Universidad Tecnológica Nacional Analisis de Señales y Sistemas Trabajo Practico 2

Alejo Agustin Lopez Demichelis
Franco Palombo
Ignacio Gil
Jesus Agustin Frigerio
Laureano Valentin Reinoso
Luciano Tomas Cortesini Perez
Matias Gabriel Moran
Leonardo Ramos

19 / 08 / 2024

Movimiento Rectilíneo Uniformemente Variado (MRUV) - Caída libre

- Un primer cuerpo de masa m_1 se deja caer (verticalmente) desde una posición inicial $y_0 > 0$.
- Un segundo cuerpo de igual masa que el primero, se deja caer (verticalmente) desde una posición inicial $\frac{1}{2}y_0$, es decir, a mitad de camino del primer cuerpo.

Teniendo como punto de referencia el "suelo", responder las siguientes consignas:

- a) Realizar un gráfico que represente la situación de los dos cuerpos en caída libre, sus respectivos vectores de velocidad y posición.
- b) Determinar las ecuaciones de cinemáticas para la posición $y_1(t)$ y $y_2(t)$ en función del tiempo para cada uno de los cuerpos, respectivamente. **Reflexionar:** ¿las funciones y_1, y_2 pueden interpretarse como señales de variable de tiempo continuo? ¿Las masas de los cuerpos intervienen en la descripción de las funciones $y_1(t), y_2(t)$?

Partimos primero de la ecuación que determina la posición de un cuerpo con aceleración uniforme:

$$Y(t) = Y_0 + V_0 t + \frac{1}{2}gt^2$$

Para ambos casos asumimos la velocidad inicial $V_0 = 0$, despreciamos la resistencia del aire y tomamos como valor de aceleración de la gravedad $g = 9.8 \frac{m}{c^2}$:

$$y_1(t) = Y_0 - \frac{1}{2}9, 8\frac{m}{s^2}t^2$$

$$y_2(t) = \frac{Y_0}{2} - \frac{1}{2}9, 8\frac{m}{s^2}t^2$$

Como se puede observar, las masas no aparecen en las ecuaciones de $y_1(t)$ y $y_2(t)$, por lo que se deduce que las masas no intervienen en la descripcion de las funciones.

- c) Calcular el tiempo de vuelo (total) T del primer cuerpo, en función de y_0 . Similarmente, calcular el tiempo de vuelo τ del segundo cuerpo. ¿Qué relación aritmética encuentra entre los dos tiempos T y τ ? ¿Se puede obtener y_2 como un escalonado en el tiempo de la señal y_1 ?
- d) Calcular el tiempo t_0 que le toma al primer cuerpo estar en la posición $\frac{1}{2}y_0$. ¿Qué relación aritmética encuentra entre t_0 y τ ? ¿Se puede obtener y_2 como una traslación temporal de la señal y_1 ?
- e) Reflexionar: ¿Tiene sentido físico evaluar la señal y_1 en tiempos t > T? Similarmente, ¿tiene sentido físico evaluar la señal y_2 en tiempos $t > \tau$? En caso afirmativo, ¿cuál es la interpretación física? Y en caso negativo, emplear alguna herramienta para redefinir las señales y_1, y_2 , de tal forma que la información provista por el futuro sea nula. Por otra parte, ¿tiene sentido físico evaluar a las señales y_1, y_2 en tiempos negativos t < 0? En caso afirmativo, ¿qué representa? Y en caso negativo, emplear alguna herramienta para redefinir las señales y_1, y_2 de tal forma que la información provista por el pasado sea nula.

f) Teniendo en cuenta las señales redefinidas del inciso anterior y_1, y_2 (pasado y futuro de la señal son nulos) verificar si estas cumplen (o no) cada una de las siguientes propiedades: Periódica, Energía finita, Potencia finita, causal, acotada.

Movimiento Armónico Simple (MAS) - Masa/Resorte

Considerar un sistema conformado por una Masa m, atada a la derecha de un resorte con constante elástica κ , dispuesto en forma horizontal y sujetado en el extremo izquierdo. Teniendo como punto de referencia la posición de equilibrio, máxima amplitud A>0 y despreciando los efectos de la fricción, responde las siguientes consignas:

- a) Realizar un gráfico que represente el sistema y sus respectivos vectores de fuerza.
- b) Determinar la ecuación de cinemática para la posición x(t) en función del tiempo. **Reflexionar:** ¿la función x puede interpretarse como una señal de variable de tiempo continua?
- c) Es de conocimiento general que la función posición x(t) se puede determinar en función del seno o del coseno. Determinar la transformación temporal sobre la señal, la cual permite pasar de la formulación seno a la formulación coseno.
- d) Verificar si la señal x(t) cumple (o no) cada una de las siguientes propiedades: Periódica, Energía finita, Potencia finita, causal, acotada.

