

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-333715

(43) Date of publication of application: 22.11.2002

(51)Int.CI.

G03F 7/039

G03F 7/004

H01L 21/027

(21)Application number: 2001-202298

(71)Applicant: FUJI PHOTO FILM CO LTD

(22)Date of filing:

03.07.2001

(72)Inventor: AOSO TOSHIAKI

MIZUTANI KAZUYOSHI YASUNAMI SHOICHIRO

KANNA SHINICHI

(30)Priority

Priority number: 2000292537

Priority date: 26.09.2000

Priority country: JP

2000379284

13.12.2000

JP

2001062158

06.03.2001

JP

(54) POSITIVE TYPE RESIST COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a positive type resist composition having sufficient transmittance when a light source of 157 nm is used and satisfying suitability to coating and development defects.

SOLUTION: The positive type resist composition contains (A) a fluorine group-containing resin having a structure in which fluorine atoms have been substituted in the principal chain and/or side chains of the polymer skeleton and having a group which is decomposed by the action of an acid and increases solubility in an alkali developing solution, (B) a compound which generates the acid when irradiated with active light or radiation and (C) an Siand/or fluorine-containing surfactant.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

BEST AVAILABLE COPY

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-333715 (P2002-333715A)

(43)公開日 平成14年11月22日(2002.11.22)

CT11 . CT1	識別記号	FI	テーマコード(参考)
(51) Int.Cl. 7 G 0 3 F 7/039	601	G03F 7/039	601 2H025
7/004	504	7/004	504
HO1L 21/027		H01L 21/30	502R

審査請求 未請求 請求項の数14 OL (全 60 頁)

	•	
(21)出願番号	特願2001-202298(P2001-202298)	(71)出願人 000005201 宮土写真フイルム株式会社
(22)出顧日	平成13年7月3日(2001.7.3)	神奈川県南足柄市中沼210番地 (72)発明者 育合 利明
(31) 優先権主張番号 (32) 優先日 (33) 優先權主張国 (31) 優先権主張番号 (32) 優先日 (33) 優先権主張国 (31) 優先權主張番号 (32) 優先日	特顏2000-292537 (P2000-292537) 平成12年9月26日 (2000.9.26) 日本 (JP) 特顏2000-379284 (P2000-379284) 平成12年12月13日 (2000.12.13) 日本 (JP) 特顏2001-62158 (P2001-62158) 平成13年3月6日 (2001.3.6)	静岡県榛原郡吉田町川尻4000番地 富士写 真フイルム株式会社内 (72)発明者 水谷 一良 静岡県榛原郡吉田町川尻4000番地 富士写 真フイルム株式会社内 (74)代理人 100105647 弁理士 小栗 昌平 (外4名)
(33)優先権主張国	日本(J P)	品数百に続く

(54) 【発明の名称】 ポジ型レジスト組成物

(57)【要約】

【課題】 160nm以下、特にF2エキシマレーザー 光 (157nm) の露光光源の使用に好適なポジ型レジスト組成物を提供することであり、具体的には157nmの光源使用時に十分な透過性を示し、且つ塗布性、現像欠陥を満足するポジ型レジスト組成物を提供すること

【解決手段】 (A) ポリマー骨格の主鎖及び/又は側鎖にフッ素原子が置換した構造を有し、且つ酸の作用により分解し、アルカリ現像液に対する溶解度を増大する基を有するフッ素基含有樹脂、(B) 活性光線又は放射線の照射により、酸を発生する化合物、(C) Si系及び/又はフッ素系界面活性剤を含有するポジ型レジスト組成物。

【特許請求の範囲】

【請求項1】 (A) ポリマー骨格の主鎖及び/又は側鎖にフッ素原子が置換した構造を有し、且つ酸の作用により分解し、アルカリ現像液に対する溶解度を増大する基を有するフッ素基含有樹脂、(B) 活性光線又は放射線の照射により、酸を発生する化合物、(C) Si系及び/又はフッ素系界面活性剤を含有するポジ型レジスト組成物。

【請求項2】 (A)の樹脂が、パーフルオロアルキレン基、パーフルオロアリーレン基から選択される部位を、ポリマー骨格の主鎖に少なくとも一つ有するか、パ

ーフルオロアルキル基、パーフルオロアリール基、ヘキサフルオロー2ープロパノール基、及びヘキサフルオロー2ープロパノール基のOH基を保護した基から選択される部位を、ポリマー骨格の側鎖に少なくとも一つ有するフッ素基含有樹脂であることを特徴とする請求項1に記載のポジ型レジスト組成物。

【請求項3】 (A)の樹脂が、一般式(I)~(X)で示される繰り返し単位を少なくとも一つ有することを特徴とする請求項1又は2に記載のボジ型レジスト組成物

式中、 R_0 、 R_1 は水素原子、フッ素原子、置換基を有していても良い、アルキル基、パーフルオロアルキル基、シクロアルキル基もしくはアリール基を表す。 $R_2 \sim R_4$ は置換基を有していても良い、アルキル基、パーフルオロアルキル基、シクロアルキル基もしくはアリール基を表す。また R_0 と R_1 、 R_0 と R_2 、 R_3 と R_4 が結合し環を形成しても良い。 R_5 は水素原子、置換基を有していて

(X)

も良い、アルキル基、パーフルオロアルキル基、単環又は多環のシクロアルキル基、アシル基、アルコキシカルボニル基を表す。 R_6 、 R_7 、 R_8 は同じでも異なっていても良く、水素原子、ハロゲン原子、置換基を有していても良い、アルキル基、パーフルオロアルキル基、アルコキシ基を表す。 R_9 、 R_{10} は同じでも異なっていても良く、水素原子、ハロゲン原子、シアノ基、置換基を有

していても良い、アルキル基又はハロアルキル基を表 す。 R_{11} 、 R_{12} は同じでも異なっていても良く、水素原 子、ヒドロキシル基、ハロゲン原子、シアノ基、アルコ キシ基、アシル基又は置換基を有していても良いアルキ ル基、シクロアルキル基、アルケニル基、アラルキル基 もしくはアリール基を表す。R₁₃、R₁₄は同じでも異なっ っていても良く、水素原子、ハロゲン原子、シアノ基、 置換基を有していても良い、アルキル基又はハロアルキ ル基を表す。R_{IS}はフッ素原子を有する、アルキル基、 単環又は多環のシクロアルキル基、アルケニル基、アラ ルキル基もしくはアリール基を表す。 R₁₆、 R₁₇、 R₁₈ は同じでも異なっていても良く、水素原子、ハロゲン原 子、シアノ基、置換基を有していても良い、アルキル 基、パーフルオロアルキル基、アルコキシ基、-CO-O-R₁₅を表す。R₁₉、R₂₀、R₂₁は同じでも異なって いても良く、水素原子、フッ素原子、フッ素原子を有す る、アルキル基、単環又は多環のシクロアルキル基、ア ルケニル基、アラルキル基、アリール基もしくはアルコ

式中、 R_{26} 、 R_{27} 、 R_{32} は同じでも異なっていても良く、水素原子、ハロゲン原子、シアノ基、置換基を有していても良い、アルキル基又はハロアルキル基を表す。 R_{28} 、 R_{33} は-C(R_{36})(R_{37})(R_{38})、-C(R_{36})(R_{37})(R_{39})、 -C(R_{36})(R_{37})(R_{39})、もしくは式(XIV)の基を表す。

【化3】

 R_{29} 、 R_{30} 、 R_{31} は同じでも異なっていても良く、水素原子、ハロゲン原子、シアノ基、置換基を有していても良い、アルキル基、パーフルオロアルキル基、アルコキシ基、 $-CO-O-R_{28}$ を表す。 R_{34} 、 R_{35} は同じでも異なっていても良く、水素原子、ヒドロキシル基、ハロゲン原子、シアノ基、アルコキシ基、アシル基、又は置換基を有していても良い、アルキル基、シクロアルキル基、アルケニル基、アラルキル基もしくはアリール基を表す。 R_{36} 、 R_{37} 、 R_{38} 、 R_{39} は同じでも異なっていても良く、置換基を有していても良い、アルキル基、シクロアルキル基、アルケニル基、アラルキル基もしくはアリール基を表す。 R_{36} 、 R_{37} 、 R_{38} の内の2つ、又は R_{38}

キシ基を表す。但し R_{19} 、 R_{20} 、 R_{21} の少なくとも一つは水素原子以外の基である。 A_1 、 A_2 は、単結合、置換基を有しても良い、2価のアルキレン基、アルケニレン基、シクロアルキレン基もしくはアリーレン基、又はー $O-CO-R_{22}-$ 、 $-CO-O-R_{23}-$ 、-CO-N(R_{24}) $-R_{25}-$ を表す。 R_{22} 、 R_{23} 、 R_{25} は同じでも異なっていても良く、単結合、又はエーテル基、エステル基、アミド基、ウレタン基もしくはウレイド基を有していても良い、2価のアルキレン基、アルケニレン基、シクロアルキレン基又はアリーレン基を表す。 R_{24} は水素原子、置換基を有していても良い、アルキル基、シクロアルキル基、アラルキル基又はアリール基を表す。 nは O 又は O を表し、O 来 O を表し、O 来 O 以 O 又は O を表し、O 来 O の整数を表す。

【請求項4】 (A) の樹脂が、更に一般式(XI) ~ (XIII) で示される繰り返し単位を少なくとも一つ有することを特徴とする請求項1~3のいずれかに記載のポジ型レジスト組成物。

【化2】

 $_{36}$ 、 R_{37} 、 R_{39} の内の $_{20}$ の
お結合して環を形成しても良い。 R_{40} は置換基を有していても良い、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アラルキル基もしくはアリール基を表す。 A_{3} 、 A_{4} は、単結合、置換基を有しても良い、 2 価のアルキレン基、アルケニレン基、シクロアルキレン基もしくはアリーレン基、又は $_{10}$ スクロアルキレン基もしくはアリーレン基、又は $_{10}$ スクロアルキレン基もしくはアリーレン基、又は $_{10}$ スクロアルキレン基もしくはアリーレン基、又は $_{10}$ スクロアルキレン基もしくはアリーレン基、又は $_{10}$ スクロアルキレン基は上記と同義である。 2 乙は炭素原子と伴に単環又は多環の脂環式基を構成する原子団を表す。 2 このは 2

【請求項5】 (A)の樹脂が、更に一般式(XV)~ (XVII)で示される繰り返し単位を少なくとも一つ有することを特徴とする請求項1~4のいずれかに記載のポジ型レジスト組成物。

【化4】

$$(XV)$$
 (XVI) $(XVII)$

式中、 R_{41} は置換基を有していても良い、アルキル基、シクロアルキル基、アラルキル基もしくはアリール基を表す。 R_{42} は水素原子、ハロゲン原子、シアノ基、置換

基を有していても良い、アルキル基又はハロアルキル基を表す。 A_5 は単結合、置換基を有しても良い、2 価のアルキレン基、アルケニレン基、シクロアルキレン基もしくはアリーレン基、又は $-O-CO-R_{22}-$ 、 $-CO-O-R_{23}-$ 、-CO-N $(R_{24})-R_{25}-$ を表す。 $R_{22}\sim R_{25}$ は上記と同義である。

式中、Ro、Rlは水素原子、フッ素原子、置換基を有し ていても良い、アルキル基、パーフルオロアルキル基、 シクロアルキル基もしくはアリール基を表す。 $R_2 \sim R_4$ は置換基を有していても良い、アルキル基、パーフルオ ロアルキル基、シクロアルキル基もしくはアリール基を 表す。またR₀とR₁、R₀とR₂、R₃とR₄が結合し環を 形成しても良い。 R_5 は水素原子、置換基を有していて も良い、アルキル基、パーフルオロアルキル基、単環又 は多環のシクロアルキル基、アシル基、アルコキシカル ポニル基を表す。 R_6 、 R_7 、 R_8 は同じでも異なってい ても良く、水素原子、ハロゲン原子、置換基を有してい ても良い、アルキル基、パーフルオロアルキル基、アル コキシ基を表す。 R_9 は水素原子、ハロゲン原子、シア ノ基、置換基を有していても良い、アルキル基又はハロ アルキル基を表す。 A_1 、 A_2 は、単結合、置換基を有し ても良い、2価のアルキレン基、アルケニレン基、シク 【請求項6】 (A)の樹脂が、下記一般式(I)~ (II)で示される繰り返し単位を少なくとも一つと、一般式(IV)~(VI)で示される繰り返し単位を少なくとも一つを有することを特徴とする請求項1~5のいずれかに記載のポジ型レジスト組成物。

【化5】

ロアルキレン基もしくはアリーレン基、又は $-O-CO-R_{22}$ ー、 $-CO-N(R_{24})-R_{25}$ ーを表す。 R_{22} 、 R_{23} 、 R_{25} は同じでも異なっていても良く、単結合、又はエーテル基、エステル基、アミド基、ウレタン基もしくはウレイド基を有しても良い、2価のアルキレン基、アルケニレン基、シクロアルキレン基又はアリーレン基を表す。 R_{24} は水素原子、置換基を有していても良い、アルキル基、シクロアルキル基、アラルキル基又はアリール基を表す。 R_{24} は水素原子、電換基を有していても良い、アルキル基、シクロアルキル基、アラルキル基又はアリール基を表す。 R_{24} はな素原子、電換基を有していても良い、アルキル基、シクロアルキル基、アラルキル基又はアリール基を表す。 R_{24} はなます。 R_{24} はなます。 R_{24} はなます。 R_{25} はなまななます。 R_{25} はなまななます。 R_{25} はなまななまななます。 R_{25} はななまななまななまななまななまななまななまななまななまななまなな

【請求項7】 (A) の樹脂が、下記一般式 (IV) ~ (VI) で示される繰り返し単位を少なくとも一つと、一般式 (VIII) ~ (X) で示される繰り返し単位を少なくとも一つを有することを特徴とする請求項 1~5のいずれかに記載のポジ型レジスト組成物。

【化6】

R₅は水素原子、置換基を有していても良い、アルキル 基、パーフルオロアルキル基、単環又は多環のシクロア ルキル基、アシル基、アルコキシカルボニル基を表す。 R₆、R₇、R₈は同じでも異なっていても良く、水素原 子、ハロゲン原子、置換基を有していても良い、アルキ ル基、パーフルオロアルキル基、アルコキシ基を表す。 Rgは水素原子、ハロゲン原子、シアノ基、置換基を有 していても良い、アルキル基又はハロアルキル基を表 す。 R_{13} 、 R_{14} は同じでも異なっていても良く、水素原 子、ハロゲン原子、シアノ基、置換基を有していても良 い、アルキル基又はハロアルキル基を表す。 R₁₅はフッ 素原子を有する、アルキル基、単環又は多環のシクロア ルキル基、アルケニル基、アラルキル基もしくはアリー ル基を表す。 R_{16} 、 R_{17} 、 R_{18} は同じでも異なっていて も良く、水素原子、ハロゲン原子、シアノ基、置換基を 有していても良い、アルキル基、パーフルオロアルキル 基、アルコキシ基、-CO-O-R₁₅を表す。R₁₉、R $_{20}$ 、 R_{21} は同じでも異なっていても良く、水素原子、フ ッ素原子、フッ素原子を有する、アルキル基、単環又は 多環のシクロアルキル基、アルケニル基、アラルキル゛

基、アリール基もしくはアルコキシ基を表す。但し R_{19} 、 R_{20} 、 R_{21} の少なくとも一つは水素原子以外の基である。 A_1 、 A_2 は、単結合、置換基を有しても良い、2 価のアルキレン基、アルケニレン基、シクロアルキレン基もしくはアリーレン基、又は $-O-CO-R_{22}-$ 、 $-CO-O-R_{23}-$ 、-CO-N (R_{24}) $-R_{25}-$ を表す。 R_{22} 、 R_{23} 、 R_{25} は同じでも異なっていても良く、単結合、又はエーテル基、エステル基、アミド基、ウレタン基もしくはウレイド基を有しても良い、2 価のアルキレン基、アルケニレン基、シクロアルキレン基又はアリーレン基を表す。 R_{24} は水素原子、置換基を有していても良い、アルキル基、シクロアルキル基、アラルキル基又はアリール基を表す。 R_{10} 1 は0 又は1 を表し、1 次、1 次、1 以 1 次

【請求項8】 (A)の樹脂が、下記一般式(IV)~ (VII) で示される繰り返し単位を少なくとも一つと、一般式(XV)~(XVII)で示される繰り返し単位を少なくとも一つを有することを特徴とする請求項1~5のいずれかに記載のポジ型レジスト組成物。

【化7】

【化8】

Rsは水素原子、置換基を有していても良い、アルキル 基、パーフルオロアルキル基、単環又は多環のシクロア ルキル基、アシル基、アルコキシカルボニル基を表す。 R_6 、 R_7 、 R_8 は同じでも異なっていても良く、水素原 子、ハロゲン原子、置換基を有していても良い、アルキ ル基、パーフルオロアルキル基、アルコキシ基を表す。 R_9 、 R_{10} は同じでも異なっていても良く、水素原子、 ハロゲン原子、シアノ基、置換基を有していても良い、 アルキル基又はハロアルキル基を表す。R₁₁、R₁₂は同 じでも異なっていても良く、水素原子、ヒドロキシル 基、ハロゲン原子、シアノ基、アルコキシ基、アシル基 又は置換基を有していても良いアルキル基、シクロアル キル基、アルケニル基、アラルキル基もしくはアリール 基を表す。 A_1 、 A_2 は、単結合、置換基を有しても良 い、2価のアルキレン基、アルケニレン基、シクロアル キレン基もしくはアリーレン基、又は-O-CO-R₂₂ -, $-CO-O-R_{23}-$, -CO-N (R_{24}) $-R_{25}-$ を表す。 R_{22} 、 R_{23} 、 R_{25} は同じでも異なっていても良 く、単結合、又はエーテル基、エステル基、アミド基、 ウレタン基もしくはウレイド基を有しても良い、2価の アルキレン基、アルケニレン基、シクロアルキレン基又 はアリーレン基を表す。R₂₄は水素原子、置換基を有じ ていても良い、アルキル基、シクロアルキル基、アラル キル基又はアリール基を表す。 n は 0 又は 1 を表す。 R 41は置換基を有していても良い、アルキル基、シクロア

