QUANTITATIVE ANALYSIS

INITIAL DATA CLEANING

AGENDA

- 1. Missing Data
- 2. Recoding Data
- 3. Other Data Operations

1 MISSING DATA

"PERFECT" DATA

	make	price	mpg
1	AMC Concord	4,099	22
2	AMC Pacer	4,749	17
3	AMC Spirit	3,799	22
4	Buick Century	4,816	20
5	Buick Electra	7,827	15
6	Buick LeSabre	5,788	18
7	Buick Opel	4,453	26
8	Buick Regal	5,189	20
9	Buick Riviera	10,372	16
10	Buick Skylark	4,082	19
11	Cad. Deville	11,385	14
12	Cad. Eldorado	14,500	14
13	Cad. Seville	15,906	21
14	Chev. Chevette	3,299	29
15	Chev. Impala	5,705	16
16	Chev. Malibu	4,504	22

WHERE HAVE ALL THE DATA GONE?

	make	price	mpg	rep78	headroom
1	AMC Concord	4,099	22	3	2.5
2	AMC Pacer	4,749	17	3	3.0
3	AMC Spirit	3,799	22		3.0
4	Buick Century	4,816	20	3	4.5
5	Buick Electra	7,827	15	4	4.0
6	Buick LeSabre	5,788	18	3	4.0
7	Buick Opel	4,453	26		3.0
8	Buick Regal	5,189	20	3	2.0
9	Buick Riviera	10,372	16	3	3.5
10	Buick Skylark	4,082	19	3	3.5
11	Cad. Deville	11,385	14	3	4.0
12	Cad. Eldorado	14,500	14	2	3.5
13	Cad. Seville	15,906	21	3	3.0
14	Chev. Chevette	3,299	29	3	2.5
15	Chev. Impala	5,705	16	4	4.0
16	Chev. Malibu	4,504	22	3	3.5

FUNDAMENTAL QUESTION:

ARE MISSING VALUES RELATED TO THE UNDERLYING VALUES OF THE DATASET?

MISSING COMPLETELY AT RANDOM
MISSINGNESS IS NOT A FUNCTION OF
EITHER OBSERVED OR UNOBSERVED
FACTORS IN THE DATASET

NOT MISSING AT RANDOM

MISSING AT RANDOM

Example: *n* respondents have their depression symptoms scored, but a random subset of respondents do not have data on their emergency services use recorded.

MISSING COMPLETELY AT RANDOM

NOT MISSING AT RANDOM

MISSING AT RANDOM
MISSINGNESS DEPENDS ON
OBSERVED FACTORS IN
THE DATASET

Example: *n* respondents have their depression symptoms scored and only those with high depression scores have data on their emergency services use recorded.

MISSING COMPLETELY AT RANDOM

NOT MISSING AT RANDOM
MISSINGNESS DEPENDS ON
UNOBSERVED FACTORS IN THE
DATASET

MISSING AT RANDOM

Example: *n* respondents have their depression symptoms scored and are assessed for suicidality, but only respondents with high suicidality scores have their suicidality data entered in the dataset.

AN OUNCE OF PREVENTION...

- When you design your study and conduct it, work to ensure that missing data is minimized to every extent possible.
 - However, it is ethically important that missingness is allowed and methodologically important that it is anticipated - how will you account for refusals or "I don't know" answers?

- Can you predict ahead of time who will refuse certain questions?
 - Be thorough in your design try to eliminate unobserved sources of missingness, and try to collect data that may help predict missingness.

... AND A POUND OF CURE

- When (and not if!) you have missing data, begin by "declaring" data missing.
- Then look at the percentage of missing cases in a given variable a quick rule of thumb is that we would like to have < 5% of n missing values per variable.
- There are advanced techniques for both assessing MCAR vs MAR and for "recovering" missing data (beyond scope of class).

- use autoMissing.dta
- tabulate rep78

WE KNOW N = 74

Repair Record 1978	 Freq.	Percent	Cum.
1	+ 2	 2 . 90	 2 . 90
2	j 8	11.59	14.49
3	j 30	43.48	57 . 97
4	18	26.09	84.06
5	j 11	15.94	100.00
Total	69	100.00	

tabulate rep78, missing

Repai Record 197		Freq.	Percent	Cum.
	1	2	2.70	2.70
	2 j	8	10.81	13.51
	3 Î	30	40.54	54.05
	4 j	18	24.32	78.38
	5 İ	11	14.86	93.24
	<u>. </u>	5	6.76	100.00
Tota	+ l	 74	100.00	

. tabulate mpg, missing

Total

Mileage (mpg)	 Freq.	Percent	Cum.
12		2.70	2.70
14	6	8.11	10.81
15	j 2	2.70	13.51
17	j 4	5.41	18.92
18	9	12.16	31.08
19	8	10.81	41.89
20	3	4.05	45.95
21	5	6.76	52.70
22	5	6.76	59.46
23	3	4.05	63.51
24	4	5.41	68.92
25	5	6.76	75 . 68
26	3	4.05	79 . 73
28	3	4.05	83.78
29	1	1 . 35	85.14
31	1	1 . 35	86.49
34	1	1 . 35	87.84
35	2	2.70	90.54
41	1	1.35	91 - 89
unknown	4	5.41	97 . 30
not measured	2	2.70	100.00
	+	400.00	

100.00

. tabulate mpg, missing nolabel

Mileage (mpg)	 Freq.	Percent	Cum.
12	2	2.70	2.70
14	6	8.11	10.81
15	2	2.70	13.51
17	4	5.41	18.92
18	9	12.16	31.08
19	8	10.81	41.89
20	3	4.05	45.95
21	5	6.76	52.70
22	5	6.76	59.46
23] 3	4.05	63.51
24	4	5.41	68.92
25	5	6.76	75.68
26] 3	4.05	79.73
28	3	4.05	83.78
29	1	1 . 35	85.14
31	1	1 . 35	86.49
34	1	1 . 35	87.84
35	2	2.70	90.54
41	1	1.35	91_89
. a	4	5.41	97 . 30
. b	2	2.70	100.00
	+	400.00	

74

100.00

Total

tabulate trunk

Trunk space (cu. ft.)	 Freq.	Percent	Cum.
-1	<u>+</u> 4	5.41	 5.41
5	1	1 . 35	6.76
6	j 1	1.35	8.11
7	j 3	4.05	12.16
8	j 5	6.76	18.92
10	j 5	6.76	25.68
11	j 8	10.81	36.49
12	j 3	4.05	40.54
13	j 4	5.41	45.95
14	j 4	5.41	51.35
15	j 5	6.76	58.11
16	j 12	16.22	74.32
17	j 8	10.81	85.14
18	j 1	1.35	86.49
20	j 6	8.11	94.59
21	j 2	2.70	97.30
22	j 1	1.35	98.65
23	j 1	1.35	100.00
Total	+ 74	 100.00	

. tabulate turn

Turn Circle (ft.)	Freq.	Percent	Cum.
31	 1	 1 . 35	1.35
32	1	1.35	2.70
33	2	2.70	5.41
34	6	8.11	13.51
35	6	8.11	21.62
36	9	12.16	33 . 78
37	4	5.41	39.19
39	1	1 . 35	40.54
40	6	8.11	48.65
41	4	5.41	54.05
42	7	9.46	63.51
43	12	16.22	79 . 73
44	3	4.05	83.78
45	3 3 3	4.05	87.84
46		4.05	91.89
48	2	2.70	94.59
51	1	1.35	95.95
999	3	4.05	100.00
Total	74	100.00	

HETENURE	HETENURE
----------	----------

Location: 29-30 (width: 2; decimal: 0)

Variable Type: numeric

Question: ARE YOUR LIVING QUARTERS...

Value	Label	Unweighted Frequency	%
-1	BLANK	14852	9.8 %
1	OWNED OR BEING BOUGHT BY A HH MEMBER	94178	62.2 %
2	RENTED FOR CASH	40568	26.8 %
3	OCCUPIED WITHOUT PAYMENT OF CASH RENT	1710	1.1 %

Based upon 151308 valid cases out of 151308 total cases.

