EELE 582 Optical Design Homework 6 Problem 1 Optimizing a Transmission Sphere

Roy Smart

March 5, 2017

1 Introduction

We are tasked with designing a transmission sphere for use in interferometric testing using as few optical elements as possible. A transmission sphere is a lens optimized for on axis performance with the special characteristic that rays emanating from the last surface are normal to that surface. This document details our procedure to design a transmission sphere in Zemax.

2 Initial Design

For our initial design, we started with just a single lens. The thickness was set to 0.5" and the diameter to 4". The curvature of the front surface was found by assuming the lens was equiconvex.

$$R_1 = 2(n-1)f_E$$

= 2(1.5168 - 1)(792.48 mm)
= 816.396 mm

For the last surface, the thickness was found by solving where the marginal ray was zero (M-solve). The curvature was set by solving for where the marginal ray was normal to the surface (N-solve).

This resulted in an optical system that had an effective focal length well over the target value of 792.48 mm. We will use the optimizer from here to get the desired optical parameters.

4	Surf:Type	Comment	Radius	Thickness	Material	Coating	Clear Semi-Dia	Chip Zone	Mech Semi-Dia	Conic	TCE x 1E-6
0 OB.	JECT Standard ▼		Infinity	Infinity			0.000	0.000	0.000	0.0	0.000
1	Standard ▼	dummy	Infinity	0.000			50.800	0.000	50.800	0.0	0.000
2 STC	OP Standard ▼		Infinity	0.000			50.800	0.000	50.800	0.0	0.000
3	Standard ▼	lens_1, surf_1	816.396 V	12.700	BK7		50.800	0.000	50.800	0.0	-
4	Standard ▼	lens_1, surf_2	2388.656 N	2388.656 M			50.553	0.000	50.800	0.0	0.000
5 IM/	AGE Standard ▼		Infinity	-			0.065	0.000	0.065	0.0	0.000

Figure 1: Initial lens prescription before optimization

3 Merit Function

We adopted a merit function as suggested by Geary in the problem statement. We used the default merit function to produce the list of TRAC operands to minimize the RMS spot size. We used the EFFL command to reach the target effective focal length. To set the back focal length, we used two OPTH operands to measure the distance to the back surface of the lens and the image plane, respectively. Then a DIFF operand was applied to the return values of the OPTH operands to evaluate the back focal length of the system. The weight of this DIFF operand was set to 1.0 and the value equal to the effective focal length.

Figure 2: Initial lens layout before optimization

Figure 3: Merit function evaluated on the initial lens system

4 Optimization

We adopted an optimization scheme slightly different from the one Geary suggests. In the problem statement, Geary states that the N-solve should be only used as a final optimization step. Here we propose to do it all in a single step, to reduce the number of optimization runs. Furthermore, we will also adopt a lens splitting paradigm where when a lens is split, the two new lenses are taken to have thickness and an air gap of the value given in the problem statement. This paradigm will undoubtedly result in messing with the merit of the optical system slightly, but we will rely on the optimizer to achieve good results.

5 Final Design

It took two lens splittings, resulting in a three lens optical system to achieve the desired EFFL, BFL, surface normal rays and diffraction limited performance described in the problem statement. Snapshots of the optimization process are given in Table 1.

Lenses	State	Layout	Spot Diagram	EFFL	Spot Size
1	initial		200.00	2401 mm	40.1 µm
1	optimized		3000.00	798 mm	369 µm
2	split		3000.00	799 mm	370 µm
2	optimized		3000.00	792 mm	387 µm
3	split		5000.00	754 mm	447 µm
3	optimized		20.00	792 mm	$0.003 \mu { m m}$

Table 1: Parameters for the optical design shown at each step.

Figure 4: Layout of the final lens design

	Type	Comment										
4	DMFS -	Comment										
1												
2		Sequential merit function: RMS spot radius centroid GQ 3 rings 6 arms										
3	BLNK ▼	No air or glass constraints.										
4	BLNK ▼	Operands for field 1.										
5	TRAC -		1	0.000	0.000	0.336	0.000		0.000	0.873	1.025E	4.729
6	TRAC -		1	0.000	0.000	0.707	0.000		0.000	1.396	3.196E	73.499
7	TRAC -		1	0.000	0.000	0.942	0.000		0.000	0.873	2.200E	21.772
8	BLNK ▼											
9	BLNK ▼	Custom merit function start										
10	BLNK ▼	focal length constraint										
11	EFFL ▼		1						792.480	1.000	792.480	2.756E-07
12	BLNK ▼	back focal distance constraint										
13	OPTH ▼	7	1	0.000	0.000	0.000	0.000		0.000	0.000	67.885	0.000
14	OPTH ▼	8	1	0.000	0.000	0.000	0.000		0.000	0.000	860.365	0.000
15	DIFF ▼	14	13						792.480	1.000	792.480	3.530E-07
16	BLNK ▼	Incident ray angle monitor										
17	RAID ▼	7	1	0.000	0.000	0.336	0.000		0.000	0.000	4.903E	0.000
18	RAID ▼	7	1	0.000	0.000	0.707	0.000		0.000	0.000	1.524E	0.000
19	RAID ▼	7	1	0.000	0.000	0.942	0.000		0.000	0.000	1.049E	0.000

Figure 5: Merit function evaluated for the final lens design

4	Surf:Type	Comment	Radius	Thickness	Material	Coating	Clear Semi-Dia	Chip Zone	Mech Semi-Dia	Conic	TCE x 1E-6
0	OBJECT Standard ▼		Infinity	Infinity			0.000	0.000	0.000	0.0	0.000
1	STOP Standard ▼		Infinity	0.000			50.800	0.000	50.800	0.0	0.000
2	Standard ▼	lens_1, front	-344.753 V	12.700	BK7		50.800	0.000	51.519	0.0	-
3	Standard ▼	lens_1, back	-596.621 V	5.080			51.519	0.000	51.519	0.0	0.000
4	Standard ▼	lens_2, front	1948.235 V	12.700	BK7		51.775	0.000	51.892	0.0	-
5	Standard ▼	lens_2, back	-608.807 V	5.080			51.892	0.000	51.892	0.0	0.000
6	Standard ▼	lens_last,front	373.441 V	12.700	BK7		51.611	0.000	51.611	0.0	-
7	Standard ▼	lens_last, back	792.480 N	792.480 N	1		50.919	0.000	51.611	0.0	0.000
8	IMAGE Standard ▼		Infinity	-			4.790E-06	0.000	4.790E-06	0.0	0.000

Figure 6: Lens prescription for the final lens design