Biodiversity data-set for Madagascar

Ghislain Vieilledent 1 Margaux Charra 1 Tom Allnutt 2 Clovis Grinand 3 Miguel Pedrono 4 Jean-Roger Rakotoarijaona 5 Dimby Razafimpahanana 2

 $[1] \ \textbf{Cirad BSEF}, \ [2] \ \textbf{WCS}, \ [3] \ \textbf{ETC Terra}, \ [4] \ \textbf{Cirad AGIR}, \ [5] \ \textbf{ONE}$

- Compiling biodiversity data
- Deriving biodiversity maps
- Vulnerability to climate change
- Sources and data-set compilation
 - Various sources
 - Data cleaning

- 3 Biodiversity data-set
 - Summary
 - Representativity
 - Originality
- Perspectives
 - Species distribution models
 - Generalized dissimilarity models

- Compiling biodiversity data
- Deriving biodiversity maps
- Vulnerability to climate change
- Sources and data-set compilation
 - Various sources
 - Data cleaning

- Biodiversity data-set
 - Summary
 - Representativity
 - Originality
- Perspectives
 - Species distribution models
 - Generalized dissimilarity models

Objectives

000

1. Compiling biodiversity data

- Occurrence data (with spatial coordinates)
- For a maximal number of species
- In a maximal number of taxonomic groups

Objectives

2. Deriving biodiversity maps

- α diversity: **species** diversity (richness, Shannon, Simpson)
- β diversity: differentiation among habitats

low spatial turnover

high spatial turnover

Objectives

3. Vulnerability to climate change

- At the species level
- At the community level
 - Biodiversity refugea
 - Loss of habitats

- - Compiling biodiversity data
 - Deriving biodiversity maps
 - Vulnerability to climate change
- Sources and data-set compilation
 - Various sources
 - Data cleaning

- - Summary
 - Representativity
 - Originality
- - Species distribution models
 - Generalized dissimilarity models

Sources

- Data portals: Rebioma, BirdLife, **AntWeb**
- Data from published scientific articles
- Private data: Kew, Universities, Cirad, ONE, MEF

Data cleaning

Checking taxonomy

- taxize R package
- Plant data: TNRS (Taxonomic Name Resolution Service)
- Animal data: GNR (Global Names Resolver)

Removing data

- 24% of the data
- Incomplete observations (coordinates)
- Unresolved taxonomic name

- - Compiling biodiversity data
 - Deriving biodiversity maps
 - Vulnerability to climate change
- - Various sources
 - Data cleaning

- Biodiversity data-set
 - Summary
 - Representativity
- Originality
- - Species distribution models
 - Generalized dissimilarity models

Biodiversity data

	Group	Species	Genus	Obs.	Main source
Plants	Trees	557	329	85236	IEFN
	Palms	201	17	5456	Kew (M. Rakotoarinivo, W. Baker)
	Ferns	651	76	10544	MNHN (É. Rakotondrainibe)
	Legumes	846	151	22693	Kew (J. Moat), MNHN (JN. Labat)
	Grasses	338	144	9933	Řew (M. Voronstova)
Vertebrates	Mammals (—lemurs)	318	50	2390	Rebioma
	Lèmurs É	64	15	3136	ONE
	Birds	214	147	40955	eBird, BirdLife
	Reptiles	448	70	5080	M. Vences, R. Pearson
	Amphibians	336	28	2550	M. Vences
Invertebrates	Snails	618	68	2560	T. Pearce
	Ants	513	103	68845	AntWeb
	Butterflies	407	112	13287	D. Lees
	Diptera	72	21	1595	Rebioma
	Coleoptera	30	16	164	Rebioma
TOTAL=		5613	1347	274424	

Representativity regarding known biodiversity

	Group	BSM	Goodman 2005
Plants	Trees/Palms	758	2625
	Ferns	651	586
	Legumes	846	573
	Grasses	338	34
Vertebrates	Mammals	382	131
	Birds	214	209
	Reptiles	448	345
	Amphibians	336	199
Invertebrates	Snails	618	671
	Ants	513	583
	Butterflies	407	300
	Diptera	72	1796
	Coleoptera	30	351
Others	others	0	6790
TOTAL=		5613	15373

Oryx Vol 39 No 1 January 2005

Short Communication

Updated estimates of biotic diversity and endemism for Madagascar

Steven M. Goodman and Jonathan P. Benstead

Comparison with other studies

LETTER

A method for quantifying biodiversity loss and its application to a 50-year record of deforestation across Madagascar

