Lec 10

Ley Properties R

any vector space V

6 5 Pan

· Coordinate.

- o subspace
 - inspace.
- · linear dependence.
- · basis
- · (mear transformation: V->W

$$\underline{\varepsilon_{\times}}$$
. $V = \mathbb{R}^{m \times n}$

addition A+B

scalar mult CA.

$$\mathcal{E}_{\times}$$
 $V = \mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\}$

addition = x+y:= xy

mult: cx := cx.

not closed under scalar mult.

$$\sum_{x} V = \left\{ f(x) = \sum_{n=1}^{N} a_n \cos(nx) \middle| a_n \in \mathbb{R}, x \in \mathbb{R} \right\}$$

add:
$$(f+g)(x) := f(x)+g(x)$$

$$mu(t: (cf)(x) = c\cdot f(x)$$

$$\sum x$$
 $V = 2 = \{ integers \}$.

add: At y

mult:
$$Cx$$
. $C=\frac{1}{2}$, $\gamma=1$,

$$cx = \frac{1}{2} \notin \mathbb{Z}$$

$$\leq x$$
. $V = Q = {rational number.}$

$$C = \pi$$
 $\chi = 1$. $C = \pi \notin Q$

$$\underline{\mathcal{E}} \times V = \mathbb{P}_3$$

Find a basis of V.

Guess: $\{1, x, x^2, x^3\}$. dim V=4

(not too hig ,i.e., lin. indep.)

 $0 \circ + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 = 0$.

Fundamental thm of algebra.

e.g.
$$x^2 - 1 = 0$$
. roots $\chi_1 = 1, \chi_2 = -1$

$$\chi^2 + 1 = 0$$
. roots $\chi_1 = i, \chi_2 = -i$

$$i^2 = -1$$

$$\chi^2 = 0$$
, roots $x = 0$ (a. multiplicity 2.

$$a_0 + a_1x + a_2x^2 + a_5x^3 = 0$$
 has at most

3 roots in G. unless $a_0 = a_1 = a_2 = a_3 = 0$

= trivial sol. only.

=) |in. indep.

2) (not too small, i.e. span = V)

by definition.

 \Box .

 P_n basis $\{1, x, x^2, \dots, x^n\}$.

 $dim |P_n = n+1$.

P = { polynomials of finite degree}.

 $dim P = \infty$.

RARELY USED in THIS CLASS.

$$T: V \longrightarrow W$$

$$f \mapsto \frac{df}{dx}$$

- O Is T a lin. trans?
- Dimage (T). Null(T)
 Basis

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3.$$

$$(Tf)(x) = \frac{df}{dx}(x) = a_1 + 2a_2x + 3a_3x^2$$

$$\in \mathbb{P}_2 \subseteq \mathbb{P}_3$$
.

D Linearity.

$$T(f+g) = \frac{d}{dz}(f+g)$$

$$= \frac{df}{dz} + \frac{dg}{dz} = T(f) + T(g)$$

$$T(cf) = \frac{d}{dx}(cf)$$

$$= c \frac{df}{dx}.$$

Therefore T is a well defined lin. trans.

(2)
$$Image(T) = \{Tf | f \in P_3\} = P_2$$

 $|Vull(T) = \{f \in P_3 | Tf = 0\}$
 $|Image(T) = \{f \in P_3 | Tf = 0\}$
 $|Image(T) = \{f \in P_3 | Tf = 0\}$

3 basis for Image (T) { 1, x, x^2 }.

" " Nall(T) { | }