

HSNC UNIVERSITY, MUMBAI

HSNCU Syllabus School of Applied Sciences Syllabus of MSc Data Science and Business Analytics

Board of Faculty of Science & Technology

Board of Studies in the Subject of Data Science & Business Analytics:

- 1. Name of the Chairperson: Dr. Nandini Sengupta, Associate professor, Department of Economics
- 2. Name of the Co Chairperson: Mrs. Shailaja. J. Rane, Co- Ordinator of Data Science and Business Analytics.

Teachers from the college:

- 3. Miss. Beenarani Karutharan, Assistant Professor, Department of Computer science
- 4. Mrs.Mrunal M Hardikar, Assistant Professor, Department of Mathematics
- 5. Mr. Sikandar Yadav, Assistant Professor, Department of Data Science and Business Analytics.

External Professors:

- 6. Rosemary Gosling, Director of External Studies(Retd) for the London School of Economics and Political Science (LSE)
- 7. Dr. Santosh Bothe, Founder and Director AiSense(Start up funded by BIRAC, Govt. of India), Principal, Saraswati College, Shegaon, Affiliated to SGBU Amravati University.

External experts:

- 8. Prof. Parag Mahulikar is Ex- Dean and Senior Professor of Marketing at IES Management College and Research Centre, Bandra, India and Management Consultant.
- 9. Dr. Alok Deepak Dabade, Assistant Professor, Department of Statistics, University of Mumbai.

10. Dr. Sujata Suvarnapathki, Assistant Professor, Department of Statistics, Ramnarayan Ruia Autonomous

College, Matunga, Mumbai.

11. Mr. Subhash Kumar, Assistant Professor, MCA, MPHIL IT department, St.Xavier's college, Mumbai.

12. Industry Expert: Mr. Vinayak Deshpande, Managing Director, Sankhya Analytical Research Pvt. Ltd.

13. Industry Expert: Mr. Nishad Kapadia, MCA, Technical trainer, Data and Solution Architect Project

Manager, TeraData, Mumbai.

14. Industry Expert: Miss. Praveena Premanand Menon, MSc in Big Data Analytics.

15.Industry Expert: Mr. Awesh Bhornya, Infinity Learning (Founder)

Alumni: Proposed names Sara kale, Pranit Kadam

Part -I

Outline of choice based credit system as outlined by university grants commission:

R. ****: The definitions of the key terms used in the choice based credit system and grading system

introduced from the academic year 2023-2024 are as under:

1. **Major discipline:** Major discipline is the discipline or subject of main focus and the degree will be

awarded in that discipline. Students should secure the prescribed number of credits (about 50% of total

credits) through core courses in the major discipline.

2. Minor discipline: Minor discipline helps a student to gain a broader understanding beyond the major

discipline. For example, if a student pursuing an Economics major obtains a minimum of 12 credits from

a bunch of courses in Statistics, then the student will be awarded B.A. degree in Economics with a Minor

in Statistics.

2. **Elective Course:** Generally, a course which can be chosen from a pool of courses and which may be

very specific or specialized or advanced or supportive to the discipline/subject of study or which provides

an extended scope or which enables an exposure to some other discipline/subject/domain or nurtures the

candidate's proficiency/skill is called an Elective Course.

2.1 Discipline Specific Elective (DSE) Course: Elective courses may be offered by the main

discipline/subject of study referred to as Discipline Specific Elective. The University/Institute may also offer discipline related Elective courses of interdisciplinary nature (to be offered by the main discipline/subject of study).

- 2.2 **Dissertation/Project:** An elective course designed to acquire special/advanced knowledge, such as supplement study/support study to a project work, and a candidate studies such a course on his own with an advisory support by a teacher/faculty member is called dissertation/project. A Project/Dissertation work would be of 6 credits. A Project/Dissertation work may be given in lieu of a discipline specific elective paper.
- 2.3 **Generic Elective (GE) Course:** An elective course chosen generally from an unrelated discipline/subject, with an intention to seek exposure is called a Generic Elective.
- P.S.: A core course offered in a discipline/subject may be treated as an elective by other discipline/subject and vice versa and such electives may also be referred to as Generic Elective.
- 3. **Choice Based Credit System:** CBCS allows students to choose inter- disciplinary, intra-disciplinary courses, skill oriented papers (even from other disciplines according to their learning needs, interests and aptitude) and more flexibility for students.
- 4. **Program:** A Program is a set of courses that are linked together in an academically meaningful way and generally ends with the award of a Degree Certificate depending on the level of knowledge attained and the total duration of study
- 6. **Course:** A 'course' is essentially a constituent of a 'program' and may be conceived of as a composite of several learning topics taken from a certain knowledge domain, at a certain level. All the learning topics included in a course must necessarily have academic coherence, i.e. there must be a common thread linking the various components of a course. A number of linked courses considered together are in practice, a 'program'.
- 7. **Bridge Course:** Bridge course is visualized as Pre semester preparation by the learner before commencement of regular lectures. For each semester the topics, whose knowledge is considered as essential for effective and seamless learning of topics of the Semester, will be specified. The Bridge Course can be conducted in online mode. The Online content can be created for the Bridge Course Topics.

- 8. **Module and Unit:** A course which is generally an independent entity having its own separate identity, is also often referred to as a 'Module' in today's parlance, especially when we refer to a 'modular curricular structure'. A module may be studied in conjunction with other learning modules or studied independently. A topic within a course is treated as a Unit. Each course should have exactly 3 Units.
- 9. **Self-Learning: 20% of the topics will be marked for Self-Learning.** Topics for Self Learning are to be learned independently by the student, in a time- bound manner, using online and offline resources including online lectures, videos, library, discussion forums, fieldwork, internships etc.

Evaluative sessions (physical/online), equivalent to the credit allocation of the Self Learning topics, shall be conducted, preferably, every week for each course. Learners are to be evaluated real time during evaluative sessions. The purpose of evaluative sessions is to assess the level of the students' learning achieved in the topics earmarked for Self-Learning.

The teacher's role in these evaluative sessions will be that of a Moderator and Mentor, who will guide and navigate the discussions in the sessions, and offer concluding remarks, with proper reasoning on the aspects which may have been missed by the students, in the course of the Self-Learning process.

The modes to evaluate self-learning can be a combination of the various methods such as written reports, handouts with gaps and MCQs, objective tests, case studies and Peer learning. Groups can be formed to present self- learning topics to peer groups, followed by Question and Answer sessions and open discussion. The marking scheme for Self-Learning will be defined under Examination and Teaching.

The topics stipulated for self-learning can be increased or reduced as per the recommendations of the Board of Studies and Academic Council from time to time. All decisions regarding evaluation need to be taken and communicated to the stakeholders preferably before the commencement of a semester. Some exceptions may be made in exigencies, like the current situation arising from the lockdown, but such ad hoc decisions are to be kept to the minimum possible.

10. **Credit Point:** Credit Point refers to the 'Workload' of a learner and is an index of the number of learning hours deemed for a certain segment of learning. These learning hours may include a variety of learning activities like reading, reflecting, discussing, attending lectures / counseling sessions, watching especially prepared videos, writing assignments, preparing for examinations, etc. Credits assigned for a

single course always pay attention to how many hours it would take for a learner to complete a single course successfully. A single course should have, by and large a course may be assigned anywhere between 2 to 8 credit points wherein 1 credit is construed as corresponding to approximately 30 to 40 learning hours.

