UNIT-4 A8601 OBJECT

ORIENTE DE PROGRAMINA NG

PRESENTED BY

M.YGANDHAR
Department of IT
Vardhaman College of
Engineering

Collections Framework

- Collections in java is a framework that provides an architecture to store and manipulate the group of objects.
- The Java collections framework provides a set of interfaces and classes to implement various data structures(LinkedList, PriorityQueue, HashSet, LinkedHashSet, TreeSet etc)
- All the operations that you perform on a data such as searching, sorting, insertion, manipulation, deletion etc. can be performed by Java Collections.
- Java Collection simply means a single unit of objects.
- The java.util package contains all the classes and interfaces for Collection framework.

Example:

The LinkedList class of the collections framework provides the implementation of the doubly-linked list data structure.

Hierarchy of Collection Framework

Hierarchy of Collection Framework

i.List Interface:

-The List interface is an ordered collection that allows us to add and remove elements like an array.

ii.Set Interface:

-The Set interface allows us to store elements in different sets similar to the set in mathematics.

-Insertion order not preserved i.e., They appear in the different order in which we inserted.

- -Duplicate elements are not allowed.
- -Heterogeneous objects are allowed.

iii.Queue Interface:

-The Queue interface is used when we want to store and access elements in

First In, First Out manner.

Basic methods of Collection Framework

SNo	Method	Description	
1	add(element)	It is used to insert an element in this collection.	
2	addAll(collection_name)	It is used to insert the specified collection elements in	
		the invoking collection.	
3	remove(index/element)	It is used to delete an element from the collection.	
4	removeAll(collection_name)	It is used to delete all the elements of the specified	
		collection from the invoking collection.	
6	int size()	It returns the total number of elements in the collection.	
7	clear()	It removes the total number of elements from the	
		collection.	
8	contains(element)	It is used to search an element.	
9	public Iterator iterator()	It returns an iterator.	
11	boolean isEmpty()	It checks if collection is empty.	
12	boolean	It matches two collections.	
	equals(sollection name)		

1. ArrayList

- ArrayList is a part of collection framework and it is implements the List interface.
- It is present in java. util package.
- It provides a dynamic array for storing the element.
- It is an array but there is no size limit.
- We can add or remove elements easily.
- It is more flexible than a traditional array.
- It can dynamically increase or decrease in size.
- Array lists are created with an initial size. When this size is exceeded, the collection is automatically enlarged.
- When an ArrayList is created, its default capacity or size is 10. The size of the ArrayList grows based on load factor and current capacity.
- The Load Factor is a measure to decide when to increase its capacity. The

1. ArrayList

 ArrayList expands its capacity after each threshold which is calculated as the product of current capacity and load factor of the ArrayList instance.

Threshold = (Load Factor) * (Current Capacity

For example, if the user creates an ArrayList of size 10,

= 0.75 * 10

≅ 7

- This means after adding the 7th element to the list, the size will increase as it has reached the threshold value.
- Internally, a new ArrayList with a new capacity is created and the elements present in the old ArrayList are copied in the new ArrayList.
- The new capacity of the ArrayList is calculated to be 50% more than its old capacity.

new_capacity = old_capacity + (old_capacity >> 1)

In the above formula, the new capacity is calculated as 50% more than the old capacity.

How to create ArrayList

1.ArrayList<>(): It creates an empty ArrayList instance with default initial

canacity i.e. 10

Syntax-1

ArrayList <DataType> VariableName = new

ArrayList < DataTYpe>()

Example

ArrayList <int> a = new

ArrayList <int>()

2. ArrayList(int capacity): This constructor creates an empty ArrayList with initial

Syntax-2

ArrayList <Datatype> VariableName = new

`ArrayList <String> (size); –

<u>Example</u>

ArrayList <**String**> arr = new

ArrayList < String> (50);

Syntax-3

ArrayList <classname> objname = new

ArrayList < classname > ();

