[10191/2253]

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s)

Thorsten PANNEK et al.

Serial No.

To Be Assigned

Filed

Herewith

For

MICROPATTERNED THERMOSENSOR

Art Unit

To Be Assigned

Examiner

To Be Assigned

Assistant Commissioner for Patents Washington, D.C. 20231

:

PRELIMINARY AMENDMENT AND 37 C.F.R. § 1.125 SUBSTITUTE SPECIFICATION STATEMENT

SIR:

below.

Please amend the above-identified application before examination, as set forth

IN THE SPECIFICATION AND ABSTRACT:

In accordance with 37 C.F.R. § 1.121(b)(3), a Substitute Specification (including the Abstract, but without claims) accompanies this response. It is respectfully requested that the Substitute Specification (including Abstract) be entered to replace the Specification of record.

IN THE CLAIMS:

On the first page of the claims, first line, change "What is claimed is:" to --WHAT IS CLAIMED IS:--.

Please cancel, without prejudice, claims 1 to 12 in the underlying PCT application.

Please add the following new claims:

- --13. (New) A micropatterned thermosensor, comprising:
- a supporting body; and
- at least one thermocouple located on the supporting body, the thermocouple including a first material and a second material which form at least in a point-wise manner, at least one thermal contact with each other, at least one of the first material and the second material at least regionally configured in the form of one of a meander-shaped and an undulating-type circuit trace and arranged on the supporting body.
- 14. (New) The micropatterned thermosensor according to claim 13, wherein the micropatterned thermosensor includes an infrared sensor.
- 15. (New) The micropatterned thermosensor according to claim 13, wherein the first material and the second material extend one of substantially side-by-side in the form of circuit traces, the first material and the second material electrically insulated from one another with the exception of thermal contacts, and extend over one another at least regionally in the form of circuit traces, the first material and the second material electrically insulated from one another with the exception of thermal contacts.
- 16. (New) The micropatterned thermosensor according to claim 15, wherein the thermocouple includes a plurality of thermal contacts configured as one of a thermal chain and a thermal column, at least two of the thermal contacts exposed to different temperatures.
- 17. (New) The micropatterned thermosensor according to claim 16, wherein a first one of the thermal contacts is exposed to a first temperature, the first temperature kept one of constant and at least approximately constant, and a second one of the thermal contacts is exposed to a second temperature, the second temperature to be one of detected and measured, the thermosensor further comprising an additional measuring device configured to detect the first temperature.
- 18. (New) The micropatterned thermosensor according to claim 17, wherein the measuring device one of includes a part of one of one of the circuit traces, arranged in the vicinity of one of the first thermal contact, and of a conductor and includes a reference circuit

2

NY01 454290 v 2

trace as a sensitive component, arranged in a vicinity of the first thermal contact, and wherein the measuring device includes an evaluation arrangement configured to determine a temperature dependent, electrical resistance of one of the part of the trace, the conductor and the reference circuit trace.

- 19. (New) The micropatterned thermosensor according to claim 13, wherein at least one of the first and the second material includes a material having low thermal conductivity.
- 20. (New) The micropatterned thermosensor according to claim 13, wherein the first and the second material includes at least one of platinum, gold, lead tellurides, aluminum, titanium, polysilicon, doped polysilicon, polysilicon-germanium, and doped polysilicon-germanium.
- 21. (New) The micropatterned thermosensor according to claim 20, wherein the first material includes one of doped and undoped polysilicon-germanium and the second material includes platinum.
- 22. (New) The micropatterned thermosensor according to claim 18, wherein the one of the part of the circuit trace, the conductor and the reference circuit trace includes a platinum circuit trace.
 - 23. (New) A micropatterned thermosensor, comprising:
 - a supporting body; and
- at least one thermocouple located on the supporting body, the thermocouple including a first material and a second material, which form at least in a point-wise manner at least one thermal contact with each other, the second material including platinum and the first material including one of doped and undoped polysilicon-germanium.
- 24. (New) The micropatterned thermosensor according to claim 23, wherein the micropatterned thermosensor includes an infrared sensor.
- 25. (New) The micropatterned thermosensor according to claim 23, wherein at least one of the first material and the second material is configured at least regionally in a form of

3

NY01 454290 v 2

one of a meander-shaped and an undulating-type circuit trace and extends on the supporting body.

26. (New) The micropatterned thermosensor according to claim 23, wherein the thermocouple includes a plurality of contacts configured as one of a thermal chain and a thermal column, at least two thermal contacts exposed to different temperatures.--.

REMARKS

This Preliminary Amendment cancels without prejudice original claims 1 to 12 in the underlying PCT Application No. PCT/DE01/02145 and adds without prejudice new claims 13 to 26. The new claims, *inter alia*, conform the claims to U.S. Patent and Trademark Office rules and do not add new matter to the application.

In accordance with 37 C.F.R. § 1.121(b)(3), the Substitute Specification (including the Abstract, but without the claims) contains no new matter. The amendments reflected in the Substitute Specification (including Abstract) are to conform the Specification and Abstract to U.S. Patent and Trademark Office rules or to correct informalities. As required by 37 C.F.R. § 1.121(b)(3)(iii) and § 1.125(b)(2), a Marked-Up Version of the Substitute Specification comparing the Specification of record and the Substitute Specification also accompanies this Preliminary Amendment. Approval and entry of the Substitute Specification (including Abstract) is respectfully requested.

The underlying PCT Application No. PCT/DE01/02145 includes an International Search Report, dated September 6, 2001. The Search Report includes a list of documents that were uncovered in the underlying PCT Application. A copy of the Search Report accompanies this Preliminary Amendment.

4

NY01 454290 v 2

Ngr by (6/11/11) Roy. No. 42,134

Applicants assert that the subject matter of the present application is new, non-obvious, and useful. Prompt consideration and allowance of the application are respectfully requested.

Respectfully Submitted,

KENYON & KENYON

y: Ve Victoria L. Mayer

(Reg. No. 22,490)

One Broadway New York, NY 10004

(212) 425-7200

Dated: MARCH 11,2002

[10191/2253]

MICROPATTERNED THERMOSENSOR

FIELD OF THE INVENTION

The present invention relates to a micropatterned thermosensor, [in particular an infrared sensor, according to the definition of the species in the independent claims.]

e.g., an infrared sensor.

5

10

15

20

25

30

[Background Information

BACKGROUND INFORMATION

[Known] <u>Conventional</u> infrared sensors, such as they are used in safety engineering, plant technology or in the household appliance industry, measure the temperature of a body from the infrared radiation it emits. Basically, the distinction is made among so-called pyroelectric, bolometric as well as thermoelectric sensors.

It is [known] <u>conventional</u> to produce thermoelectric sensors using thin-film technology, for instance on polyimide foil. Furthermore, micropatterned thermosensors based on silicon technology are also generally [known] <u>conventional</u>.

German <u>Published Patent</u> Application [DE] <u>No.</u> 199 32 [308.9]

308 [proposes, for instance,] <u>describes</u> manufacturing a
thermosensor in the form of a thermal column that is
positioned on an at least substantially self-supporting
membrane, the thermal contacts of this thermal column being
designed to alternate as "hot" and "cold" thermal contacts and
being connected to a supporting body by appropriate contact
columns, as well as being electrically controllable via these
contact columns. [The] German <u>Published Patent</u> Application <u>No.</u>
199 32 308 also [proposes] <u>describes</u> implementing the
thermocouples running on the surface of the substantially

MARKED-UP VERSION OF THE SUBSTITUTE SPECIFICATION

self-supporting membrane in the form of circuit traces, which are alternately produced from a first and a second material, so that thermal contacts are created in the region where these two materials come in contact. The first material, in this case, is aluminum, while polysilicon is used as a second material.

[The] German Published Patent Application [DE] No. 100 09 [593.3 proposes] 593 describes designing a micropatterned thermosensor in the form of an infrared-sensor, for instance, using sacrificial layer technology or some other etching technology, by first creating a thin, self-supporting membrane on a silicon substrate, which is thermally decoupled from a subjacent substrate due to its low thermal conductivity, so that in response to incident infrared radiation, the membrane is warmed more than the substrate. A plurality of micropatterned sensor elements or thermocouples are then situated on the membrane, which thermoelectrically convert a temperature difference between the center of the membrane and the substrate into an electrical signal that is proportional thereto. In accordance with [the] German Published Patent Application No. 100 09 [593.3] 593, the material combinations platinum/polysilicon, aluminum/polysilicon or p-type doped polysilicon/n-type doped silicon are used for the thermocouples created on the self-supporting membrane in the form of circuit traces. The material combination polysilicon/aluminum, which is used primarily in bulk micro-technology, [has] may have the advantage of being CMOS-compatible.

30

5

10

15

20

25

[Lastly, it is known] <u>It is conventional</u> that gold, antimony, bismuth and lead tellurides may also be used as materials for thermocouples, with gold also being suitable for bulk micromechanics.

[The] It is an object of the present invention [is] to [devise] provide a micropatterned thermosensor having improved sensitivity and stability at higher temperatures than [the known] conventional micropatterned thermal sensors.

5

10

15

[Summary of the Invention

] SUMMARY

Due to at least one of the patterning of the printed circuit traces on the supporting body and/or the particular choice of materials for the thermocouple, the micropatterned thermosensor according to the present invention [has] may have the advantage [over the related art] of achieving a higher temperature sensitivity, without this entailing significant changes in the current manufacturing methods for micropatterned thermosensors. Specifically, according to the present invention, it is merely the layout of the produced printed circuit traces of the thermocouples and/or the material used for depositing these printed circuit traces that are/is modified.

20

25

[It is furthermore advantageous that, through] Through the choice of materials for the thermocouple, i.e., the material combination platinum or aluminum with doped or undoped polysilicon-germanium, the produced micropatterned thermosensor [has] may have a markedly increased temperature stability compared to [known] conventional thermosensors using aluminum with polysilicon, for instance, as material for the thermocouple.

30

35

Through the choice of materials for the thermocouple, migration effects occurring at temperatures above 200° C may [now] also be avoided, and thus stability problems in the produced thermosensor, as often observed in sensors where polysilicon and aluminum are used as material for the thermocouple.

Furthermore, the aluminum widely used in [known] conventional methods [heretofore] is an excellent thermal heat conductor, which means that the thermocouple manufactured therefrom has a relatively low thermoelectric effectiveness, whereas platinum, on the one hand, may be used at temperatures of up to 400° C and, on the other hand, has a thermal conductivity that is lower by a factor of 3 compared to aluminum. In contrast to polycrystalline silicon, polycrystalline, doped or undoped polysilicon-germanium also has a thermal conductivity that is lower by a factor of 3 to 8 and, therefore, also results in a markedly increased thermoelectric effectiveness of the produced thermocouple.

[Advantageous further refinements of the present invention are derived from the measures indicated in the dependent claims.

In particular, an] An especially high increase in sensitivity and an especially good temperature stability of the thermosensor [are] may be achieved by a combination of the [novel,] meander-shaped or undulating-type layout of the micropatterned circuit traces on the surface of the supporting body and the mentioned special materials for the thermocouple.

[It is also advantageous that, depending] <u>Depending</u> on the intended use of the micropatterned thermocouple, for instance, as an infrared sensor, the mentioned materials for the thermocouple may be combined with one another, using p-type doped or n-type doped material for the semiconductor material.

30 Since a temperature difference between so-called "hot" and "cold" contacts [is] may be thermoelectrically converted into a measurable electric voltage in micropatterned thermosensors, the "cold" points either [must] may be kept at a constant temperature, or this temperature [must] may be known or referenced relative to the temperature of the "hot" contact. Normally, for that purpose in [known] conventional methods

5

10

15

20

[heretofore], so-called thermistors are integrated in hybrid technology on the supporting body for the thermocouple, since the employed materials, aluminum and polysilicon, are often not sensitive enough to determine this reference temperature.

When using platinum as thermoelectric material, it [is then also advantageously] <u>may be</u> possible [in this context] to integrate, or deposit, a high-precision, resistive temperature measuring element on the silicon chip, or the supporting body supporting the thermocouple, during the same manufacturing step as that for the corresponding printed circuit trace or conductor. This eliminates the need for an additional thermistor.

Implementing the printed circuit traces in the form of meander-shaped, or undulating-type printed circuit traces [running] extending on the supporting body, [offers] may offer the further possibility of implementing only those printed circuit traces having the lower internal resistance in the form of meanders, since increased noise voltage [results] may result when a meander or undulating-type pattern is used in materials having a high electrical resistance.

