Procesy stochastyczne Zestaw zadań nr 4

Definicja 1. Niech $\{\mathcal{F}_t\}_{t\in T}$ będzie filtracją. Momentem stopu (momentem Markowa, momentem zatrzymania) nazywamy zmienną losową $\tau\colon T\to [0,+\infty]$ taką, że $\forall_{t\in T}$ $\{\tau\leq t\}\in \mathcal{F}_t$. Domknięcie przeciwdziedziny w nieskończoności wyjątkowo nie jest literówką.

Definicja 2. Filtrację $\{\mathcal{F}_t\}_{t\in T}$ nazywamy prawostronnie ciągłą, jeżeli $\forall_{t\in T} \mathcal{F}_{t+} = \bigcap_{s>t} \mathcal{F}_s = \mathcal{F}_t$.

Definicja 3. Mówimy, że filtracja $\{\mathcal{F}_t\}_{t\in T}$ spełnia zwykłe (standardowe) warunki, jeżeli :

- jest prawostronnie ciągła,
- \mathcal{F}_0 zawiera wszystkie zbiory miary zero.

W dalszym ciągu rozważać będziemy tylko filtracje spełniające zwykłe warunki.

Definicja 4. Niech τ będzie momentem stopu względem filtracji $\{\mathcal{F}_t\}_{t\in T}$. σ -ciałem zdarzeń obserwowanych do chwili τ nazywamy zbiór

$$\mathcal{F}_{\tau} = \left\{ A \in \mathcal{F}_{\infty} = \bigcup_{t} \ \mathcal{F}_{t} \colon \forall_{t} \ A \cap \{ \tau \leq t \} \in \mathcal{F}_{t} \right\}$$

Zadanie 1. Udowodnij

- σ ciało zdarzeń obserwowanych do chwili τ jest σ ciałem,
- $je\dot{z}eli\ \sigma \leq \tau$, to $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$,
- zmienna losowa τ jest \mathcal{F}_{τ} mierzalna.

Zadanie 2. Niech T będzie przedziałem. Wykaż, że jeżeli τ jest momentem stopu, to $\{\tau < t\} \in \mathcal{F}_t$ dla dowolonego t.

Zadanie 3. Niech $T=[0,\infty)$ oraz niech τ będzie momentem stopu. Czy momentem stopu jest

- $-\tau^2$
- $-\tau-1$,
- $-\tau + 1$,
- $-\tau + c, \ c > 0,$
- $-\tau c, \ c > 0.$

Zadanie 4. Niech $\{\tau_n\}$ będzie ciągiem momentów stopu. Udowodnij, że momentami stopu są również następujące zmienne losowe:

- $-\sup_{n} \tau_{n},$
- $-\inf_n \tau_n$,
- $\liminf_n \tau_n$,
- $\limsup_{n} \tau_n$.

Zadanie 5. Niech $T = [0, \infty)$, a X_t procesem \mathcal{F}_t -adaptowalnym o ciągłych trajektoriach. Wykaż, że dla A otwartego $\tau_A := \inf\{t \colon X_t \in A\}$ jest momentem zatrzymania względem \mathcal{F}_t .

Zadanie 6. Wykaż, że jeśli τ i σ są momentami zatrzymania, to zdarzenia $\{\tau < \sigma\}, \{\tau = \sigma\}$ i $\{\tau \le \sigma\}$ należą do $\mathcal{F}_{\tau}, \mathcal{F}_{\sigma}$ i $\mathcal{F}_{\tau \wedge \sigma}$.

To be continued...