Advanced Quantitative Research Methodology, Lecture Notes: Research Designs for Causal Inference¹

Gary King

GaryKing.org

April 10, 2016

¹©Copyright 2016 Gary King, All Rights Reserved.

Reference

 Kosuke Imai, Gary King, and Elizabeth Stuart. Misunderstandings among Experimentalists and Observationalists: Balance Test Fallacies in Causal Inference Journal of the Royal Statistical Society, Series A Vol. 171, Part 2 (2008): Pp. 1-22 http://gking.harvard.edu/files/abs/matchse-abs.shtml

• Sample of n units from a finite population of N units (typically N >> n)

- Sample of n units from a finite population of N units (typically N >> n)
- Sample selection: l_i is 1 for units selected, 0 otherwise

- Sample of n units from a finite population of N units (typically N >> n)
- Sample selection: I_i is 1 for units selected, 0 otherwise
- Treatment assignment: T_i is 1 for treated group, 0 control group

- Sample of n units from a finite population of N units (typically N >> n)
- Sample selection: I_i is 1 for units selected, 0 otherwise
- Treatment assignment: T_i is 1 for treated group, 0 control group
- (Assume: treated and control groups are each of size n/2)

- Sample of n units from a finite population of N units (typically N >> n)
- Sample selection: I_i is 1 for units selected, 0 otherwise
- Treatment assignment: T_i is 1 for treated group, 0 control group
- (Assume: treated and control groups are each of size n/2)
- Observed outcome variable: Y_i

- Sample of n units from a finite population of N units (typically N >> n)
- Sample selection: I_i is 1 for units selected, 0 otherwise
- Treatment assignment: T_i is 1 for treated group, 0 control group
- (Assume: treated and control groups are each of size n/2)
- Observed outcome variable: Y_i
- Potential outcomes: $Y_i(1)$ and $Y_i(0)$, Y_i potential values when T_i is 1 or 0 respectively.

- Sample of n units from a finite population of N units (typically N >> n)
- Sample selection: I_i is 1 for units selected, 0 otherwise
- Treatment assignment: T_i is 1 for treated group, 0 control group
- (Assume: treated and control groups are each of size n/2)
- Observed outcome variable: Yi
- Potential outcomes: $Y_i(1)$ and $Y_i(0)$, Y_i potential values when T_i is 1 or 0 respectively.
- Fundamental problem of causal inference. Only one potential outcome is ever observed:

If
$$T_i = 0$$
, $Y_i(0) = Y_i$ $Y_i(1) =$?
If $T_i = 1$, $Y_i(0) =$? $Y_i(1) = Y_i$

- Sample of n units from a finite population of N units (typically N >> n)
- Sample selection: I_i is 1 for units selected, 0 otherwise
- Treatment assignment: T_i is 1 for treated group, 0 control group
- (Assume: treated and control groups are each of size n/2)
- Observed outcome variable: Yi
- Potential outcomes: $Y_i(1)$ and $Y_i(0)$, Y_i potential values when T_i is 1 or 0 respectively.
- Fundamental problem of causal inference. Only one potential outcome is ever observed:

If
$$T_i = 0$$
, $Y_i(0) = Y_i$ $Y_i(1) =$?
If $T_i = 1$, $Y_i(0) =$? $Y_i(1) = Y_i$

• (I_i, T_i, Y_i) are random; $Y_i(1)$ and $Y_i(0)$ are fixed.

• Treatment Effect (for unit *i*):

$$TE_i \equiv Y_i(1) - Y_i(0)$$

• Treatment Effect (for unit *i*):

$$TE_i \equiv Y_i(1) - Y_i(0)$$

• Population Average Treatment Effect:

PATE
$$\equiv \frac{1}{N} \sum_{i=1}^{N} TE_i$$

• Treatment Effect (for unit *i*):

$$TE_i \equiv Y_i(1) - Y_i(0)$$

• Population Average Treatment Effect:

PATE
$$\equiv \frac{1}{N} \sum_{i=1}^{N} TE_i$$

• Sample Average Treatment Effect:

$$\mathsf{SATE} \ \equiv \ \frac{1}{n} \sum_{i \in \{I_i = 1\}} \mathsf{TE}_i$$

Difference in means estimator:

$$D \equiv \left(\frac{1}{n/2} \sum_{i \in \{I_i=1, T_i=1\}} Y_i\right) - \left(\frac{1}{n/2} \sum_{i \in \{I_i=1, T_i=0\}} Y_i\right).$$

Difference in means estimator:

$$D \equiv \left(\frac{1}{n/2} \sum_{i \in \{I_i=1, T_i=1\}} Y_i\right) - \left(\frac{1}{n/2} \sum_{i \in \{I_i=1, T_i=0\}} Y_i\right).$$

Estimation Error:

$$\Delta \equiv PATE - D$$

Difference in means estimator:

$$D \equiv \left(\frac{1}{n/2} \sum_{i \in \{I_i=1, T_i=1\}} Y_i\right) - \left(\frac{1}{n/2} \sum_{i \in \{I_i=1, T_i=0\}} Y_i\right).$$

Estimation Error:

$$\Delta \equiv PATE - D$$

Pretreatment confounders: X are observed and U are unobserved

Difference in means estimator:

$$D \equiv \left(\frac{1}{n/2} \sum_{i \in \{I_i=1, T_i=1\}} Y_i\right) - \left(\frac{1}{n/2} \sum_{i \in \{I_i=1, T_i=0\}} Y_i\right).$$

