### Цель работы

Ознакомление с моделью конкуренции двух фирм для двух случаев (без учета и с учетом социально-психологического фактора) и их построение с помощью языка программирования Modelica.

### Задание

#### Вариант 22

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$
 
$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$
 где 
$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 Nq}, \ a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 Nq}, \ b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 Nq}, \ c_1 = \frac{l}{l}$$

Также введена нормировка  $t = c_1 \theta$ .

{ #fig:001 width=70% }

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед М М1 2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений.

$$\frac{dM_1}{d\theta} = M_1 - \left(\frac{b}{c_1} + 0,0013\right) M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

{ #fig:002 width=70% } Для

обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами

$$M_0^1 = 7.1, M_0^2 = 8.1,$$
  $p_{cr} = 44, N = 77, q = 1$   $\tau_1 = 26, \tau_2 = 21,$   $\tilde{p}_1 = 11, \tilde{p}_2 = 8.7$  {#fig:003 width=70%}

## Выполнение лабораторной работы

#### 1. Теоритические сведения

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют. Обозначим: N – число потребителей производимого продукта. S – доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения. М – оборотные средства предприятия т – длительность производственного цикла р – рыночная цена товара  $\tilde{p}$  – себестоимость продукта, то есть переменные издержки на производство единицы продукции. δ – доля оборотных средств, идущая на покрытие переменных издержек. к – постоянные издержки, которые не зависят от количества выпускаемой продукции. Q(S/p) – функция спроса, зависящая от отношения дохода S к цене р. Она равна количеству продукта, потребляемого одним потребителем в единицу времени. Функцию спроса товаров долговременного использования часто представляют в простейшей форме

$$Q = q - k \frac{p}{S} = q \left( 1 - \frac{p}{p_{cr}} \right)$$
 { #fig:004 width=70% }

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при p = pcr (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина pcr = Sq/k. Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой (то

есть, Q(S/p) = 0 при  $p \ge pcr$ ) и обладает свойствами насыщения. Уравнения динамики оборотных средств можно записать в виде

$$rac{dM}{dt}=-rac{M\delta}{ au}+NQp-k=-rac{M\delta}{ au}+Nq\left(1-rac{p}{
m p_{cr}}
ight)p-k$$
 { #fig:005 width=70% } 
$$rac{dp}{dt}=\gamma(-rac{M\delta}{ au}+Nq\left(1-rac{p}{
m p_{cr}}
ight)$$
 Уравнение для рыночной цены р представим в виде

#fig:006 width=70% } Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу. Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла т. При заданном М уравнение (3) описывает быстрое стремление цены к равновесному значению цены, которое устойчиво. В этом случае уравнение (3) можно

$$-\frac{M\delta}{\tau \tilde{p}} + Nq \left(1 - \frac{p}{p_{cr}}\right) = 0$$
{ #fig:007

заменить алгебраическим соотношением

width=70% } Из этого следует, что равновесное значение цены р равно

$$p=pcr(1-rac{M\delta}{ au \widetilde{p}Nq})$$
 { #fig:008 width=70% } Уравнение с учетом приобретает вид  $rac{dM}{dt}=-Mrac{\delta}{ au}\Big(rac{pcr}{\widetilde{p}}-1\Big)-M^2(rac{\delta}{ au \widetilde{p}})^2rac{pcr}{Nq}-k$  { #fig:009 width=70% } Уравнение имеет

два стационарных решения, соответствующих условию dM/dt = 0:

$$\widetilde{M_{1,2}} = rac{1}{2}a + \sqrt{rac{a^2}{4} - b}$$
 { #fig:0010 width=70% } где

$$\mathbf{a} = \mathrm{Nq} \left( 1 - \frac{\widetilde{p}}{pcr} \right) \widetilde{p} \frac{\tau}{\delta}, b = k N q \frac{(\widetilde{p}\tau)}{pcr\delta^2}$$

{ #fig:0011 width=70% } Из (7) следует, что при

больших постоянных издержках (в случае а 2 < 4b) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, b < < a 2) и играют роль, только в случае, когда оборотные средства малы. При b < < a 2

$$-\frac{M\delta}{\tau\tilde{p}} + Nq\left(1 - \frac{p}{p_{cr}}\right) = 0$$

стационарные

{ #fig:0012 width=70% } Первое

состояние М□ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние М□ неустойчиво, так, что при М М□ □ оборотные средства падают (dM/dt < 0), то есть, фирма идет к банкротству. По смыслу М□ соответствует начальному капиталу, необходимому для входа в рынок. В обсуждаемой модели параметр  $\delta$  всюду входит в

сочетании с т. Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим:  $\delta = 1$ , а параметр т будем считать временем цикла, с учётом сказанного. **2.** 

#### Построение графиков

2.1 Написала программу на OpenModelica:

```
model Lab8
  parameter Real p_cr = 44;
  parameter Real tau1 = 26;
  parameter Real p1 = 11;
  parameter Real tau2 = 21;
  parameter Real p2 = 8.7;
  parameter Real N = 77;
  parameter Real q = 1;
  parameter Real a1 = p cr/(tau1*tau1*p1*p1*N*q);
  parameter Real a2 = p cr/(tau2*tau2*p2*p2*N*q);
  parameter Real b = p cr/(tau1*tau1* tau2*tau2*p1*p1*p2*p2*N*q);
  parameter Real c1 = (p cr-p1)/(tau1*p1);
  parameter Real c2 = (p cr-p2)/(tau2*p2);
  Real M1 (start=7.1);
  Real M2 (start=8.1);
equation
  der(M1)=M1-(b/c1)*M1*M2-(a1/c1)*M1*M1;
  der (M2) = (c2/c1)*M2 - (b/c1)*M1*M2 - (a2/c1)*M2*M2;
end Lab8;
```

Получил следующий график (см. рис. -@fig:001).







{ #fig:0013 width=70% }

#### 2.2 Написал программу на Modelica:

```
model Lab8_2
  parameter Real p_cr = 44;
  parameter Real tau1 = 26;
  parameter Real tau2 = 21;
  parameter Real p2 = 8.7;
  parameter Real N = 77;
  parameter Real q = 1;

parameter Real a1 = p_cr/(tau1*tau1*p1*p1*N*q);
  parameter Real a2 = p_cr/(tau2*tau2*p2*p2*N*q);
  parameter Real b = p_cr/(tau1*tau1* tau2*tau2*p1*p1*p2*p2*N*q);
  parameter Real c1 = (p_cr-p1)/(tau1*p1);
  parameter Real c2 = (p_cr-p2)/(tau2*p2);
```

```
Real M1 (start=7.1);
Real M2 (start=8.1);
equation
  der(M1)=M1-(b/(c1+0.0013))*M1*M2-a1/c1*M1*M1;
  der(M2)=c2/c1*M2-b/c1*M1*M2-a2/c1*M2*M2;
end Lab8_2;
```

Получил следующий график (см. рис. -@fig:002).



# Выводы

Ознакомилась с моделью конкуренции двух фирм для двух случаев. Построила график распространения рекламы.