линейни хомогенни уравнения

Да разгледаме линейното диференциално уравнение

(1)
$$L(x) \equiv a_0(t)x^{(n)} + a_1(t)x^{(n-1)} + \cdots + a_n(t)x = f(t),$$

където коефициентите $a_{\nu}, \ \nu = 0, 1, \dots, n$, и f са комплексни функции на реалната променлива t, дефинирани и непрекъснати в интервала $(\alpha, \beta) \subset \mathbf{R}$. (Дали (α, β) е отворен или затворен, краен или безкраен, е без значение.) По-нататък ще разглеждаме (1) при основното предположение, че коефициентът $a_0\!=\!1$, без да споменаваме това изрично. Числото п се нарича ред на диференциалното

уравнение.

Основната задача за (1), която ще изследваме, е задачата на Коши: Дадени са $t_0 \in (\alpha, \beta)$ и произволна n-орка от комплексни числа $x_0, x_0', x_0'', \ldots, x_0^{(n-1)}$. Търсим решение на (1), което удовлетворява началните условия

(2)
$$x(t_0) = x_0, \quad x^{(\nu)}(t_0) = x_0^{(\nu)}, \quad \nu = 1, 2, ..., n-1.$$

Най-важният резултат в теорията на линейните уравнения е следната

Теорема за съществуване и единственост. При направените предположения съществува единствено решение на задачата (1), (2) и то е дефинирано в целия интервал (α, β) .

Обърнете внимание, че броят на началните условия (2) е равен на п, т.е. съвпада с реда на уравнението (в пълно съответствие с вече изследвания в § 8 на гл. 1 случай n=1).

Характерна особеност на задачата на Коши в линейния случай и в частност на задачата (1), (2) е, че решението се оказа дефинирано в целия дефиниционен интервал на коефициентите Теоремата за съществуване и единственост

ще бъде в основата на следващите построения, които по същество имат алгебричен характер.

Лема 1. Решенията на линейното хомогенно уравнение

(3)
$$L(x) \equiv \sum_{\nu=0}^{n} a_{\nu}(t) x^{(n-\nu)} = 0$$

образуват (комплексно) линейно пространство.

Доказателство. Нека x_1, x_2, \ldots, x_k са функции от $C^n(a, b)$, а C_1, C_2, \ldots, C_k са комплексни константи. Очевидно

(4)
$$L\left(\sum_{\nu=1}^k C_\nu x_\nu\right) = \sum_{\nu=1}^k C_\nu L(x_\nu).$$

Следователно от $L(x_{\nu})=0,\ \nu=1,\ldots,k,$ имаме $L\left(\sum\limits_{\nu=1}^{k}C_{\nu}x_{\nu}\right)=0$ и лемата е доказана.

Възниква въпросът за размерността на пространството \mathfrak{N} от всевъзможните решения на (3). Ще докажем, че $\dim \mathfrak{N} = \mathfrak{n}$.

Дефиниция 1. Нека $t \longrightarrow f_{\nu}(t), \ t \in (\alpha, \beta)$, $\nu = 1, 2, \dots, k$, са комплексни функции. Ще казваме, че системата f_1, f_2, \dots, f_k е линейно независима в (α, β) , когато тъждеството

$$\sum_{\nu=1}^{k} C_{\nu} f_{\nu}(t) \equiv 0 \quad \mathbf{B} \quad (\alpha, \beta)$$

е възможно само ако всяка от комплексните константи C_1, \ldots, C_k е равна на нула.

Дефиниция 2. Ще казваме, че решенията $x_1, x_2, ..., x_n$ (3) образуват фундаментална система, когато $x_1, x_2, ..., x_n$ са линейно независими в (α, β) **.

Засега не знаем дали фундаментални системи изобщо съществуват. За щастие въпросът се решава елементарно с помощта на един прост критерий.

^{*}Операторът $x \longrightarrow L(x)$ се нарича линеен именно защото удовлетворява (4).

^{**}Обърнете внимание, че по дефиниция фундаменталната система се със тои от п решения.

