مبحث دوم: الگوریتم نویسی

ليلا پاشائي بناب

lei.pashaie.eng@iauctb.ac.ir

فهرست مطالب

- مفاهیم مقدماتی
- روش هاى بيان الگوريتم
 - بررسي چند الگوريتم
 - دستورات شرطی
- بررسى چند الگوريتم شرطى
 - حلقه های تکرار
 - بررسى چند الگوريتم تكرار
 - حلقه های تکرار تو در تو

مفهوم الگوريتم

تشریح دقیق مراحل مختلف و نحوهٔ انجام دادن یک کار خاص

- روش مصرف دارو
- تا از بین رفتن کامل علائم بیماری، روزی سه دفعه هر بار یک قاشق چایخوری از دارو در یک لیوان آب سرد حل نموده قبل از غذا میل کنید.

- یافتن بزرگترین عدد در یک مجموعه از اعداد
- بررسی اعداد از ابتدا تا انتها و به خاطر سپردن بزرگترین عددی که تاکنون با آن برخورد نموده ایم.

تعريف الگوريتم

- الگوریتم دستورالعملی برای حل مسأله است که
 - به زبان دقیق گفته شود.
 - از واژه هایی استفاده شود که برای همه مشخص باشد.
 - برداشتهای مختلف از قاشق چایخوری
 - جزئيات كامل حل مسأله را داشته باشد.
- تمام شرایطی که ممکن است اتفاق بیفتد در نظر بگیریم.
- با توجه به ضرایب یک معادله درجه ریشه های آن می توانند گوناگون باشند.
 - ترتیب مراحل آن مشخص باشد.
 - شرط خاتمه عملیات مشخص باشد.
 - پرهیز از کارهای تکراری ناتمام

طراحى الگوريتم براى مسأله

- مراحل كلى هر مسأله:
 - خواندن داده ها
- انجام محاسبات و پردازشها
 - چاپ نتایج
 - روش طراحي الگوريتم:
- تعریف دقیق مسأله جهت مشخص کردن نیازمندیهای آن
 - تعیین ورودی و خروجی مسأله
 - بررسی راه حل های مختلف مسأله
 - انتخاب یک راه حل مناسب و تهیه الگوریتم برای آن
 - اشكال زدايي الگوريتم

بيان الگوريتم با جملات فارسي

عدم استفاده از نماد خاص

- مثال: الگوریتمی که مجموع دو عدد را محاسبه می کند.
 - اولین عدد را انتخاب کرده بر روی کاغذ بنویسید.
- حومین عدد را گرفته آن را زیر عددی که بر روی کاغذ نوشتید، بنویسید.
 دو عدد روی کاغذ را با هم جمع کنید، زیر آن دو عدد بنویسید.
 - سومین عددی که بر روی کاغذ نوشته شد، مجموع دو عدد است.

اشكالات:

- الگوريتم ها طولاني مي شوند.
- از دستورات تفسیرهای گوناگونی می شود.

بيان رياضي الگوريتم

- استفاده از نمادها به عنوان محل ذخیره ورودی ها و خروجی ها
 (متغیرها)
- متغیر نامی است برای یک کمیت که مقدار آن ممکن است تغییر کند.

- مثال: الگوریتمی که میانگین سه عدد ورودی را محاسبه می کند.
 - و B و C را از ورودی بخوان A
 - SUM ← A+B+C −
 - AVE ← SUM/3 -
 - AVE را چاپ کن.
 - پایان

بيان رياضي الگوريتم - ٢

- مجرى الگوريتم مفهوم خواندن را مى داند.
- علامت + به معنی جمع است و مجری مفهوم آن را می داند.
- علامت به معنی انتساب است و مقدار را در متغیر سمت چپ قرار می دهد.
 - علامت / به معنی تقسیم است.
 - مفهوم چاپ کردن برای مجری مشخص است.
 - مفهوم پایان برای مجری مشخص است.
 - مجرى الگوریتم مفهوم میانگین را نمی داند، بلکه راه حل آن از طریق الگوریتم مشخص شده است.

