

Facultad Ingeniería y Ciencias Agropecuarias Carrera Ingeniería en Producción Industrial EIP430/Asignatura: Ciencia de Materiales

Período académico 2017-2

1. Identificación

Número de sesiones: 48 Sesiones

Número total de horas de aprendizaje: 120 h= 48 presenciales + 72 h de trabajo

autónomo.

Créditos - malla actual: 3

Profesor: Ing. Omar Flor Unda. Msc.

Correo electrónico del docente (Udlanet): o.flor@udlanet.ec

Coordinador: Ing. Christian Chimbo

Campus: Queri

Pre-requisito: QUI 200 Co-requisito:

Paralelo: 1

Tipo de asignatura:

Optativa	
Obligatoria	Χ
Práctica	

Organización curricular

Unidad 1: Formación Básica	
Unidad 2: Formación Profesional	Χ
Unidad 3: Titulación	

Campo de formación:

Campo de formación							
Fundamentos teóricos	Praxis profesional	Epistemología y metodología de la investigación	Integración de saberes, contextos y cultura	Comunicación y lenguajes			
	X						

2. Descripción del curso

La asignatura de Ciencia de los Materiales estudia la estructura, comportamiento, propiedades y características generales de los materiales. Los criterios adquiridos permitirán al estudiante seleccionar o crear materiales adecuados para las aplicaciones de la industria y sus aplicaciones.

3. Objetivo del curso

Analizar las diferentes propiedades de los materiales metálicos, polímeros, cerámicos y compuestos para su selección en aplicaciones reales dentro de la ingeniería.

4. Resultados de aprendizaje deseados al finalizar el curso

Resultados de aprendizaje (RdA)	RdA perfil de egreso de carrera	Nivel de desarrollo (carrera)
Interpreta criterios de Ingeniería en la selección de materiales para procesos requeridos en la industria	7. Analiza, selecciona e integra con efectividad las tecnologías manufactureras (maquinaria, materiales, energía, etc.) adaptadas a cada proceso productivo, utilizando herramientas de alta tecnología y coordinando con especialistas del área (mecánica, eléctrica, automatismos, etc.).	Inicial (x) Medio () Final ()

5. Sistema de evaluación

De acuerdo al Modelo Educativo de la UDLA la evaluación busca evidenciar el logro de los resultados de aprendizaje (RdA) enunciados en cada carrera y asignatura, a través de mecanismos de evaluación (MdE). Por lo tanto la evaluación debe ser continua, formativa y sumativa. La UDLA estipula la siguiente distribución porcentual para los reportes de evaluaciones previstas en cada semestre de acuerdo al calendario académico:

Reporte de progreso 1 35% Sub componentes:

- 1. Mapas mentales (evaluación formativa)
- 2. Portafolio de ejercicios (evaluación formativa).
- 3. Repositorio de trabajos grupales y exposiciones 4%.
- 4. Lecciones rápidas 2%5. Prueba de control 9%.6. Prueba de progreso 1 20%

Reporte de progreso 2 35% Sub componentes

- 1. Mapas mentales (evaluación formativa)
- 2. Portafolio de ejercicios (evaluación formativa)
- 3. Repositorio de trabajos grupales y exposiciones 4%.
- 4. Lecciones rápidas 2%

5. Prueba de control6. Prueba de progreso 220%

Evaluación final Sub componentes

30%

Caso de estudio 7%:
 Examen final 23%

Asistencia: A pesar de que la asistencia no tiene una nota cuantitativa, es obligatorio tomar asistencia en cada sesión de clase. Además, tendrá incidencia en el examen de recuperación.

Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Recordar que para rendir el EXAMEN DE RECUPERACIÓN, es requisito que el estudiante haya asistido por lo menos al 80% del total de las sesiones programadas de la materia. No se podrá sustituir la nota de un examen previo en el que el estudiante haya sido sancionado por una falta grave, como copia o deshonestidad académica.

