16. Обратни тригонометрични функции

Обратната функция на sin

За да посочим ъгъл с определен синус, е удобно да разполагаме с функция, която е обратна на синус.

Пример:
$$\sin x = \frac{1}{2}$$
; $x = \frac{\pi}{6} + 2k\pi, \frac{5\pi}{6} + 2k\pi, k \in \mathbb{Z}$.

Разглеждаме \sin върху част от дефиниционната ѝ област, но такава, че функцията върху нея е инекция и покрива цялата област от стойности на \sin , т.е. [-1,1].

Удачен избор с посочените свойства е $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

В интервала $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ функцията sin е строго монотонно растяща и областта ѝ от стойности е $\left[-1,1\right]$, т.е. sin : $\left[-\frac{\pi}{2},\frac{\pi}{2}\right] \rightarrow \left[-1,1\right]$ е биекция; следователно има обратна; тя се означава чрез arcsin;

$$\arcsin: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]. \quad (1)$$

Дефиниция на arcsin

Дефиниция

Дефинираме функцията $\arcsin: [-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}]$, като за $x \in [-1,1]$, полагаме $\arcsin x := \alpha$, където $\alpha \in [-\frac{\pi}{2},\frac{\pi}{2}]$ е единственото такова, че $\sin \alpha = x$.

arcsin x — дъгата, чийто синус е x

Графиката на arcsin x

Основни стойности и свойства на arcsin

Някой стойности на arcsin:

- **①** arcsin 0 = 0, защото $\sin 0 = 0$ и $0 \in [-\frac{\pi}{2}, \frac{\pi}{2}];$
- **2** $\arcsin \frac{1}{2} = \frac{\pi}{6}$, защото $\sin \frac{\pi}{6} = \frac{1}{2}$ и $\frac{\pi}{6} \in [-\frac{\pi}{2}, \frac{\pi}{2}]$;
- $oldsymbol{3}$ $\operatorname{arcsin}(-1) = -\frac{\pi}{2}$, защото $\sin(-\frac{\pi}{2}) = -1$ и $-\frac{\pi}{2} \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

Основни свойства:

- (a) $\sin(\arcsin x) = x, x \in [-1, 1];$
- (6) $\arcsin(\sin \alpha) = \alpha, \ \alpha \in [-\frac{\pi}{2}, \frac{\pi}{2}].$

Един пример

Ще намерим формула за $\cos(\arcsin x)$, където $x \in [-1, 1]$.

За $\mathbf{X} \in [-1,1]$ произволно фиксирано, полагаме $\alpha := \arcsin \mathbf{X}$. Тогава $\alpha \in [-\frac{\pi}{2},\frac{\pi}{2}]$ и $\sin \alpha = \mathbf{X}$. Ще пресметнем $\cos \alpha$. Имаме $\cos \alpha = \sqrt{1-\sin^2 \alpha}$ понеже $\cos \alpha \geq \mathbf{0}$ за $\alpha \in [-\frac{\pi}{2},\frac{\pi}{2}]$. Следователно, като използваме основно с-во (а), получаваме

$$\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - (\sin(\arcsin x))^2} = \sqrt{1 - x^2}.$$
 (2)

Така установихме тъждеството

$$cos(arcsin x) = \sqrt{1 - x^2}, \quad x \in [-1, 1].$$
 (3)

Обратната функция на соѕ

Разглеждаме \cos върху част от дефиниционната ѝ област, но такава, че функцията върху нея е инекция и покрива цялата област от стойности на \cos , т.е. [-1,1].

Удачен избор с посочените свойства е $[0,\pi]$.

В интервала $[0,\pi]$ функцията \cos е строго монотонно намаляваща и областта ѝ от стойности е [-1,1], т.е. $\cos:[0,\pi]\to[-1,1]$ е биекция; следователно има обратна; тя се означава чрез \arccos ;

$$arccos: [-1, 1] \rightarrow [0, \pi].$$
 (4)

Дефиниция на arccos

Дефиниция

Дефинираме функцията $\operatorname{arccos}: [-1,1] \to [0,\pi]$, като за $\mathbf{X} \in [-1,1]$, полагаме $\operatorname{arccos} \mathbf{X}:=\alpha$, където $\alpha \in [0,\pi]$ е единственото такова, че $\cos \alpha = \mathbf{X}$.

