Probabilidade

Seminário I

Davi Barreira, Guilherme Macieira, Maria Gontijo

FGV - Escola de Matemática Aplicada

Um Modelo Probabilístico, ou Espaço de Probabilidade, é definido pela tríplice (Ω, \mathcal{F}, P) .

- $\cdot \Omega$ é o espaço amostral
- \cdot ${\mathcal F}$ é uma σ -álgebra de subconjuntos de Ω
- \cdot P é uma função de probabilidade em ${\cal F}$

Definição 1 - Espaço Amostral (Ω)

Conjunto não-vazio de todos os resultados possíveis de um experimento. Todo subconjunto $A\subset\Omega$ será chamado de evento. Se $\omega\in\Omega$, o evento $\{\omega\}$ será chamado de evento elementar.

Exemplos:

- $\Omega = \{H, T\}$ Finito
- $\Omega = \{1, 2, 3, ...\}$ Enumerável
- $\Omega = [0,1]$ Não enumerável

Antes de definirmos o que é \mathcal{F} , precisamos definir uma álgebra e uma σ -álgebra.

Definição 2 - Álgebra

Seja Ω um conjunto não-vazio. A classe \mathcal{F}_0 de subconjuntos de Ω é chamada de álgebra caso satisfaça os seguintes axiomas:

- · Axioma 1. $\Omega \in \mathcal{F}_o$
- Axioma 2. Se $A \in \mathcal{F}_o$, então $A^c \in \mathcal{F}_o$
- Axioma 3. Se $A_1,...,A_n \in \mathcal{F}_o$, então $\bigcup_{i=1}^n A_i \in \mathcal{F}_o$

Se estendermos o Axioma 3 para uniões enumeráveis:

• Axioma 3'. Se
$$A_n \in \mathcal{F}$$
 para $n = 1, 2, 3...$, então $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}_0$

Definição 3 - σ -Álgebra

Seja Ω um conjunto não-vazio. A classe \mathcal{F}_o de subconjuntos de Ω é chamada de σ -álgebra caso satisfaça os Axiomas 1, 2 e 3'.

A partir da definição de σ -álgebra valem as seguintes propriedades:

• P1.
$$\varnothing \in \mathcal{F}$$

Prova:
$$\Omega \in \mathcal{F}$$
 : $\Omega^c = \varnothing \in \mathcal{F}$

• P2. Se
$$A_1, A_2, ... \in \mathcal{F}$$
, então $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$

Prova:
$$(\bigcup_{i=1}^{\infty} A_i^c)^c = \bigcap_{i=1}^{\infty} A_i$$

σ -Álgebra de Borel

Para um espaço amostral (Ω) finito ou enumerável, $\mathcal F$ será (normalmente) o conjunto das partes de Ω .

Quando o espaço amostral não é enumerável, o conjunto das partes se torna problemático, assim, utiliza-se a chamada σ -álgebra de Borel (\mathcal{B}).

A σ -álgebra de Borel é a menor σ -álgebra que contém todo intervalo do tipo $[a,b]\subset\mathbb{R}.$

Definição 4 - Função de Probabilidade

Seja um espaço mensurável (Ω, \mathcal{F}) , onde Ω é o espaço amostral e \mathcal{F} uma σ -álgebra de subconjuntos de Ω . Uma função P é chamada de **medida de probabilidade** se satisfaz os seguintes axiomas:

- Axioma 1. $P(A) \ge 0, \forall A \in \mathcal{F}$
- Axioma 2. $P(\Omega) = 1$
- Axioma 3. (Aditividade finita) Se $A_1, A_2, ..., A_n \in \mathcal{F}$ são disjuntos $(A_i \cap A_j = \emptyset \text{ se } i \neq j)$, então $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$
- Axioma 3'. (σ -aditividade) Se $A_1, A_2, ... \in \mathcal{F}$ são disjuntos, então $\mathrm{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathrm{P}(A_i)$

Continuidade de probabilidade no vazio

Dados os Axiomas 1, 2 e 3, o Axioma 3' é equivalente ao seguinte axioma:

• Axioma 4. ("Continuidade no vazio") Se a sequência $(A_n)_{n\geq 1}$ decresce para o vazio, onde $A_n \in \mathcal{F} \ \forall n$, então $\mathrm{P}(A_n) \to 0$, quando $n \to \infty$.

Note que $(A_n)_{n\geq 1}$ decresce para o vazio $(A_n\downarrow\varnothing)$ significa que $A_n\supset A_{n+1} \ \forall n \ e \ \bigcap_{n\geq 1} A_n=\varnothing.$

Provando a equivalência da continuidade no vazio

Dados os Axiomas 1, 2 e 3, o Axioma 3' ← Axioma 4

- (A3' \Longrightarrow A4). Suponha que a σ -aditividade é válida. Sejam $A_1, A_2, ... \in \mathcal{F}$ tal que $A_n \downarrow \varnothing$. Queremos provar que $P(A_n) \xrightarrow{n \to \infty} 0$.
- (A4 \Longrightarrow A3'). Sejam $A_1, A_2, ... \in \mathcal{F}$ disjuntos $(\bigcap_{n=1}^{\infty} A_n = \varnothing)$. Queremos provar que $P(\bigcup_{n=1}^{\infty} A_n = \varnothing) = \sum_{n=1}^{\infty} P(A_n)$.

