Zusammenfassung Markovketten

© Tim Baumann, http://timbaumann.info/uni-spicker

Abzählbare Markovketten

Notation. Sei im Folgenden $\{Z_n\}$ eine Markovkette auf einem abzählbaren Zustandsraum E.

Def. Für $x \in E$ und $n \in \mathbb{N}$ definiere die ZV $\tau_x^{(n)}$ induktiv durch

$$\tau_x^{(1)} := \inf\{n > 0 \mid Z_n = x\} \in \mathbb{N} \cup \{\infty\}
\tau_x^{(k)} := \inf\{n > \tau_x^{(k-1)} \mid Z_n = x\}, k > 1.$$

(Beachte: $\tau_x^{(k)}$ ist eine messbare Abbildung.)

Bem. Ferner gilt $\{\tau_x^{(k)} = n\} \in \sigma(Z_0, Z_1, \dots, Z_n)$.

Def. Für $x, y \in E$ sei $F(x, y) := P(\tau_y^{(1)} < \infty \mid Z_0 = x)$

Lem. Für alle $x, y \in E$ und $k \ge 1$ gilt

$$P(\tau_y^{(k)} < \infty \mid Z_0 = x) = F(x, y) \cdot F(y, y)^{k-1}.$$

Bem. Setze $\widetilde{\ell}(y) := \sum_{k=1}^{\infty} \mathbb{1}\{Z_k = y\}$. Dann gilt

$$P(\tau_y^{(k)} < \infty \mid Z_0 = x) = P(\widetilde{\ell} \ge k \mid Z_0 = x).$$

Def. Ein Zustand $x \in E$ heißt

- absorbierend, falls p(x, x) = 1,
- rekurrent, falls F(x,x)=1 und
- transient, falls F(x,x) < 1.

Bem. Absorbierende Zustände sind rekurrent.

Bsp. In der Markovkette

$$(0) \underbrace{1 \atop 1-p} (1) \underbrace{p \atop 1-p} (2) \underbrace{p \atop 1-p} (3) \underbrace{p \atop 1-p} \dots$$

ist (0) genau dann rekurrent, falls $p \le 1/2$, ansonsten transient. TODO: genauer!

Def. Die Anzahl der Besuche in $u \in E$ ist

$$\ell(y) := \sum_{k=0}^{\infty} \mathbb{1}\{Z_k = y\}.$$

Die Green'sche Funktion von $\{Z_n\}$ ist $G: E \times E \to [0, \infty]$ mit

$$G(x,y) := \mathbb{E}(\ell(y) \mid Z_0 = x).$$

Bem.
$$G(x,y) = \mathbb{E}\left(\sum_{k=0}^{\infty} \mathbb{I}\left\{Z_{k} = y\right\} \mid Z_{0} = x\right)$$

 $= \sum_{k=0}^{\infty} P(Z_{k} = y \mid Z_{0} = x)$
 $= \delta_{xy} + \sum_{k=1}^{\infty} p^{(k)}(x,y).$

Satz. Für alle $x, y \in E$ gilt

$$G(x,y) = \begin{cases} F(x,y)/(1 - F(y,y)) & \text{falls } x \neq y, \\ 1/(1 - F(y,y)) & \text{falls } x = y. \end{cases}$$

Kor. x ist rekurrent $\iff G(x,x) = \infty$

Satz. Ist $x \in E$ rekurrent und F(x, y) > 0, so ist y auch rekurrent und F(x, y) = F(y, x) = 1.

Bem.
$$F(x,y) > 0 \iff \exists n \ge 1 : p^{(n)}(x,y) > 0$$

Def. $\{Z_n\}$ heißt **irreduzibel**, falls $\forall x, y \in E : F(x,y) > 0$.

Satz. Sei $\{Z_n\}$ irreduzibel. Dann sind entweder alle Zustände rekurrent oder alle Zustände transient.

Satz. Irreduzible Ketten auf endlichen Räumen sind rekurrent.

Rekurrenz und Transienz von Irrfahrten

Situation. $\{Z_n\}$ ist eine Irrfahrt auf \mathbb{Z}^d , d. h.

$$p(x,y) = p(0,y-x) =: q(y-x).$$

Mit and. Worten: Die Zuwächse $\{Z_n - Z_{n-1}\}_{n \geq 1}$ sind i. i. d. ZVn.

