Computational Vision

Lecture 3.1: Image Segmentation Hamid Dehghani

Office: 241

Topics

- Digital image representations
- Image properties
- Basic image segmentation: thresholding
 - Image histogram
 - Smoothing
 - Mathematical morphology
- Advanced segmentation methods

Digital images

- Image representations
 - 2dimensional arrays of pixels
 - (x,y)
 - multi-dimensional arrays
 - (x,y,z)
 - (x,y,t)
 - (x,y,z,t)
 - (x,y,z,b₁,b₂, ..., b_N)

Characterising images

- Spatial resolution
 - Pixel size
 - Pixels / inch
- Intensity resolution
 - Bits per pixel
- Time resolution
 - Frames per second
- Spectral resolution
 - Number of bands + bandwidth

Characterising images as signals

- Image statistics
 - Mean, standard deviation
 - Histogram: frequency distribution graph

Characterising images as signals

- Image noise
 - Signal-to-noise ratio (SNR)

Characterising images as objects

Individual cells

Characterising images as objects

Parts of anatomy

Characterising images as objects

- This requires that image is partitioned into meaningful regions.
- The process of partitioning is known as segmentation

Individual cells

Parts of anatomy

Image Segmentation

- Partitioning an image into meaningful regions with respect to a particular application
- Simple segmentation is based on measurements taken from the image and might be based on brightness (grey-level), colour, texture, motion, etc.

Individual cells

Parts of anatomy

Image segmentation techniques

Regions

Pixel-by-pixel (global statistics) Thresholding

Groups of pixels (similarity)

Clustering
Region growing
Relaxation

Boundaries

Image gradient (energy driven)

Active contours

Model based (statistics of shape)

Active shape models

Image Segmentation

- Image Segmentation can be classified as:
 - Non-automated
 - Identifying regions by hand!
 - Semi-automated
 - Thresholding
 - Region Growing
 - Active Contour, etc ...
- Automated
 - Model based
 - Area of intensive research

Non-automated

Given an image, select and define a region of interest by hand.

Rough estimate

Hand Segmentation?

Thresholding

Classifying pixels as belonging to the "objects" or "background" depending on their value. T is called the "threshold value".

```
if the value of pixel p <=T
then pixel p is an object pixel
else
pixel p is a background pixel
```

```
if I(x,y) \le T

TI(x,y) = 1

TI = I \le T

else

TI(x,y) = 0
```

But how do we select the threshold value???

Thresholding

- Histogram-based segmentation
 - Given an image, select a suitable threshold value

Histogram

A frequency distribution graph

Shows the number of pixels in the image having a particular value or a range of values.

Thresholding

Noise free

Low noise

High noise

Low noise image

Thresholded at T=124

High noise image

Thresholded at T=124

Often impossible to select a satisfactory threshold based only on pixel values

- How do we determine the threshold?
- Many approaches possible
 - Interactive threshold
 - Adaptive threshold
 - Variance minimisation method (Otsu threshold selection algorithm)
 - In the simplest form, the algorithm returns a single intensity threshold that separate pixels into two classes, foreground and background.
 - This threshold is determined by minimizing intra-class intensity variance, or equivalently, by maximizing inter-class variance.

Otsu's Threshold

Algorithm

- 1. Compute histogram and probabilities of each intensity level
- 2. Set up initial $\omega_i(0)$ and $\mu_i(0)$
- 3. Step through all possible thresholds t = 1, ... maximum intensity
 - 1. Update ω_i and μ_i
 - 2. Compute $\sigma_b^2(t)$
- 4. Desired threshold corresponds to the maximum $\sigma_b^2(t)$

Event Code:

Thresholding - Problems

- Manual methods:
 - Time consuming
 - Operator error
 - Subjective
- Different regions / image areas may need different levels of threshold
- Noise

Smoothing & Thresholding

Original

Smoothed

Thresholded at *T*=124

Mathematical morphology

- Morphology is concerned with study of form and shape.
- Operations of mathematical morphology are defined in terms of interactions of two sets of points. One set (usually a large one) corresponds to an image; the other (usually much smaller) is called a structuring element.
- A structuring element can be thought of as a "brush" with which an image is "overpainted" in a number of specific ways, depending on the morphological operation.
- Examples of typical structuring elements (grey dots indicate "active" members of the structuring element set):

Mathematical morphology

- Two principal operations of mathematical morphology are dilation and erosion.
- Dilation (expansion)
 - adding a "layer" of pixels to the periphery of objects
 - the object will grow larger, close objects will be merged,
 holes will be closed
- Erosion (shrinking)
 - removing a "layer" of pixels all round an object
 - the object will get thinner, if it is already thin it will break into several sections

Mathematical morphology

Advanced segmentation methods

- Active contours (snakes)
- Watershed
- Level-set methods
- Active shape model segmentation

Active (snake) contours

$$E[(C)(p)] = \alpha \int_0^1 E_{int}(C(p)) dp + \beta \int_0^1 E_{img}(C(p)) dp + \gamma \int_0^1 E_{con}(C(p)) dp$$

- The internal term stands for regularity/smoothness along the curve and has two components (resisting to stretching and bending)
 - sensitivity to the amount of stretch in the snake and the amount of curvature in the snake
- The image term guides the active contour towards the desired image properties (strong gradients)
 - Energy in the image is some function of the features of the image, for example edges
- The external term can be used to account for user defined constraints, or prior knowledge on the structure to be recovered
 - allows for user interaction to guide the snakes, not only in initial placement but also in their energy terms.
- The lowest potential of such a cost function refers to an equilibrium of these terms

Active contours

$$E[(C)(p)] = \alpha \int_0^1 E_{int}(C(p))dp + \beta \int_0^1 E_{img}(C(p))dp + \gamma \int_0^1 E_{con}(C(p))dp$$

Watershed segmentation

- Classify pixels into three classes:
 - belonging to a local minimum
 - catchment basin or watershed: pixels at which a drop of water would flow to that local minimum
 - divide of watershed lines: pixels at which water would flow to two minima.

Watershed segmentation

a b c d

FIGURE 10.46

(a) Image of blobs. (b) Image gradient. (c) Watershed lines. (d) Watershed lines superimposed on original image. (Courtesy of Dr. S. Beucher, CMM/Ecole des Mines de Paris.)

