

REFERENCES

- Boyd, M. B., et al., "Disposal of Dredged Spoil Problem Identification and Assessment of Research Program Development," Technical Report H-72-8, November 1972, U. S. Army Engineer Waterways Experiment Station, CE.
- 2. Riley, G. A., "Review of the Oceanography of Long Island Sound," 1955, Deep Sea Res. Supply, Vol 3:224-238.
- Riley, G. A., "Environmental Control of Autumn and Winter Diatom Flowering in Long Island Sound," 1959, <u>In</u>: Sears, M. E., (Ed.) International Oceanography Congress, Preprint AAA, Washington, D.C., pp 850-851.
- 4. Harris, E., "The Nitrogen Cycle in Long Island Sound," 1955, Bull. Bingham Oceanography Collection 17(1):31-65.
- 5. Riley, G. A., "Hydrography of the Long Island Sound and Block Island Sound," 1952, Bull. Bingham Oceanography Collection (3).
- 6. Riley, G. A., and Conover, S. M., "Oceanography of Long Island Sound," 1952-1954, II Chemical Oceanography 1956, Bull. Bingham Oceanography Collection, Vol 15, 47-61.
- 7. Riley, G. A., "Energy, Environment and Planning," 1971, The Long Island Sound Region proceedings of a conference held at Brookhaven National Lab., pp 67-78, Biology of Long Island Sound.
- 8. Clifford, H. T., and Stephenson, W., An Introduction to Numerical Classification, 1975, Academic Press.
- 9. Boesch, D. F., "Application of Numerical Classification in Ecological Investigations of Water Pollution," Tech. Rept. No. EPA-600/3-77-033, March 1977, U. S. Environmental Protection Agency.
- 10. Odum, E. P., <u>Fundamentals of Ecology</u>, 3rd Edition, 1971, W. B. Saunders Co., pp 143-154.
- 11. Scheffé, H., The Analysis of Variance, 1959, John Wiley & Son, Inc., London and Sidney, pp 55-87.
- 12. Sallenger, A. H., Goldsmith, V., and Sutton, C. H., "Bathymetric Comparisons: A Manual of Methodology, Error Criteria and Techniques," 1975, Special Report No. 66, Virginia Institute of Marine Sciences, Gloucester Point, Virginia.
- 13. Pagenkopf, J. R., and Bigham, G. N., "Water Quality Evaluation, Western Long Island Sound," prepared for the Nassau-Suffolk Regional Planning Board by Tetra-Tech., Inc., May 1977.

- 14. Hardy, C. D., and Weyl, P. K., "Hydrographic Data Report: Long Island Sound 1970, Part 1," Technical Report No. 6, Marine Sciences Research Center, SUNY, Stony Brook, N.Y., 1970.
- 15. Dehlinger, P., Fitzgerald, W. F., Feng, S. Y., Paskausky, D. F., Garvine, R. W., and Bohlen, W. F., "A Determination of Budgets of Heavy Metal Wastes in Long Island Sound," First Annual Report (Parts I and II), the University of Connecticut, Marine Sciences Institute, Groton, Connecticut.
- 16. Mytelka, A. I., Czachor, J. S., Guggino, W. B., and Golub, H., "Heavy Metals in Wastewater and Treatment Plant Effluents," J. Water Poll. Control Fed., Vol 45, 1973, pp 1859-1864.
- 17. Chen, M., Canelli, A., and Fuhs, G. W., "Effects of Salinity on Nitrification in the East River," J. Water Poll. Control Fed., Vol 47, 1975, pp 2474-2481.
- 18. Klein, L. A., Lang, M., Nash, N., and Kirschner, S. L., "Sources of Metals in New York City Watershed," J. Water Poll. Control Fed., Vol 46, 1974, pp 2653-2662.
- 19. McCrone, A. W., "Sediments from Long Island Sound (New York): Physical and Chemical Properties Reviewed," J. Sed. Petrol., Vol 35, 1965, pp 234-236.
- Duedall, I. W., O'Connors, H. B., and Irwin, B., "Fate of Wastewater Sludge in the New York Bight Apex," J. Water Poll. Control Fed., Vol 47, 1975, pp 2702-2706.
- 21. Oakley, S. A., and Duedall, I. W., "Report on Carbon and Nitrogen in Sediment Cores from the New York Bight Apex," unpublished report, dated 25 October 1976, submitted to Marine Ecosystem Analysis (MESA), National Oceanic and Atmospheric Administration, Stony Brook, New York, 1976, pp 7.
- 22. Kaplan, S., "Chemical and Oxidation Reduction Potential Studies of Long Island Sound Sediments," unpublished Master's Thesis, New York University, 1961.
- 23. McCrone, A. W., "The Hudson River Estuary: Sedimentary and Geochemical Properties Between Kingston and Haverstraw, New York," J. Sed. Petrol., Vol 37, 1967, pp 456-475.
- 24. Presley, B. J., Brooks, R.-R., and Kaplan, I. R., "Manganses and Related Elements in the Interstitial Waters of Marine Sediments," Science, Vol 158, 1967, pp 906-910.
- 25. Brooks, R. R., Presley, B. J., and Kaplan, I. R., "Trace Elements in the Interstitial Waters of Marine Sediments," Geochem. Cosmochem. Acta, Vol 32, 1968, pp 397-414.