Bsp. Einfache Irrfahrt auf \mathbb{Z} : p(0,1) = p, p(0,-1) = q = 1-p

In diesem Fall kann man die Greensche Funktion exakt berechnen:

$$G(x,x) = G(0,0)$$

$$= \sum_{m=0}^{\infty} p^{(m)}(0,0)$$

$$= 1 + \sum_{n=1}^{\infty} p^{(2n)}(0,0)$$

$$= 1 + \sum_{n=1}^{\infty} {2n \choose n} p^n (1-p)^n$$

$$= 1 + \sum_{n=1}^{\infty} {2n \choose n} 4^{-n} (4p(1-p))^n$$

$$= (1 - 4p(1-p))^{-1/2}$$

$$= 1/|2p-1|$$

Satz. Sei $\{Z_n\}$ eine Irrfahrt auf \mathbb{Z} mit

$$\mathbb{E}|Z_1 - Z_0| = \sum_{x \in \mathbb{Z}} |x| p(0, x) < \infty.$$

Dann gilt: $\{Z_n\}$ ist rekurrent $\iff \sum_{x \in \mathbb{Z}} xp(0,x) = 0.$

Def. Die einfache symmetrische Irrfahrt auf \mathbb{Z}^d ist die translationsinvariante Markovkette mit

$$p(0, \pm e_i) = \frac{1}{2d}$$
 für $i = 1, ..., d$.

Bem. Für einfache symmetrische Irrfahrten gilt:

$$p^{(2n)}(x,x) = \sum_{\substack{k_1,\dots,k_d \in \mathbb{N} \\ k_1+\dots+k_d=n}} \frac{(2n)!}{(k_1!)^2 \cdots (k_d!)^2} (\frac{1}{2d})^{2n}$$

Für d=2 gilt $p^{(2n)}(0,0)=[\binom{2n}{n}(\frac{1}{2})^{2n}]^2$. Mit der Stirling'schen Formel folgt $p^{(2n)}(0,0)\approx\frac{1}{\pi n}$. Somit gilt $\sum p^{(2n)}(0,0)=\infty$.

Fazit. Die zweidimensionale einfache symm. Irrfahrt ist rekurrent.

 $Bem.\$ Man kann zeigen: Für einfache symm. Irrfahrten auf \mathbb{Z}^d gilt

$$p^{(2n)}(0,0) \le C_d/n^{d/2}$$

für eine Konstante $C_d>0.$ Somit ist die einfache Irrfahrt transient für alle d>3.

Def.
$$\varphi(t) := \sum_{x \in \mathbb{Z}^d} e^{i(t \cdot x)} p(0, x)$$
 für $t \in \mathbb{R}^d$

Bem. Da die Zuwächse $\{Z_n - Z_{n-1}\}$ i. i. d. sind, gilt

$$\sum_{x \in \mathbb{Z}^d} e^{i(t \cdot x)} p^{(n)}(0, x) = \varphi^n(t), \quad n \ge 1$$

Inversions formel: $p^{(n)}(0,x) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi)^d} e^{-i(t\cdot x)} \varphi^n(t) dt$

Satz. Für jede Irrfahrt $\{Z_n\}$ auf \mathbb{Z}^d gilt

$$G(0,0) = \left(\frac{1}{2\pi}\right)^d \lim_{\lambda \uparrow 1} \int_{t \in [-\pi,\pi)^d} Re\left(\frac{1}{1-\lambda\varphi(t)}\right) dt = \infty$$

Bsp. Für die einfache symm. Irrfahrt $\{Z_n\}$ auf \mathbb{Z}^d ist

$$\varphi(t) = \frac{1}{d} \sum_{k=1}^{d} \cos(t_k)$$

Mit der Ungleichung $1 - \cos(u) \ge c_0 u^2$ für alle $u \in [-\pi, \pi]$ folgt $\varphi(t) \ge \frac{c_0}{d} |t|^2.$

Es folgt

$$\frac{1}{1 - \lambda \varphi(t)} \le \frac{d}{\lambda c_0} |t|^{-2}$$

Die Funktion $|t|^{-2}$ ist auf $[-\pi,\pi)^d$ für jedes $d\geq 3$ integrierbar. Somit ist die einfache Irrfahrt auf \mathbb{Z}^d , $d\geq 3$, transient.

Satz. Jede irreduzible Irrfahrt auf \mathbb{Z}^d mit d > 3 ist transient.

