AGE GROUP 8

Problem	Answer	Solution
		Вярно е, че:
1	9	$20 - \sqrt{19} < n < 20 + \sqrt{19} \iff -\sqrt{19} < n - 20 < \sqrt{19}$
		n-20=-4; -3; -2; -1; 0; 1; 2; 3; 4
		Тогава броят на числата е 9.
	81	$(2x+1)^4 = \alpha x^4 + \beta x^3 + \gamma x^2 + \delta x + \varepsilon \implies$
2		$(2 \times 1 + 1)^4 = \alpha \times 1^4 + \beta \times 1^3 + \gamma \times 1^2 + \delta \times 1 + \varepsilon$
		$\Rightarrow \alpha + \beta + \gamma + \delta + \varepsilon = 81.$
		От $20 \times 27^N = 2^2 \times 5^1 \times 3^{3N}$ следва, че броят на делителите е
3	2	$3\times2\times(3N+1).$
		OT $3 \times 2 \times (3N+1) = 42 \implies N = 2$.
	1	Пресечната точка на двете прави има координати: абсциса $1 > 0$;
4		ордината $\sqrt{3} + \sqrt{2} > 0$.
5	1	От
		$A = \frac{7n^2 + 12n - 15}{n+2} = 7n - 2 - \frac{11}{n+2}$
		следва, че числото A е цяло,
		ако $n + 2 = \pm 1; \pm 11 \Rightarrow n = -1; -3; -13; 9.$
		Само за $n=9$, числото A е естествено.
	36	Сборът от ъглите на петоъгълна звезда е 180 градуса. Нека търсеният
6		ъгъл е x , тогава сборът на останалите четири е $4x$.
		Тогава $5x = 180^0 \Rightarrow x = 36^0$.
		Да добавим две еднакви круши и да подредим всички ябълки и круши
	28	в редица. Сега да разпределим ябълките така: В първата фруктиера да
		поставим ябълките, които се намират от началото до първата круша,
		във втората – ябълките след първата круша до втората, в третата –
		останалите ябълки – тези след втората круша.
7		Броят на всички начини ще е равен на възможностите 2 круши да
, ,		бъдат разположени на 6 места – те са $8 \times 7 \div 2 = 56 \div 2 = 28$
		начина.
		Коментар: Търсим неотрицателните цели решения на уравнението
		x + y + z = 6.
		$Te \ ca \ C_8^2 = 28.$

8									
520		s(km) $v(km/ t(h)$							
520				h)					
	80	1	1	60	1/60				
		2	1	x	1/60 - 1/240 = 3/240 = 1/80				
0		$\Rightarrow x = 80.$							
		Нека BM е $4x$. Тогава разстоянието от точката C до правата BM е x , а							
9	8	5000 00	ата М до хі	E Company					
		OT $3x = 6 \implies x = 2 \implies BM = 8$.							
		Сборът 30 се постига от 5 двойки числа: 20 + 10 = 30; 19 + 11 = 30; 18							
10	27	+ 12 = 30; 17 + 13 = 30; 16 + 14 = 30. Числата 21, 22, 23,, 39, 40 и							
10	27	числото 15 са неблагоприятни – те не могат да са събираеми в сбор 30.							
		При най-лошия сценарий първо избираме числата 21, 22, 23, ,, 39, 40 и 15, след това още 5 числа по едно число от 5-те двойки числа със							
		сбор 30. Избрали сме 26 числа, 27- то число задължително вече ще е							
		число, което ще даде сбор 30 с едно от вече избраните числа.							
		Точните квадрати от 1 до 200 са: 1; 4; 9; 16; 25; 36; 49; 64; 81; 100, 121,							
		144, 169, 196, 225, 256, 289.							
		Тогава сред търсените числа са 2, 8, 18, 32, 50, 72, 98, 128.							
11	72	Точните кубове от 1 до 300 са 1; 8; 27; 64; 125; 216.							
		Тогава сред търсените числа са 9, 72.							
		Тогава 72 е числото, което е общо и за двете редици от числа (2, 8, 18,							
		32, 50, 72, 98, 128) и (9, 72).							
	162	Страната на квадратите и ромбовете е 72 : 12 = 6 см.							
12		Острият ъгъл на ромба е $(360^{\circ} - 3.90^{\circ})$: $3 = 30^{\circ}$. Височината му е							
		6: 2 = 3 см, а лицето е 18 см ² .							
		Лицето на фигурата е 3. $36 + 3$. $18 = 162$ см ² .							
		За да бъде рационално число							
13	2	$(2-a) \times \sqrt{2} + (a^2 + a - 6)\sqrt{3}$							
		$2 - a$ и $a^2 + a - 6 = 0$.							
		Това е възможно само за $a = 2$.							
14	2	3 3							
		4x + y	$=\frac{4}{3}+\frac{2}{3}=$	2.					
14	2	$4x^{2} + 10y^{2} - 4xy - 12y + 4 = 0 \Leftrightarrow (2x - y)^{2} + (3y - 2)^{2} = 0 \Leftrightarrow$ $y = \frac{2}{3}; x = \frac{1}{3}.$ $4x + y = \frac{4}{3} + \frac{2}{3} = 2.$							

