

Aprendizado por Reforço

Métodos de Monte Carlo (parte 1)

Recapitulação das aulas passadas...

- Algoritmos de aprendizado por reforço <u>baseados em modelos</u> (model-based)
 - Algoritmos de programação dinâmica para encontrar políticas ótimas
 - √lteração de valor
 - √lteração de política
 - √lteração de política truncada

Mas, e se o modelo do ambiente não estiver disponível? Como encontrar políticas ótimas?

Métodos de Monte Carlo

Se não possuirmos acesso a um modelo do ambiente, Então precisamos de dados.

Se não possuirmos acesso a dados, Então precisamos de um modelo do ambiente.

Dados no contexto de aprendizado por reforço = interação do agente com o ambiente (experiência).

Métodos de Monte Carlo

• Classe de técnicas que usam amostras para resolver problemas de estimação.

- Considere uma variável aleatória X com suporte \mathcal{X} (um conjunto finito de números reais)
- Podemos calcular o valor esperado de X de duas maneiras:
 - 1. Abordagem baseada em modelo:
 - $\mathbb{E}[X] = \sum_{x \in \mathcal{X}} p(x) x$

2. Abordagem sem modelo:

$$\mathbb{E}[X] \approx \bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_{j}$$
Amostras de X :
$$\{x_{1}, \dots, x_{n}\}$$

• Na abordagem sem modelo, se o número de amostras n for pequeno, a aproximação pode não ser precisa.

• Entretanto, quando $n \to \infty$, temos que $\bar{x} \to \mathbb{E}[X]$ (lei dos grandes números).

- Considere o lançamento de uma moeda honesta (nãoviesada):
 - $X = \{cara, coroa\}$
 - p(X = cara) = p(X = coroa) = 0.5
 - Seja cara = 1 e coroa = -1

$$\mathbb{E}[X] = \sum_{x \in \mathcal{X}} p(x)x = 0.5(1) + 0.5(-1) = 0$$

• Se p(X = cara) e p(X = coroa) forem desconhecidos, podemos lançar a moeda muitas vezes, amostrar os resultados $\{x_i\}_{i=1}^n$ e então estimar o valor esperado de X.

Suposição:

 Amostras são independentes e identicamente distribuídas (i.i.d)

Métodos de Monte Carlo

Por que nos importamos com problemas de estimação de médias?

Métodos de Monte Carlo

• Por que nos importamos com problemas de estimação de médias?

• Definição de valor de estado

28 de abril de 2025

• Substituímos o passo <u>de avaliação de política baseada em</u> modelo no algoritmo de iteração de política por um **passo de estimação de MC sem modelo**.

Conversão da iteração de política para uma abordagem sem modelo

- Iteração de política
 - Passo 1: Avaliação de política (resolver a equação de Bellman)

$$v_{\pi_k} = r_{\pi_k} + \gamma P_{\pi_k} v_{\pi_k}$$

- <u>Passo 2</u>: Melhoria de política
 - Forma matricial

$$\pi_{k+1} = \operatorname*{argmax}(r_{\pi} + \gamma P_{\pi} v_{\pi_k})$$

Forma escalar

$$\pi_{k+1}(s) = \underset{\pi}{\operatorname{argmax}} \sum_{a} \pi(a|s) \left[\sum_{r} p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v_{\pi_{k}}(s') \right], \quad s \in \mathcal{S}$$

$$\pi_{k+1}(s) = \underset{\pi}{\operatorname{argmax}} \sum_{a} \pi(a|s) \ q_{\pi_k}(s,a), \qquad s \in \mathcal{S}$$

- Os valores de ação são os elementos centrais desses 2 passos.
 - Passo 1:
 - Calculamos os valores de estado para podermos calcular os <u>valores</u> de ação.
 - Passo 2:
 - Geramos a nova política utilizando os <u>valores de ação</u> calculados.

