# **Improving Deep NNs**

# **Hyperparameters**

learning rate a momentum b how to pick each hyperparameter

train / dev(cross val) / test set 70-30,60-20-20 in the big data era, it is enough to leave it just big enough to see the results. 10m data, 10k is enough - %1

#### **Bias and Variance**

high bias -> underfitting high variance -> overfitting

# Similar things with the ML notes, may re-check

What to do, high bias/variance...

# Regularization

prevent overfitting Why does it work?



L2 Regularization

# Dropout regularization





Andrew Ng

multiple ways to implement inverted dropout

# Why does it work?

intuition, cant rely on any one feature, spreads out weights

### Other techniques

Getting more data -> expensive Augmentation techniques



Andrew Ng

### **Normalize Inputs**

Logic behind:



### Vanishing/Exploding Gradients

sometimes happens, especially for deep NNs

### Vanishing and Exploding Gradients in Deep Neural Networks

- **Problem Overview**: In deep neural networks, gradients can either grow or shrink exponentially as the network depth increases. This leads to two problems:
- **Exploding Gradients**: When weight matrices have values slightly larger than 1, activations grow exponentially with depth, making the network unstable.
- Vanishing Gradients: When weight matrices have values slightly smaller than 1, activations shrink exponentially, causing gradients to diminish and slowing down learning.

### Activation Derivation:

- Assume a linear activation function, and biases.
- The output is the product of all weight matrices:
- If is proportional to the identity matrix:
- For , activations grow as , leading to exploding gradients.
- For , activations shrink as , leading to vanishing gradients.
- Impact on Training:
- Exploding gradients make parameter updates erratic.
- Vanishing gradients result in slow learning due to tiny steps in gradient descent.
- Both issues are exacerbated in very deep networks ().
- **Partial Solution**: Proper weight initialization can mitigate these problems, making training more stable, though it doesn't fully solve them.

### Weight Initialization to Mitigate Vanishing and Exploding Gradients

- **Problem**: Deep networks can suffer from exploding or vanishing gradients due to inappropriate weight initialization.
- Solution:
- For **linear activation**, set the variance of weights to (where is the number of inputs to a neuron).
- For ReLU activation, use He initialization: .
- For TanH activation, use Xavier initialization:
- Implementation:
- Initialize weights as , where is determined by the activation function and input size.
- Impact:
- Proper initialization keeps activations and gradients at reasonable scales.
- Helps stabilize training for deep networks but does not fully eliminate gradient problems.
- **Note**: Weight variance can also be tuned as a hyperparameter, though it is usually less critical than other tuning parameters.

### **Gradient Approximation and Checking**

- **Purpose**: Gradient checking ensures the correctness of your backpropagation implementation by comparing analytical gradients with numerically approximated gradients.
- Numerical Gradient Approximation:
- For a function, approximate the gradient using:
- This is a two-sided difference, which is more accurate than a one-sided difference ().
- Example: If , for , :

Analytical gradient: (approximation error = 0.0001).

- Advantages of Two-Sided Difference:
- More accurate: Error is, compared to for one-sided difference.
- Worth the extra computation cost (twice as slow as one-sided).
- Key Takeaways:
- Use two-sided differences for gradient checking.
- This helps verify that your backpropagation implementation computes correct gradients by comparing numerical and analytical results.
- A critical step for debugging deep learning models.

### Gradient Checking for Debugging Backpropagation

• **Purpose**: Gradient checking verifies the correctness of your backpropagation by comparing analytical gradients with numerically approximated gradients.

### Steps:

#### 1. Reshape Parameters:

- Flatten all parameters () into a single vector .
- Similarly, flatten all gradients () into a vector with the same dimensions as .

### 2. Numerical Gradient Approximation:

- For each parameter :
- : Unit vector with 1 at position .
- : Small constant (e.g., ).

### 3. Compare Gradients:

- Compute the relative difference between and :
- If the difference:
- : Likely correct.
- : Double-check components.
- : Possible bug; inspect specific components.

### Debugging Workflow:

- Implement forward and backward propagation.
- Run gradient checking.
- If the difference is large, identify problematic components and debug.

### Key Takeaways:

- Gradient checking is a valuable debugging tool.
- Use it to ensure gradients are computed correctly before relying on backpropagation.

### **Practical Tips for Gradient Checking**

### 1. Use for Debugging Only:

Gradient checking is computationally expensive. Use it only for debugging, not during training.

### 2. Identify Bugs by Components:

• If gradient checking fails, examine individual components (, ) to pinpoint the layer or parameter causing discrepancies.

### 3. Account for Regularization:

Include regularization terms in the cost function and gradients when performing gradient checking.

