5. FUNDING NUMBERS

TORY GOLUMENTATION PAGE

08/00/00

Form Approved OMB No. 0704-0188

n is ostimated to sverage 1 hour per response, including the time for reviewing instructions, searching existing data sources, and comments reparding this burden estimate or any other assect of this iding this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson ed to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

L REPORT DATE

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE ROCKY MOUNTAIN ARSENAL, NORTHWEST BOUNDARY CONTAINMENT/TREATMENT SYSTEM, OPERATIONAL ASSESSMENT REPORT, FY89, FINAL

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT NUMBER

ROCKY MOUNTAIN ARSENAL (CO.). PHRHA

91270R01

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING / MONITORING AGENCY REPORT NUMBER

ROCKY MOUNTAIN ARSENAL (CO.). PHRMA

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

126. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

13. ABSTRACT (Maximum 200 words)

THIS STUDY IS THE FOURTH OPERATIONAL ASSESSMENT OF THE NORTHWEST BOUNDARY CONTAINMENT/TREATMENT SYSTEM AT THE RMA.

THE PURPOSE OF THIS REPORT IS TO DOCUMENT THE SYSTEM OPERATING PARAMETERS AND PERFORMANCE DURING FY89, AND TO IDENTIFY AND DOCUMENT ANY SYSTEM IMPROVEMEENT AND FACILITY ALTERATIONS IMPLEMENTED DURING FY89.

DITC QUALITY INSPECTED 3

14. SUBJECT TERMS

15. NUMBER OF PAGES

GROUNDWATER, WELL, CHEMICAL

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT

18. SECURITY CLASSIFICATION OF THIS PAGE

SECURITY CLASSIFICATION OF ABSTRACT

20. LIMITATION OF ABSTRACT

UNCLASSIFIED NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI 5td 239-18 298-102

ROCKY MOUNTAIN ARSEMAL NORTHWEST BOUNDARY CONTAINMENT/TREATMENT SYSTEM OPERATIONAL ASSESSMENT REPORT

FY89

FINAL REPORT

94-10107

BY

TECHNICAL OPERATIONS DIVISION
PROGRAM MANAGER, ROCKY MOUNTAIN ARSENAL
COMMERCE CITY, COLORADO 80022-2180

94 4 040

AUGUST 1990

Rocky Mountain Arsenal Information Center Commerce City, Colorado

Acces	on For	1
NTIS	CRASI	LJ.
DTIC	TAB	ū
l .	ounced	Ü
Justific	ation	
By Distrib	ution /	outoe
Dist	Aveil and Special	
AI		
/ / /	1	

PREFACE

This study was conducted as part of a cooperative effort by personnel from the Technical Operations Division (TOD) of the Program Manager for Rocky Mountain Arsenal (PMRMA) and the U.S. Army Engineer Waterways Experiment Station (WES). Funding for participation by WES was provided by the PMRMA via Intra-Army Order No. 0090. Project management was provided by Messrs. David W. Strang, TOD, Norman R. Francingues, WES Environmental Laboratory (EL) and James H. May, WES Geotechnical Laboratory (GL).

This study is the fourth operational assessment of the Northwest Boundary Containment/Treatment System at Rocky Mountain Arsenal (RMA). The contributing authors to this report were Messrs. Jack H. Dildine, Douglas W. Thompson, Norman R. Francingues (WES-EL), Richard J. Lutton, and John B. Palmerton (WES-GL). The study and report were authorized by the Program Manager for Rocky Mountain Arsenal.

The authors acknowledge the support and assistance of the following people and organizations during this study: Ms. Dianna Pantleo and Ms. Tina Nowlin, D. P. Associates, and Ms. Tommie Ann Gard of A.S.K., Associates.

CONTENTS

			Page
PREFACE		 	1
PART I: INTRODUCTION		 	5
Background		 • • • •	5 7 7
PART II: PLANT OPERATIONS MONITORING		 	8
PART III: SYSTEM OPERATIONS		 	11
Operations Summary	· · · · · ·	 · · ·	11 11 14 31 32 32
PART IV: GROUND-WATER FLOW EVALUATION		 	45
Geology and Hydrogeology		 	45 49 56
PART V: CONCLUSIONS		 	57
REFERENCES		 	58
APPENDIX A: FLOW DATA		 	Al
APPENDIX B: TREATMENT PLANT WATER QUALITY DATA STATISTICAL SUMMARY AND GC/MS AWALY	SIS	 	B1
APPENDIX C: DEWATERING WELL DATA		 	C1
APPENDIX D: NORTHWEST BOUNDARY SYSTEM DOWNTIME		 	D1

LIST OF TABLES

No		Page
1	Chemical Analysis of Treatment Plant Samples	9
2	Northwest Boundary System Treatment Plant Downtime for FY89	11
3	FY89 System Flow Quantities	14
4	Maximum Operating Limits for Northwest Boundary Systems	16
5	Northwest Boundary System Contaminant Removal for FY89	32
	• •	
	LIST OF FIGURES	
No	,	Page
1	Northwest Boundary Containment/Treatment System layout map	6
2	Adsorber 1 flow rate during FY89	12
3	Adsorber 2 flow rate during FY89	12
4	Adsorber 3 flow rate during FY89	13
5	Effluent flow rate during FY89	13
6	FY89 Aldrin concentration	17
7	FY89 Chlcride Concentration	18
8	FY89 Chloroform (CHCL3) concentrations	20
9	FY89 Diisopropylmethylphosphonate (DIMP) concentrations	21
10	FY89 Dieldrin concentrations	22
11	FY89 Endrin concentrations	23
12	FY89 Fluoride concentrations	24
13	FY89 Isodrin concentrations	26
14	FY89 Parathion concentrations	27
15	FY39 Sulfate (SO4) concentrations	28
16	FY89 Tetrachloroethylene (TCLEE) concentrations	29
17	FY89 Trichloroethylene (TRCLE) concentrations	30
18	FY89 Aldrin concentrations in NWBS devatering wells	33
19	FY89 Chloride concentrations in NWBS dewatering wells	35
20	FY89 Dicyclopentadiene (DCPD) concentration in NWBS	
	dewatering wells	36
21	FY89 Diisopropylmethylphosphonate (DIMP) concentrations in	
	NWBS dewatering wells	38
22	FY89 Dieldrin concentrations in NWBS dewatering wells	39
23	FY89 Endrin concentrations in NWBS devatering wells	40
24	FY89 Fluoride concentrations in NWBS devatering wells	41
25	FY89 Isodrin concentrations in NWBS devatering wells	43
26	FY89 Trichloroethylene (TRCLE) concentration in NWBS	
	dewatering wells	44
27	Water-table configuration (ft) at start of FY 89	46
28	Water-table configuration (ft) at end of FY 89	47
29	Water-table difference (ft) between start and end of FY 89	48
30	Location of water-table profiles	50
31	Profile I for FY 89	51
32	Profile II for FY 89	52
33	Profile III for FY 89	53
34	Profile IV for FY 89	54
35	Comparison of ground-water levels	55

CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U.S. customary units of measurement used in this report can be converted to metric (SI) units as follows.

Multiply	Ву	To Obtain
acre	4046.873	square metres
cubic feet	0.02831685	cubic metres
feet	0.3048	metres
feet per mile (U.S. statute)	0.1893936	metres per kilometre
gallons (U.S. liquid)	3.785412	cubic decimetres
horsepower (550 foot-pounds (force) per second)	745.6999	Watts
inches	2.54	centimetres
miles (U.S. statute)	1.609347	kilometres
pounds (mass) per cubic foot	16.01846	kilograms per cubic metre
square feet	0.09290304	squara metres
square miles	2.589998	square kilometres

NORTHWEST BOUNDARY CONTAINMENT/TREATMENT SYSTEM OPERATIONAL ASSESSMENT REPORT FY89

PART I: INTRODUCTION

Background

- 1. The Northwest Boundary Containment/Treatment System* Operational Assessment described herein has been prepared to document and evaluate the performance related to the boundary system operations. This report covers the system operating period of FY89.
- 2. Ground-water contamination problems have existed in the area of the Northwest boundary of Rocky Mountain Arsenal (RMA) since the mid 1950's, when investigations were conducted by the Army Corps of Engineers. In 1975, a ground-water surveillance program for RMA was established. This regional surveillance task included the monitoring of wells in the arsenal boundary areas. Since that time, several problem definition studies and design investigations have been conducted by RMA and the Corps of Engineers. Subsequently, a ground-water surveillance program was initiated in 1978 specifically for the Northwest boundary.
- 3. As a result of the ground-water investigations in 1980, several contaminants including DIMP, DBCP, chloride, endrin and dieldrin were detected in a narrow plume of ground water leaving RMA to the north and northwest. Additional studies by RMA and the Corps of Engineers lead to the design and construction of the Northwest Bourdary Containment/Treatment System (NWBS) that was completed in October 1984 (Figure 1). This was the third boundary ground-water contamination control system constructed and operated at RMA.
- 4. This report incorporates by reference major system descriptions and previous operations described in the report entitled "Northwest Boundary Containment/Treatment System Baseline Conditions, System Startup and Operational Assessment Report for FY85/86" (PMRMA 1987). The reader is referred to the basic report for detailed information concerning a complete physical description of the system. The basic report is catalogued at the Rocky Mountain Arsenal Information Center (RIC) library and is document number 88054R01.

^{*} Hereinafter referred to as Northwest Boundary System.

Report Objective

5. The objective of this report is to document the system operating parameters and performance during FY89, and, to identify and document any system improvements and facility alterations implemented during FY89.

Approach

- 6. The Technical Operations Division (TOD) at RMA provided the data base and general technical guidance. The U.S. Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi, provided specialized environmental engineering assessments.
- 7. The study was conducted in three phases. Data were retrieved and organized by the TOD and RIC. The data bases were reviewed by WES for completeness prior to conducting various system performance evaluations. During the course of study, several in-progress reviews and coordination working sessions were held at the RMA, to facilitate exchange of information and to assure continuity and consistency in data interpretations and evaluations. Finally, the report was assembled from individual sections prepared by the various contributing authors.

PART II: PLANT OPERATIONS MONITORING

- 8. The treatment plant monitoring program continued in FY89. It included collection of data on flow rates through the system, and the quality of the water entering and leaving the plan. The flow rates were recorded on a daily basis.
- 9. Samples were taken weekly from the interior of the adsorbers for process control. These data were used to determine when (if necessary) to change carbon within the adsorber. The qualities of the plant's influent and effluent waters were monitored by taking water samples on a weekly basis and analyzing them. Samples were also collected from the dewatering wells and analyzed. These samples were collected from ports located in the well pits.
- 10. All water samples were collected in previously cleaned, glass containers, sealed, and transported to the appropriate analytical laboratory at RMA or their contractor for analysis. The parameters for which the plant samples were analyzed for during FY89 are presented in Table 1. All analyses were performed using standard methods. The sample analysis and flow data were entered into the analytical data base by laboratory personnel, subjected to a quality control routine, validated, and placed into the PMRMA data base by the RIC. Data sets were prepared for use in developing tables and figures. Copies of the plant flow, analytical data and NWBS downtime for FY89 are contained in Appendices A, B, C, and D of this report.

Table 1
Chemical Analysis of Treatment Plant Samples

	FY89 Quarters			
Analyte	lat	2nd	3rd	4 c h
Organochlorine Pesticides				
Aldrin	x	x	x	x
Endrin	X	X	X	X
Dieldrin	X	X	X	X
Isodrin	X	X	X	X
Hexachlorocyclopentadiene		X	X	
p,p'-DDE		X	X	
p,p'-DDT		X	X	
Chlordane		x	X	
Volatile Organohalogens				
Chlorobenzene		x	x	
Chloroform		X	X	
Carbon Tetrachloride		X	X	
Trichloroethylene (TCE)	X	X	X	X
Tetrachloroethylene		X	X	,
1,1 Dichloroethylene		X	X	
1,1 Dichloroethane		X	X	
1,2 Dichloroethane		X	X	
1,1,1 Trichloroethane		X	X	
1,1,2 Trichloroethane		X	X	
Methylene Chloride		X	X	
1,2 Dichloroethylene		X	X	
Organosulfur Compounds				
P-Chlorophenylmethylsulfone				
(PCPMSO ₂)	X	X	X	X
P-Chlorophenylmethylsulfoxide				
(PCPMSO)	X	X	X	X
P-Chlorophenylmethylsulfide				
(PCPMS)	X	X	X	X
1,4-Dithiane	X	X	X	X
1,4-0xathiane	X	Х	X	X
Dimethyldisulfide (DMDS)		X	X	
Benzothiazole		x	X	
NP-Pesticides				
Vapona		X		
Supona		X		
Atrazine		X		
Malathion		X		
Parathion		X	X	

(Continued)

Table 1 (Concluded)

DCFD/MIBK Dicyclopentadiene X X X X X X X X X X X X X X X X X X		FY89 Owarters			
Dicyclopentadiene	Analyse	lat	2nd	3rd	4 E b
Methylisobutylketone Bicyclohaptadiene Difficulty State of State	DCLDWIEK				
Bicyclohaptadiene DIMP/DMMP Diisopropylmethylphosphonate X X X X X X X Dimethylmethylphosphonate X X X X X X X X X X X X X X X X X X X		x			x
DIMP/DMMP Diisopropylmethylphosphonate X X X X X X X X X X X X X X X X X X X			X		
Diisopropylmethylphosphonate Dimethylmethylphosphonate Dibromochloropropane X X X X X Inorganics Arsenic Chloride X X X X X X X X X X X X X X X X X X X	Bicycloheptadiene			X	
Dimethylmethylphosphonate	DIMP/DHMP				
DEGP Dibromochloropropane	Diisopropylmethylphosphonate	X -			x
Dibromochloropropane X X X X X Inorganics Arsenic X X X X X X X X X X X X X X X X X X X	Dimethylmethylphosphonata		X	X	
Inorganics Arsenic X X X X X X X X X X X X X X X X X X X	DECP				
Arsenic Chloride XXXX Fluoride XXXX Sulfate Alkalinity Calcium Cadmium Chromium Copper Cyanide Mercury Magnesium Potrussium Sodium Combined (Nitrate/Nitrites) Lead Zinc Volatile Aromatics Toluene Benzene XXX XX XX XX XX XX XX XX XX	Dibromochloropropane	x	x	x	x
Chloride X X X X X X X X X X X X X X X X X X X	Inorganica				
Fluorida X X X X X X X Alkalinity Galcium Gadmium Chromium Copper Cyanide Mercury Magnesium Potrusium Sodium Combined (Nitrate/Nitrites) Lead Zinc Volatile Aromatics Toluene X X X X X X X X X X X X X X X X X X	Arsenic				
Sulfate Alkalinity Calcium Cadmium Chronium Copper Cyanide Mercury Magnesium Potrasium Sodium Combined (Nitrate/Nitrites) Lead Zinc Volatile Aromatics Toluene Benzene X X X Xylene (o-, m-, p-) Ethylbenzene X X X X X X X					Х
Alkalinity Calcium Cadmium Chromium Copper Cyanide Mercury Magnesium Potrusium Sodium Combined (Nitrate/Nitrites) Lead Zinc Volatile Aromatics Toluene Benzene X X Xylene (o-, m-, p-) Ethylbenzene X		X			X
Calcium Cadmium Chromium Copper Cyanide Mercury Magnesium Potrusium Sodium Combined (Nitrate/Nitrites) Lead Zinc Volatile Aromatics Toluene Senzene X Xylene (o-, m-, p-) Ethylbenzene X X X X X X X X X X X X X X X X X X			X	X	
Cadmium Chromium Copper Cyanide Mercury Magnesium Potrasium Sodium Combined (Nitrate/Nitrites) Lead Zinc Volatile Aromatics Toluene X X Benzene X Xylene (o-, m-, p-) X Ethylbenzene X X X					
Chromium Copper Cyanide Mercury Magnesium Potrasium Sodium Combined (Nitrate/Nitrites) Lead Zinc Volatile Aromatics Toluene Benzene X Xylene (o-, m-, p-) Ethylbenzene X X X X X X X X X X X X X X X X X X					
Copper Cyanide Mercury Magnesium Potrasium Sodium Combined (Nitrate/Nitrites) Lead Zinc Volatile Aromatics Toluene X X Benzene X X Xylene (o-, m-, p-) X X Ethylbenzene X X 1,3 Dimethylbenzene X X					
Cyanide Mercury Magnesium Potrasium Sodium Combined (Nitrate/Nitrites) Lead Zinc Volatile Aromatics Toluene X X Benzene X X Xylene (o-, m-, p-) X Ethylbenzene X X 1,3 Dimethylbenzene X X					
Mercury Magnesium Potrasium Sodium Combined (Nitrate/Nitrites) Lead Zinc Volatile Aromatics Toluene X X Benzene X X Xylene (o-, m-, p-) X Ethylbenzene X X 1,3 Dimethylbenzene X X					
Magnesium Potrasium Sodium Combined (Nitrate/Nitrites) Lead Zinc Volatile Aromatics Toluene X X Benzene X X Xylene (o-, m-, p-) X Ethylbenzene X X 1,3 Dimethylbenzene X X					
Potrasium Sodium Combined (Nitrate/Nitrites) Lead Zinc Volatile Aromatics Toluene X X Benzene X X Xylene (o-, m-, p-) X Ethylbenzene X X 1,3 Dimethylbenzene X X					
Sodium Combined (Nitrate/Nitrites) Lead Zinc Volatile Aromatics Toluene X X Benzene X X Xylene (o-, m-, p-) X Ethylbenzene X X 1,3 Dimethylbenzene X X					
Combined (Nitrate/Nitrites) Lead Zinc Volatile Aromatics Toluene X X Benzene X X Xylene (o-, m-, p-) X Ethylbenzene X X 1,3 Dimethylbenzene X X					
Lead Zinc Volatile Aromatics Toluene X X Benzene X X Xylene (o-, m-, p-) X A Ethylbenzene X X 1,3 Dimethylbenzene X X					
Zinc Volatile Aromatics Toluene X X Benzene X X Xylene (o-, m-, p-) X A Ethylbenzene X X 1,3 Dimethylbenzene X X					
Volatile Aromatics Toluene X X Benzene X X Xylene (o-, m-, p-) X X Ethylbenzene X X 1,3 Dimethylbenzene X X					
Toluene X X Benzene X X Xylene (o-, m-, p-) X X Ethylbenzene X X 1,3 Dimethylbenzene X X	Zinc				
Benzene X X Xylene (o-, m-, p-) X X Ethylbenzene X X 1,3 Dimethylbenzene X X	Volatile Aromatics				
Xylene (o-, m-, p-) Ethylbenzene X X X 1,3 Dimethylbenzene X X					
Ethylbenzene X X X 1,3 Dimethylbenzene X X X					
1,3 Dimethylbenzene X X					
GC/MS Analysis X	i, J Dimetnylbenzene		Х	X	
	GC/MS Analysis			x	

PART III: SYSTEM OPERATIONS

Operations Summary

- 11. A record of plant operations for the NWBS is maintained by RMA plant operating personnel with major events documented on a daily basis. The daily record contains information on the operations, maintenance activities, and repair of the treatment plant equipment and dewatering and recharge wells. The record also datails other events such as plant downtime, equipment failure, and filter and carbon removal and replacement.
- 12. The performance of the Northwest Boundary System was very good during FY89 with minimal downtime being reported. The NWBS was never totally out of operation for more than 5.25 consecutive hours during the year. A summary of the downtime for each adsorber by quarter is presented in Table 2. Details on each downtime event are presented in appendix D. The majority of the downtime was associated with leaks and plugg d lines. As indicated in Table 2, no downtime was reported for the third and fourth quarters of FY89. There were no major physical alterations to the NWBS during FY89.

