Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Кафедра прикладной математики и кибернетики

Лабораторная работа № 2 по дисциплине «Теория Информации»

Выполнил: студент группы <u>ИП-712</u>
<u>Алексеев Степан</u>
<u>Владимирович</u>
ФИО студента

Работу проверил: доцент кафедры ПМИК Мачикина Е.П. ФИО преподавателя

Оглавление

ЗАДАНИЕ	2
Решение	
Анализ	
Скриншоты	
Листинг кода	

ЗАДАНИЕ

Теория информации

Практическая работа №2

Вычисление энтропии Шеннона

Цель работы: Экспериментальное изучение свойств энтропии Шеннона для текстов на естественном языке.

Язык программирования: C, C++, C#, Python

Результат: программа, тестовые примеры, отчет.

Задание:

- 1. Выбрать художественный текст на русском (английском) языке. Объем файла в формате txt более 10 Кб. Для алфавита текста предполагается, что строчные и заглавные символы не отличаются, знаки препинания опущены, к алфавиту добавлен пробел, для русских текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
- 2. Составить программу, определяющую несколько оценок энтропии данного текстового файла. Оценки энтропии необходимо вычислить по формуле Шеннона двумя способами, т.е. используя частоты отдельных символов и используя частоты пар символов. По желанию можно продолжить процесс вычисления оценок с использованием частот троек, четверок символов и т.д.
- 3. После тестирования программы необходимо заполнить таблицу для отчета и проанализировать полученные результаты. Сравнить полученные результаты с результатами работы 1.

Название	Максимально	Оценка	Оценка
текста	возможное	энтропии	энтропии
	значение	(одиночные	(частоты пар
	энтропии	символы)	символов)

4. Оформить отчет, загрузить отчет и файл с исходным кодом в электронную среду. Отчет обязательно должен содержать заполненную таблицу и анализ полученных результатов. По желанию в отчет можно включить описание программной реализации. В отчет не нужно включать содержимое этого файла.

Решение

Название	Максимально	Оценка энтропии	Оценка энтропии
текста	возможное	(одиночные	(частоты пар
	значение	символы)	символов)
	энтропии		
Ден	4,754887	4,10135781774126	3,71667172915673
Симмонс			
Гиперион			

Анализ

Видим, что во-первых энтропия одиночных символов больше, чем у текста из первой лабораторной работы. Это объясняется большим размером алфавита. Во-вторых, энтропия уменьшается при увеличении размеров блоков. Это объясняется тем, что в естественных языках символы зависят от контекста(от предыдущих символов), поэтому неопределённость(энтропия) уменьшается с каждым новым символом в блоке. Средняя энтропия для европейских языков около 2 бит. Это много(много синтаксического сахара).

Скриншоты

```
C:\Users\stepa\repos2\00_Zachet_InfTheory\Lab2.0\Lab2.0\bin\Debug\Lab2.0.exe
                           4,10135781774126
Оценка энтропии 1:
                           3,71667172915673
Оценка энтропии 2:
Оценка энтропии 3:
                           3,33042503030834
Оценка энтропии 4:
                           2,91954446169974
                           2,54433713699796
Оценка энтропии 5:
Оценка энтропии 6:
                           2,23103526850558
Оценка энтропии 7:
                           1,97545977462744
Оценка энтропии 8:
                           1,76465965118875
                           1,58964845750938
Оценка энтропии 9:
Оценка энтропии 10:
                            1,4433866522125
Оценка энтропии при равновероятных символах английский:
                                                                  4,75488750216347
Оценка энтропии при равновероятных символах русский:
                                                               4,7433275757549
```

