Heaps

Readings - Chapter 9

Heaps

- A heap is a binary tree storing keys at its nodes and satisfying the following properties:
- Heap-Order: for every internal node v other than the root,

 $key(v) \ge key(parent(v))$

- Complete Binary Tree: let h be the height of the heap
 - for i = 0, ..., h 1, there are 2^i nodes of depth i
 - at depth h 1, the internal nodes are to the left of the external nodes

 The last node of a heap is the rightmost node of maximum depth

last node

heap property

Structural property

Example of non-Heaps

Heap property violation

Structural property violation

Finding the minimum element

- The element with the smallest key value always sits at the root of the heap.
 - If it is elsewhere, it would have a parent with a larger key, thus violating the heap property.
 - hence finding the minimum can be done in O(1) time

Heaps

Height of a Heap

□ Theorem: A heap storing n keys has height $O(\log n)$

Proof: (we apply the complete binary tree property)

- Let h be the height of a heap storing n keys
- Since there are 2^i keys at depth i = 0, ..., h-1 and at least one key at depth h, we have $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$
- Thus, $n \ge 2^h$, i.e., $h \le \log n$

Array-based Heap Implementation

- We can represent a heap withn keys by means of an array of length n
- □ For the node at index *i*
 - the left child is at index 2*i* + 1
 - the right child is at index 2i + 2
 - parent(*i*) is *floor*((*i-1*)/2)
- Operation add corresponds to inserting at index n + 1
- Operation remove_min corresponds to removing at index n

2	5	6	9	7
0	1	2	3	4

Heaps and Priority Queues

- □ We can use a heap to implement a priority queue
- We store a (key, element) item at each internal node
- We keep track of the position of the last node

Insertion into a Heap

- Method insertItem of the priority queue ADT corresponds to the insertion of a key k to the heap
- □ The insertion algorithm consists of three steps
 - Find the insertion node *z* (the new last node)
 - Store k at z
 - Restore the heap-order property (discussed next)

Insertion into a Heap

- Method insertItem of the priority queue ADT corresponds to the insertion of a key k to the heap
- The insertion algorithm consists of three steps
 - Find the insertion node z (the new last node)
 - Store k at z
 - Restore the heap-order property (discussed next)

- \Box After the insertion of a new key k, the heap-order property may be violated
- floor Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- ullet Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- \square Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

- \Box After the insertion of a new key k, the heap-order property may be violated
- floor Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- \square Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

- \Box After the insertion of a new key k, the heap-order property may be violated
- floor Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- ullet Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- \square Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

- \Box After the insertion of a new key k, the heap-order property may be violated
- ullet Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- ullet Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- \square Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

- \Box After the insertion of a new key k, the heap-order property may be violated
- floor Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- \square Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

- \Box After the insertion of a new key k, the heap-order property may be violated
- floor Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- \square Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

- \Box After the insertion of a new key k, the heap-order property may be violated
- floor Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- \square Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

Another View of Insertion

- Enlarge heap
- Consider path from root to inserted node
- Find topmost element on this path with higher priority that of inserted element
- Insert new element at this location by shifting down the other elements on the path

Heaps

Correctness of Upheap

- The only nodes whose contents change are the ones on the path
- Heap property may be violated only for children on these nodes
- But new contents of these nodes only have lower priority
- So heap property is not violated

Removal from a Heap

- Method removeMin of the priority queue ADT corresponds removing the root key from the heap
- □ The removal algorithm consists of three steps
 - Replace the root key with the key of the last node w
 - Remove w
 - Restore the heap-order property (discussed next)

Removal from a Heap

- Method removeMin of the priority queue ADT corresponds removing the root key from the heap
- □ The removal algorithm consists of three steps
 - Replace the root key with the key of the last node w
 - Remove w
 - Restore the heap-order property (discussed next)

- ullet After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- floor Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- □ Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time

- ullet After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- floor Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- □ Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time

- ullet After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- floor Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- □ Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time

- ullet After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- floor Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- □ Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time

- ullet After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- floor Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- □ Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time

- ullet After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- floor Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- □ Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time

- ullet After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- floor Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- □ Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time

Correctness of Downheap

- Downheap traces a path down the tree
- For a node on the path (say j) both key(left(j)) and key(right(j)) > key(j)
- All elements on path have lower key values than their siblings
- All elements on this path are moved up.
- Hence the heap property is not violated.

Run Time Analysis

- heap of n nodes has height O(log n)
- insertion Upheap move the element all the way to the top
 - O(log n) steps in worst case
- removal Downheap move the root element all the way to a leaf
 - O(log n) steps in worst case

Heaps

Building a heap

- Call Upheap procedure of the heap n times.
 - Upheap is O(log n)
 - inserting first element O(log 1)
 - inserting second element O(log 2)

 - inserting the nth element O(log n)
 - so for the n insertions log 1+ log 2+...+log n = log n! = O(nlog n)

Merging Two Heaps

- We are given two heaps and a key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform Downheap to restore the heap-order property

Heaps

Building a Heap – Bottomup

Building a Heap – Bottomup

Bottom-up Heap Construction

- We can construct a heap storing n
 given keys in using a bottom-up
 construction with log n phases
- In phase i, pairs of heaps with 2^{i} 1 keys are merged into heaps with 2^{i+1} –1 keys

Building a Heap – Bottomup Analysis

- Correctness: induction on *i*, all trees rooted at *m > i* are heaps
- Running time: n calls to Downheap
 - Downheap − O(log n)
 - so total running time O(nlog n)
- □ We can provide a better bound O(n)
 - Idea for most of the time, Downheap works on smaller than n element heaps

Building a Heap – Bottomup Analysis (2)

- height of node: length of longest path from node to leaf
- height of tree: height of root

