Data Analysis Thesis

For the project, the author utilized two opensourced datasets. The first dataset is entitled Volve whilst the second dataset is entitled Kyle Master. The Volve dataset contains 15,634 rows of data whereas the Kyle Master dataset contains 27,324 rows of data. It is ideal to use a large dataset as it would lead to lower estimation variance which means the model will be able to predict more accurately. Both Volve and Kyle Master datasets contains valuable information. However, in order to ensure that the data in these datasets are ideal for a machine learning model, data cleaning and pre-processing must be done.

A) Empty Data

Volve and Kyle Master contained missing data, therefore, it is imperative to check the relationship between the features in the dataset. This is done so that it can be determined whether or not the presence of the missing value is correlated to other values in the dataset. For order to check this, a heatmap was used to the correlation values on both datasets. Table I describes the observations derived from the heatmaps

B) Data Imputation

As has been mentioned in *Empty Data* section of this paper, both Volve and Kyle Master dataset contains missing values. Additionally, the missing data mechanisms are not *MCAR*₁ therefore action should be taken to ensure the model performance will not be affected. For this project, the author will use two methods and compare the feature correlation to see which method would make the model perform better. The first method the author will use is forward filling where the empty value is replaced by the last observed record. The second method used is central value imputation where the author will fill in the missing values with the mean value of the feature.

C) Correlation in Dataset

In this section, this paper will explore the correlations between the features in the dataset. Table II describes the features with the highest correlation values in Volve and Kyle Master dataset respectively when the respective data imputation methods are used. The feature correlation for Volve using mean imputation is not as strong as the feature correlation when

D) Feature Selection and Conversion

This section will explain and justify which features will be used for the model's training and discuss regarding feature conversion. Table III shows the columns of the each dataset that have same meaning displayed side by side. For instance, *DATEPRD* in Volve is the same as *Date* in Kyle Master. As the goal is to create a model that can predict oil and gas production, it is essential to include their production value. In Volve, the first two features selected for model training are *BORE_OIL_VOL* and *BORE_GAS_VOL*.

AVG_DOWNHOLE_PRESSURE and AVG_DOWNHOLE_TEMPERATURE are also included as these features have a high correlation value. Additionally, oil and gas formation are also reliant on pressure and temperature, which makes these features ideal for the model's training. AVG_WHP_P is also added to the dataset as it shows decent correlation to BORE OIL VOL BORE GAS VOL. Oil and gas production can also be improved by water injection, therefore AVG_WHT_P is also added to the model's training. In Kyle Master, the first two features selected are Oil (m3) and Gas (m3) as these features contain the production value of oil and gas. Av. WHT (Deg C) and Av. WHP (bar) are also included as they have decent correlation with Oil(m3) and Gas(m3). Furthermore, as oil and gas production is reliant on the pressure and temperature of the reservoir, thus the features Av. DHT (Deg C) and Av. DHP (bar) are added for the model's training. These datasets both have similar columns even though the names are different. For instance, Av. DHT (Deg C) and Av. DHP (bar) in the Kyle Master dataset has the same meaning

AVG_DOWNHOLE_PRESSURE and AVG_DOWNHOLE_TEMPERATURE in the Volve dataset. Additionally, Oil (m3) and Gas (m3) in the Kyle Master dataset has the same meaning as BORE_OIL_VOL and BORE_GAS_VOL. However, the unit of measurement in each dataset is different.

Therefore, it needs to be standardized so that the model will perform better. Hence, the temperatures will be standardized into ${}^{\circ}$ C (degree Celsius), while the pressures will be standardized into bar, and the volumes will be standardized into m^3 (meter cubic).

Table I: Observation for Missing Data

Dataset	Volve	Kyle Master		
Observation	Contains mostly "<1" and "1" feature	Feature correlation values are mostly 0.1 and		
	correlation values, meaning the features are	some features have correlation value of 1,		
	highly dependent on one another. A value of	meaning most of the features do not show		
	"<1" denotes that the correlation is almost	much correlation, however, there are few		
	exactly 1.	features which are highly correlated.		
Missing Data Mechanism	Missing Not at Random (MNAR)	Missing at Random (MAR)		

Table II: Features with High Pearson Correlation in Volve and Kyle Master

Volve			Kyle Master				
Forward F	illing	Mean Imputa	ation	Forward Filling		Mean Imputation	
Features	Correlation	Features	Correlation	Features	Correlation	Features	Correlation
BORE_OIL_VOL and BORE_GAS_VO L	0.99889000 91582152	BORE_OIL_VOL and BORE_GAS_VOL	0.99856369 64673588	Oil (m3) and Gas(m3)	0.42758409 089215	Oil (m3) and Gas(m3)	0.42693832 77294414
AVG_DOWNHO LE_PRESSURE and AVG_DOWNHO LE_TEMPERAT URE	-0.84487 978411910 23	AVG_DOWNHOLE _PRESSURE and AVG_DP_TUBING	0.69671967 55738765	Av. DHT (Deg C) and Av. DHP (bar)	-0.5957641 957 107336	Av. DHT (Deg C) and Av. DHP (bar)	-0.5957641 957 107336
AVG_WHT_P and AVG_WHP_P	0.677090 619127916 9	AVG_WHT_P and BORE_WAT_VAL	0.67437688 56016769	Av. WHT (Deg C) and Oil (m3)	0.49986639 29885465	Av. WHT (Deg C) and Oil (m3)	0.49986639 29885465

Table III: Column Headings in Volve and Kyle Master Dataset

Volve Dataset	Kyle Master Dataset		
DATEPRD	Date		
WELL_BORE_CODE	Wellbore ID		
NPD_WELL_BORE_CODE			
NPD_WELL_BORE_NAME			
NPD_FIELD_CODE			
NPD_FIELD_NAME			
NPD_FACILITY_CODE			
NPD_FACILITY_NAME			
ON_STREAM_HRS	Hours Online		

AVG_DOWNHOLE_PRESSURE	Av. DHP (bar)
AVG_DOWNHOLE_TEMPERATURE	Av. DHT (Deg C)
AVG_DP_TUBING	
AVG_ANNULUS_PRESS	
AVG_CHOKE_SIZE_P	Platform Choke %
AVG_CHOKE_UOM	
AVG_WHP_P	Av. WHP (bar)
AVG_WHT_P	Av. WHT (Deg C)
DP_CHOKE_SIZE	
BORE_OIL_VOL	Oil (m3)
BORE_GAS_VOL	Gas (m3)
BORE_WAT_VOL	Produced Water (m3)
BORE_WI_VOL	
FLOW_KIND	
WELL_TYPE	

E) Feature Statistics

In order to better understand the selected features in the dataset, several techniques were employed to understand how the data is distributed. Table IV describes the selected features of the Volve dataset whereas Table V describes the selected features for the Kyle Master dataset. In Table IV and Table V, range

denotes the range of the specified feature, more specially it is the lowest value up to the highest value of the feature. Outlier count is the number of outliers in the feature. Mean is the center point of the feature. It is the mathematical average of the feature. Standard deviation is the measure of how varied the feature is relative to the mean.

Table IV: Feature Statistics for Volve Dataset

Feature	Range	Outlier Count	Mean	Standard Deviation
AVG_DOWNHOLE_PRESSURE	1 – 345 bar	144	242 bar	27 bar
AVG_DOWNHOLE_TEMPERATURE	0.3 – 108 °C	156	104 °C	4 °C
BORE_OIL_VOL	$1-5901 \ m^3$	283	$1458 \ m^3$	$1463 \ m^3$
BORE_GAS_VOL	$250 - 85113 \ m^3$	182	$212937 m^3$	207073 m ³
AVG_WHP_P	0 – 120 bar	44	48 bar	20 bar
AVG_WHT_P	7 − 93 °C	352	73 °C	18 °C

Table V: Feature Statistics for Kyle Master Dataset

Feature	Range	Outlier Count	Mean	Standard Deviation
Av. DHP (bar)	8 – 1130 bar	3	111 bar	39 bar
Av. DHT (Deg C)	8 - 253 °C	645	94 °C	9℃
Oil (m3)	$1-3510 \ m^3$	447	$380 m^3$	$328 m^3$
Gas (m3)	22.637.580 - 1.304.321.000.000 m ³	226	$178.525.800.000 \ m^3$	175.599.300.000 m ³
Av. WHP (bar)	-38 − 190 °C	597	62 °C	18 °C
Av. WHT (Deg C)	0 – 325 bar	48	57 bar	35 bar