содержание

1.	Обі	щая ча	сть	3
	1.1.	Исходн	ые данные	3
	1.2.	Расчет	лётно — технических характеристик самолета	6
	1.3.	Расчет	траектории полета	26
		1.3.1.	Расчет характеристик набора высоты	26
		1.3.2.	Расчет характеристик крейсерского полета	30
		1.3.3.	Расчет характеристик участка снижения	31
	1.4.	Расчет	диаграммы транспортных возможностей	36
	1.5.	Расчет	взлетно-посадочных характеристик самолета	37
	1.6.	Расчет	характеристик маневренности самолета	39
	1.7.	Расчет	характеристик продольной статической устойчивости и управляемости	40
2.	Сил	нтез си	стемы автоматического управления	47
	2.1.	Описан	ние объекта управления	47
		2.1.1.	Построение области высот и скоростей	49
		2.1.2.	Выбор параметров привода	50
		2.1.3.	Вывод	51
	2.2.	Синтез	в контуров автоматического управления	51
		2.2.1.	Расчет ядра системы	52
		2.2.2.	Расчет внешнего контура	54
		2.2.3.	Вывод	57
	2.3.	Частот	ный анализ	57
		2.3.1.	Анализ контура демпфирования	57
		2.3.2.	Анализ ядра системы	59
		2.3.3.	Анализ внешнего контура	62
		2.3.4.	Вывод	65
	2.4.	Нелине	ейное моделирование САУ	65
		2.4.1.	Сравнение для разных максимальных скоростей отклонения руля	
			высоты	66

		2.4.2.	Сравнение линейной и нелинейной модели	67
		2.4.3.	Вывод	69
	2.5.	Вывод	по разделу	69
3.	Спе	ециалы	ная часть	70
	3.1.	Исходн	ые данные для самолета Ил-76	70
	3.2.	Исслед	ование характеристик транспортного самолета при выполнении эше-	
		лониро	вания	70
		3.2.1.	Постановка задачи	70
		3.2.2.	Расчетные формулы	70
		3.2.3.	Задачи	70
	3.3.	Результ	гаты	71
		3.3.1.	Результаты расчета при постоянный высоте и оптимальной скорости	
			полета	71
		3.3.2.	Результаты расчета при оптимальном изменении высоты и скорости	
			полета	71
		3.3.3.	Эшелонированный полет, высота меняется ступенчато с шагом 300 м	72
		3.3.4.	Анализ результатов	73
	3.4.	Вывод		74
Сп	исок	литера	атуры	75

1. Общая часть

В данном разделе производится расчет основных характеристик самолета-прототипа Ил-76.

1.1. Исходные данные

Основные параметры самолета необходимые для расчета представлены в таблице 1.1.

$M_{ m доп}$	V_i	m_0	$ar{m}_{ ext{ iny LH}}$	$ar{m}_{\scriptscriptstyle m T}$	$ar{m}_{ ext{ch}}$	\bar{P}_0	Ce_0	$\frac{n_{ exttt{ iny JB}}}{n_{ exttt{ peB}}}$	P_s	b_a	$ar{L}_{ ext{ro}}$	S
_	<u>КМ</u> Ч	КГ	_	_	_	_	<u>кг</u> дан*ч	-	$\frac{\mathrm{дah}}{\mathrm{m}^2}$	M	-	M^2
0.80	< 650	140000	0.26	0.39	0.46	0.276	0.048	4/2	457	6.436	3.10	300

Таблица 1.1 — Исходные данные для самолета ИЛ-76

Зависимости аэродинамических характеристик представлены на рисунке 1.1. Зависимости $C_y(C_x)$, $C_y(\alpha)$ для различных конфигурация представлены на рисунке 1.2. Аэродинамические характеристики для отдельных компоновочных групп приведены на рисунке 1.3. Основные параметры двигателя приведены на рисунках 1.4, 1.5.

Рисунок 1.1 — Аэродинамические характеристики самолета

Режимы: 1. Взлетный, 2. Посадочный, 3. Пробег с выпущенными интерцепторами.

Рисунок 1.2 — Аэродинамические характеристики самолета на взлётно-посадочных режимах

Рисунок 1.3 — Аэродинамические характеристики для отдельных компоновочных групп самолета

Рисунок 1.4 — Высотно-скоростные характеристики ТРДД на режиме «номинал»

Рисунок 1.5 — Относительный удельный часовой расход топлива для $\mathrm{ТРДД}$ на режиме «номинал»

1.2. Расчет лётно – технических характеристик самолета

Определим следующие характеристики самолета:

- 1. Зависимости от числа M (скорости) и H (высоты) полета результаты сведем в таблицы 1.2 1.8:
 - располагаемой и потребной для горизонтального установившегося полета тяги силовой установки,
 - энергетической скороподъемности,
 - часового расхода топлива,
 - километрового расхода топлива.

2. Зависимости от высоты:

- максимальной энергетической скороподъемности,
- минимального часового расхода топлива,
- минимального километрового расхода топлива,
- минимального и максимального числа M (скорости) полета (с учетом ограничений по безопасности полета),
- \bullet числа M (скорости) полета, соответствующего минимальной потребной тяги,
- ullet числа M (скорости) полета, соответствующего максимальной энергетической скороподъемности,
- скорости полета, соответствующей минимальному часовому расходу топлива,
- скорости полета, соответствующему минимальному километровому расходу топлива
- 3. Статический и практический потолки самолета.

Соотношения для расчета: Узловые точки по числу Маха:

$$M = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95]$$

$$V = Ma_H, \tag{1.1}$$

где a_H — скорость звука на высоте H.

$$q = \frac{\rho_H V^2}{2},\tag{1.2}$$

где ρ_H — плотность воздуха на высоте H.

Коэффициент подъемной силы для крейсерского полета:

$$C_{y_n} = \frac{\bar{m}P_s 10}{q},\tag{1.3}$$

где $\bar{m}=0.95$ — относительная масса самолета, P_s — удельная нагрузка на крыло.

Коэффициент лобового сопротивления при $C_y = C_{y_n}$:

$$C_{x_n}(C_y, M) = C_{x_m}(M) + A(M) \left[C_{y_n} - C_{y_m}(M) \right]^2, \tag{1.4}$$

где C_{y_m} — коэффициент подъемной силы при $C_x = C_{x_m}, C_{x_m}$ — минимальный коэффициент лобового сопротивления, A — коэффициент отвала поляры.

$$K_n = \frac{C_{y_n}}{C_{x_n}} \tag{1.5}$$

$$P_n = \frac{\bar{m}m_0g}{K_n} \tag{1.6}$$

$$P_p(M,H) = \bar{P}_0 m_0 g \tilde{P}(H,M) \tag{1.7}$$

$$n_x = \Delta \bar{P} = \frac{(P_p - P_n)}{\bar{m}m_0 g} \tag{1.8}$$

$$V_y^* = \Delta \bar{P}V \tag{1.9}$$

$$\bar{R} = \frac{P_n}{P_n} \tag{1.10}$$

$$q_{\mathbf{q}} = Ce(M, H, \bar{R})P_n = Ce_0\tilde{C}e(H, M)\hat{C}e_{\mathbf{pp}}(R)P_n$$
(1.11)

$$q_{\text{\tiny KM}} = \frac{q_{\text{\tiny q}}}{3.6V},$$
 (1.12)

где K_n — аэродинамические качество, P_n — потребная тяга двигателя, P_p — располагаемая тяга двигателя, n_x — тангенциальная перегрузка, V_y^* — энергетическая скороподъемность, \bar{R} — потребное значение коэффициента дросселирования двигателя при крейсерском полете, $q_{\rm q}$ — часовой расход топлива, $q_{\rm km}$ — километровый расход топлива.

Результаты для высот от 0 до $H_{\rm np}$ с шагом в 2 км. приведены в таблицах 1.2 - 1.8. Также графической представление результатов на рисунках 1.6 - 1.33.

Таблица 1.2 — Результаты расчета для высоты H=0 км

$q_{\scriptscriptstyle m KM}$	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$	199.52	33.84	17.86	16.62	19.34	23.57	29.53	39.50	44.28	39.98
q ₄	KT	24442	8292	6563	8144	11849	17325	25322	38710	48822	46531
$ar{R}_{ ext{Kp}}$	-	1.38	0.39	0.29	0.37	0.57	0.89	1.39	2.50	4.50	5.72
V_y^*	M C	-3.4	6.6	16.1	17.7	14.2	4.1	-15.9	-64.6	-156.3	-213.3
$\Delta ar{p}(n_x)$	I	-0.099	0.146	0.158	0.130	0.083	0.020	290.0-	-0.237	-0.510	-0.660
$P_p * 10^{-5}$	Н	3.531	3.282	3.062	2.856	2.679	2.510	2.342	2.173	2.005	1.920
$P_n * 10^{-5}$	Н	4.887	1.282	0.890	1.071	1.535	2.234	3.259	5.435	9.013	10.980
K_n	I	2.67	10.18	14.65	12.19	8.50	5.84	4.00	2.40	1.45	1.19
C_{y_n}	I	6.454	1.614	0.717	0.403	0.258	0.179	0.132	0.101	0.080	0.072
b	$\frac{H}{M^2}$	602	2837	6383	11348	17732	25534	34754	45394	57451	64012
7	$\frac{\mathrm{KM}}{\mathrm{q}}$	123	245	368	490	613	735	858	086	1103	1164
7	C IM	34	89	102	136	170	204	238	272	306	323
M	I	0.10	0.20	0.30	0.40	0.50	09.0	0.70	0.80	0.90	0.95

Рисунок 1.7 — График $C_{\rm y_{ron}},\,C_{y_n}$

Рисунок 1.8 — График $V_y^*(M,H)$

Рисунок 1.9 — График $q_{\scriptscriptstyle \mathrm{KM}},\,q_{\scriptscriptstyle \mathrm{T}}$

0.8 9.0 $V[{
m M/c}^2]$ $V_y^*(H=0.000[\text{KM}])$ 0.5 0.0 T

2.5

5.0

20.05

17.5 -

15.0 -

ν, [w/c²]

7.5

12.5 -

=17.789

Таблица 1.3 — Результаты расчета для высоты H=2 км

$q_{\scriptscriptstyle m KM}$	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$	237.14	39.61	17.73	14.44	15.77	18.64	23.38	32.25	39.63	39.31
$q_{^{\mathrm{H}}}$	KI	28389	9483	9989	6914	9442	13389	19589	30890	42702	44704
$ar{R}_{ ext{Kp}}$	I	1.99	0.53	0.33	0.36	0.50	0.75	1.14	2.04	3.65	4.63
V_y^*	C IK	-7.5	8.9	13.7	16.5	15.1	8.7	-5.4	-42.1	-112.3	-156.2
$\Deltaar{p}(n_x)$	I	-0.226	0.103	0.138	0.124	0.091	0.044	-0.023	-0.158	-0.375	-0.494
$P_p * 10^{-5}$	Н	3.153	2.983	2.814	2.650	2.501	2.376	2.245	2.095	1.945	1.870
$P_n * 10^{-5}$	Н	6.261	1.576	0.925	0.946	1.255	1.776	2.566	4.271	7.096	8.660
K_n	I	2.08	8.28	14.11	13.79	10.40	7.35	5.09	3.06	1.84	1.51
C_{y_n}	I	8.226	2.057	0.914	0.514	0.329	0.229	0.168	0.129	0.102	0.091
b	$\frac{H}{M^2}$	557	2226	5009	8904	13913	20034	27269	35617	45077	50225
Λ	KM	120	239	359	479	599	718	838	958	1077	1137
Λ	C	33	29	100	133	166	200	233	266	299	316
M	I	0.10	0.20	0:30	0.40	0.50	09.0	0.70	0.80	0.90	0.95

 $V_{
m [M/c^2]}$ $q_{\kappa_M}[\kappa_{\Gamma}/\kappa_M]$ 24 14 12 22

Рисунок 1.12 — График
 $V_y^*(M,H)$

Рисунок 1.13 — График $q_{\mbox{\tiny KM}},\,q_{\mbox{\tiny T}}$

Таблица 1.4 — Результаты расчета для высоты $H=4~\mathrm{km}$

$q_{\scriptscriptstyle m KM}$	KT	262.99	48.11	19.39	13.47	13.19	14.97	18.46	25.87	34.23	36.55
ф.	Kr 4	30731	11243	9629	6297	7707	10495	15101	24181	35998	40578
$ar{R}_{ ext{KP}}$	I	3.30	0.83	0.44	0.39	0.48	0.68	1.00	1.70	2.88	3.56
V_y^*	C K	-13.4	1.9	9.2	13.0	13.3	9.3	-0.2	-26.0	-77.1	-109.6
$\Delta ar{p}(n_x)$	I	-0.412	0.029	0.095	0.100	0.082	0.048	-0.001	-0.100	-0.264	-0.355
$P_p * 10^{-5}$	H	2.461	2.397	2.333	2.268	2.177	2.083	2.010	1.965	1.926	1.906
$P_n * 10^{-5}$	Н	8.113	1.998	1.034	0.890	1.055	1.425	2.020	3.339	5.552	6.788
K_n	I	1.61	6.53	12.62	14.67	12.37	9.16	6.46	3.91	2.35	1.92
C_{y_n}	I	10.606	2.652	1.178	0.663	0.424	0.295	0.216	0.166	0.131	0.118
b	$\frac{H}{M^2}$	432	1726	3885	9069	10791	15538	21150	27624	34961	38954
Λ	$\frac{\mathrm{KM}}{\mathrm{q}}$	117	234	351	467	584	701	818	935	1052	1110
Λ	C	32	65	26	130	162	195	227	260	292	308
M	I	0.10	0.20	0:30	0.40	0.50	09.0	0.70	0.80	0.90	0.95