Estimation Error:

$$\Delta \equiv PATE - D$$

- Pretreatment confounders: X are observed and U are unobserved
- Decomposition:

$$\Delta = \Delta_S + \Delta_T$$

= $(\Delta_{S_X} + \Delta_{S_U}) + (\Delta_{T_X} + \Delta_{T_U})$

Error due to Δ_S (sample selection), Δ_T (treatment imbalance), and each due to observed (X_i) and unobserved (U_i) covariates

Definition:

$$\Delta_S \equiv PATE - SATE$$

$$= \frac{N-n}{N}(NATE - SATE),$$

Definition:

$$\Delta_S \equiv \mathsf{PATE} - \mathsf{SATE}$$

$$= \frac{N-n}{N} (\mathsf{NATE} - \mathsf{SATE}),$$

where NATE is the nonsample average treatment effect.

 \bullet Δ_S vanishes if:

Definition:

$$\Delta_S \equiv PATE - SATE$$

$$= \frac{N-n}{N}(NATE - SATE),$$

- Δ_S vanishes if:
 - **1** The sample is a census $(I_i = 1 \text{ for all observations and } n = N);$

Definition:

$$\Delta_S \equiv PATE - SATE$$

$$= \frac{N-n}{N} (NATE - SATE),$$

- Δ_S vanishes if:
 - **1** The sample is a census $(I_i = 1 \text{ for all observations and } n = N);$

Definition:

$$\Delta_S \equiv PATE - SATE$$

$$= \frac{N-n}{N} (NATE - SATE),$$

- Δ_S vanishes if:
 - ① The sample is a census $(I_i = 1 \text{ for all observations and } n = N);$

 - Switch quantity of interest from PATE to SATE (recommended!)

$$\Delta_{\mathcal{S}} = \Delta_{\mathcal{S}_X} + \Delta_{\mathcal{S}_U}$$

Decomposition:

$$\Delta_{\mathcal{S}} = \Delta_{\mathcal{S}_X} + \Delta_{\mathcal{S}_U}$$

• $\Delta_{S_X} = 0$ when empirical distribution of (observed) X is identical in population and sample: $\widetilde{F}(X \mid I = 0) = \widetilde{F}(X \mid I = 1)$.

$$\Delta_{\mathcal{S}} = \Delta_{\mathcal{S}_X} + \Delta_{\mathcal{S}_U}$$

- $\Delta_{S_X} = 0$ when empirical distribution of (observed) X is identical in population and sample: $\widetilde{F}(X \mid I = 0) = \widetilde{F}(X \mid I = 1)$.
- $\Delta_{S_U} = 0$ when empirical distribution of (unobserved) U is identical in population and sample: $\widetilde{F}(U \mid I = 0) = \widetilde{F}(U \mid I = 1)$.

$$\Delta_S = \Delta_{S_X} + \Delta_{S_U}$$

- $\Delta_{S_X} = 0$ when empirical distribution of (observed) X is identical in population and sample: $\widetilde{F}(X \mid I = 0) = \widetilde{F}(X \mid I = 1)$.
- $\Delta_{S_U} = 0$ when empirical distribution of (unobserved) U is identical in population and sample: $\widetilde{F}(U \mid I = 0) = \widetilde{F}(U \mid I = 1)$.
- conditions are unverifiable: X is observed only in sample and U is not observed at all.

$$\Delta_{\mathcal{S}} = \Delta_{\mathcal{S}_X} + \Delta_{\mathcal{S}_U}$$

- $\Delta_{S_X} = 0$ when empirical distribution of (observed) X is identical in population and sample: $\widetilde{F}(X \mid I = 0) = \widetilde{F}(X \mid I = 1)$.
- $\Delta_{S_U} = 0$ when empirical distribution of (unobserved) U is identical in population and sample: $\widetilde{F}(U \mid I = 0) = \widetilde{F}(U \mid I = 1)$.
- conditions are unverifiable: X is observed only in sample and U is not observed at all.
- Δ_{S_X} vanishes if weighting on X

$$\Delta_{\mathcal{S}} = \Delta_{\mathcal{S}_X} + \Delta_{\mathcal{S}_U}$$

- $\Delta_{S_X} = 0$ when empirical distribution of (observed) X is identical in population and sample: $\widetilde{F}(X \mid I = 0) = \widetilde{F}(X \mid I = 1)$.
- $\Delta_{S_U} = 0$ when empirical distribution of (unobserved) U is identical in population and sample: $\widetilde{F}(U \mid I = 0) = \widetilde{F}(U \mid I = 1)$.
- conditions are unverifiable: X is observed only in sample and U is not observed at all.
- Δ_{S_X} vanishes if weighting on X
- Δ_{S_U} cannot be corrected after the fact

Decomposing Treatment Imbalance

Decomposing Treatment Imbalance

$$\Delta_T = \Delta_{T_X} + \Delta_{T_U}$$

Decomposing Treatment Imbalance

Decomposition:

$$\Delta_T = \Delta_{T_X} + \Delta_{T_U}$$

• $\Delta_{T_X} = 0$ when X is balanced between treateds and controls:

$$\widetilde{F}(X \mid T = 1, I = 1) = \widetilde{F}(X \mid T = 0, I = 1).$$

Verifiable from data; can be generated ex ante by blocking or enforced ex post via matching or parametric adjustment