Графиката на arccos *x*

Основни стойности и свойства на агссоя

Някой стойности на агссоя:

- arccos 0 = $\frac{\pi}{2}$, защото cos $\frac{\pi}{2} = 0$ и $\frac{\pi}{2} \in [0, \pi]$;
- ② $\arccos \frac{1}{2} = \frac{\pi}{3}$, защото $\cos \frac{\pi}{3} = \frac{1}{2}$ и $\frac{\pi}{3} \in [0,\pi]$;
- **3** $arccos(-1) = \pi$, защото $cos \pi = -1$ и $\pi \in [0, \pi]$.

Основни свойства:

- (a) $\cos(\arccos x) = x, x \in [-1, 1];$
- (6) $\operatorname{arccos}(\cos \alpha) = \alpha, \ \alpha \in [0, \pi].$

Зад. Докажете тъждеството $\arcsin x + \arccos x = \frac{\pi}{2}, \quad x \in [-1, 1].$

Обратната функция на tg

Разглеждаме tg върху част от дефиниционната ѝ област, но такава, че функцията върху нея е инекция и покрива цялата област от стойности на tg, т.е. \mathbb{R} .

Удачен избор с посочените свойства е $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

В интервала $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ функцията tg е строго монотонно растяща и областта ѝ от стойности е \mathbb{R} , т.е.

 $\operatorname{tg}:\left(-\frac{\pi}{2},\frac{\pi}{2}\right) \to \mathbb{R}$ е биекция; следователно има обратна; тя се означава чрез arctg ;

$$\operatorname{arctg}: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$
 (5)

Дефиниция на arctg

Дефиниция

Дефинираме функцията $\operatorname{arctg}: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, като за $X \in \mathbb{R}$, полагаме $\operatorname{arctg} X := \alpha$, където $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ е единственото такова, че $\operatorname{tg} \alpha = X$.

Графиката на arctg x

Основни стойности и свойства на arctg

Някой стойности на arctg:

- **①** arctg 0 = 0, защото tg 0 = 0 и $0 \in (-\frac{\pi}{2}, \frac{\pi}{2})$;
- **2** $\arctan 1 = \frac{\pi}{4}$, защото $\operatorname{tg} \frac{\pi}{4} = 1$ и $\frac{\pi}{4} \in (-\frac{\pi}{2}, \frac{\pi}{2})$;
- f 3 arctg $\sqrt{3}=rac{\pi}{3},$ защото tg $rac{\pi}{3}=\sqrt{3}$ и $rac{\pi}{3}\in(-rac{\pi}{2},rac{\pi}{2}).$

Основни свойства:

- (a) $tg(arctg x) = x, x \in \mathbb{R};$
- (6) $\operatorname{arctg}(\operatorname{tg}\alpha) = \alpha, \ \alpha \in (-\frac{\pi}{2}, \frac{\pi}{2}).$

Бележка

Горните две свойства показват, че на всяко число от числовата права може да се съпостави различно число от крайния интервал $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$. Следователно в който и да е интервал с различни краища има точно толкова числа колкото върху цялата числова права!

Обратната функция на сtg

Фунцията ctg е строго монотонно намаляваща в $(0,\pi)$ и областта от стойностите, които приема върху този интервал е \mathbb{R} . Следователно ctg : $(0,\pi) \to \mathbb{R}$ е биекция; следователно има обратна; тя се означава чрез arcctg;

$$\operatorname{arcctg}: \mathbb{R} \to (0, \pi).$$
 (6)

Дефиниция

Дефинираме функцията $\operatorname{arcctg}: \mathbb{R} \to (0,\pi)$, като за $\mathbf{X} \in \mathbb{R}$, полагаме $\operatorname{arcctg} \mathbf{X} := \alpha$, където $\alpha \in (0,\pi)$ е единственото такова, че $\operatorname{ctg} \alpha = \mathbf{X}$.

Основни свойства на arcctg

Основни свойства:

- (a) $\operatorname{ctg}(\operatorname{arcctg} x) = x, x \in \mathbb{R};$
- (6) $\operatorname{arcctg}(\operatorname{ctg}\alpha) = \alpha, \ \alpha \in (0, \pi).$