## Visualização de dados em Python

Parte 2/3 do curso de visualização computacional

Estagiário PAE: Eric Macedo Cabral

cabral.eric@usp.br

Docente: Maria Cristina Ferreira de Oliveira

cristina@icmc.usp.br





#### Motivação

- A visualização de dados no formato tabular pode exigir muito esforço
  - Falhas de atenção
  - Sobrecarga de informação
- Capacidade cognitiva do ser humano
  - "O sistema visual humano tem um canal amplo para os nossos cérebros"
- Informações são perdidas durante o processo de sumarização estatística <sup>1</sup>

L. Munzner, T. (2014). Visualization Analysis and Design. A K Peters/CRC Press

#### Motivação Processamento pré-atentivo e Princípios de Gestalt



Fonte: The 7 Gestalt Principles of Visual Perception (Pt 2)





Length





#### **Motivação** Anscombe Quartet



| I    |      | II   |      | III  |      | IV   |      |
|------|------|------|------|------|------|------|------|
| х    | у    | х    | у    | х    | у    | х    | у    |
| 10.0 | 8.04 | 10.0 | 9.14 | 10.0 | 7.46 | 8.0  | 6.58 |
| 8.0  | 6.95 | 8.0  | 8.14 | 8.0  | 6.77 | 8.0  | 5.76 |
| 13.0 | 7.58 | 13.0 | 8.74 | 13.0 | 12.7 | 8.0  | 7.71 |
| 9.0  | 8.81 | 9.0  | 8.77 | 9.0  | 7.11 | 8.0  | 8.84 |
| 11.0 | 8.33 | 11.0 | 9.26 | 11.0 | 7.81 | 8.0  | 8.47 |
| 14.0 | 9.96 | 14.0 | 8.10 | 14.0 | 8.84 | 8.0  | 7.04 |
| 6.0  | 7.24 | 6.0  | 6.13 | 6.0  | 6.08 | 8.0  | 5.25 |
| 4.0  | 4.26 | 4.0  | 3.10 | 4.0  | 5.39 | 19.0 | 12.5 |
| 12.0 | 10.8 | 12.0 | 9.13 | 12.0 | 8.15 | 8.0  | 5.56 |
| 7.0  | 4.82 | 7.0  | 7.26 | 7.0  | 6.42 | 8.0  | 7.91 |
| 5.0  | 5.68 | 5.0  | 4.74 | 5.0  | 5.73 | 8.0  | 6.89 |

### exemplos/oo.ipynb





#### O que veremos neste módulo?

- Bibliotecas gratuitas de visualização de dados
  - Plotly
  - Matplotlib
  - Seaborn
- Transformação de dados para posteriormente visualizá-los
- Como mapear dados em representações visuais abstratas



#### Considerações Iniciais Taxonomia

- A técnicas de visualização vistas nesta aula estão catalogadas seguindo um critério de dados
- Qual técnica de visualização é mais comumente utilizada em uma determinada natureza de dados

Natureza dos dados → Visualização

https://www.data-to-viz.com/





#### Considerações Iniciais Dependências

Dependências:



```
pip install plotly matplotlib "ipywidgets>=7.5"
jupyter labextension install @jupyter-widgets/jupyterlab-manager \
plotlywidget@4.11.0 jupyterlab-plotly@4.11.0
```

- Plotly
- Matplotlib
- <u>ipywidgets</u>



#### Sumário



- 1. Distribuição
- 2. Correlação
- 3. Ranqueamento
- 4. Parte de um todo (Hierarquias)
- 5. Evolução
- 6. Geográficos
- 7. Fluxos

#### 1 Distribuição



- 1. Histograma
- 2. Boxplot
- 3. Violin plot



#### Distribuição





#### Histograma

- Distribuição de dados numéricos
- Bins
  - o Explore valores de Bins
- Não é o mesmo que um gráfico de barras

https://www.data-to-viz.com/graph/histogram.html
https://plotly.com/python/histograms/