ルキル基、アラルキル基もしくはアリール基を表す。 R $_{42}$ は水素原子、ハロゲン原子、シアノ基、置換基を有していても良い、アルキル基又はハロアルキル基を表す。 A $_5$ は単結合、置換基を有しても良い、2価のアルキレン基、アルケニレン基、シクロアルキレン基もしくはアリーレン基、又は $-O-CO-R_{22}-$ 、 $-CO-O-R_{23}-$ 、-CO-N(R_{24}) $-R_{25}-$ を表す。

【請求項9】 (A)の樹脂が、下記一般式 (IA)及び (IIA)で示される繰り返し単位を各々少なくとも1つ有する樹脂であることを特徴とする請求項1に記載のポジ型レジスト組成物。

【化9】

【化10】

(IIA)

一般式 (IA) 及び (IIA) 中、 R_{1a} 及び R_{5a} は、同じでも異なっていてもよく、水素原子、ハロゲン原子、シアノ基又は置換基を有していてもよいアルキル基を表す。 R_{2a} 、 R_{3a} 、 R_{6a} 及び R_{7a} は、同じでも異なってい

てもよく、水素原子、ハロゲン原子、シアノ基、ヒドロキシル基又は置換基を有していてもよい、アルキル基、シクロアルキル基、アルコキシ基、アシル基、アシロキシ基、アルケニル基、アリール基若しくはアラルキル基を表す。 $R_{50a} \sim R_{55a}$ は、同じでも異なっていてもよく、水素原子、フッ素原子又は置換基を有していてもよいアルキル基を表す。但し、 $R_{50a} \sim R_{55a}$ の内、少なくとも1つは、フッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたアルキル基を表す。 R_{56a} は、水素原子又は置換基を有していてもよい、アルキル基、シクロアルキル基、アシル基若しくはアルコキシカルボニル基を表す。 R_{4a} は、下記一般式(IVA)又は(VA)の基を表す。

【化11】

【請求項10】 (A)の樹脂が、下記一般式(IIA)及び(VIA)で示される繰り返し単位を各々少なくとも1つ有する樹脂であることを特徴とする請求項1に記載のポジ型レジスト組成物。

【化12】

(IIA)

【化13】

(VIA)

一般式(IIA)中、R_{5a}は、水素原子、ハロゲン原 子、シアノ基又は置換基を有していてもよいアルキル基 を表す。 R_{6a} 及び R_{7a} は、同じでも異なっていてもよ く、水素原子、ハロゲン原子、シアノ基、ヒドロキシル 基又は置換基を有していてもよい、アルキル基、シクロ アルキル基、アルコキシ基、アシル基、アシロキシ基、 アルケニル基、アリール基若しくはアラルキル基を表 す。 R_{50a} \sim R_{55a} は、同じでも異なっていてもよく、水 素原子、フッ素原子又は置換基を有していてもよいアル キル基を表す。但し、R_{50a}~R_{55a}の内、少なくとも1 つは、フッ素原子又は少なくとも1つの水素原子がフッ 素原子で置換されたアルキル基を表す。 R_{56a}は、水素 原子又は置換基を有していてもよい、アルキル基、シク ロアルキル基、アシル基若しくはアルコキシカルボニル 基を表す。一般式 (VIA) 中、R_{17a1}及びR_{17a2}は、 同じでも異なっていてもよく、水素原子、ハロゲン原 子、シアノ基又は置換基を有していてもよいアルキル基 を表す。 R_{18a} は、 $-C(R_{18a1})(R_{18a2})$

 (R_{18a3}) 又は-C (R_{18a1}) (R_{18a2}) (OR_{18a4}) を表す。 $R_{18a1} \sim R_{18a4}$ は、同じでも異なっていてもよく、水素原子又は置換基を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、アラルキル基若しくはアリール基を表す。 R_{18a1} 、 R_{18a2} 、 R_{18a3} の内の2つ又は R_{18a1} 、 R_{18a2} 、 R_{18a4} の内の2つが結合して環を形成してもよい。 A_0 は、単結合又は置換基を有していてもよい2価の連結基を表す。

【請求項11】 上記一般式 (VIA) 中、R_{18a}が、 下記一般式 (VIA-A) で表されることを特徴とする 請求項10に記載のポジ型レジスト組成物。

【化14】

(VIA-A)

一般式 (VIA-A) 中、 R_{18a5} 及び R_{18a6} は、同じでも異なっていてもよく、置換基を有していてもよいアルキル基を表す。 R_{18a7} は、置換基を有していてもよいシクロアルキル基を表す。

【請求項12】 上記一般式 (VIA) 中、R_{18a}が、 下記一般式 (VIA-B) で表されることを特徴とする 請求項10に記載のポジ型レジスト組成物。 【化15】

(VIA-B)

一般式 (VIA-B) 中、R₁₈₈₈は、置換基を有していてもよい、アルキル基、アルケニル基、アルキニル基、アルキニル基、アラルキル基又はアリール基を表す。

【請求項13】 一般式 (1A) の R_{1a} 、一般式 (1IA) の R_{5a} 及び一般式 (VIA) の R_{17a2} の少なくとも 1つが、トリフルオロメチル基であることを特徴とする 請求項9又は10に記載のポジ型レジスト組成物。

【請求項14】 (A)の樹脂が、更に下記一般式(IIA)又は(VIIA)で表される繰り返し単位を少なくとも1つ有することを特徴とする請求項9~13のいずれかに記載のポジ型レジスト組成物。

【化16】

$$\begin{array}{c|c}
 & R_{8a} & R_{19a} & R_{20a} \\
\hline
 & R_{9a} & R_{10a} & R_{21a} & A_{1}-CN \\
\hline
 & R_{11a} & R_{10a} & R_{11a} & R_{11$$

一般式(IIIA)中、 R_{8a} は、水素原子、ハロゲン原子、シアノ基又は置換基を有していてもよいアルキル基を表す。 R_{8a} 及び R_{10a} は、同じでも異なっていてもよく、水素原子、ハロゲン原子、シアノ基又は置換基を有していてもよい、アルキル基、シクロアルキル基、アルコキシ基、アルケニル基、アリール基若しくはアラルキル基を表す。一般式(VIIA)中、 R_{19a} 及び R_{20a} は、同じでも異なっていてもよく、水素原子、ハロゲン原子、シアノ基又は置換基を有していてもよいアルキル基を表す。 R_{21a} は、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基又は一 A_1 -CN基を表す。 A_1 は、単結合又は2価の連結基を表す。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、超しSI、高容量マイクロチップの製造などのマイクロリソグラフィープロセスや、その他のフォトファブリケーションプロセスに好適に用いられるポジ型レジスト組成物に関するものである。更に詳しくは、160nm以下の真空紫外光をを使用して高精細化したパターンを形成し得るポジ型レジスト組成物に関するものである。

[0002]

【従来の技術】集積回路はその集積度を益々高めており、超LSIなどの半導体基板の製造においては、クオーターミクロン以下の線幅から成る超微細パターンの加工が必要とされるようになってきた。パターンの微細化を図る手段の一つとして、レジストのパターン形成の際に使用される露光光源の短波長化が知られている。

【0003】例えば64Mビットまでの集積度の半導体素子の製造には、現在まで高圧水銀灯の i 線(365 nm)が光源として使用されてきた。この光源に対応するポジ型レジストとしては、ノボラック樹脂と感光物としてのナフトキノンジアジド化合物を含む組成物が、数多く開発され、0.3 μ m程度までの線幅の加工においては十分な成果をおさめてきた。また256Mビット以上集積度の半導体素子の製造には、i 線に代わりKrFエキシマレーザー光(248 nm)が露光光源として採用されてきた。更に1Gビット以上の集積度の半導体製造を目的として、近年より短波長の光源であるArFエキシマレーザー光(193 nm)の使用、更には0.1 μ m以下のパターンを形成する為にF2エキシマレーザー光(157 nm)の使用が検討されている。

【0004】これら光源の短波長化に合わせ、レジスト材料の構成成分及びその化合物構造も大きく変化している。即ち従来のノボラック樹脂とナフトキノンジアジド化合物を含むレジストでは、248nmの遠紫外領域における吸収が大きいため、光がレジスト底部まで十分に到達しにくくなり、低感度でテーパー形状のパターンとり得られなかった。このような問題を解決する為、248nm領域での吸収の小さいポリ(ヒドロキシスチレン)を基本骨格とし酸分解基で保護した樹脂を主成分として用い、遠紫外光の照射で酸を発生する化合物(光酸発生剤)を組み合わせた組成物、所謂化学増幅型レジストが開発されるに至った。化学増幅型レジストが開発されるに至った。化学増幅型レジストは酸光が開発されるに至った。化学増幅型レジストが開発されるに至った。化学増幅型レジストが開発されるに至った。化学増幅型レジストが開発されるに至った。化学増幅型レジストが開発されるに至った。化学増幅型レジストが開発されるに至った。化学増幅型レジストが開発されるに至った。化学増幅型レジストが開発されるに至った。化学増幅型レジストが開発されるに対するにより、現像液に対する形成することができる。

【0005】しかしながら、ArFエキシマレーザー光 (193nm)を使用した場合、芳香族基を有する化合物が本質的に193nm波長領域に大きな吸収を有する為、上記化学増幅型レジストでも十分な性能は得られなかった。

【0006】この問題に対し、ポリ(ヒドロキシスチレン)を基本骨格とする酸分解性樹脂を、193nmに吸収を持たない脂環式構造をポリマーの主鎖又は側鎖に導入した酸分解性樹脂に代え、化学増幅型レジストの改良が図られている。

【0007】しかしながら、F2エキシマレーザー光 (157nm) に対しては、上記脂環型樹脂においても 157nm領域の吸収が大きく、目的とする 0.1μ m 以下のパターンを得るには不十分であることが判明した。これに対し、フッ素原子(パーフルオロ構造)を導

入した樹脂が157nmに十分な透明性を有することがProc. SPIE. Vol.3678. 13頁 (1999) にて報告され、有効なフッ素樹脂の構造がProc. SPIE. Vol.3999. 330頁 (2000)、同357頁 (2000)、同365頁 (2000)、WO-00/17712号等に提案されるに至っている。但しこれらフッ素樹脂を有するレジストは、耐ドライエッチング性は必ずしも十分とは言えず、またパーフルオロ構造に由来する特異な撥水、撥油特性の為、塗布性(塗布面の均一性)の改良、及び現像欠陥の抑制も望まれていた。

[0008]

【発明が解決しようとする課題】従って、本発明の目的は、160nm以下、特にF2エキシマレーザー光(157nm)の露光光源の使用に好適なポジ型レジスト組成物を提供することであり、具体的には157nmの光源使用時に十分な透過性を示し、且つ塗布性、現像欠陥を満足するポジ型レジスト組成物を提供することである。更に良好な感度、解像度でパターンを形成し、耐ドライエッチング性も優れるポジ型レジスト組成物を提供することである。

[0009]

【課題を解決するための手段】本発明者等は、上記諸特性に留意し鋭意検討した結果、本発明の目的が以下の特定の組成物を使用することで見事に達成されることを見

出し、本発明に到達した。即ち、本発明は下記構成である。

【0010】(1) (A)ポリマー骨格の主鎖及び/又は側鎖にフッ素原子が置換した構造を有し、且つ酸の作用により分解し、アルカリ現像液に対する溶解度を増大する基を有するフッ素基含有樹脂、(B)活性光線又は放射線の照射により、酸を発生する化合物、(C) Si系及び/又はフッ素系界面活性剤を含有するポジ型レジスト組成物。

【0011】(2) (A)の樹脂が、パーフルオロアルキレン基、パーフルオロアリーレン基から選択される部位を、ポリマー骨格の主鎖に少なくとも一つ有するか、パーフルオロアルキル基、パーフルオロアリール基、ヘキサフルオロー2ープロパノール基、及びヘキサフルオロー2ープロパノール基のOH基を保護した基から選択される部位を、ポリマー骨格の側鎖に少なくとも一つ有するフッ素基含有樹脂であることを特徴とする前記(1)に記載のポジ型レジスト組成物。

【0012】 (3) (A)の樹脂が、一般式(I) \sim (X) で示される繰り返し単位を少なくとも一つ有することを特徴とする前記(I) 又は(I2) に記載のポジ型レジスト組成物。

[0013]

【化17】

【0014】式中、 R_0 、 R_1 は水素原子、フッ素原子、 置換基を有していても良い、アルキル基、パーフルオロ アルキル基、シクロアルキル基もしくはアリール基を表 す。 $R_2 \sim R_4$ は置換基を有していても良い、アルキル 基、パーフルオロアルキル基、シクロアルキル基もしく はアリール基を表す。また R_0 と R_1 、 R_0 と R_2 、 R_3 と R_4 が結合し環を形成しても良い。 R_5 は水素原子、置換 基を有していても良い、アルキル基、パーフルオロアル キル基、単環又は多環のシクロアルキル基、アシル基、 アルコキシカルポニル基を表す。R₈、R₇、R₈は同じ でも異なっていても良く、水素原子、ハロゲン原子、置 換基を有していても良い、アルキル基、パーフルオロア ルキル基、アルコキシ基を表す。R₉、R₁₀は同じでも 異なっていても良く、水素原子、ハロゲン原子、シアノ 基、置換基を有していても良い、アルキル基又はハロア ルキル基を表す。 R_{11} 、 R_{12} は同じでも異なっていても 良く、水素原子、ヒドロキシル基、ハロゲン原子、シア ノ基、アルコキシ基、アシル基又は置換基を有していて

(X)

も良いアルキル基、シクロアルキル基、アルケニル基、 アラルキル基もしくはアリール基を表す。R₁₃、R₁₄は 同じでも異なっていても良く、水素原子、ハロゲン原 子、シアノ基、置換基を有していても良い、アルキル基 又はハロアルキル基を表す。 R₁₅はフッ素原子を有す る、アルキル基、単環又は多環のシクロアルキル基、ア ルケニル基、アラルキル基もしくはアリール基を表す。 $m R_{16}$ 、 $m R_{17}$ 、 $m R_{18}$ は同じでも異なっていても良く、水素 原子、ハロゲン原子、シアノ基、置換基を有していても 良い、アルキル基、パーフルオロアルキル基、アルコキ シ基、-CO-O-R₁₅を表す。R₁₉、R₂₀、R₂₁は同 じでも異なっていても良く、水素原子、フッ素原子、フ ッ素原子を有する、アルキル基、単環又は多環のシクロ アルキル基、アルケニル基、アラルキル基、アリール基 もしくはアルコキシ基を表す。但し R_{19} 、 R_{20} 、 R_{21} の 少なくとも一つは水素原子以外の基である。 A_1 、A2は、単結合、置換基を有しても良い、2価のアルキレ ン基、アルケニレン基、シクロアルキレン基もしくはア リーレン基、又は $-O-CO-R_{22}$ -、 $-CO-O-R_{23}$ -、-CO-N(R_{24}) $-R_{25}$ -を表す。 R_{22} 、 R_{23} 、 R_{25} は同じでも異なっていても良く、単結合、又はエーテル基、エステル基、アミド基、ウレタン基もしくはウレイド基を有しても良い、2価のアルキレン基、アルケニレン基、シクロアルキレン基又はアリーレン基を表す。 R_{24} は水素原子、置換基を有していても良い、アルキル基、シクロアルキル基、アラルキル基又はアリ

【0017】式中、 R_{26} 、 R_{27} 、 R_{32} は同じでも異なっていても良く、水素原子、ハロゲン原子、シアノ基、置換基を有していても良い、アルキル基又はハロアルキル基を表す。 R_{28} 、 R_{33} は-C (R_{36}) (R_{37})

 (R_{38}) 、-C (R_{36}) (R_{37}) (OR_{39}) 、もしくは式 (XIV) の基を表す。

【0018】 【化19】

【0.019】 R_{29} 、 R_{30} 、 R_{31} は同じでも異なっていて も良く、水素原子、ハロゲン原子、シアノ基、置換基を 有していても良い、アルキル基、パーフルオロアルキル 基、アルコキシ基、-CO-O-R₂₈を表す。R₃₄、R 35は同じでも異なっていても良く、水素原子、ヒドロキ シル基、ハロゲン原子、シアノ基、アルコキシ基、アシ ル基、又は置換基を有していても良い、アルキル基、シ クロアルキル基、アルケニル基、アラルキル基もしくは アリール基を表す。 R₃₆、 R₃₇、 R₃₈、 R₃₉は同じでも 異なっていても良く、置換基を有していても良い、アル キル基、シクロアルキル基、アルケニル基、アラルキル 基もしくはアリール基を表す。 R₃₆、 R₃₇、 R₃₈の内の 2つ、又はR₃₆、R₃₇、R₃₉の内の2つが結合して環を 形成しても良い。 R_{40} は置換基を有していても良い、ア ルキル基、シクロアルキル基、アルケニル基、アルキニ ル基、アラルキル基もしくはアリール基を表す。A₃、 A4は、単結合、置換基を有しても良い、2価のアルキ レン基、アルケニレン基、シクロアルキレン基もしくは アリーレン基、又は-O-CO-R₂₂-、-CO-O-

ール基を表す。 nは O 又は 1 を表し、 x 、 y 、 z は O ~ 4 の整数を表す。

【0015】 (4) (A) の樹脂が、更に一般式 (X + 1) \sim (XIII) で示される繰り返し単位を少なくとも一つ有することを特徴とする前記 $(1) \sim (3)$ のいずれかに記載のポジ型レジスト組成物。

