

MÉTODOS MATEMÁTICOS Y NUMÉRICOS

(95.13) Curso: Cavaliere-Mastropietro

Trabajo Práctico Extracción de petróleo

Junio 2025

Ian von der Heyde 107638 Juan Martín de la Cruz 109588 Victoria Citra 110616

Índice

1. Introducción					
2.	Mod	delado del problema	4		
3.	Con	tenidos teóricos	5		
	3.1.	Método de Euler explícito	5		
	3.2.	Método de Euler implícito	5		
	3.3.	Método de Runge-Kutta de segundo orden (RK2)	6		
	3.4.	Método del tiro	6		
4.	Res	olución del problema con métodos numéricos	6		
	4.1.	Discretización de la ecuación	6		
	4.2.	Resolución mediante el método de Euler explícito	7		
		4.2.1. Aplicación del Método del Tiro con $h=1mm$	7		
		4.2.2. Resolución con refinamiento del paso	10		
	4.3.	Resolución mediante el método de Euler implícito	12		
		4.3.1. Aplicación del Método del Tiro con $h=1mm$	13		
		4.3.2. Resolución con refinamiento del paso	15		
	4.4.	Resolución mediante el método de Runge-Kutta de segundo orden (RK2) $$	17		
		4.4.1. Aplicación del método del tiro, con un paso $h=1mm$	17		
		4.4.2. Resolución con refinamiento del paso	19		
5.	Esti	mación del error numérico	20		
	5.1.	Estimación del error del método de Euler explícito	20		
	5.2.	Estimacion del Error de Euler Implícito	21		
	5.3.	Estimacion del Error de RK2	22		
6.	Esti	mación experimental del Orden de precisión	23		
	6.1.	Euler Explícito	24		
	6.2.	Euler Implícito	24		
	6.3.	RK2	25		
7.	Res	olución del problema por el método directo (de diferencias finitas)	2 5		
	7.1.	Discretización	25		
		7.1.1. Aproximación de las derivadas	25		
		7.1.2. Sustitución en la ecuación diferencial	26		
		7.1.3. Ecuación final para cada nodo interno	26		
		7.1.4. Consideración de las condiciones de frontera	26		
	7.2.	Matriz y vector del sistema	26		
		7.2.1. Vector final b	27		
	7.3.	Tabla de temperaturas	28		
	7.4.	Calculo del orden de precisión del método directo.	28		

8.	Con	clusiones	2 9
	8.1.	Aplicación de los métodos utilizados y comparación con la teoría $\ \ldots \ \ldots \ \ldots$	29
	8.2.	Tipos de errores y su importancia	30
	8.3.	Relación entre el error y el tamaño del paso	30
	8.4.	Comportamiento de la solución si en lugar de aplicar el método del tiro, se hubiera utilizado el valor exacto de la derivada	31
9.	Ane	exo	34
	9.1.	Constantes: ctes.py	34
	9.2.	Funciones útiles: utils.py	34
	9.3.	Euler Explícito: eulerExp.py	35
	9.4.	Euler Implícito: eulerImp.py	35
	9.5.	Runge-Kutta de segundo orden: RK2.py	36
	9.6.	Diferencias divididas: difDivididas.py	37

1. Introducción

En el siguiente trabajo se busca conocer el perfil de temperaturas a lo largo del espesor de una tubería durante una operación de extracción de petróleo en un pozo **HPHT** (**High Pressure** – **High Temperature**), asumiendo que el fluido que circula calienta la cara interna de la cañería hasta una temperatura T_1 [°C], mientras que la superficie externa se encuentra a una temperatura T_2 [°C].

Como objetivos del trabajo práctico, se busca:

- Ensayar la aplicación de métodos numéricos de distintos órdenes (Euler y Runge-Kutta de segundo orden) para resolver la ecuación diferencial planteada;
- Comprender el comportamiento de estos métodos ante variaciones en el paso de discretización;
- Evaluar empíricamente los errores cometidos y compararlos con la solución analítica disponible.

2. Modelado del problema

Durante la operación de extracción de petróleo en un pozo HPHT, el fluido caliente circula por el interior de una tubería cilíndrica hasta alcanzar la superficie. Esta tubería, conocida como *tubing*, está construida con materiales especiales para soportar las condiciones extremas de presión y temperatura, y se encuentra aislada del entorno por una capa de cemento.

En este trabajo se busca determinar el perfil radial de temperatura a través del espesor de la cañería, considerando un régimen estacionario y flujo unidimensional en coordenadas cilíndricas. Se asume que la cara interna de la tubería está a una temperatura T_1 y que la superficie externa está a una temperatura T_2 .

La ecuación diferencial que modela la distribución radial de temperatura T(r) en régimen estacionario es:

$$r \cdot \frac{d^2T}{dr^2} + \frac{dT}{dr} = 0 \tag{1}$$

Integrando la ecuación (1), se obtiene la solución exacta del perfil de temperatura:

$$T(r) = (T_1 - T_2) \cdot \frac{\ln\left(\frac{r_2}{r}\right)}{\ln\left(\frac{r_2}{r_1}\right)} + T_2 \tag{2}$$

donde:

- Padrón elegido: 110616
- \blacksquare r es la coordenada radial (en mm), medida desde el centro de la tuberia
- $r_1 = 101,6$ mm es el radio interno de la cañería,
- $r_2 = 113,6$ mm es el radio externo,
- $T_1 = 406$ °C es la temperatura de la cara interna (obtenida como 400 + CD),
- $T_2 = 16$ °C es la temperatura de la cara externa (valor EF del padrón).

3. Contenidos teóricos

Problemas de valor inicial (PVI)

Un problema de valor inicial consiste en resolver una EDO con dos condiciones conocidas en un punto de partida. Este tipo de problema, puede plantearse como:

$$\frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0, \quad y'(t_0) = z_0 \tag{3}$$

Donde f(t,y) representa la función que define la derivada de y, y $y(t_0)$ y $y'(t_0)$ son los valores iniciales de la ecuación.

Problemas de valor de contorno (PVC)

Los problemas de valores de contorno requieren que la solución cumpla condiciones impuestas en los dos extremos del dominio. Por ejemplo, para una EDO de segundo orden:

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad y(a) = \alpha, \quad y(b) = \beta$$
(4)

La dificultad en estos problemas se debe a que no se conoce la derivada inicial y'(a), lo que impide aplicar directamente métodos de PVI. Por esta razón, es posible emplear el método del tiro para transformar el PVC en un problema de valor inicial.

