Dynamic Semantics

Week 8

A problem* for type theory: context-dependent expressions

- **Deictic** expressions depend on the *physical* utterance situation:
 - "I", "you", "now", "here", "this", ...

- Anaphoric expressions refer to the linguistic context/previous discourse:
 - o "he", "she", "it", "then", ...

More context-dependent expressions

- Context dependence is a pervasive property of natural language:
 - "every student must be familiar with the basic properties of FOL"
 - "it is rainy everywhere"
 - "John is always late"
 - "Bill bought an expensive car"
 - o "another one, please!"
 - "the student is working"

Context theory

• Natural-language expressions can vary their meaning with context: "I", "you", "here", "this", "now", etc.

- A simple context theory (based on Lewis 1970/1972):
 - Model contexts as "vectors": sequences of semantically relevant context data with fixed arity
 - Model meanings as functions from contexts to denotations—more specifically, as functions from specific context components to denotations

Defining a context "vector"

- Context $c = (a, b, \ell, t, r)$
 - a = speaker
 - \circ b = addressee
 - \circ ℓ = utterance location
 - \circ t = utterance time
 - \circ r = referred object

```
[I]^{M,g,c} = utt(c) = a

[you]^{M,g,c} = adr(c) = b

[here]^{M,g,c} = loc(c) = l

[now]^{M,g,c} = time(c) = t

[this]^{M,g,c} = ref(c) = r
```

Type-theoretic context semantics

• Model structure: M = (U, C, V), where U is the universe, C is the **context set**, and V is value assignment function that assigns non-logical constant functions from contexts to denotations of appropriate type

Interpretation:

- \circ $[\alpha]^{M,g,c} = V(\alpha)(c)$, if α is a non-logical constant
- $\circ \quad [[\alpha]]^{M,g,c} = g(\alpha), \text{ if } \alpha \text{ is a variable}$
- $\circ \quad [\![\alpha(\beta)]\!]^{M,g,c} = [\![\alpha]\!]^{M,g,c} ([\![\beta]\!]^{M,g,c})$
- etc.

Type-theoretic context semantics: an example

"I am reading this book" → read(this-book)(I')

- [[read(this-book)(I')]]^{M,g,c} = 1
 - o iff $[read]^{M,g,c}([this-book]^{M,g,c})([I']^{M,g,c}) = 1$
 - $= iff [[read]]^{M,g,c}(V_M(this-book)(c))(V_M(I')(c)) = 1$
 - o iff $V_M(read)(ref(c))(utt(c)) = 1$
- Note: context-invariant expressions are constant functions
 - $V_M(read)(c) = V(read)(c')$ for all c, c' ∈ C

Indefinite noun phrases and conditionals interact strangely, e.g.:

"if a farmer owns a donkey, he beats it"

• $\exists x \exists y [farmer(x) \land donkey(y) \land own(x, y)] \rightarrow beat(x, y)$?

Indefinite noun phrases and conditionals interact strangely, e.g.:

"if a farmer owns a donkey, he beats it"

- $\exists x \exists y [farmer(x) \land donkey(y) \land own(x, y)] \rightarrow beat(x, y)$
 - not closed (x and y occur free)
- $\exists x \exists y [(farmer(x) \land donkey(y) \land own(x, y)) \rightarrow beat(x, y)]$?

Indefinite noun phrases and conditionals interact strangely, e.g.:

"if a farmer owns a donkey, he beats it"

- $\exists x \exists y [farmer(x) \land donkey(y) \land own(x, y)] \rightarrow beat(x, y)$
 - not closed (x and y occur free)
- $\exists x \exists y [(farmer(x) \land donkey(y) \land own(x, y)) \rightarrow beat(x, y)]$
 - wrong truth conditions (much too weak)
- $\forall x \forall y [(farmer(x) \land donkey(y) \land own(x, y)) \rightarrow beat(x, y)]$?

• Indefinite noun phrases and conditionals interact strangely, e.g.:

"if a farmer owns a donkey, he beats it"

- $\exists x \exists y [farmer(x) \land donkey(y) \land own(x, y)] \rightarrow beat(x, y)$
 - not closed (x and y occur free)
- $\exists x \exists y[(farmer(x) \land donkey(y) \land own(x, y)) \rightarrow beat(x, y)]$
 - wrong truth conditions (much too weak)
- $\forall x \forall y [(farmer(x) \land donkey(y) \land own(x, y)) \rightarrow beat(x, y)]$
 - Correct! But how can it be derived compositionally?

