Tarefas de Mineração de Dados: Classificação de Pulsares

- Kassio Ferreira
- Mateus Costa

Introdução

Este projeto tem como objetivo a aplicação de técnicas de mineração de dados para resolver um problema de classificação binária:

 Distinguir entre pulsares reais e falsos positivos em sinais de rádio captados por telescópios.

A base de dados utilizada é a HTRU2 (High Time Resolution Universe Survey), disponível no repositório da UCI Machine Learning.

A tarefa consiste em prever, a partir de estatísticas extraídas dos sinais, se uma amostra representa ou não um pulsar.

Link do dataset: https://archive.ics.uci.edu/dataset/372/htru2

Detectar esses sinais não é simples, pois a maioria dos registros captados é composta por ruídos ou interferências, vindos de transmissões humanas ou outros fenômenos cósmicos.

O grande desafio é diferenciar os sinais legítimos (pulsares reais) dos falsos positivos.

Cada amostra do dataset é descrita por estatísticas extraídas de duas representações do sinal de rádio captado pelos telescópios:

- Perfil Integrado: mostra como o sinal varia ao longo do tempo.
- Curva DM-SNR: mostra como o sinal se comporta ao variar o valor da dispersão (um fenômeno causado pela presença de partículas entre a estrela e a Terra).

Para cada medida - Perfil integrado e Curva DM-SNR, são coletados valores estatísticos que caracterizam o objeto observado, totalizando 8 atributos para cada amostra:

Média: valor médio da curva; sinais de pulsares tendem a ter médias mais elevadas em função da presença de picos regulares.

Desvio padrão: mostra o quanto o sinal oscila em torno da média; pulsares costumam apresentar maior variação por conta da repetição de pulsos intensos.

Curtose: detecta picos acentuados; sinais de pulsares geralmente exibem curtose alta devido aos pulsos bem definidos.

Assimetria: avalia se o sinal é balanceado ou inclinado para um dos lados; em muitos casos, pulsares apresentam assimetria positiva ou negativa dependendo do formato do pulso captado.

Análise e Preparação: Correlação entre os atributos

Análise e Preparação: Normalização dos valores

Foi aplicada uma normalização com a ferramenta StandardScaler (da lib Scikit-learn) que utiliza a abordagem z-score, garantindo média zero para os atributos

	media_perfil_i	integrado	desvio_padrao_perfil_	integrado	curtose_perfil	integrado
0	14	40.562500		55.683782		-0.234571
1	10	02.507812		58.882430		0.465318
2	10	03.015625		39.341649		0.323328
3	1:	36.750000		57.178449		-0.068415
		00 700500		40.672225		0.600866
4		88.726562 os antes da	a normalização (Mostran		as primeiras 3 co	Process of the last
Ι	Figura 3: Atribut	os antes da	a normalização (Mostran	do apenas		lunas)
I	Figura 3: Atribut	os antes da		do apenas		lunas) _integrado
Ι	Figura 3: Atribut	os antes da	a normalização (Mostran	do apenas		lunas)
I	Figura 3: Atribut media_perfil_in	os antes da	a normalização (Mostran	do apenas		lunas) _integrado -0.669570
] 	Figura 3: Atribut nedia_perfil_in 1	tegrado (a normalização (Mostran desvio_padrao_perfil_i	do apenas integrado 1.334832		lunas) _integrado
I n 0	Figura 3: Atribut media_perfil_in 1 -0	tegrado (1.149317)	a normalização (Mostran desvio_padrao_perfil_i	do apenas integrado 1.334832 1.802265		lunas) _integrado -0.669570 -0.011785

Análise e Preparação: Distribuição das Classes

como a classe O representava mais de 90% das amostras, foi utilizado um *undersampling* com *NearMiss*. Resultando em:

- 1.639 amostras de cada classe | Total: 3.278 amostras

Resultados: Treinamento

Algoritmo de Classificação:

- Random Forest Classifier (sklearn.ensemble)
 - Classificação supervisionada com dados tabulares
 - Lida bem com dados numéricos e reduz risco de overfitting

Validação e ajuste:

- Validação Estratificada com StratifiedKFold (sklearn.model_selection)
 - Número de Folds: 5
 - Garante a mesma proporção entre classes em cada divisão

Otimização de Hiperparâmetros:

GridSearchCV (sklearn.model_selection)

Acurácia, Precisão, Recall e F1-Score

		Accuracy	Precision	Recall	F1-Score
	0	0.940549	0.943123	0.940549	0.940462
	1	0.955793	0.956306	0.955793	0.955780
	2	0.955793	0.957020	0.955793	0.955763
	3	0.955725	0.955841	0.955713	0.955721
	4	0.954198	0.954259	0.954208	0.954198

Matriz de confusão

Matriz de confusão em cada Fold

Nível de "Importância" dos atributos durante a classificação

Referências

Materiais fornecidos durante o semestre letivo.

R. Lyon. "HTRU2," UCI Machine Learning Repository, 2015. [Online]. Available: https://doi.org/10.24432/C5DK6R.

Lyon, R.J., Stappers, B.W., Cooper, S., Brooke, J.M., & Knowles, J.D. (2016). Fifty years of pulsar candidate selection: from simple filters to a new principled real-time classification approach. Monthly Notices of the Royal Astronomical Society, 459, 1104-1123.