First Estimates

Lucas Ramalho Anderson

21/10/2020

```
library ( dplyr )
# library ( plyr )
library ( ggplot2 )

tempDir = "/scratch/genevol/users/lucas/"
saveDir = "/raid/genevol/users/lucas/heritability/plots/"
```

Introduction

Step 1

After the removal of monomorphisms, filtration of the desired samples and after obtaining the list of non-correlated snp's per chromosome (considering correlation value of $\sqrt{0.1}$), it is now desired to calculate the GRM matrix.

```
# Read file with all chromosomes
# allChrFile = SeqArray::seqOpen ( paste0 ( tempDir , "allChr.gds" ) )
# List of all genes of interest (after pruning)
listSnps = readRDS ( paste0 ( tempDir , "fullPrunedList.rds" ) )
# GRM - calculated as defined in CGTA
# qrm_obj = SNPRelate::snpqdsGRM( allChrFile , snp.id = listGenes , method = "GCTA")
# Estimating through "gaston" package
altReadSnps = gaston::read.vcf( paste0 ( tempDir , "allChr.vcf.gz" ) )
## ped stats and snps stats have been set.
## 'p' has been set.
## 'mu' and 'sigma' have been set.
# setting "p" parameter - correction with mean "p" and std sqrt(2p(1-2p))
gaston::standardize( altReadSnps ) <- "p"</pre>
grm_matrix = gaston::as.matrix ( altReadSnps )
# grm_scaled = scale( grm_matrix , center = T , scale = T )
# grm_scaled = readRDS (pasteO(tempDir , "scaledMatrixBk.rds"))
# manual_GRM = ( 1 / nrow ( grm_scaled ) ) * grm_scaled %*% t ( grm_scaled )
# GRM matrix calculation (GCTA)
grm alt p = gaston::GRM ( altReadSnps , which.snps = listSnps )
```

Warning in which.snps & is.autosome(x@snps\$chr): longer object length is not a

```
## multiple of shorter object length
# transform matrix into dataframe (3 columns - col1 = samples each row, col2 = samples each column , c
dfGrm = reshape2::melt(grm_alt_p)
# indexing with numeric values each sample (columns and rows)
 \# \ dfGrm\$sampLines = rep \ ( \ seq \ ( \ 1 \ , \ nrow \ ( \ grm\_alt\_p \ ) \ ) \ , \ nrow \ ( \ grm\_alt\_p \ ) \ ) 
\# dfGrm\$sampCols = sort (rep (seq (1 , nrow (grm_alt_p))), nrow (grm_alt_p)))
# To calculate the correlation between individuals, the calculation A_{ij}/sqrt(A_{ii})sqrt(A_{jj}) will be d
# dataframe with only diag. values
dfGrmDiag = dfGrm[ dfGrm$Var1 == dfGrm$Var2,]
# sqrt of those values
dfGrmDiag = dfGrmDiag %>% mutate ( sqrtVal = sqrt ( value ) , sqrtVal2 = sqrt ( value ) )
# merging each A_ii for each row and col
dfGrmM = merge ( dfGrm , dfGrmDiag[ ,c ( "sqrtVal" , "Var1" ) ] , on = c ( "Var1" ) )
dfGrmM2 = merge ( dfGrmM , dfGrmDiag[ ,c ( "sqrtVal2" , "Var2" ) ] , on = c ( "Var2" ) )
 \# \ \textit{Calculating} \ \textit{A\_ij/(sqrt(A\_ii)sqrt(A\_jj))} 
dfGrmFinal = dfGrmM2 %>% mutate ( corrIndividuals = value / ( sqrtVal * sqrtVal2 ) ) %>% arrange ( Var1
# plot heatmap - correlation between individuals
dfGrmFinal %>% ggplot( aes ( x = Var1 , y = Var2 , fill = corrIndividuals ) ) +
geom tile() +
theme( axis.text.x = element_text(angle = 90, hjust = 1) , text = element_text (size = 5) ) +
labs ( x = "Sample ID" , y = "Sample ID" )
```


It seems there are blocks with higher correlation between individuals between the samples
Filter of all correlation values between individuals
dfUniqueCorr = dfGrmFinal %>% filter (corrIndividuals < .9999) %>% distinct (corrIndividuals , .keep
Histogram and density of correlation values
dfUniqueCorr %>% ggplot (aes (x = corrIndividuals)) +
geom_histogram (aes(y=..density..) , bins = 100) +
geom_density () +
labs (x = "Correlation between individuals" , y = "Density" , title = "Histogram of correlation between"

Histogram of correlation between distinct individuals


```
# The correlation blocks are bolder in this plot
\hbox{\it\# Readind file with HLA expressions and ancestry information}
hlaExp = readr::read_tsv("/raid/genevol/heritability/hla_expression.tsv")
## Parsed with column specification:
## cols(
##
     subject_id = col_character(),
     continental_pop = col_character(),
     population = col_character(),
##
     sex = col_character(),
##
##
     gene_name = col_character(),
     NumReads = col_double(),
     TPM = col_double()
##
# Ancestry of all samples
ancestry = unique ( hlaExp[ , c ( "subject_id" , "continental_pop" )] )
# Merging ancestry info with correlation dataframe
\label{eq:check}  \mbox{check = merge ( dfUniqueCorr , ancestry , by.x = c ( "Var1" ) , by.y = c ( "subject_id" ) ) } 
check2 = merge ( check , ancestry , by.x = c ( "Var2" ) , by.y = c ( "subject_id" ) )
tableAncestry = unique ( check[,c("continental_pop" , "Var1")] ) %>% select ( continental_pop ) %>% tab
knitr::kable( tableAncestry )
```

Ancestry	Freq	relFreq
AFR	87	19.59%
EUR	357	80.41%

```
# Approximately 20% of the 444 individuals are African, while the other 80% are European

# Checking the amount of comparisons between individuals with same ancestry and different ones
checkFin = check2 %>% mutate ( ancestries = ifelse ( continental_pop.x == continental_pop.y , continent
tableComparisons = table ( checkFin$ancestries ) %>% as.data.frame() %>% mutate ( freqRel = Freq/ sum (
knitr::kable ( tableComparisons )
```

NumComparisons	freqRel
3741	0.0378682
31146	0.3152748
63903	0.6468570
	NumComparisons 3741 31146 63903

Warning: Removed 2 rows containing non-finite values (stat_density).

Histogram of correlation between distinct individuals

display individuals with correlation greater than 10% in the sample listGreatCorr = checkFin[(checkFin\$corrIndividuals > .1) & (checkFin\$corrIndividuals < .999) ,] %

knitr::kable(listGreatCorr)

			sqrtVal	sqrtVal2	corrIndividua	lscontinental_	_popcontinental_	popanicestries
Var2	Var1	value						
HG001	20HG0011	160.0900913	0.7819197	0.7784466	0.1480103	EUR	EUR	EUR
HG002	240HG002	380.0785526	0.7790548	0.7979290	0.1263654	EUR	EUR	EUR

```
correlationMatrix = reshape2::dcast(dfGrmFinal, Var1~Var2 , value.var = "corrIndividuals")
rownames ( correlationMatrix ) = correlationMatrix$Var1
correlationMatrix$Var1 = NULL

eigenValuesGrm = eigen ( correlationMatrix )
dfEigen = eigenValuesGrm$values %>%
as.data.frame ( ) %>%
mutate ( order = 1:445 ) %>%
rename ( "Value" = '.' ) %>%
mutate ( neg = ifelse ( Value < 0 , "Negative" , "Positive" ) )</pre>
```

```
dfEigen %>% ggplot ( aes ( x = order , y = Value , colour = neg ) ) +
geom_point ( ) +
labs ( x = "Order" , y = "Eigen Value" , title = "Eigen values plot" , colour = "Sign" )
```

Eigen values plot


```
expressionInterest = hlaExp %>% filter ( subject_id %in% colnames ( correlationMatrix ) )
mainInfo = expressionInterest %>% distinct( subject_id , continental_pop ,population )
numEigen = 2
print ( paste0 ( "Total variation explained by the first ", numEigen , " eigen values: " , 100*round (
## [1] "Total variation explained by the first 2 eigen values: 3.75%"
vectors_ = eigenValuesGrm$vectors[,1:numEigen]
```

