Euler φ (totient) function and arithmetic mod m

Definition. The Euler φ , or totient, function is defined, for integer $n \geq 1$, by

 $\varphi(n)$ = the number of integers in the range [1, n] that are relatively prime to n.

Examples.

- (1) $\varphi(5) = 4$ (the numbers 1, 2, 3, 4 are relatively prime to 5, but 5 is not.
- (2) $\varphi(10) = 4$ (the numbers 1, 3, 7, 9 are relatively prime to 10, but 2, 4, 5, 6, 8, 10 are not.)

Fact: If $n = p_1^{k_1} \cdots p_m^{k_m}$, where p_1, \dots, p_m are distinct prime divisors of n and $k_i \ge 1$, then

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_m}\right).$$

In particular, if n = p is prime, then $\varphi(n) = p - 1$ and if $n = n_1 n_2$, where $(n_1, n_2) = 1$, that is, n_1 and n_2 are relatively prime, then $\varphi(n) = \varphi(n_1)\varphi(n_2)$. **Example.** $\varphi(72) = \varphi(2^3 \cdot 3^2) = 72(1 - 1/2)(1 - 1/3) = 72/3 = 24$.

Definition. For integer numbers a, b, m, notation $a \equiv b \pmod{m}$ means a - b is divisible by m, that is $m \mid (a - b)$ or, equivalently, a - b = km for some integer k.

Direct computations show that if $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$, then $a_1 \pm a_2 \equiv b_1 \pm b_2 \pmod{m}$ and $a_1 a_2 \equiv b_1 b_2 \pmod{m}$. In particular, if $a \equiv b \pmod{m}$, then $ka \equiv kb \pmod{m}$ for every integer k and $a^n \equiv b^n \pmod{m}$ for every positive integer n. As a result, if $a \equiv b \pmod{m}$ and P = P(x) is a polynomial with integer coefficients, then $P(a) \equiv P(b) \pmod{m}$.

Example. If $P(x) = 3x^7 - 41x^2 - 91x$, then $P(x) \equiv 3x^7 - 2x^2 \pmod{13}$ and $P(11) \equiv 11 \pmod{13}$ (because $11 \equiv -2 \pmod{13}$).

If (k, m) = 1, then $ka \equiv kb \pmod{m}$ implies $a \equiv b \pmod{m}$. If d|a, d|b, and d|m, then $a \equiv b \pmod{m}$ implies $\binom{a}{d} \equiv \binom{b}{d} \pmod{\frac{m}{d}}$.

Example. $30 \equiv 60 \pmod{6}$, which implies $6 \equiv 12 \pmod{6}$, $15 \equiv 30 \pmod{3}$, and $10 \equiv 20 \pmod{2}$.

If $a \equiv b \pmod{m}$ and d|m, then $a \equiv b \pmod{d}$. More generally, if $(m_i, m_j) = 1$, $i, j = 1, \ldots, k$, then

 $a \equiv b \pmod{m_i}, i = 1, \dots, k \text{ if and only if } a \equiv b \pmod{m_1 \cdots m_k}.$

Even more generally, for arbitrary integer m_1, \ldots, m_k ,

$$a \equiv b \pmod{m_i}, i = 1, \dots, k \text{ if and only if } a \equiv b \pmod{[m_1 \cdots m_k]},$$

where $[m_1 \cdots m_k]$ is the least common multiple of $m_1, \dots m_k$.

Example. $38 \equiv 110 \pmod{4}$, $38 \equiv 110 \pmod{9}$, and $38 \equiv 110 \pmod{12}$ is equivalent to $38 \equiv 110 \pmod{36}$.

Theorem. If (a, m) = 1, then $a^{\varphi(m)} \equiv 1 \pmod{m}$.

Indeed, let $x_1, \ldots, x_{\varphi(m)}$ be the integers from the interval [1, m] that are relatively prime to m. Then, for each $i = 1, \ldots, \varphi(n)$, ax_i is also relatively prime to m and so there exists j so that $ax_i \equiv x_j \pmod{m}$. Consequently, $a^{\varphi(m)}x_1 \cdots x_{\varphi(m)} \equiv x_1 \cdots x_{\varphi(m)} \pmod{m}$, and the result follows.

Corollary 1. If p is a prime number, then $a^p \equiv a \pmod{p}$ for every integer a.

Note. If (a, m) > 1, then, in general, $a^{\varphi(m)+1} \not\equiv a \pmod{m}$. For example, with a = 2 and m = 4, we find $\varphi(4) = 2$, but $2^3 \not\equiv 2 \pmod{4}$.

Corollary 2. If (a, m) = 1 and $ax \equiv b \pmod{m}$, then $x \equiv ba^{\varphi(m)-1} \pmod{m}$.

Examples.

- (1) With $\varphi(24) = 8$ we find: $5x \equiv 2 \pmod{24}$ implies $x \equiv 2 \cdot 5^7 = 10 \cdot (25)^3 \pmod{24}$ or x = 10.
- (2) If p is a prime number, then $(p-1) \equiv -1 \pmod{p}$, and, for every $a \in \{2, \ldots, p-2\}$, there is a (unique) $b \in \{2, \ldots, p-2\}$ so that $ab \equiv 1 \pmod{p}$. As a result,

$$(p-1)! \equiv -1 \pmod{p}$$
.

Problems.

- (1) (92A3) For fixed integer m, find integer (x, y, n) so that (m, n) = 1 and $(x^2 + y^2)^m = (xy)^n$.
- (2) (91B4) For an odd prime p, show that

$$\sum_{j=0}^{p} {p \choose j} {p+j \choose j} \equiv 2^p + 1 \pmod{p^2}.$$

- (3) (88B1) Show that every positive composite (that is, not prime) number can be written as xy + yz + zx + 1 for some positive integers x, y, z.
- (4) (86A2) What is the right-most digit of the number

$$\left[\frac{10^{20000}}{10^{100} + 3} \right] ?$$

(|a| means the largest integer less than or equal to a.)

(5) (69B1) For a positive integer n show that if 24|(n+1), then $24|\sum_{d|n} d$.