Homework 6 of Introduction to Analysis (I), Honor Class

AM15 黃琦翔 111652028

October 22, 2023

- 1. First, we show that S is closed and bounded. There exists $D(2,2) \subseteq S \implies S$ is bounded. And for $x \in \mathbb{Q} \setminus S$, if $x \leq \sqrt{2}$, $D(x,d(x,\sqrt{2})) \subseteq \mathbb{Q} \setminus S$. If $x \geq \pi$, $D(x,\pi) \subseteq \mathbb{Q} \setminus S \implies \mathbb{Q} \setminus S$ is open. Then, S is closed.
 - $G_i = (\sqrt{2} \frac{1}{n}, \pi \frac{1}{n}) \cap \mathbb{Q}$, then $\bigcup_{i=1}^{\infty} G_i$ is an open cover of S but doesn't have finite subcover. Thus, S is not compact.
- 2. Assume $\bigcap_{n=1}^{\infty} V_n = \emptyset$. And since $\operatorname{int}(V_n) \subseteq V_n \subseteq \operatorname{cl}(V_n) \subseteq V_{n-1}$, $V_n \subseteq V_{n-1}$. Then, $\bigcap_{n=1}^k V_n = V_k$.

Take open set $C_i \supseteq (V_i)^c$. Since $\bigcap V_i = \emptyset$, $\bigcup_{i=1}^{\infty} C_i$ is an open cover of V_n for all n. That is, $\bigcup_{i=1}^{\infty} C_i$ is a open cover of $\operatorname{cl}(V_n)$ for all n.

Since $\operatorname{cl}(V_1)$ is compact, there exists $n' \in \mathbb{N}$ s.t. $\bigcup_{i=1}^{n'} C_i$ is finite subcover of $\operatorname{cl}(V_1)$. That implies $V_n = \emptyset$, contradict to V_i are non-empty for all i.

Thus,
$$\bigcap_{n=1}^{\infty} V_n \neq \emptyset$$
.

3. Since $x, y \in K$, then assume there doesn't exists a set in G s.t. it contains both of x, y, then G doesn't contain one of x, y or both neither. Thus, G doesn't cover K, contradict to G is a open cover. Thus, there exists a set in G containing both x, y.

4. Since A is totally bounded, for all $\varepsilon > 0$, exists $\{x_i\}_{i=1}^N$ is a finite set s.t. $A \subseteq \bigcup_{i=1}^N D(x_i, \varepsilon)$.

And M is complete \implies every Cauchy sequence in M converge to a point in M.

Then, for any sequence $\{y_i\}$ in $\mathrm{cl}(A)$, if there is not any subsequence converge to $\mathrm{cl}(A)$, there exists $\varepsilon'>0$ s.t. $|y_m-y_n|>\varepsilon'$ for all $m,n>N\in\mathbb{N}$. $\cup D(y_i,\varepsilon')$ will be a infinite open cover of A, which contradicts to there has a finite N s.t. $\cup D(x_i,\varepsilon')$ is cover of A.

Thus, every sequence in cl(A) have subsequence converge to a point in $cl(A) \implies cl(A)$ is sequence compact. Then, by BWT, cl(A) is compact.