

Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Dipartimento di Informatica

Linguaggi e Compilatori

Autore:

Simone Lidonnici

Indice

E Esercizi					
	E.1	Eserciz	zi su automi e grammatiche	1	
		E.1.1	Trasformare un NFA in DFA	1	
		E.1.2	Trasformare un'espressione regolare in NFA	4	

Esercizi

E.1 Esercizi su automi e grammatiche

E.1.1 Trasformare un NFA in DFA

Dato un NFA $N=(Q_N,\Sigma,\delta_N,q_{0_N},F_N)$ definiamo la ε -closure (o estensione) di uno stato $q\in Q_N$ come:

$$E(q) = \varepsilon\text{-closure}(q) = \left\{ s \in Q_N \middle| \begin{array}{c} s \text{ può essere raggiunto da } q \\ \text{tramite solamente } \varepsilon\text{-archi} \end{array} \right\}$$

La ε -closure di un insieme di stati $R \subseteq Q_N$ è definita come:

$$E(R) = \varepsilon\text{-closure}(R) = \bigcup_{q \in R} \varepsilon\text{-closure}(q)$$

La ε -closure di un insieme di stati R contiene sempre almeno R.

Per creare il DFA $D = (Q_D, \Sigma, \delta_D, q_{0_D}, F_D)$ equivalente all'NFA N, si esegue questo algoritmo:

Algoritmo: Subset Construction

$ext{def Subset_Construction(N):} \ | \ Q_D = \{ arepsilon ext{-closure}(q_{0_N}) \}$

Quando uno stato $R \in Q_D$ è un insieme di stati in Q_N , la funzione δ_N viene calcolata come:

$$\delta_N(R,a) = \bigcup_{r \in R} \delta_N(r,a)$$

Gli stati accettanti in D sono tutti gli stati che contengono almeno uno stato accettante di N. Il DFA risultante può essere disegnato oppure rappresentato come tabella con le intestazioni:

Stati NFA	Stato DFA	a	b
$\{0,1,2,3\}$	A	В	С
{1,2}	В	С	A
{3,4}	С	Α	С

Con l'alfabeto $\Sigma = \{a, b\}$ la tabella avrebbe le intestazioni come sopra e la casella nella colonna a e riga A rappresenta la transizione $\delta_D(A, a)$. Nel caso l'alfabeto avesse altri simboli bisognerebbe aggiungere una colonna per ogni simbolo dell'alfabeto.

Esempio:

Dato l'NFA per il linguaggio $L = \{(a \cup b)^*abb\}$:

Eseguiamo i passaggi dell'algoritmo:

- Lo stato iniziale di D sarà ε -closure $(0) = \{0, 1, 2, 4, 7\} = A$
- Sullo stato A eseguiamo:
 - 1. ε -closure $(\delta_N(A, a)) = \varepsilon$ -closure $(\{3, 8\}) = \{1, 2, 3, 4, 6, 7, 8\} = B$ Avremo una transizione $\delta_D(A, a) = B$
 - 2. ε -closure $(\delta_N(A, b)) = \varepsilon$ -closure $(\{5\}) = \{1, 2, 4, 5, 6, 7\} = C$ Avremo una transizione $\delta_D(A, b) = C$
- Sullo stato B eseguiamo:
 - 1. ε -closure $(\delta_N(B, a)) = \varepsilon$ -closure $(\{3, 8\}) = B$ Avremo una transizione $\delta_D(B, a) = B$
 - 2. ε -closure $(\delta_N(B,b)) = \varepsilon$ -closure $(\{5,9\}) = \{1,2,4,5,6,7,9\} = D$ Avremo una transizione $\delta_D(B,b) = D$
- Sullo stato C eseguiamo:
 - 1. ε -closure $(\delta_N(C, a)) = \varepsilon$ -closure $(\{3, 8\}) = B$ Avremo una transizione $\delta_D(C, a) = B$
 - 2. ε -closure $(\delta_N(C, b)) = \varepsilon$ -closure $(\{5\}) = C$ Avremo una transizione $\delta_D(C, b) = C$
- Sullo stato D eseguiamo:
 - 1. ε -closure $(\delta_N(D, a)) = \varepsilon$ -closure $(\{3, 8\}) = B$ Avremo una transizione $\delta_D(D, a) = B$
 - 2. ε -closure $(\delta_N(D,b)) = \varepsilon$ -closure $(\{5,10\}) = \{1,2,4,5,6,7,10\} = E$ Avremo una transizione $\delta_D(D,b) = E$

- Sullo stato E eseguiamo:
 - 1. ε -closure $(\delta_N(E, a)) = \varepsilon$ -closure $(\{3, 8\}) = B$ Avremo una transizione $\delta_D(E, a) = B$
 - 2. ε -closure $(\delta_N(E,b)) = \varepsilon$ -closure $(\{5\}) = C$ Avremo una transizione $\delta_D(E,b) = C$
- Abbiamo finito gli stati da analizzare quindi l'algoritmo è terminato e lo stato accettante di D sarà E perchè è l'unico che contiene lo stato 10 di N.

