Зміст

2	Бін	Бінарні відношення					
	2.1	Способи задання відношення	2				
		2.1.1 Задання відношення матрицею	2				
		2.1.2 Задання відношення графом	2				
		2.1.3 Задання відношення перетинами	2				
	2.2	Найпростіші відношення	3				
	2.3		4				
			9				
	2.4	Властивості бінарних відношень	10				
	2.5						
	2.6						
		2.6.1 Оптимуми у теорії вибору					
	2.7	Контрольні запитання					

2 Бінарні відношення

Нехай задана множина альтернатив (об'єктів) Ω , принцип оптимальності безпосереднью у числовій формі не задано, але експерт для деяких пар об'єктів може вказати, який з об'єктів пари кращий (переважає) за іншого. У цьому випадку говоритимемо, що ці два об'єкти знаходяться в бінарному відношенні. Оскільки, з одного боку, народна мудрість говорить: "Усе пізнається у порівнянні" (для вибору кращого потрібно порівнювати), з іншого — найпростіше порівнювати два об'єкти (ще одна народна мудрість: "У трьох соснах заблукав"), бінарні відношення широко використовуються у теорії прийняття рішень.

Визначення 2.0.1 (бінарного відношення). Бінарним відношенням R на множині Ω називається підмножина R декартового добутку $\Omega \times \Omega$.

Нагадаймо

Визначення 2.0.2 (декартового добутку). Декартовим добутком двох множин A і B називається множина пар елементів (a,b), де $a \in A$, $b \in B$

Якщо пара елементів x і y знаходиться в бінарному відношенні R, то будемо позначати цей факт як $(x,y) \in R$ або xRy. Якщо потрібно вказати множину Ω , на якій задано бінарне відношення R, то будемо писати $R(\Omega)$ або (R,Ω) .

2.1 Способи задання відношення

Крім безпосереднього задання всіх пар, для яких виконується відношення R, існує три основних способи задання відношень: матрицею, графом, перетинами.

2.1.1 Задання відношення матрицею

Нехай множина Ω містить n елементів: $\Omega = \{x_1, \ldots, x_n\}$. Тоді матриця бінарного відношення A(R) задається елементами $a_{ij}, i, j = \overline{1, n}$: $a_{ij}(R) = 1$, якщо $x_i R x_j$; $a_{ij}(R) = 0$, якщо не виконується $x_i R x_j$. З іншого боку, якщо задана матриця A розміром $n \times n$ із нулів й одиниць і вибрано нумерацію елементів множини Ω , що складається з n елементів, то тим самим на Ω задається деяке відношення R = R(A) таке, що $x_i R x_j$, виконано тоді й лише тоді, коли $a_{ij}(R) = 1$.

2.1.2 Задання відношення графом

Задання бінарного відношення R графом здійснюється так. Елементам скінченої множини $\Omega = \{x_1, \dots, x_n\}$ (при деякій нумерації) ставиться у взаємно-однозначну відповідність вершини графа G. Проведемо дугу від вершини x_i до вершини x_j тоді і лише тоді, коли виконується $x_i R x_j$ (при i = j дуга (x_i, x_j) перетворюється у петлю при вершині x_i).

Якщо задано довільний граф G із n вершинами й обрано нумерацію на множині Ω , то тим самим на Ω задається деяке відношення $R=R(\Omega)$ таке, що x_iRx_j виконується тоді і лише тоді, коли у графі G є дуга (x_i,x_j) . Граф є геометричним представленням відношення аналогічно тому, як графік є геометричним представленням функції. Геометрична мова корисна, якщо граф достатньо простий. Навпаки, вивчати й описувати складні графи з великою кількістю вершин часто зручно у термінах відношень.

Оскільки у багатьох практичних випадках ЗПР кількість альтернатив скінченна (або стає скінченною після попереднього аналізу інформації), то попередні способи задання бінарного відношення широко використовуються (особливо наочним є задання графом).

2.1.3 Задання відношення перетинами

Універсальним способом задання відношень (зокрема, на нескінченних областях) є задання за допомогою перетинів.

Визначення 2.1.1 (верхнього перетину). Верхнім перетином $R^+(x)$ називається множина елементів $y \in \Omega$ таких, що $(y,x) \in R$:

$$R^{+}(x) = \{ y \in \Omega : (y, x) \in R \}. \tag{2.1.1}$$

Визначення 2.1.2 (нижнього перетину). *Нижнім перетином* $R^-(x)$ називається множина елементів $y \in \Omega$ таких, що $(x,y) \in R$:

$$R^{-}(x) = \{ y \in \Omega : (x, y) \in R \}. \tag{2.1.2}$$

2.2 Найпростіші відношення

Визначення 2.2.1 (порожнього відношення). Відношення називається пороженім і позначається \varnothing , якщо воно не виконується ні для однієї пари $(x,y)\in\Omega^2\equiv\Omega\times\Omega$.

