1 nalen

:הטענה ש- f - פירושה הטענה של

f(x) = y המקיים A ב- אחד ב- $y \in \mathbf{R}$ לכל

: הטענה ש- f חד-חד-ערכית פירושה

f(x) = y קיים לכל היותר x אחד ב- $y \in \mathbf{R}$ לכל

-לכן, כדי להוכיח שf היא חחייע ועל R לכן, כדי להוכיח ש

. f(x) = y המקיים A ב- אחד ויחיד ב- $y \in \mathbf{R}$

, $\frac{x}{1-x^2}=y$ כלומר , f(x)=y כלומר אפוא נתבונן אפוא

. המשוואה את המקיים A ב- A המקיים את קיים $y \in \mathbf{R}$ ונראה כי אכן לכל

. $0 \in A$ ואכן . x=0 הוא המתרון היחיד למשוואה אם y=0

. $y \neq 0$ -נניח כעת ש

. $yx^2 + x - y = 0$ לאחר סידור המשוואה נקבל

 \cdot או משוואה ריבועית עבור הנעלם $\cdot x$ מנוסחת פתרון משוואה ריבועית.

$$x = \frac{-1 \pm \sqrt{1 + 4y^2}}{2y} = -\frac{1}{2y} \pm \sqrt{\frac{1}{4y^2} + 1} = k \pm \sqrt{k^2 + 1}$$

 $k \in \mathbf{R}$ (0 $\neq k \in \mathbf{R}$) k = -1/(2y) כאשר סימנו

עלינו להראות כי לכל , $0 \neq k \in \mathbf{R}$, בדיוק המשוואה נמצא עלינו להראות כי לכל

. -1 < x < 1 בתחום

. תמיד. $\sqrt{k^2+1} > 1 > 1$ תמיד.

: נפריד לשני מקרים

. $x_{+} \notin A$ כלומר $x_{+} = k + \sqrt{k^{2} + 1} > 1$ אז k > 0 (1)

 $x_{-} \in A$ נראה כי במקרה זה

, $k^2 + 2k + 1 > k^2 + 1$ מכיוון ש- , k > 0 - מכיוון ש-

 $(k+1)^2 > k^2 + 1$ כלומר

 $k+1 > \sqrt{k^2+1}$ נקבל (הביטויים חיוביים) נקבל

. $k - \sqrt{k^2 + 1} > -1$ כלומר

 $0>k-\sqrt{k^2+1}$ ברור גם כי $x_-\in A \quad \text{ (c)} \qquad 0>x_->-1$ ברור אפוא כי

מטופל באופן דומה (השלימו). לחילופין, נוכל לקבל את המקרה הזה מתוך k<0 המקרה בעזרת הסתכלות בתכונותיה של f ומעט עבודה.

2 nalen

- f(2) = f(3) = 2 א. לא. למשל .
- f(x) = n ו- $x \in \mathbb{N}^*$ מתקיים $x \in \mathbb{N}^*$ ו- $x \in \mathbb{N}^*$ ב. f(x) = n
- ג. ל- 5 יש שני מחלקים שונים: הוא עצמו ו- 1. לפי מה שנאמר בפתח השאלה, תכונה זו היא
 בדיוק התכונה המגדירה מספרים ראשוניים. לכן המחלקה שבה נמצא 5 היא קבוצת כל
 המספרים הראשוניים.
 - ד. למספר 4 יש שלושה מחלקים שונים: 1, 2 והוא עצמו.נוכיח שתכונה זו מאפיינת מספרים שהם ריבוע של מספר ראשוני.

ביוון אחד: נניח p^2 כאשר p^2 כאשר p^2 ראשוני. אז p^2 מתחלק ב- p^2 נראה ש- p^2 מתחלק באף מספר אחר: לפי ההדרכה שפורסמה לשאלה, כל מחלק p^2 של p^2 הוא מכפלה של מתחלק באף מספר אחר: לפי ההדרכה שפורסמה לשאלה, כל מחלק p^2 של p^2 הוא מכפלה של גורמים ראשוניים המופיעים ב- p^2 , כאשר כל ראשוני מופיע ב- p^2 מספר פעמים שאינו עולה על מספר הופעותיו ב- p^2

 $1,p,p^2$ מכיוון של- n יש רק גורם ראשוני אחד , p , המופיע פעמיים, האפשרויות היחידות הן n יש רק גורם ראשוני אחד , p מחלקים. כלומר פרט לעצמו ול- p הוא מתחלק בעוד מספר p אחד בלבד. נקרא למספר זה p אם p אינו ראשוני אז p מתחלק גם בכל גורם ראשוני של p אחד בלבד. נקרא למספר זה p אם p אינו ראשוני אז p מתחלק בנוסף, מכיוון ש- p מתחלק ונקבל יותר מ- p מחלקים ל- p עבור p טבעי חיובי כלשהו. מכך ש- $p \neq p$ ו- $p \neq p$ נובע $p \neq p$ נקבל יותר מ- $p \neq p$ מקבל יותר מ- $p \neq q$ מחלקים ל- $p \neq p$ בסתירה להנחה.

