6.857- Com	oputer & Network Security	
DER:	PAGE:	
ldmin:	Prof. Ronald L. Rivest	
	TAs: Britt Cyr, David Lazar, Katerina Sotiraki	
	Lec: Mon & Wed 11:00-12:30 in 4-270	-
	Rec: Fr: 11:00 - 12:30 in 4-270	
	files	,
	Handout: http: courses, csqil.mit.edu/6,857/2015/tandous/	
	(handed out in paper too)	
	Outline: Administrivia	
	Course outline	
	Introduction to Security	
Idministrivia:	Course into handout (review)	
	See "The Imitation Game" 2/12/15	
	(Note discovery of Turing's notes in Bletchley insulstion)	
	(Note alsoury of laving 5 hales in isletiney (1154 15)(on	
c		
Course outline !	Review of last year's topics	
Intro to Security	z: (attached notes)	

"Security" relates to "computing or communicating in the presence of adversaries"

Typically involves an "information system":

PC, network of computers, cell phone,
email, ATM machine, car, smart grid,
RFIP, wireless link, medical device, ...
everything is "drgital" now!

Security relates to a "security objective" or "security policy": what is being protected? what activities or events should be prevented / detected?

Security policy usually stated in terms of:

· principals (actors or participants)
(perhaps in terms of their roles)

· giving permissible (or impermisable) actions or operations

on (classes of) objects

Examples: "Each registered voter may vote at most once."

"Only an administrator may modify this file."

"The recipient of an email shall be able to

authenticate its sender."

Security policies (goals) often fall into one at three classic categories:

- confidentiality: information should not be disclosed to unauthorized parties
- integrity: information should not be modified in an unauthorized manner
- availability: system or resource shall be available for use as intended

 ("CIA")

Security mechanism (aka "security control")
is a component, technique, or method for
(attempting to) achieve or enforce security policy.

Examples: smart card for voter

password for sysadmin

digital signature on email

locked cabinet for server

Security mechanisms are typically one of two forms:

1) prevention: keep security policy from being violated

Examples: fence, password, encryption, memory bounds check, ...

a dectection: detect when policy is violated

Examples: motion sensor, tamper-evident seal,
stored fingerprint ("hash") of executables,
intrusion detection on network,
virus scanner, ...

Detection mechanism often comes with
recovery mechanism (remove intruder,
remove virus,
load files from backup, ...)

Detection may involve deterrence (adversary risks being identified & being held accountable for security breach) and so plays a role in prevention. = may be insider /outsider, vendur, ...

Examples: Voter may wish to sell her vote.

Election official may be corrupt.

Vendor may install "backdoor" in system.

Eavesdropper may manipulate communications.

- what does adversary know?

Examples: System design & implementation details

passwords
facebook profiles of all personnel

- What resources does adversary have?

Examples:

- · large computers
- · ability to intercept a modify all communications
- ability to corrupt some participants
 (e.g. payTV subscriber, voter, server, ...)

We typically make generous assumptions about a drawary's abilities.

"vulnerability" = weakness that might be exploited by an adversory

(e.g. poor password, buffer overflow possibility)

"threat" = potential violation of security policy (e.g. by exploiting a vulnerability)

"rish" = likelihood that threat will materialize

"risk management" = balancing one rish against another, or other factors, such as cost, ease-of-use, understandability, availability, ...

No mechanism is perfect—we build fences, not impenetrable walls (high high is fence?)

Security mechanisms may involve :

- identification of principals (e.g. "user name")
- authentication of principals (e.g. password, biometric)
- authorization: checking to see if principal is authorized for requested action
- physical protection: locks, enclosures
- cryptography: math in service of security (hard computational problems)
- economics: (note model change here: parties

 are self-interested, e.g. spanmer...)
- deception: to get adversers to reveal himself or waste his efforts (e.g. honeypot)
- randomness, unpredictability: e.g. for passwords & crypto keys

- be sceptral & paranoid
- don't aim for perfection
 - ("there are no secure systems, only degrees of insecurity ..., "
- tradeoff cost/security
 - (" to halve the risk, double the cost ... " Adi Shamir
- be prepared for loss
- "KISS" ("Keep it simple, stupid!")
- ease of use is important
- separation of privilege require 2 people to perform action
- defense in depth (layered defense)
- complete mediation (all requests checked for authorization)
- least privelege (don't give some more permissions than they need)
- education
- transparency (no security through obscurity)