1. หน้าปก (Title Page)

• ชื่อโครงงาน: Smart pH Chart อินดิเคเตอร์ธรรมชาติสู่แถบสีดิจิทัล

• ชื่อรายวิชาและภาคการศึกษา: 01159532 ภาคเรียนที่ 2/2024

นิสิต: ภูมิ ถิ่นกาญจน์วัฒนา (6714650515)

• อาจารย์ผู้สอน: รศ. ดร.พงศ์ประพันธ์ พงษ์โสภณ

• วันที่: 15 มีนาคม 2025 *(ตัวอย่าง)*

2. บทนำและความเป็นมา (Introduction & Background)

1. บริบทและเหตุผล

การจัดการเรียนรู้ในประเด็นสิ่งแวดล้อมของหลักสูตรประเทศยังคงมุ่งเน้นไปที่ปัญหา สาเหตุ และผลกระทบ ของปัญหาสิ่งแวดล้อมในระดับสังคมและโลก ซึ่งข้ามปัญหาสิ่งแวดล้อมในระดับโรงเรียนและชุมชนที่นักเรียนเป็น สมาชิกในพื้นที่นั้น อาจส่งผลให้นักเรียนไม่ได้ตระหนักถึงความสำคัญของปัญหา ดังนั้น การจัดการเรียนรู้ใน ประเด็นสิ่งแวดล้อมควรเริ่มจากปัญหาใกล้ตัวที่นักเรียนสามารถสืบเสาะได้ด้วยตนเอง เพื่อส่งเสริมการเรียนรู้ที่มี ความหมายและเห็นคุณค่าของท้องถิ่นของตนเอง นอกจากนี้ กิจกรรมสำรวจปัญหาสิ่งแวดล้อมที่หนังสือและคู่มือ ครูแนะนำส่วนใหญ่เป็นเพียงการระบุปัญหาด้วยวิธีการพื้นฐาน ทำให้ไม่สามารถระบุสาเหตุของปัญหาที่ชัดเจน แม่นยำ และนำไปสู่แนวทางการแก้ไขปัญหาที่ไม่มีประสิทธิภาพ

ในกระบวนการสำรวจคุณภาพน้ำ การวัดค่าความเป็นกรด-เบส (pH) เป็นตัวบ่งชี้สำคัญที่ช่วยให้นักเรียนเข้าใจ ภาวะความเป็นกรดหรือเบสของน้ำในแหล่งน้ำรอบตัว อย่างไรก็ตาม วิธีการวัดค่า pH ในโรงเรียนส่วนใหญ่ยังคง อาศัยเครื่องมือพื้นฐาน เช่น กระดาษลิตมัส และ กระดาษยูนิเวอร์ซัลอินดิเคเตอร์ ซึ่งแม้จะใช้งานง่ายและรวดเร็ว แต่ยังมีข้อจำกัดหลายประการ ได้แก่ 1) ความละเอียดต่ำ คือ กระดาษลิตมัสสามารถบอกได้เพียงว่าสารเป็นกรด หรือเบสเท่านั้น โดยไม่สามารถให้ค่าตัวเลขที่แม่นยำได้ 2) ความแม่นยำต่ำ คือ กระดาษยูนิเวอร์ซัลอินดิเคเตอร์ใช้ สีเปรียบเทียบกับแถบสีมาตรฐาน ซึ่งอาจเกิดข้อผิดพลาดจากความแตกต่างของแสงและสายตาของผู้ใช้ 3) ไม่ สามารถบันทึกและประมวลผลข้อมูลได้ – เมื่อวัดค่า pH ด้วยวิธีเหล่านี้ ผลลัพธ์จะเป็นค่าที่ต้องจดบันทึกเอง ทำให้ ยากต่อการนำไปวิเคราะห์เพิ่มเติม นอกจากนี้ การใช้สารอินดิเคเตอร์ ซึ่งอาจเปลี่ยนแปลงได้ตามแหล่งที่มาและ สภาพแวดล้อม แต่ก็ยังมีปัญหาเรื่อง การควบคุมสีของอินดิเคเตอร์ ซึ่งอาจเปลี่ยนแปลงได้ตามแหล่งที่มาและ สภาพแวดล้อม

