# Physics 224 The Interstellar Medium

Lecture #3

- Part I: Finish Collisional Processes
- Part II: Statistical Mechanics
- Part III: Quantum & Energy Levels
- Part IV (maybe): Radiative Transfer

# Energy Levels of Atoms

n = principle quantum number

l = orbital angular momentum in units of  $\hbar$  (0  $\leq l < n$ )

 $m_z$  = proj. of angular mom. on z axis (- $l \le m_z \le l$ ) e- spin = - $\hbar$ /2 or + $\hbar$ /2

degenerate (same energy) w/o applied B-field

# Energy Levels of Atoms

How do we arrange e- in a multi-electron atom?

Pauli exclusion principle says:

electrons can't share the same wavefunction  $(n, l, m_z, spin)$ 

For ground state configuration: fill up "subshells" from lowest energy up

subshell = combination of nl designated by number n and letter for l (0=s, 1=p, 2=d, 3=f, ...)

$$l = 0$$

$$l = 1$$

$$l = 2$$

$$m_z = 0$$

$$3s$$

$$3p$$

$$m_z = -1$$

$$m_z = 0$$

$$m_z = -1$$

$$m_z = 0$$

$$2s$$

$$2p$$

$$n = 3$$

$$n = 2$$

$$n = 2$$

$$n = 1$$

$$n = 1$$

$$n = 1$$

$$n = 1$$

Can put 2 e- in each box: 1 \

 $\therefore$  degeneracy of subshell = 2(l+1)











 $\rightarrow$  1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s

1s









$$l = 0$$
  $l = 1$   $l = 2$ 
 $m_z = 0$   $m_z = -1$   $m_z = 0$   $m_z = +1$   $m_z = -2$   $m_z = -1$   $m_z = 0$   $m_z = +1$   $m_z = +2$   $m_z = 0$   $m_z = -1$   $m_z = 0$   $m_z =$ 

Multiple possibilities for arranging open shells!



Lets build the ground state of C: 6 electrons

2s



Multiple possibilities for arranging open shells!

$$\rightarrow$$
1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>

# Multiple possibilities for distributing e- in unfilled subshell, lead to different overall spin & angular momentum

 $\mathbf{L}$  = vector sum of angular momentum  $\mathbf{S}$  = vector sum of spin angular momentum

Different combinations of  ${f L}$  and  ${f S}$  have different energies.

- z component of the total angular
   momentum can have values between
   L and L, i.e. 2(L+1) degenerate levels
- z component of the total spin can have values between -S and S, i.e. 2(S+1) degenerate levels

Each L and S has (2L+1)(2S+1) possible  $m_z$  & spin combinations.

# Spectroscopic Notation

The "Spectroscopic Term"



Total angular momentum

$$\mathbf{J} = \mathbf{L} + \mathbf{S}$$

| Term<br>(deg.) | L=0       | L=1                   | L=2                    |            |
|----------------|-----------|-----------------------|------------------------|------------|
| S=0            | 1S<br>(1) | <sup>1</sup> P<br>(3) | 1D<br>(5)              | 2S+1       |
| S=1            | 3S<br>(3) | <sup>3</sup> P<br>(9) | <sup>3</sup> D<br>(15) | (2L+1)(2S+ |
|                |           |                       |                        | = 36 total |

Not all of these work - lets see why...