بيان الگوريتم توسط شكل ها

- معروفترین: flowchart
- كمك به دنبال كردن الگوريتم در حالتي كه طولاني يا پيچيده باشد.

۱ – علائم شروع و پایان

۲- علامت اتصال

۳- علامت انتساب و محاسبات

بيان الگوريتم توسط شكل ها - ٢

۴- علائم ورودی و خروجی

 Δ علامت ادامه

بيان الگوريتم توسط شكل ها- ٣

مثال:

مثال: الگوریتمی که شعاع یک دایره را از ورودی خوانده، محیط و مساحت آن را محاسبه می کند و به خروجی می برد.

۱ - R را بخوان. ۲ - R*R*3.14 →

۴- P و S را چاپ كن.

۵– پایان

مثال: الگوریتمی که درجه حرارت را بر حسب سانتیگراد می خواند و به فارنهایت تبدیل می کند.

مثال: الگوریتمی که دو مقدار را از ورودی خوانده در دو متغیر X و Y قرارمی دهد و سپس محتویات آن دو را با هم عوض کرده در خروجی چاپ کند.

- ۱- X و Y را بخوان.
- TEMP ← X -۲
 - X -- Y w
- Y ← TEMP F
- $X \Delta$ و Y را چاپ کن.
 - ۶- پایان

مثال: الگوریتمی که دو مقدار را از ورودی خوانده در دو متغیر X و Y قرارمی دهد و سپس محتویات آن دو را با هم بدون متغیر کمکی عوض کرده در خروجی چاپ کند.

۱ - X و Y را بخوان.

X+Y -Y

Y -- X -Y -

X -- X-Y - F

۵- X و Y را چاپ کن.

۶- پایان

تعریف دستورالعمل های شرطی

- تاكنون دستورالعمل هاى الگوريتم ها به ترتيب از اولين دستور تا آخرين دستور اجرا شدند.
 - گاهی می خواهیم بر اساس شرایطی که اتفاق می افتد؛
 - برخی از دستورات اجرا شوند.
 - و یا از اجرای برخی از آنها صرفنظر شود.
 - در این گونه شرایط از دستورالعمل های شرطی استفاده می شود.
 - دستورالعمل های شرطی با کلمهٔ اگر شروع می شوند:

شرط آنگاه دستورات

در غیر اینصورت دستورات ۲

آنگاه دستورات ۱

اگر شرط

نمایش دستورالعمل های شرطی

و لوزی می تواند دو یا سه خروجی داشته باشد.

نمایش دستورالعمل های شرطی - ۲

الوزی می تواند دو یا سه خروجی داشته باشد.

X<0

X را چاپ کن

مثال: الگوريتمي كه عددي صحيح مثل

- ۱ X را بخوان.
- D X/2 -Y
- ۲ → 2*X آنگاه R=0 اگر P-۱
 - وگرنه X*X 🕶 Y
 - ۵- ۲ را چاپ کن.
 - ۶– پایان

مثال: الگوریتمی که جواب های حقیقی معادلهٔ درجهٔ دوم $AX^2+BX+C=0$ را یافته و در خروجی چاپ کند.

 Λ و برو به X1 -C/B انگاه A=0 -اگر A=0

۸ و برو به کا D<0 آنگاه چاپ کن «جواب حقیقی ندارد» و برو به D<0

$$X1 \leftarrow \frac{-B + \sqrt{D}}{2 * A} \quad ^{-\Delta}$$

$$X2 \leftarrow \frac{-B - \sqrt{D}}{2*A} \qquad -9$$

- ٧- X1 و X2 را چاپ کن.
 - ۸- پایان

متغيرها

 ${f A}$ و ${f B}$ و ${f C}$: ضرایب ورودی

ا: دلتا

X1 و X2: ريشه هاى معادله

سه پارامتر حلقه های تکرار

شرط حلقه:

مشخص کنندهٔ زمان خاتمهٔ حلقه - برای کنترل تعداد دفعات اجرای حلقه

شمارنده حلقه تکرار:

مشخص كنندهٔ دفعات اجراى حلقه

– باید دارای یک مقدار اولیه باشد.