Властивості 2.2.2 (порожнього відношення)

Для порожнього відношення справедливо:

- при заданні матрицею $\forall i, j : a_{ij}(\varnothing) = 0;$
- граф $G(\emptyset)$ не має дуг;
- $\forall x \in \Omega : R^+(x) = R^-(x) = \varnothing$.

Визначення 2.2.3 (повного відношення). Відношення U називається *повним*, якщо $U = \Omega^2$ (воно виконується для всіх пар $(x, y) \in \Omega^2$).

Властивості 2.2.4 (повного відношення)

Для повного відношення U справедливо:

- $\forall i, j : a_{ij}(U) = 1;$
- граф G(U) містить усі дуги та всі петлі;
- $\forall x \in \Omega : R^+(x) = R^-(x) = \Omega$.

Визначення 2.2.5 (діагонального відношення). Відношення E називається *діагональним* (або відношенням рівності або одиничним відношенням), якщо xEy тоді і лише тоді, коли x=y (позначатимемо: $xEy \iff x=y$).

Властивості 2.2.6 (діагонального відношення)

Для діагонального відношення виконується:

- $a_{ij}(E) = 1$ при i = j; $a_{ij}(E) = 0$ при $i \neq j$;
- \bullet граф G(E) має петлі при всіх вершинах, інші дуги відсутні;
- $\forall x \in \Omega : R^+(x) = R^-(x) = \{x\}.$

Визначення 2.2.7 (антидіагонального відношення). Відношення \overline{E} називається антидіагональним, якщо $x\overline{E}y \iff x \neq y$.

Властивості 2.2.8 (антидіагонального відношення)

Для антидіагонального відношення \overline{E} виконується:

- $a_{ij}(\overline{E}) = 0$ при i = j; $a_{ij}(\overline{E}) = 1$ при $i \neq j$;
- граф $G(\overline{E})$ має всі дуги, петлі відсутні;
- $\forall x \in \Omega : R^+(x) = R^-(x) = \Omega \setminus \{x\}.$

2.3 Операції над відношеннями

Нагадаємо основні операції над відношеннями, вважаючи, що всі вони задані на одній і тій самій множині Ω .

Визначення 2.3.1 (рівності відношень). Відношення R_1 і R_2 *рівні* $(R_1 = R_2)$, якщо $xR_1y \iff xR_2y \ (\forall (x,y) \in R_1, R_2)$.

Визначення 2.3.2 (вкладення відношень). Відношення R_1 *вкладається* у відношення R_2 (позначається $R_1 \subseteq R_2$), якщо з xR_1y випливає xR_2y .

Визначення 2.3.3 (строго вкладення відношень). Відношення R_1 *строго вкладається* у відношення R_2 ($R_1 \subset R_2$), якщо $R_1 \subseteq R_2$ і $R_1 \neq R_2$.

Властивості 2.3.4 (вкладення відношень)

Очевидно, що:

- з $R_1 \subseteq R_2$ випливає $\forall i, j : a_{ij}(R_1) \le a_{ij}(R_2);$
- також $\forall x \in \Omega : R_1^+(x) \subseteq R_2^+(x)$ і $R_1^-(x) \subseteq R_2^-(x)$.

Визначення 2.3.5 (доповнення до відношення). Відношення \overline{R} називається доповненням до відношення R, якщо $R = \Omega^2 \setminus R$, тобто воно виконується для тих і лише тих пар, для яких не виконується відношення R.

Властивості 2.3.6 (доповнення до відношення)

Очевидно, що:

- $\forall i, j : a_{ij}(\overline{R}) = 1 a_{ij}(R);$
- у графі $G(\overline{R})$ маються ті і лише ті дуги, котрі відсутні у графі G(R);
- $\forall x \in \Omega : \overline{R}^+(x) = \Omega \setminus R^+(x), \ \overline{R}^-(x) = \Omega \setminus R^-(x).$

Приклади 2.3.7 (доповнень до відношень)

Легко бачити, що:

- $\overline{\varnothing} = U$;
- $\overline{U} = \varnothing$:
- ullet антидіагональне відношення \overline{E} ϵ доповненням діагонального відношення E.

