11 ensembles

June 23, 2022

CPSC 330 Applied Machine Learning

1 Lecture 11: Ensembles

UBC 2022 Summer

Instructor: Mehrdad Oveisi

The interests of truth require a diversity of opinions.

by John Stuart Mill

1.1 Imports

```
[1]: import os
     %matplotlib inline
     import string
     import sys
     from collections import deque
     import matplotlib.pyplot as plt
     import numpy as np
     import pandas as pd
     sys.path.append("code/.")
     from plotting_functions import *
     from sklearn import datasets
     from sklearn.compose import ColumnTransformer, make_column_transformer
     from sklearn.dummy import DummyClassifier, DummyRegressor
     from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
     from sklearn.impute import SimpleImputer
     from sklearn.linear_model import LogisticRegression
```

```
from sklearn.model_selection import (
    GridSearchCV,
    RandomizedSearchCV,
    cross_val_score,
    cross_validate,
    train_test_split,
)
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder, StandardScaler
from sklearn.svm import SVC, SVR
from sklearn.tree import DecisionTreeClassifier
from utils import *
```

1.2 Lecture learning objectives

From this lecture, you will be able to

- Use scikit-learn's RandomForestClassifier and explain its main hyperparameters.
- Explain randomness in random forest algorithm.
- Use other tree-based models such as XGBoost and LGBM.
- Employ ensemble classifier approaches, in particular model averaging and stacking.
- Explain voting and stacking and the differences between them.
- Use scikit-learn implementations of these ensemble methods.

1.3 Motivation

• Ensembles are models that combine multiple machine learning models to create more powerful models.

1.3.1 The Netflix prize

Leaderboard

Showing Test Score. <u>Click here to show quiz score</u>

Display top 20

■ leaders.

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time						
Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos										
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28						
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22						
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40						
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31						
5	Vandelay Industries!	0.8591	9.81	2009-07-10 00:32:20						
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56						
7	BellKor in BiqChaos	0.8601	9.70	2009-05-13 08:14:09						
8	<u>Dace</u>	0.8612	9.59	2009-07-24 17:18:43						

Source

• Most of the winning solutions for Kaggle competitions involve some kind of ensembling. For example:

IEEE-CIS Fraud Detection

Can you detect fraud from customer transactions?

Tags: tabular data, binary classification

S.No	Discussion Title
1	1st Place Solution - Part 1

Models:

We had 3 main models (with single scores):

- Catboost (0.963915 public / 0.940826 private)
- LGBM (0.961748 / 0.938359)
- XGB (0.960205 / 0.932369)

Key idea: Groups can often make better decisions than individuals, especially when group members are diverse enough.

The Wisdom of Crowds

A NEW YORK TIMES BUSINESS BESTSELLER "As entertaining and thought-provoking as The Tipping Point by Malcolm Gladwell. . . . The Wisdom of Crowds ranges far and wide." -The Boston Globe THE WISDOM OF CROWDS JAMES SUROWIECKI WITH A NEW AFTERWORD BY THE AUTHOR

1.3.2 Tree-based ensemble models

- A number of ensemble models in ML literature.
- Most successful ones on a variety of datasets are tree-based models.
- We'll briefly talk about two such models:
 - Random forests
 - Gradient boosted trees
- We'll also talk about averaging and stacking.

1.3.3 Tree-based models

- Decision trees models are
 - Interpretable
 - They can capture **non-linear** relationships
 - They do not require scaling of the data and theoretically can work with categorical features
- But with a single decision trees are likely to **overfit**.
- Key idea: Combine multiple trees to build stronger models.
- These kinds of models are extremely popular in industry and machine learning competitions

1.3.4 Data

• Let's work with the adult census dataset. We had used this dataset in hw3 as well. So, if you still have the file, you can copy it (or add a symlink to it):

