Intelligence Artificielle Apprentissage

Perspective historique

Exemples d'applications : Commerce

Opinion mining

Exemple : analyser l'opinion des usagers sur les produits d'une entreprise à travers les commentaires sur les réseaux sociaux et les blogs

Exemples d'applications : aide au diagnostic médical

détection de mélanome de la peau 130 000 images dont 2000 cas de cancers taux d'erreur 28 % (humain 34 %)

the Digital Mammography DREAM Challenge 640 000 mammographies (1209 participants) 5 % de faux positif en moins

analyse du rythme cardiaque 500 000 ECG précision 92.6 % (humain 80.0 %) sensibilité de 97 %

Mise en oeuvre d'un projet de Machine Learning

Chaîne d'ingénierie des données

- 1. Pré-traitement/analyse des données
- 2. Identifier le type de problème
- 3. Comprendre et analyser les objectifs du projet
- 4. Élaborer un algorithme de résolution
- 5. Évaluer ses performances
- 6. Retour à 2) si nécessaire

Apprentissage

Définition 1 (Larousse)

- apprendre = acquérir de nouvelles connaissances: savoir, connaître,
- apprendre = contracter de nouvelles habitudes: savoir-faire

Définition 2 (Intelligence artificielle - Simon)

- L'apprentissage induit des changements dans le système qui sont adaptatifs dans le sens qu'ils permettent au système de faire la même tâche une nouvelle fois plus efficacement

AGENTS

pourquoi apprendre?

(Complexité, système ouvert, comportement inconnu, environnement inconnu)

apprendre quoi?

(Compétence, organisation, coordination, communication)

comment apprendre?

(isolé ou interactif, intégrer l'expérience des autres ...)

Techniques d'apprentissages

Caractérisation des techniques de Machine Learning

Active

Passive

Types of Learning

Trois (Quatre) types d'apprentissage

Apprentissage supervisé

- Le retour désiré est connu.

	With Teacher	Without Teacher
9	Reinforcement Learning / Active Learning	Intrinsic Motivation / Exploration
е	Supervised Learning	Unsupervised Learning

Apprentissage non supervis

- Aucun indice. L'agent apprend a partir des relations entre les perceptions. Il apprend à prédire les perceptions à partir de celles du passé.

Apprentissage semi-supervisé

- Une partie de données avec le retour désiré, l'autre partie est sans retour. On utilise le supervisé qui va guider le non-supervisé

Apprentissage par renforcement

- Le résultat désiré est inconnu. L'évaluation de l'action est faite par récompense ou punition.

Types d'apprentissages

1. Apprentissage supervisé

À partir de l'échantillon d'apprentissage $S = \{(x_i, u_i)\}_{1,m}$ on cherche une <u>loi de dépendance</u> sous-jacente

- Par exemple une fonction h aussi proche possible de f (fonction cible) tq: $u_i = f(x_i)$
- Ou bien une distribution de probabilités $P(x_i, u_i)$

afin de prédire l'avenir

Apprentissage supervisé

Apprentissage par instruction : Information disponible pour

l'apprentissage : la sortie désirée.

Problème d'approximation de fonction.

Exemples: Réseaux neuronaux, Support Vector Machines, Régression linéaire, Décomposition sur bases de co-

- •Si **f** est une fonction continue
 - Régression
 - Estimation de densité
 - •Si f est une fonction discrète
 - Classification
 - •Si *f* est une *fonction binaire* (booléenne)
 -Apprentissage de concept

Apprentissage non supervisé

De l'échantillon d'apprentissage $S = \{(x_i)\}_{1,m}$ on cherche des <u>régularités</u> sous-jacente

- Sous forme d'une fonction : régression
- Sous forme de nuages de points (e.g. *mixture de gaussiennes*)
- Sous forme d'un modèle complexe (e.g. *réseau bayésien*)

afin de résumer, détecter des régularités, comprendre ...

3. Apprentissage par Renforcement (AR)

Les données d'apprentissage

- Une séquence de perceptions, d'actions et de récompenses : $(s_r, a_r, r_t)_{t=1, \infty}$
 - Avec un renforcement r_t
 - r_t peut sanctionner des actions très antérieures à t

Le problème : inférer une application :

situation perçue → action

afin de maximiser un gain sur le long terme

(Comment sacrifier petit gain à court terme au profit du meilleur gain à long terme ?)

Apprentissage de réflexes ... -> ... apprentissage de planification

Yann Lecun's Cake Theory at NIPS 2016

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ▶ 10→10,000 bits per sample

Unsupervised/Predictive Learning (cake)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample
 - (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

Apprentissage supervisé:

Caractérisation des méthodes :

Objectif

A partir des données $\{(x_i, y_i) \in X \times Y, i = \cdots, N\}$, estimer les dépendances entre X et Y.

On parle d'apprentissage supervisé car les y_i permettent de guider le processus d'estimation.

Exemples

Estimer les liens entre habitudes alimentaires et risque d'infarctus. x_i : d attributs concernant le régime d'un patient, y_i sa catégorie (risque, pas risque).

Applications : détection de fraude, diagnostic médical ...

Techniques

k-plus proches voisins, arbre de décision, SVM, régression

Apprentissage supervisé

H famille de modèles mathématiques

Hyper-paramètres pour l'algorithme d'apprentissage

ALGORITHME D'APPRENTISSAGE

->h∈**H**

APPRENTISSAGE SUPERVISÉ: régression et classification

Régression (approximation)

Classification (y, = « étiquettes »)

points = exemples → courbe = régression

entrée = position point

sortie désirée = classe (□ =-1,+=+1)

Fonction étiquette=f(x) (et frontière de séparation)

Approximation: Ex: Régression linéaire

exemple le plus élémentaire d'apprentissage automatique :

on dispose de N couples de réels $(x_i \circ y_i)$ (l'ensemble d'apprentissage) on cherche deux réels a et b tels que $y_i \approx ax_i + b$ pour tout $1 \le i \le N$

le modèle est linéaire (dans le plan):

la fonction qui aux paramètres associe le modèle est linéaire

 $(a,b) \mapsto (x \mapsto ax + b)$ le modère iui meme est affine

$$(a^*, b^*) = \arg\min_{a,b} \sum_{i=1}^{N} (ax_i + b - y_i)^2$$

stratégie de construction du modèle :

minimisation de l'erreur des moindres carrés

Résolution

si
$$E(a,b) = \sum_{i=1}^{N} (ax_i + b - y_i)^2$$
, on a

$$\nabla_a E(a,b) = 2 \left(a \sum_{i=1}^N x_i^2 + \sum_{i=1}^N x_i (b - y_i) \right)$$

et

$$\nabla_b E(a,b) = 2N \left(b + \frac{1}{N} \sum_{i=1}^N (ax_i - y_i) \right)$$

 $\nabla E = 0$ conduit à une unique solution (a^*, b^*)

K plus proches voisins

- algorithme classique de discrimination
- **N** observations (données) \mathcal{D} N = (xi ⟨yi ⟩i=1à N et un paramètre K xi ∈ \mathcal{X} ⟨yi ∈ Y
- •on suppose que \mathcal{X} est muni d'une dissimilarité (distance) d
- •algorithme de calcul de la fonction discriminatoire gk (x) pour x:
 - 1. calcul des dissimilarités $d(x^cx_i)$ pour $1 \le i \le N$
 - 2. tri des dissimilarités tels que $d(x^{\zeta}x_{ji}) \leq d(x^{\zeta}x_{ji+1})$
 - 3. $g_k(x)$ est
 - -la classe majoritaire dans les K labels y_{j1},..., y_{jk} en discrimination
 - -le centre de gravité des K vecteurs y_{j1},..., y_{jk} en régression

Exemples de classes

Problème à deux classes linéairement séparables

SVM: Hyperplan de plus vaste marge

► Si $\{x_i\}$ = $\{x_1, ..., x_n\}$ est l'ensemble des données et $y_i \in \{-1, 1\}$ est la classe de chacune. on devrait avoir :

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1, \quad \forall i$$

tout en ayant une distance optimale entre x_i et le plan de séparation

Problème d'optimisation quadratique

Maximiser le pouvoir de généralisation du classifieur revient donc à trouver w et b tels que :

$$\frac{1}{2} \| \boldsymbol{w} \|^2$$
 est minimum

et

$$y_i(\mathbf{w}^T\mathbf{x}_i+b) \ge 1, \quad i=1,...n$$

- Si d est la dimension des x_i (nombre d'entrées), cela revient à régler d+1 paramètres (les éléments de w, plus b)
 - Possible par des méthodes d'optimisation classiques (optimisation quadratique) seulement si d pas trop grand (< qqs 10^3)
 - L'approche SVM utilise les multiplicateurs de Lagrange pour une solution plus simple

Extension à une surface de séparation non-linéaire

• « Simplifier les choses » en projetant les x_i dans un nouvel espace où ils sont linéairement séparables

► Φ = ?

Grand effort de calcul potentiel (d explose)

Espace de re-description

L'astuce des fonctions noyau

Définition d'une fonction noyau :

$$K(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle$$

- \Rightarrow La connaissance de K() permet de calculer indirectement un produit scalaire où intervient $\Phi()$, sans connaitre l'expression de $\Phi()$
- Or, seuls des produits scalaires interviennent dans la solution du problème d'optimisation
 - Un autre avantage d'utiliser K() est qu'il représente intuitivement la similarité entre les x et y, obtenue de nos connaissances a priori
 - Cependant, K(x,y) doit satisfaire certaines conditions (conditions de Mercer) pour que le Φ () correspondant existe

Exemples de fonctions noyaux

Noyau polynomial de degré d

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + 1)^d$$

• Noyau à fonction à base radiale de dispersion σ

$$K(x, y) = \exp(-||x - y||^2/(2\sigma^2))$$

- Très proche des RN avec fonctions à base radiale
- Sigmoïde avec paramètres κ et θ

$$K(\mathbf{x}, \mathbf{y}) = \tanh(\kappa \mathbf{x}^T \mathbf{y} + \theta)$$

- Ne satisfait pas la condition de Mercer pour tous κ et θ
- La recherche d'autres fonctions noyau pour diverses applications est très active!

Apprentissage Supervisé:

arbres de décision

Une des formes les plus simples d'apprentissage, mais tout de même une de celles qui connaissent le plus de succès.

À partir d'exemples, le but est d'apprendre des structures d'arbres permettant de prendre des décisions.

Chaque noeud représente un test à faire.

Chaque branche représente une valeur possible résultant du test.

Une feuille correspond à la décision.

Exemple (Jouer au tennis)

On a enregistré les différents états des journées où on a joué ou pas dans le tableau suivant:

Ensoleillé			Vent	JouerTennis
⊏nsolellie	Chaude	Élevée	Faible	Non
Ensoleillé	Chaude	Élevée	Fort	Non
Nuageux	Chaude	Élevée	Faible	Oui
Pluvieux	Tempérée	Élevée	Faible	Oui
Pluvieux	Froide	Normal	Faible	Oui
Pluvieux	Froide	Normal	Fort	Non
Nuageux	Froide	Normal	Fort	Oui
Ensoleillé	Tempérée	Élevée	Faible	Non
Ensoleillé	Froide	Normal	Faible	Oui
Pluvieux	Tempérée	Normal	Faible	Oui
Ensoleillé	Tempérée	Normal	Fort	Oui
Nuageux	Tempérée	Élevée	Fort	Oui
Nuageux	Chaude	Normal	Faible	Oui
Pluvieux	Tempérée	Élevée	Fort	Non
	Nuageux Pluvieux Pluvieux Pluvieux Nuageux Ensoleillé Ensoleillé Pluvieux Ensoleillé Nuageux Nuageux	Nuageux Chaude Pluvieux Tempérée Pluvieux Froide Pluvieux Froide Nuageux Froide Ensoleillé Tempérée Ensoleillé Froide Pluvieux Tempérée Ensoleillé Tempérée Nuageux Tempérée Nuageux Tempérée Nuageux Chaude	Nuageux Chaude Élevée Pluvieux Tempérée Élevée Pluvieux Froide Normal Pluvieux Froide Normal Nuageux Froide Normal Ensoleillé Tempérée Élevée Ensoleillé Froide Normal Pluvieux Tempérée Normal Ensoleillé Tempérée Normal Nuageux Tempérée Élevée Nuageux Chaude Normal	Nuageux Chaude Élevée Faible Pluvieux Tempérée Élevée Faible Pluvieux Froide Normal Faible Pluvieux Froide Normal Fort Nuageux Froide Normal Fort Ensoleillé Tempérée Élevée Faible Ensoleillé Froide Normal Faible Pluvieux Tempérée Normal Faible Ensoleillé Tempérée Normal Fort Nuageux Tempérée Normal Fort Nuageux Tempérée Élevée Fort Nuageux Chaude Normal Faible

Les valeurs de l'attribut Ciel sont : ensoleillé, nuageux et pluvieux

Les valeurs de l'attribut Température sont: chaude, tempérée, et froide

Les valeurs de l'attribut Humidité sont: élevée et normale

Les valeurs de l'attribut Vent sont: faible et fort

QUESTION: Y a t- il une règle permettant de décider (jouer ou pas) pour aujourd'hui (pluvieux et vent faible)

Construire un arbre de décision

L'apprentissage d'un arbre de décision est fait à partir d'exemples de valeurs d'attributs et de la valeur résultante du prédicat à apprendre.

Exemple = ensemble de valeurs d'attributs (propriétés)

La valeur du prédicat est appelée la classification de l'exemple (ex: Vrai / Faux).

L'ensemble des exemples est appelé l'ensemble d'entraînement.

Le but est de trouver le plus petit arbre qui respecte l'ensemble d'entraînement. (NP-complex)

L'arbre doit extraire des tendances ou des comportements (règles) à partir des exemples.

Algorithme

Procédure : construire-arbre(S) , S=ensemble d'exemples

Si tous les exemples de S appartiennent à la même classe alors créer une feuille portant le nom de cette classe

sinon

choisir un (Le meilleur) attribut A pour créer un nœud

Le test associé à ce nœud sépare $\bf S$ en $\bf V$ parties : $\bf S_1, ..., \bf S_v$

construire-arbre (S_k) k=1,,,V (V: nombre de valeurs de A)

finsi

Exemple

Est-ce une bonne journée pour jouer au tennis ?

Attributs : ciel, Température, Humdité et vent (caracteristiques d'une journée)

2 Classes: Jouer(OUI), ne pas jouer (NON)

Les exemples: les journées

Journée	Ciel	Température	Humidité	Vent	JouerTennis
J1	Ensoleillé	Chaude	Élevée	Faible	Non
J2	Ensoleillé	Chaude	Élevée	Fort	Non
J3	Nuageux	Chaude	Élevée	Faible	Oui
J4	Pluvieux	Tempérée	Élevée	Faible	Oui
J5	Pluvieux	Froide	Normal	Faible	Oui
J6	Pluvieux	Froide	Normal	Fort	Non
J7	Nuageux	Froide	Normal	Fort	Oui
J8	Ensoleillé	Tempérée	Élevée	Faible	Non
J9	Ensoleillé	Froide	Normal	Faible	Oui
J10	Pluvieux	Tempérée	Normal	Faible	Oui
J11	Ensoleillé	Tempérée	Normal	Fort	Oui
J12	Nuageux	Tempérée	Élevée	Fort	Oui
J13	Nuageux	Chaude	Normal	Faible	Oui
J14	Pluvieux	Tempérée	Élevée	Fort	Non

Les valeurs de l'attribut Ciel sont : Ensoleillé, nuageux et pluvieux

Les valeurs de l'attribut Température sont: chaude, tempérée, et froide

Les valeurs de l'attribut Humidité sont: élevée et normal

Les valeurs de l'attribut Vent sont: faible et fort

Le Choix du meilleur Attribut (plusieurs Algorithmes)

Algorithme (ID3)

Il construit les arbres de décision de haut en bas.

