Вероятность на конечных и счётных пространствах

Ключевые слова

случаный эксперимент, пространство элементарных событий, элементарное событие, событие, объединение событий, пересечение событий, вложение событий, дополнение событий, вероятность на счётном пространстве элементарных событий, свойства вероятности, вероятности событий в схеме равновозможных исходов

Чтение по мотивам прошедшей лекции

- 1. Бородин А.Н. Введение в теорию вероятностей и в математическую статистику, $\S\S$ 1-3
- 2. Чернова Н.И. Теория вероятностей, глава 1, § 1, глава 2, §§ 1-2
- 3. Феллер В. Введение в теорию вероятностей и её приложения, том 1, главы 1-4
- 4. Гнеденко Б.В. Курс теории вероятностей, §§ 1-3
- 5. Ширяев А.Н. Вероятность, Глава 1 § 1
- 6. Jacod J, Protter P. Probability Essentials, § 1

Чтение по мотивам будущей лекции

- 1. Бородин А.Н. Введение в теорию вероятностей и в математическую статистику, $\S\S~4,6$
- 2. Чернова Н.И. Теория вероятностей, глава І, §§ 2-3, глава 2, §§ 3
- 3. Феллер В. Введение в теорию вероятностей и её приложения, том 2, глава 4, $\S\S$ 1-4
- 4. Гнеденко Б.В. Курс теории вероятностей, § 6
- 5. Ширяев А.Н. Вероятность, Глава II §§ 1-2
- 6. Jacod J, Protter P. Probability Essentials, § 2

Задачи

Уровень 1

- 1. Финансовая система государства состоит из трёх банков. Пусть $A = \{$ первый банк допустил дефолт $\}$, $B = \{$ второй банк допустил дефолт $\}$, $C = \{$ третий банк допустил дефолт $\}$.
 - а. интерпретировать события $A \cup B \cup C$, $A \cup B \cap C$, $A \cap B \cup \overline{C}$, $\overline{A \cap C}$, $\overline{A \cap B} \cup C$;
 - b. описать с помощью символов \cap , \cup , ... события {первый банк допустит дефолт, а остальные нет}, {ровно два банка допустят дефолт}.

- **2.** Мишень состоит из десяти кругов, ограниченных концентрическими окружностями с радиусами $r_1 < r_2 < ... < r_{10}$. Пусть $A = \{$ стрелок попал в круг радиуса $r_i \}$. Интерпретировать события
 - a. $A_1 \cup A_2 \cup A_3$;
 - b. $A_1 \cap A_2 \cap A_3 \cap A_4$;
 - c. $(A_1 \cup A_3) \cap A_6$.
 - d. $\overline{A}_1 \cup A_2$.
 - e. $\overline{A}_2 \cup A_1$.
- **3.** Пусть $P(A)=0.3,\ P(B)=0.6,\ P(C)=0.9.$ Определить, в каких границах могут находиться
 - a. $P(A \cup B)$;
 - b. $P(A \cap C)$;
 - c. $P(A \cup B \cup C)$;
 - d. $P(B \cup C) \setminus A$.

Изобразить граничные случаи.

- **4.** Бросаются несколько кубиков. Все возможные упорядоченные наборы считаются равновероятными. Найти вероятность того, что:
 - а. при броске пяти кубиков выпадет четыре пятёрки и одна тройка;
 - b. при броске восьми кубиков выпадет ровно три шестёрки, три двойки и две четверки;
 - с. при броске шести кубиков выпадет ровно три шестёрки;
 - d. при броске восьми кубиков выпадет ровно три шестёрки и три двойки;
 - е. произведение чисел, выпавших на трёх кубиках, будет чётным;
 - f. сумма значений на кубиках будет k + 2, если бросается k кубиков;
 - g. при пяти бросках кубика выпадет хотя бы одна двойка и хотя бы одна четвёрка.
 Проверить результаты с помощью симуляций.
- 5. Найти вероятность получить
 - а. три короля, если из колоды достаётся три карты;
 - b. король, дама и валет, если из колоды достаётся три карты;
 - с. два короля и дама, если из колоды достаётся три карты;
 - d. три карты разных достоинств, если из колоды достаётся три карты;
 - е. три карты одного достоинства, если из колоды достаётся три карты;
 - f. три карты одного достоинства и одну другого, если из колоды достаётся четыре карты;
 - g. две карты одной масти и две карты другой масти, если из колоды достаётся четыре карты;

