Symbolic Methods for Solving Systems of Linear Ordinary Differential Equations (II)

Moulay Barkatou

University of Limoges; CNRS; XLIM; UMR 6172

Tutorial at ISSAC'10, Munich, Germany, 25 July 2010

Part 2 : Systems of Second Kind - Fundamental Algorithms

Outline

1. How to recognize a regular singularity? Moser Algorithm

- 2. Splitting Lemma
- 3. Katz Invariant
- 4. Formal Reduction Algorithm
- 5. Formal Solutions

Systems of Second Kind

A matrix linear differential equation with Poincaré rank p > 0:

$$[A] Y' = AY,$$

$$A(x) = \frac{1}{x^{p+1}} \sum_{i=0}^{\infty} A_i x^i, \quad A_i \in M_n(\mathbb{C}), \quad A_0 \neq 0.$$

- System [A] has a regular singularity at x = 0 if it is equivalent to a system of the first kind (for which p = 0) (see Part 1).
- ▶ Problem: Give an algorithm to decide for any system of second kind whether it has regular singularity.

Systems of Second Kind with Regular Singularity

How to recognize a regular singular system?

Problem 1: Given a system [A] of second kind, i.e. with Poincaré rank p(A) > 0, to decide whether it is regular singular or not.

In other words, how to decide if the Poincaré rank of the given system can be reduced to 0 or not?

Problem 2: Given a system [A] with Poincaré rank p(A) > 0, to decide whether there exists $T \in GL(n, K)$ such that p(T[A]) < p(A).

There is an algorithm due to Moser (1960) which transforms a given system [A] to an equivalent one with minimal Poincaré rank.

Other methods for reducing Poincaré rank (to its minimal value): Levelt (1992), Wagenfurer (1989), ..., Corel (2003).

Moser Reduced Systems

$$A(x)=\frac{1}{x^{p+1}}\sum_{i=0}^{\infty}A_ix^i, \ A_i\in M_n(\mathbb{C}), \ A_0\neq 0, \ p\in\mathbb{Z}.$$

Moser rank: $m(A) = p + \frac{rank(A_0)}{n}$ if p > 0, otherwise m(A) = 1.

Moser invariant: $\mu(A) = \min \{ m(T[A]) \mid T \in GL(n, \mathbb{C}((x))) \}$

Definition. [A] is said to be Moser-reducible if $m(A) > \mu(A)$.

- [A] is Moser-reducible $\iff \exists T \in GL(n, \mathbb{C}((x)))$ such that m(T[A]) < m(A).
- x = 0 is regular singular for $[A] \iff \mu(A) = 1$.

A Criterion for Moser-reducibility

Theorem. [Moser 1960]

1. If p > 0 then A is Moser-reducible iff the polynomial

$$\Theta_A(\lambda) := x^{rank(A_0)} \det \left(\lambda I - A_0/x - A_1\right)_{|_{x=0}} \equiv 0.$$

2. If A is Moser reducible then the reduction can be carried out with a transformation of the form

$$T = (P_0 + xP_1)diag(1, \dots, 1, x, \dots, x), P_i \in \mathbb{C}^{n \times n}, det P_0 \neq 0.$$

- ▶ Applying Moser's Theorem several times, if necessary, $\mu(A)$ can be determined.
- ► Further, a matrix polynomial $T \in GL(n, K)$ such that $m(T[A]) = \mu(A)$ can be computed in this way

Remarks

- ▶ Moser's initial intention: classification of singularity
- ▶ Barkatou (1997): also useful for computing formal solutions in the irregular singular case.
- Moser's Theorem can be applied to a system [A] for diminishing the number p(A), when it is possible.
- ▶ A necessary condition that there exist a gauge transformation $T \in GL(n, \mathbb{C}((x)))$ such that $T[A] = \frac{1}{x^{p'+1}}(B_0 + B_1x + \cdots)$ with $p' , is that <math>A_0$ is nilpotent.

Review: Moser Reduction Algorithms

- ► There are various algorithms to compute *T* such that *T*[*A*] is Moser-reduced.
- ▶ Moser's paper: no constructive algorithm given
- ▶ Dietrich (1978), Hilali/Wazner (1987): first efficient algorithms,
- ▶ Barkatou (1995): version for rational function coefficients, implemented in ISOLDE
- ▶ Barkatou-Pflügel (2007): New reduction algorithm + complexity analysis.

Description of Moser Algorithm

▶ By a constant gauge transformation we can put A_0 in the form:

$$A_0 = \left(egin{array}{cc} A_0^{11} & 0 \ A_0^{21} & 0 \end{array}
ight), \;\; A_0^{11} \in \mathbb{C}^{r imes r} \;\; r = rank(A_0).$$

Let A_1 be partitioned so that A_1^{11} is a square matrix of order r:

$$A_1 = \left(\begin{array}{cc} A_1^{11} & A_1^{12} \\ A_1^{21} & A_1^{22} \end{array}\right),$$

Consider

$$G_{\lambda}(A) = \begin{pmatrix} A_0^{11} & A_1^{12} \\ A_0^{21} & A_1^{22} + \lambda I_{n-r} \end{pmatrix}.$$

- ▶ Then det $G_{\lambda}(A)$ = $\Theta_{A}(\lambda)$.
- A is Moser-reducible \iff det $G_{\lambda}(A) \equiv 0$.

Case 1:
$$rank(A_0^{11} \ A_1^{12}) < r$$

A is Moser-reducible $\iff \begin{vmatrix} A_0^{11} & A_1^{12} \\ A_0^{21} & A_1^{22} + \lambda I_{n-r} \end{vmatrix} = 0.$

Proposition 1 If m(A) > 1 and $rank(A_0^{11} A_1^{12}) < r$, then A is reducible and the reduction can be carried out with the gauge transformation

$$T = diag(xI_r, I_{n-r}).$$

Proof: Let
$$B = T[A] = T^{-1}AT - T^{-1}\frac{dT}{dx}$$
.
$$B = x^{-p-1}[B_0 + xB_1 + \cdots] + x^{-1}diag(I_r, 0)$$

where

$$B_0 = \left(\begin{array}{cc} A_0^{11} & A_1^{12} \\ 0 & 0 \end{array}\right),$$

Since p > 0, then $m(B) = p + rank(B_0)/n < m(A) = p + r/n$.

Example

$$A = x^{-2} \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix} + x^{-1} \begin{pmatrix} 4 & 0 \\ 0 & -3 \end{pmatrix} + \begin{pmatrix} 0 & -4 \\ 0 & 0 \end{pmatrix}.$$

Here p = 1, $r = 1 \Rightarrow m(A) = 1 + 1/2 = 3/2 > 1$.

$$\det G_{\lambda}(A) = \begin{vmatrix} 0 & 0 \\ 2 & -3 + \lambda \end{vmatrix} = 0 \Rightarrow A \text{ is Moser-reducible.}$$

Let

$$T = \left(\begin{array}{cc} x & 0 \\ 0 & 1 \end{array}\right)$$

$$B := T[A] = T^{-1}AT - T^{-1}T' = \frac{1}{x} \begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix}.$$

The system Z' = BZ has a singularity of first kind at x = 0.

Hence Y' = AY has a regular singularity at x = 0.

To solve Y' = AY, it suffices to solve Z' = BZ whose solution can be obtained immediately since $B = x^{-1}B_0$ where B_0 is the constant matrix:

$$B_0 = \left(\begin{array}{cc} 3 & -4 \\ 2 & -3 \end{array}\right).$$

The matrix B_0 is diagonalizable:

$$B_0=P^{-1}JP$$
, où $P=\left(egin{array}{cc} -1 & 2 \ -1 & 1 \end{array}
ight)$ et $J=\left(egin{array}{cc} -1 & 0 \ 0 & 1 \end{array}
ight)$.

 $\Rightarrow Px^J$ is a fundamental solution matrix for Z' = BZ.

It follows that

$$W = TPx^{J} = \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x^{-1} & 0 \\ 0 & x \end{pmatrix} = \begin{pmatrix} -1 & 2x^{2} \\ -x^{-1} & x \end{pmatrix}$$

is a fundamental solution matrix of Y' = AY.