Твердження 2.3.8 (про доповнення до доповнення)

$$\overline{\overline{R}} = R.$$

Доведення.
$$\overline{\overline{R}} = \Omega^2 \setminus (\Omega^2 \setminus R) = R$$
.

Визначення 2.3.9 (перетину відношень). Перетином відношень R_1 і R_2 (позначається $R_1 \cap R_2$) називається відношення, що визначається перетином відповідних підмножин із Ω^2 .

Властивості 2.3.10 (перетину відношень)

Легко перевірити, що для будь-яких R_1 і R_2 :

- $\forall i,j: a_{ij}(R_1\cap R_2)=a_{ij}(R_1)\wedge a_{ij}(R_2),$ де \wedge знак кон'юнкції;
- $\forall x \in \Omega : (R_1 \cap R_2)^+(x) = R_1^+(x) \cap R_2^+(x).$

Визначення 2.3.11 (об'єднання відношень). Об'єднанням відношень R_1 і R_2 (позначається $R_1 \cup R_2$) називається відношення, що визначається обє'днанням' відповідних підмножин із Ω^2 .

Властивості 2.3.12 (об'єднання відношень)

Очевидно, що

- $\forall i, j : a_{ij}(R_1 \cup R_2) = a_{ij}(R_1) \vee a_{ij}(R_2)$, де \vee знак диз'юнкції;
- $\forall x \in \Omega : (R_1 \cup R_2)^-(x) = R_1^-(x) \cup R_2^-(x).$

Визначення 2.3.13 (оберненого відношення). Оберненим до відношення R називається відношення R^{-1} , що визначається умовою: $xR^{-1}y \iff yRx$.

Властивості 2.3.14 (оберненого відношення)

Очевидно, що для оберненого відношення R^{-1} виконується:

- $\bullet \ \forall i,j: a_{ij}(R^{-1}) = a_{ji}(R);$
- граф $G(R^{-1})$ отримують із графа G(R) зміною направлення всіх дуг (зокрема петлі залишаються, нові не додаються);
- $\forall x \in \Omega : (R^{-1})^+(x) = R^-(x)$ i $(R^{-1})^-(x) = R^+(x)$.

Твердження 2.3.15 (про обернене до оберненого) $(R^{-1})^{-1} = R$.

Доведення. Оскільки за визначенням

$$x(R^{-1})^{-1}y \iff yR^{-1}x \iff xRy, \tag{2.3.1}$$

то
$$(R^{-1})^{-1} = R$$
.

Аналогічно легко показати, що виконується

Твердження 2.3.16 (про комутативність взяття доповнення і обертання) $\overline{R^{-1}} = (\overline{R})^{-1}.$

Вправа 2.3.17. Доведіть попереднє твердження.

Визначення 2.3.18 (двоїстого відношення). Двоїстим до R називається відношення $R^d = \overline{R^{-1}}$ або, у силу попереднього твердження, $R^d = (\overline{R})^{-1}$.

Твердження 2.3.19 (про двоїсте до двоїстого) $\left(R^d\right)^d = R.$

Доведення. Маємо

$$(R^d)^d = \overline{(\overline{R^{-1}})^{-1}} = \overline{((\overline{R})^{-1})^{-1}} = \overline{\overline{R}} = R.$$
 (2.3.2)

Використовуючи правило де Моргана, легко показати, що виконуються

Твердження 2.3.20 (про двоїсте до об'єднання і перетину) $(R_1 \cup R_2)^d = R_1^d \cap R_2^d$, а також $(R_1 \cap R_2)^d = R_1^d \cup R_2^d$.

Вправа 2.3.21. Доведіть попереднє твердження.

Твердження 2.3.22 (про граф двоїстого відношення)

Для того, щоб перейти від графа G(R) до графа $G(R^d)$, необхідно:

- видалити з графа G(R) усі пари протилежних дуг і всі петлі;
- з'єднати вершини i, j дугами (i, j), (j, i), якщо вони не з'єднані у G(R);
- додати петлі (i,i), які були відсутні у G(R).

Вправа 2.3.23. Доведіть попереднє твердження.

Визначення 2.3.24 (добутку відношень). Добутком відношень R_1 і R_2 називається відношення $R=R_1\cdot R_2$, що визначається так: існує $z\in\Omega$ таке, що xR_1z і zR_2y .

Твердження 2.3.25 (про асоціативність доубутку відношень)

Для добутку відношень виконується асоціативний закон:

$$(R_1 \cdot R_2) \cdot R_3 = R_1 \cdot (R_2 \cdot R_3), \tag{2.3.3}$$

тобто добуток $R_1 \cdot R_2 \cdot R_3$ визначається однозначно.

