Eine Woche, ein Beispiel 8.21 equivariant cohomology of P'

Ref:

 $[Ginz]\ Ginzburg's\ book\ "Representation\ Theory\ and\ Complex\ Geometry"$ [LCBE] Langlands correspondence and Bezrukavnikov's equivalence [LW-BWB] The notes by Liao Wang: The Borel-Weil-Bott theorem in examples (can not be found on the internet) Other references will be add soon.

- 1 notations and warnings
- 2. result
- 3. computation of completion in practice 4. pt & IP'
- 5 Euler class

1. notations and warnings

$$GL_{1} = GL_{1}(\mathbb{C})$$
 $T = \begin{pmatrix} * & \circ \\ \circ & * \end{pmatrix} \subset GL_{2}$ $B = \begin{pmatrix} * & * \\ \circ & * \end{pmatrix} \subset GL_{3}$ or SL_{1}
 $SL_{2} = SL_{3}(\mathbb{C})$ $C^{\times} = \begin{pmatrix} * & \circ \\ \circ & * \end{pmatrix} \subset SL_{2}$ $P' = P'(\mathbb{C})$

$$K_{o}^{G}(X)_{:} = k_{o}(Gh^{G}(X))$$

$$R(G)_{:} = K_{o}^{G}(pt) = Rep(G)$$

$$K_{o}^{G}(X)_{1}^{G}_{:} = \lim_{n \to \infty} K_{o}^{G}(X)/_{1}^{n}$$

$$H_{G}^{G}(X;Q)_{:} = H_{G}^{*}(pt;Q) = H^{*}(BG;Q)$$

$$HP_{G}^{G}(X;Q)_{:} = \prod_{i=1}^{\infty} H_{G}^{G}(X;Q) = H^{*}(X;Q)_{:}$$

To avoid confusion, we don't consider any convolution structure in this document. we don't consider $G \times C^{\times}$ -action either

(Cx is already occupied as a maximal torus of SLz)

2. result

This time we are not so ambitious. For example, we don't fill in $K^B_o(\mathcal{B} \times \mathcal{B}) \cong K^G_o(\mathcal{B} \times \mathcal{B} \times \mathcal{B}) \cong R(T) \otimes_{R(G)} R(T) \otimes_{R(G)} R(T)$ just because the result is too long.

We don't want to use these symbols (like x,y,z) in later documents either. If you want to fix a notation, please use the notations in https://github.com/ramified/personal_handwritten_collection/blob/main/weeklyupdate/2022.10.23_notation_K%5EG(St).pdf

K_o (-)		pt	B T*B	8 × B
	SL,	Z[y+y-']	Z[z1]	Z[z; , z,]/((z,-z,)(z,-z;))
G = SL2	В	ℤ [y [±] ']	Z[y", z]/(z-y)(z-y")	,
	Id	Z	Z[z]/(z-1)2	$\mathbb{Z}[z_1, z_1]/((z_1-1)^2, (z_2-1)^2)$
	GL،	Z[4,+4.,4,4, 44]	Z[z1, z1]	Z[z, z, z, z,]((z, -z,)(z, -z,))
G = GL2	В	$\mathbb{Z}[y_{\cdot}^{\pm 1},y_{\cdot}^{\pm 1}]$	Z[yt, yt, z,/(2,3)(2,-4))	
	Id	Z	Z[=]/(z-1)2	$\mathbb{Z}[z'_{i}, z'_{i}]/((z'_{i}-1)^{2},(z'_{i}-1)^{2})$
G = SLn or GLn	G	R(G)	R(T)	R(T) & R(G) R(T)
	۷			$\bigoplus_{\omega \in \mathcal{W}} R(G) \left[\overline{\Omega}_{\omega} \right]^{G}$
	В	R(T)	$R(T) \otimes_{R(G)} R(T)$	
Q = 2 _ X = 3 Q = 2	ט		$\mathcal{L}_{\infty}^{\mathbb{R}} R(T) [\overline{\Omega}_{\omega}]^{T}$	$_{\omega,\omega'\in\mathbf{W}}^{\bullet}$ R(T) $[\Omega_{\omega,\omega}]^{T}$
	Id	Z		
	10		ω _{εν} Ζ · [Ω _ν]	Owner Z [Dww]

K_o (-)		pt	B T*B	<u> 3 × B</u>
G = SL2	SĽ,	Q[b]	Q[e]	Q[e,,e,]/(e; -e;)
	В	Q[b]	Q[b,e]/(e'-b')	
	Ιd	Q	Q[e]/(e)	Q[e,,e,]/(e,,e,)
G = GL2	GL	Q[b,+b.,b,b.]	Q[e., e.]	Q[e,ez.ei]/((ei-e1)(ei-e1)
	В	Q[b,,b,]	Q[b.,b.,e]/((e,-b.)(e,-b.)	
	Id	Q	Q[e]/(e2)	Q[e', e,]/(e'; e';2)
G = SLn or GLn	G	S(G)	S(T)	(T)2 _{(G)2} ⊗(T)
	٩			$\bigoplus_{\omega \in \mathcal{M}} S(G) \left[\overline{\Omega}_{\omega} \right]^{G}$
	В	S(T)	S(T) 0 _{S(G)} S(T)	
	り		$\omega_{\text{ew}}^{\text{P}} S(T) [\Omega_{\omega}]^{T}$	$_{\omega,\omega'\in W}$ $S(T)[\overline{\Omega}_{\omega,\omega}]^{T}$
	Id	Q	_	0
	ΙU		wew Q [Qw]	$\bigoplus_{\omega,\omega'\in\mathbf{w}}\mathbb{Q}\left[\overline{\Omega}_{\omega,\omega'}\right]$

3. computation of completion in practice

Thm (cpl of Noetherian ring by power series)

R. Noetherian
$$I := (a_1, ..., a_n) \triangle R$$
, then

$$R_1^{\widehat{I}} := \lim_{n \to \infty} R/I^n$$

$$\cong R[[x_1, ..., x_n]]/(x_1 - a_1, ..., x_n - a_n)$$

$$\cong R[[a_1, ..., a_n]]$$

$$E_{X}. \quad \mathbb{Z}[x]_{(x)}^{\wedge} \cong \mathbb{Z}[[x]]$$

$$\mathbb{Z}_{(p)}^{\wedge} \cong \mathbb{Z}[[x]]/_{(x-p)} \xrightarrow{\sim} \mathbb{Z}_{p}$$

$$\times \longmapsto p$$

$$\mathbb{Z}_{(p^{2})}^{\wedge} \cong \mathbb{Z}_{p}$$

$$\mathbb{Z}_{(n)}^{\wedge} \cong \mathbb{Z}_{p}$$

$$\mathbb{Z}_{prime}^{\wedge} \mathbb{Z}_{p}$$

Later, $C_i = C_i^G$ is a temporate notation, ch^* is iso after <u>tensored over B</u>. $(ch^*)^{-1} : HP^\circ(BG; Q) \xrightarrow{\sim} K_\circ(BG) \otimes_{\mathbb{Z}} Q$ $HP_o^\circ(X; Q) \xrightarrow{\sim} K_o^G(X) \otimes_{\mathbb{Z}} Q$ When I write the inverse map $(ch^*)^{-1}$, remember that the image usually has coefficient in Q.

$$4\left(\arcsin h \frac{J_{c}}{2}\right)^{2} \iff b^{2}$$

$$= 4\left(I_{n}\left(J_{c}^{c} + \sqrt{c_{+}^{2} + 1}\right)\right)^{2}$$

$$= \left(I_{n}\left(1 + \frac{c_{+}}{2} + \sqrt{\frac{c_{+}^{2} + c_{+}}{4}}\right)\right)^{2}$$

To facilitate the computation, use the notation

$$C_3^{GL_2} = (y_1 - 1)(y_2 - 1)$$

$$= (y_1 y_2 - 1) - (y_1 + y_2 - 2)$$

$$= C_2^{GL_2} - C_1^{GL_2}$$

At first glance . Chern class seems to be an exponential map. Actually, chern class induces ring isomorphism $(+ \rightarrow +, \times \rightarrow \times)$

At first glance, Euler class seems to be a termwise-log map.
$$(\times \rightarrow +)$$
Actually,
in one monomial
$$1 + eu(L_1 \otimes L_2) = (1 + euL_1)(1 + euL_2) \times \rightarrow (1 + i)^3$$
for sum among monomials, $eu(E_1 \oplus E_2) = eu(E_1)eu(E_2)$

$$+ \rightarrow \times$$

Let us see some examples of Euler class.

