Solución de los ejercicios sobre el Equilibrio de Hardy-Weinberg

Página 10 (Ejercicios 1-5)

Ejercicio 1

a) Pr(E') = 1 - Pr(E)

Procedimiento: Por la propiedad de probabilidad total, la suma de las probabilidades de un evento y su complemento es 1:

$$Pr(E) + Pr(E') = 1 \implies Pr(E') = 1 - Pr(E)$$

b) $Pr(F) = \frac{2}{3}$

Procedimiento: Dado un dado justo, el evento E (números divisibles por 3) es $E = \{3, 6\}$, entonces:

$$\Pr(E) = \frac{2}{6} = \frac{1}{3}$$

F es el complemento de E (no divisible por 3):

$$\Pr(F) = 1 - \Pr(E) = 1 - \frac{1}{3} = \frac{2}{3}$$

Ejercicio 2

a) $Pr(todas niñas) = (\frac{1}{2})^4 = \frac{1}{16} = 0.0625$

Procedimiento: Asumiendo independencia y probabilidad uniforme de género:

$$Pr(ni\tilde{n}a) = \frac{1}{2} \implies Pr(4 \text{ ni}\tilde{n}as) = \left(\frac{1}{2}\right)^4$$

b) $Pr(al menos un niño) = 1 - \frac{1}{16} = \frac{15}{16} = 0.9375$

Procedimiento: El evento complementario de .ªl menos un niño.es "todas niñas":

Pr(al menos un niño) = 1 - Pr(todas niñas)

Procedimiento general: Para una razón hombres:mujeres m:f:

$$p(\text{hombre}) = \frac{m}{m+f}, \quad p(\text{mujer}) = \frac{f}{m+f}$$

a) **EE.UU.** (1052 H : 1000 M):

$$p(\text{mujer}) = \frac{1000}{2052} \approx 0.4873 \implies \Pr(4 \text{ niñas}) = (0.4873)^4 \approx 0.0565$$

b) **Grecia** (1073 H : 1000 M):

$$p(\text{mujer}) = \frac{1000}{2073} \approx 0.4824 \implies \text{Pr}(4 \text{ niñas}) = (0.4824)^4 \approx 0.0542$$

c) Chile (1043 H : 1000 M):

$$p(\text{mujer}) = \frac{1000}{2043} \approx 0.4895 \implies \text{Pr}(4 \text{ niñas}) = (0.4895)^4 \approx 0.0576$$

Ejercicio 4

Dado un dado no estándar con caras: 1R, 2R, 3R, 4N, 5N, 6N.

a)
$$\Pr(A)=\Pr(\mathrm{par})=\frac{3}{6}=0.5, \Pr(B)=\Pr(\mathrm{roja})=\frac{3}{6}=0.5$$

b)
$$\Pr(A\cap B)=\Pr(\{2\})=\frac{1}{6}\approx 0.1667$$
 (único resultado par y rojo)

c) Independencia: $Pr(A) \cdot Pr(B) = 0.25 \neq 0.1667 \implies$ no independientes.

Ejercicio 5

Espacio muestral: 36 resultados equiprobables.

a) Probabilidades marginales:

$$Pr(A) = \frac{18}{36} = 0.5, \quad Pr(B) = \frac{6}{36} = \frac{1}{6}, \quad Pr(C) = \frac{5}{36} \approx 0.1389$$

b) Probabilidades conjuntas:

$$Pr(A \cap B) = \frac{3}{36} = \frac{1}{12}, \quad Pr(A \cap C) = \frac{3}{36} = \frac{1}{12}$$

- c) Independencia A y B: $0.5 \times \frac{1}{6} = \frac{1}{12} = \Pr(A \cap B) \implies$ independientes.
- d) Independencia A y C: $0.5 \times \frac{5}{36} \approx 0.0694 \neq 0.0833 \implies$ no independientes.

Padres: (Rr, tt) y (rr, Tt). Gametos equiprobables:

- Padre 1: Rt, rt (prob. 0.5 cada uno)
- Padre 2: rT, rt (prob. 0.5 cada uno)

Cuadro de Punnett:

	rT(0.5)	rt(0.5)
Rt (0.5)	RrTt	Rrtt
rt (0.5)	rrTt	rrtt

- a) Cuadro como arriba.
- b) $Pr(roja) = Pr(R_{-}) = \frac{2}{4} = 0.5$
- c) $Pr(corta) = Pr(tt) = \frac{2}{4} = 0.5$
- d) $\Pr(\text{roja y corta}) = \Pr(Rrtt) = \frac{1}{4} = 0.25$
- e) Independencia: $0.5 \times 0.5 = 0.25 = Pr(roja y corta) \implies independentes$
- f) Pr(roja o corta) = 0.5 + 0.5 0.25 = 0.75
- g) No, porque el evento complementario incluiría otros genotipos como RrTt.