# "Non-Equivalent" electrons (i.e. 2p3p, different *n*) 36 combinations allowed:

| (mz, ms)   | (+1, +1/2) | (0, +1/2) | (-1, +1/2) | (+1, -1/2) | (0, -1/2) | (-1, -1/2) |
|------------|------------|-----------|------------|------------|-----------|------------|
| (+1, +1/2) | +2, +1     | +1, +1    | 0, +1      | +2, 0      | +1, 0     | 0, 0       |
| (0, +1/2)  | +1, +1     | 0, +1     | -1, +1     | +1, +1     | 0, 0      | -1, 0      |
| (-1, +1/2) | 0, +1      | -1, +1    | -2, +1     | 0, 0       | -1, 0     | -2, 0      |
| (+1, -1/2) | +2, 0      | +1, 0     | 0, 0       | +2, -1     | +1, -1    | 0, -1      |
| (0, -1/2)  | +1, 0      | 0, 0      | -1, 0      | +1, -1     | 0, -1     | -1, -1     |
| (-1, -1/2) | 0, 0       | -1, 0     | -2, 0      | 0, -1      | -1, -1    | -2, -1     |

"Equivalent" electrons (i.e.  $2p^2$ , same n) only 15 combinations allowed (b.c. Pauli & some are identical)

| (mz, ms)   | (+1, +1/2) | (0, +1/2) | (-1, +1/2) | (+1, -1/2) | (0, -1/2) | (-1, -1/2) |
|------------|------------|-----------|------------|------------|-----------|------------|
| (+1, +1/2) | +2, +1     | +1, +1    | 0, +1      | +2, 0      | +1, 0     | 0, 0       |
| (0, +1/2)  | +1, +1     | 0, +1     | -1, +1     | +1, +1     | 0, 0      | -1, 0      |
| (-1, +1/2) | 0, +1      | -1, +1    | -2, +1     | 0, 0       | -1, 0     | -2, 0      |
| (+1, -1/2) | +2, 0      | +1, 0     | 0, 0       | +2, -1     | +1, -1    | 0, -1      |
| (0, -1/2)  | +1, 0      | 0, 0      | -1, 0      | +1, -1     | 0, -1     | -1, -1     |
| (-1, -1/2) | 0, 0       | -1, 0     | -2, 0      | 0, -1      | -1, -1    | -2, -1     |

© Karin Sandstrom, UC San Diego - Do not distribute without permission

| Term<br>(deg.) | L=0                   | L=1                   | L=2                 |
|----------------|-----------------------|-----------------------|---------------------|
| S=0            | 1S<br>(1)             | <sup>1</sup> P<br>(3) | 1D<br>(5)           |
| S=1            | <sup>3</sup> S<br>(3) | <sup>3</sup> P<br>(9) | <sup>3</sup> D (15) |
|                |                       |                       |                     |

Only 15 states allowed, so some terms don't work when electrons are equivalent - which ones?

| Term<br>(deg.) | L=0            | L=1            | L=2            |
|----------------|----------------|----------------|----------------|
| S=0            | 1S             | <sup>1</sup> P | 1D             |
|                | (1)            | (3)            | (5)            |
| S=1            | <sup>3</sup> S | <sup>3</sup> P | <sup>3</sup> D |
|                | (3)            | (9)            | (15)           |



| Term<br>(deg.) | L=0            | L=1            | L=2  |
|----------------|----------------|----------------|------|
| S=0            | 1S             | <sup>1</sup> P | 1D   |
|                | (1)            | (3)            | (5)  |
| S=1            | <sup>3</sup> S | <sup>3</sup> P | 3D   |
|                | (3)            | (9)            | (15) |

$$2S+1$$

<sup>3</sup>D has L = 2 (
$$m_z$$
 = 2, 1, 0, -1, -2) and S=1 ( $m_s$  = 1, 0, -1)

 $m_z = \pm 2$ ,  $m_s = \pm 1$  not in the table so <sup>3</sup>D cannot be a valid term.

