Algorytm mrówkowy - przykłady

Cezary Piernikowski UMG 2024

Sytuacja spotkania z siedmioma statkami w Cieśninie Kattega

Problem komiwojażera

Jesteśmy podróżującym handlowcem, musimy odwiedzić cztery miasta oznaczone 1, 2, 3, 4; zaczynamy w mieście 1, nasza wędrówka musi się zakończyć w mieście startowym. Naszym zadaniem jest znalezienie jak najkrótszej drogi która spełni te wymagania. Między każdym miastem są ścieżki o różnych długościach, miasta są przedstawione jako wierzchołki grafu, a ścieżki jako jego krawędzie.

Stałe i ograniczenia

- Zaczynamy i kończymy podróż w mieście 1
- Maksymalnie 3 iteracje algorytmu
- Uwzględniamy ulatnianie feromonów z krawędzi (współczynnik ulatniania ρ = 0,2)
- Mamy do dyspozycji jedną mrówkę
- Warunek stopu wykonanie trzech iteracji
- Współczynniki specyfikujące impakt dla wyboru ścieżki kierując się feromonami: α = 1 i kierując się kosztem: β = 1

Stałe i ograniczenia

Macierz kosztu L

	M1	M2		M3	M4
M1		0	12	4	14
M2	1	2	0	8	7
М3		4	8	0	5
M4	1	4	7	5	0

Macierz feromonów t

	M1	M2	M3	M4
M1	0	0,4	0,7	0,2
M2	0,4	0	0,8	0,6
M3	0,7	0,8	0	0,4
M4	0,2	0,6	0,4	0

Pierwsza podróż

Na początku musimy obliczyć prawdopodobieństwo udania się mrówki do każdego poszczególnego miasta możliwego do odwiedzenia.

$$P_{ij} = \frac{\tau_{ij}^{\alpha} \eta_{ij}^{\beta}}{\sum_{k,l \in \Omega} \tau_{kl}^{\alpha} \eta_{kl}^{\beta}}$$

$$\text{gdzie } \eta_{ij} = \frac{1}{L_{ii}}$$

i oraz j określają krawędź grafu dla której obliczamy prawdopodobieństwo, k określa miasto w którym obecnie się znajdujemy Ω to zbiór wszystkich możliwych miast do odwiedzenia

Prawdopodobieństwa wyborów

$$P_{12} = \frac{\tau_{12}^{\alpha} \eta_{12}^{\beta}}{\sum_{i=1, j \in \Omega} \tau_{ij}^{\alpha} \eta_{ij}^{\beta}} = \frac{0.4 \cdot \frac{1}{12}}{0.4 \cdot \frac{1}{12} + 0.7 \cdot \frac{1}{4} + 0.2 \cdot \frac{1}{14}} = 0.1497 \approx 15\%$$

$$P_{13} = \frac{\tau_{13}^{\alpha} \eta_{13}^{\beta}}{\sum_{i=1, j \in \Omega} \tau_{ij}^{\alpha} \eta_{ij}^{\beta}} = \frac{0.7 \cdot \frac{1}{4}}{0.4 \cdot \frac{1}{12} + 0.7 \cdot \frac{1}{4} + 0.2 \cdot \frac{1}{14}} = 0.7861 \approx 79\%$$

$$P_{14} = \frac{\tau_{14}^{\alpha} \eta_{14}^{\beta}}{\sum_{i=1, j \in \Omega} \tau_{ij}^{\alpha} \eta_{ij}^{\beta}} = \frac{0.2 \cdot \frac{1}{14}}{0.4 \cdot \frac{1}{12} + 0.7 \cdot \frac{1}{4} + 0.2 \cdot \frac{1}{14}} = 0.0642 \approx 6\%$$

$$1 - \frac{2}{14; 0.2}$$

$$3 - \frac{2}{14; 0.2}$$

Wybór ścieżki

Najpierw należy ułożyć prawdopodobieństwa malejąco i zastosować dla każdego z nich sumę ich samych i elementów kolejnych.

$$S(P_{13}) = P_{13} + P_{12} + P_{14} = 0.79 + 0.15 + 0.06 = 1$$

$$S(P_{12}) = P_{12} + P_{14} = 0.15 + 0.06 = 0.21$$

$$S(P_{14}) = P_{14} = 0.06$$

P12		P13		P14	
	0,15		0,79		0,06
P13		P12		P14	
	0,79		0,15		0,06

Wybór ścieżki

Losujemy liczbę losową R z zakresu <0; 1>. Wylosowano 0,63.

If 0,21 < R <= 1 to udaj się do miasta 3.

Else if 0.06 < R <= 0.21 to udaj się do miasta 2.

Else if 0 < R <= 0,06 to udaj się do miasta 4.

Warunek pierwszy (0,21 < 0,63 <= 1) został spełniony, udajemy się więc do miasta 3.

Gdybyśmy dysponowali większą ilością mrówek, powtórzylibyśmy losowanie dla każdej z nich, co skutkowałoby różnymi wyborami ścieżek przez poszczególne mrówki.

