

ACTIVIDAD:

Comparación Práctica de Métodos de Optimización en Regresión Lineal

• Objetivo: Comparar distintos métodos de optimización para minimizar una función de costo en un problema de regresión lineal.

Instrucciones:

- 1. Generación de Datos Sintéticos:
 - o Utilizar un conjunto de datos simulado que siga un modelo lineal, por ejemplo:
 - Variable independiente (x): 100 muestras generadas aleatoriamente entre 0 y 10.
 - Modelo Real: y = 2.5x + 1.0 con la adición de ruido gaussiano.
 - Los estudiantes deben asegurar que los datos sean reproducibles (por ejemplo, configurand con np.random.seed).

- 2. Definición de la Función de Costo:
 - o Utilizar el Error Cuadrático Medio (MSE) como función de costo:

$$J(w,b) = rac{1}{n} \sum_{i=1}^n \left(y_i - \left(w \cdot x_i + b
ight)
ight)^2$$

- o Calcular el gradiente de la función de costo con respecto a los parámetros w (pendiente) y b (sesgo).
- 3. Implementación de Métodos de Optimización:
 - Descenso de Gradiente Básico (GD):
 - Utilizar todo el conjunto de datos en cada actualización.
 - Actualizar los parámetros de acuerdo a:

$$w:=w-lpha\cdotrac{\partial J}{\partial w},\quad b:=b-lpha\cdotrac{\partial J}{\partial b}$$

- o Descenso de Gradiente Estocástico (SGD):
 - Actualizar los parámetros utilizando un ejemplo (o un pequeño lote) a la vez.
 - Determinar cómo varía la convergencia con este método frente a GD.
- o (Opcional) Métodos Adaptativos:
 - Implementar o emplear un optimizador adaptativo (por ejemplo, Adam) para comparar su comportamiento en la reducción de la función de costo.
- 4. Visualización y Análisis de Resultados:
 - o Graficar la evolución del costo (MSE) en función del número de iteraciones para cada método.
 - o Mostrar la trayectoria de los parámetros w y b a lo largo del entrenamiento.
 - o Comparar la convergencia (número de iteraciones y estabilidad de las actualizaciones) y los valores finales de los parámetros obtenidos con cada método.
- 5. Documentación y Presentación:
 - o Incluir docstrings y comentarios en el código para explicar cada función y el flujo general de la implementación.
 - o Adjuntar un breve informe (o README) que resuma:
 - La metodología empleada.
 - Los resultados obtenidos y su comparación.
 - Reflexiones sobre la importancia de la tasa de aprendizaje y la elección del método de optimización en el contexto de Machine Learning.
 - o Se deben incluir capturas de pantalla del código y de los gráficos generados.
- 6. Entrega:
 - o Tiempo estimado de desarrollo: 2 horas.
 - o Formato de ejecución: grupal.