【0016】 【化18】

 R_{23} -、-CO-N (R_{24}) $-R_{25}$ -を表す。 R_{22} ~ R_{25} は上記と同義である。Zは炭素原子と伴に単環又は多環の脂環式基を構成する原子団を表す。nは0又は1を表す。

【0020】(5) (A)の樹脂が、更に一般式(X Y)~(XVII)で示される繰り返し単位を少なくとも一つ有することを特徴とする前記(1)~(4)のいずれかに記載のポジ型レジスト組成物。

[0021]

$$(XV) \qquad (XVI) \qquad (XVII)$$

【0022】式中、 R_{41} は置換基を有していても良い、アルキル基、シクロアルキル基、アラルキル基もしくはアリール基を表す。 R_{42} は水素原子、ハロゲン原子、シアノ基、置換基を有していても良い、アルキル基又はハロアルキル基を表す。 A_5 は単結合、置換基を有しても良い、2価のアルキレン基、アルケニレン基、シクロアルキレン基もしくはアリーレン基、又は $-O-CO-R_{23}$ ー、 $-CO-O-R_{23}$ ー、-CO-N(R_{24}) $-R_{25}$ ーを表す。 R_{22} ~ R_{25} は上記と同義である。

【0023】(6) (A)の樹脂が、下記一般式 (I)~(III)で示される繰り返し単位を少なくとも一つと、一般式 (IV)~(VI)で示される繰り返し単位を少なくとも一つを有することを特徴とする前記(1)~(5)のいずれかに記載のポジ型レジスト組成物。

[0024]

【化21】

【0025】式中、 R_0 、 R_1 は水素原子、フッ素原子、 置換基を有していても良い、アルキル基、パーフルオロ アルキル基、シクロアルキル基もしくはアリール基を表 す。 $R_2 \sim R_4$ は置換基を有していても良い、アルキル 基、パーフルオロアルキル基、シクロアルキル基もしく はアリール基を表す。またRoとRi、RoとR2、R3と R_4 が結合し環を形成しても良い。 R_5 は水素原子、置換 基を有していても良い、アルキル基、パーフルオロアル キル基、単環又は多環のシクロアルキル基、アシル基、 アルコキシカルボニル基を表す。R₆、R₇、R₈は同じ でも異なっていても良く、水素原子、ハロゲン原子、置 換基を有していても良い、アルキル基、パーフルオロア ルキル基、アルコキシ基を表す。Rgは水素原子、ハロ ゲン原子、シアノ基、置換基を有していても良い、アル キル基又はハロアルキル基を表す。A₁、A₂は、単結 合、置換基を有しても良い、2価のアルキレン基、アル ケニレン基、シクロアルキレン基もしくはアリーレン

【0026】(7) (A)の樹脂が、下記一般式(IV)~(VI)で示される繰り返し単位を少なくとも一つと、一般式(VIII)~(X)で示される繰り返し単位を少なくとも一つを有することを特徴とする前記(1)~(5)のいずれかに記載のポジ型レジスト組成物。

[0027] [化22]

【0028】R₅は水素原子、置換基を有していても良 い、アルキル基、パーフルオロアルキル基、単環又は多 環のシクロアルキル基、アシル基、アルコキシカルボニル基を表す。 R_6 、 R_7 、 R_8 は同じでも異なっていても

良く、水素原子、ハロゲン原子、置換基を有していても 良い、アルキル基、パーフルオロアルキル基、アルコキ シ基を表す。Rgは水素原子、ハロゲン原子、シアノ 基、置換基を有していても良い、アルキル基又はハロア ルキル基を表す。R₁₃、R₁₄は同じでも異なっていても 良く、水素原子、ハロゲン原子、シアノ基、置換基を有 していても良い、アルキル基又はハロアルキル基を表 す。R_{IS}はフッ素原子を有する、アルキル基、単環又は 多環のシクロアルキル基、アルケニル基、アラルキル基 もしくはアリール基を表す。R16、R17、R18は同じで も異なっていても良く、水素原子、ハロゲン原子、シア ノ基、置換基を有していても良い、アルキル基、パーフ ルオロアルキル基、アルコキシ基、-CO-O-R₁₅を 表す。 R_{19} 、 R_{20} 、 R_{21} は同じでも異なっていても良 く、水素原子、フッ素原子、フッ素原子を有する、アル キル基、単環又は多環のシクロアルキル基、アルケニル 基、アラルキル基、アリール基もしくはアルコキシ基を 表す。但し R_{19} 、 R_{20} 、 R_{21} の少なくとも一つは水素原 子以外の基である。 A_1 、 A_2 は、単結合、置換基を有し

ても良い、2価のアルキレン基、アルケニレン基、シクロアルキレン基もしくはアリーレン基、又は $-O-CO-R_{22}-$ 、 $-CO-N(R_{24})-R_{25}-$ を表す。 R_{22} 、 R_{23} 、 R_{25} は同じでも異なっていても良く、単結合、又はエーテル基、エステル基、アミド基、ウレタン基もしくはウレイド基を有しても良い、2価のアルキレン基、アルケニレン基、シクロアルキレン基又はアリーレン基を表す。 R_{24} は水素原子、置換基を有していても良い、アルキル基、シクロアルキル基、アラルキル基又はアリール基を表す。nは0又は1を表し、x、y、zは0~4の整数を表す。

【0029】(8) (A)の樹脂が、下記一般式(IV)~(VII)で示される繰り返し単位を少なくとも一つと、一般式(XV)~(XVII)で示される繰り返し単位を少なくとも一つを有することを特徴とする前記(1)~(5)のいずれかに記載のポジ型レジスト組成物。

[0030]

【化23】

【0031】 【化24】

【0032】 R_5 は水素原子、置換基を有していても良い、アルキル基、パーフルオロアルキル基、単環又は多環のシクロアルキル基、アシル基、アルコキシカルボニル基を表す。 R_6 、 R_7 、 R_8 は同じでも異なっていても良く、水素原子、ハロゲン原子、置換基を有していても

良い、アルキル基、パーフルオロアルキル基、アルコキシ基を表す。 R_9 、 R_{10} は同じでも異なっていても良く、水素原子、ハロゲン原子、シアノ基、置換基を有していても良い、アルキル基又はハロアルキル基を表す。 R_{11} 、 R_{12} は同じでも異なっていても良く、水素原子、ヒドロキシル基、ハロゲン原子、シアノ基、アルコキシ基、アシル基又は置換基を有していても良いアルキル基、シクロアルキル基、アルケニル基、アラルキル基もしくはアリール基を表す。 A_1 、 A_2 は、単結合、置換基を有しても良い、 2 価のアルキレン基、アルケニレン基、シクロアルキレン基もしくはアリーレン基、又はーO-CO- R_{22} -、-CO-O- R_{23} -、-CO-N (R_{24}) - R_{25} -を表す。 R_{22} 、 R_{25} は同じでも

異なっていても良く、単結合、又はエーテル基、エステ ル基、アミド基、ウレタン基もしくはウレイド基を有し ても良い、2価のアルキレン基、アルケニレン基、シク ロアルキレン基又はアリーレン基を表す。 R₂₄は水素原 子、置換基を有していても良い、アルキル基、シクロア ルキル基、アラルキル基又はアリール基を表す。 nは 0 又は 1 を表す。 R_{41} は置換基を有していても良い、アル キル基、シクロアルキル基、アラルキル基もしくはアリ -ル基を表す。 \mathbf{R}_{42} は水素原子、ハロゲン原子、シアノ 基、置換基を有していても良い、アルキル基又はハロア ルキル基を表す。A₅は単結合、置換基を有しても良 い、2価のアルキレン基、アルケニレン基、シクロアル キレン基もしくはアリーレン基、又は-O-CO-R₂₂ -, -CO-O-R $_{23}$ -, -CO-N (R $_{24}$) -R $_{25}$ -を表す。

(A) の樹脂が、下記一般式 (I [0033](9)A) 及び(IIA)で示される繰り返し単位を各々少な くとも1つ有する樹脂であることを特徴とする(1)に 記載のポジ型レジスト組成物。

[0034] 【化25】

$$R_{2a}$$
 R_{3a}
 R_{4a}

(IA)

[0035] 【化26】

(IIA)

【0036】一般式 (IA) 及び (IIA) 中、R_{la}及 びR_{5a}は、同じでも異なっていてもよく、水素原子、ハ ロゲン原子、シアノ基又は置換基を有していてもよいア ルキル基を表す。R_{2a}、R_{3a}、R_{6a}及びR_{7a}は、同じで も異なっていてもよく、水素原子、ハロゲン原子、シア ノ基、ヒドロキシル基又は置換基を有していてもよい、 アルキル基、シクロアルキル基、アルコキシ基、アシル 基、アシロキシ基、アルケニル基、アリール基若しくは アラルキル基を表す。R_{50a}〜R_{55a}は、同じでも異なっ ていてもよく、水素原子、フッ素原子又は置換基を有し ていてもよいアルキル基を表す。但し、R_{50a}~R_{55a}の 内、少なくとも1つは、フッ素原子又は少なくとも1つ の水素原子がフッ素原子で置換されたアルキル基を表 す。 R_{56a} は、水素原子又は置換基を有していてもよ い、アルキル基、シクロアルキル基、アシル基若しくは アルコキシカルボニル基を表す。R_{4a}は、下記一般式 (IVA) 又は (VA) の基を表す。

[0037] 【化27】

【0038】一般式(IVA)中、R_{11a}、R_{12a}及びR 13aは、同じでも異なっていてもよく、置換基を有して いてもよい、アルキル基、シクロアルキル基、アルケニ ル基、アラルキル基又はアリール基を表す。一般式(V A) 中、 R_{14a} 及び R_{15a} は、同じでも異なっていてもよ く、水素原子又は置換基を有していてもよいアルキル基 を表す。 R_{16a} は、置換基を有していてもよい、アルキ ル基、シクロアルキル基、アラルキル基若しくはアリー ル基を表す。R_{14a}~R_{16a}の内の2つが結合し、環を形 成してもよい。

(A) の樹脂が、下記一般式 [0039] (10) (IIA) 及び (VIA) で示される繰り返し単位を各 々少なくとも1つ有する樹脂であることを特徴とする (1) に記載のポジ型レジスト組成物。

[0040]

【化28】

(IIA)

[0041] 【化29】

(AIV)

【0042】一般式(IIA)中、R_{5a}は、水素原子、 ハロゲン原子、シアノ基又は置換基を有していてもよい アルキル基を表す。 R_{6a}及びR_{7a}は、同じでも異なって いてもよく、水素原子、ハロゲン原子、シアノ基、ヒド ロキシル基又は置換基を有していてもよい、アルキル 基、シクロアルキル基、アルコキシ基、アシル基、アシ ロキシ基、アルケニル基、アリール基若しくはアラルキ ル基を表す。 R_{50a} 〜 R_{55a} は、同じでも異なっていても よく、水素原子、フッ素原子又は置換基を有していても よいアルキル基を表す。但し、R50a~R55aの内、少な くとも1つは、フッ素原子又は少なくとも1つの水素原 -子がフッ素原子で置換されたアルキル基を表す。 R_{56a} は、水素原子又は置換基を有していてもよい、アルキル 基、シクロアルキル基、アシル基若しくはアルコキシカ ルポニル基を表す。一般式(V I A)中、R_{17a1}及びR 1792は、同じでも異なっていてもよく、水素原子、ハロ ゲン原子、シアノ基又は置換基を有していてもよいアル キル基を表す。R_{18a}は、-C(R_{18a1})(R_{18a2})

 (R_{18a3}) $\nabla H - C$ (R_{18a1}) (R_{18a2}) (OR_{18a4}) を表す。R_{18a1}~R_{18a4}は、同じでも異なっていてもよ く、水素原子又は置換基を有していてもよい、アルキル 基、シクロアルキル基、アルケニル基、アラルキル基若・ しくはアリール基を表す。R_{18a1}、R_{18a2}、R_{18a3}の内 の2つ又は R_{18a1} 、 R_{18a2} 、 R_{18a4} の内の2つが結合し て環を形成してもよい。Aoは、単結合又は置換基を有 していてもよい2価の連結基を表す。

【0043】(11) 上記一般式(VIA)中、R 18mが、下記一般式(VIA-A)で表されることを特 徴とする(10)に記載のポジ型レジスト組成物。

[0044] 【化30】

(VIA-A)

【0045】一般式 (VIA-A) 中、R_{18a5}及びR 1886は、同じでも異なっていてもよく、置換基を有して いてもよいアルキル基を表す。 R1847は、置換基を有し ていてもよいシクロアルキル基を表す。

【0046】(12) 上記一般式(VIA)中、R 18aが、下記一般式(VIA-B)で表されることを特 徴とする (10)-に記載のポジ型レジスト組成物。 [0047] 【化31】

【0048】一般式 (VIA-B) 中、R_{18a8}は、置換 基を有していてもよい、アルキル基、アルケニル基、ア ルキニル基、アラルキル基又はアリール基を表す。

【0049】(13) 一般式(IA)のR_{la}、一般式 (IIA) のR_{5a}及び一般式 (VIA) のR_{17a2}の少な くとも1つが、トリフルオロメチル基であることを特徴 とする (9) 又は (10) に記載のポジ型レジスト組成

(A) の樹脂が、更に下記一般 [0050] (14) 式(|||A) 又は(V||A) で表される繰り返し単 位を少なくとも1つ有することを特徴とする(9)~ (13) のいずれかに記載のポジ型レジスト組成物。

[0051]

【化32】

$$\begin{array}{c|c}
 & R_{19a} & R_{20a} \\
\hline
 & R_{19a} & R_{20a} \\
\hline
 & R_{21a} & A_1 - CN
\end{array}$$

$$\begin{array}{c|c}
 & R_{19a} & R_{20a} \\
\hline
 & R_{21a} & A_1 - CN
\end{array}$$

$$\begin{array}{c|c}
 & & & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & & & &$$

【0052】一般式 (IIIA) 中、R_{8a}は、水素原 子、ハロゲン原子、シアノ基又は置換基を有していても よいアルキル基を表す。Rgi及びRloaは、同じでも異 なっていてもよく、水素原子、ハロゲン原子、シアノ基 又は置換基を有していてもよい、アルキル基、シクロア ルキル基、アルコキシ基、アシル基、アシロキシ基、ア ルケニル基、アリール基若しくはアラルキル基を表す。 一般式 (VIIA) 中、R_{19a}及びR_{20a}は、同じでも異 なっていてもよく、水素原子、ハロゲン原子、シアノ基 又は置換基を有していてもよいアルキル基を表す。R 21aは、水素原子、ハロゲン原子、置換基を有していて もよいアルキル基又は-A₁-CN基を表す。A₁は、単 結合又は2価の連結基を表す。

【0053】以下に、好ましい態様を記載する。

更に (D) 酸拡散抑制剤として、塩基性窒素 原子を有する化合物を含有することを特徴とする前記

(1)~(14)のいずれかに記載のポジ型レジスト組 成物。

(B) 成分の化合物が、活性光 [0054] (16)

線又は放射線の照射により、炭素原子数2以上のパーフルオロアルキルスルホン酸、パーフルオロアリールスルホン酸、もしくはパーフルオロアルキル基が置換したアリールスルホン酸を発生するスルホニウム塩、又はヨードニウム塩の化合物から選択されることを特徴とする前記(1)~(15)のいずれかに記載のポジ型レジスト組成物。

【0055】(17) 露光光源として、160nm以下の真空紫外光を使用することを特徴とする前記(1)~(16)のいずれかに記載のポジ型レジスト組成物。 【0056】

【発明の実施の形態】以下、本発明に使用する化合物に ついて詳細に説明する。

[1] 本発明 (A) のフッ素基含有樹脂

本発明(A)におけるフッ素基含有樹脂は、フッ素原子が置換した構造をポリマーの主鎖及び/又は側鎖に有し、且つ酸の作用により分解し、アルカリ現像液に対する溶解度を増大する基を有することを特徴とする樹脂であり、好ましくはパーフルオロアルキレン基、パーフルオロアルキレン基から選択される部位を、ポリマー骨格の主鎖に少なくとも一つ有するか、パーフルオロー2ープロパノール基、及びヘキサフルオロー2ープロパノール基のOH基を保護した基から選択される部位を、ポリマー骨格の側鎖に少なくとも一つ有するフッ素基含有樹脂である。

【0057】具体的には、一般式(I)~(X)で示される繰り返し単位を少なくとも一つ有する樹脂であり、好ましくは更に一般式(XI)~(XIII)で示される繰り返し単位を少なくとも一つ有する酸分解性基を有するフッ素基含有樹脂である。またフッ素基含有樹脂の親疎水性、ガラス転移点、露光光に対する透過率等の物性を制御する為、あるいはポリマー合成時の重合性を制御する為に、一般式(XV)~(XVII)で示される無水マレイン酸、ビニルエーテル又はシアノ基を含有するビニル化合物から由来される繰り返し単位を少なくとも一つ有しても良い。

【0058】一般式中、 R_0 、 R_1 は水素原子、フッ素原子、置換基を有していても良い、アルキル基、パーフルオロアルキル基、シクロアルキル基もしくはアリール基を表す。 R_2 ~ R_4 は置換基を有していても良い、アルキル基、パーフルオロアルキル基、シクロアルキル基もしくはアリール基を表す。また R_0 と R_1 、 R_0 と R_2 、 R_3 と R_4 が結合し環を形成しても良い。 R_5 は水素原子、置換基を有していても良い、アルキル基、パーフルオロアルキル基、単環又は多環のシクロアルキル基、アシル基、アルコキシカルボニル基を表す。 R_6 、 R_7 、 R_8 は同じでも異なっていても良く、水素原子、ハロゲン原子、置換基を有していても良い、アルキル基、パーフルオロアルキル基、アルコキシ基を表す。

