试题泛做

金策

题 1

试题编号	Codeforces 273E	
试题名称	Dima and Game	
题目大意		算法讨论
有 n 对整数 ($(l_i, r_i)(1 \le l_i < r_i \le p)_{\circ}$	关键在于处理 SG 函数, $SG(l_i, r_i) = g(r_i - l_i)$
每次可以选择满足 $r_i - l_i > 2$ 的一对数		$ l_i \rangle$, g 定义为 $g(1) = g(2) = 0, g(x) = $
$\left (l_i, r_i), \right.$ 将其替换为 $\left(l_i + \left \frac{r_i - l_i}{3} \right , l_i + \right $		$\left \max \left\{ g\left(\left\lfloor \frac{x}{3} \right\rfloor \right), g\left(x - \left\lfloor \frac{x}{3} \right\rfloor \right) \right\} (x \geq 3) \right $. 打表发现
$\left \begin{array}{c c} 2 \left \frac{r_i - l_i}{3} \right \right)$ 或者 $(l_i, r_i - \left \frac{r_i - l_i}{3} \right)$ 。两人		g(x) 构成若干个连续段,段数量仅有 100 左右,可以用二路归并进行预处理。
轮流操作,不能操作者输。		处理完后可得知 $SG=0,1,2$ 分别有几种情况。再
给定 $n, p(n \le 1000, p \le 10^9)$,求满足		用一个 DP 求出 n 个 SG 值异或和不为 0 的方案
先手必胜的初始局面数量。		数即可。
时空复杂度 空间 $O(d)$, 时间 $O(n+d)$		d),其中 d 表示段数,在 $p \le 10^9$ 时 d 大约为 100。

题 2

试题编号	Codeforces 317C	
试题名称	Balance	
题目大意		算法讨论
一张无向图表	示一个输水网络, $n(n \le n)$	对于每一个联通块单独处理:取一棵生成树。每次
300) 个顶点表	ξ 示容器, e 条边表示管	操作时取一个叶子节点并将其 a_i 调整为与 b_i 相同
道。在任意时刻,每个容器的水量不		(类似于网络流的增广操作,在树上进行 DFS 即可
能超过最大容量 v ,也不能小于 0 。构		实现, 所用到的步骤数量不会超过树的边数), 然
造一个输水方案,对于每一个容器 i		后删除这个叶子并对剩下的树重复上述操作。容易
将其水量由当前状态 a_i 变为目标状态		证明这个方法用到的步骤数量小于 $n^2/2$ 。
b_i 。输水的总步骤数不能超过 $2n^2$ 。		
时空复杂度 空间 $O(n+e)$, 时间 $O(n+e)$		(n^2+e) .

试题编号	GCJ 2010 I	Final C
试题名称	Candy Stor	re
题目大意		算法讨论
有 $k(k \le 1000)$,	假设准备的 m 个盒子价值为 $a_1 \leq a_2 \leq \cdots \leq a_m$ 。考虑所
次光顾你的商	店,每个人	\mid 有 k 名顾客均购买 $a_i - 1$ 价值的糖果的情况,可能被用到
想要买的糖果		的盒子仅有 a_1, a_2, \dots, a_{i-1} 。于是 $\sum_{j=1}^{i-1} a_j \ge k(a_i - 1)$,即
间 $[1,C]$ $(C \leq $ 任意整数。你	,	$\left a_i \le 1 + \left[\frac{1}{k} \sum_{j=1}^{i-1} a_j \right] \right $ 。另一方面,考虑每位顾客均买 C 价值糖
干个任意整数		果的情况,有 $\sum_{j=1}^{m} a_j \ge kC$ 。结合这两个式子可以用一个循环
果盒,以保证	无论顾客的	算法求得 m 的下界。
需求如何,总	是可以恰好	对于上述构造出来的 m 个盒子,分配策略是每次取尽可能大的
满足每位顾客	。求最少所	盒子分给顾客,直到恰好达到需求。可以用归纳法证明这个策
需要的糖果盒		略是可行的。
时空复杂度	空间 $O(1)$,	时间 $O(\text{Answer}) = O(k \log C)$ 。

		,_	
试题编号	Codeforces 251D		
试题名称	Two Sets		
题目大意		算法讨论	
给定 $n(n \leq 1$	/	定义 01 变量 $x_i = [a_i \in B] \ (1 \le i \le n)$,集合 $P_d = \{i : a_i \text{ 的第 } d \subseteq a_i \}$	
$ $ 非负整数 a_i	$a_i(a_i \leq $	进制位是 1}。	
10 ¹⁸),将其戈	过分为	对于第 i 位,如果 $ P_i $ 为奇数,则第 i 位对 $s_0 + s_1$ 的贡献一定是	
两个集合 A ,	B, \Leftrightarrow	2^i ,如果 $ P_i $ 为偶数,则贡献是 0 或 2×2^i ,要使贡献较大则需要	
s_0, s_1 分别表示	$\vec{} A, B$	使得异或和 $\bigoplus_{i \in P_i} x_i = 1$ 。从高位往低位遍历 i 可以得到一系列异	
内数字的异或	和。输	或方程,每次将新得到的方程加入已有的方程组,检查是否导出矛	
出方案最大化 s_0+s_1 ,		盾, 无矛盾则保留, 有矛盾则去除。由于 2 的幂次的性质, 这样的	
若有多种方案,还需		贪心顺序可以使得 $s_0 + s_1$ 最大。	
最小化 s_1 。		接下来最小化 s_1 ,同理从高到低枚举 i ,每次检查 $\bigoplus_{i \in P_i} x_i = 0$ 是	
		否可以满足。	
		每次检查新加入的方程是否矛盾时,可以将系数矩阵消元形成阶梯	
		型矩阵(可用 bitset 优化)。	
时空复杂度 空间 $O(n)$, 时间 $O(nd^2)$, 其中 d 为 a_i 的二进制位数 (<64)。 若使用 bits			
	优化则为 $O(rac{n}{32}d^2)$ 。		

试题编号 Codeforces 249E	
11 11 1	
试题名称 Endless Matrix	
题目大意	算法讨论
将全体正整数按漩涡状排成方阵,如下所	可以转化为求 $\sum_{i=1}^{x} \sum_{j=1}^{y} a_{ij}$ 。
示:	如果 $x \leq y$,所求子矩阵的前 x 列组成正方形,
1 2 5 10 17 26	恰好包含 $1, 2, \cdots, x^2$ 的整数, 很容易求和; 剩
4 3 6 11 18 27	下的 $y-x$ 列,每列的数字和可以写成关于 j
9 8 7 12 19 28	的二次式,也容易求和。 $x > y$ 的情况可类似
16 15 14 13 20 29	处理。
25 24 23 22 21 30	判断答案是否小于 1010, 可以另取几个大于
36 35 34 33 32 31	10 ¹⁰ 的质数作为模进行检验。因为答案的大小
$ $ 记第 i 行第 j 列数字为 a_{ij} ,求	不会超过 $(10^9)^4 = 10^{36}$ 级别,若取两个大于
$\sum_{i=x_1}^{x_2} \sum_{j=y_1}^{y_2} a_{ij}$ 。需要判断答案是否多于	10 ¹³ 质数即可保证不出错。(即使只取一个质
10 位数,并且输出答案模 10 ¹⁰ 的结果。	数,出错概率也可忽略不计)。
$(x_2, y_2 \le 10^9)$	
时空复杂度 空间 $O(1)$,时间 $O(1)$ 。	

题 6

试题编号	Codeforces 241D	
试题名称	Numbers	
题目大意		算法讨论
给定一个 1,2	$2, \cdots, n$ 的全	考虑动态规划, $f[i][j][k]$ 表示前 i 个数,异或和为 j ,组成数
排列,从中划去任意项,使		字模 p 为 k ,是否可行。由此得到一个比较显然的 $O(n^2p)$ 算
得剩下的数列(非空)满足:		法。
异或和为 0;		注意到当 n 比较大时,无解的概率很低。取 $n=31$ 并将数
从左到右将数拼接成的十		列中小于 32 的数取出进行 DP, 即可 AC。事实上, $1\sim31$
进制数模 p 为 0 。 $(n, p \le$		有 $2^{26} - 1$ 个非空子集满足元素异或和为 0 ,有解的概率为
50000)		$P = 1 - \left(\frac{p-1}{p}\right)^{2^{26}-1}$,而 $(P^{31!})^{50000}$ 几乎等于 1,所以这样做
如果有解需要	输出方案。	
		是很可靠的。
叶亮有九亩		

时空复杂度 空间、时间 $O(\min \{31, n\}^2 p)$ 。

试题编号 Codeforces 319	E
试题名称 Ping-Pong	
题目大意	算法讨论
区间 (a,b) 向 (c,d) 连一条有	可以相互到达的区间 I 组成强连通分量 c 。维护当前所有强
向边当且仅当 $c < a < d$ 或	连通分量组成的集合 C ,并用新区间 $I_i = (a_i, b_i)$ 来代表每
c < b < d。支持两种操作(操	一个强连通分量 $c_i \in C$,其中 $a_i = \min\{I.l : I \in c_i\}, b_i = I$
作数量 $\leq 10^5$):	$\max \{I.r : I \in c_i\}$ 。每次插入一个新区间 $I' = (p,q)$ 的时
(1) 插入一个区间,保证插入	候,可以证明,如果 $a_i 或 a_i < q < b_i,则 I' 应该 $
区间的长度按照插入顺序严	可以和 c_i 中的所有区间相互到达。所以只需查询所有这样
格递增。	的 c_i 并与 I' 合并。
(2) 询问从第 i 个区间能否经	为了高效查询,建立一棵线段树并对每个结点维护一个
过有向边到达第 j 个区间。	vector/链表,记录严格包含此结点的区间有哪些。
时空复杂度 空间 $O(n \log n)$,时间 $O(n\log n)$ 。

试题编号	Codeforces 286E	
试题名称	Ladies' Shop	
题目大意		算法讨论
k 种物品(每	种物品有无限个)的质量分别为	如果存在 i, j ,使得 $a_i + a_j \le m$,但 $a_i +$
$1 \le p_1 < p_2 < p_3 < p_4 < p_4 < p_5 < p_5 < p_6 < p_6 < p_7 < p_7 < p_8 < $	$1 \cdots < p_k \le m$ 。任意取一个或几	$a_j \notin A$,则无解,否则必然有解。
个物品组合可	凑成的所有总质量中,不超过 m	对于某个质量 a_x , 如果不存在 i,j 使得
者组成集合 A	$a = \{a_1, a_2, \cdots, a_n\}, a_i \leq m_\circ$	$a_x = a_i + a_j$,则必然存在某个物品的质量
已知 m 和 a_1	$,a_2,\cdots,a_n$,求出一组符合条件	等于 a_x 。取出所有这样的 a_x 即为答案。
的 p_1, \cdots, p_k	并使得 k 最小,或者判断无解。	需要统计的内容具有卷积的形式, 可用
		FFT 实现。
	空间 O(m) 时间 O(m log m)	

时空复杂度 | 空间 O(m), 时间 $O(m \log m)$.