cp hw/hw3/adult.csv lectures/data/

```
[2]:
            age workclass fnlwgt
                                        education
                                                   education.num
     5514
             26
                   Private
                            256263
                                          HS-grad
                                          HS-grad
     19777
             24
                   Private 170277
                                                                9
                                        Bachelors
     10781
             36
                   Private
                             75826
                                                               13
     32240
             22 State-gov
                                     Some-college
                             24395
                                                               10
                 Local-gov
     9876
                            356689
                                        Bachelors
                                                               13
```

```
occupation
                                            relationship
          marital.status
                                                           race
                                                                    sex
5514
            Never-married
                             Craft-repair
                                           Not-in-family
                                                          White
                                                                   Male
                            Other-service Not-in-family
19777
            Never-married
                                                          White Female
10781
                Divorced
                             Adm-clerical
                                               Unmarried
                                                          White
                                                                 Female
32240
      Married-civ-spouse
                             Adm-clerical
                                                    Wife
                                                                Female
                                                          White
      Married-civ-spouse Prof-specialty
9876
                                                 Husband
                                                          White
                                                                   Male
```

```
capital.gain
                     capital.loss
                                   hours.per.week native.country income
5514
                  0
                                0
                                                25 United-States
                                                                  <=50K
19777
                  0
                                0
                                                35 United-States <=50K
                  0
                                0
10781
                                                40 United-States <=50K
                  0
                                0
32240
                                                20 United-States <=50K
9876
                                                40 United-States <=50K
                  0
                                0
```

```
[3]: numeric_features = ["age", "fnlwgt", "capital.gain", "capital.loss", "hours.per.
```

```
categorical_features = [
         "workclass",
         "marital.status",
         "occupation",
         "relationship",
         "native.country",
     ]
     ordinal_features = ["education"]
     binary_features = ["sex"]
     drop_features = ["race", "education.num"]
     target_column = "income"
[4]: education_levels = [
         "Preschool",
         "1st-4th",
         "5th-6th",
         "7th-8th",
         "9th",
         "10th",
         "11th",
         "12th",
         "HS-grad",
         "Prof-school",
         "Assoc-voc",
         "Assoc-acdm",
         "Some-college",
         "Bachelors",
         "Masters",
         "Doctorate",
     ]
[5]: assert set(education_levels) == set(train_df["education"].unique())
[6]: numeric_transformer = make_pipeline(StandardScaler())
     ordinal_transformer = make_pipeline(
         OrdinalEncoder(categories=[education_levels], dtype=int)
     )
     categorical_transformer = make_pipeline(
         SimpleImputer(strategy="constant", fill_value="missing"),
         OneHotEncoder(handle_unknown="ignore", sparse=False),
     )
     binary_transformer = make_pipeline(
         SimpleImputer(strategy="constant", fill_value="missing"),
         OneHotEncoder(drop="if_binary", dtype=int),
```

```
preprocessor = make_column_transformer(
          (numeric_transformer, numeric_features),
          (ordinal_transformer, ordinal_features),
          (binary_transformer, binary_features),
          (categorical_transformer, categorical_features),
          ("drop", drop_features),
)
```

```
[7]: X_train = train_df_nan.drop(columns=[target_column])
y_train = train_df_nan[target_column]

X_test = test_df_nan.drop(columns=[target_column])
y_test = test_df_nan[target_column]
```

1.3.5 Do we have class imbalance?

- There is class imbalance. But without any context, both classes seem equally important.
- Let's use accuracy as our metric.

```
[8]: train_df_nan["income"].value_counts(normalize=True)
```

```
[8]: <=50K 0.757985
>50K 0.242015
Name: income, dtype: float64
```

```
[9]: scoring_metric = "accuracy"
```

Let's store all the results in a dictionary called results.

```
[10]: results = {}
```

1.3.6 Baselines

DummyClassifier baseline

```
[11]: dummy = DummyClassifier(strategy="most_frequent")
    results["Dummy"] = mean_std_cross_val_scores(
         dummy, X_train, y_train, return_train_score=True, scoring=scoring_metric
)
```

DecisionTreeClassifier baseline

• Let's try decision tree classifier on our data.

```
[12]: pipe_dt = make_pipeline(preprocessor, DecisionTreeClassifier(random_state=123))
results["Decision tree"] = mean_std_cross_val_scores(
    pipe_dt, X_train, y_train, return_train_score=True, scoring=scoring_metric
)
```

pd.DataFrame(results).T

```
[12]:

fit_time score_time test_score \
Dummy 0.013 (+/- 0.004) 0.010 (+/- 0.003) 0.758 (+/- 0.000)
Decision tree 0.281 (+/- 0.022) 0.026 (+/- 0.001) 0.813 (+/- 0.003)

train_score
Dummy 0.758 (+/- 0.000)
Decision tree 1.000 (+/- 0.000)
```

Decision tree is clearly **overfitting**.

1.4 Random forests

1.4.1 General idea

- A single decision tree is likely to overfit
- Use a **collection of diverse** decision trees
- Each tree overfits on some part of the data but we can reduce overfitting by averaging the results
 - can be shown mathematically

1.4.2 RandomForestClassifier

• Before understanding the details let's first try it out.

```
[13]: from sklearn.ensemble import RandomForestClassifier

pipe_rf = make_pipeline(
    preprocessor, RandomForestClassifier(random_state=123, n_jobs=-1)
)

results["Random forests"] = mean_std_cross_val_scores(
    pipe_rf, X_train, y_train, return_train_score=True, scoring=scoring_metric
)
pd.DataFrame(results).T
```

```
[13]:

fit_time score_time test_score \
Dummy 0.013 (+/- 0.004) 0.010 (+/- 0.003) 0.758 (+/- 0.000)
Decision tree 0.281 (+/- 0.022) 0.026 (+/- 0.001) 0.813 (+/- 0.003)
Random forests 1.822 (+/- 0.977) 0.171 (+/- 0.030) 0.857 (+/- 0.004)

train_score
Dummy 0.758 (+/- 0.000)
Decision tree 1.000 (+/- 0.000)
Random forests 1.000 (+/- 0.000)
```

The validation scores are better although it seems likes we are still overfitting.

1.4.3 How do they work?

- Decide how many decision trees we want to build
 - can control with n_estimators hyperparameter
- fit a diverse set of that many decision trees by injecting randomness in the classifier construction
- predict by voting (classification) or averaging (regression) of predictions given by individual models

1.4.4 Inject randomness in the classifier construction

To ensure that the trees in the random forest are different we inject randomness in two ways:

- 1. Data: Build each tree on a bootstrap sample (i.e., a sample drawn with replacement from the training set)
- 2. Features: At each node, select a random subset of features (controlled by max_features in scikit-learn) and look for the best possible test involving one of these features

An example of a bootstrap samples Suppose this is your original dataset: [1,2,3,4] - a sample drawn with replacement: [1,1,3,4] - a sample drawn with replacement: [3,2,2,2] - a sample drawn with replacement: [1,2,4,4] - ...