Mean: 1.09

Median: 1.00

Mode: 1.00

Minimum: -1.00

Maximum: 3.00

Standard Deviation: 0.83

misstable summarize [varlist]

misstable summarize mpg rep78

					0bs<.		
Variable 	 0bs= .	0bs>.	0bs<.	+ Unique values	Min	Max	
mpg rep78	 5	6	68 69	19 5	12 1	41 5	

misstable tree [varlist], [frequency]

. misstable tree mpg rep78 trunk turn, frequency

Nested	pattern mpg	of missing rep78	values trunk	turn
	6	0	0	 0 0
			0	0
		6	0	0 0
			6	0 6
	68	5	0	0 0
			5	0 2 3
		63	4	0 4
			59	1 58

(number missing listed first)

- . use http://www.stata-press.com/data/r13/studentsurvey, clear
- . misstable tree dept age female, frequency

Nested pattern dept	of missing age	values female
9	3	3 0
	6	0 6
116	0	0
	116	0 116

(number missing listed first)

FUNDAMENTAL QUESTION:

AT THIS STAGE IN THE RESEARCH PROCESS, DO YOU NEED TO KNOW WHY DATA ARE MISSING?

- 1. The period (.) used to represent missing data; can be combined with letters a through z
- 2. (all positive values) < . < ∞
- 3. (all positive values) < . < .a < .b < … < .z < ∞

RECODING MISSING VALUES

```
recode varname oldVal = newVal [oldVal = newVal]
```

```
use autoMissing.dta

recode turn (999 = .)
(turn: 3 changes made)

recode trunk (-1 = .a)
(trunk: 4 changes made)

recode mpg (.a/.b = .)
(mpg: 6 changes made)
```

Tips:

- Apply value labels if using .a, .b, etc.
- Forward slash allows for a range of values to be recoded - i.e. all values between .a and .b

MISSING DATA WORKFLOW

- 1. Determine if missing data need to be recoded within variables.
- 2. Determine if you want to preserve different types of missing data, or you only want to identify missing values without differentiating between them.
- 3. Recode values accordingly using the recode command.
- 4. Use misstable commands to look for patterns in missingness.

2 RECODING DATA

WHY RECODE?

STEP 1: GENERATE A NEW VARIABLE

generate newVar = oldVar

generate mpg0rd = mpg

Tips:

- Use short, intuitive names (ex mpg0rd for the ordinal version of mpg).
- Keep names short.

STEP 2: RECODE VALUES

```
recode varname \ oldVal = newVal \ [oldVal = newVal]
recode mpg0rd (12/19 = 1) (20/29 = 2) (30/35 = 3) (41 = 4)
```

Tips:

- Wrap values in () for clarity and readability
- Forward slash allows for a range of values to be recoded i.e. all values between 12 and 19 or all values between 20 and 29

STEP 2: RECODE VALUES

- generate mpgHigh = mpg
- recode mpgHigh (12/29 = 0) (30/41 = 1)

- generate mpgBin = mpgOrd
- recode mpgBin (1/3 = 0) (4 = 1)

STEP 3: DEFINE VALUE LABELS

```
label define lblName val ["]lbl["] [val ["]lbl["]]
```

label define mpg0rdVals 1 "< 20" 2 "20 to 29" 3 "30 to 39" 4 ">= 40"

Tips:

- Keep label name short but descriptive
- Keep values labels short but descriptive what does this value represent or measure?

STEP 4: LABEL VALUES

label values varname lblName

label values mpg0rd mpg0rdVals

STEP 5: LABEL VARIABLE

label variable varname "labelText"

label variable mpg0rd "ordinal version of mpg"

Tips:

Keep variable labels short but descriptive - what does this variable represent or measure?

3 OTHER DATA OPERATIONS

DROPPING VARIABLES

drop varlist

drop mpg trunk

Tips:

 Use drop for removing small numbers of variables from datasets or for removing variables from smaller datasets.

KEEPING VARIABLES

keep varlist

keep mpg trunk

Tips:

 Use keep for removing large numbers of variables from datasets or for removing variables from larger datasets.

REORDERING VARIABLES

```
order varlist [, first last before(varname) after(varname)]
. order mpg trunk, first
. order mpg trunk, last
. order mpg trunk, before(weight)
. order mpg trunk, after(weight)
```

SAVING DATA

```
save ["]filename.dta["], replace
. save "mpgAug29.dta", replace
```

Tips:

- Use short filenames
- Avoid spaces and special characters in filenames
- Use snake_case or camelCase to include multiple words
- Imply a logical order (use dates, numbers, etc.)
- Never call things final!

DOCUMENT DETAILS

Document produced by <u>Christopher Prener, Ph.D</u> for the Saint Louis University course SOC 5050: QUANTITATIVE ANALYSIS - APPLIED INFERENTIAL STATISTICS. See the <u>course wiki</u> and the repository <u>README.md</u> file for additional details.

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.