CHƯƠNG X. MÁY ĐIỆN 1 CHIỀU

- 10.1. Nguyên lý làm việc
- 10.2. Cấu tạo
- 10.3. Sức điện động phần ứng và mô men điện từ
- 10.4. Tia lửa điện và biện pháp khắc phục
- 10.5. Phân loại
- 10.6. Máy phát điện một chiều
- 10.7. Động cơ điện một chiều

10.1 Nguyên lý làm việc

Máy phát

Độ lớn:

 $e_{td} = B l v$

Chiều: theo qui tắc bàn tay phải

10.2 Cấu tạo

1. Stato (phần cảm)

Pôle inducteur

2. Rôto (phần ứng)

9

Các đại lượng định mức

• P_{dm}: Công suất đầu ra, W, kW

- Máy phát : Công suất điện

- Động cơ: Công suất cơ

 \bullet U_{dm} : V, kV

 $\bullet I_{dm}: A, kA$

• Tốc độ quay n_{dm} , hiệu suất,...

10.3 Sức điện động phần ứng và mô men điện từ

1- Sức điện động phần ứng

$$e_{tr} = Blv$$
 $B = \frac{\phi}{\tau l}$ $\tau = \frac{\pi D}{2p}$

+ B: Từ cảm trung bình dưới mặt cực

+ 1 : Chiều dài tác dụng thanh dẫn

+ v : Vận tốc dài của thanh dẫn
$$V = \frac{\pi Dn}{60}$$

: không đổi

+ N: Tổng số thanh dẫn phần ứng

+ 2a : số nhánh song song

$$E_{u} = \frac{N}{2a} e_{u} \qquad E_{u} = \frac{pN}{60a} \phi n$$

$$e_{u} = \frac{\phi}{\frac{\pi Dn}{2p}} 1 \frac{\pi Dn}{60}$$

$$e_{u} = \frac{p\phi}{30}n$$

2- Mô men điện từ

$$f_{dt} = Bli_u$$
 i_u

$$i_{u} = \frac{I_{u}}{2a}$$

$$f_{dt} = Bli_{tr}$$
 $i_{tr} = \frac{I_{tr}}{2a}$ $f_{dt} = \frac{\phi}{\frac{\pi D}{2p}} 1 \frac{I_{tr}}{2a} = \frac{p\phi}{\pi D} \frac{I_{tr}}{a}$

$$F_{_{dt}}=Nf_{_{dt}}=\frac{pN}{\pi Da}\varphi I_{_{tr}}$$

$$\mathbf{M}_{\scriptscriptstyle dt} = \frac{pN}{2\pi a} \phi \mathbf{I}_{\scriptscriptstyle u}$$

$$\mathbf{M}_{\mathrm{dt}} = \mathbf{F}_{\mathrm{dt}} \, \frac{\mathbf{D}}{2}$$

$$\mathbf{M}_{dt} = \mathbf{k}_{m} \phi \mathbf{I}_{u}$$

3- Công suất điện từ

$$P_{\text{dt}} = M_{\text{dt}} \omega = \frac{pN}{2\pi a} \phi I_{\text{tr}} \frac{2\pi n}{60} = \frac{pN}{60a} \phi n I_{\text{tr}}$$

$$P_{\text{dt}} = E_{\text{u}} I_{\text{u}}$$

10.4 Tia lửa điện trên vành góp - biện pháp khắc phục

1. Nguyên nhân :

- a. Cơ khí
- b. Đổi chiều

2. Biện pháp khắc phục

10.5 Phân loại

1. Máy điện một chiều kích từ độc lập Ide

• Máy phát

Phương trình: $U = E_{ir} - R_{ir} I_{ir}$

$$I_{ur} = I$$

Ở chế độ định mức:

$$\begin{aligned} \mathbf{U}_{\text{dm}} &= \mathbf{E}_{\text{udm}} - \mathbf{R}_{\text{u}} \, \mathbf{I}_{\text{udm}} \\ \mathbf{I}_{\text{udm}} &= \, \mathbf{I}_{\text{dm}} \quad = \frac{\mathbf{P}_{\text{dm}}}{\mathbf{U}_{\text{dm}}} \end{aligned}$$

• Động cơ:

Phương trình: $U = E_u + R_u I_u$

$$I_{u} = I$$

Ở chế độ định mức:

$$U_{\text{dm}} = E_{\text{udm}} + R_{\text{u}} \; I_{\text{udm}}$$

$$I_{\text{udm}} = I_{\text{dm}} + I_{\text{udm}}$$

$$I_{\text{udm}} = I_{\text{dm}} = \frac{P_{\text{dm}}}{\eta_{\text{dm}} U_{\text{dm}}}$$

2. Máy điện một chiều kích từ song song

• Máy phát

Phương trình:

$$I_{\rm u} = I + I_{\rm kt}$$

 \mathring{O} chế độ định mức : $U_{dm} = E_{udm} - R_u I_{udm}$

$$\boxed{I_{\text{udm}} = I_{\text{dm}} + I_{\text{kt}}} = \frac{P_{\text{dm}}}{U_{\text{dm}}} + I_{\text{kt}}$$

