Пусть f(x) определена в (a;b).

<u>Определение</u>. Функция f(x) называется **возрастающей (убывающей)** на (a;b) , если $\forall x_1, x_2 \in (a;b)$ выполняется

$$x_1 < x_2 \Longrightarrow f(x_1) < f(x_2) (f(x_1) > f(x_2))$$

Теорема 1. Признаки возрастания и убывания функции.

Если $f'(x) > 0, \forall x \in (a; b)$ то f(x) возрастает на (a; b);

Если $f'(x) < 0, \forall x \in (a; b)$ то f(x) убывает на (a; b).

<u>Доказательство</u>. Пусть $x_1 < x_2$. По теореме Лагранжа

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1), x_1 < c < x_2.$$

Очевидно, $f'(c) > 0 \Longrightarrow f(x_2) > f(x_1)$ и $f'(c) < 0 \Longrightarrow f(x_2) < f(x_1)$, что и т.д. .

<u>Следствие</u>. Если f'(x) имеет $\forall x \in (a; b)$ один и тот же знак, то f(x) монотонна на (a; b).

<u>Определение</u>. Точка x_0 называется точкой **локального максимума (минимума) ,** если для всех x , принадлежащих некоторой окрестности точки x_0 , выполняется неравенство

$$f(x) \le f(x_0) \left(f(x) \ge f(x_0) \right)$$

Общее название таких точек – точки **локального экстремума** . Обычно слово **локальный** ради краткости опускается.

Примеры.

- 1) $f(x) = \sin x$ имеет бесконечно много точек экстремума.
- 2) Любая монотонная функция не имеет точек экстремума (почему?).
- 3) f(x) = |x| имеет единственную точку экстремума.

Теорема 2. (Необходимое условие экстремума).

- а) Если x_0 точка **локального экстремума** дифференцируемой функции f(x) , то $f'(x_0)=0.$ (1)
- б) Обратное утверждение неверно, т.е. (1) не является достаточным условием экстремума.

Доказательство.

- а) Эта теорема просто другая формулировка теоремы Ферма (объясните).
- б) Например, функция $f(x) = x^3$ удовлетворяет условию (1) при $x_0 = 0$, но x_0 не является точкой экстремума (докажите).

Замечания.

В этой теореме предполагается, что функция f(x) дифференцируема. Однако существуют функции (f(x) = |x|), которые не дифференцируемы в точке экстремума.

<u>Пример</u>. $f(x) = x^3 + 2x^2 + x$. Найдем точки, в которых выполнено условие (1).

$$f'(x) = 3x^2 + 4x + 1 = 0.$$
 $x_1 = -1, x_2 = -1/3.$

Из необходимого условия (1) следует, что если f(x) имеет точки экстремума, то это хотя бы одна из двух: -1; -1/3; (возможно, обе). Пока что неизвестно, действительно ли это точки экстремума. Чтобы это выяснить, нужны дополнительные условия.

Теорема 3. Достаточное условие экстремума (по первой производной).

Пусть f(x) непрерывна в окрестности точки x_0 , а ее производная меняет знак при увеличении x от значений, меньших x_0 , до значений, больших x_0 , то x_0 — точка экстремума.

При этом, если знак производной меняется с + на - , то x_0 - точка максимума, если же с - на + , то x_0 - точка минимума.

<u>Доказательство</u>. Пусть, например, f'(x) > 0 при $x < x_0$ и f'(x) < 0 при $x > x_0$. Тогда f(x) возрастает слева от x_0 и убывает справа от x_0 . Поэтому по обе стороны от x_0 выполняется неравенство $f(x) < f(x_0)$. Значит, x_0 — точка максимума.

Замечание. В этой теореме от функции f(x) требуется только непрерывность в точке x_0 , а производная в этой точке может и не существовать.

Теорема 4. Достаточное условие экстремума (по второй производной).

Если выполнены 2 условия:

- 1) $f'(x_0) = 0$;
- 2) $f''(x_0) \neq 0$,

то x_0 — точка экстремума.

При этом, если $f''(x_0) < 0$, то x_0 — точка максимума, а если $f''(x_0) > 0$, то x_0 — точка минимума.

Доказательство. По определению второй производной имеем

$$f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f'(x)}{x - x_0}$$

Пусть, например, $f''(x_0) > 0$. Тогда в малой окрестности точки x_0 выполняется неравенство (почему?)

$$\frac{f'(x)}{x - x_0} > 0$$

Но $x-x_0$ меняет знак с минуса на плюс при переходе x через x_0 . Значит, и f'(x) меняет знак с минуса на плюс. По теореме 3 получаем минимум.

Глобальный экстремум

Ранее была доказана теорема о существовании наибольшего и наименьшего значений функции, непрерывной на [a;b] . Точки, в которых достигаются эти значения, называются точками **глобального экстремума**.

