$12n_{0735} \ (K12n_{0735})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 1.47491 \times 10^{161}u^{52} - 1.00334 \times 10^{161}u^{51} + \dots + 6.59902 \times 10^{163}b - 4.00631 \times 10^{164}, \\ &1.55727 \times 10^{164}u^{52} - 4.68658 \times 10^{163}u^{51} + \dots + 6.14369 \times 10^{166}a - 7.33068 \times 10^{167}, \\ &u^{53} - u^{52} + \dots + 1260u - 931 \rangle \\ I_2^u &= \langle -1092u^{17} + 1979u^{16} + \dots + 1579b - 2918, \ -862u^{17} - 922u^{16} + \dots + 1579a + 3868, \\ &u^{18} + 6u^{16} - u^{15} + 10u^{14} - 4u^{13} + 2u^{12} - 4u^{11} + u^{10} - 4u^9 + 5u^8 - 5u^7 - 4u^6 + 6u^5 + 8u^4 - 3u^3 - 4u^2 + 10u^2 + 10u^2$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 71 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 1.47 \times 10^{161} u^{52} - 1.00 \times 10^{161} u^{51} + \dots + 6.60 \times 10^{163} b - 4.01 \times 10^{164}, \ 1.56 \times 10^{164} u^{52} - 4.69 \times 10^{163} u^{51} + \dots + 6.14 \times 10^{166} a - 7.33 \times 10^{167}, \ u^{53} - u^{52} + \dots + 1260 u - 931 \rangle$$

(i) Arc colorings

$$\begin{aligned} a_2 &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_{11} &= \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_3 &= \begin{pmatrix} 1 \\ u^2 \end{pmatrix} \\ a_7 &= \begin{pmatrix} -0.00253474u^{52} + 0.000762828u^{51} + \cdots - 12.6342u + 11.9320 \\ -0.00223505u^{52} + 0.00152044u^{51} + \cdots - 5.41272u + 6.07107 \end{pmatrix} \\ a_4 &= \begin{pmatrix} 0.000307309u^{52} - 0.00341411u^{51} + \cdots - 25.6189u + 13.2717 \\ 0.00388609u^{52} - 0.00479985u^{51} + \cdots - 9.07382u - 1.92407 \end{pmatrix} \\ a_1 &= \begin{pmatrix} 0.000445713u^{52} - 0.00127751u^{51} + \cdots - 7.34876u + 4.21132 \\ 0.000455151u^{52} + 0.00111184u^{51} + \cdots + 16.0717u - 6.35644 \end{pmatrix} \\ a_6 &= \begin{pmatrix} -0.00476979u^{52} + 0.00228326u^{51} + \cdots - 18.0470u + 18.0031 \\ -0.00223505u^{52} + 0.00152044u^{51} + \cdots - 5.41272u + 6.07107 \end{pmatrix} \\ a_5 &= \begin{pmatrix} -0.00476979u^{52} + 0.00228326u^{51} + \cdots - 18.0470u + 18.0031 \\ -0.000888908u^{52} + 0.000380323u^{51} + \cdots - 6.72037u + 3.75612 \end{pmatrix} \\ a_{10} &= \begin{pmatrix} 0.00734689u^{52} - 0.00837266u^{51} + \cdots - 33.0209u + 0.0462951 \\ 0.00168842u^{52} - 0.00168620u^{51} + \cdots - 2.75207u - 1.24109 \end{pmatrix} \\ a_9 &= \begin{pmatrix} 0.00903531u^{52} - 0.0100589u^{51} + \cdots - 35.7730u - 1.19480 \\ 0.00168842u^{52} - 0.00168620u^{51} + \cdots - 2.75207u - 1.24109 \end{pmatrix} \\ a_{12} &= \begin{pmatrix} 0.000777537u^{52} - 0.00530471u^{51} + \cdots - 33.5819u + 14.2472 \\ 0.00375707u^{52} - 0.00530471u^{51} + \cdots - 18.9354u + 2.02528 \end{pmatrix} \\ a_8 &= \begin{pmatrix} -0.00441879u^{52} + 0.00343811u^{51} + \cdots - 10.9752u + 9.12520 \\ 0.00140540u^{52} - 0.00443957u^{51} + \cdots - 26.4019u + 9.54110 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.00251009u^{52} 0.00470979u^{51} + \cdots + 12.2699u + 11.1088$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{53} - 5u^{52} + \dots - 82u + 7$
