MAT104E PS

Question 1.

Investigate the divergence or convergence of the following sequences

$$i)x_n = \frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2n-1)(2n+1)}$$

$$ii)x_n = \sqrt[n]{1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{n^2}}$$

$$iii)x_n = \frac{1 - 2 + 3 - 4 + 5 - 6 + \dots + (2n-1) - 2n}{\sqrt{n^2 + 1}}.$$

Answer.

i) Note that
$$\frac{1}{(2n-1)(2n+1)} = \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$$
. So, we get $x_n = \frac{1}{2} \left(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \frac{1}{5} + \cdots + \frac{1}{2n-1} - \frac{1}{2n+1} \right) = \frac{1}{2} \left(1 - \frac{1}{2n+1} \right) \implies$

 $\lim_{x\to\infty} x_n = \frac{1}{2}$. Hence $\{x_n\}$ is convergent.

ii)
$$\sqrt[n]{\frac{1}{n^2} + \frac{1}{n^2} + \frac{1}{n^2} + \cdots + \frac{1}{n^2}} \le x_n \le \sqrt[n]{1 + 1 \cdots + 1} \implies \sqrt[n]{\frac{1}{n}} \le x_n \le \sqrt[n]{n}$$
. As we know that $\lim_{x \to \infty} \sqrt[n]{n} = 1$. By Sandwich Theorem, we get $\lim_{x \to \infty} x_n = 1$ which implies that $\{x_n\}$ is convergent.

Answer.

iii) $1-2+3-4+5-6+\cdots+(2n-1)-2n=-1-1-1-\cdots-1$. It has n-term.

Then we get

$$\lim_{x\to\infty}x_n=\lim_{x\to\infty}\frac{-n}{\sqrt{n^2+1}}=-1. \text{Thus }\{x_n\} \text{ is convergent }$$

Question 2.

Investigate the divergence or convergence of the following sequences $i)a_n = \frac{\sin^2 n}{2^n}$

$$ii)a_n = \left(1 + \frac{1}{n+1}\right)^{5n}$$

$$iii)a_n = n \ln\left(\frac{n^2 - 1}{n^2}\right)$$

$$iv)a_n = 1 - (-1)^n \frac{n^2 + 2}{2n^2 + 1}.$$

Answer.

i) We know that $-1 \le \sin n \le 1$. It implies that $0 \le \sin^2 n \le 1 \implies 0 \le \frac{\sin^2 n}{2^n} \le \frac{1}{2^n}$.

Hence we obtain $0 \le \lim_{n \to \infty} \frac{\sin^2 n}{2^n} \le \lim_{n \to \infty} \frac{1}{2^n} = 0$. By Sandwich Theorem, we get $\lim a_n = 0$. Hence $\{a_n\}$ is convergent.

ii)
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \left(\left(1 + \frac{1}{n+1}\right)^{n+1} \left(1 + \frac{1}{n+1}\right)^{-1} \right)^5 = (e.1)^5 = e^5$$
. Hence $\{a_n\}$ is convergent.

Answer.

ii) Second way:

 $\lim_{n\to\infty}a_n;1^\infty$. We can apply l'Hôpital's Rule if we first change the form to $0.\infty$ by taking the natural logarithm of a_n .

$$\ln a_n = 5n \ln \left(1 + \frac{1}{n+1}\right)$$
. Then, we get

$$\lim_{n\to\infty} \ln a_n = \lim_{n\to\infty} 5n \ln\left(1 + \frac{1}{n+1}\right)$$

$$= \lim_{n\to\infty} \frac{\ln\left(\frac{n+2}{n+1}\right)}{\frac{1}{5n}}$$

$$= \lim_{n\to\infty} \frac{\frac{-1}{(n+1)^2}}{\frac{n+2}{n+1}}$$

$$= \lim_{n\to\infty} \frac{5n^2}{(n+1)(n+2)} = 5.$$

Hence we have $\lim_{n\to\infty} a_n = e^5$ so that $\{a_n\}$ is convergent.