3.1. Método de Euler explícito

El método de Euler explícito permite obtener una aproximación a la solución del PVI utilizando únicamente información en el punto actual. Es un método de primer orden, lo que significa que el error cometido disminuye de forma lineal al reducir el paso h utilizado.

Dada una EDO:

$$\frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0 \quad y'(t_0) = z_0 \tag{5}$$

El esquema de Euler explícito plantea la discretización de las variables de la ecuación como:

$$y_{n+1} = y_n + h f(t_n, y_n) (6)$$

Donde h representa el tamaño del paso, y y_n es la aproximación numérica a $y(t_n)$. Sin embargo, debe seleccionarse dicho h con precaución, dado que el método puede volverse inestable dependiendo de su valor.

3.2. Método de Euler implícito

El método de Euler estima la pendiente en el punto siguiente. Esto mejora la estabilidad del método, resultando en un método incondicionalmente estable, a diferencia del anterior que es condicionalmente estable. Es decir, que el método funcionará para cualquier h seleccionado.

La fórmula correspondiente es:

$$y_{n+1} = y_n + h f(t_{n+1}, y_{n+1}) \tag{7}$$

Cuando la ecuación NO es lineal, la resolución puede realizarse mediante métodos iterativos.

3.3. Método de Runge-Kutta de segundo orden (RK2)

El método de Runge-Kutta de segundo orden considera un promedio de la derivada para aumentar la precisión.

Los pasos del método se describen a continuación:

$$q_1 = hf(t_n, y_n), \quad q_2 = hf(t_n + 1, y_n + q_1)$$
 (8)

$$y_{n+1} = y_n + 0.5(q_1 + q_2) (9)$$

Este método alcanza un orden de precisión dos, lo que significa que el error decrece cuadráticamente al reducir el tamaño del paso.

3.4. Método del tiro

Como fue mencionado anteriormente el **método del tiro** es una técnica numérica utilizada para resolver problemas de valores de contorno convirtiéndolos en problemas de valores iniciales.

Dado un problema de segundo orden:

$$\frac{d^2y}{dx^2} = f(x, y, y'), \quad x \in [a, b], \quad y(a) = \alpha, \quad y(b) = \beta$$
 (10)

Como y'(a) = v es desconocido, se elige un valor inicial para v y se resuelve el sistema como un problema de valores iniciales. Luego, se ajusta iterativamente el valor de v hasta que la solución cumpla la condición de contorno $y(b) = \beta$.

4. Resolución del problema con métodos numéricos

4.1. Discretización de la ecuación

Para comenzar a resolver, es necesario discretizar el dominio de la variable independiente en un conjunto finito de puntos. En este caso, el dominio está definido por el espesor de la cañería:

$$r \in [r_1, r_2] = [101.6, 113.6] \text{ mm}$$
 (11)

Se realiza una partición del intervalo en N subintervalos de igual tamaño. El valor del paso h, es decir, la distancia entre dos radios consecutivos, se calcula como:

$$h = \frac{r_2 - r_1}{N} \tag{12}$$

De este modo, se generan N+1 puntos r_n . Discretizando la variable independiente r como:

$$r_n \approx r_i + h \cdot n \tag{13}$$

Siendo el paso h (mm) y el radio inicial $r_i=101,6$ mm, la discretización resulta:

$$r_n \approx 101.6 \text{ mm} + h \cdot n$$

Se procede a discretizar la ecuación diferencial aplicando un cambio de variables:

$$T_n \approx U_n$$

$$\begin{cases} T(r) \longrightarrow u(r) \\ T'(r) \longrightarrow u'(r) \longrightarrow v(r) \\ T''(r) \longrightarrow u''(r) \longrightarrow v'(r) \end{cases}$$

Reemplazando y despejando de la EDO:

$$\frac{d^2u}{dr^2} + \frac{1}{r}\frac{du}{dr} = 0$$

$$v' + \frac{v}{r} = 0$$

$$v' = -\frac{v}{r}$$

De esta forma, se obtiene un sistema de ecuaciones de primer orden:

$$\begin{cases} f(u, v, r) = u' = v \\ g(u, v, r) = v' = -\frac{v}{r} \end{cases}$$

4.2. Resolución mediante el método de Euler explícito

Este problema puede resolverse numéricamente utilizando el esquema de Euler explícito al discretizar las variables a evaluar. Considerando (6) y la discretización de la ecuación, resulta:

$$\begin{cases} u_{n+1} = u_n + h \cdot v_n \\ v_{n+1} = v_n + h \cdot \left(-\frac{v_n}{r_n}\right) \end{cases}$$

$$\begin{cases} T_1 = 406 \,^{\circ}\text{C} \\ T_2 = 16 \,^{\circ}\text{C} \end{cases}$$

4.2.1. Aplicación del Método del Tiro con h = 1mm

Tiro 1

Se supone un valor inicial de la derivada en el radio interno: v = -100 ya que es conocido que la misma es negativa porque la temperatura decrece a lo largo del espesor de la tubería.

Con los valores iniciales:

- $u_0 = 406 \, ^{\circ}\text{C}$
- $v_0 = -100$
- $r_0 = 101,6mm$

La ecuación de Euler resulta:

$$\begin{cases} u_{n+1} = u_n + h \cdot v_n \\ v_{n+1} = v_n + h \cdot \left(-\frac{v_n}{r_n}\right) \end{cases}$$

Siendo:

$$r_n = r_1 + n \cdot h$$

$$\begin{cases} r_1 = 101,6 + 0 \cdot 1 = 101,6 \\ u_1 = 406 + 1 \cdot (-100) = 306 \\ v_1 = (-100) + 1 \cdot \left(-\frac{-100}{101,6}\right) \approx -99,015748903 \end{cases}$$

De esta forma, se continúa el proceso, resolviendo el sistema de ecuaciones de forma progresiva hasta que r_n alcance a r_2 (radio externo), obteniéndose los valores dispuestos en la siguiente tabla:

Paso	r(mm)	$u_{\mathrm{num}(^{\circ}\mathrm{C})}$	$u_{\mathrm{exact}(^{\circ}\mathrm{C})}$	Error
0	101.60	406.0000	406.0000	0.0000
1	102.60	306.0000	371.7845	65.7845
2	103.60	206.9843	337.9009	130.9167
3	104.60	108.9336	304.3428	195.4092
4	105.60	11.8293	271.1040	259.2747
5	106.60	-84.3466	238.1785	322.5251
6	107.60	-179.6117	205.5604	385.1721
7	108.60	-273.9832	173.2440	447.2272
8	109.60	-367.4776	141.2239	508.7015
9	110.60	-460.1112	109.4946	569.6057
10	111.60	-551.8995	78.0509	629.9504
11	112.60	-642.8579	46.8877	689.7456
12	113.60	-733.0013	16.0000	749.0013

Cuadro 1: Resultados del primer tiro por Euler explicito

El error exacto en cada paso se calcula como el valor absoluto de la diferencia entre la solución exacta (u_{exact}) y el valor numérico (u_{num}) resultante del método aplicado. Es decir:

$$Error = |u_{\text{exact}} - u_{\text{num}}| \tag{14}$$

La solución exacta, denotada como $u_{\text{exact}} = T(r)$, se obtiene a partir de la ecuación previamente definida en la expresión (2).

