EA772 Circuitos Lógicos Prof. José Mario De Martino – Prova 02 – 20. Semestre 2005

Nome: Ratons C. Modro oldo RA: 045869

- 1. (1,0 pt) Explique os seguintes conceitos:
 - a) Fator de "fanout"
 - b) Fator de carga de entrada;
 - c) Atraso de propagação, atraso de propagação de alto para baixo e atraso de propagação de baixo para alto;
 - d) Tempo de subida (tempo de elevação) e tempo de descida (tempo de queda);
 - e) Margem de ruído, margem de ruído do nível alto e margem de ruído do nível baixo.
- 2. (2,0 pt) Considere o circuito abaixo e a Tabela 1. Calcule os retardos de propagação de <u>alto para baixo</u> e de baixo para alto para o(s) caminho(s) crítico(s). Considere a carga nas saídas como indicado no esquemático. Indique o(s) caminho(s) crítico(s), apontando a faixa de valores da carga L para que o caminho seja crítico. Considere também um fator de "fanout" para as portas igual a 12.

- 3. (1,0 pt) Obtenha as expressões mínimas (soma de produtos e produto de somas) da seguinte função incompletamente especificada: f(x₃, x₂, x₁, x₀)= ∏ M(1, 4, 6, 11, 12, 14, 15}, conjunto-dc={9, 13}. Faça a simplificação utilizando mapa de Karnaugh.
- 4. (1,0) Obtenha as expressões mínimas (soma de produtos e produto de somas) da seguinte função: f(x₄, x₃, x₂, x₁, x₀)= Σ m(0, 1, 6, 7, 8, 9, 16, 17, 22, 23, 24, 25, 26, 30). Faça a simplificação utilizando mapas de Karnaugh.
- 5. (2,0 pt) Utilizando o método de Quine McCluskey, obtenha a expressão mínima de soma de produtos equivalente da função $f(x7, x6, x5, x4, x3, x2, x1, x0) = \Sigma m(0, 1, 2, 21, 23, 29, 31, 53, 55, 61, 63, 128, 129).$
- 6. (1,0 pt) Projete circuito para implementar a função lógica f(x1, x0) = x₁ + x₀. O circuito será utilizado para acionar uma carga equivalente a 16 cargas-padrão. O atraso de propagação do circuito projetado deve ser o menor possível. No almoxarifado da empresa encontram-se disponíveis portas OR de 3 entradas e portas AND de 3 entradas. Os tempos de atraso de propagação destas portas são: OR t_{pHL} = t_{pLH} = 0,3 + 0,1 L ns e AND t_{pHL} = t_{pLH} = 0,3 + 0,4 L ns. Considere que o fator de carga de qualquer entrada é igual a 1. Apresente os cálculos e o esquemático do circuito.

7. (2,0 pt) Projete uma rede de dois níveis mínima, com cinco entradas, que indique erro (saída igual a "1") sempre que sua entrada não for um valor válido do código 2-entre-5. A tabela abaixo apresenta o código 2-entre-5.

Valor Decimal	Código 2-entre-5		
0	00011		
1	11000		
2	10100		
3	01100		
4	10010 01010 00110		
5			
6			
7	10001		
8	01001		
9	00101		

ipo de porta	Fanin	Retardos de propagação		Fator de carga I Tamanho	
		t _{pLH} (ns)	t _{pHL} (ns)	(cargas- padrão)	(portas equivalentes)
AND	2	$0,15^{\circ}+0,037L$	0,16 + 0,017L	1,0	2
AND	3	0,20 + 0,038L	0.18 + 0.018L	1,0	2
AND	4	0,28 + 0,039L	0,21 + 0,019L	1,0	3
OR	2	0,12 + 0,037L	0,20 + 0,019L	1.0	3 2 2 3
OR	3	0,12 + 0,038L	0,34 + 0,022L	1,0	2
OR	4	0,13 + 0,038L	0,45 + 0,025L	1,0	3
NOT	1	0,02 + 0,038L	0,05 + 0,017L	1,0	1
NAND	2	0,05 + 0,038L	0.08 + 0.027L	1,0	1
NAND	3	0.07 + 0.038L	0.09 + 0.039L	1,0	2
NAND	4	0,10 + 0,037L	0,12 + 0,051L	1,0	2 4 5
NAND	5	0,21 + 0,038L	0,34 + 0,019L	1,0	4
NAND	6	0,24 + 0,037L	0,36 + 0,019L	1,0	5
NAND	8	0,24 + 0,038L	0,42 + 0,019L	1,0	6
NOR	2	0,06 + 0,075L	0,07 + 0,016L	1,0	1
NOR	3	0,16 + 0,111L	0.08 + 0.017L		2
NOR	4	0,23 + 0,149L			4
NOR	5	0,38 + 0,038L	0,23 + 0,018L	1,0	4
NOR	6	0,46 + 0,037L	0,24 + 0,018L	1,0	5
NOR	8	0,54 + 0,038L	0,23 + 0,018L	1,0	6
XOR	2*	0,30 + 0,036L	0,30 + 0,021L	1,1	3
		0.16 + 0.036L	0,15 + 0,020L	2,0	
XOR	3*	0,50 + 0,038L	0,49 + 0,027L	, 1,1	. 6
		0.28 + 0.039L	0,27 + 0,027L	, 2,4	
		0,19 + 0,036L	0,17 + 0,025L	2,1	
XNOR	2*	0,30 + 0,036I	2.0,30 + 0,021L	, 1,1	3
		0,16 + 0,036L	0.15 + 0.020L	2,0	
XNOR	3*	0,50 + 0,0381		. 1,1	6
		0,28 + 0,0391	L = 0.27 + 0.0271	2,3	
		0,19 + 0,0361		L 1,3	
2-OR/NAND	2 4	0,17 + 0,0751			2 2
2-AND/NOR		0.17 + 0.075		L 1,0	2

L: Carga na saída da porta.

Tabela 1: Características de portas CMOS.

^{*} Diferentes características para cada entrada.