Answer.

iii)

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} n \ln \left(\frac{n^2 - 1}{n^2} \right)$$

$$= \lim_{n \to \infty} \frac{\ln \left(\frac{n^2 - 1}{n^2} \right)}{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \frac{\frac{2n \cdot n^2 - (n^2 - 1)2n}{n^2}}{\frac{n^2 - 1}{n^2}}$$

$$= \lim_{n \to \infty} \frac{-2n}{n^2 - 1} = 0$$

iv) For
$$n=2k$$
, $a_{2k}=1-(-1)^{2k}\frac{(2k)^2+2}{2(2k)^2+1}=1-\frac{4k^2+2}{8k^2+1} \implies \lim_{k\to\infty}a_{2k}=\frac{1}{2}$. For $n=2k+1$, $a_{2k+1}=1-(-1)^{2k+1}\frac{(2k+1)^2+2}{2(2k+1)^2+1} \implies \lim_{k\to\infty}a_{2k+1}=\frac{3}{2}$. Since $\lim_{k\to\infty}a_{2k}\neq\lim_{k\to\infty}a_{2k+1}$, the limit of $\{a_n\}$ does not exist. Hence $\{a_n\}$ is divergent.

Question 3.

Investigate the divergence or convergence of the following sequences $i)a_n = \sqrt[n]{n^2 + 2n}$

$$ii)a_n = \sqrt[n]{10n} \frac{2^n}{n!}$$

$$iii)a_n = n - \sqrt{n^2 + 1}.$$

Answer.

i)
$$\ln a_n = \frac{\ln(n^2 + 2n)}{n}$$
. By using l'Hôpital's Rule, we have

$$\lim_{n \to \infty} \ln a_n = \lim_{n \to \infty} \frac{\ln(n^2 + 2n)}{n}$$
$$= \lim_{n \to \infty} \frac{\frac{2n+2}{n^2+2n}}{1} = 0.$$

 $\lim_{n\to\infty} \ln a_n = 0 \implies \lim_{n\to\infty} a_n = e^0 = 1.$ Thus $\{x_n\}$ is convergent.

ii)

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \sqrt[n]{10} \sqrt[n]{n} \frac{2^n}{n!}$$
$$= 1.1.0 = 0.$$

Thus $\{x_n\}$ is convergent. iii)

$$\begin{split} & \lim_{n \to \infty} a_n = \lim_{n \to \infty} n - \sqrt{n^2 + 1} \\ & = \lim_{n \to \infty} (n - \sqrt{n^2 + 1}) \cdot \frac{n + \sqrt{n^2 + 1}}{n + \sqrt{n^2 + 1}} \\ & = \lim_{n \to \infty} \frac{n^2 - (n^2 + 1)}{n + \sqrt{n^2 + 1}} \\ & = \lim_{n \to \infty} \frac{-1}{n \left(1 + \sqrt{1 - \frac{1}{n^2}}\right)} = 0 \end{split}$$

Hence $\{x_n\}$ is convergent.

Question 4.

Show that the sequence $a_n = \frac{1}{1+5} + \frac{1}{1+5^2} + \frac{1}{1+5^3} + \cdots + \frac{1}{1+5^n}$ converges by using the monotonic sequence theorem.

Answer.

Note that

$$a_{n+1} - a_n = \left(\frac{1}{1+5} + \frac{1}{1+5^2} + \dots + \frac{1}{1+5^{n+1}}\right) - \left(\frac{1}{1+5} + \frac{1}{1+5^2} + \dots + \frac{1}{1+5^n}\right)$$
$$= \frac{1}{1+5^{n+1}} > 0$$

for all $n \ge 1$. Thus we get $a_{n+1} > a_n$ for all $n \ge 1$. The sequence is an increasing and it is bounded below by $a_1 = \frac{1}{6}$. On the other hand

$$a_n = \frac{1}{1+5} + \frac{1}{1+5^2} + \frac{1}{1+5^3} + \dots + \frac{1}{1+5^n} < \frac{1}{5} + \frac{1}{5^2} + \dots + \frac{1}{5^n}$$

$$= \frac{1}{5} \left(1 + \frac{1}{5} + \dots + \frac{1}{5^{n-1}} \right) = \frac{1}{5} \left(\frac{1 - \left(\frac{1}{5}\right)^n}{1 - \frac{1}{5}} \right) = \frac{1}{4} \left(1 - \left(\frac{1}{5}\right)^n \right) < \frac{1}{4}$$

for all $n \ge 1$. So, $\{a_n\}$ is bounded above by $\frac{1}{4}$. Since $\{a_n\}$ is both bounded above and bounded below, it is a bounded. By Monotonic Sequence Theorem, $\{a_n\}$ convergences.

Question 5.

Show that the sequence $a_n = \frac{1}{1+n} + \frac{1}{2+n} + \frac{1}{3+n} + \cdots + \frac{1}{n+n}$ converges by using the monotonic sequence theorem.

Answer.