See Also (Optional) There is also something called ExtraTreesClassifier, where we add more randomness by consider a random subset of features at each split and random threshold.

1.4.5 The random forests classifier

Training time: - Create a collection (ensemble) of trees. - Grow each tree on an independent bootstrap sample from the data. - At each node: - Randomly select a subset of features out of all features (independently for each node). - Find the best split on the selected features. - Grow the trees to maximum depth.

Prediction time: - Vote the trees to get predictions for new example.

1.4.6 Example

- Let's create a random forest with 3 estimators.
- I'm using max_depth=2 for easy visualization.

• Let's get the feature names of transformed features.

```
[15]: feature_names = (
          numeric_features
          + ordinal_features
          + binary_features
```

```
+ list(
         pipe_rf_demo.named_steps["columntransformer"]
         .named_transformers_["pipeline-4"]
         .named_steps["onehotencoder"]
         .get_feature_names_out()
    )
)
pd.DataFrame(columns=feature_names) # Take a look at the feature names
```

[15]: Empty DataFrame

Columns: [age, fnlwgt, capital.gain, capital.loss, hours.per.week, education, sex, x0 Federal-gov, x0 Local-gov, x0 Never-worked, x0 Private, x0 Self-emp-inc, x0_Self-emp-not-inc, x0_State-gov, x0_Without-pay, x0_missing, x1_Divorced, x1 Married-AF-spouse, x1 Married-civ-spouse, x1 Married-spouse-absent, x1 Nevermarried, x1_Separated, x1_Widowed, x2_Adm-clerical, x2_Armed-Forces, x2_Craftrepair, x2_Exec-managerial, x2_Farming-fishing, x2_Handlers-cleaners, x2_Machine-op-inspct, x2_Other-service, x2_Priv-house-serv, x2_Prof-specialty, x2_Protective-serv, x2_Sales, x2_Tech-support, x2_Transport-moving, x2_missing, x3_Husband, x3_Not-in-family, x3_Other-relative, x3_Own-child, x3_Unmarried, x3 Wife, x4 Cambodia, x4 Canada, x4 China, x4 Columbia, x4 Cuba, x4 Dominican-Republic, x4_Ecuador, x4_El-Salvador, x4_England, x4_France, x4_Germany, x4_Greece, x4_Guatemala, x4_Haiti, x4_Holand-Netherlands, x4_Honduras, x4_Hong, x4_Hungary, x4_India, x4_Iran, x4_Ireland, x4_Italy, x4_Jamaica, x4_Japan, x4 Laos, x4 Mexico, x4 Nicaragua, x4 Outlying-US(Guam-USVI-etc), x4 Peru, x4_Philippines, x4_Poland, x4_Portugal, x4_Puerto-Rico, x4_Scotland, x4_South, x4 Taiwan, x4 Thailand, x4 Trinadad&Tobago, x4 United-States, x4 Vietnam, x4_Yugoslavia, x4_missing] Index: []

[0 rows x 86 columns]

• Let's sample a test example.

```
[16]: test_example = X_test.sample(1)
      print("Classes: ", pipe_rf_demo.classes_)
      print("Prediction by random forest: ", pipe_rf_demo.predict(test_example))
      transformed_example = preprocessor.transform(test_example)
      pd.DataFrame(transformed_example, columns=feature_names)
     Classes: ['<=50K' '>50K']
     Prediction by random forest: ['<=50K']</pre>
[16]:
              age
                     fnlwgt capital.gain capital.loss hours.per.week education \
                                -0.147166
      0 1.138787 -0.037063
                                               -0.21768
                                                              -2.069258
                                                                               4.0
        sex x0_Federal-gov x0_Local-gov x0_Never-worked ... x4_Puerto-Rico \
      0.0
                         0.0
                                       0.0
                                                        0.0 ...
                                                                           0.0
```

[1 rows x 86 columns]

- We can look at **different trees** created by random forest.
- Note that each tree looks at different set of features and slightly different data.

```
[17]: for i, tree in enumerate(
    pipe_rf_demo.named_steps["randomforestclassifier"].estimators_
):
    print("\n\nTree", i + 1)
    display(display_tree(feature_names, tree))
    print("\nPrediction:", tree.predict(preprocessor.transform(test_example)))
```

Tree 1

Prediction: [0.]

Tree 2

Prediction: [0.]

Tree 3

Prediction: [0.]

1.4.7 Some important hyperparameters:

- n_estimators: number of decision trees (higher = more complexity)
- max_depth: max depth of each decision tree (higher = more complexity)
- max_features: the number of features you get to look at each split (higher = more complexity)

1.4.8 Random forests: number of trees (n_estimators) and the fundamental tradeoff

Number of trees and fundamental trade-off

- Above: seems like we're beating the fundamental "tradeoff" by increasing training score and not decreasing validation score much.
- This is the promise of ensembles, though it's not guaranteed to work so nicely.

