Amendments to the Claims:

The listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

Claims 1-10 (eanceled with drawn).

Claim 11 (currently amended): An enantiomerically pure compound of the formula I wherein X is N and n is 1

$$\begin{array}{ccc}
CR^{2}_{3} & & & \\
& & & \\
& & & \\
HXR^{1}_{n} & & & \\
\end{array}$$

wherein A is an enantiomerically pure centre CH; Z is hydrogen or fluoro;

and wherein R^1 is selected from hydrogen or from straight chain or branched, saturated or unsaturated C_{1-8} hydrocarbon optionally substituted by one or more hydroxy, halo, aryl, cyclo C_{1-8} alkyl;

each R^3 is independently selected from hydrogen or halo, except when Z = F, then $R^3 \neq F$; or straight or branched chain, saturated or unsaturated C_{1-4} alkyl, alkenyl, alkynyl or aryl;

each optionally substituted by hydroxy, halo, saturated or unsaturated C₁₋₄ alkyl, alkenyl or alkynyl, aryl, cyclo C₁₋₆ alkyl, carbonyl, carboxyl, amino, amido;

each R^2 is independently selected from hydrogen, straight chain or branched, saturated or unsaturated C_{1-8} alkyl, <u>alkenyl</u>, <u>or alkynyl</u>; <u>each</u> optionally substituted by hydroxy, halo, aryl, cyclo C_{1-6} alkyl, carbonyl, carboxyl, amino, amido, or aryl; and

one R¹ and one of R² together may form an alkylene group as part of a heterocyclic ring;

with the proviso that when two of R^2 are hydrogen, CR^3_2 is CPh_2 and Z is hydrogen, R^1 and the other R^2 do not form together a five membered heterocyclic (pyrrolidone) ring.

Claims 12-14 (canceled withdrawn).

Claims 15-21 (canceled withdrawn).

Claim 22 (previously presented) The compound as claimed in claim 11, wherein R¹ is hydrogen, CR²₃ is Ch₂Ph, CR³₂ is CPh₂ and Z is hydrogen as shown in formula III: