exercise 1:

Let \overline{x} and y be in \mathbb{R}^d . Assume that $x \neq 0$. Set $e = \frac{x}{\|x\|}$, $P(y) = \langle y, e \rangle e$, and z = y - P(y).

- (i). Show that $\langle z, P(y) \rangle = 0$.
- (ii). Show that $||P(y)|| \le ||y||$.
- (iii). Infer the Cauchy Schwartz inequality.

exercise 2:

Set for $x = (x_1, ..., x_d)$ in \mathbb{R}^d ,

$$||x||_1 = \sum_{i=1}^d |x_i|, \quad ||x||_{\infty} = \max\{|x_i| : i = 1, ..., d\}$$

Show that ρ_1 and ρ_{∞} define two distances on \mathbb{R}^d , where

$$\rho_1(x,y) = ||x-y||_1, \quad \rho_{\infty}(x,y) = ||x-y||_{\infty}$$

exercise 3:

Solve exercise 9.6 from your textbook. Infer the following result: if (X, ρ) is a metric space and we set for all x and y in X,

$$d(x,y) = \frac{\rho(x,y)}{1 + \rho(x,y)}$$

then d is a distance on X.

exercise 4:

Let x_n be a convergent sequence in the metric space (X, ρ) . Show that the limit of x_n is unique.

exercise 5:

Let (X, ρ) be a metric space. Suppose that X is a finite set. Show that any subset of X is both open and closed.

exercise 6:

Let (X, ρ) be a metric space. Let A be a subset of X. Show that V is an open subset of A if and only if there is an open subset W of X such that $V = A \cap W$.