

#### UNIVERSIDAD PRIVADA DE TACNA

#### **FACULTAD DE INGENIERIA**

Escuela Profesional de Ingeniería de Sistemas

# PWASP SCANNER – Sistema de Detección de Vulnerabilidades Web

Curso: Patrones de Software

Docente: Ing. Patrick Jose Cuadros Quiroga

Integrantes:

Ccalli Chata, Joel Robert (2017057528)

Jarro Cachi, Jose Luis (2020067148)

Tacna – Perú *2025* 

# PWASP SCANNER – Sistema de Detección de Vulnerabilidades Web, Tacna,2025

Presentado por:
•Joel Robert Ccalli Chata
•Jose Luis Jarro Cachi

| CONTROL DE VERSIONES |           |              |              |            |                  |
|----------------------|-----------|--------------|--------------|------------|------------------|
| Versión              | Hecha por | Revisada por | Aprobada por | Fecha      | Motivo           |
| 1.0                  | JCC       | JCC          | JCC          | 19/04/2025 | Versión Original |

# ÍNDICE GENERAL

| UNIVERSIDAD PRIVADA DE LACNA                | l |
|---------------------------------------------|---|
| I. Introducción                             | 4 |
| II. Justificación                           | 4 |
| III. Objetivos del Proyecto                 | 4 |
| IV. Alcance del Proyecto                    | 4 |
| V. Cronograma del Proyecto                  | 5 |
| VI. Presupuesto Referencial                 | 5 |
| VII. Recursos Necesarios                    | 5 |
| VIII. Metodología de Desarrollo             | 5 |
| IX. Impacto Esperado                        | 5 |
| X. Conclusiones                             | 6 |
| XI. Referencias Bibliográficas (Normas APA) | 6 |

#### I. Introducción

| Ítem         | Descripción                                                                              |
|--------------|------------------------------------------------------------------------------------------|
| Contexto     | La creciente cantidad de ataques informáticos y brechas de seguridad ha puesto en        |
|              | evidencia la necesidad de contar con herramientas automatizadas de detección de          |
|              | vulnerabilidades en aplicaciones web.                                                    |
| Problemática | Muchas pequeñas y medianas empresas carecen de recursos técnicos para realizar           |
|              | pruebas de penetración o auditorías periódicas en sus plataformas web. Esto las deja     |
|              | expuestas a ataques como XSS, SQL Injection, CSRF, etc.                                  |
| Solución     | El sistema PWASP SCANNER surge como una alternativa automatizada, eficiente y de         |
| Propuesta    | fácil acceso que permite escanear aplicaciones web y detectar vulnerabilidades conocidas |
|              | con base en los OWASP Top 10.                                                            |

#### II. Justificación

| Justificación | Detalle                                                                                                   |
|---------------|-----------------------------------------------------------------------------------------------------------|
| Técnica       | Facilita la implementación de pruebas de seguridad mediante un sistema automatizado, modular y escalable. |
| Económica     | Reduce significativamente el costo de auditorías de seguridad al automatizar procesos clave.              |
| Social        | Contribuye a la protección de la información personal y financiera de los usuarios.                       |
| Académica     | Fomenta el desarrollo de sistemas inteligentes orientados a la ciberseguridad en ambientes                |
|               | reales.                                                                                                   |

#### III. Objetivos del Proyecto

#### **Objetivo General**

Desarrollar un sistema web denominado **PWASP SCANNER**, capaz de detectar y reportar vulnerabilidades de seguridad en aplicaciones web, en base al estándar OWASP, desde una plataforma accesible y de fácil uso.

#### **Objetivos Específicos**

| Nº | Objetivo Específico                                                                      |
|----|------------------------------------------------------------------------------------------|
| 1  | Analizar las principales vulnerabilidades web basadas en OWASP Top 10.                   |
| 2  | Diseñar una arquitectura modular que permita escalabilidad y facilidad de mantenimiento. |
| 3  | Implementar un sistema que permita escaneo por URL, login y parámetros dinámicos.        |
| 4  | Generar reportes detallados y exportables sobre los hallazgos detectados.                |
| 5  | Validar el sistema en entornos de prueba simulando ataques reales controlados.           |

#### IV. Alcance del Proyecto

| Alcance Incluido                              | Alcance Excluido                                |
|-----------------------------------------------|-------------------------------------------------|
| Escaneo de sitios web por URL o subdominios.  | Pruebas sobre aplicaciones móviles o APIs REST. |
| Detección de vulnerabilidades OWASP (Top 10). | Corrección automática de vulnerabilidades.      |
| Generación de reportes PDF o CSV.             | Pruebas físicas de infraestructura de red.      |

| Panel de usuario con historial de escaneos. | Integraciones con otros sistemas de seguridad. |
|---------------------------------------------|------------------------------------------------|

