代数学の基本定理

Masato Nakata

Faculty of Science, Kyoto University

Contents

1.1	代数学の基本定理	1
1.2	有限群論	2
1.3	Galois 理論の基本定理	C

§ 1.1 代数学の基本定理

次の定理は代数学の基本定理と呼ばれ、とても重要なものである。この証明には、主に複素関数論によるものが知られているが、ここでは Galois 理論による代数的なものを紹介する。

THEOREM 1.1.1

複素数体は代数閉体である.

以下, 実数体を \mathbb{R} , 複素数体を \mathbb{C} で表す. \mathbb{C} が代数閉体であることを言うには, 定義より, 次を示せば良い:

 \cdot C 上代数的な任意の元 α に対して、 $\alpha \in \mathbb{C}$ である.

ただし、 α は \mathbb{C} の十分大きな拡大体(たとえば \mathbb{C} の代数閉包)の中で考えている. $\mathbb{C}(\alpha)$ で \mathbb{C} に α を添加した体を表すとき、 $\alpha \in \mathbb{C}$ は $\mathbb{C}(\alpha) = \mathbb{C}$ と同値である. さらに、 $\mathbb{C}(\alpha)$ を含むような、 \mathbb{R} の有限次 Galois 拡大体 K を一つ取る*1. $K = \mathbb{C}$ を示せば、自動的に $\mathbb{C}(\alpha) = \mathbb{C}$ も従う. よって、次を示せば良い:

THEOREM 1.1.2

 $\mathbb C$ を中間体として持つような, $\mathbb R$ の任意の有限次 Galois 拡大 $K/\mathbb C/\mathbb R$ について,その拡大次数 $[K:\mathbb R]$ は 2 である.

実際、 \mathbb{C} の \mathbb{R} 上拡大次数は $[\mathbb{C}:\mathbb{R}]=2$ であり、さらに $[K:\mathbb{R}]=[K:\mathbb{C}]\cdot[\mathbb{C}:\mathbb{R}]$ が成り立つから、もし上を示すことができれば $[K:\mathbb{C}]=1$ 、すなわち $K=\mathbb{C}$ となる.

さて、THEOREM 1.1.2 の証明に一つだけ解析的な道具を使う.

LEMMA 1.1.1

奇数次の R 上多項式は1次式または可約である.

Proof. $f(X) \in \mathbb{R}[X]$ を奇数次の多項式とすると、十分大きな実数 $x \in \mathbb{R}$ について f(-x) < 0 < f(x) が成り立っ. よって、中間値の定理により f の零点 $x_0 \in \mathbb{R}$ が存在する.このとき f(X) は $X - x_0$ を因子に持つから、f(X) の次数が $\geqslant 3$ ならば可約である.

COROLLARY 1.1.3

Rの奇数次拡大体は R 自身のみである.

 $^{^{*1}}$ このような K は, $f(X) \in \mathbb{C}[X]$ を α の(\mathbb{C} 上)最小多項式としたときに f(X) の(\mathbb{R} 上)最小分解体として取れば良い.

 $Proof.\ L \neq \mathbb{R}$ を \mathbb{R} の奇数次拡大体として、元 $a \in L \setminus \mathbb{R}$ を任意に取る. a の \mathbb{R} 上最小多項式を $f(X) \in \mathbb{R}[X]$ とすれば、その次数は \mathbb{R} に a を添加した体 $\mathbb{R}(a)$ の拡大次数 $[\mathbb{R}(a):\mathbb{R}]$ と一致する.一方 $[\mathbb{R}(a):\mathbb{R}] = [L:\mathbb{R}]/[L:\mathbb{R}(a)]$ が成り立ち、また $[L:\mathbb{R}]$ は奇数であると仮定したから、 $[\mathbb{R}(a):\mathbb{R}]$ も奇数となる.よって **LEMMA 1.1.1** より f(X) は 1 次式または可約となるが、いずれの場合も仮定に矛盾する.従って $L=\mathbb{R}$.

以下、特に断らない限り、群はすべて有限群を指すものとする.

THEOREM 1.1.2 の証明のために、次の二つの事実は一旦認めることにする(これらは次節で証明する):

- i) (Sylow の定理) 群 G の位数の素因子 p を任意に取り、 $|G|=p^er$ ($\gcd(p,r)=1$)とする.このとき,位数が p^e であるような G の部分群(p-Sylow 部分群と呼ぶ)が存在する.
- ii) p 群(位数が素数 p の冪であるような群)は指数 p の部分群を持つ.

Proof of **THEOREM 1.1.2**. 有限次 Galois 拡大 K/\mathbb{R} の Galois 群を $G = \operatorname{Gal}(K/\mathbb{R})$ と置く. G の位数は拡大次数 $[K:\mathbb{R}]$ と等しく,また $[K:\mathbb{R}] = [K:\mathbb{C}] \cdot [\mathbb{C}:\mathbb{R}]$ は $[\mathbb{C}:\mathbb{R}] = 2$ の倍数であるから,|G| は 2 を素因子に持つ.よって i) より 2-Sylow 部分群 $S \leq G$ が存在して,|G|/|S| は |S| と互いに素,すなわち奇数となる.

S に対応する中間体 $K/L/\mathbb{R}$ を取る(Galois の基本定理)と、拡大次数について

$$[L:\mathbb{R}] = \frac{[K:\mathbb{R}]}{[K:L]} = \frac{|G|}{|S|}$$

が成り立つ. 特に L は \mathbb{R} の奇数次の拡大体であるが,**COROLLARY 1.1.3** より,これは $[L:\mathbb{R}]=1$,すなわち $L=\mathbb{R}$ でしかあり得ない.従って S=G となり,G は 2 群(位数が 2 の冪 $|G|=2^n$)である.

 $n \le 1$ ならば良い. $n \ge 2$ として矛盾を導こう. 中間体 $K/\mathbb{C}/\mathbb{R}$ に対応する G の部分群を $H_0 \le G$ とする. G が 2 群だから H_0 もまた 2 群であり,ii)より指数 2 の部分群 $H \le H_0$ を持つ. これに対応する中間体を $K/C/\mathbb{R}$ とすると, $H \le H_0$ であるから C は \mathbb{C} の拡大体であり,その拡大次数は $[C:\mathbb{C}] = [L:\mathbb{C}]/[L:C] = |H_0|/|H| = 2$ となる. しかし \mathbb{C} の 2 次拡大体は存在しない(**LEMMA 1.1.2**)から矛盾する. よって $n \le 1$.

LEMMA 1.1.2

€の2次拡大体は存在しない.

Proof. K/\mathbb{C} を 2 次拡大体とすると,ある 2 次既約多項式 $f(X) \in \mathbb{C}[X]$ が存在して $K \cong \mathbb{C}[X]/(f(X))$ となる.一方, \mathbb{C} 上の 2 次方程式については解の公式が知られていて,2 次式は常に可約である.よって \mathbb{C} の 2 次拡大体は存在しない.

§ 1.2 有限群論

この節では、前節で認めた二つの事実を証明する. p を素数とする.

1.2.1 冪零群と可解群

有限群論の基本的な概念に、**冪零と可解**がある.これらの定義には多くのバリエーションがあり、ここでは そのうちの一つを採り上げる.

DEFINITION 1.2.1

群 G が冪零(nilpotent)であるとは、 $G_0 = G$ 、 $G_i = [G_{i-1},G]$ (i=1,2,...)によって定まる G の正 規部分群の列

$$G = G_0 \geqslant G_1 \geqslant G_2 \geqslant \cdots \geqslant G_n \geqslant \cdots$$

が有限回で終わる,すなわち十分大きな n について $G_n=1$ となることを言う. また,G が**可解**(solvable)*2であるとは, $G^{(0)}=G$, $G^{(i)}=[G^{(i-1)},G^{(i-1)}]$ (i=1,2,...)によって定まる G の部分群の列

$$G = G^{(0)} \trianglerighteq G^{(1)} \trianglerighteq G^{(2)} \trianglerighteq \cdots \trianglerighteq G^{(n)} \trianglerighteq \cdots$$

が有限回で終わることを言う。簡単のため、 $G' = G^{(1)}$ 、 $G'' = G^{(2)}$ といった表記をよく用いる。

定義からすぐ分かるように,

LEMMA 1.2.1

冪零群は可解である.

