

Jetson AGX Xavier Series Product

Design Guide

Document History

DG-09840-001 v2.4

Version	Date	Description of Change
	August 29, 2018	Initial Release
	November 15, 2018	Pin Description Table • Updated pin types for UPHY[9:8] in full pin descriptions table
		 Updated module name to Jetson AGX Xavier Overview Updated Jetson AGX Xavier Interfaces table PCIe and I2S functions
		 Updated # of UARTs to 5 Main Connector Details
		 Added text and figure for standoff requirements Added 2.5mm height connector option for carrier board Power Updated Power and System Pin Desc. table (and full table) Updated Usage columns Updated pin type column Corrected title of Table 8 Added SYS_VIN_HV Input and simplified DC Jack figure Added note for MCU based power button supervisor designs Added non-MCU based power-on circuit description Updated Power Discharge to match latest reference
		 design USB Updated Simple USB Type A Connection Example figure Added note under USB type C example that designs related to microcode. Removed level shifter on USB Micro ID signal and added note PCIe
		 Updated PCIe figure and table Root Port and added PEX_L5 control. Updated PCIe RST pull-up value figure/table and checklist.

Version	Date	Description of Change
VCISIOII	Date	Added PCIe Endpoint Connection figure and table
		Updated PCIe Intra-pair skew length
		 Updated range and value for PCIe AC cap for GEN3.
		Video Input
		Updated Misc. Pin Descriptions table for UART4_TX/CTS
		Audio
		Corrected I2S1/DAP1 signals descriptions
		UART
		Added UART7 option on module SPI2 pins
		Debug
		Added simple debug UART connection section
		Strapping
		Added notes for to pull-up resistors on RAM_CODE straps.
		Design Checklist
		Added pull-up on OVERTEMP_N
		Updated terminations for GPI030
		Added power jack option to Carrier Board Supplies section
		Removed AC caps for UFS
		Updated pin types for UPHY[9:8]
	February 20, 2019	Power
		SYS_VIN_HV Input: Updated note on Type C PD support
		Updated Simplified Button Power-on Circuitry figure
		Power Button Supervisor: Updated note related firmware
		USB
		Updated note related to Type C firmware
		Updated USB Type C figure and notes for test points.
		Updated USB Type A Connection figure
		Updated USB Micro AB Connection figure
		PCIe
		Updated PEX_WAKE_N usage in Pin Description tables
		Corrected connection figures for for NVHS0_SLVS_REFCLK
		UFS
		Updated figure module pin #s/names for UFS CLK/RST.
		MIPICSI

Version	Date	Description of Change
		 Updated with relaxed skews based on frequency (0.4*UI) 12C Updated figure module pin #s for I2C3 Boundary Scan Updated Boundary Scan figure module pin #s
		Pin DescriptionsCorrected I2S1 pin #s, description and direction.
2.0	May 12, 2020	 Main 699-pin Connector Details Added Module Installation and Removal Section Video Input Added SLVS XCE and SCLR signals to Pin Desc. Added pin tolerance were applicable Updated control signal direction to match SLVS usage Update SLVS connection figure: Corrected XCE and XCLR connections and changed to generic name for SLVS imager/connector in figure Added SLVS connections tables
		I2C and Design Checklist (I2C section)
		Added note for series resistors on I2C for M.2 sockets
2.1	July 27, 2020	 Update Table 2-1 to C5 only supports EP Added Chapter 4 on reference design considerations Added DV/Dt section (Section 5.5.1) including optional disable or tuning Added optional additional diode to DV/dt circuit to allow more drop before triggering system shutdown (asserting VDDIN_PWR_BAD_N) in Figure 5-12
		 Added descriptions per lane for data lane pin descriptions table (Table 7-2) Added more details to the "Usage/Description" column in Table 7-3 Updated to reflect RP only and added details for EP usage to the PCIe clock and control pin descriptions table (Table 7-4) Updated Section 7.2 "PCI Express" for C5 only as EP Updated Figure 7-4 for C5 only as EP Removed C0 and C4 as EP in Figure 7-5 Added UPHY_REFCLK1/2_N/P pins but indicated it is unused as EP not supported on C0 and C4 in Table 7-14 Added NVHS0_SLVS_REFCLK_N/P pin to Table 7-14 Removed C0 and C4 from Table 7-15 as these are no longer

Version	Date	Description of Change
		Added NVHS0_SLVS_REFCLK_N/P and PEX_WAKE_Nopins to Table 7-15
		 Added load switch on 3.3V to eDP/DP connector in Figure 9-1 Updated Figure 9-3 to show load switch providing 5V to the connector and added related note
		 Removed mention of debug and added note in Table 13-10 Removed mention of debug connector and changed UART2 connection on CB to UART USB bridge in Figure 13-7
		 Added Section 15.1 "USB Recovery Mode" Removed UART2 as debug UART and removed related note in Figure 15-1
		Replaced example showing UART2 with one showing UART3 instead and removed note in Figure 15-2
		Removed mention of UART2 in Section 15.2.2 and the table listed in the section
		Added bring-up checklist to the attachments and listed in Chapter 18
2.2	November 18, 2020	 Added notes to Figure 5-3, Figure 5-4, and Figure 7-3 Added note to clarify PCIe clock output and RFCLK input signaling type to Figure 7-4
		 Added insertion loss S-parameter plot figure (Figure 7-6) Updated Table 10-5 based on new guidelines from IOSI based on improved model
2.3	January 28, 2021	 Updated to include Jetson AGX Xavier Industrial (JAXi) Updated pin description attachment
2.4	June 8, 2021	 Attachment: Updated pin description Excel file Module spacing: Updated Section 3.3: Module to Carrier Board Standoff Height Recommendations Updated mating connector spacing tolerance and column titles/spacing numbers in Table 3-1 and Table 3-2 Updated STANDBY_ACK_Ndescription in Table 5-1: Power, System, and Thermal Pin Descriptions. PCIE: Table 7-4: PCIe Clock and Control Pin Descriptions; updated CLKREQ, RST and WAKE pin descriptions. USB: Updated Figure 7-1: Simple USB Type A Connection Example. I2S: Updated Table 12-1: Jetson AGX Xavier Audio Pin Description to indicate I2S6 (DAP6 on SoC) is not supported for JAXi.

Table of Contents

Chapter 1. Introduction	
1.1 References	
1.2 Abbreviations and Definitions	
Chapter 2. Jetson AGX Xavier	3
Chapter 3. Main Connector Details	8
3.1 Connector Pin Orientations	9
3.2 Module to Carrier Board Spacing Details	
3.3 Module to Carrier Board Standoff Height Recommendations	
3.4 Module Installation and Removal	12
Chapter 4. Reference Design Considerations	14
Chapter 5. Power	16
5.1 Supply Allocation	18
5.2 Power Sequencing	
5.3 SYS_VIN_HV Input	
5.4 Power-On	
5.4.1 Power-On No MCU	
5.4.1.1 Auto Power-On Option No MCU	
5.4.2 Power Button Supervisor MCU Power-On	
5.4.2.2 Power OFF -> Power ON (Power Button Case)	
5.4.2.3 Power OFF -> Power ON (Auto-Power-On Case)	
5.4.2.4 Power ON -> Power OFF (Power Button Held Low > 10 Seconds)	
5.5 Power Discharge	
5.5.1 DV/Dt Circuit Considerations	27
5.6 Power and Voltage Monitoring	29
5.6.1 Power Loss Detection	29
5.6.2 Power Monitor	30
5.7 Deep Sleep or SC7	31
Chapter 6. General Routing Guidelines	33
6.1 Signal Name Conventions	33
6.2 Routing Guideline Format	
6.3 Signal Routing Conventions	
6.4 Routing Guidelines	
6.5 General PCB Routing Guidelines	35
Chanter 7 LISB PCIe and LIFS	36

7.1 USB	41
7.1.1 USB 2.0 Design Guidelines	43
7.1.2 USB 3.1 Design Guidelines	44
7.1.3 Common USB Routing Guidelines	47
7.2 PCI Express	48
7.2.1 PCIe Design Guidelines up to Gen3	51
7.2.2 PCIe Gen4 Design Guidelines	54
7.3 UFS	58
7.3.1 UFS Design Guidelines	58
Chapter 8. Gigabit Ethernet	60
Chapter 9. Display	64
9.1 DP and eDP	67
9.1.1 DP and eDP Routing Guidelines	67
9.2 HDMI	71
Chapter 10. Video Input	
10.1 MIPI CSI	
10.1.1 CSI D-PHY Design Guidelines	85
10.1.2 CSI C-PHY Mode Design Guidelines	86
10.2 SLVS Camera Interface	87
10.2.1 SLVS Design Guidelines	90
Chapter 11. SDIO and SD Card	92
11.1 SD Card	
Chapter 12. Audio	96
12.1.1 I2S Design Guidelines	
12.1.2 DMIC Design Guidelines	
Chapter 13. Miscellaneous Interfaces	101
13.1.1 I2C Design Guidelines	103
13.1.2 De-bounce	
13.2 SPI 105	
13.2.1 SPI Design Guidelines	106
13.3 UART 108	
13.4 CAN 110	
Chapter 14. Fan	112
Chapter 15. Debug and Strapping	114
15.1 USB Recovery Mode	
15.2 ITAG and Debug HART	112

15.2.1 JTAG	
15.2.2 Debug UART	
15.3 Strapping Pins	
15.4 Boundary Scan Test Mode	
15.5 Safety MCU JAXi Only	119
Chapter 16. Pads	121
16.1 MPIO Pad Behavior when Associated Power Rail is Enabled	121
16.2 Schmitt Trigger Usage	121
16.3 Pins Pulled and Driven During Power-on	121
16.4 Pad Drive Strength	122
Chapter 17. Unused Interface Terminations	123
17.1 Unused MPIO Interfaces	
17.2 Unused SFIO Interface Pins	
Chapter 18. Design and Bring-up Checklists	125
Chapter 19. General Layout Guidelines	
19.1 Via Guidelines	
19.1.1 Via Count and Trace Width	
19.1.2 Via Placement	
19.1.3 Via Placement and Power and Ground Corridors	
19.2 Connecting Vias	
19.3 Trace Guidelines	128
19.3.1 Layer Stack-Up	128
19.3.2 Trace Length	128
Chapter 20. Stack-Ups	129
20.1 Reference Design Stack-ups	
20.1.1 Importance of Stack-up Definition	
20.1.2 Impact of Stack-up Definition on Design	
Chapter 21. Transmission Line Primer	130
21.1 Basic Board Level Transmission Line Theory	
21.1.1 Characteristics	
21.2 Physical Transmission Line Types	
21.2.1 Microstrip Transmission Line	
21.2.2 Stripline Transmission Line	
21.3 Drive Characteristics	
21.4 Receiver Characteristics	132
21.5. Transmission Lines and Deference Dlanes	122

Chapter 22.	Design Guideline Glossary	136
Chapter 23.	Jetson AGX Xavier Pin Description	138

List of Figures

Figure 2-1.	System Block Diagram	4
Figure 3-1.	699-pin Connector Dimensions	
Figure 3-2.	699-pin Connector Pin Orientations	9
Figure 3-3.	5.5 mm Height on Carrier Board - Molex Part # 2034560003	10
Figure 3-4.	2.5 mm Height on Carrier Board - Molex Part # 2048430001	
Figure 3-5.	Module Removal	13
Figure 5-1.	Power Block Diagram	18
Figure 5-2.	Power Up Sequence	19
Figure 5-3.	Power Down Sequence Controlled Case	20
Figure 5-4.	Power Down Sequence Uncontrolled Case	20
Figure 5-5.	Simplified DC Jack Power Connections	21
Figure 5-6.	Simplified Button Power-On Circuitry	22
Figure 5-7.	Optional ACOK Circuitry	23
Figure 5-8.	Power-On Button Circuit	24
Figure 5-9.	Power-OFF to On Sequence Power Button Case	25
Figure 5-10.	Power-OFF to On Sequence Auto Power-On Case	26
Figure 5-11.	Power-On to OFF Power Button Held Low > 10 Seconds	27
Figure 5-12.	Power Discharge	29
Figure 5-13.	VIN Loss Detection Circuit	
Figure 5-14.	Power Monitor	30
Figure 6-1.	Signal Routing Example	35
Figure 7-1.	Simple USB Type A Connection Example	41
Figure 7-2.	Jetson AGX Xavier Carrier Board Design USB Type C Connection Example	42
Figure 7-3.	USB 3.1 USB Micro AB Connection Example	42
Figure 7-4.	PCIe Root Port Connection Example	49
Figure 7-5.	PCIe Endpoint Connection Example	50
Figure 7-6.	Insertion Loss S-Parameter Plot (SDD21)	53
Figure 7-7.	UFS Connections Example	58
Figure 8-1.	Ethernet Connections	61
Figure 8-2.	Gigabit Ethernet Magnetics and RJ45 Connections	61
Figure 9-1.	DP and eDP Connection Example	67
Figure 9-2.	DP and eDP Differential Main Link Topology	67
Figure 9-3.	HDMI Connection Example	71
Figure 9-4.	HDMI CLK and Data Topology	72
Figure 10-1.	Camera Control Connections	82
Figure 10-2.	Camera CSI D-PHY Connections	83
Figure 10-3	Camera CSI C-PHY Connections	84

Figure 10-4.	SLVS Connections	89
Figure 11-1.	Micro SD Card Socket Connection Example	93
Figure 12-1.	Audio Device Connections	98
Figure 13-1.	I2C Connections	102
Figure 13-2.	SPI Connections	106
Figure 13-3.	Basic SPI Master and Slave Connections	106
Figure 13-4.	SPI Point-Point Topology	106
Figure 13-5.	SPI Star Topologies	106
Figure 13-6.	SPI Daisy Topologies	107
Figure 13-7.	Jetson AGX Xavier UART Connections	109
Figure 13-8.	Jetson AGX Xavier CAN Connections	111
Figure 14-1.	Jetson AGX Xavier Fan Connection Example	113
Figure 15-1.	JTAG and UART Debug Connections	115
Figure 15-2.	Simple Debug UART Header Connections	115
Figure 15-3.	Example Buffer Between Pin Associated with SoC Strap and Connected	Device
Figure 15-4.	Boundary Scan Connections	
Figure 15-5.	Safety MCU Connections	
Figure 19-1.	Via Placement for Good Power Distribution	127
Figure 19-2.	Good Current Flow Resulting from Correct Via Placement	127
Figure 19-3.	Poor Current Flow Resulting from Incorrect Via Placement	127
Figure 21-1.	Typical Transmission Lin Circuit	130
Figure 21-2.	Microstrip Transmission Line	131
Figure 21-3.	Stripline Transmission Line	131
Figure 21-4.	Transmission Line Height	133
Figure 21-5.	Crosstalk on Reference Plane	134
Figure 21-6.	Power Plane Cuts Example	134
Figure 21-7.	Power Plane Cuts Example when Decouple Capacitors are abundant	134
Figure 21-8.	Switching Reference Planes	135
Figure 21-9.	Reference Plane Switch Using Via	135

List of Tables

Table 1-1.	Abbreviations and Definitions	2
Table 2-1.	Jetson AGX Xavier Specifications	3
Table 2-2.	Connector Pinout Matrix Part 1: Columns A-F	5
Table 2-3.	Connector Pinout Matrix Part 2: Columns G-L	6
Table 3-1.	Standoff Height Calculations for 5.5 mm Height Connector Case	11
Table 3-2.	Standoff Height Calculations for 2.5 mm Height Connector Case	
Table 5-1.	Power, System, and Thermal Pin Descriptions	16
Table 5-2.	Internal Power Subsystem Allocation	18
Table 5-3.	Simplified Button Power Circuitry Timing	22
Table 5-4.	Power Button Supervisor Control Signals	23
Table 5-5.	Power-OFF to On Timing Power Button Case	25
Table 5-6.	Power-OFF to On Timing Auto Power-On Case	26
Table 5-7.	Power-On to OFF Timing Power Button Held Low > 10 Seconds	27
Table 5-8.	Jetson AGX Xavier Signal Wake Events	31
Table 6-1.	Signal Type Codes	33
Table 7-1.	USB 2.0 Pin Descriptions	36
Table 7-2.	UPHY Data Lane Pin Descriptions USB 3.1, PCIe, and UFS	36
Table 7-3.	NVHS for PCIe x8 Data Lan Pin Descriptions	38
Table 7-4.	PCIe Clock and Control Pin Descriptions	39
Table 7-5.	UFS and Miscellaneous USB Control Pin Descriptions	40
Table 7-6.	USB 3.1, PCIe and UFS Lane Mapping Configurations	40
Table 7-7.	USB 2.0 Interface Signal Routing Requirements	43
Table 7-8.	USB 3.1 Interface Signal Routing Requirements	44
Table 7-9.	USB 2.0 Signal Connections	47
Table 7-10.	USB 3.1 Signal Connections	47
Table 7-11.	Recommended USB Observation Test Points for Initial Boards	48
Table 7-12.	PCIe Interface Signal Routing Requirements up to Gen3	51
Table 7-13.	PCIe Gen4 Interface Signal Routing Requirements	54
Table 7-14.	PCIe Signal Connections Module I/Fs Configured as Root Ports	56
Table 7-15.	PCIe Signal Connections Module I/F Configured as Endpoint	57
Table 7-16.	Recommended PCIe Observation Test Points for Initial Boards	57
Table 7-17.	UFS Interface Signal Routing Requirements	58
Table 7-18.	UFS Signal Connections	59
Table 8-1.	Jetson AGX Xavier Gigabit Ethernet Pin Descriptions	60
Table 8-2.	RGMII Interface Signal Routing Requirements	62
Table 8-3.	Ethernet MDI Interface Signal Routing Requirements	62
Table 8-4.	Ethernet Signal Connections	63

Table 8-5.	Recommended Gigabit Ethernet Observation Test Points for Initial Boards	3 63
Table 9-1.	Jetson AGX Xavier HDMI, eDP, and DP Pin Description	64
Table 9-2.	DP and HDMI Pin Mapping	66
Table 9-3.	DP and eDP Main Link Signal Routing Requirements	68
Table 9-4.	DP and eDP Signal Connections	70
Table 9-5.	Recommended DP and eDP Observation Test Points for Initial Boards	70
Table 9-6.	HDMI Interface Signal Routing Requirements	72
Table 9-7.	HDMI Signal Connections	77
Table 9-8.	Recommended HDMI and DP Observation Test Points for Initial Boards	77
Table 10-1.	Jetson AGX Xavier CSI Pin Description	78
Table 10-2.	Jetson AGX Xavier Camera Miscellaneous Pin Description	80
Table 10-3.	CSI Configurations D-PHY Mode	80
Table 10-4.	CSI Configurations C-PHY Mode	81
Table 10-5.	MIPI CSI D-PHY Interface Signal Routing Requirements	85
Table 10-6.	MIPI CSI C-PHY Interface Signal Routing Requirements	86
Table 10-7.	MIPI CSI Signal Connections	86
Table 10-8.	Miscellaneous MIPI Camera Connections	87
Table 10-9.	Recommended CSI Observation Test Points for Initial Boards	87
Table 10-10.	Jetson AGX Xavier SLVS EC Camera Pin Description	87
Table 10-11.	SLVS Interface Signal Routing Requirements	90
Table 10-12.	SLVS Camera Signal Connections	91
Table 10-13.	Non-Module SLVS Reference Clock Connections	91
Table 11-1.	SDIO, SD Card, and eMMC Interface Mapping	92
Table 11-2.	Jetson AGX Xavier SDMMC Pin Descriptions	92
Table 11-3.	SDCARD Interface Signal Routing Requirements	93
Table 11-4.	SD Card Loading vs. Drive Type	94
Table 11-5.	SDCARD Signal Connections	95
Table 11-6.	Recommended SDCARD Observation Test Points for Initial Boards	95
Table 12-1.	Jetson AGX Xavier Audio Pin Description	96
Table 12-2.	I2S Interface Mapping	97
Table 12-3.	I2S Interface Signal Routing Requirements	99
Table 12-4.	I2S and Miscellaneous Codec Signal Connections	99
Table 12-5.	DMIC Interface Signal Routing Requirements	100
Table 12-6.	DMIC Signal Connections	100
Table 13-1.	Jetson AGX Xavier I2C Pin Description	101
Table 13-2.	I2C Interface Mapping	102
Table 13-3.	I2C Interface Signal Routing Requirements	103
Table 13-4.	I2C Signal Connections	104
Table 13-5.	De-bounce Settings – Fast Mode Plus, Fast Mode, and Standard Mode	104
Table 13-6	letson AGX Xavier SPI Pin Description	105

Table 13-7.	SPI Interface Signal Routing Requirements	107
Table 13-8.	SPI Signal Connections	107
Table 13-9.	Recommended SPI Observation Test Points for Initial Boards	107
Table 13-10.	Jetson AGX Xavier UART Pin Description	108
Table 13-11.	UART Signal Connections	109
Table 13-12.	Reserved UART4_RX Routing Requirements	110
Table 13-13.	Jetson AGX Xavier CAN Pin Description	110
Table 13-14.	CAN Interface Signal Routing Requirements	111
Table 13-15.	CAN Signal Connections	111
Table 14-1.	Jetson AGX Xavier Fan Pin Description	112
Table 14-2.	Fan Signal Connections	113
Table 15-1.	Jetson AGX Xavier JTAG Pin Description	116
Table 15-2.	JTAG Signal Connections	116
Table 15-3.	Debug UART Connections	117
Table 15-4.	Safety MCU Related Partial Pin Descriptions	119
Table 16-1.	MPIO Maximum Output Drive Current	122
Table 17-1.	Unused MPIO Pins and Pin Groups	123

Chapter 1. Introduction

This design quide contains recommendations and quidelines for engineers to follow to create a product that is optimized to achieve the best performance from the interfaces supported by the NVIDIA® Jetson AGX Xavier™ series System-on-Module (SOM).

This design guide provides detailed information on the capabilities of the hardware module, which may differ from supported configurations by provided software. Refer to software release documentation for information on supported capabilities.

Note: References to Jetson AGX Xavier applies to any of the Jetson AGX Xavier series of modules including Jetson AGX Xavier Industrial (JAXi) except where explicitly noted.

References

Refer to the following documents or models listed for more information. Always use the latest revision of all documents.

- Jetson AGX Xavier Series Module Data Sheet
- Xavier Series Processors Technical Reference Manual
- Jetson AGX Xavier Series Developer Kit Carrier Board Specification
- Jetson AGX Xavier Series Module Pinmux
- Jetson AGX Xavier Series Thermal Design Guide
- Jetson AGX Xavier Series Developer Kit Carrier Board Design Files
- Jetson AGX Xavier Series Developer Kit Carrier Board BOM
- Jetson AGX Xavier Series Supported Component List

Abbreviations and Definitions

Table 1-1 lists abbreviations that may be used throughout this document and their definitions.

Table 1-1. Abbreviations and Definitions

Abbreviation	Definition
CEC	Consumer Electronic Control
CAN	Controller Area Network
DP	VESA® DisplayPort® (output)
eDP	Embedded DisplayPort
eMMC	Embedded MMC
HDMI™	High Definition Multimedia Interface
I2C	InterIC
I2S	Inter IC Sound Interface
LDO	Low Dropout (voltage regulator)
LPDDR4x	Low Power Double Data Rate DRAM, Fourth-generation
PCIe (PEX)	Peripheral Component Interconnect Express interface
PCM	Pulse Code Modulation
PHY	Physical Layer
PMIC	Power Management IC
RTC	Real Time Clock
SDIO	Secure Digital I/O Interface
SLVS	Scalable Low Voltage Signaling
SPI	Serial Peripheral Interface
UART	Universal Asynchronous Receiver-Transmitter
UFS	Universal Flash Storage
USB	Universal Serial Bus

Chapter 2. Jetson AGX Xavier

Jetson AGX Xavier resides at the center of the embedded system solution and includes:

- Power (PMIC/Regulators, etc.)
- DRAM (LPDDR4x)
- ► eMMC
- Power and Voltage Monitors
- Thermal Sensor

Jetson AGX Xavier Specifications Table 2-1.

Category	Function	Category	Function
USB	USB 2.0 (x4) USB 3.1 (Up to x3)	PCIe	x5 (x1 Root Port or Endpoint and x4 Root Port only
Camera	CSI (6x2 or 4x4) D-PHY and C- PHY	Display	HDMI/DP (up to x3) see note HPD x3, CEC x1, DP_AUX/DDC x3
LAN	Gigabit Ethernet RGMII I/F	SPI	х3
SD Card	SD card or SDIO	Fan	PWM and TACH
Audio	I2S (x4), control and clock Digital Mic and Speaker IFs	Debug	JTAG and UART
CAN	x2	System	Power control, Reset, Alerts
I2C	x8	Power	Main Inputs (HV and MV)
UART	x5		

Note: HDMI and DP share the same pins. See Chapter 9 for display details.

Figure 2-1. System Block Diagram

Notes:

- 1. SPI2, RGMII, GPI031, and GPI033 are available to use with a Safety MCU.
- 2. PCIe x8 interface and SLVS share the same pins.

Table 2-2. Connector Pinout Matrix Part 1: Columns A-F

	А	В	С	D	E	F
01	,		SYS_VIN_HV	SYS_VIN_HV	SYS_VIN_HV	SYS_VIN_HV
02			SYS_VIN_HV	SYS_VIN_HV	SYS VIN HV	SYS_VIN_HV
03	PRSNT0	SYS_VIN_HV	GND	SYS_VIN_HV	GND	SYS_VIN_HV
04	SDCARD_D2	GND	RGMII_RD0	GND	I2S2_FS	GND
05	SDCARD_CMD	RGMII_TXC	RGMII_RXC	RGMII_RX_CTL	RGMII_RD3	I2S2_DOUT
06	UFS0_REF_CLK	SDCARD_CLK	UFS0_RST_N	SDCARD_D3	RGMII_SMA_MDC	I2S2_DIN
07	GPI029	GND	I2S1_SDOUT	GND	RGMII_SMA_MDIO	GND
08	PEX_WAKE_N	GPI011	PEX_L5_CLKREQ_ N	12S1_FS	SDCARD_D0	SDCARD_D1
09	GND	PEX_L1_RST_N	GND	PEX_L1_CLKREQ_ N	GND	GPI016
10	USB2_P	RSVD	USB1_N	PEX_L0_RST_N	GPI012	GPIO15
11	USB2_N	GND	USB1_P	GND	PEX_L0_CLKREQ_ N	GND
12	GND	UPHY_RX10_P	GND	UPHY_RX11_P	GND	USB0_P
13	GND	UPHY_RX10_N	GND	UPHY_RX11_N	GND	USB0_N
14	UPHY_RX8_N	GND	UPHY_RX9_N	GND	PEX_CLK0_N	GND
15	UPHY_RX8_P	GND	UPHY_RX9_P	GND	PEX_CLK0_P	GND
16	GND	UPHY_RX6_P	GND	UPHY_RX7_P	GND	PEX_CLK1_P
17	GND	UPHY_RX6_N	GND	UPHY_RX7_N	GND	PEX_CLK1_N
18	UPHY_RX4_P	GND	UPHY_RX5_N	GND	RSVD	GND
19	UPHY_RX4_N	GND	UPHY_RX5_P	GND	RSVD	GND
20	GND	UPHY_RX2_N	GND	UPHY_RX3_P	GND	PEX_CLK3_P
21	GND	UPHY_RX2_P	GND	UPHY_RX3_N	GND	PEX_CLK3_N
22	UPHY_RX0_P	GND	UPHY_RX1_N	GND	PEX_CLK4_N	GND
23	UPHY_RX0_N	GND	UPHY_RX1_P	GND	PEX_CLK4_P	GND
24	GND	NVHS0_SLVS_ RX1_N	GND	NVHS0_SLVS_RX0_ P	GND	PEX_CLK5_P
25	GND	NVHS0_SLVS_ RX1_P	GND	NVHS0_SLVS_RX0_ N	GND	PEX_CLK5_N
26	NVHS0_SLVS_ RX3_P	GND	NVHS0_SLVS_ RX2_N	GND	UPHY_REFCLK1_N	GND
27	NVHS0_SLVS_RX3_ N	GND	NVHS0_SLVS_RX2_ P	GND	UPHY_REFCLK1_P	GND
28	GND	NVHS0_SLVS_ RX5_N	GND	NVHS0_SLVS_ RX4_P	GND	RSVD
29	GND	NVHS0_SLVS_ RX5_P	GND	NVHS0_SLVS_RX4_ N	GND	RSVD
30	NVHS0_SLVS_ RX7_P	GND	NVHS0_SLVS_ RX6_N	GND	NVHS0_SLVS_ REFCLK0_P	GND
31	NVHS0_SLVS_ RX7_N	GND	NVHS0_SLVS_ RX6_P	GND	NVHS0_SLVS_ REFCLK0_N	GND
32	GND	RSVD	GND	RSVD	GND	RSVD
33	GND	RSVD	GND	RSVD	GND	RSVD
34	RSVD	GND	RSVD	GND	RSVD	GND
35	RSVD	GND	RSVD	GND	RSVD	GND
36	GND	RSVD	GND	RSVD	GND	RSVD
37	GND	RSVD	GND	RSVD	GND	RSVD
38	RSVD	GND	RSVD	GND	CSIO_D1_N	GND
39	RSVD	GND	RSVD	GND	CSI0_D1_P	GND
40	GND	RSVD	GND	RSVD	GND	RSVD
41	CSI2_D0_P	GND	CSI2_D1_N	GND	CSI0_D0_N	GND
42	CSI2_D0_N	CSI2_CLK_N	CSI2_D1_P	CSI5_D0_P	CSI0_D0_P	CSI0_CLK_N
43	GND	CSI2_CLK_P	GND	CSI5_D0_N	GND	CSI0_CLK_P
44	CSI7_D0_P	GND	CSI5_CLK_P	GND	CSI3_D0_N	GND

	А	В	С	D	E	F
45	CSI7_D0_N	CSI7_CLK_P	CSI5_CLK_N	CSI5_D1_N	CSI3_D0_P	CSI3_CLK_N
46	GND	CSI7_CLK_N	GND	CSI5_D1_P	GND	CSI3_CLK_P
47	HDMI_DP1_TX0_P	GND	CSI7_D1_P	GND	CSI4_D1_P	GND
48	HDMI_DP1_TX0_N	HDMI_DP1_TX1_N	CSI7_D1_N	HDMI_DP1_TX2_N	CSI4_D1_N	CSI4_CLK_P
49	GND	HDMI_DP1_TX1_P	GND	HDMI_DP1_TX2_P	GND	CSI4_CLK_N
50	HDMI_DP2_TX2_N	GND	HDMI_DP2_TX3_N	GND	HDMI_DP1_TX3_P	GND
51	HDMI_DP2_TX2_P	HDMI_DP2_TX1_P	HDMI_DP2_TX3_P	HDMI_DP2_TX0_P	HDMI_DP1_TX3_N	DP0_AUX_CH_N
52	GND	HDMI_DP2_TX1_N	GND	HDMI_DP2_TX0_N	GND	DP0_AUX_CH_P
53	I2C5_CLK	GND	I2C5_DAT	GND	I2C3_DAT	I2C3_CLK
54	GPI017	WDT_RESET_ OUT_N	GPI033	GPI003	FAN_TACH	GPI022
55	GPIO34	GPI030	GPI018	SPI1_MOSI	SPI1_CS0_N	SPI3_CLK
56	SPI1_MISO	SPI1_CS1_N	UART2_RX	SPI3_MISO	SPI3_CS1_N	GPI036
57	UART2_CTS	GND	SPI3_CS0_N	GND	GND	GND
58	GPIO20	GPI021	UART2_TX	JTAG_TD0	JTAG_TMS	CAN0_DIN
59	GPI005	GPI004	I2S3_SCLK	CAN0_DOUT	GPI006	GPI007
60	JTAG_TCK	JTAG_TDI	I2S3_FS	SPI2_CS0_N	I2C4_DAT	SPI2_MOSI
61	SYSTEM_OC_N	CAN1_DIN	GPI009	I2C4_CLK	SPI2_CLK	VCOMP_ALERT_N
62	GPIO10	GPI008	GND	SPI2_MISO	GND	GND
63	GND	SYS_VIN_HV	SYS_VIN_HV	GND	SYS_VIN_HV	SYS_VIN_HV
64			SYS_VIN_HV	SYS_VIN_HV	SYS_VIN_HV	SYS_VIN_HV
65			SYS_VIN_HV	SYS_VIN_HV	SYS_VIN_HV	SYS_VIN_HV

Legend					
Ground	Power	Reserved – Must be left unconnected	No pins at that	JAXi on ly	Safety MCU
		unless otherwise directed.	location		usage on JAXi

Table 2-3. Connector Pinout Matrix Part 2: Columns G-L

	G	Н	J	K	L
01	SYS_VIN_HV	SYS_VIN_HV	SYS_VIN_HV		
02	SYS_VIN_HV	SYS_VIN_HV	SYS_VIN_HV		
03	GND	SYS_VIN_HV	GND	SYS_VIN_HV	GND
04	I2S2_CLK	GND	GPI001	GND	UART4_RTS
05	RGMII_TD1	ENET_RST_N	ENET_INT	I2C1_CLK	UART4_TX
06	RGMII_TD3	RGMII_RD2	RGMII_TD0	RGMII_RD1	GPI002
07	GPIO13	GND	RGMII_TD2	RGMII_TX_CTL	GND
80	PEX_L4_ CLKREQ_N	I2S1_SDIN	GND	GND	I2C1_DAT
09	GND	MCLK01	PEX_L4_RST_N	PEX_L3_RST_N	GPIO28
10	USB3_N	PEX_L5_RST_N	PEX_L3_ CLKREQ_N	RSVD	FORCE_ RECOVERY_N
11	USB3_P	GND	RSVD	GND	STANDBY_REQ_N
12	GND	UPHY_TX11_P	GND	UPHY_TX10_N	GND
13	GND	UPHY_TX11_N	GND	UPHY_TX10_P	GND
14	UPHY_TX9_N	GND	UPHY_TX8_P	GND	I2S1_CLK
15	UPHY_TX9_P	GND	UPHY_TX8_N	GND	GPIO14
16	GND	UPHY_TX7_P	GND	UPHY_TX6_N	GND
17	GND	UPHY_TX7_N	GND	UPHY_TX6_P	GND
18	UPHY_TX5_N	GND	UPHY_TX4_P	GND	RSVD
19	UPHY_TX5_P	GND	UPHY_TX4_N	GND	RSVD
20	GND	UPHY_TX3_P	GND	UPHY_TX2_N	GND
21	GND	UPHY_TX3_N	GND	UPHY_TX2_P	GND

	0				
	G	Н	J	K	L
22	UPHY_TX1_N	GND	UPHY_TX0_P	GND	SYS_VIN_MV
23	UPHY_TX1_P	GND	UPHY_TX0_N	GND	SYS_VIN_MV
24	GND	NVHS0_TX0_P	GND	NVHS0_TX1_N	GND
25	GND	NVHS0_TX0_N	GND	NVHS0_TX1_P	GND
26	NVHS0_TX2_N	GND	NVHS0_TX3_P	GND	SYS_VIN_MV
27	NVHS0_TX2_P	GND	NVHS0_TX3_N	GND	SYS_VIN_MV
28	GND	NVHS0_TX4_P	GND	NVHS0_TX5_N	GND
29	GND	NVHS0_TX4_N	GND	NVHS0_TX5_P	GND
30	NVHS0_TX6_N	GND	NVHS0_TX7_P	GND	SYS_VIN_MV
31	NVHS0_TX6_P	GND	NVHS0_TX7_N	GND	SYS_VIN_MV
32	GND	RSVD	GND	RSVD	GND
33	GND	RSVD	GND	RSVD	GND
34	RSVD	GND	RSVD	GND	SYS_VIN_MV
35	RSVD	GND	RSVD	GND	SYS_VIN_MV
36	GND	RSVD	GND	RSVD	GND
37	GND	RSVD	GND	RSVD	GND
38	RSVD	GND	RSVD	GND	SYS_VIN_MV
39	RSVD	GND	RSVD	GND	SYS_VIN_MV
40	GND	MID1	GND	MID0	GND
41	CSI1_D0_P	GND	CSI1_D1_P	GND	RSVD
42	CSI1_D0_N	CSI1_CLK_N	CSI1_D1_N	GND	RSVD
43	GND	CSI1_CLK_P	GND	CSI6_D0_N	GND
44	CSI3_D1_P	GND	CSI6_CLK_P	CSI6_D0_P	VM_I2C_SCK
45	CSI3_D1_N	CSI6_D1_N	CSI6_CLK_N	GND	VM_I2C_DAT
46	GND	CSI6_D1_P	GND	HDMI_DP0_TX3_P	GND
47	CSI4_D0_N	GND	HDMI_DP0_TX2_P	HDMI_DP0_TX3_N	VM_INT_N
48	CSI4_D0_P	HDMI_DP0_TX0_N	HDMI_DP0_TX2_N	GND	UART4_RX (RSVD)
49	GND	HDMI_DP0_TX0_P	GND	GPIO25	UART4_CTS
50	HDMI_DP0_TX1_N	GND	HDMI_CEC	DP2_HPD	GPIO35
51	HDMI_DP0_TX1_P	GPI026	GPI024	DP1_HPD	UART1_RTS
52	GND	GPI027	DP1_AUX_CH_P	DP0_HPD	OVERTEMP_N
53	DP2_AUX_CH_P	MCLK03	DP1_AUX_CH_N	UART1_TX	VCC_RTC
54	DP2_AUX_CH_N	UART1_CTS	MCLK02	UART1_RX	MODULE_POWER_ ON
55	GPI023	MCLK04	GPI032	GND	VDDIN_PWR_ BAD_N
56	SPI3_MOSI	GND	GND	GPI019	TEMP_ALERT_N
57	GND	UART5_CTS	SPI1_CLK	PWM01	MCLK05
58	UART2_RTS	UART5_RX	UART5_TX	UART5_RTS	PERIPHERAL_ RESET_N
59	TEMP_ALERT_OUT (JAXi only)	NVJTAG_SEL	I2S3_DIN	I2S3_DOUT	RSVD
60	NVDBG_SEL	GPI031	STANDBY_ACK_N	UART3_RX_DEBUG	SYS_RESET_N
61	JTAG_TRST_N	CAN1_DOUT	I2C2_CLK	I2C2_DAT	POWER_BTN_N
62	GND	UART3_TX_DEBUG	GND	FAN_PWM	CARRIER_POWER_ ON
63	SYS_VIN_HV	GND	SYS_VIN_HV	GND	PRSNT1
64	SYS_VIN_HV	SYS_VIN_HV	SYS_VIN_HV		
65	SYS_VIN_HV	SYS_VIN_HV	SYS_VIN_HV		

Legend					
Ground	Power	Reserved – Must be left unconnected unless otherwise directed.	No pins at that location	JAXi only	Safety MCU usage on JAXi

Chapter 3. Main Connector Details

The main 699-pin connector on the Jetson AGX Xavier module is from the Molex Mirror Mezz family (Part # 2048430001). This mates with the Molex 2034560003 or another 2048430001 (shown in the following figure) on the carrier board. Refer to the Molex Mirror Mezz connector specification for details.

