AMENDMENTS TO THE CLAIMS

1. (Currently Amended) Method of treatment of pathologies linked to a constriction of smooth muscle cells in tissues such as the pathologies linked to vasoconstriction phenomena within the scope of vascular disorders, in particular arterial hypertension, or the pathologies linked to bronchoconstriction phenomena within the scope of respiratory disorders, in particular asthma,

comprising the use Use of a derivative derivatives of the following general formula (I):

$$\begin{array}{c|c}
R_2 & R_3 \\
R_1 & R_4 \\
R_1 & R_5 \\
R_{10} & R_7
\end{array}$$
(I)

- the heterocycle A is aromatic or non-aromatic, it being understood that in this latter case the nitrogen atom of this heterocycle is linked by a double bond to the carbon in position 4a,
- R₁, R₂, R₃, R₄, R₅, R₇, R₈, R₉ and R₁₀, represent, independently of one another:
 - . a hydrogen atom, or
 - . a halogen atom, in particular a chlorine, bromine, or fluorine atom, or
- an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, linear or branched, with approximately 1 to approximately 10 carbon atoms, these groups being if appropriate substituted, in particular by a halogen, and/or by a hydroxyl, and/or by a (primary, secondary or tertiary) amine, and/or by an aromatic and/or aliphatic ring, with approximately 5 to approximately 10 carbon atoms in the ring, these rings being themselves, if appropriate, substituted in particular by a halogen, and/or by a

hydroxyl, and/or by a (primary, secondary or tertiary) amine, and/or by an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, these groups being as defined above, or

an aromatic or aliphatic ring, with approximately 5 to approximately 10 carbon atoms in the ring, this ring being itself, if appropriate, substituted in particular by a halogen, and/or by a hydroxyl, and/or by a (primary, secondary or tertiary) amine, and/or by an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, these groups being as defined above, or

an -OR_a group, R_a representing a hydrogen atom, or an alkyl, carbonyl, oxycarbonyl or ester group, linear or branched, these groups being as defined above, or an aromatic or aliphatic ring, these rings being as defined above, or

. an -NR_bR_c group, R_b and R_c , independently of one another, representing a hydrogen atom, an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, linear or branched, these groups being as defined above, or an aromatic or aliphatic ring, these rings being as defined above, or

when R₁ and R₂, and/or R₃ and R₄, and/or R₄ and R₅, and/or R₇ and R₈, and/or R₈ and R₉, and/or R₉ and R₁₀, do not represent the different atoms or groups or rings mentioned above, then R₁ in combination with R₂, and/or R₂ in combination with R₃, and/or R₃ in combination with R₄, and/or R₄ in combination with R₅, and/or R₇ in combination with R₈, and/or R₈ in combination with R₉, and/or R₉ in combination with R₁₀, respectively form with C₁ and C₂, or with C₂ and C₃, or with C₃ and C₄, or with C₄, C_{4a} and C₅, or with C₇ and C₈, or with C₈ and C₉, or with C₉ and C₁₀, an aromatic or aliphatic ring with 5 to 10 carbon atoms, this ring being if appropriate substituted, in particular by a halogen, and/or by an alkyl, alkoxy, carbonyl, oxycarbonyl, or ester group, and/or by an aromatic or aliphatic ring, these groups or rings being as defined above, or

when R_3 and R_4 do not represent the different atoms or groups or rings mentioned above, then R_3 in combination with R_4 forms an indole group of formula

in which Ra is as defined above,

- Y represents:

an -OR_d group, R_d representing a hydrogen atom, or an alkyl, carbonyl, oxycarbonyl or ester group, linear or branched, these groups being as defined above, or an aromatic or aliphatic ring, these rings being as defined above, or

an -NR_eR_f group, R_e and R_f independently of one another, representing a hydrogen atom, or an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, linear or branched, these groups being as defined above, or an aromatic or aliphatic ring, these rings being as defined above,

it being understood that when $R_{d'}$ or at least one of R_e or R_f , do not represent one of the different atoms or groups or rings mentioned above, then R_d , or at least one of R_e or R_f , in combination with R_5 , or in combination with R_7 , respectively form with C_5 and C_6 , or with C_6 , C_{6a} and C_7 , an aromatic or aliphatic heterocycle with 5 to 10 carbon atoms, if appropriate substituted, in particular by a halogen, and/or by an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, and/or by an aromatic or aliphatic ring, these groups or rings being as defined above,