Il place à la racine l'attribut le plus important, c'est-à-dire celui qui sépare au mieux les exemples positifs et négatifs.

Par la suite, il y a un nouveau noeud pour chacune des valeurs possibles de cet attribut. Pour chacun de ces noeuds, on recommence le test avec le sous-ensemble des exemples d'entraînement qui ont été classés dans ce noeud.

- · L'entropie de Boltzmann ...
- · ... et de Shannon
 - □ Shannon en 1949 a proposé une mesure d'entropie valable pour les distributions discrètes de probabilité.
 - □ Elle exprime la quantité d'information, c'est à dire le <u>nombre de bits</u> nécessaire pour spécifier la distribution
 - □ L'entropie d'information est:

$$I = -\sum_{i=1}^{n} p_i \times \log_2(p_i)$$

où p_i est la probabilité de la classe C_i.

$$H_s(C|A) = -\sum_i P(X_i) \cdot \sum_k P(C_k|X_i) \cdot log(P(C_k|X_i))$$

Entropie d'information de N objets:
$$I = -\sum_{i=1,k} pr(Ci) \times \log_2 pr(Ci)$$

k classes qui probables: $I = lg_2(k)$

1 seule classe: EI=0

- Nulle quand il n'y a qu'une classe
- D'autant plus grande que les classes sont équiprobables
- Vaut log₂(k) quand les k classes sont équiprobables
- Unité: le bit d'information

l'Entropie mesure alors le degré de l'hétérogénité dans une population

Choix de l'attribut

On choisit l'attribut ayant le meilleur gain d'information:

$$Gain(S, A) \equiv Entropie(S) - \sum_{v \in V(A)} \frac{|S_v|}{|S|} Entropie(S_v)$$
$$Entropie(S) \equiv \sum_{i=1}^{c} (-p_i) log_2(p_i)$$

S: les exemples d'entraînement.

A: l'attribut à tester.

V(A): les valeurs possibles de l'attribut A.

 S_v : le sous-ensemble de S qui contient les exemples qui ont la valeur v pour l'attribut A.

c : le nombre de valeurs possibles pour la fonction visée (classes).

pi : la proportion des exemples dans S qui ont i comme valeur pour la fonction visée.

Le critère entropique (3/3) : le cas de deux classes

• Pour k=2 on a : $I(p,n) = -p_+ x \log_2(p_+) - p_- x \log_2(p_-)$ D'après l'hypothèse H1 on a $p_+ = p/(p+n)$ et $p_- = n/(p+n)$

 $I(p,n) = -\frac{p}{(p+n)} \left(\frac{p}{(p+n)}\right)^{-} \frac{n}{(p+n)} \frac{\log(\frac{n}{(p+n)})}{(p+n)}$ d'où $I(P) = -P \log P - (1-P) \log(1-P)$ 1,00 I(P) 0,90 0,80 0,70 0,60 0.50 0,40 0,30 0,20 P=p/(p+n)=n/(n+p)=0.50,10 quiprobable

Apprentissage

Exemple (arbre ID3)

Premièrement, il faut choisir la racine de l'arbre.

$$Gain(S, A) \equiv Entropie(S) - \sum_{v \in V(A)} \frac{|S_v|}{|S|} Entropie(S_v)$$

$$Entropie(S) \equiv \sum_{i=1}^{c} (-p_i) log_2(p_i)$$

- Pour cela, nous allons choisir l'attribut qui a le plus grand gain d'information.
- Pour calculer le gain d'information, nous devons d'abord calculer l'entropie des exemples d'entraînement.
- − Il y a 9 exemples positifs et 5 exemples négatifs, sur un total de 14, donc nous obtenons une entropie de:

Entropie(S) =
$$\sum_{i=1}^{c} (-p_i)log_2(p_i)$$

= $(-9/14)log_2(9/14) + (-5/14)log_2(5/14)$
= 0.94

Maintenant, nous allons calculer le gain d'information pour le premier attribut, l'attribut *Ciel*.

- Cet attribut a 3 valeurs possibles, donc les exemples d'entraînement seront regroupés en 3 sous-ensembles.
- Nous commençons donc par calculer l'entropie des 3 sous-ensembles:

$$\begin{split} &\mathsf{S}_{\mathsf{ensoleill\acute{e}}} \!\!=\!\! \{\!j_1, j_2, j_8, j_9^+, j_{11}^+\!\} \\ &\mathsf{S}_{\mathsf{nuageux}} \!\!=\!\! \{\!j_3^+, j_7^+, j_{12}^+, j_{13}^+\!\} \\ &\mathsf{S}_{\mathsf{nuageux}} \!\!=\!\! \{\!j_3^+, j_7^+, j_{12}^+, j_{13}^+\!\} \\ &\mathsf{S}_{\mathsf{pluvieux}} \!\!=\!\! \{\!j_4^+, j_5^+, j_6, j_{10}^+, j_{14}^+\!\} \\ &\mathsf{Entropie}(S_{\mathit{nuageux}}) = (-4/4) \log_2 4/4 + (-0/4) \log_2 0/4 = 0 \\ &\mathsf{S}_{\mathsf{pluvieux}} \!\!=\!\! \{\!j_4^+, j_5^+, j_6, j_{10}^+, j_{14}^+\!\} \\ &\mathsf{Entropie}(S_{\mathit{pluvieux}}) = (-3/5) \log_2 3/5 + (-2/5) \log_2 2/5 = 0.971 \end{split}$$

Le calcul du gain d'information pour l'attribut

Ciel va dono donner

danc dannar.		
Gain(S, Ciel)	=	$Entropie(S) - \sum_{v \in V(Ciel)} \frac{ S_v }{ S } Entropie(S_v)$
	=	$0.94 - ((5/14) \times Entropie(S_{ensoleillé}) +$
		$(4/14) \times Entropie(S_{nuageux}) +$
		$(5/14) \times Entropie(S_{plunicux}))$
	=	$0.94 - ((5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971)$
	=	0.94 - 0.694
	=	0.246

3	$3/5 + (-2/5)\log_2 2/5 = 0.971$								
	Journée Ciel		Température	Humidité	Vent	JouerTennis			
	J1	Ensoleillé	Chaude	Élevée	Faible	Non			
	J2	Ensoleillé	Chaude	Élevée	Fort	Non			
	J3	Nuageux	Chaude	Élevée	Faible	Oui			
	J4	Pluvieux	Tempérée	Élevée	Faible	Oui			
	J5	Pluvieux	Froide	Normal	Faible	Oui			
	J6	Pluvieux	Froide	Normal	Fort	Non			
	J7	Nuageux	Froide	Normal	Fort	Oui			
	J8	Ensoleillé	Tempérée	Élevée	Faible	Non			
	J9	Ensoleillé	Froide	Normal	Faible	Oui			
	J10	Pluvieux	Tempérée	Normal	Faible	Oui			
	J11	Ensoleillé	Tempérée	Normal	Fort	Oui			
	J12	Nuageux	Tempérée	Élevée	Fort	Oui			
	J13	Nuageux	Chaude	Normal	Faible	Oui			
	J14	Pluvieux	Tempérée	Élevée	Fort	Non			

Exemple

On calcul le gain de la même manière pour les trois autres attributs:

L'attribut qui a le plus grand gain d'information est l'attribut *Ciel*, donc se sera la racine de l'arbre de décision.

$$Gain(S, Ciel) = 0.246$$

 $Gain(S, Humidit\'e) = 0.151$
 $Gain(S, Vent) = 0.048$
 $Gain(S, Temp\'erature) = 0.029$

En séparant les exemples selon les valeurs de l'attributs *Ciel*, on obtient l'arbre partiel:

$$S_{\text{ensoleillé}} = \{j_1^-, j_2^-, j_8^-, j_9^+, j_{11}^+\}$$

$$S_{\text{nuageuxé}} = \{j_3^+, j_7^+, j_{12}^+, j_{13}^+\}$$

$$S_{\text{pluvieux}} = \{j_4^+, j_5^+, j_6^-, j_{10}^+, j_{14}^-\}$$

On peut voir que lorsque le ciel est nuageux, il reste uniquement des exemples positifs, donc ce noeud devient une feuille avec une valeur de *Oui* pour la fonction visée.

