Operating Systems CT-353 LAB 2

Syed Ahab Ali DT-22049

1) Implement the First Come First Serve code and paste the output below.

```
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
int main()
   int bt[20], wt[20], tat[20], i, n;
   float wtavg, tatavg;
   system("cls");
   printf("\nEnter the number of processes-- ");
   scanf("%d", &n);
   for (i = 0; i < n; i++)
        printf("\nEnter Burst Time for Process %d -- ", i);
       scanf("%d", &bt[i]);
   wt[0] = wtavg = 0;
   tat[0] = tatavg = bt[0];
   for (i = 1; i < n; i++)
       wt[i] = wt[i - 1] + bt[i - 1];
       tat[i] = tat[i - 1] + bt[i];
        wtavg = wtavg + wt[i];
       tatavg = tatavg + tat[i];
   printf("\t PROCESS \tBURST TIME \t WAITING TIME\t TURNAROUND TIME\n");
   for (i = 0; i < n; i++)
       printf("\n\t P %d \t\t %d \t\t %d \t\t %d", i, bt[i], wt[i], tat[i]);
   printf("\nAverage Waiting Time-- %f", wtavg / n);
   printf("\nAverage Turnaround Time-- %f", tatavg / n);
   getch();
   return 0;
```

```
©:\ C:\Users\baziq\OneDrive\Des X
Enter the number of processes-- 3
Enter Burst Time for Process 0 -- 5
Enter Burst Time for Process 1 -- 6
Enter Burst Time for Process 2 -- 7
                                          WAITING TIME
                                                           TURNAROUND TIME
         PROCESS
                         BURST TIME
         P 0
                          5
                                                           5
         P 1
                          6
                                           5
                                                           11
         P 2
                          7
                                           11
                                                           18
Average Waiting Time-- 5.333333
Average Turnaround Time-- 11.333333
```

2) Implement the Shortest Job First code and paste the output below.

```
Binclude <stdio.h>
Binclude <conio.h>
Binclude <conio.h

Binclude
```

```
© C:\Users\baziq\OneDrive\Des X
Enter the number of processes -- 3
Enter Burst Time for Process 0 -- 3
Enter Burst Time for Process 1 -- 4
Enter Burst Time for Process 2 -- 5
                          BURST TIME
        PROCESS
                                           WAITING TIME
                                                             TURNAROUND TIME
        P<sub>0</sub>
                          3
                                                             3
                                           0
                                                             7
        P1
                          4
                                           3
                                           7
                                                             12
Average Waiting Time -- 3.333333
Average Turnaround Time -- 7.333333
```

3) Implement the Round Robin code and paste the output below.

```
#Include <stdio.h>
#Include <conio.h>
#Include <conio.h

#Include
```

```
©:\ C:\Users\baziq\OneDrive\Des X + \ \
Enter the no of processes -- 3
Enter Burst Time for process 1 -- 7
Enter Burst Time for process 2 -- 8
Enter Burst Time for process 3 -- 9
Enter time quantum -- 20
The Average Turnaround Time is -- 15.333333
The Average Waiting Time is -- 7.333333
        PROCESS BURST TIME
                                WAITING TIME
                                                 TURNAROUND TIME
        1
                                 0
                                                 7
                7
        2
                                 7
                 8
                                                 15
        3
                 9
                                 15
                                                  24
```

