Assignment 02

Naman Mishra

31 October 2022

Problem 1.

- (a) Prove that for any $m, n \in \mathbb{N}$, exactly one of the following statements holds.
 - (i) m=n;
 - (ii) there is a $k \in \mathbb{N} \setminus \{0\}$ such that m + k = n;
 - (iii) there is a $k \in \mathbb{N} \setminus \{0\}$ such that n + k = m.

You may use: induction, the definition of sum_m any of its six properties stated in class (as Theorem 1.12), and the fact that the range of the function f(x) = x+1 on \mathbb{N} is $\mathbb{N} \setminus \{0\}$ (Problem 1 in HW1).

(b) Show that \mathbb{N} is an ordered set if we define < as follows: m < n if there is a $k \in \mathbb{N} \setminus \{0\}$ such that m + k = n.

Proof. Unless otherwise stated, any lowercase variable denotes a natural number.

(a) Let $R \subseteq \mathbb{N} \times \mathbb{N}$ be a relation such that $a R b \Leftrightarrow \exists k \neq 0$ such that a + k = b. Let

$$B = \{m \in \mathbb{N} : m = n, m \ R \ n, \text{ or } n \ R \ m\}$$

Note: If $\exists k$ such that m+k=n, then $m \in B$ as k=0 gives m=n and $k \neq 0$ gives m R n. Similarly n+k=m also implies $m \in B$. $0 \in B$ as 0+n=n.

If $b \in B$, then:

$$(b=n) S(b) = S(n) = n+1 \Rightarrow S(b) \in B.$$

- $(b R n) \exists k \neq 0 \text{ such that } b + k = n. \text{ Since } k \in \text{ran}(S) \text{ (HW 1.1)}, \exists k' \text{ such that } S(k') = k. \text{ Thus } b + S(k') = n \Rightarrow S(b) + k' = n \Rightarrow S(b) \in B.$
- $(n\ R\ b)\ \exists\ k\neq 0$ such that n+k=b. Then $S(n+k)=S(b)\Rightarrow n+S(k)=S(b)\Rightarrow S(b)\in B$.

Thus $b \in B \Rightarrow S(b) \in B \Rightarrow B = \mathbb{N}$. Since n was arbitrary, one of the three statements holds for each m, n.

Suppose m = n. Then if m + k = n, then $m + k = m + 0 \Rightarrow k = 0$ by the cancellation law. Similarly n + k = m also implies k = 0. Thus m = n cannot

hold simultaneously with m R n or n R m. Now if m + k = n and n + k' = m, then $(n + k') + k = n \Rightarrow n + (k + k') = n + 0 \Rightarrow k + k' = 0 \Rightarrow k = k' = 0$. Thus m R n and n R n cannot hold simultaneously.

Therefore exactly one of the three statements holds for all $m, n \in \mathbb{N}$

(b) If we define m < n as $m \ R \ n$ above, from part (a) it is clear that exactly one of m = n, m < n, n < m holds for all $m, n \in \mathbb{N}$. Moreover, if a < b and b < c, then there exist natural numbers $k, k' \neq 0$ such that a + k = b and b + k' = c. This implies (a + k) + k' = a + (k + k') = c. Since $x + y = 0 \Rightarrow x = y = 0$, $x \neq 0$ or $y \neq 0 \Rightarrow x + y \neq 0$. Thus $k + k' \neq 0 \Rightarrow a < c$. We have shown that < obeys trichotomy and is transitive. Thus $(\mathbb{N}, <)$ is an ordered set.

Problem 2. Let $(F, +, \cdot)$ be a field. According to axiom (F5), given $x \in F$, there is a $y \in F$ such that x + y = 0. Show that y is unique, i.e., if there is a $z \in F$ such that if x + y = x + z = 0, then y = z. Use only the field axioms to justify your answer.

Proof.

$$x + y = x + z$$

$$(y + x) + y = (y + x) + z$$

$$y = z$$

Problem 3. Let + and \cdot be the usual addition and multiplication on \mathbb{N} . You are free to use their well-known properties.

- (a) Let $F = \{0, 1, 2, 3\}$. We endow F with addition and multiplication as follows: $a \oplus b = c$, where c is the remainder that a + b leaves when divided by $a \odot b = c$, where c is the remainder that $a \cdot b$ leaves when divided by $a \odot b = c$, where $a \odot b = c$ is the remainder that $a \odot b$ leaves when divided by $a \odot b = c$ is the remainder that $a \odot b$ leaves when divided by $a \odot b = c$ is the remainder that $a \odot b$ leaves when divided by $a \odot b = c$ is the remainder that $a \odot b = c$ is the remainder
- (b) Let F = {0,1}. We endow F with addition and multiplication as follows:
 a ⊕ b = c, where c is the remainder that a + b leaves when divided by 2
 a ⊙ b = c, where c is the remainder that a · b leaves when divided by 2
 You may assume that (F, ⊕, ⊙) is a field. Is it possible to give F a relation <

so that $(F, \oplus, \odot, <)$ is an ordered field? Please justify your answer.

