

MD903

детектор поглощаемой мощности 0,01...50 ГГц

- диапазон рабочих частот 0,01...50 ГГц
- диапазон мощности детектируемого СВЧ-сигнала −50...+20 дБм
- квадратичное детектирование –50...–10 дБм
- положительная, отрицательная или дифференциальная полярность напряжения
- не требуется внешнее питание

Применение

- измерительное оборудование
- радиометрия
- радары СВЧ

MD903 — монолитная интегральная схема детектора поглощаемой мощности с рабочим диапазоном до 50 ГГц. Изготовлена на основе технологии низкобарьерных диодов и не требует внешнего питания. Детектор предназначен для работы в составе гибридно-интегральных СВЧ-модулей с общей герметизацией.

Основные параметры (T = 20 °C)

Обозначение	Параметр	Мин.	Тип.	Макс.	Ед. изм.
ΔF	Диапазон рабочих частот	0,01	_	50	ГГц
G	Чувствительность по напряжению	_	950	<u> </u>	мкВ / мкВт
TSS	Тангенциальная чувствительность	-54	_	_	дБм

Предельно допустимые режимы эксплуатации

Параметр	Значение	Ед. изм.
Падающая СВЧ-мощность	+23	дБм
Рабочая температура	−60+100	°C
Температура хранения	-60+150	°C

Принципиальная электрическая схема

Схема включения

Типовые характеристики (T = 25 °C)

Return loss

Vdet vs. Frequency

MD903

Vdet vs. Temperature

Transfer characteristics for different Rload

Габаритные и присоединительные размеры

— Габаритные и присоединительные размеры указаны для контактной площадки, не прошедшей процесс разделения пластины на кристаллы. Следует учитывать следующие отклонения величин: –30...–40 мкм для определения размера кристалла и 0...–40 мкм для определения координат контактных площадок.

Толщина кристалла: 100 ± 5 мкм.

Номер контактной площадки	Выход	Описание	Размер контактной площадки (X×Y), мкм	
1	P1	СВЧ-вход	175 × 160	
2	P2	Отрицательный выход напряжения	150 × 150	
3	P3	Положительный выход напряжения		

ПРИМЕЧАНИЕ Дифференциальный выход напряжения V_{DIF} рассчитывается по формуле $V_{DIFF} = |V_{P2}| + |V_{P3}|$

Рекомендации по применению

Монтаж

Для металлизации обратной стороны кристалла используется золото. Кристалл монтируется с помощью электропроводного клея или эвтектического сплава золото-олово (Au/Sn). Не рекомендуется подвергать кристалл температурам свыше 300 °C более чем на 10 секунд.

Проволочные выводы

Для металлизации контактной площадки используется золото. Присоединение к контактной площадке кристалла рекомендуется выполнять методом термозвуковой или термокомпрессионной сварки. Для получения максимально эффективных сверхвысокочастотных параметров длина проволочных перемычек, соединяющих контактные площадки кристалла и подложки, должна быть минимальной.

Рисунок 1.

Рисунок 2.

Рекомендации по защите от электростатического воздействия

Существует опасность повреждения микросхемы путем электростатического и/или механического воздействия. Кристаллы поставляются в антистатической таре, которая должна вскрываться только в чистой комнате в условиях защиты от электростатического воздействия. При обращении с кристаллами допускается использование только правильно подобранной оснастки, вакуумного инструмента или, с большой осторожностью, остроконечного пинцета.