6. Metodología del curso y de mecanismos de evaluación.

En progreso 1:

- Mapas mentales (ESCENARIO DE APRENDIZAJE AUTONOMO, VIRTUAL evaluación formativa): (2 mapas mentales por progreso) El estudiante debe realizar una lectura de correspondiente a los temas indicados en cada resultado de aprendizaje, y luego realizará un mapa mental (ordenador gráfico) de cada uno de ellos, el cual se subirá a la plataforma virtual para registrar su entrega y evaluar el mismo, en las fechas previstas en el sílabo
- Portafolio (ESCENARIO DE APRENDIZAJE AUTONOMO, PRESENCIAL evaluación formativa): Ejercicios a realizar durante los temas indicados, conforman el portafolio que se desarrollará a lo largo de cada progreso, y se indicarán el total de ejercicios a resolver para evidenciar los temas aprendidos, y deben ser enviados al moodle al finalizar cada período.
- Repositorio de trabajos grupales y exposiciones 4% (ESCENARIO DE APRENDIZAJE AUTONOMO, PRESENCIAL, VIRTUAL): (2 presentaciones) El estudiante debe realizar una lectura de correspondiente a los temas indicados, y luego realizará un mapa mental (ordenador gráfico), realizará la exposición y defensa del mismo en el

- curso y subirá a la plataforma virtual para registrar su entrega y evaluar el mismo, en las fechas previstas en el sílabo (Se adjunta rúbrica)
- Lecciones orales 2% (ESCENEARIO DE APRENDIZAJE AUTONOMO, PRESENCIAL)
 Lecciones orales rápidas a dos estudiantes por clase para recordar conocimientos adquiridos en la clase anterior.
- **Prueba de control 9%(ESCENARIO DE APRENDIZAJE PRESENCIAL)**: Acumulativa de temas desarrollados hasta el 70% del período (se adjunta rúbrica)
- **Prueba de progreso 1 20%(ESCENARIO DE APRENDIZAJE PRESENCIAL):**Acumulativa de los temas desarrollados en cada período. **(S**e adjunta rúbrica**)**

En progreso 2:

- Mapas mentales (ESCENARIO DE APRENDIZAJE AUTONOMO, VIRTUALevaluación formativa): El estudiante debe realizar una lectura de correspondiente a los temas indicados en cada resultado de aprendizaje, y luego realizará un mapa mental (ordenador gráfico) de cada uno de ellos, el cual se subirá a la plataforma virtual para registrar su entrega y evaluar el mismo, en las fechas previstas en el sílabo
- Portafolio (ESCENARIO DE APRENDIZAJE AUTONOMO, PRESENCIAL evaluación formativa): Ejercicios a realizar durante los temas indicados, conforman el portafolio que se desarrollará a lo largo de cada progreso, y se indicarán el total de ejercicios a resolver para evidenciar los temas aprendidos, y deben ser enviados al moodle al finalizar cada período.
- Repositorio de trabajos grupales y exposiciones 4% (ESCENARIO DE APRENDIZAJE AUTONOMO, PRESENCIAL, VIRTUAL): (2 presentaciones) El estudiante debe realizar una lectura de correspondiente a los temas indicados, y luego realizará un mapa mental (ordenador gráfico), realizará la exposición y defensa del mismo en el curso y subirá a la plataforma virtual para registrar su entrega y evaluar el mismo, en las fechas previstas en el sílabo (Se adjunta rúbrica)
- Lecciones orales 2% (ESCENEARIO DE APRENDIZAJE AUTONOMO, PRESENCIAL)
 Lecciones orales rápidas a dos estudiantes por clase para recordar conocimientos
 adquiridos en la clase anterior.
- **Prueba de control 9% (ESCENARIO DE APRENDIZAJE PRESENCIAL)**: Acumulativa de temas desarrollados hasta el 70% del período (se adjunta rúbrica)
- **Prueba 20%(ESCENARIO DE APRENDIZAJE PRESENCIAL):** Acumulativa de los temas desarrollados en cada período. (Se adjunta rúbrica)

Evaluación final:

- Caso de estudio 7%(ESCENARIO DE APRENDIZAJE AUTONOMO, PRESENCIAL, VIRTUAL): El estudiante realizará las labores indicadas en la plataforma virtual, se presentará la exposición y defensa del trabajo de caso de estudio propuesto, se subirá a la plataforma virtual el informe final del proyecto (se adjunta rúbrica)
- Examen final 23%(ESCENARIO DE APRENDIZAJE PRESENCIAL): Implica la evaluación de toda la asignatura.