Thomas F. Allnutt^{1,2}, Simon Ferrier^{3,4}, Glenn Manion³, George V. N. Powell¹, Taylor H. Ricketts¹, Brian L. Fisher⁵, Grady J. Harper⁶, Michael E. Irwin⁷, Claire Kremen², Jean-Noël Labat⁸, David C. Lees⁹, Timothy A. Pearce¹⁰, & France Rakotondrainibe⁸

Comparison

- Allnutt et al. 2008: 2843
- Kremen et al. 2008: 2315
 (Ants, Butterflies, Frogs, Geckos, Lemurs and Plants)
- BioSceneMada: 5613

Science 320, 222 (2008); DOI: 10.1126/science.1155193

Aligning Conservation Priorities Across Taxa in Madagascar with High-Resolution Planning Tools

C. Kremen, **2*† A. Cameron, **2*† A. Mollanen, **S. J. Phillips, **C. D. Thomas, **F. H. Beentje, **
J. Dransfield, **B. L. Fisher, **F. Glaw, **B. T. C. Good, **C. J. Harper, **D. R. J. Hijmans, **L. D. C. Lees, **Z. E. Louis Jr., **L. A. Nussbaum, **C. J. Raxworthy, **S. A. Razafimpahanana, **C. E. Schatz, **B. Y. Wriolt, **S. M. L. Zihra**

M. Vences, **D. R. Vieites, **B. P. C. Wriolt, **S. M. L. Zihra**

Gobally, priority areas for biodiversity are relatively well known, yet few detailed plans exist to direct conservation action within them, despite urgent need, Madagascar, like other globally recognized biodiversity het spots, has complex spotial patterns of enderinsm that differ among taxoning; expost, extending challenges for the selection of withintic country priorities, bethown, in analysis of wide taxonomic and geographic breadth and high spatial resolution, that multitaxonomic rather than single-texan or parcelase are critical for identifying areas likely to promote the persistence of most species. Our conservation prioritization, radiatated by newly available techniques, identifies optimal exposition sizes for the Adagascar government's current part of the priority part of the pa

- - Compiling biodiversity data
 - Deriving biodiversity maps
 - Vulnerability to climate change
- - Various sources
 - Data cleaning

- - Summary
 - Representativity
 - Originality
- Perspectives
 - Species distribution models
 - Generalized dissimilarity models

Species distribution models

- At the species level
- Species range = f(present climate + other factors)
- Prediction of future species distribution
- Ensemble forecasting approach
- 5613 SDMs !!
- Superposing species distributions
- α and β diversity

Species distribution models

Biological Conservation 166 (2013) 11-22

Contents lists available at SciVerse ScienceDirect

Biological Conservation

journal homepage; www.elsevier.com/locate/biocon

Vulnerability of baobab species to climate change and effectiveness of the protected area network in Madagascar: Towards new conservation priorities

Ghislain Vieilledent a,b,*, Cyrille Cornu b,c, Aida Cuní Sanchez d, Jean-Michel Leong Pock-Tsy b, Pascal Danthua,b

a Cirad, UPR BSEF, Montpellier, France b Cirad, DP Forêt et Biodiversité, Antananarivo, Madagascar

^c Cirad, UMR TETIS, Montpellier, France

d University of York, York Institute of Tropical Ecosystem Dynamics, Environment, Department, Heslington, YO10, 5DD York, United Kingdom

- R script written for Baobab species
- Run the R script for the 5613 species
- Compute biodiversity indices

- At the community level
- Dissimilarity between pairs of locations
- One model for the 5613 species
- β diversity

Biological dissimilarity across Madagascar prior to habitat loss (left), in 2000 (right)

Generalized dissimilarity models

LETTER

A method for quantifying biodiversity loss and its application to a 50-year record of deforestation across Madagascar

Thomas F. Allnutt^{1,2}, Simon Ferrier^{3,4}, Glenn Manion³, George V. N. Powell¹, Taylor H. Ricketts¹, Brian L. Fisher⁵, Grady J. Harper⁶, Michael E. Irwin⁷, Claire Kremen², Jean-Noël Labat⁸, David C. Lees9. Timothy A. Pearce10, & France Rakotondrainibe8

Allnut et al. 2008 Conservation Letters

Generalized dissimilarity models

- New R package gdm
- Write the R script and run the model

