## Estimativa de Erro de Classificação

- Principal objetivo de um modelo supervisionado é prever com sucesso o valor de saída para objetos ainda não vistos
  - · Errar o mínimo possível
- Para quantificar o desempenho preditivo (estimado) do modelo criado, existem diversas medidas na literatura
   Cada medida tem um viés... (Teorema do No Free Lunch)

  - Para problemas de <u>regressão</u>:
     Erro quadrático médio (com ou sem raiz)
    - Erro absoluto médio
  - Para problemas de classificação:
  - Acurácia/Erro
     Matriz de Confusão

  - · Curvas PR e ROC
  - Kappa

## Taxa de Classificação Incorreta

- A medida clássica para estimar a taxa de erro de um classificador é denominada de taxa de classificação incorreta (misclassification rate), ou simplesmente erro de classificação
  - · Proporção dos objetos de teste que são classificados incorretamente

$$erro = \frac{\#erros}{N_{teste}}$$

· Usualmente é medida de forma indireta através do seu complemento, a taxa de classificação correta:

$$acuracia = \frac{\#acertos}{N_{tosto}}$$

178

180

• acuracia = (1 - erro)

### Acurácia

177

- · Do inglês, Accuracy
  - Dá tratamento igual a todas as classes do problema
  - Não é uma medida adequada para medir problemas com classes desbalanceadas
    - A medida privilegia a classe majoritária
    - Na vasta majoria dos problemas desbalanceados, a classe interessante (prioritária) é a classe rara =(
  - Ex: considere um problema de 2 classes
    - Classe 1 = 9990 objetos
    - Classe 2 = 10 objetos
      - Se modelo prevê apenas classe 1, acurácia será de 9990/10000 = 99.9%
      - Note que tal modelo não é sequer inteligente!!!

Tipos de Erros

- Em classificação binária, é comum nomear os objetos da classe de maior interesse de positivos
  - · Normalmente a classe rara ou minoritária
  - Demais objetos são nomeados negativos (-)
- Em alguns casos, os erros têm igual importância
- Em muitos casos, no entanto, erros têm prioridades distintas (custos!) considerando as possíveis consequências
  - · Ex: diagnóstico negativo para indivíduo doente

179

## Tipos de Erros

- Existem dois tipos de erro em classificação binária:
  - · Classificar objeto negativo como positivo
    - Falso Positivo (FP), Alarme Falso
    - Ex: paciente diagnosticado como doente, embora esteja saudável
  - · Classificar objeto positivo como negativo
    - Falso Negativo (FN)
    - Ex: paciente diagnosticado como saudável, mas está doente

Matriz de Confusão

- Também chamada de Tabela de Contingência
  - Permite a extração de diversas medidas de desempenho preditivo
  - Pode ser utilizada para distinguir os tipos de erros
  - Pode ser utilizada para problemas binários ou multi-classe

| Classe     | Classe Prevista |    |    |
|------------|-----------------|----|----|
| Verdadeira | Α               | В  | С  |
| A          | 25              | 0  | 5  |
| В          | 10              | 40 | 0  |
| С          | 0               | 0  | 20 |

### Matriz de Confusão

- Também chamada de Tabela de Contingência
  - Permite a extração de diversas medidas de desempenho preditivo
  - Pode ser utilizada para distinguir os tipos de erros
  - Pode ser utilizada para problemas binários ou multi-classe

| Classe                       | Classe Prevista |    |    |
|------------------------------|-----------------|----|----|
| Verdadeira                   | Α               | В  | С  |
| Α                            | 25              | 0  | 5  |
| В                            | 10              | 40 | 0  |
| С                            | 0               | 0  | 20 |
| Diagonal principal: acertos! |                 |    |    |

