

Lehrgebiet für Grundlagen der Informatik Prof. Dr. Heiko Körner

4. Übung zur Vorlesung Theoretische Informatik I Musterlösungen

Aufgabe 1: Es ist

 $LL' = \{ab, ba, aab, aba, aaab, aaba\}$

und

 $L'L = \{ab, ba, aba, baa, abaa, baaa\}$.

Aufgabe 2: Wir lösen alle Teilaufgaben wie folgt:

- a) Ist $L = \emptyset$, so gilt $L^0 = \{\varepsilon\}$ und $L^i = \emptyset$ für i > 0. Also ist $L^* = \{\varepsilon\}$ endlich. Die zweite Möglichkeit ist $L = \{\varepsilon\}$, denn dann gilt $L^i = \{\varepsilon\}$ für $i \ge 0$. Also ist wieder $L^* = \{\varepsilon\}$ und damit endlich. Für alle anderen Sprachen hat L^* unendlich viele Elemente, denn dann können beliebig lange Wörter gebildet werden.
- b) Es gilt $(L^*)^* = L^*$. Zum Beweis sei bemerkt, dass zunächst $L^* \subseteq (L^*)^*$ wegen

$$L^* = (L^*)^1 \subseteq \bigcup_{k=0}^{\infty} (L^*)^k = (L^*)^*$$

erfüllt ist. Sei nun $y \in (L^*)^*$. Dann gilt $y = y_1 y_2 \dots y_k$ für geeignete $y_i \in L^*$, $1 \le i \le k$. Die y_i sind jeweils wiederum Konkatenationen aus endlich vielen Wörtern in L. Daher ist auch y eine Konkatenationen endlich vieler Wörter in L, also $y \in L^*$. Also folgt auch $(L^*)^* \subseteq L^*$ und damit $(L^*)^* = L^*$.

- c) Fünf Wörter aus L^+ sind z.B. 1, 1011, 10111, 11 und 111.
- d) Die richtige Antwort ist $L := \emptyset$. Die Wörter aus L^+ entstehen durch die Konkatenation von einer nichtleeren Folge von Wörtern aus L. Dies ist im Fall $L = \emptyset$ unmöglich, da keine Wörter aus L zur Verfügung stehen. Also gilt in diesem Fall auch $L^+ = \emptyset$. Wenn L dagegen mindestens ein Wort $x \in L$ enhält, so ist dieses Wort auch in L^+ enthalten und somit L^+ nicht leer.
- e) L^+ ist in den beiden Fällen $L = \emptyset$ und $L = \{\varepsilon\}$ endlich, denn dann gilt $L^+ = \emptyset$ bzw. $L^+ = \{\varepsilon\}$. Jede andere Sprache L enthält mindestens ein nichtleeres Wort x. Somit enthält L^+ dann auch das Wort x^k für alle $k \in \mathbb{N}$ und somit unendlich viele Wörter.
- f) Es gilt $(L^+)^+ = L^+$. Wir können dazu ganz ähnlich wie in b) argumentieren. Denn zunächst ist sicherlich L^+ immer eine Teilmenge von $(L^+)^+$ wegen

$$L^{+} = \{x_1 x_2 \dots x_k \mid k = 1, x_i \in L^{+}\} \subseteq \{x_1 x_2 \dots x_k \mid k \ge 1, x_i \in L^{+}\} = (L^{+})^{+}.$$

Sei nun $y \in (L^+)^+$. Dann gilt $y = y_1 y_2 \dots y_k$ für geeignete $y_i \in L^+$, $1 \le i \le k$. Die y_i sind jeweils wiederum Konkatenationen aus endlich vielen Wörtern in L. Daher ist auch y eine Konkatenationen endlich vieler Wörter aus L, also $y \in L^+$. Also folgt auch $(L^+)^+ \subseteq L^+$ und damit $(L^+)^+ = L^+$.

Aufgabe 3: Die erste Behauptung ist richtig, die zweite falsch:

a) Es gilt immer

$$L^*$$
= $\{x_1 x_2 \dots x_k \mid k \ge 0, x_i \in L\}$
= $\{x_1 x_2 \dots x_k \mid k \ge 1, x_i \in L\} \cup \{x_1 x_2 \dots x_k \mid k = 0, x_i \in L\}$
= $L^+ \cup \{\varepsilon\}$.

b) Ein Gegenbeispiel ist $L:=\{\varepsilon\}$, denn dann gilt $L^+=\{\varepsilon\}$ und $L^*\setminus\{\varepsilon\}=\emptyset$. (Die Behauptung stimmt nur für alle Sprachen L mit $\varepsilon\notin L$.)

Aufgabe 4: Es gilt

$$0.7\sqrt[3]{n} = O(n^{1/3})$$
 $3^{\frac{n}{2}} = O(\sqrt{3}^n)$ $7n^3 - 4n^2 + \log n = O(n^3)$

und

$$10^{-6}n^{\frac{5}{2}} = O(n^{2.5}) \qquad 24n + \log_{10}^{2} n = O(n) \qquad 47n \log n = O(n \log n) .$$

Nach wachsender Komplexität sortiert ergibt sich daraus die folgende Inklusionskette:

$$O(n^{1/3}) \subset O(n) \subset O(n \log n) \subset O(n^{2.5}) \subset O(n^3) \subset O(\sqrt{3}^n)$$
.

Aufgabe 5: Es gilt

$$13.2n^{1.5} = \Omega(n^{1.5}) \qquad 1.7\sqrt[3]{n} = \Omega(n^{1/3}) \qquad 23\log_5 n = \Omega(\log n) \qquad 2^{n/5} = \Omega((\sqrt[5]{2})^n)$$

und

$$17n^3 - 4n = \Omega(n^3)$$
 $2n\log_7 n = \Omega(n\log n)$ $9n^4 + \log_3 n + 1 = \Omega(n^4)$.

Nach aufsteigender Komplexität sortiert ergibt sich die folgende Inklusionskette:

$$\Omega(\log n) \supset \Omega(n^{1/3}) \supset \Omega(n\log n) \supset \Omega(n^{1.5}) \supset \Omega(n^3) \supset \Omega(n^4) \supset \Omega((\sqrt[5]{2})^n) \ .$$