แนวทางการจัดการเรียนรู้แบบอิงสถานที่ (Place-based Learning: PBL) เป็นแนวทางที่ช่วยให้การเรียนรู้ ด้านสิ่งแวดล้อมเกิดความหมายมากขึ้น โดยมุ่งเน้นให้ผู้เรียนได้เรียนรู้ผ่าน ประสบการณ์ตรงจากสถานที่จริง เช่น แหล่งน้ำในโรงเรียน คลองในชุมชน หรือพื้นที่สีเขียวในท้องถิ่นของตนเอง ซึ่งช่วยให้ผู้เรียนรู้สึกเชื่อมโยงกับ สิ่งแวดล้อมในพื้นที่ เข้าใจปัญหาสิ่งแวดล้อมที่เกิดขึ้น ทั้งที่เป็นรูปธรรม (เช่น คุณภาพน้ำที่เสื่อมโทรม) และ นามธรรม (เช่น ความตระหนักในการอนุรักษ์ทรัพยากรน้ำของคนในชุมชน) การมีส่วนร่วมในการสำรวจและ วิเคราะห์ข้อมูลจริงช่วยให้ผู้เรียนเกิดความภาคภูมิใจในท้องถิ่นของตนเอง และพัฒนาเจตคติของการเป็นพลเมืองที่ รับผิดชอบต่อสิ่งแวดล้อม

ระบุ ความสำคัญ ของการนำโค้ดและเครื่องมือดิจิทัลมาประยุกต์ใช้ในการสอน โค้ด Python สามารถช่วย วิเคราะห์และแปลงสีของอินดิเคเตอร์ให้เป็นค่า pH ดิจิทัลได้อย่างแม่นยำ โดยใช้ การประมวลผลภาพ (Image Processing) และ OpenCV ซึ่งช่วยลดอิทธิพลของแสงและการมองเห็นของมนุษย์ อีกทั้งการใช้ดิจิทัลช่วยให้ นักเรียนสามารถ บันทึกและเปรียบเทียบค่า pH ได้อัตโนมัติ ทำให้เกิดการเรียนรู้เชิงลึกเกี่ยวกับการเปลี่ยนแปลง ของค่า pH ในแหล่งน้ำต่าง ๆ นอกจากนี้ การใช้เครื่องมือโปรแกรมมิ่งยังช่วย ฝึกทักษะการคิดวิเคราะห์ การเขียน โค้ด และการใช้เทคโนโลยีในการแก้ปัญหาทางวิทยาศาสตร์ ซึ่งเป็นทักษะสำคัญในยุคดิจิทัลและการเรียนรู้ STEM Education

2. งานวิจัยหรือแหล่งข้อมูลที่เกี่ยวข้อง (ถ้ามี)

การจัดการเรียนรู้แบบอิงสถานที่ (Place-based learning) คือ การจัดประสบการณ์การเรียนรู้นอกห้องเรียน ที่ผู้สอนทำสถานที่ ชุมชนมาสร้างประสบการณ์ตรงให้กับผู้เรียน โดยมีเป้าหมายให้ผู้เรียนเกิดความตระหนัก รู้สึก เป็นส่วนหนึ่งของท้องถิ่น ซึ่งทำให้ผู้เรียนได้ฟื้นคืนสายสัมพันธ์ระหว่างตนเองกับสิ่งแวดล้อมในท้องถิ่น ทั้ง สิ่งแวดล้อมที่เกิดขึ้นตามธรรมชาติและมนุษย์สร้างขึ้น ทั้งที่เป็นนามธรรมและรูปธรรม ส่งผลให้ผู้เรียนเกิดความ ภูมิใจ หวงแหน เห็นคุณค่า และต้องการที่จะอนุรักษ์ฟื้นฟูสิ่งแวดล้อมในถิ่นฐานนั้น ๆ ให้มีคุณภาพดี และเพื่อ พัฒนาให้ผู้เรียนมีคุณลักษณะของการเป็นพลเมืองที่ดี (วิจารณ์, 2556)

3. วัตถุประสงค์และผลลัพธ์การเรียนรู้ (Objectives and Learning Outcomes)

1. วัตถุประสงค์ของโครงงาน

o พัฒนาโปรแกรม Python เพื่อให้นักเรียนสร้าง pH Chart และระบุค่า pH ของแหล่งน้ำเพื่อ นำไปวิเคราะห์คุณภาพของแหล่งน้ำ

2. ผลลัพธ์การเรียนรู้ (Learning Outcomes)