Если x_0 — точка глобального экстремума на [a;b] и $x_0 \neq a$ и $x_0 \neq b$, то x_0 является и точкой локального экстремума. Отсюда получаем следующий алгоритм поиска глобального экстремума.

Пусть f(x) непрерывна на [a;b] и дифференцируема всюду, кроме, может быть, конечного числа точек.

1) Ищем точки, подозрительные на локальный экстремум, т.е. все решения уравнения f'(x) = 0, а также точки разрыва производной (если таковые имеются).

В этой задаче не нужно проверять, действительно ли это точки экстремума.

- 2) Вычисляем значения f(x) во всех найденных точках, а также на концах отрезка.
- 3) Находим наибольшее и наименьшее из полученных значений.

<u>Пример</u>. f(x) задана на [-2; 2]. Требуется найти ее наибольшее и наименьшее значения

$$f(x) = \begin{cases} x^3 - 3x, & -2 \le x \le 0 \\ -0.5x, & 0 < x \le 2 \end{cases}$$

1) Заметим, что f(0-0)=f(0+0)=f(0). Поэтому f(x) непрерывна на [-2;2]. Далее Очевидно (почему?), производная может иметь точку разрыва только при x=0. Имеем f'(0-0)=-3, f'(0+0)=-0,5. Значит, производная имеет разрыв при x=0.

Решаем уравнение f'(x) = 0: $3x^2 - 3 = 0$, x = -1.

- 2) Вычисляем: f(-2) = -2; f(-1) = 2; f(0) = 0; f(2) = -1.
- 3) Отсюда наибольшее и наименьшее значения равны 2 и (-2) соответственно.

Выпуклость

Рассмотрим график функции f(x), дифференцируемой на (a;b). Пусть M(x;y) — любая точка на графике и l — касательная к графику в точке M(x;y).

Определение.

График называется **выпуклым вверх(вниз) в точке** M(x; y), если в малой окрестности этой точки график расположен ниже(выше) касательной.

Определение.

График называется выпуклым вверх(вниз), если он выпуклый вверх(вниз) в каждой своей точке.

Термин выпуклость применяется не только к графику, но и к самой функции.

Заметим, что в этом определении выпуклости от функции требуется только наличия касательной к графику, а сама функция должна быть дифференцируемой. Например, к функции $f(x) = e^{|x|}$ это определение неприменимо (почему?).

Приведем более общее определение выпуклости, в котором от функции требуется только непрерывность.

Определение.

График называется **выпуклым вверх(вниз),** если для любых точек A и Bграфика дуга ABграфика расположена выше(ниже) хорды AB.

Согласно этому определению $e^{|x|}$ выпукла (вверх/вниз?)

Приведем пример функции, у которой касательная существует во всех точках графика, а первая производная существует не во всех точках.

<u>Пример</u>. $f(x) = \sqrt[3]{x}$. Очевидно, f'(0) не существует, а касательная в точке (0;0) имеется. В этом случае касательная параллельна оси ОХ, поэтому в точке (0;0)

понятие выпуклости не определено. При этом график выпуклый вниз на $(-\infty; 0)$ и выпуклый вверх на $(0; +\infty)$.

<u>Определение</u>. Точка на графике, разделяющая участки с противоположными направлениями выпуклости, называется **точкой перегиба**.

В рассмотренном выше примере точка перегиба -(0;0).

Теорема. Если $f''(x) < (>0) \ \forall x \in (a;b)$, то график функции f(x) выпуклый вверх(вниз).

<u>Доказательство</u>. Уравнение касательной в точке $M_0(x_0; y_0)$: $y_{\text{кас}} = f(x_0) + f'(x_0)(x - x_0)$. Рассмотрим разность ординат соответствующих точек на касательной и на графике

$$y - y_{\text{Kac}} = f(x) - [f(x_0) + f'(x_0)(x - x_0)]$$

Эта разность является бесконечно малой при $x \to x_0$. Сравним ее с $(x-x_0)^2$ с помощью правила Лопиталя.

$$\lim_{x \to x_0} \frac{(y - y_{\text{KaC}})}{(x - x_0)^2} = \lim_{x \to x_0} \frac{(y - y_{\text{KaC}})'}{2(x - x_0)} = \frac{1}{2} \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = \frac{1}{2} f''(x_0)$$

Это означает, что

$$\frac{(y - y_{\text{кас}})}{(x - x_0)^2} = \frac{1}{2} f''(x_0) + \alpha, \qquad \alpha - \text{беск. малая при } x \to x_0$$
 (2)

Поэтому в малой окрестности точки x_0 при $x \neq x_0$ знак правой части совпадает со знаком $\frac{1}{2}f''(x_0)(x-x_0)^2$, т.е. со знаком $f''(x_0)$.

