Práctica 12: Las tarjetas gráficas

Sumario

Busca en internet las características técnicas de las tarjetas gráficas:	2
a. Evolución	
b. Elementos básicos de una tarjeta gráfica	
c. Conectores de salida de una tarjeta gráfica9	
d. Tipos de ranuras de expansión de tarjetas gráficas ²²	
e. Memoria de una tarjeta gráfica4	
f. ¿Qué es el renderizado ⁴² ? Describir el proceso de renderizado, elementos o	que.10
intervienen y su relación con la capacidad de proceso con la tarjeta gráfica ⁴	³10
e. Tendencias y últimos modelos de tarjetas gráficas	12
eferencias	13

1. Busca en internet las características técnicas de las tarjetas gráficas:

- a. Evolución
- b. Elementos básicos de una tarjeta gráfica
- c. Conectores de salida de una tarjeta gráfica
- d. Tipos de ranuras de expansión de tarjetas gráficas
- e. Memoria de una tarjeta gráfica
- f. ¿Qué es el renderizado? Describir el proceso de renderizado, elementos que intervienen y su relación con la capacidad de proceso con la tarjeta gráfica
- g. Tendencias y últimos modelos de tarjetas gráficas

a. Evolución

Puede seguirse la evolución de las tarjetas gráficas con la lectura de los apartados de Conectores de salida de una tarjeta gráfica, Tipos de ranuras de expansión de tarjetas gráficas y Memoria de una tarjeta gráfica. En el último apartado, Tendencias y últimos modelos de tarjetas gráficas, puede verse el panorama actual de ellas, en las que en el ancho de banda pueden apreciarse unos valores inimaginables en antaño y admiten unas resoluciones muy altas.

b. Elementos básicos de una tarjeta gráfica

Una tarjeta gráfica¹ consiste en una placa de circuito impreso en la cual están montados diferentes componentes:

- Unidad de procesamiento gráfico o GPU (Graphics Processing Unit): Es el procesador de la tarjeta gráfica, optimizado para el cálculo en coma flotante, que son las operaciones predominantes en las funciones 3D. Gracias la especialización de este procesador, deja libre de sobrecargas al procesador principal, al menos en cuanto a procesamiento gráfico se refiere. Las tarjetas gráficas buenas llevan más de una GPU.
- <u>Disipador</u>²: Está montado en la mayoría de las tarjetas gráficas modernas. Este distribuye el calor producido por la GPU de manera uniforme en todo el disipador y en la propia tarjeta. Cuenta generalmente con uno o varios ventiladores montados para enfriar el disipador y la GPU. No todas las tarjetas tienen disipador, por ejemplo, las hay con refrigeración líquida. Además, las tarjetas de los años 80 y principios de los 90 no producían mucho calor y no requerían de estos.
- BIOS de vídeo³: La BIOS de vídeo o el firmware de vídeo contiene un programa mínimo para la configuración inicial y el control de la tarjeta de vídeo. Puede tener información sobre el tiempo de la memoria, las velocidades de operación y los voltajes del procesador gráfico, la RAM y otra información que a veces se puede cambiar.
- Memoria de vídeo⁴: Este tipo de memoria almacena la información de los datos de una pantalla. La memoria de vídeo está formada por bits dispuestos en tres dimensiones: bits de resolución horizontal, resolución vertical y bits en cada píxel (profundidad del color). Al ser dedicada para los gráficos, se evita que se sobrecargue la memoria RAM. Actualmente, las tarjetas gráficas tienen entre 1⁵ y 24 GB⁶ de este tipo de memoria, y usan una específica conocida como GDDR⁷.
- RAMDAC⁸ (Random-Access-Memory Digital-to-Analog Converter ['convertidor digital-analógico de memoria de acceso aleatorio']): Convierte las señales digitales (del ordenador) en señales analógicas para poder ser representadas en el monitor, con la inevitable pérdida de calidad que eso supone. En la actualidad, este componente está desapareciendo de las tarjetas gráficas, puesto que los monitores suelen son ya digitales y, por ende, no hace falta esta conversión.

