Morphological Image Processing Morphological Image Processing

Ming-Sui (Amy) Lee Lecture 04

- Morphology
 - Morpho-: shape/form/structure
 - -ology: study
- Morphological image processing
 - Post-processing
 - Binary images gray-level image

- For some applications
 - Structures of objects composed by lines or arcs
 - Care about the pattern connectivity
 - Independent of width

Fingerprint patterns

- Binary image connectivity
 - Pixel bond
 - Specify the connectivity of a pixel with its neighbors
 - Four-connected neighbor → bond = 2
 - Eight-connected neighbor → bond = 1

- Minimally connected
 - Elimination of any black (object) pixel (except boundary pixels) results in disconnection of the remaining black (object) pixels

Binary image connectivity

Example

Another example

Four-connectivity v.s. Eight-connectivity

B = 8

- Binary hit or miss transformations
 - Select a nxn hit pattern (odd-sized mask)
 - Compare with a nxn image window
 - Match \rightarrow hit \rightarrow change the central pixel value
 - Otherwise → miss → do nothing
 - Example
 - To clean the isolated binary noise

```
0 1 0 Hit or miss?
```

0 0 0

Binary hit or miss transformations

- 0 → background
- 1 → object (black)

Logical expression

$$\begin{bmatrix} X_{3} & X_{2} & X_{1} \\ X_{4} & X & X_{0} \\ X_{5} & X_{6} & X_{7} \end{bmatrix} \qquad G(j,k) = X \cap (X_{0} \cup X_{1} \cup \dots \cup X_{7})$$

Example

0 0 0 o If
$$G(j,k) = X \cap 1 \rightarrow \text{do nothing}$$

0 1 0
$$\circ$$
 If $G(j,k) = X \cap 0$

If
$$X = 0 \Rightarrow G(j, k) = 0 \Rightarrow$$
 do nothing

Hit or miss?

If
$$X = 1 \rightarrow \text{hit} \rightarrow G(j, k) = 0$$

Binary hit or miss transformations

$$G(j,k) = X \cap (X_0 \cup X_1 \cup \dots \cup X_7)$$

$$\Rightarrow 2^9 \text{ possible mask patterns}$$

- Implementation
 - Pixel stack
 - Treat the 8 neighboring pixels as a "byte"

$$\begin{bmatrix} X_3 & X_2 & X_1 \\ X_4 & X & X_0 \\ X_5 & X_6 & X_7 \end{bmatrix} \otimes \begin{bmatrix} 2^{-4} & 2^{-3} & 2^{-2} \\ 2^{-5} & 2^0 & 2^{-1} \\ 2^{-6} & 2^{-7} & 2^{-8} \end{bmatrix}$$

Look-Up-Table (LUT)

- Simple morphological processing based on binary hit or miss rules
 - Additive operators $(0 \rightarrow 1)$
 - Interior fill
 - Diagonal fill
 - Bridge
 - 8-neighbor dilate

Interior fill

Create a black pixel if all four-connected neighbor pixels are black

Diagonal fill

 Create a black pixel if creation eliminates the eightconnectivity of the background

1	0		1	0
0	1		1	1

Bridge

 Create a black pixel if creation results in connectivity of previously unconnected neighboring black pixels

1	0	0	1	0	0	0 -
0	0	1	0	1	1	1 -
0	0	0	0	0	0	

0 → background1 → object (black)

8-neighbor dilate

 Create a black pixel if at least one eight-connected neighbor pixel is black

0	0	0	0	0	0
0	0	0	0	1	0
1	0	0	1	0	0

- Simple morphological processing based on binary hit or miss rules
 - Subtractive operators $(1 \rightarrow 0)$
 - Isolated pixel removal
 - Spur removal
 - Interior pixel removal
 - H-break / Eight-neighbor erode

- Isolated pixel removal
 - Erase a black pixel with eight white neighbors

- Spur removal
 - Erase a black pixel with a single eight-connected neighbor

1	0	0	1	0	0
0	1	0	0	0	0
0	0	0	0	0	0

Interior pixel removal

Erase a black pixel if all four-connected neighbors are black

0 → background1 → object (black)

