CORRIGIÓ: REVISÓ: REVISÓ:

Teóricos				Prácticos				Calificación
1		2		1	2	3	4	

Condición mínima para aprobar con calificación 6(SEIS): 3 (tres) ejercicios correctamente resueltos, uno de "T1 o T2" y dos de "P1), P2),P3) o P4)"

T1) Indique si cada una de las siguientes proposiciones es verdadera o falsa. Si es verdadera proporcione una demostración, caso contrario exhiba un contraejemplo.

- a. Sea el campo vectorial definido por $\vec{g}: U \subseteq R^3 \to R^3$ de clase $C^2(U)$ y U un conjunto abierto. Si $rot \ \vec{g} = \vec{0}$, entonces \vec{g} es un campo conservativo.
- b. Existe una función h(x) tal que h(1) = 2 y el campo $\overrightarrow{\Psi}(x,y) = (y.h(x) y, y^2 + h(x))$ admita función potencial.
- **T2)** a. Para una campo escalar definido por $h: A \subseteq R^2 \to R \ / \ z = h(x,y)$ defina punto silla o de ensilladura de h.
 - b. Dada la función definida por $h(x,y)=x^3+3xy^2-15x-12y$, determine, si existen, los extremos locales y puntos silla de h.
- **P1)** Halle la circulación del campo $\vec{G}(x,y,z)=(x,y,xy)$ a lo largo de la curva γ , intersección de las superficies de ecuaciones $x^2+y^2=4$ y $z=\frac{x^2}{9}+\frac{y^2}{4}$, orientada siguiendo los puntos $A=\left(-2,0,\frac{4}{9}\right)\to B=(0,2,1)\to C=\left(2,0,\frac{4}{9}\right)$.
- **P2)** Determine el flujo del campo $\vec{F}(x,y,z)=(x^3+yz\,,\,xz+y^3,\,xy+z^3+1)$ a través de la superficie limitada por $x^2+y^2+z^2\leq 1\,$, $x^2+y^2-z^2\leq 0\,$, $y\geq 0\,$, $z\geq 0.$ Indique cómo ha orientado la superficie.
- P3) Determine la derivada direccional mínima de la función z=f(x,y) definida implícitamente por $x.tgy-ze^z=0$ en el punto $P=(0,\frac{\pi}{4})f(0,\frac{\pi}{4})$ y luego indique cuál es la dirección de dicha derivada.
- **P4)** Calcule el volumen del sólido limitado por $0 \le z \le \frac{1}{\sqrt{x^2 + y^2}}$, $x^2 + y^2 \le 2y$, $x + y \ge 2$