DEEP LEARNING WITH DIFFERENTIAL PRIVACY

Martin Abadi, Andy Chu, Ian Goodfellow*, Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang Google

* Open Al

Deep Learning

Cognitive tasks: speech, text, image recognition

Fashion

- Natural language processing: sentiment analysis, translation
- Planning: games, autonomous driving

PERIGC DANGER CLIFF AHEAD PENHASCO ADIANTE

Self-driving cars

Translation

Gaming

Privacy of Training Data

Data encryption in transit and at rest

ACLs, monitoring, auditing

What do models reveal about training data?

Machine Learning Privacy Fallacy

Since our ML system is good, it automatically protects privacy of training data.

Machine Learning Privacy Fallacy

- Examples when it just ain't so:
 - Person-to-person similarities
 - Support Vector Machines
- Models can be very large
 - Millions of parameters
- Empirical evidence to the contrary:
 - M. Fredrikson, S. Jha, T. Ristenpart, "Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures", CCS 2015
 - R. Shokri, M. Stronati, V. Shmatikov, "Membership Inference Attacks against Machine Learning Models", https://arxiv.org/abs/1610.05820

Machine Learning Privacy Fallacy

- Examples when it just ain't so:
 - Person-to-person similarities
 - Support Vector Machines
- Models can be very large
 - Millions of parameters

Model Inversion Attack

 M. Fredrikson, S. Jha, T. Ristenpart, "Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures", CCS

2015

- 1. Loss function
- 2. Training / Test data
- 3. Topology
- 4. Training algorithm
- 5. Hyperparameters

- 1. Loss function
- 2. Training / Test data MNIST and CIFAR-10
- 3. Topology
- 4. Training algorithm
- 5. Hyperparameters

- softmax loss

Layered Neural Network

Inception Resnet V2 Network

Compressed View

- 1. Loss function
- 2. Training / Test data
- 3. Topology
- 4. Training algorithm
- 5. Hyperparameters

softmax loss

MNIST and CIFAR-10

neural network

- 1. Loss function
- 2. Training / Test data
- 3. Topology
- 4. Training algorithm
- 5. Hyperparameters

softmax loss

MNIST and CIFAR-10

neural network

SGD

Gradient Descent

Gradient Descent

Stochastic Gradient Descent

- 1. Loss function
- 2. Training / Test data
- 3. Topology
- 4. Training algorithm
- 5. Hyperparameters

softmax loss

MNIST and CIFAR-10

neural network

SGD

tune experimentally

Differential Privacy

Differential Privacy

 (ε, δ) -Differential Privacy: The distribution of the output M(D) on database D is (nearly) the same as M(D'):

$$\forall S: \quad \Pr[M(D) \in S] \leq \exp(\epsilon) \cdot \Pr[M(D') \in S] + \delta.$$
 quantifies information leakage

allows for a small probability of failure

Interpreting Differential Privacy

Differential Privacy: Gaussian Mechanism

If ℓ_2 -sensitivity of $f: \mathcal{D} \rightarrow \mathbb{R}^n$:

$$\max_{D,D'} ||f(D) - f(D')||_2 < 1,$$

then the Gaussian mechanism

$$f(D) + N^n(0, \sigma^2)$$

offers (ε, δ) -differential privacy, where $\delta \approx \exp(-(\varepsilon\sigma)^2/2)$.

Dwork, Kenthapadi, McSherry, Mironov, Naor, "Our Data, Ourselves", Eurocrypt 2006

Simple Recipe

To compute f with differential privacy

- 1. Bound sensitivity of *f*
- 2. Apply the Gaussian mechanism

Basic Composition Theorem

If
$$f$$
 is (ϵ_1, δ_1) -DP and g is (ϵ_2, δ_2) -DP, then
$$f(D), g(D) \text{ is } (\epsilon_1 + \epsilon_2, \delta_1 + \delta_2)\text{-DP}$$

Simple Recipe for Composite Functions

To compute composite *f* with differential privacy

- 1. Bound sensitivity of f's components
- 2. Apply the Gaussian mechanism to each component
- 3. Compute total privacy via the composition theorem

