

Simulating the Interruption of Transmission on Bioko Island

Daniel T. Citron
IHME

TAG Meeting 10/27/2018

Institute for Health Metrics and Evaluation

Overview

- Premise
 - Will the PfSPZ Vaccine be sufficient to interrupt local transmission?
 - Build a simulation model of malaria transmission on Bioko Island,
 calibrated to geospatial maps generated using MIS data

Simulation Model Rationale

- Scenario planning
- A guide to understanding efficacy of adding new interventions
 - Can compare outcomes from many different potential plans
 - Can quantify uncertainty in different outcomes
- Carefully calibrated to data
 - Malaria Indicator Survey
 - Geospatial Maps

- Based on Ross-Macdonald model
- Begin with human population

Humans

Infected

Susceptible

Add interactions with mosquito population

Humans Infected Susceptible

Mosquitoes New Adults Infectious Adults

Infectious mosquitoes infect humans, who recover over time

Humans also infect mosquitoes when they are bitten

Include human travel to other locations, imported infections

Model Calibration – area by area

Calibrate model for each 1km² area on Bioko Island

Features

- Population
- Prevalence
- Travel frequency
- Local Transmission ←
- Risk while traveling ←

Data Inputs

- ← Population Census
- ← Geospatial estimates, PR
- ← Geospatial estimates, travel
 - Geospatial estimates, PR & Travel
 - Bata PR estimate (Ncogo et al. 2015)

Model Calibration – Matching PR

Geospatial Estimate Mean PR

Calibrated Model Mean PR

Simulation results

- Example: Basupu 2028 people, PR = .18
- Baseline case with no interventions
- Ensemble of 100, plotting mean behavior

Adding Mass Treatment

- Mass treatment scheduled at start of years 2 and 3
- Clears infections, prevents new infections, lasts 30 days

Adding Mass Treatment

- Mass treatment scheduled at start of years 2 and 3
- Clears infections, prevents new infections, lasts 30 days

Simulated PfSPZ Vaccine

- Schedule
 - Vaccinate at years 2 and 3
 - Accompany with mass treatment
- Assumptions
 - Vaccine remains effective for 9 months
 - 100% coverage all people vaccinated
 - 50% of recipients granted 100% personal protective efficacy

50% of recipients granted 100% personal protective efficacy

50% of recipients granted 100% personal protective efficacy

Mass Treatment Only

Adding Vaccination

- Improvement slows down rate of new cases
- Not a permanent fix

Mass Treatment Only

Adding Vaccination

- Improvement slows down rate of new cases
- Not a permanent fix

Waning Vaccine

Results Robust to Varying Vaccine Efficacy

- Temporary protection limits long-term efficacy
- Reintroduction through importation occurs in all cases

Reducing Imported Cases

Reduce number of imported infections

100% Reduction

90% Reduction

Reducing Imported Cases

- Reduce number of imported infections
- Following vaccination, importations drive return of PR

90% Reduction

Annual Distribution of Vaccine

- Vaccine slows rate of new cases in short term
- Possible that periodic re-distribution could contribute to sustaining reduced prevalence

Conclusion

- Is the PfSPZ Vaccine sufficient to interrupt local transmission?
- Our results:
 - Vaccine slows but does not stop transmission over long-term
 - Volume of imported cases appears to be too high
 - Reducing importations, or frequently re-distributing vaccine may hold transmission near zero
- Additional considerations and future work
 - Open to simulating additional proposed scenarios
 - Plan a full sensitivity analysis assess robustness of conclusions
 - Tools for planning upcoming cluster randomized trials

Acknowledgements

- Support provided by the BMGF
- Sean Wu (designed our software)
- David Smith
- Carlos Guerra
- Dianna Hergott & Guillermo Garcia
- Peter Billingsley & Stephen Hoffman

Results Robust Across Different Areas

Reduced Importations

1.0

Setting EIR on mainland to mean BI EIR – 90% reduction

Reduced Importations

Current Importations

Model Calibration

Geospatial Estimate Mean PR

Calibrated Model

Mosquito Density

- Mosquitoes/Human, calibrated to PR using Ross-Macdonald
- Accounts for PR attributable to importations

Lower: East, Malabo, Moka

Higher: Northwest

Vaccines in the absence of importations

- Set number of infections imported from mainland travel to 0
- Rate of new infections extremely slow without importations

