Class 08: Machine Learning Mini Project

David Ma

Breast Cancer Project

Exploring data from the University of Wisconsin Cancer Center on breast biopsy data.

```
wisc.data <- read.csv("WisconsinCancer.csv", row.names = 1)
head(wisc.data)</pre>
```

	diagnosis ra	adius_mean	texture_mean	perimeter_mean	area_mea	n
842302	M	17.99	10.38	122.80	1001.	0
842517	M	20.57	17.77	132.90	1326.	0
84300903	M	19.69	21.25	130.00	1203.	0
84348301	М	11.42	20.38	77.58	386.	1
84358402	M	20.29	14.34	135.10	1297.	0
843786	M	12.45	15.70	82.57	477.	1
	smoothness_n	mean compac	tness_mean co	ncavity_mean co	oncave.po	ints_mean
842302	0.11	1840	0.27760	0.3001		0.14710
842517	0.08	3474	0.07864	0.0869		0.07017
84300903	0.10	0960	0.15990	0.1974		0.12790
84348301	0.14	4250	0.28390	0.2414		0.10520
84358402	0.10	0030	0.13280	0.1980		0.10430
843786	0.12	2780	0.17000	0.1578		0.08089
	symmetry_mea	an fractal_	_dimension_mea	n radius_se tex	kture_se	perimeter_se
842302	0.241	19	0.0787	1 1.0950	0.9053	8.589
842517	0.181	12	0.0566	7 0.5435	0.7339	3.398
84300903	0.206	69	0.0599	9 0.7456	0.7869	4.585
84348301	0.259	97	0.0974	4 0.4956	1.1560	3.445
84358402	0.180	09	0.0588	3 0.7572	0.7813	5.438
843786	0.208	37	0.0761	3 0.3345	0.8902	2.217
	area_se smoo	othness_se	compactness_s	e concavity_se	concave.	points_se
842302	153.40	0.006399	0.0490	4 0.05373		0.01587
842517	74.08	0.005225	0.0130	8 0.01860		0.01340

84300903	94.03	0.006150	0.04006	0.03832	0.02058			
84348301	27.23	0.009110	0.07458	0.05661	0.01867			
84358402	94.44	0.011490	0.02461	0.05688	0.01885			
843786	27.19	0.007510	0.03345	0.03672	0.01137			
	symmetry_se f	ractal_dime	ension_se rad	ius_worst textu	re_worst			
842302	0.03003		0.006193	25.38	17.33			
842517	0.01389		0.003532	24.99	23.41			
84300903	0.02250		0.004571	23.57	25.53			
84348301	0.05963		0.009208	14.91	26.50			
84358402	0.01756		0.005115	22.54	16.67			
843786	0.02165		0.005082	15.47	23.75			
perimeter_worst area_worst smoothness_worst compactness_worst								
842302	184.	60 2019	0.0	0.1622	0.6656			
842517	158.	80 1956	3.0	0.1238	0.1866			
84300903	152.	50 1709	0.0	0.1444	0.4245			
84348301	98.	87 567	7.7	0.2098	0.8663			
84358402	152.	20 1575	5.0	0.1374	0.2050			
843786	103.	40 741	6	0.1791	0.5249			
	concavity_wor	st concave.	points_worst	symmetry_worst				
842302	0.71	19	0.2654	0.4601				
842517	0.24	116	0.1860	0.2750				
84300903	0.45	504	0.2430	0.3613				
84348301	0.68	369	0.2575	0.6638				
84358402	0.40	000	0.1625	0.2364				
843786	0.53	355	0.1741	0.3985				
fractal_dimension_worst								
842302		0.11890						
842517		0.08902						
84300903		0.08758						
84348301		0.17300						
84358402		0.07678						
843786		0.12440						

Q1. How many observations are in this dataset?

nrow(wisc.data)

[1] 569

There are 569 patients in this dataset.

Q2. How many of the observations have a malignant diagnosis?

```
table(wisc.data[, 1])
В
 Μ
357 212
 Q3. How many variables/feature in the data are suffixed with mean?
length(grep("_mean$", names(wisc.data)))
[1] 10
Save the diagnosis for later use as a reference to compare how well we do with PCA etc.
diagnosis <- as.factor(wisc.data[, 1])</pre>
diagnosis
[75] В М В М М В В В М М В М М В В В М В В М М В В В М М В В В М В В В М В В
[556] B B B B B B B M M M M M M B
Levels: B M
```

Now, exclude the diagnosis column from the data

```
wisc <- wisc.data[, -1]
```

Q. How many "dimensions", "variables", and "columns" are there in this dataset?

```
dim(wisc)
[1] 569 30

ncol(wisc)
```

[1] 30

Principal Component Analysis (PCA)

To perform PCA in R we can use the prcomp() function. It takes a numerical dataset input and optional scale=FALSE/TRUE argument.

