NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF
UNSTEADY SURFACE PRESSURE AND NEAR-WAKE HOTWIRE MEASUREMENTS OF-ETC(U) AD-A050 025 SEP 77 K A KAIL UNCLASSIFIED NL 1 OF 2 AD50025

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

UNSTEADY SURFACE PRESSURE AND NEAR-WAKE HOTWIRE MEASUREMENTS OF A CIRCULATION CONTROL AIRFOIL

by

Karl Aurel Kail, IV

September 1977

Thesis Advisor:

J.A. Miller

Approved for public release; distribution unlimited.

UNCLASSIFIED

REPORT DOCUMENT	ATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FOR
I. REPORT NUMBER	2. GOVT ACCESSION NO.	CIPIENT'S CATALOG NUMBER
	1 19	
TITLE (and Subtille)		PE OF REPORT & PERIOD COVI
Unsteady Surface Pressur		ngineer's Thesis
Hotwire Measurements of		EPTERIORIC DE REPORT NUMBER
Control Airfoil	• •	REPORTING ORG. REPORT NUMB
AUZHOR(O)	6. Cc	INTRACT OR GRANT NUMBER(*)
Karl Aurel Kail, IV		
PERFORMING ORGANIZATION NAME AND	10.00	
		ROGRAM ELÉMENT, PROJECT, T REA & WORK UNIT NUMBERS
Naval Postgraduate School Monterey, California 9:	3040	
monterey, California 9.	3940	
1. CONTROLLING OFFICE NAME AND ADDR		EPORT DATE
Naval Postgraduate School	01	277
Monterey, California 9:		141
4. MONITORING AGENCY NAME & ADDRESS	(Il different from Controlling Office) 18. 8	ECURITY CLASS. (of this report)
	Un	classified
	12/14/201	
•) P. 18a.	DECLASSIFICATION/DOWNGRAD SCHEDULE
6. DISTRIBUTION STATEMENT (of this Repo		
o. Districted from Strate Smaller for mile from S.		
Approved for public rel		imited.
	ease; distribution unl	
17. DISTRIBUTION STATEMENT (of the abotra	ease; distribution unl	
Approved for public relation statement (of the about	ease; distribution unl	
17. DISTRIBUTION STATEMENT (of the abotra	ease; distribution unl	

1 SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURTY CLASSIFICATION OF THIS PAGETWHON DOLD ENGONS.

(20. ABSTRACT Continued)

pressure data and to study the flow phenomena occurring in the region of Coanda jet separation. Through correlation of turbulence intensity data with pressure data, it was discovered that the point of Coanda jet separation could be located using the hotwire. The objective of these tests was accordingly expanded to include correlation of the location of separation with flow parameter variation.

Although steady flow, steady blowing tests results were favorable, the unsteady blowing test was restricted in scope because of an inability of the injection air compressor to provide an adequate flow, and because the real-time acquisition system was not completed in time for these tests. From mean value and RMS data obtained during oscillatory blowing, no increase in average lift augmentation above that produced in equivalent steady blowing was discernible.

Approved for public release; distribution unlimited.

Unsteady Surface Pressure and Near-Wake Hotwire Measurements of a Circulation Control Airfoil

by

Karl Aurel Kail, IV Lieutenant, United States Navy B.S., University of Colorado, 1967

Submitted in partial fulfillment of the requirements for the degree of

AERONAUTICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL September 1977

ABSTRACT

The large lift coefficient changes attainable with Circulation Control Airfoils through small changes in boundary layer blowing suggest rotary wing cyclic control can be obtained through modulation of the blowing. Static pressure distributions were obtained to assess the unsteady behavior of a Circulation Control Rotor in a two-dimensional flow. A constant-radius hotwire wake traversing mechanism was constructed to augment the pressure data and to study the flow phenomena occurring in the region of Coanda jet separation. Through correlation of turbulence intensity data with the pressure data, it was discovered that the point of Coanda jet separation could be located using the hotwire. The objective of these tests was accordingly expanded to include correlation of the location of separation with flow parameter variation.

Although steady flow, steady blowing tests results were favorable, the unsteady blowing test was restricted in scope because of an inability of the injection air compressor to provide an adequate flow, and because the real-time acquisition system was not completed in time for these tests. From mean value and RMS data obtained during oscillatory blowing, no increase in average lift augmentation above that produced in equivalent steady blowing was discernible.

TABLE OF CONTENTS

I.	INT	RODUCTION	14
	A.	GENERAL DISCUSSION	14
	В.	PREVIOUS EXPERIMENTAL INVESTIGATIONS	15
	c.	PREVIOUS ANALYTICAL INVESTIGATIONS	17
	D.	OSCILLATORY FLOW RESEARCH	18
	E.	PROBLEM STATEMENT	19
II.	OUT	LINE OF THE INVESTIGATION	20
	A.	APPROACH	20
	в.	INVESTIGATION PARAMETERS	20
	c.	EXPERIMENTAL PROGRAM	21
III.	EXP	PERIMENTAL APPARATUS AND PROCEDURES	22
	A.	WIND TUNNEL	22
		1. General Description	22
		2. Rotating Shutter Valve	24
		3. Test Section	26
		4. Tunnel Calibrations	26
	В.	THE AIRFOIL	28
	c.	SLOT INJECTION AIR SYSTEM	30
		1. Air Compressor	30
		2. Mass Flow Control	31
		3. Mass Flow Measurements	33
	D.	WAKE TRAVERSING MECHANISM	33
	E.	PRESSURE ACQUISITION SYSTEM	37

IV.	Control Accommodal Supracional	ULATION OF MOMENTUM AND AERODYNAMIC FICIENTS 4	7
	A. 5	STEADY FLOW 4	7
	B. (OSCILLATING FLOW 4	9
v.	RESU	LTS AND DISCUSSION 5	2
		PRELIMINARY STEADY AND OSCILLATORY BLOWING TESTS 5	2
	в. 8	STEADY FLOW, STEADY BLOWING TESTS 5	3
		1. Airfoil Performance 5	3
		2. Trailing Edge Flow Environment 5	7
		3. Wake Traversing Mechanism Effects on Airfoil Performance 6	2
		4. Wake Survey 6	7
	c. :	TESTS WITH OSCILLATING INJECTION 8	4
		l. Pressure Wave Propagation 8	4
		2. The Near-Wake in Oscillatory Blowing 8	8
	D. (OSCILLATING FREESTREAM, STEADY BLOWING TEST 9	5
VI.	CONC	LUSIONS 10	2
APPEN	DIX A	: Surface Pressure Tap Locations 10	4
APPEN	DIX B	: Spanwise Pressure Distributions 10	6
APPEN	DIX C	: Hotwire Data for Near-Wake Mapping at C _µ = 0.0451 10	8
APPEN	DIX D	: Unsteady Flow Pressure Data 11	. 3
APPEN	DIX E	: Unsteady Hotwire Data Corresponding to C Run Numbers 52601 through 52605 for 0.025 in. from Surface 13	12
LIST	OF PE	FERENCES 13	
		STRIBUTION LIST 14	
THIT	WH OT	SIRIBULION BISI	•

LIST OF TABLES

I.	STEADY FLOW, STEADY BLOWING AERODYNAMIC CHARACTERISTICS	55
II.	STEADY FLOW, STEADY BLOWING AERODYNAMIC CHARACTERISTICS WITH WAKE TRAVERSING MECHANISM INSTALLED	65
III.	BLOWING AND LIFT COEFFICIENTS FOR STEADY FREESTREAM, OSCILLATORY BLOWING	89
IV.	STEADY FLOW, 9 Hz OSCILLATORY BLOWING AERODYNAMIC CHARACTERISTICS	90
v.	COMPARISON OF STEADY AND OSCILLATING FREESTREAM AERODYNAMIC CHARACTERISTICS WITH STEADY BLOWING -	101

LIST OF FIGURES

1.	Oscillating Flow Wind Tunnel and	
	Instrumentation	23
2.	Rotating Shutter Valve	25
3.	Oscillating Flow Wind Tunnel Frequency Response Calibration	27
4.	CC Airfoil Cross-sectional View Depicting Midchord Surface Pressure Tap Locations	29
5.	Mass Flow Control	32
6.	Hotwire Wake Traversing Mechanism	34
7.	Wake Traversing Mechanism Test Console	36
8.	Schematic of the Surface Pressure Acquisition System	38
9.	Scanivalve Attachment	40
10.	Schematic Diagram of Scanivalve Dynamic Calibration Instrumentation	41
11.	Scanivalve Dynamic Frequency Response Curves	43
12.	Static Transducer Calibration Curves	44
13.	Pressure Acquisition System Console	46
14.	C _L vs C _µ for Steady Blowing	54
15.	Comparison of Jet-to-Plenum Pressure Ratios as a Function of C_{μ} for various Alpha	56
16.	Coefficient of Pressure vs Distance from the Wall along 0.5X/C for Alpha = -5	58
17.	Coefficient of Pressure vs Distance from the Wall along 0.75X/C for Alpha = -5	59
18.	Coefficient of Pressure vs Theta for Alpha = -5	60
19.	Rear Pressure Distributions vs Y/C for various C1, Alpha = -5	61

20.	Coefficient of Pressure vs Distance from Wall along 0.5X/C for Alpha = -56
21.	Comparison of Lift Augmentation Obtained with and without the Wake Traversing Mechanism Installed6
22.	Comparison of Pressure Drag vs Blowing Coefficient with and without Wake Traversing Mechanism Installed
23.	Relative Velocity vs Theta for Alpha = -5, C_{μ} = 0.0332
24.	Relative Velocity vs Theta for Alpha = -5, C_{μ} = 0.0575
25.	Relative Velocity vs Theta for Alpha = -5, C_{μ} = 0.0215
26.	Relative Velocity vs Theta for Alpha = -5, C_{μ} = 0.0617 7
27.	Nondimensional Mean Velocity and Turbulence Intensity Profiles vs Theta for Alpha = -5, C_{μ} = 0.04517
28.	Coefficient of Pressure vs Theta for Alpha = -5, C_{μ} = 0.0451 7
29.	Near-Wake Stagnation Streamlines Determined from Midslope Method for Various Blowing Coefficients with α = -5
30.	Representative Velocity Profiles and Turbulence Intensity in Near-Wake for α = -5, C_{μ} = 0.0451 7
31.	Boundary Layer Profiles over the Trailing Edge as a Function of Angular Position for Alpha = -5, C_{μ} = 0.0451
32.	Comparison of Turbulence Intensity vs Distance from Surface as a Function of Angular Position for Alpha = -5, C_{μ} = 0.0451
33.	Separation Point in Degrees from Slot vs Blowing Coefficient
34.	Separation Point in Degrees from Slot vs List Coefficient

35.	Wake Hotwire vs Plenum Pressure for C_{μ} = 0.0258	83
36.	Comparison of Pressure Waveforms for C = 0.0854, ϵ = 27.4%, f = 9 Hz	85
37.	Comparison of Pressure Waveforms for C = 0.0457, ϵ = 47.4% and C = 0.0645, ϵ = 30.2% for f = 9 Hz	86
38.	Comparison of Pressure Waveforms for C = 0.045 with ε = 30%, f = 9 Hz vs f = 0	87
39.	Nondimensional Mean Velocity and Turbulence Intensity Profiles vs Theta for Alpha = -5, C_{μ} = 0.0451 at 0.025 in. from Surface	91
40.	Nondimensional Mean Velocity and Turbulence Intensity Profiles vs Theta for Alpha = -5, C_{μ} = 0.0451 at 0.05 in. from Surface	92
41.	Nondimensional Mean Velocity and Turbulence Intensity Profiles vs Theta for Alpha = -5, C_{μ} = 0.0451 at 0.1 in. from Surface	93
42.	Nondimensional Mean Velocity and Turbulence Intensity Profiles vs Theta for Alpha = -5, C_{μ} = 0.0457 at 0.025 in. from Surface	94
43.	Nondimensional Mean Velocity and Turbulence Intensity Profiles vs Theta for Alpha = -5, C _u = 0.0645 at 0.025 in. from Surface	96
44.	Nondimensional Mean Velocity and Turbulence Intensity Profiles vs Theta for Alpha = -5, C_{μ} = 0.0853, 0.025 to 0.25 in. from Surface	97
45.	Comparison of Hotwire and Plenum Pressure Waveforms for C_{μ} = 0.0645, ϵ = 30.2%, f = 9 Hz	98
46.	Pressure and Velocity Waveforms for Freestream Oscillating at 9 Hz, ε = 10.9%	99
47.	Nondimensional Mean Velocity and Turbulence Intensity Profiles vs Theta for Alpha = -5, C ₁₁ = 0.0445 at 0.025 in. from Surface	100

LIST OF SYMBOLS AND ABBREVIATIONS

atm	Atmosphere
С	Chord length
сс	Circulation Control
C _D	Drag coefficient, D/(qS)
$c_{\mathtt{L}}$	Lift coefficient, L/(qS)
C _M	Pitching moment coefficient, M/(qSC)
CMU	C _µ
c _p	Pressure coefficient, (p - p _o)/q
c_{μ}	Blowing (momentum) coefficient, $\dot{m}V_{\dot{j}}/(qS)$
D	Drag
е	Voltage
f	Frequency, Hz
G(ω)	Dynamic gain, popi
k	Specific heat ratio
L	Lift
М	Molecular weight
m	Mass flow rate
P	Pressure (see subscripts)
PR	Pressure ratio, Pj/Pi
q	Wind tunnel dynamic pressure, $\frac{1}{2}\rho V_{\infty}^{2}$
R	Universal gas constant
s	Airfoil planform surface area
V	Velocity
X/C	Nondimensional distance from leading edge
Y/C	Nondimensional distance from chord line

LIST OF SYMBOLS AND ABBREVIATIONS (Continued)

α Angle of attack, degrees (ALPHA)

 $\varepsilon(X)$ Amplification ratio of the variable X,

$$\sqrt{\left(\frac{X_{RMS}}{\overline{X}}\right)^2}$$
 OSCILLATING $-\left(\frac{X_{RMS}}{\overline{X}}\right)^2$ STEADY

ρ Density

Shear stress

ω Angular frequency, 2πf, sec⁻¹

Phase angle

Subscripts

N Normal

C Chord

1 Lower

u Upper

f Front

r Rear

i Plenum value

j Jet

g Geometric

s Steady

T Total

o Static

Superscripts

bar Mean value

prime Perturbation quantity

ACKNOWLEDGMENT

The author wishes to express his appreciation to

Dr. James A. Miller and Dr. Louis V. Schmidt for their

guidance and assistance during this investigation. Recognition is also due to Messrs. Ted B. Dunton, Glen Middleton,

Don Harvey, Ron Ramaker and Stan Johnson for their technical

assistance in the construction of the wake traversing

mechanism and repair of the airfoil, to Mr. John Moulton

for his assistance in conducting the tests, and to Mr. Robert

A. Besel for his assistance throughout the project and in

the completion of this paper.

