# Functorial nerve theorems for persistence

Fabian Roll (TUM)

Computational Persistence 2022 November 4

joint work with Ulrich Bauer, Michael Kerber, and Alexander Rolle

## The Alexandrov nerve (1928)

Definition. Let X be a topological space, and let  $\mathcal{U} = (U_i)_{i \in I}$  be a cover of X. The *nerve* of  $\mathcal{U}$  is the simplicial complex

$$\operatorname{Nrv}(\mathfrak{U}) = \{ J \subseteq I \mid |J| < \infty \text{ and } U_J := \bigcap_{i \in J} U_i \neq \emptyset \}$$





# The Alexandrov nerve (1928)

Čech complex of a point cloud

Definition. The  $\check{C}ech$  complex of a subset  $S\subseteq \mathbb{R}^d$  is the nerve of the cover by closed balls of radius r centered at points in S



Nerve Theorem. Let  $\mathcal U$  be an open and good cover of a paracompact space X. Then  $\mathrm{Nrv}(\mathcal U)$  is homotopy equivalent to X.

# The Alexandrov nerve (1928)

Delaunay complex of a point cloud

Definition. The *Delaunay complex* of a subset  $S \subseteq \mathbb{R}^d$  is the nerve of the cover by closed Voronoi balls of radius r centered at points in S



Nerve Theorem. Let  $\mathcal{A}$  be a finite closed and good cover of a subspace  $X \subseteq \mathbb{R}^d$ . Is  $Nrv(\mathcal{A})$  homotopy equivalent to X?

### Nerve theorem for closed convex covers

Theorem. If  $X \subset \mathbb{R}^d$ , and  $\mathcal{A} = (C_i)_{i \in [n]}$  is a cover by closed convex subsets, then  $\mathrm{Nrv}(\mathcal{A})$  is homotopy equivalent to X.

### Proof strategy:

▶ Construct piecewise linear  $\Gamma \colon \operatorname{Sd}\operatorname{Nrv}(\mathcal{A}) \to X$  with  $\Gamma(\operatorname{bst} v_i) \subseteq C_i$ .



- ► Construct  $\Phi \colon X \to \operatorname{Nrv}(\mathcal{A})$  using a partition of unity subordinate to an open thickening of the  $C_i$  with  $\Phi(C_i) \subseteq \operatorname{bst} v_i$ .
- ▶ Show that Φ is a homotopy inverse to Γ:
  - $\Gamma \circ \Phi(C_i) \subseteq C_i \Rightarrow \Gamma \circ \Phi \simeq id$
  - $\Phi \circ \Gamma(\operatorname{bst} v_i) \subseteq \operatorname{bst} v_i \Rightarrow \Phi \circ \Gamma \simeq \operatorname{id}$

Persistent homology



Let  $X\subseteq \mathbb{R}^d$ ,  $\mathcal{U}_r=\{B_r(x)\}_{x\in X}$ , and  $X_r=\bigcup \mathcal{U}_r$ . The nerve theorem guarantees for  $r\leq l$  the homotopy equivalences

$$\begin{array}{ccc}
\operatorname{Nrv}(\mathcal{U}_r) & \longrightarrow & \operatorname{Nrv}(\mathcal{U}_l) \\
& \cong & & & & & & & \cong \\
X_r & \longrightarrow & X_l
\end{array}$$

Theorem (Chazal–Oudot 2008). For open coves, this diagram commutes up to homotopy. Hence, it commutes after applying homology.

We address two issues:

- 1. Closed covers were not well-treated in the literature
- No "proper" functoriality → needed in some homotopy-theoretic approaches to TDA (e.g. Blumberg–Lesnick)

### Category of covered spaces



### Definition. The category of covered spaces Cov has

- $lackbox{ Obj: pairs of the form } (X,(U_i)), \text{ with } (U_i) \text{ a cover of } X$

Category of covered spaces

#### Two functors

▶ Forgetting the cover: Spc: Cov  $\rightarrow$  Top,  $(X, \mathcal{U}) \mapsto X$ 

▶ The nerve: Nrv: Cov  $\rightarrow$  Top,  $(X, \mathcal{U}) \mapsto Nrv(\mathcal{U})$ 

Remark. There are no natural transformations between  $\operatorname{Spc}$  and  $\operatorname{Nrv}$ !

