ltaú BBA

Ativos: N

pesos: Wi

preços: Poi (t=0) Pt

Valor da carteira em t=0: Po= = Po?

retornos Ri = Pi - 1

 $P_{1} = \sum_{i=1}^{N} P_{i}^{i} = \sum_{i=1}^{N} P_{o}^{i} (1 + R_{2}^{i})$

 $= \frac{P_1}{P_0} = \frac{P_0'(1+R_1')}{P_0'(1+R_2')} = \frac{N}{\tilde{\tau}_{=0}} W^i(1+R_2')$

 $= \sum_{j=1}^{N} W^{j} + \sum_{j=1}^{N} W_{j} R^{j} = 1 + \sum_{j=1}^{N} W_{j} R^{j}$

 $\therefore R_1 = \frac{P_1}{P_0} - 1 = \frac{N}{2} W_i R_1^{i}$

 $G_1 = ln(1+R_1) = ln\left(\frac{N}{1+\sum_{i=1}^{N}W_iR_i}\right) \approx \sum_{i=1}^{N}W_iR_1$

· agregaços transversal de reformos é mais simples

· agregações temporal é mais facet el los retornos.

Assimetria e	Curto	sse	
Suposical con	num:	۲	

Supericon comum:
$$\Gamma_{t}$$
 i.i.d. e gaussianos $\Gamma_{t} \sim N(\mu, \sigma^{2}) \implies 1 + R_{t} \sim \log - normal$

$$Var(R_{t}) = e^{2\mu + \sigma^{2}} \left(e^{\sigma^{2}}\right)$$

Distribuiço amostral i aproximadomente simétrica mas apresenta excesso de curtose.

Définicées: X é una v.a. qualquer d'média pe

assimelia:

$$A(X) = E \left(\frac{X - \mu}{53} \right)$$

curtose: $K(X) = \overline{E} \left(\frac{(X-\mu)^4}{54} \right)$

pluma distribuiços normal: A(X)=0, K(X)=3

e(X) = K(X) - 3 excesse de curtose

caudas peradas K>3 (pode até mesmo ser infinita)

Lon	uma	amosta	Χ	, X _T	de	Χ	considere	mos
		manient						

$$m_r = \frac{1}{T} \sum_{t=1}^{T} (X_t - \overline{X})^r$$
 orde $\hat{\mu} = \overline{X}$

Substituincle es momentos vadadenos de X pelos respectivos vionentos amostrais, obtemos os estimadores

$$\frac{\widehat{A}(X) = M_3}{m_2^{3/2}} = \frac{1}{T} = \frac{X_{t} - \overline{X}}{\widehat{G}}$$

$$\frac{\widehat{X}_{t} - \overline{X}}{\widehat{G}}$$

$$\frac{\chi(\chi) = m_{4} = 1}{m_{2}^{2}} = \frac{1}{T} = \frac{\chi_{t} - \chi}{\hat{\sigma}}$$

$$\Rightarrow \hat{e}(X) = \hat{K}(X) - 3$$

Se fivernos una amosta de déstribuição nomal e T for grande, entad

$$\hat{A} \sim N(0,6/T)$$
 $\hat{k} \sim N(3,24/T)$

(momentos amostais sai estinadores viesados!)

Combinando as duas coisas:
statistica $5 = \left(\frac{T}{6}\right)\hat{A}^2 + \left(\frac{T}{24}\right)\hat{k} - 3$ [Jarque & Be
b: siril é normal SN $\chi^2_{(2)}$
Falos Estilizados sobre Relomos
Acesin como muitas outras séries tem porais as céries
Assin como muitas outras séries temporais as séries ferranceiras apresentam aractenticas como:
· tendências
sazonalidade
indiation alimina
heberocedasticidade condicional nos linearidade - mais complicada de se definir
now linearidade - mais complicada de se definir
resporta déferente a grander ou reçueures
chaques ou chaques positions ou regativos.
Caracheus ficas peculiares:
reformos raramente apresentam tendências ou sazonalit
(intradiários talvez)
câmbio e juros: tendências que variam do tempo.

Itaú BBA

Principais fator estilizados de séries financeiras:
retornos sas, em geral, autocorrelacionados
os quadrados dos retornos sas autocorrelacionadi
séries de retornos apresentans agrepass de volbbil!
distrib. (incondicional) dos rebornos apresenta caudas mais pesadas do que a distrib. normal; alem disso é ligeiramente " leptoaistica
· algumer siries de retorner çai na linearer.

Propriedades das Distribuições de Retornos
· primeiro passo no estudo de retorgos de ativos · objetivo: entender o comportamento dos retornos através do tempo
Consideremos um conjunto de <u>Nativos</u> aija posse é mantida por <u>Tperiodos</u> , t = 1,, T
Para cada afivo i, seja lit seu log-retorno no perío- do t.
{ Pit; i=1,,N; t=1,,T}
Allemativas: {Rit; } (retornos simples) {Zit; } (log-retornos excessivos,
$Z_{t} = R_{t} - R_{ot} \qquad Z_{t} = \Gamma_{t} - \mathcal{D} \underbrace{\Gamma_{ot}}$
Lo alivo de referência (em gral "livre de risco")
Distribuições estatisticas e seus momentos
Seja \mathbb{R}^{K} (euclideano) $x \in \mathbb{R}^{K}$
$X = (X_1,, X_{\succeq})'$ vetores aleatónicos $Y = (Y_1,, Y_q)'$
P[XEA, VEB]: prob. de que XEACR* e YEBCR7.
(vamos em geral assumir que A X e Y são combinuos)

