МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Операционные системы»

Тема: Исследование структур загрузочных модулей

Студент гр. 7383	 Левкович Д.В.
Преподаватель	 Ефремов М.А.

Санкт-Петербург 2019

Цель работы.

Исследование различий в структурах исходных текстов модулей типов .COM и .EXE, структур файлов загрузочных модулей и способов их загрузки в основную память.

Ход работы.

Необходимые сведения для составления программы:

Тип IBM PC хранится в байте по адресу 0F000:0FFFE, в предпоследнем байте ROM BIOS. Соответствие кода и типа в таблице:

PC	FF
PC/XT	FE,FB
AT	FC
PS2 модель 30	FA
PS2 модель 50 или 60	FC
PS2 модель 80	F8
PCjr	FD
PC Convertible	F9

Для определения версии MS DOS следует воспользоваться функцией 30H прерывания 21H. Входным параметром является номер функции в AH:

MOV AH,30h

INT 21h

Выходными параметрами являются:

AL – номер основной версии. Если 0, то <2.0;

АН – номер модификации;

BH – серийный номер OEM (Original Equipment Manufacturer);

BL:CX – 24-битовый серийный номер пользователя

Описание функций, которые используются в программе:

1. TYPE_OS – печатает тип ОС.

- 2. VERSION_OS печатает версию ОС, серийный номер ЕОМ и серийный номер пользователя.
- 3. PRINT печатает строку.
- 4. TETR_TO_HEX вспомогательная функция для BYTE_TO_HEX.
- 5. BYTE_TO_HEX байт в AL переводится в два символа шестн. Числа в AX.
- 6. WRD_TO_HEX перевод в 16 с/с 16-ти разрядного числа. В АХ число, DI адрес последнего символа.
- 7. BYTE_TO_DEC перевод в 10 с/с, SI адрес поля младшей цифры.

Программа читает содержимое предпоследнего байта ROM BIOS, по таблице, сравнивая коды, определяет тип PC и выводит строку с названием модели.

На рис. 1-3 приведены результаты работы программ для различных модулей.

```
C:\>1.com
OS Type: AT
OS Version: 5.0
OEM: 255
Serial number: 00000000
C:\>_
```

Рисунок 1 - Результат работы "хорошего" .СОМ модуля.

```
C:N>1.exe

elleos Type:

elleos Type:

5 0

elleos Type: 255

elleos Type:

elleos Type:

elleos Type: 0000000

elleos Type: 000

elleos Type: 00
```

Рисунок 2 - Результат работы "плохого" .ЕХЕ модуля.

C:\>EXE.EXE

OS Type: AT

OS Version: 5.0

OEM: 255

Serial number: 00000000

C:\>_

Рисунок 3 - Результат работы "хорошего" .ЕХЕ модуля.

Выводы.

В ходе лабораторной работы были разработаны программы на языке ассемблера, определяющие тип PC, версию MS DOS, серийный номер EOM и серийный номер пользователя. Исследованы различия исходных текстов COM и EXE программ, отличие форматов файлов COM и EXE модулей.

Ответы на контрольные вопросы.

Отличия исходных текстов СОМ и ЕХЕ программ

1. Сколько сегментов должна содержать СОМ-программа?

Ответ: СОМ-программа содержит 1 сегмент.

2. ЕХЕ-программа?

Ответ: Содержит хотя бы 1 сегмент.

3. Какие директивы обязательно должны быть в СОМ-программе?

Ответ: Обязательным является наличие директивы ORG 100h, которая резервирует 256 байт для PSP, выполнение программы начинается со следующей ячейки памяти. Директива ASSUME, которая указывает ассемблеру, с каким сегментом связан тот или иной сегментный регистр, без данной директивы программа не скомпилируется, т.к не будет знать, где начинается сегмент кода.

4. Все ли форматы команд можно использовать в СОМ-программе?

Ответ: Нет. Команды, использующие адреса сегментов, запрещены, т.к. отсутствует таблица настроек (Relocation Table). Также нельзя использовать команды, использующие дальнюю адресацию, т.к для этих команд нужна таблица настройки, в которой содержатся адреса сегментов. Так как СОМ программа содержит один сегмент, нет необходимости в таблице настроек, для однозначной адресации достаточно смещения.