c_2	$u^{53} + u^{52} + \dots + 1260u + 931$
c_3	$u^{53} + 4u^{52} + \dots + 208100u + 20921$
c_5	$u^{53} - 24u^{51} + \dots - 469428u + 50191$
<i>C</i> ₆	$u^{53} - u^{52} + \dots + 1059u + 259$
C ₇	$u^{53} - 12u^{52} + \dots + 2540u - 167$
c_8, c_{11}, c_{12}	$u^{53} - 4u^{52} + \dots - 2u + 1$
c_9	$u^{53} - 2u^{52} + \dots + 7670694u + 814939$
c_{10}	$u^{53} - 39u^{51} + \dots - 634u + 389$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{53} + 45y^{52} + \dots - 1746y - 49$
c_2	$y^{53} + 71y^{52} + \dots - 25215890y - 866761$
c_3	$y^{53} + 36y^{52} + \dots + 38130549598y - 437688241$
c_5	$y^{53} - 48y^{52} + \dots + 192928447348y - 2519136481$
	$y^{53} + 79y^{52} + \dots - 2126897y - 67081$
<i>C</i> ₇	$y^{53} + 24y^{52} + \dots + 4177728y - 27889$
c_8, c_{11}, c_{12}	$y^{53} + 60y^{52} + \dots - 122y - 1$
c_9	$y^{53} + 64y^{52} + \dots - 1343304277888y - 664125573721$
c_{10}	$y^{53} - 78y^{52} + \dots + 6363770y - 151321$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.840718 + 0.606406I		
a = 0.277208 + 0.453633I	1.63830 + 2.38162I	-1.12828 - 6.54565I
b = -0.145083 - 0.433241I		
u = -0.840718 - 0.606406I		
a = 0.277208 - 0.453633I	1.63830 - 2.38162I	-1.12828 + 6.54565I
b = -0.145083 + 0.433241I		
u = 0.736753 + 0.485579I		
a = -1.38812 - 0.66054I	2.58306 + 2.49161I	-3.55198 - 2.75069I
b = 0.292820 + 0.295820I		
u = 0.736753 - 0.485579I		
a = -1.38812 + 0.66054I	2.58306 - 2.49161I	-3.55198 + 2.75069I
b = 0.292820 - 0.295820I		
u = 0.697923 + 0.459418I		
a = 0.483665 - 0.766875I	10.10000 - 0.16086I	-2.21036 + 2.02057I
b = -0.160668 - 0.729369I		
u = 0.697923 - 0.459418I		
a = 0.483665 + 0.766875I	10.10000 + 0.16086I	-2.21036 - 2.02057I
b = -0.160668 + 0.729369I		
u = 0.171745 + 0.772459I		
a = 0.696403 + 1.081210I	1.51102 - 0.59997I	-4.11605 - 0.89073I
b = 0.713010 - 0.636217I		
u = 0.171745 - 0.772459I		
a = 0.696403 - 1.081210I	1.51102 + 0.59997I	-4.11605 + 0.89073I
b = 0.713010 + 0.636217I		
u = -1.101000 + 0.528901I		
a = 0.282299 + 0.260750I	4.84724 + 0.39365I	0
b = 1.182230 + 0.556160I		
u = -1.101000 - 0.528901I		
a = 0.282299 - 0.260750I	4.84724 - 0.39365I	0
b = 1.182230 - 0.556160I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.759075		
a = 0.460004	-0.996264	-8.17350
b = 0.368973		
u = 0.473961 + 0.564197I		
a = 0.548650 + 0.774800I	9.46781 + 5.75315I	-1.15678 - 2.42893I
b = -1.39479 + 0.96442I		
u = 0.473961 - 0.564197I		
a = 0.548650 - 0.774800I	9.46781 - 5.75315I	-1.15678 + 2.42893I
b = -1.39479 - 0.96442I		
u = -0.348641 + 0.604316I		
a = -2.40424 - 0.21358I	9.59529 - 6.13893I	-0.27184 + 2.46024I
b = 0.712433 - 0.129566I		
u = -0.348641 - 0.604316I		