- X represents an atom in anionic form, such as a halogen atom, in particular a bromine or chlorine atom, or a group of atoms in anionic form, such as a perchlorate, and the nitrogen of the heterocycle A of formula (I) is in quaternary form and is linked on the one hand by a covalent bond to the carbon in position 11, and, on the other hand, by ionic bond to X defined above, it being understood that when R₁ and R₁₀ do not represent one of the different atoms or groups or rings mentioned above, then R₁ in combination with R₁₀ forms with C₁, the nitrogen of the heterocycle A of formula (I), C₁₁, and C₁₀, an aromatic or aliphatic heterocycle with 5 to 10 carbon atoms, if appropriate substituted, in particular by a halogen, and/or by an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, and/or by an aromatic or aliphatic ring, these groups or rings being as defined above;

for the preparation of medicaments intended for the treatment of pathologies linked to a constriction of smooth muscle cells in tissues such as the pathologies linked to vasoconstriction phenomena within the scope of vascular disorders, in

particular arterial hypertension, or the pathologies linked to bronchoconstriction phenomena within the scope of respiratory disorders, in particular asthma.

2. (Currently Amended) Use Method of treatment according to claim 1, comprising the use of a derivative the derivatives of benzo[c]quinoliziniums of the following formula (Ia):

$$R_1$$
 R_1
 R_2
 R_3
 R_4
 R_5
 R_7
(Ia)

- R_1 and R_2 represent a hydrogen atom, or form in combination with C_1 and C_2 an aromatic ring with 6 carbon atoms,
- R₅ represents a hydrogen atom, or a linear or substituted alkyl group with 1 to 10 carbon atoms, in particular a butyl group, or an ester of formula COOR' in which R' represents a linear or substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group,
 - Y represents an -OH, -SH, -NH2, or -NHCOCH3 group,
- R_7 , R_8 , R_9 and R_{10} represent a hydrogen atom, or at least one of R_7 , R_8 , R_9 or R_{10} , represents a halogen atom, in particular a chlorine, bromine or fluorine atom, and
- X represents a halogen atom in anionic form, in particular a bromine Br-, or chlorine Cl- atom, or a group of atoms in anionic form.

3. (Currently Amended) Use Method of treatment according to claim 1 or 2, comprising the use of a derivative the derivatives of benzo[c]quinoliziniums of formula (Ia):

$$R_{10}$$
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}

<u>(Ia)</u>

in which:

- R₁ and R₂ represent a hydrogen atom, or form in combination with C₁ and C₂ an aromatic ring with 6 carbon atoms,

- R₅ represents a hydrogen atom, or a linear or substituted alkyl group with 1 to 10 carbon atoms, in particular a butyl group, or an ester of formula COOR' in which R' represents a linear or substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group,

- -Y represents an -NH₂, or -NHCOCH₃ group,
- R₇, R₈, R₉ and R₁₀ represent a hydrogen atom, or at least one of R₇, R₈, R₉ or R₁₀, represents a halogen atom, in particular a chlorine, bromine or fluorine atom, and
- X represents a halogen atom in anionic form, in particular a bromine Br-, or chlorine Cl- atom, or a group of atoms in anionic form.
- 4. (Currently Amended) Use Method of treatment according to claim 1/2, comprising the use of one or more of the following derivatives of benzo[c]quinoliziniums of the formulae formula (Ia):

compound 13 (MPB-01)

compound 14 (MPB-02)

compound 16

compound 22

compound 11 (MPB-26)

compound 15 (MPB-03)

compound 17

compound 23

compound 24

5. (Currently Amended) Use Method of treatment according to claim 1 or 2, comprising the use of a derivative derivatives of the benzo[c]quinoliziniums of formula (Ia):

$$\begin{array}{c}
R_1 \\
R_1 \\
R_{10} \\
R_{9} \\
R_{8}
\end{array}$$

$$\begin{array}{c}
(Ia) \\
R_7 \\
R_8
\end{array}$$

- $R_{\underline{1}}$ and $R_{\underline{2}}$ represent a hydrogen atom, or form in combination with $C_{\underline{1}}$ and $C_{\underline{2}}$ an aromatic ring with 6 carbon atoms,
- R₅ represents a hydrogen atom, or a linear or substituted alkyl group with 1 to 10 carbon atoms, in particular a butyl group, or an ester of formula COOR' in which R' represents a linear or substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group,
 - -Y represents an -OH group,
- R₇, R₈, R₉ and R₁₀ represent a hydrogen atom, or at least one of R₇, R₈, R₉ or R₁₀, represents a halogen atom, in particular a chlorine, bromine or fluorine atom, and
- X represents a halogen atom in anionic form, in particular a bromine Br-, or chlorine Cl- atom, or a group of atoms in anionic form.