[It should also be emphasized that the] <u>The</u> meander-shaped or undulating-type circuit traces may be implemented as [running] <u>extending</u> side-by-side and also as overlapping or running one over another, at least regionally, in which case they [must] <u>may</u> then be separated from one another in an electrically insulating manner by suitable insulating layers of oxides, for instance. If sufficient surface area is available, it [is usually] <u>may be</u> advantageous to configure the circuit traces side-by-side.

[Lastly, it is now easily] <u>It may be</u> possible to also vary, or increase, the sensitivity of the resulting micropatterned thermosensor by varying the number of undulations or meanders.

5

10

25

30

In this context, one utilizes the fact that the thermal resistance of a printed circuit trace increases with length, that is, the thermal resistance of a printed circuit trace having a meander pattern is greater than that of one using a corresponding straight-line pattern.

[Brief Description of the Drawings

The invention is explained in greater detail in the following description with reference to the drawing.

BRIEF DESCRIPTION OF THE DRAWING

[The figure shows] <u>Figure 1 illustrates</u> a single thermocouple created on the surface of a supporting body in the form of deposited printed circuit traces running side-by-side.

[Exemplary Embodiments

] DETAILED DESCRIPTION

[In the elucidated exemplary] In the example embodiment, the present invention is initially based on an infrared sensor, as is [already proposed] described in [the] German Published

Patent Application [DE] No. 100 09 [593.3] 593. However, the infrared sensor it [proposes] describes is modified in two respects.

25

30

5

10

15

20

Specifically, as [already proposed] <u>described</u> in [the] German <u>Published Patent</u> Application [DE] <u>No.</u> 100 09 [593.3] <u>593</u>, an at least substantially self-supporting membrane is created from a poorly heat-conducting material, such as an oxide, a nitride or a combination of both materials, on a substrate material having good heat-conducting properties, for instance, silicon.

[Preferably, this] <u>The</u> at least substantially self-supporting membrane, which [is then] <u>may be</u> used as supporting body 12

for a thermocouple 20 to be deposited thereon, [is] $\underline{may\ be}$ made of silicon dioxide, silicon nitride or of porous silicon.

A plurality of thermocouples 20 [is then] may be created on the surface of this supporting body 12. They [are] may be connected in series and arranged in a cross-pattern or star-pattern. [According to the figure,] As illustrated in Figure 1, which only [shows] illustrates one of these thermocouples 20, a first material 13 [is] may first be deposited on supporting body 12 in the form of a first, meander-patterned circuit trace 15, and a second material 14 [is then] may be deposited in the form of a second circuit trace 16, which [is] may be also meander-patterned. As [shown in the figure] illustrated in Figure 1, first circuit trace 15 and second circuit trace 16 [run] extend at least substantially parallel to one another.

[It is also provided that first] First material 13 and second material 14 may come in contact with one another in the region of a first thermal contact 10 and a second thermal contact 11, and that further conductors 17 leading to thermocouple 20 [are] may be provided, which [are] may be developed and deposited in an analogous fashion to second printed circuit trace 16, so that thermocouple 20 may be electrically interconnected to, or controlled by, electronic components [(not shown)] via these conductors 17, in a [generally known way.] conventional manner.

[Also shown in the figure] Also illustrated in Figure 1 is that first thermal contact 10 [is] may be exposed to a first temperature T_1 , and second thermal contact 11 [is] may be exposed to a second temperature T_2 . In this context, temperature T_2 is the actual temperature to be detected or measured by micropatterned thermosensor 5, while temperature T_1 is being kept at least approximately constant, or may

5

10

15

20

25

30

alternatively be determined by an additional measuring device. In this respect, temperature T_1 of first thermal contact 10 ("cold" thermal contact) serves as a reference temperature for temperature T_2 of second thermal contact 11 ("hot" thermal contact), which [is to] \underline{may} be measured.

[It should also be mentioned that the] The width of circuit traces 14, 15 and conductors 17 [is] may be between 20 nm and 200 μ m, [preferably] e.g., between 1 μ m and 20 μ m. Their thickness [is] may be between 10 nm and 10 μ m, [preferably] e.g., between 100 nm and 2 μ m. The first or second printed circuit traces 15, 16, respectively, as well as their meander patterning, and conductors 17 [are] may be fabricated in a [known] conventional manner by sputter depositing or vapor depositing of the respective materials 13, 14, for instance through PECVD ("Physically Enhanced Chemical Vapor Deposition[)]") or LPCVD ("Low Pressure Chemical Vapor Deposition").

[In particular, first] First material 13 in the [mentioned exemplary] example embodiment [is] may be n-type [doted] doped polysilicon-germanium, having a thermal conductivity of 3 to 8 w/km. Second material 14 in the [discussed exemplary] example embodiment [is] may be platinum, having a thermal conductivity of 70 w/km. Furthermore, analogously to second circuit trace 16, conductor 17 [is also] may be in each case developed in the form of a platinum circuit trace, resulting in two thermocontacts 10, 11, both formed from the material combination of platinum/polysilicon-germanium.

30

35

5

10

15

Alternatively to the [described exemplary] <u>example</u> embodiment [according to the figure] <u>illustrated in Figure 1</u>, first circuit trace 14 and second circuit trace 15 may also [run] <u>extend</u> over one another, regionally or entirely, and be electrically insulated from one another, except for thermal

contacts 10, 11. In this case, the electrical insulation [is] may be assured by an oxidic, electrically insulating
intermediate layer between circuit traces 15, 16.

Furthermore, instead of two thermal contacts 10, 11, a plurality of thermal contacts may also be [obviously] provided, which [are] may be configured in the manner of a thermal chain or a thermal column. In this case, at least two of the thermal contacts are [then] exposed to different temperatures.

In [continuation of the refinement according to the first exemplary embodiment, in a further]a further example embodiment of the present invention, a part of a further measuring device [is] may be additionally created, or integrated, on supporting body 12 in the form of a circuit trace, in order to determine first temperature T_1 . This eliminates the need to integrate the usual thermistor on the surface of supporting body 12 in the area of first thermal contact 10.

[Specifically, this] <u>The</u> measuring device [is then] <u>may be</u> realized by providing an additional reference circuit trace made from platinum in one vicinity of first thermal contact 10 as sensitive component of this measuring device, this measuring device also being interconnected via appropriate conductors to generally [known] <u>conventional</u> evaluation devices for determining a temperature-dependent electrical resistance of this reference circuit trace. This reference circuit trace [is] <u>may be</u> designed, for instance, analogously to conductor 17 or second circuit board conductor 16.

Alternatively, however, [this] <u>the</u> measuring device may also be realized by using one segment of second circuit trace 16 or of conductors 17 as reference circuit trace and may be interconnected to appropriate evaluating [means] <u>arrangements</u>

15

20

25

30

for determining the temperature-dependent, electrical resistance of this part of the circuit trace.

This possibility of integrating an additional reference circuit trace on supporting body 12, or the possibility of using a part of second circuit trace 16 or of conductor 17 as reference circuit trace on supporting body 12 to measure or monitor temperature T_1 , is the result of platinum's suitability for high-precision, resistive temperature measuring.

10

15

5

With respect to further details regarding the design of thermocouple 20 and the function and the further design of thermocouple 5 according to [the figure] Figure 1, reference is made to [the] German Published Patent Application [DE] No. 100 09 [593.3] 593, which describes this thermosensor 5, apart from the specific layout of circuit traces 15, 16 of thermocouple 20 and the [particular] choice of materials for thermocouple 20, in the form of an infrared sensor.

[Abstract

] ABSTRACT

5

10

15

A micropatterned thermosensor[(5), in particular], e.g., an infrared sensor, [is proposed, having] includes a supporting body [(12)] and at least one thermocouple [(20)] arranged thereon. The thermocouple [(20)] also has a first material [(13)] and a second material[(14)], which together form, at least in a pointwise manner, at least one thermal contact[(10, 11)]. Furthermore, it is provided that the first and/or the second material [(13, 14)] are configured at least regionally in the form of a meander-shaped or undulating-type circuit trace [(15, 16)] and [run] extend on the supporting body[(12)]. In addition, a micropatterned thermosensor [(5) is proposed, preferably also] having such patterned circuit traces[(15, 16)], in which the first material [(13)] is platinum or aluminum, and the second material [(14)] is doped or undoped polysilicon-germanium.[

(Figure 1)]

[10191/2253]

MICROPATTERNED THERMOSENSOR

FIELD OF THE INVENTION

The present invention relates to a micropatterned thermosensor, e.g., an infrared sensor.

BACKGROUND INFORMATION

5

10

20

25

30

Conventional infrared sensors, such as they are used in safety engineering, plant technology or in the household appliance industry, measure the temperature of a body from the infrared radiation it emits. Basically, the distinction is made among so-called pyroelectric, bolometric as well as thermoelectric sensors.

It is conventional to produce thermoelectric sensors using thin-film technology, for instance on polyimide foil.

15 Furthermore, micropatterned thermosensors based on silicon technology are also generally conventional.

German Published Patent Application No. 199 32 308 describes manufacturing a thermosensor in the form of a thermal column that is positioned on an at least substantially self-supporting membrane, the thermal contacts of this thermal column being designed to alternate as "hot" and "cold" thermal contacts and being connected to a supporting body by appropriate contact columns, as well as being electrically controllable via these contact columns. German Published Patent Application No. 199 32 308 also describes implementing the thermocouples running on the surface of the substantially self-supporting membrane in the form of circuit traces, which are alternately produced from a first and a second material, so that thermal contacts are created in the region where these two materials come in contact. The first material, in this case, is aluminum, while polysilicon is used as a second material.

German Published Patent Application No. 100 09 593 describes designing a micropatterned thermosensor in the form of an infrared-sensor, for instance, using sacrificial layer technology or some other etching technology, by first creating a thin, self-supporting membrane on a silicon substrate, which is thermally decoupled from a subjacent substrate due to its low thermal conductivity, so that in response to incident infrared radiation, the membrane is warmed more than the substrate. A plurality of micropatterned sensor elements or thermocouples are then situated on the membrane, which thermoelectrically convert a temperature difference between the center of the membrane and the substrate into an electrical signal that is proportional thereto. In accordance with German Published Patent Application No. 100 09 593, the material combinations platinum/polysilicon, aluminum/polysilicon or p-type doped polysilicon/n-type doped silicon are used for the thermocouples created on the self-supporting membrane in the form of circuit traces. The material combination polysilicon/aluminum, which is used primarily in bulk micro-technology, may have the advantage of being CMOS-compatible.

It is conventional that gold, antimony, bismuth and lead tellurides may also be used as materials for thermocouples, with gold also being suitable for bulk micromechanics.

It is an object of the present invention to provide a micropatterned thermosensor having improved sensitivity and stability at higher temperatures than conventional micropatterned thermal sensors.

SUMMARY

5

10

15

20

25

30

35

Due to at least one of the patterning of the printed circuit traces on the supporting body and/or the particular choice of materials for the thermocouple, the micropatterned thermosensor according to the present invention may have the advantage of achieving a higher temperature sensitivity,

without this entailing significant changes in the current manufacturing methods for micropatterned thermosensors. Specifically, according to the present invention, it is merely the layout of the produced printed circuit traces of the thermocouples and/or the material used for depositing these printed circuit traces that are/is modified.

Through the choice of materials for the thermocouple, i.e., the material combination platinum or aluminum with doped or undoped polysilicon-germanium, the produced micropatterned thermosensor may have a markedly increased temperature stability compared to conventional thermosensors using aluminum with polysilicon, for instance, as material for the thermocouple.

15

20

25

30

10

5

Through the choice of materials for the thermocouple, migration effects occurring at temperatures above 200° C may also be avoided, and thus stability problems in the produced thermosensor, as often observed in sensors where polysilicon and aluminum are used as material for the thermocouple.

Furthermore, the aluminum widely used in conventional methods is an excellent thermal heat conductor, which means that the thermocouple manufactured therefrom has a relatively low thermoelectric effectiveness, whereas platinum, on the one hand, may be used at temperatures of up to 400° C and, on the other hand, has a thermal conductivity that is lower by a factor of 3 compared to aluminum. In contrast to polycrystalline silicon, polycrystalline, doped or undoped polysilicon-germanium also has a thermal conductivity that is lower by a factor of 3 to 8 and, therefore, also results in a markedly increased thermoelectric effectiveness of the produced thermocouple.

