Leçon 246 : Séries de Fourier. Exemples et applications

Développements :

Equation de la chaleur, théorème de Féjer

Bibliographie:

Amrani, ZQ, OA, Gou Motivation dans ZQ p.69

Plan

Convention pour la norme 1 et la norme 2, Déf de $e_k : t \mapsto e^{ikt}$

1 Coefficients de Fourier

1.1 Définition, règles de calcul

Définition 1 (ZQ p70). Coefficient de Fourier de f pour $f \in L^1(0, 2\pi)$.

Définition 2 (ZQ p.70). Pour $f \in L^1(0, 2\pi)$, on définit la série de Fourier de f, convergente ou non par ..., somme partielle

Proposition 3 (ZQ p.72). Relations entre les coefficients de Fourier (translation, dérivée, produit de convolution etc)

Exemple 4 (ZQ p.91). $c_n(e_k)$, fonction triangle

1.2 Décroissance et régularité

Proposition 5 (ZQ p.73). Lemme de Riemann Lebesgue : $f \in L^1(0, 2\pi)$

Remarque 6. Cela se reformule en : l'application $f \in L^1(0,2\pi) \mapsto (c_n(f))$ est à valeurs dans $c_0(\mathbb{Z},\mathbb{C})$. Il s'agit d'une application linéaire continue de norme

Proposition 7 (Amr p.306). pour $f \in C \cap C^1_{pm}$ 2π pér, $c_n(f')$ pour $f \in C^k$

2 Convergence

2.1 Noyau de Dirichlet et noyau de Féjer

Définition 8 (ZQ p.75-76). Noyau de Dirichlet et noyau de Féjer

Proposition 9 (ZQ p.75-76). somme partielle de la série de Fourier en fonction de D_n , leur moyenne de Cesaro en fonction de K_n

Proposition 10 (ZQ p.75-77). Propriétés de D_n et K_n

Remarque 11. K_n est une approximation de l'unité, pas D_n

2.2 Un cas de divergence

Théorème 12 (Gou p.404). Banach Steinhauss

Application 13 (Gou p.405). Il existe des fonctions dont la série de Fourier diverge en 0

2.3 Fonctions de carré intégrable

Proposition 14 (OA p.123). Espace de Hilbert+Produit scalaire

Proposition 15 (OA p.123). Expression des coeff de Fourier comme produit scalaire

Proposition 16 (OA p.123). Base hilbertienne de L^2 (demo par Stone Weierstrass)

Remarque 17 (OA p.123). $S_N(f)$ projection orthogonale

Corollaire 18 (OA p.123). f comme somme des produit scalaire, cv dans L^2 , Ecriture de (f,g) + Parseval

Remarque 19. Cela se reformule en : l'application $f \in L^2(0, 2\pi) \mapsto (c_n(f))$ est à valeurs dans $l^2(\mathbb{Z}, \mathbb{C})$. Il s'agit d'une application linéaire continue de norme 1. L'application coeff de Fourier est donc une isométrie

Remarque 20. Si f est continue et C^1 pm alors la série de Fourier CN

Application 21 (Gou). Ex1

Application 22 (Amr). Calcul de sommes

2.4 Convergence au sens de Cesaro : thm de Féjer

Théorème 23 (ZQ p. 84). Féjer

Remarque 24. La moyenne de Cesaro a de meilleures propriétés de cv.

Corollaire 25 (ZQ p.86 ii). Si $f \in C([0,2\pi])$ et si sa série de Fourier cv simplement alors sa somme coincide avec f partout

Corollaire 26 (ZQ p.86). Toute fonction continue dont la série de Fourier CN peut être d'ulpée en série de Fourier

Corollaire 27 (Amr). Si f est continue et C^1 pm, alors CU (même CN) de sa série de Fourier vers f.

Application 28 (FGN Analyse 4). Equation de la chaleur

Application 29 (Gou). Ex 1

Corollaire 30 (ZQ p.85). Densité des poly trigo (on retrouve la densité de la famille (e_n))

Corollaire 31 (ZQ p.86 vi). Injectivité des coefficients de Fourier

2.5 Convergence de la série de Fourier : Théorème de Dirichlet

Théorème 32 (ZQ p.89). Dirichlet

Exemple 33 (ZQ). Fonction signal