Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań
Egzamin:	Egzamin maturalny
Przedmiot:	Matematyka
Poziom:	Poziom podstawowy

Uwagi:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający, rozwiązując zadanie otwarte, popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

Wymagania egzaminacyjne w 2023 i 2024 r.:

https://www.gov.pl/web/edukacja-i-nauka/wymagania-egzaminacyjne-obowiazujace-na-egzaminie-maturalnym-w-roku-2023-i-2024

	•	1 .	<u> </u>	4 \
700	anie			
Zau	ame	1.		

,	
Wymagania ogólne	Wymagania szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach rzeczywi-	I.4) stosuje związek pierwiastkowania z potęgo-
stych, także przy użyciu kalkulatora, stosowanie	waniem oraz prawa działań na potęgach i pier-
praw działań matematycznych przy przekształ-	wiastkach;
caniu wyrażeń algebraicznych oraz wykorzysty-	II.1) stosuje wzory skróconego mnożenia na
wanie tych umiejętności przy rozwiązywaniu	$(a+b)^2, (a-b)^2, a^2-b^2.$
problemów w kontekstach rzeczywistych i teore-	
tycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

Α

Zadanie 2. (0-1)

Wymagania ogólne	Wymagania szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach rzeczywi-	I.9) stosuje związek logarytmowania z potęgo-
stych, także przy użyciu kalkulatora, stosowanie	waniem, posługuje się wzorami na logarytm
praw działań matematycznych przy przekształ-	iloczynu, logarytm ilorazu i logarytm potęgi.
caniu wyrażeń algebraicznych oraz wykorzysty-	
wanie tych umiejętności przy rozwiązywaniu	
problemów w kontekstach rzeczywistych i teore-	
tycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

D

Zadanie 3.1. (0-1)

Wymagania ogólne	Wymagania szczegółowe
I. Sprawność rachunkowa.	Zdający:
Wykonywanie obliczeń na liczbach rzeczywi-	XII.2) oblicza średnią arytmetyczną i średnią
stych, także przy użyciu kalkulatora, stosowanie	ważoną, znajduje medianę i dominantę.
praw działań matematycznych przy przekształ-	
caniu wyrażeń algebraicznych oraz wykorzysty-	
wanie tych umiejętności przy rozwiązywaniu	
problemów w kontekstach rzeczywistych i teore-	
tycznych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

Średnia płaca wynosi 6200 zł.

Przykładowe rozwiązanie

$$\frac{25 \cdot 6584 + 24 \cdot 5800}{49} = 6200$$

Zadanie 3.2. (0-1)

· /	
Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	XII.2) oblicza średnią arytmetyczną i średnią
2. Dobieranie i tworzenie modeli matematycz-	ważoną, znajduje medianę i dominantę;
nych przy rozwiązywaniu problemów praktycz-	SP VI.4) rozwiązuje zadania tekstowe za pomocą
nych i teoretycznych.	równań pierwszego stopnia z jedną niewiadomą,
	w tym także z obliczeniami procentowymi.

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

C

Zadanie 4. (0-1) Wymagania ogólne Wymagania szczegółowe I. Sprawność rachunkowa. Zdający: Wykonywanie obliczeń na liczbach rzeczywi-SP V.1) oblicza liczbę *a* równą *p* procent danej stych, także przy użyciu kalkulatora, stosowanie liczby b; praw działań matematycznych przy przekształ-SP III.1) zapisuje wyniki podanych działań caniu wyrażeń algebraicznych oraz wykorzystyw postaci wyrażeń algebraicznych jednej lub wanie tych umiejętności przy rozwiązywaniu kilku zmiennych. problemów w kontekstach rzeczywistych i teoretycznych.

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi

Rozwiązanie

FP

7 - 1	l •	_		m	11)
Zad	anı	e	n . (u	
Luu	·		•	v	,

Wymagania ogólne	Wymagania szczegółowe	
I. Sprawność rachunkowa.	Zdający:	
Wykonywanie obliczeń na liczbach rzeczywi-	I.8) wykorzystuje własności potęgowania i pier-	
stych, także przy użyciu kalkulatora, stosowanie	wiastkowania w sytuacjach praktycznych, w tym	
praw działań matematycznych przy przekształ-	do obliczania procentów składanych z kapitaliza-	
caniu wyrażeń algebraicznych oraz wykorzysty-	cją roczną i zysków z lokat.	
wanie tych umiejętności przy rozwiązywaniu		
problemów w kontekstach rzeczywistych i teore-		
tycznych.		