【0059】 R_9 、 R_{10} は同じでも異なっていても良く、水素原子、ハロゲン原子、シアノ基、置換基を有していても良い、アルキル基又はハロアルキル基を表す。 R_{11} 、 R_{12} は同じでも異なっていても良く、水素原子、ヒドロキシル基、ハロゲン原子、シアノ基、アルコキシ基、アシル基又は置換基を有していても良いアルキル基、シクロアルキル基、アルケニル基、アラルキル基もしくはアリール基を表す。 R_{13} 、 R_{14} は同じでも異なっていても良く、水素原子、ハロゲン原子、シアノ基、置換基を有していても良い、アルキル基又はハロアルキル基を表す。

【0060】 R_{15} はフッ素原子を有する、アルキル基、 単環又は多環のシクロアルキル基、アルケニル基、アラルキル基もしくはアリール基を表す。 R_{16} 、 R_{17} 、 R_{18} は同じでも異なっていても良く、水素原子、ハロゲン原子、シアノ基、置換基を有していても良い、アルキル基、パーフルオロアルキル基、アルコキシ基、 $-CO-O-R_{15}$ を表す。 R_{19} 、 R_{20} 、 R_{21} は同じでも異なっていても良く、水素原子、フッ素原子、フッ素原子を有する、アルキル基、単環又は多環のシクロアルキル基、アルケニル基、アラルキル基、アリール基もしくはアルコキシ基を表す。但し R_{19} 、 R_{20} 、 R_{21} の少なくとも一つは水素原子以外の基である。

【0061】 A_1 、 A_2 は、単結合、置換基を有しても良い、2価のアルキレン基、アルケニレン基、シクロアルキレン基もしくはアリーレン基、又は $-O-CO-R_{22}$ -、 $-CO-O-R_{23}$ -、-CO-N(R_{24}) $-R_{25}$ -を表す。 R_{22} 、 R_{23} 、 R_{25} は同じでも異なっていても良く、単結合、又はエーテル基、エステル基、アミド基、ウレタン基もしくはウレイド基を有しても良い、2価のアルキレン基、アルケニレン基、シクロアルキレン基又はアリーレン基を表す。 R_{24} は水素原子、置換基を有していても良い、アルキル基、シクロアルキル基、アラルキル基又はアリール基を表す。

【0062】 R_{28} 、 R_{27} 、 R_{32} は同じでも異なっていても良く、水素原子、ハロゲン原子、シアノ基、置換基を有していても良い、アルキル基又はハロアルキル基を表す。 R_{28} 、 R_{33} は-C (R_{36}) (R_{37}) (R_{38})、-C (R_{36}) (R_{37}) (OR_{39})、もしくは上記一般式 (XI V) の基を表す。 R_{29} 、 R_{30} 、 R_{31} は同じでも異なっていても良く、水素原子、ハロゲン原子、シアノ基、置換基を有していても良い、アルキル基、パーフルオロアルキル基、アルコキシ基、 $-CO-O-R_{28}$ を表す。

【0063】 R_{34} 、 R_{35} は同じでも異なっていても良く、水素原子、ヒドロキシル基、ハロゲン原子、シアノ基、アルコキシ基、アシル基、又は置換基を有していても良い、アルキル基、シクロアルキル基、アルケニル基、アラルキル基もしくはアリール基を表す。 R_{36} 、 R_{37} 、 R_{38} 、 R_{39} は同じでも異なっていても良く、置換基を有していても良い、アルキル基、シクロアルキル基、

(

アルケニル基、アルキニル基、アラルキル基もしくはアリール基を表す。 R_{36} 、 R_{37} 、 R_{38} の内の2つ、又は R_{36} 、 R_{37} 、 R_{39} の内の2つが結合して環を形成しても良い。また、形成された環には、オキソ基を含有していてもよい。 R_{40} は置換基を有していても良い、アルキル基、シクロアルキル基、アルケニル基、アラルキル基もしくはアリール基を表す。

【0064】 A_3 ~ A_4 は、単結合、置換基を有しても良い、2価のアルキレン基、アルケニレン基、シクロアルキレン基もしくはアリーレン基、又は $-0-CO-R_{22}$ -、 $-CO-O-R_{23}$ -、-CO-N(R_{24}) $-R_{25}$ -を表す。Zは炭素原子と伴に単環又は多環の脂環式基を構成する原子団を表す。

【0065】 R_{41} は置換基を有していても良い、アルキル基、シクロアルキル基、アラルキル基もしくはアリール基を表す。 R_{42} は水素原子、ハロゲン原子、シアノ基、置換基を有していても良い、アルキル基を表す。 A_5 は単結合、置換基を有しても良い、2価のアルキレン基、アルケニレン基、シクロアルキレン基もしくはアリーレン基、又は $-O-CO-R_{22}$ ー、 $-CO-O-R_{23}$ ー、-CO-N(R_{24}) $-R_{25}$ ーを表す。nは0又は1を表し、x、y、zは0~4 0 整数を表す。

【0066】また、本発明における更に好ましいフッ素基含有樹脂(A)として、上記一般式(IA)及び(IIA)で示される繰り返し単位を各々少なくとも1つ有する樹脂並びに上記一般式(IIA)及び(VIA)で示される繰り返し単位を各々少なくとも1つ有する樹脂を挙げることができる。これらのフッ素基含有樹脂

(A) は、更に上記一般式(IIIA)又は(VIIA)で示される繰り返し単位を少なくとも1つ有していてもよい。これらのフッ素基含有樹脂(A)は、一般式(VIA)中の R_{18a} が上記一般式(VIA-A)又は(VIA-B)で表されることが好ましい。また、これらのフッ素基合有樹脂(A)は、一般式(IA)の R_{1a} 、一般式(IIA)の R_{5a} 及び一般式(VIA)の R_{17a2} の少なくとも1つが、トリフルオロメチル基であることが好ましい。

【0067】一般式(IA)及び(IIA)で示される 繰り返し単位を各々少なくとも1つ有するフッ素基含有 樹脂(A)並びに一般式(IIA)及び(VIA)で示 される繰り返し単位を各々少なくとも1つ有するフッ素 基含有樹脂(A)は、更に前記一般式(I)~(V)で 示される繰り返し単位を有していてもよい。

【0068】一般式(IA)及び(IIA)中、 R_{1a} 及び R_{5a} は、同じでも異なっていてもよく、水素原子、ハロゲン原子、シアノ基又は置換基を有していてもよいアルキル基を表す。 R_{2a} 、 R_{3a} 、 R_{6a} 及び R_{7a} は、同じでも異なっていてもよく、水素原子、ハロゲン原子、シアノ基、ヒドロキシル基又は置換基を有していてもよい、

アルキル基、シクロアルキル基、アルコキシ基、アシル基、アシロキシ基、アルケニル基、アリール基若しくはアラルキル基を表す。 $R_{50a} \sim R_{55a}$ は、同じでも異なっていてもよく、水素原子、フッ素原子又は置換基を有していてもよいアルキル基を表す。但し、 $R_{50a} \sim R_{55a}$ の内、少なくとも1つは、フッ素原子又は少なくとも1つの水素原子がフッ素原子で置換されたアルキル基を表す。 R_{56a} は、水素原子又は置換基を有していてもよい、アルキル基、シクロアルキル基、アシル基若しくはアルコキシカルボニル基を表し、水素原子であることが好ましい。 R_{4a} は、上記一般式(IVA)又は(VA)の基を表す。

【0069】一般式(IVA)中、 R_{11a} 、 R_{12a} 及び R_{13a} は、同じでも異なっていてもよく、置換基を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、アラルキル基又はアリール基を表す。一般式(VA)中、 R_{14a} 及び R_{15a} は、同じでも異なっていてもよく、水素原子又は置換基を有していてもよいアルキル基を表す。 R_{16a} は、置換基を有していてもよい、アルキル基、シクロアルキル基、アラルキル基若しくはアリール基を表す。 $R_{14a} \sim R_{16a}$ の内の2つが結合し、環を形成してもよい。

【0070】一般式 (VIA) 中、 R_{17a1} 及び R_{17a2} は、同じでも異なっていてもよく、水素原子、ハロゲン原子、シアノ基又は置換基を有していてもよいアルキル基を表す。 R_{18a} は、-C(R_{18a1})(R_{18a2})(R_{18a3})又は-C(R_{18a1})(R_{18a2})(OR_{18a4})を表す。 $R_{18a1} \sim R_{18a4}$ は、同じでも異なっていてもよく、水素原子又は置換基を有していてもよい、アルキル基、シクロアルキル基、アルケニル基、アラルキル基若しくはアリール基を表す。 R_{18a1} 、 R_{18a2} 、 R_{18a3} の内の2つ又は R_{18a1} 、 R_{18a2} 、 R_{18a4} の内の2つが結合して現を形成してもよい。 R_{18a2} 、 R_{18a4} の内の2つが結合して現を形成してもよい。 R_{18a3} 、 R_{18a4} の内の2つが結合して現を形成してもよい。 R_{18a4} の内の2つが結合していてもよい。 R_{18a4} の内の2つが結合してもよい。 R_{18a4} の内の2つが結合してもよい。 R_{18a4} の内の2つが結合してもよい。 R_{18a4} の内の2つが結合してもよい。 R_{18a4} の内の2

【0071】一般式 (VIA-A) 中、 R_{18a5} 及び R_{18a6} は、同じでも異なっていてもよく、置換基を有していてもよいアルキル基を表す。 R_{18a7} は、置換基を有していてもよいシクロアルキル基を表す。

【0072】一般式 (VIA-B) 中、R_{18a8}は、置換 基を有していてもよい、アルキル基、アルケニル基、ア ルキニル基、アラルキル基又はアリール基を表す。

【0073】一般式(IIIA)中、 R_{8a} は、水素原子、ハロゲン原子、シアノ基又は置換基を有していてもよいアルキル基を表す。 R_{9a} 及び R_{10a} は、同じでも異なっていてもよく、水素原子、ハロゲン原子、シアノ基又は置換基を有していてもよい、アルキル基、シクロアルキル基、アルコキシ基、アシル基、アシロキシ基、アルケニル基、アリール基若しくはアラルキル基を表す。一般式(VIIA)中、 R_{19a} 及び R_{20a} は、同じでも異

なっていてもよく、水素原子、ハロゲン原子、シアノ基 又は置換基を有していてもよいアルキル基を表す。 R $_{21a}$ は、水素原子、ハロゲン原子、置換基を有していて もよいアルキル基又は $_{1}$ - $_{1}$ - $_{2}$ - $_{3}$ - $_{4}$ - $_{4}$ - $_{4}$ - $_{5}$ - $_{4}$ - $_{4}$ - $_{5}$ - $_{4}$ - $_{4}$ - $_{5}$ - $_{6}$ - $_{4}$ - $_{6}$ - $_{7}$ - $_{8}$ - $_{1}$ - $_{1}$ - $_{1}$ - $_{1}$ - $_{1}$ - $_{2}$ - $_{3}$ - $_{4}$ - $_{4}$ - $_{5}$ - $_{4}$ - $_{4}$ - $_{5}$ - $_{6}$ - $_{7}$ - $_{1}$ - $_{1}$ - $_{1}$ - $_{1}$ - $_{2}$ - $_{3}$ - $_{4}$ - $_{4}$ - $_{4}$ - $_{5}$ - $_{4}$ - $_{5}$ - $_{6}$ - $_{6}$ - $_{7}$ - $_{7}$ - $_{7}$ - $_{8}$

【0074】上記アルキル基としては、例えば炭素数1 ~8個のアルキル基であって、具体的には、メチル基、 エチル基、プロピル基、n-ブチル基、sec-ブチル基、へ キシル基、2-エチルヘキシル基、オクチル基を好まし く挙げることができる。シクロアルキル基としては単環 型でも良く、多環型でも良い。単環型としては炭素数3 ~8個のものであって、例えばシクロプロピル基、シク ロペンチル基、シクロヘキシル基、シクロヘプチル基、 シクロオクチル基を好ましく挙げることができる。多環 型としては炭素数6~20個のものであって、例えばア ダマンチル基、ノルポルニル基、イソポロニル基、カン ファニル基、ジシクロペンチル基、a-ピネル基、トリ シクロデカニル基、テトシクロドデシル基、アンドロス タニル基等を好ましく挙げることができる。但し、上記 の単環又は多環のシクロアルキル基中の炭素原子が、酸 素原子等のヘテロ原子に置換されていても良い。

【0075】パーフルオロアルキル基としては、例えば 炭素数4~12個のものであって、具体的にはパーフル オロブチル基、パーフルオロヘキシル基、パーフルオロ オクチル基、パーフルオロオクチルエチル基、パーフル オロドデシル基等を好ましくあげることができる。ハロ アルキル基としては、例えば炭素数1~4個のハロアル キル基であって、具体的にはクロロメチル基、クロロエ チル基、クロロプロピル基、クロロブチル基、ブロモメ チル基、プロモエチル基等を好ましく挙げることができる。

【0076】アリール基としては、例えば炭素数6~15個のアリール基であって、具体的には、フェニル基、トリル基、ジメチルフェニル基、2.4.6ートリメチルフェニル基、ナフチル基、アントリル基、9.10ージメトキシアントリル基等を好ましく挙げることができる。アラルキル基としては、例えば炭素数7~12個のアラルキル基であって、具体的には、ベンジル基、フェネチル基、ナフチルメチル基等を好ましく挙げることができる。アルケニル基としては、例えば炭素数2~8個のアルケニル基であって、具体的には、ビニル基、アリル基、ブテニル基、シクロヘキセニル基を好ましく挙げることができる。

【0077】アルコキシ基としては、例えば炭素数1~8個のアルコキシ基であって、具体的には、メトキシ基、エトキシ基、nープロポキシ基、isoープロポキシ基、ブトキシ基、ペントキシ基、アリルオキシ基、オクトキシ基等を好ましく挙げることができる。アシル基としては、例えば炭素数1~10個のアシル基であって、具体的には、ホルミル基、アセチル基、プロパノイ

ル基、ブタノイル基、ピバロイル基、オクタノイル基、ベンゾイル基等を好ましく挙げることができる。アシロキシ基としては、炭素数2~12個のアシロキシ基が好ましく、例えばアセトキシ基、プロピオニルオキシ基、ベンゾイルオキシ基等を挙げることができる。アルキニル基としては、炭素数2~5のアルキニル基が好ましく、例えばエチニル基、プロピニル基、ブチニル基を挙げることができる。アルコキシカルボニル基としては、i-プロポキシカルボニル基、tーブトキシカルボニル基、tーアミロキシカルボニル基、1ーメチルー1ーシクロヘキシルオキシカルボニル基等、好ましくは2級、より好ましくは3級のアルコキシカルボニル基が挙げられる。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、沃素原子等を挙げることができる

【0078】アルキレン基としては、好ましくは置換基を有していても良いメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、オクチレン基等の炭素数1~8個のものが挙げられる。アルケニレン基としては、好ましくは置換基を有していても良いエテニレン基、プロペニレン基、ブテニレン基等の炭素数2~6個のものが挙げられる。シクロアルキレン基としては、好ましくは置換基を有していても良いシクロペンチレン基、シクロヘキシレン基等の炭素数5~8個のものが挙げられる。アリーレン基としては、好ましくは置換基を有していても良いフェニレン基、トリレン基、ナフチレン基等の炭素数6~15個のものが挙げられる。

【0079】2価の連結基とは、置換基を有していてもよい、2価の、アルキレン基、シクロアルキレン基、アルケニレン基若しくはアリーレン基又は-O-CO-R 22a-、-CO-O-R 23a - 若しくは-CO-N (R 24a) -R 25a - を表す。 R 22a 、 R 23a 及び R 25a は、同じでも異なっていてもよく、単結合又はエーテル基、エステル基、アミド基、ウレタン基若しくはウレイド基を有していてもよい、2価の、アルキレン基、アルケニレン基、シクロアルキレン基若しくはアリーレン基を表す。 R 24a は、水素原子又は置換基を有していてもよい、アルキル基、シクロアルキル基、アラルキル基若しくはアリール基を表す。

【0080】 R_0 と R_1 、 R_0 と R_2 、 R_3 と R_4 が結合して形成した環としては、例えば $5\sim7$ 員環であり、具体的にはフッ素が置換したペンタン環、ヘキサン環、フラン環、ジオキソノール環、1. 3 ージオキソラン環等が挙げられる。 $R_{36}\sim R_{38}$ の内の2 つ、又は $R_{36}\sim R_{37}$ と R_{39} の内の2 つが結合して形成した環としては、例えば $3\sim8$ 員環であり、具体的にはシクロプロパン環、シクロペキサン環、フラン環、ピラン環等を好ましく挙げることができる。

【0081】 R_{14a} \sim R_{16a} の内の2つ、 R_{18a1} \sim R_{18a3} の内の2つ又は R_{18a1} 、 R_{18a2} 、 R_{18a4} の内の2つが結

合して形成する環としては、3~8員環が好ましく、例えばシクロプロパン環、シクロペンタン環、シクロヘキサン環、テトラメチレンオキシド環、ペンタメチレンオキシド環、ヘキサメチレンオキシド環、フラン環、ピラン環、ジオキソノール環、1、3-ジオキソラン環等を挙げることができる。

【0082】 Zは単環又は多環の脂環式基を構成する原子団を表し、形成される脂環式基としては、単環型として炭素数3~8個のものであって、例えばシクロプロピル基、シクロペンチル基、シクロペキシル基、シクロペンチル基を好ましく挙げることができる。多環型としては炭素数6~20個のものであって、例えばアダマンチル基、ノルボルニル基、イソボロニル基、カンファニル基、ジシクロペンチル基、aーピネル基、トリシクロデカニル基、テトシクロドデシル基、アンドロスタニル基等を好ましく挙げることができる。