Decomposing Treatment Imbalance

Decomposition:

$$\Delta_T = \Delta_{T_X} + \Delta_{T_U}$$

• $\Delta_{T_X} = 0$ when X is balanced between treateds and controls:

$$\widetilde{F}(X \mid T = 1, I = 1) = \widetilde{F}(X \mid T = 0, I = 1).$$

Verifiable from data; can be generated ex ante by blocking or enforced ex post via matching or parametric adjustment

• $\Delta_{T_U} = 0$ when U is balanced between treateds and controls:

$$\widetilde{F}(U \mid T = 1, I = 1) = \widetilde{F}(U \mid T = 0, I = 1).$$

Unverifiable. Achieved only by assumption or, on average, by random treatment assignment

Sample average treatment effect on the treated:

$$\mathsf{SATT} \equiv \frac{1}{n/2} \sum_{i \in \{l_i = 1, T_i = 1\}} \mathsf{TE}_i$$

Sample average treatment effect on the treated:

$$\mathsf{SATT} \equiv \frac{1}{n/2} \sum_{i \in \{l_i = 1, T_i = 1\}} \mathsf{TE}_i$$

Population average treatment effect on the treated:

$$\mathsf{PATT} \equiv \frac{1}{N^*} \sum_{i \in \{T_i = 1\}} \mathsf{TE}_i$$

(where $N^* = \sum_{i=1}^{N} T_i$ is the number of treated units in the population)

Sample average treatment effect on the treated:

$$\mathsf{SATT} \equiv \frac{1}{n/2} \sum_{i \in \{l_i = 1, T_i = 1\}} \mathsf{TE}_i$$

Population average treatment effect on the treated:

$$\mathsf{PATT} \equiv \frac{1}{N^*} \sum_{i \in \{T_i = 1\}} \mathsf{TE}_i$$

(where $N^* = \sum_{i=1}^{N} T_i$ is the number of treated units in the population)

• When are these of more interest than PATE and SATE? Why never for randomized experiments? Why usually for matching?

Sample average treatment effect on the treated:

$$\mathsf{SATT} \equiv \frac{1}{n/2} \sum_{i \in \{I_i = 1, T_i = 1\}} \mathsf{TE}_i$$

Population average treatment effect on the treated:

$$\mathsf{PATT} \equiv \frac{1}{N^*} \sum_{i \in \{T_i = 1\}} \mathsf{TE}_i$$

(where $N^* = \sum_{i=1}^{N} T_i$ is the number of treated units in the population)

- When are these of more interest than PATE and SATE? Why never for randomized experiments? Why usually for matching?
- Analogous estimation error decomposition: $\Delta' = \mathsf{PATT} D$, holds:

$$\Delta' = (\Delta'_{S_X} + \Delta'_{S_U}) + (\Delta'_{T_X} + \Delta'_{T_U})$$

Design Choice

$$\Delta_{S_X}$$
 Δ_{S_U} Δ_{T_X} Δ_{T_U}

Design Choice

$$\Delta_{S_X}$$
 Δ_{S_U} Δ_{T_X} Δ_{T_U}

Design Choice

Random sampling

$$\begin{array}{ccc} \Delta_{S_X} & \Delta_{S_U} & \Delta_{T_X} & \Delta_{T_U} \\ \stackrel{\text{avg}}{=} 0 & \stackrel{\text{avg}}{=} 0 \end{array}$$

Design Choice	Δ_{S_X}	Δ_{S_U}	Δ_{T_X}	Δ_{T_U}
Random sampling	$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$		
Complete stratified random sampling	= 0	$\stackrel{avg}{=} 0$		

Design Choice		Δ_{S_U}	Δ_{T_X}	Δ_{T_U}
Random sampling	$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$		
Complete stratified random sampling	= 0	$\stackrel{avg}{=} 0$		
Focus on SATE rather than PATE	= 0	= 0		

Design Choice	Δ_{S_X}	Δ_{S_U}	Δ_{T_X}	Δ_{T_U}
Random sampling	$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$		
Complete stratified random sampling	= 0	$\stackrel{avg}{=} 0$		
Focus on SATE rather than PATE	= 0	= 0		
Weighting for nonrandom sampling	= 0	=?		

Design Choice	Δ_{S_X}	Δ_{S_U}	Δ_{T_X}	Δ_{T_U}
Random sampling	$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$		
Complete stratified random sampling	= 0	$\stackrel{avg}{=} 0$		
Focus on SATE rather than PATE	= 0	= 0		
Weighting for nonrandom sampling	= 0	=?		
Large sample size	\rightarrow ?	\rightarrow ?	\rightarrow ?	\rightarrow ?

Design Choice	Δ_{S_X}	Δ_{S_U}	Δ_{T_X}	Δ_{T_U}
Random sampling	$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$		
Complete stratified random sampling	= 0	$\stackrel{avg}{=} 0$		
Focus on SATE rather than PATE	= 0	= 0		
Weighting for nonrandom sampling	= 0	=?		
Large sample size	\rightarrow ?	\rightarrow ?	\rightarrow ?	\rightarrow ?
Random treatment assignment			$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$

Design Choice	Δ_{S_X}	$\Delta_{\mathcal{S}_U}$	Δ_{T_X}	Δ_{T_U}
Random sampling	$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$		
Complete stratified random sampling	= 0	$\stackrel{avg}{=} 0$		
Focus on SATE rather than PATE	= 0	= 0		
Weighting for nonrandom sampling	= 0	=?		
Large sample size	\rightarrow ?	\rightarrow ?	\rightarrow ?	\rightarrow ?
Random treatment assignment			$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$
Complete blocking			= 0	=?

