$\sqrt{n}\mapsto \Theta(n)$ Magic States 'Distillation' Using Quantum LDPC Codes.

David Ponarovsky

August 15, 2024

1 The Construction.

Let x_0 be a codeword of C_X/C_Z^{\perp} , Denote by $w \in \mathbb{F}_2^n$ the binary string presents the Z-generator that anti commute with the X-generator corresponds to x_0 . Let $\mathcal{X} = \{x_0, x_1, ... x_{k'}\} \in \mathbb{F}_2^n$ be a subset of a base for the code C_X/C_Z^{\perp} . Such (span \mathcal{X}/x_0) $|_w$ is Triorthogonal code. Let us denote by \mathcal{X}' the base $\{y_1, y_2, ..., y_{k'}\} \in \mathbb{F}_2^n$ defined such: $y_i = x_j + x_0$.

Denote by E the circuit that encodes the logical ith bit to y_i , by $T^{(w)}$ the application of T gates on the qubits for which w act non trivial, means $T^{(w)}$ is a tensor product of T's and identity where on the ith qubit $T^{(w)}$ apply T if w_i is 1 and identity otherwise. And finally by D denote the gate that decode binary strings in \mathbb{F}_2^n back into the logical space.

2 Proof of Theorem 1.

Claim 2.1. There exists family of non-trivial distance quantum LDPC codes Q such the codes span \mathcal{X}' chosen respect to them has a positive rate. Furthermore, the rate of span \mathcal{X}' is a asymptotically converges to Q rate:

$$|\rho(Q) - \rho(\operatorname{span} \mathcal{X}')| = o(1)$$

Proof. Let Δ be a constant integer, C_0 , \tilde{C}_0 codes over Δ bits such \tilde{C}_0 is Triorthogonal and C_0 contains \tilde{C}_0 , C_0 has parameters $\Delta[1,\delta_0,\rho_0]$, and C_0^{\top} has relative distance greater than δ_0 . Let $C_{\rm Tanner}$ be a Tanner code, defined by taking an expander graph with good expansion and C_0 as the small code. Let $C_{\rm initial}$ be the dual-tensor code obtained by taking $(C_{\rm Tanner}^{\perp}\otimes C_{\rm Tanner}^{\perp})^{\perp}$. Notes that first this code has positive rate and $\Theta(\sqrt{n})$ distance, second this code is an LDPC code as well. Notice also that $C_{\rm initial}^{\top}$ obtained by transporting the parity check matrix, and therefore equals to $(C_{\rm Tanner}^{\top}\otimes C_{\rm Tanner}^{\top})^{\perp}$. Hence $C_{\rm initial}^{\top}$ has a square root distance as well.

Let Q the CSS code, obtained by taking the Hyperproduct of C_{initial} with itself. So Q is an quantum qLDPC code with parameters $[n,\Theta(n^{\frac{1}{4}}),\Theta(n)]$. Pick x_0 and $w\in\mathbb{F}_2^n$, which correspond to the supports of anti-commute X and Z generators, such that w can be obtains by setting a codeword of C_{Tanner} on the first $n^{\frac{1}{4}}$ bits and padding by zeros the rest. Clearly, $|w|=\Theta(n^{\frac{1}{4}})$.

Now for defying span \mathcal{X} , we are going to consider the parity checks matrix obtained by adding restrictions to C_X restrictions as follows: Divide the first w bits into Δ -size buckets, define by w(i) the ith coordinate on which w isn't trivial, for example if w(1)=j then j is the first nonzero coordinate of w, Denote by $B_1, B_2, ..., B_{|w|/\Delta}$ the partion of w's bits:

$$\begin{split} B_1 &= \{w(1), w(2), ..., w(\Delta)\} \\ B_2 &= \{w(\Delta+1), w(\Delta+2), ..., w(2\Delta)\} \\ B_i &= \{w((i-1)\Delta+1), w((i-1)\Delta+2), ..., w(i\Delta)\} \end{split}$$

Then let span $\mathcal X$ be all the codewords of C_X/C_Z^\perp satisfying $\tilde C_0$ restrictions for each bucket.

Claim 2.2. Let
$$|\mathcal{X}'\rangle \propto \sum_{x \in span \ \mathcal{X}'} |x\rangle$$
. Then $T^{(w)} |\mathcal{X}'\rangle \propto \sum_{x \in span \ i} x$