The Gibbs sampler

Stat 340: Bayesian Statistics

- 1. Gibbs sampler
- 2. Convergence checks
- 3. Inference using MCMC draws
- (Problem topics 8, 10, 11)

Metropolis algorithm

Your turn

Take a look at the four trace plots provided as an example. For each, determine

- 1. whether the chain converged
- 2. roughly how many iterations it took to converge

- 1. Did the chain converge?
- 2. If so, how many iterations did it take?

- 1. Did the chain converge?
- 2. If so, how many iterations did it take?

- 1. Did the chain converge?
- 2. If so, how many iterations did it take?

- 1. Did the chain converge?
- 2. If so, how many iterations did it take?

Simulating from a discrete bivariate distribution

Example: Traffic

The joint PMF of the number of cars (X) and the number of buses (Y) per signal cycle at a proposed left-turn lane is given below

X=0	Y=0	1	2
0	0.025	0.015	0.01
1	0.050	0.030	0.02
2	0.125	0.075	0.05
3	0.150	0.090	0.06
4	0.100	0.060	0.04
5	0.050	0.030	0.02

Simulation process

Condition on X = 1, simulate a Y

X=O	Y=0 1		2
0	0.025	0.015	0.01
1	0.050	0.030	0.02
2	0.125	0.075	0.05
3	0.150	0.090	0.06
4	0.100	0.060	0.04
5	0.050	0.030	0.02

sample(0:5, size = 1, prob = bivariate[[2]])

[1] 3

Condition on Y = 3, simulate an X

X=0	Y=0	1	2	
0	0.025	0.015	0.01	
1	0.050	0.030	0.02	
2	0.125	0.075	0.05	
3	0.150	0.090	0.06	
4	0.100	0.060	0.04	
5	0.050	0.030	0.02	

```
sample(0:2, size = 1, prob = bivariate[4,2:4])
```

```
## [1] 1
```

Simulating from a bivariate continuous distribution

Change in the democratic vote

- How did democratic share of the two party vote change from 2016 to 2020?
- MIT Election Data and Science Lab has county-level election results
- We'll look at the percent change in the two-party vote

$$Y_i = 100 \left(A_i / B_i - 1 \right)$$

 $A_i = \%$ of two-party vote cast for democrats in 2020

 $B_i = \%$ of two-party vote cast for democrats in 2016

Hypothetical sample

We'll work with a hypothetical sample of 100 counties

$$\overline{y} = 1.96$$

$$n = 100$$

Model

 $Y_i = 100(A_i/B_i - 1)$, the percent change in support

$$egin{aligned} Y_i | \mu, \sigma &\stackrel{ ext{iid}}{\sim} \mathcal{N}(\mu, \sigma) \ \mu &\sim \mathcal{N}(\mu_0, \sqrt{1/\phi_0}) \ \phi &= 1/\sigma^2 \sim \operatorname{Gamma}(a, b) \ \mu \perp \phi \end{aligned}$$

$$\mu_0 = 0$$
 $\phi_0 = 1/1000$
 $a = 0.1$
 $b = 0.1$

These are very weak priors

Prior predictive check

If you don't think the priors induce a reasonable distribution on Y, then tweak the parameters (e.g. inflate σ_0)

Posterior

$$egin{aligned} \pi(\mu,\phi|y_1,\ldots,y_n) &\propto \pi(\mu)\pi(\phi) \cdot \prod_{i=1}^n f(y_i|\mu,\sigma^2) \ &\propto \exp\left[-rac{\phi_0}{2}(\mu-\mu_0)^2
ight] \cdot \phi^{a-1} \exp[-b\phi] \cdot \ &\prod_{i=1}^n \phi^{1/2} \exp\left[-rac{\phi}{2}(y_i-\mu)^2
ight] \end{aligned}$$

How can we do this *efficiently* sample from this 2D posterior?

Two-stage Gibbs sampler

Target: samples from $\pi(\theta_1, \theta_2 | y_1, \dots, y_n)$

Algorithm:

- 1. Set initial values for parameter values, $\boldsymbol{\theta}^{(0)} = \left(\theta_1^{(0)}, \theta_2^{(0)}\right)$
- 2. Draw $\theta_1^{(1)}$ from $\pi(\theta_1|\theta_2,y_1,\ldots,y_n)$
- 3. Draw $\theta_2^{(1)}$ from $\pi(\theta_2|\theta_1,y_1,\ldots,y_n)$
- 4. Repeat steps 2-3 s times

After convergence, draws $\left(\theta_1^{(k)},\theta_2^{(k)}\right)$ are from the posterior distribution

