1. Préliminaires

2. Familles d'ensembles

Exercice 2.1

Trouver un exemple d'ensemble X et de classe monotone \mathcal{M} sur X tels que $\emptyset \in \mathcal{M}, X \in \mathcal{M}$ mais \mathcal{M} n'est pas une tribu.

Solution : $X = \{0, 1\}, \mathcal{M} = \{\emptyset, \{0\}, \{0, 1\}\}$

Exercice 2.2

Trouver un exemple d'ensemble X et deux tribus A_1, A_2 sur X tels que $A_1 \cup A_2$ n'est pas une tribu.

Solution: $X = \{0, 1, 2\}, A_1 = \{\emptyset, \{0\}, \{1, 2\}, X\}, A_2 = \{\emptyset, \{1\}, \{0, 2\}, X\}$

Exercice 2.3

Soit $A_1 \subset A_2 \subset \dots$ des tribus sur $X \cup_i A_i$ est-elle une tribu?

Solution: Non. $X = \mathbb{N}$, $\mathcal{A}_n = \sigma(\{\{0\}, \dots, \{n\}\})$. Par l'absurde, comme $\forall n, \{2n\} \in \cup_i \mathcal{A}_i$, on a $2\mathbb{N} \in \cup_i \mathcal{A}_i$, donc $2\mathbb{N} \in \mathcal{A}_k$ pour un certain k. En considérant \mathcal{B}_k l'ensemble des parties de \mathbb{N} de la forme B ou $B \cup \{k+1, k+2, \dots\}$ avec $B \subset \{0, \dots k\}$, on construit une tribu qui contient $\{\{0\}, \dots, \{k\}\}$, donc $\mathcal{A}_k \subset \mathcal{B}_k$. Contradiction avec $2\mathbb{N} \in \mathcal{A}_k$.

Exercice 2.4

Soit $\mathcal{M}_1 \subset \mathcal{M}_2 \subset \dots$ des classes monotones sur X et $\mathcal{M} = \bigcup_n \mathcal{M}_n$. Soit $(A_i)_i$ une suite croissante d'éléments de \mathcal{M} . A-t-on $\bigcup_n A_n \in \mathcal{M}$?

Solution : Non. $X = \mathbb{N}$, $\mathcal{M}_i = \{\{1\}, \{1, 2\}, \dots, \{1, 2, \dots, i\}\}\$ et $A_i = \{1, 2, \dots, i\}$

Exercice 2.5

Image réciproque d'une tribu est une tribu

Exercice 2.6

Soit \mathcal{A} une tribu sur X telle que si $A \in \mathcal{A} \setminus \{\emptyset\}$, il existe $B, C \in \mathcal{A}$ non vides avec $B \cap C = \emptyset$ et $B \cup C = A$. Montrer que \mathcal{A} n'est pas dénombrable.

Solution : On construit une suite (C_n) d'éléments de \mathcal{A} deux à deux disjoints : par hypothèse, $X = B_1 \cup C_1$, $B_1 = B_2 \cup C_2$, $B_2 = B_3 \cup C_3$, ... On considère ensuite l'application $\mathcal{P}(\mathbb{N}) \to \mathcal{A}$, $J \mapsto \bigcup_{j \in J} C_j$. Elle est injective et $\mathcal{P}(\mathbb{N}) \sim \mathbb{R}$, donc \mathcal{A} n'est pas dénombrable.

Sans difficulté

Exercice 2.8

 (\bigstar) Montrer qu'une tribu $\mathcal A$ sur X est soit finie, soit non-dénombrable.

Solution : Sur X on introduit la relation d'équivalence R définie par

$$xRy \iff (\forall A \in \mathcal{A}, x \in A \iff y \in A)$$

Soit $x \in X$, on note \dot{x} la classe d'équivalence de x. Montrons que $\dot{x} = \bigcap_{A \in \mathcal{A}, x \in A} A$.

Soit $y \in \bigcap_{A \in \mathcal{A}, x \in A} A$. Soit $A \in \mathcal{A}$. Si $x \in A$, comme $\bigcap_{A \in \mathcal{A}, x \in A} A \subset A$, on a $y \in A$. Si $y \in A$, en supposant par l'absurde que $x \notin A$, on a $x \in A^c$, $A^c \in \mathcal{A}$ et $y \notin A^c$, ce qui est absurde. Donc $x \in A$. Conclusion : $x \in A \iff y \in A$, ie xRy, d'où $y \in \dot{x}$.

Supposons \mathcal{A} dénombrable.

Notons Γ l'ensemble des classes d'équivalence. Chaque $\gamma \in \Gamma$ est dans \mathcal{A} . En effet, avec $x \in \gamma$, on a $\gamma = \bigcap_{A \in \mathcal{A}, x \in A} A$ qui est une intersection dénombrable d'éléments de \mathcal{A} .

On définit

$$\begin{array}{cccc} \varphi: & \mathcal{P}(\Gamma) & \longrightarrow & \mathcal{A} \\ & \mathcal{C} & \longmapsto & \bigcup_{\gamma \in \mathcal{C}} \gamma \end{array}$$

Montrons que φ est bijective :

- $\underline{\text{inj}}$: Soient $\mathcal{C} \neq \mathcal{C}'$ des éléments de $\mathcal{P}(\Gamma)$. Sans perte de généralité on dispose de $\gamma \in \mathcal{C} \setminus \mathcal{C}'$. Considérons $x \in \gamma$. Alors $x \in \varphi(\mathcal{C})$. Comme les classes sont disjointes, $\forall \gamma' \in \mathcal{C}', x \notin \gamma'$ donc $x \notin \varphi(\mathcal{C}')$. Donc $\varphi(\mathcal{C}) \neq \varphi(\mathcal{C}')$

- surj : On démontre sans mal que, pour
$$A \in \mathcal{A}, A = \bigcup_{x \in A} \dot{x}$$

On distingue deux cas :

- Γ est fini. Alors $\mathcal{A} \sim \mathcal{P}(\Gamma)$ est fini.
- Γ est au moins infini dénombrable. $\mathcal A$ a au moins le cardinal de $\mathbb R$ donc non dénombrable.

<u>Note</u> : comme dans l'exercice 2.6 on fabrique une famille infinie d'éléments disjoints de la tribu et on fait exploser la tribu avec les unions de ces éléments.