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

 \mathbf{C}

7.4	anie	((2)
Zan	anie	h	(1)-	- 11

Wymagania ogólne	Wymagania szczegółowe	
IV. Rozumowanie i argumentacja.	Zdający:	
1. Przeprowadzanie rozumowań, także kilku-	I.2) przeprowadza proste dowody dotyczące	
etapowych, podawanie argumentów uzasadnia-	podzielności liczb całkowitych i reszt z dzielenia	
jących poprawność rozumowania, odróżnianie	[];	
dowodu od przykładu.	II.4) rozkłada wielomiany na czynniki metodą	
	wyłączania wspólnego czynnika przed nawias	
	oraz metoda grupowania wyrazów [].	

Zasady oceniania

3 pkt – przeprowadzenie pełnego dowodu, tzn.:

przekształcenie wyrażenia $k^4 + 2k^3 - k^2 - 2k$ do postaci (k-1)k(k+1)(k+2) i uzasadnienie, że ten iloczyn jest podzielny przez 12

2 pkt – przekształcenie wyrażenia $k^4+2k^3-k^2-2k$ do postaci (k-1)k(k+1)(k+2)

1 pkt – przekształcenie wyrażenia $k^4 + 2k^3 - k^2 - 2k$ do postaci $k(k+2)(k^2-1)$

albo przekształcenie wyrażenia $k^4 + 2k^3 - k^2 - 2k$ do postaci $k(k-1)(k^2 + 3k + 2)$,

albo przekształcenie wyrażenia $k^4 + 2k^3 - k^2 - 2k$ do postaci $k(k+1)(k^2 + k - 2)$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę albo brak rozwiązania

Przykładowe rozwiązanie

$$k^{4} + 2k^{3} - k^{2} - 2k = k(k^{3} + 2k^{2} - k - 2) = k[k^{2}(k+2) - (k+2)] =$$

$$= k(k+2)(k^{2} - 1) = (k-1) \cdot k \cdot (k+1) \cdot (k+2)$$

Iloczyn kolejnych dwóch liczb naturalnych jest podzielny przez 2, więc iloczyn kolejnych czterech liczb naturalnych jest podzielny przez 4, iloczyn trzech kolejnych liczb naturalnych jest podzielny przez 3. Liczba $k^4 + 2k^3 - k^2 - 2k$ jest więc podzielna przez $3 \cdot 4$, czyli jest podzielna przez 12.

Zadanie 7.1. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie informacjami	V.6) wyznacza wzór funkcji liniowej na podsta-
przedstawionymi w tekście, zarówno matema-	wie informacji o jej wykresie lub o jej własno-
tycznym, jak i popularnonaukowym, a także	ściach;
w formie wykresów, diagramów, tabel.	V.2) oblicza wartość funkcji zadanej wzorem al-
III. Wykorzystanie i interpretowanie reprezen-	gebraicznym.
tacji.	
1. Stosowanie obiektów matematycznych i opero-	
wanie nimi, interpretowanie pojęć matematycz-	
nych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

A

Wymagania ogólneWymagania szczegółoweIII. Wykorzystanie i tworzenie informacji.Zdający:1. Interpretowanie i operowanie informacjami
przedstawionymi w tekście, zarówno matema-
tycznym, jak i popularnonaukowym, a także
w formie wykresów, diagramów, tabel.V.4) odczytuje z wykresu funkcji: dziedzinę,
zbiór wartości, miejsca zerowe, przedziały
monotoniczności, przedziały, w których funkcja
przyjmuje wartości większe (nie mniejsze) lub

mniejsze (nie większe) od danej liczby, największe i najmniejsze wartości funkcji (o ile istnieją) w danym przedziale domkniętym oraz argumenty, dla których wartości największe i najmniejsze

są przez funkcję przyjmowane.

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

Zbiorem wartości jest przedział $\langle -1, 4 \rangle$.