Proof. (a) Clearly 1 is the multiplicative identity.

$$2 \cdot 0 = 0$$
 $2 \cdot 1 = 2$ $2 \cdot 2 = 4$ $2 \cdot 3 = 6$
 $2 \cdot 0 = 0$ $2 \cdot 1 = 2$ $2 \cdot 2 = 0$ $2 \cdot 3 = 2$

Thus there is no multiplicative inverse of 2 in F. So (F, \oplus, \odot) is not a field.

(b) If $(F, \oplus, \odot, <)$ is an ordered field and 0 < 1, then by the field axioms, $0 \oplus 1 < 1 \oplus 1 \Leftrightarrow 1 < 0$ which is a contradiction as it disobeys trichotomy of order. If 1 < 0 then $1 \oplus 1 < 0 \oplus 1 \Leftrightarrow 0 < 1$, which cannot be true.

Problem 4. Let $(F, +, \cdot, <)$ be an ordered field.

- (i) Using only the field axioms, and the uniqueness of the additive inverse, show that for all $a, b, c \in F$, a(b-c) = ab ac.
- (ii) Using the field axioms, the order axioms, and Part (i), show that for all $a, b, c \in F$, if a < b and c < 0, then bc < ac.

Proof. (i)
$$a(b + (-c)) = ab + a(-c)$$

 $a(c + (-c)) = ac + a(-c)$
 $0 = ac + a(-c)$
 $a(-c) = -(ac)$

Thus a(b + (-c)) = ab - ac.

(ii)
$$c < 0 \Rightarrow c + (-c) < -c \Rightarrow 0 < -c$$
.
 $a < b \Rightarrow a + (-a) < b + (-a) \Rightarrow 0 < b - a$.
Thus

$$0 < (b + (-a))(-c)$$

$$0 < b(-c) + (-a)(-c)$$

$$0 < -bc + ac$$

$$bc < ac$$

$$\Box$$

Problem 5. Apostol defines an ordered field as a field $(F, +, \cdot)$ together with a set $P \subseteq F$ satisfying the following axioms.

- (O'1) If $x, y \in P$, then $x + y \in P$ and $x \cdot y \in P$.
- (O'2) For every $x \in F$ such that $x \neq 0$, $x \in P$ or $-x \in P$, but not both.
- (O'3) $0 \notin P$

Show that our definition of an ordered field is equivalent to that of Apostol's. That is, show that for a field $(F, +, \cdot)$:

- (i) If there is a relation < satisfying (O1)-(O4), then there is a $P \subseteq F$ satisfying (O'1)-(O'3), and
- (ii) if there is a $P \subseteq F$ satisfying (O'1)-(O'3), then there is a relation < satisfying (O1)-(O4).

Proof. Suppose there is a relation < on $(F, +, \cdot)$ satisfying (O1)-(O4). Define

$$P = \{ x \in F : 0 < x \}$$

Suppose $x, y \in P \Leftrightarrow 0 < x, y$. Then $-x < x + (-x) \Rightarrow -x < 0 < y \Rightarrow -x < y \Rightarrow 0 < x + y \Rightarrow x + y \in P$ by (O2) and (O3).

If $x, y \in P$, then by (O4), $x \cdot y \in P$.

Thus (O'1) holds.

If 0 < x, $x \in P$. If x < 0, then by (O3) $x + (-x) < -x \Rightarrow 0 < -x$, i.e., $-x \in P$. Thus (O'2) is holds.

 $0 \not< 0$, so (O'3) holds.

Now suppose there is a subset $P \subseteq F$ which satisfies (O'1)-(O'3). Define relation < on F as $a < b \Leftrightarrow b - a \in P$. Note that -(b-a) = a - b.

- (O1) For any $a, b \in F$, exactly one of b a = 0, $b a \in P$, and $-(b a) \in P$ holds (by (O'2) and (O'3), as -0 = 0). $b a = 0 \Leftrightarrow a = b, b a \in P \Leftrightarrow a < b$, and $-(b a) \in P \Leftrightarrow a b \in P \Leftrightarrow b < a$. Thus exactly one of a = b, a < b, and b < a holds.
- (O2) If a < b and b < c, then $b a \in P$ and $c b \in P$. So by (O'1), $c b + b a \in P \Leftrightarrow c a \in P \Leftrightarrow a < c$.
- (O3) If a < b and $c \in F$, then $(b+c) (a+c) = b + c + (-a) + (-c) = b a \in P \Rightarrow a + c < b + c$.
- (O4) $0 < a \Leftrightarrow a 0 \in P \Leftrightarrow a \in P$. So 0 < a and 0 < b implies $0 < a \cdot b$ by (O'1). \square