Introduction to Game Theory 2 Formalising and Analysing Games

Eric Pauwels (CWI & VU)

Version: November 1, 2023

Game Theory Part 1: Outline

- 1. Game Theory: Science of Strategic Thinking
- 2. Examples of interesting games
- 3. Formalising games
- 4. Solution concept 1: Weak optimality
- 5. Solution concept 2: Strategies with (weak) guarantees
- 6. Solution concept 3: Nash equilibrium

Reading

Recommended

Shoham and Leyton-Brown: Chapter 3, sections 3.1-3.3

Optional

- William Spaniel: Game Theory 101: The Complete Textbook (paperback): Very accessible and clear, teaching through examples. Accompanying YouTube channel.
- N. Nisan, T. Roughgarden, E. Tardos, V. Vazirani: Algorithmic Game Theory. Cambridge UP. Solid, mathematical. Advanced.
- A. Dixit, B. Nalebuff: Thinking Strategically. Norton. Lots of context and background. Interesting and non-technical.

Solution concept 1: Weak Optimality
0
0000
00000000000

Overview

Formalising Games

Solution concept 1: Weak Optimality
Pareto optimality
Eliminating dominated strategies
Best response

Table of Contents

Formalising Games

Solution concept 1: Weak Optimality
Pareto optimality
Eliminating dominated strategies
Best response

Game theory and strategic agents

- Game theory studies multi-agent decision problems, that is, problems in which independent decision-makers interact.
- What each agent does has an effect on the other agents in the group (through utility);
- Assumptions:
 - agents have preferences encoded in utility function (pay-off)
 - self-interest: agents strive to maximize their own pay-off;
 - rational behaviour: agents reason about the actions of other agents and decide rationally.

A graphical representation: matrix games

In the special case of *two* agents, a strategic game can be graphically represented by a **payoff matrix**, for example:

	left	centre	right
up	1,0	1, 2	0,1
down	0,3	0, 1	2,0

- Rows correspond to actions of agent 1 and columns to actions of agent 2. Here: A₁ = {up, down}, A₂ = {left, centre, right}.
- Each entry contains the payoffs (u_1, u_2) of the two agents for each possible joint action. For example, a = (down, centre) gives $(u_1, u_2) = (0, 1)$.

Normal-form Games (Matrix Games)

- Players:
 - make simultaneous moves and receive immediate payoffs;
 - payoffs are specified for the combinations of actions played.
- Payoff matrix:
 - Specifies for given action combination $a = (a_1, a_2, ..., a_n)$ the corresponding utility (pay-off) $u_i(a)$ for player i = 1...n

	Player 2 chooses Left	Player 2 chooses Right
Player 1 chooses <i>Up</i>	4, 3	-1, -1
Player 1 chooses <i>Down</i>	0, 0	3, 4

Formal definition of normal-form game

A *n*-person **normal-form game** is a tuple (N, A, u):

- N is a set of n players (agents)
- Actions or Strategies $A = A_1 \times A_2 \times ... \times A_n$ where each A_i is the set of actions available to agent i, i.e. set of allowable moves player i can make.
 - An A-element $a = (a_1, a_2, ..., a_n)$ is called an **action profile**.
- Pay-off or utility function: $u: A \longrightarrow \mathbb{R}^n$ where $u = (u_1, u_2, \dots, u_n)$ and each $u_i: A \longrightarrow \mathbb{R}$ is the corresponding utility function for player i. Notice, payoff $u_i(a)$ for *each* agent depends on the *joint actions* of all agents.

