

Scaling to Huge Datasets & Online Learning

Emily Fox & Carlos Guestrin
Machine Learning Specialization
University of Washington

©2015-2016 Emily Fox & Carlos Guestrin

Why gradient ascent is slow...

Every update requires a full pass over data

Data sets are getting huge, and we need them!

Internet of **Things** Sensors everywhere

Need ML algorithm to learn from billions of video views every day, & to recommend ads within milliseconds

ML improves (significantly) with bigger datasets

Data size	Small data	Big data	Bigger data
Model complexity	ComplexNeeded for accuracy	Simple • Needed for speed	ComplexNeeded for accuracyParallelism, GPUs, computer clusters
Hot topics		Logistic regression Matrix factorization nreasonable Effectiveness of Data" [Halevy, Norvig, Pereira '09]	Boosted trees Tensor factorization Deep learning Massive graphical models

Stochastic gradient ascent

Many updates for each pass over data

Learning, one data point at a time

Gradient ascent

How expensive is gradient ascent?

Sum over data points $\frac{\partial \ell(\mathbf{w})}{\partial \mathbf{w}_j} = \sum_{i=1}^N h_j(\mathbf{x}_i) \Big(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) \Big)$

Contribution of data point x_i, y_i to gradient

Every step requires touching every data point!!!

Sum over data points

$$\frac{\partial \ell(\mathbf{w})}{\partial \mathbf{w}_j} = \sum_{i=1}^{N} \frac{\partial \ell_i(\mathbf{w})}{\partial \mathbf{w}_j}$$

Time to compute contribution of x _i , y _i	# of data points (N)	Total time to compute 1 step of gradient ascent
1 millisecond	1000	1 Sec
1 second	1000	16.7 min
1 millisecond	10 million	2.8 hours
1 millisecond	10 billion	115.7 days

Instead of all data points for gradient, use 1 data point only???

Sum over data points

Gradient ascent

$$\frac{\partial \ell(\mathbf{w})}{\partial \mathbf{w}_j} = \sum_{i=1}^{N} \frac{\partial \ell_i(\mathbf{w})}{\partial \mathbf{w}_j}$$

Stochastic gradient ascent

$$\frac{\partial \ell(\mathbf{w})}{\partial \mathbf{w}_j} \thickapprox \frac{\partial \ell_i^{\mathbf{v}}(\mathbf{w})}{\partial \mathbf{w}_i}$$

Each time, pick

different data point i

Stochastic gradient ascent

Stochastic gradient ascent for logistic regression

```
init \mathbf{w}^{(1)} = 0, t = 1 Sum of different data point is data points  \begin{aligned} & \mathbf{for} \ j = 0, ..., D \\ & \text{partial}[j] = \sum_{i=1}^{N} h_j(\mathbf{x}_i) \left( \mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}^{(t)}) \right) \\ & \mathbf{w}_j^{(t+1)} \leftarrow \mathbf{w}_j^{(t)} + \mathbf{\eta} \ \text{partial}[j] \\ & \mathbf{t} \leftarrow \mathbf{t} + \mathbf{1} \end{aligned}
```

Comparing computational time per step

Gradient ascent

Stochastic gradient ascent

$$\frac{\partial \ell(\mathbf{w})}{\partial \mathbf{w}_j} = \sum_{i=1}^N \frac{\partial \ell_i(\mathbf{w})}{\partial \mathbf{w}_j} \qquad \frac{\partial \ell(\mathbf{w})}{\partial \mathbf{w}_j} \approx \frac{\partial \ell_i(\mathbf{w})}{\partial \mathbf{w}_j}$$

$$\frac{\partial \ell(\mathbf{w})}{\partial \mathbf{w}_j} \thickapprox \frac{\partial \ell_i(\mathbf{w})}{\partial \mathbf{w}_j}$$

Time to compute contribution of x _i , y _i	# of data points (N)	Total time for 1 step of gradient	Total time for 1 step of stochastic gradient
1 millisecond	1000	1 second	I milli second
1 second	1000	16.7 minutes	1 sec
1 millisecond	10 million	2.8 hours	1 millisec
1 millisecond	10 billion	115.7 days	l milisec

Comparing gradient to stochastic gradient

Which one is better??? Depends...