Design Choice			Δ_{T_X}	Δ_{T_U}
Random sampling	$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$		
Complete stratified random sampling	= 0	$\stackrel{avg}{=} 0$		
Focus on SATE rather than PATE	= 0	= 0		
Weighting for nonrandom sampling	= 0	=?		
Large sample size	\rightarrow ?	\rightarrow ?	\rightarrow ?	\rightarrow ?
Random treatment assignment			$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$
Complete blocking			= 0	=?
Exact matching			= 0	=?

Design Choice		$\Delta_{\mathcal{S}_U}$	Δ_{T_X}	Δ_{T_U}
Random sampling	$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$		
Complete stratified random sampling	= 0	$\stackrel{avg}{=} 0$		
Focus on SATE rather than PATE	= 0	= 0		
Weighting for nonrandom sampling	= 0	=?		
Large sample size	\rightarrow ?	\rightarrow ?	\rightarrow ?	\rightarrow ?
Random treatment assignment			$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$
Complete blocking			= 0	=?
Exact matching			= 0	=?

Assumption

Design Choice	Δ_{S_X}	Δ_{S_U}	Δ_{T_X}	Δ_{T_U}
Random sampling	$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$		
Complete stratified random sampling	= 0	$\stackrel{avg}{=} 0$		
Focus on SATE rather than PATE	= 0	= 0		
Weighting for nonrandom sampling	= 0	=?		
Large sample size	\rightarrow ?	\rightarrow ?	\rightarrow ?	\rightarrow ?
Random treatment assignment			$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$
Complete blocking			= 0	=?
Exact matching			= 0	=?
Assumption				

No selection bias

$$\stackrel{\text{avg}}{=} 0 \stackrel{\text{avg}}{=} 0$$

Design Choice	$\Delta_{\mathcal{S}_X}$		Δ_{T_X}	Δ_{T_U}
Random sampling	•	$\stackrel{avg}{=} 0$		
Complete stratified random sampling	= 0	$\stackrel{avg}{=} 0$		
Focus on SATE rather than PATE	= 0	= 0		
Weighting for nonrandom sampling	= 0	=?		
Large sample size	\rightarrow ?	\rightarrow ?	\rightarrow ?	\rightarrow ?
Random treatment assignment			$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$
Complete blocking			= 0	=?
Exact matching			= 0	=?
Assumption				
No selection bias	$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$		
Ignorability				$\stackrel{avg}{=} 0$

Design Choice	Δ_{S_X}	Δ_{S_U}	Δ_{T_X}	Δ_{T_U}	
Random sampling	•	$\stackrel{avg}{=} 0$			
Complete stratified random sampling	= 0	$\stackrel{avg}{=} 0$			
Focus on SATE rather than PATE	= 0	= 0			
Weighting for nonrandom sampling	= 0	=?			
Large sample size	\rightarrow ?	\rightarrow ?	\rightarrow ?	\rightarrow ?	
Random treatment assignment			$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$	
Complete blocking			= 0	=?	
Exact matching			= 0	=?	
Assumption					
No selection bias	$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$			
				ανσ	

No omitted variables

Ignorability

 Adding blocking to random assignment is always as or more efficient, and never biased (blocking on pretreatment variables related to the outcome is more efficient)

- Adding blocking to random assignment is always as or more efficient, and never biased (blocking on pretreatment variables related to the outcome is more efficient)
- Blocking is like regression adjustment, where the functional form and the parameter values are known

- Adding blocking to random assignment is always as or more efficient, and never biased (blocking on pretreatment variables related to the outcome is more efficient)
- Blocking is like regression adjustment, where the functional form and the parameter values are known
- Matching is like blocking, except:

- Adding blocking to random assignment is always as or more efficient, and never biased (blocking on pretreatment variables related to the outcome is more efficient)
- Blocking is like regression adjustment, where the functional form and the parameter values are known
- Matching is like blocking, except:
 - to avoid selection error, must change quantity of interest from PATE to PATT or SATT,

- Adding blocking to random assignment is always as or more efficient, and never biased (blocking on pretreatment variables related to the outcome is more efficient)
- Blocking is like regression adjustment, where the functional form and the parameter values are known
- Matching is like blocking, except:
 - to avoid selection error, must change quantity of interest from PATE to PATT or SATT,
 - 2 random treatment assignment following matching is impossible

- Adding blocking to random assignment is always as or more efficient, and never biased (blocking on pretreatment variables related to the outcome is more efficient)
- Blocking is like regression adjustment, where the functional form and the parameter values are known
- Matching is like blocking, except:
 - to avoid selection error, must change quantity of interest from PATE to PATT or SATT,
 - 2 random treatment assignment following matching is impossible
 - Exact matching, unlike blocking, is dependent on the already-collected data happening to contain sufficiently good matches.

