Deep reinforcement learning for controlled Piecewise Deterministic Markov Process

Application to optimising medical treatment

Orlane Rossini ¹, Alice Cleynen ^{1,2}, Benoîte de Saporta ¹, Régis Sabbadin ³ and Meritxell Vinyals ³

¹IMAG, Univ Montpellier, CNRS, Montpellier, France ²Iohn Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia ³Univ Toulouse, INRAE-MIAT, Toulouse, France

28 Mai 2024

Medical context

FIGURE: Example of patient data^a

^aIUCT Oncopole et CRCT, Toulouse, France

- Patients who have had cancer benefit from regular monitoring;
- the concentration of cancer cells is measured over time;
- The doctor has to make new decisions at each visit.

Medical context

FIGURE: Example of patient data^a

^aIUCT Oncopole et CRCT. Toulouse. France

- Patients who have had cancer benefit from regular monitoring;
- the concentration of cancer cells is measured over time;
- The doctor has to make new decisions at each visit.

⇒ Optimising decision-making to ensure the patient's quality of life

Methods

A real-life problem

Controlled PDMP1

¹Piecewise Deterministic Markov Process

Methods

¹Piecewise Deterministic Markov Process

²Partially Observable Markov Decision Process

Methods

¹Piecewise Deterministic Markov Process

²Partially Observable Markov Decision Process

Model-free framework³

Let the patient's state $s = (m, k, \zeta, u, t, \tau)$:

- *m* the overall state of the patient;
- k relapses number;
- ζ the biomarker;
- u time since last jump;
- t time since the beginning of follow-up;
- τ time since a treatment is applied.

Let d be the decision such that: $d = (\ell, r)$:

- l the treatment (nothing, chemotherapy, palliatif cares);
- r time before the next visit (15, 30, 60 days).

³Partially Observable Markov Decision Process (POMDP)

Model-free framework³

Let the patient's state $s = (m, k, \zeta, u, t, \tau)$:

- m the overall state of the patient;
- k relapses number;
- ζ the biomarker;
- *u* time since last jump;
- t time since the beginning of follow-up;
- τ time since a treatment is applied.

Let d be the decision such that: $d = (\ell, r)$:

- l the treatment (nothing, chemotherapy, palliatif cares);
- r time before the next visit (15, 30, 60 days).

³Partially Observable Markov Decision Process (POMDP)

Agent

Environment

POMDP DEFINITION

A POMDP is defined by a tuple $(S, \mathcal{D}, \mathcal{P}, \Omega, \mathcal{Z}, C)$.

- Patient's state $s = (m, k, \zeta, u, t, \tau) \in S$;
- Decisions $d = (\ell, r) \in \mathcal{D}$;
- Transition probabilities $\mathcal{P}(s,d)(s')$;
- Observations $\omega = (\tau, t, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- The observations function $\mathcal{Z}(s)(\omega)$;
- Cost function C(s, d, s').

⁴Partially Observable Markov Decision Process

POMDP DEFINITION

A POMDP is defined by a tuple $(S, \mathcal{D}, \mathcal{P}, \Omega, \mathcal{Z}, C)$.

- Patient's state $s = (m, k, \zeta, u, t, \tau) \in S$;
- Decisions $d = (\ell, r) \in \mathcal{D}$;
- Transition probabilities $\mathcal{P}(s, d)(s')$;
- Observations $\omega = (\tau, t, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- The observations function $\mathcal{Z}(s)(\omega)$;
- Cost function C(s, d, s').

⁴Partially Observable Markov Decision Process

POMDP DEFINITION

A POMDP is defined by a tuple ($\mathcal{S}, \mathcal{D}, \mathcal{P}, \Omega, \mathcal{Z}, C$).

- Patient's state $s=(m,k,\zeta,u,t, au)\in\mathcal{S}$;
- Decisions $d = (\ell, r) \in \mathcal{D}$;
- Transition probabilities $\mathcal{P}(s,d)(s')$;
- Observations $\omega = (\tau, t, F(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
 - The observations function $\mathcal{Z}(s)(\omega)$;
- Cost function C(s, d, s').

⁴Partially Observable Markov Decision Process

POMDP DEFINITION

A POMDP is defined by a tuple $(S, \mathcal{D}, \mathcal{P}, \Omega, \mathcal{Z}, C)$.

