

- Comment protéger une alimentation?
 - Protection antistatique
 - Protection de tension inverse
 - Protection de court-circuit
 - Protection de inrush current
 - Undervoltage Lockout
 - Protection complète
 - GFCI & Grounding
- 2 Comment filtrer une alimentation?
- 3 Quels sont les types de régulateurs?
- 4 Comment conçevoir un arbre d'alimentation?

- 1 Comment protéger une alimentation?
 - Protection antistatique
 - Protection de tension inverse
 - Protection de court-circuit
 - Protection de inrush current
 - Undervoltage Lockout
 - Protection complète
 - GFCI & Grounding
- 2 Comment filtrer une alimentation?
- 3 Quels sont les types de régulateurs?
- 4 Comment conçevoir un arbre d'alimentation?

Décharge Électrostatique (ESD)

- Norme IEC-61000-4-2
 - Types de décharges
 - Méthodologies de tests & certification
 - 4 catégories de produits
 - Jusqu'à $\pm 8 \,\text{kV} / \pm 15 \,\text{kV}$
- Deux types de chocs statiques
 - Contact Discharge Toucher directement chaque pin avec un ESD gun
 - Air Discharge ESD gun proche du DUT jusqu'à décharge

Décharge Électrostatique - Waveform

Circuit protégé antistatiquement - Zener

- Faite pour être mise à l'envers!
- V₇ contrôlé
- Beaucoup de courant en avalanche
- N'endommage pas la diode
- Utilisé dans des références de tension
- Utilise comme protection antistatique

Circuit protégé antistatiquement

- Clamp le pulse à V_Z
- Protège les dispositifs par apprès
- Pas l'option la plus rapide
- Ne protège pas contre un pulse négatif

Diode TVS (Transient Voltage Suppression)

- Faite pour protection antistatique!
- Bidirectionnel!!

- Deux diodes Zener qui se font face
- iv curve symmétrique

Circuit protégé antistatiquement - Condensateur

- 1 Comment protéger une alimentation?
 - Protection antistatique
 - Protection de tension inverse
 - Protection de court-circuit
 - Protection de inrush current
 - Undervoltage Lockout
 - Protection complète
 - GFCI & Grounding
- 2 Comment filtrer une alimentation?
- 3 Quels sont les types de régulateurs?
- 4 Comment conçevoir un arbre d'alimentation?

Circuit de protection inverse - Diode

- Ne conduit que dans un sens
- Drop de tension V_f
- $P = I \cdot V_f$

Circuit de protection inverse - Diode Schottky

- Ne conduit que dans un sens
- Drop de tension V_f plus petite
- $P = I \cdot V_f$
- Plus cher pour même rating de courant

Circuit de protection inverse - PMOS

- Ne conduit que dans un sens
- Drop de tension vraiment plus petite (R_{dson} · I)
- Tension maximale supportée

Transistor MOSFET P-Channel (PMOS)

$$V_{gs}$$
 négatif!

$$V_{gs} < -V_t$$

Faire attention au $V_{gs_{max}}$

- $V_G = 0 \, V$
- $V_{gs} = -VDD$
- $-VDD < -V_t$
- Conduit!

- $V_G = VDD$
- $V_{gs} = 0 \text{ V}$
- $0 V > -V_t$
- Ne conduit pas

Circuit de protection inverse - PMOS complèt

- Ne conduit que dans un sens
- Drop de tension vraiment plus petite (R_{dson} · I)
- Supporte toutes les tensions!

- 1 Comment protéger une alimentation?
 - Protection antistatique
 - Protection de tension inverse
 - Protection de court-circuit
 - Protection de inrush current
 - Undervoltage Lockout
 - Protection complète
 - GFCI & Grounding
- 2 Comment filtrer une alimentation?
- 3 Quels sont les types de régulateurs?
- 4 Comment concevoir un arbre d'alimentation?

- Chauffage d'un filament central
- Coupe un circuit lorsque trop de courant passe
- Usage unique
- Lent à agir

Polyfuse - Polyswitch - PTC - Resettable Fuse

- Positive Temperature Coefficient
- Augmente sa résistance alors qu'il chauffe
- Utilisé comme thermistor
- Usage multiple
- Lent à agir
- Prend du temps à se self-reset

- 1 Comment protéger une alimentation?
 - Protection antistatique
 - Protection de tension inverse
 - Protection de court-circuit
 - Protection de inrush current
 - Undervoltage Lockout
 - Protection complète
 - GFCI & Grounding
- 2 Comment filtrer une alimentation?
- 3 Quels sont les types de régulateurs?
- 4 Comment conçevoir un arbre d'alimentation?

Inrush Current

- Tous les condensateurs d'un circuit sont des court-circuits
- Courant qui dépasse les spécifications pour charger les condensateurs

- Tous les condensateurs d'un circuit sont des court-circuits
- Courant qui dépasse les spécifications pour charger les condensateurs
- Spécification USB 2.0: 10 μF

Comment limiter la surge initiale?

- NTP
 - Negative Temperature Coefficient
 - Conduit de plus en plus alors qu'il chauffe!