Tiro 2:

Como en el tiro anterior la temperatura calculada resultó menor que la esperada en el borde exterior, se plantea un nuevo valor inicial de la derivada menos pronunciado, fijando v = -1.

Con los valores iniciales:

- $u_0 = 406 \, ^{\circ}\text{C}$
- $v_0 = -1$
- $r_0 = 101,6mm$

Se procede a realizar el nuevo tiro, con el valor propuesto, mostrando los resultados obtenidos a continuación:

Paso(n)	r(mm)	u _{num(°C)}	u _{exact(°C)}	Error
0	101.60	406.0000	406.0000	0.0000
1	102.60	405.0000	371.7845	33.2155
2	103.60	404.0098	337.9009	66.1089
3	104.60	403.0293	304.3428	98.6865
4	105.60	402.0583	271.1040	130.9543
5	106.60	401.0965	238.1785	162.9181
6	107.60	400.1439	205.5604	194.5835
7	108.60	399.2002	173.2440	225.9561
8	109.60	398.2652	141.2239	257.0413
9	110.60	397.3389	109.4946	287.8443
10	111.60	396.4210	78.0509	318.3701
11	112.60	395.5114	46.8877	348.6238
12	113.60	394.6100	16.0000	378.6100

Cuadro 2: Resulados del segundo tiro

Tiro 3:

En el segundo tiro, el valor final de la temperatura fue mayor que el esperado. Por ello, se hace una interpolación lineal entre ambos valores obtenidos para aproximar a la solución real. Se aclara que el valor obtenido es simplemente una estimación de la derivada real, dado que se comete un error al asumir una relación lineal entre las variables y dado que los datos reemplazados en la fórmula contienen errores del método numérico y de redondeo.

$$v_{r_{\text{int}}} \approx v_2 + \left(\frac{v_1 - v_2}{u_1^{(r_{ext})} - u_2^{(r_{ext})}}\right) \cdot (T_2 - u_2^{(r_{ext})})$$
 (15)

donde:

- \bullet v_1 y $u_1(r_2)$: derivada en radio interno y temperatura en radio externo del primer tiro.
- $\blacksquare \ v_2$ y $u_2(r_2)$: derivada en radio interno y temperatura en radio externo del segundo tiro.
- lacksquare T_2 : temperatura exacta deseada en el borde externo.

El valor obtenido es:

$$v_{r_{\rm int}} \approx -1 + \left(\frac{-100 - (-1)}{-733,0013 - 394,6100}\right) \cdot (16 - 394,6100) \approx -34,240524$$
 (16)

Con este ajuste de la derivada inicial para cumplir con los valores de contorno, se realiza una nueva ejecución del método de Euler, siendo los resultados finales:

Paso(n)	r(mm)	u_num(°C)	$u_{-}exact(^{\circ}C)$	Error
0	101.60	406.0000	406.0000	0.0000
1	102.60	371.7595	371.7845	0.0250
2	103.60	337.8560	337.9009	0.0449
3	104.60	304.2829	304.3428	0.0599
4	105.60	271.0339	271.1040	0.0701
5	106.60	238.1028	238.1785	0.0757
6	107.60	205.4835	205.5604	0.0769
7	108.60	173.1702	173.2440	0.0738
8	109.60	141.1572	141.2239	0.0667
9	110.60	109.4390	109.4946	0.0556
10	111.60	78.0102	78.0509	0.0407
11	112.60	46.8656	46.8877	0.0221
12	113.60	16.0000	16.0000	0.0000

Cuadro 3: Resultados numéricos del tercer tiro, exactos y su error.

A continuación se grafica la solución numérica frente a la exacta:

Nótese que ambas soluciones presentan una buena aproximación entre sí; sin embargo, al emplear un método numérico, únicamente es posible obtener valores discretos en puntos específicos de la función, y no su forma continua completa.

4.2.2. Resolución con refinamiento del paso

Se realizará un proceso de refinamiento del paso h, comenzando con un valor inicial de $h=1,0\,\mathrm{mm}.$

Se calcula la solución numérica u_{num} y se compara con la solución exacta u_{exact} en cada punto, evaluando el error absoluto exacto punto a punto. Este procedimiento se repite disminuyendo el tamaño del paso h para reducir el error máximo de la solución hasta alcanzar un umbral deseado, en este caso menor a 0.02°C .

Salida de consola del ajuste del paso h

=== Ejecutando con h = 0.25000 mm === Máximo error punto a punto: 0.019065 °C

Paso final elegido: 0.25000 mm con error máximo de 0.019065 °C y la derivada final: -34.348040

Se observó que al reducir el tamaño del paso a un valor de h=0.25mm y volver a aplicar el método del tiro con el mismo procedimiento que en los incisos anteriores, el error máximo de la solución resultó inferior al pedido, por lo cual se selecciona dicho valor.

Para obtener la solución nuevamente, se volvieron a realizar dos tiros, uno con pendiente inicial $v(r_{\rm int}) = -100$ y el segundo con $v(r_{\rm int}) = -1$. Al obtener los valores de las temperaturas finales de ambos tiros, se realizó una interpolación lineal, imponiendo que la temperatura en el radio externo sea equivalente a 16°C, obteniéndose así $v(r_{\rm int}) = -34,348040$. Con este último valor de la derivada en el radio interno se efectuó el último tiro obteniendo los valores dispuestos a continuación:

Paso(n)	r (mm)	u_num (°C)	u_exact(°C)	Error (°C)
0	101.6000	406.0000	406.0000	0.0000
1	101.8500	397.4130	397.4147	0.0017
2	102.1000	388.8471	388.8504	0.0033
:	:	:	:	:
23	107.3500	213.6673	213.6864	0.0191
1 :	:	:	:	:
46	113.1000	31.4069	31.4097	0.0028
47	113.3500	23.6949	23.6964	0.0014
48	113.6000	16.0000	16.0000	0.0000

Cuadro 4: Resultados del tercer tiro con un paso h = 0.25 y sus respectivos errores

Consideraciones sobre el paso h

Si bien se observó una disminución general del error máximo al reducir el valor del paso h, este comportamiento no fue siempre consistente. En particular, se detectó un aumento del error cuando el paso h no dividía de forma exacta el espesor de la tubería. Esto se debe a que, en tales casos, el radio final calculado no coincidía con el valor real, lo cual impedía estimar adecuadamente la derivada en el radio interno durante la ejecución del tercer tiro.