Table 2

Northwest Boundary System Tree ment Plant

Downtime for FY39

Adsorber		FY89 Quarter				
	lst(hrs)	2nd(hrs)	3rd(hrs)	4th(hrs)	Total	
V101	0.0	13.4	0.0	0.0	13.4	
V102	25.8	29.7	0.0	0.0	46.5	
V103	0.0	23.5	0.0	0.0	23.5	
Plant	5.5	0.0	0.0	0.0	5.5	

System Flow Quantities

13. The volume of water processed by the NWBS is recorded on a daily basis. The flow data recorded for FY89 are presented in tables in Appendix A of this report. Graphs of weekly flow data for each adsolber and the effluent have been prepared and are presented in Figures 2 through 5. The treatment

Figure 2. Adsorber 1 flow rate during FY89

Figure 3. Adsorber 2 flow rate during FY89

ANERAGE CALLONS PER MINUTE

Figure 4. Adsorber 3 flow rate during FY89

Figure 5. Effluent flow rate during FY89

ANTINCE CALLONS PER MINUTE

plant flow data were recorded on a weekly (7 day) basis beginning with the first day of the FY and continuing through the end of the FY.

14. Periods of no flow were experienced by each of the adsorbers during various times of the year (see Figures 2-5). The optimal dewatering/recharge rate can be maintained using two adsorbers in parallel with the third adsorber being maintained in a standby status. During FY89, the total system flow rate (effluent) ranged from a low of 541 gpm to a high of approximately 714 gpm. Average adsorber and total flow rates and total gallons of water treated during FY89 are presented in Table 3. The total volume treated in FY89 was approximately 11.8 million gallons more than that treated in FY88. The average flow rate in FY89 was approximately 24.7 gpm greater than that for FY88. It should be noted that the flow rate through the system was increased at the end of FY88 to improve hydrologic conditions by increasing the volume of recharge along the northwest end of the system (see the FY88 Operational Assessment Report for more details). This increased flow was continued throughout FY89.

Table 3
FY 83 System Flow Quantities

Adeurber	Average Flow Rate(gpm)	Total Volume Treated (gal)
1	214.03	112,680,000
2	156.99	82,727,000
3	265.51	139,161,000
Total Effluent	636.53	334,568,000

System Influent and Effluent Water Quality

- 15. The quality of the influent and er: Nuent from the treatment system is monitored periodically by taking grab samples and analyzing them. A single sample was collected from the influent sump to determine the quality of water flowing to the adsorbers. A single sample was collected from the effluent sump after treatment.
- 16. The influent and effluent samples were analyzed for the contaminants listed in Table 1 of this report. A statistical summary of the chemical

analysis data for the period October 1988 through September 1989 are presented in tabular form in Appendix B of this report. Graphs of the concentrations found for aldrin, chloride, chloroform, DIMP, dieldrin, endrin, fluoride, isodrin, parathion, sulfate, tetrachloroethylene, and trichloroethylene, over the reporting period (FY89) have been constructed and are presented in Figures 6 through 17. No concentrations of the other organic contaminants analyzed for in Table 1 in excess of their respective certified reporting limits were found in the samples collected during FY89. Therefore, no graphs were constructed for these undetected contaminants.

- 17. A separate graph has been constructed for such contaminant detected in the plant influent and effluent. Each graph presents a jot of the contaminant concentration reported and three lines indicating the certified reporting limit (CRL), the maximum operating limit (MOL) permitted, and the average concentration over the FY where sufficient data above CRL were available to calculate an average. The MOL used in this report is defined as the water quality criterion against which the operating performance of the treatment plant is compared in order to assess treatment effectiveness for the various contaminants of concern. A list of the MOL's used during the FY89 operational assessment is presented in Table 4. An average concentration was only computed for sets of data where 70 percent or more of the readings were above the CRL. When the criterion was met, values falling below the CRL were made equal to the CRL and included in the computations.
- 18. The CRL for aldrin (Figure 6) in FY89 was 0.05 ppb. The MOL for the NWBS treatment plant was 0.2 ppb. Two samples of plant influent out of 52 collected during the year were found to contain aldrin above the CRL with a maximum concentration of approximately 0 1 ppb which is well below the MOL. Three samples of plant effluent were found to contain aldrin in excess of the CRL but all concentrations were below the MOL. Chloride
- 19. The CRL for chloride (Figure 7) was not reported. No MOL has been established. The concentration of chloride in the plant influent ranged from 200 ppm to 360 ppm with an average for the year of 260 ppm based on 54 samples. The concentrations in the plant effluent ranged from 200 ppm to 350 ppm with an average for the year of 261 ppm. As evidenced by the data, chloride was not removed from the ground water by the activated carbon treatment system.

Table 4
Maximum Operating Limits for Northwest Boundary System

Parameter	Maximum Operating Limit (MOL)	Source*		
Aldrin	0.2 μg/2	Guidance from OTSG (Army) until standards are developed.		
Chloride	N.A.	EPA Secondary Drinking Water Regulation standard is 250 mg/1		
Dibromochloropropane (DBCP)	0.2 µg/1	State of Colorado Department of Health limit per letter to Commander, RMA, 26 June 79.		
Dicyclopentadiene (DCPD)	24.0 μg/l	The State of Colorado has requested the Army to meet a limit of 24 μ g/l for DCPD based on an odor threshold value.		
Diisopropylmethyl- phosphonate (DIMP)	500 μg/2**	These criteria are recommended by the US Medical Bioengineering Research and Development Lab (26 Aug 76) and are based on toxicology studies (26 Aug 76) conducted by the Army. The National Academy of Sciences Committee on Military Environmental Research has reviewed the procedures and results of toxicology studies and concurred in the drinking water levels (1 Feb 77).		
Dieldrin	0.2 μg/l	Guidance from OTSG (Army) until standards are developed.		
Endrin	0.2 µg/1	EPA National Primary Drinking Water Pegulation.		
Fluoride	N.A.	EPA final Rule on Fluoride, National Primary and Secondary Drinking Water Standards, 40 CFR Parts 141, 142, and 143, maximum concentration limit is 4.0 mg/1.		

N.A. - Not Applicable

^{*} Source: After Rocky Mountain Arsenal Contamination Control Program Management Team (1983)

The Environmental Protection Agency's Office of Drinking Water Washington, D.C. issued a health advisory in December 1988 for DIMP not to exceed 600 µg/1.

Figure 6. FY89 Aldrin concentrations

:,

Figure 7. FY89 Chloride concentrations

Chloroform

- 20. The CRL for chloroform (Figure 8) is FY89 was 0.5 ppb. No MOL has been established. Only two samples each were collected from the plant influent and effluent streams. The maximum concentration in the influent was approximately 49 ppb with an average for the two samples of 34.7 ppb. The highest concentration in the effluent was approximately 23 ppb with an average for the two samples of 21.6 ppb. Chloroform is not as effectively adsorbed by activated carbon as are other organic contaminants found at RMA.
- 21. The CRL for DIMP (Figure 9) in FY89 was 0.65 ppb. The MOL for the NWBS treatment plant was 500 ppb. All of the influent and effluent samples collected during the year, 51 and 49 samples, respectively, had DIMP concentrations in excess of the CRL. The concentrations generally ranged from 2 to 6 ppb with the exception of a sample collected in July, 1989. The influent sample on that date was reported as containing 860 ppb DIMP while the effluent sample was reported as containing 830 ppb. These values are probably anomalous since they are so much higher than any other values reported during the year. As a result, these values were not plotted and were not included in the calculation of the averages. The average DIMP concentrations in the influent and effluent were 3.32 ppb and 4.17 ppb, respectively.

Dieldrin

22. The CRL for dieldrin (Figure 10) in FY89 was 0.05 ppb. The MOL for the NWBS treatment plant was 0.2 ppb. Most of the 53 influent samples collected during the year had dieldrin concentrations in excess of the CRL. The maximum concentration reported was approximately 0.65 ppb. The average concentration in the influent over the year was 0.4 ppb. Only four samples of plant effluent were found to contain dieldrin in excess of the CRL with a maximum concentration of approximately 0.19 ppb. Thus, effluent concentrations did not exceed the MOL during FY89.

Endrin

- 23. The CRL for endrin (Figure 11) in FY89 was 0.05 ppb. The MOL for the NWBS treatment plant was 0.2 ppb. Only one sample of plant influent out of the 53 collected had an endrin concentration slightly in excess of the CRL. No concentrations of endrin above the CRL were found in the plant effluent. Fluoride
- 24. The CRL for fluoride (Figure 12) was not reported. No MOL has been established. Concentrations of fluoride in the plant influent ranged from

Figure 8. FY89 Chloroform (CHCLL) concentrations

Figure 9. FY89 Diisopropylmethylphosphonate (DIMP) concentrations

Figure 10. F/89 Dieldrin concentrations

Figure 11. FY89 Endrin concentrations

Figure 12. FY89 Fluorida concentrations

1.4 ppm to 2.8 ppm with an average for the year of 2.1 ppm. The concentrations in the plant effluent ranged from 1.4 ppm to 2.7 ppm with an average of 2.1 ppm. As the data indicate, fluoride was not removed from the ground water by the activated carbon treatment system.

Isodrin

25. The CRL for isodrin (Figure 13) was 0.051 ppb in FY89. No MOL has been established. Five influent samples out of the 53 collected during the year had isodrin concentrations above the CRL with a maximum reported concentration of 0.09 ppb. No concentrations of isodrin above the CRL were found in the plant effluent.

Parathion

- 26. The CRL for parathion (Figure 14) in FY89 was 0.647 ppb. No MOL has been established. Only two samples each were collected from the plant influent and effluent streams during the year. One of the samples of influent had a concentration of 1.8 ppb parathion while the other was below the CRL. One of the samples of effluent had a concentration of 1.7 ppb parathion while the other sample was reported to be less than the CRL. Sulfate
- 27. The CRL for sulfate (Figure 15) was not reported. No MOL has been established. Only two samples each were collected from the plant influent and effluent streams during the year. The average concentrations for both the influent and effluent were 135 ppm. As the data indicate, sulfate was not removed from the ground water by the activated carbon treatment system.

 Tetrachloroethylene
- 28. The CRL for tetrachloroethylene (Figure 16) was 0.75 ppb in FY89. No MOL has been established. Only one sample was collected from each of the plant influent and effluent streams during the year. The tetrachloroethylene concentration in the influent sample was below the CRL while the concentration in the effluent sample was approximately 2 ppb.

Trichlorosthylere

29. The CRL for trichloroethylene (Figure 17) was 0.56 ppb in FY89. No MOL has been established. Only one influent sample out of the 54 collected had a trichloroethylene concentration in excess of the CRL at approximately 0.9 ppb. No concentrations of trichloroethylene above the CRL were found in the plant effluent.

PLANT EFFLUENT - ISODR

Figure 13. FY89 Isodrin concentrations

Figure 14. FY59 Parathion concentrations

Figure 15. FY39 Sulface (SO4) concentrations

Figure 16. FY89 Tetrachloroethylene (TCLEE) concentrations

Figure 17. FY89 Trichloroethylens (TRCLE) concentrations

GS/MS Analysis

- 30. GC/MS analyses were conducted on influent and effluent samples collected in June, 1989. The results of the analysis are presented in Appendix B. Ho concentrations of contaminants above their respective detection levels were reported in either the influent or effluent sample.

 Summary of System Water Quality Data
- 31. The NWBS treatment plant was generally successful in removing organic contaminants from the ground water treated during FY89. Of the organics analyzed for on a weekly basis, only DIMP was routinely found in the plant effluent at concentrations above the CRL. The DIMP concentrations were two orders of magnitude below the MOL with the exception of one sample collected in July 1989. The result reported for that date is considered anomalous. Several effluent samples collected during the year were found to contain aldrin and dieldrin concentrations in excess of their respective CRL's, however all the concentrations were below their respective MOL's.
- 32. Of the organics analyzed for only once or twice a year, chloroform, parathion, and tetrachlorosthylene were found in effluent samples above their respective CRL's. Due to the limited number of samples collected, it is difficult to determine whether the CRL's are exceeded routinely or only occasionally. Analysis of more samples for these contaminants are needed over the year in order to determine realistic average effluent concentrations.

Contaminant Mass Removal

33. A calculation of the total mass of contaminants removed by the NWBS treatment system during FY87, FY 88, and FY89 was conducted by the Technical Operations Division as part of a multi-year study on all the water treatment systems in operation at RMA. A summary of the results from this study for the NWBS is present in Table 5. The amount of contaminants removed is given in pounds with a total for FY87, FY88, and FY89 of approximately 16, 18, and 3 pounds respectively. The contaminants with the largest amounts removed include chloroform, dicyclopentadiene, and dieldrin. The calculations were conducted using a simple mass balance. Average annual effluent concentrations were subtracted from average influent concentrations. Values less than the detection limits on CRL were treated as zero. The calculated values vary between years depending primarily on the average influent concentrations of the contaminants.

Table 5
Northwest Boundary System Contaminant Removal, FY87-FY89

			Pounds Remove	<u>d</u>
Contaminant	Abbreviation	FY87_	FY88	FY89
Choloroform	CHCL3	9.95	14.04	1.78
Combined Organo-Sulfur	CPMSOX	0.00	1.15	0.00
Dibromochloropropana	DBCP	0.01	0.00	0.00
Dicyclopentadiene	DCPD	2.88	1.56	0.00
Dieldrin	DLDRN	0.68	0.79	1.47
Tetrachlorocthylene	TCLEE	1.21	0.00	0.00
Trichloroethylene	TRCLE	1.06	0.00	0.05
Other Organics		0.15	0.06	0.12
	TOTA	LS 15.93	17.60	3.42

Carbon Usage

34. Carbon usage in the NWBS treatment plant is very low compared to the North Boundary System treatment plant, due to the lower total mass of contamination being removed. No carbon was added to any of the adsorbers during FY89.

Contaminant Concentrations in Dewatering Wells

35. In order to provide a picture of the distribution of contaminants in the ground water near the NWBS, contaminant concentrations found associated with each alluvial dewatering well were plotted with respect to the well number along the dewatering well line. Thus, each graph provides a visual representation of a particular contaminants distribution along the length of the system. Based on the availability of data, graphs were developed only for aldrin, chloride, DCPD, DIMP, dieldrin, endrin, fluoride, isodrin, and trichloroethylene for FY89. These graphs are presented in Figures 18 through 26. Each graph presents the data collected for each well during the year. The vertical lines associated with each well number represent the range of concentrations found (maximum and minimum) with the mean value for each well connected by a dotted line. A mean value was only computed for sets of

gure 18. FY89 Aldrin concentration in NWBS dewatering wells

data where 70 percent or more of the readings were above the CRL. When this criterion was met, values falling below the detection limit were made equal to the detection limit or CRL and included in the computations. A single triangle indicates that all values were below the detection limit or CRL. A statistical summary of all the data used to develop the graphs is presented in Appendix C. It should be noted that the maximum number of samples collected from each well was five with only two samples collected in some cases. Aldrin

36. During FY89, concentration of aldrin (Figure 18) above the CRL were found in samples collected from dewatering wells on the northeast and sournwest ends of the control system. The maximum concentration found on the southwest end was approximately 0.45 ppb in well No. 2. The maximum concentration found on the northeast end was approximately 0.22 ppb in well No. 14. No concentrations above the CRL were found associated with well No.'s 6 through 10. The distribution of aldrin along the dewatering well line in FY89 was somewhat similar to that found in FY88, however concentrations above the CRL were found associated with more wells on each end of the system. The concentrations of aldrin found in FY89 were somewhat higher than those reported in FY88.

Chloride

- 37. The highest concentrations of chloride (Figure 19) during FY89 were found along the northeast end of the control system with a maximum concentration of approximately 800 ppm found associated with well No. 14. The maximum mean concentration on the northeast end of the system was approximately 600 ppm. The chloride concentrations decreased from northeast to southwest along the system with concentrations in the 150 to 200 ppm range found in samples from the southwest end. The distribution of chloride along the dewatering well line in FY89 was very similar to that found in FY88. However, concentrations found in FY89 were somewhat lower than those reported in FY88.
- 38. During FY89, concentrations of DCPD (Figure 20) above the CRL were found associated with well No.'s 2 and 3 with a maximum concentration of approximately 15 ppb reported for well No. 3. None of the other dewatering wells produced samples with DCPD concentrations above the CRL. No DCPD concentrations above the CRL were reported for the dewatering wells in FY88.

Figure 19. FY89 Chloride concentration in NWBS dewatering wells

Figure 20. FY89 Dicyclopentadiene (DCPD) concentrations in NWBS dewatering wells

DIMP

39. During FY89, concentrations of DIMP (Figure 21) above the CRL were found in samples from all the dewatering wells except No.'s 1 and 2. The concentrations generally increased from southwest to northeast along the system with the highest concentrations reported for well No.'s 13 through 15. The mean concentration values along the line were generally less than 10 ppb. The distribution of DIMP along the dewatering well line in FY89 was some what similar to that found in FY88. The concentrations of DIMP reported in FY89 were lower along the northeast end of the system than those reported in FY88.

Dieldrin

40. During FY89, concentrations of dieldrin (Figure 22) above the CRL were found in samples from all the dewatering wells except No. 9. The concentrations were generally below 1 ppb with the exception of the northeast end of the dewatering well line where a maximum concentration of approximately 7 ppb was reported for well No. 13. The distribution of dieldrin along the system was very similar to that reported in FY88. The concentrations of dieldrin reported in FY89 were generally higher than those reported in FY88, particularly along the northeast end of the system.

Endrin

41. During FY89, concentrations of endrin (Figure 23) above the CRL were found in samples collected from dewatering wells on the northeast and southwest ends of the control system. The maximum concentration found on the southwest end was approximately 0.5 ppb in well No. 2. The maximum concentration found on the northeast end was approximately 0.2 ppb in well No. 14. No concentrations above the CRL were found associated with well No.'s 3 through 12 or with well No. 1. Only one endrin concentration above the CRL (in well No. 6) was reported for the dewatering wells in FY88.

Fluoride

42. In FY89, a general increasing trend in fluoride concentration was found from the southwest to the northeast end of the system (Figure 24). A maximum concentration of fluoride of approximately 5 ppm was reported for well No.'s 8, 13 and 15. The average concentrations found associated with the wells generally ranged from 1.5 to 4 ppm. The distribution and concentrations of fluoride found in FY89 did not vary significantly from those found in FY88.

