Course number: 80240743

Deep Learning

Xiaolin Hu (胡晓林) & Jun Zhu (朱军)
Dept. of Computer Science and Technology
Tsinghua University

Last lecture review

Which of the following are used to obtain Inception-v2 from Inception-v1 (GoogLeNet)

- Factorize 5x5 conv to two 3x3 conv
- Factorize nxn conv to 1xn and nx1 conv
- Factorize nxn conv to 3xn and nx3 conv
- Split every Inception module to 32 branches

Submit

If you factorize 5x5 conv to two 3x3 conv, does the RFs of the neurons change?

Presentation

Form groups of 2 and every group prepares a 5-minute presentation with slides for one of the following papers

- Hu, Shen, Sun (2018) Squeeze-and-Excitation Networks,
 CVPR
- Li, Wang, Hu, Yang (2019) Selective Kernel Networks, CVPR

Lecture 6: Applications of CNN in Computer Vision

Xiaolin Hu
Dept. of Computer Science and
Technology
Tsinghua University

Outline

- 1. Training techniques-III → Batch normalization
- 2. Image classification
- 3. Object detection
- 4. Summary

"Internal covariate shift"

- Since we use SGD, the input mini-batches to the neural network at different iterations are different
- This may cause the distributions of the output of a layer to be different at different iterations

Internal Covariate Shift (ICS): The change in the distributions of internal nodes of a deep network, in the course of training

It may cause difficulty in optimization

Reduce ICS by normalization

loffe, Szegedy, 2015

 We normalize each scalar feature independently, by making it have the mean of zero and the variance of 1

Reduce ICS by normalization

loffe, Szegedy, 2015

 We normalize each scalar feature independently, by making it have the mean of zero and the variance of 1

• Denote a d-dimensional activation $\mathbf{x} = (x_1, \dots, x_d)$, do normalization

$$\hat{x}_i = \frac{x_i - E[x_i]}{\sqrt{\text{Var}[x_i]}}$$

Keep the representation ability of the layer

$$y_i = \gamma_i \hat{x}_i + \beta_i$$

If $\gamma_i = \sqrt{\operatorname{Var}[x_i]}$ and $\beta_i = \operatorname{E}[x_i]$, then we recover the original activations

Batch normalization

Construct a new layer:

$$\mathbf{y}^{(n)} = BN_{\gamma,\beta}(\mathbf{x}^{(n)})$$

- Where γ , β , $x^{(n)}$, $y^{(n)} \in R^d$
- Forward pass

$$- \mu_B = \frac{1}{m} \sum_{n=1}^{M} x^{(n)}$$

$$- \sigma_B^2 = \frac{1}{m} \sum_{n=1}^{M} (x^{(n)} - \mu_B)^2$$

$$- \widehat{x}^{(n)} = \frac{x^{(n)} - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

$$- v^{(n)} = v\widehat{x}^{(n)} + \beta$$

The arithmetic operations are elementwise

What are needed to be computed in the backward pass?

During inference

- The normalization is neither necessary nor desirable during inference
- Once the network has been trained, we normalize

$$\widehat{x} = \frac{x - E[x]}{\sqrt{Var[x] + \epsilon}}$$

where E[x] and Var[x] are measured over the entire training set

- $E[x] = E_B[\mu_B]$
- $Var[x] = \frac{m}{m-1} E_B[\sigma_B^2]$ where m is the number of mini-batches
- If you want to track the accuracy of a model as it trains, you can use the moving averages instead

Location in a network

- Often applied before the non-linearity of the previous layer
- The previous layer is always a linear transformation layer (fully-connected layer or convolutional layer)

$$y^{(l)} = W^{(l)}y^{(l-1)} + b^{(l)}$$

 The bias term can be ignored because BN has a shift term that have the same effect. Therefore

$$\mathbf{y}^{(l)} = \mathrm{BN}(\mathbf{W}^{(l)}\mathbf{y}^{(l-1)})$$

BN in CNN

- As said before, BN is applied after the convolutional layer
- Different elements of the same feature map are normalized in the same way
- Normalize all activations in a mini-batch, over all locations
 - Suppose the mini-batch size is M, and the feature map size is $P \times Q$, then the mean and variance are calculated across $M \cdot P \cdot Q$ elements
 - Learn a pair of parameters γ_i and β_i per feature map, rather than per activation
- The inference procedure is modified similarly, so that during inference BN applies the same linear transformation to each activation in a given feature map