Figure 3-1. 699-pin Connector Dimensions

2034560003

PCB

Note: Various documents related to the Molex Mirror Mezz connector can be found at: https://www.molex.com/molex/products/datasheet.jsp?part=active/2034560003 PCB HEADERS <u>.xmlandchannel=ProductsandLang=en-US.</u>The Molex Application Guide for Mirror Mezz[™] which includes details for connector mounting can be found at: https://www.molex.com/pdm_docs/as/2028280001-AS-000.pdf

3.1 Connector Pin Orientations

The symbol pinout for the 699-pin connector on the carrier board is mirrored such that the pin numbers match when the module and carrier board connectors are mated. See the following figure. The orientation shown matches the carrier board in the upright position as well as the layout file.

Figure 3-2. 699-pin Connector Pin Orientations

3.2 Module to Carrier Board Spacing Details

The spacing between the module PCB and the carrier board PCB are shown in the following figures for the following two cases:

- ▶ 5.5 mm connector on the carrier board (8mm nominal spacing)
- 2.5 mm connector (5 mm nominal spacing).

The standoffs to support the module are located between the carrier board and the bottom plate.

Figure 3-3. 5.5 mm Height on Carrier Board - Molex Part # 2034560003

Figure 3-4. 2.5 mm Height on Carrier Board - Molex Part # 2048430001

Notes: See Section 3.3 on recommendations for standoff heights.

If the Molex Part # 2048430001, 2.5 mm height connector is used, there can be no components under the module on the carrier board due to the extremely limited clearance.

3.3 Module to Carrier Board Standoff Height Recommendations

Standoffs/Spacers are required between the module bottom plate and the carrier board. The height should be chosen to accommodate the tolerances in the bottom plate and connector mating heights as well as the standoff itself. If the standoff is too short, the carrier board PCB may warp as the mounting screws are tightened. The two cases (5.5 mm and 2.5 mm connector on carrier board) are described in this section and are followed with tables that show the possible permutations of tolerances across the three items involved. (bottom plate, mated connectors, and spacers). The platform designer can determine if a different height would be more appropriate but should consider both the PCB warpage (standoff height too short) and sweep range to find the best balance.

The following examples are based on Molex parts using spacer heights and spacer tolerances to produce a workable solution.

Molex Part # 2034560003 (5.5 mm height - 8.00+/-0.15 mm board to board spacing) case

For this case, a standoff height of 4.5 mm is recommended. This is based on a standoff with ±0.13 mm height tolerance. The tolerance for the bottom plate is ±0.2 mm and for mated connectors the tolerance is ± 0.15 mm.

Table 3-1 shows example calculations using the connector board spacing, module bottom plate height and recommended standoff height with tolerances mentioned.

Table 3-1.	Standoff Height (Calculations for 5	5.5 mm Height C	onnector Case
Board to Board	Bottom Plate Height	Gap (mm)	Standoff Height	Board to Board

Board to Board Spacing (mm)	Bottom Plate Height (mm)	Gap (mm)	Standoff Height	Board to Board Spacing (mm)
7.85	3.8	4.05	4.37	0.32
7.85	3.8	4.05	4.63	0.58
7.85	4.2	3.65	4.37	0.72
7.85	4.2	3.65	4.63	0.98
8.15	3.8	4.35	4.37	0.02
8.15	3.8	4.35	4.63	0.28
8.15	4.2	3.95	4.37	0.42
8.15	4.2	3.95	4.63	0.68
		(Connector sweep range	1.5
		M	lin to Max sweep usage	0.98
			Remaining sweep	0.52

Notes:

- 1. Positive values mean no PCB warpage but less sweep. Negative values can result in PCB warpage.
- 2. The mating connector height tolerance comes from the Molex connector specification.
- The connector contact sweep range can be found on the Molex website in the Mirror Mezz area.
- The module bottom plate height/tolerance can be found in the Jetson AGX Xavier Data Sheet.

Molex Part # 2048430001 (2.5 mm height - 5.00+/-0.15 mm board to board spacing) case

For this case, a standoff height of 1.5 mm is recommended. This is based on a standoff (washer) with ± 0.13 mm height tolerance. The tolerance for the bottom plate is ± 0.2 mm and for mated connectors the tolerance is ±0.15 mm. Note that washers may typically have significantly larger tolerances which should be considered. Table 3-2 shows example calculations using the connector board spacing, module bottom plate height and recommended standoff/washer height with tolerances mentioned.

Table 3-2. Standoff Height Calculations for 2.5 mm Height Connector Case

Board to Board Spacing (mm)	Bottom Plate Height (mm)	Board to Bottom Plate Gap (mm)	Standoff Height (mm)	Space Beyond Ideal Mating Spec. (mm)
4.85	3.8	1.05	1.37	0.32
4.85	3.8	1.05	1.63	0.58
4.85	4.2	0.65	1.37	0.72
4.85	4.2	0.65	1.63	0.98
5.15	3.8	1.35	1.37	0.02
5.15	3.8	1.35	1.63	0.28
5.15	4.2	0.95	1.37	0.42
5.15	4.2	0.95	1.63	0.68
	1.5			
Worst case sp	0.96			
		Remaining connect	or pin contact length	0.54

Notes:

- 1. Positive values mean no PCB warpage but less sweep. Negative values can result in PCB warpage.
- See additional notes in the "Notes" section of Table 3-1.

Module Installation and Removal 3.4

To install the Jetson AGX Xavier Series module correctly, follow the following sequence and mounting hardware instructions:

- 1. Connectors should be parallel with respect to each other during mating.
- 2. Use a smooth motion during mating (no mechanical shock, knocking, hammering).
- 3. It will be ideal if push/pressure points are marked on the "B" side of the PCB for operators.
- 4. The top and bottom PCB are to be bolted to enhance reliability.
- 5. Secure with M3 screws (4x) from the top of the module. Torque the screws to 2.5 lbf-in.

If a fixture is used to do the mating, then that fixture should hold the mating connectors parallel to within ± 2 degrees. Also, the fixture should allow the connectors to become parallel as the mating process progresses.

To remove the Jetson AGX Xavier Series module correctly, follow the following sequence and mounting hardware instructions:

- 1. The PCB design needs to have enough finger reachability/space required to hold the board for un-mating.
- 2. Remove mounting screws (4x) from the top of the module.
- 3. Rock the top board a few times, no more than \pm 3 degrees, to gradually disengage the connectors.

Figure 3-5. Module Removal

Chapter 4. Reference Design Considerations

The Jetson AGX Xavier Developer Kit Carrier Board design files are provided as a reference design. This chapter describes details necessary for designers to know to replicate certain features if desired. In addition, aspects of the design that are specific to the NVIDIA developer kit usage but not useful or supported on a custom carrier board are also identified.

Most of the features implemented on the Jetson AGX Xavier Developer Kit carrier board design can be duplicated by copying the connections from the P2822 carrier board reference design. This following listed features have aspects that would require additional information.

- Button Power MCU: The developer kit carrier board implements a button power MCU (EFM8SB10F2G). This device is programmed with firmware that is available on the Jetson Download Center. The posting is titled Jetson AGX Xavier and Jetson Xavier NX Power Button Supervisor Firmware. The connections used on the reference design must be followed exactly and the firmware provided must be used to ensure correct functionality.
- ▶ USB Type C PD Controller: Designs that intend to follow the NVIDIA carrier board design and include the Type C PD Controller (CYPD4226 - U513 on the P2822 carrier board) need to replicate the circuitry on the latest carrier board exactly. The firmware binary is used to program the Cypress CYPD4226 controller. The customer should get the flashing instructions from Cypress. No support or source code is provided for this firmware. If modifications or source code are required, Cypress should be contacted directly for support. This firmware binary is released under the L4T firmware EULA.
- DV/Dt circuit: A portion of the P2822 discharge circuit includes a means of detecting when a sudden power loss has occurred. This DV/Dt circuit triggers when the input voltage droops about 0.5V. The intent of the circuit is to provide as much time as possible to discharge critical carrier board supplies before the module loses power in order to meet power-down sequence requirements. This circuit is recommended but may need to be tuned depending on the power supply characteristics and the power requirements of a design. See Section 5.5 "Power Discharge" for details.

The following list is the Jetson AGX Xavier Developer Kit carrier board features that should not be copied as they are not required or useful for a custom carrier board design or will not be supported by NVIDIA.

- ▶ The ID EEPROM (P2822 U501) is a feature that is used for NVIDIA internal purposes, but not useful on a custom design. A similar function may be desired for a custom design, but the NVIDIA software will not interact with these devices and the I2C address used by the developer kit carrier board ID EEPROM on the I2C2 interface (7'h57) should be avoided.
- **Debug connector and FTDI circuit**: These features are used at NVIDIA for internal debugging and development purposes. These are not required, and support will not be provided if implemented. Designers have the option to implement something similar on their custom carrier boards but should develop their own circuit to meet their needs.

Chapter 5. Power

This chapter describes the power specifications for the Jetson AGX Xavier Series module.

CAUTION: Jetson AGX Xavier is not hot-pluggable. Before installing or removing the module, the main power supply (to SYS_VIN_HV and SYS_VIN_MV pins) must be disconnected and the power rails allowed to discharge to < 0.6V.

Note: Additional power, system, and thermal signals related to safety can be found in Section 15.5 "Safety MCU JAXi Only."

Table 5-1. Power, System, and Thermal Pin Descriptions

Pin#	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power -on Reset
Note 1	SYS_VIN_HV	-	System Voltage Input - High	Main High Voltage DC Input	Input	Power: 9V to 20V	-	-
Note 2	SYS_VIN_MV	-	System Voltage Input - Medium	Main Medium Voltage DC Input	Input	Power: 5.0V	-	_
L53	VCC_RTC	-	Real-Time-Clock. Optionally used to provide back-up power for RTC. Connects to Lithium Cell or super capacitor on carrier board. PMIC is supply when charging cap/cell. Super cap or coin cell is source when system is disconnected from power.	Battery back -up using Super -capacitor	Bidir	Power: Input Voltage Range: 1.65V-5.5V Output Voltage Range: See Note 6	-	-
L62	CARRIER_ POWER_ON	-	Carrier Power On. Used as part of the power up sequence. When asserted, it is safe for the carrier board to power up. $100k\Omega$ pull-up to 3.3V on module.	Used to enable 1.8V/3.3V regulators and routed to power button supervisor and discharge circuits.	Output	na	-	_
L10	FORCE_ RECOVERY_N	SOC_GPI000	Force Recovery strap pin. Held low when SYS_RESET_N goes inactive (power-on or reset button press) to enter force recovery mode.	Routed to Force Recovery button and automation header.	Input	CMOS - 1.8V	ST	pu
L54	MODULE_ POWER_ON	-	Module Power On. Signal to module to start power-on sequence. Driven by power button supervisor if implemented. Open-drain if power button supervisor MCU not implemented. If non-MCU circuit used, signal should have a 100kΩ pull-up to VDD_5V.	Generated by power button supervisor or non-MCU power-on circuit.	Input	5.0V Open-Drain (Non-MCU case). CMOS - 3.3V (Power Button MCU case)	-	-
L58	PERIPHERAL_ RESET_N	-	Peripheral Reset. Driven from carrier board to force reset of SoC and eMMC and QSPI (not PMIC). 100kΩ pull-up to 1.8V on the module.	Unused	Input	CMOS - 1.8V	-	-

Pin#	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power -on Reset
L61	POWER_BTN_N	POWER_ON	Power Button. Used to initiate a system power-on and to enter/exit SC7. 3.3V to 1.8V level shifter on the module.	Generated by power Input button supervisor.		Open Drain, 3.3V	ST	pd
J60	STANDBY_ ACK_N	SOC_PWR_REQ	Standby Acknowledge. Indicates module is in standby (SC7 state). Signal should only be observed and not affected by the carrier board. A buffer on the signal is recommended if it will be connected in the platform.	Automation header	Output	CMOS - 1.8V	ST	1
L11	STANDBY_ REQ_N	SOC_GPI001	Standby Request. Requests module enter standby (SC7 state). 10kΩ pull-up to 1.8V is present on the module.	Not used	Input	CMOS - 1.8V	ST	pu
L60	SYS_RESET_N	SYS_RESET_N	System Reset: Connected to NRST_D of PMIC. Bidirectional reset driven from PMIC to carrier board for devices requiring full system reset. Can also be driven from carrier board to module to initiate full system reset (including PMC) (i.e. From RESET button). $1k\Omega$ pull-up to $1.8V$ is present on the module.	functions. Also routed to reset button, JTAG header, and automation header.	Bidir	Open Drain, 1.8V	JT_RST	Z
A61	SYSTEM_OC_N	BATT_OC	Battery Over-current (and Thermal) warning	Automation Header	Input	CMOS – 1.8V	ST	pd
F61	VCOMP_ ALERT_N	VCOMP_ALERT	Supports either GPIO operation or SoC Thermal Over-current alert #1.	Unused	Input	CMOS - 1.8V	ST	pd
L55	VDDIN_PWR_ BAD_N	-	VDD_IN Power Bad. Carrier board indication to the module that the VDD_N power is not valid. Carrier board should de-assert this (drive high) only when SYS_VIN_HV/MV have reached the required voltage levels and are stable. This prevents SoC from powering up until the main input supply voltages are stable. 10kΩ pull-up to 5V on the module.	Driven by VIN Ioss detection, USB PD power and discharge circuits. Used in power button supervisor circuit.	Input	Open-drain – 5.0V	-	-
B54	WDT_RESET_ OUT_N	SOC_GPI023	Watchdog Timeout	Unused	Output	CMOS - 1.8V	ST	1
L52	OVERTEMP_N	SOC_GPI055	Force Power Off Request	Routed to power button supervisor circuit.	Input	CMOS - 1.8V	ST	Pd
L56	TEMP_ALERT_N	-	ALERT*/THERM2 from Temp Sensor on module	Unused	Output	Open Drain, 1.8V	-	-
A3 L63	PRSNT0 PRSNT1	-	Present #[1:0]. Tied together on module. Used to detect when module is connected to the carrier board. Can be used to keep carrier board from powering the module until the module is installed in the carrier board.	Tied to one side of power button.	na	na	-	-
K40	MID0	-	Module ID #0	Tied to GND	na	Na	-	-
H40	MID1	-	Module ID #1	Unconnected	na	na		

Notes:

- H2, J2, C1, D1, E1, F1, G1, H1, J1.
- 2. SYS_VIN_MV pin #s: L39, L38, L35, L34, L31, L30, L27, L26, L23, L22.
- 3. In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals.
- 4. The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- 5. The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.
- 6. The output voltage is configurable in the PMIC. It can be disabled if a non-rechargeable source is connected, or set to 2.5V, 3.0V, 3.3V or 3.5V.

Figure 5-1. Power Block Diagram

5.1 Supply Allocation

Table 5-2 describes the power subsystem allocation for Jetson AGX Xavier.

Internal Power Subsystem Allocation Table 5-2.

Power Rails	Usage	(V)	Power Supply	Source
VDD_CPU	SoC CPU rail	Variable	NCP81276 and FDMF5833 (x2)	SYS_VIN_HV
VDD_GPU	SoC GPU rail	Variable	NCP81276 and FDMF5833 (x2)	SYS_VIN_HV
VDD_CORE (SOC)	SoC Core rail	Variable	NCP81276 and FDMF5833 (x2)	SYS_VIN_HV
VDD_CV	SoC CV rail	Variable	NCP81276 and FDMF5833 (x2)	SYS_VIN_HV
VDDIO_SYS_1V0	SoC AVDDIO_HDMI_DP[3:0], PEX_DVDD, NVHS0_DVDD rails	1.0	PMIC Switcher SD0	SYS_VIN_MV
VDDIO_SYS_1V8HS	See Note 1	1.8	PMIC Switcher SD1	SYS_VIN_MV
VDDIO_SYS_1V8LS	See Note 2	1.8	PMIC Switcher SD2	SYS_VIN_MV
AVDD_CSI_1V2	SoC AVDD_CSI and VDDIO_UFS rails (See note 3)	1.2	PMIC LD07	SYS_VIN_MV
EN_VDD_1V0	Enable for FETs gating discharge of VDDIO_SYS_1V0 rail (See note 3)	na	PMIC LD08	SYS_VIN_MV
VDDIO_AO_1V8	See note 4	1.8	PMIC Switcher SD3	SYS_VIN_MV
DDR_AP_1V1	SoC VDDIO_DDRx rail	1.1	PMIC Switcher SD4	SYS_VIN_MV
VDD_RTC	SoC RTC rail	Variable	PMIC LD00	SYS_VIN_MV
DDR_VDD2_ 1V1_EN	See Note 5	Na	PMIC LD01	SYS_VIN_MV
VDDIO_AO_3V3	SoC VDDIO_AUDIO_HV and VDDIO_AO_HV rails	3.3	PMIC LDO2	SYS_VIN_MV
VDD_EMMC_3V3	eMMC device 3.3V rail	3.3	PMIC LD03	SYS_VIN_MV
VDD_USB_3V3	SoC AVDD_USB rail	3.3	PMIC LD05	SYS_VIN_MV

Power Rails	Usage	(V)	Power Supply	Source
VDD_SDIO_3V3	SoC VDDIO_SDMMC1_HV and VDDIO_SDMMC3_HV rails	3.3	PMIC LD06	SYS_VIN_MV
DDR_VDD2_1.1V	SoC VDDIO_VDD2_DDRx and DRAM VDD2 rails.	1.1	LTC3636	SYS_VIN_HV
VDD_DDRQ	VDDIO_DDRxLV and LPDDR4x VDDQ rails	0.6 LPDDR4x	LTC3636	SYS_VIN_HV

Notes:

- SoC AVDD_PLL_NVHS_EUTMIP, VDD_HDMI_DP_PLL_0_1/1_3, PEX_HVDD, NVHS0_HVDD and NVHS0_PLL0_HVDD rails 1.
- Soc VDDIO_UART/AUDIO/SDMMC4/DMMC3_HV_VCLAMP/ VDDIO_SDMMC1_HV_VCLAMP/CONN/EQOS/QSPI/, AVDD_PLL_AA1_CV_ADC/DD2D3D4DPHBCS/CC2C3PADC_BPMP/C4_REFE, eMMC device VCCQ and QSPI device VDD rails.
- These rails are sourced from the PMIC Switcher SD2 used for VDDIO_SYS_1V8LS which is sourced from SYS_VIN_MV. 3.
- Soc VDDIO EDP/PEX CTL/DEBUG/CAM/AO/VREFRO/ SYS, VPP FUSE, AVDD PLL AON/MSC/GADC M/MSD/XADC MSB, VCLAMP_USB, AVDD_OSC, LPDDR4x device VDD1, Temp Sensor VDD
- Enable (RUN2 pin) for VDD_DDRQ supply and Enable for discharge of DDR_VDD2_1.1V, VDDIO_SYS_1V8HS/SYS_1V8LS/AO_1V8 rails.

Power Sequencing

The following figures describe the power sequencing for Jetson AGX Xavier.

Figure 5-2. Power Up Sequence

Note: The signal VIN_PWR_ON shown in the power sequences is not a pin on the module. This signal is used on the DevKit design to enable the SYS_VIN_HV and SYS_VIN_MV supplies.

Power Down Sequence Controlled Case Figure 5-3.

Note: SYS_VIN_MV must go below 100 mV before system can be powered on again.

Power Down Sequence Uncontrolled Case Figure 5-4.

Note: SYS_VIN_MV must go below 100 mV before system can be powered on again.

5.3 SYS_VIN_HV Input

The Jetson AGX Xavier Developer Kit carrier board allows the main system power to be supplied either by one of the USB Type C connectors or a DC power Jack. The details for implementing Type C for power, etc. can be found in the P2822 reference schematics. If a design only requires a simple DC power jack, the circuit in the following figure can be used.

Note: Designs that intend to follow the NVIDIA carrier board design and include the Type C PD Controller (CYPD4226 - U513 on NVIDIA carrier board) need to replicate the circuitry on the latest P2822 carrier board exactly. NVIDIA will provide the binary and the customer should get the flashing instructions from Cypress.

Figure 5-5. Simplified DC Jack Power Connections

Note: Designs which implement an eFUSE or current limiting device on the input power rail of the module should select a part that DOES NOT limit reverse current.

5.4 Power-On

This section details the power-on features for Jetson AGX Xavier.

5.4.1 Power-On No MCU

The Jetson AGX Xavier Developer Kit carrier board implements a button power-on supervisor circuit that utilizes an EFM8SB10F8G-A MCU from Silicon Labs. For designs that do not want to use this approach, a circuit that does not use the MCU is shown in the following figure.

Figure 5-6. Simplified Button Power-On Circuitry

Notes:

- 1. To support auto-power-on or for a connection to a charger, see Figure 5-7.
- 2. Designs which implement an eFUSE or current limiting device on the input power rail of the module should select a part that DOES NOT limit reverse current.

Simplified Button Power Circuitry Timing Table 5-3.

Timing	Parameter	Min	Units
TDEBOUNCE	Power button active duration	>50	ms

Auto Power-On Option No MCU 5.4.1.1

For designs that will not have a power button but should power on when the main power supply is connected, the optional ACOK circuit shown in Figure 5-7 should be implemented and the ACOK_L signal pulled to GND.

Figure 5-7. Optional ACOK Circuitry

Note: See Figure 5-6.

Power Button Supervisor MCU Power-On 5.4.2

The NVIDIA Jetson AGX Xavier carrier board implements a power button supervisor. This supervisor is a low power device meant to intercept push-button (momentary) switches to control ON/Enable signals to the module PMIC and main processor. This supervisor is always powered and allows close to complete system power OFF while providing proper timing for ON/OFF signals to the system. The selected MCU to perform this function is the EFM8SB10F8G-A-QFN20 from Silicon Labs.

Note: Designs that intend to follow the NVIDIA carrier board design and include the EFM8SB10F8G-A-QFN20 MPU for Button Power Button control need to replicate the circuitry on the latest P2822 carrier board exactly. NVIDIA will provide the binary and the customer should get the flashing instructions from Silicon Labs. Otherwise, another solution such as the one described earlier in the Power-On (No MCU) can be used.

Table 5-4. Power Button Supervisor Control Signals

Signal Name	Associated Module Pin #	I/O Type	Trigger Level	Drive Mode	Description	MCU Pin
BUTTON_POWER_ON*		Input (debounced)	Level	OD (HiZ)	Power Button	P0.0
ACOK		Input (debounced)	Edge	OD (HiZ)	Determine when USB power is supplied	P0.6
CARRIER_POWER_ON	L62	Input	Level	OD (HiZ)	Closed loop on power output	P0.7
RESET_N (SYS_RESET_N)	L60	Input	Edge	OD (HiZ)	Monitor / Power Good mask	P1.1
FORCE_SHUTDOWN_N (OVERTEMP_N)	L52	Input	Level	OD (HiZ)	Triggers shutdown sequence	P1.0
BRD_SEL		Input		OD (HiZ)	Strap pin for board selection	P1.2
VIN_PWR_ON		Output		PP	Enable power to module	P1.3
MODULE_POWER_ON	L54	Output		PP	Enable input to PMIC	P1.5
POWER_BTN_N	L61	Output		OD	Buffered output of power button signal	P1.6

Note: OD - Open-drain. PP = Push-pull.

3V3_AO EFM8SB10F8G VDD POWER BTN N To Module (Pin L61) BUTTON_POWER_ON* P0.1 From Power Button P1.7 P0.2 P1.6 MODULE_POWER_ON P0.3 To Module (Pin L54) P1.5 ACOK Used to optinally enable P0.4 P1.3 Auto-Power-On P0.5 3V3_AO (P1.2 VCC_SRC & __VIN_PWR_ON P0.6 CARRIER_POWER_ON From Module (Pin L62) VDD_5V enable P2.7 C2D P0.7 RST* C2CK P1.0 GND P1.1 To Module (Pin L60) SYS_RESET_N G FET From VIN Loss Detection VDDIN PWR BAD N & other sources (Module Pin L55) From Module (Pin L52) OVERTEMP_N (FORCE_SHUTDOWN)

Figure 5-8. Power-On Button Circuit

Defined behaviors 5.4.2.1

For all actions triggered by BUTTON_POWER_ON*, there will be a de-bounce time before triggering any output signal. All timings below are referenced from AFTER the de-bouncing. Therefore, a "0 ms" value indicates that the signal should start right after de-bounce. Debounce time is 20 ms.

Power OFF -> Power ON (Power Button Case) 5.4.2.2

Power button press use case: User presses the Power Button briefly, and the MCU sends the power enable signals to the module (VIN PWR ON) and to the PMIC on the module (MODULE_POWER_ON). The signal representing the Power Button to Jetson AGX Xavier (POWER BTN N), will have the same (brief) duration of the Power Button input to the MCU. Once the power button is pressed, the power OK input (ACOK) is ignored, as the power ON sequence is already initiated by the power button.

Figure 5-9. Power-OFF to On Sequence Power Button Case

Table 5-5. Power-OFF to On Timing Power Button Case

Timing	Parameter	Typical	Units
T_PB_OUT	Delay to POWER_BTN_N assertion (de-bounce only)	20	ms
T_VPWR_ON	Delay to first rail ON	0	ms
T_MPO	MODULE_POWER_ON (module PMIC enable) delayfrom power VIN_PWR_ON rising edge	80	ms
T_CPO	Maximum allocated delay to CARRIER_POWER_ON assertion	10	ms

Power OFF -> Power ON (Auto-Power-On Case) 5.4.2.3

When the user connects the main power source, the MCU sends the power enable signals to the module (VIN_PWR_ON) and enables MODULE_POWER_ON. This is accomplished by having the ACOK signal driven high instead of pulled to GND.

The signal representing the Power Button to Jetson AGX Xavier (POWER_BTN_N) will continue following the power button (BUTTON_POWER_ON*) behavior. However, once the power ON sequence is initiated by the connection of the main power source, and ACOK is driven high (by push-pull driver powered from 3V3_AO), the power button signals will not affect the MCU behavior until the PWR_GOOD signal verification is complete.

Figure 5-10. Power-OFF to On Sequence Auto Power-On Case

Power-OFF to On Timing Auto Power-On Case Table 5-6.

Timing	Parameter	Typical	Units
T_VPWR_ON_AC	Delay from ACOK detected high with main power source applied to first rail ON (de-bounce only)	20	ms
T_MPO_AC	MODULE_POWER_ON active delay from VIN_PWR_ON rising edge	80	ms
T_CPO_AC	Maximum allocated delay to CARRIER_POWER_ON active	10	ms

5.4.2.4 Power ON -> Power OFF (Power Button Held Low > 10 Seconds)

With the system in power ON state, the user holds the power button for more than 10 seconds. The same button signal is relayed to Jetson AGX Xavier through the buffered signal POWER_BTN_N. The system is forced to shut down at the 10 seconds mark.

Power-On to OFF Power Button Held Low > 10 Seconds Figure 5-11.

Table 5-7. Power-On to OFF Timing Power Button Held Low > 10 Seconds

Timing	Parameter	Typical	Units
T_ON	> 10	S	
T_VPWR_ON	Delay to first rail ON (de-bounce only)	20	ms
T_MPO_OFF1	Wait time to force MODULE_POWER_ON OFF	10	S
T_MPO_ON	Enable delay from VIN_PWR_ON rising edge	80	ms
T_CPO	Maximum allocated delay to detect CARRIER_POWER_ON	10	ms
T_VPWR_OFF1	Delay to first rail OFF	10	ms

5.5 Power Discharge

To meet the Power Down requirements, discharge circuitry is required. Figure 5-12 shows a simplified version of what is in the P2822 Jetson AGX Xavier carrier board. The DISCHARGE signal is generated, based on a transition of the CARRIER_POWER_ON signal or the removal of the main supply (VDD_SRC). When DISCHARGE is asserted, the various carrier board rails that need to be discharged are pulled to GND. Removal of the VDD SRC supply also causes VDDIN_PWR_BAD_N to go active which causes Jetson AGX Xavier to initiate a controlled shut down.

5.5.1 DV/Dt Circuit Considerations

The portion of the circuit that asserts VDDIN_PWR_BAD_N when power is removed is designed to start the shutdown as soon as a voltage drop of ~0.5V is detected. This DV/Dt circuit helps to provide more time to discharge the necessary rails before the module loses power. It is recommended that the circuit be kept as shown to provide the most margin for properly sequencing power off during sudden power removal cases. If the supply cannot

maintain the voltage level within 0.5V of nominal when large current changes occur, then either the supply may need to be improved or it may be necessary to modify the DV/Dt circuit. Supply changes could include:

- ▶ Improve supply to respond better to large fluctuations in power. If the improvements keep any droops to less than ~0.5V, the DV/Dt circuit may work as intended and provide the most margin for proper power-down sequencing during sudden power loss cases. This solution is highly recommended over making modifications that compromise the DV/Dt circuit.
- Use a higher voltage. Jetson AGX Xavier supports from 9V to 20V on the SYS VIN HV input. The higher the voltage used, the lower the current at the input. When large power changes occur during heavy computational loads, the effect on the supply voltage will be lowest when the input voltage is near the maximum.

Modifications to the DV/Dt circuit include two options shown in Figure 5-12.

