

INTRODUÇÃO À SISTEMAS DE INFORMAÇÃO: LISTA II LINGUAGEM DE PROGRAMAÇÃO I

Aluna: Claudia Barreto de Oliveira

Matricula: 20200019331

Matéria: LINGUAGEM DE PROGRAMAÇÃO I – IC592

Período: 2020.5

Professor: Nilton José Rizzo

Rio de Janeiro, 02/11/2020

• linguagem natural

1)Inicio
2)Solicitar entrada
3)Receba soma = 0
3)Enquanto entrada for =/= de \0
1)soma = soma + 1
4)Imprimir soma
5)Termino

- Algoritmo estruturado
- 1 INICIO
- 2 DECLARE entrada
- 3 RECEBA INTEIRO soma = 0
- 3 ENQUANTO entrada =/= "\0" FAÇA

- 4- FIM ENQUANTO
- 5- MOSTRE soma
- 6- FIM

- Linguagem natural
- 1)Inicio
- 2)Solicitar cadeia
- 3)Se cadeia = "":
 - 1) Retornar verdadeiro
- 4)Se cadeia =/= "":
 - 1)Retornar falso
- 5)Imprima resultado de cadeia
- 5)Termino
 - Algoritmo estruturado
- 1 INICIO
- 2 DECLARE cadeira
- 3 SE cadeia == "":
 - 3.1) RETORNAR cadeia = verdadeiro
- 4- FIM SE
- 5- SE cadeia =/= "":
 - 5.1 -RETORNAR cadeia = falso
- 6- FIM SE
- 7- MOSTRE cadeia
- 8- FIM


```
3)
         * linguagem natural
1)Inicio
2) Solicitar s1
3) Solicitar s2
4) Declarar posicao
5) Enquanto i <- 0 to tamanho_s2 faça
         1. SE s2[i] == s1[0]:
            1.1 Enquanto j <- 1 to tamanho_s1
                1.2 Se i + j >= tamanho_s2 ou s2[i + j] =/= s1[j]
                  1.3 FIM SE
       2. SE j == tamanho_s1 - 1 e s2[i + j] == s1[j]
               1. posicao = i
      3. FIM SE
       2. FIM ENQUANTO
6) Imprimir posição
7)Termino

    Algoritmo estruturado

1 – INICIO
2- DECLARE S1, S2
3 –RECEBA posição
4-ENQUANTO i <- 0 to tamanho_s2 FAÇA
         4.1 SE s2[i] == s1[0]:
          4.1.1 ENQUANTO j <- 1 to tamanho_s1
             4.1.1.1 SE i + j >= tamanho_s2 ou s2[i + j] =/= s1[j]
             4.1.1.2 FIM SE
          4.1.2 FIM ENQUANTO
      4.2 FIM SE
5- SE j == tamanho_s1 - 1 e s2[i+j] =/= s1[j]
         5.1 posição = i
6 – FIM SE
7- FIM ENQUANTO
8 – Imprimir posição
9 - FIM
```

- Linguagem natural
- 1) Inicio
- 2) Solicitar palavra
- 3) Declarar posição = tamanho_palavra 1
- 4) Declarar palavra_invertida = ""
- 5) ENQUANTO posição >= 0 :
 - 1.1 palavra_invertida = palavra_invertida + palavra[posição]
 - 1.2 posição = posição -1
- 6) FIM ENQUANTO
- 7) Imprimir palavra_invertida
- 8) Termino
 - Algoritmo estruturado

1 - INICIO

- 2 DECLARE palavra
- 3 RECEBA posição = tamanho_palavra 1
- 4 RECEBA palavra_invertida = ""
- 5 ENQUANTO posição >= 0:
 - 5.1 palavra_invertida = palavra_invertida + palavra[posição]
 - 5.2 posição = posição 1
- 6 FIM ENQUANTO
- 7 Imprimir palavra_invertida
- 8 FIM

- Linguagem Natural
- 1) Inicio
- 2) Solicitar palavra
- 3) Receba palindromo = true
- 4) Receba cont = tamanho_da_palavra
- 5) Receba pos = 0
- 6) ENQUANTO cont > 1 e palíndromo= true FAÇA
 - SE palavra[cont 1] =/= palavra[pos]
 palíndromo = false
 - 2. FIM SE
 - 3. Receba Cont = cont 1
 - 4. Receba Pos = pos + 1
- 7) FIM ENQUANTO
- 8) Imprimir palíndromo
- 9) Termino
 - Algoritmo Estruturado
- 1 INICIO
- 2- DECLARE palavra
- 2 RECEBER palíndromo == true, cont = tamanhodaPalavra, pos = 0
- 3 ENQUANTO cont > 1 e palíndromo == true FAÇA
 - 3.1 SE palavra[cont 1] =/= palavra[pos]
 - 3.1.1 palindromo == false
 - 3.2 FIM SE
 - 3.3 Receba cont = cont 1
 - 3.4 receba pos = pos + 1
- 4 FIM ENQUANTO
- 8 MOSTRE palíndromo
- 9 FIM

Linguagem natural

- 1) Inicio
- Declare s,ano,dia,mês,anos,meses,dias,sdias,smes,sano 2)
- 3) Sdia <- 60 * 60 * 24
- Smes <- sdia * 30
- Sano <- 4 * smes 7 ^(smes + sdia) + 28^sdia
- 6) Ler S
- 7) ANOS <- s % sano
- 8) Meses <- s % smes
- 9) Dias <- s %sdias
- 10) Corrigir o ano (1974)
 11) Sanos <- sanos + sdias
- 12) Termino