- 26. Duchart, P., Calvert, S. E., and Prince, N. B., "Distribution of Trace Metals in the Pore Waters of Shallow Marine Sediments," Limnol. Oceanogr., Vol 18, 1973, pp 605-610.
- 27. Turekian, K. K., "Trace Elements in Natural Waters," Annual Progress Report (July 1, 1973 to June 30, 1974 grant period) to Atomic Energy Commission for Grant AT (11-1)-3573.
- 28. Berner, R. A., "Kinetic Models for the Early Diagenesis of Nitrogen, Sulfur, Phosphorus, and Silicon in Anoxic Marine Sediments," <u>In:</u>
 The Sea (E. D. Goldberg, Ed.) Wiley-Interscience, New York, 1974, pp 895.
- 29. Tietjen, J. H., "The Ecology of Shallow Water Meiofauna in Two New England Estuaries," 1968, Oecologia 2 (3):251-291.
- 30. Wieser, W., "Benthic Studies in Buzzards Bay II. The Meiofauna," 1960, <u>Limnol. Oceanogr.</u> 5 (2):121-137.
- 31. Wigley, R. L., and McIntyre, A. D., "Some Quantitative Comparisons of Offshore Meiobenthos and Macrobenthos South of Martha's Vineyard," 1964, Limnol. Oceanogr. 9 (4):485-493.
- 32. Richards, S. W., "The Demersal Fish Population of Long Island Sound," 1963, Bull. of the Bingham Oceanographic Collection, Vol 18, Art. 2.
- 33. Oviatt, A. C., and Nixon, S. W., "The Demersal Fish of Naragansett Bay: An Analysis of Community Structure, Distribution and Abundance," 1973, Estuarine and Coastal Marine Science, pp 361-378.
- 34. Saila, S. B., (Ed.), "Coastal and Offshore Environmental Inventory, Cape Hatteras to Nantucket Shoals," 1973, Marine Publication Series No. 2, University of Rhode Island.
- 35. Pierce, Dr. J. B., "An Environmental Survey of Effects of Dredging and Disposal New London Conn. 6th Quarterly Report," 1976, U. S. Dept. of Commerce, Middle Atlantic Coastal Fisheries Center, IR No. 107.
- 36. Briggs, Phillip T., and Zanwacki, Chester S., "American Lobsters at Artificial Reefs in New York," January 1976, New York Fish and Game Journal, Vol 21, No. 1.
- 37. Scarratt, O. J., "An Artificial Reef for Lobsters (Homarus americanus)," 1968, Journal of Fisheries Research Board of Canada 25(12).
- 38. Reese, J. R., and Cobb, S. P., "Feasibility of Constructing Lobster Habitat from Maintenance Dredged Material," 1977, in press. Abstracts of the 57th Annual National Meeting of SAME.

- 39. Bryan, G. S., "Concentrations of Zinc and Copper in the Tissues of Decapod Orustaceans," U. K. 1968, Journal of Marine Biology Association, Vol 48, pp 303-321.
- 40. Riley, G. A., "Oceanography of Long Island Sound 1952-1954, II. Physical Oceanography," Bull. Bingham Oceanogr. Coll., Vol 15, 1956a, pp 15-46.
- 41. Riley, G. A., "Review of the Oceanography of Long Island Sound," Papers in Marine Biology, Supplement to Vol 3 of Deep Sea Research, 1956a, pp 224-238.

Table 1

<u>Volume of Dredged Material Disposed at the</u>

<u>Eatons Neck Disposal Site</u>, Long Island Sound

	Volume of
	Dredged Material
Year	-m ³
1954	
1955	7,721
1956	85,433
1957	100,933
1958	99,374
1959	657,867
1960	269,677
1961	134,933
1962	194,339
1963	3,906,652
1964	2,121,799
1965	140,124
1966	1,011,120
1967	433,418
1968	451,651
1969	102,902
1970	38,072
1971	84,859
1972	
1973	
Total	9,840,874

Frequency of Flow Velocity Occurrence at Station E N 1, Magnetic Compass Direction, deg - Frequency 20-m Depth, Eatons Neck Disposal Site, 10-20 September 1974 Table 2

0 1.46* 1.01 1.01 1.57 1.80 2.25 2.13 2.47 15.51 0 - 3 1.02 0.86 1.46 1.01 1.01 1.57 1.80 2.25 2.13 2.47 15.51 5 - 10 0.12 0.56 1.01 1.24 2.25 2.13 5.40 4.16 1.12 23.61 10 - 15 0.22 0.34 2.02 1.91 0.45 0.12 1.24 5.40 4.16 1.12 23.61 15 - 20 0.00 0.34 2.02 1.91 0.45 0.12 1.24 5.40 4.16 1.13 1.90 15 - 20 0.00 0.23 1.70 0.00 0.12 0.25 3.60 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Speed cm/sec	0 - 36	36 - 72	72 - 108	108 - 144	144 - 180	180 - 216	216 - 252	252 - 288	288 - 324	324 - 360	% Occurence (A)	% Greater than Indicated Speed Interval (100-A)
1.01 0.80 1.46 1.01 1.01 1.57 1.80 2.25 2.13 2.47 1. 0.12 0.56 1.01 1.24 2.25 2.13 5.62 5.40 4.16 1.12 2.47 1 0.22 0.34 2.02 1.91 0.45 0.12 1.24 5.40 4.16 1.12 5.40 1.10 0.45 0.00 0.02 0.45 0.00 0.05 0.00	0											1.46*	98.52
0.12 0.56 1.01 1.24 2.55 2.13 5.62 5.40 4.16 1.12 2 0.02 0.34 2.02 1.91 0.45 0.12 1.24 5.40 4.16 1.10 0.45 0 0.00 0.00 2.36 1.70 0.00 0.12 1.24 5.40 1.70 0.45 0	0 - 5	1.01	0.80	1.46	1.01	1.01	1.57	1.80	2.25	2.13	2.47	15.51	83.03
0.00 0.034 2.02 1.91 0.45 0.12 1.24 5.40 1.70 0.45 0.65 0.12 1.24 5.40 1.70 0.45 0.05 0.12 1.24 5.40 1.70 0.45 0.00 0.12 1.70 0.80 0.00 0.00 0.80 0.80 0.00 0.00 0.45 0.00 0.00 0.05 0.45 0.00 0.00 0.12 4.72 4.72 0.00 <t< td=""><td>5 - 10</td><td>0.12</td><td>0.56</td><td>1.01</td><td>1.24</td><td>2.25</td><td>2.13</td><td>5.62</td><td>5.40</td><td>4.16</td><td>1.12</td><td>23.61</td><td>59.03</td></t<>	5 - 10	0.12	0.56	1.01	1.24	2.25	2.13	5.62	5.40	4.16	1.12	23.61	59.03
0.00 0.36 1.36 0.00 0.12 0.22 3.60 0.80 0.00 0.00 0.22 4.16 1.91 0.00 0.00 0.12 4.04 0.45 0.00 1 0.00 0.23 0.45 0.00 0.00 0.12 4.72 0.45 0.00 0 0.00 0.23 0.45 0.00 0.00 0.00 4.16 0.12 0.00 0 0.12 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td>10 - 15</td> <td>0.22</td> <td>0.34</td> <td>2.02</td> <td>1.91</td> <td>0.45</td> <td>0.12</td> <td>1.24</td> <td>5.40</td> <td>1.70</td> <td>0.45</td> <td>13.85</td> <td>45.57</td>	10 - 15	0.22	0.34	2.02	1.91	0.45	0.12	1.24	5.40	1.70	0.45	13.85	45.57
0.00 0.22 4.16 1.91 0.00 0.00 0.12 4.04 0.45 0.00 1 0.00 0.00 2.58 0.45 0.00 0.00 0.12 4.72 0.67 0.00 0.00 0.00 2.36 0.45 0.00 0.00 0.00 0.12 4.16 0.12 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1		00.00	2.36	1.70	0.00	0.12	0.22	3.60	0.80	0.00	8.80	36.77
0.00 0.00 2.58 0.45 0.00 0.00 0.12 4.72 0.67 0.00 0.00 0.00 0.23 0.00 0.00 0.00 4.16 0.12 0.00 0.12 0.00<	1		0.22	4.16	1.91	00.00	0.00	0.12	4.04	0.45	0.00	10.90	25.87
0.00 0.00 2.36 0.22 0.00 0.00 0.10 4.16 0.12 0.00 0.12 0.00 0.	1		00.00	2.58	0.45	0.00	00.00	0.12	4.72	0.67	0.00	8.54	17.33
0.10 0.00 0.91 0.00 <th< td=""><td>1</td><td></td><td>00.00</td><td>2.36</td><td>0.22</td><td>0.00</td><td>0.00</td><td>0.00</td><td>4.16</td><td>0.12</td><td>0.00</td><td>98.9</td><td>10.47</td></th<>	1		00.00	2.36	0.22	0.00	0.00	0.00	4.16	0.12	0.00	98.9	10.47
0.00 0.00 <th< td=""><td>1</td><td></td><td>00.00</td><td>0.91</td><td>0.00</td><td>0.00</td><td>00.00</td><td>0.00</td><td>5.40</td><td>0.00</td><td>0.00</td><td>6.43</td><td>4.04</td></th<>	1		00.00	0.91	0.00	0.00	00.00	0.00	5.40	0.00	0.00	6.43	4.04
0.00 0.00 <th< td=""><td>40 - 45</td><td>0.00</td><td>00.00</td><td>00.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>3.37</td><td>0.00</td><td>0.00</td><td>3.37</td><td>0.67</td></th<>	40 - 45	0.00	00.00	00.00	0.00	0.00	0.00	0.00	3.37	0.00	0.00	3.37	0.67
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.47 1.92 16.86 8.44 3.71 3.94 9.12 39.01 10.03 4.04 10	45 - 50	00.00	00.00	00.00	0.00	0.00	0.00	0.00	0.67	0.00	0.00	0.67	00.00
1.47 1.92 16.86 8.44 3.71 3.94 9.12 39.01 10.03 4.04	>50	00.00	00.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	00.0	00.0
The same of the sa	Total	1.47	1.92	16.86	8.44	3.71	3.94	9.12	39.01	10.03	4.04	100.00	

