Calculus I Homework Limits

1. Evaluate the difference quotient and simplify your answer.

(a)
$$\frac{f(2+h)-f(2)}{h}$$
, where $f(x)=x^2-x-1$.
 (d) $\frac{f(a+h)-f(a)}{h}$, where $f(x)=x^4$.

(b)
$$\frac{f(a+h)-f(a)}{h}$$
, where $f(x)=x^2$.

 $\text{(e) } \frac{f(x)-f(a)}{x-a}, \text{ where } f(x)=\frac{1}{x}.$

(c)
$$\frac{f(a+h)-f(a)}{h}$$
, where $f(x)=x^3$. (f) $\frac{f(x)-f(1)}{x-1}$, where $f(x)=\frac{x-1}{x+1}$.

answer: $\frac{1}{x+1}$

2. Write down a formula for a function whose graphs is given below. The graphs are up to scale. Please note that there is more than one way to write down a correct answer.

(c)

(d)

(a)

(b)

answer: y=x = x = x = x = x = x = x = x = x = x = x = x = x

$$\begin{cases} 1 - > x \ge 2 - \text{ ii.} & 4 - x\xi - \\ 0 > x \ge 1 - \text{ ii.} & 1 + x2 \\ 1 > x \ge 0 \text{ ii.} & 1 + x2 - \\ \xi > x \ge 1 \text{ ii.} & 1 - x\xi \\ \end{vmatrix} = y \text{ rown}$$

3. Write down formulas for function whose graphs are as follows. The graphs are up to scale. All arcs are parts of circles.

4. Evaluate the difference quotient and simplify your answer.

(a)
$$\frac{f(2+h)-f(2)}{h}$$
, where $f(x)=x^2-x-1$.

(d) $\frac{f(a+h)-f(a)}{h}$, where $f(x)=x^4$.

(b)
$$\frac{f(a+h)-f(a)}{h}$$
, where $f(x)=x^2$.

(e) $\frac{f(x) - f(a)}{x - a}$, where $f(x) = \frac{1}{x}$.

(c)
$$\frac{f(a+h)-f(a)}{h}$$
, where $f(x)=x^3$.

$$({\bf f})\ \frac{f(x)-f(1)}{x-1}, \ {\rm where}\ f(x)=\tfrac{x-1}{x+1}.$$

answer: $\frac{1}{x+1}$

5. Find the implied domain of the function.

(a)
$$f(x) = \frac{x+4}{x^2-4}$$
.

[c, t] = x :Towsing

$$\lim_{\substack{(z, z) \, \cap \, (z, z) \, \text{otherwise} \\ (e) \ h(x) = \frac{1}{\sqrt[6]{x^2 - 7x}}.$$

(e)
$$h(x) = \frac{1}{\sqrt[6]{x^2 - 7x}}$$
.

(b)
$$f(x) = \frac{2x^3 - 5}{x^2 + 5x + 6}$$
.

(b)
$$f(x) = \frac{2x^3 - 5}{x^2 + 5x + 6}$$
. (c) $f(t) = \sqrt[3]{3t - 1}$. (d) $f(u) = \frac{2x^3 - 5}{x^2 + 5x + 6}$. (e) $f(t) = \sqrt[3]{3t - 1}$. (f) $f(u) = \frac{u + 1}{1 + \frac{1}{u + 1}}$. (f) $f(u) = \frac{u + 1}{1 + \frac{1}{u + 1}}$.

(f)
$$f(u) = \frac{u+1}{1+\frac{1}{u+1}}$$
.

(c)
$$f(t) = \sqrt[3]{3t-1}$$
.

answer: $x \in \mathbb{R}$ (the domain is all real numbers)

(g)
$$F(x) = \sqrt{10 - \sqrt{x}}$$
.

(d) $g(t) = \sqrt{5-t} - \sqrt{1+t}$.

 $[001,0] \ni x$: 100]

6. Find the implied domain of the function.

(a)
$$f(x) = \frac{x+4}{x^2-4}$$
.

answer: $x \in [-1, 5]$.

$$\text{(e)} \quad h(x) = \frac{x}{6} + \frac{x}{(2x)^{-1} - (2x)^{-1} - (2x)^{-1}}.$$

e)
$$h(x) = \frac{1}{\sqrt[6]{x^2 - 7x}}$$

(b)
$$f(x) = \frac{2x^3 - 5}{x^2 + 5x + 6}$$
. (c) $f(t) = \sqrt[3]{3t - 1}$. (d) $f(t) = \sqrt[3]{3t - 1}$. (e) $f(t) = \sqrt[3]{3t - 1}$. (f) $f(t) = \sqrt[3]{3t - 1}$.

