



## **Features**

- · Pixel in stripe configuration
- 7.0 inch (16 cm) diagonal screen
- High brightness CCFL backlight (400 Nits)
- Slim and compact
- Amorphous silicon TFT-LCD with B/L unit
- Imager Reversion: Up/Down and Left/Right
- · Support multi display mode
- High performance, low power consumption
- · RoHS compliant

Product specifications contained herein may be changed without prior notice. It is therefore advisable to contact Purdy Electronics before proceeding with the design of equipment incorporating this product.

# AND-TFT-7TN 800 x 480 Pixels LCD Color Monitor

The AND-TFT-TN is a compact full color TFT LCD module, whose driving board is capable of converting composite video signals to the proper interface of LCD panel and is suitable for car TV, portable DVD and GPS, multimedia applications and other AV systems.

This device consists of amorphous silicon TFT liquid crystal display with B/L unit. The display has 800 x 480 pixels on a 7.0 inch diagonal screen. X and Y drivers, LSI controller, and a built-in CCFL backlight inverter (with optional board.)

#### **Mechanical Characteristics**

| Item                   | Specification                  |
|------------------------|--------------------------------|
| Screen Size            | 7.0 inch (16.9 cm) diagonal    |
| Driver Element         | a-Si TFT active matrix         |
| Resolution             | 800 x 3 (RGB) x 480            |
| Display Mode           | Normally white, Transmissive   |
| Dot Pitch              | 0.0635 (W) x 0.1905 (H) mm     |
| Active Area            | 152.4 (W) x 91.44 (H) mm       |
| Module Size            | 165 (W) x 104 (H) x 5.5 (D) mm |
| Surface Treatment      | Anti-Glare                     |
| Color Arrangement      | RGB-stripe                     |
| Interface              | Digital                        |
| BackIt Pwr Consumption | 1.782 W (Typ.)                 |
| Panel Pwr Consumption  | 0.437 W (Typ.)                 |
| Weight                 | 170 g (Typ.)                   |

### Absolute Maximum Rating NOTE: Do not exceed these ratings at any time.

| Item                                                                                                                                                                                                         | Symbol                            | Remark   | Min.                 | Max.                   | Unit |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------|----------------------|------------------------|------|
|                                                                                                                                                                                                              | DV <sub>DD</sub>                  |          | -0.5                 | 5                      | V    |
|                                                                                                                                                                                                              | $AV_DD$                           |          | -0.5                 | 13.5                   | V    |
| Power Voltage                                                                                                                                                                                                | $V_{GH}$                          |          | -0.3                 | 20.0                   | V    |
|                                                                                                                                                                                                              | $V_{GL}$                          |          | -13.0                | 0.3                    | V    |
|                                                                                                                                                                                                              | V <sub>GH</sub> - V <sub>GL</sub> |          | -                    | 33.0                   | V    |
| Input Signal Voltage $AV_{DD}$ - 0.1 $\geq$ V1 $\geq$ V2 $\geq$ V3 $\geq$ V4 $\geq$ V5 $\geq$ V6 $\geq$ V7, V8 $\geq$ V9 $\geq$ V10 $\geq$ V11 $\geq$ V12 $\geq$ V13 $\geq$ V14 $\geq$ AV <sub>SS</sub> +0.1 | V1~V7                             |          | 0.4 AV <sub>DD</sub> | AV <sub>DD</sub> + 0.3 | V    |
| Input Signal Voltage                                                                                                                                                                                         | V8~V14                            |          | -0.3                 | 0.6 AV <sub>DD</sub>   | V    |
| Operating Temperature                                                                                                                                                                                        | T <sub>OP</sub>                   |          | -30                  | 85                     | °C   |
| Storage Temperature                                                                                                                                                                                          | T <sub>ST</sub>                   |          | -30                  | 85                     | °C   |
| LED Reverse Voltage V <sub>R</sub> conditions: Zener Diode 20 mA                                                                                                                                             | V <sub>R</sub>                    | Each LED | _                    | 1.2                    | V    |
| LED Forward Current                                                                                                                                                                                          | I <sub>F</sub>                    | Each LED | _                    | 25                     | mA   |



