

Estrutura

- 1. Revisão
- 2. Formalismos e Classes de Linguagens
- 3. Autômatos Finitos Determinísticos

Linguagens Formais

- Como expressar formalmente uma linguagem computacional?
- Enfoque teórico no problema da sintaxe
 - Sintaxe vs. Semântica
- Auxílio na evolução dos algoritmos de compilação

Autômatos Finitos Determinísticos - Cadeias e Linguagens

Um alfabeto Σ é um conjunto finito (não-vazio) de símbolos

Uma **cadeia** (string) em um alfabeto Σ é uma seqüência finita de símbolos deste alfabeto

Ex.: Alfabetos

 $\Sigma_1 = \{0,1\}$ 01001

 $\Sigma_2 = \{a, b, c, ..., z\}$ abracadabra

Ex.:

Cadeias

Autômatos Finitos Determinísticos - Cadeias e Linguagens

Se $w = w_1 w_2 \cdots w_n$ é uma cadeia sobre Σ , o comprimento de w, denotado por |w|, é n

Ex.: |abracadabra| = 11

A cadeia de comprimento 0, é denominada cadeia nula e é representada por λ

slide 5

Autômatos Finitos Determinísticos - Cadeias e Linguagens

Se u = u_1u_2 ···u_n e v = v_1v_2 ···v_m são cadeias no alfabeto Σ , então a concatenação de u com v, denotada por uv, é definida por:

$$uv = u_1u_2\cdots u_nv_1v_2\cdots v_m$$

Ex.: $u = abra e v = cadabra \Rightarrow uv = abracadabra$

- ☐ Propriedades da concatenação
 - $u\lambda = \lambda u = u$
 - u(vw) = (uv)w
 - |uv| = |u| + |v|

Autômatos Finitos Determinísticos - Concatenação

A concatenação da mesma cadeia várias vezes é definida por:

$$w^0 = \lambda$$
, e
 $w^{n+1} = w^n w$, para $n \ge 0$

Se w = $w_1w_2\cdots w_n$ é uma cadeia no alfabeto Σ , então a reversa (inversa) de w, denotada por w^R , é definida por $w^R = w_n\cdots w_2w_1$

- □ Observações
 - $\lambda^R = \lambda$
 - $(vw)^R = w^R v^R$

slide 7

Autômatos Finitos Determinísticos - Linguagens

Seja Σ um alfabeto. Então:

$$\Sigma^{0} = \{ \lambda \}$$
 $\Sigma^{1} = \{ w : |w| = 1 \}$
 $\Sigma^{2} = \{ w : |w| = 2 \}$
 $\Sigma^{n} = \{ w : |w| = n \}$

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \ldots \cup \Sigma^n \cup \Sigma^{n+1} \cup \ldots$$

ou seja,

 $\Sigma^* = \{ w : w \text{ \'e uma cadeia em } \Sigma \}$

Símbolo, alfabeto, cadeia e linguagem

slide 9

Linguagens Formais

- Veremos como descrever uma linguagem , seja ela finita ou infinita
 - Formalismos matemáticos
- Existem três tipos de formalismos...

Tipos de Formalismos

- Reconhecedores
 - Recebe uma palavra e retorna um valor para dizer se ela é ou não da linguagem
- Geradores
 - Define um conjunto de regras que podem ser combinadas para gerar palavras
- Denotacional (Gerador?)
 - Uma expressão que denota de modo geral as palavras da linguagem

Linguagens Formais

- Veremos diversos formalismos de cada um dos três tipos
- Alguns formalismos são mais poderosos do que outros
 - Especificam mais linguagens
- Linguagens classificadas segundo os formalismos que as reconhecem

Classificação das Linguagens

- · Hierarquia de Chomsky
 - Quatro categorias hierárquicas
 - Categorias superiores incluem todas as demais
 - Cada categoria é reconhecida por certos formalismos característicos

Classificação das Linguagens

• Hierarquia de Chomsky

Linguagens Regulares

- Chamadas de Linguagens Tipo 3
 - Classe mais simples e restrita

Autômato Finito Determinístico

- Formalismo reconhecedor
 - Recebe uma palavra de entrada
 - Indica se ela é aceita ou rejeitada
- Baseado no conceito de "máquinas de estados finitas"

- Conjunto finito de estados
 - Um estado representa a "situação atual"
- Mudanças de estados
 - Depende do estado atual
 - Depende de uma certa entrada
- Não guarda histórico de estados

Máquina de Estados Finitos

- Reconhecedor de palavras ou cadeia de caracteres
- Bons modelos para computadores com capacidade de memória reduzida
- Fazem parte de vários dispositivos eletro-mecânicos do dia-a-dia