Building a Heap – Bottomup Analysis (3)

- height of node: length of longest path from node to leaf
- height of tree: height of root
- time for Downheap(i) = O(height of subtree rooted at i)
- □ Let us assume a complete binary tree
 - $n = 2^{h+1} 1$

Building a Heap – Bottomup Analysis (4)

Building a Heap – Bottomup Analysis (5)

- □ 0th level 2^h nodes, no need to call Downheap
- □ 1st level 2^{h-1} nodes, Downheap 1 swap
- □ 2nd level 2^{h-2} nodes, Downheap 2 swaps
- □ jth level 2^{h-j} nodes, Downheap j swaps
- □ hth level − 1 node, Downheap − h swaps
- So total number of swaps is

$$\sum_{j=0}^{h} j 2^{h-j} = \sum_{j=0}^{h} j \frac{2^{h}}{2^{j}} = 2^{h} \sum_{j=0}^{h} \frac{j}{2^{j}}$$

- It can be shown that, this is bound by 2^(h+1)
- $2^{(h+1)} = n-1$
- Therefore O(n)

Selection-Sort

- Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted sequence
- Running time of Selection-sort:
 - 1. Inserting the elements into the priority queue with n insert operations takes O(n) time
 - 2. Removing the elements in sorted order from the priority queue with n removeMin operations takes time proportional to

$$n + n + 1 + \dots + 2 + 1$$

 \Box Selection-sort runs in $O(n^2)$ time

Selection-Sort Example

Input:	Sequence S (7,4,8,2,5,3,9)	Priority Queue P ()
Phase 1 (a) (b)	(4,8,2,5,3,9) (8,2,5,3,9)	(7) (7,4)
 (g)	0	(7,4,8,2,5,3,9)
Phase 2 (a) (b) (c) (d) (e) (f) (g)	(2) (2,3) (2,3,4) (2,3,4,5) (2,3,4,5,7) (2,3,4,5,7,8) (2,3,4,5,7,8,9)	(7,4,8,5,3,9) (7,4,8,5,9) (7,8,5,9) (7,8,9) (8,9) (9)

Insertion-Sort

- Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted sequence
- Running time of Insertion-sort:
 - Inserting the elements into the priority queue with n insert operations takes time proportional to

$$1 + 2 + ... + n$$

- Removing the elements in sorted order from the priority queue with a series of *n* removeMin operations takes O(*n*) time
- □ Insertion-sort runs in O(n²) time

Insertion-Sort Example

	Sequence S	Priority queue P
Input:	(7,4,8,2,5,3,9)	0
Phase 1 (a) (b) (c) (d) (e) (f) (g)	(4,8,2,5,3,9) (8,2,5,3,9) (2,5,3,9) (5,3,9) (3,9) (9)	(7) (4,7) (4,7,8) (2,4,7,8) (2,4,5,7,8) (2,3,4,5,7,8) (2,3,4,5,7,8,9)
Phase 2 (a) (b) (g)	(2) (2,3) (2,3,4,5,7,8,9)	(3,4,5,7,8,9) (4,5,7,8,9) ()

In-place Insertion-Sort

- Instead of using an external data structure, we can implement selection-sort and insertion-sort inplace
- A portion of the input sequence itself serves as the priority queue
- For in-place insertion-sort
 - We keep sorted the initial portion of the sequence
 - We can use swaps instead of modifying the sequence

Heap-Sort

- Consider a priority queue with n items implemented by means of a heap
 - the space used is O(n)
 - methods insert and removeMin take O(log n) time
 - methods size, isEmpty, and min take time O(1) time

- Using a heap-based priority queue, we can sort a sequence of n elements in $O(n \log n)$ time
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort

Heap Sort

- Consider a priority queue with n items implemented by means of a heap
 - the space used is O(n)
 - methods insert and removeMin takeO(log n) time
 - methods size, isEmpty, and min take time O(1) time

- Using a heap-based priority queue, we can sort a sequence of nelements in $O(n \log n)$ time
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort

Heap Sort

- Create a heap
- Do removeMin repeatedly till head becomes empty
- To do an in place sort, we move deleted element to end of heap

Heap Sort (23)26 (31)(33)12 25 17 29 20 23 31 **26** 33 Heaps 53

Heap Sort 33 8 (23)(26) (31)12 25 17 29 20 23 31 26 8 Heaps 54

Heap Sort 33 8 (23)(26) (31)33 12 25 17 29 20 23 31 26 8 Heaps 55

Heap Sort 8 (23)(26) (31)33 **25 17** 29 20 23 31 26 8 Heaps 56

Heap Sort (33)(23)(26) (31)8 20 **25 17** 29 33 23 31 26 8 Heaps 57

Heap Sort 26 (33)8 (23)(11)(31)26 20 25 17 29 33 23 31 Heaps 58

Heap Sort 26 (33)8 (23)(11)(31)26 20 25 17 29 33 23 31 Heaps 59

Heap Sort (33)8 (23)(11)(31)20 26 25 17 29 33 23 31 Heaps 60

Heap Sort (33)8 (26)(11)(31)20 23 **25 17** 29 33 26 31 Heaps 61

Heap Sort (33)(26)(11) **17** 12 11 Heaps

Heap Sort 33 29 31 25 (13)(11)8 26 25 23 33 31 20 17 13 12 Heaps 63

Heapsort - Analysis

- □ Create a heap O(n)
- Do removeMin repeatedly till head becomes empty
 - $O(\log n) + O(\log n-1) + O(\log n-2) + ... O(1) = O(n \log n)$
- To do an in place sort, we move deleted element to end of heap