Cálculo Numérico - Elementos de Cálculo Numérico - Segundo Parcial

Primer Cuatrimestre 2021 (08/07/2021)

Nombre y Apellido	1	2	3	4	5	Nota

Justificar todas las respuestas y explicitar los cálculos o aclarar cómo se obtuvieron los resultados.

1. Sean $\alpha, \beta > 0$, $\alpha \neq \beta$. Se considera la matriz $A \in \mathbb{R}^{3\times 3}$,

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & \alpha & \alpha^2 \\ 1 & \beta & \beta^2 \end{pmatrix},$$

para resolver un sistema lineal de la forma Ax = b.

- a) Dar condiciones sobre α y β que determinen todos los posibles valores para los cuales el método de Jacobi converge para todo valor inicial.
- b) Dar condiciones sobre α y β que determinen todos los posibles valores para los cuales el método de Gauss-Seidel converge para todo valor inicial.
- c) Fijados valores para α y β para los cuales ambos métodos convergen, ¿cuál se espera que converja más rápido?
- 2. Sea una función $f \in C^{\infty}$ que se interpola por un polinomio p en n+1 nodos arbitrarios x_0, x_1, \ldots, x_n en el intervalo [a, b]. Se desea estudiar cómo aproxima la derivada de p a la derivada de f en función de la longitud del intervalo [a, b]. Para $x \in [a, b]$:
 - a) mostrar que |f(x) p(x)| es $O((b-a)^{n+1})$;
 - b) mostrar que |f'(x) p'(x)| es $O((b-a)^n)$. (Sugerencia: recordar el Teorema de Rolle.)
- 3. Dada la matriz $A \in \mathbb{R}^{3 \times 2}$:

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \\ 1 & -1 \end{pmatrix},$$

- a) Calcular su descomposión en valores singulares reducida $A=\hat{U}\hat{\Sigma}V^t$ y su pseudo-inversa $A^\dagger=V\hat{\Sigma}^{-1}\hat{U}^t$.
- b) Aproximar la siguiente tabla de datos en el sentido de cuadrados mínimos

con una función del tipo: $y(x) = af_1(x) + bf_2(x)$ siendo $f_1(x) = \sqrt{2}\cos\left(\frac{\pi}{4}x\right)$ y $f_2(x) = \sqrt{2}\sin\left(\frac{\pi}{4}x\right)$.

- 4. Sea $f(x) = (x+1)e^x + \frac{1}{10}$.
 - a) Mostrar que f tiene exactamente 2 raíces $r_1 < r_2$.
 - b) Se considera la función $g(x) = -\frac{1}{10}e^{-x} 1$. Mostrar que r_1 y r_2 son puntos fijos de g y dar un intervalo inicial I_2 para el cual el método de punto fijo determinado por g converja a r_2 para cualquier valor inicial $x_0 \in I_2$.
- 5. Hallar una regla de cuadratura del siguiente tipo

$$\int_{-1}^{1} f(x)(1-x^2)dx \sim A_0 f(x_0) + A_1 f(x_1)$$

que tenga grado de precisión máximo. ¿Cuál es dicho grado?