"Equivalent" electrons (i.e.  $2p^2$ , same n) only 15 combinations allowed (b.c. Pauli & some are identical)

| (mz, ms)   | (+1, +1/2) | (0, +1/2) | (-1, +1/2) | (+1, -1/2) | (0, -1/2) | (-1, -1/2) |
|------------|------------|-----------|------------|------------|-----------|------------|
| (+1, +1/2) | +2, +1     | +1, +1    | 0, +1      | +2, 0      | +1, 0     | 0, 0       |
| (0, +1/2)  | +1, +1     | 0, +1     | -1, +1     | +1, +1     | 0, 0      | -1, 0      |
| (-1, +1/2) | 0, +1      | -1, +1    | -2, +1     | 0, 0       | -1, 0     | -2, 0      |
| (+1, -1/2) | +2, 0      | +1, 0     | 0, 0       | +2, -1     | +1, -1    | 0, -1      |
| (0, -1/2)  | +1, 0      | 0, 0      | -1, 0      | +1, -1     | 0, -1     | -1, -1     |
| (-1, -1/2) | 0, 0       | -1, 0     | -2, 0      | 0, -1      | -1, -1    | -2, -1     |

© Karin Sandstrom, UC San Diego - Do not distribute without permission

| Term<br>(deg.) | L=0            | L=1            | L=2  |
|----------------|----------------|----------------|------|
| S=0            | 1S             | <sup>1</sup> P | 1D   |
|                | (1)            | (3)            | (5)  |
| S=1            | <sup>3</sup> S | <sup>3</sup> P | 3D/  |
|                | (3)            | (9)            | (15) |

$$2S+1$$

= 21 remaining

still too many

<sup>1</sup>S includes:  $m_z = 0$  and  $m_s = 0$ 

<sup>3</sup>S includes:  $m_z = 0$  and  $m_s = +1, 0, -1$ 

<sup>1</sup>P includes:  $m_z = +1$ , 0, -1 and  $m_s = 0$ 

<sup>3</sup>P includes:  $m_z = +1$ , 0, -1 and  $m_s = +1$ , 0, -1

<sup>1</sup>D includes:  $m_z = +2, +1, 0, -1, -2$  and  $m_s = 0$ 

Narin Sandetrom IIC San Diago. Do not distribute without permission

"Equivalent" electrons (i.e.  $2p^2$ , same n) only 15 combinations allowed (b.c. Pauli & symmetry)

| (mz, ms)   | (+1, +1/2) | (0, +1/2) | (-1, +1/2) | (+1, -1/2) | (0, -1/2) | (-1, -1/2) |
|------------|------------|-----------|------------|------------|-----------|------------|
| (+1, +1/2) | +2, +1     | +1, +1    | 0, +1      | +2, 0      | +1, 0     | 0, 0       |
| (0, +1/2)  | +1, +1     | 0, +1     | -1, +1     | +1, +1     | 0, 0      | -1, 0      |
| (-1, +1/2) | 0, +1      | -1, +1    | -2, +1     | 0, 0       | -1, 0     | -2, 0      |
| (+1, -1/2) | +2, 0      | +1, 0     | 0, 0       | +2, -1     | +1, -1    | 0, -1      |
| (0, -1/2)  | +1, 0      | Ο, Ο      | -1, 0      | +1, -1     | 0, -1     | -1, -1     |
| (-1, -1/2) | 0, 0       | -1, 0     | -2, 0      | 0, -1      | -1, -1    | -2, -1     |

© Karin Sandstrom, UC San Diego - Do not distribute without permission

| Term<br>(deg.) | L=0            | L=1            | L=2  |
|----------------|----------------|----------------|------|
| S=0            | 1S             | <sup>1</sup> P | 1D   |
|                | (1)            | (3)            | (5)  |
| S=1            | <sup>3</sup> S | <sup>3</sup> P | 3D/  |
|                | (3)            | (9)            | (15) |

