User:JackBortone/Research/Topics/Psychoenergetics

< User:JackBortone | Research | Topics

Contents

Abstract

Case study: Project STREET WISE

Introduction

Significance of problematic smartphone use

Methods and materials

Social (offline) and online data collection

Research highlights

Experimental data

Problematic smartphone use and viral infections

Discussion

Limitations

Future directions

Conclusion

References

License

See also

Abstract

All too often we are giving young people cut flowers when we should be teaching them to grow their own plants.

John W. Gardner

Case study: Project STREET WISE

Introduction

These days we have Smartphones, Smart cars, Smartboards, Smart everything, but consider this: if the technology is getting smarter, does that mean humans are getting dumber?

Rebecca McNutt

Significance of problematic smartphone use

Problematic smartphone use [1] is a highly serious and emerging public health emergency [2] most severely affecting the central nervous system (CNS) of adolescents and young adults with excessive/abusive smartphone use patterns. [3][4]

Methods and materials

Artistic illustration of problematic and dissociative smartphone use (P-DSU). Credit: Jack Bortone Lab. (2019)

Social (offline) and online data collection

Data collection guidelines:

1. Self-dialectical task-switching paradigm/response trials

- 2. TODO : Get/compile additional (resting state) functional connectivity datasets from http://humanconnectomeproject.org
- 3. Benign humor is better than hostile/negative humor to get significant/positive results. [5][6]

Research highlights

Novel sex-dependent brain vulnerabilities associated to <u>problematic smartphone use</u> and <u>persistent mobile-based brain</u> stimulation:

1. We found additional evidences [7][8] of highly serious sex-dependent vulnerabilities [9][10] affecting high-order executive and cognitive functions, self-regulation, inhibitory control, internal conflict resolving, dialectical self-thinking (reflective pondering), vigilance, arousal, and fear extinction/learning (ie threat appraisal and active avoidance (AA)) suggesting a detrimental effect of persistent mobile-based brain stimulation in the etiology of problematic smartphone use.

Experimental data

Problematic smartphone use and viral infections

Important findings:

Chronic stress-mediated dopamine (D1R) inhibition associated to problematic smartphone use is positively correlated to NLRP3 inflammasome activation in SARS-CoV pathogenesis:

"Additionally, a ubiquitin ligase MARCH7, which is activated downstream of the dopamine D1 receptor DRD1 pathway, mediates the K48-linked polyubiquitination of NLRP3 and inhibits NLRP3 inflammasome activation." [12][13][14][15]

Discussion

Our initial findings confirms the severity of problematic smartphone use [7][3][4].

In addition the discovery of novel stress-mediated vulnerabilities of the developing human brain and noradrenergic system periodically exposed to persistent and recurrent mobile-based brain stimulation (PMBS) in the etiology of problematic smartphone use motivated our initial perspectives and ideas on the self-adaptive and evolutive nature of applied human neurosecurity and intelligence (https://open-neurosecurity.org).

Limitations

For technical reasons the scope of our report has been limited to (middle-age) female smartphone users living in Québec region (St-Jerome).

Future directions

Tonic immobility in a young smartphone user suggesting a primary stress-mediated dopamine-induced inhibition mecanism in the pathology of

problematic/excessive smartphone use. [11]

Magic is just science that we don't understand yet.

- Arthur C. Clarke

The emerging research and development of chronic/persistent mobile devices is in constant evolution and it becomes very problematic for consumers with limited knowledge and experience in neuroscience to understand the risks for their long-term health associated to chronic smartphone use.

In specific the mobile/smartphone industry is corresponding to the real dark and dangerous web for inexperienced computer users with limited knowledge in neuroscience and current research like ultrasonic neuromodulation and sonogenetics. [16][17][18][19]

Conclusion

Our preliminary audit recommends the development of a systematic and independent review of mobile devices (smartphones) to further understand problematic smarthone use connected to chronic neuroplastic changes and impairments in stress-dependent brain circuits of adolescents with excessive smartphone use patterns.

Finally our experimental findings helped us to understand the primary role of stress-mediated noradrenergic modulation on the developing and self-adaptive human brain associated to the etiology and pathogenesis of problematic smartphone use.