- 11. **Credit Completion and Credit Accumulation:** Credit completion or Credit acquisition shall be considered to take place after the learner has successfully cleared all the evaluation criteria with respect to a single course. Thus, a learner who successfully completes a 4 CP (Credit Point) course may be considered to have collected or acquired 4 credits. Learner level of performance above the minimum prescribed level (viz. grades / marks obtained) has no bearing on the number of credits collected or acquired. A learner keeps on adding more and more credits as he completes more and more courses. Thus, the learner 'accumulates' course wise credits.
- 12. **Credit Bank:** A Credit Bank in simple terms refers to stored and dynamically updated information regarding the number of Credits obtained by any given learner along with details regarding the course/s for which Credit has been given, the course-level, nature, etc. In addition, all the information regarding the number of Credits transferred to different programs or credit exemptions given may also be stored with the individual's history.
- 13. **Credit Transfer:** (performance transfer) When a learner successfully completes a program, he/she is allowed to transfer his/her past performance to another academic program having some common courses and Performance transfer is said to have taken place.
- 14. **Course Exemption:** Occasionally, when two academic programs offered by a single university or by more than one university, may have some common or equivalent course-content, the learner who has already completed one of these academic programs is allowed to skip these 'equivalent' courses while registering for the new program. The Learner is 'exempted' from 'relearning' the common or equivalent content area and from re-appearing for the concerned examinations. It is thus taken for granted that the learner has already collected in the past the credits corresponding to the exempted courses.

Part-II

The Scheme of Teaching and Examination:

The performance of the learners shall be evaluated in two components: Internal Assessment with 40% marks by way of continuous evaluation and by Semester End Examination with 60% marks by conducting the theory examination.

INTERNAL ASSESSMENT: - It is defined as the assessment of the learners on the basis of continuous evaluation as envisaged in the credit-based system by way of participation of learners in various academic and correlated activities in the given semester of the programme.

A). Internal Assessment

Major Discipline and General Elective Course

Sr. No.	Particulars	Marks
1	Self-Learning Evaluation	15 Marks
2	Practical Assessment	25 Marks

Minor Discipline

Sr. No.	Particulars	Marks
1	Practical Assessment	50 Marks

B). Summative Assessment

The semester end examination (external component) of 60% for each course will be as follows:

- i) Duration -2 Hours.
- ii) Theory Questions

Paper Pattern: -

- 1. There shall be four questions each of 15 marks each. Based on each unit there will be one question and the fourth one will be based on the entire syllabus.
- 2. All questions shall be compulsory with internal choice within the questions. (Each question will be of 15 marks with options.)

3. Questions may be subdivided into sub-questions a, b, c... and the allocation of marks depends on the weightage of the topic.

The marks will be given for all examinations and they will be converted into grade (quality) points. The semester-end, final grade sheets and transcripts will have only credits, grades, grade points, SGPA and CGPA.

C). Project:

- Project which can in the following forms
- Case Studies
- Videos
- Blogs
- Research paper (Presented in Seminar/Conference)
- Field Visit Report
- Presentations related to the subject (Moot Court, Youth Parliament, etc.)
- Internships (Exposition of theory into practice)
- Open Book Test
- any other innovative methods adopted with the prior approval of Director Board of Examination and Evaluation.

D). Self-Learning Evaluation:

- -20% of the topics of the curriculum are learned by the student through self learning using online / offline academic resources specified in the curriculum. Hence 20% of the lectures shall be allocated for evaluation of students on self learning topics
- The identified topics in the syllabus shall be learned independently by the students in a time bound manner preferably from online resources.
- Club the self-learning topics into 3-4 groups of topics only for evaluation.
- Prescribe time duration (in days) for completion of each group of topics and earmark self learning evaluation lectures in the timetable. Hence each group of topic can be assigned 3 regular lectures for this evaluation for the entire class.

Methods for Evaluation of Self-learning topics:

- Seminars/presentation (PPT or poster), followed by Q&A Objective questions /Quiz / Framing of MCQ questions.
- Debates

- Group discussion
- You-Tube videos (Marks shall be based on the quality and viewership)
- Improvisation of videos
- Role Play followed by question-answers
- Viva Voce
- Any other innovative method

Teachers can frame other methods of evaluation, provided that the method is duly approved by the college examination committee and is notified to the students at least 7 days before the commencement of the evaluation session.

HSNC University, Mumbai

(2024-2025)

Ordinances and Regulations
With Respect to
Choice Based Credit System (CBCS)

For the Programmes Under

The Faculty of Science and Technology

For the Course

Data Science & Business Analytics

Curriculum – Second Year Postgraduate Programmes

Semester-III and Semester -IV

2024-2025

Data Science & Business Analytics
Part 1- Preamble

M.Sc. Data Science and Business Analytics program is of minimum 84 credits covering four semesters. Data is the new oil. The analytics may be input for human decisions or may drive fully automated decisions. It helps decision makers in building strategies to perform deep-dive understanding and provide descriptive, predictive, and prescriptive analytics. It is used to run the business effectively and is instrumental in growing the business. It is an area with huge potential for corporate investments. Business Analytics include identifying KPIs, measurement strategy, data analysis, complex statistical model, data mining and deep understanding of cause-and-effect models. Business analytics can drive key decision making in the organization and help executive decision makers in building data driven strategies. Some of the impactful use of this is in the areas of Management Information Systems, Financial Service, Marketing Research, Process Improvements, Process Excellence, End-to-End Product Management, etc.

The program emphasizes both theory and modern applications of Data Science and Business analytics. It is structured to provide knowledge and in-depth skills necessary for the employability of the students in industries, academics and other government and non-government organizations. The program has some unique features like independent projects, number of elective courses and extensive computer training of statistical computations including standard software packages like SQL, SPSS AMOS, MINITAB, R and PYTHON etc. Being a part of Cluster University, the department got the academic autonomy and it has been utilized to add the new and need based elective courses. The independent project work is one among the important components of this program. The syllabus has been framed to possess a decent balance of theory, methods, and applications of data science in various fields. The thrust of the course is to prepare students to enter a promising career after graduation, and also provide them a platform for pursuing higher studies.

Program Outcomes:

- 1. Develop in-depth understanding of the key technologies in data science and business analytics such as data mining, machine learning, visualization techniques, predictive modeling, and statistics.
- 2. Practice problem analysis and decision-making.
- 3. Gain practical, hands-on experience using programming languages and big data tools through coursework and research projects.
- 4. Explore text mining analysis/techniques to understand the influence of social media applications.
- 5. Apply Principles and skills of Data Science in Marketing and Supply chain environments.
- 6. Encourage an aptitude for business improvement, innovation and entrepreneurial action.
- 7. Analyze legal and Ethical Principles in Data Science and Decision making contexts.

- 8. Enable all participants to recognise, understand and apply the language, theory and models of the field of business analytics.
- 9. Employ cutting edge tools and technologies to analyze Big Data.
- 10. Create and configure virtual machines, storage, networking, and other resources in a cloud environment.
- 11. Apply advanced data analysis techniques to financial data and explore emerging technologies and trends in FinTech.
- 12. Demonstrate use of teamwork, leadership skills, decision making and organization theory.