6. (Currently Amended) Use Method of treatment according to claim 1 5, comprising the use of one or more of the derivatives of the benzo[c]quinoliziniums of formula (Ia) chosen from the following formulae:

compound 12 (MPB-05)

compound 19 (MPB-07)

compound 21 (MPB-27)

compound 26 (MPB-29)

compound 18 (MPB-06)

compound 20 (MPB-08)

compound 25 (MPB-30)

compound 27 (MPB-32)

10

compound MPB-91

compound MPB 73

COOC₂H₅

compound MPB 86

compound MPB 87

compound MPB 75

compound MPB 77

compound MPB 88

7. (Currently Amended) Use Method of treatment according to claim 1 or 2, comprising the use of a derivative derivatives of the benzo[c]quinoliziniums of formula (Ia):

$$R_{10}$$
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}

- $R_{\underline{1}}$ and $R_{\underline{2}}$ represent a hydrogen atom, or form in combination with $C_{\underline{1}}$ and $C_{\underline{2}}$ an aromatic ring with 6 carbon atoms,
- R₅ represents a hydrogen atom, or a linear or substituted alkyl group with 1 to 10 carbon atoms, in particular a butyl group, or an ester of formula COOR' in which R' represents a linear or substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group,
 - -Y represents an -SH group,
- R₇, R₈, R₉ and R₁₀ represent a hydrogen atom, or at least one of R₇, R₈, R₉ or R₁₀, represents a halogen atom, in particular a chlorine, bromine or fluorine atom, and
- X represents a halogen atom in anionic form, in particular a bromine Br-, or chlorine Cl- atom, or a group of atoms in anionic form.

8. (Currently Amended) Use Method of treatment according to claim 1 7, comprising the use of one or more of the derivatives of the benzo[c]quinoliziniums of formula (Ia) chosen from the following formulae:

compound MPB 102

compound MPB 103

9. (Currently Amended) Use Method of treatment according to claim 1 5, comprising the use of a derivative derivatives of the following general formula (Ia-1):

$$R_{10}$$
 X
OH

(Ia-1)

- R₅ represents a hydrogen atom, or a linear or substituted alkyl group with 1 to 10 carbon atoms, in particular a butyl group,
- R_{10} represents a halogen atom, in particular a chlorine, bromine or fluorine atom, and
- X represents a halogen atom in anionic form, in particular a bromine Br or chlorine Cl atom, or a group of atoms in anionic form, in particular a perchlorate ClO₄-.

10. (Currently Amended) Use Method of treatment according to claim $\underline{1}$ 9, comprising the use of the derivative MPB-07 of the following formula:

compound 19 (MPB-07)

11. (Currently Amended) Use Method of treatment according to claim $\underline{1}$ 9, comprising the use of the derivative MPB-91 of the following formula:

compound MPB-91

12. (Currently Amended) Use Method of treatment according to claim 1, comprising the use of a derivative derivatives of the following general formula (Ib):

$$R_{a} \xrightarrow{R_{1}} R_{10}$$

$$R_{a} \xrightarrow{R_{1}} R_{10}$$

$$R_{5} \xrightarrow{R_{1}} R_{9}$$

$$R_{7} \xrightarrow{R_{1}} R_{8}$$
(Ib)

in which R_a , R_1 , R_2 , R_5 , R_7 , R_8 , R_9 , R_{10} , X and Y are as defined in claim 1, and in particular the compounds of formula (Ib) in which:

- Ra represents a hydrogen atom,
- R_1 and R_2 represent a hydrogen atom, and there is no double bond between the two carbons carrying R_1 and R_2 ,
 - R5 represents a hydrogen atom,
- R₇, R₈, R₉ and R₁₀ represent a hydrogen atom, or one of R₇, R₈, R₉ or R₁₀ represents a halogen atom, in particular a chlorine, bromine or fluorine atom,
 - Y represents NH2, and
- X represents a halogen atom, in particular a bromine, or chlorine, or fluorine atom.
- 13. (Currently Amended) Use Method of treatment according to claim 1 10, comprising the use of a derivative derivatives of the following formula (Ib-1):

and more particularly the following compounds of formula (Ib-1):

