Date :-15/01/2022

Time :-25 Minutes

Exam Name :-MHTCET-1to1Guru-2 Mark :- 30

1.	d	External work done $dw = \text{P.Dv} = 10^5 \times 2.1 \times 10^{-3} = 210 \text{ J} : dQ = \frac{dU + dw}{L}$
		$\therefore 0.2 = \frac{d \cup +dw}{4200} \Rightarrow dU = 4200 \times 0.2 - 210 = 840 - 210 = 630 \text{ J}$
2.	d	(D)
		Kinetic energy of the electron $K = E - \omega_0$
		Momentum $P = \sqrt{2mk} = \sqrt{2m(E - \omega_0)}$
		Radius of the circular path $r = \frac{P}{eB} = \frac{\sqrt{2 \text{ m}(E - \omega_0)}}{eB}$
		(d) If final image is formed at least distance of distinct vision, magnification
	d	$=1+\frac{\nu}{f}$
3.		Or magnification
		$=1+\left(\frac{25}{5}\right)=6$
	<u> </u>	(3)
4.	b	(B) For adiabatic process
		For adiabatic process $P_1 V_1^{\gamma} = P_2 V_2^{\gamma}$
		$\therefore \frac{P_2}{P_2} = \left(\frac{V_1}{V_2}\right)^{\gamma} = (4)^{\frac{3}{2}} = 8$
		-22
5.		(d) Magnetic field at the centre of primary coil $B = \mu_0 i_1/2R_1$. Considering it to be
		uniform, magnetic flux passing through secondary coil is $\mu_0 i_1 = 22$
		$\phi = BA = \frac{\mu_0 i_1}{2R_1} (\pi R_2^2)$
		Now, $M = \frac{\phi_2}{i_1} = \frac{\mu_0 \pi R_2^2}{2R_1}$ $\therefore M \propto \frac{R_2^2}{R_1}$
		$M \sim R_2^2$
	_	1
	h	(b) Spheres have same potential
6.	b	<i>i.e.</i> $k \frac{Q_1}{R_1} = k \frac{Q_2}{R_2} \cdot \frac{Q_1}{Q_2} = \frac{R_1}{R_2}$
7.	a	MANAVA 1+01 GURU COM
8.	b	www.itoigara.com
9.	c	Li Pb alloy.
10.	c	(c)
11.	a	
12.		(b) Rate of diffusion $\propto \frac{1}{\sqrt{\text{molecular mass}}}$
		∴ Order of diffusion : H ₂ > CH ₄ > SO ₂
	b	and amount left is in the order $SO_2 > CH_4 > H_2$
		Hence, order of partial pressure is $pSO_2 > pCH_4 > pH_2$
	<u> </u>	
13.	d	d) Among these, only V ²⁺ contains unpaired electron.
1	1	

Therefore, combined S.D. is
$$\sigma_{c} = \sqrt{\frac{n_{1}(\sigma_{1}^{2} + d_{1}^{2}) + n_{2}(\sigma_{2}^{2} + d_{2}^{2})}{n_{1} + n_{2}}}}$$

$$= \sqrt{\frac{60(16 + 9) + 120(25 + 2.25)}{60 + 120}}$$

$$= \sqrt{\frac{60(25) + 120(27.25)}{180}} = \sqrt{\frac{150 + 327}{18}} = \sqrt{\frac{477}{18}}$$

$$= \sqrt{26.5} = 5.15$$
20. d (d) $\frac{e^{dy}}{dx} = 1 + \left(\frac{dy}{dx}\right) + \frac{1}{2!} \left(\frac{dy}{dx}\right)^{2} + \cdots$. So degree is not defined

(b) In a word ARTICLE, there are 7 letters. Out of 7 places, 4 places are odd and 3 even. Therefore 3 vowels can be arranged in 4 odd places in ${}^{4}P_{3}$ ways and remaining 4 consonants can be arranged in ${}^{4}P_{4}$ ways. Hence, required number of ways
$$= {}^{4}P_{3} \times {}^{4}P_{4} = 576$$

$$\theta = \sin^{-1}x + \cos^{-1}x - \tan^{-1}x = \frac{\pi}{2} - \tan^{-1}x$$

$$We know, -\frac{\pi}{2} < \tan^{-1}x < \frac{\pi}{2}$$

$$\Rightarrow \frac{\pi}{2} > -\tan^{-1}x > -\frac{\pi}{2}$$

$$\therefore 0 < \frac{\pi}{2} - \tan^{-1}x < \pi$$

www.1to1guru.com