Приклад 2.3.26 (асоціативності добутку відношень)

Зокрема, $R \cdot R \cdot R = R^3$.

Вправа 2.3.27. Доведіть попереднє твердження.

Твердження 2.3.28 (про матрицю добутку відношень)

Легко показати, що матриця добутку відношень $A(R_1 \cdot R_2) = A(R_1) \cdot A(R_2)$, де добуток матриць $A^1 = A(R_1)$ і $A^2 = A(R_2)$ визначається формулою:

$$a_{ik} = \bigvee_{j=1}^{n} \left(a_{ij}^{1} \wedge a_{jk}^{2} \right).$$
 (2.3.4)

Вправа 2.3.29. Доведіть попереднє твердження.

Визначення 2.3.30 (звуження відношення). Відношення (R_1, Ω_1) називається звуженням відношення (R, Ω) на Ω_1 , якщо $\Omega_1 \subseteq \Omega$ і $R_1 = R \cap \Omega_1^2$.

Твердження 2.3.31 (про граф звуження відношення)

Граф $G(R_1)$ відношення (R_1, Ω_1) — це підграф графа G(R), що породжується множиною вершин $\Omega_1 \subseteq \Omega$.

Вправа 2.3.32. Доведіть попереднє твердження.

2.3.1 Відношення на різних множинах

Нехай на множинах Ω_1 та Ω_2 задані відповідні відношення R_1 і R_2 .

Визначення 2.3.33 (ізоморфних відношень). Відношення (R_1, Ω_1) і (R_2, Ω_2) називаються *ізоморфними*, якщо існує взаємно-однозначне відображення $\varphi: \Omega_1 \to \Omega_2$, що $xR_1y \iff \varphi(x)R_2\varphi(y)$.

Визначення 2.3.34 (ізоморфізму). φ при цьому називається *ізоморфізмом* (R_1, Ω_1) і (R_2, Ω_2) .

Визначення 2.3.35 (гомоморфізму). Відображення $\varphi : \Omega_1 \to \Omega_2$ називається гомоморфізмом (R_1, Ω_1) у (R_2, Ω_2) , якщо $xR_1y \implies \varphi(x)R_2\varphi(y)$.

2.4 Властивості бінарних відношень

Наведемо основні властивості бінарних відношень, що необхідні для аналізу задач прийняття рішень.

Визначення 2.4.1 (рефлексивного відношення). Відношення R називається *рефлексивним*, якщо для $\forall x, xRx$, іншими словами: $E \subseteq R$, де E — діагональне відношення.

Властивості 2.4.2 (рефлексивного відношення)

Легко бачити, що:

- у матриці A(R) рефлексивного відношення на головній діагоналі стоять одиниці;
- у графі G(R) при кожній вершині є петля;
- $\forall x \in \Omega : x \in R^+(x) \text{ i } x \in R^-(x).$

Визначення 2.4.3 (антирефлексивного відношення). Відношення R називається антирефлексивним, якщо з xRy випливає $x \neq y$, іншими словами: $R \subseteq \overline{E}$.

Властивості 2.4.4 (рефлексивного відношення)

Легко бачити, що:

- у матриці A(R) антирефлексивного відношення на головній діагоналі стоять нулі;
- у графі G(R) відсутні петлі;
- $\forall x \in \Omega : x \notin R^+(x) \text{ i } x \notin R^-(x).$

Твердження 2.4.5 (про зв'язок двоїстості і рефлексивності)

Легко показати, що якщо відношення R рефлексивне, то R^d антирефлексивне; якщо R — антирефлексивне, то R^d — рефлексивне.

Вправа 2.4.6. Доведіть попереднє твердження.

Визначення 2.4.7 (симетричного відношення). Відношення R називається симетричним, якщо з xRy випливає yRx, іншими словами: $R \subseteq R^{-1}$.

Властивості 2.4.8 (симетричного відношення)

Легко бачити, що:

• матриця A(R) симетричного відношення R симетрична:

$$\forall i, j : a_{ij} = a_{ji}; \tag{2.4.1}$$

- у графі G(R) разом із кожною дугою (x, y) входить і дуга (y, x);
- $R^+(x) = R^-(x) \ (\forall x \in \Omega).$

Теорема 2.4.9 (необхідна і достатня умова симетрчиності)

Відношення R є симетричним тоді і тільки тоді, коли $R=R^{-1}$.

