

AD-A084 180

AD-A084 180

RIA-80-U438

February 1980

TECHNICAL
LIBRARY

**Fluerics 41: Single-Sided Control Port Characteristics
of Laminar Proportional Amplifiers for Arbitrary Input Loading**

by R. Michael Phillipi
Tadeusz M. Drzewiecki

**U.S. Army Electronics Research
and Development Command
Harry Diamond Laboratories**
Adelphi, MD 20783

Approved for public release; distribution unlimited.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturers' or trade names does not constitute an official indorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER HDL-TR-1901	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Fluerics 41: Single-Sided Control Port Characteristics of Laminar Proportional Amplifiers for Arbitrary Input Loading		5. TYPE OF REPORT & PERIOD COVERED Technical Report
7. AUTHOR(s) R. Michael Phillipi Tadeusz M. Drzewiecki		6. PERFORMING ORG. REPORT NUMBER DA: 11161102AH44
9. PERFORMING ORGANIZATION NAME AND ADDRESS Harry Diamond Laboratories 2800 Powder Mill Road Adelphi, MD 20783		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Program Ele: 61.10.2A
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Materiel Development & Readiness Command Alexandria, VA 22333		12. REPORT DATE February 1980
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 29
		15. SECURITY CLASS. (of this report) Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES HDL Project: A44934 DRCMS Code: 611102.H.440011		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Fluidic Laminar proportional amplifier Control port characteristic		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report presents a technique for analytically predicting single-sided control port characteristics of a laminar proportional amplifier (LPA) with arbitrary input circuits at the opposite control using calculable differential characteristics. Specific cases dealt with include a constant pressure at the opposite control, a constant flow at the opposite control, and a series and shunt flow resistance at the opposite control.		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(*When Data Entered*)

Item 20 (cont'd)

Experiments using amplifiers at various aspect ratios (height-to-width ratio of supply nozzle) and supply pressures, which imply a large range of LPA resistance, show a maximum error of 11 percent between actual and computed single-sided control port flow resistance.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(*When Data Entered*)

CONTENTS

	<i>Page</i>
1. INTRODUCTION	5
2. ANALYSIS	7
2.1. Constant Pressure on Opposite Control	7
2.2. Constant Flow at Control Port C_2	10
2.3. Series and Shunt Resistance at Control Port C_2	11
3. OBSERVED PERFORMANCE	14
4. SUMMARY AND CONCLUSION	16
NOMENCLATURE	21

FIGURES

1. HDL Model 3.1.1.8 LPA	6
2. LPA differential input characteristics	7
3. LPA physical configuration for constant pressure on opposite control	8
4. Construction of single-sided characteristic	8
5. Construction of single-sided characteristic	10
6. LPA physical configuration for series and shunt resistance as control port C_2	11
7. Construction of single-sided characteristic	12
8. Method for obtaining centered-jet characteristic	14
9. Control port 1 (C_1) pressure-flow characteristic for $P_{c2} = \text{constant}$, with $P_s = 0.67$ kPa	15
10. Control port 1 (C_1) pressure-flow characteristic for $P_{c2} = \text{constant}$, with $P_s = 0.476$ kPa	16
11. Control port 1 (C_1) pressure-flow characteristic for $P_{c2} = \text{constant}$, with $P_s = 0.15$ kPa	17
12. Control port 1 (C_1) pressure-flow characteristic for $Q_{c2} = \text{constant}$, with $P_s = 0.67$ kPa	18

13. Control port 1 (C1) pressure-flow characteristic for $Q_{c2} = \text{constant}$, with $P_s = 0.476$ kPa	18
14. Control port 1 (C1) pressure-flow characteristic for $Q_{c2} = \text{constant}$, with $P_s = 0.15$ kPa	19
15. Control port 1 (C1) pressure-flow characteristic for series and shunt resistance at control port 2, with $P_s = 0.67$ kPa	19
16. Control port 1 (C1) pressure-flow characteristic for series and shunt resistance at control port 2, with $P_s = 0.46$ kPa	20
17. Control port 1 (C1) pressure-flow characteristic for series and shunt resistance at control port 2, with $P_s = 0.15$ kPa	20

1. INTRODUCTION

Over the past five years, considerable effort has been expended to analytically determine the differential input or control (pressure-flow) characteristics of laminar proportional amplifiers (LPA's).^{1,2} With increasing emphasis on sensing/control systems, however, it has become important to analytically predict single-sided input characteristics for various input circuits at the opposite control. Unfortunately, little or no work has been done along these lines and thus information is unavailable in technical literature. The ability to predict single-sided input characteristics would greatly facilitate the design of many fluidic systems such as fluidic temperature sensors, strain gages, speed sensors, and all devices that operate on the back-pressure principle.

Figure 1 depicts the current state-of-the-art LPA (Harry Diamond Laboratories—HDL—Model 3.1.1.8), which will be the only component considered. With reference to the interaction region (dotted line), it is apparent that if a pressure is applied at control port 1 with control port 2 open to ambient ($P_{c2} = 0$), a deflection of the supply jet would result. Consider now the case where the same pressure is applied at control port 1 while control port 2 is held at constant pressure other than zero ($P_{c2} = \text{constant}$). The amount of jet deflection is now reduced, yielding a new pressure-flow ($P-Q$) relationship for control port 1. This effect is not limited only to constant pressures at the opposite control, but has been observed for constant flows and arbitrary input circuits at port 2 as well.

Analytical expressions are derived for the pressure-flow relationships at control port 1 for three cases: (1) constant pressure on control port 2, (2) constant flow on control port 2, and (3) a series/shunt resistance (as being a representation of some general load) at control port 2. These expressions are derived by use of calculable differential pressure-flow relationships. Experimental verification for various aspect ratios (height-to-width ratio of supply nozzle, denoted by σ) and supply pressures is presented, followed by the summary and conclusions.

¹ F. M. Manion and T. M. Drzewiecki, Analytical Design of Laminar Proportional Amplifiers, Proceedings of The HDL Fluidic State-of-the-Art Symposium, Vol. 1, Harry Diamond Laboratories (October 1974), 149.

² T. M. Drzewiecki, Fluerics 38. A Computer-Aided Design Analysis for the Static and Dynamic Port Characteristics of Laminar Proportional Amplifiers, Harry Diamond Laboratories, HDL-TR-1758, (June 1976).

Figure 1. HDL Model 3.1.1.8 LPA.

2. ANALYSIS

Recently, a computer algorithm has been developed² that can predict differential control port characteristics of LPA's. The analysis presented here is an extension of this previous work in that computed differential characteristics are used as a basis for the derivation of single-sided characteristics. Only the deflected-jet and centered-jet characteristics need be known. These are shown in figure 2.

