ГЕОМЕТРИЯ В КОМПЬЮТЕРНЫХ ПРИЛОЖЕНИЯХ

Лекция 2: Геометрия кривых и поверхностей

Богачев Николай Владимирович

8 сентября 2021

MIPT & Skoltech

Геометрия плоских кривых

Плоские кривые

- Гладкая кривая на \mathbb{R}^2 гладкое отображение $\gamma \colon [0,L] \to \mathbb{R}^2$
- Вектор скорости $-\gamma'(s)=(x'(s),y'(s)).$

Дискретные кривые

- Дискретная кривая на \mathbb{R}^2 кусочно-линейная функция
- \cdot Вектор **скорости** а вот что это?

Касательный вектор

- Касательная к кривой $\gamma(t)$ в точке t_0 предельное положение секущей через точки t_0 и $t_0+\Delta$ при $\Delta\to 0$.
- Это и есть вектор скорости?

Регулярные кривые

Кривая **регулярная** — $\gamma'(t) \neq 0$ (то есть погруженная).

• Consider the reparameterization of a piecewise linear curve:

$$\eta(s) := s^3 \qquad \gamma(s) := \begin{cases} (s,s) & s \le 0 \\ (s,-s) & s > 0 \end{cases} \qquad \widetilde{\gamma}(s) = \begin{cases} (s^3,s^3) & s \le 0, \\ (s^3,-s^3) & s > 0 \end{cases}$$

• Even though the reparameterized curve has a continuous first derivative, this derivative goes to zero at s=0:

Не сможем определить касательную, нормаль, кривизну...

Определение

Две гладкие регулярные кривые касаются в точке P, если они обе проходят через эту точку и имеют в ней общую касательную.

Рис. 2: $y = x^2$, $y = 1/5x^3$

Единичный вектор скорости

Единичный вектор скорости к кривой γ — это (нормированный) вектор скорости $T(s) := \gamma'(s)/\|\gamma'(s)\|.$

Длина дуги кривой. Натуральный параметр

Длина кривой γ —

$$L(\gamma) := L(\gamma)[a,b] := \int_a^b \|\gamma'(t)\| \ dt = \int_a^b \sqrt{(x'(t))^2 + (y'(t))^2} \ dt.$$

Натуральный параметр s: $s-a=L(\gamma)[a,s]$. Тогда $\gamma(s)-$ натуральная параметризация.

Пусть $\dot{\gamma}:=d\gamma/ds$. Ясно, что $\|\dot{\gamma}\|=1$.

Натуральную параметризацию можно найти:

$$s(t) = \int_{a}^{t} \left\| \frac{d\gamma}{dt} \right\| dt.$$

ПРЕДЛОЖЕНИЕ

Длина кривой не меняется при монотонной замене параметра.

Доказательство.

Если
$$t=t(au)$$
, то $\gamma_1:=\gamma\circ t$ и

$$L(\gamma_1) = \int_a^b \left\| \frac{d\gamma_1}{d\tau} \right\| \, d\tau = \int_{t(a)}^{t(b)} \left\| \frac{d\gamma}{dt} \right\| \cdot \left| \frac{dt}{d\tau} \right| \cdot \frac{d\tau}{dt} \, dt = L(\gamma).$$

8

Вектор нормали

Нормаль к кривой γ — перпендикуляр к касательной.

Направляющий вектор нормали -N(s) := (-y'(s), x'(s)).

Касание порядка k

Гладкие регулярные кривые $r_1(s)$ и $r_2(s)$ имеют в точке 0 касание порядка k, если

$$r_1(0) = r_2(0), \quad \dot{r}_1(0) = \dot{r}_2(0), \quad \dots, \qquad r_1^{(k)}(0) = r_2^{(k)}(0).$$

Лемма о перпендикулярности

Лемма о перпендикулярности

Пусть $a\colon t\mapsto a(t)\in\mathbb{R}^n$ — гладкая вектор-функция, причем $|a(t)|\equiv const.$ Тогда $a'(t)\perp a(t).$

Доказательство.

Продифференцируем
$$(a(t),a(t))=const^2$$
 и получаем $2(a(t),a'(t))=0.$

Теорема (о соприкасающейся окружности)

Пусть $\gamma(s)$ — рег. кривая и $\ddot{\gamma}(s_0) \neq 0$. Тогда $\exists !$ окружность, имеющая в точке s_0 касание второго порядка с γ , причем (1) ее центр лежит на нормали в направлении $\ddot{\gamma}(s_0)$, (2) ее радиус равен $|\ddot{\gamma}(s_0)|^{-1}$.

Доказательство.

Натуральная параметризация окружности

$$r(s) = \left(x_0 + R \cdot \cos \frac{s}{R}, y_0 + R \cdot \sin \frac{s}{R}\right).$$

Тогда

$$\ddot{r}(s) = -\frac{1}{R} \left(\cos \frac{s}{R}, \sin \frac{s}{R} \right), \quad |\ddot{r}| = R^{-1}.$$

По лемме о перпендикулярности $\dot{r}(s) \perp \ddot{r}(s)$.

Касание 2-го порядка ⇔ (1) и (2).