- Remove the resistor in series with VDDIN_PWR_BAD_N which would disable completely the DV/Dt circuit. This would mean that during a sudden power removal case, the input supply voltage would have to drop to the level that would trigger the VIN loss detection circuit (see Section 5.6.1 "Power Loss Detection") which is ~7V to 8V. This change would remove all benefits of the DV/Dt circuit and make it more difficult to meet power-off sequencing requirements during sudden power removal cases. This should be a last resort fix.
- Add an additional diode in the path from VDD_SRC to the Emitter to allow for more voltage droop before triggering the DV/Dt circuit and shutting down the system. By default, the droop allowed is ~0.5V. By adding one diode, an additional 0.6V-0.7V droop would be allowed. This will reduce the benefit that the DV/Dt circuit provides and should be avoided if possible or kept to a minimum (one additional diode).

DV/Dt Droop Allowance VDD_SRC VDDIN_PWR_BAD_N Tuning (Module pin Pin L55) Disables DV/Dt circuit if re moved VDD_xxx (One for MMBT each carrier board 4403 NTR4001 supply that needs NT1G to be discharged) 10uF 10uF NTS4001 DISCHARGE NT1G 100kΩ, 1% 1uF VDD SRC Q VDD_5V NT S40 01 CARRIER_POWER_ON NT1G (Module pin L62) NT S40 01 VIN_PWR_ON* NT1G

Figure 5-12. Power Discharge

Note: The resistor values in the discharge circuit for each rail should be tuned to bring the rail down in the proper timeframe.

5.6 Power and Voltage Monitoring

This section describes the power and voltage monitoring for Jetson AGX Xavier.

5.6.1 Power Loss Detection

The circuit in Figure 5-13 is implemented on the NVIDIA Jetson AGX Xavier carrier board to detect a loss or unacceptable droop on the main power input (VCC_SRC).

Figure 5-13. VIN Loss Detection Circuit

Power Monitor 5.6.2

Power monitors are provided on Jetson AGX Xavier. These monitor the VDD_GPU, VDD_CPU, VDD_SOC (Core), VDD_CV, VDD_DDRQ and SYS_VIN_MV Supplies. The monitors will toggle a WARN (Warning) or CRIT (Critical) output, depending on the power "seen" at the sense resistors and the thresholds set for each supply. This output is connected to the SOC_GPIO7 pin. The I2C address for the top power monitor (GPU/CPU/SOC) is 7'H40, and for the bottom power monitor (CV, VDDRQ, SYS_VIN_MV) is 7'H41).

Figure 5-14. **Power Monitor**

5.7 Deep Sleep or SC7

Jetson AGX Xavier supports a low power state called Deep Sleep or SC7. This can be entered under software control, and exited using various mechanisms, including wake capable pins that are listed in Table 5-8.

Jetson AGX Xavier Signal Wake Events Table 5-8.

Potential Wake Event (Reference Design Signal)	Module Pin Assigned	Wake #
PCIe Wake Request (PEX_WAKE_N)	PEX_WAKE_N	Wake01
SD Card Data 1 (SDCARD_D1)	SDCARD_D1	Wake03
Backlight PWM (BKLIGHT_PWM)	GPIO27	Wake04
GPIO 0 (CVB_GPIO0)	GPI002	Wake08
System Overcurrent Control (SYSTEM_OC#)	SYSTEM_OC_N	Wake10
GPIO 1 (CVB_GPIO1)	GPI011	Wake12
GPIO 3 (GPIO3/SD_WP)	GPI029	Wake13
GPIO 2(CVB_GPIO2)	GPIO12	Wake15
Ethernet SMA MDIO (RGMII_SMA_MDIO)	RGMII_SMA_MDIO	Wake17
Ethernet Interrupt (ENET_INT)	ENET_INT	Wake20
I2C General Purpose 3 Data (I2C_GP3_DAT)	I2C3_DAT	Wake21
I2C General Purpose 4 Data (I2C_GP4_DAT)	I2C4_DAT	Wake22
Safe State (SAFE_STATE)	GPIO31	Wake25
Voltage Monitor (VMON)	VCOMP_ALERT_N	Wake26
Ethernet RX Control (RGMII_RX_CTL)	RGMII_RX_CTL	Wake28
Power On (POWER_ON)	POWER_BTN_N	Wake29
GPU Fault (GPU_FAULT)	GPI001	Wake30
I2C General Purpose 1 Data (I2C_GP1_DAT)	I2C1_DAT	Wake31
PCIe L5 Clock Request (PEX_L5_CLKREQ_N)	PEX_L5_CLKREQ_N	Wake32
Board Identification 1 (BOARD_ID1)	UART1_CTS	Wake33
GPIO Expander 0 Interrupt (GPIO_EXP0_INT)	GPIO32	Wake34
USB OTG Identification (USB_OTG_ID)	GPIO30	Wake35
GPIO Expander 1 Interrupt (GPIO_EXP1_INT)	GPIO33	Wake36
GPIO Expander 2 Interrupt (GPIO_EXP2_INT)	GPIO34	Wake37
Watchdog Timer Reset Output (WDT_RESET_OUT)	WDT_RESET_OUT_N	Wake38
SPI 2 Chip Select 0 (SPI2_CS0#)	SPI2_CS0_N	Wake39
GPIO 5(CVB_GPIO5)	GPIO17	Wake40
I2C General Purpose 2 Data (I2C_GP4_DAT)	I2C2_DAT	Wake41
CAN 1 Data Input (CAN1_DIN)	CAN1_DIN	Wake42
CAN 0 Data Input (CAN0_DIN)	CAN0_DIN	Wake43
SPI 3 Clock (SPI3_CLK)	SPI3_CLK	Wake44
SPI 1 Chip Select 0 (SPI1_CS0#)	SPI1_CS0_N	Wake45
CAN 0 GPIO 1 (CAN0_GPIO1)	GPI007	Wake46
CAN1 GPIO 1 (CAN1_GPIO1)	GPI010	Wake48
SPI 1 Chip Select 1 (SPI1_CS1#)	SPI1_CS1_N	Wake50
Fan Tachometer (FAN_TACH)	FAN_TACH	Wake51
UART 1 Clear to Send (UART1_CTS)	UART2_CTS	Wake52
UART 2 Clear to Send (UART2_CTS)	UART5_CTS	Wake53
PCIe L1 Clock Request (PEX_L1_CLKREQ_N)	PEX_L1_CLKREQ_N	Wake54

Potential Wake Event (Reference Design Signal)	Module Pin Assigned	Wake #
SPI 3 Chip Select 0 (SPI3_CS0#)	SPI3_CS0_N	Wake56
SPI 3 Chip Select 1 (SPI3_CS1#)	SPI3_CS1_N	Wake58
Discrete GPU Alert (DGPU_ALERT)	GPI003	Wake59
DP 0 Hot-Plug-Detect (DP0_HPD)	DP0_HPD	Wake60
USB VBUS Enable 0 (USB_VBUS_EN0)	GPIO22	Wake61
USB VBUS Enable 1 (USB_VBUS_EN1)	GPIO23	Wake62
DP 1 Hot-Plug-Detect (DP1_HPD)	DP1_HPD	Wake63
PCIe L3 Clock Request (PEX_L3_CLKREQ_N)	PEX_L3_CLKREQ_N	Wake65
GPIO 6(CVB_GPIO6)	GPIO24	Wake66
Force Recovery (FORCE_RECOVERY)	FORCE_RECOVERY_N	Wake67
Sleep (SLEEP#)	STANDBY_REQ_N	Wake68
Battery Low (BATLOW#)	GPIO28	Wake69
HDMI Consumer Electronics Control (HDMI_CEC)	HDMI_CEC	Wake70
DP 2 Hot-Plug-Detect (DP2_HPD)	DP2_HPD	Wake71

Chapter 6. General Routing Guidelines

Signal Name Conventions 6.1

The following conventions are used in describing the signals for Jetson AGX Xavier:

- Signal names use a mnemonic to represent the function of the signal. For example, Secure Digital Interface #3 Command signal is represented as SDCARD CMD, written in bold to distinguish it from other text. All active low signals are identified by a # or an underscore followed by capital N (N) after the signal name. For example, RESET IN# indicates an active low signal. Active high signals do not have the underscore - N (_N) after the signal names. For example, SDCARD CMD indicates an active high signal. Differential signals are identified as a pair with the same names that end with _P and _N, just P and N or + and - (for positive and negative, respectively). For example, USB1 DP and USB1 DN indicate a differential signal pair.
- I/O Type The signal I/O type is represented as a code to indicate the operational characteristics of the signal. The following table lists the I/O codes used in the signal description tables.

Table 6-1. Signal Type Codes

Code	Definition
Α	Analog
DIFF I/O	Bidirectional Differential Input/Output
DIFF IN	Differential Input
DIFF OUT	Differential Output
1/0	Bidirectional Input/Output
I	Input
0	Output
OD	Open Drain Output
I/OD	Bidirectional Input / Open Drain Output
Р	Power

Routing Guideline Format 6.2

The routing guidelines have the following format to specify how a signal should be routed.

- Breakout traces are traces routed from a BGA or other pin array, either to a point beyond the array, or to another layer where full normal spacing guidelines can be met. Breakout trace delay limited to 500 mils unless otherwise specified.
- After breakout, signal should be routed according to specified impedance for differential, single-ended, or both (for example: HDMI). Trace spacing to other signals also specified.
- Follow max and min trace delays where specified. Trace delays are typically shown in mm or in terms of signal delay in pico-seconds (ps) or both.
 - For differential signals, trace spacing to other signals must be larger of specified × dielectric height or inter-pair spacing
 - Spacing to other signals/pairs cannot be smaller than spacing between complementary signals (intra-pair).
 - Total trace delay depends on signal velocity which is different between outer (microstrip) and inner (stripline) layers of a PCB.

6.3 Signal Routing Conventions

Throughout this design guide, the following signal routing conventions are used:

SE Impedance (/ Diff Impedance) at x Dielectric Height Spacing

Single-ended (SE) impedance of trace (along with differential impedance for diff pairs) is achieved by spacing requirement. Spacing is multiple of dielectric height. Dielectric height is typically different for microstrip and stripline. Note: 1 mil = 1/1000th of an inch.

Note: Trace spacing requirement applies to SE traces or differential pairs to other SE traces or differential pairs. It does not apply to traces making up a differential pair. For this case, spacing/trace widths are chosen to meet differential impedance requirement.

Routing Guidelines 6.4

Pay close attention when routing high speed interfaces, such as HDMI/DP, USB 3.1, PCIe or DSI/CSI. Each of these interfaces has strict routing rules for the trace impedance, width, spacing, total delay, and delay/flight time matching. The following guidelines provide an overview of the routing guidelines and notations used in this design guide.

Controlled Impedance Each interface has different trace impedance requirements and spacing to other traces. It is up to designer to calculate trace width and spacing required to achieve specified singleended (SE) and differential (Diff) impedances. Unless otherwise noted, trace impedance values are ±15%.

- Max Trace Lengths/Delays Trace lengths/delays should include main PCB routing and any additional routing on a Flex/ secondary PCB segment connected to main PCB. The max length/delay should be from Jetson AGX Xavier to the actual connector (i.e. USB, HDMI, SD Card, etc.) or device (i.e. onboard USB device, Display driver IC, camera imager IC, etc.)
- Trace Delay/Flight Time Matching Signal flight time is the time it takes for a signal to propagate from one end (driver) to the other end (receiver). One way to get same flight time for signal within signal group is to match trace lengths within specified delay in the signal group.
 - Total trace delay = Carrier PCB trace delay only. Do not exceed maximum trace delay specified.
 - For six layers or more, it is recommended to match trace delays based on flight time of signals. For example, outer-layer signal velocity could be 150 psi (ps/inch) and innerlayer 175 psi. If one signal is routed 10 inches on outer layer and second signal is routed 10 inches in inner layer, difference in flight time between two signals will be 300 ps! That is a big difference if required matching is 15 ps (trace delay matching). To fix this, inner trace needs to be 1.7 inches shorter or outer trace needs to be 2 inches longer.
 - In this design quide, terms such as intra-pair and inter-pair are used when describing differential pair delay. Intra-pair refers to matching traces within differential pair (for example, true to complement trace matching). Inter-pair matching refers to matching differential pairs average delays to other differential pairs average delays.

General PCB Routing Guidelines 6.5

For GSSG stack-up to minimize crosstalk, signal should be routed in such a way that they are not on top of each other in two routing layers (Figure 6-1).

Signal Routing Example Figure 6-1.

Do not route other signals or power traces and areas directly under or over critical high-speed interface signals.

Note: The requirements detailed in the interface signal routing requirements tables must be met for all interfaces implemented or proper operation cannot be guaranteed.

Chapter 7. USB, PCIe, and UFS

Jetson AGX Xavier facilitates multiple high-speed interfaces to be brought out on the module in different configurations. The tables show the configurations that have been used on the developer kit.

Table 7-1. USB 2.0 Pin Descriptions

	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
F13	USB0_N	USB0_DN	USB 2.0 Port 0 Data	UART-USB Bridge or	Bidir	USB2 Diff pair	-	0
F12	USB0_P	USB0_DP		USB Type C Connector (J512)				
C10	USB1_N	USB1_DN	USB 2.0, Port 1 Data	USB Type C Connector	Bidir	USB2 Diff pair	_	0
C11	USB1_P	USB1_DP		(J513)				
A11	USB2_N	USB2_DN	USB 2.0, Port 2 Data	M.2 Key E Connector	Bidir	USB2 Diff pair	_	0
A10	USB2_P	USB2_DP						
G10	USB3_N	USB3_DN	USB 2.0, Port 3 Data	USB / eSATA Connector	Bidir	USB2 Diff pair	-	0
G11	USB3_P	USB3_DP		(USB 2.0)				

- 1. In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals.
- 2. The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- 3. The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.

Table 7-2. UPHY Data Lane Pin Descriptions USB 3.1, PCIe, and UFS

Pin #	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
A23	UPHY_RX0_N	PEX_RX0_N	UPHY Receive 0. PCIe x1 controller #1.	eSATA Bridge	Input	UPHY Diff Pair,	-	Z
A22	UPHY_RX0_P	PEX_RX0_P				AC-Coupled on carrier board if		
C22	UPHY_RX1_N	PEX_RX1_N	UPHY Receive 1. USB 3.1 port 2.	USB Type C Alt Mode		direct connect to	-	Z
C23	UPHY_RX1_P	PEX_RX1_P	·	Switch #1		device.		
B20	UPHY_RX2_N	PEX_RX2_N	UPHY Receive 2. PCle x4 controller #0,	M.2 Key M Connector			_	Z
B21	UPHY_RX2_P	PEX_RX2_P	lane 0.					

Pin#	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
D21	UPHY_RX3_N	PEX_RX3_N	UPHY Receive 3. PCIe x4 controller#0,				-	Z
D20	UPHY_RX3_P	PEX_RX3_P	lane 1.					
A19	UPHY_RX4_N	PEX_RX4_N	UPHY Receive 4. PCIe x4 controller #0,	1			-	Z
A18	UPHY_RX4_P	PEX_RX4_P	lane 2.					
C18	UPHY_RX5_N	PEX_RX5_N	UPHY Receive 5. PCIe x4 controller #0,				-	Z
C19	UPHY_RX5_P	PEX_RX5_P	lane 3.					
B17	UPHY_RX6_N	PEX_RX6_N	UPHY Receive 6. USB 3.1 port 0.	USB Type C Alt Mode			-	Z
B16	UPHY_RX6_P	PEX_RX6_P		Switch #2				
D17	UPHY_RX7_N	PEX_RX7_N	UPHY Receive 7. PCIe x1 controller #3.	M.2 Key E Connector			-	Z
D16	UPHY_RX7_P	PEX_RX7_P						
A14	UPHY_RX8_N	PEX_RX8_N	UPHY Receive 8. PCIe x2 controller #4,	Unused			-	Z
A15	UPHY_RX8_P	PEX_RX8_P	lane 0.					
C14	UPHY_RX9_N	PEX_RX9_N	UPHY Receive 9. PCIe x2 controller #4,				-	Z
C15	UPHY_RX9_P	PEX_RX9_P	lane 1.					
B13	UPHY_RX10_N	PEX_RX10_N	UPHY Receive 10. UFS lane.	Micro SD / UFS Card	1	UPHY Diff Pair	_	Z
B12	UPHY_RX10_P	PEX_RX10_P		Socket				
D13	UPHY_RX11_N	PEX_RX11_N	UPHY Receive 11. USB 3.1 port 3.	USB / eSATA Connector	1	UPHY Diff Pair,	-	Z
D12	UPHY_RX11_P	PEX_RX11_P		(USB 3.0)		AC-Coupled on carrier board if direct connect to device.		
J23	UPHY_TX0_N	PEX_TX0_N	UPHY Transmit 0. PCle x1 controller #1.	eSATA Bridge	Output	UPHY Diff Pair,	-	Z
J22	UPHY_TX0_P	PEX_TX0_P				AC-Coupled on carrier board		
G22	UPHY_TX1_N	PEX_TX1_N	UPHY Transmit 1. USB 3.1 port 2.	USB Type C Alt Mode		Carrier board	_	Z
G23	UPHY_TX1_P	PEX_TX1_P		Switch #1				
K20	UPHY_TX2_N	PEX_TX2_N		M.2 Key M Connector			_	Z
K21	UPHY_TX2_P	PEX_TX2_P	lane 0.					
H21	UPHY_TX3_N	PEX_TX3_N	UPHY Transmit 3. PCle x4 controller #0,				_	Z
H20	UPHY_TX3_P	PEX_TX3_P	lane 1.					
J19	UPHY_TX4_N	PEX_TX4_N	UPHY Transmit 4. PCle x4 controller #0,				_	Z
J18	UPHY_TX4_P	PEX_TX4_P	lane 2.					
G18	UPHY_TX5_N	PEX_TX5_N	UPHY Transmit 5. PCle x4 controller #0,				_	Z
G19	UPHY_TX5_P	PEX_TX5_P	lane 3.					
K16	UPHY_TX6_N	PEX_TX6_N	UPHY Transmit 6. USB 3.1 port 0.	USB Type C Alt Mode			_	Z
K17	UPHY_TX6_P	PEX_TX6_P		Switch #2				
H17	UPHY_TX7_N	PEX_TX7_N	UPHY Transmit 7. PCle x1 controller #3.	M.2 Key E Connector			-	Z
H16	UPHY_TX7_P	PEX_TX7_P						
J15	UPHY_TX8_N	PEX_TX8_N	UPHY Transmit 8. PCle x2 controller #4,	Unused]		-	Z
J14	UPHY_TX8_P	PEX_TX8_P	lane 0.					
G14	UPHY_TX9_N	PEX_TX9_N	UPHY Transmit 9. PCle x2 control ler #4,				-	Z
G15	UPHY_TX9_P	PEX_TX9_P	lane 1.					
K12	UPHY_TX10_N	PEX_TX10_N	UPHY Transmit 10. UFS lane.	Micro SD / UFS Card	1	UPHY Diff Pair	-	Z
	UPHY_TX10_P	PEX_TX10_P		Socket				
H13	UPHY_TX11_N	PEX_TX11_N	UPHY Transmit 11. USB 3.1 port 3.	USB / eSATA Connector		UPHY Diff Pair,	-	Z
H12	UPHY_TX11_P	PEX_TX11_P		(USB 3.0)		AC-Coupled on carrier board		

- 1. In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals.
- 2. The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- 3. The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any $changes \ are \ made \ by \ software. \ \ "z" \ is \ tristate, \ pu/pd \ indicates \ internal \ weak \ pull-up/down \ resistor \ is \ enabled, \ 1/0$ indicates actively driven high/low.

Table 7-3. NVHS for PCle x8 Data Lan Pin Descriptions

Pin#	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
D25	NVHS0_SLVS_ RX0_N	NVHS0_RX0_N	PCle/SLVS 0 Receive Lane 0. PCle x8 controller #5 or SLVS, lare 0.	PCle x16 Connector	Input	UPHY/SLVS Diff Pair, AC-Coupled	-	Z
D24	NVHS0_SLVS_ RX0_P	NVHS0_RX0_P			on carrier board for PCle if direct			
B24	NVHS0_SLVS_ RX1_N	NVHS0_RX1_N	PCIe/SLVS 0 Receive Lane 1. PCIe x8 controller #5 or SLVS, Iane 1.	-	Z			
B25	NVHS0_SLVS_ RX1_P	NVHS0_RX1_P						
C26	NVHS0_SLVS_ RX2_N	NVHS0_RX2_N	PCle/SLVS 0 Receive Lane 2. PCle x8 controller #5 or SLVS, lane 2.				_	Z
C27	NVHS0_SLVS_ RX2_P	NVHS0_RX2_P						
A27	NVHS0_SLVS_ RX3_N	NVHS0_RX3_N	PCIe/SLVS 0 Receive Lane 3. PCIe x8 controller #5 or SLVS, lane 3.				-	Z
A26	NVHS0_SLVS_ RX3_P	NVHS0_RX3_P						
D29	NVHS0_SLVS_ RX4_N	NVHS0_RX4_N	PCIe/SLVS 0 Receive Lane 4. PCIe x8 controller #5 or SLVS, lane 4.				-	Z
D28	NVHS0_SLVS_ RX4_P	NVHS0_RX4_P						
B28	NVHS0_SLVS_ RX5_N	NVHS0_RX5_N	PCIe/SLVS 0 Receive Lane 5. PCIe x8 controller #5 or SLVS, lane 5.				-	Z
B29	NVHS0_SLVS_ RX5_P	NVHS0_RX5_P						
C30	NVHS0_SLVS_ RX6_N	NVHS0_RX6_N	PCIe/SLVS 0 Receive Lane 6. PCIe x8 controller #5 or SLVS, lane 6.				-	Z
C31	NVHS0_SLVS_ RX6_P	NVHS0_RX6_P						
A31	NVHS0_SLVS_ RX7_N	NVHS0_RX7_N	PCIe/SLVS 0 Receive Lane 7. PCIe x8 controller #5 or SLVS, lane 7.				-	Z
A30	NVHS0_SLVS_ RX7_P	NVHS0_RX7_P						
H25	NVHS0_TX0_N	NVHS0_TX0_N	PCIe Transmit Lane 0. PCIe x8 controller	1	Output	UPHY Diff Pair,	-	Z
H24	NVHS0_TX0_P	NVHS0_TX0_P	#5, lane 0.			AC-Coupled on carrier board		
K24	NVHS0_TX1_N	NVHS0_TX1_N	PCle Transmit Lane 1. PCle x8 controller			Carrier board	_	Z
K25	NVHS0_TX1_P	NVHS0_TX1_P	#5, lane 1.					
G26	NVHS0_TX2_N	NVHS0_TX2_N	PCIe Transmit Lane 2. PCIe x8 controller				_	Z
G27	NVHS0_TX2_P	NVHS0_TX2_P	#5, lane 2.					
J27	NVHS0_TX3_N	NVHS0_TX3_N	PCle Transmit Lane 3. PCle x8 controller				_	Z
J26	NVHS0_TX3_P	NVHS0_TX3_P	#5, lane 3.	_				
H29	NVHS0_TX4_N	NVHS0_TX4_N	PCIe Transmit Lane 4. PCIe x8 controller				-	Z
H28	NVHS0_TX4_P	NVHS0_TX4_P	#5, lane 4.	_				
K28	NVHS0_TX5_N	NVHS0_TX5_N	PCIe Transmit Lane 5. PCIe x8 controller				-	Z
K29	NVHS0_TX5_P	NVHS0_TX5_P	#5, lane 5.					
G30	NVHS0_TX6_N	NVHS0_TX6_N	PCle Transmit Lane 6. PCle x8 controller				-	Z
G31	NVHS0_TX6_P	NVHS0_TX6_P	#5, lane 6.					
J31	NVHS0_TX7_N	NVHS0_TX7_N	PCIe Transmit Lane 7. PCIe x8 controller				_	Z
J30	NVHS0_TX7_P	NVHS0_TX7_P	#5, lane 7.					

- 1. In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals.
- 2. The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- 3. The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.

Table 7-4. PCIe Clock and Control Pin Descriptions

Pin#	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
E14	PEX_CLK0_N	PEX_CLK0N	PCIe 0 Reference Clock for controller #0.	M.2 Key M Connector	Output	PCle Diff Pair	-	0
E15	PEX_CLK0_P	PEX_CLK0P						
E11	PEX_L0_ CLKREQ_N	PEX_L0_ CLKREQ_N	PCIe 0 Clock Request for controller #0. Pulled to 3.3V through $47.5k\Omega$ resistor on-module.		Input	Open-Drain – 1.8V (3.3V tolerant)	DD	Z
D10	PEX_L0_RST_N	PEX_L0_RST_N	PCle 0 Reset for controller #0. Pulled to 3.3V through 4.75kΩ resistor on-module.		Output		DD	0
F17	PEX_CLK1_N	PEX_CLK1N	PCle 1 Reference Clock for controller #1.	eSATA Bridge	Output	PCle Diff Pair	-	0
F16	PEX_CLK1_P	PEX_CLK1P						
D9	PEX_L1_ CLKREQ_N	PEX_L1_ CLKREQ_N	PCIe 1 Clock Request for controller #1. Pulled to 3.3V through $47.5 k\Omega$ resistor on-module.	Unused	Input	Open-Drain – 1.8V (3.3V tolerant)	DD	Z
В9	PEX_L1_RST_N	PEX_L1_RST_N	PCle 1 Reset for controller #1. Pulled to 3.3V through 4.75kΩ resistor on-module.	eSATA Bridge	Output		DD	0
F21	PEX_CLK3_N	PEX_CLK3N	PCle 3 Reference Clock for controller #3.	M.2 Key E Connector	Output	Diff pair	-	0
F20	PEX_CLK3_P	PEX_CLK3P						
J10	PEX_L3_ CLKREQ_N	PEX_L3_ CLKREQ_N	PCIe 3 Clock Request for controller #3. Pulled to 3.3V through $47.5 k\Omega$ resistor on-module.		Input	Open-Drain – 1.8V (3.3V tolerant)	DD	Z
K9	PEX_L3_RST_N	PEX_L3_RST_N	PCIe 3 Reset for controller #3. Pulled to 3.3V through $4.75 \text{k}\Omega$ resistor on-module.		Output		DD	0
E22	PEX_CLK4_N	PEX_CLK4N	PCIe 4 Reference Clock for controller #4,	Unused	Output	Diff pair	-	0
E23	PEX_CLK4_P	PEX_CLK4P						
G8	PEX_L4_ CLKREQ_N	PEX_L4_ CLKREQ_N	PCIe 4 Clock Request for controller #4. Pulled to 3.3V through $47.5k\Omega$ resistor on-module.		Input	Open-Drain – 1.8V (3.3V tolerant)	DD	Z
J9	PEX_L4_RST_N	PEX_L4_RST_N	PCle 4 Reset for controller #4. Pulled to 3.3V through 4.75kΩ resistor on-module.		Output		DD	0
F25	PEX_CLK5_N	PEX_CLK5N	PCIe 5 Reference Clock for controller #5	PCle x16 Connector	Output	Diff pair	-	0
F24	PEX_CLK5_P	PEX_CLK5P	when Jetson AGX Xavier is Root Port. Unused when Jetson AGX Xavier used as Endpoint.					
C8	PEX_L5_ CLKREQ_N	PEX_L5_ CLKREQ_N	PCIe 5 Clock Request for controller #5. Input when Jetson AGX Xavier is Root Port. Output when Jetson AGX Xavier is Endpoint. Pulled to 3.3V through 47.5kΩ resistor on-module.		Input	Open-Drain – 1.8V (3.3V tolerant)	DD	Z
	PEX_L5_RST_N		PCIe 5 Reset. Output when Jetson AGX Xavier is Root Port. Input when Jetson AGX Xavier is Endpoint. Pulled to 3.3V through $4.75 \mathrm{k}\Omega$ resistor on-module.		Bidir		DD	0
E31	NVHS0_SLVS_RE FCLK0_N		PCIe/SLVS Reference Clock 0. Unused if controller #5 (NVHS[7:0] lanes)		Input	UPHY/SLVS Diff Pair	_	Z
E30	NVHS0_SLVS_RE FCLK0_P	NVHS0_REFCLK_P	configured as Root Port. Receives 100Mhz clock if configured as Endpoint.					
E26	UPHY_ REFCLK1_N	PEX_REFCLK1_N	UPHY Reference Clock 1. Unused.	Unused	Input	UPHY Diff Pair	-	Z
E27	UPHY_ REFCLK1_P	PEX_REFCLK1_P						
F29	UPHY_ REFCLK2_N	PEX_REFCLK2_N	UPHY Reference Clock 2. Unused.				-	Z
F28	UPHY_ REFCLK2_P	PEX_REFCLK2_P						

		Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
Γ	A8	PEX_WAKE_N	PEX_WAKE_N	PCle Wake. Wake signal shared by all	PCle x16 Connector and	Input	Open-Drain -	DD	Z
1				PCle interfaces. Pulled to 3.3V through	M.2 Key E and		1.8V (3.3V		
L				47.5kΩ resistor on-module.	Connector		tolerant)		

- In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals. 1.
- The direction shown in this table for PEX_Lx_RST_N, PEX_Lx_CLKREQ_N and PCIE_WAKE_N signals is true when used for those PCIe functions. Otherwise if used as GPIOs, the direction is bidirectional.
- The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.

Table 7-5. UFS and Miscellaneous USB Control Pin Descriptions

Pin#	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
A6	UFS0_REF_CLK	UFS0_REF_CLK	UFS Reference Clock	Micro SD / UFS Card Socket	Output	CMOS - 1.2V	LV_CZ	0
C6	UFS0_RST_N	UFS0_RST	UFS Reset	Micro SD / UFS Card Socket	Output	CMOS - 1.2V	LV_CZ	0
A62	GPI010	CAN1_WAKE	GPIO	USB PD Controller Interrupt	Bidir	CMOS - 3.3V	CZ	Z
F54	GPI022	USB_VBUS_EN0	GPI0	VDD_5V_SATA Load Switch Enable	Output	CMOS – 1.8V	DD	0

Table 7-6. USB 3.1, PCIe and UFS Lane Mapping Configurations

Jetson	n AGX Xavier La	anes	UPHY0	UPHY1	UPHY[5:2]	UPHY6	UPHY7	UPHY[9:8]	UPHY10	UPHY11	NVHS[7:0]
Avail. Out	puts from Jets Xavier	son AGX									
USB 3.1	PCIe	UFS									
3	2 x1, 1 x2, 1	1 x1	PCle x1	USB 3.1	PCIe x4	USB 3.1	PCle x1	PCle x2	UFS x1	USB 3.1	PCIe x8
	x4 & 1 x8		(C1)	(P2)	(C0)	(P0)	(C3)	(C4)	(0)	(P3)	(C5)

7 1 USB

Jetson AGX Xavier supports up to four USB 2.0 ports and up to three USB 3.1 ports. There are examples in this section to either implement a simple USB 3.1/2.0 connection to a USB 3.1 Type A connector or to replicate the USB Type C connections used on the NVIDIA Developer Kit. Designs that intend to follow the NVIDIA Developer Kit carrier board design and include the Type C PD Controller (CYPD4226) need to replicate the circuitry on the latest P2822 carrier board exactly. NVIDIA will provide the binary and the customer should get the flashing instructions from Cypress. If the design requires a simpler solution (Type A or similar), then refer to the software adaptation guide for information.

Notes:

- Some non-compliant USB 3.0 devices may fail unless USB 3.1 Gen2 is disabled.
- See Section 15.1 "USB Recover Mode" for requirements for USB recovery mode.

Figure 7-1. Simple USB Type A Connection Example

Type C connections are based on the NVIDIA carrier board design. Additional interface assignments shown in Figure 7-2 are also based on the carrier board usage.

Designs that intend to follow the NVIDIA carrier board design and include the Type C PD Controller (CYPD4226 - U513 on NVIDIA carrier board) need to replicate the circuitry on the latest P2822 carrier board exactly. NVIDIA will provide the binary and the customer should get the flashing instructions from Cypress.

If the CYPD4226 PD controller is implemented in a design, it is recommended that test points be included that connect to the SW_CLK, SW_IO and XRES pins as well as VDD_AO. These would be required to flash the binary during manufacturing.

Figure 7-2. Jetson AGX Xavier Carrier Board Design USB Type C Connection Example

Figure 7-3. USB 3.1 USB Micro AB Connection Example

- · See the USB.org statement regarding the phasing out of support for the USB 3.x Micro-B and Micro-AB connector certifications after February 28th, 2021.
- GPI030 shown in Figure 7-3 connected to the connector ID pin is used for the M.2 Key E Alert function on the NVIDIA carrier board. If both functions are required, another GPIO will be required for one of the functions.

7.1.1 USB 2.0 Design Guidelines

These requirements apply to the USB 2.0 controller PHY interfaces: USB[3:0]

Table 7-7. USB 2.0 Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max Frequency (High Speed): Bit Rate/UI period/Freq.	480/2.083/240	Mbps/ns/MHz	
Max Loading: High Speed / Full Speed / Low Speed	10 / 150 / 600	pF	
Reference plane	GND		
Trace Impedance: Diff pair / Single Ended	90 / 50	Ω	±15%
Max Trace Delay With CMC or SW (Microstrip / Stripline) Without CMC or SW (Microstrip / Stripline)	900/1050 (6) 1350/1575 (9)	ps (in)	Prop delay assumption: 175ps/in. for stripline, 150ps/in. for microstrip). See Note 3
Max Intra-Pair Skew between USBx_P and USBx_N	7.5	ps	

- If portion of route is over a flex cable this length should be included in the Max Trace Delay/Length calculation and 85Ω Differential pair trace impedance is recommended.
- 2. Up to 4 signal Vias can share a single GND return Via.
- 3. CMC = Common-Mode-Choke. SW = Analog Switch
- 4. Adjustments to the USB drive strength, slew rate, termination value settings should not be necessary, but if any are made, they MUST be done as an offset to default values instead of overwriting those values.

7.1.2 USB 3.1 Design Guidelines

The following requirements apply to the USB 3.1 PHY interfaces.

