Linear Algebra 2 – Practicals

Lukas Prokop

summer term 2016

Contents

1	Exercise 1	2
2	Exercise 3	3
3	Exercise 2	3
4	Exercise 4	4
5	Exercise 5	5
6	Exercise 6	6
7	Exercise 8	7
8	Exercise 9	8
9	Exercise 10	8
10	Exercise 11	9
11	Exercise 12	10
12	Exercise 14	12
13	Exercise 15	12
14	Exercise 16	13
15	Exercise 17	14
16	Exercise 18	14

Exercise 1. Determine the matrix representation of the linear map

$$f: \mathbb{R}_1[x] \to \mathbb{R}_2[x]$$

$$p(x) \mapsto (x-1) \cdot p(x)$$

in regards of bases $B = \{1 - x, 1 + x\} \subseteq \mathbb{R}_1[x]$ and $C = \{1, 1 + x, 1 + x + x^2\} \subseteq \mathbb{R}^2[x]$.

$$f: \mathbb{R}_{1}[x] \to \mathbb{R}_{2}[x]$$

$$f: p(x) \mapsto (x-1)p(x)$$

$$B = \{1 - x, 1 + x\} =: \{b_{1}, b_{2}\}$$

$$C = \{1, 1 + x, 1 + x + x^{2}\} =: \{c_{1}, c_{2}, c_{3}\}$$

Find $A \in \mathbb{K}^{3 \times 2} =: M_C^B(f)$.

$$\forall v \in \mathbb{R}_1 : f(v) = w : \Phi_C(w) = A\Phi_B(v)$$

$$f(b_1) = (1 - x)(x - 1) = -x^2 + 2x - 1$$
$$f(b_2) = (x - 1)(x + 1) = x^2 - 1$$

$$\Phi_C(f(b_1))$$

Coefficient comparison:

$$-x^{2} + 2x - 1 = \lambda_{1} \cdot 1 + \lambda_{2}(1+x) + \lambda_{3}(1+x+x^{2})$$

$$x^{2} : \lambda_{3} = -1$$

$$x^{1} : 2 = \lambda_{2} + \lambda_{3} \Rightarrow \lambda_{2} = 3$$

$$x^{0} : -1 = \lambda_{1} + \lambda_{2} + \lambda_{3} \Rightarrow \lambda_{1} = -3$$

$$\Phi_{C}(f(b_{1})) = \begin{pmatrix} 3\\3\\1 \end{pmatrix}$$

$$\Phi_{C}(f(b_{2})) : x^{2} = 1 = \lambda_{1} \cdot 1 + \lambda_{2}(1+x) + \lambda_{3}(1+x+x^{2})$$

$$x^{2} : \lambda_{3} = 1$$

$$x^{1} : \lambda_{2} + \lambda_{3} = 0 \Rightarrow \lambda_{2} = -1$$

$$x^{0} : -1 = \lambda_{1} + \lambda_{2} + \lambda_{3}$$

$$-1 = \lambda_{1} - 1 + 1$$

$$-1 = \lambda_{1}$$

$$\Phi_C(f(b_2)) = \begin{pmatrix} -1\\-1\\1 \end{pmatrix}$$

$$A = \begin{pmatrix} -3 & -1 \\ 3 & -1 \\ 1 & 1 \end{pmatrix}$$

Exercise 2. Let A_1, A_2, \ldots, A_k be quadratic $n \times n$ matrices over the field \mathbb{K} . Show that the product $A_1 A_2 \ldots A_k$ is invertible if and only if all A_i are invertible.

All A_i are invertible, then $\prod A_i$ is invertible.

A, B invertible, then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$. Generalize by induction.

If $\prod A_i$ is invertible, then all A_i are invertible.

Sidenote: We know that rank(A) = n - dim kernel(A).

k = 1 trivial

k=2 A_1A_2 is invertible. Let $C=(A_1A_2)^{-1}$. Then $CA_1A_2=I_n$. Let $x\in \mathrm{kernel}(A_2)\Rightarrow A_2x=0\Rightarrow\underbrace{CA_1}_{I_n}A_2x=CA_10=0$.

 $kernel(A_2) = 0 \Rightarrow rank(A_2) = n - 0 : n \Rightarrow A_2$ invertible

$$A_1 = \underbrace{A_1 A_2}_{\text{invertible}} \cdot \underbrace{A_2^{-1}}_{\text{invertible}}$$

 $k \to k+1$ Let $A_1 \dots A_{k+1}$ is invertible $\Rightarrow (A_1, \dots, A_k)A_{k+1}$ is invertible $\stackrel{k=2}{\Longrightarrow} A_1, \dots, A_k$ is invertible, A_{k+1} invertible.

