Problem Set on Rationing, Frictional, and Efficient Unemployment

Pascal Michaillat

Problem 1

Consider a matching model with a labor force of size 1. The matching function is Cobb-Douglas:

$$m(U,V)=\sqrt{U\cdot V},$$

where U is the number of unemployed workers and V is the number of vacant jobs. Firms have a production function

$$y(N) = 2 \cdot a \cdot \sqrt{N},$$

where $a \le 1$ governs labor productivity and N denotes the number of producers in the firm. All workers are paid at a wage

$$w = \sqrt{a}$$
.

Firms incur a recruiting cost of r > 0 recruiters per vacancy and face a job-destruction rate s > 0. The labor market tightness is $\theta = V/U$ and the employment level is L = 1 - U.

- A. Compute the job-finding rate $f(\theta)$ and vacancy-filling rate $q(\theta)$. Assuming that labor-market flows are balanced, compute the recruiter-producer ratio $\tau(\theta)$. Compute the elasticities of f, q, and τ with respect to θ . Interpret the signs of the elasticities.
- B. Assuming that labor-market flows are balanced, compute labor supply $L^s(\theta)$. Compute the elasticity of L^s with respect to θ . Interpret the sign of the elasticity.
- C. Firms choose employment to maximize flow profits:

$$\gamma(N) - [1 + \tau(\theta)] \cdot w \cdot N$$
.

Compute the labor demand $L^d(\theta, a)$ by solving this maximization problem. Compute the elasticities of L^d with respect to θ and with respect to a. Interpret the signs of these elasticities.

- D. Characterize tightness $\theta(a)$ and employment L(a) in the model. Compute the elasticities of $\theta(a)$ and L(a) with respect to a. Interpret the signs of these elasticities.
- E. Would shocks to labor productivity *a* create realistic business cycles?

- F. Compute the amount of rationing unemployment $U^r(a)$ and frictional unemployment $U^f(a)$ in the model.
- G. Prove that $dU^f/da > 0$. Interpret the result and provide some policy implications.

Problem 2

Consider an economy with a mass 1 of participants in the labor force. The Beveridge curve takes a very simple form:

 $v(u)=\frac{\omega}{u},$

where $\omega > 0$ governs the location of the Beveridge curve. Each vacancy requires the attention of a full-time worker. Finally, all production takes place in firms and there is no home production at all. As a result, social welfare is determined by the number of producers in firms.

- A. Compute the socially efficient labor market tightness θ^* . How does θ^* depend on the parameter ω ?
- B. Compute the socially efficient unemployment rate u^* as a function of the actual unemployment and vacancy rates, u and v.
- C. Using the formulas derived above, compute the efficient tightness, efficient unemployment rate, and unemployment gap in the United States in December 2021. What are the policy implications of your results?