More trees are always better! We pick less trees for speed.

1.4.9 Strengths

- Usually **one of the best** performing **off-the-shelf** classifiers without heavy tuning of hyperparameters
- Don't require scaling of data
- Less likely to overfit
- Slower than decision trees because we are fitting multiple trees but **can easily parallelize training** because all trees are independent of each other
- In general, able to capture a much broader picture of the data compared to a single decision tree.

1.4.10 Weaknesses

- Require more memory
- Hard to interpret
- Tend not to perform well on high dimensional sparse data such as text data

Important Make sure to set the random_state for reproducibility. Changing the random_state can have a big impact on the model and the results due to the random nature of these models. Having more trees can get you a more robust estimate.

See Also (Optional) The original random forests paper by Leo Breiman.

1.5 Gradient boosted trees

Another popular and effective class of tree-based models is gradient boosted trees.

- No randomization
- The key idea is:combining many simple models called **weak learners to create a strong** learner
- They combine **multiple shallow** (depth 1 to 5) decision trees
- They build trees in a **serial manner**, where each tree tries to **correct the mistakes** of the previous one

1.5.1 Important hyperparameters

- n estimators
 - control the number of trees to build
- learning_rate
 - controls how strongly each tree tries to correct the mistakes of the previous trees
 - higher learning_rate
 - * means each tree can make stronger corrections,
 - * which means more complex model

We'll not go into the details. We'll look at brief examples of using the following three gradient boosted tree models.

- XGBoost
- LightGBM
- CatBoost

1.5.2 XGBoost

- Not part of sklearn but has similar interface.
- Install it in your conda environment: conda install -n cpsc330 -c conda-forge xgboost
- Supports missing values
- GPU training, networked parallel training
- Supports sparse data
- Typically better scores than random forests

1.5.3 LightGBM

- Not part of sklearn but has similar interface.
- Install it in your conda environment: conda install -n cpsc330 -c conda-forge lightgbm
- Small model size
- Faster
- Typically better scores than random forests

1.5.4 CatBoost

- Not part of sklearn but has similar interface.
- Install it in your conda environment: conda install -n cpsc330 -c conda-forge catboost
- Usually better scores but slower compared to XGBoost and LightGBM

```
[19]: import warnings

warnings.simplefilter(action="ignore", category=FutureWarning)
warnings.simplefilter(action="ignore", category=UserWarning)
```

```
[20]: from catboost import CatBoostClassifier
      from lightgbm.sklearn import LGBMClassifier
      from sklearn.tree import DecisionTreeClassifier
      from xgboost import XGBClassifier
      pipe_lr = make_pipeline(
          preprocessor, LogisticRegression(max_iter=2000, random_state=123)
      pipe_dt = make_pipeline(preprocessor, DecisionTreeClassifier(random_state=123))
      pipe_rf = make_pipeline(preprocessor, RandomForestClassifier(random_state=123))
      pipe_xgb = make_pipeline(
          preprocessor, XGBClassifier(random_state=123, eval_metric="logloss", __
       →verbosity=0)
      pipe_lgbm = make_pipeline(preprocessor, LGBMClassifier(random_state=123))
      pipe catboost = make pipeline(
          preprocessor, CatBoostClassifier(verbose=0, random_state=123)
      classifiers = {
          "logistic regression": pipe_lr,
          "decision tree": pipe_dt,
          "random forest": pipe_rf,
          "XGBoost": pipe_xgb,
          "LightGBM": pipe_lgbm,
          "CatBoost": pipe_catboost,
```

```
[21]: results = {}
[22]: dummy = DummyClassifier(strategy="most_frequent")
      results["Dummy"] = mean_std_cross_val_scores(
          dummy, X_train, y_train, return_train_score=True, scoring=scoring_metric
[23]: for (name, model) in classifiers.items():
          results[name] = mean_std_cross_val_scores(
              model, X train, y train, return train score=True, scoring=scoring metric
          )
     pd.DataFrame(results).T
[24]:
                                    fit_time
                                                     score_time
                                                                        test score \
                                              0.012 (+/- 0.004)
                                                                 0.758 (+/- 0.000)
     Dummy
                           0.016 (+/- 0.006)
                          2.360 (+/- 0.338) 0.044 (+/- 0.016)
                                                                 0.850 (+/- 0.006)
      logistic regression
      decision tree
                           0.343 (+/- 0.031) 0.031 (+/- 0.002)
                                                                 0.813 (+/- 0.003)
      random forest
                           2.409 (+/- 0.367) 0.151 (+/- 0.011)
                                                                 0.857 (+/- 0.004)
                           6.625 (+/- 6.009) 0.079 (+/- 0.007)
                                                                 0.870 (+/- 0.003)
     XGBoost
                           0.376 (+/- 0.047) 0.074 (+/- 0.006) 0.871 (+/- 0.004)
     LightGBM
                           8.199 (+/-0.663) 0.215 (+/-0.035) 0.872 (+/-0.003)
      CatBoost
                                 train_score
                           0.758 (+/- 0.000)
      Dummy
                           0.851 (+/- 0.001)
      logistic regression
      decision tree
                           1.000 (+/- 0.000)
      random forest
                           1.000 (+/- 0.000)
                           0.909 (+/- 0.002)
      XGBoost
                           0.892 (+/- 0.000)
     LightGBM
                           0.900 (+/- 0.001)
      CatBoost
```