#### **Boxplot**

- Representação estatística de variáveis através de seus quartis
  - o <u>IQR</u>
- Não representa quantidade de observações
- Outliers

https://www.data-to-viz.com/caveat/boxplot.html
https://plotly.com/python/box-plots/



Fonte: abgconsultoria.com.br





# Caveat Desvantagens do Boxplot

- Sumarização implica em perda de informação
- Plotar os pontos de dados pode gerar overplotting
- Em muito dos casos, Violin plot resolve



https://www.data-to-viz.com/caveat/boxplot.html



#### Violin plot

- Representação estatística de dados numéricos
- Densidade de kernel
  - Quantidade de observações

https://www.data-to-viz.com/graph/violin.html
https://plotly.com/python/violin/



### exemplos/01.ipynb



#### 2 Correlação



- 1. Gráficos de dispersão
  - a. Scatter plot
  - o. Matriz de Scatter Plot
- 2. Mapa de calor (Heatmap)



#### Correlação













Density 2d



#### Gráficos de dispersão Scatter plot

- Distribuição entre 2 variáveis numéricas
- Pode ser enriquecido por distribuições marginais
- Evite Overplotting

https://www.data-to-viz.com/graph/scatter.html

https://plotly.com/python/line-and-scatter/







- Correlações (aparentemente) positivas
- Correlações espúrias

https://www.tylervigen.com/spurious-correlations

https://www.data-to-viz.com/caveat/simpson.html



#### Gráficos de dispersão Matriz de Scatter plot (Correlograma)

- Útil para análise exploratória
- Visualiza as relações entre as diversas variáveis do conjunto de dados
- Evite mais do que 9 variáveis

https://www.data-to-viz.com/graph/correlogram.html

https://plotly.com/python/splom/





#### Mapa de calor (*Heatmap*)

- Representa valores numa tabela por intensidades de cores
- Dados normalizados
- Séries temporais

https://www.data-to-viz.com/graph/heatmap.html

https://plotly.com/python/heatmaps/



### exemplos/02.ipynb



#### 3 Ranqueamento



- 1. Gráfico de barras
- 2. Coordenadas paralelas
- 3. Nuvem de palavras



#### Ranqueamento













Parallel



#### Gráfico de barras

- Relação entre uma variável categórica e uma métrica numérica
- Barras ordenadas são mais intuitivas
- Não é um histograma

https://www.data-to-viz.com/graph/barplot.html

https://plotly.com/python/bar-charts/







# Caveat O problema das barras de erros

- Barras de erros são úteis, mas escondem informações, como no Boxplot
- Use gráficos de distribuição
  - Boxplot (em alguns casos)
  - Violin

https://www.data-to-viz.com/caveat/error\_bar.html





#### Coordenadas paralelas

- Comparação entre múltiplas variáveis
  - Podem ser heterogêneas
- Eixos verticais
- Relações entre variáveis
- Evite overplotting (<u>Spaghetti plot</u>)

https://www.data-to-viz.com/graph/parallel.html
https://plotly.com/python/parallel-coordinates-plot/





#### Nuvem de palavras

- Representação da relevância de palavras
  - o Cor
  - Tamanho
- Máscaras (formas)

https://www.data-to-viz.com/graph/wordcloud.html
https://amueller.github.io/word\_cloud/





### exemplos/03.ipynb



### 4 Parte de Um Todo (Hierarquias)



- 1. Gráfico de setores
- 2. Treemap
- 3. Sunburst



#### Parte de Um Todo (Hierarquias)















Sunburst



#### Gráfico de setores

- Gráfico de "pizza"
- Representa porções de um todo (%)
  - Soma de todos os setores = 100%
- Não confundir com o Sunburst Plot

https://www.data-to-viz.com/caveat/pie.html https://plotly.com/python/pie-charts/







#### Caveat O problema dos gráficos de setores

 É difícil para os usuários medir áreas e ângulos

What to consider when creating pie charts









#### **Treemap**

- Dados hierárquicos
  - Grupos
  - Retângulos
- Área proporcional ao valor do grupo
- Uso eficiente de espaço

https://www.data-to-viz.com/graph/treemap.html
https://plotly.com/python/treemaps/





