A New Method for Design of Robust Digital Circuits

Dinesh Patil, Sunghee Yun, Seung-Jean Kim, Alvin Cheung, Stephen Boyd and Mark Horowitz Stanford University

Digital circuit design constraints

- Every logic block has to meet the clock cycle
- Area/power constraint
- Signal integrity constraints, min/max size constraints etc.

Delay propagation in a typical gate

 $d_{i-o} = \text{delay from input } i \text{ to output } o$ $T_{\text{out}} = \max_{i=1,2,3} (T_i + d_{i-o})$

Sizing for delay minimization

- Goal – Minimize the circuit delay $T_{\rm d}$,

under area, slope, and other constraints

Deterministic circuit sizing problem

$$d_{i-o} = \mu_i(w, C_{\mathrm{L}}, V_{\mathrm{dd}}, V_{\mathrm{th}}, ...)$$

 ${\cal W}=$ vector of device sizes & ${\cal U}=$ mean delay function

minimize : $T_{\rm d}(\nu)$

subject to : $\sum w_i \le A$ $W_{\min} \le w_i \le W_{\max}$

slew constraints

• •

Design example: 32-bit adder

Nominal delay for deterministic adder sizing

Delay PDF for deterministic 32-bit adder sizing

Path delay $\mu-\sigma$ scatter plot for a 32-bit adder

Outline

Circuit sizing

Sizing for robust design

■ Augment gate delay with σ margins

Use "soft maximum" at converging nodes

Results

Conclusions

Objective

Exact statistical delay minimization problem

- R.V. $d_{i-o} \sim F_i(w, C_L, V_{dd}, V_{th}, ...)$
- \rightarrow Network Q_{95} constraints (How?) Propagate symbolic PDFs through netlist

minimize : $Q_{95}(T_{\rm d}(w))$

subject to: $\sum w_i \le A$

A (very) difficult problem!

Basic intuition

- Sizing problems have a relatively large flat minimum
- The sizer mostly needs to avoid making bad choices

- How to approximately propagate Q_{95} of net timings?

Merits of deterministic circuit sizing

$$d_{i-o} = \mu_i(w, C_{ ext{L}}, V_{ ext{dd}}, V_{ ext{th}}, ...)$$
 posynomial functions

 ${\cal W}=$ vector of device sizes & ${\cal U}=$ mean delay function

minimize : $T_{\rm d}(w)$

subject to: $\sum w_i \le A$

 $W_{\mathsf{min}} \leq w_i \leq W_{\mathsf{max}}$

slope constraints

Can be formulated as a GGP*

(* S. Boyd et. al., "A tutorial on Geom. Prog.", www.stanford.edu/~boyd/gp_tutorial.html)

Statistical technique (1)

Statistical	Deterministic	Robust design
technique (1)	design	
	Gate delay =	Gate delay =
Augment the mean delay	$\mu(d_{i-o})$	$D_{i-o} = \mu(d_{i-o}) + k_j \sigma(d_{i-o})$
using σ margins	No variation included	$oldsymbol{k_j}=$ margin coefficient
		for gate <i>j</i>

lacktriangleright k_j provides tradeoff between mean and variance at the gate level

Statistical max function

Statistical technique (2)

E	$T_{\text{out}} = \max (T + d)$	$T_{\text{out}} = \underset{i \in (inputs)}{\text{smax}} (T_i + D_{i-o})$
patil delays at converging nodes	(0-1	p= penalty for closeness of converging paths

Effect of the two techniques

Algorithm

- Modify the deterministic method to include the two statistical techniques
- Get multiple optimized designs at various points
- in the k-p space
- Perform SSTA and choose the best design
- Typical values: $k \in [0.5, 2.5]$ and $p \in [30, 50]$
- For simplicity k and p are uniform for all gates
- We observed that $Q_{95}(T_{
 m d})$ is a weak function of k and p
- \therefore Granularity of k-p space is (0.5, 5)

Gate delay model

- Chain of N transistors ⇒ Equivalent transistor
- Velocity saturated devices, can't combine as resistors!

Statistical delay model

ullet Using Pelgrom's model for variation of $I_{
m d}$ we can write:

$$rac{\sigma(I_d)}{I_d} \; \propto \; rac{1}{\sqrt{W_{
m eff} L_{
m ef}}}$$

for a chain of N transistors

Variation in the delay of the transistor chain (τ_d) is:

$$\sigma(au_d) = rac{\partial au_d^d}{\partial I_d} \, \sigma(I_d)$$
 to first order

Outline

- Motivation
- Sizing for robust design
- Augment gate delay with of margins
- Use "soft maximum" at converging nodes
- Results
- Conclusions

Design example: Ladner-Fisher 32-bit adder

- Same constraints for both methods
- Std. Dev. of 15% used for W = 1μ.
- Results in a highly sparse GP
- ~45,000 variables, ~10,000 constraints
- Run time per optimization iteration:
- 5 mins (2 GHz Pentium IV™, 1GB RAM)
- Semi-custom design

(Knowles. S., Proc. 15th IEEE Symp. on Comp. Arithmetic, 2001)

Delay PDF for robust sizing

SQED05

Comparison of $\mu-\sigma$ scatter plots of path delays

SQEDOS

Conclusions

Without major change in the existing design methods, better, robust designs can be obtained

Delay models and constraints can be GP compatible

GPs are scalable and can be efficiently solved for a global optimum

Accurate propagation of PDFs might not be necessary

- Exploit the flat minima
- Simple techniques yield poor predictions, but good designs!