Course Structure

	Semester III			
Course Code	Course Type	Course Name	Credits	
	Major	Advance Machine Learning	3	
	Major	Deep Learning	3	
	Major	Big Data Analytics	3	
	Minor	Data Visualization	2	
	General Elective	Statistical Quality Control (SQC)	3	
	Course	Marketing Analytics	3	
		Advance Machine Learning Practicals	1	
	Discipline Specific practical	Deep Learning Practicals	1	
	_ pruesseur	Big Data Analytics Practicals	1	
		General Elective Course Practicals	1	
	Research Project		4	
	1	Total Credits	22	

	Semester IV			
Course Code	Course Type	Course Name	Credits	
	Major	Business Analytics	3	
	Major	Artificial Intelligence	3	
	Major	MLOps with Cloud Technologies	3	
	General Elective	Natural Language Processing	3	
	Course	Supply Chain Analytics	3	
		Business Analytics Practicals	1	
	Discipline Specific practical	Artificial Intelligence Practicals	1	
		MLOps with Cloud Technologies Practicals	1	
		General Elective Course Practicals	1	
	Research Project		6	
	1	Total Credits	22	

Detailed Syllabus Semester III

Major Courses

Course Name: Advance Machine Learning		Course Code:	
Course Type		Major	
Session Per Week (1 session is 60 minutes)		3	
Credits		3	
		Hours	Marks
Evaluation System	Theory Examination	2	60
	Internal	-	15

- CO1: Correctly apply and interpret results from clustering methods in scikit-learn, including k-means, agglomerative clustering, hierarchical clustering, and DBSCAN.
- CO2: Understand and apply Gaussian mixture models for clustering
- CO3: Implement recommender systems based on collaborative and content-based filtering methods.
- CO4: Understand reinforcement learning concepts, including dynamic programming and deep reinforcement learning

Unit	Content	No. of Lectures
1	Unsupervised Learning:	15
	Overview of Unsupervised Learning, Introduction to Clustering, Applications of	
	Clustering, Difference between Factor Analysis and Cluster Analysis, Procedure	
	for conducting cluster Analysis using	
	i) Hierarchical Clustering Method, Agglomeration Schedule, vertical icicle Plot	
	with complete linkage, Dendrogram with complete linkage	

	ii) Density-Based Clustering Method	
	iii) Grid-Based Clustering Method	
	iv) Model-Based Clustering Method	
	Evaluation of Clustering- Silhouette Score, Davies-Bouldin Index, Adjusted	
	Rand Index, Fowlkes-Mallows Index	
2	Gaussian Mixture Models:	15
	Cluster data with Gaussian mixture models Optimize Gaussian mixture models	
	with expectation maximization.	
	Frequent Itemset Mining and Recommender Systems:	
	Introduction to Frequent Itemset Mining, The Apriori Property and Apriori	
	Algorithm, Evaluation Metrics for Association Rule Mining	
	Recommender Systems: Collaborative Filtering and Content-Based Filtering	
	Low-Rank Approaches in Recommender Systems, Applications of	
	Recommender Systems in E-commerce, Media, and Social Networks	
3	Reinforcement Learning:	15
	Introduction to reinforcement learning, multi-armed bandits, Dynamic	
	Programming Methods for RL, Monte Carlo Methods for RL, Temporal	
	Difference Learning, Deep Reinforcement Learning	

Self – Learning Topics (Unit wise)

Unit	Topics
1	Applications of Clustering, Difference between Factor Analysis and Cluster Analysis,
	Dendrogram with complete linkage
2	Applications of Recommender Systems in E-commerce, Media, and Social Networks
3	Temporal Difference Learning, Deep Reinforcement Learning

Online Resources:

Introduction to Machine Learning by Dr. Balaraman Ravindran from IIT Madras available on swayam

portal https://nptel.ac.in/courses/106106139

Introduction to Machine Learning by Prof. S. Sarkar from IIT Kharagpur available on swayam portal https://nptel.ac.in/courses/106105152

Reference:

Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto

Pattern Recognition and Machine Learning by Christopher M. Bishop

Machine Learning Algorithms, 2nd Edition, Giuseppe Bonaccorso, Packt Publication

Mining of Massive Datasets by Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman

Course Name: Advance Machine Learning Practicals	Course Code:
Session Per Week(1 period is 60 minutes)	2
Credits	1

List of Practicals

Minimum 10 practicals based on syllabus topics in python or R

Course Name: Deep Learning		Course Code:		
Course Type		Major		
Session Per Week (1 ses	sion is 60 minutes)	3		
Credits		3		
		Hours	Marks	
Evaluation System	Theory Examination	2	60	
	Internal	-	15	

- CO1: Understand the fundamentals of neural networks, including biological neurons, activation functions, and training techniques such as gradient descent and backpropagation.
- CO2: To gain an in-depth understanding of artificial neural networks (ANNs)
- CO3: Analyze time series data to identify trends, seasonality, and stationarity, and make predictions using ANN-based time series forecasting models.
- CO4: To acquire knowledge of advanced concepts of Convolution Neural Networks, Recurrent Neural Networks, Autoencoders and generative adversarial networks.

Unit	Content	No. of
		Lectures
1	Introduction:	15
	Basics of Neural Networks: Biological Neurons, McCulloch Pitts Neuron,	
	Perceptron, Multilayer Perceptron: Linearly separable, linearly non-separable	
	classes	
	Deep Networks: Fundamentals, Brief History, Three Classes of Deep Learning	
	Basic Terminologies of Deep Learning	
	Artificial Neural Networks (ANN):	
	Multi-Layered Feedforward Neural Networks, Activation Functions: Tanh,	

	Logistic, Linear, Softmax, ReLU, Leaky ReLU, Loss Functions: Squared Error	
	loss, Cross Entropy, Optimization: Gradient Descent, Stochastic Gradient	
	Descent, Backpropagation Regularization Techniques: L1/L2 regularization,	
	Dropout, Weight Decay, Batch Normalization	
	Introduction to TensorFlow:	
	Computational Graphs, Gradient Descent, TensorBoard, Keras	
	Computational Graphs, Gradient Descent, Tensor Doard, Refas	
2	Time Series Analysis:	15
	Trends, Seasonality, Stationarity, Time Series Preprocessing: Smoothing,	
	Differencing, Traditional Time Series Models - exponential smoothing, weighted	
	average, AR, MA, ARMA, ARIMA, SARIMA, Applications of ANN in Time	
	Series forecasting.	
	Recurrent Neural Networks (RNN):	
	Sequence Learning Problem, Unfolding Computational graphs, Recurrent Neural	
	Network, Bidirectional RNN, Backpropagation Through Time (BTT), Vanishing	
	and Exploding Gradients, Truncated BTT, Long Short-Term Memory (LSTM):	
	Architecture, Selective Read/Write/Forget, Gated Recurrent Unit (GRU).	
	Applications in Time series analysis	
3	Convolutional Neural Networks (CNN):	15
	Convolution operation, Padding, Stride, Relation between input, output and filter	
	size, CNN architecture: Convolution layer, Pooling Layer, Weight Sharing in	
	CNN, Fully Connected NN vs CNN, Variants of basic Convolution function,	
	Different types of CNN architectures - LeNet, AlexNet, VGG (Visual Geometry	
	Group) Net, GoogLeNet.	
	Unsupervised deep learning methods:	
	Introduction, Linear Autoencoder, Undercomplete Autoencoder, Overcomplete	
	Autoencoders, Regularization in Autoencoders, Denoising Autoencoders, Sparse	
	Autoencoders, Contractive Autoencoders, Application of Autoencoders: Image	
	Compression.	
	Compression. Introduction to GANs: Architecture, Training Process, Applications: Image	