Q. What is right definition of $eu(T) = \sum_{i=0}^{\infty} (-i)^i [\Lambda^i T]$ $eu(\frac{y_i}{y_i}) = 1 - \frac{y_i}{y_i}$ compatible with Euler characteristic. $e(X) = \sum_{i=0}^{+\infty} (-1)^i H^i(X, Q)$ p75: https://www.sciencedirect.com/science/article/pii/0022404994900884

will induce
$$D_{i}f = sf D_{i} + \frac{f - sf}{1 - \frac{e_{i}n}{e_{i}}}$$

p3: https://arxiv.org/pdf/math/0405333.pdf

eu(T)?

or eu(T) =
$$\sum_{i=0}^{too} (-1)^{i+1} [\Lambda^{i}T]$$
?

eu($\frac{y_{2}}{y_{1}}$) = $\frac{y_{1}}{y_{1}}$ - 1

compatible with log map:

 $log(y_{i}) = (y_{i}-1) - \frac{(y_{i}-1)^{2}}{2} + \frac{(y_{i}-1)^{3}}{3} - \cdots$

will induce
$$D_{i}f = sf D_{i} - \frac{f - sf}{1 - \frac{e_{i}n}{e_{i}}}$$

1.15: https://arxiv.org/pdf/math/0309168.pdf p150: https://link.springer.com/content/pdf/10.1007/b10326.pdf p93: http://sporadic.stanford.edu/bump/math263/hecke.pdf

reasons for each possibility

Definition 7.33. Let $\overline{NH_m}$ denote the NilHecke ring, i.e., the unital ring of endomorphisms of k[y(1),...,y(m)] generated by multiplication with y(1),...,y(m) and Demazure operators

$$\partial_l(f) = \frac{f - s_l f}{y(l) - y(l+1)},$$

for $1 \leq l \leq m-1$, where s_l is the transposition switching y(l) and y(l+1). The endomorphisms which act by multiplication with y(1),...,y(m) generate a subring which is canonically isomorphic to k[y(1),...,y(m)]. Moreover, it is well-known that the ring of endomorphisms which act by multiplication by a symmetric polynomial equals the centre of NH_m .

Lemma 11.14. Let $\partial_{\overline{y},l}$ denote the Demazure operator

$$\partial_{\overline{y},l}: f \mapsto \frac{f-s_l(f)}{x_{\overline{y}}(l+1)-x_{\overline{y}}(l)},$$

Not compatible!

Example 11.28 (NilHecke ring). Set $\mathbf{I} = \{i\}$, $\mathbf{H} = \varnothing$ and $\underline{\mathbf{d}} = ni$. Then $\mathbb{W}_{\mathbf{d}} = W_{\underline{\mathbf{d}}} \cong \mathfrak{S}_n$, $|Y_{\underline{\mathbf{d}}}| = 1$, $Y_{\underline{\mathbf{d}}} = \{\overline{y}\}$, where $\overline{y} = (i,i,...,i)$, $G_{\underline{\mathbf{d}}} = \mathbb{G}_{\mathbf{d}} \cong \operatorname{GL}(n,\mathbb{C})$ and $\operatorname{Rep}_{\underline{\mathbf{d}}} = \{0\}$. Moreover, $\widetilde{\mathcal{F}}_{\underline{\mathbf{d}}} = \mathcal{F}_{\underline{\mathbf{d}}} = \mathcal{F}_{\overline{y}}, H_*^{G_{\underline{\mathbf{d}}}}(\mathcal{F}_{\overline{y}}) = k[x_{\overline{y}}(1),...,x_{\overline{y}}(n)]$ and $\mathcal{Z}_{\underline{\mathbf{d}}} = \mathcal{F}_{\overline{y}} \times \mathcal{F}_{\overline{y}}$. Since for each $s_l \in \Pi$, we have $s_l(\overline{y}) = \overline{y}$, the elements $\sigma_{\overline{y}}(l)$ always act as Demazure operators. Hence $H_*^{G_{\underline{\mathbf{d}}}}(\mathcal{Z}_{\underline{\mathbf{d}}})$ is the ring of endomorphisms of $k[x_{\overline{y}}(1),...,x_{\overline{y}}(n)]$ generated by endomorphisms $\varkappa_{\overline{y}}(l)$ which act by multiplication with $x_{\overline{y}}(l)$ and Demazure operators $\sigma_{\overline{y}}(l)$. Therefore

$$H^{G_{\underline{\mathbf{d}}}}_*(\mathcal{Z}_{\underline{\mathbf{d}}}) \cong NH_n,$$