Mathematical Tripos: Part IB

DJS/Lent 2015

Statistics: Example Sheet 1 (of 3)

Comments and corrections to david@statslab.cam.ac.uk

- 1. Ask your supervisor to test you on the sheet of common distributions handed out in lectures
- 2. (Probability review) If $X \sim \text{Exponential}(\lambda)$ and $Y \sim \text{Exponential}(\mu)$ are independent, derive the distribution of $\min(X,Y)$. If $X \sim \text{Gamma}(\alpha,\lambda)$ and $Y \sim \text{Gamma}(\beta,\lambda)$ are independent, derive the distributions of X+Y and X/(X+Y).
- 3. In a genetics experiment, a sample of n individuals was found to include a, b, c of the three possible genotypes GG, Gg, gg respectively. The population frequency of a gene of type G is $\theta/(\theta+1)$, where θ is unknown, and it is assumed that the individuals are unrelated and that two genes in a single individual are independent. Show that the likelihood of θ is proportional to $\theta^{2a+b}/(1+\theta)^{2a+2b+2c}$ and that the maximum likelihood estimate of θ is (2a+b)/(b+2c).
- 4. (a) Let X_1, \ldots, X_n be independent Poisson random variables, with X_i having mean $i\theta$, for some $\theta > 0$. Show that $T = T(\mathbf{X}) = \sum_{i=1}^n X_i$ is a sufficient statistic for θ and write down the distribution of T. Show that the maximum likelihood estimator $\hat{\theta}$ of θ is a function of T, and show that it is unbiased.
 - (b) For some n > 2, let X_1, \ldots, X_n be iid with $X_i \sim \text{Exponential}(\theta)$. Find a minimal sufficient statistic T and write down its distribution. Show that the maximum likelihood estimator $\hat{\theta}$ of θ is a function of T, and show that it is biased, but asymptotically unbiased. Find an injective function h on $(0, \infty)$ such that, writing $\psi = h(\theta)$, the maximum likelihood estimator $\hat{\psi}$ of the new parameter ψ is unbiased.
- 5. Suppose X_1, \ldots, X_n are independent random variables with distribution Bin(1, p).
 - (a) Show that a sufficient statistic for $\theta = (1-p)^2$ is $T(\mathbf{X}) = \sum_{i=1}^n X_i$ and that the MLE for θ is $\left(1 \frac{1}{n}T\right)^2$. Hint: use the chain rule, $df/d\theta = (df/dp)(dp/d\theta)$.
 - (b) Show that the MLE is a biased estimator for θ . Let $\dot{\theta} = 1(X_1 + X_2 = 0)$. Show that $\tilde{\theta}$ is unbiased for θ . Use the Rao-Blackwell theorem to find a function of T which is an unbiased estimator for θ .
- 6. For some $n \geq 2$, suppose that X_1, \ldots, X_n are iid random variables uniformly distributed on $[\theta, 2\theta]$ for some $\theta > 0$. Show that $\tilde{\theta} = \frac{2}{3}X_1$ is an unbiased estimator of θ . Show that $T(\mathbf{X}) = (\min_i X_i, \max_i X_i)$ is a minimal sufficient statistic for θ . Use the Rao-Blackwell theorem to find an unbiased estimator $\hat{\theta}$ of θ which is a function of T and whose variance is strictly smaller than the variance of $\tilde{\theta}$ for all $\theta > 0$.

- 7. (a) Let $X_1, ..., X_n$ be iid with $X_i \sim U[0, \theta]$. Find the maximum likelihood estimator $\hat{\theta}$ of θ . Show that the distribution of $R(\mathbf{X}, \theta) = \hat{\theta}/\theta$ does not depend on θ , and use $R(\mathbf{X}, \theta)$ to find a $100(1 \alpha)\%$ confidence interval for θ for $0 < \alpha < 1$.
 - (b) The lengths (in minutes) of calls to a call centre may be modelled as iid exponentially distributed random variables, and n such call lengths are observed. The original sample is lost, but the data manager has noted down n and t where t is the total length of the n calls in minutes. Derive a 95% confidence interval for the probability that a call is longer than 2 minutes if n = 50 and t = 105.3.
- 8. Suppose that $X_1 \sim N(\theta_1,1)$ and $X_2 \sim N(\theta_2,1)$ independently, where θ_1 and θ_2 are unknown. Show that $(\theta_1 X_1)^2 + (\theta_2 X_2)^2$ has a χ^2_2 distribution and that this is the same as Exponential($\frac{1}{2}$), i.e., the exponential distribution with mean 2.