Листинг кода

```
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Threading.Tasks;
using System.IO;
using System.Text.RegularExpressions;
namespace Lab2. 0
  class Program
    static int numberOfChars = 0;
    static Dictionary<string, double> dicti1 = new Dictionary<string, double>();
    static Dictionary<string, double> dicti2 = new Dictionary<string, double>();
    static Dictionary<string, double> dicti3 = new Dictionary<string, double>();
    static Dictionary<string, double> dictiEvenEng = new Dictionary<string, double>();
    static Dictionary<string, double> dictiEvenRus = new Dictionary<string, double>();
    static int numberOfLettersInABlock = 1;
    static void Main(string[] args)
convertFileAndCountChars("C:/Users/stepa/repos2/00 Zachet InfTheory/Lab2.0/F1.txt");
countProbabilitiesBasedOnRealFrequencyInFile("C:/Users/stepa/repos2/00 Zachet InfTheory/
Lab2.0/F1 Converted.txt", dicti1, numberOfLettersInABlock);
      Console.WriteLine("Оценка энтропии 1:
                                                  " + ShennonFormulaForEnthropy(dicti1,
numberOfLettersInABlock));
```

```
numberOfLettersInABlock = 2;
countProbabilitiesBasedOnRealFrequencyInFile("C:/Users/stepa/repos2/00 Zachet InfTheory/
Lab2.0/F1_Converted.txt", dicti2, numberOfLettersInABlock);
      Console.WriteLine("Оценка энтропии 2:
                                                " + ShennonFormulaForEnthropy(dicti2,
numberOfLettersInABlock));
      numberOfLettersInABlock = 3;
countProbabilitiesBasedOnRealFrequencyInFile("C:/Users/stepa/repos2/00_Zachet_InfTheory/
Lab2.0/F1 Converted.txt", dicti3, numberOfLettersInABlock);
      Console.WriteLine("Оценка энтропии 3:
                                                " + ShennonFormulaForEnthropy(dicti3,
numberOfLettersInABlock));
      numberOfLettersInABlock = 4;
      dicti3 = new Dictionary<string, double>();
countProbabilitiesBasedOnRealFrequencyInFile("C:/Users/stepa/repos2/00 Zachet InfTheory/
Lab2.0/F1_Converted.txt", dicti3, numberOfLettersInABlock);
      Console.WriteLine("Оценка энтропии 4:
                                               " + ShennonFormulaForEnthropy(dicti3,
numberOfLettersInABlock));
      numberOfLettersInABlock = 5;
      dicti3 = new Dictionary<string, double>();
countProbabilitiesBasedOnRealFrequencyInFile("C:/Users/stepa/repos2/00 Zachet InfTheory/
Lab2.0/F1 Converted.txt", dicti3, numberOfLettersInABlock);
      Console.WriteLine("Оценка энтропии 5:
                                                " + ShennonFormulaForEnthropy(dicti3,
numberOfLettersInABlock));
      numberOfLettersInABlock = 6;
      dicti3 = new Dictionary<string, double>();
countProbabilitiesBasedOnRealFrequencyInFile("C:/Users/stepa/repos2/00 Zachet InfTheory/
Lab2.0/F1 Converted.txt", dicti3, numberOfLettersInABlock);
      Console.WriteLine("Оценка энтропии 6:
                                                " + ShennonFormulaForEnthropy(dicti3,
numberOfLettersInABlock));
      numberOfLettersInABlock = 7;
      dicti3 = new Dictionary<string, double>();
countProbabilitiesBasedOnRealFrequencyInFile("C:/Users/stepa/repos2/00 Zachet InfTheory/
Lab2.0/F1 Converted.txt", dicti3, numberOfLettersInABlock);
                                                " + ShennonFormulaForEnthropy(dicti3,
      Console.WriteLine("Оценка энтропии 7:
numberOfLettersInABlock));
```

