Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

2/F=n

NEVADA COOPERATIVE SNOW SURVEYS

Part II. Humboldt Basin, Central and Southern Nevada

Snow Survey March 1, 1941

Issued in cooperation with the Nevada Agricultural Experiment Station, Division of Irrigation of the Soil Conservation Service, Forest Service, Bureau of Reclamation, Weather Bureau, Geological Survey, Humboldt River Water Users, Nevada State Engineer, and Elko-Lamoille Power Company.

Nevada Agricultural Experiment Station

Rono, Novada

SNOW SURVEY

MARCH 1, 1941

FEDERAL-STATE COOPERATIVE SHOW SURVEYS*

HUMBOLDT RIVER BASIN

Past experience has demonstrated that a forecast for the flow of the Humboldt Basin Streams cannot be attempted until the April 1 snow surveys have been made since the snowfall or lack thereof during the month of March makes a large difference in the expected yield of the watershed. The forecast has not been released until about April 10 for many years although the principal survey was made on March 1. Since there are some engineers and others that are interested in the data as soon as the surveys are made, it was deemed advisable to issue a bulletin riving this information as soon after March 1 as possible.

In this bulletin, no attempt is made to give a forecast of the expected runoff of the streams. The data are published as received and computed and
comparative figures of the water content on the courses for the past five years
are given for the sake of those who desire to make their own study of the snew
storage situation. There is also a table given which shows the increase or
decrease of the snow water-content on the key courses during the month of March
as shown by the March 1 and April 1 surveys. This table demonstrates the
uncertainty of the amount of the final snowpack as shown by a March 1 measurement.

The regular forecast of stream flow together with detailed data will be issued, as in the past, about April 10th.

The Federal-State Cooperative Snow Surveys in the Humboldt Basin includes: The Nevada Cooperative Snow Surveys, Division of Irrigation of the Soil Conservation Service, Forest Service, Bureau of Reclamation, Weather Bureau, Nevada Agricultural Experiment Station, Geological Survey, Humboldt River Water Users, Nevada State Engineer, and the Elko-Lambille Power Company.

MARCH I SNOW SULVEY, HUTBOLDT BASIN, WORTH OF HUMBOLDT RIVER.

	• •	•		[54]	•	. Mater	content	on same	e date	previous	
	• ••							years			
	Elevation:	Date	Snow depth	Density	ater	1940	1939:	1938:	1937 :	1936:	
Upper Humboldt Basin			inches	percert	content		•• ••				
lidas	: 0002	Feb. 28	18.7	38.9	7.28	5.2*	•• ••	•• •	••	•••	
Jack Creek	7800:	Far. 2	28.7	32.7	0.38	8.0	12.9	4.5	7.3	15.4	
Jack Creek	. 0007	far. 2	10.1	41.7	4.21	•	7.9:	2.4 :	4.4	8.2.	
Tavlor Canvon	•• ••	Feb. 27	21.3	7.85.	20.05				0 4		
Tremewan Ranch	•	Teb. 28	ω. ω.	36,4	3.20		2.4.	 H O	6.4		
Rodeo Flat	7000	far. 2	29.5	35. 6	10.5	7.5	11.0 :	6	9 8	18.8.	
Fry Canyon	3800:	Far. 2	25.5	36.0	9.19		10.0	7.2	10.0	18.1	
Big Bend	•• ••	Far. 1	29.4	33.7	06.6	6.4	7.2 ::	8 8	ა 4	16.4	
Gold Creek Eanger St.	••	far. 1	20.1	30.8	6.20	: 4.7 :	4.5 :	4.8	7.8	11.2:	
5	••		0	L G		·· L	••	•• 0	•• (
Degr Creek Roy Creek	••••	. ar. 4 Feb. 27	7°24 - 7°	0.82. 0.18.	14.2	15.5:	10.01 8 7 8	10.0	15.0°	. 0.22	
	• ••	•	d • • 1	H •	•		• ••	7	 ->		
Larys River	••					: 14.7 :	16.5:	14.2 :	14.9 :	25.4:	
£	••					••		••	••	••	
Little Humbolat Basin							••	•• •	•• ••	•• ••	
Lamance Creek	• ••	Feb. 26	34.5	34.5	11.90	. 6.6	8.7 :	6.9	11.0	19.9:	
Granițe Pe. k	••	Bar. 3	45.0	35.0	15.73	15.0:	12.8:	13.5:	7.9	12	
Wartin Creek Ranger St.	 		24.5	31.6	7.78	: 8°9 :	 2.8	8.1 :	. 0.9	7.54	
Upper Buckskin It.	••	Er. 1	35.8	37.4	13.39	: 10.8 :	 0. &	7.2 :	ω. ω.	13.27	
Lower Buckskin !t.	••	Fer. 2	25.9	32.5	8.41	. 5.8 .	6.7 :	8.1.	8.3	11.06	

^{*} February measurement

. . the state of the s and the second of the second o and the second s A A $(x_1,\dots,x_n) = (x_1,\dots,x_n) =$ * 4 * ** .

