Problems from the textbook in HW 2

- **10.** If E_1 and E_2 are measurable, show that $|E_1 \cup E_2| + |E_1 \cap E_2| = |E_1| + |E_2|$.
- **13.** Motivated by (3.7), define the *inner measure* of E by $|E|_i = \sup |F|$, where the supremum is taken over all closed subsets F of E. Show that (i) $|E|_i \le |E|_e$, and (ii) if $|E|_e < +\infty$, then E is measurable if and only if $|E|_i = |E|_e$. (Use Lemma 3.22.)
 - **15.** If *E* is measurable and *A* is any subset of *E*, show that $|E| = |A|_i + |E A|_e$. (See Exercise 13 for the definition of $|A|_i$.) As a consequence, using Exercise 13, show that if $A \subset [0,1]$ and $|A|_e + |[0,1] A|_e = 1$, then *A* is measurable.
- 30. Let $f: \mathbb{R}^n \to \mathbb{R}^1$ be continuous. Show that the inverse image $f^{-1}(B)$ of a Borel set B is a Borel set; see p. 64 in Section 4.1 for the definition of the inverse image of a set. (The collection of sets $\{E: f^{-1}(E) \text{ is a Borel set}\}$ is a σ -algebra and contains all open sets in \mathbb{R}^1 ; cf. Exercise 10 of Chapter 4 and Corollary 4.15.) See also Exercise 22 of Chapter 4.
- **32.** Let E be a set in \mathbb{R}^n with $|E|_e > 0$ and let θ satisfy $0 < \theta < 1$. Show that there is a set $E_{\theta} \subset E$ with $|E_{\theta}|_e = \theta |E|_e$ and that E_{θ} can be chosen to be measurable if E is measurable. (If Q(r) denotes the cube with edge length r centered at the origin, $0 < r < \infty$, then $|E \cap Q(r)|_e$ is a continuous monotone function of r.)