Адекватные доказательства теорем по дифференциальным уравнениям

22. (Теорема Коши) Эльсгольц

Используется принцип сжатых отображений, доказательство которого (стр. 48-49) практически очевидно, дальше вручную проверяется, что оператор A[y] (интегральной формы диф. уравнения) является сжимающим.

Принцип сжимающих отображений \to Замена диф. уравнения интегральным \to Введение оператора A[y] \to Условие Липшица \to Проверка, что A[y] — сжимающий \to Ручное обобщение на случай систем

23/**24.** (ФСР, вронскиан) *Филиппов*

Доказывается все для однородной системы (стр. 67-78), затем почти очевидным образом переносится на линейные уравнения (стр. 81-86).

Линейная независимость \to Вронскиан \to Фунд. система решений \to Дифференцирование детерминанта \to Формула Лиувилля \to Замена переменных (переход от системы к лин. уравнению)

25. (Вариация постоянных) Филиппов

Аналогично предыдущему. Доказывается в одну строчку (стр. 79) для систем, затем заменой переменных (стр. 90) для линейных уравнений.

Вариация постоянных (c=c(t)) \to Дифференцирование общего решения \to Подстановка в неоднородное уравнение \to Окончательная формула через обратную матрицу \to Замена переменных (переход от системы к лин. уравнению)

26. (Теорема Штурма и следствия) Романко, Филиппов

Доказательство слово-в-слово повторяет Филиппова, но переходы освещены более подробно (стр. 193-197). Кроме того, в Филиппове есть не все следствия. Но следствие о расстоянии между нулями уравнения y''+q(x)y=0 с $m^2\leq y(x)\leq M^2$ понятнее в Филиппове (стр. 113).

Замена переменного \to Общий вид y''+q(x)y=0 \to Лемма о простых нулях $(y(x_0)=0 \Rightarrow y'(x_0)\neq 0)$ \to Без о.о. y>0, z>0 \to \to Домножение исходных уравнений на y и z, вычитание полученных равенств и интегрирование по $x\to$ Теорема Штурма и несколько очевидных следствий, полученных из разных оценок с разными Q(x)

27. (Устойчивость по Ляпунову) Романко, Филиппов

Определение устойчивости по Ляпунову и асимптотической устойчивости дано в Романко (стр. 241-242). Достаточные условия асимпт. устойчивости приведены в теореме в Филиппове (стр. 165), нужна только 1-ая часть доказательства.

Примечание. Устойчивость по Ляпунову необходимо требует **продолжимости решений** бесконечно вправо в малой окрестности положения равновесия. (см. билет 14)

Устойчивость по Ляпунову — Асимптотическая устойчивость — \to Общий вид решения линейной системы — Φ CP X(0)=E (см. матричная экспонента) — Ограниченность ||X(t)|| < M — Оценка сверху с $\delta = \varepsilon/M$