D'un état à l'autre, la transformation physique

" L'amour, c'est de la physique, le mariage, c'est de la chimie. "

Alexandre Dumas fils, L'étrangère

I - Modélisation des transformations physiques :

1) Changement d'état physique :

Exemple:

- \checkmark H₂O (s) → H₂O (l) (à ne pas confondre avec la dissolution C₆H₁₂O₆ (s) → C₆H₁₂O₆ (aq))
 - 2) <u>Modélisation microscopique :</u>

		Solide	Liquide	Gaz
Schéma à l'échelle microscopique			会会	¥ **
Observations microscopiques	Molécules rapprochées ou éloignées	Molécules très rapprochées	Molécules rapprochées	Molécules éloignées
	Molécules mobiles ou immobiles les unes par rapport aux autres	Molécules immobiles les unes par rapport aux autres	Molécules mobiles les unes par rapport aux autres	Molécules très mobiles les unes par rapport aux autres
	Molécules liées ou non liées	Molécules fortement liées	Molécules faiblement liées	Molécules non liées
Conséquences microscopiques	Ensemble formé ordonné ou désordonné	Ensemble ordonné (forme propre)	Ensemble désordonné (pas de forme propre)	Ensemble désordonné (pas de forme propre)
	Ensemble formé compressible ou incompressible	Ensemble formé incompressible	Ensemble formé incompressible	Ensemble formé compressible
	Autres propriétés vues en 5e	Volume propre	Surface libre plane et horizontale	Occupe tout le volume qui lui est offert

II - Les échanges d'énergie :

1) Endothermique et exothermique :

Lors d'un chauffage, le corps capte de l'énergie au milieu extérieur : on dit que la transformation est endothermique.

Exemple:

✓ Fusion, vaporisation et sublimations sont endothermiques : l'agitation des particules augmentent, les liaisons peuvent se rompre et le désordre augmente.

Lors d'un refroidissement, le corps cède de l'énergie au milieu extérieur : on dit que la transformation est exothermique.

Exemple:

- ✓ Solidification, condensation et liquéfaction sont exothermiques : l'agitation des particules diminue, les liaisons peuvent se créer et le désordre diminue.
 - 2) Energie massique de changement d'état :

L'énergie Q (en Joule) échangée par transfert thermique lors d'un changement d'état est proportionnelle à la masse m (en kg) du système qui change d'état :

$$Q = m \times L$$

Exemple:

- ✓ L'énergie massique de fusion de l'eau est de 3,3.10⁵ en J.kg⁻¹.
- ✓ L'énergie massique de solidification de l'eau est de $3,3.10^{5}$ en J.kq⁻¹.