10000 [17.7.71] - 14000 12000 8000 0009 -220 200 =149.311160 $V(q_{q_{min}}) = 120.098$ $\frac{140}{V[{\rm M/c}^2]}$ 120 --- $q_{\text{KM}}(H = 4.000[\text{KM}])$ 100 - 08 10 оми [кг/км] 20 12

=0.699 0.8 0.6 M0.4 $_{iinP} = 0.182$ - $P_{\rm p}(H = 4.000[{\rm KM}])$ - $P_{\text{II}}(H = 4.000[\text{KM}])$ 0.2 0.0 0.0 T 2.5 0.5 2.0 P[H] 1.0

3.0

Рисунок 1.17 — График $q_{\scriptscriptstyle \mathrm{KM}},\,q_{\scriptscriptstyle \mathrm{T}}$

Таблица 1.5 — Результаты расчета для высоты H=6 км

<i>q</i> км	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$	238.38	58.57	21.77	13.37	11.58	12.29	14.65	20.50	27.83	30.44
ф	Kr	27157	13346	7439	6093	6598	8404	11687	18679	28534	32940
$ar{R}_{ ext{Kp}}$	-	5.19	1.29	0.62	0.47	0.49	0.63	0.89	1.48	2.47	3.04
V_y^*	C	-19.8	-2.7	5.2	9.6	11.2	9.5	3.2	-15.5	-53.5	-78.0
$\Delta ar{p}(n_x)$	Ι	-0.626	-0.042	0.054	0.076	0.071	0.050	0.015	-0.061	-0.188	-0.259
$P_p * 10^{-5}$	Н	2.053	2.018	1.984	1.950	1.909	1.858	1.808	1.771	1.755	1.748
$P_n * 10^{-5}$	Н	10.644	2.598	1.237	0.908	0.934	1.172	1.607	2.614	4.334	5.309
K_n	I	1.23	5.03	10.55	14.37	13.97	11.13	8.12	4.99	3.01	2.46
C_{y_n}	I	13.851	3.463	1.539	0.866	0.554	0.385	0.283	0.216	0.171	0.153
b	$\frac{H}{M^2}$	331	1322	2975	5288	8263	11899	16196	21153	26772	29830
Λ	KM	114	228	342	456	570	684	797	911	1025	1082
Λ	C	32	63	92	127	158	190	222	253	285	301
M	I	0.10	0.20	0.30	0.40	0.50	09.0	0.70	0.80	0.90	0.95

Рисунок 1.19 — График $C_{y_{\rm rou}},\,C_{y_n}$

Рисунок 1.20 — График $V_y^*(M,H)$

Рисунок 1.21 — График $q_{\mbox{\tiny KM}},\,q_{\mbox{\tiny T}}$

0.8 9.0 $V[{
m M/c}^2]$ - $V_y^*(H = 6.000[\text{KM}])$ 0.2

=11.233

10 +

12 -

 $V_*^*[M/c^2]$

Таблица 1.6 — Результаты расчета для высоты H=8 км

$q_{\scriptscriptstyle m KM}$	KT	65.20	78.89	25.78	14.11	10.83	10.57	11.97	16.38	22.42	24.79
$q_{ m q}$	Kr 4	7232	15278	8579	6261	9009	7032	9292	14533	22380	26118
$ar{R}_{ ext{Kp}}$	I	8.71	2.13	76.0	0.63	0.56	0.64	0.84	1.32	2.18	2.68
V_y^*	C	-28.1	-8.2	0.3	5.3	7.8	7.8	4.1	-9.0	-37.2	-55.8
$\Deltaar{p}(n_x)$	I	-0.912	-0.133	0.003	0.043	0.051	0.042	0.019	-0.037	-0.134	-0.191
$P_p * 10^{-5}$	Н	1.626	1.618	1.611	1.603	1.596	1.592	1.576	1.571	1.561	1.556
$P_n * 10^{-5}$	Н	14.155	3.449	1.564	1.016	0.897	1.016	1.318	2.075	3.405	4.176
K_n	I	0.92	3.78	8.34	12.84	14.55	12.84	9:90	6.29	3.83	3.12
C_{y_n}	ı	18.344	4.586	2.038	1.147	0.734	0.510	0.374	0.287	0.226	0.203
b	$\frac{H}{M^2}$	250	866	2246	3993	6239	8984	12228	15972	20214	22523
Λ	KM 4	1111	222	333	444	555	999	922	887	866	1054
<i>\</i>	C	31	65	92	123	154	185	216	246	277	293
M	I	0.10	0.20	0.30	0.40	0.50	09.0	0.70	0.80	06.0	0.95

 $\mathcal{M}(P_{nmin}) = 0.5$

[H]d

1.25

0.75 -

0.50

P = 0.744

 $M_{minP} = 0.295$

2.00

1.75 -

1.50 -

Рисунок 1.23 — График $C_{y_{\rm доп}},\,C_{y_n}$

Рисунок 1.24 — График $V_y^*(M,H)$

Рисунок 1.25 — График $q_{\mbox{\tiny KM}},\,q_{\mbox{\tiny T}}$

- $P_{\rm p}(H = 8.000 [{\rm KM}])$ - $P_{\rm n}(H = 8.000 [{\rm KM}])$

0.25 -

17

Таблица 1.7 — Результаты расчета для высоты $H=10~\mathrm{km}$

M	Λ	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\left \Delta ar{p}(n_x) \right $	V_y^*	$ar{R}_{ m KP}$	чр	$q_{\scriptscriptstyle m KM}$
I	C	$\frac{KM}{4}$	$\frac{H}{{}_{\mathrm{M}}^2}$	I	I	Н	H	I	C K	I	KT 4	KT
0.10	30	108	185	24.679	0.68	19.109	1.266	-1.299	-38.9	15.09	-58010	-537.97
0.20	60	216	742	6.170	2.80	4.667	1.270	-0.247	-14.8	3.68	16467	76.35
0.30	06	323	1669	2.742	6.32	2.065	1.273	-0.058	-5.2	1.62	10375	32.07
0.40	120	431	2968	1.542	10.55	1.237	1.277	0.003	0.3	0.97	7098	16.46
0.50	150	539	4637	0.987	13.67	0.954	1.281	0.024	3.6	0.75	5930	11.00
09.0	180	647	8299	0.686	13.59	0.960	1.289	0.024	4.3	0.74	6266	9.68
0.70	210	755	6806	0.504	11.33	1.151	1.305	0.011	2.3	0.88	7739	10.25
0.80	240	863	11872	0.386	7.64	1.708	1.321	-0.028	-6.8	1.29	11489	13.32
0.90	270	970	15025	0.305	4.77	2.738	1.341	-0.102	-27.4	2.04	17564	18.10
0.95	285	1024	16741	0.273	3.89	3.357	1.350	-0.146	-41.6	2.49	20734	20.24

8500 8000 7500 0009 -6500220 4182.714 200 180 $-K(q_{\overline{q}_{min}}) = 155.756$ $V[{
m M/c}^2]$ 160 --- $q_{\text{KM}}(H = 10.000 [\text{KM}])$ 140 120 13 $d^{\mathrm{KW}}[\mathrm{KL}/\mathrm{KW}]$ × 12 Ξ

-0.739 0.8 $M(P_{\text{nmin}}) = 0.54$ 9.0 =0.392M0.4 $P_{p}(H = 10.000 [KM])$ $P_{n}(H = 10.000 [KM])$ 0.2 0.0 0.2 1.2 0.0 T 1.6 1.4 (H)d - 9.0 1.0 0.4

Рисунок 1.26 — График располагаемой и потребной тяги

Рисунок 1.28 — График $V_y^*(M,H)$

Рисунок 1.29 — График $q_{\mbox{\tiny KM}},\,q_{\mbox{\tiny T}}$

Таблица 1.8 — Результаты расчета для высоты $H=11.558~\mathrm{кm}$

M	Λ	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Delta ar{p}(n_x)$	V_y^*	$ar{R}_{ m KP}$	$q_{ m q}$	$q_{\scriptscriptstyle m KM}$
I	C	KM 4	$\frac{H}{^{\mathrm{M}^2}}$	I	I	Н	Н	I	C IM	I	Kr 4	KT KM
0.10	30	106	146	31.451	0.53	24.407	0.949	-1.708	-50.4	25.71	-224366	-2112.18
0.20	69	212	282	2.863	2.18	626.5	996.0	-0.365	-21.5	61.9	12418	58.45
0:30	68	319	1310	3.495	4.97	2.623	0.983	-0.119	-10.6	2.67	11545	36.23
0.40	118	425	2329	1.966	8.62	1.513	0.999	-0.037	-4.4	1.51	8265	19.45
0.50	148	531	3639	1.258	12.10	1.079	1.016	-0.005	-0.7	1.06	6595	12.42
09.0	177	637	5240	0.874	13.13	0.994	1.032	0.003	0.5	96.0	6402	10.04
0.70	207	744	7132	0.642	11.76	1.109	1.061	-0.004	-0.7	1.05	7445	10.01
0.80	236	850	9316	0.491	8.46	1.542	1.089	-0.033	-7.8	1.42	10273	12.09
0.90	266	956	11790	0.388	5.46	2.391	1.121	-0.092	-24.6	2.13	14816	15.50
0.95	280	1009	13137	0.348	4.46	2.923	1.137	-0.130	-36.5	2.57	17465	17.31

[P/TX]pp 0089 0029- 6400 6500195 190 185 $\frac{180}{V[\text{M/c}^2]}$ 175 $-q_{\text{\tiny KM}}(H=11.558[\text{KM}])$ --- $q_4(H = 11.558[\text{KM}])$ 170 165 11.5 11.0 7.5 10.5 рам [кт/км] 0 00 0 00 0 00 0 00 9.0 8.5 8.0

Рисунок 1.32 — График $V_y^*(M,H)$

Рисунок 1.33 — График $q_{\text{км}}, q_{\text{ч}}$

Для построение таблицы 1.9 для узловых высот:

$$H = 0, 2, 4, 6, 8, 10, 11.56 \,\mathrm{km}$$

где значение 11.56 км соответствует практическому потолку $H_{\rm np}$.

- 1. Определим M_{\min_P} и M_{\max_P} , как точка пересечения графиков $P_n(M, H_i)$ и $P_p(M, H_i)$ (рисунки 1.6, 1.10, 1.14,1.18,1.22,1.26,1.30).
- 2. Минимально допустимое число $M_{\min_{\text{доп}}}$, как точка пересечения графиков $C_{y_n}(M,H_i)$ и $C_{y_{\text{доп}}}(M)$ (рисунки ,1.7, 1.11, 1.15, 1.23, 1.27, 1.31).
- 3. Максимально допустимое число M полета по условиям безопасности определяется как:

$$M_{\max_{\text{доп}}} = \min \left\{ M_{\text{пред}}, M(V_{i_{\max}}) \right\},$$
 где $M(V_{i_{\max}}) = \frac{V_{i_{\max}}\sqrt{\Delta^{-1}}}{3.6a_H}, \, \sqrt{\Delta^{-1}} = \sqrt{\frac{\rho_0}{\rho_H}}, \, V_{i_{\max}} = 650\,\frac{\text{км}}{\text{ч}} - \text{максимальная допустимая}$ индикаторная скорость.

4. Располагаемые значение минимального и максимального числа M определяются как:

$$M_{\min} = \max \left\{ M_{\min_{\mathcal{A}^{\text{on}}}}, M_{\min_{P}} \right\},\,$$

$$M_{\max} = \min \left\{ M_{\max_{\mathcal{I} \text{orf}}}, M_{\max_{P}}, M_{\text{пред}} \right\}.$$

5. Число M_1 полета, соответствующее минимальной потребной тяге определяется как:

$$M_1 = M(P_{n_{\min}}) = \arg\min_{M} \Delta P_n(M).$$

6. Число M_2 полета, соответствующее максимальной энергетической скороподъёмности определяется как:

$$M_2 = M(V_{y_{max}}^*) = \arg\max_{M} V_y^*(M, H_i).$$

7. Минимальные значения часового $q_{\mathbf{u}_{min}}$ и километрового $q_{\mathbf{k}\mathbf{m}_{min}}$ расхода топлива, и соответствующие им скорости полета определены на рисунка 1.9, 1.9, 1.9, 1.9, 1.9, 1.9 или как:

$$q_{\mathbf{q}_{min}} = \min_{V} q_{\mathbf{q}}(V, H_i), \ V_3 = V(q_{\mathbf{q}_{min}}) = \arg\min_{V} q_{\mathbf{q}}(V, H_i);$$

$$q_{\text{km}_{min}} = \min_{V} q_{\text{km}}(V, H_i), \ V_4 = V(q_{\text{km}_{min}}) = \arg\min_{V} q_{\text{km}}(V, H_i).$$

Результаты расчетов приведены в таблице 1.9, также графически представлены на рисунках 1.34, 1.36.

