Sistemas Digitales II

Trabajo Final:

Frecuencímetro

Implementar utilizando una placa de desarrollo

Programación en lenguaje Assembler.

Elección del método de medición.

Configuración del hardware del microcontrolador.

Visualización en displays de 7 segmentos.

Placa de desarrollo

Permite programar el microcontrolador y conectar fácilmente circuitos externos. Se utiliza para el desarrollo de prototipos dónde se necesita cambiar constantemente el hardware.

¿Qué es un frecuencímetro?

Es un instrumento de medición que se utiliza para conocer la frecuencia de una señal

Método de captura

Para medir la frecuencia de la señal se optó por contar los flancos ocurridos en una ventana de un segundo

Flancos de una señal

Descendente

Ascendente

Método de medición

Por Flancos: Conteo de ocurrencias en un tiempo determinado.

Método de medición

En una ventana de 1 segundo se contará la cantidad de flancos

Ej.: 13 flancos contados en 1 segundo son 13 Hz

Lectura de la hoja de datos

Para conocer el set de instrucciones y los dispositivos integrados dentro del microcontrolador, sus funciones y configuraciones.

Diagrama del hardware para esta aplicación.

Set de instrucciones

Source Form	Operation Description	Description	Effect on CCR						Address Mode	Opcode	Operand	les
		Becomplien	٧	Н	ı	N	z	С	Add	Орс	Ope	Cycles
ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC opr,SP ADC opr,SP	Add with Carry	$A \leftarrow (A) + (M) + (C)$	1	ţ	_	ţ	ţ	1	IMM DIR EXT IX2 IX1 IX SP1 SP2	D9 E9 F9 9EE9		2 3 4 4 3 2 4 5
ADD #opr ADD opr ADD opr,X ADD opr,X ADD opr,X ADD opr,SP ADD opr,SP	Add without Carry	A ← (A) + (M)	1	ţ	_	ţ	ţ	1	IMM DIR EXT IX2 IX1 IX SP1 SP2	AB BB CB DB EB FB 9EEB 9EDB		2 3 4 4 3 2 4 5
AIS #opr	Add Immediate Value (Signed) to SP	$SP \leftarrow (SP) + (16 \% M)$	_	_	_	_	-	-	IMM	A7	ii	2
AIX #opr	Add Immediate Value (Signed) to H:X	H:X ← (H:X) + (16 « M)	-	-	-	-	-	-	IMM	AF	ii	2
AND #opr AND opr AND opr AND opr,X AND opr,X AND opr,SP AND opr,SP	Logical AND	A ← (A) & (M)	0	_	_	ţ	ţ	ı	IMM DIR EXT IX2 IX1 IX SP1 SP2	A4 B4 C4 D4 E4 F4 9EE4 9ED4	ii dd hh II ee ff ff ff ee ff	23443245
ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr.SP	Arithmetic Shift Left (Same as LSL)	C 0 0 b7 b0	ţ	_	_	ţ	ţ	‡	DIR INH INH IX1 IX SP1	38 48 58 68 78 9E68	dd ff ff	4 1 1 4 3 5

Set de instrucciones

Source Form	Operation Description	Description	Effect on CCR						Address Mode	Opcode	Operand	les
		Becomplien	٧	Н	ı	N	z	С	Add	Орс	Ope	Cycles
ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC opr,SP ADC opr,SP ADC opr,SP	Add with Carry	A ← (A) + (M) + (C)	Į.	‡	_	ţ	ţ	Į.	IMM DIR EXT IX2 IX1 IX SP1 SP2	D9 E9 F9 9EE9		2 3 4 4 3 2 4 5
ADD #opr ADD opr ADD opr,X ADD opr,X ADD opr,X ADD opr,SP ADD opr,SP	Add without Carry	A ← (A) + (M)	1	‡	_	ţ	ţ	1	IMM DIR EXT IX2 IX1 IX SP1 SP2	CB DB		2 3 4 4 3 2 4 5
AIS #opr	Add Immediate Value (Signed) to SP	SP ← (SP) + (16 « M)	_	_	_	_	_	_	IMM	A7	ii	2
AIX #opr	Add Immediate Value (Signed) to H:X	H:X ← (H:X) + (16 « M)	-	-	-	-	-	-	IMM	AF	ii	2
AND #opr AND opr AND opr, AND opr,X AND opr,X AND opr,SP AND opr,SP	Logical AND	A ← (A) & (M)	0	-	-	ţ	ţ	-	IMM DIR EXT IX2 IX1 IX SP1 SP2	B4 C4 D4		23 4 4 3 2 4 5
ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr.SP	Arithmetic Shift Left (Same as LSL)	© 0 b7 b0	ţ	_	_	ţ	ţ	‡	DIR INH INH IX1 IX SP1	38 48 58 68 78 9E68	dd ff ff	4 1 1 4 3 5

Display 7 segmentos Módulo con 7 leds que permiten formar caracteres alfanuméricos

Display de 7 segmentos

Interrupciones

Son las que permiten realizar tareas para eventos específicos.

Función de las Interrupciones

Cuando una interrupción ocurre, el procesador deja de realizar su tarea principal y atiende a la rutina especificada por el evento de interrupción ocurrido.

Fuentes de interrupción

 El microcontrolador a utilizar permite generar interrupciones periódicas mediante un contador interno, el cual se puede configurar. (Timer)

 También se puede generar una interrupción externa mediante una conexión física. (Flancos de la señal)

Adquisición de los datos

 Conteo de flancos en sistema BCD de 4 dígitos (millar, centena, decena y unidad)

Sistema BCD

- Codificación de dígitos decimales en binario
- Cuatro dígitos binarios representarán uno decimal.

$$0000 = 0$$

$$1000 = 8$$

$$1001 = 9$$

Al contar en BCD no es necesaria una conversión

Primeras ideas

Diagramas de flujo

¿Para qué utilizamos un diagrama de flujo?

- Es una guía de las acciones y decisiones que el programa debe realizar
- Se traducen al lenguaje a utilizar y las instrucciones del procesador utilizado

Primeros Diagramas de Flujo

Diagrama de flujo del contador

Prueba en Protoboard

Se realiza una primera implementación

Muchas gracias!!

¿Preguntas?