I. INTRODUCTION

A. GENERAL DISCUSSION

Although jet flaps have been thoroughly investigated, it was not until 1959/1960 that Griswold [1] and Davidson [2] suggested that significant lift augmentation could be obtained through trailing edge blowing about bluff-edged airfoils. From their initial concepts, a distinct class known as Circulation Control Airfoils (CCA) has evolved, and is currently under extensive evaluation for possible application to V/STOL aircraft and helicopters.

Analytically, the flow field is perhaps the most complex studied, for neither slender body theory nor the Kutta condition apply. In fact it is the absence of the Kutta requirement which allows controlling the point of separation. This is effected by injection of a tangential turbulent jet of sufficient energy that it entrains flow from the upper portion of the boundary layer through the Coanda effect. The flow remains attached to the curved surface for distances, depending on the rate of injection, of the order of the trailing edge radius, substantially reducing the size of the wake. In addition to these analytical difficulties is the fact that helicopters and V/STOL aircraft typically operate in an unsteady flow environment posing additional complexity. Thus CCA aerodynamics embodies several complex topics, perhaps the most elusive of which is prediction of separation.

B. PREVIOUS EXPERIMENTAL INVESTIGATIONS

The initial experimental investigations with circulation control by tangential blowing were conducted on circular cylinders by Dunham [3] in 1967, whose work substantiated the high-lift concept. Unfortunately, the airfoil geometry employed was complicated by multiple slots and lacked the potential for high speed operation. Nevertheless, Cheeseman and Seed [4,5] and others suggested through design feasibility studies that the concept had promise. In 1967 Kind [6] completed the first experimental evaluation of an elliptical CC airfoil demonstrating control of lift through blowing.

Williams and Howe [7], Englar [8,9], and Harness [10] all demonstrated that camber adds to the CC capability of an ellipse. Included in this work was an evaluation of the effects of trailing edge shape, slot height, thickness to chord ratio and Reynolds number.

Investigations conducted by Oyler and Palmer [11] and Williams et al [12] with pulsed blowing over a blown flap and by Walters et al [13] with pulsed blowing on a cambered CC ellipse indicated additional lift augmentation could be obtained. For equal values of time averaged blowing coefficient the pulsed blowing produced higher trailing edge suction peaks and lift augmentation because of the instantaneous higher values of injection pressure and jet velocity which in turn produced greater flow entrainment and jet turning. This produced required lift coefficients at reduced

injection mass flow. Williams [12] indicated a mass flow reduction of as much as 50%. Both Oyler and Williams found optimum pulsing frequencies. Englar [14] in 1975 reported on pulsed blowing tests for a STOL wing section modified with a bluff rounded trailing edge. The pulsing valve produced a sinusoidal pressure variation of amplitude not greater than 15% of the mean for blowing coefficients, C_{μ} , of less than 0.14. He found the pulsing had little effect on lift augmentation, but assumed that the small trailing edge radius and the fact that the pulsing valve could not provide higher pressure variations were the major reasons for this result.

In 1974 Kaman Aerospace Corporation [15] and Lockheed Aircraft Corporation [16] completed detailed design feasibility studies of a helicopter with a Circulation Control Rotor (CCR). Subsequently a working model CCR was constructed and evaluated by Reader and Wilkerson [17] at the Naval Ship Research and Development Center. Included in the model was a throttling mechanism to enable rotor blade cyclic and collective control through modulated blowing from leading and trailing edge slots. Using sinusoidal pressure waves with amplitude ratios of the order of one, and various combinations of leading and trailing edge blowing, high lift-to-drag surface pressure distributions were obtained.

C. PREVIOUS ANALYTICAL INVESTIGATIONS

Analytically, CCA's have been modeled by Kind [18], Levinsky and Yeh [19] and Gibbs and Ness [20]. The accuracy of those analyses has depended primarily on how effectively the Coanda jet was modeled and separation determined. noted by Kind [18], and Levinsky and Yeh [19], separation of a CCA occurs when the pressure coefficient on the trailing edge reaches a positive near-constant value just beyond the suction peak. Kind formulated his steady state solution using an empirical model based on the surface pressure distribution. But knowledge of the pressure distribution implies knowledge of the potential flow solution. Therefore, Gibbs and Ness, and Levinsky and Yeh formulated their steady state solutions using zero shear stress at the wall as the separation criteria. However, subsequently Englar [21] and Cebeci and Smith [22] found that the shear stress may only reach a minimum at separation and then increase again, never passing through zero. The range of validity of the zero wall stress criteria needs to be established and there is obviously a requirement to determine how to use minimum wall stress as a more general separation criterion.

In modeling the turbulent Coanda jet as a boundary layer in curvilinear coordinates, Gibbs and Ness [20] neglected body forces, and the streamwise derivatives $\frac{-R}{R+y} \frac{\partial \tau}{\partial x} \text{ and } \frac{R}{R+y} \frac{\partial}{\partial x} (\overline{\rho} \ \overline{u'}^2) \text{ from the x-momentum equation.}$

Assuming the height of the boundary layer was small compared with the reference length (distance from slot), they reduced the y-momentum equation to three terms:

$$-\overline{\rho} \frac{\overline{u'^2}}{R+y} + \frac{\partial \overline{p}}{\partial y} + \frac{\partial}{\partial y} (\overline{\rho} \overline{v'^2}) = 0$$

However, in regions of separation, the "boundary layer" thickness grows significantly and the fact that this modeling still yields a reasonable flow description seems to be a fortunate coincidence. There exists little experimental data to justify the assumptions. Sandborn and Liu [23] conducted one of the few contemporary experiments on turbulent separation in 1968. Even though the term $\frac{\partial}{\partial x}(u^{-2})$ grows substantially near separation they observed that the convective term $\frac{\partial}{\partial y}(u^{-1}v^{-1})$ eventually outgrows all other terms and dominates at separation. How small, constant radii of curvature affect the results was not clearly established.

D. OSCILLATORY FLOW RESEARCH

In general, problems of nonsteady flow have received far less attention than those of steady flow; in particular, there exists no unsteady blowing data of sufficient detail to permit formulation of a separation criteria. Nevertheless some perspective may be gained by examining recent studies on oscillatory boundary layers. Despard and Miller [24] measured the instantaneous velocity profiles in oscillatory laminar boundary layers subject to adverse pressure gradients,

and proposed that oscillatory separation occurred at the farthest upstream point at which there was "zero velocity" or reverse flow at some point in the velocity profile throughout the entire cycle of oscillation. They and Tsahalis and Telionis [25] agreed that the point of separation moves upstream from the steady state position, but the results of Tsahalis and Telionis seem to indicate that, at least for part of the cycle, the point of vanishing shear is downstream of the "separation" singularity.

Thus it appears that to accurately predict CCA aerodynamic properties and in particular, to permit modeling with oscillatory blowing, additional research concerning separation in a nonsteady turbulent Coanda jet is required.

E. PROBLEM STATEMENT

The primary purpose of the present investigation was to assess the feasibility of employing a CC airfoil with a modulated blowing coefficient of the form:

$$C_{u}(t) = \overline{C}_{u}(1 + \varepsilon \sin \omega t)$$

for values of ε of the order of unity.

A further objective was to correlate the location of separation with flow parameter variation so that reasonable engineering predictions of turbulent separation in steady and oscillatory Coanda jets might be made.

II. OUTLINE OF THE INVESTIGATION

A. APPROACH

The method of attack consisted of direct measurement of sectional aerodynamic characteristics by integration of surface pressure data from a typical example of a CC airfoil with steady blowing, and comparison with those obtained with modulated blowing. From an evaluation of near-wake velocity profiles, and correlation with surface pressure data, an engineering criterion for Coanda sheet separation point location was to be formulated.

B. INVESTIGATION PARAMETERS

The CC airfoil section chosen for investigation had a 21.4 percent thick modified elliptic profile with a 10.206 inch chord, a 0.0479 trailing edge radius to chord ratio, and 3 percent camber. The injection slot was 0.016 inches high and was located at 0.9551 X/C on the upper surface. Spanning the entire cross section of the Department of Aeronautics 2-by-2 foot oscillating flow wind tunnel, the model may be treated approximately as a two-dimensional airfoil.

To avoid compressibility effects and to remain outside the jet flap regime, the investigation was conducted at a tunnel q of approximately 10 psf with blowing coefficients, C_{μ} , of less than 0.1. The modulated blowing coefficient amplitude ratio ε , were to be varied from 0 to 0.7. Angle

of attack was to be varied to include values appropriate to the application of CC airfoils as helicopter rotor blades; i.e., from -5 to +8 degrees.

C. EXPERIMENTAL PROGRAM

The detailed investigation was to include:

- Preliminary surface pressure measurements to calibrate the data acquisition system, and to determine the zero-lift angle of attack.
- Pressure data acquisition system calibrations to determine the dynamic transfer function between the surface pressure taps on the airfoil and the signal produced by the pressure transducer.
- A pressure and velocity survey of the wind tunnel test section in a steady and oscillating freestream without the model installed.
- Determination of aerodynamic coefficients and nearwake velocity surveys with steady injection, steady freestream.
- Determination of aerodynamic coefficients and near-wake velocity surveys with oscillatory blowing, steady freestream.
- Determination of aerodynamic coefficients and near-wake velocity surveys with steady blowing, oscillatory freestream.

III. EXPERIMENTAL APPARATUS AND PROCEDURES

A. WIND TUNNEL

1. General Description

The experimental work was conducted in the low-speed, oscillating flow wind tunnel located in the Aeronautics
Laboratories of the Naval Postgraduate School. Shown in
Fig. 1, the open circuit wind tunnel has a 24-inch square
by 223-inch long test section, an eight-foot square inlet
and a 16:1 contraction ratio. Three high solidity screens
located in the inlet section just upstream of the entrance
nozzle help maintain freestream turbulence intensities to
less than 1.0 percent for the velocities encountered in the
present work.

The wind-tunnel drive consists of two Joy Axivane

Fans in series, each of which has an internal, 100 horsepower,

direct connected, 1750 rpm motor. The fan blades are

internally adjustable through a pitch range of 25 to 55

degrees, providing a wide operating base. Two sets of

variable inlet vanes, located immediately upstream of each

fan, are externally operated to provide control of test

section velocity. These vanes are of multileaf design, and

preswirl the air in the direction of fan rotation to reduce

fan capacity. The range of tunnel velocity is from 10 to

250 feet per second.

OSCILLATING FLOW WIND TUNNEL AND INSTRUMENTATION

2. Rotating Shutter Valve

The most successful method of obtaining an oscillating flow with large ranges of frequency and amplitude is that first employed by Karlsson [26], later by Miller [27] in his investigation of transition, and subsequently by Despard [28]. A rotating shutter valve, immediately downstream of the test section, is used to superimpose a periodic variation of velocity on the mean flow. present shutter valve consists of four horizontal steel shafts equally spaced across the test section. The shafts are slotted to accommodate flat blades of various widths, forming a set of four butterfly valves spanning the test section. Figure 2 is a schematic of the shutter valve. Each blade drives its immediate neighbor by means of a timing belt and pulley arrangement. The bottom shaft is driven by a five-horsepower variable-speed electric motor through a timing belt and pulley. An intermediate shaft between the motor and shutter valve permits a variety of pulley arrangements and a frequency range of from two to 240 Hz. The amplitude of oscillation is controlled by blade width. Test section closure may be varied from 25 to 100 percent. The resulting amplitude of oscillation of test section velocity is a function of frequency, mean velocity and pressure gradient. In this investigation, blades producing 50.0, 66.7 and 82.5 percent closure were used, resulting in an amplitude range of from 3 to 40 percent of the local mean freestream velocity.

FIGURE 2. ROTATING SHUTTER VALVE

3. Test Section

Continuous pieces of two-inch thick aluminum, 24 inches wide and 223 inches long, form the upper and lower test section walls. Each of the side walls consists of three two-inch thick panels, two of stress-relieved Lucite and the center of plywood to facilitate the mounting of model and instrumentation. The Lucite panels on the console side of the test section are hinged and may be raised hydraulically, providing access to the test section. The heavy construction of the test section is dictated by the desire to reduce deflections induced by rapid changes in static pressure. As reported by Despard [28], freestream velocity profile variation is less than one percent from the mean to within three inches of any wall.

4. Tunnel Calibrations

In order to calibrate the flow in the tunnel, a series of tests were conducted without the model installed. A hotwire, a total pressure probe, and a static pressure probe were installed in the test section at approximately the mid-chord location. The shutters were operated from 0 to 50 Hz using both the 3 and 4 inch blades, and RMS, DC and phase angle data were recorded from each of the sensors. The full details of these measurements are presented by Lancaster [34]. Figure 3 illustrates typical results obtained with the 3-inch blades. Of note is the pressure perturbation peak at approximately 21 Hz. At this frequency the velocity and pressure waveforms are very

FIGURE 3. OSCILLATING FLOW WIND TUNNEL FREQUENCY RESPONSE CALIBRATION

nearly sinusoidal. The peak is attributed to acoustic resonance from the mouth of the tunnel. This resonant frequency also appeared in a steady flow frequency spectrum analysis of the wall static pressure conducted with a Spectral Dynamics Real Time Analyzer with the airfoil installed. Blower fan noise at 480 Hz was also detectable, as were intermediate frequencies of 90 and 120 Hz whose source could not be identified. Through appropriate filtering, the tunnel noise was removed from the data signals.

B. THE AIRFOIL

The airfoil model was a prototype section obtained from the Lockheed Phase I Study on Circulation Control Rotor (CCR) Design Feasibility [16] and modified in the Department of Aeronautics model shop to correct defects in the injection slot structure. Designed from an ellipse with a 10.215 inch chord, it had a shortened trailing edge of 0.48 inch radius with an adjustable slot located at X/C = .9951 on the upper surface. The reduced chord was 10.206 inches, the camber 3 percent, and the thickness ratio 0.214. Although slot width was adjustable by means of jack screws located every two inches along the span, tests were only conducted at a constant slot height of 0.016 inches. Figure 4 is a cross-sectional view depicting the location of the slot and the 54 midspan pressure taps.

CC AIRFOIL CROSSSECTIONAL VIEW DEPICTING MIDCHORD SURFACE PRESSURE TAP LOCATIONS FIGURE 4.

midchord 6, 9 and 10.5 inches from midspan, and 2 at the three-quarter chord 6 and 9 inches from midspan. Surface pressure tap locations are listed in Appendix A. In addition to the surface taps a pressure tap was located in the plenum.