Example

ArrayList <**Emp**> **obj** = **new**

ArrayList < Emp>();

i. ArrayList


```
#-Demonstrate ArrayList.-
import java.util.*;
class Demo
 public static void main(String[] args)
  ArrayList < String > a = new
ArrayList< String>();
  a.add("Java");
  a.add("Python");
  a.add("C-language");
  System.out.println(a);
```

OUTPUT

[Java,Python,Clanguage]

1. ArrayList Methods

SNO	Method	Example	
1	add(element)	It is used to insert the specified element	
2	addAll(collection_name)	It is used to add all of the elements in the specified collection to the end of current list.	
3	remove(int index)	It is used to remove the element present at the specified position in the list.	
4	removeAll(int index)	It removes all the elements from the list that are also present in the specified list.	
5	get(int index)	It is used to find the index of particular element in the list.	
6	set(int index, E element)	It is used to replace the specified element in the list, present the specified position.	
7	size()	It is used to find The length of the List.	
8	clear()	It is used to clear entire list.	
9	sort()	It is used to arrange entire list in ascending order.	
10	reverseOrder()	It is used to arrange entire list in descending order.	

```
import java.util.*;
public class TestA2
     public static void main(String[] args)throws Exception
          ArrayList <String> a = new ArrayList <String>();
          ArrayList <String> b = new ArrayList <String>();
           a.add("Mango");
           a.add("Apple");
           a.add("Orange");
           b.add("Pineapple");
           b.add("Banana"):
           b.add("Grapes");
           a.addAll(b);
           a.remove(4);
           System.out.println("Before removing all elements b is:"+b);
          b.removeAll(a);
           b.clear():
           System.out.println("After removing all elements b is:"+b);
           System.out.println(a);
           System.out.println("The size of the list b is:"+b.size());
           a.set(4,"Guava");
           System.out.println("After set list a is:"+a);
           System.out.println("Get the value from a:"+a.get(2));
           Collections.sort(a):
           System.out.println("After sorting list a is:"+a);
           Collections.sort(a, Collections.reverseOrder());
           System.out.println("After sorting list a is:"+a);
```

1. ArrayList

OUTPUT

[Mango, Apple, Orange, Pineapple, Banana, Grapes]
After set list a is:[Mango, Apple, Orange, Pineapple, Guava, Grapes]
Get the value from a:Orange

After sorting list a is:[Apple, Grapes, Guava, Mango, Orange, Pineapple]

After sorting list a is:[Pineapple, Orange, Mango, Guava,

Grapes, Apple]

```
import java.util.*;
class Employee
{
    int eid;
    String ename;
    double sal;
    public Employee(int x, String y, double
z)
    {
        eid=x;
        ename=y;
        sal = z;
    }
}
```

OUTPUT

The number of employees are:3

The employess data is

101:Amar:75000.5

102:Akhil:85000.5

103:Anush:19500.5

After removing number of employees are:2

1. ArrayList


```
public class EmpAlist
     public static void main(String[] args)
          ArrayList<Employee> list = new ArrayList<Employee>();
           Employee e1=new Employee(101, "Amar", 75000.50);
           Employee e2=new Employee(102,"Akhil",85000.50);
           Employee e3=new Employee(103,"Anush",19500.50);
          list.add(e1):
          list.add(e2);
          list.add(e3);
          System.out.println("\n The number of employees are:" +list.size());
          System.out.println("\n The employess data is \n");
          for(Employee e:list)
                System.out.println(e.eid+":"+e.ename+":"+e.sal);
                System.out.println();
          list.remove(2);
          System.out.println("\n After removing number of employees are:" +
list.size());
```

LinkedList class

- LinkedList class uses a doubly LinkedList to store element. i.e., the user can add data at the first position as well as the last position.
- If we need to perform insertion /Deletion operation the LinkedList is preferred.
- LinkedList is used to implement Stacks and Queues.

```
How to create a LinkedList

LinkedList < DataType > ();
```

LinkedList


```
//Program to Demonstrate LinkedList
import java.util.*;
class Test
 public static void main(String[] args)
  LinkedList<String> cars = new
LinkedList<String>();
  cars.add("BMW");
  cars.add("FORD");
  cars.add("KIA");
  System.out.println(cars);
```

