

인공지능과 4차 산업혁명

학습 목표

4차산업혁명 기술과 인공지능의 역할을 고찰

- 4차산업혁명의 시작 배경과 주요 분야들을 살펴본다.
- 4차산업혁명에서 인공지능 핵심기술 활용과 중요성을 알아본다.
- 지능형 로봇의 응용과 인공지능 기술과의 관계를 파악한다.
- 사물인터넷의 개념을 비롯한 요소 기술과 응용들을 파악해본다.
- 인공지능 기술과 관련된 자율자동차와 드론기술을 살펴본다.
- 4차 산업혁명의 미래 기술 등을 알아본다.

5.1 4차 산업혁명의 시작

- 4차산업혁명의 도래
 - 2016년 1월 세계경제포럼에서 처음으로 언급됨
 - 4차 산업혁명의 전 세계적인 바람과 엄청난 변화
 - 현재 3차 산업혁명을 거쳐 4차 산업혁명으로 진입 단계
 - 인공지능과 사물인터넷 등의 지능화가 핵심사항
 - 로봇공학, 생명공학, 나노기술 등의 분야

[그림 5.2] 1, 2, 3, 4차 산업혁명

5.1 4차 산업혁명의 시작

- 4차산업혁명의 핵심
 - '연결(connectivity)'과 '지능(intelligence)'
 - 통신의 연결과 인공지능의 지능을 결합한 새로운 산업혁명
 - '초연결(hyper-connectivity)' 사회를 가져오고 있음
 - 더욱 빠른 속도로 사회 전반에 혁신적 변화를 가져올 것

[그림 5.7] 1, 2, 3, 4차 산업혁명의 요약

5.1 4차 산업혁명의 시작

• 4차례 산업혁명의 비교

⟨표 5.2⟩ 여러 산업혁명의 구분별 비교

구분	1차 산업혁명	2차 산업혁명	3차 산업혁명	4차 산업혁명
시기	18세기 후반	20세기 초반	1970년대 이후	2020년 이후
혁신 부문	증기의 동력화	전력, 노동 분업	전자기기, ICT 혁명	ICT와 제조업 융합
커뮤니케이션 방식	책, 신문 등	전화기, TV 등	인터넷, SNS	loT (Internet of Things)
생산 방식	생산 기계화	대량생산	부분 자동화	시뮬레이션을 통한 자동생산
생산통제	사람	사람	사람	기계 스스로

5.2 인공지능과 4차 산업혁명

- 인공지능 핵심 기술의 활용
 - 인공지능은 4차 산업혁명의 뿌리가 되는 핵심적인 개념
 - 인공지능은 인간의 지능으로 할 수 있는 연구 분야
 - 사고, 학습, 추론, 음성인식, 영상인식, 자연어 이해 등
 - 4차 산업혁명은 인공지능 핵심 기술들을 기반으로 함
 - 칩으로의 구현을 통해 빠른 학습과 성능이 점차 향상 중

[그림 5.10] 인공지능 핵심 기술

[그림 5.12] 딥러닝 칩의 개발

5.2 인공지능과 4차 산업혁명

- 4차 산업혁명에서 인공지능 활용
 - 인공지능과 딥러닝이 주요 전략 기술 방향으로 선정됨
 - 인공지능을 활용하여 지능형 시스템이 머지않아 구현될 것
 - 로봇, 자율주행차, 가상 개인 비서 등

5.3 지능형 로봇과 인공지능

- 지능형 로봇
 - 인간의 음성을 이해하고 인간에 가까운 인식과 판단 기능
 - 주변 환경을 인식하고 적응할 수 있는 지능적인 로봇
 - 인공지능, 신경망, 퍼지 등 첨단 컴퓨터 기술들을 활용
 - KBS 교향악단을 지휘하는 지능형 로봇 '로차르트
 - 한국전자통신연구원(ETRI)에서 영상인식, 문자인식, 음성합성을 결합한 '에트로(ETRO)'

[그림 5.15] 동화책을 읽는 에트로 로봇

5.3 지능형 로봇과 인공지능

- 지능형 로봇 개발 현황
 - 로봇기술은 산업용에서 비산업용으로 확장되고 있음
 - 인간 적응형 서비스 로봇으로도 발전될 전망
 - 일본은 두 발로 걷는 휴머노이드형 로봇기술 발달
 - 미국은 인공지능과 지능형 로봇 핵심기술 강국
 - 로봇의 능력을 감정 표현 및 인식에까지 확대 개발 중
 - 인천공항 출입국 관리용 지능형 서비스 로봇 'TIRO