Pour les deux autres noeuds, il y a encore des exemples positifs et négatifs, alors il faut recommencer le même calcul du gain d'information. mais avec les sous-ensembles restant.

On a alors les règles de décision:

SI le ciel est ensoleillé et l'humidité est élevée ALORS on ne joue pas

SI le ciel est ensoleillé et l'humidité est normale ALORS on joue

SI le ciel est nuageux ALORS on joue

SI le ciel est pluvieux et le vent est fort ALORS on ne joue pas

SI le ciel est pluvieux et le vent est faible ALORS on joue

Exercice 1

On veut déterminer si on aime ou pas un restaurant donné

Les attributs étudiés sont : le prix et le type de ce qui est à manger

Les valeurs pour Prix : Bas(B), Moyen(M) et Haut(H) Les valeurs pour Type : Tagine (T) et Couscous(C).

Les classes : Aimer (+) et Ne pas Aimer (-)

On utilise les exemples d'apprentissage suivants :

exemple	Туре	Prix	Classe
1	Т	В	+
2	С	В	+
3	Т	М	-
4	С	М	+
5	С	Н	-

- Est-ce que l'arbre T1 classifie bien les exemples ?
- En commençant par l'attribut Prix, Donner l'arbre obtenu T2.
- Calculer le gain (par ID3) pour l'attribut Prix
- Calculer le gain (par ID3) pour l'attribut Type
- Construire alors l'arbre T3
- Traduire l'arbre T3 en règles

Trois algorithmes principaux

Il existe 3 mesures différentes de la qualité du partitionnement

3 algorithmes d'arbre différents

- Indice de pureté coefficient de corrélation: On choisit la variable X qui maximise son coefficient de corrélation avec la classe à prédire: algorithme CART
- Écart à l'indépendance le lien du χ^2 : Mesure très utilisée en statistique, on choisit la variable X qui maximise son lien avec la classe à prédire: algorithme ChAID
- Gain informationnel entropie de Shannon: mesure très utilisée en Intelligence Artificielle: algorithme ID3
- Hétérogénéité, indice de Gini: Gini (S) = $\sum_{i\neq i} pi * pj$, i et j sont des classes

Sur-apprentissage

Un arbre peut avoir une erreur apparente nulle mais une erreur réelle importante, c'est-à-dire être bien adapté à l'échantillon mais avoir un pouvoir de prédiction faible.

- · Mémorisation de tout l'ensemble d'apprentissage plutôt que d'induire un concept général..
- · Plus on apprend, plus on "colle" aux données
- · A la fin, tous les exemples sont appris par coeur, y compris le bruit

→ Problème de surapprentissage

Eviter le sur-apprentissage

- On peut utiliser un ensemble de test pour arrêter la construction de l'arbre quand l'estimation de l'erreur ne diminue plus.
- On peut construire l'arbre en entier, **puis l'élaguer** (réduire l'arbre): **processus d'élagage**

Le sur-apprentissage

Récapitulatif

- Méthode de référence en apprentissage supervisé
- Méthode très répandue, rapide et disponible (http://www.cse.unsw.edu.au/~quinlan)
- Méthode relativement sensible au bruit

Exercice 2

Les chercheurs de la chaîne de café Columbus ont collecté les informations suivantes concernant le fait si les clients aiment leur café avec différents arômes ajoutes. Les trois attributs sont des attributs binaires qui indiquent si l'arôme a été ajoute ou pas.

Menthe	Noisette	Vanille	Aimé?
oui	oui	non	non
oui	non	non	oui
non	non	non	oui
non	oui	non	non

- Donner l'attribut à la racine de l'arbre de décision avec ID3. Donnez les détails du calcul. Est-ce qu'après avoir choisi la racine on doit choisir un autre noeud? Pourquoi ?

Exercice 3

Construire un arbre de décision relatif aux formules logiques suivantes:

- $\cdot a \land \neg b$
- $\cdot a^{\vee} (b^{\wedge} c)$
- \cdot a xor b

Exercice 4

Considérons un exemple simple ci-dessous. Nous remarquons que certains éléments sont redondants.

			- г
Exemple	а	b	Classe
1	1	1	+
2	1	1	+
3	0	0	+
4	1	0	
5	0	1	
6	0	1	-

Question 1. En utilisant la mesure d'entropie, construisez l'arbre de décision associé à cet exemple.

Question 2. Est-ce que l'arbre de décision change lorsque nous enlevons les exemples redondants ?

Question 3. A présent nous rajoutons un septième exemple négatif.

|--|

Quelle est la structure de l'arbre de décision ?

Qu'en concluez vous?

$$(\log_2(1/3)=-1,585; \log_2(2/3)=-0,585; \log_2(1/5)=-2,322; \log_2(2/5)=-1,322; \log_2(3/5)=-0,737; \log_2(4/5)=-0,322; \log_2(2/7)=-1,807; \log_2(5/7)=-0,485)$$

Réseaux de Neurones

Boites à outil sur le web

- 1. Stuttgart Neural Network Simulator (SNNS)
- http://www-ra.informatik.uni-tuebingen.de/SNNS/
- 2. Netlab neural network software (NetLab)
- http://www.ncrg.aston.ac.uk/netlab/
- 3. Artificial Neural Network (ANN)
- http://www.scilab.org/contrib/index_contrib.php? page=download.php&category=MODELING%20AND
- %20CONTROL%20TOOLS

Apprentissage

Diamètre de la cellule: 0.01 - 0.05 mm,

Soma (corps cellulaire)

formes variables (gén. sphériques), 20 µm de diamètre, contient le noyau, entourée d'une membrane de 5 nm d'ép.

Axone

unique aux cellules nerveuses,

diamètre: 1-25 μm (humain),

1 mm (poulpe),

longueur: 1 mm to 1 m. (!!!),

connexion vers les autres neurones

(synapses),

permet la transmission d'information,

Dendrites

reçoivent les signaux des autres neurones, chacune couverte de centaines de synapses.

Quelques chiffres ...

- nombre de neurones dans le cerveau: ~ 10¹¹
- nombre de connexions par neurone: ~ 10⁴ 10⁵
- temps de cycle (*switching time*): ~ 10⁻³ seconde
- temps moyen d'une activité cognitive: ~ 0.1 seconde (ex. reconnaissance de visages)

Il n'y a donc de la place que pour 100 cycles de traitement, ce qui est insuffisant pour une activité complexe !!!

Le cerveau doit donc effectuer des opérations en parallèle !!!