OUTPUT [BMW, FORD, KIA]

Methods of LinkedList

SN O	Method	Description	
1	add(eelement)	It is used to add the specified element to the end of a list.	
2	add(int position, element)	t is used to insert the specified element at the specified position in a list.	
3	addAll(collection_Name)	It is used to add all of the elements in the specified collection to the end of this list.	
4	addFirst(element)	It is used to insert the given element at the beginning of a list.	
5	addLast(element)	It is used to append the given element to the end of a list.	
6	getFirst()	It is used to return the first element in a list.	
7	getLast()	It is used to return the last element in a list.	

Methods of LinkedList

SNO	Method	Description
8	removeFirst()	It removes and returns the first element from a list.
9	removeLast()	It removes and returns the last element from a list.
10	removeFirstOccurrence(Object)	It is used to remove the first occurrence of the specified element in a list
11	removeLastOccurrence(Object)	It removes the last occurrence of the specified element in a list
12	lastIndexOf(Object)	It is used to return the position in a list of the last occurrence of the specified element, or -1 if the list does not contain any element
13	indexOf(Object)	It is used to return the position in a list of the first occurrence of the specified element, or -1 if the list does not contain any element.
14	get(position)	It is used to return the element at the specified position in a list.

```
import java.util.LinkedList;
class TestLL1
   public static void main(String[] args) throws Exception
       LinkedList <Integer> a = new LinkedList
<Integer>();
       a.add(10);
       a.add(20);
       a.add(30);
       System.out.println(a);
       System.out.println(a.getFirst());
       System.out.println(a.getLast());
       a.addFirst(40);
       a.addLast(20);
       a.add(4,35);
       System.out.println(a);
       System.out.println(a.indexOf(20));
       a.removeFirstOccurrence(20);
       System.out.println(a);
       a.removeLastOccurrence(20);
       System.out.println(a);
```

LinkedList

OUTPUT

[10, 20, 30] 10 30 [40, 10, 20, 30, 35, 20] 2 [40, 10, 30, 35, 20] [40, 10, 30, 35]

<u>Difference between Arraylist and</u> <u>Linked List</u>

- The ArrayList class creates the list which is internally stored in a dynamic array that grows or shrinks in size as the elements are added or deleted from it.
- LinkedList also creates the list which is internally stored in a DoublyLinked
 List.
- Both the classes are used to store the elements in the list.
- ArrayList allows random access to the elements in the list as it operates on an index-based data structure.
- LinkedList does not allow random access as it does not have indexes to

accord alamanta directly, it has to traverse the list to retrieve or accord an alamant

3. HashSet class

- HashSet stores the elements by using Hashing mechanism.
- It contains unique elements only.
- It allows null values.
- It does not maintain insertion order. It inserted elements based on their hashcode.
- HashSet is the best approach for the search operation.
- In HashSet get() and set() method not present because for get and set method index is required and in HashSet elements stores at a random address
- There are three different ways to create HashSet:

i.HashSet hs = new Hashset();

- ✓ Here, HashSet default capacity to store elements is 16 with a default load factor/fill ratio of 0.75.
- Load factor is if HashSet stores 75% element then it creates a new HashSet with increased capacity.

HashSet


```
7/Use HashSet methods to perform operations on
collection of data
import java.util.HashSet;
public class Test
   public static void main(String[] args)
       HashSet h = new HashSet();
       h.add(7);
       h.add("A");
       h.add(4);
       h.add(3);
       h.add("Hai");
       h.add(null);
       System.out.println(h);
       System.out.println(h.add(4));
```

<u>OUTPUT</u>

[null, A, Hai, 3, 4, 7] false

HashSet


```
//Write a program to remove duplicate elements.
import java.util.*;
public class Main
   public static void main(String[] args)
       int a[]=\{1,1,1,2,3,5,5,5,6,6,9,9,9,9,9\};
       HashSet <Integer> hs = new
HashSet<Integer>();
       for(int i=0;i<a.length;i++)
           hs.add(a[i]);
       for(int i:hs)
           System.out.print(i+" ");
```

<u>OUTPUT</u> 1 2 3 5 6 9

HashSet


```
/Write a program to check 1 to 10 numbers are existing in hashset or not
import java.util.*;
public class TestHS3
    public static void main(String[] args)
        HashSet<Integer> h = new HashSet<Integer>();
        h.add(8);
        h.add(3);
        h.add(7);
        for(int i = 1; i <= 10; i++)
             if(h.contains(i))
                  System.out.println(i + " was found in the set.");
             else
                  System.out.println(i + " was not found in the set.");
```

OUTPUT

1 was not found in the set.