Exercice 2.9

Sans difficulté

(Kortchemski) Soit (E, \mathcal{A}) un espace mesurable, \mathcal{C} une famille de parties de E et $B \in \sigma(\mathcal{C})$. Montrer qu'il existe une famille dénombrable $\mathcal{D} \subset \mathcal{C}$ telle que $B \in \sigma(\mathcal{D})$

Solution : Posons $\mathcal{A} = \{B \in \mathcal{P}(E) | \exists \mathcal{D} \subset \mathcal{C}, D \text{ dénombrable et } B \in \sigma(\mathcal{D})\}$ Il suffit de prouver que \mathcal{A} est une tribu sur E contenant \mathcal{C} . On a alors $\sigma(\mathcal{C}) \subset \mathcal{A}$ et OK.

- $E \in \mathcal{A}$: il suffit de poser $\mathcal{D} = \{B\} \subset \mathcal{C}$ où B est un élément de \mathcal{C} . On a bien \mathcal{D} dénombrable et $E \in \sigma(\mathcal{D})$.
- $A \in \mathcal{A} \implies A^c \in \mathcal{A}$: trivial.
- Soit $(A_i) \in (\mathcal{A})^{\mathbb{N}}$. Pour chaque i on dispose de $\mathcal{D}_i \subset \mathcal{C}$ dénombrable tel que $A_i \in \mathcal{D}_i$. Comme $\forall i, A_i \in \bigcup \mathcal{D}_n \subset \sigma(\bigcup \mathcal{D}_n)$, la stabilité par unions des tribus

donne $\bigcup_{n} A_n \in \sigma(\bigcup_{n} \mathcal{D}_n)$. On a bien $\bigcup_{n} \mathcal{D}_n \subset \mathcal{C}$ et $\bigcup_{n} \mathcal{D}_n$ dénombrable. Donc $\bigcup_{n} A_n \in \mathcal{A}$.

• $\mathcal{C} \subset \mathcal{A}$: pour $B \in \mathcal{C}$, il suffit de poser $\mathcal{D} = \{B\}$.

Exercice 2.11

Théorème $\pi - \lambda$

Soit X un ensemble.

 $\mathcal{C} \subset \mathcal{P}(X)$ est appelé $\underline{\pi}$ -système si \mathcal{C} est stable par intersection finie. $\mathcal{M} \subset \mathcal{P}(X)$ est appelé $\overline{\lambda}$ -système si

- $X \in M$
- \mathcal{M} stable par différence : pour $A, B \in \mathcal{M}, A \subset B \implies B \setminus A \in \mathcal{M}$
- \mathcal{M} est stable par réunion croissante.

Montrer que si \mathcal{C} est un π -système, $\sigma(\mathcal{C}) = \lambda(\mathcal{C})$ où $\lambda(\mathcal{C})$ est le λ -système minimal contenant \mathcal{C} .

Solution : On note
$$\mathcal{D} = \bigcap$$
 \mathcal{M} .

 $\mathcal{M}{\subset}\mathcal{P}(X){,}\mathcal{M}$ $\lambda\text{-système contenant }\mathcal{C}$

Une intersection quelconque de λ -systèmes étant un λ -système, \mathcal{D} est un λ -système.

Montrons $\sigma(\mathcal{C}) = \mathcal{D}$.

- \subset Il suffit de prouver que \mathcal{D} est une tribu qui contient \mathcal{C} .
- $\overline{\bullet \ \mathcal{C}} \subset \mathcal{D}$ OK.
- $X \in \mathcal{D}$ car \mathcal{D} λ -système.
- Soit $A \in \mathcal{D}$. Montrons que $A^c \in \mathcal{D}$.

Soit \mathcal{A} un λ -système contenant \mathcal{C} . Comme $A \in \mathcal{A}$ et $X \in \mathcal{A}$ donc $X \setminus A = A^c \in \mathcal{A}$. D'où $A^c \in \mathcal{D}$.

• Soit (A_i) une suite d'éléments de \mathcal{D} . Montrons que $\cup_i A_i \in \mathcal{D}$. Comme \mathcal{D} est stable par union croissante et passage au complémentaire, il suffit de prouver

que \mathcal{D} est stable par intersection finie.

Pour $A \in \mathcal{D}$ on définit $\mathcal{E}_A = \{B \in \mathcal{D} | A \cap B \in \mathcal{D}\}.$ Soit $A \in \mathcal{C}$.

- \heartsuit Comme \mathcal{C} est un π -système et $\mathcal{C} \subset \mathcal{D}$, on a $\mathcal{C} \subset \mathcal{E}_A$.
- \heartsuit On a $X \in \mathcal{D}$ et $X \cap A = A \in \mathcal{D}$ donc $X \in \mathcal{E}_A$.
- \heartsuit Pour $B \subset C$ éléments de \mathcal{E}_A , $A \cap (C \setminus B) = (A \cap C) \setminus (A \cap B) \in \mathcal{D}$.
- \heartsuit Pour B_i une suite croissante d'éléments de \mathcal{E}_A , on a $A \cap (\cup_i B_i) = \cup_i (A \cap B_i)$.

Or $\forall i, A \cap B_i \in \mathcal{D}$ et les $A \cap B_i$ sont croissants, donc $A \cap (\cup_i B_i) \in \mathcal{D}$.

Conclusion : Si $A \in \mathcal{C}$, \mathcal{E}_A est un λ -système contenant \mathcal{C} , donc $\mathcal{D} \subset \mathcal{E}_A$

Soit $A \in \mathcal{D}$. Pour $C \in \mathcal{C}$, comme $\mathcal{D} \subset \mathcal{E}_C$, on a $A \in \mathcal{E}_C$, donc $C \in \mathcal{E}_A$. D'où $\mathcal{C} \subset \mathcal{E}_A$. Comme précédemment, on montre que \mathcal{E}_A est un λ -système. Par minimalité de \mathcal{D} , on a $\mathcal{D} \subset \mathcal{E}_A$.

Ceci étant vrai pour tout $A \in \mathcal{D}$, on en déduit que \mathcal{D} est stable par intersection finie

Finalement, \mathcal{D} est une tribu contenant \mathcal{C} , donc $\sigma(\mathcal{C}) \subset \mathcal{D}$.

