

SISTEMAS DIGITAIS

MEEC/MEFT/MEAer

2018/2019

Pedro Tomás

Horácio Neto

Capítulo I

CONVERSÃO DE NÚMEROS

Problema 1.1. Escreva as potências de 2 desde 2-3 até 215, e ainda 225 e 235.

Problema 1.2.

- a) Converta para base 10 o número 11010101₍₂₎.
- b) Converta 213₍₁₀₎ para código BCD (binário-decimal).
- c) Converta 213₍₁₀₎ para base 2.

Problema 1.3. Pretende-se converter o número 38₍₁₀₎ para outras bases.

- a) Faça a conversão para base 16 diretamente.
- b) Faça a conversão para base 16 através da base 2 (converta primeiro para base 2 e depois para base 16).
- c) Faça a conversão para base 8 (octal) a partir da base 2.

Problema 1.4.

- a) Converta a=27₍₁₀₎ e b=75₍₁₀₎ para binário. Obtenha o resultado da soma a+b diretamente em binário.
- b) Converta $a=27_{(10)}$ e $b=75_{(10)}$ para hexadecimal. Obtenha o resultado da soma a+b diretamente em hexadecimal.
- c) Converta $a=27_{(10)}$ e $b=75_{(10)}$ para BCD. Obtenha o resultado da soma a+b diretamente em BCD.

Problema 1.5. Considerando que o código ASCII (representação numérica) dos caracteres '0' e 'A' é $48_{(10)}$ e $65_{(10)}$, respectivamente, determine:

- a) O código ASCII do caracter '5' e do caracter 'B'.
- b) Determine o caracter obtido após adicionar 3 ao código ASCII 'f'.

Problema 1.6. Faça a conversão direta para base 4, 8, e 16 do número em binário 10011010(2).

Problema 1.7. Ordene em decimal os seguintes números em ordem decrescente.

 $198F_{(16)}$, $1100110010000_{(2)}$, $14614_{(8)}$, $1212031_{(4)}$, $202124_{(5)}$, $6542_{(10)}$.

CAPÍTULO II

SÍNTESE E SIMPLIFICAÇÃO DE FUNÇÕES BOOLEANAS

Problema 2.1. Simplifique algebricamente as seguintes funções:

- a) $f(A,B,C) = AB\bar{C} + ABC + A\bar{B}$
- b) $f(A, B, C) = (A + B + \bar{C})\bar{A}B\bar{C} + C$
- c) $f(A, B, C, D) = (A \oplus B)(C \oplus D) + \overline{(A \odot B)}(C + D) + \overline{D}$

Problema 2.2. Utilizando mapas de Karnaugh, simplifique as seguintes funções lógicas (sob as formas disjuntiva e conjuntiva), identificando todos os implicantes e implicados, e classificando-os como essenciais e não essenciais:

- a) $f(A, B, C, D) = \sum m(0,1,2,6,8,9,12,13,14)$
- b) $f(A, B, C, D, E) = \sum m(1,2,5,8,10,20,26,30) + \sum m_d(0,4,6,11,12,13,14,17,21,28)$

Problema 2.3. Considere a função $f(A, B, C) = A\overline{B} + AC + BC$

- a) Desenhe o logigrama do circuito que concretiza a função indicada acima.
- b) Transforme a expressão inicial numa função que possa ser concretizada só com:
 - i. Portas NAND (e portas NOT).
 - ii. Portas NOR (e portas NOT).

Para cada caso desenhe o logigrama do circuito correspondente.

- c) Transforme o logigrama obtido em b.i) num esquema elétrico. Para cada porta lógica, identifique o circuito integrado utilizado; em cada ligação, anote o pino correspondente do circuito integrado. Utilize um número mínimo de circuitos integrados.
- d) Escreva a tabela da verdade da função f.
- e) Por inspeção da tabela de verdade:
 - i. Expresse f na forma canónica disjuntiva (soma de produtos).
 - ii. Expresse *f* na forma canónica conjuntiva (produto de somas).
- f) Expresse f na forma canónica disjuntiva por manipulação algébrica.
- g) Simplifique a expressão obtida em f), usando o teorema da adjacência, de modo a obter o número mínimo de termos de soma de produto.

Problema 2.4. Pretende-se realizar um circuito que calcule o resultado da operação $y = \lfloor x^2/10 \rfloor$, sendo x um número inteiro pertencente ao intervalo [1;6] e $\lfloor z \rfloor$ representa o arredondamento de z para o maior número inteiro \hat{z} tal que $\hat{z} \leq z$ (i.e., arredondamento para baixo).

- a) Quantas entradas e saídas requer o circuito para concretizar o cálculo referido?
- b) Escreva a tabela da verdade das funções lógicas necessárias.
- c) Expresse-as na forma disjuntiva (soma de produtos) mínima. Para os termos não especificados considere, em cada função, os valores lógicos que conduzem a maior simplificação.

CAPÍTULO III

IMPLEMENTAÇÃO DE FUNÇÕES BOOLEANAS

Problema 3.1. Implemente as funções $f(A,B,C) = \sum m(0,2,6,7)$ e $g(A,B,C) = \sum m(1,2,3,5,7)$ utilizando:

- a) Um descodificador 3:8 e o número mínimo de portas lógicas.
- b) Dois descodificadores 2:4 com enable e o número mínimo de portas lógicas adicionais.
- c) Multiplexers 8:1.

Problema 3.2. Considere o codificador de prioridade da figura, em que a entrada 3 é a de maior prioridade. Preencha a tabela de verdade das funções lógicas X(A, B, C, D), Y(A, B, C, D) e Z(A, B, C, D).

Problema 3.3. Pretende-se realizar um circuito que, dada uma instrução de 2 bits <I1,I0>, realiza uma de 4 funções lógicas alternativas (NAND, AND, OR, NOR) de acordo com a tabela ao lado. Esboce o diagrama lógico do circuito utilizando um multiplexer 4:1 e o mínimo de lógica adicional.

I1,I0	F
00	$\overline{X\cdot Y}$
01	$X \cdot Y$
10	X + Y
11	$\overline{X+Y}$

Problema 3.4. Implemente a função booleana $f(A, B, C) = \bar{A}B + \bar{A}\bar{C} + \bar{B}C$ utilizando:

- a) Um multiplexer com 3 entradas de seleção.
- b) Um multiplexer com 2 entradas de seleção.

Problema 3.5. Simplifique os seguintes diagramas lógicos (utilize os elementos lógicos que considerar mais convenientes):

Problema 3.6. Considere a função $f(A, B, C) = \overline{C}(A \oplus B) + C\overline{(A \oplus B)}$:

- a) Apresente a tabela de verdade correspondente.
- b) Projete e implemente a função *f* utilizando apenas descodificadores com 2 entradas 2:4 com enable e um numero mínimo de portas NAND e NOR de 4 entradas (excluindo portas NOT).

Problema 3.7. Utilizando apenas descodificadores com 2 entradas 2:4 com enable, implemente:

- a) Um descodificador com 1 entrada 1:2 com enable.
- b) Um descodificador com 3 entradas 3:8 com enable.
- c) Um descodificador com 4 entradas 4:16 com enable.

CAPÍTULO IV

CIRCUITOS ARITMÉTICOS

Problema 4.1. Considere que pretende representar números em complemento para 2 usando 8 bits.

- a) Indique a gama de valores possível de ser representada.
- b) Represente os seguintes números: +57; -57; +70; -70; +127; -127; -128; -1.

Problema 4.2. Considere o circuito da figura, o qual representa uma unidade aritmética simples. Preencha a seguinte tabela indicando em cada caso o valor decimal dos operandos A e B, o valor de X e o resultado da operação. Apresente ainda sob a forma de uma tabela a operação realizada em função dos sinais de controlo I=<I₁,I₀>.

A	В	I	X	Cin	S	Cout	Operação
	1001001 11011011 00 11011011 10 11	00					
01001001		01					
01001001		10					
		11					

Problema 4.3. Considere um circuito somador de 8-bits com carry-in, carry-out e overflow (excesso).

- a) Explique sucintamente a função dos circuitos full-adder e half-adder.
- b) Desenhe o diagrama interno do circuito somador de 8 bits.
- c) Considerando que o tempo máximo de propagação do full-adder é de 100ps, determine o tempo máximo de propagação do somador.

Problema 4.4. Considere o full-adder ilustrado na figura e os tempos de propagação da tabela.

- a) Calcule o tempo máximo de propagação dos sinais $A_{i_j}B_i$ e C_i para cada uma das saídas S_i e C_0 . Indique qual o pior caso.
- b) Calcule o tempo máximo de propagação de um somador de 8 bits considerando que cada full-adder é implementado como se ilustra na figura.
- c) Proponha as alterações que achar convenientes ao full-adder de forma a minimizar o tempo de propagação. Indique qual o novo valor para o tempo de propagação do somador de 8 bits.

Porta lógica	Tempo de propagação
NOT	10ps
AND2	30ps
OR2	30ps
NAND2	20ps
NOR2	20ps
XOR2	50ps

Problema 4.5. Deseja-se obter o valor de um número binário sem sinal A de 8-bits multiplicado por 129.

- a) Obtenha um circuito que faça esta operação utilizando apenas circuitos somadores completos de 4-bits.
- b) Repita a alínea anterior para o cálculo de Ax40.

Problema 4.6. Desenhe um circuito aritmético com duas entradas de seleção S_1 e S_0 que realize as seguintes operações aritméticas. Suponha A e B entradas de n-bits.

S ₁ S ₀	C _{in} =0	C _{in} =1
00	F = A + B	F = A + B + 1
01	F = A	F = A + 1
10	F = -B - 1	F = -B
11	F = A - B - 1	F = A - B

Capítulo V

CARACTERIZAÇÃO TEMPORAL DE CIRCUITOS DIGITAIS

Problema 5.1. Considere o circuito ilustrado na figura. Sabendo que para o inversor t_{PHL}=t_{PLH}=5ns e para o AND t_{PHL}=t_{PLH}=10ns, faça o diagrama temporal que mostre a variação da saída Z quando a entrada X tem uma variação de Low para High, após estabilização, de High para Low.

Problema 5.2. Considere o circuito da figura.

a) Desenhe um diagrama temporal com os sinais INI,
Q=<Q2,Q1,Q0>, Y=<Y4,Y3,Y2,Y1,Y0> e CLK2, para um
período de tempo correspondente aos primeiros 12
ciclos de relógio após um impulso de INI=1. Considere os tempos de propagação da tabela da direita.

	T_P	Tsu	T _H
AND2	10 ns	-	-
XOR2	40 ns	-	-
FF D	10 ns	8 ns	1 ns
FF JK	15 ns	12 ns	2 ns
CTR DIV8	10 ns	60 ns	1 ns

- b) Desenhe o diagrama de estados correspondente à sequência de contagem $Q=<Q_2,Q_1,Q_0>$.
- c) Considerando que f_{CLK}=1MHz, represente a forma de onda do sinal CLK2 indicando o período de relógio.

Problema 5.3. Considere o registo multimodo da figura.

- a) Complete o diagrama temporal abaixo indicando a forma de onda dos sinais C e S=<S₃,S₂,S₁,S₀> (suponha os tempos de propagação desprezáveis face ao período de relógio).
- b) Apresente uma tabela com a indicação da função realizada em função do sinal de controlo $I=<I_2,I_1,I_0>$.

U - Undefined

CAPÍTULO VI

REGISTOS E CONTADORES

Problema 6.1. Considere um circuito contador de 1 dígito BCD com Reset assíncrono e Carry Out.

