

# 物理实验报告



| 课程名称:       | 大学物理实验       |              |                    |  |  |  |  |
|-------------|--------------|--------------|--------------------|--|--|--|--|
|             |              |              |                    |  |  |  |  |
| 实验名称:       | <b>称: 称:</b> |              |                    |  |  |  |  |
|             |              |              |                    |  |  |  |  |
| 学院 <b>:</b> | 先进制造学        | 院 <b>专业班</b> | <b>级:</b> 智造 221 班 |  |  |  |  |
| <u> </u>    |              | ···          | <u> </u>           |  |  |  |  |
| 学生姓名:       | 朱紫华          | 学号:          | 5908122030         |  |  |  |  |
|             |              |              |                    |  |  |  |  |
| 实验地点:       | 基础实验大楼       | 实验时间:        | 2023年月日            |  |  |  |  |
| > 34 - O/W  | 工 四/八        |              |                    |  |  |  |  |

# 一、实验目的:

- 1、学习测量超声波在空气中的传播速度的方法,理解驻波和振动合成理论
- 2、学会用逐差法进行数据处理;
- 3、了解空气中传播速度与气体状态参量的关系;
- 4、了解压电换能器的功能和培养综合使用仪器的能力。

# 二、实验仪器:

声速测量仪,示波器,信号发生器

# 三、实验原理:

1、声波在空气中的传播速度为:

$$v = \sqrt{\frac{rRT}{\mu}} \tag{1}$$

式中 $r=C_p/C_v$ , V 称为比热比,即气体定压比热容与定容比热容的比值,

μ是气体的摩尔质量,T 是绝对温度, $R=8.31441J \bullet mol^{-1} \bullet K^{-1}$ 为普适气体常数。可见,声速与温度、比热比和摩尔质量有关,而后两个因素与气体成分有关。因此,测定声速可以推算出气体的一些参量。利用(1)式的函数关系还可以制成声速温度计。

在 正 常 情 况 下 , 干 燥 空 气 成 分 按 重 量 比 为 氮 : 氧 : 氩 : 二 氧 化 碳=78.084:20.946:0.934:0.033,空气的平均摩尔质量  $\mu$  为: 28.964kg  $\bullet$  mol  $^{-1}$  。 在标准状态下,干燥空气中的声速为:  $\mathbf{v}_0 = 331.5 \mathbf{m} \bullet \mathbf{s}^{-1}$ 

在室温为 $t^0C$ 时,干燥气体声速为

$$v=v_0\sqrt{1+\frac{t}{T}}$$
 (2)

由于空气实际上并不是干燥的,总含有一些水蒸汽,经过对空气摩尔质量和比热比的修正,在温度为 $\mathbf{t}^0 C$ ,相对湿度为 $\mathbf{r}$ 的空气中,声速为:

$$v = 331.5 \sqrt{1 + \frac{t}{T_0} \left(1 + 0.31 \frac{rP_s}{P}\right)}$$
 (3)

式中 $T_0$  = 273.15K 。  $P_s$  为 $t_0C$  时空气的饱和蒸汽压,可从饱和蒸汽压与温度的关系表中查出; P 为大气压,取 P=1.013 $\times$ 10 5Pa 即可; 相对湿度 r 可从干湿温度计上读出。由这些气体参量可以计算出声速。

2、测量声速的实验方法: 声速 v、声源震动频率 f 和波长  $\lambda$  之间的关系为:

$$v=f \lambda$$
 (4)

可见,只要测得声波的频率 f 和波长  $\lambda$  ,就可求得声速 v。其中声波频率 f 可通过频率计测得。本实验的主要任务是测量声波波长  $\lambda$  ,常用的方法有驻波法和相位法。

#### (1) 相位法

波是振动状态的传播,也可以说是相位的传播。在波的传播方向上的任何 两点,如果其振动状态相同或者其相位差为 2π的整数倍,这两点间的距离应 等于波长的整数倍,即:

$$1 = n\lambda (n 为一正整数)$$
 (5)

利用这个公式可以精确测量波长。

若超声波发生器发出的声波是平面波,当接受器端面垂直于波的传播方向时,其端面上各点都具有相同的相位。沿传播方向移动接收器时,总可以找到一个位置使得接受到的信号与发射器的激励电信号同相。继续移动接受器,直到找到的信号再一次与发射器的激励电信号同相时,移过的这段距离就等于声波的波长。需要说明的是,在实际操作中,用示波器测定电信号时,由于换能器振动的传递或放大电路的相移,接受器端面处的声波与声源并不同相,总是有一定的相位差。为了判断相位差并测量波长,可以利用双线示波器直接比较发射器的信号和接收器的信号,进而沿声波传播方向移动接收器寻找同相点来测量波长;也可以利用李萨如图形寻找同相或反相时椭圆退化成直线的点。