Advantages

- BN enables higher learning rates
- BN regularizes the model
 - The training network no longer produce deterministic values for a given training example
 - Dropout may not be needed (but see (Li, Chen, Hu, Yang, CVPR 2019))

Test accuracy on the MNIST

X-axis: The number of training steps

But, the advantage is controversial

 Santurkar, Tsipras, Ilyas, Madry (2018) How does batch normalization help optimization? NeurIPS

Summary of Part 1

Motivation

Method

$$\hat{x}_i = \frac{x_i - E[x_i]}{\sqrt{Var[x_i]}}$$
 $y_i = \gamma_i \hat{x}_i + \beta_i$

The reason of the good performance is controversial!

Other normalization techniques*

Wu, He, arXiv:1803.08494v3

All of them share the same linear transformation form, but do normalization over different dimensions

- Batch norm is usually used in CNN
- Layer norm is usually used in RNN
- Instance norm is usually used in image stylization
- Group norm is used in CNN to deal with small batchsize

Outline

- 1. Training techniques-III
- 2. Image classification
- 3. Object detection
- 4. Summary

General image classification

CIFAR-10 & CIFAR100

- 50,000 training images and 10,000 test images
- 32x32 colour images

ImageNet competition (ILSVRC)

The first column shows the ground truth labeling on an example image, and the next three show three sample outputs with the corresponding evaluation score.

Specific image classification

Face verification

Coo d'Este

Melina Kanakaredes

Elijah Wood

Stefano Gabbana

Jim O'Brien Jim O'Brien

Model	Accuracy (%)
DeepFace (2014)	97.25
DeepID (2014)	97.45
DeepID2 (2014)	99.15
DeepID2+ (2014)	99.47
DeepID3 (2014)	99.53
FaceNet (2015)	99.63

 The task is actually different from image classification

Multi-class classification?

- Can you use a multi-class neural network-based classifier for this task and how?
 - Usually, pretrain such a model, then use the features from the model to do the verification with another model

Motivation

- Any problem with this pipeline?
 - It's not end-to-end. The multi-class classification task is not directly related to discrimination between two images
- Solution: design a loss function for discrimination
 - Option 1: Combine the two losses together → DeepID2

There are problems for training the classification model

- Too many classes
 - Calculating the normalization term in softmax is expensive
 - Every softmax output is very small
- Too few samples in each class
- Option 2: Use the discrimination loss alone → FaceNet

DeepID2

Sun, Wang, Tang, 2014, arXiv:1406,4773v1

Contrastive loss

Goal:

 $\left| \left| f(x_i) - f(x_j) \right| \right|_2^2$ is small as possible if i, j belong to the same identity; $\left| \left| f(x_i) - f(x_j) \right| \right|_2^2 > \alpha$ otherwise, where $\alpha > 0$

DeepID2

Sun, Wang, Tang, 2014, arXiv:1406,4773v1

Contrastive loss

Loss:
$$L(x_i, x_j, y_{ij}, \theta) = \begin{cases} \frac{1}{2} \|f(x_i) - f(x_j)\|_2^2, & \text{if } y_{ij} = 1\\ \frac{1}{2} \max\{0, \alpha - \|f(x_i) - f(x_j)\|_2^2\}, & \text{else.} \end{cases}$$

FaceNet

Schroff et al., CVPR 2015

Triplet loss

Goal:
$$||f(x_i^a) - f(x_i^p)||_2^2 + \alpha < ||f(x_i^a) - f(x_i^n)||_2^2$$
 where $\alpha > 0$

