(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(43) International Publication Date 11 January 2001 (11.01.2001)

H04N 5/445

English

- (21) International Application Number: PCT/US99/14832 30 June 1999 (30.06.1999)
- (22) International Filing Date:

(51) International Patent Classification7:

- (25) Filing Language:
- (26) Publication Language: English
- (71) Applicant (for all designated States except US): THOM-SON CONSUMER ELECTRONICS, INC. [US/US]: 10330 North Meridian Street, Indianapolis, IN 46290 (US).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): WEHMEYER, Keith, Reynolds [US/US]; 6411 Columbia Circle, Fishers, IN 46038 (US).

- (74). Agents: TRIPOLI, Joseph, S. et al.; Thomson Multimedia Licensing Inc., P.O. Box 5312, Princeton, NJ 08543-5312 (US).
- (81) Designated States (national): AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: DBS FEATURE EXTENSION ARCHITECTURE

(57) Abstract: An enhanced electronic program guide (EPG) capable of displaying DBS program information and NTSC program information seamlessly and in real-time on a display device is accomplished, in one form, by a wide-band data link between a DBS receiver adapted to receive a DBS broadcast data stream and an internet set-top unit, the internet set-top unit adapted to receive NTSC audio/video signals and internet data/information. In another form, the DBS receiver is controlled by the internet set-top box. Supplemental information transmittable on the DBS data stream may also be displayed on the display device.

WO 01/03426 AJ

Published:

With international search report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

DBS FEATURE EXTENSION ARCHITECTURE

BACKGROUND OF THE INVENTION

1. Field of the invention

5

10

15

20

2.5

30

The present invention relates to the field of signal processing and, more particularly to integrated direct broadcast satellite systems, NTSC signal reception and display systems, and internet set top boxes.

2. Description of the related art

Today, there are many choices and/or sources of audio/video programming available to consumers for display on a television. These various sources of programming can bring many channels of entertainment and information into the home such as movies, sitcoms, news, sporting events, pay-per-view events, and the like. Such sources of programming range from over-the-air or off-air television signals receivable on an antenna, to direct broadcast satellite, to the internet.

However, at present, each programming source requires a different system or receiver to decode and process the incoming audio/video signals. In the case of a direct broadcast satellite (DBS) system wherein a digital data stream is transmitted from a satellite to a receiving dish, a DBS receiver is required to decode and process the incoming digital data stream. In the case of internet viewing, a separate computer system is required to receive and process the pages or content of the internet. Set-top internet receivers/boxes now integrate NTSC television processing capabilities receivable from several sources such as antennas and what is known as cable TV from a cable system.

Also, program guide or channel guide features are provided by each program source, such as DBS systems and off-air (NTSC) broadcasting. Program or channel guide information is transmitted in the digital data stream in the case of a DBS system, while such program information is transmitted as part of the VBI (Vertical Blanking Interval) of an analog NTSC television signal. More specifically, in the case of the digital data stream of a DBS, program guide information is transmitted along with the digital video signals as part of the PSI (program specific information) table within a standard encoded

transport stream, such as MPEG-2. Additionally, each system requires separate control, tuning, and program guide compiling for viewing.

5

10

15

20

25

30

What is needed is an integrated system for DBS, internet, and NTSC television programming.

SUMMARY OF THE INVENTION

The present invention is directed towards an integrated DBS and internet receiver system wherein a single program guide encompassing DBS program channels and network program channels are compiled.

According to another aspect of the present invention, a DBS system is controllable through a linked internet receiver wherein seamless tuning of all program channels is accomplished through the internet receiver. As well, any broad-band data, including user selectable internet links received through DBS channels, may be used to retrieve and view internet data.

In one form, in a DBS/internet receiver system, the DBS system having a DBS receiver adapted to receive DBS program information including program guide information, the internet receiver having an internet receiver adapted to receive network program information and data including program guide information and internet data, there is provided a method for forming a combined DBS/network program guide. The method includes, providing the DBS receiver with a wide-band data/communications input/output port. providing the network receiver with a wide-band data/communications input/output port, linking the wide-band data/communications input/output port of the DBS receiver with the wide-band data/communications input/output port of the internet receiver, providing the internet receiver with the program guide information received by the DBS receiver through the wide-band data/communications ports, and integrating the DBS program guide information with the network program guide information on the internet receiver to obtain a combined DBS/network program guide for viewing on a display device.

