

Introduzione al laboratorio

2

Organizzazione dei laboratori (1)

24 ore in 6 settimane => 4 ore settimanali

- 2 hr su **Zoom** (solo io): ripasso, "pillole" di teoria e esercizio caso di studio svolto insieme
 - Lezione SINCRONA, REGISTRATA (ricordatemelo!!)
 - **ORARIO**: giovedì, ore 11:30-13:30 (si inizia puntuali)
 - Registrazioni disponibili su Ariel
 - Link: https://zoom.us/i/94255671991?pwd=TkFzSmpHNG5uSXd6akZ5Y1RnNDFOUT09
- 2 hr su **Discord** (con i tutor): esercizi che gli studenti svolgono individualmente o <u>in gruppo</u>
 - Lezione SINCRONA, NON REGISTRATA
 - **ORARIO**: giovedì, ore 14:30-16:30 (si inizia puntuali)

3

Organizzazione dei laboratori (2)

Settimana	Argomenti	
WEEK 1 - 9-13/11/20	Diagrammi dei casi d'uso per l'analisi dei requisiti (scenari e storie), specifica dei requisiti	
WEEK 2 - 16-20/11/20	Diagrammi di sequenza vs diagrammi di attività	
WEEK 3 - 23-27/11/20	Macchine di stato vs diagrammi attività	
WEEK 4 - 30/11- 4/12/20	Java e persistenza dei dati (JDBC, Hibernate), Java Swing	
WEEK 5 - 7-11/12/20	Design pattern MVC e DAO	
WEEK 6 - 14-18/12/20	Altri design pattern Diagramma delle componenti e di deployment Dai modelli al codice	

Organizzazione dei laboratori (3)

Maggiori informazioni su lezione pomeridiana:

- Gli esercizi da svolgere verranno postati su Ariel (ambiente Laboratorio Mod 2 / Progettazione Model-Driven del SW (AA 2020/2021))
 - Fortemente consigliato il lavoro di gruppo!!!
- Non sempre prevista una connessione video con tutta la classe:
 - come nei laboratori in presenza potere arrivare "in classe" e iniziare a lavorare sugli esercizi proposti per quel giorno
- Saranno con me **due tutor**:
 - Mario Lilli, studente di dottorato
 - Davide Santandrea, studente della LM in Sicurezza Informatica

5

Organizzazione dei laboratori (4)

Come avere un feedback sul vostro lavoro?

- Durante la lezione: chiederci di venire nella vostra room (avremo audio, video e screen sharing disponibile)
- Al di fuori della lezione:
 - 1. Scrivere sui vari canali le vostre domande
 - 2. Avviare una chat con me o con i tutor
 - 3. Caricare le vostre soluzioni sul sito https://upload.di.unimi.it/
 - **SESSIONE**: Ing. SW -- Progettazione Model-driven del SW (Esercizi proposti durante i laboratori)
 - 4. Se vi serve una risposta sincrona, chiedere un appuntamento via chat (**NO MAIL**)

Strumenti/Applicazioni necessari

• StarUML

- https://staruml.io/
- Open source software modeling tool that supports UML (Unified Modeling Language)

• DISCORD

- https://discord.com/
- Piattaforma più flessibile e democratica per la gestione dei lavori di gruppo

• GitHub

- https://github.com/

Da fare per la lezione del pomeriggio

- Installare **StarUML**
- Fare account e installare **Discord**
 - Link di invito per accedere al server IngDelSWLab: https://discord.gg/Y6Wcm57vwv

9

LAB 1 DIAGRAMMI DEI CASI D'USO

Use Case Diagram - Casi d'uso

- Punto di partenza della progettazione del sistema
- Chiarisce (anche con il committente) cosa deve fare il sistema
 - Requisiti funzionali espressi come casi d'uso
- Ricavati:
 - Dalle specifiche date
 - Da interviste con il committente e gli utenti
- Mostrano le funzionalità che il sistema sistema dovrebbe fornire così come sono percepite da attori esterni
- Specifica le funzionalità del sistema (use case), chi le fruisce (attori) e le relazioni tra essi (associazioni)

13

Casi d'uso: Elementi

Costruttore	Descrizione	Sintassi
Caso d'uso	Funzionalità offerte dal sistema	UseCaseName
Attore	 Utenti che interagiscono con il sistema Sottoinsieme software o componenti hardware con cui il sistema interagisce 	ActorName

Casi d'uso: Relazioni (3)

Estensione e generalizzazione sono simili. L'estensione chiarisce quali punti siano effettivamente estesi.

17

Casi d'uso vs Scenari

- Scenario (detto anche Storia o Narrativa): descrizione di un caso d'uso
 - Descrive l'istanza di esecuzione del caso base (o delle varianti principali) di un caso d'uso
 - Specifica anche le possibili eccezioni

Caso d'uso	
Attori	
Precondizioni	
Descrizione/Sequenza degli eventi	
Postcondizioni	
Scenari alternativi	
Note	

Use Case Diagram: come procedere

- Nel caso si abbia un testo che descrive i requisiti, come prima cosa identificare attori e casi d'uso nel testo, evidenziandoli (ANALISI DEL TESTO)
 - 1. Identificazione degli **attori** (utilizzatori del Sistema)
 - 2. Identificazione dei *casi d'uso* (tipi di uso del sistema, task, obiettivo specifico per l'attore o per il sistema)
- 2. Definizione delle **associazioni** fra attori e casi d'uso
- Descrizione dei casi d'uso (caso base e variante)

19

Suggerimenti (1)

- UML Use Case Diagram: descrivono
 l'interazione tra attori e Sistema, NON la logica interna (black box view)
 - RICORDARSI A COSA SERVE QUESTA TIPOLOGIA DI DIAGRAMMA!
- **NB**: gli attori specificano un ruolo, corrispondono a una classe, non all'oggetto
- I dettagli interni vengono dati da:
 - Descrizione scenari
 - Diagrammi di interazione

Suggerimenti (2)

- Non esagerare con l'uso di inclusione, estensione e generalizzazione (soprattutto nella fase di interazione con il committente)
- Spesso sono utili raffinamenti successivi

Generalizzazione, estensione, inclusione

- Uso di extend
 - Usato per gestire le *eccezioni* o i casi opzionali
- include
 - Usato per gestire i sottocasi e i casi comuni con altri casi d'uso
- generalizzazione
 - Usato per gestire casi generali di cui si specificano casi particolari

21

Use Case Diagram e Requisiti (1)

- Ogni caso d'uso può soddisfare più requisiti
- Un requisito può dare origine a **più casi d'uso**
- Ad ogni caso d'uso possono venire associati più requisiti

Use Case Diagram e Requisiti (2)

I casi d'uso servono a:

- <u>chiarire i requisiti del committente in termini comprensibili</u>
- trovare aspetti comuni (riuso)
- individuare gli attori del sistema
- individuare gli eventi a cui il sistema deve rispondere

23

Caso di studio: Garage sotterraneo

- Esercizio finale tratto dal libro: UML Distilled, M. Fowler 4th edition
- Su Ariel trovate il testo che descrive informalmente in linguaggio naturale i requisiti
- **IN BREVE**: Si modelli con diagrammi di casi d'uso il software di gestione di un garage sotterraneo con 200 posti auto.

Fase 1

Analisi del testo:

- 1. Identificazione degli **attori** (utilizzatori del Sistema)
- 2. Identificazione dei *casi d'uso* (tipi di uso del sistema, task, obiettivo specifico per l'attore o per il sistema)

25

Fase 2

Iniziare ad abbozzare il diagramma

• Intro a StarUML