Teoría de la integral y de la medida Hoja n⁰ 3 (Funciones medibles) SOLUCIONES

1.- Sea \mathcal{A} la σ álgebra formada por $\{\emptyset, \mathbb{R}, (-\infty, 0], (0, \infty)\}$. Sea $f : \mathbb{R} \to \mathbb{R}$ la función definida mediante

$$f(x) = \begin{cases} 0, & \text{si } x \in (-\infty, 0] \\ 1, & \text{si } x \in (0, 1] \\ 2, & \text{si } x \in (1, \infty) \end{cases}$$

¿Es f medible? **SOL**: NO, $f^{-1}\{1\} = (0,1] \notin \mathcal{A}$. ¿Cómo son en general las funciones medibles $f : (\mathbb{R}, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$? **SOL**: Constantes en $(-\infty, 0]$ y en $(0, \infty)$.

- 2.- Para funciones $f:(X,\mathcal{A})\to(\mathbb{R},\mathcal{B}_{\mathbb{R}})$, ¿cuáles de las siguientes afirmaciones son ciertas?
- a) |f| medible $\Rightarrow f$ medible. **SOL**: NO, si D es un conjunto no medible entonces $F = \chi_D \chi_{D^c}$ no es medible pero |F| = 1 sí lo es.
- b) $f_1 + f_2$ medible $\Rightarrow f_1$ ó f_2 medible. **SOL**: NO; basta tomar f_1 no medible y $f_2 = -f_1$.
- c) $f_1.f_2$ medible $\Rightarrow f_1$ ó f_2 medible **SOL**: NO; tomamos $f_1 = f_2 = F$, con F como en a)
- d) $f_1 + f_2$ medible $\Rightarrow f_1$ y f_2 medible **SOL**: NO
- d) $f_1 f_2$ medible $\Rightarrow f_1$ y f_2 medible **SOL**: NO
- 3.- Sea $f:(X,\mathcal{A},\mu)\to(\bar{\mathbb{R}},\mathcal{B}_{\bar{\mathbb{R}}})$ una función medible no-negativa, μ una medida σ -finita en \mathcal{A} . Probar que $f(x)=\lim t_n(x)$ siendo $\{t_n\}_n$ una sucesión creciente de funciones simples no negativas, tales que t_n toma valores distintos de cero solamente en un conjunto de medida finita. Sugerencia: Construir $\mathcal{B}_1\subset\mathcal{B}_2\subset\ldots\mathcal{B}_n\ldots$ $\mu(\mathcal{B}_n)<\infty$, tomar $t_n=s_n\chi_{\mathcal{B}_n}$, siendo s_n una sucesión creciente de funciones simples no-negativas con límite f.
- 4.- Probar que si $f: X \to \overline{\mathbb{R}}$ verifica que $f^{-1}((r, \infty])$ es medible para todo $r \in \mathbb{Q}$, entonces f es medible. (El resultado es cierto en general si $r \in A$, con A denso en \mathbb{R}).

SOL: Basta ver que $\forall x \in \mathbb{R}$ se tiene $f^{-1}((a, \infty]) = \bigcup_{\{r \in \mathbb{Q}: r > a\}} f^{-1}((r, \infty])$ (unión numerable de medibles)

- 5.- Si $f_n:(X,\mathcal{A})\to(\mathbb{R},\mathcal{B}),\ n=1,2,\ldots$, son medibles, probar que el conjunto $A=\{x\in X: \text{existe }\lim_{n\to\infty}f_n(x)\}$ es un elemento de \mathcal{A} . **SOL**: visto en clase. Sabemos que tanto $g(x)=\lim\sup_{n\to\infty}f_n(x)$ como $h(x)=\liminf_{n\to\infty}f_n(x)$ son medibles. Ahora, es fácil ver que A es el conjunto donde g(x)=h(x), es decir, $A=(g-h)^{-1}(0)$ y por tanto es medible.
- 6.- Sea (Ω, \mathcal{A}, P) un espacio de probabilidad. Sean X_1 X_2 dos **variables aleatorias** sobre él, (i.e., dos funciones medibles de $(\Omega, \mathcal{A}, P) \to (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$) y sean F_{X_1} , F_{X_2} las **funciones de distribución** de las medidas de probabilidad inducidas por X_1 , X_2 respectivamente $(F_{X_j}(x) = P\{\omega \in \Omega : X_j(\omega) \leq x\},$ j=1,2). Probar que si $P\{\omega \in \Omega : X_1(\omega) = X_2(\omega)\} = 1$ entonces $F_{X_1}(x) = F_{X_2}(x) \quad \forall x \in \mathbb{R}$.

SOL: Para cada $x \in \mathbb{R}$ fijo, los conjuntos $A_j = \{\omega \in \Omega : X_j(\omega) \le x\}, j = 1, 2$ cumplen $P(A_1 \setminus A_2) = 0$ y $P(A_2 \setminus A_1) = 0$

7.- Consideramos el espacio de probabilidad $(\mathbf{N}, \mathcal{P}(\mathbf{N}), P)$ siendo $P(n) = \frac{1}{2^n}, n = 1, 2, ...$ Definimos $X : \mathbf{N} \to \{0, 1, ... k - 1\}$ mediante X(n) = resto de n (modulo k), $(k \in \mathbf{N}, \text{ fijo})$. Sea P^* la probabilidad inducida por X (ver ejercicio 14, Hoja 2). Calcular $P^*(r)$, $0 \le r \le k - 1$.

SOL: Se tiene, por definición,

$$P^*(r) = P(X^{-1}\{r\}) = P(\{r + nk : n = 0, 1, 2, \dots\}) = \sum_{n=0}^{\infty} \frac{1}{2^{r+nk}} = \frac{2^{-r}}{1 - 2^{-k}}, \quad \text{si } r \neq 0$$

$$P^*(0) = P(X^{-1}\{0\}) = P(\{nk : n = 1, 2, \dots\}) = \sum_{n=1}^{\infty} \frac{1}{2^{nk}} = \frac{2^{-k}}{1 - 2^{-k}}$$

8.- Se considera el espacio de probabilidad $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, P)$, donde $P(A) = \int_A f(x) dx$ viene dada por la función de densidad

$$f(x) = \begin{cases} 1, & \text{si } x \in [0, 1] \\ 0, & \text{si } x \notin [0, 1] \end{cases}$$

Sea $X: (\mathbb{R}, \mathcal{B}_{\mathbb{R}}, P) \to (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ definida mediante

$$X(x) = \begin{cases} -2\log x, & \text{si } x > 0\\ 0, & \text{en el resto.} \end{cases}$$

Hallar F_X , la función de distribución de la probabilidad inducida por X.

SOL: Se tiene, por definición,

$$F_X(y) = P(\{x \in \mathbb{R} : X(x) \le y\}) = P(\{x \in [0,1] : -2\log x \le y\}) = P(\{x \in [0,1] : x \ge e^{-y/2}\}).$$

Ahora bien, se tiene

$${x \in [0,1] : x \ge e^{-y/2}} = \begin{cases} \emptyset, & \text{si } y < 0 \\ [e^{-y/2}, 1], & \text{si } y \ge 0. \end{cases}$$

Por tanto,

$$F_X(y) = P(\lbrace x \in [0,1] : x \ge e^{-y/2} \rbrace) = \begin{cases} 0, & \text{si } y < 0 \\ \int_{e^{-y/2}}^1 1 \, dx = 1 - e^{-y/2}, & \text{si } y \ge 0. \end{cases}$$