BLOOD SUGAR MONITORING USING PERVASIVE COMPUTING TECHNOLOGIES

PROJECT REPORT

Submitted by

J.PRAVEEN KUMAR (96007205042)

R.VIJAYARAJAN (96007205058)

K.SHENBAGARAM (96007205354)

In partial fulfillment for the award of the degree

Of

BACHELOR OF TECHNOLOGY

In

INFORMATION TECHNOLOGY

MEPCO SCHLENK ENGINEERING COLLEGE, SIVAKASI

ANNA UNIVERSITY: TIRUNELVELI 627 007 MARCH 2011

ANNA UNIVERSITY: TIRUNELVELI 627 007

BONAFIDE CERTIFICATE

Certified that this project report "BLOOD SUGAR MONITORING USING PERVASIVE COMPUTING TECHNOLOGIES" is the bonafide work of J.PRAVEEN KUMAR, R.VIJAYARAJAN, and K.SHENBAGARAM who carried out the project work under our supervision.

SIGNATURE	SIGNATURE
Dr. T. REVATHI	Dr. T.REVATHI
HEAD OF THE DEPARTMENT	SUPERVISOR
Information Technology	Head of the Department
Mepco Schlenk Engineering College	Information Technology
Sivakasi-626005	Mepco Schlenk Engineering College
Virudhunagar Dt.,	Sivakasi-626005
Tamilnadu	Virudhunagar Dt.,
	Tamilnadu
Submitted for the Project Viva-voce he	eld at Mepco Schlenk Engineering
College, Sivakasi on	

EXTERNAL EXAMINER

INTERNAL EXAMINER

ACKNOWLEDGEMENT

First and foremost, we record our whole hearted gratitude to the almighty and our beloved parents and for their blessings in the successful completion of this project.

Our sincere thanks are rendered to our honorable Principal **Dr.S.Balakrishnan B.E., M.S., Ph.D, M.I.E.E, F.I.E.T.E**, for giving us an opportunity to undertake this project in this esteemed institution and extending all the facilities for completion of the project.

We also remember with fond gratitude, the valuable and consistent encouragement given by the Professor and head of the Department of Information Technology, **Dr.T.Revathi M.E., Ph.D.,** for permitting us to choose an area of our choice and an idea of our convenience and interest and guiding and fine tuning us in each and every foot we have taken towards the successful completion of the project.

We hereby acknowledge the efforts of all the staff members, reviewers and Technicians of the Department of Information Technology, whose help was instrumental in the completion of our project by providing us the required software with utmost guidance.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE NO
	TABLE OF CONTENTS	
	ABSTRACT	
	LIST OF FIGURES	
	LIST OF TABLE	
1.	INTRODUCTION	1
2.	LITERATURE REVIEW	2
	2.1 Glucotrack	2 2
	2.2 Grove Instruments	3 3
	2.3 SMSI Glucose Sensor	3
3.	SYSTEM STUDY	5
	3.1 Software Requirements Specification	5
	3.1.1 Purpose of the project	5 5
	3.1.2 Scope of the project	5
	3.1.3 Overview	5
	3.2 General Description	5
	3.2.1 Existing system	5
	3.2.2 Limitation	6
	3.2.3 Proposed system	6
	3.2.4 Objective	6
4.	SYSTEM ARCHITECTURE	7
•	4.1 Introduction	7
	4.2 Block Diagram Description	8
5.	TRANSMITTER SECTION	9
	5.1 Glucometer	9
	5.2 Analog to Digital Converter	9
	5.3 Power Supply Introduction	11
	5.4 AT89S52 Microcontroller	12
	5.5 RF Transmitter	17
6.	RECEIVER SECTION	19
	6.1 RF Receiver	19
	6.2 Serial Communication	21
7.	TESTING	22
	7.1 Database Management	22
	7.2 Testing	22
8.	EXPERIMENTAL RESULTS	24
	8.1 Steps involved in the project	24
	8.2 Results	24

9.	SOCIAL IMPACT	33
10.	CONCLUSION	34
11.	BIBLIOGRAPHY	35
12.	APPENDIX	36

LIST OF FIGURES

Fig.No	Title	Page
2.1	GlucoTrack®, Model DF-F	$\overline{2}$
2.2	Portable glucose meter	3
4.1	Block Diagram	8
5.1	ADC0808	9
5.2	Block Diagram of Power Supply	11
5.3	Pin Diagram of AT89S52	14
5.4	RF Transmitter	18
6.1	RF Receiver	20
8.1	Blood Sample	24
8.2	Test Strip	25
8.3	Transmitter	25
8.4	Receiver	26
8.5	Patient Registration Form	26
8.6	Waiting for Data	27
8.7	Port Selection	27
8.8	Sugar Value Display	28
8.9	Error Report	28
8.10	Log-in Screen	29
8.11	Patient Description	29
8.12	Bar Chart Request	30
8.13	Bar Chart Analysis	30
8.14	Initial Database	31
8.15	Fetching Mails	31
8.16	Updated Database	32
8.17	Mail Report	32

LIST OF TABLES

Table No	Title	Page
5.1	Specification – RF Transmitter	18
5.2	Pin Description	18
6.1	Specification – RF Receiver	20
6.2	Pin Description	20

ABSTRACT

The world of medical electronics is shifting fundamentally. Equipment designs have traditionally lasted 20 years, with years of heritage and testing behind each design. We know that the diabetes is a growing and costly problem worldwide. Our goal is to develop a system to measure, record, and perform analysis on the glucose level of diabetics on a homebound basis. The device and corresponding software will be able to measure the blood sugar value of the diabetes patient when it is taken, and wirelessly transmit it to be saved as medical records. This is done by measuring the blood glucose using the device, followed by transmitting the measured data to the homebound computer using RF transceiver and then—sending the data to an email address specified by the doctor, and accessing it through software running on the remote computer that is used to hold all the patients' information.