Homework # 08

MATH 140 PROFESSOR JOHN LOTT

Ву

Cody Vig

 $The \ University \ of \ California \\ Berkeley$

Chapter 04 | Problem 8.1

Find the Gaussian and mean curvatures of \mathbb{R}^2 , S^2 , T^2 (Problems 1.1 and 7.3), and $S^1 \times (0,1)$ (Problem 7.2).

Solution

Gaussian and Mean Curvature on \mathbb{R}^2 :

Clearly the Gaussian and mean curvature of \mathbb{R}^2 are both zero. We can parameterize (a subset of) \mathbb{R}^2 with the coordinate patch

$$\mathbf{x}(u^1, u^2) = (u^1, u^2, 0),$$

from which it follows

$$x_{ij} = 0$$

for all $1 \le i, j \le 2$. Hence all $L_{ij} = \langle \boldsymbol{x}_{ij}, \boldsymbol{n} \rangle = 0$, and so $L^i{}_j = g^{i\ell}L_{\ell k} = \delta^{i\ell}L_{\ell k} = 0$. As such, $(L^i{}_j)$ is the zero matrix and so its eigenvalues κ_1 and κ_2 are identically zero, and hence

$$K_{\mathbb{R}^2} = \kappa_1 \kappa_2 = 0$$

$$H_{\mathbb{R}^2} = \frac{1}{2} (\kappa_1 + \kappa_2) = 0$$

Gaussian and Mean Curvature on S^2 :

The 2-sphere S^2 can be locally be parameterized with

$$\mathbf{x}(u^1, u^2) = (\sin u^1 \cos u^2, \sin u^1 \sin u^2, \cos u^1)$$

where $u^1 \in (0, \pi)$ and $u^2 \in (0, 2\pi)$. One can also interpret the Weingarten map in terms of the derivatives of the normal vector. Indeed, $L^i{}_j \boldsymbol{x}_i = \mathsf{L}(\boldsymbol{x}_j) = -\frac{\mathrm{d}\boldsymbol{n}}{\mathrm{d}u^j}$. We know

$$\mathbf{x}_1 = (\cos u^1 \cos u^2, \cos u^1 \sin u^2, -\sin u^1) \tag{1a}$$

$$\mathbf{x}_2 = (-\sin u^1 \sin u^2, \sin u^1 \cos u^2, 0) \tag{1b}$$

and

$$\boldsymbol{n} = \frac{\boldsymbol{x}_1 \times \boldsymbol{x}_2}{\|\boldsymbol{x}_1 \times \boldsymbol{x}_2\|} = \dots = (\sin u^1 \cos u^2, \sin u^1 \sin u^2, \cos u^1)$$
 (2)

where the dots are filled in with the usual computations.¹ This is precisely the same as the definition of \boldsymbol{x} , and so $\boldsymbol{n}_i \equiv \frac{\partial \boldsymbol{n}}{\partial u^i} = \boldsymbol{x}_i$, which implies

$$L^{i}{}_{j}\boldsymbol{x}_{i} = -\frac{\mathrm{d}\boldsymbol{n}}{\mathrm{d}u^{j}} \quad \Longrightarrow \quad L^{i}{}_{j}\boldsymbol{x}_{i} = -\boldsymbol{x}_{i} = (-\delta^{i}{}_{j})\boldsymbol{x}_{j}.$$

Thus, $L^i{}_j = -\delta^i{}_j$ under this coordinate patch, and so $\kappa_1 = \kappa_2 = -1$. Hence the Gaussian and mean curvatures are

$$K_{S^2} = \kappa_1 \kappa_2 = 1$$

 $H_{S^2} = \frac{1}{2}(\kappa_1 + \kappa_2) = -1.$

Gaussian and Mean Curvature on T^2 :

In Problem 1.1 of Homework 05, we found that for the coordinate patch

$$x(u^1, u^2) = ((2 + \cos u^1) \cos u^2, (2 + \cos u^1) \sin u^2, \sin u^1),$$

¹I hope it is ok to skip these steps at this point in the course. To be honest, I forgot we had homework due this week!

