1.8.5 Theorem of Total Probability Let $E_1, E_2 \cdots E_n$ be the partition of sample sapce S Such that $P(E_i) \neq 0 \ \forall i$ then for any event De 0.91. 17 13% irens

$$P(E) = \sum_{i=1}^{n} P(E_i) \cdot P\left(\frac{E}{E_i}\right)$$
or
$$P(E) = P(E_1) \cdot P\left(\frac{E}{E_1}\right) + P(E_2) \cdot P\left(\frac{E}{E_2}\right) + P(E_3) \cdot P\left(\frac{E}{E_3}\right) + \dots + P(E_n) \cdot P\left(\frac{E}{E_n}\right)$$

Proof. Since $E_1, E_2 \cdots E_n$ be the partition of sample space S.

then we have

$$E_i \cap E_j = \phi \ \forall \ i \neq j$$

and $E_1 \cup E_2 \cup E_3 \dots \cup E_n = S$, therefore en phesio administration and

$$E = E \cap S$$

$$= E \cap (E_1 \cup E_2 \cup E_3 \dots \cup E_n)$$

$$\Rightarrow E = (E \cap E_1) \cup (E \cap E_2) \cup (E \cap E_3) \dots \cup (E \cap E_n) \text{ (By distributive property)}$$

$$\Rightarrow E = (E \cap E_1) \cup (E \cap E_2) \cup (E \cap E_3) \dots \cup (E \cap E_n) \text{ (By addition law of probability)}$$

$$\Rightarrow P(E) = P(E \cap E_1) + P(E \cap E_2) + P(E \cap E_3) + \dots + P(E \cap E_n)$$

by multiplication theorem of probability

$$P(E) = P(E_1) \cdot P\left(\frac{E}{E_1}\right) + P(E_2) \cdot P\left(\frac{E}{E_2}\right) + P(E_3) \cdot P\left(\frac{E}{E_3}\right) + \dots + P(E_n) \cdot P\left(\frac{E}{E_n}\right)$$

Hence,
$$P(E) = \sum_{i=1}^{n} P(E_i) \cdot P\left(\frac{E}{E_i}\right)$$

Remark

For two events.

$$P(E) = P(E_1) \cdot P\left(\frac{E}{E_1}\right) + P(E_2) \cdot P\left(\frac{E}{E_2}\right)$$

For three events

$$P(E) = P(E_1) \cdot P\left(\frac{E}{E_1}\right) + P(E_2) \cdot P\left(\frac{E}{E_2}\right) + P(E_3) \cdot P\left(\frac{E}{E_3}\right)$$

$$2 \cdot 6 \cdot 2 \cdot 36 - \frac{12}{12} + \frac{72}{72} = \frac{72}{72}$$

Example 1.45 A bag contains 10 red and 3 blue balls. Another bag contains 3 red and 5 blue balls. Two balls are drawn randomly from the first bag and placed in the second bag and then 1 ball is taken randomly from the latter. What is the probability that it is a red ball?

Solution: Let events be

 $E_1 \rightarrow$ drawing red ball from first bag

 $E_2 \rightarrow$ drawing blue ball from first bag

 $E_3 \rightarrow$ drawing balls one red and one blue

 $E \rightarrow$ drawing a red ball from the second bag.

it is given,
$$P(E_1) = \frac{{}^{10}C_2}{{}^{13}C_2} = \frac{10 \times 9}{1 \times 2} \times \frac{1 \times 2}{13 \times 12} = \frac{90}{12 \times 13} = \frac{15}{26}$$

then
$$P(E_2) = \frac{{}^{3}C_2}{{}^{13}C_2} = \frac{1}{26}$$
 and $P(E_3) = \frac{{}^{10}C_1 \cdot {}^{3}C_1}{{}^{13}C_2} = \frac{5}{13}$

Now $P\left(\frac{E}{E_1}\right) = P$ (drawing a red ball from 2nd bag)

$$= \frac{{}^{5}C_{1}}{{}^{10}C_{1}} = \frac{1}{2}$$

Similarly,
$$P\left(\frac{E}{E_2}\right) = \frac{3}{10}$$
 and $P\left(\frac{E}{E_3}\right) = \frac{4}{10}$

by total law of probability

$$P(E) = P(E_1) \cdot P\left(\frac{E}{E_1}\right) + P(E_2) \cdot P\left(\frac{E}{E_2}\right) + P(E_3) \cdot P\left(\frac{E}{E_3}\right)$$

$$= \frac{15}{26} \times \frac{5}{10} + \frac{1}{26} \times \frac{3}{10} + \frac{10}{26} \times \frac{4}{10}$$

$$= \frac{59}{130}$$

Probability Theory

Example 1.46 A bolt is made by 3 machines M, M, and M, M, turns out twice as many items as M, and machine M, and M, produce equal number of items, 2% of bolts produced by M, are defective. All halfs. as M_1 and muchine M_2 and 0.4% of bolts produced by M_2 are defective. All bolts are put into 1 stock pile and 1 is chosen from this pile. What is the probability that it is defective, Solution: Let events be

 $E_i \rightarrow$ item has been produced by machine M.