Loss:
$$\sum_{i}^{N} \left[\|f(x_{i}^{a}) - f(x_{i}^{p})\|_{2}^{2} - \|f(x_{i}^{a}) - f(x_{i}^{n})\|_{2}^{2} + \alpha \right]_{+}$$

It indicates at least 3 samples are needed in a minibatch

Other losses for face verification

SphereFace:

 Deep Hypersphere Embedding for Face Recognition, CVPR 2017

NormFace:

 L2 Hypersphere Embedding for Face Verification, ACM MM 2017

ArcFace:

 Additive Angular Margin Loss for Deep Face Recognition, CVPR 2019

Summary of Part 2

Multi-class classification

Q: Which class does this image belong to?

Verification

Q: Are the two images for the same person?

Contrastive loss

Outline

- 1. Training techniques-III
- 2. Image classification
- 3. Object detection
- 4. Summary

Task

How would you do this?

A simple idea: find regions that contain objects, then use a classifier to do object recognition

Region proposals

- Find "blobby" image regions that are likely to contain objects
 - Such regions are called region proposals, or region of interest (RoI)

Region proposal: many choices

Method	Approach	Outputs Segments	Outputs Score	Control #proposals	Time (sec.)	Repea- tability	Recall Results	Detection Results
Bing [18]	Window scoring		✓	V	0.2	***	*	•
CPMC [19]	Grouping	✓	/	V	250	-	**	*
EdgeBoxes [20]	Window scoring		✓	✓	0.3	**	***	***
Endres [21]	Grouping	√	V	√	100	-	***	**
Geodesic [22]	Grouping	✓		√	1	*	***	**
MCG [23]	Grouping	✓	1	✓	30	*	***	***
Objectness [24]	Window scoring		1	✓	3	*	*	*0
Rahtu [25]	Window scoring		1	✓	3	*8		*
RandomizedPrim's [26]	Grouping	✓		✓	1	*	*	**
Rantalankila [27]	Grouping	✓		V	10	**		**
Rigor [28]	Grouping	✓		√	10	*	**	**
SelectiveSearch [29]	Grouping	✓	✓	√	10	**	***	***
Gaussian				√	0	*:	*	*
SlidingWindow				✓	0	* * *	*	
Superpixels		✓			1	*		
Uniform				✓	0			

R-CNN

Steps

- 1. Train (or download) a classification model for ImageNet (AlexNet)
- 2. Fine-tune model for detection
- 3. Extract features from each region
- 4. Train one binary SVM per class to classify region features
- 5. For each class, train a linear regression model to map from cached features to offsets to GT boxes to make up for "slightly wrong" proposals

Slide credit: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Any problem with R-CNN?

- Slow at test-time:
 - Need to run full forward pass of CNN for each region proposal
- SVMs and regressors are post-hoc:
 - CNN features not updated in response to SVMs and regressors

Do you have a better idea?

Let's run one forward pass of CNN on the entire image and map every ROI to the feature maps!

Fast R-CNN

Region of interest pooling

the same now

Slide credit: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fast R-CNN Results

		R-CNN	Fast R-CNN
Faster!	Training Time:	84 hours	9.5 hours
	(Speedup)	1x	8.8x
FASTER!	Test time per image	47 seconds	0.32 seconds
	(Speedup)	1x	146x
Better!	mAP (VOC 2007)	66.0	66.9

Using VGG-16 CNN on Pascal VOC 2007 dataset

Slide credit: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Question

Is there any problem with Fast R-CNN?

