

STREPTOCOCCUS PNEUMONIAE KNOCKOUT MUTANTS

All documents cited herein are incorporated by reference in their entirety.

TECHNICAL FIELD

This invention relates to mutants of the bacterium *Streptococcus pneumoniae* ('pneumococcus'), and

5 to the use of pneumococcal proteins in screening methods.

BACKGROUND ART

Streptococcus pneumoniae is a Gram-positive spherical bacterium. It is the most common cause of acute bacterial meningitis in adults and in children over 5 years of age.

It is an object of the invention to provide materials for improving the prevention, detection and
10 treatment of *S.pneumoniae* infections. More specifically, it is an object of the invention to provide mutants of *S.pneumoniae* in which specific genes have been inactivated, and to provide specific genes and gene products from *S.pneumoniae* for use as targets for anti-pneumococcal drugs.

DISCLOSURE OF THE INVENTION

Genome sequences of several strains of *S.pneumoniae* are available, including those of 23F [1], 670
15 [2], R6 [3,4] and TIGR4 [5, 6]. Functional annotations of inferred coding sequences within these genome sequences are also available. Knowledge of sequence and/or annotation, however, does not necessarily reveal the importance of a gene product in the life cycle of pneumococcus, or the suitability of the gene product as a target for pharmaceutical intervention.

In the *S.pneumoniae* TIGR4 strain, 91 genes (see Table 1) have been identified which, when knocked out, result in a lethal phenotype. A further 10 genes (Table 2) have been identified which, when knocked out, result in poor growth characteristics when cultured in the absence of blood. These 101 genes are essential to bacterial growth and are thus useful antibiotic targets.
20

Nomenclature

As mentioned above, genome sequences of several strains of *S.pneumoniae* are available. Genes are referred to below by a name "SPnnnn", which refers to the gene numbering assigned to the TIGR4 strain by Tettelin *et al.* [6]. This numbering unambiguously identifies any particular gene in the TIGR4 strain, and the gene's sequence and chromosomal location from the TIGR4 genome can readily be used to identify the corresponding gene in any other strain of *S.pneumoniae*. For ease of reference, the corresponding gene in the R6 genome [4] is also indicated.
25

Knockout bacteria

The invention provides a *S.pneumoniae* bacterium in which expression of one or more of the genes listed in Tables 1 & 2 has been knocked out.

Techniques for gene knockout are well known, and knockout mutants of *S.pneumoniae* have been reported previously [*e.g.* refs. 7-11 *etc.*].

The knockout is preferably achieved using isogenic deletion of the coding region, but any other suitable technique may be used *e.g.* deletion or mutation of the promoter, deletion or mutation of the start codon, antisense inhibition, inhibitory RNA, *etc.* In the resulting bacterium, however, mRNA encoding the gene product of Tables 1 & 2 will be absent and/or its translation will be inhibited (*e.g.* to less than 1% of wild-type levels).

5 The bacterium may contain a marker gene in place of the knocked out gene *e.g.* an antibiotic resistance marker.

Screening methods

10 The invention provides a process for determining whether a test compound down-regulates expression of a target polypeptide, comprising the steps of: (a) contacting the test compound with a *S.pneumoniae* bacterium to form a mixture; (b) incubating the mixture to allow the compound and the bacterium to interact; and (c) determining whether expression of the target polypeptide is down-regulated. The compound may act by inhibiting transcription or translation.

15 The invention also provides a process for determining whether a test compound binds to a target polypeptide, comprising the steps of: (a) contacting the test compound with the target polypeptide to form a mixture; (b) incubating the mixture to allow the compound and the target polypeptide to interact; and (c) determining whether the compound and polypeptide interact.

20 Where a target polypeptide is an enzyme, the invention also provides a process for determining whether a test compound inhibits the enzymatic activity of a target polypeptide, comprising the steps of: (a) contacting the test compound with the target polypeptide and a substrate for the enzymatic reaction catalysed by the target polypeptide; (b) incubating the mixture to allow the compound, target polypeptide and substrate to interact; and (c) determining whether modification of the substrate by the enzymatic activity is inhibited by the test compound.

25 The target polypeptide is preferably a *S.pneumoniae* polypeptide, and more preferably it is a *S.pneumoniae* polypeptide encoded by of one of the genes listed in Table 1 or Table 2 (or a polypeptide as specified in the middle column of Table 1 or Table 2). The polypeptide may be from any suitable strain *e.g.* encoded by the *polA* gene from the 23F strain. The availability of sequence information for each of the genes listed in Tables 1 and 2 means that the skilled person will readily be able to identify a gene of interest in any strain of interest, if that identification has not already 30 been made. For example, the sequence of the *nadE* gene from strain R6 (SPR1276) helps the skilled person to find the *nadE* gene in any other strain.

35 As an alternative, the target polypeptide comprises (a) an amino acid sequence having sequence identity to the amino acid sequence encoded by of one of the genes listed in Tables 1 & 2 and/or (b) an amino acid sequence comprising a fragment of the amino acid sequence encoded by of one of the genes listed in Tables 1 & 2. The polypeptide preferably retains the activity listed in Tables 1 & 2.

The degree of sequence identity is preferably greater than 50% (*e.g.* 60%, 70%, 80%, 90%, 95%, 99% or more). These proteins include homologs, orthologs, allelic variants and functional mutants of the Table 1 polypeptides. Identity between proteins is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters *gap open penalty*=12 and *gap extension penalty*=1.

The fragment should comprise at least *n* consecutive amino acids from the sequences and, depending on the particular sequence, *n* is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 70, 80, 90, 100 or more). Preferably the fragment comprises one or more epitopes from the sequence. The fragment may be a Table 1 polypeptide without one or more of its N-terminal amino acids *e.g.* lacking the N-terminus methionine and/or the N-terminus signal peptide.

As a further alternative, the polypeptide may be the homolog of a Table 1 polypeptide from another *Streptococcus* (such as *S.pyogenes* or *S.agalactiae*) or from another Gram-positive bacterium.

Polypeptides for use in the process of the invention can be prepared by various means (*e.g.* recombinant expression, purification from *S.pneumoniae*, chemical synthesis, *etc.*) and in various forms (*e.g.* native, fusions, non-glycosylated, *etc.*). As reagents, they are preferably used in substantially pure form (*i.e.* substantially free from other streptococcal or host cell proteins). The polypeptide may be immobilised on a support, either covalently or non-covalently. Polypeptides can be coated directly onto supports, or can be attached indirectly *e.g.* by the use of non-neutralising antibodies which are themselves attached to the support.

The test compound may be of extracellular, intracellular, biologic or chemical origin. Typical test compounds include peptide, peptoids, lipids, nucleotides, nucleosides, small organic molecules, antibiotics, polyamines, polymers, or derivatives thereof. Small organic molecules have a molecular weight of between 50 and 2500 Da, and most preferably between about 300 and about 800 Da.

The test compound may be in a purified form, or may be part of a mixture of substances, such as extracts containing natural products, or the products of mixed combinatorial syntheses. Test compounds may be derived from large libraries of synthetic or natural compounds. For instance, synthetic compound libraries are commercially available, as are libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts. If a mixture is found to have a useful activity then that activity can then be traced to specific component(s) either by knowing the components and testing them individually, or by purification or deconvolution. Additionally, test compounds may be synthetically produced using combinatorial chemistry either as individual compounds or as mixtures.

The screening method of the invention is preferably arranged in a high-throughput format. Conveniently, the method is performed in a microtitre plate.

If a test compound binds to a protein of the invention and this binding inhibits the life cycle of the *S.pneumoniae* bacterium, then the test compound can be used as an antibiotic or as a lead compound for the design of antibiotics.

Methods for detecting down-regulation of transcription are well known in the art, and the method of detection is not critical to the invention. Methods for detecting mRNA include, but are not limited to amplification assays such as quantitative RT-PCR, and/or hybridisation assays such as Northern analysis, dot blots, slot blots, *in situ* hybridisation, DNA assays, microarray, *etc.*

5 Methods for detecting down-regulation of translation are also well known in the art and, again, the method of detection is not critical to the invention. Methods of polypeptide detection include, but are not limited to, immunodetection methods such as Western blots, ELISA assays, polyacrylamide gel electrophoresis, mass spectroscopy, and enzymatic assays.

Methods for detecting a binding interaction are well known in the art and may involve techniques
10 such as NMR, filter-binding assays, gel-retardation or gel-shift assays, displacement assays, western blots, radiolabeled competition assays, co-fractionation by chromatography, co-precipitation, cross linking, surface plasmon resonance, reverse two-hybrid, *etc.* A compound which is found to bind to a polypeptide can be tested for antibiotic activity by contacting the compound with *S.pneumoniae* (or another bacterium) and then monitoring for inhibition of growth.

15 Direct methods for detecting a binding interaction may involve a labelled test compound and/or polypeptide. The label may be a fluorophore, radioisotope, or other detectable label. Association of the label with the polypeptide indicates a binding interaction. Other direct methods for assessing interaction between the test compound and a target polypeptide may include using NMR to determine whether a polypeptide:compound complex is present.