An advantage of the present invention is the ability to have an enhanced or super program guide that combines the program guide of a DBS system with the program guide of an NTSC system.

Another advantage of the present invention is the ability to remotely control a DBS receiver with an internet/NTSC signal receiver.

A further advantage of the present invention is the ability to have enhanced DBS digital broadcasting using supplemental information carried by the DBS digital data stream.

BRIEF DESCRIPTION OF THE DRAWINGS

The above-mentioned other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings wherein:

10

15

20

25

30

Fig. 1 is a diagrammatic view of a connection scheme between a DBS unit, an Internet receiver unit, and a display device in accordance with the present invention; and

Fig. 2 is a block diagram of an interconnection scheme between the DBS unit and the Internet receiver unit of Fig. 1.

The exemplification set out herein illustrates a preferred embodiment of the invention, in one form, and such exemplification is not to be construed as limiting the scope of the invention in any manner.

DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings and, more particularly Fig. 1, there is shown audio/video system 8 comprising direct broadcast satellite (DBS) unit 10, such as a DIRECTV® unit, internet unit 32, and display device 48 that are interconnected and function as described below.

DBS unit 10 receives signals from DBS dish or antenna 12 via cable 14 that plugs into input port 16. Input port 16 is coupled internally to appropriate circuitry as is known in the art in order to decode and/or process an incoming DBS data stream (an all digital data stream) typically transmitted from a satellite (not shown). DBS dish 12 includes feed horn 13 which receives the DBS data stream reflected by dish 12 as is known in the art. DBS unit 10 also includes telephone port 18 that is in communication with a telephone system via telephone line 20 connected to telephone jack 22 through which the DBS unit may communicate with a dial-up system. DBS unit 10 also includes a

video output jack or port 24, a left audio output jack or port 26, and a right audio output jack or port 28 collectively marked "A/V OUT". Video output port 24 may be an S-video port or a composite video port. As well, but not shown. there may be a second video output port. In this case, the first video output port could be the S-video output port while the second video output port could be the composite video output port, or vice versa. The A/V OUT ports are coupled internally to appropriate circuitry as is known in the art. Additionally, in accordance with an aspect of the present invention, DBS unit 10 also includes high-speed or wide-band input/output port 30 that may utilize a DB15 type connector. Wide-band input/output port 30 is coupled internally to appropriate circuitry as is known in the art and is used to send and receive serial data for control information and for parallel digital output of data transmitted from the satellite. The wide-band data link between DBS unit 10 and internet unit 32 is used as a data bus. While not shown, it should be understood that DBS unit 10 also includes other typical features and/or components.

5

10

15

20

25

30

Internet receiver unit 32 is an integrated set-top box/internet receiver otherwise known as an NTSC receiving internet receiver with integrated software, such as a WebTV® "Plus" unit. Internet unit 32 is adapted to receive. process and/or decode internet data via telephone lines, cable lines. or other sources, as well as receive, process and/or decode television (NTSC audio/video) signals from a cable system, airwaves or other source. The television signals may include Extended Data Service (XDS) information such as closed captioning and V-chip (ratings) data for the various programs as well any other data or audio/video information. An NTSC audio/video signal is receivable from either antenna 38 or a cable system through cable jack 40 via cable 36 coupled to input port or jack 34. Input port 34 is coupled internally to appropriate circuitry that processes the incoming NTSC signal in a known manner for eventual displaying on display device 48. Internet unit 32 is coupled to a telephone phone system via telephone input/output port 42, telephone line 46 and telephone jack 44 which is then coupled in the usual manner with the telephone system. Internet unit 32 receives digital data from the Internet via the telephone system. Of course, other means of receiving

Internet data may be used such as a cable TV system via an internal cable modem (not shown) or other source.

Additionally, internet unit 32 includes video input jack or port 50, left audio input jack or port 52, and right audio input jack or port 54, collectively marked "SLR" (S-video, Left, Right). The SLR inputs are coupled internally to appropriate circuitry as is known in the art. Video input port 50 may be an Svideo input port or composite video input port that is coupled to video output port 24 of DBS unit 10 via communication line or cable 60 in order to receive the video output from DBS unit 10. As well, but not shown, there may be a second video input port. In this case, the first video input port could be the Svideo output port while the second video output port could be the composite video output port, or vice versa. Internet unit 32 also has left audio input port or jack 52 that is in communication with left audio output port 26 of DSS unit 10 via line 62 in order to receive left channel audio from DSS unit 10, and right audio input port or jack 54 that is in communication with right audio output port 28 of DSS unit 10 via line 64 in order to receive right channel audio from DSS unit 10. In addition to the above input ports, internet unit 32 has high-speed or wide-band input/output data port 56 which is in communication with highspeed input/output data port 30 of DSS unit 10 via data/communication cable 66. Wide-band input/output data port 56 may utilize a DB-15 type connector. Such interface between DSS unit 10 and internet unit 32 provides a serial control bus between DSS unit 10 and internet unit 32 as well as a parallel digital output from DSS unit 10 to internet unit 32 for data transmitted from the satellite and received by DSS unit 10 through cable 14 (DSS data stream). High-speed input/output data port 56 is coupled internally to appropriate circuitry within internet unit 32 as is known in the art.

10

15

20

25

30

Internet unit 32 also includes video output port or jack 70, left audio output port or jack 72, right audio output port or jack 74, and RF output port or jack 68 all for providing various audio and video signals to display unit 48 and collectively labeled "SLR". Again, video output port 70 may be an S-video output port or a composite video output port. As well, but not shown, internet unit 32 may include a second video output port. In this case, the first video

output port would support S-video, while the second video output port would support composite video, or vice versa.

Display unit 48, such as a television or monitor, is coupled to internet unit 32 in order to receive the various audio and video signals therefrom. Specifically, display unit 48 includes RF input port or jack 76 which is in 5 communication with RF output port 68 of internet unit 32 via RF cable 78, such as coaxial cable. The RF connection between internet unit 32 and display device 48 allows the RF output from internet unit 32 to be received by display unit 48 on channel 3 or 4 via an RF modulator (not shown), providing an RF "pass-through" capability when internet unit 32 is in a standby mode. This 10 functionality is similar to the functioning of a coupled VCR and television. Display unit 48 also includes video input port or jack 80, to receive S-video or composite video, which is in communication with video output port 70 of internet unit 32. While not shown, display device 48 may include a second video input. In the case of a second video input, one video input would be an 15 S-video input while the other video input would be a composite video input. Further, display unit 48 includes left audio input port or jack 82 which is in communication with left audio output port 72 of internet unit 32 via line 88 in order to receive left channel audio, and right audio input port or jack 84 which 20 is in communication with right audio output port 74 of internet unit 32 via line 90 in order to receive right channel audio. S-video, composite video and left and right audio outputs of internet unit 32 and inputs of display device 48 may be used to provide a higher quality audio/video experience than the RF feed. While not shown, it should be understood that display device 48 may also include various audio and video outputs for connection to other audio/video 25 devices.

With reference now to Fig. 2, there is shown interconnect or interface diagram 92 for internet unit 32 that allows internet unit 32 to communicate with and/or receive data from DBS unit 10 over a wide-band data link. It should be understood that internet unit 32 may be any type of data processing box, wherein the data processing box accepts analog and digital data signals, such as NTSC television signals and MPEG-2 data over the internet. Wide-band

port 56 (labeled as a DB15 connector) provides a communication interface for LOW SPEED data as well as HIGH SPEED data to and from DSS unit 10.

