<u>Problem Set 7 – Random Processes</u>

Problem 1:

The random process $X(t) = A \cdot e^{Bt}$, $t \ge 0$ is given, where A, B are random variables.

The sample space: $\Omega = \{\omega_1, \omega_2, \omega_3\}$ w.p. $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$, where the events ω_i are the following:

$$\omega_{1} = \{A = 1, B = 0\} \Rightarrow X(t) \equiv 1 \quad w.p. \frac{1}{2}$$

$$\omega_{2} = \{A = 1, B = 1\} \Rightarrow X(t) = e^{t} \quad w.p. \frac{1}{4}$$

$$\omega_{3} = \{A = 2, B = 1\} \Rightarrow X(t) = 2e^{t} \quad w.p. \frac{1}{4}$$

- 1. Draw all the possible sample functions of the process.
- 2. What is the PDF of the random variable $X(t_0 = 1)$?
- 3. Find the conditional distribution of $X(t_0 = 1)$, given that $X(t_0 = 0) = 1$ holds.

Problem 2:

Given is the random process $X(t) = e^{-At}$, where A is a random variable with PDF $f_A(a)$.

- 1. Find the expectation of the process.
- 2. Find the auto-correlation function of the process.
- 3. Find the first-order PDF of the process, $f_X(x;t)$.

Problem 3:

Formulas that may be useful throughout the problem (k, m whole):

$$\sum_{k=1}^{m} k = \frac{m(m+1)}{2}$$

$$\sum_{k=1}^{m} k^2 = \frac{m(m+1)(2m+1)}{6}$$

$$\sum_{k=1}^{m} k^3 = \left(\frac{m(m+1)}{2}\right)^2$$

The random variable N_0 is given, which takes whole values (positive and negative).

It holds that:

$$P_{r}(N_{0} = n) = \begin{cases} A \left[1 - \frac{|n|}{M} \right] & |n| < M \\ 0 & otherwise \end{cases}$$

where M is a known natural constant, n is a whole number and A is constant.

- 1. a. Calculate the value of A.
 - b. Calculate the expected value of N_0 .
 - c. Calculate the variance of N_0 .

The discrete time random process N[k] is defined as follows:

$$\begin{split} N[k] &= 0 \quad \big(\forall \, k < 0 \big) \\ N\left[0\right] &= N_0 \\ N\left[k\right] &= N\left[k-1\right] + W\left[k\right] \quad \big(\forall \, k > 0 \big) \end{split}$$

where W[k] is an i.i.d series with the following distribution (of first order):

$$W[k] = \begin{cases} 1 & w.p \ 0.25 \\ 0 & w.p \ 0.5 \\ -1 & w.p \ 0.25 \end{cases}$$

It is given, also, that all the series W[k] is independent of N_0 .

- 2. a. Calculate the expected value of the random process N[k].
 - b. Calculate the auto-correlation function of N[k].
 - c. Is N[k] a stationary process? If so, in what sense?
- 3. Now, N[k] is to be estimated from its past samples.

Calculate the following estimators <u>and the mean squared error</u> obtained in the estimation:

- a. The optimal estimator of N[k] from N[k-1].
- b. The optimal estimator of N[k] from the pair of samples N[k-1], N[k-2].
- c. The <u>optimal linear</u> estimator of N[k] from the pair of samples N[k-1], N[k-2].

- 4. a. What is the optimal linear estimator of N[k] from the samples vector [N[k-1], N[k-2], ..., N[k-10]]? Prove your answer!
 - b. What is the mean squared error obtained in the estimation?

Problem 4:

Let X(t) be a random process and g() be some real function, namely:

$$g: R \longrightarrow R$$

Let us define the random process Z(t) as follows:

$$Z(t) = g(X(t)) \quad \forall t$$

Prove the following claims:

- 1. If X(t) is S.S.S., then Z(t) is also S.S.S.
- 2. Bonus: If X(t) is W.S.S., then Z(t) is not necessarily W.S.S.

Problem 5:

 θ is a random variable that distributes uniformly in the section $[-\pi, \pi]$. X(t) is a random process defined by $X(t) = \sin(\omega_0 t + \theta)$.

- 1. Calculate $Pr(X(t_0) < 3)$.
- 2. Calculate $\Pr\left(X(t) \ge 0, \forall 0 \le t \le \frac{2\pi}{\omega_0}\right)$.
- 3. Calculate $\Pr\left(X(t) \ge 0, \forall 0 \le t \le \frac{\pi}{2\omega_0}\right)$.
- 4. Calculate $\Pr\left(\exists 0 \le t \le \frac{\pi}{\omega_0} : X(t) = 1\right)$.
- 5. What is the conditional distribution: $X(t)|_{X(0)=\sin\alpha}$?
- 6. Calculate $E[X(t_0)]$.
- 7. What is the first order PDF of the process?