Case 2:
$$rank(A_0^{11} A_1^{12}) = r$$

Proposition 2 If A is reducible and $rank(A_0^{11} \ A_1^{12}) = r$, then there exists a constant matrix Q such that the matrix $G_{\lambda}(Q[A])$ has the form has the following particular form:

$$G_{\lambda}(A) = \begin{pmatrix} A_0^{11} & U_1 & U_2 \\ V_1 & W_1 + \lambda I_{n-r-h} & W_2 \\ 0 & 0 & W_3 + \lambda I_h \end{pmatrix}, \tag{1}$$

where $1 \le h \le n-r$, W1, W3 are square matrices of order (n-r-h) and h respectively, W_3 is upper triangular with zero diagonal with the condition

$$rank(A_0^{11} \ U_1) < r$$
 (2)

Proposition 3 If m(A) > 1 and $G_{\lambda}(A)$ has the form (1) with the condition (2), then A is reducible and the reduction can be carried out with the transformation

$$T = diag(xI_r, I_{n-r-h}, xI_h)$$

Proof: Put
$$B = T[A] = T^{-1}AT - T^{-1}\frac{dT}{dx}$$
. One has
$$B = x^{-p-1}[B_0 + xB_1 + \cdots] + x^{-1}\text{diag}(I_r, 0, I_h)$$

where

$$B_0 = \left(egin{array}{ccc} A_0^{11} & U_1 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{array}
ight),$$

and then $rank(B_0) = rank(A_0^{11} \ U_1) < r = rank(A_0)$. On the other hand since p > 0, then $m(B) = p + rank(B_0)/n$. Hence m(B) < m(A).

Example

Consider the system [A] $\frac{dY}{dx} = A(x)Y$

$$A(x) = \begin{bmatrix} -2x^{-1} & 0 & x^{-2} & 0 \\ x^2 & -\frac{-1+x^2}{x} & x^2 & -x^3 \\ 0 & x^{-2} & x & 0 \\ x^2 & x^{-1} & 0 & -\frac{x^2+1}{x} \end{bmatrix}$$

Here

$$p=1$$
, $r=rank(A_0)=2$.

Hence

$$m(A) = 1 + 2/4 = 3/2 > 1.$$

One can check that

$$\Theta_A(\lambda) := x^{rank(A_0)} \det \left(\lambda I - A_0 / x - A_1 \right)_{|_{x=0}} \equiv 0$$

Hence A is Moser reducible.

M. Barkatou (U. Limoges; CNRS)

The equivalent matrix B computed by our implementation is

$$B(x) = \begin{bmatrix} -\frac{x^2+1}{x} & x & 1 & -x \\ x^{-1} & \frac{-1+x^2}{x} & 0 & 0 \\ 0 & x^{-1} & -2x^{-1} & 0 \\ x & 0 & x^2 & -\frac{x^2+1}{x} \end{bmatrix}$$

The transformation T is

$$\begin{bmatrix}
0 & 0 & 1 & 0 \\
x^2 & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

Hence [A] is singular regular.

Consider the system $\frac{dY}{dx} = x^{-1}A(x)Y$ where

$$A(x) = \begin{pmatrix} 4 & x^3 & -2x^6 & -x^6 \\ 0 & -1 - x^{-1} & x^{-1} & 0 \\ x^{-7} & 0 & x^{-1} - 2 & x^{-1} \\ x^{-5} + x^{-6} & -x^{-2} & x^2 + x + x^{-2} & -3 \end{pmatrix}$$

Here m(A) = 7 + 1/4 = 29/4.

$$x^{-1}B(x) = \begin{pmatrix} -2 - x^{-1} & 0 & x^{-1} & 0 \\ x^{-2} - x^{-1} & x - 1 & x^3 + x^2 - 2x + x^{-1} & -3 - x \\ 0 & x^{-2} & x^{-1} - 3 & 0 \\ -x^{-1} & x + 1 & x^3 + x^2 + x^{-1} & -x - 4 \end{pmatrix}$$

The transformation T is

$$\left(\begin{array}{cccc}
0 & x^6 & 0 & -x^6 \\
x & 0 & 0 & 0 \\
0 & 0 & x & 0 \\
0 & 0 & 0 & 1
\end{array}\right)$$

One has $\mu(A) = m(B) = 2 + 2/4 = 5/2$.

Systems of Second Kind with Irregular Singularity

Formal Solutions

Consider a system [A] Y' = AY with minimal Poincaré rank p > 0:

$$A(x)=\frac{1}{x^{p+1}}\sum_{i=0}^{\infty}A_ix^i,\quad A_i\in M_n(\mathbb{C}),\ A_0\neq 0.$$

System [A] has a formal fundamental solution matrix of the form

$$\Phi(x^{1/s})x^{\Lambda} \exp\left(Q(x^{-1/s})\right)$$

$$s \in \mathbb{N}^*$$
, $\Phi \in \mathrm{GL}(n, \mathbb{C}((x^{1/s})))$,
 $Q(x^{-1/s}) = \mathrm{diag}\left(q_1(x^{-1/s}), \dots, q_n(x^{-1/s})\right)$

the q_i 's are polynomials in $t = x^{-1/s}$ over \mathbb{C} without constant term Λ is a constant matrix commuting with Q.

▶ The smallest possible s is called the degree of ramification of [A].

How to compute the formal solutions of [A]?

Formal Reduction: an algorithmic procedure that allows construction of formal solutions.

Main idea: Transformation of system into new system with smaller p or n

Important tools: Moser Algorithm, Splitting Lemma, Katz Invariant computation.

- Discussion depending on structure of A_0 . We distinguish two cases:
 - 1. Case 1: A_0 has at least two eigenvalues.
 - 2. Case 2: A_0 has only one eigenvalue.

Case 1- The Splitting Lemma

Splitting Lemma

Theorem: Consider a system [A]

$$A(x) = x^{-p-1} \sum_{i=0}^{\infty} A_i x^i$$
, $A_0 \neq 0$, $p > 0$ and assume that A_0 is

block-diagonal

$$A_0 = \begin{pmatrix} A_0^{11} & 0 \\ 0 & A_0^{22} \end{pmatrix}$$
 with $\operatorname{spec}(A_0^{11}) \cap \operatorname{spec}(A_0^{22}) = \emptyset$.

Then there exists a gauge transformation of the form

$$T(x) = \sum_{i=0}^{\infty} T_j x^j \quad (T_0 = I)$$

such that the matrix B := T[A] is block-diagonal matrix with the same block partition as in A_0

$$B = x^{-p-1} \begin{pmatrix} B^{11}(x) & 0 \\ 0 & B^{22}(x) \end{pmatrix}.$$

M. Barkatou (U. Limoges; CNRS)

Sketch of Proof

- Put $T_0 = I$ and $B_0 = A_0$
- Look for matrices T_i of the special form

$$T_i = \left(egin{array}{cc} 0 & T_i^{12} \ T_i^{21} & 0 \end{array}
ight), \quad B_i = \left(egin{array}{cc} B_i^{11} & 0 \ 0 & B_i^{22} \end{array}
ight).$$

ullet Then for $i \geq 1$ the coefficients T_i and B_i can be obtained by successively solving Sylvester linear equations of the form

$$A_0^{11}X - XA_0^{22} = U_i$$
 or $A_0^{22}Y - YA_0^{11} = V_i$

where U_i and V_i depend only on A_i, B_i, T_i for j = 0, ..., i - 1.

A very simple situation

$$A(x) = x^{p-1} \sum_{i=0}^{\infty} A_i x^i, \quad A_0 \neq 0, \ p > 0.$$

Corolary. If A_0 has all distinct eigenvalues, then there exists $T \in \mathrm{GL}(n, \mathbb{C}[[x]])$ such that T[A] is a diagonal matrix.

If $B_0 := P^{-1}A_0P = \operatorname{diag}(\beta_1, \dots, \beta_n)$ with $\beta_i \neq \beta_j$ for $i \neq j$ for some $P \in \operatorname{GL}(n, \mathbb{C})$, then there exists a formal transformation

$$T(x) = \sum_{j>0} T_j x^j \quad (T_0 = P)$$

such that

$$T[A] = \begin{pmatrix} \frac{\beta_1}{x^{p+1}} + O(\frac{1}{x^p}) & 0 \\ & \ddots & \\ 0 & \frac{\beta_n}{x^{p+1}} + O(\frac{1}{x^p}) \end{pmatrix}$$

M. Barkatou (U. Limoges; CNRS)

Case 2- The Nilpotent Case

Reduction to the Case where A_0 is Nilpotent

Let

$$A(x) = \frac{1}{x^{p+1}} \sum_{i=0}^{\infty} A_i x^i, \quad A_0 \neq 0, \ p > 0.$$

▶ Apply the Splitting Lemma to decouple [A] along the spectral subspaces of A₀:

$$A = A^{(1)} \oplus \cdots \oplus A^{(k)}$$

The leading matrix of each subsystem has only one eigenvalue.

