

目 录

1	绪论			
	1.1	研究背景与意义		
	1.2	AGV 研究现状	3	
	1.3	AGV 应用现状		
	1.4	设计目标与意义		
	1.5	本报告章节安排		
2	机械结构设计			
	2.1			
	2.2	细节模块设计		
	2.3	研究背景与意义		
	2.4	机器人三维模型		
3	电气总线设计			
	3.1			
	3.2	功能模块分析		
	3.3	电子电气选型		
	3.4	软件逻辑实现	6	
4	重难点分析		7	
-				
5	经济社	t会效益分析	8	
6	总结.		9	
	6.1	设计报告感想	9	
	6.2	理程总结反馈	(

1 绪论

1.1 研究背景与意义

AGV 是 Automated Guided Association 的简称,是一种以充电电池为动力,自动导引的无人驾驶自动化车辆,它能在计算机的监控下,按路径规划和作业要求,精确行走并停靠到指定的地点,完成一系列的作业任务如取货、送货、充电等。AGV 是移动机器人的一个重要分支,以应用为目的的 AGV,又称为自主式无人搬运车。其研究重点是实际工业生产中可能面临的问题,如: AGV 控制器组合结构的设计、基于电子地图的 AGV 运行路线避碰调度、任务调度的应用等。

1.2 AGV 研究现状

1.3 AGV 应用现状

表 1.1 特定场景无人车辆典型应用发展概况

	70 11 17 2 3330 57 1 113 X 12 11 113 X 12 11 113 X 12 11 113 X 12
企业名称	发展情况
京东	2016年9月,宣布无人驾驶物流车开始路测。2017年6月,在北京、西安、杭州等6所高校内同时试运营。2017年下半年,发布无人驾驶物流车3.0版。
菜鸟网络	2016年9月,宣布无人驾驶物流车开始路测。2017年6月,在北京、西安、杭州等6所高校内同时试运营。2017年下半年,发布无人驾驶物流车3.0版。
苏宁物流	2018年3月,发布无人驾驶物流车"卧龙一号",并在南京某社区试运营。
智行者	2015年5月成立,2017年发布无人驾驶物流车和无人驾驶清扫车,并在清华大学、奥森公园等多地试运营。2018年4月宣布完成B1、B2轮融资。
主线科技	2017年3月成立,9月宣布完成天使轮融资。2018年4月发布全球首台无人驾驶港口用电动卡车,并在天津港试运营。
驭势科技	2016年2月成立,11月宣布完成B轮融资。2017年3月发布无人驾驶机场摆渡车,并在广州白云机场试运营。
NURO.ai	2016年成立,融资情况不详。2018年1月,在美国硅谷发布无人驾驶物流车。
仙途智能	2017年7月成立,2018年3月宣布完成A轮融资,发布无人驾驶清扫车队,并在上海某科技园区试运营。

目前,采用低成本的电动代步车底盘改装成为了现行主要解决方案,但其行驶速度、机动能力、载重能力和平顺性等较差。同时,电动代步车底盘本身是面向有人驾驶的,其存在着诸多问题,如转向盘等机械结构冗余、线控化程度低、续航能力差、电池系统不满足车规级需求、控制系统粗糙、执行元件精度低等,难以满足无人驾驶车辆实际的性能需求。更重要的是,当前用于改装的底盘五花八门、改装方案良莠不齐,这严重制约了未来特定场景无人驾驶车辆的网联化监测与运营。

1.4 设计目标与意义

希望以推动特定场景无人驾驶车辆大范围落地为近期目标,致力于无人驾驶车辆车规级"通用线控底盘"研发,为特定场景无人驾驶车辆用户提供通用的智能底盘平台;远景目标瞄向构建以通用底盘平台为基础的全工况、全维度、全周期的特定场景无人驾驶车辆监控与运营的大数据平台。

"通用线控底盘":以"通用化"为核心特点,底盘被集成封装在一个扁平的密闭车身中,依据不同客户的造型需求,可搭载不同上装功能模块,如物流、快递、清扫、运输、甚至军警用特种装备等模块,成为适用于特定场景下各种功能的无人驾驶车辆。

1.5 本报告章节安排

本报告从 AGV 自动化小车缘由谈起,结合 AGV 在研究与应用现状与进展,收集整理了国内外在自动化导航小车的应用与不足,并比较分析后引出主要设计的目标与方向;接着就所提出的要求分别进行机械、电控从总体到模块分析的选型、设计,最后就整个机器人实现层面进行重难点分析与经济社会分析后,最终进行课程总结,主要内容包括以下几个部分:

第一章是主要分析与介绍 AGV 自动化小车的发展与应用前景,提出设计要求,并说明主要章节安排;

第二章是就所提出要求进行机械部分的结构设计,主要由总体设计、模块设计、;

第三章是结合当今国内发展的第四代自动化码头进行案例分析说明;

第四章是总结以上概述与所查询资料,总论未来自动化码头的发展趋势;

第五章是对参观、上课与论文书写的总结记录;

最后部分为本文参考文献。

2 机械结构设计

- 2.1 总体结构设计 to be continued
- 2.2 细节模块设计 to be continued
- 2.3 研究背景与意义 to be continued
- 2.4 机器人三维模型

图 2.1 机器人真实场景渲染图

3 电气总线设计

- 3.1 总体架构设计 to be continued
- 3.2 功能模块分析 to be continued
- 3.3 电子电气选型 to be continued
- 3.4 软件逻辑实现 to be continued

4 重难点分析

to be continued

5 经济社会效益分析

图 5.1 未来可能应用

to be continued

6 总结

- 6.1 设计报告感想 to be continued
- 6.2 课程总结反馈 to be continued