Mission 03, Start! Estructuras Discretas Semestre 2023-1 December 3, 2023

Tania Michelle Rubí Rojas

Nombre v número de cuenta:	
Nombre y numero de cuenta:	

Notación y convenciones para el examen:

- $0 \in \mathbb{N}$
- $S = \{x | x \text{ es una cadena de 0's y 1's}\} = \{0, 1, 10, 11, 100, 101, 110, 111, \ldots\} \cup \{00, 000, 0000, \ldots\}$
- Sea $x \in S$, diremos que 0x es el resultado de "agregar un 0" al inicio de x, por ejemplo: si x=101 entonces 0x=0101
- Salvo la mencionada en la viñeta anterior, no hay ninguna operación definida para el conjunto S
- En la CdMx una persona menor de edad puede comprarse un automóvil.
- En la CdMx existe la copropiedad de automóviles
- 1. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - ⓐ Sea $R \subseteq \{1, 2, 3\} \times \{1, 2, 3\}$ donde $R = \{(1, 1), (2, 3), (3, 1), (2, 1)\}$. Entonces R es una función.
 - (b) Toda función es una relación.
 - © Cuando una función es suprayectiva, su imagen es igual a su codominio.
 - d Una función puede tener la misma salida para más de una entrada.
 - (e) Ninguna de las anteriores.
- 2. Sea S el conjunto de todas las cadenas de ceros y unos. Definimos la función $f:S\to\mathbb{Z}$ como sigue:

$$f(s) = (\text{número de unos en } s) - (\text{número de ceros en } s)$$

De acuerdo a esta información, ¿cuál o cuáles de las siguientes expresiones son verdaderas?

- (a) El codominio de f es el conjunto de números naturales.
- \bigcirc El dominio de f es un subconjunto propio de S.
- © f no es inyectiva.
- \bigcirc f no es suprayectiva.
- (e) Ninguna de las anteriores.
- 3. Sea P el conjunto de todas las personas en la CDMX y sea A el conjunto de todos los automóviles. Definimos la función $f: P \to A$ como sigue:

$$f(p) = \text{el último coche que se ha comprado } p$$

- (a) f es supravectiva.
- ⓑ $f^{-1}(x) =$ la última persona que ha comprado x
- © f es inyectiva.
- \bigcirc El dominio de f es el conjunto de todas las personas mayores de 18 años.
- (e) Ninguna de las anteriores.

4. Cuando Odín le pide a Nubecita dar la definición de función inyectiva, ella responde lo siguiente: «Una función $f:X\to Y$ es inyectiva si y sólo si cada elemento de X se envía mediante f a exactamente un elemento de Y.»

¿La respuesta de Nubecita es correcta?

- (a) Claro que es correcta, pues esta definición nos garantiza que cada elemento **del dominio** está relacionado con sólo un elemento **del codominio**.
- (b) Qué oso, claro que **no es correcta**. Esa definición permite que algunos elementos **del codominio** no puedan corresponderse con algún elemento **del dominio**.
- © Claro que es correcta, pues esta definición nos garantiza que no puede existir más de un elemento en el dominio que tenga la misma imagen.
- d Qué oso, claro que **no es correcta**. Esa definición permite que un elemento en el **codominio** esté relacionado con dos o más elementos en el **dominio**.
- (e) Ninguna de las anteriores.
- 5. Sea S el conjunto de todas las cadenas de ceros y unos. Definimos la función $f:S\to\mathbb{N}$ como sigue:

$$f(s) =$$
la longitud de s

De acuerdo a esta información, ¿cuál o cuáles de las siguientes expresiones son verdaderas?

- (a) f no es suprayectiva.
- ⓑ La imagen de f(0101) es 2.
- \bigcirc El dominio de f es el conjunto de todos los números naturales.
- \bigcirc f **no es** inyectiva.
- Ninguna de las anteriores.
- 6. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - ⓐ Dos funciones f y g pueden ser iguales si sus dominios y codominios no coinciden.
 - (b) No toda función es una relación.
 - © Sean A y B dos conjuntos cualesquiera. Entonces para toda $f:A\to B$ se tiene que $f\circ I_A=f$.

 - (e) Ninguna de las anteriores.
- 7. Sea S el conjunto de todas las cadenas de ceros y unos. Definimos la función $f:S\to\mathbb{N}$ como sigue:

$$f(s) =$$
el número de ceros en s

- (a) f no es suprayectiva.
- $f^{-1}(s) = \text{el número de unos en } s$
- \bigcirc f es inyectiva.
- d El codominio de f son todos los números enteros.
- (e) Ninguna de las anteriores.

