

ZB32L103

ARM® Cortex®-M3 32-bit Micro-Controller Datasheet

Version V0.08 8/4, 2023

产品特性

■ ARM® Cortex®-M3 内核

- ▶ M3 CPU 最高运行到72MHz
- ▶ 内建MPU,NVIC.
- ▶ 一个24位系统定时器
- ▶ 支持低功耗睡眠模式
- ▶ 内建单周期32位硬件乘法器,除法器
- ▶ 内存保护单元

■ 内置储存器

- ▶ 高达128KB 的Flash code和数据使用
- ▶ 备份寄存器是42个16位的寄存器
- ▶ 高达 32 kB 的 SRAM 用于code和数据使用(0-wait)

■ 工作条件

- ▶ 宽电压工作范围2.5V至5.5V
- ▶ 宽工作频率最高至72MHz
- ➤ 工作温度: -40°C至+85°C

■ 时钟源

◇ 5路可选时钟源

- ▶ 外部4MHz~24MHz高速晶振
- ▶ 外部32.768KHz晶振
- > 内部8 MHz高速时钟
- ▶ 内部低速38.4KHz/32.768KHz时钟
- ➤ PLL时钟: Max 144/192 MHz
- ▶ 支持硬件时钟监视

♦ RTC

- ▶ 支持RTC计数(秒/分/小时)及万年历功能(日/月/年)
- ▶ 支持闹铃功能寄存器(秒/分/小时/日/月/年)
- ▶ 支持RTC从Deep Sleep模式唤醒系统

■ 电源管理

- ➤ POR,PDR,LVR
- ▶ RTC 及后备存储器专用供电区 VBAT
- ▶ 三种低功耗工作模式: Sleep、Deep Sleep Mode, standby mode
- ▶ 低电压检测,可配置为中断或复位
- ▶ 唤醒@sleep:所有中断源都可唤醒
- ▶ 唤醒@Deep sleep: 16 个外部中断GPIO PIN 与 RTC(低速时钟工作)
- ▶ 唤醒@ standby mode: wake up PIN,RTC and RF 保存数据.

■ 中断

- ▶ 嵌套向量中断控制器(NVIC)用于控制240个中断源, 每个中断源可设置为4个优先级
- ▶ 支持串行调试(SWD)带2个观察点/4个断点

■ 通用I/O引脚

- ▶ 在64-Pin封装下51个I/O
- > 5.5V power tolerance.

■ 内置ISP Bootloader

> 支持通过UART 进行程序升级.

■ 定时器/计数器

- ▶ 通用定时器:4X16 bits (2X32 bits option)
- ▶ 高级定时器:3X16 bits,1X24bits(SysTick)
- ▶ 可编程的计数器:1X16 bits
- ▶ 看门狗计数器: WWDTX1,IWDTX1
- ▶ 基础定时器: 2X16bits
- ▶ 低功耗定时器:1X16bits

■ 通信接口

- ▶ UART0,1,USART2,3,4标准通讯接口,支持 ISO7816, LIN, IrDA,支持最高速率 4.5Mbit/s,其中一个支持 MODEM 控制,串口带低功耗监听功
- ▶ 能并能唤醒 MCU
- ▶ 支持低速时钟的超低功耗LPUART
- ▶ 3 路 SPI 接口,其中 2 路与 I2S 功能复用,支持最高 24Mbit/S 传输速率.
- ▶ 2路 I2S接口,支持8KHz~48KHz音频输入

- ▶ I2CX2标准通讯接口,主模式最高支持1Mbps,从模式最高支持800Kbps
- ▶ 1路独立 CAN2.0B接口,支持 1Mbit/S 传输速率
- ▶ 1路独立 USB2.0 全速接口,支持 12Mbit/S 传输速率
- ▶ 1路 SDIO 接口,支持 MMC 4.2 规范,支持 SD CARD 2.0 规范,支持 SDIO 2.0 规范,支持 CE-ATA 1.1 规范

■ ADCX1

- ▶ 12位1Msps采样速率,12位SAR型ADCk
- > 24通道: 16路的外部引脚,1的路内部温度传感器电压,,3路的OPA输出,1路的1/3*VDD,1路的BGR

1.2V,1路的DAC

- ▶ 外部参考电压: VDD,GPIO(PB01) PIN
- ▶ 内置参考电压: 2.54V

■ DMAX2 控制器

> 支持 16 chs: SPI,I2C,USART,Timer,ADC,USB

■ PWM

- ▶ 支持最多8个独立出口
- ▶ 支持最多3个互补式出口
- DAC(6-bits)X2
- 运算放大器(OPA)X2
- 内部温度传感器
- 电压比较器(VCX2) / 低电压检测器(LVD)
- 硬件CRC-16/32模块,AES 硬件单元,TRNG真随机数发生器
- 16字节(128位)的芯片唯一ID (UID)
- 开发工具
 - > SWD全功能的嵌入式调试解决方案
- 封装形式:
 - LQFP64/48,QFN48

目录

产品特性目录图索引表索引	5 8 9	,,,,,	
【1】 【2】	5		
2.1		·····································	
2.2		内部框图结构	13
2.3		总线矩阵	14
2.4		引脚定义	15
2.5		引脚功能配置	17
2.6		引脚复用功能描述	20
	2.6-1	PIN引脚复用	20
2.7		模块与引脚信号说明	28
2.8		功能简介	
	2.8-1	CPU	30
	2.8-2	On-Chip Memory	30
	2.8-3	CRC 计算单元	30
	2.8-4	嵌套的向量式中断控制器	30
	2.8-5	外部中断/事件控制器(EXTI)	31
	2.8-6	时钟和启动	31
	2.8-7	启动模式	31
	2.8-8	供电方式	32
	2.8-9	电压监控器	32
	2.8-10	O 内置 LDO	32
	2.8-11	1 低功耗模式	32
	2.8-12	PDMA	33
	2.8-13	3 RTC 和后备寄存器	34
	2.8-14	4 定时器	34
	2.8-15	5 I2C 总线	35
	2.8-16	6 通用同步/异步串行收发器	35
	2.8-17	7 SPI 接口	36
	2.8-18		
	2.8-19		
	2.8-20	O CAN 总线控制器	36

	2.8-21	USB 控制器	37
	2.8-22	通用 IO 口(GPIO)	37
	2.8-23	ADC	38
	2.8-24	温度传感器	38
	2.8-25	内置运算放大器(OPA)	38
	2.8-26	真随机数发生器 TRNG	38
	2.8-27	SWD 调试接口	38
	2.8-28	128 位全球唯一 ID	38
(3)		像	39
3.1		T PIN 储存器映像图	
【4】 【5】		线路图	
5.1		条件	
	5.1-1	最小和最大数值	42
	5.1-2	典型数值	42
5.2	绝对	最大额定值	43
	5.2-1	绝对最大额定值	
	5.2-2	绝对最大额定值	
5.3	工作	条件	44
	5.3-1	通用工作条件	44
	5.3-2	上电和掉电时的工作条件	
	5.3-3	内嵌复位和电源控制模块特性	45
	5.3-4	内置的参考电压	46
	5.3-5	供电电流特性	47
	5.3-5.	1 运行模式下功耗	48
	5.3-5.2	2 睡眠模式下功耗 (Sleep Mode)	52
	5. 3-5	.3 深度睡眠功耗(DeepSleep Mode)	53
	5.3-5.4	4	54
	5.3-5.	5 内置外设的功耗I _{DD2,Typ} (内部RAM中运行)	55
	5.3-6	从低功耗模式唤醒的时间	57
	5.3-7	外部时钟源特性	58
	5.3-7.	1 低速外部时钟 LXT	58
	5.3-7.	2 高速外部时钟 HXT	60
	5.3-7.	3 PLL 特性	62
	5.3-8	内部时钟源特性	63
	5.3-8.	1 内部 HIRC 振荡器	63

	5.3-8.	.2 内部	SIRC 振汤器	63
	5.3-9	Flash 特性	ŧ	63
	5.3-10	电磁敏感	特性	64
	5.3-10	0.1	ESD 特性	64
	5.3-10	0.2	静态栓锁 (Static Latch-up)	64
	5.3-10	0.3	EMC 特性	64
	5	5.3-10.3.1	EMS(电磁敏感性)	
	5	5.3-10.3.2	磁干扰(EMI)	65
	5.3-11	I/O Port 特	寺性	66
	5.3-1	1.1	Output特性 — Port PA,PB,PC,PD,PF	66
	5.3-1	1.2	Input特性 — Port PA,PB,PC,PD,PF	66
	5.3-1	1.3	I/O AC 特性 — Port PA,PB,PC,PD,PF	67
	5.3-1	1.4	Port Leakage 特性 — Port PA,PB,PC,PD,PF	70
	5.3-1	1.5	Port外部输入采样要求 — Timer Gate/Timer Clock	70
	5.3-12	ADC 特性		
	5.3-12		ADC 输入阻抗	
	5.3-13			
	5.3-14	DACO/1特	對性	74
	5.3-15	OPA 特性		75
	5.3-16	TIM 定时	器特性	77
	5.3-17	SD/SDIO	MMC 卡主接口(SDIO)特性	77
	5.3-18	USB接口物	寺性	80
	5.3-19	CAN 控制	器局域网络接口特性	82
	5.3-20	通信接口		83
	5.3-20	0.1	I2C 特性	83
	5.3-20	0.2	SPI 特性	84
	5.3-20	0.3	I2S 特性	86
	5.3-21		器特性	
[6]			•••••	
6.1				
6.2	,	· - · •		
[7]	6.2-1 刑号命夕	•		
[8] [9]	产品选型	表		93

图索引

Figure 1 Block Diagram	13
Figure 2 AHB Matrix	14
Figure 3 ZB32L103 LQFP64 (Type-A,B)	15
Figure 4 ZB32L103 LQFP48/QFN48(Type-A,B)	15
Figure 5 ZB32L103 QFN32	16
Figure 6 储存器映像图	39
Figure 7 BOOT PIN 储存器映像图	40
Figure 8 VDD>3.6V 典型应用线路图	41
Figure 9 VDD<= 3.6V 典型应用线路图	41
Figure 10外部低速时钟源的交流时序图	59
Figure 11外部高速时钟源的交流时序图	
Figure 12 PLL 方块图	
Figure 13 SPI 输入输出交流特性定义	
Figure 14 ADC 方块图	
Figure 15 ADC典型应用图	72
Figure 16 VC1,VC2 方块图	73
Figure 17 OPA1,OP2方块图	75
Figure 18 SDIO 高速模式 时序图	78
Figure 19 SDIO 默认模式 时序图	78
Figure 20 USB 时序: 数据信号上升沿和下降沿定义 时序图	80
Figure 21 I2C 时序图	83
Figure 22 SPI 时序图(主机模式)	85
Figure 23 SPI 时序图(从机模式 CPHA=0)	85
Figure 24 SPI 时序图(从机模式 CPHA=1)	85
Figure 25 I2S 时序图(从机模式)	87
Figure 26 I2S 时序图(主机模式)	87

表索引

Table 1 ZB32L103 芯片特性与周边配备	12
Table 2 引脚ST MD复用功能说明表	17
Table 3 引脚PIN MD复用功能说明表	20
Table 4 模块与引脚信号说明表	
Table 5 定时器功能比较	34

【1】简介

ZB32L103 是一款内嵌 32 位 ARM® Cortex®-M3 内核的超低功耗和宽电压工作范围(2.5V~5.5V)的微控制器,最高可运行在 72MHz,内置 高达32 kB 的 SRAM 用于code程序执行使用 (0-wait),32K 字节的 SRAM和DMAX1(支持16路),集成了:

- 12b 1Msps High Resolution ADC (16 channel)
- USB FS Device Controller and PHY
- CANBUSX1, SDIOX1,
- OPAX2, RTC, CMPX2,
- RTC、基础TimerX2,高级TimerX3,通用TimerX4和编成TimerX1
- 多路通信串口: UARTX2、USARTX3,LPUART、SPI/I2SX2、I2CX2
- PWMx (最多可达6个独立出口或3个互补式出口).

以上等丰富的外设接口,具有高整合度、高抗干扰、高可靠性的特点。

ARM Cortex-M3 是一个 32 位内核,可提供系统增强功能,例如低功耗消耗、增强的调试功能和高水平的支持块集成。 这ARM Cortex-M3 CPU 采用 3 级流水线,采用哈佛架构独立的本地指令和数据总线以及用于外围设备的第三条总线,以及包括一个支持推测分支的内部预取单元。

ZB32L103 系列具有宽电压工作范围、低功耗、低待机电流、高集成度外设、高操作效率、快速唤醒及高性价比等优势,广泛适用于下列应用:

三相无刷直流马达,小家电、充电器、遥控器、电子烟、燃气报警器、数显表、温控器、记录仪、电机驱动、智能门锁、智能传感器、智能家居以及智慧城市等。

【2】描述

2.1 设备概述

		ZB32L103XXX		
	引脚数	64		
	GPIO	51		
	内核	Cortex M3		
MCU	CPU 频率	Max. 72 MHz		
	Flash	128K Bytes		
	SRAM	32KB,4KB(data Retention)		
	PDMA	1(16 ch for SPI,I2C,USART,Timer,ADC)		
	基础 (16-bits)	2(TIM10,TIM11)		
	通用(16-bits)	4(TIM2,TIM2A,TIM2B,TIM2C)		
	通用(32-bits)	2(TIM2,TIM2C)		
Timer	高级(16 bits)	3(TIM1,TIM1A,TIM1B)		
	编程(16 bits)	1(PCA)		
	SysTick(24 bits)	1		
	省电(LPTIMER)	1		
RTC/SY	STICK/IWDG/WWDG	1/1/1/1		
	AWK	1		
工作电	已压范围(VDD),VBAT	2~5.5V (2.5~5.5V), 1.8~3.6V		
	工作温度	-40~85 ℃		
	调试功能	SWD		
唯	t一标识符(UID)	16 Byts		
	UART, USART	2,3		
	LPUART	1		
	SPI,SPI/I2S	1,2-		
通信				
界面	I2C	2		
	SDIO	1		
	USB 2.0(FS)	1		
	CAN	1		
	比较器	2		
	3DES/AES	1/1 (128 bytes)		
	TRNG	1		
	CRC16/32	1		
	内部温度传感器	1		

	内部高速晶振	HIRC: 8/24 MHz			
	内部低速晶振	SIRC: 32.8/38.4KHz			
时钟	外部高速晶振	HXT:4M~24MHz			
印】针	外部低速晶振	LXT :32.768MHz			
	PLL	PLL: 8M~192Mhz			
	12 Bits A/D	1(16 CH)			
	VC 2				
	OPA 2				
	封装	LQFP64/48,QFN48			

Table 1 ZB32L103 芯片特性与周边配备

2.2 内部框图结构

Figure 1 Block Diagram

2.3 总线矩阵

Master-Slave Connect

Figure 2 AHB Matrix

2.4 引脚定义

Figure 3 ZB32L103 LQFP64 (Type-A,A5)

Figure 4 ZB32L103 LQFP48/QFN48(Type-A,A5)

Note:

Type-A: Power Range: VDD<= 3.6V

Type-A5: Power Rang: VDD>3.6V

[3*]QFN48: Die PAD: Vss (PIN49)

Figure 5 ZB32L103 QFN32

Note: Die PAD: VSS/VSSA/VREF- (PIN33)

