MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER- 16 EXAMINATION Model Answer

Subject Code:

17301

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answer	Marking Scheme
1		Attempt any <u>TEN</u> of the following:	20
	a)	Find 'a' if the tangent to the curve $y = x^2 + ax$ at the origin is parallel	02
	Ans	to the line passing through $A(-4,-3)$ and $B(-2,5)$ $y = x^2 + ax$	
		$\therefore \frac{dy}{dx} = 2x + a$	1/2
		at origin $\frac{dy}{dx} = a$	1/2
		dx $\therefore \text{ slope of } \tan g \operatorname{en} t = a$	
		slope of line AB is, $m = \frac{y_2 - y_1}{x_2 - x_1}$	
		$\therefore m = \frac{5+3}{-2+4} = 4$	1/2
		 ∴ tangent is parallel to AB ∴ a = 4 	1/2
	b)	Find Radius of curvature of $y = x^3$ at $(1,1)$.	02
	Ans	$y = x^3$ $\therefore \frac{dy}{dx} = 3x^2$	1/2

WINTER – 16 EXAMINATION

Model Answer

		Model Allower	
Q. No.	Sub Q. N.	Answer	Marking Scheme
1	b)	d^2y	
		$\frac{d^2 y}{dx^2} = 6x$	
		at (1,1)	
		$\frac{dy}{dx} = 3$	
		$\frac{dx}{dx}$	1/2
		$\frac{d^2y}{dx^2} = 6$	/-
		Radius of curvature $\rho = \frac{\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$	
		$\therefore \rho = \frac{\left(1+3^2\right)^{\frac{3}{2}}}{6} = 5.27$	1
		Evaluate: $\int \left(e^x + x^e + e^e\right) dx$	02
	Ans	$\int \left(e^x + x^e + e^a\right) dx$	
		$\int (e^{x} + x^{e} + e^{e}) dx$ $= e^{x} + \frac{x^{e+1}}{e+1} + e^{e}x + c$	2
	d) Ans	Evaluate: $\int \frac{1}{x + \sqrt{x}} dx$	02
	AllS	$\int \frac{1}{x + \sqrt{x}} dx$	1/2
		$\therefore I = \int \frac{1}{\sqrt{x}\sqrt{x} + \sqrt{x}} dx$	72
		$I = \int \frac{1}{\sqrt{x} \left(\sqrt{x} + 1\right)} dx$	
		$put \sqrt{x+1} = t$	1/
		$put \sqrt{x} + 1 = t$ $\therefore \frac{1}{\sqrt{x}} dx = 2 dt$	1/2
		$\therefore I = \int \frac{2 dt}{t}$	1/2
		$I = 2 \log t + c$ $I = 2 \log \sqrt{x} + c$	1/2
		$I = 2 \log \sqrt{x} + c$	/2
		Page No 0	2/22

WINTER - 16 EXAMINATION

Model Answer

		Model Allswer	
Q. No.	Sub Q. N.	Answer	Marking Scheme
1	e)	Evaluate $\int \sin^2 x \ dx$	02
	Ans	$\int \sin^2 x dx$	
		$\therefore I = \int \frac{1 - \cos 2x}{2} dx$	1
		_	
		$I = \frac{1}{2} \left(x - \frac{\sin 2x}{2} \right) + c$	1
	f)	Evaluate: $\int \sec^2 x.x.dx$	02
	Ans	$\int \sec^2 x.x.dx$	
		$= x \int \sec^2 x dx - \int \left(\int \sec^2 x dx \cdot \frac{d}{dx} x \right) dx$	1/2
		$= x \tan x - \int \tan x \cdot 1 dx$	1
		$= x \tan x - \log (\sec x) dx + c$	1/2
			/2
	g)	Find 'k', if $\int_{0}^{1} (3x^{2} + 2x + k) dx = 0$	02
	Ans		
		$\int\limits_0^\infty \left(3x^2+2x+k\right)dx=0$	
		$\left[\therefore \left[3 \frac{x^3}{3} + 2 \frac{x^2}{2} + kx \right]_0^1 = 0 \right]$	1
			1/2
		$\therefore 1 + 1 + k = 0$ $\therefore k = -2$	1/2
	h)	Evaluate: $\int \cos e c^2 (x^0) dx$	02
	Ans	$\int \cos e c^2 \left(x^0 \right) \! dx$	
		$\therefore I = \int \cos e c^2 \left(\frac{\pi x}{180} \right) dx$	1
		$\therefore I = -\frac{\cot\left(\frac{\pi x}{180}\right)}{\frac{\pi}{2}} + c$	1
		$\frac{\pi}{180}$	
	<u> </u>	Page No. (

WINTER – 16 EXAMINATION

Model Answer

	Ch		Maylina
Q. No.	Sub Q. N.	Answer	Marking Scheme
1	h)	$\therefore I = -\cot\left(\frac{\pi x}{180}\right) \frac{180}{\pi} + c$	
	i)	Find the area under the parabola $y^2 = 4x$ bounded by the lines $x = 0$, $y = 0$, $x = 4$	02
	Ans	$y^2 = 4x$	
		x = 0, y = 0, x = 4	
		$y = 2\sqrt{x}$	1/
		$A \operatorname{rea} A = \int_{0}^{4} 2\sqrt{x} dx$	1/2
		$\therefore A = 2 \int_{0}^{4} x^{\frac{1}{2}} dx$	
		$\begin{bmatrix} 0 \\ \frac{3}{2} \end{bmatrix}^4$	
		$\therefore A = 2 \left[\frac{\frac{3}{2}}{\frac{3}{2}} \right]_0^4$	1/2
		$\therefore A = \frac{4}{3} \left[4^{\frac{3}{2}} \right]$	1/2
		$A = \frac{32}{3}$ or 10.67	1/2
		$d^{2} = \int_{0}^{2} dx dx dx$	ı
	j)	Find order and degree of the differntial equation $\frac{d^2 y}{dx^2} = \left(y + \frac{dy}{dx}\right)^{\frac{3}{2}}$	02
	Ans	$\frac{d^2 y}{dx^2} = \left(y + \frac{dy}{dx}\right)^{\frac{3}{2}} \qquad \text{Order} = 2$	1
		$\therefore \left(\frac{d^2 y}{dx^2}\right)^2 = \left(y + \frac{dy}{dx}\right)^3$	1
		Degree = 2	
	k)	Form a D.E. if $y = A \sin x + B \cos x$	02
	Ans	$y = A \sin x + B \cos x$	
		$\therefore \frac{dy}{dx} = A\cos x - B\sin x$	1/2

WINTER - 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
1	k)	$\therefore \frac{d^2 y}{dx^2} = -A \sin x - B \cos x$	1/2
		$\therefore \frac{d^2 y}{dx^2} = -\left(A \sin x + B \cos x\right)$	1/2
		$\therefore \frac{d^2 y}{dx^2} = -y$	1/2
		$\therefore \frac{d^2 y}{dx^2} + y = 0$	
	l)	Form a differential equation, if $y = ax^2 + b$	02
	Ans	$y = ax^2 + b$	
		$\therefore \frac{dy}{dx} = 2ax$	1/2
		$\frac{dx}{dx}$	
		$\therefore \frac{d^2 y}{dx^2} = 2a$	1/2
		$\therefore \frac{d^2 y}{dx^2} = \frac{1}{x} \frac{dy}{dx}$	1
			1
		$\therefore x \frac{d^2 y}{dx^2} - \frac{dy}{dx} = 0$	
	m)	Find the probability of getting sum of numbers is 9 with two dice.	02
	Ans	$S = \{(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)$	
		(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)	
		(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)	
		(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)	
		(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)	
		(6,1)(6,2)(6,3)(6,4)(6,5)(6,6) $n(s) = 36$	1/
		sum of numbers is 9	1/2
		$\therefore A = \{(4,5) \ (5,4) \ (3,6) \ (6,3)\}$	
		$\therefore n(A) = 4$	1/2
		$p(A) = \frac{n(A)}{n(s)}$	
		$p(A) = \frac{4}{36} \text{ or } 0.111$	1
		Page No 0	

