

116394 – Organização e Arquitetura de Computadores – 2º/2016

Professor: Flávio de B. Vidal

Turma: B

Horário das Aulas: Terça-feira – 10⁰⁰ às 11⁵⁰ h

Quinta-feira – 10⁰⁰ às 11⁵⁰ h

Local das Aulas Teóricas: PAT AT 028

Website: http://www.cic.unb.br/~fbvidal/ensino.html

Dados da Disciplina:

Carga Horária: 60h

Número de Créditos: 4(quatro) Créditos Teóricos *Pré-requisitos:* Circuitos Digitais (ou equivalente)

Objetivos:

Esta disciplina tem como metas principais mostrar a relação entre hardware e software, focalizando conceitos que são a base dos atuais computadores e apresentar os paradigmas organizacionais que determinam a capacidade e o desempenho de sistemas de computação.

Ao final do curso o aluno deverá entender o funcionamento de um sistema computacional e saber avaliar os fatores que determinam seu desempenho. Também terá adquirido conhecimentos de programação em linguagem *Assembly*, noções sobre elementos que compõem estes sistemas (estrutura organizacional de componentes principais e periféricos) e projetos básicos de hardware de microprocessadores modernos.

Programa da Disciplina:

Esta disciplina foi dividida em 2(dois) módulos distintos. Ao final de cada módulo, será aplicada uma avaliação de conteúdo abrangendo os tópicos de cada módulo. Os conteúdos dos módulos são:

1º Módulo:

Introdução

- Motivação
- Histórico
- Arquiteturas VonNeumann x Harvard
- Fabricação de CI

Linguagem de Máquina

- Estrutura de Hardware
- Representação de Instruções
- Operações Lógicas, Aritméticas, Decisão, Memória

Aritmética Computacional

- Representação Numérica
- Adição, Subtração, Multiplicação, Divisão
- Ponto Fixo e Flutuante

Análise de Desempenho

- Fatores determinantes
- Avaliando desempenho
- Benchmarks

2º Módulo:

Processador

- Lógica de Projeto
- Projeto do Caminho de Dados
 - o Implementação uniciclo
 - o Implementação multiciclo
- Projeto do Bloco de Controle
 - Máquina de Estados Finitos
 - o Implementação em Hardware

Pipelining

- Introdução
- Caminho de Dados com Pipeline
- Controle do Pipeline
- Hazards

Memórias

- Princípios Básicos de Cache
- Desempenho de Cachê
- Memória Virtual
- Hierarquia de Memória

Arquiteturas Multicores

- Histórico
- Tecnologia Multicore
- SMP vs. NUMA
- Sistemas com memórias compartilhadas

Bibliografia:

As referências bibliográficas empregadas na disciplina foram divididas em duas categorias: *Principal e Complementar*. Deve-se observar, que a estrutura do programa da disciplina para as aulas teóricas seguirá a bibliografia principal, cabendo ao discente complementar o conteúdo ministrado nas aulas teóricas utilizando as referências complementares.

Bibliografia Principal

 Patterson, D.A., Hennessy, J.L., Computer Organization and Design – The Hardware/Software Interface, Fourth Edition, Mourgan Kaufmann, 2009;

Bibliografia Complementar

- Hennessy, J.L., Patterson, D.A., Arquitetura de Computadores Uma Abordagem Quantitativa, terceira edição, Editora Campus, 2005;
- Tanenbaum, A. S., Organização Estruturada de Computadores, Prentice/Hall do Brasil, 2006;
- Weber, R.F., **Fundamentos de Arquitetura de Computadores**, Editora Sagra, terceira edição, 2004;
- Wikinson, B., Computer Architecture Design and Performance, segunda edição, Prentice Hall, 1996;

 Stallings, W., Arquitetura e Organização de Computadores, quinta edição, Prentice Hall, 2002;

Metodologia de Avaliação:

O processo de avaliação será realizado por 2(duas) avaliações escritas, sendo aplicadas ao final de cada módulo, juntamente com a média das notas dos Relatórios de Laboratório, conforme apresentado a seguir. Caso o discente se ausente, e por motivos justificados, este poderá realizar uma avaliação substitutiva no final do semestre. A avaliação substitutiva terá como conteúdo, obrigatoriamente, todos os módulos. A nota da avaliação substitutiva obrigatoriamente substituirá somente uma única nota.

Para as atividades de laboratório estão previstos 2(dois)¹ experimentos, seguindo o programa da disciplina, de forma a avaliar o conteúdo ministrado em sala de aula. Os relatórios deverão ser **entregues em meio digital única e exclusivamente**, independente da entrega não estar explicitamente solicitada no roteiro de desenvolvimento. Caso seja necessário o envio de material digital adicional (arquivos, códigos *assemblys*, ...), este deverá ser entregue via ambiente de ensino Moodle hospedado em http://aprender.unb.br na seção respectiva à atividade.

O processo de obtenção das menções finais(MF) da disciplina são descritos a seguir:

$$MF = \begin{cases} \frac{MA + ML}{2}, & se\ MA \ge 5.0\\ MA, & se\ MA < 5.0 \end{cases}$$

em que:

$$MA = \frac{NP1+NP2}{2} e ML = (\prod_{i=1}^{2} Li) = (L1 \cdot L2)^{1/2}$$

NP1 = Nota da Avaliação do 1º MóduloNP2 = Nota da Avaliação do 2º Módulo

L1, L2 = Notas dos Experimentos de laboratório.

Datas das Avaliações:

Avaliação P1: 22/09/2016 – Quinta-feira Avaliação P2: 17/11/2016 – Quinta-feira

Avaliação Substitutiva²: 01/12/2016 – Quinta-feira.

¹ O número de experimentos poderá ser alterado pelo professor da disciplina durante o semestre, respeitando a disponibilidade de material/laboratório e/ou tempo necessário para desenvolvimento.

² Essa avaliação é única e exclusiva para discentes que não compareceram às provas P1 e/ou P2.

Cronograma de Atividades³

Aula	Data	Descrição
01	09/08/2016	Apresentação da Disciplina e Introdução
02	11/08/2016	Introdução, Abstrações e Histórico
03	16/08/2016	Desempenho
04	18/08/2016	Desempenho (Cont.)
05	23/08/2016	Linguagem de Máquina
06	25/08/2016	Linguagem de Máquina (Cont.)
07	30/08/2016	Assembly MIPS – Procedimentos
08	01/09/2016	Assembly MIPS – IA 32
09	06/09/2016	Exercícios / Roteiro Experimento L1
10	08/09/2016	Aritmética Computacional
11	13/09/2016	Aritmética Computacional – Aritmética Inteira
12	15/09/2016	Aritmética Computacional – Aritmética Fracionária
13	20/09/2016	Exercícios
14	22/09/2016	Avaliação P1
15	27/09/2016	Resolução Avaliação P1
16	29/09/2016	Implementação MIPS Básica
17	04/10/2016	Implementação MIPS Básica – MIPS Uniciclo
18	06/10/2016	Implementação MIPS Básica – MIPS Multiciclo Un.Op.
19	18/10/2016	Pipeline
20	20/10/2016	Pipeline – Caminho de Dados e Controle
21	25/10/2016	Exercícios
22	27/10/2016	Memória
23	01/11/2016	Memória (Cont.) / Roteiro Experimento L2
24	03/11/2016	Arquitetura Multicore
25	08/11/2016	Arquitetura Multicore (Cont.)
26	10/11/2016	Exercícios
27	17/11/2016	Avaliação P2
28	22/11/2016	Resolução Avaliação P2
29	24/11/2016	Apresentação Implementação Lab. 02
30	29/11/2016	Apresentação Implementação Lab. 02
31	01/12/2016	Avaliação Subst. (Todos os Caps.)
32	06/12/2016	Vista de Provas e Experimentos

Critérios para Aprovação:

<u>Se</u> MF ≥ 5 <u>e</u> Freqüência ≥ 75% <u>então</u> Aprovação (Menção de Acordo com a Tabela 1);

Se $MF \ge 5$ e Freqüência < 75% então Reprovação (MF = SR);

Se MF < 5 e Freqüência ≥ 75% então Reprovação (Menção de Acordo com a Tabela 1);

Se MF < 5 **e** Freqüência < 75% **então** Reprovação (MF = SR);

³ Estas datas podem ser alteradas de acordo com a necessidade do professor, sendo que qualquer alteração será comunicada via aprender.unb.br.

Tabela 1			
Menção	Intervalo de Notas		
SS	10,0 – 9,0		
MS	8,9 – 7,0		
MM	6,9 – 5,0		
MI	4,9 – 3,0		
ll .	2,9 – 0,0		
SR	Freqüência < 75%		

Sobre o Sistema Aprender.unb.br

De forma a tornar eficiente o processo de aprendizado e comunicação foi criado no Ambiente Aprender.unb.br uma disciplina On-line específica para a Turma B de Organização e Arquitetura de Computadores – 2/2016. Com a finalidade de evitar possíveis equívocos e problemas diversos (principalmente com a entrega de material solicitado nos experimentos de Laboratório), o discente deverá utilizar este ambiente de forma a cumprir as atividades nele solicitadas. Cabe também ao discente verificar diariamente o ambiente Aprender.unb.br, bem como o website da disciplina, de forma a se manter atualizado sobre avisos e atividades ligadas a esta disciplina. Abaixo são descritos detalhes da disciplina no ambiente Aprender.unb.br:

Nome da Disciplina: Organização e Arquitetura de Computadores – Turma B e Turma D - 2/2016

Nome Resumido: OACTBTD-2/2016

Código de Acesso: oactbtd22016

Vale ressaltar que todo o material referente à disciplina disponibilizado no ambiente Aprender.unb.br, serão também disponibilizados no website da disciplina, exceto as atividades de entrega de material digital. Estas deverão ser realizadas *única* e exclusivamente via ambiente Aprender.unb.br, nas quais serão atribuídas restrições de data e hora para envio do material. Deve-se lembrar que nenhum material referente a estas atividades do Ambiente Aprender.unb.br será aceito via email do professor.