Figure 2. LPA differential input characteristics.

The centered-jet characteristic corresponds to the control port pressure-flow relationship while the supply jet is maintained at its center position. The deflected-jet characteristic, on the other hand, corresponds to the control port pressure-flow relationship as the jet is being deflected with a "push-pull" differential input signal. This, in turn, states that the bias or average control pressure, P_b , where

$$P_b = \frac{P_{c1} + P_{c2}}{2} \quad , \quad (1)$$

is constant for a given deflected-jet characteristic. Thus, an infinite number of deflected-jet characteristics exist—one for every value of bias pressure, P_b . Fortunately, however, the inverse slope, R_d , of the deflected-jet characteristic is nearly constant with bias pressure, P_b , for P_b not close to zero. The following analysis assumes that

- (a) Centered-jet and deflected-jet characteristics are linear.
- (b) The inverse slope of the deflected-jet characteristics is constant with bias pressure.
- (c) The derived single-sided characteristic will also be linear.

2.1 Constant Pressure on Opposite Control

The physical configuration for this case is shown in figure 3. Here, the pressure-flow (P - Q) relationship at control port $C1$ is desired while control port $C2$ is held at constant pressure, P^* .

With the assumption of a linear pressure-flow relationship at $C1$, only the inverse slope and

² T. M. Drzewiecki, Fluorics 38. A Computer-Aided Design Analysis for the Static and Dynamic Port Characteristics of Laminar Proportional Amplifiers, Harry Diamond Laboratories, HDL-TR-1758, (June 1976).

Figure 3. LPA physical configuration for constant pressure on opposite control.

pressure axis intersection need be determined. An expression for the inverse slope can be derived easily after two P - Q coordinates have been defined.

For convenience, assume that the jet is initially centered. This corresponds to point 1 in figure 4. Coordinates for point 1 are

$$P_{c11} = P^*$$

and

$$Q_{c11} = \frac{P^* - P_{\text{offset}}}{R_{cj}}$$

for

$$P_b = P^*$$

Figure 4. Construction of single-sided characteristic.

Now, by increasing the bias pressure to $2P^*$ while holding P_{c2} equal to P^* , P_{c12} is found by use of the bias pressure equation

$$P_b = 2P^* = \frac{P_{c12} + P^*}{2} \quad ,$$

or

$$P_{c12} = 3P^*$$

From above, then, $\Delta P_{c1} = P_{c12} - P_{c11} = 2P^*$. The quantity $\Delta Q_{c1} = Q_{c12} - Q_{c11}$ can now be formulated after several intermediate steps. Since Q_{c11} is already known, only Q_{c12} need be found. Again, referring to figure 4, it is seen that

$$Q_{c12} = \Delta Q_c - Q_{c22}$$

where

$$\Delta Q_c = \frac{2P^*}{R_d} \quad ,$$

and

$$Q_{c22} = Q_5 - Q_4 \quad ,$$

where

$$Q_5 = \frac{P^*}{R_d}$$

and

$$Q_4 = \frac{2P^* - P_{\text{offset}}}{R_{cj}} \quad .$$

The final expression for ΔQ_{c1} becomes

$$\Delta Q_{c1} = \frac{P^*(R_{cj} + R_d)}{R_{cj}R_d} \quad ,$$

which yields

$$R_{c1} = \frac{\Delta P_{c1}}{\Delta Q_{c1}} = \frac{2R_{cj}R_d}{R_{cj} + R_d} \quad . \quad (2)$$

The intersection of the $C1$ curve with the pressure axis can now easily be found to be

$$P_{c1} \Big|_{Q_{c1=0}} = \frac{P^*(R_{cj} - R_{c1}) + R_{c1}P_{\text{offset}}}{R_{cj}} \quad ,$$

thus completing the entire expression,

$$P_{c1} = R_{c1}Q_{c1} + \frac{P^*(R_{cj} - R_{c1}) + R_{c1}P_{\text{offset}}}{R_{cj}} \quad . \quad (3)$$

2.2. Constant Flow at Control Port C2

Consider now the case where a constant amount of flow is maintained at C_2 . This occurs in reality when a very high resistance from a constant pressure is applied. Variations in the control resistance do not materially affect the total resistance; hence, flow is approximately constant. Again, by construction and assumption of linearity, the inverse slope, R_{c1} , of the $P-Q$ characteristic can be determined.

The supply jet is initially assumed to be in its centered position, which corresponds to point 1 in figure 5. Pressure-flow coordinates are

$$P_{c11} = Q^* R_{cj} + P_{\text{offset}}$$

and

$$Q_{c11} = Q^* \quad .$$

Now, the bias pressure is increased to P_3 so that the corresponding flow rate is $2Q^*$ while a constant flow rate of Q^* is still maintained at control port 2. This defines point 2 such that

$$P_{\text{cl}2} = P_3 + Q^* R_d$$

where

$$P_3 = P_{c11} + \dot{Q}^* R_{cj} \quad \text{and} \quad Q_{c12} = 3Q^* \quad .$$

The inverse slope, R_{c1} , of the control port 1 characteristic can now be formed.

$$R_{c1} = \frac{\Delta P_{c1}}{\Delta Q_{c1}} = \frac{P_3 + Q^* R_d - Q^* R_{cj} - P_{\text{offset}}}{2Q^*}$$

or

$$R_{c1} = \frac{R_{cj} + R_d}{2} \quad . \quad (3)$$

Figure 5. Construction of single-sided characteristic.

Pressure-flow coordinates P_{c11} and Q_{c11} are now used to determine the intersection with the pressure axis,

$$b = P_{c11} - Q_{c11}R_{c1}$$

or

$$b = Q^*R_{cj} + P_{\text{offset}} - Q^*R_{c1} ,$$

thus completing the final expression,

$$P_{c1} = Q_{c1}R_{c1} + Q^*(R_{cj} - R_{c1}) + P_{\text{offset}} . \quad (4)$$

2.3. Series and Shunt Resistance at Control Port C2

Consider the configuration shown in figure 6.

Figure 6. LPA physical configuration for series and shunt resistance at control port $C2$.

In order to derive an expression for the pressure-flow relationship of control port 1, a load line for control port 2 is first constructed (fig. 7). From continuity it is seen that

$$Q_2 = Q_b + Q_{c2} ,$$

where

$$Q_2 = \frac{P_1 - P_{c2}}{R_1} \quad \text{and} \quad Q_b = \frac{P_{c2}}{R_b}$$

or

$$Q_{c2} = \frac{P_1 - P_{c2}}{R_1} - \frac{P_{c2}}{R_b} , \quad (5)$$

thus defining the P - Q relationship for control port 2. Since point 1 lies on the jet-centered curve, $P_{c1} = P_{c2}$ and $Q_{c1} = Q_{c2}$, equating the flows yields

$$\frac{P_{c1} - P_{\text{offset}}}{R_{cj}} = \frac{P_1 - P_{c2}}{R_1} - \frac{P_{c2}}{R_b} .$$

Figure 7. Construction of single-sided characteristic.

