Assignment 3

1. Solve the given minimization problem using Particle Swarm Optimization (PSO). (Illustrate problem solving with next two generations). Assume $C_1 = 1$, $C_2 = 1$, $r_1 = \{0.4, 0.5, 0.3, 0.6\}$, $r_2 = \{0.2, 0.7, 0.8, 0.3\}$, $\omega = 0.5$, $a_1 = [1, 50]$, $a_2 = [10, 50]$.

Objective Function:
$$f(a_1, a_2) = 1 + (a_1 - 2) + (2a_2 - 3)$$

- a) Create N number of particles with each particle position and velocity considered as an initial population size for the given optimization problem (N = 4).
- b) Perform the computation with next two generations of searching. For each generation:
 - 1. Clearly write down the fitness value of the particles.
 - 2. Clearly write down the pbest and gbest of the particle in the population.
 - 3. Clearly write down the updated position and velocity of each particles in the population.
 - 4. Clearly write down the new fitness value of the particles in the population at the end of generation
- 2. Solve the given maximization problem using Flower Pollination Algorithm (FPA). (Illustrate problem solving with next two generations). Assume switch probability (p) = 0.7, $L(\lambda) = 2$, $\gamma = 1.5$, $\epsilon = 0.25$, $r = \{0.4, 0.5, 0.3, 0.6\}$, $a_1 = [1, 50]$, $a_2 = [10, 50]$.

Objective Function:
$$f(a_1, a_2) = 1 + (a_1 - 2) + (2a_2 - 3)$$

- c) Create N number of flowers considered as an initial population size for the given optimization problem (N = 4).
- d) Perform the computation with next two generations of searching. For each generation:
 - 1. Clearly write down the fitness value of the flowers.
 - 2. Clearly write down the best solution g* in the population.
 - 3. Clearly write down the updated values of each flower in the population.
 - 4. Clearly write down the updated best solution g* in the population at the end of generation.