= 21 remaining

<sup>1</sup>S includes:  $m_z = 0$  and  $m_s = 0$ 

<sup>3</sup>S includes:  $m_z = 0$  and  $m_s = +1, 0, -1$ 

<sup>1</sup>P includes:  $m_z = +1$ , 0, -1 and  $m_s = 0$ 

<sup>3</sup>P includes:  $m_z = +1$ , 0, -1 and  $m_s = +1$ , 0, -1

<sup>1</sup>D includes:  $m_z = +2, +1, 0, -1, -2$  and  $m_s = 0$ 

must have

 $^{1}D$ 

"Equivalent" electrons (i.e.  $2p^2$ , same n) only 15 combinations allowed (b.c. Pauli & symmetry)

| (mz, ms)   | (+1, +1/2) | (0, +1/2) | (-1, +1/2) | (+1, -1/2) | (0, -1/2) | (-1, -1/2) |
|------------|------------|-----------|------------|------------|-----------|------------|
| (+1, +1/2) | +2, +1     | +1, +1    | 0, +1      | +2, 0      | +1, 0     | 0, 0       |
| (0, +1/2)  | +1, +1     | 0, +1     | -1, +1     | +1, +1     | 0, 0      | -1, 0      |
| (-1, +1/2) | 0, +1      | -1, +1    | -2, +1     | 0, 0       | -1, 0     | -2, 0      |
| (+1, -1/2) | +2, 0      | +1, 0     | 0, 0       | +2, -1     | +1, -1    | 0, -1      |
| (0, -1/2)  | +1, 0      | 0, 0      | -1, 0      | +1, -1     | 0, -1     | -1, -1     |
| (-1, -1/2) | 0, 0       | -1, 0     | -2, 0      | 0, -1      | -1, -1    | -2, -1     |

© Karin Sandstrom, UC San Diego - Do not distribute without permission

| Term<br>(deg.) | L=0            | L=1            | L=2   |
|----------------|----------------|----------------|-------|
| S=0            | 1S             | <sup>1</sup> P | 1D    |
|                | (1)            | (3)            | (5)   |
| S=1            | <sup>3</sup> S | <sup>3</sup> P | 3D/   |
|                | (3)            | (9)            | (15), |

$$2S+1$$

= 5 accounted for need 10 more,16 remaining

<sup>1</sup>S includes: 
$$m_z = 0$$
 and  $m_s = 0$ 

<sup>3</sup>S includes: 
$$m_z = 0$$
 and  $m_s = +1, 0, -1$ 

<sup>1</sup>P includes: 
$$m_z = +1$$
, 0, -1 and  $m_s = 0$ 

<sup>3</sup>P includes: 
$$m_z = +1$$
, 0, -1 and  $m_s = +1$ , 0, -1

| Term<br>(deg.) | L=0       | L=1                   | L=2         |  |
|----------------|-----------|-----------------------|-------------|--|
| S=0            | 1S<br>(1) | <sup>1</sup> P<br>(3) | 1D<br>(5)   |  |
| S=1            | 3S<br>(3) | (9)                   | 3D/<br>(15) |  |

<sup>1</sup>S includes: 
$$m_z = 0$$
 and  $m_s = 0$ 

<sup>3</sup>S includes:  $m_z = 0$  and  $m_s = +1, 0, -1$ 

<sup>1</sup>P includes:  $m_z = +1$ , 0, -1 and  $m_s = 0$ 

<sup>3</sup>P includes:  $m_z = +1$ , 0, -1 and  $m_s = +1$ , 0, -1

= 5 accounted for need 10 more,16 remaining

Only one way to get 9 states

"Equivalent" electrons (i.e.  $2p^2$ , same n) only 15 combinations allowed (b.c. Pauli & symmetry)

| (mz, ms)   | (+1, +1/2) | (0, +1/2) | (-1, +1/2) | (+1, -1/2) | (0, -1/2) | (-1, -1/2) |
|------------|------------|-----------|------------|------------|-----------|------------|
| (+1, +1/2) | +2, +1     | +1, +1    | 0, +1      | +2, 0      | +1, 0     | 0, 0       |
| (0, +1/2)  | +1, +1     | 0, +1     | -1, +1     | +1, +1     | 0, 0      | -1, 0      |
| (-1, +1/2) | 0, +1      | -1, +1    | -2, +1     | 0, 0       | -1, 0     | -2, 0      |
| (+1, -1/2) | +2, 0      | +1, 0     | 0, 0       | +2, -1     | +1, -1    | 0, -1      |
| (0, -1/2)  | +1, 0      | 0, 0      | -1, 0      | +1, -1     | 0, -1     | -1, -1     |
| (-1, -1/2) | 0, 0       | -1, 0     | -2, 0      | 0, -1      | -1, -1    | -2, -1     |