Table 7-8. USB 3.1 Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Specification			
Data Rate / UI period GEN1 GEN2	5.0 / 200 10.0 / 100	Gbps / ps	Device mode supports GEN1 speed only.
Max Number of Loads	1	load	
Termination	90 differential	Ω	On-die termination at TX and RX
Insertion Loss (IL) Host GEN1 (Type C) GEN1 (Type A)	≥ -2> -7	dB dB	@ 2.5GHz @ 2.5GHz
GEN1 (Type A) GEN2 (Single role host mode) Device	TBD	dB	@ 2.5GHZ @ 5GHz
GEN1 (Type C) GEN1 (Micro AB) GEN2 Host/GEN1 Device (dual role mode)	 -2 -1 -5.4	dB dB dB	 @ 2.5GHz @ 2.5GHz @ 5GHz (Host) / 2.5GHz (Device) The resonance dip could be caused by a via stub
Resonance Dip Frequency	> 8	GHz	for layer transition or trace stub for co-layout.
Time-domain Reflectometer (TDR) Dip GEN1 GEN2	75 75	Ω	@ Tr = 200ps (10%-90%) @ Tr = 61ps (10%-90%)
Near End Crosstalk (NEXT)	< −45	dB	DC - 5GHz per each TX-RX NEXT
GEN1 IL/NEXT plot S-parameter Plot -10 -20 -30 -40 -40 -70 -80 -90 -100 -100 -2 4 6 8 10 12 14 16 18 20		GEN2 IL/NEXT p -5.4 -10 -20 -30 -30 -60 -70 -80 -90 0 1 2 3 4	S-parameter Plot 5 6 7 8 9 1011121314151617181920 Freq. (GHz)
Impedance			
Trace Impedance: Diff pair / Single Ended	85 / 43	Ω	±15%. Intrinsic Zdf, does not account for coupling from other trace pairs
Reference plane	GND		

Parameter	Requirement	Units	Notes
Trace Length/Skew			
Trace loss characteristic:			
GEN1	< 0.7	dB/in	@ 2.5GHz
GEN2	< 0.9		@ 5GHz
The following max length is derived based on the trace los	s characteristic above	e. The length constra	int must be re-defined if loss characteristic is changed.
The trace loss profile for Gen2 support is based on the die	lectric material EM37	0(5). See the loss plo	ss in the sheet "USB3 LOSS BUDGET"
Note that microstrip loss could be similar to stripline due		.,	
Breakout Region - Max length	11	lmm	Minimum trace width and spacing
Max Trace Length			Stripline (6.7ps/mm) assumed
GEN1 Host	152 (1014)	mm (ps)	displane (c./ps/mm) assamed
GEN1 Device	50.8 (234)	μππ (β5)	
GEN2 Host or Device	127 (850)		
Max Intra-Pair Skew (RX/TX_N to RX/TX_P)	0.15 (1)	mm (ps)	Do not perform length matching within breakout
		(I7)	region. Trace length matching should be done before discontinuities. See Note 2
Differential pair uncoupled length	6.29 (41.9)	mm (ps)	
Trace Spacing for TX/RX Non-Interleaving			
TX-RX Xtalk is very critical in PCB trace routing. The id		oute TX and RX on o	lifferent lavers.
If routing on the same layer, strongly recommend not			
If have to have interleaving routing in breakout, all the			ule of inter-S _{NEXT} (between TX/RX pair spacing)
The breakout trace width is suggested to be the minim			2.2.2(2.2(2.2
Do not perform serpentine routing for intra-pair skew			
Inter-pair spacing Inter-pair spacing		io bi cancar i egicii	
for minimizing FEXT for minimizing FEXT Inter-S _{NEXT} RX			
Inter-S _{rext} Inter-pair spacing for minimizing NEXT			
Min Inter-SNEXT (between TX/RX)			This is the recommended dimensions for meeting
Breakout	4.85x	Dielectric height	the NEXT requirement.
Main-route	3x		Stripline structure in a GSSG structure is
Max length			assumed (holds in broadside-coupled stripline
Breakout (LBRK)	11	mm	structure)
Main-route	Max trace length		
	- LBRK		
Trace Spacing for TX/RX Interleaving			
Max Pair-pair spacing, Spacing to plane and SMT pad,			
and Spacing to unrelated high-speed signals			
Microstrip . Stripline	4x / 3x	Dielectric height	
Via			
Via proximity (Signal via to GND return via)	< 3.8 (24)	mm (ps)	See note 1
Topology	Y-pattern is recor	nmended	Y-pattern helps with
	Keep symmetry		Xtalk suppression. It
			can also reduce the
			limit of the pair-pair distance. Review
			needed (NEXT/FEXT
			check) if via
			placement does not use Y-pattern.
GND via	Place GND via	nas	GND via is used to maintain return path,
	symmetrically	y as possible to	while its Xtalk suppression is limited
	'	Up to 4 signal	· ·
		rs) can share a	
	single GND re		
	12111910 011010	Carri Via	

Parameter	Requirement	Units	Notes
Max # of Vias			
PTH vias	4 if all vias are P1	TH via	
Micro Vias	Not limited		As long as total channel loss meets IL spec
Max Via Stub Length	0.4	mm	long via stub requires review (IL and resonance dip check)
Serpentine			
Min bend angle	135	deg (a)	
Dimension			S1 must be taken care in
Min A Spacing	4x	Trace width	order to consider Xtalk to
Min B, C Length	1.5x		adjacent pair
Min Jog Width	3x		
Add-on Components			5 51 52 52
Placement order	SoC - AC capacito		
	mode choke – ES		
	Device/Connector	woo	
	txp —	ا ا	° CMC
			ESD © Conn.
	Common mode choke	 	· O O O O O O O O O O O O O O O O O O O
	mode choke	ESD	
		GND	
AC Cap			
Value: Min/Max	0.075 / 0.2	uF	Only required for TX pair when routed to connector
Location (max length to adjacent discontinuity)	8	mm	Discontinuity is connector, via, or component pad
Voiding	GND/PWR void upreferred	nder/above cap is	Voiding is required if AC cap size is 0603 or larger
ESD			
Max Junction capacitance (IO to GND)	0.8	pF	e.g. SEMTECH RClamp0524p
Footprint	Pad should be on	the net - not trace	IN_P OUT_P
	stub		IN_N OUT_N
Location (max length to adjacent discontinuity)	8	mm	Discontinuity is connector, via, or component pad
Common-Mode Choke			
Common-mode impedance @ 100MHz Min/Max	65/90	Ω	TDK ACM2012D-900-2P
Max Rdc	0.3	Ω	10000
Differential TDR impedance	90	Ω @TR-200ps	1000
		(10%-90%)	© 100 Common mode
Min Sdd21 @ 2.5GHz	2.22	dB	Moreovial mode
Max Scc21 @ 2.5GHz	19.2	dB	10 100 1000 10000 Frequency(MHz)
Location	8	mm	
·			

Parameter	Requirement	Units	Notes			
FPC (Additional length of Flexible Printed Circuit Board)						
The FPC routing should be included for PCB trace calc	ulations (max lengt	h, etc.)				
Characteristic Impedance	Same as PCB					
Loss characteristic			If worse than PCB, the PCB and FPC length must be re-estimated			
Connector						
SMT Connector GND Voiding			GND plane under signal pad should be voided. Size of void should be the same size as the pad.			
Connector type			Connector used must be USB-IF certified			

- Up to 4 signal Vias can share a single GND return Via
- Recommend trace length matching to <1ps before Vias or any discontinuity to minimize common mode conversion.
- Place GND Vias as symmetrically as possible to data pair Vias.

7.1.3 Common USB Routing Guidelines

If routing to USB device or USB connector includes a flex or 2nd PCB, the total routing including all PCBs and flexes must be used for the max trace and skew calculations.

Keep critical USB related traces away from other signal traces or unrelated power traces and areas or power supply components.

Table 7-9. USB 2.0 Signal Connections

Module Pin Name	Туре	Termination	Description
USB[3:0]_N/P	5	to connector. ESD Protection	USB Differential Data Pair: Connect to USB connector, Mini-Card Socket, Hub or another device on the PCB.

USB 3.1 Signal Connections Table 7-10.

Module Pin Name	Туре	Termination	Description
UPHY_TX6_N/P (USB 3.1 Port #0) UPHY_TX1_N/P (USB 3.1 Port #2)	DIFF Out	·	USB 3.1 Differential Transmit Data Pairs: Connect to USB 3.1 connectors, hubs or
UPHY_TX11_N/P (USB 3.1 Port #3)		are used.	other devices on the PCB.
UPHY_RX6_N/P (USB 3.1 Port #0)		If routed directly to a peripheral on	USB 3.1 Differential Receive Data Pairs:
UPHY_RX1_N/P (USB 3.1 Port #2)			Connect to USB 3.1 connectors, hubs or
UPHY_RX11_N/P (USB 3.1 Port #3)		the peripheral TX lines. Common- mode chokes and ESD protection, if	other devices on the PCB.
		these are used.	

Table 7-11. Recommended USB Observation Test Points for Initial Boards

Test Points Recommended	Location
One for each of the USB 2.0 data lines (USBx_N/P)	Near Jetson AGX Xavier connector and USB device. USB connector
	pins can serve as test points.
One for each of the USB 3.1 output lines used (TXn_N/P)	Near USB device. USB connector pins can serve as test points
One for each of the USB 3.1 input lines (RXn_N/P)	Near Jetson AGX Xavier connector.

PCI Express

Jetson AGX Xavier provides 16 lanes that can be used for PCIe, USB 3.1, and UFS. See the Jetson AGX Xavier USB 3.1, PCIe and UFS Lane Mapping Configurations table for details on which are available for PCIe use. Root port is supported on all PCIe interfaces. Endpoint mode is supported on Interface C5 only. Figure 7-4 shows all the PCIe interfaces configured as Root Ports. Figure 7-5 shows C5 configured as an Endpoint.

Figure 7-4. PCIe Root Port Connection Example

- AC Capacitors required on RX lines on carrier board if connected directly to device. They are not placed on the carrier board if connected to a PCIe connector. In that cases, the AC caps are on the PCIe add-in board.
- See design guidelines for correct AC capacitor values.
- The PCIe REFCLK inputs and PCIEx_CLK clock outputs comply to the PCIe CEM specification "REFCLK DC Specifications and AC Timing Requirements." The clocks are HCSL compatible.

Figure 7-5. PCIe Endpoint Connection Example

Note: See "Notes" under Figure 7-4.

7.2.1 PCle Design Guidelines up to Gen3

The following table details the PCIe design guidelines up to Gen3. See Section 7.2.2 for design guidelines regarding PCIe Gen4.

Table 7-12. PCIe Interface Signal Routing Requirements up to Gen3

Parameter	Requirement	Units	Notes
Specification			
Data Rate / UI Period	5.0 / 200	Gbps / ps	2.5GHz, half-rate architecture
Configuration / Device Organization	1	Load	2100112711all Pato al officorare
Topology	Point-point		Unidirectional, differential
Termination	50	Ω	To GND Single Ended for P and N
Impedance	1 2 2		
Trace Impedance differential / Single Ended	85 / 50	Ω	±15%. See note 1
Reference plane	GND		210761 000 11010 1
Spacing			
Trace Spacing (Stripline/Microstrip) Pair – Pair To plane and capacitor pad To unrelated high-speed signals	3x / 4x 3x / 4x 3x / 4x	Dielectric	TX and RX should not be routed on the same layer. See Note 2.
Length/Skew			
Breakout region (Max Length)	41.9	ps	Minimum width and spacing. 4x or wider dielectric height spacing is preferred
Trace loss budget (for carrier board routing)			@ 4GHz (See TBD),
Routing direct to device	-11.5	dB/in	Loss: GEN3 budget - module - end device safety margin (-22dB + 3.5.dB + 4dB + 3dB
Routing to PCIe/M.2 connector	-7.5		Loss: GEN3 budget - module - end device safety margin (-28dB + 4.24dB + 8dB + 3dE
Max trace length (delay) Direct to device on carrier board Stripline Microstrip Routed to PCIe or M.2 connector Stripline Microstrip	15.3 (2680) 14.4 (2160) 10 (1750) 9.4 (1400)	in (ps)	Mid-loss PCB of 0.8dB/in (Microstrip) or 0.75dB/in (Stripline) is used. Also, 175ps/ir for Stripline routing and 150ps/in for Microstrip.
Max PCB via distance from the BGA	41.9	ps	Max distance from BGA ball to first PCB vi
PCB within pair (intra-pair) skew	0.075 (0.5)	mm (ps)	Do trace length matching before hitting discontinuities
Within pair (intra-pair) matching between subsequent discontinuities	0.075 (0.5)	mm (ps)	
Differential pair uncoupled length	41.9	ps	
Via			
Via placement		symmetrically as poss 1x the diff pair via pito	sible to data pair vias. GND via distance should ch
Max # of Vias PTH Vias Micro-Vias	2 for TX traces and No requirement	2 for RX trace	
Max Via stub length	0.4	mm	Longer via stubs would require review
Routing signals over antipads	Not allowed		

Parameter	Requirement	Units	Notes
AC Cap			
Value GEN1/GEN2: Min/Max GEN3: Min/Max	0.075 / 0.265 uF 0.176 / 0.265		0.1uF or 0.22uF recommended for GEN1 or GEN2. 0.22uF recommended for GEN3. Only required for TX pair when routed to connector
Location (max length to adjacent discontinuity)	8 mm		Discontinuity such as edge finger, component pad
Voiding	Voiding the plane directly under the pad 3-4 mils larger than the pad size is recommended.		
Serpentine (See USB 3.1 Guidelines)			
Connector			
Volding	Voiding the plane directly under the pad 5.7 mils larger than the pad size is recommended.		
Keep critical PCIe traces such as PEX_TX/RX, TE	RMP etc. away from othe	r signal traces or uni	related power traces/areas or power supply

components

- 1. The PCIe spec. has $40-60\Omega$ absolute min/max trace impedance, which can be used instead of the 50Ω , $\pm 15\%$.
- 2. If routing in the same layer is necessary, route group TX and RX separately without mixing RX/TX routes and keep distance between nearest TX/RX trace and RX to other signals 3x RX-RX separation.
- 3. For trace loss >= 0.7dB/in @ 2.5GHz, the max trace length should be 7 inches. To reduce trace loss, ensure the loss tangent of the dielectric material and roughness of the metal are tightly controlled.
- 4. The average of the differential signals is used for length matching.
- 5. Do length matching before Via transitions to different layers or any discontinuity to minimize common mode conversion.

Figure 7-6. Insertion Loss S-Parameter Plot (SDD21)

7.2.2 PCIe Gen4 Design Guidelines

The following table details the PCIe design guidelines for Gen4.

PCIe Gen4 Interface Signal Routing Requirements Table 7-13.

Parameter	Requirement	Units	Notes		
Specification					
Data Rate / UI Period	16.0 / 62.5	Gbps / ps	8.0GHz, half-rate architecture		
Topology	Point-point		Unidirectional, differential. Driven by		
			100MHz common reference clock		
Termination	43	Ω	To GND Single Ended for P and N		
Impedance					
Trace Impedance			±15%		
differential / Single Ended	85 / 50	Ω			
Reference plane Fiber-weave_effect	GND		Example of zig-zag routing		
Tiber-weave effect	 Use spread-glass (denser weave) instead of regular-glass (sparse weave) to minimize intra-pair skew Use zig-zag route instead of straight to minimize skew, this is a mandatory for PCIe gen4 design 		LAAmple of zig-zag foutling		
Spacing					
Trace Spacing (Stripline) Pair – Pair To plane and capacitor pad To unrelated high-speed signals	4x 4x 4x	Dielectric	TX and RX should not be routed on the same layer. If this is required in a design, they should not be interleaved, and the spacing between the closest RX and TX lanes must be 9x Dielectric spacing.		
Length/Skew					
Breakout region (Max Length)	41.9	ps	Minimum width and spacing. 4x or wider dielectric height spacing is preferred		
Trace loss budget (for carrier board routing)			@ 4GHz (See TBD),		
Routing direct to device	-16	dB/in	Loss: GEN4 budget - module - end device - safety margin (-28dB + 5dB + 4dB + 3dB)		
Routing to PCIe/M.2 connector	-10.5		Loss: GEN3 budget - module - end device - safety margin (-28dB + 5dB + 9.5dB + 3dB)		
Max trace length (delay)			Mid-loss PCB of 1.47dB/in (Microstrip) or		
Direct to device on carrier board			1.35dB/in (Stripline) is used. Also, 175ps/in for		
Stripline	11.9 (2070)	in (ns)	Stripline routing and 150ps/in for Microstrip.		
•	, ,	in (ps)			
Microstrip	10.9 (1630)				
Routed to PCIe or M.2 connector					
Stripline	7.8 (1360)				
Microstrip	7.1 (1070)				
Max PCB via distance from the Device/Connector	41.9	ps	Max distance from Device ball or Connector pin to first PCB via.		
PCB within pair (intra-pair) skew	0.15 (0.5)	mm (ps)	Do trace length matching before hitting discontinuities.		

Requirement	Units	Notes		
0.15 (0.5)	mm (ps)			
41.9	ps			
	Place GND vias as symmetrically as possible to data pair vias. GND via distance should be placed less than 1x the diff pair via pitch			
4		Use micro via or back drilled via - no via stub allowed.		
na		Not Allowed		
0.22	uF	20%, 0402 X5R or better. Only required for TX pair when routed to connector. Place close to TX side.		
es)				
•				
135	deg (a)	S1 must be taken care		
4x 1.5x 3x	Trace width	in order to consider Xtalk to adjacent pair		
Remove unwanted	GND fill that is either	floating or act like antenna		
Remove anwanted	SITE III WAL IS SUITO	noung or det into differing		
under the pad 5.7 n	nils larger than the	GND at Top layer for contacting GND pin (in blue). GND below top layer.		
	0.15 (0.5) 41.9 Place GND vias as synless than 1x the diff p 4 na 0.22 Voiding the plane dir 3-4 mils larger than required. es) 135 4x 1.5x 3x Remove unwanted Vold all layers of gounder the pad 5.7 r	0.15 (0.5) mm (ps) 41.9 ps Place GND vias as symmetrically as possible to less than 1x the diff pair via pitch 4 na 0.22 uF Voiding the plane directly under the pad 3-4 mils larger than the pad size is required. es) 135 deg (a) 4x Trace width 1.5x		

Table 7-14. PCIe Signal Connections Module I/Fs Configured as Root Ports

Module Pin Name	Туре	Termination	Description
PCIe Interface #C0 (x4 used			Description
	DIFF	Series Caps (see Design	Differential Transmit Data Pairs: Connect to TX_P/N pins of
UPHY_TX[5:2]_P/N	OUT	Guideline for value)	PCIe connector or RX_P/N pin of PCIe device through AC caps.
UPHY_RX[5:2]_P/N	DIFF IN	Series Caps (see Design	Differential Receive Data Pairs: Connect to RX_P/N pins of
		Guideline for value) if device on main PCB.	PCIe connector or TX_P/N pin of PCIe device through AC caps.
PEX_CLK0_P/N	DIFF OUT		Differential Reference Clock Output: Connect to REFCLK_P/N pins of PCIe device/connector
PEX_L0_CLKREQ_N	1/0	47KΩ pullup on module to VDDIO_AO_3V3 .	PEX Clock Request for PEX_CLK0: Connect to CLKREQ pin on device/connector.
PEX_L0_RST_N	0	4.7KΩ pullup on module to VDDIO_AO_3V3	PEX Reset: Connect to PERST pin on device/connector.
UPHY_REFCLK1_N/P	DIFF IN		Differential Reference Clock 1 Pair: Unused.
PCIe Interface #C1 (x1 used	d for eSATA	A bridge on Carrier Board	d)
UPHY_TX0_P/N	DIFF OUT	Series Capacitor (see Design Guideline for value)	Differential Transmit Data Pairs: Connect to TX+/- pins of PCIe connector or RX_+/- pin of PCIe device through AC caps.
UPHY_RX0_P/N	DIFF IN	Series Capacitor (see Design Guideline for value) if device on main PCB.	Differential Receive Data Pairs: Connect to RX_+/- pins of PCIe connector or TX_+/- pin of PCIe device through AC caps.
PEX_CLK1_P/N	DIFF OUT		Differential Reference Clock Output: Connect to REFCLK_+/- pins of PCIe device/connector.
PEX_L1_CLKREQ_N	I/O	47KΩ pullup on module to VDDIO_AO_3V3 .	PEX Clock Request for PEX_CLK1: Connect to CLKREQ pin on device/connector(s)
PEX_L1_RST_N	0	4.7KΩ pullup on module to VDDIO_AO_3V3	PEX Reset: Connect to PERST pin on device/connector.
PCle Interface #C3 (x1 used	d for M.2 K	ey E on Carrier Board)	
UPHY_TX7_P/N	DIFF OUT	Series Caps (see Design Guideline for value)	Differential Transmit Data Pairs: Connect to TX_P/N pins of PCIe connector or RX_P/N pin of PCIe device through AC caps.
UPHY_RX7_P/N	DIFFIN	Series Caps (see Design Guideline for value) if device on main PCB.	Differential Receive Data Pairs: Connect to RX_P/N pins of PCIe connector or TX_P/N pin of PCIe device through AC caps.
PEX_CLK3_P/N	DIFF OUT		Differential Reference Clock Output: Connect to REFCLK_P/N pins of PCle device/connector
PEX_L3_CLKREQ_N	1/0	47KΩ pullup on module to VDDIO_AO_3V3 .	PEX Clock Request for PEX_CLK3: Connect to CLKREQ pin on device/connector.
PEX_L3_RST_N	0	4.7KΩ pullup on module to VDDIO_AO_3V3	PEX Reset: Connect to PERST pin on device/connector.
PCIe Interface #C4 (x2 - No	ot used on		
UPHY_TX[9:8]_P/N	DIFF OUT	Series Caps (see Design Guideline for value)	Differential Transmit Data Pairs: Connect to TX_P/N pins of PCIe connector or RX_P/N pin of PCIe device through AC caps.
UPHY_RX[9:8]_P/N	DIFF IN	Series Caps (see Design Guideline for value) if device on main PCB.	Differential Receive Data Pairs: Connect to RX_P/N pins of PCIe connector or TX_P/N pin of PCIe device through AC caps.
PEX_CLK4_P/N	DIFF OUT		Differential Reference Clock Output: Connect to REFCLK_P/N pins of PCIe device/connector.
PEX_L4_CLKREQ_N	1/0	47KΩ pullup on module to VDDIO_AO_3V3 .	PEX Clock Request for PEX_CLK4: Connect to CLKREQ pin on device/connector.
PEX_L4_RST_N	0	4.7KΩ pullup on module to VDDIO_AO_3V3	PEX Reset: Connect to PERST pin on device/connector.
UPHY_REFCLK2_N/P	DIFF IN		Differential Reference Clock 2 Pair: Unused.

Module Pin Name	Туре	Termination	Description		
PCIe Interface #C5 (x8 - Ro	PCIe Interface #C5 (x8 – Routed to lower 8 lanes of PCIe x16 connector)				
NVHS0_TX[7:0]_P/N	DIFF	Series Caps (see Design	Differential Transmit Data Pairs: Connect to TX_P/N pins of		
	OUT	Guideline for value)	PCIe connector or RX_P/N pin of PCIe device through AC caps.		
NVHS0_SLVS_RX[7:0]_P/N	DIFF IN	Series Caps (see Design	Differential Receive Data Pairs: Connect to RX_P/N pins of		
		Guideline for value) if	PCIe connector or TX_P/N pin of PCIe device through AC		
		device on main PCB.	caps.		
PEX_CLK5_P/N	DIFF		Differential Reference Clock Output: Connect to		
	OUT		REFCLK_P/N pins of PCIe device/connector.		
PEX_L5_CLKREQ_N	I/O	47KΩ pullup on module	PEX Clock Request for PEX_CLK5: Connect to CLKREQ pin on		
		to VDDIO_AO_3V3.	device/connector.		
PEX_L5_RST_N	0	4.7KΩ pullup on module	PEX Reset: Connect to PERST pin on device/connector.		
		to VDDIO_AO_3V3			
NVHS0_SLVS_	DIFF IN		Differential Reference Clock Pair for NVHS0_SLVS (Controller		
REFCLK_N/P			#5) interface. Unused when PCIe interface on NVHS pins is		
			configured as Root Port.		
PEX_WAKE_N		47KΩ pullupto	PEX Wake: Connect to WAKE pins on devices or connectors		
		VDDIO_AO_3V3 on			
		Module.			

Note: Check the "Supported USB 3.1 PEX and UFS Interface Mapping" tables earlier in this section for PCIe IF mapping options.

Table 7-15. PCIe Signal Connections Module I/F Configured as Endpoint

M I I D' NI	-	- · ·	D 11
Module Pin Name	Type	Termination	Description
PCIe Interface #C5 (Up to x8)			
NVHS0_TX[7:0]_P/N	DIFF OUT	Series Caps (see Design Guideline for value)	Differential Transmit Data Pairs : Connect to TX_P/N pins of PCIe connector or RX_P/N pin of PCIe device through AC caps.
NVHS0_SLVS_RX[7:0]_P/N	DIFF IN	Series Caps (see Design	Differential Receive Data Pairs: Connect to RX_P/N pins of
		Guideline for value) if device on main PCB.	PCIe connector or TX_P/N pin of PCIe device through AC caps.
PEX_CLK5_P/N	DIFF OUT		Differential Reference Clock Output: Unused when Interface #C5 is used as Endpoint.
PEX_L5_CLKREQ_N	I/O	47KΩ pullup on module	PEX Clock Request for PEX_CLK5: Connect to CLKREQ pin on
		to VDDIO_AO_3V3.	device/connector.
PEX_L5_RST_N	I	4.7KΩ pullup on module to VDDIO_AO_3V3	PEX Reset: Connect to PERST pin on device/connector.
NVHS0_SLVS_REFCLK_N/P	DIFF IN		Differential Reference Clock Pair for NVHS0_SLVS (Controller #5) Interface. Connect 100MHz differential clock source to the REFCLK pins when the PCle Interface on NVHS pins is configured as Endpoint.
PEX_WAKE_N	I	47KΩ pullup to	PEX Wake: Unused for interfaces configured as Endpoint
		VDDIO_AO_3V3 on	
		Module.	
Niodute.			

Note: Check the "Supported USB 3.1 PEX and UFS Interface Mapping" tables earlier in this section for PCIe IF mapping options.

Table 7-16. Recommended PCIe Observation Test Points for Initial Boards

Test Points Recommended	Location
One for each of the PCIe TX_+/- output lines used.	Near PCle device. Connector pins may serve as test points if accessible.
One for each of the PCIe RX_+/- input lines used.	Near Jetson AGX Xavier connector.

7.3 UFS

Jetson AGX Xavier supports a x1 Iane UFS interface.

Figure 7-7. UFS Connections Example

UFS Design Guidelines 7.3.1

The following tables gives the signal routing requirements for the UFS interface.

Table 7-17. UFS Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes		
Specification					
Max Rate		Mbps			
HS-GEAR1 (A-Series/B-Series)	1248 / 1457.6				
HS-GEAR2(A-Series/B-Series)	2496 / 2915.2				
HS-GEAR3(A-Series/B-Series)	4992 / 5830.4				
Configuration / Device Organization	1	Load			
Topology	Point-point		Unidirectional, 100Ω Differential		
Termination	100	Ω	Differential on die termination at TX/RX		
Impedance					
Trace Impedance: Differential / Single Ended	100 / 50	Ω	±15%. See note 1		
Reference plane	GND				
Spacing					
Trace Spacing (Stripline/Microstrip)					
Pair - Pair	3x / 4x	Dielectric			
To plane and capacitor pad	3x / 4x				
To unrelated high-speed signals	3x / 4x				
Length/Skew					
Breakout region (Max Length)	41.9	ps	Minimum width and spacing. 4x or wider		
			dielectric height spacing is preferred		
Max trace length					
Stripline	4 (700)	In (ps)			
Microstrip	4 (600)				

Parameter	Requirement	Units	Notes
Max PCB within pair (intra-pair) skew	0.15 (0.5)	mm (ps)	
Max Pair to Pair skew			
Tightly coupled case	33	ps	
Nominally coupled case	100		
Within pair (intra-pair) matching between subsequent discontinuities	0.15 (0.5)	mm (ps)	Do trace length matching before hitting discontinuities
Differential pair uncoupled length	41.9	ps	
Via			
Via placement		s symmetrically as an 1x the diff pair vi	possible to data pair vias. GND via distance should a pitch
Max # of Vias			
PTH Vias	2		
Micro-Vias	No requirement		
Max Via stub length	0.4	mm	Longer via stubs would require review
Discontinuity	-		
Voiding	Voiding the plane pad 5.7 mils large size is recommen		
General			
Keep critical PCIe traces such as PEX_TX/RX, TERMP e	tc. away from othe	er signal traces or u	Inrelated power traces/areas or power supply

Table 7-18. UFS Signal Connections

components

Ball Name (Function)	Туре	Termination	Description
UPHY_TX10_P/N	DIFF		Differential Transmit Data Pairs: Connect to DIN0_T/C pins of
(UFS_TX0_P/N)	OUT		UFS device
UFS0_REF_CLK	0		UFS Reference Clock: Connect to REF_CLK pin on device.
UFS0_RST	0		UFS Reset: Connect to RST pin on device

Note: Due to the power connections on the module, the SoC UFS sideband signal interface (UFS0_REF_CLK and UFS0_RST) supports 1.2V operation only. If higher voltage is required by the connected UFS device, level shifters will be needed.

Chapter 8. Gigabit Ethernet

Jetson AGX Xavier provides an RGMII interface to support GBit Ethernet functionality. The Ethernet PHY, magnetics and RJ45 connector are implemented on the carrier board.

Table 8-1. Jetson AGX Xavier Gigabit Ethernet Pin Descriptions

Pin#	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
J5	ENET_INT	SOC_GPI008	Ethernet Interrupt	Ethernet PHY	Input	CMOS - 1.8V	ST	pd
H5	ENET_RST_N	SOC_GPI009	Ethernet Reset	Ethernet PHY	Output	CMOS - 1.8V	ST	pd
C4	RGMII_RD0	EQOS_RD0	Ethernet Receive data bit 0	Ethernet PHY	Input	CMOS - 1.8V	LV_CZ	Z
K6	RGMII_RD1	EQOS_RD1	Ethernet Receive databit 1	Ethernet PHY	Input	CMOS - 1.8V	LV_CZ	Z
H6	RGMII_RD2	EQOS_RD2	Ethernet Receive databit 2	Ethernet PHY	Input	CMOS - 1.8V	LV_CZ	Z
E5	RGMII_RD3	EQOS_RD3	Ethernet Receive databit 3	Ethernet PHY	Input	CMOS - 1.8V	LV_CZ	Z
D5	RGMII_RX_CTL	EQOS_RX_CTL	Ethernet Receive Control	Ethernet PHY	Input	CMOS - 1.8V	LV_CZ	Z
C5	RGMII_RXC	EQOS_RXC	Ethernet Receive Clock	Ethernet PHY	Input	CMOS - 1.8V	LV_CZ	Z
E6	RGMII_SMA_ MDC	EQOS_SMA_MDC	Ethernet Management Clock	Ethernet PHY	Output	CMOS - 1.8V	LV_CZ	Z
E7	RGMII_SMA_ MDIO	EQOS_SMA_MDIO	Ethernet Management Data	Ethernet PHY	Bidir	CMOS - 1.8V	LV_CZ	pu
J6	RGMII_TD0	EQOS_TD0	Ethernet Transmit databit 0	Ethernet PHY	Output	CMOS - 1.8V	LV_CZ	Z
G5	RGMII_TD1	EQOS_TD1	Ethernet Transmit databit 1	Ethernet PHY	Output	CMOS - 1.8V	LV_CZ	Z
J7	RGMII_TD2	EQOS_TD2	Ethernet Transmit databit 2	Ethernet PHY	Output	CMOS - 1.8V	LV_CZ	Z
G6	RGMII_TD3	EQOS_TD3	Ethernet Transmit databit 3	Ethernet PHY	Output	CMOS - 1.8V	LV_CZ	Z
K7	RGMII_TX_CTL	EQOS_TX_CTL	Ethernet Transmit Control	Ethernet PHY	Output	CMOS - 1.8V	LV_CZ	Z
B5	RGMII_TXC	EQOS_TXC	Ethernet Transmit Clock	Ethernet PHY	Output	CMOS - 1.8V	LV_CZ	Z

- 1. In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals.
- The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.

Jetson AGX Xavier SoC **ENET PHY** MDI_0P GBE_MDI0+ TX_CLK **EQOS** EQOS_TXC **B5** MDI_ON GBE_MDI0-RGMI_TD0 TX D0 EQOS_TD0 RGMI_TD1 EQOS_TD1 EQOS_TD2 TXD1 MDI_1P GBE_MDI1+ G5 RGMI TD2 MDI_1N GBE_MDII-TXD2 J7 RGMI_TD3 TXIX EQOS_TD3 MDI_2P GBE_MDI2+ RGMI_TX_CTL EQOS_TX_CTL TX_CTRL К7 MDI_2N GBE_MDI2-RGMI RXC EQOS RXC RX_CLK **C5** MDI_3P GBE_MDB+ RGMI_RD0 RXD0 EQOS_RD0 C4 MDI_3N GBE_MDI3-RGMI_RD1 EQOS_RD1 ← EQOS_RD2 ← К6 ◀ RXD1 RGMI RD2 RXD2 Н6 RGMI_RD3 RXD3 EQOS_RD3 RGMI_RX_CTL EQOS_RX_CTL RX_CTRL D5 -Q VDD_1V8 **1.5kΩ** −**₩**V−**Q** VDDIO_SYS_1V8LS RGMI SMA MDC **EQOS MDC** MDC E6 RGMI_SMA_MDIO EQOS_MDIO MDIO E7 ENET RST N RESET* **CONN** SOC_GPIO09 Н5 INT* SOC_GPIO08

Figure 8-1. **Ethernet Connections**

Gigabit Ethernet Magnetics and RJ45 Connections Figure 8-2.

Note: The connections in Figure 8-2 match those used on the carrier board and are shown for reference.