The airfoil spanned the 24-inch width of the tunnel test section and protruded through the walls approximately four inches on either side. The portions of the slot not in the tunnel were permanently sealed. The model was fitted through and held in position by aluminum disks with elliptical openings centered on their axes of rotation. Through slip rings the airfoil and disks could be rotated as a unit to set the angle of attack. The no-blowing zero-lift value was found to be approximately -5 degrees. The airfoil section ends were capped by flat plates through which passed a 1.5-inch diameter supply line for slot injection air.

C. SLOT INJECTION AIR SYSTEM

1. Air Compressor

A Carrier, 3-stage, 300-Hp centrifugal compressor was used to supply the slot injection air. It had a 6.057-inch flow metering nozzle installed in its 12-inch diameter inlet pipe. The 8-inch outlet pipe entered a distribution manifold from which extended a bypass line to control surge and a 3-inch supply line to the test area. At the test site the supply line was reduced to a 1.5-inch diameter for compatibility with the mass-flow control system and airfoil.

2. Mass Flow Control

As illustrated in Fig. 5 the mass flow control system consisted of a mean flow control globe valve immediately downstream of a Fischer and Porter Rotameter (a variable area flow meter), an oscillation control valve developed by Bauman [29] approximately two additional feet downstream with a hotwire immersed in the center of the 1.5-inch steel pipe three feet beyond it, and bypasses for the Rotameter and the oscillation control valve.

The oscillatory control valve consisted of an elliptical Lucite cam which rotated inside a two-inch steel pipe to provide a cross-section area which varied as a sine function of twice its angular position. The maximum cross-section area of the valve was approximately equal to the total exit area of the airfoil slot.

A globe valve installed in the rotating valve bypass line provided control of the ratio of steady flow component to oscillating component of C_{μ} . C_{μ} , therefore, could be made a function of the form $C_{\mu} = A(1 + B \sin \omega t)$ where A and B were adjusted by means of the oscillatory bypass and mean flow control globe valves. The frequency ω was set by driving the rotating valve with the variable speed motor employed to rotate the shutter valve. Provision for mechanically introducing phase angles was designed into this drive.

FIGURE 5
MASS FLOW CONTROL

3. Mass Flow Measurements

The steady blowing mass flow rate was measured using the calibrated rotameter. Nonsteady injection mass flow rates were measured by a supply line hotwire anemometer calibrated against the rotameter in steady flow. The anemometer was used to set the mean injection rate and the injection oscillation amplitude. When setting the mean injection rate, the mean plenum pressure was used as a cross-reference. The hotwire signal was observed on an oscilloscope in order to monitor mass flow waveform.

D. WAKE TRAVERSING MECHANISM

A wake traversing mechanism shown in Fig. 6 was designed to provide a two-dimensional hotwire mapping of the wake at the quarter span. To enable examining the flow at a constant distance from the trailing edge, the track on which the mechanism rides was designed to pivot about the origin of the airfoil's trailing edge radius.

The angular drive mechanism was mounted in a common housing with the radial drive to reduce flow interference. The housing was 1.5 inches high, 6 inches across, and spanned 48 degrees. The angular drive permitted coverage of 72 degrees. Through a screw and track aligned on a radial line, the probe could be positioned radially from 0 to 2.0 inches from the wall. Probe location was reported electronically with resolution of 0.001 inches and 0.1 degrees.

FIGURE 6

HOT WIRE WAKE TRAVERSING MECHANISM

The entire mechanism was mounted on an aluminum base plate which in turn was bolted to the angle of attack disk on the far wall from the console. This permitted moving the mechanism with the airfoil when the angle of attack was changed. The tunnel far wall was selected to permit convenient visual observation of the mechanism by the operator and to enable determination of its flow interference effects (via the half and three-quarter chord pressure taps spanning that half of the airfoil). The uncertainty in the aerodynamic characteristics introduced by the traversing mechanism is C, dependent but in no case exceeded six percent. traversing mechanism was positioned on the airfoil mounting disk to place the separation region for C, = 0.04 in the denter of its field of view. This permitted evaluation of the entire range of C, without having to relocate the mechanism.

The hotwire probes were 5.5 inches long with a 0.125 inch diameter that was flared to 0.25 inches for the last 1.5 inches to facilitate mounting in the probe holder. The steel tips were 0.3 inches long, spaced 0.15 inches apart and spanned by 0.00015 inch diameter tungsten filaments. The filaments were copper plated at both ends to facilitate mounting and had effective sensing lengths of 0.085 inches. The hotwire signals were processed by a Security Associates Model 100 single channel, linearized constant temperature anemometer and then displayed on a digital voltmeter, an RMS meter, and an oscilloscope for data acquisition, Fig. 7.

WAKE TRAVERSING MECHANISM TEST CONSOLE

The anemometer output was calibrated to indicate 1 volt DC with the probe at -55 degrees, 2 inches out, a point assumed to be in the freestream. The mechanism was then rotated through the 72 degrees in increments which were adjusted to ensure coverage of the profile variations encountered. During the preliminary tests 15 data points for each radial distance were recorded. Subsequently, this was increased to 26 to improve profile definition. At each point, the angle from the chordline, the digital voltmeter DC value, and the true RMS voltage were recorded. The hotwire signal was also displayed on an oscilloscope for visual analysis. The same procedure was used for the steady and unsteady tests although the preliminary steady tests did not include RMS data acquisition.

E. PRESSURE DATA ACQUISITION SYSTEM

The airfoil surface pressure acquisition system illustrated in Fig. 8 employed two remote transducers connected via scanivalves to a number of surface points by means of an extended length of tubing. This technique reduces the possibility that the dynamics of the test setup may influence transducer response and is more cost effective, but there exists an additional complexity posed by the transfer function associated with the tubing.

A phase lag and amplitude decrease results as a signal of the form:

$$P_{i}(t) = \overline{P}_{i} + P_{i} \sin \omega t$$

FIGURE 8

SCHEMATIC OF THE SURFACE PRESSURE ACQUISITION SYSTEM

is transmitted from the airfoil surface through the 25.5 inches of 0.033-inch I.D. steel tubing and then via either 2- or 3-inch plastic tubing (coupling length depends on scanivalve) to the scanivalve, Fig. 9. The signal sensed by the pressure transducer in the scanivalve was of the form:

$$P_{o}(t) = \overline{P}_{i} + P_{o} \sin(\omega t + \phi)$$

where

 \overline{P} = mean pressure,

p = amplitude of unsteady pressure

 ϕ = phase shift (function of frequency)

and the frequency dependent dynamic gains is:

$$|G(\omega)| = p_0/p_i$$
.

To determine the dynamic gain and phase shift as functions of frequency, each scanivalve lead was connected via the same length tubing to a resonator and the output compared to that of a reference transducer as illustrated in Fig. 10. The acoustic drive of the resonator was located in the center of the cavity and from the two pressure taps provided comparative signals with an estimated accuracy of one degree in phase angle. The dynamic response curves for scanivalves

FIGURE 9
SCANIVALVE ATTACHMENT

SCHEMATIC DIAGRAM OF SCANIVALVE DYNAMIC CALIBRATION INSTRUMENTATION

FIGURE 10

1 and 2 are depicted in Fig. 11 and the associated static response curves are illustrated in Fig. 12.

This pressure sensing technique was first demonstrated and theoretically analyzed by Bergh [30,31]. Details of its application have been presented by Johnson [32] and Banning [33]. Briefly, with the transfer function of the pressure line determined, phases and amplitudes measured at the distal end were corrected by a numerical application of the inverse of the measured transfer function to yield the pressure history at the surface tap. The DC data were automatically logged by a Digitec printer during the steady flow tests. During the unsteady tests, the counter-timer was manually sequenced to permit recording the true RMS value of the pressure signal at approximately the same time the mean value was printed. The comparative steady-flow data were obtained in the same manner. For both the steady and unsteady tests, the DC signal was processed through a lowpass filter with a two second time constant.

A plenum pressure probe with its own transducer was incorporated as a cross reference to the injection pipe hotwire signal and to provide the clock for surface presure data correlation. The pressure waveform of the scanivalve channel being scanned could be displayed on a dual-beam oscilloscope with a channel of the alternate Scanivalve or the plenum. These signals could also be compared on the phasemeter although only order of magnitude data was obtainable. The pressure data acquisition system was

FIGURE 11 SCANIVALVE DYNAMIC FREQUENCY RESPONSE CURVES

FIGURE 12 STATIC TRANSDUCER CALIBRATION CURVES

estimated to be accurate to within 1 percent of mean pressure. In addition to surface pressures each scanivalve received $P_{\rm O}$, $P_{\rm T}$ and $P_{\rm atm}$ for calibration purposes. A plenum pressure line was also connected to a water manometer to provide the mean value of the steady and oscillating plenum pressure. Tunnel q was monitored by a micromanometer and pitot-static tube installed in the test section. Figure 13 is a photograph of the pressure data acquisition system console.

PRESSURE ACQUISITION SYSTEM CONSOLE

IV. CALCULATION OF BLOWING AND AERODYNAMIC COEFFICIENTS

A. STEADY FLOW

The steady blowing coefficient C_{ij} may be defined as:

$$c_{\mu} = \frac{\dot{m} \, v_{j}}{qs}$$

where m is the mass flow rate, V_j is the velocity of the Coanda jet at the slow, q is the test section dynamic pressure, and S the model planform area. Mass flow rate was obtained directly from rotameter readings. The jet velocity was obtained from the isentropic relationship

$$V_j = \{\frac{2R}{M} T_i (\frac{k}{k-1}) [1 - (\frac{p_{\infty}}{p_i})^{\frac{k-1}{k}}]\}^{1/2}$$

where i denotes a plenum value, and tunnel q was calculated from the freestream pitot-static measurements. Conventional aerodynamic coefficients defined by surface integrals were approximated by numerical integrations since data were available only at a finite number of pressure tap locations. The steady normal force, chord force, and pitching moment coefficients are:

$$c_N = \int_0^{1.0} (c_{p_{\ell}} - c_{p_{\ell}}) d(x/c)$$

$$C_{c} = \int_{Y/C(min)}^{Y/C(max)} (C_{p_{f}} - C_{p_{r}}) d(Y/C)$$

$$C_{M(TE)} = \int_{Y/C(min)}^{Y/C(max)} (C_{p_{f}} - C_{p_{r}}) (Y/C) d(Y/C)$$

$$+ \int_{0}^{1.0} (C_{p_{f}} - C_{p_{r}}) (X/C) d(X/C)$$

Including the effects of angle of attack and a moment transfer to the half and quarter-chord positions, these force coefficients may be written as the usual aerodynamic coefficients:

$$C_{L} = C_{N} \cos \alpha - C_{C} \sin \alpha$$

$$C_{D} = C_{N} \sin \alpha + C_{C} \cos \alpha$$

$$C_{M(C/4)} = C_{M(TE)} - 0.75 C_{N}$$

$$C_{M(C/2)} = C_{M(TE)} - 0.5 C_{N}$$

The conversion from pressure data to coefficient of pressure data, and the subsequent calculation of the aerodynamic coefficients were performed on a Hewlett-Packard Model 9830 calculator. The computer program may be found in Ref. [36].

B. OSCILLATING FLOW

For the unsteady blowing test, an oscillation was imposed on the mass flow in the air injection supply line such that the pipe hotwire indicated a velocity fluctuation of the form:

$$V_{pipe} = \overline{V}(1 + \varepsilon \sin \omega t)$$

where ϵ was varied from 0 to 0.4. For incompressible self-similar flow, this implies that

$$\dot{m} = \dot{m}(1 + \varepsilon \sin \omega t)$$

Therefore, assuming that the velocity amplitude ratio in the pipe was the same as that occurring at the slot,

$$C_{\mu}(t) = \frac{1}{m} \frac{v_{j}}{qS} (1 + \varepsilon \sin \omega t)^{2}$$

or

$$C_{u}(t) = \overline{C_{u}} \left[1 + 2\varepsilon \sin \omega t + \frac{\varepsilon^{2}}{2} (1 + \cos 2\omega t)\right]$$

with the maximum velocity amplitude ratio $\varepsilon=0.4$, $\varepsilon^2=0.16$ and as a first approximation, ε^2 was neglected. Then to first order $C_{\mu}(t)=\overline{C_{\mu}}$ (1 + 2 ε sin ωt). The implications of neglecting the second order term and assuming no transfer function from the pipe to the slot are discussed in Section V.

With m proportional to the pipe velocity, and thus the hotwire signal, the mass flow amplitude ratio was defined as

$$\varepsilon = \sqrt{\left[\frac{e_{RMS}}{\overline{e}}\right]^2_{oscillating} - \left[\frac{e_{RMS}}{\overline{e}}\right]^2_{steady}}$$

where $[\frac{e_{RMS}}{\overline{e}}]$ accounts for the turbulence intensity of the supply line in steady flow.

With the dynamic gain approximately equal to one for frequencies on the order of 10 Hz, numerical integration of the unsteady static pressure distribution can be performed in a manner similar to the steady pressure integration, provided relative phase information is available. Unfortunately the real time acquisition system designed and constructed by Englehardt [35] was not completed in time for the present investigation. With the exception of the no blowing harmonic resonance case examined by Pickelsimer [36], only mean and RMS pressure data could be obtained.

The pressure and lift coefficient amplification ratios, ϵ_{p} and ϵ_{L} , were defined in a similar manner to :

$$\varepsilon_{p} = \sqrt{\left[\frac{P_{RMS}}{\overline{p}}\right]^{2}_{oscillating} - \left[\frac{P_{RMS}}{\overline{p}}\right]^{2}_{steady}}$$

and

$$\varepsilon_{L} = \sqrt{\left[\frac{C_{LRMS}}{\overline{C}_{L}}\right]^{2}_{oscillating} - \left[\frac{C_{LRMS}}{\overline{C}_{L}}\right]^{2}_{steady}}$$

where \mathbf{C}_{LRMS} was obtained by running the aerodynamic coefficient program with the RMS pressure data.

V. RESULTS AND DISCUSSION

A. PRELIMINARY STEADY AND OSCILLATORY BLOWING TESTS $\label{eq:continuous} \text{Initial testing produced a dC_L/dC_μ of only one half }$ that reported by others for similar profiles. Examination of the composite model revealed the structure to be delaminating in the area of the injection slot.

Before repairing the airfoil, a temporary fix was performed to permit completion of the mass flow control evaluation reported by Bauman [29]. With oscillating mass flow rate amplitudes of up to 43% of the mean, no noticeable effect could be observed on the forward stagnation point. In fact, it was not possible to observe surface pressure fluctuations beyond the point of separation for $C_{\mu}=0.03$ or 0.05. These results raised questions as to the nature of the fluid dynamics occurring in the Coanda jet and the near-wake.

