ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ

I	IРЕПОДАВАТЕЛЬ	
канд. техн. наук		Т.Н.Соловьёва
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
OTUET O	ЛАБОРАТОРНОЙ РА	FOTE
OT ILI O	JADOI ATOI HOH I A	ADO LE
струистурын ий сини		гог р а зор а тепей
СТРУКТУРНЫЙ СИНТ	E3 ABTOMATOB-HP	ЕОБРАЗОВА ГЕЛЕИ
по курс	у: ТЕОРИЯ АВТОМАТ	OB
РД	БОТУ ВЫПОЛНИЛ	
СТУДЕНТ ГР. № 4143		Е.Д.Тегай
	подпись, дата	инициалы, фамилия

Цель работы

Изучение основ канонического метода структурного синтеза конечных автоматов; получение навыков построения структурных схем конечных автоматов.

Задание по работе

Требуется выполнить структурный синтез автомата (для нечетных вариантов — модели Мили, для четных — модели Мура), построенного при выполнении лабораторной работы 5 с использованием триггеров и логических элементов, тип которых указан в разделе «Варианты заданий».

Проверку корректности работы спроектированной функциональной схемы автомата необходимо провести в пакете *Quartus*.

Порядок выполнения работы

Выполнение работы состоит из двух частей: структурного синтеза автомата и проверки корректности спроектированной функциональной схемы путем моделирования в пакете *Quartus*.

При выполнении структурного синтеза автомата необходимо

- 1) Последовательно выполнить пункты методики, описанной в разделах 1.1 и 1.2;
- 2) Составить структурные аналоги автоматных лент для каждого из слов оператора соответствия для проведения моделирования.

Пример автоматной ленты для СТПВ, приведенной в табл. 1, представлен ниже.

Входной символ	z_1	z_2	z_1	<i>z</i> ₃	z_2	z_3	z_2	<i>z</i> ₃	z_1
Состояние	a_0	a_1	a_1	a_0	a_3	a_1	a_0	a_0	a_3
Выходной символ	w_3	w_2	w_1	w_1	w_1	w_2	w_2	w_1	w_1
Входной символ	z_2	z_3	z_3	z_1	z_1	z_3	z_3	z_3	
Состояние	a_2	a_2	a_0	a_3	a_2	a_1	a_0	a_3	a_0
Выходной символ	w_2	w_3	w_1	w_1	w_1	w_2	w_1	w_1	

Структурный аналог этой автоматной ленты в соответствии с табл. 2-4 будет иметь следующий вид.

Входной символ (x_2x_1)	00	01	00	10	01	10	01	10	00
Состояние (Q_2Q_1)	00	01	01	00	11	01	00	00	11
Выходной символ (y_2y_1)	10	01	00	00	00	01	01	00	00
Входной символ (x_2x_1)	01	10	10	00	00	10	10	10	
Состояние (Q_2Q_1)	10	10	00	11	10	01	00	11	00
Выходной символ (y_2y_1)	01	10	00	00	00	01	00	00	

При выполнении работы в пакете *Quartus* необходимо выполнить следующие действия.

- 1) Создать проект и построить схему автомата, полученную в результате структурного синтеза, на логических элементах заданного базиса и триггерах (рекомендуется использовать триггеры из библиотеки primitives/storage: jkff для JK-триггеров и Т-триггеров, dff для D-триггеров);
 - 2) Провести компиляцию проекта;
- 3) Создать файл временных диаграмм, задать входные сигналы в соответствии с построенной автоматной лентой (см. рекомендации ниже);
- 4) провести функциональное моделирование и сравнить результат с автоматной лентой.

Ниже приведены рекомендации по подготовке и проверке временных диаграмм.

Целесообразно установить длительность одного такта ($Grid\ Size$) равную 5 ns. Тогда время моделирования $End\ Time\$ следует установить равным 5 \times (число столбцов в автоматной ленте). Для приведенного выше примера $End\ Time\ = 5 \times 18 = 90\ ns$. Из первой строки структурной автоматной ленты следует, что временные диаграммы входных сигналов должны иметь вид:

 x_2 : 0 0 0 1 0 1 0 1 0 0 1 1 0 0 1 1 1; x_1 : 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0.

Для установки значений входных сигналов в поле Name нужно выделить имя x_2 и на панели слева выбрать пиктограмму 0. Затем в строке x_2 нужно выделить нужные интервалы с помощью клавиши CTRL и установить

значение 1. Аналогично формируется временная диаграмма для сигнала x₁. Для удобства проверки входные сигналы можно объединить в шину.

Временная диаграмма синхросигналов формируется с помощью пиктограммы с изображением часов. В появившемся окне необходимо установить длительность синхроимпульса (*Period*) равную длительности такта (*Grid Size*), в нашем случае это 5 *ns*.

Проверка правильности работы автомата по временным диаграммам осуществляется на основе автоматной ленты. Последовательности значений выходных сигналов на диаграмме и на ленте должны совпадать.

Внимание! Моменты регистрации выходных сигналов в каждом машинном такте различны для автомата модели Мили и для автомата модели Мура.

Триггеры из библиотеки *primitives* в *Quartus* срабатывают по переднему фронту, поэтому в автомате модели Мили выходные сигналы должны регистрироваться до переднего фронта синхросигнала (когда синхросигнал равен нулю). Это связано с тем, что выходной сигнал автомата Мили зависит от исходного состояния автомата и входного сигнала.

В автомате модели Мура выходные сигналы должны регистрироваться после переднего фронта синхросигнала, так как они зависят только от состояния перехода.

Индивидуальное задание

Формулировка индивидуального задания изображена на рисунке 1.

Рисунок 1 – Индивидуальное задание

Оператор соответствия в автоматном виде показан на рисунке 2.

1	вході	ные слова	выходные с	слова
0	0	0 4	<u>_</u> 3 0 0	1
0	1	1 d	\$ 1 0	1
1	0	1 2 2	& B 0 0	0
0	0	1 2	\$ 0 1	1
1	0	0 4 4	B B 1 1	0
1	1	1 &	\$ 0 0	1

Рисунок 2 – Оператор соответствия в автоматном виде

ОТП минимального автомата Мура, полученная в лабораторной работе №5, показана на рисунке 3.

	1	0	β	β	0	1	β	0
	c ₀ ,	c ₀ ,,	c_1	c_2	c ₃	C ₄	c ₅	C ₆
0	c ₁	c ₁	c3	C ₅	c ₃	-	C ₄	-
1	c ₂	c ₂	C ₄	c ₆	C ₄	c3	c ₀ ,,	c3
α	c ₀ ,,	c ₀ ,,	-	-	c ₀ ,	c ₀ ,	-	-

Рисунок 3 – Таблица минимального автомата Мура

Структурный синтез конечного автомата Мура

Этап 1. Кодирование входных символов, выходных символов и состояний.

Определим количество структурных входных каналов, структурных выходных каналов и элементарных автоматов (триггеров) для хранения состояний структурного автомата. Для рассматриваемого автомата:

$$F=3\ (0,1,\alpha); G=3\ (0,1,\beta); M+1=8\ (c_0,,c_0,,c_1,c_2,c_3,c_4,c_5,c_6).$$

На основании формул (1) — (3), приведённых ниже на рисунке 4, устанавливаем, что структурный автомат должен иметь 2 входных канала, 2 выходных канала и содержать 3 триггера.

$$L =]\log_2 F[, \tag{1}$$

$$N = [\log_2 G], \tag{2}$$

$$P = [\log_2(M+1)]. \tag{3}$$

Рисунок 4 – Используемые формулы

Пусть x_2, x_1 — переменные, связанные со входами автомата, y_2, y_1 — переменные, связанные с выходами автомата, а Q_3, Q_2, Q_1 — выходные сигналы триггеров.

Закодируем данные, выходные символы и состояния абстрактного автомата их структурными эквивалентами. Это показано в таблицах 1-3.

Таблица 1

	x_2	x_1
0	0	0
1	0	1
α	1	0

Таблица 2

	y_2	\mathcal{Y}_1
0	0	0
1	0	1
β	1	0

	Q_3	Q_2	Q_1
c ₀ ,	0	0	0
c ₀ ,,	0	0	1
c_1	0	1	0
c_2	0	1	1
c_3	1	0	0
C ₄	1	0	1
c ₅	1	1	0
c ₆	1	1	1

Построение КС1

Этап 2. Формирование кодированной таблицы переходов структурного автомата (КТП).

КТП формируется из таблицы переходов (ТП) исходного автомата заменой в ТП абстрактных символов их структурными эквивалентами из таблиц 1-3. ТП автомата Мура образуется, если из клеток ОТП исходного автомата исключить выходные символы.

Полученный результат продемонстрирован в таблице 4.

Таблица 4

	1	0	β	β	0	1	β	0
	c_0 ,	c ₀ ,,	c_1	c_2	c_3	c_4	<i>c</i> ₅	<i>c</i> ₆
0	c ₁	c_1	c ₃	c ₅	c_3	-	C ₄	-
1	c_2	c_2	C ₄	c ₆	C ₄	c ₃	c ₀ ,,	c ₃
α	c ₀ ,,	c ₀ ,,	-	-	c ₀ ,	c ₀ ,	-	ı

КТП, полученная в соответствии с таблицами 1, 3 и 4, представлена в таблице 5.

$Q_3Q_2Q_1$ x_2x_1	000	001	010	011	100	101	110	111
00	010	010	100	110	100	-	101	-
01	011	011	101	111	101	100	001	100
10	001	001	-	-	000	000	ı	ı

Этап 3. Формирование кодированной таблицы функций возбуждения структурного автомата (КТФВ).

На данном этапе укажем тип используемых триггеров — D - триггер. Рисунок 5 соответственно представляет собой таблицу переходов этих триггеров.

Q D	0	1
0	0	0
1	1	1

Рисунок 5 — Таблица переходов D — триггера

КТФВ автомата строится на основе его КТП, показанной в таблице 5. В заголовках столбцов КТП указаны выходные сигналы триггеров, определяющие исходное состояние автомата, то есть $Q_3(t)$, $Q_2(t)$, $Q_1(t)$, а в клетках КТП содержатся выходные сигналы триггеров, определяющие состояние перехода, то есть $Q_3(t+1)$, $Q_2(t+1)$, $Q_1(t+1)$.

Анализ любого столбца КТП показывает, что переход автомата из состояния в состояние осуществляется путем переключения триггеров. Рассмотрим, например, столбец с заголовком $Q_3(t)Q_2(t)Q_1(t) = 000$. Первый элемент этого столбца: $Q_3(t+1)Q_2(t+1)Q_1(t+1) = 010$. Это означает, что при переходе автомата из состояния 000 в состояние 010 1 и 3 триггеры не изменили свои состояния, а 2 триггер переключился в противоположное состояние.

Для каждого вида переключения триггера (из 0 в 0, из 0 в 1, из 1 в 0 и из 1 в 1) имеется набор функций возбуждения (входных сигналов триггера),

обеспечивающий необходимое переключение. Кодированная таблица функций возбуждения строится из КТП путем замены в клетках этой таблицы сигналов состояния перехода соответствующими входными сигналами триггеров, которые обеспечивают переход в это состояние из состояния, находящегося в заголовке столбца.

Для определения значений ФВ, обеспечивающих нужный переход, используется дополнительная таблица 6, которую нетрудно вывести из таблицы переходов триггеров указанного типа, изображённой на рисунке 5.

Таблица 6

Q(t)	Q(t+1)	D - триггер		
	Q(t 1 1)	D(t)		
0	0	0		
0	1	1		
1	0	0		
1	1	1		

Для рассматриваемого варианта построим КТФВ, изображённую в таблице 7, по КТП, показанную в таблице 5, используя таблицу 6.

Таблица 7

																							_	
$Q_3 Q_2 Q_1$	$_{3}Q_{2}Q_{1}$ 000		000 001		001		010		011			100		101			110		111					
x_2x_1	D_3	D_2	D_1	D_3	D_2	D_1	D_3	D_2	D_1	D_3	D_2	D_1	D_3	D_2	D_1	D_3	D_2	D_1	D_3	D_2	D_1	D_3	D_2	D_1
00	0	1	0	0	1	0	1	0	0	1	1	0	1	0	0	-	-	1	1	0	1	-	-	1
01	0	1	1	0	1	1	1	0	1	1	1	1	1	0	1	1	0	0	0	0	1	1	0	0
10	0	0	1	0	0	1	-	-	-	-	-	-	0	0	0	0	0	0	-	-	-	-	-	-

Этап 4. Построение диаграмм Вейча и логических выражений (ЛВ) для функций возбуждения, представление ЛВ в заданном базисе, построение КС1.

КТФВ следует рассматривать как двумерную таблицу истинности для функций возбуждения. В рассматриваемом варианте D_3 , D_2 , D_1 являются булевыми функциями от 5 аргументов: $Q_3(t)$, $Q_2(t)$, $Q_1(t)$, $x_2(t)$, $x_1(t)$ (в дальнейшем аргумент t может быть опущен при записи ЛВ). Для каждой

функции возбуждения строится диаграмма Вейча, из которой выписывается минимальное выражение для функции.

Диаграммы Вейча и выписанные по ним функции возбуждения приведены на рисунке 6.

Рисунок 6 - Диаграммы Вейча и выписанные по ним функции возбуждения

Полученные функции необходимо перевести в требуемый базис И-НЕ. КС1 составляется как совокупность схем для функций D_3 , D_2 и D_1 . Результат показан на рисунке 7.

Рисунок 7 – Переведённые функции к базису И-НЕ

Построение КС2

Этап 5. Построение кодированной таблицы выходов.

КТВ формируется из ТВ исходного автомата заменой в ТВ абстрактных символов их структурными эквивалентами (таблицы 1-3). ТВ приведена в таблице 8.

Таблица 8

1	0	β	β	0	1	β	0
c_0 ,	c ₀ ,,	c_1	c_2	<i>c</i> ₃	c_4	<i>c</i> ₅	<i>c</i> ₆

В таблице 9 представлена кодированная таблица выходов.

