

A summary of symmetric key (session key, secret key) establishment protocols

Protocols	ThirdParty	Timestamps	EntityAuth	messages
Diffie-Hellman	No	No	None	2
Needham- Schroeder protocol	KDC (online)	No	Symmetric encryption	5
X.509 (2 pass)	CA (offline)	Yes	mutual	2
X.509 (3 pass)	CA (offline)	No, but with nonce	mutual	3

COMP38412 (Topic 6) 32

Exercise Question – E6.1

Assuming that Alice is to send a message, M, to Bob. M is encrypted with a shared key established using the DH protocol. Explain whether Eve could access this message M. If so, explain how, and propose a solution to address this vulnerability.

COMP38412 (Topic 6) 33

Exercise Question – E6.2

- □ The following is an extremely simple protocol proposed for symmetric key distribution. It is assumed that A and B has never met before (or there is no key established prior to this communication).
 - > Identify as many problems/flaws as you can.
 - ➤ Modify the protocol to fix the problems/flaws you have identified.

Exercise Question – E6.3

This is the Needham-Schroeder protocol. Answer the following questions:

- i. What are the benefits for A to forward the session key to B (i.e. step 3), rather than letting KDC to directly send the session key to B?
- ii. TRY to identify two application areas of the Needham-Schroeder protocol and to elaborate the benefits of using the Needham-Schroeder protocol in these application areas.

Conclusions

- □ Key management encompasses a number of critical issues to the effective use of cryptosystems.
- □ A number of protocols exist to support symmetrical key distribution and agreement.
 - > Key transport protocols
 - One party creates or otherwise obtains a secret value, and securely transfers it to the other party.
 - > Key agreement protocols
 - o A shared secret is derived by the parties using information contributed by each, such that no party can predetermine the resulting value.
- □ Key agreement/distribution protocols can be vulnerable to security attacks, such as the man-in-the-middle and replay attacks, so they should be used with care.