Félév szeminárium

Dr. Varga Balázs

DE ÁOK Farmakológia és Farmakoterápia tanszék

1-2. tétel

1.

- A gyógyszerhatás alapvető mechanizmusai. Gyógyszer receptorok, receptor altípusok
- A paraszimpatikus idegrendszer általános jellemzése farmakológiai szempontból (neurotranszmitter, receptor)
- A thiazid diuretikumok antihypertenzív hatásának mechanizmusa, mellékhatások, ozmotikus diuretikumok
- Gyógyszerek felosztása eredetük szerint és tisztasági fokuk alapján

2.

- Dózis-hatás összefüggés: hatékonyság (efficacy) és hatáserősség (potency) fogalma
- Direkt paraszimpatikus izgatók
- Kalcium csatorna blokkolók
- Gyógyszerek felosztása hatáserősségük alapján

Mi a farmakológia?

- Farmakon = hatóanyag, "gyógyszer"
- ...-lógia = ...-tan
- A gyógyszertan (farmakológia) az élő szervezetek és az élő szervezetek működését befolyásoló anyagok (farmakonok) között fellépő kölcsönhatásokat tanulmányozó tudományág.

Két fő ága van:

- Farmakodinámia (farmakodinamika, gyógyszerhatástan): hogyan hat a farmakon a szervezetre (dózis-hatás)
- Farmakokinetika: a gyógyszer útja/sorsa a szervezetben, vagyis hogyan hat a szervezet a gyógyszerre (LADME)

Farmakodinámia

3 Response (arbitrary units) 0 10 100 Dose (log scale)

"Az ACE-gátlók igen szelektív vegyületek, hatásukat a karboxipeptidáz-A gátlásával az angiotenzin I→angiotenzin II átalakulás bénításával, a bradykinin lebomlásának gátlásával fejtik ki"

Farmakokinetika

Fig. 1.2 Pharmacology today with its various subdivisions. Interface disciplines (brown boxes) link pharmacology to other mainstream biomedical disciplines (green boxes).

Rang and Dale's Pharm. Sevent Ed.

Alapfogalmak

- Gyógyszer: "bármely anyag, vagy azok keveréke, amelyet betegségek megelőzésére, kezelésére, vagy diagnosztika céllal az emberi vagy állati szervezetben alkalmaznak" (Ph.Hg.)
- Farmakon: az a molekula, amely az élő szervezet működését már kis koncentrációban is számottevően befolyásolni képes - tudományos fogalom ⇔ a gyógyszer egyben jogi kategória is.
- Gyógyszerkészítmény: egy vagy több hatóanyag plusz segédanyagok - beadásra alkalmas formába hozva a beteg részére

Hogyan hat egy gyógyszermolekula?

- El kell jutnia a kérdéses szövethez, megfelelő koncentrációban
- interakció a szervezet valamely saját makromolekulájával
- Célmolekulák:
 - Fehérje
 - Receptor
 - Enzim
 - Carrier molekula
 - Ioncsatorna
 - Lipid
 - DNS, RNS
 - (kivétel: antibiotikumok, biszfoszfonát, biológiai terápiák)

Mi a receptor?

- Receptor:
 - Makromolekula
 - bizonyos ligandok specifikus megkötése révén jelfelismerésre képes (kognitív funkció),
 - másrészt az aktiváló jellegű ligand (agonista) bekötődése után valamilyen változást hoz létre az őt hordozó/tartalmazó sejt működésében (transzducer funkció; hatásgenerálás)
- Tágabb értelemben minden jelfogó molekulára használják, pl. a fesz.függő Na+ ion csatorna a lidocain molekula "receptora"

Receptor típusok, nagycsaládok

Receptor osztályozás I.

Elhelyezkedés szerint:

- Perifériás membrán proteinek
- transzmembrán proteinek
- intracellularis receptorok

Funkció szerint:

- <u>Metabotrop receptors</u>: metabolikus változást indukálnak. Lehetnek:
 - * G-protein-kapcsolt
 *indirekten, enzimeken keresztül hatnak
 *maga a G-protein ion-csatornát szabályoz
 *saját enzimfunkció
- <u>lonotrop receptors</u> : ligand-vezérelt ioncsatornák

Receptor osztályozás II.