Table 8-2. RGMII Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes		
Max Frequency	125	MHz			
Topology	Point to point		Unidirectional, source terminated, source synchronous		
Reference plane	GND or PWR		See note 1		
Max PCB breakout delay	5 (30)	mm (ps)			
Trace Impedance	45-50	Ω	±15%		
Via proximity (Signal via to GND return via)	< 3.8 (24)	mm (ps)	See note 2		
Trace spacing: Microstrip / Stripline	4x / 3x	dielectric			
Max Trace Length/Delay	175 (1200)	mm (ps)			
Max Trace Delay Skew Between Clock and Data	4.8 (30)	mm (ps)			
Isolation of TX and RX CLK signals			CLK and RX_CLK signals: and any other signal, or		
	2. >5x spacing	from each other ar	nd any other signal, or neach other and any other signal		
Isolation of TX and RX groups	One of the following options for TX signal and RX signal groups: 1. GND shielding from each other, or 2. >5x spacing from each other, or				
	3. Routed on separate layers from each other				
Noise Coupling Avoidance	Keep critical trace power supply com	-	signal traces or unrelated power traces/areas or		

- 1. If PWR, add 2x 0201 100nF and 2x 0402 4.7uF decoupling capacitors between PWR and GND for return current
- Up to 4 signal vias can share a single GND return via

Ethernet MDI Interface Signal Routing Requirements Table 8-3.

Parameter	Requirement	Units	Notes
Reference plane	GND		
Trace Impedance: Diff pair / Single Ended	100 / 50	Ω	±15%. Differential impedance target is 100 Ω . 90 Ω can be used if 100 Ω is not achievable
Min Trace Spacing (Pair-Pair)	0.763	mm	
Max Trace Length	109 (690)	mm (ps)	
Max Within Pair (Intra-Pair) Skew	0.15 (1)	mm (ps)	
Number of Vias	minimum		Ideally there should be no vias, but if required for breakout to Ethernet controller or magnetics, keep very close to either device.

Ethernet Signal Connections Table 8-4.

Module Pin	Туре	Termination	Description
Name			
RGMII_TXC	0		RGMI Transmit Clock: Connect to TXCLK pin on GbE Transcelver.
RGMII_TD[3:0]	0		RGMI Transmit Data: Connect to TXD[3:0] pins on GbE Transcelver.
RGMII_TX_CTL	0		RGMI Transmit Control: Connect to TXEN pin on GbE Transcelver.
RGMII_RXC	I		RGMI Receive Clock: Connect to RXCLK pin on GbE Transceiver.
RGMII_RD[3:0]	I		RGMI Receive Data: Connect to RXD[3:0] pins on GbE Transceiver.
RGMII_RX_CTL	I		RGMI Receive Control: Connect to RXDV pin on GbE Transceiver.
RGMII_MDC	0		MDC: Connect to MDC pin on GbE Transceiver.
RGMII_MDIO	I/O	2.2kΩ pull-up to VDD_1V8	MDIO: Connect to MDIO pin on GbE Transceiver.
ENET_RST_N	0		Ethernet Reset: Connect to Reset input on Ethernet PHY.
ENET_INT	I	10kΩ puII-up to VDD_1V8	Ethernet Interrupt: Connect to Interrupt output on Ethernet PHY.
GBE_MDI[3:0]+/-	DIFF I/O	ESD device to GND per signal	Gigabit Ethernet MDI IF Pairs: Connect to Magnetics +/- pins

Recommended Gigabit Ethernet Observation Test Points for Initial Table 8-5. Boards

Test Points Recommended	Location
One for each of the RGMII lines.	
One for each of the MDI[3:0]+/- lines.	Near Jetson AGX Xavier connector and magnetics device.

Chapter 9. Display

Jetson AGX Xavier includes three interfaces (HDMI_DP[2:0]). Each can support eDP / DP or HDMI. See the *Jetson AGX Xavier Data Sheet* for the maximum resolutions supported.

Table 9-1. Jetson AGX Xavier HDMI, eDP, and DP Pin Description

Pin#	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
H48	HDMI_DP0_ TX0_N	HDMI_DP0_TXDN0	DisplayPort 0 Lane 0- or HDMI Lane 2-				-	Z
H49	HDMI_DP0_ TX0_P	HDMI_DP0_TXDP0	DisplayPort 0 Lane 0+ or HDMI Lane 2+				-	Z
G50	HDMI_DP0_ TX1_N	HDMI_DP0_TXDN1	DisplayPort 0 Lane 1- or HDMI Lane 1-				-	Z
G51	HDMI_DP0_ TX1_P	HDMI_DP0_TXDP1	DisplayPort 0 Lane 1+or HDMI Lane 1+		Outunt	Diff pair, AC- Coupled on	-	Z
J48	HDMI_DP0_ TX2_N	HDMI_DP0_TXDN2	DisplayPort 0 Lane 2- or HDMI Lane 0-		Output	carrier board	-	Z
J47	HDMI_DP0_ TX2_P	HDMI_DP0_TXDP2	DisplayPort 0 Lane 2+ or HDMI Lane 0+	USB Type C Conn. J512 (via Alt Mode Switch)			-	Z
K47	HDMI_DP0_ TX3_N	HDMI_DP0_TXDN3	DisplayPort 0 Lane 3- or HDMI CIk Lane-	(12111111111111111111111111111111111111	Bidir		-	Z
K46	HDMI_DP0_ TX3_P	HDMI_DP0_TXDP3	DisplayPort 0 Lane 3+ or HDMI CIk Lane+				-	Z
F51	DP0_AUX_CH_N	DP_AUX_CH0_N	DisplayPort 0 Aux- or HDMI DDC SDA			AC-Coupled on Carrier Board (eDP/DP) or Open-Drain, 1.8V (3.3V tolerant - DDC/I2C)	DP_AUX	Z
F52	DP0_AUX_CH_P	DP_AUX_CH0_P	DisplayPort 0 Aux+ or HDMI DDC SCL				DP_AUX	Z
K52	DP0_HPD	DP_AUX_CH0_HPD	DisplayPort/HDMI0 Hot Plug Detect		Input	CMOS - 1.8V	DD	pd
A48	HDMI_DP1_ TX0_N	HDMI_DP1_TXDN0	DisplayPort 1 Lane 0- or HDMI Lane 2-				-	Z
A47	HDMI_DP1_ TX0_P	HDMI_DP1_TXDP0	DisplayPort 1 Lane 0+ or HDMI Lane 2+				-	Z
B48	HDMI_DP1_ TX1_N	HDMI_DP1_TXDN1	DisplayPort 1 Lane 1- or HDMI Lane 1-				-	Z
B49	HDMI_DP1_ TX1_P	HDMI_DP1_TXDP1	DisplayPort 1 Lane 1+ or HDMI Lane 1+	USB Type C Conn. J513 (via Alt Mode Switch)	Output	Diff pair, AC- Coupled on	-	Z
D48	HDMI_DP1_ TX2_N	HDMI_DP1_TXDN2	DisplayPort 1 Lane 2- or HDMI Lane 0-			carrier board	-	Z
D49	HDMI_DP1_ TX2_P	HDMI_DP1_TXDP2	DisplayPort 1 Lane 2+ or HDMI Lane 0+				-	Z
E51	HDMI_DP1_ TX3_N	HDMI_DP1_TXDN3	DisplayPort 1 Lane 3- or HDMI CIk Lane-	1			-	Z

Pin#	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
E50	HDMI_DP1_ TX3_P	HDMI_DP1_TXDP3	DisplayPort 1 Lane 3+ or HDMI CIk Lane+				-	Z
J53	DP1_AUX_CH_N	DP_AUX_CH1_N	DisplayPort 1 Aux- or HDMI DDC SDA		Bidir	Carrier Board	DP_AUX	Z
J52	DP1_AUX_CH_P	DP_AUX_CH1_P	DisplayPort 1 Aux+ or HDMI DDC SCL		J.a	Open-Drain, 1.8V (3.3V tolerant - DDC/I2C)	DP_AUX	Z
K51	DP1_HPD	DP_AUX_CH1_HPD	DisplayPort/HDMI1 Hot Plug Detect		Input	CMOS - 1.8V	DD	pd
D52	HDMI_DP2_ TX0_N	HDMI_DP2_TXDN0	DisplayPort 2 Lane 0- or HDMI Lane 2-				-	Z
D51	HDMI_DP2_ TX0_P	HDMI_DP2_TXDP0	DisplayPort 2 Lane 0+ or HDMI Lane 2+				-	Z
B52	HDMI_DP2_ TX1_N	HDMI_DP2_TXDN1	DisplayPort 2 Lane 1- or HDMI Lane 1-				-	Z
B51	HDMI_DP2_ TX1_P	HDMI_DP2_TXDP1	DisplayPort 2 Lane 1+ or HDMI Lane 1+		Diff pair, AC-	-	Z	
A50	HDMI_DP2_ TX2_N	HDMI_DP2_TXDN2	DisplayPort 2 Lane 2- or HDMI Lane 0-		Output	Coupled on carrier board	-	Z
A51	HDMI_DP2_ TX2_P	HDMI_DP2_TXDP2	DisplayPort 2 Lane 2+ or HDMI Lane 0+				-	Z
C50	HDMI_DP2_ TX3_N	HDMI_DP2_TXDN3	DisplayPort 2 Lane 3- or HDMI CIk Lane-	HDMI Connector			-	Z
C51	HDMI_DP2_ TX3_P	HDMI_DP2_TXDP3	DisplayPort 2 Lane 3+ or HDMI CIk Lane+				-	Z
G54	DP2_AUX_CH_N	DP_AUX_CH2_N	DisplayPort 2 Aux- or HDMI DDC SDA		Bidir	Carrier Board	DP_AUX	Z
G53	DP2_AUX_CH_P	DP_AUX_CH2_P	DisplayPort 2 Aux+ or HDMI DDC SCL		Dian	Open-Drain, 1.8V (3.3V tolerant - DDC/I2C)	DP_AUX	Z
K50	DP2_HPD	DP_AUX_CH2_HPD	DisplayPort/HDMI2 Hot Plug Detect		Input	CMOS - 1.8V	DD	pd
J50	HDMI_CEC	HDMI_CEC	HDMI CEC		Bidir	Open Drain, 1.8V (3.3V tolerant – See note)	DD	Z

- Although HDMI_CEC is 3.3V tolerant, there is a pull-up on the module to 1.8V on the pin. Any pull-up to 3.3V on the carrier board should be weak. It is recommended that the value be no stronger than the $162k\Omega$ used on the P2922 reference design
- In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals.
- The direction shown in this table for DPx_HPD is true when used for Hot-plug Detect. Otherwise if used as GPIOs, the direction is bidirectional.
- 4. The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.

Table 9-2. DP and HDMI Pin Mapping

Module Pin Name	Module Pin #s	SoC Pin Name	SoC Pin #s	HDMI	DP
HDMI_DP0					
HDMI_DP0_TX0_P	H49	HDMI_DP0_TXDP0	C44	TXD2_P	TXD0_P
HDMI_DP0_TX0_N	H48	HDMI_DP0_TXDN0	D44	TXD2_N	TXD0_N
HDMI_DP0_TX1_P	G51	HDMI_DP0_TXDP1	D43	TXD1_P	TXD1_P
HDMI_DP0_TX1_N	G50	HDMI_DP0_TXDN1	E43	TXD1_N	TXD1_N
HDMI_DP0_TX2_P	J47	HDMI_DP0_TXDP2	C42	TXD0_P	TXD2_P
HDMI_DP0_TX2_N	J48	HDMI_DP0_TXDN2	D42	TXD0_N	TXD2_N
HDMI_DP0_TX3_P	K46	HDMI_DP0_TXDP3	A41	TXC_P	TXD3_P
HDMI_DP0_TX3_N	K47	HDMI_DP0_TXDN3	A42	TXC_N	TXD3_N
HDMI_DP1					
HDMI_DP1_TX0_P	A47	HDMI_DP1_TXDP0	F41	TXD2_P	TXD0_P
HDMI_DP1_TX0_N	A48	HDMI_DP1_TXDN0	G41	TXD2_N	TXD0_N
HDMI_DP1_TX1_P	B49	HDMI_DP1_TXDP1	H40	TXD1_P	TXD1_P
HDMI_DP1_TX1_N	B48	HDMI_DP1_TXDN1	G40	TXD1_N	TXD1_N
HDMI_DP1_TX2_P	D49	HDMI_DP1_TXDP2	J41	TXD0_P	TXD2_P
HDMI_DP1_TX2_N	D48	HDMI_DP1_TXDN2	K41	TXD0_N	TXD2_N
HDMI_DP1_TX3_P	E50	HDMI_DP1_TXDP3	H42	TXC_P	TXD3_P
HDMI_DP1_TX3_N	E51	HDMI_DP1_TXDN3	J42	TXC_N	TXD3_N
HDMI_DP2					
HDMI_DP2_TX0_P	D51	HDMI_DP2_TXDP0	F45	TXD2_P	TXD0_P
HDMI_DP2_TX0_N	D52	HDMI_DP2_TXDN0	G45	TXD2_N	TXD0_N
HDMI_DP2_TX1_P	B51	HDMI_DP2_TXDP1	F44	TXD1_P	TXD1_P
HDMI_DP2_TX1_N	B52	HDMI_DP2_TXDN1	G44	TXD1_N	TXD1_N
HDMI_DP2_TX2_P	A51	HDMI_DP2_TXDP2	H43	TXD0_P	TXD2_P
HDMI_DP2_TX2_N	A50	HDMI_DP2_TXDN2	G43	TXD0_N	TXD2_N
HDMI_DP2_TX3_P	C51	HDMI_DP2_TXDP3	G42	TXC_P	TXD3_P
HDMI_DP2_TX3_N	C50	HDMI_DP2_TXDN3	F42	TXC_N	TXD3_N

9.1 DP and eDP

Figure 9-1 shows the connection example for the DP and eDP connectors.

Figure 9-1. DP and eDP Connection Example

Notes:

- 1. A Level shifter is required on HPD to avoid the pin from being driven when the module is off. The level shifter must be non-inverting (preserve polarity of the signal from the display).
- 2. Pull-up/down only required for DP not for eDP.
- 3. If EMI devices are necessary, they must be tuned to minimize the impact to signal quality, which must meet the timing and electrical requirements of the DisplayPort specification for the modes to be supported. Any ESD solution must also maintain signal integrity and meet the DisplayPort requirements for the modes to be supported.

9.1.1 DP and eDP Routing Guidelines

Figure 9-2 shows the topology for DisplayPort and embedded DisplayPort. Table 9-3 shows the signal routing requirements including DP_AUX.

Figure 9-2. DP and eDP Differential Main Link Topology

Table 9-3. DP and eDP Main Link Signal Routing Requirements

Parameter	Requirement	Units	Notes
Specification			
Max Data Rate / Min UI HBR2 HBR RBR	5.4 / 185 2.7 / 370 1.62 / 617	Gbps / ps	Per data lane
Number of Loads / Topology	1	load	Point-Point, Differential, Unidirectional
Termination	100	Ω	On die at TX/RX
Electrical Specification			
Insertion Loss E-HBR @ 0.675GHz PBR 0.68GHz HBR 1.35GHz HBR2@ 2.7GHz Resonance dip frequency TDR dip FEXT @ DC @ 2.7GHz	<=0.7 <=0.7 <=1.2 <=2.4 >8 >85 <= -40dB <= -30dB	dB dB dB dB GHz Ω IL/FEXT plot – up 0 11, spec 1 11, spec 1 11, spec 1 12, 20, 4 13, 20, 4 14, 20, 4 15, 20, 4 16,	S-parameter Plot
Impedance			rreq. (unz)
Trace Impedance (Diff pair)	100 90 85	Ω (±10%)	1000 is the spec. target. 95/850 are implementation options (Zdiff does not account for trace coupling) 950 should be used to support DP-HDMI co-layout as HDMI 2.0 requires 1000 impedance (see HDMI section for addition of series resistor Rs). 850 can be used if eDP/DP only and is preferable as it can provide better trace loss characteristic performance. See Note 1.
Reference Plane	GND		
Trace Length, Spacing and Skew			
Trace loss characteristic @ 2.7GHz	< 0.81	dB/in	The following max length is derived based on this characteristic. The length constraint must be redefined if loss characteristic is changed.
Max PCB Via dist. from module conn. RBR/HBR HBR2	No requirement 7.63 (0.3)	mm (in)	
Max trace length from module to connector RBR/HBR (Stripline / Microstrip) HBR2 (Stripline) HBR2 (Microstrip, 5x / 7x)	215 (1137.5)/(975) 101.6 (700) 89 (525) / 101.6 (600)	mm (ps)	175ps/inch assumption for Stripline, 150ps/inch for Microstrip.

Parameter	Requirement	Units	Notes
Trace spacing (Pair-Pair)			
Stripline	3x	dielectric	
Microstrip (HBR/RBR)	4x		
Microstrip (HBR2)	5x to 7x		
Trace spacing (Main Link to AUX): Stripline/Microstrip	3x / 5x	dielectric	
Max Intra-pair (within pair) Skew	0.15 (1)	mm (ps)	Do not perform length matching within breakout
			region
			Do trace length matching before hitting discontinuity (i.e. matching to <1ps before the vias
			or any discontinuity to minimize common mode
			conversion).
Max Inter-pair (pair-pair) Skew	150	ps	
Via			
Max GND transition Via distance	< 1x	diff pair pitch	For signals switching reference layers, add symmetrical GND stitching Via near signal Vias.
Impedance dip	≥97	Ω @ 200ps	The via dimension must be required for the HDMI-
	≥92	Ω @ 35ps	DP co-layout condition.
Recommended via dimension for impedance control			
Drill/Pad	200/400	um	
Antipad	>840	um	
Via pitch	>880	um	
Topology	Y-pattern is recor	nmended	
	keep symmetry		
	Xtalk suppression	is host using the	
	Y-pattern. It can a		
	limit of pair-pair of)
	For in-line via, the	a distance from a	
	via of one lane to		
	from other lane >		
	center.		-1.2mm
GND via	Place GND via as	symmetrically as	GND via is used to maintain return path, while its
0.15 1.0	possible to data p		Xtalk suppression is limited
	signal vias (2 diff	pairs) can share a	
	single GND return	n via	
Max # of Vias			
PTH vias	4 if all vias are PT		
Micro Vias	Not limited as Ion loss meets IL spe	g as total channel	
Max Via Stub Length	0.4	mm	
AC Cap	1		
Value	0.1	uF	Discrete 0402
Max Dist. from AC cap to connector	0.1	ui .	DISCI GIG 0702
RBR/HBR	No requirement	in	
HBR2	0.5		
Voiding	İ		HBR2: Voiding the plane directly under the pad 3-
RBR/HBR	No requirement		4 mils larger than the pad size is recommended.
HBR2	Voiding required		
Serpentine (See USB 3.1 Guidelines)			
, , , , , , , , , , , , , , , , , , , ,	1	I	I.

Parameter	Requirement	Units	Notes
Connector			
Voiding RBR/HBR HBR2	No requirement Voiding required		HBR2: Standard DP Connector: Voiding requirement is stack-up dependent. For typical stack-ups, voiding on the layer under the connector pad is required to be 5.7mil larger than the connector pad.
General			

Keep critical PCIe traces such as PEX_TX/RX, TERMP etc. away from other signal traces or unrelated power traces/areas or power supply components

Notes:

- 1. For eDP/DP, the spec puts a higher priority on the trace loss characteristic than on the impedance. However, before selecting 85Ω for impedance, it is important to make sure the selected stack-up, material and trace dimension can achieve the needed low loss characteristic.
- The average of the differential signals is used for length matching.
- Do not perform length matching within breakout region. Recommend doing trace length matching to <1ps before vias or any discontinuity to minimize common mode conversion

DP and eDP Signal Connections Table 9-4.

Module Pin Name	Туре	Termination	Description
HDMI_DPx_TX[3:0]_P/N	0	Series 0.1uF capacitors on all lines	DP/eDP Differential CLK/Data Lanes: Connect to matching pins on display connector. See DP/HDMI Pin Mapping and connection diagram for details.
DPx_AUX_CH_P/N	I/OD	Series 0.1uF capacitors	DP/eDP: Auxiliary Channels: Connect to AUX_CH+/- on display connector.
DPx_HPD	I		DP/eDP: Hot Plug Detect: Connect to HPD pin on display connector.

Table 9-5. Recommended DP and eDP Observation Test Points for Initial Boards

Test Points Recommended	Location
One for each signal line.	Near display connector. Connector pins can be used if accessible.
Note: Test points must be done careful	lly to minimize signal integrity impact. Avoid stubs and keep pads small and

near signal traces

9.2 HDMI

A standard DP 1.2a or HDMI v2.0 interface is supported. These share the same set of interface pins, so either DisplayPort or HDMI can be supported natively.

Load Switch See Note 1 OUT CIVDD 5V0 HDMI CON VDD 5V h-**HDMI** Connector Jetson AGX Xavier SoC - HDMI DP0/DP1/DP2 100kΩ DPx_HPD EDP DP_AUX_CHx_HPD K52/K51/K50 HPD DPx AUX CH P DP_AUX_CHx_P F52/J52/G53 DP_AUX_CHx_N

DPx_AUX_CH_N F51/J53/G54 SDA HDMI_CEC HDMI_DPx 0.1uF HDMI_DPx_TX0_P H49/A47/D51 HDMI_DPx_TXDP0 D24 HDMI_DPx_TX0_N H48/A48/D52 TX2_N 0.1uF HDMI_DPx_TXDN0 0.1uF HDMI_DPx_TX1_P G51/B49/B51 TX1_P HDMI DPx TXDP1 TX1_N HDMI_DPx_TXDN1 G50/B48/B52 0.1uF HDMI_DPx_TX2_P HDMI_DPx_TXDP2 0.1uF HDMI_DPx_TX2_N TX0_N J48/D48/A50 HDMI DPx TXDN2 0.1uF HDMI_DPx_TX3_P K46/E50/C51 HDMI_DPx_TXDP3 HDMI_DPx_TX3_N K47/E51/C50 0.1uF TXC N HDMI_DPx_TXDN3 TTTTT | I AUDIO_HV 600Ω 5V0_HDMI_EN Enable DAP6_FS

Figure 9-3. HDMI Connection Example

- 1. The load switch circuit shown is intended to remove power to the HDMI connector and related circuitry to avoid backdrive on signals to the module. Other mechanisms may be used but must prevent module pins being driven when the module is off.
- 2. Level shifters required on DDC/HPD. Jetson AGX Xavier pads are not 5V tolerant and cannot directly meet HDMI VIL/VIH requirements. HPD level shifter can be non-inverting or inverting.
- 3. If EMI/ESD devices are necessary, they must be tuned to minimize the impact to signal quality, which must meet the timing and electrical requirements of the HDMI specification for the modes to be supported, ee requirements and recommendations in the related sections of Table 9-6.
- 4. The HDMI_DP_TXx pads are native DP pads and require series AC capacitors (ACCAP) and pull-downs (RPD) to be HDMI compliant. The 499Ω , 1% pull-downs must be disabled when SoC is off to meet the HDMI VOFF requirement. The enable to the FET, enables the pull-downs when the HDMI interface is to be used. Chokes between pull-downs and FET are required for Standard Technology designs and recommended for HDI designs.
- 5. Series resistors RS are required. See the RS section of Table 9-6 for details.

HDMI CLK and Data Topology Figure 9-4.

- 1. RPD pad must be on the main trace. RPD and ACCAP must be on same layer.
- 2. Chokes (600 Ω @ 100 MHz) or narrow traces (1 uH@DC-100 MHz) between pull-downs and FET are required for Standard Technology (through-hole) designs and recommended for HDI designs.
- 3. The trace after the main-route via should be routed on the top or bottom layer of the PCB, and either with 100 ohm differential impedance, or as uncoupled 50 ohm Single Ended traces.
- 4. RS series resistor is required. See the RS section of Table 9-6 for details.

Table 9-6. HDMI Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Specification			
Max Frequency / UI	5.94 / 168	Gbps / ps	Per lane - not total link bandwidth
Topology	Point to point		Unidirectional, Differential
Termination			Differential To 3.3V at receiver
At Receiver	100	Ω	To GND near connector
On-board	500		

Parameter	Requirement	Units	Notes
Electrical Specification	·		
IL .	<= 1.7	dB @ 1GHz	
	<= 2	dB @ 1.5GHz	
	<= 3	dB @ 3GHz	
	< 6	dB @ 6GHz	
resonance dip frequency	> 12	GHz	
TDR dip	>= 85	Ω @ Tr=200ps	10%-90%. If TDR dip is 75-85ohm that dip width should < 250ps
FEXT (PSFEXT)	<= -50	dB at DC	PSNEXT is derived from an algebraic summation
	<= -40	dB at 3GHz	of the individual NEXT effects on each pair by the
	<= -40	dB at 6GHz	other pairs
	IL/F	EXT plot	TDR plot
	0	S-parameter Plot	125 TDR Plot 126 127 128 129 129 129 129 129 129 129 129 129 129
Impedance			
Trace Impedance Diff pair	100	Ω	$\pm 10\%$. Target is 100Ω. 95Ω for the breakout & main route is an implementation option.
Reference plane	GND		
Trace Length, Spacing and Skew			
Trace loss characteristic:	< 0.8 < 0.4	dB/in. @ 3GHz dB/in. @ 1.5GHz	The max length is derived based on this characteristic. The length constraint must be redefined if the loss characteristic is changed.
Trace spacing (Pair-Pair) Stripline	3x	dielectric	For Stripline, this is 3x of the thinner of above and
Microstrip: pre 1.4b	4x		below.
Microstrip: 1.4b/2.0	5x to 7x		
Trace spacing (Main Link to DDC) Stripline Microstrip	3x 5x	dielectric	For Stripline, this is 3x of the thinner of above and below.
Max Total Delay (1.4b/2.0 - up to 5.94Gbps) Stripline			Propagation delay: 175ps/in. for stripline, 150ps/in. for microstrip).
Microstrip (5x spacing) Microstrip (7x spacing)	63.5/2.5 (437) 50.8/2.0 (300) 63.5/2.5 (375)	mm/in (ps)	
Max Intra-Pair (within pair) Skew	0.15 (1)	Mm (ps)	See Notes 1, 2 and 3
Max Inter-Pair (pair to pair) Skew	150	ps	See Notes 1, 2 and 3
Max GND transition Via distance	1x	Diff pair via pitch	For signals switching reference layers, add one or two ground stitching vias. It is recommended they be symmetrical to signal vias.

Parameter	Requirement	Units	Notes	
Via				
Topology	Y-pattern is reconkeep symmetry	nmended	Xtalk suppression is the best by Y-pattern. Also it can reduce the limit of pair-pair distance. Need	
Minimum Impedance dip	12 tu 200p3		review (NEXT/FEXT check) if via placement is not Y-pattern.	
Recommended via dimension for impedance control Drill/Pad Antipad Via pitch	200/400 >840 >880	um um um		
GND via	Place GND via as possible to data pa signal vias (2 diff pa single GND return	air vias. Up to 4 pairs) can share a	GND via is used to maintain return path, while its Xtalk suppression is limited	
Connector pin via	The break-in trace pin via should be n BOTTOM in order effect Equal spacing (0.8 adjacent signal via The x-axis distance and GND via shou	couted on the to avoid via stub (2mm) between as. e between signal	GND 0.8mm	
Max # of Vias PTH vias Micro Vias	4 if all vias are PTH via Not limited as long as total channel loss meets IL spec			
	No breakout: ≼ 3 vias		breakout on the same layer as main trunk: ≤ 4 vias	
	CORE CORE	CORE AcceptRpd CKT+Rs	CORE CORE CORE CORE CORE	
Max Via Stub Length	0.4	mm	long via stub requires review (IL and resonance dip check)	
Serpentine (See USB 3.1 Guidelines)				
Topology (See Figure 9-4)				
The main-route via dimensions should comply with the	via structure rules	(See Via section)		
For the connector pin vias, follow the rules for the connector	·			
The traces after main-route via should be routed as 10	0Ω differential or a	s uncoupled 50ohr	n Single-ended traces on PCB Top or Bottom.	
Max distance from RPD to main trace (seg B)	1	mm		
Max distance from AC cap to RPD stubbing point (seg A)	~0	mm		
Max distance between ESD and signal via	3	mm		

Parameter	Requirement	Units	Notes
Add-on Components			
Example of a case where space is limited for placing components.	Top ESD array 1000hm diff trace VVars2conn		Bottom VAACS/CORIN Rpd Rpd Accord VAACS/CORIN Rpd VAACS/CORIN Rpd VAACS/CORIN VAACS/CORIN Rpd VAACS/CORIN VAA
AC CAP			
Value	0.1	uF	
Max via distance from BGA	7.62 (52.5)	mm (ps)	
Location	must be placed be resistor	efore pull-down	The distance between the AC cap and the HDMI connector is not restricted.
Placement PTH design Micro-Via design Void	Place cap on top I Not Restricted GND (or PWR) voi	om layer if main-route ayer if main-route d under/above the old size = SMT area ght keepout	
Pull-down Resistor (Rpd), choke/FET			
Value	500	Ω	
Location.	Must be place	d after AC cap	100ohm diff. trace
Layer of placement	Same layer as AC choke can be plac opposite layer thr		Main-route Via with short stub On opposite side
Choke between RPD & FET Choke Max Trace Rdc Max Trace length	600 or 1 <20 4	Ω@100MHz uH@DC-100MHz mΩ mm	Can be choke or Trace. Recommended option for HDMI2.0 HF1-9 improvement.
Void	GND/PWR void ur preferred	nder/above cap is	
Common-Mode Choke (Stuffing option – no	ot added unless	s EMI issue is se	een)
Common-mode impedance @ 100MHz Min Max	65 90	Ω	TDK ACM2012D-900-2P
RDC Differential TDR impedance	<=0.30hm 900hm +/-15% @ Tr=200ps (10%- 90%)		Common mode Common mode Differential mode
Min Sdd21 @ 2.5GHz	2.22	dB	1 10 100 1000 10000 Frequency(MHz)
Max Scc21 @ 2.5GHz	19.2	dB	
Location	Close to any adjact (< 8mm) – such as etc.		

Parameter	Requirement	uirement Units Notes					
ESD (On-chip protection diode is able to wit	hstand 2kV HM	M. External ES	D is optional. Designs should include				
ESD footprint as a stuffing option)							
Max junction capacitance (IO to GND)	0.35	pF	e.g. ON-semiconductor ESD8040				
Footprint	Pad right on the n stub	et instead of trace	DOT OUT N				
Location	After pull-down rebefore RS	esistor/CMC and					
Void	GND/PWR void un is needed. Void si for 1 pair	der/above the cap ze = 1mm x 2mm					
Series Resistor (Rs) – Series resistor on F	Series Resistor (Rs) – Series resistor on P/N path for HDMI 2.0 (Mandatory)						
Value	t v		± 10%. Oohm is acceptable if the design passes the HDMI2.0 HF1-9 test. Otherwise, adjust the RS value to ensure the HDMI2.0 tests pass: Eye diagram, Vlow test and HF1-9 TDR test				
Location	After all compone HDMI connector	nts and before					
Void	GND/PWR void un device is needed. area + 1x dielectric distance.	Void size = SMT					
Connector							
Connector Voiding	Voiding the ground lanes 0.1448(5.7m pin itself						
General							
Routing over Voids	Routing over voids not allowed except void around device ball/pin the signal is routed to.						
Noise Coupling	Keep critical HDMI related traces including differential clock/data traces and RSET trace away from other signal traces or unrelated power traces/areas or power supply components						

- 1. The average of the differential signals is used for length matching.
- Do not perform length matching within breakout region. Recommend doing trace length matching to <1ps before vias or any $discontinuity \,to\,\,minimize\,common\,\,mode\,conversion$
- If routing includes a flex or 2nd PCB, the max trace delay and skew calculations must include all the PCBs/flex routing. Solutions with flex/2nd PCB may not achieve maximum frequency operation.

Table 9-7. HDMI Signal Connections

Module Pin Name	Туре	Termination (See Note on ESD)	Description
HDMI_DPx_TX3_N/P	DIFF OUT	0.1uF series ACCAP \rightarrow 500 Ω RPD (controlled by FET) \rightarrow EMI/ESD (if required), <6 Ω RS	HDMI Differential Clock: Connect to C-/C+ and pins on HDMI connector
HDMI_DPx_TX[2:0]_N/P	DIFF OUT	(series resistor)	HDMI Differential Data: Connect to D[2:0]+/- pins. See Table 9-2 and connection diagram.
DPx_HPD	I	Jetson AGX Xavier to Connector: $10k\Omega$ PU to $1.8V \rightarrow level$ shifter $\rightarrow 100k\Omega$ series resistor. $100k\Omega$ to GND on connector side.	HDMI Hot Plug Detect: Connect to HPD pin on HDMI Connector
HDMI_CEC	I/OD	Gating circuitry, See connection figure or reference schematics for details.	HDMI Consumer Electronics Control: Connect to CEC on HDMI Connector through circuitry.
DPx_AUX_CH_N/P	I/OD	From Jetson AGX Xavier to Connector: $10k\Omega$ PU to $3.3V \rightarrow level$ shifter $\rightarrow 1.8k\Omega$ PU to $5V \rightarrow connector pin$	HDMI: DDC Interface - Clock and Data: Connect DPx_AUX_CH+ to SCL and DPx_AUX_CH- to SDA on HDMI connector
HDMI 5V Supply	Р	Adequate decoupling (0.1uF and 10uF recommended) on supply near connector.	HDMI 5V supply to connector: Connect to +5V on HDMI connector.

Note: Any ESD and/or EMI solutions must support targeted modes (frequencies)

Table 9-8. Recommended HDMI and DP Observation Test Points for Initial Boards

Test Points Recommended	Location
One for each signal line.	Near display connector. Connector pins can be used if accessible.

Note: Test points must be done carefully to minimize signal integrity impact. Avoid stubs and keep pads small and near signal traces.

Chapter 10. Video Input

Jetson AGX Xavier provides multiple MIPI CSI D-PHY or C-PHY interfaces for cameras. In addition, an 8-lane SLVS camera interface is supported.

10.1 MIPI CSI

Jetson AGX Xavier supports four MIPI CSI x4 bricks, allowing a variety of device types and combinations to be supported. Up to 4 quad lane cameras or four dual lane cameras plus two quad lane cameras or 6 dual lane cameras (total of 6 in any configuration) are available. Both MIPI D-PHY and C-PHY modes are supported. In D-PHY mode, each data channel has peak bandwidth of up to 2.5Gbps. For C-PHY, each lane (Trio) supports up to 1.7 Gsps.

