Estatística Espacial Geoestatística I

Raquel Menezes

Departamento de Matemática Universidade do Minho

Setembro de 2023

Lembrar a importância da AED

- A análise exploratória de dados (AED) deve cobrir quer os aspetos não espaciais (e.g. boxplot) quer os espaciais (e.g. mapas).
 Numa análise exploratória devemos fazer analise espacial e não espacial
- Atenção, as estatísticas pontuais não são suficientes!

Figure: Dois Campos Aleatórios - CA distintos (paneis da esquerda e da direita), no entanto partilham o mesmo histograma (painel do centro).

Nota: Na terminologia inglesa um Campo Aleatório (CA) diz-se um Random Field (RF).

Dados referentes a pontos - Geoestatística

- O nosso interesse ir-se-á focar na
 - ▷ modelação de dados $y_1, ..., y_n$ recolhidos em diferentes localizações $\mathbf{x}_1, ..., \mathbf{x}_n$ (por exemplo, latitude e longitude) na região de estudo $D \subset \mathbb{R}^2$
 - ▷ estimação da estrutura de correlação espacial subjacente aos dados observados
- Iremos assumir um domínio espacial contínuo

- ▷ processo estocástico Y(x) pode ser medido em $\forall x \in D \subset IR^2$
- ▷ classicamente referido por processo geoestatístico (razões históricas)
- ▶ MAS atualmente cobrindo as diversas áreas de aplicação

2/26

Dados espaciais versus séries temporais

Semelhancas:

• Ambos consideram um conjunto discreto de observações, nos tempos t_1, \ldots, t_n de Y(t) ou nas localizações $\mathbf{x_1}, \ldots, \mathbf{x_n}$ de $Y(\mathbf{x})$, para estimar a estrutura de autocorrelação subjacente ao processo¹

Diferencas:

3 / 26

 Os dados nas séries temporais têm apenas uma direção, que é do passado para o tempo mais recente, podendo assim ser ordenados na reta do tempo

Aqui no espaço não temos uma ordem associada.

FAC

4/26

Notação

- $Y(\mathbf{x})$ identifica o fenômeno em estudo (por exemplo, abundância de uma espécie ou chuva) que depende de coordenadas espaciais $\mathbf{x} \in D \subset \mathbb{R}^2$, onde D é uma região limitada
- Se temos as localizações espaciais $x_1,...,x_n$, então $Y(x_1),...,Y(x_n)$ identifica dados observados nessas localizações. Essas observações podem ser obtidas a partir de uma ou mais variáveis discretas ou contínuas.
- \bullet Y(x) é geralmente definido através da distribuição de dimensão finita

$$F_{\mathbf{x}_1,...,\mathbf{x}_n}(y_1,...,y_n) = P\{Y(\mathbf{x}_1) \le y_1,...,Y(\mathbf{x}_n) \le y_n\}, n \ge 1$$

5 / 26

Estacionariedade

• Y(x) é estrita ou fortemente estacionário se, para qualquer vector $\mathbf{u} \in \mathbb{R}^2$, temos

$$-F_{x_1,...,x_n}(y_1,...,y_n) = F_{x_1+u,...,x_n+u}(y_1,...,y_n), \quad \forall n, \mathbf{u}$$

o que significa que Y(x) permanece invariante quando sujeito a transformações de translação de suas coordenadas

- Y(x) é estacionário de segunda-ordem (ou fracamente estacionário), se
 - $E[Y(\mathbf{x})] = \mu(\mathbf{x}) = \mu \quad \forall \ \mathbf{x} \in D$
 - $\ \mathrm{Cov}[Y(x_i), Y(x_j)] = c(x_i x_j), \quad \ \forall \ x_i, x_j \in \mathit{D}$

c(.) é chamada função de covariância estacionária e $\mu(\mathbf{x})$ é conhecido como tendência do processo

- Y(x) é intrinsicamente estacionário, se ²
 - $E[Y(\mathbf{x})] = \mu(\mathbf{x}) = \mu \iff E[Y(\mathbf{x}_i) Y(\mathbf{x}_j)] = 0$
 - $-\operatorname{Var}[Y(\mathbf{x}_i) Y(\mathbf{x}_j)] = 2\gamma(\mathbf{x}_i \mathbf{x}_j), \quad \forall \ \mathbf{x}_i, \mathbf{x}_j \in D$

 $\gamma(.)$ é chamado variograma

Hipóteses

- Y(x) estacionário: (nvariância sob translações/rotações no espaço.
 Se for feita uma translação (vetor u) a distribuiçao conjunta matém-se.
- Y(x) estacionário de ordem 2: os dois primeiros momentos existem e são invariantes sob translações/rotações. Média, variancia e covariancia têm de ser constantes, não podem depender de to Os momentos (média, variancia e covariancia) são os mesmos quando fazemos uma translação.
- Y(x) intrínseco: os incrementos são estacionários de ordem 2.

Estacionário

Parece ser estacionário na média e na variancia

Intrínseco

Não parece ser estacionário na média

6/26

Hipóteses

- Um processo Y(x) estacionário também é intrínseco, mas um Y(x) intrínseco nem sempre é estacionário.
- O foco não está na média... mas será que Y(x) apresenta um comportamento sistemático?
 - Exemplo: Seja Y(x) a profundidade do fundo do mar, então E[Y(x)] aumenta regularmente a partir da praia.
- O modelo puramente intrínseco situa-se entre os casos estacionários e não estacionários. A escolha do grau de não estacionariedade depende do caso em estudo.

 $^{^2}$ Semelhante à série temporal, se Y_t não for estacionário, pode-se considerar as diferenças (de primeira ordem) entre os tempos

Duas outras propriedades importantes

 Y(x) é isotrópico, se permanece invariante quando sujeito a rotações de coordenadas (oposto a anisotrópico). Por exemplo, se o processo aleatório intrínseco Y(x) é isotrópico, então $Var[Y(x_i) - Y(x_i)] = 2\gamma(||x_i - x_i||)^3$

• Y(x) é ergódico, se a média de todas as realizações possíveis for igual à média de uma única realização (permite estimativas de parâmetros com apenas 1 realização)

9 / 26

11 / 26

Vantagens do variograma (Comparado com a FAC)

- O variograma adapta-se mais facilmente a observações não estacionárias (ex. $\mu(\mathbf{x})$ não constante)
- Para estimar o variograma, nenhuma estimativa de μ é necessária
- A estimação do variograma é mais simples que a estimação da função de covariância

As funções de covariância e variograma

• Se $Var[Y(x)] = \sigma^2$, então pode-se escrever a função de covariância ⁴ como $c(u) = \sigma^2 \rho(u; \phi)$, onde $\rho(.)$ é a função de correlação ⁵

• Para Y(x) sem "erro de medição", o variograma pode ser escrito como

$$\gamma(\mathbf{u}) = c(0) - c(u) = \sigma^2 - \sigma^2 \rho(u; \phi) = \sigma^2 (1 - \rho(\mathbf{u}; \phi))$$
 (1)

• O variograma $\gamma(u)$ mede a desassociação entre variáveis ⁶

10 / 26

Análise estrutural via o variograma

- A análise estrutural tem como objetivo capturar, descrever e modelar a maneira como uma variável geo-referenciada é estruturada espacialmente.
- O variograma mede a variabilidade média entre dois pontos quaisquer como função do vetor de distância entre esses pontos.
 - Primeiro, calculamos o variograma experimentalmente.
 - 2 Em seguida, ajustamos o variograma e modelamos a variável de interesse.

as coisas mais proximas estao mais associadas, logo as mais perto tb estao menos desassociadas

 $^{^3}$ Como $\|.\|$ denota a norma Euclidiana, então γ apenas depende da distância entre as duas

⁴Assume-se que Y(x) é um processo estacionário e isotrópico de 2ª ordem.

