Федеральное государственное автономное образовательное учреждение высшего образования «МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет <u>информационных технологий</u> Кафедра «<u>Инфокогнитивные технологии</u>»

Направление подготовки/ специальность: 09.03.01 «Веб-технологии»

ОТЧЕТ

по проектной практике

Студенты: Паладий Максим Юрьевич, Реброва Анастасия Алексеевна Группа
241-3210
Место прохождения практики: Московский Политех, кафедра Инфокогнитивные технологии»
Отчет принят с оценкой Дата
Руковолитель практики: Чернова Вера Михайловна

ОГЛАВЛЕНИЕ

введение

ПРИЛОЖЕНИЕ

- 1. Цели и задачи
- 2. Принцип работы технологии
- 3. Основные этапы разработки
- 4. Реализация системы
- 5. Индивидуальные вклады участников
- 6. Принцип работы системы

ЗАКЛЮЧЕНИЕ СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Разработана интерактивная система навигации для второго корпуса МосПолитеха (ул. Прянишникова, 2A), реализующая: автоматический расчет кратчайших путей эвакуации, визуализацию маршрутов через анимацию "змейки".

Используемые технологии: HTML5, CSS3, JavaScript, алгоритм BFS

1. Цели и задачи

Цель: создание автоматизированной системы визуализации оптимальных путей эвакуации в режиме реального времени.

Задачи:

- 1) разработка алгоритма поиска кратчайшего пути;
- 2) создание интерактивной карты помещений;
- 3) реализация анимации движения "змейки";
- 4) интеграция с архитектурными планами здания.
- 2. Основные этапы разработки
 - анализ планировки здания: изучение поэтажных планов корпуса
 МосПолитеха (ул. Прянишникова, 2А), выделение ключевых
 элементов: аудитории, коридоры, выходы, лифты, санузлы (см. Приложение Рис.1)
 - построение графа связи между помещениями (см. Приложение Рис.2)

```
const graph = {
    'exit1': ['corridor-0'],
    'exit2': ['corridor-5'],
    '2201M': ['corridor-0'],
    '2201': ['corridor-0'],
    '2203': ['corridor-1'],
    '2204': ['corridor-2'],
    '2205': ['corridor-4'],
    '2214': ['corridor-0'],
    '2214': ['corridor-0'],
    '22028: ['corridor-1'],
    '22028: ['corridor-1'],
    '2202A': ['corridor-2'],
    '22098': ['corridor-3'],
    '22098': ['corridor-3'],
    '22088': ['corridor-4'],
    '2208': ['corridor-5'],
    'corridor-0': ['exit1', '2201M', '2201', '2214', '2210', 'corridor-1'],
    'corridor-1': ['corridor-0', '2203', '22028', '2202A', 'corridor-2'],
    'corridor-2': ['corridor-2', '2204', 'elevator', 'corridor-3'],
    'corridor-3': ['corridor-2', '2205', '2209', 'corridor-4'],
    'corridor-5': ['corridor-4', '2207', 'toilet', 'exit2']
};
```

3. Реализация системы

— ядро алгоритма (BFS), который был выбран как основа для поиска кратчайшего пути эвакуации

```
function findShortestPath(start, end) {
   const queue = [[start]];
   const visited = new Set([start]);

while (queue.length > 0) {
   const path = queue.shift();
   const node = path[path.length - 1];

   if (node === end) return path;

       (graph[node] || []).forEach(neighbor => {
        if (!visited.has(neighbor)) {
            visited.add(neighbor);
            queue.push([...path, neighbor]);
        }
       });
   }

   return null;
}
```

— визуализация маршрута (анимация движения "змейки")

```
function animateSnake() {
    if (currentStep >= currentPath.length * 10) {
        cancelAnimationFrame(animationFrame);
    const progress = currentStep / (currentPath.length * 10);
    const pathIndex = Math.floor(progress * (currentPath.length - 1));
    const segmentProgress = (progress * (currentPath.length - 1)) % 1;
    const current = roomPositions[currentPath[pathIndex]];
    const next = roomPositions[currentPath[pathIndex + 1]];
    if (current && next) {
        const head = snakeSegments[snakeSegments.length - 1];
        head.style.left = `${current.x + (next.x - current.x) * segmentProgress - 7.5}px`;
head.style.top = `${current.y + (next.y - current.y) * segmentProgress - 7.5}px`;
    for (let i = 0; i < snakeSegments.length - 1; i++) {</pre>
        if (i < pathIndex) {</pre>
            snakeSegments[i].style.opacity = '1';
    currentStep++;
    animationFrame = requestAnimationFrame(animateSnake);
```

4. Индивидуальные вклады участников

Паладий Максим Юрьевич: анализ планировки здания, разметка страницы, реализация BFS с кэшированием

Реброва Анастасия Алексеевна: добавление стилей, анимаций

- 5. Принцип работы системы:
- 1) пользователь выбирает начальную точку;
- 2) система вычисляет путь до ближайшего выхода;
- 3) "змейка" последовательно проходит маршрут.

ЗАКЛЮЧЕНИЕ

Реализация проекта интерактивного плана эвакуации позволила создать комплексное решение, которое существенно превосходит традиционные системы безопасности по ключевым параметрам (быстрое построение оптимальных маршрутов, интуитивно понятная визуализация).

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Руководство по написанию игры «Змейка» на чистом JS URL: https://gamedeveloperliberant.firebaseapp.com/ru/posts/snake-purejs/ (дата обращения: 13.05.2025).
- 2. Репозиторий с туториалами по реализации технологии URL: https://github.com/codecrafters-io/build-your-own-x (дата обращения: 10.05.2025, 11.05.2025, 13.05.2025).

ПРИЛОЖЕНИЕ

Рис.1 - Детализированный план 2 этажа с обозначением всех помещений

Рис.2 - Схема связей между узлами здания