UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y TRIGONOMETRIA 522115 Listado 6 (Polinomios)

- 1. Sean p, q polinomios a coeficientes reales tales que gr(p) = n y gr(q) = m. Analice la veracidad o falsedad de las siguientes afirmaciones, justificando adecuadamente.
 - i) El recorrido de p(x) es \mathbb{R} .
 - ii) Si gr(p)=2k, $k \in \mathbb{Z}$, entoces p(x) es una función par.
 - iii) Si $\alpha \in \mathbb{R}$, $\operatorname{gr}(\alpha p) = \operatorname{gr}(p)$.
 - iv) Para todo $x \in \mathbb{R}^+$, $p(x) \ge 0$.
 - v) La compuesta $p \circ q$ es una función polinomial de grado nm.
- Determine el grado del polinomio $p(x) = 6x^5 + (3x^2 2)^4(2x 1)^3$.
- Determine un polinomio $p \in \mathcal{P}(\mathbb{R})$ de grado menor o igual a 3, tal que:
 - i) p(0) = 0, p(1) = 1, p(2) = 4, p(3) = 10,
 - ii) p(-1) = 7, p(0) = 3, p(1) = 1, p(2) = 1.
- Descomponer $x^6 + 1$ en polinomios irreducibles: i) En \mathbb{R} .
- Efectúe las divisiones p(x): q(x) en cada caso, identificando el cuociente y el resto de la división.
 - a) $n(x) = x^5 + 2x^4 x^3 + 22x$, $q(x) = x^2 4x + 1$.
 - b) $p(x) = 2x^4 15x^2 + 8x 3$, q(x) = x + 3.
 - c) $p(x) = x^4 + 4x^3 + 2x^2 7x 6$, $q(x) = x^2 + 3x + 2$.
 - d) $p(x) = 4x^4 4x^3 3x^2 + 2x + 1$, $q(x) = 4x^3 3x 1$.
- 6. Sin efectuar la división, demuestre que $2x^4 7x^3 2x + 13x + 6$ es divisible por $x^2 - 5x + 6$.
- Dividir los siguientes polinomios por el monomio (x-c), donde el valor c se indica en cada caso. De acuerdo al valor del residuo, decidir si el valor de c corresponde o no a una raíz del polinomio.
 - a) $6x^3 + 17x^2 5x 6$, c = -1/2, d) $x^4 20x^2 10x 50$, c = 5,
 - b) $6x^3 + 17x^2 5x 6$, c = 2/3, e) $x^3 8x^2 + x + 42$, c = 5.
 - c) $6x^3 + 17x^2 5x 6$, c = -3,
- f) $x^3 2x^2 + x + 2$, c = 2.

- Determinar el valor de la constante k para que los siguientes polinomios tengan como raíz el valor c indicado.
 - a) $4x^3 4x^2 + kx + 4$, c = -1, b) $6x^3 + 13x^2 + 2k 40$, c = 4, c) $3x^3 + kx^2 7x + 6$, c = -3, d) $5x^3 + k^2x^2 + 2kx 3$, c = -1.
- 9. Para cada uno de los polinomios siguientes encuentre todas sus raíces y multiplicidades si x_0 es una raíz dada.
 - a) $p(x) = x^3 2x^2 x + 2$, $x_0 = -1$,
 - b) $p(x) = x^3 13x + 12$, $x_0 = 3$,
 - c) $p(x) = x^3 3x^2 4x + 12$, $x_0 = -2$,
 - d) $p(x) = x^4 + x^3 3x^2 x + 2$, $x_0 = 1$ con multiplicidad 2,
 - e) $p(x) = x^3 + x^2 + x + 1$, $x_0 = i$,
 - f) $p(x) = 2x^3 x^2 2x + 6$, $x_0 = 1 + i$.
 - g) $p(x) = x^4 + 2x^3 + 2x^2 + 2x + 1$, $x_0 = -1$ con multiplicidad 2,
- 10. Probar que si un polinomio es divisible por (ax b), entonces también resulta divisible por $(x-\frac{b}{a})$.
- Para los siguientes polinomios diga cuál es su grado y determine sus raíces con sus multiplicidades.
 - a) $p(x) = (x+4)^5(x+2)^2(x-3)^3$, d) $p(x) = 5(x+1)^2(x-1)^3$,
 - b) $p(x) = (x+1)^5(x+2)^4(x+3)^2$, e) $p(x) = 2(x^2-1)^3(x^2-4)^4$,
 - c) $p(x) = (3x+6)^3(2x+4)^6$.
- f) $p(x) = 3(x^2 + 1)^2(x^2 3x + 2)^4$
- 12. Sea $p(x) = \sum_{i=1}^{n} a_i x^i$ un polinomio a coeficientes reales, de grado n, y sean x_1, \dots, x_n

las raíces de p. Determine las raíces del polinomio $q(x) = \sum_{i=1}^{n} a_i(\lambda x)^i$, con $\lambda \in$ $\mathbb{R} - \{0\}.$

- Se sabe que 1+i es una raíz de $p(x)=x^4+x^3+x^2-4x+10$. Determine las otras raíces de p(x).
- La posición de una partícula al cabo de t segundos es $P(t) = 2t^3 11t^2 + 13t 1$ y su posición al cabo de 1 segundo es igual a 3. ¿En qué otros instantes la posición vuelve a tener el valor 3?.

JAL

Primer Semestre de 2005.