## **Optical Characteristics**

| Item                 | Symbol         | Conditions                 |      | Unit |      |                   |
|----------------------|----------------|----------------------------|------|------|------|-------------------|
| iteiii               | Syllibol       | Symbol                     |      | Тур. | Max. | Oilit             |
|                      | θ L            | φ = 180° (9 o'clock)       | 60   | 70   | _    | deg               |
| Viewing Angle        | θR             | φ = 0° (3 o'clock)         | 60   | 70   | _    | deg               |
| (CR ≥ 10)            | θт             | φ = 90° (12 o'clock)       | 40   | 50   | -    | deg               |
|                      | θВ             | φ = 270° (6 o'clock)       | 60   | 70   | _    | deg               |
| Contrast Ratio       | CR             | At optimized viewing angle | 400  | 500  | -    | _                 |
| Response Time        | Том            |                            | _    | 10   | 20   | ms                |
| Response fille       | Toff           |                            | _    | 15   | 30   | ms                |
| Luminance Uniformity | Y <sub>U</sub> | Normal                     | 70   | 75   | _    | _                 |
| Luminance            | L              | $\theta = \phi = 0$        | 360  | 450  | _    | cd/m <sup>2</sup> |
| ColorChromaticity    | Wx             |                            | 0.26 | 0.31 | 0.36 | _                 |
| Color Chilomaticity  | Wy             |                            | 0.28 | 0.33 | 0.38 | _                 |

Test Conditions: DV<sub>DD</sub> = 3.3V, I<sub>L</sub> = 180 mA (Backlight current), the ambient temperature is 25 ° C

# **Typical Operation Conditions (Note 1)**

| Item                     | Symbol           |                      | Values |                       | Unit  | Remark               |
|--------------------------|------------------|----------------------|--------|-----------------------|-------|----------------------|
| Item                     | Symbol           | Min.                 | Тур.   | Max.                  | Offic | nemark               |
|                          | $DV_DD$          | 3.0                  | 3.3    | 3.6                   | V     | Note 2               |
| Power Voltage            | AV <sub>DD</sub> | 10.2                 | 10.4   | 10.6                  | V     |                      |
| Power voilage            | V <sub>GH</sub>  | 15.3                 | 16.0   | 16.7                  | V     |                      |
|                          | V <sub>GL</sub>  | -7.7                 | -7.0   | -6.3                  | V     |                      |
|                          | V <sub>COM</sub> | -                    | 4.1    | -                     | V     | (V1 + V14) /2 = 5.2V |
| Input Signal Voltage     | V1~V7            | 0.4 AV <sub>DD</sub> | -      | AV <sub>DD</sub> -0.1 | V     |                      |
|                          | V8~V14           | 0.1                  | -      | 0.6 AV <sub>DD</sub>  | V     |                      |
| Input Logic High Voltage | V <sub>IH</sub>  | 0.7 DV <sub>DD</sub> | -      | DV <sub>DD</sub>      | V     | Note 3               |
| Input Logic Low Voltage  | V <sub>IL</sub>  | 0                    | _      | 0.3 DV <sub>DD</sub>  | V     | 1 Note 3             |

Note 1: Be sure to apply  $\mathrm{DV}_{\mathrm{DD}}$  and  $\mathrm{V}_{\mathrm{GL}}$  to the LCD first, and then apply  $\mathrm{V}_{\mathrm{GH}}.$ 

Note 2:  $DV_{DD}$  setting should match the signals output voltage (refer to Note 3) of customer's system board.

Note 3: POL, STVD, OEV, CKV, STVU, EDGSL, U/D, STHL, REV, DCLK, STHR, LD, R/L.

R0~R5, G0~G5, B0~B5.

