```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Importing Data

data=pd.read_csv("Steel_industry_data.csv")
data.tail()

31/12/2018 35035 3.85 4.86 0.00 0.0 23:00 31/12/2018 35036 3.74 0.00 0.0 3.74 23:15 31/12/2018 35037 3.78 3.17 0.07 0.0 23:30 31/12/2018 35038 3.78 3.06 0.11 0.0 23:45 31/12/2018 35039 3.67 3.02 0.07 0.0 00:00

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 35040 entries, 0 to 35039
Data columns (total 11 columns):

	Data	columns (total 11 columns):							
	#	Column	Non-Null Count	Dtype					
	0	date	35040 non-null	object					
	1	Usage_kWh	35040 non-null	float64					
	2	Lagging_Current_Reactive.Power_kVarh	35040 non-null	float64					
	3	Leading_Current_Reactive_Power_kVarh	35040 non-null	float64					
	4	CO2(tCO2)	35040 non-null	float64					
	5	Lagging_Current_Power_Factor	35040 non-null	float64					
	6	Leading_Current_Power_Factor	35040 non-null	float64					
	7	NSM	35040 non-null	int64					
	8	WeekStatus	35040 non-null	object					
	9	Day_of_week	35040 non-null	object					
	10	Load_Type	35040 non-null	object					
<pre>dtypes: float64(6), int64(1), object(4)</pre>									
	memo	ry usage: 2.9+ MB							

data=data[:-1]

data.tail()

35034 31/12/2018 3.82			
22:45	4.54	0.00	0.0
35035 31/12/2018 3.85	4.86	0.00	0.0
35036 31/12/2018 3.74 23:15	3.74	0.00	0.0
35037 31/12/2018 3.78	3.17	0.07	0.0
35038 31/12/2018 3.78 23:45	3.06	0.11	0.0

target=data["Usage_kWh"]
data=data.drop(columns="Usage_kWh")

Checking for null value

```
data.isnull().sum()

date

Lagging_Current_Reactive.Power_kVarh

Leading_Current_Reactive_Power_kVarh

CO2(tCO2)

Lagging_Current_Power_Factor

Leading_Current_Power_Factor

NSM

WeekStatus

Day_of_week

Load_Type

dtype: int64
```

We can extract TIME from data col

```
data["date"]=[x[-5:] for x in data["date"]]
data.head()
```

	date	Lagging_Current_Reactive.Power_kVarh	Leading_Current_Reactive_Power_kVarh CC
0	00:15	2.95	0.0
1	00:30	4.46	0.0
2	00:45	3.28	0.0
3	01:00	3.56	0.0
4	01:15	4.50	0.0

Start coding or generate with AI.

One Hot Encoding our data

data_one_hot=pd.get_dummies(data)
data_one_hot.head()

	Lagging_Current_Reactive.Power_kVarh	Leading_Current_Reactive_Power_kVarh	CO2(tCO2)	Lagging_Current_Power_Factor	Leading_Current_
0	2.95	0.0	0.0	73.21	
1	4.46	0.0	0.0	66.77	
2	3.28	0.0	0.0	70.28	
3	3.56	0.0	0.0	68.09	
4	4.50	0.0	0.0	64.72	
5 rc	ws × 114 columns				

```
pd.DataFrame(data_one_hot).info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 35039 entries, 0 to 35038
```

Columns: 114 entries, Lagging_Current_Reactive.Power_kVarh to Load_Type_Medium_Load

dtypes: float64(5), int64(1), uint8(108)

memory usage: 5.2 MB

Standard Scaler

from sklearn.preprocessing import StandardScaler

```
ss=StandardScaler()

df=pd.DataFrame(ss.fit_transform(data_one_hot))
```

Train Test Split

```
from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(df,target,random_state=42,test_size=0.3)

x_train.head()
```

	0	1	2	3	4	5	6	7
25270	-0.494647	-0.521394	-0.713566	-1.706972	0.513277	-0.884189	-0.102457	-0.102599
22053	-0.799444	1.863973	-0.713566	1.026453	-2.077967	0.811916	-0.102457	-0.102599
30307	1.823531	-0.521394	1.763107	0.571411	0.513277	0.739742	-0.102457	-0.102599
31403	-0.616075	-0.511966	-0.713566	-0.211833	0.512620	-1.281150	-0.102457	-0.102599
15443	-0.799444	1.699650	-0.713566	1.026453	-2.157753	1.317139	-0.102457	-0.102599
5 rows × 114 columns								

```
y_train.head()
```

```
25270 2.74
22053 3.82
30307 96.26
31403 3.56
15443 3.13
```

Name: Usage_kWh, dtype: float64

Start coding or generate with AI.

Linear Regression

Ransac Regression

Start coding or generate with AI.