## MADS-ML - Machine Learning

Neighborhood-based Classification

Prof. Dr. Stephan Doerfel





Moodle (WiSe 2024/25)

instances and their decisions.

For a decision, remember similar

### Outline

Basic Idea

The Neighborhood Size

The Decision Rule

**Distance Functions** 

Python

**Assumption:** 

### **Assumption:**

Instances of the same class are similar. Similar instances are of the same class.

### **Assumption:**

Instances of the same class are similar. Similar instances are of the same class.

### Idea:

### **Assumption:**

Instances of the same class are similar. Similar instances are of the same class.

#### Idea:

For a data instance x find those k instances from the training data that are the most similar to x.

### **Assumption:**

Instances of the same class are similar. Similar instances are of the same class.

#### Idea:

For a data instance x find those k instances from the training data that are the most similar to x.

#### Classification:

### **Assumption:**

Instances of the same class are similar. Similar instances are of the same class.

#### Idea:

For a data instance x find those k instances from the training data that are the most similar to x.

#### Classification:

Derive the class of x from the classes of these k instances.

### "Lazy Learner":

- ► (as opposed to Eager Lerners)
- ▶ no explicit model is trained.
- the training data serves as the model
- ▶ no generalization from the training data

### "Lazy Learner":

- ► (as opposed to Eager Lerners)
- no explicit model is trained.
- ▶ the training data serves as the model
- ▶ no generalization from the training data

#### Distance-based:

distance function determines the (non-)similarity between to data instances

### "Lazy Learner":

- ► (as opposed to Eager Lerners)
- ▶ no explicit model is trained.
- ▶ the training data serves as the model
- ▶ no generalization from the training data

#### Distance-based:

distance function determines the (non-)similarity between to data instances

### How many neighbors:

select k nearest (most similar) neighbors

 $\rightarrow$  Parameter  $k \Rightarrow$  "k-nearest neighbor"-algorithm

## kNN: Example



- × new data instance
- $\bigcirc$  Neighborhood for k = 7

- ► training data: 11 instances of class "+" and 8 instances of class "-".
- $\triangleright$  k = 1: object x is classified
- $\triangleright$  k = 7 objekt x is classified

## kNN: Example



- × new data instance
- $\bigcirc$  Neighborhood for k=1
- $\bigcirc$  Neighborhood for k = 7

- ► training data: 11 instances of class "+" and 8 instances of class "-".
- $\triangleright$  k = 1: object x is classified "+"
- $\triangleright$  k = 7 objekt x is classified "-"

## kNN algorithm

#### Given a data instance x

- ▶ for each instance t of the training data
  - compute distance distance between x and t
- select k instances with the lowest distance
- ▶ apply the decision rule to those *k* instances

#### **Decision Data:**

- ightharpoonup the data set from which we choose the k nearest neighbors
- these are exactly the training data

#### **Decision Data:**

- ▶ the data set from which we choose the *k* nearest neighbors
- these are exactly the training data

### Neighborhood Size:

▶ hyperparameter *k*, the number of neighbors considered per instance

#### **Decision Data:**

- ▶ the data set from which we choose the *k* nearest neighbors
- these are exactly the training data

### Neighborhood Size:

▶ hyperparameter k, the number of neighbors considered per instance

#### **Distance Function:**

- ▶ defines the (non)-similarly for pairs of data instances
- many different choices depending on the data

#### **Decision Data:**

- ▶ the data set from which we choose the *k* nearest neighbors
- these are exactly the training data

### Neighborhood Size:

 hyperparameter k, the number of neighbors considered per instance

#### Distance Function:

- ▶ defines the (non)-similarly for pairs of data instances
- many different choices depending on the data

#### **Decision Rule:**

► How does one derive the class from the given *k* neighbors?

