Санкт-Петербургский Национальный Исследовательский Университет Информационных технологий, механики и оптики

Отчет

Дисциплина: Компьютерные сети.

Практическая работа 2. Изучение общих принципов построения IP-сетей (адресация м маршрутизация)

Выполнил: Смирнов И.И.

Группа № К3221

Проверил: Харитонов А.Ю.

Санкт-Петербург

2024

СОДЕРЖАНИЕ

		Стр.
1	Задание	3
2	Расчёт	5
3	Симуляция в Cisco packet tracer 3.1 Проверка работоспособности	
4	Вывод	12

1 Задание

Вариант 4

Дана сеть (рис. 1)

рисунок 1. - схема сети

Согласно условию варианта, имеется 3 маршрутизатора: M2, M4 и M5 (рис. 2). У каждого маршрутизатора есть своя сеть, которая разбивается на определенное количество подсетей (в скобках количество подсетей):

сеть 4(2), сеть 7(5), сеть 8(5). IP-адреса сетей соответственно: 172.0.0.0/8, 195.56.78.0/24, 169.254.0.0/16.

рисунок 2. - схема подсети

2 Расчёт

Для подсчета ip-адресов подсетей в первую очередь было подсчитано их количество для сети. Расссмотрим на примере сети 4.

Маска этой сети - 255.0.0.0 (11111111.00000000.0000000000.000000000), количество сетей - 2, $N = log_2 2$ 2 бита. Поскольку коли-= чество подсетей четное, добавим еще один бит. Теперь Значит надо добавить Κ маске 3 бита. Получим 255.224.0.0 (11111111.11100000.000000000000000000). ІР-адрес сети выглядит следующим образом - 172.0.0.0 (10101100.00000000.00000000.00000000), из них первые 11 бит являются маской. Посчитаем подсети, добавим коды 001 и 010 в адрес сети, чтобы определить адреса подсетей. Получим адреса подсетей:

Длина подсетей больше, маски ЭТИХ чем длина macбудет 11 бит 255.224.0.0 составлять И иметь вид ΚИ

Определим максильманое количество узлов на примере подсети 172.32.0.0:

Максимально возможное бит в маске - 32, бит в маске этой подсети - $11.\ 32-11=23.\$ Максимальное количество узлов - $2^{23}=8388608$

Определим широковещательный адрес на примере подсети 172.32.0.0:

ip-адрес - 10101100.00100000.00000000.00000000

Маска - 11111111.11100000.00000000.00000000

Диапазон доступных сетей будет выглядеть следующим образом: 172.32.0.1 - 172.63.255.254

Аналогично считаются остальные сети. Для удобства подсчета использовался калькулятор: https://infocisco.ru/ip_calculator.php

Составлена таблица для всех подсетей (табл. 1)

ІР-адрес сети	Маска	Широковещательный адрес	Максимальное количество узлов
172.32.0.0	255.224.0.0	172.63.255.255	8388608
172.64.0.0	255.224.0.0	172.95.255.255	8388608
195.56.78.32	255.255.255.224	195.56.78.63	32
195.56.78.64	255.255.255.224	195.56.78.95	32
195.56.78.96	255.255.255.224	195.56.78.127	32
195.56.78.128	255.255.255.224	195.56.78.159	32
195.56.67.160	255.255.255.224	195.56.78.191	32
169.254.32.0	255.255.224.0	169.254.63.255	524288
169.254.64.0	255.255.224.0	169.254.95.255	524288
169.254.96.0	255.255.224.0	169.255.127.255	524288
169.254.128.0	255.255.224.0	169.254.159.255	524288
169.254.160.0	255.255.224.0	169.254.191.255	524288

таблица 1 - Информация о подсетях

Составлена схема сети (рис. 3)

рисунок 3 - схема сети и подсетей

Составлена таблица адресов интерфейсов маршрутизаторов (табл. 2)