© Karin Sandstrom, UC San Diego - Do not distribute without permission

# It gets complicated & tedious to do this for more electrons or for excited states. Just look it up!

**Table 7.2** Terms arising from some configurations of non-equivalent and equivalent electrons

| Non-equivalent electrons |                                                             | Equivalent electrons |                                                   |  |
|--------------------------|-------------------------------------------------------------|----------------------|---------------------------------------------------|--|
| Configuration            | Terms                                                       | Configuration        | Terms <sup>a</sup>                                |  |
| $s^1s^1$                 | $^{1,3}S$                                                   | $p^2$                | ${}^{1}S, {}^{3}P, {}^{1}D$                       |  |
| $s^1p^1$                 | $^{1,3}P$                                                   | $p^3$                | ${}^{4}S, {}^{2}P, {}^{2}D$                       |  |
| $s^1d^1$                 | $^{1,3}D$                                                   | $d^2$                | ${}^{1}S, {}^{3}P, {}^{1}D, {}^{3}F, {}^{1}G$     |  |
| $s^{1}f^{1}$             | $^{1,3}F$                                                   | $d^3$                | $^{2}P,^{4}P,^{2}D(2),^{2}F,$                     |  |
| $p^1p^1$                 | $^{1,3}S$ , $^{1,3}P$ , $^{1,3}D$                           |                      | ${}^{4}F, {}^{2}G, {}^{2}H$                       |  |
| $p^1d^1$                 | $^{1,3}P$ , $^{1,3}D$ , $^{1,3}F$                           | $d^4$                | $^{1}S(2), ^{3}P(2), ^{1}D(2),$                   |  |
| $p^1f^1$                 | $^{1,3}D,^{1,3}F,^{1,3}G$                                   |                      | $^{3}D, ^{5}D, ^{1}F, ^{3}F(2),$                  |  |
| $d^1d^1$                 | $^{1,3}S$ , $^{1,3}P$ , $^{1,3}D$ , $^{1,3}F$ , $^{1,3}G$   |                      | $^{1}G(2), ^{3}G, ^{3}H, ^{1}I$                   |  |
| $d^1f^1$                 | $^{1,3}P$ , $^{1,3}D$ , $^{1,3}F$ , $^{1,3}G$ , $^{1,3}H$   | $d^5$                | ${}^{2}S, {}^{6}S, {}^{2}P, {}^{4}P, {}^{2}D(3),$ |  |
| $f^1f^1$                 | $^{1,3}S$ , $^{1,3}P$ , $^{1,3}D$ , $^{1,3}F$ , $^{1,3}G$ , |                      | $^{4}D,^{2}F(2),^{4}F,^{2}G(2)$                   |  |
|                          | $^{1,3}H,^{1,3}I$                                           |                      | ${}^{4}G, {}^{2}H, {}^{2}I$                       |  |

<sup>&</sup>lt;sup>a</sup> The numbers in brackets indicate that a particular term occurs more than once.

from Modern Spectroscopy by Hollas

### Energy Levels Terms



"Hund's Rules"

- Terms w/larger spin generally have lower energy.
- For terms with given configuration and spin, larger L has lower energy.
- 3) Higher J = higher energy if shell is less than half full (opposite otherwise).

# Energy Levels Terms

$$2S+1$$
  $\int_{J}^{p}$ 



#### Other examples of np<sup>2</sup> ground state configurations



### Selection Rules for Transitions

We can now figure out the energy levels, what about the transitions between them?

