3. Single Decision Treatment Regimes: Fundamentals

- 3.1 Treatment Regimes for a Single Decision Point
- 3.2 Estimation of the Value of a Fixed Regime
- 3.3 Characterization of an Optimal Regime
- 3.4 Estimation of an Optimal Regime
- 3.5 Key References

Basic set-up

For simplicity: Focus mostly on two treatment options coded as 0 and 1

$$\mathcal{A}_1 = \{0,1\}$$

Recall: With K=1

- Baseline information $x_1 \in \mathcal{X}$, history $h_1 = x_1 \in \mathcal{H}_1$
- Treatment regime

$$d=\{d_1(h_1)\}$$

comprising a single rule $d_1(h_1)$ such that $d_1:\mathcal{H}_1\to\mathcal{A}_1$

• I.e., for history h_1 , $d_1(h_1) = 0$ selects option 0, $d_1(h_1) = 1$ selects option 1

Convention: Larger outcomes *Y* are more beneficial (without loss of generality)

Class of all possible regimes

Clearly: An infinitude of possible rules d_1 and thus regimes d

- D = class of all single decision treatment regimes
- Two possible static rules, $d_1(h_1) \equiv 1$, $d_1(h_1) \equiv 0$ for all $h_1 \in \mathcal{H}_1$
- All other rules and thus regimes are dynamic, and $\mathcal D$ is likely an infinite class

Example: Decision 1, acute leukemia

- $h_1 = x_1$ includes age (years), baseline white blood cell count (WBC $\times 10^3/\mu I$)
- $A_1 = \{C_1, C_2\} = \{0, 1\}$

Examples of rules

Example 1: Rules involving thresholds (rectangular region); e.g., 'If age < 50 and WBC < 10, then give C_2 ; otherwise, give C_1 "

$$d_1(h_1) = I(age < 50 \text{ and WBC} < 10)$$

Example 2: Rules involving linear combinations (hyperplane); e.g., "if age $+ 8.7 \log(WBC) - 60 > 0$, give C_2 ; otherwise give C_1 "

$$d_1(h_1) = I\{age + 8.7 \log(WBC) - 60 > 0\}$$

Infinitude:

- Change thresholds, linear coefficients
- Other functions of age and WBC (and other components of h₁)
- Exception: h₁ contains c binary components; 2^c possible rules
- Almost always: h₁ contains continuous and discrete variables, can be high-dimensional

Potential outcomes framework

For a randomly chosen individual from the population:

• History $H_1 = X_1$, potential outcomes $Y^*(0)$ and $Y^*(1)$ that would be achieved under options 0 and 1

Potential outcome for regime $d \in \mathcal{D}$: The outcome such an individual would achieve if assigned treatment according to (the rule d_1 in) regime d

$$Y^{*}(d) = Y^{*}(1) I \{d_{1}(H_{1}) = 1\} + Y^{*}(0) I \{d_{1}(H_{1}) = 0\}$$

$$= Y^{*}(1) d_{1}(H_{1}) + Y^{*}(0) \{1 - d_{1}(H_{1})\}$$
(3.1)

- I.e., if d dictates option 1, $Y^*(d) = Y^*(1)$, similarly for option 0, $Y^*(0)$
- For static regime with $d_1(h_1) \equiv 1$, $Y^*(d) = Y^*(1)$, similarly for option 0, $Y^*(0)$

Potential outcomes framework

A_1 with more than two options:

- d₁(h₁) returns options a₁ ∈ A₁
- Y^{*}(a₁) = potential outcome that would be achieved by an individual with history H₁ if she were to receive option a₁ ∈ A₁

$$Y^{*}(d) = \sum_{a_{1} \in \mathcal{A}_{1}} Y^{*}(a_{1}) I\{d_{1}(H_{1}) = a_{1}\}$$
 (3.2)

Value of a treatment regime

For regime $d \in \mathcal{D}$: With potential outcome $Y^*(d)$ as in (3.1) or (3.2)

- E{Y*(d)} = expected outcome if all individuals in the population were to receive treatment according to rule d₁ in d
- Referred to as the *value* of regime $d \in \mathcal{D}$, denoted here as

$$\mathcal{V}(d) = E\{Y^*(d)\}$$

Remarks:

- For static regimes with rules d₁(h₁) ≡ 1 and d₁(h₁) ≡ 0,
 V(d) = E{Y*(1)} and E{Y*(0)}, and the average causal treatment effect δ* is the difference in their values
- Is it more beneficial on average to select treatment using a dynamic regime d ∈ D relative to always administering option 1 regardless of history?

$$E\{Y^{*}(d)\}-E\{Y^{*}(1)\}>0$$
?

3. Single Decision Treatment Regimes: Fundamentals

- 3.1 Treatment Regimes for a Single Decision Point
- 3.2 Estimation of the Value of a Fixed Regime
- 3.3 Characterization of an Optimal Regime
- 3.4 Estimation of an Optimal Regime
- 3.5 Key References

Estimation of V(d)

For a given (fixed) regime $d \in \mathcal{D}$: Estimate the value $\mathcal{V}(d)$ from i.i.d. observed data

$$(X_{1i}, A_{1i}, Y_i), i = 1, ..., n$$
 (3.3)

- $H_{1i} = X_{1i}$ = history for individual i
- A_{1i} = treatment option in A_1 actually received by i

Challenge: Estimate the quantity $V(d) = E\{Y^*(d)\}$ defined in terms of potential outcomes using observed data (3.3)

- Under what conditions can we deduce the distribution of $Y^*(d)$, which depends on that of $\{X_1, Y^*(1), Y^*(0)\}$, from the distribution of (X_1, A_1, Y) ?
- Possible under the following assumptions

Identifiability assumptions

SUTVA (consistency):

$$Y_i = Y_i^*(1)A_{1i} + Y_i^*(0)(1 - A_{1i}), i = 1, ..., n$$
 (3.4)

No unmeasured confounders assumption (NUC):

$$\{Y^{*}(1), Y^{*}(0)\} \perp A_{1}|H_{1}$$
 (3.5)

Positivity assumption:

$$P(A_1 = a_1 | H_1 = h_1) > 0, \quad a_1 = 0, 1$$
 (3.6)

for all $h_1 \in \mathcal{H}_1$ such that $P(H_1 = h_1) > 0$

- Generalize in obvious way to A_1 with more than two options
- · We adopt these assumptions hold in what follows

Similar to manipulations in (2.14)-(2.15):

$$\begin{split} &E\{Y^*(d)\} = E\left(E\left[Y^*(1)I\{d_1(H_1) = 1\} + Y^*(0)I\{d_1(H_1) = 0\} \middle| H_1\right]\right) \\ &= E\Big[E\{Y^*(1)|H_1\}I\{d_1(H_1) = 1\} + E\{Y^*(0)|H_1\}I\{d_1(H_1) = 0\}\right] \\ &= E\Big[E\{Y^*(1)|H_1,A_1 = 1\}I\{d_1(H_1) = 1\} \\ &\quad + E\{Y^*(0)|H_1,A_1 = 0\}I\{d_1(H_1) = 0\}\right] \quad \text{by NUC (3.5)} \\ &= E\left[E(Y|H_1,A_1 = 1)I\{d_1(H_1) = 1\} + E(Y|H_1,A_1 = 0)I\{d_1(H_1) = 0\}\right] \\ &= E\left[E(Y|H_1,A_1 = 1)d_1(H_1) + E(Y|H_1,A_1 = 0)\{1 - d_1(H_1)\}\right] \\ &\quad \text{by SUTVA (3.4)} \end{split}$$

 Conditional expectations are well defined by the positivity assumption (3.6)

 A_1 with more than two options: By similar manipulations

$$E\{Y^{*}(d)\} = E\left[\sum_{a_{1} \in A_{1}} E(Y|H_{1}, A_{1} = a_{1}) |\{d_{1}(H_{1}) = a_{1}\}\right]$$

Result: The value $V(d) = E\{Y^*(d)\}$ of a regime $d \in \mathcal{D}$ can be represented in terms of the observed data (X_1, A_1, Y)

 In terms of the regression of outcome on history and treatment received

$$E(Y|H_1 = h_1, A_1 = a_1) = Q_1(h_1, a_1)$$

• E.g., for $A_1 = \{0, 1\}$

$$E\{Y^{*}(d)\} = E[Q_{1}(H_{1}, 1)|\{d_{1}(H_{1}) = 1\} + Q_{1}(H_{1}, 0)|\{d_{1}(H_{1}) = 0\}]$$

Suggests: If $Q_1(h_1, a_1)$ were known, natural estimators for V(d)

$$n^{-1}\sum_{i=1}^{n}\left[Q_{1}(H_{1i},1)\mathsf{I}\{d_{1}(H_{1i})=1\}+Q_{1}(H_{1i},0)\mathsf{I}\{d_{1}(H_{1i})=0\}\right]$$

$$n^{-1} \sum_{i=1}^{n} \left[\sum_{a_1 \in \mathcal{A}_1} Q_1(H_{1i}, a_1) \, I\{d_1(H_{1i}) = a_1\} \right]$$