2.5 引脚功能配置

LQFP	LQFF	P/QFN	Pin name		Main function	CONFIG/	
64	48	32	Pin name	Type	(after reset)	WKUP	Default
1	1		VBAT	S	VBAT		
2	2		TAMPER/RTC/PC13	I/O	PC13	PC13	
3	3		PC14/OSC32_IN	I/O	PC14	OSC32_IN	
4	4		PC15/OSC32_OUT	I/O	PC15	OSC32_OUT	
5	5	2	PD0/ OSC_IN	I/O	PD0	OSC_IN	
6	6	3	PD1/OSC_OUT	I/O	PD1	OSC_OUT	
7	7	4	NRST	I/O	NRST		
8			PC0	I/O	PC0	PC0	ADC_IN10
9			PC1	I/O	PC1	PC1	ADC_IN11
10			PC2	I/O	PC2	PC2	ADC_IN12
11			PC3	I/O	PC3	PC3	ADC_IN13
12	8		AVSS	S	AVSS		
13	9	5	AVDD	S	AVDD		
14	10	6	PA0	I/O	PA0	PA0	ADC_IN0/ OP1_INP/ /VC0_N0 /VC0_P0
15	11	7	PA1	I/O	PA1	PA1	ADC_IN1 OP1_INN /VC0_N1 /VC0_P1
16	12	8	PA2	I/O	PA2	PA2	ADC_IN2 OP2_INP /VC0_N2 /VC0_P2 VC1_N8 /VC1_P8
17	13	9	PA3	I/O	PA3	РАЗ	ADC_IN3 OP2_INN /VC0_N3 /VC0_P3 VC1_N9 /VC1_P9
18			PF4(OB:VSS4) [4*]	S	PF4(VSS4)		
19			PF5(OB:VDD4) [4*]	S	PF5(VDD4)		
20	14	10	PA4	I/O	PA4	PA4	ADC_IN4 OP1_O /VC0_N4 /VC0_P4
21	15	11	PA5	I/O	PA5	PA5	ADC_IN5 OP2_O /VC0_N5 /VC0_P5

LQFP	LQFF	P/QFN	Pin name		Main function		Default	
64	48	32		Туре	(after reset)	WKUP		
00	40	40	DAG		DAG	D 4 0	ADC_IN6	
22	16	12	PA6	I/O	PA6	PA6	/VC0_N6	
							/VC0_P6	
00	47	40	D 4 7		D 4.7	D 4 7	ADC_IN7	
23	17	13	PA7	I/O	PA7	PA7	/VC0_N7 /VC0_P7	
24			PC4	I/O	PC4	PC4	ADC_IN14 /VC1_N0	
24			PC4	1/0	PC4	PC4	/VC1_N0 /VC1_P0	
							ADC_IN15	
25			PC5	I/O	PC5	PC5	/VC1_N1	
25			FC3	1/0	FC3	FC3	/VC1_N1 /VC1_P1	
							ADC_IN8	
26	18	14	PB0	I/O	PB0	РВ0	/VC1_N2	
20	10	17	1 50	1/0	1 50		/VC1_IV2 /VC1_P2	
							ADC_IN9	
27	19	15	PB1	I/O	PB1	PB1	/VC1_N3	
	"			"	101		/VC1_P3	
							VC1_N4	
28	20	16	PB2	I/O	PB2	PB2/BOOT1	/VC1_P4	
					-/		VC1_N5	
29	21		PB10	I/O	PB10	PB10	/VC1_P5	
							VC1_N6	
30	22		PB11	I/O	PB11	PB11	/VC1_P6	
31	23		VSS1	S	VSS1			
32	24	17	VDD1	S	VDD1			
33	25		PB12	I/O	PB12	PB12	VC1_N7	
33	25		FB12		FBIZ	FDIZ	/VC1_P7	
34	26		PB13	I/O	PB13	PB13		
35	27		PB14	I/O	PB14	PB14		
36	28		PB15	I/O	PB15	PB15		
rt			PC6	I/O	PC6	PC6		
38		4	PC7	I/O	PC7	PC7		
39			PC8	I/O	PC8	PC8		
40			PC9	I/O	PC9	PC9		
41	29	18	PA8	I/O	PA8	PA8		
42	30	19	PA9	I/O	PA9	PA9		
43	31	20	PA10	I/O	PA10	PA10		
44	32	21	PA11	I/O	PA11	PA11		
45	33	22	PA12	I/O	PA12	PA12		
46	34	23	PA13	I/O	SWDIO	SWDIO/PA13		
47	35		PF6(OB:VD12)[4*]	I/O	PF6(VD12)	PF6(VD12)		
48	36		VDD2	S	VDD	VDD		
49	37	24	PA14	I/O	SWCLK	SWCLK /PA14		
50	38	25	PA15	I/O	PA15	PA15		
51			PC10	I/O	PC10	PC10		
52			PC11	I/O	PC11	PC11		
53			PC12	I/O	PC12	PC12		
54			PD2	I/O	PD2	PD2		

LQFP	LQFP/QFN		Pin name	T	Main function	CONFIG/	Defeat	
64	48	32	Pin name	Туре	(after reset)	WKUP	Default	
55	39	26	PB3	I/O	PB3	PB3		
56	40	27	PB4	I/O	PB4	PB4		
57	41	28	PB5	I/O	PB5	PB5		
58	42	29	PB6	I/O	PB6	PB6		
59	43	30	PB7	I/O	PB7	PB7		
60	44	31	BOOT0	I	воото			
61	45	32	PB8	I/O	PB8	PB8		
62	46		PB9	I/O	PB9	PB9		
63	47	1	VCAP	LDO(O)	VCAP			
64	48		VDD3	S	VDD3			
	40	40 00	VSS/	VSS/				
	49	33	(VSS,VSSA,VREF-)					

Table 2 引脚ST MD复用功能说明表

Note: [1] I = 输入, 0 = 输出, S = 电源。

[2] ALL GPIO = 5V 容忍。 [3] ALL GPIO As wakeup PIN [4*] OB: Option Bonding

[5*] TypeA5: Need UVD33 PIN for USB Power

2.6 引脚复用功能描述

2.6-1 PIN引脚复用

	GPIO_AFR[i+3:i]							
			TIM1	TIM1A	TIM2	TIM2	SPI1	
			TIM1A	TIM2	TIM2A	TIM2C	SPI2	
			TIM1B	TIM2C	TIM2B	LPUART	CAN	
			TIM2C LPTIM	LPTIM PCA	TIM2C LPUART	I2C0 I2C1	MCO UART0	
			TAMPER	VC0,1(O)	I2C1	SDIO	UART1	
			LVD	LVD	SDIO	RTC	TIM10	
复用	功能	GPIO		BEEP	ONE-WIRE	EVENTOUT		
				RTC	UART0	TRACE		
				TIM11	UART1			
				UART0	SPI1			
				UART1	SPI2			
				TRACE				
64	48(32)	0	1	2	3	4	5	
1	1	VBAT						
		PC13/ TAMPER/						
2	2	RTC		RTC_O				
3	3	PC14/			, and the second			
		OSC32_IN						
		PC15/						
4	4	OSC32_OUT						
5	5	PD0/						
		OSC_IN						
		PD1/	/					
6	6	OSC_OUT		LVD_O				
7	7	NRST						
8	,	PC0		RTC_O	ONE-WIRE	SDIO_D0	TIM10_TOG	
		PC1				SDIO_D1		
9				BEEP			TIM10_TOGN	
10		PC2		UART1_RE	SPI1_M_SSI	SDIO_D2	TIM10_EXT	
11		PC3	LVD_O	UART1_DE	SPI2_M_SSI	SDIO_D3	TIM10_GATE	
12	8	VSSA						
13	9	VDDA						

		GPIO_AFR[i+3:i]							
			TIM1 TIM1A	TIM1A TIM2	TIM2 TIM2A	TIM2 TIM2C	SPI1 SPI2		
			TIM1B	TIM2C	TIM2B	LPUART	CAN		
			TIM2C	LPTIM	TIM2C	12C0	MCO		
			LPTIM	PCA	LPUART	I2C1	UART0		
			TAMPER	VC0,1(O)	I2C1	SDIO	UART1		
	-L 45-		LVD	LVD	SDIO	RTC	TIM10		
复用	功能	GPIO		BEEP	ONE-WIRE	EVENTOUT			
				RTC	UART0	TRACE			
				TIM11	UART1				
				UART0	SPI1				
				UART1	SPI2				
				TRACE					
64	48(32)	0	1	2	3	4	5		
14	10	PA0	TIM1A_ETR	TIM2C_CH1	TIM2_CH1	TIM2_ETR	SPI2_M_CSS		
15	11	PA1	LPT_ETR	LPT_GATE	TIM2_CH2	TIM2C_CH2	SPI2_M_SCK		
16	12	PA2	TIM2C_CH3	LPT_TOG	TIM2_CH3	SDIO_CK	SPI2_M_MISO		
17	13	PA3	TIM2C_CH4	LPT_TOGN	TIM2_CH4	SDIO_CMD	SPI2_M_MOSI		
18		PF4(VSS_4)		UART0_RE	SPI1_M_SSI	TMR2C_CH1			
19		PF5(VDD_4)		UART0_DE	SPI2_M_SSI	TMR2C_CH2			
20	14	PA4	TIM1A_BKIN	TIM1A_CH1	SDIO_D0	EVENTOUT	SPI1_M_CSS		
21	15	PA5	TIM1A_CH1N	TIM1A_CH2	SDIO_D1	I2C1_SCL	SPI1_M_SCK		
22	16	PA6	TIM1_BKIN	TIM1A_BKIN	TIM2A_CH1	I2C1_SDA	SPI1_M_MISO		
23	17	PA7	TIM1_CH1N	TIM1A_CH1N	TIM2A_CH2	EVENTOUT	SPI1_M_MOSI		
24		PC4		LPT_ETR					
25		PC5	P	LPT_GATE					
26	18	PB0	TIM1_CH2N	TIM1A_CH2N	TIM2A_CH3	LPUART_TXD	TIM10_TOG		
27	19	PB1	TIM1_CH3N	TIM1A_CH3N	TIM2A_CH4	LPUART_RXD	TIM10_TOGN		
28	20	PB2/ BOOT1	LVD_O	BEEP	ONE-WIRE	RTC	TIM10_EXT		
29	21	PB10	TIM1_CH1	LPT_TOG	TIM2_CH3	I2C1_SCL	MCO		
30	22	PB11	TIM1A_CH2	LPT_TOGN	TIM2_CH4	I2C1_SDA	TIM10_GATE		
31	23	VSS_1							
32	24	VDD_1							
33	25	PB12	TIM1_BKIN	TIM11_TOG	UART0_RE	EVENTOUT	SPI2_M_CSS		
34	26	PB13	TIM1_CH1N	TIM11_TOGN	UART0_DE	LPUART_TXD	SPI2_M_SCK		

		GPIO_AFR[i+3:i]							
			TIM1	TIM1A	TIM2	TIM2	SPI1		
			TIM1A	TIM2	TIM2A	TIM2C	SPI2		
			TIM1B	TIM2C	TIM2B	LPUART	CAN		
			TIM2C	LPTIM	TIM2C	12C0	MCO		
			LPTIM	PCA	LPUART	I2C1	UART0		
			TAMPER LVD	VC0,1(O)	I2C1 SDIO	SDIO RTC	UART1 TIM10		
复用	功能	GPIO	212	BEEP	ONE-WIRE	EVENTOUT	1111110		
2 47 11				RTC	UART0	TRACE			
				TIM11	UART1	TITAGE			
				UART0	SPI1				
				UART1	SPI2				
				TRACE	0.12				
64	48(32)	0	1	2	3	4	5		
35	27	PB14	TIM1_CH2N	TIM11_EXT	UART1_RE	LPUART_RXD	SPI2_M_MISO		
36	28	PB15	TIM1_CH3N	TIM11_GATE	ERTC_REFIN	EVENTOUT	SPI2_M_MOSI		
37		PC6	TIM1A_CH1	PCA_ECI	TIM2A_CH1	SDIO_D6	SPI1_M_CSS		
38		PC7	TIM1A_CH2	PCA_CH0	TIM2A_CH2	SDIO_D7	SPI1_M_SCK		
39		PC8	TIM1A_CH3	PCA_CH1	TIM2A_CH3	SDIO_D0	SPI1_M_MISO		
40		PC9	TIM1A_CH4	PCA_CH2	TIM2A_CH4	SDIO_D1	SPI1_M_MOSI		
41	29	PA8	TIM1_CH1	PCA_CH3	TIM2C_CH1	RTC_O	мсо		
42	30	PA9	TIM1_CH2	PCA_CH4	TIM2C_CH2	SDIO_D2			
43	31	PA10	TIM1_CH3	BEEP	TIM2C_CH3	SDIO_D3	TIM1B_BKIN		
44	32	PA11	TIM1_CH4	VC0_O	TIM2C_CH4	SDIO_CK	CAN_RX		
45	33	PA12	TIM1_ETR	VC1_O	ONE-WIRE	SDIO_CMD	CAN_TX		
		PA13/	P						
46	34	SWDIO/			LPUART_RXD	I2C0_SDA	CAN_RX		
		JTMS			_				
47	35	PF6(VSS_2)			I2C1_SCL	I2C0_SCL			
48	36	PF7(VDD_2)			12C1_SDA	I2C0_SDA			
70		PA14/		 	335/.	.200_00/1			
49	37	SWCLK/			LPUART_TXD	I2C0_SCL	CAN_TX		
		JTCK							
50	38	PA15/ JTDI	TIM1B_ETR	TIM2_ETR	TIM2_CH1	TRACECK	SPI1_M_CSS		
51		PC10	TIM1B_CH1		SPI1_M_SSI	SDIO_D2	UART0_TX		
52		PC11	TIM1B_CH2	PCA_ECI	SPI2_M_SSI	SDIO_D3	UART0_RX		

		GPIO_AFR[i+3:i]								
			TIM1	TIM1A	TIM2	TIM2	SPI1			
			TIM1A	TIM2	TIM2A	TIM2C	SPI2			
			TIM1B	TIM2C	TIM2B	LPUART	CAN			
			TIM2C	LPTIM	TIM2C	I2C0	MCO			
			LPTIM	PCA	LPUART	I2C1	UART0			
			TAMPER	VC0,1(O)	I2C1	SDIO	UART1			
有田	T뉴 4는	OPIO	LVD	LVD	SDIO	RTC	TIM10			
	功能	GPIO		BEEP	ONE-WIRE	EVENTOUT				
				RTC	UART0	TRACE				
				TIM11	UART1					
				UART0	SPI1					
				UART1	SPI2					
				TRACE						
64	48(32)	0	1	2	3	4	5			
53		PC12	TIM1B_CH3	PCA_CH0		SDIO_CK	UART1_TX			
54		PD2	TIM1B_CH4	PCA_CH1	TIM2A_ETR	SDIO_CMD	UART1_RX			
55	39	PB3/	TIM1B_BKIN	TRACESWO	TIM2_CH2	I2C0_SCL	SPI1_M_SCK			
		PB4/								
56	40	JNTRST	TIM1B_ETR	TIM1B_CH1	TIM2A_CH1	I2C0_SDA	SPI1_M_MISO			
57	41	PB5	TIM1B_CH1	TIM1B_CH1N	TIM2A_CH2		SPI1_M_MOSI			
58	42	PB6	TIM1B_CH1N	TIM1B_CH2	TIM2B_CH1	I2C0_SCL	CAN_RX			
59	43	PB7	TIM1B_CH2N	PCA_CH2	TIM2B_CH2	I2C0_SDA	CAN_TX			
60	44	BOOT0/PD3								
61	45	PB8	TIM1B_CH3N	PCA_CH3	TIM2B_CH3	I2C0_SCL	CAN_RX			
62	46	PB9	LVD_O	PCA_CH4	TIM2B_CH4	I2C0_SDA	CAN_TX			
63	47	VSS_3								
64	48	VDD_3								

