Introduction to NLP

Scope of this lab

Not to bombard with NLP terminologies

Not to provide a NLP crash course in an hour!

But

to introduce you to NLP basics to explain the overall NLP platter that you have for your disposal to provide a bit of hands-on to kindle your brain with what's in store and where to get started for your actual work

What are the various industry application of NLP that come to your mind?

- Search engines
- Advanced text editors: Such as Grammarly.com
- Computational advertising
- Fraud detection
- Sentiment analysis
- Opinion mining
- Text summarization
- Context analysis

Textual data in Software Project

Textual Software Project Data and Retrieval [1]

Importance of NLP in Software Engineering

- Text Retrieval (TR) and NLP in software is one of the fastest growing areas of research in SE. [2]
- Exposing the SE community to these techniques and their applications in SE would help to fill a gap in their current background and allow them to immediately use TR and NLP to advance their research.
- In particular, for TR, approaches such as Vector Space Model, Latent Semantic Analysis, Latent Dirichlet Association, Language Models will be covered. NLP techniques covered will include part-of-speech tagging, stemming, stopword elimination, semantics analysis, sentiment analysis, etc.

Classification schema of NLP techniques

Part-of-Speech Tagging

The choice Tag Sets depends on the language and application Example tag set sizes (for English)

- Brown corpus, 87 tags
- Penn treebank 45 tags
- BNC, 61 tags

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	"	Left quote	(' or ")
POS	Possessive ending	's	,,	Right quote	(' or ")
PRP	Personal pronoun	I, you, he	(Left parenthesis	([,(,{,<)
PRP\$	Possessive pronoun	your, one's)	Right parenthesis	$(],),\},>)$
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ;)
RP	Particle	up, off			

Source: Penn Tree Bank Tagset - http://coltekin.net/cagri/courses/snlp2017/slides/pos-tagging.pdf

Chunking

The color chooser requires the presence of a hardware POS Tagging (averaged perceptron tagger) pointing device [('The', 'DT'), ('color', 'NN'), grammar = $r'''''NP:{\langle DT \rangle^2 \langle NNI \rangle \langle VRG \rangle \langle NINI \rangle}$ of', 'IN'), d e S У e 0 W 0 g)] PRP VBD DT JJ NN NΡ NP requires VBZ of IN NP NP NP The DT color NN the DT hardware NN chooser NN presence NN a DT pointing VBG device NN

Named Entity Recognition

Wikipedia: Named-entity recognition (NER) (also known as entity identification, entity chunking and entity extraction) is a subtask of information extraction that seeks to locate and classify named entity mentioned in unstructured text into pre-defined categories such as person names, organizations, locations, medical codes, time expressions, quantities, monetary values, percentages, etc.

Input: "When Michael Jordan was at the peak of his powers as an NBA superstar, his Chicago Bulls team were moving down the completion, winning six National Basketball Association titles".

Output:

"Chicago Bulls"

"Michael Jordan"

"National Basketball Association"

NLP and Machine learning

Source: https://www.datajango.com/deep-learning-and-nlp/

Bag of words

Methods that are used for natural language processing to represent documents where the order of words (grammar) is not important.

Source: https://blog.insightdatascience.com/how-to-solve-90-of-nlp-problems-a-step-by-step-guide-fda605278e4e

References

- 1. Bird, Christian, Tim Menzies, and Thomas Zimmermann, eds. The art and science of analyzing software data. Elsevier, 2015.
- 2. Arnaoudova, Venera, et al. "The use of text retrieval and natural language processing in software engineering." Proceedings of the 37th International Conference on Software Engineering-Volume 2. 2015.
- 3. Juergens, Elmar, et al. "Do code clones matter?." 2009 IEEE 31st International Conference on Software Engineering. IEEE, 2009.
- 4. Juergens, Elmar, et al. "Can clone detection support quality assessments of requirements specifications?." Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 2. ACM, 2010.
- 5. https://medium.com/square-corner-blog/topic-modeling-optimizing-for-human-interpretability-48a81f6ce0ed
- 6. Stevens, Keith, Kegelmeyer, Philip, Andrzejewski, David, and Buttler, David. Exploring topic coherence over many models and many topics. In EMNLP, 2012.