Relations de comparaisons sur les fonctions

Aperçu

- 1. Comparaison des fonctions
- 2. Comparaison des applications usuelles
- 3. Calcul avec les relations de comparaisons
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction ln

X désigne une partie de $\mathbb R$ et a un point adhérent à X (dans $\overline{\mathbb R}$), le cas où $a=-\infty$ ou $a=+\infty$ n'étant pas exclu, bien au contraire.

- 1. Comparaison des fonctions
- 1.1 La relation \mathcal{O}
- 1.2 La relation o
- 1.3 La relation \sim
- 1.4 Caractérisation par le quotient
- 2. Comparaison des applications usuelles
- 3. Calcul avec les relations de comparaisons
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction In

- 1. Comparaison des fonctions
- 1.1 La relation \mathcal{O}
- 1.2 La relation o
- 1.3 La relation ~
- 1.4 Caractérisation par le quotient
- 2. Comparaison des applications usuelles
- 3. Calcul avec les relations de comparaisons
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction In

D 1 Soient $f, g: X \to \mathbb{R}$ et $a \in \overline{\mathbb{R}}$. La relation

$$f(x) = \mathcal{O}(g(x))$$
 lorsque $x \to a$

signifie

lorsque a est un point adhérent à X:

$$\exists \delta > 0, \exists k \in \mathbb{R}_+, \forall x \in X, |x-a| \leq \delta \implies |f(x)| \leq k|g(x)|.$$

lorsque X n'est pas majorée et $a = +\infty$

$$\exists \alpha \in \mathbb{R}, \exists k \in \mathbb{R}_+, \forall x \in X, x \geq \alpha \implies |f(x)| \leq k|g(x)|.$$

lorsque X n'est pas minorée et $a = -\infty$

$$\exists \alpha \in \mathbb{R}, \exists k \in \mathbb{R}_+, \forall x \in X, x \leq \alpha \implies |f(x)| \leq k|g(x)|.$$

On dit que f est dominée par g, ou que g domine f, au voisinage de a.

On lit « f est grand $\mathcal O$ de g » au lieu de « f égale grand $\mathcal O$ de g ».

P 2 Caractérisation par un produit de fonctions

Étant données deux fonctions $f, g: X \to \mathbb{R}$, la relation

$$f(x) = \mathcal{O}(g(x))$$
 lorsque $x \to a$

signifie qu'il existe un nombre $k \ge 0$ et un voisinage V de a tel que

$$\forall x \in V \cap X, |f(x)| \le k|g(x)|.$$

On dit que f est dominée par g, ou que g domine f, au voisinage de a.

$$10^{100}x^2 + 10^{100000}x = \mathcal{O}(x^2)$$
 quand $x \to +\infty$

car pour $x \ge 1$ (d'où $x \le x^2$), le premier membre est inférieur à kx^2 avec $k = 10^{100} + 10^{100000}$; ce nombre peut paraître «très grand» aux chétifs membres de l'espèce humaine, mais il est indépendant de x et l'on en demande pas plus.

- E 4
- 1. $\sin^2 x = \mathcal{O}(\sin x)$ quand $x \to +\infty$.
- 2. $x \cos \frac{1}{x^5} = \mathcal{O}(x)$, quand $x \to 0$.
- **E** 5 $f = \mathcal{O}_a(1)$ signifie que l'application f est bornée au voisinage de a

1. Comparaison des fonctions

- 1.1 La relation \mathcal{O}
- 1.2 La relation o
- 1.3 La relation ~
- 1.4 Caractérisation par le quotient
- 2. Comparaison des applications usuelles
- 3. Calcul avec les relations de comparaisons
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction In

