Comment les mathematiques s'ecrivent

1. Arithmetique (1er partie)

Depuis Euclide:

 ${\sf axiome} -> {\sf definition} -> {\sf proposition} -> {\sf demonstration}$

Aujourd'hui:

les definition doivent pouvoir s'enoncer en langage formel .

On se place dans (\mathbb{N} ; +;×; \leq)

La propriété fondamentale de $\mathbb N$

toute parti non vide dans $\mathbb N$ admet un plus petit élèment

definition : soit A une partie de $\mathbb N$ et $m\in\mathbb N$

m est un minorant ($\forall x \in A, x \geq m$)

en français : m est plus petit que tous les elements de A

exemple: [3;4;9] , 0 est minorant de [3;4;9]

demonstration: (disjonction de cas)

 $\forall x \in \{3,4,9\} \ x \geq 0$

- 1er cas : x=3 on a bien $x\geq 0$
- 2eme cas : x=4 on a bien $x\geq 0$
- 3eme cas : x=9 on a bien $x\geq 0$

conclusion: $\forall x \in \{3,4,9\} \ x \geq 0$

definition : le plus petit element (PPE)

un element $P \in \mathbb{N}$ est un PPE de A

si un $P \in A$ et si p est un minorant de A

formellement:

$$(P \in A \text{ et } \forall x \in A \mid x \geq P)$$

exemple: $B = \{n^2 + 3 | n \in \mathbb{N} \ et \ n \geq 2\}$

Montrons que 7 = PPE (B)

je veux montrer que :

$$(7 \in B)$$
 et $(\forall x \in B \ \ x \geq 7)$

•

$$7 = 2^2 + 3$$

= $n^2 + 3$ en posant $n = 2$

 $donc \ 7 \in B$

Soit $x \in B$

il existe $n \in \mathbb{N}$ tel que $x = n^2 + 3$ et $n \geq 2$

 $On\ a\ donc$

$$n^2 \geq 4 \ n^2 + 3 \geq 7 \ x \geq 7$$

conclusion : 7 est minorant de B

Conclusion: PPE(B) = 7

definition:

un nombre n est divisible par un autre (p) plus petit si le plus petit mesure le plus grand

$$n = p + p + \dots + p$$

 $n,p\in\mathbb{N}$

On dit que n est divisible par p ou que p divise n ou que n est un multiple de p

si ($\exists \; k \in \mathbb{N} \;\; n = k imes p$) on a alors p/n qui se lit "p divise n"

Attention : p/n est un booleen ce n'est pas le rationnel $\frac{p}{n}$

On deinit \mathcal{D}_p l'ensemble des diviseurs de p

•
$$D_0 = \mathbb{N}$$

•
$$D_1 = \{1\}$$

•
$$D_2 = \{1, 2\}$$

•
$$D_3 = \{1, 3\}$$

•
$$D_4 = \{1, 5\}$$

•
$$D_5 = \{1, 2, 4\}$$

•
$$D_6 = \{1, 2, 3, 6\}$$

definition:

 $p\in\mathbb{N}$ est premier si $(p\neq 1)$ et $(\forall d\in\mathbb{N}$ si d/n alors $(d=1\ ou\ d=p)$) "p admet exactement deux diviseurs 1 et lui même "

- 1. Proposition : L'unicité du PPE
- 2. Théorème

demonstration 1: Méthode prendre deux PPE , p et p^\prime et montrer que $p=p^\prime$.

Soit $A\subset \mathbb{N}$ et $p,p'\in \mathbb{N}$ des PPE de A on a donc :

(1)
$$(p \in A)$$
 et (3) $(\forall x \in A \mid x \geq p)$

(2) (
$$p' \in A$$
) et (4)($orall x \in A \quad x \geq p'$)

D'aprés (1) et (4) $p \geq p'$

D'aprés (3) et (2) $p' \geq p$

Par antisymetrie p = p'

conclusion: le plus petit element de A , s'il existe , est unique .

Théorème de la division euclidienne dans $\mathbb N$

Soient $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$ alors il existe un unique couple (q,r) s'entiers naturel tel que a=bq+r et $0 \le r < b$

demonstration: unicité : Soient (q,r) et (q^\prime,r^\prime) tels que

1.
$$a = bq + r$$

2.
$$a = bq' + r'$$

3.
$$0 \le r < b$$

4.
$$0 < r' < b$$

 $le\ but\ est\ de\ montrer\ que\ q=q',\ r=r$

On calcule (1) et (2)

•
$$0 = b(q - q')$$

 $\iff r' - r = b(q - q')$

On multiplie (3) par -1

$$-b < -r \qquad \leq 0$$

$$0 \le r'$$
 $< b$

$$-b < r' - r < b$$

On donc en utilisant (6)

$$-b < b(q - q') < b$$

comme $b \in \mathbb{N}^*$ on peut simplifier

$$-1 < q - q' < 1$$

Donc
$$q-q'=0$$
 on a montré que $\boxed{q-q}$

Donc (5) on obtient r-r'=0 donc $\boxed{r=r'}$

$$A\left\{q\in\mathbb{N}|bq\leq a\right.$$

Montrons que A admet un plus grand element (PGE)

 $\bullet \ \ A \neq 0 \ {\rm car} \ 0 \in A$

$$car \ 1 \leq b$$

 $\begin{array}{c} car \ 1 \leq b \\ \bullet \ \ A \ {\rm est \ major\'e \ par} \ a \\ donc \ q \leq bq \leq a \end{array} \ {\rm pour} \ q \in A \\ \end{array}$

Comme toute partie non vide makoré de A admet PGE

on peut poser
$$q_0 = PGE(A)$$

on pose ensuite
$$r_0=a-bq_0$$

on verifie que
$$0 \leq r_0 < b$$

$$\operatorname{car} q_0 \in A \ et \ (q_0+1) \in A$$