20 Another method of assessing interaction between a polypeptide and a test compound may involve immobilising the polypeptide on a solid surface and assaying for the presence of free test compound. If there is no interaction between the test compound and the polypeptide then free test compound will be detected. The test compound may be labelled to facilitate detection. This type of assay may also be carried with the test compound being immobilised on the solid surface. Interaction between the
25 immobilised polypeptide and the free test compound may also be monitored by a process such as surface plasmon resonance.

Methods for assessing inhibition of enzymatic activity are well known [*e.g.* ref. 12]. Enzyme substrates are widely available from commercial manufacturers, including those adapted for *in vitro* assays *e.g.* coloured substrates or products to give visible indications of enzymatic activity, *etc.*

30 In the processes of the invention, a reference standard is typically needed in order to detect whether a target polypeptide and a test compound interact, or to detect whether expression of a given target polypeptide has been inhibited, or to detect whether enzymatic activity is inhibited. One standard is a control experiment run in parallel to a process of the invention in the absence of the test compound. The results achieved in the control experiment and the process of the invention can then be compared
35 in order to assess the effect of the test compound. As an alternative to determining the standard in

parallel, it may have been determined before performing the process of the invention, or after the process has been performed. The standard may be an absolute standard derived from previous work.

Some embodiments of the invention comprise using competitive screening assays in which neutralising antibodies capable of binding a polypeptide of the invention specifically compete with a test compound for binding to the polypeptide. In this manner, the antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with the *S.pneumoniae* polypeptide. Radiolabeled competitive binding studies are described in ref. 13.

In other embodiments, the *S.pneumoniae* polypeptides are employed as research tools for identification, characterisation and purification of interacting, regulatory proteins. Appropriate labels are incorporated into the polypeptides of the invention by various methods known in the art and the polypeptides are used to capture interacting molecules. For example, molecules are incubated with the labelled polypeptides, washed to remove unbound polypeptides, and the polypeptide complex is quantified. Data obtained using different concentrations of polypeptide are used to calculate values for the number, affinity, and association of polypeptide with the complex.

15 ***Compounds identified by screening processes***

Test compounds which down-regulate expression of and/or which bind to a target polypeptide and/or which inhibit an enzymatic activity are useful as antibiotics, antibiotic candidates, or lead compounds for antibiotic development. Once a test compound has been identified as a compound that binds to a target polypeptide, or which inhibits its expression in a bacterium, it may be desirable to perform further experiments to confirm the *in vivo* function of the compound in inhibiting bacterial growth. Any of the above processes may therefore comprise the further steps of contacting the test compound with a bacterium and assessing its effect on bacterial growth and/or survival. Methods for determining bacterial growth and survival are routinely available.

The invention provides a compound obtained or obtainable by any of the processes described above. 25 Preferably, the compounds are organic compounds.

Once a compound has been identified using a process of the invention, it may be necessary to conduct further work on its pharmaceutical properties. For example, it may be necessary to alter the compound to improve its pharmacokinetic properties or bioavailability. The invention extends to any compounds identified by the methods of the invention which have been altered to improve their 30 pharmacokinetic properties and/or bioavailability, and to compositions comprising those compounds.

The invention further provides compounds obtained or obtainable using the processes of the invention, and compositions comprising those compounds, for use as a medicament e.g. as an antibiotic. The invention also provides the use of compounds obtained or obtainable using the processes of the invention in the manufacture of an antibiotic, particularly an antibiotic for treating 35 *S.pneumoniae* infection.

The invention also provides a method for producing an antibiotic composition, comprising the steps of: (a) identifying a compound as described above; (b) manufacturing the compound; (c) formulating the compound for administration to a patient; and (d) packaging the formulated compound to produce the antibiotic composition. Details of pharmaceutical formulation can be found in ref. 14.

5 ***Combinations of polypeptides***

The invention also provides a composition comprising m or more polypeptides, wherein each of the m or more polypeptides is: (a) a *S.pneumoniae* polypeptide encoded by one of the genes listed in Table 1 or Table 2 or as specified in the middle column of Table 1 or Table 2; (b) a polypeptide comprising (i) an amino acid sequence having sequence identity to the amino acid sequence encoded by one of the genes listed in Tables 1 & 2 and/or (ii) an amino acid sequence comprising a fragment of the amino acid sequence encoded by one of the genes listed in Tables 1 & 2; or (c) a homolog of a Table 1 polypeptide from another *Streptococcus* (such as *S.pyogenes* or *S.agalactiae*) or from another Gram-positive bacterium.

The invention also provides a hybrid polypeptide comprising the amino acid sequences of p or more polypeptides as defined in (a), (b) or (c) above. Thus a plurality of the 101 polypeptides of the invention are expressed as a single polypeptide chain. Linker peptide sequences may be included between different members of the 101 polypeptides of the invention.

The values of m and of p are, independently, at least 2 (e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more).

20 The degree of sequence identity is preferably greater than 50% (e.g. 60%, 70%, 80%, 90%, 95%, 99% or more), as mentioned above. A fragment on (b)(ii) should comprise at least n consecutive amino acids from the sequences, as mentioned above.

Compositions and hybrid polypeptides of the invention are preferably immunogenic, and may be used for immunisation and vaccination purposes. Compositions may thus include an adjuvant,

25 Suitable adjuvants include, but are not limited to: (A) aluminium salts, including hydroxides (e.g. oxyhydroxides), phosphates (e.g. hydroxyphosphates, orthophosphates), sulphates, etc. [e.g. see chapters 8 & 9 of ref. 15], or mixtures of different aluminium compounds, with the compounds taking any suitable form (e.g. gel, crystalline, amorphous, etc.), and with adsorption being preferred; (B) MF59 (5% Squalene, 0.5% Tween 80, and 0.5% Span 85, formulated into submicron particles

30 using a microfluidizer) [see Chapter 10 of 15; see also ref. 16]; (C) liposomes [see Chapters 13 and 14 of ref. 15]; (D) ISCOMs [see Chapter 23 of ref. 15], which may be devoid of additional detergent [17]; (E) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-block polymer L121, and thio-MDP, either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion [see Chapter 12 of ref. 15]; (F) RibiTM adjuvant system (RAS), (Ribi Immunochem) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphoryl lipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (DetoxTM); (G) saponin adjuvants, such as QuilA or QS21

35 containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphoryl lipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (DetoxTM); (G) saponin adjuvants, such as QuilA or QS21

[see Chapter 22 of ref. 15], also known as Stimulon™ [18]; (H) chitosan [*e.g.* 19]; (I) complete Freund's adjuvant (CFA) and incomplete Freund's adjuvant (IFA); (J) cytokines, such as interleukins (*e.g.* IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, *etc.*), interferons (*e.g.* interferon- γ), macrophage colony stimulating factor, tumor necrosis factor, *etc.* [see Chapters 27 & 28 of ref. 15]; (K) monophosphoryl lipid A (MPL) or 3-O-deacylated MPL (3dMPL) [*e.g.* chapter 21 of ref. 15]; (L) combinations of 3dMPL with, for example, QS21 and/or oil-in-water emulsions [20]; (M) a polyoxyethylene ether or a polyoxyethylene ester [21]; (N) a polyoxyethylene sorbitan ester surfactant in combination with an octoxynol [22] or a polyoxyethylene alkyl ether or ester surfactant in combination with at least one additional non-ionic surfactant such as an octoxynol [23]; (N) a particle of metal salt [24]; (O) a saponin and an oil-in-water emulsion [25]; (P) a saponin (*e.g.* QS21 + 3dMPL + IL-12 (optionally + a sterol) [26]; (Q) *E.coli* heat-labile enterotoxin ("LT"), or detoxified mutants thereof, such as the K63 or R72 mutants [*e.g.* Chapter 5 of ref. 27]; (R) cholera toxin ("CT"), or detoxified mutants thereof [*e.g.* Chapter 5 of ref. 27]; (S) double-stranded RNA; (T) microparticles (*i.e.* a particle of ~100nm to ~150 μ m in diameter, more preferably ~200nm to ~30 μ m in diameter, and most preferably ~500nm to ~10 μ m in diameter) formed from materials that are biodegradable and non-toxic (*e.g.* a poly(α -hydroxy acid), a polyhydroxybutyric acid, a polyorthoester, a polyanhydride, a polycaprolactone, *etc.*), with poly(lactide-co-glycolide) being preferred, optionally treated to have a negatively-charged surface (*e.g.* with SDS) or a positively-charged surface (*e.g.* with a cationic detergent, such as CTAB); (U) oligonucleotides comprising CpG motifs *i.e.* containing at least one CG dinucleotide, with 5-methylcytosine optionally being used in place of cytosine; (V) monophosphoryl lipid A mimics, such as aminoalkyl glucosaminide phosphate derivatives *e.g.* RC-529 [28]; (W) polyphosphazene (PCPP); (X) a bioadhesive [29] such as esterified hyaluronic acid microspheres [30] or a mucoadhesive selected from the group consisting of cross-linked derivatives of poly(acrylic acid), polyvinyl alcohol, polyvinyl pyrrolidone, polysaccharides and carboxymethylcellulose; or (Y) other substances that act as immunostimulating agents to enhance the effectiveness of the composition [*e.g.* see Chapter 7 of ref. 15]. Aluminium salts are preferred adjuvants for parenteral immunisation. Mutant toxins are preferred mucosal adjuvants.

Muramyl peptides include N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine MTP-PE), *etc.*

The composition may also comprise other polypeptide or polysaccharide antigens *e.g.* from *S.pneumoniae*, from other bacteria, from other pathogens, *etc.* Inclusion of saccharide antigens (preferably conjugated) from *Neisseria* is convenient.

35 The composition may also include an antibiotic.

A summary of standard techniques and procedures which may be employed to perform the invention follows. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.

General

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature e.g. Sambrook *Molecular Cloning; A Laboratory Manual*,

- 5 *Second Edition* (1989); *DNA Cloning, Volumes I and II* (D.N. Glover ed. 1985); *Oligonucleotide Synthesis* (M.J. Gait ed, 1984); *Nucleic Acid Hybridization* (B.D. Hames & S.J. Higgins eds. 1984); *Transcription and Translation* (B.D. Hames & S.J. Higgins eds. 1984); *Animal Cell Culture* (R.I. Freshney ed. 1986); *Immobilized Cells and Enzymes* (IRL Press, 1986); B. Perbal, *A Practical Guide to Molecular Cloning* (1984); the *Methods in Enzymology* series (Academic Press, Inc.), especially volumes 154 & 155; *Gene Transfer Vectors for Mammalian Cells* (J.H. Miller and M.P. Calos eds. 1987, Cold Spring Harbor Laboratory); Mayer and Walker, eds. (1987), *Immunochemical Methods in Cell and Molecular Biology* (Academic Press, London); Scopes, (1987) *Protein Purification: Principles and Practice*, Second Edition (Springer-Verlag, N.Y.), and *Handbook of Experimental Immunology, Volumes I-IV* (D.M. Weir and C. C. Blackwell eds 1986).
- 10

Standard abbreviations for nucleotides and amino acids are used in this specification.

15 Definitions

A composition containing X is "substantially free of" Y when at least 85% by weight of the total X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.

The term "comprising" means "including" as well as "consisting" e.g. a composition "comprising" X may consist exclusively of X or may include something additional e.g. X + Y.

The term "about" in relation to a numerical value x means, for example, x+10%.

The word "substantially" does not exclude "completely" e.g. a composition which is "substantially free" from Y may be completely free from Y. Where necessary, the word "substantially" may be omitted from the definition of the invention.

25 The term "heterologous" refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a streptococcus sequence is heterologous to a mouse host cell. A further examples would be two epitopes from the same or different proteins which have been assembled in a single protein in an arrangement not found in nature.

30

An "origin of replication" is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.

A "mutant" sequence is defined as DNA, RNA or amino acid sequence differing from but having sequence identity with the native or disclosed sequence. Depending on the particular sequence, the degree of sequence

identity between the native or disclosed sequence and the mutant sequence is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more, calculated using the Smith-Waterman algorithm as described above). As used herein, an "allelic variant" of a nucleic acid molecule, or region, for which nucleic acid sequence is provided herein is a nucleic acid molecule, or region, that occurs essentially at the same locus in the genome of another or second isolate, and that, due to natural variation caused by, for example, mutation or recombination, has a similar but not identical nucleic acid sequence. A coding region allelic variant typically encodes a protein having similar activity to that of the protein encoded by the gene to which it is being compared. An allelic variant can also comprise an alteration in the 5' or 3' untranslated regions of the gene, such as in regulatory control regions (eg. see US patent 5,753,235).

10 Expression systems

The streptococcus nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, baculoviruses, plants, bacteria, and yeast.

i. Mammalian Systems

15 Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5' end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, usually 20 located within 100 to 200 bp upstream of the TATA box. An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation [Sambrook et al. (1989) "Expression of Cloned Genes in Mammalian Cells." In *Molecular Cloning: A Laboratory Manual, 2nd ed.*].

25 Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallothionein gene, also provide useful promoter sequences. Expression may be either constitutive or regulated (inducible), depending on the promoter can be induced with glucocorticoid in hormone-responsive cells.

30 The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the 35 promoter [Maniatis et al. (1987) *Science* 236:1237; Alberts et al. (1989) *Molecular Biology of the Cell, 2nd ed.*]. Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host range. Examples include the SV40 early gene enhancer [Dijkema et al (1985) *EMBO J.* 4:761] and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus [Gorman et al. (1982b) *Proc. Natl. Acad. Sci.* 79:6777] and from human cytomegalovirus [Boshart et al. (1985) *Cell* 41:521].

40 Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a

hormone or metal ion [Sassone-Corsi and Borelli (1986) *Trends Genet.* 2:215; Maniatis et al. (1987) *Science* 236:1237].

5 A DNA molecule may be expressed intracellularly in mammalian cells. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells. Preferably, there are processing sites encoded between the leader 10 fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The adenovirus tripartite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.

Usually, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory 15 regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. The 3' terminus of the mature mRNA is formed by site-specific post-transcriptional cleavage and polyadenylation [Birnstiel et al. (1985) *Cell* 41:349; Proudfoot and Whitelaw (1988) "Termination and 3' end processing of eukaryotic RNA. In *Transcription and splicing* (ed. B.D. Hames and D.M. Glover); Proudfoot (1989) *Trends Biochem. Sci.* 14:105]. These sequences direct the transcription of an mRNA which can be 20 translated into the polypeptide encoded by the DNA. Examples of transcription terminator/polyadenylation signals include those derived from SV40 [Sambrook et al (1989) "Expression of cloned genes in cultured mammalian cells." In *Molecular Cloning: A Laboratory Manual*].

Usually, the above described components, comprising a promoter, polyadenylation signal, and transcription 25 termination sequence are put together into expression constructs. Enhancers, introns with functional splice donor and acceptor sites, and leader sequences may also be included in an expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria. Mammalian replication systems include those derived from animal viruses, which require trans-acting factors to replicate. For example, plasmids containing the replication systems of papovaviruses, such as SV40 [Gluzman (1981) *Cell* 23:175] or polyomavirus, 30 replicate to extremely high copy number in the presence of the appropriate viral T antigen. Additional examples of mammalian replicons include those derived from bovine papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replicaton systems, thus allowing it to be maintained, for example, in mammalian cells for expression and in a prokaryotic host for cloning and amplification. Examples of such mammalian-bacteria shuttle vectors include pMT2 [Kaufman et al. (1989) *Mol. Cell. Biol.* 9:946] and pHEBO [Shimizu et al. 35 (1986) *Mol. Cell. Biol.* 6:1074].

The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into 40 nuclei.

Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (eg. Hep G2), and a number of other cell lines.

5 ii. Baculovirus Systems

The polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector. Vector construction employs techniques which are known in the art. Generally, the components of the expression system include a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus genome, and a convenient restriction site 10 for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.

After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral 15 genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, *inter alia*, Invitrogen, San Diego CA ("MaxBac" kit). These techniques are generally known to those skilled in the art and fully described in Summers and Smith, *Texas Agricultural Experiment Station Bulletin No. 1555* (1987) 20 (hereinafter "Summers and Smith").

Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This may contain a single gene and operably linked regulatory elements; multiple genes, each with its own set of 25 operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extra-chromosomal element (e.g. plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.

Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many 30 other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers, *Virology* (1989) 17:31).

The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) *Ann. Rev. Microbiol.*, 42:177) and a prokaryotic ampicillin-resistance (*amp*) gene and origin of replication for selection 35 and propagation in *E. coli*.

Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (5' to 3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually 40 includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may

also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulated or constitutive.

Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein,

5 Friesen et al., (1986) "The Regulation of Baculovirus Gene Expression," in: *The Molecular Biology of Baculoviruses* (ed. Walter Doerfler); EPO Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), *J. Gen. Virol.* 69:765.

DNA encoding suitable signal sequences can be derived from genes for secreted insect or baculovirus proteins, such as the baculovirus polyhedrin gene (Carbonell et al. (1988) *Gene*, 73:409). Alternatively, since the signals 10 for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect origin, such as those derived from genes encoding human α -interferon, Maeda et al., (1985), *Nature* 315:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), *Molec. Cell. Biol.* 8:3129; human 15 IL-2, Smith et al., (1985) *Proc. Nat'l Acad. Sci. USA*, 82:8404; mouse IL-3, (Miyajima et al., (1987) *Gene* 58:273; and human glucocerebrosidase, Martin et al. (1988) *DNA*, 7:99, can also be used to provide for secretion in insects.

A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted. Good intracellular expression of nonfused foreign proteins usually 20 requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by *in vitro* incubation with cyanogen bromide.

Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the 25 insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.

After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, 30 an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus -- usually by co-transfection. The promoter and transcription termination sequence of the construct will usually comprise a 2-5kb section of the baculovirus genome. Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art. (See Summers and Smith *supra*; Ju et al. (1987); Smith et al., *Mol. Cell. Biol.* (1983) 3:2156; and Luckow and Summers (1989)). For example, the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover 35 recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), *Bioessays* 4:91. The DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5' and 3' by polyhedrin-specific sequences and is positioned downstream of the polyhedrin promoter.

The newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant 40 baculovirus. Homologous recombination occurs at low frequency (between about 1% and about 5%); thus, the

majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles. These occlusion bodies, up to 15 µm in size, are highly refractile, giving them a bright shiny appearance that is readily visualized under the light microscope. Cells infected with recombinant viruses lack occlusion bodies. To distinguish recombinant virus from wild-type virus, the transfection supernatant is plaqued onto a monolayer of insect cells by techniques known to those skilled in the art. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus) or absence (indicative of recombinant virus) of occlusion bodies. "Current Protocols in Microbiology" Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers and Smith, *supra*; Miller et al. (1989).

Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, *inter alia*: *Aedes aegypti*, *Autographa californica*, *Bombyx mori*, *Drosophila melanogaster*, *Spodoptera frugiperda*, and *Trichoplusia ni* (WO 89/046699; Carbonell et al., (1985) *J. Virol.* 56:153; Wright (1986) *Nature* 321:718; Smith et al., (1983) *Mol. Cell. Biol.* 3:2156; and see generally, Fraser, et al. (1989) *In Vitro Cell. Dev. Biol.* 25:225).

Cells and cell culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, eg. Summers and Smith *supra*.

The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients. The product may be purified by such techniques as chromatography, eg. HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, etc. As appropriate, the product may be further purified, as required, so as to remove substantially any insect proteins which are also present in the medium, so as to provide a product which is at least substantially free of host debris, eg. proteins, lipids and polysaccharides.

In order to obtain protein expression, recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, based upon what is known in the art.

35 iii. Plant Systems

There are many plant cell culture and whole plant genetic expression systems known in the art. Exemplary plant cellular genetic expression systems include those described in patents, such as: US 5,693,506; US 5,659,122; and US 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, *Phytochemistry* 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found in addition to the references described above in Vaulcombe et al., *Mol. Gen. Genet.* 209:33-40 (1987); Chandler et al., *Plant*

Molecular Biology 3:407-418 (1984); Rogers, *J. Biol. Chem.* 260:3731-3738 (1985); Rothstein et al., *Gene* 55:353-356 (1987); Whittier et al., *Nucleic Acids Research* 15:2515-2535 (1987); Wirsel et al., *Molecular Microbiology* 3:3-14 (1989); Yu et al., *Gene* 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellin acid and secreted enzymes induced by gibberellin acid can be found in R.L. Jones and J. MacMillin, *Gibberellins*: in: *Advanced Plant Physiology*, Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited, London, pp. 21-52. References that describe other metabolically-regulated genes: Sheen, *Plant Cell*, 2:1027-1038(1990); Maas et al., *EMBO J.* 9:3447-3452 (1990); Benkel and Hickey, *Proc. Natl. Acad. Sci.* 84:1337-1339 (1987).

Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. The expression cassette is inserted into a desired expression vector with companion sequences upstream and downstream from the expression cassette suitable for expression in a plant host. The companion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker; and, for Agrobacterium transformations, T DNA sequences for Agrobacterium-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993, *Plant Mol. Biol. Repr.*, 11(2):165-185.

Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance toward antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.

The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, although two or more are feasible. The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant 5' untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the 5' and 3' ends of the cassette allow for easy insertion into a pre-existing vector.

A heterologous coding sequence may be for any protein relating to the present invention. The sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually lack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested. Typically secretion in seeds are across the aleurone or scutellar epithelium layer into the endosperm of the seed.

While it is not required that the protein be secreted from the cells in which the protein is produced, this facilitates the isolation and purification of the recombinant protein.

Since the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the "intron" region may be conducted to prevent losing a portion of the genetic message as a false intron code, Reed and Maniatis, *Cell* 41:95-105, 1985.

The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, *Mol. Gen. Genet.*, 202:179-185, 1985. The genetic material may also be transferred into the plant cell by using polyethylene glycol, Krens, et al., *Nature*, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., *Nature*, 327, 70-73, 1987 and Knudsen and Muller, 1991, *Planta*, 185:330-336 teaching particle bombardment of barley endosperm to create transgenic barley. Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., *Proc. Natl. Acad. Sci. USA*, 79, 1859-1863, 1982.

The vector may also be introduced into the plant cells by electroporation. (Fromm et al., *Proc. Natl Acad. Sci. USA* 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.

All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera *Fragaria*, *Lotus*, *Medicago*, *Onobrychis*, *Trifolium*, *Trigonella*, *Vigna*, *Citrus*, *Linum*, *Geranium*, *Manihot*, *Daucus*, *Arabidopsis*, *Brassica*, *Raphanus*, *Sinapis*, *Atropa*, *Capsicum*, *Datura*, *Hyoscyamus*, *Lycopersicon*, *Nicotiana*, *Solanum*, *Petunia*, *Digitalis*, *Majorana*, *Cichorium*, *Helianthus*, *Lactuca*, *Bromus*, *Asparagus*, *Antirrhinum*, *Hererocallis*, *Nemesia*, *Pelargonium*, *Panicum*, *Pennisetum*, *Ranunculus*, *Senecio*, *Salpiglossis*, *Cucumis*, *Browalia*, *Glycine*, *Lolium*, *Zea*, *Triticum*, *Sorghum*, and *Datura*.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.

In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended 5 in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will be adjusted through routine methods to optimize expression and recovery of heterologous protein.

iv. Bacterial Systems

Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence capable of 10 binding bacterial RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A bacterial promoter may also have a second domain 15 called an operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5') to the RNA polymerase binding 20 sequence. An example of a gene activator protein is the catabolite activator protein (CAP), which helps initiate transcription of the lac operon in Escherichia coli (*E. coli*) [Raibaud *et al.* (1984) *Annu. Rev. Genet.* 18:173]. Regulated expression may therefore be either positive or negative, thereby either enhancing or reducing transcription.

Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples 25 include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (*lac*) [Chang *et al.* (1977) *Nature* 198:1056], and maltose. Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (*trp*) [Goeddel *et al.* (1980) *Nuc. Acids Res.* 8:4057; Yelverton *et al.* (1981) *Nucl. Acids Res.* 9:731; US patent 4,738,921; EP-A-0036776 and EP-A-0121775]. The g-lactamase (*bla*) 30 promoter system [Weissmann (1981) "The cloning of interferon and other mistakes." In *Interferon* 3 (ed. I. Gresser)], bacteriophage lambda PL [Shimatake *et al.* (1981) *Nature* 292:128] and T5 [US patent 4,689,406] promoter systems also provide useful promoter sequences.

In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon 35 sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter [US patent 4,551,433]. For example, the *tac* promoter is a hybrid *trp-lac* promoter comprised of both *trp* promoter and *lac* operon sequences that is regulated by the *lac* repressor [Amann *et al.* (1983) *Gene* 25:167; de Boer *et al.* (1983) *Proc. Natl. Acad. Sci.* 80:21]. Furthermore, a bacterial promoter can include naturally occurring 40 promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system [Studier *et al.* (1986) *J. Mol. Biol.*

189:113; Tabor *et al.* (1985) *Proc Natl Acad Sci.* 82:1074]. In addition, a hybrid promoter can also be comprised of a bacteriophage promoter and an *E. coli* operator region (EPO-A-0 267 851).

5 In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In *E. coli*, the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon [Shine *et al.* (1975) *Nature* 254:34]. The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3' end of *E. coli* 16S rRNA [Steitz *et al.* (1979) "Genetic signals and nucleotide sequences in messenger RNA." In *Biological Regulation and Development: Gene Expression* (ed. R.F. Goldberger)]. To express eukaryotic genes and 10 prokaryotic genes with weak ribosome-binding site [Sambrook *et al.* (1989) "Expression of cloned genes in *Escherichia coli*." In *Molecular Cloning: A Laboratory Manual*].

15 A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide or by either *in vivo* or *in vitro* incubation with a bacterial methionine N-terminal peptidase (EPO-A-0 219 237).

20 Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, 25 the bacteriophage lambda cell gene can be linked at the 5' terminus of a foreign gene and expressed in bacteria. The resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene [Nagai *et al.* (1984) *Nature* 309:810]. Fusion proteins can also be made with sequences from the *lacZ* [Jia *et al.* (1987) *Gene* 60:197], *trpE* [Allen *et al.* (1987) *J. Biotechnol.* 5:93; Makoff *et al.* (1989) *J. Gen. Microbiol.* 135:11], and *Chey* [EP-A-0 324 647] genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a 30 ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg. ubiquitin specific processing-protease) to cleave the ubiquitin from the foreign protein. Through this method, native foreign protein can be isolated [Miller *et al.* (1989) *Bio/Technology* 7:698].

35 Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that encode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria [US patent 4,336,336]. The signal sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). Preferably there are processing sites, which can be cleaved either *in vivo* or *in vitro* encoded between the signal peptide fragment and the foreign gene.

DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the *E. coli* outer membrane protein gene (*ompA*) [Masui *et al.* (1983), in: *Experimental Manipulation of Gene Expression*; Ghrayeb *et al.* (1984) *EMBO J.* 3:2437] and the *E. coli* alkaline phosphatase signal sequence (*phoA*) [Oka *et al.* (1985) *Proc. Natl. Acad. Sci.* 82:7212]. As an additional example, the signal sequence of the alpha-

amylase gene from various *Bacillus* strains can be used to secrete heterologous proteins from *B. subtilis* [Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA* 79:5582; EP-A-0 244 042].

Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct 5 the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription. Examples include transcription termination sequences derived from genes with strong promoters, such as the *trp* gene in *E. coli* as well as other biosynthetic genes.

Usually, the above described components, comprising a promoter, signal sequence (if desired), coding sequence 10 of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as bacteria. The replicon will have a replication system, thus allowing it to be maintained in a prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy 15 number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host.

Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. 20 Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various *Bacillus* strains integrate into the *Bacillus* chromosome (EP-A- 0 127 328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for 25 the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin (neomycin), and tetracycline [Davies *et al.* (1978) *Annu. Rev. Microbiol.* 32:469]. Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine 30 biosynthetic pathways.

Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extra-chromosomal replicons or integrating vectors, have been 35 developed for transformation into many bacteria. For example, expression vectors have been developed for, *inter alia*, the following bacteria: *Bacillus subtilis* [Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA* 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541], *Escherichia coli* [Shimatake *et al.* (1981) *Nature* 292:128; Amann *et al.* (1985) *Gene* 40:183; Studier *et al.* (1986) *J. Mol. Biol.* 189:113; EP-A-0 036 776, EP-A-0 136 829 and EP- 40 A-0 136 907], *Streptococcus cremoris* [Powell *et al.* (1988) *Appl. Environ. Microbiol.* 54:655]; *Streptococcus lividans* [Powell *et al.* (1988) *Appl. Environ. Microbiol.* 54:655], *Streptomyces lividans* [US patent 4,745,056].

Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl_2 or other agents, such as divalent cations and DMSO. DNA can also be introduced into bacterial cells by electroporation. Transformation procedures usually vary with the bacterial species to be transformed. See eg. [Masson *et al.* (1989) *FEMS Microbiol. Lett.* 60:273; Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA* 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541, *Bacillus*], [Miller *et al.* (1988) *Proc. Natl. Acad. Sci.* 85:856; Wang *et al.* (1990) *J. Bacteriol.* 172:949, *Campylobacter*], [Cohen *et al.* (1973) *Proc. Natl. Acad. Sci.* 69:2110; Dower *et al.* (1988) *Nucleic Acids Res.* 16:6127; Kushner (1978) "An improved method for transformation of *Escherichia coli* with *ColE1*-derived plasmids. In *Genetic Engineering: Proceedings of the International Symposium on Genetic Engineering* (eds. H.W. Boyer and S. Nicosia); Mandel *et al.* (1970) *J. Mol. Biol.* 53:159; Taketo (1988) *Biochim. Biophys. Acta* 949:318; *Escherichia*], [Chassy *et al.* (1987) *FEMS Microbiol. Lett.* 44:173 *Lactobacillus*]; [Fiedler *et al.* (1988) *Anal. Biochem* 170:38, *Pseudomonas*]; [Augustin *et al.* (1990) *FEMS Microbiol. Lett.* 66:203, *Staphylococcus*], [Barany *et al.* (1980) *J. Bacteriol.* 144:698; Harlander (1987) "Transformation of *Streptococcus lactis* by electroporation, in: *Streptococcal Genetics* (ed. J. Ferretti and R. Curtiss III); Perry *et al.* (1981) *Infect. Immun.* 32:1295; Powell *et al.* (1988) *Appl. Environ. Microbiol.* 54:655; Somkuti *et al.* (1987) *Proc. 4th Evr. Cong. Biotechnology* 1:412, *Streptococcus*].

v. Yeast Expression

Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the "TATA Box") and a transcription initiation site. A yeast promoter may also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may be either positive or negative, thereby either enhancing or reducing transcription.

Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences. Examples include alcohol dehydrogenase (ADH) (EP-A-0 284 044), enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO-A-0 329 203). The yeast *PHO5* gene, encoding acid phosphatase, also provides useful promoter sequences [Myanohara *et al.* (1983) *Proc. Natl. Acad. Sci. USA* 80:1].

In addition, synthetic promoters which do not occur in nature also function as yeast promoters. For example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (US Patent Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the *ADH2*, *GAL4*, *GAL10*, OR *PHO5* genes, combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EP-A-0 164 556). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription.

Examples of such promoters include, *inter alia*, [Cohen *et al.* (1980) *Proc. Natl. Acad. Sci. USA* 77:1078; Henikoff *et al.* (1981) *Nature* 283:835; Hollenberg *et al.* (1981) *Curr. Topics Microbiol. Immunol.* 96:119; Hollenberg *et al.* (1979) "The Expression of Bacterial Antibiotic Resistance Genes in the Yeast *Saccharomyces cerevisiae*," in: *Plasmids of Medical, Environmental and Commercial Importance* (eds. K.N. Timmis and A. Puhler); Mercerau-Puigalon *et al.* (1980) *Gene* 11:163; Panthier *et al.* (1980) *Curr. Genet.* 2:109;].

A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

10 Fusion proteins provide an alternative for yeast expression systems, as well as in mammalian, baculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeast protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human superoxide dismutase (SOD) gene, can be linked at the 5' terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See eg. EP-A-0 196 056. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg. ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method, therefore, native foreign protein can be isolated (eg. WO88/024066).

20 Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.

25 DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the yeast invertase gene (EP-A-0 012 873; JPO. 62,096,086) and the A-factor gene (US patent 4,588,684). Alternatively, leaders of non-yeast origin, such as an interferon leader, exist that also provide for secretion in yeast (EP-A-0 060 057).

30 A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a "pre" signal sequence, and a "pro" region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (US Patents 4,546,083 and 4,870,008; EP-A-0 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (eg. see WO 89/02463.)

35 Usually, transcription termination sequences recognized by yeast are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator sequence and other yeast-recognized termination sequences, such as those coding for glycolytic enzymes.

Usually, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 [Botstein *et al.* (1979) *Gene* 8:17-24], pCI/1 [Brake *et al.* (1984) *Proc. Natl. Acad. Sci USA* 81:4642-4646], and YRp17 [Stinchcomb *et al.* (1982) *J. Mol. Biol.* 158:157]. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See eg. Brake *et al.*, *supra*.

Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome [Orr-Weaver *et al.* (1983) *Methods in Enzymol.* 101:228-245]. An integrating vector may be directed to a specific locus in yeast by selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver *et al.*, *supra*. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced [Rine *et al.* (1983) *Proc. Natl. Acad. Sci. USA* 80:6750]. The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the expression construct in the vector, which can result in the stable integration of only the expression construct.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers may include biosynthetic genes that can be expressed in the yeast host, such as *ADE2*, *HIS4*, *LEU2*, *TRP1*, and *ALG7*, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of *CUP1* allows yeast to grow in the presence of copper ions [Butt *et al.* (1987) *Microbiol. Rev.* 51:351].

Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors have been developed for, *inter alia*, the following yeasts: *Candida albicans* [Kurtz, *et al.* (1986) *Mol. Cell. Biol.* 6:142], *Candida maltosa* [Kunze, *et al.* (1985) *J. Basic Microbiol.* 25:141], *Hansenula polymorpha* [Gleeson, *et al.* (1986) *J. Gen. Microbiol.* 132:3459; Roggenkamp *et al.* (1986) *Mol. Gen. Genet.* 202:302], *Kluyveromyces fragilis* [Das, *et al.* (1984) *J. Bacteriol.* 158:1165], *Kluyveromyces lactis* [De Louvencourt *et al.* (1983) *J. Bacteriol.* 154:737; Van den Berg *et al.* (1990) *Bio/Technology* 8:135], *Pichia guillermondii* [Kunze *et al.* (1985) *J. Basic Microbiol.*

25:141], *Pichia pastoris* [Cregg, *et al.* (1985) *Mol. Cell. Biol.* 5:3376; US Patent Nos. 4,837,148 and 4,929,555], *Saccharomyces cerevisiae* [Hinnen *et al.* (1978) *Proc. Natl. Acad. Sci. USA* 75:1929; Ito *et al.* (1983) *J. Bacteriol.* 153:163], *Schizosaccharomyces pombe* [Beach and Nurse (1981) *Nature* 300:706], and *Yarrowia lipolytica* [Davidow, *et al.* (1985) *Curr. Genet.* 10:380471 Gaillardin, *et al.* (1985) *Curr. Genet.* 10:49].

5 Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See eg. [Kurtz *et al.* (1986) *Mol. Cell. Biol.* 6:142; Kunze *et al.* (1985) *J. Basic Microbiol.* 25:141; Candida]; [Gleeson *et al.* (1986) *J. Gen. Microbiol.* 132:3459; Roggenkamp *et al.* (1986) *Mol. Gen. Genet.* 202:302; Hansenula]; [Das *et al.* (1984) *J. Bacteriol.* 158:1165; De 10 Louvencourt *et al.* (1983) *J. Bacteriol.* 154:1165; Van den Berg *et al.* (1990) *Bio/Technology* 8:135; Kluyveromyces]; [Cregg *et al.* (1985) *Mol. Cell. Biol.* 5:3376; Kunze *et al.* (1985) *J. Basic Microbiol.* 25:141; US Patent Nos. 4,837,148 and 4,929,555; Pichia]; [Hinnen *et al.* (1978) *Proc. Natl. Acad. Sci. USA* 75:1929; Ito *et al.* (1983) *J. Bacteriol.* 153:163 Saccharomyces]; [Beach and Nurse (1981) *Nature* 300:706; Schizosaccharomyces]; [Davidow *et al.* (1985) *Curr. Genet.* 10:39; Gaillardin *et al.* (1985) *Curr. Genet.* 10:49; 15 Yarrowia].

