SIMULAÇÃO DE MONTE CARLO PARA O CÁLCULO DE OPÇÕES

Autor ¹

1 Introdução

Cálculo de opção através de uma simulação de Monte Carlo é um método usado com muita frequência na matemática financeira, em ambientes com fontes de incertezas e recursos aleatórios, tais como a mudança de taxas de juros, os preços das ações, taxas de câmbio, dentre outros. Neste projeto, será usado a matemática e um software de computação (RStudio) para criarmos sequencias e efetuarmos simulações. O propósito deste texto é avaliar algumas simulações para o cálculo de opções do tipo européia, americana e asiática.

Na seção 2, Revisão da Literatura, serão apresentados breves conceitos fundamentais para o entendimento do texto, na seção 3, a será apresentada a metodologia de cálculo utilizada, dando sequência, a seção 4 descreve os resultados obtidos e as comparações, finalizando com a seção 5 as conclusões.

2 Revisão da Literatura

A utilização de processos estocásticos em finanças teve sucesso a partir de modelos criados por Balck e Scholes (1973) e Merton (1973). Black e Scholes (1973) produz os valores de opções em condições de equilíbrio de mercado. A partir de 1979 esses modelos sofrem uma mudança metodológica no apreçamento, passando a ser utilizado a medida martingal. Destaca-se também o modelo de Margrabe (1978), muito utilizados para o apreçamento das oções no mercado de commodities.

2.1 Conceitos Básicos

Opção Européia: Um contrato de uma opção européia fornece ao seu proprietário o direito, mas não a obrigação, de comprar/vender um ativo por um preço K (preço de exercício) em uma data especificada T (vencimento). No vencimento (t=T) a opção de compra vale $\Lambda T = \max(X_T - K, 0)$ e a opção de venda vale $\Lambda T = \max(K - X_T)$

 $Opção\ Americana$: O contrato de uma opção financeira do tipo americana fornece ao seu proprietário o direito, mas não a obrigação, de comprar/vender um ativo por um preço K (preço de exercício) em qualquer data $t \in [0,T]$) até a data T de vencimento.

 $Opção \ Asiática$: Opções asiáticas são aquelas em que o valor da opção no vencimento depende da média dos preços do ativo subjacente em [0,T].

Simulação de Monte Carlo: A simulação de Monte Carlo envolve usar números aleatórios para obter uma amostra de muitos caminhos diferentes que poderiam ser seguidos pelas

Daniel Ryba Zanardini de Oliveira, mestrando PPGCE-UERJ

variáveis subjacentes em um mundo risk-neutral. Para cada caminho, o resultado é calculado e descontado à taxa de juros livre de risco. A média aritmética dos resultados descontados é o valor estimado do derivativo.

3 Metodologia

A seguir seguirão as metodologias que serão avaliadas nesse texto, apresentando algumas definições matemáticas utilizadas para precificação de opções.

3.1 Apreçamento Black, Scholes e Merton

Calcularemos através do modelo Black, Scholes e Merton (BMS), o valor de uma oção de compra e uma oção de venda.

$$c(X_t, t) = X_t N(d_1) - K^{-r(T-t)} N(d_2) \qquad 0 \le t < T, X_t > 0$$
(1)

onde:

$$d1 = \frac{(\ln(\frac{X_t}{K}) + (r+0, 5\sigma^2)(T-t))}{\sigma\sqrt{T-t}} \qquad d_2 = d_1 - \sigma\sqrt{T-t}$$
 (2)

3.2 Apreçamento pelo método de Monte Carlo

A simulação do método de Monte Carlo (MC) segue:

$$c_t = E^Q[^{-r\tau}(X_T - K)^+ \mid F_t]$$
 (3)

Assim devemos, portanto, obter uma amostra de tamanho N da variável X_T , que devem ser calculadas na medida neutra como apresentado em (4).

$$X_T = x^{(r-0,5\sigma^2)\tau + \sigma\sqrt{\tau\omega}} \tag{4}$$

onde $\omega \sim N(0,1)eX_T$ é a solução da equação diferencial estocástica do processo geométrico browniano escrito sobre a MME com volatilidade σ . Gerando N números aleatórios de uma normal padrão, obteremos N valores de X_T usando a equação (4), a partir daí, calculamos o valor de $(X_T - K)^+$, atualizado pela taxa livre de risco e a seguir tomamos a média dos N valores obtidos, temos assim c_t .