گام حلقه:

مقداری که بازای هر بار اجرا به شمارنده اضافه می شود.

نمایش حلقه های تکرار در فلوچارت

الگوریتمی که ۵ عدد صحیح را از ورودی خوانده، اعداد زوج را چاپ کند.

روند بررسی

 مثال: الگوریتمی که ۵ عدد صحیح را از ورودی خوانده، اعداد زوج را چاپ کند.

خروجي	R	D	Х	I	شماره دستور
				1	1
					2
			5		3
		2			4
	1				5
					6
				2	7
					8
					2
			12		3
		6			4
	0				5
12					6
				3	7
					8
					2
			171		3

1 - 1 - 1

۲- تا زمانیکه 5=>| دستورات ۳ تا ۷ را تکرار کن.

۳− X را بخوان

D X/2 - ۴

R ← X-D*2 -∆

۶- اگر R=0 آنگاه X را چاپ کن.

| - | + 1 − **|**

۸- پایان حلقه

۹- پایان

مثال: الگوریتمی که تعداد N عدد را از ورودی خوانده، مجموع آنها را چاپ کند.

متغيرها

N: تعداد اعداد

I: شمارنده حلقه تكرار

SUM: مجموع اعداد

X: عدد ورودی

N -1 را بخوان

SUM ← 0 , I ← 1 - ۲

۳- تا زمانیکه I<=N دستورات ۴ تا ۶ را تکرار کن.

۲- X را بخوان

SUM - X+SUM - a

|---|+1 -۶

٧- پایان حلقه

۸- SUM را چاپ کن.

۹- پایان

۳- تا زمانیکه I<=N دستورات ۴ تا ۶ را تکرار کن.

۲- X را بخوان

SUM -X+SUM -

I ← I+1 -9

٧- يايان حلقه

۸- **SUM** را چاپ کن.

۹- پایان

شروع

N را بخوان

مثال: الگوریتمی که عدد صحیح و مثبت N را از ورودی خوانده، فاکتوریل آن را محاسبه و چاپ نماید.

متغيرها

N: عدد مورد نظر

J: شمارنده

FACT: فاكتوريل

N -1 را بخوان

FACT ← 1 , J ← 1 - ۲

۳- تا زمانیکه J = N دستورات ۴ تا ۵ را تکرار کن.

FACT*J-

J ← J+1 -۵

۶- پایان حلقه

۷- **FACT** را چاپ کن.

۸– پایان

- N -1 را بخوان
- FACT ← 1 , J ← 1 ۲
- J = N دستورات ۴ تا ۵ را تکرار کن.
 - FACT ← FACT*J F
 - J ← J+1 -۵
 - 8- يايان حلقه
 - ۲– **FACT** را چاپ کن.
 - ۸– پایان

• مثال: الگوریتمی که ۲۰ جملهٔ اول دنبالهٔ فیبوناچی را تولید و چاپ می کند:

$$F(n+2)=F(n)+F(n+1)$$

متغيرها

F1 و F2 و F3: جملات دنباله

K: شمارنده

مثال: الگوریتمی که دنبالهٔ فیبوناچی را تا زمان درخواست کاربر تولید و چاپ نماید:

1, 1, 2, 3, 5, 8, 13, ...

متغيرها

F1 و F2 و F3: جملات دنباله

ANS: درخواست ادامه

$$F(n+2)=F(n)+F(n+1)$$

F2 ←1 , F1 ←1 -1 ۲- F1 و F2 را چاپ کن. F3 ← F1+F2-۳ ۴– **F3** را چاپ کن F1 ← F2 - ∆ F2 + F3 -9 ۷- چاپ کن «آیا ادامه یابد؟» ۸- ANS را بخوان ۹- اگر ANS=YES است، برو به ۳. ۱۰ یایان

مثال: الگوریتمی که دو عدد A و B را دریافت نموده، اعداد زوج بین آنها را چاپ کند.

