Single-Parameter Optimal Revenue (continued)

Virtual Welfare Recap

- Maximize welfare $(\sum_i v_i x_i)$: Always give the bidder the item, always give it away for free!
- Maximize revenue: Post a price that maximizes $\text{ReV} = \max_r r \cdot [1 F(r)]$.

Using only the revelation principle and the payment identity $p_i(b_i, \mathbf{b}_{-i}) = b_i \cdot x_i(b_i, \mathbf{b}_{-i}) - \int_0^{b_i} x_i(z, \mathbf{b}_{-i}) dz$, we proved the following:

$$\text{Revenue} = \mathbb{E}_{\mathbf{v} \sim \mathbf{F}}[\sum_i p_i(\mathbf{v})] = \mathbb{E}_{\mathbf{v} \sim \mathbf{F}}[\sum_i \varphi_i(v_i) x_i(\mathbf{v})] = \text{Virtual Welfare}$$

where

$$\varphi_i(v_i) = v_i - \frac{[1 - F_i(v_i)]}{f_i(v_i)}.$$

Then similarly to welfare, just give the item to the bidder with the highest (non-negative) virtual value! But this doesn't work when $\varphi(\cdot)$ isn't monotone, because then $x(\cdot)$ wouldn't be.

Definition 1. A distribution F is regular if the corresponding virtual valuation function $\varphi(v) = v - \frac{1 - F(v)}{f(v)}$ is strictly increasing.

Claim 1. A virtual welfare maximizing allocation x is monotone if and only if the virtual value functions are regular.

Figure 1: Virtual value functions $\varphi(v) = v - \frac{1 - F(v)}{f(v)}$ for the uniform and bimodal agent examples.

Quantile Space and Ironing

In value space:

- \bullet an agent has value v.
- the fraction of the distribution with value above v is 1 F(v).
- the revenue from posting a "take-it-or-leave-it" price of v is v[1 F(v)].

In quantile space: q = 1 - F(v).

- \bullet an agent has value v.
- the fraction of the distribution with value above v is q(v) = 1 F(v).
- the revenue from posting a "take-it-or-leave-it" price of $v(q) = F^{-1}(1-q)$ is $v(q) \cdot q$.

Example: Consider a distribution that is U[\$0,\$10]. Then the quantile 0.1 corresponds to \$9, where 10% of the population might have a higher value. We let v(q) denote the corresponding value, so v(0.1) is \$9.

Definition 2. The *quantile* of a single-dimensional agent with value $v \sim F$ is the measure with respect to F of stronger values, i.e., q = 1 - F(v); the inverse demand curve maps an agent's quantile to her value, i.e., $v(q) = F^{-1}(1-q)$.

Quantile Distribution: What distribution are quantiles drawn from? That is, what is the probability that an agent is in the top \hat{q} fraction of the distribution? For a distribution F, $\Pr_F[q \leq \hat{q}] = \text{what}$?

Note: For everything we do today, we *could* stay in value space, (and sometimes we'll compare), but we'd have to normalize by the distribution using f(v), which makes everything a bit messier and a bit trickier.

Example: For the example of a uniform agent where F(z) = z, the inverse demand curve is v(q) = 1 - q.

For an allocation rule $x(\cdot)$ in value space, we define an allocation rule in quantile space $y(\cdot)$:

$$y(q) = x(v(q)).$$

As $x(\cdot)$ is monotone weakly increasing, then $y(\cdot)$ is monotone weakly decreasing.

Figure 2: A revenue curve in value space.

Definition 3. The revenue curve of a single-dimensional agent specified by $R(v) = v \cdot [1 - F(v)]$.

Note: This is *only* the revenue that can be achieved by posting a single take-it-or-leave-it price. This does not capture the expected revenue of any given mechanism.

Definition 4. The *revenue curve* of a single-dimensional sagent specified by inverse demand curve $v(\cdot)$:

Claim 2. Any allocation rule $y(\cdot)$ can be expressed as a distribution of posted prices. *Proof.*

Claim 3. Any DSIC allocation rule $x(\cdot)$ can be expressed as a distribution of posted prices.