3.3 Apreçamento de opções americanas

Seja X_t um processo estocástico governado por B_t com σ – algebra natural F_t , Seja Θ o conjunto de todos os tempos de parada entre t e T e seja $\theta \in \Theta$. Seja $\Lambda(X_t, t)$ o preço de um derivativo americano em tsobre o ativo subjacente X_t tal que $t \in [0, T]$, então

$$\Lambda(X_t, t) = \max_{\theta \in \Theta} E^Q[e^{-r(\theta - t)}\Lambda(X_\theta, t, \theta) \mid F_t]$$
 (5)

A definição acima estabelece que para todos os possíveis tempos de "parada". O preço de um derivativo americano não possui solução analítica e sua determinação der-se-á através de métodos numéricos, como por exemplo arvores binomiais, diferenças finitas,

Monte Carlo, entre outros, o objetivo do texto não é explicar os métodos, mas dar apenas um entendimento, sendo que para tal cálculo utilizaremos o software estatístico RStudio.

3.4 Apreçamento de opções asiáticas

As opções asiáticas são aquelas cujo resultado depende da média aritmética do preço do ativo subjacente durante a vida da opção. O resultado de uma opção de compra de preço médio é $\max(0, X_{med} - K)$ e o de uma opção de venda de preço médio é $\max(0, K - X_{med})$, onde X_{med} é o preço médio do ativo subjacente. As opções de preço médio são mais baratas do que as opções normais, apresentam menor volatilidade e outro aspecto importante deste tipo de derivativo é que são menos suscetíveis a manipulações. As opções de preço médio podem ser avaliadas usando fórmulas semelhantes àquelas usadas para opções normais se pressupomos que X_{med} é lognomal.

Outro tipo de opção asiática é uma opção de preço de exercício médio. Uma opção de compra de preço de exercício médio paga $\max(0, X_T - X_{med})$, enquanto uma opção de venda de preço de exercício médio paga $\max(0, X_{med} - X_T)$. As opções de preço de exercício médio podem garantir que o preço médio pago por um ativo em negociações frequentes durante um determinado período não é maior do que o preço final. Por outro lado, ela também pode garantir que o preço médio recebido por um ativo em negociações frequentes durante um determinado período não é inferior ao preço final.

4 Resultados

Segundo os dados de que o preço de uma ativo em seu tempo inicial vale $X_0 = 1$, a taxa de juros r = 3 a.a., tempo de vencimento da opção T=1 ano, strike = 1.1 e volatilidade $\sigma = 15$ a.a.

Primeiramente apresentaremos os resultados obtidos através do cálculo das opções de compra e venda através do modelo de BMS.

opções	compra	venda
preços		

Agora veremos os resultados das simulações através do método de Monte Carlo.

nº simulado	opção de compra	opção de venda	tempo	diferença BMS
100				
1000				
5000				
10000				
100000				

Preço da opção americana, calculada pelo pacote XXX.

nº simulado	opção de compra	opção de venda
100		
1000		
5000		
10000		
100000		

5 Conclusão

A principal vantagem da simulação de Monte Carlo é que ela pode ser utilizada quando o resultado depende do caminho seguido pela variável subjacente S e também quando depende apenas do valor final de S. (Por exemplo, ela pode ser usada quando os resultados dependem do valor médio de S entre o tempo 0 e o tempo T.) Os resultados podem ocorrer várias vezes durante a vida do derivativo em vez de todos no final. Qualquer processo estocástico para S pode ser acomodado. Como mostraremos a seguir, o procedimento também pode ser estendido para acomodar situações nas quais o resultado do derivativo depende de diversas variáveis de mercado subjacentes. As desvantagens da simulação de Monte Carlo são o fato de ela exigir muitos recursos computacionais e de não lidar facilmente com situações nas quais há oportunidades de exercício antecipado(Hull)

Na prática, o método escolhido provavelmente dependerá das características do derivativo avaliado e do nível de precisão exigido. A simulação de Monte Carlo vai do início para o fim da vida de um derivativo. Ela pode ser utilizada para derivativos europeus e consegue lidar com bastante complexidade com relação aos resultados. Ela se torna relativamente mais eficiente à medida que o número de variáveis subjacentes aumenta. As abordagens de árvore e os métodos das diferenças finitas vão do final da vida de um título para o seu começo e podem acomodar derivativos americanos e europeus. Contudo, elas são difíceis de aplicar quando os resultados dependem do histórico pregresso das variáveis de estado e não apenas de seus valores atuais. Além disso, elas correm o risco de se tornarem muito dispendiosas em termos de recursos computacionais quando três ou mais variáveis estão envolvidas(Hull)