#### **Current Consumption**

| Item               | Symbol            |      | Values |      | Unit | Remark                    |  |
|--------------------|-------------------|------|--------|------|------|---------------------------|--|
|                    | Symbol            | Min. | Тур.   | Max. | Oill |                           |  |
|                    | I <sub>GH</sub>   | -    | 0.2    | 0.5  | mA   | V <sub>GH</sub> = 16.0V   |  |
| Current for Driver | I <sub>GL</sub>   | -    | 0.2    | 1.0  | mA   | V <sub>GL</sub> 7.0V      |  |
| Current for Driver | IDV <sub>DD</sub> | -    | 5.0    | 10.0 | mA   | DV <sub>DD</sub> = 3.3V   |  |
|                    | IAV <sub>DD</sub> | -    | 40.0   | 50.0 | mA   | AV <sub>DD</sub> = 10.4 V |  |

Description



Pin Description: TFT LCD Panel Driving Section: P-TWO "AF 730L-A2G1T"

Pin #. Symbol I/O Description Pin #. Symbol I/O

| I III DCS | Jiiption. 1      |     | LOD I allel briving dection. I - I vi            |  |  |
|-----------|------------------|-----|--------------------------------------------------|--|--|
| Pin #.    | Symbol           | I/O | Description                                      |  |  |
| 1         | POL              | I   | Polarity selection                               |  |  |
| 2         | STVD             | I/O | Vertical start pulse input when U/D = H (Note 1) |  |  |
| 3         | OEV              | ı   | Output enable                                    |  |  |
| 4         | CKV              | ı   | Vertical clock                                   |  |  |
| 5         | STVU             | I/O | Vertical start pulse input when U/D = L (Note 1) |  |  |
| 6         | GND              | Р   | Power Ground                                     |  |  |
| 7         | EDGSL            | I   | Select rising edge or falling edge               |  |  |
| 8         | DV <sub>DD</sub> | Р   | Power Voltage for Digital Circuit                |  |  |
| 9         | V9               | I   | Gamma Voltage Level 9                            |  |  |
| 10        | $V_{GL}$         | Р   | Gate OFF Voltage                                 |  |  |
| 11        | V2               | ı   | Gamma Voltage Level 2                            |  |  |
| 12        | $V_{GH}$         | Р   | Gate ON Voltage                                  |  |  |
| 13        | V6               | I   | Gamma Voltage Level 6                            |  |  |
| 14        | U/D              | I   | Up/Down Selection (Note 1, 2)                    |  |  |
| 15        | V <sub>COM</sub> | ı   | Common Voltage                                   |  |  |
| 16        | GND              | Р   | Power Ground                                     |  |  |
| 17        | $AV_DD$          | Р   | Power Voltage for Analog Circuit                 |  |  |
| 18        | V14              | I   | Gamma Voltage Level 14                           |  |  |
| 19        | V11              | ı   | Gamma Voltage Level 11                           |  |  |
| 20        | V8               | I   | Gamma Voltage Level 8                            |  |  |
| 21        | V5               | I   | Gamma Voltage Level 5                            |  |  |
| 22        | V3               | I   | Gamma Voltage Level 3                            |  |  |
| 23        | GND              | Р   | Power Ground                                     |  |  |
| 24        | R5               |     | Red Data (MSB)                                   |  |  |
| 25        | R4               | ı   | Red Data                                         |  |  |
| 26        | R3               | ı   | Red Data                                         |  |  |
| 27        | R2               | ı   | Red Data                                         |  |  |
| 28        | R1               | I   | Red Data                                         |  |  |
| 29        | R0               | _   | Red Data (LSB)                                   |  |  |
| 30        | GND              | Р   | Power Ground                                     |  |  |
|           |                  |     |                                                  |  |  |