• Obvious strategy: Posit a model $Q_1(h_1, a_1; \beta_1)$ with parameter β_1 ; e.g., with $A_1 = \{0, 1\}$, continuous Y

$$Q_1(h_1, a_1; \beta_1) = \beta_{11} + \beta_{12}^T h_1 + \beta_{13} a_1 + \beta_{14}^T h_1 a_1, \quad \beta_1 = (\beta_{11}, \beta_{12}^T, \beta_{13}, \beta_{14}^T)^T$$
 and similarly for binary *Y* using logistic regression

• Fit using suitable M-estimation techniques and substitute the fitted model $Q_1(h_1, a_1; \widehat{\beta}_1)$ in the above expressions

Result: Outcome regression estimator for the value V(d) of $d \in D$

$$\widehat{\mathcal{V}}_{Q}(d)$$

$$= n^{-1} \sum_{i=1}^{n} \left[Q_{1}(H_{1i}, 1; \widehat{\beta}_{1}) I\{d_{1}(H_{1i}) = 1\} + Q_{1}(H_{1i}, 0; \widehat{\beta}_{1}) I\{d_{1}(H_{1i}) = 0\} \right]$$
(3.7)

and similarly for general A_1

- If Q₁(h₁, a₁; β₁) is correctly specified, with true value β_{1,0} of β₁, under SUTVA, NUC, and positivity assumption, \$\hat{V}_Q(d)\$ is a consistent estimator for \$\mathcal{V}(d)\$
- Approximate large sample distribution for $\widehat{\mathcal{V}}_{Q}(d)$ obtained by stacking estimating equations and appealing to M-estimation theory

For fixed $d \in \mathcal{D}$: If we could observe $Y_i^*(d)$, i = 1, ..., n, obvious estimator for $\mathcal{V}(d) = E\{Y^*(d)\}$

$$n^{-1} \sum_{i=1}^{n} Y_{i}^{*}(d)$$

- Clearly, by the definition of $Y^*(d)$ and SUTVA, if $A_{1i} = d_1(H_{1i})$, then $Y_i = Y_i^*(d)$, so $Y_i^*(d)$ is observed
- E.g., if $d_1(H_{1i}) = 1$ and $A_{1i} = 1$, then $Y_i^*(d) = Y_i^*(1)$ and $Y_i = Y_i^*(1)$
- If $A_i \neq d_1(H_{1i})$, then $Y_i \neq Y_i^*(d)$, and $Y_i^*(d)$ is "missing"
- Suggests an inverse weighting strategy similar to that used to estimate the average causal treatment effect δ^*

Regime consistency indicator: Define

$$C_d = I\{A_1 = d_1(H_1)\} = A_1I\{d_1(H_1) = 1\} + (1 - A_1)I\{d_1(H_1) = 0\}$$
(3.8)

• If $C_d = 1$, $Y^*(d)$ is observed; else, it is missing

Propensity for treatment consistent with *d*:

$$\pi_{d,1}(H_1) = P(\mathcal{C}_d = 1|H_1)$$
 (3.9)

Suggests: Inverse probability weighted estimator for V(d)

$$\widehat{\mathcal{V}}_{IPW}(d) = n^{-1} \sum_{i=1}^{n} \frac{\mathcal{C}_{d,i} Y_i}{\pi_{d,1}(H_{1i})}.$$
 (3.10)

• Weight outcomes from individuals with particular H_1 who received treatment consistent with d by $1/\pi_{d,1}(H_1)$

From (3.8) and (3.9):

$$\pi_{d,1}(H_1) = E[A_1 | \{d_1(H_1) = 1\} + (1 - A_1) | \{d_1(H_1) = 0\} | H_1]$$

$$= \pi_1(H_1) | \{d_1(H_1) = 1\} + \{1 - \pi_1(H_1)\} | \{d_1(H_1) = 0\}$$

$$= \pi_1(H_1)^{d_1(H_1)} \{1 - \pi_1(H_1)\}^{1 - d_1(H_1)}$$
(3.11)

• Must have $\pi_{d,1}(H_1) > 0$ for all $d \in \mathcal{D}$, which holds under the positivity assumption

Can show: $\widehat{V}_{IPW}(d)$ in (3.10) is an unbiased estimator for V(d)

$$\begin{split} E\left\{\frac{\mathcal{C}_{d}Y}{\pi_{d,1}(H_{1})}\right\} &= E\left\{\frac{\mathcal{C}_{d}Y^{*}(d)}{\pi_{d,1}(H_{1})}\right\} \\ &= E\left[E\left\{\frac{\mathcal{C}_{d}Y^{*}(d)}{\pi_{d,1}(H_{1})}\middle|Y^{*}(1),Y^{*}(0),H_{1}\right\}\right] \\ &= E\left[\frac{E\{\mathcal{C}_{d}|Y^{*}(1),Y^{*}(0),H_{1}\}Y^{*}(d)}{\pi_{1}(H_{1})I\{d_{1}(H_{1})=1\}+\{1-\pi_{1}(H_{1})\}I\{d_{1}(H_{1})=0\}}\right] \\ &= E\{Y^{*}(d)\} \end{split}$$

because

$$\begin{split} &E\{\mathcal{C}_d|Y^*(1),Y^*(0),H_1\}\\ &=E\left[A_1I\{d_1(H_1)=1\}+(1-A_1)I\{d_1(H_1)=0\}\,\middle|\,Y^*(1)\,,Y^*(0),H_1\right]\\ &=E(A_1|H_1)I\{d_1(H_1)=1\}+E(1-A_1|H_1)I\{d_1(H_1)=0\}\\ &=\pi_1(H_1)I\{d_1(H_1)=1\}+\{1-\pi_1(H_1)\}I\{d_1(H_1)=0\} \end{split}$$

Randomized study: $\pi_1(h_1)$ and thus $\pi_{d,1}(h_1)$ is known

Observational study: Posit model $\pi_1(h_1; \gamma_1)$, e.g., logistic model as in (2.28), and obtain maximum likelihood estimator $\widehat{\gamma}_1$

$$\pi_1(h_1; \gamma_1) = \frac{\exp(\gamma_{11} + \gamma_{12}^T h_1)}{1 + \exp(\gamma_{11} + \gamma_{12}^T h_1)}, \quad \gamma_1 = (\gamma_{11}, \gamma_{12}^T)^T$$
 (3.12)

• Induces a model $\pi_{d,1}(h_1; \gamma_1)$, correctly specified if $\pi_1(h_1; \gamma_1)$ is

IPW estimator: Substitute in (3.10)

$$\widehat{\mathcal{V}}_{IPW}(d) = n^{-1} \sum_{i=1}^{n} \frac{\mathcal{C}_{d,i} Y_i}{\pi_{d,1}(H_{1i}; \widehat{\gamma}_1)}$$
(3.13)

• Consistent estimator for V(d) if $\pi_1(h_1; \gamma_1)$ correctly specified

Alternative inverse probability weighted estimator

$$\widehat{\mathcal{V}}_{IPW*}(d) = \left\{ \sum_{i=1}^{n} \frac{\mathcal{C}_{d,i}}{\pi_{d,1}(H_{1i}; \widehat{\gamma}_{1})} \right\}^{-1} \sum_{i=1}^{n} \frac{\mathcal{C}_{d,i} Y_{i}}{\pi_{d,1}(H_{1i}; \widehat{\gamma}_{1})}$$
(3.14)

- Can be shown by manipulations similar to those above that a summand of the first term in (3.14) has expectation = 1, so $\widehat{\mathcal{V}}_{IPW*}(d)$ is a consistent estimator for $\mathcal{V}(d)$ if $\pi_1(h_1; \gamma_1)$ is correctly specified
- Exhibits considerably smaller sampling variation than $\widehat{\mathcal{V}}_{IPW}(d)$ in practice (relatively more efficient)

Approximate large sample distributions: For either of (3.13) or (3.14), can be obtained by stacking estimating equations and appealing to M-estimation theory

Equivalent representations

Possibly simpler expressions for $\widehat{\mathcal{V}}_{IPW}(d)$ and $\widehat{\mathcal{V}}_{IPW*}(d)$:

- When $C_d = 1$, $A_1 = d_1(H_1)$
- Straightforward: $\widehat{\mathcal{V}}_{IPW}(d)$ and $\widehat{\mathcal{V}}_{IPW*}(d)$ are unchanged if $\pi_{d,1}(H_{1i}; \widehat{\gamma}_1)$ is replaced for each i by

$$\pi_{1}(H_{1i}; \widehat{\gamma}_{1}) I(A_{1i} = 1) + \{1 - \pi_{1}(H_{1i}; \widehat{\gamma}_{1})\} I(A_{1i} = 0)$$

$$= \pi_{1}(H_{1i}; \widehat{\gamma}_{1}) A_{1i} + \{1 - \pi_{1}(H_{1i}; \widehat{\gamma}_{1})\} (1 - A_{1i})$$

$$= \pi_{1}(H_{1i}; \widehat{\gamma}_{1})^{A_{1i}} \{1 - \pi_{1}(H_{1i}; \widehat{\gamma}_{1})\}^{(1 - A_{1i})}$$
(3.15)