 $E_{\gamma} \rightarrow$ item has been produced by machine M,

 $E_1 \rightarrow$ item has been produced by machine M,

 $D \rightarrow \text{item}$ is defective

it is given that $P(E_1) = \frac{1}{2}$, $P(E_2) = \frac{1}{4}$

$$P(E_3) = \frac{1}{4}$$
 and $P(\frac{D}{E_1}) = P$ (an item in M_1 is defective) = 0.02

 $P\left(\frac{D}{E_2}\right) = 0.02$ and $P\left(\frac{D}{E_2}\right) = 0.04$

by theorem of total probability

$$P(D) = P(E_1) \cdot P\left(\frac{D}{E_1}\right) + P(E_2) \cdot P\left(\frac{D}{E_2}\right) + P(E_3) \cdot P\left(\frac{D}{E_3}\right)$$
$$= \frac{1}{2}(0.02) + \frac{1}{4}(0.04) = \frac{1}{40}$$

Note: If we have to find the probability of the defective bolt manufactured by M_1 or M_2 or M_3 , then we will use Baye's theorem.

1.8.6 Baye's Theorem

In many cases outcomes depend on intermediate stages. We use the Baye's theorem for solving such type of problems.

1.8.7 Proof of Baye's theorem

[Raj. Univ. B.E. 1995, 2003, 2006, RTU IVth Sem. CS, 2008, 2009]

Statement 1: If $E_1, E_2 \cdots E_n$ be n mutually exclusive and exhaustive set of events of a sample sapce S and E is an event which occurs together with either of $E_1, E_2 \cdots E_n$ (form a partition of S) and let E be any event then

 $P\left(\frac{E_{i}}{E}\right) = \frac{P(E_{i}) \cdot P\left(\frac{E}{E_{i}}\right)}{\sum_{j=1}^{n} P(E_{j}) \cdot P\left(\frac{E}{E_{j}}\right)} ; i = 1, 2, \dots, n$ or $P\left(\frac{E_{i}}{E}\right) = \frac{P(E_{i}) \cdot P\left(\frac{E}{E_{i}}\right)}{P(E_{1}) \cdot P\left(\frac{E}{E_{1}}\right) + P(E_{2}) \cdot P\left(\frac{E}{E_{2}}\right) + \dots + P(E_{j})P\left(\frac{E}{E_{j}}\right)} ; i = 1, 2, \dots, n$

Statistics & Probability Theol

Example 1.50° Three bags B_1 , B_2 , B_3 contains 6 red and 4 black balls, 2 red and 6 black balls and 1 red and 8 black balls respectively. A bag is chosen and a ball is drawn from the bags. If the drawn ball is red, find the probability that the ball was drawn from bag B_1 .

Solution: Let events be

 $E_1 \rightarrow$ Choosing bag B_1 , $E_2 \rightarrow$ Choosing bag B_2 ,

 $E_3 \rightarrow$ Choosing bag B_3 , $E \rightarrow$ Drawn ball is red.

According to question
$$P(E_1) = P(E_2) = P(E_3) = \frac{1}{3}$$

Now
$$P\left(\frac{E}{E_1}\right) = \frac{6}{10}$$
, $P\left(\frac{E}{E_2}\right) = \frac{7}{8}$, $P\left(\frac{E}{E_3}\right) = \frac{1}{9}$

Now
$$P(E) = P(E_1) \cdot P\left(\frac{E}{E_1}\right) + P(E_2) \cdot P\left(\frac{E}{E_2}\right) + P(E_3) \cdot P\left(\frac{E}{E_3}\right)$$

$$P(E) = \frac{1}{3} \times \frac{3}{5} + \frac{1}{3} \times \frac{1}{4} + \frac{1}{3} \times \frac{1}{9} = \frac{1}{5} + \frac{1}{12} + \frac{1}{27} = \frac{173}{540}$$

Now required probability, by Baye's theorem

$$P\left(\frac{E_1}{E}\right) = \frac{P(E \cap E_1)}{P(E)}$$
$$= \frac{\frac{1}{3} \times \frac{3}{5}}{\frac{173}{540}} = \frac{108}{173}$$

Example 1.51. Three factories A, B, C does 30%, 50% and 20% production of certain item. Out of their production 8%, 5% and 10% of the items produced are defective respectively. An item is purchased and is found to be defective. Find the probability that it was a product of factory A.

[Raj. Univ. B.E. IVth SEM. CS, 1997, 2002, 2007]

Solution: Let events be

 $E_1 \rightarrow$ Item is produced by machine A, $E_2 \rightarrow$ Item is produced by machine B.

 $E_3 \rightarrow$ Item is produced by machine C,

Let $D \rightarrow$ Item pruchased is defective.