A leggyakrabban használt nevezéktan:

lokalizáció, szerkezeti felépítés, jeltovábbítási mód és endogén ligand alapján

- Receptor nagycsaládok, ezen belül
- Receptor családok
- Receptor osztályok
- Receptor típusok
- Receptor altípusok

PI.: G-fehérje kapcsolt receptorok (nagycsalád), acetil-kolin-receptorok (osztály), Muszkarinos acetil-kolin-receptorok (típus), M₁-ACh-receptor (altípus)

Receptor osztályozás III.

sejtmembrán

enzim vagy

ioncsatorna

G-protein, egyéb

mAChR

adrenerg

receptorok

sejtmembrán

(vagy intracellul.)

enzim

közvetlen

inzulin receptor

ANF-receptor

TGF-receptor

4. Sejtmag-

receptor

sejtmag vagy

intracellulárisan

géntranszkripció

DNS-mediált

szteroid

hormon-

receptorok

thyroidhormon-

receptor

J					
Receptor nagycsaládok					
Jellemző	1. lonotrop	2. G-protein-	3. Enzim-kapcsolt		
tulajdonságok	(ioncsatorna-alkotó)	kapcsolt			

sejtmembrán

ioncsatorna

közvetlen

nAChR

GABA_A

Lokalizáció

Effektor

Kapcsolat

típusa

Példák

Fig. 3.2 Types of receptor-effector linkage. ACh, acetylcholine; E, enzyme; G, G-protein; R, receptor.

G-fehérje-kapcsolt receptorok I.

- Receptor = 7TM Domén receptor
- A 7TMD belső felszínéhez kötődik egy G-fehérje.
- G-fehérje = guanine nucleotide binding protein
- A G-fehérje a GTPáz enzimek közé tartozik
- A G-fehérje G_{α} és a szorosan összekapcsolt $G_{\beta\gamma}$ alegységekből áll.

G-fehérje-kapcsolt receptorok II.

G-protein-kapcsolt receptorok III.

- Gα alegység:
 - ► Gs: stimulálja az adenilát ciklázt (ATP→cAMP) = [cAMP] ↑ → PKA-aktiváció → ...
 - ▶ Gi: gátolja az adenilát ciklázt [cAMP] ↓
 - Gq/11: stimulálja a membrán-kötött foszfolipáz C-t (ami PIP2-t bont IP3-ra és DAG-ra)
 - ► → IP3-kapcsolt Ca-csatorna nyílik az ER-en→ [Ca2+] ↑ → PKC-aktiváció (együtt a DAG-al)
 - ▶ → DAG → PKC-aktiváció (magában vagy együtt a Ca2+-mal)
 - G12/13: RhoGEF nagycsalád fehérjéin keresztül sejtváz-remodellinget irányít így a sejt-mozgást szabályozza
- Gβγ alegység:
 - Aktiválhat pl. L-típusú Ca2+ ion csatornát

Enzim-kapcsolt receptorok

Ligand binding site

Ligand binding Site

Ligand binding On tyrosines

Extracellular domain

Extracellular domain

Receptor dimerization

Transmembrane chelix

Cytosol

Cytosol

Cytosol

ATP

P

P

P

SH2 domain-containing protein

Az enzimkapcsolt receptorok <u>transzembrán enzimek</u>: extracelluláris ligand-kapcsolódás → intracelluláris enzimaktivitás

- Típusok:
 - <u>tirozin-kináz aktivitás:</u> pl. inzulin-receptor, leptinreceptor, növekedési faktor receptorok stb
 - szerin/threonin kináz: pl. tumor növekedési faktor beta (TGF_β) receptor
 - Guanilát cikláz: pl. atriális natriuretikus faktor (ANP) receptor

autofoszforiláció

GTP \rightarrow cGMP \rightarrow [cGMP] $\uparrow \rightarrow$ PKG

Jelenleg két fő jeltovábbítási láncot ismerünk:

- a Ras/Raf/MAP kináz (növ. fakt.-ok) útvonalat és
- a Jak/Stat (citokinek) utat

Megj.: Szolubilis (nem transzmembrán) guanilát cikláz = NO-receptor

Action of type I Nuclear receptors

Action of type II Nuclear receptors

(For the purpose of illustration, the nuclear receptor shown here is the thyroid hormone receptor (TR) heterodimerized to the RXR.)

Dózis-hatás összefüggés, hatékonyság (efficacy) és hatáserősség (potency) fogalma

Farmakodinámiai alapfogalmak

- Dózis (D) (koncentráció (c)): az a mennyiség, amelyet a farmakonból bejuttatunk a biológiai rendszerbe (ált: D: g, c: mmol/l).
- Biol. hatás, effektus (E): a kiváltott válasz (amit a kísérletes farmakológus próbál mérni)

A farmakon által kiváltott hatás matematikai megjelenítése, ahol

- dózis (D) (koncentráció (c)) a független változó, az x tengelyen ábrázoljuk
- kiváltott hatás (E), a függő változó, az y tengelyen jelöljük
 - Lehet folyamatos vagy kvantális (lásd későbbi szemináriumon)
 - (A kiváltott hatás időfüggő is, hogy ettől függetlenítsük, egyensúlyi koncentrációt használunk)

Koncentráció

Koncentráció

Emax = a gyógyszer által kiváltható maximális hatás EC50 (vagy ED50) = a maximális hatás 50%-ának kiváltásához szükséges koncentráció (vagy dózis) Különböző gyógyszerek összehasonlítására.