Figure 21. FY89 Diisopropylmethylphosphonate (DIMP) concentrations in NWBS dewatering wells

Figure 22. FY89 Disidrin concentration in NVRS devatering wells

Isodrin

43. During FY89, concentrations of isodrin (Figure 25) above the CRL were found in samples collected from wells located generally along the north-east half of the system. A maximum concentration of approximately 0.65 ppb was reported for well No. 10. Isodrin concentrations along the southwest end of the line were generally below the CRL. No isodrin concentrations were reported for the dewatering wells in FY38.

Trichlorosthylene

. 44. During FY89, concentrations of trichloroethylens (Figure 26) above the CRL were found in samples collected from wells located along the northeast end of the system. A maximum concentration of approximately 1.4 ppb was reported for well No. 14. Trichloroethylene concentrations were reported to be below the CRL for well No.'s 1 through 10 and No. 12. No trichloroethylene concentrations were reported for the dewatering wells in FY88.

Summary of Dewstering Well Data

- 45. Based on the contaminant concentration data collected for the dewatering wells during FY89, it appears that the highest concentrations of aldrin, DCPD, dieldrin, endrin, isodrin, and trichloroethylene were found along either or both ends of the dewatering well line with essentially no concentrations above their respective CRL's found along the center of the line. With respect to chloride, DIMP, and fluoride, the concentrations increased from southwest to northeast along the line. Of those contaminants for which values were not reported in FY88, isodrin and trichloroethylene concentrations above their respective CRL's with wells along the northeast end of the line while DCPD concentrations above the CRL were found along the southwest end of the line.
- 46. With respect to overall trends in the FY89 distributions of the individual contaminants reported in FY88, there was not a lot of change. However, additional contaminants with concentrations above their respective CRL's have been found on both ends of the system. With respect to FY89 concentrations of contaminants reported in FY88, fluoride remained about the same while aldrin, and dieldrin concentrations increased slightly. Chloride and DIMP concentrations decreased somewhat.

Figure 25. FY89 Isodrin concentrations in NVBS devatering wells

Figure 26. FY89 Trich!oroethylene (TRCLE) concentrations in NWBS dewatering wells

PART IV: GROUND-WATER FLOW EVALUATION

Geology and Hydrogeology

Geological Satting

- 47. Description of the geology at the Northwest Boundary area has been presented adequately in previous assessment reports and is not repeated here. Start of Year Alluvial Hydrogeology
- 48. Eydrogeological conditions in alluvium at the start of FY89 were in continuity with conditions for the past few years. Figure 27 shows the configuration of the water table in October 1988. The map is generated mostly by computer and is distinct in appearance from maps in previous years which were contoured by hand with geological interpretation.*

End of Year Alluvial Hydrogeology

- 49. Hydrogeological conditions in alluvium at the end of FY89 are shown in Figure 28. Readings on about October 13, 1989 are representative of the end of FY89 despite falling two weeks into FY90.
- 50. Comparison of the map for the end of the year with the map for the start of the year (Figure 27) reveals the major rise in water table that took place on both sides of the barrier. The rise is shown separately in Figure 29. Water continued to rise through most of the year as evident in the

The computer program for contouring entitled MCCON, was developed by the Geotechnical Laboratory, WES. The program is written in FORTRAN and operates on a PC ("286" or "386" IBM compatibles). MCCON is used to prepare contour maps and to prepare section profiles. The program will accept up to 999 data (x,y,z) triplets. MCCON was chosen for this project because it is capable of handling the discontinuous behavior of the water table in the vicinity of the slurry walls. The program generates non-intersecting triangles which connect each and every data (node) point. Triangle generation ceases after all of the nodes are used as a vertex of at least one triangle and the mesh of triangles encompasses all of the nodes in a convex fashion (i.s., the outer edges of the triangle mesh form a convex shape). The resulting mesh will contain no areas that are not included within a triangle (i.e., the mesh will contain no "holes"). Typically, a set of 100 nodes (on a "386" machine with math coprocessor and EGA card) will require 10 seconds to generate the triangle mesh; a set of 400 nodes, 56 seconds; and 900 nodes, 165 seconds. The time devoted to contour line drawing (on the screen) is typically an additional 20-30 seconds. The contour lines are drawn as a series of connecting straight line segments and circular segments. This combination yields an aesthetically pleasing appearance to the resulting contour map.

Pigure 27. Water-table configuration (ft) at start of FY89

, "S

Pigure 28. Water-table configuration (ft) at end of FY89

Figure 29. Water-table difference (ft) between start and end of FY89

rise of quarterly profiles among Figures 30 through 35. The rise was as great as 4 ft near the barrier as evident in Figures 34 and 35.

51. The rise in water table resulted from operational increases in flow rates and total flow to recharge wells at the northeast half of the system. This management action corrected a previously recognized condition of low water table immediately northwest of the barrier and associated unfavorable head gradient across the barrier. Contemporaneously, the water table rose substantially southeast of the barrier. The mounding of the water table resulting from the increased recharging impeded ground-water flow around the barrier and led to this buildup.

Denver Hydrogeology

52. Only a relatively few monitoring wells are screened in the Denver formation and these are further divided among at least three distinct aquifers. Accordingly no area-wide contouring of piezometric surfaces is meaningful as yet. A general parallelism between configurations in the Denver aquifers and in the alluvial aquifer has been established, but refinement must await the addition of more Denver monitoring wells.

Ground-water Hydrology

Long-Term Trend

53. Indications of a long-term decline in the water table were in accord with the decline indicated in the previous several years (TOD 1989). In Figure 31 the decline is evident among monitoring wells in Section 27 away from the influence of the NWBS. The range of levels for FY88 is shown for comparison. A similar decline is evident along profile 2 (Figure 32). The decline is not related to droughty conditions since annual precipitation has recently been above the average 15 in. as follows:

Annual
Precipitation
(in.)
17.82
11.54
19.05
17.55
15.27

Figure 30. Locations of water-table profiles

Figure 31. Profile I for FY 89

Figure 32. Profile II for FY 89

Figure 34. Profile IV for FY 89

Figure 35. Comparison of ground-water levels on northwest side (light symbols) and southeast side (heavy symbols) of barrier

Seasonal Trand

54. Seasonal fluctuations are also evident in the behavior of the water table. Levels quarter by quarter are shown in Figures 31 through 33. Close examination reveals that the levels rose to a high in the first quarter, presumably with the onset of winter. Similarly, the low for the year came in the third quarter with the onset of the summer. This seasonal effect is best seen in Figures 32 but can also be found in Figures 31 and 33.

Recharge Function

55. The NWBS is considered to be operating most efficiently when there is a reverse water-table gradient southeastward. Figure 34 shows that a condition near neutral (neither northwest or southeast) was maintained throughout FY89. Figure 35 compares water-table conditions across the barrier from a different perspective. The water table in the profile northwest of the barrier from a different perspective. The water table in the profile northwest of the barrier alignment tended to be higher than along the parallel profile situated southeast of the barrier alignment.

PART V: CONCLUSIONS

- 56. Based on the evaluation of the FY89 operations data for the Northwest Boundary System, the following conditions can be made:
 - A. Ground-water levels in the NWBS area were stable for FY89.
- <u>b</u>. An increased flow of recharge water was directed by management decision to the northeast end of the system to raise the water table.
- <u>c</u>. The desired neutral to southeastward gradient was maintained across the system throughout the year.
- $\hat{\mathbf{q}}$. The water table showed a small decline at locations away from the influence of the system.
- g. The treatment system in general effectively removed organic contaminants from the influent to the system. Chloroform was not as effectively removed by the treatment system as were the other organic contaminants monitored at the NWBS. Inorganic contaminants, such as chloride and fluoride, were not removed by the treatment system.

REFERENCES

Omaha District. 1986. "Construction Foundation Report; Northwest Boundary, RMA Containment/Treatment System," U.S. Army Engineer District, Omaha.

Program Manager Staff Office (PMSO). 1987. "Northwest Boundary Containment/ Treatment System Baseline Conditions, System Startup and Operational Assessment Report for FY85/86," Rocky Mountain Arsenal Information Center Reference Library Number 88054R01, Rocky Mountain Arsenal, Commerce City, Colorado.

Program Manager for Rocky Mountain Arsenal (PMRMA). 1988. "Northwest Boundary Containment/Treatment System Operational Assessment Report, FY87, Final Report," Rocky Mountain Arsenal Information Center Reference Library Number 89263R02, Rocky Mountain Arsenal, Commerce City, Colorado.

Stollar and Associates. 1989. "Comprehensive Monitoring Program: Annual Ground Water Report for 1988 Final Report," Rocky Mountain Arsenal Information Center Library No. 89213R01, Rocky Mountain Arsenal, Commerce City, Colorado.

Program Manager for Rocky Mountain Arsenal (PMRMA). 1989. "Northeast Boundary Containment/Treatment System Operational Assessment, FY88," Final Report." Rocky Mountain Arsenal Information Center Reference Library No. 90061R02, Rocky Mountain Arsenal, Commerce city, Colorado.

APPENDIX A FLOW DATA

MORTHWEST BOUNDARY TREATMENT PLANT FY 89 WEEKLY FLOWS FOR ADSORBERS

<i>2</i>	1				•			
DATE	CAL(00)	CPX	GAL(00)	GPM	C37 (CO)	CD11	TOT	-
2022		TIN .		W/A	GAL(00)	GPM	GAL(00)	GPM
10/07/88	0	0.00	3,918	388.69	3,000	297.62	6,918	686.31
10/14/88	•	0.00	3,936	390.28	3,260	323.25	7,196	713.53
10/21/88	0	0.00	3,973	394.54	3,192	316.98	7,165	711.52
10/28/88	0	0.00	4,002	396.63	3,162	313.38	7,164	710.01
11/04/88	0	0.00	3,552	350.64	3,018	297.93	6,570	648.57
11/11/88	0	0.00	3,585	357.78	3,179	317.27	6,764	675.05
11/18/88	0	0.00	3,584	352.93	3,258	320.83	6,842	673.76
11/25/88	0	0.00	3,557	353.05	3,093	306.00	6,640	659.05
12/02/88	0	0.00	3,188	316.11	2,948	292.32	6,136	608.43
12/09/88	0	0.00	3,544	351.24	2,731	270.66	-	
12/16/88	ō	0.00	3,672	364.47	2,717	269.68	6,275	621.90
12/23/88	0	0.00	3,614	358.89	2,484		6,389	634.15
12/30/88	ō	0.00	3,672	363.38		246.67	6,098	605.56
01/06/89	0	0.00	3,541	352.16	2,513	248.69	6,185	612.07
01/13/89	o	0.00	3,551	351.34	2,399	238.59	5,940	590.75
01/20/89	o	0.00	3,520	349.62	2,700 2,299	267.14 228.35	6,251	618.48
01/27/89	Ö	0.00	3,496	347.17	2,299	220.35	5,819	577.97
02/03/89	ō	0.00	3,486	345.32	2,194	217.34	5,560 5,680	552.14
02/10/89	ō	0.00	2,998	298.31	2,449	243.68	5,447	562.66 541.99
02/17/89	916	90.87	2,003	198.71	3,124	309.92	6,043	599.50
02/24/89	3,711	367.97	0	0,00	2,989	296.38	6,700	664.35
03/03/89	3,805	377.11	0	0.00	2,973	294.65	6,778	671.76
03/10/89	3,636	361.25	0	0.00	2,908	288.92	6,544	650.17
03/17/89	3,525	349.36	0	0.00	3,027	300.00	6,552	649.36
03/24/89	3,522	349.06	0	0.00	2,856	283.05	6,378	632.11
03/31/89	3,849	380.71	0	0.00	2,897	286.55	6,746	667.26
04/07/89	3,472	344.27	0	0.00	3,143	311.65	6,615	655.92
04/14/89	3,206	321.73	0	0.00	3,672	368.49	6,878	690.22
04/21,89	3,231	320.38	0	0.00	3,879	384.63	7,110	705.01
04/28/89	3,337	331.22	0	0.00	3,698	367.05	7,035	
05/05/89	3,498	346.34	0	0.00	3,452	341.78	6,950	698.27 688.12
05/12/89	3,604	358.25	0	0.00	3,120	310.14	6,724	668.39
05/19/89	3,462	342.77	0	0.00	3,211	317.92	6,673	660.69
05/25/89	3,274	325.45	0	0.00	3,334	331.41	6,608	656.86
06/02/89	3,366	333.93	0	0.00	3,244	321.83	6,610	655.76
06/09/89	3,177	315.18	0	0.00	3,370	334.33	6,547	649.51
06/16/89	3,317	329.07	0	0.00	3,508	348.02	6,825	677.09
06/23/89	3,523	348.64	0	0.00	3,226	319.25	6,749	667.89
06/30/89	3,477	345.80	0	0.00	3,103	308.60	6,580	654.40
07/07/89	3,301	326.51	0	0.00	2,953	292.09	6,254	618.60
07/14/89	3,607	354.32	ō	0.00	2,347	230.55	5,954	584.87
07/21/89	3,470	348.74	ō	0.00		264.12	6,098	612.86
07/28/89	3,537	350.20	ō	0.00		274.55	6,310	
. , ,	-,		•	0.00	4,113	#/4.33	0,310	524.75

HORTHWEST BOUNDARY TREATMENT PLANT FY 89 NEEKLY FLOWS FOR ADSORVERS

	1		2		3		TOI	'AL
DATE	GAL(00)	GPM	GAL(00)	GPM	GAL (00)	GPM	GAL(00)	GPM
								~~~~~
08/04/89	3,646	362.25	0	0.00	2,946	292.70	6,592	654.95
08/11/89	3,542	351.39	0	0.00	2,364	234.52	5,906	585.91
08/18/89	3,486	346.00	0	0.00	2,310	229.28	5,796	575.28
08/25/89	3,137	310.59	634	62.77	1,696	167.92	5,467	541.28
09/01/89	3,783	375.86	324	32.19	1,760	174.86	5,867	582.91
09/08/89	3,582	355.53	2,591	257.17	0	0.00	6,173	612.70
09/15/89	3,118	309.33	2,490	247.02	0	0.00	5,608	556.35
09/22/89	3,473	344.37	2,953	292.81	0	0.00	6,426	637.18
09/30/89	4,090	355.19	3,343	290.32	0	. 0.00	7,433	645.51

## NORTHWEST BOUNDARY TREATHENT PLANT FY 89 QUARTERLY FLOWS FOR ADSORBERS

	1		2	******	3		TOI	AL
DATE	GAL(OO)	GPH	GAL(00)	GPM	GAL(00)	GPM	GAL(00)	GPM
*******				~~~~~	*******			
1st QTR	0	0.00	47,797	364.51	38,545	293.94	86,342	658.45
2nd QTR	22,964	175.10	22,595	172.51	34,879	266.12	80,438	613.73
3rd QTR	43,944	335.62	0	0.00	43,960	335.78	87,904	671.39
4th QTR	45,772	345.41	12,335	90.94	21,777	166.20	79,884	602.55
ANNUAL	112,680	214.03	82,727	156.99	139,161	265.51	334,568	636.53

APPENDIX B

TREATMENT PLANT WATER QUALITY DATA STATISTICAL SUMMARY

AND GC/MS ANALYSIS

## MORTHNEST SCUMDARY TREATMENT PLANT - SIFLUENT FOR FY 89

SAMPLE		111702		112TCE ug/l		110CE Ug/1		11DCLE		120CE ug/l		120CLE ug/l		130HE		ALDRN		AS
MIS		ug/l			,						_	ugy i		ug/l		<i>1</i> 9/l		ug/l
10/06/88	•		_			:	_		_		_		•		LT	0.050	•	
10/13/88		••••		••••	•	••••		••••		••••		••••		••••	LT	0.050		••••
10/20/88		••••		****		••••		••••	*	••••		••••			•	••••		••••
10/27/88		••••		****	•	••••		••••		••••		••••		••••	LT	0.050		
11/03/68		••••		/***		••••		••••		••••		••••			LT	0.050		
11/10/68						••••		****		••••		••••		****	LT	0.050		••••
- 11/17/88				••••		••••		••••		••••		••••		••••	LT	0.050		
11/24/88		••••		••••		••••		••••		••••				••••		••••		
12/01/08		••••		••••			•	••••		••••		••••		••••	LT	0.050		
12/08/83		••••		••••		••••		••••				••••		••••	LT	0.050		••••
12/15/88		••••		••••		• • • •		••••		••••		••••		••••		0.107		••••
12/22/88		••••		••••		••••		••••		••••		••••		••••	LT	0.050		
12/29/58		••••		••••	•	••••		****		••••		••••		••••		••••		••••
01/04/89		••••		••••		••••		••••		••••		••••		••••	LT	0.050		••••
01/11/89		••••		••••		••••		••••		••••		••••		****	LT	0.050		••••
01/18/89	LT	0.760	LT	0.780	LT	1.700	LT	0.730	LT	0.760	LT	1.100	LT	1.320	LT	0.050	LT	2.350
01/25/89		••••		••••		••••		••••		••••		••••		****	LT	0.050		••••
02/01/89		• • • •		••••		••••		••••		••••		••••		••••	LT	0.050		• • • •
02/08/69		••••		••••		••••		••••		••••		••••		••••	LT	0.050		••••
02/15/89		••••		••••		••••		••••		••••		••••		••••	LT	0.050		••••
02/22/89		••••		••••		••••		••••		••••		••••		••••		••••		••••
03/01/89		••••		****		••••		••••		••••		••••		****	LT	0.050		••••
03/08/89		••••		••••		••••		••••		••••		••••		••••	LT	0.050	-	••••
03/15/89		••••		••••		••••		••••		••••		••••		****		0.058		••••
03/22/89		••••		••••		••••		••••		••••		••••		••••	LT	0.050		••••
03/29/89		••••		••••		••••		••••		••••		••••		****	LT	0.050		••••
04/12/89		••••		••••		••••		. • • •		••••		••••		••••	LT	0.050 0.050		••••
04/19/89		••••		••••		••••		••••		••••		••••		••••	LT.			••••
04/26/89		••••		••••		••••		••••		••••		••••		••••	LT	0.050		••••
05/03/89		••••		••••		••••		••••		••••				••••	LT	0.050		
05/10/89		••••		••••		••••		••••		••••		••••		••••	LT	0.050		••••
05/17/89															LT	0.050		
05/74/89								••••				••••		••••	LT	0.050		
05/31/89				••••				••••							LT	0.050		
06/07/89				••••								••••		••••	LT	0.050		••••
06/14/89				••••		••••		••••		••••		••••		••••	LT	0.050		••••
06/21/89	LT	0.760	LT	0.780	LT	1.700	LT	0.730	LT	0.760	LT	1.100	LT	1.320	LT	0.050	LT	2.350
06/28/89		••••		••••		••••		••••		••••		••••		••••	LT	0.050		
07/05/89		••••		••••				••••		••••		••••		••••	LT	0.050		• • • •
67/12/89		••••		••••		••••								••••	LT	0.050		
07/19/89				••••		••••		,		••••		••••		••••	LT	0.050		
07/26/89		••••		••••		• • • •		••••		••••		••••		••••	LT	0.050		••••
08/02/89		••••		••••		••••		••••		••••		••••		••••	LT	0.050		
03/09/89		••••		••••		••••		••••		••••		••••		••••		• • • •		••••
08/16/89		• • • •		••••		••••		••••		••••		••••		• • • •	LT	0.050		••••
08/23/89		••••		••••		••••		••••		••••		••••		••••	LT	0.050		• • • •
02/30/39		• • • •		••••		••••		• • • •		••••		• • • •		••••	LT	0.050		••••
09/05/89		••••		••••		••••		••••		••••		••••		****	LT	0.050		••••
09/13/89		••••		••••		••••		••••		••••		••••		••••	LT	0.050		••••
09/23/89		••••		••••		••••		••••		••••		••••		••••	LT	0.059		••••
09/27/59		••••		****		••••		• • • •		••••		••••		••••	LT	0.030		••••