		GPIO_AFR[i+3:i]								
			TIM1A	UART0	VC0,1(O)	EVENTOUT	I2S1	12S1	Analog:	
			SPI1	UART1	MCO	I2C0	12S2	12S2	ADC	
			SDIO	USART2	SDIO	МСО	SPI1	UART0	OPA	
			MCO	USART3	QSPI	SPI1	SPI2	UART1	USB	
			VC0,1(O)	USART4	I2S1		TRACE		VC0/1 看圖	
			LXT	SDIO	UART1					
₩ m -	다뉴ᄼᅪ	0.010	НХТ	SPI1					CONFIG:	
复用	IJ 削	GPIO	SIRC	TIM11					HXT	
			HIRC	QSPI					LHT	
			QSPI						SWD	
			UART0						0.1.5	
									A l	
			UART1						Analog:	
	1		SPI1						ADC	
64	48(32)	0	6	7	8	9	10	11	F/CON	
1	1	VBAT								
		PC13/								
2	2	TAMPER/ RTC								
3	3	PC14/				人人			OSC32_IN	
	OSC32_IN	USC32_IN							OSC32_OUT	
		DO45/								
4	4	PC15/ OSC32_OUT							OSC_IN	
5	5	PD0/							OSC32_IN	
3	3	OSC_IN							OSC32_OUT	
6	6	6 PD1/ OSC_OUT					TRACECK		OSC_IN	
7	7	NRST								
8		PC0	LXT_O	TIM11_TOG	QBK1_IO3		TRACED[0]	UART0_Baud	ADC1_IN10	
9		PC1	HXT_O	TIM11_TOGN		EVENTOUT	TRACED[1]	UART1_Baud	ADC1_IN11	
10		PC2	SIRC_O	TIM11_EXT	QBK1_IO1	EVENTOUT	TRACED[2]		ADC1_IN12	
11		PC3	HIRC_O	TIM11_GATE		EVENTOUT	TRACED[3]		ADC1_IN13	
12	8	VSSA	 							
12	0	VOOA								
13	9	VDDA								
									ADC1_IN0/	
14	10	PA0	SPI2_S_CSS	USART2_CTS	VC0_O	мсо	I2S2_M_WS	12S2_S_WS	OP1_INP /	
									VC0_N0 / VC0_P0	

					ODIO A	FD:: 0-!1			
						FR[i+3:i]	1004	1004	1
			TIM1A SPI1	UART0 UART1	VC0,1(O) MCO	EVENTOUT I2C0	12S1 12S2	I2S1 I2S2	Analog: ADC
			SDIO	USART2	SDIO	MCO	SPI1	UART0	OPA
			MCO	USART3	QSPI	SPI1	SPI2	UART1	USB
			VC0,1(O)	USART4	12S1	.	TRACE	O 7	VC0/1 看圖
			LXT	SDIO	UART1				
			HXT	SPI1	UAKTI				CONFIG:
复用了	功能	GPIO							
			SIRC	TIM11					НХТ
			HIRC	QSPI					LHT
			QSPI						SWD
			UART0						
			UART1						Analog:
			SPI1						ADC
64	48(32)	0	6	7	8	9	10	11	F/CON
									ADC1_IN0/
15	11	PA1	SPI2_S_SCK	USART2_RTS	QBK1 NCS	I2C0_SDA	12S2_M_CK	12S2_S_CK	OP1_INP /
									VC0_N0 /
									VC0_P0
						人			ADC1_IN0/ OP1_INP /
16	12	PA2	SPI2_S_MISO	USART2_TX	VC1_0	I2C0_SCL	I2S2_M_SDI	I2S2_S_SDI	VC0_N0 /
									VC0_P0
									ADC1_IN0/
17	13	PA3	SPI2_S_MOSI	USART2_RX	VC0_O	EVENTOUT	I2S2_M_SDO	12S2_S_SDO	OP1_INP /
									VC0_N0 / VC0_P0
18		PF4(VSS_4)		UART0_TX				UART0_TX_ir	V 00_I 0
10		F1 4(V33_4)		UARTO_TX				DA	
19		PF5(VDD_4)		UART0_RX				UART0_RX_ir DA	ADC1_IN4 OP1_O
20	14	PA4	SDIO_D4	USART2_CK	VC0 O	SPI1 S CSS	I2S1_M_WS	12S1_S_WS	ADC1_IN5
				_	_				OP2_O ADC1_IN6
21	15	PA5	SDIO_D5	Q_CLK	VC1_O	SPI1_S_SCK	12S1_M_CK	I2S1_S_CK	
22	16	PA6	SDIO_D6	USART3_RX	SDIO_D2	SPI1_S_MISO	I2S1_M_SDI	12S1_S_SDI	ADC1_IN7
23	17	PA7	SDIO_D7	USART3_TX	SDIO_D3	SPI1_S_MOSI	12S1_M_SDO	12S1_S_SDO	ADC1_IN14
24		PC4	SDIO_CK		UART0_CTS_ N				ADC1_IN15
25		PC5	SDIO_CMD		UART0_DSR_				ADC1_IN8
26	18	PB0	_	LIADTO TV	N	EVENTOUT		UART0_TX_ir	ADC1_IN9
20	10	РБО	USART3_RTS	UARTO_TX		EVENTOUT		DA	
27	19	PB1	USART3_CTS	UART0_RX	Q_CLK	EVENTOUT		UART0_RX_ir DA	ADC1_IN4 OP1_O
		PB2/							
28	20	BOOT1				EVENTOUT	TRACESWO		
20	21	PB10	TIM1A CU1	IIQADTO TV		EVENTOUT			
29			TIM1A_CH1	USART3_TX		EVENTOUT			
30	22	PB11	TIM1A_CH1N	USART3_RX		EVENTOUT			
31	23	VSS_1							

		GPIO_AFR[i+3:i]									
			TIM1A	UART0	VC0,1(O)	EVENTOUT	I2S1	I2S1	Analog:		
			SPI1	UART1	MCO	12C0	1252	1252	ADC		
			SDIO	USART2	SDIO	MCO	SPI1	UART0	OPA		
			MCO	USART3	QSPI	SPI1	SPI2	UART1	USB		
			VC0,1(O)	USART4	I2S1		TRACE		VC0/1 看圖		
			LXT	SDIO	UART1						
复用コ	力台上	GPIO	HXT	SPI1					CONFIG:		
夕	NJBE	0.10	SIRC	TIM11					НХТ		
			HIRC	QSPI					LHT		
			QSPI						SWD		
			UART0								
			UART1						Analog:		
			SPI1						ADC		
64	48(32)	0	6	7	8	9	10	11	F/CON		
32	24	VDD_1									
33	25	PB12	TIM1A_CH2	USART3_CK	UART0_DCD_ N	SPI2_S_CSS	I2S2_M_WS	12S2_S_WS			
34	26	PB13	TIM1A_CH2N	USART3_CTS	UART0_RI_N	SPI2_S_SCK	I2S2_M_CK	12S2_S_CK			
35	27	PB14	TIM1A_CH3	USART3_RTS	UART0_DTR_ N	SPI2_S_MISO	I2S2_M_SDI	12S2_S_SDI			
36	28	PB15	TIM1A_CH3N	QBK1_NCS	UART0_RTS_ N	SPI2_S_MOSI	I2S2_M_SDO	12S2_S_SDO			
37		PC6	SPI1_S_CSS	UART0_TX	I2S1_M_WS	EVENTOUT	12S1_S_WS	UART0_TX_ir DA			
38		PC7	SPI1_S_SCK	UART0_RX	12S1_M_CK	EVENTOUT	I2S1_S_CK	UART0_RX_ir DA			
39		PC8	SPI1_S_MISO		I2S1_M_SDI	EVENTOUT	12S1_S_SDI	UART0_OUT2 _N			
40		PC9	SPI1_S_MOSI	QBK2_IO0	I2S1_M_SDO	EVENTOUT	12S1_S_SDO	UART0_OUT1 _N			
41	29	PA8	VC0_O	USART4_CK	UART1_CTS_ N	EVENTOUT					
42	30	PA9	VC1_O	USART4_TX		EVENTOUT					
43	31	PA10	UART0_RE	USART4_RX		EVENTOUT					
44	32	PA11	UART0_DE	USART4_CTS	UART1_DSR_ N	EVENTOUT			USBDM		
45	33	PA12	мсо	USART4_RTS	UART1_DCD_ N	EVENTOUT			USBDP		
46	34	PA13/ SWDIO/		UART1_RX		EVENTOUT		UART1_RX_ irDA	SWDIO/		
47	35	PF6(VSS_2)									
48	36	PF7(VDD_2)									
49	37	PA14/ SWCLK/		UART1_TX	MCO	EVENTOUT		UART1_TX_ irDA	SWCLK		
50	38	PA15/ JTDI	UART1_DE	SPI1_S_CSS	VC1_O	EVENTOUT	I2S1_M_WS	12S1_S_WS			
51		PC10	QBK2_NCS	USART3_TX		EVENTOUT	TRACED[0]	UART0_TX_ir DA			

		GPIO_AFR[i+3:i]								
			TIM1A	UART0	VC0,1(O)	EVENTOUT	I2S1	I2S1	Analog:	
			SPI1	UART1	MCO	12C0	12S2	12S2	ADC	
			SDIO	USART2	SDIO	MCO	SPI1	UART0	OPA	
			MCO	USART3	QSPI	SPI1	SPI2	UART1	USB	
			VC0,1(O)	USART4	I2S1		TRACE		VC0/1 看圖	
			LXT	SDIO	UART1					
	T+L 스L	GPIO	HXT	SPI1					CONFIG:	
复用	り り り	GFIO	SIRC	TIM11					НХТ	
			HIRC	QSPI					LHT	
			QSPI						SWD	
			UART0							
			UART1						Analog:	
			SPI1						ADC	
64	48(32)	0	6	7	8	9	10	11	F/CON	
52		PC11	QBK2_IO3	USART3_RX		EVENTOUT	TRACED[1]	UART0_RX_ir DA		
53		PC12	QBK2_IO2	USART3_CK		EVENTOUT	TRACED[2]	UART1_TX_ir DA	UCPD_FRS TX	
54		PD2	QBK2_IO1		2	EVENTOUT	TRACED[3]	UART1_RX_ir DA		
55	39	PB3/	QBK2_IO0	SPI1_S_SCK	UART1_RI_N	EVENTOUT	I2S1_M_CK	I2S1_S_CK		
56	40	PB4/ JNTRST	QBK1_NCS	SPI1_S_MISO	UART1_DTR_ N	EVENTOUT	I2S1_M_SDI	I2S1_S_SDI		
57	41	PB5	QBK1_IO3	SPI1_S_MOSI	UART1_RTS_ N	EVENTOUT	I2S1_M_SDO	12S1_S_SDO		
58	42	PB6	QBK1_IO2	USART4_TX		EVENTOUT	SPI1_M_SSI			
59	43	PB7	QBK1_IO1	USART4_RX		EVENTOUT	SPI2_M_SSI			
60	44	BOOT0/PD3								
61	45	PB8	QBK1_IO0	SDIO_D4	UART1_OUT2 _N	EVENTOUT	TIM1B_CH3	UART0_Baud		
62	46	PB9	Q_CLK	SDIO_D5	UART1_OUT1 _N	EVENTOUT	TIM1B_CH3N	UART1_Baud		
63	47	VSS_3								
64	48	VDD_3								

Table 3 引脚PIN MD复用功能说明表

Note: (1) TIMX_ETR:使用TIMXETR_SEL[3:0]

(2) GPIO_AFR[i+3:i]=4' hF : Input Buffer Disable (High Impedance)

2.7 模块与引脚信号说明

模块功能	引脚名称	说明
Power	VDD1, VDD2, VDD3, AVDD	电源
	VSS1, VSS2, VSS3, AVSS	电源
	1.2V	LDO 内核供电
Ground	VSS	接地
	AVSS	接地
GPIO (x=0~15)	PAx, PBx, PCx, PDx, PFx	Pax, PBx, PCX, PDx, PFx通用数字输入/输出引脚
NRST	NRST	复位输入端口,低有效,芯片复位
ADC	ADC1_INO~ ADC1_IN15	ADC1 输入通道0~15
	EXVREF	ADC 外部参考电压
OPA	OPx_INN	OPA负端输入
X=0, 1	OPx_INP	OPA负端输入
	0Px_0	OPA 输出
VC	VCxN0~VCxN11	选择VCO,VC1负端输入
X=0, 1	VCxP0~VCxP11	选择VC0, VC1 正端输入
	VCx_0	VC0, VC1比较输出
LVD	LVD_0	电压侦测输出
ISP	ВООТО	当复位时BOOTO(PDO3)管脚为高电平,芯片工作于ISP编程模式,可通过ISP协议对FLASH进行编程。当复位时BOOTO(PDO3)管脚为低电平,芯片工作于用户模式,芯片执行FLASH内的程序代码,可通过SWD协议对FLASH进行编程。
WKUP	ALL GPIO	外部唤醒脚位
LPUART	TXD_LP	LPUART 数据发送端
	RXD_LP	LPUART 数据接收端
USART	CTS_x	USARTx CTS
x=2, 3, 4	RTS_x	USARTx RTS
UART	CK_x	USARTx 同步时钟
Y=0, 1	TXD_x	USARTx ,USARTy数据发送端
	RXD_x	USARTx, USARTy 数据接收端
SPI	MISO_x	SPI模块主机输入从机输出数据信号
x=1, 2	MOSI_x	SPI模块主机输出从机输入数据信号
(Master/Slave)	SCK_x	SPI模块时钟信号
	CSS_x	SPI片选择致能
	SPIx_M_SSI	SPI Master SSI 輸入 for 多Master時使用

模块功能	引脚名称	说明
I2C	SDA_x	I2C模块数据信号
x=0, 1	SCL_x	I2C模块时钟信号
通用定时器	Tx_CH1, 2, 3, 4	Timer x的捕获输入/比较输出/PWM输出 Ch1,2,3,4
TIMx	Tx_ETR	Timerx的外部计数输入信号
X=2, 2A, 2B, 2C		
可编程计数阵列	PCA_ECI	外部时钟输入信号
PCA	PCA_CHO~PCA_CH4	捕获输入/比较输出/PWM输出 0~4
高级定时器	TIMX_CH1, 2, 3, 4	TIMX PWM 输出 channel 1/2/3/4
Advanced	TIMX_CH1N, 2N, 3N, 4N	TIMX PWM 输出 反相channel 1N/2N/3N/4N
TIMX	TIMX_BKIN	TIMX 刹车信号输入
X=1, 1A, 1B	TIMX_CH1, 2, 3, 4	TIMX PWM 输出 channel 1/2/3/4
	TIMX_CH1N, 2N, 3N, 4N	TIMX PWM 输出 反相channel 1N/2N/3N/4N
	TIMX_BKIN	TIMX 刹车信号输入
	TIMX_CH1, 2, 3, 4	TIMX PWM 输出 channel 1/2/3/4
	TIMX_CH1N, 2N, 3N, 4N	TIMX PWM 输出 反相channel 1N/2N/3N/4N
	TIMX_BKIN	TIMX 刹车信号输入
低功耗定时器	LP_ETR	LP Timer的外部计数输入信号
LPTimer	LP_GATE	LP Timer的门控信号
	LP_TOG	比较输出正端
	LP_TOGN	比较输出负端
I2S	I2S_SDO	I2S模块主机输入从机输出数据信号
x=1, 2	I2S_SDI	I2S模块主机输出从机输入数据信号
(Master/Slave)	I2S_CK	I2S模块时钟信号
	12S_WS	I2S片左右通道選擇
SDI0	SDIO_CLK	Host-to-card clock signal
	SDIO_CMD	Bidirectional command and response signal
	SDIO_DO~D7	Bidirectional data signal (1-bit, 4-bit, or
		8-bit MMC Cards; 1-bit or 4-bit in SD cards)
USB	USBDP, USBDM	USB D+ and D- Signal
	USBPHYT_XXX	USB PHY test mode pin
CAN	CAN_TX	CAN BUS Transmit Signal(发送端)
CAN	CAN_RX	CAN BUS Receive Signal(接收端)

Table 4 模块与引脚信号说明表

2.8 功能简介

2.8-1 CPU

ZB32L103集成最新一代的嵌入式ARM Cortex®-M3 32位处理器内核带有MPU.

