Section 7.2

7.2.1

Characterize the rate of growth of each function f below by giving a function g such that $f = \Theta(g)$. The function g should be one of the functions in the table of common functions.

a.
$$f(n) = n^8 + 3n - 4$$
 \to $\Theta(n^8)$

b.
$$f(n) = 2 \cdot 3^n \longrightarrow \Theta(3^n)$$

c.
$$f(n) = 2^n + 3^n \to \Theta(3^n)$$

d.
$$f(n) = 7(\log \log n) + 3(\log n) + 12n$$
 \rightarrow $\Theta(n)$

e.
$$f(n) = 9(n \log n) + 5(\log \log n) + 5$$
 $\rightarrow \Theta(n \log n)$

f.
$$f(n) = n \cdot \log_{37} n$$
 \rightarrow $\Theta(n \log n)$

g.
$$f(n) = n^{21} + (1.1)^n \rightarrow \Theta(1.1^n)$$

h.
$$f(n) = 23n + n^3 - 2$$
 \rightarrow $\Theta(n^3)$

7.2.2

Give complete proofs for the growth rates of the polynomials below. You should provide specific values for c and n_0 , and prove algebraically that the functions satisfy the definitions for \mathcal{O} and Ω .

b.
$$f(n) = n^3 + 3n^2 + 4$$
. Prove that $f = \Theta(n^3)$

Proof. of $\mathcal{O}(n^3)$: Consider $n_0 = 1$ and c = 8: For $n \ge 1$, $1 \le n^2$, so:

$$n^3 + 3n^2 + 4 \le n^3 + 3n^2 + 4n^2$$
.

For $n \ge 1$, $n^2 \le n^3$, so:

$$n^3 + 3n^2 + 4n^2 \le n^3 + 3n^3 + 4n^3$$
.

$$f(n) = n^3 + 3n^2 + 4 \le n^3 + 3n^2 + 4n^2 \le n^3 + 3n^3 + 4n^3 = 8n^3 = 8(n^3).$$

Therefore, with witness $n_0 = 1$ and c = 8, $f = \mathcal{O}(n^3)$.

Proof. of $\Omega(n^3)$: Consider $n_0 = 1$ and c = 1: For $n \ge 1$, $3n^2 \ge 0$ and $4 \ge 0$. Adding these inequalities yields

$$3n^2 + 4 > 0$$

Adding n^3 to both sides to get

$$n^3 + 3n^2 + 4 > n^3$$

Therefore, with witness $n_0 = 1$ and c = 1, $f = \Omega(n^3)$.

Since
$$f = \mathcal{O}(n^3)$$
 and $f = \Omega(n^3)$, $\therefore f = \Theta(n^3)$.