

loT·인공지능·빅데이터 개론 및 실습

Neural Networks

서울대학교 전기·정보공학부 윤성로

Contents

- 1. Model Representation
 - 1 Artificial Neural Networks
 - Elements of a Neural Network
 - 3 Network Architecture
- 2. Training Neural Networks
 - 1 Core Concepts
 - 2 Backpropagation

Contents

- 1. Model Representation
 - 1 Artificial Neural Networks
 - Elements of a Neural Network
 - 3 Network Architecture
- 2. Training Neural Networks
 - Core Concepts
 - 2 Backpropagation

(1) Neuron

- ▶ 신경세포
 - electrically excitable cell that processes and transmits information through electrical and chemical signals

[출처] Wikipedia

(2) Artificial neural networks (ANN)

- ► Computational models inspired by brain
 - capable of machine learning and pattern recognition
 - popular until early 90's; popularity then diminished
 - renaissance: deep learning, AlphaGo, ...
- ► Traditionally most studied: feedforward neural net
 - comprises multiple layers of logistic regression models
 - also known as multilayer perceptron (MLP)

(3) Recall

► "signal"

$$s = \sum_{i=0}^{d} w_i x_i$$

- ► "activation"
 - different

(4) Multilayer perceptron

► Misnomer

- network of multiple logistic models (continuous nonlinearity)
- rather than multiple *perceptrons* (discontinuous nonlinearity)

► Central idea

- extract linear combinations of inputs as derived features
- model the target as nonlinear function of these features

Contents

- 1. Model Representation
 - 1 Artificial Neural Networks
 - 2 Elements of a Neural Network
 - 3 Network Architecture
- 2. Training Neural Networks
 - 1 Core Concepts
 - 2 Backpropagation

(1) Models of a neuron

- **▶** Three basic elements
 - 1. synapses (with weights)
 - 2. adder (input vector \rightarrow scalar)
 - 3. activation function (possibly nonlinear)

(1) Models of a neuron

▶ Representation

(1) Models of a neuron

▶ Alternative representation $(w_0 \text{ for bias } b)$

(1) Models of a neuron

► Human neuron vs ANN neuron

(2) Activation function σ

lacktriangle Defines output of neuron in terms of signal s

(2) Activation function σ

- ightharpoonup Simplifying assumption: all neurons use identical σ
 - e.g. logistic sigmoid

$$\sigma(s) = \frac{1}{1 + e^{-s}}$$

(2) Activation function σ

- ► ReLU (rectifier linear unit)
 - very popular in deep neural nets

$$\sigma(s) = \max(0, s)$$

Contents

- 1. Model Representation
 - 1 Artificial Neural Networks
 - Elements of a Neural Network
 - 3 Network Architecture
- 2. Training Neural Networks
 - 1 Core Concepts
 - 2 Backpropagation

(1) Single-layer feedforward network

► Layered, feedforward

[출처] Haykin

- (2) Multi-layer feedforward network
 - ► One or more hidden layers of neurons

[출처] Haykin

(3) Softmax function

- ► Generalization of the logistic function
 - final layer of a network for multi-class classification
- ▶ Given a K-dimensional vector $\mathbf{h} = (h_1, h_2, \dots, h_K)$
 - softmax function $\sigma : \mathbb{R}^K \mapsto \mathbb{R}^K$ s.t.

$$\sigma(\mathbf{h})_j = \frac{e^{h_j}}{\sum_{k=1}^K e^{h_k}} \qquad \text{for } j = 1, ..., K$$

- ▶ Components of vector $\sigma(\mathbf{h})$
 - sum to one and are all strictly between zero and one
 - ⇒ represent a categorical probability distribution

(4) Role of hidden neurons

- ► Play critical role in operation of MLP
 - each layer corresponds to "distributed representation"
- ► Hidden neurons act as feature detectors
 - as learning goes on, they gradually "discover" salient features characterizing training data
 - they do so by performing nonlinear transformation on input data into new space called *feature space*
- ► Increasing the number of hidden layers
 - results in a more power model
 - but makes training more difficult

(4) Role of hidden neurons

Example

(b) learned input-to-hidden weights

(5) Deep learning

- ► Based on deep neural nets
 - a neural network with many hidden layers
 - conventionally considered very difficult to train (major reason: vanishing/exploding gradient problem)
 - recent success: effective training of deep neural nets

Popular deep neural nets

- convolutional neural net (CNN)
- recurrent neural net (RNN)
- autoencoder (AE)
- generative adversarial net (GAN)

Contents

- 1. Model Representation
 - 1 Artificial Neural Networks
 - Elements of a Neural Network
 - 3 Network Architecture
- 2. Training Neural Networks
 - 1 Core Concepts
 - 2 Backpropagation

1 Core Concepts

(1) Types of signals in neural nets

- ► Function signals: forward propagation
 - input signal comes in at input
 - propagates forward through network, and
 - emerges at output
- ► Error signals: back(ward) propagation
 - · originates at an output neuron, and
 - propagates backward

1 Core Concepts

(2) Computations at hidden/output layer

- **Each** neuron performs two types of computations:
 - 1. function signal appearing at neuron output
 - continuous nonlinear function of input and synaptic weights
 - 2. estimate of gradient vector needed for back pass
 - gradients of error surface with respect to weights: $\nabla \mathcal{E}(\mathbf{w})$

Contents

- 1. Model Representation
 - 1 Artificial Neural Networks
 - Elements of a Neural Network
 - 3 Network Architecture
- 2. Training Neural Networks
 - 1 Core Concepts
 - 2 Backpropagation

2 Backpropagation

(2) Example: training by forward/backward prop

2 Backpropagation

(3) Credit assignment problem

- ► For output layer
 - ullet explicit 'teacher' (correct output y) exists for h
 - ullet error signal can be evaluated directly: e=h-y
 - it is straightforward to find how output (thus error) depends on hidden-to-output weights
 - \Rightarrow hidden-to-output 'sensitivity' $\frac{\partial \mathcal{E}}{\partial w}$: easy to evaluate

2 Backpropagation

(3) Credit assignment problem

- ► For hidden layer
 - no teacher to tell what hidden unit's output should be
 - this is called *credit assignment* problem
 - \Rightarrow input-to-hidden sensitivity $\frac{\partial \mathcal{E}}{\partial w}$: difficult to evaluate
- Power of back-propagation
 - it allows us to calculate error for each hidden unit
 - we can derive learning rule for input-to-hidden weights

(4) More details of backprop

▶ 실습을 통해 학습

Summary

- ► Neural network: universal function approximator
 - neuron: synapse (weights), adder, activation functions
 - conventional: feed-forward multilayer perceptrons
 - recent: deep neural networks ("deep learning")
- ► Hidden layers act as feature detectors
 - # hidden layers ↑ ⇒ intelligence ↑
 but training difficulty ↑
 - practical solutions exist for deep neural nets
- ► Two types of signals for training MLP
 - 1. function signals: forward propagation
 - 2. error signals: backward propagation
- Backpropagation algorithm
 - Popular method for training neural networks