Lab. 07

Logic Design Lab.
Spring 2022

Prof. ChangGun Lee

(cglee@snu.ac.kr)

TA. Hayeon Park

TA. Haejoo Jeon

TA. Seohwan Yoo

(rubis.ld.ta@gmail.com)

Contents

- Synchronous Binary Counter
- Frequency Divider
- Implementation on Logic Design Board (Review)
- Two Digit Counter

Announcement

- There will be an announcement of the final project in next lab session.
- Please make sure your board is working correctly

Filp Flops (Recap)

4-bit Counter – JK Filp Flop Implementation

- J-K flip-flop functions as a T flip-flop if you connect the same input to J and K.
- A will repeat 0 and 1.

States				Count	
D	C	В	A	Count	
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	2	
0	0	1	1	3	
0	1	0	0	4	
0	1	0	1	5	
0	1	1	0	6	
0	1	1	1	7	
1	0	0	0	8	
1	0	0	1	9	
1	0	1	0	10	
1	0	1	1	11	
1	1	0	0	12	
1	1	0	1	13	
1	1	1	0	14	
1	1	1	1	15	

Frequency Divider – JK Filp Flop Implementation

negative edge triggered JK Flip Flop

Implementation on Logic Design Board (Review)

- ① Power Input: Molex Connector (DC 5V Only)
- 2 Power, DONE LED
- ③ FPGA: XC3S50AN-4TQG144C
- 4 User I/O Ports (P1): 16X2 2,54mm Pitch
- ⑤ User I/O Ports (P2): 16X2 2,54mm Pitch
- ⑤ User I/O Ports (P3, P4) : 2 8X2 2,54mm Pitch
- 7 User Output LEDs : 6 output LEDs
- 8 User Output LEDs : 6 7-segment LEDs
- 9 User Input Switches: 10pin Dip Switch
- 10 User Input Switches: 6 Tactile Swiltches
- 1 Oscillator: 50MHz
- 12 Mode Select Switch
- (13) JTAG Header

Pin Number Mapping

Pin Num		Component			
PIn I	3 4 5 6 7 8 10 11 12 13 15 16 18 19 20 21 24 25	7-Segment Display [J1] 7-Segment Display [J2] 7-Segment Display	A B C D E F G A B C D E F G A B C D E F G D E F G A B C D E F G A B C D E F G A B C D D E		
	27 28 29 30 31 32 33 41 42 43 44 45	DIP Switch [DipSW1]	E F G 1 2 3 4 5 6 7 8 9		
	47	Tactile Switch [SW1]			

Pin Num		Component	
48		Tactile Switch [SW2]	§ .
	49	Tactile Switch [SW3]	
	50	Tactile Switch [SW4]	
	51	Tactile Switch [SW5]	1
	54	Tactile Switch [SW6]	
	55		A
	58	l gray a	В
	59	7-Segment	С
	60	Display	D
	62	[]4]	Е
	63	0.1	F
	64		G
ı	68	2	A
	69		В
	70	7-Segment	C
P2	71	Display	D
	72	[J5]	E
	75	[]~]	F
	76		G
	77		A
	78		В
ļ	79	7-Segment	C
	82	Display	D
	83	[16]	E
ı	84	1,01	F
	85		G
	87	LED [D1]	Red
	88	LED [D2]	Yellow
	90	LED [D3]	Green
	91	LED [D4]	Red
ı	92	LED [D5]	Yellow
	93	LED [D6]	Green

Pin	Num		Pin Num		
	96			120	
	98			121	
- 2	99			124	
	101			125	
	102			126	
	103			127	
- 8	104			129	
РЗ	105	P4		130	
13	110			131	
	111			132	
	112	1		134	
	113			135	
	114			138	
	115			139	
	116			141	
- 2	117			142	
	Pin	\perp		Compo	
JP101	1 2 107 109		JTAG		
	200	-			

Pin		Component	
JP101	1		TMS
	2	JTAG	TDI
	107		TDO
- [109		TCK
No.	37	Mode SW	M1
Mode SW	38		MO
	39		M2
	144		PROG
los de la	67	Configuration	INIT
FPGA	73		DONE
	74		SUSPEND
	35		
FPGA	53	Not Connected (Input Only/VREF)	
	80		
	97		
	123	()/	,
	140		

Pin		Component	
	57	Clock 50MHz	
	14		
	23]	
	40]	
	61 86	vcco	
	95		
	119		
	136		
	36	S (2) (1) (4)	
	66	VCCAUX	
	108		
	133		
	22		
FPGA	52	VCCINT	
20125124	94		
	122	91	
	9		
	17	1	
	26	1	
	34	1	
	56	1	
	65	GND	
	81	GND	
	89	1	
	100	1	
	106	4	
	118		
	128	1	
	137	76	

Assign I/O pins for the half adder

Boundary Scan > Initialize Chain

• Choose the schematic source you've written.

Program FPGA Only > Program Succeeded

Two Digit Counter

Two Digit Counter Structure

1. Implement the **Counter** Module in Verilog. It should start from 0, and increment 1 every **positive edge of clock**. The next value of 99 should be 0. Additionally, your implementation should handle external reset signal, it should set the counter back to 0 when the signal is HIGH.

2. Implement the **Two Digit Counter** in Verilog and upload your implementation to the Logic Design Board. It should start from 0, and increment 1 every second. The next value of 99 should be 0. Additionally, your implementation should handle external reset signal, it should set the counter back to 0 when the signal is HIGH. Use 50MHz oscillator (pin 57) as clock input, and a tactile switch (pin 47) as reset button. Also, use two 7-segment displays as your two-digit output.

Sample Code (Behavioral Description)

```
`timescale 1ns / 1ps
module freq divider(
    input clr,
    input clk,
    output reg clkout
         reg[31:0] cnt;
         always@ (posedge clk) begin
                if(clr) begin
                         cnt <=32'd0;
                         clkout <= 1'b0;
                end
                else if (cnt == 32'd25000000) begin
                        cnt <= 32'd0;
                         clkout <= ~clkout;</pre>
                end
                else begin
                        cnt <= cnt + 1;
                end
        end
endmodule
```

Frequency Divider

```
timescale lns / lps
 2
 3
    module bcd to 7(
        input [3:0] bcd,
        output reg [6:0] seg
 6
        always@(bcd) begin
 8
          case (bcd)
 9
             4'd0: seg <= 7'b01111111;
10
             4'dl: seg <= 7'b0000110;
11
12
             4'd2: seg <= 7'b1011011;
             4'd3: seg <= 7'b1001111;
13
             4'd4: seg <= 7'bl100110;
14
15
             4'd5: seg <= 7'bl101101;
16
             4'd6: seg <= 7'bllllll01;
17
             4'd7: seg <= 7'b0000111;
18
             4'd8: seg <= 7'bll111111;
19
             4'd9: seg <= 7'bl101111;
20
          endcase
21
       end
22
23 endmodule
```

BCD to 7-segment Decoder

- Hint: There is modular operation in Verilog. But..
 - Our board does not support division by 10.
 - We recommend using 4 bit for each digit in counter logic

```
wire [6:0] bcd;
wire [3:0] ten_bcd;
wire [3:0] one_bcd;
assign ten_bcd = bcd / 10;
assign one_bcd = bcd % 10;
```

```
* HDL Analysis *

Analyzing top module <tdc_main>.

ERROR:Xst:867 - "tdc_main.v" line 15: Operator / is only supported when the second operand is a power of 2.

ERROR:Xst:867 - "tdc_main.v" line 16: Operator % is only supported when the second operand is a power of 2.

Found 2 error(s). Aborting synthesis.

-->
```

Simulating 50MHz clock in test bench

50MHz : period is 20ns(So we should flip clock every 10ns)


```
'timescale lns / lps
module counter sim;
  // Inputs
  reg clk;
  reg reset;
  // Outputs
  wire [6:0] cnt;
  // Instantiate the Unit Under Test (UUT)
  counter uut (
      .clk(clk),
      .reset (reset),
      .cnt(cnt)
  );
  always #10 clk=~clk;
  initial begin
      // Initialize Inputs
      clk = 0;
      reset = 1;
  end
endmodule
```

• Remind) Simulating more than 1ms

Report

Counter Module (Verilog)

- 1. Result of simulation (should attach waveform of three case)
 - should increase 1 in normal case
 - should set 0 when counter = 100
 - should be 0 when reset = 1

 (The bus value of the counter must be clearly visible in picture)

Two Digit Counter

- 1. All Verilog source code
 - should include code for module, submodule
 (i.e., TDC main, counter, freq divider, BCD-7 seg decoder)
 - only module code, no test bench code
- 2. Result of implementation of three case
 - should increase 1 in normal case
 - should set 0 at t = 100s
 - should be 0 when pressing the reset button (at least 2 pictures should be attached for each case)

Discussion

Report

- Write a report
 - Either in Korean or in English
 - Your report should include
 - Discussion
 - Homework
 - # of pages doesn't matter
 - Documents should be submitted as PDF file(less than 25Mb)
 - Attach source code and waveform screenshot
 - Due:

```
Class 001 - May, 9th (Before class begin at 7:00pm)
```

Class 002 - May, 10th (Before class begin at 7:00pm)

Class 003 - May, 11th (Before class begin at 7:00pm)