

EECS 483: Compiler Construction

Lecture 24:

LR Grammars, Bottom-Up Parsing

April 14 Winter Semester 2025

Announcements

- Reminder: Assignment 5 Due Sunday
- Midterm regrades done. Grades updated on Canvas
- Course Evaluations are now open. Please fill them out!

Final Exam Info

- Final Exam on Wednesday 04/30 4-6pm
 - Location:
 - DOW 1010 (uniquame starts with A-L)
 - DOW 1014 (uniquame starts with M-Z)
 - Topics: Assignments 4 and 5, lecture material after spring break.
 - Exam Review on Monday, 04/21
 - 1 page of notes, double sided ok, printed or written ok.
 - Practice material:
 - https://maxsnew.com/teaching/eecs-483-wn24/syllabus.html questions about lexing/parsing/analysis/optimization
 - Appel book, Dragon book linked on webpage have exercises as well.

LR GRAMMARS

The Parsing Problem

- The Parsing Problem:
 - Input: a context-free grammar G
 - Output: a parser that takes in a string and outputs a parse tree of that string in G or raises an exception if there is no parse tree.
 - Notice that an ambiguous grammar may be parsed in multiple ways
- In practice: fuse the generation of the parse tree with *semantic actions* that construct the abstract syntax tree
 - The parse tree is usually never "materialized" in memory
- Another "mini-compiler" for a DSL
- Bad news: best algorithms are O(n^3)
 - CYK, Earley, GLR algorithms
- Compromise: find restrictions on CFGs that allow for O(n) parsing
 - Intuition: parsing is a search problem, find restrictions that limit the amount of backtracking needed.
 - Cost: more burden on the programmer (i.e., you) to adapt their grammar to fit the restriction

LL(1) Summary

- Top-down parsing that finds the leftmost derivation.
- Language Grammar
 - ⇒ LL(1) grammar (manual rewrite)
 - ⇒ prediction table (intermediate representation)
 - ⇒ recursive-descent parser (code generation)
- Problems:
 - Grammar must be LL(1)
 - Can extend to LL(k) (it just makes the table bigger)
 - Grammar cannot be left recursive (parser functions will loop!)

Is there a better way?

Bottom-up Parsing (LR Parsers)

- LR(k) parser:
 - <u>Left-to-right scanning</u>
 - Rightmost derivation
 - k lookahead symbols
- LR grammars are more expressive than LL
 - Can handle left-recursive (and right recursive) grammars; virtually all programming languages
 - Easier to express programming language syntax (no left factoring)
- Technique: "Shift-Reduce" parsers
 - Work bottom up instead of top down
 - Construct right-most derivation of a program in the grammar
 - Used by many parser generators (e.g. yacc, ocamlyacc, lalrpop, etc.)
 - Better error detection/recovery

Top-down vs. Bottom up

 Consider the leftrecursive grammar:

$$S \mapsto S + E \mid E$$

E \to number \| (S)

- (1+2+(3+4))+5
- What part of the tree must we know after scanning just "(1 + 2"?
- In top-down, must be able to guess which productions to use...

Progress of Bottom-up Parsing

Reductions

$$(1 + 2 + (3 + 4)) + 5 \leftarrow$$

$$(\underline{\mathbf{E}} + 2 + (3 + 4)) + 5 \leftarrow$$

$$(\underline{\mathbf{S}} + 2 + (3 + 4)) + 5 \longleftrightarrow (1$$

$$(S + \underline{\mathbf{E}} + (3 + 4)) + 5 \longleftrightarrow (1 + 2)$$

$$(\underline{\mathbf{S}} + (3+4)) + 5 \longleftrightarrow (1+2)$$

$$(S + (\underline{\mathbf{E}} + 4)) + 5 \longleftrightarrow (1 + 2 + (3$$

$$(S + (\underline{S} + 4)) + 5 \leftarrow$$

$$(S + (S + \underline{\mathbf{E}})) + 5 \leftarrow$$

$$(S + (\underline{S})) + 5 \leftarrow$$

$$(S + \underline{\mathbf{E}}) + 5 \leftarrow$$

$$(\underline{\mathbf{S}}) + 5 \longleftrightarrow$$

Rightmost derivation

Scanned

$$(1 + 2)$$

$$(1 + 2)$$

$$(1 + 2 + (3 + 4))$$

$$(1 + 2 + (3 + 4))$$

$$(1 + 2 + (3 + 4))$$

$$(1 + 2 + (3 + 4))$$

$$(1 + 2 + (3 + 4))$$

$$(1 + 2 + (3 + 4))$$

$$(1 + 2 + (3 + 4)) + 5$$

Input Remaining

$$(1+2+(3+4))+5$$

$$1 + 2 + (3 + 4)) + 5$$

$$+2+(3+4))+5$$

$$+(3+4))+5$$

$$+(3+4))+5$$

$$+4)) + 5$$

$$+4)) + 5$$

$$)) + 5$$

$$)) + 5$$

$$) + 5$$

$$) + 5$$

$$S \mapsto S + E \mid E$$

 $E \mapsto \text{number} \mid (S)$

Shift/Reduce Parsing

- Parser state:
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input
- Parsing is a sequence of *shift* and *reduce* operations:
- Shift: move look-ahead token to the stack
- Reduce: Replace symbols γ at top of stack with nonterminal X such that $X \mapsto \gamma$ is a production. (pop γ , push X)

Stack	Input	Action
	(1 + 2 + (3 + 4)) + 5	shift (
	1 + 2 + (3 + 4)) + 5	shift 1
(1	+2+(3+4))+5	reduce: E → number
(E	+2+(3+4))+5	reduce: S → E
(S	+2+(3+4))+5	shift +
(S +	2 + (3 + 4)) + 5	shift 2
(S + 2)	+(3+4))+5	reduce: E → number
(S + E)	+(3+4))+5	reduce: $S \mapsto S + E$
(S	+(3+4))+5	shift +

Shift/Reduce Parsing

- Parser state:
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input
- Invariant: Stack plus input is a step in building the Rightmost derivation in reverse

Stack	Input
	(1 + 2 + (3 + 4)) + 5
	1 + 2 + (3 + 4)) + 5
(1	+2+(3+4))+5
(E	+2+(3+4))+5
(S	+2+(3+4))+5
(S +	2 + (3 + 4)) + 5
(S + 2)	+(3+4))+5
(S + E)	+(3+4))+5
(S	+(3+4))+5

$S \mapsto S + E \mid E$ $E \mapsto number \mid (S)$

Derivation steps

$$(1 + 2 + (3 + 4)) + 5$$

$$(\underline{E} + 2 + (3 + 4)) + 5$$

 $(\underline{S} + 2 + (3 + 4)) + 5$

$$(\underline{S} + 2 + (3 + 4)) + 5$$

$$(S + \underline{E} + (3 + 4)) + 5$$

$$(\underline{S} + (3 + 4)) + 5$$

Rightmost

Simple LR parsing with no look ahead.

LR(0) GRAMMARS

LR Parser States

- Goal: know what set of reductions are legal at any given point.
- Idea: Summarize all possible stack prefixes α as a finite parser state.
 - Parser state is computed by a DFA that reads the stack σ .
 - Accept states of the DFA correspond to unique reductions that apply.
- Example: LR(0) parsing
 - <u>Left-to-right scanning</u>, <u>Right-most derivation</u>, <u>zero</u> look-ahead tokens
 - Too weak to handle many language grammars (e.g. the "sum" grammar)
 - But, helpful for understanding how the shift-reduce parser works.

Example LR(0) Grammar: Tuples

• Example grammar for non-empty tuples and identifiers:

$$S \mapsto (L) \mid id$$

 $L \mapsto S \mid L, S$

- Example strings:
 - X
 - -(x,y)
 - -((((x))))
 - -(x, (y, z), w)
 - -(x, (y, (z, w)))

Parse tree for: (x, (y, z), w)

Shift/Reduce Parsing

- Parser state:
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input
- Parsing is a sequence of *shift* and *reduce* operations:
- Shift: move look-ahead token to the stack: e.g.

Stack	Input	Action
	(x, (y, z), w)	shift (
(x, (y, z), w)	shift x

• Reduce: Replace symbols γ at top of stack with nonterminal X such that $X \mapsto \gamma$ is a production. (pop γ , push X): e.g.

Stack	Input	Action
(x	, (y, z), w)	reduce S → id
(S	, (y, z), w)	reduce L → S

 $S \mapsto (L) \mid id$ $L \mapsto S \mid L, S$

Example Run

Stack	Input	Action
	(x, (y, z), w)	shift (
(x, (y, z), w)	shift x
(x	, (y, z), w)	reduce $S \mapsto id$
(S	, (y, z), w)	$reduce \ L \longmapsto S$
(L	, (y, z), w)	shift,
(L,	(y, z), w)	shift (
(L, (y, z), w)	shift y
(L, (y	, z), w)	reduce S → id
(L, (S	, z), w)	reduce L → S
(L, (L	, z), w)	shift,
(L, (L,	z), w)	shift z
(L, (L, z), w)	reduce S → id
(L, (L, S), w)	reduce L → L, S
(L, (L), w)	shift)
(L, (L)	, w)	reduce $S \mapsto (L)$
(L, S	, w)	reduce L → L, S
(L	, w)	shift,
(L,	W)	shift w
(L, w)	reduce S → id
(L, S)	reduce L → L, S
(L)	shift)
(L)		reduce $S \mapsto (L)$
S		

$$S \mapsto (L) \mid id$$

 $L \mapsto S \mid L, S$

Action Selection Problem

- Given a stack σ and a look-ahead symbol b, should the parser:
 - Shift b onto the stack (new stack is σb)
 - Reduce a production $X \mapsto \gamma$, assuming that $\sigma = \alpha \gamma$ (new stack is αX)?
- Sometimes the parser can reduce but shouldn't
 - For example, $X \mapsto \varepsilon$ can always be reduced
- Sometimes the stack can be reduced in different ways
- Main idea: decide what to do based on a *prefix* α of the stack plus the look-ahead symbol.
 - The prefix α is different for different possible reductions since in productions $X \mapsto \gamma$ and $Y \mapsto \beta$, γ and β might have different lengths.
- Main goal: know what set of reductions are legal at any point.
 - How do we keep track?

LR(0) States

- An LR(0) *state* is a *set* of *items* keeping track of progress on possible upcoming reductions.
- An LR(0) item is a production from the language with an extra separator "." somewhere in the right-hand-side

$$S \mapsto (L) \mid id$$

 $L \mapsto S \mid L, S$

- Example items: $S \mapsto .(L)$ or $S \mapsto (.L)$ or $L \mapsto S$.
- Intuition:
 - Stuff before the '.' is already on the stack (beginnings of possible γ's to be reduced)
 - Stuff after the '.' is what might be seen next
 - The prefixes α are represented by the state itself

Constructing the DFA: Start state & Closure

- First step: Add a new production $S' \mapsto S$ \$ to the grammar
- Start state of the DFA = empty stack, so it contains the item:

$$S' \mapsto .S$$
\$

$$S' \mapsto S$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

- Closure of a state:
 - Adds items for all productions whose LHS nonterminal occurs in an item in the state just after the '.'
 - The added items have the '.' located at the beginning (no symbols for those items have been added to the stack yet)
 - Note that newly added items may cause yet more items to be added to the state... keep iterating until a *fixed point* is reached.
- Example: $CLOSURE(\{S' \mapsto .S\}\}) = \{S' \mapsto .S\}, S \mapsto .(L), S \mapsto .id\}$
- Resulting "closed state" contains the set of all possible productions that might be reduced next.

$$S' \mapsto S$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

• First, we construct a state with the initial item $S' \mapsto .S$ \$

$$S' \mapsto S$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

- Next, we take the closure of that state: $CLOSURE(\{S' \mapsto .S\}\}) = \{S' \mapsto .S\}, S \mapsto .(L), S \mapsto .id\}$
- In the set of items, the nonterminal S appears after the '.'
- So we add items for each S production in the grammar

- Next we add the transitions:
- First, we see what terminals and nonterminals can appear after the '.' in the source state.
 - Outgoing edges have those label.
- The target state (initially) includes all items from the source state that have the edge-label symbol after the '.', but we advance the '.' (to simulate shifting the item onto the stack)

$$S' \mapsto S$$

 $S \mapsto (L) \mid id$
 $L \mapsto S \mid L, S$

- Finally, for each new state, we take the closure.
- Note that we have to perform two iterations to compute $CLOSURE({S \mapsto (.L)})$
 - First iteration adds $L \rightarrow .S$ and $L \rightarrow .L$, S
 - Second iteration adds $S \mapsto .(L)$ and $S \mapsto .id$

Full DFA for the Example

Using the DFA

- Run the parser stack through the DFA.
- The resulting state tells us which productions might be reduced next.
 - If not in a reduce state, then shift the next symbol and transition according to DFA.
 - If in a reduce state, $X \mapsto \gamma$ with stack $\alpha \gamma$, pop γ and push X.
- Optimization: No need to re-run the DFA from beginning every step
 - Store the state with each symbol on the stack: e.g. $_1(_3(_3L_5)_6)$
 - On a reduction $X \mapsto \gamma$, pop stack to reveal the state too: e.g. From stack $_1(_3(_3L_5)_6)$ reduce $S \mapsto (L)$ to reach stack $_1(_3)$
 - Next, push the reduction symbol: e.g. to reach stack 1(3S)
 - Then take just one step in the DFA to find next state: $_{1}(_{3}S_{7})$

Implementing the Parsing Table

Represent the DFA as a table of shape:

state * (terminals + nonterminals)

- Entries for the "action table" specify two kinds of actions:
 - Shift and goto state n
 - Reduce using reduction $X \mapsto \gamma$
 - First pop γ off the stack to reveal the state
 - Look up X in the "goto table" and goto that state

Terminal Symbols

Action
table

Example Parse Table

	(id	,	\$	S	L
1	s3		s2			g4	
2	S⊷id	S⊷id	S⊷id	S⊷id	S⊷id		
3	s3		s2			g7	g5
4					DONE		
5		s6		s8			
6	$S \mapsto (L)$						
7	L → S	L → S	L → S	$L \mapsto S$	$L \mapsto S$		
8	s3		s2			g 9	
9	L → L,S						

sx = shift and goto state x

gx = goto state x (used when we reduce)

Example

Parse the token stream: (x, (y, z), w)\$

Stack	Stream	Action (according to table)
$\boldsymbol{\epsilon}_1$	(x, (y, z), w)\$	s3
$\varepsilon_1(_3$	x, (y, z), w)\$	s2
$\varepsilon_1(_3x_2$	(y, z), w)\$	Reduce: S⊷id
$\varepsilon_1(_3S$	(y, z), w)\$	g7 (from state 3 follow S)
$\varepsilon_1(_3S_7)$	(y, z), w)\$	Reduce: L→S
$\varepsilon_1(_3L$	(y, z), w)\$	g5 (from state 3 follow L)
$\varepsilon_1(_3L_5$	(y, z), w)\$	s8
$\varepsilon_1(_3L_5,_8)$	(y, z), w)\$	s3
$\varepsilon_1(_3L_5,_8(_3$	y, z), w)\$	s2

LR(0) Limitations

- An LR(0) machine only works if states with reduce actions have a *single* reduce action.
 - In such states, the machine *always* reduces (ignoring lookahead)
- With more complex grammars, the DFA construction will yield states with shift/reduce and reduce/reduce conflicts:

reduce/reduce shift/reduce OK

$$S \longmapsto (L).$$

$$S \mapsto (L).$$
 $S \mapsto L,S.$ $L \mapsto .L,S.$

$$S \mapsto L$$
, S . $S \mapsto S$.

 Such conflicts can often be resolved by using a look-ahead symbol: SLR(1) or LR(1)

Examples

• Consider the left associative and right associative "sum" grammars:

left right $S \mapsto S + E \mid E$ $S \mapsto B + S \mid E$ $E \mapsto \text{number} \mid (S)$ $E \mapsto \text{number} \mid (S)$

- One is LR(0) the other isn't... which is which and why?
- What kind of conflict do you get? Shift/reduce or Reduce/reduce?
- Ambiguities in associativity/precedence usually lead to shift/reduce conflicts.

SLR(1) ("simple" LR) Parsers

- What conflicts are there in LR(0) parsing?
 - reduce/reduce conflict: an LR(0) state has two reduce actions
 - shift/reduce conflict: an LR(0) state mixes reduce and shift actions
- Can we use lookahead to disambiguate?
- SLR(1) uses the same DFA construction as LR(0)
 - modifies the actions based on lookahead
- Suppose reducing an A nonterminal is possible in some state:
 - compute Follow(A) for the given grammar
 - if the lookahead symbol is in Follow(A), then reduce, otherwise shift
 - can disambiguate between reduce/reduce conflicts if the follow sets are disjoint

LR(1) Parsing

- Algorithm is similar to LR(0) DFA construction:
 - LR(1) state = set of LR(1) items
 - An LR(1) item is an LR(0) item + a set of look-ahead symbols:

$$A \mapsto \alpha.\beta$$
, \mathcal{L}

- LR(1) closure is a little more complex:
- Form the set of items just as for LR(0) algorithm.
- Whenever a new item $C \mapsto .\gamma$ is added because $A \mapsto \beta.C\delta$, \mathcal{L} is already in the set, we need to compute its look-ahead set \mathcal{M} :
 - 1. The look-ahead set \mathfrak{M} includes FIRST(δ) (the set of terminals that may start strings derived from δ)
 - 2. If δ is itself ϵ or can derive ϵ (i.e. it is nullable), then the look-ahead $\mathcal M$ also contains $\mathcal L$

Example Closure

$$S' \mapsto S$$

 $S \mapsto E + S \mid E$
 $E \mapsto number \mid (S)$

- Start item: $S' \mapsto .S$ \$, {}
- Since S is to the right of a '.', add:

$$S \mapsto .E + S$$
 , {\$} Note: {\$} is FIRST(\$)
 $S \mapsto .E$, {\$}

• Need to keep closing, since E appears to the right of a '.' in '.E + S':

```
E\mapsto .number, \{+\} Note: + added for reason 1 E\mapsto .(S) , \{+\} FIRST(+S) = \{+\}
```

• Because E also appears to the right of '.' in '.E' we get:

• All items are distinct, so we're done

Using the DFA

- The behavior is determined if:
 - There is no overlap among the look-ahead sets for each reduce item, and
 - None of the look-ahead symbols appear to the right of a '.'

Fragment of the Action & Goto tables

LR variants

- LR(1) gives maximal power out of a 1 look-ahead symbol parsing table
 - DFA + stack is a push-down automaton
- In practice, LR(1) tables are big.
 - Modern implementations (e.g., menhir) directly generate code
- LALR(1) = "Look-ahead LR"
 - Merge any two LR(1) states whose items are identical except for the look-ahead sets:

- Such merging can lead to nondeterminism (e.g., reduce/reduce conflicts), but
- Results in a much smaller parse table and works well in practice
- This is the usual technology for automatic parser generators: yacc, ocamlyacc
- GLR = "Generalized LR" parsing
 - Efficiently compute the set of all parses for a given input
 - Later passes should disambiguate based on other context

Classification of Grammars

Debugging parser conflicts.

Disambiguating grammars.

LALRPOP DEMO