OreSat Thermal Analysis

Learning Outcome Desired

Designer functions as part of a team

Project Management

Team Definition

ID	TEAM MEMBER	E-MAIL	NOTES
1	Parker Southwick	psouth2@pdx.edu	Team Lead
2	Jeremy Lowman	Jlowman@pdx.edu	
3	Katherine Popchoc	popchoc2@pdx.edu	
4	Tyler Benson	tybenson@pdx.edu	
5	Thomas Otero	otero@pdx.edu	
6	Griffen Johnson	gwj@pdx.edu	

Schedule

Requirement Gathering Phase

Project Goals

Problem Statement

Supporting Images

Customer Definition

ID	CUSTOMER	CATEGORY	MOTIVATION
1	Andrew Greenburg	Internal Customer	Primary Customer, Head of OreSat project

Product Design Specification

Original Customer Requirements

Finalized Customer Requirements

ID	REQUIREMENT	CUSTOMERS
1	1. Minimum and Maxmum Temperature	1
2	2. Minimum and Maxmum Operating Temperature	1
3	3. Minimum and Maximum Beta angle of revolution about earth	1
4	4. The times when the thermal state of the satellite are important.	1
5	5. specific deliverables for this project	1
6	6. Different scenarios to analyze	1

Link to the Technical Review Specifications

Engineering Requirements

Original Engineering Requirements

[Note that the same engineering requirement may appear more than once, if they are associated with more than one customer requirement.]

ID	REQUIREMENT
1	1.1: Temperature: Ideal = [List value]; Min = 0; Max = 70; Unit = Celsius
2	2.1: Temperature: Ideal = [List value]; Min = 0; Max = 70; Unit = Celsius
3	3.1: Beta angle: Ideal = [List value]; Min = [List value]; Max = [List value]; Unit =
	degrees

Finalized Engineering Requirements

ID	DESIG N VARIA BLE	IDEAL	MIN	MAX	UNIT	CATEGOR Y	SIGNIFIC ANCE	CUSTOME R REQ	INCLUDE D IN OBJ. FUNC.?
1	Temper ature		0	0	Celsius	Function		2	Yes
2	Beta angle				degrees	Environme nt		3	Yes

Explanations

Phase Review

ID	DESIGN POINT ENTITY	COMPLETED? (Y/N)	LOCATION (PATH)
1	Project Goals	Yes	Ecosystem tab titled 'Project Goals'
2	Problem Statement	Yes	Ecosystem tab titled 'Problem Statement'
3	Customer Definition	Yes	Ecosystem tab titled 'Customer Definition'
4	Customer Interviews	Yes	Ecosystem tab titled 'Customer Interviews'
5	Customer Requirements	Yes	Ecosystem tab titled 'Product Design Spec'
6	Engineering Requirements	Yes	Ecosystem tab titled 'Engineering Requirements'

Gate Review

Conceptual Design Phase

Design IdeasCanvas for New Design Ideas
Archived Design Ideas

Location of Design Sketches

Design Description
Designs Considered
Link to Documentation

Design Scoring Scoring Tree

OreSat Thermal Analysis

Scoring Guidelines Design Selection House of Quality

CUSTOMER NEED	CUSTOMER	IMPORTANCE
Minimum and Maxmum Temperature	1	Unassigned
Minimum and Maxmum Operating Temperature	1	Unassigned
Minimum and Maximum Beta angle of revolution about earth	1	Unassigned
Absolute Importance:		
WEIGHTS:		
MIN:		
IDEAL:		
MAX:		
UNIT:		

Design Overview Overview Summary

Design Selection

Confiderence

Further Rationale

Phase Review

ID	DESIGN POINT ENTITY	COMPLETED? (Y/N)	LOCATION (PATH)
1	Sketches of Concept Ideas	No	Ecosystem tab titled 'Design Description'
2	Narration Describing the Concept Ideas	No	Ecosystem tab titled 'Design Description'
3	Analysis of Concept Ideas	No	Ecosystem tab titled 'Design Scoring'
4	Concept Selection with Rationale	No	Ecosystem tab titled 'Design Overview'

Gate Review

Detailed Design Phase

Risk Identification

Narration

Supporting Images

Model Image Gallery

Explanations

Imported Settings
Full Path (Manual Insertion)

Root Directory (Automatic Extraction)

Calculations & Analysis Analyses Conducted

Explanations

File Location

Phase Review

ID	DESIGN POINT ENTITY	COMPLETED? (Y/N)	LOCATION (PATH)
1	Risks Identified	No	Ecosystem tab titled 'Risk Identification'
2	Description of the Detailed Design	No	Ecosystem tab titled 'Narration'
3	Solid Model	No	Root directory for 'Part Management" in the 'Model' tab
4	Analysis of Risk Factors	No	Ecosystem tab titled 'Calculations & Analysis' (including root directory for analysis files)
5	Project Schedule	No	Schedule under the 'Management' Menu