Zadanie 7.3. (0-1)

Wymagania ogólne	Wymagania szczegółowe	
III. Wykorzystanie i tworzenie informacji.	Zdający:	
1. Interpretowanie i operowanie informacjami	V.12) na podstawie wykresu funkcji $y = f(x)$	
przedstawionymi w tekście, zarówno matema-	szkicuje wykresy funkcji $y = f(x - a)$,	
tycznym, jak i popularnonaukowym, a także	y = f(x) + b, y = -f(x), y = f(-x).	
w formie wykresów, diagramów, tabel.	J (11)	
III. Wykorzystanie i interpretowanie reprezentacji.		
1. Stosowanie obiektów matematycznych i opero-		
wanie nimi, interpretowanie pojęć matematycz-		
nych.		

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

D

Zadanie 8. (0–1)	
Wymagania ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
3. Dobieranie argumentów do uzasadnienia po-	III.2) interpretuje równania i nierówności
prawności rozwiązywania problemów [].	sprzeczne oraz tożsamościowe.

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi

Rozwiazanie

C2

Zadanie 9. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	V.8) interpretuje współczynniki występujące we
1. Stosowanie obiektów matematycznych i opero-	wzorze funkcji kwadratowej w postaci ogólnej,
wanie nimi, interpretowanie pojęć matematycz-	kanonicznej i iloczynowej (jeśli istnieje).
nych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

В

Zadanie 10. (0-1)

` ,	
Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	V.8) interpretuje współczynniki występujące we
1. Stosowanie obiektów matematycznych i opero-	wzorze funkcji kwadratowej w postaci ogólnej,
wanie nimi, interpretowanie pojęć matematycz-	kanonicznej i iloczynowej (jeśli istnieje).
nych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

D

Zadanie 11. (0-1)

2444116 111 (0 1)	
Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	III.5) rozwiązuje równania wielomianowe posta-
1. Stosowanie obiektów matematycznych i opero-	$\operatorname{ci} W(x) = 0$ dla wielomianów doprowadzonych
wanie nimi, interpretowanie pojęć matematycz-	do postaci iloczynowej [].
nych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

 \mathbf{C}

Wymagania ogólne Wymagania szczegółowe III. Wykorzystanie i tworzenie informacji. Zdający: 1. Interpretowanie i operowanie informacjami przedstawionymi w tekście, zarówno matematycznym, jak i popularnonaukowym, a także w formie wykresów, diagramów, tabel. V.13) posługuje się funkcją wykładniczą i logarytmiczną, w tym ich wykresami, do opisu i interpretacji zagadnień związanych z zastosowaniami praktycznymi.

Zasady oceniania

nych i teoretycznych.

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

2. Dobieranie i tworzenie modeli matematycznych przy rozwiązywaniu problemów praktycz-

Rozwiązanie

В

		1	•	$\mathbf{\Lambda}$	4 \
7 20	oni	4		48_	
Zad	ш			₩.	
			(_	_,

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i tworzenie informacji. 1. Interpretowanie i operowanie informacjami przedstawionymi w tekście, zarówno matematycznym, jak i popularnonaukowym, a także	Zdający: V.11) wykorzystuje własności funkcji liniowej i kwadratowej do interpretacji zagadnień geometrycznych, fizycznych itp., także osadzonych w kontekście praktycznym.

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

4 km

Przykładowe rozwiązanie

Największa odległość jest równa odległości wierzchołka paraboli od osi *OX*, czyli jest to rzędna wierzchołka paraboli.

$$\Delta = 4 + 12 = 16$$

$$d = y_w = \frac{-\Delta}{4a} = \frac{-16}{-4} = 4$$
 (także ponieważ $x_w = 1$, to $d = y_w = -1^2 + 2 \cdot 1 + 3 = 4$)

Odległość jest równa 4 km.

Zadanie 13.2. (0-3)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie informacjami	III.4) rozwiązuje równania i nierówności kwa-
przedstawionymi w tekście, zarówno matema-	dratowe;
tycznym, jak i popularnonaukowym, a także	IX.3) oblicza odległość dwóch punktów w ukła-
w formie wykresów, diagramów, tabel.	dzie współrzędnych;
	V.11) wykorzystuje własności funkcji liniowej
	i kwadratowej do interpretacji zagadnień geo-
	metrycznych, fizycznych itp., także osadzonych
	w kontekście praktycznym.

