MIE1807 Lecture 01

Neil Montgomery

Last edited: 2017-01-09 08:53

contact, notes

date format YYYY-MM-DD - All Hail ISO8601!!!

Neil Montgomery instructor

email neilm@mie.utoronto.ca

office BA8137 office hours

W11-1

portal (announcements, grades, suggested exercises, etc.) website

github https://github.com/mie1807-winter-2017 (lecture material,

code, etc.)

evaluation, book, tutorials

what	when	how much
assignment 1	ТВА	10%
midterm	TBA	30%
assignment 2	TBA	20%
exam	TBA	40%

Any "Stats 101" book is fine. I will compile a collection of free to access texts that you can consult and from which I will suggested exercises for private practice.

Here are the first two:

Cohen, Y., Cohen, J.Y., 2008. Statistics and Data with R. John Wiley & Sons, Ltd, Chichester, UK. **Available online through U of T Library**

Ross, S.M., 2014. Introduction to probability models. Elsevier, Boston. Available online through ${\bf U}$ of ${\bf T}$ Library

https://www.openintro.org/ Somewhat basic free statistics textbook

software

The course begins and ends with data analysis, with some probability theory in the middle.

Data analysis requires a computer. Also, some concepts can be illustrated using simulation, which also requires a computer.

We will be using R. It's pretty good at data analysis.

language	interpreter	integrated development environment
R	R	RStudio

Some detailed instructions and suggestions for installation and configuration appear on the course website.

I will try to impart some data analysis workflow wisdom throughout the course. Some already appears in the detailed instructions.

I have signed up MIE1807 to have access to some R courses on the (well-regarded) datacamp.com training company.

most datasets are rectangles

Columns are the variables.

The top row has the names of the variables; possibly chosen wisely.

Rows are the *observations* of measurements taken on *units*.

There are no averages, no comments (unless in a "comment" variable), no colors, no formatting, no plots, no capes!

not a dataset

not a dataset

_			J				18	
ASSETNUM	MOVEDATE_1	FROM_LOCATION1	TO_LOCATION1	MOVEDATE_2	FROM_LOCATION2	TO_LOCATION2	MOVEDATE_3	FRC
0201011	2005-12-16	NO_LOCATION	RSREPAIR					
0209679	2006-01-16	NO_LOCATION	RSREPAIR	2006-01-30	RSREPAIR	DN4VNCR	2014-02-14	DN
0209680	2005-05-17	NO_LOCATION	RSREPAIR	2005-08-03	RSREPAIR	WY172UCR	2013-11-08	WY
0209709	2005-05-20	NO_LOCATION	WY92WEPR	2011-10-07	WY92WEPR	RSREPAIR	2013-11-08	RSR
0209711	2011-10-07	WY91WEPR	RSREPAIR	2013-11-08	RSREPAIR	WY174VNCR		
0209714	2003-12-15	NO_LOCATION	RSREPAIR					
0209720	2011-10-07	WY95WEPR	RSREPAIR	2013-06-25	RSREPAIR	WY70ASPR		
0209722	2011-10-07	WY106WEPR	RSREPAIR	2013-06-27	RSREPAIR	WY144BSUSR		
0209728	2011-10-07	WY94WEPR	RSREPAIR	2013-11-08	RSREPAIR	WY143NWCPR		
0209729	2006-01-16	NO_LOCATION	RSREPAIR	2006-01-30	RSREPAIR	DN12ASRA	2014-04-04	DN:
0209737	2005-01-11	NO_LOCATION	DN15NWCRB	2006-03-21	DN15NWCRB	RSREPAIR	2006-03-31	RSR
0209739	2011-10-07	WY144WEPR	RSREPAIR	2013-12-09	RSREPAIR	WY178TPR		
0209740	2011-10-07	WY143WEPR	RSREPAIR	2012-09-12	RSREPAIR	DNSPARE	2014-05-30	DN:
0209741	2006-01-16	NO_LOCATION	RSREPAIR	2006-01-30	RSREPAIR	DN10BHR	2014-09-05	DN

an oil readings dataset (wide version)

```
## # A tibble: 612 \times 17
##
      Ident
                        Date WorkingAge TakenBy
                                                      Fe
                                                                  Cu
##
      <chr> <dttm>
                                    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
     448576 1999-05-10 19:00:00
                                      243 EMPL 0917
                                                      13
                                                                  14
## 1
                                      569 EMPL 0917
                                                      18
                                                                  25
     448576 1999-07-26 19:00:00
     448576 1999-09-29 19:00:00
                                      830 EMPL 9375
                                                      26
                                                                  35
## 3
                                                      15
     448576 1999-10-08 19:00:00
                                      862 EMPL 0917
                                                                  14
## 5
     448576 1999-11-02 19:00:00
                                     946 EMPL 9375
                                                      14
                                                                  19
                                                      18
                                                                  23
## 6
     448576 1999-12-09 19:00:00
                                     1088 EMPL 0917
     448576 1999-12-27 19:00:00
                                                      24
                                                                  25
## 7
                                     1157 EMPL 9375
     448576 2000-01-14 19:00:00
                                     1238 EMPL 9375
                                                      27
                                                                  34
     448576 2000-02-15 19:00:00
                                     1376 EMPL 9375
                                                      16
                                                                  17
## 10 448576 2000-03-11 19:00:00 1492 EMPL 0917
                                                      20
                                                                  20
## # ... with 602 more rows, and 10 more variables: Cr <dbl>, Si <dbl>,
      Pb <dbl>, Ph <dbl>, Ca <dbl>, Zn <dbl>, Mg <dbl>, Mo <dbl>,
## #
      Sn <dbl>, Na <dbl>
```

oil readings with Ident and TakenBy properly treated

```
## # A tibble: 612 \times 17
##
      Ident
                       Date WorkingAge TakenBy
                                                     Fe
                                                                 Cu
##
     <fctr> <dttm>
                                   <dbl> <fctr> <dbl> <dbl> <dbl> <dbl> <
## 1
     448576 1999-05-10 19:00:00
                                     243 EMPL 0917
                                                     13
                                                                 14
                                     569 EMPL 0917
                                                     18
                                                                 25
     448576 1999-07-26 19:00:00
     448576 1999-09-29 19:00:00
                                     830 EMPL 9375
                                                     26
                                                                 35
## 3
                                                     15
                                                                 14
     448576 1999-10-08 19:00:00
                                     862 EMPL 0917
## 5
     448576 1999-11-02 19:00:00
                                     946 EMPL 9375
                                                     14
                                                                 19
                                                     18
                                                                 23
## 6
     448576 1999-12-09 19:00:00
                                    1088 EMPL 0917
## 7
     448576 1999-12-27 19:00:00
                                                     24
                                                                 25
                                    1157 EMPL 9375
     448576 2000-01-14 19:00:00
                                    1238 EMPL 9375
                                                     27
                                                                 34
     448576 2000-02-15 19:00:00
                                    1376 EMPL 9375
                                                     16
                                                                 17
  10 448576 2000-03-11 19:00:00 1492 EMPL 0917
                                                     20
                                                                 20
## # ... with 602 more rows, and 10 more variables: Cr <dbl>, Si <dbl>,
      Pb <dbl>, Ph <dbl>, Ca <dbl>, Zn <dbl>, Mg <dbl>, Mo <dbl>,
## #
      Sn <dbl>, Na <dbl>
```

oil readings dataset (long version)

```
## # A tibble: 7.956 × 6
##
      Ident
                           Date WorkingAge
                                             TakenBy element
                                                                ppm
##
      <fctr>
                         \langle dt.t.m \rangle
                                      <dbl>
                                              <fctr>
                                                       <chr> <dbl>
## 1
     448576 1999-05-10 19:00:00
                                       243 EMPL 0917
                                                           Fe
                                                                 13
## 2
     448576 1999-07-26 19:00:00
                                       569 EMPL 0917
                                                           Fe
                                                                 18
                                       830 EMPL_9375
## 3
     448576 1999-09-29 19:00:00
                                                          Fe
                                                                 26
## 4
     448576 1999-10-08 19:00:00
                                       862 EMPL 0917
                                                          Fe
                                                                 15
## 5
     448576 1999-11-02 19:00:00
                                       946 EMPL 9375
                                                           Fe
                                                                 14
                                       1088 EMPL_0917
## 6
     448576 1999-12-09 19:00:00
                                                           Fe
                                                                 18
     448576 1999-12-27 19:00:00
                                       1157 EMPL 9375
                                                           Fe
                                                                 24
## 7
## 8
     448576 2000-01-14 19:00:00
                                       1238 EMPL_9375
                                                          Fe
                                                                 27
## 9
     448576 2000-02-15 19:00:00
                                       1376 EMPL 9375
                                                          Fe
                                                                 16
## 10 448576 2000-03-11 19:00:00
                                       1492 EMPL 0917
                                                                 20
                                                           Fe
## # ... with 7,946 more rows
```

▶ where did the data come from?

- ▶ where did the data come from?
 - were the units chosed randomly from a population?

- ▶ where did the data come from?
 - were the units chosed randomly from a population?
 - were the units randomly assigned into groups?

- ▶ where did the data come from?
 - were the units chosed randomly from a population?
 - were the units randomly assigned into groups?
- what are the (joint) distributions of the data?

Sometimes the data come from a *random sample* from a larger *population*, in which case statements about the sample can apply to the population using laws of probability.

Sometimes the data come from a *random sample* from a larger *population*, in which case statements about the sample can apply to the population using laws of probability. (Not a focus of this course.)

Sometimes the data come from a *random sample* from a larger *population*, in which case statements about the sample can apply to the population using laws of probability.

(Not a focus of this course.)

Sometimes data come from an *experiment* where units are randomly assigned to different *levels* of one or more *factors*, in which cause cause-and-effect can be inferred using laws of probability.

Sometimes the data come from a *random sample* from a larger *population*, in which case statements about the sample can apply to the population using laws of probability.

(Not a focus of this course.)

Sometimes data come from an *experiment* where units are randomly assigned to different *levels* of one or more *factors*, in which cause cause-and-effect can be inferred using laws of probability.

Often the data are just some records of what happened. Grander inferences might be made, but only on a subject-matter basis.

▶ A distribution is a

- ► A distribution is a
 - ► Complete description of. . .

- ► A distribution is a
 - ► Complete description of. . .
 - ▶ ... the possible values of one or more variables...

- ► A distribution is a
 - ► Complete description of. . .
 - ▶ ... the possible values of one or more variables...
 - ...and the relative frequency of those values.

- ► A distribution is a
 - ► Complete description of. . .
 - ... the possible values of one or more variables...
 - ...and the relative frequency of those values.
- A dataset contains empirical information about distribution(s) that can be assessed

- ► A distribution is a
 - ► Complete description of. . .
 - ... the possible values of one or more variables...
 - ...and the relative frequency of those values.
- ▶ A dataset contains **empirical** information about distribution(s) that can be assessed
 - numerically

- ► A distribution is a
 - ► Complete description of. . .
 - ... the possible values of one or more variables...
 - ...and the relative frequency of those values.
- A dataset contains **empirical** information about distribution(s) that can be assessed
 - numerically
 - graphically

- ► A distribution is a
 - ► Complete description of. . .
 - ... the possible values of one or more variables...
 - ...and the relative frequency of those values.
- A dataset contains **empirical** information about distribution(s) that can be assessed
 - numerically
 - graphically

- ► A distribution is a
 - ► Complete description of. . .
 - ... the possible values of one or more variables...
 - ...and the relative frequency of those values.
- A dataset contains empirical information about distribution(s) that can be assessed
 - numerically
 - graphically

through a process called exploratory data analysis

► Numerical or categorical?

- ► Numerical or categorical?
 - ▶ Numerical: length, ppm, time-to-event, etc.

- ► Numerical or categorical?
 - ▶ Numerical: length, ppm, time-to-event, etc.
 - ► Categorical: yes/no, colour, etc.

- ► Numerical or categorical?
 - ▶ Numerical: length, ppm, time-to-event, etc.
 - ► Categorical: yes/no, colour, etc.
 - ▶ Lots of grey areas even in this classification!

- ► Numerical or categorical?
 - Numerical: length, ppm, time-to-event, etc.
 - ► Categorical: yes/no, colour, etc.
 - ▶ Lots of grey areas even in this classification!
 - Categories can have an inherent order

- ► Numerical or categorical?
 - Numerical: length, ppm, time-to-event, etc.
 - ► Categorical: yes/no, colour, etc.
 - ▶ Lots of grey areas even in this classification!
 - Categories can have an inherent order
 - "Likert scale" (strongly disagree coded as 1 and so on...)

- Numerical or categorical?
 - Numerical: length, ppm, time-to-event, etc.
 - ► Categorical: yes/no, colour, etc.
 - ▶ Lots of grey areas even in this classification!
 - Categories can have an inherent order
 - "Likert scale" (strongly disagree coded as 1 and so on...)
- ▶ Numerical variables could be discrete (counting something) or continuously measured.

numerical summaries of dataset variables — definitions first

with examples after

sample measures of "location"

The dataset is often called the "sample" (no matter where the data came from).

sample measures of "location"

The dataset is often called the "sample" (no matter where the data came from).

For a particular numerical variable in the sample with observations:

$$\{x_1,x_2,\ldots,x_n\}$$

the sample average is just the arithmetic mean:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

sample measures of "location"

The dataset is often called the "sample" (no matter where the data came from).

For a particular numerical variable in the sample with observations:

$$\{x_1,x_2,\ldots,x_n\}$$

the sample average is just the arithmetic mean:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Could be sensitive to extreme observations.

sample medians, sample percentiles

Order the observations:

$$x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$$

A number that divides the observations into two groups is called a *sample median*. For example:

$$\tilde{x} = \begin{cases} x_{((n+1)/2)} & : n \text{ odd} \\ \left(x_{(n/2)} + x_{(n/2+1)}\right)/2 & : n \text{ even} \end{cases}$$

which is harder to write out than it is to understand.

sample medians, sample percentiles

Order the observations:

$$x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$$

A number that divides the observations into two groups is called a *sample median*. For example:

$$\tilde{x} = \begin{cases} x_{((n+1)/2)} & : n \text{ odd} \\ \left(x_{(n/2)} + x_{(n/2+1)}\right)/2 & : n \text{ even} \end{cases}$$

which is harder to write out than it is to understand.

A sample p^{th} percentile has p% of the data below or equal to it. Special cases include (sample...): quartiles, quintiles, deciles, and indeed the median itself.

sample measures of variation of a numerical variable

Very (too?) simple measure: sample range which is just $x_{(n)} - x_{(1)}$.

sample measures of variation of a numerical variable

Very (too?) simple measure: sample range which is just $x_{(n)} - x_{(1)}$.

More common to consider the set of deviations from the sample mean:

$$x_i - \overline{x}$$

Adding them up just gives 0, so instead consider positive functions such as:

$$|x_i - \overline{x}|$$
 or $(x_i - \overline{x})^2$

sample measures of variation of a numerical variable

Very (too?) simple measure: sample range which is just $x_{(n)} - x_{(1)}$.

More common to consider the set of deviations from the sample mean:

$$x_i - \overline{x}$$

Adding them up just gives 0, so instead consider positive functions such as:

$$|x_i - \overline{x}|$$
 or $(x_i - \overline{x})^2$

Summing up over all the observations gives the *sum of absolute deviations* (aka SAD) and the *sample variance* respectively. Notation and formula:

$$s^2 = \frac{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$$

sample standard deviation

 s^2 is essentially the average squared deviation. (More on n-1 later in the course.)

The sample variance is good for theory but has an inconvenient unit. More practical is the *sample standard deviation*:

$$s = \sqrt{s^2}$$

numerical summaries for categorical variables

The oil readings data has one categorical variable, the Ident variable which is just a serial number.

```
## # A tibble: 5 × 17
     Tdent.
                          Date WorkingAge TakenBy
##
                                                        Fe
                                                              Αl
                                                                    C_{11}
##
    <fctr>
                        <dttm>
                                     <dbl> <fctr> <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1 448576 1999-05-10 19:00:00
                                       243 EMPL_0917
                                                        13
                                                               5
                                                                    14
## 2 448576 1999-07-26 19:00:00
                                       569 EMPL 0917
                                                        18
                                                                    25
                                       830 EMPL_9375
                                                                    35
## 3 448576 1999-09-29 19:00:00
                                                        26
                                       862 EMPL 0917 15
                                                                    14
## 4 448576 1999-10-08 19:00:00
## 5 448576 1999-11-02 19:00:00
                                       946 EMPL 9375
                                                        14
                                                                    19
## # ... with 10 more variables: Cr <dbl>, Si <dbl>, Pb <dbl>, Ph <dbl>,
      Ca <dbl>, Zn <dbl>, Mg <dbl>, Mo <dbl>, Sn <dbl>, Na <dbl>
## #
```

tables of counts (or proportions)

A categorical variable could also be called a *factor* variable with *levels*, and to tabulate the frequency of each level is the way to summarize.

```
## # A tibble: 25 \times 3
##
       Ident
                 n proportion
                         dbl>
##
      <fctr> <int>
      448572
                 31 0.05065359
## 1
## 2
      448574
                 31 0.05065359
## 3
      448576
                 36 0.05882353
## 4
      448577
                 29 0.04738562
## 5
      448578
                 34 0.0555556
## 6
      448579
                 36 0.05882353
## 7
      448580
                 28 0.04575163
## 8
      448581
                 31 0.05065359
## 9
      448582
                 41 0.06699346
  10 448583
                 42 0.06862745
    ... with 15 more rows
```

two-way classification with Ident and TakenBy

Ident

EMPL_9134 0

EMPL 9375

##

##

##	EMPL_0592	18	16	0	0	12	0	0	7	
##	EMPL_0917	0	0	18	11	0	22	10	0	
##	EMPL_2095	8	8	0	0	8	0	0	7	
##	EMPL_4925	0	0	10	9	0	6	10	0	
##	EMPL_9134	5	7	0	0	14	0	0	17	
##	EMPL_9375	0	0	8	9	0	8	8	0	
##	Ident									
##	TakenBy	448583	448584	448588	448589	448590	448593	448594	448595	448
##	EMDI OFOO	^	^	^	4.0	^		_	^	
	EMPL_0592	0	0	0	10	0	10	0	0	
##	EMPL_0592 EMPL_0917	24	9	11	10	13	10	10	18	
## ##	_	-	_			•			•	

10

TakenBy 448572 448574 448576 448577 448578 448579 448580 448581 448

barchart

A barchart is a table of counts, in graphical form.

"Pareto" chart

Ordered by count.

piecharts are problematic

histograms

A histogram is a special case of a barchart.

A numerical variable is split into classes and a barchart is made from the table of counts of obvservations within each class.

Histograms are done by the computer. Always play around with the number of classes.

histograms are hard to implement!

Better picture around 0. Possibly not important for EDA?

histogram without those really big values

a few more ppm histograms

"shapes" of "distributions"

To use a histogram, *glance* at it and look for any of the following (without getting fooled by plot artefacts):

transforming variables

Apply log or square root to a variable will change the shape of the empirical distribution, e.g. transform right-skewed to symmetric.

boxplots

A special plot of these (or similar) five numbers:

min 25^{th} percentile median 75^{th} percentile max

is called a *boxplot*. Often the extreme values are shown individually (see documentation for the (irrelevant) details.)

Best as side-by-side boxplots with more than one varaible on the same scale.

boxplot example - I

boxplot example - II

boxplot example - III "standardized"

scatterplots

A graphic for two numerical variables, e.g. Fe and Si

Fe vs Si without the "outliers"

alternatively, on a log-log scale

grouped by Ident, with best fit line

"small multiples" through faceting

A powerful exploratory tool is to make a grid of small plots on subsets of the data.

try with Zn and Cu

scatterplot matrix (requires GGally package)

what about that "Date" variable. . . (!)

Fe versus Date, facet by Ident