Il DFA risultante rappresentato sotto forma di automa sarà quindi:

Sotto forma di tabella invece sarà:

Stati NFA	Stato DFA	a	b
{0,1,2,4,7}	A	В	С
$\{1,2,3,4,6,7,8\}$	В	В	D
$\{1,2,4,5,6,7\}$	\mathbf{C}	В	\mathbf{C}
$\{1,2,4,5,6,7,9\}$	D	В	\mathbf{E}
$\{1,2,3,5,6,7,10\}$	E	В	\mathbf{C}

E.1.2 Trasformare un'espressione regolare in NFA

Data un'espressione regolare R e il suo Syntax Tree, possiamo trasformarlo in NFA eseguendo un visita in profondità del Syntax Tree e in base al nodo che visitiamo creaiamo un NFA parziale per il suo sottoalbero. Nella spiegazione dell'algoritmo i nodi s_i, s_f indicano il primo e l'ultimo nodo dell'NFA che riconosce s, negli esercizi solitamente si numerano sequanzialmente partendo da 0 in base all'ordine di visita. Eseguendo la visita in profondità l'NFA da creare cambia in base al simbolo contenuto nel nodo visitato:

• Se stiamo visitando una foglia contente ε , costruiremo il seguente NFA:

• Se stiamo visitando una foglia contente un simbolo $a \in \Sigma$, costruiremo il seguente NFA:

• Se stiamo visitando un nodo contente un'unione $s \cup t$, costruiremo il seguente NFA, aggiungendo gli stati $i \in f$:

• Se stiamo visitando un nodo contente una concatenazione st, costruiremo il seguente NFA, unendo lo stato finale di s_f con lo stato iniziale di t_i :

start
$$\longrightarrow$$
 s_i \cdots s_f/t_i \cdots t_f

• Se stiamo visitando un nodo contente una star di Kleene s^* , costruiremo il seguente NFA, aggiungendo gli stati $i \in f$:

L'NFA risultante avrà un solo stato accettante e ogni stato (ad eccezione di quello accettante) avrà le transizioni uscenti in uno di questi due modi:

- 1. Una sola transizione con etichetta $a \in \Sigma$
- 2. Una o due transizioni con etichetta ε

Esempio:

Data l'espressione regolare $(a \cup b)^*abb$ con il seguente Abstract Tree (\circ indica la concatenzazione):

In questo esempio i nodi dell'albero sono numerati in base all'ordine in cui vanno visitati. Eseguiamo i passi dell'algoritmo, partendo dalla foglia in basso a sinistra:

1. La foglia contiene a, quindi l'NFA corrispondente sarà:

2. La foglia contiene b, quindi l'NFA corrispondente sarà:

3. La foglia contiene un'unione, quindi l'NFA corrispondente a $a \cup b$ sarà:

4. La foglia contiene una star di Kleene, quindi l'NFA corrispondente a $(a \cup b)^*$ sarà:

5. La foglia contiene a, quindi l'NFA corrispondente sarà:

6. La foglia contiene una concatenazione, quindi l'NFA corrispondente a $(a \cup b)^*a$ sarà:

start
$$\longrightarrow$$
 6 \cdots $(7/8) \cdots$ (9)

7. La foglia contiene b, quindi l'NFA corrispondente sarà:

start
$$\longrightarrow$$
 10 \xrightarrow{b} 11

8. La foglia contiene una concatenazione, quindi l'NFA corrispondente a $(a \cup b)^*ab$ sarà:

start
$$\longrightarrow$$
 6 \cdots $9/10$ \cdots 11

9. La foglia contiene b, quindi l'NFA corrispondente sarà:

start
$$\longrightarrow$$
 12 \xrightarrow{b} 13

10. La foglia contiene una concatenazione, quindi l'NFA corrispondente a $(a \cup b)^*abb$ sarà:

L'automa finale disegnato completamente sarà:

