Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання лабораторної роботи №1 з дисципліни: «Твердотільна електроніки-1»

ДОСЛІДЖЕННЯ ВИПРЯМЛЯЮЧИХ НАПІВПРОВІДНИКОВИХ ДІОДІВ

Виконавець: Студент 3-го курсу	(підпис)	А.С. Мнацаканов
Превірив:	(підпис)	Л. М. Королевич

1. МЕТА РОБОТИ

Теоретичне вивчення і практичне дослідження випрямляючих діодів; визначення фізичних та основних технічних параметрів германійових та кремнійових діодів із їх вольт-амперних характеристик.

2. ЗАВДАННЯ

- 1. Вивчити структуру параметрів (паспортних даних) досліджуваного підкласу діодів. Ознайомитися із вимірювальним стендом та використовуваними приладами.
- 2. Зібрати схему для дослідження вольт-амперної характеристики випрямляючих діодів.
- 3. Виміряти вольт-амперні характеристики германійового та кремнійового діодів при кімнатній температурі. Результати вимірювань записати в таблиці.
- 4. *Провести температурні дослідження ВАХ германійового та кремнійового діодів при температурі $+70^{\circ}$ С (для прямої та зворотньої полярності напруги).
 - 5. Побудувати графіки вольт-амперних характеристик діодів.
- 6. Графічно визначити дифузійний потенціал ϕ_0 , опір бази r_b та струм виродження $I_{\text{вир}}$ для кожного з діодів. Оцінити тепловий струм германійового діода.
- 7. За побудованими графіками характеристик визначити основні параметри діодів.
- 8. **Побудувати графіки залежностей статичного та динамічного опорів діодів від прикладеної напруги (або вирахувати статичний та диференційний опори посередині прямої та зворотньої гілок ВАХ кожного діоду і співставити їх між собою).
- 9. Провести аналіз результатів досліджень, і зробити висновки з виконаної роботи.

Рис. 1: Схема для вимірювання ВАХ діода. При знятті зворотньої гілки ВАХ змінюється полярність джерела живлення та номінал резистора R (величина резистора для прямої гілки $R_1=5$ кОм; для зворотньої $R_2=100$ кОм, або $1~{\rm MOm}$).

3.РЕЗУЛЬТАТИ ВИМІРЮВАНЬ

Табл. 1: BAX діода D1 за прямого зміщення

U_{summ} , мВ	U_R , мВ	$\triangle U_{summ} = U_R$, MB	R, Om	$\triangle U_d$, мВ	$\triangle I_d$, мА	U_d , мВ	I_d , мА

Табл. 2: BAX діода D2 за прямого зміщення

U_{summ} , мВ	U_R , мВ	$\triangle U_{summ} = U_R$, мВ	R, Om	$\triangle U_d$, мВ	$\triangle I_d$, мА	U_d , мВ	I_d , мА

Табл. 3: BAX діода D1 за зворотного зміщення

	U_{summ} , мВ	U_R , мВ	$\triangle U_{summ} = U_R$, мВ	R, Om	$\triangle U_d$, мкВ	$\triangle I_d$, мк A	U_d , мВ	I_d , MKA
Г								

Табл. 4: BAX діода D2 за зворотного зміщення

U_{summ} , мВ	U_R , мВ	$\triangle U_{summ}$, мВ	$\triangle U_R$, MB	$\triangle U_d$, мкВ	$\triangle I_d$, нА	U_d , мВ	I_d , мк A

Всі значення та їх похибкибки обраховувались за наступними формулами:

Напруга на діоді:

$$U_D = U - U_R \tag{1}$$

Струм на діоді:

$$I_D = \frac{U_R}{R} \tag{2}$$

Похибки значень струму і напруги знаходили з формулами:

$$\Delta U_D = \sqrt{\Delta U^2 + \Delta U_R^2} \tag{3}$$

$$\Delta I_D = \frac{1}{R^2} \cdot \sqrt{(R\Delta U_R)^2 + (U_R \Delta R)^2} \tag{4}$$