Some literature accounts present these estimators directly in this form

Outcome regression vs. IPW

Tradeoff: Is the same as for estimators for average causal treatment effect δ^*

- $\widehat{\mathcal{V}}_Q(d)$ requires correct modeling of outcome regression $Q(h_1,a_1)$
- $\widehat{\mathcal{V}}_{IPW}(d)$ and $\widehat{\mathcal{V}}_{IPW*}(d)$ require correct modeling of propensity score $\pi_1(h_1)$
- Randomized study: IPW estimators are guaranteed to be consistent because $\pi_1(h_1)$ is known, while $\widehat{\mathcal{V}}_Q(d)$ still requires a correct regression model

Counterintuitive result persists: It is preferable on efficiency grounds to estimate $\pi_1(h_1)$ even if it is known as on Slide 90

Augmented inverse probability weighted estimator

Analogous to the class of AIPW estimators for the average causal treatment effect: If $\pi_1(h_1; \gamma_1)$ is correctly specified, from semiparametric theory (Robins et al., 1994; Tsiatis, 2006), all consistent and asymptotically normal estimators for $\mathcal{V}(d)$ for fixed $d \in \mathcal{D}$ are asymptotically equivalent to an estimator of form

$$\widehat{\mathcal{V}}_{AIPW}(d) = n^{-1} \sum_{i=1}^{n} \left[\frac{\mathcal{C}_{d,i} Y_{i}}{\pi_{d,1}(H_{1i}; \widehat{\gamma}_{1})} - \frac{\mathcal{C}_{d,i} - \pi_{d,1}(H_{1i}; \widehat{\gamma}_{1})}{\pi_{d,1}(H_{1i}; \widehat{\gamma}_{1})} L_{1}(H_{1i}) \right]$$
(3.16)

- $L_1(H_1)$ is an arbitrary function of H_1
- The "augmentation term" can be shown to have conditional expectation given H_{1i} equal to zero when evaluated at the true $\gamma_{1,0}$ and serves to increase efficiency over $\widehat{\mathcal{V}}_{IPW}(d)$ in (3.13)

Optimal AIPW estimator

Among class (3.16): The optimal, efficient estimator; i.e., with smallest asymptotic variance, is obtained with

$$\begin{split} L_1(H_1) &= E\{Y^*(d)|H_1\} \\ &= Q_1(H_1,1)I\{d_1(H_1)=1\} + Q_1(H_1,0)I\{d_1(H_1)=0\} \quad (3.17) \end{split}$$

- Follows using SUTVA, NUC, positivity assumption
- Suggests: Posit a model $Q_1(h_1,a_1;\beta_1)$ for $Q_1(h_1,a_1)$ and represent (3.17) as

$$\mathcal{Q}_{d,1}(H_1;\beta_1) = Q_1(H_1,1;\beta_1) | \{d_1(H_1) = 1\} + Q_1(H_1,0;\beta_1) | \{d_1(H_1) = 0\}$$

• Estimate $\widehat{\beta}_1$ by β_1

Optimal AIPW estimator

Leads to:

$$\widehat{\mathcal{V}}_{AIPW}(d) = n^{-1} \sum_{i=1}^{n} \left[\frac{\mathcal{C}_{d,i} Y_{i}}{\pi_{d,1}(H_{1i}; \widehat{\gamma}_{1})} - \frac{\mathcal{C}_{d,i} - \pi_{d,1}(H_{1i}; \widehat{\gamma}_{1})}{\pi_{d,1}(H_{1i}; \widehat{\gamma}_{1})} \mathcal{Q}_{d,1}(H_{1i}; \widehat{\beta}_{1}) \right]$$
(3.18)

- The augmentation term attempts to gain precision by recovering information from individuals for whom $C_d = 0$ (so did not receive treatment consistent with d)
- Can be shown: $\widehat{\mathcal{V}}_{AIPW}(d)$ is unchanged by replacing $\pi_{d,1}(H_{1i}; \widehat{\gamma}_1)$ by (3.15)

$$\pi_1(H_{1i}; \widehat{\gamma}_1) | (A_{1i} = 1) + \{1 - \pi_1(H_{1i}; \widehat{\gamma}_1)\} | (A_{1i} = 0)$$

Double robustness

Can be shown: By an argument similar to that on Slides 95-99, $\widehat{\mathcal{V}}_{AIPW}(d)$ in (3.18) is doubly robust

- Consistent estimator for $\mathcal{V}(d)$ if either the propensity score model $\pi_1(h_1; \gamma_1)$ or the outcome regression model $Q_1(h_1, a_1; \beta_1)$ is correctly specified
- Randomized study: Form of $\pi_1(h_1; \gamma_1)$ is known, so $\widehat{\mathcal{V}}_{AIPW}(d)$ is consistent regardless of whether or not $Q_1(h_1, a_1; \beta_1)$ is correctly specified and is relatively more efficient than $\widehat{\mathcal{V}}_{IPW}(d)$

If both propensity and outcome regression models are correctly specified: $\widehat{\mathcal{V}}_{AIPW}(d)$ in (3.18) achieves the smallest asymptotic variance among all AIPW estimators of the form (3.16)

Locally efficient estimator

Large sample properties: (3.18) is an M-estimator, so can derive based on stacked estimating equations

Outcome regression vs. locally efficient AIPW

- Outcome regression estimator (3.7) requires Q₁(h₁, a₁; β₁) correctly specified
- If it is, $\widehat{\mathcal{V}}_Q(d)$, which is outside the class (3.16), is more efficient than (3.18) even if both propensity and outcome regression models are correctly specified
- In practice: Gain in efficiency of $\widehat{\mathcal{V}}_Q(d)$ over $\widehat{\mathcal{V}}_{AIPW}(d)$ is often negligible
- Doubly robust, AIPW estimator is attractive alternative
- Zhang, Tsiatis, Laber, and Davidian (2012)

3. Single Decision Treatment Regimes: Fundamentals

- 3.1 Treatment Regimes for a Single Decision Point
- 3.2 Estimation of the Value of a Fixed Regime
- 3.3 Characterization of an Optimal Regime
- 3.4 Estimation of an Optimal Regime
- 3.5 Key References

Key goal: An optimal regime

Recall: A key goal of precision medicine is to identify an *optimal* treatment regime

$$d^{opt} \in \mathcal{D}$$
,

where

$$d^{opt} = \{d_1^{opt}(h_1)\}$$

and leads to the "best" decision and most beneficial expected outcome

Formalize this definition

Intuitively:

- Conventional treatment comparisons are based on comparing the associated values
- Suggests: An optimal regime should lead to the maximum value among all regimes $d \in \mathcal{D}$
- As we will see shortly, this definition leads to the "best" decisions for individuals given their histories

Formal definition

An optimal regime $d^{opt} \in \mathcal{D}$ satisfies

$$d^{opt} = \underset{d \in \mathcal{D}}{\operatorname{arg max}} E\{Y^{*}(d)\} = \underset{d \in \mathcal{D}}{\operatorname{arg max}} \mathcal{V}(d)$$

or, equivalently,

$$E\{Y^*(d^{opt})\} \ge E\{Y^*(d)\} \text{ for all } d \in \mathcal{D}$$
 (3.19)

 In principle, is possible that there is more than one regime d^{opt} satisfying (3.19), discussed shortly

Form of an optimal regime

Intuitive demonstration, $A_1 = \{0, 1\}$: From (3.1) can write

$$V(d) = E\{Y^*(d)\} = E\left[E\{Y^*(d)|H_1\}\right]$$
$$= E\left[E\{Y^*(1)|H_1\}|\{d_1(H_1) = 1\} + E\{Y^*(0)|H_1\}|\{d_1(H_1) = 0\}\right]$$

- Maximizing the expression inside the outer expectation (which is wrt to distribution of H₁) at any h₁ leads to E{Y*(d)} as large as possible
- This expression is as large as possible if

$$d_1(h_1) = 1$$
 when $E\{Y^*(1)|H_1 = h_1\} > E\{Y^*(0)|H_1 = h_1\}$
 $d_1(h_1) = 0$ when $E\{Y^*(1)|H_1 = h_1\} < E\{Y^*(0)|H_1 = h_1\}$

- I.e., $d_1(h_1)$ chooses $a_1 \in A_1$ that maximizes $E\{Y^*(a_1)|H_1=h_1\}$ for all h_1
- This definition extends straightforwardly to general A_1

Form of an optimal regime

Result: An optimal regime d^{opt} is characterized by the rule

$$d_1^{opt}(h_1) = \arg\max_{a_1 \in \mathcal{A}_1} E\{Y^*(a_1) | H_1 = h_1\}$$
 (3.20)

for all h_1 for which $P(H_1 = h_1) > 0$

- Chooses the option in A₁ having the maximum expected outcome conditional on history
- The best decision for an individual patient with realized history h₁ is to choose the option that maximizes the expected value of the outcome that would be achieved for such a patient
- In this sense individualizing the decision to the patient

Unique representation

Consider $A_1 = \{0, 1\}$: If for some h_1

$$E\{Y^*(1)|H_1=h_1\}=E\{Y^*(0)|H_1=h_1\}$$

a rule (3.20) that chooses option 1 for this h_1 and another that chooses option 0 for this h_1 define regimes that both achieve the maximum value