Low speed serial control data from DSS unit 10 is received into port 56 and is routed on line 120 into first inverter buffer 98 then second inverter buffer 100 before it is sent along RXD (receive data) line and into the RXD (receive data) serial data input of system interface IC 102. As shown, system interface IC 102 includes one UART (Universal Asynchronous Receive/Transmit). System interface IC may be a SOLO IC which is a graphics special ASIC (Application Specific Integrated Circuit) of a WebTV® type internet/set-top box unit and is in communication with the microprocessor (not shown) of internet unit 32. Other devices capable of receiving serial data may also be used. Inverter buffers 98 and 100 are preferably Schmitt Trigger buffers. ElectroStatic Discharge (ESD) circuitry 96 is provided before inverter buffer 98 for electrostatic protection. Low speed serial control data from internet unit 32 is sent from TXD (transmit data) output of UART 102 into first inverter buffer 104 and then into second inverter buffer 106. Second inverter buffer 106 is coupled via line 122 with wide-band port 56 such that the low speed serial control data is sent to DSS unit 10. ElectroStatic Discharge (ESD) circuitry 108 is preferably provided between inverter buffer 106 and wide-band port 56 for electrostatic protection. The low speed serial control functionality is provided with a full duplex serial capability operating at a maximum of 9600 baud, and provides a means of control between DBS unit 10 and internet unit 32.

10

15

20

25

30

The HIGH SPEED DATA path (labeled as such in Fig. 2) is an 8 bit wide data bus and includes ElectroStatic Discharge (ESD) protection circuit 112. High speed data is received from DSS unit 10 into FIFO (First In First Out) memory 114 via the HIGH SPEED DATA PATH while FIFO memory 114 is strobed or clocked with a clock signal from DBS unit 10 via CLK path from port 56. The clock signal is conditioned with Schmitt Trigger inverter buffer 118 and also includes ElectroStatic Discharge (ESD) protection circuit 116. In operation, when FIFO memory 114 is half full, FIFO memory 114 provides an interrupt signal to system interface IC 102 via line HALF_FULLn (also the command label) that is coupled to INTERRUPT. The interrupt signal allows

system interface IC 102 to receive 128 bytes of data (one half of FIFO memory 114's 256 byte capacity) via DATA BUS line and into RIOD (Receive IO Data). The data word length is 8 bits with one control bit, hence the nomenclature "7:0". As well, system interface IC 102 includes chip select outputs OEn and CSn that are received by FIFO memory 114 via lines OEn and CSn respectively. In this manner, internet unit 32 and DSS unit 10 can provide each other with control data and transmit and receive high and low speed data.

With the above connections described with respect to the various incoming digital (both the DBS data stream and the internet data stream) and NTSC signals, and the interconnections of DBS unit 10, internet unit 32, and display device 48, functionality in accordance with an aspect of the present invention will now be discussed.

10

15

20

25

With DBS unit 10 coupled to internet unit 32, internet unit 32 is capable of controlling DBS unit 10. In this manner, DBS unit 10 becomes a slave peripheral to internet unit 32. Channel tuning for both internet unit 32 and DBS unit 10 can be accomplished seamlessly through internet unit 32 only. such that both NTSC and DBS audio/video sources may be displayed on display device 48. As an example, a user may, via a remote control (not shown), select channel 13 (or any other "off air" channel which go to channel 69, or a cable channel) for viewing on display unit 48 through internet unit 32. and internet unit 32 would tune its own internal tuner to the correct channel as received by either antenna 38 or cable 40, and then provide that output to display device 48. If the user selects channel 206 on the remote, internet unit 32 would recognize channel 206 as a DBS channel (over and above the off-air and cable channels), and thus utilize the communication capability to cause DBS unit 10 to tune to channel 206 and provide the audio/video output to internet unit 32 that would in turn provide the audio/video output to display device 48. Utilizing various commands, internet unit 32 can query DBS unit 10 and cause it to turn on an tune to a particular channel. Because of the interconnectivity between DBS unit 10 and internet unit 32 as described above, there is no need for IR "blaster" cabling and/or configuration routines.