Some observations - Keep in mind all these results are with default hyperparameters - Ideally we would carry out hyperparameter optimization for all of them and then compare the results. - We are using a particular scoring metric (accuracy in this case) - We are scaling numeric features but it shouldn't matter for these tree-based models. - Look at the std. Doesn't look very high. - The scores look more or less stable.

```
[25]: pd.DataFrame(results).T.sort_values('test_score')
```

```
[25]:
                                    fit_time
                                                     score_time
                                                                        test_score
      Dummy
                           0.016 (+/- 0.006)
                                              0.012 (+/- 0.004)
                                                                 0.758 (+/- 0.000)
      decision tree
                           0.343 (+/- 0.031)
                                              0.031 (+/- 0.002)
                                                                 0.813 (+/- 0.003)
                           2.360 (+/- 0.338)
                                              0.044 (+/- 0.016)
                                                                 0.850 (+/- 0.006)
      logistic regression
      random forest
                           2.409 (+/- 0.367) 0.151 (+/- 0.011)
                                                                 0.857 (+/- 0.004)
                           6.625 (+/- 6.009) 0.079 (+/- 0.007)
                                                                 0.870 (+/- 0.003)
      XGBoost
                           0.376 (+/- 0.047)
                                              0.074 (+/- 0.006)
                                                                 0.871 (+/- 0.004)
     LightGBM
      CatBoost
                           8.199 (+/- 0.663)
                                              0.215 (+/- 0.035)
                                                                 0.872 (+/- 0.003)
```

```
[26]: # comparison of results (excluding the the 'Dummy' row [1:])

cv_score_order = pd.DataFrame(results).T[1:].sort_values('test_score').index
print('\nCV scores:')
print(*cv_score_order, sep=' < ')

fit_time_order = pd.DataFrame(results).T[1:].sort_values('fit_time').index
print('\nFitting speeds:')
print(*fit_time_order, sep=' > ')
```

CV scores:

decision tree < logistic regression < random forest < XGBoost < LightGBM <
CatBoost</pre>

Fitting speeds:

decision tree > LightGBM > logistic regression > random forest > XGBoost >
CatBoost

- Decision trees and random forests overfit
 - Other models do not seem to overfit much.
- Fit times
 - Decision trees are fast but not very accurate
 - LightGBM is faster than decision trees and more accurate!
 - CatBoost fit time is highest followed by random forests.
 - There is not much difference between the validation scores of XGBoost, LightGBM, and CatBoost but it is about 48x slower than LightGBM!
 - XGBoost and LightGBM are faster and more accurate than random forest!
- Scores times
 - Prediction times are much smaller in all cases.

1.5.5 What classifier should I use?

Simple answer - Whichever gets the highest CV score making sure that you're not overusing the validation set.

Interpretability - This is an area of growing interest and concern in ML. - How important is

interpretability for you? - In the next class we'll talk about interpretability of non-linear models.

Speed/code maintenance - Other considerations could be speed (fit and/or predict), maintainability of the code.

Finally, you could use all of them!

1.6 Averaging

['workclass',

Earlier we looked at a bunch of classifiers:

```
[27]: print(*classifiers, sep=', ')
     logistic regression, decision tree, random forest, XGBoost, LightGBM, CatBoost
     What if we use all these models and let them vote during prediction time?
[28]: from sklearn.ensemble import VotingClassifier
      averaging_model = VotingClassifier(
          list(classifiers.items()), voting="soft"
        # need the list() here for cross_val to work!
[29]: from sklearn import set_config
      set_config(display="diagram") # global setting
[30]: averaging_model
[30]: VotingClassifier(estimators=[('logistic regression',
                                     Pipeline(steps=[('columntransformer',
      ColumnTransformer(transformers=[('pipeline-1',
      Pipeline(steps=[('standardscaler',
                       StandardScaler())]),
      ['age',
       'fnlwgt',
       'capital.gain',
       'capital.loss',
       'hours.per.week']),
      ('pipeline-2',
      Pipeline(steps=[('ordinalencoder',
                       OrdinalEncoder(categories=[['Preschool',
                                                    '1st-4th'...
      Pipeline(steps=[('simpleimputer',
                       SimpleImputer(fill_value='missing',
                                      strategy='constant')),
                      ('onehotencoder',
                       OneHotEncoder(handle_unknown='ignore',
                                      sparse=False))]),
```

```
'marital.status',
 'occupation',
 'relationship',
 'native.country']),
('drop',
'drop',
['race',
 'education.num'])])),
                                                 ('catboostclassifier',
                                                  <catboost.core.CatBoostClassifier</pre>
object at 0x7fd6e5898310>)]))],
                  voting='soft')
```

This VotingClassifier will take a *vote* using the predictions of the constituent classifier pipelines.

Main parameter: voting - voting='hard' - it uses the output of predict and actually votes. - voting='soft' - with voting='soft' it averages the output of predict proba and then thresholds / takes the larger.