However,

$$P_{c1} = P_{c2} ;$$

hence,

$$\frac{P_{c1} - P_{\text{offset}}}{R_{cj}} = \frac{P_1 - P_{c1}}{R_1} - \frac{P_{c1}}{R_b}$$

or

$$P_{c11} = \frac{P_1}{R_1 \left(\frac{1}{R_{cj}} + \frac{1}{R_1} + \frac{1}{R_b} \right)} + \frac{P_{\text{offset}}}{R_{cj} \left(\frac{1}{R_{cj}} + \frac{1}{R_1} + \frac{1}{R_b} \right)}$$

and

$$Q_{c11} = \frac{P_{c11} - P_{\text{offset}}}{R_{cj}} ,$$

thus defining point 1. Once again the bias pressure is increased and the jet is deflected so that P_{c22} is the intersection of the deflected jet characteristic, the load line for $C2$, and the pressure axis (this can be done for convenience without any loss of generality). P_{c12} can now be solved for with the use of the constant bias conditions on the deflected-jet curve,

$$P_3 = \frac{P_{c22} + P_{c12}}{2}$$

or

$$P_{c12} = 2P_3 - P_{c22} \quad (6)$$

P_{c22} is obtained from equation 5 with $Q_{c2} = 0$.

$$P_{c22} = \frac{P_1 R_b}{R_b + R_1} \quad (7)$$

P_3 is obtained by solving the centered-jet and deflected-jet characteristics simultaneously.

$$\frac{P_3 - P_{\text{offset}}}{R_{cj}} = \frac{P_3}{R_d} - \frac{P_1 R_b}{(R_b + R_1) R_d}$$

or

$$P_3 = \frac{P_{\text{offset}} R_d}{R_{cj} \left(\frac{R_d}{R_{cj}} - 1 \right)} - \frac{P_1 R_b}{(R_b + R_1) \left(\frac{R_d}{R_{cj}} - 1 \right)} \quad (8)$$

With equation 6, P_{c12} is found to be

$$P_{c12} = \frac{P_1 R_b \left(1 + \frac{R_d}{R_{cj}} \right)}{(R_b + R_1) \left(1 - \frac{R_d}{R_{cj}} \right)} - \frac{2 R_d P_{\text{offset}}}{R_{cj} \left(1 - \frac{R_d}{R_{cj}} \right)} \quad (9)$$

Q_{c12} can now be obtained by the use of the equation of the deflected-jet curve,

$$P_{c12} = R_d Q_{c12} + P_{c22}$$

From this,

$$Q_{c12} = \frac{P_{c12} - P_{c22}}{R_d} = \frac{(2P_3 - P_{c22}) - P_{c22}}{R_d} = \frac{2(P_3 - P_{c22})}{R_d}$$

or

$$Q_{c12} = \frac{2P_1 R_b}{R_{cj} (R_b + R_1) \left(1 - \frac{R_d}{R_{cj}} \right)} - \frac{2P_{\text{offset}}}{R_{cj} \left(1 - \frac{R_d}{R_{cj}} \right)} \quad (10)$$

With two P - Q coordinates known, R_{c1} , the inverse slope of the C1 characteristic, is formed.

$$R_{c1} = \frac{\Delta P_{c1}}{\Delta Q_{c1}} = \frac{P_{c12} - P_{c11}}{Q_{c12} - Q_{c11}} \quad (11)$$

where

$$P_{c12} = \frac{P_1 R_b \left(1 + \frac{R_d}{R_{cj}} \right)}{(R_b + R_1) \left(1 - \frac{R_d}{R_{cj}} \right)} - \frac{2 R_d P_{\text{offset}}}{R_{cj} \left(1 - \frac{R_d}{R_{cj}} \right)} \quad (11a)$$

$$P_{c11} = \frac{P_1}{R_1 \left(\frac{1}{R_{cj}} + \frac{1}{R_b} + \frac{1}{R_1} \right)} + \frac{P_{\text{offset}}}{R_{cj} \left(\frac{1}{R_{cj}} + \frac{1}{R_1} + \frac{1}{R_b} \right)} \quad (11b)$$

$$Q_{c12} = \frac{2P_1 R_b}{R_{cj} (R_b + R_1) \left(1 - \frac{R_d}{R_{cj}} \right)} - \frac{2P_{\text{offset}}}{R_{cj} \left(1 - \frac{R_d}{R_{cj}} \right)} \quad (11c)$$

$$Q_{c11} = \frac{P_1}{R_{cj}R_1 \left(\frac{1}{R_{cj}} + \frac{1}{R_1} + \frac{1}{R_b} \right)} + \frac{\left[1 - R_{cj} \left(\frac{1}{R_{cj}} + \frac{1}{R_1} + \frac{1}{R_b} \right) \right]}{R_{cj}^2 \left(\frac{1}{R_{cj}} + \frac{1}{R_1} + \frac{1}{R_b} \right)} P_{\text{offset}} \quad . \quad (11d)$$

The pressure axis intercept is now determined by substitution of the expressions for P_{c11} and Q_{c11} into the equation

$$b = P_{c11} - R_c Q_{c11} \quad . \quad (12)$$

Thus, the complete equation becomes

$$P_{c1} = Q_{c1} R_{c1} + (P_{c11} - R_{c1} Q_{c11}) \quad , \quad (13)$$

with the corresponding quantities defined in equations 11a to d.

3. OBSERVED PERFORMANCE

In order to verify the foregoing analysis, the centered-jet and deflected-jet characteristics were first experimentally determined. Figure 8 shows the technique for obtaining the centered-jet curve.

By applying flow to controls 1 and 2 in a common-mode fashion, the supply jet remains nominally centered. Thus, the requirement that $P_{c1} = P_{c2}$ and $Q_{c1} = Q_{c2} = \frac{1}{2}Q_{c_{\text{tot}}}$ is satisfied. The deflected-jet characteristic, on the other hand, must satisfy the requirement that

$$P_b = \frac{P_{c1} + P_{c2}}{2} = \text{constant} \quad ,$$

for all points on the curve. With the assumption of linear characteristics, only two points need be obtained to determine the deflection resistance (inverse slope), R_d . Since R_d is constant with bias pressure, P_b , values for P_b at which R_d is determined were arbitrarily selected over a range of 5 to 15 percent of supply pressure. Once a bias pressure is selected, the first point is found on the centered-jet curve where $P_{c1} = P_{c2} - P_b$. The P - Q characteristic is now determined for control port 1 with control port 2 open to ambient ($P_{c2} = 0$). Again, the intersection of the

Figure 8. Method for obtaining centered-jet characteristic.