Problema 7

Supongamos que las plantas cruzadas son ambas de tipo (Rr, Tt).

a) Cuadro de Punnett

Cada parental produce gametos: $RT,\,Rt,\,rT,\,rt$ (cada uno con probabilidad $\frac{1}{4}$).

	G	Gametos Parental 2		
Gametos Parental 1	RT	Rt	rT	rt
RT	RRTT	RRTt	RrTT	RrTt
Rt	RRTt	RRtt	RrTt	\mathbf{Rrtt}
rT	RrTT	RrTt	rrTT	rrTt
rt	RrTt	\mathbf{Rrtt}	rrTt	rrtt

b) Probabilidad de flores rojas

Las flores rojas corresponden a genotipos R_{-} (al menos un alelo dominante R). En el cuadro hay 12 combinaciones con flores rojas de 16 posibles:

$$P(\text{rojo}) = \frac{12}{16} = \frac{3}{4} = 0.75$$

c) Probabilidad de tallos cortos

Los tallos cortos corresponden a genotipos $t\bar{t}$ (homocigoto recesivo). En el cuadro hay 4 combinaciones con tallos cortos:

$$P(\text{corto}) = \frac{4}{16} = \frac{1}{4} = 0.25$$

d) Probabilidad de tallos cortos y flores rojas

Corresponde a genotipos R_tt. En el cuadro hay 3 combinaciones que cumplen ambas condiciones:

$$P(\text{rojo y corto}) = \frac{3}{16} = 0.1875$$

Nota: La probabilidad también puede calcularse por multiplicación de eventos independientes:

$$P(\text{rojo}) \times P(\text{corto}) = \frac{3}{4} \times \frac{1}{4} = \frac{3}{16}$$

e) ¿flores rojas y tallos cortos son eventos independientes?

Dos eventos son independientes si la probabilidad de que ocurran juntos es igual al producto de sus probabilidades individuales.

Calculamos:

$$P(\text{rojo}) \times P(\text{corto}) = \frac{3}{4} \times \frac{1}{4} = \frac{3}{16}$$

Comparando con la probabilidad conjunta:

$$P(\text{rojo y corto}) = \frac{3}{16}$$

Como $\frac{3}{16} = \frac{3}{16}$, concluimos que son eventos independientes.

Respuesta: Sí, son eventos independientes.

Punto 8. Cruce de plantas (Rr, yy, Tt) y (rr, Yy, Tt)

a) Separación de alelos (gametos posibles)

Planta 1 (Rr, yy, Tt):

■ Forma de semilla: R o r

• Color de semilla: y (única posibilidad)

■ Altura: T o t

Gametos posibles: (R, y, T), (R, y, t), (r, y, T), (r, y, t)Planta 2 (rr, Yy, Tt):

• Forma de semilla: r (única posibilidad)

■ Color de semilla: Y o y

■ Altura: T o t

Gametos posibles: (r, Y, T), (r, Y, t), (r, y, T), (r, y, t)

b) Cuadro de Punnett

	Gametos Planta 2			
	(r, Y, T)	(r, Y, t)	(r, y, T)	(r, y, t)
(R, y, T)	(Rr, Yy, TT)	(Rr, Yy, Tt)	(Rr, yy, TT)	(Rr, yy, Tt)
(R, y, t)	(Rr, Yy, Tt)	(Rr, Yy, tt)	(Rr, yy, Tt)	(Rr, yy, tt)
(r, y, T)	(rr, Yy, TT)	(rr, Yy, Tt)	(rr, yy, TT)	(rr, yy, Tt)
(r, y, t)	(rr, Yy, Tt)	(rr, Yy, tt)	(rr, yy, Tt)	(rr, yy, tt)

Total de descendientes: 16

c) Independencia entre semillas arrugadas y semillas verdes

Definimos eventos:

- \blacksquare A: Semillas arrugadas (rr)
- B: Semillas verdes (yy)

Cálculos:

$$P(A) = \frac{8}{16} = \frac{1}{2}$$

$$P(B) = \frac{8}{16} = \frac{1}{2}$$

$$P(A \cap B) = \frac{4}{16} = \frac{1}{4}$$

$$P(A) \times P(B) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

Como $P(A \cap B) = P(A) \times P(B)$, los eventos son independientes.

d) Independencia entre semillas arrugadas y tallos cortos

Definimos eventos:

- A: Semillas arrugadas (rr)
- \blacksquare C: Tallos cortos (tt)