MARCH I SMOW SUFVEY, HUMBOLDI BASIN, fOUTH OF HUMBOLDI HIVER.

			1941	941	•	: Water	content	on same	date	previous	
; ;	Elevation	Date	Snow depth inches	Density percent	Water	1940 :	1,539 :	1938 :	1937 :	1936:	
Upper Humboldt Basin						••	••	•• •	•••		
Lamoille Creek	0006	Feb. 28	69.8	32.5	22.72	20.4::	23.4 :	19.0 :	20.3	30.5	
Lamoille Creek	SOOC cross	: Feb. 28	55.2	32.7	21.34	19.4:	22.7 :	16.3:	20.3 :	34.2 :	
Lamoille Creek	0053	: Feb. 27	44.3	54.5	15.32	: 14.7 :	••		••		
Lamoille Creek	0013	Far. 1	33.7	23.1	11.17	: 11.8:	12.6:	10.7:	12.9 :	17.4 :	
Lamoille Creek	7600	Far. 1	28.0	53.3	0.42	. 9.1	9.4	9.2 :	10.5:	14.1:	
Lampille Creek	7400		28.1	36.4	10.23	: 7.4 :	8.6.		10.5:	14.3 :	
						••	••	••	••	••	
Corral Canvon	2500	: Far. 4	49.0	27.0	13.25	: 14.4 :	16.1:	11.3:	8.1.	16.5 :	
Green Wountain	8000		41.1	53.3	13.7	: 13.1 :	15.3:	11.1:	11.8:	20.6:	
Harrison Pass No. 2	7400	: Feb. 28	21.1	28.5	6.01	. 6.9 :	5.3	5.5	5.0.:	0. 0.	
Harrison Pass No. 1	0099	: Feb. 27	16.6	32.3	5.37	. 4.6 :	5.1 :	4.4:	5.2	7.9:	
		••				••	••	••	••	••	
Hager Canvon	8500	: ?ar. 4	47.5	31.2	14.82	: 19.3 :	••	••	••	••	
Cave Creek	2000	••				: 12.4 :	••	••	••	••	
		••				••	••	••	••	41	
Dorsev Easin	8100		43.5	22.1	09.6	: 11.3:	8.1.	6.1 :	10.0:	19.8 :	
Dry Greek	6500		19.8	33.3	09.9	. 3.2 :	3.6		တ လ	11.0:	
Evan Ranch	5775	: Far. 3	1.2	37.9	0.44	. 0.5 .	1.6:	1.5:	4.8	3.5 :	
						••	••	••	••		
Trout Creek	8500		65.1	36.0	24.88	: 16.7:		16.1:	•	28.8:	
Trout Creek	0039	: Far. 3	16.2	40.1	6.50	: 7.4 :	5.0	6,5	 9°&	9.8	

and the second of the second o the second second to the second secon and the second control of the second control 1.5 and the said

WINTER PRECIPITATION

dise						
Peradise	0.72	1.38	2.07	1.83	00.9	4.38
Tuscarora	1.14	1,50	1.83	1.69	6.16	20.9
North Fork	0.33	1.52	1.53	1.82	5,20	₹9•₹
%ells	0.79	1.24	0.03	7/.	8° 50	4.00
Arthur	0.72	0.83	2 3	1.4%	5.42	7.38
Hylton	0.43	0.85	1.0.	1.09	5.41	5.04
Lamoille	1.25	1.61	69.0	1.38	. 93	6,33
Elko	0.28	1.62	1.05	1.16	4,11	27.7
	November	December	January	February	Total	Weather Bureau normal

Precipitation below normal on South Side; slightly above normal on Morth Side; considerably above normal in Little Humboldt.

WINTER RUNOFF 1940-1941 (acrefeet)

Humboldt River	at Palisade	Martin Creek a	t U.S. Gaging Point
1940-41	1939-40	1940-41	1939-40
Nov. 1,570	2,300	510	350
Dec. 12,280	3,510	550	450
Jan. 3,840	5,900	555	·500
Feb. 13,346	12,000	2,650	1;690
Total 21.036	23,710	4,265	2,990
(Nov-Feb)			

TENTERATURE DEPARTURE FROM NORMAL AT ELKO, NEVADA. °F.

	1940-41	1.939-40
November	-2.6	+3.3
December	+4.0	∔ 8.3
January	0.0	+ 5.2
February	+4.0	45. 9
Average	+1.4	÷5.7

WELL MEASURELENTS

Lamoille Valley

(Average of 5 wells on harch 1)

1935	5.03 ft. below surface of ground
1936	3.72
1937	3.57
1938	4.50
1939	3.92
1940	4.50
1941	5.70

\$ 100 \$ 100

MAIN HUMBOLDT

In the entire Humboldt Basin the snow cover is better on March 1 than on March 1 last year. Dividing the area by sections, the northern feeders of the main Humboldt now have 40% more snow than on March 1, 1940. Of the southern feeders Lamoille and South Fork have 7% more and Trout Creek 16% more than last year. Reports have not yet been received from Dorsey Basin. The reasons for the apparent divergence between the northern and the southern feeders is that the snow cover a year ago in the north was abnormally lower than in the south. The present year the snow courses on both sides of the basin are more nearly uniform in percentage of normal. However, none of the courses are up to normal.