Figure 9. Control port 1 (C1) pressure flow characteristic for $P_{c2} = \text{constant}$, with $P_s = 0.67$ kPa.

deflected-jet curve with the $P_{c2} = 0$ curve must satisfy

$$P_b = \frac{P_{c1} + P_{c2}}{2} = \frac{P_{c1}}{2} \text{ for } P_{c2} = 0$$

Thus, the second point is quickly determined to be where $P_{c1} = 2P_b$ on the $P_{c2} = 0$ curve: All deflected-jet characteristics presented here were determined in the manner outlined above. It should be noted that both R_{c1} and R_d may be computed² for a general design.

Experimental data for the three cases shown in section 2 at various aspect ratios (height-to-width ratio of supply nozzle, denoted by σ) and supply pressures appear in figures 9 through 17. For a constant pressure on control port 2 (fig. 9 to 11) the inverse slope, R_{c1} , of the C1 characteristics is seen to be in good agreement with predicted performance, exhibiting a maximum deviation from experiment of 11 percent. Good agreement between experimentally determined values of R_{c1} and predicted values can also be seen for a constant flow rate at control port 2 (fig. 12 to 14). Here the error did not exceed 8 percent. Lastly, predicted and experimental values of R_{c1} for a series and shunt resistance at control port 2 agree reasonably well (11-percent maximum error) as can be seen in figures 15 to 17. Actual and computed pressure axis intercepts differed significantly in many cases, however. The reason for this becomes apparent upon inspection of

² T. M. Drzewiecki, Fluerics 38. A Computer-Aided Design Analysis for the Static and Dynamic Port Characteristics of Laminar Proportional Amplifiers, Harry Diamond Laboratories, HDL-TR-1758, (June 1976).

Figure 10. Control port 1 (C1) pressure flow characteristic for $P_{c2} = \text{constant}$, with $P_s = 0.476$ kPa.

the centered-jet characteristics. As mentioned previously, all characteristics were assumed to be straight lines. This assumption is violated for points on the centered-jet curve near zero, due to nonlinearity. Nonetheless, actual values of P_{offset} (intersections of centered-jet curve and pressure axis) were used in the computation. If a straight-line tangent were drawn on the centered-jet curve, an "apparent" pressure axis intercept could be determined that would provide better agreement. For $P_{c2} = 0$ in figures 9, 10, and 11, the nonlinear nature of the $P_{c2} = 0$ characteristics near zero was responsible for additional error. This effect is particularly pronounced in figure 10, where actual and computed pressure axis intercepts differed by nearly 60 percent. Again, construction of an "apparent" intercept improves accuracy considerably.

4. SUMMARY AND CONCLUSIONS

Coupled with an existing computer algorithm for predicting differential control port characteristics, a purely analytical approach was presented for modeling single-sided control port characteristics. Three specific cases were dealt with—constant pressure on control port 2, constant flow on control port 2, and a series/shunt resistance connected to control port 2. Predicted and experimental values of R_{c1} (inverse slope of C1 characteristic) agreed well (11-percent maximum error) for the range of aspect ratios and supply pressures tested. Significant error, however, was encountered between experimental and computed values of the C1 characteristic

Figure 11. Control port 1 (C1) pressure-flow characteristic for P_{c2} = constant, with P_s = 0.15 kPa.

Figure 12. Control port 1 (C1) pressure-flow characteristic for $Q_{c2} = \text{constant}$, with $P_s = 0.67 \text{ kPa}$.

Figure 13. Control port 1 (C1) pressure-flow characteristic for $Q_{c2} = \text{constant}$, with $P_s = 0.476 \text{ kPa}$.

Figure 14. Control port 1 (C1) pressure-flow characteristic for $Q_{c2} = \text{constant}$, with $P_s = 0.15 \text{ kPa}$.

Figure 15. Control port 1 (C1) pressure-flow characteristic for series and shunt resistance at control port 2, with $P_s = 0.67 \text{ kPa}$.

Figure 16. Control port 1 (C1) pressure-flow characteristic for series and shunt resistance at control port 2, with $P_s = 0.476 \text{ kPa}$.

pressure axis intercept. This is due, at least in part, to the nonlinear behavior of the centered-jet curve near zero. Better agreement could be obtained through the use of a straight-line or "apparent" pressure axis intercept (P_{offset}) for the centered-jet characteristic. In practice, however, the inverse slope, R_{c1} , of the C1 characteristic is generally of more importance than the pressure axis intercept.

Figure 17. Control port 1 (C1) pressure-flow characteristic for series and shunt resistance at control port 2, with $P_s = 0.15 \text{ kPa}$.

From the results obtained, it would appear that the analytical approach is of a general nature. If a load line can be constructed for control port 2, then the C1 characteristic can be determined. This could be extended to the most general case, where orifices (nonlinear resistances) are present at control port 2, thus allowing purely analytical design for any configuration.

NOMENCLATURE

<i>b</i>	pressure axis intercept of C1 characteristic
<i>C</i> 1	control port 1
<i>C</i> 2	control port 2
<i>P</i>	pressure (<i>kPa</i>)
<i>Q</i>	volumetric flow (m^3/s)
<i>R</i>	fluid resistance $P/Q(kPa/m^3/s)$
σ	aspect ratio (height-to-width ratio of supply nozzle)

Subscripts

<i>b</i>	bias
<i>c</i> _j	centered-jet
<i>c</i> 1	control port 1
<i>c</i> 2	control port 2
<i>d</i>	deflected-jet
offset	pressure axis intercept of the centered-jet curve
tot	total

Superscripts

*	constant quantity
---	-------------------

DISTRIBUTION

ADMINISTRATOR
DEFENSE DOCUMENTATION CENTER
ATTN DDC-TCA (12 COPIES)
CAMERON STATION, BUILDING 5
ALEXANDRIA, VA 22314

COMMANDER
US ARMY RSCH & STD GP (EUR)
ATTN LTC JAMES M. KENNEDY, JR.
CHIEF, PHYSICS & MATH BRANCH
FPO NEW YORK 09510

COMMANDER
US ARMY MATERIEL DEVELOPMENT &
READINESS COMMAND
ATTN DRXAM-TL, HQ TECH LIBRARY
ATTN DRCRD-TP, WILLIAM RALPH
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

