Property Tables

Raj Pala,

rpala@iitk.ac.in

Department of Chemical Engineering,
Associate faculty of the Materials Science Programme,
Indian Institute of Technology, Kanpur.

Quantities computed for analyzing experiments

- U(T) & H(T) in gases & condensed matter; Limiting cases...
- Specific heat at constant P & constant V
- Degrees of freedom & ideal gas

Property Tables

- Often, thermodynamic properties are not related via equations
- Properties are tabulated; Take a look at the appendix...

Figs: Cengel & Boles: TD

Where is quality?!

 Properties of the Saturated Liquid & Saturated Vapor are retained even when they are present in a mixture

$$v_{\text{avg}} = v_f + x v_{fg}$$
 (m^3/kg) $x = \frac{v_{\text{avg}} - v_{fg}}{v_{fg}}$ $u_{\text{avg}} = u_f + x u_{fg}$ (kJ/kg) $h_{\text{avg}} = h_f + x h_{fg}$ (kJ/kg)

Figs: Cengel & Boles: TD

Superheated vapor

Lower pressures $(P < P_{\text{sat}} \text{ at a given } T)$ Higher tempreatures $(T > T_{\text{sat}} \text{ at a given } P)$ Higher specific volumes $(v > v_g \text{ at a given } P \text{ or } T)$ Higher internal energies $(u > u_g \text{ at a given } P \text{ or } T)$ Higher enthalpies $(h > h_g \text{ at a given } P \text{ or } T)$

	V	и	h							
T,°C	m³/kg	kJ/kg	kJ/kg							
	$P = 0.1 \text{ MPa } (99.61^{\circ}\text{C})$									
Sat.	1.6941	2505.6	2675.0							
100	1.6959	2506.2	2675.8							
150	1.9367	2582.9	2776.6							
:	:	:	:							
1300	7.2605	4687.2	5413.3							
	$P = 0.5 \text{ MPa } (151.83^{\circ}\text{C})$									
Sat.	0.37483	2560.7	2748.1							
200	0.42503	2643.3	2855.8							
250	0.47443	2723.8	2961.0							

Figs: Cengel & Boles: TD & Wiki

Compressed liquid

Higher pressures $(P > P_{\text{sat}})$ at a given T) Lower tempreatures $(T < T_{\text{sat}})$ at a given P) Lower specific volumes $(v < v_f)$ at a given P or T) Lower internal energies $(u < u_f)$ at a given P or T) Lower enthalpies $(h < h_f)$ at a given P or T)

$$h \cong h_{f@T} + V_{f@T}(P - P_{\text{sat @}T})$$

Figs: Cengel & Boles: TD & Wiki

Only changes are important...Reference state=0

Saturated water—Temperature table

	Specific volume, m³/kg			<i>Internal energy,</i> kJ/kg		Enthalpy, kJ/kg		Entropy, kJ/kg · K				
Temp., T°C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. Iiquid, s _f	Evap., s _{fg}	Sat. vapor, s _g
0.01 5	0.6117 0.8725	0.001000 0.001000	206.00 147.03	0.000 21.019	2374.9 2360.8	2374.9 2381.8	0.001 21.020	2500.9 2489.1	2500.9 2510.1	0.0000 0.0763	9.1556 8.9487	9.1556 9.0249

Figs: Cengel & Boles: TD & Wiki