

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física

Principio de Arquímedes

Objetivos

• Verificar el principio de Arquímedes.

Materiales

- 1 Beaker de 500ml
- 1 Vaso desechable
- Hilo
- Agua potable
- Objeto metálico
- Balanza
- 1 Soporte metálico

Introducción

El principio de Arquímedes puede ser enunciado como:
Todo cuerpo sumergido en un fluido experimenta un empuje vertical, y dirigió hacia arriba, igual al peso del fluido desalojado.

Si tenemos un beaker con agua sobre una balanza de un solo platillo, y sumergimos un cuerpo en el el agua ejercerá un empuje E sobre el cuerpo. Según el principio de Arquímedes su valor será:

$$E = V_{cuerpo} \rho_{agua} g = \frac{m_{cuerpo}}{\rho_{cuerpo}} \rho_{agua} g$$

Según la tercera ley de Newton (acción y reacción) el cuerpo reaccionará sobre el agua con una fuerza igual y opuesta. Es decir al sumergir el cuerpo en agua, la balanza incrementará su valor en una magnitud de m_E

$$m_E = \frac{E}{g}$$

$$m_E = \frac{m_{cuerpo}}{\rho_{cuerpo}} \rho_{agua}$$

Vamos a aprovechar este principio para calcular la densidad de un objeto.

Procedimiento

Parte I: Verificación del principio de Arquímedes.

- 1. Determine la masa del beaker vacío y anótelo en la tabla (M_b) .
- 2. Coloque el vaso desechable más pequeño en su interior. Llene completamente este recipiente. Cuide que no se derrame agua en el interior del depósito (M_1) .
- 3. Tome el sólido y determine la masa con la balanza (M_c) .
- 4. Colóquelo en el interior del vaso lleno de agua; cuide que no llegue al fondo ni que roce con las paredes.
- 5. Mida la masa del solido estando este completamente sumergido (M_2) .
- 6. Saque el sólido y el vaso del depósito. Determine la masa y el peso del agua derramada en el depósito cuando se introdujo el sólido (M_3) . Repita 3 veces el procedimiento.

N^o	Masa del	Masa del	Masa del	Masa con el	Masa del beaker
	cuerpo	beaker	beaker + vaso +	cuerpo	más agua
	(M_c)	(M_b)	agua (M_1)	sumergido (M_2)	derramada (M_3)
1					
2					
3					

Análisis de resultados

- 1. ¿Qué sucede con el peso del solido al sumergirlo en el agua? ¿Qué sucede con la masa? Compare y explique.
- 2. Compare el peso promedio del agua derramada con la perdida del promedio peso del bloque.

Parte II: Medición de la densidad usando el principio de Arquímedes

1. Con m_E y m_{cuerpo} medidos en la parte I. Determine la densidad del sólido.

Conclusiones