COMMANDER
US ARMY ARMAMENT MATERIEL
READINESS COMMAND
ATTN DRSAR-ASF, FUZE &
MUNITIONS SUPPORT DIV
ATTN DRSAR-RDF, SYS DEV DIV - FUZES
ATTN DRSAR-RDG-T, MR. R. SPENCER
ATTN DRSAR-ASF
ATTN DRSAR-LEP-L, TECH LIBRARY
ROCK ISLAND, IL 61299

COMMANDER
US ARMY MISSILE & MUNITIONS
CENTER & SCHOOL
ATTN ATSK-CTD-F
REDSTONE ARSENAL, AL 35809

DIRECTOR
US ARMY MATERIEL SYSTEMS
ANALYSIS ACTIVITY
ATTN DRXSY-MP
ABERDEEN PROVING GROUND, MD 21005

DIRECTOR
US ARMY BALLISTIC RESEARCH LABORATORY
ATTN DRDAR-TSB-S (STINFO)
ABERDEEN PROVING GROUND, MD 21005

TELEDYNE BROWN ENGINEERING
CUMMINGS RESEARCH PARK
ATTN DR. MELVIN L. PRICE, MS-44
HUNTSVILLE, AL 35807

COMMANDER IDR&E
PENTAGON, ROOM 3D 1089
WASHINGTON, DC 20310
ATTN LTC G. KOPESAK

OFFICE OF THE DEPUTY CHIEF OF STAFF FOR
RESEARCH, DEVELOPMENT & ACQUISITION
DEPARTMENT OF THE ARMY
WASHINGTON, DC 20310
ATTN DAMA-ARP-P
ATTN MR. JOHN HILL, ROOM 3D424

US ARMY R&D GROUP (EUROPE)
BOX 15
FPO NEW YORK 09510
ATTN CHIEF, AERONAUTICS BRANCH
ATTN CHIEF, ENGINEERING SCIENCES

US ARMY RESEARCH OFFICE
P. O. BOX 12211
RESEARCH TRIANGLE PARK, NC 27709
ATTN JAMES J. MURRAY, ENG SCI DIV
ATTN R. SINGLETON

BMD ADVANCED TECHNOLOGY CENTER
P.O. BOX 1500
HUNTSVILLE, AL 35807
ATTN J. PAPADOPOULOS

COMMANDER
USA FOREIGN SCIENCE & TECHNOLOGY CENTER
FEDERAL OFFICE BUILDING
220 7th STREET, NE
CHARLOTTESVILLE, VA 22901
ATTN DRXST-SD1
ATTN DRXST-IS3, C. R. MOORE

DIRECTOR
APPLIED TECHNOLOGY LABORATORY
FORT EUSTIS, VA 23604
ATTN GEORGE W. FOSDICK, DAVDL-EU-SYA

COMMANDER
USA MISSILE COMMAND
REDSTONE ARSENAL, AL 35809
ATTN REDSTONE SCIENTIFIC INFORMATION
CENTER, DRSMI-RBD
ATTN DRDMI-TGC, WILLIAM GRIFFITH
ATTN DRDMI-TGC, J. C. DUNAWAY
ATTN DRCPM-TOE, FRED J. CHEPLEN

COMMANDER
USA MOBILITY EQUIPMENT R&D CENTER
FORT BELVOIR, VA 22060
ATTN TECHNICAL LIBRARY (VAULT)
ATTN DRDME-EM, R. N. WARE

COMMANDER
EDGEWOOD ARSENAL
ABERDEEN PROVING GROUND, MD 21010
ATTN SAREA-MT-T, MR. D. PATTON

DISTRIBUTION (Cont'd)

COMMANDER
US ARMY ARRADCOM
DOVER, NJ 07801
ATTN SARPA-TS-S-#59
ATTN DRDAR-LCN-F, A. E. SCHMIDLIN
ATTN DRDAR-LCW-E, MR. J. CONNOR
ATTN SARPA-ND-C-C, D. SAMPAR

COMMANDER
WATERVLIET ARSENAL
WATERVLIET ARSENAL, NY 12189
ATTN SARVV-RDT-L
ATTN GARY WOODS
ATTN JOHN BARRETT

COMMANDER
USA TANK AUTOMOTIVE RES & DEV COMMAND
ARMOR & COMP DIV, DRDTA-RKT
BLDG 215
WARREN, MI 48090
ATTN T. KOZOWYK
ATTN M. STEELE

COMMANDER
WHITE SANDS MISSILE RANGE, NM 88002
ATTN STEWS-AD-L, TECHNICAL LIBRARY

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
USA ERADCOM
WHITE SANDS MISSILE RANGE, NM 88002
ATTN DELAS-AS (HOLT)

OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
ARLINGTON, VA 22217
ATTN STANLEY W. DOROFF, CODE 438
ATTN D. S. SIEGEL, CODE 211

DEPARTMENT OF THE NAVY
R&D PLANS DIVISION
ROOM 5D760, PENTAGON
WASHINGTON, DC 20350
ATTN BENJ R. PETRIE, JR.
OP-987P4

COMMANDER
NAVAL AIR DEVELOPMENT CENTER
WARMINSTER, PA 18974
ATTN R. MCGIBONEY, 30424
ATTN CODE 8134, LOIS GUISE

COMMANDING OFFICER
NAVAL AIR ENGINEERING CENTER
LAKEHURST, NY 08733
ATTN ESSD, CODE 9314, HAROLD OTT

NAVAL AIR SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
WASHINGTON, DC 20360
ATTN CODE AIR-52022A, J. BURNS
ATTN CODE AIR-52022E, D. HOUCK

COMMANDER
PACIFIC MISSILE RANGE
NAVAL MISSILE CENTER
POINT MUGU, CA 93042
ATTN CODE 3123, ABE J. GARRETT
ATTN CODE 1243, A. ANDERSON

COMMANDER
NAVAL SHIP ENGINEERING CENTER
PHILADELPHIA DIVISION
PHILADELPHIA, PA 19112
ATTN CODE 6772, D. KEYSER

COMMANDER
NAVAL SURFACE WEAPONS CENTER
WHITE OAK, MD 20910
ATTN CODE 413, CLAYTON MCKINDRA
ATTN DIV 412, C. J. SEWELL

COMMANDER
NAVAL ORDNANCE STATION
INDIANHEAD, MD 20640
ATTN CODE 5123B, J. MORRIS

NAVAL SHIP RES & DEV CENTER
CODE 1619, MR. K. READER
BETHESDA, MD 20084

NAVAL SEA SYSTEMS COMMAND
SEA0331H
WASHINGTON, DC 20362
ATTN A. CHAIKIN

COMMANDER
NAVAL WEAPONS CENTER
CHINA LAKE, CA 93555
ATTN CODE 533, LIBRARY DIVISION
ATTN CODE 3636, C. BURMEISTER

COMMANDER
AF AERO PROPULSION LABORATORY, AFSC
WRIGHT-PATTERSON AFB, OH 45433
ATTN LESTER SMALL 1TBC

COMMANDER
AIR FORCE AVIONICS LABORATORY
WRIGHT-PATTERSON AFB, OH 45433
ATTN RWN-2, RICHARD JACOBS

DISTRIBUTION (Cont'd)