6.1. **Escenario de aprendizaje presencial.** Se efectuarán talleres en clase y realimentación de problemas generados en el portafolio de ejercicios que se resuelven en casa mediante la página virtual, trabajos grupales y exposiciones, lecciones orales y pruebas para complementar y asegurar el aprendizaje y el conocimiento práctico, evaluando periódicamente su esfuerzo.

6.2. Escenario de aprendizaje virtual.

El curso consiste en un aprendizaje continuo mediante estudio de caso final, lecturas programadas semanalmente sobre los temas especificados en la asignatura y presentados debidamente en el aula virtual, mapas mentales y organizadores gráficos relacionados a las lecturas, que permitan consolidar el aprendizaje de los temas a desarrollar durante el curso. Además se presentarán videos en el aula virtual para sustentar el conocimiento.

6.3. Escenario de aprendizaje autónomo.

Se realizaran lecturas semanales sobre temas pertinentes a la materia en el sistema de aulas virtuales, para estimular el conocimiento teórico y la aplicación de este en un trabajo práctico de estudio de casos, además de los trabajos de investigación y lectura para presentarlos en exposiciones continuas, portafolio de ejercicios, mapas mentales y organizadores gráficos, que permitan al estudiante evaluar su aprendizaje de forma periódica y continua, permitiendo un resultado de aprendizaje escalonado durante el semestre

7. Temas y subtemas del curso

	RdA	Temas	Subtemas
1.	Interpreta criterios de	1. Estructura	1.1 Clases de los materiales.
	Ingeniería en la selección de	de los	1.2 Niveles de orden.
	materiales para procesos	materiales	1.3 Redes cristalinas
	requeridos en la industria		1.4 Estimaciones de densidad
2.	Reconoce las propiedades		1.5 Direcciones y planos cristalográficos
	relevantes de los distintos		1.6 Índices de Miller
	tipos de materiales y		1.8 Nucleación y crecimiento de grano.
	tecnologías de procesado.		1.9 Defectos cristalinos.
1.	Interpreta criterios de	2.	2.1 Normas ASTM: medición de
	Ingeniería en la selección de	Propiedades	propiedades.
	materiales para procesos	Mecánicas	2.2 Ensayo de tracción.
	requeridos en la industria		2.3 Ensayo de compresión.
2.	Reconoce las propiedades		2.4 Ensayo de plegado
	relevantes de los distintos		2.5 Ensayo de Dureza
	tipos de materiales y		2.6 Ensayo de fluencia
	tecnologías de procesado.		2.7 Ensayo de Impacto
			2.8 Error y reproductibilidad de la
			medición.

		1	T = =
			2.9 Fallas de materiales bajo tensión:
			Fracturas mecánicas.
			2.10 Cambio de las propiedades
			mecánicas con el tiempo: Ensayo de
			fatiga, envejecimiento acelerado.
1.	Interpreta criterios de	3. Metales	3.3 Tecnología de obtención del acero
	Ingeniería en la selección de		3.4 Acero al Carbono.
	materiales para procesos		3.4 Aceros para herramientas.
	requeridos en la industria		3.5 Aceros Inoxidables.
2.	Reconoce las propiedades		3.6 Aceros de muy alta resistencia.
	relevantes de los distintos		3.7 Aceros especiales
	tipos de materiales y		3.8 Fundiciones
	tecnologías de procesado.		3.9 Cobre y sus aleaciones.
	, , , , , , , , , , , , , , , , , , ,		3.10 Aluminio y sus aleaciones.
			3.11 Tratamiento térmico de los aceros:
			Templado, Revenido, Recocido,
			Tratamientos Superficiales.
			3.1 Operaciones de conformado.
			3.2 Aleaciones y diagramas de fase.
			3.12 Corrosión
			3.13 Reciclaje de materiales.
			3.13 Reciciaje de Materiales.
1.	Interpreta criterios de	4. Polímeros	4.1 Terminología de los polímeros
	Ingeniería en la selección de	1.1011111111111	4.2 Tipos de polímeros, propiedades y
	materiales para procesos		aplicaciones en la industria.
	requeridos en la industria		4.3 Tipos de polimerización.
2	Reconoce las propiedades		4.4 Procesamiento de polímeros.
	relevantes de los distintos		4.5 Reciclaje de polímeros.
			4.5 Reciciaje de polimeros.
	tipos de materiales y tecnologías de procesado.		
1.	Interpreta criterios de	5. Materiales	5.1 Estructuras cristalinas de los
1.	Ingeniería en la selección de	Cerámicos.	cerámicos.
	materiales para procesos	Ceramicos.	5.2 Usos industriales de los cerámicos.
	requeridos en la industria		5.3 Reciclaje de cerámicos.
2	Reconoce las propiedades		3.3 Neciciaje de cerafficos.
۷.	relevantes de los distintos		
	tipos de materiales y		
	tecnologías de procesado.		