Если $f''(x_0) < 0$, то и $y - y_{\rm kac} < 0 \implies y < y_{\rm kac}$ при $x \ne x_0$. Это означает, что график в малой окрестности $M_0(x_0;y_0)$ расположен ниже касательной.

Теорема. Необходимое условие перегиба.

Пусть $f^{\prime\prime}(x)$ непрерывна в окрестности x_0 , включая и точку x_0 .

Если
$$M_0(x_0; y_0)$$
 точка перегиба, то $f''(x_0) = 0$. (3).

<u>Доказательство</u>. Пусть M_0 — точка перегиба и $f''(x_0) \neq 0$, например, $f''(x_0) > 0$.

Тогда f''(x)>0 во всей окрестности точки x_0 . По доказанной выше теореме график в окрестности $M_0(x_0;y_0)$ выпуклый вниз, а это противоречит тому, что M_0 — точка перегиба. Аналогично рассматривается случай $f''(x_0)<0$.

Остается единственный вариант: $f''(x_0) = 0$. Теорема доказана.

 $\underline{3}$ амечание. Условие (3) необходимо, но недостаточно для перегиба. Например, f''(0)=0 для $f(x)=x^4$, но (0;0) не является точкой перегиба.

Асимптоты

<u>Определение</u>. Пусть точка M перемещается по кривой K так, что ее расстояние от начала координат стремится к ∞ . Если при этом расстояние от точки M до некоторой прямой L стремится к 0 , то L называется **асимптотой** кривой K.

Асимптоты, по их расположению относительно осей координат, можно разбить на две группы: вертикальные и наклонные.

Каждой точке **бесконечного разрыва** функции соответствует **вертикальная** асимптота. Это следует из сравнения определения бесконечного разрыва и определения асимптоты.

Для наклонных асимптот справедлива следующая теорема.

Теорема. Для того, чтобы прямая y = kx + b являлась асимптотой графика функции f(x), необходимо и достаточно, чтобы существовал хотя бы одна из двух пар пределов

$$k = \lim_{x \to +\infty} f(x)/x; \quad b = \lim_{x \to +\infty} [f(x) - kx] \tag{4}$$

$$k = \lim_{x \to -\infty} f(x)/x; \quad b = \lim_{x \to -\infty} [f(x) - kx] \tag{5}$$

Если формулы (4) и (5) дают разные значения чисел k,b, то график имеет две асимптоты : одну на $+\infty$, другую — на $-\infty$. Возможен также случай, когда существуют асимптоты только на $+\infty$ или только на $-\infty$.

Доказательство.

а) Достаточность.

Пусть существуют пределы (4) . Докажем, что прямая y = kx + b является асимптотой.

Из (4)
$$b=f(x)-kx+\alpha, \ \alpha\to 0$$
 при $x\to +\infty.$ Отсюда $f(x)-(kx+b)=-\alpha\to 0.$ Доказано.

б) Необходимость.

Пусть прямая y = kx + b является асимптотой на $+\infty$. Докажем (4). По условию имеем $f(x) - (kx + b) \to 0$.

Тем более $[f(x)-(kx+b)]/x=f(x)/x-k-b/x\to 0$. Отсюда $k=\lim_{x\to +\infty}f(x)/x$. Далее (6) запишем в виде $(f(x)-kx)-b\to 0$. Отсюда следует и второй предел из (4). Примеры.

- 1) $f(x) = \begin{cases} x & , & x < 0 \\ xe^{-x}, & x \geq 0 \end{cases}$. Функция имеет разные асимптоты на $+\infty$ и на $-\infty$. Найдите их. Начертите примерный график.
- 2) $f(x) = x + 1/(x^2 + 1)$. Одна и та же асимптота на $+\infty$ и на $-\infty$.

3)
$$f(x)=\begin{cases} 1 & \text{, } x=0 \\ \sin x/x \text{, } x \neq 0 \end{cases}$$
 Одна и та же асимптота на $+\infty$ и на $-\infty$.

Кривизна кривой

Нам понадобится понятие длины кривой. Это понятие нуждается в строгом определении, но мы его отложим до следующего семестра, а пока что будем опираться на интуитивное представление о том, что такое длина кривой.

Пусть кривая K — график дифференцируемой функции y=f(x). K — **гладкая** кривая (в каждой ее точке можно провести касательную). Рассмотрим отрезок кривой между точками M_0 , M. Пусть Δl — длина этого отрезка кривой, M_0 фиксирована, а M перемещается по кривой так, что $\Delta l \to 0$. Расстояние между точками M_0 , M равно $|M_0M| = \sqrt{(x-x_0)^2 + (y-y_0)^2} = \sqrt{(\Delta x)^2 + (\Delta y)^2}$.