Статические и практический потолок определен на рисунке 1.35, как:

$$H_{\rm ct} = H_i(V_{y_{max}}^* = 0),$$

$$H_{\text{np}} = H_i(V_{y_{max}}^* = V_{y_{\text{gon}}}^*).$$

где значение $V_{y_{\rm доп}}^*=0.5\,{\rm \frac{M}{c}}$ — минимально-допустимая энергетическая скороподъемность для неменевренного самолета.

Таблица 1.9 — Результаты для построение графика высот и скоростей

in		~	4	6	∞	6	_	
$q_{ m KM_{min}}$	KM	16.3	14.4	12.9	11.5	10.4	9.67	9.76
$q_{ m qmin}$	Kr 4	6536.16 16.3	0.400 6286.48 14.44	0.460 6193.81 12.99	0.510 6076.86 11.58	0.570 5951.95 10.49	0.610 5902.71	0.650 6374.66 9.76
M_4	I	0.370	0.400	0.460	0.510	0.570	0.610	
V_4 $(q_{ m \kappaM_{min}})$	$\frac{\mathrm{KM}}{\mathrm{q}}$	126	133	149	191	176	183	192
V_3 V_4 $V_{4\min}$	$\frac{KM}{4}$	66	110	120	130	145	156	171
$M_2[V_2] \\ (V_{ymax}^*)$	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.380 [466]	0.420 [503]	0.460[538]	0.500[570]	0.540[599]	0.590 [636]	0.600 [637]
$M_1[V_1] \\ (P_{\rm n} min)$	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.300[368]	0.340[407]	0.380 [444]	0.440 [501]	0.500[555]	0.540 [582]	0.590[627]
M[V] max	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.612[750]	0.671 [803]	0.699 [817]	0.726 [827]	0.744 [825]	0.739 [796]	0.664 [705]
M[V]	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.240[293]	0.270[324]	0.307 [359]	0.352[401] $0.726[827]$ $0.440[501]$ $0.500[570]$	0.406[451]	0.475[513]	0.544 [578]
M[V] max доп	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.612[750]	0.675 [808]	0.748 [874]	0.800 [911]	0.800 [887]	0.800 [863]	0.800 [850]
M[V] min доп	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	17.79 0.240 [293] 0.612 [750] 0.240 [293] 0.612 [750] 0.300 [368] 0.380 [466]	16.56 0.270 [324] 0.675 [808] 0.270 [324] 0.671 [803] 0.340 [407] 0.420 [503]	13.58 0.307 [359] 0.748 [874] 0.307 [359] 0.699 [817] 0.380 [444] 0.460 [538]	11.23 0.352 [401] 0.800 [911]	$8.1 \left \begin{array}{c c} 0.406 [451] \end{array} \right \left \begin{array}{c c} 0.800 [887] \end{array} \right \left \begin{array}{c c} 0.406 [451] \end{array} \right \left \begin{array}{c c} 0.744 [825] \end{array} \right \left \begin{array}{c c} 0.500 [555] \end{array} \right \left \begin{array}{c c} 0.540 [599] \end{array} \right $	4.33 0.475 [513] 0.800 [863] 0.475 [513] 0.739 [796] 0.540 [582] 0.590 [636]	11.56 0.5 0.544 [578] 0.800 [850] 0.544 [578] 0.664 [705] 0.590 [627] 0.600 [637] 171
H $V^*_{y_{max}}$	C K	17.79	16.56	13.58	11.23	8.1	4.33	0.5
Н	KM	0.0	2.0	4.0	0.9	8.0	10.0	11.56

Рисунок $1.34 - \Gamma$ рафик области высот и скоростей установившегося горизонтального полета

Рисунок 1.35 — График $V^*_{y_{max}}(H)$

Рисунок 1.36 — График $q_{\mathbf{q}_{min}}(H), q_{\mathbf{k}\mathbf{m}_{min}}(H)$

1.3. Расчет траектории полета

1.3.1. Расчет характеристик набора высоты

Начальные условия:

$$H_0 = 0; M_0 = 1.2 M_{min_{\text{gon}}}, V_0 = 1.2 V_{min_{\text{gon}}}.$$

Конечные условия:

$$(H_{\mathsf{k}}, M_{\mathsf{k}}) = \arg\min_{H, M} q_{\mathsf{k}\mathsf{m}}(M, H)$$

Конечная высота принимается равная $H_{\mbox{\tiny K}}=10\,\mbox{км}$ из условия минимума $q_{\mbox{\tiny KM}}.$

При расчете угла наклона траектории $\theta_{\text{наб}}$ и вертикальной скорости $V_{y_{\text{наб}}}$ производная вычисляется по приближенной формуле:

$$\frac{dV}{dH} = \frac{V^{i+1} - V^i}{H^{i+1} - H^i} \tag{1.13}$$

где i — индекс узловой точки.

Основные характеристики в наборе определяются по формулам:

$$\theta_{\text{наб}} = 57.3 n_x \kappa, \qquad [\text{град}] \quad (1.14)$$

$$V_{y_{\mathrm{Haf}}} = V_{y_{max}}^* \kappa,$$
 $\left[\frac{\mathrm{M}}{\mathrm{c}}\right]$ (1.15)

$$L_{\text{Ha6}} = \int_0^{H_{\text{K}}} \frac{1}{1000n_x(M, H)} dH_{\text{9}}$$
 [KM] (1.16)

$$t_{\text{на6}} = \int_0^{H_{\text{K}}} \frac{1}{60V_y^*(M, H)} dH_{\text{9}}$$
 [мин] (1.17)

$$m_{T_{\text{Ha6}}} = \int_0^{H_{\kappa}} \frac{Ce(M, H)P_{\text{p}}(M, H)}{3600n_x(M, H)} dH_{\text{9}}$$
 [KI] (1.18)

где $\kappa = \frac{1}{1 + \frac{V}{q} \frac{dV}{dH}}$

Вычисление интегралов 1.16 - 1.18 производится методом трапеций, тогда уравнения 1.16 - 1.18 будут иметь вид:

$$L_{\text{\tiny Ha6}} = \sum \left(\frac{1}{n_x}\right)_{\text{\tiny CD}} \frac{\Delta H_{\text{\tiny 9}}}{1000}, \tag{KM}$$

$$t_{\text{наб}} = \sum \left(\frac{1}{V_y^*}\right)_{\text{ср}} \frac{\Delta H_9}{60},$$
 [мин] (1.20)

$$m_{T_{\text{Ha6}}} = \sum \left(\frac{CeP}{V_y^*}\right)_{\text{cp}} \frac{\Delta H_{\text{9}}}{3600}, \qquad [\text{kg}] \quad (1.21)$$

где $\Delta H_{\mathfrak{I}} = H_{\mathfrak{I}}^{i+1}(V_{\text{наб}}^{i+1}, H^{i+1}) - H_{\mathfrak{I}}^{i}(V_{\text{наб}}^{i}, H^{i}), \ H_{\mathfrak{I}}^{i} = H^{i} + \frac{(V^{i})^{2}}{2g}$ — энергетическая высота в узловой точке, V^{i} — скорость соответствующая $V_{y_{max}}^{*}(H^{i})$ при наборе высоты.

$$\left(\frac{1}{n_x}\right)_{\rm cp} = 0.5 \left[\frac{1}{n_x(H_2^i)} + \frac{1}{n_x(H_2^{i+1})} \right]$$
 (1.22)

$$\left(\frac{1}{V_y^*}\right)_{\text{CD}} = 0.5 \left[\frac{1}{V_y^*(H_{\mathfrak{g}}^i)} + \frac{1}{V_y^*(H_{\mathfrak{g}}^{i+1})} \right]$$
(1.23)

$$\left(\frac{CeP}{V_y^*}\right)_{cp} = 0.5 \left[\frac{CeP}{V_y^*(H_s^i)} + \frac{CeP}{V_y^*(H_s^{i+1})}\right]$$
(1.24)

Таблица 1.10 — Результаты расчета набора высоты

$\frac{\Delta H_{9}}{1000n_{x}}$	KM	$3 \mid 15.69$	3 18.07	23.53	30.07	2 47.06	ı
$\begin{vmatrix} n_{x_{\mathrm{cp}}} \end{vmatrix}$	I	0.136	0.103	0.08	0.058	0.032	ı
$\Delta H_{ m e}$	M	2507.0	2142.0	2140.0	2135.0	2291.0	İ
H_9	M	488.0	2994.0	5136.0	7276.0	9411.0	11702.0
$V_{y_{ m H}a6}$	C	14.7	15.5	12.7	10.5	7.1	4.3
θ	град.	9.7	6.4	4.9	3.8	2.4	1.3
V_y^*	C M	17.8	16.6	13.6	11.2	8.1	4.3
n_x	I	0.16	0.119	0.091	0.071	0.049	0.023
$\frac{A\Delta}{\Delta L}$	$\frac{1}{c}$	0.021	$502.8 \mid 0.005$	0.004	0.004	0.008	0.0
$V_{\scriptscriptstyle m KM}$	$\frac{\mathrm{KM}}{\mathrm{q}}$	352.1	502.8	537.5 0.004	569.6	599.0	8229
Λ	C	8.76	139.7	149.3	158.2	166.4	182.7
М наб	I	0.29	0.42	0.46	0.5	0.54	0.61
$H_{ m y3en}$	M	0.0	2.0	4.0	0.9	8.0	10.0

Таблица 1.10 — (Продолжение) Результаты расчета набора высоты

$\frac{CeP}{V_y^*}$
1
$308927.0 \mid 1283.7 \mid 1042.1$
$1092.4 \mid 1036.9$
1123.0 1069.3
190906.0 1158.4 1167.8
$1421.7 \mid 1570.4$
$129122.0 \mid 1892.1 \mid$ -

Таблица 1.11 — Основные параметры в наборе высоты

$t_{ m Ha6}$	Мин	18.3
$L_{ m {\scriptscriptstyle Ha}6}$	$ m K_{M}$	175.7
$m_{T_{ m Ha6}}$	Kr	3669.9

Рисунок 1.37 — График зависимости $H(t),\, \theta(t),\, V_y^*(t),\, V(t)$ в наборе высоты

Рисунок 1.38 — График зависимости L(t), $m_T(t)$ в наборе высоты

Рисунок 1.39 — Программа набора высоты

1.3.2. Расчет характеристик крейсерского полета

Для расчета времени $T_{\rm kp}$ и дальности $L_{\rm kp}$ крейсерского полета:

$$T_{\text{\tiny KP}} = \frac{60K_{\Gamma\Pi}}{gCe} \ln \frac{1 - \bar{m}_{T_{\text{\tiny Ha6}}} - \bar{m}_{T_{\text{\tiny Hp}}}}{1 - \bar{m}_{T_{\text{\tiny KP}}} - \bar{m}_{T_{\text{\tiny Ha6}}} - \bar{m}_{T_{\text{\tiny Hp}}}}, \qquad [\text{Mин}] \quad (1.25)$$

$$L_{\text{kp}} = \frac{36V K_{\Gamma\Pi}}{gCe} \ln \frac{1 - \bar{m}_{T_{\text{Ha6}}} - \bar{m}_{T_{\text{\pip}}}}{1 - \bar{m}_{T_{\text{Kp}}} - \bar{m}_{T_{\text{Ha6}}} - \bar{m}_{T_{\text{\pip}}}}, \quad [\text{KM}] \quad (1.26)$$

где $\bar{m}_{\text{Ткр}} = 1 - \bar{m}_{\text{сн}} - \bar{m}_{\text{цн}} - \bar{m}_{\text{Тнаб}} - \bar{m}_{\text{Тснп}} - \bar{m}_{\text{Танз}} - \bar{m}_{\text{Тпр}} = 0.1788$ — целевая нагрузка, $K_{\Gamma\Pi} = 13.51, \ V = 183 \, \frac{\text{м}}{\text{c}^2}, \ Ce = 0.063 \, \frac{\text{Kr}}{\text{H*q}}$ — удельный расход топлива на высоте крейсерского полета. Параметры $K_{\Gamma\Pi}, \ V, \ Ce$ определены для режима полета соответствующего минимуму километрового расхода в начале крейсерского полета.