numberOfLettersInABlock = 8;

```
dicti3 = new Dictionary<string, double>();
countProbabilitiesBasedOnRealFrequencyInFile("C:/Users/stepa/repos2/00 Zachet InfTheory/
Lab2.0/F1_Converted.txt", dicti3, numberOfLettersInABlock);
      Console.WriteLine("Оценка энтропии 8:
                                                " + ShennonFormulaForEnthropy(dicti3,
numberOfLettersInABlock));
      numberOfLettersInABlock = 9;
      dicti3 = new Dictionary<string, double>();
countProbabilitiesBasedOnRealFrequencyInFile("C:/Users/stepa/repos2/00 Zachet InfTheory/
Lab2.0/F1 Converted.txt", dicti3, numberOfLettersInABlock);
      Console.WriteLine("Оценка энтропии 9:
                                                " + ShennonFormulaForEnthropy(dicti3,
numberOfLettersInABlock));
      numberOfLettersInABlock = 10;
      dicti3 = new Dictionary<string, double>();
countProbabilitiesBasedOnRealFrequencyInFile("C:/Users/stepa/repos2/00_Zachet_InfTheory/
Lab2.0/F1 Converted.txt", dicti3, numberOfLettersInABlock);
                                                  " + ShennonFormulaForEnthropy(dicti3,
      Console.WriteLine("Оценка энтропии 10:
numberOfLettersInABlock));
      numberOfLettersInABlock = 11;
      dicti3 = new Dictionary<string, double>();
countProbabilitiesBasedOnRealFrequencyInFile("C:/Users/stepa/repos2/00 Zachet InfTheory/
Lab2.0/F1 Converted.txt", dicti3, numberOfLettersInABlock);
      Console.WriteLine("Оценка энтропии 11:
                                                  " + ShennonFormulaForEnthropy(dicti3,
numberOfLettersInABlock));
      numberOfLettersInABlock = 12;
      dicti3 = new Dictionary<string, double>();
countProbabilitiesBasedOnRealFrequencyInFile("C:/Users/stepa/repos2/00 Zachet InfTheory/
Lab2.0/F1_Converted.txt", dicti3, numberOfLettersInABlock);
      Console.WriteLine("Оценка энтропии 12: " + ShennonFormulaForEnthropy(dicti3,
numberOfLettersInABlock));
      numberOfLettersInABlock = 13;
      dicti3 = new Dictionary<string, double>();
countProbabilitiesBasedOnRealFrequencyInFile("C:/Users/stepa/repos2/00 Zachet InfTheory/
Lab2.0/F1 Converted.txt", dicti3, numberOfLettersInABlock);
                                                  " + ShennonFormulaForEnthropy(dicti3,
      Console.WriteLine("Оценка энтропии 13:
numberOfLettersInABlock));
```

```
numberOfLettersInABlock = 14;
      dicti3 = new Dictionary<string, double>();
countProbabilitiesBasedOnRealFrequencyInFile("C:/Users/stepa/repos2/00 Zachet InfTheory/
Lab2.0/F1 Converted.txt", dicti3, numberOfLettersInABlock);
      Console.WriteLine("Оценка энтропии 14:
                                                   " + ShennonFormulaForEnthropy(dicti3,
numberOfLettersInABlock));
      //Для подсчёта максимально возможной энтропии, видимо, нужно взять тот же
алфавит и сделать символы равновероятными...
      numberOfLettersInABlock = 1;
      numberOfChars = 28746;
      dictiEvenEng.Add("a", (double)1 / (double)27);
      dictiEvenEng.Add("b", (double)1 / (double)27);
      dictiEvenEng.Add("c", (double)1 / (double)27);
      dictiEvenEng.Add("d", (double)1 / (double)27);
      dictiEvenEng.Add("e", (double)1 / (double)27);
      dictiEvenEng.Add("f", (double)1 / (double)27);
      dictiEvenEng.Add("g", (double)1 / (double)27);
      dictiEvenEng.Add("h", (double)1 / (double)27);
      dictiEvenEng.Add("i", (double)1 / (double)27);