D 6 Soient $f, g: X \to \mathbb{R}$ et $a \in \overline{\mathbb{R}}$. La relation

$$f(x) = o(g(x))$$
 lorsque $x \to a$

signifie

lorsque a est un point adhérent à X:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in X, |x - a| \leq \delta \implies |f(x)| \leq \varepsilon |g(x)|.$$

lorsque X n'est pas majorée et $a = +\infty$

$$\forall \varepsilon > 0, \exists \alpha \in \mathbb{R}, \forall x \in X, x \geq \alpha \implies |f(x)| \leq \varepsilon |g(x)|.$$

lorsque X n'est pas minorée et $a = -\infty$

$$\forall \varepsilon > 0, \exists \alpha \in \mathbb{R}, \forall x \in X, x \leq \alpha \implies |f(x)| \leq \varepsilon |g(x)|.$$

On dit que f est **négligeable** devant g, ou que g est **prépondérante** sur f, au voisinage de a.

P 7 Étant données deux fonctions
$$f,g:X\to\mathbb{R}$$
, la relation

$$f(x) = o(g(x))$$
 lorsque $x \to a$

signifie qu'il existe un voisinage V de a et une application $\omega: X \to \mathbb{R}$ tels que

$$\forall x \in X \cap V, f(x) = g(x)\omega(x)$$

et

$$\lim_{x \to a} \omega(x) = 0.$$

On écrit également,

$$f(x) = o(g(x))$$
 $f = o_a(g)$

$$f = o_a(g)$$

et même

$$f = o(g)$$
.

- 1. $x^3 = o(x^4)$ au voisinage de $+\infty$.
- 2. $x^4 = o(x^3)$ au voisinage de 0.
- 3. $x^3 \cos \frac{1}{x^5} = o(x^2)$ au voisinage de 0.
- 4. $f = o_a(1)$ signifie que $\lim f = 0$. Plus généralement, on a $o_a(g) = go_a(1)$.
- 5. Si f est bornée et $\lim_{x \to \infty} g(x) = \pm \infty$, alors f(x) = o(g(x)) quand $x \to a$.

1. Comparaison des fonctions

- 1.1 La relation \mathcal{O}
- 1.2 La relation o
- 1.3 La relation \sim
- 1.4 Caractérisation par le quotient
- 2. Comparaison des applications usuelles
- 3. Calcul avec les relations de comparaisons
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction In

Soient $f, g: X \to \mathbb{R}$ et $a \in \overline{\mathbb{R}}$. La relation

$$f(x) \sim g(x)$$
 lorsque $x \to a$

signifie

lorsque a est un point adhérent à X:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in X, |x-a| \leq \delta \implies |f(x) - g(x)| \leq \varepsilon |g(x)|.$$

lorsque X n'est pas majorée et $a = +\infty$

$$\forall \varepsilon > 0, \exists \alpha \in \mathbb{R}, \forall x \in X, x \ge \alpha \implies |f(x) - g(x)| \le \varepsilon |g(x)|.$$

lorsque X n'est pas minorée et $a = -\infty$

$$\forall \varepsilon > 0, \exists \alpha \in \mathbb{R}, \forall x \in X, x \le \alpha \implies |f(x) - g(x)| \le \varepsilon |g(x)|.$$

On dit que f et g sont équivalentes au voisinage de a.

On écrit également $f \sim g$ ou encore $f(x) \sim g(x)$.

P 10 Étant données deux fonctions $f, g: X \to \mathbb{R}$, la relation

$$f(x) \sim g(x)$$
 lorsque $x \to a$

signifie qu'il existe un voisinage V de a et une application $\omega: X \to \mathbb{R}$ tels que

$$\forall x \in X \cap V, f(x) = g(x)(1 + \omega(x))$$
 et $\lim_{x \to a} \omega(x) = 0.$

T 11 Deux fonctions f et g sont équivalentes au voisinage du point a si, et seulement si

$$f(x) - g(x) = o(g(x))$$
 lorsque $x \to a$.