Zasady oceniania

3 pkt – poprawne obliczenie liczby minut potrzebnych na pokonanie drogi z A do B w dwóch wariantach trasy i podanie poprawnych wyników: bezpośrednia droga z A do B zajmuje około 85 minut, droga z A do C i potem z C do B zajmie łącznie 96 minut

2 pkt – poprawne obliczenie czasu wędrówki w dwóch wariantach trasy wyrażone w godzinach $t_1 = \sqrt{2}h$ i t = 1,6 h albo poprawne wyrażenie w minutach czasu przejścia w jednym z wariantów trasy

1 pkt – poprawne wyznaczenie współrzędnych punktów A i B: A = (0,3) i B = (3,0)

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę albo brak rozwiązania

Przykładowe rozwiązanie

Dla wyznaczenia odciętej punktu B rozwiązujemy równanie:

$$-x^2 + 2x + 3 = 0$$

$$x = \frac{-2-4}{-2} = 3 \text{ lub } x = \frac{-2+4}{-2} = -1.$$

Z rysunku wynika, że ta odcięta jest dodatnia, więc B = (3, 0).

Obliczamy f(0), by wyznaczyć rzędną punktu A. f(0) = 3, więc A = (0,3).

Długość trasy po łące z A do B.

 $|AB| = \sqrt{9+9} = 3\sqrt{2}$, wiec długość tej trasy to $3\sqrt{2}$ km.

Czas wędrówki $t_1 = \frac{3\sqrt{2}}{3} = \sqrt{2} \, \text{h} \approx 85 \, \text{minut.}$

Czas wędrówki po łące z A do C: $t_2 = \frac{3}{3} = 1$ h i dalej szosą z C do B: $t_3 = \frac{3}{5} = 0.6$ h.

Czas wędrówki w wariancie drogi z A przez C do B: $t = t_2 + t_3 = 1,6 \text{ h} = 96 \text{ minut.}$

Zadanie 14. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezentacji.	Zdający:
1. Stosowanie obiektów matematycznych i opero-	VI.4) stosuje wzór na <i>n</i> -ty wyraz i na sumę <i>n</i>
wanie nimi, interpretowanie pojęć matematycz-	początkowych wyrazów ciągu arytmetycznego.
nych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

В

Zadanie 15. (0-4)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	VI.5) stosuje wzór na <i>n</i> -ty wyraz i na sumę <i>n</i>
2. Dobieranie i tworzenie modeli matematycz-	początkowych wyrazów ciągu geometrycznego;
nych przy rozwiązywaniu problemów praktycz-	SP V.3) oblicza, jaki procent danej liczby b stano-
nych i teoretycznych.	wi liczba a.
I . Sprawność rachunkowa.	
Wykonywanie obliczeń na liczbach rzeczywi-	
stych, także przy użyciu kalkulatora, stosowanie	
praw działań matematycznych przy przekształ-	
caniu wyrażeń algebraicznych oraz wykorzysty-	
wanie tych umiejętności przy rozwiązywaniu	
problemów w kontekstach rzeczywistych i teore-	
tycznych.	

Zasady oceniania

4 pkt – poprawne obliczenie, że długość łamanej wzrosłaby o 3,125%.

3 pkt – obliczenie sumy długości odcinków łamanej składającej się z 10 odcinków – $31\frac{31}{32}$ albo obliczenie sumy długości odcinków łamanej od szóstego do dziesiątego – $\frac{31}{32}$

2 pkt – wyznaczenie liczby odcinków łamanej na podstawie rozwiązania odpowiedniego równania lub zsumowanie długości odcinków 16 + 8 + 4 + 2 + 1 = 31 -łamana składa się z pięciu odcinków 1 pkt – zapisanie poprawnego równania, w którym niewiadomą jest liczba odcinków łamanej, np.

$$31 = 16 \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}}$$

0 pkt - rozwiązanie, w którym zastosowano niepoprawną metodę albo brak rozwiązania

Przykładowe rozwiązanie

$$a_{1} = 16 \text{ i } q = \frac{1}{2}$$

$$31 = 16 \cdot \frac{1 - \left(\frac{1}{2}\right)^{n}}{1 - \frac{1}{2}} \cdot 31 = 32 - 32 \cdot \left(\frac{1}{2}\right)^{n} \cdot \left(\frac{1}{2}\right)^{n} = \frac{1}{32} \cdot n = 5$$

$$S_{10} = 16 \cdot \frac{1 - \left(\frac{1}{2}\right)^{10}}{1 - \frac{1}{2}} = 32 \cdot \left(1 - \frac{1}{1024}\right) = \frac{1023 \cdot 32}{1024} = \frac{1023}{32} = 31\frac{31}{32}$$

$$S_{10} - S_{5} = 31\frac{31}{32} - 31 = \frac{31}{32}$$

$$S_{10} - S_{5} = 31\frac{31}{32} - 31 = \frac{31}{32}$$
Długość wzrosłaby o $\frac{31}{32} \cdot 100\% = 3,125\%$.

Zadanie 16. (0–1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	VII.2) korzysta ze wzorów $\sin^2 \alpha + \cos^2 \alpha = 1$,
1. Stosowanie obiektów matematycznych i operowanie nimi, interpretowanie pojęć matematycz-	$tg \alpha = \frac{\sin \alpha}{\cos \alpha};$
nych.	II.1) stosuje wzory skróconego mnożenia na: $(a+b)^2$, $(a-b)^2$, a^2-b^2 .

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi

Rozwiązanie

FF

Zadanie 17. (0-1)

,	
Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	VIII.6) stosuje wzory na pole wycinka koła i
1. Stosowanie obiektów matematycznych i opero-	długość łuku okręgu.
wanie nimi, interpretowanie pojęć matematycz-	
nych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

A

Zadanie 18. (0-2)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	VIII.10) wskazuje podstawowe punkty szcze-
2. Dobieranie i tworzenie modeli matematycz-	gólne w trójkącie: środek okręgu wpisanego
nych przy rozwiązywaniu problemów praktycz-	w trójkąt, środek okręgu opisanego na trójkącie,
nych i teoretycznych.	środek ciężkości, oraz korzysta z ich własności;
	VIII.8) korzysta z cech podobieństwa trójkątów.

Zasady oceniania

2 pkt – poprawne obliczenie pól trójkątów $P_{ABC} = 48 \text{ cm}^2$, $P_{A_1B_1C_1} = \frac{1}{2} \cdot 8 \cdot 3 = 12 \text{ cm}^2$

1 pkt – poprawne wyznaczenie długości odcinka CC_1 , $\left|CC_1\right|=6$ cm i obliczenie pola trójkąta ABC

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę albo brak rozwiązania

Przykładowe rozwiązanie

$$\frac{|CP|}{|PC_1|} = \frac{2}{1} \Rightarrow |CP| = 4$$

$$|CC_1| = 6$$
 cm

$$P_{ABC} = \frac{1}{2} \cdot 16 \cdot 6 = 48 \text{ cm}^2$$

$$\Delta A_1 B_1 C \sim \Delta A B C$$
 (bkb) skala podobieństwa $\frac{1}{2}$, więc $|AB| = 2 |A_1 B_1|$, stąd $|A_1 B_1| = 8$ cm

|AC| = |BC| = 2x, gdzie x obliczamy korzystając z twierdzenia Pitagorasa:

$$8^2 + 6^2 = (2x)^2$$

$$100 = 4x^2$$

$$x = 5 \text{ cm}$$

Wysokość trójkąta $A_1B_1C_1$ obliczamy korzystając z twierdzenia Pitagorasa:

$$4^2 + h^2 = 5^2$$

$$h = 3 \text{ cm}$$

$$P_{A_1B_1C_1} = \frac{1}{2} \cdot 8 \cdot 3 = 12 \text{ cm}^2$$

Zadanie 19.1. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	IX.2) posługuje się równaniem prostej na płasz-
1. Stosowanie obiektów matematycznych i opero-	czyźnie w postaci kierunkowej, w tym wyzna-
wanie nimi, interpretowanie pojęć matematycz-	cza równanie prostej o zadanych własnościach
nych.	(takich jak na przykład przechodzenie przez dwa
	dane punkty, znany współczynnik kierunkowy,
	równoległość lub prostopadłość do innej prostej,
	styczność do okręgu).

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

$$a = \frac{\sqrt{3}}{7}$$

Zadanie 19.2. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	IX.2) posługuje się równaniem prostej na
1. Stosowanie obiektów matematycznych i opero-	płaszczyźnie, w tym wyznacza równanie prostej
wanie nimi, interpretowanie pojęć matematycz-	o zadanych własnościach (takich jak na przykład
nych.	przechodzenie przez dwa punkty, znany współ-
	czynnik kierunkowy, równoległość lub prostopa-
	dłość do innej prostej, styczność do okręgu).

