REPUBLIQUE DU CAMEROUN

Paix - Travail - Patrie

UNIVERSITE DE YAOUNDE I

ECOLE NATIONALE
SUPERIEURE
POLYTECHNIQUE DE
YAOUNDE

DEPARTEMENT DE GENIE INFORMATIQUE

Logo (uploader logo.png)

REPUBLIC OF CAMEROON

Peace - Work - Fatherland

UNIVERSITY OF YAOUNDE I

NATIONAL
ADVANCED SCHOOL
OF ENGINEERING
OF YAOUNDE

DEPARTMENT OF
COMPUTER
ENGINEERING

Chapitre 2 – Archéologie des Régimes de Vérité Numérique

Analyse critique et résolution complète des exercices

Participant: TAPA loic Superviseur: M. [Thierry MINKA]

Année Académique : 2025–2026

Table des matières

1	Intr	roduction	2	
2	Partie 1 : Analyse Historique et Épistémologique			
	2.1	Exercice 1 — Analyse comparative des régimes de vérité	2	
	2.2	Exercice 2 — Étude de cas archéologique foucal dienne	3	
3	Partie 2 : Modélisation Mathématique et Prospective			
	3.1	Exercice 3 — Modélisation de l'évolution des régimes	4	
	3.2	Exercice 4 — Vérification de l'accélération technologique	5	
	3.3	Exercice 5 — Analyse du Trilemme CRO Historique	6	
4	Partie 3 : Investigation Historique Appliquée			
	4.1	Exercice 6 — Reconstruction Archéologique (Mitnick)	6	
	4.2	Exercice 7 — Projet de recherche archéologique	7	
	4.3	Exercice 8 — Prospective 2030–2050	7	
\mathbf{A}	nnex	es	8	

1 Introduction

Ce document répond de façon complète et appliquée à l'ensemble des exercices du Chapitre 2 « Archéologie des Régimes de Vérité Numérique ». Chaque exercice est traité conformément au guide de correction : cadre foucaldien, analyses empiriques, modélisations mathématiques, scripts de simulation, figures et recommandations opérationnelles pour l'investigateur numérique.

2 Partie 1 : Analyse Historique et Épistémologique

- 2.1 Exercice 1 Analyse comparative des régimes de vérité
- 1. Choix des périodes. Nous retenons : 1990–2000 et 2010–2020. Motif : périodes bien documentées dans le Chapitre 2, avec cas emblématiques (Mitnick, Enron, Silk Road).
- 2. Méthode de calcul du vecteur de dominance. Pour chaque période, on évalue quatre dimensions : technique (T), juridique (J), social (S), professionnel/pratiques (P). On attribue des scores bruts s_i (sur 100) puis on normalise :

$$\alpha_i = \frac{s_i}{\sum_j s_j}, \qquad \vec{R} = (\alpha_T, \alpha_J, \alpha_S, \alpha_P).$$

3. Application chiffrée et justification.

— **1990–2000** : $s_T = 20$, $s_J = 40$, $s_S = 10$, $s_P = 30$. Résultat :

$$\vec{R}_{1990-2000} = (0.20, 0.40, 0.10, 0.30).$$

Raison: forte professionnalisation juridique, procédures d'admissibilité.

— **2010–2020** : $s_T = 30$, $s_J = 15$, $s_S = 25$, $s_P = 30$. Résultat :

$$\vec{R}_{2010-2020} = (0.30, 0.15, 0.25, 0.30).$$

Raison : big data et algorithmes prennent plus de place; dimension sociale (médias, plateformes) grandissante.

- **4. Discontinuités épistémologiques (Foucault).** Selon Foucault, une discontinuité apparaît lorsque les conditions de possibilité des énoncés se déplacent. Ici :
 - Changement d'opérateur de vérité : de l'expert juridique à l'algorithme/plateforme.
 - Transformation des énoncés acceptables : vérités construites par corrélation à grande échelle (ex. preuves blockchain) deviennent dicibles.
- 5. Explication sociotechnique. Conjonction de réduction des coûts de stockage, montée en puissance des méthodes statistiques, normes internationales et incidents médiatisés qui forcent

les institutions à intégrer l'analyse algorithmique.

