D.S. Optimisation ISIMA F4 2eme année

Mercredi 7 décembre 2005 Durée : 2 heures - Documents de cours autorisés

Exercice 1

On rappelle que le cône tangent en $\bar{x} \in C_{\jmath}$ où C est un sous-ensemble de $I\!\!R^n$ défini par des inégalités, soit $C = \{x \in \mathbb{R}^n | g_j(x) \leq 0, j \in J\}$ où les fonctions g_j sont supposées différentiables, est le cône fermé des directions réalisables; il est défini par $T_C(\bar{x}) = \{d \in \mathcal{C} \mid d \in \mathcal{C} \mid d \in \mathcal{C} \}$ $\mathbb{R}^n |\langle \nabla g_j(\bar{x}), d \rangle \leq 0, \forall j \in J(\bar{x}) \}$, où $J(\bar{x})$ est l'ensemble des indices des contraintes actives en \bar{x} .

Soit C l'ensemble de \mathbb{R}^2 défini par

$$C = \{x \in \mathbb{R}^2 \mid x_1 + x_2 \le 1, x_1 \ge 0, x_2 \ge 0\}$$

et $f: \mathbb{R}^2 \mapsto \mathbb{R}$ définie par :

$$f(x) = -x_1 - 2x_2 - 2x_1x_2 + \frac{x_1^2}{2} + \frac{x_2^2}{2}$$

- 1. La fonction f est-elle convexe? concave?
- 2. On considère le problème de la minimisation de f sur C.
 - (i) Montrer que tout minimum se trouve sur la frontière de C. (ii) Expliciter $T_C(x)$ en tout point de C.
 - (ii) Expliciter $T_C(x)$ en tout point de C.

- (iii) En déduire l'unique minimum de f sur C.
- 3. Résoudre à présent le problème de la maximisation de f sur C.

Exercice 2 Soit (P) le problème consistant à minimiser f(x) sous la contrainte

$$x \in C := \{x \in \mathbb{R}^n | g_j(x) \le 0, j = 1, \dots, p\}$$

On fait les hypothèses suivantes sur les données de (P):

- Les fonctions f,g_1,\ldots,g_p sont convexes, différentiables sur \mathbb{R}^n ;
- C est borné;
- Il existe $x_0 \in \operatorname{Int}(C)$ tel que $g_j(x_0) < 0, \forall j = 1, \dots, p$.
- 1. Enoncer les propriétés du problème d'optimisation (P) que ces hypothèses induisent.

2. On notera h la fonction duale associée à (P), soit

$$h: u \in (\mathbb{R}^p)^+ \mapsto h(u) := \inf_x \{ f(x) + \sum_{j=1}^p u_j g_j(x) \}$$

et, pour tout $\alpha > 0$, soit :

$$\phi_{\alpha}: x \in \operatorname{Int}(C) \mapsto \phi_{\alpha}(x) := f(x) - \frac{1}{\alpha} \sum_{j=1}^{p} \ln(-g_{j}(x))$$

- (a) Vérifier que ϕ_{α} est convexe et différentiable sur $\mathrm{Int}(C).$
- (b) Montrer qu'il existe des points de $\mathrm{Int}(C)$ minimisant ϕ_{α} sur $\mathrm{Int}(C)$.
- (c) Soit x_{α} un minimum de ϕ_{α} sur $\operatorname{Int}(C)$ et on désigne par u_{α} le vecteur de $(\mathbb{R}^p)^+$ dont la composante j est $\frac{-1}{\alpha g_j(x_{\alpha})}$; montrer que x_{α} minimise le lagrangien pour $u=u_{\alpha}$ et calculer la valeur de $h(u_{\alpha})$.
- (d) Etablir l'encadrement suivant :

$$f(x_{\alpha}) - \frac{p}{\alpha} \le f^* \le f(x_{\alpha})$$

où f^* est la valeur optimale de (P).

(e) Commenter la pertinence de l'approche choisie pour résoudre (P).