LAB 3

Model and control of a half quadrotor system

Symbol	Description	Value / Unit
Variables		
V_m	Controlled input voltage	V
E_{b}	Back electromotive force (emf)	V
I_m	Motor current	A
Ω_m	Motor and propeller rotation speed	rad.s ⁻¹
T_d	Resistant torque	N.m
T_m	Applied torque from the DC motor	N.m
DC motor constar	nts	•
R_{m}	Terminal resistance	8.4 Ω
k _t	Torque constant	0.042 N. m. A ⁻¹
k_m	Motor back-emf constant	0.042 N. m. A ⁻¹
J_m	Rotor inertia	$4.0 \times 10^{-6} \ kg. m^2$
L_m	Rotor inductance	1.16 mH
Propeller constan	its	
k_{1}, k_{2}	Drag / air resistance coefficient	See Table 2
J_h	Propeller hub inertia	$3.04 \times 10^{-9} kg.m^2$
J_p	Propeller inertia	$7.2 \times 10^{-6} kg.m^2$

Question 1: model of the propulsive device.

Question 2: find the equilibrium point.

$$L_m \frac{dI_m(t)}{dt} = V_m(t) - R_m I_m(t) - k_m \Omega_m(t)$$

$$J_{eq} \frac{d\Omega_m(t)}{dt} = k_m I_m(t) - T(t)$$

$$T(t) = k_1 \Omega_m(t) + k_2 \Omega_m(t)^2$$

small variations

$$\begin{cases} V_m(t) &= V + v(t) \\ I_m(t) &= I + i(t) \\ \Omega_m(t) &= \Omega + \omega(t) \\ F_m(t) &= F + f(t) \end{cases}$$

$$V = V$$
, $I = I_0$?, $\Omega = w_0$?

Linearization at first order $\Omega_m(t)^2 = (w_0 + \omega)^2 = w_0^2 + 2ww_0 + w^2 \approx w_0^2 + 2ww_0$

Equilibrium point
$$\Rightarrow \begin{cases} V_0 - R_m I_0 - k_m w_0 = 0 & w_0 = 224 \\ k_m I_0 - T_0 = k_1 w_0 + k_2 w_0^2 - k_m I_0 = 0 & I_0 = 0.69 \end{cases}$$

Question 3: Linearization.

$$\frac{di(t)}{dt} = \frac{1}{L_m} \left(v_m(t) - R_m i(t) - k_m \omega(t) \right)$$

$$\frac{d\omega(t)}{dt} = \frac{1}{J_{eq}} (k_m i(t) - T(t)) = \frac{1}{J_{eq}} (k_m i(t) - (k_1 + 2k_2 w_0)\omega(t))$$

$$T(t) = k_1 \omega(t) + 2k_2 w_0 \omega(t)$$

$$F(t) = k_3 \omega(t) + 2k_4 w_0 \omega(t)$$

$$\frac{\omega}{\sigma} = \frac{k_m L_{eq} + k_{\perp} L_{m+2} k_{\perp} w_{o} L_{m}}{k_{\perp} + 2 k_{\perp} w_{o} L_{m}} + k_{\perp} + 2 k_{\perp} w_{o} R_{m}$$

$$\frac{F}{\omega} = k_{\perp} + 2 k_{\perp} \cdot w_{o}$$

Transfer function

State-space representation

```
A = [(-k1-2*k2*w0)/Jeq km/Jeq ; -km/Lm -Rm/Lm];
B = [0 ; 1/Lm];
C = [k3+2*k4*w0 0];
D = 0;
GTsslin = ss(A,B,C,D);
bode(GTsslin)
eig(A)
```

Question 3 bis: create and convert Matlab Linear Systems Models

Equilibrium point

```
V0 = 10;
W0 = 224;
```

Transfer function

```
num = (k3+2*k4*w0)*km;
den = [Jeq*Lm (Rm*Jeq+k1*Lm+2*k2*w0*Lm) (km*km+Rm*k1+2*k2*w0*Rm)];
Gtflin = tf(num,den)
roots(den)
figure(1); bode(Gtflin); grid on;hold on;
```

State-space representation

```
A = [(-k1-2*k2*w0)/Jeq km/Jeq ; -km/Lm -Rm/Lm];
B = [0 ; 1/Lm];
C = [k3+2*k4*w0 0];
D = 0;
GTsslin = ss(A,B,C,D);
bode(GTsslin)
eig(A)
```

Question 4: create the Simulink nonlinear model

Electric_sol.slx

Question 5: find the equilibrium point

Set initial values (or not: in that case use [])

```
%x0=[];u0=[];y0=[];
x0=[](u0=10;)0=[]; %Initial input at 10
```

Select the index of states and/or states which are to be freezed:

```
ix=[];
iu=1; %The input n°1 is set constant initial value was set at 10
iy=[];
```

Find the equilibrium point:

```
[xtrim,utrim,ytrim,dxtrim] = trim('Electrical_sol',x0,u0,y0,ix,iu,iy)
```

```
utrim = xtrim = 224.4221 0.0684
```

Question 6: find the linearized model

Find the linearized model at the equilibrium point. (function linmod)

```
[A,B,C,D] = linmod('Electrical_sol', xtrim, utrim)
```

Create a state space model and a transfer function model

```
Gss=ss(A,B,C,D);
Gss=Gss(1,1);
Gtf=tf(Gss)
damp(Gtf)
```

Transfer function between output 1 and input 1 => F/v

$$\frac{F}{V} = \frac{903.7}{s^2 + 7243 s + 1.445e05}$$

Question 7: Analyze the system properties

2 different dynamics: 1 slow & 1 quick -7.22e+03

Slow dynamic

Question 8: the Simulink simulation model QUADROTOR CONFIGURATION

Question 9: find the equilibrium point

```
x0=[];u0=0;y0=[]; %Input is initialized at 0V
ix=[];
iu=1; %Input 1 is freezed
iy=[];
[xtrim,utrim,ytrim,dxtrim] = trim('Mechanical_sol',x0,u0,y0,ix,iu,iy)
```

The system is of order 6 (two states for each motors and two states more for the pendulum)

```
xtrim =

0.0000
224.4221
224.4221
-0.0000
0.0684
0.0684
```

Question 10: find the linearized model

	Pole	Damping	Frequency (rad/TimeUnit)	Time Constant (TimeUnit)
6 poles	-1.65e-01 + 1.92e+00i -1.65e-01 - 1.92e+00i -2.00e+01 -7.22e+03 -7.22e+03	8.55e-02 8.55e-02 1.00e+00 1.00e+00	1.93e+00 1.93e+00 2.00e+01 7.22e+03 7.22e+03	6.06e+00 6.06e+00 5.00e-02 1.38e-04 1.38e-04
	-2.00e+01	1.00e+00	2.00e+01	5.00e-02

Question 11: observability and governability

Compute controlability matrix

```
Co = ctrb(A,B);
```

Determine the number of uncontrollable states.

```
unco = length(A) - rank(Co) unco = 4
```

Do the same for observability

```
Obs = obsv(A,C);
unobs = length(A) - rank(Obs) unobs = 2
```

Question 12: model reduction

Use minreal to obtain the pole-zero cancelled transfer function

```
Gtf_reduced=minreal(Gmec)
[A,B,C,D]=ssdata(Gtf_reduced)
bode(Gtf_reduced)
damp(A)
```

Pole	Damping	Frequency (rad/TimeUnit)	Time Constant (TimeUnit)
-7.22e+03	1.00e+00	7.22e+03	1.38e-04
-2.00e+01	1.00e+00	2.00e+01	5.00e-02
-1.65e-01 + 1.92e+00i	8.55e-02	1.93e+00	6.06e+00
-1.65e-01 - 1.92e+00i	8.55e-02	1.93e+00	6.06e+00