Time-Series Analysis Prediction of Avocado-prices in the US

Ökonometrie 2 SS 2019

Group-members

Dornigg, Thomas (01551056)

Kafenda, Lukas (01607734)

Sunk, David (01605328)

Content

- 1. Project description
- 2. Exploratory Data Analysis of the Dataset
- 3. Testing for Stationarity
- 4. Correcting for Stationarity
- 5. Fitting appropriate model
 - a. Traditional approach (ARMA, ARIMA, SARIMA)
 - b. Facebook-Prophet Library
 - c. Comparison
- 6. Conclusion

1. Project and Dataset Description

- Kaggle dataset from 2018^[1]
- represents weekly retail scan data for national retail volume (units) and price
- based on actual retail sales of Hass avocados
- time-range: 04-01-2015 : 25-03-2018
- Research Questions:
 - Was the Avocadopocalypse of 2017 real? (taken from Kaggle)
 - What is the potential price which customers would have to pay for Conventional-Avocados in early 2018 respectively 2019?

2. Exploratory Data Analysis

- dataset consists of following features:
 - Date
 - Average Price
 - Type (organic/conventional)
 - Year
 - Total Volume
- avocado-type comparison (descriptive statistics, pie chart)
- evolution of avocado prices (line graph)
- comparison of avocado prices (density plot, boxplots, line graph)
- volume of sold avocados grouped by regions (frequency distribution bar chart)

Conventional

	Average Price	Total Volume	Region	Type
Types	numeric	numeric	constant	constant
Counts	169	169	169	169
Uniques	61	169	1	1
Missing	0	0	0	0
Missing %	0%	0%	0%	0%
Mean	1.09	33735038.97	NaN	NaN
StD	0.17	6118091.85	NaN	NaN
Minimum	0.76	21009730.21	NaN	NaN
Maximum	1.65	62505646.52	NaN	NaN
Mean abs. Deviation	0.13	4532699.23	NaN	NaN
25%	0.97	29761638.48	NaN	NaN
50%	1.04	32994014.16	NaN	NaN
75%	1.19	37026085.75	NaN	NaN
IQR	0.22	7264447.27	NaN	NaN
Skewness	1.13	1.23	NaN	NaN
Kurtosis	1.33	4.31	NaN	NaN

Organic

	Average Price	Total Volume	Region	Type
Types	numeric	numeric	constant	constant
Counts	169	169	169	169
Uniques	69	169	1	1
Missing	0	0	0	0
Missing %	0%	0%	0%	0%
Mean	1.55	967565.65	NaN	NaN
StD	0.20	302482.33	NaN	NaN
Minimum	1.00	501814.87	NaN	NaN
Maximum	2.09	1814929.97	NaN	NaN
Mean abs. Deviation	0.15	249361.63	NaN	NaN
25%	1.43	699763.35	NaN	NaN
50%	1.53	967886.13	NaN	NaN
75%	1.67	1148617.16	NaN	NaN
IQR	0.24	448853.81	NaN	NaN
Skewness	-0.13	0.47	NaN	NaN
Kurtosis	0.93	-0.44	NaN	NaN

Average Avocado Price from 2015 to 2018

Conventional vs. Organic Avocados grouped by Total Volume sold

Price Distribution: Conventional vs. Organic

Price devolopement (grouped by months) for Conventional Avocados

Price devolopement (grouped by months) for Organic Avocados

Average Volume Sold from 2015 to 2018

3. Test for Stationarity

Stationarity is a statistical assumption that a time-series has:

- Constant mean
- Constant variance
- Autocovariance does not depend on time

Testing both graphically and with statistical-tests

Decomposition of the Time Series for Conventional Avocados

Rolling mean and standard deviation for the Timeseries

Tests for Stationarity

1) Augmented Dickey-Fuller Test

 H_n : The Time-Series is not stationary

 H_A : The Time-Series is stationary

2) KPSS-Test

H₀: The Time-Series is stationary

H_A: The Time-Series is not stationary

Results for the conducted tests

Test-Statistic	p-value	
Augmented-Dickey Fuller Test	0.098633	
KPSS	0.034961	

Assumption: Time-Series is not-stationary

4. Correcting for Stationarity

As seen from the graph and test-statistics before, the TS seems to be not stationary:

- Trend: mean is not constant over time
- Seasonality: variance is not constant over time
- Correct for Trend and Seasonality in order to make TS stationary

Possible solutions:

- Taking the Log
- Smoothing (rolling averages, e.g. weekly, monthly, ...)
- Differencing
- etc.

Rolling Mean and Standard Deviation for Log-Diff Time-Series

Decomposition of Log-Diff Time-Series

Results for conducted tests on Log-Diff-Time-Series

Test-Statistic	p-value	
Augmented-Dickey Fuller Test	0.000144	
KPSS	0.10	

Assumption: Time-Series is stationary

5.1 Model-Fitting: Traditional approach

- since model-fits for log-diff TS yielded in bad results, we tried to fit a model for the original TS
- following fits were conducted:
 - o ARMA (4, 3)
 - o ARIMA (0, 1, 0)
 - SARIMA (1, 1, 0) x (1, 1, 0, 52)
- model evaluation with statistical metrics:
 - RMSE (= Root Mean Square Error)
 - MAPE (= Mean Absolute Percentage Error)
 - MAE (= Mean Absolute Error)

Short Detour: SARIMA

- ARIMA can model data with a trend, but not with a seasonal component
- extension of ARIMA: Seasonal Autoregressive Integrated Moving Average (= SARIMA)
- configuration of SARIMA:
 - Trend Flements:
 - p: Trend autoregressive order
 - d: Trend difference order
 - q: Trend moving average order
 - Seasonal Elements:
 - P: Seasonal autoregressive order
 - D: Seasonal difference order
 - Q: Seasonal moving average order
 - m: Number of time steps (e.g.: 12 for monthly data, 52 for weekly data etc.)

5.2 Forecast with FBProphet

- created by the Core Data Science Team (> 650 Data Scientists) at Facebook
- developed for Python and R
- library was open-sourced in 2017
- forecasts for TS-data based on additive models where non-linear trends are fit with yearly,
 weekly, and daily seasonality, plus holiday effects
- does not require manuel pre-processing steps (e.g. differencing to make the data stationary)
- works best for TS which has strong seasonal effects and several seasons of historical data

5.3 Comparison

	RMSE	MAE	MAPE
SARIMA	0.109	0.055	0.057
FBProphet	0.086	0.0675	0.061

Comparison betw. SARIMAX and FBProphet Forecast

6. Conclusion

- First Research Question:
 - Yes, as clearly seen from the graphs, 2017 was the year for avocados
 - Average price and volume of sold avocados rose tremendously
- Second Research Question:
 - Price range for predicted avocados between 2018 and early 2019: 0.80 1.10 USD

Sources

URL: https://www.kaggle.com/neuromusic/avocado-prices, Zugriff 27.6.2019

URL: https://hassavocadoboard.com/, Zugriff 27.6.2019