[그림 5.17] 애완용 강아지 로봇

[그림 5.18] 엔터테인먼트 로봇

[그림 5.23] 출입국 관리용 지능형 서비스 로봇

5.3 지능형 로봇과 인공지능

- 기타 지능형 로봇 개발 현황
 - KIST에서 개발한 꽃을 전해주는 지능형 로봇
 - 미국에서 개발된 탁구 게임을 하는 지능형 로봇
 - 매우 빠른 인식과 판단 능력 필요
 - 바이올린을 연주하는 지능형 로봇 등

[그림 5.19] 꽃을 전해주고 탁구 치는 지능형 로봇

[그림 5.20] 바이올린을 연주하는 로봇

5.4 사물인터넷

- 사물인터넷의 개념과 발전전망
 - 사물인터넷(IoT: Internet of Things)
 - 생활 속의 사물들을 5세대(5G) 네트워크로 연결, 정보 공유
 - 사물인터넷은 인터넷을 기반으로 다양한 사물들을 연결
 - 사람과 사물, 사물과 사물 간 정보를 소통하는 지능형 기술

[그림 5.24] 사람과 사물을 뛰어넘는 사물인터넷

[그림 5.25] 사물인터넷

5.4 사물인터넷

- 초연결 사물인터넷의 활용
 - 2020년대 초연결(hyper-connected) 사물인터넷 시대 전개
 - 사물들이 서로 연결되면서 새로운 편의나 가치 제공
 - 세계시장 2023년에는 1,800조원 규모, 국내시장 2023년에 약 35조 원 규모로 전망
 - 매년 30% 정도의 성장 추정, 연결기기 수가 해마다 증가

[그림 5.26] 디지털 시대의 발전

[그림 5.27] 분야별 사물인터넷 연결 수

5.4 사물인터넷

• 사물인터넷의 요소 기술

⟨표 5.3⟩ 사물인터넷의 주요 3대 기술

기술	내용		
센싱 기술	온도, 습도, 열, 초음파 센서 등과 원격 감지, 레이더, 위치, 영상 센서 등 사물과 주위 환경에서 정보를 얻는 정보 수집 기술		
유무선 통신과	블루투스, 와이파이 등 근거리 무선통신을 비롯한 이동통신을 비롯한 모든 5G 통신기		
네트워크 기술	술 포함		
서비스 인터페이스	서비스 제공을 위해 정보를 저장, 처리, 변환, 인증, 검색 등의 기술이 필요하며, 특히		
기술	빅데이터 기술도 포함		

5.4 사물인터넷

• 사물인터넷 활용한 분야

⟨표 5.4⟩ 사물인터넷을 활용한 분야별 응용 사례

구분	분야	사례(업체명)	서비스 내용 및 기대효과
개인 loT	자동차	커넥티드카 (구글, 테슬라)	• 자동차에 네트워크 연결기능을 탑재
	헬스 케어	스마트밴드 (JAWBONE)	• 운동량 등 신체 정보 제공으로 개인의 건강 증진
	생활 가전	스마트 가전 (LG 전자 홈챗)	• ICT 기반의 주거환경 통합 제어로 생활편의 제공
	물류	프라임에어 (Amazon)	• 무인비행기를 이용한 택배 서비스
산업 IoT	농업	스마트팜 (SKT)	• 시설물과 작물 관찰을 통해 작업 효율 개선
	공장	스마트 공장 (GE, 지멘스)	• 생산, 가공, 유통에 IoT 기술로 생산성 향상
공공 loT	환경	스마트 그린 (LGU+)	• 쓰레기 정보 제공으로 환경 오염 최소화
	에너지	스마트미터 (누리텔레콤)	• 에너지 사용량의 원격검침 등 관리 효율성 증대

5.4 사물인터넷

- 사물인터넷의 적용과 응용
 - 가정용 기기에 적용 (스마트폰과 연결)
 - 증강현실 기술을 활용한 스마트 안경
 - 건강관리용 스마트 팔찌
 - U-헬스
 - 웨어하우스 Arc(Wearhaus Arc) 헤드폰 음악 공유 가능

[그림 5.31] 구글 글래스

[그림 5.29] 사물인터넷 에어컨

[그림 5.30] 사물인터넷 홈 CCTV

[그림 5.32] 스마트 팔찌와 운동량 자료 관리

- 자율자동차 (Autonomous Vehicle)
 - 주변 환경 인식과 주행 상황 판단, 스스로 운행
 - 카메라, 레이저 등 다양한 센서 활용
 - 도로의 차선, 신호등, 도로표지판 등의 인식기술
 - 안전성과 돌발상황에 대처하는 중앙제어 장치 필요
 - GPS를 통해 10cm 이내 오차의 정밀한 위치 파악
 - 지능형 제어 시스템으로 스스로 속도와 거리 유지
 - 차선 이탈 상황을 감지, 주차보조 시스템, 사각지대 사물 감지