1. Comparaison des fonctions

- 1.1 La relation \mathcal{O}
- 1.2 La relation o
- 1.3 La relation ~
- 1.4 Caractérisation par le quotient
- 2. Comparaison des applications usuelles
- 3. Calcul avec les relations de comparaisons
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction In

- 1. On a f(x) = O(g(x)) si, et seulement si la fonction $x \mapsto \frac{f(x)}{g(x)}$ est bornée au voisinage du point a.
- 2. On a f(x) = o(g(x)) si, et seulement si

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0.$$

3. On a $f(x) \underset{x \to a}{\sim} g(x)$) si, et seulement si

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1.$$

- 1. Comparaison des fonctions
- 2. Comparaison des applications usuelles
- 2.1 Croissance comparée
- 2.2 Quelques équivalents classiques
- 3. Calcul avec les relations de comparaisons
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction In

- 1. Comparaison des fonctions
- 2. Comparaison des applications usuelles
- 2.1 Croissance comparée
- 2.2 Quelques équivalents classiques
- Calcul avec les relations de comparaisons
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction In

P 13 Comparaison des applications usuelles

Soient $(\alpha, \beta) \in \mathbb{R}^2$ et a > 0 fixés.

Pour x au voisinage de $+\infty$,

$$\alpha < \beta \iff x^{\alpha} = o\left(x^{\beta}\right),$$

 $a > 1 \implies x^{\alpha} = o\left(a^{x}\right),$ en particulier $x^{\alpha} = o\left(e^{x}\right).$
 $0 < a < 1 \implies a^{x} = o\left(x^{\alpha}\right),$ en particulier $e^{-x} = o\left(1/x^{\alpha}\right).$
 $\alpha > 0 \implies \ln x = o\left(x^{\alpha}\right).$

Pour x au voisinage de 0+,

$$\begin{split} \alpha > \beta &\iff x^\alpha = o\left(x^\beta\right), \\ \beta > 0 &\iff |\ln(x)|^\alpha = o\left(\frac{1}{x^\beta}\right). \end{split}$$

- 1. Comparaison des fonctions
- 2. Comparaison des applications usuelles
- 2.1 Croissance comparée
- 2.2 Quelques équivalents classiques
- 3. Calcul avec les relations de comparaisons
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction In

P 14 Pour $\alpha \in \mathbb{R}^*$ fixé et pour x au voisinage de 0, on a

$$(1+x)^{\alpha} - 1 \sim \alpha x \qquad e^{x} - 1 \sim x \qquad \ln(1+x) \sim x$$

$$\sin(x) \sim x \qquad \cos(x) - 1 \sim -\frac{x^{2}}{2} \qquad \tan(x) \sim x$$

$$\sinh(x) \sim x \qquad \cosh(x) - 1 \sim \frac{x^{2}}{2} \qquad \tanh(x) \sim x$$

$$\operatorname{Arcsin}(x) \sim x \qquad \operatorname{Arctan}(x) \sim x$$

Démonstration. On remarque $\cos x - 1 = -2\sin^2\frac{x}{2}$ et $\operatorname{ch} x - 1 = 2\operatorname{sh}^2\frac{x}{2}$.

On peut réécrire ces résultats avec la notation de Landau (page ??).

$$(1+x)^{\alpha} = 1 + \alpha x + o(x),$$

$$e^x = 1 + x + o(x),$$

R

$$\sin(x) = x + o(x),$$

$$cos(x) = 1 - \frac{x^2}{2} + o(x^2),$$

$$tan(x) = x + o(x),$$

$$ch(x) = 1 + \frac{x^2}{2} + o(x^2),$$

$$\tanh(x) = x + o(x),$$

$$Arcsin(x) = x + o(x),$$

P 15 Pour x au voisinage de $+\infty$, on a

$$\operatorname{ch} x \sim \operatorname{sh} x \sim \frac{e^x}{2}$$
.