Note that, for all $n \ge 1$

$$a_{n+1} - a_n = \left(\frac{1}{2+n} + \dots + \frac{1}{2n} + \frac{1}{2n+1} + \frac{1}{2n+2}\right) - \left(\frac{1}{1+n} + \frac{1}{2+n} + \dots + \frac{1}{2n}\right)$$
$$= \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1} = \frac{1}{(2n+1)(2n+2)} > 0.$$

Thus we get $a_{n+1} > a_n$ for all $n \ge 1$. The sequence is increasing and it is bounded below by $a_1 = \frac{1}{2}$. On the other hand,

$$a_n = \frac{1}{1+n} + \frac{1}{2+n} + \dots + \frac{1}{n+n} < \frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n} = \frac{1}{n} = 1 \text{ for all } n \ge 1.$$

Therefore, $\{a_n\}$ is bounded above by 1

Since $\{a_n\}$ is both bounded above and bounded below, it is a bounded.

By Monotonic Sequence Theorem, $\{a_n\}$ convergences.

Question 6.

Let the sequence $\{a_n\}$ be defined recursively by $a_1=1$, $a_{n+1}=1+\frac{2}{3}a_n$, $n\geq 1$. Find the *n*-th term of the sequence $\{a_n\}$ Find the limit off the sequence $\{a_n\}$.

Answer.

Observe that

$$\begin{split} a_{n+1} &= 1 + \frac{2}{3} a_n \\ &= 1 + \frac{2}{3} \left(1 + \frac{2}{3} a_{n-1} \right) = 1 + \frac{2}{3} + \left(\frac{2}{3} \right)^2 a_{n-1} \\ &= 1 + \frac{2}{3} + \left(\frac{2}{3} \right)^2 \left(1 + \frac{2}{3} a_{n-2} \right) = 1 + \frac{2}{3} + \left(\frac{2}{3} \right)^2 + \left(\frac{2}{3} \right)^3 a_{n-2} \\ &= \dots = 1 + \frac{2}{3} + \left(\frac{2}{3} \right)^2 + \dots + \left(\frac{2}{3} \right)^{n-1} + \left(\frac{2}{3} \right)^n a_{n-(n-1)} \\ &= 1 + \frac{2}{3} + \left(\frac{2}{3} \right)^2 + \dots + \left(\frac{2}{3} \right)^{n-1} + \left(\frac{2}{3} \right)^n a_1 = 3 \left(1 - \left(\frac{2}{3} \right)^{n+1} \right). \end{split}$$

for all
$$n \ge 1$$
. Therefore, we get $a_n = 3\left(1 - \left(\frac{2}{3}\right)^n\right)$ for all $n \ge 1$. Then, $\lim_{n \to \infty} a_n = \lim_{n \to \infty} 3\left(1 - \left(\frac{2}{3}\right)^n\right) = 3$.

Question 7.

Show that the sequence $a_n=\dfrac{2n-1}{2n+3}$ convergences by using the monotonic sequence theorem.

Answer.

Note that $a_n = \frac{2n-1}{2n+3} = 1 - \frac{4}{2n+3}$ for all $n \ge 1$. Then we get

$$a_{n+1} - a_n = 1 - \frac{4}{2n+5} - \left(1 - \frac{4}{2n+3}\right)$$
$$= \frac{8}{(2n+5)(2n+3)} > 0$$

for all $n \ge 1$. Thus, $\{a_n\}$ is increasing.

On the other hand, $a_n < 1$ for all $n \ge 1$.

By the monotonic sequence theorem, $\{a_n\}$ is convergent.

Question 8.

Investigate the divergence or convergence of the sequence $a_n = \frac{(n!)^2}{(2n)!}$.

Answer.

We can see that,

$$\begin{aligned} \frac{a_{n+1}}{a_n} &= \frac{(n+1)!^2}{(2n+2)!} \frac{(2n)!}{(n!)^2} \\ &= \frac{((n+1)n!)^2}{(2n+2)!} \frac{(2n)!}{(n!)^2} \\ &= \frac{(n+1)^2}{(2n+1)(2n+2)} \\ &= \frac{n+1}{4n+2} < 1. \end{aligned}$$

for all $n \ge 1$. $a_n > 0$ and $\frac{a_{n+1}}{a_n} < 1$ yield that $a_{n+1} < a_n$. It means that $\{a_n\}$ is a decreasing sequence. On the other hand, due to $0 < a_n < \frac{1}{2}$ for all $n \ge 1$, $\{a_n\}$ is bounded. Hence $\{a_n\}$ is convergent by monotone sequence theorem.