Note: Maximum data rate may be limited by use case and memory bandwidth.

Table 10-1. Jetson AGX Xavier CSI Pin Description

Pin #	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
F42	CSI0_CLK_N	CSI_A_CLK_N	Camera, CSI 0: DPHY Clock-, CPHY 01:C				-	z
F43	CSI0_CLK_P	CSI_A_CLK_P	Camera, CSI 0: DPHY Clock+. CPHY 00:C				-	z
E41	CSI0_D0_N	CSI_A_D0_N	Camera, CSI 0: DPHY Data 0 CPHY 00:B				-	z
E42	CSI0_D0_P	CSI_A_D0_P	Camera, CSI 0: DPHY Data 0+. CPHY 00:A				-	Z
E38	CSI0_D1_N	CSI_A_D1_N	Camera, CSI 0: DPHY Data 1 CPHY 01:B				-	Z
E39	CSI0_D1_P	CSI_A_D1_P	Camera, CSI 0: DPHY Data 1+. CPHY 01:A			MIPI D-PHY/C- PHY	-	Z
H42	CSI1_CLK_N	CSI_B_CLK_N	Camera, CSI 1: DPHY Clock-, CPHY 11:C				-	Z
H43	CSI1_CLK_P	CSI_B_CLK_P	Camera, CSI 1: DPHY Clock+. CPHY 10:C				-	z
G42	CSI1_D0_N	CSI_B_D0_N	Camera, CSI 1: DPHY Data 0 CPHY 10:B				-	Z
G41	CSI1_D0_P	CSI_B_D0_P	Camera, CSI 1: DPHY Data 0+. CPHY 10:A	Camera Connector	Input		-	z
J42	CSI1_D1_N	CSI_B_D1_N	Camera, CSI 1: DPHY Data 1 CPHY 11:B				-	Z
J41	CSI1_D1_P	CSI_B_D1_P	Camera, CSI 1: DPHY Data 1+. CPHY 11:A				-	z
B42	CSI2_CLK_N	CSI_C_CLK_N	Camera, CSI 2: DPHY Clock-, CPHY 21:C				-	Z
B43	CSI2_CLK_P	CSI_C_CLK_P	Camera, CSI 2: DPHY Clock+. CPHY 20:C				-	z
A42	CSI2_D0_N	CSI_C_D0_N	Camera, CSI 2: DPHY Data 0 CPHY 20:B				-	Z
A41	CSI2_D0_P	CSI_C_D0_P	Camera, CSI 2: DPHY Data 0+. CPHY 20:A				-	z
C41	CSI2_D1_N	CSI_C_D1_N	Camera, CSI 2: DPHY Data 1 CPHY 21:B				-	z
C42	CSI2_D1_P	CSI_C_D1_P	Camera, CSI 2: DPHY Data 1+. CPHY 21:A				-	z

Pin #	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
F45	CSI3_CLK_N	CSI_D_CLK_N	Camera, CSI 3: DPHY Clock-, CPHY31:C				_	Z
F46	CSI3_CLK_P	CSI_D_CLK_P	Camera, CSI 3: DPHY Clock+. CPHY 30:C				-	Z
E44	CSI3_D0_N	CSI_D_D0_N	Camera, CSI 3: DPHY Data 0 CPHY 30:B				_	Z
E45	CSI3_D0_P	CSI_D_D0_P	Camera, CSI 3: DPHY Data 0+. CPHY 30:A				-	z
G45	CSI3_D1_N	CSI_D_D1_N	Camera, CSI 3: DPHY Data 1 CPHY 31:B				-	Z
G44	CSI3_D1_P	CSI_D_D1_P	Camera, CSI 3: DPHY Data 1+. CPHY 31:A				_	z
F49	CSI4_CLK_N	CSI_E_CLK_N	Camera, CSI 4: DPHY Clock-, CPHY 41:C				-	Z
F48	CSI4_CLK_P	CSI_E_CLK_P	Camera, CSI 4: DPHY Clock+. CPHY 40:C				-	z
G47	CSI4_D0_N	CSI_E_D0_N	Camera, CSI 4: DPHY Data 0 CPHY 40:B				-	Z
G48	CSI4_D0_P	CSI_E_D0_P	Camera, CSI 4: DPHY Data 0+. CPHY 40:A	1			_	z
E48	CSI4_D1_N	CSI_E_D1_N	Camera, CSI 4: DPHY Data 1 CPHY 41:B				-	z
E47	CSI4_D1_P	CSI_E_D1_P	Camera, CSI 4: DPHY Data 1+. CPHY 41:A	1			_	z
C45	CSI5_CLK_N	CSI_F_CLK_N	Camera, CSI 5: DPHY Clock-, CPHY 51:C				-	z
C44	CSI5_CLK_P	CSI_F_CLK_P	Camera, CSI 5: DPHY Clock+. CPHY 50:C	1			-	z
D43	CSI5_D0_N	CSI_F_D0_N	Camera, CSI 5: DPHY Data 0 CPHY 50:B				-	z
D42	CSI5_D0_P	CSI_F_D0_P	Camera, CSI 5: DPHY Data 0+. CPHY 50:A				-	z
D45	CSI5_D1_N	CSI_F_D1_N	Camera, CSI 5: DPHY Data 1 CPHY 51:B	1			_	z
D46	CSI5_D1_P	CSI_F_D1_P	Camera, CSI 5: DPHY Data 1+. CPHY 51:A				-	z
J45	CSI6_CLK_N	CSI_G_CLK_N	Camera, CSI 6: DPHY Clock-, CPHY 61:C				-	z
J44	CSI6_CLK_P	CSI_G_CLK_P	Camera, CSI 6: DPHY Clock+. CPHY 60:C				-	z
K43	CSI6_D0_N	CSI_G_D0_N	Camera, CSI 6: DPHY Data 0 CPHY 60:B				_	z
K44	CSI6_D0_P	CSI_G_D0_P	Camera, CSI 6: DPHY Data 0+. CPHY 60:A				_	z
H45	CSI6_D1_N	CSI_G_D1_N	Camera, CSI 6: DPHY Data 1 CPHY 61:B				-	z
H46	CSI6_D1_P	CSI_G_D1_P	Camera, CSI 6: DPHY Data 1+. CPHY 61:A	1			_	z
B46	CSI7_CLK_N	CSI_H_CLK_N	Camera, CSI 7: DPHY Clock-, CPHY 71:C				-	z
B45	CSI7_CLK_P	CSI_H_CLK_P	Camera, CSI 7: DPHY Clock+. CPHY 70:C	1			_	z
A45	CSI7_D0_N	CSI_H_D0_N	Camera, CSI 7: DPHY Data 0 CPHY 70:B				-	z
A44	CSI7_D0_P	CSI_H_D0_P	Camera, CSI 7: DPHY Data 0+. CPHY 70:A				-	z
C48	CSI7_D1_N	CSI_H_D1_N	Camera, CSI 7: DPHY Data 1 CPHY 71:B				-	z
C47	CSI7_D1_P	CSI_H_D1_P	Camera, CSI 7: DPHY Data 1+. CPHY 71:A				_	Z

- The C-PHY pin mappings are programmable. The mappings shown in the table above are the default. The Xavier Series SoC Technical Reference Manual includes information on the mapping (swizzling) for C-PHY (See the NVCSI_CIL_B_POLARITY_SWIZZLE_CTRL_0 register for details).
- In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals.
- The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.

Table 10-2. Jetson AGX Xavier Camera Miscellaneous Pin Description

Pin #	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
J54	MCLK02	EXTPERIPH1_CLK	Camera 0 Master Clock				ST	pd
H53	MCLK03	EXTPERIPH2_CLK	Camera 1 Master Clock	Camera Connector	O. ut mount	CMOC 10V	ST	pd
H55	MCLK04	SOC_GPI041	Camera 2 Master Clock		Output	CMOS - 1.8V	DD	pd
L57	MCLK05	SOC_GPIO42	Camera 2 Master Clock	Expansion Connector			DD	pd
F53	I2C3_CLK	CAM_I2C_SCL	General I2C 3 Clock	Camana Camanatan	Dielie	Open-Drain -	DD	Z
E53	I2C3_DAT	CAM_I2C_SDA	General I2C 3 Data	Camera Connector	Bidir	1.8V	DD	Z
F10	GPI015	DAP5_SCLK	GPIO / Digital Speaker Output Clock	Camera Connector (Camera 1 Powerdown)			ST	pd
F9	GPI016	DAP5_DOUT	GPIO / Digital Speaker Output Data	Camera Connector (Camera 1 Reset)			ST	pd
K49	GPI025	SOC_GPI050	GPIO GPIO	Camera Connector (VDD_SYS Enable)	Output	CMOS - 1.8V	ST	pd
F56	GPIO36	SOC_GPI053	GPI0	Camera AVDD Enable	1 '		ST	pd
L49	UART4_CTS	UART4_CTS	GPIO	Camera Connector (Camera 0 Powerdown)			ST	pu
L5	UART4_TX	UART4_TX	GPIO	Camera Connector (Camera 0 Reset)			ST	pd

- 1. In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals.
- The direction shown in this table for MCLKx, GPIO[16:15], and UART4x is true when used for those functions. These pins are GPIOs and can support input or output (bidirectional).
- 3. The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- 4. The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.

CSI Configurations D-PHY Mode Table 10-3.

Cianal Nana)	k2 Config	urations				x4 Configurations				
Signal Name	#1	#2	#3	#4	#5	#6	#1	#2	#3	#4		
CSI_0_D0_P/N	Data											
CSI_0_D1_P/N	Dala						Data					
CSI_1_D0_P/N		Doto										
CSI_1_D1_P/N		Data										
CSI_2_D0_P/N			Doto					Data				
CSI_2_D1_P/N			Data									
CSI_3_D0_P/N				Doto								
CSI_3_D1_P/N				Data								
CSI_4_D0_P/N					Data							
CSI_4_D1_P/N					Data				Doto			
CSI_5_D0_P/N									Data			
CSI_5_D1_P/N												

Claus al Niana)	x2 Config	urations			x4 Configurations			
Signal Name	#1	#2	#3	#4	#5	#6	#1	#2	#3	#4
CSI_6_D0_P/N						Doto				
CSI_6_D1_P/N						Data				.
CSI_7_D0_P/N										Data
CSI_7_D1_P/N										
CSI_0_CLK_P/N	Clk						Clk			
CSI_1_CLK_P/N		Clk								
CSI_2_CLK_P/N			Clk					Clk		
CSI_3_CLK_P/N				Clk						
CSI_4_CLK_P/N					Clk				Clk	
CSI_5_CLK_P/N										
CSI_6_CLK_P/N ¹						Clk				Clk
CSI_7_CLK_P/N1										

- 1. Each 2-lane option shown in this table can also be used for one single lane camera as well.
- Combinations of 1, 2 and 4-lane cameras are supported, as long as any 4-lane cameras match one of the four configurations.

Table 10-4. CSI Configurations C-PHY Mode

		2-Trio Configs					4-Trio	Configs			
Camera #		#1	#2	#3	#4	#5	#6	#1	#2	#3	#4
	C-PHY										
SoC Balls	Lanes										
CSI_0_CLK_P, CSI_0_D0_P/N	0:0	V						V			
CSI_0_CLK_N, CSI_0_D1_P/N	0:1	V						V			
CSI_1_CLK_P. CSI_1_D0_P/N	1:0		V					V			
CSI_1_CLK_N, CSI_1_D1_P/N	1:1		V					V			
CSI_2_CLK_P, CSI_2_D0_P/N	2:0			V					V		
CSI_2_CLK_N, CSI_2_D1_P/N	2:1			V					V		
CSI_3_CLK_P, CSI_3_D0_P/N	3:0				V				V		
CSI_3_CLK_N, CSI_3_D1_P/N	3:1				V				V		
CSI_4_CLK_P, CSI_4_D0_P/N	4:0					V				V	
CSI_4_CLK_N, CSI_4_D1_P/N	4:1					V				V	
CSI_5_CLK_P, CSI_5_D0_P/N	5:0									V	
CSI_5_CLK_N, CSI_5_D1_P/N	5:1									V	
CSI_6_CLK_P, CSI_6_D0_P/N	6:0						V				V
CSI_6_CLK_N, CSI_6_D1_P/N	6:1						V				V
CSI_7_CLK_P, CSI_7_D0_P/N	7:0										V
CSI_7_CLK_N, CSI_7_D1_P/N	7:1										V

Notes: Each x2 configurations can also be used for one single lane camera (x1 configuration) as well.

Configurations can coexist to support a mix of x1, x2 and x4 lanes, as long as each signal is not shared between multiple configurations.

Figure 10-1. Camera Control Connections

Note: Any EMI/ESD devices must be tuned to minimize impact to signal quality and meet the timing and Vil/Vih requirements at the receiver and maintain signal quality and meet requirements for the frequencies supported by the design.

Figure 10-2. Camera CSI D-PHY Connections

Note: Any EMI/ESD devices must be tuned to minimize impact to signal quality and meet the timing and Vil/Vih requirements at the receiver and maintain signal quality and meet requirements for the frequencies supported by the design.

Jetson AGX Xavier SoC CPHY_00_A CSI0_D0_P **CSI** CSI A DO P E42 CPHY_00_B CSIO DO N CSI_A_D0_N F41 CPHY_00_C CSI0_CLK_P CSI_A_CLK_P F43 2-Trios CPHY_01_A CSI0_D1_P CSI_A_D1_P CPHY_01_B CSI0_D1_N CSI_A_D1_N E38 CPHY_01_C CSI0_CLK_N CSI_A_CLK_N 4-Trios CPHY_10_A CSI1_D0_P CSI_B_D0_P CSI1_D0_N CPHY_10_B CSI B DO N G42 CPHY_10_C CSI1 CLK P CSI_B_CLK_P H43 2-Trios CPHY_11_A CSI1_D1_P CSI_B_D1_P J41 CPHY_11_B CSI1_D1_N CSI_B_D1_N
CSI_B_CLK_N J42 CPHY 11 C CSI1_CLK_N H42 CPHY_20_A CSI2 D0 P CSI_C_D0_P A41 CPHY_20_B CSI2_D0_N CSI_C_D0_N CPHY 20 C CSI2_CLK_P CSI C CLK P B43 2-Trios CPHY 21 A CSI_C_D1_P CSI2_D1_P C42 CPHY_21_B CSI2_D1_N CSI_C_D1_N C41 CPHY_21_C CSI2_CLK_N CSI_C_CLK_N B4 2 4-Trios CPHY 30 A CSI3_D0_P CSI_D_D0_P E45 CPHY 30 B CSI3 D0 N CSI_D_D0_N E44 CPHY_30_C CSI3_CLK_P CSI_D_CLK_P 2-Trios CPHY 31 A CSI3_D1_P EMI CSI_D_D1_P CPHY_31_B CSI3_D1_N CSI D D1 N G45 CPHY_31_C & CSI3_CLK_N CSI_D_CLK_N CPHY_40_A ESD CSI4_D0_P CSI_E_D0_P G48 CSI4_D0_N CPHY 40 B CSI E D0 N ◀ G47 CPHY_40_C CSI4 CLK P CSI_E_CLK_P F48 2-Trios CPHY_41_A CSI4_DI_P_ CSI_E_D1_P ◀ E47 CPHY_41_B CSI4_D1_N CSI_E_D1_N ←
CSI_E_CLK_N ← E48 CPHY 41 C CSI4_CLK_N F49 4-Trios CPHY_50_A CSI5 DO P (CSI_F_D0_P D42 CPHY_50_B CSI5_D0_N CSI_F_D0_N CPHY_50_C CSI5_CLK_P CSI F CLK P ◀ C44 CPHY_51_A CSI5_D1_P_ CSI F D1 P ◀ D46 CPHY_51_B CSI5_D1_N CSI_F_D1_N D45 CPHY 51 C CSI5_CLK_N CSI_F_CLK_N C45 CPHY 60 A CSI6 DO P CSI_G_D0_P K44 CPHY_60_B CSI6 DO N CSI_G_D0_N K43 CPHY_60_C CSI6_CLK_P CSI_G_CLK_P J44 2-Trios CPHY 61 A CSI6_D1_P CSI G D1 P CPHY_61_B CSI6 DI N CSI_G_D1_N H45 CPHY_61_C CSI6_CLK_N CSI_G_CLK_N J45 4-Trios CPHY_70_A CSI7_D0_P_ CSI_H_D0_P CSI7_D0_N CPHY 70 B CSI_H_DO_N
CSI_H_CLK_P A45 CPHY_70_C CSI7 CLK P B4 5 CPHY_71_A CSI7 DI P [CSI_H_D1_P C47 CPHY 71 B CSI7_D1_N CSI_H_D1_N
CSI_H_CLK_N C48 CPHY_71_C CSI7_CLK_N B4 6

Figure 10-3. Camera CSI C-PHY Connections

CSI D-PHY Design Guidelines

Table 10-5 details the signal routing requirements for CSI D-PHY interface.

MIPI CSI D-PHY Interface Signal Routing Requirements Table 10-5.

Parameter	Requirement	Units	Notes			
Max Data Rate (per data lane) for High-Speed mode	2.5	Gbps				
Max Frequency (for Low Power mode)	10	MHz				
Number of Loads	1	load				
Max Loading (per pin)	10	pF				
Reference plane	GND					
Breakout Region Impedance (Single Ended)	45-50	Ω	±15%			
Max PCB breakout delay	48	ps				
Trace Impedance Diff pair / Single Ended	90-100 / 45-50	Ω				
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	See Note 1			
Trace spacing - Microstrip / Stripline	2x / 2x	dielectric				
Max Insertion loss						
1 Gbps	3.10	dB				
1.5 Gbps	2.96					
2.5 Gbps	2.17					
Max trace delay / length (Stripline/Microstrip)						
1 Gbps	3000 (435) / 2610 (435)	ps (mm)				
1.5 Gbps	2242 (325) / 1953 (325)					
2.5 Gbps	1173 (170) / 1018 (170)					
Max Intra-pair Skew	1	ps	See Note 2			
Max Trace Delay Skew between DQ & CLK			See Note 2			
1 / 1.5 / 2.5 Gbps	40/26.7/16	ps				
loise Coupling Avoidance Keep critical traces away from other signal traces or unrelated power traces/areas or power supply components						

- 1. Up to 4 signal vias can share a single GND return via
- If routing to device includes a flex or 2nd PCB, the max trace and skew calculations must include all the PCBs/flex routing

10.1.2 CSI C-PHY Mode Design Guidelines

Table 10-6 details the signal routing requirements for CSI C-PHY interface.

MIPI CSI C-PHY Interface Signal Routing Requirements Table 10-6.

Parameter	Requirement	Units	Notes				
Max Data Rate (per trio)	1.7	Gsps	See note 1 and 2				
Topology	Point-Point		With RX Common Mode cap to GND				
Termination	Fully ODT (on-die)		50ohms SE to common mode cap				
Max Loading (per pin)	2	pF	Single ended				
Trace Impedance - Differential / Single Ended	90-100 / 45-50	Ω	±15%				
Reference Plane	GND						
Max PCB breakout Length/Delay	5 (30)	mm (ps)					
Via proximity (Signal via to GND return via)	< 2	mm					
Intra Trio Trace spacing - Microstrip / Stripline	2x / 3x	dielectric	Recommendation				
Inter Trio Trace spacing - Microstrip / Stripline	2x / 3x	dielectric	Recommend routing with loosely coupled differential impedance.				
Max Trace Length total							
Direct from module conn. to device pins							
1.7Gsps	180	mm					
1.3Gsps	330						
One conn. between module conn. and device							
1.7Gsps	100						
1.3GSps	250						
Two conn. between module conn. and device							
1.3Gsps	150						
Max Intra-Trio Skew (Within Trios)	3	ps	A or B pin to C pin skew.				
Max Inter-Trio Skew (between Trios)	55	ps					
Routing Layer Restrictions	A trio must route completely on the same layer. This means that both Trio0 and Trio1 would need to route on the same layer due to DPHY Compatibility (e.g. D0P/D0N must route on the same layer as CLKP/CLKN and thus so must D1P/D1N)						
Noise Coupling Avoidance	i i	Keep critical traces away from other signal traces or unrelated power traces/areas or power supply components					

Notes:

- Bit rate in bps is 2.286 * Gsps.
- Maximum data rate may be limited by use case / memory bandwidth.

Table 10-7. MIPI CSI Signal Connections

Module Pin Name	Type	Termination	Description
CSI[7:0]_CLK+/-	DIFFIN	See note	CSI Differential Clocks: Connect to clock pins of camera. See the CSI configurations tables for details
CSI[7:0]_D[1:0]+/-	DIFF IN	See note	CSI Differential Data Lanes: Connect to data pins of camera. See the CSI configurations tables for details

Note: Depending on the mechanical design of the platform and camera modules, ESD protection may be necessary. In addition, EMI control may be needed. Both are shown in the Camera Connection Example diagram. Any EMI/ESD solution must be compatible with the frequency required by the design.

Table 10-8. Miscellaneous MIPI Camera Connections

Module Pin Name (Camera Function)	Туре	Termination	Description
I2C3_CLK I2C3_DAT	0 I/O	1kΩ Pull-ups VDD_1V8 (on Jetson AGX Xavier). See note related to EMI/ESD under MIPI CSI Signal Connections tables.	Camera I2C Interface: Connect to I2C SCL and SDA pins of Imager
MCLK02 (CAM0 MCLK) MCLK03 (CAM1 MCLK) MCLK04 (CAM2 MCLK) MCLK05 (CAM3 MCLK)	0	See note related to EMI/ESD under MIPI CSI Signal Connections tables.	Camera Master Clocks: Connect to Camera reference clock inputs.
GPIO15 (CAM1 PWDN) UART4_CTS (CAM0 PWDN)	I/O		Camera Power Control signals (or GPIOs [1:0]): Connect to power down pins on camera(s).
GPI016 (CAM1 RST) UART4_TX (CAM0 RST)	0		Camera Resets: Connect to reset pin on any cameras with this function.
GPIO25 (VDD_SYS Enable)	0		Camera VDD_SYS Enable: Connect to appropriate camera supply.
GPIO36 (AVDD Enable)	0		Camera AVDD Enable: Connect to appropriate analog camera supply.

Recommended CSI Observation Test Points for Initial Boards Table 10-9.

Test Points Recommended	Location
One per signal line.	Near Jetson AGX Xavier pins

Note: Test points must be done carefully to minimize signal integrity impact. Avoid stubs and keep pads small and near signal traces.

10.2 SLVS Camera Interface

Jetson AGX Xavier provides an SLVS-EC interface which shares pins with a PCIe x8 interface on the NVHS0_SLVS_RX[7:0] pins of the module.

Note: SLVS is not supported on JAXi.

Jetson AGX Xavier SLVS EC Camera Pin Description Table 10-10.

	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
1 F31	NVHS0_SLVS_ REFCLK0_N	NVHS0_REFCLK_N	NVHS Reference Clock 0 used when Jetson AGX Xavier is an Endpoint or	PCle x16 Connector	lant	UPHY/SLVS Diff	-	Z
E30	NVHS0_SLVS_ REFCLK0_P	NVHS0_REFCLK_P	when NVHS0_SLVS pins are used for SLVS-EC interface.	after mux	Input	Pair	-	Z
D25	NVHS0_SLVS_ RX0_N	NVHS0_RX0_N		B01 44 0		UPHY/SLVS Diff Pair, AC-Coupled	-	Z
D24	NVHS0_SLVS_ RX0_P	NVHS0_RX0_P	PCIe/SLVS Receive Lane 0	PCle x16 Connector	Input	on carrier board if PCle and direct	-	Z

Pin #	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
B24	NVHS0_SLVS_ RX1_N	NVHS0_RX1_N	DOL (CLVC Danalas Larra 1			connect to device.	-	Z
B25	NVHS0_SLVS_ RX1_P	NVHS0_RX1_P	PCIe/SLVS Receive Lane 1				_	Z
C26	NVHS0_SLVS_ RX2_N	NVHS0_RX2_N					_	Z
C27	NVHS0_SLVS_ RX2_P	NVHS0_RX2_P	PCle/SLVS Receive Lane 2				_	Z
A27	NVHS0_SLVS_ RX3_N	NVHS0_RX3_N					_	Z
A26	NVHS0_SLVS_ RX3_P	NVHS0_RX3_P	PCIe/SLVS Receive Lane 3				_	Z
D29	NVHS0_SLVS_ RX4_N	NVHS0_RX4_N	DOI (011/0 D				_	Z
D28	NVHS0_SLVS_ RX4_P	NVHS0_RX4_P	PCle/SLVS Receive Lane 4				_	Z
B28	NVHS0_SLVS_ RX5_N	NVHS0_RX5_N	501 (011/0 5				-	Z
B29	NVHS0_SLVS_ RX5_P	NVHS0_RX5_P	PCle/SLVS Receive Lane 5				_	Z
C30	NVHS0_SLVS_ RX6_N	NVHS0_RX6_N					-	Z
C31	NVHS0_SLVS_ RX6_P	NVHS0_RX6_P	PCIe/SLVS Receive Lane 6				-	Z
A31	NVHS0_SLVS_ RX7_N	NVHS0_RX7_N					-	Z
A30	NVHS0_SLVS_ RX7_P	NVHS0_RX7_P	PCIe/SLVS Receive Lane 7				-	Z
C55	GPIO18	SOC_GPIO40	SLVS Horizontal sync		Output	CMOS – 1.8V (3.3V tolerant)	DD	pd
K56	GPI019	SOC_GPIO43	SLVS Vertical Sync	PCle x16 Connector	Output	CMOS – 1.8V (3.3V tolerant)	DD	pd
K57	PWM01	SOC_GPI044	SLVS Focus	40-pin Expansion	Output	CMOS – 1.8V (3.3V tolerant)	DD	pd
H52	GPIO27	SOC_GPI054	SLVS Iris	Header	Output	CMOS - 1.8V	ST	pd
D56	SPI3_MISO	SPI3_MISO	GPIO or SLVS XCLR	Unused but connected to TRST* on PCle x16 connector	Output	CMOS - 1.8V (3.3V tolerant)	DD	pd
G56	SPI3_MOSI	SPI3_MOSI	GPIO or SLVS XCE	Unused, but connected to PEX_WAKE_N on PCle x16 conn.	Output	CMOS - 1.8V (3.3V tolerant)	DD	pd

- Direct lane mapping (RX[7:0] to DX[7:0] shown in the table. Reverse mapping (RX[7:0] to DX[0:7]) has also been verified.
- The direction of the control signals in the table are for SLVS usage. If used as GPIOs, they support input or output (bidirectional).
- 3. In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidir ectional signals.
- The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.

Jetson AGX Xavier **SLVS** SoC - SLVS Imager/ Connector PEX/SLVS NVH50_RX0_N

NVH50_RX1_N

NVH50_RX1_P

NVH50_RX2_P

NVH50_RX3_N

NVH50_RX3_N

NVH50_RX3_P

NVH50_RX4_P

NVH50_RX4_P

NVH50_RX5_N

NVH50_RX5_N

NVH50_RX5_N

NVH50_RX5_N

NVH50_RX5_P

NVH50_RX5_P

NVH50_RX5_P

NVH50_RX5_P

NVH50_RX5_P

NVH50_RX5_P

NVH50_RX5_P

NVH50_RX5_P

NVH50_RX5_P NVHS0_SLVS_RX0_N SLVS_DX0_N D25 NVHS0_SLVS_RX0_P SLVS_DX0_P SLVS_DX1_N SLVS_DX1_P D24 NVHS0_SLVS_RX1_N B2 4 NVHS0_SLVS_RX1_P NVHS0_SLVS_RX2_N C26 SLVS_DX2_N NVHS0_SLVS_RX2_P SLVS_DX2_P SLVS_DX3_N C27 NVHS0_SLVS_RX3_N A27 NVHS0_SLVS_RX3_P SLVS_DX3_P SLVS_DX4_N SLVS_DX4_P SLVS_DX5_N SLVS_DX5_P A26 NVHS0 SLVS RX4 N D29 NVHS0 SLVS RX4 P D28 NVHS0_SLVS_RX5_N B2 8 NVHS0_SLVS_RX5_P B2 9 NVHS0_SLVS_RX6_N C30 SLVS_DX6_N NVHS0_SLVS_RX6_P C31 SLVS_DX6_P NVHS0_SLVS_RX7_N SLVS_DX7_N SLVS_DX7_P NVHS0_SLVS_RX7_P NVHS0_RX7_P A30 NVHSO REFCLK N Optional I2C option in place of SPI for imager NVHS0 SLVS REFCLK0 N E31 control. If used, disconnect Jetson AGX Xavier SPI2_CLK & SPI2_MOSI signals. NVHS0 SLVS REFCLK0 P NVHS0_REFCLK_P E30 CAM GPIO18 C55 ➤ XHS ➤ XVS SOC GPIO40 GPIO19 SOC GPIO43 K56 I2C3 CLK CAM_I2C_SCL F53 I2C3_DAT CAM_I2C_SDA E53 SPI2_CLK AO SPI2_SCK E61 ➤ SPI_CLK SPI2_MOSI ➤ SPI_DO SPI2_MOSI F60 SPI2 MISO SPI2 MISO D62 SPI_DI SPI2 CS0 N \rightarrow D60 SPI2_CS0_N ➤ XCF SPI3_MOSI **UART** SPI3 MOS G56 XCLR SPI3_MISO D56 SPI3 MISI VDD_3V3 0.1uF 0.1uF 0.1uF LVDS-CMOS **Clock Buffer** LVDS_72MHZ_P VDD 3V3 VCC VDD osc DIF0 **►** INCK OUTP CLK_IN DIFO* LVDS_72MHZ_N GND OUTN CLK_IN* EN/NC DIF1 NC/EN GND DIF1* **GND**x

Figure 10-4. **SLVS Connections**

Note: Direct Iane mapping (RX[7:0] to DX[7:0] shown in Figure 10-4. Reverse mapping (RX[7:0] to DX[0:7]) has also been verified.

10.2.1 SLVS Design Guidelines

Table 10-11 shows the SLVS interface signal routing requirements.

Table 10-11. SLVS Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes					
Max Data Rate	2.4	Gbps						
Max Insertion Loss (SDD21)								
0GHz	-0.88	dB						
1.25GHz	-2.8							
2.5GHz	-4.1							
5.0GHz	-6.6							
Max Return Loss (SDD11)								
0GHz	-25	dB						
1.25GHz	-18							
2.5GHz	-15							
5.0GHz	-10							
Max Crosstalk (PSFEXT)								
0GHz	-50	dB						
1.25GHz	-50							
2.5GHz	-45							
5.0GHz	-45							
Reference plane	GND							
Trace Impedance - Diff pair / Single Ended	85	Ω	±15%					
Trace spacing								
Between Differential Pairs	6x	dielectric						
To other signal traces	6x							
Max Intra-pair Skew	4	ps	See Note					
Noise Coupling Avoidance	i '	Keep critical traces away from other signal traces or unrelated power traces/areas or power supply components						
Note: If routing to device includes a flex or 2nd PCB, the skew calculations must include all the PCBs/flex routing								

Table 10-12. SLVS Camera Signal Connections

Module Pin Name	Туре	Termination	Description
NVHS0_SLVS_RX[7:0]_N/P	DIFF IN		SLVS Differential Data Lanes: Connect lanes [7:0] to matching [7:0] pins on SLVS device/connector. Reverse connections ([7:0] to SLVS device/connector [0:7]).
NVHS0_SLVS_REFCLK_N/P	DIFFIN		SLVS Differential Reference Clock: Connect to second output (DIF1 in figure) of a suitable clock buffer.
GPI018 (XHS)	0		Horizontal Sync: Connect to matching pins of SLVS device/connector
GPI019 (XVS)	0		Vertical Sync: Connect to matching pins of SLVS device/connector
SPI2_CLK SPI2_MOSI SPI2_MISO	0 0 I		SPI #2 Clock, Master Out / Slave In and Master In / Slave Out: Connect to matching pins on SLVS device/connector (CLK to CLK, MOSI to MOSI and MISO to MISO)
12C3_CLK 12C3_DAT	I/OD I/OD		I2C #3: Optional alternative control interface. Connect to matching pins of SLVS device/connector instead of SPI.
SPI3_MOSI (XCE)	0		Chip Enable: Connect to matching pins of SLVS device/connector
SPI3_MISO (XCLR)	0		Clear: Connect to matching pins of SLVS device/connector

Table 10-13. Non-Module SLVS Reference Clock Connections

Function	Туре	Termination	Description
OSC_OUTN/P	DIFF OUT	33Ω series resistors and 49.9Ω, 1% pulldowns to GND on each line.	Reference Clock Differential Oscillator Outputs: Connect differential oscillator output to matching pins on differential clock buffer pins.
CLOCK_BUFFER_DIF0	DIFF OUT	150Ω, 1% pulldowns to GND on each line. 100Ω resistor between the P/N lines.	Differential Clock Buffer Output #1: Connect to LVDS-CMOS device inputs.
LVDS-CMOS Output	0		LVDS-CMOS converter output: Connect to SLVS device/connector input clock (INCK in figure)

Chapter 11. SDIO and SD Card

Jetson AGX Xavier has two SD/MMC interfaces. One is used on Jetson AGX Xavier for eMMC for boot and storage and one is brought to the connector pins for SD Card or SDIO use.

Table 11-1. SDIO, SD Card, and eMMC Interface Mapping

Module Pins	SoC Interface	Width	Usage
SDCARD_CLK	SDMMC1	4-bit	Micro SD / UFS Card socket
na	SDMMC4	8-bit	eMMC device on Module

Table 11-2. Jetson AGX Xavier SDMMC Pin Descriptions

Pin #	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
B6	SDCARD_CLK	SDMMC1_CLK	SD Card (or SDIO) Clock		Output		CZ	pd
A5	SDCARD_CMD	SDMMC1_CMD	SD Card (or SDIO) Command				CZ	pd
E8	SDCARD_D0	SDMMC1_DAT0	SD Card (or SDIO) Data 0	Micro SD / UFS Card Socket	Bidir	CMOS - 3.3V/1.8V	CZ	pd
F8	SDCARD_D1	SDMMC1_DAT1	SD Card (or SDIO) Data 1				CZ	pd
A4	SDCARD_D2	SDMMC1_DAT2	SD Card (or SDIO) Data 2				CZ	pd
D6	SDCARD_D3	SDMMC1_DAT3	SD Card (or SDIO) Data 3				CZ	pd
B58	GPI021	DAP6_SCLK	GPI0	SD Power Switch On	Output	CMOS - 3.3V	CZ	pd
L6	GPI002	SOC_GPI011	GPIO	SD Card socket (SD Detect)	Bidir	CMOS – 1.8V	ST	pd

- 1. In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals.
- 2. The direction shown in the table above for SDCard CLK and GPIO21 is true when used for those functions. If used as a GPIO, the pin supports input or output (bidirectional).
- 3. The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.

