北京邮电大学 2019-2020 学年

线性代数期末试题 (A)

一. 填空题 (每小题 3 分, 共 30 分)

1. 已知多项式
$$p(x) = \begin{vmatrix} x & x^2 & 1 & 0 \\ x^3 & x & 2 & 1 \\ -x^4 & 0 & x & 2 \\ 4 & 3 & 4 & x \end{vmatrix}$$
, 则 $p(x) 中 x^7$ 的系数为 ______.

答案: -3

2. 行列式
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 8 & 4 & 2 & 1 \\ 27 & 9 & 3 & 1 \\ a^3 & a^2 & a & 1 \end{vmatrix} = \underline{\qquad}.$$

答案: 2(a-1)(a-2)(a-3)

3. 已知
$$A = \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$$
满足 $A^6 = E$,则 $A^{11} = \underline{\hspace{1cm}}$

答案:
$$\frac{1}{2} \begin{pmatrix} 1 & \sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}$$

4. 己知 A 为 3 阶可逆矩阵,将 A 的第 3 列减去第 2 列对应元素后得到矩阵 B ,则 $B^{-1}A = ______$.

答案:
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

5. 已知 3 阶矩阵 $A=(a_{ij})$ 满足 $A^*=A^T$ (A^*,A^T 分别表示 A 的伴随矩阵与转置矩

答案:

6. 已知过原点的直线 L 与直线 $L_{\rm l}$: x-1=y+2=-z-4 相交,且与平面

 $\Pi: x-y+2z=3$ 平行,则 L 的标准方程为。

答案: $x = \frac{y}{2} = z$

7. 设 $\alpha_1 = (1,-1,0)$, $\alpha_2 = (4,2,a+2)$, $\alpha_3 = (2,4,3)$, $\alpha_4 = (1,a,1)$, 若 α_1 , α_2

中任意两个向量都与另外两个向量等价,则

答案: a=1

8. 已知n阶矩阵 $A=(a_{ij})$,|A|=0,|A|的元素 a_{ij} 的余

若 $M_{11} \neq 0$,则方程组Ax = 0的通解力

答案: $x = k(M_{11}, -M_{12}, \cdots, (-1)^{n+1} M_{1n})^T$ k 为任意常数

9. 已知 3 阶实对称矩阵 A diag (13-2,5) 相似, x 为任意 3 维单位列向量,则

 $+kz^2+2xy-4yz$,已知方程 f(x,y,z)=1的图形是椭 球面,则k的取值范围是

答案: k > 8

二. (10 分) 设 $\alpha_1 = (2,2,-1)^T$, $\alpha_2 = (-1,-2,1)^T$, $\alpha_3 = (-1,-1,1)^T$, 若矩阵 A^{\dagger}_{α} 足 $A\alpha_1 = \alpha_2$, $A\alpha_2 = \alpha_3$, $A\alpha_3 = \alpha_1$, 求 A.

解: 已知 $A(\alpha_1,\alpha_2,\alpha_3) = (A\alpha_1,A\alpha_2,A\alpha_3) = (\alpha_2,\alpha_3,\alpha_1)$

$$\mathbb{P} A \begin{pmatrix} 2 & -1 & -1 \\ 2 & -2 & -1 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -1 & 2 \\ -2 & -1 & 2 \\ 1 & 1 & -1 \end{pmatrix},$$

$$A = \begin{pmatrix} -1 & -1 & 2 \\ -2 & -1 & 2 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & -1 & -1 \\ 2 & -2 & -1 \\ -1 & 1 & 1 \end{pmatrix}^{-1}$$

$$\begin{pmatrix} 2 & -1 & -1 \\ 2 & -2 & -1 \\ -1 & 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} -1 & -1 & 2 \\ -2 & -1 & 2 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} -2 & 3 & 3 \\ -3 & 3 & 2 \\ 2 & -2 & -1 \end{pmatrix}.$$

三, (10分) 设
$$\alpha_1 = (1,1,1,2)^T$$
, $\alpha_2 = (2,1,1,6)^T$, $\alpha_3 = (1,2,a-3,-2)^T$,

 $\alpha_4 = (1,2,5,a)^T$, 讨论 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的线性相关性.

$$\widehat{\mathsf{HZ}} : \begin{vmatrix} 1 & 1 & 1 & 2 \\ 2 & 1 & 1 & 6 \\ 1 & 2 & a - 3 & -2 \\ 1 & 2 & 5 & a \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 2 \\ 0 & -1 & -1 & 2 \\ 0 & 1 & a - 4 & -4 \\ 0 & 1 & 4 & a - 2 \end{vmatrix} = \begin{vmatrix} -1 & -1 & 2 \\ 1 & a - 4 & -4 \\ 1 & 4 & a - 2 \end{vmatrix}$$

$$= \begin{vmatrix} -1 & -1 & 2 \\ 0 & a-5 & -2 \\ 0 & 3 & a \end{vmatrix} = -(a-2)(a-3) ,$$

当 $a \neq 2$ 且 $a \neq 3$ 时, $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性无关;当a = 2或a = 3时, $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相关.