- Adding blocking to random assignment is always as or more efficient, and never biased (blocking on pretreatment variables related to the outcome is more efficient)
- Blocking is like regression adjustment, where the functional form and the parameter values are known
- Matching is like blocking, except:
 - to avoid selection error, must change quantity of interest from PATE to PATT or SATT,
 - 2 random treatment assignment following matching is impossible
 - Exact matching, unlike blocking, is dependent on the already-collected data happening to contain sufficiently good matches.
 - In the worst case scenerio, matching (just like regression adjustment) can increase bias (this cannot occur with blocking plus random assignment)

- Adding blocking to random assignment is always as or more efficient, and never biased (blocking on pretreatment variables related to the outcome is more efficient)
- Blocking is like regression adjustment, where the functional form and the parameter values are known
- Matching is like blocking, except:
 - to avoid selection error, must change quantity of interest from PATE to PATT or SATT,
 - random treatment assignment following matching is impossible
 - Sexact matching, unlike blocking, is dependent on the already-collected data happening to contain sufficiently good matches.
 - In the worst case scenerio, matching (just like regression adjustment) can increase bias (this cannot occur with blocking plus random assignment)
- Adding matching to a parametric model almost always reduces model dependence and bias, and sometimes variance too

The Benefits of Major Research Designs: Overview

	Δ_{S_X}	Δ_{S_U}	Δ_{T_X}	Δ_{T_U}
Ideal experiment	\rightarrow 0	\rightarrow 0	= 0	\rightarrow 0
Randomized clinicial trials				
(Limited or no blocking)	$\neq 0$	$\neq 0$	$\stackrel{avg}{=} 0$	$\stackrel{avg}{=} 0$
Randomized clinicial trials				
(Full blocking)	$\neq 0$	$\neq 0$	= 0	$\stackrel{avg}{=} 0$
Social Science				
Field Experiment				
(Limited or no blocking)	$\neq 0$	$\neq 0$	$\rightarrow 0$	\rightarrow 0
Survey Experiment				
(Limited or no blocking)	$\rightarrow 0$	$\rightarrow 0$	$\rightarrow 0$	$\rightarrow 0$
Observational Study				
(Representative data set,				
Well-matched)	≈ 0	≈ 0	≈ 0	$\neq 0$
Observational Study				
(Unrepresentative but partially,				
correctable data, well-matched)	≈ 0	$\neq 0$	≈ 0	$\neq 0$
Observational Study				
(Unrepresentative data set,				
Well-matched)	$\neq 0$	$\neq 0$	≈ 0	≠ 0

For column Q, " \to 0" denotes E(Q)=0 and $\lim_{n\to\infty} {\rm Var}(Q)=0$, whereas " $\stackrel{{\rm avg}}{=}0$ " indicates zero on average, or E(Q)=0, for a design with a small n. Δ_S can be set to zero if we switch from PATE to SATE.

• Random selection from well-defined population

- Random selection from well-defined population
- large n

- Random selection from well-defined population
- large n
- blocking on all known confounders

- Random selection from well-defined population
- large n
- blocking on all known confounders
- random treatment assignment within blocks

- Random selection from well-defined population
- large n
- blocking on all known confounders
- random treatment assignment within blocks
- $E(\Delta_{S_X}) = 0$, $\lim_{n \to \infty} V(\Delta_{S_X}) = 0$

The Ideal Experiment (according to the paper)

- Random selection from well-defined population
- large n
- blocking on all known confounders
- random treatment assignment within blocks
- $E(\Delta_{S_X}) = 0$, $\lim_{n \to \infty} V(\Delta_{S_X}) = 0$
- $E(\Delta_{S_U}) = 0$, $\lim_{n \to \infty} V(\Delta_{S_U}) = 0$

The Ideal Experiment (according to the paper)

- Random selection from well-defined population
- large n
- blocking on all known confounders
- random treatment assignment within blocks
- $E(\Delta_{S_X}) = 0$, $\lim_{n \to \infty} V(\Delta_{S_X}) = 0$
- $E(\Delta_{S_U}) = 0$, $\lim_{n \to \infty} V(\Delta_{S_U}) = 0$
- $\Delta_{T_X} = 0$

The Ideal Experiment (according to the paper)

- Random selection from well-defined population
- large n
- blocking on all known confounders
- random treatment assignment within blocks

•
$$E(\Delta_{S_X}) = 0$$
, $\lim_{n \to \infty} V(\Delta_{S_X}) = 0$

•
$$E(\Delta_{S_U}) = 0$$
, $\lim_{n \to \infty} V(\Delta_{S_U}) = 0$

$$\Delta_{T_X} = 0$$

•
$$E(\Delta_{T_U}) = 0$$
, $\lim_{n \to \infty} V(\Delta_{T_U}) = 0$

• Begin with a well-defined population

- Begin with a well-defined population
- Define sampling strata based on cross-classification of all known confounders

- Begin with a well-defined population
- Define sampling strata based on cross-classification of all known confounders
- Random sampling within strata (if strata sample is proportional to population fraction, no weights are needed)

- Begin with a well-defined population
- Define sampling strata based on cross-classification of all known confounders
- Random sampling within strata (if strata sample is proportional to population fraction, no weights are needed)
- large n

- Begin with a well-defined population
- Define sampling strata based on cross-classification of all known confounders
- Random sampling within strata (if strata sample is proportional to population fraction, no weights are needed)
- large n
- blocking on all known confounders

- Begin with a well-defined population
- Define sampling strata based on cross-classification of all known confounders
- Random sampling within strata (if strata sample is proportional to population fraction, no weights are needed)
- large n
- blocking on all known confounders
- random treatment assignment within blocks

- Begin with a well-defined population
- Define sampling strata based on cross-classification of all known confounders
- Random sampling within strata (if strata sample is proportional to population fraction, no weights are needed)
- large n
- blocking on all known confounders
- random treatment assignment within blocks
- $\bullet \ \Delta_{S_X}=0$

