Quantization-free Lossy Image Compression Using Integer Matrix Factorization

Pooya Ashtari^{1*†}
pooya.ashtari@esat.kuleuven.be

Pourya Behmandpoor^{1†}
pooya.ashtari@esat.kuleuven.be

Fateme Nateghi Haredasht² fnateghi@stanford.edu

Jonathan H. Chen² jonc101@stanford.edu

Lieven De Lathauwer¹ lieven.delathauwer@kuleuven.be

Sabine Van Huffel¹ sabine.vanhuffel@esat.kuleuven.be

¹Department of Electrical Engineering (ESAT), STADIUS Center, KU Leuven, Belgium ²Department of Medicine, Stanford University, Stanford, CA, USA

^{*}Corresponding author. Emails:pooya.ashtari@esat.kuleuven.be, pooya.ash@gmail.com

[†]Equal contribution

Abstract

one paragraph

1 Introduction

2 Related Work

Figure 1 An illustration of our image compression method based on integer matrix factorization.

3 Method

3.1 Overall Framework

Encoder.

Decoder.

3.2 Integer Matrix Factorization (IMF)

3.3 Block Coordinate Descent Scheme for IMF

Theorem 1. The IMF cost function, $\|X - UV^{\mathsf{T}}\|_F^2$, is monotonically nonincreasing under each of the multiplicative update rules.

Proof. See Appendix A for the proof.

3.4 Implementation Details

(a) (b)

Figure 2 Rate-distortion performance on the Kodak dataset. In panels (a) and (b), the average PSNR and SSIM are plotted against bits per pixel (bpp), respectively.

 (\mathbf{a}) (\mathbf{b})

 $\textbf{Figure 3} \ \text{Rate-distortion performance on the CLIC dataset. In panels (a) and (b), the average PSNR and SSIM are plotted against bits per pixel (bpp), respectively. \\$

4 Experiments

- 4.1 Rate-Distortion Performance
- 4.2 ImageNet Classification Performance
- 4.3 Ablation Studies

Patchification. without patchification, patch size 4, 8, 16, 32

Factor bounds.

BCD iteration.

(a) (b)

Figure 4 Impact of different compression methods on ImageNet classification accuracy. Panels (a) and (b) show the validation top-1 and top-5 accuracy plotted against bits per pixel (bpp), respectively. A ResNet-50 model pretrained on the original ImageNet images was evaluated using validation images compressed by different methods.

Conclusion and Future Work

Acknowledgments and Disclosure of Funding

References

[1] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, Apr 2020.

A Proof of Theorem 1

B Ablation Study on Color Space Transformation