LT = LESS THAN The Following Concentration .... INDICATES THAT ANALYSIS WAS NOT PERFORMED

Ug/L = HICROGRAM PER LITER

mg/t = MILLIGRAM PER LITER

MORTHAGET ECHELIST TREATMENT PLANT - INFLIGHT FOR PY CO

eample	ATZ	<b>SCEPO</b>	- 872	C6#6	CC1.4	C12CL2		CHLORIDE	CLSCP
DATE	ug/l	· us/l	ug/L	us/L	ue/t	ug/l	ug/L	mg/l	ug/t
*****	******	*******		******	*******	* *******	*******	*******	******
0/06/88	••••		••••	****		•	****	330	***
0/13/86		••••	••••	****	••••	••••	****	••••	•••
0/20/88	••••	••••	••••	••••	••••	••••	****	310	***
0/27/88		••••	••••	••••	••••		****	330	•••
1/03/88	••••	****	••••	••••	••••	••••	••••	290	•••
1/10/88		••••	••••	••••		••••	••••	330	•••
1/17/88		••••	••••	••••			••••	320	
1/24/38		••••	••••	••••	****	••••	****	****	•••
2/01/88		****		••••			****	310	
2/08/88		••••	••••		****	••••	••••	310	•••
2/15/88	••••	••••	••••	••••	••••	••••	****	260	•••
2/22/88	••••		****	••••	****	****	****	27\1	•••
2/29/88	••••	••••		••••	****	••••	••••	••••	•••
1/04/89	••••	••••	••••	••••	••••	••••	••••	270	•••
1/11/89	••••	••••	••••	••••	••••	••••	••••	250	•••
1/12/89 (	LT 4.030	••••	LT 5.000	LT 1.050	LT 0.990	LT 7.400	21.650	257	LT 0.04
1/25/89	****	••••	••••		••••	••••	••••	290	•••
2/01/89	••••	••••		••••	••••	••••	••••	260	
2/08/89	••••	••••	***	****	••••	****	••••	240	•••
2/15/89	••••	****	••••	••••		••••	••••	240	••
2/22/89	••••	****	****	••••	****	****	••••	240	•••
5/01/89	••••	••••	••••	••••	••••	••••	••••	240	•••
5/03/89	••••	••••	****	••••	••••	••••	••••	250	
1/15/89	••••	••••	••••	••••	••••	••••	••••	240	•••
3/22/89	••••	****	••••	••••	••••	••••	••••	240	•••
729/89	••••	••••	••••	••••	• • • • •	••••	••••	240	•••
/05/59	••••	••••	••••	••••	••••	••••	••••	240	•••
/12/89	••••	••••	****	••••	••••	••••	••••	230	•••
/19/89	••••	****	****	****	••••	••••	••••	240	•••
/25/89	••••	****	••••	****	****	••••	••••	240	•••
/03/89	••••	••••	••••	****	****	••••	••••	230	•••
5/10/89	••••	••••	••••	••••	••••	••••	••••	280	•••
/17/89	••••	••••	••••	••••	••••	****	••••	240	•••
/24/89	••••	****	••••	••••	••••	••••	••••	260	•••
5/31/89	••••	••••	••••	••••	••••	••••	••••	230	•••
/07/89	••••	••••	••••	••••	••••	••••	••••	210	•••
14/89	••••	••••	••••	••••		••••	••••	230	•••
5/21/89	••••	LT 5.900	LT 5.000	LT 1.050	LT 0.990	LT 7.400	47.5GB	267	LT 0.04
/28/89	••••	••••	••••	••••	••••	••••	••••	300	•••
/05/89	••••	****	••••	••••	••••	••••	••••	360	•••
/12/89	••••	••••	••••	••••	••••	••••	••••	290	•••
/19/89	••••	••••	••••	••••	••••	••••	••••	240	•••
/26/89	••••	••••	••••	••••	••••	••••	••••	270	•••
1/02/89	••••	••••	••••	••••	****	••••	••••	230	•••
1/09/89	••••	••••	••••	****	••••	****	••••	260	•••
/16/29	••••	••••	••••	****	••••	••••	****	220	•••
1/23/89	••••	••••	••••	****	••••	••••	****	190	• • •
/30/39	••••	••••	••••	••••	••••	••••	••••	290	•••
/06/89	••••	••••	••••	••••	••••	••••	••••	270	•••
/13/89	****	****	••••	****	••••	****	****	260	•••
/20/39								280	

ug/t = HICROGRAM PER LITER

LT = LESS THAM The Following Concentration .... INDICATES THAT AMALYSIS WAS NOT PERFORMED

me/L = HILLIGRAM PER LITER

MORTHWEST SCHOOLY TREATMENT PLANT - INFLUENT FOR FY 89

SARPLE		CL COMS		CLDAN	1	CPHS		CPHSO		CMECS		DECP	1	00%		DOVP	DIMP
DATE	•	ug/l	1	ug/l	(	ug/l		ug/l		ug/l		ug/l	•	ug/t		us/l	ug/l
******	•	•••••	•	•••••			•		•		•	••••••	•	•••••	•	******	*******
10/06/88		••••		••••	LT		_	11.500	_	7.460		0.195		••••		****	3.550
10/13/88		••••		••••	LT	5.690		11.500	LT		LT					••••	3.430
10/20/88 10/27/88		••••		••••	LT	5.690		11,500	LT	7.460 7.460		0.106		5.000		••••	7 440
11/03/88		••••		••••	LT LT	5.690 5.690	_	11,500	LT LT		LT	0.195 6,195	LT LT	5.000 5.000		••••	3.660 3.660
11/10/88		••••		••••	LT	5.690		11.500	LT	7.460	LT		LT.	5.000		• • • •	4.570
11/17/88		••••		••••	LT	5.690	_	11.500	LT		LT		Lī	5.000		****	4.610
11/24/88		••••		••••	•	••••	•	••••		••••	•	••••	••	****		••••	****
12/01/88		••••		••••	LT		LT	11,500	LT		LT		LT	5.000		••••	3,620
12/08/88		••••			LT	5.690	L	11,500	LT	7.460	LT		LT	5.000		••••	4.140
12/15/68					LT	5.690	LT	11.500	LT	7.460	LT	0.195	LT	5.000		••••	3.350
12/22/88				••••	LT	5.490	LT	11,500	LT	7.460	LT	0,195	LT	5.000		****	3.260
12/29/88		••••		••••				••••		••••				****			
01/04/89		••••			LT	5.690	LT	11,500	LT	7.460	LT	0.195	LT	5.000		••••	4.360
01/11/85				••••	LT	5.690	LT	11,500	LT	7.460	LT	0.195	LT	5.000		****	3.040
01/18/89	LT	0.820	LT	0.095	LT	5.490	LT	11,500	LT	7.460	LT	0.195	LT	5.000	LT	0.384	3,160
01/25/89				••••	LT	5.690	LT	11,500	LT	7.460	LT	0.195	LT	5.000		****	3.950
02/01/89		••••			LT	5.690	LT	11.500	LT	7.460	LT	0,195	LT	5.000		****	4.280
02/08/89		• • • •		••••	LT	5.690	LT	11.590	LT	7.460	LT	0.195	LT	5.000			3.010
02/15/89		••••			LT	5.66	LT	11,500	LT	7.460	LT	0,195	LT	5.000			2.470
02/22/89		••••			LT	5.690	LT	11.500	LT	7,460	LT	0.195	LT	5.000		••••	2.620
03/01/89		••••		••••		••••		••••		• • • •		••••	LT	5.000			2.840
03/08/89		••••			LT	5.690	LT	11.500	LT	7.460	LT	0.195	LT	5.000		••••	2.630
03/15/89		••••		••••	LT	5.690	LT	11.500	LT	7.460	LT	0.195	LT	5.000		• • • •	3.460
03/22/89		••••		****	LT	5.690		11.500	LT	7.460	LT	0,195		****		****	2.730
03/29/89		••••		••••	ĻŢ	5,690	_	11.500	LT	7,460	LT	0,195	LT	5.000		••••	2.780
04/05/89		••••		••••	L.	5.690		11.500	LT	7.460	LT	0.195	LT	5.000		••••	2.570
04/12/89		••••		••••	LT	5.690		11.500	LT	7.460	LT	0.195	LT	5.000		••••	2.740
04/19/89		••••		••••	LT	5.690 5.690		11.500	LT LT	7,460 7,460	LT LT	0.195 0.195	LT LT	5.000 5.000		••••	2.960
05/03/89		••••		••••	LT	5.690		11,500	LT	7,460	LT	0.195	LT	5.000		••••	2,190 2,540
05/10/89		••••		••••	LT	5.690		11.500	LT	7,460	LT	0,195	LT	5.00C		••••	3.525
05/17/89		••••		••••	LT	5.690		11.500	LT	7,460	LT	0.195	LT	5.000		••••	2,230
05/24/89		••••		••••	LT	5.690		11,500	LT	7,460	LT	0,195	LT	5.000		••••	4.640
05/31/89		••••		••••	LT	5.690		11,500	LT	7,460	LT	0.195	LT	5.000		••••	3.280
06/07/89		••••		••••	LT	5.690	-	11.500	LT	7,460	LT	0,195	LT	5.000		••••	3.140
06/14/89		••••		••••	LT	5.690		11,500	LT	7.460	LT	0.195	LT	5.000		••••	3.340
06/21/89	LT	0.820	LT	0.095	LT	5.690		11.500	LT	7,460	LT	0,195	LT	5.000		••••	2.573
06/28/89		••••		••••	LT	5.690		11,500	LT	7,460	LT	0,195	LT			••••	5,590
07/05/89		••••		••••	LT	5.690		11.500	LT	7,460	LT	0.195	1,7	5.000		••••	5.010
07/12/89		••••		••••	LT	5.690		11.500	LT	7.460	LT	0.195	LT	5.000		••••	4,920
07/19/89		••••		••••	LT	5.690		11.500	LT	7.460	Ę,	0.195		5.000		••••	860
07/26/89		••••		••••	LT	5.690		11.500	LT	7.460	LT	0.195	LT			••••	3.220
08/02/89		••••		••••	LT	5.690		11.500	LT	7.460	LT	0.195		5.000		••••	2,990
08/09/89				****	LT	5.690		11.500	LT	7,460	LT	0.195	LT	5.000		****	3.220
08/16/69		••••		••••	LT	5.690		11.500	LT	7.460	LT	0.195	LT	_		••••	2.800
08/23/89		••••		••••	LT	5.690	LT	11.500	LT	7.460	LT	0.195	LT	5.000		••••	2.010
08/30/89		••••		••••	LT	5.690	LT	11.500	LT	7.460	LT	0.195	LT	5.000		••••	3.040
09/06/89		••••		••••	LT	5.690	LT	11.500	LT	7.460	LT	0,195	LT	5.000		••••	3.410
09/13/89		••••		••••	LT	5.690		11.500	LT	7.460	LT	0.195	LT	5.000		• • • •	3.000
09/20/39		••••		••••	LT	5.690		11.500	LT	7.460	LT	0.195		••••			1.970
69/27/89		••••		••••	LT	5.690	ĻŢ	11.50G	LT	7.460	LT	0.195	LT	5.000		••••	••••

LT = LESS THAN The Following Concentration

.... INDICATES THAT ANALYSIS WAS NOT PERFORMED

ug/l = HICROGRAM PER LITER

mg/L = HILLIGRAM PER LITER

MENTALES SOURCES TOTALEST PLANT - INTUINT FOR IT OF

1,501.1	ισ <u>.</u>	arm .	9	K.D.RII		<b>203</b>		edan	etcas	FLUCKIDE	1	1008	×	ECSIS	60L TXISI
ETAG		ert.	•	m/l		m/l	·	ap/l	ug/l	mg/L		m/l		<b>e/</b> l	ug/L
*******	••	*****	••	*****	••		••		******	******	••		••	*****	******
10/04/38	ĻŢ	1.340		0.324		••••	LT	9.050	••••	2.510	LT	0.051		••••	****
10/13/98	ĻŢ	1.340		0.318		••••	LT	0.050	••••	••••	LT	0.051		••••	****
10/25/86	LT	1.340		****		••••		••••	••••	2.310		****		****	••••
	-	1.340		0.282		••••	-	0.050	••••	2.550	-	0.051		••••	••••
	LT	1.240		2.278		••••	LT		****	2.477	LT	0.051		••••	••••
11/10/88	LT	1.340		0.298		••••	LT		••••	2.510	LT	0.051		••••	••••
11/17/08	LT	1.340		0.346		••••	LT	0.050	••••	2.720	LT	0.051		••••	••••
11/24/68		* ***		0.064		****		9.046	****	2.670		0.085		••••	••••
12/01/88	LT	1.340		0.417		••••		0.050	••••	2.830		0.084		••••	****
12/15/58	LT	1,340		0.654		••••		0.050	••••	2.440		0.077		••••	••••
	LT	1.340		0.377		••••	LT		••••	2.270	1.7	0.051		••••	
12/39/88	••			••••		••••	••		••••		•	••••		••••	••••
	LT	1.340		9.371		••••	LT	0.050	****	2.300	LT			••••	••••
01/11/89	LT	1.340		6.435			L7	0.050	••••	2.200	LT	0.051		••••	••••
91/18/89	LT	1.340		0.405	LT	0.550	LT	0.050	LT 1.370	2.163	LT	0.051	LT	1.470	67,500
01/25/59	LT	1.340		0.437		••••	LT	0, 250	••••	2.270		0.063			••••
02/01/39	LT	1.340		0.496		••••	LT	0.050	••••	2.240	LT	0.051			****
02/08/89	LT	1.340		0.495		••••	LT	9.050	••••	1.900	ĻT	0.051		••••	••••
02/15/89	LT	1.343		0.516		••••	LT	0.050	••••	2.240	LT	0.051		••••	• • • •
02/22/89	LT	1.340		••••		••••		••••	••••	2.070		••••		••••	••••
03/01/89		••••		0.388		••••	•	0.050	••••	2.050	LT	0.051		••••	••••
	LT	1.340		0.367		••••	LT		••••	2.220	LT	0.051		••••	. ****
03/15/89	LT	1.340		0.412		••••	LT	0.050	••••	2.070	LT	0.951		••••	****
03/22/39	-	1.340		0.417		••••	LT	0.050	****	1.910	LT	0.051		****	****
03/29/89 04/05/89	LT	1,340		0.344		••••	LT	0.050 0.050	****	1.920 1.926	LT	0.051		• • • •	****
64/12/89	LT	1.340		9.469		••••	LT	0.050	••••	1,800	1.7	0.051		••••	••••
04/19/89	LT	1.343	LT	0.050		••••	LT	0.050	****	1,430	LT	0.051		••••	
04/26/97	LT	1.340	LT			••••	LT	0.050	••••	1.860	LT	0.051			
05/03/89	LT	1,340		0.431		••••	LT	0.050	••••	1.710	LT	0.051		••••	••••
05/18/89	LT	1.340		0.431			LT	0.050	• • • •	1.975	LT	0.051			****
05/17/89	LT	1.340		0.418		••••	LT	0.050		1.750	LT	0.051			
05/24/89	LT	1.340		9.390		••••	LT	W.050	••••	1.760	LT	9.051			****
95/31/89	LT	1.340		0.419		••••	LT	0.050	••••	1.550	LT	0.051			
06/07/89	ĻŢ	1.340		0.379		••••	LT	0.050	****	1.340	LT	0.051		••••	****
06/14/89	LT	1,340		9,403		••••	LT	9.050	••••	1.410	LT	0.051		• • • •	****
06/21/39	LT	1.340		0.451	LT	0.405	ĻŤ	0.050	LT 1.370	2,017	LT	0.051	LT	1.470	****
04/28/89	LT	1.340		0.372		••••	LT	0.050	••••	2.250	ĻT	0.051		• • • •	••••
		1.340		0.439		****	LT		••••	2,700	-	0.051		••••	••••
07/12/89	LT	1.340		0.514		••••	LT	0.050	••••	2.480	LT	0.051		••••	****
07/19/99		1,340		0.537 0.447		••••	LT LT	8.050 0.050	4 * * *	2.220	LT	0.051		****	****
06/02/97	LT	1.343		0.422		****	LT		****	2.080 2.110	LT LT	0.051		••••	••••
08/09/99	LT	1.340		0.626		••••	LT		****	2.140	LT	0.051		••••	****
08/16/99		1.34		0.505		••••	LT		••••	2.110	LT	9.031			
08/23/89	LT	1,340		0.444			LT		••••	2,060	LT	0.051			••••
03/30/99	LT	1.340		0.458		••••	LT			2.070	LT	0.051		••••	
09/06/05	LT	1.340		0.444			LT	0.050		2,000	LT	0.051		****	••••
09/13/89	LT	1.340		0.238			LT	0.050		1.990	LT	0.051			
99/29/89	LT	1.340		0.422		• • • •	LT	0.050	,	2.050	LT	0.051			
09/27/59	LT	1.340		0.440			LT	0.050	••••	2,300	LT	0.251			••••