Gate Review

Final Design Phase

Narration

Supporting Images

Testing
Overview
Explanations
To be added

Requirement Validation

ID	DESI GN VARI ABLE	L	MIN	MAX	UNIT		CUST OMER REQ		METH OD	TEST RESU LTS
1	Temp eratur e		0	0	Celsiu s	Functi on	2	Yes		
2	Beta angle				degre es	Enviro nment	3	Yes		

Bill of Material Overview File Location

Parts & Assembly Drawings

Explanations

File Location

Manufacturing Options Overview

Explanations To be added

File Location

Cost Analysis

Phase Review

ID	DESIGN POINT ENTITY	COMPLETED? (Y/N)	LOCATION (PATH)
1	Summary of Build Plan	No	Ecosystem tab titled 'Narration'
2	Test Plan	No	
3	Validated Requirements	No	Ecosystem tab titled 'Requirement Validation'
4	Bill of Material	No	Ecosystem tab titled 'Bill of Material'
5	Parts & Assembly	No	Ecosystem tab titled 'Parts & Assembly'
6	Analysis of Manufacturing Options	No	Ecosystem tab titled 'Manufacturing Options'
7	Cost Analysis	No	Ecosystem tab titled 'Cost Analysis'
8		No	

Gate Review

Design Revisions

Appendix

References **Standards Books Papers**

Patents Websites Other

Customer Interviews

DATE	CUSTOMER	INTERVIEWER	QUESTIONS	RESPONSE
2018-11-06	1. Andrew Greenburg 1. Andrew Greenburg	Parker Southwick, Jeremy Lowman, Katherine Popchoc, Tyler Benson, Thomas Otero, Griffen Johnson Parker Southwick, Jeremy Lowman,	What are the max and min	-Standard chips: -20 to 80 C -Industrial: -20 to 100 C -Military: -40 to 140 C Batteries: Standard: 0 to 60 C Lithium-ferrous- phosphate: -20 to 70 C Optimum case: 0 to 70 C during our time in space -Slots in the frame, and using springs
	Greenburg	Katherine Popchoc, Tyler Benson, Thomas Otero, Griffen Johnson		and using springs as additional thermal contacts -Thermal grease that is vacuum safe (?) -Can we dump heat from ground planes into the satellite (?) -We love the idea of phase change stuff, wax could be sweet but also messy "Active control" -We might have to put a heater on the batteries, but specifically only the batteries
2018-11-06	1. Andrew Greenburg	Parker Southwick, Jeremy Lowman,	What is our timeline?	We really want info on the passive

		Katherine Popchoc, Tyler Benson, Thomas Otero, Griffen Johnson		mode ASAP, and the rest following
2018-11-06	1. Andrew Greenburg	Parker Southwick, Jeremy Lowman, Katherine Popchoc, Tyler Benson, Thomas Otero, Griffen Johnson	Are we essentially doing thermal simulations of the two worst states?	-We want to know about thermal behavior while orbiting around the planet -We want to know what our maximum beta angle is, what is the worst beta angle? -How much time are we spending behind the earth? -We have freeflier software available for our usage
2018-11-06	1. Andrew Greenburg	Parker Southwick, Jeremy Lowman, Katherine Popchoc, Tyler Benson, Thomas Otero, Griffen Johnson	What are the specific deliverables for this project?	-Thermal state of satellite during passive mode is the most important -Thermal state of satellite during 3 months of steady state -Some design reccomendations to aid in maintaining temperature within acceptable range
2018-11-06	1. Andrew Greenburg		What are the different times during the satellites operation where understanding the thermal state is critical?	-First 10 minutes we're shot out -First few days -During antennae deployment -During passive

Meeting Notes

DATE	ATTENDEES	SCRIBE	AGENDA	MINUTES
2018-10-18	Parker	Parker Southwick	HIgh level	Applying for

6			LITEAD
Southwick,		information	UTEAP
Jeremy Lowman,		-Applying for	-Sent in pre-
Katherine		UTEAP	proposal to
Popchoc, Tyler		-Thermal analysis	department on
Benson, Thomas	1	-Meeting to	Tuesday
Otero, Griffen	I II	attend	-Final proposal/
Johnson	l II	-Oresat	
JOHNSON	I II		grant due 10/26
		Introductory	-UTEAP team
	l II	Material	meeting at
		-Onboarding	Sunday 10/21 @
		-Overarching	2:30pm - Rocket
		Goals:	Room
			-Thermal analysis
			-Using
			Ansys to
			construct
			simulations for
			l II
			the thermal
			model of satellite
			-
			Physical
			verification of
			results done
			through lab
			60-12
			-Must
			provide
			l '
			actionable
			suggestions for
			operation,
			maintenance and
			construction of
			the satellite itself
			-Meeting to
			attend
			_
			PSAS: Tuesdays
			@7:00pm EB
			86-01 or google
			hangouts
			_
			Capstone:
			Thursdays
			@10:00am EPL
			conference room
			-
			OreSat General:
			Fridays @2:00pm
			Rocket Room or
			NOCKEE NOOTH OF