: Note: Total number of observations = 890 $\,$ \star No directions assigned to 0 speed (there were 13 zero-speed readings).

Frequency of Flow Velocity Occurrence at Station E N 3, 26-m Depth, Eatons Neck Disposal Site, 9-20 September 1974
Magnetic Compass Direction, deg - Frequency

Speed cm/sec	0 ~ 36	36 - 72	72 - 108	108 - 144	144 - 180	180 - 216	216 - 252	252 - 288	288 - 324	324 - 360	% Occurence (A)	% Greater than Indicated Speed Interval (100-A)
0												
0 - 5	0.00	0.00	0.00	00.0	0.13	0.13	0.13	0.13	0.00	0.37	0.89	99.11
5 - 10	0.88	1.01	0.63	0.13	0.88	0.88	1.39	1.52	0.76	0.37	8.45	99.06
10 - 15	1.77	2.15	0.76	1.64	3.79	3.66	1.39	2.78	3.54	1.77	23.25	67.41
15 - 20	2.27	3.28	1.77	1.01	2.65	3.16	1.64	1.26	0.37	0.63	18.04	49.37
20 - 25	0.51	5.18	2.02	1.01	0.63	2.53	3.91	0.25	0.13	0.37	16.54	32.83
25 - 30	0.00	70.7	1.64	00.0	00.0	0.63	4.67	0.37	0.00	0.00	11.35	21.48
30 - 35	0.13	2.15	0.88	00.0	00.0	0.13	3.16	00.00	0.00	0.00	6.45	15.03
35 - 40	0.00	0.76	0.13	00.0	00.00	00.0	2.40	0.13	0.00	0.00	3.42	11.61
40 - 45	0.00	0.37	0.25	00.0	00.0	00.00	4.04	00.00	0.00	0.00	99.4	6.95
45 - 50	0.00	0.13	0.00	00.0	00.0	0.00	1.52	00.0	0.00	0.00	1.65	5.30
>50	0.00	0.00	0.00	00.0	00.0	00.00	5.30	00.00	0.00	0.00	5.30	0.00
Total	5.56	19.07	80.8	3.79	8.08	11.12	29.55	97.9	7 80	3.51	00 001	

Note. Total number of observations = 792

Frequency of Flow Velocity Occurrence at Station E N A 21-m Depth, Eatons Neck Disposal Site, 31 October - 12 December 1974 Magnetic Compass Direction, deg - Frequency

Speed cm/sec	0 - 36	36 - 72	72 - 108	108 - 144	144 - 180	180 - 216	216 - 252	252 - 288	288 - 324	324 - 360	% Occurence (A)	% Greater than Indicated Speed Interval (100-A)
0											5.60*	04.40
0 - 5	2.25	6.04	5.68	0.83	1.30	1.10	6.51	4.26	1.85	1.89	31.71	65.69
5 ~ 10	0.24	4.89	3.04	1.10	0.24	0.24	4.78	3.59	1.22	0.16	19.50	43.19
10 - 15	0.32	3.83	4.81	0.32	0.04	0.04	4.30	4.81	0.12	00.00	18.59	24.60
15 - 20	0.00	1.54	2.92	90.0	0.00	00.0	2.13	3.28	0.00	00.0	9.75	14.85
20 - 25	0.00	1.38	1.97	90.0	0.00	00.00	1.70	2.41	0.00	00.0	7.54	7.31
25 - 30	0.00	0.83	1.38	00.0	00.0	0.00	1.97	2.13	0.00	00.00	6.31	1.00
30 - 35	00.00	0.05	0.12	00.0	00.0	0.00	0.47	0.36	00.00	00.00	1.00	00.00
35 - 40	00.00	00.00	00.00	00.00	00.00	0.00	0.00	0.00	0.00	00.00	00.00	
40 - 45	00.00	00.00	00.00	00.00	00.00	0.00	0.00	0.00	0.00	00.0	00.00	
45 - 50	00.00	00.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	
>50	00.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	
Total	2.81	18.56	19.92	2.41	1.68	1.38	21.86	20.84	3.19	2.05	100.00	
52	-	-				-	-					

Note. Total number of observations = 2534

* No direction assigned to 0 speed (there were 142 zero-speed readings).

Table 5
Frequency of Flow Velocity Occurrence at Station E N C, 26-m Depth, Eatons Neck Disposal Site, Magnetic Compass Direction, deg - Frequency 31 October - 25 November 1974

Speed											%	% Greater than Indicated
cm/sec	0 - 36	36 - 72	72 - 108	108 - 144	144 - 180	180 - 216	216 - 252	252 - 288	288 - 324	324 - 360	(A)	(100-A)
0												
0 - 5	0.56	0.72	0.56	0.17	0.21	0.32	0.84	0.78	0.56	0.39	5.11	68.86
5 - 10	1.90	5.52	4.85	1.67	1.23	1.00	4.79	5.80	3.07	1.84	31.67	63.22
10 - 15	1.45	5.52	3.79	0.45	0.17	0.17	3.29	7.64	0.32	0.39	23.19	40.03
15 - 20	0.00	4.07	2.45	90.0	0.00	90.0	2.01	4.57	00.00	0.00	13.22	26.81
20 - 25	0.00	3.34	3.18	0.00	0.00	00.00	1.11	4.63	00.0	0.00	12.26	14.55
25 - 30	90.0	1.73	2.17	0.00	0.00	00.0	1.06	96.4	00.0	0.00	9.98	4.57
30 - 35	00.00	90.0	00.0	0.00	0.00	00.0	0.56	3.40	00.00	0.00	4.02	0.55
35 - 40	0.00	0.00	0.00	0.00	0.00	00.0	0.11	0.32	00.0	0.00	0.43	0.12
40 - 45	0.00	0.00	0.00	0.00	00.0	00.00	90.0	90.0	00.0	0.00	0.12	0.00
45 - 50	0.00	0.00	0.00	00.00	00.0	00.00	00.00	00.0	00.00	0.00		
>50	0.00	0.00	0.00	00.00	00.0	00.0	00.00	00.00	00.00	0.00		
Total	3.97	20.96	17.00	2.35	1.61	1.65	13.83	32.16	3.95	2.62	100.00	

Note: Total number of observations = 1794

Table 6

Frequency of Flow Velocity Occurrence at Station E N 5, 32-m Depth, Eatons Neck Disposal Site, 9-20 September 1974

Magnetic Compass Direction, deg - Frequency

Speed cm/sec	0 - 36	36 - 72	72 - 108	108 - 144	144 - 180	180 - 216	216 - 252	252 - 288	288 - 324	324 - 360	% Occurence (A)	% Greater than Indicated Speed Interval (100-A)
0												
5 - 0	00.00	00.0	0.00	0.13	0.00	0.00	0.00	0.00	0.25	00.0	0.38	99.62
5 - 10	05.0	0.75	0.88	1.51	0.25	0.38	0.25	0.13	0.88	0.25	5.78	93.84
10 - 15	1.13	3.40	3.02	1.26	1.89	2.01	0.88	2.14	3.14	1.13	20.00	73.84
15 - 20	1.13	4.53	5.28	1.38	1.13	2.52	1.26	4.28	3.14	1.51	26.16	47.68
20 - 25	00.00	4.65	7.17	05.0	0.00	3.40	2.89	4.03	1.13	0.25	24.02	23.66
25 - 30	00.00	2.01	4.65	0.00	0.00	1.01	1.89	4.15	0.00	00.00	13.71	9.95
30 - 35	00.00	0.38	0.25	0.00	0.00	0.38	2.39	1.76	00.0	00.0	5.16	4.79
35 - 40	00.00	00.00	0.00	0.00	0.00	0.00	1.38	1.13	0.00	00.0	2.51	2.28
40 - 45	00.00	00.00	00.00	0.00	0.00	0.00	1.64	0.38	0.00	00.0	2.02	0.26
45 - 50	00.00	00.00	0.00	0.00	0.00	0.00	0.13	0.13	0.00	0.00	0.36	00.0
>50	00.00	00.00	00.0	00.00	0.00	0.00	0.00	00.00	0.00	00.00	00.00	00.00
Total	2.76	15.72	21.25	4.78	3.37	9.70	12.71	18.13	8.54	3.14	100.00	

Note: Total number of observations = 795

Frequency of Flow Velocity Occurrence at Station E N A, 22-m Depth, Eatons Neck Disposal Site, 18 December 1974 - 10 January 1975
Magnetic Compass Direction, deg - Frequency

											88	% Greater than Indicated
Speed cm/sec	0 - 36	36 - 72	72 - 108	108 - 144	144 - 180	180 - 216	216 - 252	252 - 288	288 - 324	324 - 360	Occurence (A)	Speed Interval (100-A)
0											4.55*	95.45
0 - 5	2.06	5.70	10.25	2.79	1.94	3.34	7.83	7.34	2.25	1.27	64.79	95.45
5 - 10	0.43	3.28	4.79	1.03	0.43	1.64	67.9	3.88	1.46	0.36	23.79	50.66
10 - 15	00.00	2.18	3.28	0.12	0.00	90.0	3.28	2.85	0.24	00.00	12.01	14.86
15 - 20	00.0	1.15	1.46	0.00	0.00	0.00	3.09	1.15	0.00	00.00	6.85	8.01
20 - 25	00.00	0.67	1.64	0.00	0.00	0.00	1.58	1.15	0.00	0.00	5.04	2.97
25 - 30	00.0	0.12	0.55	0.00	0.00	0.00	1.27	0.18	0.00	00.00	2.12	0.85
30 - 35	00.0	90.0	90.0	0.00	0.00	0.00	0.43	0.30	0.00	00.00	0.85	00.00
35 - 40	0.00	00.0	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00		
40 - 45	00.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00	00.00	00.00		
45 - 50	0.00	00.0	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00		
>50	00.0	00.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00		
Total	2.49	13.16	22.03	3.94	2.47	5.04	23.97	16.85	3.95	1.63	100.00	

Note: Total number of observations = 1648

 \star No directions assigned to 0 speed (there were 75 zero-speed readings).

Frequency of Flow Velocity Occurrence at Station E N A, 22-m Depth, Eatons Neck Disposal Site, 3 March - 10 April 1975
Magnetic Compass Direction, deg - Frequency

											61	% Greater
Speed cm/sec	0 - 36	36 - 72	72 ~ 108	108 - 144	144 - 180	180 - 216	216 - 252	252 - 288	288 - 324	324 - 360	Occurence (A)	Speed Interval (100-A)
0											0.81*	99.19
0 - 5	0.32	1.62	3.34	0.41	0.27	0.72	2.34	3.20	0.41	0.27	12.90	86.29
5 - 10	2.07	3.92	3.02	2.07	2.12	1.58	4.55	2.34	2.34	1.85	25.86	60.43
10 - 15	0.50	3.61	4.82	0.99	0.23	0.23	3.38	4.37	1.80	0.46	20.39	40.04
15 - 20	00.00	3.16	4.96	0.09	0.00	0.00	1.94	5.05	0.23	00.00	15.43	24.61
20 - 25	00.00	1.35	4.51	0.00	0.00	0.00	3.07	5.37	00.00	00.00	14.30	10.31
25 - 30	00.00	0.81	2.25	0.00	00.0	0.00	0.99	2.89	0.05	00.00	6.97	3.34
30 - 35	00.00	0.05	0.54	0.00	00.00	0.00	0.54	0.72	0.00	00.00	1.85	1.49
35 - 40	00.00	00.00	0.23	0.00	00.00	0.00	0.54	0.63	00.00	00.00	1.40	0.09
40 - 45	0.00	00.00	00.00	0.00	00.0	0.00	0.00	0.00	00.00	00.00	00.00	0.00
45 - 50	0.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00		
>50	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	00.00		
Total	2.89	14.52	23.67	3.56	2.62	2.53	17.44	24.57	4.83	2.58	100.00	

Note: Total number of observations = 2218

* No directions assigned to 0 speed (there were 18 zero-speed readings).

Frequency of Flow Velocity Occurrence at Station E N N, 20-m Depth, Eatons Neck Disposal Site, 15 April - 7 May 1975
Magnetic Compass Direction, deg - Frequency

											**	% Greater than Indicated
Speed cm/sec	0 - 36	36 - 72	72 - 108	108 - 144	144 - 180	180 - 216	216 - 252	252 - 288	288 - 324	324 - 360	Occurence (A)	Speed Interval (100-A)
0											2.63*	97.37
0 - 5	0.06	00.00	>5.0	1.07	0.25	0.19	0.25	1.82	0.25	0.14	4.97	92.40
5 - 10	1.44	0.75	3.01	4.08	3.14	2.38	1.19	96.4	3.58	2.13	26.66	65.74
10 - 15	1.32	2.82	4.83	2.70	2.20	1.19	3.76	97.9	1.51	0.82	27.61	38.13
15 - 20	0.00	1.69	4.20	0.63	90.0	0.19	3.58	96.4	0.50	0.00	15.81	22.32
20 - 25	00.00	1.25	5.83	90.0	00.00	00.0	1.25	5.14	0.00	0.00	13.53	8.79
25 - 30	00.0	0.82	2.51	0.00	00.0	00.00	0.00	2.45	0.00	0.00	5.84	2.95
30 - 35	00.00	0.38	0.94	0.00	00.0	00.00	0.00	0.25	0.00	0.00	1.57	1.38
35 - 40	0.00	90.0	1.19	0.00	0.00	00.00	00.00	0.13	0.00	0.00	1.38	0.00
40 - 45	0.00	00.00	00.00	0.00	0.00	00.00	00.0	0.00	0.00	0.00	0.00	
45 - 50	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	
>50	0.00	0.00	0.00	0.00	00.0	00.00	00.00	0.00	0.00	0.00	0.00	
Total	2.82	1.11	23.45	8.60	5.65	3.95	10.03	26.17	5.84	3.09	100.00	
T. C. C.	Total		1001									

Note: Total number of observations = 1594

* No directions assigned to 0 speed (there were 42 zero-speed readings).

Frequency of Flow Velocity Occurrence at Station E N N, 20-m Depth, Eatons Neck Disposal Site, 9-19 May 1975

Magnetic Compass Direction, deg - Frequency

Speed cm/sec	0 - 36	36 - 72	72 - 108	108 - 144	144 - 180	180 - 216	216 - 252	252 - 288	288 - 324	324 - 360	% Occurence (A)	% Greater than Indicated Speed Interval (100-A)
0											0.21*	94.79
0 - 5	0.14	0.83	9.55	00.0	0.00	00.00	00.00	00.0	0.00	0.00	1.59	98.20
5 - 10	2.35	5.39	1.11	0.41	1.45	92.0	0.07	0.21	0.48	69.0	12.92	85.28
10 - 15	2.70	4.84	2.63	2.84	4.98	5.33	1.04	0.83	1.73	1.18	28.10	57.18
15 - 20	0.14	3.18	4.77	1.24	1.73	4.84	1.94	1.80	0.41	0.00	20.05	37.13
20 - 25	0.00	4.77	3.53	0.07	0.48	1.52	6.02	3.18	0.07	0.00	19.64	17.49
25 - 30	0.00	3.04	0.62	0.14	0.00	0.48	6.22	1.73	0.00	0.00	12.23	5.26
30 - 35	0.00	0.35	0.14	00.0	00.0	0.14	1.87	0.41	0.00	00.00	2.91	2.35
35 - 40	0.00	0.41	0.07	0.07	0.00	00.0	1.31	0.07	0.00	0.07	2.00	0.35
40 - 45	0.00	0.00	0.00	00.0	0.00	00.0	0.21	00.00	0.00	00.00	0.21	0.14
45 - 50	0.00	0.00	0.00	00.0	0.00	00.0	00.00	0.00	0.00	00.00	0.00	0.14
>50	00.0	0.00	00.0	00.0	00.0	00.00	0.14	00.0	00.00	00.00	0.14	00.00
Total	4.33	22.81	13.42	4.84	8.64	13.07	18.82	8.23	2.69	1.94	100.00	

Note: Total number of observations = 1446

* No directions assigned to 0 speed (there were 3 zero-speed readings).

Table 11
Water Quality and Sediment Chemistry Variables and
Analytical Methods Used for the Eatons Neck Study

Variable Sampled	Laboratory Equipment Used	Laboratory Analytica Procedure Followed
	Water Column Chemistry	
utrient Analyzed:		
Ammonium NH ₄ +	Technicon Autoanalyzer II	Indophenol method
Nitrate NO ₃ -	Technicon Autoanalyzer II	Colorimetric procedu
Nitrate NO ₂ -	Technicon Autoanalyzer II	Colorimetric procedu
Total phosphate PO ₄ ³⁻	Technicon Autoanalyzer II	Colorimetric procedu
Silicate Si(OH) ₄	Technicon Autoanalyzer II	Colorimetric procedu
Urea	Technicon Autoanalyzer II	McCarthy method
Dissolved organic carbon (DOC)	Bechman Organic Carbon Analyzer (Model 915)	Catalytic combustion
Particulate organic carbon	Hewlett-Packard CHN Analyzer (Model 185)	Catalytic combustion
Temperature	Thermistor Sensor	In situ procedure
Dissolved oxygen	YSI Electrode	In situ procedure
Salinity	Bisset-Berman Salinograph	In situ procedure
рН	Corning Model 12 pH meter	In situ procedure
Chlorophyll <u>a</u> (in vivo)	Turner Flourometer (Model 110)	In situ procedure
Chlorophyll <u>a</u> (extraction)	Turner Fluorometer (Model 110) (Continued)	Trichromatical and fluorometrical

Variable Sampled	Laboratory Equipment Used	Laboratory Analytical Procedure Followed
Dissolved and particu- late metals (Ag, Cd, Co, Cr, Cu, Hg, Ni, Pb) (Fe, Mn, Zn)	Perkin Elmer Atomic absorption spectrometer (Model 403) heated graphite atomic directly into air-C ₂ H ₂ flame	Details of methods in Appendix B
Suspended matter	Nuclepore filter apparatus	Filtration drying and weighing
Particle-size distribution	Zeiss Particle Size Analyzer (TG2-3)	Photomicrographic techniques
	Sediment Physicochemistry	
Interstitial water analys	is	
Nutrients analyzed:		
Ammonium NH ₄ ⁺	Same as for water chemistry	Same as for water chemistry
Nitrate NO ₃ -	Same as for water chemistry	Same as for water chemistry
Nitrite NO ₂ -	Same as for water chemistry	Same as for water chemistry
Total phosphate $P0_4^{3-}$	Same as for water chemistry	Same as for water chemistry
Silicate Si(OH) ₄	Same as for water chemistry	Same as for water chemistry
Dissolved Organic Carbon (DOC)	Same as for water chemistry	Same as for water chemistry
Interstitial metals (Cd, Cu, Ni, Pb) (Fe, Mn, Zn)	Same as for water chemistry	Same as for water chemistry
Sediment grain-size distribution	Grain-size sieves and pipettes (Continued)	Sieve-pipette method

Table 11 (Concluded)

Variable Sampled	Laboratory Equipment Used	Laboratory Analytical Procedure Followed
Particulate carbon and nitrogen	Same as for water chemistry	Same as for water chemistry
Total sulfides	Titration	Titrimetric (iodine) methods
Percent water		Gravimetrical
Clay-fraction mineralogy	X-ray	X-ray defraction
Bulk mineralogy	X-ray	X-ray defraction
Heavy metals of bulk samples (Ag, Cd, Co, Ci, Cu, Fe, Hg, Mn, Ni, Pb, Zn)	Same as water chemistry	Digestion the same as water chemistry
Total cation exchange capacity (TCEC)	<u></u>	Cations exchanged for NH ₄ -
Oil and grease	Separatory filter apparatus	Simplified ether extraction method

Table 12

Selected Ranges for Water Chemistry Variables, Diurnal Study at

Disposal Site D, October 1974

Variable	Depth, m	Time	Value
Salinity, o/oo	1	1056	28.10
	29	2236	28.55
Temperature, ^O C	1	1056	13.83
	10	1620	14.42
Dissolved Oxygen, mg/l	1	1408	8.51
	10	0837	7.61
Ammonia, μM	20 29	1408 2236	12.7
Nitrite, μM	1	1620	2.14
	29	2236	3.25
Nitrate, μM	1	1620	9.26
	20	0837	6.16
Dissolved PO_4^{3-} , μM	10	1620	3.45
	20	0350	3.13
Total PO_4^{3-} , μM	20	1408	2.75
	20	2032	4.50
Silica, μM	20	1408	6.0
	20	2032	16.1
Particulate N, μg/l	10	1056	24
	29	1620	74
Particulate C, µg/l	10	2236	120
	29	1620	768
Chlorophyll \underline{a} , $\mu g/\ell$	1	1620	6.32
	10	0837	1.32

Table 13

Temporal Variation of the Sediment Texture at Reference Stations A and Al

		-	The tie	time Type Halettal, %	9				-
Gravel Sand Silt Clay Gravel 0.00 3.51 66.71 29.71 2.48 0.00 2.79 63.90 33.31 0.79 0.00 3.21 66.00 30.46 0.26 0.00 11.26 64.99 23.82 0.26 0.00 11.26 64.99 23.82 0.26 3.05 11.91 1.91	4 Nov. 1974		5 Jan. 1975	1975			22 May 1975	1975	
0.00 3.51 66.71 29.71 2.48 0.00 2.79 63.90 33.31 0.79 0.00 3.21 66.00 30.46 0.26 0.00 11.26 64.99 23.82 0.26 0.00 11.26 64.99 23.82	Sand Silt		Sand	Silt	Clay	Gravel	Sand	Silt	Clay
0.00 3.51 66.71 29.71 2.48 0.00 2.79 63.90 33.31 0.79 0.00 3.21 66.00 30.46 0.26 0.00 11.26 64.99 23.82 0.26 0.00 11.26 64.99 23.82			Stati	Station A					
0.00 2.79 63.90 33.31 0.79 0.00 3.21 66.00 30.46 0.26 0.00 11.26 64.99 23.82 0.26 0.00 11.26 64.99 23.82 3.05	3.51 66.71		26.82	48.94	21.76	0.00	25.88	25.88 46.82 27.30	27.30
0.00 3.21 66.00 30.46 0.26 0.00 11.26 64.99 23.82 0.26 0.00 11.26 64.99 23.82 3.05	2.79 63.90		42.99	31.53	24.69	9.35	22.02	39.00	29.58
0.00 11.26 64.99 23.82 0.26 0.00 11.26 64.99 23.82 3.05	3.21 66.00		48.19	29.11	22.44	0.00	47.89		27.07
0.00 11.26 64.99 23.82 3.05	11.26 64.99		30.93	36.23	32.22	0.08	50.51		23.13
3.05	11.26 64.99	32							
3.05									
3.05			Stati	Station Al					
1.91		3.05	26.08 38.62	38.62	32.25				
		1.91	31.62	35.51	30.96				
89.0		0.68	39.16	31.02	29.14				
0.35		0.35	45.92	31.99	21.74				

