Aritmetico Modulore

DIVISIONI TRA INTERI

ARITMETICA: RIGUARDA IL CALCOLO SUI RESTI DECLE

CONGRUENZA 400 1: Q=6 (mod 1) (Q Q-6=1 owers Q-6 & un multiple de 1.	
ma agri numero e mueltiglo di 1 ⇒ Va €Z e multiplo con ag	fris
numero => 3 una sola classa di equinalenza contenente tutti gli interi	
awero Z	
COMPRIENZA MOD Z: a=b (mode) (=> a-b=2 over a-b et un numero pori.	
il nexts + 0≤+22 (0,1) ⇒ obliomo solo dul clori, una con i muner	Κ
moni e una con i numeri disposi	
[a]m = {beZ: a = b (mod m)}	
I REST I DI UNA DIVISIONE MOD m [0, m-1]	
STABILIRE LA CLASSE: [0]m=[r]m done r=0%m	
DI EQUIVALENZA DI QE Z Ex. Se m=5 e q= 22 Q°6 m=22%5=2	
$= \sum_{z \in \mathbb{Z}} \{z\}_{s}$	
NELLA CLASSE [0]m CI SONO TUTTI I MULTIPLI DI M	
TEOREMA: Dioto a=6 (mod m) 1 C=d (mod m) abbiomo:	
(DQ+C=b+d (mad m)	
2 Q. C = b.d (mod m)	
INVARIANZA 7 LA SOMMA Se e = 6 (mod m) allone e+c=b+c (mod m) Ve, 6,c ∈ Z RISPETTO	
Yesborro Se @=b(madm) allera a. (= b. c (mad m) Vasb, c & Z	<u>'</u>
PROPRIETA	
Dati 2, b, m EN visto che Q = a mad m (mod m) e b = b mad m (mod m)	
=> (a+b)= (a mad m+b mod m) (mod m)	
Per Dati a, m, m & W visto che a = a mad m (mod m)	
=> 0" = (0 mod m)" (mod m) 5L(DE 99)	
(3) Dati asb, h, K & N	
=> a b = (ah mad m) (b mad m) (mad m) quind: ah b mad m = (a mad m) · (b mad m) mad	dm

TEOREMA: Una sequence di un numeri consecutivi contiene un numero di visibile per un DIM SLIDE 101 · Dati 2 numeri consecuti y almeno uno de due é dusilile per 2 11 3 11 11 , 11 11 11 11 11 11 11 11 11 3 2 almens uno per 2 => le modato di 3 numer consentin e sinsibile per 6 divisibile per 60 · Cosá via Vm>1 => n2-n = 0 (mad 6) ovvero n2-n e un multiple de 6 ESERCIZI SLIDE 104 Sions asbell asbo => 3 xell 0. X=1 (mod b) IMERSO DI UN MUHERO: (a e b Sono Comimi NELL'ARITMETICA MODULARE · l'elements x e denotats con a 1 · a viene detto "inverso di a modulo 6" Esenzi Q=5, b=3=> Q=1=2 perche 2.5 mod 3=10 mod 3=1 Q=9, 6=11=> Q1=5 perche 5.9 mod11=45 mod11=1 e=9, 6=7=70=1=4 resché 4. 9 mod 7= 36 mod 7=1 Q= 14, 6=6 (mon somo comumi) \$ 01 FUNZIONE DI: Serre a Calcohore quanti numeri coprimi sono compresi fre 1 e m. EULERO \$ $\phi(n) = \left\{ x \in \mathbb{N} \mid 0 < x \leq m, M \in D(m, X) = 1 \right\}$ ØDI UN: Φ(m) = M-1 NUMERO PRIMO ØDI UN Un numero puró enere sixillo come produtto di numeri quimi. QUALSIASI NUMERO: $M = \mu_1 \cdot \dots \cdot \mu_r$ $\mathcal{D}(M) = \mathcal{D}(n_1) \cdot \dots \cdot \mathcal{D}(n_r)$ $\emptyset(M^k)$: $\emptyset(M^k) = M^k - M^{k-1}$

(0	DIC	= 15	31/	Slide	139 e	140				
<i>C</i> =						0.4				
(0	N)ICE	· (Ak	CIA D	I CRED	sito: S	lide .	(41			
11	ED 10) (D)	1 (1	CAPE.	Slide	412				
Cli	КАГ	ao i)(Cc	: אועכ	3404	. 747				
Re	M_	12.	<0.	<i>و</i> المه						
	0 (-	. (5)	Stid	و عاباب						
SE	QUE	NZE	<i>LIU</i> M	LE RICHE	ACI :	S/1NE	168			
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,001		.5/\		`,'0			