- ๐ ทักษะทางวิทยาศาสตร์และสิ่งแวดล้อม → เข้าใจความสัมพันธ์ระหว่างค่า pH กับสีของอินดิเคเต อร์ธรรมชาติเพื่อใช้ระบุคุณภาพของแหล่งน้ำ
- O ทักษะทางคอมพิวเตอร์และการเขียนโปรแกรม o ฝึกใช้ Python, OpenCV และ Machine Learning
- O ทักษะทางคณิตศาสตร์และการวิเคราะห์ข้อมูล —> คำนวณสี, วิเคราะห์ข้อมูล, และใช้ตรรกศาสตร์
- O ทักษะทางทักษะทางปัญญาและการแก้ปัญหา ightarrow คิดวิเคราะห์, แก้ปัญหา, และประยุกต์ใช้เทคโนโลยี

4. กลุ่มเป้าหมายและการบูรณาการกับการสอนวิทยาศาสตร์ (Target Learners and Integration with Science Teaching)

1. ระดับชั้นหรือกลุ่มผู้เรียน

- นักเรียนชั้นมัธยมศึกษาปีที่ 3 ที่เรียน เรื่อง ระบบนิเวศ, ปฏิกิริยาเคมี
- นักเรียนชั้นมัธยมศึกษาปีที่ 5 ที่เรียน เรื่อง อินดิเคเตอร์

2. หัวข้อทางวิทยาศาสตร์/สิ่งแวดล้อมที่ครอบคลุม

- ปัญหาคุณภาพของแหล่งน้ำที่ส่งผลต่อสิ่งมีชีวิตและสิ่งแวดล้อม
- 3. แนวทางทางวิชาการ/แนวปฏิบัติ

การบูรณาการโค้ดวิเคราะห์ pH กับบทเรียน "ปฏิกิริยาเคมีที่ส่งผลต่อสิ่งมีชีวิตและสิ่งแวดล้อม" ผ่านการสอน แบบ Project-Based Learning (PBL)

5. การออกแบบโครงงานและอัลกอริทึม (Project Design and Algorithm)

1. ภาพรวมของโปรแกรม/เครื่องมือ

โปรแกรมนี้ใช้สำหรับ วิเคราะห์ค่า pH ของแหล่งน้ำโดยใช้อินดิเคเตอร์ธรรมชาติ ผ่านการประมวลผลภาพ โปรแกรมสามารถ อ่านภาพตัวอย่างจากแหล่งน้ำ, วิเคราะห์สีของอินดิเคเตอร์, เปรียบเทียบกับ pH Chart ที่สร้าง ขึ้น, และ แสดงค่า pH โดยอัตโนมัติ โปรแกรมช่วยให้การวิเคราะห์ค่า pH มีความแม่นยำมากขึ้น และลด ข้อผิดพลาดที่อาจเกิดจากการประเมินสีด้วยสายตา

2. อัลกอริทึมหรือผังงาน (Flowchart)

ขั้นตอนการทำงานของโปรแกรม:

- 1. รับข้อมูล โปรแกรมรับ ภาพตัวอย่างน้ำ ที่ผ่านการทดสอบด้วยอินดิเคเตอร์ธรรมชาติ
- 2. ปรับปรุงคุณภาพภาพ ใช้ OpenCV เพื่อ ปรับ White Balance และ Normalize สี เพื่อลดอิทธิพลของ แสง
- 3. แยกค่าเฉลี่ยสี คำนวณค่า RGB หรือ HSV ของอินดิเคเตอร์
- 4. เปรียบเทียบกับ pH Chart ใช้อัลกอริทึม Euclidean Distance เพื่อหาระยะห่างระหว่างสีตัวอย่างกับ pH Chart
- 5. แสดงผลค่า pH แสดงค่า pH ที่ใกล้เคียงที่สุด พร้อมแสดงภาพกราฟและข้อมูลวิเคราะห์

3. ฟังก์ชันสำคัญ (Key Functions)

ตัวอย่างฟังก์ชันที่ใช้ในโปรแกรม

import cv2

import numpy as np

ฟังก์ชันปรับ White Balance

```
def white_balance(img):
    result = cv2.cvtColor(img, cv2.COLOR_RGB2LAB).astype(np.float32)
    avg_a = np.mean(result[:, :, 1])
    avg_b = np.mean(result[:, :, 2])
    result[:, :, 1] -= (avg_a - 128)
    result[:, :, 2] -= (avg_b - 128)
    result = np.clip(result, 0, 255).astype(np.uint8)
    return cv2.cvtColor(result, cv2.COLOR_LAB2RGB)
```