11.1 SD Card

Figure 11-1 shows a Micro SD card socket connection example. Internal pull-up resistors are used for SDCARD Data/CMD lines. External pull-ups are not required and cannot be used due to the internal pad voltage selection.

Figure 11-1. Micro SD Card Socket Connection Example

- 1. If EMI and/or ESD devices are necessary, they must be tuned to minimize the impact to signal quality, which must meet the timing and Vil/Vih requirements at the receiver and maintain signal quality and meet requirements for the frequencies supported by the design.
- 2. Supply (load switch, etc) used to provide power to the SD Card must be current limited if the supply is shorted to GND.

Table 11-3. SDCARD Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max Frequency 3.3V Signaling			See Note 1
DS	25 (12.5)	MHz (MB/s)	
HS	50 (25)		
Max Frequency 1.8V Signaling			
SDR12	25 (12.5)		
SDR25	50 (25)		
SDR50	100 (50)		
SDR104	208 (104)		
DDR50	50 (50)		
Topology	Point to point		
Reference plane	GND or PWR		See Note 2
Trace Impedance	50	Ω	±15%. 45Ω optional depending on stack-up

Parameter	Requirement	Units	Notes
Max Via Count			Independand of stackup layers
PTH	4		Depends on stackup layers
HDI	10		
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	Up to 4 signal Vias can share 1 GND return Via
Trace spacing - Microstrip / Stripline	4x / 3x	dielectric	
Trace length			
SDR50 / SDR25 / SDR12 / HS / DS			
Min	16 (100)	mm (ps)	
Max	139 (876)		
SDR104 / DDR50			
Min	16 (100)		
Max	83 (521)		
Max Trace Delay Skew in/between CLK and CMD/DAT			See Note 3
SDR50/SDR25/SDR12/HS/DS	14 (87.5)	Mm (ps)	
SDR104 / DDR50	2 (12.5)		
Noise Coupling Avoidance	Keep critical trace	es away from other	signal traces or unrelated power traces/areas or
	power supply com	nponents	

- 1. Actual frequencies may be lower due to clock source/divider limitations.
- 2. If PWR, 0.01uF decoupling cap required for return current.
- If routing to SD Card socket includes a flex or 2nd PCB, max trace and skew calculations must include PCB and flex routing.

Table 11-4. SD Card Loading vs. Drive Type

General SD Card Compliance	Parameter	Value	Units	Notes
CCARD (CDIE+CPKG)	Min	5	pF	Spec best case value
	Max	10	pF	Spec worst case value
Drive Type	А	33	Ω	UHS50 Card = optional, UHS104 Card = mandatory
	В	50	Ω	UHS50 Card = mandatory, UHS104 Card = mandatory
	С	66	Ω	UHS50 Card = optional, UHS104 Card = mandatory
	D	100	Ω	UHS50 Card = optional, UHS104 Card = mandatory
FMAX (CLK base frequency)	SDR104	208	MHz	Single data rate up to 104MB/sec
· -	DDR50	50	MHz	Double data rate up to 50MB/sec
	SDR50	100	MHz	Single data rate up to 50MB/sec
	SDR25	50	MHz	Single data rate up to 25MB/sec
	SDR12	25	MHz	Single data rate up to 12.5MB/sec
	HS	50	MHz	Single data rate up to 25MB/sec
	DS	25	MHz	Single data rate up to 12.5MB/sec
CLOAD (CCARD+CEQ)	Drive Type = A	21	pF	Total load capacitance supported
(CLK freq = 208MHz)	Drive Type = B	15	pF	Total load capacitance supported
	Drive Type = C	11	pF	Total load capacitance supported
	Drive Type = D	22	pF	Possibly 22pF+ depending on host system
CLOAD (CCARD+CEQ)	Drive Type = A	43	pF	Total load capacitance supported
(CLK freq = 100/50/25MHz)	Drive Type = B	30	pF	Total load capacitance supported
	Drive Type = C	23	pF	Total load capacitance supported
	Drive Type = D	22	pF	Possibly 22pF+ depending on host system

Table 11-5. SDCARD Signal Connections

Function Signal Name	Туре	Termination	Description
SDCARD_CLK	0	See note for EMI/ESD	SDIO/SD Card Clock: Connect to CLK pin of device or socket
SDCARD_CMD	1/0		SDIO/SDMMC Command: Connect to CMD pin of device/socket
SDCARD_D[3:0]	1/0	See note for EMI/ESD	SDIO/SDMMC Data: Connect to Data pins of device or socket
GPI002 (SDCARD_CD#)	I		SDIO Card Detect: Connect to CD/C_DETECT pin on socket if required.
GPI021 (SDCARD_VDD_EN)	0		SDIO Supply/Load Switch Enable: Connect to enable of supply/load
			switch supplying VDD on SD Card socket.

Note: EMI/ESD may be required for SDIO when used as the SD Card socket interface. Any EMI/ESD device used must be able to meet signal timing/quality requirements.

Table 11-6. Recommended SDCARD Observation Test Points for Initial Boards

Test Points Recommended	Location
One for SDCARD_CLK line.	Near Device/Connector pin. SD connector pin can be used for device end if accessible.
One SDCARD_DATx line and one for	Near Jetson AGX Xavier and Device pins. SD connector pin can be used for device end if
SDCARD_CMD.	accessible.

Chapter 12. Audio

Jetson AGX Xavier brings several PCM/I2S audio interfaces to the module pins and includes a flexible audio-port switching architecture. In addition, digital microphone and speaker interfaces are provided.

Table 12-1. Jetson AGX Xavier Audio Pin Description

Pin #	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
H9	MCLK01	AUD_MCLK	Audio Codec Master Clock	Audio Codec	Output	CMOS - 1.8V	ST	pd
D61	I2C4_CLK	GEN8_I2C_SCL	General I2C 4 Clock	Audio Codec & Camera	Bidir	Open-Drain -	DD	Z
E60	I2C4_DAT	GEN8_I2C_SDA	General I2C 4 Data	Connector	Diuli	1.8V	DD	Z
L14	I2S1_CLK	DAP1_SCLK	I2S Audio Port 1 Clock	Audio Codec	Bidir		ST	pd
D8	I2S1_FS	DAP1_FS	I2S Audio Port 1 Left/Right Clock	Audio Codec	Bidir		ST	pd
Н8	I2S1_SDIN	DAP1_DIN	I2S Audio Port 1 Data In	Audio Codec	Input		ST	pd
C7	I2S1_SDOUT	DAP1_DOUT	I2S Audio Port 1 Data Out	Audio Codec	Output	0.400 1.07	ST	pd
G4	I2S2_CLK	DAP2_SCLK	I2S Audio Port 2 Clock	BT Audio	Bidir	CMOS – 1.8V	ST	pd
F6	I2S2_DIN	DAP2_DIN	I2S Audio Port 2 Data In	BT Audio	Input		ST	pd
F5	I2S2_DOUT	DAP2_DOUT	I2S Audio Port 2 Data Out	BT Audio	Output	. [ST	pd
E4	I2S2_FS	DAP2_FS	I2S Audio Port 2 Left/Right Clock	BT Audio	Bidir		ST	pd
J59	I2S3_DIN	DAP4_DIN	I2S Audio Port 3 Data In	M.2 Key E	Input		CZ	pd
K59	I2S3_DOUT	DAP4_DOUT	I2S Audio Port 3 Data Out	M.2 Key E	Output		CZ	pd
C60	I2S3_FS	DAP4_FS	I2S Audio Port 3 Left/Right Clock	M.2 Key E	Bidir		CZ	pd
C59	I2S3_SCLK	DAP4_SCLK	I2S Audio Port 3 Clock	M.2 Key E	Bidir		CZ	pd
B58	GPI021	DAP6_SCLK	JAX: I2S Audio Port 6 Clock JAXi: No I2S support. GPIO only.	Not assigned	Bidir		CZ	pd
A58	GPI020	DAP6_FS	JAX: I2S Audio Port 6 Left/Right Clock JAXi: No I2S support. GPIO only.	Not assigned	Bidir	CMOS – 3.3V	CZ	pd
A59	GPI005	DAP6_DOUT	JAX: I2S Audio Port 6 Data Out JAXI: Not supported. Pin pulled low on the module.	Not assigned	Output		CZ	pd
B59	GPI004	DAP6_DIN	JAX: I2S Audio Port 6 Data In JAXi: No I2S support. GPIO only.	Not assigned	Input		CZ	pd
В8	GPI011	SOC_GPI030	GPI0	Audio Codec Interrupt	Bidir	CMOS - 1.8V	ST	pd
B62	GPIO08	CAN1_STB	GPIO / Digital Mic Input Data	Expansion Connector (AO DMIC In Data)	Bidir	01400 0.01	CZ	pd
C61	GPI009	CAN1_EN	GPIO / Digital Mic Input Clock	Expansion Connector (AO DMIC In Clock)	Bidir	CMOS - 3.3V	CZ	Z
F10	GPI015	DAP5_SCLK	GPIO / Digital Speaker Output Clock	Camera Connector (Camera 1 Powerdown)	Bidir	CMOS - 1.8V	ST	pd

Pin #	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
F9	GPI016	DAP5_DOUT	GPIO / Digital Speaker Output Data	Camera Connector (Camera 1 Reset)	Output		ST	Pd

Notes:

- 1. In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals.
- 2. The direction indicated for MCLKx, I2Sx, and GPIOx are associated with their use as I2S or MCLK signals. The pins support GPIO functionality, so support both input and output operation (bidirectional).
- The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- 4. The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.

When possible, the following assignments should be used for the I2Sx interfaces.

Table 12-2. I2S Interface Mapping

Module Pins (SoC Functions)	Xavier I/O Block	Typical Usage (Usage on NVIDIA Carrier Board)
I2S1 (I2S1)	AUDIO	Audio Codec
12S2 (12S2)	CONN	Bt Audio
12S3 (12S4)	AUDIO_HV	M.2 Key E
JAX: GPIO[21:20,05:04] (I2S6)	AUDIO_HV	Unassigned
JAXi: Only GPIO support on		
GPIO[04,20,21]. I2S6 Data Out not		
brought out (tied low on module)		

Figure 12-1. **Audio Device Connections**

Notes: The I2S interfaces can be used in either Master or Slave mode.

A capacitor from DAPn_FS to GND should be included if SoC an I2S slave and the edge_cntrl configuration = 1 (SDATA driven on positive edge of SCLK). The value of the capacitor should be chosen to provide a minimum of 2ns hold time for the DAPn_FS edge after the rising edge of DAPn SCLK.

12.1.1 12S Design Guidelines

The following table details the signal routing requirements for the I2S interface.

12S Interface Signal Routing Requirements Table 12-3.

Parameter	Requirement	Units	Notes
Configuration / Device Organization	1	load	
Max Loading	8	pF	
Reference plane	GND		
Breakout Region Impedance	Min width/spacing		
Trace Impedance	50	Ω	±20%
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	See Note 1
Trace spacing - Microstrip or Stripline	2x	dielectric	
Max Trace Delay	3600 (~22)	ps (in)	
Max Trace Delay Skew between SCLK and SDATA_ OUT/IN	250 (~1.6")	ps (in)	

Note: Up to 4 signal Vias can share a single GND return Via

Table 12-4. 12S and Miscellaneous Codec Signal Connections

Module Pin Name (Xavier Function)	Туре	Termination	Description
I2S1_SCLK (I2S1_CLK)	I/O	120 Ω Bead in series and 2.7pF	I2S Serial Clock: Connect to I2S/PCM CLK pin of
I2S2_SCLK (I2S2_CLK)		capacitor to GND (on Jetson AGX	audio device.
12S3_SCLK (12S4_CLK)		Xavier).	
JAX: GPI021 (I2S6_CLK)			
JAXi: No I2S support. GPIO only.			
I2S1_FS (I2S1_LRCK)	I/O		I2S Left/Right Clock: Connect to Left/Right Clock
12S2_FS (12S2_LRCK)			pin of audio device.
I2S3_FS (I2S4_LRCK)			
JAX: GPIO20 (I2S6_LRCK)			
JAXi: No I2S support. GPIO only.			
I2S1_DOUT (I2S1_SDOUT)			I2S Data Output: Connect to Data Input pin of audio
I2S2_DOUT (I2S2_SDOUT)			device.
I2S3_DOUT (I2S4_SDOUT)			
JAX: GPIO05 (I2S6_SDOUT)	I/O		
JAXi: No I2S support. GPI005 connected to CAN0_GPI002 on module.			

Module Pin Name (Xavier Function)	Туре	Termination	Description
12S1_DIN (I2S1_SDIN) 12S2_DIN (I2S2_SDIN) 12S3_DIN (I2S4_SDIN) JAX: GPI004 (I2S6_SDIN) JAXi: No I2S support. GPI0 only.	I		I2S Data Input: Connect to Data Output pin of audio device.
AUD_MCLK	0		Audio Codec Master Clock: Connect to clock pin of Audio Codec.
GPIO20_AUD_INT	I		Audio Interrupt: Connect to interrupt pin of Audio Codec.

12.1.2 DMIC Design Guidelines

The following table details the signal routing requirements for the DMIC interface.

DMIC Interface Signal Routing Requirements Table 12-5.

Requirement	Units	Notes	
12/83.33	MHz/ns		
24/41.66	Mbps/ns		
1	load		
Point to Point			
GND			
45-50	Ω	±20%	
< 3.8 (24)	mm (ps)	See Note	
2x / 2x	dielectric		
1280	ps		
150	ps		
	12/83.33 24/41.66 1 Point to Point GND 45-50 < 3.8 (24) 2x / 2x 1280	12/83.33 MHz/ns 24/41.66 Mbps/ns 1 load Point to Point GND 45-50 Ω < 3.8 (24) mm (ps) 2x / 2x dielectric 1280 ps	12/83.33 MHz/ns 24/41.66 Mbps/ns 1 load Point to Point GND 45-50 Ω ±20% < 3.8 (24) mm (ps) See Note 2x / 2x dielectric 1280 ps

Table 12-6. DMIC Signal Connections

Module Pin Name (Xavier Function)	Туре	Termination	Description
GPI009 (DMIC[5 or 3]_CLK)	0		Digital Microphone Clock: Connect to clock pin of DMIC device
GPIO08 (DMIC[5 or 3]_DAT)	I		Digital Microphone Data: Connect to data pin of DMIC device

Chapter 13. Miscellaneous Interfaces

13.1 I2C

The SoC has nine I2C controllers. Jetson AGX Xavier brings eight of the I2C interfaces out, which are shown in the following tables. The assignments in Table 13-2 should be used for the 12C interfaces:

Table 13-1. Jetson AGX Xavier I2C Pin Description

Pin #	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
K5	I2C1_CLK	GEN1_I2C_SCL	General I2C 1 Clock	ID EEDDOM			DD	z
L8	I2C1_DAT	GEN1_I2C_SDA	General I2C 1 Data	ID EEPROM			DD	Z
J61	I2C2_CLK	GEN2_I2C_SCL	General I2C 2 Clock	Mandana			DD	Z
K61	I2C2_DAT	GEN2_I2C_SDA	General I2C 2 Data	Various		Open-Drain – 1.8V	DD	Z
F53	I2C3_CLK	CAM_I2C_SCL	General I2C 3 Clock	C			DD	Z
E53	I2C3_DAT	CAM_I2C_SDA	General I2C 3 Data	Camera Connector	.		DD	Z
D61	I2C4_CLK	GEN8_I2C_SCL	General I2C 4 Clock	Audio Codec and			DD	Z
E60	I2C4_DAT	GEN8_I2C_SDA	General I2C 4 Data	Camera Connector	Dist.		DD	Z
A53	I2C5_CLK	DP_AUX_CH3_P	General I2C 5 Clock	Function Commenter	Bidir		DD	Z
C53	I2C5_DAT	DP_AUX_CH3_N	General I2C 5 Data	Expansion Connector			DD	Z
F51	DP0_AUX_CH_N	DP_AUX_CH0_N	DisplayPort 0 Aux- or HDMI DDC SDA	USB Type C Conn. J512			DP_AUX	Z
F52	DP0_AUX_CH_P	DP_AUX_CH0_P	DisplayPort 0 Aux+ or HDMI DDC SCL	(via Alt Mode Switch)		AC-Coupled on Carrier Board	DP_AUX	Z
J53	DP1_AUX_CH_N	DP_AUX_CH1_N	DisplayPort 1 Aux- or HDMI DDC SDA	USB Type C Conn. J513		(eDP/DP) or	DP_AUX	Z
J52	DP1_AUX_CH_P	DP_AUX_CH1_P	DisplayPort 1 Aux+ or HDMI DDC SCL	(via Alt Mode Switch)			DP_AUX	Z
G54	DP2_AUX_CH_N	DP_AUX_CH2_N	DisplayPort 2 Aux- or HDMI DDC SDA	LIDAM Comments		(3.3V tolerant - DDC/I2C)	DP_AUX	Z
G53	DP2_AUX_CH_P	DP_AUX_CH2_P	DisplayPort 2 Aux+ or HDMI DDC SCL	HDMI Connector			DP_AUX	Z

- 1. In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals.
- 2. The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- 3. The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.

Table 13-2. I2C Interface Mapping

Ctrlr	Module Pin Names	Usage on Module	Xavier	On-Module Pull-
	(Xavier Pins)		Block	up/voltage
I2C1	I2C1_CLK/DAT	ID EEPROM (7h50)	CONN	1KΩ to 1.8V
12C2	I2C2_CLK/DAT	Current Monitors (7H40 and 7H41)	AO	1KΩ to 1.8V
12C3	I2C3_CLK/DAT		CAM	1KΩ to 1.8V
12C4	DP1_AUX_CH_N/P		EDP	1KΩ to 1.8V
I2C5	(PWR_I2C_SCL/SDA) On-module only	System control. On JAXi only, routed to mux with VM_I2C. Output of mux controls to voltage monitors. VM_I2C controls monitors when Xavier reset is low. PWR_I2C when reset is high.	SYS	1KΩ to 1.8V
12C6	DP0_AUX_CH_N/P		EDP	None
12C7	DP2_AUX_CH_N/P		EDP	None
12C8	I2C4_CLK/DAT		AO	1KΩ to 1.8V
12C9	I2C5_CLK/DAT		EDP	1KΩ to 1.8V
na	VM_I2C_SCK_DAT	See I2C5 row Usage on Module description.	na	None

Figure 13-1. 12C Connections

Note: If I2C interfaces are routed to M.2 Key E or Key M connectors, it is recommended that 0Ω series resistors be included to allow these to be disconnected. Some M.2 Key E and Key M cards can cause conflicts with other devices connected to the I2C interfaces.

13.1.1 I2C Design Guidelines

Care must be taken to ensure I2C peripherals on same I2C bus connected to Jetson AGX Xavier do not have duplicate addresses. Addresses can be in two forms: 7-bit, with the Read/Write bit removed or 8-bit including the Read/Write bit. Be sure to compare I2C device addresses using the same form (all 7-bit or all 8-bit format).

Table 13-3. 12C Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max Frequency - Standard-mode / Fm / Fm+	100 / 400 / 1000	kHz	See Note 1
Topology	Single ended, bi- directional, multiple masters/slaves		
Max Loading - Standard-mode /Fm /Fm+	400	pF	Total of all loads
Reference plane	GND or PWR		
Trace Impedance	50 - 60	Ω	±15%
Trace Spacing	1x	dielectric	
Max Trace Delay			
Standard Mode	3400 (~20)	ps (in)	
Fm & Fm+	1700 (~10)		

Notes:

- 1. Fm = Fast-mode, Fm+ = Fast-mode Plus
- Avoid routing I2C signals near noisy traces, supplies or components such as a switching power regulator.
- No requirement for decoupling caps for PWR reference

Table 13-4. I2C Signal Connections

Module Pin Name	Туре	Termination	Description
I2C1_CLK/DAT	I/OD	1kΩ pull-ups to 1.8V on module	General I2C 1 Clock\Data. Connect to CLK/Data pins of 1.8V devices
I2C2_CLK/DAT	I/OD	1kΩ pull-ups to 1.8V on module	General I2C 2 Clock\Data. Connect to CLK/Data pins of 1.8V devices.
I2C3_CLK/DAT	I/OD	1kΩ pull-ups to 1.8V on module	General I2C 3 Clock\Data. Connect to CLK/Data pins of 1.8V devices
I2C4_CLK/DAT	I/OD	1kΩ pull-ups to 1.8V on module	General I2C 4 Clock\Data. Connect to CLK/Data pins of 1.8V devices.
I2C5_CLK/DAT	I/OD	1kΩ pull-ups to 1.8V on module	General I2C 5 Clock\Data. Connect to CLK/Data pins of 1.8V devices.
DP0_AUX_CH_P/N	I/OD	See eDP/HDMI/DP sections for correct termination	DP_AUX Channel (eDP/DP) or DDC I2C 2 Clock and Data (HDMI). Connect to AUX_CH_P/N (DP) or SCL/SDA (HDMI). Alternately available as I2C IF.
DP1_AUX_CH_P/N	I/OD	See eDP/HDMI/DP sections for correct termination	DP_AUX Channel (eDP/DP) or DDC I2C 2 Clock and Data (HDMI). Connect to AUX_CH_P/N (DP) or SCL/SDA (HDMI). Alternately available as I2C IF.
DP2_AUX_CH_P/N	I/OD	See eDP/HDMI/DP sections for correct termination	DP_AUX Channel (eDP/DP) or DDC I2C 2 Clock and Data (HDMI). Connect to AUX_CH_P/N (DP) or SCL/SDA (HDMI). Alternately available as I2C IF.
VM_I2C_CLK/DAT (JAXi only)	I/OD	1kΩ pull-ups to 1.8V on module	Voltage Monitor I2C Clock\Data. Connects to safety MCU CLK/Data pins if implemented.

Notes:

- 1. If some devices require a different voltage level than others connected to the same I2C bus, level shifters are required.
- 2. For I2C interfaces that are pulled up to 1.8V, disable the E_IO_HV option for these pads. For I2C interfaces that are pulled up to 3.3V, enable the E_IO_HV option. The E_IO_HV option is selected in the Pinmux registers.

13.1.2 De-bounce

The following table contain the allowable De-bounce settings for the various I2C modes.

Table 13-5. De-bounce Settings - Fast Mode Plus, Fast Mode, and Standard Mode

I2C Mode	Clock Source	Source Clock Freq	I2C Source Divisor	Sm/Fm Divisor	De-bounce Value	I2C SCL Freq
					0	1016KHz
Fm+	PLLP_OUT0	408MHz	5 (0x04)	10 (0x9)	5:1	905.8KHz
					7:6	816KHz
Fm	PLLP_OUT0	408MHz	5 (0x4)	26 (0x19)	7:0	392KHz
Sm	PLLP_OUT0	408MHz	20 (0x13)	26 (0x19)	7:0	98KHz

Note: sm = standard mode

13.2 SPI

Jetson AGX Xavier brings out three of the SoC SPI interfaces. For JAXi, SPI2 is routed to the safety MCU if implemented.

Jetson AGX Xavier SPI Pin Description Table 13-6.

Pin #	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Codes	Power- on Reset
J57	SPI1_CLK	SPI1_SCK	SPI1 Clock				ST	pd
E55	SPI1_CS0_N	SPI1_CS0	SPI1 Chip Select 0				ST	pu
B56	SPI1_CS1_N	SPI1_CS1	SPI1 Chip Select 1	Expansion Connector			ST	pu
A56	SPI1_MISO	SPI1_MISO	SPI1 Master In / Slave Out				ST	pu
D55	SPI1_MOSI	SPI1_MOSI	SPI1 Master Out / Slave In				ST	pu
E61	SPI2_CLK	SPI2_SCK	SPI 2 Clock (see note 5)				DD	pd
D60	SPI2_CS0_N	SPI2_CS0	SPI 2 Chip Select 0	DOI: -1/ 0	Bidir	CMOS - 1.8V	DD	Z
D62	SPI2_MISO	SPI2_MISO	SPI 2 Master In / Slave Out	PCle x16 Connector			DD	pd
F60	SPI2_MOSI	SPI2_MOSI	SPI 2 Master Out / Slave In				DD	pd
F55	SPI3_CLK	SPI3_SCK	SPI3 Clock				DD	pd
C57	SPI3_CS0_N	SPI3_CS0	SPI3 Chip Select 0	Not used			DD	Z
E56	SPI3_CS1_N	SPI3_CS1	SPI3 Chip Select 1				DD	Z
D56	SPI3_MISO	SPI3_MISO	SPI 3 Master In / Slave Out	PCle x16 Connector (SLVS_XCLR)			DD	pd
G56	SPI3_MOSI	SPI3_MOSI	SPI 3 Master Out / Slave In	PCle x16 Connector (SLVS_XCE)			DD	pd

Notes:

- 1. The Direction depends on whether Xavier is the master or slave. If Xavier is master, the clock, chip select and MOSI are outputs and MISO is an input. If Xavier is slave, the clock, chip select and MOSI are inputs and MISO is an output.
- 2. In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals.
- 3. The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- 4. The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.
- 5. JAXi only: SPI2 routed to safety MCU if implemented in design.

Figure 13-2. **SPI** Connections

The following figure shows the basic SPI connections.

Figure 13-3. Basic SPI Master and Slave Connections

13.2.1 SPI Design Guidelines

The following figures show the SPI topologies.

Figure 13-4. SPI Point-Point Topology

Figure 13-5. SPI Star Topologies

Figure 13-6. SPI Daisy Topologies

Table 13-7. SPI Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max Frequency	65	MHz	
Configuration / Device Organization	3	load	
Max Loading (total of all loads)	15	pF	
Reference plane	GND		
Breakout Region Impedance	Minimum width & spacing		
Max PCB breakout delay	75	ps	
Trace Impedance	50 - 60	Ω	±15%
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	See Note
Trace spacing - Microstrip / Stripline	4x / 3x	dielectric	
Max Trace Length/Delay (PCB Main Trunk) For MOSI, MISO, SCK and CS			
Point-Point	125 (787)	mm (ps)	
2x-Load Star/Daisy	50 (314)		
Max Trace Length/Delay (Branch-A) for MOSI, MISO, SCK and CS: 2x-Load Star/Daisy	75 (472)	mm (ps)	
Max Trace Length/Delay (Branch-B) for MOSI, MISO, SCK and CS: 2x-Load Star/Daisy	75 (472)	mm (ps)	
Max Trace Length/Delay Skew from MOSI, MISO and CS to SCK	16 (100)	mm (ps)	At any point

Note: Up to 4 signal vias can share a single GND return via.

Table 13-8. SPI Signal Connections

Module Pin Names	Туре	Termination	Description
SPI[3:1]_CLK	1/0		SPI Clock.: Connect to Peripheral CLK pin(s)
SPI[3:1]_MOSI	1/0		SPI Data Output: Connect to Slave Peripheral MOSI pin(s)
SPI[3:1]_MISO	1/0		SPI Data Input: Connect to Slave Peripheral MISO pin(s)
SPI[3:1]_CS[1:0]_N, SPI2_CS0_N	I/O		SPI Chip Selects.: Connect one CS_N pin per SPI IF to each Slave Peripheral CS pin

Note: JAXi only: SPI2 routed to safety MCU if implemented in design

Table 13-9. Recommended SPI Observation Test Points for Initial Boards

Test Points Recommended	Location
One for each SPI signal line used	Near Jetson AGX Xavier and Device pins.

13.3 UART

Jetson AGX Xavier brings five UARTs out to the main connector. See Figure 13-7 for typical assignments of the UARTs.

Jetson AGX Xavier UART Pin Description Table 13-10.

Pin #	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Codes	Power- on Reset
K54	UART1_RX	UART1_RX	UART 1 Receive		Input		DD	Z
K53	UART1_TX	UART1_TX	UART 1 Transmit	Expansion Connector via	Output		DD	pd
H54	UART1_CTS	UART1_CTS	UART 1 Clear to Send	level shifter	Input		ST	pu
L51	UART1_RTS	UART1_RTS	UART 1 Request to Send		Output		ST	pd
C56	UART2_RX	UART2_RX	UART 2 Receive		Input		DD	pd
C58	UART2_TX	UART2_TX	UART 2 Transmit		Output		DD	pd
A57	UART2_CTS	UART2_CTS	UART 2 Clear to Send		Input		ST	pu
G58	UART2_RTS	UART2_RTS	UART 2 Request to Send	UART-USB (MicroB)	Output		ST	pd
K60	UART3_RX_ DEBUG	UART3_RX	Debug UART Receive	Bridge	Input	CMOS - 1.8V	DD	pd
H62	UART3_TX_ DEBUG	UART3_TX	Debug UART Transmit		Output		DD	pd
H58	UART5_RX	UART5_RX	UART 5 Receive		Input	01000 1.00	ST	pd
J58	UART5_TX	UART5_TX	UART 5 Transmit		Output		ST	pd
H57	UART5_CTS	UART5_CTS	UART 5 Clear to Send	M.2 Key E Connector	Input		ST	pu
K58	UART5_RTS	UART5_RTS	UART 5 Request to Send		Output		ST	pd
E61	SPI2_CLK (UART7_TX)	SPI2_SCK	SPI 2 Clock or UART 7 Transmit		Bidir		DD	pd
D60	SPI2_CS0_N (UART7_CTS)	SPI2_CS0	SPI2 Chip Select 0 or UART 7 Clear to Send		Bidir		DD	Z
D62	SPI2_MISO (UART7_RX)	SPI2_MISO	SPI 2 Master In / Slave Out or UART 7 Receive		Bidir		DD	pd
F60	SPI2_MOSI (UART7_RTS)	SPI2_MOSI	SPI 2 Master Out / Slave In or UART 7 Return to Send		Bidir		DD	Pd

Notes:

- 1. In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals.
- 2. The direction indicated for the UART pins is true when used for that function. Otherwise, these pins support GPIO functionality and can support both input and output (bidirectional).
- 3. The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- 4. The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.

Figure 13-7. Jetson AGX Xavier UART Connections

Notes: UART4 pins do not support UART functionality and UART4_RX pin is reserved and must be tied to GND through a $10k\Omega$ resistor. See the routing requirements in

Table 13-12. UART4_TX, UART4_RTS and UART4_CTS are available for use as GPIOs.

Care must be taken that any of the UART pins with straps associated with them are not pulled up/down or driven up/down by connected devices that would affect the strap level at power-on.

Table 13-11. **UART Signal Connections**

Module Pin Name	Туре	Termination	Description
UART[5,2:1]_TX, UART3_TX_DEBUG and	0		UART Transmit: Connect to Peripheral RXD pin of device
SPI2_CLK (UART7_TX) UART[5,2:1]_RX, UART3_RX_DEBUG and	I		UART Receive: Connect to Peripheral TXD pin of device
SPI2_MISO (UART7_RX)			
UART[5,2:1]_CTS and SPI2_CS0_N (UART7_CTS)	I		UART Clear to Send: Connect to Peripheral RTS_N pin of device
UART[5,2:1]_RTS and SPI2_MOSI (UART7_RTS)	0		UART Request to Send: Connect to Peripheral CTS pin of device

Table 13-12. Reserved UART4_RX Routing Requirements

Parameter	Requirement	Units	Notes
Minimum Trace spacing to other signals	3x (4x preferred)	dielectric	
Minimum distance from UART4_RX Plated-through hole (PTH) and other signal PTHs.	1.5	mm	
Trace Length to resistor to GND	5-15	mm	

13.4 CAN

Jetson AGX Xavier brings two controlled area network (CAN) interfaces out to the main connector.

Table 13-13. Jetson AGX Xavier CAN Pin Description

Pin #	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
F58	CAN0_DIN	CAN0_DIN	CAN 0 Receive		Input		CZ	pu
D59	CAN0_DOUT	CAN0_DOUT	CAN 0 Transmit		Output		CZ	pu
B61	CAN1_DIN	CAN1_DIN	CAN 1 Receive	Forman den Henden	Input		CZ	pu
H61	CAN1_DOUT	CAN1_DOUT	CAN 1 Transmit	Expansion Header			CZ	pu
B62	GPIO08	CAN1_STB	GPIO / Digital Mic Input Data		Input		CZ	pd
C61	GPI009	CAN1_EN	GPIO / Digital Mic Input Clock		Output	CMOS 3.3V	CZ	Z
E59	GPI006	CAN0_EN	GPI0	PCIe REFCLK mux Select	Output		CZ	Z
F59	GPI007	CANO_WAKE	GPIO	Unused	Input		CZ	Z
A62	GPI010	CAN1_WAKE	GPI0	USB PD Controller Interrupt	Input		CZ	Z

Notes:

- In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals.
- The direction indicated for the CAN signals are associated with that usage. The pins support GPIO functionality, so support both input and output operation (bidirectional).
- 3. The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- 4. The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.