【0083】またこれらの基に置換される置換基としては、アルキル基、シクロアルキル基、アリール基、アミン基、アミド基、ウレイド基、ウレタン基、ヒドロキシル基、カルボキシル基等の活性水素を有するものや、ハロゲン原子(フッ素原子、塩素原子、臭素原子、沃素原子)、アルコキシ基(メトキシ基、エトキシ基、プロボノイル基、ブレキシ基(アセトキシ基、プロパノイルオキシ基等)、アルコキシカルボニル基(アセトキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基等)、シアノ基、ニトロ基等が挙げられる。ここで、アルキル基、シクロアルキル基は、アルキル基は、更にフッソ原子、シクロアルキル基で置換されていても良い

【0084】本発明のフッ素基含有樹脂に含まれる、酸の作用により分解しアルカリ可溶性を示す基としては、例えば-O-C(R_{36})(R_{37})(R_{38})、-O-C(R_{36})(R_{37})(R_{38})、-O-COO-C(R_{36})(R_{37})(R_{38})、-O-COO-C(R_{36})(R_{37})(R_{38})、-O-C(R_{01})(R_{02})COO-C(R_{36})(R_{37})(R_{38})、-COO-C(R_{36})(R_{37})(R_{38})、-COO-C(R_{36})(R_{37})(R_{38})、-COO-C(R_{36})(R_{37})(R_{38})、-COO-C (R_{36}))(R_{38})、-COO-C (R_{36}))(R_{37})(R_{38})、-COO-C (R_{36}))(R_{38})、-COO-C (R_{36}))(R_{38}))、-COO-C (R_{36}))(R_{38}))(R_{37})(R_{38})、-COO-C (R_{36}))(R_{38}))、-COO-C (R_{36}))(R_{38}))、-COO-C (R_{36}))(R_{38}))、-COO-C (R_{36}))(R_{38}))(R_{37})(R_{38})、-COO-C (R_{36}))(R_{38}))、-COO-C (R_{36}))(R_{38}))(R_{37}))(R_{38})、-COO-C (R_{36}))(R_{38}))、-COO-C (R_{36}))(R_{38}))(R_{38})、-COO-C (R_{36}))(R_{38}))(R_{38})、-COO-C (R_{38}))(R_{38}))(R_{38}))(R_{38})、-COO-C (R_{38}))(R_{38}))(R_{38})、-COO-C (R_{38}))(R_{38})(R_{39})(R_{38}))(R_{38})(R_{38}))(R_{38})(R_{38}))(R_{38}))(

【0085】好ましい具体例としては、 t ープチル基、 t ーアミル基、 1 ーアルキルー1 ーシクロヘキシル基、 2 ーアルキルー2 ーアダマンチル基、 2 ーアダマンチルー2 ープロピル基、 2 ー (4 ーメチルシクロヘキシル) ー2 ープロピル基等の3級アルキル基のエーテル基又は

エステル基、1-アルコキシ-1-エトキシ基、テトラヒドロピラニル基等のアセタール基又はアセタールエステル基、t-アルキルカーボネート基、t-アルキルカルボニルメトキシ基等が好ましく挙げられる。

【0086】一般式(I)~(X)で示される繰り返し単位の含量の合計は、全ポリマー組成中において、一般的に1.0~80 モル%、好ましくは30~70 モル%、更に好ましくは35~65 モル%の範囲で使用される。一般式(XI)~(XIII)で表される繰り返し単位の含量は、全ポリマー組成中において、一般的に0~70 モル%、好ましくは10~60 モル%、更に好ましくは20~50 モル%の範囲で使用される。一般式(XV)~(XVII)で表される繰り返し単位の含量は、全ポリマー組成中において、一般的に0~70 モル%、好ましくは10~60 モル%、更に好ましくは20~50 モル%の範囲で使用される。

【0087】本発明の(A)の樹脂としては、一般式(I)~(III)で示される繰り返し単位を少なくとも一つと、一般式(IV)~(VI)で示される繰り返し単位を少なくとも一つを有することが更に好ましい。また、本発明の(A)の樹脂としては、一般式(IV)~(VI)で示される繰り返し単位を少なくとも一つと、一般式(VIII)~(X)で示される繰り返し単位を少なくとも一つを有することが上記と同様に更に好ましい。

【0088】更に、本発明の(A)の樹脂としては、一般式(IV)~(VII)で示される繰り返し単位を少なくとも一つと、一般式(XV)~(XVII)で示される繰り返し単位を少なくとも一つを有することが上記と同様に更に好ましい。これにより、樹脂における157nmの透過性を十分に高め、且つ耐ドライエッチング性の低下を抑えることができる。

【0089】本発明の(A)の樹脂が、一般式(I)~(III)で示される繰り返し単位を少なくとも一つと、一般式(IV)~(VI)で示される繰り返し単位を少なくとも一つを有する場合、一般式(I)~(III)で示される繰り返し単位の含量の合計は、全ポリマー組成中において、一般的に0~70モル%、好ましくは10~60モル%、更に好ましくは20~50モル%の範囲で使用される。一般式(IV)~(VI)で表される繰り返し単位の含量の合計は、全ポリマー組成中において、一般的に10~80モル%、好ましくは30~70モル%、更に好ましくは35~65モル%の範囲で使用される。

【0090】本発明の(A)の樹脂が、一般式(IV)~(VI)で示される繰り返し単位を少なくとも一つと、一般式(VIII)~(X)で示される繰り返し単位を少なくとも一つを有する場合、一般式(IV)~(VI)で示される繰り返し単位の含量の合計は、全ポリマー組成中において、一般的に10~80モル%、好ましくは30~70モル%、更に好ましくは35~65モル%の範囲で使用される。一般式(VIII)~(X)で表される繰り返し

単位の含量の合計は、全ポリマー組成中において、一般的に $0\sim7$ 0モル%、好ましくは $10\sim6$ 0モル%、更に好ましくは $20\sim5$ 0モル%の範囲で使用される。

【0091】本発明の(A)の樹脂が、一般式(IV)~(VII)で示される繰り返し単位を少なくとも一つと、一般式(XV)~(XVII)で示される繰り返し単位を少なくとも一つを有する場合、一般式(IV)~(VII)で示される繰り返し単位の含量の合計は、全ポリマー組成中において、一般的に10~80モル%、好ましくは30~70モル%、更に好ましくは35~65モル%の範囲で使用される。一般式(XV)~(XVII)で表される繰り返し単位の含量の合計は、全ポリマー組成中において、一般的に0~70モル%、好ましくは10~60モル%、更に好ましくは20~50モル%の範囲で使用される。

【0092】一般式 (IA) 及び (IIA) で示される 繰り返し単位を各々少なくとも1つ有するフッ素基含有 樹脂(A)に於いて、一般式(IA)で示される繰り返 し単位の含量は、一般的に5~80モル%、好ましくは 10~75モル%、更に好ましくは20~70モル%で ある。一般式(IA)及び(IIA)で示される繰り返 し単位を各々少なくとも1つ有するフッ素基含有樹脂 (A) に於いて、一般式 (IIA) で示される繰り返し 単位の含量は、一般的に5~80モル%、好ましくは1 0~70モル%、更に好ましくは20~65モル%であ る。一般式(IIA)及び(VIA)で示される繰り返 し単位を各々少なくとも1つ有するフッ素基含有樹脂 (A) に於いて、一般式 (IIA) で示される繰り返し 単位の含量は、一般的に5~80モル%、好ましくは1 0~70モル%、更に好ましくは20~65モル%であ る。一般式(IIA)及び(VIA)で示される繰り返 し単位を各々少なくとも1つ有するフッ素基含有樹脂

(A) に於いて、一般式 (VIA) で示される繰り返し単位の含量は、一般的に5~80モル%、好ましくは10~70モル%、更に好ましくは20~65モル%である。これらのフッ素基含有樹脂(A) に於いて、一般式(IIIA) で示される繰り返し単位の含量は、一般的に1~40モル%、好ましくは3~35モル%、更に好ましくは5~30モル%である。これらのフッ素基含有樹脂(A) に於いて、一般式(VIIA) で示される繰り返し単位の含量は、一般的に1~40モル%、好ましくは3~35モル%、更に好ましくは5~30モル%である。

【0093】本発明(A)の樹脂は、上記のような繰り返し構造単位以外にも、更に本発明のポジ型レジストの性能を向上させる目的で、他の重合性モノマーを共重合させても良い。

【0094】使用することができる共重合モノマーとしては、以下に示すものが含まれる。例えば、上記以外のアクリル酸エステル類、アクリルアミド類、メタクリル

酸エステル類、メタクリルアミド類、アリル化合物、ビニルエーテル類、ビニルエステル類、スチレン類、クロトン酸エステル類などから選ばれる付加重合性不飽和結合を1個有する化合物である。

【0095】具体的には、例えばアクリル酸エステル類、例えばアルキル(アルキル基の炭素原子数は1~10のものが好ましい)アクリレート(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸 t ーブチル、アクリル酸アミル、アクリル酸カクリル、アクリル酸エチルへ、アクリル酸カクチル、アクリル酸ー t ーオクチル、クロルエチルアクリレート、2ージメチルヒドロキシプロピルアクリレート、5ーヒドロキシペンチルアクリレート、トリメチロールプロパンモノアクリレート、ペンタエリスリトールモノアクリレート、グリシジルアクリレート、ベンジルアクリレート、ブルフリルアクリレート、テトラヒドロフルフリルアクリレート、など)アリールアクリレート(例えばフェニルアクリレートなど):

【0096】メタクリル酸エステル類、例えば、アルキ ル (アルキル基の炭素原子数は1~10のものが好まし い) メタクリレート(例えば、メチルメタクリレート、 エチルメタクリレート、プロピルメタクリレート、イソ プロピルメタクリレート、t-ブチルメタクリレート、 アミルメタクリレート、ヘキシルメタクリレート、シク ロヘキシルメタクリレート、ベンジルメタクリレート、 クロルベンジルメタクリレート、オクチルメタクリレー ト、2-ヒドロキシエチルメタクリレート、4-ヒドロ キシブチルメタクリレート、5ーヒドロキシペンチルメ タクリレート、2.2-ジメチル-3-ヒドロキシプロ ピルメタクリレート、トリメチロールプロパンモノメタ クリレート、ペンタエリスリトールモノメタクリレー ト、グリシジルメタクリレート、フルフリルメタクリレ ート、テトラヒドロフルフリルメタクリレートなど)、 アリールメタクリレート(例えば、フェニルメタクリレ ート、クレジルメタクリレート、ナフチルメタクリレー トなど);

【0097】アクリルアミド類、例えば、アクリルアミド、N-アルキルアクリルアミド、(アルキル基としては、炭素原子数1~10のもの、例えば、メチル基、エチル基、プロピル基、ブチル基、 t ーブチル基、ペプチル基、オクチル基、シクロヘキシル基などがある。)、N-アリールアクリルアミド(アリール基としては、例えば、シアノフェニル基、ヒドロキシフェニル基、ナフチルボキシフェニル基などがある。)、N-ジアルギルアクリルアミド(アルキル基としては、炭素原子数1~10のもの、例えば、メチル基、エチル基、ジクロヘキシル基などがあ

る。)、N. Nージアリールアクリルアミド(アリール基としては、例えばフェニル基などがある。)、NーメチルーNーフェニルアクリルアミド、NーヒドロキシエチルーNーメチルアクリルアミド、Nー2ーアセトアミドエチルーNーアセチルアクリルアミドなど:

.【0098】メタクリルアミド類、例えば、メタクリル アミド、N-アルキルメタクリルアミド(アルキル基と しては、炭素原子数1~10のもの、例えば、メチル 基、エチル基、 t ープチル基、エチルヘキシル基、ヒド ロキシエチル基、シクロヘキシル基などがある。)、N ーアリールメタクリルアミド(アリール基としては、フ ェニル基などがある。)、N. N-ジアルキルメタクリ ルアミド(アルキル基としては、エチル基、プロピル 基、ブチル基などがある。)、N. N-ジアリールメタ クリルアミド(アリール基としては、フェニル基などが ある。)、N-ヒドロキシエチル-N-メチルメタクリ ルアミド、N-メチル-N-フェニルメタクリルアミ ド、N-エチル-N-フェニルメタクリルアミドなど: アリル化合物、例えば、アリルエステル類(例えば、酢 酸アリル、カプロン酸アリル、カプリル酸アリル、ラウ リン酸アリル、パルミチン酸アリル、ステアリン酸アリ ル、安息香酸アリル、アセト酢酸アリル、乳酸アリルな ど)、アリルオキシエタノールなど:

【0099】ビニルエーテル類、例えば、アルキルビニ ルエーテル(例えば、ヘキシルビニルエーテル、オクチ ルビニルエーテル、デシルビニルエーテル、エチルヘキ シルビニルエーテル、メトキシエチルビニルエーテル、 エトキシエチルビニルエーテル、クロルエチルビニルエ ーテル、1-メチル-2、2-ジメチルプロピルビニル・ エーテル、2-エチルブチルビニルエーテル、ヒドロキ シエチルビニルエーテル、ジエチレングリコールビニル エーテル、ジメチルアミノエチルビニルエーテル、ジエ チルアミノエチルピニルエーテル、ブチルアミノエチル ビニルエーテル、ベンジルビニルエーテル、テトラヒド ロフルフリルビニルエーテルなど)、ビニルアリールエ ーテル (例えばピニルフェニルエーテル、ビニルトリル エーテル、ビニルクロルフェニルエーテル、ビニルー 2. 4ージクロルフェニルエーテル、ビニルナフチルエ ーテル、ピニルアントラニルエーテルなど);

【0100】ビニルエステル類、例えば、ビニルブチレート、ビニルイソブチレート、ビニルトリメチルアセテート、ビニルジエチルアセテート、ビニルバレート、ビ

ニルカプロエート、ビニルクロルアセテート、ビニルジクロルアセテート、ビニルメトキシアセテート、ビニルブトキシアセテート、ビニルフェニルアセテート、ビニルアセトアセテート、ビニルラクテート、ビニルーβーフェニルブチレート、ビニルシクロヘキシルカルボキシレート、安息香酸ビニル、サルチル酸ビニル、クロル安息香酸ビニル、テトラクロル安息香酸ビニル、ナフトエ酸ビニルなど;

【0101】スチレン類、例えば、スチレン、アルキル スチレン (例えば、メチルスチレン、ジメチルスチレ ン、トリメチルスチレン、エチルスチレン、ジエチルス チレン、イソプロピルスチレン、ブチルスチレン、ヘキ シルスチレン、シクロヘキシルスチレン、デシルスチレ ン、ベンジルスチレン、クロルメチルスチレン、トリフ ルオルメチルスチレン、エトキシメチルスチレン、アセ トキシメチルスチレンなど)、アルコキシスチレン(例 えば、メトキシスチレン、4-メトキシ-3-メチルス チレン、ジメトキシスチレンなど) 、ハロゲンスチレン (例えば、クロルスチレン、ジクロルスチレン、トリク ロルスチレン、テトラクロルスチレン、ペンタクロルス チレン、プロムスチレン、ジブロムスチレン、ヨードス チレン、フルオルスチレン、トリフルオルスチレン、2 ープロムー4ートリフルオルメチルスチレン、4ーフル オルー3ートリフルオルメチルスチレンなど)、カルボ キシスチレン、ビニルナフタレン:

【0102】クロトン酸エステル類、例えば、クロトン酸アルキル(例えば、クロトン酸ブチル、クロトン酸ヘキシル、グリセリンモノクロトネートなど):イタコン酸ジアルキル類(例えば、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチルなど):マレイン酸あるいはフマール酸のジアルキルエステル類(例えば、ジメチルマレレート、ジブチルフマレートなど)、無水マレイン酸、マレイミド、アクリロニトリル、メタクリロニトリル、マレイロニトリル等がある。その他、一般的には共重合可能である付加重合性不飽和化合物であればよい。

【0103】以下に一般式 (I) ~ (X) で表される繰り返し構造単位の具体例を示すが、本発明がこれに限定されるものではない。

[0104] [化33]

【化34】

[0105]

[0106]

【化35】

【化36】

[0107]

(F-43)

[化37]

(F-44)

[0108]

(F-42)

[0109]

【化38】

((. ·

[0113]

[0114]

[0115]

【化43】

【0116】また一般式 (XVI) ~ (XVII) で表される 【0117】 繰り返し構造単位の具体例を示すが、本発明がこれに限 定されるものではない。

【化44】

【0118】以下に、一般式 (IA) で表される繰り返 し構造単位の具体例を示すが、本発明がこれに限定され るものではない。

[0119]

【化45】

【0122】 【化48】

(A-18			【0124】 【化50】	
【0123】 【化49】	(A-20)		【0125 【化51】	(A-24)
	(A-20')	4		← ← ↓ ↓
*	(A-25) Br Br	(A25)	(A-27)	(A-28) F F ₂ CF ₃
[0126] [化52]	(A-29)	(A-30)	(A-31) 【0127 【化53】	(A-32)]
(A-33)	(A-34)	(A-35)	* .*] ^	

【0128】以下に、一般式(11A)で表される繰り返し構造単位の具体例を示すが、本発明がこれに限定されるものではない。

[0129]

【化54】

(11-1)

(11-2)

【0130】 【化55】 ~~~~~

· (II-1')

(II-1'")

【0131】 【化56】

【013²】 【化57】

(II-3')

【0133】更に、一般式 (IIA) で表される繰り返 し単位の具体例として、先に例示した (F-40) ~ (F-45) を挙げることができる。

【0134】以下に、一般式 (VIA) で表される繰り返し構造単位の具体例を示すが、本発明がこれらに限定されるものではない。

[0135]

【化58】

[0136]

[0137]

[0138] 【化61】

[0139] 【化62】

(B-12")

【0140】更に、一般式(VIA)で表される繰り返 し単位の具体例として先に例示した(F-29)~(F -38) 及び (F-47) ~ (F-54) を挙げること

【0141】以下に、一般式(IIIA)で表される繰 り返し構造単位の具体例を示すが、本発明がこれに限定 されるものではない。

[0142]

[0143] 【化64】

$$CH_2$$
 CH_3
 CH_2
 CH_3
 CH_2
 CH_3
 CH_2
 CH_3
 CH_3
 CH_2
 CH_3
 CH_3

【0144】以下に、一般式 (VIIA) で表される繰 り返し構造単位の具体例を示すが、本発明がこれに限定 されるものではない。

[0145]

【化65】

-{CH₂CH}	CH ₂ C-+ CN	ÇH₂CI +CH₂Ç-) CN
(VII-1)	(VII-2)	(VII-3)
CH ₂ F +CH ₂ C-+ CN (VII-4)	ÇN -{-CH₂-C-} - CN (VII-5)	-{ch-ch} ng cn (VII-8)
CH ₃ (-CH ₂ C)- O=C O-CH ₂ CH ₂ -CN	(CH₂ CH)	CH ₂ CH ₃
(VII-7)	(VII-8)	(VII-9)

【0146】上記具体例で表される繰り返し構造単位 は、各々1種で使用しても良いし、複数を混合して用い ても良い。上記繰り返し構造単位を有する本発明の樹脂 (A) の好ましい分子量は、重量平均で1, 000~2 00,000であり、更に好ましくは3.000~2 0.000の範囲で使用される。分子量分布は1~10 であり、好ましくは1~3、更に好ましくは1~2の範 囲のものが使用される。分子量分布の小さいものほど、 解像度、レジスト形状、及びレジストパターンの側壁が スムーズであり、ラフネス性に優れる。

【0147】本発明の樹脂(A)の添加量は組成物の全

固形分を基準として、一般的に $50\sim100$ 重量%、好ましくは $60\sim98$ 重量%、更に好ましくは $65\sim95$ 重量%の範囲で使用される。

【10148】 [2] 本発明(B) の活性光線又は放射線の照射により、酸を発生する化合物

本発明で使用される活性光線又は放射線の照射により分解して酸を発生する化合物としては、光カチオン重合の光開始剤、光ラジカル重合の光開始剤、色素類の光消色剤、光変色剤、あるいはマイクロレジスト等に使用されている公知の光(400~200nmの紫外線、遠紫外線、特に好ましくは、g線、h線、i線、KrFエキシマレーザー光)、ArFエキシマレーザー光、電子線、X線、分子線又はイオンビームにより酸を発生する化合物及びそれらの混合物を適宜に選択して使用することができる。

【0149】また、その他の本発明に用いられる活性光 線又は放射線の照射により酸を発生する化合物として は、たとえば S. l. Schlesinger, Photogr. Sci. En g., 18,387 (1974), T. S. Bal et al, Polymer, 21, 4 23(1980)等に記載のジアゾニウム塩、米国特許第4,069. 055号、同4,069.056号、同 Re 27,992号、特開平3-1401 40号等に記載のアンモニウム塩、D. C. Necker et al. Macromolecules, 17, 2468(1984), C. S. Wen et al. T eh. Proc. Conf. Rad. Curing ASIA, p478 Tokyo, Oct(1 988)、米国特許第4,069,055号、同4.069,056号等に記載 のホスホニウム塩、J. V. Crivello et al, Macromorec ules, 10(6), 1307(1977), Chem. & Eng. News, Nov. 2 8, p31(1988)、欧州特許第104,143号、同339,049号、同 第410,201号、特開平2-150848号、特開平2-296514 号等 に記載のヨードニウム塩、J. V.Crivello et al. Polym er J. 17, 73(1985), J. V. Crivello et al., J. Org. Chem., 43. 3055(1978), W. R. Watt et al. J. Polyme r Sci., Polymer Chem.Ed., 22, 1789(1984), J. V. Cr ivello et al. Polymer Bull., 14, 279(1985), J. V. Crivello et al. Macromorecules, 14(5), 1141(198 1), J. V. Crivello et al. J. Polymer Sci., Polymer Chem. Ed., 17. 2877(1979)、欧州特許第370,693号、 同161,811号、同410,201号、同339,049号、同233,567 号、同297,443号、同297,442号、米国特許第4,933,377 号、同3.902.114号、同4.760.013号、同4.734.444号、 同2.833.827号、獨国特許第2,904,626号、同3,604,580 号、同3.604.581号等に記載のスルホニウム塩、J. V. C rivello et al. Macromorecules. 10(6). 1307(1977), J. Y. Crivello et al. J. Polymer Sci., Polymer Che m. Ed., 17. 1047(1979)等に記載のセレノニウム塩、C. S. Wen et al. Teh. Proc.Conf. Rad. Curing ASIA, p 478 Tokyo, Oct(1988)等に記載のアルソニウム塩等のオ ニウム塩、米国特許第3,905,815号、特公昭46-4605号、 特開昭48-36281号、特開昭55-32070号、特開昭60-23973 .6号、特開昭61-169835号、特開昭61-169837号、特開昭6

2-58241号、特開昭62-212401号、特開昭63-70243号、特 開昭63-298339号等に記載の有機ハロゲン化合物、K. Me ier et al. J. Rad. Curing, 13(4),26(1986), T. P. G ill et al. lnorg. Chem., 19, 3007(1980), D. Astru c. Acc. Chem. Res., 19(12), 377(1896)、特開平2-161 445号等に記載の有機金属/有機ハロゲン化物、S. Haya se et al, J. Polymer Sci., 25, 753(1987), E. Reich manis et al. J. Pholymer Sci., Polymer Chem. Ed., 23. 1(1985), Q. Q. Zhuetal, J. Photochem., 36, 85, 39. 317(1987). B. Amit et al. TetrahedronLett. (2 4)2205(1973), D. H. R. Barton et al, J. Chem Soc., 3571(1965), P. M. Collins et al. J. Chem. Soc., P erkin 1, 1695(1975)、M. Rudinstein et al. Tetrahed ron Lett., (17), 1445(1975), J. W. Walker et al, J. Am. Chem. Soc., 110, 7170(1988), S. C. Busman e t al. J. Imaging Technol., 11(4), 191(1985), H. M. Houlihan et al. Macromolecules, 21, 2001(1988), P.M.Collins et al. J. Chem. Soc., Chem. Commun., 5 32(1972), S. Hayase et al. Macromolecules, 18, 179 9(1985), E. Reichmanis et al. J. Electrochem. Soc., Solid State Sci. Technol., 130(6), F. M. Houlihan et al. Macromolcules, 21,2001(1988)、欧州特許第02 90,750号、同046,083号、同156,535号、同271,851号、 同0,388,343号、米国特許第3,901,710号、同4,181,531 号、特開昭60-198538号、特開昭53-133022号等に記載の O-ニトロベンジル型保護基を有する光酸発生剤、M.TU NOOKA et al. Polymer Preprints Japan. 35(8). G. Be rner et al, J. Rad. Curing, 13(4), W. J. Mijs et al. Coating Technol., 55(697),45(1983), Akzo, H. A dachi et al, Polymer Preprints, Japan. 37(3)、欧州 特許第0199.672号、同84515号、同044.115号、同618.56 4号、同0101,122号、米国特許第4,371,605号、同4,431, 774 号、特開昭64-18143号、特開平2-245756号、特開平 3-140109号等に記載のイミノスルフォネート等に代表さ れる光分解してスルホン酸を発生する化合物、特開昭61 -166544号等に記載のジスルホン化合物を挙げることが できる。

【0150】また、これらの活性光線又は放射線の照射により酸を発生する基、あるいは化合物をポリマーの主鎖又は側鎖に導入した化合物、たとえば、M. E. Woodhouseet al. J. Am. Chem. Soc.. 104, 5586(1982)、S. P. Pappas et al. J. Imaging Sci.. 30(5), 218(1986)、S. Kondo et al. Makromol. Chem. Rapid Commun.. 9, 625(1988)、Y. Yamada et al. Makromol. Chem.. 152, 153, 163(1972)、J. V. Crivello et al. J. Polymer Sci.. Polymer Chem. Ed.. 17, 3845(1979)、米国特許第3,849,137号、獨国特許第3914407、特開昭63-26653号、特開昭63-164824号、特開昭62-69263号、特開昭63-146038号、特開昭63-163452号、特開昭62-153853号、特開昭63-146029号等に記載の化合物を用いること

ができる。

【0151】さらにV. N. R. Pillai, Synthesis, (1). 1(1980)、A. Abad et al. Tetrahedron Lett., (47)45 55(1971)、D. H. R. Barton et al. J. Chem. Soc., (C). 329(1970)、米国特許第3,779,778号、欧州特許第1 26,712号等に記載の光により酸を発生する化合物も使用することができる。

【0152】上記活性光線又は放射線の照射により分解して酸を発生する化合物の中で、特に有効に用いられるものについて以下に説明する。

【0153】(1)トリハロメチル基が置換した下記ー 般式(PAG1)で表されるオキサゾール誘導体又は一 般式(PAG2)で表されるS-トリアジン誘導体。

[0154] [化66]

【0155】式中、R²⁰¹は置換もしくは未置換のアリール基、アルケニル基、R²⁰²は置換もしくは未置換のアリール基、アルケニル基、アルキル基、-C (Y)₃を示す。Yは塩素原子又は臭素原子を示す。

【0156】具体的には以下の化合物を挙げることができるがこれらに限定されるものではない。

【0157】 【化67】

【0158】 【化68】

【0160】(2)下記の一般式(PAG3)で表されるヨードニウム塩、又は一般式(PAG4)で表されるスルホニウム塩。

(PAG2-10)

[0161]

(PAG2-9)

[0159] [化69]

【0162】ここで式Arl、Ar2は、各々独立、に置換もしくは未置換のアリール基を示す。好ましい置換基としては、アルキル基、ハロアルキル基、シクロアルキル基、アリール基、アルコキシ基、ニトロ基、カルボキシル基、アルコキシカルボニル基、ヒロドキシ基、メルカプト基及びハロゲン原子が挙げられる。

【0163】 R^{203} 、 R^{204} 、 R^{205} は、各々独立に、置換もしくは未置換のアルキル基、アリール基を示す。好ましくは、炭素数 $6\sim14$ のアリール基、炭素数 $1\sim8$ のアルキル基及びそれらの置換誘導体である。好ましい

置換基としては、アリール基に対しては炭素数 1 ~ 8 の アルコキシ基、炭素数1~8のアルキル基、シクロアル キル基、ニトロ基、カルボキシル基、メルカプト基、ヒ ロドキシ基及びハロゲン原子であり、アルキル基に対し ては炭素数1~8のアルコキシ基、カルボキシル基、ア ルコシキカルボニル基である。

【0164】Z-はアニオンを表し、具体的には置換基 を有していても良いアルキルスルホン酸、シクロアルキ ルスルホン酸、パーフルオロアルキルスルホン酸、アリ ールスルホン酸(例えば置換基を有していても良いベン ゼンスルホン酸、ナフタレンスルホン酸、アントラセン スルホン酸) 等の各アニオンが挙げられる。

【0165】またR²⁰³、R²⁰⁴、R²⁰⁵のうちの2つ及 びAr¹、Ar²はそれぞれの単結合又は置換基を介して 結合してもよい。

【0166】具体例としては以下に示す化合物が挙げら れるが、これらに限定されるものではない。

[0167]

[(
$$\{t:7:1:\}$$
]
$$F_3C$$

$$SO_3^{\Theta} (PAG3-1)$$

$$C_4H_9$$

$$C_4H_9$$

$$F \longrightarrow F$$

$$SO_3^{\Theta} (PAG3-2)$$

$$F \longrightarrow F$$

$$F \longrightarrow F$$

$$F \longrightarrow F$$

$$F \longrightarrow F$$

[0168] 【化72】

$$CF_3SO_3 \stackrel{\Theta}{\rightarrow}$$

$$CF_3SO_3 \stackrel{\Theta}{\rightarrow}$$

$$CF_3SO_3 \stackrel{\Theta}{\rightarrow}$$

$$C_4F_9SO_3 \stackrel{\Theta}{\rightarrow}$$

$$C_7AG_3 - 10 \stackrel{\Theta}{\rightarrow}$$

$$CH_3 \qquad C_4F_9SO_3 \stackrel{\Theta}{\rightarrow}$$

$$CH_4 \qquad C_4F_9SO_4 \stackrel{\Theta}{\rightarrow}$$

[0170]

【化74】。

[0171] [化75]

(PAG4-7)

[0172] 【化76】 (PAG4-8) CF₃SO₃⊖ (PAG4-9) C₄F₉SO₃ Θ (PAG4-10) H₃C HO-H₃C (PAG4-11) C₄H₉ (PAG4-12) H₃CO CF3SO3 нзсо (PAG4-13) [0173] 【化77】

(a)
$$C_4H_9$$
(b) $C_4F_9SO_3^{\Theta}$
(c) C_4H_9
(c) C_4H_9
(c) C_4H_9
(c) C_4H_9
(c) C_4H_9
(c) $C_4F_9SO_3^{\Theta}$

[0175]

【化79】

$$\begin{cases}
(PAG4-26) \\
(PAG4-26)
\end{cases} S 2CF_3SO_3^{\Theta}$$

$$\begin{cases}
(PAG4-27) \\
(PAG4-27)
\end{cases} S 2 H_3C - CH_3 SO_3^{\Theta}$$

$$(PAG4-28) OCH_3 SO_3^{\Theta}$$

$$(PAG4-28) OCH_3
\end{cases} SO_3^{\Theta}$$

$$(PAG4-29) F F F$$

$$(PAG4-29) F F F$$

$$(PAG4-29) GO_3S - G$$

[0176]

$$(PAG4-31)$$

$$F \longrightarrow SO_3^{\Theta}$$

$$(PAG4-31)$$

$$F \longrightarrow F$$

【0177】一般式 (PAG3)、 (PAG4) で示される上記オニウム塩は公知であり、例えばJ. W. Knapczyk et al, J. Am. Chem. Soc., 91, 145(1969)、A. L. Maycok et al, J. Org. Chem., 35, 2532, (1970)、E. Goethas et al, Bull. Soc. Chem. Belg., 73, 546, (1964)、H. M. Leicester、J. Ame. Chem. Soc., 51, 3587 (1929)、J. V. Crivello et al, J. Polym. Chem. Ed., 18, 2677(1980)、米国特許第2,807,648号及び同4,247,473号、特開昭53-101331号等に記載の方法により合成することができる。

【0178】(3)下記一般式(PAG5)で表される ジスルホン誘導体又は一般式(PAG6)で表されるイ ミノスルホネート誘導体。

[0179]

【化81】

[化80]

$$Ar^3 - SO_2 - SO_2 - Ar^4$$
 $R^{206} - SO_2 - O - N$ (PAG5) (PAG6)

【0180】式中、Ar³、Ar⁴は各々独立に置換もしくは未置換のアリール基を示す。R²⁰⁶は置換もしくは未置換のアルキル基、アリール基を示す。Aは置換もしくは未置換のアルキレン基、アルケニレン基、アリーレン基を示す。

【0181】具体例としては以下に示す化合物が挙げられるが、これらに限定されるものではない。

[0182]

【化82】

$$H_3C$$
 \longrightarrow SO_2 \longrightarrow CH_3 (PAG5-2)

$$H_3C$$
 SO_2 SO_2 CI

$$F_3C$$
 $-SO_2$ $-SO_2$ $-CF_3$ (PAG5-5)

$$H_5C_2O$$
 SO_2 SO_2 CI $(PAG5-7)$

【0183】 【化83】

[0184] [化84]

【化86】

(PAG6-14)

$$N-0-SO_2$$
 F
 F
 F

(PAG6-15)

【0187】 【化87】

(PAG6-17)

$$0 \\ N-0-SO_2 \\ F \\ F$$

(PAG6-19)

O (PAG6-20)

【0188】(4)下記一般式 (PAG7) で表される

ジアゾジスルホン誘導体。

[0189]

【化88】

【0190】ここでRは、直鎖、分岐又は環状アルキル基、あるいは置換してもよいアリール基を表す。 具体例 としては以下に示す化合物が挙げられるが、これらに限 定されるものではない。

[0191]

【化89】

$$\begin{array}{c|c}
O & N_2 & O \\
S & \parallel^2 & \parallel^2 \\
O & O \\
O & O
\end{array}$$
(PAG7-1)

(PAG7-3)

(PAG7-5)

【0192】本発明(B)の活性光線又は放射線の照射により、酸を発生する化合物の添加量は、本発明の組成物の全固形分を基準として、0.1~20重量%であり、好ましくは0.5から10重量%、更に好ましくは1~7重量%である。またこれらの化合物は単独で使用しても良く、複数を混合して使用しても良い。

【0193】[3]本発明(C)のフッ素系及び/又は シリコン系界面活性剤

本発明のポジ型フォトレジスト組成物には、(C)フッ素系及び/又はシリコン系界面活性剤を含有する。すなわち、本発明のポジ型フォトレジスト組成物には、フッ素系界面活性剤、シリコン系界面活性剤及びフッ素原子と珪素原子の両方を含有する界面活性剤のいずれか、あ

るいは2種以上を含有する。これらフッ素系及び/又は シリコン系界面活性剤の添加は、現像欠陥の抑制及び塗 布性の向上に効果を有する。

【0194】これらの界面活性剤として、例えば特開昭62-36663号、特開昭61-226746号、特開昭61-226745号、特開昭62-170950号、特開昭63-34540号、特開平7-230165号、特開平8-62834号、特開平9-54432号、特開平9-5988号、米国特許5405720号、米国特許5360692号、米国特許529881号、米国特許5296330号、米国特許5436098号、米国特許5576143号、米国特許5296143号、米国特許5294511号、及び、米国特許5824451号記載の界面活性剤を挙げることができ、下記市販の界面活性剤をそのまま用いることもできる。このような市販の界面活性剤として、例えばエフトップEF301、EF303、EF352(新秋田化成(株)製)、フロラードFC430、431(住友スリーエム(株)製)、メガファックF171、F173、F176、F189、R08(大日本インキ(株)製)、アサヒガードAG710、サーフロンSー382、SC101、102、103、104、105、106(旭硝子