Доведення. Із визначення симетричного відношення $(R \subseteq R^{-1})$ випливає, що $R^{-1} \subseteq (R^{-1})^{-1} = R$, отже, необхідною й достатньою умовою симетричності відношення є умова $R = R^{-1}$.

Визначення 2.4.10 (асиметричного відношення). Відношення R називається асиметричним, якщо з xRy випливає $y\overline{R}x$, іншими словами: $R\cap R^{-1}=\varnothing$.

Властивості 2.4.11 (асиметричного відношення)

Легко бачити, що:

• у матриці A(R) асиметричного відношення

$$\forall i, j : a_{ij}(R) \land a_{ij}(R) = 0; \tag{2.4.2}$$

- граф G(R) не може мати одночасно дуг (x, y) і (y, x);
- $\forall x \in \Omega \ i \ \forall y \in R^-(x) : x \notin R^-(y)$.

Твердження 2.4.12 (про антирефлексивність асиметричного відношення)

Якщо відношення R асиметричне, то воно антирефлексивне.

Доведення. Дійсно, нехай для деякого x виконується xRx, тоді $xR^{-1}x$ і $x(R \cap R^{-1})x$, тобто $R \cap R^{-1} \neq \emptyset$, що суперечить асиметричності.

Визначення 2.4.13 (антисиметричного відношення). Відношення R називається антисиметричним, якщо з xRy і yRx випливає x=y або $R\cap R^{-1}\subseteq E$.

Властивості 2.4.14 (антисиметричного відношення)

Легко бачити, що:

ullet у матриці A(R) антисиметричного відношення

$$\forall i \neq j : a_{ii}(R) \land a_{ii}(R) = 0; \tag{2.4.3}$$

- граф G(R) не може містити одночасно дуги (x,y) і (y,x) при $x \neq y$;
- $\forall x \in \Omega$ і $\forall y \in R^{-1}(x)$ таких, що $x \neq y$: $x \notin R^{-}(y)$.

Визначення 2.4.15 (транзитивного відношення). Відношення R називається mpansumusnum, якщо з xRz і zRy випливає xRy або $R^2 \subseteq R$.

Властивості 2.4.16 (транзитивного відношення)

Легко бачити, що:

ullet у матриці A(R) транзитивного відношення

$$\forall i, k : \bigvee_{j=1}^{n} (a_{ij}(R) \wedge a_{ik}(R)) \le a_{ik}(R); \tag{2.4.4}$$

- \bullet у графі G(R) існує дуга (x,y), якщо існує шлях із x в y;
- $\forall x \in \Omega \text{ i } \forall y \in R^+(x) : R^+(y) \subseteq R^+(x).$

За індукцією для транзитивного відношення R маємо: із $xRz_1, z_1Rz_2, \ldots, z_{k-1}Ry$ випливає xRy. Якщо транзитивне відношення R є рефлексивним, то $E \subseteq R$, звідки $E \cdot R \subseteq R \cdot R$, отже, $R = R^2$.

Визначення 2.4.17 (ациклічного відношення). Відношення R називається $auu\kappa$ лічним, якщо з $xRz_1, z_1Rz_2, \ldots, z_{k-1}Ry$ випливає $x \neq y$.

Твердження 2.4.18 (про асиметричність ациклічного відношення)

Ациклічне відношення асиметричне.

Вправа 2.4.19. Доведіть попереднє твердження.

Твердження 2.4.20 (про ациклічність антирефлексивного транзитивного відношення)

Аантирефлексивне транзитивне відношення є ациклічним.

Вправа 2.4.21. Доведіть попереднє твердження.

Властивості 2.4.22 (ациклічного відношення)

Легко бачити, що:

- якщо точки x і y у графі ациклічного відношення з'єднані шляхом, то у ньому немає дуги (y, x);
- якщо $z_1 \in R^-(x), z_2 \in R^-(z_1), \dots, y \in R^-(z_{k-1}), \text{ то } x \notin R^-(y);$
- аналогічні співвідношення виконуються для верхніх перерізів.

Ациклічність і транзитивність відношень особливо важливі у теорії вибору та прийняття рішень, оскільки ці властивості виражають деякі природні взаємозв'язки між об'єктами.

Дійсно, якщо об'єкт x у якомусь розумінні кращий за z, об'єкт z кращий за y, то природно вважати, що y не кращий за x (ациклічність), а в деяких випадках x буде кращим за y (транзитивність).

Визначення 2.4.23 (негативно транзитивного відношення). Відношення R називається негативно транзитивним, якщо його доповнення \overline{R} транзитивне.

