CD4031BMS

December 1992

CMOS 64-Stage Static Shift Register

Features

- · High Voltage Type (20V Rating)
- Fully Static Operation: DC to 12MHz (typ.) at VDD -VSS = 15V
- . Standard TTL Drive Capability on Q Output
- · Recirculation Capability
- Three Cascading Modes:
 - Direct Clocking for High-Speed Operation
 - Delayed Clocking for Reduced Clock Drive Requirements
 - Additional 1/2 Stage for Slow Clocks
- 100% Tested For Quiescent Current at 20V
- Maximum Input Current of 1µA at 18V Over Full Package-Temperature Range;
 - 100nA at 18V and +25°C
- Noise Margin (Over Full Package Temperature Range):
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- . 5V, 10V and 15V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- · Serial Shift Registers
- · Time Delay Circuits

Description

The CD4031BMS is a static shift register that contains 64 D-type, master-slave flip-flop stages and one stage which is a D-type master flip-flop only (referred to as a 1/2 stage).

The logic level present at the DATA input is transferred into the first stage and shifted one stage at each positive-going clock transition. Maximum clock frequencies up to 12MHz (typical) can be obtained. Because fully static operation is allowed, information can be permanently stored with the clock line in either the low or high state. The CD4031BMS has a MODE CONTROL input that, when in the high state, allows operation in the recirculating mode. The MODE CON-TROL input can also be used to select between two separate data sources. Register packages can be cascaded and the clock lines driven directly for high-speed operation. Alternatively, a delayed clock output (CLD) is provided that enables cascading register packages while allowing reduced clock drive fan-out and transition-time requirements. A third cascading option makes use of the Q' output from the 1/2 stage, which is available on the next negative-going transition of the clock after the Q output occurs. This delayed output, like the delayed clock CLD, is used with clocks having slow rise and fall times.

The CD4031BMS is supplied in these 16 lead outline packages:

Braze Seal DIP H4X
Frit Seal DIP H1F
Ceramic Flatpack H6W

Pinout CD4031BMS TOP VIEW

Functional Diagram

Reliability Information Absolute Maximum Ratings Thermal Resistance nermal Resistance θ_{ja} Ceramic DIP and FRIT Package 80° C/W DC Supply Voltage Range, (VDD) -0.5V to +20V $_{20^{o}\text{C/W}}^{\theta_{jc}}$ (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V Flatpack Package 70°C/W 20°C/W DC Input Current, Any One Input±10mA Maximum Package Power Dissipation (PD) at +125°C Operating Temperature Range.....-55°C to +125°C For TA = -55° C to $+100^{\circ}$ C (Package Type D, F, K).....500mW For TA = $+100^{\circ}$ C to $+125^{\circ}$ C (Package Type D, F, K) Derate Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Linearity at 12mW/°C to 200mW Lead Temperature (During Soldering) +265°C Device Dissipation per Output Transistor 100mW For TA = Full Package Temperature Range (All Package Types) At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μА
				2	+125°C	-	1000	μА
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	10	μА
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	(Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current	IOL5	VDD = 5V, VOUT = 0	.4V	1	+25°C	0.51	-	mA
Q, Q', CLD	IOL10	VDD = 10V, VOUT =	0.5V	1	+25°C	1.3	-	mA
	IOL15	VDD = 15V, VOUT = 1.5V		1	+25°C	3.4	-	mA
Output Current Q	IOL5	VDD = 5V, VOUT = 0.4V		1	+25°C	2.04	-	mA
Output Current Q	IOL10	VDD = 10V, VOUT =	VDD = 10V, VOUT = 0.5V		+25°C	5.2	-	mA
Output Current Q	IOL15	VDD = 15V, VOUT =	1.5V	1	+25°C	13.6	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4	.6V	1	+25°C	-	-0.51	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2	.5V	1	+25°C	-	-1.6	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT =	9.5V	1	+25°C	-	-1.3	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT =	13.5V	1	+25°C	-	-3.4	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10)μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ.	A	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VI	DD or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C	1		
		VDD = 3V, VIN = VDD	or GND	8B	-55°C	1		
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13.5V, VOL < 1.5V		1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

is 0.050V max.

2. Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	500	ns
Clock to Q	TPLH1		10, 11	+125°C, -55°C	-	675	ns
Propagation Delay	TPLH2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	500	ns
Clock to Q			10, 11	+125°C, -55°C	-	675	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	380	ns
Clock to Q			10, 11	+125°C, -55°C	-	513	ns
Propagation Delay	TPLH3	VDD = 5V, VIN = VDD or GND	9	+25°C	-	380	ns
Clock to Q'	TPHL3		10, 11	+125°C, -55°C	-	513	ns
Propagation Delay	TPHL4	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
Clock to CLD	TPLH4		10, 11	+125°C, -55°C	-	270	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTLH		10, 11	+125°C, -55°C	-	270	ns
Maximum Clock Input	FCL	VDD = 5V, VIN = VDD or GND	9	+25°C	2	-	MHz
Frequency (See Note 5; Table 3)			10, 11	+125°C, -55°C	1.48	-	MHz

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS	
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ	
				+125°C	-	150	μΑ	
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ	
				+125°C	-	300	μΑ	
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ	
				+125°C	-	600	μΑ	
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV	
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV	
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V	
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V	
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA	
Q, Q', CLD Outputs				-55°C	0.64	-	mA	
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA	
Q, Q', CLD Outputs				-55°C	1.6	-	mA	
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA	
Q, Q', CLD Outputs				-55°C	4.2	-	mA	
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	1.44	-	mA	
Q Outputs				-55°C	2.56	-	mA	

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

IOL10 IOL15 IOH5A	CONDITIONS VDD = 10V, VOUT = 0.5V VDD = 15V, VOUT = 1.5V	1, 2	+125°C	MIN 3.6	MAX -	UNITS mA
IOL15		1, 2		3.6	-	mA
	VDD = 15V, VOUT = 1.5V		5500			ı
	VDD = 15V, VOUT = 1.5V		-55°C	6.4	-	mA
IOH5A		1, 2	+125°C	9.6	-	mA
IOH5A			-55°C	16.8	-	mA
	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
			-55°C	-	-0.64	mA
IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
			-55°C	-	-2.0	mA
IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
			-55°C	-	-1.6	mA
IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
			-55°C	-	-4.2	mA
VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	+7	-	V
TPHL1	VDD = 10V	1, 2, 3	+25°C	-	220	ns
TPLH1	VDD = 15V	1, 2, 3	+25°C	-	180	ns
TPLH2	VDD = 10V	1, 2, 3	+25°C	-	220	ns
	VDD = 15V	1, 2, 3	+25°C	-	180	ns
TPHL2	VDD = 10V	1, 2, 3	+25°C	-	160	ns
•	VDD = 15V	1, 2, 3	+25°C	-	130	ns
TPLH3	VDD = 10V	1, 2, 3	+25°C	-	100	ns
TPHL3	VDD = 15V	1, 2, 3	+25°C	-	80	ns
TPLH4	VDD = 10V	1, 2, 3	+25°C	-	160	ns
TPHL4	VDD = 15V	1, 2, 3	+25°C	-	130	ns
TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns
FCL	VDD = 10V	1, 2, 3	+25°C	-	5	MHz
	VDD = 15V		+25°C	-	6	MHz
TRCL	VDD = 5V			-	1000	μs
TFCL	VDD = 10V		+25°C	-	1000	μs
	VDD = 15V		+25°C	-	200	μs
TS	VDD = 5V		+25°C	-	60	ns
	VDD = 10V			-	30	ns
	VDD = 15V			-	20	ns
TH	VDD = 5V			-	60	ns
				-	30	ns
				-		ns
TW				_		ns
						ns
				-	ļ	ns
CINI						pF
	IOH10 IOH15 VIL VIH TPHL1 TPLH1 TPLH2 TPHL2 TPHL3 TPHL3 TPHL4 TTHL TTHL TTLH TCL TRCL TFCL	IOH10	IOH10	IOH10	IOH10	IOH10

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

						LIM	ITS	
PARAM	METER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- If more than one unit is cascaded in the parallel clocked application, TRCL should be made ≤ the sum of the propagation delay at 50pF and the transition time of the output driving stage.
- 5. Maximum clock frequency for cascaded units;
 - a) Using Delayed Clock feature in recirculation mode:

$$FMAX = \frac{1}{(n-1) CL, prop delay and Q prop delay and set - up time} where n = number of packages$$

b) Not using Delayed Clock:

$$FMAX = \frac{1}{\text{propagation delay and set - up time}}$$

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVPTH	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND VDD = 3V, VIN = VDD or GND	1	+25°C	VOH > VDD/2	VOL < VDD/2	V
Propagation Delay Time	TPHL TPLH	VDD = 5V (Worst Case)	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES:

- 1. All voltages referenced to device GND.
- 2. VDD = 5V, CL = 50pF, RL = 200K
- 3. See Table 2 for +25°C limit.

