Microeconometrics Module

Lecture 1: Potential Outcomes

Swapnil Singh
Lietuvos Bankas and KTU | Course Link

Introduction

- We are interested in causality
 - Does vaccine prevents polio, Covid-19, malaria?
 - Does schooling increases earning potential of individuals?
 - Is dense urban development conducive for economic growth?
 - \circ Why female labor force participation increased in the 20^{th} century?
 - o ...
- Objective of today's lecture
 - Learn about potential outcomes: notation and intuition
- Why?
 - Fundamental block to talk about causality

An example

- Question: Does health insurance access improves health outcomes
- Notation:
 - \circ Y called *outcome* denotes health of individual
 - \circ D called treatment denotes whether individual has health insurance or not
- Transformation of our question:
 - $\circ D$ has an effect on Y?
- Why this question is hard?

An example

Red pill or blue pill

Potential Outcomes

- We do not observe both worlds simultaneously
- But thinking about them helps to understand causality
- Potential Outcomes
 - different states that can occur for a unit.
- in our example unit is individual
- different states
 - individual's health without health insurance
 - individual's heatlh with health insurance

Potential Outcomes: Notation

- Neyman-Rubin Causal model
- *n* individuals
- index i
- Two potential outcomes for each individual
 - \circ health when have health insurance: $Y_i(D_i=1)$ or $Y_i(1)$
 - \circ health when don't have health insurance: $Y_i(D_i=0)$ or $Y_i(0)$
- **SUTVA** Assumption
 - Stable unit treatment value assignment
 - fancy name to say there are no spillover effects
 - \circ individual i's outcome is not affected by treatment of other units

Potential outcomes and actual outcome

- ullet For individual i we observe Y_i
- ullet Two potential outcomes for the same individual: $Y_i(0), Y_i(1)$
- We can write

$$Y_i = (1 - D_i)Y_i(0) + D_iY_i(1)$$

where $D_i \in \{0,1\}$

i	$Y_i(1)$	$Y_i(0)$	D_i	Y_i
1	0	1	1	0
2	0	0	1	0
3	1	0	0	0
:	•	:	:	•
n	0	1	0	1

Reiterating the objective

- ullet We want to estimate the causal effect of treatment D
- Life would be easy if observe both potential outcomes
- But, life is not easy
- Essentially, our whole objective will be to construct that missing potential outcome
 - counterfactual
- Essence of this module: construction of counterfactuals