google hangouts OreSat Structural: Sundays @12:00pm Rocket Room Google hangouts: psas.pdx.edu/ hangout Oresat Introductory Material: https:// github.com/ oresat/gettingstarted/blob/ master/ README.md Onboarding -Meeting with Andrew Greenberg -Discussion around meeting after PSAS general meeting at 8:00pm 10/22 -Most of us have Ansys downloaded and working -Everyone is nearly done with the reading on github -Everyone has been included on Asana and has full access to the project itself -Everyone has been signed up for PSAS, as required by sponsor

				Overarching
				Goals:
				-Extreme
				temperatures
				-High and low
				-Roll rate
				-Simplifying
				model
				-Material
				properties
				-Worst case
				scenarios for
				initial attitude,
				orientation and
				spin post ISS
				launch
				-Vacuum
				chamber
2018-10-25	Parker	Parker	-Meeting	Meeting
	Southwick,		assignments	assignments
	Jeremy Lowman,	Jeremy Lowman	(OreSat General,	(OreSat General,
	Katherine			OreSat Structural,
	Popchoc, Tyler		PSAS general,	PSAS general,
	Benson, Thomas		UTEAP)	UTEAP):
	Otero, Griffen		-Meeting notes in	
	Johnson		general	Katherine - PSAS
	Johnson		-Progress	General Meeting/
			-Action Items	UTEAP
			/ (CCIOII ICCIII)	Tyler -
				Structural/UTEAP
				Jeremy - OreSat
				General
				Parker
				- UTEAP and
				Pierros meeting
				(when applicable)
				Griffin
				- OreSat General
				Tom -
				OreSat Structural/
				UTEAP
				Meeting notes in
				general:
				-
				Anything
				pertaining to
				Thermal
				specifically, or
				specifically, or

Thermal Testing (vacuum chamber type items) General discussion of the OreSat meeting -If any other teams need to communicate with us about our work, or what information we may be able to provide them OreSat General -Fridays at 2pm -(Griffin/ Jeremy):N/A PSAS General -Tuesdays at 7pm - (Katherine): UTEAP budget meeting afterwards Thursday 5pm hangouts (PSAS) OreSat Structural - Sundays at 12pm - (Tyler/ Tom): N/A Pierros Meeting (Parker): Nothing since 10/16 Progress: Parker UTEAP budget items are under discussion, which includes an addition to our project: Building a "test stand" for

the vacuum chamber for the satellite to sit on -Check out the material "zeolite", found in meeting notes with Pierros Started brainstorming budget, presenting to Andrew today at 5pm https:// en.wikipedia.org/ wiki/Zeolite Everyone look at Pierros meeting notes (10/16) found in OreSat Meeting Notes: https:// docs.google.com/ document/d/ 1mNIk4XnMYgLA WCJZSjRHi1wuyD 29r9vJx4QHynhk O5I/edit? usp=sharing Katherine -Will be attending the PSAS general meetings via hangouts/person Tyler -Will be attending the structural meetings via hangouts/person Jeremy -Will be attending the google hangouts

for OreSat general
general -
Working on using
Ecosystem
Griffin
-Met
With Tretheway -Ansys
Demonstration
-Self paced online
course through
Cornell https://
www.edx.org/ course/a-hands-
on-introduction-
to-engineering-
simulations
-Can get a
certificate after completion for
\$50
-Online tutorials
https://
studentcommunit
y.ansys.com/cat/ support-
resources-
tutorials
-Student
community blog
https:// studentcommunit
y.ansys.com/
-For our project
Ansys:Discovery
Live recommended
-Nvidia GTX 1080
required (?!)
-How
to use

Ecosystem?

Github workshop Sunday 10/28/2018 @1:00 EPL room

Tom

Created a pack and go for the OreSat satellite, making the model itself accessible (!!!!!111!1)

Action Items: -Discuss vacuum chamber platform design for Jeremy to mill and create at some point (not now but good to think about) -Outline PDS -High level item -Reading needs to be done by 11/1, we should be done or almost done by now -Begin justifying parts on SolidWorks model, and make suggestions as to simplification of the model -Joe and Andrew are great resources to discuss this with -Lets figure out some simple Ansys models to practice -Also start taking their online

		course and maybe pay for a certificate? -Must plug in meeting notes to Ecosystem now - Jeremy, Griffin -GitHub meeting on Sunday - Tyler, Griffin (maybe), Parker (first ½)