Optimisation dans les réseaux

F. Bendali-Mailfert bendali@isima.fr

Bur D119 Bat Isima

Plan du cours

- La Recherche Opérationnelle : Applications et entreprises impliquées [1]
- Problèmes de réseaux et structures de modélisation.
- Domaine des télécommunications
 - ► Topologie et routage dans les réseaux filaires
 - ► Topologie dans les réseaux sans fil.

Problèmes de réseaux et structures de modélisation.

Principaux problèmes dans les réseaux :

- Le dimensionnement Rechercher les capacités à mettre sur les liaisons dans un réseau.
- La topologie (design)
 Rechercher la structure : nœuds principaux et liens.
- Le routage
 Rechercher "les meilleurs" chemins

Rappels de graphes. Définitions et notations

- Graphe G(V, E) non orienté
- Graphe G(V, E) orienté
- Extrémité d'une arête, d'un arc.
- Incidence. Adjacence
- Graphe complet
- Sous graphe. Sous graphe Induit. Graphe partiel.

Rappels de graphes. Définitions et notations

- Chaîne. Chemin
- Cycle. Circuit. Graphe acyclique.
- Connexité : Un graphe est connexe ssi entre tout couple de sommets existe une chaîne.
- Forte connexité : Un graphe est fortement connexe ssi entre tout couple de sommets existe un chemin.
- Une Coupe dans un graphe G=(V,E) est un sous ensemble d'arêtes dont une extremité exactement est dans $S\subset V$. Notation $[S,V\setminus S]=\delta(S)=\{e=uv\in E:u\in S,v\in V\setminus S\}$
- Un arbre A = (V, E) est un graphe connexe sans cycle. Un arbre est tel que :
 - ▶ |E| = |V| 1,
 - ▶ il existe exactement une chaîne entre tout couple de sommets
 - sans cycle maximal
 - connexe minimal

Rappels de graphes. Définitions et notations

Un graphe G=(V,E) est biparti si $V=V^1\cup V^2$ avec $V^1\cap V^2=\emptyset$ et $E=\delta(V^1)=\delta(V^2)$.

Tous les cycles d'un graphe biparti sont de longueur paire.

Un réseau est un graphe orienté G = (V, E) dont les arcs ou les noeuds sont munis d'une ou plusieurs valeurs.

Dans la suite, nous utiliserons les notations et notions suivantes :

- $\forall i \in V, b_i < 0$ est une demande et $b_i > 0$ est une offre.
- $\forall (i,j) \in E, c_{i,j}$ est un coût unitaire pour traverser l'arc ij (< C).
- $\forall (i,j) \in E, u_{i,j}$ est une capacité supérieure pour l'arc ij(< U).
- $\forall (i,j) \in E, l_{i,j}$ est une capacité inférieure pour l'arc ij(< L).

Complexité d'un algorithme

La complexité temps d'un algorithme est une fonction du nombre d'opérations élémentaires effectuées dans l'algorithme.

On utilise la notation O pour donner un Ordre de grandeur de la complexité.

Un algorithme a une complexité O(f(n)), si $\exists c$ et n_0 tels que le temps pris par l'algorithme dans le pire des cas est au plus c.f(n) pour $n \ge n_0$.

Quelques problèmes de base dans les réeaux

- Problème du plus court chemin : Il s'agit de trouver la façon la plus économique (temps, distance, difficulté,...) de passer d'un nœud d'un réseau à un autre.
- Problème du flot maximum : Il s'agit d'envoyer la plus grande valeur de flot (quantité, volume, usagers,...) à travers un réseau entre deux points en tenant compte d'une capacité limitative.
- Problème de flot de coût minimum : Il s'agit d'envoyer du flot à travers un réseau entre deux points en tenant compte d'une capacité limitative et en minimisant le coût global de circulation.

Résolution du problème de plus court chemin

- Onnées :
 - G = (V, E) orienté; Deux nœuds s origine et p destination; un coût unitaire c_{ij} par arc ij
- Formulation linéaire
 - Les variables

$$x_{ij} = \begin{cases} 1 & \text{si l'arc } ij \text{ est choisi} \\ 0 & \text{sinon} \end{cases}$$

Les contraintes

$$\sum_{j \in V} x_{ij} - \sum_{j \in V} x_{ji} = \begin{cases} +1 & \text{si } i = s \text{ (origine)} \\ -1 & \text{si } i = p \text{ (destination)} \\ 0 & \text{sinon} \end{cases}$$

L'objectif

$$\operatorname{Min} \sum_{ij\in E} c_{ij} x_{ij}$$

Remarques

Optimisation dans les réseaux

FBM

Les algorithmes (Voir TD)

- Bellman : Graphe sans circuits
- Djikstra : Poids positifs
- Bellman-Ford : Général. Detecte les circuits négatifs.

Résolution du problème du flot maximum

- ① Données : G = (V, E) orienté; Deux nœuds s origine et p destination ; Une capacité $0 \le u_{ij} \le U$ par arc ij.
- 2 Formulation linéaire
 - Les variables $x_{ij} = \text{Valeur du flot sur l'arc } ij$
 - ► Les contraintes

$$\sum_{j \in V} x_{ij} - \sum_{j \in V} x_{ji} = \begin{cases} +v & \text{si } i = s \text{ (origine)} \\ -v & \text{si } i = p \text{ (destination)} \\ 0 & \text{sinon} \end{cases}$$

$$0 \le x_{ij} \le u_{ij}, \quad \forall ij \in E$$

- ► L'objectif : Max *v*
- 3 Algorithmes: Ford & Fulkerson, Karp, Push & relabel.

Résolution du problème du flot de coût minimum

- ① Données: G = (V, E) orienté; Nœuds origines et destinations; Demandes et Offres: $b_i > 0$ aux sources, $b_i < 0$ aux destinations et nulle aux intermédiaires. Une capacité inférieure $0 \le l_{ij} \le L$ par arc ij et une capacité supérieure $0 \le u_{ij} \le U$ par arc ij. Un coût unitaire c_{ij} par arc ij
- Formulation linéaire
 - Les variables x_{ij} = Valeur du flot sur l'arc ij
 - Les contraintes

$$\sum_{j \in V} x_{ij} - \sum_{j \in V} x_{ji} = b_i, \quad \forall ij \in E$$
$$I_{ij} \leq x_{ij} \leq u_{ij}, \qquad \forall ij \in E$$

L'objectif :

$$\operatorname{Min} \ \sum_{ij \in E} c_{ij} x_{ij}$$

- Association Roadef Le livre blanc de la recherche opérationnelle. http://www.roadef.org/ (2011)
- David L. Applegate, Robert E. Bixby, Vasek Chvátal, William J. Cook: *The Traveling Salesman Problem*. Chap 1.(2006)
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein: *Introduction to Algorithms*. MIT press (1990)
- David Simplot-Ryl, Eric Fleury : Réseaux de capteurs Théorie et modélisation. Ed. Lavoisier (2009).