• Động cơ:

$$I_{\rm u} = I - I_{\rm kt}$$

Ở chế độ định mức:

$$U_{dm} = E_{vdm} + R_v I_{vdm}$$

Phương trình:
$$U = E_u + R_u I_u$$

$$I_u = I - I_{kt}$$

$$U_{dm} = E_{udm} + R_u I_{udm}$$

$$I_{udm} = I_{dm} - I_{kt} = \frac{P_{dm}}{\eta_{dm} U_{dm}} - I_{kt}$$

3. Máy điện một chiều kích từ nối tiếp

4. Máy điện một chiều kích từ hỗn hợp

10.6 Máy phát điện một chiều

1. Quá trình thành lập điện áp

 $=>I_{kt2}>I_{kt1}....$

 $=>I_{kt2}>I_{kt1}....$ - Tồn tại ϕ_{du} - ϕ_{kt} cùng chiều ϕ_{du} - $\alpha<\alpha_{th}$ - α_{dc} sơ cấp đủ lớn

$$tg \alpha = R_{kt} = R_{d/c} + r_{kt}$$

$$=> R_{d/c} < R_{th}$$

2. $\mathbf{\mathcal{D}}$ ặc tính ngoài: Quan hệ U = f(I)

$$\label{eq:decomposition} \begin{split} \text{Diều kiện} & \left\{ \begin{array}{l} n = const \\ R_{kt} = const \end{array} \right. \end{split}$$

a- Kích từ độc lập

 $U = E_{rr} - R_{rr} I_{rr}$ Khi I -- Phản ứng phần ứng => từ thông ¢ tổng giảm → U giảm

b. Kích từ song song

3. Đặc tính điều chỉnh

Quan hệ
$$I_{kt} = f(I)$$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

10.7 Động cơ điện một chiều

1.
$$M\mathring{o}$$
 $m\acute{a}y$ $n = 0 \implies E_{um} = k_e \phi n = 0$

$$U_{dm} = E_{um} + R_{u} I_{um} = I_{um} = \frac{U_{dm}}{R_{u}} \Rightarrow R \acute{a}t \ l\acute{o}n$$
 Rất nhỏ

$$\longrightarrow$$
 Tia lửa mạnh \longrightarrow Phải giảm I_{um}

Phương pháp mở máy

a. Nối tiếp R_f với R_w

$$I_{um} = \frac{U_{dm}}{R_u + R_f}$$

$$R_f = ? \text{ dê } I_m \le (2 \div 2.5) I_{dm}$$

- KT độc lập: $I_m = I_{um}$
- KT song song: $I_m = I_{um} + I_{kt}$
- b. Giảm điện áp phần ứng
 - Nối nối tiếp các rô to
 - Bộ điều chỉnh điện áp

2. Đặc tính cơ: n = f(M)

$$U = E_{u} + R_{u} I_{u} \qquad E_{u} = U - R_{u} I_{u}$$

$$E_{u} = k_{e} \phi n \qquad = \qquad n = \frac{U_{dm}}{k_{e} \phi} - \frac{R_{u} I_{u}}{k_{e} \phi}$$

* Động cơ kích từ song song và độc lập

$$M = k_m \phi I_u \qquad \Longrightarrow \qquad n = \frac{U_{dm}}{k_e \phi} - \frac{R_u}{k_e k_m \phi^2} M$$

Khi U và ϕ = const

$$\frac{U_{dm}}{k_e \phi} = const = n_o$$

$$\frac{R_u}{k_e k_m \phi^2} = const = b$$

$$n = n_o - bM$$

Kích từ song song và độc lập n n_{o} $\boldsymbol{n}_{\text{dm}}$ M $M_{\text{d}\text{m}}$

3. Điều chỉnh tốc độ
$$n = \frac{U_{dm}}{k_e \phi} - \frac{R_u}{k_e k_m \phi^2} M$$

a. Thay đổi R_f nối tiếp mạch phần ứng

$$c\acute{o} \ R_f \ \begin{cases} n_o = \frac{U_{dm}}{k_e \phi} = const \\ d\mathring{o} \ d\acute{o}c \quad b = \frac{R_u + R_f}{k_e k_m \phi^2} \end{cases} \ / \$$

- Điều chỉnh trơn
- Phạm vi tương đối rộng
- Vùng $n_{dc} < n_{dm}$: dưới định mức
- Độ cứng đặc tính cơ giảm
- Tổn hao trên R_f

23

b. Giảm điện áp phần ứng U $n = \frac{U_{dm}}{k_{o}\phi} - \frac{R_{u}}{k_{o}k_{o}\phi^{2}}M$

$$n = \frac{U_{dm}}{k_e \phi} - \frac{R_u}{k_e k_m \phi^2} M$$

giảm U
$$\begin{cases} n_o = \frac{U}{k_e \phi} \\ d\hat{\varphi} & d\hat{\varphi} \end{cases} = \frac{R_u}{k_e k_m \phi^2} = const \quad n_o \end{cases}$$
 Đặc tính tự nhiên

