The group G is isomorphic to the group labelled by [12, 3] in the Small Groups library. Ordinary character table of $G \cong A4$:

	1a	2a	3a	3b
χ_1	1	1	1	1
χ_2	1	1	E(3)	$E(3)^{2}$
χ_3	1	1	E(3) $E(3)^2$	E(3)
χ_4	3	-1	0	O

Trivial source character table of $G \cong A4$ at p = 2:

Normalisers N_i		N_1			N_3		
p-subgroups of G up to conjugacy in G		P_1			P_3		
Representatives $n_j \in N_i$	1a	3a	3b	1a	1a	3a	3b
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4$	4	1	1	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4$	4	E(3)	$E(3)^{2}$	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4$	4	$E(3)^{2}$	E(3)	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4$	6	0	0	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4$	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4$	1	E(3)	$E(3)^{2}$	1	1	E(3)	$E(3)^{2}$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4$	1	$E(3)^{2}$	E(3)	1	1	$E(3)^{2}$	E(3)

$$P_1 = Group([(1)]) \cong 1$$

$$P_2 = Group([(1,3)(2,6)(4,8)(5,9)(7,11)(10,12)]) \cong C2$$

$$P_3 = Group([(1,3)(2,6)(4,8)(5,9)(7,11)(10,12),(1,8)(2,11)(3,4)(5,12)(6,7)(9,10)]) \cong C2 \times C2$$

 $N_1 = Group([(1,2,5)(3,7,12)(4,11,9)(6,10,8),(1,3)(2,6)(4,8)(5,9)(7,11)(10,12),(1,4)(2,7)(3,8)(5,10)(6,11)(9,12)]) \cong A4$ $N_2 = Group([(1,3)(2,6)(4,8)(5,9)(7,11)(10,12),(1,8)(2,11)(3,4)(5,12)(6,7)(9,10)]) \cong C2 \times C2$ $N_3 = Group([(1,8)(2,11)(3,4)(5,12)(6,7)(9,10),(1,3)(2,6)(4,8)(5,9)(7,11)(10,12),(1,2,5)(3,7,12)(4,11,9)(6,10,8)]) \cong A4$