Total time to convergence for large data

Algorithm	Time per iteration	In theory	In practice	Sensitivity to parameters
Gradient	Slow for large data	Slower	Often slower	Moderate
Stochastic gradient	Always fast	Faster	Often faster	Very high

Comparing gradient to stochastic gradient

Eventually, gradient catches up

Note: should only trust "average" quality of stochastic gradient (more discussion later)

Summary of stochastic gradient

Tiny change to gradient ascent

Much better scalability

Huge impact in real-world

Very tricky to get right in practice

Why would stochastic gradient ever work???

Gradient is direction of steepest ascent

Gradient is "best" direction, but any direction that goes "up" would be useful

In ML, steepest direction is sum of "little directions" from each data point

Stochastic gradient: pick a data point and move in direction

Stochastic gradient ascent: Most iterations increase likelihood, but sometimes decrease it → On average, make progress

until converged

for
$$i=1,...,N$$

for $j=0,...,D$

$$w_j^{(t+1)} \leftarrow w_j^{(t)} + \mathbf{\eta}$$

$$t \leftarrow t + 1$$

$$\frac{\partial \ell_i(\mathbf{w})}{\partial \mathbf{w}_i}$$

Convergence path

Convergence paths

Stochastic gradient convergence is "noisy"

Stochastic gradient makes "noisy" progress

Summary of why stochastic gradient works

Gradient finds direction of steeps ascent

Gradient is sum of contributions from each data point

Stochastic gradient uses direction from 1 data point

On average increases likelihood, sometimes decreases

Stochastic gradient has "noisy" convergence

Stochastic gradient: practical tricks

@2015-2016 Emily Fox & Carlos Guestrin

Stochastic gradient ascent

```
init \mathbf{w}^{(1)} = 0, t = 1

until converged

for i = 1,..., N

for j = 0,..., D

\mathbf{w}_{j}^{(t+1)} \leftarrow \mathbf{w}_{j}^{(t)} + \mathbf{\eta}

\mathbf{t} \leftarrow \mathbf{t} + 1
\frac{\partial \ell_{i}(\mathbf{w})}{\partial \mathbf{w}_{j}}
```

Order of data can introduce bias

x [1] = #awesome	x [2] = #awful	y = sentiment	
0	2	-1	7
3	3	-1	
2	4	-1	
0	3	-1	
0	1	-1	
2	1	+1	
4	1	+1	
1	1	+1	
2	1	+1	

Stochastic gradient updates parameters 1 data point at a time

Systematic order in data can introduce significant bias, e.g., all negative points first, or temporal order, younger first, or ...

Shuffle data before running stochastic gradient!

x [1] = #awesome	x [2] = #awful	y = sentiment
0	2	-1
3	3	-1
2	4	-1
0	3	-1
0	1	-1
2	1	+1
4	1	+1
1	1	+1
2	1	+1

x [1] = #awesome	x [2] = #awful	y = sentiment
1	1	+1
3	3	-1
0	2	-1
4	1	+1
2	1	+1
2	4	-1
0	1	-1
0	3	-1
2	1	+1

Stochastic gradient ascent

Shuffle data

init $w^{(1)} = 0$, t = 1

until converged

for
$$j = 0,...,D$$

$$w_j^{(t+1)} \leftarrow w_j^{(t)} + \eta$$

 $t \leftarrow t + 1$

$$\frac{\partial \ell_i(\mathbf{w})}{\partial \mathbf{w}_j}$$

Before running stochastic gradient, make sure data is shuffled

Choosing the step size n

Picking step size for stochastic gradient is very similar to picking step size for gradient

But stochastic gradient is a lot more unstable...

If step size is too small, stochastic gradient slow to converge

If step size is too large, stochastic gradient oscillates

If step size is very large, stochastic gradient goes crazy 🖰

Simple rule of thumb for picking step size η similar to gradient

- Unfortunately, picking step size requires a lot a lot of trial and error, much worst than gradient ⊗
- Try a several values, exponentially spaced
 - Goal: plot learning curves to
 - find one η that is too small
 - find one η that is too large
- Advanced tip: step size that decreases with iterations is very important for stochastic gradient, e.g., \(\lambda_t = \frac{1}{2} \in \text{ items.} \)

Don't trust the last coefficients... 😊

Stochastic gradient never fully "converges"

The last coefficients may be really good or really bad!! 🗵

Stochastic gradient returns average coefficients

- Minimize noise: don't return last learned coefficients
- Instead, output average:

$$\hat{\mathbf{w}} = \underline{\mathbf{1}} \sum_{t=1}^{T} \mathbf{w}^{(t)}$$

Learning from batches of data

Gradient/stochastic gradient: two extremes

Convergence paths

Stochastic gradient ascent with mini-batches

Shuffle data

init $w^{(1)} = 0$, t = 1

until converged

for
$$k=0,...,N/B-1$$

for j = 0,...,D

$$w_j^{(t+1)} \leftarrow w_j^{(t)} + \mathbf{\eta}$$

$$t \leftarrow t + 1$$

Measuring convergence

How did we make these plots???