#### Sunburst

- Mistura características do Treemap e do gráfico de setores
- Porém, também herda boa parte de suas desvantagens

https://www.data-to-viz.com/graph/sunburst.html

https://plotly.com/python/sunburst-charts/



## exemplos/04.ipynb



### 5 Evolução



- 1. Gráfico de linhas
- 2. Gráfico de área



### Evolução







Area



Stacked area



Streamchart



#### Gráfico de linhas

- Representa a evolução de uma ou várias variáveis numéricas
- Também utilizado em Scatter plots para representar tendências e padrões
  - o p.e. Linha de regressão
- Também sofre do problema de <u>Spaghetti plot</u>

https://www.data-to-viz.com/graph/line.html

https://plotly.com/python/line-charts/





#### Gráfico de área

- Representa a evolução de um conjunto de dados todo
- Grupos
  - Proporções relativas
- Valor relativo representado pela largura da "onda" no ponto x

https://www.data-to-viz.com/graph/stackedarea.html
https://plotly.com/python/filled-area-plots/







## Caveat O problema com empilhamento

- Empilhamento de áreas pode representar
   bem a evolução do todo
- Mas pode levar a interpretações errôneas sobre as partes

https://www.data-to-viz.com/caveat/stacking.html



## exemplos/05.ipynb



### 6 Geográficos



- 1. Mapa de bolhas
- 2. Mapas de Choropleth



#### Evolução



Map



Choropleth



Hexbin map



Cartogram



Connection



Bubble map



#### Mapa de bolhas

- Representação geográfica de valores numéricos
  - Os valores devem ser codificado na área do círculo, não em seu raio

https://www.data-to-viz.com/graph/bubblemap.html
https://plotly.com/python/bubble-maps/



#### Mapas de Choropleth

- Uma espécie de mapa de calor representado em dados geográficos
- Os dados devem estar normalizados
- Regiões com áreas maiores tendem a tirar a atenção de outras menores
- Não se chama ch<u>L</u>oropleth

https://www.data-to-viz.com/graph/choropleth.html

https://plotly.com/python/choropleth-maps/



## exemplos/06.ipynb



#### 7 Fluxos



1. Diagrama de Sankey



#### **Fluxos**











Sankey

Arc diagram

Edge bundling



#### Diagrama de Sankey

- Também conhecido como "Diagrama Aluvial"
  - É uma forma específica de diagrama de Sankey
- Entidades são representadas por retângulos
- Fluxos são representados por arestas entre entidades
- Representa a evolução de dados e a interação entre entidades

https://www.data-to-viz.com/graph/sankey.html

https://plotly.com/python/sankey-diagram/



## exemplos/07.ipynb



## Projeto etapa 2

#### Descrição

- 1. Com seus dados pré-processados, identifique em qual grupo taxonômico seu conjunto de dados se encaixa (p.e. categórico, numérico, híbrido, etc...). Justifique com uma explicação dos seus dados.
  - a. Vide o catálogo From Data to Viz
- 2. Identifique qual mapeamento visual é o mais indicado para os seus dados e, se você julgar que aquele paradigma visual realmente é a melhor escolha, apresente seus dados com a visualização
  - a. Caso decida utilizar outra visualização, justifique a escolha
- 3. Descreva os insights que a visualização proporcionou para os seus dados

## Projeto etapa 2

#### Organização

#### Arquivo ZIP contendo:

- Jupyter notebook (Python Versão 3.\*) Código e documentação
- Arquivos externos necessários (.csv, .py, .json, etc...)

Aproveite as funcionalidades do Jupyter para enriquecer e organizar a documentação com fórmulas, tabelas e figuras. Lembre-se que você está entregando um relatório!

# Projeto etapa 2 Entrega

- Até 01/11/2020 às 23:55
  - No eDisciplinas
  - Apenas um membro do grupo
  - Mesmo grupo da etapa anterior