Cortex-M3内核的主要特点有

- ARMv7E-M架构
- 三层管线以及分支预测
- 指令集:
 - ◆ 高性能处理器,能够运行高频率,达到较高的执行吞吐量期.
 - ◆ 单周期乘法和32位乘法累加(MAC)指令,提供快速的数值计算能力
 - ◆ 支持嵌套中断控制器 (Nested Vectored Interrupt Controller, NVIC), 可实现多级中断优先级管理
- 12 个周期的中断延迟
- 整合休眠模式

2.8-2 On-Chip Memory

- 高达128 KB 闪存存储器,用于存放程序和数据.
- 高达32KB SRAM,可操作在Max. 72MHz.

2.8-3 CRC 计算单元

CRC(循环冗余校验)计算单元使用一个固定的多项式发生器,从一个 32 位的数据字产生一个 CRC 码。在 众多的应用中,基于 CRC 的技术被用于验证数据传输或存储的一致性。在 EN/IEC 60335-1 标准的范围 内,它提供了一种检测闪存存储器错误的手段, CRC 计算单元可以用于实时地计算软件的签名,并与在 链接和生成该软件时产生的签名对比。

2.8-4 嵌套的向量式中断控制器

- 内置嵌套的向量式中断控制器,能够处理多达 68 个可屏蔽中断通道(不包括 16 个 Cortex™-M3 的中断线)和16 个优先级
- 紧耦合的 NVIC 能够达到低延迟的中断响应处理
- 中断向量入口地址直接进入内核
- 紧耦合的 NVIC 接口
- 允许中断的早期处理
- 处理晚到的较高优先级中断
- 支持中断尾部链接功能
- 自动保存处理器状态
- 中断返回时自动恢复,无需额外指令开销
- 该模块以最小的中断延迟提供灵活的中断管理功能。

2.8-5 外部中断/事件控制器(EXTI)

外部中断/事件控制器包含 19 个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置它的触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽;有一个挂起寄存器维持所有中断请求的状态。 EXTI 可以检测到脉冲宽度小于内部 APB2 的时钟周期。多达 51 个通用 I/O 口连接到 16 个外部中断线.

2.8-6 时钟和启动

系统时钟的选择是在启动时进行,复位时内部 8MHz 的 RC 振荡器被选为默认的 CPU 时钟,随后可以选择外部的、具失效监控的 4~16MHz 时钟;当检测到外部时钟失效时,它将被隔离,系统将自动地切换到内部的 RC 振荡器,如果使能了中断,软件可以接收到相应的中断。同样,在需要时可以采取对 PLL 时钟完全的中断管理(如当一个间接使用的外部振荡器失效时)。

多个预分频器用于配置 AHB 的频率、高速 APB(APB2)和低速 APB(APB1)区域。 AHB 和高速 APB 的最高频率是 72MHz, 低速 APB 的最高频率为 48MHz。

2.8-7 启动模式

在启动时,通过自举引脚可以选择两种自举模式中的一种:

- 从程序闪存存储器启动.
- 从系统存储器启动.
- 从内部SRAM启动.

自举加载程序(Bootloader)存放于系统存储器中,可以通过 USART1 对闪存重新编程。

2.8-8 供电方式

VDD = 2.5~5.5V: VDD 引脚为 I/O 引脚和内部调压器供电。

- VSSA, VDDA = 2.5~5.5 V: 为 ADC、复位模块、RC 振荡器和 PLL 的模拟部分提供供电。使用 ADC 时, VDDA不小于 2.0V?。 VDDA 和 VSSA 分别连接到 VDD 和 VSS。
- VBAT = 1.8~3.6V: 当关闭 VDD 时,(通过内部电源切换器)为 RTC、外部 32kHz 振荡器和后备寄存器供电。
- UVD33: USB 3.3V 引脚,提供USB驱动使用.

2.8-9 电压监控器

内部集成上电复位(POR)/掉电复位(PDR)电路,该电路始终处于工作状态,保证系统在供电超过 2.3V 时工作;当 VDD 低于设定的阀值(VPOR/PDR)时,置器件于复位状态,而不必使用外部复位电路。器件中还有一个可编程电压监测器(PVD),它监视 VDD/VDDA 供电并与阀值 VPVD 比较,当 VDD 低于或高于阀值 VPVD 时产生中断,中断处理程序可以发出警告信息或将微控制器转入安全模式。 PVD 功能需要通过程序开启。

2.8-10内置 LDO

内置 LDO 有三个操作模式: 主模式(NR)、低功耗模式(LPR)和关断模式

- 主模式(MR):用于正常的运行操作
- 低功耗模式(LPR)用于 CPU 的停机模式
- 关断模式用于 CPU 的待机模式:调压器的输出为高阻状态,内核电路的供电切断,调压器处于零消耗状态(但寄存器和 SRAM 的内容将丢失) (no standby mode)
- 内置 LDO 在复位后始终处于工作状态,在待机模式下关闭处于高阻输出。

2.8-11低功耗模式

ZB32L103系列产品支持三种低功耗模式以及关机模式,可以在要求低功耗、短启动时间和多种唤醒事件之间达到最佳的平衡.

- 休眠模式(Sleep Mode): 在睡眠模式,只有 CPU 停止,所有外设处于工作状态并可在发生中断/事件时唤醒 CPU。
- 深度休眠模式(DeepSleep Mode):在保持 SRAM 和寄存器内容不丢失的情况下,深度休眠模式可以达到最低的电能消耗。在深度休眠模式下PLL、HXT 的 RC 振荡器和 HSE 晶体振荡器被关闭,调压器(LDO)可以被置于低功耗模式。可以通过任一配置成 EXTI 的信号把微控制器从深度休眠模式中唤醒,All EXTI 信号、PVD 的输出、RTC 闹钟或 USB 的唤醒信号。
- 待机模式(battery mode /Standby mode):

在待机模式下可以达到最低的电能消耗。内部的电压调压器(LDO)被关闭,因此所有内部 LDO部分的供电被切断; PLL、HXT 的 RC 振荡器和 HSE 晶体振荡器也被关闭; 进入待机模式后, SRAM 和寄存器的内容将消失, 但后备寄存器的内容仍然保留, 待机电路仍工作.

从待机模式退出的条件是: NRST 上的外部复位信号、IWDG 复位、WKUP 引脚上的一个上升边沿或RTC 的闹钟到时。在进入待机模式时,RTC对应的时钟不会被停止。

2.8-12PDMA

16 通用 DMA(上有 16 个通道)可以管理存储器到存储器、设备到存储器和存储器到设备的数据传输; DMA 控制器支持环形缓冲区的管理,避免了控制器传输到达缓冲区结尾时所产生的中断。每个通道都有专门的硬件 DMA 请求逻辑,同时可以由软件触发每个通道;传输的长度、传输的源地址和目标地址都可以通过软件单独设置。 DMA 可以用于主要的外设: SPI、I2C、USART,通用、基本和高级控制定时器 TIMx,DAC、I2S、SDIO,CAN,USB和 ADC。

2.8-13RTC 和后备寄存器

RTC 和后备寄存器通过一个开关供电,在 VDD 有效时该开关选择 VDD 供电,否则由 VBAT 引脚供电。后备寄存器(64 个 16 位的寄存器)可以用于在关闭 VDD 时,保存用户应用数据。RTC 和后备寄存器不会被系统或电源复位源复位;当从待机模式唤醒时,也不会被复位。

实时时钟具有一组连续运行的计数器,可以通过适当的软件提供日历时钟功能,还具有闹钟中断和阶段性中断功能。RTC 的驱动时钟可以是一个使用外部晶体的 32.768kHz 的振荡器、内部低功耗 RC 振荡器或高速的外部时钟经 128 分频。内部低功耗 RC 振荡器的典型频率为 32.768kHz。为补偿天然晶体的偏差,可以通过输出一个512Hz 的信号对 RTC 的时钟进行校准。 RTC 具有一个 32 位的可编程计数器,使用比较寄存器可以进行长时间的测量。有一个 20 位的预分频器用于时基时钟,默认情况下时钟为 32.768kHz 时,它将产生一个 1 秒长的时间基准。

2.8-14定时器

包含3个高级控制定时器、4个普通定时器和2个基本定时器,以及2个看门狗定时器和1个系统嘀嗒定时器。下表比较了高级控制定时器、普通定时器和基本定时器的功能。

定时器	计数器位宽	计数类型	预分频系 数	DMA功能	捕获 /比较通道	互补输出
TIM1	16	向上, 向下,	1~65536	可以	4	有
TIM1A		向上/下				
TIM1B						
TIM2	16/32	向上, 向下,	1~65536	可以	4	没有
TIM2A	16	向上/下				
TIM2B	16					
TIM2C	16/32					
TIM10	16	向上	1~65536	可以	0	没有
TIM11						
PCA	16	向上	1~65536	没有	4	没有

Table 5 定时器功能比较

三个高级控制定时器(TIM1,TIM1A,TIM1B)可以被看成是分配到6个通道的三相PWM发生器它具有带死区插入的互补PWM输出,还可以被当成完整的通用定时器。四个独立的通道可以用于:

- 输入捕获
- 输出比较
- 产生 PWM(边缘或中心对齐模式)
- 单脉冲输出

配置为 16 位标准定时器时,它与 TIMx 定时器具有相同的功能。配置为 16 位 PWM 发生器时,它具有全

调制能力(0~100%)。

在调试模式下,计数器可以被冻结,同时 PWM 输出被禁止,从而切断由这些输出所控制的开关。

很多功能都与标准的 TIM 定时器相同,内部结构也相同,因此高级控制定时器可以通过定时器链接功能与 TIM定时器协同操作,提供同步或事件链接功能。

通用定时器(TIMx) 内置多达 4 个可同步运行的标准定时器(TIM2、TIM2A、TIM2B 和 TIM2C)。每个定时器都有一个 16 位的自动加载递加/递减计数器,一个 16 位的预分频器和 4 个独立的信道,每个信道都可用于输入捕获、输出比较、PWM 和单脉冲模式输出,最大可提供最多达 16 个输入捕获、输出比较或 PWM 通道。它们还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结。任一标准定时器都能用于产生 PWM 输出。每个定时器都有独立的 DMA 请求机制。

这些定时器还能够处理增量编码器的信号,也能处理1至3个霍尔传感器的数字输出。

基本定时器-TIM10 和 TIM11 这 2 个定时器主要是用于产生 DAC 触发信号,也可当成通用的 16 位时基计数器。独立看门狗 独立的看门狗是基于一个 12 位的递减计数器和一个 8 位的预分频器,它由一个内部独立的 32.768kHz 的 RC 振荡器提供时钟,因为这个 RC 振荡器独立于主时钟,所以它可运行于停机和待机模式。它可以被当成看门狗用于在发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选项字节可以配置成是软件或硬件启动看门狗。在调试模式下,计数器可以被冻结。窗口看门狗 窗口看门狗内有一个 7 位的递减计数器,并可以设置成自由运行。它可以被当成看门狗用于在发生问题时复位整个系统。它由主时钟驱动,具有早期预警中断功能;在调试模式下,计数器可以被冻结。系统时基定时器

这个定时器是专用于实时操作系统,也可当成一个标准的递减计数器。它具有下述特性:

- 24位的递减计数器
- 自动重加载功能
- 当计数器为0时能产生一个可屏蔽系统中断
- 可编程时钟源

2.8-15I2C 总线

多达 2 个 I2C 总线接口, 能够工作于多主模式或从模式, 支持标准和快速模式。I2C 接口支持 7 位或 10位寻址, 7 位从模式时支持双从地址寻址。

内置了硬件 CRC 发生器/校验器。它们可以使用 DMA 操作并支持 SMBus 总线 2.0 版/PMBus 总线。

2.8-16通用同步/异步串行收发器

内置 3 个通用同步/异步收发器(USART1、USART2 和 USART3),和 2 个通用异步收发器(UART4 和UART5)。这 5 个接口提供异步通信、支持 IrDA SIR ENDEC 传输编解码、多处理器通信模式、单线半双工通信模式和 LIN 主/从功能。

- USART1 接口通信速率可达 4.5 兆位/秒,其他接口的通信速率可达 2.25 兆位/秒。
- USART1、USART2 和 USART3 接口具有硬件的 CTS 和 RTS 信号管理、兼容 ISO7816 的智能卡模式和类 SPI 通信模式,除了 UART5 之外所有其他接口都可以使用 DMA 操作。

所有的 UART 和 USART 支持低功耗工作模式,在停机状态时继续保持对串口接收的监听,并在收到完整数据时有条件的唤醒处理器。

2.8-17 SPI 接口

多达 3 个 SPI 接口,在从或主模式下,全双工和半双工的通信速率可达 24 兆位/秒。3 位的预分频器可产生 8 种主模式频率,可配置成每帧 8 位或 16 位。硬件的 CRC 产生/校验支持基本的 SD 卡和 MMC 模式。所有的 SPI 接口都可以使用 DMA 操作。

2.8-18 I2S 接口

2 个标准的 I2S 接口(与 SPI2 和 SPI3 复用)可以工作于主或从模式,这 2 个接口可以配置为 16 位或 32 位 传输,亦可配置为输入或输出通道,支持音频采样频率从 8kHz 到 48kHz。当任一个或两个 I2S 接口配置 为主模式,它的主时钟可以以 256 倍采样频率输出给外部的 DAC 或 CODEC(解码器)。

2.8-19 SDIO

位和8位。在8位模式下,该接口可以使数据传输速率达到48MHz,该接口兼容SD存储卡规范2.0版。

SDIO 存储卡规范 2.0 版支持两种数据总线模式: 1位(默认)和 4位。

这个接口完全与 CE-ATA 数字协议版本 1.1 兼容。在启动时,通过自举引脚可以选择两种自举模式中的一种。

2.8-20CAN 总线控制器

CAN 接口兼容规范 2.0A 和 2.0B(主动), 位速率高达 1 兆位/秒。它可以接收和发送 11 位标识符的标准帧, 也可以接收和发送 29 位标识符的扩展帧。具有 3 个发送邮箱和 2 个接收 FIFO, 3 级 14 个可调节的滤波器。在启动时,通过自举引脚可以选择两种自举模式中的一种。