the tangent and normal vectors on the torus were

$$\mathbf{x}_1 = (-\sin u^1 \cos u^2, -\sin u^1 \sin u^2, \cos u^1), \tag{3a}$$

$$\mathbf{x}_2 = \left(-(2 + \cos u^1) \sin u^2, (2 + \cos u^1) \cos u^2, 0 \right), \tag{3b}$$

$$\mathbf{n} = -(\cos u^{1} \cos u^{2}, \cos u^{1} \sin u^{2}, \sin u^{1}). \tag{3c}$$

We can again determine L by using the fact $L^{i}{}_{j}x_{i} = -n_{j}$. We have

$$\mathbf{n}_1 = -(-\sin u^1 \cos u^2, -\sin u^1 \sin u^2, \cos u^1) \tag{4a}$$

$$\mathbf{n}_2 = -(-\cos u^1 \sin u^2, \cos u^1 \cos u^2, 0). \tag{4b}$$

Hence, we arrive at the equations

$$L^{1}_{1}\boldsymbol{x}_{1} + L^{2}_{1}\boldsymbol{x}_{2} = -\boldsymbol{n}_{1} \tag{5a}$$

$$L^{1}_{2}\boldsymbol{x}_{1} + L^{2}_{2}\boldsymbol{x}_{2} = -\boldsymbol{n}_{2}. \tag{5b}$$

We see from Eq.'s (3) and (4) that (5a) is satisfied if and only if $L^1_1 = 1$ and $L^2_1 = 0$. Similarly, we see that (5b) is satisfied if and only if $L^1_2 = 0$ and $L^2_2 = \cos u^1/(2 + \cos u^1)$. Hence L is again diagonal and so $\kappa_1 = 1$ and $\kappa_2 = \cos u^1/(2 + \cos u^1)$. Hence

$$K_{T^2} = \kappa_1 \kappa_2 = \frac{\cos u^1}{2 + \cos u^1}$$

$$H_{T^2} = \frac{1}{2} (\kappa_1 + \kappa_2) = \frac{1 + \cos u^1}{2 + \cos u^1}.$$

Gaussian and Mean Curvature on $S^1 \times (0,1)$:

From Example 2.3 in Chapter 04 of Millman and Parker, one such coordinate patch of $S^1 \times (0,1)$ is

$$x(u^1, u^2) = (\cos u^1, \sin u^1, u^2)$$

for $u^1 \in (-3\pi/4, 3\pi/4)$ and $u^2 \in (0, 1)$. Then²

$$\mathbf{x}_1 = (-\sin u^1, \cos u^1, 0) \tag{6a}$$

$$\mathbf{x}_2 = (0, 0, 1) \tag{6b}$$

$$\boldsymbol{n} = (\cos u^1, \sin u^1, 0). \tag{6c}$$

We can again use $L^{i}{}_{j}\boldsymbol{x}_{i}=-\boldsymbol{n}_{j}$ to determine L. We know

$$\mathbf{n}_1 = (-\sin u^1, \cos u^1, 0) \tag{7a}$$

$$n_2 = \mathbf{0},\tag{7b}$$

and so

$$L^{1}{}_{1}\boldsymbol{x}_{1} + L^{2}{}_{1}\boldsymbol{x}_{2} = -\boldsymbol{n}_{1} \quad \Longrightarrow \quad (-L^{1}{}_{1}\sin u^{1}, L^{1}{}_{1}\cos u^{1}, L^{2}{}_{1}) = (\sin u^{1}, -\cos u^{1}, 0) \tag{8a}$$

$$L^{1}_{2}\mathbf{x}_{1} + L^{2}_{2}\mathbf{x}_{2} = -\mathbf{n}_{2} \implies (-L^{1}_{2}\sin u^{1}, L^{1}_{2}\cos u^{1}, L^{2}_{2}) = (0, 0, 0).$$
 (8b)

It is clear that these equations are only satisfied if $L^1_1 = -1$ and $L^i_j = 0$ otherwise. As such, L is diagonal and so $\kappa_1 = -1$ and $\kappa_2 = 0$. Thus

$$K_{S^1 \times (0,1)} = \kappa_1 \kappa_2 = 0$$

 $H_{S^1 \times (0,1)} = \frac{1}{2} (\kappa_1 + \kappa_2) = -\frac{1}{2}.$

²Alternatively, L = diag(1,0) can be taken directly from the prompt of Problem 7.2 in Millman and Parker, i.e., the problem referenced in the prompt of this question. I did not see this until I finished typesetting this answer. The discrepancy in L^1 ₁ likely comes from a different choice of coordinate patch, since we know that the components L_{ij} transform doubly covariantly up to sign, g^{ij} transforms doubly contravariantly, and $L^i{}_j = g^{i\ell}L_{\ell j}$.