Dado que no se disponía de la temperatura real en ese punto para ajustar adecuadamente la derivada, se introducía una fuente adicional de error. Una alternativa posible para resolver este inconveniente sería utilizar un paso final de tamaño distinto que permita alcanzar exactamente el borde exterior. Sin embargo, esta solución implica forzar el esquema numérico, lo que puede comprometer tanto la precisión como la uniformidad de la discretización.

Por estas razones, se optó por utilizar únicamente pasos que fueran múltiplos exactos del espesor de la cañería, garantizando así una discretización uniforme. Esta decisión favorece la estabilidad y la precisión de los cálculos numéricos, además de simplificar el procedimiento de cálculo.

Se procede a graficar el error obtenido para ambos pasos:

Figura 1: Comparación de errores obtenidos con los dos pasos usados

En el gráfico anterior se observa que, al reducir el paso de integración h de 1mma0,25mm, el error disminuye de manera significativa. Este comportamiento es esperable, ya que una menor longitud de paso implica una mayor cantidad de puntos de evaluación, lo que mejora la aproximación a la curva real.

No obstante, aunque la reducción del paso disminuye el error de truncamiento del método, también puede generar una mayor acumulación de errores de redondeo. Esto se debe a que al contar con una mayor cantidad de puntos en la discretización, deben realizarse una mayor cantidad de operaciones con la precisión finita del computador, incrementando el error de redondeo.

4.3. Resolución mediante el método de Euler implícito

El sistema de ecuaciones diferenciales obtenido previamente puede resolverse utilizando el esquema de Euler implícito, el cual ofrece mayor estabilidad frente al método explícito, dado que es incondicionalmente estable para todo paso h. Partiendo de las expresiones en (7), el esquema adoptado es:

$$\begin{cases} u_{n+1} = u_n + h \cdot v_{n+1} \\ v_{n+1} = v_n + h \cdot \left(-\frac{v_{n+1}}{r_{n+1}} \right) \end{cases}$$

Donde $r_n = r_1 + n \cdot h$ y h es el paso de integración (en mm).

Distribuyendo el producto:

$$v_{n+1} = v_n - \frac{h \cdot v_{n+1}}{r_{n+1}}$$

Llevando los términos con v_{n+1} al mismo lado de la ecuación:

$$v_{n+1} + \frac{h \cdot v_{n+1}}{r_{n+1}} = v_n$$

Factorizando v_{n+1} :

$$v_{n+1}\left(1+\frac{h}{r_{n+1}}\right) = v_n$$

Despejando v_{n+1} :

$$v_{n+1} = \frac{v_n}{1 + \frac{h}{r_{n+1}}}$$

De esta forma se obtiene:

$$\begin{cases} u_{n+1} = u_n + h \cdot v_{n+1} \\ v_{n+1} = \frac{v_n}{1 + \frac{h}{r_{n+1}}} \end{cases}$$

4.3.1. Aplicación del Método del Tiro con h = 1mm

Tiro 1:

Con el objetivo de realizar una comparación equitativa entre los distintos esquemas numéricos, se parte de un valor inicial tentativo de la derivada, igual al usado en el método anterior. En este primer disparo, se utilizan las siguientes condiciones iniciales:

- $u_0 = 406 \, ^{\circ}\text{C}$
- $v_0 = -100$
- $r_0 = 101.6 \, \text{mm}$
- $T_1 = 406 \,^{\circ}\text{C}, \quad T_2 = 16 \,^{\circ}\text{C}$

A partir de estos valores, se procede a resolver el sistema de ecuaciones utilizando el método de Euler implícito. Las ecuaciones discretizadas son:

$$\begin{cases} v_{n+1} = \frac{v_n}{1 + \frac{h}{r_{n+1}}} \\ u_{n+1} = u_n + h \cdot v_{n+1} \end{cases}$$

Notese que puede despejarse el término un+1 resultando:

$$\begin{cases} u_{n+1} = u_n + h \cdot \frac{v_n}{1 + \frac{h}{r_{n+1}}} \end{cases}$$

Dado que se pudo despejar un+1, no es necesario recurrir a métodos de resolución de ecuaciones no lineales. Esto se debe a que la EDO que se busca resolver no es no lineal.

En el primer paso:

$$\begin{cases} r_1 = r_0 + n \cdot h = 101, 6 + 1 \cdot 1 = 102, 6 \\ v_1 = \frac{-100}{1 + \frac{1}{102, 6}} \approx -99,0347 \\ u_1 = 406 + 1 \cdot (-99,035) \approx 306,9653 \end{cases}$$

Este procedimiento se repite para cada valor de r_n hasta alcanzar el radio externo $r_2 = 113,6\,\mathrm{mm}$, completando así la integración sobre el intervalo.

Paso(n)	r(mm)	$u_{num}(^{\circ}C)$	$u_{exact}(^{\circ}C)$	Error (°C)
0	101.60	406.0000	406.0000	0.0000
1	102.60	306.9653	371.7845	64.8193
2	103.60	208.8773	337.9009	129.0236
3	104.60	111.7182	304.3428	192.6246
4	105.60	15.4706	271.1040	255.6334
5	106.60	-79.8826	238.1785	318.0611
6	107.60	-174.3577	205.5604	379.9181
7	108.60	-267.9709	173.2440	441.2149
8	109.60	-360.7376	141.2239	501.9615
9	110.60	-452.6731	109.4946	562.1677
10	111.60	-543.7921	78.0509	621.8430
11	112.60	-634.1090	46.8877	680.9967
12	113.60	-723.6378	16.0000	739.6378

Cuadro 5: Resulados del primer tiro, usando Euler Implicito

La diferencia entre la solución exacta $u_{\rm exact}$, obtenida mediante la expresión analítica del enunciado, y la solución numérica $u_{\rm num}$ derivada del método aplicado, da el error absoluto y se cuantifica mediante la expresión indicada en la ecuación 14.

Tiro 2:

Al igual que con Euler Explícito, en el tiro anterior la temperatura calculada resultó menor que la esperada en el borde exterior, planteando un nuevo valor inicial de la derivada, fijando v = -1.