Anaphora and compositionality

- Consider the following sentence: $S_1 = \text{``a person who works hard is happy''}$
 - we can interpret S_1 as: $\exists x[person(x) \land work-hard(x) \land happy(x)]$

Now consider S₂ = "<u>a person</u>, works hard", S₃ = "they, are happy"

- $S_2S_3 = S_1$, but can we derive this compositionally?
 - \circ $\exists x[person(x) \land work-hard(x)] \land happy(x)$

What are indefinites?

- Option I: Existential quantifiers? (cf. Russell, 1919)
 - No: donkey sentences

- Option II: Universal quantifiers?
 - No: "I saw <u>a</u> donkey" ⊭ "I saw <u>every</u> donkey"

Option III: Ambiguous?

We need to re-think our logic

We need a new way to think about quantification and free variables: Dynamic
 Predicate Logic (DPL; Groenendijk and Stokhof, 1991)

DPL: Syntax

- Terms: TERM = VAR ∪ CON
- Atomic formulas:
 - \circ $R(t_1, \ldots, t_n)$ for $R \in PRED^n$ and $t_1, \ldots, t_n \in TERM$
- Well-formed formulas (WFF):
 - All atomic formulas are WFFs
 - If $x \in VAR$, then $\exists x \text{ is a WFF}$
 - *Note*: there is *no* quantifier scope in DPL—*all* variables are free
 - o If ϕ and ψ are WFFs, then $\sim \phi$ and $(\phi \cdot \psi)$ are WFFs
 - Nothing else is a WFF

(Rough) correspondences with FOL

- $\neg \phi \approx \sim \phi$
- $\phi \wedge \psi \approx \phi \cdot \psi$
- $\phi \lor \psi \approx \sim (\sim \phi \cdot \sim \psi)$
- $\phi \rightarrow \psi \approx \sim (\phi \cdot \sim \psi)$
- $\exists x \phi \approx \exists x \cdot \phi$
- $\bullet \quad \forall x \phi \approx \exists x \rightarrow \phi = \sim (\exists x \cdot \sim \phi)$

DPL: examples

- "A person who works hard is happy.":
 - \circ $\exists x \cdot person(x) \cdot work-hard(x) \cdot happy(x)$
- "A person works hard. They are happy.":
 - $(\exists x \cdot person(x) \cdot work-hard(x)) \cdot (happy(x))$ $= \exists x \cdot person(x) \cdot work-hard(x) \cdot happy(x)$
- "If a farmer owns a donkey, he beats it.":
 - $(\exists x \cdot farmer(x) \cdot \exists y \cdot donkey(y) \cdot own(x, y)) \rightarrow beat(x, y)$ = $\sim ((\exists x \cdot farmer(x) \cdot \exists y \cdot donkey(y) \cdot own(x, y)) \cdot \sim beat(x, y))$

DPL: semantics (one way to do it)

 We can map DPL formulas into FOL for interpretation. For a DPL formula φ, define its corresponding FOL formula φ° as ⟨φ⟩¬, where:

- 1. $\langle \bot \rangle \psi = \bot$
- 2. $\langle \top \rangle \psi = \top$
- 3. $\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi$
- 4. $\langle \exists x \rangle \psi = \exists x [\psi]$
- 5. $\langle \phi_1 \cdot \phi_2 \rangle \psi = \langle \phi_1 \rangle (\langle \phi_2 \rangle \psi)$
- 6. $\langle \neg \phi \rangle \psi = \neg (\langle \phi \rangle \top) \wedge \psi$

(Rough) correspondences with FOL (again)