- Maneiras de calcular os valores de ação
 - 1. Abordagem baseada em modelo
 - Utilizada pelo algoritmo de iteração de política.
 - Após calcular os valores de estado (v_{π_k}) , calculamos os valores de ação como:

$$q_{\pi_k}(s, a) = \sum_r p(r|s, a)r + \gamma \sum_{s'} p(s'|s, a)v_{\pi_k}(s')$$

• Requisito: o modelo do ambiente $\{p(r|s,a), p(s'|s,a)\}\$ deve ser conhecido.

- Maneiras de calcular os valores de ação
 - 2. Abordagem sem modelo
 - Definição de valor de ação

Valor esperado do retorno quando se inicia em (s, a)

$$q_{\pi_k}(s, a) \triangleq \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

$$q_{\pi_k}(s, a) \triangleq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s, A_t = a]$$

• $q_{\pi_k}(s, a)$ é um valor esperado, então podemos estimá-lo utilizando **métodos** de Monte Carlo.

- Maneiras de calcular os valores de ação
 - 2. Abordagem sem modelo
 - Iniciando em (s,a) o agente pode interagir com o ambiente seguindo a política π_k de modo a obter um número n de episódios.
 - Seja $g_{\pi_k}^{(i)}(s,a)$ o retorno do i-ésimo episódio, podemos aproximar $q_{\pi_k}(s,a)$ como:

$$q_{\pi_k}(s, a) \triangleq \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

$$q_{\pi_k}(s,a) \approx \frac{1}{n} \sum_{i=1}^n g_{\pi_k}^{(i)}(s,a)$$

• Pela lei dos grandes números, se n for suficientemente grande, então a aproximação será suficientemente precisa.

- Dada uma política inicial π_0 , temos 2 passos na k-ésima iteração
 - Passo 1: Avaliação de política
 - Coletamos muitos episódios e usamos seus retornos para calcular $q_k(s,a)$, que é a aproximação de $q_{\pi_k}(s,a)$ via método de Monte Carlo.
 - Passo 2: Melhoria de política

$$\pi_{k+1}(s) = \underset{\pi}{\operatorname{argmax}} \sum_{a} \pi(a|s) \, q_k(s,a), \qquad s \in \mathcal{S}$$

• A política ótima (gulosa) é:

$$\pi(a|s) = \begin{cases} 1, & a = a_k^*(s) \\ 0, & a \neq a_k^*(s) \end{cases}, \quad onde \quad a_k^*(s) = \underset{a}{\operatorname{argmax}} q_k(s, a)$$

Algorithm 5.1: MC Basic (a model-free variant of policy iteration)

Initialization: Initial guess π_0 .

Goal: Search for an optimal policy.

For the kth iteration (k = 0, 1, 2, ...), do

For every state $s \in \mathcal{S}$, do

For every action $a \in \mathcal{A}(s)$, do

Collect sufficiently many episodes starting from (s,a) by following π_k Policy evaluation:

 $q_{\pi_k}(s,a) \approx q_k(s,a)$ = the average return of all the episodes starting from (s,a)

Policy improvement:

$$a_k^*(s) = \arg\max_a q_k(s, a)$$

 $\pi_{k+1}(a|s) = 1$ if $a = a_k^*$, and $\pi_{k+1}(a|s) = 0$ otherwise

MC Básico vs. Iteração de política

- MC Básico
 - Os valores de ação do são obtidos das amostras (experiência).
 - Estima diretamente os valores de ação (se estimássemos os valores de estado precisaríamos do modelo para estimar os valores de ação).
- Iteração de política
 - Calcula primeiro os valores de estado e depois os valores de ação baseado no modelo.

21

- Convergência
 - Assim como na iteração de política, o MC Básico também converge quando fornecido um número suficiente de amostras.
- Precisão na estimação de valores de ação
 - Para cada par (s,a), se houver episódios suficientes iniciando em (s,a), a média dos retornos desses episódios aproxima com precisão o valor de ação de (s,a).
- Na prática:
 - Frequentemente, não dispomos de episódios suficientes para cada (s, a).
 - Como consequência, as estimativas dos valores de ação podem ser imprecisas.
 - Mesmo assim, o algoritmo costuma funcionar adequadamente.
- Semelhança com a iteração de política truncada:
 - Em ambos os casos, os valores de ação são apenas aproximados, não exatos.
- Limitação:
 - O MC Básico é pouco eficiente no uso de amostras, o que não o torna prático.

