Student No	************************************
Student 140.	*************************

2007 YEAR 12 EXAMINATION TERM 1

Chemistry

ANSWER SHEET

Staff Involved:

AM MONDAY 26 MARCH

- RJP*
- RZS
- JFH

95 copies

Section I – Multiple Choice

Choose the best response and fill in the response oval completely

1. A B C D 2. A B C D 3. A B C D 4. A B C D 5. A B C D 6. A B C D 7. A B C D 8. A B C D 9. A B C D 10. A B C D 11. A B C D 12. A B C D 13. A B C D 14. A B C D 15. A B C D					
3.	1.	A	B	0	(D)
4.	2.	A	B	0	(D)
5.	3.	A	B	(C)	Ð
6. A B C D 7. A B C D 8. A B C D 9. A B C D 10. A B C D 11. A B C D 12. A B C D 13. A B C D	4.	A	B	0	(D)
7.	5.	A	B	0	(D)
8. A B C D 9. A B C D 10. A B C D 11. A B C D 12. A B C D 13. A B C D 14. A B C D	6.	A	B	0	D
9. A B C D 10. A B C D 11. A B C D 12. A B C D 13. A B C D	7.	A	B	0	(P)
10. A B C D 11. A B C D 12. A B C D 13. A B C D 14. A B C D	8.	A	B	0	9
11. A B C D 12. A B C D 13. A B C D 14. A B C D	9.	A	B	(Ð
12. A B C D 13. A B C D 14. A B C D	10.	A	B	Θ	9
13. A B C D 14. A B C D	11.	A	B	Θ	9
14. A B C D	12.	A	B	(Θ
	13.	A	B	((
15. A B C D	14.	A	B	0	D
	15.	A	B	0	D

2007 YEAR 12 EXAMINATION TERM 1

Chemistry

Staff Involved:

- RJP*
- RZS
- JFH

95 copies

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen
- Board-approved calculators may be used
- Draw diagrams using pencil
- A Data Sheet and Periodic Table are provided at the back of this paper
- Write your Barker Student Number at the top of the Answer Sheet and Cover Sheet and ALL pages in Section II

AM MONDAY 26 MARCH

Total marks (80)

Section I

Pages -25

15 marks

- Indicate all answers on the Answer Sheet provided
- Allow about 25 minutes for this section

Section II

Pages 6 - 18

65 marks

- Attempt ALL questions
- Indicate all answers in the spaces provided on the Answer Sheets
- Show all working for this section
- Allow about $1\frac{1}{2}$ hours this section

Section I

15 marks

Allow about 25 minutes for this section

Attempt ALL questions

Use the multiple-choice answer sheet

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample

$$2 + 4 = (A) 2 (B) 6 (C) 8$$

$$(B)$$
 6

(D) 9

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows.

- 1. Which of the following processes is used to convert some fractions from the refining of petroleum into ethylene?
 - (A) polymerisation
 - (B) fermentation
 - (C) dehydration
 - (D) catalytic cracking
- 2. What is the term used to describe the conversion of ethanol into ethylene?
 - (A) condensation
 - (B) hydrogenation
 - (C) addition
 - (D) dehydration
- 3. What is the name of the compound represented below?

- (A) 2-butanol
- (B) 4-pentanol
- (C) pentan-4-ol
- (D) 2-pentanol
- 4. Polystyrene is an example of an addition polymer. What is the common name and the systematic name for the monomer from which this polymer is formed?
 - (A) common name: styrene, systematic name: phenylethene
 - (B) common name: phenylethene, systematic name: styrene
 - (C) common name: ethenyl benzene, systematic name: styrene
 - (D) common name: vinyl chloride, systematic name 2-dichloroethene
- 5. Which of the following is a monomer of cellulose?
 - (A) ethylene
 - (B) glucose
 - (C) starch
 - (D) galactose