WINTER – 16 EXAMINATION

Model Answer

		<u>Model Allswel</u> Subject Code.	17501
Q. No.	Sub Q. N.	Answer	Marking Scheme
1	n)	An unbaised coin is tossed 3 times . Find the probability of getting two head	02
	Ans	$S = \{HHH, HTT, THT, TTH, HTH, HHT, THH, TTT\}$	
	Alls	$\therefore n(S) = 8$	1/2
		$A = \left\{ HHT, HTH, THH \right\}$	
		n(A) = 3	1/2
		$\therefore p(A) = \frac{n(A)}{n(S)}$	
		$\therefore p(A) = \frac{3}{8} \text{ or } 0.375$	1
2		Attempt any <u>Four</u> of the following:	16
	a)	Find the equation of tangent to the circle $x^2 + y^2 + 6x - 6y - 7 = 0$ at point it cuts	
	a ,	the x - axis.	04
	Ans	$x^2 + y^2 + 6x - 6y - 7 = 0$	
		curve cuts the $x - axis$ $\therefore y = 0$	
		$\therefore x^2 + 6x - 7 = 0$	
		$\therefore x = 1, -7$	1/2
		points are $(1,0)$ and $(-7,0)$	
		$x^2 + y^2 + 6x - 6y - 7 = 0$	
		$\therefore 2x + 2y \frac{dy}{dx} + 6 - 6 \frac{dy}{dx} = 0$	
		$\therefore (2y-6)\frac{dy}{dx} = -2x-6$	
		$\therefore \frac{dy}{dx} = \frac{-2x - 6}{2y - 6}$	1/2
		at (1,0)	
		$\therefore \frac{dy}{dx} = \frac{-2-6}{0-6} = \frac{4}{3}$	1/2
		$\therefore \text{ slope } m = \frac{4}{3}$	
		equation of tangent is	
		$(y-0) = \frac{4}{3}(x-1)$	
		$\therefore 3 y = 4 x - 4$	1
		$\therefore 4x - 3y - 4 = 0$	

WINTER - 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
2	a)	at (-7,0)	
			1/2
		$\therefore \frac{dy}{dx} = \frac{-2(-7) - 6}{0 - 6} = \frac{-4}{3}$	/2
		$\therefore \text{ slope } m = \frac{-4}{3}$	
		equation of tangent is	
		$(y-0) = \frac{-4}{3}(x+7)$	
		$3 \therefore 3 y = -4x - 28$	
		$\therefore 4x + 3y + 28 = 0$	1
	b)	Discuss the maxima and minima of the function "tan $x - 2x$ "	04
	Ans	$Let y = \tan x - 2x$	
		$\therefore \frac{dy}{dx} = \sec^2 x - 2$	1/2
		$\therefore \frac{d^2 y}{dx^2} = 2 \sec x \sec x \tan x = 2 \sec^2 x \tan x$	1/2
		$consider \frac{dy}{dx} = 0$	
		$\therefore \sec^2 x - 2 = 0$	
		$\therefore \sec^2 x = 2 \qquad \text{or} \tan^2 x - 1 = 0 \qquad \therefore \tan x = 1 \text{ or } \tan x = -1$	
		$\therefore \sec x = \sqrt{2}, -\sqrt{2} \text{or} \cos x = \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}$	
		$\therefore x = \frac{\pi}{4}, \frac{3\pi}{4} \qquad \text{or} \qquad x = \frac{\pi}{4}, \frac{3\pi}{4} \qquad \text{or} \qquad x = \frac{\pi}{4}, -\frac{\pi}{4}$	1
		$at x = \frac{\pi}{4}$	
		$\therefore \frac{d^2 y}{dx^2} = 2 \sec^2 \left(\frac{\pi}{4}\right) \tan \left(\frac{\pi}{4}\right) = 2(2)(1) = 4 > 0$	1/2
		$\therefore \text{ function is minimum at } x = \frac{\pi}{4}$	1/
		$y_{\min} = \tan \frac{\pi}{4} - \frac{\pi}{2} = 1 - \frac{\pi}{2}$	1/2
		at $x = \frac{3\pi}{4}$ or $x = -\frac{\pi}{4}$	
		$\therefore \frac{d^2 y}{dx^2} = 2 \sec^2 \left(\frac{3\pi}{4}\right) \tan \left(\frac{3\pi}{4}\right) = -4 < 0$	1/2

WINTER – 16 EXAMINATION

Model Answer

		<u>Model Allower</u>	
Q. No.	Sub Q. N.	Answer	Marking Scheme
2	b)	$\therefore \text{ function is maximum at } x = \frac{3\pi}{4}$ $\therefore y_{\text{max}} = \tan\left(\frac{3\pi}{4}\right) - \frac{3\pi}{2} = -1 - \frac{3\pi}{2} \text{or} -1 - \frac{\pi}{2}$	1/2
	c)	Find the radius of curvature of the curve $\sqrt{x} + \sqrt{y} = 1$ at $\left(\frac{1}{4}, \frac{1}{4}\right)$	04
	Ans	$\sqrt{x} + \sqrt{y} = 1$	1/
		$\therefore \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0$ $\therefore \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$	1/2
		$\frac{d^2 y}{dx^2} = \frac{-\left[\sqrt{x} \frac{1}{2\sqrt{y}} \frac{dy}{dx} - \sqrt{y} \frac{1}{2\sqrt{x}}\right]}{\left(\sqrt{x}\right)^2}$	1/2
		$\frac{d^2 y}{dx^2} = \frac{-\left[\sqrt{x} \frac{1}{2\sqrt{y}} \left(-\frac{\sqrt{y}}{\sqrt{x}}\right) - \sqrt{y} \frac{1}{2\sqrt{x}}\right]}{x}$	
		$\frac{d^2 y}{dx^2} = \frac{-\left[-\frac{1}{2} - \frac{\sqrt{y}}{2\sqrt{x}}\right]}{x}$	
		$\therefore \text{ at } \left(\frac{1}{4}, \frac{1}{4}\right)$	
		$\frac{dy}{dx} = -\frac{\sqrt{\frac{1}{4}}}{\sqrt{\frac{1}{4}}} = -1$	1
		$\frac{d^2 y}{dx^2} = \frac{-\left[-\frac{1}{2} - \frac{1}{2}\right]}{\frac{1}{4}} = 4$	1
		$\therefore \text{ Radius of curvature is } \rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$	
			20/22

WINTER – 16 EXAMINATION

Model Answer

Q.	Sub	<u>Model Allawer</u>	Marking
No.	Q. N.	Answer	Scheme
2	c)	$\therefore \rho = \frac{\left[1 + \left(-1\right)^2\right]^{\frac{3}{2}}}{4}$	1/2
		$\therefore \rho = 0.707$	1/2
	d)	Evaluate: \int \tan^6 x \ dx	04
	Ans	$\int \tan^6 x \ dx$	
		$= \int \tan^4 x \tan^2 x \ dx$	1/2
		$= \int \tan^4 x \left(\sec^2 x - 1 \right) dx$	1/2
		$= \int \tan^4 x \sec^2 x \ dx - \int \tan^4 x \ dx$	
		$= \int \tan^4 x \sec^2 x \ dx - \int \tan^2 x \tan^2 x \ dx$	1/2
		$= \int \tan^4 x \sec^2 x \ dx - \int \tan^2 x \left(\sec^2 x - 1 \right) \ dx$	1/2
		$= \int \tan^4 x \sec^2 x \ dx - \left[\int \tan^2 x \sec^2 x \ dx - \int \tan^2 x \ dx \right]$	
		$= \int \tan^4 x \sec^2 x \ dx - \left[\int \tan^2 x \sec^2 x \ dx - \int \left(\sec^2 x - 1 \right) \ dx \right]$	1/2
		$= \int \tan^4 x \sec^2 x \ dx - \left[\int \tan^2 x \sec^2 x \ dx - (\tan x - x) \right] + c$	
		put tan x = t	1/2
		$\therefore \sec^2 x dx = dt$	
		$\therefore I = \int t^4 dt - \left[\int t^2 dt - I_1 \right] + c \qquad \qquad \vdots I_1 = \tan x - x$	
		$=\frac{t^5}{5}-\left[\frac{t^5}{5}-I_1\right]+c$	1/2
		$=\frac{\tan^5 x}{5} - \left[\frac{\tan^3 x}{3} - I_1\right] + c$	
		$= \frac{\tan^5 x}{5} - \frac{\tan^3 x}{3} + \tan x - x + c$	1/2
	e)	Evaluate: $\int \cos(\log x) dx$	04
	Ans	$\int \cos(\log x) \ dx$	
		Put $\log x = t \Rightarrow x = e^t$	
		$\therefore \frac{1}{x} dx = dt$	
		$\therefore dx = xdt$	1/
		$\therefore dx = e^t dt$	1/2
	ĺ	Page No. (100

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
2	e)	$\therefore I = \int e^t \cos t dt$	1/2
		$= \frac{e^t}{1+1} (1\cos t + 1\sin t) + c$	2
		$= \frac{x}{2} (\cos(\log x) + \sin(\log x)) + c$	1
		OR	
		$\int \cos(\log x) \ dx$	
		$\operatorname{Put} \log x = t \Rightarrow x = e^{t}$	
		$\therefore \frac{1}{r} dx = dt$	
		$\therefore dx = xdt$	1/2
		$\therefore dx = e^t dt$	1/2
		$\therefore I = \int e^t \cos t dt$	1/2
		$= \cos t \int e^t dt - \int \left(\int e^t dt \frac{d}{dx} x \right) dx$	1/2
		$= \cos t \ e' - \int e' \left(-\sin t \right) dt$	
		$= \cos t \ e^{t} + \int e^{t} \sin t dt + c$	1/2
		$= \cos t \ e^t + e^t \sin t - \int e^t \cos t dt + c$	1/2
		$\therefore I = \cos t \ e^t + e^t \sin t - I + c$	
		$\therefore 2I = \cos t \ e^t + e^t \sin t + c$	1/2
		$\therefore I = \frac{e^t}{2} (\cos t + \sin t) + c$	
		$\therefore I = \frac{x}{2} (\cos(\log x) + \sin(\log x)) + c$	1/2
		OR	
		$I = \int \cos(\log x) \ dx$	1/2
		$\therefore I = \int \cos(\log x) . 1 \ dx$	
		$\therefore I = \cos(\log x) \int 1 dx - \int \left(\int 1 dx \frac{d}{dx} \cos(\log x) \right) dx$	1/2
		$\therefore I = \cos(\log x) x - \int x \left(\frac{-\sin(\log x)}{x} \right) dx$	1
		$\therefore I = x \cos(\log x) + \int \sin(\log x) dx$	
		Page No. 1	<u> </u>

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub		Marking
NO.	Q. N.	Answer	Scheme
2		$\therefore I = x \cos(\log x) + \int \sin(\log x) . 1 dx$	1/2
		$\therefore I = x \cos(\log x) + \sin(\log x) x - \int x \left(\frac{\cos(\log x)}{x}\right) dx$	1/2
		$\therefore I = x \cos(\log x) + x \sin(\log x) - \int \cos(\log x) dx$	
		$\therefore I = x \cos(\log x) + x \sin(\log x) - I$	1/2
		$\therefore 2I = x \left(\cos\left(\log x\right) + \sin\left(\log x\right)\right)$	
		$\therefore I = \frac{x}{2} (\cos(\log x) x + x \sin(\log x)) + c$	1/2
	f)	Evaluate: $\int \frac{\sec^2 x}{(1 + \tan x)(2 + \tan x)} dx$	04
	Ans	$\int \frac{\sec^2 x}{(1+\tan x)(2+\tan x)} dx$	
		Put tan x = t	1
		$\sec^2 x dx = dt$	
		$\therefore I = \int \frac{dt}{(1+t)(2+t)}$	
		Let $\frac{1}{(1+t)(2+t)} = \frac{A}{1+t} + \frac{B}{2+t}$	1/2
		1 = A(2+t) + B(1+t)	
		Put t = -1	
		1 = A(1)	1/2
		$\therefore A = 1$ Put $t = -2$	
		1 = B(-1)	1/2
		$\therefore B = -1$	
		$\therefore \frac{1}{(1+t)(2+t)} = \frac{1}{1+t} + \frac{-1}{2+t}$	
			1/2
		$\therefore \int \frac{dt}{(1+t)(t+2)} = \int \left(\frac{1}{1+t} + \frac{-1}{2+t}\right) dt$	1/2
		$\therefore I = \log(1+t) - \log(2+t) + c$	
		$\therefore I = \log(1 + \tan x) - \log(2 + \tan x) + c \text{or} I = \log\left(\frac{1 + \tan x}{2 + \tan x}\right) + c$	1/2
		OR Page No.1	

WINTER - 16 EXAMINATION

Model Answer

	T		
Q. No.	Sub Q. N.	Answer	Marking Scheme
2	f)	$\int \frac{\sec^2 x}{(1+\tan x)(2+\tan x)} dx$	
		Put $\tan x = t$ $\sec^2 x dx = dt$	1
		$\therefore I = \int \frac{dt}{(1+t)(2+t)}$ $\therefore I = \int \frac{dt}{t^2 + 3t + 2}$	1/2
		Third term = $\frac{\left(3\right)^2}{4} = \frac{9}{4}$	
		$\therefore I = \int \frac{dt}{t^2 + 3t + \frac{9}{4} - \frac{9}{4} + 2}$	1/2
		$\therefore I = \int \frac{dt}{\left(t + \frac{3}{2}\right)^2 - \left(\frac{1}{2}\right)^2}$	1/2
		$\therefore I = \frac{1}{2\left(\frac{1}{2}\right)} \log \left(\frac{t + \frac{3}{2} - \frac{1}{2}}{t + \frac{3}{2} + \frac{1}{2}}\right)$	1
		$I = \log\left(\frac{t+1}{t+2}\right)$ $I = \log\left(\frac{1+\tan x}{2+\tan x}\right) + c$	1/2
3			16
			04
		Evaluate: $\int_{0}^{4} \frac{1}{\sqrt{4x-x^{2}}} dx$	
	Ans	$\int_{0}^{4} \frac{1}{\sqrt{4x-x^{2}}} dx$	
		$= \int_{0}^{4} \frac{1}{\sqrt{-\left(x^{2} - 4x\right)}} dx$	
		Third term = $\frac{\left(4\right)^2}{4} = 4$	
		Page No.12	/22

WINTER – 16 EXAMINATION

Model Answer

		<u>Model Allower</u>	
Q. No.	Sub Q. N.	Answer	Marking Scheme
3	a)	$= \int_{0}^{4} \frac{1}{\sqrt{-\left(x^{2} - 4x + 4 - 4\right)}} dx$	1
		$= \int_{0}^{4} \frac{1}{\sqrt{-\left[\left(x-2\right)^{2}-\left(2\right)^{2}\right]}} dx$ $= \int_{0}^{4} \frac{1}{\sqrt{\left(2\right)^{2}-\left(x-2\right)^{2}}} dx$	1
		$= \left[\sin^{-1}\left(\frac{x-2}{2}\right)\right]_0^4$	1
		$= \sin^{-1}\left(\frac{4-2}{2}\right) - \sin^{-1}\left(\frac{0-2}{2}\right)$ $= \sin^{-1}(1) - \sin^{-1}(-1)$ $= \frac{\pi}{2} + \frac{\pi}{2}$	1/2
		$= \frac{\pi}{2} + \frac{\pi}{2}$ $= \pi$ OR	1/2
		$\int_{0}^{4} \frac{1}{\sqrt{4x - x^{2}}} dx$ Third term = $\frac{\left(4\right)^{2}}{4} = 4$	
		$= \int_{0}^{4} \frac{1}{\sqrt{4 - \left(4 - 4x + x^{2}\right)}} dx$	1
		$= \int_{0}^{4} \frac{1}{\sqrt{(2)^{2} - (2 - x)^{2}}} dx$	1
		$= \left[\sin^{-1} \left(\frac{2-x}{2} \right) \left(\frac{1}{-1} \right) \right]_0^4$ $= -\sin^{-1} \left(\frac{2-4}{2} \right) + \sin^{-1} \left(\frac{2-0}{2} \right)$	1
			1/2
		$\begin{bmatrix} - & \tau & \tau \\ 2 & 2 \end{bmatrix} = \pi$	1/2
		Paga No 12	

WINTER – 16 EXAMINATION

Model Answer

		<u>Model Allswel</u> Subject Code.	17501
Q. No.	Sub Q. N.	Answer	Marking Scheme
3	p)	Evaluate: $\int_{0}^{\pi} \frac{x \cdot \sin x}{1 + \cos^{2} x} dx$	04
	Ans	$\int_{0}^{\pi} \frac{x \cdot \sin x}{1 + \cos^{2} x} dx$	
		$I = \int_{0}^{\pi} \frac{(\pi - x)\sin(\pi - x)}{1 + \cos^{2}(\pi - x)} dx$	1/2
		$\therefore I = \int_{0}^{\pi} \frac{(\pi - x)\sin x}{1 + \cos^{2} x} dx$	1/2
		$\therefore I = \int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^{2} x} dx - \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$	1/2
		$\therefore I = \int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^{2} x} dx - I$	/2
		$\therefore 2I = \int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^{2} x} dx$	
		Put $\cos x = t$ when $x \to 0$ to π $t \to 1$ to -1	
		$\therefore -\sin x dx = dt$	1/2
		$\therefore \sin x dx = -dt$	1/2
		$\therefore 2I = -\pi \int_{1}^{-1} \frac{1}{1+t^2} dt$	1/2
		$\therefore 2I = -\pi \left[\tan^{-1} t \right]_{1}^{-1}$	1/2
		$\therefore 2I = -\pi \left[\tan^{-1} \left(-1 \right) - \tan^{-1} 1 \right]$	/2
		$\therefore 2I = -\pi \left[-\frac{\pi}{4} - \frac{\pi}{4} \right]$	
		$\therefore I = \frac{\pi^2}{4}$	1/2
	c)	Find the area of the loop of the curve $y^2 = x^2 (1-x)$	04
	Ans	$y^2 = x^2 (1 - x)$	
	AIIS	y = x (1-x) $y = 0$	
		$\therefore x^2 (1-x) = 0$	
		$\therefore x = 0,1$	1

WINTER – 16 EXAMINATION

Model Answer

		Model Aliswei Subject Code.	
Q. No.	Sub Q. N.	Answer	Marking Scheme
3	c)	Area $A = \int_{a}^{b} y dx$ $\therefore A = \int_{0}^{1} x \sqrt{1 - x} dx$ $\therefore A = \int_{0}^{1} (1 - x) \sqrt{x} dx$	1/2
		$\therefore A = \int_{0}^{1} (1-x) \sqrt{x} dx$ $\therefore A = \int_{0}^{1} (1-x) x^{\frac{1}{2}} dx$	1/2
		$\therefore A = \int_0^1 \left(x^{\frac{1}{2}} - x^{\frac{3}{2}} \right) dx$	1/2
		$\therefore A = \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{x^{\frac{5}{2}}}{\frac{5}{2}} \right]_{0}^{1}$	1
		$\therefore A = \frac{2}{3} - \frac{2}{5}$ $\therefore A = \frac{4}{15} \text{ or } 0.2667$ OR	1/2
		$y^{2} = x^{2} (1 - x)$ $y = 0$ $x^{2} (1 - x) = 0 \qquad \therefore x = 0,1$	1
		$y = x\sqrt{1-x}$ $A \operatorname{rea} A = \int_{a}^{b} y dx$ $\therefore A = \int_{a}^{1} x\sqrt{1-x} dx$	1/2
		Put $1 - x = t \Rightarrow 1 - t = x$ $when x \to 0 \text{ to } 1 t \to 1 \text{ to } 0 dx = dt$	
		$\therefore dx = -dt$ $\therefore A = \int_{1}^{0} (1-t) \sqrt{t} (-dt)$	1/2
		$\therefore A = -\int_{1}^{0} (1-t)t^{\frac{1}{2}} dt$	

WINTER - 16 EXAMINATION

Model Answer

Q.	Sub	Answor	Marking
No.	Q. N.	Answer	Scheme
3	c)	$\therefore A = -\int_{1}^{0} \left(t^{\frac{1}{2}} - t^{\frac{3}{2}} \right) dt$	1/2
		$\therefore A = -\left[\frac{\frac{3}{t^2} - \frac{5}{t^2}}{\frac{3}{2} - \frac{5}{2}}\right]^0$	1
		$\therefore A = 0 + \left(\frac{2}{3} - \frac{2}{5}\right)$	1/2
		$\therefore A = \frac{4}{15} \text{ or } 0.2667$	
	d)	Solve: $\frac{dy}{dx} = e^{(x-y)}.x^2$	04
	Ans	$\frac{dy}{dx} = e^{(x-y)}x^2$	
		$\therefore \frac{dy}{dx} = e^x e^{-y} x^2$	1/2
		$\therefore e^{y} dy = e^{x} x^{2} dx$	1/2
		$\therefore \int e^{y} dy = \int e^{x} x^{2} dx$	1/2
		$\therefore e^{y} = x^{2} \int e^{x} dx - \int \left(\int e^{x} dx \frac{d}{dx} x^{2} \right) dx$	/2
		$\therefore e^{y} = e^{x}x^{2} - \int e^{x} 2x dx$	1
		$\therefore e^{y} = e^{x}x^{2} - 2\int e^{x}x dx$	1/
		$\therefore e^{y} = e^{x}x^{2} - 2\left[e^{x}x - \int e^{x}dx\right]$	1
		$\therefore e^{y} = e^{x}x^{2} - 2\left[xe^{x} - e^{x}\right] + c$	1
	e)	Solve: $(x - y) \frac{dy}{dx} = x + y$	04
	Ans	$\left(x-y\right)\frac{dy}{dx} = x+y$	
		$\therefore \frac{dy}{dx} = \frac{x+y}{x-y}$	
		Put y = vx	
		$\therefore \frac{dy}{dx} = v + x \frac{dv}{dx}$	1/2
		Page No.1	6/22

WINTER – 16 EXAMINATION

Model Answer

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
3	e)	$\therefore v + x \frac{dv}{dx} = \frac{x + vx}{x - vx}$ $\therefore v + x \frac{dv}{dx} = \frac{1 + v}{1 - v}$ $\therefore x \frac{dv}{dx} = \frac{1 + v}{1 - v} - v$ $\therefore x \frac{dv}{dx} = \frac{1 + v - v + v^2}{1 - v}$	1/2
		$\therefore x \frac{dv}{dx} = \frac{1+v^2}{1-v}$ $\therefore \frac{1-v}{1+v^2} dv = \frac{1}{x} dx$ $\therefore \int \frac{1-v}{1+v^2} dv = \int \frac{1}{x} dx$	½ ½
		$\int \left(\frac{1}{1+v^2} - \frac{v}{1+v^2}\right) dv = \log x + c$ $\tan^{-1} v - \frac{1}{2}\log(1+v^2) = \log x + c$	½ 1
	f)	$\tan^{-1}\left(\frac{y}{x}\right) - \frac{1}{2}\log\left(1 + \frac{y^2}{x^2}\right) = \log x + c$ $= -\frac{1}{2}\log\left(1 + x\right) + \frac{1}{2}\log\left(1 + \frac{y^2}{x^2}\right) = \log x + c$ $= -\frac{1}{2}\log\left(1 + x\right) + \frac{1}{2}\log\left(1 + \frac{y^2}{x^2}\right) = \log x + c$ $= -\frac{1}{2}\log\left(1 + x\right) + \frac{1}{2}\log\left(1 + \frac{y^2}{x^2}\right) = \log x + c$ $= -\frac{1}{2}\log\left(1 + x\right) + \frac{1}{2}\log\left(1 + \frac{y^2}{x^2}\right) = \log x + c$ $= -\frac{1}{2}\log\left(1 + x\right) + \frac{1}{2}\log\left(1 + \frac{y^2}{x^2}\right) = \log x + c$ $= -\frac{1}{2}\log\left(1 + x\right) + \frac{1}{2}\log\left(1 + \frac{y^2}{x^2}\right) = \log x + c$ $= -\frac{1}{2}\log\left(1 + x\right) + \frac{1}{2}\log\left(1 + \frac{y^2}{x^2}\right) = \log x + c$	½ 04
		$(1+x)\frac{dy}{dx} - y = e^{3x} (1+x)^2$	1/2
		$\therefore \frac{dy}{dx} - \frac{1}{1+x} y = e^{3x} (1+x)$ $P = -\frac{1}{1+x}, Q = e^{3x} (1+x)$ $I.F. = e^{\int -\frac{1}{1+x} dx} = e^{-\int \frac{1}{1+x} dx}$	1/2
		$I.F. = e^{-\log(1+x)} = e^{\log\frac{1}{1+x}} = \frac{1}{1+x}$ Solution is $yI.F. = \int QI.F. dx + c$	1
		$\therefore y \frac{1}{1+x} = \int e^{3x} (1+x) \frac{1}{1+x} dx + c$ $\therefore \frac{y}{1+x} = \int e^{3x} dx + c$	½ ½
]	Page No. 1	•

WINTER – 16 EXAMINATION

Model Answer

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
3	f)	$\therefore \frac{y}{1+x} = \frac{e^{3x}}{3} + c$	1
4		Attempt any <u>FOUR</u> of the following:	16
	a)	Evaluate: $\int_{1}^{4} \frac{\sqrt{5-x}}{\sqrt{x}+\sqrt{5-x}} dx$	04
		$I = \int_{1}^{4} \frac{\sqrt{5 - x}}{\sqrt{x} + \sqrt{5 - x}} dx \qquad (1)$	
		$I = \int_{1}^{4} \frac{\sqrt{5 - (1 + 4 - x)}}{\sqrt{(1 + 4 - x)} + \sqrt{5 - (1 + 4 - x)}} dx$	1/2
		$I = \int_{1}^{4} \frac{\sqrt{5 - 5 + x}}{\sqrt{5 - x} + \sqrt{5 - 5 + x}} dx$ $I = \int_{1}^{4} \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx - \dots (2)$	1/2
		add (1) and (2) $I + I = \int_{1}^{4} \frac{\sqrt{5 - x} + \sqrt{x}}{\sqrt{x} + \sqrt{5 - x}} dx + \int_{1}^{4} \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx$	
		$\therefore 2I = \int_{1}^{4} \frac{\sqrt{5-x} + \sqrt{x}}{\sqrt{x} + \sqrt{5-x}} dx$	1 1/2
		$\therefore 2I = \int_{1}^{4} 1 \ dx$	1/
		$\therefore 2I = \begin{bmatrix} x \end{bmatrix}_{1}^{4}$ $\therefore 2I = 4 - 1$	1/2
		$\therefore 2I = 3$ $I = \frac{3}{2}$	1/2
		1 = 2	1/2
	b)	Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cdot \cos x}{\cos^2 x + 3\cos x + 2} dx$	04
	Ans	$\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cdot \cos x}{\cos^2 x + 3\cos x + 2} dx$	
		Page No.1	8/33

WINTER - 16 EXAMINATION

Model Answer

		<u>ividuel Aliswer</u>	
Q. No.	Sub Q. N.	Answer	Marking Scheme
4	b)	Put $\cos x = t$ $when x \to 0 \text{ to } \frac{\pi}{2} t \to 1 \text{ to } 0 \sin x dx = dt \sin x dx = -dt I = \int_{1}^{0} \frac{t}{t^2 + 3t + 2} \left(-dt\right) I = -\int_{1}^{0} \frac{t}{(t+1)(t+2)} dt$	1 1/2
		Let $\frac{t}{(t+1)(t+2)} = \frac{A}{t+1} + \frac{B}{t+2}$ t = A(t+2) + B(t+1) Put $t = -1$	
		$-1 = A(1)$ $\therefore A = -1$ $Put t = -2$	1/2
		$-2 = B(-1)$ $\therefore B = 2$ $\therefore \frac{t}{(t+1)(t+2)} = \frac{-1}{t+1} + \frac{2}{t+2}$	1/2
		$\therefore -\int_{1}^{0} \frac{t}{(t+1)(t+2)} dt = -\int_{1}^{0} \left(\frac{-1}{t+1} + \frac{2}{t+2} \right) dt$	1/2
		$\therefore I = \left[\log(1+t) - 2\log(t+2)\right]_1^0$	1/2
		$\therefore I = (\log 1 - 2 \log 2) - (\log 2 - 2 \log 3)$	1/2
		$\therefore I = -3 \log 2 + 2 \log 3$	
	c)	Find the area bounded by two parabola $y^2 = 2x$ and $x^2 = 2y$	04
	Ans	$y^2 = 2x \qquad(1)$ $x^2 = 2y$	
		$\therefore y = \frac{x^2}{2}$ $eq.(1) \Rightarrow$	
		$\left(\frac{x^2}{2}\right)^2 = 2x$	
1		Page No 1	0 /00

WINTER – 16 EXAMINATION

Model Answer

		<u>Moder Allswer</u> Subject Code.	17301
Q. No.	Sub Q. N.	Answer	Marking Scheme
4	c)	$\frac{x^4}{4} = 2x$ $\therefore x^4 = 8x$ $\therefore x^4 - 8x = 0$ $\therefore x(x^3 - 8) = 0$ $\therefore x = 0, 2$ Area $A = \int_a^b (y_1 - y_2) dx$ $\therefore A = \int_0^2 (\sqrt{2x} - \frac{x^2}{2}) dx$	1 1
		$\therefore A = \int_{0}^{2} \left(\sqrt{2} x^{\frac{1}{2}} - \frac{x^{2}}{2} \right) dx$ $\therefore A = \left(\frac{\sqrt{2} x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{x^{3}}{6} \right)_{0}^{2}$	1 1/2
		$\therefore A = \left(\frac{\sqrt{2}(2)^{\frac{3}{2}}}{\frac{3}{2}} - \frac{(2)^{3}}{6}\right) - 0$ $\therefore A = \frac{4}{3} \text{or} 1.333$ OR	<i>y</i> ₂
		$y^{2} = 2x \qquad(1)$ $x^{2} = 2y \qquad(2)$ $x = \frac{y^{2}}{2}$ $eq.(2) \Rightarrow$ $\left(\frac{y^{2}}{2}\right)^{2} = 2y$	
		$\left(\begin{array}{c} y^{4} \\ \frac{y^{4}}{4} = 2y \\ \therefore y^{4} = 8y \\ \therefore y^{4} - 8y = 0 \\ \therefore y \left(y^{3} - 8\right) = 0 \end{array}\right)$	
		$\therefore y = 0, 2$	1

WINTER – 16 EXAMINATION

Model Answer

		Model Aliswei Subject Code.	17301
Q. No.	Sub Q. N.	Answer	Marking Scheme
4		Area $A = \int_{a}^{b} (x_1 - x_2) dy$ $\therefore A = \int_{0}^{2} \left(\sqrt{2y} - \frac{y^2}{2} \right) dy$ $\therefore A = \int_{0}^{2} \left(\sqrt{2y^{\frac{1}{2}}} - \frac{y^2}{2} \right) dy$	1
		$\therefore A = \left(\frac{\sqrt{2}y^{\frac{3}{2}}}{\frac{3}{2}} - \frac{y^3}{6}\right)_0^2$	1
		$\therefore A = \left(\frac{\sqrt{2}(2)^{\frac{3}{2}}}{\frac{3}{2}} - \frac{(2)^{\frac{3}{2}}}{6}\right) - 0$	½ ½
		$\therefore A = \frac{4}{3} \text{or } 1.333$	/2

WINTER – 16 EXAMINATION

Model Answer

		Model Allower	
Q. No.	Sub Q. N.	Answer	Marking Scheme
4	d)	$Solve: \left[4 - \frac{y^2}{x^2}\right] dx + \frac{2y}{x} dy = 0$	04
	Ans	$\left[4 - \frac{y^2}{x^2}\right] dx + \frac{2y}{x} dy = 0$	
		$M = 4 - \frac{y^2}{r^2}$, $N = \frac{2y}{r}$	1/2
		$\frac{\partial M}{\partial y} = -\frac{2y}{x^2} , \frac{\partial N}{\partial x} = -\frac{2y}{x^2}$	1
			1/2
		$\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ $\therefore \text{ exact D.E. is exact}$,2
		Solution is	
		$\int_{y-cons \tan t} M dx + \int_{terms \ not \ containing \ 'x'} N dy = c$	1
		$\therefore \int_{y-cons \tan t} \left(4 - \frac{y^2}{x^2} \right) dx + 0 = c$	
		$\therefore 4x + \frac{y^2}{x} = c$	1
		O R	
		$\left[4 - \frac{y^2}{x^2}\right] dx + \frac{2y}{x} dy = 0$	
		$\left[4 - \frac{y^2}{x^2}\right] + \frac{2y}{x} \frac{dy}{dx} = 0$	
		$Put \frac{y}{x} = v$	
		$\therefore y = vx$	1
		$\therefore \frac{dy}{dx} = v + x \frac{dv}{dx}$	
		$\therefore \left(4 - v^2\right) + 2v\left(v + x\frac{dv}{dx}\right) = 0$	
		$\therefore 4 - v^2 + 2v^2 + 2vx \frac{dv}{dx} = 0$	
		$\therefore 4 + v^2 + 2vx \frac{dv}{dx} = 0$	
		$\therefore 2vx \frac{dv}{dx} = -\left(4 + v^2\right)$	
		$\therefore \frac{2v}{4+v^2} dv = -\frac{1}{x} dx$	1
]		

WINTER – 16 EXAMINATION

Model Answer

		Model Allswer	
Q. No.	Sub Q. N.	Answer	Marking Scheme
4	d)	$\therefore \int \frac{2v}{4+v^2} dv = -\int \frac{1}{x} dx$	1/2
			1
		$\log\left(4+v^2\right) = -\log x + c$	
		$\log\left(4 + \frac{y^2}{x^2}\right) = -\log x + c$	1/2
	e)	Solve: $(y.e^{xy} - 2y^3) dx + (x.e^{xy} - 6xy^2 - 2y) dy = 0$	04
	Ans	$\left(y.e^{xy} - 2y^{3}\right)dx + \left(x.e^{xy} - 6xy^{2} - 2y\right)dy = 0$	
		$M = y.e^{xy} - 2y^3$, $N = x.e^{xy} - 6xy^2 - 2y$	1/2
		$\frac{\partial M}{\partial y} = ye^{xy}x + e^{xy} - 6y^2, \frac{\partial N}{\partial x} = xe^{xy}y + e^{xy} - 6y^2$	1
		$\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	1/2
		∴ D.E. exact	
		Solution is	
		$\int_{y-cons \tan t} M dx + \int_{terms \ not \ containing'x'} N dy = c$	
		$\therefore \int_{y-cons \tan t} \left(y.e^{xy} - 2y^{3} \right) dx + \int \left(-2y \right) dy = c$	1/2
		$\therefore y \frac{e^{xy}}{y} - 2y^3x - 2\frac{y^2}{2} = c$	1
		y 2	1/2
		$\therefore e^{xy} - 2xy^3 - y^2 = c$	
	f)	Verify that $y^2 = ax^2$ is a solution of $x \left(\frac{dy}{dx}\right)^2 - 2y\frac{dy}{dx} + ax = 0$	04
	Ans	$y^2 = ax^2$	
		$\therefore 2y \frac{dy}{dx} = 2ax$	1
		$\therefore \frac{dy}{dx} = \frac{ax}{y}$	1
		dx y consider	
		$L.H.S. = x \left(\frac{dy}{dx}\right)^2 - 2y\frac{dy}{dx} + ax$	
		$= x \left(\frac{ax}{y}\right)^2 - 2y\frac{ax}{y} + ax$	1/2
			/2

WINTER – 16 EXAMINATION

Model Answer

		<u>Model Allower</u>	
Q. No.	Sub Q. N.	Answer	Marking Scheme
4		$=x\frac{a^2x^2}{x^2}-2ax+ax$	1
		y	1/2
		$=x\frac{a^2x^2}{ax^2}-ax$	1/2
		=ax-ax	1/2
		=0=R.H.S.	
5		Attempt any <u>FOUR</u> of the following:	16
	a)	The probability that a student passes H.S.C. exam is 2/3 and the probability that	
		he passes both H.S.C.and I.I.T. entrace exam is 14/45. The probability that he passes	t
		at least one exam is 4/5. What is the probability that he passes the I.I.T.entrance	04
		exam?	
	Ans	Given $P(A) = \frac{2}{3}$	
		$P(A \cap B) = \frac{14}{45}$ $P(A \cup B) = \frac{4}{5}$	
		$\begin{pmatrix} P(A + + B) \end{pmatrix}$	
			1
		P(B) = ?	
		$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	1
		$\therefore \frac{4}{5} = \frac{2}{3} + P(B) - \frac{14}{45}$	1
		$P(B) = \frac{4}{5} - \frac{2}{3} + \frac{14}{45}$	1
		$\therefore P(B) = \frac{4}{9} \text{or} 0.444$	1
	b)	In 200 sets of tosses of 5 fair coins in how many ways you can expect	04
		i) at least two heads.	
		ii) At the most two heads.	
	Ans	$p = \frac{1}{2}$, $q = \frac{1}{2}$	
		n = 5	
		$p(r) = {}^{n}C_{r}p^{r}q^{n-r}$	
		i) at least two heads	
		P(r) = 1 - [p(0) + p(1)]	
		Page No 2	4 /22