Pour x au voisinage de $-\infty$, on a

$$\operatorname{ch} x \sim \frac{e^{-x}}{2} \ \text{et } \operatorname{sh} x \sim -\frac{e^{-x}}{2}.$$

- 1. Comparaison des fonctions
- 2. Comparaison des applications usuelles
- 3. Calcul avec les relations de comparaisons
- 3.1 Propriétés des relations de comparaisons
- 3.2 Notation de Landau
- 3.3 Propriétés conservées par équivalence
- 3.4 Opérations sur les équivalents
- 3.5 Changement de variable
- 3.6 Obtention d'un équivalent par encadrement
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction In

- 1. Comparaison des fonctions
- 2. Comparaison des applications usuelles
- 3. Calcul avec les relations de comparaisons
- 3.1 Propriétés des relations de comparaisons
- 3.2 Notation de Landau
- 3.3 Propriétés conservées par équivalence
- 3.4 Opérations sur les équivalents
- 3.5 Changement de variable
- 3.6 Obtention d'un équivalent par encadrement
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction In

T 16 Soient $f, f_1, f_2, g, g_1, g_2, h$ des applications définies sur X.

- 1. La relation \mathcal{O} est réflexive : $f = \mathcal{O}(f)$.
- 2. La relation \mathcal{O} est transitive : $f = \mathcal{O}(g)$ et $g = \mathcal{O}(h) \implies f = \mathcal{O}(h)$.
- 3. Pour tout scalaire $\lambda \neq 0$, $f = \mathcal{O}(\lambda g) \iff f = \mathcal{O}(g)$.
- 4. $f_1 = \mathcal{O}(g)$ et $f_2 = \mathcal{O}(g) \implies f_1 + f_2 = \mathcal{O}(g)$.
- 5. $f_1 = \mathcal{O}(g_1)$ et $f_2 = \mathcal{O}(g_2) \implies f_1 f_2 = \mathcal{O}(g_1 g_2)$.
- 6. Pour tout scalaire λ , $f = \mathcal{O}(g) \implies \lambda f = \mathcal{O}(g)$.

Les \mathcal{O} étant tous au voisinage du point a.

T 17 Soient $f, f_1, f_2, g, g_1, g_2, h$ des applications définies sur X.

- 1. Pour tout scalaire $\lambda \neq 0$, $f = o(\lambda g) \iff f = o(g)$.
- 2. $f = o(g) \implies f = \mathcal{O}(g)$ (la réciproque est fausse).
- 3. $f = \mathcal{O}(g)$ et $g = o(h) \implies f = o(h)$.
- 4. f = o(g) et $g = \mathcal{O}(h) \implies f = o(h)$.
- 5. f = o(g) et $g = o(h) \implies f = o(h)$.
- 6. $f_1 = o(g)$ et $f_2 = o(g) \implies f_1 + f_2 = o(g)$.
- 7. $f_1 = o(g_1)$ et $f_2 = \mathcal{O}(g_2) \implies f_1 f_2 = o(g_1 g_2)$. En particulier, $f_1 = o(g_1)$ et $f_2 = o(g_2) \implies f_1 f_2 = o(g_1 g_2)$.
- 8. Pour tout scalaire λ , $f = o(g) \implies \lambda f = o(g)$.

Les o et \mathcal{O} étant tous au voisinage du point a.

E 18 Quand
$$x \to +\infty$$
, $-3x^4 + 2x = o(2x^6)$ car

$$x^4 = o(x^6)$$
 et $x = o(x^6)$.

Ainsi. $2x^6 - 3x^4 + 2x \sim 2x^6$.

E 19 Quand
$$x \to 0$$
, $2x^6 - 3x^4 = o(2x)$ car

$$x^6 = o(x)$$
 et $x^4 = o(x)$.

Ainsi. $2x^6 - 3x^4 + 2x \sim 2x$.

T 20 La relation $\sim est$ réflexive, symétrique et transitive : c'est une relation d'équivalence.

$$f \underset{a}{\sim} f$$
, $f \underset{a}{\sim} g \implies g \underset{a}{\sim} f$, $f \underset{a}{\sim} g$ et $g \underset{a}{\sim} h \implies f \underset{a}{\sim} h$.

- **T 21** Soient f, f_1, f_2, g, g_1, g_2 des applications définies sur X.
 - 1. Si $f_1 \sim f_2$ alors $f_1 = \mathcal{O}(f_2)$
 - 2. Si $f_1 \sim f_2$ et $f_1 = \mathcal{O}(g)$, alors $f_2 = \mathcal{O}(g)$.
 - 3. Si $f_1 \sim f_2$ et $f_1 = o(g)$, alors $f_2 = o(g)$.
 - 4. Si $f = \mathcal{O}(g_1)$ et $g_1 \sim g_2$ alors $f = \mathcal{O}(g_2)$.
 - 5. Si $f = o(g_1)$ et $g_1 \sim g_2$ alors $f = o(g_2)$.

Les o, \mathcal{O} et \sim étant tous au voisinage du point a.

Autrement dit, dans les relations $f = \mathcal{O}(g)$ et f = o(g), on peut toujours remplacer f et g par des fonctions équivalentes.

- 1. Comparaison des fonctions
- 2. Comparaison des applications usuelles
- 3. Calcul avec les relations de comparaisons
- 3.1 Propriétés des relations de comparaisons
- 3.2 Notation de Landau
- 3.3 Propriétés conservées par équivalence
- 3.4 Opérations sur les équivalents
- 3.5 Changement de variable
- 3.6 Obtention d'un équivalent par encadrement
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction In

- **D 22** Soient f, g, φ des applications définies sur X.
 - La notation $f = g + \mathcal{O}(\varphi)$ signifie $f g = \mathcal{O}(\varphi)$.
 - La notation $f = g + o(\varphi)$ signifie $f g = o(\varphi)$.

Avec cette notation, il faut traiter les égalités avec $o(\varphi)$ «comme des congruences», par exemple $0 \equiv -2\pi \pmod{\pi}$ et $0 \equiv 10\pi \pmod{\pi}$, mais on a pas $-2\pi = 10\pi$ mais seulement $-2\pi \equiv 10\pi \pmod{\pi}$.

Lorsque $x \to +\infty$, on a indifféremment

$$x^{8} + \frac{4}{x} + \ln(x) = x^{8} + \ln(x) + o(x), \quad x^{8} + \frac{4}{x} + \ln(x) = x^{8} + \cos(x) + o(x).$$

lci chaque o(x) désigne une application négligeable devant x, mais elles sont distinctes. On n'a pas $\ln(x) = \cos(x)$!

Au voisinage de x = 0, on a bien $1 + x^2 = 1 - x^2 + o(x)$ et $1 + x^2 = 1 + 3x^2 + o(x)$. On peut écrire $1 - x^2 + o(x) = 1 + 3x^2 + o(x)$ et donc :

$$-4x^2 = 1 - x^2 - (1 + 3x^2) = o(x) - o(x) = o(x)$$
 et non $-4x^2 = \cdots = 0$.

E 23 Multiplions membres à membres les relations

$$e^x = 1 + x + x^2/2 + \mathcal{O}(x^3),$$
 $\sin x = x - x^3/6 + \mathcal{O}(x^5)$

valable pour $x \to 0$.

$$e^{x} \sin x = (1 + x + x^{2}/2)(x - x^{3}/6) + (1 + x + x^{2}/2)\mathcal{O}(x^{5}) + (x - x^{3}/6)\mathcal{O}(x^{3}) + \mathcal{O}(x^{3})\mathcal{O}(x^{5})$$
$$= x + x^{2} + x^{3}/3 - x^{4}/6 - x^{5}/12 + \mathcal{O}(x^{4}) + \mathcal{O}(x^{5}) + \cdots + \mathcal{O}(x^{8});$$

dans ces calculs, on a utilisé le fait que $x^a\mathcal{O}(x^b) = \mathcal{O}(x^{a+b})$, cas particulier de 16, mais comme $x^n = \mathcal{O}(x^4)$ pour $n \ge 4$, il reste

$$e^x \sin x = x + x^2 + x^3/3 + \mathcal{O}(x^4);$$

on ne peut rien tirer de plus précis des relations initiales.

