2.5 CONTOH PENGIRAAN

Dalam bahagian ini, kaedah peramalan menggunakan kaedah yang dicadangkan akan dijelaskan dengan menggunakan data siri masa aras air sungai di Sungai Dungun dimana ia melibatkan selama 20 hari sahaja. Hal ini demikian kerana bahagian ini merupakan contoh pengiraan secara manual menggunakan kaedah peramalan yang dipilih oleh pengkaji. Maka, data yang di analisis adalah sedikit.

Contoh A: Pembinaan Ruang Fasa

Jumlah data cerapan yang dipungut adalah sebanyak 20 hari. Maka, data tersebut ditulis sebagai $X=\{x_1,x_2,.....,x_{20}\}$.

Jadual X Aras air Sungai Dungun

Bil.	Aras Air (m)
x_1	4.526
x_2	4.787
x_3	4.681
X_4	4.587
X_5	4.512
x_6	4.509
x_7	4.522
x_8	4.895
\mathcal{X}_{9}	4.669
x_{10}	4.765
x_{11}	5.158
x_{12}	4.720
<i>x</i> ₁₃	5.011
x_{14}	4.735
<i>x</i> ₁₅	4.564
x_{16}	4.537
<i>x</i> ₁₇	4.496
x_{18}	4.496
<i>x</i> ₁₉	4.523

x_{20}	4.519	

Dalam pembinaan ruang fasa, data cerapan yang diperolehi akan dibahagikan kepada dua bahagian iaitu data latihan dan data ujian. Data latihan digunakan sebagai untuk mencari parameter yang diperlukan dalam kaedah peramalan yang dipilih manakala data ujian digunakan sebagai data perbandingan hasil peramalan iaitu data cerapan dan data ramalan. Data latihan yang dipilih adalah seperti berikut:

$$\begin{split} X_{latihan} &= \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}\} \\ X_{latihan} &= \{4.526, \quad 4.787, \quad 4.681, \quad 4.587, \quad 4.512, \quad 4.509, \quad 4.522, \quad 4.895, \\ &\quad 4.669, 4.765, 5.158, 4.720, 5.011, 4.735, 4.564\} \end{split}$$

Melalui kajian perpustakaan di bahagian sebelum ini, pemilihan setiap parameter adalah telah ditetapkan. Bagi parameter τ , penetapan $\tau=1$ adalah dipilih kerana keberkesanan nilai tersebut dalam kajian hidrologi seperti yang dinayatakan melalui kajian perpustakaan di bahagian sebelum ini. Selain itu, pemilihan parameter m adalah melalui kaedah Cao. Kaedah ini dipilih kerana mampu mencari parameter m dan secara tidak langsung mampu mengenal pasti kehadiran telatah kalut. Sebagai contoh melalui kaedah Cao, nilai parameter m yang diperolehi ialah m=6. Maka, nilai tersebut dipilih dalam pembinaan ruang fasa. Manakala, penentuan bilangan jiran terdekat adalah dengan menggunakan kaedah k=2m. Namun, untuk mencari parameter k dalam contoh ini adalah dengan menggunakan k=m+1 kerana data siri masa cerapan yang digunakan adalah sedikit. Berikut merupakan kaedah pembinaan ruang fasa melalui (2.3) dengan menggunakan data latihan Sungai Dungun.

$$Y_{1} = [x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}]$$

$$Y_{2} = [x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}]$$

$$Y_{3} = [x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}]$$

$$Y_{4} = [x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}]$$

$$Y_{5} = [x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}]$$

$$Y_{6} = [x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}]$$

$$Y_{7} = [x_{7}, x_{8}, x_{9}, x_{10}, x_{11}, x_{12}]$$

$$Y_{8} = [x_{8}, x_{9}, x_{10}, x_{11}, x_{12}, x_{13}]$$

$$Y_{9} = [x_{9}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}]$$

$$Y_{10} = [x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}]$$

Oleh itu, senarai keseluruhan vektor ruang fasa adalah seperti berikut:

$$Y_1 = [4.526, 4.787, 4.681, 4.587, 4.512, 4.509]$$
 $Y_2 = [4.787, 4.681, 4.587, 4.512, 4.509, 4.522]$
 $Y_3 = [4.681, 4.587, 4.512, 4.509, 4.522, 4.895]$
 $Y_4 = [4.587, 4.512, 4.509, 4.522, 4.895, 4.669]$
 $Y_5 = [4.512, 4.509, 4.522, 4.895, 4.669, 4.765]$
 $Y_6 = [4.509, 4.522, 4.895, 4.669, 4.765, 5.158]$
 $Y_7 = [4.522, 4.895, 4.669, 4.765, 5.158, 4.720]$
 $Y_8 = [4.895, 4.669, 4.765, 5.158, 4.720, 5.011]$
 $Y_9 = [4.669, 4.765, 5.158, 4.720, 5.011, 4.735]$
 $Y_{10} = [4.765, 5.158, 4.720, 5.011, 4.735, 4.564]$