Remark: $A, B \in \mathbb{K}^{n \times n}$. B is inverse of A

$$\Leftrightarrow AB = I = BA \Leftrightarrow AB = I \Leftrightarrow BA = I$$

3 Exercise 2

Exercise 3. Let V be a vector space and $f:V\to \mathbb{V}$ is a nilpotent linear map, hence there exists some $k\in\mathbb{N}$ such that $f^k=0$.

3.1 Part a

Exercise 4. Show that $id_V - f$ is invertible with $(id_V - f)^{-1} = id_V + f + f^2 + ... + f^{k-1}$.

Show that: $(id_v - f)^{-1} = \sum_{i=0}^{k-1} f^i$.

$$(\mathrm{id}_V - f) \circ \left(\sum_{i=0}^{k-1} f^i\right) = \mathrm{id}_V \circ \sum_{i=0}^{k-1} f^i - f \circ \sum_{i=0}^{k-1} f^i - \sum_{i=0}^{k-1} f^{i+1} = f^0 + \sum_{i=1}^{k-1} f^i - \sum_{i=1}^{k-1} f^i - f^k = \mathrm{id}_V - 0 = \mathrm{id}_V$$

3

and $\left(\sum_{i=0}^{k-1} f^i\right) \circ (\mathrm{id}_V - f)$ analogously.

3.2 Part b

Exercise 5. Use part a) to determine the inverse of the matrix

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 \Rightarrow f nilpotent.

4 Exercise 4

4.1 Part a

Exercise 6. Let A be an invertible $n \times n$ matrix over a field \mathbb{K} and u, v are column vectors (hence $n \times 1$

matrices), such that $\sigma 1 + v^t A^{-1} u \neq 0$. Show that $(A + uv^t)$ is invertible and that

$$(A + uv^t)^{-1} = A^{-1} - \frac{1}{\sigma} A^{-1} uv^t A^{-1}$$

4.2 Part b

Exercise 7. Apply this formula to determine the inverse of the matrix

$$A = \begin{pmatrix} 5 & 3 & 0 & 1 \\ 3 & 2 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{pmatrix}$$

A is invertible, because it is a block matrix 1 .

$$A^{-1} = \begin{pmatrix} 2 & -3 & 0 & 0 \\ -3 & 5 & 0 & 0 \\ 0 & 0 & 5 & -3 \\ 0 & 0 & -3 & 2 \end{pmatrix}$$

$$\sigma = 1 + \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix} A^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = 1 + 0 \neq 0$$

$$\Rightarrow B^{-1} = A^{-1} - A^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} A^{-1} = \begin{pmatrix} 2 & -3 & 6 & -4 \\ -3 & 5 & -9 & 6 \\ 0 & 0 & 5 & -3 \\ 0 & 0 & -3 & 2 \end{pmatrix}$$

5 Exercise 5

Exercise 8. Show that the linear maps $f, g, h : \mathbb{R}^2 \to \mathbb{R}^2$ defined as

$$f:(x_1,x_2)\mapsto (x_1+x_2,x_1-x_2)$$
 $g:(x_1,x_2)\mapsto (x_1+x_2,x_1+x_2)$ $h:(x_1,x_2)\mapsto (x_2,x_1)$

are linear independent, if they are considered as elements of the vector space $\text{Hom}(\mathbb{R}^2,\mathbb{R}^2)$ of all maps from \mathbb{R}^2 to \mathbb{R}^2 .

Let $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$. Show that

$$\lambda_1 f + \lambda_2 g + \lambda_3 h = 0 \stackrel{!}{=} \lambda_1 = \lambda_2 = \lambda_3 = 0$$

¹That's why chose A and S that way

$$f: x \mapsto Ax$$
 $A_f = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ $A_g = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $A_n = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Is an isomorphism, $\operatorname{Hom}(\mathbb{R}^2, \mathbb{R}^2) \to \mathbb{R}^{2 \times 2}$ with $f \mapsto A_f$.

$$\lambda_1 \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ -1 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Exercise 6 6

Exercise 9. Let V be a vector space with dim $V = n < \infty$ and $U \subseteq V$ is a subspace with dim U = m.

1. Show that

$$U^{\perp} = \{ v^* \in V^* \mid U \subseteq \text{kernel}(v^*) \}$$

is a subspace of V^* .

2. Determine dim U^{\perp} .

3. Is $\{v^* \in V^* \mid U = \text{kernel } v^*\}$ also a subspace?

 U^{\perp} is called orthogonal space or annihilation of U.

1.

$$U^{\perp} = \{ v^* \in V^* \mid U \subseteq \text{kernel}(v^*) \}$$

 $v^* \in \text{Hom}(V, \mathbb{K}).$

$$\operatorname{kernel}(v^*) = \{x \in V \mid v^*(x) = 0\} \supseteq U \Leftrightarrow \forall x \in U : v^*(x) = 0$$

 U^{\perp} is nonempty

The constant zero-function $u: V \to \mathbb{K}$ with $x \mapsto 0 \in U^{\perp}$ exists. Hence $U^{\perp} \neq \emptyset$.

Additivity: $\bigwedge_{\mathbf{u}_1,\mathbf{u}_2\in\mathbf{U}^{\perp}}\mathbf{u}_1+\mathbf{u}_2\in\mathbf{U}^{\perp}$

Let $u_1, u_2 \in \tilde{U}^{\perp}$ be linear. Let $x \in U$.

$$(u_1 + u_2)(x) = \underbrace{u_1(x)}_{\in U^{\perp}} + \underbrace{u_2(x)}_{\in U^{\perp}} = 0 + 0 = 0$$

 $\begin{array}{ll} \textbf{Multiplication:} \ \bigwedge_{\lambda \in \mathbb{K}} \bigwedge_{\mathbf{u} \in \mathbf{U}^{\perp}} \lambda \cdot \mathbf{u} \in \mathbf{U}^{\perp} \\ \text{Let } \lambda \in \mathbb{K}, \ u \in U^{\perp} \ \text{and} \ x \in U. \end{array}$

$$(\lambda \cdot u)(x) = \lambda \cdot \underbrace{u(x)}_{\in U^{\perp}} \Rightarrow \lambda \cdot 0 = 0$$

2.

$$\dim V = n$$
 $\dim V^* = n$ $\dim U = m$

U is subspace of *V*, so $m \le n$.

$$k := \dim U^{\perp} \le n = \dim V^*$$

Let (u_1, \ldots, u_m) be basis of U.

We apply the basis extension theorem: Let $(u_1, \ldots, u_m, u_{m+1}, \ldots, u_n)$ be a basis of V.

Let (v_1^*, \ldots, v_n^*) the dual basis to (v_1, \ldots, v_n) to V^* . Hence

$$v_1^*(v_j) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Claim: $U^{\perp} = L(\{v_{m+1}^*, \dots, v_n^*\}) \Rightarrow (v_{m+1}^*, \dots, v_n^*)$ is basis of $U^{\perp} \Rightarrow \dim U^{\perp} = n - m$. Let $v \in V^*$ be arbitrary, $v = \lambda_1 v_1^* + \dots + \lambda_n v_n^*$.

$$v \in U^{\perp} \Leftrightarrow \forall x \in U : v(x) = 0 \Leftrightarrow v|_{U} = 0 \xrightarrow{(u_{1}, \dots, u_{m}) \text{ is basis of } U} v(u_{i}) = 0 \quad i = 1, \dots, m$$

$$\Leftrightarrow \forall i \in \{1, \dots, m\} \ (\lambda_{1}v_{1}^{*} + \dots + \lambda_{n}v_{n}^{*})(v_{i}) = 0$$

$$\Leftrightarrow \forall i \in \{1, \dots, m\} \ v_{1}v_{1}^{*}(v_{i}) + \dots + \lambda_{n}v_{n}^{*}(v_{i}) = 0$$

$$\Leftrightarrow v^{k} \in L(v_{m+1}^{*}, \dots, v_{n}^{*})$$

$$\Leftrightarrow \forall i \in \{1, \dots, m\} \ \lambda_{i} = 0$$

$$\pi: V \to V_{/U}$$

$$x \mapsto v + U$$

$$\pi^{t}: (V_{/U})^{*} \to V^{*}$$

$$w \to w \circ \pi$$

 π surjective, then π^t is injective and

$$\operatorname{image}(\pi^t) = U^t \Rightarrow V_{II}^{\quad k} \to U^{\perp}$$

3. Is $\{v^* \in V^* \mid U = \text{kernel } v^*\}$ also a subspace?

Counterexample: Let $u = \{0\}$ and $V \neq \{0\}$.

$$kernel(v^*) = \{x \in V \mid x^*(x) = 0\} = \{0\} = U$$

If it is a subspace, then the constant null function (which is the zero element of this set) must be contained. This is a contradiction to "only x = 0 maps to 0".