(d) $q(t) = \sqrt{5-t} - \sqrt{1+t}$.

answer: alternatively:
$$x \neq -2$$
, -3 , $(-3, -2) \cup (-3, -2) \cup (-3, -2)$

(f)
$$f(u) = \frac{u+1}{1+\frac{1}{u+1}}$$
.

(c)
$$f(t) = \sqrt[3]{3t-1}$$
.

(Singulunu lear) lite si uieuwop aqi)
$$\mathbb{F}(x)=x$$
 . However $f(x)=\sqrt{10-\sqrt{x}}$.

answer: $x \in [0, 100]$

7. Compute the composite functions $(f \circ g)(x)$, $(g \circ f)(x)$. Simplify your answer to a single fraction. Find the domain of the

(a)
$$f(x) = \frac{x+2}{x-2}, g(x) = \frac{x-1}{x+2}.$$

(b)
$$f(x) = \frac{x+1}{3x-2}, g(x) = \frac{x-2}{x-1}.$$

I,
$$\hbar \neq x$$

$$\frac{x+\hbar-}{x^2-\xi} = (x)(\theta \circ \theta)$$
 Therefore
$$\frac{x}{\xi} \cdot \frac{\xi}{\xi} \neq x$$

$$\frac{x^2-\xi}{x^2-\xi} = (x)(\theta \circ \theta)$$

(c)
$$f(x) = \frac{2x+1}{3x-1}, g(x) = \frac{x-2}{2x-1}.$$

$$\frac{\mathcal{E}}{\zeta}, \mathcal{E} - \neq x \qquad \frac{x + \mathcal{E}}{x + \mathcal{E}} = (x)(f \circ \theta)$$

$$\frac{\mathcal{E}}{\zeta}, \mathcal{E} - \neq x \qquad \frac{x + \mathcal{E}}{x + \mathcal{E}} = (x)(\theta \circ \theta)$$
The substitution of the state of the

(d)
$$f(x) = \frac{x+1}{x-2}, g(x) = \frac{x+2}{2x-1}.$$

$$\frac{7}{2}, \frac{1}{8} \neq x \qquad \frac{x + 1}{x + 1} = (x)(1 \circ 2)$$

$$\frac{7}{4}, \frac{1}{8} \neq x \qquad \frac{x + 1}{x + 1} = (x)(1 \circ 2)$$

$$\frac{x + 1}{4} = (x)(1 \circ 2)$$

$$\frac{x + 1}{4} = (x)(1 \circ 2)$$

(e)
$$f(x) = \frac{5x+1}{4x-1}, g(x) = \frac{4x-1}{3x+1}.$$

$$\frac{\frac{1}{L}\cdot\frac{6}{L}-\frac{1}{L}}{\frac{1}{L}\cdot\frac{6}{L}}-\frac{1}{L}\times\frac{x}{L}=$$

(f)
$$f(x) = \frac{3x-5}{x-2}$$
, $g(x) = \frac{x-2}{x-4}$.

$$\begin{array}{ll} \text{f}, \theta \neq x & \frac{1+xx-}{1-x} = (x)(\theta \circ \theta) \\ \text{f}, \theta \neq x & \frac{1-x}{1-x} = (x)(\theta \circ \theta) \end{array}$$

(g)
$$f(x) = \frac{x-3}{x+2}$$
, $g(y) = \frac{y+3}{y-4}$.

8. Find the functions $f \circ g$, $g \circ f$, $f \circ f$ and $g \circ g$ and their implied domains. The answer key has not been proofread, use with caution.

(a)
$$f(x) = x^2 + 1$$
, $g(x) = x + 1$.