- $(\sim \phi)^\circ = \langle \sim \phi \rangle \top = \neg (\langle \phi \rangle \top) \land \top = \neg (\phi \land \top) \land \top = \neg \phi$
- $\bullet \quad (\phi \cdot \psi)^{\circ} = \langle \phi \cdot \psi \rangle_{\top} = \langle \phi \rangle (\langle \psi \rangle_{\top}) = \langle \phi \rangle (\psi \wedge \top) = \phi \wedge \psi \wedge \top = \phi \wedge \psi$
- $(\sim(\sim\phi\cdot\sim\psi))^\circ = \neg(\neg\phi\land\neg\psi) = \phi\lor\psi$
- $(\phi \rightarrow \psi)^{\circ} = (\sim (\phi \cdot \sim \psi))^{\circ} = \neg (\phi \land \neg \psi) = \phi \rightarrow \psi$
- $\bullet \quad (\exists \, x \cdot \phi)^{\circ} = \langle \, \exists \, x \rangle (\langle \phi \rangle^{\top}) = \langle \, \exists \, x \rangle (\phi \, \wedge \, \top) = \, \exists \, x [\phi \, \wedge \, \top] = \, \exists \, x [\phi]$
- $\bullet \quad (\exists \, x \to \phi)^\circ = (\sim (\exists \, x \cdot \sim \phi))^\circ = \neg (\langle \, \exists \, x \cdot \sim \phi \, \rangle_\top) \ \land \ \top = \neg (\langle \, \exists \, x \, \rangle (\neg \phi \ \land \ \top \land \ \top)) \ \land \ \top = \neg \exists \, x [\neg \phi \ \land \ \top \land \ \top] \ \land \ \top = \neg \, \exists \, x [\neg \phi] = \ \forall \, x [\phi]$

1.
$$\langle \perp \rangle \psi = \perp$$

2.
$$\langle \top \rangle \psi = \top$$

3.
$$\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi$$

4.
$$\langle \exists x \rangle \psi = \exists x [\psi]$$

5.
$$\langle \phi_1 \cdot \phi_2 \rangle \psi = \langle \phi_1 \rangle (\langle \phi_2 \rangle \psi)$$

6.
$$\langle \sim \phi \rangle \psi = \neg (\langle \phi \rangle \top) \wedge \psi$$

$$(\exists x \cdot P(x) \cdot W(x) \cdot H(x))^{\circ}$$

$$= \langle \exists x \cdot P(x) \cdot W(x) \cdot H(x) \rangle^{\top}$$

```
1. \langle \bot \rangle \psi = \bot (\exists x \cdot P(x) \cdot W(x) \cdot H(x))^{\circ}

2. \langle \top \rangle \psi = \top = \langle \exists x \cdot P(x) \cdot W(x) \cdot H(x) \rangle \top

3. \langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi = \langle \exists x \rangle (\langle P(x) \rangle (\langle W(x) \rangle (\langle H(x) \rangle \top)))
```

- 4. $\langle \exists x \rangle \psi = \exists x [\psi]$
- 5. $\langle \phi_1 \cdot \phi_2 \rangle \psi = \langle \phi_1 \rangle (\langle \phi_2 \rangle \psi)$
- 6. $\langle \sim \phi \rangle \psi = \neg (\langle \phi \rangle \top) \wedge \psi$

1.
$$\langle \perp \rangle \psi = \perp$$

2.
$$\langle \top \rangle \psi = \top$$

3.
$$\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi = \langle \exists x \rangle (\langle P(x) \rangle (\langle W(x) \rangle (\langle H(x) \rangle^\top)))$$

4.
$$\langle \exists x \rangle \psi = \exists x [\psi]$$

5.
$$\langle \varphi_1 \cdot \varphi_2 \rangle \psi = \langle \varphi_1 \rangle (\langle \varphi_2 \rangle \psi)$$

6.
$$\langle \sim \phi \rangle \psi = \neg (\langle \phi \rangle \top) \wedge \psi$$

$$(\exists x \cdot P(x) \cdot W(x) \cdot H(x))^{\circ}$$

$$= \langle \exists x \cdot P(x) \cdot W(x) \cdot H(x) \rangle^{\top}$$

$$= \langle \exists x \rangle (\langle P(x) \rangle (\langle W(x) \rangle (\langle H(x) \rangle^{\top})))$$

$$= \langle \exists x \rangle (\langle P(x) \rangle (\langle W(x) \rangle (H(x) \land \top)))$$

