	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\tau_1^{\#1}{}_+\alpha\beta$	$\sigma_{1}^{\#1}{}_{\alpha}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$\tau_{1^{-}}^{\#1}\alpha$	$ au_{1}^{\#2}$
$\sigma_{1}^{\#1} + \alpha \beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1}^{#2} + \alpha \beta$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\tau_{1}^{#1} + \alpha \beta$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1} +^{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$
$\sigma_{1}^{\#2} +^{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2k^2r_5+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1} +^{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{#2} + \alpha$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5 + 2k^2t_1}{(t_1 + 2k^2t_1)^2}$

Lagrangian density

(No massless particles)

 $r_5\,\partial_\alpha\omega_\lambda^{\alpha}_{\theta}\partial_\kappa\omega^{\theta\kappa\lambda}+r_5\,\partial_\theta\omega_\lambda^{\alpha}_{\lambda}\partial_\kappa\omega^{\theta\kappa\lambda}-r_5\,\partial_\alpha\omega_\lambda^{\alpha}_{\theta}\partial_\kappa\omega^{\kappa\lambda\theta}+2\,r_5\,\partial_\theta\omega_\lambda^{\alpha}_{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta} _{\kappa}^{-r_{5}}\partial_{\theta}\omega_{\lambda}^{\alpha}{}_{\alpha}\partial^{\lambda}\omega^{\theta\kappa}_{\lambda}$ $_{\alpha}^{}\partial^{\kappa}f_{\lambda\kappa} + \frac{1}{3}\,r_{2}\,\partial_{\kappa}\omega^{\alpha\beta\theta}\,\partial^{\kappa}\omega_{\alpha\beta\theta} + \frac{2}{3}\,r_{2}\,\partial_{\kappa}\omega^{\theta\alpha\beta}\,\partial^{\kappa}\omega_{\alpha\beta\theta} _{\kappa}\partial^{\kappa}f_{\lambda\alpha} + \frac{1}{2}t_{1}\partial_{\kappa}f_{\theta}^{\ \lambda}\partial^{\kappa}f_{\lambda}^{\ \theta} +$ $_{\lambda}\partial^{\kappa}f^{\prime}_{\ \prime}+2\,t_{1}\,\,\omega_{\prime\kappa\theta}\,\partial^{\kappa}f^{\prime\theta} -\frac{2}{3}r_2\partial_\theta\omega_{\alpha\beta}^{\quad \ \ \, K}\partial_\kappa\omega^{\theta\alpha\beta}.$ $\frac{1}{2}t_1\partial^{\alpha}f_{\theta k}\partial^{\kappa}f_{\alpha}^{\ \theta} - \frac{1}{2}t_1\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \theta} - \frac{1}{2}t_1\partial^{\alpha}f^{\lambda}$ $\frac{2}{3} r_2 \partial^{\beta} \omega^{\theta \alpha}_{\kappa} \partial_{\theta} \omega_{\alpha \beta}^{\kappa} - \frac{1}{3} r_2 \partial_{\theta} \omega_{\alpha \beta}^{\kappa} \partial_{\kappa} \omega^{\alpha \beta \theta}.$ $x'_{\kappa} + \frac{1}{2} t_1 \partial^{\alpha} f^{\lambda}_{\kappa}$ $t_1 \; \omega_{\kappa\lambda}^{\;\;\lambda} \; \partial^{\kappa} f'_{\;\;\prime} + 2 \, t_1 \, \partial^{\alpha} f_{\;\kappa\alpha} \; \partial^{\kappa} f'_{\;\;\prime} - t_1 \, \partial_{\kappa} f^{\lambda}_{\;\;\prime}$ $rac{1}{2}\,t_1\,\partial_\kappa f^\lambda_{ heta}\partial^\kappa f_\lambda^{ heta}$ - $t_1\,\partial^\alpha f^\lambda_{\sigma}$

	($\sigma_{0}^{\#1}$			$\tau_{0}^{\#1}$		$\tau_0^{\#}$	2 +	O	#1 0 ⁻
$\sigma_{0^{+}}^{\#1}$ †	- (1+	$\frac{1}{(2k^2)^2}$	-		$\int_{0}^{\infty} \sqrt{2} k$	 t ₁	0			0
$\tau_{0}^{\#1}$ †		$\sqrt{2} k$ $(2k^2)^2 t$	-	- (1-	2 k ² +2 k ²) ²		0			0
$ au_{0^{+}}^{\#2} \dagger$	0			0		0			0	
$\sigma_{0}^{\#1}$ †	0			0		0		$\frac{1}{k^2}$	1 2 ^{-t} 1	
$f_{1}^{#2}$	0	0		0	$i k t_1$	c)	ĺ	0	0

	#	1	1	3	3	3	2	16
Source constraints	SO(3) irreps	$\tau_0^{#2} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2 \bar{l} k \sigma_{1}^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\tau_{2+}^{\#1}\alpha\beta$ - 2 ik $\sigma_{2+}^{\#1}\alpha\beta$ == 0	Total #:

 $\omega_{2^{+}\alpha\beta}^{\#1} \, f_{2^{+}\alpha\beta}^{\#1} \, \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $-\frac{ikt_1}{\sqrt{2}}$

 $k^2 t_1$

0

0

0

<u>t</u>1 2

<u>t</u>1 2

 $\frac{i\,k\,t_1}{\sqrt{2}}$

0

 $\omega_2^{\#1} \dagger^{\alpha\beta\chi}$

$\sigma_{2}^{\#1} \alpha eta \chi$	0	0	$\frac{2}{t_1}$
	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2}^{\#1} + \alpha \beta$	$r_{2}^{#1} + \alpha \beta \chi$

 $k^2 r_2 - t_1$

0

0

0

 $\omega_{0}^{\#1}$ \dagger

0

0

 $-2k^2t_1$

 $-i\sqrt{2}kt_1$

 $f_{0}^{\#1}$ †

0

0

0

0

 $f_0^{\#2} \uparrow$

0

0

 $\sqrt{2} kt_1$

-t₁

 $\omega_{0}^{\#1}$ †

 $\omega_{0}^{\#1}$

?	$J^P = 0^-$?
?	$\frac{1}{k^{\mu}}$?

	Massive partic	le
? /	Pole residue:	$-\frac{1}{r_2} > 0$
$J^P = 0^-$	Polarisations:	1
k^{μ} ?	Square mass:	$\frac{t_1}{r_2} > 0$
	Spin:	0
	Parity:	Odd

	Massive partic
?	Pole residue:
$J^P = 0^-$	Polarisations:
k^{μ}	Square mass:
?	Spin:
	Parity: