Lecture 02 Orthogonal Vectors and Matrices; Vector Norms

Songting Luo

Department of Mathematics lowa State University

MATH 562 Numerical Analysis II

Outline

1 Orthogonal Vectors and Matrices

2 Vector Norms

Outline

1 Orthogonal Vectors and Matrices

2 Vector Norms

- Inner product (dot product) of two column vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ is $\mathbf{u}^*\mathbf{v} = \sum_{i=1}^m \bar{u}_i v_i$
- In contrast, outer product of \mathbf{u}, \mathbf{v} is $\mathbf{u}\mathbf{v}^*$.
- Note that cross product is different

- Inner product (dot product) of two column vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ is $\mathbf{u}^*\mathbf{v} = \sum_{i=1}^m \bar{u}_i v_i$
- In contrast, outer product of **u**, **v** is **uv***.
- Note that cross product is different
- Euclidean length of \mathbf{u} is the square root of the inner product of \mathbf{u} with itself, i.e., $\sqrt{\mathbf{u}^*\mathbf{u}}$

- Inner product (dot product) of two column vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ is $\mathbf{u}^*\mathbf{v} = \sum_{i=1}^m \bar{u}_i v_i$
- In contrast, outer product of **u**, **v** is **uv***.
- Note that cross product is different
- Euclidean length of ${\bf u}$ is the square root of the inner product of ${\bf u}$ with itself, i.e., $\sqrt{{\bf u}^*{\bf u}}$
- Inner product of two unit vectors \mathbf{u} and \mathbf{v} is the cosine of the angle α between \mathbf{u} and \mathbf{v} , i.e., $\cos\alpha = \frac{\mathbf{u}^*\mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}$

- Inner product (dot product) of two column vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^m$ is $\mathbf{u}^*\mathbf{v} = \sum_{i=1}^m \bar{u}_i v_i$
- In contrast, outer product of **u**, **v** is **uv***.
- Note that cross product is different
- Euclidean length of \mathbf{u} is the square root of the inner product of \mathbf{u} with itself, i.e., $\sqrt{\mathbf{u}^*\mathbf{u}}$
- Inner product of two unit vectors \mathbf{u} and \mathbf{v} is the cosine of the angle α between \mathbf{u} and \mathbf{v} , i.e., $\cos\alpha = \frac{\mathbf{u}^*\mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}$
- Inner product is bilinear, in the sense that it is linear in each vertex separately:

$$(\mathbf{u}_1 + \mathbf{u}_2)^* \mathbf{v} = \mathbf{u}_1^* \mathbf{v} + \mathbf{u}_2^* \mathbf{v}$$
$$\mathbf{u}^* (\mathbf{v}_1 + \mathbf{v}_2) = \mathbf{u}^* \mathbf{v}_1 + \mathbf{u}^* \mathbf{v}_2$$
$$(\alpha \mathbf{u})^* (\beta \mathbf{v}) = \bar{\alpha} \beta \mathbf{u}^* \mathbf{v}$$

Definition

A pair of vectors \mathbf{x}, \mathbf{y} are orthogonal if $\mathbf{x}^*\mathbf{y} = 0$

In other words, the angle between them is 90 degrees

Definition

A pair of vectors \mathbf{x}, \mathbf{y} are orthogonal if $\mathbf{x}^*\mathbf{y} = 0$

In other words, the angle between them is 90 degrees

Definition

Two sets of vectors X and Y are orthogonal if every $\mathbf{x} \in X$ is orthogonal to every $\mathbf{y} \in Y$.

Definition

A pair of vectors \mathbf{x}, \mathbf{y} are orthogonal if $\mathbf{x}^*\mathbf{y} = 0$

In other words, the angle between them is 90 degrees

Definition

Two sets of vectors X and Y are orthogonal if every $\mathbf{x} \in X$ is orthogonal to every $\mathbf{y} \in Y$.

Definition

A set of nonzero vectors S is orthogonal if they are pairwise orthogonal. They are orthonormal if it is orthogonal and in addition each vector has unit Euclidean length.

Theorem

The vectors in an orthogonal set S are linearly independent.

Theorem

The vectors in an orthogonal set S are linearly independent.

Proof?

Theorem

The vectors in an orthogonal set S are linearly independent.

Proof?

Question: If the column vectors of an $m \times n$ matrix **A** are orthogonal, what is the rank of **A**?

Theorem

The vectors in an orthogonal set S are linearly independent.

Proof?

Question: If the column vectors of an $m \times n$ matrix **A** are orthogonal, what is the rank of **A**?

Answer: $rank(\mathbf{A}) = \min\{m, n\}$, i.e., **A** has full rank.