35

An especially high increase in sensitivity and an especially good temperature stability of the thermosensor may be achieved by a combination of the meander-shaped or undulating-type

layout of the micropatterned circuit traces on the surface of the supporting body and the mentioned special materials for the thermocouple.

Depending on the intended use of the micropatterned thermocouple, for instance, as an infrared sensor, the mentioned materials for the thermocouple may be combined with one another, using p-type doped or n-type doped material for the semiconductor material.

10

15

2.0

5

Since a temperature difference between so-called "hot" and "cold" contacts may be thermoelectrically converted into a measurable electric voltage in micropatterned thermosensors, the "cold" points either may be kept at a constant temperature, or this temperature may be known or referenced relative to the temperature of the "hot" contact. Normally, for that purpose in conventional methods, so-called thermistors are integrated in hybrid technology on the supporting body for the thermocouple, since the employed materials, aluminum and polysilicon, are often not sensitive enough to determine this reference temperature.

25

possible to integrate, or deposit, a high-precision, resistive temperature measuring element on the silicon chip, or the supporting body supporting the thermocouple, during the same manufacturing step as that for the corresponding printed circuit trace or conductor. This eliminates the need for an additional thermistor.

When using platinum as thermoelectric material, it may be

30

35

Implementing the printed circuit traces in the form of meander-shaped, or undulating-type printed circuit traces extending on the supporting body, may offer the further possibility of implementing only those printed circuit traces having the lower internal resistance in the form of meanders, since increased noise voltage may result when a meander or

undulating-type pattern is used in materials having a high electrical resistance.

The meander-shaped or undulating-type circuit traces may be implemented as extending side-by-side and also as overlapping or running one over another, at least regionally, in which case they may then be separated from one another in an electrically insulating manner by suitable insulating layers of oxides, for instance. If sufficient surface area is available, it may be advantageous to configure the circuit traces side-by-side.

It may be possible to also vary, or increase, the sensitivity of the resulting micropatterned thermosensor by varying the number of undulations or meanders. In this context, one utilizes the fact that the thermal resistance of a printed circuit trace increases with length, that is, the thermal resistance of a printed circuit trace having a meander pattern is greater than that of one using a corresponding straight-line pattern.

The invention is explained in greater detail in the following description with reference to the drawing.

25 BRIEF DESCRIPTION OF THE DRAWING

Figure 1 illustrates a single thermocouple created on the surface of a supporting body in the form of deposited printed circuit traces running side-by-side.

30 DETAILED DESCRIPTION

In the example embodiment, the present invention is initially based on an infrared sensor, as is described in German Published Patent Application No. 100 09 593. However, the infrared sensor it describes is modified in two respects.

Specifically, as described in German Published Patent Application No. 100 09 593, an at least substantially

5

10

15

self-supporting membrane is created from a poorly heat-conducting material, such as an oxide, a nitride or a combination of both materials, on a substrate material having good heat-conducting properties, for instance, silicon.

The at least substantially self-supporting membrane, which may be used as supporting body 12 for a thermocouple 20 to be

be used as supporting body 12 for a thermocouple 20 to be deposited thereon, may be made of silicon dioxide, silicon nitride or of porous silicon.

A plurality of thermocouples 20 may be created on the surface of this supporting body 12. They may be connected in series and arranged in a cross-pattern or star-pattern. As illustrated in Figure 1, which only illustrates one of these thermocouples 20, a first material 13 may first be deposited on supporting body 12 in the form of a first, meander-patterned circuit trace 15, and a second material 14 may be deposited in the form of a second circuit trace 16, which may be also meander-patterned. As illustrated in Figure 1, first circuit trace 15 and second circuit trace 16 extend at least substantially parallel to one another.

First material 13 and second material 14 may come in contact with one another in the region of a first thermal contact 10 and a second thermal contact 11, and that further conductors 17 leading to thermocouple 20 may be provided, which may be developed and deposited in an analogous fashion to second printed circuit trace 16, so that thermocouple 20 may be electrically interconnected to, or controlled by, electronic components via these conductors 17, in a conventional manner.