 $^{^{5}}$ Parâmetro ϕ relacionado com a distância além da qual a correlação entre as variáveis é 0 ("raio de influência" ou $\it range$)

 $^{^{} extsf{O}}$ Oposto à função de covariância c(u), que mede a associação entre variáveis

Variograma experimental $\widehat{\gamma}(u)$

$$\gamma(\|\mathbf{x}_i - \mathbf{x}_j\|) = \frac{1}{2} \mathrm{Var} \left[Y(\mathbf{x}_i) - Y(\mathbf{x}_j) \right] = \frac{1}{2} \mathrm{E} \left[(Y(\mathbf{x}_i) - Y(\mathbf{x}_j))^2 \right]$$

$$\hat{\gamma}(u)$$
 pode ser obtido aproximando $E[.]$ por uma média amostral
$$\hat{\gamma}(u) = \frac{1}{2|N(u)|} \sum_{N(u)} (Y(\mathbf{x_i}) - Y(\mathbf{x_j}))^2$$
 (2)

onde $N(u)=\{(\mathbf{x_i},\mathbf{x_j}): \|\mathbf{x_i}-\mathbf{x_j}\| \approxeq u, \ u \in \mathbb{R}\}$ e |N(u)|="n. de pares em N(u)".

13 / 26

Solução: variograma para uma amostra regular 1-D

Considere a distância de 5m:

$$\hat{\gamma}(5m) = \frac{1}{2 \times 12} [(8-6)^2 + (6-4)^2 + (4-3)^2 + \dots (6-3)^2] = 4.625$$
n° de pares distantes 5 km

• Considere a distância de 10m:

$$\hat{\gamma}(10m) = \frac{1}{2 \times 11} [(8-4)^2 + (6-3)^2 + (4-6)^2 + \dots (5-3)^2] = 5.227$$

• Considere a distância de 15m:

$$\hat{\gamma}(15m) = \frac{1}{2 \times 10} [(8-3)^2 + (6-6)^2 + (4-5)^2 + \dots (9-3)^2] = 6.000$$

Quanto maior a distância, menor o número de pares na linha, e menos $\hat{\gamma}(.)$ é representativo da variabilidade de Z (e de Y).

Exercício: variograma para uma amostra regular 1-D

Variável Z definida numa grelha regular em 1-D

- Calcule o variograma experimental para os defasamentos: 5m, 10m e 15m.
- Avalie o variograma experimental da nova variável:

$$Y(x) = Z(x) + 3.2$$

14 / 26

Exemplo – falha de isotropia

- Porque não devemos assumir isotropia, mas sim anisotropia?
 - ► Cálculo de 2 variogramas, um para a direção E-O e outro para N-S, origina resultados distintos (painel direita)
- Cada variograma direcional usa apenas pares ao longo da direcão considerada, com uma tolerância na direção.

Variograma direcional versus ou omnidirecional

Figure: Cálculo do variograma com tolerâncias na distância e direção: cada par de pontos de dados é alocado a uma "categoria" de distância e direção, levando em consideração as tolerâncias.

17 / 26

Modelos de variograma isotrópico $\gamma(u;\theta)$

Assumindo-se que Y(x) tem associado um erro de medição

- $\theta_0 = \tau^2$ é conhecido como variância do erro (nugget)
- $\theta_0 + \theta_1 = \tau^2 + \sigma^2$ conhecido como variância total de Y(x) (sill) "teto" onde estabiliza
- $\theta_2 = \phi$ conhecido como raio de influência (range)

Por que $\hat{\gamma}(u)$ não deve ser usado para inferência e predição?

O variograma experimental pode não ser definido-negativo condicional, o que pode levar a valores negativos absurdos para o erro de predição quadrático médio (considerado um estimador inválido).

Como obter um estimador de variograma válido?

Uma abordagem comum é aproximar $\hat{\gamma}(u)$ por algum modelo teórico $\gamma(u;\theta)$, conhecido por ser válido, capturando a dependência espacial subjacente aos dados disponíveis.