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

 \mathbf{C}

Zadanie 19.3. (0-2)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	IX.3) oblicza odległość dwóch punktów w ukła-
1. Stosowanie obiektów matematycznych i opero-	dzie współrzędnych;
wanie nimi, interpretowanie pojęć matematycz-	VII.4) oblicza kąty trójkąta i długości jego
nych.	boków przy odpowiednich danych (rozwiązuje
	trójkąty m.in. z wykorzystaniem twierdzenia co-
	sinusów).

Zasady oceniania

2 pkt – poprawne wyznaczenie miary kąta $ABC - | \triangleleft ABC | = 30^{\circ}$

1 pkt – zastosowanie twierdzenia cosinusów i uzyskanie poprawnej równości, np.

$$52 = 16 + 108 - 48\sqrt{3}\cos\beta$$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę albo brak rozwiązania

Przykładowe rozwiązanie

W trójkącie ABC na podstawie twierdzenia cosinusów prawdziwa jest równość:

$$52 = 16 + 108 - 48\sqrt{3}\cos\beta$$

$$48\sqrt{3}\cos\beta = 72 \Rightarrow \cos\beta = \frac{72}{48\sqrt{3}} = \frac{\sqrt{3}}{2}$$

$$\beta = 30^{\circ}$$

Zadanie 20. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	IX.4) posługuje się równaniem okręgu
1. Stosowanie obiektów matematycznych i opero-	$(x-a)^2 + (y-b)^2 = r^2.$
wanie nimi, interpretowanie pojęć matematycz-	
nych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

D

Zadanie 21.1. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	VIII.5) stosuje własności kątów wpisanych
1. Stosowanie obiektów matematycznych i opero-	i środkowych;
wanie nimi, interpretowanie pojęć matematycz-	VIII.11) stosuje funkcje trygonometryczne do
nych.	wyznaczania długości odcinków w figurach pła-
	skich oraz obliczania pól figur.

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

C

Zadanie 21.2. (0-2)

` ,	
Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie informacjami	VIII.5) stosuje własności kątów wpisanych
przedstawionymi w tekście, zarówno matema-	i środkowych.
tycznym, jak i popularnonaukowym, a także	
w formie wykresów, diagramów, tabel.	
III. Wykorzystanie i interpretowanie reprezen-	
tacji.	
1. Stosowanie obiektów matematycznych i opero-	
wanie nimi, interpretowanie pojęć matematycz-	
nych.	

Zasady oceniania

2 pkt – dwie odpowiedzi poprawne

1 pkt – jedna odpowiedź poprawna, druga błędna lub brak drugiej odpowiedzi

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

AE

Zadanie 22.1. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie informacjami	XII.2) oblicza średnią arytmetyczną i średnią
przedstawionymi w tekście, zarówno matema-	ważoną, znajduje medianę i dominantę.
tycznym, jak i popularnonaukowym, a także	
w formie wykresów, diagramów, tabel.	
III. Wykorzystanie i interpretowanie reprezen-	
tacji.	
1. Stosowanie obiektów matematycznych i opero-	
wanie nimi, interpretowanie pojęć matematycz-	
nych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

В

Zadanie 22.2. (0-3)

Ladame 22.2. (0-3)		
Wymagania ogólne	Wymagania szczegółowe	
IV. Rozumowanie i argumentacja.	Zdający:	
2. Dostrzeganie regularności, podobieństw oraz	XI.2) zlicza obiekty, stosując reguły mnożenia	
analogii, formułowanie wniosków na ich podsta-	i dodawania (także łącznie) dla dowolnej liczby	
wie i uzasadnianie ich poprawności.	czynności w sytuacjach nie trudniejszych niż:	
	a) obliczenie, ile jest czterocyfrowych niepa-	
	rzystych liczb całkowitych dodatnich takich, że	
	w ich zapisie dziesiętnym występuje dokładnie	
	jedna cyfra 1 i dokładnie jedna cyfra 2, b) obli-	
	czenie, ile jest czterocyfrowych parzystych liczb	
	całkowitych dodatnich takich, że w ich zapisie	
	dziesiętnym występuje dokładnie jedna cyfra 0	
	i dokładnie jedna cyfra 1;	
	XII.1) oblicza prawdopodobieństwo w mode-	
	lu klasycznym.	