Question 9.

Show that the recursively defined sequence $a_1 = \frac{1}{4}$, $a_{n+1} = \frac{4a_n}{2a_{n+1}}$, $n \ge 1$ convergences.

Answer.

Observe that, for all $n \geq 1$

$$a_{n+1} - a_n = \frac{4a_n}{2a_n + 1} - \frac{4a_{n-1}}{2a_{n-1} + 1}$$

$$= 4 \frac{2a_n a_{n-1} + a_n - 2a_n a_{n-1} - a_{n-1}}{(2a_{n+1} + 1)(2a_n + 1)}$$

$$= 4 \frac{a_n - a_{n-1}}{(2a_{n+1} + 1)(2a_n + 1)}.$$

Since $a_n > 0$ for all n, we have $2a_{n+1} + 1 > 0$ and $2a_n + 1 > 0$. Then we can easily see

that
$$a_{n+1}-a_n$$
 and a_n-a_{n-1} have the same sign for all $n\geq 1$. $a_2-a_1=\frac{2}{3}-\frac{1}{4}=\frac{5}{12}>0 \implies a_{n+1}-a_n>0$. Therefore $\{a_n\}$ is an increasing sequence. For all $n\geq 1$,

$$a_{n+1}-a_n=rac{4a_n}{2a_n+1}-a_n=rac{a_n(3-2a_n)}{2a_n+1}\implies 3-2a_n>0\implies a_n<rac{3}{2}$$
 which implies that $\{a_n\}$ is bounded above.

By monotonic sequence theorem, the sequence convergences.

Question 10.

Show that the recursively defined sequence $a_1=2$, $a_{n+1}=\frac{3+2a_n}{2+a_n}$, $n\geq 1$ convergences. Find the limit of the sequence.

Answer.

Observe that

$$a_{n+1} - a_n = \frac{3 + 2a_n}{2 + a_n} - \frac{3 + 2a_{n-1}}{2 + a_{n-1}}$$
$$= \frac{a_n - a_{n-1}}{(2 + a_n)(2 + a_{n-1})}$$

for all $n \ge 1$. Since $a_n > 0$ for all n, we obtain $2 + a_n > 0$ and $2 + a_{n-1} > 0$. Then we can easily see that $a_{n+1} - a_n$ and $a_n - a_{n-1}$ have the same sign for all $n \ge 1$.

$$a_2 - a_1 = \frac{7}{4} - 2 = \frac{-1}{4} < 0 \implies a_{n+1} - a_n < 0$$
 for all $n \ge 1$. Therefore $\{a_n\}$ is a decreasing sequence and bounded above by 2.

We have $0 < a_n < 2$ for all $n \ge 1$. By monotonic sequence theorem, the sequence convergences.

Let $\lim_{n\to\infty} a_n = L$. Then $\lim_{n\to\infty} a_{n+1} = L$. So,

$$L = \frac{3+2L}{2+L} \implies L^2 - 3 = 0 \implies L = -\sqrt{3} \text{ or } L = \sqrt{3}.$$

Since $0 < a_n$ for all $n, L = \sqrt{3}$.

Question 11.

Investigate the convergence of the series $\sum_{n=1}^{\infty} n^2 \tan^2(\frac{1}{n})$

Answer.

Let $a_n = n^2 \tan^2(\frac{1}{n})$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} n^2 \tan^2(\frac{1}{n})(0.\infty)$$

$$\Rightarrow \lim_{n \to \infty} (\frac{\tan(\frac{1}{n})}{\frac{1}{n}})^2$$

$$\Rightarrow \lim_{n \to \infty} (\frac{\sin(\frac{1}{n})}{\frac{1}{n}})^2$$

$$(\lim_{n \to \infty} \cos(\frac{1}{n}) = 1) \qquad \Rightarrow \lim_{n \to \infty} (\frac{\sin(\frac{1}{n})}{\frac{1}{n}})^2$$

$$u = (\frac{1}{n}) \qquad \Rightarrow \lim_{u \to 0} (\frac{\sin u}{u})^2 = 1.$$

Since, $\lim_{n\to\infty} a_n \neq 0$ the series diverges from the n^{th} term test.

Question 12.

Show that

$$1 + \frac{1}{x} + \frac{1}{x^2} + \dots = \frac{x}{x - 1}$$

assuming x>1, then express the repeating decimal 0.131313... as a rational number.

Answer.