Considerar las siguientes señales proporcionadas por un rectificador de onda completa y 1/2 onda respectivamente: Señal Sinusoidal rectificada de onda completa, $x_1(t)$ determinada por el gráfico:

Señal Sinusoidal rectificada de media onda, $x_2(t)$ determinada por el gráfico:

- a) Calcular el periodo fundamental T_0 de las señales x_1, x_2 . ¿Las señales tienen energía finita? Calcular la energía relativa a un intervalo con longitud un periodo fundamental T_0 .
- b) Teniendo en cuenta que la potencia media de una señal se define como

$$P_1 = \lim_{r \to \infty} \frac{1}{2r} \int_{-r}^{r} |x(t)|^2 dt$$

• Demostrar la siguiente igualdad, válida para señales periódicas en donde la potencia media relativa a un intervalo con longitud un periodo fundamental T_0 coincide con la potencia media, es decir:

$$P_1 = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} |x(t)|^2 dt$$

- Calcular la potencia media P_1 de la señal x_1 y similarmente, P_2 de la señal x_2 .
- c) Considerar el conjunto de señales básicas

$$\{\psi_n(t) = \cos(n\omega t) \mid n \ge 0\} \cup \{\varphi_n(t) = \sin(n\omega t) \mid n \ge 1\}$$

• Calcular la energía relativa a un intervalo con longitud un periodo fundamental T_0 y el periodo T_n de cada señal del conjunto, y luego, demostrar que (dos a dos) forman un conjunto de señales ortogonales más no ortonormales.

Reflexión: ¿si los periodos T_n de cada señal del conjunto básico son distintos, por qué la suma (finita/infinita) es periódica? ¿Por qué se restringe el dominio del tiempo en un intervalo del tipo $t_0 \le t \le t_0 + T_0$, si las señales básicas están bien definidas en todo el eje temporal?

• Obtener la representación de las señales x_1, x_2 como una combinación lineal de las señales básicas, esto es, calcular coeficientes (a_n, b_n) en \mathbb{R} tales que:

$$x_1 = \sum_{n=0}^{\infty} a_n \psi_n + \sum_{n=1}^{\infty} b_n \varphi_n$$

Similarmente para la señal x_2 .

• Truncar la suma infinita del inciso anterior en n = 5 y hacer un gráfico comparativo entre la señal original x_1 y su aproximación trigonométrica. Similarmente para la señal x_2 .

d) Considerar el conjunto de señales básicas

$$\{\phi_n(t) = e^{jn\omega t} \mid n \in \mathbb{Z}\}\$$

Notar que la siguiente relación entre las señales con parámetro negativo y el conjugado:

$$\phi(-n) = \phi_n^*, \forall n \ge 0$$

• Calcular la energía relativa a un intervalo con longitud un periodo fundamental T_0 y el periodo T_n de cada señal del conjunto, y luego, demostrar que (dos a dos) forman un conjunto de señales ortogonales más no ortonormales.

Reflexión: ¿si los periodos T_n de cada señal del conjunto básico son distintos, por qué la suma (finita/infinita) es periódica? ¿Por qué se restringe el dominio del tiempo en un intervalo del tipo $t_0 \le t \le t_0 + T_0$, si las señales básicas están bien definidas en todo el eje temporal?

• Obtener la representación de las señales x_1, x_2 como una combinación lineal de las señales básicas, esto es, obtener coeficientes C_n en $\mathbb C$ tales que

$$x_1 = \sum_{-\infty < n < \infty} C_n \phi_n = \sum_{n=1}^{\infty} C_{-n} \phi_n^* + C_0 \phi_0 + \sum_{n=1}^{\infty} C_n \phi_n$$

Similarmente para la señal x_2 .

• Considerar $|n| \le 5$ y realizar el espectro de frecuencias de ambas señales en fase, esto es, graficar los pares ordenados

$$\{(n, \operatorname{Arg}(C_n)) \mid -5 \le n \le 5\}$$

correspondientes a cada señal x_1, x_2 .

• Considerar $|n| \le 5$ y realizar el espectro de frecuencias de ambas señales en módulo, esto es, graficar los pares ordenados

$$\{(n, |C_n|) \mid -5 \le n \le 5\}$$

correspondientes a cada señal x_1, x_2 .

• Calcular una aproximación a las potencias medias P_1, P_2 , por medio de la relación de Parseval con los espectros de frecuencia de ambas señales en módulo (usar la información de los incisos anteriores) y discriminar el aporte de las componentes (CC, AC).

Reflexionar: ¿Qué ventajas/desventajas encuentra entre el método directo para calcular la potencia media P_1, P_2 de las señales x_1, x_2 en la variable de tiempo t y el método que se deriva de la relación de Parseval, en donde los cálculos se realizan en la variable $n \in \mathbb{Z}$?

e) Comparar los espectros obtenidos para cada una de las señales x_1, x_2 , evaluar y proponer las características sobresalientes de ambos espectros.

