MATH 1800-C HANDOUT 2: VECTORS

Subhadip Chowdhury

Exercise 1

For the following problems, fill the box with either "certainly", "possibly", or "certainly not".

- 1. If $\vec{u} \cdot \vec{v} = \vec{w} \cdot \vec{v}$, then \vec{u} is equal to \vec{w} .
- 2. $\vec{u} \times \vec{v}$ is equal to $\vec{v} \times \vec{u}$.
- 3. Given three vectors \vec{u} , \vec{v} and \vec{w} , if $\vec{u} + \vec{v} = \vec{u}$, then $\vec{w} + \vec{v}$ is equal to \vec{w} .
- 4. $\|\vec{u} \vec{v}\|$ is less than or equal to $\|\vec{u} + \vec{v}\|$.

Exercise 2

Find a value c so that $3\hat{i} + 4\hat{j} + 5\hat{k}$ is perpendicular to $4\hat{i} + 2\hat{j} + c\hat{k}$.

Exercise 3

Find the equation of the plane parallel to 2x + 4y - 3z = 1 and passing through the point (1, 0, -1).

Exercise 4

In the diagram below, the force vectors $\vec{F_1}$ and $\vec{F_2}$ both have a magnitude of 10 newton. Determine the magnitude and direction of the force vector \vec{F} needed to counterbalance (i.e., neutralize) the combined action of $\vec{F_1}$ and $\vec{F_2}$.

Figure 1

Exercise 5

The vertices of a triangle $\triangle ABC$ are A = (4, 3, 2), B = (1, 3, 1), and C = (-5, 5, -2). Let D be the foot of the perpendicular from A to the side \overline{BC} . Find the vector \overline{AD} .

Exercise 6

Find the distance of the point P = (1, 0, 1) from the plane x + y - z = 1.

[HINT: Find a point Q on the plane. Find the normal vector \vec{n} of the plane. The distance is the projection of \overrightarrow{QP} in direction of \vec{n} .]

Exercise 7

Suppose λ and μ are real numbers such that

• the three vectors

$$\vec{u} = 2\hat{i} + 3\hat{j} + \hat{k},$$

$$\vec{v} = \hat{i} + \lambda\hat{j} + \mu\hat{k},$$

$$\vec{w} = 7\hat{i} + 3\hat{j} + 2\hat{k}$$

are coplanar, and

• The vector \vec{v} has magnitude $\sqrt{2}$.

Find all possible values of λ and μ .

Exercise 8

At each of the two points P and Q of the following topographical map draw vectors in the (instantaneous) directions you would have to walk from P and from Q to travel

- 1. the steepest uphill path from your starting point,
- 2. the steepest downhill path from your starting point, and
- 3. the path on which altitude remains constant.

What is the relationship between these three vectors at each point P and Q?

Figure 2