Arquitetura de Redes de Computadores

Dr. Edson Moreira Silva Neto

Professor/Redes de Computadores

Camada de Enlace

Agenda

- 1) Introdução
- 2) Quadros
- 3) Enquadramento
- 4) Endereçamento
- 5) Detecção de Erro
- 6) Correção de Erro
- 7) Protocolo ARQ
- 8) Controle de Fluxo

Introdução

Introdução

- ♦ A principal função da Camada de Enlace é:
 - ♦ GARANTIR a comunicação entre dispositivos adjacentes.
- Enquanto a C-1 trabalha com bits, a C-2 trabalha com blocos de bits (quadros/frames).

Introdução

- É função da C-2 (enlace):
 - Criar e interpretar corretamente os quadros;
 - Detectar possíveis erros e, quando necessário, corrigi-los.
 - Deve também controlar o fluxo de quadros que chegam ao destino, de forma a não sobrecarregar com um volume excessivo de dados.

Quadros

Estrutura de um quadro

Quadros

- ♦ O cabeçalho possui informações de controle para que haja a comunicação horizontal entre as camadas de enlace da origem e do destino.
 - ♦ É formado por diversos campos cada um com uma função específica.
- ♦ O campo de dados encapsula a PDU de redes.
- ♦ O **código de detecção de erro** (CDE) tem a função de controlar erros na C-2.

Quadro PPP Point-to-Point Protocol

♦ Consultar RFC-1661 e RFC-1662

Quadros

- ▶ Pode ser formado por uma sequência de caracteres ou uma sequência de bits.
 - Protocolos orientados a caractere
 - **►** Ex: **BSC** (Binary Synchronous Control)
 - Protocolos orientados a bit
 - **▶** Ex: **HDLC** (*High-Level Data Link Protocol*)

Enquadramento

Problema de enquadramento

- O receptor deve ser capaz de identificar o início e o final de cada bloco transmitido.
 - Enquadramento ou *framing*.

Uso de delimitadores

Flag 01111110	Quadro					Flag 01111110	(a)
Flag 01111110	Endereço	Controle	Protocolo	Dados	CDE	Flag 01111110	(b)

Byte stuffing

Quadro original

FI FF ... FI ... FF ... CECE FF

Quadro transmitido

FI CEFF ... CEFF ... CECECECE FF

Bit stuffing

Quadro original

Flag 0111111010110 Flag 01111110

Flag 01111110 0101110 Flag 01111110

Quadro recebido

Quadro transmitido

Flag 0111111010110 Flag 01111110 (b)

Quadro original

Enquadramento

- ► Em protocolos orientados a caractere é possível implementar um esquema alternativo de enquadramento, que leva em consideração o tamanho do quadro.
 - ♦ O Cabeçalho teria um campo que indica o número de bytes que compõe o restante do quadro.
 - ♦ Não há necessidade de delimitador de término, apenas início.
 - Não necessita implementar o STUFFING.
- Outra técnica: usando a sinalização.
 - Ex: Ethernet de 10Mbps. O término do quadro é identificado pela ausência de sinal no meio.

Endereçamento

Endereçamento

- ◆ Está associado à identificação da interface de comunicação, que conecta o dispositivo à rede.
- O formato do endereço é definido pelo protocolo de enlace e deve ser seguido pelos fabricantes de interface de rede.

Quadro Ethernet

♦ Versão simplificada do quadro Ethernet.

6	6	2	0-1500	00 4	
End. destino	End. origem	Tam	Dados	CDE	

Exemplo de endereçamento

Endereçamento

- Existem basicamente 3 formas de endereçamento implementadas por uma rede:
 - Unicast
 - Broadcast (ou difusão)
 - Multicast (multidifusão)

Endereçamentos unicast, multicast e broadcast

Detecção de Erro

Detecção de Erro

- Qualquer transmissão está sujeita a problemas, como ruídos e atenuação, e a camada de enlace tem a função de realizar o tratamento dos possíveis erros.
- ♦ Controle de Erros 2 Etapas distintas:
 - Detecção dos possíveis erros nos dados transmitidos
 - Correção dos erros encontrados

Geração do código de detecção de erro

Verificação do código de detecção de erro

Detecção de Erro

- Duas técnicas amplamente utilizadas:
 - Bit de Paridade
 - Paridade Simples (PAR ou ÍMPAR)
 - Paridade Múltipla
 - Verificação de Redundância Cíclica (VRC)
 - Ou **CRC** (Cyclic Redundancy Check)

Exemplos de bit de paridade

Caractere	Paridade par	Paridade ímpar
1011010	10110100	10110101
0000001	00000011	00000010

Paridade múltipla

Cálculo do CRC

Exemplos de polinômios geradores

Nome	Polinômio
CRC-12	$x^{12}+x^{11}+x^3+x^2+1$
CRC-CCITT	$x^{16}+x^{12}+x^{5}+1$
CRC-16	$x^{16}+x^{15}+x^2+1$
CRC-32	$x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x+1$

Correção de Erro

Correção de Erro

- ♦ Nem sempre a C-2 implementa algum mecanismo de correção de erro
 - Neste caso, ela ignora o erro
 - A correção fica para as camadas superiores
- ▲ A correção de erro na C-2 está muito relacionada ao tipo do meio de transmissão utilizado e à sua taxa de erro
 - FO *versus* Redes Wireless

