

YV=-(+(=)
V= L = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(:)
v== +(i= +)

مدار الكتريكي آنلاين

در شکل زیر، مشخصهی مقاومت غیرخطی $i_R = v_R^\intercal + rv_R$ است. ولتاژ v_R چند ولتِ می تواند باشد؟ ٣,١ (٢__ L(1,41,-6)-L1 = . v + rv - f = .

STAIN OF THE PERSON OF THE PER	على غفار پور است. توان مصرفي مقاومت غيرخطي	مدار الکتریکی آنلاین در مدار شکل زیر، مشخصهی مقاومت غیرخطی ۱۹
@arshadeb	γΩ W IR VR VR VR	چند وات است؟ ۶ (۱ – ۹ (۳) – -۹ (۳) ۶ –۶ (۴
	$P = V \times i$	t= . 10 =) ('= m') 20 = 9 - (1+9) = - m'

AT				
E Mys	علی غفارپور علی		مدار الكتريكي آنلاين	
@arshadeb	ع خطی جایگزین ت خطی جایگزین		ر شکل زیر، به جای مقاومت غیرخطی با مشخم -	
	<u>v</u>	کند؟	دون آن <i>که جر</i> یان و یا ولتاژ شاخهای از مدار تغییر ۲	-
		Ω i,		$\frac{1}{2}\Omega \left(1 - \frac{1}{2} \right)$
	i ₁ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	V V VI N N N N N N N N N N N N N N N N N	· · · · · · · · · · · · · · · · · · ·	<u>'</u> Ω (۲ f
	₩ <u>₩</u>	V	<u> </u>	<u>'</u> Ω (۳—
	i-11 - 7i + 20 =	$\Rightarrow c_1 = v^{-1}$	\(\sigma \)	-Ω (۴)
	- my + c'+ c' + 2 =	· -> _my	+(+ +2-1/-	
	. ۲۷	/ (=-	-T2+ df	
	- xx+ 2/ = xv - x	N		
	(v=r) -	i = EN	$\left(\mathcal{R} = \frac{1}{1 \gamma} \right)$	

_ با توجه به مشخصهٔ v−i داده شده برای یک قطبی مقاومتی N ، مقدار (i(t) در مدار زیر کدام است؟

- - v= 1+ +
 - Vs= F-1 i= f-vs= Y-1/25int

1 + Cost

مدار الکتریکی آنلاین $\frac{v_{x}^{r}}{R} = \frac{v_{x}^{r}}{R}$ علی غفارپور

در مدار شکل زیر، مشخصهی مقاومت غیرخطی i عرب است. مقاومت بار R چند اهم باشد تا توان

$$= v + YRv'$$

$$v_x = \frac{1}{2} - v$$

$$\mathcal{N}_{\kappa} = \overline{\chi}$$

$$P = \mathcal{V}_{x} \times i = \left(\frac{1}{2} - \mathcal{V}\right) \left(\frac{1}{2} \mathcal{V}^{r}\right) = \frac{\mathcal{V}^{r}}{r} - \frac{1}{2} \mathcal{V}^{r}$$

$$v_{n} = \frac{1}{\lambda} - v = \frac{1}{1} - \frac{1}{1} = \frac{2-r}{72} = \frac{1}{72}$$

$$\frac{1}{1-1} \times v^{\frac{r}{2}} = r \left(\frac{1}{1r}\right)^{\frac{r}{2}} = \frac{1}{\sqrt{r}}$$

مدار الكتريكي آنلاين

در مدار شکل زیر، دیود D ایده آل است. محدودهی lpha برای این که از دیود جریانی عبور نکند، کدام است؟

$$v_1 = \frac{\Delta}{V_+ \propto} \Longrightarrow v = \frac{1+\alpha}{V_+ \propto} \times \Delta < 0$$