7 Exercise 8

Exercise 10. Let $\mathbb{R}[x]$ be the vector space of real polynomials. Show that the dimension of the dual space $\mathbb{R}[x]^*$ is overcountable.

Hint: Show that linear functionals $(\delta_t)_{t\in\mathbb{R}}$ defined as $\langle \delta_t, p(x) \rangle = p(t)$ (function application) is linear independent.

"In welchem Vektorraum leben wir?" (Florian Kainrath)

 δ_t are linear maps.

$$\forall p \in \mathbb{R}[x] : \sum_{i=1}^{n} \lambda_t \delta_{t_i}(p(x)) = 0 \Rightarrow \lambda_i = 0 \forall i \in \{1, \dots, n\}$$

$$\forall p \in \mathbb{R}[x] : \sum_{i=1}^{n} \lambda_t p(t_i) = 0 \Rightarrow \lambda_i = 0$$

Consider the polynomial $(x - t_1)(x - t_2) \dots (x - \hat{t}_j)(x - t_{j+1}) \dots (x - t_n) = p(x)$.

$$\Rightarrow \sum_{i=1}^{n} \lambda_{i} p_{j}(t_{i}) = 0 \Leftrightarrow \lambda_{j} p_{j}(t_{j}) = 0 = \lambda_{j} = 0$$

Exercise 11. Let $f \in \text{Hom}(V, W)$ be a linear map between two finite-fimensional vector spaces with bases $B \subseteq V$ and $C \subseteq W$. Show that the matrix representation of the transposed map

$$f^t: W^* \to V^*$$

$$w^* \mapsto w^* \circ f$$

in regards of the dual basis C^* and B^* has the matrix representation

$$\Phi_{B^*}^{C^*}(f^t) = \Phi_C^B(f)^t$$

Show that $f \in \text{Hom}(V, W)$ and $B = (b_1, \dots, b_m)$ is basis of V with dual basis $B^* = (b_1^*, \dots, b_m^*)$. $C = (c_1, \dots, c_n)$ is basis of W with dual basis $C^* = (c_1^*, \dots, c_n^*)$.

$$\Phi_{B^*}^{C^*}(f^t) = \Phi_C^B(f)^t$$

$$A := \Phi_C^B(f)$$

 $\Phi_{B^*}^{C^*}(f^t) = P = A^t \forall i \in \{1, \dots, n\} \ j \in \{1, \dots, m\} \text{ and } a_{ij} = p_{ji}. \ A \in \mathbb{K}^{n \times m} \text{ and } P \in \mathbb{K}^{m \times n}.$

$$(a_{ij}) = A = \Phi_C^B(f) \Leftrightarrow \forall j \in \{1, \dots, m\}$$

$$\Phi_C(f(b_j)) = A\Phi_B(b_j) = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix} \Leftrightarrow A = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix} \Phi_C^{-1}$$

$$f(b_j) = \sum_{i=1}^n a_{ij}c_i \qquad \forall j \in \{1, \dots, m\}$$

$$(p_{ij}) = p = \Phi_{B^*}^{C^*}(f^t) \Leftrightarrow f^t(c_j^*) = \sum_{i=1}^m p_{ij} b_i^* \forall j \in \{1, \dots, n\}$$

$$\Leftrightarrow f^{t}(c_{j}^{*}) \text{ with } j \in \{1, \dots, n\} = \sum_{i=1}^{m} p_{ij} b_{i}^{*} \stackrel{w}{\Leftrightarrow} c_{i} \circ f = \sum_{i=1}^{m} p_{ij} b_{i}^{*} \forall j \in \{1, \dots, n\}$$

Show that $a_{kj} = p_{ik}$ with $k \in \{1, ..., n\}, j \in \{1, ..., m\}$.

$$a_{kj} = C_k^* \left(\sum_{i=1}^n a_{ij} c_i \right) = c_k^* \left(f(b_j) \right) = \left(f^t(c_k^*)(b_j) \right) = \left(\sum_{i=1}^m p_{ik} b_i^* \right) (b_i) = p_{jk}$$

9 Exercise 10

Exercise 12. • Determine the dual basis of $(\mathbb{R}^4)^*$ to the basis.

$$B = \left\{ \begin{bmatrix} 1\\2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\1 \end{bmatrix}, \begin{bmatrix} -1\\-2\\2\\-1 \end{bmatrix} \begin{bmatrix} 2\\-1\\1\\1 \end{bmatrix} \right\}$$

• Determine the matrix of the unique (why?) projection map $\varphi: \mathbb{R}^4 \to \mathbb{R}^4$ with $\mathrm{image}(\varphi) = \mathcal{L}\left\{(1,2,1,0)^t,(1,0,-1,1)^t\right\}$ and $\mathrm{kernel}(\varphi) = \mathcal{L}\left\{(-1,-2,2,-1)^t,(2,-1,1,1)^t\right\}$.

