Lora Milam Western Governors University D212 Data Mining II 10 March 2023

D212 Performance Assessment Task 2

1 Introduction

Lora Milam Masters Data Analytics (2/19/2023) Program Mentor:d212@wgu.edu

1.1 Research Question

This analysis will investigate leading factors within a readmission dataset for a popular medical hospital. The primary query is whether Principal Component Analysis(PCA) can assist in performing a dimensionality reduction when selecting primary features.

1.2 Research Goal

The goal of this analysis is to reduce the number of primary features.

2 Technique Justification

2.1 Explanation of PCA

In summary, PCA:

- 1. Standardize the data.
- 2. Compute the covariance matrix of the features from the dataset.
- 3. Perform eigendecomposition on the covariance matrix.
- 4. Order the eigenvectors in decreasing order based on the magnitude of their corresponding eigenvalues.
- 5. Determine k, the number of top principal components to select.
- 6. Construct the projection matrix from the chosen number of top principal components.
- 7. Compute the new k-dimensional feature space. (O'Sullivan)

The expected outcome will be that the selected dataset will have less variables but still be able to retain the majority of the accuracy. Reduced variables will allow for reduced processing time and effort.

2.2 PCA Assumption

One assumption of the PCA is linearity, that all variables have a linear relationship(PCA).

3 Data Preparation

3.1 Dataset Variables

Variable	Туре	Used in KMeans				
Children	Continuous	Yes				
Age	Continuous	Yes				
Income	Continuous	Yes				
VitD_levels	Continuous	Yes				
Doc_visits	Continuous	Yes				
Full_meals_eaten	Continuous	Yes				
vitD_supp	Continuous	Yes				
Initial_days	Continuous	Yes				
TotalCharge	Continuous	Yes				
Additional_charges	Continuous	Yes				
ReAdmis	Categorical	No				

```
In [1]: # Libraries
   import numpy as np
   import pandas as pd
   from pandas import Series, DataFrame
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn.preprocessing import StandardScaler
   from sklearn.decomposition import PCA
```

In [2]: # Import dataset into Pandas dataframe
df = pd.read_csv('medical_clean_0212.csv')
df

Out[2]:

	CaseOrder	Customer id	Interaction	uiu	City	State	County	Δp	Let	Lng	_	IotelCharge
0	1	C412403	8xd49b13- (45a-4b47- a2bd- 173ffs932x2f	3a83ddb66w2xw73798bdf1d705dc0932	Eva	AL	Morgan	35621	34.34960	-88.72508	-	3726.702880
1	2	Z919181	d2450b70- 0337-4406- bdbb- bc1037f1734c	178354c5ee/714957d488009feeb/195	Marianna	FL	Jackson	32448	30.84513	-85.22907	-	4193.190458
2	3	F995323	a2057123- abf5-4a2c- abad- 8fls33512562	e19e0fe00seda885b8a438757e889bc9	Stoux. Falls	SD	Minnehaha	57110	43.54321	-98.83772	-	2434.234222
3	4	A879973	1dec528d- eb34-4079- adce- 0d7e40e82205	cd17d7b6d152cb6f23957346d11c3f07	New Richland	MN	Waseca	58072	43.89744	-93.51479	-	2127.830423
4	5	C544523	5885f56b- d8da-43a3- 8760- 83583af94266	d2f0425877b10ed6bb381f3e2579424a	West Point	VA	King William	23181	37.59894	-76.88958	-	2113.073274
			-					-	-	-	-	-
2925	9998	8883080	#258594d- 0328-488f- #859- 0567#60f9723	39184ds:28cs038871912ccs4500049e5	Norlina	NC	Warren	27563	38.42888	-78.23716	-	6850.942000
2995	9997	P712040	70711574- f/b1-4a17- b15f- 48c54584b70f	3cd124ccd43147404292e883bf9ec55c	Milmay	NJ	Allentic	8340	39.43809	-74.87302	-	7741.690000
2997	9998	R778890	1d79589d- 8e0f-4180- s207- d87ee4527d28	41b770seee97a5b9e789c906a8119d7	Southeide	TN	Montgomery	37171	36.36655	-87.29988	-	8278.481000
2998	9999	E344109	75e68e69- 2e60-409b- e92f- ac0847b27db0	2bb491ef5b1beb1fed/58cc6885c187a	Quinn	SD	Pennington	57775	44.10354	-102.01590	-	7844.483000
29/29	10000	1589847	bo482c02- 18c9-4423- 99de- 3dt6e62a18d5	95883a202338000abdf7a09311c2a8a1	Corsopolis	PA	Allegheny	15108	40.49998	-80.19959	-	7887.563000
10000 rows × 50 columns												

In [3]: # Review dataset # Variables within dataset df.columns

4

In [4]: # Summary stats of variables df.describe()

Out[4]:

	CaseOrder	∠ip	Let	Lng	l'opulation	Children	Age	Income	VitD levels	Doc warts		la
count	10000.00000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000		100
meen	5000.50000	50159.323900	38.751099	-91.243080	9985.253800	2.097200	53.511700	40490.495160	17.984282	5.012200		53
witd	2888.89568	27469.588208	5.403085	15.205998	14824.758614	2.163859	20.638538	28521.153293	2.017231	1.045734		21
min	1.00000	610.000000	17.967190	-174.209700	0.000000	0.000000	18.000000	154.080000	9.808483	1.000000		19
25%	2500.75000	27592.000000	35.255120	-97.352982	694.750000	0.000000	38.000000	19598.775000	16.626439	4.000000		31
50%	5000.50000	50207.000000	39,419355	-88.397230	2769.000000	1.000000	53.000000	33768.420000	17.951122	5.000000	-	52
75%	7500.25000	72411.750000	42.044175	-80.438050	13945.000000	3.000000	71.000000	54298.402500	19.347963	6.000000		74
mes	10000.00000	99929.000000	70.580990	-65.290170	122814.000000	10.000000	89.000000	207249.100000	28.394449	9.000000		91

