Cyberbezpieczeństwo, Analiza 2

ZESTAW 3

1. Oblicz całki podwójne:

a)
$$\iint_D y^2 \sqrt{R^2 - x^2} dx dy$$
, $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le R^2\}$,

b)
$$\iint\limits_{D}\sin(x+y)dxdy$$
, D - trójkat o wierzchołkach $A=(0,0),\ B=(\frac{\pi}{2},\frac{\pi}{2}),\ C=(\pi,0),$

c)
$$\iint\limits_{D} \ln(1+x^2+y^2)dxdy, \ D = \{(x,y) \in \mathbb{R}^2 : \ x^2+y^2 \le 4, \ x^2+y^2 \ge 1, \ y \ge x\},$$

d)
$$\iint\limits_{D} \sqrt{4 - x^2 - y^2} dx dy, \ D = \{(x, y) \in \mathbb{R}^2 : \ x^2 + y^2 - 2x \le 0\}.$$

2. Znajdź pole płata powierzchniowego:

- a) wyciętego walcem $x^2 + y^2 = a^2$ ze sfery $x^2 + y^2 + z^2 = R^2$ (a < R), b) wyciętego walcem $x^2 + y^2 = Rx$ ze sfery $x^2 + y^2 + z^2 = R^2$.

3. Znajdź pole powierzchni całkowitej bryły ograniczonej sferą $x^2 + y^2 + z^2 =$ $3a^2$ i paraboloidą $x^2 + y^2 = 2az$ (a > 0).

4. Opisz we współrzędnych sferycznych bryłę zadaną nierównościami:

a)
$$\sqrt{x^2 + y^2} \le z \le \sqrt{5 - x^2 - y^2}, \ x \ge 0,$$

b) $x^2 + y^2 \le z^2 \le 4 - x^2 - y^2, \ x \ge 0.$

b)
$$x^2 + y^2 \le z^2 \le 4 - x^2 - y^2$$
, $x \ge 0$

5. Opisz we wpółrzędnych walcowych bryłę zadaną nierównościami:

$$x^2 + y^2 \le z^2 \le 4 - x^2 - y^2, \ x \ge 0, \ z \ge 0.$$

- 6. Oblicz objętość bryły ograniczonej powierzchniami o równaniach:
 - a) $z = 2x^2 + y^2 + 1$, x + y = 1, x = 0, y = 0, z = 0, b) $z = x^2 + y^2$, $z = 2 \sqrt{x^2 + y^2}$, c) $x^2 + y^2 + z^2 = 5$, $x^2 + y^2 = z 1$, d) $z = 4 x^2 y^2$, $z^2 = 2x^2 + 2y^2$ ($z \ge 0$).
- 7. Oblicz masę bryły ograniczonej powierzchniami $z=2-x^2-y^2$ oraz $z=\sqrt{x^2+y^2}$ wiedząc, że gęstość w punkcie (x,y,z) jest równa kwadratowi odległości tego punktu od osi z.