and w_t are independent identically distributed with distributions $v_t \sim N(0, V)$ and $w_t \sim N(0, W)$ respectively (Harvey, 1990; Durbin and Koopman, 2012).

State Space Model Illustration

General Model:

$$y_t = F_t \mu_t + v_t$$
$$\mu_t = G_t \mu_{t-1} + w_t$$

Proposed Model

We wish to model the data according to the following,

$$y_t = \alpha_t + X_t \beta_t + \varepsilon_t$$
$$\alpha_t = \alpha_{t-1} + \eta_t$$
$$\beta_t = \beta_{t-1}$$

Where $\alpha_0 \sim N(a_0, P_0)$, $\beta_0 \sim N(\beta, 0)$, $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2 I_n)$, and $\eta_t \sim N(0, \sigma_{\eta}^2 I_n)$.

- y_t is an $n \times 1$ observation vector where n indicates the number of subjects.
- α_t is an $n \times 1$ latent state vector.
 - Variation in α_t over time creates a dynamic moving average auto-correlation between observations y_t .
- X_t is an $n \times p$ matrix of time varying covariates (can be $X_t = t * X$ where X are baseline covarties).

What is α_t

Consider the model,

$$y_t = \alpha_t + X_t \beta_t + \varepsilon_t$$
$$\alpha_t = \alpha_{t-1} + \eta_t$$
$$\beta_t = \beta_{t-1}$$

We can think of α_t as the underlying cognitive state not accounted for by the baseline covariates X.

Notice $\alpha_t | \alpha_{t-1} \sim N(\alpha_{t-1}, \sigma_{\eta}^2)$. This means our next underlying cognitive state will be centered at the previous underlying cognitive state.

Remember $E(\alpha_t) = E(\alpha_{t-1} + \eta_t) = E(\alpha_{t-1})$. If we iterate all the way down $E(\alpha_t) = a_0$. So $\alpha_t > \alpha_0$ represents an up phase and $\alpha_t < \alpha_0$ represents a down phase.

LME with Random Intercept

Consider the model: $y_{it} = b_{i0} + t * \beta + \epsilon_{it}$ where $b_{i0} \sim iid \ N(0, \sigma_b^2)$ and $\epsilon_{it} \sim iid \ N(0, \sigma^2)$.

Let $\beta = 1$, $\sigma_b^2 = 10$, and $\sigma^2 = 1$.

LME with Random Intercept

Consider the model: $y_{it} = b_{i0} + t * \beta + \epsilon_{it}$ where $b_{i0} \sim iid \ N(0, \sigma_b^2)$ and $\epsilon_{it} \sim iid \ N(0, \sigma^2)$.

Let $\beta = 1$, $\sigma_b^2 = 10$, and $\sigma^2 = 1$.

Single observation from a LMEM

Single observation from a SSM

Auto-correlation

The correlation between observations at any two time points is called the auto-correlation.

Our proposed SSM model has the following auto correlation structure.

$$corr(y_{it}, y_{i(t+\tau)}) = \frac{t\sigma_{\eta}^{2}}{\sqrt{\sigma_{\varepsilon}^{2} + t\sigma_{\eta}^{2}}\sqrt{\sigma_{\varepsilon}^{2} + (t+\tau)\sigma_{\eta}^{2}}}$$

This is equivalent to a dynamic moving average covariance structure which is very flexible. If $\sigma_\eta^2=0$ then auto-correlation is 0 and our proposed model boils down to a LMEM.

$$y_t = \alpha_0 + X_t \beta + \varepsilon_t$$

Summary

Consider the model,

$$y_t = \alpha_t + X_t \beta_t + \varepsilon_t$$
$$\alpha_t = \alpha_{t-1} + \eta_t$$
$$\beta_t = \beta_{t-1}$$

We can think of α_t as the underlying cognitive state not accounted for by the baseline covariates X.

The variable β_t is the effect of the covariates X_t . It has the same interpretation as with a LMEM.

Relation to State Space Model

We can rewrite the proposed model to fit the state space model as follows,

$$y_{t} = \begin{bmatrix} I_{n} & X_{t} \end{bmatrix} \begin{bmatrix} \alpha_{t} \\ \beta_{t} \end{bmatrix} + \varepsilon_{t}$$
$$\begin{bmatrix} \alpha_{t} \\ \beta_{t} \end{bmatrix} = \begin{bmatrix} I_{(n+p)\times(n+p)} \end{bmatrix} \begin{bmatrix} \alpha_{t-1} \\ \beta_{t-1} \end{bmatrix} + \begin{bmatrix} \eta_{t} \\ 0_{p\times1} \end{bmatrix}$$

$$\bullet \ F_t = \begin{bmatrix} I_n & X_t \end{bmatrix}$$

•
$$v_t = \varepsilon_t$$

$$\bullet \ \, w_t = \begin{bmatrix} \eta_t \\ 0_{p \times 1} \end{bmatrix}$$

$$\bullet \ \mu_t = \begin{bmatrix} \alpha_t \\ \beta_t \end{bmatrix}$$

$$\bullet \ G_t = I_{(n+p)\times(n+p)}$$

Kalman Filter

The Kalman filter is a recursive algorithm to estimate the unobserved states conditioned on the observed data (Kalman, 1960; Durbin and Koopman, 2012). Let $\hat{\mu}_{i|j} = E(\mu_i|y_{1:j})$ and $P_{i|j} = var(\mu_i|y_{1:j})$.