Proof. G が冪零群であれば、上の定義のように正規部分群 $G_i ext{ } e$

あとで示すようにp群は冪零であるから、可解でもある.よって、次の命題から事実 ii)が従う:

PROPOSITION 1.2.1

G が可解群であれば、各 G_{i-1}/G_i が素数位数であるような G の部分群の列

$$G = G_0 \trianglerighteq G_1 \trianglerighteq G_2 \trianglerighteq \cdots \trianglerighteq G_n = 1$$

が存在する.

^{*2} 可解という名前の由来は,方程式の可解性にある.そもそも Galois 理論は「5 次以上の方程式が代数的に解ける(方程式が可解である)ための必要十分条件」の研究に端を発することは聞いたことがあると思う.この方程式の解を α_1,\ldots,α_n としたときに,有理数体 $\mathbb Q$ にこれらを添加した体拡大 $\mathbb Q(\alpha_1,\ldots,\alpha_n)/\mathbb Q$ の Galois 群の可解性と,元の方程式の代数的な可解性とが密接に関係する.詳しい議論は本稿の範囲を大きく逸脱するため,省略する.

COROLLARY 1.2.2

p 群は指数 p の (正規) 部分群を持つ.

Proof. G を p 群とすると、上で述べたことにより、これは可解である.よって **PROPOSITION 1.2.1** を使えば、 G/G_1 が素数位数であるような正規部分群 $G_1 \unlhd G$ を取れる.G が p 群であるから、 G/G_1 もまた p 群でなければならない.よって G/G_1 の位数は p であり、すなわち G_1 の指数は p となる.

まず PROPOSITION 1.2.1 を示そう.

DEFINITION 1.2.2

群 G が $1 \leq G$ と G 自身以外に正規部分群を持たないとき,G を**単純群**($simple\ group$)と呼ぶ.

LEMMA 1.2.2

単純可換群は素数位数である.

 $Proof.\ G$ を単純可換群として,その元 $1 \neq g \in G$ を任意に取る。G が可換だから,g によって生成された部分群 $\langle g \rangle \leqslant G$ は G の正規部分群であり,G が単純だから $\langle g \rangle = G$ となる。よって G は g を生成元とする巡回群である。

G の位数を n として,これが合成数 n=pq であるとき,G の非自明な正規部分群 $\langle g^p \rangle$ が存在するが,これは G が単純であることに矛盾する.よって n は素数.

Proof of Proposition 1.2.1. 任意の部分群 $G' \leq H \leq G$ に対して、G/H は可換であることに注意する.

G/G' が単純であれば,**LEMMA 1.2.2** より素数位数となる.単純でなければ,G/G' の非自明な(正規)部分群が存在する.すなわち,G の部分群 G' < H < G が存在する.このとき G/H は可換群となるが,もし単純でなければ,やはり G の部分群 $H < H_1 < G$ を取れる.以下同様の操作を繰り返せば,G の部分群の列

$$G = G_0 \trianglerighteq G_1 \trianglerighteq \cdots \trianglerighteq G_n = G'$$

であって,各 G_{i-1}/G_i が単純可換群であるものを取れる.**LEMMA 1.2.2** より,各 G_{i-1}/G_i はすべて素数位数である.

さて、p群が冪零であることを証明しよう. 冪零群の定義として、次のものが使いやすい:

PROPOSITION 1.2.3

群 $G = G_0$ から出発して, $G_i = G_{i-1}/Z(G_{i-1})$ という群の列 G_0, G_1, \ldots を作るとき,もし十分大きな n に対して $G_n = 1$ となるならば G は冪零である.

Proof. n に関する帰納法で証明する. n=1 のときは G=Z(G), つまり G が可換群であることを意味するから、冪零である.

 $n \ge 2$ のとき n-1 までを仮定すると, G_1 が冪零群となる.すると,次の LEMMA 1.2.3 によって G も冪零となる.

