Author index of Volume 118

Argyris, J. and L. Tenek, An efficient and locking-free flat anisotropic plate and shell triangular element	63-119
Auricchio, F. and R.L. Taylor, A shear deformable plate element with an exact thin limit	393-412
Bernadou, M., P. Mato Eiroa and P. Trouvé, On the convergence of a discrete Kirchhoff triangle method valid for shells of arbitrary shape	373-391
Canuto, C. and G. Puppo, Bubble stabilization of spectral Legendre methods for the advection-diffusion equation Chen, Z., see Sulsky, D.	239-263 179-196
Chinchalkar, S., The application of automatic differentiation to problems in engineering analysis	197-207
Chung, J. and G.M. Hulbert, A family of single-step Houbolt time integration algorithms for structural dynamics	1- 11
Dawson, C., see Shaw, S.	211-237
Fortin, M., see Soulaïmani, A.	319-350
French, D.A. and S.M.F. Garcia, Finite element approximation of an evolution problem modeling shear band formation Frey, F., see Ibrahimbegović, A.	153-161 285-308
Garcia, S.M.F., see French, D.A. Gunzburger, M.D. and H.C. Lee, Analysis, approximation, and computation of a coupled solid/fluid temperature control problem	153–161 133–152
Han, R.P.S., see Scott, D.G. Hulbert, G.M., see Chung, J.	309-318 1- 11
Ibrahimbegović, A., Stress resultant geometrically nonlinear shell theory with drilling rotations—Part I. A consistent formulation Ibrahimbegović, A. and F. Frey, Stress resultant geometrically nonlinear shell theory	265-283
with drilling rotations—Part II. Computational aspects	285-308
Lee, H.C., see Gunzburger, M.D. Leonard, B.P., Note on the von Neumann stability of explicit one-dimensional	133–152
advection schemes	29- 46 351-371
Leschziner, M.A., see Lien, F.S. Lien, F.S. and M.A. Leschziner, Multigrid acceleration for recirculating laminar and	
turbulent flows computed with a non-orthogonal, collocated finite-volume scheme	351-371

Mato Eiroa, P., see Bernadou, M.	373-391
Miney, P.D., see Tchavdarov, B.M.	121-132
Ponthot, J.Ph., see Stainier, L.	163-177
Puppo, G., see Canuto, C.	239-263
Radev, S.P., see Tchavdarov, B.M.	121-132
Rencis, J.J., see Urekew, T.J.	13- 28
Schreyer, H.L., see Sulsky, D.	179-196
Scott, D.G. and R.P.S. Han, Basis of an improved hybrid node renumbering	
algorithm for matrix bandwidth reduction	309-318
Shaw, S., M.K. Warby, J.R. Whiteman, C. Dawson and M.F. Wheeler, Numerical techniques for the treatment of quasistatic viscoelastic stress problems in linear	
isotropic solids	211-237
Shizgal, B., see Yang, H.H.	47- 61
Soulaïmani, A. and M. Fortin, Finite element solution of compressible viscous flows	210 200
using conservative variables	319-350
Stainier, L. and J.Ph. Ponthot, An improved one-point integration method for large strain elastoplastic analysis	163-177
Sulsky, D., Z. Chen and H.L. Schreyer, A particle method for history-dependent	105-177
materials	179-196
Taylor, R.L., see Auricchio, F.	393-412
Tchavdarov, B.M., P.D. Minev and S.P. Radev, Numerical analysis of compound jet	121 122
disintegration	121-132 63-119
Tenek, L., see Argyris, J. Trouvé, P., see Bernadou, M.	373-391
Houve, F., see Belliadou, M.	3/3-391
Urekew, T.J. and J.J. Rencis, An iterative solution strategy for boundary element	
equations from mixed boundary value problems	13- 28
Warby, M.K., see Shaw, S.	211-237
Wheeler, M.F., see Shaw, S.	211-237
Whiteman, J.R., see Shaw, S.	211–237
Yang, H.H. and B. Shizgal, Chebyshev pseudospectral multi-domain technique for	
viscous flow calculation	47- 61

285 - 308

Subject index of Volume 118

Boundary element methods An iterative solution strategy for boundary element equations from mixed boundary value problems, T.J. Urekew and J.J. Rencis 13 - 28Collocation method Bubble stabilization of spectral Legendre methods for the advection-diffusion equation, C. Canuto and G. Puppo 239-263 Control theory Analysis, approximation, and computation of a coupled solid/fluid temperature control problem, M.D. Gunzburger and H.C. Lee 133-152 Coupled problems Analysis, approximation, and computation of a coupled solid/fluid temperature control problem, M.D. Gunzburger and H.C. Lee 133 - 152Dynamics A family of single-step Houbolt time integration algorithms for structural dynamics, J. Chung and G.M. Hulbert 1- 11 An improved one-point integration method for large strain elastoplastic analysis, L. Stainier and J.Ph. Ponthot 163-177 Elasticity An efficient and locking-free flat anisotropic plate and shell triangular element, J. 63 - 119Argyris and L. Tenek A particle method for history-dependent materials, D. Sulsky, Z. Chen and H.L. Schreyer 179-196 Finite element and matrix methods An efficient and locking-free flat anisotropic plate and shell triangular element, J. Argyris and L. Tenek 63 - 119Finite element approximation of an evolution problem modeling shear band formation, D.A. French and S.M.F. Garcia 153-161 An improved one-point integration method for large strain elastoplastic analysis, L. Stainier and J.Ph. Ponthot 163-177 Numerical techniques for the treatment of quasistatic viscoelastic stress problems in linear isotropic solids, S. Shaw, M.K. Warby, J.R. Whiteman, C. Dawson and M.F. Wheeler 211-237 Stress resultant geometrically nonlinear shell theory with drilling rotations-Part I. A consistent formulation, A. Ibrahimbegović 265-284

Stress resultant geometrically nonlinear shell theory with drilling rotations-Part II.

Computational aspects, A. Ibrahimbegović and F. Frey

Finite element solution of compressible viscous flows using conservative variables, A. Soulaïmani and M. Fortin	319-350
On the convergence of a discrete Kirchhoff triangle method valid for shells of arbitrary shape, M. Bernadou, P. Mato Eiroa and P. Trouvé	373-391
A shear deformable plate element with an exact thin limit, F. Auricchio and R.L. Taylor	393-412
Fluid mechanics	
Chebyshev pseudospectral multi-domain technique for viscous flow calculation, H.H. Yang and B. Shizgal	47- 61
Analysis, approximation, and computation of a coupled solid/fluid temperature control problem, M.D. Gunzburger and H.C. Lee	133–152
Heat and diffusion	
Analysis, approximation, and computation of a coupled solid/fluid temperature control problem, M.D. Gunzburger and H.C. Lee	133–152
Matrix calculus	
An efficient and locking-free flat anisotropic plate and shell triangular element, J. Argyris and L. Tenek	63-119
Miscellaneous topics	
The application of automatic differentiation to problems in engineering analysis, S. Chinchalkar	197-207
Nonlinear mechanics	
An efficient and locking-free flat anisotropic plate and shell triangular element, J. Argyris and L. Tenek	63-119
An improved one-point integration method for large strain elastoplastic analysis, L. Stainier and J.Ph. Ponthot	163-177
A particle method for history-dependent materials, D. Sulsky, Z. Chen and H.L. Schreyer	179–196
Numerical solution procedures A family of single-step Houbolt time integration algorithms for structural dynamics, J.	
Chung and G.M. Hulbert	1- 11
An iterative solution strategy for boundary element equations from mixed boundary value problems, T.J. Urekew and J.J. Rencis	13- 28
Chebyshev pseudospectral multi-domain technique for viscous flow calculation, H.H. Yang and B. Shizgal	47- 61
An efficient and locking-free flat anisotropic plate and shell triangular element, J.	
Argyris and L. Tenek Numerical analysis of compound jet disintegration, B.M. Tchavdarov, P.D. Minev and	63–119
S.P. Radev	121-132
An improved one-point integration method for large strain elastoplastic analysis, L. Stainier and J.Ph. Ponthot	163-177
A particle method for history-dependent materials, D. Sulsky, Z. Chen and H.L.	
Schreyer Numerical techniques for the treatment of quasistatic viscoelastic stress problems in	179–196
linear isotropic solids, S. Shaw, M.K. Warby, J.R. Whiteman, C. Dawson and M.F.	044 000
Wheeler Multigrid acceleration for recirculating laminar and turbulent flows computed with a	211–237
non-orthogonal, collocated finite-volume scheme, F.S. Lien and M.A. Leschziner	351-371

