

32 位微控制器 HC32F460 系列的 MCU 开发工具

用户手册

Rev2.0 2023年08月

适用对象

产品系列	产品型号
F系列	HC32F460

本手册以 HC32F460PETB 为例进行说明。

声明

- ★ 小华半导体有限公司(以下简称: "XHSC")保留随时更改、更正、增强、修改小华半导体产品和/或本文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。XHSC 产品依据购销基本合同中载明的销售条款和条件进行销售。
- ★ 客户应针对您的应用选择合适的 XHSC 产品,并设计、验证和测试您的应用,以确保您的应用满足相应 标准以及任何安全、安保或其它要求。客户应对此独自承担全部责任。
- ★ XHSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ★ XHSC 产品的转售,若其条款与此处规定不同,XHSC 对此类产品的任何保修承诺无效。
- ★ 任何带有"®"或"™"标识的图形或字样是 XHSC 的商标。所有其他在 XHSC 产品上显示的产品或服务名称均为其各自所有者的财产。
- ★ 本通知中的信息取代并替换先前版本中的信息。

©2023 小华半导体有限公司 保留所有权利

目 录

适用	月对象	₹		2
声	明			3
目	录			4
1	概过	<u>Ľ</u>		6
	1.1	开发工	具简介	6
	1.2		部件简介	
2	硬件			
	2.1		格格	
	2.2		明	
		2.2.1	系统总览	
		2.2.2	电源	
		2.2.3	调试接口	
		2.2.4	独立按键	
		2.2.4	指示灯	
		2.2.5	测试针	
		2.2.7	时钟	
		2.2.8	矩阵键盘	
		2.2.9	UART	
		2.2.10	12C	
		2.2.11	SPI	
		2.2.12	QSPI	
		2.2.13	TF CARD	
		2.2.14	SMART CARD	
			USB	
		2.2.16	CAN	
		2.2.17	AUDIO	
		2.2.18	OLED	13
		2.2.19	模拟功能	13
		2.2.20	跳针与拨动开关设置	14
		2.2.21	引脚复用	14
3	驱动	b库		15
	3.1	hc32f4	-60_ddl_SHA512	15
	3.2	hc32f4	l60_ddl	16
	3.3	hc32f4	l60_template	17

	3.4	IDE 支持包	17
4	工具使	題用	. 18
		调试说明	
	4.2	程序烧写	23
版本	修订记		. 24

1 概述

1.1 开发工具简介

本系列 Evaluation Board(以下简称 EVB)是基于 HC32F460PETB-LQFP100 芯片设计的开发工具,包含了板载 CMSIS DAP; EVB 为评估 HC32F460 提供了必要的外设配置。

1.2 电路板部件简介

1	USBFS VBUS 指示灯	2	Micro-USB(USBFS)
3	模式选择跳针(HC32F460JETA)	4	DAP 状态指示灯
5	SWD 接口(HC32F460JETA)	6	Micro-USB(USBDAP)
7	USBDAP VBUS 指示灯	8	整板电源开关
9	电源通道选择(5V0)	10	SWD 接口(HC32F460PETB)
11	HC32F460PETB 电源跳针	12	模式选择跳针(HC32F460PETB)
13	JTAG 接口	14	TRACE 接口
15	JTAG 电源指示灯	16	TRACE 电源指示灯
17	MCU 状态指示灯	18	唤醒按键
19	复位按键	20	矩阵键盘
21	32.768KHz 晶振	22	8MHz 晶振
23	TF CARD 接口	24	用户指示灯*4
25	MCU 引脚测试针*4	26	OLED 接口
27	喇叭接口	28	3.5mm 耳机接口
29	3.5mm LINE IN 接口	30	麦克风
31	AUDIO CODEC 时钟源选择拨码开关	32	ADC 电位器
33	ADC 接口	34	LVD 电位器
35	I2C 接口	36	CAN 接口
37	USART3/ SPI3 接口	38	USART4/ SPI4 接口
39	USART1/ SPI1 接口	40	USART3/ SPI3 接口
41	HC32F460PETB	42	SMART CARD 接口