- A 1 و B را بخوان.
- ۲- اگر A>B آنگاه
- TEMP ← B
 - B—A
- A ← TEMP
- ۳- اگر A+2*2+A آنگاه A+1 م
 - وگرنه A+2 👉 A
- ۴- تا زمانیکه A<B دستورات ۵ تا ۶ را اجرا کن.
 - ۵- A را چاپ کن.
 - A --- A+2 -9
 - ۷– پایان حلقه
 - ۸– پایان

Aو B: اعداد ورودی

TEMP: متغير كمكي

مثال: الگوریتمی که یک عدد در مبنای ۱۰ خوانده، آن را به مبنای ۲ ببرد.

N -7 را بخوان.

۳- تا زمانیکه 0≠N است، دستورات ۴ تا ۸ را تکرار کن.

M ← N/2 - ۴

R N-M*2 −∆

P*10 است آنگاه | I ≠ 0 است آنگاه

S ← S+R*P - Y

 $N \leftarrow M_9 I \leftarrow I+1 - A$

٩- يايان حلقه

۱۰- S را چاپ کن.

۱۱- پایان

متغيرها

S: عدد در مبنای ۲

I: شمارنده

P: توان ۱۰

N: عدد در مبنای ۱۰

M: خارج قسمت تقسیم بر ۲

R: باقیمانده

Р	R	M	N	ı	S	شماره دستور
1				0	0	1
			3			2
						3
		1				4
	1					5
						6
					1	7
			1	1		8
						9
						3
		0				4
	1					5
10						6
					11	7
			0	2		8
						9
						3
						10

$$P \leftarrow 1_9 I \leftarrow 0_9 S \leftarrow 0_{-1}$$

- N -7 را بخوان.
- ۳– تا زمانیکه N≠0 است، دستورات ۴ تا ۸ را تکرار کز
 - M N/2 4
 - R**─**N-M*2 -∆
 - P ← P*10 است آنگاه | I ≠ 0 ← P − 1 است آنگاه
 - S S+R*P V
 - $N \leftarrow M_9 I \leftarrow I+1 A$
 - ٩- پايان حلقه
 - ۱۰- S را چاپ کن.
 - ۱۱– پایان

- بازای هر حلقهٔ تکرار شمارندهٔ جداگانه ای استفاده می شود.
- در اجرای حلقه های تکرار تو در تو بازای هر بار اجرای حلقه بیرونی، حلقه تکرار درونی به طور کامل اجرا می شود.
 - مثال:

۵- تا زمانیکه M<10 است، دستورات ۶ تا ۱۲ را اجرا کن.

... -9

N 1 - Y

۸- تا زمانیکه N<5 است، دستورات ۹ تا ۱۰ را اجرا کن.

... –٩

N ← N+1 -1•

N<5 يايان حلقه

M ← M+1 -17

۱۳- پایان حلقه M<10

- مثال: الگوریتمی که اعداد اول کوچکتر از یک عدد ورودی (N) را بر اساس تعداد مقسوم علیه ها تشخیص می دهد و چاپ می کند.
 - **I** ← 1 \
 - N ۲ را بخوان.
 - ۳- تا زمانیکه I<=N است، دستورات ۴ تا ۱۱ را تکرار کن.
 - K ← 0 ₉ J ← 1 ۴
 - ۵- تا زمانیکه J <= J است، دستورات ۶ تا ۸ را تکرار کن.
 - R ← I-(I/J)*J -۶
 - ۷- اگر R=0 آنگاه R+1 → V
 - J ← J+1 -A
 - 9- پايان حلقه **|=>**
 - ۱۰- اگر K=2 آنگاه چاپ کن ا اول است.
 - I ← I+1 \ \
 - ۱۲- پایان حلقهٔ ۱<=N
 - ۱۳– پایان

متغيرها

I: شمارنده اعداد

N: عدد مورد نظر

K: تعداد مقسوم علیه های عدد

J: شمارندهٔ عمل تقسیم

R: باقیمانده تقسیم

_ecture_2 44