Analiza struktury c.d.

Wykład 6

elzbieta.golata@ue.poznan.pl
dr hab. Elżbieta Gołata, prof. nadzw. UEP,
Katedra Statystyki
Wydział Informatyki i Gospodarki Elektronicznej
Uniwersytet Ekonomiczny w Poznaniu

	MIIAIRY ANAILIZY STIRUIKTUIRY			
KILASYCZNIE	POZYCYJNE			
1. 0	CHARAKTERYSTYKI TENDENCJI CENTRALNEJ			
- średnia arytmetyczna	- kwantyle (kwartyle, decyle, percentyle)			
- średnia geometryczna - średnia harmoniczna - dominanta (wartość najczęści - średnia kwadratowa				
2 CHARAKT	ERYSTYKI ZRÓŻNICOWANIA - DYSPERSJI - ZMIENNOŚCI			
- odchylenie przeciętne	- rozstęp, obszar zmienności			
- wariancja	- odchylenie ćwiartkowe			
- odchylenie standardowe	- odchylenie decylowe			
- klasyczny współ. zmienności	- pozycyjny współ. Zmienności			
3.	CHARAKTERYSTYKI ASYMETRII - SKOŚNOŚCI			
- moment trzeci centralny	- pozycyjny miernik asymetrii			
- moment trzeci centralny stand.	- pozycyjny współ. asymetrii			
	klasyczno-pozycyjny miernik asymetrii			
	klasyczno-pozycyjny współczynnik asymetrii			
4 A CII	ARAKTERYSTYKI KONCENTRACJI WOKÓŁ ŚREDNIEJ			
4 A. CH				
moment agreements controlled	(kurtozy-ekscesu)			
moment czwarty centralny				

Miary analizy struktury

moment czwarty centralny standaryzowany

4 B. CHARAKTERYSTYKI KONCENTRACJI-RÓWNOMIERNOŚCI PODZIAŁU

współczynnik koncentracji K

Podstawowe rodzaje badań statystycznych2 Statystyka opisowa

Analiza asymetrii

MIARY ASYMETRII WSPÓŁCZYNNIKI ASYMETRII

 $A_{s(x)} = \frac{\overline{x} - D}{s(x)}$ klasyczno-pozycyjny współczynnik asymetrii $A_{s(x)} \in \langle -1; 1 \rangle$

 $A_{Q(x)} = \frac{Q_3 + Q_1 - 2Q_2}{2Q(x)}$ pozycyjny współczynnik asymetrii $A_{!Q(x)} \in \langle -1; 1 \rangle$

$$A_{Q(x)} = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_2) + (Q_2 - Q_1)} \qquad (Q_3 - Q_2) - (Q_2 - Q_1) \qquad a + Q_2 - Q_1 - Q_2 -$$

Rozkład symetrycz ny

Asymetria prawostronna

Statystyka opisowa Podstawowe rodzaje badań statystycznych4

Miary asymetrii
Rachunek momentów

RACHUNEK MOMENTÓW

Dowolnym k-tym momentem rozkładu nazywamy średnią arytmetyczną z odchyleń poszczególnych wartości zmiennej X od dowolnej liczby x_0 podniesionych do k-tej potęgi:

$$m_k = \frac{\sum (x_i - x_0)^k n_i}{n}$$

MOMENTY ZWYKŁE

$$m_1 = \frac{\sum (x_i - 0)}{n} = \frac{\sum x_i}{n} = \bar{x}$$

$$m_2 = \frac{\sum (x_i - 0)^2}{n} = \frac{\sum x_i^2}{n} = \bar{x}^2$$

MOMENTY CENTRALNE

$$\mu_{1} = \frac{\sum (x_{i} - \bar{x})^{1} n_{i}}{n} = 0$$
 zawsze równy zero
$$\mu_{2} = \frac{\sum (x_{i} - \bar{x})^{2} n_{i}}{n} = s^{2}(x)$$
 wariancja
$$\mu_{3} = \frac{\sum (x_{i} - \bar{x})^{3} n_{i}}{n}$$
 miara asymetrii
$$\mu_{4} = \frac{\sum (x_{i} - \bar{x})^{4} n_{i}}{n}$$
 miara ekscesu

