Systemy Ekspertowe

- Wprowadzenie
- Podstawowe wiadomości
- Podstawowe koncepcje
- Struktura

Zastosowania SI tzn. Systemów Ekspertowych

- Program szachowy z komputera Deep Blue pokonał mistrza świata Gary Kasparova. Inne programy mogą udowadniać matematyczne twierdzenia, tłumaczyć na języki obce np. Altavista, planować procesy produkcyjne, operacje w trudnych warunkach np. DART.
- Program PEGASUS rezerwuje miejsca w amerykańskich liniach lotniczych słuchając poleceń klientów. Program ALVINN może w każdych warunkach atmosferycznych kierować ciężarówką np. przejechał nią z Washingtonu do San Diego.
- Inteligentne programy rozpoznają twarze np. w bankach, odręczne pismo, sprawdzają lub projektują układy elektroniczne np. EURISKO, rekonstruują projekty architektów, szuka złóż geologicznych np. PROSPECTOR, interpretuje związki chemiczne np. SCANMAT, DENDRAL.
- Programy zwane systemami ekspertowymi pomagają lub są lepsze w diagnozach lekarskich np. MYCIN, CADUCEUS, CASNET, Intellipath, Pathfinder; konfigurują sprzęt komputerowy np. XCON; pomagają w podejmowaniu finansowych decyzji znajdując zdefraudowane, nietypowe lub błędne transakcje

Kategorie systemów ekspertowych

- doradcze (ang. advisory)
- podejmujące decyzję bez kontroli człowieka (ang. dictatorial)
- krytykujące (ang. criticizing)

Inżynieria wiedzy tworzy metody programowania dla:

- akwizycji (pozyskiwania) i strukturalizacji wiedzy ekspertów
- dopasowania i wyboru odpowiednich metod wnioskowania i wyjaśniania dla rozwiązywanych problemów,
- projektowanie odpowiednich interfejsów (układów pośredniczących) między komputerem, a użytkownikiem.

Ogólna struktura systemu ekspertowego

Podstawowe bloki systemu ekspertowego

Elementy struktury systemu ekspertowego

- baza wiedzy (np. zbiór reguł),
- baza danych (np. dane o obiekcie, wyniki pomiarów, hipotezy),
- procedury wnioskowania maszyna wnioskująca,
- procedury objaśniania objaśniają strategię wnioskowania,
- procedury sterowania dialogiem procedury wejścia/wyjścia umożliwiają formułowanie zadań przez użytkownika i przekazywanie rozwiązania przez program,
- procedury umożliwiające rozszerzanie oraz modyfikację wiedzy akwizycja wiedzy.

Główne elementy systemu ekspertowego

Typowy proces pozyskiwania wiedzy

Role twórców systemu ekspertowego

Podstawowe zagadnienia w systemach opartych na bazie wiedzy

- reprezentacja wiedzy,
- akwizycja wiedzy,
- sposób użycia wiedzy,
- objaśnianie i uczenie się.

Porównanie konwencjonalnego przetwarzania z inżynierią wiedzy

Konwencjonalne przetwarzanie danych	Inżynieria wiedzy
Programista analityk systemu	Inżynier wiedzy
Program	System ekspertowy
Baza danych	Baza wiedzy
Reprezentacja i użycie danych	Reprezentacja i użycie wiedzy
Algorytm	Heurystyki
Efektywna manipulacja dużymi bazami danych	Efektywna manipulacja dużymi bazami wiedzy

Porównanie ekspertyzy naturalnej z ekspertyzą sztuczną - część 1/2

stała

Ekspertyza naturalna wykony-Ekspertyza sztuczna wana przez człowieka Wady: Zalety: trudna do przeniesienia łatwa do przeniesienia trudna do dokumentacji łatwa do dokumentacji nie dająca się przewidzieć zgodna z bazą wiedzy dostępna

kosztowna

czasu

tracąca na wartości z upływem

Porównanie ekspertyzy naturalnej z ekspertyzą sztuczną - część 2/2

Ekspertyza naturalna wykony- wana przez człowieka	Ekspertyza sztuczna
Zalety:	Wady:
• twórcza	• nie inspirująca
adaptacyjna	wymaga wprowadzenia wiedzy
wykorzystywnie zmysłów	 wejście symboliczne
szeroki zakres	wąski zakres
• wiedza zdrowego rozsądku	 wiedza przetwarzana w sposób mechaniczny

