Deep Active Learning for Joint Classification & Segmentation with Weak Annotator

Soufiane Belharbi, Ismail Ben Ayed, Luke McCaffrey, Eric Granger

WACV 2021 Paper #1294

1. Challenges: CNN Visualization with CAMs

Application assumption: the image dataset for training is weakly annotated (with image labels)

Drawbacks [1]:

- Low resolution visualisation
- Accurate classifications, but inaccurate segmentations (object localizations)

Our proposal:

- Provide full resolution CAMs
- Train CAMs with pixel-wise supervision under limited budget
- Rely on active learning and label propagation for pixel-wise annotations

2. Deep architecture for supervised classification and segmentation

Proposed architecture.

3. Our proposal for active learning:

label propagation based on randomly selected image

3. Our proposal for active learning:

label propagation based on randomly selected image

3. Our proposal for active learning:

Few random images annotated by expert

Which images to pseudo-label U"?

- Use k-nn between samples of the same class
- Similarity: Jensen-Shannon div. between normalized color histograms

Key intuition: The model is expected to provide good segmentation for images similar to the labeled ones.

4. Deep architecture for supervised classification and segmentation

Training:

- 1. Train the backbone with classification head, then freeze it
- 2. Train the segmentation head

Why separate?

- Isolate the segmentation training for analysis of active learning.
- 2. Avoid supervision unbalance: all images with global annotation versus only few images with pixel annotation

5. Experiments: protocol

Active learning sampling

5. Experiments: results

AUC: Area Under the Curve

Dataset	GlaS	CUB
WSL	66.44 ± 0.20	39.22 ± 0.19
Random	78.57 ± 0.93	68.15 ± 0.61
Entropy	79.13 ± 0.26	68.25 ± 0.29
MC_Dropout	77.92 ± 0.49	67.69 ± 0.27
Label_prop (ours)	81.48 ± 1.03	71.73 ± 0.67
Full_sup	86.53 ± 0.31	75.29 ± 1.50

Our method uses random selection

5. Experiments: WSL vs. few supervision

5. Experiments: Performance over pseudo-labeled samples

5. Experiments: Ablation study

Ablation study: impact on performance of k (for k-nn) and lambda.

Our method is:

- Less sensitive to k
- Sensitive to lambda (depending of the difficulty of the dataset)

Thanks! Any Questions? Please visit me at paper #1294

Code: https://github.com/sbelharbi/deep-active-learning-for-joint-classification-and-segmentation-with-weak-annotator