Кривизна

Кривизна $-k(s) := \|\ddot{\gamma}(s)\|$

Радиус кривизны — R(s)=1/k(s)

Эквивалентно: $k(s) = \frac{d}{ds}\theta(s)$!

Дискретизация

Что такое хорошая дискретизация?

- Удовлетворяет известным гладким соотношениям (глобальным: интегрирование, теорема Стокса, и т.д.)
- Сходимость при приближении дискретного к гладкому
- Легко вычисляется!

Дискретная кривизна

Угол вращения

Вариация длин

Формула Штейнера

Соприкасающаяся окружность

Дискретная кривизна: соприкасающаяся окружность

Соприкасающаяся окружность

Можно вычислить радиус и кривизну:

$$k_i = \frac{1}{r_i} = 2\sin(\theta_i)/w_i.$$

Дискретная кривизна: угол вращения

$$\kappa(s) = \frac{d}{ds}\varphi(s)$$

Дискретная кривизна: угол вращения

Как вычислить кривизну дискретной кривой?

Рассмотрим интеграл:

$$\int_{a}^{b} k(s)ds = \int_{a}^{b} \left(\frac{d}{ds}\varphi(s)\right)ds =$$
$$= \varphi(b) - \varphi(a)$$

Voilà!

Дискретная кривизна: вариация длин

Упражнение:

Пусть
$$\gamma,\eta\colon [0,L]\to\mathbb{R}^2$$
, $\gamma(0)=\eta(0)$, $\gamma(L)=\eta(L)$, тогда
$$\frac{d}{d\varepsilon}\Big|_{\varepsilon=0}L(\gamma+\varepsilon\eta)=-\int_0^L\langle\eta(s),k(s)N(s)\rangle ds.$$

Дискретная кривизна: формула Штейнера

Упражнение:

Пусть
$$\gamma\colon [0,L] o \mathbb{R}^2$$
, тогда

$$L(\gamma+\varepsilon N)=L(\gamma)-\varepsilon\int_0^L k(s)ds.$$

Дискретная кривизна: вариация длин и формула Штейнера

$$\begin{split} L_A &= L(\gamma) - \varepsilon \sum_i \theta_i, & \kappa_i^A = \theta_i; \\ L_B &= L(\gamma) - 2\varepsilon \sum_i \sin(\theta_i/2), & \kappa_i^B = 2\sin(\theta_i/2); \\ L_C &= L(\gamma) - 2\varepsilon \sum_i \tan(\theta_i/2), & \kappa_i^C = 2\tan(\theta_i/2); \end{split}$$

Дискретная кривизна: что в итоге выбрать?

- Какие задачи мы решаем?
- Какие свойства мы хотим?
- Какие соотношение должны выполняться?
- Вычислительная сложность?
- Нет однозначного ответа!
- Ни одна дискретизация не может удовлетворять всем свойствам сразу!

Геометрия пространственных

кривых

Пространственные кривые

Гладкая кривая в \mathbb{R}^3 — гладкое отображение $\gamma\colon [0,L] \to \mathbb{R}^3$

Соприкасающаяся окружность и кривизна

Репер Френе

Репер Френе — ортонормированная тройка $\{T(s),N(s),B(s)\}$, где $T(s)=\dot{\gamma}(s)$ — единичный (касательный) вектор скорости, $N(s)=\frac{\ddot{\gamma}(s)}{k(s)}$ — вектор главной нормали, $B(s)=[T(s)\times N(s)]$ — вектор бинормали к кривой.

Формулы Френе

$$\begin{bmatrix} \dot{T}(s) \\ \dot{N}(s) \\ \dot{B}(s) \end{bmatrix} = \begin{bmatrix} 0 & k(s) & 0 \\ -k(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{bmatrix} \begin{bmatrix} T(s) \\ N(s) \\ B(s) \end{bmatrix}$$
 Здесь $\tau(s)$ — кручение.

Геометрия поверхностей

Поверхности

Гладкая поверхность в \mathbb{R}^n — гладкое отображение $f \colon U \to \mathbb{R}^n$

Пример

Седло в \mathbb{R}^3

Касательное пространство

Касательное пространство к поверхности — множество всех касательных векторов.

Дифференциал отображения (поверхности)

Дифференциал отображения — это линейное отображение на касательных векторах

Риманова метрика

- Большинство вычислений на многообразиях сводятся к метрическим.
- Это позволяет сделать так называемая риманова метрика
- Абстрактно: положительно определённая билинейная форма, гладко зависящая от точки.

Евклидова риманова метрика, индуцированная вложением

- Обычно поверхность задана вложением $f \colon U \to \mathbb{R}^n$. Как вычислить g(X,Y)?
- Нельзя использовать $\langle \cdot, \cdot \rangle$ на $T_p M$. Почему?
- Индуцированная метрика: $g(X,Y) := \langle df(X), df(Y) \rangle$

Список литературы:

- [1] Keenan Crane Discrete Differential Geometry: An Applied Introduction, 2018.
- [2] А.О. Иванов, А.А. Тужилин Лекции по классической дифференциальной геометрии, 2009, Москва, Логос.

Лекция 1, стр. 5 – 14

[3] А.И. Шафаревич — Курс лекций по классической дифференциальной геометрии, 2007, Москва, МГУ, Механико-математический факультет. *Лекция 1, стр. 3 – 10*