1

GATE-CS.51

EE23BTECH11046 - Poluri Hemanth*

Question: Consider the differential equation $\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 16y = 0$ and the boundary conditions y(0) = 1 and $\frac{dy}{dx}(0) = 0$. The solution to equation is:

Symbol	Values	Description
Y(s)	-	y in s domain
y(x)	-	y in x domain
y(0)	1	y at $x = 0$
y'(0)	0	y'(x) at $x = 0$
u(x)	$= \begin{cases} 1 & \text{if } x > 0 \\ 0 & o.w \end{cases}$	unit step function

TABLE I Parameters

Fig. 1. Plot of y(x)

$$\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 16y \stackrel{\mathcal{L}}{\longleftrightarrow} s^2Y(s) - sy(0) - y'(0) + 8sY(s) - 8y(0) + 16Y(s)$$
(1)

$$Y(s)(s^2 + 8s + 16) = s + 8$$
 (2)

$$\Rightarrow Y(s) = \frac{s+8}{s^2+8s+16}$$

$$= \frac{1}{s+4} + \frac{4}{(s+4)^2}$$
(4)

For inversion of Y(s) in partial fractions-

$$\frac{b}{(s+a)^n} \longleftrightarrow \frac{b}{(n-1)!} \cdot x^{n-1} e^{-ax} \cdot u(x) \tag{5}$$

Applying Laplace inverse-

From (4),(5)

$$y(x) = \frac{1}{0!}e^{-4x} \cdot u(x) + \frac{4}{1!}x \cdot e^{-4x} \cdot u(x)$$
(6)
= $(1 + 4x)e^{-4x}u(x)$ (7)