While the airfoil internal structure was being repaired and a steel slot lip constructed, the hotwire wake traversing mechanism was designed and constructed to allow investigation of the near-wake flow field. At the same time tunnel and surface pressure acquisition system calibrations were performed. These procedures and results were discussed in Section III.

B. STEADY FLOW, STEADY BLOWING TESTS

1. Airfoil Performance

With the steel slot lip installed, the slot height was set at 0.016 inches based on advice from Wilkerson.*

Under maximum pressurization for the range of blowing coefficients investigated, the slot height increased less than 15 percent, and did not show evidence of change during extensive testing.

The steady flow lift augmentation results are illustrated in Fig. 14 and associated aerodynamic characteristics are listed in Table I. For α_g = -5, the approximate zerolift geometric angle of attack, dC_L/dC_μ = 30.5. This data was compiled without incorporation of wall and effective angle of attack corrections because of the need for comparable data to that obtained in the unsteady tests where such corrections are not possible. Although the augmentation appears well below the value of 70 obtained by Englar [21], it is felt that results to follow are indicative of what could be obtained on a production airfoil.

Of note is the linear relationship existing between the ratio of plenum-to-jet pressure, PR = p_j/p_i and the blowing coefficient, C_μ as shown in Fig. 15. Treating the jet pressure at the slot as the value obtained at tap 22

^{*}Personal communication

TABLE I
STEADY FLOW, STEADY BLOWING AERODYNAMIC CHARACTERISTICS

RUN	c_{L}	C _D	C _{M(C/4)}	C _M (C/2)		
$\alpha = -5^{\circ}$						
32501	0.0080	0.0483	-0.1173	-0.1163		
32502	0.7252	0.0423	-0.3354	-0.1558		
32503	1.0360	0.0461	-0.4211	-0.1641		
32504	1.5109	0.0790	-0.5588	-0.1842		
32505	2.0111	0.1126	-0.7129	-0.2145		
$\alpha = 0^{\circ}$						
32506	0.4311	0.0557	-0.1101	-0.0023		
32507	1.1979	0.0482	-0.3210	-0.0216		
32508	1.5746	0.0596	-0.4211	-0.0334		
32509	2.0272	0.0833	-0.5558	-0.0490		
32510	2.5412	0.1197	-0.6962	-0.0609		
$\alpha = 4^{\circ}$						
33101	0.9619	0.0525	-0.1299	0.1109		
33102	1.8540	0.0704	-0.3763	0.0873		
33103	2.1499	0.0742	-0.4611	0.0764		
33104	2.5190	0.1113	-0.5587	0.0715		
33105	2.9507	0.1195	-0.6950	0.0789		
$\alpha = 8^{\circ}$						
33106	1.3341	0.0515	-0.1259	0.2061		
33107	1.8004	0.0930	-0.2594	0.1896		
33108	1.9301	0.1095	-0.2803	0.2013		
33109	2.3029	0.1726	-0.4061	0.1700		
33110	2.7566	0.1395	-0.4744	0.2129		

COMPARISON OF JET-TO-PLENUM PRESSURE RATIOS AS A FUNCTION OF C_{\mu} FOR VARIOUS \alpha

(0.15 inches upstream of the slot), d(PR)/dC $_{\mu}$ varied from -1.15 to -1.25 depending on angle of attack.

Figures 16 and 17 illustrate the upper surface pressure variation with spanwise distance from the wall at mid-chord and three-quarter chord respectively. From these plots and through tests with tufts and a wand, it was concluded that the wall interference propagated not more than three inches from the wall at the trailing edge.

2. Trailing Edge Flow Environment

Trailing edge pressure distributions for the C_{μ} tested at α_g = -5° are illustrated in Fig. 18. As noted in Section I, the Coanda sheet separates when the pressure coefficient reaches a positive near-constant value just beyond the suction peak. Thus for the blowing cases, separation in terms of the angular coordinate measured from the slot lip ranges from 70 to 100 degrees for C_{μ} between 0.02 and 0.07.

Kind [18] and Gibbs [20] assert that the near constant value defines a separation bubble which extends over 100 degrees beyond the Coanda jet separation point for low blowing rates. The lower limit of the bubble defines the lower surface boundary layer separation point, (for typical rotor Reynolds numbers, the boundary layer is turbulent). In plotting the pressure distribution versus Y/C, this region becomes more evident, Fig. 19. A review of $\rm C_p$ data for $\rm C_p$ from 0.0089 to 0.0854 indicated that the lower boundary layer

FIGURE 16
CREFFICIENT OF PRESSURE VS DISTRNCE FROM WALL
ALONG M.SM*CX/C) FOR ALPHO = -5

FIBURE 17
COEFFICIENT OF PRESSURE VS DISTANCE FROM WALL
FLONS B.75*CX/C) FOR ALPHA = -5

COEFFICIENT OF PRESSURE VS THETH FOR ALPHA = -5

RETAR PRESSURE DISTRIBUTIONS VS Y/C FOR VARIDUS CHIL RLPHR-S

61

separation point occurred between 170 and 190 degrees from the slot. No information existed concerning correlation of bubble depth to C_{jj} .

3. Wake Traversing Mechanism Effects on Airfoil Performance

With the wake traversing mechanism installed, flow blockage was observable at 1.5 inches and to a lesser extent at 3 inches from the wall. At the quarter-span, the pressure coefficients varied as a function of C_μ and seemed to have the greatest deviation from the unobstructed flow results in the range of C_μ less than 0.03. Figure 20 is a comparison of typical pressure data obtained with and without the mechanism installed. Additional spanwise pressure data are contained in Appendix B. Note that at values of C_μ greater than 0.035, the ratio $C_{\rm p(b/4)}$ to $C_{\rm p(b/2)}$ decreases less than 4 percent from the half to three-quarter chord with the mechanism installed. Therefore, at least for C_μ greater than 0.035, it is assumed that the flow reaching the hotwire was two-dimensional and indicative of that measured at midspan.

This conclusion is consistent with the lift augmentation results compared in Fig. 21. For C_μ between 0.01 and 0.025 the C_L loss reached 30 percent, but for C_μ greater than 0.035 the loss was less than 5 percent. For C_μ greater than 0.055 the influence of the mechanism was not detectable.

The aerodynamic characteristics obtained with the mechanism installed are listed in Table II. As shown in Fig. 22, the influence of the mechanism on pressure drag was small.

FIGURE 20 CDEFFICIENT OF PRESSURE VS DISTRNCE FROM WALL ALONG B.50*(X/C) FOR ALPHR = -5

TABLE II

STEADY FLOW, STEADY BLOWING AERODYNAMIC CHARACTERISTICS WITH THE WAKE TRAVERSING MECHANISM INSTALLED

RUN	c^{Γ}	S	C _{M(C/4)}	C _{M(C/2)}
50201	1.0881	0.5900	0.0621	
51003.1	1.1836	0.0733	0.4795	-0.1863
51003.2	-0.0521	-0.0160	0.0238	0.0112
51002	1.2088	0.0130	-0.4884	-0.1889
51011	0.1555	0.0214	-0.1713	
51012	0.2517	0.0404	-0.1991	
51013	0.4402	0.0392	-0.2314	
5130.1	0.0067	0.0148	0.0020	0.0033
51301	1.2560	0.0725	-0.4815	-0.1702
51701	1.4971	0.0511	-0.5418	
52001	2.7322	0.1077	-0.8917	-0.2136
52002	2.6563	0.1208	-0.8854	-0.2265
52002.1	0.0765	0.0315	-0.0308	-0.0124
52601	1.3785	0.0598	-0.5282	-0.1862
52604	1.8370	0.0991	-0.6594	-0.2040
52603	1.3103	0.0849	-0.4942	-0.1697
52602	1.3531	0.0604	-0.5317	-0.1960
52605.1	0.0536	0.0328	-0.0295	-0.0169
52604.1	0.0090	0.0094	-0.0037	-0.0017
52603.1	0.0650	0.0392	-0.0403	-0.0250
52602.1	0.0575	0.0164	-0.0175	-0.0036
52605	1.9903	0.0651	-0.6801	-0.1858
52601.1	0.0107	0.045	-0.0039	-0.0013

4. Wake Survey

The initial purpose of the wake traversing mechanism was to provide a means to map near-wake velocity distributions and to permit observation of the flow phenomena occurring just beyond the separation bubble. The mechanism was also to provide diagnostic information that could be correlated during oscillatory blowing with surface static pressure results to assist in identifying the contributing mechanics to the unsteady aerodynamic transfer functions.

After conducting preliminary tests, it became evident that the hotwire traversing mechanism could provide information sufficient to define the location of separation of the Coanda jet. The objective of these tests was accordingly expanded to include occrelation of the location of separation with flow parameter variation.

Determination of the initial location of the wake traversing mechanism required reference to the trailing edge pressure data. With separation occurring roughly between 70 and 100 degrees from the slot for C_{μ} between 0.02 and 0.07, the mechanism was located to span 48 to 120 degrees.

Figures 23 and 24 are examples of the mean velocity data obtained for a range of hotwire distances from the surface of 0.025 to 0.75 inches. Except for evidence of the velocity maximum for 0.025 inches in Fig. 24 (the higher C₁₁ case), the first 25 degrees offered little useful information.

RELATIVE VELDCITY VS THETA FOR ALPHA = -5 CMU = 0.0332 0.025, 0.05, 0.1, 0.15, 0.25, 0.375, 0.5, 0.75 IN. FROM SURFACE

68

Moreover, only a partial picture of the velocity minimum side of the wake was obtained. In order to permit mapping of the entire wake including the shear layer, the mechanism was relocated to span 79.4 to 151.4 degrees (15 degrees above the chord line to 55 degrees below it).

Figures 25 and 26 illustrate the behavior of the mean velocity in the vicinity of the near-wake. In comparing the 0.75 and 1.5-inch (surface distance) velocity profiles for $C_{\mu}=0.0215$, it appeared that the velocity might be approaching a constant value for theta greater than 125 degrees. When the probe was traversed at 151.4 degrees out to 2 inches, the velocity increased less than 4 percent passing 1.75 inches and was steady from there out to 2 inches. A similar behavior was observed at higher C_{μ} 's.

For the remainder of the surveys, the velocity data was normalized adopting the value at 151.4 degrees, 2 inches out as the freestream reference value.

From the mean velocity data there did not appear to be sufficient information to determine the location of the rear stagnation streamline. The expected maximum-minimum velocity profiles across the wake were obtained, but it was not clear whether the streamline intersected the points of minimum velocity or the midslopes between the maximums and minimums. The maximum velocity points were excluded for they yielded at 0.025 inches from the wall, streamline positions further above the chord line than theta (separation) determined from corresponding C_D data.

As illustrated in Fig. 27, there was a wide region close to the surface where the flow velocities were low and nearly constant. The point of minimum velocity was defined as the point of maximum change in the shear stress in this region.

When turbulence intensity data were compared to corresponding C_p data as in Fig. 28, the point of peak turbulence at 0.025 inches from the wall was within 2 degrees of the point of separation, and corresponded to the midslope point, Fig. 27. The minimum velocity points were 5 to 10 degrees beyond the midslope points and thus are not indicative of the point of separation.

Figure 29 depicts the stagnation streamlines based on the "midslope" criteria for representative values of $C_{\mu}.$ As C_{μ} increased the streamlines appeared to become unsteady, and the detachment angle increased.

Figure 30 is a composite picture of the near-wake constructed from data illustrated in Fig. 27. Figure 31 shows velocity profiles in the boundary layers of the trailing edge for various angular position from the chord line. As discussed by Collins and Simpson [37], it is not possible to tell the local flow direction from the mean felocity data. The inflection point apparent at 2.5 degrees may well indicate a flow reversal. The turbulence intensity data for the case presented in Fig. 32 suggest separation occurred between 5 and 7.5 degrees above the chord plane but the precise point of separation is not indicated.

FIGURE 27

NONDIMENSIONAL MEAN VELOCITY AND TURBULENCE INTENSITY PROFILES
VS THETA FOR ALPHA-S CHU- 8.8451, 8.825 TO 1.75 IN. FROM SURFACE

FIGURE 29

NEAR-WAKE STAGNATION STREAMLINES DETERMINED FROM MIDSLOPE METHOD FOR VARIOUS BLOWING COEFFICIENTS WITH α =-5°

FIGURE 30

REPRESENTATIVE VELOCITY PROFILES AND TURBULENCE INTENSITY IN NEAR-WAKE FOR α =-5, C_{μ} =0.0451

FIGURE 31

BOUNDARY LAYER PROFILES OVER THE TRAILING EDGE AS A FUNCTION OF ANGULAR POSITION FOR ALPHA = -5 C $_{\mu}$ = 0.0451

FIGURE 32

COMPARISON OF TURBULENCE INTENSITY VS DISTANCE FROM SURFACE AS A FUNCTION OF ANGULAR POSITION FOR ALPHA = -5 CML = 8.8451

Figure 33 depicts the location of separation based on the point of peak turbulence intensity at 0.025 inches from the surface, as a function of C_{μ} . The corresponding relationship of separation point location compared with lift coefficient is plotted in Fig. 34. The flow anomaly apparent on both graphs was accompanied by a sinusoidal waveform superimposed on the turbulent signal as indicated in Fig. 35. No fluctuation was observable in the plenum.

Englar [9] indicated that shed vorticity occurs at the wall-airfoil boundary layer interface over the aft portion of the airfoil in two-dimensional CC testing. This three-dimensional effect appreciably influences the flow close to the wall. As noted in Section V.B.3, the wake traversing mechanism caused reduced lift augmentation and influenced the spanwise pressure distribution up to 6 inches from the wall at lower blowing rates (below 0.035). Thus the wake traversing mechanism appeared to increase vortex shedding. However, examination of the spanwise pressure coefficient data vs. C_{μ} provided no insight as to the specific cause of the sinusoidal waveform or the flow anomaly.

With the occurrence of the flow anomaly, there was not sufficient information to formulate a mathematical correlation between the separation point and the lift and blowing coefficients.

SEPARATION POINT IN DEGREES FROM SLOT VS LIFT COEFFICIENT

FIGURE 35

Wake Hotwire vs Plenum Pressure for C_{μ} = 0.0258 (10 msec/cm; Top: Hotwire 76° from slot, 0.025" from wall, 1 v/cm; Bottom: Plenum Pressure, 0.1 v/cm)

C. TESTS WITH OSCILLATING INJECTION

The objective of this portion of the investigation was to assess the feasibility of employing a CC airfoil with a modulated blowing coefficient of the form:

$$C_{\mu}(t) = \overline{C}_{\mu}(1 + \varepsilon \sin \omega t)$$

for ϵ of the order of unity.