Zasady oceniania

3 pkt – poprawne obliczenie prawdopodobieństwa wraz z zaokrągleniem wyniku – 0,83

2 pkt – wyznaczenie liczby wszystkich zdarzeń elementarnych $|\Omega|=359400$ i liczby zdarzeń sprzyjających zdarzeniu A-|A|=299130 albo obliczenie prawdopodobieństwa zdarzenia przeciwnego B(A')=60270

$$P(A') = \frac{60270}{359400}$$

1 pkt – wyznaczenie liczby wszystkich zdarzeń elementarnych $|\Omega|=359400$ albo wyznaczenie liczby zdarzeń sprzyjających zdarzeniu A-|A|=299130, albo obliczenie liczby zdarzeń elementarnych sprzyjających zajściu zdarzenia przeciwnego do zdarzenia A-|A'|=60270

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę albo brak rozwiązania

Przykładowe rozwiązanie

Dane dotyczące wieku uczniów można przedstawić w tabeli:

16	17	18	19
66	180	138	216

Wszystkich uczniów jest 66 + 180 + 138 + 216 = 600

$$|\Omega| = 600.599 = 359400$$

Metoda 1.

$$|A| = 354.246 + 246.354 + 354.353 = 299130$$

$$P(A) = \frac{299130}{359400} \approx 0.83$$

Metoda 2.

$$|A'| = 246.245 = 60270$$

$$P(A) = 1 - P(A') = 1 - \frac{60270}{359400} = \frac{9997}{11980} \approx 0,83$$

Zadanie 23. (0-1)

24441110 201 (0-1)		
Wymagania ogólne	Wymagania szczegółowe	
III. Wykorzystanie i interpretowanie reprezen-	Zdający:	
tacji.	XI.2) zlicza obiekty, stosując reguły mnożenia	
2. Dobieranie i tworzenie modeli matematycz-	i dodawania (także łącznie) dla dowolnej liczby	
nych przy rozwiązywaniu problemów praktycz-	czynności w sytuacjach nie trudniejszych niż:	
nych i teoretycznych.	a) obliczenie, ile jest czterocyfrowych niepa-	
	rzystych liczb całkowitych dodatnich takich, że	
	w ich zapisie dziesiętnym występuje dokładnie	
	jedna cyfra 1 i dokładnie jedna cyfra 2, b) obli-	
	czenie, ile jest czterocyfrowych parzystych liczb	
	całkowitych dodatnich takich, że w ich zapisie	
	dziesiętnym występuje dokładnie jedna cyfra 0	
	i dokładnie jedna cyfra 1.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

 \mathbf{C}

Zadanie 24. (0-1)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	X.2) Posługuje się pojęciem kąta między prostą
1. Stosowanie obiektów matematycznych i opero-	a płaszczyzną.
wanie nimi, interpretowanie pojęć matematycz-	
nych.	

Zasady oceniania

1 pkt – odpowiedź poprawna

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi

Rozwiązanie

A

Zadanie 25. (0-2)

Wymagania ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy rozwią-	XIII. rozwiązuje zadania optymalizacyjne
zywaniu zadań, również w sytuacjach nietypo-	w sytuacjach dających się opisać funkcją kwadra-
wych.	tową.

Zasady oceniania

2 pkt – poprawna metoda wyznaczenia największej objętości i uzyskanie wyniku $V_{\rm najw.}=360~{\rm cm}^3$

1 pkt –poprawne zapisanie wzoru na objętość prostopadłościanu w zależności od jednej zmiennej, np. $V(x)=10\,x\,(12-x)$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę albo brak rozwiązania Uwaga:

Jeżeli zdający przyjmie, że w podstawie graniastosłupa o największej objętości jest kwadrat i prawidłowo wyznaczy jego objętość, to za umiejętność wyznaczenia objętości otrzymuje 1 pkt.

Przykładowe rozwiązanie

$$h = 10 \text{ i } 2x + 2y = 24$$

 $V = 10xy \Leftrightarrow V = 10x(12-x) \text{ i } x \in (0,12)$

Funkcja osiąga wartość największą dla x = 6.

$$V_{\text{najw.}} = V(6) = 10 \cdot 6 \cdot (12 - 6) = 360$$

 $V = 360 \, \text{cm}^3$

Zadania do nowej matury dostępne w **Multitece**

Chcę zobaczyć

NOWA MATURA 2023

Maturalne rozterki matematyka, czyli o ocenianiu nowego arkusza maturalnego

Webinary dla nauczycieli i egzaminatorów

28.11 - PONIEDZIAŁEK, GODZ. 18.00