183

}

### Matriz de Confusão

- Também chamada de Tabela de Contingência
  - Permite a extração de diversas medidas de desempenho preditivo
  - Pode ser utilizada para distinguir os tipos de erros
  - Pode ser utilizada para problemas binários ou multi-classe

| Classe     | Classe Prevista |       |    |
|------------|-----------------|-------|----|
| Verdadeira | Α               | В     | С  |
| Α          | 25              | 0     | 5  |
| В          | 10              | 40    | 0  |
| С          | 0               | 0     | 20 |
|            | 25   40   1     | 20 05 |    |

Acurácia:  $\frac{25+40+20}{25+40+20+10+5} = \frac{85}{100} = 0.85 \text{ ou } 85\%$ 

185

## Matriz de Confusão Binária

| Classe     | Classe Flevista                |             |  |
|------------|--------------------------------|-------------|--|
| Verdadeira | Positiva                       | Negativa    |  |
| Positiva   | 70                             | 30          |  |
| Negativa   | 40                             | 60          |  |
|            |                                |             |  |
| Classe     | Classe Prevista                |             |  |
| Verdadeira | Positiva                       | Negativa    |  |
| Positiva   | VP                             | FN          |  |
| Negativa   | FP                             | VN          |  |
| Acurácia:  | $\frac{VP + VN}{VP + VN + FP}$ | + <i>FN</i> |  |

187 188

### Matriz de Confusão

- Também chamada de Tabela de Contingência
  - Permite a extração de diversas medidas de desempenho preditivo
  - Pode ser utilizada para distinguir os tipos de erros
  - Pode ser utilizada para problemas binários ou multi-classe

| Classe                                     | Classe Prevista |    |    |
|--------------------------------------------|-----------------|----|----|
| Verdadeira                                 | Α               | В  | С  |
| Α                                          | 25              | 0  | 5  |
| В                                          | 10              | 40 | 0  |
| С                                          | 0               | 0  | 20 |
| Valores fora da diagonal principal: erros! |                 |    |    |

184

186

### Matriz de Confusão Binária

| Classe     | Classe Prevista |          |
|------------|-----------------|----------|
| Verdadeira | Positiva        | Negativa |
| Positiva   | 70              | 30       |
| Negativa   | 40              | 60       |

| Classe     | Classe I | Prevista |
|------------|----------|----------|
| Verdadeira | Positiva | Negativa |
| Positiva   | VP       | FN       |
| Negativa   | FP       | VN       |

### Matriz de Confusão Binária

| Classe     | Classe Prevista |          |  |
|------------|-----------------|----------|--|
| Verdadeira | Positiva        | Negativa |  |
| Positiva   | 70              | 30       |  |
| Negativa   | 40              | 60       |  |



Acurácia:  $\frac{VP + VN}{VP + VN + FP + FN}$ 

Erro:  $\frac{FP + FN}{VP + VN + FP + FN} = (1 - acurácia)$ 

### Matriz de Confusão Binária



### Matriz de Confusão Binária

| Classe                                | Classe Prevista |          |
|---------------------------------------|-----------------|----------|
| Verdadeira                            | Positiva        | Negativa |
| Positiva                              | 70              | 30       |
| Negativa                              | 40              | 60       |
|                                       |                 |          |
| Classe                                | Classe Prevista |          |
| Verdadeira                            | Positiva        | Negativa |
| Positiva                              | VP              | FN       |
| Negativa                              | FP              | VN       |
| Erro do Tipo II: $FN$ (TFN) $FN + VP$ |                 |          |

189 190

### Exercício

• Avalie os 3 classificadores abaixo:



### Matriz de Confusão Binária



191 192

## Matriz de Confusão Binária



## Matriz de Confusão Binária



193 194

### Precision x Recall



195 1

### Precision x Recall



197

## Resumo das Medidas Apresentadas



Precision x Recall



196

#### F-Measure

- Média harmônica de precision e recall
  - Também conhecida como F<sub>1</sub> score ou F-score
  - $F_{\beta}$  , onde  $\beta$  é um fator positivo de quão mais importante é recall em relação a precision

$$F_1 = 2 \times \frac{precision \times recall}{precision + recall} = \frac{2}{\frac{1}{precision} + \frac{1}{recall}}$$

$$F_{\beta} = (1 + \beta^2) \times \frac{precision \times recall}{(\beta^2 * precision) + recall}$$