Your turn

In our example, $\theta = (\mu, \sigma^2)$

Discuss with your neighbor **how** you would find the following conditional posterior distributions from the joint posterior:

1.
$$\pi(\mu|\phi, y_1, \dots, y_n)$$

2.
$$\pi(\phi|\mu, y_1, \dots, y_n)$$

Full conditional distributions

$$\pi(\phi|y_1, \dots, y_n, \mu) \propto \pi(\phi) f(y_1, \dots, y_n | \phi, \mu)$$

$$\propto \phi^{a-1} \exp[-b\phi] \cdot \prod_{i=1}^n \phi^{1/2} \exp\left[-\frac{\phi}{2} (y_i - \mu)^2\right]$$

$$= \phi^{a-1} \exp[-b\phi] \cdot \phi^{n/2} \exp\left[-\frac{\phi}{2} \sum_{i=1}^n (y_i - \mu)^2\right]$$

$$= \phi^{(n/2+a)-1} \exp\left[-\phi \left\{\frac{1}{2} \sum_{i=1}^n (y_i - \mu)^2 + b\right\}\right]$$

Is this a distribution we have seen before?

Full conditional distributions

$$\pi(\mu|\phi, y_1, \dots, y_n) \propto \pi(\mu) \prod_{i=1}^n f(y_i|\mu, \sigma^2)$$

$$\propto \exp\left[-\frac{\phi_0}{2}(\mu - \mu_0)^2\right] \cdot \prod_{i=1}^n \phi^{1/2} \exp\left[-\frac{\phi}{2}(y_i - \mu)^2\right]$$

$$= \exp\left[-\frac{\phi_0}{2}(\mu - \mu_0)^2\right] \cdot \phi^{n/2} \exp\left[-\phi\left\{\frac{1}{2}\sum_{i=1}^n (y_i - \mu)^2\right\}\right]$$

$$\propto \exp\left[-\frac{\phi_0 + n\phi}{2}\left\{\mu - \frac{\mu_0\phi_0 + n\bar{y}\phi}{\phi_0 + n\phi}\right\}^2\right]$$

Is this a distribution we know?

Getting ready to sample

```
# Data
y <- select_county$pct_change_dem</pre>
n <- length(y)</pre>
# Prior specification
mu0 <- 0
phi0 <- 1/1000
a <- 0.1
  <- 0.1
# Initial parameter values
mu < - mean(y)
s2 \leftarrow var(y)
phi <- 1 / s2
# Create empty S x p matrix for MCMC draws
                      < - 5000
mcmc_draws <- matrix(NA, nrow = S, ncol = 2)</pre>
colnames(mcmc_draws) <- c("mu", "phi")</pre>
```

Gibbs sampler

```
for(i in 1:S) {
  # sample from mu | s2, y
  A \leftarrow sum(y) * phi + mu0 * phi0
  B <- n * phi + 1 * phi0
  mu <- rnorm(1, A/B, 1/sqrt(B))</pre>
  # sample from s2 | mu, y
  shape \langle -n / 2 + a \rangle
  scale <- (sum((y - mu)^2) / 2) + b
  phi <- rgamma(1, shape, scale)</pre>
  # Store the draws
  mcmc_draws[i, ] <- c(mu, phi)</pre>
```

To get the joint posterior of interest, $\pi(\mu, \sigma|y_1, \dots, y_n)$, transform ϕ

Did the chain converge?

Did the chain converge?

Posterior analysis

Toss out samples prior to convergence (this is called the *burn in* period)

Draw inferences using the remaining MCMC samples just like we have all term

```
no_burn <- mcmc_draws[-c(1:100),]
```


Posterior analysis

	Mean	SD	Q025	Q975
mu	1.98	0.83	0.35	3.61
sigma	8.19	0.59	7.13	9.48

p-stage Gibbs sampler

Target: samples from $\pi(\theta_1, \theta_2, \dots, \theta_p | y_1, \dots, y_n)$

- *1.* Set initial values for parameter values, $\boldsymbol{\theta}^{(0)} = \left(\theta_1^{(0)}, \theta_2^{(0)}, \dots, \theta_p^{(0)}\right)$
- 2. Draw $\theta_1^{(1)}$ from $\pi(\theta_1|\theta_2,\ldots,\theta_p,y_1,\ldots,y_n)$
- *3.* Draw $\theta_2^{(1)}$ from $\pi(\theta_2|\theta_1,\theta_3,\ldots,\theta_p,y_1,\ldots,y_n)$

:

p. Draw $\theta_2^{(1)}$ from $\pi(\theta_p|\theta_1,\ldots,\theta_{p-1},y_1,\ldots,y_n)$

Repeat steps 2-ps times