• The choice depends on whether you trust predict proba from your base classifiers - if so, it's nice to access that information.

```
[31]: averaging_model.fit(X_train, y_train);
```

- What happens when you fit a VotingClassifier?
 - It will fit all constituent models.

Note It seems sklearn requires us to actually call fit on the VotingClassifier, instead of passing in pre-fit models. This is an implementation choice rather than a conceptual limitation.

Let's look at particular test examples where income is ">50k" (y=1):

```
[32]: test_g50k = (test_df.query("income == '>50K'")
                   .sample(4, random state=2)
                   .drop(columns=["income"]))
      test_150k = (test_df.query("income == '<=50K'")</pre>
                   .sample(4, random_state=2)
                   .drop(columns=["income"]))
[33]: averaging_model.classes_
```

```
[33]: array(['<=50K', '>50K'], dtype=object)
```

```
[34]: voting = {"Voting classifier": averaging_model.predict(test_g50k)}
      pd.DataFrame(voting)
```

```
「341:
        Voting classifier
                      >50K
      1
                      >50K
```

```
2 >50K
3 <=50K
```

For hard voting, these are the votes:

```
[35]: hard = {
    name: classifier.predict(test_g50k)
    for name, classifier in averaging_model.named_estimators_.items()
}
hard.update(voting)
pd.DataFrame(hard)
```

```
[35]:
                                                                        LightGBM
         logistic regression decision tree random forest
                                                                XGBoost
      1
                            1
                                             1
                                                             1
                                                                      1
                                                                                 1
      2
                            1
                                             0
                                                             1
                                                                      1
                                                                                 1
      3
                            0
                                             0
                                                             0
                                                                                 0
```

```
CatBoost Voting classifier
0 1 >50K
1 1 1 >50K
2 1 >50K
3 0 <=50K
```

For soft voting, these are the scores:

```
[36]: soft = {
    name: classifier.predict_proba(test_g50k)[:,1]
    for name, classifier in averaging_model.named_estimators_.items()
}
soft.update(voting)
pd.DataFrame(soft)
```

```
[36]:
        logistic regression decision tree random forest
                                                            XGBoost
                                                                     LightGBM \
                   1.000000
                                       1.0
                                                     1.00 0.998319
                                                                     0.998124
     1
                   0.581298
                                       1.0
                                                     0.69 0.699329
                                                                     0.712771
                                                     0.63 0.681060
     2
                   0.503490
                                       0.0
                                                                     0.715427
                                       0.0
     3
                   0.112505
                                                     0.43 0.210991 0.190440
```

```
CatBoost Voting classifier
0 0.998798 >50K
1 0.732028 >50K
2 0.679881 >50K
3 0.232039 <=50K
```

(Aside: the probability scores from DecisionTreeClassifier are pretty bad)

Let's see how well this model performs.

```
[37]: results["Voting"] = mean_std_cross_val_scores(averaging_model, X_train, y_train)
[38]: pd.DataFrame(results).T
[38]:
                                                                          test_score \
                                      fit_time
                                                       score_time
      Dummv
                            0.016 \ (+/-\ 0.006) \ 0.012 \ (+/-\ 0.004) \ 0.758 \ (+/-\ 0.000)
                            2.360 (+/- 0.338)
                                               0.044 (+/- 0.016) 0.850 (+/- 0.006)
      logistic regression
                            0.343 (+/- 0.031)
                                                0.031 (+/- 0.002) 0.813 (+/- 0.003)
      decision tree
                            2.409 (+/- 0.367)
                                               0.151 (+/- 0.011) 0.857 (+/- 0.004)
      random forest
                            6.625 (+/- 6.009)
                                               0.079 (+/- 0.007) 0.870 (+/- 0.003)
      XGBoost
      LightGBM
                            0.376 (+/- 0.047)
                                               0.074 (+/- 0.006) 0.871 (+/- 0.004)
                            8.199 (+/- 0.663)
                                               0.215 (+/- 0.035) 0.872 (+/- 0.003)
      CatBoost
      Voting
                           20.037 (+/- 3.541) 0.554 (+/- 0.019) 0.868 (+/- 0.003)
                                 train_score
                           0.758 (+/- 0.000)
      Dummy
      logistic regression 0.851 (+/- 0.001)
      decision tree
                           1.000 (+/- 0.000)
      random forest
                           1.000 (+/- 0.000)
      XGBoost
                           0.909 (+/- 0.002)
     LightGBM
                           0.892 (+/- 0.000)
                           0.900 (+/- 0.001)
      CatBoost
      Voting
                                          NaN
     It appears that here we didn't do much better than our best classifier:
     Let's try removing decision tree classifier.
[39]: classifiers ndt = classifiers.copy()
      del classifiers_ndt["decision tree"]
      averaging model ndt = VotingClassifier(
          list(classifiers_ndt.items()), voting="soft"
        # need the list() here for cross_val to work!
      results["Voting_ndt"] = mean_std_cross_val_scores(
          averaging_model_ndt,
          X_train,
          y_train,
          return_train_score=True,
          scoring=scoring_metric,
      )
[40]: pd.DataFrame(results).T
[40]:
                                      fit_time
                                                       score_time
                                                                          test_score \
      Dummy
                            0.016 (+/- 0.006)
                                               0.012 (+/- 0.004) 0.758 (+/- 0.000)
                            2.360 (+/- 0.338) 0.044 (+/- 0.016) 0.850 (+/- 0.006)
      logistic regression
                            0.343 (+/- 0.031) 0.031 (+/- 0.002) 0.813 (+/- 0.003)
      decision tree
```

```
random forest
                      2.409 (+/- 0.367)
                                         0.151 (+/- 0.011) 0.857 (+/- 0.004)
                      6.625 (+/- 6.009)
                                          0.079 (+/- 0.007) 0.870 (+/- 0.003)
XGBoost
LightGBM
                      0.376 (+/- 0.047)
                                          0.074 (+/- 0.006) 0.871 (+/- 0.004)
                      8.199 (+/- 0.663)
                                         0.215 (+/- 0.035) 0.872 (+/- 0.003)
CatBoost
Voting
                     20.037 (+/- 3.541)
                                         0.554 (+/- 0.019) 0.868 (+/- 0.003)
                     18.040 (+/- 3.314)
                                         0.611 (+/- 0.053) 0.872 (+/- 0.003)
Voting_ndt
                           train_score
                     0.758 (+/- 0.000)
Dummy
                     0.851 (+/- 0.001)
logistic regression
                     1.000 (+/- 0.000)
decision tree
random forest
                     1.000 (+/- 0.000)
XGBoost
                     0.909 (+/- 0.002)
                     0.892 (+/- 0.000)
LightGBM
                     0.900 (+/- 0.001)
CatBoost
Voting
                                   NaN
                     0.921 (+/- 0.001)
Voting_ndt
```

