Appunti di algebra e matematica discreta

Alessandro Massarenti

Febbraio 2022, Anno 2021/2022

Contents

1	Introduzione			2
	1.1	Argomenti di Algebra		2
		1.1.1	Congruenze e sistemi di Congruenze	2
		1.1.2	Matrici, operazioni sulle matrici, soluzioni di sistemi lineari	2
		1.1.3	Spazi vettoriali	2
		1.1.4	Diagonalizzazioni	3
	1.2	Argon	nenti di Matematica discreta	3
		1.2.1	Grafi	3
		1.2.2	Metodi di conteggio	3
		1.2.3	Relazioni di ricorrenza	3
2	Rin	2550 SI	ui numeri	5
_	щ	asso st		J
	2.1	Insiem	ni di numeri	5

Chapter 1

Introduzione

In generale non è consigliato acquistare nessun libro, però in esso sono contenuti molti esercizi e può quindi essere comodo.

1.1 Argomenti di Algebra

Questi argomenti prenderanno circa $\frac{2}{3}$ del corso.

1.1.1 Congruenze e sistemi di Congruenze

Esempio:

1.1.2 Matrici, operazioni sulle matrici, soluzioni di sistemi lineari

Valore 1 e si ci sarà nel primo parziale, argomento di algebra.

Si utilizzeranno le matrici per risolvere cose interessanti,

Le matrici sono tabelle rettangolari, a volte se ne usano di particolari a forma di quadrato.

Sulle matrici si impareranno le 3 operazioni, dove la terza è molto complessa e conta come 2, inoltre si impareranno altre 3 operazioni per passare da una matrice ad un'altra.

In totale avremo 7 operazioni.

Le matrici ci serviranno a capire se un sistema anche enorme e che richiederebbe un lunghissimo calcolo ha soluzioni.

1.1.3 Spazi vettoriali

Valore 2

Si utilizzeranno somme di matrici, chiamate anche sovrapposizioni, le quali sono una generalizzazione di prodotto per numeri

A fine corso questo argomento verrà applicato a modelli fisici.

1.1.4 Diagonalizzazioni

Valore 1 argomento di algebra

Posso diagonalizzare se posso scrivere prodotto di 3 quadrati, dove la matrice centrale è una matrice diagonale

1.2 Argomenti di Matematica discreta

Questi argomenti prenderanno circa $\frac{1}{3}$ del corso

1.2.1 Grafi

Valore 2

I grafi hanno notazione (V,E) dove V è il numero di vertici, ed E il numero di archi¹.

esempio di grafo può essere dei villaggi su delle montagne, dove ogni arco rappresenta una strada che collega un villaggio, ed ogni villaggio è un vertice.

In questo esempio ci accorgiamo che un villaggio è isolato e un villaggio ha molti collegamenti.

1.2.2 Metodi di conteggio

Vale1 e sicuramente sarà presente al secondo pariale. Questo argomento è molto dettagliato nel libro

Un'esempio sarà calcolare le diverse sequenze binarie (sequenze di zeri ed uni)

Con 8 cifre dove abbiamo 6 uni e 2 zeri inizio a contare.

Ho 8 posizioni quindi prima sistemo gli zeri(Perchè sono meno)

E mi accorgo che il primo 0 potrò metterlo in 8 posizioni ed il secondo in 7. Il numero di sequene sarà quindi uguale a $8\cdot 7$

Però allo stesso tempo lo 0_1 posso scambiarlo di posizione con lo 0_2

Avrò quindi che il mio numero di sequenze sarà uguale a $\frac{8\cdot 7}{2}$

1.2.3 Relazioni di ricorrenza

Vale 1 e anche questo è molto dettagliato sul libro.

 $^{^{1}}V = vertex(Vertici), E = edges(archi)$

Se devo calcolare una formula che riguarda n oggetti è una procedura che collega il saper calcolare per n-1 oggetti con il saper calcolare per n oggetti.

Ad esempio, se voglio calcolare il prodotto di n numeri naturali, ovvero il fattoriale, so che conoscendo il caso n-1 posso riutilizzarlo per calcolare il caso n.

Sarà però molto importante saper definire anche un caso base.

$$1 \cdot 2 \cdot 3 \cdot \dots = n!$$

$$a_n \begin{cases} \cdot a_n - 1 \\ a_0 = 1 \end{cases}$$
 condizione base

Ci accorgiamo quindi che:

$$a_1 = 1 \cdot a_0 = 1 \cdot 1 = 1$$
$$a_2 = 2 \cdot a_n$$

Chapter 2

Ripasso sui numeri

2.1 Insiemi di numeri

 $\{0,1,2,3,4,\ldots\}$ ovvero se stesso + 1 è l'insieme $\mathbb N$ dei numeri naturali.

Possiamo fare la somma che ha come neutro 0

Ci accorggiamo subito che mangano gli opposti, dobbiamo però ampliare l'insieme ad un insieme li contenga.

 $\{...,-4,-3,-2,-1,0,1,2,3,4,...\}$ si descrivono tramite la lettera $\mathbb Z$

Con questi numeri posso moltiplicare ma non posso dividere, se divido due interi non è detto ottenga un intero.

Per la moltiplicazione l'elemento neutro è l'1.