Unit	Topics
1	Brief History, Three Classes of Deep Learning Basic Terminologies of Deep Learning, Regularization Techniques: L1/L2 regularization, Dropout
2	Traditional Time Series Models - exponential smoothing, weighted average, AR, MA, ARMA, ARIMA, SARIMA, Applications in Time series analysis
3	Different types of CNN architectures - LeNet, AlexNet, VGG (Visual Geometry Group) Net, GoogLeNet, Applications: Image Generation, DeepFake

Online Resources:

Deep Learning by Prof. P.K. Biswas from IIT Kharagpur available on swayam portal https://nptel.ac.in/courses/106105215

Deep Learning by Prof. Sudarshan Iyengar,Dr. Padmavati from IIT Ropar available on swayam portal https://nptel.ac.in/courses/106106184

Reference:

Ian Goodfellow, Yoshua Bengio, Aaron Courville. —Deep Learning, MIT Press Ltd, 2016

Buduma, N. and Locascio, N., —Fundamentals of deep learning: Designing next-generation machine intelligence algorithms" 2017. O'Reilly Media, Inc."

Li Deng and Dong Yu, —Deep Learning Methods and Applications, Publishers Inc.

Deep Learning, A practice approach by Josh Patterson, Adam Gibson, O'Reilly Media, Inc.

Course Name: Deep Learning Practicals	Course Code:
Session Per Week(1 period is 60 minutes)	2
Credits	1

List of Practicals

Minimum 10 practicals based on syllabus topics

Course Name: Big Data Analytics Course Type		Course Code: Major	
Credits		3	
		Hours	Marks
Evaluation System	Theory Examination	2	60
	Internal	-	15

- CO1: Identify Big Data and its Business Implications.
- CO2: List the components of Hadoop and Hadoop Ecosystem
- CO3: Access and Process Data on Distributed File System
- CO4: Manage Job Execution in Hadoop Environment
- CO5: Develop Big Data Solutions using Hadoop EcoSystem
- CO6: Analyze Infosphere BigInsights, Big Data Recommendations.

Unit	Content	No. of Lectures
1	Big Data Analytics:	15
	Difference between big data analytics and big data engineering; Importance of	

	,	
	data engineering in the big data world; Role of RDBMS (SQL Server), Hadoop,	
	Spark, NoSQL and Cloud computing in data engineering; Key terminologies	
	(Data Mart, Data Warehouse, ETL, Data Model, Schema, Data Pipeline, and	
	more); Overview of available big data products & analytics services in cloud.	
	Hadoop Ecosystem:	
	Comparison of traditional data management systems with big data, Hadoop	
	Architecture - HDFS overview/distributed file system, Hadoop components,	
	Hadoop MapReduce, A typical enterprise cluster - Hadoop cluster mode, Get the	
	data into Hadoop from local machine (Data Loading) - vice versa, Get the data	
	into Hadoop from local machine (Data Loading) - vice versa	
2	Introduction to Hive and Kafka:	15
	Hive architecture and its components, Overview of Pig Latin and Impala, Hive	
	data types bucketing, Hive partitions and joins, Kafka architecture and its	
	components.	
	Introduction to NoSQL:	
	Limitations of RDBMS and motivation for NoSQL, NoSQL design goals and its	
	advantages, Types of NoSQL databases (Categories), CAP theorem, Indexing	
	and searching in NoSQL database, Clustering and scaling in NoSQL database.	
3	Introduction to Spark	15
	Introduction to Spark and its architecture, Introduction to Scala and PySpark	
	programming, working with DataFrames and Schemas, Data Analysis with	
	DataFrame queries	
	Spark Resilient Distributed Datasets (RDD)	
	Introduction to RDD: Structure and basic operations, Aggregation and Pair	
	operations on RDDs, Working with persist RDDs, Working with persist RDDs,	
	Iterative algorithms using Spark	
	Introduction to Spark Data Processing, Data Streams and Machine	
	Learning	
	Overview of Spark Streaming and Stream processing, Aggregating and joining	
	Overview of Spark Streaming and Stream processing, Aggregating and joining streaming DataFrames, Processing Graph Data: GraphX, Introduction to Spark	

Self – Learning Topics (Unit wise)

Unit	Topics	
1	Importance of data engineering in the big data world, Comparison of traditional data management systems with big data	
2	Limitations of RDBMS and motivation for NoSQL, NoSQL design goals and its advantages	
3	Aggregation and Pair operations on RDDs, Aggregating and joining streaming DataFrames, Processing Graph Data: GraphX, Case Studies	

Online Resources:

Big Data Computing by Dr. Rajiv Misra from IIT Patna https://nptel.ac.in/courses/106104189

Introduction to Big Data with Spark and Hadoop offered by IBM available on coursera https://www.coursera.org/learn/introduction-to-big-data-with-spark-hadoop

Reference:

Tom White "Hadoop: The Definitive Guide" Third Edit on, O'reily Media, 2012

Seema Acharya, Subhasini Chellappan, "Big Data Analytics" Wiley 2015

Michael Mineli, Michele Chambers, Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Businesses", Wiley Publications, 2013

Damji, J., Wenig, B., Das, T., Lee, D. (2020). Learning spark (2nd ed.) O'Reilly Media Inc

Course Name: Big Data Analytics Practicals	Course Code:
Session Per Week(1 period is 60 minutes)	2
Credits	1

List of Practicals
Minimum 10 practicals based on syllabus topics

Minor Course

Course Name: Data Visualization		Course Code:	
Course Type		Minor	
Session Per Week (1 ses	sion is 60 minutes)	2	
Credits		2	
		Hours	Marks
Evaluation System	Practical Examination	2	50

- CO1: Design effective data visualizations in order to provide new insights into a research question or communicate information to the viewer.
- CO2: Find and select appropriate data that can be used in order to create a visualization that answers a particular research question.
- CO3: Handle data and data visualizations in a manner that demonstrates an understanding of ethical considerations surrounding data (including data storage, citation, and protection).
- CO4: Properly document and organize data and visualizations in order to prepare them for reuse.