H-break

Erase a black pixel that is H-connected

1	1	1	1	1	1
0	1	0	0	0	0
1	1	1	1	1	1

- Eight-neighbor erode
 - Erase a black pixel if at least one eight-connected neighbor pixel is white

Example

Subtractive operator

- doesn't prevent total erasure and ensure connectivity
- In this case, only a 3x3 window does not sufficient to tell whether the final stage of iteration is reached or not

Solutions

- Approach I
 - Apply a filter with larger size
 - "fairly complicated patterns", "many combinations"

Approach II

- Consider a structural (composite) design with 3x3 filters: two-stage approach
 - Application dependent
 - Thinning, shrinking, skeletonizing
 - Share the same structure but vary in some modular details

- Advanced morphological processing
 - Shrinking/Thinning/Skeletonizing
 - Conditional erosion
 - Prevent total erasure & Ensure connectivity

- Advanced morphological processing
 - Shrinking/Thinning/Skeletonizing
 - Conditional erosion
 - Prevent total erasure & Ensure connectivity

Shrinking/Thinning/Skeletonizing

- Stage I
 - Generate a binary image M(j,k) called the conditional array (or mask)
 - If M(j,k)=1, it means (j,k) is a candidate for erasure
 - If M(j,k)=0, it means no further operation is needed on (j,k)

Stage II

- Based on the center pixel, X, and M(j,k) pattern, we decide whether to erase X or not in the output G(j,k)
 - O If there's a hit → do nothing
 - If there's a miss → erase the center pixel

Stage I → Part of Table 14.3-1

 $0 \ 0 \ 0$

1 0 0

TABLE 14.3-1. Shrink, Thin and Skeletonize Conditional Mark Patterns [M = 1] if hit

TABLE	14.3-1	. Shrink, Thin and Skeletoniz	ze Conditional Mark Patterns $[M = 1]$ if hit
Table	Bon	d	Pattern
		0 0 1 1 0 0 0 0 0	0 0 0
S	1	0 1 0 0 1 0 0 1 0	0 1 0
		0 0 0 0 0 0 1 0 0	Table: Shrink (S), Thin (T), Skeletonize (K)
			Bond: classification, narrow down the
		0 0 0 0 1 0 0 0 0	0 0 0 search space
S	2	0 1 1 0 1 0 1 1 0	O 1 O Pattern: coded as an 8-bit symbol for a filter
		0 0 0 0 0 0 0 0 0	0 1 0
		0 0 1 0 1 1 1 1 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S	3	0 1 1 0 1 0 0 1 0	1 1 0 1 1 0 0 1 0 0 1 0 0 1 1
		0 0 0 0 0 0 0 0 0	0 0 0 1 0 0 1 1 0 0 1 1 0 0 1
		0 1 0 0 1 0 0 0 0	0 0 0
TK	4	0 1 1 1 1 0 1 1 0	$0 1 1 \qquad $
		0 0 0 0 0 0 0 1 0	$\begin{bmatrix} X_3 & X_2 & X_1 \\ X_3 & X_2 & X_1 \end{bmatrix}$
			$\begin{bmatrix} X_3 & X_2 & X_1 \\ X_4 & X & X_0 \\ X_5 & X_6 & X_7 \end{bmatrix} \otimes \begin{bmatrix} 2^{-4} & 2^{-3} & 2^{-2} \\ 2^{-5} & 2^0 & 2^{-1} \\ 2^{-6} & 2^{-7} & 2^{-8} \end{bmatrix}$
		0 0 1 1 1 1 1 0 0	$0 \ 0 \ 0$
STK	4	0 1 1 0 1 0 1 1 0	$\begin{bmatrix} A_5 & A_6 & A_7 \end{bmatrix} \begin{bmatrix} 2 & 2 & 2 \end{bmatrix} $ 21