Учитывая, что $|M_0M| \sim \Delta l$ (дуга эквивалентна хорде!), получаем

$$\Delta l \sim \sqrt{(\Delta x)^2 + (\Delta y)^2} = \Delta x \sqrt{1 + (\Delta y / \Delta x)^2} \sim \Delta x \sqrt{1 + (f'(x_0))^2}$$

<u>Определение</u>. Кривизной кривой K в точке $M_0(x_0,y_0)$ называется число, определяемое формулой

$$k(x_0) = \lim_{\Delta l \to 0} \Delta \varphi / \Delta l \tag{8}$$

 M_0 , M точки на графике, φ_0 , φ — углы наклона касательных в M_0 , M , а $\Delta \varphi = \varphi - \varphi_0$ — угол между касательными в точках M_0 , M .

Вычислять кривизну прямо по формуле (8) затруднительно. Заметим, что $\Delta \phi \sim d \phi(x_0) =$

$$\varphi'(x_0)\Delta x; \quad \Delta l = \sqrt{1+\left(f'(x_0)\right)^2}\Delta x. \;$$
 Kpome toro, $\; f'(x)=tg(\varphi).$

Поэтому $\varphi(x) = arctg(f'(x))$ и формула (8) с учетом (7) принимает вид

$$k(x_0) = \frac{\varphi'(x_0)}{\sqrt{1 + (f'(x_0))^2}}$$
(9)

По правилу дифференцирования сложной функции имеем

$$\left(arctg(f'(x))\right)' = f''(x)/(1+[f'(x)]^2)$$
. Подставив это выражение в (9), получим $k(x_0) = \frac{|f''(x_0)|}{\left(1+\left(f'(x_0)\right)^2\right)^{3/2}}$ (10)

Знак модуля в (10) добавлен, так как знак f''(x) связан только с направлением выпуклости графика и не имеет отношения к **кривизне**.

Примеры.

1) $f(x) = \sin x$. Сравним кривизну графика при $x = \pi/6$ и $x = \pi/2$.

$$k(\pi/3) = \frac{\sin(\pi/6)}{(1+\cos^2(\pi/6))^{3/2}} = 0.5/(1.75)^{1.5} \approx 0.22.$$
$$k(\pi/2) = \frac{\sin(\pi/2)}{(1+\cos^2(\pi/2))^{3/2}} = 1.$$

2) $f(x) = \sqrt{r^2 - x^2}$, $|x| \le r$. Кривая – полуокружность. Здесь редкий случай, когда легко вычислить кривизну прямо по формуле (8). Имеем $\Delta l = r\Delta \phi \Longrightarrow k = \lim \Delta \phi / r\Delta \phi = 1/r$

Вопросы для самоконтроля

- 1) Пусть $f'(x) \ge 0 \ \forall x \in (a;b)$. Следует ли отсюда, что f(x) возрастает на (a;b)?
- 2) f(a) > g(a) и f'(x) < 0, g'(x) > 0 $\forall x \in (a; +\infty)$. Обязательно ли пересекутся графики этих функций?
- 3) Пусть x_0 точка локального экстремума для дифференцируемой функции f(x). Будет ли x_0 точкой локального экстремума для $g(x) = f^2(x)$?
- 4) Пусть x_0 точка локального экстремума для функции f(x) , причем $f'(x_0)$ не существует. Приведите пример.

- 5) Пусть f(x) многочлен степени n с вещественными коэффициентами. Каково наибольшее возможное число точек экстремума у f(x)?
- 6) Пусть f(x) многочлен степени 5 с вещественными коэффициентами. Может ли f(x) не иметь точек экстремума?
- 7) Верно ли , что между двумя точками максимума дифференцируемой функции всегда находится точка минимума?
- 8) Может график иметь бесконечно много точек пересечения со своей асимптотой?
- 9) f(x) = P(x)/Q(x), P(x), Q(x) многочлены степени m и n с вещественными коэффициентами. При каких условиях график функции f(x) имеет асимптоты ? Только наклонные? Только вертикальные? И те и другие?
- 10) $f''(x) = x^3 + 2x$. Может ли график функции f(x) иметь точку перегиба?
- 11) Пусть g(x) = xf(x), f(0) > 0, (f(x) -дифференцируемая функция). Может ли x = 0 быть точкой экстремума для g(x)?
- 12) Графики функций f(x), g(x) имеют общую наклонную асимптоту на $+\infty$. Найдите $\lim_{x\to +\infty}[f(x)-g(x)]$.
- 13) Найдите кривизну кривой $y = \sqrt{a^2 x^2}$ с помощью формулы (8).