Content	
	Lectures
Data Visualization using Tableau:	30
1.1 Connect to and Customize Data	
1.2 Organize Data and Create Filters	
1.3 Build Common Views	
1.4 Map Geographic Data	
1.5 Create Calculated Fields	
	Data Visualization using Tableau: 1.1 Connect to and Customize Data 1.2 Organize Data and Create Filters 1.3 Build Common Views 1.4 Map Geographic Data

· —		
	1.6 Apply Table Calculations	
	1.7 Apply Analytics	
	1.8 Work with Multiple Data Sources	
	1.9 Create Dashboards and Stories	
	1.10 Restructure Data and Create Filters	
	1.11 Do more with Data Sources	
	1.12 Create Calculated Fields	
	1.13 Create Level of Detail (LOD) Expressions	
	1.14 Making Projections with Trend Lines and Forecasts	
	1.15 Map Data: Use Best Practices	
2	Data Visualization using Power BI:	
	2.1 Introduction to Power Query	
	221. 1	
	2.2 Introduction to Data Literacy Module	
	2.2 Introduction to Data Literacy Module 2.3 Get started with Microsoft data analytics	
	1	
	2.3 Get started with Microsoft data analytics	
	2.3 Get started with Microsoft data analytics 2.4 Prepare data for Analysis	
	2.3 Get started with Microsoft data analytics2.4 Prepare data for Analysis2.5 Model data in Power BI	
	 2.3 Get started with Microsoft data analytics 2.4 Prepare data for Analysis 2.5 Model data in Power BI 2.6 Visualize data in Power BI 	
	 2.3 Get started with Microsoft data analytics 2.4 Prepare data for Analysis 2.5 Model data in Power BI 2.6 Visualize data in Power BI 2.7 Advance Modelling Tasks in Power BI 	
	 2.3 Get started with Microsoft data analytics 2.4 Prepare data for Analysis 2.5 Model data in Power BI 2.6 Visualize data in Power BI 2.7 Advance Modelling Tasks in Power BI 2.8 Build Power BI visuals and reports 	
	 2.3 Get started with Microsoft data analytics 2.4 Prepare data for Analysis 2.5 Model data in Power BI 2.6 Visualize data in Power BI 2.7 Advance Modelling Tasks in Power BI 2.8 Build Power BI visuals and reports 2.9 Advance Modelling Tasks in Power BI – 2 	

Online Resources:

Online resource for visualizations offered by Tableau https://public.tableau.com/

Online learning resource offered by Tableau https://www.tableau.com/learn

Data-Driven Decisions with Power BI available on coursera https://www.coursera.org/learn/data-driven-decisions-with-power-bi

Reference:

Mastering Power BI by Chandraish Sinha September 2021
Learning Tabelau 2022 packt publication
Mastering Tabelau packt publication
Data visualization with Excel Dashboards and Reports by Dick Kusleika

General Elective Courses

Course Name: Statistical Quality Control (SQC)		Course Code:	
Course Type		General Elective Course - I (GEC)	
Session Per Week (1 session is 60 minutes)		3	
Credits		3	
		Hours	Marks
Evaluation System Theory Examination		2	60
	Internal	-	15

- CO1: Understand the philosophy and basic concepts of quality improvement.
- CO2: Describe the DMAIC processes (define, measure, analyze, improve, and control).
- CO3: Demonstrate the ability to use the methods of statistical process control.
- CO4: Demonstrate the ability to design, use, and interpret control charts for variables.
- CO5: Demonstrate the ability to design, use, and interpret control charts for attributes.
- CO6: Perform analysis of process capability and measurement system capability.
- CO7: Understand and interpret the basic concepts and usage of Lean Six Sigma.

Unit	Content	No. of Lectures
1	Course Introduction - Definitions of Quality and Quality Improvement. Statistical Methods and Management Aspects for Quality Control and Improvement. The DMAIC Process. The DMAIC Process, Statistical Process Control, Applications of SPC. Brainstorming and Negative Brainstorming, Case studies on DMAIC methodology	15
2	Control Charts for Variables, Control Charts for Attributes, Applications of	15

	Control Charts, Process Capability Analysis, Process Capability Ratios. Pareto chart, run chart, Real life examples on Pareto Chart	
3	Introduction to Lean and six – sigma: Definition of Lean, 5 S in Lean, 7 wastes in lean 5 principles of lean. Definition of six – sigma and definition of Lean six – sigma. DMAIC overview, Define phase: VOC, VOB, VOP, CTQ, COPQ, Stakeholder Analysis Problem Statement, Goal statement, Process definition, Process Mapping, Value Stream Mapping, Project charter.	15

Self – Learning Topics (Unit wise)

Unit	Topics
1	Definitions of Quality Brainstorming and Negative Brainstorming, Case studies on DMAIC methodology
2	Control Charts for Variables Pareto chart, Real life examples on Pareto Chart Run chart
3	VOC, VOB, VOP, CTQ, COPQ, Value Stream Mapping, Project charter.

Online Resources:

NOC:Six Sigma, IIT Kharagpur by Prof. Jitesh J Thakkar https://nptel.ac.in/courses/110105123

Six Sigma, IIT Kharagpur by Prof. Tapan P. Bagchi https://nptel.ac.in/courses/110105039

Reference:

Montgomery, Douglas C. (2009). Introduction to Statistical Quality Control, Sixth Edition. John Wiley and Sons, Inc. (ISBN: 978-0-470-16992-6).

Course Description: A comprehensive coverage of modern quality control techniques to include the design of statistical process control systems, lean 6 sigma, and process improvement

Montgomery, Douglas C. (2009). Introduction to Statistical Quality Control, Sixth Edition. John Wiley and Sons, Inc. (ISBN: 978-0-470-16992-6).

Course Description: A comprehensive coverage of modern quality control techniques to include the design of statistical process control systems, lean 6 sigma, and process improvement

Course Name: Statistical Quality Control Practicals	Course Code:
Session Per Week(1 period is 60 minutes)	2
Credits	1

		_	_		_
Li	st	Λť	Pra	ctic	ลโร

Minimum 10 practicals based on Statistical Quality Control(SQC) using Minitab.

Course Name: Marketing Analytics		Course Code:	
Course Type		General Elective Course - II(GEC)	
Session Per Week (1 session is 60 minutes)		3	
Credits		3	
		Hours	Marks
Evaluation System Theory Examination		2	60
	Internal	-	15

- CO1: To understand the role and importance of marketing analytics in contemporary marketing practice.
- CO2: To apply analytical frameworks to address real-world marketing challenges and make informed strategic decisions.
- CO3: To gain hands-on experience with data analysis, visualization, and reporting for marketing campaigns and initiatives.
- CO4: To have know-how to use marketing analytics to develop a predictive marketing dashboard for the organization
- CO5: To analyze data and develop insights from it to address strategic marketing challenges.

Unit	Content	No. of
		Lectures
1	Introduction to Marketing Analytics:	15
	Introduction, basic marketing models, Analytical framework for marketing	
	models, Overview of marketing analytics, Evolution and importance of	
	marketing analytics in modern marketing, Modeling segmentation and Pricing,	
	Market Basket Analysis, Marketing-Mix Analytics Measuring ROI, MROI,	
	advertisement elasticity, Data Collection and Management	
	 Data sources and types in marketing 	
	 Data collection methods (primary and secondary data) 	
	Data management best practices and tools	
2	Data Analysis Techniques:	15
	Descriptive analytics: summarizing and visualizing marketing data, Inferential	
	analytics: hypothesis testing, correlation, regression analysis, Predictive	
	analytics: forecasting, predictive modeling, customer lifetime value (CLV)	
	Customer Analytics:	
	Survival Analysis, Analyzing customer lifetime value. Predicting customer	
	retention and profit. Customer segmentation based on demographics,	
	psychographics, and behavior, Targeting strategies: mass marketing,	
	differentiated marketing, niche marketing	
	Customer Relationship Management (CRM) Analytics:	
	Understanding customer behavior and preferences, Customer acquisition,	

	retention, and churn analysis, Personalization and recommendation systems		
3	Digital Analytics	15	
	Planning search engine marketing and mobile marketing, Web analytics:		
	tracking website traffic, conversion rates, and user engagement, Social media		
	analytics: measuring reach, engagement, and sentiment, Email marketing		
	analytics: open rates, click-through rates, conversion rates		
	Resource Allocation		
	Planning and modeling resource allocation in the organization.		
	Case studies on the recent trends in management:		
	Netflix: Leveraging Data for Content Recommendation		
	Amazon: Optimizing Product Recommendations		
	Starbucks: Data-Driven Customer Segmentation		
	How Airbnb Uses Marketing Analytics to Drive Growth		

