i

SUMÁRIO

INTRODUÇÃO GERAL	iii
FORMULÁRIO GERAL	v
Capítulo I – ANÁLISE VETORIAL	01
1.1 – CONCEITOS GERAIS	01
1.2 – O PRODUTO ESCALAR (OU PRODUTO INTERNO)	01
1.3 – O PRODUTO VETORIAL (OU PRODUTO EXTERNO)	02
1.4 – SISTEMAS DE COORDENADAS CARTESIANAS, CILÍNDRICAS E ESFÉRICAS	03
1.4.1 – Representação de um ponto nos 3 sistemas de coordenadas	03
1.4.2 – Transformações entre os 3 sistemas de coordenadas	04
1.4.3 – Vetores unitários nos 3 sistemas de coordenadas	04
1.4.4 – Produtos escalares entre vetores unitários nos 3 sistemas de coordenadas	04
1.4.5 – Elementos diferenciais de linha, área e volume nos 3 sistemas de coordenadas	05
1.5 – EXERCÍCIOS PROPOSTOS	06
Capítulo II – LEI DE COULOMB E INTENSIDADE DE CAMPO ELÉTRICO	09
2.1 – LEI DE COULOMB	09
2.2 – INTENSIDADE DE CAMPO ELÉTRICO	09
2.3 – CAMPO ELÉTRICO DE UMA DISTRIBUIÇÃO VOLUMÉTRICA CONTÍNUA DE CARGAS	10
2.4 – CAMPO ELÉTRICO DE UMA DISTRIBUIÇÃO LINEAR CONTÍNUA DE CARGAS	10
2.5 – CAMPO ELÉTRICO DE UMA DISTRIBUIÇÃO SUPERFICIAL CONTÍNUA DE CARGAS	11
2.6 – LINHA DE FORÇA E ESBOÇO DE CAMPO	12
2.7 – EXERCÍCIOS PROPOSTOS	13
Capítulo III – DENSIDADE DE FLUXO ELÉTRICO, LEI DE GAUSS, DIVERGÊNCIA	17
3.1 – DENSIDADE DE FLUXO ELÉTRICO ($\overline{\mathbf{D}}$)	17
3.2 – A LEI DE GAUSS	17
3.3 – APLICAÇÃO DA LEI DE GAUSS – GAUSSIANA	17
3.4 – DIVERGÊNCIA	19
3.5 – TEOREMA DA DIVERGÊNCIA 3.6 – EXERCÍCIOS PROPOSTOS	20
3.0 – EXERCICIOS PROPOSTOS	21
Capítulo IV – ENERGIA E POTENCIAL	23
4.1 – ENERGIA (TRABALHO) PARA MOVER UMA CARGA PONTUAL EM UM CAMPO ELÉTRICO	23
4.2 – DEFINIÇÃO DE DIFERENÇA DE POTENCIAL (V _{AB}) E POTENCIAL (V)	23
4.3 – O POTENCIAL DE UMA CARGA PONTUAL	23
4.4 – O POTENCIAL DE UM SISTEMA DE CARGAS DISTRIBUÍDAS	24
$4.4.1 - V_{AB}$ de uma reta ∞ com ρ_L constante	24
4.4.2 – V_{AB} de um plano ∞ com ρ_s constante	24
3.4.3 – Potencial V de uma carga distribuída	24
4.5 – GRADIENTE DO POTENCIAL ($\overline{V}V$)	25
4.6 – O DIPOLO ELÉTRICO	26
4.7 – ENERGIA NO CAMPO ELETROSTÁTICO	27
4.7.1 – Energia (trabalho) para uma distribuição discreta de cargas	27
4.7.2 – Energia (trabalho) para uma distribuição contínua de carga 4.8 – EXERCÍCIOS PROPOSTOS	27 29
Capítulo V – CONDUTORES, DIELÉTRICOS E CAPACITÂNCIA	33
5.1 – CORRENTE (I) E DENSIDADE DE CORRENTE ($\overline{\mathbf{J}}$)	33
5.2 – CONTINUIDADE DA CORRENTE	34
5.3 – CONDUTORES METÁLICOS – RESISTÊNCIA (R)	34

