Universidade de Évora

Redes de Computadores

2ª Frequência - 20 de Dezembro de 2019

- 1. Para cada uma das seguintes afirmações, indique se é verdadeira ou falsa. Justifique as suas respostas.
 - (a) O mecanismo slow start poderia chamar-se Multiplicative Increase/Multiplicative Decrease.
 - (b) Numa rede saturada é normal ocorrerem ACKs triplos.
 - (c) O protocolo ARP permite saber o endereço IP de um host a partir do seu MAC address.
 - (d) Sempre que há congestionamento da rede, a janela do TCP passa a zero.
 - (e) Sempre que há congestionamento da rede, a janela do TCP passa a um.
 - (f) No encaminhamento por inundação, os pacotes vão ser duplicados, no caso de redes contendo ciclos.
 - (g) No encaminhamento por inundação, um pacote duplicado transitará infinitamente pela rede.
- 2. Considerando a seguinte forwarding table, do computador com endereço IP 10.1.1.15:

Network	Gateway	Interface	Metric
10.1.1.0/20	10.1.1.1	eth0	1
10.1.3.0/24	10.1.3.1	eth1	1
10.1.4.0/24	10.1.4.254	eth2	1
0.0.0.0/0	10.1.1.1	eth0	2

Indique para que interface será encaminhado um pacote dirigido ao host:

- (a) 10.1.1.1
- (b) 10.1.2.3
- (c) 10.1.4.255
- (d) 192.168.3.5
- (e) Assumindo que a 2ª e 3ª linhas da forwarding table são removidas (e.g., as interfaces eth1 e eth2 ficam em baixo), para que interface serão encaminhados os pacotes dirigidos a:
 - (a) 10.1.2.3
 - (b) 10.2.1.1
- 3. Considerando ainda a mesma forwarding table, o que seria necessário para, por exemplo, abrir a página da Universidade de Évora (www.uevora.pt 193.136.216.21), visto que estamos numa rede com endereços IP privados?
- 4. Considere a seguinte tabela ARP, ainda no mesmo computador:

Address	HWtype	HWaddress	Flags	Mask	Iface
10.1.1.1	ether	b0:b9:8a:51:92:a2	C		eth0
10.1.1.2	ether	00:04:4b:a9:87:92	C		eth0
10.1.3.1	ether	c4:82:b2:2e:9d:2a	C		eth1
10.1.3.2	ether	9c:28:40:92:1f:43	С		eth1
10.1.1.11	ether	60:30:d4:1e:2b:3a	С		eth0

Explique o que acontece, ao nível da camada ethernet, quando:

- (a) Fazemos um "ping" ao host 10.1.1.11
- (b) Fazemos um "ping" ao host 10.1.4.1

- 5. Um problema recorrente em redes é a saturação. O TCP, enquanto protocolo de camada de transporte, possui mecanismos para controlo da saturação que, por vezes, não são suficientes para a evitar.
 - (a) Indique uma exemplo (simples) de uma rede onde seja impossível evitar a saturação na camada de transporte.
 - (b) Na versão Reno, o TCP usa técnicas diferentes para reduzir a congWnd quer se trate de um timeout, quer se trate de um triplo ACK duplicado. Porquê tratar estes eventos de forma diferente? (lembre-se que o TCP Tahoe trata ambos os eventos da mesma forma)
- 6. Indique e resuma duas formas de encaminhamento em redes locais.