Generally, scale=TRUE should always be set but let's make sure by checking if the mean and standard deviation are different across these 30 columns.

round(colMeans(wisc))

radius_mean	texture_mean	perimeter_mean
14	19	92
area_mean	smoothness_mean	compactness_mean
655	0	0
concavity_mean	concave.points_mean	symmetry_mean
0	0	0
<pre>fractal_dimension_mean</pre>	radius_se	texture_se
0	0	1
perimeter_se	area_se	${\tt smoothness_se}$
3	40	0
compactness_se	concavity_se	concave.points_se
0	0	0
symmetry_se	${\tt fractal_dimension_se}$	radius_worst
0	0	16
texture_worst	perimeter_worst	area_worst
26	107	881
${\tt smoothness_worst}$	${\tt compactness_worst}$	${\tt concavity_worst}$
0	0	0
concave.points_worst	symmetry_worst	${\tt fractal_dimension_worst}$
0	0	0

```
pca <- prcomp(wisc, scale = TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC2
                                         PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                          PC1
                                                                          PC7
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Standard deviation
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                 PC11
                                                         PC12
                                                                 PC13
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                                          PC17
                                                   PC18
                          PC15
                                  PC16
                                                           PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                  PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

44.27% is captured by PC1.

Q5. How many principal components are required to describe at least 70% of the original variance in the data?

Three principal components are required.

Q6. How many principal components are required to describe at least 90% of the original variance in the data?

Seven principal components are required

```
attributes(pca)
```

\$names

[1] "sdev" "rotation" "center" "scale" "x"

\$class

[1] "prcomp"

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

biplot(pca)

This plot stands out because it is so hard to actually read anything!

```
Sca$x[, 1]
```

```
library(ggplot2)

x <- as.data.frame(pca$x)

ggplot(x) +
   aes(PC1, PC2, col = diagnosis) +
   geom_point()</pre>
```


Q8. Generate a simplar plot for principal components 1 and 3. What do you notice about these plots?

```
y <- as.data.frame(pca$x)

ggplot(y) +
  aes(PC1, PC3, col = diagnosis) +
  geom_point()</pre>
```


I notice that these two subgroups are a little harder to tell apart because component 3 explains less variance in the original data than component 2.

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
pca$rotation["concave.points_mean", 1]
```

[1] -0.2608538

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

5 principal components

Hierachical Clustering

```
# Scale the wisc data using the "scale()" function
data.scaled <- scale(wisc)</pre>
```

```
# Calculating Euclidean distances between all pairs of observations
data.dist <- dist(data.scaled)

# Creating hierarchical clustering using complete linkage
wisc.hclust <- hclust(data.dist, method = "complete")</pre>
```

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h = 19, col = "red", lty = 2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

```
wisc.hclust.clusters <- cutree(wisc.hclust, k = 4)
table(wisc.hclust.clusters, diagnosis)</pre>
```

```
4 0 2
```

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning

I like ward.D2 a bit because it minimizes variance within clusters while working from the bottom up when creating the tree.

```
attributes(pca)

$names
[1] "sdev" "rotation" "center" "scale" "x"

$class
[1] "prcomp"
```

Combining PCA results with clustering

We can use our new PCA variables (i.e. the scores along the PCs contained in pca\$x) as input for other methods such as clustering.

```
# Hclust needs a distance matrix as input
d <- dist(pca$x[,1:3])

hc <- hclust(d, method = "ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

To get our cluster membership vector we can use the cutree() function and specify a height (h) or number of groups (k).

I want to find out how many diagnosis "M" and "B" are in each group.

```
grps
diagnosis 1 2
B 24 333
M 179 33
```

We can also plot our results using our clustering vector grps

```
plot(pca$x[,1], pca$x[,2], col = grps)
```

```
| California | Cal
```

```
ggplot(x) +
aes(PC1, PC2) +
geom_point(col = grps)
```


Q15. What is the specificity and sensitivity of our current results?

```
# Specificity: True negative / (True negative + False negative)
333 / (333 + 33)
```

[1] 0.9098361

```
# Sensitivity: True positive / (True positive + False negative)
179 / (179 + 33)
```

[1] 0.8443396