2 was not found in the set.

3 was found in the set.

4 was not found in the set.

5 was not found in the set.

6 was not found in the set.

7 was found in the set.

8 was found in the set.

9 was not found in the

10 was not found in the set.

3. HashSet Methods

SN	Method	Description	
1	add(element)	It is used to add the specified element to this set if it is not already present.	
2	<u>clear()</u>	It is used to remove all of the elements from the set.	
3	It is used to return true if this set contains the special element.		
4	isEmpty() It is used to return true if this set contains no elements.		
5	It is used to return an iterator over the elements in set.		
6	remove(element) It is used to remove the specified element from this it is present.		
7	size()	It is used to return the number of elements in the set.	

4. TreeSet class

- TreeSet class implements the Set interface that uses a tree for storage.
- It stores the elements in ascending order.
- It uses a Tree structure to store elements.
- It contains unique elements only like HashSet.
- It's access and retrieval times are quite fast.
- How to create a LinkedList

```
<u>Syntax</u>
TreeSet<Integer> numbers = new
<u>TreeSet<>()</u>;
```

- It creates an empty tree set that will be sorted in an ascending order according to the natural order of the tree set
- TreeSet(Collection C) //It creates a new tree set that contains the elements of the
 Collection C

TreeSet


```
//Program to Demonstrate TreeSet
import java.util.*;
class Demo
   public static void main(String
args[])
       TreeSet t=new TreeSet();
       t.add("Z");
       t.add("D");
       t.add("T");
       t.add("a");
       System.out.println(t);
```

```
OUTPUT
[D, T, Z,
a]
```

```
//Program to Demonstrate TreeSet
                                                 OUTPUT
import java.util.*;
                                              Ascending:
class TestTL2
                                              Akhil
                                              Hemanth
                                              Shiva
     public static void main(String args[])
                                              Descending:
                                              Shiva
                                              Hemanth
         TreeSet t = new TreeSet():
                                              Akhil
         t.add("Akhil");
         t.add("Hemanth");
         t.add("Shiva");
         System.out.println("Ascending:");
         Iterator i=t.iterator();
         while(i.hasNext())
              System.out.println(i.next());
         System.out.println("Descending:");
         Iterator j=t.descendingIterator();
         while(j.hasNext())
              System.out.println(j.next());
```

4. TreeSet Methods

SNO	Method	Description	
1	ceiling(E e)	It returns the equal or closest greatest element of the specified element from the set, or null there is no such element.	
2	floor(E e)	It returns the equal or closest least element of the specified element from the set, or null there is no such element.	
3	SortedSet headSet(Element)	It returns the group of elements that are less than the specified element.	
4	higher(E e)	It returns the closest greatest element of the specified element from the set, or null there is no such element.	
5	Iterator iterator()	It is used to iterate the elements in ascending order.	
6	lower(E e)	It returns the closest least element of the specified element from the set, or null there is no such element.	
7	pollFirst()	It is used to retrieve and remove the lowest(first) element.	
8	pollLast()	It is used to retrieve and remove the highest(last) element.	
9	E first()	It returns the first (lowest) element currently in this sorted set.	
10	E last()	It returns the last (highest) element currently in this sorted set.	

Delegation Event Model

- The Delegation Event Model is a programming pattern used in Java for handling events in graphical user interfaces (GUIs).
- Any program that uses GUI is event driven.
- Event describes the change in state of any object.

Example : Pressing a button, Entering a character in Textbox, Clicking or Dragging a mouse, etc.

