Задание

Наименование задачи:

Вид решения: программа и отчёт.

Реализация решения: язык С или С++.

Методом хорд найти хотя бы один вещественный корень уравнения, решение снабдить графиками функций и указать найденные корни.

$$5^{x}\sqrt{8^{x-1}} - 189 = 0;$$

$$x^{3} - x^{2} + 2x - 5 = 0;$$

$$2 \lg x^{2} - 5 \lg^{2} x - 4 = 0;$$

$$2 \sin(2x) - \cos(3x) = 0.5, x \in [0; 2\pi];$$

$$2x^{3} - 7x^{2} - 7x - 2.5 = 0.$$

Произвести оценку вычислительной сложности метода. Посчитать число итераций для решения уравнения с заданной точностью.

Task: Using the chord method, find at least one real root of the equation, supply the solution with graphs of functions and indicate the found roots.

Элементы теории

Укажем способ нахождения корня ξ уравнения f(x) = 0, лежащего на заданном отрезке [a,b] таком, что f(a) * f(b) < 0.

Пусть для определенности f(a) < 0 и f(b) > 0. Тогда, вместо того чтобы делить отрезок [a,b] пополам, более естественно разделить его в отношении f(a): f(b). Это дает нам приближенное значение корня

$$x_1 = a + h_1$$
, (1)

где
$$h_1 = -\frac{f(a)}{-f(a)+f(b)}(b-a) = -\frac{f(a)}{\left(f(b)-f(a)\right)}(b-a).$$
 (2)

Далее, применяя этот прием к тому из отрезков $[a, x_1]$ или $[x_1, b]$, на концах которого функция f(x) имеет противоположные знаки, получим второе приближение корня x_2 и так далее.

Puc. 1.

Геометрически способ пропорциональных частей эквивалентен замене кривой y = f(x) хордой, проходящей через точки A(a, f(a)) и B(b, f(b)) (рис. 1). В самом деле, уравнение хорды AB есть $\frac{x-a}{b-a} = \frac{y-f(a)}{f(b)-f(a)}$.

Отсюда, полагая $x=x_1$ и y=0, получим: $x_1=a-\frac{f(a)}{f(b)-f(a)}(b-a)$. (1')

Формула (1') полностью эквивалентна формулам (1) и (2).

Листинг программы

```
#include <iostream>
#include <math.h>
using namespace std;
double equation(double, int);
int main() {
    setlocale(LC_ALL, "Russian");
    const double pi = 3.1415926535;
    int n;
    cout << "Введите номер уравнения" << endl;
    cin >> n;
    if (!(n >= 1 && n <= 5)) {
        cout << "Нет уравнения с таким номером" << endl;
        return 0;
    }
```

```
double left bound, right bound;
       cout << "Введите границы отрезка" << endl;
       cin >> left_bound >> right_bound;
       double e;
       cout << "Введите точность решения" << endl;
       cin >> e;
       if (!((equation(left_bound, n) * equation(right_bound, n)) < 0)) {
              cout << "Границы отрезка не удовлетворяют условиям метода" << endl;
              return 0;
       }
       if ((n == 4) \&\& !(left bound >= 0 \&\& right bound <= 2 * pi)){}
              cout << "Границы отрезка не удовлетворяют условиям задания" << endl;
              return 0;
       }
       int iterations = 0;
       double prev solution, solution; //Приближенные корни
       do {
              prev_solution = solution;
              solution = left_bound - (equation(left_bound, n) / (equation(right_bound, n) -
equation(left_bound, n))) * (right_bound - left_bound);
              iterations++;
              if(equation(solution, n) == 0) {
                     goto END; //График функции - прямая
              }
              if (equation(left_bound, n) * equation(solution, n) < 0) {
                     right_bound = solution;
              }
              else {
```

```
left bound = solution;
               }
       } while (fabs(prev_solution - solution) > e);
       END:
       cout \ll "Корень уравнения: x = " \ll solution \ll endl;
       cout << "Количество итераций: " << iterations << endl;
       cout << "Проверка решения: f(solution) = " << equation(solution,n) << endl;
       return 0;
}
double equation(double x, int n) {
       if (n == 1) {
               return pow(5, x) * sqrt(pow(8, x - 1)) - 189;
       }
       if (n == 2) {
               return pow(x, 3) - pow(x, 2) + 2 * x - 5;
       }
       if (n == 3) {
               return 2 * log10(pow(x, 2)) - 5 * pow(log10(x), 2) - 4;
       }
       if (n == 4) {
               return 2 * \sin(2 * x) - \cos(3 * x) - 0.5;
       }
       if (n == 5) {
               return 2 * pow(x, 3) - 7 * pow(x, 2) - 7 * x - 2.5;
       }
}
```

Вывод программы

Введите номер уравнения 1 Введите границы отрезка 0 3.5 Введите точность решения 0.0001 Корень уравнения: x = 2.37062Количество итераций: 58 Проверка решения: f(solution) = -0.247555Введите номер уравнения 2 Введите границы отрезка -13 Введите точность решения 0.001 Корень уравнения: х = 1.63903 Количество итераций: 13 Проверка решения: f(solution) = -0.00524048Введите номер уравнения 3 Введите границы отрезка -2 4.84 Введите точность решения 0.001 Границы отрезка не удовлетворяют условиям метода

Введите номер уравнения

4

Введите границы отрезка

0.127 1.25

Введите точность решения

0.001

Корень уравнения: x = 0.298656

Количество итераций: 3

Проверка решения: f(solution) = 8.10484e-05

Введите номер уравнения

5

Введите границы отрезка

3.65

Введите точность решения

0.001

Корень уравнения: x = 4.3669

Количество итераций: 6

Проверка решения: f(solution) = -0.00508901

Введите номер уравнения

5

Введите границы отрезка

4 5.4

Введите точность решения

0.001

Корень уравнения: x = 4.36655

Количество итераций: 6

Проверка решения: f(solution) = -0.0213697

Введите номер уравнения

5

Введите границы отрезка

3.65

Введите точность решения

0.0001

Корень уравнения: x = 4.36699

Количество итераций: 7

Проверка решения: f(solution) = -0.00111301

Введите номер уравнения

5

Введите границы отрезка

3.6 5.5

Введите точность решения

0.001

Корень уравнения: x = 4.36681

Количество итераций: 8

Проверка решения: f(solution) = -0.00926498

Введите номер уравнения

5

Введите границы отрезка

3.6 5.5

Введите точность решения

0.0001

Корень уравнения: x = 4.36699

Количество итераций: 10

Проверка решения: f(solution) = -0.00109954

Выводы

Результаты работы показали, что количество итераций цикла зависит от длины отрезка, на котором ищется приближенное решение уравнения, от задаваемой точности и функции y = f(x), для которой ищется корень. Значения функций в соответствующих найденных точках несильно отличаются от нуля.

Заключение

В ходе выполнения домашнего задания были изучены теоретические основы метода хорд для приближенного решения уравнений. Также был реализован алгоритм на языке C++. Проверка найденных решений продемонстрировала, что алгоритм можно считать правильным.

Список литературы

1. Демидович Б.П., Марон И.А. Основы вычислительной математики // М.: Наука, 1970. – 664 с.

Приложение

$$5^x \sqrt{8^{x-1}} - 189 = 0$$

$$x^3 - x^2 + 2x - 5 = 0$$

$$2\lg x^2 - 5\lg^2 x - 4 = 0$$

$$2\sin(2x) - \cos(3x) = 0.5, x \in [0; 2\pi]$$

$$2x^3 - 7x^2 - 7x - 2.5 = 0$$