- 1) Parity must change
- 2)  $\Delta J = 0$ ,  $\pm 1$ , but  $J=0 \rightarrow 0$  is forbidden
- 3)  $\Delta S = 0$
- 4)  $\Delta L = 0$ ,  $\pm 1$ , but  $L=0 \rightarrow 0$  is forbidden
- 5) if one e-then  $\Delta l = 0$

All rules satisfied: "allowed" electric dipole transition

### NII 1084.0 Å ${}^{3}P_{0} - {}^{3}D_{1}^{\circ}$



- √1) Parity must change
- $\checkmark$ 2)  $\Delta J = 0$ , ±1, but  $J=0 \rightarrow 0$  is forbidden
- $\sqrt{3}$ )  $\Delta S = 0$
- ✓4)  $\Delta L = 0, \pm 1, \text{ but } L=0\rightarrow 0$  is forbidden
- $\sqrt{5}$ ) if one e-then  $\Delta l = 0$

$$A_{ul} = 2.18 \times 10^8 \text{ s}^{-1}$$

$$1/A_{ul} = 4.6 \text{ ns}$$

### Selection Rules for Transitions

We can now figure out the energy levels, what about the transitions between them?

- 1) Parity must change
- 2)  $\Delta J = 0$ ,  $\pm 1$ , but  $J=0 \rightarrow 0$  is forbidden
- 3)  $\Delta S = 0$
- 4)  $\Delta L = 0$ ,  $\pm 1$ , but  $L=0 \rightarrow 0$  is forbidden
- 5) if one e-then  $\Delta l = 0$

All rules except  $\Delta S = 0$ : "semi-forbidden" or "intercombination" or "intersystem" electric dipole transition

### N II] 2143.4 Å ${}^{5}S_{2}^{\circ} - {}^{3}P_{2}$



– single bracket for "semi-forbidden"

- √1) Parity must change
- $\sqrt{2}$ )  $\Delta J = 0$ , ±1, but  $J=0 \rightarrow 0$  is forbidden
- $\times$ 3)  $\Delta$ S = 0
  - $\checkmark$ 4)  $\Delta$ L = 0, ±1, but L=0→0 is forbidden
  - $\sqrt{5}$ ) if one e-then  $\Delta l = 0$

$$A_{ul} = 1.27 \times 10^2 \, s^{-1}$$

$$1/A_{ul} = 7.9 \text{ ms}$$

### Selection Rules for Transitions

We can now figure out the energy levels, what about the transitions between them?

- 1) Parity must change
- 2)  $\Delta J = 0$ ,  $\pm 1$ , but  $J=0 \rightarrow 0$  is forbidden
- 3)  $\Delta S = 0$
- 4)  $\Delta L = 0$ ,  $\pm 1$ , but  $L=0 \rightarrow 0$  is forbidden
- 5) if one e- then  $\Delta l = 0$

More rules broken: "forbidden" transition, either magnetic dipole or electric quadrupole usually

### [N II] $6549.9 \text{ Å}^{1}D_{2} - {}^{3}P_{1}$



double bracket for "forbidden"

- ★1) Parity must change
- $\checkmark$ 2)  $\Delta J = 0$ , ±1, but  $J=0 \rightarrow 0$  is forbidden
- $\times$ 3)  $\Delta$ S = 0
  - $\checkmark$ 4)  $\Delta$ L = 0, ±1, but L=0→0 is forbidden
  - $\times$ 5) if one e-then  $\Delta l = 0$

$$A_{ul} = 9.2 \times 10^{-4} \text{ s}^{-1}$$

 $1/A_{ul} \sim 20 \text{ min}$ 

#### Forbidden transitions are very important in astronomy!

Collisions populate the levels of the ground state

There is a low probability for transitions so the line is generally optically thin

When there is a radiative transition, that energy escapes! Very important for cooling!