Components of Vector

• Given an orthonormal set $\{\mathbf q_1, \mathbf q_2, \dots, \mathbf q_m\}$ forming a basis of $\mathbb C^m$, vector $\mathbf v$ can be decomposed into orthogonal components as $\mathbf v = \sum_{i=1}^m (\mathbf q_i^* \mathbf v) \mathbf q_i$

Components of Vector

- Given an orthonormal set $\{\mathbf q_1, \mathbf q_2, \dots, \mathbf q_m\}$ forming a basis of $\mathbb C^m$, vector $\mathbf v$ can be decomposed into orthogonal components as $\mathbf v = \sum_{i=1}^m (\mathbf q_i^* \mathbf v) \mathbf q_i$
- \bullet Another way to express the condition is $\mathbf{v} = \sum_{i=1}^m (\mathbf{q}_i \mathbf{q}_i^*) \mathbf{v}$
- $\mathbf{q}_i \mathbf{q}_i^*$ is an orthogonal projection matrix. Note that it is NOT an orthogonal matrix.

Components of Vector

- Given an orthonormal set $\{\mathbf q_1, \mathbf q_2, \dots, \mathbf q_m\}$ forming a basis of $\mathbb C^m$, vector $\mathbf v$ can be decomposed into orthogonal components as $\mathbf v = \sum_{i=1}^m (\mathbf q_i^* \mathbf v) \mathbf q_i$
- Another way to express the condition is $\mathbf{v} = \sum_{i=1}^m (\mathbf{q}_i \mathbf{q}_i^*) \mathbf{v}$
- $\mathbf{q}_i \mathbf{q}_i^*$ is an orthogonal projection matrix. Note that it is NOT an orthogonal matrix.
- More generally, given an orthonormal set $\{{\bf q}_1,{\bf q}_2,\dots,{\bf q}_n\}$ with $n\leqslant m,$ we have

$$\mathbf{v} = \mathbf{r} + \sum_{i=1}^n (\mathbf{q}_i^* \mathbf{v}) \mathbf{q}_i = \sum_{i=1}^n (\mathbf{q}_i \mathbf{q}_i^*) \mathbf{v}, \text{ and } \mathbf{r}^* \mathbf{q}_i = 0, 1 \leqslant i \leqslant n$$

• Let **Q** be composed of column vectors $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$, $\mathbf{Q}\mathbf{Q}^* = \sum_{i=1}^n (\mathbf{q}_i \mathbf{q}_i^*)$ is an orthogonal projection matrix.

◆ロト ◆部 ▶ ◆き ▶ ◆き ▶ き めの(

Unitary Matrices

Definition

A matrix is unitary if $\mathbf{Q}^* = \mathbf{Q}^{-1}$, i.e., if $\mathbf{Q}^*\mathbf{Q} = \mathbf{Q}\mathbf{Q}^* = \mathbf{I}$.

- In the real case, we say the matrix is orthogonal. Its column vectors are orthonormal.
- In other words, $\mathbf{q}_i^*\mathbf{q}_j=\delta_{ij}$, the Kronecker delta.

Unitary Matrices

Definition

A matrix is unitary if $\mathbf{Q}^* = \mathbf{Q}^{-1}$, i.e., if $\mathbf{Q}^*\mathbf{Q} = \mathbf{Q}\mathbf{Q}^* = \mathbf{I}$.

- In the real case, we say the matrix is orthogonal. Its column vectors are orthonormal.
- In other words, $\mathbf{q}_i^*\mathbf{q}_j=\delta_{ij}$, the Kronecker delta.

Question: What is the geometric meaning of multiplication by a unitary matrix?

Unitary Matrices

Definition

A matrix is unitary if $\mathbf{Q}^* = \mathbf{Q}^{-1}$, i.e., if $\mathbf{Q}^*\mathbf{Q} = \mathbf{Q}\mathbf{Q}^* = \mathbf{I}$.

- In the real case, we say the matrix is orthogonal. Its column vectors are orthonormal.
- In other words, $\mathbf{q}_i^*\mathbf{q}_j=\delta_{ij}$, the Kronecker delta.

Question: What is the geometric meaning of multiplication by a unitary matrix?

Answer: It preserves angles and Euclidean length. In the real case, multiplication by an orthogonal matrix ${\bf Q}$ is a rotation (if $det({\bf Q})=1$) or reflection (if $det({\bf Q})=-1$)

Outline

1 Orthogonal Vectors and Matrices

2 Vector Norms

Definition of Norms

- Norm captures "size" of vector or "distance" between vectors
- There are many different measures for "sizes" but a norm must satisfy some requirements:

Definition of Norms

- Norm captures "size" of vector or "distance" between vectors
- There are many different measures for "sizes" but a norm must satisfy some requirements:

Definition

A norm is a function: $\|\cdot\|:\mathbb{C}^m\to\mathbb{R}$ that assigns a real-valued length to each vector. It must satisfy the following conditions:

- $\|\mathbf{x}\| \geqslant 0$, and $\|\mathbf{x}\| = 0$ only if $\mathbf{x} = \mathbf{0}$
- $\bullet \|\mathbf{x} + \mathbf{y}\| \leqslant \|\mathbf{x}\| + \|\mathbf{y}\|$
- $\bullet \ \|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$

Definition of Norms

- Norm captures "size" of vector or "distance" between vectors
- There are many different measures for "sizes" but a norm must satisfy some requirements:

Definition

A norm is a function: $\|\cdot\|:\mathbb{C}^m\to\mathbb{R}$ that assigns a real-valued length to each vector. It must satisfy the following conditions:

- $\|\mathbf{x}\| \geqslant 0$, and $\|\mathbf{x}\| = 0$ only if $\mathbf{x} = \mathbf{0}$
- $\bullet \|\mathbf{x} + \mathbf{y}\| \leqslant \|\mathbf{x}\| + \|\mathbf{y}\|$
- $\bullet \|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$
- An example is Euclidean length (i.e., $\|\mathbf{x}\| = \sqrt{\sum_{i=1}^m |x_i|^2}$)

Euclidean length is a special case of p-norms, defined as

$$\|\mathbf{x}\|_p = (\sum_{i=1}^m |x_i|^p)^{1/p}$$

for $1 \leqslant p \leqslant \infty$.

Euclidean length is a special case of p-norms, defined as

$$\|\mathbf{x}\|_p = (\sum_{i=1}^m |x_i|^p)^{1/p}$$

for $1 \le p \le \infty$.

• Euclidean norm is 2-norm (i.e., p=2).

Euclidean length is a special case of p-norms, defined as

$$\|\mathbf{x}\|_p = (\sum_{i=1}^m |x_i|^p)^{1/p}$$

for $1 \le p \le \infty$.

- Euclidean norm is 2-norm (i.e., p=2).
- 1-norm: $\|\mathbf{x}\|_1 = \sum_{i=1}^m |x_i|$

Euclidean length is a special case of p-norms, defined as

$$\|\mathbf{x}\|_p = (\sum_{i=1}^m |x_i|^p)^{1/p}$$

for $1 \leqslant p \leqslant \infty$.

- Euclidean norm is 2-norm (i.e., p=2).
- 1-norm: $\|\mathbf{x}\|_1 = \sum_{i=1}^m |x_i|$
- ∞ -norm: $\|\mathbf{x}\|_{\infty}$. What is its value?

Euclidean length is a special case of p-norms, defined as

$$\|\mathbf{x}\|_p = (\sum_{i=1}^m |x_i|^p)^{1/p}$$

for $1 \le p \le \infty$.

- Euclidean norm is 2-norm (i.e., p = 2).
- 1-norm: $\|\mathbf{x}\|_1 = \sum_{i=1}^m |x_i|$
- ∞ -norm: $\|\mathbf{x}\|_{\infty}$. What is its value?
 - Answer: $\|\mathbf{x}\|_{\infty} = \max_{1 \leq i \leq m} |x_i|$ (Proof?)

Euclidean length is a special case of p-norms, defined as

$$\|\mathbf{x}\|_p = (\sum_{i=1}^m |x_i|^p)^{1/p}$$

for $1 \leq p \leq \infty$.

- Euclidean norm is 2-norm (i.e., p = 2).
- 1-norm: $\|\mathbf{x}\|_1 = \sum_{i=1}^m |x_i|$
- ∞ -norm: $\|\mathbf{x}\|_{\infty}$. What is its value?
 - Answer: $\|\mathbf{x}\|_{\infty} = \max_{1 \leq i \leq m} |x_i|$ (Proof?)
- Why we require $p \ge 1$? What happens if 0 ?

Weighted *p*-norms

- A generalization of p-norm is weighted p-norm, which assigns different weights (priorities) to different components. (It is anisotropic instead of isotropic)
- Algebraically, $\|\mathbf{x}\|_W = \|\mathbf{W}\mathbf{x}\|$, where \mathbf{W} is diagonal matrix with i-th diagonal entry $w_i \neq 0$ being weight for i-th component
- In other words,

$$\|\mathbf{x}\|_W = (\sum_{i=1}^m |w_i x_i|^p)^{1/p}$$

• What happens if we allow $w_i = 0$?

Weighted *p*-norms

- A generalization of p-norm is weighted p-norm, which assigns different weights (priorities) to different components. (It is anisotropic instead of isotropic)
- Algebraically, $\|\mathbf{x}\|_W = \|\mathbf{W}\mathbf{x}\|$, where \mathbf{W} is diagonal matrix with i-th diagonal entry $w_i \neq 0$ being weight for i-th component
- In other words,

$$\|\mathbf{x}\|_W = (\sum_{i=1}^m |w_i x_i|^p)^{1/p}$$

- What happens if we allow $w_i = 0$?
- Can we further generalize it to allow W being arbitrary matrix?

Weighted *p*-norms

- A generalization of p-norm is weighted p-norm, which assigns different weights (priorities) to different components. (It is anisotropic instead of isotropic)
- Algebraically, $\|\mathbf{x}\|_W = \|\mathbf{W}\mathbf{x}\|$, where \mathbf{W} is diagonal matrix with i-th diagonal entry $w_i \neq 0$ being weight for i-th component
- In other words,

$$\|\mathbf{x}\|_W = (\sum_{i=1}^m |w_i x_i|^p)^{1/p}$$

- What happens if we allow $w_i = 0$?
- Can we further generalize it to allow W being arbitrary matrix?
- ullet No. But we can allow $oldsymbol{W}$ to be arbitrary nonsingular matrix.