198

## Estimativas de Erro de Regressão

- Função de perda
- Erro médio absoluto
- Erro médio quadrático
- Raiz do erro médio quadrático
- Erro absoluto relativo
- Erro quadrático relativo
- Raiz do erro quadrático relativo

## Função de perda

• Erro absoluto:

Exemplos:

 $| y_i - y_i' |$ 

| y real | y predito | erro     | erro       |
|--------|-----------|----------|------------|
| y real | y predito | absoluto | quadrático |
| 2,5    | 3,0       | 0,50     | 0,25       |
| 4,0    | 2,0       | 2,00     | 4,00       |
| 1,0    | 1,5       | 0,50     | 0,25       |
| 3,7    | 4,5       | 0,80     | 0,64       |
| 15,2   | 17,0      | 1,80     | 3,24       |
| 3,6    | 5,0       | 1,40     | 1,96       |

 $(y_i - y_i')^2$ 

• Erro quadrático:

Medem o erro entre o valor real  $y_i$  e o valor predito  $y_i'$ 

## Erro absoluto

| Média       | y predito | y real |
|-------------|-----------|--------|
|             | 3,0       | 2,5    |
| Distância à | 2,0       | 4,0    |
|             | 1,5       | 1,0    |
|             | 4,5       | 3,7    |
|             | 17,0      | 15,2   |
|             | 5.0       | 3.6    |

5,0

• Erro médio absoluto

$$\frac{\sum_{i=1}^{d} |y_i - y_i'|}{d}$$

| Erro médio absoluto | 1,167 |
|---------------------|-------|
| Erro absoluto       |       |
| relativo            | 0,343 |

• Erro absoluto relativo

$$\frac{\sum_{i=1}^{d} |y_i - y_i'|}{\sum_{i=1}^{d} |y_i - \bar{y}|}$$

201

Erro quadrático

| y real | y predito |
|--------|-----------|
| 2,5    | 3,0       |
| 4,0    | 2,0       |
| 1,0    | 1,5       |
| 3,7    | 4,5       |
| 15,2   | 17,0      |
|        |           |

• Erro médio quadrático

$$\frac{\sum_{i=1}^{d} (y_i - y_i')^2}{d}$$

• Raiz do erro médio quadrático

| Erro médio quadrático | 1,723 |
|-----------------------|-------|
| Raiz do erro médio    |       |
| guadrático            | 1 212 |

|   | d                     |
|---|-----------------------|
| 1 | $\sum (y_i - y_i')^2$ |
| V | <u>i=l</u>            |
| V | <u></u>               |

202

204

## Erro quadrático relativo

| y real | y predito |
|--------|-----------|
| 2,5    | 3,0       |
| 4,0    | 2,0       |
| 1,0    | 1,5       |
| 3,7    | 4,5       |
| 15,2   | 17,0      |
| 3.6    | 5.0       |

• Erro quadrático relativo

$$\frac{\sum_{i=1}^{d} (y_i - y_i')^2}{\sum_{i=1}^{d} (y_i - \bar{y})^2}$$

• Raiz do erro quadrático relativo

| Erro quadrático     |       |
|---------------------|-------|
| relativo            | 0,079 |
| Raiz do erro        |       |
| quadrático relativo | 0,281 |
| 4                   | -,    |

 $\sqrt{\frac{\sum_{i=1}^{d}(y_{i}-y_{i}')^{2}}{\sum_{i=1}^{d}(y_{i}-\bar{y})^{2}}}$ 

203

Sobre erros relativos

- As métricas de erros relativos, Erro absoluto relativo, e Raiz do erro quadrático relativo, tem o objetivo de dar a percepção de quão bom é o regressor em relação a um regressor supersimples, que atribui o valor da média de y reais para qualquer objeto.
- Com isso, quanto menor, melhor. Se é maior que 1, significa que o regressor é PIOR que o regressor mais simples.

