

CLAIMS

- 1. A photo-catalyst containing titanium fluoride nitride comprising, ${\rm Ti}({\rm IV}){\rm O_aN_bF_c}$ or a compound represented by ${\rm MeTi}({\rm IV}){\rm O_aN_bF_c}$ prepared by doping at least one metal Me selected from the group consisting of alkali or alkaline earth metals on ${\rm Ti}({\rm IV}){\rm O_aN_bF_c}$, wherein, $_{\rm b}$ is 0.1 to 1, $_{\rm c}$ is 0.1 to 1 and $_{\rm a}$ is a value to maintain ${\rm Ti}({\rm IV})$ and is decided in relation to $_{\rm b}$ and $_{\rm c}$.
- 2. The photo-catalyst containing titanium fluoride nitride of claim 1 to which at least one promoter selected from the group consisting of Pt, Ni and Pd is loaded.
- 3. The photo-catalyst containing titanium fluoride nitride of claim 1, wherein $Ti(IV)O_aN_bF_c$ possesses anataze structure and $MeTi(IV)O_aN_bF_c$ possesses perovskite to anataze structure.
- 4. The photo-catalyst containing titanium fluoride nitride of claim 3 to which at least one promoter selected from the group consisting of Pt, Ni and Pd is loaded.
- 5. A photo-catalyst for water splitting containing titanium fluoride nitride comprising, $Ti(IV)O_aN_bF_c$ or a compound represented by $MeTi(IV)O_aN_bF_c$ prepared by doping at least one metal Me selected from the from the group consisting of alkali or alkaline earth metals on $Ti(IV)O_aN_bF_c$, wherein, $_b$ is 0.1 to 1, $_c$ is 0.1 to 1 and $_a$ is a value to maintain Ti(IV) and is decided in relation with $_b$ and $_c$.
- 6. The photo-catalyst for water splitting containing titanium fluoride nitride of claim 5 to which at least one promoter selected from the group consisting of Pt, Ni, Ru and Pd is loaded.
- 7. The photo-catalyst for water splitting containing titanium fluoride nitride of claim 5, wherein ${\rm Ti}(IV)O_aN_bF_c$ possesses anataze structure and ${\rm MeTi}(IV)O_aN_bF_c$ possesses perovskite to anataze structure.

- 8. The photo-catalyst for water splitting containing titanium fluoride nitride of claim 7 to which at least one promoter selected from the group consisting of Pt, Ni and Pd is loaded.
- 9. A method for preparation of a photo-catalyst represented by $Ti(IV)O_aN_bF_c$, wherein, a, b and c are same as to claim 1, by baking titanium di-ammonium fluoride halide represented by $(HH_4)_2TiF_dX_{6-d}$, wherein, d is integer of 1-6, which contains at least F and ammonium halide by the ratio of equimolar or by the ratio of slightly excess of ammonium halide at the maximum temperature from $200^{\circ}C$ to $500^{\circ}C$ so as to form a starting material, then said starting material is nitrogenated by thermal synthesis in ammonia atmosphere containing from 0.02% to 10.00% of oxygen, air or water to ammonia by reduced mass to oxygen atom at the maximum temperature from $350^{\circ}C$ to $700^{\circ}C$ for over than 5 hours.
- 10. A method for preparation of a photo-catalyst represented by $SrTi(IV)O_aN_bF_c$, wherein, a, b and c are same as to claim 1, by baking titanium di-ammonium fluoride halide represented by TiF_xX_{6-X} and/or $(HH_4)_2TiF_dX_{6-d}$, wherein, x and d are integer of 1-6, which contains at least F and at least one compound selected from the group consisting of SrO, SrOH and SrX so as to form a starting material or $SrTiF_6$, then said starting material or $SrTiF_6$ is nitrogenated by thermal synthesis in ammonia atmosphere containing from 0.02% to 10.00% of oxygen, air or water to ammonia by reduced mass to oxygen atom at the maximum temperature from 350°C to 700°C for over than 5 hours.