- 자율자동차 개발 현황
 - 대부분의 유명 자동차 회사에서 시험주행 중
 - 구글 자율자동차, 현대 '아이오닉', 벤츠와 애플 자율자동차
 - 2025년 이전에 상용화 시작 예정,
 - 2035년 도로 주행 4대 중 1대는 자율자동차 예측
 - 2050년 대부분 자동차가 자율자동차로 대체될 전망

[그림 5.38] 구글의 초기 자율자동차와 개량 제품

[그림 5.40] 벤츠와 애플이 개발 중인 자율자동차

[그림 5.39] 시험운행 중인 현대차

- 자율자동차 책임 소재
 - 만약 자율자동차끼리 사고가 난다면 누구 책임일까?
 - 차 소유자 또는 자율자동차를 판매한 회사의 책임?
- 자율자동차 학습
 - 자율자동차는 딥러닝으로 운전 방법 스스로 학습
 - 2035년 도로 주행 교착 상태 해결 어려움
 - 무단횡단 보행자나 신호 무시 차량은 어떻게 대처?

[그림 5.41] 교착 상태의 자동차들

- 드론 (Drone) 의 개념과 응용
 - 드론은 전파로 조종할 수 있는 무인 항공기
 - 카메라, 통신시스템 등 장착, 때론 인공지능 s/w 탑재
 - 항공 촬영, 농약 살포, 택배 등으로 활용 확대 중
 - 재해 지역, 원자력 발전소 사고지역 등에 투입 운용
 - 아마존(amazon)은 드론 택배 프로젝트 진행 중

[그림 5.43] 택배 드론

- 광검퓨터 (Optical computer)
 - 광신호로 작동하는 논리소자를 이용한 신호를 통해 연산
 - 실용화는 아직 실험실 단계
 - 현재의 슈퍼컴퓨터보다 1,000배 이상 속도가 빨라짐
 - 영상 정보처리 및 3차원의 병렬 처리가 쉬워짐

[그림 5.44] 광컴퓨터의 개념도

[그림 5.46] 광디바이스

- 바이오 컴퓨터(Bio Computer)
 - 생물학적인 작용과 생물체의 기능을 규명하려는 분야
 - 바이오 센서(sensor)는 효소나 항체를 이용한 센서
 - 효소 센서는 이미 당뇨병 검사에 활용
 - 콜레스테롤 측정을 통한 동맥경화증의 검사 가능
 - 면역 센서로 불치병 항원 개발에 매우 유용

[그림 5.48] 바이오 센서

[그림 5.49] 바이오칩의 내부

- 나노 기술 (nano-technology)
 - 10억 분의 1 수준의 정밀도를 필요로 하는 극미세 가공 기술
 - DNA 구조를 이용한 동식물의 복제 등에 활용
 - 강철 섬유 등 새로운 물질을 제조할 수 있는 기술
- 양자 컴퓨터(Quantum Computer)
 - 1995년도부터 시작
 - 엄청난 연산속도가 장점
 - 일반컴퓨터 5천 8백억년/ 양자컴퓨터 1초

[그림 5.50] 나노 기술

[그림 5.53] 양자 암호

- 양자 컴퓨터 개발
 - 최근 미국 등 여러 나라에서 양자 컴퓨터 개발에 박차
 - 양자 칩(quantum chip)의 개발이 핵심
 - 최근 구글이 양자 컴퓨터용 '시카모어 프로세서' 개발
 - 슈퍼컴퓨터도 1만 년이나 걸리는 난제를 구글 양자 칩이 단 3분 만에 풀어 화제
 - 양자 칩은 인공지능 연구와 신약 개발 등에 적용 가능
 - 상용화까지는 10년 정도 걸릴 것으로 예상

[그림 5.55] 구글이 개발한 양자 칩

KAIST 이민화 교수의 특강 동영상

'인공지능과 4차 산업혁명' (64분)

https://www.youtube.com/watch?v=uvDecS2kVnc (클릭)

가까운 곳에서 인공지능 경험하기

네이버의 파파고(papago)와 구글 번역기 경험하기

검색엔진에서 '네이버 파파고'나 '구글 번역기'를 쳐서 다음과 같은 문장을 번역해보자.

"나는 인공지능의 세계를 경험하고 있다."

- 1. 파파고 번역기
- https://papago.naver.com/

https://papago.naver.com/

(클릭하여 다양한 예로 경험하며 실습!!!)

인공지능 실습하기

적절한 문장 만들기를 도와주는 신경망 모델

[OpenAl GPT2 문장 생성]

- 주어진 문장 뒤에 올 단어를 계속해서 생성하는 모델
- 신경망이 문법에 맞고 의미도 통하는 문장 만들기 도와줌
 (클릭) https://gpt2.apps.allenai.org/?text=Joel%20is

수고하셨습니다.

인공지능 입문