BROUILLON - INÉGALITÉS ISOPÉRIMÉTRIQUES RESTREINTES AUX POLYGONES

CHRISTOPHE BAL

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

1. Les polygones 2

Date: 18 Jan. 2025 - 26 Jan. 2025.

1

1. Les polygones

Fait 1. Soit $n \in \mathbb{N}_{\geq 3}$ un naturel fixé. Considérons tous les n-gones de périmètre fixé. Parmi tous ces n-gones, un seul est d'aire maximale, c'est le n-gone régulier.

Démonstration. Le fait ?? permet de considérer le problème de maximisation d'aire à périmètre fixé uniquement avec des n-gones convexes. Selon les faits ?? et ??, si parmi les n-gones convexes de périmètre fixé, il en existe un qui maximise l'aire, alors ce ne peut être que le n-gone régulier. Pour voir que cette condition nécessaire est suffisante, comme dans la remarque ??, nous allons convier le couple continuité/compacité.

• On munit le plan d'un repère orthonormé $(O; \vec{\imath}, \vec{\jmath})$.

• XXX

fermeture costaud, mais le côté birné!!!! pour fermeture, besoin d'accepter les k-gones pour $k \in [3; n]$.

Les n-gones convexes $A_1A_2 \cdots A_n$ tels que $\operatorname{Perim}(A_1A_2 \cdots A_n) = p$ sont représentés en posant $A_1(0;0)$, $A_2(A_1A_2;0)$, puis $A_k(x_k;y_k)$ avec $y_k \geq 0$ pour $k \in [3;n]$. Un n-gone peut donc avoir n représentations, mais peu importe. De plus, on accepte les n-gones dégénérés pour lesquels nous avons $x_B = 0$, $y_C = 0$ dans notre représentation. Nous notons alors $\mathcal{G} \subset \mathbb{R}^{2n}$ l'ensemble des triplets $(x_B; x_C; y_C)$ ainsi obtenus.

• XXX

Justifier que \mathcal{G} est fermé dans \mathbb{R}^{2n} .

- De plus, \mathcal{G} est borné, car les coordonnées des sommets des k-gones considérés le sont. Finalement, \mathcal{G} est un compact de \mathbb{R}^{2n} .
- Notons $s: \mathcal{G} \to \mathbb{R}_+$ la fonction « aire » des n-gones représentés. Cette fonction est continue en les coordonnées des sommets, car elle peut être calculée comme suit pour un n-gone convexe $A_1A_2\cdots A_n$ quelconque.
 - (1) L'isobarycentre G de $A_1A_2\cdots A_n$ possède des coordonnées affines en celles des points A_1, A_2, \ldots , et A_n .
 - (2) Par convexité, l'aire de $A_1A_2\cdots A_n$ est égale à la somme de celles des triangles GA_kA_{k+1} pour $k \in [1; n-1]$, et du triangle GA_nA_1 .
 - (3) Via le déterminant, il est immédiat de voir que les aires des triangles considérés sont des fonctions continues en les coordonnées des sommets.
- Finalement, par continuité et compacité, on sait que s admet un maximum sur \mathcal{G} , un tel maximum ne pouvant pas être atteint sur un k-gone dégénéré. That's all folks!