Modélisation

Intuition

- les capacités (intelligence?) résident dans les connexions entre les milliards de neurones du cerveau humain.
- Propriétés d'une modélisation
 - neuro-biologiquement plausible (unité ≈ neurone),
 - traitement distribué et parallélisme massif
 - • beaucoup d'interconnexions entre unités,
 - • ajustement automatique des poids des connexions,
 - traitement non-symbolique (i.e., pas de règles explicites d'inférence),
 - intelligence comme propriété émergente,
 - connaissance représentée par les poids des connexions entre unités,
 - pas de "maître de cérémonie" (executive supervisor).

Le terme "réseaux de neurones" peut prendre des significations différentes:

- réseaux de neurones artificiels,
- modèles connexionnistes,
- neurosciences calculatoires,
- modélisation neuronale.

Quelques repères ...

1943: J. McCulloch & W. Pitts

- proposent un modèle simple de neurones capable de produire une machine de Turing,
- démontrent qu'un assemblage synchrone de tels neurones est une machine universelle de calcul (càd. n'importe quelle fonction logique peut être représentée par des unités à seuil),

1948: *D. Hebb*

propose une règle d'apprentissage pour des réseaux de neurones

1958: F. Rosenblatt

– propose le modèle du *Perceptron* et démontre son théorème de convergence,

1969: M. Minsky & S. Papert

- démontrent les limitations du modèle du Perceptron,

1985: apprentissage par rétro-propagation pour les réseaux multi-couches.

Le Neurone Formel

Définition:

Un neurone formel (artificiel) est une unité de traitement qui reçoit des données en entrée, sous la forme d'un vecteur, et produit une sortie réelle.

Cette sortie est une fonction des entrées et des poids des connexions.

Le Poids de Connexion

Définition : Une connexion entre deux unités i et j indique la possibilité d'une relation physique entre ces deux unités.

La valeur numérique du poids associé à une connexion entre deux unités reflète la force de la relation entre ces deux unités. **Si cette valeur est positive**, la connexion est dite **excitatrice**, sinon elle est dite **inhibitrice**. La convention usuelle est de noter le poids de la connexion reliant le neurone i au neurone j : **w**_{ii}

Modèle de McCulloch & Pitts

Ce modèle est mathématiquement décrit par 2 équations:

$$u_k = \sum_{j=1}^p w_{kj} x_j$$
 et
$$y_k = \varphi(u_k - y_k)$$

où:

 $X_1, X_2, ..., X_n$ sont les *entrées*,

 w_{k1} , w_{k2} , ..., w_{kp} sont les *poids synaptiques* du neurone k, u_k est la *sortie de l'unité de sommation*, Θ_k est le *seuil*,

 ϕ (.)est la fonction d'activation,

 y_k est le signal de sortie du neurone k.

Modèle étendu

La fonction d'activation définit la valeur de sortie d'un neurone en termes des niveaux d'activité de ses entrées.

3 types de fonctions d'activation :

• fonction à seuil

$$y_k = \varphi(v_k) = \begin{cases} 1 & \text{si } v_k \ge 0 \\ 0 & \text{si } v_k < 0 \end{cases}$$

fonction linéaire par parties

$$\varphi(v) = \begin{cases} 1 & \text{si } v \ge \alpha \\ v & \text{si } \alpha > v > \beta \\ 0 & \text{si } v \le \beta \end{cases}$$

• fonction sigmoïde

$$\varphi(v) = \frac{1}{1 + e^{-av}}$$

Topologies de réseaux

• Réseau acyclique ("feedforward") à une seule couche

• Réseau récursif (réseau de Hopfield)

Autres: cartes de Kohonen,...

Réseau acyclique multi-couches

• Réseau "en treillis"

tilisation des modèles connexionnistes

Grand nombre de mesures + Loi sous-jacente inconnue

Classification (prédiction)

X

tilisation des modèles connexionnistes

Grand nombre de mesures + Loi sous-jacente inconnue

Classification/clustering (prédiction) auto-encodeur

tilisation des modèles connexionnistes

Grand nombre de mesures + Loi sous-jacente inconnue RNN/LSTM

Regression / Series

RNN/LSTM: Traduction

Le modèle "Perceptron"

Fonctions Logiques, exemple: "ou" logique

Solution: XOR

Séparabilité linéaire

Problème: Non-séparabilité linéaire (XOR, EGALITE)

entrée x1	entrée x2	sortie
0	0	0
0	1	1
1	0	1
1	1	0

Théorème d'apprentissage (F. Rosenblatt)

Étant donné suffisamment d'exemples d'apprentissage, il existe un algorithme qui apprendra n'importe quelle fonction linéairement séparable.

Càd: trouver les poids w_k /

$$W_0 + W_1 * X_1 + W_2 * X_2 + \dots + W_n * X_n = 0$$

Equation d'un hyperplan

Algorithme d'apprentissage du Perceptron (correction d'erreur)

Entrées: ensemble d'apprentissage $\{(x_1, x_2, ..., x_n, t)\}$

Méthode

initialiser aléatoirement les poids w_i , $0 \le i \le n$ répéter jusqu'à convergence: pour chaque exemple

calculer la valeur de sortie o du réseau.

ajuster les poids: $\Delta w_i = \eta(t - o) x_i$

$$W_i \leftarrow W_i + \Delta W_i$$

Règle d'apprentissage du Perceptron (WIDROW-HOFF)

Intelligence Artificielle

Apprentissage

Exemple d'apprentissage par correction d'erreur

	w_0	w_1	w_2	Entrée	Σ	0	t	w_0	w_1	w_2	
1	0	0	0	100	0	0	0	0	0	0	

f(x)=1 si x > 0 f(x)=0 sinon

Fin d'apprentissage:

Réseau: (w0,w1,w2) = (0,1,1)

La droite: x1+x2 =0 sépare deux classes

EXERCICE 1

Considerez le perceptron et l'echantillon suivant :

Question 1: Donnez des valeurs aux poids w0,w1,w2 et w3 de sorte que le perceptron classifie correctement l'échantillon. (w0 = ?, w1 = ?, w2 = ?, w3 = ?)

Question 2: Donnez des valeurs aux poids w0,w1,w2 et w3 de sorte que le perceptron classifie correctement l'échantillon inverse (vecteur $\vec{y_1}$ classe 0, $\vec{y_2}$ classe 1, $\vec{y_3}$ classe 1, $\vec{y_4}$ classe 0) (w0 = ?, w1 = ?, w2 = ?, w3 = ?)

Considérons l'échantillon suivant: $\begin{array}{c} \vec{y_1} : 1 & 0 & 0 & 1 \\ \vec{y_2} : 1 & 0 & 1 & 1 \\ \vec{y_3} : 0 & 1 & 1 & 0 \\ \vec{y_4} : 0 & 1 & 0 & 1 \end{array}$

Question 3 Si on applique l'algorithme d'apprentissage par correction d'erreur en commençant par le vecteur w = (0, 0, 0, 0) on obtient le vecteur de poids suivant : ?

On considère un perceptron spécial avec trois entrées x_1 x_2 , et x_3 , trois poids w_1 , w_2 et w_3 et deux seuils θ_1 et θ_2 . La sortie de ce perceptron spécial est 1 si $\theta_1 < w_1x_1 + w_2x_2 + w_3x_3 < \theta_2$ et 0 sinon.

Question 4 : Donnez w_1 , w_2 , w_3 , θ_1 et θ_2 de sorte que le perceptron classifie correctement l'échantillon suivant:

x_1	x_2	x_3	classe
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

SOLUTIONS:

Question 1 Donnez des valeurs aux poids w0,w1,w2 et w3 de sorte que le perceptron classifie correctement l'échantillon. w0 = 0, w1 = -1, w2 = 1, w3 = 0

Question 2 Donnez des valeurs aux poids w0,w1,w2 et w3 de sorte que le perceptron classifie correctement l'échantillon inverse (vecteur $\sim y1$ classe $0, \sim y2$ classe $1, \sim y3$ classe $1, \sim y4$ classe $0, \sim y2$ classe $1, \sim y3$ classe $1, \sim y4$ classe 1,

Question 3 Si on applique l'algorithme d'apprentissage par correction d'erreur en commençant par le vecteur \sim w = (0; 0; 0; 0) on obtient le vecteur de poids (a quatre dimensions, le premier pour le seuil) suivant : (1; 1; 0;-1)

Question 4 Donnez w1, w2, w3, θ 1 et θ 2 de sorte que le perceptron classifie correctement l'échantillon suivant:

$$w1 = 0$$
, $w2 = 1$, $w3 = 1$, $\theta1 = 0.5$ et $\theta2 = 1.5$

Exercice: Perceptron

Considérons le plan (x_1,x_2) (figure suivante) de points avec deux classes (C1 : \oplus et C2 : +)

- 1) Donnez l'équation de l'hyperplan (droite) séparateur de deux classes de la figure.
- 2) Considérons les 6 points encadrés (pointillés) de C1 (1) et C2 (0) comme exemples d'entrainement pour un perceptron :
- Donner le schéma de ce perceptron
- Déterminer à l'aide de l'algorithme d'apprentissage l'hyperplan résultant

Indication : à chaque itération on utilise un exemple d'une manière alternative (tantôt C1 tantôt C2) en commençant par C1 et on s'arrête au dernier exemple introduit.

•Comparer les 2 hyperplans et conclure.

Réseaux multi-couches

- Un réseau à 2 couches (une couche cachée) avec des unités à seuil peut représenter la fonction logique "ou exclusif" (xor).
- Les réseaux multi-couches "feedforward" peuvent être entraînés par rétro-propagation pour autant que la fonction de transition des unités soit différentiable (les unités à seuil ne conviennent donc pas).
- Il faut apprendre les valeurs des poids w_i qui minimisent l'erreur quadratique

$$E[\vec{w}] = \frac{1}{2} \sum_{\epsilon} (t_{\epsilon} - o_{\epsilon})^2$$

- Un réseau de neurones à couches cachées est définie par une architecture vérifiant les propriétés:
 - Les cellules sont réparties dans des couches C_0, C_1, \ldots, C_q .
 - La première couche C_0 (rétine) est composée des cellules d'entrée (correspondent aux n variables d'entrée).
 - Les couches C_1, \ldots, C_{q-1} sont les couches cachées.
 - La couche C_q est composée des cellules de décision.
 - Les entrées d'une cellule d'une couche C_i sont toutes les cellules de la couche C_{i-1} seulement.
- La dynamique du réseau est synchrone par couche.
- Perceptron multi-couches (PMC) linéaires à seuil.
- Chaque fonction booléenne peut être calculée par un PMC linéaire à seuil avec une seule couche cachée.

Intelligence Artificielle

Apprentissage

L'algorithme de retropropagation du gradient

 On choisit une fonction d'activation dérivable qui s'approche de la fonction de Heaviside:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$
$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

• Une cellule élémentaire à n entrée réelles $\vec{x}=(x_1,\ldots,x_n)$ est définie par les poids synaptiques réels $\vec{w}=(w_1,\ldots,w_n)$ et la sortie est calculée par:

$$o(ec{x}) = rac{1}{1+e^{-y}} ext{ avec } y = ec{x}ec{w} = \sum_{i=1}^n w_i x_i$$

ullet L'erreur du PMC sur un échantillon S est définie par:

$$E(\vec{w}) = \frac{1}{2} \sum_{(\vec{x}^s, \vec{c}^s) \in S} \sum_{k=1}^{p} (c_k^s - o_k^s)^2$$

où o_k^s est la k-ième composante du vecteur de sortie \vec{o} calculée par le PMC sur l'entrée \vec{x} .

Algorithme de retropropagation du gradient (Notation)

Calcul de $\frac{\partial E(\vec{w})}{\partial w_{i,i}}$

On minimise l'erreur du réseau sur un exemple en appliquant la méthode de descente du gradient. Pour cela, il faut calculer

$$rac{\partial E(ec{w})}{\partial w_{ij}} = rac{\partial u}{\partial w}$$

w_{ij} ne peut influencer la sortie du réseau qu'à travers y_i:

$$\frac{\partial E}{\partial w_{ii}} = \frac{\partial E}{\partial u_i} \frac{\partial y_i}{\partial w_{ij}} = \frac{\partial E}{\partial u_i} x_{ij}$$

• Il suffit donc de calculer

$$\frac{\partial I}{\partial u}$$

- Il y a deux cas: la cellule i est
 - une cellule de sortie
 - une cellule interne

i est une cellule de sortie

y_i n'influence la sortie du réseau qu'à travers de o_i:

$$\frac{\partial E}{\partial y_i} = \frac{\partial E}{\partial o_i} \frac{\partial o_i}{\partial y_i}$$

$$\frac{\partial E}{\partial o_i} = \frac{\partial}{\partial o_i} \frac{1}{2} \sum_{k=1}^p (c_k - o_k)^2 = \frac{\partial}{\partial o_i} \frac{1}{2} (c_i - o_i)^2 = -(c_i - o_i)$$

$$\frac{\partial o_i}{\partial o_i} = \frac{\partial \sigma(y_i)}{\partial o_i} = \sigma(y_i) (1 - \sigma(y_i)) = o_i (1 - o_i)$$

$$\frac{\partial o_i}{\partial y_i} = \frac{\partial \sigma(y_i)}{\partial y_i} = \sigma(y_i)(1 - \sigma(y_i)) = o_i(1 - o_i)$$

On obtient donc:

$$\frac{\partial E}{\partial y_i} = -(c_i - o_i)o_i(1 - o_i)$$

Couche de sortie, Erreur est:

$$\delta_i = O_i(1 - O_i)(C_i - O_i) = \sigma'(y_i)(C_i - O_i)$$

Couche Cachée, Erreur est:

$$\delta_i = O_i(1-O_i) \sum \delta_k W_{ki}$$

Algorithme de retropropagation du gradient (Notation)

i est une cellule interne

• y_i influence le réseau par tous les calculs des cellules de Succ(i)

$$\frac{\partial E}{\partial y_i} = \sum_{k \in Succ(i)} \frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial y_i} = \sum_{k \in Succ(i)} \frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial o_i} \frac{\partial o_i}{\partial y_i} = \sum_{k \in Succ(i)} \frac{\partial E}{\partial y_k} w_{ki} o_i (1 - o_i)$$

$$= o_i(1 - o_i) \sum_{k \in Succ(i)} \frac{\partial E}{\partial y_k} w_{ki}$$

• On choisit

$$\Delta w_{ij} = -\epsilon \frac{\partial E(\vec{w})}{\partial w_{ij}}$$

On définit

$$\delta_i = -\frac{\partial E}{\partial y_i}$$

- Cellule de sortie: $\delta_i = o_i(1 o_i)(c_i o_i)$
- Cellule interne: $\delta_i = o_i (1 o_i) \sum_{k \in Succ(i)} \delta_k w_{ki}$

O_i = sortie calculée

C_i = sortie désirée

Couche de sortie, Erreur est:

$$\delta_i = O_i(1-O_i)(C_i-O_i) = \sigma'(y_i)(C_i-O_i)$$

Couche Cachée, Erreur est:

$$\delta_i = O_i(1-O_i) \sum_{k \in Succ(i)} \delta_k W_{ki}$$

Couche sortie

Algorithme de retropropagation du gradient

Entrée: un PMC avec une couche d'entrée C_0 , q-1 couches cachées C_1, \ldots , une couche de sortie C_q , n cellules.