Note that if x>1, then $\frac{1}{x}<1$. In this case, the left side is the sum of an infinite geometric progression. Using the formula $S=\sum_{n=0}^{\infty}r^n=\frac{1}{1-r}$, we can write the left side as

$$1 + \frac{1}{x} + \frac{1}{x^2} + \dots = \sum_{n=0}^{\infty} (\frac{1}{x})^n = \frac{1}{1 - \frac{1}{x}} = \frac{x}{x - 1}$$

so,

$$0.131313... = \frac{13}{100} + \frac{13}{10000} + \frac{13}{100000} + ... = (\frac{13}{100})(1 + \frac{1}{100} + \frac{13}{10000} + ...) = (\frac{13}{100})\frac{100}{100 - 1} = \frac{13}{99} (r = \frac{1}{100}, x = 100)$$

Question 13.

$$\lim_{n\to\infty}a_n=a$$
 ise $\sum_{n=1}^{\infty}(a_n-a_{n+1})=a_1-a$ olduğunu gösterin.

Bu özelliği kullanarak $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+1}{n(n+1)}$ serisinin toplamını hesaplayın.

Answer.

$$S_{N} = \sum_{n=1}^{N} (a_{n} - a_{n+1}) = a_{1} - a_{2} + a_{2} - a_{3} + \dots + a_{N} - a_{N+1} = a_{1} - a_{N+1}$$

$$\sum_{N=1}^{\infty} (a_{n} - a_{n+1}) = \lim_{N \to \infty} S_{N}$$

$$= \lim_{N \to \infty} a_{1} - a_{N+1}$$

$$\left(\lim_{N \to \infty} a_{N+1} = \lim_{N \to \infty} a_{N} = a\right) = a_{1} - a.$$

Bu özellik yardımıyla,

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n+1}{n(n+1)} = \sum_{n=1}^{\infty} (-1)^{n+1} (\frac{1}{n} + \frac{1}{n+1})$$

$$\begin{split} &= \sum_{n=1}^{\infty} ((-1)^{n+1} \frac{1}{n} + (-1)^{n+1} \frac{1}{n+1}) \\ &= \sum_{n=1}^{\infty} ((-1)^n \frac{-1}{n} + (-1)^{n+1} \frac{1}{n+1}) \\ &= -\sum_{n=1}^{\infty} ((-1)^n \frac{1}{n} - (-1)^{n+1} \frac{1}{n+1}) \\ &= -(-1-0) \\ &= 1 \ (a_n = \frac{(-1)^n}{n}, a_1 = 1, a = \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} = 0). \end{split}$$

Question 14.

Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n+1 \ln{(n+1)}}$ converges or diverges.

Answer.

The funcion $f(x) = \frac{1}{(x+1)\ln(x+1)}$ is continuous and positive.

$$f'(x) = -\frac{1 + \ln(1 + x)}{(1 + x) \ln(x + 1))^2} < 0 \text{ on } [1, \infty) \text{ (decreasing)}$$

Thus, we can apply Integral Test.

$$\int_{1}^{\infty} \frac{dx}{(x+1)\ln(x+1)} = \lim_{a \to \infty} \int_{1}^{a} \frac{dx}{(x+1)\ln(x+1)}$$
$$= \lim_{a \to \infty} \ln\ln(x+1) \Big|_{1}^{a}$$
$$= \lim_{a \to \infty} \ln\ln(a+1) - \ln\ln(2)$$
$$= \infty$$

The Integral approaches infinity. Therefore, the series diverges.

Question 15.

Prove that if $\sum_{n=1}^{\infty} a_n$ is convergent series of non-negative terms, then $\sum_{n=1}^{\infty} a_n^2$ converges.

Answer.

If
$$\sum_{n=1}^{\infty} a_n$$
 is convergent, then $\lim_{n \to \infty} a_n = 0$

According to Limit Comparison Test (L.C.T),

$$\lim_{n\to\infty}\frac{a_n^2}{a_n}=\lim_{n\to\infty}a_n=0$$

So,
$$\sum_{n=1}^{\infty} a_n$$
 is convergent, then $\sum_{n=1}^{\infty} a_n^2$ converges too.

Question 16.

Determine whether the series $\sum_{n=1}^{\infty} \frac{2n^3+7}{n^4\sin^2 n}$ converges or diverges.

Answer.