- Can designate one of the options as the default when both are equally beneficial for any h₁
- Convention: Option 0 is the default; 0 often corresponds to control or standard of care, while 1 corresponds to experimental treatment
- Then (3.20) is equivalent to

$$d_1^{opt}(h_1) = I\left[E\{Y^*(1)|H_1 = h_1\} > E\{Y^*(0)|H_1 = h_1\}\right]$$
 (3.21)

Formal argument

Proposition: The regime d^{opt} with rule d_1^{opt} given in (3.20)

$$d_1^{opt}(h_1) = \arg\max_{a_1 \in A_1} E\{Y^*(a_1)|H_1 = h_1\}$$
 for all h_1

satisfies (3.19)

$$E\{Y^*(d^{opt})\} \ge E\{Y^*(d)\}$$
 for all $d \in \mathcal{D}$

and is thus an optimal treatment regime

Proof: Choose arbitrary $d \in \mathcal{D}$. Because

$$E\{Y^*(d)\} = E\left[E\{Y^*(d)|H_1\}\right] \ \text{ and } \ E\{Y^*(d^{opt})\} = E\left[E\{Y^*(d^{opt})|H_1\}\right]$$

the result follows if we show that

$$E\{Y^*(d^{opt})|H_1=h_1\} \ge E\{Y^*(d)|H_1=h_1\}$$
 for all h_1 (3.22)

Formal argument

From (3.20), it follows for any h_1 that

$$E\{Y^*(d^{opt})|H_1=h_1\}=\max_{a_1\in\mathcal{A}_1}E\{Y^*(a_1)|H_1=h_1\}=V_1(h_1)$$

Using this and the definition of $Y^*(d)$ (3.1)

$$\begin{split} E\{Y^{*}(d^{opt})|H_{1} &= h_{1}\} = \max_{a_{1} \in \mathcal{A}_{1}} E\{Y^{*}(a_{1})|H_{1} = h_{1}\} \\ &= \max_{a_{1} \in \mathcal{A}_{1}} E\{Y^{*}(a_{1})|H_{1} = h_{1}\} \left[I\{d_{1}(h_{1}) = 1\} + I\{d_{1}(h_{1}) = 0\}\right] \\ &\geq E\{Y^{*}(1)|H_{1} = h_{1}\} I\{d_{1}(h_{1}) = 1\} + E\{Y^{*}(0)|H_{1} = h_{1}\} I\{d_{1}(h_{1}) = 0\} \\ &= E\left[Y^{*}(1)I\{d_{1}(h_{1}) = 1\} + Y^{*}(0) I\{d_{1}(h_{1}) = 0\}\right|H_{1} = h_{1}\right] \\ &= E\{Y^{*}(d)|H_{1} = h_{1}\} \text{ which is (3.22)} \end{split} \tag{3.23}$$

Value function: $V_1(h_1) = \text{expected outcome using the option selected by <math>d_1^{opt}(h_1)$ for given h_1 and satisfies

$$E\{V_1(H_1)\} = E\left[E\{Y^*(d^{opt})|H_1\}\right] = E\{Y^*(d^{opt})\} = \mathcal{V}(d^{opt})$$

Optimal treatment option vs. optimal decision

For a randomly chosen individual with history H_1 :

The optimal option for this individual is

$$\argmax_{a_1 \in \mathcal{A}_1} Y^*(a_1)$$

corresponding to the largest (potential) outcome he can achieve

- Potential outcomes are not known at time of treatment decision, so this option is unknown in practice
- All that is known at the time of the decision is H₁, and d₁^{opt}(H₁) selects the option corresponding to the largest expected outcome given knowledge of this history
- Because $Y^*(d) \le \max\{Y^*(1), Y^*(0)\}$ for all $d \in \mathcal{D}$,

$$Y^*(d^{opt}) \le \max\{Y^*(1), Y^*(0)\}$$

so an optimal regime might not select the optimal option

 Rather, d^{opt} dictates the optimal decision that can be made given what is known at the time of the decision

Characterization in terms of observed data

This characterization is in terms of potential outcomes:

 To estimate an optimal regime in practice, it must be possible to identify an optimal regime from the observed data (X, A, Y)

Optimal regime in terms of observed data: Under SUTVA, NUC, positivity assumption, for any $a_1 \in A_1$

$$E\{Y^*(a_1)|H_1\}=E\{Y^*(a_1)|H_1,A_1=a_1\}=E(Y|H_1,A_1=a_1)=Q_1(h_1,a_1)$$

Applying this to (3.20) yields the equivalent representation

$$\begin{split} d_1^{opt}(h_1) &= \argmax_{a_1 \in \mathcal{A}_1} E(Y|H_1 = h_1, A_1 = a_1) = \argmax_{a_1 \in \mathcal{A}_1} Q_1(h_1, a_1) & (3.24) \\ d_1^{opt}(h_1) &= I\{Q_1(h_1, 1) > Q_1(h_1, 0)\} & \text{for } \mathcal{A}_1 = \{0, 1\} \\ \text{and} & \mathcal{V}(d^{opt}) = E\{V_1(H_1)\} = E\left\{\max_{a_1 \in \mathcal{A}_1} Q_1(H_1, a_1)\right\} \end{split}$$

3. Single Decision Treatment Regimes: Fundamentals

- 3.1 Treatment Regimes for a Single Decision Point
- 3.2 Estimation of the Value of a Fixed Regime
- 3.3 Characterization of an Optimal Regime
- 3.4 Estimation of an Optimal Regime
- 3.5 Key References

Regression-based estimation

Obvious approach: To estimate an optimal regime d^{opt} from i.i.d. observed data (X_{1i}, A_{1i}, Y_i) , i = 1, ..., n, under SUTVA, NUC, and positivity, (3.24) and (3.25) suggest

Posit a parametric model Q₁(h₁, a₁; β₁) (linear, logistic, etc, depending on Y), e.g., for continuous Y, A₁ = {0, 1},

$$Q_1(h_1, a_1; \beta_1) = \beta_{11} + \beta_{12}^T h_1 + \beta_{13} a_1 + \beta_{14}^T h_1 a_1 = \beta_{11} + \beta_{12}^T h_1 + (\beta_{13} + \beta_{14}^T h_1) a_1$$
 and obtain $\widehat{\beta}_1$ by an M-estimation technique

Assuming a correct model, obtain the estimated rule

$$\widehat{d}_{Q,1}^{opt}(h_1) = \operatorname*{arg\,max}_{a_1 \in \mathcal{A}_1} Q_1(h_1, a_1; \widehat{\beta}_1)$$

which for $A_1 = \{0, 1\}$ and option 0 the default is

$$\widehat{d}_{Q,1}^{opt}(h_1) = I\{Q_1(h_1, 1; \widehat{\beta}_1) > Q_1(h_1, 0; \widehat{\beta}_1)\}$$

Regression-based estimation

Regression-based estimators for d^{opt} and $\mathcal{V}(d^{opt})$:

$$\widehat{d}_{Q}^{opt} = \{\widehat{d}_{Q,1}^{opt}(h_1)\}, \tag{3.26}$$

$$\widehat{\mathcal{V}}_{Q}(d^{opt}) = n^{-1} \sum_{i=1}^{n} \max_{a_1 \in \mathcal{A}_1} Q_1(H_{1i}, a_1; \widehat{\beta}_1)$$

Example: Linear model with $A_1 = \{0, 1\}$

$$\widehat{d}_{Q,1}^{opt}(h_1) = I(\widehat{\beta}_{13} + \widehat{\beta}_{14}^T h_1 > 0)$$

$$\max_{a_1 \in \mathcal{A}_1} Q_1(H_1, a_1; \widehat{\beta}_1) = \widehat{\beta}_{11} + \widehat{\beta}_{12}^T H_1 + (\widehat{\beta}_{13} + \widehat{\beta}_{14}^T H_1) I(\widehat{\beta}_{13} + \widehat{\beta}_{14}^T H_1 > 0)$$

$$\widehat{\mathcal{V}}_Q(d^{opt})$$

$$= n^{-1} \sum_{i=1}^{n} \left\{ \widehat{\beta}_{11} + \widehat{\beta}_{12}^{T} H_{1i} + (\widehat{\beta}_{13} + \widehat{\beta}_{14}^{T} H_{1i}) I(\widehat{\beta}_{13} + \widehat{\beta}_{14}^{T} H_{1i} > 0) \right\}$$

Regression-based estimation

Terminology: The regression-based approach to estimation of an optimal regime and its value is a special case in the single decision setting of the method of *Q-learning* for estimation of an optimal multiple decision regime and its value

Large sample approximation: As for estimators for the value of a fixed $d \in \mathcal{D}$, would like large sample properties of $\widehat{\mathcal{V}}_{Q}(d^{opt})$