Bsp. Sei $\{Z_n\}$ eine Irrfahrt auf \mathbb{Z} mit p(0,x)=p(0,-x). Gelte

$$x^{\alpha}p(0,x) \xrightarrow{x \to \infty} c \in (0,\infty)$$

für ein $\alpha > 1$. Dann ist

$$1 - \varphi(t) = \sum_{n = -\infty}^{\infty} (1 - \cos(nt)) p(0, n) \text{ und } \frac{1 - \varphi(t)}{|t|^{\alpha - 1}} = \sum_{n = -\infty}^{\infty} |n|^{\alpha} p(0, n) |t| f(nt)$$

mit $f(x) = (1 - \cos(x))/|x|^{\alpha}$. Außerdem $|n|^{\alpha} p(0, n) = c + \epsilon_n$, wobei $\epsilon_n \to 0$ für $|n| \to \infty$. Es folgt

$$\frac{1-\varphi(t)}{|t|^{\alpha-1}} = \sum_{n=-\infty}^{\infty} c|t|f(nt) + \sum_{n=-\infty}^{\infty} \epsilon_n|t|f(nt).$$

Für $t \to 0$ hat man

$$\sum_{n=-\infty}^{\infty} |t| f(nt) \to \int_{-\infty}^{\infty} f(x) \, \mathrm{d}x \ \text{ und } \ \sum_{n=-\infty}^{\infty} \epsilon_n |t| f(nt) \to 0.$$

Es folgt für $\alpha < 3$:

$$\lim_{t \to 0} \frac{1 - \varphi(t)}{|t|^{\alpha - 1}} = c \int_{-\infty}^{\infty} \frac{1 - \cos(x)}{|x|^{\alpha}} \, \mathrm{d}x < \infty$$

Folglich ist $\frac{1}{1-\varphi(t)}$ für $\alpha < 2$ integrierbar und somit $\{Z_n\}$ transient. Für $\alpha = 2$ ist $1/(1-\varphi(t))$ in der Umgebung von null nicht integrierbar und damit $\{Z_n\}$ rekurrent.

Für $\alpha > 2$ ist $\sum |x|p(0,x) < \infty$ und somit ist die Irrfahrt rekurrent, da der Erwartungswert der Zuwächse null ist.

Erneuerungstheorie

Situation. Seien $\{X_k\}_{k\geq 1}$ unabhängige ZVn mit Werten in $\mathbb N$ und $P(X_k\geq 1)>0$, wobei $\{X_k\}_{k\geq 2}$ identisch vert. sind. Dann definiert

$$Z_n := \sum_{k=1}^n X_k + Z_0$$

eine Irrfahrt $\{Z_n\}_{n\geq 0}$ mit nicht-negativen Zuwächsen auf \mathbb{Z} .

Ziel. Untersuche das asympt. Verhalten von G(0,x).

Def. Die erzeugende Funktion einer Folge $\{a_n\}$ ist

$$A(s) := \sum_{n=0}^{\infty} a_n s^n.$$

Bsp. Setze $p_k := P(X_2 = k), k \ge 0$. Wir nehmen an, dass

$$a := \mathbb{E}[X_2] = \sum_{k=1}^{\infty} k p_k \in (0, \infty).$$

Definiere $q_k := \frac{1}{a} \sum_{j=k}^{\infty} p_j$ für $k \ge 1$. Dann ist $\sum_{k=1}^{\infty} q_k = 1$. Sei X_1 eine ZV mit $P(X_1 = k) = q_k, \ k \ge 1$. Setze

$$\begin{array}{lll} f(s) & \coloneqq & \sum_{k=1}^{\infty} p_k s^k = \mathbb{E}[s^{X_2}], \ |s| \le 1 \\ g(s) & \coloneqq & \sum_{k=1}^{\infty} q_k s^k = \mathbb{E}[s^{X_1}] \end{array}$$

$$\psi(s) := \sum_{x=1}^{\infty} G(0, x) s^x, |s| < 1$$

Dann gilt für |s| < 1:

$$\psi(s) = \sum_{k=1}^{\infty} g(s)f(s)^{k-1} = g(s)/(1 - f(s))$$

Außerdem gilt:

$$g(s) = \frac{s}{a(1-s)}(1-f(s))$$

Es folgt:

$$\psi(s) = \sum_{1}^{\infty} \frac{1}{a} s^x$$

Somit ist $G(0,x) = \frac{1}{3}$.

 ${\bf Satz.}\,$ Angenommen, ${\rm ggT}\{k\,|\,p_k>0\}=1.$ Dann gilt für jede Verteilung von $X_1,$ dass

$$G(0,x) \xrightarrow{x \to \infty} \frac{1}{a}$$
.