c. Conectores de salida de una tarjeta gráfica9

- Composite video¹⁰: Creado en la década de los 80, es un conector analógico amarillo de un solo pin compuesto de un cable coaxial y con conector BNC. Actualmente no es muy usado, pero aún hay dispositivos que incluyen este tipo de conector. Es habitual encontrarlo en el conector RCA, junto a los cables rojo y blanco para el sonido.
- DB13W3¹¹: Creado en la década de los 80 y usado por Sun Microsystems, Silicon Graphics, IBM y Apple, fue un conector analógico de 10 pines + 3 distribuidos en dos filas de 5. Fue usado como conector de vídeo en los ordenadores y en la actualidad ya no se usa.
- <u>VGA¹² (Video Graphics Array)</u>: Diseñado en 1987, es un conector analógico DE-15 de 15 pines distribuidos en tres filas. Fue un estándar para la transmisión de vídeo y hoy día se sigue produciendo.
- <u>S-Video¹³</u>: Diseñado en 1987, fue un conector analógico de 4 pines distribuidos de dos en dos, en cada lateral. Era empleado para la transmisión de imagen.
- VESA Enhanced Video Conector¹⁴: Publicado en 1995, fue un conector analógico y digital de 30 + 5 pines distribuidos en tres filas. Basado en DVI, fue diseñado para transportar VGA/RGB, FireWire, audio y señales USB.
- <u>DVI¹⁵ (Digital Visual Interface)</u>: Diseñado en 1999 por la DDWG (Digital Display Working Group), es un conector analógico digital de 24 pines + 5 distribuidos en tres filas de 8 (en la versión estándar, otras pueden tener menos pines). Fue desarrollado con la intención de crear un estándar en la industria para transferir el contenido digital de vídeo y se sigue empleando en la actualidad. Variantes:
 - 1. DVI-A: Solo analógico.
 - 2. <u>DVI-I Single Link</u>: Combina digital y analógico.
 - 3. <u>DVI-I Dual Link</u>: Combina digital y analógico.
 - 4. <u>DVI-D Single Link</u>: Solo digital.
 - 5. <u>DVI-D Dual Link</u>: Solo digital.
 - 6. Mini-DVI: Combina digital y analógico.
 - 7. Micro-DVI: Solo digital.
- HDMI¹⁶ (*High-Definition Multimedia Interface*): Diseñado en 2002, es un conector digital propietario con los pines distribuidos en dos filas, 10 arriba y 9 abajo. Es uno de los estándares a día de hoy para la transmisión de imagen, sumado a que puede transportar también sonido y Ethernet. Tiene distintas versiones: 1.0, 1.1, 1.2, 1.3, 1.4, 2.0 y 2.1. Variantes:

- 1. Mini-HDMI: Ideado para pequeños dispositivos.
- 2. Micro-HDMI: Ideado para pequeños dispositivos.
- <u>UDI¹⁷ (Unified Display Interface</u>): Diseñado en 2006 y cancelado en 2007, iba a ser un conector digital de 26 pines basado en DVI que, finalmente, no se llegó a producir. Se planteó como una alternativa de bajo coste y que tuviera compatibilidad con HDMI y DVI, enfocado especialmente a monitores y tarjetas gráficas. Fue respaldado por empresas como Intel y Samsung.
- <u>DisplayPort¹⁸</u>: Producido en 2008, es un conector digital con los pines distribuidos en dos filas de 10. Fue diseñado por VESA y es el competidor directo con HDMI que, a diferencia de este, no hay que pagar nada para poder usarlo en la fabricación de los dispositivos. Variantes:
 - 1. Mini-DisplayPort¹⁹: Anunciado por Apple.
- <u>HDBaseT²⁰</u>: Diseñado en 2010, no es en sí un tipo conector, sino que hace uso del conector Ethernet de los cables Cat 5e y Cat 6. Puede transportar vídeo, sonido y Ethernet.
- <u>DMS-59²¹</u>: Usado en tarjetas gráficas, fue un conector digital de 59 pines distribuidos en cuatro filas. Era compatible con dos conectores DVI o dos conectores VGA, pero en uno solo, consiguiendo así una mayor resolución.