LEMMA 1.2.3

群 G について、G/Z(G) が冪零群のとき G もまた冪零群となる.

Proof. G/Z(G) を冪零群として、G の正規部分群の列

$$G = G_0 \geqslant G_1 \geqslant \cdots \geqslant G_n \geqslant \cdots$$
, $G_i = [G_{i-1}, G]$

を考える. これを自然な全射 G woheadrightarrow G/Z(G) で送ることで, G/Z(G) の正規部分群の列

$$G/Z(G) = Z_0 \geqslant Z_1 \geqslant \cdots \geqslant Z_n \geqslant \cdots$$
, $Z_i = G_i Z(G)/Z(G)$

を得る. 準同型は交換子を保つから、 $Z_i = [Z_{i-1}, Z_0]$ が成り立ち、十分大きな n に対して $Z_n = 1$ となる. これは G_n が準同型 $G G_n G/Z(G)$ の核に含まれること、すなわち $G_n Z(G)$ を意味する. すると $[G_n, G] [Z(G), G] = 1$ となるから、G は冪零.

1.2.2 群作用と p 群

群 G が有限集合 X に右から作用している状況を考える: $X \curvearrowright G$. 元 $g \in G$ の X への作用を $x \mapsto x^g$ と表す. $x \in X$ の G 軌道を x^G , 固定化群を $G_x = \{g \in G \mid x^g = x\}$, $S \subset G$ の固定点の集合を $C_X(S) = \{x \in X \mid S \subset G_x\}$ と書く.

LEMMA 1.2.4

任意の元 $x \in X$ に対して, $|x^G| = [G:G_x]$.

Proof.

$$x^g = x^h \iff gh^{-1} \in G_x \iff G_xg = G_xh \quad (x \in X, g, h \in G).$$

LEMMA 1.2.5

 $|G:G_x|$ $(x \in X)$ の公約数は |X| の約数でもある.

Proof. X は軌道の非交叉和となっているから、**LEMMA 1.2.4** から従う.

LEMMA 1.2.6

Gが p 群ならば、 $|X| \equiv |C_X(G)| \pmod{p}$.

 $Proof.\ Y := X \setminus C_X(G)$ とおくと,G は自然に Y へ作用する.任意の元 $y \in Y$ に対して $G_y < G$ だから, $[G:G_y] \neq 1$ となる.さらに G が p 群だから $[G:G_y]$ は p の倍数.よって **LEMMA 1.2.5** より |Y| も p の倍数で, $|X| = |Y| + |C_X(G)| \equiv |C_X(G)|$.

LEMMA 1.2.7

 $G \neq 1$ を p 群, $1 \neq N \unlhd G$ をその正規部分群とする.このとき $Z(G) \cap N \neq 1$ となる.特に N = G と取れば $Z(G) \neq 1$.

 $Proof.\ X := N \curvearrowright G$ を共役作用とする. **LEMMA 1.2.6** より $|C_X(G)| \equiv |X| \pmod{p}$ となるが,N も p 群であるから $|X| \equiv 0$ である. よって $|C_X(G)|$ は p の倍数となる.

一方で $1 \in C_X(G)$ だから $|C_X(G)| \neq 0$ となり、p の倍数でもあるから $|C_X(G)| \geqslant 2$. さらに定義より $C_X(G) = Z(G) \cap N$ だから $Z(G) \cap N \neq 1$.

THEOREM 1.2.4

p 群は冪零である.

Proof. G を p 群として,群 G_0 , G_1 , ... を $G_0 = G$, $G_i = G_{i-1}/Z(G_{i-1})$ によって帰納的に定義する.G が p 群 だから,各 G_i もまた p 群である.よって **LEMMA 1.2.7** より,十分大きな n に対して $G_n = 1$ となる.すると **PROPOSITION 1.2.3** から G の冪零性が従う.

1.2.3 Sylow の定理

以上で事実 ii) を証明できた. 次は i) について見ていこう.

