AGEC 5403 Problem Set 3 Q2 Complete Solution. Bijesh Mishra

restart;

$$x1 := b; a1 := 2512; a2 := 180; a3 := -1.5; p := 2; VC := 2000; FC := 0;$$
 $x1 := b$
 $a1 := 2512$
 $a2 := 180$
 $a3 := -1.5$
 $p := 2$
 $VC := 2000$

FC := 0

 $f := a1 \cdot x1 + a2 \cdot x1^2 + a3 \cdot x1^3;$

$$f := -1.5 b^3 + 180 b^2 + 2512 b$$
 (2)

(1)

 $profit := f \cdot p - (x1 \cdot VC + FC);$

$$profit := 3024 \ b - 3.0 \ b^3 + 360 \ b^2$$

 $EP \ x1 := diff(profit, x1);$

$$EP \ x1 := 3024 - 9.0 \ b^2 + 720 \ b \tag{4}$$

 $x1_demand := solve(EP_x1 = 0, b)$; #This is just a demand but not demand at maximum profit.

$$x1_demand := -4., 84.$$
 (5)

 $APP := simplify \left(\frac{f}{xl} \right);$

$$APP := -1.5 b^2 + 180. b + 2512.$$
 (6)

MPP := diff(f, x1);

$$MPP := -4.5 b^2 + 360 b + 2512 \tag{7}$$

 $AVP := p \cdot APP$;

$$AVP := -3.0 \ b^2 + 360. \ b + 5024.$$
 (8)

boat := diff(AVP, x1);

$$boat := -6.0 \ b + 360.$$
 (9)

#*HW3_Q2_a*:

 $MaximumBoat \ 2a := solve(boat = 0, x1);$

$$MaximumBoat \ 2a := 60.$$
 (10)

#Answer: individual will use 60 boats

Total fish caught by 60 boats (maximum number of fish caught by 60 boats);

Totfish := eval(f, x1 = MaximumBoat 2a);

$$Totfish := 474720.0 \tag{11}$$

Profit 2a := eval(profit, [f = Totfish, x1 = MaximumBoat 2a]); #under scenario in 2a...

$$Profit \ 2a := 829440.0$$
 (12)

##HW3_Q2_b: New boat will be added if there is profit. So, number of boat reach

to maximum when profit is zero under perfect comptition.

 $profit_zero := Totfish \cdot p - x1 \cdot VC;$

$$profit \ zero := -2000 \ b + 949440.0$$
 (13)

 $maximum\ boat := solve(profit\ zero = 0, x1);$

$$maximum \ boat := 474.7200000$$
 (14)

Ans = 474.72 boats.

#HW3 Q2 c: Cooperative is formed and share profit equally.

 $fb := simplify\left(\frac{f}{xl}\right); \#production function of individual boat.$ $fb := -1.5 \ b^2 + 180. \ b + 2512.$ $profit_fb := p \cdot fb - x1 \cdot VC - FC;$

$$fb := -1.5 \ b^2 + 180. \ b + 2512.$$
 (15)

$$profit_fb := -1640. \ b - 3.0 \ b^2 + 5024.$$
 (16)

 $APP_fb := simplify\left(\frac{fb}{rI}\right);$

$$APP_fb := \frac{-1.5 \ b^2 + 180. \ b + 2512.}{b}$$
 (17)

 $fb_x1_demand := solve(diff(profit_fb, x1), x1); #not a maximizing demand.$

$$fb_x 1_demand := -273.3333333$$
 (18)

 $AVP \ fb := simplify(p \cdot APP \ fb);$

$$AVP_fb := \frac{-3. b^2 + 360. b + 5024.}{b}$$
 (19)

boat $fb := simplify(diff(AVP_fb, x1)); \# For max profit, first derivative of AVP should be 0.$

$$boat_fb := \frac{-3. b^2 - 5024.}{b^2}$$
 (20)

 $MaxBoat \ fb := solve(boat \ fb = 0, x1);$

$$MaxBoat \ fb := -40.92269134 \ I, 40.92269134 \ I$$
 (21)

Answer:

Already negative or indetermined. So, it is not profitable to operate as cooperate. Not operating any boat is most profitable.

HW3 Q2 d. This is in the third stage of production

 $MPP \ f\overline{b} := diff(fb, x1);$

$$MPP_fb := -3.0 \ b + 180.$$
 (22)

 $Curvature_fb := diff(MPP_fb, x1);$

Curvature
$$fb := -3.0$$
 (23)

Elasticity := $\frac{MPP_fb}{APP_fb}$;

Elasticity :=
$$\frac{(-3.0 \ b + 180.) \ b}{-1.5 \ b^2 + 180. \ b + 2512.}$$
 (24)

StatgeIII := solve(Elasticity = 0, x1);

$$StatgeIII := 0., 60.$$
 (25)

StatgeI := solve(Elasticity = 1, x1)

$$StatgeI := 40.92269134 \text{ I}, -40.92269134 \text{ I}$$
 (26)