Conectores	Pines	Tipo de señal	Año
DMS-59	59	Digital	
Composite video	1	Analógica	Década de los 80
DB13W3	10 + 3	Analógica	Década de los 80
VGA	15	Analógica	1987-Actualidad
S-Video	4	Analógica	1987
VESA Enhanced Video Conector	30 + 5	Analógica y digital	1995
DVI	24 + 5 (estándar)	Analógica y digital	1999-Actualidad
HDMI	19	Digital	2002-Actualidad
UDI	26	Digital	2006-2007
DisplayPort	20	Digital	2008-Actualidad
HDBaseT	8	Digital	2010

d. Tipos de ranuras de expansión de tarjetas gráficas²²

- <u>S-100 bus²³</u>: Diseñado en 1974 como una parte del Altair 8800, fue el primer bus estándar para la industria de las microcomputadoras. Era de 8 bits con una frecuencia de reloj de 10 MHz.
- ISA²⁴ (Industry Standard Architecture): Introducido en 1981 por IBM, se convirtió en la opción predominante del mercado en la década de los 80. Hubo dos versiones: ISA XT (de 8 bits) e ISA AT (de 16 bits, creada en el 1984), que tenían una frecuencia de reloj de 4.77 y 8.33 MHz.
- <u>Zorro II²⁵</u>: Introducido en 1986 y usado en los Commodore Amiga 1500 y 2000. Era de 16 bits con una frecuencia de reloj de 7.14 MHz.
- NuBus²⁶: Usado en el ordenador Macintosh II de Apple (lanzado en marzo de 1987).
 Era un bus de 32 bits con una frecuencia de reloj de 10 MHz.
- MCA²⁷ (Mircro Channel Architecture): Fue un intento de IBM en 1987 para reemplazar al ISA, pero incompatible con los anteriores. Era un bus de 16 o 32 bits con una frecuencia de reloj de 10 MHz.
- <u>EISA²⁸ (Extended Industry Standard Architecture)</u>: Publicado en 1988 para competir con el MCA de IBM y compatible con ISA AT. Era un bus de 32 bits con una frecuencia de reloj de 8.33 MHz.
- Zorro III²⁹: Introducido en 1990 y usado en los Commodore Amiga 3000 y 4000. Era de 32 bits con una frecuencia de reloj de 37.5 MHz.
- <u>VLB³⁰ (VESA [Video Electronics Standards Association] Local Bus</u>): Una extensión de ISA en 1992. Era un bus de 32 bits con una frecuencia de reloj de 33 y 40 MHz.
- PCI³¹ (Peripheral Component Interconnect): Desplazó a los buses EISA, ISA, MCA y VESA desde 1993 en adelante. La ranura PCI permitía una conectividad dinámica entre los dispositivos sin tener que ajustar manualmente los jumpers. La primera versión era un bus de 32 bits con una frecuencia de 33 MHz, luego han ido apareciendo mejores versiones.
- <u>UPA³² (Ultra Port Architecture</u>): Una arquitectura de bus de interconexión introducida por Sun Microsystems en 1995. Era un bus de 64 bits con una frecuencia de reloj de 67 a 120 MHz.
- AGP³³ (Accelerated Graphics Port): Introducido en 1997, es un bus dedicado a los gráficos. Hay diferentes versiones: 1x, 2x, 4x y 8x. Es de 32 bits con una frecuencia de reloj de 66 MHz.
- PCI-X³⁴ (Peripheral Component Interconnect eXtended): Fue una extensión del bus PCI introducida en 1998. Mejora el PCI al extender el ancho del bus a los 64 bits y con una frecuencia de reloj de hasta los 133 MHz.

• PCle³⁵ (Peripheral Component Interconnect Express): Fue la primera interfaz de vídeo en serio, desplazando así al formato paralelo de todos los anteriores. Publicado en el año 2004 y, en 2006, ya proveían el doble de transferencia de datos que AGP. Es el estándar actual y, a día de hoy, ya se está empezando a abrir paso la versión 4.0³⁶, con vistas a la 5.0³⁷. Versiones de PCle: PCle 1.0 x1, x2, x4, x8, x16, x32³⁸; PCle 2.0 x1, x2, x4, x8, x16, x32³⁸; PCle 3.0 x1, x2, x4, x8, x16, x32³⁸; y las que están por llegar: PCle 4.0³⁶ x1³⁹, x2³⁹, x4³⁹, x8³⁹, x16³⁹; PCle 5.0³⁷ x1³⁹, x2³⁹, x4³⁹, x8³⁹, x16³⁹. Los formatos x32³⁸ no son muy comunes, pero existen.