1.
$$\langle \bot \rangle \psi = \bot$$
 $(\exists x \cdot P(x) \cdot W(x) \cdot H(x))^{\circ}$
2. $\langle \top \rangle \psi = \top$ $= \langle \exists x \cdot P(x) \cdot W(x) \cdot H(x) \rangle \top$
3. $\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi$ $= \langle \exists x \rangle (\langle P(x) \rangle (\langle W(x) \rangle (\langle H(x) \rangle \top)))$
4. $\langle \exists x \rangle \psi = \exists x [\psi]$ $= \langle \exists x \rangle (\langle P(x) \rangle (\langle W(x) \rangle (\langle H(x) \wedge \top)))$
5. $\langle \phi_1 \cdot \phi_2 \rangle \psi = \langle \phi_1 \rangle (\langle \phi_2 \rangle \psi)$ $= \langle \exists x \rangle (\langle P(x) \rangle (\langle W(x) \wedge H(x) \wedge \top))$
6. $\langle \neg \phi \rangle \psi = \neg (\langle \phi \rangle \top) \wedge \psi$ $= \langle \exists x \rangle (\langle P(x) \rangle (\langle W(x) \wedge H(x) \wedge \top))$

1.
$$\langle \bot \rangle \psi = \bot$$
 $(\exists x \cdot P(x) \cdot W(x) \cdot H(x))^{\circ}$
2. $\langle \top \rangle \psi = \top$ $= \langle \exists x \cdot P(x) \cdot W(x) \cdot H(x) \rangle \top$
3. $\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi$ $= \langle \exists x \rangle (\langle P(x) \rangle (\langle W(x) \rangle (\langle H(x) \rangle \top)))$
4. $\langle \exists x \rangle \psi = \exists x [\psi]$ $= \langle \exists x \rangle (\langle P(x) \rangle (\langle W(x) \rangle (\langle H(x) \wedge \top)))$
5. $\langle \phi_1 \cdot \phi_2 \rangle \psi = \langle \phi_1 \rangle (\langle \phi_2 \rangle \psi)$ $= \langle \exists x \rangle (\langle P(x) \rangle (\langle W(x) \wedge H(x) \wedge \top))$
6. $\langle \neg \phi \rangle \psi = \neg (\langle \phi \rangle \top) \wedge \psi$ $= \langle \exists x \rangle (\langle P(x) \wedge W(x) \wedge H(x) \wedge \top)$
 $= \exists x [P(x) \wedge W(x) \wedge H(x) \wedge \top]$

1.
$$\langle \perp \rangle \psi = \perp$$

2.
$$\langle \top \rangle \psi = \top$$

3.
$$\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi$$

4.
$$\langle \exists x \rangle \psi = \exists x [\psi]$$

5.
$$\langle \phi_1 \cdot \phi_2 \rangle \psi = \langle \phi_1 \rangle (\langle \phi_2 \rangle \psi)$$

6.
$$\langle \sim \phi \rangle \psi = \neg (\langle \phi \rangle \top) \wedge \psi$$

$$(\exists x \cdot P(x) \cdot W(x) \cdot H(x))^{\circ}$$

$$= \langle \exists x \cdot P(x) \cdot W(x) \cdot H(x) \rangle^{\top}$$

$$= \langle \exists x \rangle (\langle P(x) \rangle (\langle W(x) \rangle (\langle H(x) \rangle^{\top})))$$

$$= \langle \exists x \rangle (\langle P(x) \rangle (\langle W(x) \rangle (H(x) \land \top)))$$

$$= \langle \exists x \rangle (\langle P(x) \rangle (W(x) \land H(x) \land \top))$$

$$=\langle \exists x \rangle (P(x) \land W(x) \land H(x) \land \top)$$

$$= \exists x[P(x) \land W(x) \land H(x) \land \top]$$

$$= \exists x [P(x) \land W(x) \land H(x)]$$

1.
$$\langle \bot \rangle \psi = \bot$$
 3. $\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi$ 5. $\langle \varphi_1 \cdot \varphi_2 \rangle \psi = \langle \varphi_1 \rangle (\langle \varphi_2 \rangle \psi)$ 2. $\langle \top \rangle \psi = \top$ 4. $\langle \exists x \rangle \psi = \exists x [\psi]$ 6. $\langle \neg \varphi \rangle \psi = \neg (\langle \varphi \rangle \neg) \wedge \psi$ ((\(\delta x \cdot F(x) \cdot \extrm{\pmath} y \cdot D(y) \cdot O(x, y)) \rightarrow B(x, y))\(\gamma\)
$$= (\neg ((\exists x \cdot F(x) \cdot \exists y \cdot D(y) \cdot O(x, y)) \cdot \neg B(x, y)))^{\gamma}$$

$$= \langle \neg ((\exists x \cdot F(x) \cdot \exists y \cdot D(y) \cdot O(x, y)) \cdot \neg B(x, y)) \rangle_{\gamma}$$