Predicted state:
$$\hat{\mu}_{t|t-1} = \mathcal{G}_t \hat{\mu}_{t-1|t-1}$$

Predicted state covariance:
$$P_{t|t-1} = G_t P_{t-1|t-1} G'_t + W$$

Innovation covariance:
$$S_t = F_t P_{t|t-1} F_t' + V$$

Kalman Gain:
$$K_t = P_{t|t-1}F_t'S_t^{-1}$$

Innovation:
$$\tilde{f}_t = y_t - F_t \hat{\mu}_{t|t-1}$$

Updated state estimate:
$$\hat{\mu}_{t|t} = \hat{\mu}_{t|t-1} + K_t \tilde{f}_t$$

Updated state covariance:
$$P_{t|t} = (I - K_t F_t) P_{t|t-1}$$

Updated innovation:
$$\tilde{f}_{t|t} = y_t - F_t \hat{\mu}_{t|t}$$

Kalman Smoother

Let $J_t = P_{t|t}G'_{t+1} + P^{-1}_{t+1|t}$. We can then calculate $E(\mu_t|y_{1:T})$ and $var(\mu_t|y_{1:T})$ using the following Kalman smoother equations.

$$E(\mu_t|y_{1:T}) = \hat{\mu}_{t|t} + J_t(\hat{\mu}_{t+1|T} - \hat{\mu}_{t+1|t})$$
$$var(\mu_t|y_{1:T}) = P_{t|t} - J_tG_{t+1}P_{t|t}$$

Setting Parameters

We assume $\mu_0 \sim N(u_0, P_0)$, however u_0 and P_0 are unknown.

- By initializing $u_0=0$ and $P_0=\infty$ we are essentially putting a flat prior on μ_0 .
- It has been shown $\hat{\mu}_{0|T}$ and $P_{0|T}$ quickly converge to u_0 and P_0 respectively for even small T (Kalman, 1960; Durbin and Koopman, 2012).

In our proposed model, $\mu_t = \begin{bmatrix} \alpha_t \\ \beta_t \end{bmatrix}$.

- $\hat{\beta}_{0|T}$ is then our estimate for β and has variance covariance $P_{\hat{\beta}} = [P_{0|T}]_{(n+1):(n+p),(n+1):(n+p)}$.
- We can then use $\hat{\beta}_{0|T}$ and $P_{\hat{\beta}}$ for inference on β .
 - $\hat{\beta}^{\text{asym}} \sim N(\beta, P_{\hat{\beta}})$.

Estimation of σ_{ε}^2 and σ_{η}^2

- We get proper estimates for β given we have correctly specified our model, including σ_{ε}^2 and σ_n^2 .
- The parameters σ_{ε}^2 and σ_{η}^2 are unknown, but can be estimated using Maximum Likelihood Estimation (MLE).

$$\ell(\sigma_{\varepsilon}^2, \sigma_{\eta}^2) = -\frac{np}{2}log(2\pi) - \frac{1}{2}\sum_{i=1}^{t} \left(log|\tilde{S}_i| + \tilde{f}_i S_i^{-1}f_i\right)$$

 To maximize the log-likelihood we used a Newton-Raphson method with a limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (Liu and Nocedal, 1989; Zhou and Li, 2007).

Missing Data

If a subject is missing an observation at time t we can set

- $y^* = W_t y_t$ where W_t is a subset of rows of I_n corresponding to those with observed data.
- $F_t^* = W_t F_t$
- $\varepsilon_t^* = W_t \varepsilon_t$

then carry out the same Kalman filter and smoother replacing y with y^* , Z with Z^* , and ε_t^* with ε_t . Doing this modification still allows us to get the smoothed values for α_t and β_t .

Computational Challenges

For each iteration of the kalman filter we must invert $var(Y_t|y_{1:(t-1)}) = S_t$.

- S_t is non-sparse as calculating $var(Y_t|y_{1:(t-1)})$ is a function of β_{t-1} which is shared between all observations.
- S_t is an $n \times n$, so as n increases there is an exponential increase in computation time.

Solution 1: Partitioning

A solution to solving inversion computational inefficiencies is to partition:

- Partition the subjects into k groups.
- Run the Kalman filter and smoother on each group independently to extract $\hat{\beta}_{0|T}^{(i)}$ and $P_{\beta}^{(i)}$ for i in 1,...,k.
- Use the estimate $\bar{\beta} = \frac{\sum_{i=1}^k \hat{\beta}_{0|T}^{(i)}}{k}$.
 - $\bar{\beta} \sim N(\beta, \frac{\sum_{i=1}^k P_{\hat{\beta}^{(i)}}}{k^2})$

Solution 2: Bayesian Gibb's Sampling Approach

- For the Bayesian approach we use a Gibb's sampler.
- Instead of calculating β in the Kalman filter, we can estimate it separately.
- The model,

$$y_t = \alpha_t + X_t \beta + \varepsilon_t$$
$$\alpha_t = \alpha_{t-1} + \eta_t$$

Gibb's Sampling

- Gibb's sampling is a method to gain an approximate sample from a posterior distribution for a given variable (Gelfand-Smith, 1990).
- It works by:
 - calculating the distribution of a variable conditioned on all other unknown variables, known as the posterior distribution.
 - sampling from the posterior distribution and assigning the new sample to the variable.
 - calculate the posterior of the next variable and continue to sample, update, and recalculate the other posteriors.
 - The process is commonly repeated thousands of times.
- We need to calculate the posterior for $\alpha_{1:T}, \beta, \sigma_{\varepsilon}^2, \sigma_{\eta}^2$.

Posterior of α

- Notice, if we are conditioning on β for the posterior $\alpha_{1:T}|...$ then each y_{it} is independent and we can run the Kalman filter chains independently.
- Let $y_t^* = y_t X_t \beta$, then the model becomes

$$y_t^* = \alpha_t + \varepsilon_t$$
$$\alpha_t = \alpha_{t-1} + \eta_t$$

• We can then run a forward Kalman filter with a backward sampler to sample from the posterior of $\alpha_{1:T}$ (Fruhwirth-Schnatter, 1994)

Posterior of β

- We let $\beta \sim N(\theta, \sigma_{\beta}^2)$
- The posterior is $\beta|...\sim N(\Sigma^{-1}B,\sigma_{\varepsilon}^2\sigma_{\beta}^2\Sigma^{-1})$ where,
- $B = \sigma_{\beta}^2 (\sum_{t=1}^T y_t \alpha_t)' X_t \sigma_{\varepsilon}^2 \theta$
- $\Sigma = (\sigma_{\beta}^2 \sum_{t=1}^T X_t' X_t) + \sigma_{\varepsilon}^2 I_p$

Posterior of β

For each iteration of the Gibb's sampler we must calculate, $\Sigma^{-1} = ((\sigma_{\beta}^2 \sum_{t=1}^T X_t' X_t) + \sigma_{\varepsilon}^2 I_p)^{-1}. \text{ As } \sigma_{\varepsilon}^2 \text{ is updated each iteration, } \Sigma^{-1} \text{ will be different for each iteration as well. However, } (\sigma_{\beta}^2 \sum_{t=1}^T X_t' X_t) \text{ remains constant. By calculating the eigenvalue decomposition before the Gibb's sampler we can increase computation speed.}$

$$\begin{split} \big(\big(\sigma_{\beta}^2 \sum_{t=1}^T X_t' X_t \big) + \sigma_{\varepsilon}^{2(i)} I \big) &= \big(Q \Lambda Q' + \sigma_{\varepsilon}^{2(i)} I \big) \\ &= \big(Q \Lambda Q' + \sigma_{\varepsilon}^{2(i)} Q Q' \big) \\ &= Q \big(\Lambda + \sigma_{\varepsilon}^{2(i)} I \big) Q' \\ \text{then,} \end{split}$$

$$((\sigma_{\beta}^2 \sum_{t=1}^T X_t' X_t) + \sigma_{\varepsilon}^{2(i)} I)^{-1} = Q(1/(\Lambda + \sigma_{\varepsilon}^{2(i)} I))Q'$$

Posterior of σ_{ε}^2 and σ_{η}^2

Let,

$$\sigma_{\eta}^2 \sim IG(a_0/2, b_0/2)$$

 $\sigma_{\varepsilon}^2 \sim IG(c_0/2, d_0/2)$

Then

$$\sigma_{\eta}^{2}|... \sim IG(\frac{nT + a_{0}}{2}, \frac{\sum_{t=1}^{T}(\alpha_{t} - \alpha_{t-1})^{2} + b_{0}}{2})$$
 $\sigma_{\varepsilon}^{2}|... \sim IG(\frac{nT + c_{0}}{2}, \frac{d_{0} + \sum_{t=1}^{T}(y_{t} - X_{t}\beta - \alpha_{t})^{2}}{2})$