Answer.
$$2n^{3} + 7 > 2n^{3} \implies \frac{2n^{3} + 7}{n^{4}\sin^{2}n} > \frac{2n^{3}}{n^{4}\sin^{2}n} > \frac{2}{n\sin^{2}n}(*)$$
 and we also know, $0 \le \sin^{2}n \le 1$ so, $n\sin^{2}n \le n \implies \frac{1}{n} \le \frac{1}{n\sin^{2}n}(**)$ With the help of $(*)$ and $(**)$,
$$\frac{2n^{3} + 7}{n^{4}\sin^{2}n} > \frac{2}{n\sin^{2}n} \ge \frac{2}{n}$$

$$\implies \sum_{n=1}^{\infty} \frac{2n^{3} + 7}{n^{4}\sin^{2}n} > \sum_{n=1}^{\infty} \frac{2}{n} \ (divergent, p = 1).$$

According to Direct Comparison Test, $\sum_{n=0}^{\infty} \frac{2n^3 + 7}{n^4 \sin^2 n}$ is divergent.

Question 17.

Determine whether the series $\sum_{n=1}^{\infty} \frac{n!}{5^n}$ converges or diverges.

Answer.

$$a_{n} = \frac{n!}{5^{n}}, a_{n} = \frac{(n+1)!}{5^{n+1}} = \frac{(n+1)n!}{5^{n}5} = \frac{n+1}{5} a_{n}$$

$$\implies \lim_{n \to \infty} \left| \frac{a_{n}+1}{a_{n}} \right|$$

$$\implies \lim_{n \to \infty} \left| \frac{\frac{n+1}{5} a_{n}}{a_{n}} \right|$$

$$\implies \infty.$$

According to Ratio Test the series is divergent.

Question 18.

Determine whether the series $\sum_{n=1}^{\infty} \frac{n^n}{2^{1+n}}$ converges or diverges.

Answer.

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{n^n}{2^{1+n}}}$$
$$= \lim_{n \to \infty} \frac{n}{2^{\frac{1}{n}} 2}$$
$$= \infty.$$

According to root test, this series is divergent.

Question 19.

Determine whether the series $\sum_{n=2}^{\infty} \frac{\cos n\pi}{\sqrt{n}}$ converges (absolute, conditionally) or diverges.

Answer.

$$\sum_{n=2}^{\infty} \frac{\cos n\pi}{\sqrt{n}} = \sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n}} (u_n = \frac{1}{\sqrt{n}})$$

$$\implies \lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$$

$$\implies u_n = \frac{1}{\sqrt{n}} > \frac{1}{\sqrt{n+1}} = u_{(n+1)}$$

The two conditions of the test met and so by the Alterne Series Test the series is convergent.

$$\sum_{n=2}^{\infty} \left| \frac{\cos n\pi}{\sqrt{n}} \right| = \sum_{n=2}^{\infty} \frac{1}{\sqrt{n}} \quad (p = \frac{1}{2} < 1, divergent)$$

Therefore, this series is not absolutely convergent. It is however conditionally convergent since the series itself does converges.

Question 20.

Find the interval of absolute convergence,

interval of convergence,

radius of convergence, of the power series $\sum_{n=1}^{\infty} \frac{(x+2)^n}{n+\sqrt{n}}$

Determine the x values, if any, for which the power series converges conditionally.

Answer.

Let's use the Ratio Test to find the interval of absolute convergence:

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| < 1 \implies \lim_{n \to \infty} \left| \frac{(x+2)^{n+1}}{n+1+\sqrt{n+1}} \cdot \frac{n+\sqrt{n}}{(x+2)^n} \right| < 1$$

$$\implies |x+2| \cdot \lim_{n \to \infty} \left(\frac{n+\sqrt{n}}{n+1+\sqrt{n+1}} \right) < 1$$

$$\implies |x+2| < 1$$

$$\implies -3 < x < -1.$$

Now, let's investigate the convergence at endpoints:

▶ When x = -3, we have the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n + \sqrt{n}}$ which is convergent by the

Alternating Series Test, but $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n+\sqrt{n}} \right| = \sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}}$ is divergent by the

Limit Comparison Test comparing with the divergent *p*-series $\sum_{n=1}^{\infty} \frac{1}{n}$. So,

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+\sqrt{n}}$$
 converges conditionally.

▶ When x=-1, we have the series $\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}}$ which is divergent by the Limit Comparison Test.

Thus,

- the interval of absolute convergence is (-3, -1),
- the interval of convergence is [-3, -1),
- the radius of convergence is 1,
- the series converges conditionally at x = -3.

Question 21.

Let
$$\sum_{n=0}^{\infty} n^3 (2x-3)^n$$

Find the interval of absolute convergence,

interval of convergence, radius of convergence, of the power series.

