Example 4.2.1 Let X and Y be discrete random variables with the following distributions

x	P(X=x)	y	P(Y=y)
1	0	1	1/4
2	1/4	2	0
3	1/2	3	0
4	0	4	1/2
5	0	5	1/4
6	1/4	6	0

Show that these distributions have the same mean and variance.

For X:

$$\mu = E(X) = 1 \cdot 0 + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{2} + 4 \cdot 0 + 5 \cdot 0 + 6 \cdot \frac{1}{4} = \frac{7}{2}$$

$$\sigma^2 = E((X - \mu)^2) = \left(1 - \frac{7}{2}\right)^2 \cdot 0 + \dots$$

For Y:

Let us now compute the 3rd moment about the mean.

For X:

$$\mu_3 = E((X - \mu)^3) = \left(1 - \frac{7}{2}\right)^3 \cdot 0 + \dots$$

For Y:

The 3rd moment about the mean describes the symmetry of the graph about the mean.

Notice that the distribution on the left has a higher proportion of its probabilities to the left of the mean $\mu = \frac{7}{2}$ and its 3rd moment, μ_3 , about the mean, is positive 3.

The opposite is true for the distribution on the right, and its 3rd moment about the mean is negative 3.

Example 4.2.2 Let random variable X be the number of points on a regular 6-sided die. Compute mean and variance of X.

The mean is

$$\mu = E(X) = 1 \cdot \frac{1}{6} + \dots$$

The variance is

$$\sigma^2 = E((X - \mu)^2) = (1 - 3.5)^2 \cdot \frac{1}{6} + \dots$$

Consider the variance. Using properties of expected values we have

$$E((X - \mu)^2) = E(X^2 - 2\mu X + \mu^2)$$

$$= E(X^2) - 2E(\mu X) + E(\mu^2)$$

$$= E(X^2) - 2\mu E(X) + \mu^2$$

$$= E(X^2) - 2\mu \cdot \mu + \mu^2$$

$$= E(X^2) - \mu^2$$

We summarize this in a theorem.

Theorem 4.2.3

$$\sigma^2 = \mu_2' - \mu^2$$

Example 4.2.4 Redo the previous die rolling problem with theorem.

We first need to find the mean μ :

$$\mu = E(X) = 1 \cdot \frac{1}{6} + \dots$$

Next we find $\mu'_2 = E(X^2)$:

$$\mu_2' = E(X^2) = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6} + \dots$$

Then using the theorem, the variance is

$$\sigma^2 = \mu_2' - \mu^2 = \frac{91}{6} - (3.5)^2 \approx 2.9167.$$

Theorem 4.2.5 If X has variance σ^2 , then for constants a and b $var(aX + b) = a^2\sigma^2$.

Proof: Let Y = aX + b, and let $\mu = E(X)$.

Then

$$E(Y) = E(aX + b) = aE(X) + b = a\mu + b.$$

For the variance of Y, we have

$$var(Y) = E((Y - (a\mu + b))^{2})$$

$$= E((aX + b - a\mu - b)^{2})$$

$$= E((aX - a\mu)^{2})$$

$$= E(a^{2}X^{2} - 2a^{2}X\mu + a^{2}\mu^{2})$$

$$= a^{2}E(X^{2}) - 2a^{2}\mu E(X) + a^{2}\mu^{2}$$
(by Theorem 4.1.4)
$$= a^{2}(E(X^{2}) - 2\mu^{2} + \mu^{2})$$

$$= a^{2}(E(X^{2}) - \mu^{2})$$

$$= a^{2}\sigma^{2}$$
 (by Theorem 4.2.3)

4.2.1 Chebyshev's Theorem

The next important theorem shows how σ describes the spread of the probability distribution.

Theorem 4.2.6 (Chebyshev's Theorem) Let X be a random variable with mean μ and standard deviation σ . Then for any k > 0,

$$P(|X - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}.$$

In words, the probability that values for X lie within k standard deviations of the mean is at least $1 - \frac{1}{k^2}$.

(The proof of this theorem can be found in the lecture slides.)

Example 4.2.7 The mean score of an exam is 70, with a standard deviation of 5. At least what percentage of the data set lies between 40 and 100?

Example 4.2.8 The mean age of a flight attendant is 40, with a standard deviation of 8. At least what percent of the data set lies between 20 and 60?

For what comes next, we need to know the **Maclaurin Series** for e^x ,

$$e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 + \dots = \sum_{i=0}^{\infty} \frac{1}{i!}x^i,$$

and term-by-term differentiation

$$\frac{d}{dx}\left(\sum_{i=0}^{\infty} f_i(x)\right) = \sum_{i=0}^{\infty} \frac{d}{dx}\left(f_i(x)\right).$$

Now we can talk about moment generating functions.

The moment generating function of a random variable X, where it exists, is given by

discrete case:
$$M_X(t) = E(e^{tX}) = \sum_x e^{tx} \cdot f(x)$$

continuous case:
$$M_X(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} \cdot f(x) dx$$

where f(x) is the probability distribution/density of X.

We will see why this name is appropriate.

Expanding the expression for $M_X(t)$,

$$M_X(t)$$

$$= \sum_{x} e^{tx} \cdot f(x)$$

$$= \sum_{x} \left(1 + (tx) + \frac{1}{2!} (tx)^{2} + \frac{1}{3!} (tx)^{3} + \dots \right) \cdot f(x)$$

$$= \sum_{x} f(x) + (tx)f(x) + \frac{(tx)^{2}}{2!}f(x) + \frac{(tx)^{3}}{3!}f(x) + \dots$$

$$= \sum_{x} f(x) + t \sum_{x} x f(x) + \frac{t^{2}}{2!} \sum_{x} x^{2} f(x) + \frac{t^{3}}{3!} \sum_{x} x^{3} f(x) + \dots$$

We see the rth moments about the origin appearing in the terms of the series.

$$M_X(t) = \sum_x f(x) + t \sum_x x f(x) + \frac{t^2}{2!} \sum_x x^2 f(x) + \frac{t^3}{3!} \sum_x x^3 f(x) + \dots$$

To extract the *i*th moment, we take the *i*th derivative with respect to t, and evaluate at t = 0.

For example, to get the 2nd moment: $\frac{d^2}{dt^2}M_X(t)\Big|_{t=0}$

$$\frac{d^2}{dt^2} \left(\sum_{x} f(x) + t \sum_{x} x f(x) + \frac{t^2}{2!} \sum_{x} x^2 f(x) + \frac{t^3}{3!} \sum_{x} x^3 f(x) + \dots \right|_{t=0}$$

Take 2nd derivative of each term with respect to t,

$$= \left(0 + 0 + \sum_{x} x^{2} f(x) + t \sum_{x} x^{3} f(x) + \frac{t^{2}}{2} \sum_{x} x^{4} f(x) + \dots \right|_{t=0}$$

Letting
$$t = 0$$
 gives $\frac{d^2}{dt^2} M_X(t) \Big|_{t=0} = \sum_x x^2 f(x) = E(X^2)$.