ฟังก์ชันวิเคราะห์ค่า pH จากภาพ

```
def analyze_ph(image, ph_chart):
    image_color = np.mean(image, axis=(0,1)) # หาค่าเฉลี่ยสี
    closest_ph = min(ph_chart, key=lambda ph: np.linalg.norm(image_color - ph_chart[ph]))
    return closest_ph
```

4. ไลบรารีที่ใช้ (Libraries Used)

- OpenCV (cv2) \rightarrow ใช้ในการประมวลผลภาพ (White Balance, คำนวณสี RGB/HSV)
- NumPy \rightarrow ใช้สำหรับคำนวณค่าเฉลี่ยสี และเปรียบเทียบระยะห่างสี
- Matplotlib ightarrow ใช้แสดงผลแถบสี pH Chart
- Gradio ightarrow ใช้สร้าง UI แบบโต้ตอบ เพื่อให้ผู้ใช้สามารถอัปโหลดภาพและรับค่าพีเอช

6. การพัฒนาโค้ด (Coding Implementation)

1. โค้ด (Code Snippets)

ฟังก์ชันวิเคราะห์ค่า pH

โค้ดตัวอย่างสำหรับ เ**ปรียบเทียบสีของอินดิเคเตอร์กับ pH Chart**

```
import cv2
import numpy as np
import gradio as gr

# ตัวอย่างค่า RGB ของ pH Chart (ค่าโดยประมาณ)
ph_chart = {
    1: np.array([186, 0, 125]), # pH 1 สีม่วงแดง
    3: np.array([255, 0, 0]), # pH 3 สีแดง
    5: np.array([255, 165, 0]), # pH 5 สีส้ม
    7: np.array([0, 255, 0]), # pH 7 สีเขียว
    9: np.array([0, 255, 255]), # pH 9 สีฟ้า
    11: np.array([0, 0, 255]), # pH 11 สีน้ำเงิน
    12: np.array([128, 0, 128]) # pH 12 สีม่วง
}
```

def predict_ph(image):

```
img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # แปลงเป็น RGB

avg_color = np.mean(img, axis=(0,1)) # คำนวณค่าเฉลี่ยสี

closest_ph = min(ph_chart, key=lambda ph: np.linalg.norm(avg_color - ph_chart[ph]))

return f"ค่า pH ที่คาดการณ์คือ: {closest_ph}"
```

สร้างอินเทอร์เฟซแบบโต้ตอบด้วย Gradio

```
demo = gr.Interface(fn=predict_ph, inputs="image", outputs="text")
demo.launch(share=False)
```

2. คำอธิบายขั้นตอนหลัก

- 1. โปรแกรมรับภาพอินพุตจากผู้ใช้ ผ่าน Gradio
- 2. ใช้ OpenCV แปลงภาพเป็น RGB และคำนวณค่าเฉลี่ยสี
- 3. เปรียบเทียบกับฐานข้อมูล pH Chart โดยใช้ Euclidean Distance
- 4. แสดงค่า pH ที่ใกล้เคียงที่สุด

3. การทดสอบและแก้บั๊ก (Testing and Debugging)

- 1. การทดสอบความถูกต้องของการวิเคราะห์สี
 - ทดลองกับภาพตัวอย่างหลายภาพที่รู้ค่าพีเอชล่วงหน้า
 - ใช้ Matplotlib แสดงแถบสีเพื่อดูว่าสีที่ได้ตรงกับที่คาดไว้หรือไม่
- 2. ปัญหาที่พบและวิธีแก้ไข
 - ปัญหา: pH Chart มีความคลาดเคลื่อนจากการเลือกรูปที่ใช้เป็นตัวแทนของสีใน pH chart ไม่ดี

วิธีแก้: ใช้รูปของสีอินดิเคเตอร์ที่ใช้ระบุค่า pH หลายรูป/ 1 ค่า pH

• ปัญหา: ความแตกต่างของแสงทำให้สีอินดิเคเตอร์เปลี่ยนไป

วิธีแก้: ใช้เทคนิค White Balance และ Histogram Matching

• ปัญหา: อินดิเคเตอร์บางตัวมีสีใกล้เคียงกัน ทำให้โปรแกรมแยกไม่ออก

วิธีแก้: เพิ่มการเปรียบเทียบใน Color Space แบบ HSV แทน RGB

7. แนวการนำไปใช้ในชั้นเรียน (Classroom Implementation Plan)

