UEC 代数勉強会 第7回

9trap/隕石

2021/06/22

目次

1	復習	復習	
	1.1	はじめに	1
	1.2	代数系	1
	1.3	準同型写像	2
	1.4	置換表現	3
	1.5	剰余類	3
	1.6	作用	4
2	対称	対称式と交代式	
	2.1	多項式への作用	4
	2.2	対称式と交代式	4
	2.3	Hilbert の基底定理	6
3	正規	記部分群と商群	6
	3.1	正規部分群と商群	6
	3.2	準同型定理	6
	3.3	次元定理	6
	3.4	指標	6
4	射暑	※組について	6

1 復習

1.1 はじめに

だいぶ間が空いたので復習を入れておきます。

1.2 代数系

集合に演算を導入し、特定の条件を満たすようなモデルを考えると、さまざまな構造を扱えてうれしい。そういったモデルを代数系という。

定義 1 (群) 集合 G と G における 2 項演算

$$\circ: G \times G \to G; (a,b) \mapsto a \circ b$$

が次の条件を満たすとき、組 (G, \circ) を群という。

$$(1) \forall a, b, c \in G(a \circ b) \circ c = a \circ (b \circ c)$$
 (結合律)

(2)
$$\exists e \in G[\forall a \in G[e \circ a = a \circ e = a]]$$
 (単位元の存在)

(3)
$$\forall g \in G \big[\exists h \in G \big[g \circ h = h \circ g = e \big] \big]$$
 (逆元の存在)

誤解を生まないと判断された多くの場合、Gそのものを群と呼ぶ。

群 G が可換律 $\forall a,b \in G[a \circ b = b \circ a]$ を満たす場合、G を可換群もしくは Abel 群と呼ぶ。 演算子は、可換群であれば + を使ったり、そうでない場合は省略する事が多い。

定義 2 (環) 集合 A と A における積と和と呼ばれる 2 つの 2 項演算

$$\cdot : A \times A \to A; (a,b) \mapsto a \cdot b$$
$$+ : A \times A \to A; (a,b) \mapsto a + b$$

が次の条件を満たすとき、組 $(A,+,\cdot)$ を環という。

(1)(A,+)は可換群を成す

$$(2) \forall a,b,c \in A[(ab)c = a(bc)]$$
 (乗法の結合律)

$$(3) \forall a, b, c \in A[a(b+c) = ab + ac]$$
 (分配律)

誤解を生まないと判断された多くの場合、Aそのものを環と呼ぶ。

定義 3 (体) 集合 K と K における積と和と呼ばれる 2 つの 2 項演算

$$: K \times K \to K; (x, y) \mapsto x \cdot y$$

$$+ : K \times K \to K; (x, y) \mapsto x + y$$

が次の条件を満たすとき、組 $(K,+,\cdot)$ を環という。

- (1)(K,+)は可換群を成す
- $(2)(K\setminus\{0\},\cdot)$ は可換群を成す

$$(3) \forall a, b, c \in A[a(b+c) = ab + ac]$$
 (分配律)

誤解を生まないと判断された多くの場合、Kそのものを体と呼ぶ。

代数系は他にも色々ある。例えば亜群 (マグマ)、半群、モノイド、Kleene 代数など。

1.3 準同型写像

定義 4 (準同型写像) 群 G,H とその間の写像 $\varphi:G\to H$ が以下を満たすとき、写像 φ を準同型であるという。

$$\forall x, y \in G[\varphi(x)\varphi(y) = \varphi(xy)]$$

1.4 置換表現

命題 5 (群の積の単射性) 有限群 G の演算について、片方の引数を $g \in G$ に固定した写像 $\varphi: G \to G; a \mapsto ga$ は単射である。

証明 任意の $a,b \in G$ について、

$$a = b \Leftrightarrow g^{-1}a = g^{-1}b$$

つまり、この写像は群の要素の置換とみなすことができる。各元に番号をつける写像を f とすると、 $f\circ \varphi\circ f^{-1}$ は S_n の元である。