LT - LEXS TRAM The following Commentration

WELL . MICEGRAM PER LITER

.... INDICATES THAT AMALYSIS WAS NOT PERFORMED

ME/L - MILLIGRAM PER LITER

# MORTINEST SCHOOLARY TREATMENT PLANT - INFLUENT FOR FY 89

SAPLE		DKAT		PPOCE	•	PPOCE	,	PRIME	\$04	<u>.</u>	,	BLPCNA	,	CLEE		TRCLE	,	CYLEN
DATE		us/l		ug/L		ua/l		ug/l	<b>30</b> /					a/l		ug/l		ug/l
*****				••••				•••••	•			••••		•••••				
10/06/68	LT	2.380						••••				••••			LT	0.560		••••
10/13/88	LT	2.380		••••		••••				••••		••••		••••	LT	0.560		••••
10/20/68	LT	2.330		••••		••••		••••						••••				••••
10/27/88	LT	2.380				••••		****		••••		••••		••••	LT	0.560		••••
11/03/88	LT	2.380		••••		••••		••••		• • • •		••••		••••	LT	0.560		
11/10/86		2.380		••••		••••		••••		••••		****		••••	LT	0.560		••••
11/17/80	LT	2.300		••••		••••		••••		••••		****		••••	LT	0.340		• • • •
11/24/88	_	••••		••••		••••		••••		••••		****		••••		••••		••••
12/01/35				••••		••••		••••		• • • •		••••		****	LT	0.560		••••
12/58/88	LT	2.330		••••		••••		••••		••••		••••		****	LT	0.560		••••
12/15/88	LT	2.320		••••		••••		••••		••••		••••		••••	LT	0.560		••••
12/22/88 12/29/88		2.380		••••		••••		••••		• • • •		••••		••••	LT	0.560		• • • •
01/04/89	17	2.380		••••		••••		****		••••		••••		••••	LT	0.560		••••
01/11/89	LT	2.380		••••		••••		••••		••••		****		****	LT	0.560		••••
01/18/39	LT	2.380	LT	0.054	LT	0.049	LT	0.647		130	LT	0.769		••••	LT	0.560	LT	1.360
01,45/89	LT	2.332	•		•	••••	•	••••		••••	•	••••		• • • • •	LT	0.560	•	
02/01/89	LT	2.380		••••				••••		• • • •		••••		••••	LT	0.560		••••
02/08/89	LT	2.380		••••		••••		••••		••••		••••		••••	LT	0.560		••••
02/15/89	LT	2.380												••••	LT	0.560		
02/22/89	LT	2.380				••••		••••		• • • •				••••	LT	0.560		• • • •
03/01/89		••••				••••		••••		• • • •		••••		••••	LT	0.560		• • • •
03/08/09	LT	2.380		••••		••••		••••		• • • •		••••		••••	LT	0.560	_	••••
03/15/89	LT	2.380		••••		••••		••••		• • • •				••••	LT	0.560	-	••••
03/22/89	LT	2.380		••••				••••		• • • •		••••		****	LT	0.560		••••
03/29/89	LT	2.380		••••		••••		••••		• • • •		••••		****	LT	0.560		••••
04/05/59	LT	2.380		••••		••••		••••		• • • •		••••		••••	LT	0.560		••••
04/12/89	LT	2.380 2.380		••••		• • • •		••••		• • • •		••••		••••	LT	0.560 0.560		****
04/25/89	LT	2.380		••••		••••		••••		• • • •		••••		••••	LT	0.560		••••
05/03/99	LT	2.380		••••		••••				• • • •		••••		••••	LT	0.560		••••
05/10/89	LT	2.380												****	LT	0.560		••••
05/17/89	LT	2.380		• • • •		••••		• • • •		• • • •		••••		••••	LT	0.560		••••
CS 14/89	LT	2.380								•••				• • • •	LT	9.560		
05/31/89	LT	2.380				••••		••••		• • •				••••	LT	0.569		
06/97/89	LT	2.380						••••				••••		••••	LT	0.560		• • • •
06/14/89	LT	2.380			_	••••						••••	_	••••	LT	0.560		• • • •
06/21/89	LT	2.330	LT		LT			1.765		140		••••	LT	0.730		0.448	LT	1.360
07/03/89	LT	2.380 2.380		••••		••••		••••		• • •		••••			LT			••••
07/12/39	LT	2.350		• • • •		• • • •		••••		•••		• • • •		••••	LT	0.560		• • • •
07/19/89	LT	2.330						••••		•••		****		••••	LT	0.550		• • • •
07/25/89	LT	2.380								• • •				••••	LT	0.360		• • • •
08/02/99	LT	2.380								•••				••••	LT	0.360		••••
08/09/39	LT	2.380								•••				••••	LT	0.560		••••
98/16/89	LT	2.320										••••		••••	L7	0.560		
08/23/09	-	2.350		••••		••••						••••		••••	LT	0.560		••••
08/30/89	LT	2.380										••••		••••	LT	9.560		••••
09/06/89	ĻŤ	2,380				••••						• • • •			LT	G.560		
09/13/89	L7	2.380								•••				••••	LT	0.560		••••
09/20/59	LT	2.380		• • • •				• • • •	•	•••		••••		••••	LT	0.560		••••
09/27/09	LT	2.380		• • • •		••••				•••		••••		••••	LT	0.560		• • • •

LT = LESS THAN The Following Concentration

.... INDICATES THAT ANALYSIS WAS NOT PERFORMED

USEAL . MICROGRAM PER LITER

SQ/L = MILLIGHAM PER LITER

MATERIA SUSSIANT TERRITORY PLANT - INVEST PLANT PO

. Dept.	13	1703	•	12702		1100	1	10CLE		120	1	70CLE	•	ZOKE		LDEN		AS .
DATE	· Wij	-		<b>e/</b> (		ug/l		g/l		us/l		m/l		m/l		g/l		ug/l
*****							•	•••••		<del></del>		*****						
10/04/88			-	••••				••••		••••		••••		••••		0.050	•	••••
10/13/93		••••	,	••••				••••		••••		••••		••••	LT	0.050		••••
10/20/88		••••		••••		••••		••••		****		••••		••••	•	••••		
10/27/98		••••		••••		••••		••••		****		••••		••••	LT	0.050		••••
11/03/88		••••		••••		••••		••••		••••		••••		••••	LT	0.050		••••
11/19/88		••••		••••		••••		••••		••••		••••		••••	LT	0.050		
11/17/88		••••		••••		••••		****		••••		••••		••••	LT	0.050		••••
11/24/88		••••		••••		••••		••••		••••		••••		••••	•	••••		••••
12/01/88		••••		••••		••••		••••		••••		••••		••••	LT	0.050		••••
12/08/88		••••		••••		••••				••••				••••	LT	0.050		
12/15/88		••••										••••				0.116		••••
12/22/88						••••		••••		••••				••••	LT	0.050		
12/29/88		••••		••••				••••	٠	••••		••••		••••		••••		••••
01/04/89		••••		••••		••••		••••		••••				••••	LT	0.050		
01/11/89				••••		••••		••••		••••		••••		••••	LT	0.050		• • • •
01/18/89	LT	0.760	LT	0.780	LT	1.700	LT	0.730	LT	0.760	LT	1,100	LT	1.320	LT	0.050	LT	2.350
01/25/89		••••		····		••••		••••				••••		••••	LT	0.050		••••
02/01/89		••••		••••		••••		••••		••••		••••		••••	LT	0.050		
02/08/89		••••		••••		••••		• • • •				••••		••••		0.073		
02/15/89		••••		••••		••••		• • • •		••••		••••		••••	LT	0.050		• • • •
02/22/89		••••		••••		••••		••••		••••		••••		••••		••••		••••
03/01/89		••••		••••		••••		••••		••••		••••		••••	LT	0.050		••••
03/08/89		••••		••••		••••		••••		••••		••••		••••	LT	0.050		••••
03/15/89		••••		••••		••••		••••		••••		••••		••••	LT	0.050		••••
03/22/89		••••		••••		••••		••••		••••		••••		••••	LT	0.050		••••
03/20/30		••••		••••		• • • •		••••		••••		••••		••••	LT	0.050		****
04/05/69		••••		••••		••••		••••		••••		••••		••••	LT	0.050		••••
04/12/39		••••		****		••••		••••		••••		••••		••••	LT	0.050 0.081		••••
04/19/89		****		••••		••••		••••		••••		••••		****	LT	0.050		••••
05/03/89		****		••••		••••		••••		••••		••••		••••	LT	0.050		••••
05/10/89		••••		••••		••••		••••		••••		••••		••••	LT	0.050		••••
05/17/89		••••		****		••••		••••		••••		••••		••••	LT	0.050		••••
05/24/89		••••		••••		****		****		••••		****		••••	LT	0.050		••••
05/31/89		••••		••••		••••		••••		••••				••••	LT	0.050		
04/07/89		••••		••••		,		••••		••••				••••	LT	0.050		
06/14/89		••••		••••		••••		••••		••••		••••		••••	LT	0.050		
06/21/99	LT	0.760	LT	0.780	LT		LT	0.730	LT		LT	1,100	LT	1.320	LT	0.050	LT	
06/28/09		••••		••••		****		••••		••••		••••		••••	LT	0.050		••••
07/05/89								••••							LT	0.050		
07/12/09														••••	LT	0.050		
07/19/09				••••		••••								••••	LT	0.050		
07/75/89								••••							LT	0.050		
C8/32/89								••••						••••	LT	0.050		
08/09/89		••••		••••				••••						••••		••••		• • • •
08/16/89		••••		••••		••••		••••						••••	LT	0.050		
08/23/09		••••		••••		••••		• • • •		••••		••••		••••	LT	0.050		
02/30/39		••••		••••				••••		• • • •				••••	LT	0.050		••••
09/06/09		••••		••••				• • • •		••••		••••		••••	LT	0.050		
09/13/69				••••		****		• • • •				••••		• • • •	LT	0.050		••••
09/20/09		••••						••••		• • • •		••••		••••	LT	0.050		••••
09/27/89		••••		••••		••••		• • • •		••••				••••	LT	0.050		• • • •

LT # LESS THAM The following Concentration

.... INDICATES THAT ANALYSIS WAS NOT PERFORMED

MIL . MICROGRAM MER LITER

mg/L = MILLIGRAM PER LITER

#### MORTHAEST BOUNDARY TREATMENT PLANT - EFFLUENT FOR FY 89

20012	ATZ	<b>9</b> CHP9	917	Cálló	CCL4	012012	CHCL3	CHLORIDE	CL6CP
DATE	ug/l	ug/l	ug/l	ug/l	ug/l	ug/i	ug/l	mg/l	ug/l
•		*******	•••••	*******			••••		
19/06/38	••••		••••		••••	••••	••••	330	
10/13/88	••••	••••	••••	••••	• • • •	••••	****	••••	••••
10/20/88	••••	••••	••••		••••	••••	••••	300	
10/27/63	••••	••••	••••	••••	••••	••••	****	330	••••
11/03/68	****	••••	••••	••••	••••	••••	••••	290	••••
11/10/88	••••	••••	••••	••••	••••	••••	••••	300	
11/17/88	••••	••••	••••	••••	****	****	••••	320	••••
11/24/88	****	••••	••••	••••	••••	****	••••	****	••••
12/01/88	••••	****	••••	****	****	****	••••	300 310	****
12/15/88	••••	••••	••••	****	••••	••••	****	270	••••
12/22/88	••••	••••	••••	••••	••••	••••	••••	270	••••
12/29/88	••••	••••	••••	••••	••••	••••	••••	••••	
01/04/89	••••	••••	••••	••••	••••	••••	4***	270	
01/11/59	••••	••••	••••	••••	••••	••••	****	250	••••
01/18/89	LT 4.030		LT 5.000	LT 1.050	LT 0.990	LT 7.400	23.500	250	LT 0.048
01/25/89		••••	••••	••••	••••	••••		270	
02/01/89	••••	••••	••••		••••	****	••••	260	••••
02/08/89	••••	****	••••	••••	••••	••••	• • • •	230	••••
02/15/89	••••	••••	••••	••••	••••	••••	••••	250	
02/22/89	••••	••••	****	••••	••••	****	••••	240	••••
03/01/89	••••	****	••••	••••	••••	••••	****	240	• • • •
03/08/89	••••	••••	••••	••••	••••	••••	••••	250	
03/15/89	••••	••••	••••	••••	••••	****	••••	230 240	••••
03/29/89	••••	••••	****	••••	****	****	••••	240	••••
04/05/89	••••	••••	••••	••••	••••	••••	••••	240	••••
04/12/89	••••	****	••••	••••		••••	****	230	
04/19/59	••••	••••	••••		****	••••		240	••••
04/26/89	••••	••••				••••	••••	230	• • • •
05/03/39	****	••••	••••	••••		••••	••••	230	
05/10/89	••••	••••	••••	••••	••••	••••	• • • •	270	• • • •
05/17/89	••••	••••	••••	••••	••••	••••	••••	240	••••
05/24/89	****	****	••••	••••	••••	••••	••••	250	••••
05/31/89	****	••••	****	••••	••••	****	••••	230	••••
06/07/ <del>99</del> 06/14/ <del>99</del>	****	••••	• • • •	****	••••	****	••••	200 210	••••
06/21/89	••••	LT 5.900	LT 5.000	LT 1.050	LT 0.990	LT 7.400	19.700	265	LT 0.048
05/28/89		••••	••••	••••	****	****	••••	300	••••
07/05/89			••••		••••	••••	****	350	
07/12/89	****		••••		••••	••••	••••	250	
07/19/89	••••	••••		••••	••••	••••	••••	240	••••
07/26/39	••••	• • • •	••••	••••	••••		••••	250	• • • •
08/02/59	****	••••	• • • •	••••	••••	••••	****	240	• • • •
08/09/39	••••	••••	••••	••••	••••	****	••••	230	••••
08/16/89	••••	****	••••	••••		****		220	****
08/23/37	••••	••••	****	****	• • • •	****	****	230	••••
00/30/39	****	****	••••		****	••••	****	270	••••
09/96/89 09/13/89	••••	••••	****	••••	****	****	****	260 260	****
09/23/89	• • • •	••••	••••	••••	****	••••	••••	280 280	
09/27/89	****	••••			••••	****	••••	330	••••
## F # 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1	••••	••••	****	••••	••••	****	••••	****	****

LT . LEES THAM The following Concentration

US/L . HICROGRAM PER LITER

.... INDICATES THAT ANALYSIS WAS NOT PERFORMED

mg/L = MILLIGRAM PER LITER

2854		CLC695		CLDAN		3965		CPHSO	. ,	PHS02		3207					
DATE		as/l				-		ug/l						XCP0		CVP	DIMP
******		46/ L		ug/l		46/L	_			ug/l	•	AQ/L	-	<b>4</b> 4/1	,	ag/l	ug/l
10/09/68	-				1 7	5.490	17	11.500	17	7,440	17	0.195	-		•		4.310
10/13/38		••••		••••	LT	5.490		11.500	LT	7,460	LT			••••		• • • •	5.080
10/20/38		••••		••••	LT	5.690		11.500	LT	7,460	••	•••••	LT	5.000		••••	
10/27/38		••••		••••	LT	5.490		11.500	LT	7,460	LT	0.195	LT	5.000		••••	4,410
11/05/63		••••		••••	LT	5.690		11.500	LT	7,460	LT	0.195	LT	5.000		••••	3.990
11/.6/12				••••	LT	5.690		11.500	LT	7,460	LT	0.195	LT	5.000		••••	5.180
11/11/18		••••		••••	LT	3.690		11.500	LT	7.460	LT	0.195	LT	5.000		••••	5,590
11/24, 2		••••		••••	•	••••		••••	••	••••	•	••••	•			••••	••••
12/25/7-3		••••		••••	LT		LT	11.500	LT		LT		LT	5.000		••••	4,490
12/00/13		••••		••••	LT	5.690	_	11.500	LT	7.460	LT	0.195	LT	5.000		••••	4.39C
12/15/13		••••		••••	LT	5.690		11.500	LT	7.460	LT	0.195	LT	5.000			4.610
17/27/82					LT	5.690	LT	11.500	LT	7.460	LT	0.195	LT	5.000		••••	4,490
12/29/58		••••				••••		••••				••••				****	••••
01/04/89				••••	LT	5.690	LT	11.500	LT	7.460	LT	0.195	LT	5.000			5.240
#1/17/89				••••	LT	5.690	LT	11.500	LT	7.460	LT	0.195	LT	5.000			4.590
31/18/89	17	0.820	LT	0.095	LT	3.690	LT	11.500	LT	7.460	LT	0.195	LT	5.000	LT	0.384	3.770
61/35/39		••••		••••	LT	5.690	LT	11.500	LT	7.460	LT	0.195	LT	5.000		••••	4.510
02, 91/89		••••		••••	LT	5.690	LT	11.500	LT	7.460	LT	0.195	LT	5.000			4.820
02/78/19		••••		••••	LT	5.690	LT	11.500	LT	7.460	LT	0.195	LT	5.000		••••	3.470
02/15/87		••••		••••	LT	5.690	LT	11.500	LT	7.460	LT	0.195	LT	5.000			3.740
02/72/89		••••		••••	LT	5.690	LT	11.500	LT	7.460	LT	0.195	LT	5.000		••••	2.760
C. 70% 32		••••		••••		••••				••••		••••	LT	5.000		••••	3.350
03/06/89		••••		••••	LT	5.690	ĻŢ	11.500	LT	7.460	LT	0.195	LT	5.000		••••	3.650
63/15/39		••••		••••	LT	5.690	LT	11.500	LT	7.460	LT	0.195	LT	5.000			4.360
ひ/ 41/89		••••		••••	LT	5. <i>69</i> 9	-	11.500	LT	7.460	LT	0.195		••••		••••	3.850
03/29/89		••••		••••	LT	5.690		11.500	LT	7.460	LT	0.195		5.000		••••	3,660
04/05/89		••••		••••	LT	5.690		11.500	LT	7.460	LT	0.195	LT	5.000		••••	2.190
04/12/89		••••		••••	LT	5.690	-	11.500	ĻŢ	7.460	LT	0.195	ĻŤ	5.000		••••	5.900
04/19/89		••••		••••	LT	5.690	-	11.500	LT.	7.460	LT	0.195	LT	5.000		••••	3.770
04/26/89		••••		••••	LT	5.690		11.500	LT	7,460	LT	0.195	LT	5.000		••••	3.470
05/03/89		••••		••••	LT	5.690	-	11.500	LT	7.460	LT	0.195	LT	5.000		****	3.240
05/10/89		••••		••••	LT	5.690		11.500	LT	7,460	LT	0.195	LT	5.000		••••	3.970
05/17/89		••••		••••	LT	5.590		11.500	LT	7.460	LT	0.195	LT	5.000		****	3,360
05/24/89		•••		••••	LT	5.690	_	11.500	LT	7.460	LT	0.195	LT	5.000		****	4.450
06/07/89		••••		••••	LT	5.690	Ć,	11.500	LT	7.460	LT	0.195	LT	5.000		••••	4.630
06/14/89		••••		••••	LŤ	5.690		11.500	LT	7.460	LT	0.195	LT	5.000		••••	4.460
06/21/89	LT	0.820	LT	0.095	LT	5.690		11.500	LT	7.460	LT LT	0.195	LT	5.000 5.000		••••	4.200 3.710
06/28/89			٠.		LT	5.690		11.500	LT	7.460	LT	0.195	LT	3.000		••••	5,740
07/05/89		••••		• • • •	LT	5.690	-	11.500	LT	7,460		0.195	LT	5.000		• • • •	5.090
07/12/89		••••		••••	LT	5.690		11.500	LT	7.460	LT	0.195	LT	5.000		••••	5.390
07/19/89					LT	3.690		11.500	LT	7,460	i.	0.195	LT	5.000		••••	830
07/26/89					LT	5.690		11.500	LT	7.460	LT	0.195	LT	3.000		••••	4.310
08/02/39					LT	5.690		11,500	LT	7.460	LT	0.195	LT	5.000			2.550
08/09/89				••••	LT	5.690	_	11.500	LT	7.460	LT	0.195	LT	5.000		••••	3.950
08/16/89		••••		••••	LT	5.690		11.500	LT	7.460	LT	0.195	LT	5.000			3.840
08/23/89					LT	5.690		11.500	LT	7.460	LT	0.195	LT	3.000		••••	3.890
08/30/89		••••			LT	5.690		11.500	LT	7.460	LT	0.195	LT	3.000		••••	4.360
09/05/89					LT	5,690		11.500	LT	7.460	LT	0.195	LT	5.000		••••	4.150
09/13/89		••••		••••	LT	5.690		11.500	LT	7,460	LT	0.195	ĻT	5.000		••••	3.910
09/20/89		••••		••••	LT	5.690		11.500	LT	7.460	LT	0.195	•	••••		••••	3.160
09/27/69					LT	5.690		11.500	LT	7.460	LT	0.195	LT	5.000		••••	