      dictiEvenEng.Add("j", (double)1 / (double)27);
      dictiEvenEng.Add("k", (double)1 / (double)27);
      dictiEvenEng.Add("I", (double)1 / (double)27);
      dictiEvenEng.Add("m", (double)1 / (double)27);
      dictiEvenEng.Add("n", (double)1 / (double)27);
      dictiEvenEng.Add("o", (double)1 / (double)27);
      dictiEvenEng.Add("p", (double)1 / (double)27);
      dictiEvenEng.Add("q", (double)1 / (double)27);
      dictiEvenEng.Add("r", (double)1 / (double)27);
      dictiEvenEng.Add("s", (double)1 / (double)27);
      dictiEvenEng.Add("t", (double)1 / (double)27);
      dictiEvenEng.Add("u", (double)1 / (double)27);
      dictiEvenEng.Add("v", (double)1 / (double)27);
      dictiEvenEng.Add("w", (double)1 / (double)27);
      dictiEvenEng.Add("x", (double)1 / (double)27);
      dictiEvenEng.Add("y", (double)1 / (double)27);
      dictiEvenEng.Add("z", (double)1 / (double)27);
      dictiEvenEng.Add(" ", (double)1 / (double)27);
      Console.WriteLine("Оценка энтропии при равновероятных символах английский:
" + ShennonFormulaForEnthropy(dictiEvenEng, numberOfLettersInABlock));
      dictiEvenRus.Add("a", (double)1 / (double)30);
      dictiEvenRus.Add("6", (double)1 / (double)30);
      dictiEvenRus.Add("B", (double)1 / (double)30);
      dictiEvenRus.Add("r", (double)1 / (double)30);
```

```
dictiEvenRus.Add("a", (double)1 / (double)30);
      //dictiEvenRus.Add("e", (double)1 / (double)30);// По заданию буквы е, ё, ь, ъ нужно
считать одной буквой
      dictiEvenRus.Add("ë", (double)1 / (double)30);
      dictiEvenRus.Add("x", (double)1 / (double)30);
      dictiEvenRus.Add("3", (double)1 / (double)30);
      dictiEvenRus.Add("μ", (double)1 / (double)30);
      dictiEvenRus.Add("k", (double)1 / (double)30);
      dictiEvenRus.Add("π", (double)1 / (double)30);
      dictiEvenRus.Add("m", (double)1 / (double)30);
      dictiEvenRus.Add("H", (double)1 / (double)30);
      dictiEvenRus.Add("o", (double)1 / (double)30);
      dictiEvenRus.Add("π", (double)1 / (double)30);
      dictiEvenRus.Add("p", (double)1 / (double)30);
      dictiEvenRus.Add("c", (double)1 / (double)30);
      dictiEvenRus.Add("T", (double)1 / (double)30);
      dictiEvenRus.Add("y", (double)1 / (double)30);
      dictiEvenRus.Add("φ", (double)1 / (double)30);
      dictiEvenRus.Add("x", (double)1 / (double)30);
      dictiEvenRus.Add("u", (double)1 / (double)30);
      dictiEvenRus.Add("4", (double)1 / (double)30);
      dictiEvenRus.Add("m", (double)1 / (double)30);
      dictiEvenRus.Add("щ", (double)1 / (double)30);
      //dictiEvenRus.Add("b", (double)1 / (double)30);
      dictiEvenRus.Add("ы", (double)1 / (double)30);
      //dictiEvenRus.Add("ь", (double)1 / (double)30);
      dictiEvenRus.Add("3", (double)1 / (double)30);
      dictiEvenRus.Add("ю", (double)1 / (double)30);
      dictiEvenRus.Add("я", (double)1 / (double)30);
                                                                                          " +
      Console.WriteLine("Оценка энтропии при равновероятных символах русский:
ShennonFormulaForEnthropy(dictiEvenRus, numberOfLettersInABlock));
      Console.ReadKey();
    }
    static string convertFileAndCountChars(string path)
    {//To lower case; get rid of punctuation; add whitespace as a character; для русских
текстов буквы «е» и «ё», «ь» и «ъ» совпадают.
      string newPath =