Domain, all 4 cases:
$$x\in\mathbb{R}$$
 (all reals) in some order: $(1+x)^2+1$, $(x)^2+2$, $((x)^2+1)^2+1$, $2+x$

(b)
$$f(x) = \sqrt{x+1}, q(x) = x+1.$$

Domain of
$$J \circ J$$
 is $x \ge -2$. Domain of $J \circ J$ is $x \ge -2$. Domain of $J \circ J$ is $x \ge -2$. Domain of $J \circ J$ is $x \ge -2$. Domain of $J \circ J$ is $x \ge -2$. Domain of $J \circ J$ is $x \ge -2$.

(c)
$$f(x) = 2x, g(x) = \tan x$$
.

In this subproblem, you are not required to find the domain.

$$\begin{array}{ll} \text{Domain } f \circ f \colon \text{all reals } (x \in \mathbb{R}). \text{ Domain } g \circ f \colon x \neq (2k+1) \frac{\pi}{3} \text{ for all } k \in \mathbb{Z} \\ \text{Domain } g \circ g \colon x \neq (4k+1) \frac{\pi}{4}, x \neq (4k+3) \frac{\pi}{4} \text{ for all } k \in \mathbb{Z} \\ \text{Domain } g \circ g \colon x \neq (2k+1) \frac{\pi}{3} \text{ and } x \neq k\pi + \text{arctan } \left(\frac{\pi}{2}\right) \text{ for all } k \in \mathbb{Z} \\ \text{ in some order: 2 tan } x, \text{ tan } (2x), 4x, \text{ tan } (\text{tan } x) \end{array}$$

(d)
$$f(x) = \frac{x+1}{x-1}, g(x) = \frac{x-1}{x+1}.$$

nswer: Domining
$$t \neq x$$
, $t \neq x$, $t \neq$

9. Convert from degrees to radians.

(a)
$$15^{\circ}$$
. (b) 120° .

(b)
$$30^{\circ}.$$

answet:
$$\frac{2\pi}{3}$$

answer:
$$\frac{100}{36} \approx 5.323254$$

answer: $-\frac{1007}{1007} = -35.150931$

answer: $\left(\frac{\pi}{600}\right)^{\circ} \approx 586^{\circ}$

answer: 2 m

answer: $\frac{9\pi}{4}$

answer: $\frac{20\pi}{3}$

answer:
$$\frac{\pi}{6} pprox 0.523598776$$

answet:
$$\frac{3\pi}{4}$$

$$_{159818839.0} \approx \frac{\pi}{3}$$
 . Jamsue (j) 150° .

answeit
$$\frac{\pi \, G}{\delta}$$

$$891868981.0 \approx \frac{\pi}{L} \text{ answer} \qquad \text{(k)} \quad 180^{\circ}.$$

(q)
$$1200^{\circ}$$
.

1887817
$$\pm 0.1 \lesssim \frac{\pi}{8}$$
 :Townsing

(r)
$$-900^{\circ}$$
.

$$769997.1 \approx \frac{\pi \delta}{21}$$
 The sum of the sum

answer:
$$\frac{5\pi}{4}$$

(g)
$$90^{\circ}$$
. (m) 270° .

(s)
$$-2014^{\circ}$$
.

표 :

answer:
$$\frac{3\pi}{2}$$

10. Convert from radians to degrees. The answer key has not been proofread, use with caution.

(a) 4π .

(e) 60° .

(d) $\frac{4}{3}\pi$.

(i) 135° .

(1) 225° .

(g) 5.

(b) $-\frac{7}{6}\pi$.

(e) $-\frac{3}{8}\pi$.

....

ouer: -210°

(h) -2014.

(c) $\frac{7}{12}\pi$.

(f) 2014π .

mswer: -362520°

answer: 105°

answer: 720°

answer: 362520°

answer: -67.5°

11. Prove the trigonometry identities.

- (a) $\sin \theta \cot \theta = \cos \theta$.
- (b) $(\sin \theta + \cos \theta)^2 = 1 + \sin(2\theta)$.
- (c) $\sec \theta \cos \theta = \tan \theta \sin \theta$.
- (d) $\tan^2 \theta \sin^2 \theta = \tan^2 \theta \sin^2 \theta$
- (e) $\cot^2 \theta + \sec^2 \theta = \tan^2 \theta + \csc^2 \theta$.
- (f) $2\csc(2\theta) = \sec\theta \csc\theta$.