- compound G: $R_7 = Cl$, $R_8 = R_9 = R_{10} = H$,

- compound $H: R_7 = R_8 = R_9 = R_{10} = H$,

- compound I: $R_8 = C1$, $R_7 = R_9 = R_{10} = H$,

- compound J: $R_9 = C1$, $R_7 = R_8 = R_{10} = H$,

- compound K: $R_{10} = Cl$, $R_7 = R_8 = R_9 = H$,

- compound L: $R_9 = Br$, $R_7 = R_8 = R_{10} = H$.

14. (Currently Amended) Compounds of formula (I) as defined in claim 1:

in which:

-R₅ represents an ester of formula COOR' in which R' represents a linear or substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group,

- the heterocycle A is aromatic or non-aromatic, it being understood that in this latter case the nitrogen atom of this heterocycle is linked by a double bond to the carbon in position 4a,

-R₁, R₂, R₃, R₄, R₇, R₈, R₉ and R₁₀, represent, independently of one another:

- <u>a hydrogen atom, or</u>
- . a halogen atom, in particular a chlorine, bromine, or fluorine atom, or
- an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, linear or branched, with approximately 1 to approximately 10 carbon atoms, these groups being if appropriate substituted, in particular by a halogen, and/or by a hydroxyl, and/or by a (primary, secondary or tertiary) amine, and/or by an aromatic and/or aliphatic ring, with approximately 5 to approximately 10 carbon atoms in the ring, these rings being themselves, if appropriate, substituted in particular by a halogen, and/or by a hydroxyl, and/or by a (primary, secondary or tertiary) amine, and/or by an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, these groups being as defined above, or

an aromatic or aliphatic ring, with approximately 5 to approximately 10 carbon atoms in the ring, this ring being itself, if appropriate, substituted in particular

by a halogen, and/or by a hydroxyl, and/or by a (primary, secondary or tertiary) amine, and/or by an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, these groups being as defined above, or

an -OR_a group, R_a representing a hydrogen atom, or an alkyl, carbonyl, oxycarbonyl or ester group, linear or branched, these groups being as defined above, or an aromatic or aliphatic ring, these rings being as defined above, or

an -NR_bR_c group, R_b and R_c , independently of one another, representing a hydrogen atom, an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, linear or branched, these groups being as defined above, or an aromatic or aliphatic ring, these rings being as defined above, or

when R₁ and R₂, and/or R₃ and R₄, and/or R₇ and R₈, and/or R₈ and R₉, and/or R₉ and R₁₀, do not represent the different atoms or groups or rings mentioned above, then R₁ in combination with R₂, and/or R₂ in combination with R₃, and/or R₃ in combination with R₄, and/or R₇ in combination with R₈, and/or R₈ in combination with R₉, and/or R₉ in combination with R₁₀, respectively form with C₁ and C₂, or with C₂ and C₃, or with C₃ and C₄, or with C₇ and C₈, or with C₈ and C₉, or with C₉ and C₁₀, an aromatic or aliphatic ring with 5 to 10 carbon atoms, this ring being if appropriate substituted, in particular by a halogen, and/or by an alkyl, alkoxy, carbonyl, oxycarbonyl, or ester group, and/or by an aromatic or aliphatic ring, these groups or rings being as defined above, or

. when R₃ and R₄ do not represent the different atoms or groups or rings mentioned above, then R₃ in combination with R₄ forms an indole group of formula

in which Ra is as defined above,

- Y represents:

<u>an -ORd</u> group, Rd representing a hydrogen atom, or an alkyl, carbonyl, oxycarbonyl or ester group, linear or branched, these groups being as defined above, or an aromatic or aliphatic ring, these rings being as defined above, or