9.1 Exercise 10.a

$$\begin{pmatrix} 1 & 1 & -1 & 2 & 1 & 0 & 0 & 0 \\ 2 & 0 & -2 & -1 & 0 & 1 & 0 & 0 \\ 1 & -1 & 2 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \leadsto \begin{pmatrix} 1 & 0 & 0 & 0 & -3 & 1 & 2 & 5 \\ 0 & 1 & 0 & 0 & -9 & 2 & 5 & 15 \\ 0 & 0 & 1 & 0 & -5 & 1 & 3 & 8 \\ 0 & 0 & 0 & 1 & 4 & -1 & -2 & -6 \end{pmatrix}$$

So

$$b_1^* = \begin{pmatrix} -3\\1\\2\\5 \end{pmatrix} \quad b_2^* = \begin{pmatrix} -9\\2\\5\\15 \end{pmatrix} \quad b_3^* = \begin{pmatrix} -5\\1\\3\\8 \end{pmatrix} \quad b_4^* = \begin{pmatrix} 4\\-1\\-2\\-6 \end{pmatrix}$$

$$B^* = \begin{pmatrix} -3&1&2&5\\-9&2&5&15\\-5&1&3&8\\4&-1&-2&-6 \end{pmatrix}$$

$$(\mathbb{R}^n)^* \cong \mathbb{R}^{1\times 4}$$

$$b_i^*(b_j) = \delta_{ij}$$

9.2 Exercise 10.b

Find a projective map $\varphi : \mathbb{R}^4 \to \mathbb{R}^4$ such that $U_1 = \varphi(\mathbb{R}^4)$. So $\operatorname{image}(\varphi) = \mathcal{L}(U_1)$ and $\operatorname{kernel}(\varphi) = U_2$.

$$U_1 = \mathcal{L}\left\{ (1, 2, 1, 0)^t, (1, 0, -1, 1)^t \right\}$$

$$U_2 = \mathcal{L}\left\{ (-1, -2, 2, -1)^t, (2, -1, 1, 1)^t \right\}$$

Why do we get a unique map?

 φ is a projection map iff φ is linear and $\varphi \circ \varphi = \varphi$. Consider $b_1 \in U_1 = \varphi(\mathbb{R}^4)$ and $b_1 = \varphi(x)$ $x \in \mathbb{R}^4$. $\varphi(b_1) = \varphi(\varphi(x)) = \varphi(x) = b_1$. This isomorphism ensures that the solution is unique.

Because $\varphi: \mathbb{R}^4 \to \mathbb{R}^4$, the linear map will be represented by a 4×4 matrix.

$$\begin{pmatrix} 1 & 2 & 1 & 0 & 1 & 2 & 1 & 0 \\ 1 & 0 & -1 & 1 & 1 & 0 & -1 & 1 \\ -1 & -2 & 2 & -1 & 0 & 0 & 0 & 0 \\ 2 & -1 & 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 0 & -12 & -6 & 6 & -9 \\ 0 & 1 & 0 & 0 & 3 & 2 & -1 & 2 \\ 0 & 0 & 1 & 0 & 7 & 4 & -3 & 5 \\ 0 & 0 & 0 & 1 & 20 & 10 & -10 & 15 \end{pmatrix}$$
$$\begin{pmatrix} -12 & 3 & 7 & 20 \\ -6 & 2 & 4 & 10 \\ 6 & -1 & -3 & -10 \\ 9 & 2 & 5 & 15 \end{pmatrix}$$

10 Exercise 11

Exercise 13. Given the permutation

$$\pi = \left(\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 5 & 1 & 6 & 3 & 7 & 4 \end{pmatrix} \right)$$

- Determine π^{-1} and π^k for some $k \in \mathbb{N}$.
- Determine all inversions of π and determine $sign(\pi)$.

• Decompose π in a product of transpositions.