- **6.** What is the oxidation state (number) of Mn in MnO_4^- ?
 - (A) +1
 - (B) +2
 - (C) -7
 - (D) +7
- 7. The reaction that goes in the direction shown is:
 - (A) $Mg^{2+}_{(aq)} + Fe_{(s)} \rightarrow Mg_{(s)} + Fe^{2+}_{(aq)}$
 - (B) $Zn_{(s)} + Pb_{(aq)}^{2+} \rightarrow Zn_{(aq)}^{2+} + Pb_{(s)}$
 - (C) $Pb_{(s)} + Fe^{2+}_{(aq)} \rightarrow Pb^{2+}_{(aq)} + Fe_{(s)}$
 - (D) $2Ag_{(s)} + Sn^{2+}_{(aq)} \rightarrow 2Ag^{+}_{(aq)} + Sn_{(s)}$
- 8. Iron-58 is bombarded with neutrons in a nuclear fission reactor. A single neutron is captured by the Fe-58 nucleus to form a new isotope of iron? This isotope then undergoes beta decay, producing a daughter nucleus. What is the identity of the daughter nucleus?
 - (A) $^{59}_{27}Co$
 - (B) $_{26}^{59}Fe$
 - (C) 57 Fe
 - (D) $^{59}_{25}Fe$
- 9. Consider the following reaction (the forward reaction is exothermic):

$$CO_{2_{(g)}} + H_2O_{(l)} \Longrightarrow H_2CO_{3_{(hq)}}$$

Which of the following changes to equilibrium conditions would favour the formation of bubbles of carbon dioxide?

- (A) increasing the pressure
- (B) increasing the temperature
- (C) decreasing the temperature
- (D) addition of water
- 10. What is the pH of orange juice closest to?
 - (A) 6.5
 - (B) 1.5
 - (C) 7.5
 - (D) 3.5

	A nitric acid solution had a pH of 2. 10mL of the solution was diluted to 100mL.	
What is the pH of the final solution closest to?		at is the pH of the final solution closest to?
	(A)	0.2
	(B)	2.5
	(C)	1.0
	(D)	3.0
12.		ch one of the following statements concerning equimolar (equal concentrations) solutions strong monoprotic acid (HA) and a weak monoprotic acid (HB) is incorrect?
	(A)	HA has a higher pH than HB.
	(B)	The concentration of A is greater than the concentration of B.
	(C)	The degree of ionization is greatest in HA.
	(D)	HA has a lower pH than HB.
13.	Whi	ch of the following is the conjugate base of HSO_4^- ?
	(A)	SO_4^{2-}
	(B)	H_2SO_4
	(C)	HSO ₃
	(D)	H_2SO_3
14.	Whi	ch of the substances below could be classified as an Arrhenius base?
	(A)	water
	(B)	potassium hydroxide
	(C)	sodium carbonate
	(D)	calcium oxide
15.	Which in wa	ch of the following groups of carbon compounds is listed in order of increasing solubility ater?
	(A)	acetic acid, octanoic acid, ethanol, ethane
	(B)	ethane, octanoic acid, ethanol, acetic acid
	(C)	acetic acid, ethanol, octanoic acid, ethane
	(D)	ethane, ethanol, octanoic acid, acetic acid

Seci	Student Notion II	••••••
65 r Atte	marks empt ALL questions ow about $1\frac{1}{2}$ hours for this section	
Use	the spaces provided on the paper.	
Que	estion 16 (5 marks)	Marks
	tudent is given two test tubes during a practical lesson. He is told that one test tube tains cyclohexane while the other contains cyclohexene.	
(a)	What chemical should the student use to identify which test tube contains the cyclohexane and which test tube the cyclohexene?	1
(b)	The student adds one mL of the reagent mentioned in (a) to each of the test tubes and shakes the tubes. Write down the immediate observations made by the student.	2
	Cyclohexane:	
	Cyclohexene:	
(c)	Draw structural formulae to show the reaction of cyclohexane with the reagent mentioned in (a) (assuming the reaction was allowed to take place exposed to light (uv) and left for some time).	2

Ques	stion 17 (5 marks)	Marks
Viny	el chloride has the condensed formula CH ₂ CHCl.	
(a)	What is the systematic name for this compound?	1
(b)	Draw a diagram using structural formulae to show the formation of a section of poly (vinyl chloride). Show at least three monomer units.	2
(c)	Give ONE use for PVC, explaining the properties which make it suitable for this purpose.	2

Student No.

Student No.	***************************************
-------------	---

Marks

3

Question 18 (5 marks)

An experiment was performed to determine the Heats of Combustion of two alkanols. The amount of fuel required to heat 200 mL of water by approximately 10 degrees was measured. The following results were obtained.