Vektor terakhir ruang fasa tersebut ialah Y_{10} kerana siri masa terakhir bagi $X_{latihan}$ ialah x_{15} . Maka, ruang fasa tersebut sehingga vektor ke sepuluh sahaja. Selain itu, pemilihan jiran terdekat bagi vektor terakhir, Y_{10} ialah di antara vektor-vektor Y_1 sehingga Y_9 . Jiran

terdekat adalah bermaksud jiran yang mempunyai jarak Euklidan terkecil dengan Y_{10} dimana vektor ruang fasa terakhir ialah $\|Y_{l-(m-1)\tau}-Y_i\|$. Sebagai contoh vektor ruang fasa terakhir ialah :

$$Y_{10} = [4.765, 5.158, 4.720, 5.011, 4.735, 4.564]$$

Maka, jarak Euklidan antara $\,Y_{\!\scriptscriptstyle 1}\,$ dan vektor ruang fasa terakhir $\,Y_{\!\scriptscriptstyle 10}\,$ ialah :

$$Y_{1} = [4.526, 4.787, 4.681, 4.587, 4.512, 4.509]$$

$$\|Y_{1} - Y_{10}\| = \sqrt{(x_{1} - x_{10})^{2} + (x_{2} - x_{11})^{2} + (x_{3} - x_{12})^{2} + (x_{4} - x_{13})^{2} + (x_{5} - x_{14})^{2} + (x_{6} - x_{15})^{2}}$$

$$\|Y_{1} - Y_{10}\| = d_{1}$$

$$d_{1} = \sqrt{\frac{(4.526 - 4.765)^{2} + (4.787 - 5.158)^{2} + (4.681 - 4.72)^{2} + (4.587 - 5.011)^{2} + (4.512 - 4.735)^{2} + (4.537 - 4.564)^{2}}$$

$$d_{1} = 0.0030$$

Oleh itu, jarak Euklidan antara vektor Y_1 dan vektor ruang fasa terakhir Y_{10} ialah 0.0030. Berikut merupakan keseluruhan nilai jarak Euklidan antara vektor Y_1 sehingga Y_9 dan vektor ruang fasa terakhir Y_{10}

$$d_1 = 0.0030$$
 $d_2 = 0.0018$ $d_3 = 0.1096$ $d_4 = 0.0110$ $d_5 = 0.0404$ $d_6 = 0.3528$ $d_7 = 0.0243$ $d_8 = 0.1998$ $d_9 = 0.0292$

Mengikut nilai jarak Euklidan, jiran-jiran terdekat bagi vektor Y_{10} adalah disusun dengan nilai menaik seperti berikut:

$$Y_7 = [4.522, 4.895, 4.669, 4.765, 5.158, 4.720]$$
 $Y_1 = [4.526, 4.787, 4.681, 4.587, 4.512, 4.509]$
 $Y_8 = [4.895, 4.669, 4.765, 5.158, 4.720, 5.011]$
 $Y_9 = [4.669, 4.765, 5.158, 4.720, 5.011, 4.735]$
 $Y_2 = [4.787, 4.681, 4.587, 4.512, 4.509, 4.522]$
 $Y_5 = [4.512, 4.509, 4.522, 4.895, 4.669, 4.765]$
 $Y_4 = [4.587, 4.512, 4.509, 4.522, 4.895, 4.669]$
 $Y_3 = [4.681, 4.587, 4.512, 4.509, 4.522, 4.895]$
 $Y_6 = [4.509, 4.522, 4.895, 4.669, 4.765, 5.158]$