- a) Apresente a tabela de transição de estados.
- b) Considere que pretende projectar o circuito contador utilizando flip-flops edge triggered.
 - i. Indique qual o número mínimo de flip-flops para a implementação do circuito.
 - ii. Considerando a utilização de flip-flops tipo D, indique qual o valor que deverá colocar nas entradas dos flip-flops de forma a realizar a função pretendida.
 - iii. Indique a função lógica para as entradas de cada um dos flip-flops.
 - iv. Repita a alínea ii) considerando flip-flops JK.
- c) Desenhe o diagrama lógico do contador BCD considerando flip-flops tipo D. Adicione ao circuito contador uma entrada de carregamento em paralelo (*load*) de um valor inicial (considere a utilização de multiplexers).

Problema 6.2. Utilizando flip-flops do tipo D, esboce o diagrama lógico de um contador up/down de 8 bits com entrada de carregamento em paralelo (load) e reset assíncrono.

Problema 6.3. Utilizando flip-flops do tipo D, esboce o diagrama lógico de um circuito registo de deslocamento com entrada de carregamento em paralelo e de reset síncrono. Admita ainda a existência de um sinal de comando CTR que controla as funções realizadas pelo registo de deslocamento, tal como indicado na tabela ao lado.

CTR	Operação
0	Hold
1	Load
2	Logic Shift left
3	Logic Shift Right
4	Arithmetic Shift Left
5	Arithmetic Shift Right
6	Rotate Left
7	Rotate Right

CAPÍTULO VII

MÁQUINAS DE ESTADO

Problema 7.1. Considere o seguinte circuito sequencial síncrono com uma entrada X e uma saída Y:

- a) Identifique o tipo de máquina de estados (Moore vs Mealy). Justifique.
- b) Obtenha o diagrama de estados correspondente.
- c) Converta o diagrama de estados numa máquina equivalente mas do tipo oposto (i.e., se na alínea a) respondeu Mealy, converta o diagrama de estados em Moore; se na alínea a) respondeu Moore, converta o diagrama de estados em Mealy).
- d) Complete o seguinte diagrama temporal de acordo com o esquema da figura.

Problema 7.2. Considere que pretende projetar um circuito representado pelo diagrama de estados seguinte (note que o sistema tem duas entradas M e N e três saídas X, Y e Z; a ordem dos valores apresentados no diagrama é exatamente MN para as entradas e XYZ para a saídas):

- a) Indique a codificação dos estados que resulta num número mínimo de flip-flops.
- b) Utilizando flip-flops do tipo D, apresente a tabela de transição de estados e inclua a indicação do valor das entradas dos flip-flops para cada conjunto *<estado actual*, *entrada>*.
- c) Repita a alínea b) utilizando flip-flops do tipo JK.
- d) Repita a alínea b) utilizando flip-flops do tipo D mas codificação one-hot (1 FF por estado).
- e) Indique a função lógica das entradas dos flip-flops para o caso da alínea d).

Problema 7.3. Considere o seguinte sistema de aviso do funcionamento de uma central de monitorização:

A central tem 2 sensores distintos e independentes. Quando um dos sensores está ativo em 2 flancos ascendentes de relógio consecutivos, a central acende uma luz de aviso amarela. Se ambos os sensores estiverem ativos simultaneamente basta ocorrer um flanco ascendente para a luz amarela acender. A luz amarela deve continuar acesa enquanto o(s) sensor(es) que a ativou(aram) não ficarem inativos durante pelo menos 1 período completo. A luz vermelha deve acender se as condições que motivaram o acendimento da luz amarela continuarem durante mais um período. Assim que a luz vermelha acender, já não deve apagar. Desenhe o diagrama de uma máquina de estados que implemente o comportamento pretendido. Caso exista algum fator não especificado, tome a decisão que achar mais conveniente e justifique-a.

