Homework 2

Mingang Kim

2021 9 9

1.

2.

Α.

Even though my major in undergrad and master's degree was statistics, I am not confident about my coding skill. Whenever people ask me if I am good at coding, I am not confident. By taking class, I want to improve my programming skill and want to be more confident.

- 1. Learn how to code neatly.
- 2. Improve visualization skill.
- 3. Code Latex without looking at cheat sheets.

В.

$$P(X = x|N) = \frac{1}{N}, x = 1, 2, 3, ..., N$$
 (1)

$$P(Y = y | n, p) = \binom{n}{y} p^y (1 - p)^{n - y}, y = 0, 1, 2, ..., n$$
 (2)

$$P(X=x|r,p) = {x-1 \choose r-1} p^r (1-p)^{x-r}, x=r,r+1,..., \tag{3}$$

3.

- 1. Rule 1: For Every Result, Keep Track of How It Was Produced
 - There are many interrelated steps making raw data into the final result.
 - It is important to record a name and version of the program, as well as the exact parameters and inputs that were used for reproducible research.
 - Analysis can be reproduced by specifying the full analysis workflow in a form that allows for direct execution.
 - Challenges: How to record the whole steps briefly and exactly in a way that allows perfect sync with its final version.
- 2. Rule 2: Avoid Manual Data Manipulation Steps

- Avoid relying on manual procedures to modify data because it is not efficient and easy to make error which makes reproduction difficult.
- If manual operations are inevitable, note down which data files were modified or moved, and the
 purpose of execution as briefly as you can.
- Challenges: Before recording manually, how to reproduce the analyses with manual procedures should be considered.
- 3. Rule 3: Archive the Exact Versions of All External Programs Used
 - It is important to archive the exact versions of programs to avoid unnecessary hassle.
 - Codes can only be executed in a specific version of program.
 - Challenges: It is easy to think that the version is not important and newest version is good.
- 4. Rule 4: Version Control All Custom Scripts
 - In some cases, it is necessary to track down exact reproduction of results.
 - Use Subversion, Git, or Mercurial to version control.
 - Challenges: Update the newest version of code on a regular basis and should not forget about version control.
- 5. Rule 5: Record All Intermediate Results, When Possible in Standardized Formats
 - Intermediate results can reveal discrepancies and it will be a good way to uncover bugs or faulty interpretations.
 - It is possible to rerun the parts when the full process is not readily executable.
 - It is possible to find on which steps problems appears.
 - Without executing the full process, it is possible to examine the full process.
 - Challenges: Archive intermediate result files will require a lot of storage.
- 6. Rule 6: For Analyses That Include Randomness, Note Underlying Random Seeds
 - If random seed is not fixed, the same program will give different result every time.
 - Thus, random seed should be recorded if analysis steps involve randomness.
 - Challenges: There is no challenge but some codes can be run on specific random seeds. So the analyzer should keep in mind that the analyze can be reproduced in specific condition.
- 7. Rule 7: Always Store Raw Data behind Plots
 - If the raw data behind figures are stored in a systematic manner, given figures can be easily retrieved.
 - If one really wants to read fine values in a figure, it is possible to consult the raw numbers.
 - Challenges: Raw data should be saved for backup before using it because data can be modified by mistake.
- 8. Rule 8: Generate Hierarchical Analysis Output, Allowing Layers of Increasing Detail to Be Inspected
 - It is not practical to incorporate various debug outputs in the source code of scripts and programs.
 - Rather than that, hypertext is useful to inspect the detailed values underlying the summaries.
 - Challenges: Summarizing results to be generated along with links that can be difficult and take
 a lot of time.
- 9. Rule 9: Connect Textual Statements to Underlying Results
 - Results and interpretations are located in different area and forms.

