Sorting Techniques

Design and Analysis of Algorithms Lecture Set 2

Outline

- The problem
- Importance and Application
- Bubble Sort
- Insertion Sort
- Selection Sort
- Heap Sort

The problem

- Given a set of n numbers that may be in any order, the goal is to output the numbers in sorted order
 - A set of elements S are sorted in ascending order when S_i<S_{i+1} for all 1<=i<n
 - A set of elements S are sorted in descending order when S_i>S_{i+1} for all 1<=i<n
- Can sort just the key or entire records

Importance of Sorting

- Basic block around which many other algorithms are built on
- Interesting ideas in design of algorithms appear in the context of sorting
 - Divide and conquer, data structures, randomized algorithms
- Remains the most ubiquitous combinatorial algorithmic problem in practice
- Loads of study on this problem

Applications of Sorting

Searching

 Whether linear or binary, it is easier to search for an element if the list is sorted

Closest Pair

- Given a set of "numbers, find the pair of numbers that have the smallest difference between them
- Closest pair lie next to each other somewhere in the sorted order

Applications of Sorting

- Finding duplicates among n elements in a list
 - In sorted list, it is easy to find this by scanning adjacent elements
- Frequency Distribution
 - Find the number of occurrences of different elements in a list
 - Identical items together in a sorted list
 - Just scan list once
- Selection
 - Find the kth largest element in a list

Sorting Algorithms

- Comparison Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Heap Sort

Bubble Sort

- A basic sorting algorithm where corresponding elements are checked and swapped
 - The smallest elements bubble up the way

http://t2.gstatic.com/images?q=tbn:ANd9GcRnvLV-rVerCKzEZ7sN7WwBIUL09M_FqIkgX52w5mSLElDgtFVRX-FgHtSsWg

Pseudocode

- BUBBLESORT(A)
 - 1. *for* i = 1 *to* A.length-1
 - 2. **for** j = A:length **downto** i 1
 - 3 if A[j] < A[j-1]
 - 4 exchange A[j] with A[j -1]

Bubble Sort: Analysis

- Best Case
 - O(n)
 - List already sorted, hence zero swaps after first iteration
- Worst case
 - $O(n^2)$
- On average
 - (n-1)*n/2 comparisons
 - $-O(n^2)$

Insertion Sort

- At each iteration an element is removed from the list and inserted into the right place
 - An any iteration the first i items are in place

Src: CLR – Ch2- Pg22

Insertion Sort: Pseudocode

- INSERTION-SORT(A)
 - 1. *for* j = 2 *to* A.length
 - 2. key = A[j] // Insert A[j] into the sorted sequence A[1:j-1]
 - 3. i = j-1
 - 4. *while* i > 0 *and* A[i] > key
 - 5. A[i+1] = A[i]
 - 6 i = i-1
 - 7 A[i-1] = key

Src: CLR - Ch2

Insertion Sort: Analysis

- At each iteration
 - Element compared and/or swapped with atmost i elements
 - i varies from 1 to n
- n such elements inserted
- Average case and worst case- O(n²)
 - Worst case when list sorted in reverse order
- Best Case O(n)
 - When list is already sorted
 - No swaps needed

Selection Sort

 At each iteration the minimum element is chosen and inserted in the top of the list

```
S E L E C T I O N S O R T
C E L E S T I O N S O R T
C E L E S T I O N S O R T
C E E L S T I O N S O R T
C E E I S T L O N S O R T
C E E I L T S O N S O R T
C E E I L N S O T S O R T
C E E I L N O S T S O R T
C E E I L N O O R S S T T
C E E I L N O O R S S T T
C E E I L N O O R S S T T
C E E I L N O O R S S T T
C E E I L N O O R S S T T
```

Src: Steven S. Skiena, "The Algorithm Design Manual", Second Edition

Selection Sort: Pseudocode

```
selection sort(int s∏, int n){
        int i,j; /* counters */
        for (i=0; i<n; i++) {
             min=i; /* index of minimum */
             for (j=i+1; j<n; j++)
                       if (s[i] < s[min]) min=i;
             swap(s[i],s[min]);
```

Src: Steven S. Skiena, "The Algorithm Design Manual", Second Edition

Analysis of Selection Sort

- Complexity depends on cost of finding minimum element in remaining list
- Best Case O(n^2)
 - Almost sorted still requires cost of finding min
- Average Case O(n²)
 - Cost of finding minimum element is i per iteration= n(n-1)/2
- Worst Case O(n²)
 - When list is in reverse sorted order
 - The minimum is always at the end

Review: Heaps

- Priority queue
 - Elements in sorted order
- Stores elements in a binary tree
 - insertions and deletions logarithmic time

Heap: Properties

- Heap-Order Property
 - For every node v other than the root, the key stored at v is greater than or equal to the key stored at v's parent
- Complete Binary tree
 - A binary tree with height h is complete if the levels 0,1,2,...h-1 have the maximum number of nodes possible and
 - All internal nodes are to the left of the external nodes
 - Helps keep the height of the heap small