2.8-21USB 控制器

内嵌一个兼容全速 USB 的设备控制器,遵循全速 USB 设备(12 兆位/秒)标准,端点可由软件配置,具有待机/唤醒功能。 USB 专用的 48MHz 时钟由内部主 PLL 直接产生(时钟源必须是一个HSE 晶体振荡器)。

2.8-22通用 IO 口 (GPIO)

每个 GPIO 引脚都可以由软件配置成输出(推挽或开漏)、输入(带或不带上拉或下拉)或复用的外设功能端口。多数 GPIO 引脚都与数字或模拟的复用外设共享。除了具有模拟输入功能的端口,所有的 GPIO 引脚都有大电流通过能力。

在需要的情况下, I/O 引脚的外设功能可以通过一个特定的操作锁定, 以避免意外的写入 I/O 寄存器。在 APB2 上的 I/O 脚可达 24MHz 的翻转速度。

2.8-23 ADC

内嵌 3 个 12 位的模拟/数字转换器(ADC),每个 ADC 共享多达 16 个外部通道,可以实现单次或扫描转换。

在扫描模式下,自动进行在选定的一组模拟输入上的转换。

ADC 接口上的其它逻辑功能包括:

- 同步的采样和保持
- 交叉的采样和保持
- 单次采样

ADC 可以使用 DMA 操作。

模拟看门狗功能允许非常精准地监视一路、多路或所有选中的通道,当被监视的信号超出预置的阀值时,将产生中断。由标准定时器(TIMx)和高级控制定时器(TIM1和TIM1A)产生的事件,可以分别内部级联到ADC的开始触发和注入触发,应用程序能使AD转换与时钟同步。

2.8-24温度传感器

温度传感器产生一个随温度线性变化的电压,转换范围在 2.5V < VDDA < 3.6V 之间。温度传感器在内部被连接到 ADC 输入通道上,用于将传感器的输出转换到数字数值。

2.8-25 内置运算放大器(OPA)

内置3路轨到轨运算放大器。

2.8-26 真随机数发生器 TRNG

内置32位真随机数发生器,用内置模拟电路实现。

2.8-27 SWD 调试接口

提供 ARM 的标准 SWD 接口,默认复位后 SWDIO 和 SWCLK 用于调试功能,也可以由内部程序 关闭调试接口以释放对应 IO 口的 IO 功能。

2.8-28 128 位全球唯一 ID

内置 128 位全球唯一ID,以区别每一片单片机。0x1FFF_1EF0~0x1FFF_1EFF.

AHB

SDIO

Revered

TRNG

AES

GPIOD

GPIOC

GPIOA

CRC16/32

FMC(Flash_CTRL)

RCC

AHB2APB2 bridge

AHB2APB1 bridge

0x4002_6400~0x4002_67Fi

0x4002_6000~0x4002_63FF

0x4002_2C00~0x4002_2FFF

0x4002 2800~0x4002 2BFF

0x4002_2400~0x4002_27FF

0x4002_2000~0x4002_23FF

0x4002 1C00~0x4002 1FFF

0x4002 1800~0x4002 1BFF

0x4002_1000~0x4002_13Fi

0x4002_0C00~0x4002_0FFF

0x4002_0800~0x4002_0BFF

0x4002_0000~0x4002_03F

0x4001_8400~0x4001_FFFF

0x4000_3000~0x4005_7FFF

0x4000 0000~0x4000 2FFF

ZB32L103 Datasheet

【3】储存器映像

Figure 6 储存器映像图

3.1 BOOT PIN 储存器映像图

BOOT0=0 Figure 7 BOOT PIN 储存器映像图

【4】典型应用线路图

Figure 8 VDD>3.6V 典型应用线路图

Figure 9 VDD<= 3.6V 典型应用线路图

【5】电气特性

5.1 测试条件

除非特别说明,所有的电压都以 VSS 为基准。

5.1-1 最小和最大数值

除非特别说明,在生产线上通过对 100%的产品在环境温度 T_A=25°C 和 T_A=T_{op,Max} 下执行的测试 (T_{op,Max} 与选定Part Number所对应的的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。

在每个表格下方的注解中说明为通过综合评估、设计模拟和/或工艺特性得到的数据,不会在生产线上进行测试;在综合评估的基础上,最小和最大数值是通过样本测试后,取其平均值再加减三倍的标准分布(平均±3Σ)得到。

5.1-2 典型数值

除非特别说明,典型数据是基于 $T_A=25^{\circ}$ C 和 $VDD=3.3V(2.5V \le VDD \le 5.5V$ 电压范围)。这些数据 仅用于设计指导而未经测试。

典型的 ADC 精度数值是通过对一个标准的批次采样,在所有温度范围下测试得到,95%产品的 误差小于等于给出的数值(平均 $\pm 2\Sigma$)

5.2 绝对最大额定值

5.2-1 绝对最大额定值

符号	参数描述	条件	最小值	典型值	最大值	单位
VDD-VSS	外部电源电压		2.5			W
AVDD-AVSS	为rm电源电压		2.5		5.5	V
V _{IO}	IO 的电压		-0.3		VDD+0.3	V
T_{STG}	存储温度		-40	25	150	°C
T_{OP}	工作温度		-40	25	85	°C
F _{CPU}	CPU工作频率		32.768K	48M	96M	Hz
V _{ESD, HBM}	参见5.3.12					
V _{ESD, CDM}	参见5.3.12					
V _{ESD, MM}	参见5.3.12					

5.2-2 绝对最大额定值

符号	条件	描述	最大值	单位
IVDD		经过VDD/VDDA 电源线的总 电流(供应电流)		
IVSS		经过VSS 地线的总电流(流 出电流)		
IIO		任意I/O 和控制引脚上的 输出灌电流		
		任意I/O 和控制引脚上的 输出电流		mA
		NRST引脚的注入电流	+/-5	
IINJ(PIN)		HSE 的OSC_IN 引脚和LSE 的OSC_IN 引脚的注入电流	+/-5	
		其他引脚的注入电流	+/-5	
∑ IINJ(PIN)		所有I/O 和控制引脚上的 总注入电流	+/-25	

注意

- 1. 温度测试方: CP 阶段测试高温 85℃, 低温-40℃ 和高温 85℃ 的 chip level 测试仅在实验室和 Production Quality Qualification 时测试
- 2. 频率测试方法法: CP 阶段测试高频率, Final Test 只关注于封装工艺的缺陷

5.3 工作条件

5.3-1 通用工作条件

符号	参数描述	条件	最小值	最大值	单位
F_{HCLK}	内部 AHB 时钟频率			72	MHZ
F _{PCLK1}	内部 APB1 时钟频率			48	MHZ
F _{PCLK2}	内部 APB2 时钟频率			72	MHZ
VDD	电源电压	-	2.5	5.5	V
VDDA	电源电压	-	2.5	5.5	v
VBAT	Backup operating voltage		1.8	3.6	V
Vin	I/O input voltage	All GPIO	-0.3	5.5	V
T. A	环境温度	最大功率消耗	-40	85	°C
TA		低功率消耗	-40	105	°C
TJ	结温度范围	3/1)	-40	105	°C

注意:

- 1. 推荐工作条件是确保半导体芯片正常工作的条件。在推荐工作条件的范围内,电气特性的所有规格值 均可得到保证。 务必在推荐工作条件下使用半导体芯片。超出该条件的使用可能会影响半导体的可 靠性。
- 2. 对于本数据手册中未记载的项目、使用条件或逻辑组合的使用,本公司不做任何保障。如果用户考虑 在所列条件之外使用本芯片,请事前联系销售代表。

5.3-2 上电和掉电时的工作条件

符号	参数	条件	最小值	典型值	最大值	单位
$\begin{matrix} V_{POR} \\ V_{BOR} \end{matrix}$	POR 释放电压(上电过程) BOR 检测电压(掉电过程)		2.2	2.25	2.3	V
tr_ _{VDD}	VDD 上升速率		0		∞	us/V
tf_ _{VDD}	VDD下降速率		20		∞	us/V

注:由设计保证,不在生产中测试

5.3-3 内嵌复位和电源控制模块特性

注:数据基于考核结果,不在生产中测试

符号	参数	条件	最小值	典型值	最大值	单位
		PLS[3: 0]=0000(上升沿)	< \			V
		PLS[3: 0]=0000(下降沿)		4.4		
		PLS[3: 0]=0001(上升沿)				
		PLS[3: 0]=0001(下降沿)		3.95		
	可编程的电压	PLS[3: 0]=0010(上升沿)				
V_{PVD}	检测器的电平	PLS[3: 0]=0010(下降沿)		3.6		
	选择	PLS[3: 0]=0011(上升沿)				
	(LVD)	PLS[3: 0]=0011(下降沿)		3.3		
		PLS[3: 0]=0100(上升沿)				
		PLS[3: 0]=0100(下降沿)		3.0		
		PLS[3: 0]=0101(上升沿)				
		PLS[3: 0]=0101(下降沿)		2.8		
		PLS[3: 0]=0110(上升沿)				
		PLS[3: 0]=0110(下降沿)		2.6		
		PLS[3: 0]=0111(上升沿)				
		PLS[3: 0]=0111(下降沿)		2.45		
V _{PVDhys}	PVD hysteresis			100		mV
V _{POR/P}	Power on	Falling edge		2.25		V
V POR/P DR	/power down Reset threshold	Rising edge		2.2		V
V _{PDRhys}	PDR hysteresis			50		mV
TRSTT EMPO	复位持续时间			20		ms

5.3-4 内置的参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V _{Cap}	Internal VCAP(2.54V) Reference Voltage	常 温 25℃ 3.3V	2.54*(1-1%)	2.54	2.54*(1+1%)	V
V _{Cap}	Internal 2.54V Reference Voltage	-40~85°C; 2.8~5.5V	2.54*(1-2.5%)	2.54	2.54*(1+2.5%)	V[1]
V _{2.048}	Internal 2.048V Reference Voltage	常 温 25℃ 3.3V	2.048*(1-1%)	2.048	2.048*(1+1%)	V
V _{2.048}	Internal 2.048V Reference Voltage	-40~85°C; 2.8~5.5V	2.048*(1-2%)	2.048	2.048*(1+2%)	V[1]
T_{Coeff}	温度系数				100	ppm/°C

注: 1. 数据基于测试分析结果,不在生产中测试。

校正值 符号	校正參考電壓	校正 条件	地址
ADC _{CAP_33v}	2.54V	@VDDA=3.3V, 25° C	OxXXXX
ADC _{2.048_33v}	2. 048V	@VDDA=3.3V, 25° C	OxXXXX

芯片 VDDA 電壓計算: VDDA=3.3VX(ADCvcap_33v/ADCCAP_VDDA)

ADC 通道電壓計算 : VAINx=(VDDA/4096)X(ADCAINx_VDDA)

ADCcap_33v::校正時 量測VCAP ADC 轉換的值 @ADC_REF=3.3V, AIN=VCAP

ADCCAP_VDDA: 正常工作時 量測VCAP ADC 轉換的值@ADC_REF=VDDA, AIN=VCAP

5.3-5 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/O 引脚的负载、产品的软件配置、工作频率、I/O 脚的翻转速率、程序在存储器中的位置以及执行的代码等。

本节中给出的所有运行模式下的电流消耗测量值,都是在执行一套精简的代码,能够得到 Dhrystone 2.1 代码等效的结果。

除非特别说明,下表列出的参数是按照 Table 7 的条件测量得到。最大电流消耗 微控制器处于下列条件:

- 所有的I/O 引脚都处于输入模式,并连接到一个静态电平上——VDD或VSS(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到 fHCLK 的频率(0~24MHz时为0 个等待周期,超过 48MHz时为1 个等待周期,超过 72MHz时为2 个等待周期,)。
- 内部SRAM存储器的访问时间调整到fHCLK的频率(0~72MHz时为0个等待周期)。
- 指令预取功能开启(提示:这个参数必须在设置时钟和总线分频之前设置)。

当开启外设时: FPCLK1 = FHCLK/2, FPCLK2 = FHCLK

5.3-5.1 运行模式下功耗

符号	参数		条件		典型值	最大值	单位
	All Peripherals clock OFF, Run while(1) in RAM	V _{core} =1.2V VDD=2.5V-5.5V	$f_{HCLK}:$ @ HIRC=8M, PLL=192Mhz, $f_{HCLK} = f_{PCLK1},$ $f_{HCLK} = f_{PCLK2},$	72MHz 48MHz 36MHz 24MHz 16MHz 8MHZ			mA
I _{DD} (Run	All Peripherals clock OFF, Run while(1) in RAM	V _{core} =1.2V VDD=2.5V-5.5V	$f_{HCLK}:$ @ HXT=8M, PLL=192Mhz, $f_{HCLK} = f_{PCLK1},$ $f_{HCLK} = f_{PCLK2},$	72MHz 48MHz 36MHz 24MHz 16MHz 8MHZ			mA
Mode in RAM)	All Peripherals clock ON, Run while(1) in RAM	V _{core} =1.2V VDD=2.5V-5.5V	$f_{HCLK}:$ @ HIRC=8M, PLL=192Mhz, $f_{HCLK} = f_{PCLK1},$ $f_{HCLK} = f_{PCLK2},$	72MHz 48MHz 36MHz 24MHz 16MHz 8MHZ			mA
	All Peripherals clock ON, Run while(1) in RAM	V _{core} =1.2V VDD=2.5V-5.5V	f _{HCLK} : @ HXT=8M, PLL=192Mhz, f _{HCLK} = f _{PCLK1} , f _{HCLK} = f _{PCLK2} ,	72MHz 48MHz 36MHz 24MHz 16MHz 8MHZ			mA
I _{DD} (Run Mode in FLASH)	All Peripherals clock ON, Run while(1) in Flash	V _{core} =1.2V VDD=2.5V-5.5V	$f_{HCLK}:$ @ HIRC=8M, PLL=192Mhz, $f_{HCLK} = f_{PCLK1},$ $f_{HCLK} = f_{PCLK2},$	72MHz 48MHz 36MHz 24MHz 16MHz 8MHZ			mA
	All Peripherals clock OFF, Run while(1) in Flash	V _{core} =1.2V VDD=2.5V-5.5V	$f_{HCLK}:$ @ HXT=8M, PLL=192Mhz, $f_{HCLK} = f_{PCLK1},$ $f_{HCLK} = f_{PCLK2},$	72MHz 48MHz 36MHz 24MHz 16MHz 8MHZ			mA
	All Peripherals clock ON, Run while(1) in Flash	V _{core} =1.2V VDD=2.5V-5.5V	$f_{HCLK}:$ @ HIRC=8M, PLL=192Mhz, $f_{HCLK} = f_{PCLK1},$ $f_{HCLK} = f_{PCLK2},$	72MHz 48MHz 36MHz 24MHz 16MHz 8MHZ			mA
	All Peripherals clock OFF, Run while(1) in Flash	V _{core} =1.2V VDD=2.5V-5.5V	f _{HCLK} : @ HXT=8M, PLL=192Mhz, f _{HCLK} = f _{PCLK1} ,	72MHz 48MHz 36MHz 24MHz 16MHz			mA

