INTRODUCTION TO DIGITAL SYSTEMS

SYSC2310 (Fall 2020) Dr. Mostafa Taha

Lab 3: Answer Sheet

Exercise 1: Design an Arbitrary Function.

 $P = \overline{A2} A1A0 + \overline{A3} \overline{A2} A1 + \overline{A3} A2A0 + A2\overline{A1}A0$ $D = \overline{A3} A2A0 + A3\overline{A2} \overline{A1} + A3\overline{A1} \overline{A0} + \overline{A3} \overline{A2} A1A0 + A3A2A1A0$

The total number of AND and OR gates is:

3-pin AND:

4-pin AND:

7

Exercise 2: BCD to 7-Segment Decoder (IC 7447)

 $S_a = \overline{D2} \overline{D0} + \overline{D3} + \overline{D1} + \overline{D2} \overline{D0}$ $S_b = \overline{D2} + \overline{D1} \overline{D0} + \overline{D1} \overline{D0}$ $S_c = \overline{D1} + \overline{N0} + \overline{D2}$ $S_d = \overline{D2} 00 + \overline{D2} \overline{D1} + \overline{D1} \overline{D0} + \overline{N3} + \overline{D2} \overline{D1} \overline{D0}$ $S_e = \overline{D0} (\overline{D2} + \overline{D1})$ $S_f = \overline{D1} \overline{D0} + \overline{D2} \overline{D0} + \overline{D2} \overline{D1} + \overline{D3}$ $S_g = \overline{N2} \overline{D1} + \overline{D3} + \overline{D2} \overline{D1} + \overline{D1} \overline{D0}$

The total number of AND and OR gates is:

2-pm AND: 3-pm AND: 4-pm OR: 3-pm OR: 2-pm OR:

14