Jack Bortone

March 14 2020

References

 	,,	- ,	 	 _		 	<u>J</u> .	<i>,</i> .		,			 			 		 	_										
	200		 -	 -	_	 -			_		-	_	 	-	-	 	-	 	_	 -	 	 	 	_	 	-	 -	 _	-

Problematic smartphone use relationship with pathological personality traits: Systematic review and meta-analysis

2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4934115/

1. https://cyberpsychology.eu/article/view/11423

Mobile phone mania: Arising global threat in public health

3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5673664/

Alterations in White Matter Integrity in Young Adults with Smartphone Dependence

4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5403814/

Smartphones and Cognition: A Review of Research Exploring the Links between Mobile Technology Habits and Cognitive Functioning

5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671657/

Positive Emotion Facilitates Cognitive Flexibility: An fMRI Study

6.	https://www.	ncbi.nlm.	.nih.aov/pi	mc/articles/	PMC6199304/

Appreciation of different styles of humor: An fMRI study

7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551139/

Association between Excessive Use of Mobile Phone and Insomnia and Depression among Japanese Adolescents

8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143708/

Role of Frontostriatal Connectivity in Adolescents With Excessive Smartphone Use

9. https://www.frontiersin.org/articles/10.3389/fnins.2017.00403/full

Interactive Effects of Dopamine Baseline Levels and Cycle Phase on Executive Functions: The Role of Progesterone

10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965297/

Sex Differences in the relationship of regional Dopamine release to affect and cognitive function in Striatal and Extrastriatal Regions using PET and [18F]Fallypride

11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6035776/

The Locus Coeruleus drives disinhibition in the midline thalamus via a dopaminergic mechanism

	Regulation and functions of NLRP3 inflammasome during influenza virus infection
13. <u>htt</u>	cps://www.cell.com/cell/fulltext/S0092-8674(14)01524-4
	Dopamine Controls Systemic Inflammation through Inhibition of NLRP3 Inflammasome
14. <u>htt</u>	ps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6549181/
	SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes
1F L.L	:ps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651423/

16. https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final56.pdf

On the Feasibility of Side-Channel Attacks with Brain-Computer Interfaces

17. https://www.sec.cs.tu-bs.de/pubs/2017a-eurosp.pdf

Regulation

Privacy Threats through Ultrasonic Side Channels on Mobile Devices

18. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6086606/

Biomolecular Ultrasound and Sonogenetics

19. https://www.nature.com/articles/tp2016271

Capacitive micromachined ultrasonic transducers with integrated electronics for neuromodulation applications

20. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0051177

Pulsed Ultrasound Differentially Stimulates Somatosensory Circuits in Humans as Indicated by EEG and fMRI

21. https://www.ncbi.nlm.nih.gov/pubmed/26222259

Manipulating neuronal activity in the mouse brain with ultrasound: A comparison with optogenetic activation of the cerebral cortex.

22. https://www.ncbi.nlm.nih.gov/pubmed/10848570

Inaudible high-frequency sounds affect brain activity: hypersonic effect.

23. https://www.biorxiv.org/content/early/2017/12/22/233189

Ultrasound Produces Extensive Brain Activation via a Cochlear Pathway

24. https://www.ncbi.nlm.nih.gov/pubmed/18958151

Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound

25. https://arxiv.org/ftp/arxiv/papers/1503/1503.02019.pdf

Analysis of Transcranial Focused Ultrasound Beam Profile Sensitivity for Neuromodulation of the Human Brain

26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045443/

Focused ultrasound neuromodulation of cortical and subcortical brain

structures using 1.9 MHz

27. https://www.frontiersin.org/articles/10.3389/fnins.2017.00607/full

Toward a Cognitive Neural Prosthesis Using Focused Ultrasound

28. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098795

Dissociative Part-Dependent Resting-State Activity in Dissociative Identity Disorder: A Controlled fMRI Perfusion Study

29. https://www.ncbi.nlm.nih.gov/pubmed/29804920

Ultrasonic Neuromodulation Causes Widespread Cortical Activation via an Indirect Auditory Mechanism

30. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228296/

Science and art in the 21st century: on a way toward the unification

31. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020552/

Persistent Stress-Induced Neuroplastic Changes in the Locus Coeruleus/Norepinephrine System

32. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2989851/

Locus Coeruleus and Anterior Cingulate Cortex Sustain Wakefulness in a Novel Environment

33. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961017/

Resting-State Functional Connectivity of the Locus Coeruleus in Humans: In Comparison with the Ventral Tegmental Area/Substantia Nigra Pars Compacta

and the Effects of Age
34. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4217608/
The Dialogical Jung: Otherness within the Self
35. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476645/
Neural correlates of rumination in depression
36. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5485371/
The Longevity of Hippocampus-Dependent Memory Is Orchestrated by the Locus Coeruleus-Noradrenergic System
37. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648295/
Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning
38. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5881138/
The Smartphone Addiction Scale: Development and Validation of a Short Version for Adolescents
39. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562468/
Genetical Genomics of Tonic Immobility in the Chicken
40. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495877/
Fear and the Defense Cascade: Clinical Implications and Management

41.

nttps://www.ncbi.nim.nin.gov/pmc/articles/PMC3023368/

Phasic and Tonic Patterns of Locus Coeruleus Output Differentially Modulate Sensory Network Function in the Awake Rat.

42. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953953/

A potential role for the paraventricular nucleus of the thalamus in mediating individual variation in Pavlovian conditioned responses.

43. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3363967/

How we recall (or don't): the hippocampal memory machine and anesthetic amnesia

44. https://www.jneurosci.org/content/38/12/3081

Ultrasound Elicits Behavioral Responses through Mechanical Effects on Neurons and Ion Channels in a Simple Nervous System

45. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671657/

Positive Emotion Facilitates Cognitive Flexibility: An fMRI Study

46. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859179/

Stress signalling pathways that impair prefrontal cortex structure and function

47. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859179/

_____ Noradrenergic Modulation of Fear Conditioning and Extinction

48. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837702/

Acute Supramaximal Exercise Increases the Brain Oxygenation in Relation to Cognitive Workload

49. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344349/

Potentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity

50. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974158/

Working Memory Deficits After Lesions Involving the Supplementary Motor Area

51. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204490/

Increased Inhibition of the Amygdala by the mPFC may Reflect a Resilience Factor in Post-traumatic Stress Disorder: A Resting-State fMRI Granger Causality Analysis

52. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680293/

Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control

53. https://www.nature.com/articles/s41380-019-0599-6

A brainstem-central amygdala circuit underlies defensive responses to learned threats

54. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2001244/

Resting-State Functional Connectivity in Major Depression: Abnormally Increased Contributions from Subgenual Cingulate Cortex and Thalamus

55.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188	719)/
---	-----	----

Ventromedial prefrontal cortex regulates depressive-like behavior and rapid eye movement sleep in the rat

56. https://www.frontiersin.org/articles/10.3389/fnbeh.2018.00043/full

Noradrenergic Modulation of Fear Conditioning and Extinction

57. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6070639/

Immune and Neuroprotective Effects of Physical Activity on the Brain in Depression

58. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550275/

Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior

59. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6553455/

Visuocortical changes during a freezing-like state in humans

60. https://www.nature.com/articles/s41380-019-0599-6

A brainstem-central amygdala circuit underlies defensive responses to learned threats

61. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607300/

Active Avoidance Learning Requires Prefrontal Suppression of Amygdala-Mediated Defensive Reactions

62. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529361/

ackBorton	e/Research/Topics/Psychoenerget https://isotoperesearch.ca/index.php?title=
63. <u>http</u>	s://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550275/
	Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior
64. <u>http</u>	s://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651680/
	Moral Disengagement as an Explanatory Factor of the Polyivictimization of Bullying and Cyberbullying
65. <u>htt</u> p	s://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690955/
	The Role of Neuroticism and Extraversion in the Stress-Anxiety and Stress- Depression Relationships
66. <u>http</u>	s://www.ncbi.nlm.nih.gov/pmc/articles/PMC2827936/
	Sex Differences in Stress Response Circuitry Activation Dependent on Female Hormonal Cycle
67. <u>http</u>	s://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263906/
	Chronic Stress, Cortisol Dysfunction, and Pain: A Psychoneuroendocrine Rationale for Stress Management in Pain Rehabilitation
68. <u>http</u>	s://www.ncbi.nlm.nih.gov/pmc/articles/PMC4175921/

Project STREET WISE original concept and research initiative is licensed under CC-BY 4.0 (http://creativecommons.org/licenses/by-sa/4.0/) by Jack Bortone and contributors.

To cite this study in your own work please use the following text:

J. Bortone (2020) Project STREET WISE: A preliminary study exploring the effects and functions of mobile-based brain stimulation on the behavior and cognitive system of chronic smartphone users living in St-Jerome, Quebec. Applied Human Neurosecurity Journal (https://open-neurosecurity.org)

See also

- Project STREET WISE: Official homepage (https://projectstreetwise.org)
- Twitter profile (https://twitter.com/wise project)
- Soundcloud profile (https://soundcloud.com/wise_project)

Retrieved from "https://isotoperesearch.ca/index.php?title=User:JackBortone/Research/Topics/Psychoenergetics&oldid=1899"

This page was last edited on 14 March 2020, at 14:15.

This page has been accessed 7,014 times.

Content is available under Creative Commons Attribution-ShareAlike unless otherwise noted.