Homework 6, due 15:45 Monday 30 April 2018, to Dr. Pang's mailbox on 12F FSC

You must justify your answers to receive full credit. $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ are eigenvectors of a symmetric matrix. Explain why these two eigenvectors correspond to the same eigenvalue.

2. Let

$$\mathbf{y} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ -5 \end{bmatrix}, \quad \mathbf{x}_1 = \begin{bmatrix} 3 \\ 1 \\ -1 \\ 3 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} -5 \\ 1 \\ 5 \\ -7 \end{bmatrix}, \quad \mathbf{x}_3 = \begin{bmatrix} 1 \\ 1 \\ -2 \\ 8 \end{bmatrix},$$

and let $W = \operatorname{Span} \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}.$

- a) Use the Gram-Schmidt process to find an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ for W.
- b) Write \mathbf{y} as a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ from part a).
- c) Let $\operatorname{proj}_W : \mathbb{R}^4 \to \mathbb{R}^4$ be the orthogonal projection onto W. Find the standard matrix of proj_W .
- d) Let \mathbf{x}_4 be a nonzero vector in W^{\perp} , and let $\mathcal{B} = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$. Find, with justification, the matrix of proj_W relative to \mathcal{B} . (Hint: you do not need to do any calculation.)
- 3. Let

$$\mathbf{v}_{1} = \begin{bmatrix} 0 \\ 1 \\ -4 \\ -1 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} 3 \\ 5 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -4 \end{bmatrix}, \quad \mathbf{v}_{4} = \begin{bmatrix} 5 \\ -3 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 10 \\ -8 \\ 2 \\ 0 \end{bmatrix}.$$

 $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is an orthogonal basis for \mathbb{R}^4 . Let W be the line Span $\{\mathbf{v}_4\}$.

- a) Find the orthogonal projection of y to W.
- b) Using your answer to a) and the Orthogonal Decomposition Theorem, and without calculating any more dot products, write \mathbf{y} as the sum of two vectors $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$, such that $\hat{\mathbf{y}}$ is in Span $\{\mathbf{v}_4\}$ and \mathbf{z} is in Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. (You do **not** have to express \mathbf{z} as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$).
- c) Using your answer to b), and without calculating any more dot products, find the orthogonal projection of \mathbf{y} to Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
- 4. Suppose radioactive substances A and B have decay constants of 0.02 and 0.07, respectively. If a mixture of these two substances at time t = 0 contains M_A grams of A and M_B grams of B, then a model for the total mass in grams y of the mixture at time t is

$$y = M_A e^{-0.02t} + M_B e^{-0.07t}.$$

Suppose the initial amounts M_A and M_B are unknown, but a scientist is able to measure the total mass at several times t_i to obtain the following data points:

t_i	10	11	12	14	15
y_i	21.34	20.68	20.05	18.87	18.30

Homework 6, due 15:45 Monday 30 April 2018, to Dr. Pang's mailbox on 12F FSC

Write down the observation vector, the design matrix and the parameter vector. (Do **not** evaluate the exponentials, just write $e^{-0.2}$ etc.) You do **not** need to solve for M_A and M_B .

5. Remember from class that the least-squares line through the data points $(x_1, y_1), \ldots, (x_n, y_n)$ is given by $y = \hat{\beta_0} + \hat{\beta_1}x$, where $(\hat{\beta_0}, \hat{\beta_1})$ is the least-squares solution to

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}.$$

The goal of this problem is to prove, from this linear algebra perspective, the formulas for the regression coefficients $\hat{\beta}_0$ and $\hat{\beta}_1$ from Probability and Statistics class:

$$\hat{\beta}_1 = \frac{SS_{xy}}{SS_{xx}}, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \tag{*}$$

where

$$SS_{xy} = \Sigma xy - \frac{(\Sigma x)(\Sigma y)}{n}, \quad SS_{xx} = \Sigma xx - \frac{(\Sigma x)^2}{n}, \quad \bar{y} = \frac{(\Sigma y)}{n}, \quad \bar{x} = \frac{(\Sigma x)}{n}.$$

- a) By considering the normal equations, find a matrix M such that $M\begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix} = \begin{bmatrix} \Sigma y \\ \Sigma xy \end{bmatrix}$. (The entries of M will be in terms of n, x and y.)
- b) Assume that x_1, \ldots, x_n are not all the same. Using a theorem from class, explain why this means $\hat{\beta}_0$ and $\hat{\beta}_1$ are unique.
- c) Explain why the uniqueness of $\hat{\beta}_0$ and $\hat{\beta}_1$ implies that the matrix M is invertible, and that SS_{xx} is nonzero.
- d) Use row reduction to solve for $\hat{\beta}_1$ and $\hat{\beta}_0$ (be careful not to divide by zero!), and show they have the formula given in (*).
- 6. State whether each of the following statements is (always) true or (sometimes) false. If it is true, give a brief justification; if it is false, give a counterexample with an explanation.
 - a) If a square matrix A is diagonalisable, then it is invertible.
 - b) If a square matrix A is invertible, then it is diagonalisable.
 - c) Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ be vectors in \mathbb{R}^n . Then $(\mathbf{a} \cdot \mathbf{b})\mathbf{c} = \mathbf{a}(\mathbf{b} \cdot \mathbf{c})$.
 - d) Let W be a subspace of \mathbb{R}^n . If $\{\mathbf{w}_1, \dots \mathbf{w}_p\}$ is an orthogonal set in W and $\{\mathbf{u}_1, \dots \mathbf{u}_q\}$ is an orthogonal set in W^{\perp} , then their union $\{\mathbf{w}_1, \dots \mathbf{w}_p, \mathbf{u}_1, \dots \mathbf{u}_q\}$ is an orthogonal set.
 - e) If U is an orthogonal matrix, then $\det U$ is 1 or -1.
 - f) If U is a square matrix with orthonormal columns, then the rows of U are also orthonormal.