Vector

1 Terminology

Line

Ray

Ling Segment

[Fig] Line Segment, Ray and Line

Begin, End Tail, Head

Circle

[Fig] Radius and Diameter

[Fig] Sector, Segment and Arc

Coordinate System

[Fig] Standard Axis

Right Hand Coordinate System

Right Hand Rule

2 Basic Concepts

radian

ρί, π

3.141592

[Fig] Radian

Pi and Degree

pi radian = 180 degree

Trigonemetric Functions

[Fig] unit circle

[Fig] Length of the projected line segment

Sine

Cosine

[Fig] Coordiante of P

 $(\cos(\theta), \sin(\theta))$

[Fig] tangent line: Slope quotient is b/a

[Fig] Trigonometric Functions

Pythagorean Theorem

$$c^2 = a^2 + b^2$$
, $c = \sqrt{a^2 + b^2}$
 $1^2 = \sin^2\theta + \cos^2\theta$, $1 = \sin^2\theta + \cos^2\theta$

Tayler series Trigonometric functions

sin(), cos()

Inverse Function

asin(), acos()

[Fig] cos()의 역함수의 정의

Length of Arc θ Length of OP_x arc cosine

 $acos(cos\theta) = \theta$

3 Vector

magnitude and direction scalar Speed and Velocity initial point A, terminal point B

$$v = \overrightarrow{AB}$$

[Fig] Vector: $v = \overline{AB}$ is expressed as (4,3) or $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$

$$v = \overrightarrow{AB}$$
 row vector (4,3) column vector $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$

Vector valued funtion f() and g()

apply result of $f(\begin{bmatrix} 4 \\ 3 \end{bmatrix})$ to g()

g(
$$f(\begin{bmatrix} 4 \\ 3 \end{bmatrix})$$
)

g f
$$\begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

Vector Operations

[Fig] Vector Addition and Scalar Multiplication

$$\overrightarrow{v} = (a,b), \overrightarrow{w} = (c,d)$$

$$\overrightarrow{v} + \overrightarrow{w} = (a,b) + (c,d) = (a+c, b+d)$$

 $\overrightarrow{v} = (a,b)$, real number k

$$\overrightarrow{kv} = k(a,b) = (ka, kb)$$

Negative Vector

[Fig] Negative Vector

[Fig]Vector Subtraction

$$\overrightarrow{v} - \overrightarrow{w} = (a - c, b - d)$$

length or norm

$$|\mathbf{v}|$$
$$|v| = \sqrt{a^2 + b^2}$$

normalization

4 Implementing class KVector2

```
class KVector2
{
  public:
     float     x;
     float     y;

public:
     KVector2(float tx, float ty) { x = tx; y = ty; }
     KVector2(int tx, int ty) { x = (float)tx; y = (float)ty; }
};

inline KVector2 operator+(const KVector2& lhs, const KVector2& rhs)
{
```

```
KVector2 temp(lhs.x + rhs.x, lhs.y + rhs.y);
    return temp;
}
inline KVector2 operator*(float scalar, const KVector2& rhs)
{
    KVector2 temp(scalar*rhs.x, scalar*rhs.y);
    return temp;
}
inline KVector2 operator*(const KVector2& lhs, float scalar)
{
    KVector2 temp(scalar*lhs.x, scalar*lhs.y);
    return temp;
}
```

```
void KVectorUtil::DrawLine(HDC hdc, const KVector2& v0, const KVector2& v1)
{
    MoveToEx(hdc, (int)v0.x, (int)v0.y, nullptr);
    LineTo(hdc, (int)v1.x, (int)v1.y);
}
```


[Fig] LinearAlgebra_Step02 Vectors

Exercise

- 1. Implement Normalize() member function of class KVector2
- 2. Draw a line segment of length 200 in direction (3,2).
- 3. Draw a circle using sin() and cos()

@