DIRECTOR
AF OFFICE OF SCIENTIFIC RESEARCH
1400 WILSON BLVD
ARLINGTON, VA 22209
ATTN NE, MR. GEORGE KNAUSENBERGER

COMMANDER
AIR FORCE FLIGHT DYNAMICS LABORATORY
WRIGHT-PATTERSON AFB, OH 45433
ATTN AFFDL/FGL, H. SNOWBALL

COMMANDER
AF WEAPONS LABORATORY, AFSC
KIRTLAND AFB, NM 87117
ATTN SUL, TECHNICAL LIBRARY

COMMANDER
ARMAMENT DEVELOPMENT AND TEST CENTER
EGLIN AIR FORCE BASE, FL 32542
ATTN ADTC (DLOSL), TECH LIBRARY

AIR FORCE FLIGHT TEST CENTER
6510 ABG/SSD
EDWARDS AFB, CA 93523
ATTN TECHNICAL LIBRARY

AF INSTITUTE OF TECHNOLOGY, AU
WRIGHT-PATTERSON AFB, OH 45433
ATTN LIBRARY AFIT(LD),
BLDG 640, AREA B
ATTN AFIT(ENM), MILTON E. FRANKE
(3 COPIES)

AEROSPACE MEDICAL DIVISION
BROOKS AFB, TX 78235
ATTN AMD/RDN, CPT G. JAMES

DIV. OF REACTOR RES & DEV
F-309 USERDA
WASHINGTON, DC 20545
ATTN FRANK C. LEGLER

OAK RIDGE NATIONAL LABORATORY
CENTRAL RES LIBRARY, BLDG 4500N, RM 175
P. O. BOX X
OAK RIDGE, TN 37830
ATTN E. HOWARD

DEPT OF HEW
PUBLIC HEALTH SERVICE
NATIONAL INSTITUTE OF HEALTH
BLDG 13, RM 3W-13
BETHESDA, MD 20014
ATTN C. J. MCCARTHY

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
WASHINGTON, DC 20234
ATTN DR. JAMES SCHOOLEY, CHIEF,
TEMPERATURE SECTION
ATTN DR. T. NEGAS, MATERIALS DIVISION

DEPARTMENT OF COMMERCE
BUREAU OF EAST-WEST TRADE
OFFICE OF EXPORT ADMINISTRATION
WASHINGTON, DC 20230
ATTN WALTER J. RUSNACK

SCIENTIFIC LIBRARY
US PATENT OFFICE
WASHINGTON, DC 20231
ATTN MRS. CURETON

NASA AMES RESEARCH CENTER
MOFFETT FIELD, CA 94035
ATTN MS 244-13, DEAN CHISEL

NASA Langley RESEARCH CENTER
HAMPTON, VA 23665
ATTN MS 494, H. D. GARNER
ATTN MS 494, R. R. HELLBAUM
ATTN MS 185, TECHNICAL LIBRARY

NASA LEWIS RESEARCH CENTER
21000 BROOKPARK ROAD
CLEVELAND, OH 44135
ATTN VERNON D. GEBBEN

NASA SCIENTIFIC & TECH INFO FACILITY
P. O. BOX 8657
BALTIMORE/WASHINGTON INTERNATIONAL
AIRPORT, MD 21240
ATTN ACQUISITIONS BRANCH

UNIVERSITY OF ALABAMA
CIVIL & MINERAL ENGINEERING DEPT.
P. O. BOX 1468
UNIVERSITY, AL 35486
ATTN DR. HAROLD R. HENRY

UNIVERSITY OF ARKANSAS
TECHNOLOGY CAMPUS
P. O. BOX 3017
LITTLE ROCK, AR 72203
ATTN PAUL C. MCLEOD

UNIVERSITY OF ARKANSAS
MECHANICAL ENGINEERING
FAYETTEVILLE, AR 72701
ATTN JACK H. COLE, ASSOC PROF

DISTRIBUTION (Cont'd)

CARNEGIE-MELLON UNIVERSITY
 SCHENLEY PARK
 PITTSBURGH, PA 15213
 ATTN PROF W. T. ROULEAU, MECH ENGR DEPT

CASE WESTERN RESERVE UNIVERSITY
 UNIVERSITY CIRCLE
 CLEVELAND, OH 44106
 ATTN PROF P. A. ORNER
 ATTN PROF B. HORTON

THE CITY COLLEGE OF THE CITY
 UNIVERSITY OF NY
 DEPT OF MECH ENGR
 139th ST. AT CONVENT AVE
 NEW YORK, NY 10031
 ATTN PROF L. JIJI
 ATTN PROF G. LOWEN

CLEVELAND STATE UNIVERSITY
 FENN COLLEGE OF ENGINEERING
 CLEVELAND, OH 44115
 ATTN PROF R. COMPARIN

DUKE UNIVERSITY
 COLLEGE OF ENGINEERING
 DURHAM, NC 27706
 ATTN C. M. HARMAN

ENGINEERING SOCIETIES LIBRARY
 345 EAST 47TH STREET
 NEW YORK, NY 10017
 ATTN HOWARD GORDON
 ATTN ACQUISITIONS DEPARTMENT

FRANKLIN INSTITUTE OF THE STATE
 OF PENNSYLVANIA
 20TH STREET & PARKWAY
 PHILADELPHIA, PA 19103
 ATTN KA-CHEUNG TSUI, ELEC ENGR DIV
 ATTN C. A. BELSTERLING

HUGHES HELICOPTERS
 DIVISION OF SUMMA CORPORATION
 CENTINELA & TEALE STREETS
 CULVER CITY, CA 90230
 ATTN LIBRARY 2/T2124

IIT RESEARCH INSTITUTE
 10 WEST 35th STREET
 CHICAGO, IL 60616
 ATTN DR. K. E. MCKEE

JOHNS HOPKINS UNIVERSITY
 APPLIED PHYSICS LABORATORIES
 LAUREL, MD 20810
 ATTN MR. MAYNARD HILL
 ATTN MR. THOMAS RANKIN
 ATTN MR. JOSEPH WALL