@"C:/Users/stepa/repos2/00_Zachet_InfTheory/Lab2.0/F1_Converted.txt";
      string str;
      using (StreamReader sr = File.OpenText(path))
      {
        str = sr.ReadToEnd();
      }
      str = str.Replace("e", "ë");
      str = str.Replace("e", "ë");
```

```
str = str.Replace("e", "ë");
str = str.Replace("<sub>b</sub>", "ë");
str = str.Replace("ъ", "ë");
str = str.Trim(new Char[] { '^', '*', '.', ';', ':', ''', '''', '''' });
str = str.Replace(" ", " ");
str = str.Replace(""", "");
str = str.Replace(",", "");
str = str.Replace(" ", " ");
str = str.Replace("", "");
str = str.Replace(".", "");
str = str.Replace("?", " ");
str = str.Replace("!", "");
str = str.Replace("-", "");
str = str.Replace("/", "");
str = str.Replace(">", "");
str = str.Replace("—", " ");
str = str.Replace("...", "");
str = str.Replace("é", "");
str = str.Replace("'", " ");
str = str.Replace(":", "");
str = str.Replace(";", "");
str = str.Replace(""", " ");
str = str.Replace("'", "");
str = str.Replace("\t", "");
str = str.Replace("\n", "");
str = str.Replace("\0", "");
str = str.Replace("\r", "");
str = str.Replace("\r\n", "");
str = str.Replace("0", "");
str = str.Replace("1", "");
str = str.Replace("2", "");
str = str.Replace("3", "");
str = str.Replace("4", "");
str = str.Replace("5", "");
str = str.Replace("6", "");
str = str.Replace("7", "");
str = str.Replace("8", "");
str = str.Replace("9", "");
str = str.Replace("]", "");
str = str.Replace("[", "");
str = str.Replace("(", "");
str = str.Replace(")", "");
str = str.Replace("ö", "");
str = str.Replace("»", "");
```

```
str = str.Replace("«", "");
      str = str.Replace("No", "");
      str = str.Replace("-", "");
      //tr = str.Replace("\t", "");
      str = str.ToLower();
      using (StreamWriter sw = File.CreateText(newPath))
        sw.Write(str);
        numberOfChars = str.Length;
      }
      return newPath;
    static double ShennonFormulaForEnthropy(Dictionary<string, double> dict, int
numberOfLettersInABlock)
    {//Количество информации, которое мы получаем, достигает максимального
значения, если события равновероятны... Здесь, видимо,
      //сравниваются значения, полученные применением формулы Хартли...
      //Формула Шеннона позволяет высчитать среднее кол-во информации,
передаваемое любым сообщением(блоком символов).
      double sum = 0;
      foreach (var item in dict)
        sum += item.Value * Math.Log(1 / item.Value, 2);
      }
      return sum / numberOfLettersInABlock;
    static void countProbabilitiesBasedOnRealFrequencyInFile(string path, Dictionary<string,
double> dict, int numberOfLettersInABlock)
    {
      string str;
      using (StreamReader sr = File.OpenText(path))
        str = sr.ReadToEnd();
      char[] str chars = str.ToCharArray();
      for (int i = 0; i < numberOfChars - numberOfLettersInABlock; i++)
        string block = str chars[i].ToString();
        for (int j = 1; j < numberOfLettersInABlock; j++)
        {
          block += str_chars[i + j].ToString();
        if (dict.ContainsKey(block))
          dict[block] += ((double)1 / ((double)numberOfChars));///
(double)numberOfLettersInABlock));
        }
```

```
else
dict.Add(block, ((double)1 / ((double)numberOfChars)));// /
(double)numberOfLettersInABlock)));
}//up to here all occurences of blocks are counted and frequencies(counted probabilities) are counted.
//Time to use Shennon's formula
}
}
```