1. การตั้งคำถามและระบุปัญหา

นักเรียนเริ่มต้นด้วยการสำรวจปัญหาสิ่งแวดล้อมในโรงเรียน โดยเน้นที่คุณภาพของแหล่งน้ำผ่านค่า pH ซึ่งเป็นตัว บ่งชี้ภาวะความเป็นกรดหรือเบสของน้ำ นักเรียนจะตั้งคำถาม เช่น น้ำในแหล่งน้ำในโรงเรียนมีค่า pH เท่าไหร่? ค่า pH ส่งผลกระทบต่อสิ่งมีชีวิตในระบบนิเวศอย่างไร? และเราจะใช้เทคโนโลยีช่วยระบุปัญหานี้ได้อย่างไร? เพื่อให้ การเรียนรู้มีความหมายและเกี่ยวข้องกับชีวิตจริง

2. การวางแผนและออกแบบการทดลอง

นักเรียนวางแผนการสำรวจและเก็บตัวอย่างน้ำจากแหล่งน้ำในโรงเรียน โดยใช้ อินดิเคเตอร์ธรรมชาติ เช่น ดอก อัญชันหรือกะหล่ำปลีม่วงในการตรวจสอบค่า pH จากนั้น นักเรียนจะวางแผนเปรียบเทียบค่าพีเอชที่ได้จาก กระดาษยูนิเวอร์ซัลอินดิเคเตอร์ และการวิเคราะห์สีด้วยโค้ด Python และ OpenCV เพื่อลดข้อผิดพลาดจากการ มองเห็นของมนุษย์

3. การทดลองและรวบรวมข้อมูล

นักเรียนทำการทดลองจริงโดยหยดอินดิเคเตอร์ธรรมชาติลงในตัวอย่างน้ำและบันทึกการเปลี่ยนแปลงของสี จากนั้นใช้ กล้องถ่ายภาพสีของสารละลาย (นักเรียนต้องใช้กล่องหรือเครื่องมือที่ควบคุมแสงสำหรับถ่ายภาพ) และ ใช้โค้ด Python วิเคราะห์ค่าเฉลี่ยสีของอินดิเคเตอร์ เพื่อแปลงเป็นค่าพี pH ข้อมูลที่ได้จะถูกเปรียบเทียบกับค่า pH ที่วัดจาก กระดาษยูนิเวอร์ซัลอินดิเคเตอร์ และกระดาษลิตมัส เพื่อให้ได้ผลลัพธ์ที่แม่นยำยิ่งขึ้น

4. การวิเคราะห์ข้อมูลและสรุปผล

เมื่อนักเรียนได้ค่า pH จากการทดลองแล้ว พวกเขาจะนำข้อมูลมา วิเคราะห์ความสัมพันธ์ระหว่างค่า pH และ ปัญหาสิ่งแวดล้อมในแหล่งน้ำนั้น เช่น น้ำที่มี pH ต่ำกว่า 5 อาจเป็นผลมาจากกิจกรรมของคนในโรงเรียน หรือน้ำที่ มี pH สูงอาจเกิดจากการไม่ได้รับการดูแล ซึ่งนักเรียนสามารถใช้ Google sheet และ Pandas เพื่อสร้าง กราฟ เปรียบเทียบค่า pH ของแต่ละแหล่งน้ำ เพื่อให้เห็นแนวโน้มของคุณภาพน้ำในโรงเรียน

5. การนำเสนอและสะท้อนคิด

สุดท้าย นักเรียนจะนำเสนอผลการวิจัยของตนเองผ่าน pH Chart ที่สร้างจากโค้ด Python หรือพัฒนาเป็น เว็บ แอปด้วย Gradio เพื่อให้ผู้อื่นสามารถอัปโหลดภาพของอินดิเคเตอร์และให้โค้ดวิเคราะห์ค่า pH ได้ นักเรียนจะ สะท้อนถึง วิธีที่เทคโนโลยีช่วยให้การวิเคราะห์น้ำมีประสิทธิภาพขึ้น และอภิปรายแนวทางการแก้ไขปัญหาน้ำเป็น กรดหรือด่างในชุมชน ซึ่งช่วยให้พวกเขาพัฒนาทักษะการเป็นพลเมืองที่ใส่ใจสิ่งแวดล้อม