- ▶ If $A_0 = \alpha I \oplus N$, with N nilpotent then apply the substitution $Y = \exp\left(\frac{-\alpha}{\rho x^{\rho}}\right)Z$ which replace A by $A \frac{\alpha}{x^{\rho+1}}I$.

 This makes A_0 nilpotent.
- ▶ If necessary, apply the Moser algorithm to replace the system by an equivalent one with minimal Poincaré rank *p*.

The case A_0 nilpotent and p > 0 minimal

▶ In this case we need algebraic extension of K:

Gauge transformations in $\mathbb{C}((x^{1/m}))$, for suitable integer $m \geq 2$, are applied to get an equivalent system $[\widetilde{A}]$ with leading coefficient \widetilde{A}_0 having distinct eigenvalues.

▶ How to choose *m*?

Compute κ , the *Katz invariant* of [A] (see below) and let m be the smallest positive integer such that $m\kappa$ is an integer.

- ▶ Using Moser Algorithm yields a system with Poincaré rank equal to $m\kappa$ and leading matrix A_0 with at least two eigenvalues.
- ▶ So we can again split the problem into problems of lower size, and so on.

Moser Reduction Irregular Singularity Splitting Lemma Katz Invariant Exponential Part Super-Reduction

Katz Invariant

Katz Invariant

Definition: The Katz Invariant of [A] is the rational number

$$\kappa(A) = \max_{1 \le j \le n} \deg_{x} (q_{j})$$

where the q_j are the entries of the exponential part Q of [A].

Fact: $\kappa(A) \leq \rho(A)$ with equality iff A_0 is non-nilpotent.

Theorem[Bark05] Suppose A Moser reduced and A_0 nilpotent. Then

$$p(A)-1+\frac{r}{n-d}\leq \kappa(A)\leq p(A)-\frac{1}{n-d}$$

where $r = rank(A_0)$ and $d = deg \Theta_A(\lambda)$.

Example 1

$$A(x) = \frac{1}{x^4} \begin{vmatrix} 0 & 0 & x & 0 \\ 1 & -x^2 & x^2 & -x^2 \\ 0 & 1 & x^2 & 0 \\ x^2 & x^2 & 0 & -x^2 \end{vmatrix}$$
 has Poincaré rank $p(A) = 3$.

$$A_0 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 is nilpotent and has rank $r = 2$.

 $\Theta_A(\lambda) = \lambda$ is not zero and has degree d = 1.

The above theorem tells us:

$$2 + 2/3 = p(A) - 1 + \frac{r}{n - d} \le \kappa(A) \le p(A) - \frac{1}{n - d} = 3 - 1/3.$$

Hence $\kappa(A) = 8/3$.

M. Barkatou (U. Limoges; CNRS)

How to obtain Katz Invariant?

If [A] is Moser-reduced and its leading coefficient A_0 is nilpotent then $\kappa(A)$ is not an integer.

Theorem[Bark05] Let A be Moser-reduced, put $r = rank(A_0)$, $d = deg(\Theta_A(\lambda))$ and write

$$\det (\lambda I - A(x)) = \lambda^n + a_{n-1}(x)\lambda^{n-1} + \cdots + a_0(x).$$

Suppose

(C)
$$p(A) \ge (1 - \frac{r}{n-d})(r+1).$$

Then

$$\kappa(A) = \max\left(0, \max_{0 \le j < n} \left(\frac{-n + j - \operatorname{val}(a_j)}{n - j}\right)\right)$$

Back to Example 1

[A] is Moser-reduced, p = 3, r = 2, d = 1.

Condition (C) in the above theorem is satisfied.

One can compute $\kappa(A)$ using the above formula:

$$\det(\lambda I - A(x)) = \lambda^4 + \frac{\lambda^3}{x^2} - \frac{\lambda^2}{x^6} + \frac{\left(-2x^7 - x^2 - x^5\right)\lambda}{x^{13}} + \frac{x^2 - 1}{x^{13}}.$$

One has

$$\operatorname{val}(a_3) = -2, \ \operatorname{val}(a_2) = -6, \ \operatorname{val}(a_1) = -11, \ \operatorname{val}(a_0) = -13.$$

Hence

$$\kappa(A) = \max \left(0, \max_{0 \le j < n} \left(\frac{-n + j - \mathrm{val}(a_j)}{n - j}\right)\right) = \max \left\{0, 1, 2, \frac{8}{3}, \frac{9}{4}\right\} = \frac{8}{3}.$$

Remarks

• It is always possible to come down to the case where Condition (C) is fulfilled.

