Lista 10

Zadanie 1. Które z zbiorów z działaniem są grupami?

- 1. zbiór liczb naturalnych, z dodawaniem;
- 2. zbiór liczb całkowitych, z mnożeniem;
- 3. zbiór liczb postaci $\frac{1}{k}$, gdzie $k \geq 0$ jest całkowite, z mnożeniem;
- 4. zbiór liczb wymiernych, z dodawaniem;
- 5. zbiór liczb wymiernych bez zera, z mnożeniem.

Zadanie 2. Rozważmy grupę G i zdefiniujmy w niej sprzężenie (względem elementy g) $\varphi_g:G\to G$:

$$\varphi_a(x) = gxg^{-1}$$
.

Pokaż, że

- $\varphi_{ab} = \varphi_a \varphi_b$;
- φ_a jest izomorfizmem z $G \le G$;
- jeśli $H \leq G$ to $\varphi_a(H) \leq G$ (podgrupa sprzężona).

Zadanie 3. Pokaż, że dla x_1, \ldots, x_k : elementów grupy G oraz liczb całkowitych z_1, \ldots, z_k zachodzi:

$$(x_1^{z_1}x_2^{z_2}\cdots x_k^{z_k})^{-1} = (x_k^{-1})^{z_k}(x_{k-1}^{-1})^{z_{k-1}}\cdots (x_1^{-1})^{z_1} = (x_k)^{-z_k}(x_{k-1})^{-z_{k-1}}\cdots (x_1)^{-z_1} \ .$$

Zadanie 4. Pokaż, że równość

$$(ab)^r = a^r b^r$$

zachodzi dla dowolnego r (naturalnego) oraz dowolnych $a,b\in G$ wtedy i tylko wtedy, gdy grupa G jest przemienna.

Zadanie 5. Wyznacz wszystkie izomorfizmy pomiędzy grupą obrotów kwadratu, a grupą $(\mathbb{Z}_4, +_4)$.

Wskazówka: Pokaż, że izomorfizm zachowuje rząd elementu.

Zadanie 6. Pokaż, że jeśli każdy element w grupie jest odwrotny do siebie, to grupa jest przemienna.

Zadanie 7. Pokaż, że, z dokładnością do izomorfizmu, istnieje tylko jedna grupa trzyelementowa (dokładniej: $(\mathbb{Z}_3, +)$) oraz dwie grupy czteroelementowe: $(\mathbb{Z}_4, +)$ oraz $\mathbb{Z}_2 \times \mathbb{Z}_2$ z dodawaniem po współrzędnych.

Wskazówka: W drugim punkcie: jakie są możliwe rzędy elementów?

Zadanie 8. Niech H_1 i H_2 będą podgrupami grupy G.

- Pokaż, że $H_1 \cup H_2$ nie musi być podgrupą G.
- Pokaż, że jeśli $H_1 \cup H_2$ jest podgrupą G, to $H_1 \leq H_2$ lub $H_2 \leq H_1$.
- Pokaż, że jeśli G jest przemienna, to $\langle H_1 \cup H_2 \rangle = \{h_1 h_2 : h_1 \in H_1, h_2 \in H_2\}$. (Dla przypomnienia: $\langle A \rangle$ to najmniejsza grupa generowana przez A.)

Zadanie 9 (Nie liczy się do podstawy). Pokaż, że podgrupa grupy cyklicznej jest cykliczna.

Wskazówka: Rozwaz najmniejszą potęgę generatora, która należy do podgrupy. Pokaż, że jest to generator.

Zadanie 10. Centralizatorem elementu a w grupie G nazywamy zbiór elementów przemiennych z a, czyli

$$G(a) = \{b \in G : ab = ba\} .$$

Centrum grupy G nazywamy zbiór

$$Z(G) = \{a : \forall b \in G : ab = ba\}$$

(czyli: przemiennych ze wszystkimi elementami w G). Udowodnij, że dla dowolnej grupy G i elementu a centralizator G(a) oraz centrum Z(G) są podgrupami G. Pokaż też, że

$$Z(G) = \bigcap_{g \in G} G(g) .$$

Zadanie 11. Pokaż, że zbiór symetrii trójkąta równobocznego jest izomorficzny z grupą wszystkich permutacji zbioru trzyelementowego S_3 .