 \supset Une tribu étant un λ -système, on a $\sigma(\mathcal{C}) \subset \mathcal{D}$.

3. Mesures

Exercice 3.1

Soit (X, \mathcal{A}) un espace mesurable et $\mu : \mathcal{A} \to \mathbb{R}^+$ finiment additive, telle que $\mu(\emptyset) = 0$ et $\mu(B) < \infty$ pour un $B \neq \emptyset$. On suppose que pour toute suite croissante $(A_i) \in \mathcal{A}$, $\mu(\cup_i A_i) = \lim_i \mu(A_i)$. Montrer que μ est une mesure.

Solution : Soit $(A_i) \in \mathcal{A}$ disjoints. La suite $B_n := \left(\bigcup_{i=1}^n A_i\right)_n$ est croissante et $\mu(\cup_n A_n) = \mu(\cup_n B_n) = \lim_n \mu(B_n) = \lim_n \sum_{i=1}^n \mu(A_i) = \sum_{i=1}^\infty \mu(A_i)$

Exercice 3.2

Soit (X, \mathcal{A}) un espace mesurable et $\mu : \mathcal{A} \to \mathbb{R}^+$ finiment additive, telle que $\mu(\emptyset) = 0$ et $\mu(X) < \infty$. On suppose que pour toute suite $(A_n) \in \mathcal{A}$ qui décroît vers \emptyset on a $\lim_i \mu(A_i) = 0$. Montrer que μ est une mesure.

Solution : Soit (A_i) une suite d'éléments disjoints de \mathcal{A} . Par additivité finie on a $\mu(\cup_i A_i) = \mu(\cup_{i=1}^n A_i) + \mu(\cup_{i=n+1}^\infty A_i) = \sum_{i=1}^n \mu(A_i) + \mu(\cup_{i=n+1}^\infty A_i)$. Or la suite des $(\bigcup_{i=n+1}^\infty A_i)$ tend en décroissant vers \emptyset . Donc $\lim_n \mu(\cup_{i=n+1}^\infty A_i) = 0$. Donc $\mu(\cup_i A_i) = \sum_{i=1}^\infty \mu(A_i)$.

Exercice 3.3

Soit X un ensemble non-dénombrable et \mathcal{A} la tribu des ensembles $A \in \mathcal{P}(X)$ tels que A ou A^c est dénombrable. On définit $\mu(A)=0$ si A dénombrable et $\mu(A)=1$ sinon. Montrer que μ est une mesure.

Solution : $\emptyset \subset \mathbb{N}$ donc dénombrable, et $\mu(\emptyset) = 0$.

Soit (A_i) une suite d'éléments disjoints de \mathcal{A} . Si tous les A_i sont dénombrables, il en est de même de $\cup_i A_i$ et $\mu(\cup_i A_i) = 0 = \sum_i \mu(A_i)$.

Sinon, il existe exactement un A_i qui n'est pas dénombrable : si A et B disjoints sont non-dénombrables, $A \subset B^c$ donc A dénombrable, ce qui est absurde. Donc $\mu(\cup_i A_i) = 1 = \sum_i \mu(A_i)$.

Exercice 3.4

Soit (X, \mathcal{A}, μ) un espace mesuré et $A, B \in \mathcal{A}$. Montrer que $\mu(A) + \mu(B) = \mu(A \cap B) + \mu(A \cup B)$.

Solution : On a par additivité $\mu(A \cup B) = \mu(A \setminus A \cap B) + \mu(B)$ et en ajoutant $\mu(A \cap B)$ des deux côtés on obtient $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$.

Combinaison linéaire positive de mesures est une mesure

Exercice 3.6

Mesure trace

Exercice 3.7

(★) Une variante du théorème de Vitali-Hahn-Saks

Soit μ_1, μ_2, \ldots , une suite de mesures sur (X, \mathcal{A}) telles que $\forall A \in \mathcal{A}, \mu_n(A)$ converge en croissant vers une valeur qu'on note $\mu(A)$. μ est-elle une mesure? Qu'en est-il si $\forall A \in \mathcal{A}, \mu_n(A)$ converge en décroissant avec $\mu_1(X) < \infty$?

Solution: Oui dans les deux cas. Dans les deux cas,

- μ est finiment additive : si A et B éléments disjoints de A, $\mu(A \cup B) = \lim_{n \to \infty} \mu_n(A \cup B) = \lim_{n \to \infty} (\mu_n(A) + \mu_n(B)) = \mu(A) + \mu(B)$
- μ est croissante : si $A \subset B$ sont des éléments de A, comme $B = A \sqcup B \setminus A$, $\mu(B) = \lim_n \mu_n(B) = \lim_n \mu_n(A \sqcup B \setminus A) = \lim_n (\mu_n(A) + \mu_n(B \setminus A)) = \mu(A) + \mu(B \setminus A) \geq \mu(A)$.

Dans le premier cas, on a pour $n \in \mathbb{N}$, $\sum_{i=1}^n \mu(A_i) = \mu(\bigcup_{i=1}^n A_i) \le \mu(\bigcup_{i=1}^\infty A_i)$. Donc $\sum_{i=1}^\infty \mu(A_i) \le \mu(\bigcup_{i=1}^\infty A_i)$.

Dans l'autre direction, pour tout $\epsilon > 0$, on dispose de $N \in \mathbb{N}$ tel que

$$n \ge N \implies \mu_n(\cup_{i=1}^{\infty} A_i) \ge \mu(\cup_{i=1}^{\infty} A_i) - \epsilon \implies \sum_{i=1}^{\infty} \mu_n(A_i) \ge \mu(\cup_{i=1}^{\infty} A_i) - \epsilon$$

Par croissance des μ_i on a $\sum_{i=1}^{\infty} \mu(A_i) \ge \sum_{i=1}^{\infty} \mu_n(A_i) \ge \mu(\bigcup_{i=1}^{\infty} A_i) - \epsilon$. Donc pour tout $\epsilon > 0$, $\sum_{i=1}^{\infty} \mu(A_i) \ge \mu(\bigcup_{i=1}^{\infty} A_i) - \epsilon$, d'où l'inégalité voulue.

