ID:	Name:
ID:	Name:

Brac University

Semester: Spring 2024 Course Code: CSE251

Electronic Devices and Circuits

Section: 01-23

Assessment: Midterm Exam Duration: 1 hour 30 minutes Date: 08 March, 2024

Full Marks: 30

Instructions: Answer any 3 out of 4 questions.

■ Question 1 of 4 [CO1, CO2, CO3] [10 marks]

The adjacent truth table represents a logic circuit implemented with ideal diodes and a 5 V supply voltage. 'A' and 'B' are the boolean input variables of the circuit and 'f' is the boolean output variable of the circuit. V_A and V_B are the input voltages corresponding to 'A' and 'B'. The voltage level corresponding to the output variable 'f' is denoted by V_f .

A	В	f
0	0	0
0	1	0
1	0	0
1	1	1

- (a) [1 mark] **Deduce** the logical function f and **draw** the mentioned logic circuit.
- (b) [1 mark] Calculate the value of V_f when $V_A = 4 \text{ V}$ and $V_B = 5 \text{ V}$.
- (c) [2 marks] Identify the equivalent circuit model for the I-V characteristics of the unknown device, N_D in Fig. (b). Calculate the model parameters.
- (d) [6 marks] Assume, $\underline{D_2}$ is 'ON' and $V_1 = V_f$. Redraw Circuit-1 by replacing N_D with the equivalent circuit model found in part-(c). Now, analyze Circuit-1 to determine the values of I_{D_1} , I_{D_2} , v_x , and v_y . You must validate your assumptions. Here, the forward voltage drop of both of the diodes is, $V_{D0} = 0.5$ V.

■ Question 2 of 4 [CO1, CO2, CO3] [10 marks]

The input voltage of a <u>half-wave rectifier</u> is a **Sine** wave with amplitude $V_M = 10$ V and 40 Hz frequency. The output load resistance is $R = 50 \text{ k}\Omega$. A silicon diode is used in this circuit whose forward voltage drop is $V_{D_0} = 0.6$ V.

- (a) [4 marks] Briefly explain the purpose of a rectifier. Draw the input and output waveforms of the mentioned rectifier with proper labeling. Draw the Voltage Transfer Characteristic (VTC) curve of the rectifier.
- (b) [1 mark] Calculate the DC value of the output voltage, $V_{\rm DC}.$
- (c) [3 marks] After connecting a capacitor parallel to the load, $V_{\rm DC}$ changes to $V_{\rm DC(Cap)}$ and the new output voltage can be expressed as $V_{\rm out} = V_{\rm DC(Cap)} \pm 0.5$ V. Calculate the peak-to-peak ripple voltage $V_{r(p-p)}$, and determine the ripple frequency, $f_{\rm r}$. Now, calculate the value of the capacitor, C.
- (d) [1 mark] Calculate the DC value of the output voltage after connecting the capacitor, $V_{\rm DC(Cap)}$.
- (e) [1 mark] Compare $V_{DC(Cap)}$ with V_{DC} determined in part-(b) and briefly explain their difference.

■ Question 3 of 4 [CO1, CO2, CO3] [10 marks + 2 marks (bonus)]

The 'ideal' operational amplifiers (Op-Amp) below have been connected to saturation voltages $V_{\rm sat}^+ = + 8 \, {\rm Vand}$ $V_{\rm sat}^- = - 8 \, {\rm V}$. The resistor values are given as: $R_1 = R_2 = 1 \, {\rm k}\Omega$, and $4R_4 = 10R_5 = 20 \, {\rm k}\Omega$.

- (a) [1 mark] State the current values of I^- and I^+ .
- (b) [4 marks] If $E_1 = 5 \text{ V}$, $E_2 = 0 \text{ V}$, and $R_3 = 10 \text{ k}\Omega$, determine V_A and V_B .
- (c) [2 marks] Find the value of V_{out} if $V_1 = V_A$ and $V_2 = V_B$.
- (d) [3 marks] For $E_1 = 0$ V and $E_2 = 2.2$ V, we measure V_A to be 5.13 V. Showing necessary calculations, select what value of R_3 will make this possible.
- (e) [2 marks (bonus)] After obtaining R_3 in question (d), find the value of V_B .

■ Question 4 of 4 [CO1, CO2, CO3] [10 marks]

Answer questions (a-d) based on Figure 1 and question (e) based on the data shown in Figure 2.

Figure 1: For questions (a-d)

$$V_O = X_1 V_1 - X_2 \int V_2 dt$$

Where, $X_1 = 1 + \text{last digit of student ID}$ $X_2 = 1 + 2\text{nd last digit of student ID}$

Figure 2: For question (e) only.

Figure 1 shows the variation of direct solar irradiance, G (in units of kW/m^2) throughout the day in Egypt. The irradiance is $0.186 \ kW/m^2$ at $16:00 \ hours$. A photodetector generates a voltage of V_S by converting solar irradiance G (in units of kW/m^2) according to the following equation:

$$V_S(G) = 6G^2 + 7G \tag{1}$$

You have to design an automatic system with an Op-Amp comparator circuit. This system will take V_S as an input from a photodetector and control a street lamp, ensuring it meets the following **conditions**:

- The lamp switches **ON** after **16:00** hours.
- The lamp switches **ON** when system output is **5 V**.
- \bullet The lamp switches **OFF** when system output is **0 V**.

Based on the above scenario, answer the following questions:

- (a) [1 mark] Calculate the photodetector voltage V_S at 16:00 hours. Determine how V_S changes before and after 16:00 hours.
- (b) [1 mark] Show how the changes in irradiance G and subsequently V_S with respect to the value obtained in part (a) should affect the street lamp operation (ON / OFF states).

[Hint: Observe the graph in Fig. 1 and Equation (1)]

- (c) [2 marks] Determine whether the Op-Amp comparator circuit of the system should be in an <u>inverting</u> or <u>non-inverting</u> configuration. Justify your choice by explaining briefly how this configuration meets the conditions mentioned above.
- (d) [3 marks] Draw the completed Op-Amp comparator circuit clearly marking the input and output terminals and the positive and negative saturation voltages Also clearly indicate the <u>reference voltage</u> against which the input of the comparator is compared.
- (e) [3 marks] **Design** a circuit with Op-Amps that implements the function shown in **Figure 2**. Clearly indicate the input, output, and circuit parameters.