Поточкові графіки ВАХ діодів з похибками вимірювань були побудувані за допомогою програми яку я написав в gnuplot:

```
set terminal png size 1024,768
set xzeroaxis
set yzeroaxis
set datafile separator ";"
set output 'd1.png';
set ylabel 'I _d, mA' textcolor lt 8
set xlabel 'U _d, mB' textcolor lt 8
plot "Data for lab 1.csv" using 7:8:5:6
 title"BAX діода D1 за прямого зміщення" with xyerrorbars
set output 'd2.png';
set ylabel 'I _d, mA' textcolor lt 8
set xlabel 'U _d, mB' textcolor lt 8
plot "Data for lab 1.csv" using 15:16:13:14
title"BAX діода D2 за прямого зміщення" with xyerrorbars
set output 'd1r.png';
set ylabel 'I _d, mA' textcolor lt 8
```

```
set xlabel 'U _d, мВ' textcolor lt 8 plot "Data for lab 1.csv" using 24:25:22:23 title"BAX діода D1 за зворотного зміщення" with xyerrorbars set output 'd2r.png'; set ylabel 'I _d, мА' textcolor lt 8 set xlabel 'U _d, мВ' textcolor lt 8 plot "Data for lab 1.csv" using 33:34:31:32 title"BAX діода D2 за зворотного зміщення" with xyerrorbars
```

3.1. ГРАФІКИ

Рис. 2: BAX діода D1 за прямого зміщення.

Рис. 3: ВАХ діода D1 за зворотного зміщення.

Рис. 4: ВАХ діода D2 за прямого зміщення.

Рис. 5: BAX діода D2 за зворотного зміщення.

Рис. 6: Порівняння ВАХ діода D1(зліва) та D2 за прямого зміщення.

З Рис. ?? ВАХ для Германієвого діода можна визначити його опір бази r_b : для цього треба з точки A (це та точка після якої, якщо провести уявну пряму то після точки A вони повинні співпадати) опустити перпендикуляр на осі U та I, потім визначаємо значення в точці їх перетину $I_{\rm np} \approx 6$ мA і $U_{\rm np} \approx 0.3$ В (прямий струм та пряма напруга відповідно). Потім визначимо дифузійний потенціал який знаходиться в точці перетину дотичної проведеної до точки A і вісі напруг. Зробивши це отримаємо $\varphi_0 \approx 0.175$ В (якщо згадати уявну пряму про яку я казав раніше, то φ_0 це точка перетину її та вісі X).

$$r_b \approx \frac{U_{\text{np}} - \varphi_0}{I_{\text{np}}} = \frac{0, 3 - 0, 175}{0,006} = 20,83 \text{ Om}$$
 (5)

Тепер можемо знайти $I_{\text{вир}}$ (струм виродження):

$$I_{\text{вир}} = \frac{\varphi_T}{r_b} = \frac{0,0258}{20,83} = 0,00123 \text{ A},$$
 (6)

де $\varphi_T = 0.0258~\mathrm{B}$ – температурний потенціал Зробивши аналогічні операції для кремнієвого діода отримаємо:

$$I_{\rm np} = 0,008 \text{ A}$$
 (7)

$$U_{\rm np} = 0.7 \text{ B} \tag{8}$$

$$\varphi_0 = 0,65 \text{ B} \tag{9}$$

$$r_b = 6,249 \text{ Om}$$
 (10)

$$I_{\text{вир}} = 0,00414 \text{ A}$$
 (11)

4. АНАЛІЗ РЕЗУЛЬТАТІВ ДОСЛІДЖЕНЬ ТА ВИСНОВКИ З ВИКОНАНОЇ РОБОТИ

В результаті виконання даної лабораторної роботи було досліджено випрямляючі діоди та побудовно графіки ВАХ германієвого та кремнієвого діодів. З когного ВАХ одразу ж стає зрозуміло де який діод. На Рис. ?? чітко видно що це германієвий, оскільки спад напруги в прямому напрямі на германієвих діодах не перевищує 0,5 В, а от з Рис. ?? можемо впевнитись що це кремнієвий діод, оскільки прямий спад напруги у кремнієвих діодах більший, ніж у германієвих, і досягає 1,5 В. Оцінюючи попередньо отримані результати можна стверджувати, що кремнієві діоди мають деякі вагомі переваги над германієвими, а саме: більша допустима зворотна напруга, більший робочий температурний інтервал та менший зворотний струм. На відміну від германієвих діодів зворотна гілка кремнієвих діодів не має відрізка насичення, що свідчить про більший внесок у зворотний струм складових струму термогенерації й струму витікання. У цілому зворотний струм у кремнієвих діодах значно менший, ніж в германієвих діодах, оскільки питомий опір (ширина забороненої зони) кремнію набагато більший, ніж германію (із цієї ж причини прямий спад напруги у кремнієвих діодах більший, ніж у германієвих, і досягає 1,5 В), також хочу зазначити, що в моєму випадку за значенням випрямного струму мої два випрямні діоди можна визначити як діоди малої потужності (оскільки $I_{\rm np} \leq 300 \text{ мA}$).