

#### Neural Zoo

Presented by ASSAD, ANDRIAMAROMANA

#### Overview

01 Introduction

**03** MLP

**05** CNN

07 Conclusion

**02** Introducing Dataset

04 MLP Results

06 CNN Results



#### <u>Organisation</u>



### Exploration & Analysis

#### Ciphar10



Sample of 10k images

5k of each type

#### perfectly balanced





#### **Data Preparation**

- One hot encoding the labels
- Transformed images that were 3D arrays into a 1D vector
- Transformed RGB values to scalar (Normalization)

# Multi Layer Perceptron

#### History and uses cases





#### 10 epochs then 20 epochs for 2 ReLU hidden layers



```
Confusion matrix:
[[492 26 104
             24
                 46
             27
                 36
                     13
                         20
 37 570 45
                                89 146]
      11 456
            73 133
                     44 134
      17 132 298
                 93 127 163
                            56
       6 203 48 427 21 138
                            67 35
     11 127 228
                 73 295 120
                            65
                                    23]
             64
                 94 23 657
                            22 11
                                    12]
         88
     19 110 53 111 51 33 505 19
                                    59]
  62 56 37 22
                 43
                    13 17
                            11 689
[ 43 165 28 34
                 15 15 27 37 86 550]]
Accuracy: 0.4939
Precision: 0.5005
Recall: 0.4939
F1 Score: 0.4911
```



```
Confusion matrix:
[492 26 104
             24
                      6 34
                             14 200
  37 570 45
             27
                36
                     13 20
                                89 146]
             73 133
                     44 134
                             54
      11 456
      17 132 298
                 93 127 163
                             56
             48 427 21 138
                             67 35
       6 203
      11 127 228
                 73 295 120
                             65
                     23 657
                             22
              64
      19 110
              53 111
                     51 33 505
                                     59]
              22
                     13
                            11 689
      56 37
                 43
 [ 43 165 28 34 15 15 27 37 86 550]]
Accuracy: 0.4939
Precision: 0.5005
Recall: 0.4939
F1 Score: 0.4911
```

### Convolutional neural network (CNN)

#### History and uses cases





#### <u>Summary</u>

| Model: "sequential_1"              |                                         |         |
|------------------------------------|-----------------------------------------|---------|
| Layer (type)                       | Output Shape                            | Param # |
| conv2d_2 (Conv2D)                  | (None, 30, 30, 32)                      | 896     |
| max_pooling2d_2 (MaxPooling<br>2D) | (None, 15, 15, 32)                      | 0       |
| conv2d_3 (Conv2D)                  | (None, 13, 13, 64)                      | 18496   |
| max_pooling2d_3 (MaxPooling<br>2D) | (None, 6, 6, 64)                        | 0       |
| flatten_1 (Flatten)                | (None, 2304)                            | 0       |
| dense_2 (Dense)                    | (None, 128)                             | 295040  |
| dense_3 (Dense)                    | (None, 6)                               | 774     |
| Total params: 315,206              | ======================================= | ======= |
| Trainable params: 315,206          |                                         |         |
| Non-trainable params: 0            |                                         |         |
| None                               |                                         |         |



#### **EPOCH**







#### Results



Confusion matrix heatmap

# Conclusion