4) Implement the Priority Based Scheduling code and paste the output below.

```
#include <stdio.h>
#include <comio.h>
       int p[20], bt[20], pri[20], wt[20], tat[20], i, k, n, temp;
       float wtavg, tatavg;
       printf("Enter the number of processes --- ");
       printf("Enter the homose of page 5 canf("%d", &n);
for (i = 0; i < n; i++) {
   p[i] = i;
   printf("Enter the Burst Time & Priority of Process %d --- ", i);
   scanf("%d %d", &bt[i], &pri[i]);</pre>
       for (i = 0; i < n; i++) {
    for (k = i + 1; k < n; k++) {
        if (pri[i] > pri[k]) {
            temp = p[i];
            p[i] = p[k];
            p[k] = temp;
    }
}
                             temp = bt[i];
bt[i] = bt[k];
bt[k] = temp;
                             temp = pri[i];
pri[i] = pri[k];
pri[k] = temp;
       wtavg = wt[0] = 0;
tatavg = tat[0] = bt[0];
       for (i = 1; i < n; i++) {
   wt[i] = wt[i - 1] + bt[i - 1];
   tat[i] = tat[i - 1] + bt[i];
   wtavg += wt[i];</pre>
              tatavg += tat[i];
       printf("\nPROCESS\t\tPRIORITY\tBURST TIME\tWAITING TIME\tTURNAROUND TIME");
       for (i = 0; i < n; i++) {
    printf("\n%d \t\t %d \t\t %d \t\t %d \t\t %d \t\t %d ", p[i], pri[i], bt[i], wt[i], tat[i]);</pre>
       printf("\nAverage Waiting Time is --- %f", wtavg / n);
printf("\nAverage Turnaround Time is --- %f", tatavg / n);
       return 0;
```

```
C:\Users\baziq\OneDrive\Des X
Enter the number of processes --- 4
Enter the Burst Time & Priority of Process 0 --- 1
Enter the Burst Time & Priority of Process 1 --- 3
4
Enter the Burst Time & Priority of Process 2 --- 5
Enter the Burst Time & Priority of Process 3 --- 4
2
PROCESS
                PRIORITY
                                 BURST TIME
                                                 WAITING TIME
                                                                  TURNAROUND TIME
0
                 2
                                  1
                                                   Θ
                                                                   1
2
                 2
                                  5
                                                   1
                                                                   6
                                                                   10
3
                 2
                                  4
                                                   6
                 Ц
                                  3
                                                   10
                                                                   13
Average Waiting Time is --- 4.250000
Average Turnaround Time is --- 7.500000
```

5) Execute all scheduling algorithms on following data and find out the Average Waiting Time and

Average Turnaround Time of all scheduling algorithms and discuss your results.

(Quantum Value is 3)

Process Name	Burst Time	Priority
PO	2	3
P1	6	1
P2	4	2

FCFS CPU SCHEDULING ALGORITHM

```
cout C:\Users\admin\Downloads\105.exe
 cout FCFS Scheduling
 floatProcess Burst Time
                              Waiting Time
                                              Turnaround Time
       PØ
               2
                                               2
 for
              6
                               2
              4
                               8
                                               12
       Average Waiting Time: 3.33333
      Average Turnaround Time: 7.33333
 cout
 cout
       Process exited after 0.09211 seconds with return value 0
       Press any key to continue . . .
main
 int
```

SJF CPU SCHEDULING ALGORITHM

```
C:\Users\admin\Downloads\105.exe
SJF Scheduling
Process Burst Time
                        Waiting Time
                                         Turnaround Time
PØ
        2
                         0
                                         2
        4
                         2
                                         6
                                         12
Average Waiting Time: 2.66667
Average Turnaround Time: 6.66667
Process exited after 1.969 seconds with return value 0
Press any key to continue . . .
```

PRIORITY CPU SCHEDULING ALGORITHM

```
loat total wt = 0, total tat = 0;
or (int C:\Users\admin\Downloads\105.exe
    tota.priority Scheduling
    tota Process Burst Time
                                   Priority
                                                    Waiting Time
                                                                      Turnaround Time
    cout P1
                  6
          P2
                  4
                                   2
                                                    6
                                                                      10
         PØ
                                                    10
                                                                      12
out <<
         Average Waiting Time: 5.33333
out <<
         Average Turnaround Time: 9.33333
ain() { Process exited after 2.005 seconds with return value 0 press any key to continue . . .
nt proce
```

ROUND ROBIN CPU SCHEDULING ALGORITHM

```
Round Robin Scheduling
Process Burst Time Waiting Time Turnaround Time
P0 2 0 2
P1 6 5 11
P2 4 8 12
Average Waiting Time: 4.33333
Average Turnaround Time: 8.33333

Process exited after 2.121 seconds with return value 0
Press any key to continue . . .
```

Conclusion;

Among the scheduling algorithms, **Shortest Job Next (SJN)** provides the best performance with the lowest Average Waiting Time (AWT) and Average Turnaround Time (ATAT), making it ideal for systems prioritizing quick task completion. **First-Come-First-Serve (FCFS)** is straightforward but can lead to longer waiting times for larger tasks. **Priority Scheduling** is effective for prioritizing critical processes but may increase waiting time for lower-priority tasks. **Round Robin (RR)** ensures fairness and responsiveness in time-shared systems but has slightly higher overhead due to frequent context switching. The choice of the algorithm depends on the system's specific requirements for fairness, efficiency, and priority handling.