	1-butanol	1-pentanol
initial mass of burner (g)	25.25	28.42
final mass of burner (g)	24.96	28.24
initial temperature of water (°C)	22.5	22.0
final temperature of water (°C)	33.0	35.0

(a) Calculate the Molar Heat of Combustion for 1-butanol using the data given and your data sheet. (Density of water is 1.0 g mL⁻¹)

(b) The theoretical value for the Molar Heat of Combustion for 1-butanol is 2677 kJ mol⁻¹.

Discuss the reasons for any discrepancy from your result calculated in part (a).

	Marks
Question 19 (5 marks)	
Discuss the advantages and disadvantages of using ethanol as a fuel or fuel additive for motor cars and assess its potential as an alternative fuel.	5

Student No.

	Student No	
Que	estion 20 (6 marks)	Mark
(a)	Write an equation for the fermentation of glucose C ₆ H ₁₂ O ₆ .	1
	·	
(b)	Name TWO conditions under which fermentation is promoted.	1
(c)	Identify a factor which causes the fermentation process to cease after a few days.	1
(d)	Outline an investigation you carried out in the laboratory to monitor the process of fermentation of glucose.	3
	,	
	••••	

		Marks
Que	estion 21 (6 marks)	
elec	ne laboratory you have conducted an experiment to measure the voltage of an trochemical cell that you set up. One of the combinations you used was a lead electrode lead (II) nitrate solution connected to a zinc electrode in a zinc nitrate solution.	
(a)	Draw a neat, labelled diagram of the experimental setup showing the direction of electron flow in the external circuit as well as the movement of ions in the salt bridge.	3
b)	oxidation half equation:	
	reduction half equation:	1
c)	Calculate the EMF of the cell and comment on why the voltage you obtained in the lab when doing this experiment was lower than the theoretical EMF for the cell.	2

Student No.

Student No.		
Question 22 (4 marks)	Marks	
Describe, with examples, how commercial radioisotopes are produced.	4	
	•••••	
	••••••	
	•••••	
	•••••	
	••••••	
	•••••	
	••••••	

	Student No	•••••
		Marks
Que	estion 23 (11 marks)	
The	ur was burnt in a gas jar of oxygen. There was enough oxygen for all the sulfur to react. product of this reaction was dissolved in water and tested with phenolpthalein. indicator remained colourless.	
(a)	Is the solution acidic or basic?	1
(b)	Write a balanced chemical equation for the reaction involving the burning of sulfur, including states.	1
(c)	Identify ONE natural and ONE industrial source of sulfur dioxide.	
	Natural source:	
	Industrial source:	2

Question 23 continues on page 14

	Student No	
		Marks
Que	estion 23 (continued)	
(d)	Discuss reasons for concern about the release into the environment of oxides of sulfur and nitrogen. Include relevant equations.	5
	»·····	

Question 23 continues on page 15

	Student No	••••••
		Marks
Que	estion 23 (continued)	
(e)	If 22.00 g of sulfur were burned, calculate the volume of gas produced at 0°C and 100 kPa.	2
Que	estion 24 (3 marks)	
(a)	Define Le Chatelier's Principle.	1
(b)	Use Le Chatelier's Principle to explain what will happen to the following reaction at equilibrium when sodium hydroxide solution was added to the system. State any colour changes.	2
	$2CrO_4^{2-}(aq) + 2H^{+}(aq) \iff Cr_2O_7^{2-}(aq) + H_2O(l)$ yellow orange	

	49-7	

	Student No.					
		Marks				
Question 25	(5 marks)					
Mention the p	xperiment you have performed to measure the pH of a range of salt solutions. recautions you took to ensure the accuracy of your results. he salts used explain, using equations, why their pHs were not 7.	5				
••••••						
•••••						
•••••						
••••••••••••						
•••••						
• • • • • • • • • • • • • • • • • • • •						

••••••	•					

•••••						
****************	······································					
******	•••••••••••••••••••••••••••••••••••••••					
	•••••					

	Student No	••••••
^		Marks
Que	estion 26 (5 marks)	
	ow ALL working.	
The	e equation for the reaction between potassium hydroxide and sulfuric acid is	
	$2KOH_{(aq)} + H_2SO_{4(aq)} \longrightarrow K_2SO_{4(aq)} + 2H_2O_{(1)}$	
	hemist carries out a titration to find the concentration of a sulfuric acid solution. he titration, the acid is in the burette. These are the details of the titration:	
•	concentration of potassium hydroxide solution: 0.0671 mol L ⁻¹	
•	volume of potassium hydroxide solution used in each titration: 20.0 mL	
•	average volume of sulfuric acid used to just react with the base: 27.5 mL	
(a)	Calculate the number of moles of KOH used in each titration.	1
(b)	Calculate the concentration of the sulfuric acid solution in mol L-1	2
(c)	Outline TWO possible sources of error when carrying out a titration	

	M	arks
Este	estion 27 (5 marks) ers are fruity organic compounds made by reacting an alcohol (alkanol) with a coxylic acid (alkanoic acid).	
(a)	Describe the purpose of using concentrated acid in esterification and name the acid used.	2
(b)	Identify the IUPAC nomenclature for describing the ester produced from the following reactants i.e. name the ester produced when the reactants below are refluxed.	1
	H H H H H - C - C - C - O - H H H H H H H H Name of ester produced:	
(c)	Explain the need for refluxing during esterification.	2

Student No.

DATA SHEET

	Avogadro constant, N_A	*******««««««««««««««««««««««««««««««	$6.022 \times 10^{23} \text{ mol}^{-1}$
	Volume of 1 mole ideal gas: at		
.,	_	at 0°C (273.15 K)	22.71 L
		at 25°C (298.15 K)	24.79 L
	Ionisation constant for water at	25°C (298.15 K), K _w	1.0×10^{-14}
	Specific heat capacity of water	***************************************	$4.18 \times 10^3 \mathrm{J kg^{-1} K^{-1}}$

Some useful formulae

 $pH = -\log_{10}[H^{+}] \qquad \qquad \Delta H = -m \, C \Delta T$

Some standard potentials

5011	ic star	idaru potentiai	3
K ^t + e	₹::	<u>×</u> K(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	4	Ba(s)	-2.91 V
$Ca^{2+} + 2e^{-}$	200	Ca(s)	-2.87 V
Na ⁺ + e [−]	6 2	Na(s)	-2.71 V
$Mg^{2+} + 2e^{-}$	ώ. _γ	Mg(s)	2.36 V
Ai ³⁺ + 3e ⁻	400	Al(s)	-1.68 V
$Mn^{2+} + 2e^-$	(m)	Mn(s)	-1.18 V
H ₂ O + e	413	$\frac{1}{2}H_2(g) + OH^{-1}$	-0.83 V
$Zn^{2+} + 2e^{-}$	/22	Zn(s)	-0.76 V
Fe ²⁺ + 2e ⁻	family	Fe(s)	-0.44 V
$Ni^{2+} + 2e^{-}$	400	Ni(s)	-0.24 V
$Sn^{2+} + 2e^{-}$	ters.	Sn(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	~~	Pb(s)	-0.13 V
$H^{+} + e^{-}$		$\frac{1}{2}$ H ₂ (g)	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$. =	Cu(s)	0.34 V
$\frac{1}{2}$ O ₂ (g) + H ₂ O + 2e ⁻	-	20H	0.40 V
Cu ⁺ + e	7-2	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^{-}$	427	1-	0.54 V
$\frac{1}{2}I_2(aq) + e^-$	(=2	I-	0.62 V
Fe ³⁺ + e ⁻	₩	Fe ²⁺	0.77 V
Ag++e-	4-7	Ag(s)	0.80 V
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^{-}$	~~	Br-	1.08 V
$\frac{1}{2}\mathrm{Br}_2(aq) + \mathrm{e}^{-}$	(22	Br [™]	1.10 V
$\frac{1}{2}O_2(g) + 2H^+ + 2e^-$	427	H ₂ O	1 23 V
$\frac{1}{2}\operatorname{Cl}_2(g) + e^{-}$	(-2	CI~	1.36 V
$\frac{1}{2}Cr_2O_7^2 + 7H^+ + 3e$	427	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}Cl_2(aq) + e^-$	4.7	CI-	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	47	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}F_2(g) + e^-$	623	F-	2.89 V

Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

	1		T		η		-	r		_			-T-		····	T		
	2 He	4.003	9,5	20.18	Noon 18	39.95	Argon	85 7	83.80	Krypton	યુ×ૂ	131.3	Xecon 86	12 C	Radon Radon			
	Lasor		ψE	19.00	171	35.45	Chlorane	35 Br	79.90	Bromine	53	126.9	85	At	(210.0]			
.,			∞ C	16.00	16	32.07	Sulfur	Se Se	78.96	Selennun	52 Te	127.6	84	Po 01	Potonium			
			~ Z	14.01	15	30.97	Prosphorus	33 As	74.92	Arsenic	S5.1	121.8	83	30 Bi	Blamma			
			90	12.01	4.2	28.09	Stilcon	සිපී	72.64	Certifican	S &	118.7	82	Pb 207.2	Lend			
			v a	10.81	E13	26.98	CAUCIDATION	E &	69.72	The state of the s	\$4	114.8 indlum	81	204.4	Thailium			
SILIS			Биодиции должен			**************************************	3	34	65.41	100	\$5	112.4 Cedmium	08:	71g 200.6	Mercury			
ELEMENTS			acut	ਰ			000	ීට්	03.23 Connex	7	Ag.	107.9 Silver	79	197.0	-Cold	111 Rg	[272] Roenteenium	
OF THE			Symbol of element	Name of element			96	şiz ç	Nickel	746	p d	100.4 Palladium	8,4	195.1	Platinum	110 Ds	[271] Darmstadtium	
		KBY	4u 3	197.U Gold			2.6	30°	Cobal.	45	- E	LV2.3 Rhodium	77	192.2	hidium	\$\$	[268] Meitnernm	
PERIODIC TABLE			Atomic Number	ingroup surrou			26	i Hi	iron iron	44	Ru 101	Rememen	76 پ	190.2	Osmium	85 84 85 84	[277] Hassium	
PERIO			₹ *	3			25	Mn 54.94	Manganese	43	Tc 197 911	Technetium	27. 20.	186.2	Кавит	B 504	[264.1] Bohrium	
							24	ي 22.00	Chromium	42	Mo 95.94	Molybdenum	4 ₩	183.8	rangaren	98	Seaborgium	
						- 1						- 1			1	දුස් දි දි		
																Rf.	Rutherfordiam	
						ē	70	44.96	Scandium	3,5	88.91	Ytrium	7/-/6	Lanthanides	89-103) ; ;	Actinities	
		4	Be 9.012	Beryllium 12	Mg 24.31	Magnearum	35	40.08	Calcium	83	87.62	Stroutum	S E	13/.3 Barium	88	Ra [226.01	Radlum	
H	1.008 Hydrogen	m,	6.941	11	Na 22.99	Sodium 10	\ <u>\</u>	39.10	3.7	:\$	85.47	Avoiding.	\J \S	Caosium Caosium	87	Fr [223.0]	Francium	

	71 Lu 175.0 Luctum
	70 Yb 173.0 Yuurbium
	69 Tm 168.9 Thullum
	68 Er 167.3 Erbium
	67 Ho 164.9 Holmium
	66 Dy 162.5 Dysprosium.
	65 Tb 158.9 Tabium
	64 Gd 157.3 Gadolfium
	63 Bu 152.0 Europiein
	62 Sm 150.4 Samarum
	61 Pm [144.9] Promethium
	00 Nd 144.2 Neodymum
	Pr Pr 140.9 Prescodymym
88	89.1.4 CS
Lanthanid	La 138.9 Landanum

	103 Lr [262.1]
	102 No [259.1] Nobelium
	101 Md [258.1] Mendelevium
	100 Fm (257.1) Ferratura
	99 Es [252.1] Einsteinium
	98 Cf [251.1] Californium
	97 BK [247.1] Beckellum
	96 Cm [247.1] Curum
	95 Am [243.1] Americium
	Pu Pu [244.1] Plutonium
8	Np Np [237.0]
8	238.0 Unmium
Ī	Pa 231.0 Protactinium
G	Th 232.0 Thoriam
Actinides 80	Ac [227.0] Actinium

Where the atomic weight is not known, the relanve atomic mass of the most common radioactive isotope is shown in brackets. The atomic weights of Np and Tc are given for the isotopes ²³⁷Np and ⁹⁹Tc.