Jarak Euklidan yang terkecil sehingga yang terbesar

Seterusnya, bagi mencari parameter k menggunkan kaedah k=m+1. Hal ini demikian untuk menentukan jumlah bilangan jumlah jiran-jiran yang terdekat, maka nilai k=6+1=7. Oleh itu, tujuh vektor ruang fasa teratas mengikut jarak Euklidian terdekat dipilih.

$$Y_7 = [x_7, x_8, x_9, x_{10}, x_{11}, x_{12}]$$

$$Y_7 = [4.522, 4.895, 4.669, 4.765, 5.158, 4.720]$$

$$Y_1 = [x_1, x_2, x_3, x_4, x_5, x_6]$$

$$Y_1 = [4.526, 4.787, 4.681, 4.587, 4.512, 4.509]$$

$$Y_8 = [x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}]$$

$$Y_8 = [4.8950, 4.6690, 4.7650, 5.1580, 4.7200, 5.0110]$$

$$Y_9 = [x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}]$$

$$Y_9 = [4.6690, 4.7650, 5.1580, 4.7200, 5.0110, 4.7350]$$

$$Y_2 = [x_2, x_3, x_4, x_5, x_6, x_7]$$

$$Y_2 = [4.7870, 4.6810, 4.5870, 4.5120, 4.5090, 4.5220]$$

$$Y_5 = [x_5, x_6, x_7, x_8, x_9, x_{10}]$$

$$Y_5 = [4.5120, 4.5090, 4.5220, 4.8950, 4.6690, 4.7650]$$

$$Y_4 = [x_4, x_5, x_6, x_7, x_8, x_9]$$

$$Y_4 = [4.5870, 4.5120, 4.5090, 4.5220, 4.8950, 4.6690]$$

Kesimpulannya, dengan penetapan vektor ruang fasa seperti diatas, maka proses pembinaan ruang fasa telah selesai. Oleh itu, proses peramalan menggunakan pendekatan kalut boleh dilaksanakan menggunakan kaedah yang telah dipilih oleh pengkaji.

Contoh B: Permalan menggunakan kpps

Melalui pembinaan ruang fasa seperti di contoh A, baris pertama bagi setiap vektor adalah dipilih untuk mencari peramalan satu langkah kehadapan.

$$Y_7 = [x_7, x_8, x_9, x_{10}, x_{11}, x_{12}]$$

$$Y_1 = [x_1, x_2, x_3, x_4, x_5, x_6]$$

$$Y_8 = [x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}]$$

$$Y_9 = [x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}]$$

$$Y_2 = [x_2, x_3, x_4, x_5, x_6, x_7]$$

$$Y_5 = [x_5, x_6, x_7, x_8, x_9, x_{10}]$$

$$Y_4 = [x_4, x_5, x_6, x_7, x_8, x_9]$$

Menerusi kaedah peramalan kpps, nilai di baris kedua telah digunakan. Contoh pengiraan adalah seperti berikut:

$$x_{16} = \frac{x_8 + x_2 + x_9 + x_{10} + x_3 + x_6 + x_5}{7}$$

$$x_{16} = \frac{4.895 + 4.787 + 4.669 + 4.765 + 4.681 + 4.509 + 4.512}{7}$$

$$x_{16} = 4.6883$$

Maka, nilai peramalan x_{16} telah diperolehi menggunakan 15 data siri masa latihan sahaja. Dengan memasukkan nilai peramalan x_{16} ke dalam data siri masa latihan, proses pembinaan ruang fasa diulang kembali bagi meramal nilai x_{17} . Untuk meramal nilai yang ke-18, nilai yang ke-17 dimasukkan ke dalam data latihan dan proses pembinaan ruang fasa dilaksanakan. Proses ini berulang sehingga mencukupi data ujian untuk perbandingan. Oleh itu, nilai x_{16} sehinggan x_{20} adalah seperti berikut:

$$x_{16} = 4.6883$$

$$x_{17} = 4.7384$$

$$x_{18} = 4.7693$$

$$x_{19} = 4.6699$$

$$x_{20} = 4.6889$$

Maka, menerusi data ramalan dan data cerapan, perbandingan data yang diperolehi adalah seperti di jadual berikut:

Jadual X Hasil perbandingan antara data cerapan dan data ramalan menggunakan kaedah kpps

X_{ujian}	Data Cerapan (m)	Data Ramalan (m)	Perbezaan nilai (m)
<i>x</i> ₁₆	4.537	4.564	0.027
<i>x</i> ₁₇	4.496	4.688	0.192
x_{18}	4.496	4.738	0.242
<i>x</i> ₁₉	4.523	4.769	0.206
<i>x</i> ₂₀	4.519	4.669	0.091