Figure 3: (a) An allocation rule for a take-it-or-leave-it price of \$3. (b) An allocation rule for a take-it-or-leave-it price of \$6. (c) An allocation that can be written x(v)=0 for v<3, $x(v)=\frac{1}{3}$ for $v\in[3,6)$, and x(v)=1 for $v\geq 6$. Alternatively, a randomized take-it-or-leave-it price that is \$3 with probability $\frac{1}{3}$ and \$6 with probability $\frac{2}{3}$, that is, $\$5=\frac{1}{3}\cdot 3+\frac{2}{3}\cdot 6$ in expectation. (d) The revenue curve in value space, including ironed intervals where convex combinations of prices can attain higher revenue than deterministic prices.

Claim 4. A distribution F is regular if and only if its corresponding revenue curve is concave.

Observe that $P'(q) = \varphi(v(q))$:

$$P'(q) = \frac{d}{dq} (q \cdot v(q)) = v(q) + qv'(q) = v - \frac{1 - F(v)}{f(v)} = \varphi(v(q)).$$

Thus $\Phi(q) = \int_0^q \varphi(\hat{q}) d\hat{q} = P(q)$.

To summarize: a distribution F is regular if and only if:

- its corresponding revenue curve in quantile space is concave.
- $\varphi(q)$ is strictly increasing.
- $f(v)\varphi(v)$ is strictly increasing. (Why?)

Definition 5. The *ironing procedure* for (non-monotone) virtual value function φ (in quantile space) is:

(i) Define the cumulative virtual value function as

- (ii) Define ironed cumulative virtual value function
- (iii) Define the ironed virtual value function as

Summary: Take the concave hull of the revenue curve in quantile space. Its derivative forms the ironed virtual values. (The derivatives of the original curve are the original virtual values.)

Figure 4: The bimodal agent's (ironed) revenue curve and virtual values in quantile space.

Theorem 1. For any monotone allocation rule $y(\cdot)$ and any virtual value function $\varphi(\cdot)$, the expected virtual welfare of an agent is upper-bounded by her expected ironed virtual surplus, i.e.,

$$\mathbb{E}[\varphi(q)y(q)] \le \mathbb{E}[\bar{\varphi}(q)y(q)].$$

Furthermore, this inequality holds with equality if the allocation rule y satisfies y'(q) = 0 for all q where $\bar{\Phi}(q) > \Phi(q)$.

How do we modify this statement for value space?

Proof.

Claim 5. The expected revenue on the ironed revenue curve is attainable with a DSIC mechanism.

Example: How would you obtain the ironed revenue at \$5 instead of just R(5)?

Note: Recall that the expected revenue of *any mechanism*, not just a posted price, can be expressed by its virtual welfare. (We have now shown that you could decompose it into a distribution of posted prices and thus express the revenue that way, too, actually.)

What's the final mechanism?

For any ironed interval [a, b], examine $\bar{\varphi}(v)$ for $v \in [a, b]$. Draw conclusions about $\bar{\varphi}(v)$ and x(v). P(q(v)) is a straight line (linear) there, so $\bar{\varphi}(q(v))$ will be?

What does this imply for ironed-virtual-welfare-maximizing allocation in [a, b]?

Multiple Bidders

Imagine we have three bidders competing in a revenue-optimal auction for a single item. They are as follows:

- Bidder 1 is uniform. $F_1(v) = \frac{v-1}{H-1}$ on [1, H].
- Bidder 2 is exponential. $F_2(v) = 1 e^{-x}$ for $v \in (1, \infty)$.
- Bidder 2 is exponential. $F_3(v) = 1 e^{-2x}$ for $v \in (1, \infty)$.

What does the optimal mechanism look like?

Definition 6. A reserve price r is a minimum price below which no buyer may be allocated the item. There may also be personalized reserve prices r_i where if $v_i < r_i$ then v_i will not be allocated to. Bidders above their reserves participate in the auction.