Faster R-CNN

- Insert a Region Proposal Network (RPN) after the last convolutional layer
- RPN trained to produce region proposals directly; no need for external region proposals!
- After RPN, use Rol Pooling and an upstream classifier and bbox regressor just like Fast R-CNN

Ren et al., NIPS 2015

Region proposal network

Ren et al., NIPS 2015

At each location, k=9 boxes are generated in the input image

http://blog.csdn.NET/shenxia olu1984/article/details/5115 2614

Faster R-CNN results

Table 2: Detection results on **PASCAL VOC 2007 test set**. The detector is Fast R-CNN and VGG-16. Training data: "07": VOC 2007 trainval, "07+12": union set of VOC 2007 trainval and VOC 2012 trainval. For RPN, the train-time proposals for Fast R-CNN are 2k. †: this was reported in [5]; using the repository provided by this paper, this number is higher (68.0±0.3 in six runs).

	method	# proposals	data	mAP (%)	time (ms)
Fast R-	SS	2k	07	66.9 [†]	1830
CNN	SS	2k	07+12	70.0	1830
	RPN+VGG, unshared	300	07	68.5	342
	RPN+VGG, shared	300	07	69.9	198
	RPN+VGG, shared	300	07+12	73.2	198

Two-stage versus one-stage

Fast

Object Detection + Recognition

How would you do this?

YOLO: You only look at once

Redmon, Divvala, Girshick, Farhadi, CVPR 2016

- It models detection as a regression problem
- ① Divide the image into an S×S grid
- ② For each grid cell predicts B bounding boxes, confidence for those boxes, and C class probabilities

These predictions are encoded as an $S \times S \times (B *5 + C)$ tensor

- It predicts the centers of ground truth boxes in each grid
- Every class prob corresponds to a bounding box centered in that cell

Performance comparison

https://github.com/yehengchen/Object-Detection-and-Tracking/blob/master/Two-stage%20vs%20One-stage%20Detectors.md

Performance comparison

https://github.com/yehengchen/Object-Detection-and-Tracking/blob/master/Two-stage%20vs%20One-stage%20Detectors.md

Summary of Part 3

Two-stage

One-stage

R-CNN

Fast R-CNN

YOLO

How many samples at least are needed in a minibatch for minimizing the contrastive loss?

- (A) 1
- B 2
- (c) 3
- D 4

For training the FaceNet, a triplet loss is used. After training, the distance between the features of an anchor sample and a positive sample should be

- reduced
- B increased
- the same

Which of the following generate Rols using external models?

- A R-CNN
- B Fast R-CNN
- Faster R-CNN
- D YOLO

Faster R-CNN uses an RPN to generate proposals. What predictions does RPN make at every location?

- Coordinates of bounding boxes
- Whether the bounding boxes contain objects or not
- Class labels of the objects

Which method is an one-stage detection method?

- A R-CNN
- **B** Fast-RCNN
- Faster-RCNN
- P YOLO

Outline

- 1. Training techniques-III
- 2. Image classification
- 3. Object detection
- 4. Summary

Summary of this lecture

Knowledge

$$\hat{x}_i = \frac{x_i - E[x_i]}{\sqrt{\text{Var}[x_i]}}$$

$$y_i = \gamma_i \hat{x}_i + \beta_i$$

Multi-class classification Face verification

Triplet loss

Contrastive loss

3

R-CNN

Fast R-CNN

Faster R-CNN

YOLO

Summary of this lecture

Capability and value

Simple ideas, influential works

- 1. Predict lots of Rols
- 2. Do classification for each Rol

Google scholar citations (till Nov 1, 2020):

14949

57

• Find problems, solve problems

Too many feedforward passes

Fast R-CNN

External models for Rol generation

2 stages are slow

Recommended reading

- Schroff, Kalenichenko, Philbin (2015)
 FaceNet: A Unified Embedding for Face Recognition and Clustering CVPR
- Girshick, Donahue, Darrell, Malik (2014)
 Rich feature hierarchies for accurate object detection and semantic segmentation

CVPR

• Girshick (2015) Fast R-CNN

ICCV

 Ren, He, Girshick, Sun (2015)
 Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

NIPS

Recommended reading

Redmon, Divvala, Girshick, Farhadi (2016)
 You Only Look Once: Unified, Real-Time Object Detection
 CVPR

Prepare for the next lecture

- Form groups of 2 and every group prepares a 5minute presentation with slides for the following paper
 - Santurkar, Tsipras, Ilyas, Madry, "How does batch normalization help optimization?" NeurIPS 2018