5. Рабочие формулы и исходные данные.

$$\begin{split} & d = x_2 - x_1 & \overline{d} = \frac{1}{n} \sum_{i=1}^n d_i = \frac{1}{5} (d_1 + \dots + d_5) \\ & S_{\overline{d}} = \sqrt{\frac{\sum_{i=1}^n (d_i - \overline{d})^2}{n(n-1)}} = \sqrt{\frac{(d_1 - \overline{d})^2 + \dots + (d_5 - \overline{d})^2}{20}} \\ & \Delta_{\overline{d}} = t_{\alpha n} \cdot S_{\overline{d}} & \Delta_d = \sqrt{\Delta_d^2 + \left(\frac{2}{3}\Delta_{\mathrm{H}d}\right)^2} = \sqrt{\Delta_d^2 + \left(\frac{2\Delta_d}{3a}\right)^2} \\ & \Delta_R = \frac{2}{3}\Delta_{\mathrm{H}R} = \frac{2}{3} \cdot 0.05 = 0.033 \ \mathrm{cm} \\ & \Delta_{\rho} = \frac{2}{3}\Delta_{\mathrm{H}\rho} = \frac{2}{3} \cdot 100 = 66.67 \ \mathrm{kg/m}^3 \\ & \Delta_{\rho_0} = \frac{2}{3}\Delta_{\mathrm{H}\rho_0} = \frac{2}{3} \cdot 40 = 26.67 \ \mathrm{kg/m}^3 \\ & \Delta_{\alpha} = \frac{2}{3}\Delta_{\mathrm{H}\rho} = \frac{2}{3} \cdot 0.001 = 0.00067 \ \mathrm{mm/den} \\ & \Delta_t = \frac{2}{3}\Delta_{\mathrm{H}d} = \frac{2}{3} \cdot 0.005 = 0.0033 \ \mathrm{cm} \\ & \Delta_t = \frac{2}{3}\Delta_{\mathrm{H}d} = \frac{2}{3} \cdot 0.005 = 0.0033 \ \mathrm{cm} \\ & \Delta_g = 0.005 \ \mathrm{m/c^2- nonobhha \ or \ paspada \ nochedhen \ shayamen \ number \ n$$

6. Измерительные приборы.

Nº	Наименование	Предел измерений	Цена деления	Класс точности	Δи
1	Металлическая линейка	500 mm	1 мм/дел	-	0,5 mm
2	Секундомер	60 мин	0,01 с/дел	-	0,005 c

7. Схема установки.

8. Результаты прямых измерений и их обработки.

Таблица 1.

$(R \pm \Delta R)$ cm	(2,95 ± 0,05)
$(\mathbf{\rho} \pm \mathbf{\Delta}\mathbf{\rho})$ κг/м ³	(7800 ± 100)
$(\mathbf{\rho}_0 \pm \mathbf{\Delta} \mathbf{\rho}_0)$ κτ/ \mathbf{M}^3	(960 ± 40)
(α ± Δα) мм/дел	(0,266 ± 0,001)
(I ± ΔI) cm	(10,20 ± 0,05)

Таблица 2.1. Первый шарик						
N опыта	1	2	3	4	5	
х₂ дел	6,03	6,09	6,33	6,29	5,57	
х₁ дел	2,32	2,37	2,61	2,64	1,94	
d дел	3,71	3,72	3,72	3,65	3,63	
$\left(\overline{oldsymbol{d}} \pm \Delta \overline{oldsymbol{d}} ight)$ дел	(3,69 ± 0,05)					
$(r \pm \Delta r)$ мм	(0,49 ± 0,01)					
$(t \pm \Delta t)$ c	(21,95 ± 0,01)					
$(v \pm \Delta v)$ м/с	(0,0046 ± 0,0001)					
$(η \pm Δη)$ Πa * c	(0,7701 ± 0,0256)					