Still the results are not better than the best performing model.

1.6.1 Why combine estimators?

- It didn't happen here but how could the average do better than the best model???
 - From the perspective of the best estimator (in this case CatBoost), why are you adding on worse estimators??

Here's how this can work:

Example	log reg	rand forest	cat boost	Averaged model	
1				=>	
2				=>	
3				=>	

In short, as long as the different models make different mistakes, this can work.

1.6.2 Why not always do this?

- 1. fit/predict time.
- 2. Reduction in **interpretability**.
- 3. Reduction in code **maintainability** (e.g. Netflix prize).

1.6.3 What kind of estimators can we combine?

- You can combine
 - completely different estimators, or similar estimators.
 - estimators trained on **different samples**.
 - estimators with **different hyperparameter** values.

1.7 Stacking

- Another **type of ensemble** is stacking.
- Instead of averaging the outputs of each estimator, use their **outputs** as **inputs** to another *model*.
- By default for classification, it uses **logistic regression**.
 - We don't need a complex model here necessarily, more of a weighted average.
 - The features going into the logistic regression are the classifier outputs, *not* the original features!
 - So the number of coefficients = the number of base estimators!

```
[41]: from sklearn.ensemble import StackingClassifier
```

The code starts to get **too slow** here; so we'll remove CatBoost.

```
[42]: classifiers_nocat = classifiers.copy()
del classifiers_nocat["CatBoost"]
```

```
[43]: stacking_model = StackingClassifier(list(classifiers_nocat.items()))
```

```
[44]: stacking_model.fit(X_train, y_train);
```

What's going on in here?

- It is doing cross-validation by itself by default (see documentation)
 - It is fitting the base estimators on the training fold
 - And the predicting on the validation fold
 - And then fitting the meta-estimator on that output (on the validation fold)

Note that estimators_ are fitted on the full X while final_estimator_ is trained using cross-validated predictions of the base estimators using cross_val_predict.

Here is the input features (X) to the meta-model:

```
[45]: X_valid_sample = X_train.sample(4, random_state=2)
y_valid_sample = y_train[X_valid_sample.index]

[46]: stacking = {
    name: pipe.predict_proba(X_valid_sample)[:, 1]
    for (name, pipe) in stacking_model.named_estimators_.items()
}
stacking.update(y_valid_sample.to_frame().to_dict('list'))
pd.DataFrame(stacking)
```

```
[46]:
        logistic regression decision tree random forest
                                                           XGBoost LightGBM \
     0
                   0.566252
                                       0.0
                                                     0.12 0.249272
                                                                    0.433701
                   0.000982
     1
                                       0.0
                                                     0.00 0.006137
                                                                    0.006493
     2
                   0.140072
                                       0.0
                                                     0.05 0.046355 0.080048
                                       0.0
     3
                   0.004713
                                                     0.00 0.002433 0.003702
```