- (g) $\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$.
- (h) $\frac{1}{1 \sin \theta} + \frac{1}{1 + \sin \theta} = 2 \sec^2 \theta$.
- (i) $\tan \alpha + \tan \beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta}$

(j)
$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$
.

(k)
$$\sin(3\theta) + \sin\theta = 2\sin(2\theta)\cos\theta$$
.

(1)
$$\cos(3\theta) = 4\cos^3\theta - 3\cos\theta$$
.

(m)
$$1 + \tan^2 \theta = \sec^2 \theta$$
.

(n)
$$1 + \csc^2 \theta = \cot^2 \theta$$
.

answer: $x = \frac{\pi}{2}$, $x = \frac{\pi}{2}$

(o)
$$2\cos^2(2x) = 2\sin^4\theta + 2\cos^4\theta - \sin^2(2\theta)$$
.

(p)
$$\frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 - \tan\left(\frac{\theta}{2}\right)} = \tan\theta + \sec\theta.$$

12. Find all values of x in the interval $[0, 2\pi]$ that satisfy the equation.

(a)
$$2\cos x - 1 = 0$$
.
$$\frac{\varepsilon}{\frac{\omega}{\omega}} = x \text{ in } \frac{\varepsilon}{\frac{\omega}{\omega}} = x \text{ :jansur}$$

(b)
$$\sin(2x) = \cos x$$
.
 $\frac{9}{36} = x \text{ 10} \cdot \frac{9}{34} = x \cdot \frac{7}{46} = x \cdot \frac{7}{4} = x \text{ 13. Answers}$

answer x = x to $(\frac{\pi C}{\hbar} = x) \frac{\pi C}{\hbar} = x$, $\frac{\pi C}{\hbar} = x$. Then we have

(c)
$$\sqrt{3}\sin x = \sin(2x)$$
.

(d) $2\sin^2 x = 1$.

$$\pi X, \pi, 0, \frac{\pi}{6}, \frac{\pi}{6} = x$$
 The subsection $\pi X = \pi$

$$\pi$$
 2 , π , 0 , $\frac{\pi}{6}$, $\frac{\pi}{6}$, $\frac{\pi}{6}$ = x :19Weit .

$$\pi \, \Sigma \, , \pi \, , 0 \, , \frac{\pi \, 1 \, 1}{\partial} \, , \frac{\pi}{\partial} \, = \, x$$
 Then the x

$$(h) |\tan x| = 1.$$

$$rac{\pi T}{\hat P}=x$$
 10 , $rac{\pi \tilde G}{\hat P}=x$, $rac{\pi \tilde E}{\hat P}=x$, $rac{\pi}{\hat P}=x$ 10 versus

(i)
$$3\cot^2 x = 1$$
.

answer:
$$\frac{\pi C}{8} = x$$
 to $\frac{\pi C}{8} = x$, $\frac{\pi C}{8} = x$, $\frac{\pi}{8} = x$ to $\frac{\pi}{8} = x$.

(g) $2\cos^2 x - (1+\sqrt{2})\cos x + \frac{\sqrt{2}}{2} = 0.$

(j)
$$\sin x = \tan x$$
.

answer:
$$x=0, x=x$$
 , or $x=2\pi$

answer: x=0, x=0, x=0, x=0 and x=0(f) $2\cos x + \sin(2x) = 0$.

(e) $2 + \cos(2x) = 3\cos x$.

Solution. 12.g Set $\cos x = u$. Then

$$2\cos^2 x - (1+\sqrt{2})\cos x + \frac{\sqrt{2}}{2} = 0$$

becomes

$$2u^2 - (1 + \sqrt{2})u + \frac{\sqrt{2}}{2} = 0.$$

This is a quadratic equation in u and therefore has solutions

$$u_{1}, u_{2} = \frac{1 + \sqrt{2} \pm \sqrt{(1 + \sqrt{2})^{2} - 4\sqrt{2}}}{4}$$

$$= \frac{1 + \sqrt{2} \pm \sqrt{1 - 2\sqrt{2} + 2}}{4}$$

$$= \frac{1 + \sqrt{2} \pm \sqrt{(1 - \sqrt{2})^{2}}}{4}$$

$$= \frac{1 + \sqrt{2} \pm (1 - \sqrt{2})}{4} = \begin{cases} \frac{1}{2} & \text{or} \\ \frac{\sqrt{2}}{2} \end{cases}$$

Therefore $u=\cos x=\frac{1}{2}$ or $u=\cos x=\frac{\sqrt{2}}{2}$, and, as x is in the interval $[0,2\pi]$, we get $x=\frac{\pi}{3},\frac{5\pi}{3}$ (for $\cos x=\frac{1}{2}$) or $x=\frac{\pi}{4},\frac{7\pi}{4}$ (for $\cos x = \frac{\sqrt{2}}{2}$).