#### Pointed covers



Proposition. For every finite  $X\subseteq\mathbb{R}^d$  there exist piecewise linear homotopy equivalences  $\Gamma_r$  such that for  $r\le l$  we have

$$\operatorname{Sd} \operatorname{\check{C}ech}_r(X) \longrightarrow \operatorname{Sd} \operatorname{\check{C}ech}_l(X)$$

$$\Gamma_r \downarrow \qquad \qquad \qquad \downarrow \Gamma_l$$

$$\bigcup_{x \in X} D_r(x) \longrightarrow \bigcup_{x \in X} D_l(x)$$

Blowup complex

Definition. For a finite cover  $\mathcal{U} = (U_i)_{i \in [n]}$  of X, the blowup complex is

$$\operatorname{Blowup}(\mathfrak{U}) = \bigcup_{J \in \operatorname{Nrv}(\mathfrak{U})} U_J \times \Delta^{|J|-1} \subseteq X \times \operatorname{Nrv}(\mathfrak{U}) ,$$

yielding a functor  $Blowup : Cov \rightarrow Top.$ 





Remark. The blowup complex is (not naturally) homeomorphic to the *bar construction* of the nerve diagram

Any 
$$(f,\varphi)\colon (X,\mathcal{U}) \to (Y,\mathcal{V})$$
 induces a commuting diagram

$$X \xleftarrow{\rho_S} \text{Blowup}(\mathcal{U}) \xrightarrow{\rho_N} \text{Nrv}(\mathcal{U})$$

$$f \downarrow \qquad \qquad \downarrow \varphi_*$$

$$Y \xleftarrow{\rho_S} \text{Blowup}(\mathcal{V}) \xrightarrow{\rho_N} \text{Nrv}(\mathcal{V})$$

Hence, there are natural transformations  $\operatorname{Spc} \stackrel{\rho_S}{\Leftarrow} \operatorname{Blowup} \stackrel{\rho_N}{\Rightarrow} \operatorname{Nrv}$ .

## Unified nerve theorem

Theorem. Let X be a topological space and  $A = (A_i)_{i \in I}$  a cover of X.

- 1. Consider the natural map  $\rho_S$ : Blowup(A)  $\to X$ .
  - a) If A is an open cover, then  $\rho_S$  is a weak homotopy equivalence. If furthermore X is paracompact, then  $\rho_S$  is a homotopy equivalence.
  - b) Let X be compactly generated, and  $\mathcal A$  a closed cover that is locally finite and locally finite dimensional. If for any  $T\in\operatorname{Nrv}(\mathcal A)$  the latching space  $L(T):=\bigcup_{T\subsetneq J\subseteq I}A_J\subseteq A_T$  is closed and  $(A_T,L(T))$  satisfies the homotopy ext. prop., then  $\rho_S$  is a homotopy equivalence.
- 2. Consider the natural map  $\rho_N \colon \operatorname{Blowup}(\mathcal{A}) \to \operatorname{Nrv}(\mathcal{A})$ .
  - a) If A is (weakly) good, then  $\rho_N$  is a (weak) homotopy equivalence.
  - b) If for all  $J \in \operatorname{Nrv}(\mathcal{A})$  the space  $A_J$  is compactly generated and  $\mathcal{A}$  is homologically good with respect to a coefficient ring R, then  $\rho_N$  is an R-homology isomorphism.

## Unified nerve theorem

#### Counterexamples

The "latching assumption" is not a proof artefact:

Consider the double comb space C and denote the two combs by  $A_1$  and  $A_2$ 



- ightharpoonup The nerve  $\operatorname{Nrv} \mathcal{A}$  is contractible, but C is not
- ▶ The pairs  $(A_1, A_1 \cap A_2)$  and  $(A_2, A_1 \cap A_2)$  do not satisfy the homotopy extension property

## Summary

- Sketched proof of a (functorial) nerve theorem that is attractive to students and newcomers.
- ► Learned that functoriality depends on the framework and holds without any additional assumptions.
- Abstract homotopy theory can help to give a "unified view" on the functorial nerve theorem.