Принимаем:

- $\bar{m}_{\text{ch}} = 0.46$ относительная масса целевой нагрузки;
- $\bar{m}_{\text{цн}} = 0.26$ относительная масса пустого снаряженного самолета;
- $\bar{m}_{T_{\text{наб}}} = \frac{\bar{m}_{T_{\text{наб}}}}{m_0} = \frac{3670\,\text{кг}}{140000\,\text{кг}} = 0.0262$ относительная масса топлива, расходуемая при наборе высоты;

- $\bar{m}_{T_{\text{chn}}} = 0.015$ относительная масса топлива, расходуемая при снижении и посадке;
- $\bar{m}_{\mathrm{T}_{\mathtt{ah}\mathtt{3}}} = 0.05$ аэронавигационный запас топлива;
- $\bar{m}_{\rm T_{np}} = 0.01$ запас топлива для маневрирования по аэродрому, опробования двигателей, взлета;

Высоту $H_{\text{кр}}$ в конце крейсерского полета можно определить по величине $\rho_{H_{\text{кр}}}$, которая определяется по формуле (1.27) сопоставив со значением стандартной атмосферы.

$$\rho_{H \text{ Kp}} = \frac{2\bar{m}_{\text{K Kp}} P s 10}{C_{y_{\text{TI}}} V_{\text{K}}^2}, \tag{1.27}$$

где $\bar{m}_{\text{к кр}} = 1 - \bar{m}_{T_{\text{наб}}} - \bar{m}_{T_{\text{пр}}} - \bar{m}_{T_{\text{кр}}}.$

Результаты расчетов приведены в таблице 1.12:

Таблица 1.12 — Результаты расчета участка крейсерского полета

$T_{ m \kappa p}$	$L_{ m kp}$	$\rho_{H\mathrm{kp}}$	$H_{0 \mathrm{Kp}}$	$H_{\kappa \kappa \mathrm{p}}$
МИН	KM	$\frac{\text{K}\Gamma}{\text{M}^3}$	KM	KM
285.43	2770.0	0.324	11	11.8

1.3.3. Расчет характеристик участка снижения

Расчет аналогичен расчету участка набора высоты (раздел 1.3.1), только в качестве программы снижения принимается зависимость $M_{\rm ch}(H)$, соответствующая минимуму потребной тяги.

Начальные условия:

Скорость соответствует минимуму потребной тяги $M_1(P_{n \text{ min}})$, высота соответствует $H_{\text{кр}}$

$$M_0 = 0.540; H_0 = 10 \text{ km}$$

Конечные условия:

Скорость в конце снижения соответствует наивыгоднейшей скорости при H=0.

$$M_{\kappa} = 0.370; H_{\kappa} = 0$$

Результаты расчетов приведены в таблице 1.13, по этим данным построили зависимости H(t), $\theta(t)$, $V_y^*(t)$, V(t), L(t), $m_T(t)$ на рисунках 1.40, 1.41, 1.42. Программа снижения представлена на рисунке 1.43.

По результатам программ набора, крейсерского полета и снижения был получен график H(L) на рисунке 1.43 для всего полета.

Таблица 1.13 — Результаты расчета снижения высоты

$\frac{\Delta H_9}{1000n_x}$	$_{ m KM}$	37.91	38.09	39.2	38.92	40.41	I
$n_{x_{ m cp}}$	I	-0.063	-0.058	-0.055	-0.054	-0.052	I
$\Delta H_{ m e}$	M	-2437.0	-2221.0	-2213.0 -0.055	-2124.0	-2120.0	ı
H_9	M	11646.0	9210.0	0.8869	4775.0	2652.0	531.0
$V_{y_{ m cH}}$	C K	-3.5	6.9-	-9.3	-11.5	-14.1	-15.7
θ	град.	-3.0	-3.0		-2.9	-0.052 16.6 -2.8 -14.1	-0.051 17.8 -2.9 -15.7
V_y^*	M C	2.0	6.3	11.2	13.6	16.6	17.8
n_x	I	-0.064	-0.058 6.3	139.2 501.3 0.008 -0.056 11.2 -2.9	-0.055 13.6	-0.052	-0.051
$\frac{\Delta V}{\Delta H}$	$\frac{1}{c}$	0.013	554.6 0.007	0.008	0.005	0.005	0.0
$V_{\scriptscriptstyle m KM}$	$\frac{\mathrm{KM}}{\mathrm{T}}$	647.0 0.013		501.3	444.0 0.005	13.1 407.0 0.005	367.5
Λ	C	179.7	154.1		123.3	113.1	102.1
$M_{ m ch}$	ı	9.0	0.5	6.0 0.44	4.0 0.38	2.0 0.34	0.3
$H_{ m y3en}$	M	10.0	8.0	0.9	4.0	2.0	0.0

Таблица 1.13 — (Продолжение) Результаты расчета снижения высоты

P	$\frac{CeP}{V_y^*}$	$\left(\frac{CeP}{V_y^*}\right)_{\mathrm{CP}}$	$\frac{\Delta H_3}{3600} \left(\frac{CeP}{V_y^*}\right)_{\rm Cp}$	$L_{ m cH}$	$V^*_{y_{ m cp}}$	$t_{ m cH}$	Ce
H	I	ı	KΓ	$_{ m KM}$	\overline{C}	МИН	$\frac{\mathrm{K}\Gamma}{H^{\mathrm{H}}}$
6779.0	-237.2	-161.8	109.5	38.7	-0.2	7.33	0.123
8629.0	-146.7	-131.7	81.3	38.2	38.2 -0.1	4.19	4.19 0.117
11614.0 -146.9	-146.9	-131.8	81.0	39.9	-0.1	3.28	-0.1 3.28 0.118
13687.0 -140.2	-140.2	-129.9	9:92	39.7	-0.1	2.63	-0.1 2.63 0.118
16476.0 -136.2	-136.2	-132.9	78.3	40.8	40.8 -0.1	2.3	0.116
18370.0 -137.7	-137.7	ı	ı	I	I	I	0.118

Таблица 1.14 — Основные параметры снижения высоты

$t_{ m _{CH}}$	Мин	2.61
$L_{\scriptscriptstyle m CH}$	$ m K_{M}$	197.3
$m_{T_{ m cH}}$	m Kr	426.7

Рисунок 1.40 — График зависимости $L(t), m_T(t)$

Рисунок 1.41 — График зависимости $L(t),\,m_T(t)$

Рисунок 1.42 — Программа снижения

Рисунок 1.43 — Совмещенный график H(L) для участков набора высоты, крейсерского полета и снижения

1.4. Расчет диаграммы транспортных возможностей

Определим зависимость целевой нагрузки от дальности полета самолета $m_{\text{цн}}(L)$ (Рисунок 1.44). Расчет ведется для трех режимов:

- 1. Полет с максимальной коммерческой нагрузкой,
- 2. Полет с максимальным запасом топлива,
- 3. Полет без коммерческой нагрузки ($m_{\text{пн}}=0$) с максимальным запасом топлива.

Режим 1.

Для данного режима определили в разделах 1.3.1, 1.3.2, 1.3.3.

$$m_{\mathrm{IJH}} = \frac{m_{\mathrm{IJH}}}{m_0}$$

Режим 2.

$$L = L_{\text{\tiny Ha6}} + L_{\text{\tiny Kp}} + L_{\text{\tiny CH}}$$

Для упрощения дальность полета, расход топлива при наборе и снижении, для всех режимов соответствует первому режиму.

Тогда дальность полета вычисляется как:

$$L_{\rm Kp} = \frac{36VK}{gCe} \ln \frac{\bar{m}_{\rm \scriptscriptstyle B3\Pi} - \bar{m}_{T_{\rm \scriptscriptstyle Ha6}} - \bar{m}_{T_{\rm \scriptscriptstyle Hp}}}{\bar{m}_{\rm \scriptscriptstyle B3\Pi} - \bar{m}_{T_{\rm \scriptscriptstyle Kp}} - \bar{m}_{T_{\rm \scriptscriptstyle Ha6}} - \bar{m}_{T_{\rm \scriptscriptstyle Hp}}}, \tag{1.28}$$

где $\bar{m}_{\text{взл}} = 1$, $\bar{m}_{T_{\text{кр}}} = \bar{m}_{T_{max}} - \bar{m}_{T_{\text{на6}}} - \bar{m}_{T_{\text{сн}}} - \bar{m}_{T_{\text{пр}}}$, $\bar{m}_{T_{max}} = 0.5258$, $\bar{m}_{\text{цн}} = 1 - \bar{m}_{\text{пуст}} - \bar{m}_{T_{max}}$, $\bar{m}_{T_{max}} = \frac{88500}{m_0}$.

Режим 3.

$$\bar{m}_{\text{взл}} = \bar{m}_{\text{пуст}} + \bar{m}_{T_{max}}$$

Результаты расчетов сведены в таблицу 1.15.

Таблица 1.15 — Результаты расчета

Режим	L	$m_{\scriptscriptstyle m ЦH}$
$\mathcal{N}^{\underline{o}}$	KM	ΚΓ
1	3143.0	64400.0
2	5422.0	36400.0
3	7898.0	0.0

Рисунок 1.44 — График зависимости $m_{\text{цн}}(L)$

1.5. Расчет взлетно-посадочных характеристик самолета

Для расчета: скорости отрыва при взлете $V_{\text{отр}}$, длины разбега $L_{\text{р}}$, взлетной дистанции $L_{\text{вд}}$, скорости касания ВПП при посадке $V_{\text{кас}}$, длины пробега $L_{\text{пр}}$, посадочной дистанции $L_{\text{пд}}$, предполагается что:

- 1. Угол атаки при разбеге и пробеге $\alpha_{\rm p}=\alpha_{\rm n}=2^{\circ}$
- 2. Угол атаки при отрыве и касании ВПП $lpha_{
 m orp}=lpha_{
 m kac}=6^\circ$
- 3. Безопасная высота пролета препятствий $H_{\mbox{\tiny B3Л}} = 10.7\,\mbox{м}$ и $H_{\mbox{\tiny пос}} = 15\,\mbox{м}$
- 4. Тяга двигателей $P_{\mbox{\tiny BЗЛ}}=(1.2...1.3)P,\,Ce_{\mbox{\tiny BЗЛ}}=(1.03...1.05)Ce_0$
- 5. При пробеге по ВПП используется реверс тяги.

Соотношения для расчета:

Скорость отрыва при взлете:

$$V_{\text{otp}} = \sqrt{\frac{20P_s(1 - 0.9\bar{P}_{\text{взл}}\sin\alpha_{\text{otp}})}{\rho_0 C_{y_{\text{otp}}}}}$$
(1.29)

Длина разбега:

$$L_{\rm p} = \frac{1}{2gb_p} \ln \frac{C_p}{C_p - b_p V_{\rm orp}^2}$$
 (1.30)

где $b_p=(C_{x_p}-f_pC_{y_p})\frac{\rho_0}{2P_s10},\,C_p=0.9\bar{P}_{\scriptscriptstyle \rm B3Л}-f_p,\,f_p=0.02.$

Воздушный участок взлета:

$$L_{\text{ByB}} = \frac{1}{\hat{n}_{x_{\text{cp}}}} \left(\frac{V_2^2 - V_{\text{opp}}^2}{2g} + H_{\text{взл}} \right)$$
 (1.31)

где $\hat{n}_{x_{\rm cp}} = \bar{P}_{\rm взл} - \frac{C_{x_{\rm orp}} \rho_0 \hat{V}_{\rm cp}^2}{P_s 20}$ — тангенциальная перегрузка для среднеквадратического значения скорости $\hat{V}_{\rm cp} = \sqrt{\frac{V_2^2 + V_{\rm orp}^2}{2}},\, V_2 = 1.1 V_{\rm orp}$ — безопасная скорость взлета.

Взлетная дистанция:

$$L_{\text{вд}} = L_{\text{p}} + L_{\text{вув}} \tag{1.32}$$

Скорость касания ВПП на посадке:

$$V_{\text{\tiny Kac}} = \sqrt{\frac{2\bar{m}_{\text{\tiny Hoc}}P_s10}{C_{y_{\text{\tiny Kac}}}\rho_0}} \tag{1.33}$$

где $\bar{m}_{\text{пос}} = \bar{m}_{\text{к кр}} - \bar{m}_{T_{\text{снп}}}$ — относительная масса самолета при посадке.

Длина пробега:

$$L_{\text{проб}} = \frac{1}{2qb_n} \ln \frac{a_n - b_n V_{\text{kac}}^2}{a_n} \tag{1.34}$$

где
$$a_n=-ar{P}_{
m peb}-f_n,\, b_n=rac{
ho_0}{ar{m}_{
m moc}P_{
m s}20}(C_{x_{
m mpo6}}-f_nC_{y_{
m mpo6}}),\, ar{P}_{
m peb}=rac{P_{
m peb}}{m_{
m moc}g}$$

Длина воздушного участка:

$$L_{\text{вуп}} = K_{\text{пос}} \left(H_{\text{пос}} + \frac{V_{\text{пл}}^2 - V_{\text{кас}}^2}{2g} \right)$$
 (1.35)

где
$$K_{\text{пос}} = \frac{C_{y_{\text{пос}}}}{C_{x_{\text{пос}}}}, \ C_{y_{\text{пос}}} = 0.7 C_{y_{\text{кас}}}(\alpha_{\text{кас}}), \ V_{\text{пл}} = \sqrt{\frac{2\bar{m}_{\text{пос}}P_{s}10}{C_{y_{\text{пос}}}\rho_{0}}}.$$

Посадочная дистанция:

$$L_{\rm ng} = L_{\rm npo6} + L_{\rm Byn} \tag{1.36}$$

Результаты расчетов приведены в таблице 1.16.