#### Fonte:

https://www.gepsoft.com/gxpt4kb/Chapter10/Section1/SS07.htm

## Exemplos:

|                 | y real | y predito | erro absoluto | erro quadrático |
|-----------------|--------|-----------|---------------|-----------------|
|                 | 2,5    | 3,0       | 0,50          | 0,25            |
|                 | 4,0    | 2,0       | 2,00          | 4,00            |
|                 | 1,0    | 1,5       | 0,50          | 0,25            |
|                 | 3,7    | 4,5       | 0,80          | 0,64            |
|                 | 15,2   | 17,0      | 1,80          | 3,24            |
|                 | 3,6    | 5,0       | 1,40          | 1,96            |
| Média           | 5,00   | 5,50      |               |                 |
| Desvio_padrão   | 4,67   | 5,29      |               |                 |
| Erro absoluto   | 20,40  |           | _             |                 |
| Erro quadrático | 130,94 |           |               |                 |

| Coeficiente de correlação        | 0,97797 |       |
|----------------------------------|---------|-------|
|                                  |         |       |
| Erro médio absoluto              | 1,167   |       |
| Erro absoluto relativo           | 0,343   |       |
| Erro médio quadrático            |         | 1,723 |
| Raiz do erro médio quadrático    |         | 1,313 |
| Erro quadrático relativo         |         | 0,079 |
| Raiz do erro quadrático relativo |         | 0.281 |

## Exemplos:

|                 | y real | y predito | erro absoluto | erro quadrático |
|-----------------|--------|-----------|---------------|-----------------|
|                 | 1,0    | 1,2       | 0,20          | 0,04            |
|                 | 1,0    | 1,0       | 0,00          | 0,00            |
|                 | 1,0    | 0,8       | 0,20          | 0,04            |
|                 | 1,0    | 1,0       | 0,00          | 0,00            |
|                 | 1,0    | 1,1       | 0,10          | 0,01            |
|                 | 1,0    | 0,9       | 0,10          | 0,01            |
| Média           | 1,00   | 1,00      |               |                 |
| Desvio_padrão   | 0,00   | 0,13      |               |                 |
| Erro absoluto   | 0,00   |           | _             |                 |
| Erro quadrático | 0.00   | 1         |               |                 |

| Coeficiente de correlação        | #DIV/0! |         |
|----------------------------------|---------|---------|
|                                  |         |         |
| Erro médio absoluto              | 0,100   |         |
| Erro absoluto relativo           | #DIV/0! |         |
| Erro médio quadrático            |         | 0,017   |
| Raiz do erro médio quadrático    |         | 0,129   |
| Erro quadrático relativo         |         | #DIV/0! |
| Raiz do erro quadrático relativo |         | #DIV/0! |

## Exemplos:

|                 | y real | y predito | erro absoluto | erro quadrático |
|-----------------|--------|-----------|---------------|-----------------|
|                 | 1,2    | 1,2       | 0,00          | 0,00            |
|                 | 1,0    | 1,0       | 0,00          | 0,00            |
|                 | 0,8    | 0,8       | 0,00          | 0,00            |
|                 | 1,0    | 1,0       | 0,00          | 0,00            |
|                 | 1,1    | 1,1       | 0,00          | 0,00            |
|                 | 0,9    | 0,9       | 0,00          | 0,00            |
| Média           | 1,00   | 1,00      |               |                 |
| Desvio_padrão   | 0,13   | 0,13      |               |                 |
| Erro absoluto   | 0,60   |           |               |                 |
| Erro quadrático | 0,10   | 1         |               |                 |

| Coeficiente de correlação        | 1,00000 |       |
|----------------------------------|---------|-------|
|                                  |         |       |
| Erro médio absoluto              | 0,000   |       |
| Erro absoluto relativo           | 0,000   |       |
| Erro médio quadrático            |         | 0,000 |
| Raiz do erro médio quadrático    |         | 0,000 |
| Erro quadrático relativo         |         | 0,000 |
| Raiz do erro quadrático relativo |         | 0,000 |