题 9

试题编号	Codeforces 306C	
试题名称	White, Black and White Again	
题目大意		算法讨论
共有 w 件好事	事和 b 件坏事(每件事都被视为不	设第二部分持续 i 天,容易知道答案为
	内发生,每天至少发生一件事(同	$w!b! \sum_{i=1}^{n-2} (n-i-1) {b-1 \choose i-1} {w-1 \choose n-i-1}$
,	件事是要计次序的)。这 n 天恰被	$= w!b!(w-1)\sum_{i} {b-1 \choose i-1} {w-2 \choose n-i-2}$
	每部分至少包含 1 天,第一、第三	$= w!b!(w-1)\binom{w+b-3}{n-3}$.
部分只发生好	事,第二部分只发生坏事。求总方	n-3 / ·
法数量。 (n, w)	$v, b \le 4000)$	
		(A) [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2

| 时空复杂度 | 空间 O(1),时间 $O(n \log n)$ (若在线性时间预处理逆元,可优化到 O(n))。

试题编号	Codeforces 274C	
试题名称	The Last Hole!	
题目大意		算法讨论
白色平面上有	n 个点,以它们为圆心	考虑洞消失前一瞬间所在的位置,可以证明它是某
画黑色实心圆, 在 <i>t</i> 时刻所有圆的半		个锐角三角形的外心或某个矩形的中心。枚举所有
│ 径为 t。一个洞定义为封闭的白色区 │		锐角三角形的外心和矩形的中心 $(共有 O(n^3))$ 个这
域。判断有无产生过洞,并求最后一		样的点),再 $O(n)$ 求出其他点到这个点的最小距
个洞消失的时刻。 $(n \le 100)$		离以判断它是否已经被覆盖,若没有被覆盖则这个
		点可以产生洞,更新答案。
时空复杂度	空间 $O(n)$, 时间 $O(n^4)$	0

试题编号	Codeforces 331	C3
试题名称	The Great Julya Calendar	
题目大意		算法讨论
一个整数初始	自值为 n, 每次	容易证明每次需要取当前各个数位上最大的数作为减数
可以选择 n 彗	表一位上出现的	x,然后可以用动态规划解决。一种做法是考虑把数字
数 x ,并将 n	i 减去 x。求最	$\overline{a_1a_2\cdots a_t99\cdots 9p}$ 消成 $\overline{a_1a_2\cdots a_{t-1}(a_t-1)99\cdots 9q}$ 所需
少几次操作可	以将 n 变成 0 。	的步骤数量,记为 $f[m][k][p]$,其中 $m = \max a_i$, k 为 9 的
$(n \le 10^{18})$		数量,同时需要记录所到达的 $q[m][k][p]$ 。
时空复杂度	空间 $O(l \times 10^2)$),时间 $O(l \times 10^3)$,其中 l 为 n 的位数。

题 12

, ==		
试题编号	Codeforces	235C
试题名称	Cyclical Qu	ıest
题目大意		算法讨论
一个小写英文	文字符串 s ,	$ $ 对 s 建后缀自动机,拿 t_i 在自动机上跑。为了处理循环同构,
每次询问 s 7	有多少个子	首先需要将 t_i 的首字符删去,删去首字符时,检查当前结点的
串是和字符串	t_i 循环同	父亲的长度值是否恰为 $ t_i -1$,是则退回到父亲,否则原地不
构的。(询问点	总长和串长	动。然后要将删去字符添加到 $ t_i $ 末尾,只要从当前结点沿着对
$\leq 10^6$, 询问	个数 $\leq 10^5$)	应字母边往下走一步即可。
	,	为避免重复计数,需要计算 t_i 的循环节,可以用 KMP 实现。
时空复杂度	空间 O(26r	n), 时间 $O(n)$ 。

题 13

试题编号	Codeforces 280D	
试题名称	k-Maximum Subsequence Sum	
题目大意		算法讨论
一个整数数列。支持:		此询问可以转化成一个费用流。由于图
(1) 单点修改		的特殊性,求最长路的过程相当于询问
(2) 询问 l,r 间取出至多 k 段连续子段的最大		区间最大子段和,一次增广的过程相当
和。		于区间全部乘以 -1, 可用线段树优化。
$(n, m \le 10^5, k \le 20$,其中询问的数目 ≤ 10000)		
时空复杂度	空间 $O(n)$, 时间: 单点修改每次	$O(\log n)$,询问每次 $O(k \log n)$ 。

试题编号	Codeforces 293B	
试题名称	Distinct Paths	
题目大意		算法讨论
$n \times m$ 的方格	,每个格子可以填入 k 中颜色中的	已知 $n+m-1 \le k$ 。直接搜索会 TLE。
一种。满足从	左上角到右下角的任意路径(路径	考虑到许多方案是等价的(可以通过颜
只能往右或往下,只能走有边相邻的格子)中不		色重编号到达另一个), 所以可以仅搜索
包含相同颜色的格子。		字典序最小的那一些,再分别计算它们
一些格子的颜色已经固定,求把剩下格子填满有		可以代表的不同方案数量来更新答案。
几种方案。(k	≤ 10)	这样优化后即能 AC。
时空复杂度 空间 $O(nm)$, 时间 $O(本质不同的方案$		方案数量 $\times nm$)。

试题编号	Codeforces 306D		
试题名称	Polygon		
题目大意		算法讨论	
输出一个凸 n 边形,满足每个		易知 $n=3,4$ 时无解。	
内角相等,但边长度两两不等。		内角相等的凸 n 边形可以由正 n 边形将边适当平移而	
$ (n \le 100) $		得。所以可以用各种各样的方法平移每条边使得边长两	
		两不等。	
时空复杂度	空间 $O(n)$, 时间	O(n).	

题 16

试题编号	Codeforces 241B	
试题名称	Friends	
题目大意		算法讨论
<i>n</i> 个数字 <i>a</i> ₁ ,	\dots, a_n 两两异或	建 01-Trie, 对于每个结点 u 还要额外记录 $count_u[i]$, 表
所得的 $n(n-1)/2$ 个数中,前 k		示 u 子树的叶子所表示的数字中,第 i 位上共有几个 1 。
大的和是多少。 $(n \leq 50000, k \leq$		
$n(n-2)/2$,数字 $\leq 10^9$)		计 a_i 和其他所有数字异或的信息),并沿树边同时不断
		下降,下降时统计对答案的贡献。
时空复杂度	空间 $O(n \log^2 n)$,	时间 $O(n\log^2 n)$ 。

题 17

试题编号	Codeforces 235D	
试题名称	Graph Game	
题目大意		算法讨论
-个 n 个点的	J基环 + 外向树。每	对于每一对点 (u,v) ,考虑以 u 为中心时, v 属于其所
次从当前连通分量中随机取一个		在连通分量中的概率。如果 u,v 间路径不经过环上的
点作为中心,代价为当前分量的		边,则概率为 $\frac{1}{dis(u,v)+1}$,其中 $dis(u,v)$ 表示 u,v 路径
总点数,然后	去掉中心并对剩下	上的边数量;如果经过环上的边,则有三种情况,一种
的连通分量递	追归处理。求总代价	是以 u 为中心时环依然完整,另外两种是此时环只剩
的期望。 $(n \le$	3000)	下某半边,讨论一下即可。
时空复杂度	空间 $O(n)$, 时间 O	$\overline{(n^2)}$.

试题编号	Codefo	rces 335D
试题名称	Rectan	gles and Square
题目大意		算法讨论
平面上 n 个:	边平行	拼成的正方形有四条边缘线; 其左上角顶点必然为某个矩形的左上
坐标轴的矩形	, 互不	角,右下角顶点亦然。对于每个点预处理出它往上下左右的边缘线
相交。求是否有某些		能延伸多远。对于每个左上角顶点,计算出它往右下方向延伸成正
矩形恰好铺满	一个正	方形的可能边长范围(既要保证范围内没有空格子,又要保证顶点
$ 方形。n \leq 1 $	$0^5, 0 \le$	往右、往下的边缘线没有被阻断);对于每个右下角顶点,同样往左
坐标 ≤ 3000		上方向进行处理。如果某矩形的左上角顶点和某矩形的右下角顶点
		都在对方所需的边长范围之内,则铺满了一个正方形,可以对于每
条左上 -右下对角线分别用线段树维护所需信息。		
时空复杂度 空间 $O(m^2+n)$, 时间 $O(m^2+n\log m)$ 。		

试题编号	Codeforces 263E	
试题名称	Rhombus	
题目大意		算法讨论
$-$ 个 $n \times m$ 的	数阵,给定 k ,对于	所求的和形状为一个斜正方形, 中间的数字权重大。
$k \le x \le n - k$	$k+1, k \le y \le m -$	可以暴力求出 $f(k,k)$ 后往右、往下递推以求得所有
$k+1 \stackrel{?}{x} f(x,y)$	$y) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} \cdot $	f(x,y),递推时需要剪掉一个三角形内的和,加上另一
$\max(0, k - i)$	-x - j-y) 的最	个三角形内的和。可以通过预处理三角形形状的前缀
大值。(n, m ≤	≤ 1000)	和来高效计算。
时空复杂度	空间 $O(nm)$, 时间	$O(nm)_{\circ}$

试题编号	Codeforces 342D	
试题名称	Xenia and Dominoe	es
题目大意		算法讨论
$-$ 个 $3 \times n$ 的	棋盘,有一些坏格,	空格周围至多只有3个位置能够放下骨牌并且指向它,
和一个指定留空的格子。把剩下		可以用容斥原理解决,然后转化为经典的状压 DP。
的格子用 1×2 骨牌铺满,且至少		
有一个骨牌与	i空格相邻并指向空	
格。问方案数	$n \le 10000$	
时空复杂度	空间 $O(n \times 2^3)$,时	间 $O(2^3 \times 4^3 n)$ 。

题 21

试题编号	Codeforces 319D	
试题名称	Have You	1 Ever Heard About the Word?
题目大意		算法讨论
一个长度为 7	n 的字符	容易证明删除的顺序一定是按长度递增的。升序枚举 <i>l</i> ,对于 X
串,每次选择	译串 中 最	串长度为 l 的情况,可以用 $O(n/l \cdot \log n)$ 的时间找到所有发生替
短的重复子串,即形如		换的位置, 具体方法是: 对于 $i \in \{1, 1+l, 1+2l, \cdots, \}$, 计算 i
XX 的子串(如果有多		和 $i+l$ 的最长公共前缀、最长公共后缀,如果其长度之和 $\leq l+1$,
个最短的则取最左的),		则此处出现了重复子串。而最长公共前(后)缀可以用哈希 + 二
将其替换为 X。求最终		$\mathcal{G}(\log n)$ 求得。于是判断的总复杂度是 $O(\log^2 n)$ 。
不能继续操作时,剩下		如果发生替换,则字符串会缩短,需要用 O(n) 时间重构哈希数
的字符串。 $(n \le 50000)$		组。可以证明重构的次数是 \sqrt{n} 级别的。
时空复杂度 空间 O(n)		(n) ,时间 $O(n\sqrt{n} + n\log^2 n)$ 。如果用平衡树维护哈希数组,可以做
到 $O(\log^3$		$^3n)$.

试题编号	Code	forces 285E
试题名称	Posit	ions in Permutations
题目大意		算法讨论
$-$ 个 $1 \sim n$ 的	排列	先考虑按从小到大的顺序填入数字,且只填在好位置上的方案数。DP
p , 如果 $ p_i-i $		状态为 $f[i][j][a][b]$,表示已填入的数字为 $1 \sim i$ 中的 k 个且都填在好
则称 i 是好化		位置上的方案数, a,b 分别表示 p_i, p_{i+1} 是否已经被占据。
求恰好有 k		$ \Leftrightarrow g[j] = \sum_{a,b} f[n][j][a][b]$,则剩下 $n-j$ 个数。可以看出一个恰有 k
位置的排列。	个数。	个好位置的排列对于 $g[j](n-j)!$ 的贡献为 $\binom{k}{j}$, 据此可以求出答案。
$(n \le 1000)$		· · · · · · · · · · · · · · · · ·
时空复杂度	空间	$O(n^2)$, 时间 $O(n^2)$ 。

试题编号	Codeforces 339E		
试题名称	Three Swaps		
题目大意		算法讨论	
一个排列初始时为 $1,2,\cdots,n$,经过不		经过3次操作后至多把排列分成7段,所以可	
超过 3 次操作,每次操作是将 $[l_i, r_i]$ 左		以以段为单位进行爆搜。注意有时候一个连续段	
右翻转。给出操作后的排列,求出操作		是需要被拆开的,需要特别在分段时判断并多分	
方案。 $(n \le 1000)$		出一段。	
时空复杂度 空间 $O(n)$, 时间 $O(n) + O(n)$		O(爆搜)。	

试题编号	Codeforces 261E	
试题名称	Maxim and Calculator	
题目大意		算法讨论
一个整数对(<i>a</i> , <i>b</i>),初始时为 (1,0)。可	易知所变成的 x 的最大质因子不超过 $k-1$,而
以用两种操作: $(1)(a,b) \to (a,b+1)$;		这样的数在 10^9 范围内约有 3×10^6 个。求出所
$(2)(a,b) \rightarrow (ab,b)$ 。求在区间 $[l,r]$ 中有		有这些数字后进行 k 次 DP,每次只要从小到
多少整数 x 满足:可以通过不超过 k		大扫描更新,即可求出每个数所需要的最少步骤
次操作,使得数对的第一个数变为 x 。		数。
$(r \le 10^9, k \le 100)$		
时空复杂度	空间 $O(N)$, 时间 $O(kN)$	N 为 r 以内最大质因子不超过 $k-1$ 的数的数
量,在极限情况约为 3×1		10^{6} .