Dans le deuxième cas, on a encore $\sum_{i=1}^{\infty} \mu(A_i) \leq \mu(\bigcup_{i=1}^{\infty} A_i)$. Pour $n, N \in \mathbb{N}$, on a

$$\mu(\cup_{i=1}^{\infty} A_i) \le \mu_n(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu_n(A_i)$$

$$= \sum_{i=1}^{N} \mu_n(A_i) + \sum_{i=N+1}^{\infty} \mu_n(A_i)$$

$$\le \sum_{i=1}^{N} \mu_n(A_i) + \sum_{i=N+1}^{\infty} \mu_1(A_i)$$

En passant à la limite sur n dans l'inégalité on obtient

$$\mu(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{N} \mu(A_i) + \sum_{i=N+1}^{\infty} \mu_1(A_i)$$

Comme
$$\sum_{i=1}^{\infty} \mu_1(A_i) = \mu_1(\bigcup_{i=1}^{\infty} A_i) < \infty$$
, $\lim_{N \to \infty} \sum_{i=N+1}^{\infty} \mu_1(A_i) = 0$

En passant à la limite sur N, on obtient

$$\mu(\cup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} \mu(A_i)$$

Exercice 3.8

Soit (X, \mathcal{A}, μ) un espace mesuré, \mathcal{N} l'ensemble des négligeables pour μ et $\mathcal{B} = \sigma(\mathcal{A} \cup \mathcal{N})$. Montrer que $\mathcal{B} = \{A \cup N | A \in \mathcal{A}, N \in \mathcal{N}\}$. Pour $B = A \cup N$, on définit $\overline{\mu}(B) = \mu(A)$. Montrer que $\overline{\mu}$ est bien définie,

Pour $B = A \cup N$, on définit $\overline{\mu}(B) = \mu(A)$. Montrer que $\overline{\mu}$ est bien définie, que c'est une mesure sur \mathcal{B} , que $(X, \mathcal{B}, \overline{\mu})$ est complet, et que c'est la complétion minimale de (X, \mathcal{A}, μ) .

Solution : Posons $C = \{A \cup N | A \in A, N \in \mathcal{N}\}$. Montrons B = C.

 \subset Il suffit de prouver que \mathcal{C} est une tribu contenant $\mathcal{A} \cup \mathcal{N}$.

- $\bullet \overline{\mathcal{A}} \cup \mathcal{N} \subset C$ OK.
- $X = X \cup \emptyset \in C$.
- Soit $B \in \mathcal{C}$, $B = A \cup N$ avec $N \subset C$ où $A, C \in \mathcal{A}$, $N \in \mathcal{N}$ et $\mu(C) = 0$. On a $B^c = A^c \cap N^c = A^c \cap ((C \setminus N) \cup C^c) = \underbrace{(A^c \cap C^c)}_{\in \mathcal{A}} \cup \underbrace{(A^c \cap (C \setminus N))}_{\subset C}$ • Pour $B_i \in \mathcal{C}^{\mathbb{N}}$, $B_i = A_i \cup N_i$ avec $N_i \subset C_i$ et $\mu(C_i) = 0$,
- Pour $B_i \in \mathcal{C}^{\mathbb{N}}$, $B_i = A_i \cup N_i$ avec $N_i \subset C_i$ et $\mu(C_i) = 0$, $\cup_i B_i = (\cup_i A_i) \cup (\cup_i N_i)$ avec $\cup_i N_i \subset \cup_i C_i$ et $\mu(\cup_i C_i) \leq \sum_i \mu(C_i) = 0$. $\supseteq \mathcal{C}$ contient \mathcal{A} et \mathcal{N} donc $\forall A \in \mathcal{A}, N \in \mathcal{N}, A \cup N \in \mathcal{C}$.

Soit $B \in \mathcal{B}$, $B = A \cup N = A' \cup N'$ où $A, A' \in \mathcal{A}$, $N, N' \in \mathcal{N}$. Montrons que $\mu(A) = \mu(A')$.

On dispose de $C, C' \in \mathcal{A}$ de mesure nulle avec $N \subset C$ et $N' \subset C'$. Comme $A \subset A \cup N = A' \cup N' \subset A' \cup C'$ et $\mu(A' \cup C') \leq \mu(A') + \mu(C') = \mu(A')$, on a $\mu(A) \leq \mu(A')$. Par symétrie, $\mu(A') \leq \mu(A)$. Donc $\overline{\mu}$ est bien définie.

On vérifie sans peine que $\overline{\mu}$ est une mesure sur \mathcal{B} .

Montrons que $(X, \mathcal{B}, \overline{\mu})$ est complet. Soit D un négligeable de $(X, \mathcal{B}, \overline{\mu})$. On dispose de $A, C \in \mathcal{A}$ et $N \in \mathcal{N}$ tel que $D \subset A \cup N$, $N \subset C$ et $\mu(A) = \mu(C) = 0$. Alors $D \subset A \cup C$ qui est dans \mathcal{A} et de mesure nulle. Donc $D \in \mathcal{N}$. D'où $D \in \mathcal{B}$.

Montrons que $(X, \mathcal{B}, \overline{\mu})$ est la complétion minimale de (X, \mathcal{A}, μ) . Clairement $\mathcal{A} \subset \mathcal{B}$ et $\overline{\mu}$ prolonge μ . Si $(X, \mathcal{B}', \overline{\mu}')$ est une complétion de (X, \mathcal{A}, μ) , \mathcal{B}' est une tribu qui contient \mathcal{A} et \mathcal{N} , donc $\mathcal{B} = \sigma(\mathcal{A} \cup \mathcal{N}) \subset \mathcal{B}'$.

Sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ on considère deux mesures m et n telles que $\forall a, b \in \mathbb{R}, a < b \implies m((a, b)) = n((a, b))$. Montrer que m = n.

Solution : Soit $\mathcal{C} = \{(a,b), -\infty < a < b < \infty\}$ et pour $k \geq 1$, $E_k = (-k,k)$ et $\mathcal{D}_k = \{A \in \mathcal{B}, m(A \cap E_k) = n(A \cap E_k)\}$. Montrons que \mathcal{D}_k est un λ -système contenant \mathcal{C} .

