Algorytmy numeryczne

Zadanie 4 Dawid Bińkuś & Oskar Bir & Mateusz Małecki grupa 1 tester-programista

13 Styczeń 2019

1 Aproksymacja

Sprawozdanie prezentuje analizę aproksymacji dla problemu określonego w zadaniu 3. W tym celu, zastosowana została aproksymacja dla metod testowanych w zadaniu 3:

- Metoda Gaussa (PG) wielomian 3-go stopnia,
- Metoda Gaussa z drobną optymalizacją dla macierzy rzadkich (SPG) wielomian 2-go stopnia,
- Metoda Gaussa-Seidela (GS) przy założonej dokładności 1e-10 wielomian 2-go stopnia,

Oraz dodatkowo:

- Metoda zaimplementowana w oparciu o macierze rzadkie (S) wielomian 1 stopnia (wy-konane za pomocą LUDecomposition z biblioteki Apache Commons Math¹) wariant z użyciem własnego typu danych (SparseFieldMatrix),
- wariant z użyciem tablicy double (DS) (OpenMapRealMatrix)

Program na potrzeby analizy problemu został napisany w języku Java. Ilość agentów oznaczana jest jako N.

2 Próbka pomiarów czasu

2.1 Zakres testów

Na potrzeby wyliczenia funkcji aproksymacyjnej dla każdej z metod, wykonane zostały testy dla N=15,16,...,60, co przy N=60 odpowiada liczbie około 2000 równań. Dla mniejszej ilości agentów testy wydajnościowe zostały wykonane kilka razy dla uśredniania wyniku.

2.2 Wyniki

Wyniki zostały zamieszczone w pliku csv.

3 Aproksymacja średniokwadratowa dyskretna

Za pomocą aproksymacji średniokwadratowej dyskretnej, wygenerowane zostały wielomiany dla każdego typu pomiarów. Prezentują się one w sposób następujący:

- 1. Generowanie macierzy:
 - (a) $f(x) = (2.3350439175615983e 11)x^3 (3.73562735299031e 8)x^2 + (3.927924861861045e 5)x^1 0.006632202623758287$ dla PG,
 - (b) $f(x) = 0.026544550834587136x^1 12.310426442549858$ dla S (wariant dla wielomianu stopnia 1, m = 1),
 - (c) $(f(x) = 1.1160411337156506e 8)x^3 (1.138102839915528e 5)x^2 + 0.006355108980340516x^1 0.9349542064725634$ dla S (wariant dla wielomianu stopnia 3, m = 3),
 - (d) $f(x) = 0.005862735639798491x^{1} 2.8318326460105085$ dla DS
 - (e) $f(x) = (3.905262387830365e 8)x^2 (2.5264926661242525e 5)x^1 + 0.006283510185750934x^0$ dla SPG,
 - (f) $f(x) = (5.486623477461811e 8)x^2 (5.4389374355751846e 5)x^1 + 0.014501100847044942$ dla GS.

¹ http://commons.apache.org/proper/commons-math/javadocs/api-3.6/overview-summary.html

- 2. Rozwiązywanie układu równań:
 - (a) $g(x) = (2.1592223868228134e 8)x^3 (3.716638790505861e 5)x^2 + 0.023672650455756852x^1 3.8108135102259824$ dla PG,
 - (b) $g(x) = (1.583603905695412e-4)x^1 0.06429601760699291$ dla S,
 - (c) $g(x) = (2.0353485741938283e 5)x^{1}, -0.008158601334700392$ dla DS,
 - (d) $g(x) = (1.3001654605220337e 6)x^2 0.0014560130726117273x^1 + 0.3507906257127139$ dla SPG,
 - (e) $g(x) = (2.3048124134271384e 5)x^2 0.020571995359005252x^1 + 4.514786569835568$ dla GS.

3.1 Poprawność uzyskanego rozwiązania

Błąd aproksymacji				
Metoda	Wariant	Błąd aproksymacji[s]		
PG	Obliczanie	87.52296395468811		
	Generowanie	0.0056371667465691345		
SPG	Obliczanie	2.932007861300984		
	Generowanie	0.0035357258834377552		
GS	Obliczanie	204.23823436655252		
	Generowanie	0.013028009281415509		
S	Obliczanie	0.2257609275320777		
	Generowanie $m=1$	3727.8124913151905		
	Generowanie $m=3$	26.142413480394573		
DS	Obliczanie	8.484328415617502e-4		
	Generowanie	208.62045033311406		

Jak widać na załączonych wykresach 1 oraz tabeli powyżej prezentującej błąd aproksymacji, w większości przypadków funkcja aproksymująca poprawnie wylicza kolejne czasy wykonywania algorytmu. Wyjątkiem jest funkcja dla generowania w metodzie S. Wielomian stopnia pierwszego okazał się błędny dla tego zjawiska, toteż wykorzystany został również wielomian stopnia trzeciego - który jak widać zwraca o wiele mniejszy błąd aproksymacji. Pozostałe wyniki znajdują się w tolerancji błędu aproksymacji.

4 Ekstrapolacja

Wyliczony czas aproksymacji			
Metoda	f(100000) + g(100000) = czas[s]		
PG	$2.1245904241142590 \cdot 10^{7}$		
SPG	13244.4101182119		
GS	228971.794504794		
S m = 1	2657.9164000555109		
S m = 3	$1.1047251400851820 \cdot 10^{7}$		
DS	585.468921306697		

Wniosek 1 Z załączonej wyżej tabeli wynika, że metoda DS jest najszybsza ze wszystkich rozważanych.

5 Próba obliczenia

Na podstawie wniosku 1, za najszybszą metodę została uznana metoda DS. Ze względu na użycie biblioteki Commons Math, ograniczenia obiektu OpenMapRealMatrix (maksymalny rozmiar macierzy = $((X \cdot X) <= 2147483647))$ oraz ograniczenia pamięciowe,konieczne było uruchomienie metody DS dla mniejszej ilości równań równej 12403. Rezultaty z próby obliczenia zostały zamieszczone w tabeli poniżej:

Podsumowanie wyników			
Metoda	Wartość [s]		
DS - aproksymacja	70.12796317673274		
DS - rzeczywisty czas	1784.1351		

Po przekroczeniu czasu pięciokrotnie, program znajdował się na etapie inicjacji solvera z biblioteki LUDecomposition, tj. obliczaniu dekompozycji macierzy.

Wniosek 2 Porównanie rzeczywistego czasu wykonania oraz wartości funkcji aproksymacyjnej dowodzi niedoskonałości aproksymacji.

Rysunek 1: Wykresy reprezentujące porównanie funkcji aproksymacyjnej z rzeczywistymi wartościami danych metod.

6 Podział pracy

Dawid Bińkuś	Oskar Bir	Mateusz Małecki
Praca nad strukturą pro-	Przygotowanie testów i ich	Implementacja typu własnej
jektu.	uruchomienie	precyzji
Przygotowanie sprawozdania	Przygotowanie wykresów	Implementacja aproksymacji
	końcowych	sredniokwadratowej dyskret-
		nej
Implementacja metod S i DS	Implementacja aproksymacji	Praca nad strukturą pro-
przy użyciu biblioteki	sredniokwadratowej dyskret-	jektu
	nej	