Con los valores iniciales:

- $u_0 = 406 \, ^{\circ}\text{C}$
- $v_0 = -1$
- $r_0 = 101,6 \text{ mm}$

Se realiza un nuevo tiro, obteniendo la siguiente tabla de resultados:

Paso(n)	r(mm)	u_num(°C)	$u_exact(^{\circ}C)$	Error(°C)
0	101.60	406.0000	406.0000	0.0000
1	102.60	405.0097	371.7845	33.2251
2	103.60	404.0288	337.9009	66.1279
3	104.60	403.0572	304.3428	98.7144
4	105.60	402.0947	271.1040	130.9907
5	106.60	401.1412	238.1785	162.9627
6	107.60	400.1964	205.5604	194.6360
7	108.60	399.2603	173.2440	226.0163
8	109.60	398.3326	141.2239	257.1087
9	110.60	397.4133	109.4946	287.9187
10	111.60	396.5021	78.0509	318.4512
11	112.60	395.5989	46.8877	348.7112
12	113.60	394.7036	16.0000	378.7036

Cuadro 6: Comparación entre la solución numérica y exacta en el segundo tiro con el método de Euler implícito.

Tiro 3:

Para aproximarse mejor a la solución exacta, se realiza una interpolación lineal entre los resultados de los dos tiros anteriores, tomando la ecuación 15. De esta forma, obtenemos lo siguiente:

$$v_{r_{\rm int}} \approx -1 + \left(\frac{-100 + 1}{-723,6378 - 394,7036}\right) \cdot (16 - 394,7036)$$
 (17)

$$v_{r_{\rm int}} \approx -34,524340$$
 (18)

Paso(n)	r(mm)	u_num(°C)	$u_{-}exact(^{\circ}C)$	$\operatorname{Error}(^{\circ}\mathrm{C})$
0	101.60	406.000000	406.000000	0.000000
1	102.60	371.808906	371.784521	0.024385
2	103.60	337.944687	337.900915	0.043772
3	104.60	304.401151	304.342804	0.058347
4	105.60	271.172283	271.103995	0.068288
5	106.60	238.252234	238.178469	0.073765
6	107.60	205.635315	205.560375	0.074940
7	108.60	173.315997	173.244026	0.071971
8	109.60	141.288896	141.223889	0.065007
9	110.60	109.548777	109.494584	0.054192
10	111.60	78.090541	78.050876	0.039665
11	112.60	46.909226	46.887668	0.021559
12	113.60	16.000000	16.000000	0.000000

Cuadro 7: Comparación entre la solución numérica y exacta con el método de Euler Implícito.

Graficando los resultados obtenidos se observa nuevamente que el resultado obtenido se aproxima con bastante precisión, de forma discreta, a la solución real:

4.3.2. Resolución con refinamiento del paso

Se considera nuevamente el refinamiento progresivo del paso h, evaluando el error absoluto punto a punto y seleccionando el valor óptimo de h que cumple con el umbral de tolerancia establecido (es decir, que el error máximo en la solución sea inferior a 0.02C).

Para este procedimiento, se realizó un primer tiro utilizando un valor inicial para la derivada en el radio interno $v(r_{\text{int}}) = -100$, seguido de un segundo tiro con un valor alternativo $v(r_{\text{int}}) = -1$, utilizando distintos valores de h.

A partir de los resultados obtenidos, se aplicó un proceso de interpolación, considerando la condición de contorno $T(r_{\rm ext}) = 16$ °C. De esta forma, se obtuvo una aproximación distinta para la pendiente verdadera en el radio interno para cada hutilizado. Con este valor, se efectuó un tercer y último tiro, obteniéndose así el perfil de temperaturas a lo largo del espesor de la tubería.

Salida de consola del ajuste del paso h

Como puede observarse, aplicando paso de h=0.25mm, se cumple la condición del enunciado, obteniendo un error por debajo del solicitado. Consecuentemente, se selecciona dicho valor y se disponen los resultados obtenidos en el tercer tiro en la siguiente tabla:

Paso(n)	r(mm)	$u_{num}(^{\circ}\mathrm{C})$	$u_{exact}(^{\circ}C)$	Error (°C)
0	101.60	406.000000	406.000000	0.000000
1	101.85	397.416322	397.414662	0.001660
2	102.10	388.853610	388.850371	0.003239
:	:	:	:	:
23	107.35	213.705333	213.686391	0.018942
:	:	:	:	:
46	113.10	31.412523	31.409696	0.002827
47	113.35	23.697791	23.696351	0.001440
48	113.60	16.000000	16.000000	0.000000

Cuadro 8: Resultados numéricos y errores absolutos para $h=0.25~\mathrm{mm}$ por euler implicito

Figura 2: Comparación de errores con distintos pasos

En el gráfico anterior, se observa la comparación de los errores obtenidos utilizando el método de Euler implícito, para un paso de h=1mm y h=0.25mm. Nuevamente, se observa una disminución significativa del error tras la reducción del paso.

4.4. Resolución mediante el método de Runge-Kutta de segundo orden (RK2)

Para aproximar la solución de la ecuación diferencial del problema, ahora se utiliza el método de Runge-Kutta de segundo orden (RK2), que debería mejorar la precisión frente a los métodos implementados anteriormente.

Se discretiza para cada variable, u y v:

$$\begin{cases} q_{1u} &= hf(u_n, v_n, r_n) \\ q_{1v} &= hg(u_n, v_n, r_n) \end{cases}$$

$$\begin{cases} q_{2u} &= hf(u_n + q_{1u}, v_n + q_{1v}, r_{n+1}) \\ q_{2v} &= hg(u_n + q_{1u}, v_n + q_{1v}, r_{n+1}) \end{cases}$$

Aplicando a la ecuación diferencial del problema:

$$\begin{aligned} q_{1u} &= hv_n \\ q_{1v} &= h\frac{-v_n}{r_n} \\ q_{2u} &= h\left(v_n + q_{1v}\right) = h\left(v_n + h\frac{-v_n}{r_n}\right) \\ q_{2v} &= h\frac{-(v_n + q_{1v})}{r_{n+1}} = h\frac{-v_n + h\frac{v_n}{r_n}}{r_{n+1}} \end{aligned}$$

Discretizando las variables, resulta:

$$\begin{cases} u_{n+1} &= u_n + \frac{1}{2}(q_{1u} + q_{2u}) \\ v_{n+1} &= v_n + \frac{1}{2}(q_{1v} + q_{2v}) \end{cases}$$

$$u_{n+1} = u_n + \frac{1}{2}(q_{1u} + q_{2u}) = u_n + \frac{1}{2}\left(hv_n + h\left(v_n - h\frac{v_n}{r_n}\right)\right)$$

$$v_{n+1} = v_n + \frac{1}{2}(q_{1v} + q_{2v}) = v_n - \frac{hv_n}{2}\left(\frac{1}{r_n} + \frac{1 - h\frac{1}{r_n}}{r_{n+1}}\right)$$

4.4.1. Aplicación del método del tiro, con un paso h = 1mm

Tiro 1

Nuevamente, se supone un valor de la derivada en el radio inicial de la tubería de v(o) = -100 y se calculan las temperaturas en el espesor usando RK2. Para obtener el error exacto de los resultados, se calcula el módulo de la diferencia entre la solución exacta y el valor obtenido en cada punto.