• First thought: View $\widehat{\mathcal{V}}_Q(d^{opt})$ and OLS $\widehat{\beta}_1$ as solving stacked estimating equations and use usual M-estimation theory

$$\sum_{i=1}^{n} \left\{ \max_{a_1 \in \mathcal{A}_1} Q_1(H_{1i}, a_1; \beta_1) - \mathcal{V}(d^{opt}) \right\} = 0$$
 (3.27)

$$\sum_{i=1}^{n} \frac{\partial Q_1(H_{1i}, A_i; \beta_1)}{\partial \beta_1} \left\{ Y_i - Q_1(H_{1i}, A_i; \beta_1) \right\} = 0$$
 (3.28)

Difficulty: The max operator in (3.27)

- Recall: The standard M-estimation argument to demonstrate asymptotic normality is based on a linear Taylor series
- This argument implicitly assumes differentiability of the estimating function with respect to its parameters
- The max operator is not differentiable everywhere

Demonstration in a simple special case: H_1 is one-dimensional, $A_1 = \{0, 1\}$ with option 0 the default, and correctly specified model

$$Q_1(h_1, a_1; \beta_1) = \beta_{11} + \beta_{12}h_1 + \beta_{13}a_1$$
 (3.29)

with true value $\beta_{1,0} = (\beta_{11,0}, \beta_{12,0}, \beta_{13,0})^T$, $\widehat{\beta}_1$ solves the OLS estimating equation (3.28)

Thus: When $\beta_{13} = 0$ (null hypothesis of no treatment difference)

$$\max_{a_1 \in \mathcal{A}_1} Q_1(h_1, a_1; \beta_1) = \beta_{11} + \beta_{12}h_1 + \beta_{13}I(\beta_{13} > 0)$$
 (3.30)

is *not differentiable* in β_{13}

Because (3.29) is correctly specified

$$\mathcal{V}(d^{opt}) = E\left\{ \max_{a_1 \in \mathcal{A}_1} Q_1(H_1, a_1; \beta_{1,0}) \right\}$$
$$= \beta_{11,0} + \beta_{12,0} E(H_1) + \beta_{13,0} I(\beta_{13,0} > 0)$$

• And the estimator for $V(d^{opt})$ is

$$\begin{split} \widehat{\mathcal{V}}_{Q}(d^{opt}) &= n^{-1} \sum_{i=1}^{n} \left\{ \widehat{\beta}_{11} + \widehat{\beta}_{12} H_{1i} + \widehat{\beta}_{13} I(\widehat{\beta}_{13} > 0) \right\} \\ &= \widehat{\beta}_{11} + \widehat{\beta}_{12} \overline{H}_{1} + \widehat{\beta}_{13} I(\widehat{\beta}_{13} > 0) \quad \overline{H}_{1} = n^{-1} \sum_{i=1}^{n} H_{1i}, \end{split}$$

$$n^{1/2} \left\{ \widehat{\mathcal{V}}_{Q}(d^{opt}) - \mathcal{V}(d^{opt}) \right\}$$

$$= n^{1/2} (\widehat{\beta}_{11} - \beta_{11,0}) + n^{1/2} (\widehat{\beta}_{12} - \beta_{12,0}) E(H_{1})$$

$$+ n^{1/2} (\widehat{\beta}_{12} - \beta_{12,0}) \{ \overline{H}_{1} - E(H_{1}) \}$$

$$+ n^{1/2} \{ \widehat{\beta}_{13} I(\widehat{\beta}_{13} > 0) - \beta_{13,0} I(\beta_{13,0} > 0) \}$$
(3.32)
$$(3.33)$$

and by the usual M-estimation theory

$$n^{1/2} \begin{pmatrix} \widehat{\beta}_{11} - \beta_{11,0} \\ \widehat{\beta}_{12} - \beta_{12,0} \\ \widehat{\beta}_{13} - \beta_{13,0} \end{pmatrix} \xrightarrow{\mathcal{D}} \begin{pmatrix} Z_1 \\ Z_2 \\ Z_3 \end{pmatrix} \sim \mathcal{N}(0, \Sigma)$$

- (3.32) $\stackrel{p}{\longrightarrow}$ 0 because $\overline{H}_1 E(H_1) \stackrel{p}{\longrightarrow} 0$
- Terms in (3.31) $\stackrel{\mathcal{D}}{\longrightarrow} Z_1$ and $Z_2E(H_1)$

- **Term (3.33):** $n^{1/2}\{\widehat{\beta}_{13}I(\widehat{\beta}_{13}>0)-\beta_{13,0}I(\beta_{13,0}>0)\}$
 - g(u) = u I(u > 0) continuous in u but not differentiable at u = 0

Case 1: $\beta_{13,0} \neq 0$: g(u) is differentiable in an open interval containing $\beta_{13,0}$, and standard Taylor series can be used to show

$$(3.33) \xrightarrow{\mathcal{D}} g'(\beta_{13,0})Z_3, \quad g'(\beta_{13,0}) = \{dg(u)/du\}|_{u=\beta_{13,0}} = \mathsf{I}(\beta_{13,0} > 0)$$

- Thus, $n^{1/2}(\widehat{\beta}_{11} \beta_{11,0})$, $n^{1/2}(\widehat{\beta}_{12} \beta_{12,0})$, and (3.33) jointly $\stackrel{\mathcal{D}}{\longrightarrow} \{Z_1, Z_2, Z_3 | (\beta_{13,0} > 0)\}^T$
- Continuous mapping theorem, Slutsky's theorem yield

$$n^{1/2}\left\{\widehat{\mathcal{V}}_{\mathcal{Q}}(d^{opt}) - \mathcal{V}(d^{opt})\right\} \xrightarrow{\mathcal{D}} Z_1 + Z_2 E(H_1) + Z_3 \operatorname{I}(\beta_{13,0} > 0)$$

• Linear combination of jointly $\mathcal{N}(0,\Sigma)$ random variables is normal, so $n^{1/2}\left\{\widehat{\mathcal{V}}_Q(d^{opt}) - \mathcal{V}(d^{opt})\right\}$ is asymptotically normal with this distribution

Term (3.33):
$$n^{1/2}\{\widehat{\beta}_{13}I(\widehat{\beta}_{13}>0)-\beta_{13,0}I(\beta_{13,0}>0)\}$$

Case 2:
$$\beta_{13,0} = 0$$
: $(3.33) = n^{1/2} \widehat{\beta}_{13} I(\widehat{\beta}_{13} > 0)$

- $n^{1/2}\widehat{\beta}_{13} \stackrel{\mathcal{D}}{\longrightarrow} Z_3$
- I($\widehat{\beta}_{13}>0$) = I($n^{1/2}\widehat{\beta}_{13}>0$), so by the continuous mapping and Slutsky's theorems

$$n^{1/2}\left\{\widehat{\mathcal{V}}_{Q}(\textit{d}^{\textit{opt}}) - \mathcal{V}(\textit{d}^{\textit{opt}})\right\} \stackrel{\mathcal{D}}{\longrightarrow} Z_{1} + Z_{2}E(H_{1}) + Z_{3}\,I(Z_{3}>0)$$

- Even though Z_1 , Z_2 , and Z_3 are jointly normal, the distribution of $Z_1 + Z_2 E(H_1) + Z_3 I(Z_3 > 0)$ is *not normal*
- Thus: When $\beta_{13,0}=0$, $\widehat{\mathcal{V}}(d^{opt})$ does not follow standard asymptotic theory

Result: $\widehat{\mathcal{V}}_{Q}(d^{opt})$ is an example of a *nonregular estimator*

- Although $\widehat{\mathcal{V}}_Q(d^{opt})$ follows standard asymptotic theory when $\beta_{13,0} \neq 0$, the usual large sample normal approximation to its sampling distribution is not valid when $\beta_{13,0} = 0$
- In (3.29), $\beta_{13,0}=0$ corresponds to no difference in expected outcome between options 0 and 1 for any h_1 , which cannot be ruled out in practice
- Technically, cannot disregard this behavior at $\beta_{13,0}=0$ and appeal to standard theory to obtain measures of uncertainty
- Even if $\beta_{13,0} \neq 0$, where standard theory holds, if $\beta_{13,0}$ is close to zero, using the standard normal approximation can be poor

General phenomenon: Due to nonsmoothness of the max operator

- Because finding d^{opt} involves a max operation, all estimators for d^{opt} and V(d^{opt}) are subject to this issue
- Nonstandard inferential approaches are required

Consider $A_1 = \{0, 1\}$: An optimal regime has rule

$$d_1^{opt}(h_1) = I\{Q_1(h_1, 1) > Q_1(h_1, 0)\} = I\{Q_1(h_1, 1) - Q_1(h_1, 0) > 0\}$$

Definition: The *contrast function* is given by

$$C_1(h_1) = Q_1(h_1, 1) - Q_1(h_1, 0)$$
 (3.34)

• Thus, the rule $d_1^{opt}(h_1)$ can be written as

$$d_1^{opt}(h_1) = I\{C_1(h_1) > 0\}$$
 (3.35)

- From (3.35), full knowledge of $Q_1(h_1, a_1)$ is not required to characterize and estimate an optimal regime
- Premise of the class of methods for estimation of an optimal regime referred to as advantage or A-learning