According to question, it is given that

$$P\left(\frac{D}{E_1}\right) = \frac{8}{100}$$

$$P(E_1) = \frac{30}{100} = \frac{3}{10}$$

$$P\left(\frac{D}{E_2}\right) = \frac{5}{100}$$

$$P(E_2) = \frac{50}{100} = \frac{5}{10}$$

$$P(E_3) = \frac{20}{100} = \frac{2}{10}$$

Now by Baye's theorem

$$P\left(\frac{E_1}{D}\right) = \frac{P\left(\frac{D}{E_1}\right) \cdot P(E_1)}{P\left(\frac{D}{E_1}\right) \cdot P(E_1) + P\left(\frac{D}{E_2}\right) \cdot P(E_2) + P\left(\frac{D}{E_3}\right) \cdot P(E_3)}$$

$$= \frac{\frac{8}{100} \times \frac{3}{10}}{\frac{8}{100} \times \frac{3}{10} + \frac{5}{100} \times \frac{5}{10} + \frac{10}{100} \times \frac{2}{10}} = \frac{3 \times 8}{3 \times 8 + 25 + 20} = \frac{24}{69}$$

Similarly, we can find

$$P\left(\frac{E_2}{D}\right) = \frac{25}{69} \text{ and } P\left(\frac{E_3}{D}\right) = \frac{20}{69}$$

Little 1.80° Tares arror

the and I rea and 8 black at box to the drawn best

teater report to derective, G

9 - (A) 5 & CO S (B) 9 . Indiana

Example 1.48 In an examination with multiple choice answer, each question has four choice answers, out of which, one is correct. A candidate ticks his answer either by his skill or by guess or by copying from his neighbours. The probability of guess is $\frac{1}{3}$ and that of copying is $\frac{1}{6}$. The probability of correct answer by copying is $\frac{1}{8}$. If a candidate answers a question correctly, find the probability that he knew the answer.

Solution: Let events be

 $E_1 \to$ answering by skill, $E_2 \to$ answering by guessing, $E_3 \to$ answering by copying, $E \to$ answering correct

it is given that
$$P(E_2) = \frac{1}{3}$$
, $P(E_3) = \frac{1}{6}$

$$P(E_1) + P(E_2) + P(E_3) = 1$$

$$P(E_1) = 1 - P(E_2) - P(E_3) = 1 - \frac{1}{3} - \frac{1}{6} = \frac{3}{6}$$

Also given that

$$P\left(\frac{E}{E_3}\right) = \frac{1}{8}, \ P\left(\frac{E}{E_1}\right) = 1, \ P\left(\frac{E}{E_2}\right) = \frac{1}{4}$$

Now we have to find $P\left(\frac{E_1}{E}\right)$

Then by Baye's theorem

$$P\left(\frac{E_1}{E}\right) = \frac{P(E/E_1) \cdot P(E_1)}{P(E_1)P(E/E_1) + P(E_2) + (E/E_2) + P(E_3) \cdot P(E/E_3)}$$
$$= \frac{1.3/6}{1 \times 3/6 + 1/4 \times 2/6 \times 1/8 \times 1/6} = \frac{24}{29}$$

$$P\left(\frac{E_i}{E}\right) = \frac{P(E_i) \cdot P\left(\frac{E}{E_i}\right)}{\sum_{j=1}^{n} P(E_j) \cdot P\left(\frac{E}{E_j}\right)}$$
; $i = 1, 2, \dots, n$

or
$$P\left(\frac{E_i}{E}\right) = \frac{P(E_i) \cdot P\left(\frac{E}{E_i}\right)}{P(E_1) \cdot P\left(\frac{E}{E_1}\right) + P(E_2) \cdot P\left(\frac{E}{E_2}\right) + \dots + P(E_j)P\left(\frac{E}{E_j}\right)} \quad ; i = 1, 2, \dots, n$$

Proof:

Since $E_1, E_2 \cdots E_n$ be the partition of sample sapce S.

So
$$S = E_1 \cup E_2 \cup E_3 \cdots \cup E_n$$
 ...(1)

Now, $E = E \cap S$

$$E = E \cap (E_1 \cup E_2 \cup E_3 \cdots \cup E_n) \qquad \dots (2)$$

$$E = (E \cap E_1) \cup (E \cap E_2) \cup (E \cap E_3) \dots \cup (E \cap E_n)$$
 (By distributive properly)

$$P(E) = P(E \cap E_1) + P(E \cap E_2) + P(E \cap E_3) \dots P(E \cap E_n)$$
 ...(3)

(By addition rule of probability)

Now
$$P\left(\frac{E_i}{E}\right) = \frac{P(E \cap E_i)}{P(E)}$$
 (by multiplication rule)

$$= \frac{P(E \cap E_i)}{P(E \cap E_1) + P(E \cap E_2) + P(E \cap E_3) + \dots P(E \cap E_n)}$$

$$P(E_i) \cdot P\left(\frac{E_i}{E_i}\right)$$