Modelos de Computação CC1004

2015/2016

1º Teste – 30.03.2016

duração: 2h

N.º Nome

1. Seja $A=(S,\{\mathtt{a},\mathtt{b}\},\delta,s_0,F)$ o AFND representado pelo diagrama indicado à esquerda, sendo δ uma função de $S\times\{\mathtt{a},\mathtt{b}\}$ em 2^S .

a) Indique os valores de $\delta(s_0, b)$, $\delta(s_2, a)$ e $\delta(s_3, a)$.

b) Por aplicação do método de conversão, determine o diagrama de transição de um AFD A' equivalente ao AFND A. Crie apenas os estados relevantes e designe-os por subconjuntos de S.

c) Diga, justificando, se baaa $\in \mathcal{L}(A)$ e se abaaba $\in \mathcal{L}(A)$.

2. Seja M o AFND- ε representado pelo diagrama indicado à esquerda. Seja δ a sua função de transição e seja δ' a função de transição do AFD equivalente (segundo a construção dada).

a) O estado inicial do AFD equivalente é

b) Sendo E o estado inicial do AFD equivalente, o valor de $\delta'(E,\mathtt{a})$ é e valor de $\delta'(E,\mathtt{b})$ é .

(Continua)

1º Teste de Modelos de Computação CC1004

2015/2016

N.º		Nome	
3.	Seja r a expressão re	gular ((Ø	$+$ (b*))((aa) + b)) sobre $\Sigma = \{a, b\}.$
a)	Determine o diagran	na de tran	asição do AFND- ε que resulta da aplicação do método de Thompson à astrução dada nas aulas. Apresente os AFND- ε intermédios.
b)	Indique uma expressã	io regular	$\mathbf{n\tilde{a}o}$ abreviada equivalente a r , mas mais simples. Justifique.
c)]	Descreva informalme	nte a ling	uagem $\mathcal{L}(r)$.

1º Teste de Modelos de Computação CC1004

2015/2016

N.º		Nome	
4.	Seja $L = \{x \mid x \in \Sigma\}$	Σ^* , x tem r	número par de b's e não termina em bb $\}$, com $\Sigma = \{a, b\}$.
a)	Determine o diagran	na de trans	sição de um autómato finito determinístico (AFD) que reconheça L e ado (i.e., o que memoriza) e porque é que é <i>necessário</i> .
	1 1 5		
			s das palavras de L e determine uma expressão regular $abreviada$ que e uma explicação sucinta.