Deep Learning with Differential Privacy

Deep Learning

- 1. Loss function
- 2. Training / Test data
- 3. Topology
- 4. Training algorithm
- 5. Hyperparameters

softmax loss

MNIST and CIFAR-10

neural network

SGD

tune experimentally

Our Datasets: "Fruit Flies of Machine Learning"

MNIST dataset: 70,000 images 28×28 pixels each

> 219562 912500664 6701636370 4 6618a 2934398725 1598365723 319158084 5626858899 8543

CIFAR-10 dataset: 60,000 color images 32×32 pixels each

Differentially Private Deep Learning

- 1. Loss function
- 2. Training / Test data
- 3. Topology
- 4. Training algorithm
- 5. Hyperparameters

softmax loss

MNIST and CIFAR-10

PCA + neural network

SGD

tune experimentally

Stochastic Gradient Descent with Differential Privacy

Differentially Private Deep Learning

- 1. Loss function
- 2. Training / Test data
- 3. Topology
- 4. Training algorithm
- 5. Hyperparameters

softmax loss

MNIST and CIFAR-10

PCA + neural network

Differentially private SGD

tune experimentally

Naïve Privacy Analysis

1. Choose
$$\sigma = \frac{\sqrt{2\log 1/\delta}}{\varepsilon}$$

- 2. Each step is (ε, δ) -DP
- 3. Number of steps *T*
- 4. Composition: $(T\varepsilon, T\delta)$ -DP

$$= 4$$

$$(1.2, 10^{-5})$$
-DP

(12,000,.1)-DP

Advanced Composition Theorems

Composition theorem

Rosenkrantz: 78 in a row. A new record, I imagine.

Strong Composition Theorem

1. Choose
$$\sigma = \frac{\sqrt{2\log 1/\delta}}{\varepsilon}$$

$$=4$$

2. Each step is (ϵ, δ) -DP

 $(1.2, 10^{-5})$ -DP

3. Number of steps *T*

- 10,000
- 4. Strong comp: $(\varepsilon \sqrt{T \log 1/\delta}, T\delta)$ -DP

(360, .1)-DP

Amplification by Sampling

1. Choose
$$\sigma = \frac{\sqrt{2\log 1/\delta}}{\varepsilon}$$

$$=4$$

2. Each batch is *q* fraction of data

1%

3. Each step is $(2q\varepsilon, q\delta)$ -DP

 $(.024, 10^{-7})$ -DP

4. Number of steps *T*

- 10,000
- 5. Strong comp: $(2q\varepsilon\sqrt{T\log 1/\delta}, qT\delta)$ -DP

(10, .001)-DP

Privacy Loss Random Variable

log(privacy loss)

Moments Accountant

1. Choose
$$\sigma = \frac{\sqrt{2\log 1/\delta}}{\varepsilon}$$

=4

2. Each batch is *q* fraction of data

1%

- 3. Keeping track of privacy loss's moments
- 4. Number of steps *T*

10,000

5. Moments: $(2q\varepsilon\sqrt{T}, \delta)$ -DP

 $(1.25, 10^{-5})$ -DP

Results

Summary of Results

	Baseline		
	no privacy		
MNIST	98.3%		
CIFAR-10	80%		

Summary of Results

	Baseline	[SS15]	[WKC+16]
	no privacy	reports ε per parameter	ε = 2
MNIST	98.3%	98%	80%
CIFAR-10	80%		

Summary of Results

	Baseline	[SS15]	[WKC+16]	this work		
	no privacy	reports ε per parameter	ε = 2	$\varepsilon = 8$ $\delta = 10^{-5}$	$\varepsilon = 2$ $\delta = 10^{-5}$	$\epsilon = 0.5$ $\delta = 10^{-5}$
MNIST	98.3%	98%	80%	97%	95%	90%
CIFAR-10	80%			73%	67%	

Contributions

- Differentially private deep learning applied to publicly available datasets and implemented in TensorFlow
 - https://github.com/tensorflow/models
- Innovations
 - Bounding sensitivity of updates
 - Moments accountant to keep tracking of privacy loss
- Lessons
 - Recommendations for selection of hyperparameters
- Full version: https://arxiv.org/abs/1607.00133