Self – Learning Topics (Unit wise)

Unit	Topics
1	Evolution and importance of marketing analytics in modern marketing, Data collection methods (primary and secondary data), Data management best practices and tools
2	Descriptive analytics: summarizing and visualizing marketing data, Targeting strategies: mass marketing, differentiated marketing, niche marketing
3	Case studies on the recent trends in management: • Netflix: Leveraging Data for Content Recommendation • Amazon: Optimizing Product Recommendations • Starbucks: Data-Driven Customer Segmentation • How Airbnb Uses Marketing Analytics to Drive Growth

Online Resources:

Marketing Analytics by Prof. Swagato Chatterjee from IIT Kharagpur available on swayam portal https://nptel.ac.in/courses/110105142

Innovation in Marketing and Marketing of Innovation by Prof. Vinay Sharma from IIT Roorkee available on swayam portal https://nptel.ac.in/courses/110107432

Reference:

Kotler, P., & Keller, K. L. (2016). Marketing management (15th ed.). Pearson.

Brea Cesar (2014), "Marketing and Sales Analytics: Proven Techniques and Powerful Applications from Industry Leaders", FT Press, ISBN-0133761711

Chapman Christopher N, Feit Elea McDonnell (2015), "R for Marketing Research and Analytics", Springer, ISBN-3319144367

Emmett Cox (2012), "Retail Analytics: The Secret Weapon", Wiley, ISBN-978-1-118-09984-1

Course Name: Marketing Analytics Practicals	Course Code:
Session Per Week(1 period is 60 minutes)	2
Credits	1

List of Practicals

Minimum 10 practicals based on syllabus topics

Course Name: Research Project		Course Code:	
Session Per Week (1 session is 60 minutes)		4	
Credits		4	
		Hours	Marks
Evaluation System	Internal (Presentations)	-	100

Semester IV Major Courses

Course Name: Business	Analytics	Course Code:	
Course Type		Major	
Session Per Week (1 ses	sion is 60 minutes)	3	
Credits		3	
		Hours	Marks
Evaluation System	Theory Examination	2	60
	Internal	-	15

- CO1: Understand the fundamental principles of business analytics and its role in organizational decision-making.
- CO2: Explore the startup landscape and its relevance to business analytics initiatives.
- CO3: Examine the stages of the product life cycle and how business analytics can inform product management strategies.
- CO4: Gain practical insights into getting started with business analytics, including key considerations and challenges.

Unit	Content	No. of
		Lectures
1	Business Analytics Landscape	15
	Overview of Startup Landscape	
	Product Lifecycle Management	
	Details of Business Analytics	
	Competing on Analytics	
	Getting started with Business Analytics	
2	Introduction to Data Mining	15
	Introduction: Basic concept of Data mining, need, challenges and	
	application of Data mining.	
	Discussion of Some case studies of data mining.	
	On-line Analytical Processing.	
	Major Issues in data mining.	
	Getting to know your data: data objects and attribute types, basic statistical	
	descriptions of Data, Data Visualization, Measuring Data Similarity and	
	dissimilarity.	
3	Data Preparation & Basic Mining tools	15
	Data Pre-processing: An Overview, Data Cleaning, Data Integration, Data	
	Reduction, Data transformation and data discretization, Normalization and	
	Smoothing of data. Associations and Correlations: Basic Concepts and methods.	
	Classification: Basic concepts decision Tree Induction, Rule-Based	
	Classification, Model Evaluation and Selection.	

Self – Learning Topics (Unit wise)

Unit	Topics		
2	Discussion of Some case studies of data mining, Major Issues in data mining, Data Visualization		
3	Classification: Basic concepts decision Tree Induction, Rule-Based Classification, Model		

	Evaluation and Selection.
--	---------------------------

Online Resources:

'Data Mining' by Prof. Pabitra Mitra from IIT Kharagpur available on the Swayam portal https://nptel.ac.in/courses/106/105/106105174

'Data Mining' by Mr. L. Abraham David from St.John's College, Palayamkottai Tirunelveli available on the Swayam portal

'Business Analytics and Data Mining Modelling using R' by Dr. Gaurav Dixit from IIT Roorkee available on the Swayam portal https://nptel.ac.in/courses/110/107/110107092

'Business Analytics and Data Mining Modelling using R Part II' by Dr. Gaurav Dixit from IIT Roorkee available on the Swayam portal https://nptel.ac.in/courses/110/107/110107095

Course Name: Business Analytics Practicals	Course Code:
Session Per Week(1 period is 60 minutes)	2
Credits	1

T • 4	e	Th.	4 •	
Lict	Λt	Pro	ctica	IC
LIST	VI.	114	icuca	13

Minimum 10 practicals based on syllabus topics

Course Name: Artificia	l Intelligence	Course Code:	
Course Type		Major	
Session Per Week (1 ses	sion is 60 minutes)	3	
Credits	Credits 3		
		Hours	Marks
Evaluation System	Theory Examination	2	60
	Internal	-	15

- CO1: Design and evaluate intelligent expert models for perception and prediction from an intelligent environment.
- CO2: Formulate valid solutions for problems involving uncertain inputs or outcomes by using decision making techniques.
- CO3: Demonstrate and enrich knowledge to select and apply AI tools to synthesize information and develop models within constraints of application area.
- CO4: Utilize advanced packages for implementing artificial intelligence.
- CO5: Develop a minor project in multidisciplinary areas to demonstrate team work through reports and presentation.

Unit	Content	No. of Lectures
1	Introduction to Artificial Intelligence and Search Algorithm	15
	What is artificial intelligence, A brief review of AI history, Related research	
	fields, Problem formulation	
	Review of tree structure, Review of graph structure, Graph implementation, State	
	space representation, Search graph and search tree	
	Simple Search Algorithm - I - Random search, Search with closed list, Search	

	with open list, Depth-first and breadth-first search again, Uniform-cost search	
	Simple Search Algorithm-II- What are heuristics? What is heuristic search?	
	Best first search A* algorithm, Generalization of search problems	
	Adversarial Search	
	Minimax Algorithm for two player games, An Example of Minimax Search, An	
	Example of Minimax Search , Analysis of Alpha Beta Pruning , Horizon Effect,	
	Game Databases & Other Ideas	
2	Reasoning:	15
	Proposition and first-order logic, Rule-based systems, semantic net, conceptual	
	graph, inference and deduction, Resolution refutation, answer extraction,	
	Reasoning under uncertainty - probabilistic reasoning, belief networks	
	Production system:	
	Inference engine, Working memory, Knowledge base, Pattern matching,	
	Conflict resolution, Forward inference, Back inference	
3	Genetic Algorithms:	15
	Difference between traditional algorithms and Genetic Algorithm (GA); Basic	
	concepts of GA; Working principle; Encoding methods; Fitness function; GA	
	Operators: Reproduction, Crossover, Mutation; Convergence of GA; Detailed	
	algorithmic steps; Adjustment of parameters; Multicriteria optimization; Solution	
	of typical problems using genetic algorithm; Recent applications	
	Hybrid Systems:	
	Introduction to hybrid systems: Fuzzy-neural systems, Genetic Fuzzy systems,	
	Neuro-genetic systems.	