Bus	Ancho (bits)	Frecuencia de reloj (MHz)	Ancho de banda (MB/s)	Tipo	Año
PCI-X 133			1067		
PCI-X QDR	16		1067		
PCI-X DDR			2133		
PCI-X QDR			4266		
PCI	64	66/100	533.3/800	Paralelo	
S-100 bus	8	10	10	Paralelo	1974
ISA XT	8	4.77	2.39	Paralelo	1981
ISA AT	16	8.33	8.33	Paralelo	1984
Zorro II	16	7.14	5.3		1986
NuBus	32	10	40	Paralelo	1987
MCA	16/32	10	66	Paralelo	1987
EISA	8/16/32	8.33	33.32	Paralelo	1988
Zorro III	32	37.5	150		1990
NuBus 90 ⁴⁰		20	80		1991
VLB o VESA	32	33/40	133.33/160	Paralelo	1992
PCI	32/64	33	133.33/266.7	Paralelo	1993
PCI	32	66	266.7	Paralelo	1995
UPA	64	67/83/100/12 0	1070/1320/1 600/1920		1995
AGP 1x	32	66	266.7	Paralelo	1997
AGP 2x	32	66	533.3	Paralelo	1997
AGP 4x	32	66	1067	Paralelo	1998
PCI-X DDR	16		533.3		1998
PCIe 1.0 x32 ³⁸	1 x 32	2500	8000	Serie	2001
AGP 8x	32	66	2133	Paralelo	2002

PCle 1.0 x1	1	2500	250	Serie	2004
PCIe 1.0 x4	1 x 4	2500	1000	Serie	2004
PCle 1.0 x8	1 x 8	2500	2000	Serie	2004
PCle 1.0 x16	1 x 16	2500	4000	Serie	2004
PCle 2.0 x1	1	5000	500	Serie	2007
PCIe 2.0 x2	1 x 2	5000	1000	Serie	2007
PCIe 2.0 x4	1 x 4	5000	2000	Serie	2007
PCIe 2.0 x8	1 x 8	5000	4000	Serie	2007
PCle 2.0 x16	1 x 16	5000	8000	Serie	2007
PCIe 2.0 x32 ³⁸	1 x 32	5000	16000	Serie	2007
PCle 1.0 x2	1 x 2	2500	500	Serie	2011
PCIe 3.0 x1	1	8000	~1000	Serie	2011
PCIe 3.0 x2	1 x 2	8000	~2000	Serie	2011
PCIe 3.0 x4	1 x 4	8000	~4000	Serie	2011
PCIe 3.0 x8	1 x 8	8000	~8000	Serie	2011
PCle 3.0 x16	1 x 16	8000	~16000	Serie	2011
PCIe 3.0 x32 ³⁸	1 x 32	8000	~32000	Serie	2011
PCIe 4.0 x1 ³⁹	1	16000	~2000	Serie	2018
PCIe 4.0 x2 ³⁹	1 x 2	16000	~4000	Serie	2018
PCIe 4.0 x4 ³⁹	1 x 4	16000	~8000	Serie	2018
PCIe 4.0 x8 ³⁹	1 x 8	16000	~16000	Serie	2018
PCIe 4.0 x16 ³⁹	1 x 16	16000	~32000	Serie	2018
PCIe 5.0 x1 ³⁹	1	32000	~4000	Serie	2019
PCIe 5.0 x2 ³⁹	1 x 2	32000	~8000	Serie	2019
PCIe 5.0 x4 ³⁹	1 x 4	32000	~16000	Serie	2019
PCIe 5.0 x8 ³⁹	1 x 8	32000	~32000	Serie	2019
PCIe 5.0 x16 ³⁹	1 x 16	32000	~64000	Serie	2019

Nota: El ancho de banda es el máximo teórico de cada interfaz.

e. Memoria de una tarjeta gráfica⁴

La memoria gráfica, o también conocida como VRAM, tiene una capacidad en las tarjetas gráficas modernas que va desde 1 GB⁵ hasta los 24 GB⁶. Ha empleado distintos tipos de memoria, que va desde la GDDR hasta la GDDR6⁴¹. Puede resumirse en la siguiente tabla:

Tipo	Frecuencia de reloj (MHz)	Ancho de banda (GB/s)	Año
GDDR	166 a 950	1.2 a 30.4	
GDDR2	533 a 1000	8.5 a 16	
GDDR3	700 a 1700	5.6 a 54.4	2004
GDDR4	1600 a 1800	64 a 86.4	2007
GDDR5	3200 a 7000	24 a 448	2008
НВМ	500	512 a 1024	2013
GDDR5X	1000 a 1750	160 a 673	2016
GDDR6 ⁴¹			2018

f. ¿Qué es el renderizado⁴²? Describir el proceso de renderizado, elementos que intervienen y su relación con la capacidad de proceso con la tarjeta gráfica⁴³

El renderizado 3D es el proceso por el cual, a través de los sistemas informáticos, generamos una **imagen digital a partir de un modelo o escenario en tres dimensiones (3D)**. El objetivo es generar una imagen realista desde cualquier perspectiva del modelo.

Se trata de conseguir generar imágenes en 3D a partir de diversos procesos que permiten generar sensación de profundidad y dar textura a los diferentes elementos de la imagen para que resulte más realista. También permiten generar **diferentes efectos de iluminación**, y también usar diferentes técnicas fotográficas que generan **efectos ópticos** similares o iguales a los que se producen en el mundo real cuando observamos un objeto, una habitación, un paisaje o cualquier tipo de vista que perciban nuestros ojos.

El renderizado 3D se genera a través del cálculo producido por algoritmos y fórmulas que van **generando simulaciones** que calculan posibles reflejos de la luz sobre los objetos en tres dimensiones que hallamos dispuestos en la escena. El rastreo se produce desde la cámara virtual que situemos para generar la escena hasta las fuentes de luz emisoras.

Se utiliza hoy en día de forma amplia en el mundo de la creación audiovisual. Es muy apreciado para la **realización de vídeos** porque permite realizar y disponer en las escenas diferentes tipos de objetos y situaciones que no se pueden llegar a grabar en entornos reales.

También es muy apreciado porque permite realizar simulaciones de objetos o elementos que todavía no se han construido, por lo que hoy en día se usa mucho en el ámbito de la construcción para recrear viviendas, edificios y nuevas construcciones y así poder hacernos una idea de cómo serían en realidad.

El mundo el diseño gráfico también se ha visto ampliamente impactado por la renderización 3D, son muchos los profesionales del diseño gráfico que se han especializado en este área por sus posibilidades. Hay cada vez más empresas especializadas en el diseño 3D por ordenador. Ciertos diseños de objetos o proyectos arquitectónicos se aprecian mejor un un diseño 3D.

El mundo de la **publicidad** también ha acogido con los brazos abiertos el uso del renderizado 3D, dado que se pueden recrear objetos sin necesidad de que sean fotografiados y con ello se pueden hacer simulaciones para ver cómo quedaría un objeto en una situación concreta, o se pueden realizar combinaciones imposibles que a nivel publicitario tienen mucho efecto y que solo son posibles gracias al uso de este proceso.

En la renderización es importante tanto el procesador, como la memoria RAM, como contar con un disco SSD pero, sin lugar a dudas, el más importante de todos es la tarjeta

gráfica. Como ya se ha explicado anteriormente, la GPU está optimizada en los cálculos de coma flotante, por lo que es el más rápido en hacer los algoritmos necesarios de renderización pertinentes. Dependiendo del tipo de renderizado que se trate, necesitará más potencia y memoria.

e. Tendencias y últimos modelos de tarjetas gráficas

Existen dos fabricantes de tarjetas gráficas dedicadas: Nvidia y AMD. Intel tiene gráficas integradas en sus procesadores, pero parece que también competirá en este mercado en el futuro⁴⁴. En cuanto a los ensambladores⁴⁵, existen los siguiente:

	Diseñadores de GPU		
	AMD	Nvidia	
	Asus	Asus	
	Club3D	Club3D	
	Gigabyte	Gigabyte	
	MSI	MSI	
	Diamond	ECS EliteGroup	
	Gecube	EVGA	
Ensambladores de tarjetas ⁴⁵	HIS	Gainward	
	Powercolor	Galaxy	
	Sapphire	KFA2 ⁴⁶	
	XFX	Palit	
		PNY	
		Point of View	
		Sparkle	
		Zotac	

<u>Últimos modelos de tarjetas gráficas</u>:

- Nvidia: Los últimos modelos de Nvidia son los de la gama RTX lanzados entre 2018 y 2019: 2060^{47} , 2070^{48} , 2080^{49} , $2080 \, \text{Ti}^{50}$, Titan⁵¹ y, en el sector profesional, Quadro RTX 5000^{52} y 6000^{53} .
- AMD: En cuanto a AMD, sus últimos modelos son: RX 580⁵⁴, 580X⁵⁵, 590⁵⁶, RX Vega⁶⁴⁵⁷ y Radeon Vega VII⁵⁸.