题 25

试题编号	Codeforces 333C	
试题名称	Lucky Tickets	
题目大意		算法讨论
给定 k ,在一个 8 位的 $0 \sim 9$ 数字串中		条件很宽松,有各种各样的构造方法。我的方法
任意插入 $+, -, \times, ()$,使得结果为 k 。输		是把串的前四位(或后四位)设为 $k + d(d \le 1)$
出 m 个不同的有解的数字串。 $0 \le k \le$		200),剩下四位放一个能凑成 d 的数串,这样的
$10^4, m \le 3 \times 10^5$		串可以通过爆搜得到。这个方法对每个 $k \leq 10^4$
		都能构造出 3×10^5 个解。
时空复杂度	空间 O(200 × 10000), 时	$\Box O(10000 \times 2^4 \times 2^3 + m)$

试题编号	Codeforces 301C		
试题名称	Yaroslav and Algorithm		
题目大意		算法讨论	
一个程序每个	指令形如 $a_i >> b_i$ 或 $a_i <> b_i$,其中 a_i, b_i 是串(可	用?作为指针,先把?	
为空), 串包含	\mid 为空),串包含数字或问号。初始时输入一个数字 x ,每次循环时找 \mid 移到最低位后,每次		
\mid 到最小的 i 使得 x 包含 a_i ,并将 x 中出现 a_i 的地方替换为 b_i ,如 \mid 如果? 之前的数字不			
果是 >> 则组	绘实下一次循环,如果是 <> 则停止。如果找不到这样	为 9,则加一后停止;	
的 i 也停止。停止后输出当前的数字。 否则进位并将? 左移			
构造一个程序	构造一个程序,使得输入要求的数字后,程序输出它加一后的数。 一格。		
时空复杂度	空间,时间 $O(1)$ 。		

试题编号	Codeforces 338D	
试题名称	GCD Table	
题目大意		算法讨论
一个 n 行 m 列的表格,		令 $L = lcm(a_1, \dots, a_k)$,可以证明如果在表格中出现,则必然
第 i 行第 j 列为 $gcd(i, j)$ 。		在第 L 行出现过。所以若 $L > n$ 则无解。
给出 k 个数 a_1, \dots, a_k ,		设 a_1 出现在第 L 行第 x 列,则 $gcd(L, x+i-1) = a_i$,从而有
问它们是否在表格某一		$x \equiv 1 - i \pmod{a_i}$,解这个线性同余方程组求得 x 。然后代回去
行中从某一位置开始按		进行检验。
顺序连续出现。		
时空复杂度	空间,时间	O(1).

试题编号 Codeforces	Codeforces 261D	
试题名称 Maxim and	l Increasing Subsequence	
题目大意	算法讨论	
-个长为 n 的正整数列	不妨设 b_i 的值共有 tot 种,那么 LIS 长度至多为 tot ,所以可	
b_1, \cdots, b_n 重复 t 次得到	以令 $t \leftarrow \min\{t, tot\}$ 。	
一个长为 $n \times t$ 的数列	然后考虑 DP,令 $f_i[j]$ 表示由 a_1, \cdots, a_i 中元素组成的,且最	
a_1, \cdots, a_{nt} ,求新数列的	大元素小于 j 的最长上升子序列长度。对 i 从 1 遍历到 nt 同	
最长严格上升子序列长	时更新 f 。注意到 f 数组总是保持单调不降的,更新的时候可	
度。 $(n, maxb \leq 10^5, t \leq$	以在适当地方 break,使得每次更新都有某个 $f[k]$ 的值增加,	
$10^9, n \times maxb \le 2 \times 10^7)$	所以更新总次数不超过 $tot \times tot$ 。	
时空复杂度 空间 $O(n)$,	时间 $O(n \cdot tot)$ 。	

题 29

试题编号	Codeforces 257E	
试题名称	Greedy Elevator	
题目大意		算法讨论
1 2 4 4 2	个人、m 层楼的电梯系统。已知	有三种事件:有人前来等待、有人上电梯、
	等待的时间,以及每个人的起始	有人下电梯。每次取最近将要发生的一个
楼层和终止楼层。电梯根据目前上面正在等待		事件进行处理。第一种只要顺序排序,后
的人、电梯里想往上的人数总和与下面正在等		两种分别用 set 维护即可。处理完后需要
待的人、电梯里想往下的人数总和进行比较以		更新上、下的人数,并求出下一个时间电
决定下一个时	间是往上还是往下走。电梯初始	梯的运行方向。
时在1层。求出每个人到达终止楼层的时间。		
$(n \le 10^5, m \le 2 \times 10^5, $ 前来的时间 $\le 10^9)$		
时空复杂度	空间 $O(n)$, 时间 $O(n \log n)$ 。	

试题编号	Codeforces 316E3	
试题名称	Summer Homework	
题目大意		算法讨论
(1) 单点赋值 (3) 对区间 $[l,$ 其中 $f_0 = f_1$ 2×10^5)	的数列 a ,支持三种操作: (2) 区间加 r] 询问 $\sum_{x=0}^{r-l} f_x \cdot a_{l+x}$ (模 10^9), $= 1, f_k = f_{k-1} + f_{k-2}$ 。 $(n, m \le 1)$	令矩阵 $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$,则 $(f_{k-1} & f_k) \mathbf{A} = (f_k & f_{k+1})$ 。对于线段树的每个结点 $[l, r]$ 维护这样一个 1×2 矩阵 $a_l (f_0 & f_1) + a_{l+1} (f_1 & f_2) + \cdots + a_r (f_{r-l} & f_{r-l+1})$ 。
时空复杂度	空间 $O(n)$, 时间 $O(n \log n)$ 。	

试题编号	Codeforces 266E	
试题名称	More Queries to Array	
题目大意		算法讨论
一个长度为 n 的数列 a ,支持两种操作:		由于 k 很小,可以在线段树的每个结点
(1) 区间赋值		$[l,r]$ 中对每个 $0 \le k \le 5$ 维护 $\sum_{x=l}^{r} a_x \cdot x^k$
(2) 对区间 $[l,r]$ 和 k ,询问 $\sum_{x=l}^r a_x \cdot (x-l+1)$		的值。在区间覆盖的时候需要用到 k 次方
$(1)^k$ (模 $10^9 + 7$)		和公式。
$(0 \le k \le 5, n, m \le 10^5)$		询问时根据二项式定理,
		$\sum_{x=l}^{r} a_x \cdot (x-l+1)^k = \sum_{x=l}^{r} a_x \cdot (x^k + 1)^k$
		$\binom{k}{1}x^{k-1}(1-l) + \binom{k}{2}x^{k-2}(1-l)^2 + \cdots$
时空复杂度	空间 $O(kn)$, 时间 $O(kn\log n)$ 。	

试题编号	Codeforces 309D	
试题名称	Tennis Rac	kets
题目大意		算法讨论
一个正三角形	,每条边被	将取的三个点在各自边上的位置设为 a,b,c, 利用余弦定理可
n 个分点等分:	为 $n+1$ 段,	以表示出连成的三角形边长 x,y,z ,使得 $x^2+y^2 < z^2$ 即为钝
其中前 m 个和	印后 m 个点	角三角形 $(z$ 为长边 $)$ 。枚举 a,b 即可得到 c 的取值范围,累加
是不能使用的	。剩下的分	答案。
点中,从每条边上各取一		由于 n 较大,需要进行常数优化才能 AC。比如,枚举 a,b 的
个,能连成的钝角三角形		过程中, c 的范围是有单调性的,求范围的时候可以用直接枚
有几个。 $(n \leq 32000, 0 \leq $		举的方法来避免除法运算。另外, x,y 为最长边的情形和 z 一
$m \leq \lfloor n/2 \rfloor$		样,可以省去 1/3 的运算量。枚举钝角顶点时,左右具有对称
		性,可以再省去一半的运算量。
时空复杂度 空间 $O(1)$,时间 $O(n^2)$ 。		

题 33

试题编号	Codeforces	235E	
试题名称	Number Ch	Number Challenge	
题目大意		算法讨论	
求		考虑动态规划,逐一考虑每个质数 p ,令 $f[a][b][c][p] =$	
$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} d(ijk),$		$\sum_{i=1}^a \sum_{j=1}^b \sum_{k=1}^c d(ijk)[i,j,k$ 中只含不超过 p 的质因子]。	
d(x) 表示 x 的正约数个		$f[a][b][c][p] = \sum_{x,y,z} f[a/p^x][b/p^y][c/p^z][last(p)](x+y+z+1)$	
数。 $(a, b, c \le 2000)$		707	
时空复杂度	空间、时间	大约是 $O(\sum_{a} (\sqrt{a} \log_a a)^3)$ 。	

可至复杂度 | 空间、时间入约是 $O(\sum_{p \text{ prime}} (\sqrt{a \log_p a})^s)$ 。

试题编号	Codeforces 305E	
试题名称	Playing with String	
题目大意		算法讨论
初始时一个组	氏带上写着字符串。每次可以任	将原串中满足 $s[i-1] = s[i+1]$ 的位置 i
取一个纸带 s ,若存在位置 i 使得 $s[i-1] =$		记作 ok, 剩下的位置非 ok。则串中组成了
s[i+1], 1 < i < s ,则可以将纸带剪成三段:		许多个 ok 连续段,这些段之间是相互不
s[1i-1], s[i], s[i+1 s]		影响的。对于一个长度为 k 的 ok 连续段,
两人轮流操作,不能操作者为输。问先手能否		记它的 SG 函数为 $g[k]$,则 $g[-1] = g[0] = g[k]$
胜利,如果胜利,输出先手第一步可行的操作		$0, g[k] = \max_{i} \{g[i-2] \operatorname{xor} g[k-i-1]\}.$
位置。		
时空复杂度	空间 $O(n)$,时间 $O(n^2)$ 。	

试题编号	Codeforces 325E	
试题名称	The Red Button	
题目大意		算法讨论
n 个按钮从 0 到 n − 1 编号。第一次和最后一		若 n 为奇数则无解 (考虑 $0, n-1$ 的前驱)。
次都要按 0 。若上一次按了 x ,这一次只能按		n 为偶数时,注意到 x 或 $x + n/2$ 的下一
2x 或 $2x+1$ (模 n 意义下)。除了 0 按两次		步可以为 $2x$ 或 $2x+1$ 。把按钮当作有向
外,其他按钮都恰好按一次。构造方案或判断		边, 建 $n/2$ 个结点从 0 到 $n/2-1$ 编号。第
大解。 $(n \le 10^5)$		i 个按钮代表的边为 ($\lfloor i/2 \rfloor$, $i \mod n/2$)。
		新图连通,且每个点的入度出度均为2,于
		是存在一条欧拉回路,即为所求的方案。
时空复杂度	空间 $O(n)$, 时间 $O(n)$ 。	

| 时空复杂度 | 空间 O(n), 时间 O(n)。

题 36

试题编号	Codeforces 260E	
试题名称	Dividing Kingdom	
题目大意		算法讨论
平面上有 n 个	点,用两条水平线和两条	共有 9! = 362880 种分配方案,对每一种判断是
垂直线将平面分成 9 个区域(线不能恰		否可行。判断时先根据点数找到四条直线的位
好穿过某点),使得每个区域内的点数恰		置,然后检验每个区域内的点数量是否符合,检
好为 $a[1], \dots, a[9]$ 。 $(n \le 10^5, \text{坐标} \le 10^5, \text{ Poly} $		验时可以利用函数式线段树。
10^9)		
时空复杂度 空间 $O(n \log n)$, 时间 $O(n \log n + 9! \times \log n)$ 。		

