Lect 17 Hardware Programming (Verilog HDL) CS221: Digital Design Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati

Outline

- FPGA/ASIC Design Flow
- HDL Programming : Verilog HDL
- HDL Rules
- HDL Module and Examples
- HDL levels : Data flow, Structural and Behavioral, UDP
- Testing and Simulation

9/4/2018

Model

- Representation of abstract view of the System
- Varying abstractions
 - -functional only
 - -timing only
 - -functional + timing

9/4/201

Hardware Specification

- · Layout editor
 - directly enter layout
 - Up to $^{\sim}10^{2}$ of unique transistors
 - Complex circuits
 - Memory, aided by generators
- Schematic Capture
 - Enter gates and interconnections
 - Up to ~104 transistors
- Hardware Description Languages
 - Enter text description
 - 10⁷ transistors

9/4/2018

Synthesis

- Behavioral Synthesis (Process & Sequential)
 - Behavioral HDL → RTL HDL
 - No notion of clock to Clocked
- RTL Synthesis
 - -RTL HDL → Gates
- Layout Synthesis
 - -Gates → Layout

9/4/201

Verilog HDL

What is Verilog • Hardware Description Language (HDL) • Developed in 1984 • Standard: IEEE 1364, Dec 1995

HDL, Area of Application Design Entry Logic Simulation Functional Verification Digital Circuit Synthesis Timing Verification Fault Simulation Documntation

Lets Start with an Example of Verilog HDL module

User Identifiers

- Formed from {[A-Z], [a-z], [0-9], _, \$}
- Can't begin with \$ or [0-9]
 - -myidentifier
 - -m_y_identifier
 - -3my_identifier
 - -\$my_identifier <u>€</u>
 - -_myidentifier\$
- Case sensitivity : myid ≠ Myid

9/4/201

Verilog Value Set

- 0 represents low logic level or false condition
- 1 represents high logic level or true condition
- X represents unknown logic level
- Z represents high impedance logic level == > open circuit

9/4/2018

Truth Tables (Updated..) 0 0 0 0 0 1 X X 0 1 ХХ 1 1 1 1 0 x х Х X 1 X X **0** x х х X 1 X X 0 1 хх хх 1 0 OUT 1 0 **X** x х Х Sorry: There were two mistakes in х х х х this Slide, now corrected