• $m(\mathbb{R} \cap E_k) = m(E_k) = m((-k, k)) = n((-k, k)) = n(\mathbb{R} \cap E_k)$ donc $\mathbb{R} \in \mathcal{D}_k$ • Soient $A, B \in \mathcal{D}_k$ tels que $A \subset B$. Noter que $E_k \cap (B \setminus A) = (E_k \cap B) \setminus (E_k \cap A)$ et $(E_k \cap B)$ et $(E_k \cap A)$ sont de mesure finie (pour m et n). Donc

$$m(E_k \cap (B \setminus A)) = m(E_k \cap B) - m(E_k \cap A)$$
$$= n(E_k \cap B) - n(E_k \cap A)$$
$$= n(E_k \cap (B \setminus A))$$

D'où $B \setminus A \in \mathcal{D}_k$

• Si (A_i) est une suite croissante de \mathcal{D}_k ,

$$m(E_k \cap (\cup_i A_i)) = m(\cup_i (E_k \cap A_i))$$

$$= \lim_i m(E_k \cap A_i)$$

$$= \lim_i n(E_k \cap A_i)$$

$$= n(E_k \cap (\cup_i A_i))$$

Donc $\cup_i A_i \in \mathcal{D}_k$

• $\mathcal{C} \subset \mathcal{D}_k$ car \mathcal{C} est stable par intersection finie.

Le théorème $\pi - \lambda$ implique $\sigma(\mathcal{C}) \subset \mathcal{D}_k$ i.e $\mathcal{B} \subset \mathcal{D}_k$. Donc pour tout $A \in \mathcal{B}$, $m(A \cap E_k) = n(A \cap E_k)$.

Pour finir, étant donné $A \in \mathcal{B}$,

$$m(A) = m(\cup_i (A \cap E_i))$$

$$= \lim_i m(A \cap E_i)$$

$$= \lim_i n(A \cap E_i)$$

$$= n(A)$$

Soit (X, \mathcal{A}) mesurable et $\mathcal{C} \subset \mathcal{A}$. Soient m et n deux mesures σ -finies sur (X, \mathcal{A}) qui coincident sur \mathcal{C} . Les mesures coincident-elles sur $\sigma(\mathcal{C})$? Qu'en est-il si m et n sont finies?

Solution : Non dans les deux cas. $X=\{1,2\}, \mathcal{C}=\{\{1\}\}$ et m,n définies sur $\sigma(\mathcal{C})$ par $m(\{1\})=m(\{2\})=n(\{1\})=1$ and $n(\{2\})=2$

Exercice 3.11

Lemme d'égalité des mesures

Soit (X, \mathcal{A}) espace mesurable, \mathcal{C} un π -système, μ et ν deux mesures qui coincident sur \mathcal{C} et telles que $\mu(X) = \nu(X)$.

On suppose qu'il existe $(E_i) \in \mathcal{C}$ tel que $X = \bigcup_i E_i$ et $\forall i, \mu(E_i) < \infty$. Montrer que $\mu = \nu$ sur $\sigma(C)$.

Solution : On suppose dans un premier temps que $\underline{\mu}$ est finie. Soit $\mathcal{B} = \{A \in \mathcal{A} | \mu(A) = \nu(A)\}$. Il s'agit de montrer que \mathcal{B} est un λ -système. On aura alors $\sigma(\mathcal{C}) \subset \mathcal{B}$ d'après le théorème π - λ .

- $X \in \mathcal{B}$ par hypothèse.
- Soit $A, B \in \mathcal{B}$ avec $A \subset B$. Comme μ est finie, on peut écrire $\mu(A \setminus B) = \mu(A) \mu(B) = \nu(A) \nu(B) = \nu(A \setminus B)$.
- Soit $(A_i) \in \mathcal{B}$ une suite croissante. On a $\mu(\cup_i A_i) = \lim_i \mu(A_i) = \lim_i \nu(A_i) = \nu(\cup_i A_i)$.

Dans le cas général, on peut supposer sans perte de généralité que les E_i sont croissants.

On a pour $A \in \sigma(\mathcal{C})$, $\mu(A) = \mu(\cup_i (A \cap E_i)) = \lim_i \mu(A \cap E_i)$.

Par ailleurs, pour $i \in \mathbb{N}$, $\mu_i : A \mapsto \mu(A \cap E_i)$ est une mesure finie qui coincide avec $\nu_i : A \mapsto \nu(A \cap E_i)$ sur \mathcal{C} (car $E_i \in \mathcal{C}$). D'après le point précédent, μ_i et ν_i coincident sur $\sigma(\mathcal{C})$.

Donc $\mu(A) = \lim_i \mu(A \cap E_i) = \lim_i \mu_i(A) = \lim_i \nu_i(A) = \nu(A).$

4. Construction de mesures

Exercice 4.1

Soit μ une mesure sur $\mathcal{B}(\mathbb{R})$ finie sur tout compact de \mathbb{R} . On définit $\alpha(x) = \mu((0,x])$ si $x \geq 0$ et $\alpha(x) = -\mu((x,0])$ si x < 0. Montrer que μ est la mesure de Lebesgue-Stieltjes correspondant à α .

Solution : Soit ν la mesure de L-S associée à α .

- Par disjonction de cas et en utilisant le fait qu'une mesure extérieure μ^* coincide avec l sur \mathcal{C} , on montre que μ et ν coincident sur les (a,b] (qui forment un π -système).
- De plus, comme $\mathbb{R} = \bigcup_n (-n, n]$, on a $\nu(\mathbb{R}) \leq \sum_i (\alpha(i) \alpha(-i)) = \sum_i \mu((-i, i]) \leq \mu(\mathbb{R})$.
- Soit $A_i = (a_i, b_i]$ tel que $\cup_i A_i = \mathbb{R}$. On montre par disjonction de cas que $\alpha(b_i) \alpha(a_i) = \mu((a_i, b_i])$. D'où $\sum_i (\alpha(b_i) \alpha(a_i)) = \sum_i \mu((a_i, b_i]) \geq \mu(\cup_i (a_i, b_i]) = \mu(\mathbb{R})$. En passant à l'inf, on a $\nu(\mathbb{R}) \geq \mu(\mathbb{R})$. Donc $\nu(\mathbb{R}) = \mu(\mathbb{R})$
- D'autre part, $\mathbb{R} = \bigcup_n (-n, n]$ avec $\mu((-n, n]) < \infty$.

Toutes les conditions sont réunies pour utiliser le lemme d'égalité des mesures : on a $\mu = \nu$ sur $\mathcal{B}(\mathbb{R})$.

