

Lecture 4

Electrical Design

AC Resistance & Inductance

Reminders and Announcements

- Office hours: Monday, 3:30pm-4:30pm
- Quiz #1 answers and grades on Canvas
- Homework #1 will be assigned tomorrow (tentative)
- Download and install ANSYS Electronics Desktop and LTspice and check that you can open them before Feb. 3rd

AC Resistance of Rectangular Conductors (First-Order Approximation)

- $R_{AC} = \rho l / A_{eff}$
- When $2\delta \ll w$ and t

$$\circ A_{eff} = wt - (w - 2\delta)(t - 2\delta)$$

$$\circ A_{eff} = 2w\delta + 2t\delta - 4\delta^2$$

$$\circ A_{eff} = 2\delta(w + t - 2\delta)$$

- $\delta = \sqrt{(\rho / (\pi f \mu))}$
- When $2\delta \geq w$ or t

$$\circ A_{eff} = wt$$

Keller, R.B. (2023). Skin Effect. In: Design for Electromagnetic Compatibility--In a Nutshell. Springer, Cham. https://doi.org/10.1007/978-3-031-14186-7_10

Example: AC Resistance of PCB Trace

- 200-mm-long, 0.1-mm-wide PCB trace with 1 oz* copper
- $\rho_{copper} = 1.7 \text{ x } 10^{-8} \Omega \cdot \text{m}$
- 1 oz copper = 1.37 mils = 0.00137 in = 0.034798 mm
- What is the AC resistance of the copper trace at 150 MHz?

$$R_{AC} = \rho l / A_{eff}$$

$$\boldsymbol{\delta} = \sqrt{(\boldsymbol{\rho} / (\boldsymbol{\pi} f \boldsymbol{\mu}))}$$

$$= \sqrt{(1.7 \cdot 10^{-8} \,\Omega \cdot \text{m} / (\pi \,(150\text{MHz})(4\pi * 10^{-7}\text{H/m})))} = 5.36 \cdot 10^{-6}\text{m}$$

Check $2\delta \ll w$ and t: 10.7 µm << 100 µm and 35 µm

$$A_{eff} = 2\delta(w + t - 2\delta)$$

$$= 2(5.36 \cdot 10^{-6} \text{m})(1 \cdot 10^{-4} \text{m} + 3.5 \cdot 10^{-5} \text{m} - 2(5.36 \cdot 10^{-6} \text{m}))$$
$$= 1.33 \cdot 10^{-9} \text{m}^{2}$$

$$R_{AC} = (1.7 \times 10^{-8} \ \Omega \cdot m) \cdot (0.2 \ m) / (1.33 \times 10^{-9} \ m^2) = 2.56 \ \Omega$$

→ 2.6x higher than the DC resistance

AC Resistance: Circular vs Rectangular Cross-Sections

- Circles have less perimeter for a given cross-sectional area, so the skin effect is more pronounced
- Flat, wide conductors with rectangular cross-sections are preferred for high-frequency applications

AC Resistance: Circular vs Rectangular Cross-Sections

- Circles have less perimeter for a given cross-sectional area, so the skin effect is more pronounced
- Flat, wide conductors with rectangular cross-sections are preferred for high-frequency applications

Keller, R.B. (2023). Skin Effect. In: Design for Electromagnetic Compatibility--In a Nutshell. Springer, Cham. https://doi.org/10.1007/978-3-031-14186-7_10

AC Resistance: Circular vs Rectangular Cross-Sections

- Circles have less perimeter for a given cross-sectional area, so the skin effect is more pronounced
- Flat, wide conductors with rectangular cross-sections are preferred for high-frequency applications

Keller, R.B. (2023). Skin Effect. In: Design for Electromagnetic Compatibility--In a Nutshell. Springer, Cham. https://doi.org/10.1007/978-3-031-14186-7_10

Resistance Reduction Methods

DC Resistance

$$R_1 = \rho_0 l / A \cdot [1 + \alpha (T_1 - T_0)]$$

- Material
 - High electrical conductivity (low electrical resistivity)
- Geometry
 - Increase cross-sectional area
 - Decrease length
 - Parallel conductors
- Application
 - Decrease temperature
 - Decrease current

