

YEAR 12 MATHEMATICS SPECIALIST **SEMESTER ONE 2018**

TEST 2: SOLUTIONS Functions and Graphs

Name: ____

Monday 26 March

Time: 55 minutes

Mark

/50 =

%

- Answer all questions neatly in the spaces provided. Show all working.
- You are permitted to use the Formula Sheet in **both** sections of the test.
- You are permitted one A4 page (one side) of notes in the calculator assumed section.

Calculator free section

Suggested time: ~25minutes

/25

Question 1 (6 marks)

The function f is given by $f(x) = \ln(3x - 6)$, $x \in \mathbb{R}$, x > 2

a) Find
$$f^{-1}(x)$$
. $y = \ln (3x - 6)$
 $x = \ln (3y - 6)$
 $e^{x} = 3y - 6$
 $\Rightarrow y = \frac{1}{3}(e^{x} + 6)$ $f^{-1}(x) = \frac{1}{3}(e^{x} + 6)$

[2]

b) State the domain and range of $f^{-1}(x)$.

[2]

c) Sketch the graphs of f(x) and $f^{-1}(x)$, noting where the graphs intersect the axes. Clearly mark any asymptotes.

Question 2 (10 marks)

$$h(x) = 4 - x^2$$
, $k(x) = \sqrt{1 - x^2}$ and $l(x) = \frac{1}{x}$.

a) Evaluate $h \circ l\left(\frac{1}{2}\right)$

$$h\left(\frac{1}{v_2}\right) = h(2) = 4 - 2^2 = 0$$
 [1]

b) State the domain of y = k(x)

[1]

c) Determine the domain and range of

i. $h \circ k(x)$

$$hoK(x) = 4 - (\sqrt{1-x^2})^2$$

= 3 + x²

Domain
$$-1 \le x \le 1$$

Range $3 \le hok(x) \le 4$

[2]

ii.
$$l \circ h(x)$$

Domain
$$x \neq \pm 2$$

Range $y < 0$ $y > \pm 4$

$$h(x)$$
 $l(x)$

[3]

d) Does h(x) have an inverse? Justify your reasoning, mathematically.

h(x) does not have an inverse

It is a many -to-one function of closer not pass the horizontal line text.

(For it to have an inverse, the natural domain of her)

nould have to be restricted.)

Question 3 (5 marks)

The graphs of y_1 and y_2 are shown in the diagram.

a) Use the graphs to solve the following equations.

$$y_1 = 8$$
 $x = -\frac{13}{2}$, $x = \frac{3}{2}$

ii.
$$y_2 \leq 5$$

$$y_2 \le 5$$
 $x \le 1$ or $x > 5$

iii.
$$v_1 = v_2$$

$$y_1 = y_1$$
 $x = -3$, $x = -1$.

[3]

b) State the equation for the graph of:

i.
$$y_1 = |2x + 5|$$

ii.
$$y_2 = 7 - |3 - x|$$
.

[2]

Question 4 (4 marks)

Given the functions f(x) = (2x - 1)(x + 3) and $g(x) = 6x^2 + 19x - 36$, determine the following, justifying your answers:

a) the domain of h(x) where $h(x) = \frac{f(x)}{g(x)}$

Consider the denominator in factored form

$$6x^2 + 19x - 36$$

$$x \in \mathbb{R} : x \neq \frac{4}{3} x \neq -\frac{9}{2}$$

[2]

b) the behaviour of h(x) as $x \to \pm \infty$

Consider the dominant powers.

$$h(x) = \frac{2x^2 + \dots}{6x^2 + \dots}$$
 : $h(x) \rightarrow \frac{1}{3}$.

$$h(n) \rightarrow \frac{1}{3}$$

Name: _____

Calculator assumed section

Suggested time: ~25 minutes

/25

Question 5 (5 marks)

The graph of the rational function $f(x) = \frac{ax^2 + bx + c}{x^2 + dx + e}$ is drawn below.

Given $f\left(\frac{1}{2}\right) = \frac{-9}{5}$ and the y-intercept is $\frac{-4}{3}$,

find, with reasoning, the values of a, b, c, d and e.

Vertical asymptotes @ x=-1 x=3 $(x+1)(x-3) = x^2-2x-3$

$$(x+1)(x-3) = x^2 - 2x - 3$$

$$e = -3$$

Horizontal asymptote @ y = 3 $\frac{ax^2 + ...}{x^2 + ...} \Rightarrow a = 3$

$$ax^2 + \cdots \Rightarrow a = 3$$

y-intercept at $\left(0, -\frac{4}{3}\right)$ $-\frac{4}{3} = \frac{c}{e} = \frac{c}{-3} \Rightarrow c = 4$

substitute (1,-9) into f(2)

$$f(\frac{1}{2}) = \frac{3x^2 + bx + 4}{x^2 - 2x - 3} = -\frac{9}{5} \implies b = 4.$$

Question 6 (7 marks)

a) On the same diagram sketch the graphs of

$$y = \frac{1}{x-a} \text{ and } y = 4|x-a|$$

where a is a positive constant.

Show clearly the coordinates of any points of intersection with the axes.

for graphs $(a,0) (0,4a) \vee$ $n=a (0,-\frac{1}{a}) \vee$

[4]

b) Hence, or otherwise, find the set of values of x for which $\frac{1}{x-a} < 4|x-a|$.

Point of intersection:

$$\frac{1}{x-a} = 4(x-a)$$

$$\Rightarrow \frac{1}{4} = (n-a)^2$$

$$x-a=\frac{1}{2}$$

$$x = a + \frac{1}{2}$$

From graph: observe when x < a

$$x > a + \frac{1}{2}$$
.

[3]

Question 7 (5 marks)

Given
$$g(x) = ax + b$$
, $a > 0$, $g^2(4) = 12$, $g^{-1}(3) = 3$, determine the values of a and b .

$$g^{2}(x) = a(ax+b) + b$$

= $a^{2}x + ab + b$.

$$g^2(4) = 4a^2 + ab + b = 12 \checkmark$$

$$g^{2}(4) = 4a^{2} + ab + b = 12$$
 Solve $4a^{2} + ab + b = 12$ $3 = 3a + b$

$$a = 3 \quad (a > 0)$$

[5]

[3]

Question 8 (5 marks)

$$f(x) = |2x - 1|$$
 and $g(x) = |x + 2|$

Determine a piecewise defined expression for h(x) = f(x) - g(x) and sketch h(x) on these axes.

$$h(n) = \begin{cases} 3-n & n < -2 \\ -3n-1 & -2 \le n < 0.5 \\ n-3. & n \ge 0.5 \end{cases}$$

Question 9 (3 marks)

This graph represents a function of the form

$$f(x) = \frac{kx(x+a)}{(x+a)(x+b)}$$

Determine the values of a, b and kreferring to properties of the graph to justify your reasoning.

Point discontinuity at $x=-2 \Rightarrow a=2$ Vertical asymptote at $x=3 \Rightarrow b=-3$ using either (6,4) or horizontal asymptote y=2 (behaviour as $x \rightarrow \pm \infty$) using either (6,4) or K=2.