Exercice 4.2

Soit m la mesure de Lebesgue et A un Lebesgue mesurable tel que $m(A) < \infty$. Soit $\epsilon > 0$. Montrer qu'il existe F fermé et G ouvert tels que $F \subset A \subset G$ et $m(G \setminus F) < \epsilon$.

Solution : On dispose de $A_i = (a_i, b_i]$ tels que $A \subset \bigcup_i A_i$ et $\sum_i (b_i - a_i) \le m(A) + \epsilon/2$. Posons $b_i' = b_i + \epsilon 2^{-i-1}$. $G := \bigcup_i (a_i, b_i')$ est un ouvert qui contient A et $m(G) \le \sum_i (b_i' - a_i) = \epsilon/2 + \sum_i (b_i - a_i) \le m(A) + \epsilon$. Comme $m(A) < \infty$, $m(G \setminus A) = m(G) - m(A) \le \epsilon$.

Comme $m(A) < \infty$, à défaut d'être borné, A est approchable à ϵ près par un borné. En effet, $m(A) = m(\bigcup_n (A \cap [-n, n])) = \lim_n m(A \cap [-n, n])$. On dispose donc de N tel que $m(A \cap [-N, N]) \ge m(A) - \epsilon/2$ (\star) Posons $A' = A \cap [-N, N]$. Comme $[-N, N] \setminus A'$ est de mesure finie,

Posons $A' = A \cap [-N, N]$. Comme $[-N, N] \setminus A'$ est de mesure nine, d'après le point précédent, il existe G' ouvert tel que $[-N, N] \setminus A' \subset G'$ et $m(G' \setminus ([-N, N] \setminus A')) \le \epsilon/2$.

Montrons que le fermé $[-N, N] \setminus G'$ convient.

On vérifie sans peine $[-N, N] \setminus G' \subset A'$. D'autre part,

$$m(A' \setminus ([-N, N] \setminus G')) = m(A' \cap ([-N, N]^c \cup G'))$$
$$= m(A' \cap G')$$

et

$$\epsilon/2 \ge m(G' \setminus ([-N, N] \setminus A')) = m((G' \cap [-N, N]^c) \cup (G' \cap A'))$$

$$\ge m(G' \cap A')$$

Donc $m(A' \setminus ([-N, N] \setminus G')) \le \epsilon/2$. En posant $F = [-N, N] \setminus G'$ on a donc $m(A') - m(F) \le \epsilon/2 \quad (\star\star)$

En combinant (\star) et $(\star\star)$, on a

$$m(A \setminus F) = m(A) - m(F) \le (m(A') - m(F)) + \epsilon/2 \le \epsilon$$

Finalement, on a $F \subset A \subset G$ et $m(G \setminus F) = m(G \setminus A) + m(A \setminus F) \le 2\epsilon$

Extension du résultat précédent sans l'hypothèse $m(A) < \infty$ Soit m la mesure de Lebesgue et A un Lebesgue mesurable. Soit $\epsilon>0$. Montrer qu'il existe F fermé et G ouvert tels que $F\subset A\subset G$ et $m(G \setminus F) < \epsilon$.

Solution : Posons $A_n = E \cap [-n, n]$. Chaque A_n étant de mesure finie, on dispose, d'après ce qui précède de G_n ouvert tel que $A_n \subset G_n$ et $m(G_n \setminus A_n) \leq \epsilon/2^n$. Posons $G = \bigcup_n G_n$. Comme $E = \bigcup_n A_n, \ m(G \setminus E) = m(\bigcup_n G_n \setminus (\bigcup_k A_k))$ $= m(\cup_n (G_n \cap \cap_k A_k^c))$ $\leq m(\cup_n (G_n \cap A_n^c))$ $\leq \sum_n m(G_n \setminus A_n)$

G est donc un ouvert qui convient.

Comme A^c est Lebesgue-mesurable, il existe d'après ce qui précède un ouvert O tel que $A^c \subset O$ et $m(O \setminus A^c) \leq \epsilon$. Alors $O^c \subset A$ et $m(A \setminus O^c) = m(A \cap O) = \epsilon$

En posant $F = O^c$, on a $F \subset A \subset G$ et $m(G \setminus F) \leq 2\epsilon$

Note: Dans le cas où $m(A) < \infty$, la preuve précédente montre qu'on peut choisir F fermé et borné, donc compact.

Soit (X, A, μ) un espace mesuré. On définit, pour $A \subset X$,

$$\mu^*(A) = \inf\{\mu(B) | A \subset B, B \in \mathcal{A}\}\$$

Montrer que μ^* est une mesure extérieure. Montrer que \mathcal{A} est inclus dans les μ^* -mesurables et que μ^* coincide avec μ sur \mathcal{A} .

Solution : $\bullet \emptyset \subset \emptyset \in \mathcal{A} \text{ donc } \mu^*(\emptyset) \leq \mu(\emptyset) = 0$

- Soit A, B avec $A \subset B$. Considérons $C \in \mathcal{A}$ tel que $B \subset C$. Alors $A \subset C$, donc $\mu^*(A) \leq \mu(C)$. En passant à l'inf on obtient $\mu^*(A) \leq \mu^*(B)$.
- Soit $\epsilon > 0$ et $(A_i) \subset X$. Pour chaque i, on dispose de $B_i \in \mathcal{A}$ tel que $A_i \subset B_i$ et $\mu(B_i) \leq \mu^*(A_i) + \epsilon/2^i$. Alors $\cup_i A_i \subset \cup_i B_i \in \mathcal{A}$, donc

$$\mu^*(\cup_i A_i) \le \mu(\cup_i B_i) \le \sum_i \mu(B_i) \le \sum_i \mu^*(A_i) + \epsilon$$

Ceci étant vrai pour tout ϵ , on a le résultat.

Soit $A \in \mathcal{A}$. Montrons que A est μ^* -mesurable. Soit $E \subset X$. Il suffit de montrer $\mu^*(A \cap E) + \mu^*(A^c \cap E) \leq \mu^*(E)$.

Pour $\epsilon > 0$, on dispose de $B \in \mathcal{A}$ tel que $E \subset B$ et $\mu^*(E) + \epsilon \geq \mu(B)$

$$= \mu(\underbrace{B \cap A}_{\supset E \cap A}) + \mu(\underbrace{B \cap A^c}_{\supset E \cap A^c})$$

$$\geq \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

Ceci étant vrai pour tout ϵ , on a l'inégalité recherchée.

Soit $A \in \mathcal{A}$. Montrons $\mu^*(A) = \mu(A)$. Comme $A \subset A \in \mathcal{A}$, on a $\mu^*(A) \leq \mu(A)$. Par croissance de la mesure μ et passage à l'inf, on a l'inégalité inverse.

Exercice 4.4

Soit m la mesure de L-S associée à la fonction croissante continue à droite α . Montrer que pour tout $x \in \mathbb{R}$, $m(\{x\}) = \alpha(x) - \alpha(x-)$.

Solution: On a
$$m(\{x\}) = m(\cap_n(x - \frac{1}{n}, x])$$

$$= \lim_n m((x - \frac{1}{n}, x]) \quad \text{car } m((x - 1, x])) = \alpha(x) - \alpha(x - 1) < \infty$$

$$= \lim_n \left(\alpha(x) - \alpha(x - \frac{1}{n})\right) \quad \text{car } m \text{ coincide avec } l \text{ sur les (a,b]}$$

$$= \alpha(x) - \alpha(x - 1)$$

Soit m la mesure de Lebesgue, $c \in \mathbb{R}$ et A un Lebesgue-mesurable. Montrer que m(A+c)=m(A) et m(cA)=|c|m(A).

Solution : La démonstration ne pose pas de problème. Penser à étudier l'effet de $x\mapsto \frac{x}{c}$ sur $(a_i,b_i]$ selon le signe de c.

Exercice 4.6

Premier lemme de Borel-Cantelli

Soit m la mesure de Lebesgue. Soit A_n des Lebesgue-mesurables inclus dans [0,1] et $B=\limsup A_n=\cap_n \cup_{k\geq n} A_k$.

- (1) Montrer que B est Lebesgue-mesurable.
- (2) Si $m(A_n) > \delta > 0$ pour tout n, montrer que $m(B) \ge \delta$.
- (3) Si $\sum_n m(A_n) < \infty$, montrer que m(B) = 0.
- (4) (Réciproque) Donner un exemple de A_n tels que m(B)=0 mais $\sum_n m(A_n)=\infty.$

Solution : (1) B est intersection dénombrable de Lebesgue-mesurables.

- (2) On note que $(\bigcup_{k\geq n} A_k)_n$ décroit et $\bigcup_{k\geq 1} A_k \subset [0,1]$ donc de mesure finie. Donc $m(B) = m(\bigcap_n (\bigcup_{k\geq n} A_k)) = \lim_n m(\bigcup_{k\geq n} A_k) \geq \delta$.
- (3) $m(B) = m(\bigcap_n (\bigcup_{k \ge n} \overline{A_k})) = \lim_n m(\bigcup_{k \ge n} \overline{A_k}) \le \lim_n \sum_{k \ge n} m(A_k) = 0.$
- $(4) A_n = [0, \frac{1}{n}]$

Exercice 4.7

Soit $0 < \epsilon < 1$ et m la mesure de Lebesgue. Exhiber un mesurable $E \subset [0,1]$ dont l'adhérence est [0,1] et de mesure ϵ

Solution: Montrons que $E = ([0, \epsilon] \cap \mathbb{Q}^c) \cup ([0, 1] \cap \mathbb{Q})$ convient.

On a
$$m(E) = m([0, \epsilon] \cap \mathbb{Q}^c) + m([0, 1] \cap \mathbb{Q})$$

$$= m([0,\epsilon]) - m([0,\epsilon] \cap \mathbb{Q}) + \underbrace{0}_{\text{car } [0,1] \cap \mathbb{Q} \text{ dénombrable}}$$

 $= \epsilon - 0$ pour la même raison

 $\underline{\text{Note}}$: On prend un intervalle de longueur ϵ et on ajoute des poussières denses de mesure nulle.

Si X est un métrique, \mathcal{B} la tribu des boréliens et μ une mesure sur (X,\mathcal{B}) , on définit le support de μ comme étant le plus petit fermé F tel que $\mu(F^c)=0$. Montrer que si F est un fermé de [0,1], il existe une mesure finie sur [0,1] dont le support est F.

Solution : On distingue deux cas :

- F est fini, $F = \{a_1, \dots, a_n\}$. On définit $\mu = \sum_{i=1}^n \delta_{a_i}$. On a bien $\mu(F^c) = 0$, et si $\mu(G^c) = 0$, alors pour tout i, $\delta_{a_i}(G^c) = 0$, donc $a_i \in G$ pour tout i et $F \subset G$.
- F est infini. F étant séparable, on dispose de $(a_i) \in F^{\mathbb{N}}$ une suite dense dans F. On définit

$$\mu = \sum_{i=1}^{\infty} \frac{\delta_{a_i}}{2^i}$$

 μ est finie, $\mu(F^c)=0$ et si G est un fermé tel que $\mu(G^c)=0$, alors $\{a_i|i\geq 1\}\subset G$ et en passant à l'adhérence on a $F\subset G$.

Exercice 4.9

Exercice 4.10

Soit $0 < \epsilon < 1$, m le mesure de Lebesgue et A un Lebesgue-mesurable. On suppose que pour tout intervalle I, on a $m(A \cap I) \leq (1 - \epsilon)m(I)$. Montrer que m(A) = 0.

Solution : On suppose dans un premier temps $\underline{m(A)} < \underline{\infty}$. Soit $\epsilon' > 0$. D'après 4.2, on dispose d'un ouvert G tel que $A \subset G$ et $m(G \setminus A) \leq \epsilon'$. On écrit $G = \cup_i (a_i, b_i)$. Alors $m(A) = m(\cup_i (A \cap (a_i, b_i))$

$$\leq \sum_{i} m(A \cap (a_{i}, b_{i}))$$

$$\leq (1 - \epsilon)m(G)$$

$$\leq (1 - \epsilon)(m(A) + \epsilon')$$

En faisant $\epsilon' \to 0$, on a $m(A) \le (1 - \epsilon)m(A)$, donc m(A) = 0.

