Формирование рельефа поверхности методом наложения карт смещения при создании трехмерных объектов

Работу выполнил: студент группы ИУ9-51 Разборщикова А. В. Научный руководитель: Вишняков И. Э.

Решаемая задача

Проблемы при рендеринге сложных сцен:

- значительный расход памяти
- большое время вычисления

Решение:

иной способ представления мелких деталей

Цель работы:

 написание приложения, визуализирующего 3D модели методом трассировки лучей с использованием карт смещения

Рельефное текстурирование (bump mapping)

- 1978 год, Джеймс Ф. Блинн (James F. Blinn)
- Хранение рельефа в 2D-текстуре.
- Имитация рельефа с помощью изменения нормалей к поверхности.

Рисунок 1 — Результат наложения карты нормалей. (Изображение с сайта wikipedia.org)

Наложение карт смещения (displacement mapping)

Рисунок 2 — Представление рельефа с помощью карты высот.

(Изображение из книги Akenine-Möller T. Real-Time Rendering, Third Edition.)

- Реальное изменение геометрии поверхности.
- Карта смещений: яркость тексела соответствует величине смещения.
- Усложнение поиска пересечения с поверхностью.

Методы поиска пересечения луча с поверхностью

- Создание новых вершин:
 - рекурсивное разбиение,
 - обход виртуальной сетки.
- Дискретные алгоритмы:
 - линейный/бинарный поиск,
 - пирамидальная/сферическая трассировка.

Дискретные алгоритмы

Рисунок 3 — Линейный поиск пересечения луча и смещенной поверхности.

(Изображение из статьи Tatarchuk N. Practical Parallax Occlusion Mapping with Approximate Soft Shadows for Detailed Surface Rendering)

Рисунок 4 — Поиск пересечения луча и смещенной поверхности с помощью сферической трассировки.

(Изображение из статьи Szirmay-Kalos L. Displacement Mapping on the GPU)

Обход виртуальной сетки

- 2000 г., Брайан Смитс (Brian Smits).
- Поверхность триангулируется.
- Каждый треугольник покрывается виртуальной сеткой из N² микротреугольников.
- Реально вычисляются координаты вершин только тех микротреугольников, над которыми проходит луч.

Алгоритм обхода виртуальной сетки

- Каждый микротреугольник задается тройкой индексов (*i*, *j*, *k*).
- Стадия инициализации:
 - поиск стартовой ячейки.
- Стадия обхода:
 - на каждой итерации осуществляется переход к смежному треугольнику изменением одного индекса на 1

Обход виртуальной сетки. Иллюстрация

Рисунок 5 — Схема нумерования микрополигонов (слева) и возможный вариант прохождения луча видимости над микротреугольником (справа).

(Изображения из статьи Smits B. Direct Ray Tracing of Smoothed and Displaced Mapped Triangles.)

Реализация приложения

- Исходный код консольного приложения на языке С++.
- Трассировка лучей выполняется параллельно для каждого пиксела экрана на GPU с использованием технологии CUDA.
- Для ускорения перебора треугольников, формирующих модель, использована ускоряющая структура HLBVH.

Результаты работы программы

- Наложение программной текстуры (синусоида)
- Модель: куб, 12 треугольников. *N* = 128

Рисунок 6 — Наложение синусоиды, фронтальный вид (слева) и синусоиды, сжатой в пять раз, вид под углом (справа)

Результаты работы программы

- Наложение карты смещений
- Модель: квадрат, 2 треугольника. *N* = 128

Рисунок 7 — Деформация плоскости, фронтальный вид (слева) и вид под углом (справа)

Результаты работы программы

- Высокополигональная модель: Monsterfrog (NVIDIA)
- 2584 треугольника. N = 8

Рисунок 8 — Исходная модель (слева), часть исходной модели (по центру), добавленные после наложения карты смещений детали (справа)

Заключение

В ходе данной работы были изучены различные алгоритмы увеличения детализации трехмерных моделей с помощью двумерных текстур.

Также было реализовано приложение, позволяющее визуализировать трехмерные модели с наложением карт смещений.

Среди достоинств алгоритма можно отметить высокую скорость работы и малые затраты памяти. К недостаткам относятся проблемы точности.

Спасибо за внимание!