Визначення 2.4.24 (сильно транзитивного відношення). Відношення R називається *сильно транзитивним*, якщо воно одночасно транзитивне і негативно транзитивне.

Структуру сильно транзитивних відношень визначає така теорема.

Теорема 2.4.25 (про структуру сильно транзитивних відношень)

Нехай (R,Ω) — сильно транзитивне відношення на $\Omega, \ |\Omega| < \infty.$ Тоді існує розбиття

$$\Omega = \bigsqcup_{i=1}^{n} \Omega_i \tag{2.4.5}$$

таке, що: xRy якщо $x \in \Omega_i$, $y \in \Omega_j$, i < j, а звуження відношення R на будь-яке із Ω_i є або порожнім або повним на Ω_i .

Задача 2.4.1*. Доведіть попередню теорему.

Визначення 2.4.26 (зв'язного відношення). Відношення R називається зв'язним, якщо виконується $(xRy \lor yRx) \lor (xRy \land yRx)$, тобто між будьякими вершинами x і y існують дуги (зокрема, петлі).

2.5 Відношення важливі для тпр

Використаємо розглянуті властивості для виділення відношень, важливих для теорії вибору та прийняття рішень.

Визначення 2.5.1 (відношення еквівалентності). Відношення R називається відношенням *еквівалентності*, якщо воно рефлексивне, симетричне і транзитивне (позначення " \cong ").

Нехай задано розбиття

$$\Omega = \bigsqcup_{i=1}^{n} \Omega_i. \tag{2.5.1}$$

Введемо на Ω таке відношення R: xRy тоді і лише тоді, коли існує підмножина Ω_i , що містить x і y. Легко перевірити, що задання еквівалентності

на деякій підмножині Ω рівносильне розбиттю на класи еквівалентних один одному елементів. Навпаки, будь-яке розбиття Ω визначає відповідну йому еквівалентність.

Визначення 2.5.2 (відношення нестрогого порядку). Відношення R називається відношенням *нестрогого порядку*, якщо воно рефлексивне, антисиметричне і транзитивне (позначення — " \preceq ").

Визначення 2.5.3 (відношення строгого порядку). Відношення R називається відношенням строгого порядку, якщо воно антирефлексивне, асиметричне і транзитивне (позначення — " \prec ").

Твердження 2.5.4 (про задання нестрогим порядком строгого)

Якщо \leq — нестрогий порядок на Ω , то йому можна зіставити строгий порядок \prec , що визначається так: $x \prec y \iff x \leq y \land x \neq y$.

Вправа 2.5.5. Доведіть попереднє твердження.

Твердження 2.5.6 (про задання строгим порядком нестрогого)

Навпаки, якщо \prec — строгий порядок на Ω , то йому можна зіставити нестрогий порядок \preceq так: $x \preceq y \iff x \prec y \lor x = y$.

Вправа 2.5.7. Доведіть попереднє твердження.

Зауваження 2.5.8 — Отже, нестрогому порядку однозначно відповідає строгий порядок (і навпаки). Тому за основу береться нестрогий порядок, який називається *частковим порядком*.

Визначення 2.5.9 (відношення включення (підпорядкованості)). Нехай на множині 2^{Ω} всіх підмножин фіксованої множини Ω задане відношення R так: $XRY \iff X \subseteq Y$.

Таке відношення є частковим порядком, про що свідчить така теорема.

Теорема 2.5.10

Довільний частковий порядок на множині Ω ізоморфний звуженню відношення "включення" на деяку підмножину 2^{Ω} , тобто існує таке відображення $\Theta: \Omega \to 2^{\Omega}$, що $x \preceq y \iff \Theta(x) \subseteq \Theta(y)$.

Задача 2.5.1*. Доведіть попередню теорему.

Визначення 2.5.11 (відношення лінійного порядку (лінійного порядку)). Частковий порядок на Ω називається лінійним порядком, якщо він задовольняє зв'язності, тобто виконується одна з умов: $x \prec y, x = y, x \succ y$.

Визначення 2.5.12 (відношення домінування (домінування)). Відношення R називається домінуванням, якщо воно антирефлексивне й асиметричне.

Зауваження 2.5.13 — Отже, строгий частковий порядок — це частинний випадок відношення домінування (з додатковою властивістю транзитивності).

Визначення 2.5.14 (відношення подібності (толерантності)). Відношення R називається відношенням подібності, якщо воно рефлексивне й симетричне (позначення — " \approx ").

Зауваження 2.5.15 — Отже, еквівалентність — частинний випадок подібності (з додатковою властивістю транзитивності).