- Making this connection when it is needed may not be easy and error-prone.
- To allow efficient retrieval, tools such as Sweave are recommended.
- Challenges: Locating the exact result underlying and supporting the statement will not be easy when it comes to a large pool of different analyses with various versions.
- 10. Rule 10: Provide Public Access to Scripts, Runs, and Results
 - All input data, scripts, versions, parameters, and intermediate results should be made publicly and easily accessible for trustworthiness, and transparency.
 - Challenges: Some people will hesitate to share their code and data because they think it is their property and achievement.

4.

```
library(data.table)
## Warning: 'data.table' R 4.1.1

covid_raw <- fread("https://opendata.ecdc.europa.eu/covid19/casedistribution/csv")
us <- covid_raw[covid_raw$countriesAndTerritories == 'United_States_of_America',]
us_filtered <- us[us$month %in% c(6:7),]
us_filtered$index <- rev(1:dim(us_filtered)[1])
fit<-lm(`Cumulative_number_for_14_days_of_COVID-19_cases_per_100000)`~index, data=us_filtered)</pre>
```

Part a.

1. Create a summary table of the us_filtered data. Hint, use summary and kable in the knitr package. How many time points have we limited ourselves to? Are there missing values?

```
library("knitr")
```

Warning: 'knitr' R 4.1.1

kable(summary(us_filtered), "simple")

dateRep	day	month	year	cases	deaths	countries And Terr
Length:61	Min.: 1.00	Min. :6.000	Min. :2020	Min. :18665	Min.: 242.0	Length:61
Class:character	r 1st Qu.: 8.00	1st Qu.:6.000	1st Qu.:2020	1st Qu.:25540	1st Qu.: 500.0	Class :character
Mode :characte	r Median :16.00	Median: 7.000	Median $:2020$	Median $:45221$	Median: 767.0	Mode :character
NA	Mean $:15.75$	Mean $:6.508$	Mean $:2020$	Mean $:44666$	Mean: 791.6	NA
NA	3rd Qu.:23.00	3rd Qu.:7.000	3rd Qu.:2020	3rd Qu.:61796	3rd Qu.: 982.0	NA
NA	Max. :31.00	Max. $:7.000$	Max. :2020	Max. :78427	Max. :2437.0	NA

```
summary(is.na(us_filtered))
```

```
##
    dateRep
                      day
                                    month
                                                     year
## Mode :logical Mode :logical Mode :logical
                                                  Mode :logical
                 FALSE:61
                                  FALSE:61
                                                  FALSE:61
  FALSE:61
                                  {\tt countriesAndTerritories}
##
     cases
                     deaths
                                                            geoId
## Mode :logical
                 Mode :logical
                                  Mode :logical
                                                         Mode :logical
## FALSE:61
                   FALSE:61
                                  FALSE:61
                                                         FALSE:61
## countryterritoryCode popData2019
                                       continentExp
                       Mode :logical
                                      Mode :logical
## Mode :logical
## FALSE:61
                        FALSE:61
                                       FALSE:61
## Cumulative_number_for_14_days_of_COVID-19_cases_per_100000
                                                               index
## Mode :logical
                                                             Mode :logical
## FALSE:61
                                                             FALSE:61
```

We have 3 time points. Year, Month and day. There is no missing value in the data.

library(stargazer)

##

Please cite as:

- ## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
- ## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer

Table 2: Result

	Dependent variable:				
	lem:covid-covid				
index	$4.107^{***} (0.145)$				
Constant	42.853^{***} (5.165)				
Observations	61				
\mathbb{R}^2	0.932				
Adjusted R ²	0.930				
Residual Std. Error	19.922 (df = 59)				
F Statistic	$803.464^{***} (df = 1; 59)$				
Note:	*p<0.1; **p<0.05; ***p<0.01				

