Lista 1

1. Seja K um corpo. Demonstre que:

(a) se a + b = a para algum $a \in K$ então b = 0.

(b) Se a + b = 0 então b = -a.

(c) Qual o valor de -(-a)?

(d) Verifique que $(-a) \cdot (-b) = a \cdot b$ e que $a \cdot 0 = 0$.

(e) Se $a \cdot b = 0$ então a = 0 ou b = 0.

2. Verifique que $\mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3} : a, b \in \mathbb{Q}\}$ é um corpo.

3. Seja l^0 o conjunto das seqüências reais:

$$l^0 = \{(x_n)_{n=1}^{\infty} : x_n \in \mathbb{R}, \ n \ge 1\} = \mathbb{R}^{\mathbb{N}}.$$

Verifique que l^0 é um espaço vetorial se definirmos

$$\begin{cases} (x_n)_{n=1}^{\infty} + (y_n)_{n=1}^{\infty} = (x_n + y_n)_{n=1}^{\infty} \\ \lambda \cdot (x_n)_{n=1}^{\infty} = (\lambda x_n)_{n=1}^{\infty} . \end{cases}$$

Seja l^2 o espaço das seqüências reais de quadrado somável,

$$l^{2} = \left\{ x \in l^{0} : \sum_{n=1}^{\infty} x_{n}^{2} < \infty \right\}.$$

Verifique que l^2 é um subespaço vetorial de l^0 .

4. Seja $0 e <math>l^p = \{x \in l^0 : \sum_{n=1}^{\infty} |x_n|^p < \infty\}$. Então l^p é um subespaço vetorial de l^0 .

5. Num espaço vetorial, $\lambda v = 0 \iff \lambda = 0$ ou v = 0.

6. Considere $V = \mathbb{R}$ sobre o corpo $K = \mathbb{Q}$. Então $\{1, \xi\}$ é independente se e somente se ξ for irracional.

7. Generalize o exercício anterior e demonstre que $\mathbb R$ sob o corpo dos racionais não possui base enumerável.

1

8. Qual a dimensão de $\mathbb C$ como espaço vetorial sob os reais?

9. Seja V de dimensão finita. Para todo subespaço $U \subset V$ existe $W \subset V$, subespaço complementar: Isto é,

$$U + W = V,$$

$$U \cap W = \{0\}.$$

- 10. Sejam U_1 e U_2 dois subespaços do espaço vetorial V. Mostre que $U_1 \cup U_2$ é um subespaço se e somente se $U_1 \subset U_2$ ou $U_2 \subset U_1$.
- 11. Seja $f \in V' \setminus \{0\}$. Demonstre que f(V) = K.
- 12. Encontre um espaço vetorial V e uma transformação linear injetiva $T:V\to V$ que não é invertível.
- 13. Seja V um espaço vetorial de dimensão $n \in \mathbb{N}$. Mostre que um subconjunto W de V é um subespaço se e somente se existe uma transformação linear $T: V \to \mathbb{R}^n$ tal que $\ker T = W$.