MATB24 TUTORIAL PROBLEMS 4, SOLUTIONS

KEY WORDS: isomorphism, invertible linear transformation, change of coordinate matrix RELEVANT SECTIONS IN THE TEXTBOOK: Sec 3.3, 3.4, 7.1 FB or 3C,3D SA

WARM-UP: As usual, write down a complete definition or a complete mathematical characterization for the following terms.

- An invertible linear transformation
- Give an equivalent condition for a linear transformation being invertible in terms of injectivity and surjectivity.
- Give an equivalent condition for a linear transformation T being invertible in terms of the Kernel and image of T.
- Let $\mathfrak B$ be a an ordered basis for a vector space W. Define the $\mathfrak B$ -coordinates of a vector $\vec v \in W$.
- Let $\mathfrak B$ be a an ordered basis for a vector space W. Give an isomorphism between W and $\mathbb R^{\dim W}$

A: In class we said (or will say) a linear transformation respects the structure of a vector space, for instance it maps a subspace to a subspace, the zero vector to zero vector, and so on. In this question you investigate how a linear transformation treats a linear independent set and a spanning set. We use the following result

Lemma 0.1. Let $T: V \to W$ be a linear transformation.

- (1) T is one-to-one if and only if $\ker T = \{0_V\}$.
- (2) T is onto if and only if img(T) = W
- (1) (a) Consider $I=\{e^x,e^{2x},e^{3x}\}$ in \mathcal{F} . I is linearly independent (why?). Let $V=\operatorname{Span}(I)$. Let $T:V\to\mathcal{F}$ be a linear transformation, and suppose

$$T(e^x) = 1$$
, $T(e^{2x}) = \cos^2 x$, $T(e^{3x}) = \sin^2 x$

Write down a formula for T of an arbitrary element of V

- (b) Show that T(I) is not linearly independent.
- (c) Prove that T is not one-to one.¹
- (d) Show that T(I) is not a spanning set for \mathcal{F} .
- (e) Prove that T is not onto.
- (2) Let $T: V \to W$ be a linear transformation. Prove that T(I) is a linearly independent subset of W for every linearly independent subset I of V if and only if T is one to one.²
- (3) Let $T: V \to W$ be a linear transformation. Let S be a spanning set for V. Prove T is onto if and only of T(S) is a spanning set for W.
- (4) Prove that the finite-dimensional vector spaces V and W are isomorphic if and only if $\dim(V) = \dim(W)$.

¹You can find a nonzero vector in the kernel of T

²For every linearly independent subset I is a key information in one of the two directions (which one?)

Solution.

- (1) (a) Yes, I is linearly independent. Solve system $c_1e^x + c_2e^{2x} + c_3e^{3x} = 0$ at $x \in \{1, 2, 3\}$ or equivalent. Next, calculate $T(c_1e^x + c_2e^{2x} + c_3e^{3x}) = c_1T(e^x) + c_2e^{2x} + c_3e^{3x}$ $c_2T(e^{2x}) + c_3T(e^{3x}) = c_1 + c_2\cos^2(x) + c_3\sin^2(x).$

 - (b) Observe dependency $T(e^{2x}) + T(e^{3x}) = T(e^x)$. (c) Observe that $T(e^{2x} + e^{3x} e^x) = T(e^{2x}) + T(e^{3x}) T(e^x) = 0 \implies e^{2x} + e^{2x}$ $e^{3x} - e^x \in \ker T$. Then apply Lemma 1(1).
 - (d) Calculate $\operatorname{sp}(T(I)) = \operatorname{sp}\{1, \cos^2(x)\} \subseteq \mathcal{F}$.
 - (e) Observe $\operatorname{im}(T) = \operatorname{sp}(T(I)) = \operatorname{sp}\{1, \cos^2(x)\} \subseteq \mathcal{F}$ and apply Lemma 1(2).
- (2) Suppose T is one-to-one. Take image T(I) of linearly independent set $I = \{v_i\}$ and observe $\sum_i c_i T(v_i) = T(\sum_i c_i v_i) = 0$ implies $\sum_i c_i v_i = 0$ since $\ker T = \{0_V\}$. Then, since $\{v_j\}$ is linearly independent, $c_j = 0 \,\forall j$ and so $\{T(v_j)\}$ is also linearly independent. On the other hand, suppose T(I) is always linearly independent. Take basis $B = \{v_j\}$, let $v := \sum_i c_j v_j \in \ker T$ and observe $0_W = T(v) = T(\sum_i c_j v_j) = T(v)$ $\sum_{i} c_{j} T(v_{j}) \iff c_{j} = 0 \, \forall j \text{ since } \{T(v_{j})\} \text{ is linearly independent. Hence } v = 0,$ $\ker T = \{0_V\}$ and T is one-to-one.
- (3) Suppose T is onto. Let $S = \{v_i\}$ be a spanning set for V. Then $\forall w \in W, \exists v = V \in W$ $\sum_i c_i v_j$ such that T(v) = w. In particular, $w = T(\sum_i c_i v_j) = \sum_i c_i T(v_i)$ and so T(S) is a spanning set for W. On the other hand, suppose $T(S) = \{T(v_i)\}$ is a spanning set for W. Then $w = \sum_{i} c_{i} T(v_{i}) = T(\sum_{i} c_{i} v_{i})$ for some c_{i} . In particular, $w \in \operatorname{im}(V)$ and T is onto.

(4)

B:Let $M_{n \times n}$ be the vector space of $n \times n$ matrices.

