No	Vinear Waver II
- eneti	study: gos-dynamic simple waves) Scale free non-dispersive
- Now	: dispersivo
	solitors = con acoustic
Point:	$\omega^{2} = cs^{2} k^{2} / \mu k^{2} / \delta$
	$\left(\frac{\omega}{\kappa}\right)^2 = \frac{c^2}{1 + \kappa^2 \kappa^2}$ dispersion
	dispersion
$\gamma^0 \Rightarrow 0$	o: get dy remio limit non-dispersive
=	all harmonice have some share
	$(\omega/\kappa)^2 = c^2$
ত	elf-best:
	$\frac{2u}{2h} = 6^2$
	@1C7

1	
As	teraction, all harmonist move of
C [†]	teraction, all hermanis move of
C	s as phase velocity
1.	'
, <u>.</u>	
1 1	
Dut 1	with dispersion:
(.	112 021
(- (W)	$(k)^2 = \frac{cs^2}{1+k^3}$
	THE AND
120) = c3/1+4/2 \ 3-
	= (5/1+4/2) 2
2	
then	fundamental and self-beefs
die	ocreo,
, 2	routes to palance of steepened
+	ronts:
n.l.	steepening us. dissipetion
	> Shock,

n.2	ofeepening us. dispersión
	+ soliton (ID)
c.e. 5	chematio:
Nec	-11 1D compressible hydro-Burgers Egn.
94	V + v 3×V = ~ 3×V
	AV
	NAW ~ WAD
	5x~ m/AV) - P Shock layer thickness
	dierph octs.
New	Con generalise:
	$\omega^2 = \kappa^2 C_5^2 / 1 + \kappa^2 \lambda_5^2$
	$U = \mu Cs \left(1 - \frac{h^2}{2} \frac{\lambda_0^2}{\delta}\right)$
520	2E + Codx E + Edx E = Y dx E
	2

Co	20 -00 => Buggers
	r-20 => hely
KdV	
Dt 3	E + G 2x E + E 2x E = G 23 2x E
	25 ~ Ching E controls steepening
	E & ~ Co 23 & control steepening
	2 ~ (cs) 2 ~ (Cs) 2 ~
	25 (28)
	oc-le,
^ \ I	there does hold come from on hydro.
- su	rface wave: W= gh
- Sur	face wave with finite dath:
	W= = gktanh(kd)
th	en expanding:
	$\omega^2 = k^2 g d + g k^2 \left(-\frac{k^2 d^2}{3}\right)$
	3

$$\omega^{2} = k^{2}gd\left(1-k^{2}d^{2}\right)$$

$$\omega^{2} = k^{2}c^{2} \rightarrow k^{2}c^{2}\left(1-k^{2}d^{2}\right)$$

$$\omega^{3} = k^{2}c^{2} \rightarrow k^{2}c^{2}\left(1-k^{2}d^{2}\right)$$

$$\partial_{1} \mathcal{E} + V_{0}\partial_{1}\mathcal{E} + \mathcal{E} \partial_{1}\mathcal{E} = -V_{0}d^{2}d^{2}\mathcal{E}$$

$$V_{0} = (gd)^{1/2}$$

$$N_{0}\omega_{0} \quad \mathcal{E}_{1} \quad (on-acoustic)$$

$$N_{0} = N_{0} \exp\left[ie_{1}\phi/T_{0}\right] \quad \mathcal{E}_{0} \quad \mathcal{E}_{0} \quad \mathcal{E}_{0}$$

$$\mathcal{E}_{1}\mathcal{E}_{1}\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{2}\mathcal{E}_{3}$$

Form

(Ne) = F(x-ut) ~> standard form of NL pulse

 $-un_{i} + (n_{i}V) = 0$ (v-u)V = -90

integrate, $\phi \rightarrow 0$ $V \rightarrow 0$ $|X| \rightarrow \infty$ $|X| \rightarrow \infty$

 $-un_i + n_0 V = -U \qquad (b.c.)$ $(U - V)n_i = U$

n:= u/(u-v)

take wire;

 $-\frac{1}{2}\phi = \frac{\sqrt{2}}{2} - \frac{1}{2}uv' + \frac{1}{2}u^2 - \frac{1}{2}u^2$

 $\frac{90}{m_{\ell}} = -\frac{1}{2}(u-v)^{2} + \frac{u^{2}}{2}$

b.c. V.

$$S_0$$
 $(u-v) = (u^2 - 280) 1/2$

$$2x^{3}(90) = -\frac{1}{2}\left(\frac{1}{1-200/t})\frac{1}{67u^{2}}\right)^{2}$$

$$\int \partial_x^2 \phi = -\frac{1}{\lambda_0^2} \left(\frac{1}{1 - 2\phi} \frac{1}{2\phi} \right) \frac{1}{2\phi}$$

Mach #

1	
and	aternite:
V(\$)	$= -\frac{1}{N^{3}} \left(\frac{1 - 2\phi}{m^{2}} \right)^{1/2} - e^{\phi} + C$
4	$\frac{1}{2} + V(\phi) = 0$
Þ	= du/dp
=	con exactio problem reduced to perficile orbit.
	$\phi'' = dV/d\phi$ $\dot{x} = -dU/dx$
	n2 > 2 resp entices velocity of
-D 5M	-11 \$
UC	p) = -1 { (1+ M) + p-p +2 p^2 (-1+1) }
50	Need M2-> I

Mous	choose:
	\$ -> 0
95	T vià G
	Ø 30
	+ Amox
	1 localised pulse.
	×
000	2 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
m	12 = 1 [exp & mox -]
•	
	exp max 7 - max
low an	aplitude
ch na	3 (1-2) = 12 (VTIN-2 1/1-2 X
9 8	3 (-2 sech) ()
need	$M^{-} \geq 1.6.$
0.00	Consider casas.
Cav	L'ENBEQUEL DE
1100	discuss were-xertide interaction
to the	deal with heating, entropy production
eto	

(
→ Mo	re general discussion (NdV):
Recal	l, had general:
	+ (G+E) dx E + G/3 dx E =0
a:	= 5
y =	X-Cot
9+	9 + a dy 9 + B d 39 =0 Simple Kal.
look	ten~ (B/a) 1/2
1	scale amplitule reln.
Salving	(reduced) KdV (entgriting)
a =	a(y-ct)
Ball	-cal + aal = 0 $cal + aal = 0$
pa	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
	Const

Ba'= 1/3 (a,-a) (a-4) 9 a(y) = a, cosh = (= y /a, /38) -> q, coch = (1 (x-6+) 191/363) 50 have (as before) -> Cs Jan/3B A~ (3B/a,) 1/2 no tei

Note	23
>	Soliton has Finto width
	Soliton has finto width A ~ (3B/a,) 1/2 ~ De
	Contract shoch
→	bigger solitons go faster V ~ Uno (94/3B) 1/2
	V~ V10 (94/3B)
	·