Rodzaje systemów ekspertowych

Tryby pracy systemów ekspertowych

- Diagnoza
- Prognoza
- Plan

Rodzaje systemów ekspertowych

Kategoria	Zadania realizowane przez systemy ekspertowe
Interpretacyjne	Dedukują opisy sytuacji z obserwacji lub stanu czu- jników, np. rozpoznawanie mowy, obrazów, struktur danych
Predykcyjne	Wnioskują o przyszłości na podstawie danej sytuacji, np. prognoza pogody, rozwój choroby
Diagnostyczne	Określają wady systemu na podstawie obserwacji, np. medycyna, elektronika, mechanika
Kompletowania	Konfigurują obiekty w warunkach ograniczeń, np. konfigurowanie systemu komputerowego
Planowania	Podejmują działania, aby osiągnąć cel, np. ruchy robota
Monitorowania	Porównują obserwacje z ograniczeniami, np. w elektronwiach atomowych, medycynie, w ruchu ulicznym

Rodzaje systemów ekspertowych c.d.

Kategoria	Zadania realizowane przez systemy ekspertowe			
Sterowania	Kierują zachowaniem systemu; obejmują interpre- towanie, predykcję, naprawę i monitorowanie zachowa- nia się obiektu			
Poprawiania	Podają sposób postępowania w przypadku złego funkcjonowania obiektu, którego te systemy dotyczą			
Naprawy	Harmonogramują czynności przy dokonywaniu napraw uszkodzonych obiektów			
Instruowania	Systemy doskonalenia zawodowego dla studentów			

Podstawowe obszary zastosowań systemów ekspertowych

Sektor Zas- tosowanie	Bankowość i ubez- pieczenia	Przemysł	Handel i usługi	Sektor publiczny i inne
Monitorowanie Sterowanie	Obserwowanie trendów	Nadzorowanie procesów, sterowanie procesami, raportowanie specjalnych sytuacji	Obserwowanie trendów	Monitorowanie reaktorów jądrowych oraz dużych sieci (gazowe, wodne)
Projektowanie		Projektowanie zakładów i produktów, komputerów	Wybór asorty- mentów, doradztwo dla rolnictwa	Sieci (pocz- towe, ener- getyczne)

Podstawowe obszary zastosowań systemów ekspertowych c.d.

Sektor Zas- tosowanie	Bankowość i ubez- pieczenia	Przemysł	Handel i usługi	Sektor publiczny i inne
Diagnostyka	Kredyty, pożyczki na nieruchomoś- ci, anal- iza ryzyka, przetwarzanie skarg	Wykrywanie uszkodzeń, utrzymywanie zdolności produkcyjnej	Kredyty, anal- iza ryzyka	Diagnoza me- dyczna, diag- noza technicz- na
Planowanie	Analiza ryzyka, planowanie inwestycji	Projektowanie funkcji logicznych, planowanie projektu	Analiza ryzy- ka, analiza rynku	Planowanie inwestycji, plany na wypadek klęs- ki, planowanie dystrybucji

Podział systemów ekspertowych

- Ze względu na sposób realizacji
 - dedykowane
 - szkieletowe
- Ze względu na metodę prowadzenia procesu wnioskowania
 - z logiką dwuwartościową (Boole'a)
 - z logiką wielowartościową
 - z logiką rozmytą
- Ze względu na rodzaj przetwarzanej informacji
 - z wiedzą pewną, czyli zdeterminowaną
 - z wiedzą niepewną (aparat probabilistyczny)

Właściwości systemów ekspertowych

- Poprawność systemu
- Uniwersalność
- Złożoność
 - małe (100 300 reguł)
 - średnie (300 2000 reguł)
 - duże (ponad 2000 reguł)
- Autoanaliza
- Zdolność udoskonalania bazy wiedzy
 - kontrola niesprzeczności nowo wprowadzanych do bazy wiedzy reguł z regułami w niej zawartymi
 - kontrola zgodności reguł z nowo wprowadzanymi faktami
 - mechanizm oceny częstości stosowania poszczególnych reguł
 - mechanizm rozbudowy istniejącej bazy reguł poza zakres danej bazy wiedzy

Podczas tworzenia bazy wiedzy należy odpowiedzieć na pytania:

- jakie obiekty należy zdefiniować?
- jakie relacje między obiektami?
- jak należy formułować i przetwarzać reguły?
- czy z punktu widzenia rozwiązywania specyficznego problemu, baza wiedzy jest kompletna?

Rodzaje baz wiedzy

- baza tekstów (ang. text base)
- baza danych (ang. data base)
- baza reguł (ang. rule base)
- baza modeli (ang. model base)
- baza wiedzy zdroworozsądkowej (ang. common sense knowledge base)

Cechy programów redakcyjnych do tworzenia baz wiedzy

- wygodny dla użytkownika sposób komunikacji i zautomatyzowane operacje rejestracji przy rozmieszczaniu informacji;
- kontrolowanie ortograficznej i syntaktycznej poprawności wprowadzanej informacji tekstowej;
- sprawdzanie semantycznej niesprzeczności między dotychczasową zawartością bazy danych, a nowo wprowadzanymi faktami.