- 1. Comparaison des fonctions
- 2. Comparaison des applications usuelles
- 3. Calcul avec les relations de comparaisons
- 3.1 Propriétés des relations de comparaisons
- 3.2 Notation de Landau
- 3.3 Propriétés conservées par équivalence
- 3.4 Opérations sur les équivalents
- 3.5 Changement de variable
- 3.6 Obtention d'un équivalent par encadrement
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction In

T 24 On suppose que $f \sim g$, alors f et g ont même signe au voisinage de a.

T 25 On suppose que $f \sim g$, et que g admet une limite $\ell \in \mathbb{R} \cup \{\pm \infty\}$ lorsque $x \to a$, alors

$$\lim_{x \to a} f(x) = \ell.$$

Soit $\ell \in \mathbb{R}^{\star}$. En considérant ℓ comme une application constante $\neq 0$

$$f(x) \underset{x \to a}{\sim} \ell \iff \lim_{x \to a} f(x) = \ell.$$

Ce résultat est bien sûr totalement faux avec $\ell = 0$.

- 1. Comparaison des fonctions
- 2. Comparaison des applications usuelles
- 3. Calcul avec les relations de comparaisons
- 3.1 Propriétés des relations de comparaisons
- 3.2 Notation de Landau
- 3.3 Propriétés conservées par équivalence
- 3.4 Opérations sur les équivalents
- 3.5 Changement de variable
- 3.6 Obtention d'un équivalent par encadrement
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction In

T 26 Soient f, f_1, f_2, g, g_1, g_2 des applications définies sur X.

- 1. $f \sim g \implies f = \mathcal{O}(g)$.
- 2. $f_1 \sim g_1$ et $f_2 \sim g_2 \implies f_1 f_2 \sim g_1 g_2$.
- 3. $f \sim g \implies \forall n \in \mathbb{N}, f^n \sim g^n$.
- 4. Si f_2 et g_2 ne s'annulent pas,

$$f_1 \sim g_1$$
 et $f_2 \sim g_2 \implies \frac{f_1}{f_2} \sim \frac{g_1}{g_2}$.

5. Si f et g sont à valeurs strictement positives et si $\alpha \in \mathbb{R}$,

$$f \sim_a g \implies f^{\alpha} \sim_a g^{\alpha}.$$

Les \mathcal{O} et \sim étant tous au voisinage du point a.

Par contre, si $f_1 \sim g_1$ et $f_2 \sim g_2$, on a pas en général $f_1 + f_2 \sim g_1 + g_2$.

$$\frac{x^2 - x + \ln x}{x^2 - (\ln x)^2}$$

lorsque x tend vers $+\infty$. Au numérateur x et $\ln x$ sont $o(x^2)$, de sorte qu'il est $\sim x^2$. Au dénominateur, $\ln x$ est o(x), donc $(\ln x)^2$ est $o(x^2)$, de sorte que le dénominateur aussi est $\sim x^2$. La fraction considérée tend donc vers 1 lorsque $x \to +\infty$.

E 28 Comme on l'a déjà noté quelque part, un polynôme est, à l'infini, équivalent à son terme de plus haut degré ; une fraction rationnelle est donc équivalente, toujours en l'infini, au quotient des termes de plus haut degré de ses deux facteurs.

- 1. Comparaison des fonctions
- 2. Comparaison des applications usuelles
- 3. Calcul avec les relations de comparaisons
- 3.1 Propriétés des relations de comparaisons
- 3.2 Notation de Landau
- 3.3 Propriétés conservées par équivalence
- 3.4 Opérations sur les équivalents
- 3.5 Changement de variable
- 3.6 Obtention d'un équivalent par encadrement
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction In

T 29 Composition à droite

Soit f et g des applications de X dans \mathbb{R} et $u:A\to X$, telle que $\lim_{x\to a}u(x)=b$.