- 8. Sean A y B conjuntos finitos cuya cardinalidad es n y m, respectivamente. Supongamos que $f:A\to B$ es una función. De acuerdo a esta información, ¿cuál o cuáles de las siguientes expresiones son **verdaderas**?
 - ⓐ Si $n \leq m$, entonces f debe ser inyectiva.
 - ⓑ Si n > m, entonces f debe ser suprayectiva.
 - © Si f es inyectiva, entonces n < m.
 - \bigcirc Si f es suprayectiva, entonces $n \geq m$.
 - Ninguna de las anteriores.
- 9. Sea $A = \{a, b, c, d\}$ donde el universo del discurso es $\mathcal{U} = \{\emptyset, a, b, c, d, \{\emptyset\}\}$. Definimos la función $f : \mathcal{P}(A) \times \mathcal{P}(A) \to \mathcal{P}(A)$ como sigue:

$$f(A,B) = A^c - (A \cap B)$$

De acuerdo a esta información, ¿cuál o cuáles de las siguientes expresiones son verdaderas?

- (a) El codominio de f es $\mathcal{P}(A)$.
- \bigcirc f es inyectiva.
- © La imagen de $f(\{a,b,d\},\{a,c\})$ es $\{\emptyset,\{\emptyset\},c\}$.
- \bigcirc f es suprayectiva.
- e Ninguna de las anteriores.
- 10. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - (a) No todas las relaciones son funciones.
 - ⓑ Sean $A = \{1, 2\}$ y $B = \{1, 3, 5, 7\}$. Si $R \subseteq A \times B$, entonces $R = \{(1, 3), (1, 5), (2, 3), (2, 5)\}$ es una función.
 - © Dos funciones son iguales solo si ambas tienen la misma regla de correspondencia.
 - (d) Sean $A = \{8, 11, 2, 5\}$ y $B = \{1\}$. Si $S \subseteq A \times B$, entonces $S = \{(2, 1), (5, 1), (8, 1), (11, 1)\}$ no es una función.
 - (e) Ninguna de las anteriores.
- 11. Sean P el conjunto de todas las personas y T el conjunto de todos los zapatos. Definimos la relación $R \subseteq P \times T$ como sigue:

$$R = \{(x, y) \mid y \text{ es el zapato izquierdo que lleva puesto } x\}$$

- (a) R no es una función.
- ⓑ $R^{-1} = \{(y, x) \mid x \text{ es el zapato izquierdo que lleva puesto } y\}$
- \bigcirc El codominio de R es el conjunto de todos los zapatos izquierdos.
- \bigcirc R es inyectiva.
- (e) Ninguna de las anteriores.

12. Sea S el conjunto de todos los subconjuntos finitos de enteros positivos. Definimos la función $f: \mathbb{N} \to S$ como sigue:

f(n) = el conjunto de todos los divisores positivos de n

De acuerdo a esta información, ¿cuál o cuáles de las siguientes expresiones son verdaderas?

- ⓐ f es suprayectiva.
- \bigcirc f es inyectiva.
- © El codominio de f es \mathbb{N} .
- \bigcirc d f no es función.
- e Ninguna de las anteriores.
- 13. Definimos la función $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ como sigue:

$$f(x,y) = (2y, -x)$$

- (a) f no tiene inversa.
- \bigcirc f no es inyectiva.
- © El dominio de f es \mathbb{R}^2 .
- \bigcirc f es suprayectiva.
- Ninguna de las anteriores.
- 14. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - ⓐ Sean A y B conjuntos. Si $f: A \to B$ es una función invectiva y suprayectiva con función inversa $f^{-1}: B \to A$, entonces $f^{-1} \circ f = I_A$.
 - **b** no es posible realizar composición de funciones definidas sobre conjuntos infinitos.
 - © Sean A, B y C conjuntos. Si $f: A \to B y g: B \to C$ son ambas funciones inyectivas, entonces $g \circ f$ es inyectiva.
 - d Sean A y B conjuntos. Si $f:A\to B$ es suprayectiva, entonces cada elemento en B es la imagen de un elemento de A.
- 15. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - ⓐ Sea f una función. Si cada elemento **del dominio** de f tiene una imagen, entonces f debe de ser suprayectiva.
 - $\mbox{(b)}$ Sea f una función. Si cada elemento **del codominio** de f tiene una imagen , entonces f debe de ser suprayectiva.
 - © Toda relación es una función.
 - d Sean A y B conjuntos. Sea $f:A\to B$ una función. Si |A|>|B| entonces f no puede ser inyectiva.
 - ^(e) Ninguna de las anteriores.