### V. Cronograma del Proyecto

| Fase   | Actividades Principales                           | Duración  | Mes        |
|--------|---------------------------------------------------|-----------|------------|
| Fase 1 | Análisis de requerimientos, investigación OWASP   | 2 semanas | Julio      |
| Fase 2 | Diseño del sistema y arquitectura modular         | 2 semanas | Julio      |
| Fase 3 | Desarrollo del sistema (Frontend + Backend)       | 6 semanas | Ago - Sep  |
| Fase 4 | Pruebas de funcionamiento y revisión de seguridad | 2 semanas | Septiembre |
| Fase 5 | Documentación, validación final y despliegue      | 2 semanas | Octubre    |

# VI. Presupuesto Referencial

| Recurso                                           | Costo Unitario | Cantidad | Total Estimado |
|---------------------------------------------------|----------------|----------|----------------|
| Dominio y hosting                                 | S/ 250         | 1        | S/ 250         |
| Herramientas de desarrollo y testing (software)   | S/ 500         | 1        | S/ 500         |
| Personal técnico (desarrollador backend/frontend) | S/ 2000        | 2        | S/ 4000        |
| Diseño gráfico e interfaz UI/UX                   | S/ 800         | 1        | S/ 800         |
| Total estimado                                    |                |          | S/ 5,550       |

#### VII. Recursos Necesarios

| Tipo            | Recurso                      | Especificación                              |
|-----------------|------------------------------|---------------------------------------------|
| Humanos         | Desarrollador web full stack | Con conocimientos en seguridad informática. |
| Materiales      | Laptop o PC de desarrollo    | Procesador i5/i7, 8 GB RAM mínimo.          |
| Técnicos        | Lenguajes de programación    | Python, JavaScript, HTML5, CSS3             |
| Infraestructura | Hosting cloud                | Soporte PHP, Node.js, o Python Flask.       |

# VIII. Metodología de Desarrollo

| Metodología  | Descripción                                                                                                       |
|--------------|-------------------------------------------------------------------------------------------------------------------|
| Ágil         | El proyecto se ejecutará mediante iteraciones quincenales (sprints), con reuniones                                |
| (SCRUM)      | semanales de seguimiento. Cada entrega parcial será testeada con usuarios clave para retroalimentación inmediata. |
| Herramientas | Trello (gestión tareas), GitHub (versionamiento), Figma (prototipado), OWASP ZAP (comparación técnica).           |

# IX. Impacto Esperado

| Impacto   | Descripción                                                                                  |
|-----------|----------------------------------------------------------------------------------------------|
| Técnico   | Generar una solución automatizada, segura y escalable para la detección de vulnerabilidades. |
| Académico | Contribuir al estudio de la ciberseguridad en entornos web desde una perspectiva práctica.   |

**Empresarial** Proteger sitios web de pequeñas empresas contra ataques frecuentes y comunes.

#### X. Conclusiones

| Nº | Conclusión                                                                                                               |
|----|--------------------------------------------------------------------------------------------------------------------------|
| 1  | PWASP SCANNER representa una solución concreta frente al creciente problema de vulnerabilidades web en empresas locales. |
| 2  | La adopción de estándares internacionales como OWASP garantiza la fiabilidad del sistema.                                |
| 3  | Este proyecto es escalable y podrá adaptarse a nuevas amenazas con actualizaciones constantes.                           |

#### XI. Referencias Bibliográficas (Normas APA)

& Bartlett Learning.

- 1. OWASP Foundation. (2023). *OWASP Top 10: Web Application Security Risks*. https://owasp.org/www-project-top-ten/
- 2. Stallings, W. (2020). *Cryptography and Network Security: Principles and Practice* (8th ed.). Pearson.
- 3. Grimes, R. A. (2021). *Hacking the Hacker: Learn From the Experts Who Take Down Hackers*. Wiley.
- Wiley.
  4. Kim, D., & Solomon, M. G. (2020). *Fundamentals of Information Systems Security* (4th ed.). Jones
- 5. Anderson, R. (2020). Security Engineering: A Guide to Building Dependable Distributed Systems (3rd ed.). Wiley.
- 6. Allen, J. H. (2022). Software Security Engineering: A Guide for Project Managers. Addison-Wesley.
- 7. Bishop, M. (2018). Computer Security: Art and Science (2nd ed.). Addison-Wesley.
- 8. Zetter, K. (2015). Countdown to Zero Day: Stuxnet and the Launch of the World's First Digital Weapon. Crown Publishing.
- 9. OWASP ZAP. (2023). Zed Attack Proxy Project. https://owasp.org/www-project-zap/
- 10. ISO/IEC 27001:2022. (2022). *Information security, cybersecurity and privacy protection Information security management systems Requirements*. International Organization for Standardization.