h. две карты одной масти, две карты второй масти и три карты третьей масти, если из колоды достаётся семь карт;

Hometask I.1

- і. стрит-флеш, если из колоды достаётся пять карт;
- j. флеш, если из колоды достаётся пять карт.Проверить результаты с помощью симуляций.
- 6. В мешке лежат 8 красных, 5 зелёных и 3 жёлтых шара. Найти вероятность:
 - а. достать три красных шара, если из мешка достаётся три шара;
 - b. достать два красных и два жёлтых шара, если из мешка достаётся четыре шара;
 - с. достать шары всех трёх цветов, если из мешка достаётся четыре шара.

Проверить результаты с помощью симуляций.

- **7.** На экзамен выносится 60 вопросов, в каждом билете два вопроса. Определить, какое минимальное число вопросов надо выучить, чтобы с вероятностью не менее 0.9 знать ответы на оба вопроса из билета.
- 8. На рейс продано 100 билетов. Во время полёта каждый пассажир может захотеть или не захотеть укрыться пледом. Считая, что все возможные наборы равновероятны, определить, сколько пледов достаточно взять на борт, чтобы с вероятностью 99% никто бы не остался обиженным. Для получения численного ответа бузет разумным использовать математические пакеты. Построить график зависимости вероятности того, что потребуется k пледов, от k.

Уровень 2

- **1.** Доказать, что $P(A) \geqslant P(A_1) + P(A_2) + P(A_3) 2$, если $(A_1 \cap A_2 \cap A_3) \subset A$.
- $2.\ n$ студентов играют в Тайного Санту. Для этого каждый кладёт в шапку записку со своей фамилией, затем записки случайным образом раздаются участникам игры. Найти вероятность того, что никому не придётся дарить подарок самому себе. Исследовать асимптотику выражения. Rem: воспользоваться формулой включения-исключения.
- $3.\ 2n$ человек стоят в очереди за билетами в театр. Каждый билет стоит 500 рублей, при этом ровно у половины человек есть только по 500 рублей одной купюрой, а у другой половины есть только по 1000 рублей одной купюрой. Найти вероятность того, что все смогут купить билет, если в самом начале в кассе нет сдачи.
- 4. Для оценки численности населения города используется следующий способ. Случайным образом отбираются 1000 человек, их данные записываются, после чего люди возвращаются в город. Через некоторое время отбираются ещё 1000 человек. Пусть во второй группе оказалось 20 человек, отбиравшихся и в первый раз. Определить наиболее вероятную численность населения.

Ответы

Уровень 1

- 3. a. [0.6;0.9]; b. [0.2;0.3]; c. [0.9;1]; d. [0.6;0.7].
- 4. a. 0.00064; b. 0.00033; c. 0.05358; d. 0.00533; e. 0.875; f. $\frac{C_{k+2}^1 + C_{k+2}^2}{6^k}$; g. 0.418. 5. a. 0.00018; b. 0.00290; c. 0.00109; d. 0.82824; e. 0.00235; f. 0.00922; g. 0.00013; h. 0.15607;
- i. 0.00002; j. 0.00198.
- 6. a. 0.10000; b. 0.04615; c. 0.75275.
- 7. 57.
- 8. 62.

Уровень 2

- 2. асимптотика: e^{-1} .
- $3. \frac{1}{n+1}$.
- 4. 50000.