CONCEITOS TEÓRICOS E EXERCÍCIOS PROPOSTOS DE ELETROMAGNETISMO SUMÁRIO	ii
5.4 – O MÉTODO DAS IMAGENS	35
5.5 – A NATUREZA DOS MATERIAIS DIELÉTRICOS – POLARIZAÇÃO (P)	36
5.6 – CONDIÇÕES DE CONTORNO PARA MATERIAIS DIELÉTRICOS PERFEITOS	37
5.7 – CAPACITÂNCIA 5.8 – EXEMPLOS DE CÁLCULO DE CAPACITÂNCIA	38 38
5.9 – EXERCÍCIOS PROPOSTOS	43
Capítulo VI – EQUAÇÕES DE POISSON E DE LAPLACE	49
6.1 – IMPORTÂNCIA DAS EQUAÇÕES DE POISSON E LAPLACE	49
6.1.1 – Equação de Poisson	49
6.1.2 – Equação de Laplace	49
6.2 – TEOREMA DA UNICIDADE	50
6.3 – EXEMPLOS DE SOLUÇÃO DA EQUAÇÃO DE LAPLACE	50
6.4 – EXEMPLO DE SOLUÇÃO DA EQUAÇÃO DE POISSON 6.5 – SOLUÇÃO PRODUTO DA EQUAÇÃO DE LAPLACE	54 55
6.6 – EXERCÍCIOS PROPOSTOS	58
Capítulo VII – CAMPO MAGNÉTICO ESTACIONÁRIO	63
7.1 – LEI DE BIOT-SAVART	63
7.2 – LEI CIRCUITAL DE AMPÈRE (CAMPO MAGNÉTICO ESTACIONÁRIO)	63
7.3 – ROTACIONAL	66
7.4 – TEOREMA DE STOKES	68
7.5 – FLUXO MAGNÉTICO (Φ) E DENSIDADE DE FLUXO MAGNÉTICO (\vec{B})	68
7.6 – POTENCIAIS ESCALAR E VETOR MAGNÉTICOS	69
7.7 – EXERCÍCIOS PROPOSTOS	71
Capítulo VIII – FORÇAS E CIRCUITOS MAGNÉTICOS, MATERIAIS, INDUTÂNCIA	75
8.1 – FORÇA SOBRE UMA CARGA EM MOVIMENTO	75
8.2 – FORÇA SOBRE UM ELEMENTO DIFERENCIAL DE CORRENTE	75
8.3 – FORÇA ENTRE ELEMENTOS DIFERENCIAIS DE CORRENTE	76
8.4 – TORQUE EM UMA ESPIRA INFINITESIMAL PLANA	76
8.5 – A NATUREZA DOS MATERIAIS MAGNÉTICOS 8.6 – MAGNETIZAÇÃO E PERMEABILIDADE MAGNÉTICA	77 77
8.7 – CONDIÇÕES DE CONTORNO PARA O CAMPO MAGNÉTICO	78
8.8 – CIRCUITO MAGNÉTICO	79
8.9 – ENERGIA DE UM CAMPO MAGNETOSTÁTICO	81
8.10 – AUTO-INDUTÂNCIA E INDUTÂNCIA MÚTUA	81
8.11 – EXERCÍCIOS PROPOSTOS	84
Capítulo IX – CAMPOS VARIÁVEIS NO TEMPO E AS EQUAÇÕES DE MAXWELL	89
9.1 – A LEI DE FARADAY	89
9.1.1 – Fem devido a um campo que varia dentro de um caminho fechado estacionário	90
9.1.2 – Fem devido a um campo estacionário e um caminho móvel	91
9.1.3 – Fem total devido a um campo variável e um caminho móvel	92
9.2 – CORRENTE DE DESLOCAMENTO 9.3 – EQUAÇÕES DE MAXWELL EM FORMA PONTUAL OU DIFERENCIAL	92 94
9.4 – EQUAÇÕES DE MAXWELL EM FORMA INTEGRAL	94
9.5 – EXEMPLOS DE CÁLCULO DA INDUÇÃO ELETROMAGNÉTICA	95
9.6 – EXERCÍCIOS PROPOSTOS	98
REFERÊNCIAS BIBLIOGRÁFICAS	103
Anexo I – SOLUÇÃO DE EQUAÇÃO DIFERENCIAL POR SÉRIE INFINITA DE	
^	105
	107
,	109