DEFINITION 1.2.3

群 G の部分群のうち、p 群でもあるものを G の p 部分群(p-subgroup)と呼ぶ. G の p 部分群のうちで極大なものを p-Sylow 部分群(p-Sylow subgroup)と呼び、その全体を $Syl_p(G)$ と書く.

PROPOSITION 1.2.5

任意の群において、p-Sylow 部分群は存在する.

Proof. 群 G の p 部分群全体のなす族を P と置くと,これは単位群 $1 \le G$ を含むから空でない.さらに P は 有限集合であるから,極大元 $P \in P$ を持つ.($P_0 = 1 \in P$ から出発して, $P_{i-1} < P_i \in P$ なる P_i を繰り返し取っていけば良い.P が有限集合だからこの繰り返しは有限回で終わる.)

Sylow 部分群を考えるにあたって、重要な役割を果たすのがp 核と呼ばれるものである.

DEFINITION 1.2.4

群 G の p-Sylow 部分群すべての共通部分 $\mathcal{O}_p(G) \coloneqq \bigcap_{P \in \mathsf{Syl}_n(G)} P$ を G の p 核(p-core)と呼ぶ.

PROPOSITION 1.2.6

群のp核は最大の正規p部分群である.

Proof. 群 G の p 核を $O := \mathcal{O}_p(G)$ と置く.

これが G の p 部分群であることは明らか. また、G 上の自己同型によって p-Sylow 部分群は p-Sylow 群 へ移るから、特に内部自己同型を考えれば、O の正規性が従う *3 .

次に G の正規 p 部分群 $N \unlhd G$ と p-Sylow 部分群 $P \in \operatorname{Syl}_p(G)$ を任意に取る. P = NP を言えば良い. 実際,このとき $N \leqslant P$ となり,P は任意であったから $N \leqslant O$ が従う.

 $P \le NP$ は明らか.逆の包含関係を示す.次の **LEMMA 1.2.8** より |NP| は $|N \times P| = |N| \times |P|$ の約数であり, $N \ge P$ はともに p 部分群だから NP もまた p 部分群となる.すると,p-Sylow 部分群の極大性により,P = NP となる.

LEMMA 1.2.8

 $H_1, H_2 \leq G$ を群 G の部分群とすれば,

$$|H_1H_2| = \frac{|H_1 \times H_2|}{|H_1 \cap H_2|}.$$

特に、 $|H_1H_2|$ は $|H_1 \times H_2|$ の約数となる.

^{*3} G の自己同型群 $\operatorname{Aut}(G)$ は集合 $\operatorname{Syl}_p(G)$ へ作用している.このことから,O は $\operatorname{Aut}(G)$ の各元の下で不変に保たれることが分かる. すなわち,任意の元 $g \in G$ と自己同型 $\sigma \in \operatorname{Aut}(G)$ に対して, $g \in O$ ならば $g^\sigma \in O$ が成り立つ.

Proof. 直積集合 $H_1 \times H_2$ 上の同値関係 ~ を

$$(a,b) \sim (c,d) \stackrel{\mathsf{def}}{\Longleftrightarrow} ab = cd$$

で定義すれば, $|H_1H_2|$ は同値類の個数に等しい.また,各 $(a,b) \in H_1 \times H_2$ の同値類はちょうど $|H_1 \cap H_2|$ 個の元を含むから,主張が従う.

COROLLARY 1.2.7

群 G が正規 p-Sylow 部分群 $P \in \mathrm{Syl}_p(G)$ を持てば, $\mathrm{Syl}_p(G) = \{P\}$ となる.逆に, $\mathrm{Syl}_p(G) = \{P\}$ であれば P は G の正規部分群となる.

Proof. もしある p-Sylow 部分群 $P \in \operatorname{Syl}_p(G)$ が正規であれば, $\operatorname{PROPOSITION}$ 1.2.6 より $P \leqslant \mathcal{O}_p(G)$ が成り立つ.一方 p 核の定義から $P \geqslant \mathcal{O}_p(G)$ であるから, $P = \mathcal{O}_p(G)$,すなわち $\operatorname{Syl}_p(G) = \{P\}$ が従う.

逆は Proposition 1.2.6 から分かる. □

続いて、古典的に知られた次の定理を考える:

THEOREM 1.2.8 (Cauchy の定理)

群 G の位数が p の倍数であれば、G は位数 p の元を持つ.

Proof. 集合 X を

$$X = \{(x_1, \dots, x_p) \mid x_1 \dots x_p = 1, x_i \in G \ (1 \le i \le p)\}\$$

で定義すると、p 次巡回群 \mathbb{Z}_p は X へ作用する:

$$(x_1,\ldots,x_n)\mapsto (x_2,\ldots,x_n,x_1).$$

実際,

$$x_1 \cdots x_p = 1 \iff x_2 \cdots x_p = x_1^{-1} \iff x_2 \cdots x_p x_1 = 1.$$

この作用に **LEMMA 1.2.6** を適用すれば, $|X| \equiv |C_X(\mathbb{Z}_p)| \pmod{p}$ を得る.一方仮定により $|X| = |G|^{p-1}$ は p の倍数であるから, $|C_X(\mathbb{Z}_p)| \equiv 0$ となる.ここで $(1,\dots,1) \in C_X(\mathbb{Z}_p)$ だから $|C_X(\mathbb{Z}_p)| \neq 0$,特に ≥ 2 となる.従ってある $(1,\dots,1) \neq (x_1,\dots,x_p) \in C_X(\mathbb{Z}_p)$ が存在するが,これは $x_1 = \dots = x_p \neq 1$ かつ $x_1^p = 1$ を意味する.

COROLLARY 1.2.9

群 G について、 $Syl_p(G) = \{P\}$ ならば p は [G:P] の約数でない.

最後に、有限群論において最も重要な定理の一つである Sylow の定理を証明する。ただし、本来の Sylow の定理はもっと強い主張を含むが、ここでは事実 i) に相当する部分だけを述べる。定理の他の部分に関しても、証明中の $\mathrm{Syl}_n(N) = \{P\}, \ [N:P] \not\equiv 0$ および $[G:N] \equiv 1$ という関係からすぐに従う。

THEOREM 1.2.10 (Sylow の定理)

群 G の位数が $|G| = p^e r$ ($\gcd(p,r) = 1$) という形に書けたとする.このとき,G の p-Sylow 部分群の位数は p^e である.

 $Proof.\ G$ の p-Sylow 部分群 $P\in {\rm Syl}_p(G)$ を任意に取り,その正規化部分群 $N=N_G(P)=\{g\in G\mid g^{-1}Pg=P\}$ を考える. $P\unlhd N$ であるから, ${\bf Corollary\ 1.2.7}$ と ${\bf Corollary\ 1.2.9}$ より, ${\rm Syl}_p(N)=\{P\}$ かつ $[N:P]\not\equiv 0\pmod p$ が分かる.(P は N の p-Sylow 部分群であることに注意する.)

残りは $[G:N] \equiv 1 \pmod{p}$ を示せば良い. 実際, $|G| = [G:N] \cdot [N:P] \cdot |P|$ であるから, [G:N], $[N:P] \neq 0$ ならば $|P| = p^e$ となる.

P を次の集合 X へ右から作用させる:

$$X = \{ Ng \mid g \in G \} \curvearrowright P.$$

このとき |X| = [G:N] であり、**LEMMA 1.2.6** を使うと $[G:N] = |X| \equiv |C_X(P)|$ を得る. $C_X(P) = \{N\}$ を示そう. P は N の部分群だから $N \in C_X(P)$ は明らかである. 逆の包含関係を見るために、 $Ng \in C_X(P)$ とする. これは NgP = Ng、すなわち $gPg^{-1} \leqslant N$ を意味する. 脚注 *3 で述べたように gPg^{-1} もまた p-Sylow 部分群であるから、 $\mathrm{Syl}_p(N) = \{P\}$ より $gPg^{-1} = P$ を得る. これは $g \in N$ に他ならない. よって $C_X(P) = \{N\}$ となり、 $[G:N] \equiv 1 \pmod{p}$ が言えた.

§ 1.3 Galois 理論の基本定理