Table 14

Sediment Texture at Reference Station A

and Disposal Site DSA

			Depth, cm - % of Material	
<u>Material</u>	Location	0-10	10-30	30-50
Gravel	Reference Station A	0.00	9.35	0.00
	Disposal Site DSA	1.02	0.11	0.12
Sand	Reference Station A	25.88	22.02	47.89
	Disposal Site DSA	7.78	5.87	6.20
Silt	Reference Station A	48.82	39.00	25.04
	Disposal Site DSA	77.55	66.66	62.56
Clay	Reference Station A	27.30	29.58	27.07
	Disposal Site DSA	13.65	27.37	31.12

Table 15

Ranges of pH in Water and Sediments at

Eatons Neck Disposal Site

		рН
Date	Water	Sediments
November 1974	7.8-8.1	7.4-7.9
December 1974	7.8-8.3	-
January 1975	8.0-8.1	6.1-7.8
February 1975	7.8~7.9	
March 1975	7.7-8.3	
April 1975	8.1-8.4	7.2-7.9
May 1975	7.8-8.4	

		Depth,	cm - pH	
Location	0-10	10-30	30-50	50-60
Disposal Site DSA-1	7.80	7.72	7.36	
DSA-2	7.90	7.76	7.70	7.61
DSA-3	7.83	7.70	7.62	
DSA-4	7.89	7.80	7.53	_
DSA-B	_	<u>-</u>		_
DSA-C	-	-	- H	_
Average	7.86	7.74	7.55	7.61
Reference Station A	7.58	7.52	7.40	7.18

Table 17
Total Organic Carbon at Reference Station A and Disposal Site DSA

		Depth, cm -	% TOC*	
Location	0-10	10-30	30-50	50-60
Disposal Site DSA-1 DSA-2 DSA-3 DSA-4 DSA-B DSA-C	2.07 1.87 2.13 1.96 1.62 2.35	1.58 1.13 1.39 1.33 1.79 2.00	0.69 1.00 1.24 1.24 1.18 1.42	0.88
Average Reference Station A	2.0 1.30	1.5	1.1	1.0 0.82

^{*} Percent by weight.

Table 18

Total Organic Nitrogen at Reference Station A and Disposal Site DSA

		Depth, cm	- TON, %*	
Location	0-10	10-30	30-50	50-60
Disposal Site DSA-1	0.24	0.19	0.10	_
DSA-2	0.24	0.14	0.13	0.12
DSA-3	0.20	0.17	0.15	_
DSA-4	0.21	0.16	0.15	_
DSA-B	0.20	0.22	0.16	-
DSA-C	0.26	0.14	0.17	0.15
Average	0.22	0.17	0.14	0.14
Reference Station A	0.17	0.10	0.08	0.10

^{*} Percent by weight.

Table 19
Oil and Grease in Sediments at Reference Station A
and Disposal Site DSA

		Depth, cm	- Oil and G	rease*
Location	0-10	10-30	30-50	50-60
Disposal Site DSA-1	0.11	_	-	_
DSA-2	-	0.08	0.16	0.12
DSA-3	0.16	0.15	0.09	_
DSA-4	0.14	0.21	0.09	_
DSA-B	0.16	0.08	0.19	_
DSA-C	0.29	0.05	0.08	0.03
Average	0.17	0.11	0.12	-
Reference Station A	0.13	0.04	0.03	0.03

^{*} Percent by weight.

Table 20
Cation Exchange Capacity of Sediments from Reference Station A
and Disposal Site DSA

	Dep	th, cm - CE	C, meq/100	g
Location	0-10	10-30	30-50	50-60
Disposal Site DSA-1	27.6	18.0	15.5	_
DSA-2	10.3	16.9	8.7	10.6
DSA-3	99.6	4.3	5.6	
DSA-4	-	10.0	14.1	
DSA-B	31.5	18.0	_	_
DSA-C	38.5	17.6	10.6	8.5
Average	41.5	14.1	10.9	9.5
Reference Station A	13.4	4.2	6.4	4.2

Total Metal Concentrations in the O to 10-cm Layer at Reference Station A and Disposal Site DSA Table 21

**

				letal (Metal Concentrations, µg/g	ations	, ng/	8			
Location	Fe	Mn	Hg	PO	Cu	Ni	Pb	uZ	Cr	3	
Disposal Site DSA-1	1.87	514	0.50	6.0	155.8	23	63	278	100.0	6	
DSA-2	7.04	684	0.49	1.0	141.9	56	71	277	98.2	11	
DSA-3	1.83	748	0.36	0.4	123.0	21	57	239	52.4	6	
DSA-4	1.78	554	0.45	0.4	112.0	21	45	193	78.8	6	
DSA-B	2.03	623	94.0	9.0	135.6	24	65	259	102.9	10	
DSA-C	1.99	969	0.33	0.8	127.4	23	62	273	89.5	6	
		1	1	1		١	1	1		1	
Average	1.92	620	0.44	0.7	133	23	09	253	87	10	
Reference Station A	1.52	485	0.33	9.0	96.1	17	51	185	62.4	6	

Table 22

Interstitial Metal Concentrations at Reference Station A

and Disposal Site DSA

		Meta1	Concent	tration,	μ g /1		
		0-10 cm			10-30 cm		
Location	<u>Fe</u>	_Mn_	Zn	<u>Fe</u>	Mn	Zn	
Disposal Site DSA-1	53	2930	11	56	2450	15	
DSA-2	70	3950	15	35	3100	27	
DSA-3	2970	4930	30	140	2970	38	
DSA-4	218	2950	11	32	3110	0	
DSA-B	84	5570	11	67	4930	15	
DSA-C	968	2530	48	21	2390	17	
Average	727	3810	21	59	3158	19	
Reference Station A	25	3680	22	20	1500	20	

Table 23

Concentration of Ammonia in the Interstitial Waters at

Reference Station A and Disposal Site DSA

	Depth, cm - Ammonia, μM							
Location	0-10	10-30	30-50	50-60				
Disposal Site DSA-1	670	890	700					
DSA-2	750	750	830	650				
DSA-3	520	510	480					
DSA-4	520	630	690	-				
DSA-B	870	680	650	660				
DSA-C	760	700	550	-				
Average	680	690	650	660				
Reference Station A	360	400	280	300				