题 37

试题编号	Codeforces 338E	
试题名称	Optimize!	
题目大意		算法讨论
给定 n, len, l	a,b[1len],a[1n],	令 $a'[i] = h - a[i]$,则对于每条匹配边 (u, v) 都需要有
有多少个 i,	使得 $1 \leq i \leq$	$b[u] \geq a'[v]$,则匹配策略显然是小的配小的、大的配大
$n-len+1$, \square	b[1len] 和 $a[ii+$	的。在数轴上标出所有 $a'[i], b[i]$ 的位置, $a'[i]$ 权值为 1 ,
	以建立完全匹配	b[i] 权值为 -1 ,则如果每个位置的前缀和都非负,则存
且每条匹配边上的两个数之和		在符合条件的匹配。
$\geq h \cdot (len \leq n \leq 150000, 1 \leq$		遍历每一个 $a[ii+len-1]$,并用线段树维护前缀和的最
$a[i], b[i], h \le 10^9)$		小值。
时空复杂度	空间 $O(n)$, 时间	$O(n \log n)$.

试题编号	Codeforces 332D	
试题名称	Theft of Blueprints	
题目大意		算法讨论
给定正整数 k	和一个 n 个点的带边权无向图,满足对于	对于某个点 u ,其对应的 S 有
任意一个 k 元	E点集 S ,存在且仅存在一个点 u ,使得 u	$\binom{deg[u]}{k}$ 个,考虑这些集合的权
与 S 中每个点	证都有连边,并定义这个点集 S 的权值为这	值之和,其中每条与 u 相连的
k 条边的权值.	之和。求所有 k 元点集 S 的权值的平均值。	边都产生了 $\binom{deg[u]-1}{k-1}$ 的贡献。
$(n \le 2000)$		累加即可。
时空复杂度	空间 $O(n^2)$,时间 $O(n^2)$ 。	

试题编号 Codeforces 311E	
试题名称 Biologist	
题目大意	算法讨论
n 只狗, 初始时第 i 只狗性别	如果一个人是你的朋友,只需将其 $w[i]+=g$ 即可等
gender[i],将第 i 只狗变性需要花	同非朋友处理,所以假设每个人都是非朋友。考虑最
费 $v[i]$ 。	小割模型。 S 集合的狗为公, T 集合的狗为母。连边:
有 m 个人,第 i 个人有一个性别	(1) 源点 s 向每只公狗连边 $v[i]$; 每只母狗向汇点 t
x[i],并指定了 $k[i]$ 只狗。如果这	连边 $v[i]$ 。
k[i] 只狗的性别都是 $x[i]$,你会收益	$ $ (2) 每个喜欢公狗的人向其指定的每只狗连边 ∞ ,源
w[i]; 否则,若第 i 个人是你的朋友	点 s 向这个人连边 $w[i]$; 每个喜欢母狗的人,由他指
你需要支付 g ,若不是则无需支付。	定的每只狗向他连边 ∞ ,并由他向汇点 t 连边 $w[i]$ 。
	求出最小割 c ,则 $-c + \sum w[i]$ 即为最大收益。
$2000, k[i] \le 10)$	

时空复杂度 (最大流)点数 O(n+m), 边数 O(n+km)。

题 40

试题编号	Codeforces 360D	
试题名称	Levko and	Sets
题目大意		算法讨论
有两列数 a[1	[n], b[1m]	令 $d = \gcd(b_1, \dots, b_m, p-1)$,则 a_i 生成的集合即为 $\{a_i^{kd}\}$ 。
和一个质数	p, 对于每	令 g 为模 p 的原根, $a_i = g^{t_i}, \gcd(t_i, p-1) = q_i$,则 a_i 生成的
\uparrow	成一个集合	\mid 集合即为 $\{g^{kq_id}\}$ 。对于每个 a_i 只需要知道对应的 q_i 即可,枚 \mid
$ \{a_i^b \bmod p : b\} $	$= k_1b_1 +$	举 $p-1$ 的约数 x ,求出其中满足 $a_i^x \equiv 1 \pmod{p}$ 的最小 x ,则
$\cdots + k_m b_m, k_m$	$\{j \geq 0\}$ 。求	$q_i = (p-1)/x_{\circ}$
这 n 个集合的	的并集的元	$ \Leftrightarrow s = (p-1)/d, r_i = \gcd(q_i, s),$ 则问题转化为:给定的 r_i 均
素个数。		\mid 为 s 的约数,求出在 $0,1,\cdots,s-1$ 中有多少数是某个 r_i 的倍 \mid
$ (1 \le n \le 10^4) $	<i>,</i> – –	\mid 数。考虑容斥原理,其表达式中每一项均为一个系数乘以 s 的 \mid
$10^5, 2 \le p \le 10^9, 1 \le$		$ig $ 某个约数,用 $f_i[j]$ (j 是 s 的约数)表示仅考虑 r_1,\cdots,r_i 时, $ig $
$a_i < p, 1 \le b_i \le 10^9$		\mid 容斥原理表达式中 j 的系数是多少。由 f_i [] 数组和 r_{i+1} 可以求 \mid
		出 f_{i+1} [] 数组。
时空复杂度 空间 O(n+r		$m+d(p-1)$),时间 $O(\sqrt{p}+n\log p+md(p-1)\log p+d(p-1)^2\log p)$ 。
d(x) 表示 x		的约数数量。

试题编号	Codeforces 286D	
试题名称	Tourists	
题目大意		算法讨论
两个人在 q 时	刻同步从数轴原点出	将数轴离散化成几个互不相交的段,求出每一段内
发,以1的速	夏度朝正方向走, 两人	最早出现墙的时刻,这可以用线段树或者排序 + 堆
中间会出现墙	将两人隔开。共 m 座	实现。
墙,第 i 座墙在 t_i 时刻突然出现,		对于某一段墙,位置在 $[l,r]$,出现时刻为 t ,如果
位置是区间 $[l_i, r_i]$ 的连续一段。求		$q+r \ll t$ 则不会看到这堵墙,如果 $q+l \gg t$ 则会
出两人被隔开的总时间。		被这堵墙完整地挡住(遮挡时间为 $r-l$),否则只会
	$J问 q_i$,对于每个询问,	f q + r - t 的时间被遮挡。于是答案是一个关于 q
	时刻为 q_i 情况下的答	的分段线性函数,将所有斜率发生变化的点排序,然
	$0^5, l_i, r_i, t_i, q_i \le 10^9)$	后扫一遍即可回答所有询问。
时空复杂度 空间 $O(n+m)$, 时间 $O((n+m)\log(n+m))$		

试题编号	Codeforces 258D	
试题名称	Little Elephant and E	Broken Sorting
题目大意		算法讨论
	a[1n],进行 m 次操	令 $f[i][j]$ 表示 $a[i] > a[j]$ 的概率。进行操作 x,y
	F是以 1/2 的概率交	后, $f[x][y] \leftarrow f[y][x] \leftarrow 1/2, f[k][x] \leftarrow f[k][y] \leftarrow$
	以 1/2 的概率不动。	$(f[k][x] + f[k][y])/2, f[x][k] \leftarrow f[y][k] \leftarrow (f[x][k] + $
求最后序列的	的逆序对数量的期望。	$f[y][k])/2$ ($k \neq i, j$)。最后答案即为 $\sum_{i < j} f[i][j]$ 。
$(n, m \le 1000)$,
时空复杂度	空间 $O(n^2)$, 时间 $O(n^2)$	n^2)

 $\perp \chi \chi \chi \qquad \perp \Pi \ O(n), \ \Pi \Pi \ O(n)$

题 43

试题编号	Codeforces 273D	
试题名称	Dima and Figure	
题目大意		算法讨论
	的方格板, 从中选出	容易发现,满足所选取的连通块在每一行、列中只出
一个连通(边相连)块,使得块内		现最多一段连续段即可。按列的顺序 DP,则每行的
任意两格相互到达(只能经过连		左端点是先不增后不降,右端点是先不降后不增。令
通块内的格子)所需的最短距离		$\mid f[i][l][r][p][q]$ 表示当前第 i 行取的连续段为 $[l,r]$ 时的 \mid
恰为它们的曼哈顿距离。求方案		方案数,其中 p 表示左端点是否增加过, q 表示右端点
数。 $(n, m \leq 150)$		是否减少过。转移时需要用二维前缀和进行优化。
时空复杂度 空间 $O(m^2)$ (滚动数组),时间 $O(nm^2)$		

题 44

试题编号	Codeforces 283E	
试题名称	Cow Tennis To	urnament
题目大意		算法讨论
n 头奶牛有互	[不相同的能力	记每头牛的出度为 $d[i]$, 只需求出所有 $d[i]$ 即可,容易证明
值,能力值高	的能战胜低的。	答案 $= \binom{n}{3} - \sum_{i=1}^{n} \binom{d[i]}{2}$ 。
1	后得到一张表。	假设要知道 $a,b(a < b)$ 间的比赛结果,只需统计有多少个
	乍, 每次把所有	操作区间 $[l_i, r_i]$ 将 a, b 完全包含在内,根据其奇偶性即可
能力值均在 $[l_i, r_i]$ 的两只奶		判断。所以,假设我们要对每个 i 统计 i 连向 $j(j > i)$ 的
	系果在表格上反	边数,只要将操作区间按左端点排序,从左到右枚举 i,同
	E后, 表格上有	时对 i 的右边维护一棵线段树, 支持区间求和、区间取反
多少个三元组 (a,b,c) 使得 a		操作。接着反过来用同样方法统计 i 连向 $j(j < i)$ 的边数。
	性 c , c 战胜 a 。	于是即可求出所有 $d[i]$ 。
$(n, k \le 10^5)$		
时空复杂度	空间 $O(n+k)$.	財间 $O((n+k)(\log n + \log k))$

| 时空复杂度 | 空间 O(n+k), 时间 $O((n+k)(\log n + \log k))$

试题编号 Codeforces 332E	
试题名称 Binary Key	
题目大意	算法讨论
有两个字符串 p,s 和整数 k ,需	首先对 p 串预处理, 将所有隔 k 个字符取出而得到
要求出一个长度为 k 的 01 串 q	的子序列的 hash 值都求出来。枚举串 q 中 1 的出现
且字典序尽量小,使得用 p 和 q	次数 t ,然后类似地求出所有 s 串中隔 t 个字符取出
能生成 s 。生成算法是将所有满	而得到的子序列的 hash 值。这样我们有两组 hash 值
$ \mid \mathcal{L} \mid 0 \leq i < p , q[i \mod q] = 1 $	P[0k-1] 和 $S[0t-1]$,它们之间对应相等的位置即
的 $p[i]$ 按顺序拼接得到 s 。 ($ p \le$	为所求 q 串中 1 的位置。为了让 q 字典序尽量小,从
$10^6, s \le 200, k \le 2000)$	后往前贪心匹配即可。
时空复杂度 空间 $O(p + s + p)$	(k),时间 $O(p + k(k + s))$