ug/L = HICROGRAM PER LITER

LT = LESS TMAN The Following Concentration .... INDICATES THAT ANALYSIS WAS NOT PERFORMED

mg/l = MILLIGRAM PER LITER

MORTHWEST SOUNDARY TREATMENT PLANT - EFFLUENT FOR FY 89

EMPLE	(	DITH		LORN	1	DMD'S	1	ENDRN	1	ETC6K5	FLUORIDE	1	SCOR	i	MECANS	MLTHM
DATE		ug/L	,	ug/l		ug/l		ug/l		ug/l	mg/l	•	Jg/l	1	ug/t	ug/l
******	•		•		•	•••••	••	•••••	-	•••••	*******	••	•••••	•	•••••	
10/06/83		1.340	_	0.050		••••	LT	0.050		••••	2.550	LT	0.051		••••	••••
10/13/88	LT		LT	0.050		••••	LT	0.050		••••	****	LT	0.051		••••	••••
10/20/88	LT	1.340		••••		••••		••••		••••	2.300		****		••••	••••
10/27/88	LT	1.340	-	0.050		••••	ĻŢ			••••	2.600		0.051		••••	••••
11/03/88	LT	1.340	LT	0.050		••••	LT			****	2.480		0.051		****	••••
11/10/88 11/17/88	LT LT	1.340	LT LT	0.050 0.050		••••	LT LT	0.050		••••	2.530	LT	0.051		••••	••••
11/24/88	C.		<b>C</b> :			••••	Li	0.050		••••	2.450	LT	0.051		••••	••••
12/01/63	17	1 340		0.050		••••	1.7	0.050		••••	2.680	17	0.051		••••	****
12/06/83	LT	1.340	LT	0.050		••••	LT	0.050		••••	2.720	LT	0.051		••••	****
12/15/88	LT	1.340	LT	0.050			LT	0.050			2.480	LT	0.051			• • • •
12/22/85	LT	1.340	LT	0.050			L7	0.050			2.310	LT	0.051		••••	
12/29/68	•	••••		••••		••••	•	••••		••••	••••	••	••••		••••	
01/04/89	LT	1.340	LT	0.050			LT			••••	2.320	LT	0.051		••••	••••
01/11/89	LT	1.340	LT	0.050		••••	LT	0.050		••••	2.380	LT	0.051		••••	••••
01/18/89	LT	1.340	LT	0.050	LT		LT	0.050	LT		2.185	LT	0.051	LT	1.470	90,000
01/25/89	LT	1.340	LT	0.050	•	••••	LT	0.050	•	••••	2.210	LT	0.051		••••	****
02/01/89	LT	1.340	LT	0.050			LT	0.050			2.260	LT	0.051			••••
02/08/89	LT	1.340	LT	0.050		••••	LT	0.050		••••	2.050	LT	0.051		••••	••••
02/15/89	LT	1.340	LT	0.050		••••	LT	0.050		••••	2.200	LT	0.051		••••	••••
02/22/89	LT	1.340				••••				••••	2.090				••••	••••
03/01/89			LT	0.050			LT	0.050			2.090	LT	0.051			
03/08/89	LT	1.340	LT	0.050		••••	LT	0.050			2.190	LT	0.051			
03/15/89	LT	1.340	LT	0.050			LT	0.050		••••	1.970	LT	0.051			
03/22/89	LT	1.340	LT	0.050		••••	LT	0.050		••••	1.930	LT	0.051			••••
03/29/89	LT	1.340	LT	0.050		••••	LT	0.050		••••	1.910	LT	0.051			
04/05/89	LT	1.340	LT	0.050		••••	LT	0.050		••••	1.910	LT	0.051		••••	
04/12/89	LT	1.340	LT	0.050		••••	LT	0.050		••••	1.840	LT	0.051		••••	••••
04/19/89	LT	1.340	LT	0.050			LT	0.050		••••	1.790	LT	0.051		••••	••••
04/26/89	LT	1.340		0.192		• • • •	LT	0.050		••••	1.910	LT	0.051		••••	••••
05/03/89	LT	1.340	LT	0.050			LT	0.050		••••	1.700	LT	0.051		••••	••••
05/10/89	LT	1.340	LT	0.050		••••	LT	0.050		••••	2.030	LT	0.051		••••	••••
05/17/89	LT	1.340	LT	0.050		••••	LT	0.050		••••	1.730	LT	0.051		• • • •	••••
05/24/89	LT	1.340	LT	0.050		••••	LT	0.050		••••	1.680	LT	0.051		••••	••••
05/31/89 06/07/89	LT	1.340	LT LT	0.050		••••	LT	0.050		••••	1.570	LT	0.051		••••	••••
06/14/89	LT	1.340	LT	0.050		••••	LT LT	0.050		••••	1.390 1.430	LT	0.051		••••	••••
06/21/89	LT	1.340	LT	0.050	LT	0.429	LT	0.050	LT	1.370	2.055	LT	0.051	LT	1.470	••••
06/28/89	LT	1,340	LT	9.050	•		LT	0.050	•		2.250	LT	0.051	•		****
07/05/89	LT	1.340	LT	0.050			LT	0.050			2.630	LT	0.951			••••
07/12/89	LT	1.340	LT	0.050			LT	0.050		••••	2.420	LT	0.051			••••
07/19/69	LT	1.340	LT	0.050			LT	0.050		••••	2.140	LT	0.051			••••
07/26/89	LT	1.340	LT	0.050		****	LT	0.050		••••	2.100	LT	0.051			••••
08/02/39	LT	1.340	LT	0.050			LT	0.050		••••	2.190	LT	0.051		••••	
08/09/89	LT	1.340	LT	0.050			LT	0.050			2.110	LT	0.051			
	LT	1.340		0.096			LT	0.050			2.140	LT	0.051			••••
	LT	1.340		0.055		••••	LT	0.050		••••	2.040	LT	0.051			••••
	LT	1.340		0.062		••••	LT	0.050			2.030	LT	0.051			••••
09/06/89	LT	1.340	LT	0.050		••••	LT	0.050		••••	1.700	LT	0.051		••••	••••
	LT	1.340	LT	0.050			LT	0.050		••••	2.150	LT	0.051		••••	••••
09/20/89	LT	1.340	LT	0.050				0.050		••••	2.030	LT	0.051		••••	••••
09/27/89	LT	1.340	LT	0.050			LT	0.050		••••	2.370	LT	0.051		••••	****
																•

us/L = MICROSRAM PER LITER

LT = LESS THAN The Following Concentration .... INDICATES THAT ANALYSIS WAS NOT PERFORMED

mg/l = MILLIGRAM PER LITER

THE PARTY DUBBANY TREATMENT PLANT - EFFILENT FOR FY 89

	: * :		?		-	- /		-	. 78/	~ E	VVI EM
SAPLE		KAT	PPODE	Proce	<b>尹农了188</b>	904	SUPCHA	TOLES	TRO		XYLEN
BATE		<b>4/</b> l	ug/l	ug/l	ug/t	ag/l	ug/l	ug/t	UE,	/ L	ug/l
*******			*******	******	******					0.560	
10/06/85	_	2.330	••••	••••	••••	••••	••••	••••	-	0.560	••••
10/13/88	LT	2.330	****	••••	••••.	••••	••••	••••	•• •	••••	••••
10/20/88	LI	2.380 2.380	****	••••	****	••••	••••	••••	LT (		••••
10/27/88	LT		••••	****	••••		••••	••••		0.560	••••
11/10/88	LT		••••	• • • •	••••	****	••••	••••		0.560	••••
11/17/88		2.380	••••	••••	••••	****	••••	••••		0.560	****
11/24/88	.,		••••	••••	••••	••••	••••		•		••••
12/01/88	17	2.380	••••	••••	••••	••••	••••	••••	LT (	0.560	••••
12/08/88	LT	2.380	••••	••••	••••	****	••••	••••	LT	0.560	••••
12/15/88	-	2.380	••••	••••	****	••••	••••	••••	LT (	0.560	••••
12/22/68	LT		••••	••••		••••		****	LT	0.560	••••
12/29/88	•	••••	••••	••••	••••	••••	••••	••••		••••	••••
01/04/89	LT	2.380	••••		••••	••••	••••	••••	LT	0.560	••••
01/11/89	LT	2.380	••••			••••	****		LT	0.560	••••
01/18/89	LT	2.380	LT 0.054	LT 0.049	LT 0.647	130	LT 0.769	••••	LT I	0.560	LT 1.360
01/25/89	LT	2.380	••••		••••	••••	••••	••••	LT	0.560	
02/01/89	LT	2.380	••••	••••		••••	••••	••••	LT	0.560	••••
02/08/89	LT	2.380	••••	••••		••••	••••	••••	-	0.560	••••
02/15/89	LT	2.380	••••	••••	••••	••••	••••	••••		0.560	••••
02/22/89	LT	2.380	••••	••••	••••	••••	••••	••••		0.560	****
03/01/89			••••	• ••••	••••	••••	••••	••••		0.560	••••
03/08/89	LT	2.380	••••	••••	••••	••••	****	••••		0.560	••••
03/15/89	LT	2.380	••••	••••	••••	••••	••••	••••		0.560	••••
03/22/89	LT	2.380	****	••••	****	••••	••••	••••	_	0.560	••••
03/29/89	LT	2.380	****	••••	••••	••••	••••	••••		0.560	••••
04/05/89	LT	2.380	****	••••	••••	••••	****	••••		0.560 0.560	••••
04/12/89	LT	2.380	••••	••••	••••	****	••••	••••		0.560	****
04/19/89	LT	2.380	****	••••	****		••••	••••		0.560	••••
04/26/89 05/03/89	LT	2.330	****	••••	****	****	••••	••••		0.560	
05/10/89	LT	2.380	****	••••	••••	••••	••••	••••		0.560	
05/17/89	LT	2.380	****	••••	••••	••••	••••			0.560	,
05/24/99	LT	2.380	••••		••••	••••	****	••••		••••	
05/31/89	LT	2.380	••••	••••	••••	••••	••••	••••	LT	0.560	••••
06/07/89	•	••••	••••	****	••••	****	••••	••••			••••
06/14/89	LT	2.380	••••		••••	****	••••		LT	0.560	••••
06/21/89	LT	2.380	LT 0.054	LT 0.049	1.660	140		1.970	LT	0.560	LT 1.360
06/23/39	LT	2.380	••••		••••	****	••••	••••	LT	0.560	••••
07/05/89	LT	2.380	****		••••	••••	••••	••••	LT	0.560	****
07/12/29	LT	2.380	••••	••••	••••	••••	***	••••	LT	0.360	••••
07/19/89	LT	2.380	••••	••••		••••	••••	••••	LT	0.560	••••
07/25/89	LT	2.380	••••	••••	••••	****	••••	••••		0.560	••••
08/02/89	LT	2.380	••••		••••		****	••••		0.560	••••
06/09/37	LT		****		••••	****	••••	••••		0.360	••••
08/16/89	LT		••••	••••	••••	••••	••••	••••		0.560	••••
08/23/99		2.380	••••	••••	••••	****	••••	••••		0.560	• • • •
08/30/89		2.380	••••		••••		••••	••••		0.560	••••
09/06/89	-	2.380	••••	••••	••••	••••	••••	••••		0.560	••••
09/13/39		2.380	••••	****	••••	••••	••••	••••		0.560	****
09/20/89		2.380	••••	••••	••••	****	****	****		0.560	••••
09/27/59	LT	2.330	****	••••	••••		****	••••	LT	V. 20V	••••

LT = LESS THAN The Following Concentration .... INDICATES THAT AMALYSIS WAS NOT PERFORMED US/L = HICROGRAM PER LITER

mg/L = MILLIGRAM PER LITER

09/18/90

### DATACHEM FY 89 STATISTICAL SUMMARY MORTHWEST BOUNDARY SYSTEM

SITE: PWININ

ANALYTE	TOT SAMP	SAMP >CRL	% >	MTH NO.	CERTIFIED REPORT LIMIT (LT)	UCM	mean	Low Value	HIGH VALUE
				*******					
111TCE	2	0	0	N8	0.76	UGL	LT CRL	LT CRL	LT CRL
112TCE	2	0	0%	n8	0.78	UGL	LT CRL	LT CRL	LT CRL
11DCE	2	0	01	N8	1.70	UGL	LT CRL	LT CRL	LT CRL
11DCLE	2	0	0.8	N8	0.73	UCL	LT CRL	LT CRL	LT CRL
12DCZ	2	0	0%	<b>и</b> 8	0.76	UGL	LT CRL	LT CRL	LT CRL
12DCLE	2	0	0%	N8	1.10	UGL	LT CRL	LT CRL	LT CRL
13DMB	2	0	0.	AV8	1.32	UGL	LT CRL	LT CRL	LT CRL
ALDRN	47	2	44	KK8	0.05	UGL	LT CRL	LT CRL	0.11
λS	2	0	0	AXS	2.35	UGL	LT CRL	LT CRL	LT CRL
ATZ	1	0	01	UH11	4.03	UGL	LT CRL	LT CRL	LT CRL
BCHPD	1	0	0%	P8	5.90	UGL	LT CRL	LT CRL	LT CRL
BTZ	2	0	01	<b>Х</b> ХХ8	5.00	UGL	LT CRL	LT CRL	LT CRL
C6H6	2	0	0%	AV8	1.05	UGL	LT CRL	LT CRL	LT CRL
CCL4	2	0	0%	N8	0.99	UGL	LT CRL	LT CRL	LT CRL
CH2CL2	2	0	0%	N8	7.40	UGL	LT CRL	LT CRL	LT CRL
CHCL3	2	2	100%	N8		UGL	34.73	21.65	47.80
CL	49	49	100	9348A, TT09		MGL	264.97	190.00	360.00
CLSCP	2	0	0%	KX8	0.05	UGL	LT CRL	LT CRL	LT CRL
CLC6H5 CLDAN	2	0	0%	NS	0.82	UGL	LT CRL	LT CRL	LT CRL
CPHS	2 49	0	0%	KK8	0.10	UGL	LT CRL	LT CRL	LT CRL
CPMSO	49	0	0%	AAAS	5.69	UGL	LT CRL	LT CRL	LT CRL
CPMSO2	49	Ö	08	2278 2278	11.5	UGL	LT CRL	LT CRL	LT CRL
DBCP	48	ò	0	AAAS AYS	7.46 0.20	UGL	LT CRL	LT CRL	LT CRL
DCPD	46	Ö	03	P8		UGL	LT CRL	LT CRL	LT CRL
DDVP	1	Ö	08	UH11	5.00 0.38	ugl ugl	LT CRL	LT CRL	LT CRL
DIMP	47	47	100	AWSA, ATS	0.30	UGL	LT CRL 3.32	LT CRL 1.97	LT CRL 5.59
DITH	49	ő	£004	AAA8	1.34	UGL	LT CRL	LT CRL	LT CRL
DLDRN	48	46	96%	KK8	0.05	UGL	0.39	LT CRL	0.65
DMDS	2	0	0	AAA8	0.55	UGL	LT CRL	LT CRL	LT CRL
DMMP	ī	ō	03	ATS	0.19	UGL	LT CRL	LT CRL	LT CRL
ENDRN	48	ì	23	KX8	0.05	UGL	LT CRL	LT CRL	0.05
ETC6H5	2	0	0%	AVS	1.37	UGL	LT CRL	LT CRL	LT CRL
•	49	49	100%	HHSA, TTO9		MGL	2.13	1.36	2.83
ISODR	48	5	10%	KK8	0.05	UGL	LT CRI.	LT CRL	0.09
MECSH5	2	0	0.8	AV8	1.47	UGL	LT CRL	LT CRL	LT CRL
MIBK	1	0	0%	P8	4.90	UGL	LT CRL	LT CRL	LT CRL
MLTHN	1	0	0.8	UH11	0.37	UGL	LT CRL	LT CRL	LT CRL
OXAT	49	0	0%	AAA8	2.38	UGL	LT CRL	T CRL	LT CRL
PPDDZ	2	0	0%	KK8	0.05	UGL	LT CRL	Lf CRL	LT CRL
PPDCT	2	0	0%	8XX	0.05	UGL	LT CRL	IT CRL	LT CRL
PRTHN	2	1	50%	UH11	0.65	UGL	LT CRL	LT CRL	1.76
504	2	2	100%	HH8A		MGL	135.00	130.00	140.00
SUPONA	1	0	0%	UH11	0.79	UGL	LT CRL	LT CRL	LT CRL
TCLEE	2	0	03	NS	0.75	UGL	LT CRL	LT CRL	LT CRL
TRCLE	49	1	28	м8	0.56	UGL	LT CRL	LT CRL	0.67
XYLEN	2	0	0%	AV8	1.36	UGL	LT CRL	LT CRL	LT CRL
ZN	2	1	50%	GG8, SS12	18.0	UGL	LT CRL	LT CRL	22.95