Self – Learning Topics (Unit wise)

Unit	Topics		
1	A brief review of AI history, Related research fields, Review of tree structure, Review of		
	graph structure, Graph implementation, Horizon Effect, Game Databases & Other Ideas		

2	Proposition and first-order logic, Rule-based systems, semantic net, conceptual graph
3	Difference between traditional algorithms and Genetic Algorithm (GA), Recent applications

Online Resources:

"AN INTRODUCTION TO ARTIFICIAL INTELLIGENCE" by PROF. MAUSAM, Department of Computer Science and Engineering, IIT Delhi

https://nptel.ac.in/courses/106/102/106102220/

"Artificial Intelligence : Search Methods For Problem Solving" by PROF. DEEPAK KHEMANI, Department of Computer Science and Engineering, IIT Madras

https://nptel.ac.in/courses/106/106/106106126/

References:

Artificial Intelligence: A Modern Approach Book by Peter Norvig and Stuart J. Russell

S. Rajasekaran and G. A. Vijayalakshmi Pai, Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications, PHI.

"Artificial Intelligence: Foundations of Computational Agents" by David L. Poole and Alan K. Mackworth

S. N. Sivanandam and S. N. Deepa, Principles of Soft Computing, 2nd ed., Wiley India.

Course Name: Artificial Intelligence Practicals	Course Code:
Session Per Week(1 period is 60 minutes)	2
Credits	1

List of Practicals	
Minimum 10 practicals based on syllabus topics	

Course Name: MLOps with Cloud Technologies		s Course Code:	
Course Type		Major	
Session Per Week (1 ses	ssion is 60 minutes)	3	
Credits		3	
		Hours	Marks
Evaluation System	Theory Examination	2	60
	Internal	-	15

Course outcome:

- CO1: To gain a comprehensive understanding of MLOps, including its importance in machine learning development and its components.
- CO2: To articulate the differences between MLOps and DevOps and understand their respective roles in the machine learning lifecycle.
- CO3: To learn about the various stages of the machine learning lifecycle and how MLOps principles and practices can be applied at each stage.
- CO4: To understand the different tools and technologies used in MLOps, including those for version control, CI/CD pipelines, model monitoring, and deployment.

• CO5: To gain an overview of cloud computing platforms, with a focus on AWS and Azure, and understand how these platforms support MLOps workflows.

Unit	Content	No. of Lectures
1	MLOps Introduction: Introduction to MLOps and its importance in machine learning development, MLOps Components, Machine Learning Life Cycle, MLOps Vs DevOps, Different tools for MLOps, MLOps Maturity Model Levels, MLOps - Stages of CI/CD Overview of cloud computing platforms and services relevant to MLOps. Basics of containerization and orchestration for deploying ML models. Integration of version control systems with cloud repositories. Security and compliance considerations in MLOps workflows.	15
2	AWS MLOps: Introduction to AWS cloud computing services relevant to MLOps. Setting up an AWS account and configuring AWS CLI, Amazon SageMaker and its capabilities for end-to-end ML workflows, SageMaker for model training, deployment, and management, Setting up CI/CD pipelines for deploying ML models with SageMaker, Integrating version control systems with AWS CodeCommit Implementing model monitoring and management workflows using AWS CloudWatch, Detecting and handling model drift with AWS tools, Automating model retraining and deployment based on monitoring metrics, Deploying serverless ML inference pipelines with AWS Lambda and Amazon API Gateway	15
3	Azure MLOps: Overview of Azure cloud computing services, Understanding the Azure portal and Azure CLI, Introduction to Azure Machine Learning service, Azure ML for model development, training, and deployment, Overview of Azure DevOps for CI/CD pipelines, Implementing model monitoring with Azure Monitor,	15

Automation of model retraining and deployment

Case Studies:

Deploy a Classification Model using MLOps on AWS

Deploy a Multiple Linear Regression Model using MLOps

Deploy a Personalized Product Recommendation using MLOps

Deploy a Gaussian Model in Time Series using MLOps on Azure

Self – Learning Topics (Unit wise)

Unit	Topics
1	Machine Learning Life Cycle, MLOps Vs DevOps, Security and compliance considerations in MLOps workflows.
2	Automating model retraining and deployment based on monitoring metrics, Deploying serverless ML inference pipelines with AWS Lambda and Amazon API Gateway
3	Implementing model monitoring with Azure Monitor, Automation of model retraining and deployment Case Studies: Deploy a Classification Model using MLOps on AWS Deploy a Multiple Linear Regression Model using MLOps Deploy a Personalized Product Recommendation using MLOps Deploy a Gaussian Model in Time Series using MLOps on Azure

Online Resources:

Machine Learning Engineering for Production (MLOps) Specialization available on coursera https://www.coursera.org/specializations/machine-learning-engineering-for-production-mlops

Foundation of Cloud IoT Edge ML by Prof. Rajiv Misra from IIT Patna available on swayam portal https://nptel.ac.in/courses/106104242

MLOps Platforms: Amazon SageMaker and Azure ML available on coursera https://www.coursera.org/learn/mlops-aws-azure-duke

References:

"MLOps: Continuous Delivery and Automation Pipelines in Machine Learning" by Mark Treveil

"Production-Ready Machine Learning: Navigating from Idea to Deployment" by Andrew Bruce and Kim Nilsson

"Data Science on AWS: Implementing End-to-End, Continuous AI and Machine Learning Pipelines" by Chris Fregly and Antje Barth

"Data Science on Azure: Implementing End-to-End, Continuous AI and Machine Learning Pipelines" by Wee Hyong Tok, Danielle Dean, and Max Kaznady

Course Name: MLOps with Cloud Technologies Practicals	Course Code:
Session Per Week(1 period is 60 minutes)	2
Credits	1

List of Practicals	
Minimum 10 practicals based on syllabus topics	

General Elective Courses

Course Name: Natural	Language Processing	Course Code:	
Course Type		General Elective Course-I (GEC)	
Session Per Week (1 ses	sion is 60 minutes)	3	
Credits		3	
		Hours	Marks
Evaluation System	Theory Examination	2	60
	Internal	-	15

Course outcome:

- CO1: To understand the fundamentals of Natural Language Processing (NLP)
- CO2: To identify and apply various techniques for text preprocessing, including tokenization, stemming, and lemmatization.
- CO3: Understand the basics of semantic analysis, including meaning representation and lexical semantics.
- CO4: Apply Part-Of-Speech (POS) tagging techniques, including rule-based, stochastic, and transformation-based tagging methods.
- CO5: Design and implement an NLP pipeline, including data acquisition, text extraction, preprocessing, feature engineering, modeling, evaluation, and post-modeling phases.
- CO6: Apply NLP techniques to various applications, including text classification, chatbots, text summarization, sentiment analysis, information retrieval, and question-answering systems.

