Simulation stochastique et méthodes bayésiennes pour le traitement du signal - 2018

TD1 : Introduction aux Statistiques Bayésiennes Yann Traonmilin

Rappel On rappelle les définitions des lois usuelles :

1. La loi normale $\mathcal{N}(m, \sigma^2)$ sur \mathbb{R} est définie par sa densité :

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

2. La loi Beta de paramètres α et β et $B(\alpha, \beta)$ a pour densité

$$f_{(\alpha,\beta)}(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{(\beta-1)} \chi_{[0,1]}(x).$$

où la constante $\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}=\int_0^1 u^{(\alpha-1)}(1-u)^{(\beta-1)}du$ est une constante de renormalisation. On peut remarquer que la loi de densité uniforme sur [0,1] est un cas particulier de la loi Beta pour les paramètres $\alpha=\beta=1$.

Exercice 1. On considère les modèles suivants :

• Soit $X = (X_1, X_2, \dots, X_n)$ n variables aléatoires discrètes iid à valeur dans [1, n] suivant une loi binomiale $X \sim \mathcal{B}(n, \theta)$:

$$\mathbb{P}(X=k) = C_n^k \theta^k (1-\theta)^{n-k}$$

On considère que n est fixé et $\theta \in [0, 1]$ est un paramètre.

• Soit $X = (X_1, X_2, \dots, X_n)$ n variables aléatoires discrètes iid à valeur dans \mathbb{N} suivant une loi de Poisson de paramètre $\theta = \lambda$:

$$\mathbb{P}(X_1 = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

Dans ces deux cas:

- 1. Exprimer la fonction de vraisemblance $L(\theta, k_1, k_2, \dots, k_n)$, où on pourra noter $s = \sum_{i=1}^n k_i$.
- 2. Déterminer le maximum de vraisemblance :

$$\hat{\theta} = \arg\max_{\theta \in \Theta} L(\theta, x).$$

Exercice 2. Soit X_i des v.a. iid telle que $\mathbb{P}(X_i = a|\theta) = \theta$ et $\mathbb{P}(X_i = b|\theta) = 1 - \theta$ où θ est une v.a. suivant la loi *a priori* définie par $\mathbb{P}(\theta = \theta_1) = p_1$ et $\mathbb{P}(\theta = \theta_2) = 1 - p_1$.

- 1. Déterminer $\mathbb{P}(\theta = \theta_1 | X_i = a)$.
- 2. Déterminer $\mathbb{P}(\theta = \theta_2 | (X_1 = a, X_2 = b))$.
- 3. Etudier les variations de $\mathbb{P}(\theta = \theta_2 | (X_1 = a, X_2 = b))$ en fonction de p_1 . Interpréter.
- 4. Déterminer $\mathbb{P}(\theta = \theta_1 | X = x)$ où $X = (X_i)_{i \leq n}$ et $x \in \{a, b\}^n$.

Exercice 3. Soit X_i des v.a. iid telles que $\mathbb{P}(X_i = a|\theta) = \theta$ et $\mathbb{P}(X_i = b|\theta) = 1 - \theta$ où θ est une v.a. suivant la loi uniforme sur [0,1]

- 1. Déterminer $\pi(\theta|(X_1 = a, X_2 = a, X_3 = b).$
- 2. Déterminer le maximum de cette loi a posteriori
- 3. Déterminer $\pi(\theta|X=x)$ où $X=(X_i)_{i\leq n}$ et $x\in\{a,b\}^n$.
- 4. Déterminer le maximum de cette loi a posteriori .

Exercice 4. Reprendre les questions précédentes dans le cas où θ est une v.a. suivant la loi Beta de paramètres α et β .

Exercice 5. Soit X_1 une v.a suivant une loi normale $\mathcal{N}(\theta, \sigma^2)$ où la variance σ^2 est fixée et où θ est une variable aléatoire prenant uniquement deux valeurs

$$\mathbb{P}(\theta = \theta_1) = p_1$$
 $\mathbb{P}(\theta = \theta_2) = 1 - p_1$.

- 1. Déterminer l'expression de $\mathbb{P}(\theta = \theta_1 | X_1)$.
- 2. Si on suppose que les v.a $(X_i)_{i \leq n}$ sont iid et suivent la loi de X_1 , que l'on note $X = (X_1, X_2, \dots, X_n)$ et que x est un vecteur de \mathbb{R}^n , déterminer l'expression de $\mathbb{P}(\theta = \theta_1 | X)$.

Exercice 6. Soit X_1 une v.a. suivant une loi gaussienne $\mathcal{N}(\theta, \sigma^2)$, où la variance σ^2 est fixée et où θ suit la loi normale $\mathcal{N}(\theta_0, \tau^2)$.

- 1. Donner une expression de la loi a posteriori $\pi(\theta|X_1)$.
- 2. Que pouvez vous dire de cette loi?
- 3. Même question si on considère une variable $X=(X_i)_{i\leqslant n}$.
- 4. Que pouvez vous dire de cette loi ? En quelle valeur est-elle maximale ?