207 208

## Exemplos:

| ſ               | y real | y predito | erro absoluto | erro quadrático |
|-----------------|--------|-----------|---------------|-----------------|
|                 | 1,2    | 1,0       | 0,20          | 0,04            |
| [               | 1,0    | 1,0       | 0,00          | 0,00            |
|                 | 0,8    | 1,0       | 0,20          | 0,04            |
|                 | 1,0    | 1,0       | 0,00          | 0,00            |
|                 | 1,1    | 1,0       | 0,10          | 0,01            |
|                 | 0,9    | 1,0       | 0,10          | 0,01            |
| Média           | 1,00   | 1,00      |               |                 |
| Desvio_padrão   | 0,13   | 0,00      |               |                 |
| Erro absoluto   | 0,60   |           | _             |                 |
| Erro quadrático | 0.10   | 1         |               |                 |

| Coeficiente de correlação        | #DIV/0! |       |
|----------------------------------|---------|-------|
|                                  |         |       |
| Erro médio absoluto              | 0,100   |       |
| Erro absoluto relativo           | 1,000   |       |
| Erro médio quadrático            |         | 0,017 |
| Raiz do erro médio quadrático    |         | 0,129 |
| Erro quadrático relativo         |         | 1,000 |
| Data da assa susabeleta salativa |         | 4 000 |

## Exemplos:

|                 | y real | y predito | erro absoluto | erro quadrático |
|-----------------|--------|-----------|---------------|-----------------|
|                 | 1,2    | 0,9       | 0,30          | 0,09            |
|                 | 1,0    | 1,1       | 0,10          | 0,01            |
|                 | 0,8    | 1,0       | 0,20          | 0,04            |
|                 | 1,0    | 0,8       | 0,20          | 0,04            |
|                 | 1,1    | 1,0       | 0,10          | 0,01            |
|                 | 0,9    | 1,2       | 0,30          | 0,09            |
| Média           | 1,00   | 1,00      |               |                 |
| Desvio_padrão   | 0,13   | 0,13      |               |                 |
| Erro absoluto   | 0,60   |           |               |                 |
| Erro auadrático | 0.10   | 1         |               |                 |

| Coeficiente de correlação        | -0,40000 |       |
|----------------------------------|----------|-------|
|                                  |          |       |
| Erro médio absoluto              | 0,200    |       |
| Erro absoluto relativo           | 2,000    |       |
| Erro médio quadrático            |          | 0,047 |
| Raiz do erro médio quadrático    |          | 0,216 |
| Erro quadrático relativo         |          | 2,800 |
| Raiz do erro quadrático relativo |          | 1,673 |

209 210

## Gráficos ROC

- Do inglês, Receiver Operating Characteristics
- Medida de desempenho originária da área de processamento de sinais
  - Muito utilizada na área médica (e na biologia em geral)
  - Mostra relação entre custo (TFP, Erro do Tipo I) e benefício (TVP, Recall)
  - Lembre-se que:
    - TFP é a taxa de alarmes falsos (erros na classe negativa, Erro do Tipo I)
    - TVP é a taxa de acertos na classe positiva (1 Erro do Tipo II)

Erro do Tipo I: (TFP) (Taxa de Alarmes Falsos) (Custo)



Sensibilidade: (TVP) (*Recall*, Revocação, Benefício)



## Gráficos ROC

- Medida de desempenho originária da área de processamento de sinais
  - Mostra relação entre custo (TFP, Erro do Tipo I) e benefício (TVP, Recall)

| Classe     | Classe Predita |          |
|------------|----------------|----------|
| Verdadeira | Positiva       | Negativa |
| Positiva   | VP             | FN       |
| Negativa   | FP             | VN       |

Erro do Tipo I: (TFP) (Taxa de Alarmes Falsos) (Custo)



Sensibilidade: (TVP) (*Recall,* Revocação, Benefício)