- **Primeiro**, escolhe-se um modelo teórico (por exemplo, exponencial, esférico, ...), normalmente usando ferramentas gráficas, que depende dos parâmetros θ
- Depois, recorre-se a:
 - ightharpoonup um critério de ajuste clássico (por ex. mínimos quadrados) para completar a especificação de γ final, estimando os parâmetros θ , tal como se segue

$$\hat{\theta} = \min_{\theta} \left\{ \sum_{i}^{\text{variograma empirico}} \gamma(u_i; \theta)^2 \right\}$$

Dou uma abordagem baseada em métodos de máxima verosimilhança

18 / 26

A função de correlação e o variograma

Processo isotrópico e estacionário de segunda ordem

Painel da esquerda: Função de correlação exponencial para diferentes valores de range ϕ

Painel da direita: Representação esquemática de um variograma típico com seus parâmetros estruturais, sendo $\gamma(u) = \tau^2 + \sigma^2(1-\rho(u;\phi)) = \frac{1}{2}\mathrm{Var}[Y(\mathbf{x})-Y(\mathbf{x}')]$ e $u = \|\mathbf{x}-\mathbf{x}'\|$

19 / 26 20 / 26

Exemplo 1: Dados de precipitação, Estado do Paraná, Brasil

Em muitas aplicações práticas, é útil considerar um processo Gaussiano espacial com uma função média ou tendência possivelmente dependendo da localização, i.e. $\mu(x)$, mas com uma estrutura de covariância estacionária

21 / 26

Exemplo 1: Dados de precipitação - removendo $\mu(\mathbf{x})$

 $Y(x) - \mu(x)$ torna-se um processo estacionário Gaussiano de média zero

Exemplo 1: Dados de precipitação - função média $\mu(\mathbf{x})$

Uma solução possível é especificar $\mu(\mathbf{x})$ como um modelo de regressão, dependendo das próprias coordenadas Fazemos isto para tentar estacionarizar a media

west-east

Na presença de variáveis explicativas geo-referenciadas relevantes, é razoável incluí-las em $\mu(x)$. Por exemplo, suponhamos que o objetivo é analisar as temperaturas médias diárias em toda a Argentina, então poderá ser importante considerar a altitude como uma covariável

22 / 26

Diferentes escalas de variabilidade

Pode-se escrever o processo aleatório espacial como

$$Y(\mathsf{x}) = \mu(\mathsf{x}) + S(\mathsf{x}) + \epsilon(\mathsf{x}) = \alpha + \sum_{j=1}^p \beta_j X_j(\mathsf{x}) + S(\mathsf{x}) + \epsilon(\mathsf{x})$$

- μ(x) representa uma tendência determinística, e identifica uma variabilidade de grande-escala. μ(x) pode envolver variáveis explicativas X_j, eventualmente dependentes da localização x
- S(x) é um processo aleatório com média zero e $Var[S(x)] = \sigma^2$, que contem a estrutura de dependência espacial, com $Corr[S(x), S(x')] = \rho(\|x x'\|; \phi)$, identificando uma variabilidade de pequena-escala
- ullet $\epsilon(\mathbf{x})\sim \mathit{N}(0, au^2)$ é um erro de medição, i.i.d. e independente de $\mathit{S}(\mathbf{x})^7$

23 / 26 24 / 26

⁷A variância do erro de medição deve ser adicionada ao variograma de Y(x) na equação (1), ficando $\gamma(u)=\tau^2+\sigma^2(1-\rho(u;\phi))$.

Exemplo 2: Dados de grãos de trigo (wheat data)

Forte tendência oeste-este (90⁰)

25 / 26

Exemplo 2: Trigo – detectando e removendo a tendência

$$Grão(x) = \alpha + \beta_1 Longitude(x) + \beta_2 Latitude(x) + S(x) + \epsilon(x)$$

		estimativa	s.e.	p-valor
_	α	5.283	0.129	< 0.001
	β_1	-0.226	0.006	< 0.001
	β_2	0.004	0.008	0.599

26 / 26