8. Planificación secuencial del curso

	Semanas: 1 - 6								
RdA	Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega				
1,2	1. Estructura de los materiales	1.1 Clases de los materiales. 1.2 Niveles de orden.	Presentación magistral: selección de materiales y	1.1 a 1.9 Lectura y mapa mental sobre estructura de los metales	Mapa Mental sobre Estructura de los materiales: 1.2 Niveles de orden.				

		1.3 Redes		diseño. Clases de	(Newell, 2011,	1.3 Redes cristalinas
				materiales	· ·	
		cristalinas	2		pp 33-61)	1.4 Estimaciones de
		1.4 Estimaciones	2.	Exposiciones, foros	1.1 a 1.9	densidad Organizador
		de densidad		de discusión y	Solución de	gráfico. (Fecha de
		1.5 Direcciones y		presentación	ejercicios	entrega: Semana 1:
		planos		magistral:	propuestos en el	11/03/2016).
		cristalográficos		Estructura de los	portafolio de	
		1.6 Índices de		materiales.	ejercicios	2. Mapa mental
		Miller	3.	Taller práctico en	(Newell, 2011,	sobre estructura de
		1.7 Medición de		clase: Trabajo	pp 63-65)	los materiles: 1.6
		cristales		grupal solución de	1.1 a 1.9 Lectura	Índices de Miller
		1.8 Nucleación y		ejercicios	y preparación de	1.7 Medición de
		crecimiento de		propuestos sobre	temas	cristales
		grano.		estructura de los	estudiados en	1.8 Nucleación y
		1.9 Defectos		materiales.	clase.	crecimiento de grano.
		cristalinos.	4.	Lecciones orales a	ciuse.	Organizador gráfico
		cristaniios.	٦.	dos estudiantes		(Fecha de entrega:
				para sustentar		semana 2:
				temas estudiados		18/03/2016).
				en clases		18/03/2010).
				anteriores.		3. Portafolio de
				antenores.		
						ejercicios: solución de
						ejercicios sobre
						Estructura de los
						materiales,
						Propiedades
						mecánicas (Fecha de
					2.1 a 2.10	entrega: Semana 6:
1, 2	2.				Lectura y mapa	15/04/2016)
	Propiedades	2.1 Normas	5.	Exposiciones, foros	mental sobre	
	Mecánicas	ASTM: medición		de discusión y	propiedades	
		de propiedades.		presentación	mecánicas	4. Lecciones orales: 2%
		2.2 Ensayo de		magistral:	(Newell, 2011,	de la nota de
		tracción.		Propiedades	pp 69-97)	progreso.
		2.3 Ensayo de		mecánicas de los	2.1 a 2.10	
		compresión.		materiales	Solución de	5. Exposiciones y
		2.4 Ensayo de	6.	Taller práctico en	ejercicios	trabajos grupales
		plegado		clase: Trabajo	propuestos en el	sobre temas
		2.5 Ensayo de		grupal solución de	portafolio de	propuestos:
		Dureza		ejercicios	ejercicios	propiedades
		2.6 Ensayo de		propuestos sobre	(Newell, 2011,	mecánicas de los
		fluencia		propiedades	pp 100-103)	materiales, casos de
		2.7 Ensayo de		mecánicas	2.1 a 2.10	estudio. 4% de la nota
		Impacto	7.	Lecciones orales a	Lectura y	de progreso
		2.8 Error y		dos estudiantes	preparación de	
		reproductibilidad		para sustentar	temas	6. Prueba de control
		de la medición.		temas estudiados	estudiados en	(9%)
		2.9 Fallas de		en clases	clase.	(Rubrica) (Fecha de
		materiales bajo		anteriores.		entrega: Semana 4:
		tensión:	8.	Prueba de control		01/04/2016)
		Fracturas	Ŭ.	de progreso 1.		7. Prueba de progreso
		mecánicas.	9.	Examen de		1(20%)
		2.10 Cambio de] .	Evaluación de		(Rubrica) (Fecha de
		las propiedades		progreso 1		entrega: Semana 6:
		mecánicas con el		h1081630 I		15/04/2016)
		mecanicas con el				13/04/2010)

	tiempo: Ensayo de fatiga, envejecimiento acelerado.	1.	

	Semana: 7 – 1	.3			T	
RdA	Tema	Sub tema		tividad/	Tarea/	MdE/Producto/
			est	rategia de clase	trabajo	fecha de entrega
					autónomo	
1, 2	3. Metales	3.1				 Mapa Mental sobre
		Operaciones	1.	Exposiciones,	3.1 a 3.10	metales: 3.1
		de		foros de	Lectura y	Operaciones de
		conformado.		discusión y	mapa	conformado.
		3.2 Aleaciones		presentación	mental	3.2 Aleaciones y
		y diagramas de		magistral:	sobre	diagramas de fase.
		fase.		Metales.	metales	(Fecha de entrega:
		3.3 Acero al	2.	Taller práctico	(Newell,	Semana 7:
		Carbono.		en clase:	2011, pp	22/04/2016).
		3.4 Aceros		Trabajo grupal	107-136)	
		para		solución de		2. Mapa mental sobre
		herramientas.		ejercicios	3.11 Lectura	metales: 3.3 Acero al
		3.5 Aceros		propuestos	y mapa	Carbono.
		Inoxidables.		sobre metales.	mental	3.4 Aceros para
		3.6 Aceros de	3.	Lecciones orales	sobre	herramientas.
		muy alta		a dos	Tratamiento	3.5 Aceros Inoxidables.
		resistencia.		estudiantes	térmico de	3.6 Aceros de muy alta
		3.7 Aceros		para sustentar	los aceros	resistencia.
		especiales		temas	(Martin,	3.7 Aceros especiales
		3.8		estudiados en	2012, pp	3.8 Fundiciones
		Fundiciones		clases	290-304).	3.9 Cobre y sus
		3.9 Cobre y sus		anteriores.		aleaciones.
		aleaciones.			3.12 Lectura	3.10 Aluminio y sus
		3.10 Aluminio			y mapa	aleaciones.
		y sus			mental	. Organizador gráfico
		aleaciones.			sobre	(Fecha de entrega:
		3.11			corrosión.	semana 9: 06/05/2016
		Tratamiento			(Newell,	
		térmico de los			2011, pp	3. Portafolio de
		aceros:			137-141).	ejercicios: solución de
		Templado,			(Martin,	ejercicios sobre metale
		Revenido,			2012, pp	y polímeros (Fecha de
		Recocido,			251-258).	entrega: Semana 13:
		Tratamientos				03/06/2016)
		Superficiales.			3.1 a 3.13	
		3.12 Corrosión			Solución de	
		3.13 Reciclaje			ejercicios	4. Lecciones orales: 2%
		de materiales.			propuestos	de la nota de progreso
					en el	
					portafolio	5. Exposiciones y
					de ejercicios	trabajos grupales sobre

1,2	4. Polímeros	4.1 Terminología de los polímeros 4.2 Tipos de polímeros, propiedades y aplicaciones en la industria. 4.3 Tipos de polimerización. 4.4 Procesamiento de polímeros. 4.5 Reciclaje de polímeros.	4.5.8.	Exposiciones, foros de discusión y presentación magistral: polímeros. Taller práctico en clase: Trabajo grupal solución de ejercicios propuestos sobre polímeros. Lecciones orales a dos estudiantes para sustentar temas estudiados en clases anteriores. Prueba de control de progreso 2. Examen de Evaluación de progreso 2	2011, pp 144-147) 3.1 a 3.13 Lectura y preparación de temas estudiados en clase. 4.1 a 4.5 Lectura y mapa mental sobre polímeros (Newell, 2011, pp 151-181). (Martin, 2012, pp 424-429) 4.1 a 4.5 Solución de ejercicios propuestos en el portafolio de ejercicios (Newell, 2011, pp 144-147) 4.1 a 4.5 Lectura y preparación de temas estudiados	metales y polímeros. 4% de la nota de progreso 6. Prueba de control (9%) (Rubrica) (Fecha de entrega: Semana 11: 20/05/2016) 7. Prueba de progreso 2 (20%) (Rubrica) (Fecha de entrega: Semana 13: 03/06/2016)
-----	--------------	--	--	---	---	---