$$\bar{d} = \frac{(3,71+3,72+3,72+3,65+3,63)}{5} = 3,69$$
 дел

Таблица 2.2. Второй шарик						
N опыта	1	2	3	4	5	
х₂ дел	7,19	7,20	7,81	6,84	7,48	
х₁ дел	1,27	1,24	1,91	0,88	1,51	
d дел	5,92	5,96	5,90	5,96	5,97	
$\left(\overline{oldsymbol{d}} \pm \Delta \overline{oldsymbol{d}} ight)$ дел	(5,94 ± 0,04)					
$(r \pm \Delta r)$ мм	(0,79 ± 0,01)					
$(t \pm \Delta t)$ c	(8,5 ± 0,01)					
$(\boldsymbol{v} \pm \Delta \boldsymbol{v})$ M/C	(0,012 ± 0,001)					
$(η \pm Δη)$ Πa * c	(0,77501 ± 0,01620)					

$$\bar{d} = \frac{(5,92+5,96+5,90+5,96+5,97)}{5} = 5,94$$
 дел

Таблица 2.3. Третий шарик						
N опыта	1	2	3	4	5	
х₂ дел	8,01	7,99	8,77	8,75	8,87	
х₁ дел	0,43	0,48	1,27	1,28	1,34	
d дел	7,58	7,51	7,50	7,47	7,53	
$\left(\overline{oldsymbol{d}} \pm \Delta \overline{oldsymbol{d}} ight)$ дел	(7,52 ± 0,05)					
$(m{r}\pm\Deltam{r})$ мм	(1,0002 ± 0,007)					
$(t \pm \Delta t)$ c	(5,61 ± 0,01)					
$(v \pm \Delta v)$ м/с	(0,0182 ± 0,0001)					
$(η \pm Δη)$ Πa * c	(0,819 ± 0,018)					

$$ar{d} = rac{(7,58+7,51+7,50+7,47+7,53)}{5} = 7,52$$
 дел

9. Расчёт результатов косвенных измерений.

$$\begin{split} r_I &= \frac{\alpha \overline{d_1}}{2} = 0,266 * \frac{3,69}{2} = 0,49 \text{ мм } (=0,00049 \text{ м}) \\ r_{II} &= \frac{\alpha \overline{d_2}}{2} = 0,266 * \frac{5,94}{2} = 0,79 \text{ мм } (=0,00079 \text{ м}) \\ r_{III} &= \frac{\alpha \overline{d_3}}{2} = 0,266 * \frac{7,52}{2} = 1,0002 \text{ мм } (=0,001 \text{ м}) \\ v_I &= \frac{l}{t_I} = \frac{10,2}{21,95} = 0,465 \text{ см/c } (=0,00465 \text{ м/c}) \\ v_{II} &= \frac{l}{t_{II}} = \frac{10,2}{8,5} = 1,2 \text{ см/c } (=0,012 \text{ м/c}) \\ v_{III} &= \frac{l}{t_{III}} = \frac{10,2}{5,61} = 1,818182 \text{ см/c } (=0,01818182 \text{ м/c}) \\ k_I &= \frac{1}{1 + \frac{2,47}{R}} = 0,999602 \\ k_{II} &= \frac{1}{1 + \frac{2,47}{R}} = 0,999358 \\ k_{III} &= \frac{1}{1 + \frac{2,47}{R}} = 0,999187 \\ \eta_I &= \frac{2r_I^2(\rho - \rho_0)gk_I}{9v_I} = 0,770138 \text{ \Pia * c} \\ \eta_{II} &= \frac{2r_{II}^2(\rho - \rho_0)gk_{II}}{9v_{II}} = 0,775009 \text{ \Pia * c} \end{split}$$

 $\eta_{III} = \frac{2r_{III}^2(\rho - \rho_0)gk_{III}}{9n_{III}} = 0.819449 \, \Pi a * c$

$$S_{\overline{d_I}} = \sqrt{\frac{(d_1 - \overline{d})^2 + \dots + (d_5 - \overline{d})^2}{20}} = 0,019131$$

$$S_{\overline{d_I}} = \sqrt{\frac{(d_1 - \overline{d})^2 + \dots + (d_5 - \overline{d})^2}{20}} = 0,013565$$

$$S_{\overline{d_{II}}} = \sqrt{\frac{(d_1 - \overline{d})^2 + \dots + (d_5 - \overline{d})^2}{20}} = 0,018276$$

$$S_{\overline{d_{III}}} = \sqrt{\frac{(d_1 - \overline{d})^2 + \dots + (d_5 - \overline{d})^2}{20}} = 0,018276$$