符号	参数	条件		典型值	最大值	单位
		$f_{HCLK} = f_{PCLK2}$	8MHZ			

符号	参数		条件		典型值	最大值	单位
	All Peripherals clock OFF, Run while(1) in RAM	V _{core} =1.2V VDD=2.5V-5.5V	$f_{HCLK}:$ @ HIRC=8M, PLL=0ff, $f_{HCLK} = f_{PCLK1},$ $f_{HCLK} = f_{PCLK2},$	4MHz 2MHz 1MHz 500KHz 125KHz			mA
I _{DD} (Run Mode in	All Peripherals clock OFF, Run while(1) in RAM	V _{core} =1.2V VDD=2.5V-5.5V	$f_{HCLK}:$ @ HXT=8M, PLL=off, $f_{HCLK} = f_{PCLK1},$ $f_{HCLK} = f_{PCLK2},$	4MHz 2MHz 1MHz 500KHz 125KHz			mA
RAM)	All Peripherals clock ON, Run while(1) in RAM	V _{core} =1.2V VDD=2.5V-5.5V	$f_{HCLK}:$ @ HIRC=8M, PLL=0ff, $f_{HCLK} = f_{PCLK1},$ $f_{HCLK} = f_{PCLK2},$	4MHz 2MHz 1MHz 500KHz 125KHz			mA
	clock ON Riin I	V _{core} =1.2V VDD=2.5V-5.5V	f _{HCLK} : @ HXT=8M, PLL=off, f _{HCLK} = f _{PCLK1} , f _{HCLK} = f _{PCLK2} ,	4MHz 2MHz 1MHz 500KHz 125KHz			mA
I _{DD} (Run Mode in FLASH)	All Peripherals clock ON, Run while(1) in Flash	V _{core} =1.2V VDD=2.5V-5.5V	$f_{HCLK}:$ @ HIRC=8M, PLL=off, $f_{HCLK} = f_{PCLK1},$ $f_{HCLK} = f_{PCLK2},$	4MHz 2MHz 1MHz 500KHz 125KHz			mA
	All Peripherals clock OFF, Run while(1) in Flash	V _{core} =1.2V VDD=2.5V-5.5V	$f_{HCLK}:$ @ HXT=8M, PLL=off, $f_{HCLK} = f_{PCLK1},$ $f_{HCLK} = f_{PCLK2},$	4MHz 2MHz 1MHz 500KHz 125KHz			mA
	All Peripherals clock ON, Run while(1) in Flash	V _{core} =1.2V VDD=2.5V-5.5V	$f_{HCLK}:$ @ HIRC=8M, PLL=off, $f_{HCLK} = f_{PCLK1},$ $f_{HCLK} = f_{PCLK2},$	4MHz 2MHz 1MHz 500KHz 125KHz			mA
	All Peripherals clock OFF, Run while(1) in Flash	V _{core} =1.2V VDD=2.5V-5.5V	$f_{HCLK}:$ @ HXT=8M, PLL=off, $f_{HCLK} = f_{PCLK1},$	4MHz 2MHz 1MHz 500KHz 125KHz			mA

符号	参数	条件	条件			单位
		$f_{HCLK} = f_{PO}$	CLK2,			

5.3-5.2 睡眠模式下功耗 (Sleep Mode)

符号	参数		条件		典型值	最大值	单位
			f _{HCLK} :	72MHz			μA
			@ HIRC=8M,	48MHz			
	All Peripherals	V _{core} =1.2V	PLL=192Mhz,	36MHz			
	clock ON,	VDD=2.5V-5.5V	$f_{HCLK} = f_{PCLK1}$	24MHz			
			$f_{HCLK} = f_{PCLK2}$	16MHz			
			INGLE PCLKZ)	8MHZ			
			f _{HCLK} :	72MHz			μA
		V _{core} =1.2V VDD=2.5V-5.5V	@ HXT=8M,	48MHz			
	All Peripherals		PLL=192Mhz,	36MHz	33)		
	clock OFF,		$f_{HCLK} = f_{PCLK1}$	24MHz			
			$f_{HCLK} = f_{PCLK2}$	16MHz			
Idd (Sleep			-HGER -I GERZ)	8MHZ			
Mode)			f _{HCLK} : @ HIRC=8M,	4MHz			μΑ
				2MHz]
	All Peripherals	V _{core} =1.2V	PLL=off,	1MHz			
	clock ON,	VDD=2.5V-5.5V	$f_{HCLK} = f_{PCLK1}$	500KHz			
			$f_{HCLK} = f_{PCLK2}$	125KHz			
			THULK - TPULKZ,				
			f _{HCLK} :	4MHz			μΑ
			@ HXT=8M,	2MHz			
		V _{core} =1.2V	PLL=off,	1MHz			
		VDD=2.5V-5.5V	$f_{HCLK} = f_{PCLK1},$ $f_{HCLK} = f_{PCLK2},$	500KHz			
				125KHz			<u> </u>
			THCLK - TPCLK2,				

5.3-5.3 深度睡眠功耗(DeepSleep Mode)

符号	参数		条件		典型值	最大值	单位
	All Peripherals			Ta=-40° C			μА
	clock OFF, except	V _{core} =1.2V	f _{HCLK} :	Ta=25° C			
	RTC, IWDG,	VDD=2.5V-5.5V	SIRC=32.768KHz	Ta=50° C			
	LPTIM, AWK			Ta=85° C			
	A11 D : 1 1			Ta=-40° C			μΑ
	All Peripherals clock OFF, except RTC	V _{core} =1.2V	f _{HCLK} : SIRC=32.768KHz	Ta=25° C			
		VDD=2.5V-5.5V		Ta=50° C			
				Ta=85° C			
	All Peripherals			Ta=-40° C			μΑ
	clock OFF, except	V _{core} =1.2V	f _{HCLK} :	Ta=25° C			
I _{DD} (Deep	IWDG	VDD=2.5V-5.5V	SIRC=32.768KHz	Ta=50° C			
				Ta=85° C			
Sleep Mode)		V _{core} =1.2V	f _{HCLK} :	Ta=-40° C			μΑ
Modej	All Peripherals			Ta=25° C			
	clock OFF, except	VDD=2.5V-5.5V	SIRC=32.768KHz	Ta=50° C			
	LFIIM			Ta=85° C			
				Ta=-40° C			μΑ
	All Peripherals	V _{core} =1.2V	f _{HCLK} :	Ta=25° C			
	clock OFF, except AW	VDD=2.5V-5.5V	SIRC=32.768KHz	Ta=50° C			
	Avv		人 /	Ta=85° C			
				Ta=-40° C			μА
	All Peripherals	V _{core} =1.2V	f _{HCLK} : off	Ta=25° C	1		
	clock OFF	VDD=2.5V-5.5V		Ta=50° C			
				Ta=85° C			

5.3-5.4 待机模式下功耗 (Standby Mode)

			典型	值	最	大值	
符号	参数	条件	VDD VBAT=2.V	VDD VBAT=3.3V	TA=85°C	TA=105°C	单位
		低速内部RC振荡器和独立看 门狗处于开启状态					
I _{DD}	待机模式 下的供应 电流	低速内部RC振荡器处于开启 状态,独立看门狗处于关闭 状态			7,		
Mode)		低速内部RC振荡器和独立看 门狗处于关闭状态,低速振 荡器和RTC处于关闭状态	_	, K	Y_	_	μΑ
I _{DD} _ VBAT	备份区 域的供 应电流	低速振荡器和RTC 处于开启 状态	25				

5.3-5.5 内置外设的功耗IDD2,Typ (内部RAM中运行)

◇ 内置外设的电流消耗

内置外设的电流消耗如下表所示, MCU 的工作条件如下:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上—VDD 或 VSS(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 给出的数值是通过测量电流消耗计算得出。
 - > 关闭所有外设的时钟
 - ▶ 只开启一个外设的时钟

内置	外设	25℃时的典型功耗	单位	内置	外设	25℃时的典型功耗	单位
	DMA1				APB1—Bridge		
	DMA2				TIM2		
	GPI0				TIM2A		
	CRC				TIM2B		
AHB	SDIO				TIM2C		
(72MHz)	BUS Matrix				TIM10		
	USB				TIM11		
					SPI2/I2S2		
					SPI3/I2S3		
			μ A/ MHz		USART2		
	APB2 - Bridge				USART3		
	SPI1			APB1 (48MHz)	UART4		μA/ MHz
	USART1			(40MHZ)	UART5		
	TIM1	Y			I2C1		
	TIM1A				I2C2		
	TIM1B				LPUART		
	PCA				CAN1		
APB2 (72MHz)	SPI1				DAC		
(12MHZ)	ADC1				WWDG		-
	ADC2				PWR		
	ADC3				ВКР		
	GPIOA				IWDG		
	GPIOB		1		LPTIM		
	GPIOC		1				
	GPIOD		1				

注:

- 1. 数据基于 TT Wafer 考核结果,不在生产中测试
- 2. 除非特别说明, 典型值(Typ)是在 Ta=25°C, VDD=3.3V 的条件下测得
- 3. 除非特别说明,最大值 (Max) 是在 Ta=-40° C~85° C, VDD=2.5V~5.5V 的条件下测得的最大值
- 4. 使用 LXT 32.768KHz 时,外部晶振并联了一个 3MΩ 电阻。

5.3-6 从低功耗模式唤醒的时间

唤醒时间是芯片由外部中断唤醒,从深度睡眠模式唤醒的时间。时钟源是 HIRC=8MHz。VDD=3.3V

符号	参数	条件	最小值	典型值	最大值	单位
$T_{ m wakeup}$	Deep sleep mode to active mode	f _{HCLK} : 8MHz 16MHz 24MHz 36MHz 48MHz 72Mhz			A	μѕ

从低功耗模式唤醒的时间,低功耗模式的唤醒时间(使用8MHz的HXT振荡器)

符号	参数	条件	最大值	单位
tWUSLEEP	从sleep Mode唤醒	使用 HXT 振荡器时钟 唤醒	4.2	uS
tWUSTOP	从DeepSlee Mode 唤醒 (调压器处于运行模式)	HXT振荡器时钟唤醒 = 2μS	6.3	uS
tWUSTDBY	从Standby唤醒	HXT 振荡器时钟唤醒 = 2μS LDO从关闭模式唤醒 时间 = 38μS	200	uS

注1. 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

注:数据基于考核结果,不在生产中测试

5.3-7 外部时钟源特性

5.3-7.1 低速外部时钟 LXT

符号	参数	条件	最小值	典型值	最大值	单位
Fsclk	Crystal frequency		32.75	32.768	32.78	KHz
ESRsclk	Supported crystal equivalent series resistance		40	65	85	KOhm
Csclk(1)	Supported crystal External external load range	There are two Csclk on 2 crystal pins respectively		12	1/2	pF
Idd ₍₂₎	Current consumption when stable	ESR=65KOhm CSCLK=12pF	200	250	350	nA
DCsclk	Duty cycle		40	50	60	%
Tstart(3)	Start-up time	ESR=65K0hm CSCLK=12pF 40%~60% duty cycle		2		s
	•	- x /<		•	•	•
<i>k</i> ⊬ □	∠> \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	to til		II. Tril LL		37. 13

符号	参数	条件	最小值	典型值	最大值	单位
fLSE_ext	用户外部时钟频率		16	32.768	200	KHz
VLSEH	LXTIN 输入引脚高电平电压				1.2	V
VLSEL	LXTIN 输入引脚低电平电压		0.25			V
tw(LSE)	LXTIN 高或低的时间			15259		
tr(LSE) tf(LSE)	LXTIN 上升或下降的时间			1		nS
Cin(LSE)	LXTIN 输入容抗			5		pF
DuCy(LSE)	占空比		45	50	55	%
IL	LXTIN 输入漏电流	VSS ≤ VIN ≤ VDD		0.03		uA

LSE 振荡器特性(fLSE=32.768KHz)

符号	参数	条件	最小值	典型值	最大值	单位
RF	内部反馈电阻		25			MΩ
CL1 CL2	建议的负载电容与对应的晶体 串行阻抗 (RS)	RS = 30Ω			4	pF
I	LSE 驱动电流	VDD = 3.3V VIN = VSS		0.08	1	uA
gm	振荡器的跨导	启动		0.5		uA /V
tSU(HSE)	启动时间	VDD 是稳定的		1	4	S

Figure 10外部低速时钟源的交流时序图

Note:

- 1. 建议使用晶体给出参考值
- 2. RCC_LXTCR.LXTDRV=0011, ESR=65K
- 3. 数据基于考核结果,不在生产中测试

5.3-7.2 高速外部时钟 HXT

符号	参数	条件	最小值	典型值	最大值	单位
FFCLK	Crystal frequency		4	16	24	MHz
ESR _{FCLK}	Supported crystal equivalent series resistance		30	60	1500	Ohm
C _{FCLK} ⁽¹⁾	Supported crystal external external load range	There are 2 C _{FCLK} on 2 crystal pins individually		12		pF
Idd ⁽²⁾	Supported crystal external external load range	24MHz Xtal ESR=300hm C _{FCLK} =12pF		300		μА
DC_{FCLK}	Duty cycle		40	50	60	%
T _{start}	Start-up time	24MHz	191.66	234.53	339.00	μs

符号	参数	条件	最小值	典型值	最大值	单位
fHSE_ext	用户外部时钟频率		1	8	32	MHz
VHSEH	XTHIN 输入引脚高电平电压	71	0.7VDD		VDD	V
VHSEL	XTHIN 输入引脚低电平电压		VSS		0.3VDD	
tw(HSE)	XTHIN N 高或低的时间		16			
tr(HSE) tf(HSE)	XTHIN 上升或下降的时间				20	nS
Cin(HSE)	XTHIN 输入容抗			5		pF
DuCy(HSE)	占空比		45		55	%
IL	OSC_IN 输入漏电流	VSS ≤ VIN ≤ VDD			±1	uA

HXT 8~24MHz 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
fosc_in	振荡器频率		8	12	24	MHz
RF	反馈电阻			1000		ΚΩ
CL1 CL2	建议的负载电容与对应的晶体	RS = 30Ω		30		pF
	串行阻抗 (RS)					
I	HSE 驱动电流	VDD = 3.3V VIN = VSS 30pF 负载		7	1	mA
gm	振荡器的跨导	启动	25			mA/V
tSU(HSE)	启动时间	VDD 是稳定的		2		mS

Figure 11外部高速时钟源的交流时序图

Note:

- 1. 建议使用晶体给出参考值
- 2. Current consumption could vary with oscillating frequency, RCC_HXTCR.HXTDRV=110.
- 3. 数据基于考核结果,不在生产中测试

5.3-7.3 PLL 特性

Figure 12 PLL 方块图

符号	参数	条件	最小值	典型值	最大值	单位
F_{clkin}	PLL 输入参考频率 (RCLK)		4		24	MHz
Fout	PLL 输出频率	Fcpu=96MHz	1.625		192	MHz
	PLL 抽出频单	Fcpu=72MHz	1.625		144	MHz
Fvco	VCO		80		192	MHz
Tlock	锁定时间			200		us
Idd _(PLL)	消耗电流					μΑ
DCFCLK	Duty cycle		40	50	60	%
	RMS Jitter	PLL output 192MHz		35		ps
E	PK-PK Jitter	Temp=25°C,TT,1.2V		260		ps
F _{PJ}	RMS Jitter	PLL output 144MHz		35		ps
	PK-PK Jitter	Temp=25°C,TT,1.2V		260		ps