a = -2.40424 + 0.21358I	9.59529 + 6.13893I	-0.27184 - 2.46024I
b = 0.712433 + 0.129566I		
u = -1.118550 + 0.674070I		
a = -0.593125 + 0.348906I	2.85176 + 2.98739I	0
b = -0.110895 - 0.395203I		
u = -1.118550 - 0.674070I		
a = -0.593125 - 0.348906I	2.85176 - 2.98739I	0
b = -0.110895 + 0.395203I		
u = 0.578768 + 0.199265I		
a = 0.562060 - 0.121794I	-1.109960 + 0.030571I	-3.57381 + 2.50459I
b = 0.809632 - 0.057928I		
u = 0.578768 - 0.199265I		
a = 0.562060 + 0.121794I	-1.109960 - 0.030571I	-3.57381 - 2.50459I
b = 0.809632 + 0.057928I		
u = 0.02618 + 1.45150I		
a = -0.40637 - 1.57861I	16.0150 - 2.2300I	0
b = 0.68373 + 2.29360I		

u = 0.02618 - 1.45150I		
a = -0.40637 + 1.57861I	16.0150 + 2.2300I	0
b = 0.68373 - 2.29360I		
u = -0.321632 + 0.432414I		
a = 0.501057 + 0.775061I	3.05620 + 1.45730I	-2.91763 - 3.84500I
b = -0.658298 + 0.519110I		
u = -0.321632 - 0.432414I		
a = 0.501057 - 0.775061I	3.05620 - 1.45730I	-2.91763 + 3.84500I
b = -0.658298 - 0.519110I		
u = -0.101512 + 0.510380I		
a = 1.63762 - 1.50988I	5.59306 + 3.05173I	-1.18823 - 4.71810I
b = -0.286744 - 0.431400I		
u = -0.101512 - 0.510380I		
a = 1.63762 + 1.50988I	5.59306 - 3.05173I	-1.18823 + 4.71810I
b = -0.286744 + 0.431400I		
u = -0.177953 + 0.456691I		
a = 0.523935 - 0.783978I	2.75416 - 4.05081I	0.12936 + 3.76873I
b = -1.121220 - 0.676233I		
u = -0.177953 - 0.456691I		
a = 0.523935 + 0.783978I	2.75416 + 4.05081I	0.12936 - 3.76873I
b = -1.121220 + 0.676233I		
u = 0.07515 + 1.51838I		
a = -0.407891 + 1.308850I	9.24345 + 1.84865I	0
b = 0.32917 - 2.00352I		
u = 0.07515 - 1.51838I		
a = -0.407891 - 1.308850I	9.24345 - 1.84865I	0
b = 0.32917 + 2.00352I		
u = 1.30989 + 0.86519I		
a = -0.404183 - 0.004191I	10.48660 - 6.53498I	0
b = -0.506336 + 0.448197I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.30989 - 0.86519I		
a = -0.404183 + 0.004191I	10.48660 + 6.53498I	0
b = -0.506336 - 0.448197I		
u = -0.014279 + 0.410182I		
a = 1.91548 + 0.36685I	-0.542061 - 1.221850I	-5.29520 + 6.63859I
b = 0.082052 + 0.291523I		
u = -0.014279 - 0.410182I		
a = 1.91548 - 0.36685I	-0.542061 + 1.221850I	-5.29520 - 6.63859I
b = 0.082052 - 0.291523I		
u = 0.16420 + 1.59659I		
a = 0.184722 - 1.158090I	12.44650 + 2.07145I	0
b = -0.54642 + 1.91576I		
u = 0.16420 - 1.59659I		
a = 0.184722 + 1.158090I	12.44650 - 2.07145I	0
b = -0.54642 - 1.91576I		
u = -0.22985 + 1.69814I		
a = 0.109029 + 1.036300I	6.11300 + 0.81340I	0
b = -0.11039 - 1.76694I		
u = -0.22985 - 1.69814I		
a = 0.109029 - 1.036300I	6.11300 - 0.81340I	0
b = -0.11039 + 1.76694I		
u = -0.29679 + 1.75324I		
a = -0.354309 - 0.914956I	9.96547 - 1.07173I	0
b = -0.21228 + 1.82313I		
u = -0.29679 - 1.75324I		
a = -0.354309 + 0.914956I	9.96547 + 1.07173I	0
b = -0.21228 - 1.82313I		
u = 0.30708 + 1.84408I		
a = 0.079172 - 0.932460I	6.64424 - 4.88256I	0
b = 0.22699 + 1.87203I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.30708 - 1.84408I		
a = 0.079172 + 0.932460I	6.64424 + 4.88256I	0
b = 0.22699 - 1.87203I		
u = -0.40674 + 1.90462I		
a = 0.058906 - 0.983240I	17.8761 - 1.8874I	0
b = 0.34210 + 1.69746I		
u = -0.40674 - 1.90462I		
a = 0.058906 + 0.983240I	17.8761 + 1.8874I	0
b = 0.34210 - 1.69746I		
u = -0.38388 + 1.94831I		
a = -0.000346 - 1.037260I	11.9113 + 9.7563I	0
b = -0.24478 + 1.87973I		
u = -0.38388 - 1.94831I		
a = -0.000346 + 1.037260I	11.9113 - 9.7563I	0
b = -0.24478 - 1.87973I		
u = 0.43046 + 1.94155I		
a = -0.037696 + 1.041050I	19.7372 - 13.8895I	0
b = -0.38583 - 2.09483I		
u = 0.43046 - 1.94155I		
a = -0.037696 - 1.041050I	19.7372 + 13.8895I	0
b = -0.38583 + 2.09483I		
u = 0.39019 + 1.98182I		
a = 0.031498 + 1.016350I	11.00050 - 3.60187I	0
b = 0.00248 - 1.72309I		
u = 0.39019 - 1.98182I		
a = 0.031498 - 1.016350I	11.00050 + 3.60187I	0
b = 0.00248 + 1.72309I		
u = 0.46927 + 1.98045I		
a = -0.291724 + 0.750465I	17.5539 + 0.5975I	0
b = -0.63116 - 1.94516I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.46927 - 1.98045I		
a = -0.291724 - 0.750465I	17.5539 - 0.5975I	0
b = -0.63116 + 1.94516I		
u = -0.36958 + 2.00799I		
a = 0.064796 + 0.857021I	13.8228 + 7.5287I	0
b = 0.45375 - 2.09744I		
u = -0.36958 - 2.00799I		
a = 0.064796 - 0.857021I	13.8228 - 7.5287I	0
b = 0.45375 + 2.09744I		

$$\begin{aligned} \text{II. } I_2^u &= \langle -1092u^{17} + 1979u^{16} + \dots + 1579b - 2918, \ -862u^{17} - 922u^{16} + \\ & \dots + 1579a + 3868, \ u^{18} + 6u^{16} + \dots - 4u^2 + 1 \rangle \end{aligned}$$

(i) Arc colorings

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.545915u^{17} + 0.583914u^{16} + \dots - 1.47245u - 2.44965 \\ 0.691577u^{17} - 1.25332u^{16} + \dots - 0.385054u + 1.84801 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.545915u^{17} - 0.583914u^{16} + \dots + 1.47245u + 4.44965 \\ 0.545915u^{17} - 0.583914u^{16} + \dots + 1.47245u + 2.44965 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.611146u^{17} - 1.53072u^{16} + \dots + 1.63331u + 4.88157 \\ -1.23749u^{17} + 0.669411u^{16} + \dots + 1.85750u + 1.60165 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1.23749u^{17} - 0.669411u^{16} + \dots - 1.85750u - 0.601647 \\ 0.691577u^{17} - 1.25332u^{16} + \dots - 0.385054u + 1.84801 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1.23749u^{17} - 0.669411u^{16} + \dots - 1.85750u - 0.601647 \\ 1.29576u^{17} - 1.26431u^{16} + \dots - 1.62255u + 2.51742 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.669411u^{17} - 0.604180u^{16} + \dots + 1.60165u + 1.23749 \\ 1.13490u^{17} + 0.763775u^{16} + \dots - 3.11906u + 0.0582647 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1.80431u^{17} + 0.763775u^{16} + \dots - 1.51742u + 1.29576 \\ 1.13490u^{17} + 0.763775u^{16} + \dots - 3.11906u + 0.0582647 