Part II: The Hubbard Model and BCS Theory

QiLin Xue

University of Toronto

April 6, 2023

Goal

Derive the theoretical relationship

$$\frac{2|\Delta(T=0)|}{k_B T_c} = 3.5278,$$

where T_c is the critical temperature and Δ is the energy gap at T=0.

- ▶ Why is this interesting?
 - ▶ Doesn't depend on material properties such as density of states, strength of electron interactions, etc.
 - Universal

Hubbard Model Hamiltonian

attractive potential between electrons at the site i

The Partition Function

The Partition function is given by

$$Z = \operatorname{Tr}(e^{-\beta \hat{H}})$$

After a lot of tedious mathematics, we get

$$Z = \int \exp \left(-\underbrace{\int_0^{eta} \left[\sum_i ar{c}_{i au} \partial_ au c_{i au} + H[ar{c},c]
ight] \mathrm{d} au}_{ ext{The Action }S}
ight) \mathcal{D}ar{c}\mathcal{D}c$$

The Hubbard-Stratonovich Transformation

We can write

$$\mathrm{e}^{\mathit{U} n_{\uparrow} n_{\downarrow}} = \mathrm{e}^{\mathit{U} ar{c}_{\uparrow} ar{c}_{\downarrow} c_{\downarrow} c_{\uparrow}} = \int \exp\left(-rac{1}{\mathit{U}} |\Delta(\mathit{T}=0)|^2 - \Delta ar{c}_{\uparrow} ar{c}_{\downarrow} - \Delta^* c_{\downarrow} c_{\uparrow}
ight) \mathrm{d}\Delta^* \, \mathrm{d}\Delta \,.$$

We can rewrite the action in terms of Δ, Δ^* . If $Z = \int e^{-S_{\rm eff}} \mathcal{D} \Delta^* \mathcal{D} \Delta$ then

$$S_{\rm eff} = \int_0^\beta \underbrace{\sum_i \frac{1}{U} |\Delta_{i\tau}|^2}_{\rm gaussian \ term} {\rm d}\tau - \underbrace{\log \left\langle \exp \left(- \int_0^\beta \sum_i (\Delta_{i\tau} \bar{c}_{i\tau\uparrow} \bar{c}_{i\tau\downarrow} + h.c. \right) {\rm d}\tau \right) \right\rangle_0}_{\rm interaction \ term \ (between \ cooper \ pairs)}$$

We write the interaction term as

$$\Delta S_{\rm eff} = -\log\langle e^{-S'}
angle_0$$

Cumulant Expansion

Recall that

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \cdots$$
$$\log(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \cdots$$

Then:

$$-\log\left(\langle e^{-S'}\rangle_{0}\right) = -\log\left(1 + \langle -S'\rangle_{0} + \frac{1}{2}\left\langle\left(S'\right)^{2}\right\rangle_{0} + \cdots\right)$$
$$= \langle S'\rangle_{0} + \frac{1}{2}\left\langle S'^{2}\right\rangle_{0} - \frac{1}{2}\langle S'\rangle_{0}^{2} + \cdots$$

We will compute up to order 2.

Cumulant Expansion

We wish to compute

$$\Delta S_{\mathsf{eff}} pprox \langle S'
angle_0 + rac{1}{2} \left\langle S'^2
angle_0 - rac{1}{2} \langle S'
angle_0^2$$

We compute

$$\langle S' \rangle_0 = \langle \bar{c}_{k-p,\uparrow}, \bar{c}_{p,\downarrow} \rangle_0 = 0.$$

and

$$rac{1}{2}\langle S'^2
angle_0=-rac{1}{eta N}\sum_{m{k}}|\Delta_{m{k}}|^2\pi(m{k},ik_0)$$

Effective Action

We derived

$$S_{\text{eff}} = \frac{1}{\beta N} \sum_{k} |\Delta_k|^2 \left(\frac{1}{U} - \pi(\mathbf{k}, ik_0) \right)$$

