

Neural Control and Coordination

- 1 INTRODUCTION
- Coordination is the process through which two or more organs interact and complement the functions of one another to maintain homeostasis in our body.
- The neural system and the endocrine system jointly coordinate and integrate all the activities of the organs so that they function in a synchronised fashion.

2 SYSTEMS MAINTAINING HOMEOSTASIS

PARAMETERS	NEURAL SYSTEM	ENDOCRINE SYSTEM
• Integration	Through Neurotransmitters Quicker	Through hormones Slower
Neural system pr point to point cor	ovides an organised netwo	rk of

3

NEURON

- Neuron is the structural and functional unit of the neural system.
- Composed or a cell body, dendrites and axon.

Types	No. of Dendrites	Location
Multipolar	2 or more	Cerebral cortex
Bipolar	1	Retina of eye
Unipolar	0	Embryonic stage

- Above given neurons have only one axon.
- Cell body contains cell organelles
- Impulse from dendrite moves towards cell body and in axon away from cell body.

TYPES OF AXONS/NERVE FIBRES

Parameters	Myelinated	Non-myollnatod	
Myelin sheath +		-	
Node of Ranvier	+	-	
Location	Cranial & spinal nerves	Autonomic and somatic neural system	

• Schwann cells surround both myelinated and non-myelinated nerve fibres but they form myelin sheath only in myelinated fibres.

CONCENTRATION GRADIENT ACROSS AXONAL MEMBRANE

- Excitability of neurons is attributed to polarised state of neural membranes.
- It has **selectively permeable ionic channels** responsible for differential concentration gradient across the axonal membrane.
- Axonal membranes are more permeable for K⁺, nearly impermeable to Na⁺ and impermeable to negatively charged proteins.
- Ionic gradients across resting membrane are maintained by the active transport of ions by the sodium-potassium pump which pumps 3Na⁺ outwards and 2K⁺ into the cell

GENERATION OF IMPULSE

- The electrical potential difference across the resting plasma membrane is called the resting potential.
- The electrical potential difference across the axonal membrane after receiving threshold stimulus is called action potential/nerve impulse.
- Cycle of events

CONDUCTION OF IMPULSE

- Impulse generated at a site arrives at another site and same sequence is repeated along the length of axon.
- Current flows in a circuit when it moves from A to B site.
- Flow of charge is from A outer membrane

- Nerve impulse is transmitted from one neuron to another across a synapse. **Events observed:**
- Neurotransmitters released in synaptic cleft
- Bind to receptors on post synaptic neuronal (PSN) -membrane
- Opening of ion channels in PSN
- Generates a new potential in PSN

	—— Axon
	Axon terminal
	Synaptic vesicles
	Pre-synaptic membrane
	Synaptic cleft
	Synaptic cleft Post-synaptic membrane
Neurotransmitters	Receptors
3 O F	

NEURAL SYSTEM

- Neurons can detect, receive & transmit stimulus
- Hydra - Network of neurons
- Insects - Organised neural system with brain and ganglia
- Vertebrates - Well developed neural system

Types of Synapse

Features	Electrical synapse	Chemical synapse
• Pre & post neuron	Close proximity through gap junctions	Separated by fluid-filled synaptic cleft
• Flow of impulse Direct Throug		Through neurotransmitters
• Transmission	Faster	Slower
• Nature	-	Excitatory or inhibitory
• Existence	Rare	Common

Transmission of impulse across electrical synapse is very similar to impulse conduction along a single axon

• Transmit impulses from CNS to skeletal muscles

Autonomic nervous system

• Relays impulses from CNS to smooth muscles

Visceral nervous system (VNS)

- Part of PNS
- Complex of nerves, fibres, ganglia and plexuses
- · CNS = <u></u> viscera

CENTRAL NERVOUS SYSTEM

Acts as command & control system of the body

Major Divisions of Brain

Divisions	Major parts	
Forebrain	Cerebrum, thalamus, hypothalamus	
Midbrain	Corpora quadrigemina	
Hindbrain	Pons, medulla, cerebellum	

BRAIN

Brain is central information processing organ of the body

Regions in cerebral hemisphere	Appearance	Composition	
Outer/cortex	Grey	Concentrated cell bodies	
• Inner	White	Myelinated nerve fibres	

The cerebral cortex includes Association areas (Neither sensory nor motor) Sensory areas Motor areas **Functions** Inter sensory associations Memory Communication

Forebrain

Cerebrum

- Major part of brain
- Cleft divides it longitudinally into right & left cerebral hemispheres; connected by corpus callosum

