Praktikum MATLAB – Modul 3 Vektor & Matrik

Tujuan Praktikum

Mahasiswa mampu mengolah data vektor dan matrik pada MATLAB.

Alat dan Bahan

Untuk praktikum ini, diperlukan alat dan bahan sebagai berikut:

Tabel 2.1 Alat dan bahan

No	Nama	Banyak	Keterangan
1	Komputer / Laptop	1	Disiapkan sendiri
2	Matlab	1	Disiapkan sendiri

Pendahuluan

Elemen dasar dari MATLAB adalah matrik atau array. Matrik 1 x 1 merupakan skalar atau bilangan tunggal. Suatu matrik yang terdiri dari satu baris atau satu kolom disebut vektor. Sehingga perlu dicatat bahwa MATLAB dapat bertindak secara berbeda tergantung pada masukan, apakah masukan berupa suatu bilangan, suatu vektor, atau suatu matrik dua dimensi.

Vektor

Baris vektor adalah daftar angka-angka yang dipisahkan oleh koma (,) atau spasi. Vektro adalah contoh sederhana dari array. Elemen pertama mempunyai indek 1. Jumlah masukan dikenal sebagai panjang vektor. Entitas diacu sebagai elemen-elemen atau komponen-komponen. Masukan harus ditulis dalam tanda kurung siku ([]).

Berikut contoh pembuatan vektor:

$$A = [1 \ 2 \ 3] \rightarrow \text{vektor baris}$$
 $A = [1; 2; 3] \rightarrow \text{vektor kolom}$
 $A (1,1)=1, A(1,2)=2, A(1,3)=3 \rightarrow \text{vektor baris}$ $A (1,1)=1, A(2,1)=2, A(3,1)=3 \rightarrow \text{vektor kolom}$
 $A = [1:3] \rightarrow \text{vektor baris}$ $A = [1:3] \rightarrow \text{vektor baris}$ $A = [1:1:3] \rightarrow \text{vektor kolom}$

Semua cara di atas menghasilkan nilai vektor baris dan kolom yang sama, yaitu:

$$A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \rightarrow \text{vektor baris}$$
 $A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \rightarrow \text{vektor kolom}$

Matrik

Vektor baris dan kolom adalah jenis khusus dari matriks. Suatu matriks n x k adalah suatu array segi empat bilangan yang mempunyai n baris dan k kolom. Cara menyatakan suatu matrik dalam MATLAB sama seperti menyatakan suatu vektor. Umumnya secara langsung, apabila Anda melihat bahwa suatu matrik terdiri dari vektor baris atau vektor kolom. Tanda koma atau spasi digunakan untuk memisahkan elemen dalam satu baris, dan titik koma digunakan untuk memisahkan elemen dalam satu baris.

Berikut contoh pembuatan matriks:

$$A = [1\ 2\ 3; 4\ 5\ 6; 7\ 8\ 9]$$

$$A = [1, 2, 3; 4, 5, 6; 7, 8, 9]$$

$$A(1,1)=1, A(1,2)=2, A(1,3)=3, A(2,1)=4, A(2,2)=5, A(2,3)=6, A(3,1)=7, A(3,2)=8, A(3,3)=9$$

$$A = [1:3; 4:6; 7:9]$$

$$A = [1:1:3; 4:1:6; 7:1:9]$$

Semua cara di atas menghasilkan nilai matrik yang sama, yaitu:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Ada sejumlah matrik built-in dengan ukuran tertentu oleh pengguna. Perintah contoh berikut:

Matriks elemen kosong

>> size(E)

Matriks Identitas

$$>> I = eye(3)$$

Matriks bujur sangkar

Matriks diagonal

$$>> r = [1 \ 3 \ -2]$$

$$>> R = diag(r)$$

Mengekstrak diagonal matrik

$$>> D = [1 2 3; 4 5 6; 7 8 9]$$

>> diag(D)

Matriks dengan elemen bernilai 1

$$>> B = ones(3,2)$$

Matriks dengan elemen bernilai 0

$$>> C = zeros(2,3)$$

Matriks dengan bilangan random

$$>> E = rand(2,3)$$

$$>> E = rand(2,3)*100$$

Operasi dan Fungsi pada Matriks

Operasi dan fungsi pada matrik yang sering digunakan seperti ditunjukan pada tabel di bawah:

