

1. Во остроаголниот триаголник ABC, точката M е средина на страната BC и центрите на припишаните кружници во однос на M на триаголниците AMB и AMC се D и E, соодветно. Опишаната кружница околу триаголникот ABD ја сече правата BC во точките B и F. Опишаната кружница околу триаголникот ACE ја сече правата BC во точките C и G. Докажи дека BF = CG.

Решение. Имаме дека $\angle ADB = 90^{\circ} - \frac{1}{2} \angle AMB$ и $\angle AEC = 90^{\circ} - \frac{1}{2} \angle AMC$.

Нека опишаните кружници околу $\triangle ADB$ и $\triangle AEC$ ја сечат повторно правата $\triangle AM$ во точките $\triangle P$ и $\triangle P$, соодветно, Да забележиме дека $\triangle M$ лежи надвор од круговите околу $\triangle ADB$ и $\triangle AEC$, бидејќи $\triangle ADB + \triangle AMB < 180^\circ$ и $\triangle AEC + \triangle AMC < 180^\circ$, па $\triangle P$ и $\triangle P$ лежат на полуправата $\triangle MA$. Уште, $\triangle BPM = \triangle BDA = 90^\circ - \frac{1}{2} \triangle PMB$, од каде добиваме дека триаголникот $\triangle BPM$ е рамнокрак, односно $\triangle MP = MB$. Сосема слично, $\triangle MP' = MC = MB$, па $\triangle P' = P$.

Сега, од степен на точката M , имаме $MB \cdot MF = MP \cdot MA = MC \cdot MG$, од каде MF = MG = MA , па имаме BF = CG .

2. Нека n е природен број. Ако $r \equiv n \pmod{2}$ и $r \in \{0,1\}$, тогаш најди го бројот на целобројни решенија на системот равенки

$$\begin{cases} x + y + z = r \\ |x| + |y| + |z| = n \end{cases}$$

Решение. Нека n е парен природен број, односно r=0. Тогаш проблемот се сведува на наоѓање на бројот на целобројни решенија на системот

$$\begin{cases} x + y + z = 0 \\ |x| + |y| + |z| = n \end{cases} \dots (1)$$

Лема. 1) Барем еден од броевите x, y, z има апсолутна вредност $\frac{n}{2}$.

2) Секој од броевите x, y, z има апсолутна вредност $\leq \frac{n}{2}$.

Доказ. Очигледно е дека еден од броевите x, y, z мора да биде позитивен, затоа што во спротивно добиваме контрадикција со првата равенка од системот (1). Без губење од општоста, нека x > 0.

Навистина, ако $x > \frac{n}{2}$, од x = -(y+z) и од $|y| + |z| \ge |y+z| > \frac{n}{2}$ добиваме контрадикција со втората равенка од системот (1).

Ако $0 < x < \frac{n}{2}$, тогаш барем еден од броевите y, zе помал од 0. Разгледуваме два случаи: Случај 1, y < 0, z < 0 и Случај 2, yz < 0.

Во Случај 1. |y+z|=|y|+|z| и y+z=-x од каде $|x|+|y|+|z|<\frac{n}{2}+\frac{n}{2}$, што е контрадикција. Во Случај 2. Нека y<0< z. Но тогаш x+z=-y, односно |y|=|x+z|=|x|+|z| од каде 2|y|=|y|+|x+z|=|x|+|y|+|z|=n или $|y|=\frac{n}{2}$.

Аналогно се третира случајот x < 0. Со тоа лемата е докажана.

Продолжение на решението на задачата. Нека само еден од броевите x, y, z е позитивен. Без губење на општост нека x > 0, тогаш $x = \frac{n}{2}$ и $y + z = -\frac{n}{2}$. Заради лемата, добиваме дека секоја од следниве тројки е решение на системот (1):

$$\left(\frac{n}{2}, -\frac{n}{2}, 0\right), \left(\frac{n}{2}, -\frac{n}{2} + 1, -1\right), \left(\frac{n}{2}, -\frac{n}{2} + 2, -2\right), \dots, \left(\frac{n}{2}, 0, -\frac{n}{2}\right)$$

што се вкупно $\frac{n}{2}+1$ на број. Со менувањето на позицијата на $\frac{n}{2}$ (на втора, трета координата и истата дискусија) добиваме вкупно $3\left(\frac{n}{2}+1\right)$ тројки од решенија на системот (1). Ако два од x,y,z се позитивни, без губење општост x>0,y>0, тогаш $z=-\frac{n}{2}$ и $x+y=\frac{n}{2}$. Заради лемата, добиваме дека секоја од следниве тројки е решение на системот (1):

$$(1,\frac{n}{2}-1,-\frac{n}{2}),(2,\frac{n}{2}-2,-\frac{n}{2}),(3,\frac{n}{2}-3,-\frac{n}{2}),...,(\frac{n}{2}-1,1,-\frac{n}{2})$$

што се вкупно $\frac{n}{2}-1$ тројки кои се решенија на системот (1). Со менувањето на позицијата на $-\frac{n}{2}$ (на прва, втора координата и истата дискусија) добиваме вкупно $3\left(\frac{n}{2}-1\right)$ тројки од решенијана системот (1). Конечно добиваме за вкупниот број на решенија на системот (1) е

$$3\left(\frac{n}{2}+1\right)+3\left(\frac{n}{2}-1\right)=3n.$$

Нека n е непарен природен број, односно r=1. Тогаш системот (1) е од облик

$$\begin{cases} x + y + z = 1 \\ |x| + |y| + |z| = n \end{cases}$$

Аналогно на случајот n парен број (соодветната лема е истата добиена со замена на $\frac{n}{2}$ со $\frac{n+1}{2}$), добиваме вкупен број на решенија на системот

$$3\left(\frac{n-1}{2}+1\right)+3\left(\frac{n-1}{2}\right)=3n.$$

3. Нека ABC е рамнокрак триаголник, AB = AC и точката M е средина на BC. Точката P е избрана така што PB < PC и PA е паралелна на BC. Нека X и Y се точки од правите PB и PC, соодветно, така што B лежи на отсечката PX, C лежи на отсечката PY и $\angle PXM = \angle PYM$. Докажи дека четириаголникот APXY е тетивен.

Решение. Бидејќи AB = AC, AM е симетрала на отсечката BC, па $\angle PAM = \angle AMC = 90^{\circ}$.

Нека Z е пресечна точка на правата AM и нормалата на PC која минува низ Y (да забележиме дека Z лежи на полуправата AM после M). Имаме, $\angle PAZ = \angle PYZ = 90^\circ$. Следува дека точките P,A,Y и Z лежат на иста кружница.

Бидејќи $\angle CMZ = \angle CYZ = 90^\circ$, четириаголникот CYZM е тетивен, па следува $\angle CZM = \angle CYM$. Од условот, $\angle CYM = \angle BXM$, и бидејќи ZM е симетрала на аголот $\angle BZC$, имаме $\angle CZM = \angle BZM$. Значи, $\angle BXM = \angle BZM$. Оттука, имаме дека точките B, X, Z и M лежат на иста кружница, па $\angle BXZ = 180^\circ - \angle BMZ = 90^\circ$.

Конечно, имаме $\angle PXZ = \angle PYZ = \angle PAZ = 90^\circ$, следува точките P, A, X, Y, Z лежат на иста кружница, односно четириаголникот APXY е тетивен, што и требаше да се докаже.

Забеленка. Конструкцијата на точката Z, може да биде воведена и на друг начин. Еден начин е точката Z да биде воведена како втор пресек на кружницата CMY и правата AM. Друг начин да биде воведена точката Z како втора пресечна точка на кружниците опишани околу триаголниците CMY и BMX.

4. Определи ги сите функции $f: \mathbb{N} \to \mathbb{N}$ такви што

$$n!+f(m)!|f(n)!+f(m!)$$

за секои $m, n \in \mathbb{N}$.

Решение. За m = n = 1 од (*) добиваме 1 + f(1)!|f(1)!+f(1) и затоа 1 + f(1)!|f(1)-1. Но, |f(1)-1| < f(1)!+1, па затоа од 1 + f(1)!|f(1)-1 следува f(1)-1=0, т.е. f(1)=1.

Ако во (*) ставиме m=1 добиваме n!+1|f(n)!+1, па затоа $n! \le f(n)!$, односно $n \le f(n)$. Од друга страна, ставаме (m,n)=(1,p-1), каде p е произволен прост број и користејќи ја теоремата на Вилсон добиваме дека p|(p-1)!+1|f(p-1)!+1, па затоа f(p-1) < p. Но, $f(p-1) \ge p-1$ и како f(p-1) < p заклучуваме дека

$$f(p-1) = p-1$$
.

Понатаму, нека фиксираме природен број m. За секој прост број p ставаме n=p-1 и од (*) добиваме (p-1)!+f(m)!|(p-1)!+f(m!), што значи дека

$$(p-1)!+f(m)!|f(m!)-f(m)!,$$

за секој прост број p. Последното значи дека f(m!) = f(m)!, за секој $m \in \mathbb{N}$. Според тоа, (*) може да се запише како n! + f(m)! | f(n)! + f(m)!. Последното значи дека

$$n!+f(m)!|f(n)!-n!,$$

за секои $m, n \in \mathbb{N}$. Сега, ако го фиксираме $n \in \mathbb{N}$ и земеме доволно голем m, заклучуваме дека f(n)! = n!, т.е. f(n) = n, за секој $n \in \mathbb{N}$.

5. Нека п е даден природен број. Сизиф изведува низа од потези на табла која се состои од n+1 квадрати во редица, нумерирани од 0 до n, од лево кон десно. На почетокот, nкамчиња се ставени во квадратот 0, а другите квадрати се празни. Во секој потег, Сизиф го избира било кој непразен квадрат со к камчиња, зема едно од тие камчиња и го поместува на десно за најмногу к квадрати (камчето мора да остане во некој од квадратите од таблата). Целта на Сизиф е да ги помести сите п камчиња во квадратот п.

Докажи дека Сизиф тоа не може да го направи во помалку од $\left| \frac{n}{1} \right| + \left| \frac{n}{2} \right| + \left| \frac{n}{3} \right| + ... + \left| \frac{n}{n} \right|$

потези. Ознаката $\lceil x \rceil$ го означува најмалиот цел број не помал од x.

Решение. Да забележиме дека сите камчиња се исти и сите камчиња на почетокот и на крајот имаат иста позиција. Па, во секој потег, ќе дадеме постапка, кое камче од избраниот квадрат треба да се поместува. Нека ги означиме камчињата од 1 до п. Во секој потег, по изборот на квадрат, Сизиф, го поместува камчето со најголем број од тој квадрат.

На овој начин, кога камчето k е поместено од некој квадрат, тој квадрат содржи не повеќе од kкамчиња (бидејќи сите останати камчиња се со броеви помали од k). Според тоа, камчето k е поместено за најмногу k квадрати во секој потег. Бидејќи вкупното поместување на камчето е точно n, најмалку $\left| \frac{n}{k} \right|$ поместувања на камчето k треба да бидат направени, за секој k = 1, 2, ..., n.