| FIII#. | Syllibol         | 1/0 | Description                                                          |
|--------|------------------|-----|----------------------------------------------------------------------|
| 31     | GND              | Р   | Power Ground                                                         |
| 32     | G5               | Ι   | Green Data (MSB)                                                     |
| 33     | G4               | I   | Green Data                                                           |
| 34     | G3               | _   | Green Data                                                           |
| 35     | G2               | I   | Green Data                                                           |
| 36     | G1               | I   | Green Data                                                           |
| 37     | G0               |     | Green Data (LSB)                                                     |
| 38     | STHL             | 9   | Horizontal Start Pulse Input when R/L = L (Note 1)                   |
| 39     | REV              | Ι   | Control signal are inverted or not (Note 3)                          |
| 40     | GND              | ı   | Power Ground                                                         |
| 41     | DCLK             | ı   | Sample Clock                                                         |
| 42     | DV <sub>DD</sub> | Р   | Power Voltage for Digital Circuit                                    |
| 43     | STHR             | I/O | Horizontal Start Pulse Input when R/L/ = H (Note 1)                  |
| 44     | LD               | -   | Latches the polarity of outputs and switches the new data to outputs |
| 45     | B5               | ı   | Blue Data (MSB)                                                      |
| 46     | B4               | ı   | Blue Data                                                            |
| 47     | В3               | I   | Blue Data                                                            |
| 48     | B2               | I   | Blue Data                                                            |
| 49     | B1               |     | Blue Data                                                            |
| 50     | B0               |     | Blue Data (LSB)                                                      |
| 51     | R/L              | I   | Right/Left Selection (Note 1, 2)                                     |
| 52     | V1               | I   | Gamma Voltage Level 1                                                |
| 53     | V4               | I   | Gamma Voltage Level 4                                                |
| 54     | V7               | I   | Gamma Voltage Level 7                                                |
| 55     | V10              | I   | Gamma Voltage Level 10                                               |
| 56     | V12              | I   | Gamma Voltage Level 12                                               |
| 57     | V13              | ı   | Gamma Voltage Level 13                                               |
| 58     | $AV_DD$          | Р   | Power Voltage for Analog Circuit                                     |
| 59     | GND              | Р   | Power Ground                                                         |
| 60     | V <sub>COM</sub> | I   | Common Voltage                                                       |

I: Input, O: output, P: Power



Note 1: Selection of scanning mode

| Setting of Sacn  |                  | In/Out State f | or Start Pulse | Scanning Direction |      |                           |
|------------------|------------------|----------------|----------------|--------------------|------|---------------------------|
| U/D              | R/L              | STVD           | STVU           | STHR               | STHL | Scanning Direction        |
| GND              | DV <sub>DD</sub> | 0              | I              | I                  | 0    | Up to down, left to right |
| DV <sub>DD</sub> | GND              | I              | 0              | 0                  | I    | Down to up, right to left |
| GND              | GND              | 0              | I              | 0                  | I    | up to down, right to left |
| DV <sub>DD</sub> | DV <sub>DD</sub> | I              | 0              | I                  | 0    | Down to up, left to right |

Note 2: Definition of scanning direction. Refer tot he figure as below



Note 3: When REV = "L", it's under normal operation. When REV = "H", these data will be inverted.

# **Backlight Driving Conditions**

| Item                      | Symbol  |        | Values | es Unit |       | Remark |
|---------------------------|---------|--------|--------|---------|-------|--------|
| Item                      | Symbol  | Min.   | Тур.   | Max.    | Oilit | nemark |
| Voltage for LED Backlight | $V_{L}$ | 9.3    | 9.9    | 10.5    | V     | Note 1 |
| Current for LED Backlight | lι      | 170    | 180    | 200     | mA    |        |
| LED Life Time             | -       | 20,000 | _      | _       | Hr    | Note 2 |

Note 1: The Voltage for LED Backlight is defined at Ta = 25 $^{\circ}$  C and I<sub>L</sub> = 180 mA.

Note 2: The "LED lifetime" is defined as the module brightness decrease to 50% original brightness at Ta = 25°C and  $I_L$  - 180 mA. The LED lifetime could be decreased if operating  $I_L$  is larger than 180 mA.