8. ผลลัพธ์และข้อสังเกต (Results and Observations)

1. ความสนใจของนักเรียน (Student Engagement)

การใช้โค้ด Python ในการวิเคราะห์ค่า pH ผ่านการประมวลผลภาพช่วยเพิ่มความสนใจของนักเรียนในการเรียนรู้ เกี่ยวกับ ปฏิกิริยาเคมีและสิ่งแวดล้อม นักเรียนพบว่าการใช้ อินดิเคเตอร์ธรรมชาติ เช่น ดอกอัญชันและกะหล่ำปลี ม่วง เป็นเรื่องที่น่าสนุกและเกี่ยวข้องกับชีวิตประจำวันมากขึ้น นอกจากนี้ การใช้ Gradio สร้างอินเทอร์เฟซแบบ โต้ตอบที่สามารถอัปโหลดภาพเพื่อทำนายค่า pH ได้ทันที ทำให้นักเรียนรู้สึกตื่นเต้นกับการทดลองมากขึ้น อย่างไร ก็ตาม นักเรียนบางส่วนอาจพบอุปสรรคในการทำความเข้าใจหลักการทำงานของโค้ด เช่น White Balance, การ เปรียบเทียบค่า RGB, และอัลกอริทึม Euclidean Distance ซึ่งต้องใช้เวลาในการอธิบายและฝึกฝน

2. พัฒนาการด้านการเรียน (Learning Gains)

จากการทดลองใช้โค้ดในบทเรียน พบว่านักเรียนสามารถ เข้าใจแนวคิดเรื่องค่า pH, อินดิเคเตอร์ และผลกระทบ ของความเป็นกรด-เบสต่อสิ่งแวดล้อมได้ดียิ่งขึ้น นอกจากนี้ นักเรียนยังได้พัฒนาทักษะด้าน การคิดเชิงตรรกะ (Logical Thinking) และการเขียนโค้ดเบื้องต้น ผ่านการทำงานกับ Python, OpenCV และ NumPy นักเรียน สามารถ วิเคราะห์และเปรียบเทียบผลการทดลองจากอินดิเคเตอร์ธรรมชาติ กับผลลัพธ์จากการประมวลผลภาพ ทำให้เข้าใจข้อจำกัดของวิธีการวัดค่า pH แบบดั้งเดิมมากขึ้น

ในแง่ของ การพัฒนาทักษะการเขียนโค้ด นักเรียนที่มีพื้นฐานด้านการเขียนโปรแกรมสามารถเข้าใจและปรับแต่ง โค้ดได้รวดเร็ว ขณะที่นักเรียนที่ไม่มีพื้นฐานอาจต้องการคำแนะนำเพิ่มเติม อย่างไรก็ตาม เมื่อนักเรียนได้ลองรัน โค้ดและเห็นผลลัพธ์จากภาพถ่ายของอินดิเคเตอร์จริง พวกเขาจะเข้าใจหลักการทำงานของโค้ดได้ดีขึ้น

3. อุปสรรคหรือปัญหา (Challenges)

แม้ว่าโค้ดนี้สามารถช่วยเพิ่มความแม่นยำในการวิเคราะห์ค่า pH ได้ แต่ยังมีข้อจำกัดที่อาจพบในการใช้งานจริง เช่น ปัญหาเกี่ยวกับแสงและเงาของภาพ ซึ่งอาจส่งผลให้การตรวจจับสีคลาดเคลื่อนได้ หากไม่มีการควบคุม สภาพแวดล้อมของการถ่ายภาพ ปัญหานี้สามารถแก้ไขได้โดยการใช้ White Balance และ Histogram Matching อย่างไรก็ตาม นักเรียนอาจต้องฝึกฝนเพิ่มเติมเกี่ยวกับการถ่ายภาพตัวอย่างน้ำในสภาพแสงที่เหมาะสม นอกจากนี้ ข้อจำกัดด้านอุปกรณ์และการเชื่อมต่ออินเทอร์เน็ต เป็นอีกปัจจัยที่อาจส่งผลต่อการใช้งานโค้ด นักเรียน บางกลุ่มอาจไม่มีคอมพิวเตอร์ที่รองรับ OpenCV ได้ดี หรือบางโรงเรียนอาจมีอินเทอร์เน็ตที่ไม่เสถียร ทำให้การรัน โค้ดผ่าน Google Colab อาจล่าช้า การเตรียมอุปกรณ์และแผนสำรอง เช่น การใช้คอมพิวเตอร์ของโรงเรียน หรือ รันโค้ดแบบออฟไลน์ผ่าน Jupyter Notebook จึงเป็นสิ่งที่ควรคำนึงถึงในการนำไปใช้ในห้องเรียน