Lem. Sei $g(\theta)$ integrierbar auf $[-\pi, \pi)$. Dann gilt

$$\int_{[-\pi,\pi)} e^{i\theta x} g(\theta) d\theta \xrightarrow{|x| \to \infty} (x \in \mathbb{Z})$$

Lem. Seien alle X_k identisch verteilt und $\operatorname{ggT}\{p \mid p_k > 0\} = 1$. Dann existiert $L := \lim_{x \to \infty} G(0, x)$.

Def. Seien $\{X_k\}_{k\geq 1}$ unabhängige, nichtneg. ZVn und seien $\{X_k\}_{k\geq 2}$ identisch verteilt. Setze $Z_n:=\sum_{k=1}^n X_k$. Dann heißt

$$\begin{array}{lcl} \eta(t) & \coloneqq & \min\left\{k \geq 1 \,|\, Z_k > t\right\} & \textbf{Erneuerungsprozess und} \\ H(t) & \coloneqq & \mathbb{E}[\eta(t)] & \textbf{Erneuerungsfunktion}. \end{array}$$

Falls X_k nur Werte aus \mathbb{N} annimmt, so können wir das Verhalten von H(t) - H(t-1) wie folgt beschreiben:

$$H(t) = \mathbb{E}[\eta(t)] = \sum_{k=0}^{\infty} P(\eta(t) > k) = \sum_{k=0}^{\infty} P(Z_k \le t)$$

$$\to H(t) - H(t-1) = \sum_{k=0}^{\infty} P(Z_k = t) \xrightarrow{t \to \infty} 1/\mathbb{E}[X_2].$$

$$\begin{array}{lll} \mathbf{Def.} & \gamma(t) & \coloneqq & t - Z_{\eta(t) - 1} \geq 0 & \text{heißt Overshoot}, \\ & \chi(t) & \coloneqq & Z_{\eta(t)} - t > 0 & \text{heißt Undershoot}. \end{array}$$

Satz. Sind die Bedingungen des letzten Satzes erfüllt, so gilt

$$P(\gamma(t)=i,\chi(t)=j) \xrightarrow{t\to\infty} \frac{p_{i+j}}{\mathbb{E}[X_2]} \quad \text{ für alle } i\geq 0, j\geq 1.$$

Kor.
$$P(\gamma(t) = i)$$
 $\xrightarrow{t \to \infty}$ $\frac{1}{a} \sum_{k=i+1}^{\infty} p_k$, $P(\gamma(t) = j)$ $\xrightarrow{t \to \infty}$ $\frac{1}{a} \sum_{k=i}^{\infty} p_k$

TODO: Eine der Gleichungen im Korollar sollte χ beinhalten.

Positive Rekurrenz

Def. $x \in E$ heißt **positiv rekurrent**, falls $\mathbb{E}[\tau_x^{(1)}|Z_0=x]<\infty$

Bem. positive Rekurrenz \implies Rekurrenz

Def. Falls x rekurrent, aber nicht positiv rekurrent ist, so heißt x nullrekurrent.

Lem. Sei x ein positiv rekurrenter Zustand. Ist F(x, y) > 0 so ist auch y positiv rekurrent.

Kor. Ist $\{Z_n\}$ irreduzibel und $x_0 \in E$ positiv rekurrent, so gilt:

- ullet alle Zustände sind positiv rekurrent
- $m(x,y) := \mathbb{E}[\tau_y^{(1)}|Z_0 = x] < \infty$ für alle $x,y \in E$

Def. Die Zahl $d_x := ggT\{n \ge 1 \mid p^{(n)}(x, x) > 0\}$ heißt **Periode** von x. Falls $d = d_x$ für alle $x \in E$, so heißt d Periode der Kette $\{Z_n\}$

Lem. Ist $\{Z_n\}$ irreduzibel, so gilt $d_x = d_y$ für alle $x, y \in E$.

Satz. Es gibt eine Familie $\{\pi_u \in \mathbb{R}_{>0}\}_{u \in E}$, sodass

$$\forall x, y \in E : p^{(n)}(x, y) \xrightarrow{n \to \infty} \pi_y$$

genau dann, wenn

- $\{Z_n\}$ irreduzibel und
- aperiodisch (d. h. d = 1) ist und
- ein x_0 existiert, sodass $m(x_0, x_0) < \infty$.

Die Folge $\{\pi_y\}_{y\in E}$ ist die eindeutige Lösung zu

$$\begin{cases} \sum\limits_{y\in E}|P_y|<\infty\\ \sum\limits_{y\in E}\pi_y=1\\ \sum\limits_{x\in E}\pi_xp(x,y)=\pi_y \text{ für alle }y\in E \end{cases}$$

Es gilt $\pi_y = 1/m(y,y)$.