单缝衍射实验报告

专业: 计算机科学与技术 班级: 1801 学号: 20188866

<u>姓名: 叶钰莹 实验序号: 28</u>

一、实验目的

了解单缝衍射的原理,观察单缝衍射的衍射图形,测定单缝衍射的光强分布,能够利用光强分布图形计算单缝宽度,增强对光的衍射的认识。

二、实验仪器

单缝衍射实验装置包括: He-Ne激光器、衍射狭缝、光具座、白屏、光电探头、光功率计。

三、实验原理

波长为λ的单色平行光垂直照射到单缝上,在接收屏上,将得到单缝衍射图样,即一组平行于狭缝的明暗相间条纹。单缝衍射图样的暗纹中心满足条件:

$$x = \pm \frac{f}{a}k\lambda \ (k = 1, 2, 3, ...)$$
 (1)

式中,x为暗纹中心在接收屏上的x轴坐标,f为单缝到接收屏的距离;a为单缝的宽度,k为暗纹级数。在±1级暗纹间为中央明条纹。中间明条纹最亮,其宽度约为其他明纹宽度的两倍。

单缝衍射的原理图如图所示:

光电探头(即硅光电池探测器)是光电转换元件。当光照射到光电探头表面时,在光电探头的上下两表面产生电势差ΔU,ΔU的大小与入射光强成线性关系。光电探头与光电流放大器连接形成回路,回路中电流的大小与ΔU成正比。因此,通过电流的大小就可以反映出入射到光电探头的光强大小。

四、实验内容

- 1.观察单缝衍射的衍射图形;
- 2.测定单缝衍射的光强分布;
- 3.利用光强分布图形计算单缝宽度。

五、数据处理

实验内容一: 测定单缝衍射的光强分布

★ (1)原始测量数据

注意事项:实验时,主极大、各次极大、各极小位置要找准。从第三极小位置开始测量,将第三极小的位置的记为 x=0.000mm,每半圈及移动 0.500mm 测一次;也可以从主极大的位置开始测量,将主极大的位置记为 x=0.000mm,每半圈及移动 0.500mm 测一次。

数据记录表格:

女灯// 10/2	C-MIH.								
X(mm)	0	0.5	1	1.5	2	2.5	3	3.5	4
I (mW)	0.012	0.009	0.005	0.002	0.001	0.004	0.01	0.017	0.024
I/Imax	0.007	0.006	0.003	0.001	0.001	0.002	0.006	0.011	0.015
X(mm)	4.5	5	5.5	6	6.5	7	7.5	8	8.5
I (mW)	0.028	0.023	0.016	0.007	0.002	0.01	0.025	0.045	0.064
I/Imax	0.017	0.014	0.010	0.004	0.001	0.006	0.015	0.028	0.040
X(mm)	9	9.5	10	10.5	11	11.5	12	12.5	13
I (mW)	0.076	0.078	0.067	0.045	0.019	0.002	0.009	0.053	0.148
I/Imax	0.047	0.048	0.041	0.028	0.012	0.001	0.006	0.033	0.092
X(mm)	13.5	14	14.5	15	15.5	16	16.5	17	17.5
l (mW)	0.298	0.5	0.74	0.997	1.243	1.451	1.592	1.65	1.617
l/lmax	0.184	0.309	0.458	0.617	0.769	0.897	0.985	1.020	1.000
X(mm)	18	18.5	19	19.5	20	20.5	21	21.5	22
I (mW)	1.496	1.304	1.066	0.809	0.561	0.348	0.183	0.074	0.016
I/Imax	0.925	0.806	0.659	0.500	0.347	0.215	0.113	0.046	0.010
X(mm)	22.5	23	23.5	24	24.5	25	25.5	26	26.5
l (mW)	0.001	0.013	0.038	0.062	0.076	0.078	0.068	0.05	0.03
l/lmax	0.001	0.008	0.024	0.038	0.047	0.048	0.042	0.031	0.019
X(mm)	27	27.5	28	28.5	29	29.5	30	30.5	31
I (mW)	0.013	0.003	0.001	0.005	0.013	0.021	0.027	0.028	0.025
l/lmax	0.008	0.002	0.001	0.003	0.008	0.013	0.017	0.017	0.015
X(mm)	31.5	32	32.5	33	33.5	34	34.5	35	35.5
l (mW)	0.019	0.012	0.005	0.002	0.004	0.008	0.012	0.014	0.015
l/lmax	0.012	0.007	0.003	0.001	0.002	0.005	0.007	0.009	0.009

L1=23.8cm, L2=92cm, $f=|L2-L1|+\Delta f=74.2cm$

计算每个位置的光电流 | 与主极大光电流 | lmax 的比值,填入上面表格的第三行。 以 X 为横坐标, | / lmax 为纵坐标画出单缝衍射的光强分布曲线,计算缝宽及相对误差

1. 缝宽的计算

$$d_1 = \frac{2 \times 1 \times 742 \times 632.8 \times 10^{-6}}{11} = 0.0874mm$$

$$d_2 = \frac{2 \times 2 \times 742 \times 632.8 \times 10^{-6}}{21.5} = 0.0874mm$$

$$d_3 = \frac{2 \times 3 \times 742 \times 632.8 \times 10^{-6}}{31.5} = 0.0894mm$$

$$d = \frac{(d_1 + d_2 + d_3)}{3} = 0.0881mm$$

2. 计算相对误差

$$d_{\cancel{\#}\cancel{i}} = 0.087mm$$
 $d = 0.0881mm$
 $E = \left| \frac{d_{\cancel{\#}\cancel{i}} - d}{d_{\cancel{\#}\cancel{i}}} \right| = 1.26\%$

六、误差分析 (10分)

- 1. 光功率测试仪旋钮操作过程中由于操作不当会导致一定的误差。
- 2. 肉眼对千分尺的读数存在一定的误差。
- 3. 数据记录过程中, 暗纹位置的记录存在误差。

七、实验总结 (10分)

- 1. 本次实验通过观察单缝衍射的衍射图形,测定单缝衍射的光强分布,并利用光强分布图形计算单缝宽度,加深了对光的衍射的认识。
- 2. 本次实验需要记录多组数据,实验过程中需要严谨细心,才能保证实验数据的准确性。
- 3. 通过实验结果可以知道各级最大值光强不相同,其中中央最大值的光强最大,其他各级明纹的最大值远小于中央明纹最大值光强。

八、原始数据及数据处理过程(拍照之后粘贴在下方)(无此项实验 无效,不给成绩)

评分: