

ETC3550/ETC5550 Applied forecasting

Some final thoughts OTexts.org/fpp3/

Outline

- 1 Assignment 1
- 2 Some case studies
- 3 Neural network models
- 4 Exam

Outline

- 1 Assignment 1
- 2 Some case studies
- 3 Neural network models
- 4 Exam

Stock price forecasting (Q1 and Q5)

- Hard to beat naive forecast
- Random walk model says forecast variance = $h\sigma^2$.

Stock price forecasting (Q1 and Q5)

- Hard to beat naive forecast
- Random walk model says forecast variance = $h\sigma^2$.

Maximum temperature at Melbourne airport on 12 April 2021. (Q2)

- Weather is relatively stationary over similar time of year and recent years.
- So take mean and var of max temp in April over last 10 years.

Difference in points in AFL match (Q3)

- Teams vary in strength from year to year.
- Could look at distribution of for-against points from 2020 across all games for each team.
 Assume distributions independent.

Difference in points in AFL match (Q3)

- Teams vary in strength from year to year.
- Could look at distribution of for-against points from 2020 across all games for each team.
 Assume distributions independent.

Seasonally adjusted estimate of total employment (Q4)

- Probably locally trended.
- Perhaps use drift method based on average monthly change in last 2 years.

Outline

- 1 Assignment 1
- 2 Some case studies
 - 3 Neural network models
 - 4 Exam

CASE STUDY 1: Paperware company

Problem: Want forecasts of each of hundreds of items. Series can be stationary, trended or seasonal. They currently have a large forecasting program written in-house but it doesn't seem to produce sensible forecasts. They want me to tell them what is wrong and fix it.

- Program written in COBOL making numerical calculations limited. It is not possible to do any optimisation.
- Their programmer has little experience in numerical computing.
- They employ no statisticians and want the program to produce forecasts automatically.

CASE STUDY 1: Paperware company

Methods currently used

- A 12 month average
- C 6 month average
- E straight line regression over last 12 months
- **G** straight line regression over last 6 months
- H average slope between last year's and this year's values. (Equivalent to differencing at lag 12 and taking mean.)
- I Same as H except over 6 months.
- K I couldn't understand the explanation.

CASE STUDY 2: PBS

- In 2001: \$4.5 billion budget, under-forecasted by \$800 million.
- Thousands of products. Seasonal demand.
- Subject to covert marketing, volatile products, uncontrollable expenditure.
- Although monthly data available for 10 years, data are aggregated to annual values, and only the first three years are used in estimating the forecasts.
- All forecasts being done with the FORECAST function in MS-Excel!

CASE STUDY 2: PBS

- In 2001: \$4.5 billion budget, under-forecasted by \$800 million.
- Thousands of products. Seasonal demand.
- Subject to covert marketing, volatile products, uncontrollable expenditure.
- Although monthly data available for 10 years, data are aggregated to annual values, and only the first three years are used in estimating the forecasts.
- All forecasts being done with the FORECAST function in MS-Excel!

Problem: How to do the forecasting better?

CASE STUDY 3: Car fleet company

Client: One of Australia's largest car fleet companies

Problem: how to forecast resale value of vehicles? How should this affect leasing and sales policies?

CASE STUDY 3: Car fleet company

Client: One of Australia's largest car fleet companies

Problem: how to forecast resale value of vehicles? How should this affect leasing and sales policies?

Additional information

- They can provide a large amount of data on previous vehicles and their eventual resale values.
- The resale values are currently estimated by a group of specialists. They see me as a threat and do not cooperate.

CASE STUDY 4: Airline

Problem: how to forecast passenger traffic on major routes?

CASE STUDY 4: Airline

Problem: how to forecast passenger traffic on major routes?

Additional information

- They can provide a large amount of data on previous routes.
- Traffic is affected by school holidays, special events such as the Grand Prix, advertising campaigns, competition behaviour, etc.
- They have a highly capable team of people who are able to do most of the computing.

Outline

- 1 Assignment 1
- 2 Some case studies
- 3 Neural network models
- 4 Exam

Simplest version: linear regression

Simplest version: linear regression

- Coefficients attached to predictors are called "weights".
- Forecasts are obtained by a linear combination of inputs.
- Weights selected using a "learning algorithm" that minimises a "cost function".