试题编号	Codeforces 253E		
试题名称	Printer		
题目大意		算法讨论	
	,每个任务进队时间 t_i ,页数 s_i ,优先级 p_i 。优	显然 x 的优先级越高, 其	
	。每个单位时间打印机只能打印一页纸。打印机	完成时间越早。只要二分	
$ $ 会从当前队列中挑选优先级最高的任务进行打印。 $ $ x 的优先级 p_x			
1 / - / / / / / / /	βx 的优先级是未知的,但是已知该任务完成的	一个优先队列模拟任务	
	\mathfrak{g} 出它的优先级,并求出所有任务的完成时刻 T_i 。	的执行。	
$(n \le 50000, t_i)$	$(n \le 50000, t_i, s_i, p_i \le 10^9)$		
时空复杂度	空间 $O(n)$,时间 $O(n\log^2 n)$		

试题编号	Codeforces 243C	
试题名称	Colorado Potato Beetle	
题目大意		算法讨论
	每个格子有坐标。初始时位于	将所有关键格的坐标排序进行离散化,离
(0,0), 进行 n 次移动, 每次往上下左右四		散化后边长是 $O(n)$ 级别的, 格数是 $O(n^2)$
	8 动 x_i 格。求移动途中经过的	级别的。从边缘往里 floodfill 即可。
格子与被这些格子包围住的格子总共有几个。		
$(n \le 1000, x_i \le 10^6)$		
时空复杂度	空间 $O(n^2)$, 时间 $O(n^2)$	

题 48

试题编号 Cc	odeforces 264E	
试题名称 Ro	oadside Trees	
题目大意		算法讨论
有 n 个位置可以	种树,树每个	倒数第 i 次操作中种树时将初始树高加上 i, 即可处理树
月增长1米。每	个月初进行一	的生长。考虑维护 $f[i]$,表示为以 i 位置起始的 LIS 长
次操作,操作有两	丙种:	度。
(1) 在一个空位置	呈种树,初始树	每次在 i 位置插入树高 h 时,当前小于 h 的数的数量不
高为 [1,10] 内的塾	整数;	超过 10 个,可能位于 i 的左边和右边。所有位于 i 右边
(2) 砍掉从左到不	右第 x 棵(未	的树中,除了这些树之外,都可以用来更新 $f[i]$,能够用
被砍掉的)树,(:	$x \leq 10$).	来更新的树组成了不超过 10 个连续段,可以通过不超过
被砍了树的位置不	下再种树; 保证	10 次区间查询得到;求出 $f[i]$ 后,要更新左边小于 h 的
任意时刻没有相邻	等的树高。共	树,也只需更新不超过 10 次。
<i>m</i> 次操作,每次操作后输出当		删除第 x 个数时,可以把第 $1 \sim x$ 的数字全部删除,再
前最长上升子序列。		接 $x-1,x-2,\cdots,1$ 的顺序插回来。
$(n \le 10^5, m \le 2 \times 10^5)$		为实现上述做法,只要用两棵线段树维护 $f[]$,分别按照
		下标和数值建树。
时空复杂度 空	E间 $O(n+m)$,	时间 $O(10m(10 + \log m + \log n))$

试题编号	Codeforces 303D	
试题名称	Rotatable Number	
题目大意		算法讨论
给定 n,x , 求出最大的 $b < x$, 使得在 b		有一个结论,存在循环数当且仅当 n+1 是质
进制下存在长度为 n 的循环数。(比如十		b 数,且 b 是模 $n+1$ 的原根。
进制下的 142857 是循环数)		M M M M M M M M M M
$(1 \le n \le 5 \times 10^6, 2 \le x \le 10^9)$		根即可。
时空复杂度 空间 $O(d(n))$, 时间 $O(\sqrt{n} +$		$+(x-Ans)d(n)\log n$

试题编号	Codeforces 295D	
试题名称	Greg and Caves	
题目大意		算法讨论
	B,存在 $1 \le l \le r \le n$,使得	所求形状可以被 t 分成上下部分, 两部分
\mid 满足 $l \leq i \leq$	(r) 的第 i 行恰有两个黑格,其	具有同样的结构。先只考虑其中一部分,
余行全部是白	$ $ 格。存在 t , $l \le t \le r$, 使得第	f[i][l] 表示底(最长边)位于第 i 行,底边
i 行被夹在黑	格间的部分是第 $i+1$ 行的子集	长度为 l 的方案数,DP 时需要维护 $f[i][l]$
$ (l \le i < i + 1) $	$(\leq t)$,第 $i+1$ 行被夹在黑格间	和 $l \cdot f[i][l]$ 的前缀和。然后考虑把两部分
的部分是第 i	行的子集 $(t \le i < i + 1 \le r)$ 。求	拼接起来得到总方案数。注意避免重复计
方案数量。(1	$\leq n, m \leq 2000)$	数,需要将分割行 t 的位置定义为最小的
		满足条件的 t。
时空复垫度	空间 $O(n^2)$. 时间 $O(n^2)$	

时至复杂度 | 至间 $O(n^2)$,时间 $O(n^2)$

题 51

试题编号	Codeforces 240F	
试题名称	TorCoder	
题目大意		算法讨论
1	小写英文字符串 s 。进行 m	能重排成回文串,当且仅当区间内出现奇数次
次操作,每次对子串 $s[lr]$ 进行操作,将其		的字母不超过一种。只需建立线段树,每个结
字符重排使得 $s[lr]$ 是回文串,且其字典		点储存该区间内 26 个字母分别有几个。
	果不能排成回文串则忽略此	重排时,要使字典序尽量小,必然从小到大排
次操作。输出	最后得到的串。 $(n, m \le 10^5)$	成一段段从小到大的字母,段数不超过 26×2,
		分别进行区间覆盖即可。
时空复垫度	空间 ()(262) 时间 ()(262)	out w)

时空复杂度 | 空间 O(26n),时间 $O(26n\log n)$

题 52

试题编号	Codeforces 323B	
试题名称	Tournament-graph	
题目大意		算法讨论
构造一个有 n	个结点的竞赛图,使得对任	可以验证 $n=4$ 时无解, $n=3,6$ 时有解。
意两个结点 и	和 $v (u \neq v)$,从 u 到 v 的	假如 $n = k$ 时有解,则 $n = k+2$ 时也有解,只
最短距离不超	过 2。 $(3 \le n \le 1000)$	要 $k+1 \to k+2, k+2 \to i, i \to k+1 (i \in [1, k])$
		即可。
		所以除了 $n=4$ 外均能构造出解。
肘空复杂度	空间 $O(n^2)$, 时间 $O(n^2)$	

试题编号	Codeforces 264D	
试题名称	Colorful Stones	
题目大意		算法讨论
两个 RGB 串	s,t,初始时两个人分别站在	可以通过两遍扫描,得到 $l[i], r[i]$,表示当 s 串
两个串第一个	字符。每次下指令为 R,G,B	的人在第 i 位时, t 串的人可能的最左位置和
中的一个,当	前脚下为该字符的人要向前	最右位置。对所有 i 累加答案即可。
走一步。不能	走到串外面。求有多少种状	另外要注意当两个人走过的最后两个字符分别
态时可以达到的。 $(s , t \leq 10^6)$		为 xy 和 yx 时 (x,y) 是不同字符),此状态也是
		不可达的。需要将多算的部分从答案中减去。
时空复杂度	空间 $O(n+m)$, 时间 $O(n-m)$	+m)

试题编号 Codeforces 314	ŀΕ
试题名称 Sereja and Squ	ares
题目大意	算法讨论
给定一个长度为 n 的含有问	
日母的串,在问号处填上小写字	0 [][0]
母, 使得串能成为一个合法的	
每个左括号为小写字母, 其对	7 7 9411.6
需要为相同的大写字母。求方	- 案数模 2 ³² 。
$(n \le 100000)$	
时空复杂度 空间 O(n) (滚	动数组),时间 $O(n^2)$

试题编号	Codeforces 351D	
试题名称	Jeff and Removing	Periods
题目大意		算法讨论
对于一个数字	序列,每次可进行	问题可转化为两个子问题 (1) 求区间内不同数字的种
的操作为: 删]除一个下标呈等差	类数 (2) 区间内是否有某种数字的分布呈等差数列。
数列的子序列	J, 且这些数字都相	预处理时记录每个位置的数字的上一次出现位置
等; 然后将剩]下的数任意重新排	last[i]。将询问按照右端点排序。从左往右枚举右端
列。这个序列]的美好度为将其删	点同时回答询问,为维护第 (1) 个问题的答案,只要对
完所需的最小		(last[i],i] 区间加 1;第(2)个问题也可以处理,只要
	n 的序列, q 次询	记录每种数字当前的公差,以及使得区间内该数字呈
	区间 $[l,r]$ 组成的序	等差数列的左端点的最左位置,插入数字时检查等差
列的美好度。	$(n, q \le 10^5)$	数列是否能延伸,若不能则要改为新的公差。
		由于操作都是区间加,询问都是单点查询,可以用树状
		数组实现。
时空复杂度 空间 $O(n)$,时间 $O(n \log n)$		

题 56

试题编号	Codeforces	335F
试题名称	Buy One, C	Get One Free
题目大意		算法讨论
n 件物品各自	有价格,买	关键在于处理相同价格的物品。预处理时将物品按价格降序排
一件物品的同	司时可以顺	序,并求出每种价格的物品有几个。从高到低枚举价格,同时
便免费拿走-	一件价格严	维护一个小根堆,堆的元素个数为当前已经配成的对子的数量,
格小于它的物	勿品。要得	每个元素的含义为配成一个对子,或者拆开一个对子后配成两
到所有物品昂	最小花费是	个对子,所得到的收益。尝试给当前价格的物品配对时,每次
多少。(n ≤ 5	$500000, v \leq$	取出堆中最小元素,和当前价格比较以决定采取哪种方式,并
10^9) $(n, q \le 10^9)$	0^{5})	将收益压入堆中。最后堆中的元素之和即为获得的总收益。
时空复垫度	空间 O(n)	財间 $O(n \log n)$

| 时空复杂度 | 空间 O(n), 时间 $O(n \log n)$

试题编号	Codeforces 293E	
试题名称	Close Vertices	
题目大意		算法讨论
统计树上边数不超过 1, 且边权和不		点分治。统计时将子树中的点按照到根路径上的边
超过 w 的路径条数。 $(n \le 10^5, w \le 10^5)$		权和排序,然后扫描,扫描的同时利用树状数组统计
10^9)		边数量不超过 i 的点有几个。同一个子树内多算的部
		分要减去。
时空复杂度	空间 $O(n)$, 时间 $O(n)$	$\log^2 n$

试题编号	Codeforces 277D	
试题名称	Google Code Jam	
题目大意		 算法讨论

一场 GCJ 共有 n 题,时长为 t。每题有小数据、大数据,小数据、大数据分别所需要得解题时间、得到的分数是已知的,大数据有一定的概率 FST。对于同一题,只有做了小数据才能做大数据。罚时指最后一次正确提交的时刻。求最大期望分数和此

假设已知选择那些题,将其按 p_i · $tlarge_i/(1-p_i)$ 升序排即可知道最优顺序。将所有题目按此排序后,就是

顺序。将所有题目按此排序后,就是一个背包问题,背包过程中要同时记录最大期望分数和对应的最小期望罚时。

时空复杂度 空间 O(n+t), 时间 $O(n \log n + nt)$

时的最小期望罚时。 $(n \le 1000, t \le 1560)$

题 59

试题编号	Codeforces 321D	
试题名称	Ciel and Flipboard	
题目大意		算法讨论
	$) \times (2x-1)$ 的矩阵	用 $a[i][j] = -1$ 或1 表示是否以 (i,j) 为子矩阵
	2x - 1],每次可以把	$ 左上角进行过操作,共有 x \times x 个可以操作$
	x 的子矩阵内的数字	的位置。令 $b[i][j] = \prod_{1 。枚举$
	求经过操作后,矩阵	$ b[1][x], b[2][x], \dots, b[x][x]$ 后,可以用 $O(x^2)$ 时间求
	大值是多少。 $(n \le 33)$	
时空复杂度	空间 $O(x^2)$,时间 $O($	$2^x \times x^2$)