The range of frequencies applicable to helicopter aero-dynamics when scaled to the model is roughly from 3 to 10 Hz. Below about 5 Hz data acquisition by analog readout becomes a problem because of instrument limitations. More-over, the quality of the mass flow rate waveform decays with decreasing frequency. Thus 9 Hz was the minimum frequency available with an acceptable waveform.

1. Pressure Wave Propagation

The first portion of these tests addressed the question of whether or not the modulated blowing created a pressure wave which propagated around the airfoil. To determine this the plenum pressure signal and that from taps in the region of the forward stagnation point, and the upper and lower midchord points were examined on a dual beam oscilloscope. Figures 36 and 37 illustrate typical waveforms observed. Note the plenum pressure appears to lead the forward stagnation signal by 180 degrees.

As shown in Fig. 38 the pressure perturbation over the lower surface of the airfoil was obscured by tunnel noise.

FIGURE 36

COMPARISON OF PRESSURE WAVEFORMS FOR C_{μ} = 0.0854, ϵ = 27.4%, f = 9 Hz (50 msec/cm; 0.1 v/cm)

FIGURE 37

COMPARISON OF PRESSURE WAVEFORMS FOR C_{μ} = 0.0457, ϵ = 47.4% AND C_{μ} = 0.0645, ϵ = 30.2% FOR f = 9 Hz (50 msec/cm)

FIGURE 38 COMPARISON OF PRESSURE WAVEFORMS FOR C_{μ} = 0.045 WITH ϵ = 30%, f = 9 Hz vs f = 0 (50 msec/cm)

Although the DC signals were filtered and steady RMS signals were subtracted from the observed unsteady data, it has not been determined what effect this noise has in wave propagation over the airfoil. However, what is suggested is that the momentum flux occurring at the slot induces a fluctuating rate of entrainment, and that the primary signal propagation is over the upper surface of the airfoil.

From the previous three figures, it is apparent that for relatively large values of ϵ the pressure fluctuation does propagate over the airfoil, but with substantial attenuation. What this means in terms of lift augmentation is illustrated in Table III. No conclusive trends concerning lift augmentation were observed. In only 3 of the 5 cases where RMS data were taken did ${^{\prime}C_L^{2}}^{>1/2}+\overline{C}_L \stackrel{\sim}{-} C_L$ STEADY. The associated drag and moment coefficients listed in Table IV also provided no correlation with $C_{\mu}(t)$. The limit of ϵ available at $C_{\mu}=0.045$ was approximately 65%, while for $C_{\mu}=0.085$ only 30% could be obtained because of air supply limitations.

2. The Near-Wake in Oscillatory Blowing

The near-wake behavior of the mean velocity and turbulence intensity is illustrated in Figs. 39, 40, and 41. The slope of the mean velocity changes slightly, but the significant information appears to lie in the change in the turbulence intensity. As noted in Figs. 39 and 42 there appears to be a region of near-constant maximum intensity which becomes wider with increasing oscillation

TABLE III

BLOWING AND LIFT COEFFICIENTS FOR STEADY FREESTREAM, OSCILLATORY BLOWING

ECL (* of CL)	0	5.1	4.9		2.65	9.7	
$\langle c_{\rm L}^2 \rangle^{\frac{k_2}{2}}$.0067	.0521	.0650		.0536	.0765	
$\langle c_{ m LS}^2 \rangle^{\frac{1}{2}}$.0107		0600.		
$\frac{^{\Lambda C}_{L}}{^{C}_{LS}}$	4.5	- 2.1	- 4.9	10.3*	8.3	- 2.8	
$_{ m r}^{ m c}$	1.2560	1.1836	1.3103	1.4971	1.990	2.6563	
c_{LS}	1,2018	1,2088	1.3785	1,3561	1.837	2.7322	
$\frac{\varepsilon}{c_{\mu}}c_{\mu}$	15.4	23	47.4	9	30.2	27.4	
ບື	.0441	.0438	.0457	.0451	.0645	9580.	

* signal not passed through low-pass filter

TABLE IV

	STEADY FLOW,	9 Hz	ATORY BLOW	VING AERC	OSCILLATORY BLOWING AERODYNAMIC CHARACTERISTICS	ACTERISTICS	
RUN NUMBER	TYPE	ວ [ື]	$^{ m T}_{ m D}$	СБ	C _M (C/4)	C _M (C/2)	
51303 51301 51301.1	SB MOB ROB	0.0441	1.2018 1.2560	.0737	4826 4815 .0020	1849 1702 .0033	
\$1002 \$1003.1 \$1003.2	SB MOB ROB	0.0438	1.2088 1.1836 .0521	.0732	4884 4795 0238	1889 1863 0112	
52601 52601.1 52603 52603.1	SB RSB MOB ROB	0.0457	1.3785 .0107 1.3103 .0650	.0598 .0045 .0849	5282 0039 4942 0403	1862 0013 1697 0250	
51701 51702	SB MOB	0.0451	1.3561	.0732	5353	1990	
52604 52604.1 52605 52605.1	SB RSB MOB ROB	0.0645	1.8370 .0090 1.9903 .0536	.0991 .0094 .0651	6594 0037 6801 0295	2040 0017 1858 0169	
52001 52002 52002.1	SB MOB ROB	0.0856	2.7322 2.6563 .0765	.1077 .1208 .0315	8917 8854 0308	2136 2265 0124	
	SB 80	Steady Blowing Oscillatory Blowing	owing	M Mean R RMS			

VS THETH FOR ALPHR =-5 CMU= B.B457 AT B.B25 IN. FROM SURFRCE

94

amplitude. This suggests for example that the separation angle fluctuates about a mean of 83 degrees with roughly an 8-degree variation for ϵ = 65%, C_{μ} = 0.045. The unsteady variation is about 5 degrees less than one would expect for a quasi-steady flow based on steady flow measurements. For ϵ = 47.4% nearly the same results were obtained. Figures 43 and 44 for C_{μ} = 0.0645, ϵ = 30.2% and C_{μ} = 0.0853, ϵ = 27.4% indicate virtually no change in the mean location of the separation point. With the capability to acquire unsteady data now available at the Naval Postgraduate School, it should be possible for future investigators to correlate the instantaneous separation point to the fluctuating blowing.

Figure 45 illustrates that the pressure perturbation propagates around the trailing edge separation bubble, but with noticesable attenuation.

D. OSCILLATING FREESTREAM, STEADY BLOWING TEST

With the 3-inch blades rotating at 9 Hz, an amplitude ratio of 10.9 percent of the freestream was obtained. As illustrated in Fig. 46, the pressure signal at tap 1 was considerably cleaner than the signals observed during oscillatory blowing. Also illustrated is the fact that an oscillation in the freestream imposed an oscillation in the plenum of substantial amplitude.

Figure 47 indicates there is little change induced in the wake turbulence intensity by the oscillating freestream and no perceptible separation point oscillation. The influence

NOND I MENSIONAL MEAN VELOCITY AND TURBULENCE INTENSITY PROFILES VS THETH FUR BLPHR--S CHU- B.BG45 AT B.BZ5 IN. FROM SURFINCE

VS THETR FOR ALPHRA-S CMU- 8.8853, 8.825 TO 8.25 IN. FROM SURFRICE NONDIMENSIONAL MEAN VELOCITY AND TURBULENCE INTENSITY PROFILES

(I v/cm)
WAKE HOTWIRE
-5°, 0.25"

PLENUM

(0.5 v/cm)

WAKE HOTWIRE

-55°, 0.25"

-55°, 0.025"

FIGURE 45

COMPARISON OF WAKE HOTWIRE AND PLENUM PRESSURE WAVEFORMS FOR C_{μ} = 0.0645, ϵ = 30.2%, f=9 Hz (50 msec/cm)

TAP 1, 0.5 wcm .

PIPE HOTWIRE O.1 v/cm

WAKE - 970.1"

WAKE -99 0.025", l v/cm

PLENUM
O.1 v/cm

FIGURE 46

PRESSURE AND VELOCITY WAVEFORMS FOR FREESTREAM OSCILLATING AT 9 Hz, €=10.9% (50 msec/cm)

NONDINENSIONAL MEAN VELOCITY AND TURBULENCE INTENSITY PROFILES VS THETH FOR RLPHR--5 CMJ- B.B44S RT B.B25 IN. FROM SURFRCE

of the freestream oscillation on the aerodynamic characteristics is indicated in Table V. In the oscillating freestream, the mean lift effects appear to be similar to those encountered with oscillatory blowing. Only the RMS pressure drag increased substantially.

TABLE V

COMPARISON OF STEADY AND OSCILLATING FREESTREAM AERODYNAMIC CHARACTERISTICS WITH STEADY BLOWING

	STEADY	OSCILLATING	ε(%)
¯c _r	1.3785	1.3531	- 1.8
«C _L ² > ½	.0107	.0575	4.2
¯ _{M(C/2)}	1862	1960	- 5.3
$\langle C_{M(C/2)}^2 \rangle^{\frac{1}{2}}$	0013	0036	1.7
\overline{c}_{D}	.0598	.0604	1.0
<c<sub>D²> ½</c<sub>	.0045	.0164	26.1

VI. CONCLUSIONS

The mean values of sectional aerodynamic characteristics for a typical CC Airfoil with steady and oscillating blowing have been determined by direct integration of surface pressure data. In the oscillatory blowing case, selected amounts of unsteady pressure data have been obtained but integration of pressures to obtain aerodynamic transfer functions has not yet been obtained. The oscillatory blowing was produced by a variable area rotating cam in the injection supply line which yielded sinusoidal mass flow rate fluctuation with blowing amplification ratios from 0 to 0.65. Flow in the near-wake was monitored by a constant temperature hotwire anemometer which could be traversed 72 degrees around the trailing edge at a constant distance 0.025 to 2.0 inches from the surface. The velocity profile data were compared with surface pressure data to devise a means of locating the Coanda jet separation point.

From the results the following conclusions may be drawn:

- 1. Mass flow modulation produced no evident increase of mean or average lift augmentation over that produced by steady injection for oscillation amplitudes as high as 65 percent of C_{11} , as shown in Table III.
- Oscillatory blowing induced oscillatory entrainment which in turn was the main contributor in transmitting pressure waves to the forward stagnation point.

- 3. The peak turbulence intensity in the wake, as indicated by a hotwire survey, is an accurate means of locating the point of separation and is in agreement with surface pressure measurements.
- 4. Because of the occurrence of the flow anomaly discussed in Section V, no simple separation point predictive criteria could be formulated.

APPENDIX A
SURFACE PRESSURE TAP LOCATIONS

Tap No.	x (in.)	x/c	y (in.)	у/с
1	0.0	0.0	0.0	0.0
2	0.012	0.0012	0.084	0.0083
3	0.060	0.0059	0.173	0.0170
3	0.119	0.0117	0.247	0.0242
	0.213	0.0209	0.335	0.0328
5 6	0.314	0.0308	0.406	0.0398
7	0.517	0.0507	0.528	0.0517
8	0.949	0.0930	0.728	0.0713
9	1.431	0.1402	0.897	0.0879
10	1.929	0.1890	1.038	0.1017
11	2.433	0.2384	1.149	0.1126
12	2.848	0.2791	1.224	0.1199
13	3.954	0.3874	1.357	0.1329
14	5.093	0.4990	1.396	0.1368
15	6.098	0.5975	1.347	0.1320
16	7.130	0.6986	1.226	0.1201
17	7.635	0.7481	1.134	0.1111
18	8.021	0.7859	1.053	0.1031
19	8.670	0.8459	0.881	0.0863
20	9.191	0.9005	0.713	0.0698
21	9.400	0.9210	0.635	0.0622
22	9.598	0.9404	0.560	0.0549
23	9.801	0.9603	0.482	0.0472
24	9.949	0.9748	0.410	0.0402
25	10.053	0.9850	0.339	0.0332
26	10.135	0.9930	0.245	0.0240
27	10.182	0.9976	0.145	0.0142
28	10.193	0.9987	0.090	0.0088
29	10.206	1.0000	0.0	0.0
30	10.194	0.9988	-0.118	-0.0115
31	10.052	0.9947	-0.223	-0.0219
32	10.109	0.9905	-0.307	-0.0301
33	10.040	0.9837	-0.349	-0.0342
34	9.919	0.9719	-0.448	-0.0439
35	9.769	0.9572	-0.524	-0.0514
36	9.590	0.9396	-0.580	-0.0569
37	8.552	0.8379	-0.695	-0.0681
38	7.946	0.7786	-0.740	-0.0725
39	7.562	0.7409	-0.758	-0.0742
40	7.042	0.6900	-0.775	-0.0759
41	6.023	0.5901	-0.786	-0.0770
42	5.101	0.4998	-0.788	-0.0772
43	4.005	0.3924	-0.772	-0.0756
44	2.885	0.2827	-0.736	-0.0721

Tap		X		x/c	Y .	7	7/c
No.		(in.)			(in.)		
45		2.480		0.2430	-0.708	-(0.06944
46		1.969		0.1929	-0.658	-(0.0645
47		1.471		0.1441	-0.594	-(0.0582
48		0.953		0.0934	-0.517	-(0.0506
49		0.515		0.0505	-0.416	-(0.0408
50		0.345		0.0338	-0.349	-(0.0342
51		0.229		0.0224	-0.285	-(0.0280
52		0.119		0.0117	-0.214		0.0210
53		0.053		0.0052	-0.145		0.0142
54		0.009		0.0009	-0.070		0.0069
	Uppr.	surf.	spcl.	tubes			
55		5.108		0.5004	6.0	inches	
56		5.093		0.4990	9.0	"	Distance
57		5.095		0.4992	10.5		Stb'd.
31		3.033		0.4332	10.5		from
58		7.631		0.7477	6.0	inches	center
59		7.631		0.7477	9.0		Center

FIGURE BISTANCE FROM WALL RICHE B. 75*CX/C) FOR ALPHA = -5

FIGURE B2 CHEFFICIENT OF PRESSURE VS DISTRNCE FROM WALL BLONG A.SA*CX/C) FOR ALPHR = -S

APPENDIX C

Hotwire Data for Near-Wake Mapping at $C_{\mu} = 0.0451$

RUN NUMBER	51701 DISTANCE	FROM SURFACE	(IN.) 1.75
POINT	THETA(CHORD)	MERH VEL	RMS VEL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	17 15 18 5 9 -5 -10 -15.9 -15.9 -24.9 -27.4 -38 -37.4 -35 -48.1 -49.9	1.195 1.187 1.16 1.16 1.125 1.12 1.11 1.1 1.15 1.205 1.185 1.185 1.185 1.005 1.008 1	6.50000E-03 6.80000E-03 7.50000E-03 8.50000E-03 0.0108 0.0155 0.067 0.115 0.16 0.163 0.163 0.165 0.165 0.165 0.165 0.17
19	-55	1 03	7 000000=00