8

Another capability of system 8 due to its interconnectivity is the ability to provide Electronic Program Guide (EPG) integration of the DBS EPG from DBS unit 10 and the NTSC EPG from internet unit 32. Electronic Program Guide (EPG) information is part of the DBS digital data stream received by dish 12 and is for the various DBS channels receivable by DBS unit 10. EPG information for the various NTSC channels is also receivable in the VBI (Vertical Blanking Interval) of certain NTSC signals. Internet unit may request this information from DBS unit 10 and seamless integrate the DBS EPG information with the NTSC EPG information. Channel selection is then accomplished through internet unit 32 as described above. DBS information may also be contained in the NTSC VBI of a channel, or through a dial-up database via telephone line 46.

5

10

15

20

25

DBS bandwidth may also be used to provide other information services such as news summaries, sports scores, stock quotes, and the like. This information may be overlaid on any DBS or NTSC program by Internet unit 32.

Additionally, DBS bandwidth (data stream) may be used as a replacement to dial-up internet access by providing a series of web (internet) pages thus freeing up the telephone line. A DBS "Web channel" either as a separate broadcast DBS channel or through the DBS EPG would be selectable by the user. Instead of the Web channel containing a video and/or audio transport, the Web channel would contain only a data transport which would be relayed directly to internet unit 32. The user would then have the option of viewing a received web page or store it in a cache for later viewing. The Web channel would utilize the DBS bandwidth by delivering such data on a single transponder. Large quantities of data may be transmitted on a single transponder making efficient use of available bandwidth or smaller quantities of data may be transmitted on all transponders for constant availability.

Further, in accordance with an aspect of the present invention, wideband data may be integrated with the DBS data stream as data payload. The wide-band data payload would be associated with at least one and preferably each DBS program and could include internet or internet type/linked data. When a DBS program is selected and viewed, the wide-band data payload that is received by DBS unit 10, is transmitted out of wide-band data port 30 of

5

15

20

25

DBS unit 10 into wide band data port 56 for receipt by internet unit 32. Internet data is thus transmitted from the satellite, received on current DBS systems, and processed by the internet receiver. This allows the wide-band data payload content to be overlayed with the satellite's video signal, as well as other video manipulations. In one form, by providing the wide-band data as a multicast internet protocol (such as Intercast or ATVEF), internet unit 32 would interpret this information/data and use it in conjunction with the received audio/video signal. It should be understood that the ATVEF specification includes HTML extensions to size/scale a video window, position same on the screen, and overly supplemental text and graphics (also formatted in HTML) around or over the video signal. The DBS data stream can thus deliver supplemental interactive data, including internet data, as another transport for a given program (in addition to the audio, video, and closed-captioning transports that may already be available). Any interactive internet content is deliverable over and receivable by existing DBS systems. Since the DBS system is coupled to the internet receiver by the wide-band data link, the functionality of DBS system is expanded to include interactive content delivered by the broadcasting satellite without modification to the existing DBS unit,

DBS unit 10 and internet unit 32 may also be combined into one unit able to receive a DBS data stream, an NTSC data stream, and be coupled to the various I/O devices/lines as described above. As well, display device 48 may incorporate all of the above. Such a combined unit (containing all the features and functions of internet unit 32 and DBS unit 10) could utilize the same data stream and deliver the same functionality.

The DBS data stream can also carry programs that may be executable on Internet unit 32. As an example, a binary image may be sent such as an operating system (OS) or application. The code is resident on internet unit 32 or "native", meaning a binary image compiled to run on the hardware of internet unit 32. Additionally, Java applications may be sent in the DBS data stream and executed on internet unit 32, with internet unit 32 having a Java Virtual Machine (JVM). Java programs run on any hardware platform because

they are interpreted by the JVM, rather than compiled for a specific hardware architecture.

As well, URLs (Universal Resource Locators) may be received using Extended Data Services (XDS) as part of the EIA-746 specification which then may be used by the browser of internet unit 32 to display the web site according to the URL by delivering the URL through the DBS data stream or through a dial-up connection. Since DBS transmits closed captioning and XDS through a second data stream (there is no VBI or Vertical Blanking Interval in the digital domain) the URLs are processed directly, rather than waiting for the DBS box to re-encode them back into the VBI of the video output.