13. Evaluate the limits. Justify your computations.

(a)
$$\lim_{x \to 2} 2x^2 - 3x - 6$$

(e)
$$\lim_{x \to 8} (1 + \sqrt[3]{x})(2 - x)$$
.

(b)
$$\lim_{x \to -1} \frac{x^4 - x}{x^2 + 2x + 3}$$

(d)
$$\lim_{x \to -2} \sqrt{x^4 + 16}$$

14. Evaluate the limit if it exists.

(a)
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x - 2}$$
.

(c)
$$\lim_{x \to -2} \frac{2x^2 + x - 6}{x^2 - 4}$$

answer: $\frac{\pi}{2}$

(d)
$$\lim_{x \to 2} \frac{x^2 - 5x - 6}{x - 2}$$
.

answer: DNE

(b)
$$\lim_{x \to 3} \frac{x^2 - 3x}{x^2 - 2x - 3}$$
.

(e)
$$\lim_{x \to -1} \frac{x^2 - 3x}{x^2 - 2x - 3}$$
.

answer: DNE

(f)
$$\lim_{x \to -2} \frac{x^2 - 4}{2x^2 + 5x + 2}$$
.

(g)
$$\lim_{x \to -1} \frac{2x^2 + 3x + 1}{3x^2 - 2x - 5}$$
.

(h)
$$\lim_{x \to -4} \frac{x^2 + 7x + 12}{x^2 + 6x + 8}$$
.

(i)
$$\lim_{h \to 0} \frac{(-3+h)^2 - 9}{h}$$
.

(j)
$$\lim_{h \to 0} \frac{(-2+h)^3 + 8}{h}$$
.

(k)
$$\lim_{x \to -3} \frac{x+3}{x^3+27}$$
.

(1)
$$\lim_{x \to 1} \frac{x^4 - 1}{x^3 - 1}$$
.

$$\text{(m)} \ \lim_{h\to 0} \frac{\sqrt{4+h}-2}{h}.$$

(n)
$$\lim_{x \to 3} \frac{\sqrt{5x+1}-4}{x-3}$$
.

(o)
$$\lim_{x \to -3} \frac{\sqrt{x^2 + 16} - 5}{x + 3}$$
.

(p)
$$\lim_{x \to -3} \frac{\frac{1}{3} + \frac{1}{x}}{3 + x}$$
.

(q)
$$\lim_{x \to -2} \frac{x^2 + 4x + 4}{x^4 - 16}$$
.

answer: U

answer: 1

answer: 1

answet: $\frac{54}{4}$

answer: $-\frac{4}{4}$

answer: $-\frac{1}{2}$

2x6 :: 3x

 $\frac{\varepsilon^x}{z}$ — :Jansue

 $\frac{1}{T}$ — :Jansue

(r)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
.

(s)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{x^2 + x} \right)$$
.

(s)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{x^2 + x} \right)$$

(t)
$$\lim_{x \to 9} \frac{3 - \sqrt{x}}{9x - x^2}.$$

(u)
$$\lim_{h \to 0} \frac{(2+h)^{-1} - 2^{-1}}{h}$$
.

$$\lim_{x\to 0} \left(\frac{1}{x\sqrt{1+x}} - \frac{1}{x}\right).$$

$$\lim_{h \to 0} \frac{\mathcal{E}}{h} = (\mathbf{w}) \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}.$$

$$\text{(x)} \ \lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}.$$

(y)
$$\lim_{h\to 0} \frac{\frac{1}{(2+h)^2} - \frac{1}{4}}{h}$$
.