Initialisation aléatoire des poids w_i dans [-0.5, 0.5] pour i de 1 à n

Répéter

Prendre un exemple (\vec{x}, c) dans S et calculer \vec{o}

Pour toute cellule de sortie i $\delta_i \leftarrow o_i(1-o_i)(c_i-o_i)$ FinPour

Pour chaque couche de q-1 à 1

Pour chaque cellule i de la couche courante

$$\delta_i \leftarrow o_i(1 - o_i) \sum_{k \in Succ(i)} \delta_k w_{ki}$$

fin Pour

fin Pour

Pour tout poids $w_{ij} \leftarrow w_{ij} + \epsilon \delta_i x_{ij}$ fin Pour

fin Répéter

Sortie: Un PMC défini par la structure initiale choisie et les w_{ij}

Remarques

- C'est une extension de l'algorithme de Widrow-Hoff
- Peu de problèmes avec les minima locaux
- On peut utiliser un moment (momentum)
 - On fixe une constante $\alpha \in [0,1[$
 - La règle de modification des poids devient

$$w_{ij} \leftarrow w_{ij} + \Delta w_{ij}(t)$$

$$\Delta w_{ij}(t) = \epsilon \delta_i x_{ij} + \alpha \Delta w_{ij}(t-1)$$

où t est un compteur des itérations.

- Quel critère d'arrêt ?
- Ordre de présentation des exemples ?
- Comment choisir les paramètres ?

Exemple

Trouver les nouveaux poids du réseau de la figure ci-dessous si on présente le vecteur d'apprentissage (0,1) (réf. Fausett, Prentice Hall, 1994)

Propagation avant

1. Net de la couche cachée

$$\mathbf{z_{-in_{1}}} = \mathbf{1.V_{01}} + \mathbf{X_{1.V_{11}}} + \mathbf{X_{2.V_{21}}}$$

$$\mathbf{z_{-in_{1}}} = 0.4 + (0.0)(0.7) + (1.0)(-0.2) = 0.2$$

$$\mathbf{z_{-in_{2}}} = \mathbf{1.V_{02}} + \mathbf{X_{1.V_{12}}} + \mathbf{X_{2.V_{22}}}$$

$$\mathbf{z_{-in_{2}}} = 0.6 + (0.0)(-0.4) + (1.0)(0.3) = 0.9$$

Propagation avant

2. Out de la couche cachée

$$z_1 = 1 / (1 + \exp(-z_i n_1)) = 0.550$$

 $z_2 = 1 / (1 + \exp(-z_i n_2)) = 0.711$

Propagation avant

3. Net de la couche de sortie

$$y_in = -0.3 + (z_1) (0.5) + (z_2) (0.1) = 0.046$$

Propagation avant

1. Net de la couche cachée

$$z_{in_{1}} = 0.4 + (0.0) (0.7) + (1.0) (-0.2) = 0.2$$

 $z_{in_{2}} = 0.6 + (0.0) (-0.4) + (1.0) (0.3) = 0.9$

2. Out de la couche cachée

$$z_1 = 1 / (1 + \exp(-z_i n_1)) = 0.550$$

 $z_2 = 1 / (1 + \exp(-z_i n_2)) = 0.711$

3. Net de la couche de sortie

$$y_in = -0.3 + (z_1) (0.5) + (z_2) (0.1) = 0.046$$

4. Out de la couche de sortie

$$y = 1 / (1 + \exp(-y_in)) = 0.511$$

Rétro-propagation

5. Erreur

$$t - y = 1 - 0.511 = 0.489$$

6. δκ

$$\delta \kappa = (t - y) (y) (1 - y) = 0.122$$

Rétro-propagation

Algorithme de retropropagation du gradient

Entrée: un PMC avec une couche d'entrée $C_0,\ q-1$ couches cachées $C_1,\dots,$ une couche de sortie $C_q,\ n$ cellules. Initialisation aléatoire des poids w_i dans [-0.5,0.5] pour i de 1 à n Répéter Prendre un exemple (\vec{x},c) dans S et calculer \vec{o} Pour toute cellule de sortie i $\delta_i \leftarrow o_i(1-o_i)(c_i-o_i)$ FinPour Pour chaque couche de q-1 à 1 Pour chaque cellule i de la couche courante $\delta_i \leftarrow o_i(1-o_i) \sum_{k \in Succ(i)} \delta_k w_{ki}$ fin Pour fin Pour Pour tout poids $w_{ij} \leftarrow w_{ij} + \epsilon \delta_i x_{ij}$ fin Pour fin Répéter Sortie: Un PMC défini par la structure initiale choisie et les w_{ij}

Dans le cas général:

$$\sum_{k=1}^{\infty} d_k W_{jk}$$

$$0 \text{ Dérivée de } f(\mathbf{z_in_j})$$

$$0 \text{ Si}_1$$

$$0 \text{ Si}_1$$

$$0 \text{ Si}_1$$

$$0 \text{ Si}_2$$

 $\delta j_2 = (\delta k) (w_{21}) (z_2) (1 - z_2) = 0.0025$

Rétro-propagation

7.
$$\Delta$$
 \mathbf{w}_{ik}

$$\Delta \mathbf{w}_{01} = (\eta) (\delta \mathbf{k}) = 0.0305$$

$$\Delta \mathbf{w}_{11} = (\eta) (\delta \mathbf{k}) (z_1) = 0.0168$$

$$\Delta \mathbf{w}_{21} = (\eta) (\delta \mathbf{k}) (z_2) = 0.0217$$

$$w_{jk} = w_{jk} + \Delta w_{jk}$$

Rétro-propagation

10.

$$\Delta \mathbf{v}_{01} = (\eta) (\delta \mathbf{j}_{1}) = 0.038$$
 $\Delta \mathbf{v}_{11} = (\eta) (\delta \mathbf{j}_{1}) (\mathbf{x}_{1}) = 0.0$
 $\Delta \mathbf{v}_{21} = (\eta) (\delta \mathbf{j}_{1}) (\mathbf{x}_{2}) = 0.038$
 $\Delta \mathbf{v}_{02} = (\eta) (\delta \mathbf{j}_{2}) (\mathbf{x}_{2}) = 0.0006$
 $\Delta \mathbf{v}_{12} = (\eta) (\delta \mathbf{j}_{2}) (\mathbf{x}_{1}) = 0.0$
 $\Delta \mathbf{v}_{22} = (\eta) (\delta \mathbf{j}_{2}) (\mathbf{x}_{2}) = 0.0006$

Exercice à faire:

Trouver les nouveaux poids du réseau de la figure ci-dessous si on présente le vecteur d'apprentissage (-1,1) et on utilise une sigmoïde bipolaire comme

fonction d'activation

Seuls changent la dérivée de la fonction d'activation bipolaire et la mise à jour des poids entre l'entrée et la couche cachée.

sigmoï de bipolaire :
$$y = f(a) = \tanh\left(\frac{a}{2}\right)$$

$$f'(a) = 1/2*(1+y)(1-y)$$

Exercice2

Soit le perceptron multicouche suivant (**V**, **W** matrices poids et d_i sortie désirée):

Dans l'unique but de simplifier les calculs, les neurones ne sont pas munis de l'habituel paramètre de polarisation (seuil). Les poids de connexion affichés directement sur la connexion sont résumés dans les deux matrices de connexion :

$$V = \begin{bmatrix} 0.5 & 0.3 & 0.1 \\ 0.3 & 0.2 & 0.1 \end{bmatrix} \qquad W = \begin{bmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \\ 0.5 & 0.6 \end{bmatrix}$$

Pour le vecteur d'entrée (1,2,3)^t :

- Donner les erreurs à la sortie (calcul intermédiaire) : δ_1 , δ_2 et δ_3
- Calculez les nouvelles valeurs de poids des $V_{\scriptscriptstyle 11}$ et $W_{\scriptscriptstyle 11}$ par rétropropagation du gradient.