Uni	Content	No. of
		Lectures
1	Introduction:	15
	What is Natural Language Processing (NLP), Origins of NLP, Language and	
	Knowledge, The Challenges of NLP, Language and Grammar, Processing Indian	
	Languages, NLP Applications	

	Basic Terms:			
	Tokenization, Stemming, Lemmatization; Survey of English Morphology,			
	Inflectional Morphology, Derivational Morphology; Regular expression with			
	types; Grams and its variation: Bigram, Trigram; Simple (Unsmoothed) N-grams;			
	N-gram Sensitivity to the Training Corpus; Unknown Words: Open versus closed			
	vocabulary tasks; Evaluating N-grams: Perplexity.			
2	Syntax analysis:	15		
	Part-Of-Speech tagging(POS) – POS categories, methods for POS tagging: Rule-			
	based, Stochastic, Transformation based tagging, Difficulties /Challenges in POS			
	tagging; Generative Model: Hidden Markov Model (HMM Viterbi) for POS			
	tagging			
	Semantic Analysis:			
	Introduction, meaning representation; Lexical Semantics; Corpus study; Study of			
	Various language dictionaries like WorldNet, Babelnet; Relations among			
	lexemes & their senses -Homonymy, Polysemy, Synonymy, Hyponymy;			
	Semantic Ambiguity; Word Sense Disambiguation (WSD)			
3	NLP Pipeline:	15		
	Data Acquisition, Text Extraction and Cleanup, Pre-Processing, Feature			
	Engineering, Modeling, Evaluation, Post-Modeling Phases.			
	Applications:			
	Case studies on Text Classification, Chatbots, Text Summarization, Sentiment			
	analysis, Information retrieval, Question Answering system			

Self – Learning Topics (Unit wise)

Unit	Topics		
1	The Challenges of NLP, Language and Grammar, Processing Indian Languages, NLP		
	Applications, Regular expression with types		

2	Difficulties /Challenges in POS tagging, Study of Various language dictionaries like WorldNet, Babelnet
3	Case studies on Text Classification, Chatbots, Text Summarization, Sentiment analysis, Information retrieval, Question Answering system

Online Resources:

Natural Language Processing By Prof. Pawan Goyal from IIT Kharagpur available on swayam portal https://archive.nptel.ac.in/courses/106/105/106105158

APPLIED NATURAL LANGUAGE PROCESSING by PROF. RAMASESHAN R from Chennai Mathematical Institute available on swayam portal https://archive.nptel.ac.in/courses/106/106106211

Natural Language Processing by Prof. Pushpak Bhattacharyya from IIT Bombay available on swayam portal https://archive.nptel.ac.in/courses/106/101/106101007

References:

Siddiqui and Tiwary U.S., Natural Language Processing and Information Retrieval, Oxford University Press, 2008.

Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, Harshit Surana, Practical Natural Language Processing, 2020.

Steven Bird, Ewan Klein, Edward Loper., Natural Language Processing with Python, 2009.

Nitin Indurkhya and Fred J. Damerau, —Handbook of Natural Language Processing, Second Edition, Chapman and Hall/CRC Press, 2010.

Course Name: Natural Language Practicals	Course Code:	

Session Per Week(1 period is 60 minutes)	2
Credits	1

List of Practicals	
Minimum 10 practicals based on syllabus topics	

Course Name: Supply Chain Analytics		Course Code:	
Course Type		General Elective Course-II (GEC)	
Session Per Week (1 ses	sion is 60 minutes)	3	
Credits		3	
		Hours	Marks
Evaluation System	Theory Examination	2	60
	Internal	-	15

Course outcome:

- CO1: To understand how analytics techniques are applied to optimize various aspects of supply chain operations, including demand forecasting, inventory management, and network design.
- CO2: To gain proficiency in supply chain planning concepts, including different views of the supply chain, supply chain strategy, drivers, and strategic fit.
- CO3: To understand the principles of inventory management in supply chains, including the bullwhip effect, inventory optimization, and multi-echelon inventory management.

- CO4: To design and optimize supply chain networks, considering factors such as distribution channels, location decisions, and uncertainty.
- CO5: To use decision trees to handle uncertainty and make informed decisions in supply chain management.

Unit	Content	
1	Introduction to Supply Chain Management, Evolution of Supply Chain Management, Analytics in Supply Chain Management, Supply Chain Planning Different views of Supply Chain, Supply Chain Strategy, Supply Chain Drivers Developing Supply Chain Strategy, Strategic Fit in Supply Chain, Deman Forecasting in Supply Chain Bullwhip Effect and Time Series Analysis, Exponential Smoothing Method of Forecasting, Measures of Forecasting Errors, Tracking Signal and Seasonalit Models, Forecasting using multiple characteristics in Demand Data an Inventory Management in Supply Chain	
2	Inventory Management in Supply Chain, Multi echelon Inventory Management, Multi echelon Inventory Management for four stations (Numerical Example) Network Design in Supply Chain, Network Design of Global Supply Chain, Alternative channels of Distribution, Location Decisions in Supply Chain, Network Optimization Models, Using Excel Solver for Network Optimization, Uncertainty in Network Design, Network Design in Uncertain Environment and Flexibility, Flexibility in Supply Chain	15
3	Optimal Level of Product Availability in Supply chain, Time Value of money in Supply Chain, Different types of Analytics in Supply Chain, Predictive Modelling in Forecasting in Supply Chain, Representation on Uncertainty in Supply Chain. Using Decision Tree for handling Uncertainty, Example of using Decision Tree incorporating Uncertainty in Single Factor, Example of using Decision Tree incorporating Uncertainty in two Key Factors, Modelling Flexibility in Supply Chain, Trends, Challenges and Future of Supply Chain	15

Self – Learning Topics (Unit wise)

Unit	Topics		
1	Evolution of Supply Chain Management, Time Series Analysis, Exponential Smoothing Method of Forecasting,		
2	Using Excel Solver for Network Optimization		
3	Trends, Challenges and Future of Supply Chain		

Online Resources:

Supply Chain Analytics by Prof. Rajat Agrawal from IIT Roorkee available on swayam portal https://nptel.ac.in/courses/110107074

Modelling and Analytics for Supply Chain Management by Prof. Anupam Ghosh, Prof. Kunal Kanti Ghosh from IIT Kharagpur available on swayam portal https://nptel.ac.in/courses/110105141

References:

"Supply Chain Management: Strategy, Planning, and Operation" by Sunil Chopra and Peter Meindl
"Supply Chain Analytics: Concepts, Techniques and Applications" by Kurt Y. Liu

"Supply Chain Network Design: Applying Optimization and Analytics to the Global Supply Chain" by

Michael Watson, Sara Lewis, Peter Cacioppi, and Jay Jayaraman

Course Name: Supply Chain Analytics Practicals	Course Code:
Session Per Week(1 period is 60 minutes)	2
Credits	1

List of Practicals	
Minimum 10 practicals based on syllabus topics	

Course Name: Research	ch Project	Course Code:	
Session Per Week (1 se	ession is 60 minutes)	6	
Credits		6	
		Hours	Marks
Evaluation System	Internal (Presentations)	-	150