定義 6 (左移動による置換表現) この写像 φ を左移動といい、 $f \circ \varphi \circ f^{-1}$ は左移動による置換表現という。

1.5 剰余類

記法 7 (左移動の像) 群 G の部分集合 A について、g による左移動の A の像を gA とかく。すなわち、

$$gA := \{ ga \mid a \in A \}$$

命題 8 群 G の有限部分集合 A について、|A| = |gA|

証明 命題 5 より。

補題 g (部分群の左移動) 群 G の部分群 H について、 $g \in H$ ならば gH = H、 $g \notin H$ ならば $gH \cap H = \emptyset$ 証明 前者は群の演算が閉じていることから自明。

 $g \notin H$ の場合、 $gH \cap H \neq \emptyset$ とすると、 $\exists x [x \in gH \land x \in H]$ 。

そのx について、 $x \in gH$ だから $\exists y[x = gy \land y \in H]$ 。

その y について、 $xy^{-1}=g$ 。 $x\in H,y\in H$ より $g\in H$ が導かれるがこれは仮定に矛盾する。よって、帰謬法から $gH\cap H=\emptyset$ 。

命題 10 群 G とその部分群 H について、 $a\sim b\Leftrightarrow aH=bH$ として関係を定義すると、この関係 \sim は同値関係となる。

証明 自明に $aH=aH\wedge \left(aH=bH\Leftrightarrow bH=aH\right)$ であるから、反射律と対称律が成り立つ。 $aH=bH\wedge bH=cH$ と仮定すると、= の推移律から aH=cH。よって、推移律も満たす。

 \mathbf{x} 11 上で定めた関係は同値関係であるから、同値類 gH により、群 G が分割される。

定義 12 (左剰余類) ここでの同値類 gH を左剰余類という。

定理 13 (Lagrange の定理) 部分群の位数は元の群の位数の約数である。

証明 命題 8 から、部分群から導かれる左剰余類はすべて要素数が同じである。よって、分轄数 [G:H] について、 $|G|=[G:H]\cdot |H|$ 。

1.6 作用

定義 14 (作用) 群 G から集合 X について、演算 $\bullet: G \times X \to X$ が以下を満たすとき、これを作用という。

$$(1)\forall x \in X[e \bullet x = x]$$

$$(2)\forall g, h \in G \Big[\forall x \in X \Big[(hg) \bullet x = h \bullet (g \bullet x) \Big] \Big]$$

2 対称式と交代式

2.1 多項式への作用

命題 15 (置換群の多項式への作用) 置換群から n 変数多項式環 / 有理関数体の変換への対応

$$\sigma \in S_n \mapsto \sigma f(x_1, x_2, \cdots, x_n)$$

を以下のように定める

$$\sigma f\big(x_1,x_2,\cdots,x_n\big):=f\big(x_{\sigma(1)},x_{\sigma(2)},\cdots,x_{\sigma(n)}\big)$$

このとき、この対応は作用である。

証明 置換群の単位元は恒等射であるから、条件(1)がみたされる。

また、

$$\begin{split} \big(\sigma(\tau f)\big)\big(x_1,x_2,\cdots,x_n\big) &= (\tau f)\big(x_{\sigma(1)},x_{\sigma(2)},\cdots,x_{\sigma(n)}\big) \\ &= f\Big(x_{\tau(\sigma(1))},x_{\tau(\sigma(2))},\cdots,x_{\tau(\sigma(n))}\Big) \\ &= f\Big(x_{(\sigma\tau)(1)},x_{(\sigma\tau)(2)},\cdots,x_{(\sigma\tau)(n)}\Big) \\ &= (\sigma\tau)\,f\big(x_1,x_2,\cdots,x_n\big) \end{split}$$

2.2 対称式と交代式

多項式のうち変数置換で不変であるものを対称式といい、符号が変わるものを交代式という。 交代式の符号は置換の符号と一致することを導けるが、ここでは示さない。

$$(\sigma f)(x_1, x_2, \dots, x_n) = (\operatorname{sgn} \sigma) f(x_1, x_2, \dots, x_n)$$

例 16 (基本対称式) 対称式の代表的な例に、以下のような基本対称式がある。

$$s_k = \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} x_{i_1} x_{i_2} ... x_{i_k}$$

