

Midterm Review

Natural Language Processing: Jordan Boyd-Graber University of Colorado Boulder

Roadmap

- Answer your questions
- Go through examples of free response questions

Suppose we have the the following language model over the alphabet $\{a, b\}$.

Bigram	Probability
p(a <s>)</s>	0.45
p(b <s>)</s>	0.45
p(<s>)</s>	0.1
p(a a)	0.6
p(b a)	0.2
p(a)	0.2
p(a b)	0.2
p(b b)	0.4
p(b)	0.4

- 1. Write a PCFG with non-terminals and weights such that it is equivalent to this language model. You should not need more than three non-terminals.
- 2. Compute the probability of the string <s> a a b </s> using the original language model and the corresponding PCFG derivation to show that they're equivalent.

For any binary string x, let w(x) denote the number of 1's in x.

- For any binary string x and any integer i, $0 \le i < w(x)$, let f(x,i) denote the number of 0's between the i^{th} 1 and the $(i+1)^{\text{st}}$ 1 in the binary string 1x, where we index the w(x)+1 1's in 1x from left to right starting at zero. Example: If x=11000100, then w(x)=3, f(x,0)=0, f(x,1)=0, f(x,2)=3, and f(x,i) is undefined for $i\ge 3$.
- For any binary string x, let g(x) denote the binary string of length w(x) with ith bit (indexing the bits from left to right starting at zero) equal to the parity of f(x,i) (that is, 0 if even, 1 if odd). Example: If x = 11000100, then g(x) = 001.

Design a finite state transducer that maps any given input binary string x to the output binary string g(x).

Take V to be the set of possible words (e.g. "the", "cat", "dog", ...). Take V' to be the set of all words in V **plus** their reverses (e.g. "the", "eht", "cat", "tac", "dog", "god"). You can assume that there are no palindromes in v (e.g. "eye"). Nathan L. Pedant generates $(x,y): x \in V, y \in V'$ pairs as follows:

- With probability $\frac{1}{2}$ he chooses y to be identical to x
- With probability $\frac{1}{3}$ he chooses y to be the reverse of x
- With probability $\frac{1}{6}$ he chooses y to be some string that is neither x nor the reverse of x

Create a log-linear distribution (i.e. supply features f and weights θ) of the form:

$$p(y|x,\vec{\theta}) = \frac{\exp\sum_{i}\theta_{i}f_{i}(x,y)}{\sum_{y'}\exp\sum_{i}\theta_{i}f_{i}(x,y')}$$
(1)

that models Nathan's process perfectly.