### **Outline**

Basic Idea

The Neighborhood Size

The Decision Rule

**Distance Functions** 

Python

► *k* "too low":



$$k=1$$

$$k = 1$$

$$k = 7$$

$$k > 7$$

$$()$$
  $k > 7$ 

▶ *k* "too low": high sensitivity for outliers



$$k=1$$

$$k = 1$$

$$k = 7$$

$$k > 7$$

$$()$$
  $k > 7$ 

- ▶ *k* "too low": high sensitivity for outliers
- ▶ *k* "too high":



$$k=1$$

$$k = 1$$

$$k = 7$$

$$k > 7$$

$$\bigcap k > 7$$

- k "too low": high sensitivity for outliers
- k "too high": many objects from other classes in the neighborhood



$$k=1$$

$$k = 1$$

$$k = 7$$

$$k > 7$$

$$()$$
  $k > 7$ 

- k "too low": high sensitivity for outliers
- k "too high": many objects from other classes in the neighborhood
- rule of thumb: often  $1 \ll k < 10$  yields highest classification quality



$$k=1$$

$$k = 1$$

$$k = 7$$

$$()$$
  $k > 7$ 

## Simple determination of *k*

- ▶ Try different values k = 1, 2, 3, ...
- For each k: compute classification quality
  - ▶ X usually using cross validation
- ▶ use best *k* in production

### **Outline**

Basic Idea

The Neighborhood Size

The Decision Rule

**Distance Functions** 

Python

#### Standard:

▶ Use the majority class among the neighbors. Each neighbor has one vote with the weight 1.

#### Standard:

▶ Use the majority class among the neighbors. Each neighbor has one vote with the weight 1.

### Weighted:

- ► Each neighbor votes with a weight:
  - ▶ by inverted distance
  - by inverted class frequency in the training dataset
  - ▶ by some cost function (e.g. when predicting + instead of actual is more expansive than instead of +.

#### Standard:

▶ Use the majority class among the neighbors. Each neighbor has one vote with the weight 1.

### Weighted:

- ► Each neighbor votes with a weight:
  - ▶ by inverted distance
  - by inverted class frequency in the training dataset
  - ▶ by some cost function (e.g. when predicting + instead of actual is more expansive than instead of +.

### Example weighted voting

Let the training set contain 95% of class A and only 5% of class B. A neighborhood of

$$\{A, A, A, A, B, B, B\}$$

yields: Standard  $\Rightarrow A$ , weighted by class  $\Rightarrow B$ .

## kNN with probabilities

 probabilities help us judge "how sure" the classifier is in its classifications

## kNN with probabilities

- probabilities help us judge "how sure" the classifier is in its classifications
- kNN offers probabilities based on the voting.

## kNN with probabilities

- probabilities help us judge "how sure" the classifier is in its classifications
- ▶ kNN offers probabilities based on the voting.
- ▶ add the votes per class and divide by the number of neighbors

### Example probabilities

Let the training set contain instances of classes A, B, and C. A neighborhood of

$$\{A, A, A, A, B, B, B\}$$

yields probabilities  $p_A(x) = \frac{4}{7}$ ,  $p_B(x) = \frac{3}{7}$ , and  $p_C(x) = 0$ .

### Outline

Basic Idea

The Neighborhood Size

The Decision Rule

**Distance Functions** 

Python

### Distance functions

Just a couple of examples. More on distances in ADS-MMS.

### Definition 1 (Minkowski-Metrik)

Let  $x = (x_1, \dots, x_d)$  and  $y = (y_1, \dots, y_d)$  be numerical vectors. Then the Minkowski-Metric for p ( $L_p$ -metric) ist defined as:

$$\operatorname{dist}_p(x,y) := \sqrt[p]{\sum_{i=1}^d |x_i - y_i|^p}$$

Distance Functions 11 / 14

## Distance functions

Just a couple of examples. More on distances in ADS-MMS.

## Definition 1 (Minkowski-Metrik)

Let  $x = (x_1, \dots, x_d)$  and  $y = (y_1, \dots, y_d)$  be numerical vectors. Then the Minkowski-Metric for p ( $L_p$ -metric) ist defined as:

$$\operatorname{dist}_p(x,y) := \sqrt[p]{\sum_{i=1}^d |x_i - y_i|^p}$$

Commonly used Minkowski-Metrics are:

- $dist_2(x, y) = \sqrt[2]{\sum_{i=1}^d |x_i y_i|^2}$ ▶ Euclidean Distance (p = 2):
- $dist_1(x, y) = \sum_{i=1}^{d} |x_i y_i|$ ightharpoonup Manhattan-Metric (p=1):
- ightharpoonup Maximum-Metric ( $p = \infty$ ):  $dist_{\infty}(x, y) = max\{|x_i - y_i| | 1 < i < d\}$