Визначення 2.5.16 (відношення нестрогої переваги (перевага)). Відношення "\geq" називається перевагою, якщо воно задовольняє властивості рефлексивності.

Зауваження 2.5.17 — Отже, відношення подібності, у свою чергу, є частинним випадком відношення переваги.

Рефлексивність відношень нестрогої переваги відображає той природний факт, що будь-яка альтернатива є не гіршою за себе.

У свою чергу, можна узагальнити відношення часткового порядку (строгого часткового порядку), відмовившись від властивості антисиметричності (асиметричності), отримавши відношення квазіпорядку (строгого квазіпорядку).

Твердження 2.5.18

Відношення строгого квазіпорядку і строгого часткового порядку співпадають.

Доведення. З антирефлексивності та транзитивності випливає асиметричність: якщо $xRy \wedge yRx$, то xRx (із транзитивності), що невірно (R- антирефлексивне). Отже, одне з відношень xRy або yRx не виконується, тобто R- асиметричне.

Введені відношення зведемо у таблиці:

	рефлексивність	антирефлексивність	симетричність	асиметричність	антисиметричність	транзитивність	зв'язність
Перевага	*						
Подібність (толерантність)	*		*				
Еквівалентність	*		*			*	
Квазіпорядок	*					*	
Впорядкування	*					*	*
Частковий порядок	*				*	*	
Лінійний порядок	*				*	*	*
Строгий квазіпорядок		*				*	
Строгий порядок		*				*	*
Домінування		*		*			
Строгий частковий порядок		*		*		*	
Строгий лінійний порядок		*		*		*	*

2.6 Бінарне відношення як принцип оптимальності

Якщо принципи оптимальності задаються бінарним відношенням, то відповідним чином здійснюється структурування множини альтернатив:

- розбиття на класи (наприклад, використовуючи теореми);
- упорядкування (за відповідними відношеннями порядку).

Вибір кращого (кращих) елементів множини здійснюється за допомогою поняття *R*-оптимальності.

Визначення 2.6.1 (R-максимуму). Елемент $x \in \Omega$ називається максимумом за відношенням R (R-максимумом), якщо $\forall y \in \Omega : xRy$.

Визначення 2.6.2 (*R*-мінімуму). Елемент $x \in \Omega$ називається *мінімумом* за відношенням R (*R*-мінімумом), якщо $\forall y \in \Omega : yRx$.

R-максимуми і R-мінімуми можуть як існувати, так і не існувати, у випадку існування можуть бути не єдиними.

Приклад 2.6.3

Так, для відношення "більше або рівне" на множині дійсних чисел не існує ні максимуму, ні мінімуму.

Визначення 2.6.4 (R-мажоранти). Елемент $x \in \Omega$ називається мажорантою за відношенням R (R-мажорантою), якщо $\forall y \in \Omega : y\overline{R}x$.

Визначення 2.6.5 (*R*-міноранти). Елемент $x \in \Omega$ називається мінорантою за відношенням R (*R*-мінорантою), якщо $\forall y \in \Omega : x\overline{R}y$.

Позначимо через $\Omega^+(R)$ множину R-максимумів, $\Omega_+(R)-R$ -мажорант, $\Omega^-(R)-R$ -мінімумів, $\Omega_-(R)-R$ -мінорант.

Теорема 2.6.6 (про зв'язок оптимумів і оберненого) $\Omega^+(R)=\Omega^-\left(R^{-1}\right),\ \Omega^-(R)=\Omega^+\left(R^{-1}\right),\ \Omega_+(R)=\Omega_-\left(R^{-1}\right),\ \Omega_-(R)=\Omega_+\left(R^{-1}\right).$

Доведення. Доведемо першу рівність (інші — аналогічно):

$$x \in \Omega^{+}(R) \iff \forall y \in \Omega : xRy \iff$$

$$\iff \forall y \in \Omega : yR^{-1}x \iff x \in \Omega^{-}(R^{-1}). \quad (2.6.1)$$

Теорема 2.6.7 (про зв'язок оптимумів і двоїстого) $\Omega^+(R) = \Omega_+ \left(R^d\right), \ \Omega^-(R) = \Omega_- \left(R^d\right), \ \Omega_+(R) = \Omega^+ \left(R^d\right), \ \Omega_-(R) = \Omega^- \left(R^d\right).$

Доведення. Доведемо першу рівність (інші — аналогічно):

$$x \in \Omega^{+}(R) \iff \forall y \in \Omega : xRy \iff \forall y \in \Omega : yR^{-1}x \iff \forall y \in \Omega : y\overline{R^{-1}}x \iff yR^{d}x \iff x \in \Omega_{+}(R^{d}).$$
 (2.6.2)

2.6.1 Оптимуми у теорії вибору

Множина $\Omega_{+}(R)$ відіграє важливу роль у теорії вибору.

