8.2.1 Evaluating Estimators

We define three main desirable properties for point estimators. The first one is related to the estimator's *bias*. The bias of an estimator $\hat{\Theta}$ tells us on average how far $\hat{\Theta}$ is from the real value of θ .

Let $\hat{\Theta} = h(X_1, X_2, \cdots, X_n)$ be a point estimator for θ . The **bias** of point estimator $\hat{\Theta}$ is defined by

$$B(\hat{\Theta}) = E[\hat{\Theta}] - \theta.$$

In general, we would like to have a bias that is close to 0, indicating that on average, $\hat{\Theta}$ is close to θ . It is worth noting that $B(\hat{\Theta})$ might depend on the actual value of θ . In other words, you might have an estimator for which $B(\hat{\Theta})$ is small for some values of θ and large for some other values of θ . A desirable scenario is when $B(\hat{\Theta}) = 0$, i.e, $E[\hat{\Theta}] = \theta$, for all values of θ . In this case, we say that $\hat{\Theta}$ is an *unbiased* estimator of θ .

Let $\hat{\Theta}=h(X_1,X_2,\cdots,X_n)$ be a point estimator for a parameter θ . We say that $\hat{\Theta}$ is an **unbiased** of estimator of θ if

$$B(\hat{\Theta}) = 0$$
, for all possible values of θ .

Example 8.2

Let $X_1, X_2, X_3, ..., X_n$ be a random sample. Show that the sample mean

$$\hat{\Theta} = \overline{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

is an unbiased estimator of $\theta = EX_i$.

Solution

We have

$$B(\hat{\Theta}) = E[\hat{\Theta}] - \theta$$

$$= E\left[\overline{X}\right] - \theta$$

$$= EX_i - \theta$$

$$= 0.$$

Note that if an estimator is unbiased, it is not necessarily a good estimator. In the above example, if we choose $\hat{\Theta}_1 = X_1$, then $\hat{\Theta}_1$ is also an unbiased estimator of θ :

$$B(\hat{\Theta}_1) = E[\hat{\Theta}_1] - \theta$$
$$= EX_1 - \theta$$
$$= 0.$$

Nevertheless, we suspect that $\hat{\Theta}_1$ is probably not as good as the sample mean \overline{X} . Therefore, we need other measures to ensure that an estimator is a "good" estimator. A very common measure is the *mean squared error* defined by $E\left[(\hat{\Theta}-\theta)^2\right]$.

The **mean squared error** (MSE) of a point estimator $\hat{\Theta}$, shown by $MSE(\hat{\Theta})$, is defined as

$$MSE(\hat{\Theta}) = E[(\hat{\Theta} - \theta)^2].$$

Note that $\hat{\Theta} - \theta$ is the error that we make when we estimate θ by $\hat{\Theta}$. Thus, the MSE is a measure of the distance between $\hat{\Theta}$ and θ , and a smaller MSE is generally indicative of a better estimator.

Example 8.3

Let $X_1, X_2, X_3, ..., X_n$ be a random sample from a distribution with mean $EX_i = \theta$, and variance $Var(X_i) = \sigma^2$. Consider the following two estimators for θ :

1.
$$\hat{\Theta}_1 = X_1$$
.
2. $\hat{\Theta}_2 = \overline{X} = \frac{X_1 + X_2 + ... + X_n}{n}$.

Find $MSE(\hat{\Theta}_1)$ and $MSE(\hat{\Theta}_2)$ and show that for n>1, we have

$$MSE(\hat{\Theta}_1) > MSE(\hat{\Theta}_2).$$

Solution

We have

$$MSE(\hat{\Theta}_1) = E[(\hat{\Theta}_1 - \theta)^2]$$

$$= E[(X_1 - EX_1)^2]$$

$$= Var(X_1)$$

$$= \sigma^2.$$

To find $MSE(\hat{\Theta}_2)$, we can write

$$\begin{aligned} MSE(\hat{\Theta}_2) &= E[(\hat{\Theta}_2 - \theta)^2] \\ &= E[(\overline{X} - \theta)^2] \\ &= \operatorname{Var}(\overline{X} - \theta) + (E[\overline{X} - \theta])^2. \end{aligned}$$