8 rows × 23 columns

In [5]: # Determine if there are any missing values within dataset df.isnull().sum() $% \left(\frac{1}{2}\right) =0$

```
In [6]: # Review variable types
df.dtypes
Out[6]: CaseOrder
                                               int64
                                              object
object
object
object
object
             Customer id
            Interaction
             UID
             City
             State
            County
             Zip
Lat
                                             int64
float64
            Lng
Population
                                             float64
             Area
TimeZone
                                              object
object
                                               object
int64
             Children
                                                int64
             Age
Income
                                             float64
             Marital
                                              object
             Gender
             RoAdmis
                                             object
float64
             VitD_levels
             Doc_visits
Full_meals_eaten
                                               int64
             vitD_supp
Soft_drink
Initial_admin
                                                int64
                                               object
                                              object
object
object
object
object
             HighBlood
            Stroke
Complication_risk
             Overweight
Arthritis
            Diabetes
Hyperlipidemia
                                              object
object
             BackPain
Anxiety
Allergic_rhinitis
                                              object
object
                                             object
object
object
object
float64
             Reflux_esophagitis
             Asthma
             Services
Initial_days
             TotalCharge
                                             float64
             Additional_charges
Itemi
                                             float64
int64
             Item2
Item3
                                                int64
                                                int64
             Item4
                                                int64
             Item6
                                                int64
             Item7
Item8
                                                int64
                                                int64
            dtype: object
```

```
In [8]: # Determine any outliers or discrepancies by reviewing univariate graphs
# Duliers seem to be within reason
           fig, axes = plt.subplots(ncols=len(X.columns))
           # Create the boxplot with Seaborn
           for column, axis in zip(X.columns, axes):
     sns.boxplot(data-X[column], ax-axis)
                     axis.set_title(column)
           # Show the plot
           plt.tight_layout()
plt.show()
          C:\Users\Mel\AppData\Local\Temp\ipykernel 72\3158235395.py:11: UserWarning: T
axes width small enough to accommodate all axes decorations
           plt.tight_layout()
               ChildrenAge IncoMitD_leDelsubisiteals/itfatsinitial_loll/itingel_charges
             10
                                             9 9 -
                                                                              9000 30000
                    980
                                                        6
                                                        2
                                               3 -
              2 -
                                                        1
```

3.2 Standardization of Dataset Variables

```
In [10]: # Scale dataset
           ss = StandardScaler()
ss.fit(X)
          ss_data_array = ss.transform(X)
ss_data = pd.DataFrame(ss_data_array, columns = X.columns)
ss_data.head()
Out[18]:
               Children
                           Age Income VitD levels Doc visits hull meals eaten vitD supp Initial days Initial days Initial days Initial days
            0 -0.507129 -0.024795 1.815914 0.583803 0.944647 -0.993387 -0.834713 -0.907310 -0.727185 0.785005
            1 0.417277 -0.121708 0.221443 0.483901 -0.987981
                                                                          0.990609 0.958445 -0.734595
                                                                                                            -0.513228
                                                                                                                               0.715114
           Z 0.417277 -0.024795 -0.915870 0.048227 -0.987981
                                                                        -0.001389 -0.634713 -1.128292 -1.319983
                                                                                                                              0.698635
            3 -0.989332 1.188592 -0.028283 -0.887811 -0.987981
                                                                         -0.001389 -0.634713 -1.244503 -1.460517
                                                                                                                               0.009004
           4 -0.507129 -1.528914 -1.377325 -0.280388 -0.011887 -0.993387 2.547802 -1.281991 -1.487285
                                                                                                                             -1.408991
In [11]: # Save prepared dataset for further analysis
ss data.to_csv('D212 Part2 Scaled Data.csv', index = False)
```

4 Analysis

4.1 Principal Components

4.2 Identification of Total Number of Components

The scree plot shows that the optimal number of principal components is 9, since the variance between 9 and 10 is so low.

4.3 Total Variance of Components

```
In [16]: print(var)
[0.19943998 0.17146705 0.10412027 0.10137444 0.1004172 0.09934347 0.09747879 0.09682792 0.0283594 0.00117147]

In [17]: print(var.cumsum())
[0.19943998 0.37090704 0.47502731 0.57640175 0.67681895 0.77616242 0.87364121 0.97046913 0.99882853 1. ]
```

4.4 Total Variance Captured by Components

The total variance captured with 9 features is 0.9988.

4.5 Summary of Data Analysis

In summary, PCA was able to reduce the number of features by one, while retaining a similar accuracy of the original 10. With that said, this reduction should allow for faster processing without increased resource spending.

5 Supporting Documentation

5.1 Video

This can be found within the attached file 'Panopto Recording'.

5.2 Sources

A guide to principal component analysis (PCA) for Machine Learning. A Guide to Principal Component Analysis (PCA) for Machine Learning. (n.d.). Retrieved March 15, 2023, from https://www.keboola.com/blog/pca-machine-learning

O'Sullivan, C. (2020, September 10). *A step-by-step introduction to PCA*. Medium. Retrieved March 26, 2023, from

https://towardsdatascience.com/a-step-by-step-introduction-to-pca-c0d78e26a0dd

Western Governors University. (n.d.). D212 Data Mining II. Salt Lake City.