Antibodies

As used herein, the term "antibody" refers to a polypeptide or group of polypeptides composed of at least one antibody combining site. An "antibody combining site" is the three-dimensional binding space with an internal surface shape and charge distribution complementary to the features of an epitope of an antigen, which allows a 20 binding of the antibody with the antigen. "Antibody" includes, for example, vertebrate antibodies, hybrid antibodies, chimeric antibodies, humanised antibodies, altered antibodies, univalent antibodies, Fab proteins, and single domain antibodies.

Antibodies against the proteins of the invention are useful for affinity chromatography, immunoassays, and distinguishing/identifying streptococcus proteins.

25 Antibodies to the proteins of the invention, both polyclonal and monoclonal, may be prepared by conventional methods. In general, the protein is first used to immunize a suitable animal, preferably a mouse, rat, rabbit or goat. Rabbits and goats are preferred for the preparation of polyclonal sera due to the volume of serum obtainable, and the availability of labeled anti-rabbit and anti-goat antibodies. Immunization is generally performed by mixing or emulsifying the protein in saline, preferably in an adjuvant such as Freund's complete 30 adjuvant, and injecting the mixture or emulsion parenterally (generally subcutaneously or intramuscularly). A dose of 50-200 µg/injection is typically sufficient. Immunization is generally boosted 2-6 weeks later with one or more injections of the protein in saline, preferably using Freund's incomplete adjuvant. One may alternatively generate antibodies by *in vitro* immunization using methods known in the art, which for the purposes of this invention is considered equivalent to *in vivo* immunization. Polyclonal antisera is obtained by bleeding the 35 immunized animal into a glass or plastic container, incubating the blood at 25°C for one hour, followed by incubating at 4°C for 2-18 hours. The serum is recovered by centrifugation (eg. 1,000g for 10 minutes). About 20-50 ml per bleed may be obtained from rabbits.

Monoclonal antibodies are prepared using the standard method of Kohler & Milstein [*Nature* (1975) 256:495-96], or a modification thereof. Typically, a mouse or rat is immunized as described above. However, 40 rather than bleeding the animal to extract serum, the spleen (and optionally several large lymph nodes) is

- removed and dissociated into single cells. If desired, the spleen cells may be screened (after removal of nonspecifically adherent cells) by applying a cell suspension to a plate or well coated with the protein antigen. B-cells expressing membrane-bound immunoglobulin specific for the antigen bind to the plate, and are not rinsed away with the rest of the suspension. Resulting B-cells, or all dissociated spleen cells, are then induced to fuse with myeloma cells to form hybridomas, and are cultured in a selective medium (eg. hypoxanthine, aminopterin, thymidine medium, "HAT"). The resulting hybridomas are plated by limiting dilution, and are assayed for production of antibodies which bind specifically to the immunizing antigen (and which do not bind to unrelated antigens). The selected MAb-secreting hybridomas are then cultured either *in vitro* (eg. in tissue culture bottles or hollow fiber reactors), or *in vivo* (as ascites in mice).
- 10 If desired, the antibodies (whether polyclonal or monoclonal) may be labeled using conventional techniques. Suitable labels include fluorophores, chromophores, radioactive atoms (particularly ^{32}P and ^{125}I), electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase is usually detected by its ability to convert 3,3',5,5'-tetramethylbenzidine (TMB) to a blue pigment, quantifiable with a spectrophotometer. "Specific binding partner" refers to a protein capable of binding a ligand molecule with high specificity, as for example in the case of an antigen and a monoclonal antibody specific therefor. Other specific binding partners include biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art. It should be understood that the above description is not meant to categorize the various labels into distinct classes, as the same label may serve in several different modes. For example, ^{125}I may serve as a radioactive label or as an electron-dense reagent. HRP may serve as enzyme or as antigen for a MAb. Further, one may combine various labels for desired effect. For example, MAbs and avidin also require labels in the practice of this invention: thus, one might label a MAb with biotin, and detect its presence with avidin labeled with ^{125}I , or with an anti-biotin MAb labeled with HRP. Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the instant invention.

25 Pharmaceutical Compositions

Pharmaceutical compositions can comprise either polypeptides, antibodies, or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.

The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgement of the clinician.

For purposes of the present invention, an effective dose will be from about 0.01 mg/ kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as

antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, 5 amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available 10 in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, 15 liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.

Delivery Methods

Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals; in particular, human subjects can be treated.

20 Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, nasal, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays.

25 The nature of any carriers or other ingredients included in compositions will depend on the specific route of administration and particular embodiment of the invention to be administered. Antibiotics, for example, exist in various formulations.

Dosage of low molecular weight compounds will depend on the disease state or condition to be treated and other clinical factors such as weight and condition of the human or animal and the route of administration of the 30 compound. For treating human or animals, between approximately 0.5 mg/kg of body weight to 500 mg/kg of body weight of the compound can be administered. Therapy is typically administered at lower dosages and is continued until the desired therapeutic outcome is observed.

Dosage treatment may be a single dose schedule or a multiple dose schedule.

Polynucleotide and polypeptide pharmaceutical compositions

35 In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.

A. Polypeptides

One example are polypeptides which include, without limitation: asioloorosomucoid (ASOR); transferrin; 40 asialoglycoproteins; antibodies; antibody fragments; ferritin; interleukins; interferons, granulocyte, macrophage

colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as RII.

5 B.Hormones, Vitamins, etc.

Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.

C.Polyalkylenes, Polysaccharides, etc.

10 Also, polyalkylene glycol can be included with the desired polynucleotides/polypeptides. In a preferred embodiment, the polyalkylene glycol is polyethylene glycol. In addition, mono-, di-, or polysaccharides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chitosan and poly(lactide-co-glycolide)

D.Lipids, and Liposomes

15 The desired polynucleotide/polypeptide can also be encapsulated in lipids or packaged in liposomes prior to delivery to the subject or to cells derived therefrom.

20 Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight (1991) *Biochim. Biophys. Acta.* 1097:1-17; Straubinger (1983) *Meth. Enzymol.* 101:512-527.

25 Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner (1987) *Proc. Natl. Acad. Sci. USA* 84:7413-7416); mRNA (Malone (1989) *Proc. Natl. Acad. Sci. USA* 86:6077-6081); and purified transcription factors (Debs (1990) *J. Biol. Chem.* 265:10189-10192), in functional form.

30 Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, NY. (See, also, Felgner *supra*). Other commercially available liposomes include transfetace (DDAB/DOPE) and DOTAP/DOPE (Boehringer). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, eg. Szoka (1978) *Proc. Natl. Acad. Sci. USA* 75:4194-4198; WO90/11092 for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.

35 Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, AL), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphosphatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

The liposomes can comprise multilammellar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known

in the art. See eg. Straubinger (1983) *Meth. Immunol.* 101:512-527; Szoka (1978) *Proc. Natl. Acad. Sci. USA* 75:4194-4198; Papahadjopoulos (1975) *Biochim. Biophys. Acta* 394:483; Wilson (1979) *Cell* 17:77; Deamer & Bangham (1976) *Biochim. Biophys. Acta* 443:629; Ostro (1977) *Biochem. Biophys. Res. Commun.* 76:836; Fraley (1979) *Proc. Natl. Acad. Sci. USA* 76:3348); Enoch & Strittmatter (1979) *Proc. Natl. Acad. Sci. USA* 76:145; Fraley (1980) *J. Biol. Chem.* (1980) 255:10431; Szoka & Papahadjopoulos (1978) *Proc. Natl. Acad. Sci. USA* 75:145; and Schaefer-Ridder (1982) *Science* 215:166.

E.Lipoproteins

In addition, lipoproteins can be included with the polynucleotide/polypeptide to be delivered. Examples of lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.

Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been isolated and identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.

A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C & E, over time these lipoproteins lose A and acquire C & E. VLDL comprises A, B, C & E apoproteins, LDL comprises apoprotein B; and HDL comprises apoproteins A, C, & E.

The amino acid of these apoproteins are known and are described in, for example, Breslow (1985) *Annu Rev. Biochem* 54:699; Law (1986) *Adv. Exp Med. Biol.* 151:162; Chen (1986) *J Biol Chem* 261:12918; Kane (1980) *Proc Natl Acad Sci USA* 77:2465; and Utermann (1984) *Hum Genet* 65:232.

Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phospholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in *Meth. Enzymol.* 128 (1986). The composition of the lipids are chosen to aid in conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding molecule.

Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in *Meth. Enzymol. (supra)*; Pitas (1980) *J. Biochem.* 255:5454-5460 and Mahey (1979) *J Clin. Invest* 64:743-750. Lipoproteins can also be produced by *in vitro* or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for example, Atkinson (1986) *Annu Rev Biophys Chem* 15:403 and Radding (1958) *Biochim Biophys Acta* 30: 443. Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Technologies, Inc., Stoughton, MA, USA. Further description of lipoproteins can be found in WO98/06437..