Show that both the square S and circle C in \mathbb{R}^2 , given by

$$S = \{ (\theta_1, \theta_2) : |\theta_1 - X_1| \le 2.236; |\theta_2 - X_2| \le 2.236 \}$$

$$C = \{ (\theta_1, \theta_2) : (\theta_1 - X_1)^2 + (\theta_2 - X_2)^2 \le 5.991 \}$$

are 95% confidence regions for (θ_1, θ_2) .

Hint: $\Phi(2.236) = (1 + \sqrt{.95})/2$, where Φ is the distribution function of N(0,1). What might be a sensible criterion for choosing between S and C?

9. Suppose that the number of defects on a roll of magnetic recording tape is modelled with a Poisson distribution for which the mean λ is known to be either 1 or 1.5. Suppose the prior mass function for λ is

$$\pi_{\lambda}(1) = 0.4, \quad \pi_{\lambda}(1.5) = 0.6.$$

A random sample of five rolls of tape has $\mathbf{x} = (3, 1, 4, 6, 2)$ defects respectively. Show that the posterior distribution for λ given \mathbf{x} is

$$\pi_{\lambda \mid \mathbf{X}}(1 \mid \mathbf{x}) = 0.012, \quad \pi_{\lambda \mid \mathbf{X}}(1.5 \mid \mathbf{x}) = 0.988.$$

- 10. Suppose X_1, \ldots, X_n are iid with (conditional) probability density function $f(x \mid \theta) = \theta x^{\theta-1}$ for 0 < x < 1 (and is zero otherwise), for some $\theta > 0$. Suppose that the prior for θ is $Gamma(\alpha, \beta)$, $\alpha > 0$, $\beta > 0$. Find the posterior distribution of θ given $\mathbf{X} = (X_1, \ldots, X_n)$ and the Bayesian estimator of θ under quadratic loss.
- +11 For some $n \geq 3$, let $\epsilon_1, \ldots, \epsilon_n$ be iid with $\epsilon_i \sim N(0,1)$. Set $X_1 = \epsilon_1$ and $X_i = \theta X_{i-1} + (1-\theta^2)^{1/2} \epsilon_i$ for $i = 2, \ldots, n$ and some $\theta \in (-1,1)$. Find a sufficient statistic for θ that takes values in a subset of \mathbb{R}^3 .

Statistics: Example Sheet 2 (of 3)

Comments and corrections to david@statslab.cam.ac.uk

- 1. Let X have density function $f(x;\theta) = \frac{\theta}{(x+\theta)^2}$, x > 0, where $\theta \in (0,\infty)$ is an unknown parameter. Find the likelihood ratio test of size 0.05 of $H_0: \theta = 1$ against $H_1: \theta = 2$, and show that the probability of Type II error is 19/21.
- 2. Let X_1, X_2, \ldots, X_n be iid random variables, each with a Poisson distribution with parameter θ (and therefore with mean θ and variance θ). Find the form of the likelihood ratio test of $H_0: \theta = 1$ against $H_1: \theta = 1.21$. By using the Central Limit Theorem to approximate the distribution of $\sum_i X_i$, show that the smallest value of n required to make $\alpha = 0.05$ and $\beta \leq 0.1$ (where α and β are the Type I and Type II error probabilities) is somewhere near 212.
- 3. Let f_0 and f_1 be probability mass functions for $\mathbf{X} = (X_1, \dots, X_n)$ on a countable set \mathcal{X}^n . State and prove a version of the Neyman–Pearson lemma for a size α test of $H_0: f = f_0$ against $H_1: f = f_1$, assuming that α is such that there exists a likelihood ratio test of exact size α .
- 4. Let $X \sim \text{Bin}(2,\theta)$ and consider testing $H_0: \theta = \frac{1}{2}$ against $H_1: \theta = \frac{3}{4}$. Find the possible values of α for which there exists a likelihood ratio test with size exactly α .
- 5. Let X_1, \ldots, X_n be iid random variables each with a $N(\mu_0, \sigma^2)$ distribution, where μ_0 is known and σ^2 is unknown. Find the best (most powerful) test of size at most α for testing $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 = \sigma_1^2$ for known σ_0^2 and $\sigma_1^2 (> \sigma_0^2)$. Show that this test is a size α uniformly most powerful test for testing $H'_0: \sigma^2 \leq \sigma_0^2$ against $H'_1: \sigma^2 > \sigma_0^2$.
- 6. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Exponential}(\theta)$. Find the likelihood ratio test of size α of $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1 \ (> \theta_0)$ and derive an expression for the power function. Is the test uniformly most powerful for testing $H_0: \theta = \theta_0$ against $H_1: \theta > \theta_0$? Is it uniformly most powerful for testing $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$?
- 7. Let $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ be independent, with $X_1, \ldots, X_n \sim \text{Exponential}(\theta_1)$ and $Y_1, \ldots, Y_n \sim \text{Exponential}(\theta_2)$. Recalling the forms of the relevant MLEs from Sheet 1, show that the likelihood ratio of $H_0: \theta_1 = \theta_2$ and $H_1: \theta_1 \neq \theta_2$ is a monotone function of |t-1/2|, where t is the observed value of the statistic T given by

$$T = \frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} X_i + \sum_{i=1}^{n} Y_i}.$$

By writing down the distribution of T under H_0 , express the likelihood ratio test of size α in terms of |T-1/2| and the percentage points of a beta distribution. Hint: use Question 2 on Example Sheet 1.

- 8. A machine produces plastic articles (many of which are defective) in bunches of three articles at a time. Under the null hypothesis that each article has a constant (but unknown) probability θ of being defective, write down the probabilities $p_i(\theta)$ of a bunch having i defective articles, for i=0,1,2,3. In an trial run in which 512 bunches were produced, the numbers of bunches with i defective articles were 213 (i=0), 228 (i=1), 57 (i=2) and 14 (i=3). Carry out Pearson's chi-squared test at the 5% level of the null hypothesis, explaining carefully why the test statistic should be referred to the χ_2^2 distribution.
- 9. A random sample of 59 people from the planet Krypton yielded the results below.

		Eye-colour	
		1 (Blue)	2 (Brown)
Sex	1 (Male)	19	10
	2 (Female)	9	21

Carry out Pearson's chi-squared test at the 5% level of the null hypothesis that sex and eye-colour are independent factors on Krypton. Now carry out the corresponding test at the 5% level of the null hypothesis that each of the cell probabilities is equal to 1/4. Comment on your results.

10. Write down from lectures the model and hypotheses for a test of homogeneity in a two-way contingency table. By first deriving the MLEs under each hypothesis, show that the likelihood ratio and Pearson's chi-squared tests are identical to those for the independence test. Apply the homogeneity test to the data below from a clinical trial for a drug, obtained by randomly allocating 150 patients to three equal groups (so the row totals are fixed).

	Improved	No difference	Worse
Placebo	18	17	15
Half dose	20	10	20
Full dose	25	13	12

 $^{^{+}}$ 11 In Question 3, does there exist a version of the Neyman–Pearson lemma when a likelihood ratio test of exact size α does not exist?

Statistics: Example Sheet 3 (of 3)

Comments and corrections to david@statslab.cam.ac.uk

- 1. (a) Let $\mathbf{X} \sim N_n(\boldsymbol{\mu}, \Sigma)$, and let A be an arbitrary $m \times n$ matrix. Prove directly from the definition that $A\mathbf{X}$ has an m-variate normal distribution. Show that $\operatorname{cov}(A\mathbf{X}) = A\Sigma A^T$, and that $A\mathbf{X} \sim N_m(A\boldsymbol{\mu}, A\Sigma A^T)$. Give an alternative proof that $A\mathbf{X} \sim N_m(A\boldsymbol{\mu}, A\Sigma A^T)$ using moment generating functions.
 - (b) Let $\mathbf{X} \sim N_n(\boldsymbol{\mu}, \Sigma)$, and let $\mathbf{X_1}$ denote the first n_1 components of \mathbf{X} . Let $\boldsymbol{\mu_1}$ denote the first n_1 components of $\boldsymbol{\mu}$, and let Σ_{11} denote the upper left $n_1 \times n_1$ block of Σ . Show that $\mathbf{X_1} \sim N_{n_1}(\boldsymbol{\mu_1}, \Sigma_{11})$.
- 2. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, where σ^2 is unknown, and suppose we are interested in testing $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$. Letting $\bar{X} = n^{-1} \sum_{i=1}^n X_i$ and $S_{XX} = \sum_{i=1}^n (X_i \bar{X})^2$, show that the likelihood ratio can be expressed as

$$\Lambda_{\mathbf{X}}(H_0, H_1) = \left(1 + \frac{T^2}{n-1}\right)^{n/2},$$

where $T = \frac{n^{1/2}(\bar{X}-\mu_0)}{\{S_{XX}/(n-1)\}^{1/2}}$. Determine the distribution of T under H_0 , and hence determine the size α likelihood ratio test.

- 3. Statisticians A and B obtain independent samples X_1, \ldots, X_{10} and Y_1, \ldots, Y_{17} respectively, both from a $N(\mu, \sigma^2)$ distribution with both μ and σ^2 unknown. They estimate (μ, σ^2) by $(\bar{X}, S_{XX}/9)$ and $(\bar{Y}, S_{YY}/16)$ respectively, where, for example, $\bar{X} = \frac{1}{10} \sum_{i=1}^{10} X_i$ and $S_{XX} = \sum_{i=1}^{10} (X_i \bar{X})^2$. Given that $\bar{X} = 5.5$ and $\bar{Y} = 5.8$, which statistician's estimate of σ^2 is more probable to have exceeded the true value by more than 50%? Find this probability (approximately) in each case. [Hint: This is something of a 'trick' question. Why? You may find χ^2 tables helpful.]
- 4. Suppose that X_1, \ldots, X_m are iid $N(\mu_X, \sigma_X^2)$, and, independently, Y_1, \ldots, Y_n are iid $N(\mu_Y, \sigma_Y^2)$, with μ_X , μ_Y , σ_X^2 and σ_Y^2 unknown. Write down the distributions of S_{XX}/σ_X^2 and S_{YY}/σ_Y^2 . Derive a $100(1-\alpha)\%$ confidence interval for σ_X^2/σ_Y^2 .
- 5. Consider the simple linear regression model $Y_i = a + bx_i + \varepsilon_i$, i = 1, ..., n, where $\varepsilon_1, ..., \varepsilon_n \stackrel{iid}{\sim} N(0, \sigma^2)$ and $\sum_{i=1}^n x_i = 0$. Derive from first principles explicit expressions for the MLEs \hat{a} , \hat{b} and $\hat{\sigma}^2$. Show that we can obtain the same expressions if we regard the simple linear regression model as a special case of the general linear model $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$ and specialise the formulae $\hat{\boldsymbol{\beta}} = (X^TX)^{-1}X^T\mathbf{Y}$ and $\hat{\sigma}^2 = n^{-1}\|\mathbf{Y} X\hat{\boldsymbol{\beta}}\|^2$.

- 6. Consider the model $Y_i = bx_i + \varepsilon_i$, i = 1, ..., n, where the ε_i are independent with mean zero and variance σ^2 (regression through the origin). Write this in the form $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, and find the least squares estimator of b.
 - The relationship between the range in metres, Y, of a howitzer with muzzle velocity v metres per second fired at angle of elevation α degrees is assumed to be $Y = \frac{v^2}{g}\sin(2\alpha) + \varepsilon$, where g = 9.81 and where ε has mean zero and variance σ^2 . Estimate v from the following independent observations made on 9 shells.
 - 35 40 α (deg) 5 10 15 20 25 30 45 $\sin 2\alpha$ 0.17360.34200.50.64280.76600.86600.93970.98481 4860 24350 26400 range (m) 9580 14080 18100 21550 27700 28300
- 7. Consider the model $Y_i = \mu + \varepsilon_i$, i = 1, ..., n, where ε_i are iid $N(0, \sigma^2)$ random variables. Write this in matrix form $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, and find the MLE $\hat{\boldsymbol{\beta}}$. Find the fitted values, the residuals and the residual sum of squares. Show how applying Theorem 13.2 (in lectures) to this case gives the independence of \bar{Y} and S_{YY} for an iid sample from $N(\mu, \sigma^2)$. Write down an unbiased estimate $\tilde{\sigma}^2$ of σ^2 .
- 8. Consider the one-way analysis of variance (ANOVA) model $Y_{ij} = \mu_i + \varepsilon_{ij}$, $i = 1, \ldots, I$, $j = 1, \ldots, n_i$, where $(\varepsilon_{ij}) \stackrel{iid}{\sim} N(0, \sigma^2)$. Derive from first principles explicit expressions for the MLEs $\hat{\mu}_1, \ldots, \hat{\mu}_I$ and $\hat{\sigma}^2$. Show that we can obtain the same expressions if we regard the ANOVA model as a special case of the general linear model $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ and specialise the formulae $\hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{Y}$ and $\hat{\sigma}^2 = n^{-1} \|\mathbf{Y} X \hat{\boldsymbol{\beta}}\|^2$.
- 9. Consider the linear model $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ where \mathbf{Y} is an $n \times 1$ vector of observations, X is a known $n \times p$ matrix of rank p, $\boldsymbol{\beta}$ is a $p \times 1$ unknown parameter vector and $\boldsymbol{\varepsilon}$ is an $n \times 1$ vector of uncorrelated random variables with mean zero and variance σ^2 (i.e. we are *not* assuming that the ε_i are normally distributed). Let $\hat{\boldsymbol{\beta}}$ denote the least squares estimate of $\boldsymbol{\beta}$, $\hat{\mathbf{Y}}$ denote the vector of fitted values, and let \mathbf{R} be the vector of residuals. Find $\mathbb{E}(\mathbf{R})$ and $\text{cov}(\mathbf{R})$. Show that $\text{cov}(\mathbf{R}, \hat{\boldsymbol{\beta}}) = 0$ and $\text{cov}(\mathbf{R}, \hat{\mathbf{Y}}) = 0$.
- 10. For the simple linear regression model $Y_i = a + bx_i + \varepsilon_i$, i = 1, ..., n, where $\sum_i x_i = 0$ and where the ε_i are iid $N(0, \sigma^2)$ random variables, the MLEs \hat{a} and \hat{b} were found in Question 5. Find the distribution of $\hat{\beta} = (\hat{a}, \hat{b})^T$. Find a 95% confidence interval for b and for the mean value of Y when x = 1. [Hint: Look at "Applications of the distribution theory" in lectures.]
- +11 Consider the one-way ANOVA model of Question 8. Letting $\bar{Y}_{i+} = n_i^{-1} \sum_{j=1}^{n_i} Y_{ij}$ and $\bar{Y}_{++} = n^{-1} \sum_{i=1}^{I} \sum_{j=1}^{n_i} Y_{ij}$ with $n = n_1 + \ldots + n_I$, show from first principles that the size α likelihood ratio test of equality of means rejects H_0 if

$$F \equiv \frac{\frac{1}{I-1} \sum_{i=1}^{I} n_i (\bar{Y}_{i+} - \bar{Y}_{i++})^2}{\frac{1}{n-I} \sum_{i=1}^{I} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i+})^2} > F_{I-1,n-I}(\alpha),$$

i.e. if 'the ratio of the between groups sum of squares to the within groups sum of squares is large'.