PPG-DaLiA Data Set

MERCADAL François

Plan du rapport

- Présentation de l'étude
- Présentation des variables
- Data visualisation
- Organisation des données
- Modèles créés
- API créée

Présentation de l'étude

• Contexte de l'étude : donner des estimations du rythme cardiaque des sujets suivants l'activité effectuée.

 Contexte de notre étude : pouvoir donner l'activité effectuée par le sujet à tout moment (activité déterminée par un chiffre compris entre 0 et 8)

Situation : Classification

Présentation de l'étude

- Activités effectuées par les sujets :
 - 0 : transition
 - 1 : lecture assis
 - 2 : monter et descendre des escaliers
 - 3 : babyfoot
 - 4 : pratique du vélo
 - 5 : conduite d'une voiture
 - 6 : pause déjeuner
 - 7 : marche
 - 8 : travail sur un ordinateur

Présentation de l'étude

- Capteurs utilisés dans cette étude :
 - Capteur pectoral RespiBAN :
 - Accéléromètre sur 3 axes (700 Hz)
 - Respiration (700 Hz)
 - Electrocardiogramme (700 Hz)
 - Capteur au poignet Empatica E4 :
 - Accéléromètre sur 3 axes (32 Hz)
 - Photoplethysmographie (4 Hz)
 - Conductance (64 Hz)
 - Température (4Hz)

• Pour ce travail, toutes les variables issues des capteurs ont été ramenées à 4 Hz dans un soucis de calibration des données entre elles et avec la variable Activity qui est la feature à prédire.

- Variables extraites des fichiers .pkl :
 - Données uniques par sujet :
 - Genre
 - Age
 - Taille
 - Masse
 - Type de peau
 - Niveau en sport
 - Données multiples :
 - chest_ACC_X : position du RespiBAN sur l'axe x
 - chest_ACC_Y: position du RespiBAN sur l'axe y
 - chest_ACC_Z : position du RespiBAN sur l'axe z

- Variables extraites des fichiers .pkl (suite):
 - Données multiples (suite):
 - chest_ECG : Donnée issue du RespiBAN
 - chest_resp : Donnée issue du RespiBAN
 - rpeaks : liste des indices des pics R de l'électrocardiogramme captés pendant l'étude du sujet donné (dans un électrocardiogramme, le pic R correspond à la dépolarisation maximale en valeur absolue du ventricule gauche). Donnée issue du RespiBAN.

- Variables extraites des fichiers .pkl (suite):
 - Données multiples (suite):
 - wrist_ACC_X : position du Empatica4 sur l'axe x
 - wrist_ACC_Y: position du Empatica4 sur l'axe y
 - wrist_ACC_Z : position du Empatica4 sur l'axe z
 - wrist_BVP : Photoplethysmographie captée par le Empatica4
 - wrist_EDA : conductance captée par le Empatica4
 - wrist_TEMP : température captée par le Empatica4

- Variables créées à partir des données extraites
 - Pour le RespiBAN :
 - SUM_chest_ACC_X : somme des mouvements du sujet sur l'axe x
 - SUM_chest_ACC_Y : somme des mouvements du sujet sur l'axe y
 - SUM_chest_ACC_Z : somme des mouvements du sujet sur l'axe z
 - rpeaks_per_second_4Hz : nombre de pics R pour chaque seconde de l'expérience
 - rpeaks_4Hz_Weight : poids accordé à chaque valeur de rpeaks_per_second_4Hz
 - Pour le Empatica4 :
 - SUM_wrist_ACC_X : somme des mouvements du sujet sur l'axe x
 - SUM_wrist_ACC_Y: somme des mouvements du sujet sur l'axe y
 - SUM_wrist_ACC_Z : somme des mouvements du sujet sur l'axe z

Data Visualisation

Barplot représentant le nombre total de pics R sur toute l'expérience pour chaque sujet Cette représentation permet de noter la diversité des profils au sein des sujets

Data Visualisation

Ensemble de scatterplots mettant en relation l'âge des sujets à la quantité de mouvement du RespiBAN sur l'axe x.

On remarque que l'âge n'a pas d'influence sur les mouvements des sujets.

Data Visualisation

Matrice de corrélation des variables utilisées dans les modèles

Organisation des données

 Pour créer les modèles, les données ont été rassemblées dans un dataframe

• Les données ont été séparées avec 80% des données pour l'entraînement et 20% des données pour les tests

Split Datas

X_train, X_testing, y_train, y_testing = train_test_split(X, y, test_size=0.20, random_state=42)

- Decision Tree
 - Arbre de décision de classification

Arbre obtenu

- Decision Tree (suite)
 - Précision obtenue

Rappel obtenu

```
Entrée [73]: tree_recall = recall_score(y_testing, tree_prediction, average='macro')
    tree_recall
Out[73]: 0.9939843563473727
```

- Decision Tree
 - Matrice de consfusion

```
Entrée [74]: confusion_matrix(y_testing, tree_prediction)
   Out[74]: array([[27550,
                               28,
                                            35,
                                                   89,
                                                          56,
                                                                 25,
                                                                        18,
                                                                               38],
                            7316,
                                                                                0],
                                                                                0],
                        11,
                                   5226,
                        35,
                                      4, 3555,
                        78,
                                             0, 5542,
                        66,
                                                    0, 11041,
                                                           0, 21659,
                        20,
                                                                        15,
                                                    0,
                                                                 14, 7425,
                        27,
                                                                         1, 13673]],
                   dtype=int64)
```

- Random Forest
 - Création d'un RandomForestClassifier

- Random Forest
 - Précision obtenue

Rappel obtenu

```
Entrée [75]: forest_recall = recall_score(y_testing, prediction, average='macro')
   forest_recall
Out[75]: 0.9991658610056393
```

- Random Forest
 - Matrice de confusion

```
Entrée [28]: confusion_matrix(y_testing, prediction)
   Out[28]: array([[27807,
                                                                                   2],
                                                     11,
                                                                                   0],
                             7328,
                                        0,
                                               0,
                                                                                   0],
                                    5237,
                                            3589,
                                                                                   0],
                                                                                   0],
                                                   5607,
                        14,
                                                                                   0],
                                                      0, 11105,
                                               0,
                                                             0, 21692,
                                                                                   0],
                                                      0,
                                                                       7453,
                                                                                   0],
                                                                           0, 13695]],
                   dtype=int64)
```

- XGBoost
 - Création d'un XGBoost Classifier

- XGBoost
 - Précision obtenue

```
Entrée [81]: accuracy_xgb = accuracy_score(y_testing, prediction_xgb)
accuracy_xgb

Out[81]: 0.9992953123793343
```

Rappel obtenu

```
Entrée [82]: xgb_recall = recall_score(y_testing, prediction_xgb, average='macro') xgb_recall

Out[82]: 0.9992932864082934
```

- XGBoost
 - Matrice de confusion

```
Entrée [83]: confusion_matrix(y_testing, prediction_xgb)
   Out[83]: array([[27805,
                                                                              2],
                                      6,
                                                                11,
                                                   0,
                        2, 7330,
                                                                              0],
                                      0,
                                            0,
                                                                        0,
                               0, 5235,
                                                                              0],
                                                                              0],
0],
                                      0, 3587,
                                                   0,
                                                5618,
                                                                              0],
                                            0,
                                                   0, 11105,
                                                                              0],
                                      0,
                                            0,
                                                          0, 21692,
                                                                        0,
                                                   0,
                                                         0,
                               0,
                                      0,
                                            0,
                                                   0,
                                                                 0, 7453,
                                                                              0],
                                                          0,
                                                                 0,
                                                                        0, 13694]],
                  dtype=int64)
```

• Création d'une API avec Django pour mettre en forme les résultats

- L'API s'organise en 4 interfaces html :
 - Une interface d'accueil
 - Une interface pour la prédiction du Decision Tree
 - Une interface pour la prédiction du Random Forest
 - Une interface pour la prédiction du XGBoost
- Pour lancer l'API, entrer : python manage.py runserver

http://127.0.0.1:8000/accueil

http://127.0.0.1:8000/decision tree

http://127.0.0.1:8000/random forest

http://127.0.0.1:8000/xgboost

