Homework-3 Solutions

Question 1

Part 1

$$e_A = 0.5$$
$$e_B = 0.5$$

Part 2

What are the computed errors in each case:

Permutations 1: $e_A = 5/6$ $e_B = 5/6$ Permutations 2: $e_A = 4/6$ $e_B = 0.5$ Permutations 3: $e_A = 5/6$ $e_B = 5/6$

What are the estimates to the error and standard deviation for each algorithm:

Algorithm A: e = 0.778 $\sigma = 0.096$ Algorithm B: e = 0.722 $\sigma = 0.192$

Question 2

The above neural network has two inputs. It computes a selection between the two alternatives A, B in terms of two probability outputs. p_1 is the probability that A occurs, and p_2 is the probability that B occurs. The node V_0 is implemented with ReLU. The nodes V_1, V_2 are linear (ADALINE), and they are not connected to a bias. The probabilities p_1, p_2 are computed from the values of V_1, V_2 using softmax.

A.1: Compute the values of all nodes in forward propagation when the network is given the input $x_1 = 2$, $x_2 = 7$, the current weight values are: $w_0 = 0$, $w_1 = 0.2$, $w_2 = 0.1$, $w_3 = 0.1$, $w_4 = 1$, with the desired selection being **A** Use training rate $\epsilon = 0.1$. Your answer should be explicit numeric values for each node.

Answer

$$V_0 = w_0 + 2w_1 + 7w_2 = 0.4 + 0.7 = 1.1$$

$$V_1 = w_3 V_0 = 0.11$$

$$V_2 = w_4 V_0 = 1.1$$

$$p_1 = e^{V_1}/(e^{V_1} + e^{V_2}) = 0.27$$

$$p_2 = e^{V_2}/(e^{V_1} + e^{V_2}) = 0.73$$
(Z = 4.12)

Question 3

The Adam method uses a recursive method for computing running averages:

$$\overline{X}_0 = 0$$
, $\overline{X}_t = \beta \overline{X}_{t-1} + (1-\beta)X_t$, $\hat{X}_t = \frac{\overline{X}_t}{1-\beta^t}$

1. Show that if $\beta = 0$ then $\hat{X}_t = X_t$ for all t.

Answer: From the recursive formula it follows that $\overline{X}_t = X_t$. Therefore $\hat{X}_t = \frac{X_t}{1-\beta^t} = X_t$.

2. Show that if $\beta \to 1$ then $\hat{X}_t \to \frac{1}{t} \sum_{i=1}^t X_i$ for all t.

Hint: Use the explicit formula for $\overline{X_t}$, form the limit, and solve it using, for example, L'Hopital's rule.

The explicit formula:
$$\overline{X}_t = (1 - \beta) \sum_{i=1}^t \beta^{t-i} X_i$$

We need to evaluate:

$$\lim_{\beta \to 1} \lim_{\beta \to 1} \frac{(1-\beta)\sum_{i=1}^{t} \beta^{t-i} X_i}{1-\beta^t}$$

According to L'Hopital's rule we can take the derivatives of numerator and denominator. This gives:

$$\lim_{\beta \to 1} \frac{-\sum_{i=1}^{t} \beta^{t-i} X_i + (1-\beta) \sum_{i=1}^{t} (t-i) \beta^{t-i-1} X_i}{-t \beta^{t-1}} = \frac{-\sum_{i=1}^{t} X_i + 0}{-t} = \frac{\sum_{i=1}^{t} X_i}{t}$$

Question 4

In the table below cases 3,4 are distributions, and cases 1, 2 can be converted into distributions.

case	A	В	С	D
1	1	-2	3	-4
2	1	2	-3	0
3	1	0	0	0
4	1/4	1/4	1/4	1/4

Converting 1 into a probability distribution using softmax:

$$\begin{split} V &= \{1, -2, 3, -4\} \\ q &= \{2.71828, 0.135335, 20.0855, 0.0183156\} \\ Z &= 22.9575 \\ p &= \{0.118405, 0.00589504, 0.874902, 0.000797807\} \end{split}$$