Algoritmo Estruturado

- 1 INICIO
- 2 RECEBA s, ano, dia, mês, anos, meses, dias, sdias, smes, sano
- 3- RECEBA sdia <- 60 * 60 * 24, smes <- sdia * 30, sano <- 4 * smes 7^(smes + sdia) +28^sdia
- 4-DECLARE s
- 5- LER s
- 6- CALCULE anos <- s % sano, meses <- s % smes, dias <- s % sdias
- 7- PROCESSE sanos <- sanos + sdias
- 8- FIM

• Fluxograma

- Linguagem natural
- 1 Inicio
- 2- Solicitar temperatura_f
- 3- Ler temperatura_f
- 4- Calcular temperatura_c <= (5/9)(temperatura_f 32)
- 5-Imprimir temperatura_c
- 6- Termino
 - Algoritmo estruturado
- 1 INICIO
- 2 SOLICITAR temperatura_f
- 3- LEIA temperatura_f
- 4- CALCULE temperatura_c <= $(5/9)*(temperatura_f 32)$
- 5- MOSTRE temperatura_c
- 6- FIM
 - Solicitar
 temperatura_c <=
 (5/9)(temperatura_c = c)

 Imprimir
 temperatura_c

 C

- Linguagem natural
- 1) Inicio
- 2) Receba valorMoeda[5] =(1,5,10,25,50,100)
- 3) Receba valorNota[6]=(2,5,10,20,50,100,200)
- 4) Receba valorTotal = 0
- 5) Receba i = 0
- 6) ENQUANTO i <- 0 to 5 FAÇA:
 - 1) Solicitar quantidadeMoeda
 - 2) valorTotal = valorTotal + quantidadeMoeda * valorMoeda[i]
- 7) FIM ENQUANTO
- 8) ENQUANTO i <- 0 to 6 FAÇA:
 - 8.1) Solicitar quantidadeMoeda
 - 8.1) valorTotal = valorTotal + quantidadeMoeda * valorNota[i]
- 9) FIM ENQUANTO
- 10) Imprima valorTotal
 - Algoritmo estruturado
- 1 INICIO
- 2 RECEBA valorMoeda[5] =(1,5,10,25,50,100)
- 3 RECEBA valorNota[6]=(2,5,10,20,50,100,200)
- 4 RECEBA valorTotal = 0
- 5 RECEBA i = 0
- 6 ENQUANTO i <- 0 to 5 FAÇA
 - 6.1 DECLARE quantidadeMoeda
 - 6.2 LEIA quantidadeMoeda
 - 6.3 CALCULE valorTotal = valorTotal + quantidadeMoeda * valorMoeda[i]
- 7 FIM ENQUANTO
- 8 ENQUANTO i <- 0 to 6 FAÇA
 - 8.1 LEIA quantidadeMoeda
 - 8.2 CALCULE valorTotal = valorTotal + quantidadeMoeda * valorNota[i]
- 9- FIM ENQUANTO
- 10 MOSTRE valorTotal
- 11- FIM.

- * Linguagem natural
- 1) Inicio
- 2) Solicitar tempo(segundos)
- 3) Calcular Tempo_minutos <- tempo/60
- 4) Calcular Tempo_dias <- tempo/(60*60*24)
- 5) Calcular tempo_meses <- tempo/(60*60*24*30)
- 6) Calcular tempo_anos <- tempo/(60*60*24*30*12)
- $7) \quad Imprimir\ tempo_minutos, tempo_dias, tempo_meses, tempo_anos$
- 8) Termino
 - Algoritmo estruturado
- 1 INICIO
- 2- DECLARE tempo
- 3- LEIA tempo
- 4- CALCULE:
 - $4.1 Tempo_minutos <- tempo/60$
 - 4.2 Tempo_dias <- tempo/(60*60*24)
 - 4.3 tempo_meses <- tempo/(60*60*24*30)
 - 4.4- tempo_anos <- tempo/(60*60*24*30*12)

 $\hbox{5-MOSTRE $tempo_minutos$,} tempo_dias$, tempo_meses$, tempo_anos$

- Linguagem natural
- 1) Inicio
- 2) Solicitar x1,x2,y1,y2
- 3) Calcular distancia = ((x2 x1) * 2 + ((y2 y1) 2) ** (1/2))
- 4) Imprimir distancia
- 5) Termino
 - Algoritmo estruturado
- 1- INICIO
- 2- DECLARE x1,x2,y1,y2
- 3- LEIA x1,x2,y1,y2
- 4- CALCULE distancia =((x2 -x1) * 2 + ((y2 y1) 2) ** (1/2))
- 5- MOSTRE distancia
- 6- FIM

• Fluxograma

passos	comando	Variaveis	
		soma	entrada
1	Solicitar entrada		1
2	Soma = 0	0	1
3	Entrada =/= 0/	1	
	Soma = soma + 1		
4	solicitar entrada	1	2
5	Entrada =/= 0/	2	
	Soma = soma + 1		
6	solicitar entrada		0/
7	Entrada =/= 0/ ?		
	não		
8	Mostre soma	2	
9	fim		

Passos	Comando	Variáveis	
		cadeia	
1	Solicitar entrada		
2	Entrada =	un	
3	SE cadeia = "" retornar verdadeiro		
4	mostre cadeia	verdadeiro	
5	fim		