A transition occurs when the coefficient of $|\Delta_k|^2$ changes sign. Can analytically determine when $\mathbf{k} = k_0 = 0$. We get from complex analysis,

$$\pi(0,0) =
ho \log \left(rac{2eta D}{\pi} e^{\gamma}
ight)$$

Gives a formula for the critical temperature

$$T_c \sim rac{2De^{\gamma}}{\pi k_B} e^{-1/(
ho U)}$$

The Big Picture

Some More Assumptions

- $ightharpoonup \Delta$ is a constant in space and time.
- $\triangleright D \gg |\Delta(T=0)|$
- ightharpoonup Analytically analyze as $T \to 0$ (at the very end)

Action Minimization

Going back a bit... The action (as a functional)

$$S_{\rm eff}[\Delta^*,\Delta] = \int_0^\beta \underbrace{\sum_i \frac{1}{U} |\Delta_{i\tau}|^2}_{\rm gaussian \ term} {\rm d}\tau - \underbrace{\log \left\langle \exp\left(-\int_0^\beta \sum_i (\Delta_{i\tau} \bar{c}_{i\tau\uparrow} \bar{c}_{i\tau\downarrow} + h.c.\right) {\rm d}\tau\right) \right\rangle_0}_{\rm interaction \ term}$$

becomes a regular function,

$$S_{\mathsf{eff}}(\Delta^*, \Delta) = rac{eta N |\Delta(T=0)|^2}{U} - \log \left\langle \exp\left(-\int_0^eta \sum_i (\Delta ar{c}_{i au\uparrow} ar{c}_{i au\downarrow} + h.c.) \,\mathrm{d} au
ight)
ight
angle_0$$

which we can minimize with respect to Δ^* which gives

$$\Delta = -\frac{U}{\beta N} \sum_{k} \langle c_{-k,\downarrow} c_{k,\uparrow} \rangle$$

Diagonalization

Assuming Δ is constant allows us to write the action as

$$S_{\text{eff}}(\Delta^*, \Delta) = \frac{\beta N |\Delta(T=0)|^2}{U} + \sum_{\boldsymbol{k}, \omega} \left(\bar{c}_{\boldsymbol{k},\uparrow} \quad c_{-\boldsymbol{k},\downarrow} \right) \begin{pmatrix} -i\omega + \xi_{\boldsymbol{k}} & \Delta \\ \Delta^* & -i\omega - \xi_{\boldsymbol{k}} \end{pmatrix} \begin{pmatrix} c_{\boldsymbol{k},\uparrow} \\ \bar{c}_{-\boldsymbol{k},\downarrow} \end{pmatrix}$$

We can diagonalize this, using the action minimization condition, and the assumptions above, after (a lot of) work, we get

$$|\Delta(T=0)| = 2De^{-1/\rho U}$$

Finishing Up

We have

$$T_c = \frac{2De^{\gamma}}{\pi k_B} e^{-1/(\rho U)}, \qquad |\Delta(T=0)| = 2De^{-1/\rho U}$$

so dividing through, we get

$$\frac{2|\Delta(T=0)|}{k_B T_c} = 2\pi e^{-\gamma} = 3.5278$$

	$\Delta_0{}^{a,b}$	U_0^{b}	δ^{c}	ω_c/ω_D	$2\Delta(0)/k_BT_c^{\rm d}$
Zn	1.19 (1.20)	6840	1.50	0.167	3.63 (3.20)
Cd	0.26 (0.75)	5040	1.20	0.245	3.70 (3.20)
Hg	0.81 (8.25)	4900	0.44	0.124	4.76 (4.60)
Al	1.37 (1.70)	6300	1.81	0.183	3.54 (3.30)
Ga	3.96 (1.65)	5960	1.51	0.096	3.51 (3.50)
In	0.25 (5.25)	5420	0.62	0.203	3.92 (3.60)
Tl	0.23 (3.68)	5260	0.48	0.164	3.92 (3.57)
Sn	1.26 (5.75)	5440	1.25	0.158	3.70 (3.50)
Pb	0.70 (13.7)	5670	0.60	0.160	4.56 (4.38)
V	14.0 (8.00)	7930	1.20	0.068	3.95 (3.40)
Nb	4.90 (15.3)	7270	1.04	0.107	4.25 (3.80)
To	2.26 (7.00)	9110	0.00	0.005	2.05 (2.60)

