カルマンフィルタのプログラム 補足資料

東京理科大学大学院 先進工学研究科 電子システム工学専攻 相川研究室 中崎 彰太

- 1 convert_json_to_excel.m
- →openposeで取得した座標データ(.json)から必要なデータをexcelにまとめる
- ② Second_Order_Difference_Kalman_Filter.m
- →提案法
- ③ 開始・終了時間.xlsx
- →検証したい時間帯のデータを切り取るために、開始時間と終了時間を記入する 切り取るプログラムは②に含まれる

①convert_json_to_excel.mの補足

○コメントアウトに「★」がある行は実行前に正しいパスや設定を入力 ○実行して得られたexcelファイルのパスを②に入力

キーポイント 9_x 9_y 10_x 10_y 11_x 11_y 22_x 22_y 24_x 24_y

\mathcal{A}	Α	В	С	D	E	F	G	Н	1	J	
1	1007.43	469.921	991.243	662.326	963.124	846.705	1043.47	870.829	943.012	858.86	
2	1007.44	469.832	975.354	662.441	943.128	846.659	1023.41	878.737	919.164	854.986	
3	1007.21	469.804	975.1	658.452	931.134	842.876	1011.45	874.86	911.111	854.929	
4	1003.26	469.872	963.101	658.393	915.031	846.693	995.292	870.943	895.053	854.913	
5	1003.2	469.886	947.148	662.275	903.069	842.856	979.297	870.823	879.08	854.891	
6	1003.14	469.904	943.125	658.554	883.127	842.798	963.193	870.822	870.832	851.056	
7	999.235	473.827	939.081	662.419	874.932	838.84	951.088	870.912	850.827	850.947	
8	1003.23	473.817	935.143	666.331	854.954	834.779	935.153	870.947	838.807	850.723	
9	1007.14	473.799	939.019	666.379	846.9	822.92	915.03	866.949	818.918	846.661	
10	1007.2	473.8	943.128	666.338	838.72	818.903	906.938	870.855	814.559	838.749	
11	1007.38	469.927	955.158	662.339	826.8	814.909	887.109	874.881	806.761	818.977	
12	1007.46	477.799	975.238	662.427	826.747	806.745	882.796	874.974	806.673	806.806	
13	1011.24	473.758	995.234	662.477	846.654	786.708	862.903	870.941	814.914	786.615	
14	1011.21	469.856	1011.28	666.302	854.837	778.652	866.97	850.755	838.857	770.634	

①で得られたexcelファイル(Sheet1) 右脚はSheet1、左脚はSheet2に記載

②Second_Order_Difference_Kalman_Filter.mの補足 #03

- ○コメントアウトに「★」がある行は実行前に正しいパスや設定を入力
- 〇補正がうまくいかない場合は、補正前のデータの加速度を表示して(206行~)、 検出エラーと判断する加速度の閾値を変更(550行~・本スライドの8ページ目を参考)

```
206 %補正前の位置と加速度を表示
207 %ankle_x
208 display_ankle_x = true; %true:表示 false:非表示
209 由 if display_ankle_x・・・・
```

550 🖯 <mark>% 加速度で検出エラーを判定後、カルマンフィルタで補正</mark> 551 「kankle Lx,kankle Rx] = kalman2(cankle Lx,cankle Rx,100,0.0005); %(左座標, 右座標,加速度の閾値,カルマンの初期値) データによって閾値を変更

〇カルマンフィルタのプログラム参考ページ

https://koshiba.sakura.ne.jp/1pmatlab/kitagawa/nom2 localtrend/index.html

〇提案法については、本スライドと研究会の原稿に記載

原稿:スマートデバイスを用いたコンピュータビジョンによるマーカーレス歩行解析の検討.pdf

- ・①で得られたファイルのファイル名と開始・終了時間を記入
- ・開始・終了時間.xlsxのパスを②に記入

	Α	В	С	
1	ファイル名	開始時間	終了時間	
2	sub4_con_erot_c1	8.0	5 10.2	
3	sub4_con_erot_c2	5.7	7.9	
4	sub4_com_nfpa_1		1 6.5	
5				
6				
7				
R				

開始・終了時間.xlsx

OpenPoseのキーポイント

関節	キーポイント	座標
股	9 · 12	$(HI_t^{DoTC}, HI_t^{DoHC})$
膝	10 · 13	(K_t^{DoTC}, K_t^{DoHC})
足首	11 · 14	$\left(A_t^{DoTC}, A_t^{DoHC}\right)$
爪先	22 · 19	(T_t^{DoTC}, T_t^{DoHC})
踵	24 · 21	$(HE_t^{DoTC}, HE_t^{DoHC})$

DoTC: Direction of Travel Coordinate DoHC: Direction of Height Coordinate

二階差分カルマンフィルタの構築

状態方程式

$$\boldsymbol{X}_{t} = \boldsymbol{F}\boldsymbol{X}_{t-1} + \boldsymbol{b}\boldsymbol{u} = \begin{bmatrix} 0 & 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{t-1} \\ v_{t-1} \\ v_{t-2} \\ x_{t-1} \\ x_{t-2} \\ x_{t-3} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \boldsymbol{u}$$

観測方程式

状態ベクトル: X_t 観測ベクトル: Y_t システム行列:F 観測行列:H 状態ノイズ:u(平均0,分散 σ_u^2) 観測ノイズ:w(平均0,分散 σ_w^2) 時刻:t 加速度: a_t 速度: v_t 位置: x_t

 σ^2_u , σ^2_w の値はニュートン・ラフソン法を用いた反復計算により,拡散対数尤度を最大化するように決定している.

DoTC: Direction of Travel Coordinate DoHC: Direction of Height Coordinate

 $a_{t} = \left(A_{t}^{DoTC} - A_{t-1}^{DoTC}\right) - \left(A_{t-1}^{DoTC} - A_{t-2}^{DoTC}\right)$

足首のDoTC

右足首の加速度 a_t

検出エラー有り

この操作を左右の足首に対して同時に行う

両足首にエラーがある場合

