DATA 7001 INTRODUCTION TO DATA SCIENCE

Module 2 Getting the Data I Need

Module Topics

Types of Data

Data Ingestion

Managing Data Privacy

Sampling Big Data

(Structured) Data Sampling – Why?

- Reduction of data
 - Volume of data storage, accessibility
 - Convenience laptop vs. cluster
 - Smaller dataset with same data structure
 - Generally applicable

Data Sampling – What?

- Select data subset, usually according to probability rules
 - Simple Random Sampling
 - Each item has an equal chance of appearing in the sample
 - Weighted Random Sampling
 - Each item has a weight
 - Appears in sample proportional to weight
 - Stratified Sampling
 - Distinct groups (strata) present in data
 - Maintain representation of all groups in the sample
- Many other approaches (e.g. systematic sampling)

Data Sampling – What?

Data Sampling – What?

- Population
 - Set of items of interest (e.g. individuals, households)
- Data
 - Information pertaining to (usually part) of the population of interest
 - NB: Often, we only have data on a sample of the population!
- Sample
 - Subset of data, (random) representative of whole dataset

- Sampling Without Replacement (WOR)
 - Each time we add an item to the sample, it is excluded from being added again
 - No item is duplicated in the sample
 - Sampled items are DEPENDENT
- Sampling With Replacement (WR)
 - Each time we add an item to the sample, it is NOT excluded from being added again
 - Items could be duplicated in the sample
 - Sampled items are INDEPENENT
- NB: We will ONLY consider WR!

Simple Random Sampling

Given n items in the dataset, want to select m items for the sample, WR (where m<<n)

– For each of the m items in the sample, choose item i in the dataset with probability $p_i = 1/n$

Simple Random Sampling

	DATA ITEM	CATEGORY1	VALUE1
X 2	1	F	27
	2	F	21
	3	F	18
	4	F	35
	5	F	31
	6	F	22
	7	M	37
	8	F	21
	9	F	37
	10	M	55

SAMPLE ITEM	CATEGORY1	VALUE1
1	F	21
2	F	31
3	F	31
4	F	21

NB: Sampling Error with SRS can lead to loss of data features

- Weighted Random Sampling
 - Given n items in the dataset, each with a (positive) weight w_i, want to select m items for the sample, WR (where m<<n)
 - For each of the m items in the sample, choose item i in the dataset with probability p_i proportional to w_i
 - NB: The weights should be designed to capture data features of particular interest

Weighted Random Sampling (e.g. PPS)

DATA ITEM	CATEGORY1	VALUE1
1	F	27
2	F	21
3	F	18
4	F	35
5	F	31
6	F	22
7	M	37
8	F	21
9	F	37
10	M	55

PPS: Probability Proportional to Size

- Stratified Random Sampling
 - Given n items in the dataset, each belonging to one of s strata, want to select k items from each stratum giving m=sk items for the sample, WR (where m<<n)
 - For each of the s strata, choose each of the k samples for that stratum uniformly at random (i.e. according to SRS within the stratum)
 - NB: Strata can be created artificially by selecting ranges of a numerical variable (e.g. income bands)

Stratified Random Sampling

DATA ITEM	CATEGORY1	VALUE1
1	F	27
2	F	21
3	F	18
4	F	35
5	F	31
6	F	22
7	M	37
8	F	21
9	F	37
10	M	55

X 2

SAMPLE ITEM	CATEGORY1	VALUE1
1	F	21
2	F	21
3	M	37
4	M	37

NB: Two samples taken uniformly at random from each category `F' and `M'

- In general, stratified random sampling may not sample the same number of items from each stratum.
- Instead, the idea is to make sure that the "right" number of items are sampled from each stratum.
 - E.g. we may want to to preserve the proportion of the strata in some study
 - E.g. we may want to oversample a rare strata in order to perform meaningful statistical analysis on these rare strata.

Data Sampling – When?

- Sampling can occur during or after data collection
 - Here, we focus on the latter case
- Sampling methods (particularly SRS) are also used for analytic purposes (e.g. cross-validation of statistical models)
- Simple Random Sampling is easy; however, can lose data features (e.g. unusual items)
- Weighted Random Sampling or Stratified Sampling can be used to address this problem

Task and Discussion

For each of the three sampling methods, give an example of a dataset for which the method is appropriate.

POLL QUESTIONS - SAMPLING