



Enter | Register



VK.com

HOME CONTESTS GYM PROBLEMSET GROUPS RATING HELP

PROBLEMS SUBMIT MY SUBMISSIONS STATUS HACKS ROOM STANDINGS CUSTOM TEST

B. I.O.U.

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input output: standard output

Imagine that there is a group of three friends: A, B and C. A owes B 20 rubles and B owes C 20 rubles. The total sum of the debts is 40 rubles. You can see that the debts are not organized in a very optimal manner. Let's rearrange them like that: assume that A owes C 20 rubles and B doesn't owe anything to anybody. The debts still mean the same but the total sum of the debts now equals 20 rubles.

This task is a generalisation of a described example. Imagine that your group of friends has n people and you know the debts between the people. Optimize the given debts without changing their meaning. In other words, finally for each friend the difference between the total money he should give and the total money he should take must be the same. Print the minimum sum of all debts in the optimal rearrangement of the debts. See the notes to the test samples to better understand the problem.

## **Input**

The first line contains two integers n and m  $(1 \le n \le 100; 0 \le m \le 10^4)$ . The next m lines contain the debts. The i-th line contains three integers  $a_i, b_i, c_i$   $(1 \le a_i, b_i \le n; a_i \ne b_i; 1 \le c_i \le 100)$ , which mean that person  $a_i$  owes person  $b_i$   $c_i$  rubles.

Assume that the people are numbered by integers from 1 to n.

It is guaranteed that the same pair of people occurs at most once in the input. The input doesn't simultaneously contain pair of people (x, y) and pair of people (y, x).

### Output

Print a single integer — the minimum sum of debts in the optimal rearrangement.

# Sample test(s)

| input                           |  |
|---------------------------------|--|
| 5 3<br>1 2 10<br>2 3 1<br>2 4 1 |  |
| output                          |  |
| 10                              |  |

|  | input  |
|--|--------|
|  | 3 0    |
|  | output |
|  |        |

| input                          |  |
|--------------------------------|--|
| 4 3<br>1 2 1<br>2 3 1<br>3 1 1 |  |
| output                         |  |
| 9                              |  |

# Note

In the first sample, you can assume that person number 1 owes 8 rubles to person number 2, 1 ruble to person number 3 and 1 ruble to person number 4. He doesn't owe anybody else anything. In the end, the total debt equals 10.

# Codeforces Round #221 (Div. 2) Finished → Practice?

Want to solve the contest problems after the official contest ends? Just register for practice and you will be able to submit solutions.

Register for practice







In the second sample, there are no debts.

In the third sample, you can annul all the debts.

Codeforces (c) Copyright 2010-2013 Mike Mirzayanov The only programming contests Web 2.0 platform Server time: 12/25/2013 12:10PM (p1).