Stage II → Part of Table 14.3-2

TABLE 14.3-2. Shrink and Thin Unconditional Mark Patterns $[P(M, M_0, M_1, M_2, M_3, M_4, M_5, M_6, M_7) = 1$ if hit]^a

					Pat	tern				
Spur 0 0 <i>M</i> 0 <i>M</i> 0 0 0 0	M0 0 0 M0 0 0 0	Single 4 0 0 0 0 <i>M</i> 0 0 <i>M</i> 0	0 0 0 0 <i>MM</i> 0 0 0	on	where	P(M,	$\gamma [\overline{M} \cup F]$ M_1, \ldots, N_n ing logical	$M_7)$	is an	•
L Cluste 0 0 M 0 MM 0 0 0	o MM 0 M0 0 0 0	<i>MM</i> 0 0 <i>M</i> 0 0 0 0	M0 0 MM0 0 0 0	0 0 0 MM0 M0 0	0 0 0 0 <i>M</i> 0 <i>MM</i> 0	0 0 0 0 <i>M</i> 0 0 <i>MM</i>	0 <i>MM</i>			
4-Conne 0 <i>MM</i> <i>MM</i> 0 0 0 0	ected offse MM0 0 MM 0 0 0	0 M0 0 MM 0 0 M	0 0 <i>M</i> 0 <i>MM</i> 0 <i>M</i> 0			M_3 M_4 M_4 M_5 M_5	$\begin{bmatrix} M_1 & M_1 \\ M_0 & M_7 \end{bmatrix} \otimes$	$\begin{bmatrix} 2^{-4} \\ 2^{-5} \\ 2^{-6} \end{bmatrix}$	2^{-3} 2^{0} 2^{-7}	$\begin{bmatrix} 2^{-2} \\ 2^{-1} \\ 2^{-8} \end{bmatrix}$

Stage II → Part of Table 14.3-2 (cont'd)

Spur corner cluster

Corner cluster

MMD

MMD

DDD

Tee branch

```
DM0
     0 MD
           0 \ 0 \ D \ D \ 0
                              0 M0
                       DMD
                                    0 M0
                                          DMD
MMM
     MMM
           MMM
                  MMM
                        MM0
                              MM0
                                    0 MM
                                          0 MM
D00
     0 \ 0 \ D
           0 MD
                  DM0
                        0 M0
                              DMD
                                    DMD
                                          0 M0
```

$$A \cup B \cup C = 1$$
, $D = 0 \cup 1$, $A \cup B = 1$

Stage II → Part of Table 14.3-3

TABLE 14.3-3. Skeletonize Unconditional Mark Patterns

 $[P(M, M_0, M_1, M_2, M_3, M_4, M_5, M_6, M_7) = 1 \text{ if hit}]^a$ $A \cup B \cup C = 1, D = 0 \cup 1$

					Pa	ttern					
Spur											
0	0	0	0	0	0	0	0	M	M	0	0
0	M	0	0	M	0	0	M	0	0	M	0
0	0	M	M	0	0	0	0	0	0	0	0
Singl	e 4-co	nnection									
0	0	0	0	0	0	0	0	0	0	M	0
0	M	0	0	M	M	M	M	0	0	M	0
0	M	0	0	0	0	0	0	0	0	0	0
L cor	ner										
0	M	0	0	M	0	0	0	0	0	0	0
0	M	M	M	M	0	0	M	M	M	M	0
0	0	0	0	0	0	0	M	0	0	M	0

Example - shrinking

Example - shrinking

Shrinking

Erase black pixels such that an object without holes erodes to a single pixel at or near its center of mass, and an object with holes erodes to a connected ring lying midway between each hole and its nearest outer boundary

Thinning

Erase black pixels such that an object without holes erodes to a minimally connected stroke located equidistant from its nearest outer boundaries, and an object with holes erodes to a minimally connected ring midway between each hole and its nearest outer boundary

Skeletonizing

 The medial axis skeleton consists of the set of points that are equally distant from two closest points of an object boundary