题 60

试题编号 Codeforces 238E	
试题名称 Meeting Her	
题目大意	算法讨论
一个 n 个点的有向图,要乘车从 S 点到	考虑动态规划, $f[u][i]$ 表示当前位于第 i 种车
T 点。你知道这张图的样子,也知道有	上,车目前停在点 u ,到达 T 需要再乘几次车;
k 种车,每种车都会不断地发车,其中	f[u][0] 表示当前在点 u 的地面上,到达 T 需要
$ $ 第 i 种车每次发车时从 s_i 到 t_i 随意选择	乘几次车。则
一条最短路(每条边的长度是 1) 出发。	$f[u][i] = \max_{v \in NEXT(u,i)} \{ \min(f[v][i], f[v][0]) \}$
你上车时知道这辆车是第几种车,你可	$f[u][0] = \min_{u \in MUST(s_i, t_i)} \{1 + f[u][i]\}$
以选择任意站点下车。求最坏情况下你	f[T][0] = 0,答案为 $f[S][0]$ 。关键在于转移顺序,
至少要乘几次车,若最坏情况下无法到	可以按照当前已知的 $f[u][i]$ 从小到大进行更新
达则输出 -1。 $(n, k \le 100)$	(类似 Dijkstra)。
时空复杂度 空间 $O(n^2)$,时间 $O(n^3)$	

试题编号	Codeforces 269D	
试题名称	Maximum Waterfall	
题目大意		算法讨论
一些水平线段	,其中最顶上和最底下分别有两	将所有端点排序,从左到右扫描,同时维
条无限长的线	段。高的线段 a 往低的线段 b 连	护一个以高度为关键字的 set 。遇到 x 的
边的条件是,	a,b 的水平投影有长度大于 0 的	左端点时,将此线段 x 插入 set,并找到它
	在高度在 a,b 之间的线段 c 使得	上、下最近的线段 p,q , 连边 $(p,x),(x,q)$,
a, c, c, b 也满足	と该条件, 连边的边权为线段水平	并删除边 (p,q) ; 遇到 x 的右端点时,从
投影重叠的长	度。求最顶到最底的一条路径,	set 中将 x 删除。可以看出连边数量的级
使得路径上最		別是 $O(n)$ 的。
10^9)		二分边权,判断从顶到底是否连通即可。
时空复杂度	空间 $O(n)$, 时间 $O(n \log n)$	

试题编号	Codeforces 26	66D
试题名称	BerDonalds	
题目大意		算法讨论
一个带边权的	, _,	先用 Floyd 预处理两两最短路长,然后枚举每条边进行计
找出一点(可		算。假设点在边 (i,j) 上,与 i 点距离为 x ,那么答案即为
边上任意一点	(),使得它到	$\max_{k=1}^{n} \min \{x + d[i][k], w[i][j] - x + d[j][k]\}$,它的图象是许
所有顶点的最		多个倒 V 字形放在一起,然后取最上面的轮廓线。排序后,
的那一条最短	,求出这个距	用一个栈维护即可求出这条折线,并用它的所有极小值点来
离。 $(n \le 200)$)	更新答案即可。
时空复杂度	空间 $O(n^2)$,	时间 $O(n^3 \log n)$

试题编号	Codeforces 325D	
试题名称	Reclamation	
题目大意		算法讨论
	的地图,把左边界和右边	不存在从上到下的四连通路径,当且仅当存在
界粘起来使得	身形成一个圆柱, 现在要不	一条八连通路径绕过了圆柱面。
断地挖去其中	中的格子,要求任何时候都	将地图复制一份变成 $r \times 2c$ 的地图,如果存在
存在一条从最	上方到最下方的路径 (四连	一条 (x,y) 到 $(x,y+c)$ 的八连通路径,则这
通),如果某次	r操作不满足要求则不做,问	条路径绕过了圆柱面。每次插入时只要用并查
n 次操作中最	员后有多少次操作是成功的。	集判断是否存在即可。
$(r, c \le 3000, n$	$a \leq 300000)$	
时空复杂度	空间 $O(rc)$, 时间 $O(n\alpha(n))$	

题 64

试题编号	Codeforces 268D	
试题名称	Wall Bars	
题目大意		算法讨论
一个长度为 n	的仅由 1,2,3,4 组成	考虑动态规划, $f[i][d_1][d_2][d_3][d_4]$ 表示当前在第 i 位,
的数串 s 。可	以从 $s[1h]$ 中的任	上一次出现的数字 k 与 i 的距离为 d_k 。如果某一次某
意一个开始,	每次可以往右跳到	个数字的出现间隔大于 h, 那么这个数以后就作废了。
距离不超过 h	且数字相同的位置,	这样的状态数是 $n \cdot h^4$ 的。
最后能到达 s	[n-h+1n] 中的任	注意到如果 4 个数字都没有被作废,那么总有一个
意一个。有多	少种这样的数字串?	$d_k = 0$, $k \in s[i]$;如果有数字作废,那么剩下至多 3
$(n \le 1000, h \le 1000)$	$\leq \min(h, 30))$	种数字。所以状态数可以缩减到 $n \cdot h^3$ 。
时空复杂度 空间 $O(n \cdot h^3)$ 或 $O(h^3)$,时间 $O(n \cdot h^3)$		

试题编号	Codeforces 317E	
试题名称	Princess and Her Shadow	
题目大意		算法讨论
坐标系中,有些格子被树占据,剩下为空		如果公主和影子的初始位置无法连通,则无
地。初始时公主和影子的位置不同,公主		解。否则一定可以构造解:
往上下左右移动时,影子也向相应方向		取一条公主到影子初始位置的最短路,并沿着
移动,除非影子被树阻挡。求一个移动方		它行走; 如果影子也跟着发生移动, 就将最短
案使得最后公主和影子位于同一个格子。		路径相应延伸。如果这样下去不能抓住,则一
$ $ (树的数量 ≤ 400 , $ $ 初始坐标 $ \leq 100$)		定会走到树林的外部,这时只要利用横/纵坐
,	, ,	标最大/小的那棵树,将影子堵住并抓住即可。
时空复杂度	空间 $O(x^2)$, 时间 $O(x^2)$	

试题编号 Codeforces 309B	
试题名称 Context Advertising	
题目大意	算法讨论
一篇文章有 n 个单词,取出其中连续一段	对于每个单词,求出以它为一行的开头时,这
排版,使得不超过 r 行,每行不超过 c 个	一行能往右取到多远。这可以用两个指针扫描
字符(包括隔开单词的空格)。求最多能取	得到。
出几个单词。 $(n,r,c \leq 10^6, $ 文章字符数 \leq	为了求经过 r 条边后到达的位置,可以用倍增
$5 \times 10^6)$	处理。
时空复杂度 空间 $O(n \log n)$ 或 $O(n)$, 目	中间 $O(n \log n)$

题 67

试题编号	Codeforces 241F	
试题名称	Race	
题目大意		算法讨论
],每个格子或者是交叉口,或者属	因为道路的两端都是交叉口,所以从
于道路。道路都是横平竖直的。走过每个格子所		一个交叉口直接走到另一个交叉口,
	1。告诉你起点、终点和中间经过的	而不经过其他交叉口的方案只能是直
交叉口,问 k 分钟后你的位置。 $(n,m \le 100,k \le 100)$		线行走,所以直接模拟即可。
$100000, len \le 1000)$		
「时空复杂度」 空间 $O(nm + len)$,时间 $O(nm + len + k)$		

题 68

试题编号	Codeforces 329D	
试题名称	The Evil Temple and the Moving Ro	ocks
题目大意		算法讨论
1 '	的方阵中放置石头,每个格子至多一	第一行形如 $\rightarrow \rightarrow \rightarrow \rightarrow \cdots$. \rightarrow . \rightarrow
个石头,石头可以有上下左右四种方向。你一开始		. →↓, 第二行形如 ↑↓← . ←
可以激活一个	石头使它按自己的方向移动,直到撞	··· ←←←←,以此类推,激活左上
到另一个石头	时,它会激活这个石头,并使自己停	角以后,依次绕过每一行,最后从第
下来。如果一	个石头发生移动而撞到另一个时,会	一列底部传递上来,形成循环。
放出声音。构	造至少发出 10 ⁵ 次声音的方案。	
时空复杂度	无	

试题编号	Codeforces 267C	
试题名称	Berland Traffic	
题目大意		算法讨论
一个有源点、	汇点的流网络,边	给每个点指定一个高度,则两点间边权即为高度之差。
可以双向流,	且有容量。满足任	以高度为未知数,根据每个非源汇点满足流守恒的性
意两点间, 任何路径所经过的权		质,列出方程。可以先给源、汇分别指定 0,1 的高度,
值之和都是一样的。求出最大的		然后进行高斯消元。这样可以求出边权之间的比例,然
流。 $(n \leq 100)$		后根据每条边不超过容量的约束即可求得。
时空复杂度	空间 $O(n^2)$,时间 ($O(n^3)$.

试题编号	Codeforces 249D	
试题名称	Donkey and Stars	
题目大意		算法讨论
	个点。固定两个角度。从原点开始,按	通过一些坐标变换可以将夹角转
1	限射出两条射线,可以跳到射线夹住范。然后可以以这个点为原点继续操作,直	为直角,于是每次跳到的点需要 横、纵坐标都比原来大,这是一
	止。求最多跳过几个点。 $(n \le 10^5)$	个经典的 LIS 问题,可以用树状
		数组/单调栈二分方法解决。
时空复垫度	空间 $O(n)$ 时间 $O(n \log n)$	

| 时空复杂度 | 空间 O(n), 时间 $O(n \log n)$.

题 71

试题编号	Codeforces 254D	
试题名称	Rats	
题目大意		算法讨论
	有的格子是墙,有的格子是	一个炸弹能攻击到的格子数大约是 $2d^2$,一个
空格,有的空格内有老鼠。在空格可以放		老鼠能被影响到的格子数也是 $2d^2$ 级别。任意
炸弹,能攻击到最短距离(不能穿墙)不		取一个老鼠,枚举能炸到它的格子,以它作为
超过 d 的格子。放两个炸弹炸死所有老鼠,		第一颗炸弹; 然后从剩下没死的老鼠中任取一
求出两个炸弹的位置。 $(n, m \leq 1000, d \leq 1000)$		个,类似地枚举第二颗炸弹,然后只要判断有
8)		没有全部炸死即可。
时空复杂度	空间 $O(nm+d^2)$,时间 $O(nm+d^2)$	$nm+d^6)$.