PY 89 STATISTICAL SUMMARY NORTHWEST SOUNDARY SYSTEM

09/18/90

SITE: PWEFE

			_		CERTIFIED				
	TOT	SAMP	<b>\</b> >		REPORT			LOW	HIGH
Analyte	Samp	>CRL	CRL	MTH NO.	LIMIT (LT)	Mou	MEAN	VALUE	VALUE
111TCE	2	0	0.0	M8	0.76	UGL	LT CRL	LT CRL	
112TCE	2 .	ŏ	04	<b>м8</b>	0.78	UGL	LT CRL	LT CRL	LT CF
11DCE	2	0	03	N8	1.70	UGL	LT CRL		LT CRL
11DCL3	2	Ö	0	N8	0.73	UGL	LT CRL	LT CRL LT CRL	LT CFT. LT CF
12DCE	2	ŏ	08	M8	0.76	UGL	LT CRL	LT CRL	
12DCLE	2	ŏ	0%	N8	1.10	UGL	LT CRL	LT CRL	LT CF
13DMB	2	ŏ	0	AVS	1.32	UGL	LT CRL	LT CP	LT CRL LT CF
ALDRN	47	3	68	KK8	0.C5	UGL	LT CRL	IT CRL	
AS	2	ō	0	AX8	2.35	UGL	LT CRL		0.1 LT CRL
ATZ	ī	ŏ	0%	UH11	4.03		LT CPT.	LT CRL	- "
BCHPD	i	ŏ	03	P8	5.90	UGL		LT CRL	LT CRL
BTZ	2	Ö	0%	<b>λλ</b> λ8	5.00	UGL	L" "TL	LT CRL	LT CF
C6H6	2	ŏ	0	YAV9		UGL	Lw CRL	LT CRL	LT CF
CCL4	2	ŏ	03	N8 VAS	1.05	UGL	LT CRL	LT CRL	LT CRL
CH2CL2	2	ŏ	0%		0.99	UGL	LT CRL	LT CRL	LT CP'
CH2CL2		2		N8	7.40	VGL	LT CRL	LT CRL	LT CF
	2	49	100%	N8		UGL	21.60	19.70	23.5.
CT CT	49		100%	HH8A, TIO9	0.05	MGL	261.53	200.00	350.00
	2	0	0%	KK8	0.05	UGI.	LT CRL	LT CRL	LT CF
CLC6H5	2	0	0	N8	0.82	UGL	LT CRL	LT CRL	LT CF
CLDAN	2	0	0%	KK8	0.10	UGL	LT CRL	LT CRL	LT CRL
CPMS	48	0	0%	λλλ8	5.69	UGL	LT CRL	LT CRL	LT CRL
CPMSO	48	0	0%	λλλ8	11.5	UGL	LT CRL	LT CRL	LT CF
CPMSO2	48	0	0%	YYY8	7.46	UGL	LT CRL	LT CRL	LT CF
DBCP	48	0	98	AY8	0.20	UGL	LT CRL	LT CRL	LT CRL
DCPD	46	0	90	P8	5.00	UGL	LT CRL	LT CRL	LT CP
DDVP	1	0	0%	UH11	0.38	UGL	LT CRL	LT CRL	LT CF
DIMP	47	47	100	AWSA, ATS		UGL	4.17	2.19	5.90
DITH	48	0	0	<b>AAA8</b>	1.34	UGL	LT CRL	LT CRL	LT CRL
DLDRN	48	4	8%	KX8	0.05	UGL	LT CRL	LT CRL	0.1
DNDS	2	0	03	<b>AAA8</b>	0.55	UGL	LT CRL	LT CRL	LT CF
DMMP	1	0	0	ATS	0.19	UGL	LT CRL	LT CRL	LT CRL
ENDRN	48	0	03	KK8	0.05	UGL	LT CRL	LT CRL	LT CP'
ETC6H5	2	0	90	AV8	1.37	UGL	LT CRL	LT CRL	LT CF
7	49	49	100%	HH8A, TT09		MGL	2.13	1.39	2.7.
ISODR	48	0	0%	KX8	0.05	UGL	LT CRL	LT CRL	LT CRI,
MEC6H5	2	0	0%	AV8	1.47	UGL	LT CRL	LT CRL	LT CF
HIBK	1	0	0%	P8	4.90	UGL	LT CRL	LT CRL	LT CF
MLTHN	1	0	0%	UH11	0.37	UGL	LT CRL	LT CRL	LT CRL
OXAT	48	0	01	8AAA	2.38	UGL	LT CRL	LT CRL	LT CRL
PPDDE	2	0	0%	KK8	0.05	UGL	LT CRL	LT CRL	LT CF
PPDDT	2	0	0%	KX8	0.05	UGL	LT CRL	LT CRL	LT CF
PRTHN	2	1	50%	UH11	0.65	ugi,	LT CRL	LT CRL	1.66
504	2	2	1001	ннаа		MGL	135.00	130.00	140.C~
SUPONA	1	0	60	UH11	0.79	UGL	LT CRL	LT CRL	LT CF
TCLER	2	1	50%	N8	0.75	UGL	LT CRL	LT CRL	1.9/
TRCLE	47	0	0%	и8	0.56	UGL	LT CRL	LT CRL	LT CRL
XYLEN	2	0	0%	AV8	1.36	UGL	LT CRL	LT CRL	LT CF
zn	2	0	0%	GG8, SS12	22.0, 18.0	UGL	LT CRL	LT CRL	LT CF

### PY 89 STATISTICAL SUMMARY NORTHWEST BOUNDARY SYSTEM

03/09/90

SITE: PWININ

					CERTIFIED				
	TOT	SAMP	<b>8</b> >		REPORT			LOW	HIGH
analyte	SAMP	>CRL	CRL	.ON ETK	LIMIT (LT)	DON	MEAN	VALUE	VALUE
MLTHN	2	0	0%	UH11	0.37	UGL	LT CRL	LT CRL	LT CRL
NA	4	4	100%	GG8, SS12		UGL	182,500.00	999.00	190,000
nit	2	2	100%	LL8		UGL	6,650.00	999.00	6,900
OXAT	54	9	0%	8444	2.38	UGL	LT CRL	LT CRL	LT CRL
PB	6	0	0%	GG8, SS12	74.0, 43.4	UGL	LT CRL	LT CRL	LT CRL
PPDDE	4	0	0%	KX8	0.05	UGL	LT CRL	LT CRL	LT CRL
PPDDT	4	0	08	KK8	0.05	UGL	LT CRL	LT CRL	LT CRL
PRTHN	4	2	50%	UH11	0.65	UGL	LT CRL	LT CRL	1.77
SO4	4	4	100%	HHSA		MGL	135.00	130.00	150.00
SUPONA	2	0	0%	UH11	0.79	UGL	LT CRL	LT CRL	LT CRL
TCLEE	4	0	0%	ив	0.75	UGL	LT CRL	LT CRL	LT CRL
TRCLE	54	1	21	n8	0.56	UGL	LT CRL	LT CRL	0.88
XYLEN	4	0	01	AV8	1.36	UGL	LT CRL	LT CRL	LT CRL
ZN	4	1	25%	GG8, SS12	22.0, 18.0	UGL	LT CRL	LT CRL	23.90

-**\$** 

, , . •

03/09/90

### DATACHEM PY 89 STATISTICAL SUMMARY NORTHWEST BOUNDARY SYSTEM

SITE: PWEFEF

ANALYTE	TOT SAMP	SAMP >CRL	% >	ити но.	CERTIFIED REPORT LIMIT (LT)	UCM	MEAN	LOW VALUE	HIGH VALUE
MLTHN	1	. 0	0%	UH11	0.37	UGL	LT CRL	LT CRL	LT CRL
NA	2	2	100%	GG8, SS12		UGL	185,000.00	999.00	190,000
NIT	1	1	100%	LL8		UGL	6,500.00	999.00	6,50
OXAT	50	0	0%	λλλ8	2.38	UGL	LT CRL	LT CRL	LT CR
PB	3	0	0%	GG8, 5512	74.0, 43.4	UGL	LT CRL	LT CRL	LT CRL
PPDDE	2	0	0%	KK8	0.05	UGL	LT CRL	LT CRL	LT CR!
PPDDT	2	0	0%	KK8	0.05	UGL	LT CRL	LT CRL	LT CRI
PRTHN	2	1	50%	UH11	0.65	UGL	LT CRL	LT CRL	1.66
504	2	2	100%	нная		MGI.	135.00	130.00	140.00
SUPONA	1	0	0%	UH11	0.79	UGL	LT CRL	LT CRL	LT CR
TCLZE	2	1	50%	N8 .	0.75	UGL	LT CRL	LT CRL	1.9.
TRCLE	49	0	0%	NS	0.56	UGL	LT CRL	LT CRL	LT CRL
XYLEN	2	0	03	AVS	1.36	UGL	LT CRL	LT CRL	LT CR
ZN	2	0	0%	GG8, SS12	22.0, 18.0	UGL	LT CRL	LT CRL	LT CR

### ROCKY MOUNTAIN ARSENAL MORTHWEST BOURDARY CONTAINMENT/TREATMENT SYSTEM GC/MS ANALYTICAL DATA

LABORATORY: DATACHEM SAMPLE DATE: 06/21/89 UNIT OF MEASURE: UGL

ANALYTE	CODE	PWININ	PUEFEF
***************************************	*****	*******	*********
2,3,6-TRICHLOROPHENOL	236TCP	LT 1.70	LT 1.70
2,4,5-TRICHLOROPHENOL	245TCP	LT 2.80	LT 2.80
2,4,6-TRICKLOROPHEXOL	246TCP	LT 3.60	LT 3.60
2,4-DICHLOROPHENOL	24DCLP	LT 8.40	LT 8.40
2,4-DIMETHYLPHENOL	2400PH	LT 4.40	LT 4.40
2,4-DINITROPHENOL	240MP	LT 176.00	LT 176.00
2-CHLOROPHENOL	2CLP	LT 2.80	LT 2.80
2-METHYLPHENOL	2HP	LT 3.60	LT 3.60
2-NITROPHENOL	2NP	LT 8.20	LT 8.20
3-METHYL-4-CHLOROPHEHOL	4CL3C	LT 8.50	LT 8.50
4-METHYLPHENOL	4149	LT 2.80	LT 2.80
4-NITROPHENOL	4NP	LT 96.00	LT 96.00
ALDRIN	ALDEN	LT 13.00	LT 13.00
ATRAZINE	ATZ	LT 5.90	LT 5.90
HEXACHLOROCYCLOPENTADIENE (HCCPO)	CL6CP	LT 54.00	LT 54.00
CHLORDANE	CLDAN	LT 37.00	LT 37.00
P-CHLOROPHENYLMETHYL SULFIDE	CP%S	LT 10.00	LT 10.00
P-CHLOROPHENYLMETHYL SULFCXIDE	CPHSO	LT 15.00	LT 15.00
P-CHLOROPHENYLMETHYL SULFONE	CPMSO2	LT 5.30	LT 5.30
DIBROMOCHLOROPROPANE	DECP	LT 12.00	LT 12.00
BICYCLOPENTADIENE	ОСРО	LT 5.50	LT 5.50
VAPONA	DOVP	LT 8.50	LT 8.50
DIISOPROPYLMETHYLPHOSPHONATE	DIMP	LT 21.00	LT 21.00
DITHIANE	DITH	LT 3.30	LT 3.30
DIELDRIN	DLDRM	LT 26.00	LT 26.00
DIMETHYLMETHYLPHOSPHATE	DIMP	LT 130.00	LT 130.00
ENORIN	ENDRH	LT 18.00	LT 18.00
15CORIN	ISODR	LT 7.80	LT 7.80
MALATHION	MLTHM	LT 21.00	LT 21.00
1,4-CXATHIAME	CHAT	LT 27.00	LT 27.00
PENTACHLOROPHENOL	PCP	LT 9.10	LT 9.10
PHEMOL	PHENOL	LT 2.29	LT 2.20
2,2-BIS(PARA-CHLOROPHENYL)-1,1-DICHLOROETHENE	PPODE	LT 14.00	LT 14.00
2,2-815(PARA-CHLOROPHENYL)1,1,1-TRICHLOROETHAME	PPDOT	LT 18.00	LT 18.00
PARATHICM	PRTHN	LT 37.00	LT 37.00
SUPOMA	SUPONA	LT 19.00	LT 19.00

APPENDIX C
DEWATERING WELL DATA

03/20/90

## DATACHEM FY 89 STATISTICAL SUMMARY MORTHWEST BOUNDARY DEWATERING WELLS

ANALYTE: ALDEN

CERTIFIED REPORTING LIMIT (LT): 0.05

WELL NO.	TOT SAMP	SAMP	♥ >	MTH NO.	UON	MEAN	LOW VALUE	HIGH VALUE
1	3	0	0	XX8	UGL	LT CRI	LT CRL	LT CRL
2	3	1	33%	KK8	UGL	LT CP'	LT CRL	0.45
3	3	2	67%	KK8	UGL	LT CRI	LT CRL	0.08
4	3	1	33%	KK8	UGL	LT CRI	LT CRL	0.06
5	3	1	33%	KX8	UGL	LT CRI	LT CRL	0.08
6	3	0	0	KK8	UGL	LT CRI	LT CRL	LT CRL
7	4	0	0%	KX8	UGL	LT CRI	LT CRL	LT CRL
8	3	0	0%	KK8	UGL	LT CRI	LT CRL	LT CRL
9	3	0	0%	KK8	UGL	LT CRI	LT CRL	LT CRL
10	4	0	0%	KK8	UGL	LT CRL	LT CRL	LT CRL
11	3	1	339	KK8	UGL	LT CRL	LT CRL	0.06
12	3	1	334	KX8	UGL	LT CRI	LT CRL	0.09
13	4	1	25%	KK8	UGL	LT CRL	LT CRL	0.08
14	4	2	50%	KKS	DCL	LT CRL	LT CRL	0.23
15	4	1	25%	KK8	UCL	LT CRL	LT CRL	0.12

D.7.A.

### DATACHEM 97 89 STATISTICAL SUMMARY BOATHWEST BOUNDARY DEWATERING WELLS

03/20/90

ANALYTE: CHLORIDE CERTIFIED REPORTING LIMIT (LT): 0.72, 0.278

WELL	TOT	SAKP	<b>\$</b> >				LON	HIGH
NO.	SAMP	>CRL	CRL	MTH NO.	DOM	HEAM	VALUE	VALUE
1	3	3	1004	HHSA	74.7 <b>L</b>	166.67	160.00	170.00
2	3	3	100%	HHSA	MGL	183.33	180.00	190.00
3	3	3	100%	Heaa	MJL	263.33	210.00	330.00
4	3	3	100%	EHSA, TTO9	MGL	230.00	190.00	260.00
5	3	3	100%	HHBA, TTO9	MGL	243.33	210.00	300.00
6	3	3	100%	HHSA, TTO9	MGL	280.00	250.00	300.00
7	3	3	100%	HHSA, TTC9	MGL	285.67	270.00	310.00
8	3	3	100%	HESA, TTO9	NGL	306.67	290.00	340.60
9	3	3	100%	HH8A, TTO9	MGL	263.33	230.00	290.00
10	3	3	100%	HHSA, TTO9	MGL	276.67	250.00	300.00
11	4	4	100%	HH8A, TTO9	MGL	367.50	300.00	440.00
12	4	4	100%	HHSA, TTO9	MGL	322.50	280.00	390.00
13	4	4	100%	HHSA, TIC9	MGL	417.50	290.00	680.00
14	5	5	100%	HHSA, TTO9	HCL	566.00	430.00	780.00
15	3	3	1003	RESA	MCL	586.67	520.00	690.00

### DATACHEM FY 89 STATISTICAL SUMMARY MORTHWEST BOUNDARY DEWATERING WELLS

03/20/90

ANALYTE: DECP

CERTIFIED REPORTING LIMIT (LT): 0.195

WELL NO.	TOT SAMP	Samp >CRL	% > CRL	MTH NO.	UOH	HEAN	LOW VALUE	HIGH VALUE
								~~~~~
1	3	0	C3	AY8	UGL	LT CRL	LT CRL	LT CRL
2	3	0	01	AYS	UGL	LT CRL	LT CRL	LT CRL
3	2	0	0	AYS	UCL	LT CRL	LT CRL	LT CRL
4	3	0	01	AYS	DGL	LT CRL	LT CRL	LT CRL
5	3	0	0	AYS	UGL	LT CRL	LT CRL	LT CRL
6	3	0	01	AYS	CCL	LT CRI,	LT CRL	LI CRL
7	4	0	0%	AYS	UCL	LT CRL	LT CRL	LT CRL
8	4	0	03	AYS	UGL	LT CRL	LT CRL	LT CRL
9	4	0	0%	AY8	UCL	LT CRL	LT CRL	LT CRL
10	3	0	0	AY8	UGL	LT CRL	LT CRL	LT CAL
11	3	0	03	AYS	UGL	LT CRL	LT CRL	LT CRL
12	3	0	0%	AY8	UGL	LT CRL	LT CRL	LT CRL
13	4	0	03	AY8	UGL	LT CRL	LT CRL	LT CRL
14	3	0	0	AYB	UCL	LT CRL	LT CAL	LT CRL
15	4	0	0	AYS	UGL	LT CRL	LT CRL	LT CRL

DATACHEM

FY 89 STATISTICAL SUMMARY MORTHWEST BOUNDARY DEWATERING WELLS

03/20/90

ANALYTE: COMB. ORGANO-SULFUR

CERTIFIED REPORTING LIMIT (LT): 24.65

WELL NO.	TOT SAMP	SAMP >CRL	t >	ON ETH	UOH	Mean	LOW	HIGH Value
1	3	0	0%	BAAA	UCL	LT CRL	LT CRL	LT CRL
2	3	0	0%	3338	UGL	LT CRL	LT CRL	LT CRL
3	1	0	0%	λλλ8	UGL	LT CRL	LT CRL	LT CRL
4	3	0	09	AAA8	UCL	LT CRL	LT CRL	LT CRL
5	3	0	0%	BAAA	UGL	LT CRL	LT CRL	LT CRL
6	3	0	03	XXX8	UGL	LT CRL	LT CRL	LT CRL
7	4	0	08	λλλ8	UCL	L: CRL	LT CRL	LT CRL
8	4	0	0%	8444	UGL	LT CRL	LT CRL	LT CRL
9	4	0	0%	A AA8	UGL	LT CRL	LT CKL	LT CRL
10	3	0	0%	AAA 8	UGL	LT CRL	LT CRL	LT CRL
11	4	0	0	8444	UGL	LT CRL	IT CRL	LT CRL
12	4	0	03	አ እአ8	UGL	LT CRL	LT CRL	LT CRL
13	4	0	03	λλλ8	UGL	LY CRL	LT CRL	LT CRL
14	4	0	0%	8444	UGL	LT CRL	LT CRL	LT CRL
15	4	0	0%	8444	UGL	LT CRL	LT CRL	LT CRL

DATACHEM FY 89 STATISTICAL SUMMARY MORTHWEST BOUNDARY DEWATZRING WELLS

03/20/90

ANALYTE: DCPD

CERTIFIED REPORTING LIMIT (LT): 5

WELL	TOT	Samp	\$ >				Low	HIGH
NO.	SAMP	>CRL	CRL	MTH NO.	KOU	HEAN	VALUE	VALUE
1	3	0	03	P8	UGL	LT CRL	LT CRL	LT CRL
2	3	1	33%	P8	UGL	LT CRL	LT CRL	9.82
3	3	2	679	28	UGL	LT CRL	LT CRL	14.60
4	3	0	0%	P8	UGL	LT CRL	LT CRL	LT CRL
5	3	0	09	P8	UGL	LT CRL	LT CRL	LT CRL
6	3	0	0%	P8	UGL	LT CRL	LT CRL	LT CRL
7	3	0	0%	P8	UGL	LT CRL	LT CRL	LT CRL
8	3	0	0%	P8	UGL	LT CRL	LT CRL	LT CRL
9	3	0	0%	P 8	UGL	LT CRL	LT CRL	LT CRL
10	3	0	0	P8	UGL	LT CRL	LT CRL	LT CRL
11	4	0	08	P8	UGL	LT CRL	LT CRL	LT CRL
12	4	0	0%	P8	UGL	LT CRL	LT CRL	LT CRL
13	3	0	0	P8	UGL	LT CRL	LT CRL	LT CRL
14	4	0	0%	P8	UGL	LT CRL	LT CRL	LT CRL
15	3	0	03	PS	UGL	LT CRL	LT CRL	LT CRL