Dans le cas général, on note que pour J un intervalle borné et I un intervalle quelconque, $m(A\cap J\cap I)\leq (1-\epsilon)m(J\cap I)\leq (1-\epsilon)m(I)$. Le mesurable $A\cap J$ vérifie donc les conditions précédentes, d'où $m(A\cap J)=0$. Finalement, $m(A)=m(\cup_n(A\cap (-n,n))\leq \sum_n m(A\cap (-n,n))=\sum_n 0=0$

 $\underline{\text{Note}}: \bullet$ La contraposée est intéressante : si A est un Lebesgue-mesurable tel que m(A)>0, alors pour tout $0<\delta<1,$ il existe un intervalle I "de haute

densité dans A", au sens où $\delta<\frac{m(A\cap I)}{m(I)}\leq 1$. • La preuve précédente montre qu'on peut en plus supposer I ouvert des deux

Exercice 4.11

Théorème de Steinhaus

Soit m la mesure de Lebesgue et A un Lebesgue-mesurable tel que m(A) > 0. On note $A - A = \{a - b, (a, b) \in A^2\}$. Alors 0 appartient à l'intérieur de A - A.

Solution : Comme $0 < m(A) = \lim_n m(A \cap (-n, n))$, on dispose de N tel que $m(A \cap (-N, N)) > 0$. Posons $B = A \cap (-N, N)$. Si on prouve que 0 est intérieur à B-B, l'inclusion $B-B\subset A-A$ permet de conclure que 0 est intérieur à A. Dans la suite, on pourra donc supposer sans perte de généralité que $m(A) < \infty$.

Supposons par l'absurde que 0 n'est pas dans l'intérieur de A-A. Alors on dispose de $(x_n) \in (A-A)^{\mathbb{N}}$ telle que $x_n \to 0$.

Comme m(A) > 0, d'après 4.10, on dispose, pour $0 < \epsilon < 1$, d'un intervalle ouvert I tel que $m(I \cap A) > (1 - \epsilon)m(I)$, ce qui implique $m(I) < \infty$. On note également que $A + x_n \subset A^c$ et

$$m(I \cap (A + x_n)) = m((I - x_n) \cap A) \quad \text{invariance par translation}$$

$$\geq m(I \cap (I - x_n) \cap A)$$

$$= m(I \cap A) - m((I \setminus (I - x_n)) \cap A)$$

$$\geq m(I \cap A) - m(I \setminus (I - x_n))$$

$$\geq (1 - \epsilon)m(I) - m(I \setminus (I - x_n))$$

Pour n suffisamment grand, $m(I \setminus (I - x_n)) = |x_n|$. Soit N tel que $|x_N| \le m(I)\epsilon$. Comme A et $A + x_N$ sont disjoints, on obtient en sommant $m(I) > (2 - 3\epsilon)m(I)$. Ceci est absurde dès que $\epsilon < \frac{1}{3}$.

Soit m la mesure de Lebesgue. Construire une borélien A tel que $0 < m(A \cap I) < m(I)$ pour tout intervalle ouvert I non réduit à un point.

Solution : Démontrons d'abord le lemme suivant :

Soit I un intervalle de $\mathbb R$ non réduit à un point. Alors pour tout $0 < \delta <$

I contient un fermé d'intérieur vide de mesure δ .

On s'inspire de la construction de l'ensemble de Cantor.

Etant donné un segment J et $0 < \alpha < 1$, on dit qu'on enlève le α -milieu de Jlorsqu'on considère $J\setminus (m-\frac{\alpha\ell(J)}{2},m+\frac{\alpha\ell(J)}{2})$ où m dénote le milieu de J. Soit $0 < \delta < m(I)$.

Soit $0 < \epsilon < \frac{m(I)}{\delta} - 1$, de sorte que $\delta(1 + \epsilon) < m(I)$. En partant d'un segment $K_0 \subset I$ de mesure $\delta(1+\epsilon)$, et d'une suite $(\alpha_i)_{i\geq 1}$ de réels de (0,1), on obtient un compact K_1 en enlevant le α_1 -milieu de K_0 , puis K_2 en enlevant les α_2 -milieux des deux segments composant K_1 et ainsi de suite. Soit $K = \cap_n K_n$. On remarque que $m(K_n) = (1 - \alpha_n)m(K_{n-1})$, donc $m(K_n) = m(K_0) \prod_{k=1}^n (1 - \alpha_k)$. (K_n) étant décroissante,

$$m(K) = \lim_{n \to \infty} (m(K_0) \prod_{k=1}^{n} (1 - \alpha_k)) = \delta(1 + \epsilon) \lim_{n \to \infty} (\prod_{k=1}^{n} (1 - \alpha_k))$$

Considérons une suite $(a_n)_{n\geq 1}$ de réels > 0 telle que $\sum_{n=1}^{\infty} a_n = -\ln\left(\frac{1}{1+\epsilon}\right)$. Posons $\alpha_n = 1 - \exp(-a_n)$. Alors $\sum_{n \ge 1} \ln(1 - \alpha_n)$ converge vers $\frac{1}{1 + \epsilon}$. Avec cetter suite (α_n) ,

$$m(K) = \delta(1+\epsilon) \cdot \frac{1}{1+\epsilon} = \delta$$

 $m(K)=\delta(1+\epsilon)\cdot \tfrac{1}{1+\epsilon}=\delta$ K est clairement fermé borné. On montre facilement par récurrence que K_n est union disjointe de 2^n segments de même longueur. La longueur de chaque segment de K_n est donc majorée par $\frac{m(K_0)}{2^n}$. Ceci prouve en particulier que Kest d'intérieur vide.

Soit $(I_i)_{i\geq 1}$ une énumération des intervalles ouverts à extrémités rationnelles. Le lemme précédent permet de construire $M_1, N_1, M_2, N_2, \ldots$ des fermés, d'intérieur vide, de mesure > 0 et deux à deux disjoints tels que $M_k, N_k \subset I_k$. Montrons que $M := \bigcup_k M_k$ est un borélien qui convient.

Soit I un intervalle de \mathbb{R} non réduit à un point. On dispose de k tel que $I_k \subset I$. $0 < m(M_k) = m(M_k \cap I_k) \le m(M \cap I_k)$

$$\leq m(M \cap I)$$

$$< m(M \cap I) + M(N_k)$$

$$= m((M \cap I) \cup N_k) \quad \text{car disjoints}$$

$$\leq m(I) \quad \text{car inclus dans I}$$

Conclusion : $0 < m(M \cap I) < m(I)$