CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – October/November 2013 9702		23	
1	density mass =	volume = π (14 × 10 ⁻³) ² × 12 × 10 ⁻³ (=7.389 × 10 ⁻⁶ m ³) density = mass / volume [any subject] mass = 6.8 × 10 ³ × 7.389 × 10 ⁻⁶ = 0.0502				
	weight =	_	$502 \times 9.81 = 0.49 \text{ N}$ (mark not awarded if not to two	s.f.)	C1 A1	[4]
2			for T: s, R: m and M: kg (or seen clearly in formula)		C1	
	K =	$T^2 M$	I/R^3 units: $s^2 kg m^{-3}$ (allow $s^2 kg / m^3$ or $\frac{s^2 kg}{m^3}$)		A1	[2]
	K = 6% K =	[(864 of <i>K</i> (5.9	tainty in <i>K</i> : 1% (for <i>T</i>) + 3% (for <i>R</i>) + 2% (for <i>M</i>) OR = 6° $100^{\circ} \times 6 \times 10^{24}$] / $(4.23 \times 10^{7})^{\circ} = 5.918 \times 10^{11}$ = 0.355×10^{11} ± $0.4) \times 10^{11}$ (SI units) correct power of ten required for the ways walled then max. 1]		C1 C1 C1 A1	[4]
3	(a) (i)		city = rate of <u>change</u> of displacement displacement <u>change</u> / time (taken)		A1	[1]
	(ii)		eleration = rate of <u>change</u> of velocity <u>change</u> in velocity / time (taken)		A1	[1]
	(b) (i)	midd grad last	al constant velocity as straight line / gradient constant dle section deceleration/ speed / velocity decreases / slo lient decreases section lower velocity (than at start) as gradient (consta cial case: all three stages correct descriptions but no re	nt and) smaller	B1 B1 B1	[3]
	(ii)			A1	[1]	
	(iii)	velo	velocity at 4.0s is $(122 - 98) / 2.0 = 12 (\text{m s}^{-1})$ (allow 12 to 13) acceleration = $(12 - 30) / 2.5 = -7.2 \text{m s}^{-2}$ (if answer not this value then comment needed to explain why, e.g. difficulty in drawing tangent)		B1	
		com			A1	[2]
	(iv)	F = 1 = (ma (–)1500 × 7.2 = (–)11000 (10800) N		C1 A1	[2]
4	elas	gravitational PE is energy of a <u>mass</u> due to its position in a <u>gravitational field</u> elastic PE energy <u>stored</u> (in an object) <u>due to</u> (a force) changing its shape /		B1		
	def	deformation / being compressed / stretched / strained			B1	[2]
	(b) (i)	1.	kinetic energy = $\frac{1}{2} mv^2$ = $\frac{1}{2} \times 0.065 \times 16^2 = 8.3(2) \text{ J}$		C1 A1	[2]
			$v^2 = 2gh \text{ OR PE} = mgh$ $h = 16^2 / (2 \times 9.81) = 13(.05) \text{ m}$		C1 A1	[2]

	Page 3		3	Mark Scheme	Syllabus	Paper	•
	9			GCE AS/A LEVEL – October/November 2013	9702	23	
		(ii)	KE i	ed at $t = \frac{1}{2}$ total time = 8 (m s ⁻¹) or total $t = 1.63$ or s $\frac{1}{4}$ or h at $t_{1/2} = 9.78$ (n PE is $\frac{3}{4}$ of max ratio = 3 or ratio = 9.78 / 3.2	n)	C1 C1 A1	[3]
		(iii)		is less because (average) acceleration is greater O eater	R average forc	e B1	[1]
5	(a)	(i)	i) 1. wavelength: minimum distance between two points moving in phase OR distance between neighbouring or consecutive peaks or trough OR wavelength is the distance moved by a wavefront in time T or conscillation/cycle or period (of source)			B1	[1]
				frequency: number of wavefronts / (unit) time OR number of oscillations per unit time or oscillations/tir	ne	B1	[1]
		(ii)	spee	$ed = \underline{distance} / time = \underline{wavelength / time period}$ $= \lambda / T = \lambda f$		M1 A0	[1]
	(b)	(i)	amp	litude = 4.0 mm (allow 1 s.f.)		A1	[1]
(ii) w		wav	elength = 18 / 3.75 (= 4.8)		C1		
			ansv	ed = $2.5 \times 4.8 \times 10^{-2}$ = 12×10^{-2} m s ⁻¹ unit consistent with wer, e.g. in cm s ⁻¹ if cm used for λ and unit changed on a 3 cm = 3.5λ used giving speed 13 (12.9) cm s ⁻¹ allow ma	answer line	A1	[2]
		(iii)	180°	P or π rad		A1	[1]
	(c)	_		screen and correct positions above and below ripple tail video camera	nk	B1 B1	[2]
6			.m.f. = total energy available (per unit charge) ome (of the available energy) is used/lost/wasted/given out in the internal		B1		
		resistance of the battery (hence p.d. available less than e.m.f.)		B1	[2]		
	(b)	(i)	V = . I = 6	<i>IR</i> 6.9 / 5.0 = 1.4 (1.38) A		C1 A1	[2]
		(ii)		ost volts / current 9– 6.9) / 1.38 = 1.5(2) Ω		C1 A1	[2]
	(c)	(i)		EI (not $P = VI$ if only this line given or 9 V not used in set $9 \times 1.38 = 12$ (12.4) W	econd line)	C1 A1	[2]
		(ii)	effic	iency = output power / total power = <i>VI</i> / <i>EI</i> = 6.9 / 9 or (9.52) / (12.4) = 0.767 / 76.79	%	C1 A1	[2]

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9702	23

7	(a) (i)	six vertical lines from plate to plate equally spaced across plates [only allow if greatest to least spacing is < 1.3, condone slight curving on the two edges. There must be no area between the plates where an additional line(s) could be added.]	B1	
		arrow downwards on at least one line	B1	[2]
	(ii)	E = V / d = 1200 / 40 × 10 ⁻³ = 3.0 × 10 ⁴ V m ⁻¹ (allow 1 s.f.)	C1 A1	[2]
	(b) (i)	F = Ee = $3 \times 10^4 \times 1.6 \times 10^{-19} = 4.8 \times 10^{-15} \text{ N}$	C1 A1	[2]
	(ii)	couple = $F \times$ separation of charges = $4.8 \times 10^{-15} \times 15 \times 10^{-3} = 7.2 \times 10^{-17}$ unit: N m or unit consistent with unit used for the separation	C1 A1 B1	[3]
	(iii)	[could be shown on the diagram]	M1	
		forces are equal and opposite in same line / no resultant force and no resultant torque	A1	[2]