RA zu EA

ε -Elimination

1. Gruppiere Folge von ε -Übergängen zusammen mit nachfolgendem Σ -Übergang zu einem einzigen Σ -Übergang.

$$\overline{\delta} := \delta \cup \left\{ (q, x, q'') \middle| x \in \Sigma, \ \exists q' \in Q : q \underset{\varepsilon}{\overset{*}{\longrightarrow}} q', \ (q', x, q'') \in \delta \right\}$$

2. Ernennt Zustände, von denen ein akzeptierender Zustand über eine Folge von ε -Übergängen erreichbar ist, zu akzeptierenden Zuständen.

$$\overline{F}:=F\cup\left\{q\Big|\exists q'\in F:q\xrightarrow[\varepsilon]{*}q'\right\}$$

3. Lösche alle ε -Übergänge.

$$\overline{\overline{\delta}} := \{ (q, x, q') \in \overline{\delta} | x \neq \varepsilon \}$$

EA zu RA - Kleene-Algorithmus

$$\begin{split} R_{ij}^{(k)} &= R_{ij}^{(k-1)} \cup R_{ik}^{(k-1)} \left(R_{kk}^{(k-1)} \right)^* R_{kj}^{(k-1)} \\ i &= k, \ j \neq k \Rightarrow R_{kj}^{(k)} = \left(R_{kk}^{(k-1)} \right)^* R_{kj}^{(k-1)} \\ i &\neq k, \ j = k \Rightarrow R_{ik}^{(k)} = R_{ik}^{(k-1)} \left(R_{kk}^{(k-1)} \right)^* \\ i &= j = k \Rightarrow R_{kk}^{(k)} = \left(R_{kk}^{(k-1)} \right)^* \end{split}$$

Abschlusseigenschaften

Klasse	Abgeschlossen unter	Nicht abgeschlossen unter
Reguläre Sprachen	\cup , \cap , \setminus , $\Sigma^* \setminus L$, \cdot , *, L^R , hom, hom ⁻¹	
Kontextfreie Sprachen	\cup , \cdot , *, hom, hom ⁻¹	$\Sigma^* \setminus L, \cap$
Entscheidbare Sprachen	\cup , \cap , \cdot , $*$, $\Sigma^* \setminus L$	
Semientscheidbare Sprachen	∪, ∩, ⋅, *	$\Sigma^* \setminus L$

Chomsky-Hierachie

Typ	Name	Bedingung
Typ 0	Semientscheidbar	Keine Einschränkungen
Typ 1	Kontextsensitiv	$ \alpha \le \beta $
Typ 2	Kontextfrei	$\alpha \in V$
Typ 3	Regulär	$\alpha \in V, \ \beta \in \Sigma V \cup \Sigma \cup \{\varepsilon\}$

Typ $3 \subset \text{Typ } 2 \subset \text{Typ } 1 \subset \text{Entscheidbar} \subset \text{Typ } 0 \subset \text{Alle Sprachen } \mathfrak{P}(\Sigma^*)$

Reduktionen

Wenn $L_1 \leq L_2$, dann gilt:

- L_2 entscheidbar $\Rightarrow L_1$ entscheidbar
- \bullet L_2 nicht semientscheidbar $\Rightarrow L_1$ nicht semientscheidbar

Kontrapositionen der Pumpinglemmata

L ist nicht regulär, wenn L ist nicht kontextfrei, wenn Für jedes $n \in \mathbb{N}$ gilt: Für jedes $n \in \mathbb{N}$ gilt:

Es gibt ein Wort $w \in L$ mit $|w| \ge n$, sodass Es gibt ein Wort $w \in L$ mit $|w| \ge n$, sodass

für eine Zerlegung w=xyz mit $|xy|\leq n$ und $y\neq \varepsilon$ für eine Zerlegung w=xyzuv mit $|yzu|\leq n$ und

gilt $yu \neq \varepsilon$ gilt

für alle $i \in \mathbb{N}$ gilt: $xy^iz \notin L$ für alle $i \in \mathbb{N}$ gilt: $xy^izu^kv \notin L$

Umwandlung in CNF

1. Trennen von Terminalsymbolen

Für jedes $\sigma \in \Sigma$ erzeuge eine neue Regel $V_{\sigma} \to \sigma$ und ersetze σ durch V_{σ} in jeder anderen Ableitungsregel.

2. Beseitigung zu langer Regeln

Für jede Regel Länge $k \geq 3$ führe k-2 neue Variablen und k-1 neue Regeln mit Länge $2 \leq$ ein, die die ursprünglichen Regeln ersetzen.

- 3. ε -Elimination
 - bestimme $V_{\varepsilon} := \{ A \in V | A \stackrel{*}{\Rightarrow} \varepsilon \}$
 - für alle $A \to BC$
 - $-\ B \in V_{\varepsilon} \Rightarrow$ zusätzliche Regel $A \to C$
 - $C \in V_{\varepsilon} \Rightarrow$ zusätzliche Regel $A \to B$
 - $\bullet\,$ entferne alle Regeln der Form $A\to\varepsilon$
- 4. Beseitigung von Einheitsregeln
 - $\bullet \ \text{wenn} \ A \stackrel{*}{\Rightarrow} B \ \text{und} \ B \to CD$ füge Regel $A \to CD$ hinzu
 - wenn $A \stackrel{*}{\Rightarrow} B$ und $B \to \sigma$ füge Regel $A \to \sigma$ hinzu
 - $\bullet\,$ lasse alle Einheitsregeln weg