b.

```
library("broom")
```

Warning: 'broom' R 4.1.1

```
fit.diags <- broom::augment(fit)
fit.diags</pre>
```

```
##
   # A tibble: 61 x 8
##
      `Cumulative_number_fo~ index .fitted
                                               .resid
                                                         .hat .sigma .cooksd .std.resid
##
                        <dbl> <int>
                                        <dbl>
                                                <dbl>
                                                        <dbl>
                                                               <dbl>
                                                                        <dbl>
                                                                                    <dbl>
                                                                                  -0.734
##
                          279.
                                         293. -14.1
                                                       0.0640
                                                                 20.0 1.84e-2
    1
                                  61
##
    2
                          282.
                                  60
                                         289.
                                               -7.33
                                                      0.0609
                                                                20.1 4.67e-3
                                                                                  -0.380
##
    3
                          280.
                                  59
                                         285.
                                               -5.43 0.0579
                                                                20.1 2.42e-3
                                                                                  -0.281
##
    4
                          282.
                                  58
                                         281.
                                                0.738 0.0549
                                                                20.1 4.22e-5
                                                                                   0.0381
                          282.
                                                                20.1 2.14e-3
                                  57
                                         277.
                                                5.41
                                                      0.0521
                                                                                   0.279
##
    5
                          283.
                                                                20.0 6.76e-3
##
    6
                                  56
                                         273.
                                                9.90
                                                      0.0494
                                                                                   0.510
                          282.
                                         269.
                                               13.3
                                                       0.0469
                                                                20.0 1.14e-2
##
    7
                                  55
                                                                                   0.682
##
    8
                          278.
                                  54
                                         265.
                                               13.8
                                                       0.0444
                                                                20.0 1.16e-2
                                                                                   0.708
##
    9
                          278.
                                  53
                                         260.
                                               17.8
                                                       0.0420
                                                                 20.0 1.83e-2
                                                                                   0.915
## 10
                          275.
                                  52
                                         256.
                                               18.9
                                                       0.0397
                                                                19.9 1.94e-2
                                                                                   0.969
## # ... with 51 more rows
```

1. residuals vs fitted

```
fitted<-fit.diags$.fitted
residual<-fit.diags$.resid
plot(fitted,residual, xlab="Fitted values", ylab="Residuals", main="Residuals vs Fitted")</pre>
```

Residuals vs Fitted

2. normal Q-Q

```
probs<-seq(0,1,length.out=length(fit.diags$.std.resid))
y<-fit.diags$.std.resid[order(fit.diags$.std.resid)]
norm<-qnorm(probs, lower.tail = TRUE, log.p = FALSE)
plot(norm, y, xlab="Theoritical Qunatiles", ylab="Sample Qunatiles", main = "Normal Q-Q plot")</pre>
```

Normal Q-Q plot

3. scale-location

```
fitted<-fit.diags$.fitted
std.r<-fit.diags$.std.resid
sq.std<-sqrt(abs(std.r))
plot(fitted,sq.std, xlab="Fitted values", ylab="sqrt(standarized resiudals)", main="Scale-location")</pre>
```

Scale-location

4. residuals vs leverage

```
leverage<-fit.diags$.hat
std.r<-fit.diags$.std.resid
plot(leverage, std.r, xlab="Leverage", ylab="Resiudals", main="Residuals vs Leverage")</pre>
```

Residuals vs Leverage

c.

Create an auto correlation plot of the residuals using the acf function. The pattern observed is indicative of a time pattern. The simple linear model is not appropriate in this case.

acf(fit.diags\$.resid)

Series fit.diags\$.resid

5.

```
par(mfrow=c(2,2))
plot(fitted,residual, xlab="Fitted values", ylab="Residuals", main="Residuals vs Fitted")
plot(norm, y, xlab="Theoritical Qunatiles", ylab="Sample Qunatiles", main = "Normal Q-Q plot")
plot(fitted,sq.std, xlab="Fitted values", ylab="sqrt(standarized residuals)", main="Scale-location")
plot(leverage, std.r, xlab="Leverage", ylab="Residuals", main="Residuals vs Leverage")
```

