Jutge.org

The Virtual Learning Environment for Computer Programming

Potències de permutacions

X39049_ca

Donada una n, una permutació de $\{0,1,\ldots n-1\}$ és una seqüència on apareix cadascun dels nombres $0,1,\ldots n-1$ exactament una vegada. Per exemple, si n=3, les seqüències $(1\ 2\ 0)$, $(2\ 0\ 1)$ i $(0\ 1\ 2)$ són permutacions de $\{0,1,2\}$.

Donades dues permutacions $\sigma = (\sigma_0, \dots, \sigma_{n-1})$ i $\tau = (\tau_0, \dots, \tau_{n-1})$ de $\{0, 1, \dots, n-1\}$, el seu *producte* $\sigma \circ \tau$ es defineix com la permutació $\rho = (\rho_0, \dots, \rho_{n-1})$ tal que $\rho_i = \sigma_{\tau_i}$. Per exemple, si n = 3, $\sigma = (1 \ 2 \ 0)$ i $\tau = (2 \ 0 \ 1)$, llavors $\sigma \circ \tau = (0 \ 1 \ 2)$, perquè:

- $\tau_0 = 2 i \sigma_2 = 0$,
- $\tau_1 = 0 i \sigma_0 = 1, i$
- $\tau_2 = 1 i \sigma_1 = 2$.

Feu un programa que, donada una permutació σ i un natural k, calculi la *potència* de σ elevada a k: $\sigma^k = \overbrace{\sigma \circ \ldots \circ \sigma}^{k}$. Per conveni, $\sigma^0 = (0, 1, \ldots, n-1)$.

Entrada

L'entrada inclou diversos casos. Cada cas consisteix en el nombre n ($1 \le n \le 10^4$), seguit de n nombres entre 1 i n que descriuen la permutació σ , seguit del nombre k ($0 \le k \le 10^9$).

Sortida

Escriviu la permutació σ^k .

Observació

La solució esperada per a aquest problema té cost $O(n \cdot \log k)$. Les solucions que tinguin un cost $\Omega(n \cdot k)$ podran aconseguir com a molt 3 punts sobre 10.

Podeu afegir unes (poques) línies de comentaris explicant què intenteu fer.

Si us cal, podeu fer servir que el producte de permutacions és associatiu.

Exemple d'entrada

3 1 2 0 0 3 1 2 0 2 4 0 2 3 1 1 1 10 4 3 7 8 0 5 2 1 6 9 5

Exemple de sortida

```
0 1 2
2 0 1
0 2 3 1
4 7 6 1 0 5 8 2 3 9
```

Informació del problema

Autor : Enric Rodríguez Generació : 2018-05-03 16:02:16

© *Jutge.org*, 2006–2018. https://jutge.org