#### Imagine a existência de três modelos:



### Gráficos ROC

- Resumindo:
  - Classificador ideal mais a noroeste
  - Classificadores próximos ao canto inferior esquerdo são
    - Apenas detectam a classe positiva com forte evidência
    - Portanto, cometem poucos FPs
  - · Classificadores próximos ao canto superior direito são
    - Detectam a classe positiva com pouca evidência
    - Correm o risco de alta taxa de alarme falso
  - Classificadores ao redor da linha central tem comportamento similar ao esperado de classificação

214

# Curvas ROC



#### Curvas ROC

| Objeto                  | Classe Real | Escore<br>(Classe +) |
|-------------------------|-------------|----------------------|
| x <sup>(6)</sup>        | +           | 0.9                  |
| $x^{(3)}$               | +           | 0.8                  |
| $x^{(2)}$               | -           | 0.7                  |
| <b>x</b> <sup>(9)</sup> | +           | 0.6                  |
| <b>x</b> <sup>(5)</sup> | +           | 0.6                  |
| <b>x</b> <sup>(1)</sup> | -           | 0.5                  |
| <b>x</b> <sup>(7)</sup> | -           | 0.3                  |
| x <sup>(8)</sup>        | -           | 0.2                  |
| x <sup>(4)</sup>        | -           | 0.2                  |
| x <sup>(10)</sup>       | -           | 0.1                  |

- 1. Ordenar objetos em ordem decrescente de escore para a classe positiva (+)
- 2. Para cada limiar de decisão  $\theta$ : i. Classificar todos os objetos

  - Calcular VP, VN, FP, FN
  - iii. Calcular TVP e TFP e plotar ponto no gráfico ROC

 $\int escore \ge \theta$ : + Classe =  $escore < \theta$ : –

217 218

## Curvas ROC

- Algoritmos que geram valores discretos:
  - Podem ser modificados para gerar escores
    - Para ADs, pode se utilizar a fração dos objetos de treinamento positivos do nó folha correspondente como escore
    - Para k-NN, pode se utilizar a fração dos k vizinhos mais próximos que pertencem à classe positiva como escore
    - Para SVMs, pode se utilizar a distância normalizada do objeto ao hiperplano separador como escore
  - Podem ser combinados em comitês
    - Algoritmo é executado sobre amostragens do conjunto de treinamento, gerando múltiplos modelos
    - Cada modelo prevê uma das duas classes (+ ou −)
    - O escore será a fração dos modelos que previram a classe positiva

## Área sob a Curva ROC (AUC)

- Fornece uma estimativa do desempenho de classificadores
- Valor contínuo no intervalo [0, 1]
  - · Quanto maior melhor
  - · Adição de áreas de sucessivos trapézios
- É possível provar que a AUC equivale à probabilidade do modelo atribuir um escore  $P(+ | \mathbf{x})$  maior a um objeto positivo escolhido aleatoriamente do que a um objeto negativo escolhido aleatoriamente

## Área sob a Curva ROC (AUC)



## Área Sob Curvas ROC

223

225



222

## Área sob a Curva ROC (AUC)



Área sob a Curva ROC (AUC)



## Área sob a Curva ROC (AUC)

- Nota 1: um modelo com maior AUC pode apresentar AUC pior em trechos da curva...
  - AUC não deve ser vista como critério absoluto
  - Deve ser vista como medida de desempenho auxiliar as demais, com suas vantagens e desvantagens

## Área sob a Curva ROC (AUC)



- · Modelos similares em desempenho preditivo
  - $M_1$ é melhor para baixos valores de TFP
  - M<sub>2</sub> é melhor para altos valores de TFP

## Área sob a Curva ROC (AUC)

#### • Nota 2:

- Para maior confiabilidade da análise, calcula-se a AUC utilizando-se algum dos procedimentos de avaliação de desempenho vistos anteriormente (e.g., cross-validation) para gerar múltiplas curvas ROC
  - AUC mais confiável é tomada a partir de algum tipo de média das AUCs previamente calculadas, ou a partir de uma curva média
  - A variância das curvas também é um fator a ser analisado