Narzędzia do tworzenia systemów ekspertowych

- systemy szkieletowe (ang. expert system shells)
- środowiskowe programy ułatwiające implementację systemu, np. programy ułatwiające zarządzanie bazą wiedzy, programy grafiki komputerowej, itd.
- języki systemów ekspertowych, jak CLIPS, FLOPS, OPS5 itd.
- języki programowania symbolicznego np. LISP, PROLOG,
- języki algorytmiczne np. C, C++, Python, Java itd.

Zalety systemów szkieletowych

- zapewniają one mechanizm dla formalnej reprezentacji wiedzy, np. reguły, ramy itp.
- zapewniają narzędzia do strukturalizacji bazy wiedzy,
- posiadają wbudowany mechanizm wnioskowania,
- dają interfejs odpowiedni do utworzenia systemu ekspertowego, umożliwiający konstruowanie i rozbudowę bazy wiedzy również dla końcowego użytkownika,
- zapewniają udogodnienia do tworzenia komponentów systemu objaśniającego,
- dają narzędzia do sprawdzenia poprawności bazy wiedzy,
- dają narzędzia do pozyskiwania wiedzy,
- przy tworzeniu systemu nie trzeba znać języka, w jakim system szkieletowy jest napisany.

Wady systemów szkieletowych

- twórca systemu ekspertowego jest ograniczony do możliwości danego narzędzia.
 Specyficzny system szkieletowy jest przeznaczony do odpowiednich zastosowań, nie do wszystkiego, np. diagnozowanie, planowanie,
- czasem trzeba poznać język danego systemu szkieletowego np. GURU, Knowledge Pro, itp.
- każdy system szkieletowy ma swoją specyficzną strukturę reguł,
- zmiana funkcji systemu jest możliwa, jeśli jest to przewidziane i jest do tego odpowiedni interfejs; na ogół nie można nic przerabiać, ponieważ brak jest kodu źródłowego,
- wysokie ceny; mogą one pracować na określonych typach komputerów, czasami o potężnej mocy obliczeniowej.

Szacowanie czasu tworzenia systemu

• model nr 1 Walstona-Felixa (1977): $MM = 5, 2L^{0,91}$

• model nr 2 Boehma (1981): $MM = 2, 4L^{1,05}$

gdzie L - liczba tysięcy instrukcji kodu, a MM - osobo-miesiące (ang. man-month)

Porównanie czasów tworzenia systemów ekspertowych

		Czas tworzenia (MM)		
Wielkość systemu	Liczba instrukcji Liczba reguł	Model 1	Model 2	Technika ES
Małe	$\frac{2000}{100-200}$	9,7	5,0	0,5
Średnie	$\frac{8000}{500-1000}$	34,5	21,0	6 - 8
Duże	$\frac{120000}{2000 - 10000}$	430,0	392,0	18 - 36

Korzyści z wykorzystania systemów ekspertowych czasu rzeczywistego

- zmniejszenie liczby operatorów
- zmniejszenie potrzeby ciągłej obecności operatorów o wysokich kwalifikacjach
- zmniejszenie kosztów trenowania operatorów
- zwiększenie jakości systemu
- zwiększenie przepustowości systemu
- zmniejszenie awaryjności
- bardziej spójne o wyższej jakości monitorowanie

Typy procesów w systemach ekspertowych czasu rzeczywistego

- procesy maszyny wnioskującej
- procesy pozyskiwania wiedzy
- procesy komunikowania się z użytkownikiem

Architektura rozproszonego systemu czasu rzeczywistego

 Reguly wyzwalane co pewien czas Przykład: REGUŁA: "Niewłaściwe napięcie baterii"; KONTEKST: {Manewr}; OKRES TESTU: 10 sekund; PRIORYTET: 100; IF bateria1.napiecie < 27,5 THEN bateria1.status := niewłaściwy; Alarm("eps", "bateria1", "Napiecie baterii1 jest teraz niewłaściwe, aby odbył się manewr");

Wnioskowanie czasowe

Wnioskowanie czasowe

```
Przykład: REGUŁA: "Niewłaściwe napięcie baterii";
KONTEKST: {Manewr};
OKRES TESTU: 10 sekundi;
PRIORYTET: 100;
IF Min(bateria1.napięcie, 30 sekund) > 35
THEN bateria1.status := niewłaściwy;
Alarm("eps","bateria1","Napięcie baterii1 przekroczyło górne ograniczenie przez co najmniej 30 sekund");
```

- Koncentracja uwagi
- Działania ciągłe