بسمر الله الرحمن الرجمير

درس: یادگیری ماشین

استاد : خانم دکتر زرین بال ماسوله

موضوع : clustering validity index

دانشجو: فرزاد محسنی

مقطع: كارشناسي ارشد

رشته تحصیلی: مهندسی آیتی

کد دانشجویی:

دانشگاه : صنعتی امیرکبیر

Method Page
Silhouette Score 3
Calinski-Harabasz Index 5
Davies-Bouldin Index 7
Adjusted Rand Index 9
Normalized Mutual Information – NMI 11
Comparison Table of Clustering Validity Indices 13

Silhouette Score

امتیاز سیلوئت (Silhouette Score) چیست؟

• Silhouette Score یک معیار برای ارزیابی کیفیت خوشه بندی است. این معیار بررسی می کند که هر نقطه داده (Data Point) تا چه حد به خوشهی خودش تعلق دارد و چقدر از خوشه های دیگر جداست.

چه زمانی از Silhouette Score استفاده می شود؟

- برای ارزیابی کیفیت خوشه بندی بدون نیاز به برچسب های واقعی (Unsupervised).
- برای مقایسه ی تعداد خوشه ها: مثلاً اگر نمی دانی چند خوشه مناسب تر است، می توانی سیلوئت را برای مقادیر مختلف K محاسبه کنی و بهترین را انتخاب کنی.
- در الگوریتم های خوشه بندی مثل Agglomerative Clustering ،DBSCAN ،K-Means و غیره کاربرد دارد.

مزايا

- بدون نیاز به برچسب (Label-Free)
 - ساده و قابل فهم
- امکان بررسی خوشه بندی بهصورت نقطه به نقطه

- محاسبه اش می تواند برای دیتاست های بزرگ کند باشد.
- به معيار فاصلهي مورد استفاده حساس است (مثلاً فاصله اقليدسي، كسينوسي، و غيره).

فرمول امتياز سيلوئت

برای هر نقطه داده i ، امتیاز سیلوئت بهصورت زیر محاسبه میشود:

$$s(i) = \frac{b(i) - a(i)}{\max(a(i), b(i))}$$

که در آن:

- a(i): میانگین فاصلهی نقطه i تا تمام نقاط در همان خوشه (درونی بودن خوشه).
- b(i): کمترین میانگین فاصلهی نقطه i تا نقاط خوشهی نزدیک دیگر (بیرونی بودن خوشه).

مقدار امتياز سيلوئت

- (i) همیشه بین ۱- تا ۱+ است:
- اگر نزدیک به ۱ باشد: یعنی نقطه به خوشهی خودش بسیار خوب تعلق دارد.
 - اگر نزدیک به ۰ باشد: یعنی نقطه در مرز بین دو خوشه است.
- اگر منفی باشد: یعنی احتمالاً نقطه به خوشهی اشتباهی تخصیص داده شده است.

Calinski-Harabasz Index

شاخص كالينسكي-هاراباز چيست؟

• شاخص Calinski-Harabasz که به آن Variance Ratio Criterion نیز می گویند، یک معیار برای ارزیابی کیفیت خوشه بندی است. این شاخص نسبت ِ پراکندگی بین خوشه ها (بینخوشهای) به پراکندگی درون خوشه ها (درونخوشهای) را اندازه گیری می کند.

چه زمانی استفاده میشود؟

- زمانی که میخواهی خوشه بندی بدون برچسب واقعی را ارزیابی کنی (unsupervised evaluation).
 - برای تعیین تعداد بهینه خوشه ها (با مقایسهی مقدار شاخص برای مقادیر مختلف K).
- کاربرد در الگوریتم هایی مثل K-Medoids ،K-Means و الگوریتم های سلسله مراتبی (K-Medoids ،K-Means).