Problema 7.4. Considere o diagrama de estados figura seguinte:

- a) Considerando uma codificação *one-hot* e a utilização de flip-flops do tipo D, apresente a expressão Booleana correspondente à entrada de cada flip-flop.
- b) Considerando a mesma codificação, indique como poderá realizar o circuito utilizando uma memória ROM utilizando uma arquitetura micro-programada com endereçamento explícito.
- c) Quais os valores que deverá colocar na memória no caso de estados não definidos?
- d) Considere agora uma arquitetura micro-programada com endereçamento implícito.
 - A codificação do tipo one-hot é a mais adequada? Indique uma codificação alternativa.
 - ii. Apresente o esquema do circuito considerando a utilização de um contador *up-down* e indique o conjunto de valores que deverá guardar em memória.

Problema 7.5. Considere que pretende projetar um circuito que regista o tempo das últimas chamadas telefónicas efetuadas num telemóvel. Considere que, para cada chamada telefónica, guarda o número de telefone (número de 9 dígitos) e ainda o tempo da chamada, o qual se encontra no formato HH:MM:SS. Assuma que todos os números estão representados no formato BCD.

a) Indique qual a dimensão mínima da memória capaz de registar o par (número de telefone, tempo da chamada) das últimas 32 chamadas.

- b) Considere que utiliza uma memória convencional, endereçada ao byte, e com 12 bits de endereço.
 - Indique uma forma de guardar a informação nesta memória (i.e., a organização dos dados na memória).
 - Considerando a organização anterior, qual o número máximo de chamadas telefónicas que pode guardar em memória.

Problema 7.6. Para cada um dos casos do problema 1, projete um circuito sequencial capaz de guardar os dados em memória. Considere as seguintes entradas/saídas para o circuito:

Entradas:

```
reset – reset assíncrono do circuito digit_i(3:0) – dígito i do número de telefone (em BCD) seg1(3:0), seg0(3:0) – tempo da chamada (segundos, em BCD) min1(3:0), min0(3:0) – tempo da chamada (minutos, em BCD) hor1(3:0), hor0(3:0) – tempo da chamada (horas, em BCD)
```

Saídas:

ready - o circuito está pronto para receber novos dados

Problema 7.7. Desenhe o diagrama de estados da máquina de Moore correspondente a um sistema de controlo de uma fechadura digital, o qual tem as seguintes entradas:

- a) Um botão de INI que indica o início da sequência de 4 símbolos binários.
- b) Dois botões, BT0 e BT1, para inserção de cada um dos símbolos binários, 0 e 1, respetivamente; o valor dos botões é:
- 0 não pressionado; 1 pressionado.
 - a) Um sensor FECHO que indica o fecho da porta; este sensor encontra-se com o valor lógico '1' durante um período de relógio após o fecho da porta.

O mecanismo de controlo tem as seguintes saídas:

- L1 Um LED de cor amarela que se encontra ativo (valor lógico 1) durante a inserção do código.
- 2) L0 Um LED de cor vermelha que, quando ativo (valor lógico 1), indica que o código inserido está errado.
- 3) Um sinal ABRIR que quando ativo destranca e abre a porta; este sinal deverá manter-se ativo durante 1 ciclo de relógio.

O funcionamento da fechadura digital deverá ser o seguinte.

• Para abrir a porta o utilizador deve pressionar o botão de INI seguido do código 1101 (correspondente à sequência de comandos INI,BT1,BT1,BT0,BT1). Se a sequência for errada o sistema deverá acender o led vermelho (L0), desligar o led amarelo (L1) e esperar que o utilizador volte a pressionar a tecla INI.

- Uma vez inserido o código correto, o sinal ABRIR deverá manter-se ativo durante 1 ciclo de relógio de forma a destrancar a porta.
- Quando a porta for aberta, a fechadura digital espera que esta seja fechada (indicação recebida pelo sensor FECHO), antes de permitir a inserção do código.

Projete a máquina de Moore correspondente apresentando o diagrama de estados e a codificação usada. Tome as decisões e/ou simplificações que julgar mais razoáveis. Justifique a resposta explicando sucintamente o funcionamento da máquina de estados.