Because a_1 is binary: Any arbitrary function $Q_1(h_1, a_1)$ can be written as

$$Q_1(h_1, a_1) = \nu_1(h_1) + a_1 C_1(h_1), \quad \nu_1(h_1) = Q_1(h_1, 0)$$
 (3.36)

• (3.36) shows $Q_1(h_1, a_1)$ is maximized by $a_1 = I\{C_1(h_1) > 0\}$ with maximum

$$V_1(h_1) = \nu_1(h_1) + C_1(h_1) |\{C_1(h_1) > 0\}|$$

• Robins (2004) refers to $Q_1(h_1, a_1) - Q_1(h_1, 0) = a_1 C_1(h_1)$ as the optimal blip to zero function comparing difference in expected outcome between using option 0 (control or reference option) and using a_1 among individuals with history h_1

Suggests: Posit a model $C_1(h_1; \psi_1)$ for the contrast function; equivalently, a semiparametric model for $Q_1(h_1, a_1)$

$$\nu_1(h_1) + a_1 C_1(h_1; \psi_1)$$
 (3.37)

for arbitrary function $\nu_1(h_1)$ of h_1 and finite-dimensional parameter ψ_1

- May be more robust to misspecification than the regression method, as only C₁(h₁; ψ₁) must be correctly specified for valid estimation of d^{opt}
- (3.37) preserves the *causal null hypothesis* because $C_1(h_1; \psi_1) = 0$ implies $E\{Q_1(H_1, 1) Q_1(H_1, 0)\} = 0$

Goal: Estimate ψ_1 in (3.37) based on (X_{1i}, A_{1i}, Y_i) , i = 1, ..., n and substitute fitted contrast function in (3.35)

G-estimation: By semiparametric theory, Robins (2004) showed that all consistent and asymptotically normal estimators for ψ_1 solve an estimating equation of form

$$\sum_{i=1}^{n} \lambda_{1}(H_{1i}) \left\{ A_{1i} - \pi_{1}(H_{1i}) \right\} \left\{ Y_{i} - A_{1i}C_{1}(H_{1i}; \psi_{1}) + \theta_{1}(H_{1i}) \right\} = 0$$
(3.38)

for arbitrary dim(ψ_1)-dimensional $\lambda_1(h_1)$ and real-valued $\theta_1(h_1)$

Can show: The estimating function in (3.38) is unbiased; i.e.,

$$E_{\psi_1}[\lambda_1(H_1)\{A_1-\pi_1(H_1)\}\{Y-A_1C_1(H_1;\psi_1)+\theta_1(H_1)\}]=0$$

so that $\widehat{\psi}_1$ solving (3.38) is an M-estimator

• When $var(Y|H_1, A_1)$ is constant, optimal choices

$$\lambda_1(h_1) = \partial C_1(h_1; \psi_1) / \partial \psi_1$$
 and $\theta_1(h_1) = -\nu_1(h_1)$

Suggests: $\nu_1(h_1)$ is arbitrary, but can proceed adaptively and posit a model $\nu_1(h_1; \phi_1)$ for parameter ϕ_1 and estimate ϕ_1 jointly with ψ_1 jointly by solving

$$\sum_{i=1}^{n} \frac{\partial C_{1}(H_{1i}; \psi_{1})}{\partial \psi_{1}} \left\{ A_{1i} - \pi_{1}(H_{1i}) \right\}$$

$$\times \left\{ Y_{i} - A_{1i}C_{1}(H_{1i}; \psi_{1}) - \nu_{1}(H_{1i}; \phi_{1}) \right\} = 0$$

$$\sum_{i=1}^{n} \frac{\partial \nu_{1}(H_{1i}; \phi_{1})}{\partial \phi_{1}} \left\{ Y_{i} - A_{1i}C_{1}(H_{1i}; \psi_{1}) - \nu_{1}(H_{1i}; \phi_{1}) \right\} = 0$$

- Can show: If $C_1(h_1; \psi_1)$ is correctly specified, with true value $\psi_{1,0}$, but $\nu_1(h_1; \phi_1)$ is not, $\widehat{\psi}_1$ solving these equations is consistent for $\psi_{1,0}$
- And thus $C_1(h_1; \widehat{\psi}_1)$ is consistent for $C_1(h_1)$

Unknown $\pi_1(h_1)$: Posit a model $\pi_1(h_1; \gamma_1)$ (e.g., logistic) and jointly solve in $(\psi_1^T, \phi_1^T, \gamma_1^T)^T$ the stacked estimating equations

$$\begin{split} \sum_{i=1}^{n} \frac{\partial C_{1}(H_{1i}; \psi_{1})}{\partial \psi_{1}} \left\{ A_{1i} - \pi_{1}(H_{1i}; \gamma_{1}) \right\} \\ & \times \left\{ Y_{i} - A_{1i}C_{1}(H_{1i}; \psi_{1}) - \nu_{1}(H_{1i}; \phi_{1}) \right\} = 0 \\ \sum_{i=1}^{n} \frac{\partial \nu_{1}(H_{1i}; \phi_{1})}{\partial \phi_{1}} \left\{ Y_{i} - A_{1i}C_{1}(H_{1i}; \psi_{1}) - \nu_{1}(H_{1i}; \phi_{1}) \right\} = 0 \\ \sum_{i=1}^{n} \binom{1}{H_{1i}} \left\{ A_{1i} - \frac{\exp(\gamma_{11} + \gamma_{12}^{T}H_{1i})}{1 + \exp(\gamma_{11} + \gamma_{12}^{T}H_{1i})} \right\} = 0 \end{split}$$

• Can show: If $C_1(h_1; \psi_1)$ is correctly specified but either $\pi_1(H_1; \gamma_1)$ or $\nu_1(H_1; \phi_1)$ (but not both) is misspecified, $\widehat{\psi}_1$ solving these equations is consistent for $\psi_{1,0}$ so is doubly robust in this sense

Estimator for d^{opt} : Given $\widehat{\psi}_1$, from (3.35), estimate d^{opt} by

$$\widehat{d}_{A}^{opt} = \{\widehat{d}_{A,1}^{opt}(h_1)\}, \quad \widehat{d}_{A,1}^{opt}(h_1) = I\{C_1(h_1; \widehat{\psi}_1) > 0\}$$
 (3.39)

 Alternative approach: Murphy (2003) instead propose an A-learning approach based on the advantage or regret function

$$C_1(H_1)[I\{C_1(H_1)>0\}-A_1]$$

• Can show: If $\pi_1(h_1) = P(A_1 = 1 | H_1 = h_1)$ does not depend on h_1 , $Q_1(h_1, a_1; \beta_1)$ is linear in h_1 , and $\nu_1(h_1; \phi_1) + a_1 C_1(h_1; \psi_1)$ is of the same form, A-learning and Q-learning are identical

Recall:
$$V(d^{opt}) = E\{V_1(H_1)\} = E\{\max_{a_1 \in A_1} Q(H_1, a_1)\}$$

$$E\Big(Y + C_1(H_1)[I\{C_1(H_1) > 0\} - A_1] \Big| H_1\Big)$$

$$= E\Big\{E\Big(Y + C_1(H_1)[I\{C_1(H_1) > 0\} - A_1] \Big| H_1, A_1\Big) \Big| H_1\Big\}$$

$$= E\Big(E(Y|H_1, A_1) + C_1(H_1)[I\{C_1(H_1) > 0\} - A_1] \Big| H_1\Big)$$

$$= E\Big(Q_1(H_1, 0) + A_1C_1(H_1) + C_1(H_1)[I\{C_1(H_1) > 0\} - A_1] \Big| H_1\Big)$$

$$= E[Q_1(H_1, 0) + C_1(H_1)I\{C_1(H_1) > 0\} | H_1]$$

$$= Q_1(H_1, 0) + C_1(H_1)I\{C_1(H_1) > 0\} = V_1(H_1)$$

• Suggests the estimator for $V(d^{opt})$

$$\widehat{\mathcal{V}}_{A}(d^{opt}) = n^{-1} \sum_{i=1}^{n} \left(Y_{i} + C_{1}(H_{1i}; \widehat{\psi}_{1}) \left[I\{C_{1}(H_{1i}; \widehat{\psi}_{1}) > 0\} - A_{1i} \right] \right)$$

Is also a nonregular estimator

Restricted class of regimes

Continue to consider $A_1 = \{0, 1\}$: For the previous approaches, the form $Q_1(h_1, a_1; \beta_1)$ or $C_1(h_1; \psi_1)$ dictates the form of the rules d_1^{opt}

• Example: With $h_1 = x_1 = (x_{11}, x_{12})^T$

$$Q_1(h_1, a_1; \beta_1) = \beta_{11} + \beta_{12}x_{11} + \beta_{13}x_{12} + a_1(\beta_{14} + \beta_{15}x_{11} + \beta_{16}x_{12})$$
 (3.40) implies rules d_1^{opt} of form

$$d_1^{opt}(h_1) = I(\beta_{14} + \beta_{15}x_{11} + \beta_{16}x_{12} > 0)$$

and similarly for a linear contrast function

- Result: Posited models for regression or constrast function induce a *class of regimes*, indexed by parameters in the model, to which the search for d^{opt} is restricted
- In the example, the *restricted class* \mathcal{D}_{η} indexed by η is the class of regimes with rules of the form

$$d_1(h_1; \eta_1) = I(\eta_{11} + \eta_{12}x_{11} + \eta_{13}x_{12} > 0), \quad \eta_1 = (\eta_{11}, \eta_{12}, \eta_{13})^T, \quad \eta = \eta_1$$
(3.41)