10.1 Exercise 11.a

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 5 & 1 & 6 & 3 & 7 & 4 \end{pmatrix}$$
$$\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 5 & 7 & 2 & 4 & 6 \end{pmatrix}$$

We give a recursive definition:

$$\pi_{(i)}^{k} = \begin{cases} \pi_{(i)}^{k \mod 4} & i \in \{1, 2, 3, 5\} \\ \pi_{(i)}^{k \mod 3} & i \in \{4, 6, 7\} \end{cases}$$

10.2 Exercise 11.b

Inversions are:

$$f_{\pi} = \{(i,j) \mid i < j \land \pi(i) > \pi(j)\}$$

$$F_{\pi} = \{(1,3), (2,3), (2,5), (2,7), (4,5), (4,7), (6,7)\}$$

$$\operatorname{sign}(\pi) = (-1)_{\pi}^{f} = -1$$

10.3 Exercise 11.c

$$\pi \circ \tau_{1,3} = (1 \ 5 \ 2 \ 6 \ 3 \ 7 \ 4)$$

$$\pi \circ \tau_{1,3} \circ \tau_{2,3} \circ \tau_{3,5} \circ \tau_{4,7} \circ \tau_{6,7} = id$$

$$\pi = \tau_{6,7} \circ \tau_{4,7} \circ \tau_{3,5} \circ \tau_{2,3} \circ \tau_{1,3}$$

In terms of notation, remember:

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix} \circ \tau_{i,j} = \begin{pmatrix} 1 & i & j & n \\ & \pi(j) & \pi(i) \end{pmatrix}$$

11 Exercise 12

Exercise 14. A permutation $\pi \in \mathfrak{S}_n$ is called cyclic, if there exists some $k \geq 1$ and a sequence i_1, i_2, \ldots, i_k such that $\pi(i_j) = i_{j+1}$ for $1 \leq j \leq k-1$, $\pi(i_k) = i_1$ and $\pi(i) = i$ for $i \notin \{i_1, i_2, \ldots, i_k\}$, hence

$$i_1 \rightarrow i_2 \rightarrow \ldots \rightarrow i_k \rightarrow i_1$$

and all other *i* are fixed. Common notation: $\pi = (i_1, i_2, \dots, i_k)$.

- Show that two cyclic permutations $\pi = (i_1, i_2, \dots, i_k)$ and $\rho = (j_1, j_2, \dots, j_l)$ commute $(\pi \circ \rho = \rho \circ \pi)$ if $\{i_1, \dots, i_k\} \cap \{j_1, \dots, j_l\} = \emptyset$.
- Decompose the cycle into a product of transpositions and show that for a cyclic permutation it holds that $sign(\pi) = (-1)^{k-1}$.

11.1 Exercise 12.a

Case 1:
$$m \in \{i_1, i_2, \dots, i_k\}$$

$$\pi \circ \rho(m) = \pi(\rho(m)) = \pi(m)$$

$$\rho \circ \pi(m) = \rho(\pi(m)) = \pi(m)$$
 Case 2: $m \in \{j_1, j_2, \dots, j_l\}$
$$\pi \circ \rho(m) = \pi(\rho(m)) = \rho(m)$$

$$\rho \circ \pi(m) = \rho(\pi(m)) = \rho(m)$$
 Case 3: $m \notin \{i_1, \dots, i_k\} \cup \{j_1, \dots, j_l\}$
$$\pi \circ \rho(m) = \pi(\rho(m)) = m$$

$$\rho \circ \pi(m) = \rho(\pi(m)) = m$$

11.2 Exercise 12.b

$$\pi = \begin{pmatrix} 1 & 2 & \dots & i_1 & i_2 \dots & i_k & \dots & n \\ 1 & 2 & \dots & i_2 & i_3 \dots & i_1 & \dots & n \end{pmatrix}$$

$$\pi \circ \tau_{i_1, i_k} = \begin{pmatrix} 1 & 2 & \dots & i_1 & i_2 \dots & i_k & \dots & n \\ 1 & 2 & \dots & i_1 & i_3 \dots & i_2 & \dots & n \end{pmatrix}$$

$$\pi \circ \tau_{i_1, i_k} \circ \tau_{i_2, i_k} = \begin{pmatrix} 1 & 2 & \dots & i_1 & i_2 & i_3 & \dots & i_k & \dots & n \\ 1 & 2 & \dots & i_1 & i_2 & i_4 & \dots & i_3 & \dots & n \end{pmatrix}$$

$$\tau \circ \tau_{i_1, i_k} \circ \tau_{i_2, i_k} \circ \dots \circ \tau_{i_{k-1}, i_k} = \mathrm{id}$$

$$\pi = \tau_{i_{k-1}, i_k} \circ \dots \circ \tau_{i_1, i_{l+1}} \circ \dots \circ \tau_{i_1, i_k}$$

11.3 Exercise 13

Exercise 15. Let $\pi \in \mathfrak{S}_n$ be a permutation and $i \in \{1, 2, \dots, n\}$.

- Show that the sequence i, $\pi(i)$, $\pi^2(i)$, ... is periodic and the first number which occurs twice is i.
- The sequence $(i, \pi(i), \pi^2(i), \dots, \pi^{k-1}(i))$ where k is the smallest exponent such that $\pi^k(i) = i$, is called cycle of i. Show that the relation, $i \sim j :\Leftrightarrow j$ is in cycle of i, is a equivalence relation in $\{1, 2, \dots, n\}$.
- Show that every permutation can be represented as product of commutative cycles.
- Apply this decomposition for the permutation π from exercise 11.

11.4 Exercise 13.a

- $i, \pi(i), \ldots, \pi^k(i)$ is periodic.
- the first element which occurs twice is i

• $\left\{\pi^k(i)\,\middle|\,k\in\{1,\ldots,n+1\}\right\}$ at least one elemtn must have occured twice.

wlog.
$$k>l$$

$$\pi^{k-l}(i)=\pi^l(i)$$

$$\pi^{k-l}(i)=i \qquad k-l< k$$

$$\pi^{k-l}(i)=(\pi^l)^{-1}\left(\pi^k(\tau)\right)=(\pi^e)^{-1}\left(\pi^e(i)\right)$$

11.5 Exercise 13.b

reflexive

$$i \sim i \iff \exists k : \pi^k(i) = i$$

symmetrical

$$i \sim j \Rightarrow j \sim i$$
 $\exists l : \pi^l(i) = j$ $\pi^k(i) = i$ $\pi^{k-l}(i) = i$

transitive

$$i \sim j \wedge j \sim m \Rightarrow i \sim m$$
 $(\exists l_1 : \pi^{l_1}(i) = j) \wedge (\exists l_2 : \pi^{l_2}(j) = m)$
 $\Rightarrow \exists l_3 = l_1 + l_2 : \pi^{l_3}(i) = m$

11.6 Exercise 13.c

Lengthy and therefore skipped.

11.7 Exercise 13.d

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 5 & 1 & 6 & 3 & 7 & 4 \end{pmatrix}$$
$$\pi = (1\ 2\ 5\ 3)(4\ 6\ 7)$$

12 Exercise 14

Exercise 16. Determine the determinant of the following matrix using three different methods (Leibniz, Laplace, Gauß-Jordan).

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 2 & -1 & 2 \end{bmatrix}$$

Using Leibniz' definition:

$$\det(A) = 1 \cdot (-1)^{1+1} \begin{vmatrix} 1 & 2 \\ -1 & 2 \end{vmatrix} + (-1)^{2+1} \begin{vmatrix} 2 & 3 \\ -1 & 2 \end{vmatrix} + 2(-1)^4 \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix}$$

Using Gauß' definition:

$$\det\begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 2 & -1 & 2 \end{pmatrix} = \det\begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -1 \\ 0 & -5 & -4 \end{pmatrix} = \det\begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = -1$$

Using Leibniz' definition:

$$\begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 2 & -1 & 2 \end{vmatrix} = 1 \cdot 1 \cdot 2 + 2 \cdot 2 \cdot 2 + 3 \cdot 1 \cdot (-1) - 2 \cdot 1 \cdot 3 - (-1) \cdot 2 \cdot 1 - 2 \cdot 1 \cdot 2 = -1$$

13 Exercise 15

Exercise 17. The numbers 18984, 10962, 40026, 17976 and 14994 are divisible by 42. Show that the

determinant of A is divisible by 42 without explicitly computing it.

$$A = \begin{pmatrix} 1 & 8 & 9 & 8 & 4 \\ 1 & 0 & 9 & 6 & 2 \\ 4 & 0 & 0 & 2 & 6 \\ 1 & 7 & 9 & 7 & 6 \\ 1 & 4 & 9 & 9 & 4 \end{pmatrix}$$

$$\begin{vmatrix} 1 & 8 & 9 & 8 & 4 \\ 1 & 0 & 9 & 6 & 2 \\ 4 & 0 & 0 & 2 & 6 \\ 1 & 7 & 9 & 7 & 6 \\ 1 & 4 & 9 & 9 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 8 & 9 & 8 & 18984 \\ 1 & 0 & 9 & 6 & 10962 \\ 4 & 0 & 0 & 2 & 40026 \\ 1 & 7 & 9 & 7 & 17976 \\ 1 & 4 & 9 & 9 & 14994 \end{vmatrix} = 42 \cdot B$$

where B is some matrix with modified 5-th column.

Why does this work? Well, this can be proven using Leibniz' definition of the determinant.

$$\det((a_{ij})) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_1 \dots$$

14 Exercise 16

Exercise 18. Compute the $n \times n$ -determinants:

1.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & \dots & n-1 & n \\ -1 & 0 & 3 & 4 & \dots & n-1 & n \\ -1 & -2 & 0 & 4 & \dots & n-1 & n \\ \dots & \dots & \dots & \dots & \dots & \dots \\ -1 & -2 & -3 & -4 & \dots & 0 & n \\ -1 & -2 & -3 & -4 & \dots & -n+1 & 0 \end{pmatrix}$$

2.

$$\begin{pmatrix} 0 & 0 & \dots & 0 & a_n \\ 0 & 0 & \dots & a_{n-1} & * \\ \vdots & & \vdots & \vdots & \vdots \\ 0 & a_2 & * & \dots & * \\ a_1 & * & \dots & * \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & \dots & n-1 & n \\ -1 & 0 & 3 & 4 & \dots & n-1 & n \\ -1 & -2 & 0 & 4 & \dots & n-1 & n \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ -1 & -2 & -3 & -4 & \dots & 0 & n \\ -1 & -2 & -3 & -4 & \dots & -n+1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & \dots & n-1 & n \\ 0 & 2 & * & * & \dots & n-1 & n \\ 0 & 0 & 3 & * & \dots & n-1 & n \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & \dots & \dots \end{pmatrix} = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n = n!$$

$$\begin{vmatrix} 0 & 0 & \dots & 0 & a_n \\ 0 & 0 & \dots & a_{n-1} & * \\ \vdots & & \vdots & \vdots & * \\ 0 & a_2 & * & \dots & * \\ a_1 & * & \dots & * \end{vmatrix} = (-1)^k \begin{vmatrix} a_1 & * & \dots & * & a_n \\ 0 & a_2 & \dots & \ddots & * \\ \vdots & & \vdots & \ddots & \vdots \\ 0 & 0 & & a_{n-1} & * \\ 0 & 0 & \dots & 0 & a_n \end{vmatrix} = \left(\prod_{k=1}^n a_k\right) (-1)^k$$

where $k = \frac{n}{2}$ is n is even or $k = \frac{n-1}{2}$ is odd.

Exercise 19. Let $A \in \mathbb{K}_{m \times m}$, $B \in \mathbb{K}_{m \times n}$, $D \in \mathbb{K}_{n \times n}$ matrices. Show that,

$$\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det A \cdot \det D$$

Let
$$T = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$$

If A is singular, the rows are linear dependent. So $\det T = 0$. The same applies to D.

We apply row operations to A to retrieve an upper triangular matrix A_1 . If we do the same operations on T, we get B_1 . We apply row operations to D to retrieve an upper triangular matrix D_1 .

$$\hat{T} = \begin{pmatrix} A_1 & B_1 \\ 0 & D_1 \end{pmatrix}$$

Let a be the product of diagonal elements of A_1 . Let d be the product of diagonal elements of D_1 .

So $a \cdot d$ is the product of diagonal elements of \hat{T} .

Let p be the number of swaps in A_1 . Let q be the number of swaps in A_2 .

$$p + q = \hat{T}$$

Then

$$\det A = (-1)^p a \qquad \det D = (-1)^q b$$
$$\det T = (-1)^{p+q} a \cdot b$$

16 Exercise 18

Exercise 20. Compute the entry $(A^{-1})_{4,3}$ of the inverse matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 2 & 2 & -1 & -2 \\ 0 & 1 & 2 & 0 & -2 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

We compute the inverse matrix A^{-1} .

$$\begin{pmatrix}
\begin{bmatrix} 1 & 0 & 0 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 2 & 2 & -1 & -2 \\ 0 & 1 & 2 & 0 & -2 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}
\end{pmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 2 & 0 & 1 & -2 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 2 & -1 & 2 & -2 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

14