		Нека точките са $A_1, A_2, A_3, \dots, A_9, A_{10}$ и нека							
		$\widehat{A_1 A_2} = \widehat{A_2 A_3} = \dots = \widehat{A_9 A_{10}} = \widehat{A_{10} A_1} = 36^0$							
		1 2 2 3 9 10 10 1							
		Тогава							
		$\overline{A_1 A_6} = \overline{A_2 A_7} = \dots = \overline{A_5 A_{10}} = 180^0,$							
15	40	Което означава че 5-те хорди $A_1A_6, A_2A_7, \dots, A_5A_{10}$ са диаметри.							
		Всяка от тези 5 хорди образува правоъгълни триъгълници с останалите							
		8 точки:							
		$A_1 A_6 A_j$, $2 \le j \le 10$, $j \ne 6$;							
		които са $5 \times 8 = 40$.							
		$11115556 = 1111 \times 10^4 + 5 \times 1111 + 1 =$							
16	3334	$= \frac{1}{9} \times (10^4 - 1) \times 10^4 + 5 \times \frac{1}{9} \times (10^4 - 1) + 1 =$							
		$= (\frac{10^4 + 2}{3})^2 = 3334^2 \Longrightarrow \sqrt{11115556} = 3334.$							
17	42	Нека α е цяло число, такова че $\sqrt{\alpha+7}=a$ и $\sqrt{\alpha-6}=b$, като a и b са							
		цели неотрицателни числа. Тогава $\alpha = a^2 - 7 = b^2 + 6 \Longrightarrow$							
		$a^2 - b^2 = 13 \Longrightarrow \begin{vmatrix} a - b = 1 \\ a + b = 13 \end{Bmatrix} \Longrightarrow a = 7, b = 6 \Longrightarrow \alpha = 42.$							
		Let α be an integer, such that $\sqrt{\alpha + 7} = a$ and $\sqrt{\alpha - 6} = b$, keeping in							
		mind that a and b are non-negative integers. Therefore $\alpha = a^2 - 7 = b^2 + a^2 + a$							
		$6 \Rightarrow a^2 - b^2 = 13 \Rightarrow \begin{vmatrix} a - b = 1 \\ a + b = 13 \Rightarrow a = 7, b = 6 \Rightarrow \alpha = 42.$							
	9								
		$\sqrt{1+8} \times \sqrt{1+9} \times \sqrt{1+10} \times \sqrt{1+11} \times 13 = .$							
18									
10		$= \sqrt{1 + 8 \times \sqrt{1 + 9 \times \sqrt{1 + 10 \times 12}}} = \sqrt{1 + 8 \times \sqrt{1 + 9 \times 11}}$							
		$=\sqrt{1+8\times10}=9.$							
	16	ΔMDN е правоъгълен с катети равни на страните на успоредника.							
		Лицето на ΔMDN е							
10		$\frac{AB \times AD}{2}$.							
19									
		Лицето на успоредника $ABCD$ е $AB \times h_{AB} = AB \times \frac{AD}{2}$ и е равно на							
		лицето на ΔMDN .							
		Нека с <i>х</i> означим лицето на триъгълника. Тогава							
20	$\frac{3\sqrt{2}+2}{2}$								
		$\frac{2x}{\sqrt{2}} - \frac{2x}{\sqrt{3}} = 1 \Longrightarrow x = \frac{3\sqrt{2} + 2\sqrt{3}}{2}$							
		V Z V J Z							

Клас									
Задача	1	2	3	4	5	6	7	8	9
1	1	2	5	90	27	6	0	9	-5
2	22	7	Борил	60	20,21	1	7	81	3
3	0	56	6	3	4107	-3	24	2	12
4	Вторник	6	5	4	18	-3	0,75	1	60
5	2	5	0	28	5	10	3	1	-1
6	30	18	118	4	25	6	84	36	66
7	2	45	18	546	9	37	1	28	9
8	3	56	4	2	сряда	39	1	80	16
9	8	47	72	19	44	9	7	8	y=2x+1
10	7	17	10	0 или 2	12	4	60	27	247
11	3	18	10	11	3072	1 2	505	72	-12
12	3	6	18	10699	375	3	162	162	1,5 1.5
13	9	1	7	16	1	5	- 5	2	8
14	3	3	14	2500	3	0	10	2	684
15	4 или 6	15	5	2	50148	-7	3	40	0 или 1
16	13	3	5	108	150	24	80	3334	-21
17	1	3	81	23	2	- 5	15	42	6
18	1	0	3	1	7	10	1 или 3	9	1
19	2	8	7	25	0,3	2020	0	16	72
20	5	8	48	24	103	15	3	$\frac{3\sqrt{2} + 2\sqrt{3}}{2}$	48