6. Question critique : progressif ou révolutionnaire ? Synthèse : progression cumulative (technologies et normes se développent) entaillée par ruptures ponctuelles (affaires majeures). C'est un modèle d'accumulation ponctuée (punctuated equilibrium).

Remarque pratique pour l'investigateur : toujours expliciter la composante \vec{R} dominante en début d'enquête (documenter pourquoi on privilégie tel type de preuve).

FIGURE 1 – Comparaison synthétique des régimes (vecteurs normalisés).

2.2 Exercice 2 — Étude de cas archéologique foucaldienne

Choix des affaires : Enron (2001) et Silk Road (2013). On applique la méthode foucaldienne : formation discursive, dicible/pensable, cartographie du régime.

Enron (2001)

Résumé des faits. Fraude comptable révélée par l'analyse d'archives électroniques (emails, rapports), audits.

Analyse foucaldienne.

- **Formation discursive** : l'émergence d'une manière de parler et d'argumenter la fraude via documents électroniques.
- **Dicible** : l'étendue des montages sans analyse algorithmique.
- **Régime** : preuve documentaire légitimée par audit technique et expertise judiciaire.

Conséquences forensiques. Développement d'outils TAR, nécessités de conserver chaînes de custody, métadonnées d'horodatage, hash.

Silk Road (2013)

Résumé des faits. Marché noir sur Tor, paiements en bitcoin; arrestation via corrélation blockchain + erreurs OPSEC.

Analyse foucaldienne.

- **Dicible** : flux transactionnels ; **pensable** : corrélation multi-sources (blockchain+OSINT+metadata
- **Régime** : vérité produite par triangulation algorithmique, acceptée si chaînage probatoire documenté.

Comparaison. Enron = vérité documentaire centrée sur le texte; Silk Road = vérité corrélationnelle centrée sur graphes et flux.

3 Partie 2 : Modélisation Mathématique et Prospective

3.1 Exercice 3 — Modélisation de l'évolution des régimes

But. Construire un modèle dynamique $\vec{R}_{t+1} = F(\vec{R}_t, \Delta \text{Tech}_t, \Delta \text{Legal}_t, \mathcal{I}_t)$, l'implémenter, simuler 50 ans, estimer probabilités de transition.

Modèle retenu.

$$z_t = W\vec{R}_t + \beta_T \Delta \text{Tech}_t + \beta_L \Delta \text{Legal}_t + \gamma \mathcal{I}_t$$
$$\vec{R}_{t+1} = \text{softmax}(z_t).$$

Raison du softmax. Assure contrainte de convexe (sommes à 1) et transforme contributions linéaires en probabilités normalisées.

Paramètres (calibrage empirique). Voir le texte pour choix de W, β_T , β_L , γ . On recommande calibration par données historiques (maximum likelihood / grid search).

Code complet (exécuter localement). -

```
beta_T = 0.6; beta_L = 0.4; gamma = 1.0
14
   def step(R,deltaT,deltaL,incident):
       z = W.dot(R) + beta_T*deltaT + beta_L*deltaL + gamma*incident
16
       return softmax(z)
18
  def simulate(R0, steps, scenario_fn):
19
       R = R0.copy()
20
       traj = [R.copy()]
21
       for t in range(steps):
           deltaT, deltaL, incident = scenario_fn(t)
23
           R = step(R,deltaT,deltaL,incident)
24
           traj.append(R.copy())
25
       return np.array(traj)
26
27
    Exemple d'utilisation et sauvegarde CSV pour inclusion pgfplots
2.8
```

Simulation d'exemple (résumé des résultats). Une exécution avec incidents ponctuels (t=10 techno, t=25 légal, t=35 incident médiatique) donne une trajectoire où la composante technique augmente graduellement, la composante juridique fluctue à la hausse lors des changements réglementaires, et la composante sociale réagit lors des incidents médiatiques.

Probabilités de transition. Estimer par Monte-Carlo (tirer N scénarios, compter fréquences d'atteinte d'un seuil, ex. $\alpha_T > 0.4$). Méthode robuste : 10k simulations, bootstrap pour IC.

FIGURE 2 – Exemple de trajectoire (jeu de données simulées).