Idea: If $p(A) < (1 - \frac{r}{n-d})(r+1)$, use a ramification $x = t^s$ where

$$s \ge \frac{n-r-d}{p-2+r/(n-d)}$$

• The following conjecture is likely to be true.

Conjecture: No need of Condition (C) in the above theorem.

What do we gain by computing Katz invariant?

Suppose [A] be Moser-reduced and A_0 nilpotent and let $\kappa(A) = \frac{\ell}{m}$ with $(\ell, m) \in \mathbb{N} \times \mathbb{N}$ with $gcd(\ell, m) = 1$.

Put $t = x^{1/m}$ and let $[\widetilde{A}]$ denote the resulting system:

$$\frac{dY}{dt} = \widetilde{A}Y, \quad \widetilde{A}(t) = mt^{m-1}A(t^m).$$

Then there is a $T \in GL(n, \mathbb{C}((t)))$ such that

- $ightharpoonup \widetilde{B} := T[\widetilde{A}]$ has Poincaré rank equal to ℓ
- ▶ its leading matrix B_0 has at least m distinct eigenvalues.

Remark The transformation T is in fact polynomial in t and can be computed using Moser Algorithm.

Back to our example

We have

$$\kappa(A)=\frac{8}{3}.$$

The change of variable

$$x = t^3$$

yields

$$\frac{dY}{dt} = \widetilde{A}(t)Y$$

where

$$\widetilde{A}(t) = rac{3}{t^{10}} egin{bmatrix} 0 & 0 & t^3 & 0 \ 1 & -t^6 & t^6 & -t^6 \ 0 & 1 & t^6 & 0 \ t^6 & t^6 & 0 & -t^6 \ \end{pmatrix}.$$

One can check that this system is not Moser-reduced.

Moser Algorithm produces the gauge transformation

$$Y = SZ$$

where

$$S = \operatorname{diag}(t^2, t, 1, 1),$$

and the equivalent system

$$\frac{dZ}{dt} = \widetilde{B}(t)Z, \quad \widetilde{B}(t) = \frac{1}{t^9} \begin{bmatrix} -2t^8 & 0 & 3 & 0 \\ 3 & -3t^5 - t^8 & 3t^4 & -3t^4 \\ 0 & 3 & 3t^5 & 0 \\ 3t^7 & 3t^6 & 0 & -3t^5 \end{bmatrix}$$

Its Poincaré rank is equal to 8 as expected.

The leading matrix is

$$\widetilde{B}_0 = \begin{bmatrix} 0 & 0 & 3 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

is non nilpotent and has 4 distinct eigenvalues

$$0, 3, 3j, 3j^2$$

with $j^3 = 1$.

The system can be then decoupled into 4 scalar equations.

One formal fundamental solution can be written as

$$\widehat{Y}(x) = \widehat{F}(x) \begin{bmatrix} e^{1/x} & 0 \\ 0 & x^{J} U e^{Q(1/x)} \end{bmatrix}$$

where $\widehat{F}(x)$ is a meromorphic formal series in x,

$$J = -\frac{1}{3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 2/3 \end{bmatrix}, \qquad U = \begin{bmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & j^2 & j^4 \end{bmatrix}$$

and

$$Q(1/x) = egin{bmatrix} q(1/x) & 0 & & \ 0 & q(1/(jx)) & 0 \ 0 & 0 & q(1/(j^2x)) \end{bmatrix}$$

with

$$q(\frac{1}{x}) = \frac{-3}{8x^{8/3}} - \frac{1}{4x^{4/3}}.$$

Moser Reduction Irregular Singularity Splitting Lemma Katz Invariant Exponential Part Super-Reduction

Summary: Formal Reduction Algorithm

Algorithm

- 1. p := p(A); n := dim(A); $A_0 := lead-mat(A)$;
- 2. if A_0 is nilpotent then make A Moser-reduced (p minimal)
- 3. if n = 1 or p = 0 then STOP
- 4. if p > 0 and n > 1 and A_0 nilpotent then
 - 4.1 compute $\kappa(A) = \frac{\ell}{m}$, $gcd(\ell, m) = 1$
 - 4.2 replace x by x^m
 - 4.3 Make A Moser-reduced
- 5. if A_0 is not nilpotent then for each nonzero eigenvalue α of A_0 do
 - 5.1 p:=p(A); $A := A \frac{\alpha}{x^{p+1}}I$
 - 5.2 Apply the Splitting Lemma to get $B := diag(B^{(1)}, B^{(2)})$ with $B_0^{(2)}$ nilpotent.
 - 5.3 $A := B^{(2)}$ and go to Step 1
- \triangleright At each step, one either reduces the Poincaré rank p or the order n of the system.
- \Rightarrow after a finite number of steps one either has p = 0 or n = 1.