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.614946u^{17} - 1.84801u^{16} + \dots + 5.03103u - 0.908803 \\ 0.665611u^{17} - 1.92147u^{16} + \dots + 3.99937u + 1.44712 \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} -1.64345u^{17} + 2.27232u^{16} + \dots - 0.986067u - 2.83661 \\ -1.11843u^{17} + 0.611146u^{16} + \dots + 1.72894u - 3.63331 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-\frac{993}{1579}u^{17} + \frac{7877}{1579}u^{16} + \dots + \frac{6036}{1579}u - \frac{48644}{1579}u^{16} + \dots$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{18} - 4u^{17} + \dots - 24u + 5$
c_2	$u^{18} + 6u^{16} + \dots - 4u^2 + 1$
<i>c</i> ₃	$u^{18} + 3u^{17} + \dots - 4u + 1$
c_4	$u^{18} + 4u^{17} + \dots + 24u + 5$
<i>C</i> ₅	$u^{18} - u^{17} + \dots + 3u^2 + 1$
	$u^{18} + 8u^{16} + \dots + 37u + 13$
	$u^{18} - u^{17} + \dots + 24u + 7$
<i>c</i> ₈	$u^{18} - 3u^{17} + \dots - 2u + 1$
c_9	$u^{18} - u^{17} + \dots - 16u + 7$
c_{10}	$u^{18} + 3u^{17} + \dots - 8u + 5$
c_{11}, c_{12}	$u^{18} + 3u^{17} + \dots + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{18} + 14y^{17} + \dots + 184y + 25$
c_2	$y^{18} + 12y^{17} + \dots - 8y + 1$
c_3	$y^{18} + y^{17} + \dots - 8y + 1$
c_5	$y^{18} - 7y^{17} + \dots + 6y + 1$
<i>C</i> ₆	$y^{18} + 16y^{17} + \dots - 1317y + 169$
	$y^{18} + y^{17} + \dots + 54y + 49$
c_8, c_{11}, c_{12}	$y^{18} + 21y^{17} + \dots - 8y + 1$
c_9	$y^{18} + 17y^{17} + \dots - 130y + 49$
c_{10}	$y^{18} - 17y^{17} + \dots + 156y + 25$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.634936 + 0.809942I		
a = 0.253920 + 0.526793I	0.94314 - 1.81857I	-7.95701 + 2.41990I
b = 0.533045 - 0.259267I		
u = 0.634936 - 0.809942I		
a = 0.253920 - 0.526793I	0.94314 + 1.81857I	-7.95701 - 2.41990I
b = 0.533045 + 0.259267I		
u = -0.673695 + 0.591200I		
a = 0.117610 + 1.215620I	3.44784 + 0.42863I	-0.146598 + 0.096627I
b = -0.581518 - 0.929685I		
u = -0.673695 - 0.591200I		
a = 0.117610 - 1.215620I	3.44784 - 0.42863I	-0.146598 - 0.096627I
b = -0.581518 + 0.929685I		
u = 0.825879 + 0.224727I		
a = 1.108690 + 0.402214I	4.65483 + 1.87331I	-3.44153 - 2.58014I
b = 0.958725 + 0.489645I		
u = 0.825879 - 0.224727I		
a = 1.108690 - 0.402214I	4.65483 - 1.87331I	-3.44153 + 2.58014I
b = 0.958725 - 0.489645I		
u = -0.596151 + 0.449671I		
a = 0.407937 - 1.348040I	8.33778 + 7.24017I	-5.00222 - 6.15180I
b = -1.058740 + 0.248210I		
u = -0.596151 - 0.449671I		
a = 0.407937 + 1.348040I	8.33778 - 7.24017I	-5.00222 + 6.15180I
b = -1.058740 - 0.248210I		
u = -0.632269 + 0.295497I		
a = 0.777931 - 0.335785I	-1.41596 - 0.45768I	-12.3817 + 7.3222I
b = 0.714494 - 0.186650I		
u = -0.632269 - 0.295497I		
a = 0.777931 + 0.335785I	-1.41596 + 0.45768I	-12.3817 - 7.3222I
b = 0.714494 + 0.186650I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.620783 + 0.124968I		
a = 0.285723 + 1.231670I	1.68541 - 4.18335I	-8.24028 + 6.19804I