<u>an -NR_eR_f group, R_e and R_f independently of one another, representing a hydrogen atom, or an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, linear or branched, these groups being as defined above, or an aromatic or aliphatic ring, these rings being as defined above,</u>

it being understood that when $R_{\underline{d}}$, or at least one of $R_{\underline{e}}$ or $R_{\underline{f}}$, do not represent one of the different atoms or groups or rings mentioned above, then $R_{\underline{d}}$, or at least one of $R_{\underline{e}}$ or $R_{\underline{f}}$, combination with $R_{\underline{f}}$, form with $C_{\underline{6}}$, $C_{\underline{6a}}$ and $C_{\underline{7}}$, an aromatic or aliphatic heterocycle with 5 to 10 carbon atoms, if appropriate substituted, in particular by a halogen, and/or by an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, and/or by an aromatic or aliphatic ring, these groups or rings being as defined above,

- X represents an atom in anionic form, such as a halogen atom, in particular a bromine or chlorine atom, or a group of atoms in anionic form, such as a perchlorate, and the nitrogen of the heterocycle A of formula (I) is in quaternary form and is linked on the one hand by a covalent bond to the carbon in position 11, and, on the other hand, by ionic bond to X defined above, it being understood that when R₁ and R₁₀ do not represent one of the different atoms or groups or rings mentioned above, then R₁ in combination with R₁₀ forms with C₁, the nitrogen of the heterocycle A of formula (I), C₁₁, and C₁₀, an aromatic or aliphatic heterocycle with 5 to 10 carbon atoms, if appropriate substituted, in particular by a halogen, and/or by an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, and/or by an aromatic or aliphatic ring, these groups or rings being as defined above.

15. (Currently Amended) Compounds according to claim 14, of the following formula (Ia) as defined in claim 2;

$$R_1$$
 R_1
 R_2
 R_1
 R_2
 R_3
 R_4
 R_5
 R_7
 R_7

- R_1 and R_2 represent a hydrogen atom, or form in combination with C_1 and C_2 an aromatic ring with 6 carbon atoms,
- R₅ represents an ester of formula COOR' in which R' represents a linear or substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group,
 - Y represents an -OH, -SH, -NH2, or -NHCOCH3 group,
- R₇, R₈, R₉ and R₁₀ represent a hydrogen atom, or at least one of R₇, R₈, R₉ or R₁₀ represents a halogen atom, in particular a chlorine, bromine or fluorine atom, and
- X represents a halogen atom in anionic form, in particular a bromine Br-, or chlorine Cl- atom, or a group of atoms in anionic form.
- 16. (Currently Amended) Compounds according to claim 14 or 15, of formula (Ia):

$$R_1$$
 R_1
 R_2
 R_3
 R_4
 R_5
 R_7
 R_8
 R_7

in which:

- $R_{\underline{1}}$ and $R_{\underline{2}}$ represent a hydrogen atom, or form in combination with $C_{\underline{1}}$ and $C_{\underline{2}}$ an aromatic ring with 6 carbon atoms,
- <u>represents an ester of formula COOR' in which R' represents a linear or substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group, and the substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group, and the substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group, and the substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group, and the substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group, and the substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group, and the substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group, and the substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group, and the substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group, and the substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group, and the substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group, and the substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group, and the substituted alkyl group with 1 to 10 carbon atoms, in particular an ethyl group with 1 to 10 carbon atoms.</u>
 - -Y represents an -OH group.
- R₇, R₈, R₉ and R₁₀ represent a hydrogen atom, or at least one of R₇, R₈, R₉ or R₁₀ represents a halogen atom, in particular a chlorine, bromine or fluorine atom, and
- X represents a halogen atom in anionic form, in particular a bromine Br-, or chlorine Cl- atom, or a group of atoms in anionic form.
- 17. (Currently Amended) Compounds according to one of claims claim 14 to 16, of the following formulae:

compound MPB 73

compound MPB 86

compound MPB 75

compound MPB 77

compound MPB 87

compound MPB 88

18. (Currently Amended) Compounds of formula (I) as defined in claim 1:

