6.2. Min-Max Scaling

Given a matrix $X \in \mathbb{R}^{m \times n}$, do the following:

Transform X to a matrix Z of the same size so that each column of Z ranges in [0,1].

Input Format

• A 2d number array of size $m \times n$ containing real numbers representing matrix X

Output Format

Output the resulting $m \times n$ matrix Z where each column ranges in [0,1].

Constraints

- $X \in \mathbb{R}^{m \times n}$
- $1 \le m, n \le 1000$
- All input values are real numbers in the range [-1000, 1000]
- Each column of X has at least 2 distinct values (to ensure non-zero range)

Sample Input

```
X =[ [10, 8, 2],
        [88, -21, 55],
        [12, 55, -66],
        [-50, 5, -80]]
```

Sample Output

```
[[0.43478261, 0.38157895, 0.60740741]

[1. , 0. , 1. ]

[0.44927536, 1. , 0.1037037 ]

[0. , 0.34210526, 0. ]]
```

Implementation

Goal: Fill in the following function:

```
def column_min_max_scaling(X):
    ...
    return ... # Return the min-max scaled matrix
exec("\n".join(iter(input, "#Exit"))) # Don't remove this line
```