Las tarjetas Nvidia RTX han surgido principalmente debido al auge realidad virtual y a la demanda de estos dispositivos de mover gráficos de muy alta calidad con una tasa de refresco muy elevada, aparte de resoluciones cada vez más altas, como el 8K⁵⁹. Es por eso que se ha creado un nuevo estándar, el VirtualLink⁶⁰, incluido en estas RTX.

Referencias

- https://en.wikipedia.org/wiki/Video_card (inglés).
 https://es.wikipedia.org/wiki/Tarjeta_gr%C3%A1fica (castellano).
- 2. https://en.wikipedia.org/wiki/Video_card#Heat_sink (inglés).
- 3. https://en.wikipedia.org/wiki/Video_card#Video_BIOS (inglés).
- 4. https://en.wikipedia.org/wiki/Video_card#Video_memory (inglés).

 https://es.wikipedia.org/wiki/Tarjeta_gr%C3%A1fica#GRAM (castellano).
- 5. https://www.pccomponentes.com/msi-geforce-gt710-1gb-ddr3-low-profile (castellano).
- 6. https://www.pccomponentes.com/nvidia-titan-rtx-24gb-gddr6 (castellano).
- 7. https://es.wikipedia.org/wiki/Tarjeta_gr%C3%A1fica#GRAM (castellano).
- 8. https://es.wikipedia.org/wiki/Tarjeta_gr%C3%A1fica#RAMDAC (castellano).
- 9. https://en.wikipedia.org/wiki/List_of_video_connectors#Physical_connectors (inglés).
- 10. https://en.wikipedia.org/wiki/Composite_video (inglés).
 - https://www.hardwaresecrets.com/video-connectors-tutorial/3/ (inglés).
 - https://es.wikipedia.org/wiki/V%C3%ADdeo_compuesto#Conectores_y_l %C3%ADneas_utilizadas_por_la_se%C3%B1al_de_v%C3%ADdeo (castellano).
- 11. https://en.wikipedia.org/wiki/DB13W3 (inglés).
- 12. https://en.wikipedia.org/wiki/VGA_connector (inglés).
- 13. https://en.wikipedia.org/wiki/S-Video (inglés). https://www.hardwaresecrets.com/video-connectors-tutorial/4/ (inglés).
- 14. http://www.interfacebus.com/Design_EVC_Connector_Pinout.html (inglés).
 - http://www.stuartconnections.com/en/graphics/2193-Dell-ATI-32MB-RAGE128-AGP-EVC-Video-Graphics-Card-1028110402-1098110000-4E732.html (inglés).
- 15. https://en.wikipedia.org/wiki/Digital_Visual_Interface (inglés).
- 16. https://en.wikipedia.org/wiki/HDMI (inglés).
- 17. https://en.wikipedia.org/wiki/Unified_Display_Interface (inglés).
- 18. https://en.wikipedia.org/wiki/DisplayPort (inglés).
- 19. https://www.hardwaresecrets.com/video-connectors-tutorial/9/ (inglés).

20. https://en.wikipedia.org/wiki/HDBaseT (inglés).

https://es.wikipedia.org/wiki/HDBaseT (castellano).

https://www.tweaktown.com/news/60160/advoli-first-hdbaset-certified-pcie-x16-graphics-card/index.html (inglés).

21. https://en.wikipedia.org/wiki/DMS-59 (inglés).

https://es.wikipedia.org/wiki/DMS-59 (castellano).

22. https://en.wikipedia.org/wiki/List_of_interface_bit_rates#Computer_buses (inglés).

https://en.wikipedia.org/wiki/Video_card#Motherboard_interfaces (inglés).

https://es.wikipedia.org/wiki/Tarjeta_gr%C3%A1fica#Interfaces_con_la_placa_base (castellano.)