Lináris ábrázolás Hiperbolikus görbe

Szemilogaritmikus ábrázolás Szigmoid görbe

Koncentráció lineáris beosztással

Koncentráció logaritmikus beosztással

Miért jobb? →

Miért jobb? → nem kell megmérnünk az Emax-ot Ki tudjuk számolni az EC50-t az inflexiós pontból

Efficacy - Hatékonyság és Potency - Hatáserősség

Hatékonyság (Efficacy): a <u>hatással</u> (effect) van összefüggésben. Minél nagyobb a hatás, annál hatékonyabb (efficacious) a gyógyszer.

Efficacy - Hatékonyság és Potency - Hatáserősség

Hatáserősség/Potencia (Potency): a koncentrációval van összefüggésben.
Minél kisebb koncentráció szükséges, annál erősebb hatású/potensebb (potent)/nagyobb potenciálú a szer.

Efficacy - Hatékonyság és Potency - Hatáserősség

Hatáserősség/Potencia (Potency): a koncentrációval van összefüggésben.
Minél kisebb koncentráció szükséges, annál erősebb hatású/potensebb (potent)/nagyobb potenciálú a szer.

Gyógyszerek felosztása eredetük szerint és tisztasági fokuk alapján

Gyógyszerek felosztása eredetük szerint

Táblázat: A gyógyszerek osztályozása

Szempont	Csoport	Megjegyzések, példák
Előfordulás szerint	a. fiziológiás	A szervezetben is termelődnek
		(kortizol, inzulin, adrenalin)
	b. xenobiotikus anyagok	A szervezetben nem termelődnek
		(penicillin)
Eredet szerint	a. természetes	pld. Extractum Belladonnae siccum
	b. szemiszintetikus	pld. penicillinum
	c. szintetikus	pld. ranitidin

Másik példa:

Természtes alkaloid: morfin

Félszintetikus: heroin

Szintetikus: loperamid

Eredet szerint

Természetes:

- Ásványi eredetű: vazelin, paraffin, fehér agyag
- Állati eredetű: pepszin, csukamájolaj, méhviasz
- Növényi eredetű: kamillavirág, csipkebogyó, macskagyö kér (drog: a növény gyógyászati célra használt része)
- Biokémiai eredetű: antibiotikumok, B12 vitamin

Természetes/Mesterséges (?):

- Biotechnológiai eljárással készült: inzulin
- <u>Géntechnológiai</u> eljárással készült: vírus vektorba csomagolt terápiás DNS

Gyógyszerek tisztasági foka

Jelölés	Jelentés	Tulajdonság	
crudum; techn.	nyers, technikai	eredetileg előállított állapotú, nem tisztított	
depuratum	tisztított	egyszer tisztított	
purum; t.	tiszta	szennyeződést alig tartalmaz; preparatív, oktatási, általános feladatokra megfelelő	
purissimum; puriss; extra pure; at.	analitikailag tiszta, legtisztább, vegytiszta	szennyező anyagot csak nyomokban tartalmaz; analitikai munkához, egyéb speciális és preparatív feladatokhoz alkalmas	
pro analysi; a.lt.	analitikailag legtisztább	szennyező anyagot nem tartalmaz; analitikai reagensekként, nagy pontosságú feladatokhoz, kísérletekhez használható	
spec.pur.	spektroszkópiai	speciálisan spektroszkópiai mérésekhez használható	
Ph.Hg.VII.	gyógyszerkönyvi minőség	egészségkárosító anyagot nem tartalmaz; tisztaságát a Magyar Gyógyszerkönyv előírásai tartalmazzák	

Gyógyszerek felosztása hatáserősségük alapján

Gyógyszerek felosztása hatáserősségük szerint

2013/1 OGYI közlemény:

A gyógyszerkészítmények hatáserősségére, korlátozott adagolására utaló jelölések

- úgynevezett "erős hatású" ható-anyagokat és gyógyszerkészítményeket +-tel, ill.
- a pszichotróp anyagokat #-tel,
- a méregszekrényben tartandó hatóanyagokat és gyógyszerkészítményeket ++-tel, ill.
- a méregszekrényben elkülönítve tartandó kábítószereket ##-tel kell jelölni. "

Gyógyszerek felosztása hatáserősségük szerint

- "Dosis sola facit venenum. Bizonyos adagban minden gyógyszer méreg." Paracelsus 1538
- kereszt nélküliek (általában grammos nagyságrend az egyszeri adag, azaz 1-10 g) pl. NaHCO3
- erős hatású szerek (+) (általában tizedgrammos-centigrammos nagyságrend az egyszeri adag, azaz 0,1 0.01 g) pl. metamizol
- altatók (#) az altató hatást (általában tizedgrammos-centigrammos nagyságrend az egyszeri adag, azaz 0,1 - 0,01 g) pl. fenobarbitál
- mérgek(++) a nagyon kicsiny egyszeri adag (általában milligrammos nagyságrend, azaz 0,001 g) pl. atropin-szulfát
- a kábítószereknél (##) a testi és lelki függőséget okozó hatás (jogszabály határozza meg, hogy mi tekintendő kábítószernek) pl. Morphini hydrochloridum