1.
$$\langle \bot \rangle \psi = \bot$$
 3. $\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \land \psi$ 5. $\langle \phi_1 \cdot \phi_2 \rangle \psi = \langle \phi_1 \rangle (\langle \phi_2 \rangle \psi)$ 2. $\langle \top \rangle \psi = \top$ 4. $\langle \exists x \rangle \psi = \exists x [\psi]$ 6. $\langle \neg \phi \rangle \psi = \neg (\langle \phi \rangle \top) \land \psi$ $\langle \neg ((\exists x \cdot F(x) \cdot \exists y \cdot D(y) \cdot O(x, y)) \cdot \neg B(x, y)) \rangle \top$

1.
$$\langle \bot \rangle \psi = \bot$$
 3. $\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi$ 5. $\langle \varphi_1 \cdot \varphi_2 \rangle \psi = \langle \varphi_1 \rangle (\langle \varphi_2 \rangle \psi)$ 2. $\langle \top \rangle \psi = \top$ 4. $\langle \exists x \rangle \psi = \exists x [\psi]$ 6. $\langle \neg \varphi \rangle \psi = \neg (\langle \varphi \rangle \top) \wedge \psi$ $\langle \neg ((\exists x \cdot F(x) \cdot \exists y \cdot D(y) \cdot O(x, y)) \cdot \neg B(x, y)) \rangle \top$ = $\neg (\langle \exists x \cdot F(x) \cdot \exists y \cdot D(y) \cdot O(x, y) \cdot \neg B(x, y)) \top$

1.
$$\langle \bot \rangle \psi = \bot$$
 3. $\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi$ 5. $\langle \varphi_1 \cdot \varphi_2 \rangle \psi = \langle \varphi_1 \rangle (\langle \varphi_2 \rangle \psi)$ 2. $\langle \top \rangle \psi = \top$ 4. $\langle \exists x \rangle \psi = \exists x [\psi]$ 6. $\langle \neg \varphi \rangle \psi = \neg (\langle \varphi \rangle) \wedge \psi$ $\langle \neg ((\exists x \cdot F(x) \cdot \exists y \cdot D(y) \cdot O(x, y)) \cdot \neg B(x, y)) \rangle \top$ $= \neg (\langle \exists x \cdot F(x) \cdot \exists y \cdot D(y) \cdot O(x, y) \cdot \neg B(x, y)) \top)$ $= \neg (\langle \exists x \rangle (\langle F(x) \rangle (\langle \exists y \rangle (\langle D(y) \rangle (\langle O(x, y) \rangle (\langle \neg B(x, y) \rangle))))))$

$$\begin{aligned} 1. & \langle \bot \rangle \psi = \bot & 3. & \langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi & 5. & \langle \varphi_1 \cdot \varphi_2 \rangle \psi = \langle \varphi_1 \rangle (\langle \varphi_2 \rangle \psi) \\ 2. & \langle \top \rangle \psi = \top & 4. & \langle \exists x \rangle \psi = \exists x [\psi] & 6. & \langle \neg \varphi \rangle \psi = \neg (\langle \varphi \rangle \top) \wedge \psi \\ & & \langle \neg ((\exists x \cdot F(x) \cdot \exists y \cdot D(y) \cdot O(x, y)) \cdot \neg B(x, y)) \rangle \top \\ & = \neg (\langle \exists x \cdot F(x) \cdot \exists y \cdot D(y) \cdot O(x, y) \cdot \neg B(x, y) \rangle \top) \\ & = \neg (\langle \exists x \rangle (\langle F(x) \rangle (\langle \exists y \rangle (\langle D(y) \rangle (\langle O(x, y) \rangle (\neg \langle B(x, y) \rangle \top)))))) \\ & = \neg (\langle \exists x \rangle (\langle F(x) \rangle (\langle \exists y \rangle (\langle D(y) \rangle (\langle O(x, y) \rangle (\neg \langle B(x, y) \rangle \top))))))) \end{aligned}$$

1.
$$\langle \bot \rangle \psi = \bot$$
 3. $\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi$ 5. $\langle \varphi_1 \cdot \varphi_2 \rangle \psi = \langle \varphi_1 \rangle (\langle \varphi_2 \rangle \psi)$ 2. $\langle \top \rangle \psi = \top$ 4. $\langle \exists x \rangle \psi = \exists x [\psi]$ 6. $\langle \neg \varphi \rangle \psi = \neg (\langle \varphi \rangle \top) \wedge \psi$ $\langle \neg ((\exists x \cdot F(x) \cdot \exists y \cdot D(y) \cdot O(x, y)) \cdot \neg B(x, y)) \rangle \top$ $= \neg (\langle \exists x \cdot F(x) \cdot \exists y \cdot D(y) \cdot O(x, y) \cdot \neg B(x, y) \rangle \top)))))$ $= \neg (\langle \exists x \rangle (\langle F(x) \rangle (\langle \exists y \rangle (\langle D(y) \rangle (\langle O(x, y) \rangle (\neg \langle B(x, y) \rangle \top)))))))$ $= \neg (\langle \exists x \rangle (\langle F(x) \rangle (\langle \exists y \rangle (\langle D(y) \rangle (\langle O(x, y) \rangle \neg B(x, y)))))))$

$$\begin{array}{lll} 1. & \langle \bot \rangle \psi = \bot & 3. & \langle P(\mathbf{x}_1, \, ..., \, \mathbf{x}_n) \rangle \psi = P(\mathbf{x}_1, \, ..., \, \mathbf{x}_n) \wedge \psi & 5. & \langle \phi_1 \cdot \phi_2 \rangle \psi = \langle \phi_1 \rangle (\langle \phi_2 \rangle \psi) \\ 2. & \langle \top \rangle \psi = \top & 4. & \langle \exists \, \mathbf{x} \rangle \psi = \exists \, \mathbf{x} [\psi] & 6. & \langle \neg \phi \rangle \psi = \neg (\langle \phi \rangle \top) \wedge \psi \\ & \langle \neg ((\exists \, \mathbf{x} \cdot F(\mathbf{x}) \cdot \exists \, \mathbf{y} \cdot D(\mathbf{y}) \cdot O(\mathbf{x}, \, \mathbf{y})) \cdot \neg B(\mathbf{x}, \, \mathbf{y})) \rangle \top \\ & = \neg (\langle \exists \, \mathbf{x} \cdot F(\mathbf{x}) \cdot \exists \, \mathbf{y} \cdot D(\mathbf{y}) \cdot O(\mathbf{x}, \, \mathbf{y}) \cdot \neg B(\mathbf{x}, \, \mathbf{y}) \rangle \top))))) \\ & = \neg (\langle \exists \, \mathbf{x} \rangle (\langle F(\mathbf{x}) \rangle (\langle \exists \, \mathbf{y} \rangle (\langle D(\mathbf{y}) \rangle (\langle O(\mathbf{x}, \, \mathbf{y}) \rangle (\neg \langle B(\mathbf{x}, \, \mathbf{y}) \rangle \top)))))) \\ & = \neg (\langle \exists \, \mathbf{x} \rangle (\langle F(\mathbf{x}) \rangle (\langle \exists \, \mathbf{y} \rangle (\langle D(\mathbf{y}) \rangle (\langle O(\mathbf{x}, \, \mathbf{y}) \rangle \neg B(\mathbf{x}, \, \mathbf{y})))))) \\ & = \neg (\langle \exists \, \mathbf{x} \rangle (\langle F(\mathbf{x}) \rangle (\langle \exists \, \mathbf{y} \rangle (\langle D(\mathbf{y}) \rangle (\langle O(\mathbf{x}, \, \mathbf{y}) \wedge \neg B(\mathbf{x}, \, \mathbf{y})))))) \\ & = \neg (\langle \exists \, \mathbf{x} \rangle (\langle F(\mathbf{x}) \rangle (\langle \exists \, \mathbf{y} \rangle (\langle D(\mathbf{y}) \rangle (\langle O(\mathbf{x}, \, \mathbf{y}) \wedge \neg B(\mathbf{x}, \, \mathbf{y})))))) \end{array}$$