BEST AVAILABLE COPY

PHIN	NUMBER	51792	DISTANCE	FROM	CHOCACE	CTN Y	0 025
16 6114	110110	and do I had been	ATOLINE	C 15 (31)	SUBTRUCE	1 1110	0.060

POINT	THETA(CHORD)	MEAN VEL	RMS VEL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	17 14.9 12.4 9.9 7.5 5 2.5 0 -2.6 -5.1 -7.6 -10 -15 -20 -24.9 -35.1 -40 -44.9	2.035 1.935 1.88 1.75 1.64 1.36 1.1 0.83 0.55 0.41 0.35 0.288 0.245 0.245 0.213 0.165 0.12	0.15 0.155 0.165 0.195 0.25 0.31 0.34 0.315 0.24 0.19 0.155 0.114 0.088 0.082 0.074 0.058 0.053
20 21	-50 -55	0.095 0.085	0.047 0.043

RUN NUMBER 51703 DISTANCE FROM SURFACE (IN.) 0.05

POINT	THETA(CHORD)	MEAN VEL	RMS VEL
123456789910112345678991222	17.1 15.3 10.5 10.5 2.5 2.5 2.5 -2.1 -10.5 -2.2 -2.2 -3.4 -10.5 -2.2 -3.4 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 -4.5 -4	1.36 1.945 1.88 1.88 1.78 1.65 1.43 1.1 0.65 0.46 0.33 0.25 0.25 0.24 0.108 0.12 0.12	9.157 9.151 9.154 9.16 9.18 9.335 9.331 9.335 9.34 9.3 9.18 9.33 9.18 9.18 9.18 9.18 9.18 9.18 9.18 9.18

RUN NUMBER 51704 DISTANCE FROM SURFACE (IN.) 0.1

POINT		THETH(CHORD)	MEAN VEL	RMS VEL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 22	4	17.1 15.1 12.5 10 7.4 4.9 2.6 9.5 -7.5 -9.2 -15.5 -15.5 -24.9 -35.9 -39.9 -40.1 -55	1.6 1.61 1.66 1.75 1.82 1.82 1.82 1.82 1.82 1.85 0.62 0.62 0.42 0.35 0.35 0.28 0.185 0.185 0.185	0.17 0.195 0.21 0.21 0.19 0.175 0.165 0.37 0.38 0.37 0.38 0.35 0.31 0.23 0.17 0.11 0.095 0.07

RUN NUMBER 51705 DISTANCE FRUM SURFACE (IN.) 0.25

POINT	THETA(CHORD)	MEAH VEL	RMS VEL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	17.1 12.7 10 4.9 2.5 0 -2.7 -5.1 -7.6 -9.9 -12.6 -15 -17.5 -20.5 -29.9 -34.9 -39.9 -39.9 -44.8 -50.2 -55	1.385 1.34 1.29 1.24 1.225 1.36 1.46 1.55 1.63 1.62 1.47 1.28 1.62 1.62 1.47 1.28 1.62 1.63 1.62	0.025 0.021 0.021 0.021 0.041 0.07 0.13 0.22 0.22 0.28 0.35 0.41 0.42 0.38 0.16 0.12 0.13

KON NOWBEK	51706 DISTANCE	FROM SURFACE	(IN.) 0.375
POINT	THETA(CHORD)	MEAH VEL	RMS VEL
1 23 45 67 89 10 11 12 13 14 15 16 17 18	17 12.5 10.1 5.1 0 -5 -7.6 -10 -12.3 -15.3 -17.7 -20 -25 -27.8 -30.1 -32.5 -40.1	1.39 1.345 1.325 1.235 1.16 1.14 1.2 1.35 1.47 1.55 1.55 1.38 1 0.78 0.58 0.41 0.41	9.018 9.016 9.016 9.018 9.029 9.13 9.21 9.23 9.35 9.44 9.33 9.44 9.4
19 20	-44.8 -49.8	0.78 0.87	0.11 0.08
21	-55	0.97	0.045

POINT THETA(CHORD) MEAN VEL RMS VEL 1 17.1 1.42 0.013 2 10.2 1.35 0.017 3 5 1.285 0.02 4 0 1.285 0.025 5 -5.1 1.17 0.035 6 -10.2 1.14 0.08 7 -12.5 1.19 0.14 8 -14.9 1.37 0.22 9 -17.8 1.44 0.24 10 -19.9 1.515 0.27 11 -22.7 1.39 0.38 12 -25 1.25 0.42 13 -27.7 1.08 0.42 14 -30.2 0.82 0.37 15 -32.4 0.7 0.34 16 -35 0.57 0.24 17 -37.7 0.61 0.16 18 -40.1 0.68 0.058 20	RUN NUMBER	51707	DISTANCE	FROM SURFACE	(IN.) 0.5
2 10.2 1.35 0.017 3 5 1.285 0.02 4 0 1.23 0.025 5 -5.1 1.17 0.035 6 -10.2 1.14 0.08 7 -12.5 1.14 0.08 7 -12.5 1.19 0.14 8 -14.9 1.37 0.22 9 -17.8 1.44 0.24 10 -19.9 1.515 0.27 11 -22.7 1.39 0.38 12 -25 1.25 0.42 13 -27.7 1.08 0.42 14 -30.2 0.32 0.37 15 -32.4 0.7 0.34 16 -35 0.57 0.24 17 -37.7 0.61 0.16 18 -40.1 0.68 0.058 20 -50.1 0.9 0.03	POINT	THET	A(CHORD)	MEAN VEL	RMS VEL
0.700	11 12 13 14 15 16 17 18 19 20	10. 5 0 -5.1 -10121719225 -23632354545.	2 5 9 9 7 7 2 4 7	1.35 1.285 1.23 1.17 1.14 1.19 1.37 1.44 1.515 1.39 1.25 1.08 0.82 0.7 0.61 0.68 0.86	0.017 0.025 0.025 0.035 0.14 0.24 0.24 0.34 0.34 0.12 0.058 0.03
		90		0.700	0.021

POINT THETA(CHORD) MEAN VEL RMS VE 1 17.1 1.39 0.013 2 10.1 1.31 0.013 3 5.1 1.27 0.014 4 0 1.227 0.018 5 -5.1 1.16 0.023 6 -10.2 1.11 0.047 7 -12.3 1.11 0.055 8 -15 1.13 0.11 9 -20.1 1.3 0.21 10 -25.2 1.39 0.3 11 -29.9 1.23 0.34 12 -32.4 1.08 0.34	RUN HUMBER	RUN 1	MBER :	51708	DISTANCE	FROM	SURFACE	(IN.)	0.75	
2 10.1 1.31 0.013 3 5.1 1.27 0.014 4 0 1.227 0.018 5 -5.1 1.16 0.022 6 -10.2 1.11 0.047 7 -12.3 1.11 0.055 8 -15 1.13 0.11 9 -20.1 1.3 0.21 10 -25.2 1.39 0.3 11 -29.9 1.23 0.34 12 -32.4 1.08 0.34	POINT	POIN		THE	TA(CHORD)	MER	AN VEL	Rh	18 YEL	
13 -35 0.89 0.23 14 -40.2 0.845 0.1 15 -42.3 0.89 0.053 16 -45 0.91 0.04 17 -50.1 0.98 0.023 18 -55 1.02 0.019	10 11 12 13 14 15 16	10 11 12 13 14 15 16		10 5. 9 -5. -12 -125 -225 -229 -32 -42 -42 -450	.1 1 .2 .3 .1 .2 .9 .4	1. 1. 1. 1. 1. 1. 0. 0.	31 27 227 16 11 13 39 23 08 89 91 98		3.012 3.014 3.018 3.022 3.047 3.055 3.11 3.21 3.34 3.23 3.15 3.04 3.052	

POINT	THETA(CHORD)	MEAN VEL	RMS VEL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	17.1 10 4.9 0 -5.1 -10.1 -15.1 -17.6 -19.9 -23.4 -25.1 -30 -32.3 -35 -37.8 -39.9 -44.9 -49.8 -55	1.38 1.355 1.3 1.265 1.235 1.22 1.194 1.205 1.23 1.33 1.35 1.35 1.34 1.27 1.18 1.085 1.085 1.11	0.012 0.013 0.013 0.014 0.021 0.042 0.075 0.11 0.14 0.175 0.23 0.23 0.23 0.175 0.19

DISTANCE FROM SURFACE (IN.) 1.25

RUN NUMBER 51709

APPENDIX D

Unsteady Flow Pressure Data

The midspan pressure distributions and upper surface spanwise pressure data for the oscillatory blowing tests and for the oscillating freestream test are presented by run number. The corresponding steady, unsteady and RMS are indicated in Table D1.

TABLE D1
Unsteady Flow Data Key

RUN NUMBER	c^{r}	c _µ	REMARKS
51002	1.2088	.0438	steady flow for 51003.1
51003.1	1.1836	.0438	9 Hz oscillatory blowing
51003.2	.0521	.0438	RMS data for 51003.1
51301	1.2560	.0441	9 Hz oscillatory blowing
51301.1	.0067	.0441	RMS data for 51301
52001	2.7322	.0856	steady flow for 52002
52002	2.6563	.0856	9 Hz oscillatory blowing
50002.1	.0765	.0856	RMS data for 52002
52601	1.3785	.0457	steady flow for 52602 and 52603
52601.1	.0107	.0457	RMS data for 52601
52602	1.3531	.0457	9 Hz oscillatory freestream
52602.1	.0575	.0457	RMS data for 52602
52603	1.3103	.0457	9 Hz oscillatory blowing
52603.1	.0650	.0457	RMS data for 52603
52604	1.8370	.0645	steady flow for 52605
52604.1	.0090	.0645	RMS data for 52604
52605	1.9903	.0645	9 Hz oscillatory blowing
52605.1	.0536	.0645	RMS data for 52605

RUN NUMBER 51002 MIDSPAN PRESSURE DISTRIBUTION

н	UPP E R CP	н	LOWER CP
123456789011234567890123456789	1.003 0.760 0.560 0.413 -0.012 -0.171 -0.584 -0.709 -0.983 -0.983 -1.177 -1.323 -1.362 -1.416 -1.471 -1.488 -1.474 -1.494 -1.500 -2.869 -4.4851 -3.535 -0.782 -0.503 0.134	29 331 333 336 336 339 44 44 44 45 47 49 55 55 55 55	0.134 0.323 0.425 0.464 0.469 0.465 0.365 0.025 0.029 -0.029 -0.230 -0.230 -0.230 -0.230 -0.230 -0.230 -0.230 -0.230 -0.230 -0.230 -0.230 -0.230 -0.230

DFW(IN)	0.5*(X/C)	0.75*(X/C)
12	-1.3234	-1.4709
6	-1.1308	-1.3023
3	-1.0581	-1.1017
1 5	-0.9680	

BEST AVAILABLE CC."Y

RUN NUMBÉR 51003.1 MIDSPAN PRESSURE DISTRIBUTION

н	UPPER CP	Н	LOWER CP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	1.003 0.917 0.615 0.355 0.234 -0.3524 -0.5227 -0.627 -0.905 -0.905 -0.982 -1.3849 -1.3849 -1.4625 -1.4635 -1.465 -1.451 -1.451 -1.451 -1.451 -1.451 -1.451 -1.455 -1.365 -1.367 -1.365	990123456789901234456789901234 4444444555555	9.165 9.353 9.459 9.459 9.4429 9.4429 9.4429 9.365 9.363 9.363 9.223 9.223 9.223 9.223 9.353 9.353 9.355

DFW(IH)	0.5*(X/C)	0.75*(X/C
12	-1.3018	-1.4034
6	-1.1064	-1.2269
3	-0.9776	-1.0476
1.5	-9.9244	

RUN NUMBER 51003.2 MIDSPAN PRESSURE DISTRIBUTION

	UPPER		LOWER
H	CP	Н	CP
1	0.074	29	0.148
123456789	0.080	30	0.098
3	0.098 0.112	31	0.071
4	0.112	32	0.077
5	0.118	33	0.065
- 6	0.104	34	0.080
7	0.118 0.104 0.101	35	0.083
8	0 101	36	0.083
9	0.098 0.104 0.101 0.104 0.104	37	0.084
110	0.104	38	0.078
11	0.101	39	0.070
12	0.104	413	0.070
13	0.104	41	9.979
14	0.104 0.104 0.121 0.123 0.121 0.123 0.123 0.148	42	0.078
10	0.104	43	0.073
10	0.121	44	0.076
10	0.123	40	9.978
10	0.121	40	0.076
20	0.123	40	0.070
21	0.109 0.109	40	0.075
22	0.154	31 32 33 33 33 33 33 44 45 47 49 49 50	9.071 9.065 9.065 9.0683 9.083 9.083 9.079 9.079 9.079 9.076 9.076 9.076 9.115 9.112 9.123 9.126
2.3	0.104	51	0.110
24	0.345 0.513 0.560 0.630	51 52 53 54	0.112
25	0.560	53	9.126
26	0.630	54	9.984
27	0.504		
28	0.504 0.406		
10 112 123 145 167 189 189 183 183 189 189 189 189 189 189 189 189 189 189	0.148		
10 mm			

DFW(IN)	0.5*(X/C)	0.75*(X/C)
12	0.1036	0.1232
6	0.0980	0.1120
3	0.0924	0.1036
1.5	0.0924	

RUH NUMBER 51301 MIDSPAN PRESSURE DISTRIBUTION

N	UPPER CP	N	LOWER CP
12345678981123456789 101123456789 101123456789	1.003 0.896 0.371 0.478 0.035 -0.266 -0.597 -0.694 -0.829 -1.003 -1.209 -1.209 -1.330 -1.333 -1.456 -1.456 -1.467 -1.467 -1.564 -2.867 -4.334 -4.116 -3.238 -0.839 -0.839 -0.221	2012345678901234 20333333333344444445555555	0.221 0.363 0.475 0.487 0.467 0.466 0.377 0.164 0.065 0.065 -0.028 -0.173 -0.164 -0.085 -0.164 0.091 -0.173 -0.164 0.095