 $U_3 < U_2 < U_1 = U_{dm}$

* Đặc điểm

- Điều chỉnh trơn
- Dải điều chỉnh rộng
- Vùng $n_{dc} < n_{dm}$
- Độ cứng đặc tính cơ không thay đổi
- Cần nguồn 1 chiều thay đổi được U
 - Tổ MF ĐC
 - Bộ chỉnh lưu có điều khiển → Được sử dụng rộng rãi nhất 24

$$c. \ Thay \ d\mathring{o}i \ \phi \qquad \qquad n = \frac{U_{dm}}{k_e \phi} - \frac{R_u}{k_e k_m \phi^2} M$$

$$gi \mathring{a}m \ \phi \qquad \qquad \qquad \phi_3 < \phi_2 < \phi_1 = \phi_{dm}$$

$$d\mathring{o} \ d\mathring{o}c \qquad b = \frac{R_u}{k_e k_m \phi^2} \qquad \qquad n$$

 $M_{\text{d}m}$

Đặc tính

tự nhiên

* Đặc điểm

- Điều chỉnh trơn
- Phạm vi tương đối rộng
- Vùng $n_{dc} > n_{dm}$ Khi $M_c = M_{dm} = const$

- Độ cứng đặc tính cơ có thay đổi
- Tổn hao ít, hiệu suất cao $(P_{kt} << P_{dc})$

25

M

<u>So sánh ĐC 1 chiều và ĐC KĐB :</u>

- *Ưu điểm*: khả năng điều chỉnh tốc độ tốt
- Nhược điểm: cấu tạo phức tạp, giá cao, chi phí vận hành và bảo dưỡng lớn, nguồn 1 chiều

Ví du:

Động cơ 1 chiều KT// có : $P_{dm} = 15 \text{ kW}$; $U_{dm} = 220 \text{ V}$;

$$R_{tt} = 0.35 \Omega$$
; $R_{kt} = 100 \Omega$; $\eta_{dm} = 0.88$; $n_{dm} = 1300 \text{ vg/ph}$

- 1. Tìm R_f nối tiếp mạch Roto để $I_m \le 2,5 I_{dm}$
- 2. Cho đ/c làm việc ở chế độ máy phát với $P_{dm} = 16 \text{ kW}$;

 $U_{dm} = 230V$; biết $I_{kt} = const.$ Tìm n_{dm} ở chế độ máy phát

Giải:

1. Tìm $R_{\rm f}$ nối tiếp mạch Roto để $I_{\rm m} \leq$ 2,5 $I_{\rm dm}$

$$I_{m} = I_{um} + I_{kt}$$
 => $I_{m} = \frac{U_{dm}}{R_{u} + R_{f}} + \frac{U_{dm}}{R_{kt}} \le 2,5I_{dm}$

$$I_{dm} = \frac{P_{dm}}{\eta_{dm} U_{dm}} = \frac{15.10^3}{0.88.220} = 77.5 A$$

$$\frac{220}{0.35 + R_f} + \frac{220}{100} \le 2.5.77,5 \implies R_f \ge \frac{220}{2.5.77,5 - 2.2} - 0.35 = 0.8 \Omega$$

2. Tìm n_{đm} ở chế độ máy phát

$$\begin{array}{lll} \text{T}\grave{\textbf{u}} & E_{\textbf{u}} = k_{\textbf{e}}\, \phi \,\, n \,\, => \,\, & \frac{E_{\textbf{u}\text{dmF}}}{E_{\textbf{u}\text{dm}D}} = \frac{\textbf{k}_{\textbf{e}} \phi_{\textbf{dmF}} n_{\textbf{dmF}}}{\textbf{k}_{\textbf{e}} \phi_{\textbf{dm}D} n_{\textbf{dm}D}} & => \,\, n_{\textbf{dmF}} = \frac{E_{\textbf{u}\text{dmF}}}{E_{\textbf{dm}D}} n_{\textbf{dm}D} \end{array}$$

$$E_{\text{udmF}} = U_{\text{dmF}} + R_{\text{u}}I_{\text{udmF}}$$

$$I_{\text{udmF}} = I_{\text{dmF}} + I_{\text{kt}}$$

$$I_{dmF} = \frac{P_{dmF}}{U_{dmF}} = \frac{16.10^3}{230} = 69.6 \text{ A}$$

$$I_{udmF} = I_{dmF} + I_{kt} = 69.6 + 2.2 = 71.8 A$$

$$E_{udmF} = 230 + 0.35.71.8 = 255.13 \text{ V}$$

$$E_{udmD} = U_{dmD} - R_u I_{udmD}$$

= 220 - 0,35.(77,5-2,2) = 193,6

$$n_{dmF} = \frac{255,13}{193.6}1300 = 1713 \text{ vg/ph}$$