income

```
2 <=50K
      3 <=50K
        • Our meta-model is logistic regression (which it is by default).
        • Let's look at the learned coefficients.
[47]: pd.DataFrame(
          data=stacking_model.final_estimator_.coef_[0],
          index=classifiers_nocat.keys(),
          columns=["Coefficient"],
      )
[47]:
                            Coefficient
      logistic regression
                               0.763134
      decision tree
                              -0.011344
      random forest
                               0.219009
      XGBoost
                               2.022948
                               3.684280
      LightGBM
[48]: stacking_model.final_estimator_.intercept_
[48]: array([-3.31967882])
        • It seems that the LightGBM is being trusted the most.
[49]: stacking_model.predict(test_g50k)
[49]: array(['>50K', '>50K', '<=50K'], dtype=object)
[50]: stacking_model.predict_proba(test_g50k)[:,1]
[50]: array([0.96604036, 0.78658385, 0.77137857, 0.11803313])
     (This is the predict_proba from logistic regression)
     Let's see how well this model performs.
[51]: results["Stacking_nocat"] = mean_std_cross_val_scores(
          stacking_model, X_train, y_train, return_train_score=True,_
       ⇔scoring=scoring_metric
[52]: pd.DataFrame(results).T
[52]:
                                       fit_time
                                                         score_time
                                                                             test_score \
      Dummy
                             0.016 \ (+/-\ 0.006) \ 0.012 \ (+/-\ 0.004) \ 0.758 \ (+/-\ 0.000)
      logistic regression
                             2.360 (+/- 0.338) 0.044 (+/- 0.016) 0.850 (+/- 0.006)
                             0.343 \ (+/-0.031) \ 0.031 \ (+/-0.002) \ 0.813 \ (+/-0.003)
      decision tree
```

0 <=50K 1 <=50K

```
random forest
                      2.409 (+/- 0.367)
                                        0.151 (+/- 0.011) 0.857 (+/- 0.004)
                      6.625 (+/- 6.009)
                                         0.079 (+/- 0.007) 0.870 (+/- 0.003)
XGBoost
LightGBM
                      0.376 (+/- 0.047)
                                         0.074 (+/- 0.006) 0.871 (+/- 0.004)
                      8.199 (+/- 0.663)
                                         0.215 (+/- 0.035)
CatBoost
                                                            0.872 (+/- 0.003)
Voting
                     20.037 (+/- 3.541)
                                         0.554 (+/- 0.019) 0.868 (+/- 0.003)
                     18.040 (+/- 3.314)
                                         0.611 (+/- 0.053) 0.872 (+/- 0.003)
Voting_ndt
                     56.018 (+/- 8.566)
                                        0.399 (+/- 0.052) 0.872 (+/- 0.004)
Stacking_nocat
```

train score 0.758 (+/- 0.000)Dummy 0.851 (+/- 0.001)logistic regression decision tree 1.000 (+/- 0.000)random forest 1.000 (+/- 0.000)XGBoost 0.909 (+/- 0.002)0.892 (+/- 0.000)LightGBM 0.900 (+/- 0.001)CatBoost Voting NaN Voting_ndt 0.921 (+/- 0.001)0.900 (+/- 0.007)Stacking_nocat

- The situation here is a bit mind-boggling.
- On each fold of cross-validation it is doing cross-validation.
- This is really loops within loops within loops within loops...
- We can also try a different final estimator:
- Let's DecisionTreeClassifier as a final estimator.

The results are not very good. But we can look at the tree:

[55]:

```
[54]: stacking_model_tree.fit(X_train, y_train);
```

[55]: display_tree(list(classifiers_nocat.keys()), stacking_model_tree.

4final_estimator_)

LightGBM <= 0.432 class = 0True False XGBoost <= 0.131 XGBoost <= 0.799 class = 0class = 1LightGBM <= 0.254 XGBoost <= 0.917 LightGBM <= 0.066LightGBM <= 0.577 class = 0 class = 0class = 1 class = 1class = 0class = 0class = 0class = 0class = 0class = 1class = 1class = 1

An effective strategy

- Randomly generate a bunch of models with different hyperparameter configurations,
- and then stack all the models.

Advantage and Disadvantage

- What is an advantage of ensembling multiple models as opposed to just choosing one of them?
 You may get a better score.
- What is an disadvantage of ensembling multiple models as opposed to just choosing one of them?
 - Slower, more code maintenance issues.

1.8 Summary

- You have a number of models in your toolbox now.
- Ensembles are usually pretty effective.
 - Tree-based classifiers are particularly popular and effective on a wide range of problems.
 - But they trade off code complexity and speed for prediction accuracy.
 - Don't forget that hyperparameter optimization multiplies the slowness of the code!
- Stacking is a bit slower than voting, but generally higher accuracy.
 - As a bonus, you get to see the coefficients for each base classifier.
- All the above models have equivalent regression models.

Relevant papers

- Fernandez-Delgado et al. 2014 compared 179 classifiers on 121 datasets:
 - First best class of methods was Random Forest and second best class of methods was (RBF) SVMs.
- If you like to read original papers here is the original paper on Random Forests by Leo Breiman.

1.9 True or False questions on Random Forests (Class discussion)

- 1. Every tree in a random forest uses a different bootstrap sample of the training set. **True**
- 2. To train a tree in a random forest, we first randomly select a subset of features. The tree is then restricted to only using those features. **TRUE**
- 3. A reasonable implementation of predict_proba for random forests would be for each tree to "vote" and then normalize these vote counts into probabilities. TRUE
- 4. Increasing the hyperparameter max_features (the number of features to consider for a split) makes the model more complex and moves the fundamental tradeoff toward lower training error. **TRUE**
- 5. A random forest with only one tree is likely to get a higher training error than a decision tree of the same depth. ${\bf FALSE}$

How would you carry out "soft voting" with predict_proba output instead of hard voting for random forests?

[]: