1

Assignment 8

Gaydhane Vaibhav Digraj Roll No. AI20MTECH11002

Abstract—This document solves a problem using Singular Value Decomposition.

Download latex-tikz codes from

https://github.com/Vaibhav11002/EE5609/tree/master/Assignment_8

1 Problem

Find the point on the plane closest to the point

 $\begin{pmatrix} 6 \\ 5 \\ 9 \end{pmatrix}$ and the plane is determined by the points

$$\mathbf{A} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 5 \\ 2 \\ 4 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} -1 \\ -1 \\ 6 \end{pmatrix}$$

2 Solution

The equation of plane is given by,

$$\mathbf{n}^T \mathbf{x} = c \tag{2.0.1}$$

$$\mathbf{n}^T \mathbf{A} = \mathbf{n}^T \mathbf{B} = \mathbf{n}^T \mathbf{C} = c \tag{2.0.2}$$

$$\implies (\mathbf{A} - \mathbf{B} \quad \mathbf{B} - \mathbf{C})^T \mathbf{n} = 0 \tag{2.0.3}$$

Using row reduction on above matrix,

$$\begin{pmatrix} -2 & -3 & -2 \\ 6 & 3 & -2 \end{pmatrix} \stackrel{R_1 \leftarrow \frac{R_1}{-2}}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{3}{2} & 1 \\ 6 & 3 & -2 \end{pmatrix}$$
(2.0.4)

$$\stackrel{R_2 \leftarrow R_2 - 6R_1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{3}{2} & 1\\ 0 & -6 & -8 \end{pmatrix} \stackrel{R_2 \leftarrow \frac{R_2}{-2}}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{3}{2} & 1\\ 0 & 3 & 4 \end{pmatrix}$$

$$(2.0.4)$$

$$\xrightarrow{R_1 \leftarrow R_1 - \frac{R_2}{2}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 3 & 4 \end{pmatrix}$$
(2.0.)

Thus,

$$\mathbf{n} = \begin{pmatrix} 1 \\ \frac{-4}{3} \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \\ 3 \end{pmatrix} \tag{2.0.7}$$

$$c = \mathbf{n}^T \mathbf{A} = 19 \tag{2.0.8}$$

Thus the equation of the plane is,

$$(3 -4 3)\mathbf{x} = 19$$
 (2.0.9)

Let $\mathbf{m_1}$ and $\mathbf{m_2}$ be the two orthogonal vectors to the given normal. Let, $\mathbf{m} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, then

$$\mathbf{m}^T \mathbf{n} = 0 \tag{2.0.10}$$

$$\implies \left(a \quad b \quad c\right) \begin{pmatrix} 3 \\ -4 \\ 3 \end{pmatrix} = 0 \tag{2.0.11}$$

$$\implies 3a - 4b + 3c = 0$$
 (2.0.12)

Let a = 1, b = 0 we get,

$$\mathbf{m_1} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \tag{2.0.13}$$

Let a = 0, b = 1 we get,

$$\mathbf{m_2} = \begin{pmatrix} 0 \\ 1 \\ \frac{4}{3} \end{pmatrix} \tag{2.0.14}$$

Solving the equation,

$$\mathbf{M}\mathbf{x} = \mathbf{b} \tag{2.0.15}$$

Putting the values in (2.0.15),

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & \frac{4}{2} \end{pmatrix} \mathbf{x} = \begin{pmatrix} 6 \\ 5 \\ 9 \end{pmatrix}$$
 (2.0.16)

To solve (2.0.16), we perform Singular Value Decomposition on \mathbf{M} ,

$$\mathbf{M} = \mathbf{USV}^T \tag{2.0.17}$$

Where the columns of V are the eigen vectors of M^TM , the columns of U are the eigen vectors of MM^T and S is diagonal matrix of singular value of

eigenvalues of $\mathbf{M}^T\mathbf{M}$.

$$\mathbf{M}^T \mathbf{M} = \begin{pmatrix} 2 & \frac{-4}{3} \\ \frac{-4}{3} & \frac{25}{9} \end{pmatrix}$$
 (2.0.18)

$$\mathbf{M}\mathbf{M}^{T} = \begin{pmatrix} 1 & 0 & -1\\ 0 & 1 & \frac{4}{3}\\ -1 & \frac{4}{3} & \frac{25}{9} \end{pmatrix}$$
 (2.0.19)

Putting (2.0.17) in (2.0.15) we get,

$$\mathbf{USV}^T \mathbf{x} = \mathbf{b} \tag{2.0.20}$$

$$\implies \mathbf{x} = \mathbf{V}\mathbf{S}_{+}\mathbf{U}^{\mathsf{T}}\mathbf{b} \tag{2.0.21}$$

Where S_+ is Moore-Penrose Pseudo-Inverse of S. Now, calculating eigen values of $\mathbf{M}\mathbf{M}^T$,

$$\left| \mathbf{M} \mathbf{M}^T - \lambda \mathbf{I} \right| = 0 \tag{2.0.22}$$

$$\implies \begin{pmatrix} 1 - \lambda & 0 & -1 \\ 0 & 1 - \lambda & \frac{4}{3} \\ -1 & \frac{4}{3} & \frac{25}{9} - \lambda \end{pmatrix} = 0 \qquad (2.0.23)$$

$$\implies \lambda^3 - \frac{43}{9}\lambda^2 + \frac{34}{9}\lambda = 0 \qquad (2.0.24)$$

Thus the eigen values of $\mathbf{M}\mathbf{M}^T$ are,

$$\lambda_1 = \frac{34}{9} \tag{2.0.25}$$

$$\lambda_2 = 1 \tag{2.0.26}$$

$$\lambda_3 = 0 \tag{2.0.27}$$

The eigen vectors comes out to be,

$$\mathbf{u_1} = \begin{pmatrix} \frac{-9}{25} \\ \frac{12}{25} \\ 1 \end{pmatrix}, \mathbf{u_2} = \begin{pmatrix} \frac{4}{3} \\ 1 \\ 0 \end{pmatrix}, \mathbf{u_3} = \begin{pmatrix} 1 \\ \frac{-4}{3} \\ 1 \end{pmatrix}$$
 (2.0.28)

Normalising the eigen vectors,

$$\mathbf{u_1} = \begin{pmatrix} \frac{-9}{5\sqrt{34}} \\ \frac{12}{5\sqrt{34}} \\ \frac{3}{5\sqrt{34}} \end{pmatrix}, \mathbf{u_2} = \begin{pmatrix} \frac{4}{5} \\ \frac{3}{5} \\ 0 \end{pmatrix}, \mathbf{u_3} = \begin{pmatrix} \frac{3}{\sqrt{34}} \\ \frac{-4}{\sqrt{34}} \\ \frac{3}{\sqrt{24}} \end{pmatrix}$$
 (2.0.29)

Hence we obtain U matrix as,

$$\mathbf{U} = \begin{pmatrix} \frac{-9}{5\sqrt{34}} & \frac{4}{5} & \frac{3}{\sqrt{34}} \\ \frac{12}{5\sqrt{34}} & \frac{3}{5} & \frac{-4}{\sqrt{34}} \\ \frac{5}{\sqrt{34}} & 0 & \frac{3}{\sqrt{34}} \end{pmatrix}$$
 (2.0.30)

Now,

$$\mathbf{S} = \begin{pmatrix} \frac{\sqrt{34}}{3} & 0\\ 0 & 1\\ 0 & 0 \end{pmatrix} \tag{2.0.31}$$

Calculating the eigen values of $\mathbf{M}^T\mathbf{M}$,

$$\left|\mathbf{M}^{T}\mathbf{M} - \lambda \mathbf{I}\right| = 0 \tag{2.0.32}$$

$$\implies \begin{pmatrix} 2 - \lambda & \frac{-4}{3} \\ \frac{-4}{3} & \frac{25}{9} - \lambda \end{pmatrix} = 0 \tag{2.0.33}$$

$$\implies \lambda^2 - \frac{43}{9}\lambda + \frac{34}{9} = 0 \tag{2.0.34}$$

The eigen values are,

$$\lambda_1 = \frac{34}{9} \tag{2.0.35}$$

$$\lambda_2 = 1 \tag{2.0.36}$$

The eigen vectors are,

$$\mathbf{v_1} = \begin{pmatrix} \frac{-3}{4} \\ 1 \end{pmatrix}, \mathbf{v_2} = \begin{pmatrix} \frac{4}{3} \\ 1 \end{pmatrix} \tag{2.0.37}$$

Normalising the eigen vectors,

$$\mathbf{v_1} = \begin{pmatrix} \frac{-3}{5} \\ \frac{4}{5} \end{pmatrix}, \mathbf{v_2} = \begin{pmatrix} \frac{4}{5} \\ \frac{3}{5} \end{pmatrix} \tag{2.0.38}$$

Hence we obtain V matrix as,

$$\mathbf{V} = \begin{pmatrix} \frac{-3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix} \tag{2.0.39}$$

Thus we get the Singular Value Decomposition of **M** as,

$$\mathbf{M} = \begin{pmatrix} \frac{-9}{5\sqrt{34}} & \frac{4}{5} & \frac{3}{\sqrt{34}} \\ \frac{12}{5\sqrt{34}} & \frac{3}{5} & \frac{-4}{\sqrt{34}} \\ \frac{5}{\sqrt{24}} & 0 & \frac{3}{\sqrt{34}} \end{pmatrix} \begin{pmatrix} \frac{\sqrt{34}}{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{-3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix}^T$$
 (2.0.40)

The Moore-Penrose Pseudo inverse of S is given by,

$$\mathbf{S}_{+} = \begin{pmatrix} \frac{3}{\sqrt{34}} & 0 & 0\\ 0 & 1 & 0 \end{pmatrix} \tag{2.0.41}$$

From (2.0.21) we get,

$$\mathbf{U}^T \mathbf{b} = \begin{pmatrix} \frac{231}{5\sqrt{34}} \\ \frac{39}{5} \\ \frac{25}{4\sqrt{24}} \end{pmatrix}$$
 (2.0.42)

$$\mathbf{S}_{+}\mathbf{U}^{T}\mathbf{b} = \begin{pmatrix} \frac{693}{170} \\ \frac{39}{5} \end{pmatrix}$$
 (2.0.43)

$$\mathbf{x} = \mathbf{V}\mathbf{S}_{+}\mathbf{U}^{T}\mathbf{b} = \begin{pmatrix} \frac{129}{34} \\ \frac{135}{17} \end{pmatrix}$$
 (2.0.44)

Verifying the solution of (2.0.44) using,

$$\mathbf{M}^T \mathbf{M} \mathbf{x} = \mathbf{M}^T \mathbf{b} \tag{2.0.45}$$

Evaluating the R.H.S in (2.0.45) we get,

$$\mathbf{M}^T \mathbf{b} = \begin{pmatrix} -3\\17 \end{pmatrix} \tag{2.0.46}$$

$$\implies \begin{pmatrix} 2 & \frac{-4}{3} \\ \frac{-4}{3} & \frac{25}{9} \end{pmatrix} \mathbf{x} = \begin{pmatrix} -3 \\ 17 \end{pmatrix} \tag{2.0.47}$$

Solving the augmented matrix of (2.0.47) we get,

$$\begin{pmatrix} 2 & \frac{-4}{3} & -3 \\ \frac{-4}{3} & \frac{25}{9} & 17 \end{pmatrix} \xrightarrow{R_1 \leftarrow \frac{R_1}{2}} \begin{pmatrix} 1 & \frac{-2}{3} & \frac{-3}{2} \\ \frac{-4}{3} & \frac{25}{9} & 17 \end{pmatrix} \tag{2.0.48}$$

$$\xrightarrow{R_2 \leftarrow R_2 + \frac{4}{3}R - 1} \begin{pmatrix} 1 & \frac{-2}{3} & \frac{-3}{2} \\ 0 & \frac{17}{9} & 15 \end{pmatrix} \quad (2.0.49)$$

$$\stackrel{R_2 \leftarrow R_2 + \frac{4}{3}R - 1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{-2}{3} & \frac{-3}{2} \\ 0 & \frac{17}{9} & 15 \end{pmatrix} (2.0.49)$$

$$\stackrel{R_1 \leftarrow R_1 + \frac{6}{17}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & \frac{129}{34} \\ 0 & \frac{17}{9} & 15 \end{pmatrix} (2.0.50)$$

$$\stackrel{R_2 \leftarrow \frac{9}{17}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & \frac{129}{34} \\ 0 & 1 & \frac{135}{17} \end{pmatrix}$$
(2.0.51)

Hence, solution of (2.0.45) is given by,

$$\mathbf{x} = \begin{pmatrix} \frac{129}{34} \\ \frac{135}{17} \end{pmatrix} \tag{2.0.52}$$

Comparing results of x from (2.0.44) and (2.0.52)we conclude that the solution is verified.