5.3-8 内部时钟源特性

5.3-8.1 内部 HIRC 振荡器

符号	参数	条件	最小值	典型值	最大值	单位
F _{MCLK}	Internal RC Oscillation frequency		4.0	4.0 8.0 16.0 24	24	MHz
	Start un tima Nat	F _{MCLK} =4MHz				μs
T _{Mstart} (1)	Start-up time Not including software calibration	F _{MCLK} =8MHz				μs
1 Mstart(1)		F _{MCLK} =16MHz				μs
		F _{MCLK} =24MHz				μs
		F _{MCLK} =4MHz				μA
I	Current consumption	FMCLK=8MHz				μΑ
I _{MCLK}	Current consumption	FMCLK=16MHz				μΑ
		F _{MCLK} =24MHz		X /_		μΑ
DC _{MCLK}	Duty cycle					%
D _{evM}	Frequency Deviation	VDD = 2.5V ~ 5.5V Ta = -40°C ~ 85°C	-2.5		+2.5	%

注:数据基于考核结果,不在生产中测试

5.3-8.2 内部 SIRC 振荡器

符号	参数	条件	最小值	典型值	最大值	单位
FACLK	Internal RC Oscillation frequency		30	40	60	KHz
T _{Astart} (1)	Start-up time					μs
I _{ACLK}	Current consumption					uA
DC _{ACLK}	Duty cycle					%
		VDD = 2.5V ∼				
D_{evA}	Frequency Deviation	5.5V Ta = -40°C				%
		~ 85°C				

注:数据基于考核结果,不在生产中测试

5.3-9 Flash 特性

符号	参数	条件	最小值	典型值	最大值	单位
ECflash	Sector Endurance	Base on 5.3-1	20k			cycles
RET _{flash}	Data Retention		20			Years
Tprog	Byte/Half Word/Word Program Time		30	45	60	μs
TSector-erase	Sector Erase Time		3.5	3.7	4.5	ms
TChip-erase	Chip Erase Time		20	30	40	ms

5.3-10 电磁敏感特性

5.3-10.1 ESD 特性

符号	参数	条件	最小值	典型值	最大值	单位
Vesd, HBM	ESD @ Human Body Mode		8			KV
V _{ESD} , CDM	ESD @ Charge Device		1.5			KV
	Mode					
V _{ESD} , MM	ESD @ Machine Mode		400			V
I _{Latchup}	Latch up current		100			mA

5.3-10.2 静态栓锁 (Static Latch-up)

为了评估栓锁性能,需要在3个样品上进行2个互补的静态栓锁测试:

- 为每个电源引脚,提供超过极限的供电电压。
- 在每个输入、输出和可配置的 I/O 引脚上注入电流。

这个测试符合 EIA/JESD78A 集成电路栓锁标准。

符号	参数	条件	类型
LU	Static latch-up class	TA = +25 °C conforming to JESD78A	Class I Leve

5.3-10.3 EMC 特性

5.3-10.3.1 EMS(电磁敏感性)

功能性 EMS(电磁敏感性)

- (1) 当运行一个简单的应用程序时(通过 I/O 端口闪烁 2 个 LED),测试样品被施加 2 种电磁干扰直到产生错误,LED 闪烁指示了错误的产生.
- (2) 静电放电(ESD)(正放电和负放电)施加到芯片所有的引脚直到产生功能性错误。这个测试符合 IEC 1000-4-2 标准.
- (3) FTB: 在 VDD 和 VSS 上通过一个 100pF 的电容施加一个瞬变电压的脉冲群(正向和反向)直到产生功能性错误。这个测试符合 IEC 1000-4-4 标准。芯片复位可以使系统恢复正常操作

符号	参数	条件	级别/类型
VFESD	施加到任一I/O 脚,从 而导致功能错误的电 压极限。	VDD=3.3V,LQFP48, TA=+25℃,fHCLK= 96MHz。符合IEC 1000- 4-2	2B
VEFTB	在 VDD 和 VSS 上通过 100pF 的电容施加的、 导致功能错误的瞬变 脉冲 群电压极限。	VDD=3.3V,LQFP48, TA=+25℃,fHCLK= 96MHz。符合IEC 1000- 4-4	4A

5.3-10.3.2 磁干扰(EMI)

在运行一个简单的应用程序时(通过 I/O 端口闪烁 2 个 LED),监测芯片发射的电磁场。这个发射测试符合SAE J1752/3 标准,这个标准规定了测试板和引脚的负载

符号	参数	条件	监测的频段	最大值(fHSE/fHCLK)		单位
				8/48MHz	8/96MHz	
		VDD = 3.3 V, TA =	0.1~30MHz			dΒμV
SEMI	峰值	25℃ LQFP48封	30~130MHz		1	
		装,符合 SAE	130MHz~1GHz			
		J1752/3	SAM EMI 级别			-

5.3-11I/O Port 特性

5.3-11.1 Output特性 — Port PA,PB,PC,PD,PF

输出驱动电流

GPIO(通用输入/输出端口) 可以吸收或输出多达 ±8mA 电流, 并且吸收 +20mA 电流 (不严格的 VOL)。

在用户应用中, I/O 脚的数目必须保证驱动电流不能超过 5.2 节给出的绝对最大额定值:

- ●所有 I/O 端口从 VDD 上获取的电流总和,加上 MCU 在 VDD 上获取的最大运行电流,不能超过绝对最大额定值 IVDD。
- ●所有 I/O 端口吸收并从 VSS 上流出的电流总和,加上 MCU 在 VSS 上流出的最大运行电流,不能超过绝对最大额定值 IVSS。

输出电压

除非特别说明,下表列出的参数是按照 Table 7 的条件测量得到。 所有的 I/O 端口都是兼容 CMOS 和 TTL 的。

符号	参数	条件	最小值	最大值	单位
VOL	输出低电平,当8个 引脚同时吸收电流 输出高电平,当8个	TTL 端口, I _{IO} = +8mA 2.7V< VDD < 3.6V		0.4	V
VOH	引脚同时输出电流 输出低电平,当8个 引脚同时吸收电流	CMOS 端口,	VDD-0.4	0.4	
VOH	输出高电平,当8个 引脚同时输出电流	I ₁₀ =+8mA 2.7V <vdd 3.6v<="" <="" td=""><td>2.4</td><td></td><td>V</td></vdd>	2.4		V
VOL[4*]	输出低电平,当8个 引脚同时吸收电流	I ₁₀ =+20mA		1.3	V
VOH[4*]	输出高电平,当8个 引脚同时输出电流	2.7V< VDD< 3.6V	VDD-1.3		•
VOL[4*]	输出低电平,当8个 引脚同时吸收电流	I ₁₀ = +6mA		0.4	V
VOH[4*]	输出高电平,当8个 引脚同时输出电流	2V< VDD <2.7V	VDD-0.4		•

Note:

- 1. 由综合评估得出,不在生产中测试。
- 2. 芯片吸收的电流 I_{10} 遵循表中给出的绝对最大额定值,同时 I_{10} 的总和 (所有 I/O 脚和控制脚) 不能超过 I_{VSS} 。
- 3. 芯片输出的电流 I_{IO} 遵循表中给出的绝对最大额定值,同时 IIO 的总和 (所有 I/O 脚和控制脚) 不能超过 I_{VDD}
- 4. 基于特性数据参考,不在生产中测试

5.3-11.2 Input特性 — Port PA,PB,PC,PD,PF

符号	参数	条件	最小值	典型值	最大值	单位
	输入低电平电压		-0.5		0.8	

VIL	FT I/O 脚,输入低 电平电压(1)		-0.5		0.8	
7711	标准I/O 脚,输入 高电平电压	TTL端口	2		VDD+0.5	V
VIH	FT I/O 脚,输入高 电平电压(1)		2		5.5	
VIL	输入低电平电压	CMOC端口	-0.5		0.35 VDD	V
VIH	输入高电平电压	- CMOS端口	0.65 VDD		VDD+0.5	V
Vhyra	标准I/O 脚施密特 触发器电压迟滞		200			mV
Vhys	5V容忍I/O 脚施密 特触发器电压迟滞		5%VDD (2)	17,		
Ilkg	输入漏电流(3)	VSS≤VIN≤ VDD标准I/O端 □	7	KM	±1	
		VIN = 5V, 5V 容忍端口	3/1		3	uA
RPU	上拉等效电阻(4)	VIN=VSS	30	40	50	ΚΩ
RPD	下拉等效电阻(4)	VIN=VDD	30	40	50	L/7 T
CIO	I/O 引脚的电容				5	pF

注: 由综合评估得出,不在生产中测试。

注1. FT = 5V 容忍。 注2. 至少 100mV。

注3. 如果在相邻引脚有反向电流倒灌,则漏电流可能高于最大值。

注4. 上拉和下拉电阻是设计为一个真正的电阻串联一个可开关的 MOS 实现。这个 MOS 开关的电阻很小 (约占 10%)。

所有 I/O 端口都是 CMOS 兼容(不需软件配置),它们的特性考虑了多数严格的 CMOS 工 艺:

●对于 VIH:

- 如果 VDD 是介于[2.00V~3.08V]; 使用 CMOS 特性但包含 TTL。
- 如果 VDD 是介于[3.08V~3.60V]; 使用 TTL 特性但包含 CMOS。

●对于 VIL:

- -如果 VDD 是介于[2.00V~2.28V]; 使用 TTL 特性但包含 CMOS。
- -如果 VDD 是介于[2.28V~3.60V]; 使用 CMOS 特性但包含 TTL。

5.3-11.3 I/O AC 特性 — Port PA,PB,PC,PD,PF

输入输出交流特性的定义和数值分别如下图和下表所示: 除非特别说明,下表列出的参数是按照 5.1的条件测量得到。

MODEX[1:0]控 制位	符号	参数	条件	最小值	典型值	最大值	单位
	fmax(IO)out	最大频率	CL=50pF, VDD=2.5V~3.6V			2	MHz
00	tf(IO)out	输出高至低电平 的下降时间 CL	CL=50pF, VDD=2.5V~3.6V			125	
(2MHz)	tr(IO)out	输出低至高电平 的上升时间	CL=50pF, VDD=2V~3.6V			125	nS
01	fmax(IO)out	最大频率	CL=50pF, VDD=2V~3.6V			10	MHz
(10MHz)	tf(IO)out	输出高至低电平 的下降时间 CL	CL=50pF, VDD=2V~3.6V		Z	25	nS
	tr(IO)out	输出低至高电平 的上升时间	CL=50pF, VDD=2V~3.6V			25	
	fmax(IO)out	输出高电平,当 8 个引脚同时输 出电流	CL=50pF, VDD=2V~3.6V			20	MHz
10 (20MHz)	tf(I0)out	输出低电平,当 8个引脚同时吸 收电流	CL=50pF, VDD=2V~3.6V			12.5	
	tr(IO)out	输出高电平,当 8个引脚同时输 出电流	CL=50pF, VDD=2V~3.6V			12.5	nS
	, (CL=30pF, VDD=2V~3.6V			50	
	fmax(IO)out	输出高电平,当 8个引脚同时输	CL=50pF, VDD=2V~3.6			30	
11 (50MHz)		出电流	CL=50pF, VDD=2V~2.7V			20	MHz
			CL=30pF, VDD=2V~3.6V			5	
		输出低电平,当 8 个引脚同时吸	CL=50pF, VDD=2V~3.6			8	
	tf(IO)out	收电流	CL=50pF, VDD=2V~2.7V			12	
			CL=30pF, VDD=2V~3.6V			5	nS

tr(IO)out	输出高电平,当 8个引脚同时输 出电流	CL=50pF, VDD=2.7V~3.6 CL=50pF, VDD=2V~2.7V		8	
tEXTIpw	EXTI 控制器检测 到 外部信号的脉 冲宽度		10		nS

- 注1. I/O 端口的速度可以通过 MODEx[1:0] 配置。
- 注2. 最大频率在下图中定义。

Figure 13 SPI 输入输出交流特性定义

5.3-11.4 Port Leakage 特性 — Port PA,PB,PC,PD,PF

符号	参数	条件	最小值	最大值	单位
I_{lkg}	Leakage current	See Note 1, 2	2.5V / 3.6V	±50	nA

Notes:

- 1. The leakage current is measured with VSS or VDD applied to the corresponding pin(s), unless otherwise noted.
- 2. The port pin must be selected as input.
- 3. 由综合评估得出,不在生产中测试。

5.3-11.5 Port外部输入采样要求 — Timer Gate/Timer Clock

符号	参数	条件	最小值	最大值	单位
T(int)	External interrupt timing	External trigger signal for the interrupt flag(see Note 1)	30		ns
T(cap)	Timer Captuter ti	TIM1/TIM2 capture pulse width Fsystme =4MHz	0.5		μs
f _{EXT}	Timer clock frequency applied to pin	TIM1,TIM2,TIM10,TIM11 external clock input Fsystme =4MHz	0	fтімхсік/4	MHz
T(PCA)	PCA clock frequency applied to pin	PCA external clock input Fsystme =4MHz	0	fpcaclk/4	MHz

Note:

- 1. The external signal sets the interrupt flag every time the minimum t(int) parameters are met. It may be set even with trigger signals shorter than t(int).
- 2. 由综合评估得出,不在生产中测试。

5.3-12ADC 特性

Figure 14 ADC 方块图

符号	参数	条件	最小值	典型值	最大值	单位
		@fs=1Mhz	2.5		3.6	V
VDDA	供电电压	@fs=? Mhz	2		2.5	V
		@fs=? Mhz	1.8		2	V
V _{ADCIN}	Input voltage range	Single ended	0		VDD	V
				VDDA		V
V_{REF}	ADC reference Voltage			1.8		V
				1.2		
fs	Sample Rate			1		MHz
I _{ADC}			0.7	0.9	1.2	mA
C _{ADCIN}	ADC input capacitance		3.5	4	4.5	pF
FADCCLK	ADC clock Frequency		0.5	4	16	MHz
TADCSTART	Startup time of ADC bias current		2	3	4	μs
TADCCONV	Conversion time		16	16	20	cycles
ENOB			9.5	10	10.4	Bit
DNL	Differential non-linearity		-2	±1	2	LSB
INL	Integral non-linearity		-3	±1	3	LSB
Eo	Offset error		-2	±1	2	LSB
Eg	Gain error		-2	±1	2	LSB

注1: 由设计保证,不在生产中测试

注2:在该系列产品中,VREF在内部连接到 VDDA,VREF-在内部连接到 VSSA

5.3-12.1 ADC 输入阻抗

ADC典型应用图请参考如图(A).