Distance Functions 11 / 14

Imagine a dataset where the data instances are employees and the features are age, yearly salary and number of children. Using the Euclidean distance we yield:

$$\operatorname{dist}_2(x,y) = \sqrt[2]{(x_{age} - y_{age})^2 + (x_{kids} - y_{kids})^2 + (x_{salary} - y_{salary})^2}$$

Distance Functions 12 / 14

Imagine a dataset where the data instances are employees and the features are age, yearly salary and number of children. Using the Euclidean distance we yield:

$$\operatorname{dist}_2(x,y) = \sqrt[2]{(x_{age} - y_{age})^2 + (x_{kids} - y_{kids})^2 + (x_{salary} - y_{salary})^2}$$

▶ A difference of 1 is a lot for the number of kids, it is verly little for the yearly salary.

Distance Functions 12 / 14

Imagine a dataset where the data instances are employees and the features are age, yearly salary and number of children. Using the Euclidean distance we yield:

$$\operatorname{dist}_2(x,y) = \sqrt[2]{(x_{age} - y_{age})^2 + (x_{kids} - y_{kids})^2 + (x_{salary} - y_{salary})^2}$$

- ► A difference of 1 is a lot for the number of kids, it is verly little for the yearly salary.
- salary dominates the other features

Distance Functions 12 / 14

Imagine a dataset where the data instances are employees and the features are age, yearly salary and number of children. Using the Euclidean distance we yield:

$$\operatorname{dist}_2(x,y) = \sqrt[2]{(x_{age} - y_{age})^2 + (x_{kids} - y_{kids})^2 + (x_{salary} - y_{salary})^2}$$

- ▶ A difference of 1 is a lot for the number of kids, it is verly little for the yearly salary.
- salary dominates the other features
- solution: feature scaling (normalization)

Distance Functions 12 / 14

### **Definition 2**

Min-Max-Scaling a feature in a dataset D means computing

$$x' = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$

### where

- ► x is the original values of that feature for some data instance
- $\triangleright$  x' is the scaled value of x, and
- $ightharpoonup x_{min}$  and  $x_{max}$  are the lowest and highest values resp. in the dataset.

► Scaling maps the values of a feature into the interval

Distance Functions 13 / 14

### **Definition 2**

Min-Max-Scaling a feature in a dataset D means computing

$$x' = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$

### where

- x is the original values of that feature for some data instance
- $\triangleright$  x' is the scaled value of x, and
- $\triangleright$   $x_{min}$  and  $x_{max}$  are the lowest and highest values resp. in the dataset.

Scaling maps the values of a feature into the interval [0, 1]

Distance Functions 13 / 14

### **Definition 2**

Min-Max-Scaling a feature in a dataset D means computing

$$x' = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$

### where

- ► x is the original values of that feature for some data instance
- $\triangleright$  x' is the scaled value of x, and
- $ightharpoonup x_{min}$  and  $x_{max}$  are the lowest and highest values resp. in the dataset.
- ► Scaling maps the values of a feature into the interval [0, 1]
- Scaling depends on the dataset. Changes yield differently scaled instances.

Distance Functions 13 / 14

### **Definition 2**

Min-Max-Scaling a feature in a dataset D means computing

$$x' = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$

### where

- x is the original values of that feature for some data instance
- $\triangleright$  x' is the scaled value of x, and
- $\triangleright$   $x_{min}$  and  $x_{max}$  are the lowest and highest values resp. in the dataset.
- Scaling maps the values of a feature into the interval [0, 1]
- Scaling depends on the dataset. Changes yield differently scaled instances.

Scaling is invertible.

Distance Functions 13 / 14

## Outline

Basic Idea

The Neighborhood Size

The Decision Rule

**Distance Functions** 

**Python** 

## kNN in Python

sklearn.neighbors.KNeighborsClassifier

### **Parameters**

- $\triangleright$  k
- distance: large variety of out of the box functions
- decision rules: standard and weighted by distance
  - ▶ ties are resolved depending on the order of the data
- parameters controlling memory and cpu consumption

Notebook 03\_1\_knn\_digits

Python 14 / 14

## kNN in Python

sklearn.neighbors.KNeighborsClassifier

#### **Parameters**

- $\triangleright$  k
- distance: large variety of out of the box functions
- decision rules: standard and weighted by distance
  - ties are resolved depending on the order of the data
- parameters controlling memory and cpu consumption



Python 14 / 14