

Conceitos Básicos

Prof. Dr. Tiago Araújo

tiagodavi70@ua.pt

Material

SCC0504 - Programação Orientada a Objetos (2018)

Luiz Eduardo Virgilio da Silva

Sumário

Paradigmas de Programação

Os pilares da POO

Classes e Objetos

Tipos de acessos

Programação Não Estruturada

Programação Estruturada

Programação Orientada a Objetos

Programação Não Estruturada

O uso indiscriminado de transferência de controle era considerado a raiz de muitos problemas

- Legibilidade
- Podemos usar o comando GOTO (com cuidado)

Na programação estruturada os comandos de um programa são executadas sequencialmente

Vários comandos permitem que essa sequência seja quebrada, causando o que é chamado de transferência de controle

Porém, de forma organizada

Programação Estruturada

Os procedimentos são combinados para prover a funcionalidade desejada

O programa pode ser visto como uma sequência de chamadas de procedimento. Programa principal é responsável por passar os dados para as chamadas individuais para serem processados

Ex.: C, Pascal, Fortran

Devido aos requisitos atuais, os softwares têm se tornado cada vez mais complexos e maiores

Isso tem levado a busca de meios para tornar a tarefa de programação mais produtiva

Ainda não existe uma resposta definitiva a essa busca, mas há um consenso de que a Programação Orientada a Objetos (POO) consegue produzir resultados mais competitivos do que as outras abordagens

Os programa OO comumente são mais fáceis de entender, corrigir e modificar

POO é caracterizado pelo uso de um conjunto de objetos interagentes, cada qual responsável pelo gerenciamento de seu estado interno

- Os objetos interagem uns com os outros através da troca de mensagens
- Cada objeto é responsável pela inicialização e destruição de seus dados internos

Ex.: Eiffel, SmallTalk, C++, Java, C#

Na programação estruturada

- Procedimentos são implementados em blocos e a comunicação entre eles se dá pela passagem de dados
- Um programa estruturado, quando em execução, é caracterizado pelo acionamento de procedimentos cuja tarefa é a manipulação de dados

Na programação orientada a objetos

- Dados e procedimentos são encapsulados em um só elemento denominado objeto
- O estabelecimento de comunicação entre objetos (envio e recebimento de mensagens) caracteriza a execução do programa

Vantagens da POO em relação à programação estruturada

- Maior índice de reaproveitamento de código
- Maior facilidade de manutenção
- Menos código gerado
- Maior confiabilidade no código
- · Maior facilidade de gerenciamento do código (reduz grandes problemas para problemas menores)

Um objeto é uma entidade que formaliza o modo pelo qual compreendemos algo no domínio do problema

- Reflete a capacidade do sistema de guardar informações sobre o elemento abstraído e interagir com ele
- Entidade o mais próximo possível das entidades do mundo real aquilo que é tangível ou visível
- Dessa forma, os objetos são uma forma de diminuir o gap semântico
- Diferença entre o domínio de problemas e soluções

A um objeto sempre estarão associados

- Estado
 - Definido pelas propriedades (atributos) que ele possui e pelos valores que elas estão assumindo
- Comportamento
 - Definido pela forma como ele age e reage, em termos de mudança de seu estado e o relacionamento com os demais objetos do sistema (métodos)
- Identidade
 - Cada objeto é único

Exemplos: Cachorro, mesa, televisão, bicicleta, lâmpada, ...

Lâmpada

- Atributos: ligada, desligada
- Métodos: ligar, desligar

Rádio

- · Atributos: ligado, desligado, volume, estação, ...
- Métodos: ligar, desligar, aumentar/abaixar volume, sintonizar,...

Cachorro

- Atributos: nome, cor, raça, peso, ...
- Métodos: latir, morder, correr, dormir, ...

Bicicleta - ??

Bicicleta

- · Atributos: marcha, cadência do pedal, velocidade, ...
- Métodos: mudar marcha, mudar cadência do pedal, frear, ...

Objetos podem conter objetos como atributos

Uma classe descreve um conjunto de objetos semelhantes

Atributos e métodos que resumem as características comuns de vários objetos

Diferença entre classe e objeto

- Objeto constitui uma entidade concreta com tempo e espaço de existência
- Classe é tão-somente uma abstração

Em termos de programação, definir uma classe significa formalizar um tipo de dado (TAD) e todas as operações associadas a esse tipo, enquanto declarar objetos significa criar variáveis do tipo definido

Classe é um template ("forma") para a criação de objetos

 Uma classe especifica os tipos de dados (atributos) e operações (métodos) suportadas por um conjunto de objetos

Um objeto é uma instância de uma classe

- Criação de um objeto a partir de uma classe é chamada de instanciação
- É muito comum que em um programa existam várias instâncias de uma mesma classe
 - O que diferencia cada uma?

= Objeto

= Classe

Cada instância é formada por valores de atributos únicos e um comportamento comum definido pela classe

Inúmeras instâncias podem ser criadas a partir de uma classe

O estado de cada instância é representado pelos valores de seus atributos, que podem ser diferentes

Diferentes objetos de uma mesma classe possuem suas próprias cópias de cada atributo

- A menos que isso seja desejado e explicitamente declarado
- Neste caso, um único atributo pode ser compartilhado para todas as instâncias

Os métodos são operações que podem ser executadas pelos objetos

- Valores dos atributos são (normalmente) acessados através dos métodos definidos pela classe
 - Information-hiding
- O serviço oferecido pelos método é um comportamento específico, residente no objeto, que define como ele deve agir quando exigido

Tipos de Acesso

Uma classe pode definir o tipo de acesso à seus membros (atributos e métodos)

Público

Atributo ou método da classe pode ser acessado por todas as demais entidades do sistema

Protegido

 Atributo ou método da classe pode ser acessado somente por classes da mesma hierarquia e mesmo pacote

Privado

Atributo ou método da classe pode ser acessado somente por métodos da própria classe

Tipos de Acesso

A escolha dos tipos de acesso é muito importante na POO

Define o escopo dos atributos e métodos

Em geral, atributos são declarados privados

- Métodos da própria classe são responsáveis por modificar e recuperar o estado dos atributos
 - Tais métodos são públicos
 - Setters e getters
 - Garantem a estabilidade e segurança
 - Information-hiding

Representação Gráfica

A notação gráfica de uma classe permite visualizar uma abstração independente de qualquer linguagem de implementação específica, dando ênfase às partes mais importantes: seu nome, atributos e métodos (operações)

Também é possível representar tipos de acesso

Nome
Atributo1;
Atributo2;
...
Metodo1();
Metodo2();
...

Pilares da POO

O paradigma orientado a objetos define alguns princípios básicos que devem ser seguidos

- Abstração
- Encapsulamento
- Herança
- Polimorfismo
- Mensagens

Abstração

Consiste em identificar os requisitos de software e modelá-los em classes

• Ignorar aspectos não-relevantes, concentrando-se apenas nos aspectos principais do problema

Classes são abstrações de conceitos

Consiste basicamente no processo de retirar do domínio do problema os detalhes relevantes e representá-los na linguagem de solução (ex.: Java)

Classes (objetos) podem ser qualquer entidade reconhecida como um elemento da solução

Objeto real ou não

Encapsulamento

A propriedade de implementar dados e procedimentos correlacionados em uma mesma entidade recebe o nome de encapsulamento

A ideia por trás do encapsulamento é a de que um sistema orientado a objetos não deve depender de sua implementação interna, e sim de sua interface

Information-hiding

Exemplo: objeto Bicicleta

- Atributos (estados) não são alterados diretamente pelas outras entidades
- Métodos da própria classe são definidos para fazê-lo
 - Permite controle total de como os atributos variam
 - Ex: limite para número de marchas

Encapsulamento

Transparência

Não importa como os métodos são implementados

Para as outras entidades, o importante é saber como se comunicar com o objeto

- Quais métodos estão disponíveis
- Assinatura dos métodos
 - Interface

Isso permite que a implementação de um método seja facilmente reescrita, sem prejuízo para as outras entidades

• Ex: carros

Herança

Permite a hierarquização das classes em um sistema

Uma classe mais especializada (sub-classe ou classe-derivada) herda as propriedades (métodos e atributos) de uma classe mais geral (super-classe ou classe-base)

Uma sub-classe pode sobrescrever o comportamento de uma super-classe (polimorfismo)

Promove reuso

Novos atributos e métodos podem ser definidos nas sub-classes, além dos herdados

Polimorfismo

Polimorfismo, em biologia, é um princípio no qual um organismo pode surgir de formas diferentes.

- · Indivíduos de uma mesma espécie possuem muitas características similares.
- Contudo, algumas características são peculiares.

Polimorfismo

O mesmo princípio se aplica no paradigma de POO

- Herança permite que subclasses herdem as características de sua classe pai (mãe).
- Contudo, propriedade particulares da subclasse podem ser redefinidas.

Em POO, polimorfismo é a capacidade de uma mesma operação (método) comportarse de maneira diferente nas diferentes classes de uma hierarquia

 Método com a mesma assinatura, porém com serviços diferentes

Interface

Pontos de interação entre dois meios, objetos, etc.

Ex: Televisão

As interfaces da TV são os botões de ligar/desligar, mudar canais, ...

Pontos de interação da entidade com o mundo externo

Uma interface em Java representa uma declaração de um conjunto público de operações

- Define um contrato
- Não pode ser instanciada
- Garante que os objetos terão esta forma de comunicação

Pacotes

Pacote é um conjunto de classes e interfaces relacionadas de alguma forma

Biblioteca é o conjunto de pacotes

API (Application Programmin Interface)

- Muito útil: reuso de código
- API Java

Antes de definir uma nova classe, verifique se já não existe uma solução

A validação do código é demorada

Resumo

Paradigmas de Programação

Os pilares da POO

Classes e Objetos

Tipos de acessos

Interfaces

Exercício

Definir as classes abaixo utilizando diagramas

Animal, Homem, Cachorro, Carro, Casa

Defina atributos e métodos destas classes, pensando na interação entre objetos desses tipos

Lembre que atributos podem ser objetos

Onde pode haver herança?

Simule troca de mensagens entre os objetos