# PLSC 502 – Autumn 2016 Sampling Distributions

October 6, 2016

# Anything that is a function of random variables is, itself, a random variable.

## Bitterville, pop. 1000

Bitterville voters:

$$\mathfrak{N}_D = 500 \rightarrow X_i = 1$$
  
 $\mathfrak{N}_R = 500 \rightarrow X_i = 0$ 

so that  $\mu$  (the population mean) = 0.5.

For a sample with N = 10:

$$\bar{X} = \sum_{i=1}^{10} X_i 
= \left(\frac{1}{10}\right) X_1 + \left(\frac{1}{10}\right) X_2 + \dots + \left(\frac{1}{10}\right) X_{10} 
= aX_1 + aX_2 + \dots + aX_{10}$$

where a = 0.1.

#### Bitterville, continued

Because

$$\mathsf{E}(aX+b)=a\mathsf{E}X+b,$$

then:

$$E(\bar{X}) = \sum_{i=1}^{10} aE(X_i)$$

$$= \sum_{i=1}^{10} a\mu$$

$$= \mu \sum_{i=1}^{10} a$$

$$= \mu \sum_{i=1}^{10} \frac{1}{10}$$

$$= \mu$$

#### The Variance of the Mean

Similarly:

$$Var(\bar{X}) = \sum_{i=1}^{10} a^{2}Var(X_{i})$$

$$= \sum_{i=1}^{10} \left(\frac{1}{10}\right)^{2} \sigma_{i}^{2}$$

$$= \left(\frac{1}{100}\right) \sum_{i=1}^{10} \sigma_{i}^{2}$$

$$= \left(\frac{1}{100}\right) 10\sigma^{2}$$

$$= \frac{\sigma^{2}}{10}$$

# Means and Variances of $\bar{X}$ , Generally

In general,

$$\mathsf{E}(\bar{X}) = \mu$$

and

$$Var(\bar{X}) = \frac{\sigma^2}{N},$$

and so

$$\sqrt{\operatorname{Var}(\bar{X})} \equiv \sigma_{\bar{X}} = \frac{\sigma}{\sqrt{N}}.$$

#### A Rule of Thumb

# One must quadruple the sample size to halve the sampling error.

Example: We know  $\sigma^2 = 0.5(1 - 0.5) = 0.25$ .

- For  $N = 100 \rightarrow \sigma_{\bar{X}} = \frac{0.5}{\sqrt{100}} = 0.05$
- To get to  $\sigma_{\bar{X}} = 0.025$ , we'd need:

$$0.025 = \frac{0.50}{\sqrt{N}}$$

$$0.025\sqrt{N} = 0.50$$

$$\sqrt{N} = 20$$

$$N = 400.$$

## Sampling Distributions: The Mean

For  $X_i \sim \text{i.i.d. } \mathcal{N}(\mu_i, \sigma_i^2)$ ,

$$\sum_{i=1}^{N} X_i \sim \mathcal{N}\left(\sum_{N} \mu_i, \sum_{N} \sigma_i^2\right)$$

which means that

$$\frac{1}{N} \sum_{i=1}^{N} X_{i} \sim \mathcal{N} \left[ \frac{1}{N} \sum_{N} \mu_{i}, \left( \frac{1}{N^{2}} \right) \sum_{N} \sigma_{i}^{2} \right]$$
$$\sim \mathcal{N} \left( \mu, \frac{\sigma^{2}}{N} \right).$$

# Sampling Distribution of the Variance

Sample variance is:

$$s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2$$

means that

$$E(s^{2}) = \frac{1}{N-1} \left\{ E\left[\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}\right] \right\}$$

$$= \frac{1}{N-1} \left\{ E\left[\sum_{i=1}^{N} (X_{i} - \mu)^{2} - N(\bar{X} - \mu)^{2}\right] \right\}$$

$$= \frac{1}{N-1} \left[\sum_{i=1}^{N} E(X_{i} - \mu)^{2} - NE(\bar{X} - \mu)^{2}\right]$$

$$= \frac{1}{N-1} \left(N\sigma^{2} - N\frac{\sigma^{2}}{N}\right)$$

$$= \sigma^{2}$$

# Sampling Distribution: Variance

A transformation:

$$\mathfrak{s}^2 = \frac{(N-1)s^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^{N} (X_i - \bar{X})^2$$

We can show that

$$\mathfrak{s}^2 \sim \chi_{\mathit{N}-1}^2$$

### Variances Are Chi-Square...

For  $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$  and  $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ ,  $\bar{X} = \frac{X_1 + X_2}{2}$ , and so:

$$s^2 = \frac{(X_1 - X_2)^2}{2}.$$

From this:

$$\mathfrak{s}^2 = \frac{(N-1)\mathfrak{s}^2}{\sigma^2} = \frac{(X_1 - X_2)^2}{2\sigma^2}$$
$$= \left(\frac{X_1 - X_2}{\sqrt{2\sigma^2}}\right)^2.$$