Need to compute log likelihood of data at every iteration???

Computing log-likelihood during run of stochastic gradient ascent

```
init w<sup>(1)</sup>=0, t=1 until converged
```

for i=1,...,N

Log-likelihood of data point i is simply:

$$\ell_i(\mathbf{w}^{(t)}) = \begin{cases} \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}^{(t)}), & \text{if } y_i = +1 \\ \ln \left(1 - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}^{(t)})\right), & \text{if } y_i = -1 \end{cases}$$

for j=0,...,D partial[j] =
$$h_j(\mathbf{x}_i) \Big(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}^{(t)}) \Big)$$

$$w_j^{(t+1)} \leftarrow w_j^{(t)} + \eta \text{ partial[j]}$$

Estimate log-likelihood with sliding window

That's what average log-likelihood meant... © (In this case, over last k=30 mini-batches, with batch-size B = 100)

Adding regularization

©2015-2016 Emily Fox & Carlos Guestrir

Consider specific total cost

Gradient of L₂ regularized log-likelihood

Stochastic gradient for regularized objective

Total derivative =
$$\sum_{i=1}^{N} \frac{\partial \ell_i(\mathbf{w})}{\partial \mathbf{w}_j} - 2 \lambda \mathbf{w}_j$$

What about regularization term?

Stochastic gradient ascent with regularization

Shuffle data

init
$$w^{(1)} = 0$$
, $t = 1$

until converged

for
$$j = 0,...,D$$

$$w_j^{(t+1)} \leftarrow w_j^{(t)} + \eta$$

$$t \leftarrow t + 1$$

$$\mathbf{w}_{j}^{(t+1)} \leftarrow \mathbf{w}_{j}^{(t)} + \mathbf{\eta} \qquad \left[\frac{\partial \ell_{i}(\mathbf{w})}{\partial \mathbf{w}_{j}} - \frac{2}{N} \lambda \mathbf{w}_{j} \right]$$

$$\leftarrow t + 1$$

Online learning: Fitting models from streaming data

Batch vs online learning

Batch learning

 All data is available at start of training time

Online learning

- Data arrives (streams in) over time
 - Must train model as data arrives!

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Online learning example:

Ad targeting

Online learning problem

- Data arrives over each time step t:
 - Observe input x_t
 - Info of user, text of webpage
 - Make a prediction \hat{y}_t
 - Which ad to show
 - Observe true output y_t
 - Which ad user clicked on

Need ML algorithm to update coefficients each time step!

Stochastic gradient ascent can be used for online learning!!!

- init $w^{(1)} = 0$, t = 1
- Each time step t:
 - Observe input x_t
 - Make a prediction \hat{y}_t -
 - Observe true output y_t -
 - Update coefficients:

for j=0,...,D
$$\mathbf{w}_{j}^{(t+1)} \leftarrow \mathbf{w}_{j}^{(t)} + \mathbf{\eta} \frac{\partial \ell_{t}(\mathbf{w})}{\partial \mathbf{w}_{j}}$$

Summary of online learning

Data arrives over time

Must make a prediction every time new data point arrives

Observe true class after prediction made

Want to update parameters immediately

Updating coefficients immediately: Pros and Cons

Pros

- Model always up to date →
 Often more accurate
- Lower computational cost
- Don't need to store all data, but often do anyway

Cons

- Overall system is *much* more complex
 - Bad real-world cost in terms of \$\$\$ to build & maintain

Most companies opt for systems that save data and update coefficients every night, or hour, week,...

Summary of scaling to huge datasets & online learning

Scaling through parallelism

What you can do now...

- Significantly speedup learning algorithm using stochastic gradient
- Describe intuition behind why stochastic gradient works
- Apply stochastic gradient in practice
- Describe online learning problems
- Relate stochastic gradient to online learning