Contoh C: Peramalan menggunakan kpls

Peramalan menggunakan kpls memerlukan (3.0) dan (3.1) untuk membentuk persamaan penghampiran linear berikut:

$$\mathbf{Y}_{i+1} = A\mathbf{Y}_i + B$$

Bagi parameter A dan B, kaedah kuasa dua terkecil digunakan untuk menentukan nilai-nilai tersebut dengan menggunakan siri masa lajur ke-m di langkah terakhir pembinaan ruang fasa. Menerusi contoh A, pembinaan ruang fasa dengan menggunakan m=6. Maka, siri lajur ke-6 akan membentuk persamaan kpls berikut:

$$\begin{bmatrix} x_{13} \\ x_7 \\ x_{14} \\ x_{15} \\ x_8 \\ x_{11} \\ x_{10} \end{bmatrix} = A \begin{bmatrix} x_{12} \\ x_6 \\ x_{13} \\ x_{14} \\ x_7 \\ x_{10} \\ x_9 \end{bmatrix} + B$$

Maka, nilai-nilai tersebut adalah seperti berikut:

$$\begin{bmatrix} 5.0110 \\ 4.5520 \\ 4.5090 \\ 4.7350 \\ 4.5640 \\ 4.8950 \\ 5.1580 \\ 4.7650 \\ 4.6690 \end{bmatrix} + A \begin{bmatrix} 4.7200 \\ 4.5090 \\ 4.7350 \\ 4.7350 \\ 4.7350 \\ 4.7650 \\ 4.6690 \end{bmatrix}$$

Untuk mencari parameter A dan B, kaedah kuasa dua terkecil digunakan. Jadual berikut merupakan nilai algoritma untuk mencari parameter A dan B.

x_l	X_{l+1}	x_l^2	$X_l X_{l+1}$
4.720	5.011	22.278	23.652
4.509	4.522	20.331	20.390
5.011	4.735	25.110	23.727
4.735	4.564	22.420	21.611
4.522	4.895	20.449	22.135
4.765	5.158	22.705	24.578
4.669	4.765	21.710	22.248
$\sum x_l = 32.931$	$\sum x_{l+1} = 33.650$	$\sum x_l^2 = 155.093$	$\sum x_l x_{l+1} = 158.340$

$$A = \frac{n\left(\sum x_{l}x_{l+1}\right) - \left(\sum x_{l}\right)\left(\sum x_{l+1}\right)}{n\left(\sum x_{l}^{2}\right) - \left(\sum x_{l}\right)^{2}}$$

$$A = \frac{7(158.34) - (32.931)(33.65)}{7(155.093) - (32.931)^{2}}$$

$$A = 0.210$$

$$B = \frac{\left(\sum x_{l+1}\right)\left(\sum x_l^2\right) - \left(\sum x_l\right)\left(\sum x_l x_{l+1}\right)}{n\left(\sum x_l^2\right) - \left(\sum x_l\right)^2}$$

$$B = \frac{(33.65)(155.093) - (32.931)(158.34)}{7(155.093) - (32.931)^2}$$

$$B = 3.821$$

Maka, persamaan kpls adalah $Y_{i+1}=0.210Y_i+3.821$. Untuk meramal nilai x_{16} , maka nilai x_{15} digunakan dan membentuk perhampiran linear $x_{16}=0.210x_{15}+3.821$. Maka, nilai x_{16} adalah $x_{16}=0.210(4.564)+3.821=4.778$. Setersunya, proses ini berulang sehingga mencapai data siri masa ujian terakhir iaitu x_{20} . Keputusan peramalan data siri masa x_{16} sehingga x_{20} adalah seperti berikut:

Jadual X Hasil perbandingan antara data cerapan dan data ramalan menggunakan kaedah kpps

X_{ujian}	Data Cerapan (m)	Data Ramalan (m)	Perbezaan nilai (m)
<i>x</i> ₁₆	4.537	4.778	0.241
<i>x</i> ₁₇	4.496	4.698	0.202
<i>x</i> ₁₈	4.496	4.742	0.246
<i>x</i> ₁₉	4.523	4.817	0.294
<i>x</i> ₂₀	4.519	4.813	0.294