Statystyka opisowa Podstawowe rodzaje badań statystycznych

Miary asymetrii Rachunek momentów

moment trzeci centralny wyrażony w jednostkach odchylenia standardowego:

$$\alpha_3 = \frac{\frac{1}{n} \sum (x_i - \bar{x})^3}{s^3(x)}$$

$$\alpha_3' = \frac{\mu_3}{s^3(x) + |\mu_3|}$$
 $-1 < \alpha_3' < 1$

$$-1 < \alpha_3 < 1$$

moment czwarty centralny wyrażony w jednostkach odchylenia standardowego:

$$\alpha_4 = \frac{\frac{1}{n} \sum (x_i - \overline{x})^4}{s^4(x)}$$

$$\alpha_4 < 3$$

$$\alpha_4 = 3$$

$$\alpha_4 > 3$$

$$\alpha_{4}' = \frac{\mu_{4} - s(x)^{4}}{\mu_{4}} \qquad \qquad \alpha_{4}' \in \langle 0; 1 \rangle$$

dla rozkładu normalnego

$$\alpha_{4}^{'} = 0,666$$

5 - liczbowa synteza	

5 - LICZBOWA SYNTEZA FIVE NUMBER SUMMARY

SYNTETYCZNY OPIS ZBIOROWOŚCI PRZY POMOCY PIĘCIU LICZB

Przykład

W 2000 r. Pentor opublikował informacje dotyczące czasu oglądania telewizji przez dzieci w wieku szkolnym według różnych charakterystyk społecznych. W przykładowej próbie 20 dzieci w jednej z poznańskich szkół podstawowych otrzymano następujące informacje o przeciętnej liczbie godzin spędzanych przed telewizorem w ciągu tygodnia:

Proszę przedstawić i zinterpretować 5 – liczbową syntezę.

Rozwiązanie:

WARTOŚCI EKSTREMALNE: MIN=5 GODZIN MAX=66 GODZIN

Kwartyle:

♦ Ponieważ n=20 n/4=5 $Q_1=21+0,25*(25-21)=22$ ♦ Ponieważ n=20 n/2=10 $Q_2=30+0,5*(31-30)=30,5$ ♦ Ponieważ n=20 3/4n=15 $Q_3=35+0,75*(38-35)=37,25$

Łącznie z uzupełniającą informacją o zróżnicowaniu badanej zbiorowości, 5-liczbową syntezę można zapisać następująco:

$$Min = 5$$
 $Q_1 = 22$ $Q_2 = 30,5$ $Q_3 = 37,25$ $Max = 66$ $Q_1 - Min = 17$ $Q_2 - Q_1 = 8,5$ $Q_3 - Q_2 = 6,75$ $Max - Q_3 = 28,75$

JEDNOSTKI O WARTOŚCIACH SKRAJNYCH - OUTLIERS

<DG, GG> jednostki, które przyjmują wartość cechy z tego przedziału **nie** są traktowane jako odstające.

$$DG = Q_1 - 1.5 \cdot IQR$$

$$GG = Q_3 + 1.5 \cdot IQR$$

$$IQR = Q_3 - Q_1$$
.

Rozstęp między-kwartylowy
$$IQR = 37,25 - 22 = 15,25$$

Dolna Granica
$$Q_1$$
-1,5 · $IQR = 22 - 1,5 · 15,25 = -0,875$

Górna Granica
$$Q_3 + 1.5^{\circ} IQR = 37.25 + 1.5^{\circ} 15.25 = 60.125$$

WYKRES PUDEŁKOWY – BOXPLOT

- ♦ Przedstaw 5-liczbowa syntezę
- ❖ Narysuj oś liczbową i nanieś na nią wielkości obliczone w poprzednim kroku. Powyżej osi zaznacz krótkie odcinki pionowe w miejscach odpowiadających kwartylom i połącz je tworząc prostokąt podzielony na dwie części w miejscu odpowiadającym kwartylowi drugiemu.
- → Zaznacz przy pomocy krótkich odcinków pionowych wartości ekstremalne. Połącz odcinkami (tzw. wąsami) boki
 prostokąta odpowiadające kwartylom z wartościami minimalna i maksymalną.

$$Min = 5$$
 $Q_1 = 22$ $Q_2 = 30,5$ $Q_3 = 37,25$ $Max = 66$ $Q_1 - Min = 17$ $Q_2 - Q_1 = 8,5$ $Q_3 - Q_2 = 6,75$ $Max - Q_3 = 28,75$

5 - liczbowa synteza	

ZMODYFIKOWANY WYKRES PUDEŁKOWY

- ♦ Wyznacz kwartyle
- → Zidentyfikuj potencjalne wartości odstające oraz wartości ekstremalne* nie będące wartościami odstającymi, tzn. zawarte w przedziale <DG; GG>. Jeżeli w zbiorze nie występują wartości odstające, wówczas są to po prostu wartości ekstremalne tzn. Min i Max
- ♦ Narysuj oś liczbową i nanieś na nią wielkości obliczone w pierwszym kroku. Powyżej osi zaznacz krótkie odcinki pionowe w miejscach odpowiadających kwartylom i połącz je tworząc prostokąt podzielony na dwie części w miejscu odpowiadającym medianie. Zaznacz przy pomocy krótkich odcinków pionowych wartości *ekstremalne**. Połącz odcinkami (tzw. wąsami) boki prostokąta odpowiadające kwartylom z wartościami *ekstremalnymi**.
- ♦ Narysuj gwiazdkę odpowiadającą każdej potencjalnej wielkości odstającej

Ekstremalna D*= Min

Ekstremalna $G^*=43$

$$Min = 5$$
 $Q_1 = 22$ $Q_2 = 30,5$ $Q_3 = 37,25$ $Max = 66$ $Q_1 - Min = 17$ $Q_2 - Q_1 = 8,5$ $Q_3 - Q_2 = 6,75$ $Max - Q_3 = 28,75$

Statystyka opisowa	Podstawowe rodzaje badań statystycznych

Przykłady

PRZYKŁADY

EXCEL

Wyniki ankiety socjologicznej przeprowadzonej w październiku 2006 roku przez studentów socjologii UAM w grupie 500 studentów z różnych uczelni wyższych z województwa wielkopolskiego dostarczyły następujących informacji o przeciętnym czasie spędzanym tygodniowo w Internecie

Tygodniowy czas pra-	Liczba studentów
cy w Internecie	
X_i	n_i
Poniżej 2 godzin	13
2-3	37
3-5	57
5-10	115
10-15	147
15-20	63
20-30	46
30-50	14
50 i więcej	8

Powierzchnię gospodarstw rolnych w województwie wielkopolskim opisuje poniższy szereg:

Powierzchnia	Odsetek		
gospodarstw rolnych (w ha)	gospodarstw		
0-3	20		
3-6	30		
6-10	25		
10-15	15		
15 i więcej	10		
Razem	100		

Zdefiniuj zbiorowość statystyczną, jednostkę oraz scharakteryzować badaną cechę.
Przeprowadź kompleksową analizę struktury

W banku X poddano obserwacji wysokość udzielanych kredytów konsumpcyjnych. Dla 200 wybranych i udzielonych kredytów konsumpcyjnych w 2006 roku otrzymano poniższy szereg:

Wysokość kredytu	Liczba
(w tys. zł)	kredytów
0-5	20
5-10	40
10-15	50
15-20	40
20-25	30
25-30	20
Razem	200

- 1. Koncentracja jednostek zbiorowości wokół wartości średniej (kurtoza)
- 2. Nierównomierność rozkładu wartości globalnej cechy na poszczególne jednostki zbiorowości:

Rys.1 Rozkład podmiotów gospodarczych według su- Rys.2 Rozkład podmiotów gospodarczych według my wypłaconych wynagrodzeń w roku, SP3, 2001

przychodów, SP-3, 2001

bezpośrednio związana z dyspersją i asymetrią – im silniejsza asymetria i większe zróżnicowanie jednostek, tym koncentracja jest większa

2 skrajne przypadki

- Skrajne przypadki nie występuja

- brak koncentracji na każdą jednostkę przypada taka sama część ogólnej sumy wartości
 - (każdy pracownik w przedsiębiorstwie otrzymuje taką samą cześć łącznego funduszu płac
- koncentracja zupełna (całkowita)

łączny fundusz cechy przypada na daną jednostkę zbiorowości (łączny fundusz płac przypada na jednego pracownika

2 metody badania siły koncentracji: graficzna i analityczna

KRZYWA LORENZA - metoda graficzna

$$G = \frac{a}{(a+b)}$$

$$G = \frac{a}{5000}$$

Współczynnik Giniego - metoda analityczna

Współczynnik zaproponowany w 1912 r. przez włoskiego statystyka Corrado Giniego (1884-1965) jest miarą stopnia nierówności rozkładu dochodów w danym społeczeństwie.

- współczynnik Giniego przyjmuje wartości z przedziału [0; 1],
- wartość zerowa współczynnika wskazuje na pełną równomierność rozkładu dochodów,
- wzrost wartości współczynnika oznacza wzrost nierówności dochodowych,
- wartość równa jedności sytuacja absolutnej koncentracji majątku (dochodu) w posiadaniu jednego tylko gospodarstwa

W przypadku szeregu szczegółowego zastosujemy wzór:

$$G(x) = 1 - \frac{1}{n^2 \cdot \bar{x}} \sum_{i=1}^{n} \left(x_i + 2 \sum_{s=1}^{i-1} x_s \right)$$

•współczynnik Giniego przyjmuje wartości z przedziału [0; 1],

Statystyka opisowa	Podstawowe rodzaje badań statystycznych
--------------------	---

W przypadku szeregu strukturalnego zastosujemy wzór:

$$G(x) = 1 - \sum_{i=1}^{k} \left[\sum_{s=1}^{i-1} z_s(x) + \sum_{s=1}^{i} z_s(x) \right] w_i$$

gdzie:

$$w_i = \frac{n_i}{n}$$

$$z_i(x) = \frac{x_i n_i}{\sum_{i=1}^k x_i n_i}$$

Metoda przybliżona sprowadza się do obliczania pól figur geometrycznych: trójkąta i trapezów wyznaczonych przedziałami klasowymi Zastosujemy wówczas wzór:

$$G(x) = \frac{0.5 - \sum_{i=1}^{k} \left(\frac{cum z_i + cum z_{i-1}}{2}\right) w_i}{0.5}$$

Statystyka opisowa

Podstawowe rodzaje badań statystycznych

Rozkład płatników podatku dochodowego według wysokości dochodu na podstawie budżetu 2003, Irlandia

_		Liczba płatników	Wartość podatku					F/ \/07	,
Doc	hod	(w tys.)	(w tys. £)	$\mathbf{W_{i}}$	Z i	$_{k}W_{i}$	_k Z _i	$[(_{k}z_{i}+_{k}z_{i-1})/2]w_{i}$	$(kZ_i+kZ_{i-1})W_i$
4615	5000	0,5	10	1,618	0,008	1,618	0,008	0,007	0,0130399
5000	7500	3,3	510	10,680	0,411	12,298	0,419	2,281	4,5613621
7500	10000	3,8	1990	12,298	1,604	24,595	2,023	15,014	30,028315
10000	15000	6,5	8270	21,036	6,665	45,631	8,687	112,645	225,2906
15000	20000	5,1	11660	16,505	9,396	62,136	18,084	220,925	441,84968
20000	30000	6,3	23670	20,388	19,075	82,524	37,159	563,148	1126,2965
30000	50000	3,7	25220	11,974	20,324	94,498	57,482	566,621	1133,2416
50000	100000	1,3	21950	4,207	17,689	98,706	75,171	279,045	558,09008
100000	i więcej	0,4	30810	1,294	24,829	100,000	100,000	113,379	226,7589
Razem		30,9	124090	100	100			1873,065	3746,130

