填空题

- 1. 设总体 $X \sim N(\mu, \sigma^2)$, X_1 , X_2 , Λ , X_n 为来自总体 X 的一个简单随机样本,则检验假设 H_0 : $\sigma^2 = \sigma_0^2$ (σ_0^2 已知)应选统计量______。
- 2. 设随机变量 X_1 , X_2 , Λ , X_n 相互独立且均服从 $X \sim N(0,1)$, 统计量 $\frac{a(X_1 + X_2)}{\sqrt{X_3^2 + X_4^2 + X_5^2}}$ 服从 t 分布,则常数 $a = \underline{\hspace{1cm}}$ 。
- 3.设总体 $Y \sim N(0,1), Y_1, Y_2, Y_3, Y_4, Y_5, Y_6$ 来自X的随机样本,若 $Z = (Y_1 + Y_2)^2 + (Y_3 Y_4)^2 + (Y_5 Y_6)^2$ 且 $aX \sim \chi^2(3)$ (卡方分布),则 a =
- 4.设 X_1, X_2, \dots, X_n 为来自总体 X 的一个样本,EX,DX 均存在但未知,则总体 方差 DX 的无偏估计量为_____。
- 5.设随机变量ξ服从正态 Λ(0, 1)分布, η服从 $\chi^2(n)$ 分布, 且ξ,η相互独立, 则_ 服从 t(n)分布.
- 6.设随机变量 ξ 服从正态 $N(a,\sigma^2)$,其中 $\sigma = 0.01, \xi_1, \Lambda, \xi_n$ 为一样本, a的置信 水平为 0.95 的置信区间为(2.121, 2.129)则样本容量约为 n= . ($\Phi(1.96) = 0.975$)
- 7.设总体 ξ 服从均匀分布 $U(0, \theta]$, 0.2, 0.4, 0.5, 0.8, 0.6 是一组样本观察值,则 θ 的最大似然估计值为 ______.
- 8. 设总体 $Z \sim N(\mu, \sigma^2)$, Z_1, Z_2, \cdots, Z_n 为样本,用其检验 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$,则下列说法正确的是
- (A) 如果在检验水平 $\alpha = 0.05$ 下拒绝 H_0 ,那么在检验水平 $\alpha = 0.01$ 下必拒绝 H_0
- (B) 如果在检验水平 $\alpha = 0.05$ 下拒绝 H_0 ,那么在检验水平 $\alpha = 0.01$ 下必接受 H_0
- (C) 如果在检验水平 $\alpha = 0.05$ 下接受 H_0 , 那么在检验水平 $\alpha = 0.01$ 下必拒绝 H_0
- (D) 如果在检验水平 $\alpha = 0.05$ 下接受 H_0 ,那么在检验水平 $\alpha = 0.01$ 下必接受 H_0

1.设总体 X 服从参数为 μ , σ ($-\infty < \mu < \infty$, $\sigma > 0$)的双参数指数分布,其概率密度为

$$f(x) = \begin{cases} \frac{1}{\sigma} e^{-\frac{x-\mu}{\sigma}}, & x \ge \mu, \\ 0, & x < \mu. \end{cases}$$

设 X_1, X_2, \cdots, X_n 是来自总体X的简单随机样本,假设 σ 已知,分别求参数 μ 的矩估计与最大似然估计.

2. 设总体X服从参数为 μ , θ ($-\infty < \mu < \infty$, $\theta > 0$)的分布,其概率密度为

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x-\mu}{\theta}}, & x \ge \mu, \\ 0, & x < \mu. \end{cases}$$

设 X_1, X_2, \cdots, X_n 是来自总体X的简单随机样本,求 μ , θ 这两个参数的极大似然估计.

3.设总体X的概率密度为

$$f(x) = 2\theta \sqrt{\frac{\theta}{\pi}} x^2 e^{-\theta x^2}$$
 $-\infty < x < +\infty$

其中 $\theta > 0$ 是未知参数, X_1, X_2, Λ, X_n 是来自总体的一个容量为n 的简单随机样本,求 θ 的极大似然估计量。

4.设某次概率考试的考生成绩服从正态分布 $N(\mu, \sigma^2)$, σ^2 未知. 从中随机抽取 36 位考生的成绩,算得平均分 $\bar{x}=75$,样本方差 $S^2=5^2$. 试求: (1) μ 的置信度是 0.95的置信区间;

(2) 在显著性水平α = 0.05条件下,是否可以认为这次考试全体学生的平均成绩是80分? 并给出检验过程. 可能用到的数据见下表.

$$P(t(n) \ge \lambda) = \alpha$$

n λ α	0.05	0.025
35	1.6896	2.0301
36	1.6883	2.0281

5.设总体 $X \sim N(\mu$,0.06),若随机抽取的样本观察值为 14.70, 15.21, 14.90, 14.91,15.32,15.32,请给出总体均值 μ 的区间估计,并对 μ =15.05 进行假设检验(α = 0.05)。