Маршрутизатор	Номер Интерфейса	ІР-адрес
маршрутизатор	помер интерфенса	
	1	172.32.0.0/11
	2	172.64.0.0/11
	3	9.6.0.254/16
M2	4	9.4.0.253/16
	1	195.56.78.32/27
	2	195.56.78.64/27
	3	195.56.78.96/27
	4	195.56.78.128/27
	5	195.56.78.160/27
	6	9.5.0.254/16
M4	7	9.4.0.254/16
	1	169.254.32.0/19
	2	169.254.64.0/19
	3	169.254.96.0/19
	4	169.254.128.0/19
	5	169.254.160.0/19
	6	9.5.0.253/16
M5	7	9.6.0.253/16

таблица 2 - адреса интерфейсов маршрутизаторов

Составлены таблицы маршрутизации для каждого маршрутизатора.

Адрес сети	Маска сети	Адрес шлюза	Номер интерфейса
172.32.0.0	255.224.0.0	0.0.0.0	1
172.64.0.0	255.224.0.0	0.0.0.0	2
9.6.0.0	255.255.0.0	0.0.0.0	3
169.254.0.0	255.255.224.0	9.6.0.254	3
9.4.0.0	255.255.0.0	0.0.0.0	4
195.56.78.0	255.255.255.224	9.4.0.253	4
0.0.0.0	0.0.0.0	9.4.0.253	4

таблица 3 - Маршрутизация маршрутизатора М2

Адрес сети	Маска сети	Адрес шлюза	Номер интерфейса
195.56.78.32	255.255.255.224	0.0.0.0	1
195.56.78.64	255.255.255.224	0.0.0.0	2
195.56.78.96	255.255.255.224	0.0.0.0	3
195.56.78.128	255.255.255.224	0.0.0.0	4
195.56.78.160	255.255.255.224	0.0.0.0	5
9.5.0.0	255.255.0.0	0.0.0.0	6
169.254.0.0	255.255.224.0	9.5.0.254	6
9.4.0.0	255.255.0.0	0.0.0.0	7
172.0.0.0	255.224.0.0	9.4.0.254	7
0.0.0.0	0.0.0.0	9.5.0.254	7

таблица 4 - Маршрутизация маршрутизатора М4

Адрес сети	Маска сети	Адрес шлюза	Номер интерфейса
169.254.32.0	255.255.224.0	0.0.0.0	1
169.254.64.0	255.255.224.0	0.0.0.0	2
169.254.96.0	255.255.224.0	0.0.0.0	3
169.254.128.0	255.255.224.0	0.0.0.0	4
169.254.160.0	255.255.224.0	0.0.0.0	5
9.5.0.0	255.255.0.0	0.0.0.0	6
195.56.78.0	255.255.255.224	9.5.0.253	6
9.6.0.0	255.255.0.0	0.0.0.0	7
172.0.0.0	255.224.0.0	9.6.0.253	7
0.0.0.0	0.0.0.0	9.5.0.253	7

таблица 5 - Маршрутизация маршрутизатора М5

3 Симуляция в Cisco packet tracer

По данным выше была составлена сеть в симуляторе Cisco packet tracer (рис.4)

рисунок 4 - Схема сети в Cisco packet tracer

Router PT Empty Router 0 - M2

Router PT Empty Router 1 - M5

Router PT Empty Router 2 - M4

Узлы имеют следующие IP-адреса:

PC-PT PC7 - 172.32.0.1

PC-PT PC1 - 172.64.0.1

PC-PT PC0 - 195.56.78.33

PC-PT PC8 - 195.56.78.65

PC-PT PC9 - 195.56.78.97

PC-PT PC10 - 195.56.78.129

PC-PT PC11 - 195.56.78.161

PC-PT PC2 - 169.254.32.1

PC-PT PC3 - 169.254.64.1

PC-PT PC4 - 169.254.96.1

PC-PT PC5 - 169.254.128.1 PC-PT PC - 169.254.160.1

Ниже представлены таблицы маршрутизации маршрутизаторов в симуляторе.

```
Gateway of last resort is 9.4.0.254 to network 0.0.0.0

9.0.0.0/16 is subnetted, 2 subnets

C 9.4.0.0 is directly connected, FastEthernet3/0

C 9.6.0.0 is directly connected, FastEthernet2/0

169.254.0.0/19 is subnetted, 1 subnets

S 169.254.32.0 [1/0] via 9.6.0.253

C 172.32.0.0/11 is directly connected, FastEthernet0/0

C 172.64.0.0/11 is directly connected, FastEthernet1/0

195.56.78.0/27 is subnetted, 1 subnets

S 195.56.78.32 [1/0] via 9.4.0.254

S* 0.0.0.0/0 [1/0] via 9.4.0.254
```

рисунок 5 - Маршрутизация маршрутизатора М2

```
Gateway of last resort is 9.5.0.253 to network 0.0.0.0

9.0.0.0/16 is subnetted, 2 subnets

C 9.4.0.0 is directly connected, FastEthernet6/0

C 9.5.0.0 is directly connected, FastEthernet5/0
169.254.0.0/19 is subnetted, 1 subnets

S 169.254.32.0 [1/0] via 9.5.0.253

S 172.0.0.0/8 [1/0] via 9.4.0.253

S 172.0.0.0/11 [1/0] via 9.4.0.253

C 195.56.78.0/27 is subnetted, 5 subnets

C 195.56.78.32 is directly connected, FastEthernet0/0

C 195.56.78.64 is directly connected, FastEthernet1/0

C 195.56.78.128 is directly connected, FastEthernet2/0

C 195.56.78.160 is directly connected, FastEthernet3/0

C 195.56.78.160 is directly connected, FastEthernet4/0

S* 0.0.0.0/0 [1/0] via 9.5.0.253
```

рисунок 6 - Маршрутизация маршрутизатора М4

```
Gateway of last resort is 9.5.0.254 to network 0.0.0.0
    9.0.0.0/16 is subnetted, 2 subnets
       9.5.0.0 is directly connected, FastEthernet5/0
       9.6.0.0 is directly connected, FastEthernet6/0
    169.254.0.0/19 is subnetted, 5 subnets
       169.254.32.0 is directly connected, FastEthernet0/0
       169.254.64.0 is directly connected, FastEthernet1/0
       169.254.96.0 is directly connected, FastEthernet2/0
       169.254.128.0 is directly connected, FastEthernet3/0
       169.254.160.0 is directly connected, FastEthernet4/0
   172.0.0.0/8 [1/0] via 9.6.0.254
    172.0.0.0/11 [1/0] via 9.6.0.254
    195.56.78.0/27 is subnetted, 1 subnets
S
       195.56.78.32 [1/0] via 9.5.0.254
    0.0.0.0/0 [1/0] via 9.5.0.254
```

рисунок 7 - Маршрутизация маршрутизатора М5

3.1 Проверка работоспособности

Для проверки работоспособности использовались команды ping и tracert.

Первая проверка: с компьютера с ір-адресом 169.254.128.1 используем команду ping 172.64.0.1 (рис. 8).

```
Physical Config Desktop Programming Attributes

Command Prompt

Cisco Packet Tracer PC Command Line 1.0

C:\>ping 172.64.0.1

Pinging 172.64.0.1 with 32 bytes of data:

Reply from 172.64.0.1: bytes=32 time<lms TTL=125

Ping statistics for 172.64.0.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = Oms, Maximum = Oms, Average = Oms

C:\>
```

рисунок 8 - Проверка ping

Для дополнительной проверки была взята команды tracert. В ней участвовали другие узлы: с компьютера 195.56.78.33 отслеживался путь до компьютера 169.254.32.1 (рис. 9).

рисунок 9 - Проверка tracert

Обе команды работают с разными сетями.

4 Вывод

В данной практической работе была рассчитана конфигурация для участка корпоративной сети. Ее модель была спроектирована в симуляторе Cisco packet tracer и проверена и доказана работоспосбность