Duality

- dual LP
- weak duality
- strong duality
- complementarity

Duality

Consider the constrained problem

minimize
$$x_1^1 + x_2^2$$

subject to $x_1 + x_2 = 1$

and the unconstrained problem

minimize
$$\phi(x_1, x_2, y) \equiv x_1^2 + x_2^2 + y(1 - x_1 - x_2)$$

The scalar y is the "price" for violating the constraint $x_1 + x_2 = 1$. What price y is enough to induce the optimal solution $x^* = (1/2, 1/2)$?

$$\frac{\partial \phi}{\partial x_1} = 2x_1 - y = 0 \\
\frac{\partial \phi}{\partial x_1} = 2x_2 - y = 0$$

$$\implies x_1 = x_2 = \frac{y}{2} \implies y^* = 1$$

Dual function

primal problem: minimize c^Tx subj to $Ax = b, x \ge 0$

- *n* variables, *m* constraints
- optimal value p^*

Dual function

primal problem: minimize c^Tx subj to $Ax = b, x \ge 0$

- *n* variables, *m* constraints
- optimal value p*

relaxed problem: minimize $c^Tx + y^T(b - Ax)$ subj to $x \ge 0$

- relaxed problem is a lower bound for p^* :
- $g(y) := \min_{x \ge 0} \left\{ c^T x + y^T (b Ax) \right\} \le c^T x^* + y^T (b Ax^*) = c^T x^* = p^*$

Dual function

primal problem: minimize c^Tx subj to $Ax = b, x \ge 0$

- *n* variables, *m* constraints
- optimal value p*

relaxed problem: minimize $c^Tx + y^T(b - Ax)$ subj to $x \ge 0$

- relaxed problem is a lower bound for p^* :
- $g(y) := \min_{x \ge 0} \left\{ c^T x + y^T (b Ax) \right\} \le c^T x^* + y^T (b Ax^*) = c^T x^* = p^*$

tightest lower bound: find y that solves

$$\max_{y} \max_{g} g(y)$$

Dual of an LP

$$g(y) = \min_{x \ge 0} c^T x + y^T (b - Ax)$$
$$= b^T y + \min_{x \ge 0} x^T (c - A^T y)$$
$$= \begin{cases} b^T y & \text{if } c - A^T y \ge 0 \\ -\infty & \text{otherwise} \end{cases}$$

Because we want to **maximize** g(y), we must have

$$\begin{array}{lll} \underset{y}{\text{maximize}} & b^T y & \iff & \underset{y,z}{\text{maximize}} & b^T y \\ \text{subject to} & c - A^T y \geq 0 & \text{subject to} & A^T y + z = c \\ & & z > 0 \end{array}$$

this is the dual LP

Weak duality

Suppose that x is primal feasible:

$$Ax = b, \quad x \ge 0$$

Suppose that (y, z) is dual feasible:

$$A^T y + z = c, \quad z \ge 0$$

Weak duality

Suppose that x is primal feasible:

$$Ax = b, \quad x \ge 0$$

Suppose that (y, z) is dual feasible:

$$A^T y + z = c, \quad z \ge 0$$

Then the primal objective is bounded below by the dual objective:

$$c^{T}x = (A^{T}y + z)^{T}x = y^{T}Ax + z^{T}x = y^{T}b + \underbrace{z^{T}x}_{(+)} \ge y^{T}b$$

Weak duality

Suppose that *x* is primal feasible:

$$Ax = b, \quad x \ge 0$$

Suppose that (y, z) is dual feasible:

$$A^T y + z = c, \quad z \ge 0$$

Then the primal objective is bounded below by the dual objective:

$$c^{T}x = (A^{T}y + z)^{T}x = y^{T}Ax + z^{T}x = y^{T}b + \underbrace{z^{T}x}_{(+)} \ge y^{T}b$$

Weak-duality theorem: if (x, y, z) is primal/dual feasible, then

- the primal value is an upper bound for the dual value
- the dual value is a lower bound for the primal value

Complementarity

primal		dual	
$\underset{x}{minimize}$		maximize y,z	•
subject to	Ax = b	subject to	$A^T y + z = c$
	$x \ge 0$		$z \ge 0$

By weak duality:

(primal value)
$$\equiv c^T x = b^T y + z^T x \ge b^T y \equiv (\text{dual value})$$

This bound is "tight" when x and z are **complementary**, ie, $x^Tz = 0$:

$$x_j = 0$$
 and $z_j \ge 0$
 $x_j \ge 0$ and $z_j = 0$

Optimality conditions

Simplex maintains **primal feasibility** at every iteration:

$$Ax = b, \quad x \ge 0$$

It defines y via $B^Ty = c_B$ and $z = c - A^Ty$, and maintains **complementarity**:

$$x_{\scriptscriptstyle B} \geq 0$$
 and $z_{\scriptscriptstyle B} = 0$ (by construction) $x_{\scriptscriptstyle N} = 0$ and $z_{\scriptscriptstyle N} \lessapprox 0$

Simplex exits when $z \ge 0$, ie, (y, z) is **dual feasible**, ie,

$$A^T y + z = c, \quad z \ge 0$$

Strong duality theorem: If an LP has an optimal solution, so does its dual, and the optimal values are equal, ie, $p^* = d^*$

Sufficient conditions

Suppose that (x, y, z) is primal/dual feasible.

By weak duality,

$$c^T x - b^T y = z^T x$$

By strong duality, if (x, y, z) is primal-dual optimal,

$$z^T x = 0$$

Conversely, if $z^T x = 0$, then

- $c^T x$ achieves its upper bound
- $b^T y$ achieves its lower bound

therefore, (x, y, z) is primal-dual optimal

Theorem: The primal-dual triple (x, y, z) is optimal iff

$$Ax = b, x \ge 0, A^{T}y + z = c, z \ge 0, x^{T}z = 0$$

Relationship between primal and dual LPs

	finite opt	unbounded	infeasible
finite opt	\checkmark	×	×
unbounded	×	×	✓
infeasible	×	\checkmark	✓

Interpretation of dual variables

primal		dual	
minimize subject to		maximize y,z subject to	$b^{T} y$ $A^{T} y + z = c$
subject to	$x \ge 0$	subject to	$z \ge 0$

Suppose that x^* is optimal and nondegenerate, then

$$x^* = egin{bmatrix} B^{-1}b \ 0 \end{bmatrix} > 0$$
 and $x^*_{\scriptscriptstyle B}(\epsilon) = B^{-1}(b + \epsilon \Delta b) > 0$ for small ϵ

Reduced costs $z^*=c-A^Ty^*$ doesn't change. Thus $(x^*(\epsilon),y^*,z^*)$ is primal/dual feasible