Chemical Evolution of Pop-III Galaxies

IGM-theory group (Kikuta, Oku, Akiba, Fukushima) Galaxy-IGM Workshop 2020

How to detect first stars?

Direct detection is not yet reported - they are very short lived and far away

Big difference between pop-II and pop-III is in initial mass function (IMF)

- → enrichment history and abundance pattern may be different
- Q. Can this be used for indirect indicator?
 Is there a noticable difference in chemistry?

We tried to answer these questions with a basic model calculation

Stellar Initial Mass Function (IMF)

metal is a great coolant

inefficient cloud fragmentation due to low metal

→ formation of massive stars is enabled

in Z=0 environment, stars up to 300M_e can be formed

Pop-III/pop-II chemistry

Especially, the N/O ratio would be different

But 300M_® stars start to explode as early as ~2 Myr, polluting ambient gas

Then pop-II quickly comes in, and their most massive 100M_o stars explode in ~3 Myr

How long can we see its "smoking gun"?

Yield of each element per 1 M_® SSP particle Saitoh 2017

Calculate Metallicity Evolution

trace evolution of a massive dark matter halo ($M_{star} = 10^9 \, M_{\odot}$, $M_{halo} \sim 10^{11} \, M_{\odot}$ at z=11) ... similar to GN-z11 (Oesch+2016)

gas inflow rate = Ω_b/Ω_m^* DM halo growth rate (Behroozi+2013)

star formation is proportional to M_{gas} ... continuous case / intermittent case (30 Myr)

For chemical evolution, we used **CELib** (Saitoh 2017)

1012

halo mass

gas mass

stellar mass (continuous SFR)

Results 1: Metallicity Evolution

Metal enrichment by first stars at $z \sim 25$

Metallicity evolution show similar trend between continuous case and intermittent case

Metal enrichment by pop-III stars is overwritten by pop-II stars after next SF

Evolution of Returned Mass Fraction

Pop-III eject a large amount of O while little N by SNeII

In pop-II, O yield becomes lower while N becomes higher

Cumulative return mass fractions as a function of SSP particle age

Results 2: N/O Evolution

Difference in early phase in both cases

In continuous SFR case, log N/O stays distinctively low (< -3.0) for 20 Myr

In intermittent case, log N/O stays low for a longer time

log N/O increases as metallicity increases

Discussion

Galaxies with extremely low logN/O(<-3) would be dominated by pop-III

Observations of $z\sim2$ SFG: $log(N/O)\sim-1.5$ (e.g., Kojima+2016)

But trace of pop-III disappear really quickly (< 20 Myr)! (still, it can probe longer period than other indicators such as strong HeII lines)

If SF is shut off for a while after the first burst, low log(N/O) can be observed for a longer time, too

Summary & Future Works

We calculate metallicity and N/O evolution of first galaxies with CELib

In continuous SF case, N/O stays distinctively low (<log(N/O)<-3) for ~ 20 Myr

For a single burst, low N/O might be sustained for a longer time

New N/O measurement technique for high-z is required (strong line / T_e method unavailable) - can be invented using e.g., CLOUDY?

N/O Evolution (continuous SFR)

N/O Evolution (longer intermittent, interval = 100Myr)