- Begin with a well-defined population
- Define sampling strata based on cross-classification of all known confounders
- Random sampling within strata (if strata sample is proportional to population fraction, no weights are needed)
- large n
- blocking on all known confounders
- random treatment assignment within blocks
- $\Delta_{S_X} = 0$
- $E(\Delta_{S_U}) = 0$, $\lim_{n \to \infty} V(\Delta_{S_U}) = 0$

- Begin with a well-defined population
- Define sampling strata based on cross-classification of all known confounders
- Random sampling within strata (if strata sample is proportional to population fraction, no weights are needed)
- large n
- blocking on all known confounders
- random treatment assignment within blocks
- $\Delta_{S_X} = 0$
- $E(\Delta_{S_U}) = 0$, $\lim_{n \to \infty} V(\Delta_{S_U}) = 0$
- $\Delta_{T_X} = 0$

- Begin with a well-defined population
- Define sampling strata based on cross-classification of all known confounders
- Random sampling within strata (if strata sample is proportional to population fraction, no weights are needed)
- large n
- blocking on all known confounders
- random treatment assignment within blocks
- $\Delta_{S_X} = 0$
- $E(\Delta_{S_U}) = 0$, $\lim_{n \to \infty} V(\Delta_{S_U}) = 0$
- $\Delta_{T_X} = 0$
- $E(\Delta_{T_U}) = 0$, $\lim_{n \to \infty} V(\Delta_{T_U}) = 0$

nonrandom selection

- nonrandom selection
- small *n*

- nonrandom selection
- small n
- little or no blocking

- nonrandom selection
- small n
- little or no blocking
- random treatment assignment

- nonrandom selection
- small n
- little or no blocking
- random treatment assignment
- $\Delta_{S_X} \neq 0$

- nonrandom selection
- small n
- little or no blocking
- random treatment assignment
- $\Delta_{S_X} \neq 0$
- $\Delta_{S_U} \neq 0$

- nonrandom selection
- small n
- little or no blocking
- random treatment assignment
- $\Delta_{S_X} \neq 0$
- $\Delta_{S_U} \neq 0$
- $E(\Delta_{T_X})=0$

- nonrandom selection
- small n
- little or no blocking
- random treatment assignment
- $\Delta_{S_X} \neq 0$
- $\Delta_{S_{II}} \neq 0$
- $E(\Delta_{T_X})=0$
- $E(\Delta_{T_U})=0$

nonrandom selection

- nonrandom selection
- small *n*

- nonrandom selection
- small n
- Full blocking

- nonrandom selection
- small n
- Full blocking
- random treatment assignment

- nonrandom selection
- small n
- Full blocking
- random treatment assignment
- $\Delta_{S_X} \neq 0$

- nonrandom selection
- small n
- Full blocking
- random treatment assignment
- $\Delta_{S_X} \neq 0$
- $\Delta_{S_U} \neq 0$

- nonrandom selection
- small n
- Full blocking
- random treatment assignment
- $\Delta_{S_X} \neq 0$
- $\Delta_{S_{II}} \neq 0$
- $\Delta_{T_X} = 0$

- nonrandom selection
- small n
- Full blocking
- random treatment assignment
- $\Delta_{S_X} \neq 0$
- $\Delta_{S_{II}} \neq 0$
- \bullet $\Delta_{T_x} = 0$
- $E(\Delta_{T_U})=0$

nonrandom selection

- nonrandom selection
- large n

- nonrandom selection
- large n
- limited or no blocking

- nonrandom selection
- large n
- limited or no blocking
- random treatment assignment

- nonrandom selection
- large n
- limited or no blocking
- random treatment assignment
- $\Delta_{S_X} \neq 0$ or change PATE to SATE and $\Delta_{S_X} = 0$

- nonrandom selection
- large n
- limited or no blocking
- random treatment assignment
- $\Delta_{S_X} \neq 0$ or change PATE to SATE and $\Delta_{S_X} = 0$
- ullet $\Delta_{S_U}
 eq 0$ or change PATE to SATE and $\Delta_{S_U} = 0$

- nonrandom selection
- large n
- limited or no blocking
- random treatment assignment
- $\Delta_{S_X} \neq 0$ or change PATE to SATE and $\Delta_{S_X} = 0$
- $\Delta_{S_U} \neq 0$ or change PATE to SATE and $\Delta_{S_U} = 0$
- $E(\Delta_{T_X}) = 0$, $\lim_{n \to \infty} V(\Delta_{T_X}) = 0$

- nonrandom selection
- large n
- limited or no blocking
- random treatment assignment
- $\Delta_{S_x} \neq 0$ or change PATE to SATE and $\Delta_{S_x} = 0$
- $\Delta_{S_U} \neq 0$ or change PATE to SATE and $\Delta_{S_U} = 0$
- $E(\Delta_{T_X}) = 0$, $\lim_{n \to \infty} V(\Delta_{T_X}) = 0$
- $E(\Delta_{T_U}) = 0$, $\lim_{n \to \infty} V(\Delta_{T_U}) = 0$

• random selection

- random selection
- large *n*

- random selection
- large n
- limited or no blocking

- random selection
- large n
- limited or no blocking
- random treatment assignment (only question wording treatments)

- random selection
- large n
- limited or no blocking
- random treatment assignment (only question wording treatments)
- $E(\Delta_{S_X}) = 0$, $\lim_{n \to \infty} V(\Delta_{S_X}) = 0$

- random selection
- large n
- limited or no blocking
- random treatment assignment (only question wording treatments)
- $E(\Delta_{S_X}) = 0$, $\lim_{n \to \infty} V(\Delta_{S_X}) = 0$
- $E(\Delta_{S_U}) = 0$, $\lim_{n \to \infty} V(\Delta_{S_U}) = 0$