Les paramètres du réseau sont :

$$\eta = 1$$
 $f(net) = \frac{1}{1 + e^{-net}}$

net = somme pondérée au niveau d'une cellule. η : coefficient d'apprentissage solution

le stimulus
$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 doit donner la réponse $\mathbf{t} = \begin{bmatrix} .1 \\ .3 \\ .7 \end{bmatrix}$

Cette activation est ensuite convertie en réponse. En utilisant la tonction logistique, on obtient:

$$\mathbf{h} = f(\mathbf{b}) = \begin{bmatrix} 0.8022\\ 0.7311 \end{bmatrix}$$
 (VI.15)

Cette activation est ensuite transmise aux cellules de la couche de sortie. Elles calculent leur activation:

$$\mathbf{a} = \mathbf{Zh} = \begin{bmatrix} 0.2264 \\ 0.5331 \\ 0.8397 \end{bmatrix} , \qquad (VI.16)$$

elles la transforment en réponse en utilisant la fonction logistique :

$$\mathbf{o} = f(\mathbf{a}) = \begin{bmatrix} 0.5564 \\ 0.6302 \\ 0.6984 \end{bmatrix} . \tag{VI.17}$$

Les cellules de sortie peuvent évaluer leur signal d'erreur:

$$\delta_{\text{sortie}} = f'(\mathbf{a}) \odot \mathbf{e} = \mathbf{o} \odot (\mathbf{1} - \mathbf{o}) \odot (\mathbf{t} - \mathbf{o})$$
$$= \begin{bmatrix} -0.1126 \\ -0.0770 \\ 0.0003 \end{bmatrix}.$$

Réponse :

$$\mathbf{W} = \begin{bmatrix} 0,4946 & 0,2892 & 0,0837 \\ 0,2896 & 0,1791 & 0,0687 \end{bmatrix} \qquad \mathbf{W} = \begin{bmatrix} 0,0096 & 0,1177 \\ 0,2383 & 0,3437 \\ 0,5003 & 0,6002 \end{bmatrix}$$

Exercice 3

On considère un "perceptron" avec entrées x_1, x_2, \ldots, x_n et poids w_1, w_2, \ldots, w_n . La sortie o est donnée par

$$o = w_1(x_1 + x_1^3) + w_2(x_2 + x_2^3) + \cdots + w_n(x_n + x_n^3)$$

• Donnez un algorithme d'apprentissage basé sur la descente du gradient pour un tel "perceptron". Indication : Définissez d'abord une fonction d'erreur standard. Expliquez votre façon d'obtenir l'algorithme.

On considère un tel "perceptron" avec 2 entrées x_1 et x_2 , les poids $w_1 = 1$ et $w_2 = -1$. L'échantillon d'apprentissage consiste en un vecteur $x_1 = 1$, $x_2 = 1$ et la sortie désirée est 1.

Détaillez le premier pas de votre algorithme.

solution

$$o = w_1(x_1 + x_1^3) + w_2(x_2 + x_2^3) + \cdots + w_n(x_n + x_n^3)$$

Il suffit de définir l'erreur sur un échantillon comme

$$E(\vec{w}) = \frac{1}{2} \sum_{(\vec{x}^s, c^s)} (c^s - o^s)^2$$

Ensuite on prend les dérivées partielles par rapport aux w_i . Ca donne:

$$\frac{\partial(\vec{w})}{\partial w_i}E = \sum_{S} (c^s - o^s)(-x_i^s - (x_i^s)^3)$$

Et après on obtient facilement un algorithme d'apprentissage en remplaçant dans l'algorithme d'apprentissage par descente du gradient le calcul du Δw_i par $\Delta w_i \leftarrow \Delta w_i + \epsilon (c^s - o^s)(x_i^s + (x_i^s)^3)$.

Question?

Quand utiliser des réseaux de neurones artificiels pour résoudre des problèmes d'apprentissage?

- lorsque les données sont représentées par des paires attribut-valeur,
- lorsque les exemples d'apprentissage sont bruités,
- lorsque des temps d'apprentissage (très) longs sont acceptables,
- lorsqu'une évaluation rapide de la fonction apprise est nécessaire,

.

Deep Learning

Deep Learning (Travaux pionniers)

- Fukushima (1980) Neo-Cognitron
- LeCun (1998) Convolutional Neural Networks
- Many layered MLP with backpropagation
 - Tried early but without much success
 - I ent
 - Diffusion du gradient
- Présentation du deep networks avec apprentissage **non supervisé** (Auto-encoder, machine de boltzmann,....)

Convolutional Neural Networks (CNN) bien adapté à l'imagerie

Framework : TensorFlow – Keras (python)

Apprentissage des Deep Networks

- Construire un espace de représentation (feature space)
- Notez que c'est ce que nous faisons avec les noyaux SVM, ou les couches cachées dans MLP, etc, mais maintenant, nous allons construire l'espace de représentation en utilisant les architectures profondes.
- Apprentissage non supervisé entre les couches peut décomposer le problème en sous-problèmes distribués (avec des niveaux d'abstraction plus élevés) à être encore décomposé à des couches successives

Stacked Auto-Encoders (CNN)

Convolutional Encoder

Convolutional Decoder

Convolutional Decoder

Convolutional Decoder

Deconv1 Pred

Deconv2 Convolutional Decoder

Deconv1 Decon

Figure 2. Architecture of the proposed fully convolutional encoder-decoder network

Applications des RNA

- Contrôle
 - conduite automatique de véhicules:
 - Alvinn: réseau de pilotage d'un véhicule à partir d'images vidéo,
 - synthèse vocale:
 - NETtalk: un réseau qui apprend à prononcer un texte en anglais
 - processus de fabrication/production,
- Reconnaissance/classification/analyse
 - textes imprimés, caractères manuscrits (codes postaux), parole,
 - images fixes (ex. visages), animées ou clips vidéo,
 - risques (financiers, naturels, etc.)
- Prédiction
 - économie, finances, analyse de marchés, médecine,
 - **–** ...

Bibliographie

- Hopfield, J. J. (1982). *Neural networks and physical systems with emergent collective computational abilities*. Proceedings of the National Academy of Sciences 79:2554-2558.
- Hertz, J., A. Krogh, and R. G. Palmer. (1991). *Introduction to the Theory of Neural Computation*. Redwood City, CA: Addison-Wesley.
- Rumelhart, D. E., J. McClelland, and the PDP Research Group. (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Cambridge, MA: MIT Press.
- Bishop, C. M. (1995). *Neural Networks for Pattern Recognition*. New York: Oxford University Press.
- Haykin, S. (1994). *Neural Networks: A Comprehensive Foundation*. New York: Macmillan College Publishing.
- Churchland, P. S., and T. J. Sejnowski. (1992). *The Computational Brain*. Cambridge, MA: MIT Press.
- Arbib, A. M. (1995). *The Handbook of Brain Theory and Neural Networks*. Cambridge, MA: MIT Press.
- Sejnowski, T. (1997). Computational neuroscience. Encyclopedia of Neuroscience. Amsterdam: Elsevier Science Publishers.

Démos

- Animations Java
 http://www.cim.mcgill.ca/~jer/courses/java.html
- Approximation de fonctions http://neuron.eng.wayne.edu/bpFunctionApprox/bpFunctionApprox.html
- Apprentissage Perceptron http://diwww.epfl.ch/mantra/tutorial/english/perceptron/html/
- Reconnaissance de caractères
 http://sund.de/netze/applets/BPN/bpn2/ochre.html
- Réseaux auto-organisés
 http://www.neuroinformatik.ruhr-uni-bochum.de/ini/VDM/research/gsn/ DemoGNG/GNG.html
- Réseaux de Hopfield http://www.physics.syr.edu/courses/modules/MM/sim/hopfield.html