Nonlinear model with one hidden layer

Nonlinear model with one hidden layer

- A multilayer feed-forward network where each layer of nodes receives inputs from the previous layers.
 - Inputs to each node combined using linear combination.

NNAR models

- Lagged values of the time series can be used as inputs to a neural network.
- NNAR(p, k): p lagged inputs and k nodes in the single hidden layer.
- NNAR(p, 0) model is equivalent to an ARIMA(p, 0, 0) model but without stationarity restrictions.
- Seasonal NNAR(p, P, k): inputs $(y_{t-1}, y_{t-2}, \dots, y_{t-p}, y_{t-m}, y_{t-2m}, y_{t-Pm})$ and k neurons in the hidden layer.
- NNAR(p, P, 0) $_m$ model is equivalent to an ARIMA(p, 0, 0)(P,0,0) $_m$ model but without stationarity restrictions.

NNAR models in R

- The NNETAR() function fits an NNAR(p, P, k)_m model.
- If *p* and *P* are not specified, they are automatically selected.
- For non-seasonal time series, default p = optimal number of lags (according to the AIC) for a linear AR(p) model.
- For seasonal time series, defaults are P = 1 and p is chosen from the optimal linear model fitted to the seasonally adjusted data.
- Default k = (p + P + 1)/2 (rounded to the nearest integer).

Sunspots

- Surface of the sun contains magnetic regions that appear as dark spots.
- These affect the propagation of radio waves and so telecommunication companies like to predict sunspot activity in order to plan for any future difficulties.
- Sunspots follow a cycle of length between 9 and 14 years.

NNAR(9,5) model for sunspots

```
sunspots <- as_tsibble(fpp2::sunspotarea)
fit <- sunspots %>% model(NNETAR(value))
fit %>% forecast(h=20, times = 1) %>%
  autoplot(sunspots, level = NULL)
```


Prediction intervals by simulation

Outline

- 1 Assignment 1
- 2 Some case studies
- 3 Neural network models
- 4 Exam

Exam: 9.00am (AEST) 7 June

Five questions, all to be attempted.

- A Short answers/explanations. Write about 1/4 page on four topics (out of six possible topics). Nuanced answers required.
- B Describing a time series, choosing a forecasting method
- **C** ETS models
- D ARIMA models
- **E** (Dynamic) regression models
- Moodle Quiz
- Open book
- 2 hr 40 min

Exam and R

- Parts B, C and E require interpretation of R output, but no coding.
- Part D requires some coding (part of the code will be provided) and interpretation of R output.
- All R coding will be very similar to examples you have done before.
- Submitted answers will be automatically checked for close matches.
- Enter answers on Moodle as you go, to avoid internet issues at the end.

Preparing for the exam

- Exams from 2018–2020 on Moodle. Solutions to follow by Monday.
- Exercises. Make sure you have done them all!
- Identify your weak points and practice them.
- Write your own summary of the material.
- Practice explaining the material to a class-mate.

Preparing for the exam

- Exams from 2018–2020 on Moodle. Solutions to follow by Monday.
- Exercises. Make sure you have done them all!
- Identify your weak points and practice them.
- Write your own summary of the material.
- Practice explaining the material to a class-mate.

Help available

- Ask on Moodle forum
- See a tutor during the consultation times.

Useful resources for forecasters

Organization:

International Institute of Forecasters.

Annual Conference:

International Symposium on Forecasting

Journals:

- International Journal of Forecasting
- Foresight

Links to all of the above at forecasters.org

Useful resources for forecasters

Organization:

International Institute of Forecasters.

Annual Conference:

International Symposium on Forecasting

Journals:

- International Journal of Forecasting
- Foresight

Links to all of the above at forecasters.org

Good forecasters are not smarter than everyone else, they merely have their ignorance better organised.

Useful resources for forecasters

Organization:

International Institute of Forecasters.

Annual Conference:

International Symposium on Forecasting

Journals:

- International Journal of Forecasting
- Foresight

Links to all of the above at forecasters.org

Good forecasters are not smarter than everyone else, they merely have their ignorance better organised.