Graph - Transpose (A35)

Graph transpose G^T dari graph G didefinisikan sebagai graph G dengan seluruh edge-nya berbalik arah. Secara formal, jika ada edge $u \rightarrow v$ pada G, maka ada edge $v \rightarrow u$ pada G^T .

a. Implementasikan class Graph dengan menggunakan representasi adjacency matrix. Method-method public yang harus ada adalah:

• Graph (int N) : constructor untuk membuat graph dengan N vertex

void addEdge(int u, int v) : untuk menambah edge u→v

boolean edgeIsExist(int u, int v): untuk memeriksa apakah ada edge u → v

• Graph getTranspose() : mengembalikan graph transpose dari G

Anda boleh menambahkan method-method lain jika diperlukan.

- b. Overide method toString() supaya dapat menampilkan adjacency matrix graph dengan format sebagai berikut:
 - String output terdiri dari *N* baris, masing-masing menandakan informasi ketetanggaan sebuah vertex pada graph.
 - Setiap baris terdiri dari N huruf yang dipisahkan spasi. Huruf ' \mathbb{T} ' pada baris u kolom v menandakan ada edge dari vertex u ke vertex v. Huruf ' \mathbb{F} ' menandakan tidak ada edge.
- c. Untuk menguji program anda, tambahkan kelas Tester untuk menangani input/output seperti berikut ini:

Spesifikasi Input

Input diawali dengan sebuah bilangan bulat N ($1 \le N \le 1,000$) dan E ($1 \le E \le N^2$), yang menandakan jumlah vertex dan edge pada graph. E baris berikutnya masing-masing terdiri dari 2 bilangan bulat u dan v ($0 \le u, v \le N-1$), menandakan ada edge dari u ke v.

Spesifikasi Output

Output terdiri dari dua bagian yang dipisahkan dengan baris kosong. Bagian pertama menampilkan adjacency matrix graph pada input, sedangkan bagian kedua menampilkan adjacency matrix graph transpose-nya.

Contoh Input	Co	Contoh Output			
4 7	Τ	Т	F	F	
0 1	F	F	Т	T	
2 1	Τ	Т	F	F	
3 2	F	F	Т	F	
1 3					
2 0	Τ	F	Т	F	
0 0	Τ	F	Т	F	
1 2	F	Т	F	T	
	F	Τ	F	F	