16. Definimos la función $f: \mathcal{P}(\{1,2,3\}) \to \mathbb{N}$ como sigue:

$$f(A) = |A|$$

De acuerdo a esta información, ¿cuál o cuáles de las siguientes expresiones son verdaderas?

- (a) f es suprayectiva.
- \bigcirc La inversa de f es una función.
- © $f \circ f = \{(\{1\}, 1), (\{2\}, 1), (\{3\}, 1), (\{1, 2\}, 2), (\{1, 3\}, 2), (\{2, 3\}, 2)\}$
- d f no es inyectiva.
- Ninguna de las anteriores.
- 17. Sea S el conjunto de todas las cadenas de ceros y unos. Definimos la función $f:S\to S$ como sigue:

$$f(s) = 0s$$

De acuerdo a esta información, ¿cuál o cuáles de las siguientes expresiones son verdaderas?

- (a) La función inversa de f existe.
- \bigcirc f es inyectiva.
- © La imagen de f es S.
- \bigcirc f no es suprayectiva.
- Ninguna de las anteriores.
- 18. Definimos la función $f: \mathbb{N} \to \mathbb{N}$ como sigue:

$$f(n) =$$
la suma de todos los divisores positivos de n

De acuerdo a esta información, ¿cuál o cuáles de las siguientes expresiones son verdaderas?

- (a) f **no es** suprayectiva.
- $\mbox{\Large\ \ }$ $(f\circ f)(n)=\mbox{ el número de divisores positivos de }n$
- © f^{-1} es una función.
- d f **no es** inyectiva.
- (e) Ninguna de las anteriores.
- 19. Se
aSel conjunto de todas las cadenas de ceros y unos. Definimos la función
 $f:S\to S$ como sigue:

$$f(s) =$$
la cadena s escrita al revés

- (a) El dominio de f es $\{0,1\}$.
- (b) f **no es** inyectiva.
- © f no es suprayectiva.
- d El dominio y el codominio de f son diferentes al dominio y codominio de f^{-1} .
- (e) Ninguna de las anteriores.

20. Sea P el conjunto de todas las personas. Definimos la función $f:P \to \{x \mid 0 < x < 32\}$ como sigue:

$$f(p) =$$
el día de nacimiento de p

De acuerdo a esta información, ¿cuál o cuáles de las siguientes expresiones son verdaderas?

- ⓐ f es suprayectiva.
- \bigcirc f es inyectiva.
- © f^{-1} es una función.
- ① La imagen de f es $\{1, 2, 3, \dots, 30, 31\}$
- Ninguna de las anteriores.
- 21. Sea S el conjunto de todas las cadenas de ceros y unos. Definimos la función $f:S\to S$ como sigue:

$$f(s) = s + 1$$

- (a) f es inyectiva.
- ⓑ f^{-1} es una función.
- \bigcirc f **no es** suprayectiva.
- (d) El codominio de f es \mathbb{N} .
- (e) Ninguna de las anteriores.
- 22. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - (a) Sean A, B y C conjuntos cualesquiera. Sean $f: A \to B y g: B \to C$ funciones. Si $g \circ f$ es inyectiva, entonces f es inyectiva.
 - b Si f es una función suprayectiva, entonces el imagen de f y el codominio de f son disjuntos.
 - © f es biyectiva si y sólo si f^{-1} existe.
 - d Si f es una función inyectiva, entonces **no es posible** que dos elementos en el dominio de f correspondan con un mismo elemento en el codominio de f.
 - Ninguna de las anteriores.
- 23. ¿Cuál o cuáles de las siguientes expresiones son verdaderas?
 - (a) Dos funciones f y g con el mismo dominio y codominio son iguales si la imagen de cada elemento **del dominio** es igual bajo f que bajo g.
 - ⓑ Sean A y B dos conjuntos cualesquiera. Entonces para toda $f: A \to B$ se tiene que $I_B \circ f = f$.
 - © La composición de funciones cualesquiera es conmutativa.
 - d Siempre es posible obtener la función inversa de una función f.
 - Ninguna de las anteriores.