- The modern approach to event processing is based on the Delegation Model.
- It defines a standardized and compatible mechanism for generating and processing events.
- In this approach, a source generates an event and sends it to one or more listeners.
- The listener sits and waits for an event to occur. When it gets an event, it is processed by the listener and returned.

Types of Events

The events can be broadly classified into two cate

i. Foreground Events:

- ✓ Those events which require the direct interaction of user.
- They are generated as consequences of a person interacting with the graphical components in GUI.

Example:

✓ Clicking on a button, moving the mouse, entering a character through keyboard, selecting an item from list, scrolling the page etc.

ii. Background Events:

✓ Events that don't require interactions of users are known as background events.

Example:

What is Event Handling?

- It is a mechanism to control the events and to decide what should happen after an event occur.
- Event handling in Java is the procedure that controls an event and performs appropriate action if it occurs.
- Event handlers are responsible for defining the actions or behaviors that should occur in response to specific events.
- They contain the implementation code that handles the event and performs the desired tasks. Event handlers are typically implemented as methods within a class.
- When an event occurs, the associated event that event.
- To handle the events, Java follows the Delegation
- The Delegation Event model consists of two components.

Delegation Event model

1. Event Sources

- ✓ Event sources are objects that generate events.
- They are the entities or components that trigger events when specific actions or conditions occur.
- Examples of event sources include buttons, text fields, mouse clicks, or keyboard inputs.
- Event sources are responsible for creating and dispatching the corresponding event objects when the specific event occurs.

2. Event Listeners

- Event listeners are interfaces or classes that define the methods to handle events.
- They are responsible for listening to events generated by event sources and invoking the appropriate event handlers to respond to those events.

Registering the Source With Listene

Different Classes provide different registration methods.

Syntax

addTypeListener()

where Type represents the type of event.

Example 1:

For KeyEvent we use addKeyListener() to register.

Example 2:

For ActionEvent we use addActionListener() to register.

Event Classes in Java

Event Class	Listener Interface	Description
ActionEvent	MITTONICIANAL	Represents an action, such as a button click, triggered by a GUI component.
MouseEvent		Represents mouse events like clicks, enters, exits, and button presses on a GUI component.
KeyEvent	K AM ICIANAI	Represents keyboard events, such as key presses and releases, from a GUI component.
WindowEvent	WINDOWN ICTOROR	Represents window-related events, like opening, closing, or resizing a GUI window.
FocusEvent	FACTICIONAL	Represents focus-related events, including gaining and losing focus on a GUI component.

Interfaces

i) Event Classes

- ✓ ActionEvent: This represents the user's action, such as clicking a button or selecting a menu item.
- ✓ MouseEvent: Represents mouse-related events, such as mouse clicks, movement, or dragging.
- ✓ KeyEvent: Represents keyboard-related events, such as key presses or key releases.
- ✓ WindowEvent: Represents events related to windows or frames, such as window opening, closing, or resizing.
- ✓ FocusEvent: Represents events related to focus, such as when a component gains or loses focus.

ii) Listener Interfaces

- ActionListener: Defines methods to handle ActionEvents.
- ✓ MouseListener: Defines methods to handle MouseEvent.
- ✓ MouseMotionListener: Defines methods to handle mouse motion events.
- ✓ Koyl istonor: Dofines methods to handle KoyEvent

Different interfaces consists of

different method		
Listener Interface	Methods	
ActionListener	actionPerformed()	
ComponentListener	componentResized()componentShown()componentMoved()componentHidden()	
ItemListener	itemStateChanged()	
KeyListener	keyTyped()keyPressed()keyReleased()	
MouseListener	mousePressed()mouseClicked()mouseEntered()mouseExited()mouseReleased()	
MouseMotionListener	mouseMoved()mouseDragged()	
MouseWheelListener	mouseWheelMoved()	
TextListener	•textChanged()	

Flow of Event Handling

Step-1:

✓ User Interaction with a component is required to generate an event.

Step-2:

The object of the respective event class is created automatically after event generation, and it holds all information of the event source.