Basis of an improved hybrid node renumbering algorithm for matrix bandwidth reduction, D.G. Scott and R.P.S. Han A shear deformable plate element with an exact thin limit, F. Auricchio and R.L. Taylor	309–318 393–412
Taylor	393-412
Plasticity Finite element approximation of an evolution problem modeling shear band formation, D.A. French and S.M.F. Garcia An improved one-point integration method for large strain elastoplastic analysis, L. Stainier and J.Ph. Ponthot	153–161 163–177
A particle method for history-dependent materials, D. Sulsky, Z. Chen and H.L.	
Schreyer	179-196
Shells and plates An efficient and locking-free flat anisotropic plate and shell triangular element, J. Argyris and L. Tenek Stress resultant geometrically nonlinear shell theory with drilling rotations—Part I. A	63-119
consistent formulation, A. Ibrahimbegović	265-284
Stress resultant geometrically nonlinear shell theory with drilling rotations—Part II.	
Computational aspects, A. Ibrahimbegović and F. Frey	285-308
On the convergence of a discrete Kirchhoff triangle method valid for shells of arbitrary	272 201
shape, M. Bernadou, P. Mato Eiroa and P. Trouvé A shear deformable plate element with an exact thin limit, F. Auricchio and R.L.	373-391
Taylor	393-412
Solutions of ordinary and partial differential equations A family of single-step Houbolt time integration algorithms for structural dynamics, J. Chung and G.M. Hulbert Bubble stabilization of spectral Legendre methods for the advection-diffusion equation, C. Canuto and G. Puppo	1- 11 239-263
Stability in fluid mechanics Note on the von Neumann stability of explicit one-dimensional advection schemes, B.P. Leonard Numerical analysis of compound jet disintegration, B.M. Tchavdarov, P.D. Minev and S.P. Radev	29- 46 121-132
Stability in structural mechanics	
A shear deformable plate element with an exact thin limit, F. Auricchio and R.L. Taylor	393-412
Structural mechanics	
A family of single-step Houbolt time integration algorithms for structural dynamics, J.	1 11
Chung and G.M. Hulbert An efficient and locking-free flat anisotropic plate and shell triangular element, J.	1- 11
Argyris and L. Tenek	63-119
An improved one-point integration method for large strain elastoplastic analysis, L.	
Stainier and J.Ph. Ponthot	163-177
Stress resultant geometrically nonlinear shell theory with drilling rotations—Part I. A	265 201
consistent formulation, A. Ibrahimbegović Stress resultant geometrically nonlinear shell theory with drilling rotations—Part II.	265-284
Computational aspects, A. Ibrahimbegović and F. Frey	285-308
On the convergence of a discrete Kirchhoff triangle method valid for shells of arbitrary	200 000
shape, M. Bernadou, P. Mato Eiroa and P. Trouvé	373-391

Supersonic flow	
Finite element solution of compressible viscous flows using conservative variables, A. Soulaïmani and M. Fortin	319-350
Systems of linear and nonlinear simultaneous equations	
An efficient and locking-free flat anisotropic plate and shell triangular element, J. Argyris and L. Tenek	63-119
Transonic flow	
Finite element solution of compressible viscous flows using conservative variables, A. Soulaïmani and M. Fortin	319-350
Transport phenomena	
Bubble stabilization of spectral Legendre methods for the advection-diffusion equation, C. Canuto and G. Puppo	239–263
Turbulence	
Multigrid acceleration for recirculating laminar and turbulent flows computed with a non-orthogonal, collocated finite-volume scheme, F.S. Lien and M.A. Leschziner	351-371
Viscoleastic and viscoplastic media	
Numerical techniques for the treatment of quasistatic viscoelastic stress problems in linear isotropic solids, S. Shaw, M.K. Warby, J.R. Whiteman, C. Dawson and M.F. Wheeler	211-237
Viscous flow	
Finite element solution of compressible viscous flows using conservative variables, A. Soulaïmani and M. Fortin	319-350

Multigrid acceleration for recirculating laminar and turbulent flows computed with a non-orthogonal, collocated finite-volume scheme, F.S. Lien and M.A. Leschziner

351-371