题 72

试题编号	Codeforces 335E	
试题名称	Counting Skyscrapers	
题目大意		算法讨论
	每座摩天楼高度为 i 的概率	可以证明,给定 Bob 的答案,则 n 的期望即
	f h 则只算作高度为 h 。Bob	为这个值。若给定 n ,从底往上考虑每一高度
从左往右每次走最高的 zipline,假设高度		的 zipline 对答案产生的贡献,产生一个高度
为 i , zipline 中间不能被别的楼(高度 $\geq i$		i 的 zipline 的条件是两端高度 $\geq i$,中间高度
的)挡住,然后给答案加上 2^i 。给定 Bob		< i。产生这个 zipline 后要拿掉中间所有 $i-1$
1	的期望;给定 n ,求 Bob 答	高度的 zipline。然后可以推出答案的式子。
案的期望。		
$(n \le 30000, h$	≤ 30)	
时空复杂度	空间 $O(1)$,时间 $O(nh)$ 。	

试题编号	Codeforces 341E	
试题名称	Candies Game	
题目大意		算法讨论
n 个非负整数	数,和不超过 10 ⁶ 。	对于任意三个数,总可以将其中一个消成 0。
每次可以选择	译两个数 i,j ,满足	\mid 假设这三个数为 $a < b < c$,令 $q = \lfloor b/a \rfloor$,将 q 表示 \mid
$a[i] \leq a[j], $ $\#$	好其改为 $2a[i], a[j]$ —	为二进制数。每次令 a 翻倍:如果 q 的当前位是 1 ,则
a[i]。 求一个プ	方案,使得最终恰好	\mid 用 b 提供给 a ,否则用 c 提供给 a 。这样操作完后 b 变 \mid
只有两个数不	为 $0.$ $(n \le 1000)$	成了 $b \mod a$ 。于是 a,b,c 中最小者至少减少 1。重复
	· · · · · · · · · · · · · · · · · · ·	操作即可将最小者变为 0。
时空复杂度 空间 $O(n)$,时间 $O(n+10^6 \cdot \log(10^6))$ 。		

试题编号	Codeforces 241E	
试题名称	Flights	
题目大意		算法讨论
一个有向无环	图,给每条边的权	• • • • • • • • • • • • • • • • • • •
值赋值为 1 或 2, 使得点 1 到		满足 $d[u] + w(u, v) = d[v]$, 即 $1 \le d[v] - d[u] \le 2$, 这
n 的任意路径	h 的长度相等。 $(n \le n)$	是一个经典的差分约束系统的模型。
$1000, m \le 5000$		
时空复杂度 空间 $O(n+m)$, 时间 $O(nm)$ 。		

题 75

试题编号	Codeforces 323C	
试题名称	Two permutations	
题目大意		算法讨论
给定两个 $1 \sim n$ 的排列。每次给出 l_1, r_1, l_2, r_2 ,询问在		转化为询问区间内有多少数字在
第一个排列中位置在 $[l_1, r_1]$,且在第二个排列中位置		[l,r] 之间,可以用经典的可持久
在 $[l_2, r_2]$ 的数字有几个。 $(n, m \le 10^6$,强制在线) 化线段树解决。		
时空复杂度	空间 $O(n \log n)$, 时间 $O((n+m) \log n)$ 。	

题 76

试题编号	Codeforces 311C	
试题名称	Fetch the Treasure	
题目大意		算法讨论
一串格子,长	度 h。每次可以从格子 1 开始往右走 k	(2)(3) 操作是优先队列的经典操
步。有些格子	有宝藏,宝藏有价值度。	作。
有 3 种操作:		因为 k 很小, 所以考虑对每个 $0 \le$
(1) 增加一种步长 x 。每次可以选择往右的步数属于自		i < k,维护可达的第一个模 k 为
己当前拥有的	步长集合(初始时步长集合为 $\{k\}$)。	i 的格子 $dis[i]$ 。
(2) 减少某格望	宝藏的价值。	每次插入新的步长时, 用最短路
(3) 询问当前。	可达格子集合中,价值度最大的格子,并	算法更新 dis[] 数组。并重新建立
将这个格子的宝藏清除。		, 优先队列。
	共 m_1 次,操作 $(2)(3)$ 共 m_2 次。	
$h \le 10^{18}, k \le 10^{18}$	$10^4, x \le h, m_1 \le 20, m_1 + m_2 \le 10^5$	
时空复杂度	空间 $O(n+k)$, 时间 $O((n+m_2)\log n +$	$-m_1(n\log n + k\log k))$.

试题编号	USACO Dec 06	
试题名称	Cow Patterns	
题目大意		算法讨论
	度数列和一个 k 长度的 pattern,	类似于 KMP, 首先对 pattern 自处理得
求出 pattern	在数列中所有匹配的连续段的位	到 next 数组,然后跑原串。唯一有区别
置。匹配的含义是: pattern 中相同的数对应		的是"相等"的含义,需要改为比较在当
数列中相同的数,不同的数对应数列中不同的		前串中的 rank, 这在值域小时可以通过暴
数,且保持相	对大小关系。	力统计小于它、不大于它的有几个,在值
$(n \le 10^5, k \le$	$25000, 1 \le 值域S \le 25)$	域大时需要用树状数组。
时空复杂度	空间 $O(n+k+S)$, 时间 $O((n+k+S))$	$(k+k)S$) 或 $O((n+k)\log S)$.

试题编号	USACO Open 07	
试题名称	Connect	
题目大意		算法讨论
	列的网格图,相邻点才有可能连	因为只能在 $[c_1,c_2]$ 范围内走动,所以连通
边。每次删边/加边,询问两点 $(r_1,c_1),(r_2,c_2)$		性和此区间外的信息无关系。可以考虑用
	只能在 $[c_1,c_2]$) 范围内走动。	线段树维护连通性,结点 $[l,r]$ 维护一个
$(c \le 15000, 操$	作次数 ≤ 50000)	2×2矩阵,表示左边的上下两点和右边的
		上下两点的连通性。
14点有九亩		·

时空复杂度 空间 O(c), 时间 $O(c+m\log c)$ 。

题 79

试题编号	USACO Open 07	
试题名称	Best Cow Line, Gold	
题目大意		算法讨论
	串,每次可以从头或尾	贪心,每次比较从头部往右和从尾部往左形成的字
取一个字符删掉,并输出这个字符。使		符串,并取字典序小的那一个方向。
得将字符串删完以后,输出的字符串		比较字典序大小可以用后缀数组。由于这里要比较
字典序尽量小	0	反串,所以还需要把字符串翻转一遍接在原串后面
$(n \le 30000)$		再求后缀数组。
时空复杂度	空间 $O(n)$, 时间 $O(n \log n)$	$\log n$ (或 $O(n)$)。

题 80

试题编号 USACO Mar 08		
试题名称 Land Acquisition		
题目大意	算法讨论	
需要购买 n 块土地,每块土地长 $a[i]$	剔除所有能被完全包含的土地,剩下的土地组成了	
宽 $b[i]$ 。一次可以购买若干块土地,所	a 值递增, b 值递减的序列。容易看出每次购买其	
付的钱为 $\max a \cdot \max b$ 。	中连续的一段才可能最优。	
问全部购买所需的最小价钱。	可以发现这是一个经典的斜率优化 DP。用一个单	
$(n \le 50000)$	调队列维护当前决策组成的凸壳即可。	
时空复杂度 空间 $O(n)$,时间 $O(n \log n)$ 。		

试题编号	USACO Mar 09)
试题名称	Cleaning Up	
题目大意		算法讨论
将一个长为 n	的数列分成若	一个 $O(n^2)$ 的 DP 是显然的。为了优化,注意到最优总代
干段,每段的代价是这段内不		价上界是 n (每个数分为一段),所以每段内至多有 \sqrt{n} 种
同数字个数的平方。求最小总		不同的数字,所以每次的决策数量不超过 \sqrt{n} ,只要用一个
代价。 $(n \le 40000)$		链表/队列维护最近的 \sqrt{n} 个不同的数字及位置,即可 DP。
「时空复杂度」 空间 $O(n)$,时间 $O(n\sqrt{n})$ 。		

试题编号 USAC	CO Open 08	
试题名称 Cow I	Neighborhoo	ds
题目大意	多	算法讨论
平面上有 n 个点, 曼		各坐标系旋转 45 度后,每个点的影响范围是一个边平行坐
小于等于 C 的两点 z		示轴的正方形,便于处理。
边。求最后的连通块		%后按 y 轴排序插入,同时维护一个关于 x 坐标的 multi-
大的那个连通块的大		${ m et/}$ 平衡树,每次插入后先将 y 坐标差超出范围的点删除,
100000)	I	然后将插入的点与其前驱后继判断是否要连边。
	当	催护连通块可用并查集。
时空复杂度 空间	O(n), 时间	$O(n \log n)$.

题 83

试题编号 US	SACO Jan 07	
试题名称 Co	ow School	
题目大意		算法讨论
n 次考试,每次得	导分 t_i , 满分	假设已经排列使得 t_i/p_i 递增。老师算出成绩为 X_d =
p_i 。老师的计分		$\sum_{i=d+1}^{n} t_i / \sum_{i=d+1}^{n} p_i$,即 $\sum_{i=d+1}^{n} (t_i - X_d p_i) = 0$ 。如果可以
t_i/p_i 最低的 d 场		修改去掉的考试集合而使得成绩更高,需要有 $\max_{i=1}^d (t_i - t_i)$
的 $\sum t_i / \sum p_i$ 作		$X_d p_i$) > $\min_{i=d+1}^n (t_i - X_d p_i)$ 。我们只需要分别求出这个式
是你如果用不同		子中最大值和最小值,比较即可。
d 场考试,成绩可		对所有 d 求出最大值的过程可以采用分治实现,每次求出
出所有这样可能	的 d 。 $(n \leq $	左半边的凸壳,用来更新右半边,然后递归两边。最小值
50000)		是对称的,方法一样。
时空复杂度 空	\mathfrak{E} 间 $O(n)$,时间	可 $O(n\log^2 n)$ (归并替代排序可 $O(n\log n)$)。

题 84

试题编号 USACO Dec 1:	2
试题名称 First!	
题目大意	算法讨论
n个字母串,我们可以改变字母	对所有串建 Trie 树,并 DFS。要使某个字符串字典序最
表的排列顺序, 使得某个字符	升 小,在遍历 Trie 树的过程中可以得知某些字母间的相对 │
串的字典序是 n 个中最小的	。 顺序关系,这组成一个有向图,只要这个图无环,则这个
哪几个字符串满足这一性质	。 串可以是字典序最小的。在遍历 Trie 树的同时维护这个
$(n \le 30000, 总串长S \le 300000$) 图,在遇到叶子结点时对当前图判断是否有环。
时空复杂度 空间 $O(26n)$,时间 $O(26^2n + 26S)$ 。	

试题编号	USACO Open 13	
试题名称	Photo	
题目大意		算法讨论
1 '	达出某几个数。给	记 $x[i]$ 为所有包含 i 的区间中,最小的左端点。记 $y[i]$
	$[l_i,r_i]$,要求使得	为所有右端点小于 i 的区间中,最大的左端点。
	「且仅有一个数被	考虑动态规划。用 $f[i]$ 表示取了第 i 个数的情况下,前
	1的数最多能有几	$\mid i$ 个数中最多取几个。 $f[i] = \max_{y[j] \leq j < x[i]} f[j] + 1$ 。由于
\uparrow \circ $(n \leq 2 \cdot 1)$	$0^5, m \le 10^5$	x[],y[] 有单调性,所以能用单调队列优化。
时空复杂度	空间 $O(n+m)$,	时间 $O(n+m)$ 。

试题编号 USACO (Open 09
试题名称 Tower of	Hay
题目大意	算法讨论
把长为 n 的数组 $a[]$ 分为	
并从下往上摆成 h 层,	
的数字之和不小于其上	$t < j \le n+1, sam(t,j-1) \le t < s$
数字之和。求 $ h $ 的最大值	$\mathbb{D}_{\circ}(n \leq \mid \mathbb{H}$ 单调队列优化的 \mathbb{D} \mathbb{P}_{\circ}
10^{5})	
时空复杂度 空间 O(n), 时间 $O(n)$ 。

工文示反 工内 O(n),时内 O(n)。

题 87

试题编号	USACO Jan 09	
试题名称	Travel	
题目大意		算法讨论
一个无向图,	从结点1到	由题目限制可知道最短路径图是没有环的(即最短路径树)。对
其它每个结点	点的最短路	于所有不在最短路径树上的边 (u,v) ,令 $l=LCA(u,v)$,则 l
径是唯一的。对于除1外		到 v 路径上所有点 x (含 v , 不含 l) 可通过 $1 \rightarrow u \rightarrow v \rightarrow x$ 走
每个结点, 求出不经过		到而不经过 x 的父亲,长度为 $d[u] + w(u,v) + d[v] - d[x]$,那
原最短路径量	最后一条边	么可以用 $d[u] + w(u,v) + d[v]$ 去更新这些 x 。更新可以用树链 $ $
的情况下,最	短路径是多	剖分 + 线段树; 也可以从小到大排序后更新,并用并查集维护
		以跳过已经更新过的点。
时空复杂度	空间 $O(n \log n)$	$\log n$) 或 $O(n)$, 时间 $O(n \log n)$ 。