AC Resistance

$$\delta = \sqrt{(\rho / (\pi f \mu))}$$

- Material
 - Conductors with low permeability and low resistivity
- Geometry
 - Increase circumference/perimeter
 - Use wide flat conductor
 - Parallel smaller conductors
- Application

8

Decrease frequency

Skin and Proximity Effects

- Skin and proximity effects result from eddy currents
- When the magnetic field is generated by the conductor itself, this phenomena is called "skin effect"
- If the magnetic field is generated by an adjacent conductor, the phenomena is called "proximity effect"

Proximity Effect

- Alternating current (AC) creates an alternating magnetic field around the conductor
- The alternating magnetic field induces eddy currents in adjacent conductors, changing the distribution of the current
- The result is current becoming concentrated in areas of the conductor closest to the first conductor
- Proximity effect significantly increases AC resistance of adjacent conductors
- The effect increases with frequency

Summary: Resistance

- DC resistance at room temperature: $R = \rho l/A$
- Temperature correction: $R = R_0 \cdot [1 + \alpha (T T_0)]$
- AC resistance
 - Skin effect: $\delta = \sqrt{(\rho / (\pi f \mu))}$

- \circ Related to circumference, ρ , and μ of conductor, and frequency
- Effective area for circular conductors: $A_{eff}=\pi(d\delta-\delta^2)$, when $\delta\ll r$
- Effective area for rectangular conductors: $A_{eff} = 2\delta(w + t 2\delta)$, when $2\delta \ll w$ and t

Package Parasitics

Inductance

- Any current-carrying conductor can have parasitic inductance:
 - Wire / wire bond
 - Lead / terminals
 - PCB trace
- V = L di/dt, oscillations, coupling
- Types:
 - Self/partial inductance
 - Mutual inductance
 - Loop/effective/total inductance

Figure 7-21. Voltage Induced in a Circuit Element Due to a Change in Current

Figure 7-22. Magnetic Field Lines About a Current Carrying Wire

Types of Inductance

- Self/partial inductance, L_n
 - Its own magnetic field opposes any change in current
- Mutual inductance, M_n
 - Magnetic field lines from one conductor pass through another
- Loop/total/effective inductance, L_{total}
 - Inductance of the overall loop

Self Inductance: Wire (Round Conductor)

•
$$L_{self} = \frac{\mu}{2\pi} l \left[\ln \left(\frac{l}{r} + \sqrt{1 + \frac{l^2}{r^2}} \right) - \sqrt{1 + \frac{r^2}{l^2}} + \frac{r}{l} + \frac{1}{4} \right]$$

- \circ l = length in meters
- \circ r = radius in meters
- $\mu = \mu_0 \mu_r \approx (4\pi \text{ x } 10^{-7} \text{ H/m})(1) \approx (4\pi \text{ x } 10^{-7} \text{ H/m})$ (for non-ferromagnetic conductors)
- For straight wires (does not consider curvature)

Self Inductance: Wire (Round Conductor)

When $l \gg r$:

•
$$L_{self} = 0.002l \left[\ln \left(\frac{2l}{r} \right) - \frac{3}{4} \right]$$
 (µH) (cm)

- \circ l = length in centimeters
- \circ r = radius in centimeters
- For straight wires (does not consider curvature)

- Rule of thumb for inductance of a wire per unit length:
 - Self inductance ~25 nH/in (~1 nH/mm = 10 nH/cm = 0.01 μ H/cm)

Example: Self Inductance of a Wire Bond

•
$$L_{self} = 0.002l \left[\ln \left(\frac{2l}{r} \right) - \frac{3}{4} \right]$$

- l = 10 mm = 1 cm
- \circ r = 5 mils = 0.0127 cm

•
$$L_{self} = 0.002(1 \text{cm}) \left[\ln \left(\frac{2(1 \text{cm})}{(0.0127 \text{cm})} \right) - \frac{3}{4} \right]$$

= **8.6 nH**

- Rule of thumb:
 - \circ 1 nH/mm x 10 mm = **10** nH

Source: Ansoft Corp./ICE, "Roadmaps of Packaging Technology"