DEW(IN)	0.5*(X/C)	0.75*(N/C)
12	-1.2957	-1.4581
6	-1.4193	-1.4929
3	-1.3173	-1.3343
1.5	-1 2266	

RUN NUMBER 51301.1 MIDSPAN PRESSURE DISTRIBUTION

И	UPPER CP	н	LOWER CP
12345678901123456789	0.072 9.078 9.078 9.087 9.087 9.079 9.079 9.079 9.079 9.087 9.087 9.087 9.085 9.085 9.085 9.085 9.198 9.198 9.198 9.198	29 30 31 33 34 35 33 33 33 44 44 44 45 47 49 55 55 55 55	9.127 9.999 9.979 9.958 9.955 9.965 9.965 9.965 9.965 9.965 9.971 9.971 9.971

DEMCINO	0.5*(%/C)	0.75*(X/C
12	0.0783	0.0850
6	0.0850	0.0850
3	0.0850	0.0850
1.5	9,9793	

RUN NUMBER 52001 MIDSPAN PRESSURE DISTRIBUTION

н	UPPER CP	Н	LOWER CP
14	OF.	-11	OI.
1	0.291	29	-0.399
123	-0.114	30	-0.040
3	-0.997	31	0.598
4	-0.743	34 22	0.643 0.682
- 5	1 207	00	0.002 0.676
9	-1 496	25	0.676 0.652
45570	-1.613	36	0.613
9	-1.584	37	0.484
10	-1.736	31 32 33 34 35 36 37 39	0.396
11	-1.920	39	0.342
12	-1.916	40	0.328
13	-2.141	41	0.288
14	-2.258	44	0.276
15	-2.324	4.3	0.234
10 11 12 13 14 15 16 17 18	-0.997 -0.943 -0.943 -0.886 -1.387 -1.436 -1.613 -1.584 -1.736 -1.920 -1.916 -2.141 -2.258 -2.324 -2.324 -2.355 -2.447 -2.535	40 41 42 43 44 45	0.611
18	-2 535	46	0.100
19	-2.490	47	0.293
20	2.553 -2.664 -2.838 -5.729 -7.712 -8.712	46 47 48	0.613 0.484 0.396 0.342 0.288 0.276 0.234 0.234 0.239 0.239 0.333 0.462 0.607
21	-2.664	49	0.462
22	-2.838	59	0.607
23	-5.729	51	9.769
24	-7.712	59 51 52 53 54	0.940
25	7 991	7.3 15.4	1.009 0.863
25	22 / 2 Chr. 1	14	0.003
29	-4.179		
20 21 23 24 25 26 27 29	-5.345 -4.179 -0.399		

DFW(IN)	0.5*(X/C)	0.75*(X/C
12	-2.2583	-2.4473
6	-2.1425 -2.0570	-2.2678 -2.0399
1 15	1 0516	

RUN NUMBER 52002 MIDSPAN PRESSURE DISTRIBUTION

	UPPER		LOWER
Н	CP	11	CP
1	0.582	29	-1,453
2	-0.269	30	-0.020
3	-0.760	31	0.599 0.635
4	-0.868	32	0.635
5	-1.076	33	0.673
6	-1.216	34	0.655
7	-1.475	35	0.629
3	-1.427	36	0.611
-20456800	-1.453	37	9.472
10	-1.751	38	0.383
11	-1.721	39	0.383
12	-1.915	40	0.316
13	-2.067	41	0.271
14	-0.760 -0.868 -1.876 -1.477 -1.453 -1.751 -1.721 -1.915 -2.243 -2.325 -2.327 -2.541 -2.574 -2.553 -2.844	01234567390+23456739 333333333344444444444444444444444444	0.673 0.655 0.629 0.611 0.472 0.383 0.316 0.271 0.263 0.156 0.148 0.165 0.237 0.274 0.237 0.268
15	-2.325	43	0.212
16	-2.371	44	0.156
17	-2.327	45	0.148
18	-2.503	46	0.165
19	-2.411	47	0.237
20	-2.570	48	0.274
21	-2.634	49	0.374
22	-2.765	50	0.436
23	-5.553	51	0.668
24	-7.844	51 52 53	0.813
25	-8.913	53	1.000
10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	-8.098	54	0.330
27	-4.939		
28	-3.679		
29	-1.453		

DEN(IN)	0.5*(%/C)	0.75*(M/C
12	-2.2427	-2.3260
6	-2.1369	-2.2458
3	-1.9581	-2.0587
1.5	-1.9246	

RUN NUMBER 52002.1 MIDSPAN PRESSURE DISTRIBUTION

	UPPER		LOHER
H	CP	Ы	CP
1	0.111	29	0.833
2	9.161	30	0.307
3	ē. 19ē	31	9.094
4	0.175	32	0.082
5	0.146	33	0.073
- 6	0.146.	34	0.307 0.094 0.082 0.073
7	0.146 0.126	35	0.073
12345678	0.117	36	0.073
9	0.112	37	0.067
10	0.117	38	0.070
11	0.115	39	0.073
12	0.108	40	0.073
13	0.108	41	0.070
14	0.111	42	0.070
15	9.117	43	0.073
10 11 12 13 14 15 16 17 18 19	0.117 0.112 0.117 0.115 0.108 0.108 0.111 0.117 0.123 0.126 0.137 0.140 0.156 0.173 0.196 0.419 0.531	30 32 33 33 35 36 37 39 40 42 44 45 47 49 49	0.073 - 0.073 0.067 0.070 0.073 0.070 0.070 0.073 0.073
17	0.126	45	0.073
18	0.137	46	0.070
19	0.140	47	0.070
20	0.156	48	0.070
21	0.173	49	0.084
22	0.196	50	0.089
23	0.419	51	0.084
24	0.531	52	0.084
20123456789	0.698	51 52 53	0.070
26	0.726 1.006 0.866	54	0.070
27	1.006		
28	0.866		
29	0.838		

UPPER SURFACE SPANWISE PRESSURE

DFW(IN)	0.5#(X/C)	0,75*(X/C)
12	0.1111 0.1034	0.1257
3	0.0894 0.0894	0.1117 0.1034

BEST AVAILABLE COPY

RUN HUMBER 52601 MIDSPAN PRESSURE DISTRIBUTION

1 1.018 29 0.19	-
1 1.018 29 0.19 2 0.762 30 0.39 3 0.194 31 0.50 4 0.032 32 0.47 5 -0.106 33 0.44 6 -0.358 34 0.49 7 -0.209 35 0.44 8 -0.692 36 0.36 9 -0.657 37 0.21 10 -0.971 38 0.15 11 -0.933 39 0.12 12 -1.229 40 0.08 13 -1.390 41 0.00 14 -1.490 42 -0.00 15 -1.540 43 -0.10 16 -1.575 44 -0.16 17 -1.482 45 -0.19 18 -1.604 46 -0.17 19 -1.468 47 -0.24 21 -1.462 49 -0.33 22 -1.585 50 -0.22 23 -2.997 51 -0.04 21 -1.462 49 -0.33 22 -1.585 50 -0.22 23 -2.997 51 -0.04 24 -4.724 52 0.20 25 -4.521 53 0.46 26 -3.713 54 0.94 27 -1.086 28 -0.599 29 0.192	93156381265186375938788292

DFW(IN)	0.5*(X/C)	0.75*(X/C
12	-1.4897	-1.4819
6	-1.4206	-1,3538
3	-1.2006	-1.1532
1.5	-1.0585	

RUM NUMBER 52601.1 MIDSPAN PRESSURE DISTRIBUTION

14	UPPER CP	И	LOWER CP
1 2 3	0.065 0.067 0.065	29 30 31	0.028 0.097 0.067
0.0400	0.073 0.073	31 32 33	0.073
67	0.065 0.070	34	0.067 0.067
8	0.059 0.064	36	0.065 0.065
10	0.073 0.064	39	0.065 0.061 0.056 0.061
11 12 13 14	0.073 0.073	34 35 35 37 39 40 41 42	U. U64
14 15	0.076 0.070	42 43	0.061 0.061 0.061
15 16 17 18 19	0.065 0.067	44 45	0.061 0.061 0.056
	0.067 0.067	44 45 46 47 48 49	0.064
20	0.064 0.067	48 49	0.056 0.067
21 22 23	0.070 0.111	50 51	0.067
25	0.097 0.125 0.181	52 53 54	0.072 0.072 0.064
24 25 27 29 29	0.334 0.251	UT	e. 004
29	0.028		

DEMCINO	0.5*(%/C)	0.75*(X/C)
12	0.0762	0.0669
6	0.0696	0.0641
3	0.0613	9.0641
1.5	0.0613	

RUN NUMBER 52602 MIDSPAN PRESSURE DISTRIBUTION

14	UPPER CP	Н	LOWER CP
1 2	0.945 0.905	29 38	0.206 0.436
3 4	0.052	31	0.473
4	0.254	32	0.597
567	-0.046	33	0.556
. 6	-0.334	34	0.441
6	-0.398	35	0.588
9	-0.666 -0.837	36	0.519 0.270
10	-0.856	37 38	0.064
10 11	-1,140	39	0.049
	-1.049	40	0.081
13	-1.242	41	0.073
14	-1.571	42	-0.116 -0.169
15	-1.524	43	-0.169
16	-1.553	44	-0.279
17	-1.477	45	-0.247
18 19	-1.501	46	-0.166
19	-1.459	47	-0.299
28	-1.526 -1.622	49 49	-0.302
21	-1.500	50	-0.340 -0.366
22 23 24	-3.209	51	0.055
24	-4.619	52	0.416
25	-4.703	53	0.924
26	-3.703	54	0.971
26 27	-0.945		
28	-0.552		
29	0.206		

DFW(IN)	0.5*(X/C)	0.75*(X/C
12	-1.5706	-1.4767
6	-1.4331	-1.3692
3	-1.2267	-1.2616
1.5	-1.0203	

RUH NUMBER 52602.1 MIDSPAN PRESSURE DISTRIBUTION

Н	UPPER CP	И	LOWER CP
12345678901234567890123456789	0.592 0.720 0.720 0.725 0.735 0.735 0.735 0.735 0.735 0.749 0.7749 0.7799 0.7799 0.814 0.917 0.917 0.959 0.799	991234567899412345678991234 4444445555555	0.799 0.756 0.720 0.720 0.720 0.720 0.720 0.720 0.756 0.741 0.741 0.727 0.712 0.698 0.669 0.669 0.669 0.669

DFW(IN)	0.5*(X/C)	0.75*(X/C)
12	0.7493	0.7994
6	0.7413	0.7413
3	0.7122	0.7267
1.5	0.7413	

RUN NUMBER 52603 MIDSPAN PRESSURE DISTRIBUTION

N	UPPER CP	N	LOWER CP
1234567890123456789	0.985 0.786 0.689 0.135 -0.442 -0.525 -0.775 -0.845 -1.107 -0.953 -1.164 -1.311 -1.470 -1.470 -1.479 -1.497 -1.497 -1.497 -1.497 -1.577 -2.961 -4.282 -3.631 -1.55 -0.594 0.104	29 31 32 33 34 35 36 37 38 39 41 42 44 45 47 48 49 50 51 52 53 54	0.104 0.335 0.446 0.457 0.475 0.425 0.211 0.076 0.099 0.042 0.017 -0.124 -0.146 -0.146 -0.034 -0.135 0.237 0.304 0.997

DFW(IH)	0.5±(X/C)	0.75*(K/C
12	-1.3109	-1.4704
6	-1.4141	-1.4451
3	-1.2563	-1.1465
1.5	-1.2000	

BEST_AVAILABLE COPY

RUN NUMBER 52603.1 MIDSPAN PRESSURE DISTRIBUTION

И	UPPER CP	N	LOWER CP
N 1234567890123456789	CP 0.103 0.117 0.176 0.161 0.161 0.155 0.147 0.142 0.132 0.147 0.132 0.147 0.132 0.147 0.132 0.147 0.132 0.147 0.132 0.147 0.132 0.147 0.132 0.147 0.132 0.147 0.132	N 9901233453678990123445447899015334556789901233455678990123345567899015334	CP 0.254 0.099 0.117 0.132 0.132 0.161 0.155 0.141 0.141 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.129 0.197 0.199
67	0.234		

DFW(IN)	0.5*(X/C)	0.75*(N/C
12	0.1466	0.1831
6	0.1549	0.1690
3	0.1408	0.1549
1.5	0.1408	

RUN NUMBER 52604 MIDSPAN PRESSURE DISTRIBUTION

н	UPPER CP	Н	LOWER CP
12345678901123456789 101123456789 10123456789	0.931 0.631 0.000 0.014 -0.337 -0.437 -0.889 -1.991 -1.210 -1.389 -1.603 -1.717 -1.803 -1.779 -1.803 -1.779 -1.803 -1.913 -1.915 -2.033 -4.011 -6.262 -5.445 -2.413 -1.915 -0.273	99012345678901234445678901234 55554	-0.273 0.355 0.571 0.614 0.620 0.591 0.494 0.336 0.224 0.175 0.066 0.071 -0.057 -0.019 0.049 -0.014 0.169 0.459 0.459 0.661 0.971

DFW(IN)	0.5*(X/C)	0.75*(X/C
12	-1.7171	-1.7787
6	-1.5574	-1.6612
3	-1.4208	-1.4098
1.5	-1.3224	

RUN NUMBER 52604.1 MIDSPAN PRESSURE DISTRIBUTION

1 0.08 2 0.09 3 0.09 4 0.08 5 0.08 6 0.08	4 30	0.273
7 0.08 8 0.08 9 0.08 10 0.09 11 0.08 12 0.08 13 0.08 14 0.08 15 0.08 17 0.08 18 0.08 19 0.08 20 0.08	32 33 34 35 36 37 38 37 38 39 40 42 43 44 45 46 47 48 49 49	8.096 9.086 9.086 9.086 9.086 9.082 9.082 9.082 9.082 9.082 9.082
22 0.08 23 0.13 24 0.13	32 50 37 51 37 52	0.082 0.082 0.090
25 0.13 26 0.17 27 0.54 28 0.46 29 0.27	37 53 28 54 46 54	0.082 0.082