- Patient's state $s=(m,k,\zeta,u,t, au)\in\mathcal{S}$;
- Decisions $d = (\ell, r) \in \mathcal{D}$;
- Transition probabilities $\mathcal{P}(s, d)(s')$;
- Observations $\omega = (au, t, \mathit{F}(\zeta, \epsilon), \mathbb{1}_{m=3}) \in \Omega$;
- The observations function $\mathcal{Z}(s)(\omega)$;
- Cost function C(s, d, s').

POMDP CHARACTERISTICS

- Discrete observation dates
- Continuous state space
- Partially observable
- Partially known model
- Simulator

⁴Partially Observable Markov Decision Process

JDS 2024

What does it mean to solve?

Identifying the optimal policy!

$$\frac{C(s,d,s')}{\operatorname{Cost function}} = \underbrace{C_V}_{\operatorname{Visit cost}} \\ + \underbrace{C_D(H-t') \times \left(1 - \frac{1}{2}\mathbb{1}_{m=2 \text{ and } \ell=b}\right)\mathbb{1}_{m'=3}}_{\operatorname{Death cost}} \\ + \underbrace{\beta|\zeta - \zeta_{TH}| \times \left(1 - \frac{1}{2}\mathbb{1}_{\ell=a \text{ or } \ell=b}\right)\mathbb{1}_{\zeta > \zeta_{TH}}}_{\operatorname{Disease cost}} \\ + \underbrace{\kappa_C \times r(1 - \frac{1}{2}\mathbb{1}_{m=1 \text{ and } \ell=a})\mathbb{1}_{\ell=a}}_{\operatorname{Chemotherapy cost}} + \underbrace{\kappa_P \times r(1 - \frac{1}{2}\mathbb{1}_{m=2 \text{ and } \ell=b})\mathbb{1}_{\ell=b}}_{\operatorname{Palliatif care cost}}$$

Orlane Rossini JDS 2024 6 / 10

What does it mean to solve?

Identifying the optimal policy!

$$\underbrace{V(\pi,s)}_{\text{Criterion to optimise}} = \underbrace{\mathbb{E}_{s}^{\pi}[\sum_{n=0}^{H-1}c(S_{n-1},D_{n},S_{n})]}_{\text{Long-term expected cost following the policy }\pi}$$

What does it mean to solve?

Identifying the optimal policy!

$$\underbrace{V(\pi,s)}_{\text{Criterion to optimise}} = \underbrace{\mathbb{E}_{s}^{\pi} [\sum_{n=0}^{n-1} c(S_{n-1},D_{n},S_{n})]}_{\text{Long-term expected cost following the policy } \pi}$$

$$\underbrace{V^{\star}(s)}_{\text{Value function}} = \underbrace{\min_{\pi \in \Pi} V(\pi, s)}_{\text{Minimising over the all set of policy }\Pi}$$

Reinforcement learning

Learning optimal policy from all experiences

$$\underbrace{Q^{\pi}(s,d)}_{\text{Criterion to optimise}} = \mathbb{E}^{\pi} \left[\sum_{n=0}^{H-1} c(S_{n-1},D_n,S_n) | s,d = (\ell,r) \right]$$
Value of an action in a state, following π

$$\underbrace{Q^{\star}(s,d)}_{\text{Q function}} = \min_{\pi \in \Pi} Q^{\pi}(s,d)$$

$$\underbrace{\pi^*}_{Q \text{ function}} = \arg\min_{d \in \mathcal{D}} Q^*(s, d)$$

Model-free algorithms

FIGURE: Deep Q-Network

Policy	Mean Cost	Confidence interval	Survival rate	Relapse rate
ОН	119.16	[119.15, 119.17]	95.71%	2.57
Random	158.09	[158.08, 158.10]	18.32%	1.27
Inactive	164.09	[164.08, 164.10]	0.14%	1.00
Threshold	157.27	[157.26, 157.28]	80.52%	1.01
DQN	121.52	[121.51, 121.53]	99.83%	0.59

Table: Policy evaluation performance on 10⁵ simulations

Conclusion and Future Works

⁵Piecewise Deterministic Markov Process

⁶Partially Observable Markov Decision Process

⁷Baves Adaptive Partially Observable Markov Decision Process