Heap Implementation

- Implemented using vector representation
- The last node is the rightmost node in the last level

5	10	50	11	20	52	55	25	22
0	1	2	3	4	5	6	7	8

Heap Sort

- A priority queue based sort
- Step1: Create the heap
 - Inserting elements takes O(log k) where k is the number of elements in the heap at that time
 - Using bottom-up approach cost is O(n)
- Step 2: Sorting
 - Remove the minimum element in each iteration and store in external array
 - Complexity: O(log k) where k is the number of elements in the heap at that time
- Total Cost: O(nlogn)

In-Place Heap Sort

- Uses the vector representation
 - Use the left portion of the vector S to store elements in heap upto i-1 rank
 - These elements are sorted
 - Right portion of S to store the other elements in sequence
- Start with empty heap and move the boundary between heap and sequence from left to right
 - In step i, expand heap by adding element at i-1
- Start with empty sequence and move the boundary
 - In step i, remove maximum from heap and store at rank n-i
- We rearrange instead of using extra memory

In-place Heap Sort

(d) 7 4 2 1 3

Src:Algorithm Design: Goodrich and Tamassia

Merge Sort

- Uses divide and conquer strategy to sort a set of numbers
- Divide:
 - If S has zero or one element, return S
 - Divide S into two sequences S₁ and S₂ each containing half of the elements of S
- Recur
 - Recursively apply merge sort to S₁ and S₂
- Conquer
 - Merge S₁ and S₂into a sorted sequence

Merging two sorted sequences

Iteratively remove smallest element from one of the two sequences S_1 and S_2 and add it to end of output sequence S

Merge Sort

Merge Sort

```
mergesort(item type s[], int low, int high) {
   int i; /* counter */
   int middle; /* index of middle element */
         if (low < high) {
               middle = (low+high)/2;
               mergesort(s,low,middle);
               mergesort(s,middle+1,high);
               merge(s, low, middle, high);
```

Src: Skiena, Algorithm Design Manual, Chapter 4

Analysis of Merge Sort

CSE211: Design and Algorithms of Algorithms

Amrita School of Engineering Amrita Vswha Vidyapeetham

Merge Sort: Analysis

- work done on the kth level involves merging 2^k pairs sorted list, each of size n/2^{k+1}
 - A total of atmost n-2^k comparisons
- Linear time for merging at each level
 - Each of the n elements appear exactly in one of the subproblems at each level
- Requires extra memory

Quick Sort A divide and conquer strategy which also uses randomization

- Divide
 - Select a random pivot p. Divide S into two subarrays,
 where one contains elements
 > p
- Recur
 - Sort subarrays by recursively applying quicksort on each subarray
- Conquer
 - Since the subarrays are already sorted, no work is needed in merge part

Quick Sort

Quick Sort

quickSort(Element[] E, int first, int last)

if (first < last)

Element pivot = E[first];

int splitPoint = partition(E,pivot,first,last);

E[splitPoint] = pivot;

quickSort(E, first,splitpoint-1);</pre>

quickSort(E, splitpoint+1, last);

Quick Sort

- Selection of pivot
 - Can be first or last element (here)
 - Median element
 - Random element

Quick Sort Analysis

- Worst Case Running Time
 - Occurs when pivot is always the largest element
 - Selecting the first element or last element as pivot causes this problem when list is already sorted
 - Running time proportional to n+(n-1)+(n-2)+....1

Src: Skiena, Algorithm Design Manual, Chapter 4.6

Average Case Analysis

- The partition in a quick sort of size s can be
 - Good: if the sizes of partitions are each less than 3s/4
 - A partition is good with the probability ½
 - ½ the pivots cause good partitions

Bad: if one of the partitions has size greater than 3s/4

CSE211: Design and Algorithms of Algorithms

Amrita School of Engineering Amrita Vswha Vidyapeetham

Average Case Analysis

- For a node of depth i, we expect
 - i/2 ancestors are good calls, they are result of good pivots
 - The size of the input sequence for the current call is at most (3/4)^{i/2}n
- For a node of depth $2\log_{4/3}n$,
 - the expected input size is one
 - The expected height of the quick-sort tree is O(log n)
 - The amount or work done at the nodes of the same depth is O(n)
- CEXPECTED IN Amrita Vswha Vidyapeetham Vidhya Balasubramanian

In-Place Quick Sort

- Quick sort can be implemented without extra memory
- Replace operation used in partition step
 - Elements less than pivot have rank less than p of pivot
 - Elements greater than pivot have rank greater than p

In-Place Quick Sort

Quick Sort: Partitioning

- PARTITION(A,p, r) //inplace partitioning
 - $\mathbf{x} = \mathbf{A}[\mathbf{r}]$
 - i = p-1
 - *for* j = p *to* r-1
 - *if* A[j] <= x
 - i = i + 1
 - exchange A[i] with A[j]
 - exchange A[i+1] with A[r]
- return i+1

External Sort: Bucket Sort

- Assumes elements are uniformly distributed
- Distribution sort
 - Array is partitioned into n equal sized subintervals/buckets
 - Each interval is a bucket
 - e.g each bucket can contain element starting with a particular alphabet
 - Each bucket sorted separately
 - Can use bucket sort again
 - Use other sorting techniques
- Elements from the buckets merged to form the sorted list

Bucket Sort

http://en.wikipedia.org/wiki/File:Bucket_sort_2.png

Bucket Sort: Properties

- Let be S be a sequence of n (key, element) items
 with keys in the range [0, N 1]
 - Bucket-sort uses the keys as indices into an auxiliary array B of sequences (buckets)
 - Key-type Property
 - The keys are used as indices into an array and cannot be arbitrary objects
 - No external comparator
- Stable Sort Property
 - The relative order of any two items with the same key is preserved after the execution of the algorithm

Methods for Bucketing

- Integer keys in the range [a, b]
 - Put item (k, o) into bucket B[k a]
- String keys from a set D of possible strings, where D has constant size (e.g., names of the Indian states)
 - Sort D and compute the rank r(k) of each string k
 of D in the sorted sequence
 - Put item (k, o) into bucket B[r(k)]

Bucket Sort: Pseudocode

BUCKET-SORT(A)

```
let B[0: : n 1] be a new array
n = A:length
for i = 0 to n - 1
     make B[i] an empty list
for i = 1 to n
     insert Ai] into list B[floor(n A[i])]
for i = 0 to n \cdot 1
     sort list B[i] with insertion sort
concatenate the lists B[0],B[1],....,B[n] together
```

in order

Analysis of Bucket Sort

- Expected time is O(n)
 - Each step takes O(n) time except for sorting each bucket
 - Expected time to sort bucket Bi is $E[O(n_i^2)] = O(E[n_i^2])$
 - Depends on distribution of each random variable n

$$- \sum_{i=1}^{n} O\left(E\left(n_{i}^{2}\right)\right)$$

- Given n elements and n buckets, probability that a given element falls in a bucket B[i] is 1/n
 - Probability follows Binomial distribution
 - Mean $E[n_i] = np = 1$, Variance $Var[n_i] = np(1-p) = 1-1/n$
 - $E[n_i^2] = Var[n_i] + (E[n_i])^2 = 1 1/n + 1^2 = \theta(1)$
 - Substituting in above equation expected time is O(n)
- Worst case complexity O(n2) (skewed distribution)

Bucket Sort: Example

Src: Corman, Rivest etal, "Introduction to Algorithms", 8.4

Problem

- Using the previous example as a model, illustrate the operation of BUCKET-SORT on the array A (.79, .13, .16, .64, .39, .20, .89, . 53, .71, .42).
- Use bucket sort to sort the following elements
 - (233, 456, 567, 777, 554, 343, 267, 466, 786, 900, 600, 545, 531, 879, 821, 289, 192, 945)
 - How are the buckets chosen?

Lexicographic Order

- A d-tuple is a sequence of d keys (k₁, k₂, ..., k_d), where key k_i is said to be the i-th dimension of the tuple
 - Example: coordinates in 3d space
- The lexicographic order of two d-tuples is recursively defined as follows

$$-(x_1, x_2, ..., x_d) < (y_1, y_2, ..., y_d)$$
 if

$$- x_1 < y_1 \ V \ x_1 = y_1 \ \Lambda \ (x_2, ..., x_d) < (y_2, ..., y_d)$$

 i.e., the tuples are compared by the first dimension, then by the second dimension etc

Radix Sort

- Specialization of lexicographic sort
 - Lexicographic-sort sorts a sequence of d-tuples in lexicographic order by executing a stable sort algorithm d times
 - Radix sort uses bucket sort for each dimension
 - Applicable where keys in each dimension are integers

Example:

- -(7, 4, 6)(5, 1, 5)(2, 4, 6)(2, 1, 4)(3, 2, 4)
- -(2, 1, 4)(3, 2, 4)(5, 1, 5)(7, 4, 6)(2, 4, 6)
- -(2, 1, 4)(5,1,5)(3, 2, 4)(7, 4, 6)(2, 4, 6)

- (2, 1, 4) (2, 4, 6) (3, 2, 4) (5, 1, 5) (7, 4, 6) of Algorithms

Radix Sort

- RADIX-SORT(A,d)
 - for i = 1 to d
 - use a stable sort to sort array A on digit i
- Given n d-digit numbers in which each digit can take on up to k possible values, RADIX-SORT correctly sorts these numbers in Θ(d.(n+k)) time if the stable sort it uses takes Θ(n+k) time.

329	jja-	720	<u>-</u>] 10-	720	<u>-</u>	329
457		355		329		355
657		436		436		436
839		457		839		457
436		657		355		657
720		329		457		720
355		839		657		839

Src: Corman, Rivest etal, "Introduction to Algorithms", 8.3

CSE211: Design of Algorithms