LEHIGH UNIVERSITY
 DEPARTMENT OF MECHANICAL ENGINEERING
 BETHLEHEM, PA 18015
 ATTN PROF FORBES T. BROWN

LINDA HALL LIBRARY
 5109 CHERRY STREET
 KANSAS CITY, MO 64110
 ATTN DOCUMENTS DIVISION

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 77 MASSACHUSETTS AVENUE
 CAMBRIDGE, MA 02139
 ATTN ENGINEERING TECHNICAL REPORTS,
 RM 10-408
 ATTN DAVID WORMLEY, MECH ENGR DEPT,
 RM 3-146

MICHIGAN TECHNOLOGICAL UNIVERSITY
 LIBRARY, DOCUMENTS DIVISION
 HOUGHTON, MI 49931
 ATTN J. HAWTHORNE

UNIVERSITY OF MISSISSIPPI
 201 CARRIER HALL, DEPT OF MECH ENGR
 UNIVERSITY, MS 38677
 ATTN DR. JOHN A. FOX

MISSISSIPPI STATE UNIVERSITY
 DRAWER ME
 STATE COLLEGE, MS 39672
 ATTN DR. C. J. BELL, MECH ENG DEPT

UNIVERSITY OF NEBRASKA LIBRARIES
 ACQUISITIONS DEPT, SERIALS SECTION
 LINCOLN, NE 68508
 ATTN ALAN GOULD

UNIVERSITY OF NEW HAMPSHIRE
 MECH ENGR DEPT, KINGSBURY HALL
 DURHAM, NH 03824
 ATTN PROF CHARLES TAFT (3 COPIES)

DEPARTMENT OF MECHANICAL ENGINEERING
 NEWARK COLLEGE OF ENGINEERING
 323 HIGH STREET
 NEWARK, NJ 07102
 ATTN DR. R. Y. CHEN

OHIO STATE UNIVERSITY LIBRARIES
 SERIAL DIVISION, MAIN LIBRARY
 1858 NEIL AVENUE
 COLUMBUS, OH 43210

OKLAHOMA STATE UNIVERSITY
 SCHOOL OF MECH & AEROSPACE ENGR.
 STILLWATER, OK 74074
 ATTN PROF KARL N. REID

DISTRIBUTION (Cont'd)

MIAMI UNIVERSITY
DEPT OF ENG TECH
SCHOOL OF APPLIED SCIENCE
OXFORD, OH 45056
ATTN PROF S. B. FRIEDMAN

PENNSYLVANIA STATE UNIVERSITY
215 MECHANICAL ENGINEERING BUILDING
UNIVERSITY PARK, PA 16802
ATTN DR. J. L. SHEARER

PENNSYLVANIA STATE UNIVERSITY
ENGINEERING LIBRARY
201 HAMMOND BLDG
UNIVERSITY PARK, PA 16802
ATTN M. BENNETT, ENGINEERING LIBRARIAN

PURDUE UNIVERSITY
SCHOOL OF MECHANICAL ENGINEERING
LAFAYETTE, IN 47907
ATTN PROF. VICTOR W. GOLDSCHMIDT
ATTN PROF. ALAN T. MCDONALD

ROCK VALLEY COLLEGE
3301 NORTH MULFORD ROAD
ROCKFORD, IL 61101
ATTN KEN BARTON

RUTGERS UNIVERSITY
LIBRARY OF SCIENCE & MEDICINE
NEW BRUNSWICK, NJ 08903
ATTN GOVERNMENT DOCUMENTS DEPT
MS. SANDRA R. LIVINGSTON

SYRACUSE UNIVERSITY
DEPT OF MECH & AEROSPACE ENGINEERING
139 E. A. LINK HALL
SYRACUSE, NY 13210
ATTN PROFESSOR D. S. DOSANJH

UNIVERSITY OF TENNESSEE
DEPT OF MECHANICAL ENGINEERING
KNOXVILLE, TN 37916
ATTN PROF G. V. SMITH

UNIVERSITY OF TEXAS AT AUSTIN
DEPT OF MECHANICAL ENGINEERING
AUSTIN, TX 78712
ATTN DR. A. J. HEALEY

THE UNIVERSITY OF TEXAS AT ARLINGTON
MECHANICAL ENGINEERING DEPARTMENT
ARLINGTON, TX 76019
ATTN DR. ROBERT L. WOODS

TULANE UNIVERSITY
DEPT OF MECHANICAL ENGINEERING
NEW ORLEANS, LA 70118
ATTN H. F. HRUBECKY

UNION COLLEGE
MECHANICAL ENGINEERING
SCHENECTADY, NY 12308
ATTN ASSOC PROF W. C. AUBREY
MECH ENGR DEPT, STEINMETZ HALL

VIRGINIA POLYTECHNIC INSTITUTE OF STATE UNIV
MECHANICAL ENGINEERING DEPARTMENT
BLACKSBURG, VA 24061
ATTN PROF H. MOSES

WASHINGTON UNIVERSITY
SCHOOL OF ENGINEERING
P. O. BOX 1185
ST. LOUIS, MO 63130
ATTN W. M. SWANSON

WEST VIRGINIA UNIVERSITY
MECHANICAL ENGINEERING DEPARTMENT
MORGANTOWN, WV 26505
ATTN DR. RICHARD A. BAJURA

WICHITA STATE UNIVERSITY
WICHITA, KS 67208
ATTN DEPT AERO ENGR, E. J. RODGERS

UNIVERSITY OF WISCONSIN
MECHANICAL ENGINEERING DEPARTMENT
1513 UNIVERSITY AVENUE
MADISON, WI 53706
ATTN FEDERAL REPORTS CENTER
ATTN NORMAN H. BEACHLEY, DIR,
DESIGN ENGINEERING LABORATORIES

WORCESTER POLYTECHNIC INSTITUTE
WORCESTER, MA 01609
ATTN GEORGE C. GORDON LIBRARY (TR)
ATTN TECHNICAL REPORTS

AIRESEARCH
P. O. BOX 5217
402 SOUTH 36th STREET
PHOENIX, AZ 85034
ATTN DAVID SCHAFER
ATTN TREVOR SUTTON
ATTN TOM TIPPETTS

AVCO SYSTEMS DIVISION
201 LOWELL STREET
WILMINGTON, MA 01887
ATTN W. K. CLARK
ATTN R. LIMPAECHER (2 COPIES)

BELL HELICOPTER COMPANY
P. O. BOX 482
FORTWORTH, TX 76101
ATTN MR. R. D. YEARY

DISTRIBUTION (Cont'd)

BENDIX CORPORATION
ELECTRODYNAMICS DIVISION
11600 SHERMAN WAY
N. HOLLYWOOD, CA 90605
ATTN MR. D. COOPER

BENDIX CORPORATION
RESEARCH LABORATORIES DIV.
BENDIX CENTER
SOUTHFIELD, MI 48075
ATTN C. J. AHERN

BOEING COMPANY, THE
P. O. BOX 3707
SEATTLE, WA 98124
ATTN HENRIK STRAUB

BOWLES FLUIDICS CORPORATION
9347 FRASER AVENUE
SILVER SPRING, MD 20910
ATTN VICE PRES./ENGR.