30

35

25

5

Also illustrated in Figure 1 is that first thermal contact 10 may be exposed to a first temperature T_1 , and second thermal contact 11 may be exposed to a second temperature T_2 . In this context, temperature T_2 is the actual temperature to be detected or measured by micropatterned thermosensor 5, while temperature T_1 is being kept at least approximately constant, or may alternatively be determined by an additional measuring

device. In this respect, temperature T_1 of first thermal contact 10 ("cold" thermal contact) serves as a reference temperature for temperature T_2 of second thermal contact 11 ("hot" thermal contact), which may be measured.

5

10

15

20 .

25

30

The width of circuit traces 14, 15 and conductors 17 may be between 20 nm and 200 μ m, e.g., between 1 μ m and 20 μ m. Their thickness may be between 10 nm and 10 μ m, e.g., between 100 nm and 2 μ m. The first or second printed circuit traces 15, 16, respectively, as well as their meander patterning, and conductors 17 may be fabricated in a conventional manner by sputter depositing or vapor depositing of the respective materials 13, 14, for instance through PECVD ("Physically Enhanced Chemical Vapor Deposition") or LPCVD ("Low Pressure Chemical Vapor Deposition").

First material 13 in the example embodiment may be n-type doped polysilicon-germanium, having a thermal conductivity of 3 to 8 w/km. Second material 14 in the example embodiment may be platinum, having a thermal conductivity of 70 w/km. Furthermore, analogously to second circuit trace 16, conductor 17 may be in each case developed in the form of a platinum circuit trace, resulting in two thermocontacts 10, 11, both formed from the material combination of platinum/polysilicon-germanium.

Alternatively to the example embodiment illustrated in Figure 1, first circuit trace 14 and second circuit trace 15 may also extend over one another, regionally or entirely, and be electrically insulated from one another, except for thermal contacts 10, 11. In this case, the electrical insulation may be assured by an oxidic, electrically insulating intermediate layer between circuit traces 15, 16.

Furthermore, instead of two thermal contacts 10, 11, a plurality of thermal contacts may also be provided, which may be configured in the manner of a thermal chain or a thermal

column. In this case, at least two of the thermal contacts are exposed to different temperatures.

In a further example embodiment of the present invention, a part of a further measuring device may be additionally created, or integrated, on supporting body 12 in the form of a circuit trace, in order to determine first temperature T_1 . This eliminates the need to integrate the usual thermistor on the surface of supporting body 12 in the area of first thermal contact 10.

The measuring device may be realized by providing an additional reference circuit trace made from platinum in one vicinity of first thermal contact 10 as sensitive component of this measuring device, this measuring device also being interconnected via appropriate conductors to generally conventional evaluation devices for determining a temperature-dependent electrical resistance of this reference circuit trace. This reference circuit trace may be designed, for instance, analogously to conductor 17 or second circuit board conductor 16.

Alternatively, however, the measuring device may also be realized by using one segment of second circuit trace 16 or of conductors 17 as reference circuit trace and may be interconnected to appropriate evaluating arrangements for determining the temperature-dependent, electrical resistance of this part of the circuit trace.

This possibility of integrating an additional reference circuit trace on supporting body 12, or the possibility of using a part of second circuit trace 16 or of conductor 17 as reference circuit trace on supporting body 12 to measure or monitor temperature T_1 , is the result of platinum's suitability for high-precision, resistive temperature measuring.

5

10

15

20

With respect to further details regarding the design of thermocouple 20 and the function and the further design of thermocouple 5 according to Figure 1, reference is made to German Published Patent Application No. 100 09 593, which describes this thermosensor 5, apart from the specific layout of circuit traces 15, 16 of thermocouple 20 and the choice of materials for thermocouple 20, in the form of an infrared sensor.

ABSTRACT

5

10

A micropatterned thermosensor, e.g., an infrared sensor, includes a supporting body and at least one thermocouple arranged thereon. The thermocouple also has a first material and a second material, which together form, at least in a pointwise manner, at least one thermal contact. Furthermore, it is provided that the first and/or the second material are configured at least regionally in the form of a meander-shaped or undulating-type circuit trace and extend on the supporting body. In addition, a micropatterned thermosensor having such patterned circuit traces, in which the first material is platinum or aluminum, and the second material is doped or undoped polysilicon-germanium.