b = -0.721103 - 0.527839I		
u = 0.620783 - 0.124968I		
a = 0.285723 - 1.231670I	1.68541 + 4.18335I	-8.24028 - 6.19804I
b = -0.721103 + 0.527839I		
u = -0.036992 + 1.411160I		
a = -0.236048 - 1.324720I	14.7400 + 0.3318I	-0.665045 + 0.274438I
b = -0.46312 + 1.95012I		
u = -0.036992 - 1.411160I		
a = -0.236048 + 1.324720I	14.7400 - 0.3318I	-0.665045 - 0.274438I
b = -0.46312 - 1.95012I		
u = 0.07842 + 1.63360I		
a = -0.300508 + 1.150520I	8.57060 + 1.42162I	-6.00677 + 0.42779I
b = 0.06711 - 1.84201I		
u = 0.07842 - 1.63360I		
a = -0.300508 - 1.150520I	8.57060 - 1.42162I	-6.00677 - 0.42779I
b = 0.06711 + 1.84201I		
u = -0.22091 + 1.64765I		
a = -0.415251 - 1.018120I	13.31920 - 3.48291I	0.34112 + 3.44872I
b = 0.55111 + 1.86368I		
u = -0.22091 - 1.64765I		
a = -0.415251 + 1.018120I	13.31920 + 3.48291I	0.34112 - 3.44872I
b = 0.55111 - 1.86368I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ \left(u^{18} - 4u^{17} + \dots - 24u + 5 \right) \left(u^{53} - 5u^{52} + \dots - 82u + 7 \right) $
c_2	$(u^{18} + 6u^{16} + \dots - 4u^2 + 1)(u^{53} + u^{52} + \dots + 1260u + 931)$
<i>c</i> ₃	$(u^{18} + 3u^{17} + \dots - 4u + 1)(u^{53} + 4u^{52} + \dots + 208100u + 20921)$
<i>C</i> ₄	$(u^{18} + 4u^{17} + \dots + 24u + 5)(u^{53} - 5u^{52} + \dots - 82u + 7)$
<i>C</i> ₅	$ (u^{18} - u^{17} + \dots + 3u^2 + 1)(u^{53} - 24u^{51} + \dots - 469428u + 50191) $
<i>c</i> ₆	$(u^{18} + 8u^{16} + \dots + 37u + 13)(u^{53} - u^{52} + \dots + 1059u + 259)$
c_7	$ (u^{18} - u^{17} + \dots + 24u + 7)(u^{53} - 12u^{52} + \dots + 2540u - 167) $
c_8	$ (u^{18} - 3u^{17} + \dots - 2u + 1)(u^{53} - 4u^{52} + \dots - 2u + 1) $
<i>c</i> ₉	$ (u^{18} - u^{17} + \dots - 16u + 7)(u^{53} - 2u^{52} + \dots + 7670694u + 814939) $
c_{10}	$(u^{18} + 3u^{17} + \dots - 8u + 5)(u^{53} - 39u^{51} + \dots - 634u + 389)$
c_{11}, c_{12}	$(u^{18} + 3u^{17} + \dots + 2u + 1)(u^{53} - 4u^{52} + \dots - 2u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^{18} + 14y^{17} + \dots + 184y + 25)(y^{53} + 45y^{52} + \dots - 1746y - 49)$
c_2	$(y^{18} + 12y^{17} + \dots - 8y + 1)$ $\cdot (y^{53} + 71y^{52} + \dots - 25215890y - 866761)$
c_3	$(y^{18} + y^{17} + \dots - 8y + 1)$ $\cdot (y^{53} + 36y^{52} + \dots + 38130549598y - 437688241)$
c_5	$(y^{18} - 7y^{17} + \dots + 6y + 1)$ $\cdot (y^{53} - 48y^{52} + \dots + 192928447348y - 2519136481)$
c_6	$(y^{18} + 16y^{17} + \dots - 1317y + 169)$ $\cdot (y^{53} + 79y^{52} + \dots - 2126897y - 67081)$
c_7	$(y^{18} + y^{17} + \dots + 54y + 49)(y^{53} + 24y^{52} + \dots + 4177728y - 27889)$
c_8, c_{11}, c_{12}	$(y^{18} + 21y^{17} + \dots - 8y + 1)(y^{53} + 60y^{52} + \dots - 122y - 1)$
<i>c</i> ₉	$(y^{18} + 17y^{17} + \dots - 130y + 49)$ $\cdot (y^{53} + 64y^{52} + \dots - 1343304277888y - 664125573721)$
c_{10}	$(y^{18} - 17y^{17} + \dots + 156y + 25)$ $\cdot (y^{53} - 78y^{52} + \dots + 6363770y - 151321)$