### 4. Handle Dropout Carefully:

- Gradient checking does not work with dropout due to randomness in node elimination.
- Disable dropout (set keep prob = 1.0) during gradient checking, then re-enable it for training.

### 5. Check Beyond Initialization:

• Gradient descent may behave differently as weights and biases grow. Perform gradient checking both at initialization and after training for a few iterations.

### 6. Summary:

- Gradient checking helps debug backpropagation by ensuring computed gradients match numerical approximations.
- It's a powerful tool to verify correctness before fine-tuning or using advanced techniques like dropout.

# **Optimization Algorithms**

### **Batch vs mini-batch Gradient Descent**

NN -> Big data (slow)

therefore, need optimization algorithms. (vectorization)

train examples: 5m mini batches: 1k x 5k

mini batch gradient descent: the gd you calculate for a single mini-batch

batch gradient descent -> cost decreases (unless there is a problem - like too big learning rate) mini-batch gradient descent -> does not always decrease, but the trend is downwards reason: Xi, Yi is easy mini batch but Xy, Yy is a hard mini batch

# Training with mini batch gradient descent





# Mini-batch gradient descent



Andrew Ng

## **Choosing mini-batch size**



## **Exponentially Weighted (Moving) Averages**

# Exponentially weighted averages



# **Bias Correction in Exponentially Weighted Averages**

in fact does not get green line with above formula, because V0 is zero, thus affecting many of the first elements, curve starts from near 0 value.

thus, use the formula on the right:



### **Gradient Descent with Momentum**

almost always works faster then the normal gradient descent



Andrew Ng

common logic

unnecessary details:

# Implementation details

# On iteration t:

Compute *dW*, *db* on the current mini-batch

$$v_{dW} = \beta v_{dW} + (1 - \beta)dW$$
$$v_{db} = \beta v_{db} + (1 - \beta)db$$

$$W = W - \alpha v_{dW}$$
,  $b = b - \alpha v_{db}$ 

Hyperparameters: 
$$\alpha, \beta$$

$$\beta = 0.9$$
 Overloge on last 12 to graduits

Andrew Ng

# **RMSprop**



# **Adam Optimization Algorithm**

Momentum + RMSprop

...a lot of calculations and derivatives

## **Learning Rate Decay**

may never really converge to the most optimal point - steps become too big as you continue to get closer to the minima

logic: the outer layers of the gradient is a bigger area, does not need that much precision, unlike the centre parts

There are different methods

### The Problem of Local Optima

how we now think about I.o.?

most 0 point in gradient are not local optimas but rather saddle points for high dimensional spaces:



# Problem of plateaus



- Unlikely to get stuck in a bad local optima
- · Plateaus can make learning slow

Andrew Ng

### What you should remember:

- Shuffling and Partitioning are the two steps required to build mini-batches
- Powers of two are often chosen to be the mini-batch size, e.g., 16, 32, 64, 128.

- Momentum takes past gradients into account to smooth out the steps of gradient descent. It can be applied with batch gradient descent, mini-batch gradient descent or stochastic gradient descent.
- You have to tune a momentum hyperparameter  $\beta$  and a learning rate  $\alpha$ .

# **Tuning Process**

# **Hyperparameters**

learning rate (alpha), momentum (beta), # of layers, # of hidden layers, learning rate decay, mini-batch size...

Importance order

Try random values: Don't use a grid

more richly exploring

### Coarse to fine sampling scheme

find few set of parameters that perform the best, narrow down the region that you pick the hyperparameters based off on them

# How to pick appropriate scale to pick the hyperparameters from

- for # of layers, logical to uniformly try new random values: 2,3,4...
- learning rate: 0.0001 to 1: not feasable to apply same logic. but better to pick in a logarithmic scale
- for exponentially weighted averages: using beta = 0.9 roughly means averaging last 10 values. 0.9 to 0.999, again better to use logarithmic scale.

# How to organize hyperparameter tuning process

Babysitting one model

Train many models in parallel

# **Normalizing Activations in a Network**

#### **Batch Normalization**

normalizing the value of  $z^x$  so that  $z^x$ 

adding batch norm to a network

### Why does Batch Norm work?

doing the similar thing, not for only input but also for hidden layers

# Batch Norm at test time



# **Softmax Regression**

multi-class classification

cat/no cat - cat/dog/human/...

for ex. output layer has 4 units, each are  $P(x \mid y)$ , sum should be equal to 1. (confidence)

softmax activation function may need to check the formula

## Training a softmax classifier

cost, gradient descent, may need to check formulas & eqns.

# **Deep Learning Frameworks**

there are many, each with relative pros and cons

### **TensorFlow**

check code examples and practice