The Gibbs Sampling Algorithm

- **1** Select prior parameters for θ , σ_{β}^2 , a_0 , b_0 , c_0 , d_0 .
- 2 Let $\beta^{(0)} = \theta$, $\sigma_{\eta}^{2(0)} = \frac{d_0/2}{1+c_0/2}$, and $\sigma_{\varepsilon}^{2(0)} = \frac{b_0/2}{1+a_0/2}$.
- **3** Run a forward-filtering backward sampling procedure as described above conditioning on $\beta^{i-1}, \sigma^{2(i-1)}_{\eta}, \sigma^{2(i-1)}_{\varepsilon}$ and set the samples equal to $\alpha^{(i)}$ for the i^{th} iteration.
- **3** Sample σ_{η}^{2*} from $IG(\frac{nT+a_0}{2}, \frac{\sum_{t=1}^{T}(\alpha_t^{(i)}-\alpha_{t-1}^{(i)})^2+b_0}{2})$ and set $\sigma_{\eta}^{2(i)}=\sigma_{\eta}^{2*}$.
- **3** Sample $\sigma_{\varepsilon}^{2*}$ from $IG(\frac{nT+c_0}{2}, \frac{d_0+\sum_{t=1}^T(y_t-X_t\beta^{(i-1)}-\alpha_t^{(i)})^2}{2})$ and set $\sigma_{\varepsilon}^{2(i)}=\sigma_{\varepsilon}^{2*}$.
- Sample β^* from $N(\Sigma^{-1}B, \sigma_{\varepsilon}^2 \sigma_{\beta}^2 \Sigma^{-1})$ where $\alpha = \alpha^{(i)}, \sigma_{\eta}^2 = \sigma_{\eta}^{2(i)}, \sigma_{\varepsilon}^2 = \sigma_{\varepsilon}^{2(i)}$ and set $\beta^{(i)} = \beta^*$.
- Repeat steps 3-6 for i in 1, 2, ..., M.

Estimating β

- After throwing out a number of initial samples from the Gibb's sampler we can estimate β by taking the mean of the posterior samples.
- We create a 95 credibility interval (as a pseudo-confidence interval) by calculating the 97.5th and 2.5th percentiles of the posterior draws.

Simulation

We sampled from the model,

$$y_t = \alpha_t + t * X\beta + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma_\varepsilon^2 I_n)$$

 $\alpha_t = \alpha_{t-1} + \eta_t, \quad \eta_t \sim N(0, \sigma_\eta^2 I_n)$

We simulated 100 subjects at 6 time points. X was simulated from a U(0,20) distribution and $\beta=(4\ 2\ -1)'$.

The variables σ_{ε}^2 and σ_{η}^2 varied between simulations. Recall, $\sigma_{\eta}^2=0$ corresponds to a lmem with a random intercept.

We compared 95% CI coverage, CI length, and estimate variance between 1. LMEM with a random intercept, 2. LMEM with a random intercept and AR(1) error correlation structure, the matrix formulation of the state space model, the Bayesian estimated state space model, the a state space model partitioned into 2, 4, and 10 groups.

Coverage

Variance Parameters		Traditional Methods		State Space Methods				
σ_{ε}^2	σ_{η}^2	LME	AR(1)	SSM	Bayes	Part2	Part4	Part10
1	0	0.943	0.938	0.952	0.951	0.957	0.971	0.955
1	0.1	0.932	0.937	0.952	0.952	0.957	0.963	0.952
1	0.5	0.894	0.912	0.949	0.948	0.950	0.952	0.944
1	1	0.866	0.896	0.953	0.950	0.950	0.949	0.949
10	1	0.927	0.926	0.943	0.947	0.950	0.962	0.941
3	1	0.903	0.916	0.946	0.947	0.951	0.953	0.940
1	ho = 0.9	0.855	0.942	0.949	0.945	0.947	0.930	0.888
1	ho = 0.1	0.948	0.952	0.954	0.951	0.956	0.959	0.954

Bias

CI Length

Key Take-aways

- The state space methods give unbiased estimates while maintaining near 0.95 coverage probability for the 95% Cls.
 - While the LME methods are unbiased, they do not maintain 0.95 coverage probability when auto-correlation is increased.
- If the number of subjects in each partition is reasonable compared to the number of coefficients to estimate, then partitioning returns very similar results to not partitioning.
- Of the state space models, the Bayesian method has the least amount of variability in the estimates, the smallest variability in the estimate variances, all while maintaining 0.95 coverage probability.
- However, the Bayesian method fails to converge when the data generation came from an AR(1) model.

Note

 All the SSM models can handle non standard, unequally spaced, and continuous time observations.

Future Steps

- Apply methods to existing data where the underlying distributions are unknown.
 - National Alzheimer's Coordinating Center (NACC).
 - Run power analysis (Similar to Alicia's).