مزايا

- محاسبه سریع و مؤثر
- بدون نیاز به داده های برچسب خورده
- قابل تفسیر ساده: مقدار بیشتر = خوشه بندی بهتر

- به شکل خوشه ها و اندازهی داده ها حساس است
- فرض می کند خوشه ها شکل کروی و اندازه مشابهی دارند

فرمول شاخص كالينسكى-هارابازش

$$CH = \frac{Tr(B_k)}{Tr(W_k)} \cdot \frac{N - k}{k - 1}$$

که در آن:

- (Between-cluster dispersion) مجموع مربعات بين خوشه ها ${
 m Tr}(B_k)$ •
- (Within-cluster dispersion) مجموع مربعات درون خوشه ها ${
 m Tr}(W_k)$
 - N: تعداد كل نمونه ها
 - k: تعداد خوشه ها

تفسير شاخص

- مقدار بالاتر بهتر است.
- یعنی خوشه ها به خوبی از هم جدا هستند و داده ها درون هر خوشه فشرده و نزدیک به هم اند.
 - شاخص CH مقدار منفی ندارد و می تواند از صفر تا بی نهایت باشد.
 - اگر خوشه ها با هم ادغام یا پراکنده باشند، مقدار شاخص کاهش می یابد.

Davies-Bouldin Index

شاخص ديويس-بولدين چيست؟

• Davies-Bouldin Index یا DBI یکی دیگر از معیارهای ارزیابی کیفیت خوشه بندی است. این شاخص بررسی می کند که خوشه ها چقدر از هم جدا هستند و چقدر درون خود فشرده اند.

چه زمانی استفاده میشود؟

- برای ارزیابی کیفیت خوشه بندی در حالت بدون نظارت (بدون نیاز به برچسب ها).
 - برای مقایسه خوشه بندی ها با تعداد مختلف خوشه و انتخاب بهترین k.
- کاربرد در الگوریتم هایی مثل Agglomerative Clustering ،DBSCAN ،K-Means و غیره.

مزايا

- مستقل از برچسب
- محاسبه ی نسبتاً ساده
- ترکیب خوبی از فشردگی داخلی و جدایی بین خوشه ها را میسنجد

- به شکل و توزیع خوشهها حساس است
- اگر یک خوشه بسیار بزرگ یا پراکنده باشد، میتواند مقدار کل شاخص را خراب کند

فرمول شاخص ديويس-بولدين

$$DBI = \frac{1}{k} \sum_{i=1}^{k} \max_{j \neq i} \left(\frac{s_i + s_j}{d_{ij}} \right)$$

که در آن:

- k: تعداد خوشه ها
- فشردگی خوشه) نقاط در خوشه ${f i}$ تا مرکز خوشه (درونخوشه ای یا فشردگی خوشه) ${f S}_i$
 - j و i فاصله بین مراکز خوشه های d_{ij} •

تفسير شاخص DBI

- مقدار کمتر بهتر است
- چون نشان می دهد خوشه ها از یکدیگر جدا هستند و داده های هر خوشه نزدیک به هم هستند.
 - مقدار DBI همیشه بزرگ تر یا مساوی صفر است.
 - در حالت ایده آل، هر خوشه باید کمترین هم پوشانی را با خوشه های دیگر داشته باشد.

Adjusted Rand Index

شاخص (ARI) Adjusted Rand Index

- شاخص رند تعدیل شده معیاری برای ارزیابی کیفیت خوشه بندی است در صورتی که برچسب های واقعی (Ground) در دسترس باشند.
 - این شاخص بررسی می کند که چقدر خوشه بندی بهدست آمده با برچسب های واقعی هماهنگ و منطبق است.

تفاوت با Rand Index معمولي؟

- شاخص رند ساده فقط میزان تطابق بین دو دسته بندی را بررسی می کند، ولی ARI تعدیل شده برای تطابق تصادفی
 است.
 - یعنی اگر دو دسته بندی کاملاً تصادفی باشند، ARI نزدیک به صفر خواهد بود، نه مقدار بالا.

چه زمانی استفاده میشود؟

- فقط زمانی که برچسب های واقعی داده ها موجود باشند (برای ارزیابی دقیق).
 - مقایسهی عملکرد الگوریتم های خوشهبندی در داده های labeled.
- بسیار پرکاربرد در ارزیابی Agglomerative Clustering ،K-Means و سایر الگوریتم ها با ground truth.

مزايا

- دقت بالا در مقایسه با معیار های ساده
- تعدیل شده برای جلوگیری از نتایج گمراه کننده در حالت تصادفی
 - قابل اعتماد برای مقایسه با ground truth

- فقط در صورت وجود برچسب های واقعی قابل استفاده است
- ممکن است محاسبات برای داده های بسیار بزرگ کمی کند شود

فرمول كلى

$$ARI = \frac{Index - Expected\ Index}{Max\ Index - Expected\ Index}$$

جزئيات كامل فرمول با استفاده از ماتريس احتمال هم قابل نمايش است، اما ايدهي اصلى اين است:

- ARI = 1 \rightarrow خوشه بندى كاملاً مطابق با برچسب هاى واقعى
 - $ARI \approx 0 \rightarrow ARI$ حطابقی بیش تر از حالت تصادفی ندارد
 - (نادر) بدتر از تصادف (نادر) \rightarrow ARI < 0

ویژگی ها

- دامنه: از -1 تا 1
 - ١: تطابق كامل
 - نصادفی
- کمتر از صفر: بدتر از حالت تصادفی

Normalized Mutual Information - NMI

NMI چیست؟

- (NMI) یک معیار برای مقایسه دو خوشه بندی است، معمولاً بین خوشه بندی حاصل از الگوریتم و برچسب های واقعی (Ground Truth).
 - این معیار می سنجد که چه مقدار اطلاعات بین دو دسته بندی مشتر \mathcal{L} است.

ایدهی اصلی:

- اطلاعات متقابل (Mutual Information MI) میزان اشتراک اطلاعات بین دو متغیر تصادفی (در اینجا: دو خوشه بندی) را اندازه می گیرد.
 - اما MI به تعداد نمونه ها و اندازهی خوشه ها حساس است. برای رفع این مشکل، آن را نرمال سازی (Normalization)

چه زمانی استفاده میشود؟

- زمانی که برچسب های واقعی در دسترس هستند
- براى مقايسهى خوشه بندى ها با ground truth يا حتى بين دو الگوريتم خوشه بندى
 - پرکاربرد در ارزیابی Spectral Clustering ،K-Means و سایر الگوریتم ها

مزايا

- مقیاس بندی شده و قابل مقایسه بین داده های مختلف
- برابر است در صورت تعویض برچسب خوشه ها (invariant to label permutations)
 - مناسب برای خوشه بندی های با تعداد متفاوت خوشه

معايب

- فقط برای داده های دارای برچسب قابل استفاده است
- نیاز به محاسبه آنتروپی و اطلاعات متقابل (کمی پیچیده تر از برخی معیارها)

فرمول NMI

$$NMI(U,V) = \frac{2 \cdot I(U;V)}{H(U) + H(V)}$$

که در آن:

- **U**: خوشه بندی پیش بینی شده
 - ۷: خوشه بندی واقعی
 - (**U;V!**: اطلاعات متقابل بین
- H(V) و (H(V): آنتروپی خوشه بندی ها (میزان عدم قطعیت)

دامنه و تفسیر

- IMN ∈ [0, 1]
- ۱ = تطابق کامل بین خوشه بندی و برچسب های واقعی
- • هیچ ارتباط اطلاعاتی بین دو دسته بندی وجود ندارد

جدول مقایسه شاخص های اعتبار خوشه بندی

معایب	مزایا	کاربرد اصلی	معيار بهتر بودن	دامنه مقدار	نیاز به برچس <i>ب</i> واقعی؟	نوع ارزیابی	شاخص
در دیتاست های بزرگ کند میشود	شهودی، بدون نیاز به برچسب، قابل تفسیر	ارزیابی فشردگی درون خوشهای و جدایی بین خوشهای	مقدار بیشتر بهتر	+1 ات –1	ندارد	درونی (Internal)	Silhouette Score
فرض کروی بودن خوشه ها	سریع، ساده، بدون نیاز به برچسب	انتخاب تعداد بهینه خوشه ها	مقدار بیشتر بهتر	0 تا ∞	ندارد	درونی (Internal)	Calinski- Harabasz Index
به خوشه های پراکنده حساس است	ترکیب فشردگی و جدایی، بدون نیاز به برچسب	بررسی جدایی و فشردگی خوشه ها	مقدار کمتر بهتر	0 تا ∞	ندارد	درونی (Internal)	Davies- Bouldin Index
فقط در صورت داشتن برچسب کاربرد دارد	تعدیل شده برای تصادف، دقیق	ارزیابی دقت نسبت به برچسب واقعی	مقدار بیشتر بهتر	1- تا 4+	دارد	بیرونی (External)	Adjusted Rand Index
نیاز به محاسبه آنتروپی و MI	نرمال شده، مستقل از ترتیب برچسب ها	مقایسه خوشه بندی با برچسب یا خوشه دیگر	مقدار بیشتر بهتر	0 تا 1	دارد	بیرونی (External)	Normalized Mutual Information - NMI