Table 24

Phosphate in Interstitial Water at Reference Station A

and Disposal Site DSA

	Depth, cm - Phosphate, µM							
Location	0-10	10-30	30-50	50-60				
Disposal Site DSA-1	72.8	129.8	137.5	_				
DSA-2	94.8	78.8	102.5	135.5				
DSA-3	65.8	87.8	85.3	_				
DSA-4	49.5	172.0	128.5	_				
DSA-B	212.5	126.3	57.8	_				
DSA-C	25.8	87.5	100.3	103.3				
Average	87	114	102	119				
Reference Station A	45.8	63.8	45.8	46.3				

Table 25

Percent Sand in Sediment at Benthic Sampling Stations

	Station - Percent Sand								
	Budd Reef Mud Stations Stations					Cable and Anchor Reef Stations			
Date	EB1	EB2	EB3	EB4	EB5	EB6	EB9	EB7	EB8
October 1974	4	7	8	36	14	47	84	90	79
December 1974	11	30	9	27	11	70	74	87	90
January 1975	21	2	8	65	19	19	19	61	95
February 1975	18	15	15	21	54	37	92	71	93
April 1975	14	10	8	13	5	72	42	75	53

Table 26

Statistical Comparisons of Macrofaunal Total Density and Number of Taxa at Disposal Site and Reference Stations*

Variable	Assemblage	Time of Sampling	Statistical Comparisons (P < 0.05)**
Total Density	Muď	December	EB1 ≈ EB2 = EB4 = EB11 = EB12
			$EB3 \approx EB2 \approx EB1 \approx EB4$
			$EB3 > EB11 \equiv EB12^{\dagger}$
		January, February, April	No significant difference among stations
	Sand	December	No significant difference among stations
		January	EB8 ≅ EB10 > EB7
		February	No significant difference among stations
		April	$EB7 \equiv EB8 < EB10$
Number of Taxa	Mud	December	EB3 > EB1 ≡ EB11 ≡ EB12
			EB1 ≡ EB2 ≡ EB4 ≡ EB11 ≡
			$EB3 \equiv EB2 \equiv EB4$
		January, February	No significant difference among stations
		April	EB1 > EB3 = EB12
			$EB1 \equiv EB2 \equiv EB4 \equiv EB11$
			$EB2 \equiv EB3 \equiv EB2 \equiv EB4 \equiv EB11 \equiv EB12$
	Sand	December	No significant difference among stations
		January	$EB8 > EB7 \equiv EB10$
		February	No significant difference among stations
		April	EB10 > EB7 ≡ EB8

^{*} Disposal site stations were EBl, EB2, and EB4 for the mud assemblage and EB7 and EB8 for the Cable and Anchor Reef sand assemblage. Reference stations were EB3, EB11, and EB12 for the mud assemblages and EB10 for the Cable and Anchor Reef sand assemblage.

^{**} Scheffe's method of linear contrast used.

[†] The > sign indicates a statistically significant greater value at the 5-percent level of probability.

Table 27

Statistical Analysis for Length of Winter Flounder

Collected for the Eatons Neck Aquatic Disposal Site

November 1974 - June 1975

		Date Sampled								
Station	Parameter	23 Dec 74	22 Jan 75	21 Feb 75	2 Apr 75	15 Apr 75 * 2	28 Apr 75	14 May 75		
EF1	Mean length	163	117	119	-	165				
	Standard deviation	34	45	42		41				
	Median length	167	100	108	-	182				
	Maximum length	264	254	251	-	217				
	Minimum length	90	60	63	-	89 > 1				
	Upper 95% limit	170	126	127	-	188				
	Lower 95% limit	155	108	110	-	142				
	Number in sample	90	105	95	- 1	15				
EF2	Mean length	148	122	-	-					
	Standard deviations	47	40	-	-	-				
	Median length	153	115	-	_	-				
	Maximum length	207	230	_	-	-				
	Minimum length	75	50	-	-	_				
	Upper 95% limit	174	129	-	-	_				
	Lower 95% limit	122	115	-	-	-				
	Number in sample	15	115	-	-					
EF3	Mean length	182	159	132	172	-	185	169		
	Standard deviation	53	52	48	40	-	22	44		
	Median length	178	150	117	170	-	188	169		
	Maximum length	380	275	244	290	-	215	230		
	Minimum length	71	80	80	80	-	135	95		
	Upper 95% limit	193	171	151	181		197	197		
	Lower 95% limit	170	147	112	162	10-10	173	141		
	Number in sample	79	72	26	72	-	15	12		
EF4	Mean length	171	-	143	-	-	143	-		
	Standard deviation	38		37	-	-	33	-		
	Median length	176		150	-	-	145	-		
	Maximum length	231		219	-	-	191	-		
	Minimum length	97		64	-	-	89			
	Upper 95% limit	186	-	154	-	-	162			
	Lower 95% limit	156	-	133	-	-	125	-		
	Number in sample	28	-	53	_	-	15	-		

In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below

Cobb, Stephen P

Aquatic disposal field investigations, Eatons Neck Disposal Site, Long Island Sound; an environmental inventory / by S. P. Cobb ... ret al.j. Vicksburg, Miss.: U. S. Waterways Experiment Station; Springfield, Va.: available from National Technical Information Service, 1978.

94, £24.7 p.: ill.; 27 cm. (Technical report - U. S. Army Engineer Waterways Experiment Station; D-77-6)

Prepared for Office, Chief of Engineers, U. S. Army, Washington, D. C., under DMRP Work Unit No. 1A06.

Appendices A-F published separately.

References: p. 91-94.

1. Dredged material. 2. Dredged material disposal. 3. Eatons Neck disposal site. 4. Environmental effects. 5. Field investigations. 6. Sedimentation. 7. Waste disposal sites.

I. Carroll, Joe H., joint author. II. Granat, Mitchell Allen, joint author. III. Holliday, Barry W., joint author. IV. Klehr, E. H., joint author. V. Reese, J. R., joint author. VI. United States. Army. Corps of Engineers. VII. Series: United States. Waterways Experiment Station, Vicksburg, Miss. Technical report; D-77-6.

TA7.W34 no.D-77-6

OVERLAY 1. BATHYMETRY OF THE EATONS NECK DISPOSAL SITE BASED ON A 1961 SURVEY

OVERLAY 2. BATHYMETRY OF THE EATONS NECK DISPOSAL SITE BASED ON A 1976 SURVEY