概率论与数理统计

华中科技大学 概率统计系

叶 鹰 副教授

引言

1.不光彩的起源

1654年7月至10月,巴斯卡 (Pascal) 与费马 (Fermat) 通信的有关问题:

(a) 将两只骰子掷24次,至少掷出一个"66"的机遇小于 1/2,但两只骰子只有36种(等)可能的情况,而24占了36的2/3,如何解释?

(b) 假定A、B在每局 取胜的概率各为 1 / 2 , 而在赌博中断时,A、B 各缺少a、b个胜局以取 得最后胜利,如何分配 赌注?

引言

1.不光彩的起源

赌注: 甲500+乙500=1000元 →

现状: 甲甲乙 *

(a) 将两只骰子掷24次,

只有36种(等)可能的 。 乙250

况,而24占了36的2/3,如 何解释? 乙甲定甲、乙在每局 取在的概率各为1/2, 而在赌博中断时,甲、乙 各缺少a、b个胜局以取得 最后胜利,如何分配赌

注?

2.几个有趣而又"头晕"的问题

例1 设有n个质点,每个点都以1/N的概率落于N(N>n)个 盒子中的任何一个里,求某指定的n个盒子各有一点的概率。

解 I (Maxwell-Boltzmann)
$$p = \frac{n!}{N^n}$$

解 II (Bose-Einstein)
$$p = \frac{1}{C_{n+N-1}^n}$$

解 II (Fermi-Dirac)
$$p = \frac{1}{C_N^n}$$

2.几个有趣而又"头晕"的问题

例2 在一半径为r的圆C内任意作弦,试求此弦长度l大于圆内接等边三角形边长的概率p。

$$p = \frac{(\frac{r}{2})^2 \pi}{r^2 \pi} = \frac{1}{4}$$

$$p = \frac{1}{3}$$

$$p = \frac{r}{2r} = \frac{1}{2}$$

引言

- 3、概率统计的研究对象
 - 必然现象
 水 → 次
 冰 → 蒸气
 - 随机现象 -----统计规律
- 4、定义

概率统计~研究随机现象的统计规律的数学学科 5、参考书:

- 1. 王福保 《概率论与数理统计》 同济大学出版社
- 2. 陈希孺 《概率论与数理统计》中国科技大学出版社
- 3. 盛骤等"概率论与数理统计"高等教育出版社

信息短波

- 关于教材:
- 以班为单位在华科大出版社二楼发行部购买, 18元/册 (72折)
- 关于练习册:
- 购买方式---以班为单位购买
- 价格—5.00元/册
- 时间---本周三下午2:30~5:

地点---科技楼南715(概率统

第一章 随机事件与概率

§ 1.1 随机事件和样本空间

- -、随机试验(E): 1. 试验前不可知其结果;
 - 2. 所有可能的结果可知;
 - 3. 可在相同条件下重复进行。
- 二、随机事件 ~ 随机实验的结果,记为: A, B, C, \ldots
 - 基本事件~不可分的最简单事件,记为ω
 - 复合事件~若干基本事件组成的事件。
 - 必然事件 ~ 必定发生的事件, 记为 Ω
 - 不可能事件~不可能发生的事件,记为Ø

三、样本空间 ~ 全体基本事件的集合,记为 Ω

例: E_1 : 掷一只骰子 $\Omega = \{1, 2, 3, 4, 5, 6\}$

 $A=\{1, 3, 5\}$ ~出现奇数点, $B=\{5,6\}$ ~点数超过4

 E_2 : 抛两枚硬币 $\Omega = \{ \text{正正, 正反, 反正, 反反} \}$

 $A={\rm EED, \ DE}\sim 恰出现一个正面$

或 Ω ={正正,正反,反反}

 $A={\bf EQ}\sim$ 恰出现一个正面, $\phi\sim$ 出现三个正面

 E_3 : 电脑无故障运行时间 $\Omega = \{t: t \ge 0\}$

 $A=\{t: t \ge 500\}$ ~合格品 $B=\{t: t < 50\}$ ~废品

§ 1.2 事件的关系和运算

- 一、事件的关系
- 1. 包含 $\sim A$ 发生则B 必然发生,记为:A $\subset B$

如 E_1 中, $A=\{1\}$, $B=\{1, 3, 5\}$,则 $A\subset B$

2. 等价 ~ *A*⊂*B* 且 *B*⊂*A* , 记为 *A*=*B*

§ 1.2 事件的关系和运算

- 一、事件的关系
- 3. 不相容 (互斥) ~ $A \subseteq B$ 不能同时发生, 记为 $A \cap B = \emptyset$

如 E_1 中, $A=\{2\}$, $B=\{1, 3, 5\}$,则A与B互不相容

4. 互逆 $\sim A \rightarrow B$ 互不相容,且 $A \rightarrow B$ 必有一个发生,记为:

$$A = \overline{B}$$
 或 $B = \overline{A}$

二、事件的运算

1. 和 (并) ~ *A*与*B*至少有一个发生,记为: *A*∪*B*

如 E_1 中,A={5,6},B={1,3,5}, 则 $A \cup B$ ={1,3,5}, 2. 积 (交) ~ *A*与*B*同时 发生,记为: *A* ∩ *B*或*AB*

如 E_1 中, $A=\{3, 4, 5, 6\}$,

推广: $\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \cdots \cup A_n \sim A_1, A_2, \ldots, A_n$ 中至少有一个发生

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \dots \cap A_n \sim A_1, A_2, \dots, A_n$$
同时发生

二、事件的运算

3. 差 ~ A发生但B不发生,记为 $A - B = A\overline{B}$

如 E_1 中,

$$A={3, 4, 5, 6},$$

$$B=\{1, 2, 3, 4\},\$$

则
$$A-B=\{5, 6\}$$

三、运算法则

1. 交換律:
$$A \cup B = B \cup A$$
 $A \cap B = B \cap A$

2. 结合律:
$$(A \cup B) \cup C = A \cup (B \cup C)$$
 $(AB)C = A(BC)$

3. 分配律:
$$A(B \cup C) = (AB) \cup (AC)$$
 $A \cup (BC) = (A \cup B)(A \cup C)$

4. 对偶律:
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
 $\overline{A \cap B} = \overline{A} \cup \overline{B}$

(De Morgan)
$$\overline{\bigcup_{i=1}^{n} A_i} = \bigcap_{i=1}^{n} \overline{A_i} \qquad \bigcap_{i=1}^{n} A_i = \bigcup_{i=1}^{n} \overline{A_i}$$

课堂练习

设某人向一个目标连射三次,以 A_i 表示"第 i 次命中目标",i=1,2,3,试用 A_1 , A_2 , A_3 及其运算式表示下面事件:

$$B_1 = A_1 \bigcup A_2$$

$$B_2 = A_1 \overline{A}_2 \overline{A}_3$$

$$B_3 = \overline{A}_1 A_2 A_3$$

(4) 第一次命中且后两次至少命中一次;
$$B_4 = A_1(A_2 \cup A_3)$$

$$B_5 = A_1 A_2 \bigcup A_2 A_3 \bigcup A_3 A_1$$

$$B_6 = A_1 \overline{A}_2 \overline{A}_3 \cup \overline{A}_1 A_2 \overline{A}_3 \cup \overline{A}_1 \overline{A}_2 A_3 \cup \overline{A}_1 \overline{A}_2 \overline{A}_3$$
$$= \overline{A}_1 \overline{A}_2 \cup \overline{A}_2 \overline{A}_3 \cup \overline{A}_3 \overline{A}_1 = \overline{B}_5$$

思考: Ω=?