Introduction to Program Synthesis (WS 2024/25) Chapter 4 - Advanced Methodologies

Dr. rer. nat. Roman Kalkreuth

Chair for Al Methodology (AIM), Department of Computer Science, RWTH Aachen University, Germany

- ▶ Population-based approach to search heuristics → Inspired by biological evolution
 - \rightarrow Adaptation of **Darwinian evolution** \rightarrow Survival of the fittest
 - → Consider the cost of a candidate as fitness
 - Evolutionary mechanism are performed within an evolutionary algorithms
- ▶ Transforming populations of candidate programs to better ones
 - \rightarrow Better \rightarrow Better fitness
 - ~ Apply selection mechanism to mimic natural selection
- ▶ Adapting **genetic variation** for **combinatorial search** \rightarrow [\rightsquigarrow] Consider **recombination** and **mutation** as search operators
 - Evolving candidate solutions towards an optimum

- Various methodologies have been established in the field of evolutionary computation:
 - \sim **Genetic Algorithms** (GA) \rightarrow bitstring representation
 - \sim **Evolutionary Strategies** (ES) \rightarrow real-valued representation
 - \sim **Genetic Programming** (GP) \rightarrow data-structures (trees, graphs, ...)
 - 1954 Barricelli: Evolutionary simulations
- 1960s early 1970s ♦ Rechenberg, Schwefel: Evolutionary strategies
- same period of time Fogel: Evolutionary programming
- same period of time Holland: Genetic algorithms
 - 1980s Forsysth, Cramer, Hicklin: Genetic programming

Evolutionary Algorithms

	population	_	a set of individuals
	species	_	individuals, which share common characteristics
	candidate solution	_	member of the population, part of the search space
	individual	_	a candidate, potential solution
	breeding	_	the genetic adaption, variation procedure
	parent	_	an individual selected for breeding
	offspring	_	a candidate solution produced by variation
	genotype	_	representation model of an individual, set of genes, vector of numbers
	phenotype	_	expression, behavior of the genotype
	chromosome	_	a set of genotypes
	gene	_	a region of the genotype that encodes functionality
	crossover	_	genetic operator, which combines genetic information of two or more parents
		_	to produce new offspring
	mutation	_	genetic operator, which varies information on the genome of a individual
		_	(mostly according to a given probability distribution)
	selection	_	procedure which choses genomes from a population for later breeding
	fitness function	_	an objective function to assess and compare individuals by their fitness
	fitness	_	a measurement of the individual's phenotype against the ideal functionality
	fitness evaluation	—	a procedure to evaluate the fitness of each individual
_			

Table: List of the important terms which are commonly used in the field of evolutionary algorithms.

Evolutionary Algorithms

Algorithm Example of a simple evolutionary algorithm

```
1: procedure Evolutionary Algorithm
         initialize(P)
 2:
                                                      ▶ Initialize set of candidate solutions
 3:
         repeat
                                                  ▶ Until termination criteria not triggered
              Q \leftarrow \mathsf{breed}(\mathsf{P}) \quad \triangleright \textit{Breed new individuals with crossover and mutation}
 4:
              Evaluate(Q)
 5:
                                                  > Evaluate the fitness of each individual
 6.
              if Q meets termination criterion then
 7.
                  return Q
              end if
              P \leftarrow \text{select}(P,Q)
 g.
                                                           ▷ Select high-fitness individuals
         until P meets termination criterion
10.
         return P
11:
12: end procedure
```

Evolutionary Algorithms

- ► Evolutionary HC → Hill-climbing with mutation-based search operator(s)
 - \rightarrow Mutation \rightarrow structural change in a chromosome
 - → Mutations aggregate across the genome of an individual randomly
- lacktriangle Adaption of mutation for tree-structures ightarrow **Subtree mutation**
 - → Selection of a mutation points by chance
 - → Exchange of the subsequent subtree with a randomly generated one

Figure: Subtree mutation

- $(1+\lambda)$ evolutionary strategy \rightarrow Fundamental **search strategy** applied in the field of evolutionary strategies
 - Commonly used in numerical optimization approached with evolutionary computation
 - ightarrow Breeds λ offspring from one parent in each generation
 - \sim Elitist approach \to best partial solution is selected from the population of $1+\lambda$ candidates
- Evolutionary algorithms that only uses mutation for breeding of new candidates
 - \rightarrow The (1+1)-ES is the most simple approach
- Adaption of HC to evolutionary computation

Evolutionary Algorithms

Algorithm $(1+\lambda)$ Evolutionary Strategy (ES)

Arguments

 λ : Number of offspring

Return

 \mathcal{P} : Parent individual with best fitness

```
 initialize(P)

                                                                         ▶ Initialize parent individual
 2: repeat
                                                          ▶ Until termination criteria not triggered
          \mathcal{O} \leftarrow \operatorname{breed}(\mathcal{P})
                                                                    \triangleright Breed \lambda offspring by mutation
      evaluate (Q)
                                                             \mathcal{Q}^+ \leftarrow \mathsf{better}(\mathcal{Q}, \mathcal{P}) \triangleright Get individuals which have better fitness as the
          ▶ If there exist individuals with better fitness
          if |\mathcal{Q}^+| > 0 then
               \mathcal{P} \leftarrow \text{best}(\mathcal{Q})
                                                              > Assign the best offspring as parent
          end if
10: until P meets termination criterion
11: return P
```

- ► Adaption of recombination to tree structures → Subtree crossover
- ► Exchanges subtree's between selected parents that have high fitness → Adaption of propagation of traits from generation to generation
- lacktriangledown Creates one or two offspring ightarrow Recombination of *genetic material*
 - \rightarrow Genetic material \rightarrow Composition of nodes and terminals
 - → Genes → Non-terminal or terminal symbol

- $(\mu + \lambda)$ strategy \rightarrow Extension of the $(1 + \lambda)$ strategy to recombination
- \blacktriangleright A set of best μ individuals is formed
 - ► Each parent is selected uniformly at random
 - \triangleright λ offspring are bred by subtree crossover and mutation
- lacktriangleright μ parents $+\lambda$ offspring then form the new population
 - \sim Level of elitism can be controlled by setting of $\mu \to {\rm selection}$ pressure

Figure: Subtree crossover

Evolutionary Algorithms

```
Algorithm (\mu + \lambda) Evolutionary Strategy (ES)
```

```
Arguments
     \mu: Number of parents
     \lambda: Number of offspring
     pc: Recombination probability
     p<sub>m</sub>: Mutation probability
     Return
     B: Best individual
 1: initialize(P)
                                                                   ▷ Initialize μ parents
 2: evaluate(P)
                                                    3: repeat
                                                ▶ Until termination criteria not triggered
      Q \leftarrow \text{selection}(P, \mu)
                                                                      ▷ Select μ parents
     Q \leftarrow \text{recombination}(\mathcal{P}, \lambda, p_c)
                                                                    ▷ Create λ offspring
      Q \leftarrow \text{mutation}(Q, p_m)
                                                                 evaluate(O)

    ► Evaluate the fitness of the offspring

        \mathcal{P} \leftarrow \mathcal{P} + \mathcal{O}
                                                   ▶ Form population of next generation
        \mathcal{B} \leftarrow \text{best}(\mathcal{P})
                                                             Determine best individual
10: until B meets termination criterion
```

11: return B

 \triangleright