F.Polycationic Agents

Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide/polypeptide to be delivered.

Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both *in vitro*, *ex vivo*, and *in vivo* applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously, etc.

- 5 The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyornithine, and protamine. Other examples include histones, protamines, human serum albumin, DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and therefore may be useful as nucleic acid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1,
10 Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.

Organic polycationic agents include: spermine, spermidine, and putrescine.

The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents.

- 15 Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polybrene. Lipofectin™, and lipofectAMINE™ are monomers that form polycationic complexes when combined with polynucleotides/polypeptides.

MODES FOR CARRYING OUT THE INVENTION

- Isogenic deletion mutants of clinical isolate strain D39 of *S.pneumoniae* (serotype 2) were prepared using Overlap Extension [Amberg *et al.* (1995) *Yeast* 11:1275-1280] for several *S.pneumoniae* genes
20 to assess the effect of deletion on viability. Precise gene disruptions were achieved by gene splicing following a "double fusion" PCR strategy. Each process was accomplished with a total of five PCR reactions: three standard PCR amplifications and two fusion PCR reactions. The first step was performed by amplifying an upstream (fragment U, primers: F1 + R2) and a downstream region (fragment D, primers: F5 + R6) for each gene to disrupt, plus a selectable marker sequence (fragment K, primers: F3 + R4) to replace the gene's reading frame in between. The *aphA-3* gene (kanamycin
25 resistance) was chosen as universal K fragment for all mutant constructs. It was amplified in order to contain 24 bp 5' and 3' tails showing complementary sequence to U-3' and D-5' ends, respectively. A first fusion PCR was performed to link D to K. Each KD amplified fragment was then gel purified and a second fusion PCR reaction was performed in order to fuse it to the corresponding U fragment.
30 Final chimera products constitute for gene disruption cassettes (UKD). During the final fusion PCR in the presence of primers F1 and R6, they were amplified by AmpliTaq polymerase (Applera) able to add a single deoxyadenosine to the 3' ends of both DNA strands. Each construct was ligated into a pGEM-T Easy vector (Promega) endowed of single 3'-T overhangs at the insertion site and then introduced by electroporation into *E.coli* DH10B bacteria (Invitrogen). Plasmid minipreps were
35 retrieved from true recombinant colonies and the rightness of chimeric inserts was confirmed by PCR. Plamid DNAs were used to transform Sp using synthetic CSP-1 to induce natural competence [Havarstein *et al.* (1995) 92:11140-44]. Briefly, early log phase D39 cultures ($OD_{600} = 0.05-0.1$) were diluted 1:10 with brain heart infusion broth (BHIB) supplemented with 100 ng/ml CSP-1, 10

mM glucose and 10% inactivated horse serum (Sigma) and incubated for 15 min at 37°C and 5% CO₂ without aeration. Plasmid DNA (1µg) was added and samples were incubated for 1 h before being spread on selective blood agar plates (tryptic soy agar, TSA-Difco, supplemented with 3% defibrinated sheep blood and 500 µg/ml of kanamycin). Growth was allowed for 1-2 days at 37°C in an atmosphere of 5% CO₂. Five to ten KanR CFUs were screened for each sample either by PCR (primer F1+ R6) or by direct sequencing of chromosomal DNA to choose the correct isogenic mutant colony.

Knockout of any of the 91 genes listed in Table 1 resulted in no growth, indicating that the genes are essential for pneumococcal viability. Knockout of any of the 10 genes listed in Table 2 gave bacteria which had poor growth characteristics when cultured in the absence of blood. In contrast, knockout of any of the genes listed in Table 3 had no effect on growth phenotype.

It will be understood that the invention has been described by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention.

Table 1 — 91 genes for which knockout is lethal in TIGR4 strain

TIGR4 gene	TIGR4 annotation	R6 gene
SP0005	peptidyl-tRNA hydrolase (pth)	spr0005
SP0032	DNA polymerase I (polA)	spr0032
SP0047	phosphoribosylformylglycinamide cyclo-ligase (purM)	spr0048
SP0056	adenylosuccinate lyase (purB)	spr0056
SP0092	ABC transporter, substrate-binding protein	spr0083
SP0102	glycosyl transferase	spr0091
SP0103	capsular polysaccharide biosynthesis protein, putative	spr0092
SP0253	glycerol dehydrogenase (gldA)	spr0234
SP0261	undecaprenyl diphosphate synthase (uppS)	spr240
SP0289	dihydropteroate synthase	spr0266
SP0290	dihydrofolate synthetase (folC)	spr267
SP0292	bifunctional folate synthesis protein (sulD)	spr269
SP0336	penicillin-binding protein 2X (pbpX)	spr304
SP0337	phospho-N-acetyl muramoyl-pentapeptide-transferase (mraY)	spr305
SP0381	mevalonate kinase (mvaK1)	spr338
SP0382	diphosphomevalonate decarboxylase (mvaD)	spr339
SP0383	phosphomevalonate kinase (mvaK2)	spr340
SP0397	mannitol-1-phosphate 5-dehydrogenase (mtlD)	spr359
SP0402	signal peptidase I (spi)	spr364
SP0418	acyl carrier protein (acpP)	spr378
SP0420	malonyl CoA-acyl carrier protein transacylase (fabD)	spr380
SP0423	acetyl-CoA carboxylase, biotin carboxyl carrier protein (accB)	spr0383
SP0425	acetyl-CoA carboxylase, biotin carboxylase (accC)	spr0385
SP0477	6-phospho-beta-galactosidase (lacG-1)	spr424
SP0516	heat shock protein GrpE (grpE)	spr454
SP0529	B1pc ABC transporter (blpB)	spr0466/0467
SP0605	fructose-bisphosphate aldolase (fba)	spr530
SP0655	sodium/hydrogen exchanger family protein	spr0573
SP0656	hypothetical protein	spr0573
SP0669	thymidylate synthase (thyA)	spr585
SP0680	ribosomal small subunit pseudouridine synthase A (rsuA-2)	spr597
SP0689	UDP-N-acetylglucosamine-N-acetyl muramyl-(pentapeptide) pyrophosphoryl- undecaprenol N-acetylglucosamine transferase (murG)	spr0604
SP0708	amino acid ABC transporter, amino acid-binding protein, authentic frameshift	spr0621
SP0756	cell division ABC transporter, ATP-binding protein FtsE (ftsE)	spr0666
SP0757	cell division ABC transporter, permease protein FtsX (ftsX)	spr0667
SP0762	S-adenosylmethionine synthetase (metK)	spr671
SP0806	DNA gyrase subunit B (gyrB)	spr715
SP0839	pantothenate kinase (coaA)	spr741
SP0865	DNA polymerase III, gamma and tau subunits (dnaX)	spr769
SP0876	1-phosphofructokinase, putative	spr779
SP0935	thymidylate kinase (tmk)	spr835
SP0944	uridylate kinase (pyrH)	spr845

SP0945	ribosome recycling factor (frr)	spr846
SP0974	preprotein translocase, SecG subunit, putative	spr877
SP0988	UDP-N-acetylglucosamine pyrophosphorylase (glmU)	spr891
SP1067	cell division protein FtsW, putative	spr0973
SP1079	GTP-binding protein, GTP1/Obg family	spr984
SP1084	methionine aminopeptidase, type I (map)	spr992
SP1117	DNA ligase, NAD-dependent (ligA)	spr1024
SP1128	enolase (eno)	spr1036
SP1263	DNA topoisomerase I (topA)	spr1141
SP1267	licC protein (licC)	spr1145
SP1268	licB protein (licB)	spr1146
SP1269	choline kinase (pck)	spr1147
sp1271	cytidine diphosphocholine pyrophosphorylase, putative	spr1149
SP1272	polysaccharide biosynthesis protein, putative	spr1150
sp1273	licD1 protein (licD1)	spr1151
SP1329	N-acetylneuraminate lyase	spr1186
SP1360	homoserine kinase (thrB)	spr1218
SP1366	glycosyl transferase, group 1	spr1224
sp1367	licD3 protein (licD3)	spr1225
SP1390	UDP-N-acetylenolpyruvoylg glucosamine reductase (murB)	spr1247
SP1420	NH(3)-dependent NAD(+) synthetase (nadE)	spr1276
SP1456	polypeptide deformylase (def-1)	spr1310
SP1458	thioredoxin reductase (trxB)	spr1312
SP1492	cell wall surface anchor family protein	spr1345
SP1521	UDP-N-acetyl muramate-alanine ligase (murC)	spr1373
SP1529	polysaccharide biosynthesis protein, putative	spr1383
SP1530	UDP-N-acetyl muramoylalanyl-D-glutamate-2,6-diaminopimelate ligase (murE)	spr1384
SP1534	inorganic pyrophosphatase, manganese-dependent (ppaC)	spr1389
SP1559	phosphoglucomutase/phosphomannomutase family protein	spr1417
SP1571	dihydrofolate reductase (folA)	spr1429
SP1589	Mur ligase family protein	spr1443
SP1610	Bcl-2 family protein	spr1463
SP1655	phosphoglycerate mutase (gpmA)	spr1499
SP1667	cell division protein FtsA (ftsA)	spr1511
SP1670	UDP-N-acetyl muramoylalanyl-D-glutamyl-2,6-diaminopimelate-D-alanyl-D-alanyl ligase (murF)	spr1514
SP1690	ABC transporter, substrate-binding protein	spr1534
SP1698	alanine racemase (alr)	spr1540
SP1699	holo-(acyl-carrier protein) synthase (acpS)	spr1541
SP1709	phosphoglycerate dehydrogenase-related protein	spr1553
sp1726	3-hydroxy-3-methylglutaryl-CoA reductase	spr1570
SP1735	methionyl-tRNA formyltransferase (fmt)	spr1580
SP1814	indole-3-glycerol phosphate synthase (trpC)	spr1634
SP1881	glutamate racemase (murl, glr)	spr1696
SP1906	chaperonin, 60 kDa (groEL)	spr1722
SP1907	chaperonin, 10 kDa (groES)	spr1723

sp1968	phosphopantetheine adenylyltransferase (coAD)	spr1783
SP1975	SpollJ family protein	spr1790
SP2012	glyceraldehyde 3-phosphate dehydrogenase (gap)	spr1825
SP2216	secreted 45 kd protein (usp45)	spr2021

