Lecture 4: CMOS Inverter Physical Characteristics

Outline

CMOS Inverter Equivalent Resistance and Capacitance

- Resistance vs. V_{DD}
- Capacitance of Logic Circuit

CMOS Inverter Propagation Delay

- Delay vs. Resistance & Capacitance
- Miller Theorem and C_{GD}

CMOS Inverter Power Consumption

- Static & Dynamic power
- Switching Power Consumption
- Short-circuit Power Consumption

Tsunami of Data Era has Come!

- ☐ Over 2.5 billion computers in the world
 - 1 PW (10¹⁵ W) of power dissipation
 - Equivalent to 160 nuclear plants!
 - 'Tsunami of data' could consume 1/5 of global electricity by 2025!

Google Data Center

Facebook Data Center @ Sweden

The Power in CMOS Inverter

Dynamic power

- □ Switching power
 - Charge/discharge capacitor
- □ Short-circuit power
 - **♦** Both NMOS and PMOS *ON* during transition
- ☐ Gate / Junction Leakage power
 - **♦** Gate / Drain to Body
 - **♦** Relatively small
- ☐ Sub-threshold leakage power
 - \bullet I_{DS} > 0 when V_{GS} < V_T
 - **♦** I_{DS} increases as V_T decreases

Charging/discharging Consumption

$$E_{0\to 1} = \int_{t=0}^{\infty} V_{DD} \cdot I_{Dp} \cdot dt$$

$$I_{Dp} = C_L \cdot \frac{dV_{out}}{dt}$$

 \square CMOS Inverter $V_{OH} = V_{DD}$, $V_{OL} = 0$

$$E_{0\to 1} = C_L \cdot V_{DD} \cdot \int_{V_{OL}}^{V_{OH}} dV_{out} = C_L \cdot V_{DD} \cdot (V_{OH} - V_{OL})$$
$$= C_L \cdot V_{DD}^2$$

Dynamic energy dissipation is NOT a function of transistor resistance or size!

Charging/discharging Consumption

$$V_{\rm in} = V_{\rm DD} \rightarrow 0$$

$$E_{0\to 1}(V_{DD}) = V_{DD} \cdot C_L \cdot \int_{V_{OL}}^{V_{OH}} dV_{out} = C_L \cdot V_{DD} \cdot (V_{OH} - V_{OL})$$

 \square Energy (V_{DD}) = Energy (heat) + Energy (C_{L})

$$V_{\text{OH}} = V_{\text{DD}}, V_{\text{OL}} = 0$$

$$\begin{split} E_{C_L} &= C_L \cdot \int_{V_{OL}}^{V_{OH}} V_{out} \cdot dV_{out} = \frac{1}{2} C_L \cdot (V_{OH}^2 - V_{OL}^2) \\ E_{heat} &= E_{0 \to 1} (V_{DD}) - E_{C_L} \end{split}$$

$$E_{C_L} = E_{heat} = \frac{1}{2} C_L \cdot V_{DD}^2$$

 \square During the PUN, 50% energy dissipated in PMOS in the form of heat, the other 50% energy stored in the C_L .

Charging/discharging Consumption

$$V_{\rm in} = V_{\rm DD}$$
 $V_{\rm out} = V_{\rm DD} \rightarrow 0$

- \square Pull-Down Network: V_{DD} is disconnected!
- \square Energy (C_L) = Energy (heat)

- □ The 50% energy stored in the C_L during the previous PUN will convert to heat dissipation in NMOS for PDN.
- □ Dynamic energy/power consumption ONLY occurs during the PUN process.

$$E_{0\to 1}(V_{DD}) = V_{DD} \cdot C_L \cdot \int_{V_{OL}}^{V_{OH}} dV_{out} = C_L \cdot V_{DD} \cdot (V_{OH} - V_{OL})$$

Transition Activity and Switching Power

☐ Consider switching a CMOS Invertor for *N* clock cycles

$$E_{N} = C_{L} \cdot V_{DD}^{2} \cdot n(N)$$

- E_N : the energy consumed for N clock cycles
- n(N): the number of 0->1 transitions in N clock cycles

Define activity factor
$$\alpha_{0\rightarrow 1} = \lim_{N\rightarrow\infty} \frac{n(N)}{N}$$

$$P_{avg} = \alpha_{0 \to 1} \cdot C_L \cdot V_{DD}^2 \cdot f_{clock}$$

Switching Power of CMOS Inverter

Switching Power as a Function of $V_{\rm DD}$

□ The essence of digital IC design is the compromise between power and delay!

Dark Silicon Effect

- Parameters
 - Switched capacitance $C_L = 2fF/gate (V_{DD} = 1V) @ 90 \text{ nm node}$
 - Fan-out F = 4
 - Clock frequency f_{clock} = 2.5 GHz
- □ Power per gate per switching

$$P = F \cdot C_L \cdot V_{DD}^2 \cdot f_{clock} = 4 \times 2 \times 10^{-15} \times 2.5 \times 10^9 = 20 \mu W$$

- □ Assume
- Activity factor $\alpha = 0.1$
- N = 1 billion gates

$$P_{tot} = (C_L \cdot N) \cdot V_{DD}^2 \cdot (\alpha_{0 \to 1} \cdot f_{clock}) = 2000 \ W$$

With the power budget of 200 W, only 10% transistors can only be switched simultaneously. → Dark Silicon Effect.

Short-Circuit Power Consumption

□ In the colored region, both NMOS and PMOS are turned on, a low-impedance path formed between V_{DD} and GND \rightarrow Short-Circuit Power Consumption.

Short-Circuit Power Consumption

Triangular Approximation

$$E_{sc} = V_{DD} \frac{I_{peak} t_{sc}}{2} + V_{DD} \frac{I_{peak} t_{sc}}{2} = t_{sc} V_{DD} I_{peak}$$

$$P_{SC} = t_{SC} \cdot V_{DD} \cdot I_{peak} \cdot f_{0 \to 1}$$

PDP and EDP

- □ Power-delay product (PDP) = $P_{av} \times t_p = (C_L V_{DD}^2)/2$
 - PDP is the average energy consumed per switching event (Watts \times sec = Joule)
- **□** Energy-delay product (EDP)
 - EDP = PDP × $t_p = P_{av} \times t_p^2$
 - PDP is the average energy consumed multiplied by the computation time required.

Summary of CMOS Inverter

- □The equivalent circuit of the static CMOS inverter is the 1st-order RC network.
- □ Propagation delay depend on V_{DD} , power consumption depend on V_{DD} and gate size.
- □Smaller voltage directly reduces power consumption, yet enlarge propagation delay.
- □With a $\beta = W_p/W_n = 2$, the standard inverter reaches optimized condition, and it serves as the cornerstone for the following logic circuit design.