PCA plot (first 2 dimensions)


```
matrixModelReference = eigenValuesGrm$vectors %*% t ( eigenValuesGrm$vectors )
rownames ( matrixModelReference ) = rownames ( correlationMatrix )
colnames ( matrixModelReference ) = colnames ( correlationMatrix )
simpleModels = function ( exp_ , df ){
  dfFilter = df %>% filter ( gene_name == exp_ )
 fixed0 = lm (TPM ~ 1 , data = dfFilter)
  sum0 = summary ( fixed0 )
  fixedEffectSigma = sum0$sigma^2
  mixedModel = coxme::lmekin( dfFilter$TPM ~ 1 + (1|dfFilter$subject_id) , data=dfFilter, varlist=list(
  mixedEffectSigma = mixedModel$sigma^2
  sigmaA = as.numeric(mixedModel$vcoef)
 modelExpanded = coxme::lmekin( dfFilter$TPM ~ 1 + dfFilter$PC1 + dfFilter$PC2 + (1|dfFilter$subject_i
 mixedEffectSigmaExp <- modelExpanded$sigma^2</pre>
  sigmaAExp = as.numeric(modelExpanded$vcoef)
 return ( c ( exp_ , fixedEffectSigma , mixedEffectSigma , sigmaA , mixedEffectSigmaExp , sigmaAExp )
}
listNames = unique ( expressionInterest$gene_name )
```

```
modelDf = merge ( expressionInterest , calcScores )
requiredInfo = NULL
for ( name_ in listNames ){
 requiredInfo = rbind ( requiredInfo , simpleModels ( exp_ = name_ ,df = modelDf ) )
finalDf = requiredInfo %>% as.data.frame ( ) %>% rename ("Gene" = "V1" ;
                                                          "fixedSigma" = "V2" ,
                                                          "residualMixedSigma" = "V3",
                                                          "randomEffectSigma" = "V4",
                                                          "residualMixedSigmaExp" = "V5"
                                                          "randomEffectSigmaExp" = "V6") %>%
mutate ( fixedSigma = as.numeric ( as.character ( fixedSigma ) ) ,
   residualMixedSigma = as.numeric ( as.character (residualMixedSigma)) ,
   randomEffectSigma = as.numeric ( as.character (randomEffectSigma)) ,
   residualMixedSigmaExp = as.numeric (as.character (residualMixedSigmaExp)),
   randomEffectSigmaExp = as.numeric ( as.character (randomEffectSigmaExp))
   ) %>%
  mutate ( comparisonNull = residualMixedSigma/fixedSigma ,
           comparisonNullExp = residualMixedSigmaExp/fixedSigma ,
           hSimple = randomEffectSigma / ( randomEffectSigma + residualMixedSigma ) ,
           hExpanded = randomEffectSigmaExp / ( randomEffectSigmaExp + residualMixedSigmaExp ))
finalDf %>% knitr::kable()
```

Gene	fixedSignressidualMix	xe rl:Sigma Effe	ec tSighua lMix	ed SigdorE Effe	ct SigmpæEispæMul þarison	NuSiFuple hExpanded
HLA- A	180900.1 6 0164.54	120329.09	58425.98	116851.95	0.3325843 0.3229736	0.666666T.6666667
HLA- B	526383.0575066.72	350133.45	170757.97	341515.94	0.3325843 0.3243987	0.6666667.6666667
HLA- C	127438.4 0 2384.01	84768.01	41334.90	82669.79	0.3325843 0.3243520	0.6666667.6666667
HLA- DPA1	31587.2910505.43	21010.87	10167.96	20335.92	0.3325843 0.3219004	0.6666667.6666667
HLA- DPB1	37625.1012513.52	25027.03	10931.32	21862.65	0.3325843 0.2905327	0.6666667.6666667
HLA- DQA1	51654.4617179.46	34358.92	16230.64	32461.28	0.3325843 0.3142156	0.6666667.6666667
HLA- DQB1	38524.9312812.79	25625.57	12706.63	25413.27	0.3325843 0.3298288	0.6666667.6666667

Gene	fixedSignessidualMix	cerlsigmaEffe	ec t:Ssighna lMixe	ed SigdorEE ffe	et SigmpæEisponMulp barison	Nh SiExp le hExpanded
HLA- DRA	390199.5129774.22	259548.45	125991.71	251983.42	0.3325843 0.3228905	0.6666667.6666667
HLA- DRB1	148507.249391.16	98782.32	41843.09	83686.19	0.3325843 0.2817580	0.6666667