EXAMEN D'ESTIMATION STOCHASTIQUE - M2 RODECO/IARF

1° session – Jeudi 17 Octobre 2019 – Durée 1h15mn

Tous documents de Cours, TD, TP autorisés – Tablettes et objets communicants interdits

Les questions 1,2,3,4,5,6,7a,8a,9 sont indépendantes. Une copie soignée est l'assurance d'une correction bienveillante.

- I/ Questions de cours : répondre en trois phrases maximum convenablement construites, sans nécessairement invoquer des formules mathématiques, à chacune des questions suivantes.
 - 1. Soient Θ et Z deux variables aléatoires. Quelle signification peut-on accorder à la loi a priori $p_{\Theta}(\theta)$ de Θ et à sa loi a posteriori $p_{\Theta|Z}(\theta|z)$?
 - 2. Expliquer en langage simple ce que sont le biais et la covariance d'un estimateur.
 - 3. À quoi sert l'inégalité de Cramér-Rao?
 - 4. Soient X une variable aléatoire vectorielle et X_1, \ldots, X_N ses composantes. On suppose que $X \sim \mathcal{N}(\bar{x}, P)$, c.-à-d. que X suit la loi Gaussienne réelle multidimensionnelle de moyenne $\bar{x} = (\bar{x}_1 \cdots \bar{x}_N)^T$ et de covariance $P = \begin{pmatrix} p_{11} & \cdots & p_{1N} \\ \vdots & & \vdots \\ p_{1N} & \cdots & p_{NN} \end{pmatrix}$. Comment la densité de probabilité $p_X(x)$ de X se simplifie-t-elle si X_1, \ldots, X_N sont de plus indépendantes et identiquement distribuées?

II. Estimation de distance par maximum de vraisemblance/

Un télémètre et sa suite logicielle délivrent des mesures de distance selon un axe horizontal. Les données constructeur permettent d'établir que lorsqu'on effectue en séquence N mesures z_1, \ldots, z_N d'une même distance inconnue $\theta \in \mathbb{R}_+$, on obtient en fait N échantillons indépendants et identiquement distribués selon la loi Gaussienne d'espérance θ et d'écart-type $\rho\theta$, où le paramètre ρ est connu. On note alors

$$z_1, \dots, z_N \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, (\rho\theta)^2).$$
 (1)

Dans tout le sujet, on ne dispose d'aucune connaissance a priori sur θ . Le symbole « := » signifie « égal par définition à ».

Répondre aux questions suivantes.

- 5. (a) Caractériser qualitativement, en langage naturel et en trois phrases maximum, la distribution de probabilité des observations correspondant à θ caché pour $\rho = \frac{1}{300}$.
 - (b) Préciser en quoi le capteur considéré diffère, qualitativement et en trois phrases maximum, d'un capteur délivrant une mesure de θ avec une erreur relative distribuée uniformément dans l'intervalle [-1%; +1%].
- 6. Le vecteur $z = (z_1, \ldots, z_N)^T$ des observations effectuées peut être considéré comme la réalisation d'un vecteur aléatoire $Z = (Z_1, \ldots, Z_N)^T$ lié à θ par un modèle d'observation $\mathbf{p}_{Z|\theta}(z|\theta)$.
 - (a) Montrer que

$$p_{Z|\theta}(z|\theta) = \prod_{n=1}^{N} p_{Z_n|\theta}(z_n|\theta).$$
 (2)

- (b) Développer l'expression de $p_{Z|\theta}(z|\theta)$ en tenant compte de (1)–(2).
- 7. Disposant de $z = (z_1, \ldots, z_N)^T$, on souhaite calculer l'estimé du maximum de vraisemblance de θ caché, ci-après noté $\hat{\theta}_{\text{MLE}}$.

(a) Montrer que $\hat{\theta}_{\text{MLE}}$ est la solution de

$$\hat{\theta}_{\text{MLE}} = \arg\min_{\theta} J(\theta), \text{ avec } J(\theta) := N \ln \theta + \frac{1}{2\rho^2} \sum_{n=1}^{N} \frac{(z_n - \theta)^2}{\theta^2}.$$
 (3)

- (b) Préciser le lien qui unit $J(\theta)$ et $NLL(\theta; z) = -\ln p_{Z|\theta}(z|\theta)$, lequel pourra être exploité plus loin dans la question 9.
- (c) Écrire soigneusement les conditions d'optimalité du premier ordre. Développer les expressions mathématiques obtenues. Conclure soigneusement sur les conclusions qu'elles permettent d'obtenir. On rappelle, à toutes fins utiles, que

$$\frac{\partial}{\partial \theta} \left(\frac{(x-\theta)^2}{\theta^2} \right) = \frac{2x(\theta-x)}{\theta^3}.$$
 (4)

- (d) On conserve pour l'estimé $\hat{\theta}_{MLE}$ celui qui semble « intuitivement le plus judicieux » parmi le(s) candidat(s) obtenu(s) à la question précédente. Donner son expression.
- (e) Exprimer l'estimateur $\hat{\Theta}_{\rm MLE}$ du maximum de vraisemblance obtenu en fonction de ρ et des deux variables aléatoires

$$U_N := \frac{1}{N} \sum_{n=1}^{N} Z_n, \qquad V_N := \frac{1}{N} \sum_{n=1}^{N} Z_n^2.$$
 (5)

8. Les variables aléatoires U_N, V_N définies en (5) se réalisent respectivement en la moyenne empirique des z_1, \ldots, z_N et en la moyenne empirique des carrés des z_1, \ldots, z_N . En vertu de la loi des grands nombres, lorsque la dimension N du vecteur Z tend vers $+\infty$, leurs « limites » sont

$$\lim_{N \to +\infty} U_N = U_\infty := \mathbb{E}[Z_n], \qquad \lim_{N \to +\infty} V_N = V_\infty := \mathbb{E}[Z_n^2]. \tag{6}$$

- (a) Établir les expressions de U_{∞} et V_{∞} en fonction de ρ et θ .
- (b) Exploiter ce résultat afin de montrer que $\hat{\Theta}_{MLE}$ est asymptotiquement non biaisé (i.e., non biaisé lorsque $N \longrightarrow +\infty$).
- 9. Quelle est la borne inférieure de Cramér-Rao du problème?