5

10

15

While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. For example, the wide-band data link may be replaced with any data port having the capability of transmitting the defined information. Further, this invention may be utilized with any digital set-top box, such as a digital cable box or MMDS, which provides for the simultaneous delivery of data. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.

10

15

20

2.5

30

CLAIMS

WHAT IS CLAIMED IS:

1. In a digital video /internet receiver system, the digital video system having a digital video receiver adapted to receive program information including program guide information, the network computer system having an internet receiver adapted to receive NTSC program information including program guide information and internet data, a method for forming a combined program guide comprising the steps of:

providing the digital video receiver with a communications input/output port;

providing the internet receiver with a communications input/output port; linking the communications input/output port of the digital video receiver with the communications input/output port of the internet receiver;

providing the internet receiver with the program guide information received by the digital vide receiver through the communications ports; and

integrating the digital video program guide information with the NTSC program guide information on the internet receiver to obtain a combined program guide for viewing on a display device.

- The method of claim 1, wherein the digital video receiver receives program guide information via a digital data stream, and the internet receiver receives program guide information via the VBI of an analog signal.
- 3. The method of claim 1, wherein the step of linking the communications input/output port of the digital video receiver with the communications input/output port of the internet receiver includes establishing a low speed data communications bus and a high speed data bus.
- The method of claim 3, wherein the high speed data bus is clocked by a signal from the digital video receiver.
- 5. In a DBS/internet receiver system, the DBS system having a DBS receiver adapted to receive a plurality of DBS program channels including DBS program guide information, the internet receiver system having an internet receiver adapted to receive a plurality of network channels including NTSC program guide.

information, a method of compiling an integrated DBS/NTSC program guide comprising the steps of:

providing a wide-band data I/O port in the DBS receiver; providing a wide-band data I/O port in the internet receiver system; coupling the wide-band data I/O port of the DBS receiver with the wideband data I/O port of the internet receiver system;

providing the network receiver with the DBS program guide information received by the DBS receiver through the wide-band data I/O ports; and integrating the DBS program guide information with the NTSC program

guide information on the internet receiver to obtain a combined DBS/NTSC program guide for viewing on a display device.

5

15

25

30

- 6. The method of claim 5, wherein the DBS receiver receives program guide information via a program channel broadcast as part of a digital data stream, and the internet receiver receives program guide information via the VBI of an analog signal.
- 7. The method of claim 5, wherein the step of coupling the wide-band data I/O port of the DBS receiver with the wide-band data I/O port of the internet receiver includes establishing a low speed data bus and a high speed data bus.
- The method of claim 7, wherein the high speed data bus is clocked by a signal from the DBS receiver.
- 9. In a DBS/internet receiver system, the DBS system having a DBS receiver adapted to receive DBS program information including program guide information and wide-band data, the internet receiver system having an internet receiver adapted to receive NTSC program information including program guide information and internet data, the internet receiver couplable to the internet, a method of utilizing wide-band data transmitted from a direct broadcast satellite (DBS) comprising the steps of:

providing a DBS receiver with a wide-band data/communications input/output port;

providing an internet receiver with a wide-band data/communications input/output port;

linking the wide-band data/communications input/output port of the DBS receiver with the wide-band data/communications input/output port of the internet receiver;

providing the wide-band data received by the DBS receiver to the internet receiver over the wide-band link:

processing the wide-band data by the internet receiver; and displaying the wide-band data on a display device coupled to the internet receiver.

- The method of claim 9, wherein the wide-band data contains program
 quide information.
 - 11. The method of claim 9, wherein the wide-band data contains interactive internet data.
 - 12. In a DBS/internet receiver system, the DBS system having a DBS receiver adapted to receive DBS program information, the internet receiver system having an internet receiver adapted to receive and process NTSC program information and internet data, and couplable to a display device, a method of delivering internet content to the display device comprising the steps of:

transmitting wide-band data in a DBS data stream, the wide-band data including internet content data;

receiving the DBS data stream by the DBS system;

processing the DBS data stream by the DBS receiver;

providing a wide-band data link between the DBS receiver and the internet receiver:

transmitting the internet content data in the DBS data stream to the
25 internet receiver through the wide-band data link;

processing the internet content data by the internet receiver; and displaying the internet content data on the display device.

- 13. The method of claim 12, wherein the DBS data stream includes digital video, the method further comprising the steps of:
- providing the DBS video to the internet receiver; and displaying the DBS video on the display device.

20

30

14. The method of claim 13, wherein the steps of displaying DBS video and internet content data on the display device includes overlaying the internet content data on the DBS video.

15. In a DBS/internet receiver system, the DBS system having a DBS receiver adapted to receive a DBS digital data stream including wide-band data, the internet receiver system having an internet receiver adapted to receive and process NTSC program information and internet content data and couplable to a display device, a method of delivering interactive content data to the display device comprising the steps of:

transmitting interactive content data as part of the wide-band data of the DBS digital data stream:

receiving the DBS digital data stream on the DBS receiver; processing the DBS digital data stream by the DBS receiver; providing a wide-band data link between the DBS receiver and the internet receiver:

transmitting the interactive content data of the wide-band data to the internet receiver:

processing the interactive content data by the internet receiver; and displaying the interactive content data on the display device.

20 16. The method of claim 15 wherein the DBS digital data stream includes video, the method further comprising the steps of:

providing the video to the internet receiver; and displaying the video on the display device.

10

15

 The method of claim 16, wherein the steps of displaying video and
 interactive content data on the display device includes overlaying the interactive content data on the video.

FIG. 1

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/US 99/14832

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H04N5/445

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 HO4N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
А	WO 98 56172 A (MCLANE MICHAEL JOSEPH ;SCHNEIDEWEND DANIEL RICHARD (US); BROWN MEG) 10 December 1998 (1998-12-10) page 14, line 3 - line 6 page 31, line 17 - line 23; figures 1-3,6	1,5,9, 12,15
A	GB 2 323 489 A (MICROSOFT CORP) 23 September 1998 (1998-09-23) page 13, line 11 - line 25; figure 5	1,5,9,
A	EP 0 852 361 A (TEXAS INSTRUMENTS INC) 8 July 1998 (1998-07-08) the whole document 	12-17
A	WO 97 28499 A (AWARD SOFTWARE INTERNATIONAL 1) 7 August 1997 (1997-08-07) page 13, line 11 - line 18	1,5,9
	-/	

X

9 Consist automotion of electric dates

- X Further documents are listed in the continuation of box C. "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

Patent family members are listed in annex. "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"V" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report 21 February 2000 25/02/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016

Authorized officer

Yvonnet. J

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/US 99/14832

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO 97 49237 A (STARSIGHT TELECAST INC) 24 December 1997 (1997-12-24) Ε WO 99 35843 A (AMIGA DEV LLC) 1.5.9 15 July 1999 (1999-07-15) the whole document

INTERNATIONAL SEARCH REPORT

information on patent family members

Form PCT/ISA/210 (patent family annex) (July 1992)

Inte: onal Application No PCT/US 99/14832

Patent document cited in search report			Publication date		Publication date	
WO	9856172	Α	10-12-1998	AU	7819098 A	21-12-1998
				AU	7819198 A	21-12-1998
				ΑU	7828198 A	21-12-1998
				AU	8055698 A	21-12-1998
				WO	9856178 A	10-12-1998
				WO	9856173 A	10-12-1998
				WO	9856174 A	10-12-1998
GB	2323489	Α	23-09-1998	DE	19811910 A	24-09-1998
				FR	2762114 A	16-10-1998
				JP	11032272 A	02-02-1999
ΕP	0852361	Α	08-07-1998	JP	10215420 A	11-08-1998
				SG	67467 A	21-09-1999
ΝO	9728499	A	07-08-1997	CN	1232562 A	20-10-1999
				EP	0877980 A	18-11-1998
٧O	9749237	Α	24-12-1997	AU	3398997 A	07-01-1998
				CA	2228391 A	24-12-1997
				ČN	1198285 A	04-11-1998
				EP	0845188 A	03-06-1998
				JP	11511942 T	12-10-1999
10	9935843	Α	15-07-1999	AU	1951299 A	26-07-1999