Exemplo

$$r_{forbidden} = -1$$
 $r_{boundary} = -1$
 $r_{target} = 1$
 $\gamma = 0.9$
Política inicial: π_0

A política π_0 não é $\, {f I} \,$

ótima para S_1 e S_3 .

- Em S_1 , existem 5 ações possíveis:
 - Para cada ação, precisamos coletar muitos episódios que sejam suficientemente longos para efetivamente aproximar o valor de ação.
- Este exemplo é determinístico (modelo & política), executar múltiplas vezes gera a mesma trajetória.
 - A estimação de cada valor de ação requer apenas **um único episódio**.

MC Básico - Exemplo

Seguindo π_0 e iniciando em

Início	E pisódio	Valor de ação = retorno descontado do episódio

$$(s_1, a_1) \mid s_1 \xrightarrow{a_1} s_1 \xrightarrow{a_1} s_1 \xrightarrow{a_1} \cdots \mid q_{\pi_0}(s_1, a_1) = -1 + \gamma(-1) + \gamma^2(-1) + \cdots = \frac{-1}{1 - \gamma}$$

$$(s_1, a_2) \quad s_1 \xrightarrow{a_2} s_2 \xrightarrow{a_3} s_5 \xrightarrow{a_3} \cdots \qquad q_{\pi_0}(s_1, a_2) = 0 + \gamma(0) + \gamma^2(0) + \gamma^3(1) + \gamma^4(1) \cdots = \frac{\gamma^3}{1 - \gamma}$$

$$(s_1, a_3) \quad s_1 \xrightarrow{a_3} s_4 \xrightarrow{a_2} s_5 \xrightarrow{a_3} \cdots \qquad q_{\pi_0}(s_1, a_3) = 0 + \gamma(0) + \gamma^2(0) + \gamma^3(1) + \gamma^4(1) \cdots = \frac{\gamma^3}{1 - \gamma}$$

$$(s_1, a_4) \xrightarrow{s_1} \xrightarrow{a_4} \xrightarrow{a_1} \xrightarrow{a_1} \xrightarrow{a_1} \cdots \qquad q_{\pi_0}(s_1, a_4) = -1 + \gamma(-1) + \gamma^2(-1) + \cdots = \frac{-1}{1 - \gamma}$$

$$(s_1, a_5) \mid s_1 \xrightarrow{a_5} s_1 \xrightarrow{a_1} s_1 \xrightarrow{a_1} \dots \quad q_{\pi_0}(s_1, a_5) = 0 + \gamma(-1) + \gamma^2(-1) + \dots = \frac{-\gamma}{1 - \gamma}$$

MC Básico - Exemplo

• Comparando os 5 valores de ação $q_{\pi_0}(s_1, \cdot)$:

$$q_{\pi_0}(s_1, a_2) = q_{\pi_0}(s_1, a_3) = \frac{\gamma^3}{1 - \gamma} > 0$$

• A nova política pode ser obtida como:

$$\pi_1(a_2|s_1) = 1$$
 ou $\pi_1(a_3|s_1) = 1$

Referências

- Shiyu Zhao. Mathematical Foundations of Reinforcement Learning. Springer Singapore, 2025. [capítulo 5]
 - disponível em: https://github.com/MathFoundationRL/Book-Mathematical-Foundation-of-Reinforcement-Learning
- Richard S. Sutton e Andrew G. Barto. An Introduction Reinforcement Learning, Bradford Book, 2018. [capítulo 5]
 - disponível em: http://incompleteideas.net/book/the-book-2nd.html

Slides construídos com base nos livros supracitados, os quais estão disponibilizados publicamente pelos seus respectivos autores.