Figure 13-8. Jetson AGX Xavier CAN Connections

Table 13-14. CAN Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max Data Rate / Frequency	5	Mbps / MHz	
Configuration / Device Organization	1	load	
Reference plane	GND		
Trace Impedance	50	Ω	±15%
Via proximity (Signal via to GND return via)	< 3.8 (24)	mm (ps)	
Trace spacing - Microstrip / Stripline	4x / 3x	dielectric	
Max Trace Length (for RX and TX only)	223 (1360)	mm (ps)	
Max Trace Length/Delay Skew from RX to TX	8 (50)	mm (ps)	

Table 13-15. CAN Signal Connections

Module Pin Name (Function)	Туре	Termination	Description
CANx_DOUT	0		CAN Data Output: Connect to matching pin of device
CANx_DIN	I		CAN Input: Connect to Peripheral pin of device
GPIO06 (CAN0_EN)	0		CAN Enable: Connect to matching pin of device
GPIO09 (CAN1_EN)			
GPIO08 (CAN1_STB)	0		CAN 1 Standby: Connect to matching pin of device
GPIO07 (CANO_WAKE)	I		CAN Wake: Connect to matching pin of device
GPIO10 (CAN1_WAKE)			

Chapter 14. Fan

Jetson AGX Xavier provides PWM and Tachometer functionality for controlling a fan as part of the thermal solution. Information on the PWM and Tachometer pins and functions can be found in the following locations:

- Jetson AGX Xavier Module Pin Mux:
 - This is used to configure the FAN_PWM and FAN_TACH pins. The FAN_PWM pin is configured as GP PWM4. The FAN TACH pin is configured as NV THERM FAN TACH.
- Xavier Technical Reference Manual:
 - Functional descriptions and related registers can be found in the TRM for the FAN_PWM (PWM chapter) and FAN_TACH (Tachometer chapter) functions.
- Jetson AGX Xavier Developer Kit Carrier Board Specification:
 - The document contains the maximum current capability of the VDD_5V supply in the Interface Power chapter. The fan is powered by this supply on the Jetson AGX Xavier Developer Kit carrier board.

Table 14-1. Jetson AGX Xavier Fan Pin Description

Pin #	Module Pin Name	SoC Signal	ILISAGE/LIESCRINTION	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Codes	Power- on Reset
K62	FAN_PWM	TOUCH_CLK	Fan Pulse Width Modulation signal	Fan Circuit/Connector	Output	01400 101	ST	pd
E54	FAN_TACH	SOC_GPI022	Fan Tachometer signal	Fan Circuit/Connector	Input	CMOS – 1.8V	ST	pd

Notes:

- 1. In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals.
- The direction indicated for FANx is associated with their use as Fan PWM/Tach. The pins support GPIO functionality, so support both input and output operation (bidirectional).
- 3. The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- 4. The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.

Figure 14-1. Jetson AGX Xavier Fan Connection Example

Fan Signal Connections Table 14-2.

Module Pin Name	Туре	Termination	Description
FAN_PWM	0	100kΩ pulldown to GND.	Fan Pulse Width Modulation: Connect through FET as shown in the Jetson AGX Xavier Fan Connections figure.
FAN_TACH	I	100kohm pullup to VDD_1V8	Fan Tachometer: Connect to TACH pin on fan connector.

Chapter 15. Debug and Strapping

This chapter covers the interfaces that are provided for debug & development as well as covering SoC pin strapping and boundary scan.

15.1 USB Recovery Mode

USB Recovery mode provides an alternate boot device (USB). In this mode, the system is connected to a host system and boots over USB. This is used when a new image needs to be flashed, or for debug purposes. To enter USB recovery mode, the FORCE_RECOVERY_N pin is held low when the system is powered on. FORCE RECOVERY N is the SoC RCM0 strap. Recovery mode can operate in either USB 2.0 or USB 2.0 + USB 3.1 modes. Recovery mode using USB 2.0 is from interface USB0_N/P only. For USB 3.1 recovery mode, the system will first enter USB 2.0 recovery mode using USB0 N/P and then SW configures the transition to use the USB 3.1 interface for the remainder of the flashing process. The USB 3.1 recovery mode interface must come from the UPHY TX1/RX1 P/N pins. See the USB section (Section 0) for an example connection figures that shows USB0 and PEX_TX1/RX1_PN connected to either a USB Type C connector or a USB Micro AB SS connector. In the example, a 5V power switch output connects to the VBUS pin on the connector. This supply is disabled by default in our reference design, so there is no contention with the 5V from the host system VBUS supply. If the supply on the Xavier system is present and enabled, the VBUS pin should not be connected from the host (special cable with VBUS disconnected).

15.2 JTAG and Debug UART

The following figure shows the JTAG and UART debug connections.

Figure 15-1. JTAG and UART Debug Connections

Notes:

- 1. NVJTAG SEL and JTAG TRST N must be low for normal operation and pulled to 1.8V for Boundary Scan Mode. NVDBG is left unconnected (pulled down on module) for normal operation and pulled to 1.8V for alternate debug modes (debug over USB, etc.). for Boundary Scan test mode, JTAG TRST N must be driven high in the proper sequence. See the Xavier Boundary Scan Requirements and Usage document for details.
- 2. Check preferred JTAG debugger documentation for JTAG PU/PD recommendations.

The Jetson AGX Xavier Developer Kit carrier board reference design implements a USB to UART bridge. A simpler option is shown in the following figure. The UART3 DEBUG interface is shown routed to a 6-pin header through level shifters.

Figure 15-2. Simple Debug UART Header Connections

15.2.1 JTAG

JTAG is not required but may be useful for new design bring up or for boundary scan.

Jetson AGX Xavier JTAG Pin Description Table 15-1.

Pin #	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power- on Reset
A60	JTAG_TCK	JTAG_TCK	JTAG Test Clock. Pulled to GND through $100 k\Omega$ resistor on module.		Input		JT_RST	Z
B60	JTAG_TDI	JTAG_TDI	JTAG Test Data In	JTAG Connector			JT_RST	pu
D58	JTAG_TDO	JTAG_TDO	JTAG Test Data Out		Output		ST	Z
E58	JTAG_TMS	JTAG_TMS	JTAG Test Mode Select		Input		JT_RST	pu
G61	JTAG_TRST_N	JTAG_TRST_N	JTAG Test Reset. Lowfor normal operation or ARM JTAG debug mode. High for scan test mode. Pulled to GND through 100kΩresistor on module.	Unused	Input	CMOS - 1.8V	JT_RST	pd
G60	NVDBG_SEL	NVDBG_SEL	NVIDIA Debug Select. Pulled to GND through 100kΩresistor on module.		Input		JT_RST	Z
H59	NVJTAG_SEL	NVJTAG_SEL	NVIDIA JTAG Select. Lowfor normal operation or ARM JTAG debug mode. High for scan test mode. Pulled to GND through 100kΩresistor on module.	Unused – Driven to GND	Input		JT_RST	Z

Notes:

- In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals.
- The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.

Table 15-2. JTAG Signal Connections

Module Pin Name (other)	Туре	Termination	Description
JTAG_TMS	1		JTAG Mode Select: Connect to TMS pin of connector
JTAG_TCK	1	100kΩ to GND on module	JTAG Clock: Connect to TCK pin of connector
JTAG_TDO	0		JTAG Data Out: Connect to TDO pin of connector
JTAG_TDI	1		JTAG Data In: Connect to TDI pin of connector
JTAG_RTCK	I		JTAG Return Clock: Connect to RTCK pin of connector
JTAG_TRST_N	I	100kΩ to GND and 0.1uF to GND on module	JTAG General Purpose Pin #0: Leave unconnected for normal or ARM JTAG operation. Connect to TRST pin of connector or similar for Boundary Scan test mode. See the Xavier Boundary Scan Requirements and Usage document for details.

Module Pin Name (other)	Туре	Termination	Description
NVJTAG_SEL		100kΩ to GND on module	NVIDIA JTAG Select: Used as select Normal operation: Must be low, so leave unconnected (on- module pulldown will keep low). Scan test mode: Connect NVJTAG_SEL to VDD_1V8. See the
			Boundary Scan Test Mode section and the Xavier Boundary Scan Requirements and Usage document for details.
NVDBG_SEL		100kΩ to GND on module	NVIDIA Debug Select: Used as select Normal operation: Leave series resistor from NVDBG_SEL not stuffed. Advanced Debug modes: Connect NVDBG_SEL to VDD_1V8 (install 0Ω resistor as shown).

15.2.2 Debug UART

Jetson AGX Xavier provides UART3_DEBUG for debug purposes. The connections are described in the following table.

Table 15-3. **Debug UART Connections**

Module Pin Name	Туре	Termination	Description
UART3_TX_DEBUG	0		UART Transmit: Connect to RX pin
			of serial device
UART3_RX_DEBUG	1	If level shifter implemented, 100kΩto supply on	UART Receive: Connect to TX pin
		the non-Jetson AGX Xavier side of the device.	of serial device

15.3 Strapping Pins

Jetson AGX Xavier has one strap (FORCE_RECOVERY_N) that is intended to be used on the carrier board. That strap is used to enter Force Recovery mode (held low during power-on). The other straps mentioned in this section are for use on the module by NVIDIA only. Their state at power-on must not be affected by any connections on the carrier board. The carrier board design should guarantee a high-z on the pins during boot. The pins that are associated with SoC straps (besides FORCE_RECOVERY_N) are as follows:

STANDBY_REQ_N	UART2_TX	UART4_RTS
UART1_TX	UART2_RTS	UART5_RTS
UART1_RTS	UART4_TX	UART5_TX
GPI033		

Note: GPIO12 is used on JAXi only as the BOOT_CHAIN_SELECT strap. This strap selects between two boot chain options if needed. This pin is connected to a Safety MCU GPIO (if implemented in a design). The MCU drives the level of the strap when JAXi is powered on to determine which of two boot chains will be used.

Figure 15-3 shows an example of a buffer used to isolate the signals from any of the pins listed from the device they are connected to on the carrier board.

Figure 15-3. Example Buffer Between Pin Associated with SoC Strap and Connected Device

Boundary Scan Test Mode

To support Boundary Scan Test mode, the SoC NVJTAG_SEL pin must be pulled high and The SoC must be held in reset without resetting the PMIC. This is done using the PERIPHERAL RESET N pin on the module. The following figure illustrates this. Other requirements related to supporting boundary scan test mode are described in the Xavier Boundary Scan Requirements and Usage document.

Figure 15-4. **Boundary Scan Connections**

15.5 Safety MCU JAXi Only

Jetson JAXi Xavier adds support for a safety MCU in the system for designs that require this. The following connections are intended to use with a safety MCU.

- SPI2
- VM_I2C (Voltage Monitor I2C)
- VM_INT_N (Voltage Monitor Interrupt)
- ► GPIO31 (SAFESTATE)
- ► GPI012 (B00T_CHAIN_SELECT strap)
- NC 03 (TEMP THERM OUT
- ► EQOS / RGMII (Ethernet)

The pin descriptions for several of the signals involved with a safety MCU design are shown in the following table. For SPI and RGMII (Ethernet) pin descriptions, see the respective sections earlier in this design guide.

Table 15-4. Safety MCU Related Partial Pin Descriptions

Pin#	Module Pin Name	SoC Signal	Usage/Description	Usage on NVIDIA Carrier Board	Direction	Pin Type	MPIO Pad Code	Power -on Reset
L44	VM_I2C_SCK	na	JAXi only: Connects to safety MCU on	Unused	Bidir	Open Drain, 3.3V	_	_
L45	VM_I2C_DAT	na	carrier board if implemented. Routed on module to mux with PWR_I2C. Mux select connected to SoC reset. Output of mux controls on-module voltage monitors. VM_I2C controls when reset is active (low).		Bidir	Open Drain, 3.3V	-	-
L47	VM_INT_N	na	Interrupt from on-module voltage monitors. Connects to safety MCU if implemented.		Output	Open Drain, 3.3V	-	-
H60	GPIO31	SAFE_STATE	GPIO. For JAXi only, routed to the safety MCU.	Micro SD / UFS Card Socket (UFS Detect)	Bidir	CMOS - 1.8V	DD	Z
E10	GPI012 (B00T_CHAIN_ SELECT strap)	SOC_GPI033	JAXI only, used as a strap at power-onto select from two boot chains. Driven by the Safety MCU if implemented.	M.2 Key E Connector (M2 Wake AP)	Bidir	CMOS - 1.8V	ST	pu
G59	NC_03 (TEMP_THERM_ OUT)	-	Connects to on-module temperature sensor THERM* output. 10kΩ pullup to 1.8V on module.	Unused	Output	Open Drain, 1.8V	-	-

Notes:

- 1. In the Type/Dir column, Output is from Jetson AGX Xavier. Input is to Jetson AGX Xavier. Bidir is for Bidirectional signals.
- 2. The MPIO Pad Codes are described in the Xavier Series (SoC) Technical Reference Manual "Multi-Purpose I/O Pins and Pin Multiplexing (PinMux)" section for details.
- 3. The Power-on Reset State column indicates the pin state when reset is active and when it is deactivated before any changes are made by software. "z" is tristate, pu/pd indicates internal weak pull-up/down resistor is enabled, 1/0 indicates actively driven high/low.

Figure 15-5. Safety MCU Connections

Chapter 16. Pads

16.1 MPIO Pad Behavior when Associated Power Rail is Enabled

Jetson AGX Xavier CZ (see note) type MPIOs pins may glitch when the associated power rail is enabled or disabled. Designers should take this into account. MPIOs of this type that must maintain a low state even while the power rail is being ramped up or down may require special handling. The "Pin Descriptions" section of Jetson AGX Xavier Data Sheet includes the pin type information.

Schmitt Trigger Usage

The MPIO pins have an option to enable or disable Schmitt Trigger mode on a per-pin basis. This mode is recommended for pins used for edge-sensitive functions such as input clocks, or other functions where each edge detected will affect the operation of a device. Schmitt Trigger mode provides better noise immunity and can help avoid extra edges from being "seen" by the SoC inputs. Input clocks include the I2S and SPI clocks when SoC is in slave mode. The FAN TACH pin is another input that could be affected by noise on the signal edges. The SDCARD_CLK pin, while used to output the SD clock, also samples the clock at the input to help with read timing. Therefore, the pin may benefit from enabling Schmitt Trigger mode. Care should be taken if the Schmitt Trigger mode setting is changed from the default initialization mode as this can have an effect on interface timing.

16.3 Pins Pulled and Driven During Power-on

Jetson AGX Xavier is powered up before the carrier board (See Power Sequencing section). Some of the pins are pulled or driven high either by The SoC or by pull-up resistors on the module. The pins on Jetson AGX Xavier that are pulled/driven high by The SoC can be found in the Module Pinmux spreadsheet. The pins that have pull-up resistors on the module are listed in the Jetson AGX Xavier Signal Terminations section of the Design Checklist chapter. Care must be taken on the carrier board design to ensure that any of these pins that connect to

devices on the carrier board (or devices connected to the carrier board) do not cause damage or excessive leakage to those devices. Some of the ways to avoid issues with sensitive devices are:

- External pull-downs on the carrier board that are strong enough to keep the signals low are one solution, given that this does not affect the function of the pin. This will not work pins actively driven high by default.
- Buffers or level shifters can be used to separate the signals from devices that may be affected. The buffer and shifter should be disabled until the device power is enabled.

16.4 Pad Drive Strength

The following table provides the maximum MPIO pad output drive current when the pad is configured for the maximum DRVUP/DRVDN values (11111b). The MPIO pad types include the ST, DD, CZ and LV_CZ type pads. The pad types can be found in the *Jetson AGX Xavier Module* Data Sheet.

Table 16-1. MPIO Maximum Output Drive Current

IOL/IOH	Pad Type	VOL	VOH
+/- 1mA	ST	0.15*VDD	0.825*VDD
+/- 1mA	DD	0.15*VDD	0.8*VDD
+/- 1mA	CZ (1.8V mode)	0.15*VDD	0.85*VDD
+/- 1mA	CZ (3.3V mode)	0.15*VDD	0.85*VDD
+/- 1mA	LV_CZ	0.15*VDD	0.85*VDD
+/- 2mA	ST	0.15*VDD	0.7*VDD
+/- 2mA	DD	0.175*VDD	0.7*VDD
+/- 2mA	CZ (1.8V mode)	0.25*VDD	0.75*VDD
+/- 2mA	CZ (3.3V mode)	0.15*VDD	0.75*VDD
+/- 2mA	LV_CZ	0.25*VDD	0.75*VDD

Chapter 17. Unused Interface **Terminations**

17.1 Unused MPIO Interfaces

The following Jetson AGX Xavier pins (and groups of pins) are Jetson AGX Xavier MPIO (Multipurpose Standard CMOS Pad) pins that support either special function IOs (SFIO) and/or GPIO capabilities. Any unused pins or portions of pin groups listed in the following table that are not used can be left unconnected.

Table 17-1. Unused MPIO Pins and Pin Groups

Module Pins / Pin Groups	Module Pins / Pin Groups
I2Sx, AUD_MCLK, DSPKx, DMICx	GP_PWMx
SDMMCx	CCLAx
MIPI_TRC_x	SCE_SAFE_STATE
EQOSx	SOC_THERMx
QSPIx	PMICINTR
Ux3_x	GPIO_AO_RET
I2Cx	WDT_RESET_x
SPIx	TOUCH_x
CANx	EXTPERIPHX
VGPx	IGPUx
SLVSx	SATA_LED_ACTIVE
IQCx	NV_THERMx
UFSx	ISTCTRLx
PEx, PEX_CLKx	DCx
DP_AUXx	DGPU_x

17.2 Unused SFIO Interface Pins

See the "Unused SFIO (Special Function I/O) Interface Pins" section in the pin description checklist attached to this design guide.

To access the attached file, click the Attachment icon on the left-hand toolbar on this PDF (using Adobe Acrobat Reader or Adobe Acrobat). Select the file and use the Tool Bar options (Open, Save) to retrieve the documents.

Excel files with the .nvxlsx extension will need to be renamed to .xlsx to open.

Chapter 18. Design and Bring-up Checklists

The design checklist is intended to help ensure that the correct connections have been made in a design. The check items describe connections for the various interfaces and the "Same/Diff/NA" column is intended to be used to indicate whether the design matches the check item description, is different, or is not applicable to the design.

The bring-up checklist is intended to provide basic items to check during bring-up for power delivery and the various interfaces used in a design.

To access the attached file, click the Attachment icon on the left-hand toolbar on this PDF (using Adobe Acrobat Reader or Adobe Acrobat). Select the file and use the Tool Bar options (Open, Save) to retrieve the documents. Excel files with the .nvxlsx extension will need to be renamed to .xlsx to open.

Chapter 19. General Layout Guidelines

Trace and via characteristics play an important role in signal integrity and power distribution on Jetson AGX Xavier. Vias can have a strong impact on power distribution and signal noise, so careful planning must take place to ensure designs meet NVIDIA's via requirements. Trace length and impedance determine signal propagation time and reflections, both of which can greatly improve or reduce the performance of Jetson AGX Xavier. Trace and via requirements for each signal type can be found in the corresponding chapter; this chapter provides general guidelines for via and trace placement.

19.1 Via Guidelines

The number of vias in the path of a given signal, power supply line, or ground line can greatly affect the performance of the trace. Via placement can make differences in current carrying capability, signal integrity (due to reflections and attenuation), and noise generation, all of which can impact the overall performance of the trace. The following guidelines provide basic advice for proper use of vias.

19.1.1 Via Count and Trace Width

As a rule, each ampere of current requires at least two micro-vias.

19.1.2 Via Placement

If vias are not placed carefully, they can severely degrade the robustness of a board's power plane. In standard deigns that do not use blind or buried vias, construction of a via entails drilling a hole that cuts into the power and ground planes. Thus, incorrect via placement affects the amount of copper available to carry current to the power balls of the IC.

19.1.3 Via Placement and Power and Ground Corridors

Vias should be placed so that sufficiently wide power corridors are created for good power distribution, as show in Figure 19-1.

Figure 19-1. Via Placement for Good Power Distribution

Care should also be taken to avoid use of "thermal spokes" (also referred to as "thermal relief") on power and ground vias. Thermal spokes are not necessary for surface-mount components, and the narrow spoke widths contribute to increased inductance. The metal on the inner layers between vias may not be flooded with copper if enough spacing is not provided. The diminished spacing creates a blockage and forces the current to find another path due to lack of copper, as shown in Figure 19-2 and Figure 19-3. This leads to power delivery issues and impedance discontinuities when traces are routed over these plane voids.

Figure 19-2. Good Current Flow Resulting from Correct Via Placement

Figure 19-3. Poor Current Flow Resulting from Incorrect Via Placement

In general, a dense via population should be avoided and good PCB design principles and analysis should be applied.

Connecting Vias 19.2

To be effective, vias must be connected properly to the signal and power planes. Poor via connections make the capacitor and power planes less effective, leading to increased cost due to the need for additional capacitors to achieve equivalent performance. This not only impacts the Bill of Materials (BOM) cost of the design, but it can greatly impact quality and reliability of the design.

19.3 Trace Guidelines

Trace length and impedance play a critical role in signal integrity between the driver and the receiver on Jetson AGX Xavier. Signal trace requirements are determined by the driver characteristics, source characteristics, and signal frequency of the propagating signal.

19.3.1 Layer Stack-Up

The number of layers required is determined by the number of memory signal layers needed to achieve the desired performance, and the number of power rails required to achieve the optimum power delivery/noise floor. For example, high-performance boards require four memory signal routing layers, with at least two GND planes for reference. This comes to six layers; add another two for power, which gives eight layers minimum. Reduction from eight to six layers starts the trade-off of cost versus performance.

Power and GND planes usually serve two purposes in PCB design: power distribution and providing a signal reference for high-speed signals.

Either the power or the ground planes can be used for high-speed signal reference; this is particularly common for low-cost designs with a low layer count. When both power and GND are used for signal reference, make sure you minimize the reference plane transition for all high-speed signals. Decoupling caps or transition vias should be added close to the reference plane transitions.

19.3.2 Trace Length

The maximum trace length for a given signal is determined by the maximum allowable propagation delay and impedance for the signal. Higher frequency signals must be treated as transmission lines (see Chapter 21 "Transmission Line Primer") to determine proper trace characteristics for a signal.

All signals on the graphics card maintain different trace guidelines. Refer to the corresponding signal chapter in the design guide to determine the guidelines for the signal.

Chapter 20. Stack-Ups

Reference Design Stack-ups

This section details the reference design stack-ups.

20.1.1 Importance of Stack-up Definition

Stack-ups define the number and order of board layers. Stack-up definition is critical to the following design:

- Circuit routability
- Signal quality
- Cost

20.1.2 Impact of Stack-up Definition on Design

- Stack-Up Impact on Circuit Routability If there are insufficient layers to maintain proper signal spacing, prevent discontinuities in reference planes, obstruct flow of sufficient current, or avoid extra vias, circuit routing can become unnecessarily complex. Layer count must be minimally appropriate for the circuit.
- Stack-Up Impact on Signal Quality Both layer count and layer order impact signal integrity. Proper inter-signal spacing must be achievable. Via count for critical signals must be minimized. Current commensurate with the performance of the board must be carried. Critical signals must be adjacent to major and minor reference planes and adhere to proximity constraints with respect to those planes. The recommended NVIDIA stack-ups achieve these requirements for the signal speeds supported by the board.
- Stack-Up Impact on Cost While defining extra layers can facilitate excellent signal integrity, current handling capability and routability, extra layers can impede the goal of hitting cost targets. The art of stack-up definition is achieving all technical and reliability circuit requirements in a cost efficient manner. The recommended NVIDIA stack-ups achieve these requirements with efficient use of board layers.

Chapter 21. Transmission Line Primer

21.1 Basic Board Level Transmission Line Theory

NVIDIA maintains strict guidelines for high-frequency PCB transmission lines to ensure optimal signal integrity for data transmission. This section provides a brief primer into basic board-level transmission line theory.

21.1.1 Characteristics

The most important PCB transmission line characteristics are listed in the following bullets:

Trace width/height, PCB height and dielectric constant, and layer stack-up affect the characteristic trace impedance of a transmission line.

$$Z_0 \cong \left(\frac{L}{C}\right)^{1/2}$$

Signal rise time is proportional to the transmission line impedance and load capacitance.

RiseTime
$$\cong \left(\frac{Z_0 * R_{\text{Term}}}{Z_0 + R_{\text{Term}}}\right) * C_{\text{Load}}$$

Real transmission lines (Figure 21-1) have non-zero resistances that lead to attenuation and distortion, creating signal integrity issues.

Figure 21-1. Typical Transmission Lin Circuit

Transmission lines are used to "transmit" the source signal to the load or destination with as little signal degradation or reflection as possible. For this reason, it is important to design the high-speed signal transmission line to fall within characteristic guidelines based on the signal speed and type.

Physical Transmission Line Types

The two primary transmission line types often used for Jetson AGX Xavier board designs are:

- ► Microstrip transmission line (Figure 21-2)
- Stripline transmission line (Figure 21-3)

The following sections describe each type of transmission.

Microstrip Transmission Line 21.2.1

Figure 21-2 describes the microstrip transmission line.

Figure 21-2. Microstrip Transmission Line

$$\begin{array}{c|c}
 & + W + | & \downarrow \\
\hline
 & H & Dielectric \\
 & \downarrow & T & Z_0 = \left(\frac{87}{\sqrt{\text{Er} + 1.414}}\right) \ln \left(\frac{5.98 \text{H}}{0.8 \text{W} + \text{T}}\right)
\end{array}$$

- Z0: Impedance
- W: Trace width (inches)
- T: Trace thickness (inches)
- Er: Dielectric constant of substrate
- H: Distance between signal and reference plane

Stripline Transmission Line

Figure 21-3 describes the microstrip transmission line.

Figure 21-3. Stripline Transmission Line

$$\begin{array}{c|c} |+W|+| \\ \hline \downarrow \\ \hline \downarrow \\ \hline \end{array} \begin{array}{c|c} \hline \downarrow \\ \hline \uparrow \\ \hline \downarrow \\ \hline \end{array} \begin{array}{c|c} \hline \downarrow \\ \hline \uparrow \\ \hline \downarrow \\ \hline \end{array} \begin{array}{c|c} \hline \downarrow \\ \hline \downarrow \\ \hline \end{array} \begin{array}{c|c} \hline \\ \hline \hline \end{array} \begin{array}{c|c} \hline \\ \hline \end{array} \begin{array}{c|c} \hline \end{array} \end{array} \begin{array}{c|c} \hline \end{array} \begin{array}{c|c} \hline \end{array} \begin{array}{c|c} \hline \end{array} \end{array} \begin{array}{c|c} \hline \end{array} \end{array} \begin{array}{c|c} \hline \end{array} \begin{array}{c|c} \hline \end{array} \begin{array}{c|c} \hline \end{array} \end{array} \begin{array}{c|c} \hline \end{array} \begin{array}{c|c} \hline \end{array} \begin{array}{c|c} \hline \end{array} \end{array} \begin{array}{c|c} \hline \end{array} \begin{array}{c|c} \hline \end{array} \begin{array}{c|c} \hline \end{array} \begin{array}{c|c} \hline \end{array} \end{array} \begin{array}{c|c} \hline \end{array} \end{array} \begin{array}{c|c} \hline \end{array} \begin{array}{c|c} \hline \end{array} \begin{array}{c|c} \hline \end{array} \end{array} \begin{array}{c|c} \hline \end{array} \end{array} \begin{array}{c|c} \hline \end{array} \begin{array}{c|c} \hline \end{array} \end{array}$$

- Z0: Impedance
- W: Trace width (inches)
- T: Trace thickness (inches)
- Er: Dielectric constant of substrate
- H: Distance between signal and reference plane

21.3 Drive Characteristics

Driver characteristics are important to the integrity and maximum speed of the signal. The following points identify key driver equations and concepts used to improve signal integrity and transmission speed.

- The driver (source) has resistive output impedance Zs, which causes only a fraction of the signal voltage to propagate down the transmission line to the receiver (load).
 - Transfer function at source:

$$T1 = \frac{Z_0}{Z_S + Z_0}$$

- Driver strength is inversely proportional to the source impedance, Zs.
- Zs also acts as the source termination, which helps dampen reflection.
 - Source reflection coefficient:

R1 =
$$\frac{(Z_S - Z_0)}{(Z_S + Z_0)}$$

Receiver Characteristics 21 4

Receiver characteristics are important to the integrity and detectability of the signal. The following points identify key receiver concepts and equations for optimum signal integrity at the final destination.

- The receiver acts as a capacitive load and often has a high load impedance, ZL.
- Unterminated transmission lines cause overshoot and reflection at the receiver, which can cause data corruption.
 - Output transfer function at load:

$$T2 = \frac{2 * Z_L}{Z_{L+} Z_0}$$

Load reflection coefficient:

$$R2 = \frac{(Z_L - Z_0)}{(Z_L + Z_0)}$$

- Load impedance can be lowered with a termination resistor (R_{Term}) placed at the end of the transmission line.
 - Reflection is minimized when Z_L matches Z₀

21.5 Transmission Lines and Reference **Planes**

Defining an appropriate reference plane is vital to transmission line performance due to crosstalk and EMI issues. The following points explore appropriate reference plane identification and characteristics for optimal signal integrity:

- Transmission line return current (Figure 21-4)
 - High-speed return current follows the path of least inductance.
 - The lowest inductance path for a transmission line is right underneath the transmission line; i(D) is proportional to:

Figure 21-4. Transmission Line Height

- Transmission line return current:
 - High-speed return current follows the path of least inductance.
 - The lowest inductance path for a transmission line is the portion of the line closest to the dielectric surface; i(D) is proportional to

$$\frac{1}{\left(1+\left(\frac{D}{H}\right)^2\right)}$$

- Crosstalk on solid reference plane (Figure 21-5):
 - Crosstalk is caused by the mutual inductance of two parallel traces.
 - Crosstalk at the second trace is proportional to

$$\frac{1}{\left(1+\left(\frac{D}{H}\right)^2\right)}$$

The signals need to be properly spaced to minimize crosstalk

Figure 21-5. Crosstalk on Reference Plane

- Reference plane selection
 - Solid ground is preferred as reference plane.
 - Solid power can be used as reference plane with decoupling capacitors near driver and receiver.
 - Reference plane cuts and layer changes need to be avoided.
- ► Power plane cut example (Figure 21-6)
 - Power plane cuts will cause EMI issues.
 - Power plane cuts also induce crosstalk to adjacent signals.

Figure 21-6. Power Plane Cuts Example

- When cut is unavoidable:
 - Place decoupling capacitors near transition.
 - Place transition near source or receiver when decoupling capacitors are abundant (Figure 21-7).

Figure 21-7. Power Plane Cuts Example when Decouple Capacitors are abundant

- ▶ When signal changes plane:
 - Try not to change the reference plane, if possible.
 - When a reference plane switches to different power rail, a stitching capacitor is required (Figure 21-8).
 - When the same ground and power reference plane changes to a different layer, a stitching via is required (Figure 21-9).

Figure 21-8. Switching Reference Planes

Figure 21-9. Reference Plane Switch Using Via

Chapter 22. Design Guideline Glossary

The design guidelines include various terms. The following descriptions are intended to show what these terms mean and how they should be applied to a design.

► Trace Delay

- Max Breakout Delay
 - Routing on Component layer: Maximum Trace Delay from module connector pin to point beyond pin array where normal trace spacing/impedance can be met. Routing passes to layer other than Component layer: Beyond this, normal trace spacing/impedance must be met.
- Max Total Trace Delay Trace from module connector pin to device pin. This must include routing on the main PCB and any other Flex or secondary PCB. Delay is from the module connector to the final connector and device.
- Intra and Inter Pair Skews
 - Intra Pair Skew within Pair Difference in delay between two traces in differential pair: Shorter routes may require indirect path to equalize delays.
 - Inter Pair Skew Pair-to-Pair Difference between two (or possibly more) differential pairs.
- Impedance and Spacing
- Microstrip vs. Stripline
 - Microstrip: Traces next to single reference plane.
 - Stripline: Traces between two reference planes.
 - Trace Impedance
 - Impedance of trace determined by width and height of trace, distance from reference plane, and dielectric constant of PCB material. For differential traces, space between pair of traces is also a factor.
 - Board Trace Spacing and Spacing to other Nets Minimum distance between two traces. Usually specified in terms of dielectric height which is distance from trace to reference layers.
 - Pair to Pair Spacing Spacing between differential traces.

Breakout Spacing

Possible exception to board trace spacing where different spacing rules are allowed under module connector pin in order to escape from the pin array. Outside device boundary, normal spacing rules apply.

Reference Return

- Ground Reference Return Via and Via proximity (signal to reference)
 - Signals changing layers and reference GND planes need similar return current path.
 - Accomplished by adding via, tying both GND layers together.
- Via proximity (signal to reference) is distance between signal and reference return vias.
 - > GND reference via for Differential Pair.
 - Where a differential pair changes GND reference layers, return via should be placed close to and between signal vias (example to right).
- Signal to return via ratio

Number of Ground Return vias per Signal vias. For critical IFs, ratio is usually 1:1. For less critical IFs, several trace vias can share fewer return vias (i.e. 3:2 – 3 trace vias and 2 return vias).

- Slots in Ground Reference Layer
 - When traces cross slots in adjacent power or ground plane.
 - Return current has longer path around slot.
 - Longer slots result in larger loop areas.
 - > Avoid slots in GND planes or do not route across them.
- Routing over Split Power Layer Reference Layers
 - When traces cross different power areas on power plane.
 - Return current must find longer path usually a distant bypass cap.
 - If possible, route traces with solid plane (GND or PWR) or keep routes across single area.
 - If traces must cross two or more power areas, use stitching capacitors.
 - Placing one cap across two PWR areas near where traces cross area boundaries provides high-frequency path for return current.
 - Cap value typically 0.1uF and should ideally be within 0.1" of crossing.

Chapter 23. Jetson AGX Xavier Pin Description

The Jetson AGX Xavier pin description is attached to this design guide.

To access the attached file, click the Attachment icon on the left-hand toolbar on this PDF (using Adobe Acrobat Reader or Adobe Acrobat). Select the file and use the Tool Bar options (Open, Save) to retrieve the documents. Excel files with the .nvxlsx extension will need to be renamed to .xlsx to open.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation ("NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer ["Terms of Sale"]. NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

Unless specifically agreed to in writing by NVIDIA, NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer's own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer's sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer's product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

ARM

ARM, AMBA and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are trademarks of ARM Limited. All other brands or product names are the property of their respective holders. "ARM" is used to represent ARM Holdings plc; its operating company ARM Limited; and the regional subsidiaries ARM Inc.; ARM KK: ARM Korea Limited.; ARM Taiwan Limited; ARM France SAS; ARM Consulting (Shanghai) Co. Ltd.; ARM Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM Sweden AB.

Trademarks

NVIDIA, the NVIDIA Togo, Jetson AGX Xavier, and Xavier trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2018, 2019, 2020, 2021 NVIDIA Corporation. All rights reserved.