Distribuição Conjunta
A funcque $F_{X,Y}(n,y;\theta) = \mathbb{P}[X \leq n, Y \leq y; \theta]$
x ERP, y ER9 (< é definida componente a componente
é a chamada funca) de distribuição conjunta de X e //
O comportamento de X e Y é caracterizado por esta fund
Se a funcos densidade de probabilidade conjunta existe ela é denotado por
$f_{x,y}(x,y;\theta)$
$F_{X,Y}(x,y;\theta) = \int_{-\infty}^{\pi} \int_{-\infty}^{q} f_{x,y}(w,z,\theta) dwdz$
(nuste casso X e y sai continuos)
Distribuição Marginal
A distribuiced marginal de X é dada por
$F_{X}(x;\theta) = F_{X,Y}(x,(\infty,,\infty);\theta)$ (integra \forall)
e, similarmente
$F_{V}(y:\theta) = F_{VV}((0,,\infty), y:\theta)$ (inleana X)

(1)

Se K=1, X é uma v.a. escalar e a funca distrib.
toma. le $F_{X}(x) = P[X \leq x; \theta]$
funço distribuição acumulada (CDF)
não de - crescente: $F_X(x_2) \leq F_X(x_2)$ se $x_1 \leq x_2$
$\frac{e^{2}}{e^{2}} F_{x}(-\infty) = 0$ $F_{x}(\infty) = 1$
· para uma dada probabilidade p, o menor número real xp tal que p ≤ F _x (x _p) é chamado percentil (100p)% da variável aleatória X
$n_{p} = \inf_{n} \{n \mid p \leq F_{x}(n)\}$
Distribuicas condicional
$F_{X Y \leqslant y}(n;\Theta) = \frac{P[X \leqslant n, Y \leqslant y;\Theta]}{P[Y \leqslant y;\Theta]} \text{dishib. cond. de} $ $X \text{ dado } Y \leqslant y$
Se as p.d.f.se envolvidas existem
$f_{x y}(x_{x}, \theta) = \frac{f_{x,y}(x_{x}, y_{i}, \theta)}{f_{y}(y_{i}, \theta)}$ densil condicional $f_{y}(y_{i}, \theta)$ de X dado $Y = y$
na qual a densidade marginal é obtida de
$f_{y}(y;\Theta) = f_{x,y}(x,y;\Theta) dx$

Da B consi	MAR equação (1) temos a relação entre as distribuições unha, marginal e condicional:
· A	$f_{x,y}(x,y;\theta) = f_{x,y}(x;\theta) \times f_{y}(x,\theta)$
Por	ultimo, $x : x : y : x : x : x : x : x : x : x : $
	consequentement, $f_{x,y}(n,y;\theta) = f_{x}(x;\theta) \times f_{y}(y;\theta)$
Mon O K eom	vertor de uma variavel aleaforia -ésimo momento de nma v.a. contínua é definido o: $m_{k}' = E[X^{k}] = \begin{cases} x & x^{k} f(x) dx \end{cases}$
	neiro momento: média ou valor esperado de X mude a localizaços central da distrib. $xcogo: E[X] = \mu_n$
fá o	K-ésimo momento central de uma v.a. continua é definido como:

Itaú BBA	8		l ————————————————————————————————————
$m_{\kappa} = E[(X-\mu n)']$	$[] = (x - \mu x)$	$\int_{0}^{\kappa} f(x) dx$	
	J_00 (de	esde que a	integral exista)
segundo momento a	enhal varia	ineia de	X, mede a variable
Notacqu: E[(X	$-\mu_n)^2 = \sigma_n^2$		
desvio padrai:	Tx		
Os dois primero mormal debern	es momentes o vinoun univoc	de uma i	raciavel allatoria saca distribuição
Para ocehar destr momentos de o	ibuições são ndem supeu	importa or.	ules fambein os
Terceiro momente respeito à sua	o cenhal: M média	nede a se	metria de X con
dearbo momentes de X	entral: me	ecle o com	portamento de car
As medidas utiliz melia e o "pe	adas pono sun so das caudas	min a q	manfidade de asu a distribuição sa ceiro e quarto
M. Dersols punte	normalizada	1 dos ter	ceiro e quarto
animenia: S(()		
curbose: Kl	$(x) = E \int \frac{(x - \mu x)}{\sigma_x^4}$	2)4	K(n)-3: excerso de cust

Uma distribuição com excesso de curtose positiva é diba possein caudas pesadas. Da prática tal distribuição tende a comber mais valous extremas.
tende a comber mais valous extremes.
K(x) > 0 : distribuird leptocúrtica K(x) < 0 : " platicúrtica.
Estimadores amostrais:
Dada uma amostra aleatoria da v.a. X {zi,, x7
média amostal: $\hat{\mu}_{x} = \frac{1}{T} \sum_{t=1}^{\infty} n_{t}$
vauiancia amorbal: $\hat{\sigma}_{n}^{2} = \frac{1}{1 - 1} \sum_{t=1}^{T} (n_{t} - \mu_{n})^{2}$
assimplie amostal: $\hat{S}(x) = \frac{1}{(T-1)\hat{\sigma}_n^3} \frac{T}{t=1} (x_t - \hat{\mu}_n)^3$
curbose amostral: $\hat{K}(x) = \frac{1}{(T-1)\hat{\sigma}_{x}^{4}} = \frac{1}{(x_{t}-\hat{\mu}_{x})^{4}}$
Se assumismos normalidade: $\hat{S}(\pi) \sim N(0,6/T)$ lemos, assistobicamente: $\hat{K}(\pi)-3 \sim N(0,24/T)$
Estas propriedades assintóticas podem ser usadas para se testar a normalidade dos retornos de ativos