Figure 15 ADC典型应用图

- 1. C_{parasitic}为PCB上的电容,其电容值大小取决于PCB线路配置(大约7pF)。若电容值过大将会降低ADC 精准度,或需降低ADC clock频率来维持ADC精准度。
- 2. 表二.RAIN为参考表(B)与图A中CADC与RADC所得

表(B). RAIN对应fADCCLK

$t_s(\mu s)$	f _{ADCCLK} (Hz)	SAM	$R_{AIN}(k\Omega)$
0.167	24M	4	0.05
0.333	12M	4	0.5
0.667	6M	4	2.0
2.67	3M	8	10
5.33	1.5M	8	20
10.7	0.75M	8	40
21.3	0.375M	8	50

5.3-13VC 特性

Figure 16 VC1,VC2 方块图

符号	参数	条件	最小值	典型值	最大值	单位
Vin	Input voltage range		0	7	5.5	V
Vincom	Input common mode range	. , , ,	0		5.5	V
Voffset	Input offset		-10	±5	+10	mV
I_{comp}	Comparator's current			12		μΑ
Tresponse	Comparator's response			5		μs

注:数据基于考核结果,不在生产中测试

5.3-14DAC0/1特性

符号	参数	条件	最小值	典型值	最大值	単位
N/		$V_{REF} = VDD$	2.5		5.5	V
$ m V_{REF}$	Reference Voltage	$V_{REF} = VCAP$		VCAP		V
DNL		$V_{REF} = VDD$		±1		LCD
		$V_{REF} = VCAP$		±1		LSB
INII		$V_{REF} = VDD$		±1	7 7	I CD
INL		$V_{REF} = VCAP$		±1		LSB
Officet Force		$V_{REF} = VDD$		±1		LCD
Offest Error		V _{REF} = VCAP		±1	Y	LSB
Cain Enna		$V_{REF} = VDD$		-1		0/ ECD
Gain Error		V _{REF} = VCAP	717	-1		%FSR
R _O ⁽¹⁾	DAC Impedance worst code(0x18)				90	K ohm
Tsample	ADC sample time		8			us

⁽¹⁾ the Minimum resistive load between DAC_OUT and VSS to have a 1% accuracy is 9 $M\Omega$

5.3-150PA 特性

Figure 17 OPA1,OP2方块图

 $V_{OP1_{-}O} = V_{DACO} + (V_{OP1_{-}INP} - V_{OP1_{-}INN}) *GAIN1 GAIN1 = R2/R1 = 16 (As SW1[0], SW1[2] on)$

 $V_{OP2_{-}0} = V_{DACO} + (V_{OP1_{-}INP} - V_{OP1_{-}INN}) * GAIN2 = R2/R1 = 16 (As SW1[0], SW1[2] on)$

Open loop OP : User Define $V_{\text{OP2_O}}$

OPA1,0PA2,0PA3: (AVDD=1.8V ~ 3.6 V, AVSS=0 V, Ta=- 40° C $\sim +85^{\circ}$ C)

符号	参数	工作条件	最小值	典型值	最大值	单位
Vi	输入电压		0	-	AVDD-1	V
Vo	输出电压印		0.1	ı	AVDD-0.1	V
Io	输出电流印					mA
RL	负载电阻⑴					Ohm
Zin	输入阻抗			20K		Ohm
Tstart	初始化时间(2)					us
	输入失调电压	Vic=AVCC/2, Vo=AVCC/2,				mV
Vio		RL=10KΩ, Rs=50Ω				111,
PM	相位范围⑴	RL=10KΩ, CL=20pF				deg
GM	增益范围(2)	RL=10KΩ, CL=20pF		24.08		dB
GM1(GM2)	倍率	Rs < 20 ohm		16		倍率
UGBW	单位增益带宽(1)	CL=20pF	A I			MHz
SR	压摆率(1)	CL=15pF				V/us
CMRR	共模抑制比 ⁽¹⁾	3/1				dB

5.3-16TIM 定时器特性

符号	参数	条件	最小值	典型值	最大值	单位
tres(TIM)	定时器分辨时间		1		10	tTIMxCLK
u es(11M)		fTIMxCLK=96MHz	10.4			nS
	CH1至CH4		0		fTIMxCLK/2	MHz
fEXT	的定时器外部时 钟频率	fTIMxCLK=96MHz	0		48	MHz
ResTIM	定时器分辨率				16	位
	当选择了内部时		1		65536	tTIMxCLK
tCOUNTER	中时,16 位计数器时钟 周期	fTIMxCLK=96MHz	10.4		682000	nS
tMAX_COUNT	最大可能的计数				65536 ×65536	tTIMxCLK
		fTIMxCLK=96MHz			44.7	S

5.3-17 SD/SDIO MMC 卡主接口(SDIO)特性

Figure 18 SDIO 高速模式时序图

Figure 19 SDIO 默认模式 时序图

符号	参数	条件	最小值	典型值	最大值	单位
fPP	数据传输模式下的时	CL ≤ 30 pF	0		48	MHz
	钟频率					
	时钟低时间,	CL ≤ 30 pF	00			
tW(CKL)	fPP=16MHz		32			
tW(CKH)	时钟高时间,	CL ≤ 30 pF	30			nS
tw(CKH)	fPP=16MHz		30			113
tr	时钟上升沿	CL ≤ 30 pF			4	
tf	时钟下降沿	CL ≤ 30 pF			5	
CMD,D输入	(参考CK)					
tISU	输入建立时间	CL ≤ 30 pF	2			
tIH	输入保持时间	CL ≤ 30 pF	0			nS
MMC 及SD H	S模式CMD,D输出(参考)	CK)			A	
tOV	输出有效时间	CL ≤ 30 pF			6	
tOH	输出保持时间	CL ≤ 30 pF	0			nS
SD 缺省模式	CMD,D输出(参考CK)					
tOVD	输出有效默认时间	CL ≤ 30 pF			7	_
tOHD	输入保持默认时间	CL ≤ 30 pF	0.5			nS

5.3-18 USB接口特性

USB接口为USB-IF全速端口(USB2.0FS),特性如下:

符号	参数	条件	最小值	典型值	最大值	单位
+CT A DTIID	USB 收发器启动 时间				1	uS

符号	参数	条件	最小值	典型值	最大值	单位
		输入电	平			
VDD	USB 工作电压		3.0		3.6	V
VDI	差分输入灵敏度		0.2		- 1	V
VCM	差分共模范围	包括VDI范围	0.8		2.5	V
VSE	单端接收器门限		1.3		2.0	V
VIL	输入低电压				0.8	V
VIH	输入高电压		2.0			V
		输出电	平			
VOL	静态输出电平低	RL=1.5KΩ电阻上 拉到3.6V	7->		0.3	V
VOH	静态输出电平高	RL=15KΩ电阻下 拉到VSS[1*]	2.8		3.6	V
R_{PD}	Pull Down Resister	Vin=VCC In Host Mode	14.25		24.80	ΚΩ
R_{PU}	Pull High Resister	Vin=Vss In Device Mode	1.425		3.090	ΚΩ
		Vin=Vss Idee State	0.9	1.2	2.090	ΚΩ

Figure 20 USB 时序:数据信号上升沿和下降沿定义时序图

USB全速电气特性

符号	参数	条件	最小值	典型值	最大值	单位	
驱动器特性							
tr	上升时间	CL = 50 pF	4		20	nS	
tf	下降时间	CL = 50 pF	4		20	nS	
trfm	上升/下降时间比	tr/tf	90		110	%	
VCRS	输出信号交叉点 电压	-	1.3		2.0	V	

[1*]: RL 是连接至USB全速驱动器负载.

5.3-19 CAN 控制器局域网络接口特性

有关输入输出复用功能引脚(CAN_TX和CAN_RX)的特性详情,参见5.3-12 I/O Port 特性端口特性。

5.3-20通信接口

5.3-20.1 I2C 特性

		标准模式(100K)		快速模式	400K)	高速模	式 (1M)	
符号	参数	最小值	最大值	最小值	最大值	最小值	最大值	单位
tSCLL	SCL时钟低时间							us
tSCLH	SCL时钟高时间							us
tSU.SDA	SDA 建立时间							ns
tHD.SDA	SDA 保持时间							us
tHD.STA	开始条件保持时间					7		us
tSU.STA	重复的开始条件建立时间			A \				us
tSU.STO	停止条件建立时间							us
tBUF	总线空闲(停止条件至开始条件)							us

Figure 21 I2C 时序图

5.3-20.2 SPI 特性

符号	参数	条件	最小值	最大值	单位
t _{c(SCK)}	串行时钟的周期(频率)	主机模式			ns (MHz)
		从机模式			ns (MHz)
t _{w(SCKH)}	串行时钟的高电平时间	主机模式		1	ns
vw(SCKH)		从机模式			ns
twicki)	串行时钟的低电平时间	主机模式	1/,		ns
tw(SCKL)	41-12 #3 AL H2 KA-FL 1 #3 1-4	从机模式	1-3/		ns
t _{su(SSN)}	从机选择的建立时间	从机模式			ns
th(SSN)	从机选择的保持时间	从机模式			ns
t _{v(MO)}	主机数据输出的生效时间 (output Data Valid Time)	f _{PCLK} = 32MHz			ns
t _{h(MO)}	主机数据输出的保持时间 (output Data Hold Time)	f _{PCLK} = 32MHz			ns
t _{v(SO)}	从机数据输出的生效时间	f _{PCLK} = 16MHz			ns
th(SO)	从机数据输出的保持时间	f _{PCLK} = 16MHz			ns
t _{su(MI)}	主机数据输入的建立时间 Data input setup time				ns
t _{h(MI)}	主机数据输入的保持时间				ns
t _{su(SI)}	Data input hold time 从机数据输入的建立时间				ns
th(SI)	Data input setup time 从机数据输入的保持时间 Data input hold time			-	ns

Note:由设计保证,不在生产中

Figure 22 SPI 时序图(主机模式)

Figure 23 SPI 时序图 (从机模式 CPHA=0)

Figure 24 SPI 时序图(从机模式 CPHA=1)

5.3-20.3 I2S 特性

符号	参数	条件	最小值	最大值	单位	符号
DuCy(SCK)	I2S 从输入时钟 占空比	从模式	30		70	%
fCK 1/tc(CK	SPI 时钟频率	主模式(数据: 16bit,音频频率 48KHz)	1.522		1.525	MHz
		从模式	0		6.5	
tr(CK) tf(CK)	SPI 时钟上升和 下降时间	负载电容: C= 30pF			8	
tv(WS)	WS有效时间	主模式	3			
	- 12 111	主模式I2S2	2			
th(WS)	WS 保持时间	主模式I2S3	0	Y		
tsu(WS)	WS建立时间	从模式	4			
th(WS)	WS保持时间	从模式	0			
tw(CKH)	时量直任由亚	主模式	312.5			
tw(CKL)	── 时钟高低电平 时间	Fpclk=16MHz,音 频频率48KHz)	345			
tsu(SD_MR)	数据输入建立时	主接收器 I2S2	2			
	间	主接收器 I2S3	6.5			
tsu(SD_SR)	数据输入建立时 间	从接收器	1.5			nS
th(SD_MR)	数据输入有效时 间	主接收器	0			
th(SD_SR)	数据输入保持时间	从接收器	0.5			
tv(SD_ST)	数据输出有效时 间	从发送器(使能 后)			18	
th(SD_ST)	数据输出保持时 间	从发送器(使能 后)	11			
tv(SD_MT)	数据输出有效时 间	主发送器(使能 后)			3	
th(SD_MT)	数据输出保持时 间	主发送器(使能 后)	0			

Figure 25 I2S 时序图 (从机模式)

- 注1. 测量点: 低电平0.3×VDD, 高电平0.7×VDD。
- 注2. LSB发送/接收先前发送的字节。在第一个字节发送之前无LSB发送/接收被发送。

Figure 26 I2S 时序图(主机模式)

注1. LSB发送/接收先前发送的字节。在第一个字节发送之前无LSB发送/接收被发送。

5.3-21温度传感器特性

符号	参数	最小值	典型值	最大值	单位
TL(*1)	VSENSE 相对于温度的线性度	0	± 1	± 2	°C
SP _{AVG} (*1)	平均斜率		-		mV/°C
Io	30℃(±5℃)时的电压				V
TSTART	启动时间				us
T _{S_temp}	读取温度时的 ADC 采样时间			1	us

Note: (1*): 由设计保证,未经生产测试。

【6】封装特性

6.1 LQFP64 封装

DRAWING REVISION HISTORY

REV. NO.	REASON FOR REV.	DATE	Prepared
	New Release	2012.02.12	Yexg
AB	Correct the angle tolerance to ±4°	2012.03.12	Yexg
AC	Correct the angle symbol, add "L1" dimension	2012.08.31	Zhou GY
AD	Update QFP44 & QFP44-1 "e" dimension from 0.67~0.93 to 0.8TYP	2012.09.25	Zhou GY
AE	Correct the angle tolerance to $\pm 1^{\circ}$, delete QFP52 and update the notes.	2013.10.10	Zhou GY
AF	Correct #1. Delete QFP44(长即).	2015.05.12	Zhou GY
AG	Update LQFP64 "L" dimension from 0.45~0.60 to 0.45~0.70	2016.08.02	Zhou GY

Notes

- BOTH PACKAGE LENGTH AND VIDTH DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. PROTRUSIONS OR GATE BURRS SHALL NOT EXCEEDALSHIP PER END.
- 2. DIMENSIONS IN HILIMETERS (ANGLES IN DEGREES)
- THE SIZE LABEL OF PACKAGE LENGTH IS THE BOTTOM SIZE.
- N IS THE HAXIMUM NUMBER OF TERMINAL POSITIONS FOR THE SPECIFIED PACKAGE LENGTH
- DIMENSION B DOES NOT INCLUDE THE DAMBAR PROTRUSION, ALLOWABLE DAMBAR PROTRUSION SHALL BE GIOWN TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. THE DAMBAR MAYNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

DETAIL X

Symbol	符号	QFP44-1		TQFP48			LQFP64			LQFP100			LQFP128			
		Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max
A	总高	1.95		2.30	0.95		1.20	1.40		1.60	1.40		1.60	1.40		1.60
٨1	站高	0.05		0.20	0.05		0.15	0.05		0.15	0.05		0.15	0.05		0.15
Λ2	塑封体厚	1.90		2.10	0.90		1.05	1.35		1.45	1.35		1.45	1.35		1.45
В	脚宽	0.30		0.38	0.15		0.25	0.17		0.25	0.17		0.27	0.12		0.24
C	脚厚	0.11		0.23	0.09		0.20	0.09		0.18	0.09		0.18	0.09		0.18
D	跨度	12.90		13.50	8.80		9.20	11.80		12.20	15.80		16.20	15.80		16.20
D1	塑封体长	9.90		10.10	6.85		7.05	9.90		10.10	13.90		14.10	13.90		14.10
Е	跨度	12.90		13.50	8.80		9.20	11.80		12.20	15.80		16.20	15.80		16.20
E1	塑封体宽	9.90		10.10	6.85		7.05	9.90		10.10	13.90		14.10	13.90		14.10
e	脚间距	0.8TYP		0.5TYP		0. 5TYP		0. 5TYP			0. 4TYP					
L	脚长	0.60		1.00	0.45		0.75	0.45		0.70	0.45		0.70	0.45		0.70
L1	脚尖到PKG间距	1. 6TYP		0.85		1.15	0.90		1.10	0.90		1.10	0.90		1.10	
0	脚角度	0~7*		0~7°		0~7°		0~7°			0~5°					
θ1	肩角度	0°		-	0°		-	0°		-	0°		-	0°		-
02	上模脱模	8° TYP		12° TYP			12° TYP		12° TYP			12° TYP				
0.3	下模脱模	8° TYP		12° TYP 12° TYP			12° TYP			12° TYP						

6.2 丝印说明

6.2-1 LQFP64

【7】型号命名

P.92

【8】产品选型表

【9】版本修订纪录

Version	Date.	Description	
V0.0	2023-0308	Initial	
V0.09	2023-0904	Modified: (1) PIN assignment (2) <u>低功耗模式</u>	