 $n = p^2$ כלומר q = p

- ה. לפי הדיון ייחס שקילות המושרה עייי פונקציהיי או לפי הדיון ייהעתק טבעייי, מספר מחלקות השקילות ש- f משרה הוא כמספר האיברים בתמונה של f. ראינו ש- f היא \mathbf{v} , כלומר תמונתה היא כל \mathbf{v} , לכן קבוצת מחלקות השקילות היא בהתאמה חד-חד-ערכית ועל לקבוצה \mathbf{v} , ולפיכך היא אינסופית.
- x שבה 1, המקיים המחלקה אבה 1. נוכיח היהי 1, המקיים המחלקה אבה 1, המקיים היהי 1, המקיים p המספר p^{n-1} מתחלק בדיוק היהי p היהי היהי p היהי מספרים נמצא היא אינסופית. היהי p

 p^{n-1} (מסיבה דומה למה שנאמר בפתרון סעיף ד, כיוון ראשון). לכן $1,p,p^2,...,p^{n-1}$ נמצא באותה מחלקה של x במקום p נוכל להציב כל מספר ראשוני. עבור מספרים שונים נמצא באותה מחלקה של x מכיוון שקבוצת המספרים הראשוניים היא אינסופית, קיבלנו p מובן שיברים שונים הנמצאים כולם במחלקה של x

3 nalen

א. תכונת הרפלקסיביות $X \subseteq X$ הוזכרה בעמי 6 בספר הלימוד. אנטי-סימטריות: אם $X \subseteq X$ ו- $X \subseteq Y$ אז X = Y אז $X \subseteq Y$ או בספר.

ערנזיטיביות: אם $Y \subseteq X$ ו- $X \subseteq Z$ אז $X \subseteq Z$ הוּכח בשאלה 1.6 בעמי 8 בספר.

ב. יחס מעל A הוא קבוצה של זוגות סדורים של אברי A, לכן כל יחס מעל A, ובפרט כל יחס שקילות מעל A, A חלקי לקבוצה $A \times A$. קל לבדוק ש- $A \times A$ עצמה היא יחס שקילות (זהו יחס אקילות שבו כל אברי A נמצאים באותה מחלקה). לכן $A \times A$ היא האיבר הגדול ביותר ב- A לגבי הכלה.

. $I_{\scriptscriptstyle A}$ את מצד שני, יחס שקילות הוא בפרט רפלקסיבי, כלומר מכיל את

קל לבדוק שהיחס I_A אף הוא יחס שקילות מעל A (זהו יחס השקילות שבו כל איבר של I_A נמצא במחלקה בפני עצמו). מכיון שכל יחס שקילות מעל A מכיל אותו, והוא האיבר הקטן ביותר ב- K לגבי הכלה.

ג. היחס הריק מוכל בכל יחס, והוא אנטי-סימטרי (אם לא ברור לך מדוע הוא אנטי-סימטרי, רי שאלות רב-ברירה בעניין זה באתר הקורס). לכן הוא איבר קטן ביותר ב-J לגבי הכלה. לעומת זאת, J איבר גדול ביותר לגבי הכלה. כדי להראות זאת, נראה שני איברים מקסימליים ב-J, שונים זה מזה (לפי שאלה 3.21 בעמי 93 בספר, אם יש כמה איברים מקסימליים אז אין איבר גדול ביותר).

יהי אנטי-סימטרי. $R = I_A \cup \{(1,2), (2,3), (1,3)\}$ יהי

אם קיים ב- I איבר I (כלומר יחס אנטי-סימטרי I המכיל-ממש את I אז I חייב להכיל לפחות אחד מהזוגות I (3,1) , (3,1) , (3,2) , כי אלה כל אברי I אבל הוספה של כל אחד מהזוגות האלה ל- I מקלקלת את האנטי-סימטריות. לכן אין יחס אנטי-סימטרי מעל I המכיל את I לפיכך I הוא **איבר מקסימלי** ב- I .

, $S = I_A \cup \{(2,1)\,,\,(3,2)\,,\,(3,1)\} = R^{-1}$ בדומה ל- R נוכל לקחת למשל את נוכל לקחת מסיבה דומה לגמרי, גם הוא איבר מקסימלי ב-

. איבר גדול ביותר מקסימליים, לכן אין ב- J איבר גדול ביותר

4 22167

בדיקה: נציב n=0: n=0: אפס מתחלק ב- 8.

, $k \in \mathbb{N}$ כאשר $3^n + 7^n - 2 = 8k$ כלומר נניח עבור , n כלומר נכונה עבור : מעבר

: נפתח הטענה נכונה עבור n+1 נפתח

$$3^{n+1} + 7^{n+1} - 2 = 3 \cdot 3^{n} + 7 \cdot 7^{n} - 2$$
$$= 3 \cdot (3^{n} + 7^{n} - 2) + 4 \cdot 7^{n} + 4$$
$$= 3 \cdot 8k + 4 \cdot (7^{n} + 1)$$

 $3 \cdot 8k$ במעבר האחרון נעזרנו בהנחת האינדוקציה. קיבלנו סכום של שני ביטויים. המחובר

 $4 \cdot (7^n + 1)$ מתחלק ב- 8. בביטוי השני, $1 + 7^n$ הוא מספר זוגי, לכן $4 \cdot (7^n + 1)$ מתחלק ב- 8.

.8 - מתחלק גם הוא ב- $3.8k + 4.(7^n + 1)$ לכן הסכום

n+1 הראינו שהטענה נכונה עבור

. טבעיn טבעיה נכונה לכל שהטענה נכונה לכל משני השלבים נובע שהטענה נכונה לכל

איתי הראבן