Propriedades de Probabilidade

A partir dos Axiomas de probabilidade, as seguintes propriedades podem ser demonstradas:

- $P(A^c) = 1 P(A)$
- $1 \leq P(A) \geq 0$
- $\cdot A_1 \subset A_2 \implies P(A_1) \leq P(A_2)$
- $P(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} P(A_n)$
- (Continuidade de probabilidade). Se $A_n \downarrow A$, então $P(A_n) \downarrow P(A)$. Se $A_n \uparrow A$, então $P(A_n) \uparrow P(A)$

Teorema da Extensão de Carathéodory

Seja \mathcal{F}_o uma álgebra dos subconjuntos do espaço amostral Ω , de forma que $\mathcal{F}=\sigma(\mathcal{F}_o)$ seja a σ -álgebra gerada por essa álgebra. Suponha que $P_o:\mathcal{F}_o\to[0,1]$, satisfazendo $P_o=1$ e σ -aditividade em \mathcal{F}_o .

Assim, P_o pode ser extendido de maneira única para uma medida de probabilida P em (Ω, \mathcal{F}) , de forma que $P(A) = P_o(A)$ para todo $A \in \mathcal{F}_o$.

Definição 5 - Medida

Seja (Ω, \mathcal{F}) um espaço mensurável. Uma medida é uma função $\mu: \mathcal{F} \to [0, \infty]$, que satisfaz os seguintes axiomas:

- Axioma 1. $\mu(\varnothing) = 0$
- Axioma 2. (σ -aditividade) Se $A_1, A_2, ... \in \mathcal{F}$ são disjuntos, então $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$

A medida de probabilidade é uma medida P com a propriedade adicional que $P(\Omega) = 1$.

Construindo a medida de Lebesgue em [0,1]

Iremos construir a medida uniforme de probablidade no intervalo [0, 1], também conhecida como medida de **Lebesgue**.

Em uma medida de Lebesgue, temos que:

• Para
$$[a,b]\subset [0,1]$$
 , $\mu([a,b])=b-a$

Assim, toda medida representa o comprimento do intervalo.

Por questão de conveniência, iniciaremos pelo espaço amostral $\Omega=(0,1]$, para depois estender para [0,1].

Passos para construção da probabilidade uniforme:

- 1 Partir de uma classe \mathcal{F}_0 contida em $\Omega = (0,1]$;
- 2 Provar que a σ -álgebra gerada por \mathcal{F}_o é a σ -álgebra de Borel (\mathcal{B});
- 3 Provar que \mathcal{F}_o é uma álgebra;
- 4 Aplicar o Teorema de Carathéodory.

- 1. Definir a classe \mathcal{F}_o contida em (0,1]
 - $\varnothing \in \mathcal{F}_0$;
 - Se $A \in \mathcal{F}_o$, então:

$$A = (a_1, b_1] \cup (a_2, b_2] \cup ... \cup (a_n, b_n]$$

Onde
$$0 \le a_1 < b_1 \le a_2 < b_2 \le ... \le a_n < b_n \le 1$$
, e $n \in \mathbb{N}$

2. Provar que
$$\sigma(\mathcal{F}_0) = \sigma(\mathcal{C}) = \mathcal{B}$$

Seja C a classe de todos os intervalos [a, b] contidos em (0, 1].

Sabemos que a σ -álgebra gerada por \mathcal{C} é a σ -álgebra de Borel (\mathcal{B}).

3. Provar que:

- \cdot \mathcal{F}_o é uma álgebra;
- \cdot \mathcal{F}_o não é uma σ -álgebra.

4. Aplicar o Teorema de Caratheódory

Para todo $A \in \mathcal{F}_o$ não-vazio, temos:

$$A = (a_1, b_1] \cup (a_2, b_2] \cup ... \cup (a_n, b_n]$$

Definimos uma função que corresponde ao comprimento total:

$$P_o = (b_1 - a_1) + ... + (b_n - a_n)$$

Ao aplicar o Teorema de Carathéodory, concluímos que existe uma função de probabilidade P, chamada de Lebesgue ou uniforme, definida em $\mathcal B$ que é igual a P_o em $\mathcal F_o$

Construindo a medida de Lebesgue em ${\mathbb R}$

Considere agora que $\Omega=\mathbb{R}$. Definimos um σ -álgebra dos subconjuntos de \mathbb{R} do seguinte modo:

• Para um n qualquer, definimos a σ -álgebra de Borel de (n,n+1] como a σ -álgebra gerada pelos conjuntos da forma $[a,b]\subset (n,n+1]$. Assim, A é um subconjunto de Borel de $\mathbb R$ se $A\cap (n,n+1]$ é um subconjunto de Borel de (n,n+1], para todo n.

Seja P_n uma medida uniforme em (n, n+1]. Dado um conjunto $A \subset \mathbb{R}$, podemos decompor A em uma quantidade contável de pedaços e calcular o "comprimento" $\mu(A)$ usando:

$$\mu(A) = \sum_{n=-\infty}^{\infty} P_n(A \cap (n, n+1])$$