	Semana: 14 – 16									
RdA	Tema	Sub tema		tividad/ rategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega				
1,2	5. Materiales Cerámicos.	5.1 Estructuras cristalinas de los cerámicos. 5.2 Usos industriales de los cerámicos. 5.3 Reciclaje de cerámicos.	2.	Exposiciones, foros de discusión y presentación magistral: Materiales cerámicos. Examen de Evaluación Final	5.1 a 5.3 Lectura y mapa mental sobre materiales cerámicos (Newell, 2011, pp 151-181). (Martin, 2012, pp 433-449)	Caso de estudio: entrega de caso de estudio sobre propiedades e los materiales: metales, polímeros, cerámicos. Aplicaciones prácticas. (7%)(Rúbrica)(Fecha de entrega: semana 16: 24/06/2016) Examen final (23%) (Rubrica) (Fecha de entrega: Semana de exámenes				

9. Normas y procedimientos para el aula

- 9.1. El docente ingresará al aula de clase, y en el momento que cierre la puerta y comience la misma, no se permitirá ingresar a estudiantes que estén atrasados.
- 9.2. Se prohíbe el uso de celular durante las sesiones de clase, estudiante que se encuentre empleando el mismo, se le solicitará que salga del aula y se registrará inasistencia.
- 9.3. El portafolio de ejercicios se entregará vía plataforma virtual en cada período, y se evaluará de acuerdo a la ponderación indicada en el sílabo, y su entrega se limitará a las condiciones y tiempos que la plataforma indique. No se receptarán entregas atrasadas.
- 9.4. Los mapas conceptuales, resultado de las lecturas propuestas por el docente sobre los temas a tratar en clase, serán subidas a la plataforma virtual para que se registre su evidencia de aprendizaje, y se evaluará de acuerdo a la ponderación indicada en el sílabo, y su entrega se limitará a las condiciones y tiempos que la plataforma indique. No se receptarán entregas atrasadas.
- 9.5. La entrega y defensa de los trabajos grupales y exposiciones es obligatoria para cada estudiante. Su entrega es requisito en la asignatura.
- 9.6. No se aceptarán la toma de pruebas atrasadas

udla-

10. Referencias bibliográficas

10.1. Principales.

1. Newell, J. (2011). *Ciencia de Materiales: Aplicaciones en Ingeniería*. (1ra. Ed.). México, México: Alfaomega Grupo Editor, S.A. de C.V..

10.2. Referencias complementarias.

- 1. Martín, N. (2012). *Ciencia de Materiales para ingenieros*. (1ra ed.). España, Madrid: Pearson Educación S.A.
- 2. Askeland, D., Phulé, P. (2004). *Ciencia e Ingeniería de los Materiales*. (4ta Ed.). México, México: Thomson Editores.
- 3. Kalpakjian, S. (1989). *Manufacturing engineering and technology*. United States of America: Addison-Wesley Publishing Company, Inc.

11. Perfil del docente

Nombre de docente: Omar Flor Unda

"Maestría en Automática, Robótica y Telemática (Escuela Técnica de Ingenieros, Sevilla-España), Ingeniero Mecánico (Escuela Politécnica del Ejército). Experiencia en:

- 1. Diseño de estructuras, elementos de máquina y simulación.
- 2. Sistemas Neumáticos e hidráulicos
- 3. Automatización, Robótica y programación.
- 4. Selección de Materiales de ingeniería.
- 5. Educación Superior: ESPE-UIDE-UDLA

Contacto: omar.flor@udla.edu.ec, o.flor@udlanet.ec

Teléfono: 3981000 ext 488