Table 2 — 10 genes for which knockout results in poor growth characteristics in TIGR4 strain

TIGR4 gene	TIGR4 annotation	R6 gene
SP0417	3-oxoacyl-(acyl-carrier-protein) synthase III (fabH)	spr377
SP0419	enoyl-(acyl-carrier-protein) reductase (fabK)	spr0379
SP0424	(3R)-hydroxymyristoyl-(acyl-carrier-protein) dehydratase (fabZ)	spr384
SP0969	GTP-binding protein Era (era)	spr0871
SP1161	acetoin dehydrogenase complex, E3 component, dihydrolipoamide dehydrogenase, putative	spr1048
SP1649	manganese ABC transporter, permease protein, putative, authentic frameshift (psaC)	spr1493
SP1650	manganese ABC transporter, manganese-binding adhesion lipoprotein (psaA)	spr1494
SP2047	conserved domain protein	spr1858
SP2051	competence protein CglC (cglC)	spr1862
SP2146	conserved hypothetical protein	spr1954

NB: where the annotation specifies an “...ase”, the polypeptide generally has enzymatic activity.

5 Table 3 — Genes for which knockout does not affect in vitro growth characteristics of TIGR4

TIGR4 gene	TIGR4 gene	TIGR4 gene	TIGR4 gene	TIGR4 gene	TIGR4 gene
SP0004	SP0377	SP0764	SP1167	SP1551	SP1964
SP0010	SP0378	SP0766	SP1168	SP1555	SP1967
SP0013	SP0386	SP0771	SP1174 /1003	SP1557	sp1970
SP0014 /2006	SP0390	SP0785	SP1175	SP1560	SP1978
SP0034	SP0391	SP0797	SP1176	SP1573	SP1981
SP0037	SP0400	SP0804	sp1190	SP1576	SP1990
SP0041	SP0403	SP0820	SP1191	SP1580	SP1992
SP0042	SP0406	SP0825	sp1192	SP1586	SP1995
SP0043	SP0410	SP0829	SP1193	SP1591	SP2006/0014
SP0044	SP0413	SP0834	SP1200	SP1603	SP2010
SP0045	SP0421	SP0845	SP1202	SP1608	SP2017
SP0046	SP0422	SP0858	SP1204	SP1623	SP2029
SP0048	SP0435	SP0859	SP1208	SP1634	sp2033
SP0053	SP0439	SP0860	SP1218	SP1645	SP2041
SP0054	SP0447	SP0872	SP1225	SP1647	SP2044
SP0057	SP0457	SP0873	SP1232	SP1648	SP2050
SP0060	SP0459	sp0881	SP1243	SP1651	SP2053
SP0075	SP0483	SP0894	SP1244	SP1654	SP2056
SP0079	SP0494	SP0899	SP1274	SP1672	SP2060

SP0082	SP0498	SP0907	SP1283	SP1673	SP2063
SP0098	SP0502	SP0916	SP1284	SP1676	SP2066
SP0104	SP0526	SP0920	SP1287	SP1683	SP2086
SP0105+0106	SP0545	SP0928	SP1298	SP1685/1330	SP2091
SP0107	SP0585	SP0929	SP1308	SP1687	SP2092
SP0109	SP0589	SP0930	SP1330/1685	SP1693	SP2096
SP0112	SP0599	SP0931	SP1342	SP1695	SP2098
SP0117	SP0601	SP0932	SP1343	SP1697	SP2099
SP0129	SP0603	SP0938	SP1359	SP1700+1701	SP2101
SP0135	SP0607	SP0965	SP1361	SP1707	SP2105
SP0148	SP0611	SP0966	SP1362	SP1715	sp2107
SP0149	SP0614	SP0968	SP1369	SP1721	SP2108
SP0150	SP0615	SP0975	SP1370	SP1724	sp2126
SP0155	SP0616	SP0977	SP1371	SP1778	SP2132
SP0175	sp0615-sp0616	SP0979	sp1373	SP1780	SP2136
SP0176	SP0617	SP0981	SP1374	sp1795	SP2143
SP0177	SP0620	SP0991	sp1376	SP1808	SP2144
SP0178	SP0623	SP0998	sp1377	sp1811+1812	SP2145
SP0185	SP0625	SP1000/0659	SP1382	sp1813	SP2148
SP0187	SP0627	SP1002	SP1386	sp1815	SP2151
SP0191	SP0629	SP1003/1174	SP1387	SP1816	SP2153
SP0198	SP0637	SP1008	SP1388	SP1826	sp2155
SP0199	SP0641	SP1013	SP1389	SP1829	sp2158
SP0202	SP0648	SP1014	SP1392	SP1833	SP2169
SP0205	SP0659/1000	SP1017	SP1394	SP1839	SP2171
SP0231	SP0660	SP1018	SP1400	SP1852	SP2173
SP0251	SP0664	SP1024	SP1410	SP1865	SP2175
SP0263	SP0667	SP1026	SP1412	SP1870	SP2185
SP0266	SP0671	SP1032	SP1417	SP1872	SP2187
SP0268	SP0672	SP1033	SP1427	SP1891	SP2189
SP0278	SP0678	SP1046	SP1429	SP1894	SP2190
SP0281	SP0690	SP1068	SP1445	SP1897	SP2197
SP0284	SP0694	SP1069	SP1447	SP1898	SP2201
SP0314	SP0717	sp1075	SP1449	SP1912	SP2205
SP0317	SP0718	SP1087	SP1466	SP1923	SP2218
SP0318	SP0724	SP1100	SP1469	SP1937	SP2222
SP0322	SP0725	SP1112	SP1479	SP1940	SP2224
SP0347	SP0726	SP1118	SP1480	SP1941	SP2231
SP0350	SP0730	SP1122	SP1498	SP1942	SP2235
SP0360	SP0745	SP1124	SP1500	SP1950	SP2236
SP0366	SP0746	SP1154	SP1505	SP1953	SP2237
SP0368	SP0749	SP1156	SP1527	SP1954/1955	SP2239
SP0369	SP0758	SP1166	SP1549	SP1963	

REFERENCES (the contents of which are hereby incorporated in full)

- [1] GenBank NC_004512.
- [2] GenBank NC_003440.
- [3] GenBank NC_003098
- [4] Hoskins *et al.* (2001) *J.Bacteriol.* 183:5709-5717.
- [5] GenBank NC_003028.
- [6] Tettelin *et al.* (2001) *Science* 293:498-506
- [7] WO02/077021.
- [8] Mollerach *et al.* (1998) *J Exp Med* 188:2047-56.
- [9] Lee *et al.* (1998) *Appl Environ Microbiol* 64:4796-4802.
- [10] US patent 5981281.
- [11] Kolkman *et al.* (1996) *J Bacteriol* 178:3736-3441.
- [12] Eisenthal & Danson (eds) *Enzyme Assays (Practical Approach Series)* ISBN:0199638209 (2002).
- [13] Lin *et al.* (1997) *Antimicrobial Agents and Chemotherapy* 41:2127-2131.
- [14] Gennaro (2000) *Remington: The Science and Practice of Pharmacy*. 20th edition, ISBN: 0683306472.
- [15] *Vaccine design: the subunit and adjuvant approach* (1995) eds. Powell & Newman. ISBN 0-306-44867-X.
- [16] WO90/14837.
- [17] WO00/07621.
- [18] WO00/62800.
- [19] WO99/27960.
- [20] European patent applications 0835318, 0735898 and 0761231.
- [21] WO99/52549.
- [22] WO01/21207.
- [23] WO01/21152.
- [24] WO00/23105.
- [25] WO99/11241.
- [26] WO98/57659.
- [27] Del Giudice *et al.* (1998) *Molecular Aspects of Medicine*, vol. 19, number 1.
- [28] Johnson *et al.* (1999) *Bioorg Med Chem Lett* 9:2273-2278.
- [29] International patent application WO00/50078.
- [30] Singh *et al.* (2001) *J. Cont. Rele.* 70:267-276.