FMI, Info, Anul II, 2021-2022 Fundamentele Limbajelor de Programare

Seminar 2

Recapitularea logicii propoziționale. Deducția naturală pentru calculul propozițional

Recapitulare:

Amintim tabelele de adevăr pentru conectorii propoziționali:

p	$\neg \mathbf{p}$	p	1	q	$\mathbf{p} \to \mathbf{q}$	p	q	$\mathbf{p} \wedge \mathbf{q}$	p	q	$\mathbf{p}\vee\mathbf{q}$	p	q	$\mathbf{p} \leftrightarrow \mathbf{q}$
0	1	0		0	1	0	0	0	0	0	0	0	0	1
1	0	0		1	1	0	1	0	0	1	1	0	1	0
		1		0	0	1	0	0	1	0	1	1	0	0
		1		1	1	1	1	1	1	1	1	1	1	1

Putem să arătăm că o formulă φ este tautologie (validă, universal adevărată) folosind **metoda tabelului de adevăr**. Dacă v_1, \ldots, v_n sunt variabilele propoziționale care apar în φ , atunci cele 2^n evaluări posibile (i.e, o evaluarea este o funcție $e: \{v_1, \ldots, v_n\} \to \{0, 1\}$) e_1, \ldots, e_{2^n} pot fi scrise într-un tabel:

v_1	v_2		v_n	φ
$e_1(v_1)$	$e_1(v_2)$		$e_1(v_n)$	$f_{e_1}(\varphi)$
$e_{2}(v_{1})$	$e_2(v_2)$		$e_2(v_n)$	$f_{e_2}(\varphi)$
:	:	:	:	:
$e_{2^n}(v_1)$	$e_{2^n}(v_2)$		$e_{2^n}(v_n)$	$f_{2^n}(\varphi)$

Dacă pe coloana lui φ obținem doar valoarea 1, atunci φ este tautologie.

(S2.1) Arătați că următoarea formulă în logica propozițională este o tautologie:

$$(v_1 \lor v_2 \to v_3) \leftrightarrow (v_1 \to v_3) \land (v_2 \to v_3)$$

Axiomele calculului propozițional sunt următoarele:

(A1)
$$\varphi \to (\psi \to \varphi)$$

(A2)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(A3)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$

unde φ , ψ și χ sunt formule.

În plus, avem următoarea regulă de deducție:

MP (modus ponens)
$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$

O Γ-demonstrație este o secvență de formule $\varphi_1, \ldots, \varphi_n$ astfel încât, pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- φ_i este axiomă sau $\varphi_i \in \Gamma$,
- φ_i se obţine din formulele anterioare prin MP.

O formulă φ este Γ-**teoremă** dacă există o Γ-demonstrație $\varphi_1, \ldots, \varphi_n$ astfel încât $\varphi_n = \varphi$. Notăm prin $\Gamma \vdash \varphi$ faptul că φ este Γ-teoremă.

Teorema 1 (Teorema deducției). $\Gamma \vdash \varphi \rightarrow \psi \Leftrightarrow \Gamma \cup \{\varphi\} \vdash \psi$.

Sistemul de reguli al deducției naturale

$$\frac{\varphi \ \psi}{\varphi \wedge \psi} \ (\wedge i) \qquad \qquad \frac{\varphi \wedge \psi}{\varphi} \ (\wedge e_1) \qquad \frac{\varphi \wedge \psi}{\psi} \ (\wedge e_2)$$

$$\frac{\varphi}{\varphi \vee \psi} \ (\vee i_1) \qquad \frac{\psi}{\varphi \vee \psi} \ (\vee i_2) \qquad \qquad \frac{\varphi \vee \psi \vee \psi}{\chi} \ (\vee e)$$

$$\frac{\varphi}{\varphi \vee \psi} \ (\neg i) \qquad \qquad \frac{\varphi \vee \psi \vee \psi}{\chi} \ (\neg e)$$

$$\frac{\varphi}{\neg \neg \varphi} \ (\neg \neg e)$$

$$\frac{\varphi}{\neg \neg \varphi} \ (\neg \neg e)$$

$$\frac{\varphi}{\neg \neg \varphi} \ (\bot e)$$

TND (tertium non datur) este regulă derivată.

Atenție! La acest sistem se adaugă regula de copiere.

Regula de copiere:

- la un pas al unei demonstrații poate fi copiată orice formulă demonstrată anterior.
- la un pas al unei demonstrații nu pot fi copiate formule din interiorul cutiilor care sunt închise în acel moment.
- (S2.2) Demonstrați că următorii secvenți sunt valizi:
 - (1) $(p \land q) \land r, s \land t \vdash q \land s$
 - (2) $p, \neg \neg (q \land r) \vdash \neg \neg p \land r$
 - (3) $p \land q \rightarrow r \vdash p \rightarrow (q \rightarrow r)$
 - (4) $p \wedge (q \vee r) \vdash (p \wedge q) \vee (p \wedge r)$
 - (5) $p \to q, p \to \neg q \vdash \neg p$
- (S2.3) Demonstrați că următoarele reguli pot fi derivate din regulile deducției naturale:

$$\frac{\varphi \to \psi \quad \neg \psi}{\neg \varphi} \text{ MT} \qquad \frac{\begin{bmatrix} \neg \varphi \\ \vdots \\ \bot \end{bmatrix}}{\varphi} \text{ RAA}$$

 $MT = modus \ tollens$ RAA

 $RAA = reductio \ ad \ absurdum$

(S2.4) Fie $n \geq 1$ și $\varphi_1, \ldots, \varphi_n, \varphi$ formule. Demonstrați că

dacă $\vdash \varphi_1 \to (\varphi_2 \to (\cdots \to (\varphi_n \to \varphi) \cdots))$ este valid, atunci $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid.

- (S2.5) Ştim că echivalența logică este definită astfel: $\varphi \leftrightarrow \psi = (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$. Găsiți reguli de introducere și eliminare pentru \leftrightarrow .
- (S2.6) Formalizați și demonstrați folosind deducția naturală faptul că din ipotezele (i1)-(i5) deducem (c):
- (i1) Toți scriitorii care înțeleg natura umană sunt înțelepți.
- (i2) Un scriitor care este poet adevărat poate trezi sentimente puternice.
- (i3) Shakespeare este scriitorul care a scris "Hamlet".
- (i4) Un scriitor care trezește sentimente puternice înțelege natura umană.
- (i5) Numai un poet adevărat putea scrie "Hamlet".

(c) Shakespeare este înțelept.

Traducere după S. Burris, Logic for Mathemetics and Computer Science, Prentice Hall 1998. Exercițiu din Lewis Carroll, Symbolic Logic and The Game of Logic, 1897/87. Forma originală:

All writers, who understand the human nature, are clever.

No writer is a true poet unless he can stir the heart of men.

Shakespeare wrote "Hamlet".

No writer who does not understand human nature can stir the heart of men.

None but a true poet could have written "Hamlet".

Therefore Shakespeare is clever.