题 88

试题编号 USACO Open	USACO Open 10	
试题名称 Triangle Count	ing	
题目大意	算法讨论	
坐标平面上有 n 个点, 极角	反过来求出不包围原点的三角形有几个,再用总数减去即	
各不相同且不位于原点。取出	可。不包围原点的三角形一定能被放进一个半平面内,且	
三个点组成三角形, 使得三角	原点在半平面的边界线上。将所有点按极角排序后,用过	
形包围住原点的有几种。	原点的直线扫一圈,同时维护当前半平面内的点的数量用	
$(n \le 100000)$	以累加答案。	
时空复杂度 空间 $O(n)$, 时	间 $O(n \log n)$ 。	

试题编号	USACO Dec 10	
试题名称	Threatening Letter	
题目大意		算法讨论
给定字母串 s,t 。将 t 分成尽		用 $f[i]$ 表示 $t[1i]$ 的答案,容易发现 i 需要尽可能往前匹
可能少的段,使每段都是 s 的		配,越长越好;设匹配长度为 $l[i]$,则 $f[i] = f[i-l[i]] + 1$ 。
子串。		对 s 建出后缀自动机,用 t 串在自动机上跑一遍,即可求
$(s , t \le 50000)$		出所有 $l[i]$ 。
时空复杂度 空间 $O(26n+m)$,时间 $O(26n+m)$ 。		

试题编号	USACO Open 13	
试题名称	Figure Eight	
题目大意		算法讨论
	格,有些格子是坏格。框出	用 $up[i][l][r], down[i][l][r]$ 分别表示以第 i 行
一个8字形,8字形由两个矩形组成,上		[l,r] 作为底(顶)边,往上(下)伸展所得的
	边是下面的矩形的顶边的子	最大矩形的面积,这可以简单递推得到。再处
	不能是坏格。求上矩形面积	理出 down 数组的二维前(后)缀 max,然后
×下矩形面积	的最大值。 $(n \le 300)$	即可方便的更新答案。
时空复杂度	空间 $O(n^3)$, 时间 $O(n^3)$ 。	

题 91

试题编号	USACO Mar 13	
试题名称	Hill Walk	
题目大意		算法讨论
平面上有 n 条	会斜率为正的斜线段, 出发点	需要处理每一条线段的后继。将线段的端点排
为第一条线段	的左端点。不断地从左下往	序后,从右往左处理,同时维护一棵当前线段
右上走,到达	线段的右端点后会下坠,如	的平衡树/set,遇到右端点时在 set 中查询后
果坠落到另一	条线段上则继续,否则结束。	继,并将此线段插入 set; 遇到左端点时将该
求最后走过了	几条线段。 $(n \le 10^5)$	线段从 set 中移除。
时空复杂度	空间 $O(n)$, 时间 $O(n \log n)$	0

题 92

试题编号	USACO Nov 12	
试题名称	Balanced Trees	
题目大意		算法讨论
一棵树的每个	结点是一个左括号或右	考虑括号序列的前缀,两个合法的、且前缀和(左
括号。找出一	条链, 使得它是一个合	右括号分别视作 $1,-1$) 相等的前缀 a,b ,将 b 翻
法的括号序列,且其括号嵌套最深深		转后接在 a 后面,可以得到一个完整的括号序列。
度最大。		于是可以采用点分治,对于每个子树,求出子树内
$(n \le 40000)$		结点到根路径组成的每种前缀和对应的最大可能
		深度。然后可以合并信息,更新答案。
时空复杂度	空间 $O(n)$, 时间 $O(n \log n)$	$(g n)_{\circ}$

试题编号	USACO D	USACO Dec 08	
试题名称	Largest Fe	nce	
题目大意		算法讨论	
1	个点,任三点	1 0 10 10 10 10 10 10 10 10 10 10 10 10	
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	出以它们为顶	得 $x_1 = i \rightarrow x_2 \rightarrow x_3 \rightarrow \cdots \rightarrow x_k = t$ 能够成为凸包上按逆时	
点的凸包,	使得凸包上的	针序的某一段,且 $i \to x_2$ 在 $i \to j$ 的逆时针方向。dp 前需要	
顶点数量最	多。 $(n \le 250)$	预处理出 $next[i][j]$,表示以 i 为原点的极角序中, j 逆时针方	
		向的下一个点。则 $f[i][j]$ 可以由 $f[i][next[i][j]]$ (跳过 j 不选)	
		或 $1 + f[j][next[i][j]]$ (选 j 点)转移而来。	
时空复杂度	空间 O(n ²)),时间 $O(n^3)$ 。	

试题编号	USACO Mar 12	
试题名称	Cows in a Skyscraper	
题目大意		算法讨论
	第 i 个的重量为 a_i 。包	f[S] 表示装入 S 集合的物品需要几个包, $g[S]$ 表
容量为 w ,求	最少需要几个包可以全	示此时最后一个包的最大剩余容量。枚举当前 S
部装下。 $(n \le 18, w, a_i \le 10^8)$		中的每一件物品即可进行转移。
时空复杂度	空间 $O(2^n)$,时间 $O(n-1)$	$(2^n)_{\circ}$

题 95

试题编号	USACO Nov 08	
试题名称	Toys	
题目大意		算法讨论
共有 n 天,第	等 <i>i</i> 天需要用掉 <i>a_i</i> 个玩	假如已知买了 x 个玩具, 可以用贪心求出最后的
具。玩具可以	花 c 的单价买,也可以	最小花费(或判定无解),只要每次尽量取买来的
$ $ 花 c_1 的单价快洗, 花费 t_1 天; 也可		玩具,若取完则取之前最近的可以慢洗的玩具,若
以花 c_2 的单位	介慢洗,花费 t_2 天。求	仍不行再尝试取快洗的。
最小总代价。	$(n \le 10^5)$	可以证明求得的花费是关于 x 的单峰函数,于是
		三分即可求出最小值。
时空复杂度	空间 $O(n)$, 时间 $O(n)$	$\frac{1}{\log(\sum a_i)}$

题 96

试题编号	Codeforces 293D		
试题名称	Ksusha and Square		
题目大意		算法讨论	
平面上有一个	`n 个顶点	假如选出的两点为 $(x_1,y_1),(x_2,y_2)$,则面积为 $2(x_1-x_2)^2+$	
的凸包, 从凸	包内(包括	$2(y_1 - y_2)^2$,可以横纵坐标的贡献分别计算后相加。	
边界) 随机选出两个不同		由于坐标的范围并不大,可以统计出对于每个 x ,有多少个整	
的整点,以它们为对角线		点在凸包内,只需要在扫描的同时求出和当前 x 相交的凸包的	
的正方形面积的期望是		边即可。	
多少。 $(n \leq 10^5, x_i, y_i \leq 1)$		然后需要统计的答案为 $\sum_{a \le b} cnt[a] cnt[b] (b-a)^2$ 。在扫描的同	
10^{6})		时维护 $\sum cnt[a]$, $\sum cnt[a] \cdot a$, $\sum cnt[a] \cdot a^2$ 即可统计。	
时空复杂度 空间 O(n+		(-X), 时间 $O(n+X)$ 。	

试题编号	Codeforces 331D3	
试题名称	Escaping on Beaveractor	
题目大意		算法讨论
一个范围 $b \times b$ 的坐标系中,有 n 个平		首先求出每个箭头的后继,对4种方向分开处
行于坐标轴的箭头。你在其中以 1 的速		理,按对应方向排序后扫一遍,可以转化为区间
度运动,遇到	箭头则转向箭头方向,超	覆盖、单点求值,用线段树可以解决。
出边界则停止。共有 q 个询问,每次给		然后用倍增,记录每个箭头的末端出发走过 2^i
定起始点和起始方向(平行于坐标轴),		个箭头后所处的位置和所用的时间。然后即可回
问 t 秒后你的位置。 $(n,b,q \leq 10^5)$		答每个询问。
时空复杂度 空间 $O(n \log n)$, 时间 $O(n \log n)$		$n \log n$.

D. N. Her. (C). H		
试题编号	Codeforces 325C	
试题名称	Monsters and Diamonds	
题目大意		算法讨论
n 种怪物, 和 m 种分裂方法。分裂可以把某		若要有解,需要存在一些方法的后继只含
一种怪物分裂成几颗钻石和(或)某几种怪		钻石而不含怪物,从这些出发去更新其它每
物。		种方法可得到的钻石最小值,更新顺序类似
问给定一只某种怪物作为初始,把所有怪		Dijkstra。于是我们可以知道每种怪物能生
物全部分裂成钻石,是否可行,可行时输出		成的最小钻石数量,也知道了哪些怪物是不
可以得到钻石数量的最小值、最大值(或无		可行的。
穷)。		然后对可行的怪物进行 DFS, DFS 的过程中
$(n, m \le 10^5, \sum$ 每种方法的后继数量 $\le 10^5)$		如果遇到了环,则可以生成无穷个钻石,否
	·	则我们可以求出这个怪物的有限的最大值。
时空复杂度	空间 $O(n)$, 时间 $O(n \log n)$ 。	

, 2 3 3				
试题编号	GCJ 2009 Final D			
试题名称	Wi-fi Towers			
题目大意		算法讨论		
平面上有 n 个点,每个点有一个范围和一个		这是一个经典的最大权闭合子图问题, 经典		
得分(可正可负)。如果选中某个点,则也需		做法是转化为最小割。		
要选中它的范围内的所有点。求选中的点的				
最大分数总和	$ (n \le 500) $			
「时空复杂度」(最大流)点数 $O(n)$,边数 $O(n^2)$ 。				

题 100

试题编号	Codeforces 301E	
试题名称	Yaroslav and Arrangements	
题目大意		算法讨论
多少种 r 元数	文字集合(可重集合), 可以将	考虑这样一个序列的产生过程,按数字大小
其用至少1种	不超过 k 种方法排成一个序列	从小到大插入,可以将若干个数字 $x+1$ 插
$\{a_i\}$,使得 $ a$	$ a_1 - a_2 = \cdots = a_r - a_1 = 1,$	在原先两个数字 x 的空隙中。若原先有 c 个
$a_1 = \min a_i \circ j$	元素在 $1 \le a_i \le m$ 范围内,长	空隙,插入了 p 个数字 $x+1$,则 $p \ge c$,插
度在 $1 \le r \le r$	n 范围内。 $(n, m, k \le 100)$	入后形成新的空隙 $p-c$ 个,这一步骤的方
		案数为 $\binom{p-1}{c-1}$ 。于是可以据此进行 DP。
· 耐 空 有 丸 由) 財间在 $O(n^4)$ 和 $O(n^5)$ 之间?

| 时空复杂度 | 空间 $O(n^4)$ (滚动数组 $O(n^3)$),时间在 $O(n^4)$ 和 $O(n^5)$ 之间?

试题编号	Codeforces 248E	
试题名称	Piglet's Birthday	
题目大意		算法讨论
	每个架子初始有 a_i 个装满了	可以知道每个架子上装满了的罐子的数量是
的蜜罐。每次	X 从第 u 个架子上随机取 k 个	不会增加的。对每个架子 i 维护 $f[i][j]$,表
	到 v 架子上。每次操作后输出	示这个架子上留有 j 个装满了的罐子的概
只有空罐的架	子个数的期望。 $(n \le 10^5, a_i \le$	率。每次操作后更新这个数组即可(根据组
$100, k \le 5)$		合数的定义)。
时空复杂度	空间 $O(na)$, 时间 $O(kna)$	