获得的答案

Assume that $PAL_{DEA} = \{\langle M \rangle | M \text{ is a } DEA \text{ that accepts some palindrome} \}$. If a Turing machine can be presented for the given DEA that runs finitely and halts, then the PAL_{DEA} is decidable.

Construct a decider D for $\mathit{PAL}_{\mathit{DFA}}$ and a Turing machine K that can decides E_{CFG} :

- $D = "On input \langle M \rangle$,
- 1. A PDA P is constructed as: $L(P) = \{w \mid w \text{ is a palindrome}\}$
- 2. A PDA P' is constructed so that $L(P') = L(P) \cap L(M)$
- 3. Now P'is converted into an equivalent CFG G.
- 4. Check if L(G) is empty using Theorem 4.8 over Turing Machine K.
- 5. If L(G) is empty then reject, otherwise, accept.

For Turing machine K:

- Both steps 1 and 2 can be done in finite steps.
- Step 3 also takes finite steps to convert *P* into its equivalent CFG.
- In step 4, the decider K checks whether the language L(G) is empty or not. It can also be done in a finite step.

Since D takes finite steps for any input, it means that it is a decider. Hence, PAL_{DEA} is decidable.