

Representation

Template Models

Plate Models

Modeling Repetition

Daphne Koller

Nested Plates

courses c students s

Daphne Koller

Overlapping Plates

Explicit Parameter Sharing

Plate Dependency Model

- For a template variable $A(U_1,...,U_k)$:
 - Template parents $B_1(U_1),...,B_m(U_m)$

Ground Network

Let $A(U_1,...,U_k)$ with parents $B_1(U_1),...,B_m(U_m)$

• for any instantiation $u_1,...,u_k$ to $U_1,...,U_k$ we would have:

$$B(\overline{a})$$
 $B(\overline{a})$ $D(c)$ $L(s)$ $B(a,...a, b, b)$

Plate Dependency Model

Let $A(U_1,...,U_k)$ with parents $B_1(U_1),...,B_m(U_m)$

- For each i, we must have $\mathbf{U}_i \subseteq U_1,...,U_k$ No indices in parent that are not in child

- Template for an infinite set of BNs, each induced by a different set of domain objects
- Parameters and structure are reused within a BN and across different BNs
- Models encode correlations across multiple objects, allowing <u>collective inference</u>
- Multiple "languages", each with different tradeoffs in expressive power