$$(z) \lim_{h \to 0} \frac{\frac{1}{(1+h)^2} - 1}{h}.$$

$$\frac{1}{6}$$
 — Tawrine 2— Tawrine 3— Tawrine 3

Solution. 14.a

$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x - 2} = \lim_{x \to 2} \frac{(x - 3)(x - 2)}{x - 2}$$
 factor and cancel
$$= 2 - 3 = -1$$

Solution. 14.c

Solution. 14.c
$$\lim_{x \to -2} \frac{2x^2 + x - 6}{x^2 - 4} = \lim_{x \to -2} \frac{(2x - 3)(x + 2)}{(x - 2)(x + 2)}$$

$$= \frac{(2(-2) - 3)}{-2 - 2}$$
factor and cancel
$$= \frac{7}{4}$$

$$\lim_{x \to 2} \frac{x^2 - 4}{2x^2 + 5x + 2} = \lim_{x \to -2} \frac{(x - 2)(x + 2)}{(2x + 1)(x + 2)}$$
 factor and cancel
$$= \frac{(-2) - 2}{2(-2) + 1} = \frac{4}{3}.$$

Solution. 14.g

$$\lim_{x \to -1} \frac{2x^2 + 3x + 1}{3x^2 - 2x - 5} = \lim_{x \to -1} \frac{(2x + 1)(x + 1)}{(3x - 5)(x + 1)} \quad | \text{ factor and cancel}$$

$$= \frac{2(-1) + 1}{3(-1) - 5} = \frac{1}{8}.$$

Solution. 14.h.

$$\lim_{x \to -4} \frac{x^2 + 7x + 12}{x^2 + 6x + 8} = \lim_{x \to -4} \frac{(x+3)(x+4)}{(x+2)(x+4)} \quad | \text{ factor}$$
$$= \frac{-4+3}{-4+2} = -\frac{1}{2}.$$

Solution. 14.x

$$\lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h} = \lim_{h \to 0} \frac{x^2 - (x+h)^2}{hx^2(x+h)^2} = \lim_{h \to 0} \frac{x^2 - (x^2 + 2xh + h^2)}{hx^2(x+h)^2}$$
$$= \lim_{h \to 0} \frac{h(-2x+h)}{hx^2(x+h)^2} = \frac{-2x+0}{x^2(x+0)^2} = -\frac{2}{x^3}.$$

Solution. 14.y.

Variant I.

Variant I.

$$\lim_{h \to 0} \frac{\frac{1}{(2+h)^2} - \frac{1}{4}}{h} = \lim_{h \to 0} \frac{\frac{4 - (2+h)^2}{4(2+h)^2}}{h}$$

$$= \lim_{h \to 0} \frac{4 - (4 + 4h + h^2)}{4h(2+h)^2}$$

$$= \lim_{h \to 0} \frac{-4h - h^2}{4h(2+h)^2}$$

$$= \lim_{h \to 0} \frac{h(-4-h)}{4h(2+h)^2}$$

$$= \frac{-4-0}{4(2+0)^2}$$

$$= -\frac{1}{4}$$

Variant II.

variant 11.
$$\lim_{h\to 0}\frac{\frac{1}{(2+h)^2}-\frac{1}{4}}{h} = \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{x^2}\right)_{|x=2}$$
$$= \left(\frac{-2}{x^3}\right)_{|x=2}$$
$$= -\frac{1}{4}$$

Solution. 14.z.

Variant I.

Variant I.
$$\lim_{h \to 0} \frac{\frac{1}{(1+h)^2} - 1}{h} = \lim_{h \to 0} \frac{\frac{1 - (1+h)^2}{(1+h)^2}}{h}$$

$$= \lim_{h \to 0} \frac{1 - (1+2h+h^2)}{h(1+h)^2}$$

$$= \lim_{h \to 0} \frac{-2h - h^2}{h(1+h)^2}$$

$$= \lim_{h \to 0} \frac{\cancel{h}(-2-h)}{\cancel{h}(1+h)^2}$$

$$= \frac{-2 - 0}{(1+0)^2}$$

$$= -2.$$
Variant II.

Variant II.

$$\lim_{h \to 0} \frac{\frac{1}{(1+h)^2} - 1}{h} = \frac{d}{dx} \left(\frac{1}{x^2}\right)_{|x=1}$$
 derivative definition
$$= \left(\frac{-2}{x^3}\right)_{|x=1}$$

$$= -2.$$