Determine the x values, if any, for which the power series converges conditionally.

Answer.

Let's use the Ratio Test to find the interval of absolute convergence:

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| < 1 \implies \lim_{n \to \infty} \left| \frac{(n+1)^3 (2x-3)^{n+1}}{n^3 (2x-3)^n} \right| < 1$$

$$\implies |2x-3| \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^3 < 1$$

$$\implies |2x-3| < 1$$

$$\implies 1 < x < 2.$$

Now, let's investigate the convergence at endpoints:

- ▶ When x = 1, we have the series $\sum_{n=1}^{\infty} (-1)^n n^3$ which is divergent by the nth-term Test.
- ▶ When x = 2, we have the series $\sum_{n=1}^{\infty} n^3$ which is divergent by the nth-term Test.

Thus,

- the interval of absolute convergence is (1,2),
- the interval of convergence is (1,2),
- the radius of convergence is $\frac{1}{2}$,
- there are no values for which the series converges conditionally.

Question 22.

Using Maclaurin series of $\sin x$ find the Maclaurin series of $f(x) = x^3 \sin(2x)$ and find the interval of convergence of the obtained series.

Answer.

Recall that the Maclaurin series of $\sin x$ is

$$\sin x = \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}.$$

Then,

$$\sin 2x = \sum_{n=1}^{\infty} \frac{(-1)^n (2x)^{2n+1}}{(2n+1)!}.$$

Thus, the Maclaurin series of f(x) is

$$f(x) = x^3 \sin 2x = \sum_{n=1}^{\infty} \frac{(-1)^n 2^{2n+1} x^{2n+4}}{(2n+1)!}.$$

Let's use the Ratio Test to find the interval of convergence:

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| < 1 \implies \lim_{n \to \infty} \left| \frac{(-1)^{n+1} 2^{2n+3} x^{2n+6}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n 2^{2n+1} x^{2n+4}} \right| < 1$$

$$\implies (2x)^2 \cdot \lim_{n \to \infty} \left(\frac{1}{(2n+3)(2n+2)} \right) < 1$$

$$\implies 0 < 1.$$

Thus, the series converges for all x, i.e., the interval of convergence is $(-\infty, \infty)$.

Question 23.

Find the Maclaurin series of $f(x) = \ln(x+4)$.

Answer.

We can express the fraction $\frac{1}{4+x}$ as

$$\frac{1}{4+x} = \frac{1}{4} \cdot \frac{1}{1+\left(\frac{x}{4}\right)} = \frac{1}{4} \cdot \sum_{n=0}^{\infty} (-1)^n \left(\frac{x}{4}\right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{4^{n+1}}.$$

Then, after term-by-term integration, we have that

$$\int \frac{1}{4+x} dx = C + \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n \cdot 4^n}.$$

For x = 0, we get $C = \ln(4)$. Thus,

$$\ln(x+4) = \ln(4) + \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n \cdot 4^n}.$$

Question 24.

Let $f(x) = \int_0^x \cos t^2 dt$. Find the Maclaurin series of f(x).

Answer.

The power series of $\cos t$ is

$$\cos t = \sum_{n=0}^{\infty} (-1)^n \frac{t^{2n}}{(2n)!}.$$

Then, using the substitution $t \to t^2$, we get

$$\cos t^2 = \sum_{n=0}^{\infty} (-1)^n \frac{t^{4n}}{(2n)!}.$$

Then, after term-by-term integration from 0 to x, we have that

$$\int_0^x \cos t^2 dt = \left(t - \frac{t^5}{5.2!} + \frac{t^9}{9.4!} - \dots \right) \Big|_0^x$$

$$= x - \frac{x^5}{5.2!} + \frac{x^9}{9.4!} - \dots = \sum_{n=0}^\infty (-1)^n \frac{x^{4n+1}}{(4n+1)(2n)!}.$$

Question 25.

Express $\int e^x dx$ as a power series.

Answer.

We have the fact that

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

Then, after term-by-term integration, we have

$$\int e^{x} dx = C + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots = C + \sum_{n=1}^{\infty} \frac{x^{n}}{n!}.$$

Question 26.