Reconhecimento positivo

Retransmissão por timeout

Retransmissão por timeout

Implementação do ACK

Quadro chega ao destino com erro

- ♦ 2 estratégias:
 - Descartar o quadro e aguardar que ocorra um *timeout* no transmissor e ele reenvie o quadro
 - Uma variante seria enviar um NAK (reconhecimento negativo com retransmissão)
 - Se o temporizador expirar antes do recebimento do NAK, esta técnica é inócua
 - ▶ FEC (*Forwarding Error Correction*)
 - Os bits do quadro são corrigidos no próprio destino

Protocolos ARQ

Protocolos ARQ

- Os mecanismos que utilizam o reconhecimento e a retransmissão de quadros como mecanismos para a correção de erro são chamados genericamente de Protocolos ARQ (Automatic Repeat Request).
- ♦ 3 Implementações:
 - Bit alternado
 - Retransmissão Integral
 - Retransmissão Seletiva

Bit Alternado

- ◆ Para cada quadro enviado o transmissor deve aguardar o seu reconhecimento antes de enviar o próximo quadro.
- Um protocolo simples
- ♦ 2 problemas:
 - Um relacionado à duplicação de quadros de dados
 - Outro relacionado à subutilização do canal de comunicação

Problema com a duplicação de quadros

Numeração dos quadros

Problema com ACK duplicado

Protocolo de bit alternado

Protocolo Bit Alternado

Apesar da simplicidade, é bastante ineficiente. Dependendo da distância entre os dispositivos, da taxa de transmissão e do tamanho do quadro, a transmissão de um único frame por vez pode gerar uma enorme subutilização do canal de comunicação.

Transmissão de um quadro via satélite

Retransmissão Integral

- ▶ Para melhorar a utilização do canal de comunicação, vários quadros podem ser transmitidos sem a necessidade de aguardar o reconhecimento de cada frame individualmente.
- No exemplo da transmissão via satélite poderíamos transmitir até 125 quadros em sequência até a chegada do primeiro ACK.

Transmissão de uma sequência de quadros

Janela Deslizante

Ou sliding window

- Pemite que as camadas de enlace da origem e destino tenham mais flexibilidade para enviar e receber quadros.
- Na origem é utilizada uma JANELA DE TRANSMISSÃO que permite controlar os quadros que podem ser transmitidos de forma a maximizar o uso do canal de comunicação.
- ♦ O tamanho da janela é uma potência de 2 e os quadros são numerados de **zero** a **2**ⁿ-1; n = tamanho máximo da janela.

Janela de transmissão

OBSERVAÇÕES:

- JT = 4
- Quadros numerados de 0 a 3
- QNT Quadros Não Transmitidos
- QTNR
- Q. Transmitidos e Não Reconhecidos
- QTR
- Q. Transmitidos e Reconhecidos

Retransmissão integral

Retransmissão Seletiva

- Neste caso, um problema em um quadro não implica a retransmissão integral dos frames já transmitidos e não reconhecidos, como no protocolo anterior.
- ♦ A retransmissão seletiva implementa uma JANELA DE RECEPÇÃO que permite controlar os quadros que ainda podem ser recebidos
 - A janela define a capacidade máxima de quadros que a camada de enlace do destino pode gerenciar.
- O tamanho da janela é uma potência de 2 e os quadros são numerados de zero a 2ⁿ-1; n = tamanho máximo da janela.

Janela de recepção

Janela de recepção

- ♦ Uma técnica usada para melhorar o funcionamento do protocolo de retransmissão seletiva é conhecida como reconhecimento cumulativo.
 - Neste caso, é enviado o reconhecimento do último quadro recebido corretamente. Ficando implícito o reconhecimento dos quadros anteriores.

Retransmissão seletiva

Problema de sobreposição na janela de recepção

Controle de Fluxo

- ♦ O **CONTROLE DE FLUXO** permite que o dispositivo transmissor regule o volume de dados enviados de forma a não gerar um *overflow* (transbordamento) no receptor.
- ◆ Caso contrário, o destino terá que descartar os dados transmitidos, obrigado à sua retransmissão.

- ♦ A forma mais simples de controle de fluxo é chamada de *stop-and-wait* (pare e espere).
- O transmissor, após enviar um quadro, aguarda pela confirmação do recebimento para poder enviar o próximo.
 - O problema do *overflow* fica eliminado.
 - Apresenta o mesmo problema de subtulização do canal apresentado pelo bit alternado.

Uma outra técnica bastante utilizada pelos protocolos da camada de enlace é fazer com que o receptor envie mensagens para o transmissor informando se está apto ou não a receber novos quadros.

Controle de fluxo

Controle de fluxo

- ♦ O controle de fluxo é geralmente resolvido com o receptor informando ao transmissor sua capacidade de recepção de dados (tamanho do buffer de recepção).
 - Os protocolos que utilizam a técnica de janela deslizante podem facilmente implementar a função de controle de fluxo apenas ajustando o tamanho da janela de transmissão.

Controle de fluxo

Outra forma:

- O receptor informa o tamanho de sua janela de recepção a cada reconhecimento.
- Se a janela de recepção ficar vazia (i.e, sem espaço para novos quadros), o receptor informa ao transmissor uma janela de recepção de tamanho zero. O transmissor para de enviar quadros.
- E, voltará a transmitir apenas quando receber uma janela maior que zero.