The precipitation during the months of November-February is also below normal on the south side of the Basin but slightly above normal on the north side. The temperature for this period was 1.4°F. above normal as compared with 5.7°F. last year. However, excess temperature in winter is usually insufficient to cause serious melting. The winter runoff of the Humboldt for Nov-Feb. at Palisade was 21,036 acre feet as compared with 23,710 acre feet last year.

LITTLE EUMBOLDT

The snow cover the present year on March 1 is 18% better than a year ago. The precipitation for Nov-Feb. was also considerably above normal. The runoff of martin Creek for this period (Nov-Feb.) was 4,265 acre feet as compared with 2,990 in the similar period of 1939-40.

Forecast

The runoff for the coming summer will depend upon the precipitation during March. The density of the snow is high, indicating the effect of the winter temperature and a tendency to melt readily. To date as good a runoff as last season can be expected. Tables are included to assist in comparison of the present season with the previous seasons of 1936 through 1940. The table indicating change in snow cover during March for the years since 1935 will afford opportunity to follow the effects of the winter.

Final forecast will be made about April 10th.

WILD LIFE REFUGES

The U. S. Fish and Wild Life Service is now cooperating in the taking of snow surveys in its various refuges to determine the snow conditions in winter and water supplies in summer. In Ruby Valley the snow survey at Hager Canyon indicates a snow depth on March 4th of 47.5 in. and water content 14.82 in. (dens. 31.2%).

In the Sheldon Antelope Refuge in northern Washoe County on February 27th. the snow on Mahogany Mountain was 16.9 in. dept. with water content of 5.28 in. (dens. 31.2%) and on Bald Mountain 21.6 in. snow with water content 5.93 in. (dens. 27.5%).

the second of the second of

PAST RECORD OF CHANGE IN SNOW MATER CONTENT DURING THE MONTH OF MARCH AS SHOWN BY THE MARCH 1 AND APRIL 1 SNOW SURVEYS.

(ALL FIGURES ARE INCH SS WATER DEPTH)

		Lamoille 7400	Lamoille 7600	Lamoille 8100	Lamoille 9000	Big Bend	Fox Creek
1935	March 1	7.6	7.5	ထ	20.4	9 4 •	7.4
	April 1	i	8 5	11.4	t	ω ω	6•9
1936	March 1	7.1	14.1	17.4	36.5	16.4	13.6
	April 1	14.3	15.9	17.2	33.9	19.2	15.9
1937	March 1	10.3	10.5	12.9	. 50.3	9.4	9.1
	April l	1 -	12.9	16.0	25.4	10.5	10.9
1938	March 1	о. • •	8-6	10.7	19.0	8 .2	7.2
)) •	April 1	15.1	15.3	17.0	29.1	11.4	
	More J	¢					
1939	idai eii T	Ω •	₽• 00	. 12.6	23.4	7.2	8 • 7
	April 1	2.0	4.5	6°3	21.5	5.4	4.5
1940	March 1	7.4	9.1	11.8	20.4	6 • 4	. 2.2
	April l	7.3	9.6	14.3	29.5	3 8 8	3.5
1941	March 1	10.2	9.4	11.2	22 • 7	6.6	7.6
1	April 1						

CENTRAL AND SOUTHERN NEVADA

Snow surveys have now been established for Steptoe Valley at Murray Summit and also on Charleston Mountain near Las Vegas to seek a possible relationship between the snow cover on Charleston peak and the flow of artesian wells at its base.

Both stations are located in the Nevada Forest which is providing cooperation like the Humboldt and Toiyabe Forests in the Humboldt Basin.

The following measurements have been reported.

Steptoe Valley

Murray Summit	March 1	snow Depth 11.6 in.	atur Content 4.19 in.	Density 36.1%
			·•	

Charleston Mountain

Course	Date		Elevation (Ft.)	Snow Depth (In.)	Water Content (In.)	Density (%)
Kyle Canyon	March	4	7,400	37.8	11.7	31.0
11 11	Larch	3	8,200	60.7	18.9	31.5
Rainbow Canyon	Ħ	5	7,800	70.9	22.4	31.6
Lee Canyon		6	8,300	56.1	16.5	29.4
11 11		7	9,000	68.7	20.6	30.0

The winter precipitation (Dec.-Feb.) at Las Vegas was 280 percent of normal. Thus the normal snow cover on Charleston Mountain should be approximately 1/3 of the amount measured this year.

Nevada Agricultural Experiment Station

Carl Elges, Forecaster

Reno, Nevada

Larch 11, 1941

J. E. Church, Advisor