Utility functions capture preferences

von Neumann and Morgenstern, 1944

If there exists a preference relation \succeq on the outcomes of a game that satisfies a number of "natural conditions" (completeness, transitivity, substituability, decomposability, monotonicity and continuity), then there exists a function $u: \mathcal{O} \longrightarrow \mathbb{R}$ such that:

•
$$u(o_1) \geq u(o_2)$$
 iff $o_1 \geq o_2$

•
$$u(\{(o_1:p_1),(o_2:p_2),\ldots,(o_n:p_n)\})=\sum_{i=1}^n p_i u(o_i)$$

Examples of competitive and cooperative (matrix) games

A strategic game can model a variety of situations where agents interact. These are two well-known cases:

Matching Pennies

	head	tail
head	1, -1	-1, 1
tail	-1, 1	1,-1

In a strictly competitive or zero-sum game, $\sum_i u_i(a) = 0$ for all a (anticoordination game).

Going to the Movies

	action	comedy
action	1, 1	0,0
comedy	0,0	1, 1

In a strictly cooperative game, a type of coordination game, $u_i(a) = u_j(a)$ for all i, j, a.

swerve

straight

More examples

	ken

swerve straight 0,0 -1,1 1,-1 -5,-5

Stag Hunt

	stag	hare
stag	2, 2	0,1
hare	1,0	1,1

Battles of the Sexes 1

	action	comedy
action	3, 2	0,0
comedy	0,0	2,3

Battle of the Sexes 2

	action	comedy
action	3, 2	2, 1
comedy	0,0	2, 3

Stag Hunt aka Common Interest Game

- Two hunters know that a stag follows a certain path.
- If two hunters cooperate to kill the stag there's plenty to eat.
- The hunters hide and wait for a long time, alas with no sign of the stag. However, a hare is spotted by all hunters.
- If a hunter shoots the hare, he will eat, but the stag will be alarmed and flee, and the other hunter will go hungry.
- If both hunters kill the hare, they share the little there is.
- **Dilemma:** Foregoing smaller reward for bigger one is risky!

•
$$(S = 0) < (P = 2) < (T = 4) < (R = 10) \text{ or } S < 0 < T < 1$$

	Stag				C	_
Stag	10, 10	0, 4	= -		1, 1	
Hare	4, 0	2,2		D	T, S	0,0

Snowdrift game aka Volunteer's dilemma aka Chicken

- Two drivers are blocked by snow drift on the road,
- Both are reluctant to get out of the comfort of their car, to clear the road. They both hope the other driver will oblige.
- If both shovel, the discomfort for each is halved.
- Dilemma: Volunteering leads to a benefit for the whole community, but free-riding is tempting!

•
$$(P = 0) < (S = 3) < (R = 5) < (T = 10) \text{ or } 0 < S < 1 < T$$

	Vol	FR		C	D
Volunteer	5, 5	3, 10	С	1, 1	S, T
Free-ride	10, 3	0, 0	D	T, S	0,0

Continuous action space

Hotelling's Game (ice-cream time):

- Two players
- Continuous (infinite) action space:
 - each player can choose any position between 0 and 1.
 - Assume first player choses x while second player chooses y where for simplicity: 0 ≤ x < y ≤ 1;
- Utility

$$u_1(x,y) = x + \frac{y-x}{2} = \frac{x+y}{2}$$

 $u_2(x,y) = 1 - y + \frac{y-x}{2} = 1 - \frac{x+y}{2}$

Hotelling's game

Utility

$$u_A(x,y) = x + \frac{y-x}{2} = \frac{x+y}{2}$$

 $u_B(x,y) = 1 - y + \frac{y-x}{2} = 1 - \frac{x+y}{2}$

Both simultaneous and sequential version (same outcome);

Strategies

- A player's strategy is the algorithm that determines the action the player will take at any stage of the game.
- Pure strategy: Select single action and play it.
- Mixed strategy: Select single action according to probability distribution and play it. :

			Heads	
Rationale?	matching pennies	Heads	1, -1	-1 , 1
		Tails	-1, 1	1,-1

Mixed strategy: using randomness NOT to be *outsmart-ed* by opponent.

• Strategy profile: $s = (s_1, s_2, ..., s_n)$, i.e. one specified strategy for each agent.

Expected Utility for Mixed Strategies

- **Pure strategy:** (Expected) utility u_i for agent i selecting action a_i equals $u_i(a_i, a_{-i})$.
- Mixed strategy: Agent i plays strategy s_i which is a probability distribution over k possible actions:

$$s_i = \{(a_{i1}, p_{i1}), (a_{i2}, p_{i2}), \dots, (a_{ik}, p_{ik})\}$$
 (where $p_k = P(a_k)$)

- Expected utility for mixed strategies:
 - agent i playing mixed strategy $s_i = \{(a_{i1}, p_{i1}) \dots (a_{in}, p_{in})\}$
 - agent j playing mixed strategy $s_j = \{(a_{j1}, p_{j1}) \dots (a_{jm}, p_{jm})\}$

$$EU_{i}(s_{i}, s_{j}) = \sum_{k=1}^{n} \sum_{\ell=1}^{m} u_{i}(a_{ik}, a_{j\ell}) p_{ik} p_{j\ell}$$

Expected Utility for Mixed Strategies

Expected utility for mixed strategies

 Utility of mixed strategy lies within convex hull of utilities for (pure) support strategies

Analysing games: Solution concepts for games

Consider point of view of a single (self-interested) agent:

- Given all game information: what strategy should he adopt?
- Complicated: depends on actions of other agents!
- Solving a game means trying to predict its outcome.
- From (weak) optimality . . .
 - Pareto Optimality
 - Best Response (BR) given the actions of the other agents;
 - Iterated elimination of strictly dominated strategies (IESDS)
- ... over strategies with weak guarantees ...
 - Regret minimisation, Maximin and Minimax
- ...to Equilibrium, i.e. no incentive to deviate:
 - Nash equilibrium (John Nash, 1950)

Table of Contents

Formalising Games

Solution concept 1: Weak Optimality
Pareto optimality
Eliminating dominated strategies
Best response

Pareto optimality

Pareto dominance and Partial Ordering

Pareto optimality

Pareto optimality is a solution property (not solution concept itself)

A joint action/strategy profile a is **Pareto dominated** by another joint action a' if $u_i(a') \ge u_i(a)$ for all agents i and $u_j(a') > u_j(a)$ for some j.

A joint action/strategy profile a is **Pareto optimal** if there is no other joint action a' that Pareto dominates it.

Pareto dominance defines a partial ordering over strategy profiles.

Pareto Front

•0000000000

Dominating and Dominated Strategies:

strict vs. weak

STRICTLY US. WEAKLY

Domination for strategies

Let s_i and s_i' be two strategies for player i, and S_{-i} set of all strategy profiles for the other players:

• s_i strictly dominates s'_i if

$$u_i(s_i, s_{-i}) > u_i(s_i', s_{-i}) \qquad \forall s_{-i} \in S_{-i}$$

- s_i weakly dominates s'_i if
 - 1. $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i}) \quad \forall s_{-i} \in S_{-i}$, and
 - 2. $u_i(s_i, s_j) > u_i(s_i', s_j)$ for at least one $s_j \in S_{-i}$

Dominant and Dominated Strategies

Dominant and dominated strategies

- (Strictly/Weakly) Dominant Strategy: (strictly/weakly) dominates every other strategy of the agent;
- Strictly/Weakly) Dominanted Strategy: is (strictly/weakly) dominated by at least one other strategy;
- A strictly dominated strategy will never be the best response to anything!
- For a dominating strategy, we don't have to worry what the opponents are going to do!
- Dominance plays important role in mechanism design.

What NOT to do? IESDS: Iterated elimination of strictly dominated strategies

IESDS (a.k.a. What NOT to do?) is based on the following assumptions:

- It is common knowledge that all agents are rational.
- Rational agents never play strictly dominated actions.
- Hence, strictly dominated actions can be eliminated.

	left	centre	right
up	13,3	1,4	7,3
middle	4,1	3,3	6, 2
down	-1, 9	2,8	8, -1

What would IESDS predict in this game?

Iterated elimination of strictly dominated strategies (2)

Centre **strictly dominates** *right*. Row player knows that column player will never play the dominated action *right*. Hence he can eliminate that action and only needs to consider the simpler game:

	left	centre
up	13, 3	1,4
middle	4, 1	3, 3
down	-1, 9	2,8

For the row player, action *middle* strictly dominates *down*; hence eliminate! We are left with the simpler game where *centre* dominates *left*:

	left	centre
up	13, 3	1,4
middle	4, 1	3,3

Application Dominated Strategies: Prisoner's Dilemma

	Quiet	Confess
Quiet	-1, -1	-12, 0
Confess	0, -12	-8, -8

Prisoner's Dilemma

- Quiet is a strictly dominated strategy for both players, hence can be eliminated.
- Players will therefore both play confess, yielding pay-off (-8, -8).
- Notice that this action profile is Pareto dominated!

Cournot Duopoly (discrete version)

Unit production cost: c = 1;

 $Q_A(Q_B) =$ quantity produced by A (B)

P= Market price (per unit) : $P = 12 - 2(Q_A + Q_B)$

Pay-off:

$$u_A(A2, B3) = Q_A(P(Q_A, Q_B) - c) = 2(P(2,3) - c) = 2(12 - 2 \cdot 5 - 1) = 2$$

	<i>B</i> 0	<i>B</i> 1	B2	B3	B4	<i>B</i> 5
<i>A</i> 0	0,0	0,9	0, 14	0, 15	0, 12	0,5
A1	9,0	7, 7	5, 10	3,9	1, 4	-1, -5
<i>A</i> 2	14,0	10, 5	6,6	2,3	-2, -4	-2, -5
<i>A</i> 3	15,0	9, 3	3, 2	-3, -3	-3, -4	-3, -5
<i>A</i> 4	12,0	4, 1	-4, -2	-4, -3	-4, -4	-4, -5
<i>A</i> 5	5,0	-5, -1	-5, -2	-5, -3	-5, -4	-5, -5

Cournot Duopoly (discrete version)

- 1. A3 (B3) strictly dominates A5 (B5), eliminate A5/B5
- 2. A3 (B3) strictly dominates A4 (B4), eliminate A4/B4
- 3. A1 (B1) strictly dominates A0 (B0), eliminate A0/B0

	B1	B2	B3
<i>A</i> 1	7,7	5, 10	3,9
	10,5	6,6	2, 3
<i>A</i> 3	9,3	3, 2	-3, -3

- 4. A2(B2) strictly dominates A3 (B3), eliminate A3/B3
- 5. A2(B2) strictly dominates A1 (B1), resulting in strategy profile (A2,B2) with utility (6,6);
- 6. Notice: **not Pareto-optimal!** (dominated by (A1,B1), with utilitity (7,7)

Iterated elimination of strictly dominated actions (3)

More challenging example:

- Rules of the game:
 - Game played in large group (e.g. auditorium)
 - Each player picks number between 1 and 100.
 - Collect all numbers and compute the mean.
 - Winner is player whose number was closest to 1/2 of mean.
- What strategy should you use when picking your number?
- **Bounded rationality** vs. "homo economicus"! Rationality is bounded by limits to our resources (Simon, 1982):
 - cognitive capacity, available information, time, emotion, etc.

Domination by mixed strategy

It is possible that the dominant strategy is mixed!

Best response (BR): example

- Simultaneous games are difficult because we don't know what the opponent will do!
- If we would know what he will do, then we can play our best response to his action:
- Example:

Best response

- **Best response** from agent *i*'s point of view:
- Let's assume that we know the strategies of all the other agents, i.e. s_{-i} is known;
- Agent *i*'s best response s_i^* to strategy profile s_{-i} , is (a possibly mixed) strategy $s_i^* \in S_i$ such that

$$s_i^* = BR_i(s_{-i}) \quad \Leftrightarrow \quad \forall s_i \in S_i : u_i(s_i^*, s_{-i}) \geq u_i(s_i, s_{-i}).$$

- Of course, ... in a realistic setting we don't know the strategies of the other agents!
- Not solution concept, but essential ingredient for Nash eq.!
- BR dynamics yields equilibrium in some cases.

Best response

Chicken

Stag Hunt

	swerve	straight
swerve	0,0	-1, 1
straight	1, -1	-5, -5

stag hare

	stag	hare
	2, 2	0,1
!	1,0	1,1

Chicken:

$$BR_1(a_2 = \text{swerve}) = \text{straight}$$

$$BR_1(a_2 = \text{straight}) = \text{swerve}$$

Stag hunt:

$$BR_1(a_2 = stag) = stag$$
 $BR_1(a_2 = hare) = hare$

Best response

- Best response not necessarily unique!
- When the best response includes two (or more) actions, then the agent must be indifferent among them!
- In fact: any mixture of these actions would also be a best response (mixed) strategy.
- Indeed,
 - If a_{i1} and a_{i2} are best both best response actions to s_{-i} , then $u_i(a_{i1}, s_{-i}) = u_i(a_{i2}, s_{-i}) =: u_i^*$.
 - Then, for any mixed strategy $s_i = \{(a_{i1}, p_1), (a_{i2}, p_2)\}$:

$$u_i(s_i, s_{-i}) = p_1 u_i(a_{i1}, s_{-i}) + p_2 u_i(a_{i2}, s_{-i}) = (p_1 + p_2) u_i^* \equiv u_i^*,$$

since $p_1 + p_2 = 1$.

Best response: Continuous state space

Partnership game (two players)

• Actions: choice of individual contributions to joint project

$$0 \le x, y \le 4$$

• **Utilities:** *utility* = *profit* − *cost*

$$\begin{cases} u_1(x,y) = 2(x+y+bxy) - x^2 & (0 \le b < 1) \\ u_2(x,y) = 2(x+y+bxy) - y^2 & \end{cases}$$

Utility is quadratic (high input is very costly);

Best response: Continuous state space

Partnership game (two players): continued

- **Best response:** For a given input x of player 1, what input y of player 2 maximizes the latter's utility $(u_2(x, y))$?
- Finding the maximum utility $u_2(x, y)$ for given x:

$$\frac{\partial u_2}{\partial y} = 2(1+bx) - 2y = 0$$

Best response solution:

$$y^* \equiv BR_2(x) = 1 + bx$$

Similarly:

$$x^* \equiv BR_1(y) = 1 + by$$

Best response: Continuous state space

• Spoiler Alert! Intersection of BR curves yields (Nash) equilibrium!

Best response to mixed strategy

Best response to mixed strategy

Best Response Dynamics

- Best Response Dynamics:
 - Imagine the simultaneous game to be sequential;
 - Players take turns to play best response (BR) to opponent;
 - An equilibrium might be reached
- Example: in action profile (M, C) equilibrium is reached!

$$\begin{array}{c|cccc} & L & C & R \\ \hline U & 4,3 & 2,0 & 8,2 \\ M & 8,2 & 4,6 & -1,1 \\ D & 6,-3 & 0,0 & 1,-1 \\ \end{array}$$

- Counter-example: matching pennies produces a cycle!
- In finite game, converges to either equilibria or cycles!
 - This presages the concept of Nash equilibrium

BR dynamics might yield a cycle!

• Matching pennies:

BR dynamics for continuous state space

• Partnership game:

Best response and IESDS

- Strictly dominated strategies are never a best response;
- Church-Rosser property: Order of elimination does not matter for IESDS (strict dominance)!
- Eliminating weakly dominated strategies might be too drastic!

Game Theory Part 1: Outline

- 1. Game Theory: Science of Strategic Thinking
- 2. Examples of interesting games
- 3. Formalising games
- 4. Solution concept 1: Weak optimality
 - 4.1 Pareto front
 - 4.2 Elimination of strictly dominated strategies
 - 4.3 Best response (+dynamics)
- 5. Solution concept 2: Strategies with (weak) guarantees
- 6. Solution concept 3: Nash equilibrium