S(P13)		S(P12)	S(P14)	
	1	0,21	0,06	

Prawdopodobieństwa kolejnych wyborów

$$P_{32} = \frac{\tau_{32}^{\alpha} \eta_{32}^{\beta}}{\sum_{i=3, j \in \Omega} \tau_{ij}^{\alpha} \eta_{ij}^{\beta}} = \frac{0.8 \cdot \frac{1}{8}}{0.8 \cdot \frac{1}{8} + 0.4 \cdot \frac{1}{5}} = 0.5556 \approx 56\%$$

$$P_{34} = \frac{\tau_{34}^{\alpha} \eta_{34}^{\beta}}{\sum_{i=3, j \in \Omega} \tau_{ij}^{\alpha} \eta_{ij}^{\beta}} = \frac{0.4 \cdot \frac{1}{5}}{0.8 \cdot \frac{1}{8} + 0.4 \cdot \frac{1}{5}} = 0.44444 \approx 44\%$$

Wybór drugiej ścieżki

$$S(P_{32}) = P_{32} + P_{34} = 0.56 + 0.44 = 1$$

$$S(P_{34}) = P_{34} = 0.44$$

P32		P34	
	0,56		0,44

Wylosowano liczbę losową R równą 0,23

If 0,44 < R <= 1 to udaj się do miasta 2. Else if 0 < R <= 0,44 to udaj się do miasta 4.

Warunek drugi (0 < 0,23 <= 0,44) został spełniony, udajemy się więc do miasta 4.

7

Wybór trzeciej i czwartej ścieżki

Po dostaniu się do miasta 4 możemy zaobserwować, że kolejne miasto które musimy odwiedzić to miasto 2, ponieważ jest ono jedyną możliwością - nie możemy odwiedzić miasta 3, ponieważ już w nim byliśmy, a miasto 1 (początkowe) można odwiedzić po raz drugi dopiero przy końcu wędrówki.

Następnie mamy również tylko jedną możliwość - udanie się do miasta 1 i zakończenie wędrówki.

Wynik iteracji - długość drogi

Aby uzyskać długość drogi musimy zsumować długości każdej z przebytych krawędzi.

Nasza droga to 1 -> 3 -> 4 -> 2 -> 1

$$s_1 = \sum_{i,j} L_{ij} = L_{13} + L_{34} + L_{42} + L_{21} = 4 + 5 + 7 + 12 = 28$$

Sprzężenia zwrotne

Sprzężenie zwrotne ujemne – ulatnianie feromonów z krawędzi grafu

$$\tau(t+1) = \tau(t) \cdot (1-\rho)$$

$$\tau(t+1) = \tau(t) \cdot 0.8$$

	M1	M2		M3	M4
M1		0	0,4	0,7	0,2
M2	0,	4	0	0,8	0,6
М3	0,	7	0,8	0	0,4
M4	0,:	2	0,6	0,4	0

$$\cdot 0.8 =$$

M1	M2	M3	M4
0	0,32	0,56	0,16
0,32	0	0,64	0,48
0,56	0,64	0	0,32
0,16	0,48	0,32	0
	0 0,32 0,56	0 0,32 0,32 0 0,56 0,64	0 0,32 0,56 0,32 0 0,64 0,56 0,64 0

Sprzężenia zwrotne

Sprzężenia zwrotne

Sprzężenie zwrotne dodatnie - zwiększenie stężenia feromonów na odwiedzonych przez mrówkę/i krawędziach.

$$au_{ij}(t+1) = au_{ij}(t) + \sum_{k=1}^m \Delta au_{ij}^k(t)$$
 gdzie $\Delta au_{ij}^k = \frac{1}{L_k}$

	M1	M2	M3	M4
M1	0	0,32	0,56	0,16
M2	0,32	0	0,64	0,48
M3	0,56	0,64	0	0,32
M4	0,16	0,48	0,32	0

	M1	M2	M3	M4
M1	0	0,403333	0,595714	0,16
M2	0,355714	0		0,515714
M3	0,595714	0,64	0	0,355714
M4	0,16	0,515714	0,355714	0

Kolejne iteracje i zakończenie działania

Zakończyliśmy pierwszą iterację, czekają nas jeszcze dwie (warunek stopu – 3 iteracje). Musimy więc powtórzyć wszystkie kroki jakie wykonaliśmy wcześniej jeszcze 2 razy, zapamiętując każdą otrzymaną drogę i jej długość. Na samym końcu wybieramy drogę najkrótszą - czyli najbliższą optymalnemu rozwiązaniu, bo używając tego algorytmu nie mamy gwarancji otrzymania ścieżki optymalnej, możemy jednak się do niej zbliżyć bardziej lub mniej - zależy to od ilości mrówek i liczby iteracji, czym więcej, tym lepiej dla jakości rozwiązania.

Dziękuję za uwagę!

Źródła

- Metody optymalizacji (2022) Józef Lisowski
- How the Ant Colony Optimization algorithm works (2018) Ali Mirjalili (https://youtu.be/783ZtAF4j5g?si=5uKz3rJShSI8YbEQ)
- Ant Colony Optimization Part 5: Example Traveling Saleman Problem (TSP) (2022)
 - Dr Hak-Keung Lam (https://youtu.be/jNd7QJQH-kk?si=e9ExEKro_3j-9LtF)