1.
$$\langle \bot \rangle \psi = \bot$$
 3. $\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi$ 5. $\langle \varphi_1 \cdot \varphi_2 \rangle \psi = \langle \varphi_1 \rangle (\langle \varphi_2 \rangle \psi)$ 2. $\langle \top \rangle \psi = \top$ 4. $\langle \exists x \rangle \psi = \exists x [\psi]$ 6. $\langle \neg \varphi \rangle \psi = \neg (\langle \varphi \rangle \top) \wedge \psi$ $\langle \neg ((\exists x \cdot F(x) \cdot \exists y \cdot D(y) \cdot O(x, y)) \cdot \neg B(x, y)) \rangle \top$ $= \neg (\langle \exists x \cdot F(x) \cdot \exists y \cdot D(y) \cdot O(x, y) \cdot \neg B(x, y)) \top)$ $= \neg (\langle \exists x \rangle (\langle F(x) \rangle (\langle \exists y \rangle (\langle D(y) \rangle (\langle O(x, y) \rangle (\langle \neg B(x, y) \rangle \top))))))$ $= \neg (\langle \exists x \rangle (\langle F(x) \rangle (\langle \exists y \rangle (\langle D(y) \rangle (\langle O(x, y) \rangle \neg B(x, y))))))$ $= \neg (\langle \exists x \rangle (\langle F(x) \rangle (\langle \exists y \rangle (\langle D(y) \rangle (\langle O(x, y) \wedge \neg B(x, y))))))$ $= \neg (\langle \exists x \rangle (\langle F(x) \rangle (\langle \exists y \rangle (\langle D(y) \wedge O(x, y) \wedge \neg B(x, y)))))$

1.
$$\langle \bot \rangle \psi = \bot$$
 3. $\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi$ 5. $\langle \phi_1 \cdot \phi_2 \rangle \psi = \langle \phi_1 \rangle (\langle \phi_2 \rangle \psi)$ 2. $\langle \top \rangle \psi = \top$ 4. $\langle \exists x \rangle \psi = \exists x [\psi]$ 6. $\langle \neg \phi \rangle \psi = \neg (\langle \phi \rangle \top) \wedge \psi$
$$\neg (\langle \exists x \rangle (\langle F(x) \rangle (\langle \exists y \rangle (D(y) \wedge O(x, y) \wedge \neg B(x, y))))$$

1.
$$\langle \bot \rangle \psi = \bot$$
 3. $\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi$ 5. $\langle \varphi_1 \cdot \varphi_2 \rangle \psi = \langle \varphi_1 \rangle (\langle \varphi_2 \rangle \psi)$ 2. $\langle \top \rangle \psi = \top$ 4. $\langle \exists x \rangle \psi = \exists x [\psi]$ 6. $\langle \neg \varphi \rangle \psi = \neg (\langle \varphi \rangle) \wedge \psi$
$$\neg (\langle \exists x \rangle (\langle F(x) \rangle (\langle \exists y \rangle (D(y) \wedge O(x, y) \wedge \neg B(x, y)))))$$

$$= \neg (\langle \exists x \rangle (\langle F(x) \rangle (\langle \exists y \rangle (D(y) \wedge O(x, y) \wedge \neg B(x, y)))))$$

1.
$$\langle \bot \rangle \psi = \bot$$
 3. $\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi$ 5. $\langle \varphi_1 \cdot \varphi_2 \rangle \psi = \langle \varphi_1 \rangle (\langle \varphi_2 \rangle \psi)$ 2. $\langle \top \rangle \psi = \top$ 4. $\langle \exists x \rangle \psi = \exists x [\psi]$ 6. $\langle \neg \varphi \rangle \psi = \neg (\langle \varphi \rangle) \wedge \psi$
$$\neg (\langle \exists x \rangle (\langle F(x) \rangle (\langle \exists y \rangle (D(y) \wedge O(x, y) \wedge \neg B(x, y)))))$$

$$= \neg (\langle \exists x \rangle (\langle F(x) \rangle (\exists y [D(y) \wedge O(x, y) \wedge \neg B(x, y)])))$$

$$= \neg (\langle \exists x \rangle (\langle F(x) \rangle (\langle \varphi \rangle) \wedge \neg B(x, y))))$$

