1468 NARC, PATH

5.207 k_same

DESCRIPTION LINKS GRAPH

Origin [151]

Constraint k_same(SETS)

Type VARIABLES : collection(var-dvar)

Argument SETS : collection(set - VARIABLES)

Restrictions required(VARIABLES, var)

 $\begin{aligned} |\text{VARIABLES}| &\geq 1 \\ \text{required}(\text{SETS}, \text{set}) \\ |\text{SETS}| &> 1 \\ \text{same_size}(\text{SETS}, \text{set}) \end{aligned}$

Purpose Given |SETS| sets, each containing the same number of domain variables, the k_same constraint forces that the multisets of values assigned to each set are all identical.

Example $\left(\begin{array}{c} \mathsf{set} - \langle 1, 9, 1, 5, 2, 1 \rangle \,, \\ \mathsf{set} - \langle 9, 1, 1, 1, 2, 5 \rangle \,, \\ \mathsf{set} - \langle 5, 2, 1, 1, 9, 1 \rangle \end{array} \right.$

The k_same constraint holds since:

- The first and second collections of variables are assigned to the same multiset.
- The second and third collections of variables are also assigned to the same multiset.

Typical |VARIABLES| > 1

Symmetries • Items of SETS are permutable.

- Items of SETS.set are permutable.
- All occurrences of two distinct values of SETS.set.var can be swapped; all occurrences of a value of SETS.set.var can be renamed to any unused value.

Arg. properties

Remark

Contractible wrt. SETS.

It was shown in [151] that, finding out whether the k_same constraint has a solution or not is NP-hard when we have more than one same constraint. This was achieved by reduction from 3-dimensional-matching in the context where we have 2 same constraints.

20050808 1469

See also common keyword: k_same_interval, k_same_modulo,

k_same_partition(system of constraints).

implies: k_used_by.

part of system of constraints: same.
used in graph description: same.

Keywords characteristic of a constraint: sort based reformulation.

combinatorial object: permutation, multiset.

complexity: 3-dimensional-matching.

constraint type: system of constraints, decomposition.

modelling: equality between multisets.

 \overline{NARC} , PATH

Arc input(s)	SETS
Arc generator	$PATH \mapsto \texttt{collection}(\texttt{set1}, \texttt{set2})$
Arc arity	2
Arc constraint(s)	<pre>same(set1.set, set2.set)</pre>
Graph property(ies)	NARC = SETS - 1

Graph model

Parts (A) and (B) of Figure 5.461 respectively show the initial and final graph associated with the **Example** slot. To each vertex corresponds a collection of variables, while to each arc corresponds a same constraint.

Figure 5.461: Initial and final graph of the k_same constraint

20050808 1471