

# Analytical Geometry and Linear Algebra I, Lab 14

Quadric surfaces: Cone, Cylinder





#### Ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

In plane z = p; an ellipse In plane  $v = \alpha$ ; an ellipse In plane x = r: an ellipse

If a = b = c, then this surface is a sphere.



#### Elliptic Cone

 $\frac{x^2}{x^2} + \frac{y^2}{4x^2} - \frac{z^2}{x^2} = 0$ 

In plane z = p; an ellipse In plane y = q; a hyperbola In plane x = r, a hyperbola

In the xz - plane: a pair of lines that intersect at the origin In the yz - plane: a pair of lines that intersect at the origin

The axis of the surface corresponds to the variable with a negative coefficient. The traces in the coordinate planes parallel to the axis are intersecting lines. Elliptic Paraboloid

 $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ 



#### Hyperboloid of One Sheet

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{a^2} = 1$ 

In plane z = p; an ellipse In plane y = q: a hyperbola In plane x = r, a hyperbola

In the equation for this surface, two of the variables have positive coefficients and one has a penative coefficient The axis of the surface corresponds to the variable with the negative coefficient.



In plane z = p; an ellipse In plane y = g: a parabola In plane x = c a parabola

The axis of the surface corresponds to the linear variable.



#### Hyperboloid of Two Sheets

 $\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 

In plane z = p: an ellipse or the empty set (no trace) to plane v = m a hyperhola In plane x = r; a hyperbola

In the equation for this surface, two of the variables have negative coefficients and one has a positive coefficient The axis of the surface corresponds to the variable with a positive coefficient. The surface does not intersect the coordinate plane perpendicular to the axis.



#### Hyperbolic Paraboloid

In plane z = p; a hyperbola In plane y = q: a parabola In plane x = r, a parabola

The axis of the surface corresponds to the linear variable.



# Case studies of 2nd order curve equation (RUS)





# Answer

Let V be the vertex of the cone and P be any point on the surface of the cone. Let the equations of the generator VP be

$$\frac{x-1}{l} = \frac{y-1}{m} = \frac{z-1}{n} \tag{15.3}$$



This line intersects the plane z = 2.

$$\therefore \quad \frac{x-1}{l} = \frac{y-1}{m} = \frac{1}{n} \quad \therefore \quad x = 1 + \frac{l}{n}, y = 1 + \frac{m}{n}$$

This point lies on the curve  $x^2 + y^2 = 4$ .

$$\therefore \left(1 + \frac{l}{n}\right)^2 + \left(1 + \frac{m}{n}\right)^2 = 4 \quad \text{or} \quad (l+n)^2 + (m+n)^2 = 4n^2$$

Eliminating l, m, n from (15.3) and (15.4) we get

$$\left(1+\frac{x-1}{z-1}\right)^2+\left(1+\frac{y-1}{z-1}\right)^2=4 \quad \text{or} \quad \begin{array}{l} (z-1+x-1)^2+(z-1+y-1)^2=4(z-1)^2\\ (x+z-2)^2+(y+z-2)^2=4(z-1)^2 \end{array}$$

The **generators** of a cone are a straight line and a closed curve (usually a circle). The line intersects the curve and passes through a point (called the apex) not in the plane of the curve.

The nappes are the two halves of the cone. Usually, we consider one such half to be a cone by itself, but both are necessary when, for example, characterising a hyperbola as a section of the cone.

Find the equation of the cone with its vertex at the origin an which passes through the curve  $ax^2 + by^2 + cz^2 - 1 = 0 = \alpha x^2 - \beta y^2 - 2z$ .

#### **Answer**

Let the equation of the generator be  $\frac{x}{l} = \frac{y}{m} = \frac{z}{n} = r$ 

Any point on this line is (Ir, mr, nr). This point lies on the curve

$$ax^{2} + by^{2} + cz^{2} = 1$$
$$\alpha x^{2} + \beta y^{2} - 2z = 0$$

$$r^{2}(al^{2} + bm^{2} + cn^{2}) = 1 (15.13)$$

$$r(\alpha r l^2 + \beta r m^2 - 2n) = 0$$
 (15.14)

From (15.14),  $r = \frac{2n}{\alpha l^2 + \beta m^2}$  Substituting this in (15.13) we get

$$\frac{4n^2}{(\alpha l^2 + \beta m^2)^2} (al^2 + bm^2 + cn^2) = 1 \quad \text{(i.e.)} \quad 4n^2 (al^2 + bm^2 + cn^2) = (\alpha l^2 + \beta m^2)^2$$

As *I*, *m*, *n* are proportional to *x*, *y*, *z* the equation of the cone is  $4z^2(ax^2+by^2+cz^2)=(ax^2+\beta y^2)^2$ .

Find the equation of the cone of the second degree which passes through the axes.

#### **Answer**

The cone passes through the axes. Therefore, the vertex of the cone is the origin.

The equations of the cone is a homogeneous equation of second degree in x, y and z.

(i.e.) 
$$ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy = 0$$
 (15.25)

Given that *x*-axis is a generator.

Then y = 0, z = 0 must satisfy the equation (15.25)

$$\therefore a = 0$$

Since *y*-axis is a generator b = 0.

Since z-axis is a generator c = 0.

Hence the equation of the cone is fyz + gzx + hxy = 0.

Fin the equation of the right circular cone whose vertex is at the origin, whose axis is the line x

$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
 and which has a vertical angle of 60°.

### Answer

The axis of the cone is  $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ .



Therefore, the direction ratios of the axis of the cone are 1, 2, 3.

The direction cosines are  $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$ .

Let P(x, y, z) be any point on the surface of the cone. Let PL be perpendicular to OA.

$$\angle POL = 30^{\circ}$$
  
 $\frac{OL}{OP} = \cos 30^{\circ} \text{ or } 2OL = \sqrt{3}OP$   
Also,  $OP^2 = x^2 + y^2 + z^2$ 

OL = Projection of OP on OA

$$= \frac{x}{\sqrt{14}} + y \times \frac{2}{\sqrt{14}} + z \times \frac{3}{\sqrt{14}} = \frac{x + 2y + 3z}{\sqrt{14}}$$

$$\therefore \frac{2(x + 2y + 3z)}{\sqrt{14}} = \sqrt{3}\sqrt{x^2 + y^2 + z^2}$$

$$4(x + 2y + 3z)^2 = 42(x^2 + y^2 + z^2)$$

$$19x^2 + 13y^2 + 3z^2 - 8xy - 24yz - 12zx = 0$$

The **direction cosines** of the vector a are the cosines of angles that the vector forms with the coordinate axes.

$$\cos \alpha = \frac{a_x}{|\overline{a}|}; \quad \cos \beta = \frac{a_y}{|\overline{a}|}; \quad \cos \gamma = \frac{a_z}{|\overline{a}|}$$

$$\cos^2\alpha+\cos^2\beta+\cos^2\gamma=$$

or

Find the equation of the cylinder whose generators are parallel to the line  $\frac{x}{-1} = \frac{y}{2} = \frac{z}{3}$  and whose guiding curve is  $x^2 + y^2 = 9$ , z = 1.

#### **Answer**



The equations of the generator through P and parallel to the line

$$\frac{x}{-1} = \frac{y}{2} = \frac{z}{3}$$
 are  $\frac{x - x_1}{-1} = \frac{y - y_1}{2} = \frac{z - z_1}{3}$ 

$$\frac{x - x_1}{-1} = \frac{y - y_1}{2} = \frac{z - z_1}{3}$$

The guiding curve is 
$$x^2 + y^2 = 9, z = 1$$

When the generator through P meets the guiding curve.

$$\frac{x - x_1}{-1} = \frac{y - y_1}{2} = \frac{z - z_1}{3}$$

$$\therefore x = x_1 - \frac{1 - z_1}{3} = \frac{3x_1 + z_1 - 1}{3}, y = y_1 + \frac{2(1 - z_1)}{3} = \frac{3y_1 - 2z_1 + 2}{3}$$