Chapter 04 | Problem 8.2

Prove $H^2 \geq K$. When does equality hold?

Solution

Recall that the Gaussian and mean curvatures can be expressed in terms of the eigenvalues κ_1 and κ_2 of the Weingarten map L. Indeed,

$$K = \det(\mathsf{L}) = \kappa_1 \kappa_2$$

$$H = \frac{1}{2} \operatorname{tr}(\mathsf{L}) = \frac{1}{2} (\kappa_1 + \kappa_2).$$

We proved in a previous homework that L is self-adjoint. As such the eigenvalues will be real, and so we have the following inequality:

$$0 \le (\kappa_1 - \kappa_2)^2 = \kappa_1^2 - 2\kappa_1\kappa_2 + \kappa_2^2$$

$$\implies 4\kappa_1\kappa_2 \le \kappa_1^2 + 2\kappa_1\kappa_2 + \kappa_2^2 = (\kappa_1 + \kappa_2)^2$$

$$\implies K \le H^2$$

as expected. Additionally, the first inequality shows that equality is saturated if and only if the eigenvalues of L are degenerate.

Chapter 04 | Problem 8.10

What are the principle curvatures for a surface of revolution?

Solution

We know from Chapter 04 Section 4.2 that a surface of revolution can be given by the coordinate patch

$$x(u^1, u^2) = (r(u^1)\cos u^2, r(u^1)\sin u^2, z(u^1))$$

where $(r(u^1), z(u^1))$ is the curve generating the surface of revolution. The approach taken here is to determine the coefficients of the second fundamental form L_{ij} and then find the coefficients of the Weingarten map $L^i{}_j = g^{i\ell}L_{\ell j}$ by contraction with the inverse metric. To determine the L_{ij} 's, we need the second derivatives x_{ij} . We have

$$\mathbf{x}_1 = (r'\cos u^2, r'\sin u^2, z')$$
 (9a)

$$\mathbf{x}_2 = (-r\sin u^2, r\cos u^2, 0),\tag{9b}$$

where I have dropped the explicit u^1 -dependence and used primes to denote differentiation by u^1 for brevity. So:

$$\mathbf{x}_{11} = (r'' \cos u^2, r'' \sin u^2, z'') \tag{10a}$$

$$\mathbf{x}_{21} = \mathbf{x}_{12} = (-r'\sin u^2, r'\cos u^2, 0)$$
 (10b)

$$\mathbf{x}_{22} = (-r\cos u^2, -r\sin u^2, 0). \tag{10c}$$

 $^{^{3}}$ Do mathematicians use the word degeneracy in the context of repeated eigenvalues? I've never heard a mathematician say so, but physicists do.

Next we need the normal n to the tangent plane. Write the standard basis for \mathbb{R}^3 as $\{e_i\}_{i=1}^3$. Then we have

$$m{x}_1 imes m{x}_2 = egin{array}{cccc} m{e}_1 & m{e}_2 & m{e}_3 \ r' \cos u^2 & r' \sin u^2 & z' \ -r \sin u^2 & r \cos u^2 & 0 \ \end{array} = (-rz' \cos u^2, -rz' \sin u^2, rr').$$

The length of the cross product is $\|\boldsymbol{x}_1 \times \boldsymbol{x}_2\| = r\sqrt{r'^2 + z'^2}$, so the unit normal is

$$\mathbf{n} = \left(-\frac{z'}{\sqrt{r'^2 + z'^2}} \cos u^2, \frac{z'}{\sqrt{r'^2 + z'^2}} \sin u^2, \frac{r'}{\sqrt{r'^2 + z'^2}} \right). \tag{11}$$