- (1) Let $P \in M_{n \times n}$. Define the function $T_P : M_{n \times n} \to M_{n \times n}$ by $T_P(A) = PA$ for all $A \in M_{n \times n}$. Is T_P always linear? If so, is T_P ever an isomorphism?
- (2) Let P be an invertible $n \times n$ matrix. Prove that the function $A \mapsto PAP^{-1}$ from $M_{n \times n}$ to $M_{n\times n}$ is an isomorphism. (This transformation is called *conjugation by P*).

Solution.

- (1) Always linear: $T_P(A+rB) = P(A+rB) = PA+r(PB) = T_P(A)+rT_P(B)$. It is an isomorphism when P is invertible: $PA = O \Longrightarrow A = P^{-1}O = O$ so injective, and given A, $P(P^{-1}A) = A$ so surjective.
- (2) Let this function be called T. Linear: $T(A+rB) = P(A+rB)P^{-1} = (PA+rB)P^{-1}$ $+rPB)P^{-1} = PAP^{-1} + rPBP^{-1}$. Injective: $PAP^{-1} = O \Longrightarrow A = P^{-1}OP =$ O. Surjective: Given A, $P(P^{-1}AP)P^{-1} = A$.

C: Let
$$A = \begin{bmatrix} 3 & 1 \\ -1 & -1 \end{bmatrix}$$
, and consider the bases

$$\mathcal{E} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \quad \text{and} \quad \mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right\}$$

of the vector space $M_{2\times 2}$ of 2×2 matrices

- (1) Find $[I_2]_{\mathcal{E}}$ and $[A]_{\mathcal{E}}$. (Recall, for example, $[I_2]_{\mathcal{E}}$ is the coordinate vector of I_2 relative to the ordered basis \mathcal{E} for $M_{2\times 2}$.)
- (2) Find $[I_2]_{\mathcal{B}}$ and $[A]_{\mathcal{B}}$.
- (3) Find a basis \mathcal{C} of $M_{2\times 2}$ such that $[A]_{\mathcal{C}} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$.
- (4) Find a matrix C such that $C[B]_{\mathcal{B}} = [B]_{\mathcal{C}}$ for all B in $M_{2\times 2}$.
- (5) Find a matrix D such that $D[B]_{\mathcal{C}} = [B]_{\mathcal{E}}$ for all B in $M_{2\times 2}$.
- (6) Find a matrix F such that $F[B]_{\mathcal{B}} = [B]_{\mathcal{E}}$ for all B in $M_{2\times 2}$.
- (7) Draw a diagram relating the linear transformations corresponding to the matrices F, C and D.

Solution.

- (1) Since $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 0 \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + 0 \cdot \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + 1 \cdot \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, therefore $[I_2]_{\mathcal{E}} = [1, 0, 0, 1]$. Similarly, $[A]_{\mathcal{E}} = [3, 1, -1, -1]$.
- (2) $[I_2]_{\mathcal{B}} = [1, 0, 0, 0]$. For A, write $\begin{bmatrix} 3 & 1 \\ -1 & -1 \end{bmatrix} = r_1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + r_2 \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + r_3 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + r_4 \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} r_1 + r_2 & r_3 r_4 \\ r_3 + r_4 & r_1 r_2 \end{bmatrix}$. This implies $2r_1 = 2$ so $r_1 = 1$ and hence $1 + r_2 = 3$ so $r_2 = 2$, and $2r_3 = 0$ so $r_3 = 0$ and hence $0 + r_4 = -1$ so $r_4 = -1$. Thus, $[A]_{\mathcal{B}} = [1, 2, 0, -1]$.
- Thus, $[A]_{\mathcal{B}} = [1, 2, 0, -1]$.

 (3) $C = \left\{ \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \right\}$. Since this ordered set is just a scaled version of the \mathcal{E} basis, it is seen that it is a basis.
- (4) Note that we are finding the change-of-basis matrix $C = C_{\mathcal{B} \to \mathcal{C}}$. We use Equation (9) on page 393 in the textbook, as follows. Let $\mathcal{B} = \{B_1, B_2, B_3, B_4\}$ and $\mathcal{C} = \{C_1, C_2, C_3, C_4\}$. $[B_1]_{\mathcal{C}} = [1/3, 0, 0, -1]$, $[B_2]_{\mathcal{C}} = [1/3, 0, 0, 1]$, $[B_3]_{\mathcal{C}} = [1/3, 0, 0, 1]$

$$[0,1,-1,0]$$
, and $[B_4]_{\mathcal{C}}=[0,-1,-1,0]$. Therefore, $C=\begin{bmatrix}1/3 & 1/3 & 0 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & -1 & -1\\ -1 & 1 & 0 & 0\end{bmatrix}$.

(5) Now we want to find $D = D_{\mathcal{C} \to \mathcal{E}}$. Write $\mathcal{E} = \{E_1, E_2, E_3, E_4\}$. Have $[C_1]_{\mathcal{E}} = [3, 0, 0, 0], [C_2]_{\mathcal{E}} = [0, 1, 0, 0], [C_3]_{\mathcal{E}} = [0, 0, -1, 0], \text{ and } [C_4]_{\mathcal{E}} = [0, 0, 0, -1].$ So,

$$D = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$

(6) Now we want $F = F_{\mathcal{B} \to \mathcal{E}}$. But, $F = D_{\mathcal{C} \to \mathcal{E}} C_{\mathcal{B} \to \mathcal{C}} = DC = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \end{bmatrix}$.

COOL-OFF:

- (1) Give three different isomorphism between P_n and \mathbb{R}^{n+1} .