Таблица 1.16 — Результаты расчета

$V_{ m orp}$	$L_{ m p}$	$L_{\scriptscriptstyle m BД}$	$V_{ m kac}$	$L_{ m npo6}$	$L_{\scriptscriptstyle \Pi,\!\Pi}$
$\frac{M}{C}$	M	M	<u>м</u> с	М	М
90.0	1830.0	2289.0	65.0	811.0	1418.0

1.6. Расчет характеристик маневренности самолета

В данном разделе определим характеристики правильного виража.

Расчеты ведутся для высоты $H = 6 \, \text{км}$.

Характеристики маневренности рассчитываются при 50%-ом выгорании топлива для массы самолета: $\bar{m}_{\rm c}=1-0.5\bar{m}_T$

Для расчета таблицы 1.17:

1. Максимальная допустимая нормальная перегрузка:

$$n_{y_{\rm доп}} = \min \left\{ n_{y_{\rm s}}, \, n_y(C_{y_{\rm доп}}) \right\}$$

$$n_{y_{\rm s}} = 3 - \text{эксплуатационная перегрузка}, \, n_y(C_{y_{\rm доп}}) = \frac{C_{y_{\rm доп}}}{C_{y_{\rm ГП}}}, \, C_{y_{\rm ГП}} = \frac{\bar{m}_{\rm c} P_{\rm s} 10}{q}$$

2. Нормальная перегрузка предельного правильного виража

$$n_{y_{ exttt{BMP}}} = \min\left\{n_{y_{ exttt{доп}}},\,n_{y_P}
ight\}$$
 $n_{y_P} = rac{1}{C_{y_a}\Gamma\Pi}\left(C_{y_m} + \sqrt{rac{ar{P}C_{y_a}\Gamma\Pi - C_{x_{ exttt{M}}}}{A}}
ight)$, где $ar{P} = rac{P_p}{mg}$

3. Кинематические параметры виража:

$$\omega_{ ext{вир}} = rac{g}{V} \sqrt{n_{y\, ext{вир}}^2 - 1}$$
 $r_{ ext{вир}} = rac{V}{\omega_{ ext{вир}}}$ $t_{ ext{вир}} = rac{2\pi r_{ ext{вир}}}{V}$

4. Узловые точки для расчета:

$$M = [0.4, 0.5, 0.6, 0.7]$$

Таблица 1.17 — Расчет виража

M	V	V	q	$C_{y_{\Gamma\Pi}}$	$C_{y_{ m Доп}}$	$n_{y_{ m доп}}$	$K_{\Gamma\Pi}$	$P_n * 10^{-5}$	$P_p * 10^{-5}$
-	<u>м</u> с	<u>КМ</u> Ч	$\frac{H}{{}_{ m M}^2}$	-	-	-	-	Н	Н
0.4	127.0	456.	5287.0	0.866	1.112	1.284	14.36	6.196	15.694
0.5	158.0	570.	8262.0	0.554	1.083	1.954	13.97	6.371	15.368
0.6	190.0	684.	11897.0	0.385	1.033	2.684	11.13	7.996	14.955
0.7	222.0	797.	16193.0	0.283	0.977	3.0	8.12	10.96	14.555

Таблица 1.17 — (Продолжение) Расчет виража

\bar{P}	n_{y_p}	$n_{y_{\mathtt{Bup}}}$	$\omega_{ ext{вир}}$	$r_{\scriptscriptstyle \mathrm{Bup}}$	$t_{ ext{вир}}$
_	_	_	$\frac{1}{c}$	M	c
0.142	1.612	1.284	0.062	2026.7	100.6
0.139	1.865	1.865	0.098	1620.9	64.4
0.135	1.838	1.838	0.08	2383.8	78.9
0.132	1.27	1.27	0.035	6393.1	181.3

Рисунок 1.45 — График зависимости $n_{y_{\text{вир}}}(M),\,\omega_{\text{вир}}(M),\,r_{\text{вир}}(M),\,t_{\text{вир}}(M)$

1.7. Расчет характеристик продольной статической устойчивости и управляемости

Для расчета продольной статической устойчивости и управляемости необходимо определить безразмерную площадь горизонтального оперения $\bar{S}_{\Gamma {
m O}}$ из условия устойчивости и балансировки.

Для определения $\bar{S}_{\Gamma {
m O}}$ рассчитываются предельно передняя $\bar{x}_{{
m T}\Pi\Pi}$ для режима посадки

 $(H=0,\,M=0.2)$ и предельно задняя $\bar{x}_{\rm T\Pi 3}$ центровки:

$$\bar{x}_{\text{THH}} = \frac{-m_{Z_0 \text{ BFO}} + \bar{x}_{F \text{ BFO}} C_{y \text{ BFO}} + C_{y \text{ FO}} \bar{S}_{\text{FO}} K_{\text{FO}} \bar{L}_{\text{FO}}}{C_{y \text{ BFO}}}, \tag{1.37}$$

где $C_{y\,\text{БГО}} = C_{y_0\,\text{БГО}} + C_{y\,\text{БГО}}^{\alpha}\alpha$, $C_{y\,\text{ГО}} = C_{y\,\text{ГО}}^{\alpha_{\text{ГО}}} \left[\alpha(1-\epsilon^{\alpha})+\varphi_{\text{эф}}\right] < 0$, $\varphi_{\text{эф}} = \varphi_{\text{уст}} + n_{\text{в}}\delta_{max}$, $\delta_{\text{max}} = -25^{\circ}$, $\varphi_{\text{уст}} = -4^{\circ}$.

$$\bar{x}_{\text{TII}3} = \bar{x}_H + \sigma_{n \text{ min}} \tag{1.38}$$

$$\bar{x}_H = \bar{x}_F - \frac{m_z^{\bar{\omega}_z}}{\mu}, \ \mu = \frac{2P_s 10}{\rho g b_a}, \ m_z^{\bar{\omega}_z} = m_{z \, \mathrm{BTO}}^{\bar{\omega}_z} + m_{z \, \mathrm{TO}}^{\bar{\omega}_z}, \ m_{z \, \mathrm{TO}}^{\bar{\omega}_z} = -C_{y \, \mathrm{TO}}^{\alpha_{\mathrm{TO}}} \bar{S}_{\mathrm{TO}} \bar{L}_{\mathrm{TO}} \sqrt{K_{\mathrm{TO}}}$$

$$\bar{x}_F = \bar{x}_{FB\Gamma O} + \Delta \bar{x}_{F_{\Gamma O}} \tag{1.39}$$

$$\Delta \bar{x}_{F_{\Gamma O}} \approx \frac{C_{y \Gamma O}^{\alpha_{\Gamma O}}}{C_{y}^{\alpha}} (1 - \varepsilon^{\alpha}) \bar{S}_{\Gamma O} \bar{L}_{\Gamma O} K_{\Gamma O}, \ \sigma_{n \min} = -0.1$$

По приведенным формулам для ряда значений $\bar{S}_{\Gamma O}=(0.01,\,0.2)$ рассчитываются значения $\bar{x}_{\Pi\Pi\Pi},\,\bar{x}_{\Pi\Pi 3},$ результаты представлены в таблице 1.18.

Затем графически определяется потребная площадь ГО (рисунок 1.46) из условия:

$$\bar{x}_{\mathrm{T\Pi 3}}(\bar{S}_{\Gamma\mathrm{O}}) - \bar{x}_{\mathrm{T\Pi\Pi}}(\bar{S}_{\Gamma\mathrm{O}}) = \Delta \bar{x}_{\mathrm{s}} 1.2$$

 $\Delta \bar{x}_{\rm s} \approx 0.15$

Далее расчеты характеристик устойчивости и управляемости производятся для средней центровки:

$$\bar{x}_T = 0.5 \left[\bar{x}_{\text{TII3}} (\bar{S}_{\Gamma \text{O}}^*) + \bar{x}_{\text{TIII}} (\bar{S}_{\Gamma \text{O}}^*) \right]$$

Значения величин \bar{x}_F , \bar{x}_H , $\bar{x}_{T\Pi 3}$, σ_n определяются в узловых точках по M на высоте H=0 результаты которого сведены в таблицу 1.19.

$$\sigma_n = \bar{x}_T - \bar{x}_F + \frac{m_z^{\bar{\omega}_z}}{\mu}$$

По результатам получены графики зависимости $\bar{x}_F, \bar{x}_H, \bar{x}_{\text{ТПЗ}}$ от числа M на рисунке 1.47.

Зависимости $\varphi_{\text{бал}}(M)$, $\varphi^n(M)$, $n_{y_p}(M)$ для трех значений высот: $H=(0\,\text{км},\,6\,\text{км},\,H_{\text{кр}})$ рассчитываются по формулам:

$$m_z^{C_y} = \bar{x}_T - \bar{x}_F$$

 $\bar{x}_F = \bar{x}_{F\,\rm B\Gamma\rm O} + \Delta \bar{x}_{F\,\rm \Gamma\rm O}, \ m_z^{\delta_{\rm B}} = -C_{y\,\Gamma\rm O}^{\alpha_{\rm \Gamma\rm O}} \bar{S}_{\rm \Gamma\rm O} \bar{L}_{\rm \Gamma\rm O} K_{\rm \Gamma\rm O} n_{\rm B}, \ C_{y\,\Gamma\rm O} = \frac{10 P_s \bar{m}}{q}, \ \bar{m} = 1 - 0.5 \bar{m}_T,$

$$m_{Z_0} = m_{Z_0 \, \text{B}\Gamma\text{O}} - (1 - \varepsilon^{\alpha}) \bar{S}_{\Gamma\text{O}} \bar{L}_{\Gamma\text{O}} K_{\Gamma\text{O}} C_{y \, \Gamma\text{O}}^{\alpha_{\Gamma\text{O}}} \alpha_0$$

$$\delta_{\text{бал}} = -\frac{m_{z_0} m_z^{C_y} C_y \Gamma \Pi}{m_z^{\delta_B} \left(1 + \frac{m_z^{C_y}}{L_{\text{ro}}}\right)} + \frac{\varphi_{\text{уст}}}{n_{\text{B}}}$$

$$\delta^n = -57.3 \frac{C_{y \Gamma\Pi} \sigma_n}{m_z^{\delta_{\rm B}}}$$

$$n_{y_{\rm p}} = 1 + \frac{\delta_{\rm max} + \varphi_{\rm yct} - \delta_{\rm 6a\pi}}{\delta^n}$$

Результаты расчетов сведены в таблицы 1.20 - 1.22. Графические зависимости $\varphi_{\text{бал}}(M)$, $\varphi^n(M)$, $n_{y_p}(M)$ представлены на рисунках 1.48, 1.49, 1.50 соответственно.

Таблица 1.18 — Значения для построения графика на рисунке 1.46

$\bar{S}_{ m ro}$	$\bar{x}_{\mathrm{T}\Pi\Pi}$	$\bar{x}_{\mathrm{T\Pi3}}$
0.01	0.2629	0.198
0.2	0.0543	0.4849

Рисунок 1.46 — График зависимости $\bar{x}_{\mathrm{ТПП}}(\bar{S}_{\mathrm{ro}})$

Таблица 1.19 — Результаты расчетов

M	\bar{x}_F	\bar{x}_H	$\bar{x}_{ ext{T}\Pi ext{3}}$	σ_n
0.24	0.4026	0.4398	0.3398	-0.19
0.31	0.4028	0.44	0.34	-0.1902
0.41	0.4095	0.447	0.347	-0.1972
0.51	0.4168	0.4546	0.3546	-0.2048

Рисунок 1.47 — График зависимости $\bar{x}_F(M)$, $\bar{x}_H(M)$, $\bar{x}_{T\Pi 3}(M)$, $\sigma_n(M)$

Таблица 1.20 — Результаты расчетов для балансировочных зависимостей для высоты H=0 км

M	V	$arphi_{ m бал}$	φ^n	n_{y_p}
_	<u>М</u> С	град	град ед.перег.	_
0.24	82.0	-1.36	-40.14	1.689
0.31	105.0	-1.12	-24.06	2.159
0.41	139.0	-0.97	-13.79	3.033
0.51	173.0	-0.9	-8.96	4.136

Таблица 1.21 — Результаты расчетов для балансировочных зависимостей для высоты $H=6\,\,\mathrm{km}$

M	V	arphiбал	φ^n	n_{y_p}
_	<u>М</u> С	град	град ед.перег.	_
0.35	111.0	-1.36	-36.43	1.759
0.4	127.0	-1.22	-28.03	1.991
0.5	159.0	-1.06	-18.13	2.541
0.6	190.0	-0.99	-13.01	3.153
0.7	222.0	-0.97	-10.09	3.778

Таблица 1.22 — Результаты расчетов для балансировочных зависимостей для высоты $H=11\ {
m km}$

M	V	arphiбал	φ^n	n_{y_p}
-	<u>М</u> С	град	<u>град</u> ед.перег.	-
0.52	153.0	-1.35	-33.76	1.819
0.61	179.0	-1.22	-25.33	2.097
0.71	209.0	-1.16	-19.87	2.402

Рисунок 1.48 — График зависимости $\varphi_{\text{бал}}(M,\,H=0,6,11\,\text{км})$

Рисунок 1.49 — График зависимости $\varphi^n(M,\,H=0,6,11\,{\rm km})$

Рисунок 1.50 — График зависимости $n_{y_p}(M,\,H=0,6,11\,{\mbox{кm}})$

2. Синтез системы автоматического управления

2.1. Описание объекта управления

Ил-76 представляет собой свободнонесущий высокоплан нормальной аэродинамической схемы со стреловидным крылом, стабилизатором и рулем высоты, однокилевым Т-образным вертикальным оперением (Рис. 2.1). Рассматриваемая модификация Ил-76ТД.

Один из разрабатываемых режимов для САУ – это система автоматической стабилизации высоты, применяемая в системе автоматического пилотирования. Исходные данные для расчетов приведены в таблицах 2.1, 2.2.

Управление самолетом в полете осуществляется отклонением руля высоты, стабилизатора, руля направления, элеронов и спойлеров. Система ручного управления необратимая бустерная, с возможностью перехода на ручное управление.

Самолет оснащен системой автоматического управления САУ-1Т-2Б, которая является частью пилотажно-навигационного коплекса ПК-76. САУ-1Т-2Б обеспечивает: автоматическое и директорное пилотирование по заданному маршруту в диапазонах высот от 400 м до максимальной высоты полета в режимах набора высота, горизонтального полета и снижения, заход на посадку до высоты 60 м в автоматическом и директором режимах.

Таблица 2.1 — Исходные данные самолета Ил-76

Параметр	Значение
m_0	140000 кг
b_a	6.436 м
S	300 m^2
$\delta_{\scriptscriptstyle m B}$	15° – 21°
φ	$+2^{\circ}8^{\circ}$
$ar{x}_{ ext{ iny T}}$	0.45
I_z	$19 \cdot 10^6$ кг м 2
Ограничение ре-	$M \le 0.8; \ V_i \le 650 \frac{\text{km}}{\text{q}}$
жима полета	

Таблица 2.2 — Значения производных коэффициентов аэродинамических сил и моментов для разных чисел Маха

M	C_y^{α}	\bar{x}_F	$m_z^{ar{\omega}_z}$	$m_z^{ar{\dot{lpha}}}$	$m_z^{\delta_{\scriptscriptstyle m B}}$
0.3	5.160	0.695	-11.09	-7.75	-2.7215
0.4	5.160	0.690	-11.09	-7.75	-2.7215
0.5	5.160	0.695	-11.09	-7.75	-2.7215
0.6	5.160	0.710	-11.09	-7.75	-2.7215
0.7	5.350	0.728	-11.09	-7.75	-2.7215
0.8	6.150	0.764	-11.09	-7.75	-2.7215

2.1.1. Построение области высот и скоростей

Аналогичный расчет был проведен в курсовой работе по динамике полета [?, с.45]. В данной работе приведем лишь результаты (рисунок 2.2). Исходя из этого узловые точки для расчета коэффициентов обратных связей представлены в таблице 2.3.

Рисунок 2.2 — Область высот и скоростей установившегося горизонтального полета

Таблица 2.3 — Узловые точки для расчета

Н, м	M							
0	0.240	0.302	0.364	0.426	0.488	0.612		
2000	0.270	0.337	0.404	0.471	0.537	0.671		
4000	0.307	0.372	0.438	0.503	0.568	0.699		
6000	0.352	0.414	0.477	0.539	0.601	0.726		
8000	0.406	0.463	0.519	0.575	0.631	0.744		
10000	0.475	0.519	0.563	0.607	0.651	0.739		
11558	0.544	0.564	0.584	0.604	0.624	0.664		

2.1.2. Выбор параметров привода

Приближенно привод можно представить как:

$$W_{\rm np} = \frac{1}{T_{\rm np}^2 p^2 + 2\xi_{\rm np} T_{\rm np} + 1},$$

где $\xi_{\rm np}=0.7$. Для нахождения $T_{\rm np}$ найдем собственные частоты для самолета

$$\omega_{c} = \sqrt{-\bar{M}_{z}^{\alpha} - \bar{M}_{z}^{\omega_{z}} \bar{Y}^{\alpha}},$$

во всех узловых точках. Выберем ω_{max} — максимальное значение ω_{c} из всей рассчитанной области. Найдем $T_{\pi p_{reop}} = \frac{1}{10\omega_{max}}$. Из ряда:

$$T_{\text{пр}}^* = [0.02 \ 0.025 \ 0.003 \ 0.035 \ 0.04 \ 0.045 \ 0.05]$$

выберем ближайшее значение к $T_{\text{пр}_{\text{теор}}}$ которое будет $T_{\text{пр}}$.

Расчеты по нахождению $\omega_{\rm c}$ сведены в таблицу 2.4, откуда:

$$\omega_{max} = 2.2517, \ T_{\pi p} = 0.045.$$

Таблица 2.4 — Результаты расчета $\omega_{\rm c}$

Н, м		Значен	ия $\omega_{ m c}$ для	і узловых	точек	
0	0.85414	1.07530	1.29070	1.51050	1.74080	2.2517
2000	0.83279	1.03530	1.23460	1.44800	1.67410	2.1879
4000	0.81355	0.98132	1.15520	1.33700	1.53730	1.9895
6000	0.79583	0.93461	1.08250	1.24080	1.40870	1.8298
8000	0.78184	0.89540	1.01380	1.14180	1.28030	1.6339
10000	0.78185	0.86125	0.94614	1.03410	1.13170	1.3725
11558	0.79699	0.83101	0.86535	0.90071	0.93916	1.0177

2.1.3. Вывод

В данном разделе были получены узловые точки для расчетов из области высот и скоростей. Также были определены параметры привода, которые равны:

$$\xi_{\text{пр}} = 0.7, \ T_{\text{пр}} = 0.045.$$

2.2. Синтез контуров автоматического управления

Структурная схема регулирования высоты в тангажном варианте представлена на рисунке 2.3

Рисунок 2.3 — Структурная схема стабилизации высоты

Передаточная функция угловой скорости по отклонению руля высоты имеет вид:

$$\left\{ \frac{\Delta\omega_z}{\Delta\delta_{\rm B}} \right\} = \frac{\bar{M}_z^{\delta_{\rm B}}(p + \bar{Y}^{\alpha})}{p^2 + 2hp + \omega_{\rm C}^2},\tag{2.1}$$

где $\omega_{\rm c}^2 = -\bar{M}_z^{\alpha} - \bar{M}_z^{\omega_z} \bar{M}_z^{\omega_z}$, $2h = 2\xi_{\rm K}\omega_{\rm c} = \bar{Y}^{\alpha} - \bar{M}_z^{\omega_z} - \bar{M}_z^{\dot{\alpha}}$. Подробный вывод в [1, с.498].

Передаточная функция изменения высоты по изменению угла тангажа имеет вид:

$$\left\{ \frac{\Delta H}{\Delta \vartheta} \right\} = \frac{K_{\text{H}}}{p(T_{1c}p+1)},\tag{2.2}$$

где $T_{1c} = \frac{1}{\bar{Y}^{\alpha}}$. Подробный вывод в [2, с.61]

2.2.1. Расчет ядра системы

Определим коэффициенты обратных связей K_{ϑ} , K_{ω_z} для системы на рисунке 2.4.

Рисунок 2.4 — Структурная схема стабилизации тангажа

Передаточная функция замкнутой системы имеет вид (при $W_{\rm n}=1$):

$$\left\{ \frac{\Delta \vartheta}{\Delta \vartheta_{\text{\tiny 3a,II}}} \right\} = \frac{-K_{\vartheta} \bar{M}_z^{\delta_{\text{\tiny B}}} (\bar{Y}^{\alpha} + p)}{p^3 + \Delta_1 p^2 + \Delta_2 p + \Delta_3},$$
(2.3)

где $\Delta_1=2h+K_{\omega_z}\bar{M}_z^{\delta_{\mathrm{B}}},\,\Delta_2=\omega_{\mathrm{c}}^2-K_{\vartheta}\bar{M}_z^{\delta_{\mathrm{B}}}+K_{\omega_z}\bar{M}_z^{\delta_{\mathrm{B}}}\bar{Y}^{\alpha},\,\Delta_3=-K_{\vartheta}\bar{M}_z^{\delta_{\mathrm{B}}}\bar{Y}^{\alpha}.$

$$K_{\omega_z} = \varepsilon K_{\omega_{z_{\text{\tiny TP}}}}, \ K_{\omega_{z_{\text{\tiny TP}}}} = \frac{1}{|\bar{M}_z^{\delta_{\text{\tiny B}}}|T_n},$$

$$K_{\vartheta} = \nu K_{\omega_z}$$

В первом приближении $\varepsilon = 0.25, \nu = \omega_{0_{max}} = 2.2517.$

Результаты расчетов коэффициентов K_{ω_z} , K_{ϑ} приведены в таблице 2.5, для дальнейшего синтеза внешнего контура выберем коэффициенты K_{ω_z} , K_{ϑ} как показано на рисунках 2.5, 2.6.

Рисунок 2.5 — Значения K_{ω_z} для всех расчетных точек

Рисунок 2.6 — Значения K_{ϑ} для всех расчетных точек

2.2.2. Расчет внешнего контура

Определим коэффициент K_H и регулятор $R_H(p)$, как показано в [2, с.220], внешнего контура (рисунок 2.3):

$$K_H = V$$

$$R_H(p) = i_H = 0.8 \frac{1}{T_{1c}V}$$

Результаты расчетов приведены в таблице 2.5, также графическое представление на рисунке 2.7, 2.8.

Рисунок 2.7 — Значения K_H для всех расчетных точек

Рисунок 2.8 — Значения i_H для всех расчетных точек

Таблица 2.5 — Значения коэффициентов передачи

Н, м							
0	M	0.240	0.302	0.364	0.426	0.488	0.612
	K_{ϑ}	7.78	4.91	3.38	2.46	1.88	1.19
	K_{ω_z}	3.46	2.18	1.50	1.09	0.83	0.53
	K_H	82	103	124	145	166	208
	i_H	0.005470	0.005470	0.005470	0.005476	0.005489	0.005544
2000	M	0.270	0.337	0.404	0.471	0.537	0.671
	K_{ϑ}	7.78	5.01	3.49	2.57	1.97	1.26
	K_{ω_z}	3.46	2.22	1.55	1.14	0.88	0.56
	K_H	90	112	134	156	179	223
	i_H	0.004495	0.004495	0.004495	0.004507	0.004522	0.004642
4000	M	0.307	0.372	0.438	0.503	0.568	0.699
	K_{ϑ}	7.78	5.29	3.83	2.90	2.27	1.50
	K_{ω_z}	3.46	2.35	1.70	1.29	1.01	0.67
	K_H	100	121	142	163	184	227
	i_H	0.003658	0.003658	0.003663	0.003673	0.003686	0.003811
6000	M	0.352	0.414	0.477	0.539	0.601	0.726
	K_{ϑ}	7.75	5.59	4.22	3.30	2.65	1.82
	K_{ω_z}	3.44	2.48	1.87	1.47	1.18	0.81
	K_H	111	131	151	171	190	230
	i_H	0.002946	0.002948	0.002955	0.002964	0.002976	0.003165
8000	M	0.406	0.463	0.519	0.575	0.631	0.744
	K_{ϑ}	7.69	5.94	4.72	3.84	3.19	2.30
	K_{ω_z}	3.42	2.64	2.10	1.71	1.42	1.02
	K_H	125	143	160	177	194	229
	i_H	0.002346	0.002351	0.002357	0.002364	0.002392	0.002570
10000	M	0.475	0.519	0.563	0.607	0.651	0.739
	K_{ϑ}	7.57	6.35	5.40	4.64	4.04	3.14
	K_{ω_z}	3.36	2.82	2.40	2.06	1.79	1.39
	K_H	142	155	169	182	195	221
	i_H	0.001848	0.001852	0.001857	0.001865	0.001891	0.002008
11558	M	0.544	0.564	0.584	0.604	0.624	0.664
	K_{ϑ}	7.36	6.85	6.39	5.98	5.60	4.95
	K_{ω_z}	3.27	3.04	2.84	2.66	2.49	2.20
	K_H	161	167	172	178	184	196
	i_H	0.001498	0.001499	0.001501	0.001505	0.001514	0.001533

2.2.3. Вывод

В данном разделе были определены все коэффициенты обратных связей для всех контуров, обеспечивающие устойчивость системы.

2.3. Частотный анализ

Частотный анализ будет проводится для трех режимов:

- 1. Минимального скоростного напора $q_{min}=4515.46\,\frac{\mathrm{Kr}}{\mathrm{M}\ \mathrm{c}^2}$ соответствующий $H=2000\,\mathrm{M}$ и M=0.2849;
- 2. Максимального скоростного напора $q_{max}=26557.46\, {{\mbox{\tiny K\Gamma}}\over{{\mbox{\tiny M}\mbox{\tiny C}}^2}}$ соответствующий H=0 м и M=0.6119;
- 3. Крейсерский режим соответствующий $q_{\rm кp}=10972.85\,{\rm {K\Gamma\over M~c^2}}$ соответствующий $H=10000\,{\rm M}$ и M=0.77;

Также данные значения приведены в таблице 2.6.

Таблица 2.6 — Режимы для частотного анализа

Н, м	$q, \frac{\kappa \Gamma}{M c^2}$	M
4000	4068.5293	0.3071
0	26557.5546	0.6119
10000	6885.8565	0.6100

2.3.1. Анализ контура демпфирования

Передаточная функция разомкнутого контура демпфирования имеет вид:

$$W_{\text{pas}}^{\text{дем}} = W_{\text{II}} \left\{ \frac{\Delta \omega_z}{\Delta \delta_{\text{B}}} \right\} \tag{2.4}$$

Таблица 2.7 — Передаточные функции разомкнутого контура демпфирования для различных чисел Маха

M	Передаточная функция		
0.2849	$-\frac{(1.249p + 0.658)}{0.002p^4 + 0.065p^3 + 1.072p^2 + 1.162p + 0.762}$		
0.6119	$-\frac{(7.345p+10.403)}{0.002p^4+0.069p^3+1.198p^2+3.301p+4.976}$		
0.7700	$-\frac{(3.034p+1.829)}{0.002p^4+0.065p^3+1.079p^2+1.328p+2.206}$		

Графики ЛАФЧХ представлены на рисунке 2.9. Запасы по фазе ΔL , амплитуде ΔQ , частоты среза $\omega_{\rm cp}$ для различных Махов представлены в таблице 2.8.

Рисунок 2.9 — ЛАФЧХ для разом
кнутого контура демпфирования

Таблица 2.8 — Запасы, частоты среза для разомкнутого контура демпфирования

M	$\omega_{ m cp},~{ m pag/c}$	ΔQ , дБ	ΔL , град.
0.3071	0.335	29.102	118.600
0.61	0.324	24.503	98.414
0.6119	7.489	13.362	74.939

2.3.2. Анализ ядра системы

Передаточная функция разомкнутой системы ядра (рисунок 2.4) имеет вид:

$$W_{\text{pa3}} = \frac{K_{\vartheta} W_{\pi} \left\{ \frac{\Delta \omega_z}{\Delta \delta_{\text{B}}} \right\}}{p(1 + K_{\omega_z})}$$
 (2.5)

Таблица 2.9 — Передаточные функции разомкнутой системы ядра при различных Махах

M	Передаточная функция		
0.2849	$\frac{12.477p + 6.576}{0.002p^5 + 0.065p^4 + 1.072p^3 + 6.718p^2 + 3.691p}$		
0.6119	$\frac{12.477p + 17.672}{0.002p^5 + 0.069p^4 + 1.198p^3 + 8.857p^2 + 12.845p}$		
0.7700	$\frac{12.644p + 7.619}{0.002p^5 + 0.065p^4 + 1.079p^3 + 6.958p^2 + 5.599p}$		

Графики ЛАФЧХ представлены на рисунке 2.10. Запасы по фазе, амплитуде, частоты среза для различных Махов представлены в таблице 2.10

Рисунок 2.10 - ЛАФЧХ для разомкнутой системы ядра

Таблица 2.10 — Запасы, частоты среза для разомкнутого ядра

M	$\omega_{ m cp},~{ m pag/c}$	ΔQ , дБ	ΔL , град.
0.3071	1.911	16.893	67.544
0.61	1.950	16.692	70.653
0.6119	1.351	18.915	84.665

Передаточная функция замкнутой системы ядра (рисунок 2.4) имеет вид:

$$\left\{ \frac{\Delta \vartheta}{\Delta \vartheta_{\text{3a,I}}} \right\} = \frac{-K_{\vartheta} \left\{ \frac{\Delta \omega_z}{\Delta \delta_{\text{B}}} \right\} W_{\text{II}}}{p - K_{\vartheta} \left\{ \frac{\Delta \omega_z}{\Delta \delta_{\text{B}}} \right\} W_{\text{II}} + K_{\omega_z} p} \tag{2.6}$$

Виды передаточных функций (2.6) замкнутой системы для ядра представлены в таблице 2.11.

Таблица 2.11 — Передаточные функции ядра при различных Махах

M	Передаточная функция		
0.2849	$\frac{12.477p + 6.576}{0.002p^5 + 0.065p^4 + 1.072p^3 + 6.718p^2 + 16.167p + 6.576}$		
0.6119	$\frac{12.477p + 17.672}{0.002p^5 + 0.069p^4 + 1.198p^3 + 8.857p^2 + 25.322p + 17.672}$		
0.7700	$\frac{12.644p + 7.619}{0.002p^5 + 0.065p^4 + 1.079p^3 + 6.958p^2 + 18.243p + 7.619}$		

Графики ЛАФЧХ представлены на рисунке 2.11. Запасы по фазе, амплитуде, частоты среза для различных Махов представлены в таблице 2.12

Рисунок 2.11 - ЛАФЧХ для ядра системы

Таблица 2.12 — Запасы, частоты среза для ядра системы

M	$\omega_{ m cp},~{ m pag/c}$	ΔQ , дБ	ΔL , град.
0.3071	_	15.553	-
0.61	_	15.318	-
0.6119	_	17.871	-

2.3.3. Анализ внешнего контура

Передаточная функция разомкнутого внешнего контура с замкнутым ядром имеет вид:

$$W_{\text{pas}}^{\text{внеш}} = -R_H(p) \left\{ \frac{\Delta \vartheta}{\Delta \vartheta_{\text{зад}}} \right\} \left\{ \frac{\Delta H}{\Delta \vartheta} \right\}$$
 (2.7)

Виды передаточных функций (2.7) разомкнутого внешнего контура представлены в таблице 2.13.

Таблица 2.13 — Передаточные функции разомкнутого внешнего контура при различных Махах

M	Передаточная функция		
$0.2849 \frac{5.261 p + 2.773}{0.004 p^7 + 0.126 p^6 + 2.099 p^5 + 13.817 p^4 + 37.391 p^3 + 28.644 p^3}$			
0.6119	$\frac{14.138p + 20.025}{0.001p^7 + 0.051p^6 + 0.915p^5 + 7.451p^4 + 26.734p^3 + 37.799p^2 + 17.672p}$		
0.7700	$\frac{6.096p + 3.673}{0.003p^7 + 0.111p^6 + 1.857p^5 + 12.626p^4 + 37.232p^3 + 30.887p^2 + 7.619p}$		

Графики ЛАФЧХ представлены на рисунке 2.12. Запасы по фазе, амплитуде, частоты среза для различных Махов представлены в таблице 2.14

Рисунок 2.12 - ЛАФЧХ для разомкнутого траекторного контура при различных числах Maxa

Таблица 2.14 — Запасы, частоты среза для разомкнутого траекторного контура

M	$\omega_{ m cp},~{ m pag/c}$	ΔQ , дБ	ΔL , град.
0.3071	0.300	15.345	46.948
0.61	0.277	16.361	46.982
0.6119	0.841	6.492	25.855

Передаточная функция всей системы имеет вид:

$$\left\{ \frac{\Delta H}{\Delta H_{3a,\Pi}} \right\} = \frac{R_H(p) \left\{ \frac{\Delta \vartheta}{\Delta \vartheta_{3a,\Pi}} \right\} \left\{ \frac{\Delta H}{\Delta \vartheta} \right\}}{R_H(p) \left\{ \frac{\Delta H}{\Delta \vartheta} \right\} \left\{ \frac{\Delta \vartheta}{\Delta \vartheta_{3a,\Pi}} \right\} - 1}$$
(2.8)

Виды передаточных функций (2.8) замкнутого внешнего контура представлены в таблице 2.15.

Таблица 2.15 — Передатчные функции замкнутого внешнего контура при различных Махах

M	Передаточная функция
0.2849	$\frac{5.261 p + 2.773}{0.004 p^7 + 0.126 p^6 + 2.099 p^5 + 13.817 p^4 + 37.391 p^3 + 28.644 p^2 + 11.838 p + 2.773}$
0.6119	14.138 p + 20.025
0.7700	$0.001 p^{7} + 0.051 p^{6} + 0.915 p^{5} + 7.451 p^{4} + 26.734 p^{3} + 37.799 p^{2} + 31.81 p + 20.025$ $6.096 p + 3.673$
0.7700	$0.003 p^7 + 0.111 p^6 + 1.857 p^5 + 12.626 p^4 + 37.232 p^3 + 30.887 p^2 + 13.715 p + 3.673$

Графики ЛАФЧХ представлены на рисунке 2.13. Запасы по фазе, амплитуде, частоты среза для различных Махов представлены в таблице 2.16

Рисунок 2.13- ЛАФЧХ для системы автоматической стабилизации высоты

Таблица 2.16 — Запасы, частоты среза системы для автоматической стабилизации высоты

M	$\omega_{ m cp},~{ m pag/c}$	ΔQ , дБ	ΔL , град.
0.3071	0.429	13.717	66.072
0.61	0.393	14.933	67.779
0.6119	1.293	0.928	3.850

2.3.4. Вывод

По результатам частотного анализа ядра:

Разомкнутая система ядра имеет запас по амплитуде 17 дБ для крейсерского режима, 18.8 для режима соответствующего максимальному q_{max} и 17 дБ для режим минимального q_{min} , запасы по фазе 77.9 град., 84.6 град., 68.8 град., соответственно. Имея положительные запасы замкнутая система будет устойчива (см. рисунок 2.11).

По результатам частотного анализа контура стабилизации высоты:

Разомкнутая система имеет запасы по амплитуде 13.9 дБ 6.7 дБ 14 дБ для крейсерского, q_{min} , q_{max} режимов соответственно, по фазе 42 град., 26 град., 45 град.. Замыкая контур система стала устойчива (см. рисунок 2.13).

2.4. Нелинейное моделирование САУ

Нелинейное моделирование будет проводится для скоростного режима $M_{\rm kp}$ на крейсерской высоте H=10000 м для двух максимальных скоростей отклонения руля высоты $\dot{\delta}_{\rm B\ max}=15\,rac{{
m rpag.}}{{
m cek.}},\ 60\,rac{{
m rpag.}}{{
m cek.}}.$ Также будут введены ограничения на:

- Диапазон отклонения руля высоты $\delta_{\scriptscriptstyle \rm B} = -21^\circ...15^\circ$
- Диапазон угла наклона траектории в наборе $\theta = -6.5^{\circ}...6.5^{\circ}$

Схема нелинейной модели из Simulink представленна на рисунке 2.14. Блок с названием «i_H» соответствует коэффициенту i_H , «K_theta_int» — K_{ϑ} , «W_p» — W_{π} , «d_w_d_v» — $\left\{\frac{\Delta \omega_z}{\Delta \delta_{\rm B}}\right\}$, «K_omega_z_int» — K_{ω_z} , «W_H_theta» — $\left\{\frac{\Delta H}{\Delta \vartheta}\right\}$.

Рисунок 2.14 — Схема нелинейной модели

2.4.1. Сравнение для разных максимальных скоростей отклонения руля высоты

Результаты изменения ΔH , $\delta_{\rm B}$, ω_z , ϑ для $\dot{\delta}_{\rm B \ max}=15\,\frac{\rm град.}{\rm cek.}$, $60\,\frac{\rm град.}{\rm cek.}$ представленны на рисунках 2.15, 2.16, 2.17, 2.18.

 $\frac{1}{2}$ — 0.10 — 0.1 — 0.1 — 0.1 — 0.2 — Модель при $\delta_{s_{max}} = 15 \frac{\text{град.}}{\text{сек.}}$ — Модель при $\delta_{s_{max}} = 60 \frac{\text{град.}}{\text{сек.}}$ — $\frac{1}{2}$ —

Рисунок 2.15 — Изменение высоты для различ ных $\dot{\delta}_{\text{в max}}$

Рисунок 2.16 — Изменение положения руля высоты для различных $\dot{\delta}_{\text{в max}}$

Рисунок 2.17 — Изменение угловой скорости для различных $\dot{\delta}_{\text{в max}}$

Таблица 2.17 — Сравнение параметров переходного процессса $\Delta H(t)$ при различных $\dot{\delta}_{\scriptscriptstyle \rm B}$

	Модель при $\dot{\delta}_{{\scriptscriptstyle {\rm B}}_{max}}=15\frac{{\scriptstyle {\rm град.}}}{{\scriptstyle {\rm cek.}}}$	Модель при $\dot{\delta}_{{\scriptscriptstyle {\rm B}}_{max}} = 60 \frac{{\scriptstyle { m rpag.}}}{{\scriptstyle { m cek.}}}$
$t_{ m per},$ с	17.78	17.56
σ, %	26.53	26.54

2.4.2. Сравнение линейной и нелинейной модели

Результаты изменения ΔH , $\delta_{\rm B}$, ω_z , ϑ для линейной и нелинейной модели представленны на рисунках 2.19, 2.20, 2.21, 2.22. Моделирование нелинейной модели проводилось при $\dot{\delta}_{\rm B\ max}=60\ {\rm \frac{rpag.}{cek.}}$.

Рисунок 2.19 — Изменение высоты для линейной и нелинейной модели

Рисунок 2.20 — Изменение положения руля высоты для линейной и нелинейной модели

Рисунок 2.21 — Изменение угловой скорости для линейной и нелинейной модели

Рисунок 2.22 — Изменение угла тангажа для линейной и нелинейной модели

Таблица 2.18 — Сравнение параметров переходного процессса $\Delta H(t)$

	Линейная модель	Нелинейная модель				
$t_{ m per}, { m c}$	17.27	17.56				
σ, %	26.77	26.54				

2.4.3. Вывод

При моделировании различных скоростей отклонения руля высоты, переходный процесс практически не изменился (см. рисунок 2.15), время регулирования привода с наибольшей максимальной скоростью отклонения было меньше на ≈ 0.22 с. Максимальное отклонение руля высоты в случае с $\dot{\delta}_{\text{в}_{max}} = 15 \frac{\text{град.}}{\text{сек.}}$ было меньше на 30% (см. рисунок 2.16). Максимальная угловая скорость тангажа равна ≈ 0.19 рад/с у модели с $\dot{\delta}_{\text{в}_{max}} = 15 \frac{\text{град.}}{\text{сек.}}$ (см. рисунок 2.17). Изменение угла тангажа практически неизменилось (см. рисунок 2.18)

Разница во времени регулирования между линейной и нелинейной моделью в ≈ 0.29 с (см. таблицу 2.18). У линейной модели максимальное отклонение руля высоты имеет недопустимое значние $max(\delta_{\rm B}) > -21^{\circ}$ (см. рисунок 2.20). В следствиии этого максимальная угловая скорость тангажа ≈ 0.31 рад/с (см. рисунок 2.21). Изменение угла тангажа практически неизменилось (см. рисунок 2.22)

2.5. Вывод по разделу

В ходе работы была составлена модель системы стабилизации высоты в тангажном варианте. Проведен линейный и нелинейный анализ системы, вычислены значения коэффициентов обратных связей, коэффициентов стабилизации (см. таблицу 2.5). При синтезировании данной системы были получены результаты:

1. Параметры привода:

$$\xi_{\text{mp}} = 0.7, \ T_{\text{mp}} = 0.045.$$

- 2. Разомкнутый контур стабилизации высоты имеет удовлетворительные запасы.
- 3. Нелинейная система не существенно отличается от линейной.

3. Специальная часть

3.1. Исходные данные для самолета Ил-76

 $m_{\rm пуст}=86000$ кг, $m_{\rm топл}=60000$ кг, $m_{\rm поле}=34000$ кг При интегрировании по формулам (3.1) $m_{\rm K}=120000$ кг, $m_{\rm H}=180000$ кг. Полет будет осуществляется на дальность $L_{\rm KP}=3000$ м.

3.2. Исследование характеристик транспортного самолета при выполнении эшелонирования

3.2.1. Постановка задачи

В работе исследуется задача минимизации километрового расхода топлива в крейсерском полете на заданную дальность путем оптимизации вертикальной траектории и скоростного режима.

3.2.2. Расчетные формулы

$$q_{\text{\tiny q}} = P_{\text{\tiny p}} C e, \ q_{\text{\tiny KM}} = \frac{q_{\text{\tiny q}}}{3.6 V}, \ L_{\text{\tiny KC}} = \int_{m_{\text{\tiny H}}}^{m_{\text{\tiny H}}} \frac{dm}{q_{\text{\tiny KM}}}, \ T_{\text{\tiny KC}} = \int_{m_{\text{\tiny H}}}^{m_{\text{\tiny H}}} \frac{dm}{q_{\text{\tiny q}}},$$
 (3.1)

$$P_{\pi}(M,H) = \frac{mg}{K} \tag{3.2}$$

$$P_{p}(M,H) = P_{p_{11}} \frac{p_{H}}{p_{H=11}}, \tag{3.3}$$

$$P_{\rm p}(M,H) = \bar{P}_0 m g \tilde{P}(H,M), \qquad (3.4)$$

$$Ce = Ce_0\tilde{C}e(H, M)\hat{C}e_{\text{Ap}}(R), \qquad (3.5)$$

$$L_{\text{\tiny KC}} = \frac{3.6}{\bar{P}_0 C e_0 g} \int_{m_{\text{\tiny K}}}^{m_{\text{\tiny H}}} \frac{V}{m \tilde{P}(H, M) \tilde{C} e(H, M) \hat{C} e_{\text{\tiny AD}}(\bar{R})} dm, \tag{3.6}$$

$$T_{\text{KC}} = \frac{1}{g} \int_{m_{\text{K}}}^{m_{\text{H}}} \frac{1}{m\tilde{P}(H, M)\tilde{C}e(H, M)\hat{C}e_{\text{дp}}(\bar{R})} dm$$
 (3.7)

 C_{ya}, C_{xa} из курсовой работы №1 по динамике полета.

3.2.3. Задачи

По мере уменьшения массы из-за выгорания топлива в крейсерском полете будет уменьшаться $P_{\rm n}$ из формулы (3.2), что ведет к изменению расхода топлива.

Проведем такие количественные анализы:

- 1. Влияние массы на изменение экономической скорости.
- 2. Оптимальную траекторию с учетом выгорания топлива.
- 3. Найти моменты смены эшелона для перехода на экономически выгодный эшелон.
- 4. Разница в расходах топлива при полете на постоянной высоте и со сменой высоты.

3.3. Результаты

3.3.1. Результаты расчета при постоянный высоте и оптимальной скорости полета

Таблица 3.1 — Полученный параметры

$q_{\text{km cp}}, \frac{\text{kr}}{\text{km}}$	<i>L</i> , M	$m_{ m {\tiny M3p}},~{ m K}$ г	$t_{ m kp}$, мин
11.364	3000	34091.62	275.00

Рисунок 3.1 — График зависимости H(L) и V(L)

Рисунок 3.2 — График зависимости q(L) и m(L)

3.3.2. Результаты расчета при оптимальном изменении высоты и скорости полета

Таблица 3.2 — Полученный параметры

$q_{\text{km cp}}, \frac{\text{kr}}{\text{km}}$	<i>L</i> , M	$m_{\text{изр}}$, кг	$t_{ m kp}$, мин
11.155	3000	33464.02	275.85

Рисунок 3.3 — График зависимости H(L) и V(L)

Рисунок 3.4 — График зависимости q(L) и m(L)

3.3.3. Эшелонированный полет, высота меняется ступенчато с шагом 300 м

Таблица 3.3 — Полученные параметры

$q_{{\scriptscriptstyle \mathrm{KM}}{\scriptscriptstyle \mathrm{CP}}},rac{{\scriptscriptstyle \mathrm{KF}}}{{\scriptscriptstyle \mathrm{KM}}}$	L, M	$m_{ m {\tiny M3p}},~{ m K}$ г	$t_{ m kp}$, мин
11.168	3000	33504.95	275.15

Рисунок 3.5 — График зависимости H(L) и V(L)

Рисунок 3.6 — График зависимости q(L) и m(L)

т, то	онн	Н, м											
		7000	7500	8000	8500	9000	9500	10000	10500	11000	11500	12000	12500
100.0	M	0.464	0.478	0.489	0.5	0.506	0.522	0.538	0.552	0.559	0.585	0.6	0.6
	q_{km}	9.262	8.974	8.38	8.114	7.881	7.666	7.46	7.225	6.619	6.578	6.54	6.545
	V	144.91	148.282	150.663	152.992	153.747	157.486	161.148	164.137	164.991	172.616	177.042	177.042
110.0	M	0.487	0.5	0.5	0.516	0.532	0.549	0.562	0.583	0.581	0.6	0.6	0.6
	q_{km}	9.733	9.438	8.862	8.61	8.371	8.143	7.929	7.674	7.182	7.161	7.178	7.251
	V	152.093	155.106	154.053	157.888	161.647	165.632	168.337	173.355	171.484	177.042	177.042	177.042
120.0	M	0.5	0.511	0.524	0.54	0.554	0.573	0.571	0.591	0.6	0.6	0.602	0.635
	q_{km}	10.176	9.903	9.348	9.084	8.834	8.598	8.401	8.236	7.784	7.812	7.897	8.011
	V	156.153	158.519	161.447	165.231	168.332	172.873	171.033	175.734	177.092	177.042	177.632	187.369
130.0	M	0.518	0.536	0.547	0.563	0.56	0.578	0.596	0.6	0.6	0.6	0.602	=
	q_{km}	10.626	10.344	9.807	9.533	9.293	9.127	8.983	8.825	8.452	8.549	8.709	=
	V	161.774	166.274	168.534	172.269	170.155	174.381	178.521	178.41	177.092	177.042	177.632	=
140.0	M	0.541	0.556	0.552	0.565	0.582	0.6	0.6	0.6	0.6	0.605	=	=
	q_{km}	11.041	10.753	10.259	10.049	9.863	9.7	9.576	9.472	9.36	9.534	=	=
	V	168.957	172.478	170.074	172.881	176.84	181.018	179.719	178.41	177.092	178.517	-	-
150.0	M	0.537	0.55	0.569	0.586	0.6	0.6	0.6	0.6	0.606	-	=	=
	q_{km}	11.487	11.265	10.818	10.61	10.427	10.292	10.226	10.276	10.379	-	-	-
	V	167.708	170.617	175.312	179.307	182.309	181.018	179.719	178.41	178.863	=	=	=
160.0	M	0.55	0.568	0.588	0.6	0.6	0.6	0.6	0.619	=	=	=	=
	q_{km}	12.029	11.82	11.369	11.165	11.016	10.949	11.026	11.138	-	-	-	-
	V	171.768	176.201	181.166	183.59	182.309	181.018	179.719	184.06	-	-	-	-
170.0	M	0.564	0.587	0.6	0.6	0.6	0.6	0.619	-	-	-	-	-
	q_{km}	12.58	12.365	11.917	11.75	11.678	11.741	11.881	-	-	-	-	
	V	176.14	182.095	184.863	183.59	182.309	181.018	185.41	-	-	-	-	-
180.0	M	0.582	0.6	0.6	0.6	0.6	0.615	-	-	-	-	-	-
	q_{km}	13.122	12.902	12.495	12.413	12.459	12.587	-	-	-	-	-	-
	V	181.762	186.127	184.863	183.59	182.309	185.544	-	-	-	-	-	-
190.0	M	0.589	0.6	0.6	0.6	0.61	-	-	-	-	-	-	-
	q_{km}	13.663	13.48	13.159	13.181	13.294	=	=	=	=	=	=	=
	V	183.948	186.127	184.863	183.59	185.347	-	-	-	-	-	-	-

Таблица $3.4-q_{km}\left[\frac{\text{кг}}{\text{км}}\right],V\left[\frac{\text{м}}{\text{c}}\right]$

3.3.4. Анализ результатов

Таблица 3.5 — Результаты расчетов

Режим	$m_{ exttt{ iny H3P}},$ км	T	$q_{ ext{km}_{ ext{cp}}}, rac{ ext{kf}}{ ext{km}}$
Полет на $H=8500\mathrm{M}$	34091.62	4 ч. 35 мин.	11.364
Полет по оптимальной траектории	33464.02	4 ч. 36 мин.	11.155
Полет эшелонированный полет	33504.95	4 ч. 35 мин.	11.168
$\Delta H = 300\mathrm{M}$			

Результаты расчетов по нахождению $q_{\kappa_{m_{min}}}$ минимального километрового расхода топлива сведены в таблицу 3.4

- 1. Исходя из расчетов по мере уменьшения массы скорость уменьшается, а высота для поддержания $q_{{\scriptscriptstyle \mathrm{KM}}_{min}}$ увеличивается.
- 2. Оптимальная траектория набора представлена на рисунке 3.3.
- 3. Моменты смены эшелона выбрали, если между оптимальной высотой и текущей будет разница в 300 м., тогда производим набор высоты на $\Delta H = H_{\text{опт}} H_{\text{кр}} = 300\,\text{м}$.

3.4. Вывод

В данном разделе была получена траектория эшелонированного полета для обеспечения минимального расхода топлива. Такая траектория с исходными данными самолета прототипа дает разницу в 0.12 % по сравнению с оптимальной траекторией в количестве израсходованного топлива. Что дает разницу в количестве потерянного топлива на 10 полетов равной в 409.3 кг. К сравнению при полете на одной высоте разница составляет 1.87 %, что дает потерю топлива на 10 полетов 6276 кг.

Отсюда следует, что нужно как можно чаще менять эшелоны на экономически выгодные для экономии топлива.

Список литературы

- 1. Динамика полета: Учебник для студентов высших учебных заведений / А.В. Ефремов, В.Ф. Захарченко, В.Н. Овчаренко и др.; под ред. Г.С. Бюшгенса. М.: Машиностроение, 2011.-776c.
- 2. Управление полетом самолета: Учебное пособие для студентов высших технических учебных заведений / Ю.П. Гуськов, Г.И. Загайнов Г.И. М.: Машиностроение, 1991. 272с.