いま、 x_k と x_l を入れ替えたとする。 すなわち、(k,l) を作用させたとする。 ただし、(k,l) = (l,k) である

から、k < lとする。l < k の場合はメタ的に k と l を入れ替えた文言を用意すればいい。k = l ならば、恒 等置換であるので s_k が不変であるのは言うまでもない。

 s_k は、 全ての長さ k の狭義単調増加自然数列 i : $(1,\cdots,k)$ \rightarrow $(1,\cdots,n); a$ \mapsto i(a) についての項 $x_{i(1)}x_{i(2)}...x_{i(k)}$ の和である。

 x_k と x_l 両方が含まれる項と両方とも含まれない項はk,lの置換によって不変である。任意の x_k が含まれていて x_l が含まれていない項 t について、 tx_l/x_k は項であり s_k に含まれる。 これらの和は x_k と x_l の置換で不変であり、任意の x_l が含まれていて x_k が含まれていない項はこれらで尽くされるため s_k は互換で不変。

任意の置換は互換の積で表せるから s_k は任意の置換で不変である。

例 17 (差積) 対称式の代表的な例に、差積がある。

$$\Delta\big(x_1,x_2,\cdots,x_n\big) = \prod_{1 \leq i < j \leq n} \left(x_i - x_j\right)$$

定義 18 (単項式の型) n 変数の単項式の型とは、 x_i の次数による n つ組 a のことをいう。

$$x_1^{a_1}x_2^{a_2}...x_n^{a_n}$$
の型は $oldsymbol{a}=\left(a_1,a_2,\cdots,a_n
ight)$

定義 19 (単項式の順序) 型 a,b の半順序 > を辞書式順序とする。すなわち、 $a_i \neq b_i$ である最小の i について、 $a_i > b_i$ であるとき、またそのときのみ a > b とする。

また、順序 \geq を $\forall a,b[a\geq b\Leftrightarrow (a>b\lor a=b)]$ で定める。

順序 \geq は自然数の順序によるから全順序である。n 次の単項式全体の集合は有限であるから、この順序において単項式の集合の最大元が存在する。

命題 20 (基本対称式の積による単項式) 基本対称式の積 $s_1^{d_1}s_2^{d_2}\cdots s_n^{d_n}$ の単項式のうち上で定めた順序で最大の $\sum\limits_{x_{k=1}}^n d_k \sum\limits_{x_{k=2}}^n d_k$ 項は $x^{k=1}$ $x^{k=1}$ $x^{k=2}$ $x^{k=2}$

証明 辞書式順序では小さい添字の次数のほうが優先されるから、 $s_1^{d_1}s_2^{d_2}\cdots s_n^{d_n}$ のうち、 x_1 の次数が一番高いものが候補である。

例 16 の定義からどの s_k の単項式も x_l の次数はたかだか 1 である。 よって、 すべての s_k について x_1 を含む項の積によってなる単項式の字数である $d_1+d_2+\cdots+d_n$ が x_1 の次数の最大である。 s_k の各項の次数は k であるから x_1 を含む項は n-1 個のうちから k-1 個を選ぶ組み合わせの数と同じであって、 x_1 がこの次数である項はいくつかあることがある。 s_1 の各項の次数は 1 であって x_1 を含むと x_2 を含むことができないから、これらの単項式のうち x_2 の次数が最大であるものは $d_2+\cdots+d_n$ である。続きは帰納的に示される。

定理 21 (対称式の表現) すべての対称式は基本対称式の多項式で表される。

証明 命題 20 から、順に基本対称式の積で表せる最大の単項式を引いていくと 0 になる。

具体的には、対称式 f の最大次数 l の最大の単項式の型 $\mathbf{a} = (a_1, a_2, \cdots, a_l)$ とすると、 $s_1^{a_1-a_2} s_2^{a_2-a_3} \cdots s_n^{a_n}$ の最大の項の型は \mathbf{a} だから、 $f - s_1^{a_1-a_2} s_2^{a_2-a_3} \cdots s_n^{a_n}$ の最大の項の型 \mathbf{b} について、 $\mathbf{a} > \mathbf{b}$ 。 帰納的に項の数が減っていく(もとの項の数を p とすると j ステップ目の項の数は p-j であることを帰納的に示すことができる)。

よって、定理を示すことができる。

2.3 Hilbert の基底定理

ここがわかりやすい。

- 3 正規部分群と商群
- 3.1 正規部分群と商群
- 3.2 準同型定理
- 3.3 次元定理
- 3.4 指標
- 4 射影幾何について