Дефиниция 3. Нека x_1, \ldots, x_n са функциите от $C^{n-1}(\alpha, \beta)$. Детерминантата

$$W(t) \stackrel{\text{def}}{=} \begin{vmatrix} x_1(t) & \dots & x_n(t) \\ x'_1(t) & \dots & x'_n(t) \\ \vdots & \vdots & \vdots \\ x_1^{(n-1)}(t) & \dots & x_n^{(n-1)}(t) \end{vmatrix}$$

се нарича детерминанта на Вронски за системата $\{x_{\nu}\}_{1}^{n}$.

Лема 2. Нека x_1, x_2, \ldots, x_n е произволна n-орка от решения на хомогенното уравнение (3) и W = W(t) е нейната детерминанта на Вронски. В такъв случай следните три твърдения са еквивалентни:

а) $W(t_0) \neq 0$ за поне едно $t_0 \in (\alpha, \beta)$;

б) системата x_1, x_2, \ldots, x_n е фундаментална;

в) $W(t) \neq 0$ за всяко $t \in (\alpha, \beta)$.

Доказателство. Достатъчно е да установим имп-

ликациите $a \rightarrow b \rightarrow a$.

За да докажем, че от а) следва б), да допуснем, че $W(t_0) \neq 0^s$ за някакво $t_0 \in (\alpha, \beta)$, но въпреки това системата $\{x_\nu\}_1^n$ е линейно зависима. Последното означава, че съществуват комплексни константи $\{C_\nu\}_1^n$ такива, че

(5)
$$\sum_{\nu=1}^{n} C_{\nu} x_{\nu}(t) \equiv 0 \quad \mathbf{B} \quad (\alpha, \beta)$$

и поне една от тях е различна от нула. Като диференцираме (5) спрямо t, получаваме

(6)
$$\sum_{\nu=1}^{n} C_{\nu} x_{\nu}^{(k)}(t) \equiv 0 \quad \mathbf{B} \quad (\alpha, \beta) , \quad \forall \quad k=1,2,\ldots,n-1.$$

Тъждествата (5) и (6) показват, че стълбовете в детерминантата на Вронски са линейно зависими. Следователно $W(t) \equiv 0$ в (α, β) , което противоречи на а).

За да докажем, че от б) следва в), да допуснем, че x_1, x_2, \ldots, x_n е фундаментална, но $W(t_0)=0$ за някакво $t_0\in(\alpha,\beta)$. След това

да разгледаме системата от линейни алгебрични уравнения

(7)
$$\sum_{\nu=1}^{n} C_{\nu} x_{\nu}^{(k)}(t_{0}) = 0, \qquad k = 0, 1, 2, \dots, n-1,$$

с неизвестни C_1, C_2, \ldots, C_n . Понеже детерминантата на (7) е точ но $W(t_0)$, от равенството $W(t_0)=0$ и от теоремата на Руше следва, че (7) има ненулево решение $\{C_\nu\}$, $\nu=1,2,\ldots,n$. След като направихме тази констатация, да разгледаме функцията

$$\eta(t) \stackrel{\text{def}}{=} \sum_{\nu=1}^{n} C_{\nu} x_{\nu}(t),$$

където C_1, C_2, \ldots, C_n са компонентите на някакво ненулево решение на (7).

Понеже функциите $\{x_{\nu}\}_{1}^{n}$ удовлетворяват хомогенното уравнение, според лема 1 и $\eta = \eta(t)$ има това свойство. От друга страна, дефиницията на η ни позволява да запишем системата (7) във вида

(8)
$$\eta(t_0) = 0, \quad \eta'(t_0) = 0, \ldots, \quad \eta^{(n-1)}(t_0) = 0.$$

Тези равенства показват, че η е решение на задачата на Коши за хомогенното уравнение L(x)=0 с нулеви начални условия.

Следователно теоремата за единственост ни дава $\eta(t) \equiv 0$ в (α, β) , т.е.

(9)
$$\sum_{\nu=1}^{n} C_{\nu} x_{\nu}(t) \equiv 0.$$

Оказа се, че системата $\{x_{\nu}\}_{1}^{n}$ е линейно зависима, противно на предположението. С това импликацията б) \longrightarrow в) е установена.

