Hunter Lybbert Student ID: 2426454 11-22-24 AMATH 561

PROBLEM SET 7
Note: Exercises 1-4 are from Matt Lorig's notes (link on course website).
1. Exercise 4.1. A six-sided die is rolled repeatedly. Which of the following a Markov chains? For those that are, find the one-step transition matrix.
(a) X_n is the largest number rolled up to the n th roll.
Solution: TODO:
(b) $X - n$ is the number of sixes rolled in the first n rolls. Solution: TODO:
(c) At time n, X_n is the time since the last six was rolled. Solution: TODO:
(d) At time n, X_n is the time until the next six is rolled. Solution: TODO:

2. Exercise 4.2.

Let $Y_n = X_{2n}$. Compute the transition matrix for Y when

(a) X is a simple random walk (i.e., X increases by one with probability p and decreases by 1 with probability q.

Solution:

TODO:

(b) X is a branching process where G is the generating function of the number of offspring from each individual.

Solution:

3. Exercise 4.3.

Let X be a Markov chain with state space S and absorbing state k (i.e., p(k,j)=0 for all $j\in S$). Suppose $j\to k$ for all $j\in S$. Show that all states other than k are transient.

Solution:

4. Exercise 4.4.

Suppose two distinct states i, j satisfy

$$P(\tau_j < \tau_i | X_0 = i) = P(\tau_i < \tau_j | X_0 = j)$$

where $\tau := \inf\{n \geq 1 : X_n = j\}$. Show that, if $X_0 = i$, the expected number of visits to j prior to re-visiting i is one.

Solution:

- 5. Stationary distribution of Ehrenfest chain. (a) Let X_n be the number of balls in the left urn at time n (total number of balls in both urns is r). At each time step, one of the r balls is picked at random and moved to the other urn.
- (a) Let $G_n(s)$ be the generating function of X_n . Derive a formula for G_{n+1} as a function of G_n .

Solution:

TODO:

(b) Let $G(s) = \lim_{n \to \infty} G_n(s)$. Use the relation in part a) to derive an equation for G. Solve it and find G.

Solution:

TODO:

(c) Find the stationary distribution π of Ehrenfest chain. What is the connection between G and π ?

Solution: