Bilgisayar Mimarisi Bölüm 2 Sayısal Elemanlar

Dr. Emre Ünsal

Cumhuriyet Üniversitesi

Yazılım Mühendisliği Bölümü

İçerik

- Birleştirilmiş Devreler
- Kod Çözücüler (Decoder)
- Kodlayıcılar (Encoder)
- Seçiciler (Multiplexer)
- İkili Sayıcılar (Binary Counter)
- Yazaçlar (Register)

Birleştirilmiş Devreler

- Sayısal Devreler (Integrated Circuits IC) Birleştirilmiş devrelerden yapılmıştır.
- Bir IC yonga seti olarak adlandırılan silikon ve yarı iletken kristallerden oluşmaktadır.
- Entegre devre içerisine yerleştirilmiş kapıların sayısına göre sınıflandırılırlar:
 - SSI (Small Scale Integrated circuits) : Küçük Ölçekli Bileşik Devreler
 - MSI (Medium Scale Integrated circuits) : Orta Ölçekli Bileşik Devreler
 - LSI (Large Scale Integrated circuits) : Büyük Ölçekli Bileşik Devreler
 - VLSI (Very Large Scale Integrated circuits) :Çok Büyük Ölçekli Bileşik Devreler

Kod Çözücüler (Decoder)

 N sayıda girişe karşılık M (M=2^N en fazla) çıkış üretebilen sayısal devrelerdir.

Kod Çözücü Devre Blok Şeması

2 Girişli Kod Çözücü Devre

Girişler			Çıkışlar				
En	В	A	Q ₀	Q_1	\mathbf{Q}_{2}	\mathbf{Q}_3	
1	Х	X	1	1	1	1	
0	0	0	0	1	1	1	
0	0	1	1	0	1	1	
0	1	0	1	1	0	1	
0	1	1	1	1	1	0	

Üç Giriş Sekiz Çıkışlı Kod Çözücü

Truth table

X	y	Z	F ₀ 1 0	$\mathbf{F_1}$	$\mathbf{F_2}$	\mathbf{F}_3	$\mathbf{F_4}$	\mathbf{F}_5	$\mathbf{F_6}$	\mathbf{F}_7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1
			200							

Ve-Değil (NAND) Kapılı Kod Çözücü

Truth Table

Α	В	Q_0	Q_1	Q_2	Q_3
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0
		l			

Kod Çözücülerin Genişletilmesi

A ₂	A ₁	A ₀	OUTPUT
0	0	0	Y ₀
0	0	1	Y ₁
0	1	0	Y ₂
0	1	1	Y ₃
1	0	0	Y ₄
1	0	1	Y ₅
1	1	0	Y ₆
1	1	1	Y ₇

2 Adet 2x4 Decoder Kullanılarak 3x8'lik decoder oluşturulması

Kodlayıcılar (Encoder)

 M sayıdaki giriş bilgisini N sayıdaki kodlu çıkışa dönüştüren devrelere kodlayıcı devre (Encoder) denir.

8x3 Kodlayıcı (Encoder)

8x3 Bit Encoder

Pozisyon Bilgisi için Encoder Kullanımı

Vön Tovini	Binary Çıkış			
Yön Tayini	Q_0	Q_1	Q_2	
North	0	0	0	
North-East	0	0	1	
East	0	1	0	
South-East	0	1	1	
South	1	0	0	
South-West	1	0	1	
West	1	1	0	
North-West	1	1	1	

Seçiciler (Multiplexer)

- 2^N sayıda girişten sadece birini çıkışa aktaran devreye seçici (Multiplexer) adı verilir.
- Bir seçici 2^N sayıda giriş hattına N sayıda seçim griş hattına ve 1 adet çıkış hattına sahiptir.

4x1 Seçici (Multiplexer)

Select Da	Select Data Inputs					
S ₁	S ₀	Υ				
0	0	D_0				
0	1	D ₁				
1	0	D ₂				
1	1	D ₃				

8x1 Seçici (Multiplexer)

Se	Select Data Inputs					
S ₂	S ₁	S ₀	Y			
0	0	0	D ₀			
0	0	1	D ₁			
0	1	0	D ₂			
0	1	1	D ₃			
1	0	0	D ₄			
1	0	1	D ₅			
1	1	0	D _δ			
1	1	1	D ₇			

Sayıcılar (Counters)

- Dijital sayıcılar asenkron sayıcılar ve senkron sayıcılar olmak üzere ikiye ayrılır.
- Asenkron sayıcılarda ana tetikleme sinyali flip-floplar'dan sadece birinin (en baştakinin) girişine uygulanır.
- Bu flip-flop'un çıkışı kendisinden bir sonraki flip-flop'un girişine uygulanır.
- Özetle her flip-flop'un çıkışı bir sonraki flip-flop için tetikleme palsi olarak kullanılır.
- Senkron sayıcılarda ise bütün flip-flop'lar aynı tetikleme palsi ile tetiklenir.