(株) 製)、トロイゾルS-366(トロイケミカル社製)等のフッ素系界面活性剤又はシリコン系界面活性剤を挙げることができる。またポリシロキサンポリマーKP-341(信越化学工業(株)製)もシリコン系界面活性剤として用いることができる。

【0195】界面活性剤の配合量は、本発明の組成物中の固形分を基準として、通常0.001重量%~2重量%、好ましくは0.01重量%~1重量%である。これらの界面活性剤は単独で添加してもよいし、また、いくつかの組み合わせで添加することもできる。

【0196】[4]本発明(D)の酸拡散抑制剤本発明の組成物には、活性光線又は放射線の照射後、加熱処理までの経時による性能変動(パターンのT- to p形状形成、感度変動、パターン線幅変動等)や塗布後の経時による性能変動、更には活性光線又は放射線の照射後、加熱処理時の酸の過剰な拡散(解像度の劣化)を防止する目的で、酸拡散抑制剤を添加することが好ましい。酸拡散抑制剤としては、有機塩基性化合物であり、例えば塩基性窒素を含有する有機塩基化合物であり、共役酸のpKa値で4以上の化合物が好ましく使用される。具体的には下記式(A)~(E)の構造を挙げることができる。

[0197] [化90]

【0198】ここで、R²⁵⁰、R²⁵¹ 及びR²⁵² は、同一でも異なってもよく、水素原子、炭素数 1~6個のアルキル基、炭素数 1~6個のアミノアルキル基、炭素数 1~6個のヒドロキシアルキル基又は炭素数 6~20個の置換もしくは非置換のアリール基を表し、ここで、R²⁵¹とR²⁵²は、互いに結合して環を形成してもよい。R²⁵³、R²⁵⁴、R²⁵⁵ 及びR²⁵⁶ は、同一でも異なってもよく、炭素数 1~6個のアルキル基を表す。更に好ましい化合物は、一分子中に異なる化学的環境の窒素原子を2個以上有する含窒素塩基性化合物であり、特に好ましくは、置換もしくは未置換のアミノ基と窒素原子を含む環構造の両方を含む化合物もしくはアルキルアミノ基を有する化合物である。

【0199】好ましい具体例としては、置換もしくは未 置換のグアニジン、置換もしくは未置換のアミノピリジ ン、置換もしくは未置換のアミノアルキルピリジン、置 換もしくは未置換のアミノピロリジン、置換もしくは未 置換のインダゾール、イミダゾール、置換もしくは未置 換のピラゾール、置換もしくは未置換のピラジン、置換 もしくは未置換のピリミジン、置換もしくは未置換のプ リン、置換もしくは未置換のイミダゾリン、置換もしく は未置換のピラゾリン、置換もしくは未置換のピペラジ ン、置換もしくは未置換のアミノモルフォリン、置換も しくは未置換のアミノアルキルモルフォリン等が挙げら れる。好ましい置換基は、アミノ基、アミノアルキル 基、アルキルアミノ基、アミノアリール基、アリールア ミノ基、アルキル基、アルコキシ基、アシル基、アシロ キシ基、アリール基、アリールオキシ基、ニトロ基、水 酸基、シアノ基である。

【0200】特に好ましい化合物として、グアニジン、 1、1ージメチルグアニジン、1、1、3、3、一テト ラメチルグアニジン、イミダゾール、2ーメチルイミダ ゾール、4ーメチルイミダゾール、Nーメチルイミダゾ ール、2ーフェニルイミダゾール、4、5ージフェニル イミダゾール、2、4、5ートリフェニルイミダゾー 【0201】3-rミノピロリジン、ピペラジン、Nー(2-rミノエチル)ピペラジン、Nー(2-rミノエチル)ピペリジン、4-rミノー2、2, 6, 6-rトラメチルピペリジン、4-rピペリジノピペリジン、2-rミノピペリジン、1-(2-rミノエチル)ピロリジン、ピラゾール、3-rミノー5-xチルピラゾール、5-rミノー3-xチルー1-p-hリルピラゾール、ピラジン、2-(rミノx チル)-5-x チルピラジン、2-(rミノx チル)-5-x チルピラジン、4-6 ージヒドロキシピリミジン、2-rミノピリン、3-rビリン、1-rビリン、1-rビラゾン、1-rビラゾン、1-rビラゾン、1-rビラゾン、1-rビラゾン、1-rビラゾン、1-rビラゾン、1-rビラゾン、1-rビラゾン、1-rビラゾン、1-rビラゾン、1-rビラゾン、1-rビラゾン、1-rビラゾン、1-rビラゾン、1-rビラゾン、1-rビラゾン、1-rビラゾン、1-rビラゾリン、1-rビラゾリン、1-rビラゾン、1-rビカンなどが挙げられるがこれに限定であるいは1-r

【0202】酸発生剤と有機塩基性化合物の組成物中の使用割合は、(酸発生剤) / (有機塩基性化合物) (モル比) = 2.5~300であることが好ましい。該モル比が2.5未満では低感度となり、解像力が低下する場合があり、また、300を越えると露光後加熱処理までの経時でレジストパターンの太りが大きくなり、解像力も低下する場合がある。(酸発生剤) / (有機塩基性化合物) (モル比) は、好ましくは5.0~200、更に好ましくは7.0~150である。

【0203】[5]本発明の組成物に使用されるその他の成分

(1) 溶剤類

本発明の組成物は、上記各成分を溶解する溶媒に溶かし て支持体上に塗布する。ここで使用する溶媒としては、 エチレンジクロライド、シクロヘキサノン、シクロペン タノン、2-ヘプタノン、1-ブチロラクトン、メチル エチルケトン、エチレングリコールモノメチルエーテ ル、エチレングリコールモノエチルエーテル、2ーメト キシエチルアセテート、エチレングリコールモノエチル エーテルアセテート、プロピレングリコールモノメチル エーテル、プロピレングリコールモノエチルエーテル、 プロピレングリコールモノメチルエーテルアセテート、 トルエン、酢酸エチル、乳酸メチル、乳酸エチル、メト キシプロピオン酸メチル、エトキシプロピオン酸エチ ル、ピルピン酸メチル、ピルビン酸エチル、ピルビン酸 プロピル、N、Nージメチルホルムアミド、ジメチルス ルホキシド、N-メチルピロリドン、テトラヒドロフラ ン等が好ましく、これらの溶媒を単独あるいは混合して 使用する。

【0204】精密集積回路素子の製造などにおいてレジスト膜上へのパターン形成工程は、基板(例:シリコン/二酸化シリコン皮覆、ガラス基板、1TO基板等の透明基板等)上に、本発明のポジ型フォトレジスト組成物を塗布し、次に活性光線又は放射線描画装置を用いて照射を行い、加熱、現像、リンス、乾燥することにより良好なレジストパターンを形成することができる。

【0205】本発明のポジ型フォトレジスト組成物の現 像液としては、水酸化ナトリウム、水酸化カリウム、炭· 酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウ ム、アンモニア水等の無機アルカリ類、エチルアミン、 n-プロピルアミン等の第一アミン類、ジエチルアミ ン、ジーnープチルアミン等の第二アミン類、トリエチ ルアミン、メチルジエチルアミン等の第三アミン類、ジ メチルエタノールアミン、トリエタノーアミン等のアル コールアミン類、テトラメチルアンモニウムヒドロキシ ド、テトラエチルアンモニウムヒドロキシド、コリン等 の第四級アンモニウム塩、ピロール、ピペリジン等の環 状アミン類、等のアルカリ類の水溶液を使用することが できる。更に、上記アルカリ類の水溶液にイソプロピル アルコール等のアルコール類、ノニオン系等の界面活性 剤を適当量添加して使用することもできる。これらの現 像液の中で好ましくは第四アンモニウム塩、更に好まし くは、テトラメチルアンモニウムヒドロオキシド、コリ ンである。

[0206]

【実施例】以下、本発明を実施例により更に詳細に説明 するが、本発明の内容がこれにより限定されるも<u>のでは</u> ない。

【0207】 [合成例1] 1しオートクレープ中にノル ポルネン9. 4g(0.10モル)、ノルポルネン-2 ーカルポン酸 t ーブチルエステル19.4g(0.10 モル)の1.1.2-トリクロロートリフルオロエチレ ン150m1溶液を入れ、窒素雰囲気下200psiに 加圧した。更にテトラフロオロエチレン20g(0.2 0モル)を注入し、撹拌下、50℃に加熱した。この反 応液にジ (4-t-ブチルシクロヘキシル) パーオキシ ジカーポネート1. 2gの1, 1, 2ートリクロロート リフルオロエチレン15m1溶液を20分かけて注入 し、更に20時間撹拌を続けた。反応終了後、反応液を メタノール2L中に激しく撹拌しながら投入し、白色の 樹脂を析出させた。析出した樹脂を濾別、真空下乾燥 後、本発明の樹脂(1)23.5gを得た。GPC測定 により、樹脂 (1) の分子量は重量平均 (Mw) で6. 200であった。またCI3-NMR測定により、樹脂

(1) の組成を調べたところ、モル比で構造例(F-1) //ルボルネン/(B-16)=45/30/25であった。

【0208】 [合成例2] 下記モノマー (a) 14.3

g (0. 04モル) 、無水マレイン酸3. 9g (0. 0 4モル)、tープチルアクリレート2.6g(0.02 モル)をMEK100mlに溶解し、窒素気流下、70 ℃に加熱した。重合開始剤として、V-601 (和光純 薬工業(株)製)0.2gを加え、3時間撹拌した。更 にV-601を0.2g追加し、4時間撹拌を続けた。 その後、反応液をtープチルメチルエーテル1L中に激 しく撹拌しながら投入し、白色の樹脂を析出させた。析 出した樹脂を濾別、真空下乾燥後、本発明の樹脂(2) 12. 1gを得た。GPC測定により、樹脂(2)の分 子量は重量平均 (Mw) で8, 900であった。またC 13-NMR測定により、樹脂(2)の組成を調べたとこ ろ、モル比で構造例(F-21)/無水マレイン酸/ (B-4) = 39/38/23 cbock.

[0209] 【化91】

【0210】[合成例3]下記モノマー(b) 6. 7g . (0.015モル)、2ーメチルー2ーアダマンタンメ タクリレート1. 4g (0. 006モル)、メバロニッ クラクトンメタクリレート1.8g(0.009モル) を1-メトキシー2-プロパノール30m1に溶解し、 窒素気流及び攪拌下、70℃にて重合開始剤2,2'-アゾピス (2, 4-ジメチルバレロニトリル) (和光純 薬工業 (株) 製:商品名V-65) 0. 1 gとモノマー (b) 15. 6g (0. 035モル)、2-メチル-2 -アダマンタンメタクリレート3.3g(0.014モ ル)、メバロニックラクトンメタクリレート4.2g (0. 021モル) の1ーメトキシー2ープロパノール 70m1溶液を2時間かけて滴下した。2時間後開始剤 0. 1gを追加し、更に2時間反応を行った。その後9 0℃に昇温し攪拌を1時間続けた。反応液を放冷後、イ オン交換水/メタノール(1/1)1Lに激しく攪拌し ながら投入することにより、白色樹脂を析出させた。得 られた樹脂を減圧下で乾燥後、本発明の樹脂(3)1 5.8gを得た。GPCにて分子量を測定したところ、 重量平均 (Mw) で10, 200であった。またC13-NMR測定により、樹脂 (3) の組成を調べたところ、 モル比で構造例 (F-30) / (B-7) / (B-1 1) = 48/21/31 cb oc.

[0211] 【化92】

$$\begin{array}{c} \text{CH}_2 = \zeta \\ \text{CH}_2 = \zeta \\ \text{O} = \zeta \\ \text{CH}_2 - \zeta - \text{O} \\ \text{CF}_3 \\ \text{CF}_3 \end{array}$$

【0212】[合成例4~12]以下、同様にして表1 に示す本発明 (A) の樹脂を合成した。

[0213] 【表1】

表1。本発	明の樹脂(A)の合成	
樹脂(A)	組成(樹脂中の構造単位とモル比)	分子量
(4)	(F-1)/(B-20)/(B-23)	5,800
	= 45/25/30	
(5)	(F-1)/(F-21)/(B-16)	4,500
1	= 48/33/19	
(6)	(F-22)/無水マレイン酸/ (B-8)	8,700
	= 42/39/19	
(7)	(F-30)/(F-48)/(B-2)	12,600
	= 42/17/41	
(8)	(F-50)/(B-7)/(B-11)	9,200
	= 3 1 / 3 5 / 3 4	
(9)	(F-55)/無水マレイン酸/ (B-4)	7,400
	= 40/37/23	
(10)	(F-16)/無水マレイン酸/(B-B)	6,300
	= 43/34/23	·
(11)	(F-26)/無水マレイン酸/(B-12)	8,900
-	= 4 0 / 3 3 / 2 7	
(12)	(F-31)/(F-42)/(B-8)	11,600
	= 44/18/38	<u> </u>

【0214】 [合成例13] 1 Lオートクレープ中にノ ルポルネン9. 4g(0.10モル)、下記モノマー (a) 35. 8g (0. 10モル) の1. 1. 2ートリ クロロートリフルオロエチレン150m1溶液を入れ、 窒素雰囲気下200psiに加圧した。更にテトラフロ オロエチレン20g(0.20モル)を注入し、撹拌

下、50℃に加熱した。この反応液にジ(4-t-ブチ ルシクロヘキシル) パーオキシジカーポネート1.2g の1. 1. 2-トリクロロートリフルオロエチレン15 ml溶液を20分かけて注入し、更に20時間撹拌を続 けた。反応終了後、反応液をメタノール2L中に激しく 撹拌しながら投入し、白色の樹脂を析出させた。 析出し

た樹脂を越別、真空下乾燥後、本発明の樹脂(13)37.4gを得た。GPC測定により、樹脂(13)の分子量は重量平均(Mw)で8.800であった。また C_{13-NMR} 測定により、樹脂(13)の組成を調べたところ、モル比で構造例(F-1)/(F-21)/ノルボルネン=48/30/22であった。

[0215] [化93]

【0216】 [合成例14] 合成例13のモノマー(a) の代わりに、下記モノマー(c) 32.2g(0.04モル)を用い、以下合成例13と同様にし

て、本発明の樹脂 (14) 34. 1gを合成した。GP C測定により、樹脂 (14) の分子量は重量平均 (Mw) で7. 400であった。またC¹³-NMR測定により、樹脂 (14) の組成を調べたところ、モル比で構造例 (F-1) / (F-15) / ノルボルネン=49/25/26であった。

[0217]

【化94】

【0218】 [合成例15~22] 以下、同様にして表 2に示す本発明(A)の樹脂を合成した。

[0219]

【表2】

表2.本発明の樹脂(A)の合成

表 2 . 本兒	B明の樹脂(A)の合成	
樹脂(A)	組成(樹脂中の構造単位とモル比)	分子量
(15)	(F-1)/(F-16)/ノルポルネン	8,700
	= 45/26/29	· · · · · ·
(16)	(F-1)/(F-20)/(B-4)	9,300
	= 48/30/22	
(17)	(F-2)/(F-22)/(B-4)	7,900
	= 4 2 / 3 9 / 1 9	
(18)	(F-7)/(F-20)/ノルポルネン	6,400
	= 35/33/32	
(19)	(F-12)/(F-21)/ノルポルネ	5,800
	×	
	= 23/38/39	
(20)	(F-1)/(F-25)/(B-4)	7,200
	= 48/23/29	
(21)	(F-1)/(F-16)/(B-16)	9,500
	= 4 4 / 2 6 / 4 0	
(22)	(F-1)/(F-15)/(B-16)	10,900
	/ ノルポルネン	
1	= 38/21/21/20	

【0220】 [合成例23] 下記モノマー(a)14. 3g (0. 04モル) 、無水マレイン酸3. 9g (0. 04モル)、ノルボルネン-2-カルボン酸パーフルオ ロオクチルエチル11.7g(0.02モル)をMEK 100mlに溶解し、窒素気流下、70℃に加熱した。 重合開始剤として、V-601(和光純薬工業(株) 製) 0. 2gを加え、3時間撹拌した。更にV-601 を0. 2g追加し、4時間撹拌を続けた。その後、反応 液をt-ブチルメチルエーテル1L中に激しく撹拌しな がら投入し、白色の樹脂を析出させた。析出した樹脂を 濾別、真空下乾燥後、本発明の樹脂 (23) 16. 2 g を得た。GPC測定により、樹脂(23)の分子量は重 量平均 (Mw) で8, 700であった。またC13-NM R測定により、樹脂(23)の組成を調べたところ、モ ル比で構造例(F-21)/(F-55)/無水マレイ ン酸=42/18/40であった。

【0221】 【化95】

【0222】[合成例24]下記モノマー(b) 6.7g(0.015モル)、パーフルオロオクチルエチルメタクリレート2.7g(0.005モル)、2ーメチルー2ーアダマンタンメタクリレート1.2g(0.005モル)、メバロニックラクトンメタクリレート1.0g(0.005モル)を1ーメトキシー2ープロパノール30mlに溶解し、窒素気流及び攪拌下、70℃にて重合開始剤2.2'ーアゾピス(2.4ージメチルバレ