1.
$$\langle \bot \rangle \psi = \bot$$
 3. $\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi$ 5. $\langle \varphi_1 \cdot \varphi_2 \rangle \psi = \langle \varphi_1 \rangle (\langle \varphi_2 \rangle \psi)$ 2. $\langle \top \rangle \psi = \top$ 4. $\langle \exists x \rangle \psi = \exists x [\psi]$ 6. $\langle \neg \varphi \rangle \psi = \neg (\langle \varphi \rangle \top) \wedge \psi$
$$\neg (\langle \exists x \rangle (\langle F(x) \rangle (\langle \exists y \rangle (D(y) \wedge O(x, y) \wedge \neg B(x, y)))))$$

$$= \neg (\langle \exists x \rangle (\langle F(x) \rangle (\exists y [D(y) \wedge O(x, y) \wedge \neg B(x, y)])))$$

$$= \neg (\langle \exists x \rangle (F(x) \wedge \exists y [D(y) \wedge O(x, y) \wedge \neg B(x, y)]))$$

$$= \neg \exists x [F(x) \wedge \exists y [D(y) \wedge O(x, y) \wedge \neg B(x, y)]]$$

1.
$$\langle \bot \rangle \psi = \bot$$
 3. $\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi$ 5. $\langle \varphi_1 \cdot \varphi_2 \rangle \psi = \langle \varphi_1 \rangle (\langle \varphi_2 \rangle \psi)$ 2. $\langle \top \rangle \psi = \top$ 4. $\langle \exists x \rangle \psi = \exists x [\psi]$ 6. $\langle \neg \varphi \rangle \psi = \neg (\langle \varphi \rangle \top) \wedge \psi$ ((\(\frac{\pi}{\pi} x \cdot F(x) \cdot \Boxed y \cdot D(y) \cdot O(x, y)) \rightarrow B(x, y))\(\gamma\) = \(\pi \Boxed x [F(x) \lambda \Boxed y [D(y) \lambda O(x, y) \lambda \Boxed B(x, y)]]

1.
$$\langle \bot \rangle \psi = \bot$$
 3. $\langle P(x_1, ..., x_n) \rangle \psi = P(x_1, ..., x_n) \wedge \psi$ 5. $\langle \varphi_1 \cdot \varphi_2 \rangle \psi = \langle \varphi_1 \rangle (\langle \varphi_2 \rangle \psi)$ 2. $\langle \top \rangle \psi = \top$ 4. $\langle \exists x \rangle \psi = \exists x [\psi]$ 6. $\langle \neg \varphi \rangle \psi = \neg (\langle \varphi \rangle \top) \wedge \psi$ ((\(\delta x \cdot F(x) \cdot \Beta y \cdot D(y) \cdot O(x, y)) \rightarrow B(x, y))^\circ = \neg \Beta x[F(x) \lambda \Beta y[D(y) \lambda O(x, y) \lambda \Beta B(x, y)]] \(\lambda \times x[F(x) \rightarrow \Tau y[(D(y) \lambda O(x, y)) \rightarrow B(x, y)]\)

Meanwhile at the philosophy department...

- Asking the big questions: what is meaning?
 - Truth-conditions vs. context-change
 - Sentence vs. discourse
 - Semantics vs. pragmatics

A new perspective on meaning

- Truth-conditional Semantics ⇒ Dynamic Semantics
- Basic semantic value:
 - truth-conditions ⇒ context-change potential
- (In)definite NPs are:
 - o quantificational ⇒ variables
- Existential quantification over:
 - A sentence ⇒ the discourse
- Quantification is:
 - selective ⇒ unselective

Meaning as context-change potential

- In dynamic semantics, the meaning of an expression is the effect it has on its context: context ⇔ meaning
 - context changes meaning
 - meaning changes context

 Note: This is a generalisation of rather than an alternative to classical truth-conditional semantics

Discourse variables and quantification

- Division of labor between definite and indefinite NPs:
 - Indefinite NPs introduce discourse referents, which can serve as antecedents for anaphoric reference
 - Definite NPs refer to "old" or "familiar" discourse referents (which are already part of the meaning representation)

- E.g.: "A dog came in. It barked." \mapsto dog(x) \land came-in(x) \land barked(x)
 - ... true iff there is a value for x that verifies the conditions

Unselective quantification

```
"every farmer who owns a donkey beats it"

(quantifier) (restriction) (nuclear scope)
```

- This is true iff for every value assignment to x and y:
 - o if $[[farmer(x) \land donkey(y) \land owns(x, y)]]^{M,g} = 1$ then $[[beats(x, y)]]^{M,g} = 1$
- Quantification is restricted to those individuals who satisfy the restriction
 - Quantification is unselective, i.e. all free variables are bound.