Since $L_{ij} := \langle \boldsymbol{x}_{ij}, \boldsymbol{n} \rangle$, from Eq.'s (10) and (11), we find

$$L_{11} = \frac{z''r - z'r''}{\sqrt{r'^2 + z'^2}} \tag{12a}$$

$$L_{21} = L_{12} = 0 (12b)$$

$$L_{22} = \frac{rz'}{\sqrt{r'^2 + z'^2}}. (12c)$$

To determine the coefficients of the Weingarten map, we need the inverse metric. We can find the metric from the basis vectors (9):

$$(g_{ij}) = \begin{pmatrix} \langle \boldsymbol{x}_1, \boldsymbol{x}_1 \rangle & \langle \boldsymbol{x}_1, \boldsymbol{x}_2 \rangle \\ \langle \boldsymbol{x}_2, \boldsymbol{x}_1 \rangle & \langle \boldsymbol{x}_2, \boldsymbol{x}_2 \rangle \end{pmatrix} = \begin{pmatrix} r'^2 + z'^2 & 0 \\ 0 & r^2 \end{pmatrix}.$$

Inverting, we find

$$(g^{ij}) = \begin{pmatrix} \frac{1}{r'^2 + z'^2} & 0\\ 0 & \frac{1}{r^2} \end{pmatrix}. \tag{13}$$

Then from Eq.'s (12) and (13), the Weingarten map $L = (L^i{}_j) = (g^{ij})(L_{ij})$ is

$$\mathsf{L} = (g^{ij})(L_{ij}) = \frac{1}{\sqrt{r'^2 + z'^2}} \begin{pmatrix} \frac{1}{r'^2 + z'^2} & 0\\ 0 & \frac{1}{r^2} \end{pmatrix} \begin{pmatrix} z''r' - z'r'' & 0\\ 0 & rz' \end{pmatrix} = \frac{1}{\sqrt{r'^2 + z'^2}} \begin{pmatrix} \frac{z''r' - z'r''}{r'^2 + z'^2} & 0\\ 0 & \frac{z'}{r} \end{pmatrix}.$$

Since the Weingarten map is diagonal, its eigenvalues are its diagonal elements. As such, the principle curvatures are:

$$\kappa_1 = L^1_1 = \frac{z''r' - z'r''}{(r'^2 + z'^2)^{3/2}}$$

$$\kappa_2 = L^2_2 = \frac{z'}{r} \frac{1}{\sqrt{r'^2 + z'^2}}$$

which completes the problem.

Chapter 04 | Problem 8.15

Let M be the surface of revolution generated by the non-unit speed curve $\alpha(t) = (\frac{1}{a}\cosh(at+b), t)$. Show that M is minimal $(H \equiv 0)$. M is called a *catenoid*.

Solution

Since the mean curvature is defined to be $H := \frac{1}{2} \operatorname{tr}(\mathsf{L})$, we have from Problem 8.10 that the mean curvature for a surface of revolution is

$$H = \frac{1}{2\sqrt{r'^2 + z'^2}} \left(\frac{z''r' - z'r''}{r'^2 + z'^2} + \frac{z'}{r} \right).$$

In the language of the previous problem, $\alpha(t)$ is the curve $(r(u^1), z(u^1))$ which was said to generate the surface of revolution. So, we make the identification:

$$r(t) = a^{-1}\cosh(at+b) \tag{14a}$$

$$z(t) = t. (14b)$$

Our derivation in the previous problem, we did not assume that (r, z) was unit speed, so the fact that the catenoid α is non-unit speed is irrelevant. Note

$$r'(t) = \sin(at+b) \qquad z'(t) = 1$$

$$r''(t) = a\cosh(at+b) \qquad z''(t) = 0,$$

and so

$$r'^{2} + z'^{2} = \sinh^{2}(at + b) + 1 = \cosh^{2}(at + b),$$

Hence

$$H = \frac{1}{2\sqrt{r'^2 + z'^2}} \left(\frac{z''r' - z'r''}{r'^2 + z'^2} + \frac{z'}{r} \right)$$
$$= \frac{1}{2\cos(at+b)} \left(\frac{0 - a\cosh(at+b)}{\cosh^2(at+b)} + \frac{a}{\cosh(at+b)} \right) = 0$$

as expected.