ロニトリル)(和光純薬工業(株)製:商品名V-6 5) 0. 1gとモノマー(b) 15. 6g(0. 035 モル)、パーフルオロオクチルエチルメタクリレート 6. 4g (0. 012モル)、2-メチル-2-アダマ ンタンメタクリレート2.8g(0.012モル)、メ パロニックラクトンメタクリレート2. 4g(0. 01 2モル) の1ーメトキシー2ープロパノール70m1溶 液を2時間かけて滴下した。2時間後開始剤0. 1gを 追加し、更に2時間反応を行った。その後90℃に昇温 し攪拌を1時間続けた。反応液を放冷後、イオン交換水 /メタノール(1/1)1Lに激しく攪拌しながら投入 することにより、白色樹脂を析出させた。得られた樹脂 を減圧下で乾燥後、本発明の樹脂(24)21.5gを 得た。GPCにて分子量を測定したところ、重量平均 (Mw) で10. 500であった。またC13-NMR測 定により、樹脂(24)の組成を調べたところ、モル比

表3. 本発明の樹脂 (A) の合成

で構造例(F-30)/ (F-48)/(B-7)/ (B-11)=48/15/18/19であった。 【0223】 【化96】

【0224】[合成例25〜32]以下、同様にして表 3に示す本発明の樹脂(A)を合成した。

[0225]

【表3】

機脂(A)	組成(樹脂中の構造単位とモル比)	分子量
(25)	(F-15)/(F-58)/無水マレイン酸	9,700
	= 30/24/46	
(26)	(F-16)/(F-55)/(B-4)/	10,600
1	無水マレイン酸	
	= 26/14/22/38	
(27)	(F-21)/(F-60)/(B-4)/	8,500
1	無水マレイン酸 ニュー・ニュー・ニュー・ニュー・ニュー・ニュー・ニュー・ニュー・ニュー・ニュー・	
L	= 28/14/21/37	
(28)	(F-21)/(F-64)/無水マレイン酸	9,400
	= 37/23/40	
L		
(29)	(F-25)/(F-55)/(B-4)/	7,800
	無水マレイン酸	
	= 21/18/25/36	
(30)	(F-30)/(F-50)/(B-2)/	10,400
	(B-12)	·
	= 45/16/15/24	
.(31)	(F-30)/(F-53)/(B-8)/	9,700
	(B-11)	
L	= 40/18/25/17	
(22)	(P-20)/(P-54)/(P-7)/	

【0226】[合成例33] 4-[ビス(トリフルオロメチル)-ヒドロキシメチル] スチレン13.5g (0.05モル)、メタクリロニトリル3.4g(0.05モル)をN.N-ジメチルアセトアミド100mlに溶解し、窒素気流下、70℃に加熱した。重合開始剤として2.2 '-アゾビス(2.4-ジメチルバレロニトリル)(和光純薬工業(株)製:商品名V-65)0.1gを加え、3時間撹拌した。更にV-65を0.1g追加し、4時間撹拌を続けた。その後、反応液をメタノール/tーブチルメチルエーテル1し中に激しく撹拌しながら投入し、白色の樹脂を析出させた。析出した樹脂を濾別、真空下乾燥後、THF100mlに溶解し、エチルビニルエーテル2.9g(0.04モル)を加え、pートルエンスルホン酸を触媒量添加して、室温

= 38/15/31/16トリフルオロにて8時間撹拌した。反応液にトリエチルアミンをロースのでででできます。3.5gトルエンスルホン酸触媒の2倍量加えて反応を停止させ、超純水3L中に激しく撹拌しながら投入した。析出した樹脂を濾別、乾燥して本発明の樹脂(33)14.1gを得た。GPC測定により、樹脂(33)の分子量は重量平均(Mw)で10,900であった。またCI3ーNMR、IR測定により、樹脂(33)の組成を調べたところ、モル比で構造例(F-39)/(F-42)たところ、モル比で構造例(F-39)/(F-42)/(C-10)=16/36/48であった。中に激しく撹「0227】[合成例34~40]以下同様にして、表

【0227】[合成例34~40]以下同様にして、表 4に示す本発明の樹脂(A)を合成した。

[0228]

【表4】

表4. 本発明の樹脂(A)の合成

樹脂 (A)	組成(樹脂中の構造単位とモル比)	分子量
(34)	(F-39)/(F-41)/(C-10)	11, 100
	= 14/38/48	
(35)	(F-44)/(C-10)	9,800
	= 53/47	
(36)	(F-42)/(C-12)	10,700
,	- = 5 5 / 4 5	1
(37)	(F-39)/(F-43)/(C-10)	12,600
	= 13/39/48	
(38)	(F-1)/(F-21)/(C-5)	6,800
	= 40/35/25	
(39)	(F-19)/無水マレイン酸/ (C-8)	8,300
, , , , ,	= 35/33/32	
(40)	(F-1)/(B-4)/(C-8)	7,400
	= 43/34/23	

【0229】[合成例41~68]

樹脂(42)の合成

還流管及び窒素導入管を備えた100mlの3つロフラスコ中に、4-(2-ヒドロキシへキサフルオロイソプロピル)スチレン(セントラル硝子社製)、4-(1-メトキシエトキシ)スチレン(東ソー社製)を各々モル比50/50の割合で仕込んだ後、テトラヒドロフランを加え、モノマー濃度30重量%の反応液全30gを調整した。それを撹拌及び窒素気流下65℃まで加熱した。アゾ系重合開始剤V-65(和光純薬工業社製)を前記2つのモノマー合計のモル数に対して5.0モル%添加し、窒素気流下撹拌しながら8時間反応させた。得

られた反応液にヘキサン200mlを添加し、生成したポリマーを溶液から沈殿させて未反応モノマーを分離精製した。C₁₃NMRから求めたポリマー組成は、49/51であった。得られたポリマーをGPC(THF溶媒中、標準ポリスチレン換算)にて分析したところ、重量平均分子量10,200、分散度2.20、ポリマー中に含まれる分子量1000以下の割合は15重量%であった。以下、同様にして表5に示す本発明の樹脂(A)を合成した。

【0230】 【表5】

表 5

樹脂	組成(樹脂中の構造単位とモル比)	分子虽
(41)	(II-1)/(A-1)=48/52	8,900
(42)	(II-1)/(A-2)=49/51	10,200
(43)	(II-1)/(A-3')=53/47	5,800
(44)	(1I-1)/(A-10)=61/39	9,200
(45)	(1I-1)/(A-19)=64/36	8,500
(46)	(1I-1)/(A-34)=60/40	8,600
(47)	(II-1)/(A-35)=51/49	8,800
(48)	(11-1)/(A-36)=50/50	8,400
(49)	(11-2)/(A-19)=64/36	10,100
(50)	(11-1')/(A-20)=61/39	9,200
(51)	(II-1")/(A-26)=55/45	9,100
(52)	(II-3)/(A-26)=49/51	7,800
(53)	(1I-4)/(A-26)=52/48	12,100
(54)	(II-1)/(B-1)=58/42	14,200
(55)	(II-1)/(B-1')=70/30	16,600
(56)	(II-1)/(B-7)=78/22	9,200
(57)	(11-1)/(B-8)=73/27	8,400
(58)	(II-1)/(B-12°)=69/31	8,600
(59)	(II-1)/(A-19)/(VII-2)=64/26/10	9,200
(60)	(1I-1)/(A-19)/(F-1)=63/27/9	8,900
(61)	(II-1)/(A-19)/(III-1)=60/33/7	9,000
(62)	(1I-1)/(A-19)/(F-7)=58/33/9	9,500
(63)	(II-1)/(A-19)/(F-19)=51/33/16	10,200
(64)	(II-1)/(B-4)/(VII-2)=61/24/15	10,600
(65)	$(II-1)/(B-12^{\circ})/(F-2)=59/33/8$	10,000
(66)	(II-1)/(B-10)/(III-3)=56/30/14	7,200
(67)	(11-3)/(B-8)/(F-7)=49/36/15	9,200
(68)	(II-4)/(B-12')/(F-24)=59/33/8	8,300

のノナフレート塩 0. 04gをプロピレングリコールモノメチルエーテルアセテート8.5gに溶解し、これにジシクロヘキシルメチルアミン 0.005gとフッ素系界面活性剤としてメガファックR 08 (大日本インキ(株)製) 0.01gを添加して、本発明のレジスト組成物を調整した。各試料溶液を 0.1 μmのテフロンフィルターで濾過した後、スピンコーターによりフッ化カ

ルシウムディスク上に塗布し、120 C、5 分間で加熱 乾燥して、膜厚0. 1μ mのレジスト膜を得た。Act on CAMS-507スペクトロメーターにて塗膜の 吸収を測定し、157 nmにおける透過率を算出した。 結果を表 6 及び表 7 に示す。

[0232]

【表6】

本発明の樹脂	157 nmにおける透過率
本光明の母胎	(%)
(1)	5 8
(1)	5 2
(3)	5 2 5 3
(4)	5 6
(5)	6 3
(6)	5 1
(7)	68
(8)	5 2
(9)	5 1
(3/	5 5
	5 0
(11)	4 9
(13)	6 6
(14)	6.0
(15)	6 1
(16)	63
(17)	6 5
(18)	6 0
(19)	6 0
(20)	6 2
(21)	6 4
(22)	5.8
(23)	5 8
(23)	5 7
(25)	5 9
(26)	. 53
(27)	5 5
(28)	6.0
(29)	5 2
(30)	5 9
(31)	5 8
(32)	5 6
(33)	4 8
(35)	4 6
(37)	4 7
(39)	5 1
(40)	5 3

【0233】 【表7】 夷7

表7	<u>-</u>
樹脂	157mm
·	における
	透過率
	(%)
. (41)	5 5
(42)	48
(43)	5 2
(44)	5 3
(45)	50
(46)	49
(47)	47
(48)	4 5
(49)	5 1
(50)	50
(51)	4 9
(52)	47
(53)	4 5
(54)	5 1
(55)	50
(56)	47
(57)	4 8
(58)	4 9
(59)	51
(60)	5 8
(61)	5 7
(62)	5 6
(63)	5 2
(64)	5 1
(65)	5 5
(66)	58
(67)	5 1
(68)	4 9
比較例1	18
(アセタール系KFF用]]
市販レジスト)	j

【0234】表6及び表7の結果から、本発明の組成物を用いた塗膜の透過率測定値は、ほぼ50%を超え、157nmに十分な透過性を有することが判る。

【0235】 [実施例2(塗布性、現像欠陥の評価)] 実施例1における界面活性剤を下記W-1~W-4に変え、本発明のレジスト組成物を調整した。使用した界面活性剤は表8及び表9に示す。 【0236】界面活性剤としては、

W1:メガファックF176 (大日本インキ化学工業 (株) 製) (フッ素系)

W2:メガファックR08(大日本インキ化学工業

(株) 製) (フッ素及びシリコン系)

W3:ポリシロキサンポリマーKP-341 (信越化学 工業 (株) 製)

W4:ポリオキシエチレンノニルフェニルエーテル を表す。

【0237】各試料溶液を0.1 μ mのテフロン(登録商標)フィルターで濾過した後、スピンコーターによりヘキサメチルジシラザン処理を施したシリコンウェハー上に塗布し、110℃、90秒間真空密着型のホットプレート上で加熱乾燥して、膜厚0.3 μ mのレジスト膜を得た。得られたレジスト膜に対し、Canon社KrFエキシマステッパー(FPA-3000EX5)を用い画像露光を行ない、110℃、90秒にて後加熱した後、0.262NのTMAH水溶液で現像することにより0.5 μ のL/Sのパターンを形成させた。

【0238】現像欠陥及び塗布性は、以下のようにして 評価した。

〔現像欠陥数〕: 上記のようにして得られたレジストパターンについて、ケーエルエー・テンコール (株) 製 KLA-2112機により現像欠陥数を測定し、得られた1次データ値を現像欠陥数とした。

【0239】〔塗布性(面内均一性)〕: 各レジスト溶液を8インチシリコンウエハ上に塗布し、上記のようなレジスト層の塗設同様の処理を行い、面内均一性測定用のレジスト塗布膜を得た。これを大日本スクリーン株式会社製LambdaAにて、塗布膜厚をウエハ直径方向に沿って十字になるように均等に36箇所測定した。各測定値の標準偏差をとり、その3倍が50に満たないものを〇、50以上のものを×として評価した。性能評価結果を表8及び表9に示した。

[0240]

【表8】

本発明の樹脂(A)	使用した界面活性剤	現像欠陷	全布性
(1)	M - 1	2 5	0
(2)	W - 2	2 1	0
(3)	W - 2	2 8	0
(4)	W - 3	3 0	_ 0
(5)	W - 1	2 7	0
(6)	W - 2	2 2	0
(7)	W - 3	2 6	0
(8)	W - 3	3 5	0
(9)	W - 2	3 2	0
(10)	W - 2	2 5	0
. (11)	W-1	2 9	0
(12)	W - 2	2 4	0 .
(13)	W 1	2 5	0
(14)	W-2	2 2	0
(15)	W-2	2 3	0
(18)	- W-3	2 8	0
(17)	W - 3	2 6	0
(18)	W - 1	2 5	0
(19)	W - 2	2 1	0
(20)	W - 3	2.8	0
(21)	W - 2	2 4	0
(22)	W - 2	2 5	0
(23)	W - 2	2 9	0
(24)	W - 2	3 0	0
(25)	W - 3	2 7	0
(26)	W - 1	2 4	0
(27)	W - 1	2 6	0
(28)	W - 3	3 1	0
(29)	W - 2	2 5	0
. (30)	W-2	3 0	0
(31)	W - 3	2 9	0
(32)	W - 1	2 8	0
(33)	W - 1	2 0	<u> </u>
(35)	W - 2	2 2	0
(37)	W - 2	2 4	0
(39)	W - 3	2 7	0
(40)	W - 1	2 5	0

【表9】

[0241]

表 9

表 9			
樹脂	使用した界面 活性剤	現像欠陥	塗布性
(41)	· W-1	2 4	0
	W-1 W-2	2.8	Ö
(42)	$\frac{W-Z}{W-1}$	25	0
(43)	W-1 W-1	24	0
(44)		26	0
(45)	W-2		0
(46)	W - 1	2 5	
(47)	W-3	2 5	0
(48)	W-1	2 4	
(49)	W-2	2 2	0
(50)	W-1	2 6	0
(51)	W-1	2 4	0
(52)	W-1	3 0	0
(53)	W-3	2 4	0
(54)	W-1	2 9	0
(55)	W-2	2 4	0 .
(56)	W-1	2 6	0 ^
(57)	W-3	2 2	0
(58)	W-1	2 4	0
(59)	W-2	2 0	. 0
(60)	W-1	2 4	0
(61)	W-3	2 5	0
(62)	W-1	2 4	0
(63)	W-2	2 7	Ο.
(64)	W-1	: 29	0
(65)	W-1	2 4	0
(66)	W-2	2 1	0 ·
(67)	W-1	2 1	0
(68)	W-1	2 4	0
	なし	2000	×.
(1)(比較例3)	W-4	650	×
(1)(比較例2)	なし	2000	×

【0242】表8及び表9の結果より、フッ素及び/又はシリコン系界面活性剤を加えた本発明の組成物は、同成分のない比較例に比べ、塗布性が大きく優れ、現像欠陥も非常に少なくなることが判る。

【0243】[実施例3(画像形成性評価)]本発明の 樹脂(1)~(5)、(13)、(15)、(17)、 (23)、(25)、(27)、(33)、(35)、 (40)及び(41)~(68)を使用し、実施例1と 同様にしてレジスト液を調整した。各試料溶液を0.1 μmのテフロンフィルターで濾過した後、スピンコータ ーによりへキサメチルジシラザン処理を施したシリコンウェハー上に塗布し、110℃、90秒間真空密着型のホットプレート上で加熱乾燥して、膜厚0.1 μmのレジスト膜を得た。得られたレジスト膜に対し、157 nmのレーザー露光・溶解挙動解析装置VUVES-4500(リソテック・ジャパン製)を用い、157 nm露光による露光部・未露光部の溶解コントラストを測定した。結果を表10及び表11に示す。

【0244】 【表10】

本発明の樹脂	浴解コントラスト (tan 8)
(1)	5.8
(2)	6.5
(3)	6.2
(4)	5.6
(5)	5.9
(13)	6.2
(15)	6.9
(17)	6.5
(23)	6.4
(25)	5.7
(27)	6.1
(33)	6.3
(35)	6.5
(40)	6.6

【表11】

弗11

表11	
樹脂	溶解コントラ
	スト(tanΘ)
(41)	5.8
(42)	5.7
(43)	6.1
(44)	5.9
(45)	6.3
(46)	5.4
(47)	5.9
(48)	6.1
(49)	5.8
(50)	5.5
(51)	5.6
(52)	5.8
(53)	5.8
(54)	6.2
(55)	5.9 5.8
(56)	5.8
(57)	6. 1
(58)	5.8
(59)	5.8
(60)	5.8
(61)	5.8
(62)	6.1
(63)	6.3
(64)	6.1
(65)	6.2
(66)	5.8
(67)	6.1
(68)	6.1
比較例4	5. 3*1)
(アセタール系KrF用	
市販レジスト)	+* (248r

*1) KrFエキシマレーザー (248nm) 露光時の値

【0246】表10及び表11の結果より、本発明の組成物は、比較例のKrFエキシマ用に実用されているレジスト同等の溶解コントラストを有する、即ち画像形成性を有することが判る。

[0247]

【発明の効果】本発明のポジ型レジスト組成物により、 157nmの短波長においても十分な透過性及び画像形 成性を有し、感度、解像力が優れ、且つフッ素樹脂に基 づく塗布性、現像欠陥の問題が改良されたポジ型レジス ト組成物を提供できる。

フロントページの続き

(72) 発明者 安波 昭一郎

静岡県榛原郡吉田町川尻4000番地 富士写 真フイルム株式会社内 (72)発明者 漢那 慎一

静岡県榛原郡吉田町川尻4000番地 富士写 真フイルム株式会社内

Fターム(参考) 2H025 AA00 AA01 AA02 AA09 AA18 AB16 AC04 AC08 AD03 BE00 BE10 BG00 CB08 CB10 CB14 CB17 CB41 CC04 FA10

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.