Thalamus

Major coordinating centre for sensory & motor signaling

Hypothalamus

- Lies at base of thalamus
- Has various centres for controlling body temperature, urge for eating and drinking
- Secretes hormones

Brain Stem Is composed of Midbrain, Pons and Medulla oblongata

Basic Functions of Brain

- Controls the voluntary movements
- · Balance of body
- Functioning of vital organs (kidneys, lungs, heart)
- Thermoregulation
- Controls hunger, thirst

- Circadian rhythms
- Human behaviour
- Activities of endocrine glands

Midbrain

- Located between thalamus/hypothalamus and pons
- 4 lobes on dorsal side between forebrain and pons.
- Integrates visual, tactile and auditory inputs.

Cerebral Aqueduct

• Canal passes through midbrain

<u>Hindbrain</u>

Pons

• Fibrous tract that connect different regions of the brain

Cerebellum

- Convoluted surface to accommodate more neurons
- Integrates information received from semi-circular canal and auditory system

Medulla oblongata

- Connects brain to spinal cord
- Has centres for controlling respiration, cardiovascular reflexes and gastric secretions

Limbic System/Limbic Lobe

- Parts included: Inner part of cerebral hemisphere, hippocampus. amygdala and hypothalamus
- Functions: Involved in expression or emotional reactions (e.g. excitement, pleasure, fear.)
 - Motivation Regulation of sexual behaviour Autonomic responses Olfaction

Reflex Action and Reflex ARC

Its a response to peripheral nervous stimulation

Involuntary i.e., without conscious effort

Neurons are arranged in series in a reflex pathway.

Afferent neurons transmit impulse via dorsal nerve root.

Inter neuron is not a part of this stretch reflex

Sensory reception and processing

Sensory organs detect all types of changes in the environment

SENSE ORGANS

Sense organ	Sense	Features associated	
Nose (single)	Smell	Mucus coated olfactory epithelium having three types of cells Neurons extend directly into bean sized olfactory bulb that are extensions of limbic system.	
Tongue (single)	Taste	Input from taste buds is conveyed to the brain and a complex flavour of food or drink is perceived	
Ear (paired)	Hearing, balance	Input from organ of Corti and vestibular apparatus is conveyed to CNS.	
Eye (paired)	Vision	Enclosed in sockets of skull (orbits) Nearly spherical in structure	

Cornea Between Lens Between Retina Aqueous chamber Contains Aqueous humor Appearance Thin watery fluid Transparent gel

EYE

The wall of the eyeball is composed of three layers:

tissue

Macula lutea – Yellowish pigmented spot lying at the posterior pole of eye lateral to the blind spot with a central pit called fovea.

Photoreceptor cells		Vision	Photopigments (light sensitive proteins)	
Rods	Twi	ight/Scotopic vision	Rhodopsin/ Purplish red protein/visual purple	
Cones	Day light/ Photopic vision and Colour vision	57 7 150 05 / 7	ments in these cones ferent colours by various combinations of these gives sensation of white light	

Mechanism of vision

Brain analysed image formed on retina based on earlier memory and experience

THE EAR

- Tympanic/membrane is composed of (b) Mucus membrane on the inside
- Ear ossicles Arranged in a chain (M-I-S)
- Structural details ——

 Malleus is attached to tympanum
 Stapes is attached to the oval window
- Function ———— Increase efficiency of transmission of sound waves to the inner ear

LABYRINTH

It is a fluid filled inner ear, consists of two parts: Bony and Membranous labyrinths

Bony Labyrinth.

(filled with perilymph)

Encloses

Membranous Labyrinth

(filled with endolymph)

Parts of Membranous labyrinth	Sub-parts	Receptors	Basic functions
Vestibular apparatus (complex system)	(a)Semicircular canals (b)Otolith Organ • Utricle • saccule	Crista ampullaris	 Maintenance of balance of the body and posture. Influenced by gravity and movements
Cochlea (coiled appearance)		Sensory hair cells in organ of Corti	• Hearing

- Semicircular canals lie at right angle to each other and the base of each canal is swollen called ampulla.
- These membranous canals are suspended/surrounded by perilymph of the bony canals
- Vestibular apparatus is present above the coiled cochlea.
- Receptors present in vestibular apparatus have hair cells.

COCHLEA

MECHANISM OF HEARING

- · Ear converts sound waves into neural impulses
- The cerebellum integrates information received from the semicircular canals of the ear and the auditory system.