Since this point lies on the curve (16.9),

$$(3x_1 + z_1 - 1)^2 + (3y_1 - 2z_1 + 2)^2 = 81$$

The locus of 
$$(x_1, y_1, z_1)$$
 is  $(3x + z - 1)^2 + (3y - 2z + 2)^2 = 81$ 

(i.e.) 
$$9x^2 + 9y^2 + 5z^2 + 6xz - 12yz - 6x + 12y - 10z - 76 = 0$$



$$\frac{x-1}{2} = \frac{y-3}{2} = \frac{z-5}{-1}.$$

8

#### **Answer**

The equations of the axis are

$$\frac{x-1}{2} = \frac{y-3}{2} = \frac{z-5}{-1}$$

- (1, 3, 5) is a point on the axis.
- 2, 2, -1 are the direction ratios of the axis.
- $\therefore$  direction cosines are  $\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}$



QL = Projection of PQ on the axis =  $(x - x_1)l + (y - y_1)m + (z - z_1)n$ =  $(x_1 - 1)\frac{2}{3} + (y_1 - 3)\frac{2}{3} - (z_1 - 5)\frac{1}{3}$ =  $\frac{2x_1 + 2y_1 - z_1 - 3}{3}$ 

Also,  $PQ^2 = QL^2 + LP^2$ 

(i.e.) 
$$(x_1 - 1)^2 + (y_1 - 3)^2 + (z_1 - 5)^2 = \left(\frac{2x_1 + 2y_1 - z_1 - 3}{3}\right)^2 + 9$$

The locus of  $(x_1, y_1, z_1)$  is

$$\begin{split} 9(x^2-2x+1+y^2-6y+9+z^2-10z+25) \\ &= 4x^2+4y^2+z^2+9+8xy-4xz-12x-4yz-12y+6z+81 \\ \text{(i.e.)} \quad 5x^2+5y^2+8z^2-8xy+4xz+4yz-6x-42y-96z+225=0 \end{split}$$

Let  $P(x_1, y_1, z_1)$  be any point on the cylinder. This is the equation of the required cylinder.

Find the equation of the enveloping cylinder of the sphere  $x^2 + y^2 + z^2 - 2x + 4y = 1$  having its generators parallel to the line x = y = z.



#### **Answer**

Let  $P(x_1, y_1, z_1)$  be any point on a tangent, which is parallel to the line x = y = z.

Hence, the equation of the tangent lines are

$$\frac{x - x_1}{1} = \frac{y - y_1}{1} = \frac{z - z_1}{1} \tag{1}$$

Any point on this line is  $(x_1 + \tau, y_1 + \tau, z_1 + \tau)$ . This point lies in this sphere.

$$x^{2} + y^{2} + z^{2} - 2x + 4y - 1 = 0$$
 (2)

$$(x_1 + \tau)^2 + (y_1 + \tau)^2 + (z_1 + \tau)^2 - 2(x_1 + \tau) + 4(y_1 + \tau) - 1 = 0 \Rightarrow$$

$$\Rightarrow 3\tau^2 + 2\tau(x_1 + y_1 + z_1 + 1) + (x_1^2 + y_1^2 + z_1^2 - 2x_1 + 4y_1 - 1) = 0$$
If (1) to us how (2)  $\tau$  is unique (2)  $\tau$  is unique.

If (1) touches (2),  $\tau$  is unique ( $\mathscr{D}=0$ ).

$$\mathscr{D} = 4(x_1 + y_1 + z_1 + 1)^2 - 12(x_1^2 + y_1^2 + z_1^2 - 2x_1 + 4y_1 - 1) = 0$$
 (3)

Solving (3) and change P to general form, we are obtaining the answer

$$x^2 + y^2 + 5y + z^2 - 4x - z - xy - xz - yz - 2 = 0$$



#### Reference material

- Cone, generatrix (OnlineMSchool)
- Direction cosines (OnlineMSchool)