#### (2) 驻波法

按照波动理论,发生器发出的平面声波经介质到接收器,若接收面与发射面平行,声波在接收面处就会被垂直反射,于是平面声波在两端面间来回反射并叠加。当接收端面与发射头间的距离恰好等于半波长的整数倍时,叠加后的波就形成驻波。此时相邻两波节(或波腹)间的距离等于半个波长(即 λ /2)。当发生器的激励频率等于驻波系统的固有频率(本实验中压电陶瓷的固有频率)时,会产生驻波共振,波腹处的振幅达到最大值。

声波是一种纵波。由纵波的性质可以证明,驻波波节处的声压最大。当发生共振时,接收端面处为一波节,接收到的声压最大,转换成的电信号也最强。移动接收器到某个共振位置时,如果示波器上出现了最强的信号,继续移动接收器,再次出现最强的信号时,则两次共振位置之间的距离即为 λ/2。

# 四、实验内容

## 1. 用驻波法测声速:

- (1)按图 1 连接电路,将信号发生器的输出端与声速仪的输入端 S2 相连,将声速仪的输入端 S1 与示波器的 Y 端(或通道 $CH_1$ )相连使 $S_1$ ,让 $S_1$ 和  $S_2$ 靠近并留有适当的空隙,使两端面平行且与游标尺正交。
- (2) 根据实验室给出的压电陶瓷换能器的振动频率 f,将信号发生器的输出频率调至 f附近,缓慢移动 S,当在示波器上看到正弦波首次出现振幅较大

处,固定 $S_2$ ,再仔细微调信号发生器的输出频率,使荧光屏上图形振幅达到最大,读出共振频率 f。



图 1 驻波法测声速实验装置图

- (3)在共振条件下,将  $S_2$  移近  $S_1$  ,再缓慢移开  $S_2$  ,当示波器上出现振幅最大时,记下  $S_2$  的位置  $\mathbf{x}_0$  。
- (4)由近及远移动  $S_2$ ,逐次记下各振幅最大时  $S_2$  的位置,连续测 20 个数据  $\mathbf{x_1}$ , $\mathbf{x_2}$ , $\mathbf{x_3}$  ······ $\mathbf{x_{20}}$  。
  - (5) 用逐差法算出声波波长的平均值。
  - 2. 用相位法测声速



图 2 相位法测声速实验装置图

- (1) 按图 2 连接电路。
- (2) 将示波器"秒/格"旋钮旋至 X-Y 档,信号发生器接示波器  $CH_2$  通 道,利用李萨如图形观察发射波与接收波的位相差,找出同相点。
- (3) 在共振条件下,使  $S_2$  靠近  $S_1$  ,然后慢慢移开  $S_2$  ,当示波器上出现 45°倾斜线时,微调游标卡尺的微调螺丝,使图形稳定 ,记下  $S_2$  的位置  $\mathbf{x}_0$  。
- (4)继续缓慢移开 $S_2$ ,依次记下 20 个示波器上李萨如图形为直线时游标卡尺的读数 $x_1,x_2,\dots,x_{20}$ 。
  - (5) 用逐差法算出声波波长的平均值。

## 【数据处理】

| 次数 n | 驻波法<br>(mm) | $l_{n+1}-l_n$ | λ<br>(mm) | 相位法<br>(mm) | $l_{n+1}-l_n$ | λ (mm) |
|------|-------------|---------------|-----------|-------------|---------------|--------|
|      | (mm)        | (mm)          | (11111)   | (mm)        | (mm)          |        |
| 1    |             |               |           |             |               |        |
| 2    |             |               |           |             |               |        |
| 3    |             |               |           |             |               |        |
| 4    |             |               |           |             |               |        |
| 5    |             |               |           |             |               |        |
| 6    |             |               |           |             |               |        |
| 7    |             |               |           |             |               |        |
| 8    |             |               |           |             |               |        |
| 9    |             |               |           |             |               |        |
| 10   |             |               |           |             |               |        |
| 11   |             |               |           |             |               |        |
| 12   |             |               |           |             |               |        |
| 13   |             |               |           |             |               |        |
| 14   |             |               |           |             |               |        |
| 15   |             |               |           |             |               |        |
| 16   |             |               |           |             |               |        |
| 17   |             |               |           |             |               |        |
| 18   |             |               |           |             |               |        |
| 19   |             |               |           |             |               |        |
| 20   |             |               |           |             |               |        |
| 平均   | 匀值          |               |           |             |               |        |

五、 误差分析

六、实验小结与思考

七、附上原始数据