Self Inductance: Rectangular Conductor

 In case of DC, low frequency, or a thin rectangular conductor, Grover gives the following self inductance formula:

•
$$L_{self} = 0.002l \left(\ln \left(\frac{2l}{w+t} \right) + 0.50049 + \frac{w+t}{3l} \right)$$
 (pH) (cm)

- w = width in centimeters
- l = length in centimeters
- *t* = thickness in centimeters

Example: Inductance of Parallel Wire Bonds

- If we have two identical wire bonds in parallel (electrically and physically), would $L_{eq} = L_p/2$?
 - Only if the wires are far apart!
 - If the wires are close together, there will be mutual inductance, M

$$L_{parallel} = \frac{L_{p1}L_{p2} - M^2}{L_{p1} + L_{p2} - 2M}$$

If
$$L_{p1}=L_{p2}=L_{p},$$

$$L_{parallel}=\frac{L_{p}+M}{2}$$

Mutual Inductance

- *M* = mutual inductance
 - Measure of shared field lines per amp of current in one conductor
- Crosstalk
 - Δi in one conductor induces V in the other
- Can increase total L for conductors carrying current in the same direction
- Return path cancellation could reduce total L

$$V_{induced} = M \frac{dI}{dt}$$

Figure 7-24. Origin of Mutual Inductance

Mutual Inductance

•
$$M = 0.002l \left[\ln \left(\frac{l}{s} + \sqrt{1 + \left(\frac{l}{s} \right)^2} \right) - \sqrt{1 + \left(\frac{s}{l} \right)^2} + \frac{s}{l} \right]$$

- \circ l = length in centimeters
- \circ s =conductor spacing in centimeters
- When $s \ll l$: $M = \frac{\mu l}{2\pi} \left[\ln \left(\frac{2l}{s} \right) 1 \right]$

Figure 7-24. Origin of Mutual Inductance

Mutual Inductance

(µH) (cm)
•
$$M = 0.002l \left[\ln \left(\frac{l}{s} + \sqrt{1 + \left(\frac{l}{s} \right)^2} \right) - \sqrt{1 + \left(\frac{s}{l} \right)^2} + \frac{s}{l} \right]$$

- \circ l = length in centimeters
- \circ s = conductor spacing in centimeters

•
$$V = L_1 \frac{dI}{dt} - M_{12} \frac{dI}{dt} + IR + L_2 \frac{dI}{dt} - M_{12} \frac{dI}{dt}$$

•
$$V = (L_1 + L_2 - 2M_{12}) \frac{dI}{dt} + IR$$

Example: Inductance of Adjacent Wires

 Find the equivalent inductance of two adjacent wires carrying current in opposite directions with 1-mm diameter, 10-cm length, and spaced 10 mm apart.

d = 1 mm $\downarrow i$ l = 10 cm

• For $r \ll l$ (0.05cm $\ll 10$ cm), the self inductance of each wire is:

$$L(\mu H) = 0.002(10 \text{cm}) \left[\ln \frac{(2)(10 \text{cm})}{0.05 \text{cm}} - \frac{3}{4} \right] = 0.02[5.99 - 0.75] = \mathbf{0.105} \ \mu \mathbf{H}$$

• For $s \ll l$ (1cm \ll 10cm), the mutual inductance is:

$$M = 0.002(10 \text{cm}) \left[\ln \left(\frac{2(10 \text{cm})}{(1 \text{cm})} \right) - 1 \right] = \mathbf{0.040} \, \mu \text{H}$$

Example: Inductance of Adjacent Wires

Find the equivalent inductance of two adjacent wires carrying current in opposite directions with 1-mm diameter, 10-cm length, and spaced 10 mm apart.

Total inductance for the return circuit:

$$L_{eq} = L_1 + L_2 - 2M_{12}$$

= 2(0.105 \(\mu\text{H}\)) - 2(0.042 \(\mu\text{H}\))
= 0.126 \(\mu\text{H}\)

If s is very large such that M_{12} is negligible, then $L_{tot} = 2(0.105 \,\mu\text{H})$ $\rightarrow 40\%$ reduction in L_{tot} due to M_{12}

 $l = 10 \, \text{cm}$

Example: Capacitor Mounted to PCB

 L_p = partial inductance M = mutual inductance of parallel components

 $L_{total} = Lp_{trace1} + Lp_{pad1} + Lp_{cap} + Lp_{pad2} + Lp_{trace2} + Lp_{via2}$

$$+ Lp_{plane} + Lp_{via1} - 2M_{via-via} - 2M_{plane-trace}$$

January 31, 2025

Effective Inductances for Different Structures

*Note: Tummala textbook 2nd Ed. shows 4π in the denominator, which is incorrect.