Step-3:

The newly created object is passed to the methods of the registered listener.

Step-4:

✓ The method executes and returns the result.

Simple Event Handling Program


```
import java.awt.*;
import java.awt.event.*;
class EventHandling extends Frame implements
ActionListener
  EventHandling ()
    TextField tf = new TextField ();
        tf.setBounds (60, 50, 170, 20);
        Button b = new Button ("Show");
        b.setBounds (90, 140, 75, 40);
        b.addActionListener (this);
        add (b);
        add (tf);
        setSize (250, 250);
        setLayout (null);
        setVisible (true);
```

```
public void actionPerformed
(ActionEvent e)
    {
        tf.setText ("Hello World");
    }
    public static void main (String args[])
    {
        EventHandling eh=new
EventHandling ();
    }
}
```


Mouse Event handling Program


```
Java Program to demonstrate the event actions associated with
a mouse */
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class ML extends Frame implements MouseListener
   Label L;
   ML()
       addMouseListener(this);
       L=new Label();
       L.setBounds(40,50,100,40);
       add(L);
       setSize(300,300);
       setLayout(null);
       setVisible(true);
   public void mouseEntered(MouseEvent e)
           L.setText("Mouse Entered");
```

public void moderates continued by the public void modera


```
e)
           L.setText("Mouse Exited");
   public void
mouseReleased(MouseEvent e)
           L.setText("Mouse Released");
   public void mousePressed(MouseEvent
e)
           L.setText("Mouse Pressed");
   public void mouseClicked(MouseEvent
e)
           L.setText("Mouse Clicked");
   public static void main(String[] args)
       ML obj=new ML();
```


Key Event handling Program


```
import java.awt.*;
                                      public void keyPressed(KeyEvent ke)
import java.awt.event.*;
class KeyDemo extends Frame implements "Key Down";
KeyListener
                                      int key = ke.getKeyCode();
                                      switch(key)
   String msg = "";
   String msg1= "";
                                      case KeyEvent.VK F1 : msg += "<F1>";
   int X = 140, Y = 180;
                                      break;
   KeyDemo(String name)
                                      case KeyEvent.VK F2 : msg += "<F2>";
                                      break;
      super(name);
                                      case KeyEvent.VK F3 : msg += "<F3>";
      setForeground(Color.red);
                                      break:
      addKeyListener(this);
                                      case KeyEvent.VK_PAGE DOWN:msg +=
                                      "<PgDn>";break;
                                      case KeyEvent.VK_PAGE_UP:msg +=
                                      "<PqUp>";break;
                                      case KeyEvent.VK LEFT:msg += "<Left
                                     Arrow>";break;
                                      case KeyEvent.VK RIGHT:msg += "<Right
```

Arrow>":break:

Key Event handling Program


```
public void keyReleased(KeyEvent ke)
   msg1="Key released";
   repaint();
public void keyTyped(KeyEvent ke)
   msg += ke.getKeyChar(); //gets the char st
   repaint();
public void paint(Graphics g)
   Color c1 = new Color(123,50,89); //0 TO 255
rED, GREEN, BLUE
   g.setColor(c1);
   g.drawString(msg, X, Y);
   g.drawString(msg1,100,200);
```

```
public class KeyDemo1
  {
  public static void main(String args[])
  {
    KeyDemo f = new KeyDemo("Key Events");
    f.setSize(300,400);
    f.setVisible(true);
  }
}
```

Adapter Classes

- Java adapter classes provide the default implementation of listener interfaces.
- If you inherit the adapter class, you will not be forced to provide the implementation of all the methods of listener interfaces.
- So it saves code.
- The adapter classes are found in java.awt.event and javax.swing.event packages.
- The Adapter classes with their corresponding listener interfaces are given below.

Adapter class	Listener interface
WindowAdapter	WindowListener
KeyAdapter	KeyListener
MouseAdapter	MouseListener
MouseMotionAdapter	MouseMotionListener
FocusAdapter	FocusListener
ComponentAdapter	ComponentListener
ContainerAdapter	ContainerListener

