Math 136 Note

Peter Jiang January 14, 2021

1 Vectors in \mathbb{R}^n

Definition: Vector

A vector is an object that has both magnitude and direction.

Representation I: Geometrically

Vectors in \mathbb{R}^2 , \mathbb{R}^3 and even in \mathbb{R}^n can we visualized as directed line segments. Vectors can be move around in \mathbb{R}^n space as long as their magnitude and direction is not changed, that is, the vectors are not localized

Points and vectors are not the same.

Representation II: Algebraically Vectors can be expressed as columns of numbers. These columns are often called n-tuples

$$\vec{w} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \in \mathbb{R}^2, \vec{v} = \begin{pmatrix} -3 \\ 1 \\ -5 \end{pmatrix} \in \mathbb{R}^3, \vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n,$$

Notation:

$$\vec{v} = \begin{pmatrix} 1\\2\\3\\4\\5 \end{pmatrix} = (1, 2, 3, 4, 5)^T$$

where "T" is short for transpose and must be included

Relationship between a point and a vector:

Let \vec{p} be a vector in \mathbb{R}^n which then could be thought of as a discrete line segment per **Representation I**. Let P be the terminal point of \vec{p} , thus \vec{p} can be written as

$$\vec{p} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

then the point P has the coordinates $(a_1, a_2, ...a_n)$.

The vector \vec{v} from the origin to p has the same set of number as P. It is P's positional vector

Vector Equality:

Let $\vec{v} = (v_1, v_2...v_n)^T$ and $\vec{w} = (w_1, w_2...w_n)^T$ $\vec{v} = \vec{w}$ if

1. Same mag + dir

2. $\forall i = 1, 2...n, \vec{v_i} = \vec{w_i}$

Addition and Scalar Multiplication: Let $\vec{v} = (v_1, v_2...v_n)^T$ and $\vec{w} = (w_1, w_2...w_n)^T$,

$$\vec{z} = \vec{v} + \vec{w} = (z_1 + w_1, z_2 + w_2...z_n + w_n)^T$$

Vector in \mathbb{C}^n :

2 Dot Product

Function that takes two vector and outputs a scalar

Length:

Recall that the length, or a *norm* of vector $\vec{v} = (a, b)^T$ in \mathbb{R}^2 is

$$||\vec{v}|| = \sqrt{a^2 + b^2}$$

Note that this is equivalent to the dot product of \vec{v} to itself, thus

$$||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}}$$

Therefore the square of the length of the vector is the dot product itself $(useful\ fact)$

$$||\vec{v}||^2 = \vec{v} \cdot \vec{v}$$

This geometric intuition in \mathbb{R}^2 often extends to higher dimension

Unit Vector:

A vector $\vec{v} \in \mathbb{R}^n$ is a unit vector means that ||w|| = 1

Normalization:

When $\vec{v} \in \mathbb{R}^n$ is a non-zero vector, we can product a unit vector in the direct of \vec{v} , which we denote by \hat{v} , by scaling it by $\frac{1}{||\vec{v}||}$

A vector \vec{w} is a scalar multiple of \vec{v} if and only if it is a scalar multiple of \hat{v}

Orthogonality(Perpendicularity): Two vector \vec{v} and $\vec{w} \in \mathbb{R}$ are orthogonal means $\vec{v} \cdot \vec{w} = 0$

- * 0 is orthogonal to everything
- * if \vec{v} and $\vec{w} \in \mathbb{R}^2$ or \mathbb{R}^3 and both non-zero, then orthogonal and perpendicular coincides