3.2 Exercice 4 — Vérification de l'accélération technologique

Méthode. Collecter un ensemble étendu de ruptures (RFCs, émergence de standards, incidents majeurs), extraire Δt_n , ajuster $\Delta t_n = ak^n$ via optimisation non-linéaire (Levenberg-Marquardt ou MLE), tester significativité via bootstrap.

Résultat illustratif. Sur le petit jeu de dates du chapitre on trouve $k \approx 0.83$; mais incertitude élevée. Recommandation : élargir base historique puis refaire ajustement.

3.3 Exercice 5 — Analyse du Trilemme CRO Historique

Définition et méthode. CRO = (Confidentialité C, Fiabilité R, Opposabilité O). Estimer par période via indicateurs (normes adoptées, incidents de fuite, jurisprudence).

Estimations (valeurs exemplaires).

Période	_	R	O
1970-1990	0.60	0.40	0.30
1970–1990 1990–2000 2000–2010	0.50	0.60	0.70
2000-2010	0.45	0.70	0.80
2010-2020	0.40	0.65	0.60

Analyse synthétique. L'évolution montre la montée de l'opposabilité au tournant 2000 (procédures), puis tensions contemporaines liées à l'opacité algorithmique.

FIGURE 3 – Positions historiques dans l'espace CRO (illustration).

4 Partie 3 : Investigation Historique Appliquée

4.1 Exercice 6 — Reconstruction Archéologique (Mitnick)

Reconstitution 1995. Description des outils, limites, dépendance aux témoins. Protocoles d'investigation de l'époque : saisies, transmissions via coopérations limitées, méthodes rudimentaires de preuve.

Reprise 2025. Intégration SIEM, forensic RAM (Volatility), graph DB, IA pour corrélation. Résultat : vitesse et couverture accrues, risque de surconfiance dans output algorithmique.

Évaluation critique. Comparer preuves admises : 1995 (forte valeur de témoignage et matériel) vs 2025 (valeur technique algorithmique + métadonnées). L'investigateur doit garantir auditabilité des algorithmes (log des modèles) pour l'admissibilité.

4.2 Exercice 7 — Projet de recherche archéologique

Sujet. Étudier la diffusion empirique des standards forensic (RFC3227, ISO27037) entre 1998–2010.

Méthodologie. Collecte de décisions de justice, mailing lists d'experts, rapports policiers; codage foucaldien des formations discursives; analyse comparative inter-États.

4.3 Exercice 8 — Prospective 2030–2050

Scénario: Régime "Neuro-digital". Données cognitives comme traces: exigences éthiques fortes, nouvelles normes d'attestation hardware, recours massif à preuves ZK et cryptographie homomorphique.

Protocole d'investigation proposé.

- Capture normalisée et horodatée avec attestation matérielle.
- Stockage chiffré multi-parties + secret sharing pour résilience.
- Usage de preuves ZK pour analyses sans divulgation du contenu mental.
- Gouvernance forte : comités multi-disciplinaires, cadre juridique.

Annexes

Annexe A — Script d'entropie (détection de chiffrement)

```
# entropie.py
import math
from collections import Counter

def shannon_entropy(data: bytes) -> float:
    if not data:
        return 0.0

counts = Counter(data)

n = len(data)

return -sum((c/n) * math.log2(c/n) for c in counts.values())

# usage: read file and call shannon_entropy
```

Annexe B — Extrait : construction de graphe (NetworkX)

```
# graphe_example.py
import networkx as nx

G = nx.DiGraph()
edges = [('A','B',10),('B','C',5),('A','C',2)]

for u,v,w in edges:
    G.add_edge(u,v,weight=w)

bet = nx.betweenness_centrality(G, weight='weight')

print(bet)
```

Conclusion

Ce document relie l'approche théorique foucaldienne et les impératifs pratiques de l'investigation numérique. Il fournit des modèles, procédures et scripts pour reproduire analyses et simulations : utile pour rendre la pratique forensique à la fois rigoureuse, justiciable et éthiquement contrôlée.

Références (sélection)

- M. Foucault, L'Archéologie du savoir, 1969.
- Casey, E., Digital Evidence and Computer Crime, 2011.
- NIST SP series, ISO 27037, RFC 3227.
- Cas d'étude : Mitnick (1995), Enron (2001), Silk Road (2013), SolarWinds (2020).