- 23. https://en.wikipedia.org/wiki/S-100_bus (inglés).
- 24. https://en.wikipedia.org/wiki/Industry_Standard_Architecture (inglés).
- 25. https://en.wikipedia.org/wiki/Amiga_Zorro_II (inglés).
- 26. https://en.wikipedia.org/wiki/NuBus (inglés).
- 27. https://en.wikipedia.org/wiki/Micro_Channel_architecture (inglés).
- 28. https://en.wikipedia.org/wiki/Extended_Industry_Standard_Architecture (inglés).
- 29. https://en.wikipedia.org/wiki/Amiga_Zorro_III (inglés).
- 30. https://en.wikipedia.org/wiki/VESA_Local_Bus (inglés).
- 31. https://en.wikipedia.org/wiki/Conventional_PCI (inglés).
- 32. https://es.wikipedia.org/wiki/Ultra_Port_Architecture (castellano).
- 33. https://en.wikipedia.org/wiki/Accelerated_Graphics_Port (inglés).
- 34. https://en.wikipedia.org/wiki/PCI-X (inglés).
- 35. https://en.wikipedia.org/wiki/PCI_Express (inglés).
- 36. https://elchapuzasinformatico.com/2019/01/gracias-al-amd-ryzen-3000-llega-la-primera-prueba-de-un-ssd-pci-express-4-0/ (castellano).
- 37. https://www.tomshardware.com/news/pcie-4.0-5.0-pci-sig-specification,38460.html (inglés).
- 38. https://www.supermicro.com/products/motherboard/Xeon/C600/X9DRW-CTF31.cfm (inglés).
- 39. https://www.profesionalreview.com/2018/11/26/pci-express-4-0/ (castellano).

https://www.muycomputerpro.com/movilidad-profesional/wp-content/uploads/2017/09/PCI-Express_2.jpg (inglés.).

- 40. https://en.wikipedia.org/wiki/NuBus#Implementations (inglés).
- 41. https://en.wikipedia.org/wiki/GDDR6_SDRAM (inglés).
- 42. https://www.cocoschool.com/que-es-renderizado-3d/ (castellano).
- 43. https://www.iscarnet.com/2018/06/renderizar-con-gpu-cpu-o-ambos/ (castellano).
- 44. https://www.adslzone.net/2018/02/19/intel-prototipo-tarjeta-grafica/ (castellano).
- 45. https://es.wikipedia.org/wiki/Tarjeta_gr%C3%A1fica#Dise %C3%B1adores, fabricantes_y_ensambladores (castellano).
- 46. https://www.pccomponentes.com/kfa2-geforce-rtx-2060-oc-1-click-6gb-gddr6 (castellano).
- 47. https://www.nvidia.com/es-es/geforce/graphics-cards/rtx-2060/ (castellano).
- 48. https://www.nvidia.com/es-es/geforce/graphics-cards/rtx-2070/ (castellano).
- 49. https://www.nvidia.com/es-es/geforce/graphics-cards/rtx-2080/ (castellano).
- 50. https://www.nvidia.com/es-es/geforce/graphics-cards/rtx-2080-ti/ (castellano).
- 51. https://www.nvidia.com/es-es/titan/titan-rtx/ (castellano).
- 52. https://www.nvidia.com/es-es/design-visualization/quadro/rtx-5000/ (castellano).
- 53. https://www.nvidia.com/es-es/design-visualization/guadro/rtx-6000/ (castellano).
- 54. https://www.amd.com/es/products/graphics/radeon-rx-580 (castellano).
- 55. https://www.amd.com/es/products/graphics/radeon-rx-580x (castellano).
- 56. https://www.amd.com/es/products/graphics/radeon-rx-590 (castellano).
- 57. https://www.amd.com/es/products/graphics/radeon-rx-vega-64 (castellano).
- 58. https://www.xataka.com/ordenadores/amd-anuncia-radeon-vii-primera-gpu-gaming-arquitectura-7-nm (castellano).
- 59. https://www.dell.com/en-us/shop/accessories/apd/210-alez (inglés.)
- 60. https://www.roadtovr.com/nvidia-geforce-rtx-virtuallink-vr-connector/ (inglés).