Algebraic operations on binary arrays

0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0	1	1
0	0	1	1	0	0	0	1	1	1	1	0	1	1	0	0	1	1
0	0	1	1	0	0	0	1	1	1	1	0	1	1	0	0	1	1
0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
		1	4					E	3					1	4		
													СО	mpl	em	ent	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0
0	1	1	1	1	0	0	0	1	1	0	0	0	1	0	0	1	0
0	1	1	1	1	0	0	0	1	1	0	0	0	1	0	0	1	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		A	JB					A	n B					A X	OR	В	
		un	ion				int	ers	ecti	ion			exc	clus	ive	OR	

AND

XOR

OR

Generalized dilation and erosion

Reflection and translation of a binary image

Dilation

$$G(j,k) = F(j,k) \oplus \underline{H(j,k)}$$

Structuring element

Erosion

$$G(j,k) = F(j,k)\Theta H(j,k)$$

- **Dilation** $G(j,k) = F(j,k) \oplus H(j,k)$
 - Can be implemented in several ways
 - Minkowski addition definition

- **Erosion** $G(j,k) = F(j,k)\Theta H(j,k)$
 - Can be implemented in several ways
 - Dual relationship of Minkowski addition

$$G(j,k) = \bigcap_{(r,c)\in H} T_{r,c} \{F(j,k)\}$$

G(j,k)

H(j,k)

F(j,k)

F(j,k) H(j,k) G(j,k)

Example original original Dilation **Erosion Structuring** element

Example

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Structuring element

0	1	0
1	1	1
0	1	0

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Example

The original fingerprint contains ridges with width of several pixels. The skeletonized fingerprint contains ridges only a single pixel wide.

Applications

- Boundary Extraction
 - Extract the boundary (or outline) of an object
- Hole Filling
 - Given a pixel inside a boundary, hole filling attempts to fill that boundary with object pixels
- Connected Component Labeling
 - Scan an image and groups its pixels into components based on pixel connectivity

Boundary Extraction

$$\beta(F(j,k)) = F(j,k) - (F(j,k)\Theta H(j,k))$$

39

Hole Filling

$$G_i(j,k) = (G_{i-1}(j,k) \oplus H(j,k)) \cap F^c(j,k)$$
 $i = 1,2,3...$
 $G(j,k) = G_i(j,k) \cup F(j,k)$

Connected Component Labeling

$$G_i(j,k) = (G_{i-1}(j,k) \oplus H(j,k)) \cap F(j,k)$$
 $i = 1,2,3,...$

Original Image

Labelled Components

Applications

Open operator

$$G(j,k) = F(j,k) \circ H(j,k) = [F(j,k)\Theta\widetilde{H}(j,k)] \oplus H(j,k)$$

- With a compact structuring element
 - Smoothes contours of objects
 - Eliminates small objects
 - Breaks narrow strokes

- Applications
 - Close operator

$$G(j,k) = F(j,k) \bullet H(j,k) = [F(j,k) \oplus H(j,k)]\Theta\widetilde{H}(j,k)$$

- With a compact structuring element
 - Smoothes contours of objects
 - Eliminate small holes
 - Fuses short gaps between objects

original

(a) close

(b) open

Compare (a) with the original image

Compare (b) with the original image

MCBall

Some videos

Morphing

https://www.youtube.com/watch?v=-rnVUzA8yMY

SIGGRAPH

- O **2013** https://www.youtube.com/watch?v=JAFhkdGtHck
- O **2015** https://www.youtube.com/watch?v=XrYkEhs2FdA
- O 2017 https://www.youtube.com/watch?v=5YvIHREdVX4
- O 2018 https://www.youtube.com/watch?v=t952yS8tcg8
- O 2019 https://www.youtube.com/watch?v=EhDr3Rs5fTU
- O **2020** https://www.youtube.com/watch?v=jYdMKdRUq_8
- O 2021 https://www.youtube.com/watch?v=Ros7ZXqLbFg