image compression:

- lossless - lossy

lossless compression is important for

- medical diagnosis legal reasons
- satellite imagery archival
- high quality imaging
- * general file compression

to measure performance, we can use the compression ratio: # of bits before

of bits after

for real images, lossless compression ratios in the range 2-10

recall the image histogram, thinking about it as a PMF(probability mass function)

$$P_i = P(I(x,y)=i) = \frac{\#I(x,y)=i}{\#pixels}$$

the average bits per pixel:

$$L_{av} = \sum_{i=1}^{N} P_i \cdot b_i = E(b)$$

uniform coding, $b_i = b$ (eg, 8 bits)

idea: use fewer bits to describe more frequent symbols (eg. Morse code)

consider an 8-level image

		1	
level(i)	р	unif code	variable-length code
0	0.19	000	00
)	0.21	001	1
2	0.21	010	o i
3	0.16	011	[0]
4	. 08	100	וטיטן
۲	. 06	101	1000
6	. 03	11 0	100001
7	.02	71)	100000
1		1 1	1 11
		Lav = 3	Lav = 2.7

compaction ratio = 3/2.7 = 1.11what's the best we can do: related to entropy of the PMF

entropy measure how "uncertain" a random variable is

worst case: uniform

best case: delta function

uniform distribution:

$$P_{i} = \frac{1}{N} \qquad H = -\sum_{i=1}^{N} P_{i} \log_{2} P_{i} = -\sum_{i=1}^{N} P_{i} \log_{2} P_{i}$$
$$= N \cdot 1 - N \cdot \log_{2} N \qquad = \log_{2} N$$

if N = 8, H = 3, the worst case

the entropy is the lowest number of average bits per symbol that can be used to code the distribution

How to design a code that approaches this value?

Huffman coding: optimal(minimum Lav) for independent coding N symbols

- 1) arrange symbols in decreasing p. (think of as nodes/leaves of a tree)
- 2) merge the 2 nodes w/ lowest probability
- 3) assign 0/1 to top/bottom branch
- read code from root-to-leaf

Bonus: the prefix code is a prefix code no codeword is a prefix of any other codeword

	-		•	
<u>code A</u> (not prefix)		code B (prefix)		
1_	10	1_	0	
2	00	2	10	
3	11	3	110	
4	110	4	111	

1234321:

A: 100011110110010 B: 010110111110100

prefix code can be decoded instantaneously

can generally do better by considering pairs of symbol (or more)

truncated Huffman coding:

- to avoid extremely long code words for infrequent symbols,
- Huffman code the most probable k symbols in the source
- replace the rest with a prefix + a fixed length code

Ex:		
0.25		0.25
0.21	=>	0.21 - 0.4 0
0.19		0.19r / o
0.16		0.19 _ 0.16

0.25 11	the rest 0.08 00 00
0.21 01	0.06 00 01
0.19 101	0.03 00 10
0.16 100	0.02 00 11

0.19 the rest: 0.16

Lav = 2.75, true Huffman Lav = 2.65

Lempel-Ziv coding: basis for gif, tiff, png, zip

- parse source string sequentially into "phrases": string that haven't appeared before
- code each phrase by giving location of the prefix (fixed-length code) plus last bit
- no knowledge of PMF for symbols
- exploits how symbol occur together
- really pays off for very long strings

run-length encoding (RLE) fax simple: code the number of 0's between successive 1's

or: code the length of continuous black/ white runs