Converting 2 into a probability distribution using softmax:

$$\begin{split} V &= \{1,2,-3,0\} \\ q &= \{2.71828,7.38906,0.0497871,1\} \\ Z &= 11.1571 \\ p &= \{0.243636,0.662272,0.00446236,0.0896288\} \end{split}$$

1. Use cross entropy to determine which distribution among 1,2,3 is most similar to 4. Show your computations.

case	A	В	C	D	cross entropy of p_4 with candidate:
1	0.118405	0.00589504	0.874902	0.000797807	5.24224
2	0.243636	0.662272	0.00446236	0.0896288	3.47989
3	1	0	0	0	infinity
4	1/4	1/4	1/4	1/4	$ _2$

Answer: $1 / \boxed{2} / 3$

2. Use cross entropy to determine which distribution among 1,2,4 is most similar to 3. Show your computations.

case	A	В	C	D	cross entropy of p_3 with candidate:
1	0.118405	0.00589504	0.874902	0.000797807	3.0782
2	0.243636	0.662272	0.00446236	0.0896288	2.0372
3	1	0	0	0	0
4	1/4	1/4	1/4	1/4	2

Answer: 1 / 2 / 4

Question 5

In this question, if you need to compute logarithms use natural basis logarithm (ln).

Consider a deep neural net applied to decide between the following three categories: A, B, C.

1.

What is the one-hot encoding of the category A?

Answer:

The one-hot encoding of the category A is: (1,0,0)

2.

Assuming that the true category is A, what is the cross entropy loss of the following estimate, given as the vector $z_1 = (1.0, 2.0, 3.0)$. You must show your computations.

Answer:

The cross entropy loss is

$$\ln(1/q_1) = \ln(\frac{e^1 + e^2 + e^3}{e^1}) \approx \ln(\frac{30.192}{2.718}) \approx \ln(11.10) \approx 2.4$$

3.

As in Part 2 assume that the true category is A. Consider an algorithm that updates the prediction by adding the value of ϵ to to each prediction value. (ϵ can also be negative.) The new prediction vector is $z_2 = (1 + \epsilon, 2 + \epsilon, 3 + \epsilon)$. Compute a value of ϵ that gives the best prediction according to cross entropy. What is the cross entropy loss for that value of ϵ ? You must show your computations.

Answer:

 $\epsilon = \text{result}$ is independent of ϵ

The cross entropy loss is

$$\ln(1/q_1) = \ln(\frac{e^{1+\epsilon} + e^{2+\epsilon} + e^{3+\epsilon}}{e^{1+\epsilon}}) = \ln(\frac{e^1 + e^2 + e^3}{e^1})$$

Answer should be the same as in Part 2.

4.

As in Part 2 assume that the true category is A. Consider an algorithm that updates the prediction by multiplying each value by ϵ . (ϵ can also be negative.) The new prediction vector is $z_3 = (1 \cdot \epsilon, 2 \cdot \epsilon, 3 \cdot \epsilon)$. Compute a value of ϵ that gives the best prediction according to cross entropy. What is the cross entropy loss for that value of ϵ ? You must show your computations.

Answer:

$$\epsilon = -\infty$$

The cross entropy loss is

$$\ln(1/q_1) = \ln(\frac{e^{1\cdot\epsilon} + e^{2\cdot\epsilon} + e^{3\cdot\epsilon}}{e^{1\cdot\epsilon}}) = \ln(\frac{e^{\epsilon} + (e^{\epsilon})^2 + (e^{\epsilon})^3}{e^{\epsilon}}) = \ln(1 + e^{\epsilon} + (e^{\epsilon})^2) \xrightarrow[\epsilon \to -\infty]{} \ln(1) = 0$$