2 硬件电路

2.1 电路规格

MCU 支持宽电压范围(1.8~3.6V),宽温度范围(-40~105℃),使用过程中请确保工作条件不要超过绝对最大额定值。

2.2 硬件说明

建议先前往小华半导体官方网站 https://www.xhsc.com.cn 找到对应的芯片型号并下载原理图。

HC32F460PETB-LQFP100

2.2.1 系统总览

EVB 硬件系统如下图所示:

2.2.2 电源

EVB 使用 MICRO USB 接口来为整板供电,请确保 USB 主机有足够的供电能力。

拨动开关 SW1 用于控制整板电源的通断。

2.2.3 调试接口

EVB 配置 SWD、JTAG、TRACE 接口以及板载 DAP,用户可根据实际需求选择接口进行调试。

2.2.4 独立按键

EVB 配置 2 个独立按键,分别为 1 个复位按键和 1 个唤醒按键。通过下表中的引脚连接到 MCU:

丝印	管脚/功能
К0	NRST/复位按键
K10	PB1/唤醒按键

2.2.5 指示灯

EVB 配置 10 个指示灯,分别为电源指示灯、状态指示灯和用户指示灯。

丝印	管脚/功能
LED0	PD3/红色指示灯
LED1	PD4/绿色指示灯
LED2	PD5/黄色指示灯
LED3	PD6/蓝色指示灯
LED4	VBUS_FS 指示灯
LED5	VBUS_DAP 指示灯
LED6	TRACE 电源指示灯
LED7	JTAG 电源指示灯
LED8	MCU 状态指示灯
LED9	DAP 状态指示灯

2.2.6 测试针

EVB 配置 4 组 2*13 测试针,连接至 MCU 引脚,提供用户测试或扩展功能。

2.2.7 时钟

EVB 配置 2 组外部时钟,分别为 32.768KHz 副晶振和 8MHz 主晶振。

2 组晶振通过下表中的引脚连接到 MCU:

丝印	管脚/功能	连接外设	
V1	PH0/ XTAL_OUT		
Y1	PH1/ XTAL_IN	8MHz 主晶振	
Y2	PC15/ XTAL32_IN	22 760KH- = E + F	
12	PC14/ XTAL32_OUT	32.768KHz 副晶振	

2.2.8 矩阵键盘

EVB 配置 3x3 矩阵键盘,为用户提供 9 个按键功能。

2.2.9 **UART**

EVB 配置 4 组 UART 接口,通过该接口与外部 UART 系统通信。

UART 接口管脚连接如下所示:

丝印	管脚/功能
	PC4/ USART1_RX
	PA7/ USART1_TX
J1	PC5/ USART1_RTS
	PB0/ USART1_CTS
	PA8/ USART1_CK
	PA3/ USART2_RX
	PA2/ USART2_TX
J5	PA1/ USART2_RTS
	PAO/ USART2_CTS
	PD7/ USART2_CK
	PC13/ USART3_RX
	PH2/ USART3_TX
J2	PEO/ USART3_RTS
	PE1/ USART3_CTS
	PB15/ USART3_CK
	PB9/ USART4_RX
	PE6/ USART4_TX
J6	PE5/ USART4_RTS
	PE4/ USART4_CTS
	PE3/ USART4_CK

2.2.10 I2C

EVB 配置一颗 32768*8bit 板载 EEPROM 芯片 BL24C256,可用于 I2C 功能测试。

EVB 配置 1组 I2C 接口,通过该接口与外部 I2C 系统通信。

I2C 接口管脚连接如下所示:

丝印	管脚/功能
12	PE15/ I2C3_SCL
J3	PB5/ I2C3_SDA

2.2.11 SPI

EVB 配置 4 组 SPI 接口,通过该接口与外部 SPI 系统进行通信的功能。

SPI 接口管脚连接如下所示:

丝印	管脚/功能
	PA7/ SPI1_NSS
11	PC5/ SPI1_MISO
J1	PBO/ SPI1_MOSI
	PA8/ SPI1_SCK
	PA2/ SPI2_NSS
15	PA1/ SPI2_MISO
J5	PAO/ SPI2_MOSI
	PD7/ SPI2_SCK
	PH2/ SPI3_NSS
J2	PEO/ SPI3_MISO
1 J2 	PE1/ SPI3_MOSI
	PB15/ SPI3_SCK
J6	PE6/ SPI4_NSS
	PE5/ SPI4_MISO
	PE4/ SPI4_MOSI
	PE3/ SPI4_SCK

2.2.12 QSPI

EVB 配置 1 颗 8MB 板载 QSPI FLASH 芯片 W25Q64,可用于 QSPI 功能测试。

2.2.13 TF CARD

EVB 配置 1 个 TF CARD 接口,通过该接口实现 TF CARD 的读写功能。

TF CARD 接口管脚功能如下所示:

丝印	管脚/功能
	PC8/ SDIO_D0
	PC9/ SDIO_D1
J29	PC10/ SDIO_D2
	PC11/ SDIO_D3
	PC12/ SDIO_CLK
	PD2/ SDIO_CMD

2.2.14 SMART CARD

EVB 配置 1 个 SMART CARD 接口,通过该接口实现 SMART CARD 的读写功能。

SMART CARD 接口管脚功能如下所示:

丝印	管脚/功能
	PAO/ RESET
	PA1/ PWR_EN
J20	PA2/ USART2_TX
	PA3/ USART2_RX
	PD7/ USART2_CK
	PE7/ CARD_DETECT

2.2.15 USB

EVB 配置 2 个 Micro-USB 接口,通过该接口可实现整板 5V0 供电的功能。

MCU 支持 USBFS 功能,芯片内部集成全速 PHY。

EVB 提供1个板载 USB 电源芯片 TPS2051BD,作为主机时可以为设备供电。

2.2.16 CAN

EVB 配置 1 个板载 CAN PHY 芯片 TJA1042T/3,支持 CAN2.0B 功能,并提供 1 个 CAN 接口,通过该接口实现与外部 CAN 系统进行通信的功能。

2.2.17 AUDIO

EVB 配置 1 个 Audio Codec 芯片 WM8731SEDS 和 Audio PA 芯片 BL6281,并提供一个板载 MIC、3.5mm 耳机接口和 Line in 接口以及一个喇叭接口,以实现录音以及音频输入和输出功能。

2.2.18 OLED

EVB 配置 1 个 OLED 接口,通过该接口实现 OLED 显示功能。

OLED 接口管脚功能如下所示:

丝印	管脚/功能
126	PD0/ I2C2_SCL
J26	PD1/ I2C2_SDA

2.2.19 模拟功能

EVB 配置 1 个 5pin 模拟功能排针,包含 4 个 ADC 输入通道,便于 ADC 功能测试。

EVB 配置 2 个可调电位器便于 ADC 和 LVD 功能测试,通过下表中的引脚连接到 MCU:

丝印	管脚/功能	连接外设
R76	PC0/ ADC12_IN10	10ΚΩ 可调电位器
R75	PB2/ PVD2EXINP	10ΚΩ 可调电位器

2.2.20 跳针与拨动开关设置

在上电前需对跳针和拨动开关状态进行确认,具体设置如下:

丝印	功能	设置	默认	
J20 M	MCU 功耗测试	短接: MCU 正常供电	短接	
		断开:串接表笔进行 MCU 功耗测试		
J10 DAP 模式选择	短接 12 脚:DAP 进入 UBOOT 模式以升级自身固件			
	DAP 模式选择	短接 23 脚:DAP 进入 ISP 模式以升级自身固件	断开	
		断开:DAP 进入 USER 模式		
124	J24 MCU 模式选择	短接: BOOT 模式	単く 丁丁	
J24		断开: USER 模式	断开	
J9	AUDIO 时钟选择	拨至右侧: 使用外部晶振	<i>→ I</i> mil	
		拨至左侧:使用 MCK	右侧	

2.2.21 引脚复用

EVB 上 MCU 部分引脚复用到多个外设模块,需要注意这导致复用了引脚的模块不能同时使用:

当使用 TRACE 接口时,USART4/ SPI4(J6)接口不能使用;

当使用 SMART CARD 时,USART2/ SPI2(J5)接口不能使用。

引脚复用如下所示:

PIN	USART4	SPI4	TRACE
PE3	СК	SCK	TRACED0
PE4	CTS	MOSI	TRACED1
PE5	RTS	MISO	TRACED2
PE6	TX	NSS	TRACED3

PIN	USART2	SPI2	SMART CARD
PA3	RX	-	RX
PA2	TX	NSS	TX
PA1	RTS	MISO	PWR_EN
PA0	CTS	MOSI	RESET
PD7	CK	SCK	CLK

3 驱动库

本系列芯片支持第三方 IDE 开发,主要支持 IAR 和 Keil MDK 等主流开发环境,请参考《小华半导体 MCU 开发环境使用》文档熟悉相关配置和使用。

熟悉完 IDE 开发工具,请前往小华半导体官方网站 https://www.xhsc.com.cn 找到对应的芯片型号 HC32F460PETB, 下载驱动库及样例:

HC32F460PETB-LQFP100

3.1 hc32f460_ddl_SHA512

hc32f460_ddl的 SHA512 哈希值。

3.2 hc32f460 ddl

驱动库及样例支持包的主要结构示例可参考下图(具体构成以实际使用的 DDL 支持包为准):

documents:

该目录提供 chm 文件,包含代码注释、数据结构、API 描述等。

drivers:

该目录下主要包括开发板的 BSP 代码,CMSIS 文件,各个 IP 操作所使用的 API、数据结构的头文件及源文件,用户可直接用于自己的应用程序也可以借此熟悉底层寄存器的操作。

midwares:

该目录主要包括为实现专用功能所配置的头文件和源文件,以及第三方提供的文件。

projects:

该目录主要包括各个 IP 常用功能的使用例程(同时支持 IAR 和 Keil 两种开发工具)和高级应用,用户可使用该样例快速熟悉各个 IP 的常用功能的实现方式及驱动库的使用方法,该样例可以配合该系列芯片配套的硬件 Demo 板直接进行下载、调试和运行。

utils:

该目录主要包括一些辅助工具和脚本。

3.3 hc32f460 template

template 主要提供该系列 MCU 对应的系统最小工程,用户如果希望针对特定型号的芯片新建开发自己的应用程序(包括特殊需求的驱动),不需从零开始建立工程,可直接使用该 template,直接开发应用相关的驱动或应用程序即可。

3.4 IDE 支持包

IDE 支持包主要提供了该芯片用于 Keil MDK 的 pack 文件。

注意:

在使用 Keil 作为开发工具进行调试和下载时,需要确保正确安装该系列芯片的 Keil 工具支持包,或者将<存放目录>:\mcu\MDK*.FLM 文件拷贝到个人电脑的 Keil 安装路径(<安装目录>:\Keil\ARM\Flash\)下,并在 Keil 工程配置下载选项中配置和选择该适合自己所使用芯片的*.FLM 文件。

4 工具使用

4.1 调试说明

通过 CMSIS DAP 实现串口功能时,若电脑操作系统为 Win7,则需要先安装虚拟串口驱动(Win10 可忽略此步骤)。请联系相关技术支持人员获取虚拟串口驱动 vcom_driver_xhsc 文件,在打开设备管理器后,按以下步骤安装:

驱动开始安装,几秒后显示如下画面即表示安装正确:

4.2 程序烧写

HC32F460 系列 MCU 可通过小华编程器进行程序烧写。

在线编程器支持 UART 模式,接线方式如下图所示:

离线编程器支持 UART 模式和 SWD 模式,接线方式如下图所示:

针对具体的烧写流程,请前往小华半导体官方网站 https://www.xhsc.com.cn 找到对应的芯片型号,参考小华编程器资料进行操作。

版本修订记录

版本号	修订日期	修订内容
Rev1.0	2020/11/20	初版发布。
Rev1.1	2022/07/15	公司 Logo 更新。
Rev2.0	2023/08/07	修改硬件说明,修改 ddl 文件结构。