• Exemplo 1

Visão aérea de uma porta automática

slide 19

Máquina de Estados Finitos

• Exemplo 1

O controlador da porta pode estar em 2 estados:

- aberto (significando porta aberta)
- fechado (significando porta fechada)

O controlador passa de um estado para outro dependendo do estímulo (entrada) que recebe:

• Exemplo 1

Entradas: Existem 4 condições de entrada possíveis

Frente: significando que uma pessoa está em pé sobre o tapete da frente;

Retaguarda: significando que uma pessoa está em pé sobre o tapete de dentro;

Ambos: significando que existem pessoas sobre os 2 tapetes; **Nenhum**: significando que ninguém está sobre os tapetes.

slide 21

Máquina de Estados Finitos

• Exemplo 1

Entradas: Existem 4 condições de entrada possíveis

• Exemplo 1

Tabela de Transição

	NENHUM	FRENTE	RETAGUARDA	AMBOS	
FECHADO	FECHADO	ABERTO	ABERTO	ABERTO	
ABERTO	FECHADO	ABERTO	ABERTO	ABERTO	

slide 23

Máquina de Estados Finitos

• Exemplo 2

Interruptor

Estados: Ligado ou Desligado

• Exemplo 3

Palavra AMOR

Qualquer outra palavra deve ser descartada

slide 25

Máquina de Estados Finitos

• Exemplo 3

Tentativa de leitura da Palavra AMBIENTE

Partimos para a segunda letra:

Para a letra b

- Controladores para:
 - Lavadoras de louça/roupa
 - Termômetros eletrônicos
 - Relógios digitais
 - Calculadoras
 - Máquinas de venda automática

slide 27

Autômatos Finitos

- O AF é uma máquina, reconhecedora de palavras ou cadeia de caracteres, que sempre pára retornando uma resposta sim (cadeia reconhecida) ou não (cadeia não conhecida)
- · Podem ser classificados em:
 - Autômatos Finitos Determinísticos (AFD)
 - Autômatos Finitos Não-Determinísticos (AFND)

Autômatos Finitos Determinísticos - Definição Formal

Definição formal de um Autômato Finito Determinístico:

Um Autômato Finito Determinístico (AFD) M é uma 5-upla:

$$M = (Q, \Sigma, \delta, q_0, F)$$
, onde

- Q: conjunto finito de estados do autômato;
- Σ : alfabeto de símbolos de entrada;
- δ : função programa ou função de transição (parcial) δ : $Q \times \Sigma \to Q$. Significa dizer que permanecendo em um estado e lendo um símbolo do alfabeto faz o autômato passar para outro estado ou mesmo ficar no mesmo
- q_0 : estado inicial ($q_0 \in Q$)
- F: conjunto de estados finais ou estados de aceitação (F⊆Q)

slide 29

AFD - Definição Informal

- Autômatos Finitos Determinísticos podem ser pensados em termos dos componentes abstratos:
 - Fita
 - Unidade de controle
 - Tabela de Transições
 - Estados inicial e final

AFD

- Fita
 - Contém a palavra a ser reconhecida
 - A cada leitura, caminha um símbolo para a esquerda
 - Quando não há mais símbolos a máquina para

Autômatos Finitos Determinísticos - Representação Gráfica

• Representação Gráfica

AFD

- A máquina inicia sua execução em um estado inicial, com a fita no primeiro símbolo da palavra
 - Estado inicial é único
- Ao final, a máquina deve terminar em um estado final para a palavra ser reconhecida
 - O número de estados finais é livre

AFD - Representação Gráfica

- Um Autômato Finito Determinístico pode ser representado por meio de um diagrama similar ao de "máquinas de estados finitos"
- Serve como uma representação mais intuitiva das transições

Um autômato finito M₁: (diagrama de estados)

 M_1 tem **3 estados**, q_1 , q_2 , q_3 ;

 M_1 inicia no estado q_1 ;

 M_1 tem um **estado final**, q_2 ;

Os arcos que vão de um estado p/ outro chamam-se **transições**.

slide 35

Autômatos Finitos Determinísticos

- O autômato finito M_1 recebe os símbolos de entrada um por um;

- Depois de ler cada símbolo, $\rm M_1$ move-se de um estado para outro, de acordo com a transição que possui aquele símbolo como seu rótulo;
- Quando M_1 lê o ultimo símbolo ele produz uma saída:

 $\underline{\text{reconhece}}$ se M_1 está no estado final $\underline{\text{não-reconhece}}$ se M_1 não estiver.

Exemplo: entrada 1101

- 3. Lê 1, segue transição de q_2 p/ q_2 .
- 4. Lê 0, segue transição de q_2 p/ q_3 .
- 5. Lê 1, segue transição de q_3 p/ q_2 .
- 6. Pára c/ saída reconhece.

slide 37

Autômatos Finitos Determinísticos

Vamos aprender!

Testar: 1, 01, 11, 0101 (em M₁)

Percebemos que :

- M₁ reconhece qualquer cadeia que termine com 1 (vai p/ o estado final q₂ toda vez que lê 1);
- M₁ não reconhece cadeias como 0, 10, 101000.

Exemplo: Autômato que reconhece a linguagem de números binários com quantidade ímpar de 1s.

$$M = (\Sigma, Q, \delta, q_o, F)$$

$$Q = \{ q_o, q_1 \}, \Sigma = \{ 0, 1 \}, F = \{ q_1 \}$$

Função de Transição

δ	0	1	
q _{par}	q _{par}	q _{ímpar}	
q _{ímpar}	q _{ímpar}	q _{par}	

$$\delta (q_{par}, 0) = q_{par}$$

slide 39

Autômatos Finitos Determinísticos

- Um Autômato Finito nunca entra em "loop" infinito
- Novos símbolos da entrada são lidos a cada aplicação da função programa, o processo de reconhecimento de qualquer cadeia pára de duas maneiras:
 - Aceitando ou;
 - rejeitando uma entrada.

- Definir um AF engloba definir
 - Um conjunto finito de estados;
 - Um <u>alfabeto</u> de entrada que indica os símbolos de entrada permitidos;
 - Um conjunto de <u>regras</u> de movimento que indicam como ir de um estado p/ outro, dependendo do símbolo de entrada;
 - Um estado escolhido como estado inicial;
 - Um conjunto de estados escolhidos como <u>estados</u> <u>finais</u> (de reconhecimento);

slide 41

Autômatos Finitos Determinísticos - Praticando...

Prove que a seguinte linguagem é regular exibindo um autômato que a reconheça:

- Qualquer cadeia que termine com um a.

 w^n , onde $n \ge 0$ é o número de vezes que a palavra é repetida.

$$w^3 = ?$$

$$(01)^2 = ?$$

slide 43

Autômatos Finitos Determinísticos - Praticando...

Prove que a seguinte linguagem é regular exibindo um autômato que a reconheça:

 Conjunto de todas as palavras que contém 101 como subcadeia.

Prove que a seguinte linguagem é regular exibindo um autômato que a reconheça:

– {w | w possui ccc como subpalavra}

slide 45

Autômatos Finitos Determinísticos - Praticando...

Prove que a seguinte linguagem é regular exibindo um autômato que a reconheça:

{w | w começa e termina por a e possui bb como subpalavra}

Diga a sequência de estados pelos quais passa o AFD A dado abaixo quando recebe como entrada a palavra 01010. Diga se a palavra é aceita ou rejeitada e justifique.

 $\bm{A} = (\{q_0, \, q_1, \, q_2, \, q_3\}, \, \{0,1\}, \, \bm{\delta}_A, \, q_0, \, \{q_3\}), \, \text{onde } \bm{\delta}_A \, \acute{e} \, \, \text{dado abaixo:}$

δ	0	1
\mathbf{q}_0	\mathbf{q}_1	q_2
$\mathbf{q_1}$	q_3	q_2
\mathbf{q}_2	\mathbf{q}_1	q_3
\mathbf{q}_3	q_3	q_3

slide 47

Autômatos Finitos Determinísticos - Praticando...

Construir um AFD que reconhece a linguagem a*.

$$M = (\Sigma, Q, \delta, q_o, F)$$

$$Q = \{ q_o \}, \Sigma = \{ a \}, F = \{ q_o \}$$

Função de Transição

Construir um AFD que reconhece a linguagem aa*

$$M = (\Sigma, Q, \delta, q_o, F)$$

$$Q = \{ q_0, q_1 \}, \Sigma = \{ a \}, F = \{ q_1 \}$$

Função de Transição

slide 49

Autômatos Finitos Determinísticos - Praticando...

Construir um AFD que reconhece a linguagem (abb*a)*

$$M = (\Sigma, Q, \delta, q_0, F)$$

$$Q = \{ q_0, q_1, q_2 \}, \Sigma = \{ a, b \}, F = \{ q_0 \}$$

Função de Transição

δ	а	b
q _o	q_1	q_{rej}
q ₁	q_{rej}	q_2
q_2	\mathbf{q}_{o}	$q_{\scriptscriptstyle 2}$