Wire above a ground plane

•
$$L_{eff} = \frac{\mu l}{2\pi^*} \cosh^{-1} \left(\frac{2s}{d}\right)$$
, where $l = \text{length}$, $d = \text{diameter}$, $s = \text{spacing}$

- Package examples: TAB, QFP w/ ground plane
- ∘ Typical inductance range: 1 10 nH
- Assumes $s \ll l$, and $d \ll s$

•
$$L_{eff} = \frac{\mu ls}{w}$$
, where $l = length$, $w = width$, $s = spacing$

- Package examples: PGA, BGA
- Typical inductance range: 0.25 1 nH
- Assumes $s \ll l$

Example: Parallel Planes

A multi-layer ball grid array (BGA) package has plane layers used to supply both the V_{dd} and the ground (GND). Find the effective inductance for a pair of planes with dimensions of 1 cm by 1 cm, and a spacing of 6 mils.

- $L_{eff} = \frac{\mu ls}{w}$, where l = w = 1 cm = 0.01 m, s = 6 mils = 1.5e-4 m
- $\mu = \mu_0 \mu_r \approx 4\pi \times 10^{-7} \text{H/m} = 1.26 \text{e-6 H/m}$
- $L_{eff} = (1.26e-6 \text{ H/m})(1.5e-4 \text{ m}) = 0.19 \text{ nH}$

$V = L \, dI/dt$

Summary: Inductance

- Inductive delay: $\tau = L/R$
- Self inductance: L_p
 - \circ Example: L_{p1} , L_{p2} , L_{p3} , L_{p4}
- Mutual inductance: M
 - Example: $-M_{p1-3}$, $-M_{p2-4}$
 - Subtractive: current flowing in opposite directions (this example)
- Loop inductance: L_{total}
- Example: $L_{total} = L_{p1} + L_{p2} + L_{p3} + L_{p4} 2M_{p1-3} 2M_{p2-4}$

$$V = L \, dI/dt$$

Summary: Inductance

- Example 2: Additive
 - Two parallel wires with current in the same direction
 - Self inductance: L_{p1} , L_{p2}
 - Mutual inductance: M
 - Positive

• If
$$s << l: M = \frac{\mu l}{2\pi} \left[\ln \left(\frac{2l}{s} \right) - 1 \right]$$

• Total inductance if $L_{p1} = L_{p2}$:

$$\circ L_{parallel} = (L_p + M) / 2$$

References on Inductances

- F. W. Grover, "Inductance calculations: working formulas and tables," https://nvlpubs.nist.gov/nistpubs/bulletin/08/nbsbulletinv8n1p1_A2b.pdf
- Xiaoning Qi, "High frequency characterization and modeling of on-chip interconnects and RF IC wire bonds," http://wwwtcad.stanford.edu/tcad/pubs/theses/qi.pdf
- Clayton R. Paul, "Partial and internal inductance," https://ieeexplore.ieee.org/document/6507331
- Eric Bogatin, "Roadmaps of packaging technology," Chapter 7: Electrical Performance, ISBN: 1-877750-61-1, 1997.

Skin and Proximity Effects

- Skin effect reduces the internal wire inductance at high frequencies
- Internal inductance is due to the internal magnetic flux of a conductor
- Internal inductance is typically much less than the external inductance, which is due to external magnetic flux
- Proximity effect reduces the wire inductance by redistributing the currents to form a smaller current loop
- The skin and proximity effect eddy currents superimpose to form the total eddy current distribution

Internal Inductance vs. Skin Depth/Radius

Next Class

- Electrical Design (Chapter 2)
 - Inductance
 - Capacitance
 - Intro to Finite Element Analysis (FEA) and ANSYS Q3D