DR. RONALD BOWLES
2105 SONDRAS COURT
SILVER SPRING, MD 20904

CHAMBERLAIN MANUFACTURING CORP
EAST 4TH ESTHER STS
WATERLOO, IA 50705
ATTN W. WESTERMAN

CONTINENTAL CAN COMPANY
TECH CENTER
1350 W. 76TH STREET
CHICAGO, IL 60620
ATTN P. A. BAUER

CORDIS CORPORATION
P. O. BOX 428
MIAMI, FL 33137
ATTN STEPHEN F. VADAS, K-2

CORNING GLASS WORKS
FLUIDIC PRODUCTS
HOUGHTON PARK, B-2
CORNING, NY 14830
ATTN R. H. BELLMAN

CHRYSLER CORPORATION
P.O. BOX 118
CIMS-418-33-22
DETROIT, MI 48231
ATTN MR. L. GAU

JOHN DEERE PRODUCT ENGINEERING CENTER
WATERLOO, IA 50704
ATTN V. S. KUMAR

EMX ENGINEERING, INC
BOX 216 - 216 LITTLE FALLS RD
CEDAR GROVE, NJ 07009
ATTN ANTHONY P. CORRADO, PRESIDENT

FLUIDICS QUARTERLY
P. O. BOX 2989
STANFORD, CA 94305
ATTN D. H. TARUMOTO

GENERAL ELECTRIC COMPANY
SPACE/RESD DIVISIONS
P. O. BOX 8555
PHILADELPHIA, PA 19101
ATTN MGR LIBRARIES, LARRY CHASEN

GENERAL MOTORS CORPORATION
DELCO ELECTRONICS DIV
MANFRED G. WRIGHT
NEW COMMERCIAL PRODUCTS
P. O. BOX 1104
KOKOMO, IN 46901
ATTN R. E. SPARKS

GRUMMAN AEROSPACE CORPORATION
TECHNICAL INFORMATION CENTER
SOUTH OYSTER BAY ROAD
BETHPAGE, L. I., NY 11714
ATTN C. W. TURNER, DOCUMENTS
LIBRARIAN

HAMILTON STANDARD
DIVISION OF UNITED AIRCRAFT CORPORATION
WINDSOR LOCKS, CT 06096
ATTN MR. PHILIP BARNES

HONEYWELL, INC.
1625 ZARTHAN AVE
MINNEAPOLIS, MI 55413
ATTN J. HEDEEN

JOHNSON CONTROLS, INC
507 E. MICHIGAN
MILWAUKEE, WI 53201
ATTN WARREN A. LEDERMAN

MOORE PRODUCTS COMPANY
SPRING HOUSE, PA 19477
ATTN MR. R. ADAMS

MARTIN MARIETTA CORPORATION
AEROSPACE DIVISION
P. O. BOX 5837
ORLANDO, FL 32805
ATTN R. K. BRODERSON, MP 326
ATTN VITO O. BRAVO, MP 326

DISTRIBUTION (Cont'd)

MCDONNELL AIRCRAFT COMPANY
GUIDANCE AND CONTROL MECHANICS DIVISION
ST. LOUIS, MO 63166
ATTN MR. LOYAL GUNTHER

NATIONAL FLUID POWER ASSOCIATION
3333 NORTH MAYFAIR ROAD
MILWAUKEE, WI 53222
ATTN JOHN R. LUEKE
DIR OF TECH SERVICES

PLESSEY AEROSPACE LTD
1700 OLD MEADOW ROAD
MCLEAN, VA 22102
ATTN A. ROSENBERG

RICHARD WHITE & ASSOCIATES
ELECTRO/MECHANICAL ENGINEERS
77 PELHAM ISLE ROAD
SUDBURY, MA 01776
ATTN RICHARD P. WHITE

ROCKWELL INTERNATIONAL CORPORATION
COLUMBUS AIRCRAFT DIVISION,
P. O. BOX 1259
4300 E. 5TH AVENUE
COLUMBUS, OH 43216
ATTN MR. MARVIN SCHWEIGER

SANDIA CORPORATION
KIRTLAND AFB, EAST
ALBUQUERQUE, NM 87115
ATTN WILLIAM R. LEUENBERGER, DIV 2323

STEIN ENGINEERING SERVICES, INC
5602 E. MONTEROSA
PHOENIX, AZ 85018

TRITEC, INC
P.O. BOX 56
COLUMBIA, MD 21045
ATTN L. SIERACKI

UNITED TECHNOLOGIES RESEARCH CENTER
400 MAIN STREET
E. HARTFORD, CT 06108
ATTN R. E. OLSON, MGR FLUID
DYNAMICS LABORATORY

US ARMY ELECTRONICS RESEARCH
& DEVELOPMENT COMMAND
ATTN TECHNICAL DIRECTOR, DRDEL-CT

HARRY DIAMOND LABORATORIES
ATTN 00100, COMMANDER/TECH DIR/TSO
ATTN CHIEF, DIV 10000
ATTN CHIEF, DIV 20000
ATTN CHIEF, DIV 30000
ATTN CHIEF, DIV 40000
ATTN RECORD COPY, 81200
ATTN HDL LIBRARY, (3 COPIES) 81100
ATTN HDL LIBRARY, (WOODBRIDGE) 81100
ATTN TECHNICAL REPORTS BRANCH, 81300
ATTN CHAIRMAN, EDITORIAL COMMITTEE
ATTN CORRIGAN, J., 00240
ATTN CHIEF, 13000
ATTN CHIEF, 13400 (10 COPIES)
ATTN DRZEWIECKI, T., 13400 (10 COPIES)
ATTN COX, L. S., 00210
ATTN LANHAM, C., 00210
ATTN MON, G., 13400
ATTN DEADWYLER, R., 13400
ATTN GOTO, J., 13400
ATTN TENNEY, S., 13400
ATTN TODA, K., 13400
ATTN JOYCE, J., 13400
ATTN PHILLIPI, R. M., 13400 (10 COPIES)