Paso(n)	r(mm)	u_num(°C)	$u_{-}exact(^{\circ}C)$	Error(°C)
0	101.60	406.0000	406.0000	0.0000
1	102.60	306.4921	371.7845	65.2924
2	103.60	207.9494	337.9009	129.9516
3	104.60	110.3532	304.3428	193.9896
4	105.60	13.6855	271.1040	257.4184
5	106.60	-82.0710	238.1785	320.2495
6	107.60	-176.9336	205.5604	382.4939
7	108.60	-270.9186	173.2440	444.1626
8	109.60	-364.0422	141.2239	505.2661
9	110.60	-456.3200	109.4946	565.8146
10	111.60	-547.7673	78.0509	625.8181
11	112.60	-638.3988	46.8877	685.2865
12	113.60	-728.2291	16.0000	744.2291

Cuadro 9: Valores numéricos de la temperatura con sus respectivos errores en el primer tiro

Tiro 2

Se plantea un segundo tiro, suponiendo un valor de la derivada en el radio interno de v(0) = -1. Los resultados obtenidos se presentan en la siguiente tabla.

Paso(n)	r(mm)	$u_num(^{\circ}C)$	$u_{-}exact(^{\circ}C)$	$\operatorname{Error}(^{\circ}\mathrm{C})$
0	101.60	406.0000	406.0000	0.0000
1	102.60	405.0049	371.7845	33.2204
2	103.60	404.0195	337.9009	66.1186
3	104.60	403.0435	304.3428	98.7007
4	105.60	402.0769	271.1040	130.9729
5	106.60	401.1193	238.1785	162.9408
6	107.60	400.1707	205.5604	194.6103
7	108.60	399.2308	173.2440	225.9868
8	109.60	398.2996	141.2239	257.0757
9	110.60	397.3768	109.4946	287.8822
10	111.60	396.4623	78.0509	318.4115
11	112.60	395.5560	46.8877	348.6683
12	113.60	394.6577	16.0000	378.6577

Cuadro 10: Valores de la temperatura a lo largo de la tuberia junto con su respectivo error.

Tiro 3

Finalmente, con la ecuación 15, se ajusta la pendiente en el radio interno, realizando una interpolación lineal entre ambos valores obtenidos y se efectúa un último tiro.

$$v_{r_{\text{int}}} \approx -1 + \left(\frac{-100 + 1}{-727,9535 - 394,6605}\right) \cdot (16 - 394,6605)$$
 (19)

$$v_{r_{\rm int}} \approx -34,392947$$
 (20)

Los resultados obtenidos para dicha derivada se presentan en la siguiente tabla:

Paso(n)	r(mm)	u_num(°C)	$u_{-}exact(^{\circ}C)$	Error(°C)
0	101.60	406.0000	406.0000	0.000000
1	102.60	371.7846	371.7845	0.000105
2	103.60	337.9011	337.9009	0.000188
3	104.60	304.3431	304.3428	0.000250
4	105.60	271.1043	271.1040	0.000291
5	106.60	238.1788	238.1785	0.000313
6	107.60	205.5607	205.5604	0.000317
7	108.60	173.2443	173.2440	0.000304
8	109.60	141.2242	141.2239	0.000274
9	110.60	109.4948	109.4946	0.000227
10	111.60	78.0510	78.0509	0.000166
11	112.60	46.8878	46.8877	0.000090
12	113.60	16.0000	16.0000	0.000000

Cuadro 11: Valores de la temperatura punto a punto de la tubería con sus respectivos errores.

Se grafica el resultado obtenido y discreto, frente a la solución real de la ecuación diferencial:

4.4.2. Resolución con refinamiento del paso

Dado que con el paso inicial h=1 mm el error máximo obtenido fue inferior a la tolerancia requerida de 0.02 °C, no resulta necesario reducir el tamaño del paso.

Contrariamente a lo solicitado, se podría incrementar el tamaño del paso para aumentar el error y ajustarlo al valor deseado de $0.02~^{\circ}$ C. Al probar con distintos valores, se determina que el máximo valor de h que se puede utilizar sin comprometer la estabilidad del problema es h=6 mm, lo que corresponde a obtener únicamente un punto en la tubería, con los resultados que se detallan a continuación:

Paso(n)	r(mm)	u_num(°C)	$u_{-}exact(^{\circ}C)$	Error(°C)
0	101.60	406.000000	406.000000	0.000000
1	107.60	205.572414	205.560375	0.012038
2	113.60	16.000000	16.000000	0.000000

Cuadro 12: Comparación entre solución numérica y exacta

Consecuentemente, el máximo error que puede obtenerse por RK2 sin perder la estabilidad del problema es de 0.012038 °C, quedando por debajo del error pedido.

5. Estimación del error numérico

5.1. Estimación del error del método de Euler explícito

Para estimar el error cometido al utilizar el método de Euler explícito, se comparan los resultados numéricos obtenidos, $u_n^{\rm Euler}$, con paso h=1 mm, con aquellos obtenidos mediante el método RK2, $u_n^{\rm RK2}$, utilizando el mismo paso. Esta comparación constituye una buena estimación del error, ya que el método RK2 posee un error global de orden $O(h^2)$ (menor que el error global del método de Euler explícito, que es O(h)), por lo que sirve como una aproximación más precisa de la solución real. Por consiguiente, la comparación entre ambos métodos resulta útil para aproximar el error real cometido.

El error punto a punto real cometido por el método de Euler explícito se define como:

$$\varepsilon_n^{\text{Euler}} = \left| u_n^{\text{exacto}} - u_n^{\text{Euler}} \right|,$$

donde u_n^{exacto} corresponde al valor exacto de la temperatura calculado punto a punto a partir de la solución exacta de la ecuación diferencial ordinaria.

