Lecture 16 $\|\chi\|_{\infty} = \lim_{q \to \infty} \|\chi\|_{g} = \max_{i} |\chi_{i}|$ $||\chi|| = ||\chi||_{q} = \# \{\chi_i \neq 0\}$ Then many non-zeroelement of χ ASSO: Least-Absolute Shrinkage and Selection Operator Variable selection is like forcing some of my Bs to zero. $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots$ force B1=0 then I effectively
select out X1 Consider the constrained option problem B = argunin L(B) S.t. 1Bllo = t

	Problem: generally optimizing using a lillo
	Problem: generally optimizing using a llillo Constraint is difficult /intractible
	not convex
So	instead, we can work w/ the convex-
	relaxation of 11-110 1.e. 11.111 11x112=c
	11×11=C
	uher get
\ \bar{\bar{\bar{\bar{\bar{\bar{\bar{\bar	When 921
	(LASSO) 3 = argmin L(B) S.t. B _1 \le t
2	$\frac{\partial (LASSO)}{\partial B} = \frac{\partial L(B)}{\partial B} + \frac{\partial L(B)}{\partial B}$
rid	but not differentiable
\	
	1 not diffash at zero

ble 11/311, isn't diffable there is no closed-ferm soln for So need to use some numerical method hy do we want to vse IBIII? /L(B) Kidge L/1850 LASSO tends to force Constr. optime at points of Constraint 1.e. zero out elements of B

Assume that X is orthogonal. Companison (1) Variable Selection (Hard-thresholding)

(HS) (Bi = 1 | Bi = t

(C) else 2) Ridge:

Aors proportional

Bridge:

Bridge:

Chrinkase Elastic Net: L1+L2 $\beta = \frac{2}{\beta} \left[\frac{2}{(1-2)} \|\beta\|_2 + \alpha \|\beta\|_2 \right]$ $\Delta = 0 \Rightarrow \text{rid}_{\alpha}$ $\Delta = 0 \Rightarrow \text{LASSO}$ $\Delta = 1 \Rightarrow \text{LASSO}$ $\Delta = 1 \Rightarrow \text{LASSO}$ X= (=> LAGGO

Can do this w/ all sorts of other Ex. Losistic Regression $y_n | \underline{\chi}_n = \underline{\chi}_n \sim \text{Bern}(p(\chi_n))$ p(h) = logistic(XB) (nes.) (p) = (os. like. fn $\beta = \operatorname{argmin} l(\beta) + \lambda \|\beta\|^2$ More generally, f = argmin L(f) a penalized version Consider f = arginin (f) +) J