$$\Delta_{\overline{d_I}} = t_{\alpha n} S_{\overline{d_I}} = 0,05319$$

$$\Delta_{\overline{d_{II}}} = t_{\alpha n} S_{\overline{d_{II}}} = 0,03771$$

$$\begin{split} & \Delta_{\overline{d_{III}}} = t_{\alpha n} S_{\overline{d_{III}}} = 0,05081 \\ & \Delta_{d_I} = \sqrt{\Delta_d^2 + (\frac{2\Delta_\alpha}{3\alpha})^2} = 0,05327 \\ & \Delta_{d_{II}} = \sqrt{\Delta_d^2 + (\frac{2\Delta_\alpha}{3\alpha})^2} = 0,03783 \\ & \Delta_{d_{III}} = \sqrt{\Delta_d^2 + (\frac{2\Delta_\alpha}{3\alpha})^2} = 0,05089 \\ & \Delta_{r_I} = \frac{r_I \Delta_{d_I}}{d_I} = 0,00708 \ \text{mm} \\ & \Delta_{r_{II}} = \frac{r_{III} \Delta_{d_{III}}}{d_{III}} = 0,00503 \ \text{mm} \\ & \Delta_{r_{III}} = \frac{r_{III} \Delta_{d_{III}}}{d_{III}} = 0,00677 \ \text{mm} \\ & \Delta_{v_I} = v_I * \sqrt{\left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta t}{l}\right)^2} = 0,0000229 \ \text{m/c} \\ & \Delta_{v_{II}} = v_{III} * \sqrt{\left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta t}{l}\right)^2} = 0,0000948 \ \text{m/c} \\ & \Delta_{v_{III}} = v_{III} * \sqrt{\left(2\frac{\Delta_{r_{II}}}{r_I}\right)^2 + \left(\frac{\Delta_{v_{II}}}{v_I}\right)^2 + \left(\frac{\Delta_{g_{II}}}{g_{II}}\right)^2 + \frac{(\Delta\rho)^2 + (\Delta\rho_0)^2}{(\rho - \rho_0)^2}} = 0,0256 \ \Pi a^*c \\ & \Delta_{\eta_{II}} = \eta_{III} * \sqrt{\left(2\frac{\Delta_{r_{II}}}{r_I}\right)^2 + \left(\frac{\Delta_{v_{II}}}{v_{II}}\right)^2 + \left(\frac{\Delta_{g_{III}}}{g_{III}}\right)^2 + \frac{(\Delta\rho)^2 + (\Delta\rho_0)^2}{(\rho - \rho_0)^2}} = 0,0175 \ \Pi a^*c \\ & \varepsilon_{\eta_I} = \frac{\Delta_{\eta_I}}{\eta_I} * 100\% = 3,33\% \end{split}$$

11. Графики.

 $\varepsilon_{\eta_{II}} = \frac{\Delta_{\eta_{II}}}{n_{II}} * 100\% = 2,09\%$

 $\varepsilon_{\eta_{III}} = \frac{\Delta_{\eta_{III}}}{n_{III}} * 100\% = 2,14\%$

-

12. Окончательные результаты.

1)
$$\eta_I = (0.770 \pm 0.030) \, \text{\Pia} * \text{c}; \qquad \varepsilon_{\eta_I} = 3.33\%; \quad \alpha = 0.95.$$

2)
$$\eta_{II} = (0.775 \pm 0.016) \, \text{\Pia} * \text{c}; \qquad \varepsilon_{\eta_I} = 2.09\%; \quad \alpha = 0.95.$$

3)
$$\eta_{II} = (0.775 \pm 0.016) \, \Pi a * c; \qquad \varepsilon_{\eta_I} = 2.14\%; \quad \alpha = 0.95.$$

13. Выводы и анализ результатов работы.

Учитывая схожесть значений косвенно измеренных величин $\eta_I=(0.770~\pm 0.030)~\Pi a*c;~\eta_{II}=(0.775~\pm 0.016)~\Pi a*c;~\eta_{II}=(0.775~\pm 0.016)~\Pi a*c;~\eta_{II}=(0.775~\pm 0.016)~\Pi a*c$ и их маленькие погрешности, можно сделать вывод о том, что размер шарика, опускаемого в жидкость не влияет на значение коэффициента внутреннего трения данной жидкости.