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas	
Interim Test	3 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
Subgroup B-6		Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD POST-IRRAD		PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 Note 1	3 - 7, 9, 11 - 14	1, 2, 8, 10, 15	16			
Static Burn-In 2 Note 1	3 - 7, 9, 11 - 14	8	1, 2, 10, 15, 16			
Dynamic Burn- In Note 1	3 - 5, 11 - 14	8, 15	1, 16	6, 7, 9	2	10
Irradiation Note 2	3 - 7, 9, 11 - 14	8	1, 2, 10, 15, 16			

NOTE:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K ±5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = 10V ± 0.5V

Logic Diagram

INPUT CONTROL CIRCUIT **TRUTH TABLE**

DATA	RECIR	MODE	BIT INTO STAGE 1
1	Х	0	1
0	Х	0	0
Х	1	1	1
Х	0	1	0

1 = High Level 0 = Low Level X = Don't Care NC = No Change

TYPICAL STAGE TRUTH TABLE

DATA	CL	DATA + 1
0		0
1		1
Х	~	NC
1 = High Level 0 = Low Level		

X = Don't Care NC = No Change

TRUTH TABLE FOR OUTPUT FROM Q' (TERMINAL 5)

DATA + 64	CL	DATA + 64 1/2
0	~	0
1	~	1
Х		NC

1 = High Level X = Don't Care

0 = Low LevelNC = No Change

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Typical Performance Characteristics AMBIENT TEMPERATURE (T_A) = +25°C AMBIENT TEMPERATURE (T_A) = +25°C OUTPUT LOW (SINK) CURRENT (IOL) (mA) OUTPUT LOW (SINK) CURRENT (IOL) (mA) 30 GATE-TO-SOURCE VOLTAGE (VGS) = 15V GATE-TO-SOURCE VOLTAGE (VGS) = 15V 12.5 25 10.0 20 10V 7.5 5.0 15 10 15 DRAIN-TO-SOURCE VOLTAGE (VDS) (V) DRAIN-TO-SOURCE VOLTAGE (VDS) (V) FIGURE 1. TYPICAL OUTPUT LOW (SINK) CURRENT FIGURE 2. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS (Q SINK CURRENT = 4X **CHARACTERISTICS (Q SINK CURRENT = 4X** ORDINATE) ORDINATE) DRAIN-TO-SOURCE VOLTAGE (VDS) (V) DRAIN-TO-SOURCE VOLTAGE (VDS) (V) AMBIENT TEMPERATURE (T_A) = +25°C AMBIENT TEMPERATURE $(T_{\Delta}) = +25^{\circ}C$ OUTPUT HIGH (SOURCE) CURRENT (IOH) (mA) (SOURCE) CURRENT (IOH) (mA) GATE-TO-SOURCE VOLTAGE (VGS) = -5V GATE-TO-SOURCE VOLTAGE (VGS) = -5V -10V -10V -20 -25 HGH -15V -15V -30 OUTPUT FIGURE 3. TYPICAL OUTPUT HIGH (SOURCE) CURRENT FIGURE 4. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS **CHARACTERISTICS** PROPAGATION DELAY TIME (tPHL, tPLH) (ns) (SEE TABLE) AMBIENT TEMPERATURE (T_A) = +25°C PROPAGATION DELAY TIME (tPHL, tPLH) (ns) (SEE TABLE) AMBIENT TEMPERATURE (T_A) = +25°C tPHL, tPLN - CLOCK TO Q tPHL, tPLN - CLOCK TO Q tPLH - CLOCK TO Q tPLH - CLOCK TO Q 300 300 SUPPLY VOLTAGE (VDD) = 5V SUPPLY VOLTAGE (VDD) = 5V 200 200 10V 100 10V 100 15V 15V 100 20 60 100 40 LOAD CAPACITANCE (CL) (pF) LOAD CAPACITANCE (CL) (pF) FIGURE 5. TYPICAL PROPAGATION DELAY TIME AS A FIGURE 6. TYPICAL PROPAGATION DELAY TIME AS A **FUNCTION OF LOAD CAPACITANCE FUNCTION OF LOAD CAPACITANCE** (SEE TABLE) (SEE TABLE)

Typical Performance Characteristics (Continued)

FIGURE 7. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE (EXCEPT Q, tTHL)

FIGURE 8. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE (Q, tTHL)

FIGURE 9. TYPICAL DYNAMIC POWER DISSIPATION AS A FUNCTION OF CLOCK INPUT FREQUENCY

MODE CONTROL VDD = RECIRCULATION

GND = NEW DATA

FIGURE 10. CASCADING USING DIRECT CLOCKING FOR HIGH-SPEED OPERATION (SEE CLOCK RISE AND FALL TIME REQUIREMENT)

CD4031BMS

FIGURE 11. CASCADING USING DELAYED CLOCKING FOR REDUCED CLOCK DRIVE REQUIREMENTS

FIGURE 12. CASCADING USING HALF-CLOCK-PULSE DELAYED OUTPUT (Q') TO PERMIT USE OF SLOW RISE AND FALL CLOCK INPUTS

Chip Dimensions and Pad Layout

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL. **PASSIVATION:** 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN

DIE THICKNESS: 0.0198 inches - 0.0218 inches

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch)

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.