The last equality results from $EY^2 = \operatorname{Var}(Y) + (EY)^2$, where $Y = \overline{X} - \theta$. Now, note that

$$\operatorname{Var}(\overline{X} - \theta) = \operatorname{Var}(\overline{X})$$

since θ is a constant. Also, $E[\overline{X} - \theta] = 0$. Thus, we conclude

$$egin{aligned} MSE(\hat{\Theta}_2) &= \mathrm{Var}(\overline{X}) \ &= rac{\sigma^2}{n}. \end{aligned}$$

Thus, we conclude for n > 1,

$$MSE(\hat{\Theta}_1) > MSE(\hat{\Theta}_2).$$

From the above example, we conclude that although both $\hat{\Theta}_1$ and $\hat{\Theta}_2$ are unbiased estimators of the mean, $\hat{\Theta}_2 = \overline{X}$ is probably a better estimator since it has a smaller MSE. In general, if $\hat{\Theta}$ is a point estimator for θ , we can write

$$MSE(\hat{\Theta}) = E[(\hat{\Theta} - \theta)^{2}]$$

$$= Var(\hat{\Theta} - \theta) + (E[\hat{\Theta} - \theta])^{2}$$

$$= Var(\hat{\Theta}) + B(\hat{\Theta})^{2}.$$

If $\hat{\Theta}$ is a point estimator for θ ,

$$MSE(\hat{\Theta}) = Var(\hat{\Theta}) + B(\hat{\Theta})^2,$$

where $B(\hat{\Theta}) = E[\hat{\Theta}] - \theta$ is the bias of $\hat{\Theta}$.

The last property that we discuss for point estimators is *consistency*. Loosely speaking, we say that an estimator is consistent if as the sample size n gets larger, $\hat{\Theta}$ converges to the real value of θ . More precisely, we have the following definition:

Let $\hat{\Theta}_1$, $\hat{\Theta}_2$, \cdots , $\hat{\Theta}_n$, \cdots , be a sequence of point estimators of θ . We say that $\hat{\Theta}_n$ is a **consistent** estimator of θ , if

$$\lim_{n o\infty}Pig(|\hat{\Theta}_n- heta|\geq\epsilonig)=0, ext{ for all }\epsilon>0.$$

Example 8.4

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample with mean $EX_i = \theta$, and variance $Var(X_i) = \sigma^2$. Show that $\hat{\Theta}_n = \overline{X}$ is a consistent estimator of θ .

Solution

We need to show that

$$\lim_{n o\infty}Pig(|\overline{X}- heta|\geq\epsilonig)=0,\qquad ext{ for all }\epsilon>0.$$

But this is true because of the weak law of large numbers. In particular, we can use Chebyshev's inequality to write

$$egin{aligned} P(|\overline{X} - heta| \geq \epsilon) \leq rac{\mathrm{Var}(\overline{X})}{\epsilon^2} \ &= rac{\sigma^2}{n\epsilon^2}, \end{aligned}$$

which goes to 0 as $n \to \infty$.

We could also show the consistency of $\hat{\Theta}_n=\overline{X}$ by looking at the MSE. As we found previously, the MSE of $\hat{\Theta}_n=\overline{X}$ is given by

$$MSE(\hat{\Theta}_n) = rac{\sigma^2}{n}.$$

Thus, $MSE(\hat{\Theta}_n)$ goes to 0 as $n \to \infty$. From this, we can conclude that $\hat{\Theta}_n = \overline{X}$ is a consistent estimator for θ . In fact, we can state the following theorem:

Theorem 8.2

Let $\hat{\Theta}_1$, $\hat{\Theta}_2$, \cdots be a sequence of point estimators of θ . If

$$\lim_{n o\infty} MSE(\hat{\Theta}_n) = 0,$$

then $\hat{\Theta}_n$ is a consistent estimator of θ .

Proof

We can write

$$\begin{split} P(|\hat{\Theta}_n - \theta| \geq \epsilon) &= P(|\hat{\Theta}_n - \theta|^2 \geq \epsilon^2) \\ &\leq \frac{E[\hat{\Theta}_n - \theta]^2}{\epsilon^2} \qquad \text{(by Markov's inequality)} \\ &= \frac{MSE(\hat{\Theta}_n)}{\epsilon^2}, \end{split}$$

which goes to 0 as $n \to \infty$ by the assumption.