Comment limiter la surge initiale?

- NTP
 - Negative Temperature Coefficient
 - Conduit de plus en plus alors qu'il chauffe!
- Circuit de MOSFET
 - Charge d'un condensateur à la gate
 - Laisse passer de plus en plus de courant

Comment limiter la surge initiale?

- NTP
 - Negative Temperature Coefficient
 - Conduit de plus en plus alors qu'il chauffe!
- Circuit de MOSFET
 - Charge d'un condensateur à la gate
 - Laisse passer de plus en plus de courant
- Soft-Start
- Pre-Charge

- Fonctionalité de certains régulateurs de tension
- Pente de la tension de sortie
- Ajustée avec un condensateur C_{SS}

Pre-charge

- Pour les systèmes haut-voltage
- Contacteur avec une limite de courant
- Permet de charger les condensateurs
- Activation du contacteur principal après

- 1 Comment protéger une alimentation?
 - Protection antistatique
 - Protection de tension inverse
 - Protection de court-circuit
 - Protection de inrush current
 - Undervoltage Lockout
 - Protection complète
 - GFCI & Grounding
- 2 Comment filtrer une alimentation?
- 3 Quels sont les types de régulateurs?
- 4 Comment concevoir un arbre d'alimentation?

Undervoltage Lockout (UVLO)

- Couper l'alimentation si entrée trop faible
- Protection de batterie
- Efficacité
- Garantie de fonctionnement

Undervoltage Lockout (UVLO) - Enable

- Batterie $V_{max} = 4.2 \,\mathrm{V}$
- Batterie $V_{min} = 3.7 \,\mathrm{V}$
- Tension EN $V_{ref} = 1.2 \text{ V}$

Poser $R_2 = 47 \, \text{k}\Omega$

$$V_{ref} = V_{min} \cdot rac{R_2}{R_1 + R_2}$$
 $R_1 = 100 \, \mathrm{k}\Omega$

- 1 Comment protéger une alimentation?
 - Protection antistatique
 - Protection de tension inverse
 - Protection de court-circuit
 - Protection de inrush current
 - Undervoltage Lockout
 - Protection complète
 - GFCI & Grounding
- 2 Comment filtrer une alimentation?
- 3 Quels sont les types de régulateurs?
- 4 Comment concevoir un arbre d'alimentation?

Protection complète - Circuit électrique

Protection complète - Circuit électrique

- 1 Comment protéger une alimentation?
 - Protection antistatique
 - Protection de tension inverse
 - Protection de court-circuit
 - Protection de inrush current
 - Undervoltage Lockout
 - Protection complète
 - GFCI & Grounding
- 2 Comment filtrer une alimentation?
- 3 Quels sont les types de régulateurs?
- 4 Comment conçevoir un arbre d'alimentation?

- 1 Conment protéger une alimentation?
- 2 Comment filtrer une alimentation?
 - Filtrer l'entrée
 - Filtrer la sortie d'un régulateur
 - Filtrer au IC
- 3 Quels sont les types de régulateurs?
- 4 Comment concevoir un arbre d'alimentation?

- 1 Comment protéger une alimentation?
- 2 Comment filtrer une alimentation?
 - Filtrer l'entrée
 - Filtrer la sortie d'un régulateur
 - Filtrer au IC
- 3 Quels sont les types de régulateurs?
- 4 Comment conçevoir un arbre d'alimentation?

- 1 Comment protéger une alimentation?
- 2 Comment filtrer une alimentation?
 - Filtrer l'entrée
 - Filtrer la sortie d'un régulateur
 - Filtrer au IC
- 3 Quels sont les types de régulateurs?
- 4 Comment conçevoir un arbre d'alimentation?

- 1 Conment protéger une alimentation?
- 2 Comment filtrer une alimentation?
 - Filtrer l'entrée
 - Filtrer la sortie d'un régulateur
 - Filtrer au IC
- 3 Quels sont les types de régulateurs?
- 4 Comment conçevoir un arbre d'alimentation?

Quels sont les types de régulateurs?

- 1 Corment potéger une alimentation?
- 2 Comment filtrer une alimentation?
- 3 Quels sont les types de régulateurs?
 - Régulateurs Linéaires
 - Régulateurs "switching"
- 4 Comment conçevoir un arbre d'alimentation?

Quels sont les types de régulateurs?

- 1 Corment potéger une alimentation?
- 2 Comment filtrer une alimentation?
- 3 Quels sont les types de régulateurs?
 - Régulateurs Linéaires
 - Régulateurs "switching"
- 4 Comment conçevoir un arbre d'alimentation?

Quels sont les types de régulateurs?

- 1 Comment potéger une alimentation?
- 2 Comment filtrer une alimentation?
- 3 Quels sont les types de régulateurs?
 - Régulateurs Linéaires
 - Régulateurs "switching"
- 4 Comment conçevoir un arbre d'alimentation?

Comment conçevoir un arbre d'alimentation?

- 1 Comment protéger une alimentation?
- 2 Comment filtrer une alimentation?
- 3 Q els sont les types de régulateurs?
- 4 Comment conçevoir un arbre d'alimentation?