Por otro lado, el error absoluto estimado de la solución se obtiene como la diferencia entre los resultados numéricos de Euler explícito y los resultados numéricos del método RK2, ambos calculados con paso $h=1~\mathrm{mm}$:

$$\varepsilon_n^{\text{estimado}} \approx \left| u_n^{\text{Euler}} - u_n^{\text{RK2}} \right|.$$

A continuación se muestra una tabla resumen de los errores estimados:

Paso (n)	r (mm)	$u^{\text{Euler Exp}}$ (°C)	$u^{\rm RK2}$ (°C)	$ u^{\text{Euler Exp}} - u^{\text{RK2}} \text{ (°C)}$	$ u^{\text{Euler Exp}} - u^{\text{exacto}} \text{ (°C)} $
0	101.60	406.0000	406.0000	0.0000	0.0000
1	102.60	371.7595	371.7846	0.0251	0.0250
2	103.60	337.8560	337.9011	0.0451	0.0449
3	104.60	304.2829	304.3431	0.0602	0.0599
4	105.60	271.0339	271.1043	0.0704	0.0701
5	106.60	238.1028	238.1788	0.0760	0.0757
6	107.60	205.4835	205.5607	0.0772	0.0769
7	108.60	173.1702	173.2443	0.0741	0.0738
8	109.60	141.1572	141.2242	0.0670	0.0667
9	110.60	109.4390	109.4948	0.0558	0.0556
10	111.60	78.0102	78.0510	0.0408	0.0407
11	112.60	46.8656	46.8878	0.0222	0.0221
12	113.60	16.0000	16.0000	0.0000	0.0000

Cuadro 13: Comparación del error absoluto estimado y el real (Euler explicito h= 1mm)

En base a los resultados obtenidos, puede afirmarse que la estimación del error es razonablemente precisa, ya que los valores calculados no solo son del mismo orden de magnitud, sino que también presentan una notable similitud en términos de valor absoluto. Esta concordancia puede observarse claramente en el gráfico que se presenta a continuación, donde ambas curvas de los errores muestran un comportamiento muy similar.

5.2. Estimacion del Error de Euler Implícito

Para estimar el error cometido con el método de Euler Implícito, se vuelve a aplicar el mismo procedimiento que en el inciso anterior.

Se define el error local real cometido por Euler implícito como:

$$\varepsilon_n^{\text{Euler imp}} = \left| u_n^{\text{exacto}} - u_n^{\text{Euler imp}} \right|$$

Siendo u(exacto) el valor exacto obtenido a partir de la solución exacta de la EDO punto a punto.

Por otro lado, se estima el error absoluto de la solución como la diferencia entre los resultados numéricos de Euler implícito y los resultados numéricos de RK2, ambos calculados con un paso $h=1~\mathrm{mm}$.

$$\varepsilon_n^{\text{estimado}} \approx |u_n^{\text{Euler imp}} - u_n^{\text{RK2}}|$$
.

A continuación se muestra una tabla resumen de los errores estimados:

Paso (n)	r (mm)	$u^{\text{Euler Imp}}$ (°C)	$u^{\rm RK2}$ (°C)	$ u^{\text{Euler Imp}} - u^{\text{RK2}} \text{ (°C)}$	$ u^{\text{Euler Imp}} - u^{\text{exacto}} \text{ (°C)}$
0	101.60	406.000000	406.0000	0.000000	0.000000
1	102.60	371.808906	371.7846	0.024306	0.024385
2	103.60	337.944687	337.9011	0.043587	0.043772
3	104.60	304.401151	304.3431	0.058051	0.058347
4	105.60	271.172283	271.1043	0.067983	0.068288
5	106.60	238.252234	238.1788	0.073434	0.073765
6	107.60	205.635315	205.5607	0.074583	0.074940
7	108.60	173.315997	173.2443	0.071697	0.071971
8	109.60	141.288896	141.2242	0.064696	0.065007
9	110.60	109.548777	109.4948	0.053977	0.054192
10	111.60	78.090541	78.0510	0.039541	0.039665
11	112.60	46.909226	46.8878	0.021426	0.021559
12	113.60	16.000000	16.0000	0.000000	0.000000

Cuadro 14: Comparación punto a punto entre el error exacto y la estimacion del error para Euler Implicito.

Nuevamente, se observa que las estimaciones obtenidas constituyen una buena aproximación del error real, dado que presentan el mismo orden y no difieren significativamente en cuanto a su valor, coincidiendo al menos en sus primeros cuatro dígitos. La validez de esta aproximación dependerá del grado de precisión con el que se busquen los resultados de la solución. Para aumentar aún más la precisión de esta estimación, podría compararse nuevamente la solución con algún método más

preciso que se acerque mas a la solución exacta, como RK4 o el mismo RK2 calculado con un paso menor.

Sin embargo, es importante destacar que esta estimación no constituye una cota del error real, ya que ambos métodos empleados para obtenerla son aproximaciones de la solución verdadera. RK2, aunque más preciso que Euler, sigue siendo un método numérico que introduce su propio error. Por lo tanto, la diferencia entre Euler y RK2 refleja la diferencia entre dos aproximaciones, y no necesariamente el error absoluto de Euler respecto a la solución exacta, ni una cota que la contenga.

Gráficamente, se puede observar la precisión de los resultados obtenidos con mayor claridad:

5.3. Estimacion del Error de RK2

Para estimar el error cometido por el método de Runge-Kutta de segundo orden con un paso de $h=1\,\mathrm{mm}$, se comparó el valor obtenido numéricamente con una aproximación más precisa de la solución. Esta última se obtuvo aplicando el mismo método RK2 pero con un paso menor $(h=0.2\,\mathrm{mm})$.