perintah	keterangan	contoh
det	Menghasilkan determinan matrik	det(A)
size	Menghasilkan ukuran matrik	size(A)
trace	Menghasilkan trace (jumlah elemen diagonal) matriks.	trace(A)
norm	Menghasikan panjang euclidean vektor	norm(P)
+	Menjumlahkan matriks	C = A + B
-	Mengurangkan matriks	C = A - B
*	Mengalikan matriks	C = A * B
.*	Mengalikan elemen dengan elemen, dengan ketentuan memiliki ukuran yang sama	C = A.*B
۸	Memangkatkan matriks dengan suatu skalar	C = A ^ k
•^	Memangkatkan elemen per elemen matriks dengan skalar	C = A .^ k
6	Transpose matriks	A'
./	Membagi elemen per elemen dengan ketentuan memiliki ukuran yang sama	C = A ./ B
\	Menghasilkan solusi AX = B	$C = A \setminus B$
1	Menghasilkan solusi XA = B	C = B / A
inv	Menghasilkan invers matriks, dengan ketentuan matriks merupakan matriks bujur sangkar	C = inv(D)
null	Menghasilkan suatu orthonormal baris untuk spasi null dari matriks yang dihasilkan dari singular value decomposition (SVD)	C = null (A)
orth	Menghasilkan orthonormal basis pada jangkauan A	C = orth(A)

rref	Menghasilkan reduce row echelon form dari matriks	C = rref(A)
eig	Menghasilkan suatu vektor yang berisi (mungkin bilangan komplek) <i>eigenvalues</i> dari suatu matriks bujur sangkar	P = eig(A)
svd	Suatu vektor yang berisi tunggal dari matriks	P = svd(A)
linspace	Menghasilkan suatu vektor dengan nilai antara a dan b	X = linspace(a,b,n)
logspace	Menghasilkan suatu vektor yang dimulai dari 10^a dan berakhir 10^b sebanyak n nilai elemen	X = logspace(a,b,n)
eye	Menghasilkan matriks identitas	A = eye(n)
zeros	Menghasilkan matriks nol	A = zeros(n,m)
ones	Menghasilkan matriks satu	A = ones(n,m)
diag	Menghasilkan diagonal matriks	A = diag(x)
tril	Menghasilkan bagian <i>lower triangular</i> dari matriks	X = tril(A)
triu	Menghasilkan bagian <i>upper triangular</i> dari matriks	X = triu(A)
rand	Menghasilkan elemen matriks dengan elemen terdistribusi antara 0 dan 1. (<i>default m=n</i>)	A = rand(n,m)
randn	Menghasilkan elemen matriks dengan elemen terdistribusi secara normal. ($default \ m=n$)	A = randn(n,m)
max	Merupakan nilai maksimum dari elemen dalam setiap kolom matriks atau nilai maksimum dari seluruh elemen jika merupakan vektor	S = max(A)
min	Merupakan nilai minimum dari elemen dalam setiap kolom matriks atau nilai minimum dari seluruh elemen jika merupakan vektor	S = min(A)
Reshape	Mengubah ukuran suatu matrik	
sum	Merupakan nilai jumlah dari elemen dalam setiap kolom matriks atau nilai jumlah dari seluruh elemen jika merupakan vektor	S = sum(A)

Praktikum

Vektor

$$V = [-1\ 2\ 7],\ W = [\ 2\ 3\ 4], X = [1:2:6,\ 10,\ 11,\ 12], P = [1;2;3], Q = [1\ 2\ 3]$$

Kerjakan soal berikut:

1.
$$Z = V + W$$

- 2. VV = V + 2
- 3. P+P
- 4. P+Q'
- 5. t = [2*V, -W]
- 6. V(3)
- 7. V(10)
- 8. 2:5
- 9. d = -2.5
- 10. 1:0.5:3
- 11. -3:3:10
- 12. X(2:5)
- 13. X(1:2:5)
- 14. X = (5:-1:2)
- 15. V .* W
- 16. Sum(V .* W)
- 17. sqrt(V)
- 18. V./W

Matrik

- $A = [5 \ 3 \ -1; 2 \ 15 \ 2; 1 \ 7 \ 8]$
- % mengisi matriks A
- $B = [5\ 2\ 1; 4\ 5\ 2; 1\ 7\ 2]$
- % mengisi matriks B
- $C = [0 \ 1; 2 \ 0]$
- % mengisi matriks C
- $v = [1 \ 2 \ 3 \ 4 \ 5 \ 6]$
- % mengisi vektor v

Kerjakan soal berikut

- 1. det(A)
- 2. size(A)
- 3. trace(A)
- $4. \quad norm(v)$
- 5. A + B
- 6. A-B
- 7. A*B

- 8. A.* B
- 9. A^2
- 10. A.^2
- 11. A'
- 12. A./B
- 13. A/B
- 14. B/A
- 15. inv(A)
- 16. null(A)
- 17. null(C)
- 18. orth(A)
- 19. rref(A)
- 20. eig(A)
- 21. svd(A)
- 22. x = linspace(1,5,5)
- 23. x = logspace(1,4,4)
- 24. max(A)
- 25. min(B)
- 26. sum(B)

Laporan

Buatlah laporan dalam buku kampus dengan menulis kembali perintah dan hasil pengerjaan praktikum beserta penjelasan dari setiap pengerjaan yang dilakukan.

Referensi:

- 1. http://blog.pointopoin.com/
- 2. Kasiman Peranginangin, "Pengenalan MATLAB", Penerbit ANDI, Yogyakarta 2006.