Źródło: Obliczenia wlasne na podstawie danych Inland Revenue, T. Bradley, Essential Statistics for Economics, Business and Management, John Wiley & Sons, 2007

$$G(x) = \frac{5000 - \sum_{i=1}^{k} \left(\frac{cum z_i + cum z_{i-1}}{2}\right) w_i}{5000}$$

$$G(x) = \frac{5000 - 1873,065}{5000} = 0,625$$

$$G(x) = \frac{5000 - \sum_{i=1}^{k} \left(\frac{cum}{2} z_i + cum z_{i-1}}{2}\right) w_i}{5000}$$

$$G(x) = \frac{5000 - 1873,065}{5000} = 0,625$$

$$G(x) = 1 - \sum_{i=1}^{k} \left[\sum_{s=1}^{i-1} z_s(x) + \sum_{s=1}^{i} z_s(x)\right] w_i$$

$$G(x) = 10000 - 3746,130 = 6253,8699$$

PRAKTYCZNA UŻYTECZNOŚĆ WSPÓŁCZYNNIKA GINIEGO

1. Human Development Index (HDI) jako syntetyczny miernik jakości życia:

- oczekiwane trwanie życia
- analfabetyzm wśród dorosłej ludności
- współczynnik skolaryzacji
- dochód narodowy na osobę

2. W praktyce współczynnik Giniego przyjmuje wartości:

- od około 0,2 dla byłych państw socjalistycznych społeczeństw egalitarnych np. Bułgaria, Węgry, Słowacja, Czechy, Polska
- do ponad 0,6 dla krajów Ameryki Środkowej i Południowej o ukształtowanych elitach gospodarczych

3. Analiza wartości współczynnika Giniego jest użyteczna w badaniu trendów zmian.

- Wskazuje np. wzrost równości społecznych na Kubie w latach 1953 do 1986 G(x) zmniejszył się z 0,55 do 0,22.
- Pogłębianie się nierówności społecznych w USA w ostatnich czterech dekadach, w których zaobserwowano wzrost współczynnika Giniego z 0,35 w latach 70. do 0,45 obecnie, przy dalszym wzroście
- W większości państw europejskich i Kanadzie, współczynnik ten przyjmuje wartość około 0,30.
- W Japonii i niektórych krajach azjatyckich współczynnik Giniego wynosi około 0,35 0,40
- W większości krajów afrykańskich G(x) przekracza 0,45.

Statystyka opisowa

Podstawowe rodzaje badań statystycznych

Na podstawie informacji z 2005 roku wiadomo, iż w Polsce wskaźnik Giniego kształtuje się na poziomie 0, 31-0, 33

ZASADA PARETO

Zasada 80/20 głosi, że 80% wyników wypływa tylko z 20% przyczyn

Schemat leżący u podstaw tej zasady został odkryty w roku 1897, włoskiego ekonomistę Vilfreda Pareto

O znacznej koncentracji mówi się, gdy 20% jednostek skupia 80% wartości (G(x)>0,64)

- 20% produktów firmy daje jej 80% zysków
- 20% klientów przynosi nam 80% wartości sprzedaży
- 20% kryminalistów popełnia 80% przestępstw
- 20% kierowców powoduje 80% wypadków
- 20% słownictwa wystarczy by móc czytać 80% tekstów w języku
- 20% powierzchni dywanu przypada na 80% zużycia
- 20% ubrań nosimy przez 80% czasu
- 20% naszej pracy daje 80% efektów
- 20% naszego życia daje nam 80% szczęścia

Dziękuję za uwagę