Cálculos:

$$P(A) = \frac{8}{16} = \frac{1}{2}$$

$$P(C) = \frac{4}{16} = \frac{1}{4}$$

$$P(A \cap C) = \frac{2}{16} = \frac{1}{8}$$

$$P(A) \times P(C) = \frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$$

Como $P(A \cap C) = P(A) \times P(C)$, los eventos son independientes.

e) Independencia entre semillas redondas y tallos altos

Definimos eventos:

- D: Semillas redondas (R_{-})
- E: Tallos altos (T_{-})

Cálculos:

$$P(D) = \frac{8}{16} = \frac{1}{2}$$

$$P(E) = \frac{12}{16} = \frac{3}{4}$$

$$P(D \cap E) = \frac{6}{16} = \frac{3}{8}$$

$$P(D) \times P(E) = \frac{1}{2} \times \frac{3}{4} = \frac{3}{8}$$

Como $P(D \cap E) = P(D) \times P(E)$, los eventos son independientes.

Ejercicio 9

Datos: MM = 119, MN = 76, NN = 13, n = 208.

a) Frecuencias genotípicas:

$$\Pr(MM) = \frac{119}{208} \approx 0.5721, \quad \Pr(MN) \approx 0.3654, \quad \Pr(NN) \approx 0.0625$$

b) Frecuencias alélicas:

$$\Pr(M) = \frac{2 \times 119 + 76}{416} \approx 0,7548, \quad \Pr(N) \approx 0,2452$$

En el ejemplo mencionado, donde las frecuencias alélicas permanecen constantes entre generaciones, las frecuencias genotípicas también permanecen constantes una vez alcanzado el equilibrio de Hardy-Weinberg. Esto se debe a los principios fundamentales del equilibrio:

Explicación:

- 1. Equilibrio de Hardy-Weinberg:
 - Cuando una población cumple con las condiciones de Hardy-Weinberg (tamaño poblacional grande, apareamiento aleatorio, sin mutaciones, migración o selección natural), las frecuencias genotípicas se estabilizan en una generación y permanecen constantes en generaciones posteriores.
 - Las frecuencias genotípicas siguen la distribución binomial:

 p^2 (homocigotos dominantes, AA), 2pq (heterocigotos, Aa), q^2 (homocigotos recesivos, aa),

donde p y q son las frecuencias alélicas (p + q = 1).

2. Comparación entre generaciones:

- Tabla 4 (Generación parental):
 - Muestra frecuencias genotípicas iniciales (que pueden no estar en equilibrio).
- Tabla 7 (Generación filial):
 - Si las frecuencias alélicas no cambiaron (p y q constantes), y el apareamiento es aleatorio, las frecuencias genotípicas en la generación filial habrán alcanzado p^2 , 2pq, y q^2 , manteniéndose estables en todas las generaciones futuras.

Ejercicio 11

Albinismo: $Pr(aa) = q^2 = 0,000016.$

Procedimiento:

$$q=\sqrt{0,000016}=0,004,\quad p=1-q=0,996$$

$$\Pr(AA)=p^2=(0,996)^2\approx 0,992016,\quad \Pr(Aa)=2pq\approx 0,007968$$

Verificar equilibrio HW:

a)
$$p = 0.4$$
, $q = 0.6$, $p^2 = 0.16$, $2pq = 0.48$, $q^2 = 0.36 \implies sf$

b)
$$p = 0.625, p^2 = 0.390625 \neq 0.50 \implies \mathbf{no}$$

c)
$$p = 0.5, p^2 = 0.25 \neq 0 \implies \mathbf{no}$$

d)
$$q = 1, q^2 = 1 \implies \mathbf{si}$$

Ejercicio 13

No enrollar lengua: $Pr(rr) = q^2 = (0.6)^2 = 0.36$. Enrollar: 1 - 0.36 = 0.64.

Ejercicio 14

Si
$$Pr(AA) = Pr(aa) = x$$
 y $Pr(Aa) = 1 - 2x$, entonces $p^2 = q^2 \implies p = q = 0.5$. Luego $x = (0.5)^2 = 0.25$.