Considerar $G_T(t) = \mu_{(t+\frac{T}{2})} - \mu_{(t-\frac{T}{2})}$ una señal pulso rectangular con duración finita T y amplitud unitaria.

- a) Realizar el gráfico de las señales $x_1 = G_1(t)$ y $x_2 = G_{0.1}(t)$, luego, calcular la energía E_1 de x_1 , y similarmente E_2 de x_2 .
- b) Obtener la transformada de Fourier $F_1(\omega) = \mathcal{F}\{x_1\}$ y similarmente $F_2(\omega) = \mathcal{F}\{x_2\}$. Reflexionar: ¿En qué variable están definidas las funciones F_1, F_2 ? ¿Qué representa la variable ω y qué diferencia tiene con la variable t? ¿Las funciones F_1, F_2 resultan periódicas?
 - Graficar el espectro de frecuencia en fase para F_1, F_2 , esto es, graficar los pares ordenados

$$\{(\omega, \operatorname{Arg}(F)) \mid \omega \in \mathbb{R}\}\$$

Para cada una de las funciones F_1, F_2 .

Reflexionar: ¿El espectro de frecuencia en fase es discreto o continuo? ¿El gráfico admite una simetría par, impar o ninguna?

• Graficar el espectro de frecuencia en módulo para F_1, F_2 , esto es, graficar los pares ordenados

$$\{(\omega, |F|) \mid \omega \in \mathbb{R}\}$$

Para cada una de las funciones F_1, F_2 .

Reflexionar: ¿El espectro de frecuencia en módulo es discreto o continuo? ¿El gráfico admite una simetría par, impar o ninguna?

• Graficar la densidad espectral para F_1, F_2 , esto es, graficar los pares ordenados

$$\{(\omega, |F|^2) \mid \omega \in \mathbb{R}\}$$

Para cada una de las funciones F_1 , F_2 .

Reflexionar: ¿La densidad espectral es discreta o continua? ¿El gráfico admite una simetría par, impar o ninguna?

- Calcular la energía E₁, E₂ haciendo uso de la relación de Parseval. Reflexionar: ¿Qué ventajas/desventajas encuentra entre el método directo para calcular la energía E₁, E₂ de las señales x₁, x₂ en la variable de tiempo t y el método que se deriva de la relación de Parseval, en donde los cálculos se realizan en la variable ω?
- c) Comparar los espectros obtenidos para cada una de las señales x_1, x_2 , evaluar y proponer las características sobresalientes de ambos espectros.

Circuito Eléctrico RC: circuito eléctrico correspondiente a un sistema de 1° orden y su ecuación característica:

$$v(t) = R \cdot i(t) + \frac{1}{C} \cdot \int_0^t i(\tau)d\tau$$

- a) Obtener una representación del circuito con Ecuaciones Diferenciales de primer orden y coeficientes constantes, y con ello, definir un Sistema en tiempo continuo con entrada x(t) = v(t) y salida y(t) = i(t). Luego, hacer un diagrama de bloques de la E.D; exponiendo los integradores que la conforma.
- b) Teniendo en cuenta el siguiente resultado matemático, obtener una descripción explicita de la respuesta y(t) del sistema obtenido en el inciso anterior:
 - Sean $\alpha, \beta_0, \beta_1 \in R$ constantes; y(t), x(t) funciones con variable de tiempo continuo, las cuales verifican la ecuación diferencial de primer orden con coeficientes constantes:

$$y_t' + \alpha y_t = \beta_1 x_t' + \beta_0 x_t$$

Entonces, una Solución General explicita de la Ecuación Diferencial es

$$y_t = \beta_1 x_t + (y_0 - \beta_1 x_0)e^{-\alpha t} + (\beta_0 - \alpha \beta_1) \int_0^t x(\tau)e^{-\alpha(t-\tau)}d\tau$$

donde $y_0 = y(0), x_0 = x(0)$ son Condiciones Iniciales arbitrarias

c) Usando la descripción explicita de la salida del Sistema $y_t = S_1 x_t$ (CI arbitrarias) del inciso anterior, calcular la respuesta a cada una de las siguientes señales:

$$x_0(t) = 0$$
, $x_1(t) = \mu_t$, $x_2(t) = \mu(t - t_0)$, $x_3(t) = \mu_t - \mu(t - t_0)$, $x_4(t) = t$

Reflexionar: ¿La señal y_0 es completamente nula? ¿Las señales $y_3, y' = y_1 - y_2$ (iguales o distintas)? ¿es suficiente para garantizar la Linealidad del sistema? ¿Las señales y_1, y_2 son iguales? ¿es suficiente para garantizar la Inv. Tiempo del sistema?