四. (10 分) 设
$$\alpha_1=(1,2,1,-4)^T$$
 , $\alpha_2=(2,-2,3,-5)^T$, $\alpha_3=(3,0,4,-9)^T$,
$$\alpha_4=(1,-2,2,1)^T$$
 , 求向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的一个极大无关组,并将其余向量用该

解: 对 $(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ 作初等行变换,化为行最简形,得

$$(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}) = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & -2 & 0 & -2 \\ 1 & 3 & 4 & 2 \\ -4 & -5 & -9 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

 $\alpha_1,\alpha_2,\alpha_4$ 为极大无关组(8 分), $\alpha_3=\alpha_1+\alpha_2$.

五. (12分) 已知方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_2 + 2x_3 + 2x_4 = 1 \end{cases}$$
$$x_2 + (3-a)x_3 + 2x_4 = b$$
$$3x_1 + 2x_2 + x_3 + ax_4 = x_4$$
(1) 求 a,b ; (2) 求该方程组的通解

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 2 & 2 & 1 \end{pmatrix}$$
 $\rightarrow \begin{pmatrix} 1 & 0 & -1 & -1 & -1 \\ 0 & 1 & 2 & 2 & 1 \end{pmatrix}$,

原方程组同解于 $\begin{cases} x_1 - x_3 - x_4 = -1 \\ x_2 + 2x_3 + 2x_4 = 1 \end{cases}, \text{ 取特解 } \eta = (-1, 1, 0, 0)^T,$

对应齐次方程组
$$\begin{cases} x_1 - x_3 - x_4 = 0 \\ x_2 + 2x_3 + 2x_4 = 0 \end{cases}$$
的通解为

 $x = x_3(1, -2, 1, 0)^T + x_4(1, -2, 0, 1)^T$, x_3, x_4 为任意实数.

所求方程组的通解为

$$x = k_1(1, -2, 1, 0)^T + k_2(1, -2, 0, 1)^T + (-1, 1, 0, 0)^T$$
,

 k_1, k_2 为任意实数.

六. (10 分) 设 $\alpha_1=(1,2,2,-1)$, $\alpha_2=(1,1,-1,1)$, 求 α_3,α_4 , 使 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 为 正交向量组.

解: 依题意, α_3 , α_4 是方程组 $\begin{cases} x_1 + 2x_2 + 2x_3 - x_4 = 0 \\ x_1 + x_2 - x_3 + x_4 = 0 \end{cases}$ 的正交的解向量.

该方程组的一组基础解系为 $\xi_1 = (4, -3, 1, 0)$, $\xi_2 = (-3, 2, 0, 1)$.

取
$$\alpha_3 = \xi_1 = (4,-3,1,0)$$
,

$$\alpha_4 = \xi_2 - \frac{(\xi_2, \xi_1)}{(\xi_1, \xi_1)} \xi_1$$

$$= (-3,2,0,1) - \frac{-18}{26}(4,-3,1,0) = \frac{1}{13}(-3,-1,9,13).$$

七. (12 分) 用正交变换将二次型 $f = 3x_1^2 + 4x_2^2 + 2x_3^2 - 4x_1x_2 - 4x_1x_3$ 化为标准形.

解:
$$f$$
 的矩阵为 $A = \begin{pmatrix} 3 & -2 & -2 \\ -2 & 4 & 0 \\ -2 & 0 & 2 \end{pmatrix}$,

$$|A - \lambda E| = \begin{vmatrix} 3 - \lambda & -2 & -2 \\ -2 & 4 - \lambda & 0 \\ -2 & 0 & 2 - \lambda \end{vmatrix} = -\lambda(\lambda - 3)(\lambda - 6)$$

A的特征值为 $\lambda_1 = 0, \lambda_2 = 3, \lambda_3 = 6$.

求解 Ax=0,得 A 的对应 $\lambda_1=0$ 的单位特征向量为 $p_1=\frac{1}{3}(2,1,2)^T$;

求解(A-3E)x=0,得A的对应 $\lambda_2=3$ 的单位特征向量为 $p_2=\frac{1}{3}(1,2,-2)^T$; 求解(A-6E)x=0,得A的对应 $\lambda_3=6$ 的单位特征向量为 $p_3=\frac{1}{3}(-2,2,1)^T$.

 $f = 3y_2^2 + 6y_3^2$

八. (6分) 已知向量组 $\alpha_1,\alpha_2,...,\alpha_m$ 线性无关, $\beta_i = \sum_{j=1}^m b_{ji}\alpha_j$

 $i=1,2,\cdots,n$. 求证: 如果 $\beta_1,\beta_2,\cdots,\beta_n$ 线性相关,则 $r(B)\leq n$,证明: 由已知可得 $(\beta_1,\beta_2,\cdots,\beta_n)=(\alpha_1,\alpha_2,\cdots,\alpha_n)B$.

如果 $\beta_1,\beta_2,...,\beta_n$ 线性相关,如存在不全为零的数 $a_1,a_2,...,a_n$,使得

 $a_1\beta_1 + a_2\beta_2 + \dots + a_n\beta_n = 0$ $\Rightarrow x = (a_1, a_2, \dots, a_n)^T$,

所以 $B\tilde{x} = 0$, 这说明 n 元齐次线性方程组