Визначення 2.6.8 (множини недомінованих елементів). У теорії вибору $\Omega_+(R)$ називається також множиною *недомінованих* за R елементів.

Визначення 2.6.9 (*R*-оптимальних елементів). Елементи, що входять у множину $\Omega_+(R)$, називаються також *R-оптимальними*.

Множину R-оптимальних елементів позначатимемо через Ω^R , множину максимальних елементів — Ω_R .

Визначення 2.6.10 (максимального ланцюга). Максимальним ланцюгом відносно до R, заданому на Ω , називається найдовша послідовність x_1, \ldots, x_m така, що $x_i R x_{i+1}, i = \overline{1, m-1}$.

Теорема 2.6.11 (про гомоморфізм ациклічного відношення у лінійний порядок)

Гомоморфізм φ відношення (R,Ω) у лінійний порядок існує для довільного ациклічного R, але при цьому $|\varphi(\Omega)| \geq m$, де m — довжина максимального ланцюга в Ω .

 $\mathcal{A} oведення.$ Нехай Ω_1^R — множина недомінованих за Rелементів $\Omega,$ тобто $\Omega_1^R = \Omega^R$. Покладемо

$$\Omega_2^R = \left(\Omega \setminus \Omega_1^R\right)^R, \quad \dots, \quad \Omega_s^R = \left(\Omega \setminus \bigsqcup_{i=1}^{s-1} \Omega_i^R\right)^R, \quad (2.6.3)$$

причому

$$\Omega = \bigsqcup_{i=1}^{s} \Omega_i^R. \tag{2.6.4}$$

Гомоморфізм φ можна задати формулою $\varphi(x) = s - i$, якщо $x \in \Omega_i^R$. \square

2.7Контрольні запитання

Задача 2.7.1. Скільки існує різних відношень із множини A у множину B, якщо |A| = n, |B| = m (будемо говорити: n-множина і m-множина)?

Задача 2.7.2. Скільки є таких відношень R із n-множини в m-множину,

- 1. $\forall x : \exists y : xRy$;
- $2. \ \forall y: \exists x: xRy:$

Задача 2.7.3. Яку особливість має граф відношення R з A в B, якщо:

- 1. $xRy \wedge xRz \implies y = z$; 2. $xRy \wedge zRx \implies x = z$:

- 3. $\forall x : \exists y : xRy;$ 7. $\neg \forall x : \exists y : xRy;$ 11. $\neg \forall y : \exists x : xRy;$

- 4. $\exists y : \forall x : xRy;$ 8. $\forall x : \neg \exists y : xRy;$ 12. $\forall y : \neg \exists x : xRy;$

- 5. $\forall y : \exists x : xRy;$ 9. $\neg \exists y : \forall x : xRy;$ 13. $\neg \exists x : \forall y : xRy;$

- 6. $\exists x : \forall y : xRy;$ 10. $\exists y : \neg \forall x : xRy;$ 14. $\exists x : \neg \forall y : xRy.$

Задача 2.7.4. Які з наведених нижче відношень у множині цілих чисел є рефлексивними, транзитивними, симетричними й антисиметричними:

- 1. x < y; 4. x + y = 0; 7. x = y; 10. $|x y| \le 1$;

- 2. $x \le y$; 5. |x| > y; 8. x + 1 = y; 11. $y \mid x$;

- 3. |x| = |y|; 6. $|x| \ge y$; 9. |x y| = 1; 12. $y \nmid x$.

Задача 2.7.5. Скільки існує різних рефлексивних, симетричних, антисиметричних відношень у *n*-елементній множині?

Задача 2.7.6. Довести, що максимум за частковим порядком не є єдиним.

Задача 2.7.7. Навести приклади відношень:

- 1. рефлексивного та симетричного, але не транзитивного;
- 2. рефлексивного і транзитивного, але не симетричного;
- 3. симетричного і транзитивного, але не рефлексивного

Задача 2.7.8*. Довести, що якщо R-відношення часткового порядку, то R^{-1} також є частковим порядком.

Задача 2.7.9^{*}. Довести, що для лінійно впорядкованої множини поняття мажоранти (міноранти) і максимума (мінімума) збігаються.

Задача 2.7.10 † . Довести, що серед будь-яких шести осіб знайдуться або три попарно знайомих, або три попарно незнайомих.