Sayıcılar (Counters)

- Sayıcılar girişine uygulanan clock (saat) palsleriyle sayarlar.
- Asenkron sayıcıların yapısı çok basittir. Ancak çalışma hızları düşüktür.
 O nedenle yüksek hızda sayma yapamaz.
- Asenkron sayıcıyı oluşturan flip flop'ların "clock palsleri" bir önceki flip flop'un çıkışından alınmaktadır.
- İşte bu durum bir zaman gecikmesine neden olmaktadır.
- Bir FF yaklaşık geçilme süresi 10ns dir. 4 FF kullanıldığında bu süre 40 ns çıkar.

Asenkron Yukarı Sayıcılar

Sinyal Grafiği

СР	Q_A	Q _B
0	0	0
1	0	1
2	1	0
3	1	1
4	0	0

Düşen Kenar Tetiklemeli Asenkron Yukarı Sayıcı

Asenkron Aşağı Sayıcılar

Sinyal Grafiği

CP	Q_A	Q _B
0	0	0
1	1	1
2	1	0
3	0	1
4	0	0

Düşen Kenar Tetiklemeli Asenkron Aşağı Sayıcı

Programlanabilen (Modlu) Asenkron Sayıcılar

• İstenilen değere kadar sayıp sıfır değerine dönen sayıcılara programlanabilir (Modlu) sayıcı denir.

MOD5 Asenkron Sayıcı

Asenkron Yukarı / Aşağı Sayıcılar

Up/ Down Kontrol Girişi

Senkron Sayıcılar

(b) Dalga şekilleri

Mod 7 Senkron Sayıcı Tasarımı

Qn	Q _{n+1}	J	K
0	0	0	X
0	1	1	Х
1	0	X	1
1	1	Х	0

	Mevcut Durum			Sonraki Durum								
СР	Α	В	С	Α	В	С	J_A	K_A	J_{B}	K_B	J _C	K_{C}
0	0	0	0	0	0	1	0	X	0	X	1	Х
1	0	0	1	0	1	0	0	Х	1	X	X	1
2	0	1	0	0	1	1	0	Х	X	0	1	Х
3	0	1	1	1	0	0	1	X	X	1	X	1
4	1	0	0	1	0	1	х	0	0	Х	1	Х
5	1	0	1	1	1	0	x	0	1	X	X	1
6	1	1	0	0	0	0	х	1	X	1	0	Х

JA KA nın Hesaplanması

B.C A	00	01	11	10
0			_	
1	х	х	X	х

$$J_A = B.C$$

B.C	00	01	11	10	
0	Х	Х	×	X	
1			X	1	

$$K_A = B.C$$

JB KB nin Hesaplanması

A B.C	00	01	11	10
0		1	×	Х
1		1	x	Х

$$J_B = C$$

$$K_B = A + C$$

3 Bit Senkron Sayıcı

B.C	00	01	11	10
0	[-]	×	Х	1
1	1	x	Х	

$$J_C = \overline{A} + \overline{B}$$

$$K_c = +V_{cc}$$

3 bitlik Mod 7 Senkron Sayıcı

Yazaçlar (Registers)

- Her yaz-boz (flip-flop) bir bitlik bilgi saklama kapasitesine sahip bir elemandır.
- İkili bilgileri saklamaya yarayan devrelere Yazaç (Yazmaç Register) adı verilir.
- N bitlik bir yazaçta N adet Flip-Flop bulunur.

Yazaç (Register) Türleri

- Yazaçlar (Register) genel olarak iki ana kategoriye ayrılabilirler.
 - Paralel Yüklemeli Yazaçlar
 - (Paralel Load Registers)
 - Seri Yüklemeli (Kaydırma) Yazaçlar
 - (Shift Registers)

Paralel Yüklemeli Yazaçlar

- Tek bir saat darbesinde Load girişi 1 olduğunda veri yazma işlemi gerçekleşir.
- Load 0 olduğu durumda çıkışındaki bilgiyi her saat darbesinde üzerine yazar.
- Yani Load 0 durumunda içindeki bilgiyi korumaya devam edecektir.

Seri Yüklemeli (Kaydırmalı) Yazaçlar

Saat Darbesi	QA	QB	QC	QD
0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	1
5	0	0	0	0

Seri Yüklemeli (Kaydırmalı) Yazaçlar

 Her saat darbesinin yükselen kenarında veri bir sonraki yaz boza aktarılır.

 1 bitlik veri 4 saat darbesi süresince yazaç içerisinde ilerleyerek çıkışa ulaşır.

Örneğin;

- 4 bitlik shift register devresine sırası ile **1–1–0–0** bilgileri uygulanmaktadır.
- 4 kaydırma palsındaki flipflop'ların paralel çıkışlarını bulunuz.

Shift Palsı	Seri Data Girişi	FF1Q	FF2Q	FF3Q	FF4Q
		0	0	0	0
1	1	1 _	0 \	0 _	0
2	1	1 _	* 1	* 0 *	~ 0
3	0	0 \	1	* 1	* 0
4	0	0	0	A 1	1

FF1Q=0 FF2Q=0 FF3Q=1 FF4Q=1

Seri giriş – Seri Çıkışlı Yazaç

Paralel-Giriş, Seri-Çıkışlı Yazaç

4-bit Parallel Data Input

2 Bit Paralel Yüklemeli Senkron Sayıcı

 4-bit counter with parallel load.