WINTER – 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
5	b)	$=1-\left[{}^{5}C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{5-0}+{}^{5}C_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{5-1}\right]$	1
			1/2
		$= \frac{13}{16} \text{ or } 0.8125$	1/2
		No. of ways = $200 \times 0.8125 = 162.5 \approx 163$ <i>ii</i>) At the most two heads	
		P(r) = p(0) + p(1) + p(2)	1
		$= 0.1875 + {}^{5}C_{2} \left(\frac{1}{2}\right)^{2} \left(\frac{1}{2}\right)^{5-2}$	
		= 0.5	1/2
		No. of ways = $200 \times 0.5 = 100$	1/2
	c)	If 5% of the electric bulbs manufacturing by a company are defective, use	04
		Poisson distribution to find the probability that in a sample of 100 bulbs.	
		i) None is defective ii) Five bulbs are defective (Given $e^{-5} = 0.007$)	
	Ans	p = 5% = 0.05	
		n = 100	
		$mean m = np = 100 \times 0.05$	
		m = 5	1
		$P(r) = \frac{e^{-m}m'}{r!}$	
		i) None is defective	
		r = 0	1
		$P\left(0\right) = \frac{e^{-5}\left(5\right)^{0}}{0!}$	1/
		$\begin{array}{c} 0! \\ P(0) = 0.007 \end{array}$	1/2
		ii) Five bulbs are defective	
		r = 5	
		$P\left(5\right) = \frac{e^{-5}\left(5\right)^{5}}{5!}$	1
		5! $P(5) = 0.1823$	1/2
	d)	Evaluate: $\int \frac{x+1}{(x-1)^2} dx$	04
		Page No.	

WINTER – 16 EXAMINATION

Model Answer

	1	Subject code.	1
Q. No.	Sub Q. N.	Answer	Marking Scheme
5	d)	x + 1	
	Ans	$\int \frac{x+1}{\left(x-1\right)^2} dx$	
		$= \int \frac{x-1+2}{\left(x-1\right)^2} dx$	1
		$= \int \left(\frac{x-1}{\left(x-1\right)^2} + \frac{2}{\left(x-1\right)^2} \right) dx$	1
		$= \int \left(\frac{1}{x-1} + \frac{2}{\left(x-1\right)^2} \right) dx$	1/2
		$= \log (x-1) + \frac{2(x-1)^{-1}}{-1} + c$	1
		$= \log\left(x-1\right) - \frac{2}{x-1} + c$	1/2
		OR	
		$\int \frac{x+1}{\left(x-1\right)^2} dx$	
		Let $\frac{x+1}{(x-1)^2} = \frac{A}{x-1} + \frac{B}{(x-1)^2}$	1/2
		x+1=A(x-1)+B	
		Put x = 1	
		2 = B	1/
		$\therefore B = 2$	1/2
		Put x = 0	
		1 = A(-1) + B	
		$1 = A\left(-1\right) + 2$	1/2
		$\therefore A = 1$	
		$\therefore \frac{x+1}{\left(x-1\right)^2} = \frac{1}{x-1} + \frac{2}{\left(x-1\right)^2}$	
		$\int \frac{x+1}{\left(x-1\right)^2} dx = \int \left(\frac{1}{x-1} + \frac{2}{\left(x-1\right)^2}\right) dx$	1
		$= \int \left(\frac{1}{x-1} + \frac{2}{\left(x-1\right)^2}\right) dx$	
		$= \log (x-1) + \frac{2(x-1)^{-1}}{-1} + c$	1
L		Paga No 2	1

WINTER - 16 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
5	d)	$= \log (x-1) - \frac{2}{x-1} + c$ OR $\int \frac{x+1}{(x-1)^2} dx$ $= \int \frac{x+1}{x^2 - 2x + 1} dx$	1/2
		$= \frac{1}{2} \int \frac{2x+2}{x^2 - 2x+1} dx$ $= \frac{1}{2} \int \frac{2x-2+4}{x^2 - 2x+1} dx$	1
		$= \frac{1}{2} \left(\int \frac{2x-2}{x^2-2x+1} dx + 4 \int \frac{1}{x^2-2x+1} dx \right)$	1/2
		$= \frac{1}{2} \left(\int \frac{2x-2}{x^2-2x+1} dx + 4 \int \frac{1}{\left(x-1\right)^2} dx \right)$	1/2
		$= \frac{1}{2} \left(\log \left(x^2 - 2x + 1 \right) + 4 \frac{\left(x - 1 \right)^{-1}}{-1} \right) + c$	1
		$= \frac{1}{2} \left(\log \left(x^2 - 2x + 1 \right) - \frac{4}{x - 1} \right) + c$	1
	e)	Evaluate: $\int_{0}^{\frac{\pi}{2}} \sin 5x \cos 3x \ dx$	04
	Ans	$\int_{0}^{2} \sin 5x \cos 3x \ dx$	1/2
		$= \frac{1}{2} \int_{0}^{2} 2 \sin 5x \cos 3x dx$ $= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (\sin (5x + 3x) + \sin (5x - 3x)) dx$	1
		$= \frac{1}{2} \int_{0}^{\pi} (\sin(5x + 3x) + \sin(5x - 3x)) dx$ $= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (\sin 8x + \sin 2x) dx$	
		Page No. 2	

WINTER – 16 EXAMINATION

Model Answer

		<u>Model Allower</u>	
Q. No.	Sub Q. N.	Answer	Marking Scheme
5	e)	$= \frac{1}{2} \left[\frac{-\cos 8x}{8} - \frac{\cos 2x}{2} \right]_{0}^{\frac{\pi}{2}}$ $= -\frac{1}{2} \left[\frac{\cos 8x}{8} + \frac{\cos 2x}{2} \right]_{0}^{\frac{\pi}{2}}$ $= -\frac{1}{2} \left[\frac{\cos 8\left(\frac{\pi}{2}\right)}{8} + \frac{\cos 2\left(\frac{\pi}{2}\right)}{2} - \frac{\cos 0}{8} - \frac{\cos 0}{2} \right]$ $= -\frac{1}{2} \left[\frac{\cos 4\pi}{8} + \frac{\cos \pi}{2} - \frac{\cos 0}{8} - \frac{\cos 0}{2} \right]$	1
	f)	$= -\frac{1}{2} \left[\frac{1}{8} + \frac{(-1)}{2} - \frac{1}{8} - \frac{1}{2} \right]$ $= \frac{1}{2}$	½ 04
		Evaluate: $\int e^x \cdot \sin 4x dx$	
	Ans	$\int e^{x} \sin 4x dx$ $I = \int e^{x} \sin 4x dx$ $\therefore I = \sin 4x \int e^{x} dx - \int \left(\int e^{x} dx \cdot \frac{d}{dx} \sin 4x \right) dx$ $\therefore I = \sin 4x e^{x} - \int e^{x} \cos 4x \cdot 4 dx$ $\therefore I = \sin 4x e^{x} - 4 \int e^{x} \cos 4x dx$	½ 1
		$\therefore I = \sin 4x e^{x} - 4 \left[\cos 4x e^{x} - \int \left(\int e^{x} dx \cdot \frac{d}{dx} \cos 4x \right) dx \right]$	1/2
		$\therefore I = \sin 4x e^x - 4 \left[\cos 4x e^x - \int e^x \left(-\sin 4x \cdot 4\right) dx\right]$ $\therefore I = \sin 4x e^x - 4 \left[\cos 4x e^x + 4 \int e^x \sin 4x dx\right]$	1
		$\therefore I = \sin 4x e^{x} - 4e^{x} \cos 4x - 16 \int e^{x} \sin 4x dx$ $\therefore I = \sin 4x e^{x} - 4e^{x} \cos 4x - 16I$ $\therefore 17I = \sin 4x e^{x} - 4e^{x} \cos 4x$	1/2
		$\therefore I = \frac{e^x}{17} \left(\sin 4x - 4\cos 4x\right) + c$	<i>Y</i> ₂