- the heterocycle A is aromatic or non-aromatic, it being understood that in this latter case the nitrogen atom of this heterocycle is linked by a double bond to the carbon in position 4a,
- -R₁, R₂, R₃, R₄, R₅, R₇, R₈, R₉ and R₁₀, represent, independently of one another:
 - . a hydrogen atom, or
 - . a halogen atom, in particular a chlorine, bromine, or fluorine atom, or
- an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, linear or branched, with approximately 1 to approximately 10 carbon atoms, these groups being if appropriate substituted, in particular by a halogen, and/or by a hydroxyl, and/or by a (primary, secondary or tertiary) amine, and/or by an aromatic and/or aliphatic ring, with approximately 5 to approximately 10 carbon atoms in the ring, these rings being themselves, if appropriate, substituted in particular by a halogen, and/or by a

hydroxyl, and/or by a (primary, secondary or tertiary) amine, and/or by an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, these groups being as defined above, or

an aromatic or aliphatic ring, with approximately 5 to approximately 10 carbon atoms in the ring, this ring being itself, if appropriate, substituted in particular by a halogen, and/or by a hydroxyl, and/or by a (primary, secondary or tertiary) amine, and/or by an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, these groups being as defined above, or

an -OR_a group, R_a representing a hydrogen atom, or an alkyl, carbonyl, oxycarbonyl or ester group, linear or branched, these groups being as defined above, or an aromatic or aliphatic ring, these rings being as defined above, or

an -NR_bR_c group, R_b and R_c, independently of one another, representing a hydrogen atom, an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, linear or branched, these groups being as defined above, or an aromatic or aliphatic ring, these rings being as defined above, or

when R₁ and R₂, and/or R₃ and R₄, and/or R₄ and R₅, and/or R₇ and R₈, and/or R₈ and R₉, and/or R₉ and R₁₀, do not represent the different atoms or groups or rings mentioned above, then R₁ in combination with R₂, and/or R₂ in combination with R₃, and/or R₃ in combination with R₄, and/or R₄ in combination with R₅, and/or R₇ in combination with R₈, and/or R₈ in combination with R₉, and/or R₉ in combination with R₁₀, respectively form with C₁ and C₂, or with C₂ and C₃, or with C₃ and C₄, or with C₄, C_{4a} and C₅, or with C₇ and C₈, or with C₈ and C₉, or with C₉ and C₁₀, an aromatic or aliphatic ring with 5 to 10 carbon atoms, this ring being if appropriate substituted, in particular by a halogen, and/or by an alkyl, alkoxy, carbonyl, oxycarbonyl, or ester group, and/or by an aromatic or aliphatic ring, these groups or rings being as defined above, or

when R₃ and R₄ do not represent the different atoms or groups or rings mentioned above, then R₃ in combination with R₄ forms an indole group of formula

in which Ra is as defined above,

- -Y represents SH,
- X represents an atom in anionic form, such as a halogen atom, in particular a bromine or chlorine atom, or a group of atoms in anionic form, such as a perchlorate, and the nitrogen of the heterocycle A of formula (I) is in quaternary form and is linked on the one hand by a covalent bond to the carbon in position 11, and, on the other hand, by ionic bond to X defined above, it being understood that when R₁ and R₁₀ do not represent one of the different atoms or groups or rings mentioned above, then R₁ in combination with R₁₀ forms with C₁, the nitrogen of the heterocycle A of formula (I), C₁₁, and C₁₀, an aromatic or aliphatic heterocycle with 5 to 10 carbon atoms, if appropriate substituted, in particular by a halogen, and/or by an alkyl, alkoxy, carbonyl, oxycarbonyl or ester group, and/or by an aromatic or aliphatic ring, these groups or rings being as defined above.
- 19. (Currently Amended) Compounds according to claim 18, of the following formula (Ia) as defined in claim 2;

$$R_{10}$$
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}

- R_1 and R_2 represent a hydrogen atom, or form in combination with C_1 and C_2 an aromatic ring with 6 carbon atoms,
- R5 represents a hydrogen atom, or a linear or substituted alkyl group with 1 to 10 carbon atoms, in particular a butyl group,

- Y represents an -SH group,
- R₇, R₈, R₉ and R₁₀ represent a hydrogen atom, or at least one of R₇, R₈, R₉ or R₁₀ represents a halogen atom, in particular a chlorine, bromine or fluorine atom, and
- X represents a halogen atom in anionic form, in particular a bromine Br-, or chlorine Cl- atom, or a group of atoms in anionic form.
- 20. (Currently Amended) Compounds according to claim 18 or 19, of the following formulae:

compound MPB 102

CI SH

compound MPB 103

- 21. (Currently Amended) Pharmaceutical compositions comprising at least one compound defined in one of claims claim 14 to 20, in combination with a pharmaceutically acceptable vehicle.
- 22. (New) Pharmaceutical compositions comprising at least one compound defined in claim 18, in combination with a pharmaceutically acceptable vehicle.