Logistics

- TA Office Hours: Mon & Wed 18:30-19:30pm.
- Same link for office hours and sections.
- All Problem Sets are due before Friday section.
- Please send the Problem Set by email to lc944@cornell.edu

1 Convex sets¹

1.1 Important concepts:

• Separating Hyperplane Theorem: Let C and D be two convex sets in \mathbb{R}^n that do not intersect (i.e., $C \cap D = \emptyset$). Then, there exists $p \in \mathbb{R}^n, p \neq 0$ and $\alpha \in \mathbb{R}$ such that $p^T x \leq \alpha$ for all $x \in C$ and $p^T y \geq \alpha$ for all $y \in D$.

- Farkas' Lemma: one and only one of the following alternatives is true:
 - 1. The system $Ax = b, x \ge 0$ has a solution.
 - 2. The system $y^TA \ge 0, y^Tb < 0$ has a solution.

1.2 Questions

- 1. (From Convex Sets PS, Q5). Use Farkas' Lemma to prove Gordans' Lemma: only one of this alternatives is true
 - (a) Ax = 0, x > 0 has a solution.
 - (b) $y^T A \gg 0$ has a solution.

¹These notes borrow from Jaden Chen's notes from 2020.

2 Linear programming

2.1 Important concepts:

• Canonical and Standard form: a linear program can be written in *canonical* form or in *standard* form.

Canonical Standard
$$v_P(b) = \max c \cdot x$$
 $v_P(b) = \max c \cdot x$ $s.t. Ax \le b$ $s.t. Ax = b$ $x \ge 0$ $x \ge 0$

• Definitions:

- 1. Solution: any $x \in \mathbb{R}^n$ is called a solution.
- 2. Constraint (or Feasible) set:
 - (a) canonical form: $C = \{x \in \mathbb{R}^n : Ax \le b, x \ge 0\}$
 - (b) standard form: $C = [x \in \mathbb{R}^n : Ax = b, x \ge 0]$
- 3. Feasible solution: any $x \in C$, where C is the constraint set, is called a feasible solution.
- 4. Optimal solution: a vector x that solves the linear program is called an optimal solution, i.e., $x \in C$ such that $c \cdot x \geq c \cdot x'$, for all $x' \in C$.
- 5. Vertex: a vector $x \in C$ is a vertex of C if and only if there is no $y \neq 0$ such that x + y and x y are both in C.
- 6. Basic solution: a solution to a linear program in standard form is a basic solution iff column vectors a_j corresponding to $x_j > 0$ are linearly independent.
- **Theorem 1.** A solution x is basic if and only if it is a vertex.
- **Theorem 2.** Vertex Theorem. For a linear program in standard form with feasible solutions:
 - 1. A vertex exists.
 - 2. If $v_P(b) < \infty$ and $x \in C$, then there is a vertex x' such that $c \cdot x' \geq c \cdot x$.

2.2 Questions

1. Consider the following linear program

$$max$$
 $x_1 + x_2$
 $s.t.$ $x_1 + 2x_2 \le 6$
 $x_1 - x_2 \le 3$
 $x_1 \ge 0$
 $x_2 \ge 0$

- (a) Express the linear program in canonical form and draw the constraint set and solve the problem graphically.
- (b) Express the linear program in standard form.
- (c) Use Simplex Algorithm to solve this problem.