ADC

 $f_{
m Nyquist} = 2 f_{
m Max}$

 $f_{Nyquist}$ = Frecuencia de Nyquist

f_{Max} = La frecuencia máxima que aparece en la señal

ADC

Tamaño del paso = V_{Ref}/N

Tamaño del paso = La resolución de cada nivel en términos de voltaje

 V_{Ref} = Voltaje de referencia

Un ADC de 12 bits y un voltaje de referencia de 5V tiene un tamaño de paso = 5 V/4096 = 0.00122 V (1.22 mV). El sistema sabe cuando cambia el voltaje con una precisión de 1.22 mV.

ADC

Los ADCs reportan un valor proporcional.

Por ejemplo, en un ADC que tiene una resolución de 10 bits y un voltaje de referencia de 5V, el ADC asume que 5V es 1023 y cualquier valor menor a 5V está en una proporción entre 5V y 1023.

 $\frac{Resolución \ del \ ADC}{Voltaje \ del \ sistema} = \frac{Lectura \ del \ ADC}{Voltaje \ analógico \ medido}$

ADC de dos bits

Búsqueda binaria

El ESP32 tiene dos ADC SAR de 12 bits (ADC1 y ADC2) y permite mediciones en 18 canales (pines analógicos). ADC1 está disponible en ocho GPIOs (32 a 39), mientras que ADC2 está disponible en diez GPIOs (0, 2, 4, 12 a 15 y 25 a 27).*

La placa DEVKIT V1 DOIT (la versión con 30 GPIOs) tiene solo 15 canales ADC.

