COPYRIGHT RESERVED BCA (Sem-III) – Operating System (302) (Core VI)

2021

Time: 3 hours

Full Marks: 70

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Answer all sections as directed.

Section-A

(Compulsory)

- Pick up the correct alternative for each of the following questions: 10×2=20
 - (a) What is the ready state of a process?
 - (i) When process is scheduled to run after some execution

S118/5/2

(1)

(Turn over)

- (ii) When process is unable to run until sourse task has been completed
- (iii) When process is using the CPU
- (iv) None of the mentioned
- (b) What is a short term scheduler?
 - (i) It selects which process has to be brought into the ready queue
 - executed next and allocates CPU
 - (iii) It selects which process has to be removed memory from swapping
 - (iv) None of the mentioned
- (c) Round Robin Scheduling falls under the category of:
 - (i) Non preemptive
 - (ii) Preemptive

(iii) Both (i) & (ii)
(iv) None of the above
(d) A minimum of variable is/are
required to be shared between processes
to solve the critical section problem:
∞ (i) One
(ii) Two
(iii) Three
(iv) Four
(e) Binding of instructions and data to
memory address can be done at:
(i) Compile time
(ii) Load time
(iii) Execution time
(iv) All of the above
(f) Real time system must have:
(i) Preemptive kernels
· (ii) Non preemptive kernels
\$118/5/2 (3) (Turn over)

(Turn over)

(iii)	Both (i) & (ii)			
(iv)	None of the above			
In U	Jnix each process is identified by its :			
(i)	PCB			
(ii)	Device queue			
(iii)) Process identifies			
(iv)	None of the above			
CPU	J scheduling is the basis of :			
(i)	Multiprocessor system			
(ii)	Multiprogramming system			
(iii)	Large memory size system			
(iv)	None			

- (i) In OS which of the following is/are CPU scheduling algorithm:
 - (i) Priority
 - (ii) Round Robin

(g)

(h)

- (iii) SJF
- (iv) All
- (j) To access the services of the OS the interface is provided by the ____.
 - (i) Library
 - (ii) System calls
 - (iii) Assembly instruction
 - (iv) All

Section-B

Answer any four questions:

 $4 \times 5 = 20$

- 2. What is throughput, turnaround time, waiting time and response time.
- 3. Define time sharing operating system.
 - 4. What do you mean by context switching?
 - -5. Explain virtual memory and its uses.
 - 6. What are the various layers of file system?
 - 7. Differentiate between internal and external fragmentation.

- 8. What are the various criteria for CPU scheduling?
- 9. Write short notes on firewall.

Section-C

Answer any two questions of the following:

2×15=30

- 10. What is an operating system? What is the need for an operating system? Discuss the major function of an OS.
- 11. Consider the following set of process with the length of CPU burst time given in millisecond

Process	Burst time (msec)	Arrival time (m Sec)
$\mathbf{P}_{_{1}}$	24	0
$\mathbf{P}_{_{2}}$	7	3
\mathbf{P}_3	6	5
P_4	10	10

S118/5/2

(6)

Contd.

Draw Gantt chart for FCFS, SJF and RR (quantum⁴) scheduling algorithms. Calculate the average waiting time and turn around time for each of the above mentioned algorithms.

12. What are the various threats to security of a system? Elaborate in details the different mechanism of protection and security.