DFW(IN)	0.5*(X/C)	0.75*(X/C
12	0.0943	0.0820
6	0.0820	0.0820
3	0.0765	0.0820
1.5	0.0874	

RUN NUMBER 52605 MIDSPAN PRESSURE DISTRIBUTION

Н	UPPER CP	N	LOWER CP
.,			UI.
5	0.818	29	-0.356
	0.131	30 31	0.328 0.573
3	0.012 -0.230	31	0.573
4	-0.230	32	6.000
5	-0.699	33 34	0.627
5	-0.797	34	0.600 0.558
6	-0.694 -1.313	35	0.558
56789	-1 119	36 37	0.487
10	-1.119 -1.367 -1.331 -1.642	20	0.487 0.328 0.256 0.211
11	-1.331	39	0.230
12	-1.642	40	0.211
11 12 13	-1.797	41	0.122
14	-1.797 -1.884	38 39 40 41 42	0.181 0.122 0.075
14 15 16 17 18 19	-1.916	43 44	0.025
16	-1.961 -1.864 -1.976	44	-0.008
17	-1.864	45	0.000
18	-1.976	46	-0.008
19	-1.844 -1.906 -1.936	47	0.064
20	-1.906	48 49	0.014
21	1.736	49	-0.136
20	-2.056 -4.011	50	0.197
24	-5.972	51	0.406
25	-6 499	52 53	0.672 0.903
26	-6.428 -5.331	54	0.903
27	-2.458	U-7	0.210
28	-1.861		
21 22 23 24 24 25 26 27 29	-0.356		

DFW(IN)	0.5*(X/C)	0.75*(X/C
12	-1.8836 -1.6028	-1.8639
3	-1.4556 -1.3250	-1.7056 -1.4889

RUN NUMBER 52605.1 MIDSPAN PRESSURE DISTRIBUTION

N	UPPER CP	н	LOWER CP
1 2 3 4 5 6 7 8 9 9 9 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	0.119 0.164 0.179 0.209 0.164 0.164 0.139 0.134 0.119 0.125 0.119 0.125 0.119 0.125 0.167 0.167 0.167 0.167 0.194 0.222 0.514 0.667 0.903 0.972 1.042 0.889 0.472	29 31 33 33 33 33 33 33 44 43 44 44 44 49 55 55 55	0.472 0.125 0.104 0.104 0.113 0.104 0.119 0.125 0.111

DFW(IN)	0.5*(X/C)	0.75*(K/C)
12	6.1194	0.1389
6	0.1111	0.1250
3	0.1111	0.1111
1.5	0.1111	

APPENDIX E

Unsteady Hotwire Data Corresponding to Cp Run Numbers 52601 through 52605 for 0.025 in. from Surface

STEADY FREESTREAM, STEADY BLOWING RUN NUMBER 52601 DISTANCE FROM SURFACE (IN.) 0.025

POINT	THETA (CHORD)	MEAN VEL	RMS VEL
1 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 23 24 25 26	17.2 15.1 12.7 10.6 7.6 5.5 1.3 0.9 -2.9 -2.6 -12.3 -15.1 -12.3 -15.1 -2.5 -2.5 -3.5 -4.6 -4.5 -4.5 -4.5 -5.5	1.95 1.91 1.86 1.78 1.72 1.6 1.4 1.25 1.98 0.97 0.88 0.97 0.88 0.196 0.195 0.145 0.195 0.066 0.075 0.055	8.337 8.337 8.337 8.324 8.325 8.456 8.466 8.475 8.466 8.475 8.466 8.475 8.466 8.475 8.466 8.475 8.324 8.182 8.182 8.183 8.183 8.643 8.643 8.845 8.845 8.845

BEST AVAILABLE COPY

9	HZ	OSCILL	ATING	FREESTREAM,	STER	DY BLOW	ING	
RI.	IH	NUMBER	52602	DISTANCE	FROM	SURFACE	(IN.)	0.025

POINT	THETA(CHORD)	MEAN VEL	RMS VEL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	17.2 15.1 12.4 10.1 7.6 5.1 3.6 2.6 1.6 0 -1.1 -2.4 -7.6 -10 -12.5 -17.5 -17.5 -20.1 -25.1 -35.1 -35.1 -35.1 -35.1 -35.1 -35.1	1.88 1.74 1.76 1.72 1.635 1.54 1.42 1.36 1.2 1.05 0.93 0.8 0.57 0.4 0.33 0.26 0.22 0.195 0.185 0.185 0.07 0.07	0.328 0.333 0.333 0.3328 0.3328 0.3421 0.415 0.4478 0.46 0.41 0.35 0.49 0.14 0.35 0.19 0.14 0.095 0.095 0.043 0.043

STER	ADY FREE	ESTREAM:	OSCILLATORY BLOWING		
RUN	NUMBER	52603	DISTANCE FROM SURFACE (I	N.)	0.025

POINT	THETA(CHORD)	MEAN VEL	RMS VEL
1 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 22 23 24 5 26 26 26 26 26 26 26 26 26 26 26 26 26	17.2 15.4 10.1 7.6 5.1 3.6 1.6 1.1 -3.4 -7.6 -12.5 -15 -17.5 -12.1 -23.1 -35.1	2.01 1.97 1.914 1.75 1.51 1.45 1.325 1.31 1.21 1.22 1 0.935 0.701 0.55 0.41 0.36 0.29 0.255 0.22 0.18 0.16 0.115 0.1 0.125 0.1	9.553 9.664 9.677 9.777 9.777 9.777 9.355 9.113 9.955 9.955 9.955 9.955 9.955 9.955

STEADY FREESTREAM,		
RUH HUMBER 52604	DISTANCE FROM SURFACE	(IN.) 0:025

POINT	THETA(CHORD)	MEAN VEL	RMS VEL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 44 5 26 26 26 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	17.2 15.4 10.6 10.6 10.6 10.6 10.6 10.1 10.6 10.1 10.6 10.1 10.6 10.1 10.6 10.1 10.6 10.1 10.6 10.1 10.6 10.1 10.6 10.1 10.1	2.55 2.53 2.48 2.48 2.37 2.18 2.19 2.19 2.19 2.19 2.19 2.19 2.19 2.29 0.75 0.37 0.37 0.37 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32	8.37 8.355 8.355 8.333 8.333 8.42 8.542 8.554 8.333 8.42 8.554 8.835 8.835 8.835 8.835 8.835 8.835 8.835 8.835

STEADY FREESTREAM,	OSCILLATORY BLOWING	
RUN HUMBER 52605	DISTANCE FROM SURFACE (IN.)	0.025

POINT	THETA(CHORD)	MEAH VEL	RMS-VEL
1 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	17.2 15.1 12.4 10.1 7.6 5.1 3.6 5.1 3.6 1.6 1.1 -2.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1	2.45 2.42 2.38 2.33 2.25 3.18 2.11 2.98 1.98 1.72 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58	9.421 9.421 9.441 9.445 9.455 9.6636 9.5663 9.6636 9.6656 9.6656 9.6656 9.6656 9.6666 9.6666 9.6666 9.6666 9.6666 9.6666 9.666

LIST OF REFERENCES

- Griswold, R. W., <u>Circulatory Jet Airfoils</u>, <u>United States Patent 2,885,160, 5 May 1959</u>.
- Davidson, I.M., <u>Airfoil Boundary Layer Control Systems</u>, British Patent No. 913754, 1960.
- 3. Dunham, J., A Tentative Theory of Circulation Control Applied to a Circular Cylinder, ARC 27 170, 1965.
- Cheeseman, I. C., and Seed, A. R., "The Application of Circulation Control by Blowing to Helicopter Rotors," <u>Journal of the Royal Aeronautical Society</u>, Vol. 71, <u>July 1967.</u>
- 5. Cheeseman, I. C., and Seed, A. R., "The Application of Circulation Control Blowing to Helicopter Rotors," <u>Journal of the Royal Aeronautical Society</u>, Vol. 70, February and July 1966.
- 6. Kind, R. J., A Proposed Method of Circulation Control, Ph.D. Thesis, Cambridge University, 1967.
- 7. Williams, R. M., and Howe, H. J., <u>Two Dimensional</u>
 Subsonic Wind Tunnel Tests on a 20 Percent Thick, 5
 Percent Cambered Circulation Control Airfoil, Naval
 Ship Research and Development Center, TN AL-176,
 1972.
- 8. Englar, R. J., <u>Two-Dimensional Subsonic Wind Tunnel</u>
 Tests of Two 15-percent Thick Circulation Control
 Airfoils, NSRDC TN AL-211, August 1971.
- 9. Englar, R. J., Test Techniques for High Lift Two-Dimensional Airfoils with Boundary Layer and Circulation Control for Application to Rotary Wing Aircraft, NRSDC paper, May 1972.
- 10. Harness, G. S., An Experimental Investigation of a Circulation Controlled Cambered Elliptical Airfoil, Master's Thesis, West Virginia University, 1970.
- 11. Oyler, T. E., and Palmer, W. E., Exploratory Investigation of Pulse Blowing for Boundary Layer Control, Columbus Aircraft Division/North American Rockwell Corporation Report NR72H-12, January 1972.

- 12. Williams, J. R., et al., Analysis of a Pulsing Wall Jet, Report NR72H-325, Columbus Aircraft Division/North American Rockwell, October 1972.
- 13. Walters, R. E., Myer, D. P., and Holt, D. J., Circulation Control by Steady and Pulsed Blowing for a Cambered Elliptical Airfoil, West Virginia University Department of Engineering Technical Report 32, July 1972.
- 14. Englar, R. J., Subsonic Two-Dimensional Wind Tunnel Investigation of the High Lift Capability of Circulation Control Wing Sections, DTNSRDC Report ASED-274, Naval Ship Research and Development Center, Bethesda, Maryland, April 1975.
- 15. Kaman Aerospace Corporation Report R-1036-2, Contract N00019-73-C-0429, Design Study of a Flight Worthy Circulation Control Rotor System, July 1974.
- 16. Lockheed Aircraft Corporation Report LR26417, Contract N00019-73-C-0435, Design Study of a Helicopter with a Circulation Control Rotor (CCR), May 1974.
- 17. Reader, K. R., and Wilkerson, J. B., <u>Circulation Control</u>
 <u>Applied to a High Speed Helicopter Rotor</u>, <u>Reprint no.</u>
 1003, 32nd Annual National V/STOL Forum, American
 Helicopter Society, Washington, D. C., May 1976.
- 18. Kind, R. J., "A Calculation Method for Circulation Control by Tangential Blowing Around a Bluff Trailing Edge," The Aeronautical Quarterly, Vol. XIX, August 1968, pp. 170-182.
- 19. Levinsky, E. S., and Yeh, A. C., Analytical and Experimental Investigation of Circulation Control by Means of a Turbulent Coanda Jet, NASA CR-2114, September 1972.
- 20. Gibbs, E. H., and Ness, N., <u>Analysis of Circulation</u>
 Controlled Airfoils, West Virginia University Department
 of Aerospace Engineering TR 43, June 1975.
- 21. Englar, R. J., Experimental Investigation of the High Velocity Coanda Wall Jet Applied to Bluff Trailing Edge Circulation Control Airfoils, Naval Ship Research and Development Center RN 4708, September 1975.
- 22. Cebeci, T., and Smith, A. M. O., Analysis of Turbulent Boundary Layers, Academic Press, 1974.

- 23. Sandborn, V. A., and Liu, C. Y., "On Turbulent Boundary-Layer Separation," <u>Journal of Fluid Mechanics</u>, Vol. 32, 1968, pp. 293-304.
- 24. Despard, R. A., and Miller, J. A., "Separation in Oscillating Laminar Boundary Layer Flows," <u>Journal of Fluid Mechanics</u>, Vol. 47, 1971, pp. 21-31.
- 25. Tsahalis, D. Th., and Telionis, D. P., "Oscillating Laminar Boundary Layers and Unsteady Separation," <u>AIAA Journal</u>, Vol. 12, 1974, pp. 1469-76.
- Karlsson, S. F., An Unsteady Turbulent Boundary Layer, Ph.D. Thesis, Johns Hopkins University, 1958.
- Miller, J. A., <u>Transition in Oscillating Blasius Flow</u>, Ph.D. Thesis, <u>Illinois Institute of Technology</u>, 1963.
- 28. Despard, R. A., Laminar Boundary Layer Separation in Oscillating Flow, Ph.D. Thesis, United States Naval Postgraduate School, 1969.
- 29. Bauman, J. L., Development of a Control Valve to Induce an Oscillatory Blowing Coefficient in a Circulation Control Rotor, Master's Thesis, United States Naval Postgraduate School, 1976.
- 30. Bergh, H., A New Method for Measuring the Pressure Distribution on Harmonically Oscillating Wings, Proceedings of the 4th ICAS Congress, Paris, 1964.
- 31. Bergh, H., and Tijdman, H., <u>Theoretical and Experimental</u>
 Results for the Dynamic Response of Pressure Measuring
 Systems, National Aeronautics and Astronautics Research
 Institute NRL-TRF 238, Amsterdam, 1965.
- 32. Johnson, R. B., A Technique for Measuring Unsteady Pressures, A. E. Thesis, United States Naval Postgraduate School, 1969.
- 33. Banning, M. R., The Unsteady Normal Force on an Airfoil in Oscillating Flow, A. E. Thesis, United States Naval Postgraduate School, 1969.
- 34. Lancaster, E. J., <u>Initial Unsteady Aerodynamic Measurements of a Circulation Controlled Airfoil and an Oscillating Flow Wind Tunnel</u>, <u>Master's Thesis</u>, <u>United States Naval Postgraduate School</u>, 1977.

- 35. Englehardt, D., Design of a Microprocessor System for Analysis of Unsteady Circulation Control Airfoil Aerodynamic Characteristics, Master's Thesis, United States Naval Postgraduate School, to be published August, 1977.
- 36. Pickelsimer, B. M., <u>Data Reduction for the Unsteady</u>
 <u>Aerodynamics on a Circulation Control Airfoil</u>, <u>Master's</u>
 <u>Thesis</u>, <u>United States Naval Postgraduate School</u>, 1977.
- 37. Kind, R. J., and Maull, D. J., "An Experimental Investigation of a Low-Speed Circulation Controlled Airfoil," The Aeronautical Quarterly, Vol. XIX, May 1968, pp. 170-182.
- 38. Collins, M. A., and Simpson, R. L., Flowfield Prediction for Separating Turbulent Boundary Layers, Technical Report WT-4, Department of Civil and Mechanical Engineering, Southern Methodist University, February 1976.

INITIAL DISTRIBUTION LIST

		No. Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314	2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940	2
3.	Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, California 93940	1
4.	Professor J. A. Miller, Code 67Mo Department of Aeronautics Naval Postgraduate School Monterey, California 93940	10
5.	Professor L. V. Schmidt, Code 67Sx Department of Aeronautics Naval Postgraduate School Monterey, California 93940	1
6.	Commanding Officer Attn: Mr. R. F. Siewert, AIR-320D Naval Air Systems Command Washington, D. C. 20361	1
7.	Commanding Officer Attn: Dr. H. Chaplin, Code AESD Mr. J. Wilkerson, Code AESD David W. Taylor Naval Ship Research and Development Center Bethesda, Maryland 20084	2
8.	LT Karl Aurel Kail, IV, USN 14243 Minorca Cove Del Mar, California 92014	1