- random selection
- large n
- limited or no blocking
- random treatment assignment (only question wording treatments)
- $E(\Delta_{S_X}) = 0$, $\lim_{n \to \infty} V(\Delta_{S_X}) = 0$
- $E(\Delta_{S_U}) = 0$, $\lim_{n \to \infty} V(\Delta_{S_U}) = 0$
- $E(\Delta_{T_X}) = 0$, $\lim_{n \to \infty} V(\Delta_{T_X}) = 0$

- random selection
- large n
- limited or no blocking
- random treatment assignment (only question wording treatments)
- $E(\Delta_{S_x}) = 0$, $\lim_{n \to \infty} V(\Delta_{S_x}) = 0$
- $E(\Delta_{S_U}) = 0$, $\lim_{n \to \infty} V(\Delta_{S_U}) = 0$
- $E(\Delta_{T_X}) = 0$, $\lim_{n \to \infty} V(\Delta_{T_X}) = 0$
- $E(\Delta_{T_U}) = 0$, $\lim_{n \to \infty} V(\Delta_{T_U}) = 0$

nonrandom selection

- nonrandom selection
- large n

- nonrandom selection
- large n
- no blocking

- nonrandom selection
- large n
- no blocking
- nonrandom treatment assignment

- nonrandom selection
- large n
- no blocking
- nonrandom treatment assignment
- $\Delta_{S_X} \approx 0$ if representative, corrected by weighting, or for estimating SATE; or $\neq 0$ otherwise

- nonrandom selection
- large n
- no blocking
- nonrandom treatment assignment
- $\Delta_{S_X} \approx 0$ if representative, corrected by weighting, or for estimating SATE; or $\neq 0$ otherwise
- $\Delta_{S_U} \neq 0$

- nonrandom selection
- large n
- no blocking
- nonrandom treatment assignment
- $\Delta_{S_X} \approx 0$ if representative, corrected by weighting, or for estimating SATE; or $\neq 0$ otherwise
- $\Delta_{S_{II}} \neq 0$
- $\Delta_{T_X} \approx 0$ (due to matching well)

- nonrandom selection
- large n
- no blocking
- nonrandom treatment assignment
- $\Delta_{S_X} \approx 0$ if representative, corrected by weighting, or for estimating SATE; or $\neq 0$ otherwise
- $\Delta_{S_{II}} \neq 0$
- $\Delta_{T_X} \approx 0$ (due to matching well)
- $\Delta_{T_U} \neq 0$ except by assumption

• The ideal design is rarely feasible

- The ideal design is rarely feasible
- Effort in experimental studies: random assignment

- The ideal design is rarely feasible
- Effort in experimental studies: random assignment
- Effort in observational studies: measuring and adjusting for X (via matching or modeling)

- The ideal design is rarely feasible
- Effort in experimental studies: random assignment
- Effort in observational studies: measuring and adjusting for X (via matching or modeling)
- the Achilles heal of experimental studies: Δ_S , small n, definition of T

- The ideal design is rarely feasible
- Effort in experimental studies: random assignment
- Effort in observational studies: measuring and adjusting for X (via matching or modeling)
- the Achilles heal of experimental studies: Δ_S , small n, definition of T
- the Achilles heal of observational studies: Δ_U

- The ideal design is rarely feasible
- Effort in experimental studies: random assignment
- Effort in observational studies: measuring and adjusting for X (via matching or modeling)
- the Achilles heal of experimental studies: Δ_S , small n, definition of T
- ullet the Achilles heal of observational studies: Δ_U
- Each design accommodates best to the applications for which it was designed

• Failure to block on all known covariates

- Failure to block on all known covariates
 - seen incorrectly as requiring fewer assumptions (about what to block on)

- Failure to block on all known covariates
 - seen incorrectly as requiring fewer assumptions (about what to block on)
 - In fact, blocking helps (except in strange situations)

- Failure to block on all known covariates
 - seen incorrectly as requiring fewer assumptions (about what to block on)
 - In fact, blocking helps (except in strange situations)
 - Blocking on relevant covariates is better, so choose carefully.

- Failure to block on all known covariates
 - seen incorrectly as requiring fewer assumptions (about what to block on)
 - In fact, blocking helps (except in strange situations)
 - Blocking on relevant covariates is better, so choose carefully.
 - "Block what you can and randomize what you cannot" (Box et al.)

- Failure to block on all known covariates
 - seen incorrectly as requiring fewer assumptions (about what to block on)
 - In fact, blocking helps (except in strange situations)
 - Blocking on relevant covariates is better, so choose carefully.
 - "Block what you can and randomize what you cannot" (Box et al.)
- Conducting t-tests to check for balance after random treatment assignment

- Failure to block on all known covariates
 - seen incorrectly as requiring fewer assumptions (about what to block on)
 - In fact, blocking helps (except in strange situations)
 - Blocking on relevant covariates is better, so choose carefully.
 - "Block what you can and randomize what you cannot" (Box et al.)
- Conducting t-tests to check for balance after random treatment assignment
 - variables blocked on balance exactly after treatment assignment; so if you're checking, you missed an opportunity to increase efficiency