9. สรุปผลและแนวทางในอนาคต (Conclusion and Future Directions)

แนวทางในการขยายผลและปรับปรุงในอนาคต

1. การพัฒนาเพิ่มเติม

- O เพิ่มฟีเจอร์หรือองค์ประกอบใหม่ เช่น การประยุกต์ใช้เทคโนโลยีเสริม (เช่น แบบจำลองเสมือน จริง หรือการจำลองสถานการณ์) เพื่อเพิ่มประสิทธิภาพการเรียนรู้
- O ปรับปรุงสื่อการสอนให้ครอบคลุมหัวข้อที่ลึกซึ้งขึ้น หรือเพิ่มกิจกรรมที่เน้นการปฏิบัติจริง เพื่อ เสริมสร้างประสบการณ์การเรียนรู้

2. การขยายผล

- O ขยายการใช้งานกิจกรรมนี้สู่ระดับชั้นอื่น ๆ หรือวิชาอื่น ๆ ที่มีความเกี่ยวข้อง เช่น นำไป ประยุกต์ใช้ในวิชาเคมี, ฟิสิกส์ หรือวิทยาศาสตร์สิ่งแวดล้อม
- O นำโครงงานไปประยุกต์ใช้ในสถานการณ์จริง (Real-world Data) เช่น การทดลองในชุมชน หรือ การเก็บข้อมูลจากสถานที่จริง เพื่อเสริมความเชื่อมโยงระหว่างทฤษฎีกับการปฏิบัติ

3. แนวทางการวิจัยหรือสอนในอนาคต

- O พัฒนากิจกรรมให้สอดคล้องกับนโยบายการศึกษาสมัยใหม่ เช่น การเรียนรู้แบบ Personalized Learning หรือการเรียนรู้เชิงปัญหา (Problem-based Learning)
- O ศึกษาผลกระทบระยะยาวของกิจกรรมที่มีต่อการพัฒนาทักษะทางวิทยาศาสตร์ เช่น การคิดเชิง ระบบ (Systems Thinking) หรือทักษะการแก้ปัญหา (Problem-Solving Skills)
- O สำรวจความคิดเห็นของผู้เรียนและครูผู้สอนเพิ่มเติม เพื่อปรับปรุงกิจกรรมให้เหมาะสมกับบริบท การเรียนรู้ที่แตกต่างกัน

10. บรรณานุกรม (References)

วิจารณ์ พานิช. (2556, 26 ตุลาคม). นวัตกรรมสู่การเป็นประเทศแห่งการศึกษา. https://www.gotoknow.org/posts/565909

12. ภาคผนวก (Appendices) (ถ้ามี)

• โค้ดฉบับเต็ม (กรณีไม่ได้ใส่ทั้งหมดใน Section 6)

```
import cv2
import numpy as np
import matplotlib.pyplot as plt
from google.colab import files
import re
from collections import defaultdict
IMAGE SIZE = (200, 200)
uploaded = files.upload()
ph data = defaultdict(list)
for filename in uploaded.keys():
    match = re.search(r'pH(\d+)', filename)
        ph = int(match.group(1))
        img = cv2.imread(filename)
        img = cv2.cvtColor(img, cv2.COLOR BGR2RGB) # **unlan BGR → RGB**
        img = cv2.resize(img, IMAGE SIZE) # **ปรับขนาดให้เท่ากัน**
        plt.figure()
        plt.imshow(img)
        plt.title(f"pH {ph}")
        plt.axis("off")
        plt.show()
        ph data[ph].append(img)
ph values = sorted(ph data.keys())
colors = []
for ph in ph values:
    img stack = np.stack(ph data[ph], axis=0) # **รวมอาร์เรย์ให้มีขนาดเดียวกัน**
    avg img = np.mean(img stack, axis=0).astype(np.uint8) # คำนวณค่นกลี่ยของภาพทั้งหมด
    avg_color = np.mean(avg_img.reshape(-1, 3), axis=0).astype(int) # คำนวณเกลี่ยของสีทั้ง
    colors.append(avg color)
```