EEL7052-Sistemas Lineares Avaliação 2 - Semestre 2015/1 - 08/06/2015 Departamento de Engenharia Elétrica - UFSC Profs. Bartolomeu F. Uchôa Filho e Márcio Holsbach Costa

Prois. Bartolomeu F. Ochoa Filho e Marcio Holsbach Costa

1) Apresente o diagrama de Bode (magnitude apenas) para o sistema linear e invariante no tempo apresentado a seguir. Desenhe as assíntotas e o esboço da resposta verdadeira. Apresente valores de frequência/amplitude para todos os pontos de quebra, valores máximos e mínimos e pontos importantes para a caracterização das curvas.

$$H(s) = 50000 \frac{s^2}{(s+10)^2(s+500)}$$

Para o sinal de entrada $x(t) = \cos(1,00505t - 2,9392) + 0,2\sin(9987t + 1,5188)$, determine o sinal obtido na saída deste sistema.

2) Para o sinal periódico x(t) apresentado a seguir: (a) determine o período e a frequência fundamental; (b) determine a representação de Fourier pelo método da integração; (c) determine a representação de Fourier para dois sinais y(t) e z(t) resultantes do processamento de dois sistemas que realizam a derivada e a integral de x(t), respectivamente; (d) esboce o espectro de magnitude dos três sinais e através deles indique qual dos sinais é mais "alisado" e o mais "espiculado" no domínio tempo (justifique).

3) Um sistema de tempo contínuo, linear e invariante no tempo, é representado pela seguinte equação diferencial: $\frac{dy(t)}{dt} + y(t) = x(t)$, em que x(t) é a entrada e y(t) é a saída. a) determine a resposta em frequência $H(j\omega)$; (b) determine a resposta ao impulso do sistema; (c) esboce os espectros de fase e magnitude indicando as assíntotas e os valores de frequência/fase/magnitude nos pontos mais importantes para caracterização das curvas e em $\pm \infty$ rad/s; (d) assumindo que $x(t)=\sin(t)/(\pi t)$, determine e esboce $|Y(j\omega)|$ indicando os valores de frequência/fase/magnitude nos pontos mais importantes para caracterização das curvas e em $\pm \infty$ rad/s.

. Properties of Fourier series

 $e^{jM(2\pi/T_0)t}x\left(t\right)$

 $x(\alpha t), \alpha > 0$

x(t)y(t)

 $\int_{-\infty}^{t} x(\tau) d\tau$

 $\int_{T_0} x(\tau) y(t-\tau) d\tau$

 $x^{*}(t)$ x(-t)

Periodic signal	Fourier serie coeffic
$x\left(t\right) = \sum_{k=-\infty}^{\infty} a_k e^{jk\Omega_o t}$	$a_{k}\stackrel{\triangle}{=}\frac{1}{T_{o}}\!\int_{T_{o}}\!x\left(t\right)e^{-jk\Omega}$
$\begin{cases} x(t) \\ y(t) \end{cases}$ Periodic with period T_0	$egin{aligned} a_k \ b_k \end{aligned}$
Ax(t) + By(t)	$Aa_k + Bb_k$
$x\left(t-t_0\right)$	$a_k e^{-jk(2\pi/T_0)t_0}$

$$a_k \triangleq \frac{1}{T_o} \int_{T_o} x(t)e^{-jk\Omega_o t} dt$$

$$\int sen(ax) dx = -\frac{1}{a}\cos(ax)$$

$$\int \cos(ax) dx = \frac{1}{a}sen(ax)$$

$$\int x \cdot sen(ax) dx = \frac{1}{a^2} \left[sen(ax) - ax\cos(ax) \right]$$

$$\int x \cdot \cos(ax) dx = \frac{1}{a^2} \left[\cos(ax) + axsen(ax) \right]$$

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

a_{k-M}	Aperiodic signal	Fourier transform				
a_{-k}^*	x(t)	Χ(ω)				
70	y(t)	$Y(\omega)$				
a_{-k}	ax(t) + by(t)	$aX(\omega) + bY(\omega)$				
<i>a</i> .	$x(t-t_0)$	e-late X(w)				
a_k	$e^{j\omega_0t}x(t)$	$X(\omega - \omega_0)$				
T 1	$x^{\bullet}(t)$	$X^{\bullet}(-\omega)$				
$T_0 a_k b_k$	x(-t)	$X(-\omega)$				
$\sum_{l=0}^{\infty} a_l b_{k-l}$	x(at)	$\frac{1}{ a }X(\frac{\omega}{a})$				
$l=-\infty$	$x(t) \cdot y(t)$	$X(\omega)Y(\omega)$				
$jk\frac{2\pi}{T_0}a_k$	x(t)y(t)	$\frac{1}{2\pi}X(\omega) * Y(\omega)$				
1	$\frac{d}{dt}x(t)$	$j\omega X(\omega)$				
$\overline{jk\left(2\pi/T_0\right)}^{a_k}$						

X(ω)	1	$2\pi\delta(\omega)$	$e^{-j\omega t_0}$	$2\pi\delta(\omega-\omega_0)$	$\pi \Big[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \Big]$	$-j\pi \Big[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \Big]$	$\operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$	$rect\left(rac{\omega}{2\pi} ight)$	$ m sinc^2\!\left(rac{\omega}{2\pi} ight)$	$\Lambda\!\left(\!rac{\omega}{2\pi}\! ight)$	$\frac{1}{\alpha + j\omega}$	$\frac{1}{\left(\alpha+j\omega\right)^2}$	$\frac{2\alpha}{(\alpha^2 + (\omega)^2}$	$e^{-\alpha f^2}$	$\frac{2}{j\omega}$	$\pi \delta(\omega) + \frac{1}{j\omega}$
x(t)	$\delta(t)$	_	$\delta(t-t_0)$	$e^{j2\pi f_0t}$	$\cos(2\pi t_0 t)$	$\sin(2\pi f_0 t)$	rect(t)	sinc(t)	$\Lambda(t)$	$\sin c^2(t)$	$e^{-\alpha t}u(t), \alpha > 0$	$te^{-\alpha t}u(t), \alpha > 0$	$e^{-\alpha t }, \alpha > 0$	$e^{-\pi t^2}$	sgn(t)	u(t)