Chapter 1 - Introduction to Computer Networking

ex. on message transmission, on message reciept, on message error, etc. Sunday, January 17, 2016 PROTOCOL - desires the format and order of messages exchanged and actions to be laken MOSTS/END-SYSTEMS - interconnected devices (smartphones, computers, servers) running network applications COMMUNICATION LINK - fiber, copper wire, radio, satellite PACKET - block of data rosted between an origin and a destination ROUTERS/SWITCHES - devices that forward packets toward destination via links 15P - Internet Serice Provider, how end-systems access the internet INTERNET PROTOCOL STACK - the protocols of the various layers of the internet 5. APPLICATION (message) name of packets processed at this layer -> supporting retwork applications (ex. browsers) -> FTP, SMTP, HTTP 4. TRANSPORT -> EXISTS ON MOSTS (segment) -> creater logical communication between two end-systems -> TCP, UDP 3. NETWORK (datagram) -> routes messages from source to destination -> IP, routing protocols 2. LINK EXISTS ON LINKS (frame) -> data transfer between neighbouring network elements -> Ethernet, 802.11 (wifi), PPP 1. PHYSICAL

-> transmission over communication link/medium

INTERNET

"nuts and bolts" view

- millions of interconnected end-systems, each running network applications
- extremely redundant/robust
- interconnected ISPs, network of networks
- loosely hierarchical

service view

- communication infrastructure that enables distributed applications
- reliable data delivery, or "best effort"
- provides application programming interface

Ly ex. an API specifies how to ask for specific information

is multiple and systems in different places

network edge - hosts (clients and severs)

access betwerks - communication links, what physically connects an end-system to the first router

network core - interconnected routers, retworks of retworks

edge router - connects residential access nets/school or company access retworks / mobile access retworks to internet

DSL ACCESS NETS (digital subscriber line)

- -uses existing telephone lines infrastructure to provide internet
- proves only need \$-4kHz to provide good signal
- remaining frequency range is used for internet data

La separated into uplanding/downloading ranges N2.5 Mbps ~ 25Mbps

BOTH DSL & CABLE NEED MODEMS (DATA MODULATION) TO SEPARATE CHANNELS/FREQUENCIES.

CABLE ACCESS NETWORK

- uses frequency division multiplexing

 (> different channels are transmitted
 through different bands
- lowe frequency channels 1-6 transmit video
- higher frequency channels 7-8 transmit data
- highest frequency channel a is control channel
- cable share access network to headend

 (5) better because non-used bandwidth can be
 used by other people on your network

 (5) worse because less-secure

~30Mbps 3/1, 2Mbps 0/1

access to certain

WIRELESS ACCESS NETWORK

```
- connects and system to route via access point

- LANS

-> with building ( ~looft)

-> 802.11 b/g/n (wifi)

-> 11,54,72 Mbps

- wide-area wireless access

- provided by cellular operator

- 1-10 Mbps

- 3G, 4G LTE, Wiman
```

HOSTS

Sending packets of data

1. takes message from application

2. breaks it into packets of length L bits

3. transmits packets through access betweek at fransmission rate, R

transmission delay = time needed to send bits into the link = \frac{L(\text{bits})}{R(\text{bits}\text{fee})}

not the time to physically transmit the signal through

LINK - what lies between transmitter and recieves

Guided media -> signals propagate in solid media (copper, fiber, coaxial) Twisted Pair (TP) - two insulated copper wires - twisted to minimize woise - much cheaper than optical - entegory 5: 100 Mbps, IGbps Ethernet - category 6: 106 bps Coaxial cable - two concentric copper conductors - bidirectional - broadband Ly multiple channels on cable Fibe optic cable -glass fiber carrying light pulses, each pulse a bit -very high speed, 10-100 Gbps - low error rate immune to electromagnetic noise/interference Unquited media -> signals propagate freely (radio) Padio - signal carried in electromagnetic spectrum - no physical wire - bidirectional

```
- propagation environment effected by:
     obstruction by objects
     interference
 - terrestrial microwave, N 45 Mbps
 - LAN (wifi), 11 Mbps, 54 Mbps
 - wide-area (cellular), 3G ~3 Mbps
 - satellite, lebps - 45mbps
      1> 270 mac end-to-end delay
 - bluetooth
```

from source to destination

forwarding - moving an incoming packet from a router's input to the appropriate router output (link)

NETWORK COPE

_____ mush of interconnected packet switches/routers

PACKET SUITCHING (on-demand resource allocation)

- how most of the interest transmits data - hosts break messages into packets

La packets are forwarded from one router to the

rext across links from source to destination weach packet transmitted at Isl link capacity

- store and forward

it is forwarded to the next router (: delay)

-simple

- very good for resource shaving, but no guarantee of bandwidth

Lo can become congested, but can support more users

CIRCUIT SWITCHING (reserved resource allocation)

- you said signals to set up an actual direct circuit from the saider to the recieve
- end-to-end resources allocated to and reserved for communication b/w source & destination
- has dedicated resources and guaranteed performance for each user
- however, no sharing of resources of vaused circuits are wasted while inactive

FDM (frequency division multiplexing)
frequency spectrum of a link is divided among the connections (users)

TDM (time division multiplexing)
time is divided into slots (grouped in frames) and the network
dedicates one slot per frame to each connection

ISPS

LOSS

if router queue becomes full due to congestion, any newly arriving packets will be lost life so, the router may send a signed back to the soder notifying them

DELAY (packet-switching)

Total model delay (end-to-end) consists of 4 delays:

- 1. QUEUING DELAY
 - packet arrival rate exceeds output rate
 - Inly one packet may be processed at a time

 - -depends on route congestion Lap, where R is link transmission rate, L is padet length, a is average partet arival rate bits/second bits

2 must be <1 or you are dropping packets

- 2 PROCESSING DELAY
 - roster has to read data to know where to forward it (determine output link)
 - does data integrity check for bit errors
- 3. TRANSMISSION DELAY
 - -time it takes for router to send each packet
 - 4 , where L is the packet length & R is the transmission rate
 - if not a congested router, this takes the longest
- 4 PROPAGATION DELAT
 - -time to actually transmit the electrical signal through the medium
 - -d/s, where d'is the length of the link and s is the propagation speed in medium

throughput - rate at which bits can be transferred b/w sender to recieve, bits/second
- bottlenecks usually happen close to edge, like wifi
- the smallest transmission rate in a path of links a packet takes