TRIGONOMETRY

Sine Sin [Soh]
$$\rightarrow \frac{opposite}{hypotenuse}$$

Cosecant
$$\csc \rightarrow \frac{hypotenuse}{opposite} \left(\frac{1}{\sin \theta}\right)$$

Cosine Cos [Cah]
$$\rightarrow \frac{adjacent}{hypotenuse}$$

Secant sec
$$\rightarrow \frac{hypotenuse}{adjacent} \left(\frac{1}{cos \theta}\right)$$

Tangent Tan [Toa]
$$\rightarrow \frac{opposite}{adjacent}$$

Cotangent cot
$$\rightarrow \frac{adjacent}{opposite} (\frac{1}{tan \theta})$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 unit circle: (x,y) = (cos, sin)

S+	STC+
T+	C+

TRIGONOMETRY LAWS

(ASA, SSA) SIN LAW
$$\rightarrow \frac{a}{sinA} = \frac{b}{sinB} = \frac{c}{sinC}$$

(SAS, SSS) COSINE LAW
$$\rightarrow c^2 = a^2 + b^2 - 2ab(\cos C)$$
 [ABC] = $\frac{1}{2}ab(\sin c)$

$$[ABC] = \frac{1}{2}ab(\sin c)$$

BASIC IDENTITIES

2nd Quadrant (Sine) $sin(180 - \theta) = sin \theta$ $cos(180 - \theta) = -cos \theta$ $tan(180 - \theta) = -tan\theta$	Complementary Angles: $sin(90 - \theta) = cos\theta$ $cos(90 - \theta) = sin\theta$ $tan(90 - \theta) = \frac{1}{tan \theta}$
3rd Quadrant (Tangent)	4th Quadrant (Cosine)
$sin(180 + \theta) = -sin \theta$ $cos(180 + \theta) = -cos \theta$ $tan(180 + \theta) = tan\theta$	$sin(360 - \theta) = sin(-\theta) = -sin\theta$ $cos(360 - \theta) = cos(-\theta) = cos\theta$ $tan(360 - \theta) = tan(-\theta) = -tan\theta$

Pythagorean	Negatives	
$\sin^2\theta + \cos^2\theta = 1$	$sin(-\theta) = -sin\theta$	$sec(180 - \theta) = -sec \theta$
$tan^2\theta + 1 = sec^2\theta$	$cos(-\theta) = cos\theta$	$csc(180 - \theta) = csc \theta$

$$\cot^2\theta + 1 = \csc^2\theta$$

$$tan(-\theta) = -tan\theta$$

$$cot(180 - \theta) = -cot\theta$$

SUM AND DIFFERENCES

$$sin(A \pm B) = sin A cos B \pm sin B cos A$$

$$tan(A \pm B) = \frac{tan A \pm tan B}{1 \mp tan A tan B}$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

DOUBLE AND HALF IDENTITIES

sin 2A = 2sinA cosA

$$cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A$$

$$tan2A = \frac{2tanA}{1-tan^2A}$$

$$\sin\frac{g}{2} = \pm\sqrt{\frac{1-\cos g}{2}}$$

$$cos\frac{g}{2} = \pm \sqrt{\frac{1+cosg}{2}}$$

$$sin\frac{g}{2} = \pm \sqrt{\frac{1-cosg}{2}}$$
 $cos\frac{g}{2} = \pm \sqrt{\frac{1+cosg}{2}}$ $tan\frac{g}{2} = \frac{sing}{1+cosg} = \frac{1-cosg}{sing}$

SUM TO PRODUCT

$$\cos a + \cos b = 2\cos(\frac{a+b}{2})\cos(\frac{a-b}{2})$$

$$\cos a - \cos b = -2\sin(\frac{a+b}{2})\sin(\frac{a-b}{2})$$

$$\sin a + \sin b = 2\sin(\frac{a+b}{2})\cos(\frac{a-b}{2})$$

$$sin a - sin b = 2cos(\frac{a+b}{2})sin(\frac{a-b}{2})$$

PRODUCT AND SUM

$$\cos a \cos b = \frac{1}{2} (\cos(a+b) + \cos(a-b))$$

$$\sin a \sin b = \frac{1}{2}(\cos(a-b) - \cos(a+b))$$

$$\sin a \cos b = \frac{1}{2} (\sin(a+b) + \sin(a-b))$$

$$\cos a \sin b = \frac{1}{2} (\sin(a+b) - \sin(a-b))$$

R FORMULAE

$$asin \theta \pm bcos \theta = Rsin(\theta \pm \alpha)$$

$$a\cos\theta \pm b\sin\theta = R\cos(\theta \mp \alpha)$$

Where a, b > 0,
$$R = \sqrt{a^2 + b^2}$$
 and $\alpha = tan^{-1}(\frac{b}{a})$

Degree	Radian	Sin θ	Cos θ	Tan θ
0°	0	0	1	0
15°	<u>π</u> 12	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$2 - \sqrt{3}$
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	1/2	$\sqrt{3}$
90°	$\frac{\pi}{2}$	1	0	-
180°	$\frac{3\pi}{2}$	0	-1	0
360°	2π	0	1	0

GRAPHS

Degress	Sin graph	Cos graph	Tan graph
0°	0	1	0
90°	1	0	error
180°	0	-1	0
270°	-1	0	error
360°	0	1	0

	Sin graph	Cos graph	Tan graph
Amplitude	1	1	NIL
Period	360°	360°	180°
Lines of symmetry	$x = 0^{\circ}$ $x = \pm 180^{\circ}$	$x = 90^{\circ}$ $x = \pm 270^{\circ}$	No line of symmetry

Y = asin(bx) + c

a - scales the amplitude/height of the graph

b - scales the period of the graph (horizontally) - $\frac{2\pi}{\textit{period}}$

b > 1, the period decreases by a factor of b, if b < 1, the period increases by a factor of b

c - affects max and min - shifts the graph up (if pos) and down (if neg) by c

Amplitude - vertical distance from the centerline to the max or min point **Period** - the length of the interval that a periodic function goes through before it repeats itself