WINTER – 16 EXAMINATION

Model Answer

Q.	Sub	Answer	Marking
No.	Q. N.	Allswei	Scheme
6		Attempt any FOUR of the following:	16
	a)	Two six face unbaised dice are thrown .Find the probability that the sum of the	
		numbers shown is 7 or product is 12.	04
	Ans	$S = \{(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)$	
		(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)	
		(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)	
		(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)	
		(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)	
		(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)	1
		n(s) = 36	
		sum is 7 or product is 12	
		$\therefore A = \{(1,6)(2,5)(3,4)(4,3)(2,6)(5,2)(6,1)(6,2)\}$	
		$\therefore n(A) = 8$	1
		$p(A) = \frac{n(A)}{n(s)}$	
		$p(A) = \frac{8}{36}$ or 0.222	2
	b)	In a sample of 1000 cases , the mean of certain test is 14 and standard deviation	04
		is 2.5. Assuming the distribution is normal. Find	
		i) How many students score between 12 and 15?	
		ii) How many students score above 18?	
		(Given:A(0.8) = 0.2881, A(0.4) = 0.1554, A(1.6) = 0.4452)	
	Ans	Given _	
		$x = 14, \sigma = 2.5$	
		$z = \frac{x - x}{}$	
		σ i) For $x = 12$	
		$z = \frac{12 - 14}{2.5} = -0.8$	
		For $x = 12$	
		$z = \frac{15 - 14}{2.5} = 0.4$	1/2

WINTER - 16 EXAMINATION

Model Answer

		<u>Model Allswel</u> Subject Code.	17301
Q. No.	Sub Q. N.	Answer	Marking Scheme
6	b)	p = (area between -0.8 and 0.4) = A(-0.8) + A(0.4)	
		= 0.2881 + 0.1554	4
		= 0.4435	1
		:. No. of students = $1000 \times 0.4435 = 443.5 \approx 444$	1/2
		ii) For $x = 18$,	
		$z = \frac{18 - 14}{2.5} = 1.6$	1/2
		p = (area above 1.6) = 0.5 - A(1.6)	
		= 0.5 - 0.4452	1
		= 0.0548	
		∴ No. of students = 1000 × 0.0548 = 54.8 ≈ 55	1/2
	c)	A metal wire 40 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.	04
	Ans	Let length = y , breadth = x	
	AllS	Perimeter is $2x + 2y = 40$	
		$\therefore x + y = 20$	1/2
		y = 20 - x	
		Area is $A = xy$	
		$\therefore A = x(20 - x)$	
		$\therefore A = 20x - x^2$	1
		$\therefore \frac{dA}{dx} = 20 - 2x$	1/2
		dx	1/2
		$\therefore \frac{d^2 A}{dx^2} = -2$	/2
		Consider $\frac{dA}{dx} = 0$	
		$\therefore 20 - 2x = 0$	1/2
		$\therefore x = 10$	
		$\therefore at \ x = 10$	1/2
		$\frac{d^2 A}{dx^2} = -2 < 0$	/2
		\therefore A is maximum when $x = 10$	
		\therefore breadth $x = 10$	
		length y = 10	1/2
		Page No.	

WINTER – 16 EXAMINATION

Model Answer

	Т	INITIALITATIONET SUBJECT COUR.	
Q. No.	Sub Q. N.	Answer	Marking Scheme
6	d)	Find the equation of normal and tangent to the curve $y = 4.x.e^{x}$ at origin.	04
	Ans	$y = 4xe^{x}$	
	Alls		1/2
		$\therefore \frac{dy}{dx} = 4\left(xe^x + e^x\right)$	/2
		at (0,0)	
		$\therefore \frac{dy}{dx} = 4\left(e^{0}\right) = 4$	1/2
		\therefore slope of tangent $m=4$	1/2
		Equation of tangent is	
		$y - y_1 = m \left(x - x_1 \right)$	
		y - 0 = 4(x - 0)	
		y = 4x	1
		4x - y = 0	
		$\therefore \text{ slope of normal } = -\frac{1}{\frac{dy}{dy}} = -\frac{1}{m} = -\frac{1}{4}$	1/2
		$\frac{dy}{dx}$ m 4	
		$y - 0 = -\frac{1}{4}(x - 0)$	
		4 y = -x	
		x + 4y = 0	1
	e)	If $P(A) = \frac{1}{2}$, $P(B') = \frac{2}{3}$, $P(A \cup B) = \frac{2}{3}$, find $P(A' \cap B')$ & $P(A/B)$	04
	Ans	$P(A' \cap B') = P(A \cup B)'$	
		$=1-P(A\cup B)$	1/2
		$=1-\frac{2}{3}$	
		$=\frac{1}{3}$ or 0.333	1/2
		P(B) = 1 - P(B')	
		$=1-\frac{2}{3}$	
		1 = -	1/2
		3	
		$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	
		Page No. 21/	

WINTER – 16 EXAMINATION

Model Answer

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
6	e)	$\frac{2}{3} = \frac{1}{2} + \frac{1}{3} - P(A \cap B)$	1/2
		$\therefore P(A \cap B) = \frac{1}{2} + \frac{1}{3} - \frac{2}{3}$ $\therefore P(A \cap B) = \frac{1}{2} - \frac{1}{3}$	
		$\therefore P(A \cap B) = \frac{1}{2} - \frac{1}{3}$	1/2
		$\therefore P(A \cap B) = \frac{1}{6}$	
		$P(A \cap B) = \frac{1}{6}$ $P(A / B) = \frac{P(A \cap B)}{P(B)}$	
		$=\frac{1/6}{1/3}$	1
		$=\frac{1}{2} \text{ or } 0.5$	1/2
	f)	The probability that a pen manufactured by a company will be defective is 1/10.	04
		If 12 such pens are manufactured, find the probability that:	
		i) Exactly two will be defectiveii) At least two will be defective	
		iii) None will be defective	
	Ans	Given $p = 1/10 = 0.1$	
		q = 1 - p = 0.9	1/2
		n = 12	
		$p(r) = {^{n}C_{r}} p^{r} q^{n-r}$	
		i) Exactly two will be defective, $r = 2$	
		$p(2) = {}^{12}C_{2}(0.1)^{2}(0.9)^{12-2}$	
		p(2) = 0.2301	1
		ii) At least two will be defective	
		1 - [p(0) + p(1)]	
		$= 1 - \left[{}^{12}C_{0} (0.1)^{0} (0.9)^{12-0} + {}^{12}C_{1} (0.1)^{1} (0.9)^{12-1} \right]$	1
		= 0.3409	1/2
		iii) None will be defective, $r = 0$	
		$p(0) = {}^{12}C_0(0.1)^0(0.9)^{12-0}$	
		p(0) = 0.2824	
			1
L	1	Dana No. 22/	

WINTER – 16 EXAMINATION

Model Answer

Subject Code: 17301

Q. Sub No. Q. N	Answer	Marking Scheme
	<u>Important Note</u>	
	In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.	

Page No.32/33