An Important Question

Given a matrix

$$A(x) = x^{-p-1}(A_0 + A_1x + \cdots), \qquad p > 0$$

- Question: How many terms in $\sum_{i=0}^{\infty} A_i x^{i-p-1}$ are necessary for computing the exponential part $Q(x^{-1/s})$ of the system[A]?
- The answer can be found in Lutz-Schäfke (1985) or Babbit-Varadarajan (1983):

The exponential part $Q(x^{-1/s})$ is determined by the coefficients

$$A_0, A_1, \cdots, A_{np-1}$$

Example

$$A = \begin{bmatrix} -\frac{5}{x^2} & \frac{5}{x^2} & -x^{-3} & \frac{4}{x^2} \\ 0 & \frac{1-4}{x^3} & -x^{-2} & -\frac{2}{x^2} \\ \frac{2x+1}{x^3} & \frac{1-5}{x^3} & \frac{2-3x}{x^3} & \frac{1-4x}{x^3} \\ 0 & \frac{4}{x^2} & x^{-2} & \frac{1+x}{x^3} \end{bmatrix}$$

 $> Rational_Exponential_Part(A, x);$

$$\left[x = \alpha t^2, \frac{-\frac{9}{8} + \frac{7\alpha}{4}}{t} + \frac{-1/4 - \frac{11\alpha}{4}}{t^2} + \frac{2\alpha}{3t^3} + \frac{1}{2t^4}\right]$$

where

$$\alpha = RootOf(_Z^2 + 1)$$

Super-irreducible Forms

Super-irreducible Forms

- ▶ Consider a system [A] Y' = AY with p > 0.
- ightharpoonup For $k=1,\ldots,p$, put

$$m_k(A) = p + \frac{n_0}{n} + \frac{n_1}{n^2} + \cdots + \frac{n_{k-1}}{n^k}$$

where $n_i = \#$ of rows of A with valuation -p + i.

Define

$$\mu_k(A) = \min\{m_k(T[A]) \mid T \in GL(n,K)\}.$$

- ► The matrix A is said to be k-irreducible if $m_k(A) = \mu_k(A)$. Otherwise A is called k-reducible.
- ► The matrix A is said to be super—irreducible, if it is k-irreducible for every k, or equivalently if

$$m_{\mathcal{D}}(A) = \mu_{\mathcal{D}}(A).$$

A Criterion for *k*—reducibility

One defines

$$s_k := kn_0 + (k-1)n_1 + \cdots + n_{k-1}$$

and

$$\Theta_k(\lambda) := x^{s_k} \det(x^{p-k}A - \lambda I_n)$$

- ▶ One verifies that $\Theta_k(\lambda)$ belongs to $\mathbb{C}[[x]][\lambda]$.
- ▶ One can define then the polynomial $\theta_k(\lambda) \in \mathbb{C}[\lambda]$ as

$$\theta_k(\lambda) = \left(x^{s_k} \det(x^{p-k}A - \lambda I_n)\right)_{|_{x=0}}.$$

Theorem The matrix A is k-irreducible, if and only if the polynomials $\theta_i(\lambda)$, $(j=1,\ldots,k)$, do not vanish identically in λ .

- ▶ Introduced by Hilali and Wazner (1987) as a generalization of Moser Reduction.
- ▶ Useful for computing the integer slopes of the Newton polygon and the $\rho-$ invariants of Gérard-Levelt.
- ▶ First algorithm by HW 1987. Implemented in Maple by Bar-Pfl 1996.
- ▶ Barkatou (1997): useful for computing rational solutions of systems with coefficients in $\mathbb{C}(x)$.
- ▶ New algorithm by Barkatou-Pflügel 2007: the computation of a super-irreducible form can be reduced to the computation of several Moser-irreducible systems of smaller size.

References

See the abstract of this tutorial in the Proceedings of ISSAC'10.