Nº A92846 Nome: Carlos Riquel Passos Ferreira Curso/Turma: MIEFIS

Resolução dos exercícios

Nota: Apresente sempre os cálculos que efectuar no verso da folha; <u>o não cumprimento desta regra equivale</u> à não entrega do trabalho.

1. Converta cada um dos valores para os seguintes sistemas:

	Valor	Resultado	Valor	Resultado
a) binário	132	100001002	12.375	1100.0112
b) decimal	1010012	41	1010.10112	171/16
c) hexadecimal	260	10416	0011'0101'011.'01102	1ab. 616
d) octal	1111100111012	76358	11011.112	33.68
f) ternário	24	2203	2/3	0.23

2. Represente, usando apenas 6 *bits*, os valores abaixo (expressos em decimal) usando cada uma das representações indicadas:

	S+A	Complemento 1	Complemento 2	Excesso 31
12	0110000	D11 0002	0110002	1100110
-1	1000012	111 11 0 2	1111112	0000102
-31	1111112	1000000	100001	1000000

 Converta para decimal cada uma das cadeias de bits abaixo, considerando a representação indicada em cada coluna:

	S+A	Complemento 1	Complemento 2	Excesso 15
00011	+ 3	+3	+3	-12
10001	- 1	-14	- 15	2
11110	- 14	1	-2	15

5. Preencha, em decimal, a tabela abaixo com a gama de valores representáveis usando 6 bits em cada um dos sistemas de representação propostos. Preencha também a coluna que indica qual a resolução da representação, isto é a diferença entre dois valores consecutivos.

Representação	Mínimo	Resolução	Máximo
Binário sem sinal, inteiros			
Binário sem sinal, 2 bits fraccionários			
Complemento para 2, inteiros	*		
Sinal + Amplitude, 1 bit fraccionário			
Excesso de 7, 3 bits fraccionários			

8. Efetue as seguintes **operações aritméticas** na base dada e usando apenas o número de dígitos indicado em cada alínea. Se algum resultado não for representável usando esse número de dígitos assinale a situação de *overflow*.

al	00110011 ₂ + 01110101 ₂	
b)	00100.112 + 00011.012	
d)	0xac + 0x2b	
e)	272 ₈ + 533 ₈	

9. Faça a codificação binária para o processador nº 14, do terceiro sistema do bastidor 122 do piso -1.

Nome: Carlos Miguel Passos Ferreira Resolução TPC1

Nº: A92846

1.

(a) para binário

①
$$132_{10}$$
 ⇒ $\boxed{?}$ ₂ → 132_{10} = 10000100_2

(b) para decimal

$$1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 32 + 8 + 1 = 41_{10}$$

$$1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{\circ} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4} = \frac{1}{8}$$

$$= 10 + \frac{1}{2} + \frac{1}{8} + \frac{1}{16} = \frac{160}{16} + \frac{8}{16} + \frac{2}{16} + \frac{1}{16} = \frac{171}{16}$$

c) para hexadecimal

©
$$260_{10} \Rightarrow \boxed{?}_{16} \longrightarrow 260_{10} = 104_{16}$$

d) para octal

e) para ternário

$$\Theta \stackrel{2}{=} \frac{2}{3} \stackrel{1}{=} 0 \stackrel{?}{=} \frac{2}{3} \stackrel{?}{=} 0.2_3$$

$$Como \frac{2}{3} < 0 \Rightarrow \frac{2}{3} \times 3 = \boxed{21}, 0$$

0 112 |

Um bit é para a sinal, sobrando

como sobra 1 bit acrescento um O a esquerda

Complemento 1: 0110002

0 -1

S+A:100001 2

$$\frac{1}{11} \frac{2}{100} \rightarrow 100001_2$$

Complemento 1: 1 11110 2

•
$$100001_2 \Rightarrow \boxed{1}_{10} \rightarrow 33_{10} \rightarrow 33 - 31 = 2_{10} \Rightarrow \boxed{1}_2$$

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

```
0 - 311
```

S+A :1111112

Complemento 1: 1000002

Complemento 2:100000+1=1000012

3.

· O primeiro bit representa o sinal: +

$$0.0011_{10} \Rightarrow \boxed{?}_{2}$$

$$0.0011_{10} \Rightarrow \boxed{?}_{2}$$

$$0.0011_{10} \Rightarrow \boxed{?}_{2}$$

Complemento 2: +3

Excesso 15:000112 \Rightarrow [2]10 \Rightarrow 3 \Rightarrow 3-15 = -12

. 10001

$$= 0 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 1$$

Complemento 1: Deixo o bit do sincle traco as outros: 1.11102

$$4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 414 \Rightarrow -14$$

· [11110]

$$\cdot 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} = 14$$

Complemento 1:

Excesso 15 :

$$1110_2 \Rightarrow \boxed{2}_{10} \Rightarrow 30_{10} \Rightarrow 30_{-15} = 15$$