Таблица состоит из элементов, число которых записано в байтах 06-07. Элемент таблицы настройки состоит из двух полей: 2-байтного смещения и 2-байтного сегмента, и указывает слова в загрузочном модуле, содержащее адрес, который должен быть настроен на место памяти, в которое загружается задача.

Настройка производится следующим образом:

В области памяти после резидентной части выполняющей загрузку программы строится префикс программного сегмента (PSP);

- 1. Стандартная часть заголовка считывается в память;
- 2. Определятся длина тела загрузочного модуля (разность длины файла 04-07 и длины заголовка 08-09 плюс число байт в последнем блоке 02-03). В зависимости от признака, указывающего загружать задачу в конец памяти или в начало, определяется сегментный адрес для загрузки. Этот сегмент называется начальным сегментом;
- 3. Загрузочный модуль считывается в начальный сегмент;
- 4. Таблица настройки порциями считывается в рабочую память;
- 5. Для каждого элемента таблицы настройки к полю сегмента прибавляется сегментный адрес начального сегмента. В результате элемент таблицы указывает на слово в памяти, к которому прибавляется сегментный адрес начального сегмента;
- 6. Когда таблица настройки адресов обработана, в регистры SS и SP записываются значения, указанные в заголовке, а к SS прибавляется

сегментный адрес начального сегмента. В ES и DS записывается сегментный адрес начала PSP. Управление передается по адресу, указанному в заголовке (байты 14-17).

Отличие форматов СОМ и ЕХЕ модулей

1. Какова структура файла СОМ? С какого адреса располагается код?

Ответ: Программа содержит единственный сегмент, содержащий и данные, и команды. Код располагается с 0h адреса, как видно из рис. 4.

Рисунок 4 - Структура файла СОМ.

2. Какова структура «плохого» EXE? С какого адреса располагается код? Что располагается с адреса 0?

Ответ: «Плохой» EXE содержит таблицу настроек, которая располагается с 0h адреса и код. Код располагается с адреса 300h (см. рис. 6). 200h байт занимает заголовок и 100h дает директива ORG 100h.

Рисунок 5 - Структура "плохого" ЕХЕ

Рисунок 6 - Расположение кода в "плохом" ЕХЕ

3. Какова структура файла «хорошего» EXE? Чем он отличается от «плохого» EXE файла?

Ответ: В отличие от «плохого» ЕХЕ, в «хорошем» есть отдельные сегменты под код, данные и стек. Код программы начинается с адреса 400h, т.к дополнительно выделено под стек 200 байт.

Проверить длину стека можно посмотрев в самом коде программы, сколько отведено под стек или в карте памяти .МАР.

Рисунок 7 - Структура "хорошего" ЕХЕ

Рисунок 8 - Структура "хорошего" ЕХЕ. Расположение кода.

Загрузка СОМ модуля в основную память

Рисунок 9 - Загрузка СОМ в основную память

1. Какой формат загрузки модуля СОМ? С какого адреса располагается код?

Ответ: Сначала выделяется сегмент памяти для модуля. Затем устанавливаются на начало выделенного сегмента памяти. В первые 100h байт располагается PSP. Регистр SP устанавливается в конец сегмента. Код располагается с адреса 48DD.

2. Что располагается с адреса 0?

Ответ: PSP

3. Какие значения имеют сегментные регистры? На какие области памяти они указывают?

Ответ: Все сегментные регистры указывают на PSP и имеют значения 48DD (см. рис. 9).

4. Как определяется стек? Какую область памяти он занимает? Какие адреса?

Ответ: Занимает адреса с 0000h-FFFEh. Стек определяется регистрами SS и SP.

Загрузка «хорошего» EXE модуля в основную память

Рисунок 10 - Загрузка "хорошего" ЕХЕ модуля

1. Как загружается «хороший» EXE? Какие значения имеют сегментные регистры?

Ответ: SS = 48ED — начало сегмента стека, CS = 4917 — начало кода. DS и ES устанавливаются на начало PSP. При загрузке модуля в память в начало программы ставится PSP. После этого инициализируются сегментные регистры.

2. На что указывают регистры DS и ES?

Ответ: Они указывают на начало PSP.

3. Как определяется стек?

Ответ: Стек определяется при помощи директивы STACK в коде программы.

4. Как определяется точка входа?

Ответ: Смещение точки входа в программу загружается в IP. IP, а именно адрес, с которого начинается выполнение программы определяется операндом директивы END, который называется точкой входа.