Mathematical Logic Homework 4

Ding Yaoyao

October 17, 2018

Solution 4.1.

1	Γ	$\neg \varphi$	ψ	premise
2	Γ	$\neg \varphi$	$\neg \psi$	premise
	Γ		φ	second contradiction by 1, 2(regard $\Gamma \neg \varphi$ as Γ')

 $Solution\ 4.2.$

(a)

1	Γ		φ	premise
2	Γ	$\neg \varphi$	φ	antecedent by 1
3	Γ	$\neg \varphi$	$\neg\neg\varphi$	contraposition by 2
4	Γ	$\neg\neg\varphi$	$\neg\neg\varphi$	assumption
	Г		770	

(b)

Solution~4.3.

It's not derivable.

Prove by contradiction.

Assume that it's derivable. Let Γ be empty.

Let \mathfrak{A} be the S-structure of natural number. Let φ be $x \equiv 1$.

Then $\mathfrak{A} \models \exists x \varphi$, by our assumption, $\mathfrak{A} \models \forall x \varphi$. But it's obvious that $\mathfrak{A} \not\models \forall x \varphi$. It's a contradiction.

So it's not derivable.