1.
$$si\ f = \mathcal{O}_b(g)$$
 alors

$$f(u(x)) = \mathcal{O}(g(u(x)).$$

2.
$$si f = o_b(g)$$
 alors

$$f(u(x)) = o(g(u(x)).$$

3.
$$si f \sim g$$
,

$$f(u(x)) \underset{x \to a}{\sim} g(u(x))$$
.

M On peut toujours se ramener 0

$$f(x) \underset{x \to a}{\sim} g(x) \iff f(a+h) \underset{h \to 0}{\sim} g(a+h),$$

$$f(x) \underset{x \to +\infty}{\sim} g(x) \iff f(1/h) \underset{h \to 0+}{\sim} g(1/h).$$

E 30 Lorsque
$$x \rightarrow 1^-$$
,

$$f(x) = \arccos x \sim \sqrt{2(1-x)}$$

E 31 Lorsque
$$x \to +\infty$$
,

$$f(x) = e^{\frac{1}{x}} - e^{\frac{1}{x+1}} \sim \frac{1}{x^2}$$

- On n'a pas le droit de composer un équivalent (ou un $\mathcal O$ ou o) par la gauche !
 - Au voisinage de $+\infty$, $x \sim x + 1$ mais $e^x \nsim e^{x+1}$ car

$$\frac{e^x}{e^{x+1}} = e^{-x} \underset{x \to +\infty}{\longrightarrow} 0.$$

Au voisinage de 0, $1 + x^2 \sim 1 + x$ mais $\ln(1 + x) \sim \ln(1 + x^2)$. En effet

$$\ln(1+x) \sim_{x\to 0} x \text{ et } \ln(1+x^2) \sim_{x\to 0} x^2.$$

P 32 Soient I un intervalle de \mathbb{R} , $\ell \in \overline{\mathbb{R}}$ un élément ou une extrémité de I, f,g deux applications de I dans \mathbb{R} , et (u_n) une suite d'éléments de I. On suppose

$$\lim_{n \to +\infty} u_n = \ell \quad \text{et} \quad f(x) \sim g(x) \text{ lorsque } x \to \ell.$$

Alors

$$f(u_n) \sim g(u_n)$$
 lorsque $n \to +\infty$.

C 33 Quelques équivalents classiques

Soit (u_n) une suite de limite nulle. Alors ¹

- 1. $\sin(u_n) \sim u_n$, 2. $\cos(u_n) 1 \sim -\frac{u_n^2}{2}$,

- 3. $\ln(1+u_n) \sim u_n$, 4. $e^{u_n} 1 \sim u_n$, 5. $Pour \alpha \in \mathbb{R}$, $(1+u_n)^{\alpha} 1 \sim \alpha u_n$.

Par contre, la relation $u_n \sim v_n$ n'entraîne pas $f(u_n) \sim f(v_n)$ comme le montre l'exemple

$$n+1 \sim n$$
 et $e^{n+1} \sim e^n$ car $\frac{e^{n+1}}{e^n} \longrightarrow e \neq 1$.

- 1. Comparaison des fonctions
- 2. Comparaison des applications usuelles
- 3. Calcul avec les relations de comparaisons
- 3.1 Propriétés des relations de comparaisons
- 3.2 Notation de Landau
- 3.3 Propriétés conservées par équivalence
- 3.4 Opérations sur les équivalents
- 3.5 Changement de variable
- 3.6 Obtention d'un équivalent par encadrement
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction In

T 34 Soient f, g, h des application définies sur X. Si les fonctions réelles f, g, h vérifient

$$f(x) \le g(x) \le h(x)$$

pour x au voisinage de a, et si

$$f(x) \underset{x \to a}{\sim} h(x)$$

alors $g(x) \sim_{x \to a} f(x)$.

- 1. Comparaison des fonctions
- 2. Comparaison des applications usuelles
- 3. Calcul avec les relations de comparaisons
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction In

- 1. On a f(x) = O(g(x)) si, et seulement si la fonction $x \mapsto \frac{f(x)}{g(x)}$ est bornée au voisinage du point a.
- 2. On a f(x) = o(g(x)) si, et seulement si

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0.$$

3. On a $f(x) \underset{x \to a}{\sim} g(x)$) si, et seulement si

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1.$$

Dans la suite, on suppose que les fonction considérées ne s'annulent pas au voisinage de a, sauf peut-être simultanément en a.

- 1. On suppose que $f_1 = O(g)$ et $f_2 = O(g)$ au voisinage de a. Montrer que $f_1 + f_2 = O(g)$ au voisinage de a.
- 2. Même question avec o.
- 3. Montrer que $f \sim_a g$ si, et seulement si f g = o(g) au voisinage de a.
- 4. Soit $\ell \in \mathbb{R}$. On suppose que $f \sim_a g$ et $\lim_{x \to a} g(x) = \ell$. Que dire de $\lim_{x \to a} f(x)$?
- 5. On suppose que $f_1 \sim_a g_1$ et $f_2 \sim_a g_2$. Montrer que $f_1 f_2 \sim_a g_1 g_2$ et $f_1/f_2 \sim_a g_1/g_2$.
- 6. Montrer sur un contre-exemple que $f_1 \sim_a g_1$ et $f_2 \sim_a g_2$ n'entraine par $f_1 + f_2 \sim_a g_1 + g_2$ en général.
- 7. On suppose que $f \sim_a g$ au voisinage de a. Montrer que f et g ont même signe au voisinage de a.
- Classer les fonctions suivantes de manière à ce que chacune d'entre elles soit négligeable devant les suivantes, au voisinage de +∞.

$$x \mapsto e^{2x}$$
 $x \mapsto e^{x^2}$ $x \mapsto e^x$ $x \mapsto \ln(x)$ $x \mapsto x$ $x \mapsto x^2$ $x \mapsto x \ln x$.

9. Classer les fonctions suivantes de manière à ce que chacune d'entre elles soit négligeable devant les suivantes, au voisinage de 0 à droite.

$$x \mapsto x$$
 $x \mapsto x^2$ $x \mapsto \sqrt{x}$ $x \mapsto x \ln(x)$.

10. Montrer que, au voisinage de 0,

$$\sin(\alpha x) \sim \alpha x$$
 $\ln(1+x) \sim x$

- 11. Trouver un équivalent simple de
 - 11.1 $\frac{\sin \alpha x}{\sin \beta x}$ au voisinage de 0 ($\alpha \neq 0$ et $\beta \neq 0$).
 - 11.2 $\frac{8x^3 27}{4x^2 9}$ au voisinage de 3/2, -3/2, + ∞ .
 - 11.3 $\frac{4x^2 9}{3x^2 + x\cos x 7}$ au voisinage de $+\infty$ et 0.

- 1. Comparaison des fonctions
- 2. Comparaison des applications usuelles
- Calcul avec les relations de comparaisons
- 4. Cours sous forme d'exercices
- 5. La sympathique fonction In

P 36 Soit u et v deux fonctions à valeurs strictement positives sur X.

On suppose $u(x) \sim v(x)$ et

$$\lim_{x \to a} v(x) = 0 \quad ou \quad \lim_{x \to a} v(x) = +\infty.$$

Alors on a

$$\ln u(x) \underset{x \to a}{\sim} \ln v(x).$$

Démonstration. Pour $x \in X$ au voisinage de a,

$$\ln(v(x)) = \ln\left(u(x)\frac{v(x)}{u(x)}\right) = \ln(u(x)) + \ln\left(\frac{v(x)}{u(x)}\right)$$

Comme u et v ne s'annulent pas, $\lim_{x\to a}\frac{u(x)}{v(x)}=1$. Or $\lim_{x\to a}\ln u(x)=\pm\infty$, il est alors clair que

$$\ln\left(\frac{v(x)}{u(x)}\right) = o\left(\ln\left(u(x)\right)\right)$$

et donc

$$\ln u(x) \underset{x \to a}{\sim} \ln v(x).$$