Таблица 9

y_2y_1	01	00	10	10	00	01	10	00
$Q_3Q_2Q_1$	000	001	010	011	100	101	110	111

Этап 6. Построение диаграмм Вейча и логических выражений для выходных сигналов, представление ЛВ в заданном базисе, построение КС2.

На этом этапе необходимо построить две диаграммы Вейча для y_2 , y_1 . Результат показан на рисунке 8.

Рисунок 8 - Диаграммы Вейча для выходных сигналов автомата Мура Полученные логические выражения необходимо перевести в требуемый базис И-НЕ и построить схемы. КС2 составляется как совокупность логических схем для функций у₂, у₁. Результат показан на рисунке 9.

Рисунок 9 — Приведенные функции к базису И-НЕ

Моделирование работы структурного автомата

Результаты построения каждой функции отдельно и вид автомата в полном виде продемонстрированы на рисунках 10 - 14.

Рисунок 10 - KC1 для D_1

Рисунок 11-KC1 для D_2

Рисунок 12 – КС1 для D₃

Рисунок 13 – КС2 для у2

Рисунок 14 – KC2 для y₁

Автоматные ленты для проверки работы автомата показаны на рисунке 15.

								_	_	_			
Входной символ	0	0	0	а			Входной символ	00	00	00	10		
Состояние	c0''	c1	с3	c3	c0'		Состояние	001	010	100	100	000	
Выходной символ	b	0	0	1			Выходной символ	10	00	00	10		
Входной символ	0	1	1	a			Входной символ	00	01	01	10		
Состояние	c0''	c1	c4	c3	c0'		Состояние	001	010	101	100	000	
Выходной символ	b	1	0	1			Выходной символ	10	01	00	01		
Входной символ	1	0	1	а	a		Входной символ	01	00	01	10	10'10	
Состояние	c0''	c2	с5	c0''	c0''	c0''	Состояние	001	011	110	001	001	001
Выходной символ	b	b	0	0	0		Выходной символ	10	10	00	00	00	
Входной символ	0	0	1	а			Входной символ	00	00	01	10		1
Состояние	c0''	c1	c3	c4	c0'		Состояние	001	010	100	101	000	
Выходной символ	b	0	1	1			Выходной символ	10	00	01	01		
Входной символ	1	0	0	а	а		Входной символ	01	00	00	10	10	
Состояние	c0''	c2	c5	c4	c0'	c0''	Состояние	001	011	110	101	000	001
Выходной символ	b	b	1	1	0		Выходной символ	10	10	01	01	00	
Входной символ	1	1	1	а			Входной символ	01	01	01	10		
Состояние	c0''	c2	c6	с3	c0'		Состояние	001	011	111	100	000	
Выходной символ	b	0	0	1			Выходной символ	10	00	00	01		

Рисунок 15 - Автоматные ленты для проверки работы автомата Схема структурного автомата, построенная в QUARTUS, изображена на рисунках 16-17.

Рисунок 16 – Схема структурного автомата

Рисунок 17 – Схема структурного автомата

На рисунках 18 - 23 изображены скриншоты временных диаграмм с результатами моделирования автоматной ленты.

Рисунок 18 — Временная диаграмма с результатами моделирования автоматной ленты

a N	haster Ti	ree Bar:		40.1 rc	4 > Pointet	37.45 rs	Interval	2.65 nz	Stad:	10.0 ns	End	29.9ms
h-	\neg		Vota :	D pe	10,0 ns	20,0 ns		30.0 ns	40,0 ms	50,0 ns	60	1,0 ms
Ä		Name	40.1						40.1 ns			
ÆŪ	p-0	a	BO									
ı 🗵	1 1	×1	BO									
ù E	p ≥2	x2	BO									
■ [4	DP 3	y1	B1									
4	(P4	y2	B0							_		
. 4	95	⊞ 6	B 000	000	010 X	101		100	000	(010		100
-												

Рисунок 19 — Временная диаграмма с результатами моделирования автоматной ленты

Рисунок 20 — Временная диаграмма с результатами моделирования автоматной ленты

Рисунок 21 — Временная диаграмма с результатами моделирования автоматной ленты

Рисунок 22 — Временная диаграмма с результатами моделирования автоматной ленты

Рисунок 23 — Временная диаграмма с результатами моделирования автоматной ленты

Вывод

В результате выполнения работы произведен структурный синтез автомата модели Мура. Автомат имеет 3 структурных входа и 2 структурных выхода. Для реализации автомата потребовалось 3 триггера типа D и 24 элементов И-НЕ. Моделирование работы структурного автомата произведено в пакете QUARTUS. Изучен канонический метод структурного синтеза конечных автоматов; получены навыки построения структурных схем конечных автоматов.