Computer Vision

Assignment 1

Tongji University School of Software Engineering

ID: 1754060

Name: Zhe Zhang

Adviser: Prof. Lin Zhang

Time: Mon. 2-4 [1-17]

Email: dbzdbz@tongji.edu.cn

1754060 Zhe Zhang	Assignment 1	Computer Vision April 4, 2020
Contents		
1 Problem 1(Math)		2
2 Problem 2(Math)		4
3 Problem 3(Math)		6

1 Problem 1(Math)

In our lectures, we mentioned that matrices that can represent isometries can form a group. Specifically, in 3D space, the set comprising matrices $\{\mathbf{M}_i\}$ is actually a group, where $\mathbf{M}_i = \begin{bmatrix} \mathbf{R}_i & \mathbf{t}_i \\ \mathbf{0} & 1 \end{bmatrix} \in \mathbb{R}^{4\times 4}, \mathbf{R}_i \in \mathbb{R}^{3\times 3}$ is an orthonormal matrix and $\mathbf{t}_i \in \mathbb{R}^{3\times 1}$ is a vector.

Please prove that the set $\{\mathbf{M}_i\}$ forms a group.

Hint: You need to prove that $\{\mathbf{M}_i\}$ satisfies the four properties of a group, i.e., closure, associativity, existence of identity element, and existence of inverse element for each group element.

Solution:

Suppose that the element of group is M_i , and the operation on this group is **Matrix** Multiply.

• Closure

 $\forall M_i, M_i \in \{M_i\}$

$$M_i \otimes M_j = \begin{bmatrix} R_i & t_i \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_j & t_j \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_i R_j & R_i t_j + t_i \\ 0 & 1 \end{bmatrix}$$
 (1)

$$R_i, R_j \in \mathbb{R}^{3 \times 3} \Rightarrow R_i R_j \in \mathbb{R}^{3 \times 3}$$

 $t_i, t_j \in \mathbb{R}^{3 \times 1} \Rightarrow R_i t_j + t_i \in \mathbb{R}^{3 \times 1}$

Hence, $M_i \otimes M_j \in \{M_i\}$, the operation of this group meet the requirement of closure.

Associativity

$$M_{i} \otimes (M_{j} \otimes M_{k}) = \begin{bmatrix} R_{i} & t_{i} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_{j} & t_{j} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_{k} & t_{k} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} R_{i} & t_{i} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_{j}R_{k} & R_{j}t_{k} + t_{j} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} R_{i}R_{j}R_{k} & R_{i}(R_{j}t_{k} + t_{j}) + t_{i} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} R_{i}R_{j}R_{k} & R_{i}R_{j}t_{k} + R_{i}t_{j} + t_{i} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} R_{i}R_{j} & R_{i}t_{j} + t_{i} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_{k} & t_{k} \\ 0 & 1 \end{bmatrix}$$

$$= (M_{i} \otimes M_{j}) \otimes M_{k}$$

$$(2)$$

Hence, $M_i \otimes (M_j \otimes M_k) = (M_i \otimes M_j) \otimes M_k$, the operation of this group meet the requirement of associativity.

Assignment 1

• Existence of identity element

 $\forall M_i \in \{M_i\}$

$$\exists g = \begin{bmatrix} A & B \\ 0 & 1 \end{bmatrix}, \text{ where } A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} A & B \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_i & t_i \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_i & t_i \\ 0 & 1 \end{bmatrix} \begin{bmatrix} A & B \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_i & t_i \\ 0 & 1 \end{bmatrix}$$
(3)

Hence, $gM_i = M_ig = M_i$, the operation of this group meet the requirement of existence of identity element for each group element, and the identity element is g.

• Existence of inverse element

$$\forall M_i \in \{M_i\}$$

$$\lceil R_i^{-1} - R_i^{-1} t_i \rceil$$

$$\exists A = \begin{bmatrix} R_i^{-1} & -R_i^{-1} t_i \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_i^{-1} & -R_i^{-1} t_i \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_i & t_i \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_i^{-1} & -R_i^{-1} t_i \\ 0 & 1 \end{bmatrix} = E_{4 \times 4}$$
(4)

Because R_i is an orthonormal matrix, R_i^{-1} must exist, and $R_i R_i^{-1} = R_i^{-1} R_i = E$

Hence, $AM_i = M_iA = E$, the operation of this group meet the requirement of existence of inverse element for each group element, and the inverse element for M_i is $\begin{bmatrix} R_i^{-1} & -R_i^{-1}t_i \\ 0 & 1 \end{bmatrix}.$

2 Problem 2(Math)

Gaussian function is

$$G(x, y; \sigma) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

The scale-normalized Laplacian of Gaussian (LOG) is

$$LoG = \sigma^2 \nabla^2 G$$

Please verify that Difference of Gaussian (DOG)

$$DoG = G(x, y; k\sigma) - G(x, y; \sigma)$$

can be a good approximation of LoG.

Solution:

First, calculate the LoG and DoG

• LoG:

$$LoG = \sigma^2 \nabla^2 G = \frac{x^2 + y^2 - 2\sigma^2}{2\pi\sigma^4} exp(-\frac{x^2 + y^2}{2\sigma^2})$$
 (5)

some of the part in Formula(5) are as follows:

$$\begin{split} \frac{\partial G}{\partial x} &= -\frac{x}{2\pi\sigma^4} exp(-\frac{x^2+y^2}{2\sigma^2}) \\ \frac{\partial G}{\partial y} &= -\frac{y}{2\pi\sigma^4} exp(-\frac{x^2+y^2}{2\sigma^2}) \end{split}$$

$$\begin{split} \frac{\partial^2 G}{\partial x^2} &= \frac{\partial \left(\frac{\partial G}{\partial x}\right)}{\partial x} + \frac{\partial \left(\frac{\partial G}{\partial y}\right)}{\partial x} \\ &= -\frac{1}{2\pi\sigma^4} \left[exp\left(-\frac{x^2+y^2}{2\sigma^2}\right) + xexp\left(-\frac{x^2+y^2}{2\sigma^2}\right) \left(-\frac{2x}{2\sigma^2}\right) \right] \\ &= -\frac{1}{2\pi\sigma^4} \left[\left(1 - \frac{x^2}{\sigma^2}\right) exp\left(-\frac{x^2+y^2}{2\sigma^2}\right) \right] \\ &= \frac{x^2 - \sigma^2}{2\pi\sigma^6} exp\left(-\frac{x^2+y^2}{2\sigma^2}\right) \\ \frac{\partial^2 G}{\partial y^2} &= \frac{y^2 - \sigma^2}{2\pi\sigma^6} exp\left(-\frac{x^2+y^2}{2\sigma^2}\right) \end{split}$$
(6)

$$\nabla^2 G = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2} = \frac{x^2 + y^2 - 2\sigma^2}{2\pi\sigma^6} exp(-\frac{x^2 + y^2}{2\sigma^2})$$

• DoG:

$$DoG = G(x, y; k\sigma) - G(x, y; \sigma)$$

$$= \frac{1}{2\pi (k\sigma)^2} exp(-\frac{x^2 + y^2}{2(k\sigma)^2}) - \frac{1}{2\pi \sigma^2} exp(-\frac{x^2 + y^2}{2\sigma^2})$$
(7)

Notice that the first-order partial derivative of the two-dimensional Gaussian function with respect to σ is:

$$\frac{\partial G}{\partial \sigma} = -\frac{1}{\pi \sigma^3} exp(-\frac{x^2 + y^2}{2\sigma^2}) + \frac{1}{2\pi \sigma^5} exp(-\frac{x^2 + y^2}{2\sigma^2})(x^2 + y^2)
= \frac{x^2 + y^2 - 2\sigma^2}{2\pi \sigma^5} exp(-\frac{x^2 + y^2}{2\sigma^2})$$
(8)

Hence, we can find that

$$\frac{\partial G}{\partial \sigma} = \sigma \, \nabla^2 \, G \tag{9}$$

Represent $\frac{\partial G}{\partial \sigma}$ in another way:

$$\frac{\partial G}{\partial \sigma} = \lim_{\Delta \sigma \to 0} \frac{G(x, y, \sigma + \Delta \sigma - G(x, y, \sigma))}{\Delta \sigma}$$

$$\frac{\det t = \sigma + \Delta \sigma}{t} \lim_{t \to \sigma} \frac{G(x, y, t) - G(x, y, \sigma)}{t - \sigma}$$

$$\frac{\det t = k\sigma}{t} \frac{G(x, y, k\sigma) - G(x, y, \sigma)}{k\sigma - \sigma}$$
(10)

From Formula(10) and Formula(9), we get

$$(k-1)\sigma \frac{\partial G}{\partial \sigma} = G(x, y, k\sigma) - G(x, y, \sigma)$$

$$(k-1)\sigma\sigma \nabla^2 G = DoG$$

$$(k-1)LoG = DoG$$
(11)

(Here, we suppose that
$$k\sigma = \sigma + \Delta\sigma, k = \frac{\Delta\sigma}{\sigma} + 1$$
)

From what has been discussed above DoG = (k-1)LoG, it means that DoG hold the same shape trend with LoG, the difference is amplitude and something small. Hence, DoG can be a good approximation of LoG.

Assignment 1

3 Problem 3(Math)

In the lecture, we talked about the least square method to solve an over-determined linear system $A\mathbf{x} = b, A \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^{n \times 1}, m > n, \operatorname{rank}(A) = n$. The closed form solution is $\mathbf{x} = \left(A^T A\right)^{-1} A^T b$. Try to prove that $A^T A$ is non-singular (or in other words, it is invertible).

Solution:

From the assumption we know that $A \in \mathbb{R}^{m \times n}$ and $A^T \in \mathbb{R}^{n \times m}$, so we got that $A^T A \in \mathbb{R}^{n \times n}$, it is a square matrix.

Because rank(A) = A, we know that A has full column rank, and we can also know that $rank(A^T) = n$, A^T has full row rank.(according to property(3))

According to properties of matrix ranking,

$$r(A) + r(A^{T}) - n \le r(AA^{T}) \le \min\{n, m\}$$

$$\Rightarrow r(AA^{T}) = n$$
(12)

Hence, AA^T has both full row rank and full column rank. So $A^TA = (AA^T)^T$ also has both full row rank and full column rank.

From what has been discussed above A^TA is non-sigular.

"Transpose does change the rank of matrix"

Proof: According to the matrix ranking property we know that column rank is equal to the row rank of a matrix, so

$$rank(A) = rrank(A) = crank(A)$$
(13)

And we also have $rrank(A) = crank(A^T)$, $crank(A) = rrank(A^T)$. Hence, $rank(A) = rank(A^T)$