Effect of model misspecification

\mathcal{D}_{η} may or may not contain $d^{opt} \in \mathcal{D}$:

• Example, continued: Suppose the true regression relationship is

$$Q_1(h_1, a_1) = \exp\{1 + x_{11} + 2x_{12} + 3x_{11}x_{12} + a_1(1 - 2x_{11} + x_{12})\}$$
 so that

$$d_1^{opt}(h_1) = I(1-2x_{11}+x_{12}>0),$$

which is of the form (3.41)

- Here, although the model (3.40) is misspecified, $d^{opt} \in \mathcal{D}_{\eta}$
- However: If we fit (3.40) by OLS, \hat{d}_{Q}^{opt} with

$$\widehat{d}_{Q,1}^{opt}(h_1) = I\{\widehat{\beta}_{14} + \widehat{\beta}_{15}x_{11} + \widehat{\beta}_{16}x_{12}) > 0\}$$

may be a poor estimator for d^{opt} because $\widehat{\beta}$ is likely far from the values of the coefficients in the true relationship

• Of course: If $Q_1(h_1, a_1; \beta_1)$ or $C_1(h_1; \psi_1)$ does not imply a restricted class containing d^{opt} , the estimated regime can be quite far from d^{opt}

Alternative perspective

Suggests: Deliberately restrict attention to a class $\mathcal{D}_{\eta} \subset \mathcal{D}$ of regimes d_{η} with rules of form $d_1(h_1; \eta_1)$

- \mathcal{D}_{η} may be chosen based on cost, feasibility in practice, interpretability (by clinicians and patients)
- E.g., with $h_1 = (x_{11}, x_{12})^T$, \mathcal{D}_{η} comprises regimes with rules

$$d_1(h_1; \eta_1) = I(x_{11} < \eta_{11}, x_{12} < \eta_{12}), \quad \eta_1 = (\eta_{11}, \eta_{12})^T$$

involving rectangular regions with thresholds

- Or rules involving linear combinations as in (3.41)
- \mathcal{D}_{η} may or may not contain d^{opt} but still of interest
- This perspective of course extends to general \mathcal{A}_1 with >2 options

Optimal restricted regime: $d_{\eta}^{opt} \in \mathcal{D}_{\eta}$ with rule

$$d_{1}(h_{1}; \eta_{1}^{opt}), \quad \eta_{1}^{opt} = \underset{\eta_{1}}{\arg\max} \ \mathcal{V}(d_{\eta}),$$
 (3.42)
$$d_{\eta}^{opt} = \{d_{1}(h_{1}; \eta_{1}^{opt})\}$$

Approach: Given an estimator $\widehat{\mathcal{V}}(d)$ for the value of fixed $d \in \mathcal{D}$

- Estimate $\mathcal{V}(d_{\eta})$ by $\widehat{\mathcal{V}}(d_{\eta})$ for fixed $\eta=\eta_1$
- Regard $\widehat{\mathcal{V}}(d_{\eta})$ as a function of η_1 , maximize in η_1 to obtain

$$\widehat{\eta}_1^{opt} = rg \max_{\eta_1} \, \widehat{\mathcal{V}}(extbf{ extit{d}}_{\eta})$$

and estimate d_{η}^{opt} by

$$\widehat{d}_{\eta}^{opt} = \{d_1(h_1, \widehat{\eta}_1^{opt})\}$$

· Value search or policy or direct search estimation

Natural choices for $\widehat{\mathcal{V}}(d_{\eta})$: IPW or AIPW estimators

• Analogous to (3.8) and (3.9) define for fixed $\eta=\eta_1$

$$C_{d_{\eta}} = I\{A_1 = d_1(H_1; \eta_1)\}$$

$$\pi_{d_{\eta},1}(H_1;\eta_1,\gamma_1)$$

$$= \pi_1(H_1;\gamma_1)I\{d_1(H_1;\eta_1) = 1\} + \{1 - \pi_1(H_1;\gamma_1)\}I\{d_1(H_1;\eta_1) = 0\}$$

From (3.13) IPW estimator

$$\widehat{\mathcal{V}}_{IPW}(d_{\eta}) = n^{-1} \sum_{i=1}^{n} \frac{\mathcal{C}_{d_{\eta},i} Y_{i}}{\pi_{d_{\eta},1}(H_{1i}; \eta_{1}, \widehat{\gamma}_{1})}$$
(3.43)

From (3.18), AIPW estimator

$$\widehat{\mathcal{V}}_{AIPW}(d_{\eta}) = n^{-1} \sum_{i=1}^{n} \left[\frac{\mathcal{C}_{d_{\eta},i} Y_{i}}{\pi_{d_{\eta},1}(H_{1i};\eta_{1},\widehat{\gamma}_{1})} - \frac{\mathcal{C}_{d_{\eta},i} - \pi_{d_{\eta},1}(H_{1i};\eta_{1},\widehat{\gamma}_{1})}{\pi_{d_{\eta},1}(H_{1i};\eta_{1},\widehat{\gamma}_{1})} \mathcal{Q}_{d_{\eta},1}(H_{1i};\eta_{1},\widehat{\beta}_{1}) \right]$$

$$Q_{d_{\eta},1}(H_1; \eta_1, \beta_1)$$
= $Q_1(H_1, 1; \beta_1) I\{d_1(H_1; \eta_1) = 1\} + Q_1(H_1, 0; \beta_1) I\{d_1(H_1; \eta_1) = 0\}$

- Also: Alternative estimator $\widehat{\mathcal{V}}_{IPW*}(d_{\eta})$
- As before, $\widehat{\mathcal{V}}_{IPW}(d_{\eta})$ and $\widehat{\mathcal{V}}_{AIPW}(d_{\eta})$ are consistent estimators for $\mathcal{V}(d_{\eta})$ for fixed $\eta=\eta_1$, and $\widehat{\mathcal{V}}_{AIPW}(d_{\eta})$ is moreover doubly robust

Result: Estimators for η_1^{opt} by maximizing $\widehat{\mathcal{V}}_{IPW}(d_{\eta})$ or $\widehat{\mathcal{V}}_{AIPW}(d_{\eta})$ in η_1 to obtain $\widehat{\eta}_{1,IPW}^{opt}$ or $\widehat{\eta}_{1,AIPW}^{opt}$

• Estimators for optimal restricted regime $d_{\eta}^{opt} \in \mathcal{D}_{\eta}$

$$\widehat{d}_{\eta,IPW}^{opt} = \{d_1(h_1, \widehat{\eta}_{1,IPW}^{opt})\} \quad \text{and} \quad \widehat{d}_{\eta,AIPW}^{opt} = \{d_1(h_1, \widehat{\eta}_{1,AIPW}^{opt})\}$$

- Estimators for $\mathcal{V}(d_{\eta}^{opt})$ by substituting $\widehat{\eta}_{1,IPW}^{opt}$ or $\widehat{\eta}_{1,AIPW}^{opt}$ for η_1 in (3.43) or (3.44) to yield estimators $\widehat{\mathcal{V}}_{IPW}(d_{\eta}^{opt})$ and $\widehat{\mathcal{V}}_{AIPW}(d_{\eta}^{opt})$
- Challenge: Maximization of (3.43) or (3.44) is a nonsmooth optimization problem; standard optimization techniques cannot be used
- Intuition: $\widehat{d}_{\eta,AIPW}^{opt}$ should be of higher quality than $\widehat{d}_{\eta,IPW}^{opt}$ because $\widehat{\mathcal{V}}_{AIPW}(d_{\eta})$ is more efficient and stable than $\widehat{\mathcal{V}}_{IPW}(d_{\eta})$
- Similarly, expect $\widehat{\mathcal{V}}_{AIPW}(d_{\eta}^{opt})$ to be more efficient than $\widehat{\mathcal{V}}_{IPW}(d_{\eta}^{opt})$

Not surprisingly: $\widehat{\mathcal{V}}_{IPW}(d_{\eta}^{opt})$ and $\widehat{\mathcal{V}}_{AIPW}(d_{\eta}^{opt})$ are nonregular estimators

• But because of maximization, cannot be cast as solving stacked M-estimating equations, so cannot show by an argument similar to that for $\widehat{\mathcal{V}}_Q(d^{opt})$

Instead: Nonstandard theory suggested by behavior of the true value $\mathcal{V}(d_{\eta}^{opt})$ in a simple example