- Failure to block on all known covariates
 - seen incorrectly as requiring fewer assumptions (about what to block on)
 - In fact, blocking helps (except in strange situations)
 - Blocking on relevant covariates is better, so choose carefully.
 - "Block what you can and randomize what you cannot" (Box et al.)
- Conducting t-tests to check for balance after random treatment assignment
 - variables blocked on balance exactly after treatment assignment; so if you're checking, you missed an opportunity to increase efficiency
 - if variables became available after treatment assignment, a t-test only checks for whether randomization was done appropriately

- Failure to block on all known covariates
 - seen incorrectly as requiring fewer assumptions (about what to block on)
 - In fact, blocking helps (except in strange situations)
 - Blocking on relevant covariates is better, so choose carefully.
 - "Block what you can and randomize what you cannot" (Box et al.)
- Conducting t-tests to check for balance after random treatment assignment
 - variables blocked on balance exactly after treatment assignment; so if you're checking, you missed an opportunity to increase efficiency
 - if variables became available after treatment assignment, a t-test only checks for whether randomization was done appropriately
 - randomization balances on average; any one random assignment is not balanced exactly (which is why its better to block)

The Balance Test Fallacy in Matching Research

Randomly dropping observations "reduces" imbalance???

 hypothesis tests are a function of balance AND power; we only want to measure balance

- hypothesis tests are a function of balance AND power; we only want to measure balance
- for SATE, PATE, or SPATE, balance is a characteristic of the sample, not some superpopulation; so no need to make an inference

- hypothesis tests are a function of balance AND power; we only want to measure balance
- for SATE, PATE, or SPATE, balance is a characteristic of the sample, not some superpopulation; so no need to make an inference
- Simple linear model (for intution):

- hypothesis tests are a function of balance AND power; we only want to measure balance
- for SATE, PATE, or SPATE, balance is a characteristic of the sample, not some superpopulation; so no need to make an inference
- Simple linear model (for intution):
 - Suppose $E(Y \mid T, X) = \theta + T\beta + X\gamma$

- hypothesis tests are a function of balance AND power; we only want to measure balance
- for SATE, PATE, or SPATE, balance is a characteristic of the sample, not some superpopulation; so no need to make an inference
- Simple linear model (for intution):
 - Suppose $E(Y \mid T, X) = \theta + T\beta + X\gamma$
 - Bias in coefficient on T from regressing Y on T (without X): $E(\hat{\beta} \beta \mid T, X) = G\gamma$ (where G are coefficients from a regression X on a constant and T)

- hypothesis tests are a function of balance AND power; we only want to measure balance
- for SATE, PATE, or SPATE, balance is a characteristic of the sample, not some superpopulation; so no need to make an inference
- Simple linear model (for intution):
 - Suppose $E(Y \mid T, X) = \theta + T\beta + X\gamma$
 - Bias in coefficient on T from regressing Y on T (without X): $E(\hat{\beta} \beta \mid T, X) = G\gamma$ (where G are coefficients from a regression X on a constant and T)
 - Imbalance is due to G only.

- hypothesis tests are a function of balance AND power; we only want to measure balance
- for SATE, PATE, or SPATE, balance is a characteristic of the sample, not some superpopulation; so no need to make an inference
- Simple linear model (for intution):
 - Suppose $E(Y \mid T, X) = \theta + T\beta + X\gamma$
 - Bias in coefficient on T from regressing Y on T (without X): $E(\hat{\beta} \beta \mid T, X) = G\gamma$ (where G are coefficients from a regression X on a constant and T)
 - Imbalance is due to G only.
 - If G = 0, bias=0

- hypothesis tests are a function of balance AND power; we only want to measure balance
- for SATE, PATE, or SPATE, balance is a characteristic of the sample, not some superpopulation; so no need to make an inference
- Simple linear model (for intution):
 - Suppose $E(Y \mid T, X) = \theta + T\beta + X\gamma$
 - Bias in coefficient on T from regressing Y on T (without X): $E(\hat{\beta} \beta \mid T, X) = G\gamma$ (where G are coefficients from a regression X on a constant and T)
 - Imbalance is due to G only.
 - If G = 0, bias=0
 - If $G \neq$ 0, bias can be any size due to γ

- hypothesis tests are a function of balance AND power; we only want to measure balance
- for SATE, PATE, or SPATE, balance is a characteristic of the sample, not some superpopulation; so no need to make an inference
- Simple linear model (for intution):
 - Suppose $E(Y \mid T, X) = \theta + T\beta + X\gamma$
 - Bias in coefficient on T from regressing Y on T (without X): $E(\hat{\beta} \beta \mid T, X) = G\gamma$ (where G are coefficients from a regression X on a constant and T)
 - Imbalance is due to G only.
 - If G = 0, bias=0
 - If $G \neq 0$, bias can be any size due to γ
 - If you cannot control G (and we don't usually try to minimize γ so we don't cook the books), then G must be reduced without limit.

- hypothesis tests are a function of balance AND power; we only want to measure balance
- for SATE, PATE, or SPATE, balance is a characteristic of the sample, not some superpopulation; so no need to make an inference
- Simple linear model (for intution):
 - Suppose $E(Y \mid T, X) = \theta + T\beta + X\gamma$
 - Bias in coefficient on T from regressing Y on T (without X): $E(\hat{\beta} \beta \mid T, X) = G\gamma$ (where G are coefficients from a regression X on a constant and T)
 - Imbalance is due to G only.
 - If G = 0, bias=0
 - If $G \neq$ 0, bias can be any size due to γ
 - If you cannot control G (and we don't usually try to minimize γ so we don't cook the books), then G must be reduced without limit.
- No threshold level is safe.