# Warren & Burger Court Data

| > summary(W   | VB)  |              |              |            |            |
|---------------|------|--------------|--------------|------------|------------|
| us            |      | id           | amrev        | amaff      | sumam      |
| 394/0310:     | 15   | Min. : 1     | Min. : 0     | Min. : 0   | Min. : 0   |
| 390/0747:     | 14   | 1st Qu.:1791 | 1st Qu.: 0   | 1st Qu.: 0 | 1st Qu.: 0 |
| 389/0486:     | 12   | Median:3581  | Median : 0   | Median : 0 | Median : 0 |
| 375/0002:     | 10   | Mean :3581   | Mean : 0     | Mean : 0   | Mean : 1   |
| 375/0032:     | 9    | 3rd Qu.:5371 | 3rd Qu.: 0   | 3rd Qu.: 0 | 3rd Qu.: 1 |
| 391/0009:     | 9    | Max. :7161   | Max. :33     | Max. :37   | Max. :39   |
| (Other) :7092 |      |              |              |            |            |
| fedpet        |      | constit      | sgam         |            |            |
| Min. :0.      | .00  | Min. :0.00   | Min. :0.00   |            |            |
| 1st Qu.:0.00  |      | 1st Qu.:0.00 | 1st Qu.:0.00 |            |            |
| Median :0.    | .00  | Median :0.00 | Median:0.00  |            |            |
| Mean :0.      | . 17 | Mean :0.25   | Mean :0.08   |            |            |
| 3rd Qu.:0.00  |      | 3rd Qu.:1.00 | 3rd Qu.:0.00 |            |            |
| Max. :1.      | .00  | Max. :1.00   | Max. :1.00   |            |            |

# Frequencies for fedpet and sumam





# 1000 Sample Means (N=10)

```
set.seed(7222009)
MFP10<-numeric(1000)
for (i in 1:1000){
   MFP10[i]<- with(WB, mean(sample(fedpet,10,replace=F)))
   }</pre>
```



# 1000 Sample Means (N = 20 and 100)





# Also For sumam (N = 100)



# Sample Variances (N = 20 and 500)





# Stratified Sampling using sampling

#### Constitutional decisions:

> table(WB\$constit)

5345 1816

Task: Draw a single stratified random sample (N = 20), with 10 observations from constit=0 and 10 from constit=1.

# Stratified Sampling using sampling

```
require(sampling)
                          # package
set.seed(7222009)
                          # set seed
sample <- strata(WB, stratanames=c("constit"), size=c(10,10), method="srswor")
sample.data<-getdata(WB.sample)
summary(sample.data)
                     iд
                                                 amaff
        118
                                  amrev
                                                                sumam
 356/0560: 1
                      : 648
                                     :0.00
                                                    :0.0
               Min.
                              Min.
                                             Min.
                                                           Min. :0.0
 359/0360: 1
               1st Qu.:1597
                              1st Qu.:0.00
                                             1st Qu.:0.0
                                                           1st Qu.:0.0
 362/0456: 1
               Median :3624
                              Median :0.00
                                             Median :0.0
                                                           Median :0.0
 368/0448: 1
                      :3468
                                     :0.65
                                                    :0.7
                                                                 :1.4
               Mean
                              Mean
                                             Mean
                                                           Mean
 369/0689: 1
               3rd Qu.:5200
                              3rd Qu.:1.00
                                             3rd Qu.:1.0
                                                           3rd Qu.:3.0
 377/0311: 1
               Max
                      :6825
                              Max
                                     .3.00
                                             Max.
                                                    .5.0
                                                           Max
                                                                  :6.0
 (Other) :14
     fedpet
                                 constit
                                               ID_unit
                     sgam
 Min
        .0.00
                       .0.0
                              Min.
                                     .0.0
                                            Min
                                                   . 647
                Min
 1st Qu.:0.00
                1st Qu.:0.0
                              1st Qu.:0.0
                                           1st Qu.:1596
 Median :0.00
                Median :0.0
                              Median:0.5
                                            Median:3622
 Mean
      :0.15
                Mean
                     :0.1
                              Mean
                                     :0.5
                                            Mean
                                                   :3467
 3rd Qu.:0.00
                3rd Qu.:0.0
                              3rd Qu.:1.0
                                            3rd Qu.:5198
 Max. :1.00
                Max. :1.0
                                     :1.0
                                            Max. :6824
                              Max.
                     Stratum
      Proh
        .0.0019
                  Min
                         .1.0
 Min.
 1st Qu.:0.0019
                  1st Qu.:1.0
 Median :0.0037
                  Median :1.5
 Mean
        :0.0037
                  Mean
                         .1.5
3rd Qu.:0.0055
                  3rd Qu.:2.0
 Max
        .0.0055
                  Max
                         .2 0
```