• $H_1 \sim \mathcal{N}(0, 1)$, \mathcal{D}_{η} comprises regimes with rules

$$d_1(h_1;\eta) = I(h_1 > \eta_1), \quad \eta_1 \in \mathbb{R}$$

Y continuous with true regression relationship

$$Q_1(h_1, a_1) = E(Y|H_1 = h_1, A_1 = a_1)$$

= $\beta_{11,0} + \beta_{12,0}h_1 + \beta_{13,0}a_1 + \beta_{14,0}h_1a_1$

with
$$\beta_{14,0} \ge 0$$

True value for fixed $\eta = \eta_1$:

$$\begin{split} \mathcal{V}(d_{\eta}) &= E\Big[\{\beta_{11,0} + \beta_{12,0}H_{1} + \beta_{13,0} + \beta_{14,0}H_{1}\}I(H_{1} > \eta_{1}) \\ &+ \{\beta_{11,0} + \beta_{12,0}H_{1}\}\{1 - I(H_{1} > \eta_{1})\}\Big] \\ &= \beta_{11,0} + \beta_{12,0}E(H_{1}) + \beta_{13,0}E\{I(H_{1} > \eta_{1})\} + \beta_{14,0}E\{H_{1}I(H_{1} > \eta_{1})\} \\ &= \beta_{11,0} + \beta_{13,0}\{1 - \Phi(\eta_{1})\} + \beta_{14,0}\varphi(\eta_{1}) \end{split}$$

• $\Phi(\,\cdot\,)$ and $\varphi(\,\cdot\,)$ cdf and density of $\mathcal{N}(0,1)$

Case 1:
$$\beta_{14,0} = 0$$
: $V(d_{\eta}) = \beta_{11,0} + \beta_{13,0} \{1 - \Phi(\eta_1)\}$

- If $\beta_{13,0} > 0$, $\Phi(\eta_1) \to 0$ as $\eta_1 \to -\infty$, $\mathcal{V}(d_\eta) \to$ its max, so no unique maximum in $-\infty < \eta_1 < \infty$, and all individuals receive option 1
- Similarly, if $\beta_{13,0}<0,\,\Phi(\eta_1)\to 1$ as $\eta_1\to\infty,$ and all individuals receive option 0
- If $\beta_{13,0} = 0$, $\mathcal{V}(d_{\eta})$ is constant with no unique maximum, treatment selection ambiguous
- Result: $\mathcal{V}(d_{\eta})$ does not have a unique maximum in η_1 , so η_1^{opt} and thus d_{η}^{opt} are not well defined, and standard asymptotic theory does not apply to $\widehat{\mathcal{V}}_{IPW}(d_{\eta}^{opt})$ and $\widehat{\mathcal{V}}_{AIPW}(d_{\eta}^{opt})$

Case 2: $\beta_{14,0} > 0$: $\mathcal{V}(d_{\eta})$ is a smooth function in η_1 with

$$\partial \mathcal{V}(\mathbf{d}_{\eta})/\partial \eta_{1} = -(\beta_{13,0} + \beta_{14,0}\eta_{1})\varphi(\eta_{1}) \tag{3.45}$$

$$\partial^2 \mathcal{V}(d_{\eta})/\partial \eta_1^2 = (\beta_{14,0}\eta_1^2 + \beta_{13,0}\eta_1 - \beta_{14,0})\varphi(\eta_1)$$
 (3.46)

- Setting (3.45) = 0 yields $\eta_1 = -\beta_{13,0}/\beta_{14,0}$, at which (3.46) < 0
- So $\mathcal{V}(d_{\eta})$ has a unique maximum, and thus η_1^{opt} , $d_{\eta}^{opt} \in \mathcal{D}_{\eta}$, and $\mathcal{V}(d_{\eta}^{opt})$ are well defined
- Standard asymptotic theory applies

However: Standard theory does not apply for all $\beta_{14,0} \geq 0$

- Zhang et al. (2012): Apply standard asymptotic theory anyway when in a "Case 2" situation
- Can work well under this condition, but can fail if not or if $\beta_{14,0} \neq 0$ but is close to 0

Discussion

Implementation:

- Regression methods/Q-learning straightforward using established methods and software
- A-learning methods similarly
- Value search methods involve maximization of nonsmooth objective functions, require special techniques; e.g., a genetic algorithm (as in R rgenoud) or grid search, becomes untenable for η_1 of higher dimension
- Q-learning and value search are available in R package DynTxRegime

Discussion

Practical performance: Estimation of an optimal regime

- No uniformly "best" method
- \widehat{d}_{Q}^{opt} can achieve performance of true optimal regime if d^{opt} is in the induced class of regimes, but can be very poor if the outcome regression model is misspecified
- $\widehat{d}_{\eta,AIPW}^{opt}$ is comparable if $d^{opt} \in \mathcal{D}_{\eta}$ if $Q_1(h_1, a_1; \beta_1)$ is correct, even if $\pi_1(h_1; \gamma_1)$ is misspecified
- And $\widehat{d}_{\eta,AIPW}^{opt}$ is much better than \widehat{d}_{Q}^{opt} when the regression model is misspecified but propensity is correct
- $\widehat{d}_{n,IPW}^{opt}$ not recommends on inefficiency and instability grounds
- Schulte, Tsiatis, Laber, and Davidian (2014) compare Q- and A-learning

More than two treatment options

 $A_1 = \{1, ..., m_1\}$: With appropriate versions of SUTVA, NUC, positivity

- Outcome regression methods require no modification, just a suitable model Q₁(h₁, a₁; β₁)
- Inverse probability weighted methods: With

$$\omega_1(h_1,a_1)=P(A_1=a_1|H_1=h_1), \ \ \omega_1(h_1,m_1)=1-\sum_{a_1=1}^{m_1}\omega_1(h_1,a_1)$$

can adopt a multinomial (polytomous) logistic model, e.g.,

$$\omega_1(h_1, a_1; \gamma_1) = \frac{\exp(h_1^T \gamma_{1, a_1})}{1 + \sum_{j=1}^{m_1 - 1} \exp(\widetilde{h}_1^T \gamma_{1j})}, \quad a_1 = 1, \dots, m_1 - 1$$

$$\widetilde{h}_1 = (1, h_1^T)^T, \gamma_1 = (\gamma_{11}^T, \dots, \gamma_{1,m_1-1}^T)^T$$

More than two treatment options

Redefine

$$\mathcal{C}_{d_{\eta}} = I\{A_{1} = d_{1}(H_{1}; \eta_{1})\}$$

$$\pi_{d_{\eta}, 1}(H_{1}; \eta_{1}, \gamma_{1}) = \sum_{a_{1}=1}^{m_{1}} I\{d_{1}(H_{1}; \eta_{1}) = a_{1}\} \omega_{1}(H_{1}, a_{1}; \gamma_{1})$$

$$\mathcal{Q}_{d_{\eta}, 1}(H_{1}; \eta_{1}, \beta_{1}) = \sum_{a_{1}=1}^{m_{1}} I\{d_{1}(H_{1}; \eta_{1}) = a_{1}\} Q_{1}(H_{1}, a_{1}; \beta_{1})$$

AIPW estimator with these definitions

$$\begin{split} \widehat{\mathcal{V}}_{AIPW}(d_{\eta}) \\ &= n^{-1} \sum_{i=1}^{n} \left[\frac{\mathcal{C}_{d_{\eta},i} Y_{i}}{\pi_{d_{\eta},1}(H_{1i}; \eta_{1}, \widehat{\gamma}_{1})} - \frac{\mathcal{C}_{d_{\eta},i} - \pi_{d_{\eta},1}(H_{1i}; \eta_{1}, \widehat{\gamma}_{1})}{\pi_{d_{\eta},1}(H_{1i}; \eta_{1}, \widehat{\gamma}_{1})} \mathcal{Q}_{d_{\eta},1}(H_{1i}; \eta_{1}, \widehat{\beta}_{1}) \right] \end{split}$$

More than two treatment options

• A-learning: Take $A_1 = \{0, 1, \dots, m_1 - 1\}$, analogous to (3.34) define

$$C_{1j}(h_1) = Q_1(h_1, j) - Q_1(h_1, 0), \ \ j = 0, 1, \dots, m_1 - 1$$

so that

$$d_1^{opt}(h_1) = \underset{j \in \{0,1,\dots,m_1-1\}}{\arg \max} C_{1j}(h_1)$$

• Posit models $C_{1j}(h_1; \psi_1), j = 1, ..., m_1 - 1$

3. Single Decision Treatment Regimes: Fundamentals

- 3.1 Treatment Regimes for a Single Decision Point
- 3.2 Estimation of the Value of a Fixed Regime
- 3.3 Characterization of an Optimal Regime
- 3.4 Estimation of an Optimal Regime

3.5 Key References

References

Moodie, E. E. M., Richardson, T. S., and Stephens, D. A. (2007). Demystifying optimal dynamic treatment regimes. *Biometrics* **63**, 447–455.

Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994). Estimation of regression coeffcients when some regressors are not always observed. *Journal of the American Statistical Association*, 89, 846–866.

Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Lin, D. Y. and Heagerty, P., editors, *Pro-ceedings of the Second Seattle Symposium on Biostatistics*, pages 189–326. Springer.

Schulte, P. J., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2014). Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions. *Statistical Science*, 29, 640–661.

Tsiatis, A. A. (2006). Semiparametric Theory and Missing Data. Springer.

Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2012). A robust method for estimating optimal treatment regimes. *Biometrics* **68**, 1010–1018.