Понеже от в) следва а), доказателството на лема 2 е завъргиено. С нежиз

шено. С нейна помощ леко получаваме

Теорема 1. Уравнението (3) притежава безбройно фундаментални системи.

Доказателство. Да вземем произволна ненулева

петерминанта

$$A = \begin{vmatrix} a_1^1 & a_2^1 & \dots & a_n^1 \\ a_1^2 & a_2^2 & \dots & a_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^n & a_2^n & \dots & a_n^n \end{vmatrix} \neq 0$$

с едементи комплексни числа. Да фиксираме $t_0 \in (\alpha, \beta)$ и да $_{
m paз}$ гледаме задачата на Коши

(10)
$$L(x) = 0$$
, $x^{(\nu)}(t_0) = a_k^{(\nu+1)}$, $\nu = 0, 1, 2, ..., n-1$.

 A_{KO} x_k е решението на (10) (според теоремата за съществуване x_k наистина съществува), за $k=1,2,\ldots,n$ получаваме системата x_1,x_2,\ldots,x_n от решения на (3), която очевидно е фундаментална. Наистина нека W е нейната детерминанта на Вронски. Очевидно $W(t_0)=A\neq 0$ и твърдението следва от лема 2.

Теорема 2. Линейното пространство \mathfrak{N} , образувано от решенията на (3), има размерност n и всяка фундаментална система на (3) е негова база.

 Π о к а з а т е л с т в о. Нека x = x(t) е решение на L(x) = 0 и $t_0 \in (\alpha, \beta)$ е произволна точка. Да вземем произволна фундаментална система $\{x_{\nu}\}_{1}^{n}$ от решения на (3) и да разгледаме линейната система

(11)
$$\sum_{\substack{\nu=1\\n}}^{n} C_{\nu} x_{\nu}(t_{0}) = x(t_{0}),$$

$$\sum_{\nu=1}^{n} C_{\nu} x_{\nu}'(t_{0}) = x'(t_{0}),$$

$$\sum_{\nu=1}^{n} C_{\nu} x_{\nu}^{(n-1)}(t_{0}) = x^{(n-1)}(t_{0})$$

с неизвестни C_1, C_2, \ldots, C_n . Понеже детерминантата на (11) е точно $W(t_0)$ и $W(t_0) \neq 0$, веднага заключаваме, че (11) има решение. След като разполагаме с този резултат, да разгледаме решението $\eta(t) \stackrel{\text{def}}{=} \sum_{\nu=1}^{n} C_{\nu} x_{\nu}(t)$ на (3) с константи C_1, C_2, \ldots, C_n , удовлетворяващи (11). Като представим (11) във вида (12) $\eta(t_0) = x(t_0)$, $\eta^{(\nu)}(t_0) = x^{(\nu)}(t_0)$, $\nu = 1, 2, \ldots, n-1$,

и приложим теоремата за единственост, получаваме $\eta(t) \equiv x(t)$, т.е.

(13)
$$x(t) = \sum_{\nu=1}^{n} C_{\nu} x_{\nu}(t), \qquad t \in (\alpha, \beta),$$

и доказателството е завършено. Равенството (13) е известно като формула за общото решение на (3).

ЛИНЕЙНИ НЕХОМОГЕННИ УРАВНЕНИЯ

Да разгледаме нехомогенното уравнение

$$(*) L(x) = f(x)$$

при предположение, че и f, както и коефициентите на (*) са дефинирани и непрекъснати в (α, β) . Следващата лема описва структурата на общото решение на (*).

Лема 1. Нека $x_0 = x_0(t)$ е решение на (*) и x_1, x_2, \ldots, x_n е фундаментална система на (3). В такъв случай всяко решение x = x(t) на (*) има вида

$$x(t) = x_0(t) + \sum_{\nu=1}^n C_{\nu} x_{\nu}(t), \qquad t \in (\alpha, \beta),$$

където $\{C_{\nu}\}_{1}^{n}$ са подходящи константи.

Доказателство. Нека x=x(t) е решение на (*). Като извадим равенствата

$$L(x)=f(t)$$
 и $L(x_0)=f(t)$,

получаваме $L(x-x_0)=0$ и твърдението следва веднага от (13).