FY 89 STATISTICAL SUMMARY MORTHWEST BOUNDARY DEWATERING WELLS

03/30/90

ANALYTE: DIMP

CERTIFIED REPORTING LIMIT (LT): 0.65

well No.	TOT SAKP	SAMP >CRL	% > CRL	MTH NO.	UOH	Hean	Low Value	HIGH VALUE
1	3	1	33%	yasy	UGL	LT CRL	LT CRL	1.35
2	3	1	33%	awsa	UCL	LT CRL	LT CRL	1.70
3	3	3	100%	AW8A	UGL	19.98	1.35	57.20
4	3	3	100%	ANSA	UGL	1.73	1.35	2.34
5	3	3	100%	XW8X	UGL	2.00	1.23	3.04
6	3	3	100%	AWSA	UGL	3.93	3.53	4.26
7	4	4	100%	AWBA	UGL	3.81	3.36	4.39
8	4	4	100%	ABBA	UGL	4.89	4.47	5.34
9	4	4	100%	ABWA	UGL	4.57	4.20	5.11
10	4	4	100%	AWBA	UCL	4.54	4.01	4.96
11	3	3	100%	AWSA	UCL	6.83	5.19	8.07
12	3	3	100%	AWSA	UGL	4.55	3.65	5.43
13	4	4	100%	AWBA	UGL	9.62	4.58	15.10
14	3	3	100%	AWSA	UGL	9.91	7.96	12.60
15	4	4	100%	YRRY	UGL	178.82	3.85	690.00

DATACHEM PY 89 STATISTICAL SUMMARY NORTHWEST BOUNDARY DEWATERING WELLS

and the state of t

03/20/90

ANALYTE: DITH

CERTIFIED REPORTING LIMIT (LT): 1.34

WELL NO.	TOT SAMP	SAMP >CRL	% > CRL	MTH NO.	UOM	Mean	LOW	HIGH VALUE
1	3	0	0%	RAAS	UGL	LT CRL	LT CRL	LT CRL
2	3	0	9 €	844 4	UGL	LT CRL	LT CRL	LT CRL
3	1	0	60	RAAR	UGL	LT CRL	LT CRL	LT CRL
4	3	0	0	8444	UGL	LT CRL	LT CRL	LT CRL
5	3	Q	0	AAA8	UGL	LT CRL	LT CRL	LT CRL
6	3	0	0%	8A A A	UGL	LT CRL	LT CRL	LT CRL
7	4	0	0%	8444	UGL	LT CRL	LT CRL	LT CRL
8	4	0	03	8K KK	UGL	LT CRL	LT CRL	LT CRL
9	4	0	0%	A AA8	UGL	LT CRL	LT CRL	LT CRL
10	3	0	0%	8444	UGL	LT CRL	LT CRL	LT CRL
11	4	9	03	BAAA	UGL	LT CRL	LT CRL	LT CRL
12	4	0	0%	8444	UGL	LT CRL	LT CRL	LT CRL
13	4	0	0%	8444	UGL	LT CRL	LT CRL	LT CRL
14	4	0	0%	AAA8	UGL	LT CRL	LT CRL	LT CRL
15	4	0	0%	8444	JGL	LT CRL	LT CRL	LT CRL

D.F.A

DATACHEM PY 89 STATISTICAL SUMMARY

03/20/90

MORTHWEST BOUNDARY DEWATERING WELLS

ANALYTE: DLDRN

CERTIFIED REPORTING LIMIT (LT): 0.05

WELL	TOT	SAMP	1 >				LOW	HIGH
NO.	SAKP	>CRL	CRL	MTH NO.	TOM	MEAN	VALUE	VALUE
			***	*******				
1	3	3	100%	KK8	UGL	0.44	0.24	0.68
2	3	3	100%	KX8	UCL	0.65	0.41	1.10
3	3	3	100%	KRS	UGL	1.00	0.31	1.10
4	3	3	100%	KK8	UGL	0.65	0.60	0.73
5	3	3	1003	KK8	UGL	0.59	0.52	0.65
6	3	1	33%	KK8	UGL	LT CRL	LT CRL	0.24
7	4	4	100%	KK8	UGL	0.43	0.16	0.56
8	3	3	100%	KK8	UGL	0.27	0.23	0.31
9	3	0	0%	KX8	UGL	LT CRL	LT CRL	LT CRL
10	4	4	. 100%	KX8	UGL	0.18	0.05	0.49
11	3	3	100%	KXS	UGL	0.52	0.35	0.63
12	3	3	100%	XX8	UGL	9.29	0.24	0.33
13	4	4	100%	KK8	UGL	2.22	0.47	7.00
14	4	4	100%	KX3	UGL	0.68	0.64	0.76
15	4	4	100%	KX8	UGL	1.56	0.51	4.40

DATACHEM FY 39 STATISTICAL SUMMARY NORTHWEST BOUNDARY DEWATERING WELLS

03/20/90

AMALYTE: EMDRM

CERTIFIED REPORTING LIMIT (LT): 0.05

WELL NO.	TOT SAMP	Samp >CRL	♦ > CRL	MTH NO.	UOM	HEAN	LOW VALUE	HIGH Value
~						*******		
1	3	0	0%	KX8	UGL	LT CRL	LT CRL	LT CRL
2	3	1	33%	KK8	UGL	LT CRL	LT CRL	0.47
3	3	0	0%	KK8	UCL	LT CRL	LT CRL	LT CRL
4	3	0	0%	KK8	UGL	LT CRL	LT CRL	LT CRL
5	3	0	0%	KK8	UGL	LT CRL	LT CRL	LT CRL
6	3	0	0%	KX8	UGL	LT CRL	LT CRL	LT CRL
7	4	0	0%	KK8	UGL	LT CRL	LT CRL	LT CRL
8	3	0	0	KK8	UGL	LT CRL	LT CRL	LT CRL
9	3	0	0	XX8	UGL	LT CRL	LT CRL	LT CRL
10	4	0	09	KK8	UGL	LT CRL	LT CRL	LT CRL
11	3	0	0%	KK8	UGL	LT CRĹ	LT CRL	LT CRL
12	3	0	0	KK8	UGL	LT CRL	LT CRL	LT CRL
13	4	1	25%	KX8	UGL	LT CRL	LT CRL	0.07
14	4	4	100%	KK8	UGL	0.12	0.08	0.19
15	4	3	75%	KK8	UGL	0.19	0.07	0.09

D.P.A. 03/20/90

DATACHEM BY 89 STATISTICAL SUMMARY HORTHWEST EQUIDARY DEWATERING WELLS

ANALYTE: FLUORIDE CERTIFIED REPORTING LIMIT (LT): 0.432, 0.153

WELL	TOT	SAMP	t >				LOW	HIGH
NO.	SAMP	>CRL	CRL	MTH NO.	UOM	Mean	VALUE	VALUE
- 1	3	3	100%	HHSA	MGL	1.42	1.39	1.46
2	3	3	100%	HH8A	HGL	1.60	1.54	1.71
3	3	3	100%	HH8A	MGL	1.78	1.55	1.95
4	3	3	100%	HH8A, TT09	HGL	1.76	1.48	2.01
5	3	3	100%	HH8A, TTO9	MGL	1.83	1.65	2.11
6	3	3	100%	HH8A, TT09	MGL	2.24	2.03	2.45
7	3	3	100%	HH8A, TT09	MGL	2.18	1.99	2.48
8	3	3	100%	HHSA, TTO9	MGL	3.10	2.00	4.86
9	3	3	100%	HH8A, TT09	MGL	1.82	1.45	2.30
10	3	3	100%	HH8A, TT09	MGL	2.05	1.72	2.26
11	4	4	100%	HH8A, TTO9	MGL	2.42	1.80	3.13
12	4	4	100%	HH8A, TT09	MGL	2.47	1.89	2.81
13	4	4	100%	HH8A, TT09	MGL	3.13	1.97	4.64
14	5	5	100%	HH8A, TT09	MGL	3.58	3.00	4.30
15	3	3	100%	HH8A	KGL	3.99	3.59	4.77

03/20/90

DATACHEM FY 89 STATISTICAL SUMMARY NORTHWEST BOUNDARY DEWATERING WELLS

ANALYTE: ISODR

CERTIFIED REPORTING LIMIT (L1): 0.051

WELL NO.	TOT SAMP	SAMP >CRL	t > CRL	MTH NO.	UOM 	MEAN			OW LUE	HIGH VALUE
1	3	0	0%	KX8	UGL	LT	CRL	T.T	CRL	LT CRL
2	3	0	0%	XX8	UGL		CRL	LT		LT CRL
3	3	1	33%	KX8	UGL		CRL	_	CRL	0.08
4	3	0	0%	KK8	UGL		CRL	LT		LT CRL
5	3	C	0%	KK8	UGL		CRL	LT		LT CRL
6	3	0	0	KK8	UGL	LT	-	LT		LT CRL
7	4	0	0%	KK8	UGL		CRL	LT		LT CRL
8	3	1	33%	KK8	UGL		CRL	LT		0.07
9	3	0	0	KX8	UGL	LT	CRL		CRL	LT CRL
10	4	1	25%	KX8	UGL	LT	CRL	LT	CRL	0.62
11	3	2	67%	KK8	UGL	LT (CRL	LT	CRL	0.18
12	3	1	33%	KX8	UGL	LT (CRL	LT	CRL	0.09
13	4	1	25%	KK8	UCL	LT (CRL	LT	CRL	0.07
14	4	2	50%	KX8	UGL	LT (CRL		CRL	0.28
15	4	2	50%	KX8	UGL	LT	CRL	LT	CRL	0.35

D. P.A

03/20/90

DATACHEM FY 89 STATISTICAL SUMMARY BORTHWEST BOUNDARY DEWATERING WELLS

ANALYTE: OXAT

CERTIFIED REPORTING LIMIT (LT): 2.38

WELL	TOT	Samp	\ >				LOW	HIGH
NO.	SAMP	>CRL	CRL	MTH NO.	UOM	Mean	VALUE	VALUE
		****						~~~~~~
1	3	, 0	0	8444	UGL	LT CRL	LT CRL	LT CRL
2	3	0	0%	AAA8	UGL	LT CRL	LT CRL	LT CRL
3	1	0	0	AAA8	UGL	LT CRL	LT CRL	LT CRL
4	3	0	0%	8444	UGL	LT CRL	LT CRL	LT CRL
5	3	0	0%	2278	UGL	LT CRL	LT CRL	LT CRL
- 6	3	0	0%	AAA8	UGL	LT CRL	LT CRL	LT CRL
7	4	0	0%	3338	UGL	LT CRL	LT CRL	LT CRL
8	4	0	0	AAA8	UGL	LT CRL	LT CRL	LT CRL
9	4	0	0%	8444	UGL	LT CRL	LT CRL	LT CRL
10	3	0	0%	8444	usl	LT CRL	LT CRL	LT CRL
11	4	0	03	አ ኢአ8	UGL	LT CRL	LT CRL	LT CRL
12	4	0	0%	AAA8	UGL	LT CRL	LT CRL	LT CRL
13	4	0	0%	λλλ8	UGL	LT CRL	LT CRL	LT CRL
14	4	0	0%	8444	UGL	LT CRL	LT CRL	LT CRL
15	4	. 0	03	жж	UGL	LT CRL	LT CRL	LT CRL

DATACHEM FY 89 STATISTICAL SUMMARY NORTHWEST BOUNDARY DEWATERING WELLS

03/20/90

ANALYTE: TRCLE

CERTIFIED REPORTING LIMIT (LT): 0.56

WELL	TOT	SAMP	\ >				LOW	HIGH
NO.	Samp	>CRL	CRL	MTH NO.	TOM	MEAN	VALUE	VALUE
1	3	0	0	x3	UGL	LT CRL	LT CRL	LT CRL
2	3	0	0%	n8	UGL	LT CRL	LT CRL	LT CRL
3	3	0	0%	M8	UGL	LT CRL	LT CRL	LT CRL
4	3	0	08	N8	UGL	LT CRL	LT CRL	LT CRL
5	3	0	0%	Ж8	UGL	LT CRL	LT CRL	LT CRL
6	3	0	0	N8	UGL	LT CRL	LT CRL	LT CRL
7	4	0	0%	NS	UGL	LT CRL	LT CRL	LT CRL
8	4	0	0%	n8	UGL	LT CRL	LT CRL	LT CRL
9	4	0	0%	M8	UGL	LT CRL	LT CRL	LT CRL
10	4	0	0	N8	UGL	LT CRL	LT CRL	LT CRL
11	3	1	33%	N8	UGL	LT CRL	LT CRL	0.67
12	3	0	03	N8	UGL	LT CRL	LT CRL	LT CRL
13	4	1	251	ив	UGL	LT CRL	LT CRL	1.27
14	4	4	100%	N8	UGL	1.09	0.74	1.44
15	4	1	25%	M8	UGL	LT CRL	LT CRL	1.30

APPENDIX D
NORTHWEST BOUNDARY SYSTEM DOWNTIME

1st QUARTER REPORT

FISCAL YEAR 19989

NORTHWEST BOUNDARY PICINT DOWNTIME SUMMARY BY ADSORBER

ADSORBER	TIME LOGS (HRS)							
·	OCT 88	NOV 88	DEC 88	1st QTR FY 1989				
V101	0.00	0.00	0.00	0.00				
V102	0.00	0.00	25.75	25.75				
V103	0.00	0.00	0.00	0.00				
ALL (the the same time)	5.50	0.00	0.00	5.50				

NORTHWEST BOUNDARY

1st QUARTER FISCAL YEAR 90

QUAFTERLY DOWNTIME SUMMARY

DATE	ADS/TIME LOSS	JUSTIFICATION					
12 OCT 88	ALL/.25 hrs	Plant power off - check transformer					
21 OCT 88	ALL/5.25 hrs	Water leaks - main line and filter pod					

NO LOSS OF PLANT OPERATIONS DUE TO DOWNTIME WAS REPORTED FOR THE MONTH OF NOVEMBER 1988.

01	DEC 88	V102/18.75	Install R.O	: Line	Cleanout
02	DEC 88	V102/7.00	Install R.	. Line	Cleanout

BORTHWEST BOUNDARY SYSTEM 2nd QUARTER REPORT FISCAL YEAR 1989

AVERAGE FLOWS:

Area Tim of Pe Consideratio	riod 1	Jan - Feb 89	1 Fe 30 No		l Har 31 Dec		1 Jan - 1 Apr 89
Recharge - F	low 545.04	l gpm	558.37	gpm	591.36	gpm	564.81 gpm
	24,330,500	gal	22,513,400	gal	26,398,200	gal	73,242,100 gal
Dewatering - Wells	Flow 482.44	gpm	527.68	dba	504.23	дъш	504.78 gpm
	21,535,900	gal	21,276,000	gal	22,508,900	gal	65,320,800 gal
Plant - Flow	585.49	gpm	618.62	g þar	650.45	gpm	285.23 gpm
(All Ads) - Total	26,136,000	gal	24,943,000	gal	29,036,000	gal	80,115,000 gal
Ads 101 - Flo	ow 0.00	g pm	199.08	gpm	361.16	gpm	186.75 gpm
- Total	0	gal	8,027,000	gal	16,122,000	gal	24,149,000 gpm
Ads 102 - Flo	ow 351.12	gpm	141.65	gpm	0.00	gþw	164.26 gpm
- Total	15,674,000	gal	5,711,000	gal	0	gal	21,385,000 gal
Ads 103 - 71c	ow 234.37	g.bw	277.89	gpæ	289.29	gpm	267.18 gpm
- Total	10,462,000	gal	11,205,000	gal	12,914,000	gal	34,581,000 gal

NORTHWEST BOUNDARY SYSTEM PLANT DOWNTIME SUMMARY 2nd QUARTER 1989

PLANT SUMMARY		PERIOD: 1 Jan - 1 Apr 89				
DATE	ADS/LOSS TIME	JUSTIFICATION				
10 Feb 89	102/4.17 hrs.	Plugged Line				
10 Feb 89	103/4.42 hrs.	Plugged Line				
14 Feb 89	102/11.00 hrs.	Plugged Line				
14 Feb 89	103/5.67 hrs.	Plugged Line				
15 Feb 89	101/13.42 hrs.	Restart/Opns.				
15 Feb 89	102/5.58 hrs.	Stop/Opns.				
15 Feb 89	103/13.42 hrs.	Plugged Filter				

NORTHWEST BOUNDARY SYSTEM PLANT DOWNTIME SUMMARY 3rd QUARTER 1989

PERIOD 1 Apr - 1 Jul 89

NOTE: There was no downtime for the entire 3rd quarter in Fiscal Year 1989.

NORTHWEST BOUNDARY SYSTEM 3rd QUARTER REPORT FISCAL YEAR 1989

AVERAGE FLOWS:

Area of Consi	Time Peric deration		Apr - May 89			l Jun 31 Jul		1 Apr 1 Jul	
Recha Wells		618.11	gpm	605.49	gpa	593.94	gpm	605.85	gpm
		26,702,100	gal	27,029,200	gal	25,658,000	gal	79,389,300	gal
Dewat Wells		ow 675.25	gpm	598.05	gpm	589.49	gpm	620.93	gþw
		29,170,600	gal	26,969,900	gal	25,466,100	gal	81,333,600	gal
Plant	- Flow	684.96	gpm	667.04	gpm	658.27	gpm	670.09	gpm
(All - T		29,590,000	gal	29,777,000	gal	28,437,000	gal	87,804,000	gal
Ads 1	01 - Flow	336.80	gpm	339.14	gpm	658.27	gpm	670.09	gpm
- T	otal	14,550,000	gal	15,139,000	gal	14,455,000	gal	44,144,000	gpm
Ads 1	02 - Flow	0.00	gpm	0.00	gpm	0.00	gpm	0.00	gpm
- T	otal	0	gal	0	gal	0	gal	00	gal
Ads 1	03 - 71ow	348.15	gpm	327.90	gpn	323.66	gpm	333.24	gpm
- T	otal	15,040,000	gal	14,638,000	gal	13,982,000	gal	43,660,000	gal

MORTHWEST BOUNDARY SYSTEM 4th QUARTER REPORT FISCAL YEAR 1989

AVERAGE FLOWS:

Area Time of Per Consideration	iod 1	Jul - Aug 89		g <u>-</u> p 89	l Sep 31 Oct		1 Jul - 1 Oct 89
Recharge - Flo	ow 562.83	gpm	523.07	gpm	530.19	gpm	538.69 gpm
(RC) - Total	25,124,800	gal	23,349,700	gal	22,903,800	gal	71,378,300 gal
Dewatering - 1	Flow 588.85	gpm	528.45	gpm	551.29	g pm	556.20 gpm
(DW) - Total	29,947,100	gal	23,589,800	gal	23,815,600	gal	72,352,500 gal
Plant - Flow	622.19	gpm	582.27	gpm	611.27	gpm	605.24 gpm
(All Ads) - Total	27,775,000	gal	25,992,000	gal	24,406,900	gal	78,1739000 gal
Ads 101 - Flow	v 348.46	gpm	348.15	d bur	347.63	gpm	348.08 gpm
- Total	15,555,000	gal	15,541,000	gal	15,071,500	gal	46,167,500 gpm
Ads 102 - Flow	0.00	gpm	45.86	gpm*	248.80	gpm	98.22 gpm
- Total	0	gal	2,047,000	gal	10,748,000	gal	12,795,000 gal
Ads 103 - Flow	273.73	gpm	188.26	gpm	14.84	gpm^	158.94 gpm
- Total	12,220,000	gal	8,404,000	gal	614,300	gal	21,238,300 gal

Note: * Start up adsorber V-102. + Shutting down adsorber V-103. ^ Adsorber V-103 run while V-102 has a new meter installed.