Learning Objectives

- Learn to remedy overfitting through various regularization strategies including:
 - o Parameter norm penalties
 - Dropout
 - Early Stopping

Toy Example

Toy Example

• Initial Design:

o 1 Layer NN, 2 Hidden Units/Layer

○ Train set Loss: 0.264

○ **Val set Loss**: 0.268

o Minimum Loss achievable: 0.1

Toy Example

• New Design:

- o 6 Layer NN, 6 Hidden Units/Layer
- Train set Loss: 0.1
- **Val set Loss**: 0.45
- o Minimum Loss achievable: 0.1

Parameter Norm Penalties

$$J(\theta)_{reg} = J(\theta) + \alpha\Omega(\theta)$$

- α is a **hyperparameter** that weights the relative contribution of the norm penalty to the value of the loss function
- $\Omega(\theta)$ is a measure of how large θ 's value is, usually an **Lp Norm**
- We usually only constrain the size of weights and not biases

$$J(\theta)_{reg} = J(\theta) + \alpha\Omega(W)$$

L2-Norm Parameter Penalty

$$\Omega(W) = \frac{1}{2}W^T W = \frac{1}{2}||W||_2^2$$

New Design:

o 6 Layer NN, 6 Hidden Units/Layer

o Minimum Loss achievable: 0.1

L2-Norm Penalty

o **Train set Loss**: 0.1 0.176

o **Val set Loss**: 0.45 0.182

Dropout

Multiply **Weights** by P_{keep} at the end of training

$$P_{keep} = 0.5$$

Dropout

- Computationally inexpensive but powerful regularization method
- Does not significantly limit the type of model or training procedure that can be used
- Dropout layers are practically implemented in all neural network libraries!

Early Stopping