Ejercicio 15

Cálculo de p = Pr(M), q = Pr(N) y verificación:

Población	p	q	¿Equilibrio?
Esquimal	0.913	0.087	Sí (cercano)
Aborigen Australiano	0.176	0.824	Aproximadamente
Egipcio	0.5225	0.4775	Sí (cercano)
Alemán	0.5505	0.4495	No
Chino	0.575	0.425	Sí
Nigeriano	0.5485	0.4515	Sí

Página 24 (Ejercicios 16-17)

Ejercicio 16

Guisantes amarillos (recesivo pp): $q = \sqrt{\Pr(\text{amarillo})}$

- Guyancourt: $q \approx 0.6928$, Pr(heterocigoto) = $2pq \approx 0.4256$
- Lonchez: $q \approx 0.5840, 2pq \approx 0.4858$
- Peyresourde: $q \approx 0.9148$, $2pq \approx 0.1558$

Fibrosis quística: $Pr(cc) = q^2 = 0.0004$

$$q = 0.02$$
, $p = 0.98$, $Pr(CC) = p^2 = 0.9604$, $Pr(Cc) = 2pq = 0.0392$

¿Apareamiento aleatorio? Sí, portadores asintomáticos y afectados raros.

Página 26 (Ejercicios 18-19)

Ejercicio 18 (Navajo)

Sistema ABO: $Pr(O) = r^2 = 0,775, Pr(B) = 0$

$$r = \sqrt{0.775} \approx 0.8803$$
, $q = 0$, $p = 1 - r \approx 0.1197$

Ejercicio 19 (Esquimal)

$$Pr(O) = r^2 = 0.411, Pr(B) = q^2 + 2qr = 0.035$$

- a) $r \approx 0.6412$, resolver $p^2 + 2pr = 0.538 \implies p \approx 0.33295$, $q \approx 0.02585$
- b) $r \approx 0.6412$, resolver $q^2 + 2qr = 0.035 \implies q \approx 0.0267$, $p \approx 0.3321$
- c) $Pr(AB) = 2pq \approx 0.0172$ vs. observado 0.014 (discrepancia por muestreo).

Página 29 (Ejercicio 20)

Ejercicio 20 (Rh)

- a) General: $q = \sqrt{0.145} \approx 0.3808$, $\Pr(RR) = p^2 \approx 0.3834$, $\Pr(Rr) = 2pq \approx 0.4718$
- b) Vascos: $q = \sqrt{0.43} \approx 0.6557$, $\Pr(RR) \approx 0.1185$, $\Pr(Rr) \approx 0.4515$

Página 31 (Ejercicios 21-22)

Ejercicio 21

Homozygoto recesivo estéril: $q_n=\frac{q_0}{1+nq_0},\,q_0=0{,}05$

- a) $q_{10} = \frac{0.05}{1+10\times0.05} = \frac{0.05}{1.5} \approx 0.0333$
- b) $\frac{q_0}{1+nq_0} = \frac{q_0}{2} \implies n = \frac{1}{q_0} = 20$ generaciones.

- a) $n = \frac{1}{q_0}$ generaciones para reducir q a la mitad.
- b) Fibrosis quística: $q_0=0.02,\,n=50$ generaciones, tiempo = $50\times30=1500$ años.

Página 32 (Ejercicio 23)

Ejercicio 23

Homozygotos recesivos no se reproducen. Genotipos iniciales: Pr(AA) = 0.25, Pr(Aa) = 0.5, Pr(aa) = 0.25.

Procedimiento: Solo AA y Aa se reproducen. Frecuencia alélica en reproductores:

$$p' = \frac{2 \times 0,25 + 0,5}{2 \times (0,25 + 0,5)} = \frac{1}{1,5} = \frac{2}{3}, \quad q' = \frac{1}{3}$$

Siguiente generación:

$$\Pr(AA) = (p')^2 = \frac{4}{9}, \quad \Pr(Aa) = 2p'q' = \frac{4}{9}, \quad \Pr(aa) = (q')^2 = \frac{1}{9}$$

Equilibrio alcanzado en $\Pr(AA)=0.25, \ \Pr(Aa)=0.5, \ \Pr(aa)=0.25$ con p=q=0.5.

Página 34 (Ejercicio 24)

Ejercicio 24 (Hibridación)

Proporción inicial: $40\,\%$ caballos (H), $60\,\%$ cebras (Z). Híbridos (X) no se reproducen.

a) Primera generación:

$$Pr(H) = (0.4)^2 = 0.16, \quad Pr(X) = 2 \times 0.4 \times 0.6 = 0.48, \quad Pr(Z) = (0.6)^2 = 0.36$$

b) Reproductores (solo H y Z):

$$\Pr(H) = \frac{0.16}{0.52} \approx 0.3077, \quad \Pr(Z) = \frac{0.36}{0.52} \approx 0.6923$$

c) Segunda generación:

$$\Pr(H) = (0.3077)^2 \approx 0.0947, \quad \Pr(X) = 2 \times 0.3077 \times 0.6923 \approx 0.4260, \quad \Pr(Z) = (0.6923)^2 \approx 0.4793$$

d) Tendencia: Caballos disminuyen, cebras aumentan, híbridos persisten.