# **Timing Conditions**

| lia                             | Complete |      | IIn:t |      |      |
|---------------------------------|----------|------|-------|------|------|
| Item                            | Symbol   | Min. | Тур.  | Max. | Unit |
| DCLK frequency                  | Fdclk    | _    | 40    | 45   | MHz  |
| DCLK cycle                      | Tcph     | 22   | 25    | _    | ns   |
| DCLK pulse width                | Tcw      | 8    | _     | -    | ns   |
| Data set-up time                | Tsu      | 4    | _     | -    | ns   |
| Data hold time                  | Thd      | 2    | _     | -    | ns   |
| Time that the last data to LD   | Tld      | 1    | _     | -    | Tcph |
| Pulse width of LD               | Twld     | 2    | _     | -    | Tcph |
| Time that LD to STHL/R          | Tlds     | 5    | _     | -    | Tcph |
| POL set-up time                 | Tpsu     | 6    | _     | -    | ns   |
| POL hold time                   | Tphd     | 6    | _     | -    | ns   |
| CKV frequency                   | Fvclk    | -    | _     | 200  | KHz  |
| CKV rise time                   | Trck     | -    | _     | 100  | ns   |
| CKV falling time                | Tfck     | -    | _     | 100  | ns   |
| CKV pulse time                  | PWCLK    | 500  | _     | -    | ns   |
| Horizontal display timing range | Tdh      | -    | 800   | _    | Tcph |
| Horizontal timing range         | Th       | -    | 1056  | _    | Tcph |
| STVU/D setup time               | Tsuv     | 200  | _     | -    | ns   |
| STVU/D hold time                | Thdv     | 300  | _     | -    | ns   |
| STVU/D delay time               | Tdt      | -    | _     | 500  | ns   |
| Driver output delay time        | Tdo      | -    | _     | 900  | ns   |
| Output rise time                | Ttih     | -    | 500   | 1000 | ns   |
| Output falling time             | Tthl     | -    | 400   | 800  | ns   |
| OEV pulse width                 | Twcl     | 1    | _     | -    | us   |
| OEV to Driver output delay time | Toe      | -    | _     | 900  | ns   |
| Horizontal lines per field      | Tv       | 512  | 525   | 610  | Tdh  |
| Vertical display timing range   | Tvd      | -    | 480   | _    | Tdh  |





Fig.3-1 operation model 1



Fig.3-5 Vertical shift clock timing



## Reliability Test Items (Note 3)

| Item                                   | Test Condition                                                                                                                        | Remark         |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------|
| High Temperature Storage               | Ta = 85°C 240 hrs                                                                                                                     | Note 1, Note 4 |
| Low Temperature Storage                | Ta = -30°C 240 hrs                                                                                                                    | Note 1, Note 4 |
| High Temperature Operation             | Ts = 85 °C 240 hrs                                                                                                                    | Note 2, Note 4 |
| Low Temperature Operation              | Ta = -30 ° C 240 hrs                                                                                                                  | Note 1, Note 4 |
| Operate at High Temperature & Humidity | +60°C, 90% RH max. , 240 hrs                                                                                                          | Note 4         |
| Thermal Shock                          | -30°C / 30 min ~ +85°C / 30 min for a total of 100 cycles, start with cold temperature and end with high temperature                  | Note 4         |
| Vibration Test                         | Frequency range: 10 ~ 55 Hz, Stroke: 1.5 mm; Sweep: 10Hz ~ 55 Hz ~ 10 Hz, 2 hours for each direction of X. Y. Z.; (6 hour for total)  |                |
| Mechanical Shock                       | 100 G 6ms, ± X, ±Y, ±Z 3 times for each direction                                                                                     |                |
| Package Vibration Test                 | RandomVibration: 0.015G * G/Hz from 5-200 Hz, -6dB/Octave from 200-500 Hz; 2 hours for each direction of X.Y. Z.; (6 hours for total) |                |
| Package Drop Test                      | Height: 60 cm, 1 corner, 3 edges, 6 surfaces                                                                                          |                |
| Electro Static Discharge               | ± 2KV, Human Body Mode, 100 pF /15000 Ω                                                                                               |                |

Note 1: Ta is the ambient temperature of samples.

Note 2: Ts is the temperature of panel's surface.

Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but doesn't guarantee all the cosmetic specification.

Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.



# **Mechanical Drawing**