Let
$$f(x) = \cos(x - 1)$$

- i) Find $f^{(n)}(x)$
- ii) Find the Taylor series f(x) at x = 1
- iii) Using ii) find the sum of the series $\sum_{n=1}^{\infty} (-1)^n \frac{(2\pi)^{2n}}{(2n)!}.$

Answer.

i)

$$f(x) = \cos(x - 1) \implies f'(x) = -\sin(x - 1)$$

$$\implies f''(x) = -\cos(x - 1)$$

$$\implies f'''(x) = \sin(x - 1)$$

$$\implies f^{(4)}(x) = \cos(x - 1)$$

$$\vdots$$

$$\implies f^{(n)}(x) = \begin{cases} \cos(x - 1) & , n = 4k \\ -\sin(x - 1) & , n = 4k + 1 \\ -\cos(x - 1) & , n = 4k + 2 \end{cases}$$

$$\sin(x - 1) & , n = 4k + 3$$

Moreover,
$$f^{(n)}(1) = \begin{cases} 1 & , & n = 4k \\ 0 & , & n = 4k+1 \\ -1 & , & n = 4k+2 \\ 0 & , & n = 4k+3 \end{cases}$$

ii) The Taylor series of f(x) at x = 1 is defined as

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{(n)!} (x-1)^n.$$

So,

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(1)}{(n)!} (x-1)^n$$

$$= 1 + 0 - \frac{(x-1)^2}{2!} + 0 + \frac{(x-1)^4}{4!} + 0 - \frac{(x-1)^6}{6!} + \cdots$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{(x-1)^{2n}}{(2n)!}$$

iii) Using ii),we can write the following

$$\cos(x-1) = \sum_{n=0}^{\infty} (-1)^n \frac{(x-1)^{2n}}{(2n)!} = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{(x-1)^{2n}}{(2n)!}$$

Thus, taking $x = 2\pi + 1$, we have that

$$\cos(2\pi) = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{(2\pi)^{2n}}{(2n)!}$$

$$\implies \sum_{n=1}^{\infty} (-1)^n \frac{(2\pi)^{2n}}{(2n)!} = 0.$$

Question 27.

Find the power series representation of $f(x) = \frac{1}{2+x}$ in powers of (x-1).

Find the interval of convergence of the obtained series.

Answer.

We can express the fraction $\frac{1}{2+x}$ as

$$\frac{1}{2+x} = \frac{1}{3+(x-1)}$$

$$= \frac{1}{3(1+(\frac{x-1}{3}))}$$

$$= \frac{1}{3} \cdot \frac{1}{1+(\frac{x-1}{3})}$$

$$= \frac{1}{3} \cdot \sum_{n=0}^{\infty} (-1)^n \left(\frac{x-1}{3}\right)^n$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n (x-1)^n}{3^{n+1}}.$$

Now, let's use the Ratio Test to find the interval of absolute convergence:

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| < 1 \implies \lim_{n \to \infty} \left| \frac{(-1)^{n+1} (x-1)^{n+1}}{3^{n+1}} \cdot \frac{3^{n+1}}{(-1)^n (x-1)^n} \right| < 1$$

$$\implies |x-1| \cdot \lim_{n \to \infty} \left| -\frac{1}{3} \right| < 1$$

$$\implies \frac{|x-1|}{3} < 1$$

$$\implies -2 < x < 4.$$

Let's investigate the convergence at endpoints:

- ▶ When x = -2, we have the series $\sum_{n=0}^{\infty} \frac{1}{3}$ which is divergent by the nth-term Test.
- ▶ When x=4, we have the series $\sum_{n=0}^{\infty} \left(-\frac{1}{3}\right)$ which is divergent by the nth-term Test.

Question 28.

Express $\int e^{-x^3} dx$ as a power series

Taking the first two terms in the series find an approximate value for the integral $\int_0^{1/2} e^{-x^3} dx.$

Answer.

We have the fact that $e^x=\sum_{n=0}^\infty \frac{x^n}{n!}.$ That is, $e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots.$

Substituting $-x^3$ instead of x in above equation, we get

$$e^{-x^3} = 1 - x^3 + \frac{x^6}{2!} - \frac{x^9}{3!} + \cdots$$

Term-by-integrating both sides of previous equation, we have

$$\int e^{-x^3} \ dx = C + x - \frac{x^4}{4.1!} + \frac{x^7}{7.2!} - \frac{x^{10}}{10.3!} + \dots = C + \sum_{n=0}^{\infty} \frac{(-1)^n x^{3n+1}}{(3n+1)n!}.$$

So, taking the first two term in the series, we have

$$\int_0^{1/2} e^{-x^3} dx \approx \left(x - \frac{x^4}{4} \right) \Big|_0^{1/2} = \frac{31}{64}.$$