Siendo el error absoluto real punto a punto cometido por RK2:

$$\varepsilon_n^{\text{RK2 (h=1)}} = \left| u_n^{\text{exacto}} - u_n^{\text{RK2 (h=1)}} \right|$$

Por otro lado, se estima el error absoluto de la solución como la diferencia entre los resultados numéricos de RK2 con distintos valores de h.

$$\varepsilon_n^{\rm estimado} \approx \left| u_n^{\rm RK2~(h=~1)} - u_n^{\rm RK2~(h=~0.2)} \right|. \label{eq:estimado}$$

A continuación se muestra una tabla resumen de los errores estimados:

Paso (n)	r (mm)	$u_{RK2}^{h=0,2}$ (°C)	$u_{RK2}^{h=1}$ (°C)	$ u_{RK2}^{h=1} - u_{RK2}^{h=0,2} $ (°C)	Error real RK2($h = 1$) (°C)
0-0	101.60	406.000000	406.000000	0.000000	0.000000
5-1	102.60	371.784525	371.784626	0.000101	0.000105
10-2	103.60	337.900922	337.901103	0.000181	0.000188
15-3	104.60	304.342814	304.343054	0.000240	0.000250
20-4	105.60	271.104007	271.104286	0.000279	0.000291
25-5	106.60	238.178482	238.178783	0.000301	0.000313
30-6	107.60	205.560388	205.560693	0.000305	0.000317
35-7	108.60	173.244038	173.244330	0.000292	0.000304
40-8	109.60	141.223900	141.224163	0.000263	0.000274
45-9	110.60	109.494593	109.494812	0.000219	0.000227
50-10	111.60	78.050882	78.051042	0.000160	0.000166
55-11	112.60	46.887671	46.887758	0.000087	0.000090
60-12	113.60	16.000000	16.000000	0.000000	0.000000

Cuadro 15: Comparación entre la estimacion del error y el error real para RK2 con paso h=1.

A continuación, se grafican los errores obtenidos para visualizar con mayor claridad esta comparación:

Se observa nuevamente que la estimación obtenida presenta una buena precisión, ya que no difiere significativamente del valor real. No obstante, para lograr una mayor precisión, podría compararse la solución con un método de orden superior (como RK4).

Además, es relevante mencionar que, al igual que en los dos métodos anteriores, la mayor diferencia entre la estimación del error y el error real ocurre en los puntos centrales de la tubería, mientras que hacia los extremos la estimación mejora ligeramente. Esto se explica porque las condiciones de temperatura son conocidas en ambos extremos de la tubería, y los valores fueron ajustados mediante el método del tiro para cumplir con dichas condiciones. Por otro lado, los valores de temperatura dentro del espesor son desconocidos y no existe ninguna restricción que corrija el error acumulado en esa región.

6. Estimación experimental del Orden de precisión

El orden de precisión de un método numérico describe la rapidez con la que disminuye el error al reducir el tamaño del paso. Este orden puede determinarse experimentalmente a partir de los datos obtenidos, examinando la relación entre los errores y la reducción del paso.

De esta forma:

$$\left(\frac{h_1}{h_2}\right)^p = \frac{\text{Error}_1}{\text{Error}_2}$$

Despejando resulta:

$$p \approx \frac{\log\left(\frac{E(h_1)}{E(h_2)}\right)}{\log\left(\frac{h_1}{h_2}\right)}$$

6.1. Euler Explícito

En base a los datos obtenidos para un paso h= 1 mm y h= 0.25 mm:

$$p \approx \frac{\log\left(\frac{E(1)}{E(0,25)}\right)}{\log\left(\frac{1}{0.25}\right)}$$

Para estimar el error del método con un paso dado, se utiliza como criterio la norma infinito:

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$$

Lo cual representa el mayor valor absoluto de los elementos del vector error (es decir, el máximo error cometido a lo largo del espesor de la tubería para un paso h dado, en este caso):

$$p \approx \frac{\log\left(\frac{0.076903}{0.019065}\right)}{\log\left(\frac{1}{0.25}\right)} \approx 1,006056$$

El valor teórico esperado para el método de Euler Explícito es p=1, ya que, al tratarse de un método de primer orden, el error debería disminuir de forma lineal a medida que se reduce el tamaño del paso. Dado que el orden fue calculado experimentalmente a partir de datos obtenidos mediante una computadora, los cuales están sujetos a errores de redondeo (debido a la precisión finita) y errores de truncamiento (propios del método numérico aplicado), no se alcanza exactamente el valor teórico. No obstante, se observa que el resultado obtenido es suficientemente cercano.

6.2. Euler Implícito

Se repite el mismo procedimiento de cálculo para estimar experimentalmente el orden de precisión p del método de Euler Implícito, obteniéndose el siguiente resultado:

$$p \approx \frac{\log\left(\frac{E(1)}{E(0,25)}\right)}{\log(\frac{1}{0.25})}$$

$$p \approx \frac{\log\left(\frac{0.074940}{0.018942}\right)}{\log\left(\frac{1}{0.25}\right)} \approx 0.992074$$

Nuevamente, el método de Euler Implícito es de primer orden, por lo tanto, el error debería disminuir linealmente a medida que se reduce el tamaño del paso. En este caso, se obtuvo un orden aproximadamente igual al valor teórico, lo cual se explica por la presencia de errores de redondeo y truncamiento.

6.3. RK2

Se repite el mismo procedimiento de cálculo para estimar experimentalmente el orden de precisión p del método RK2, obteniéndose el siguiente resultado:

$$p \approx \frac{\log\left(\frac{E(1)}{E(0,25)}\right)}{\log\left(\frac{1}{0.25}\right)}$$

$$p \approx \frac{\log\left(\frac{0,000317}{1,972607e - 05}\right)}{\log(\frac{1}{0.2})} \approx 2,003153$$

El valor teórico esperado para el método RK2 es p=2, ya que, al tratarse de un método de segundo orden, el error debería disminuir de forma cuadrática a medida que se reduce el tamaño del paso. Por lo tanto, el valor obtenido experimentalmente representa una buena estimación del valor teórico, si se toman en cuenta los errores inevitables introducidos durante el proceso de cálculo.

7. Resolución del problema por el método directo (de diferencias finitas)

7.1. Discretización

Para resolver el problema de valores de contorno dentro del dominio r = [101,6,113,6] mm, se comienza por aplicar el método de diferencias finitas para obtener un sistema de ecuaciones lineales que tenga como incógnita la temperatura dentro del espesor de la tubería.

Teniendo como dato las condiciones de frontera:

$$T(r_1) = T_0 = 406$$
°C y $T(r_2) = T_N = 16$ °C

Se discretiza el dominio radial en nodos uniformemente espaciados con un paso h de 1 mm:

$$r_i = r_1 + ih$$
, $h = 1 \,\mathrm{mm}$

donde
$$i = 0, 1, ..., N \text{ y } N = 12.$$

Partiendo de la ecuación diferencial del problema:

$$r\frac{d^2u}{dr^2} + \frac{du}{dr} = 0$$

7.1.1. Aproximación de las derivadas

Se procede a discretizar la función con operadores de las derivadas de orden de precisión 2, siendo:

$$\begin{split} \frac{du}{dr}\Big|_i &\approx \frac{u_{i+1}-u_{i-1}}{2h} \\ \frac{d^2u}{dr^2}\Big|_i &\approx \frac{u_{i+1}-2u_i+u_{i-1}}{h^2} \end{split}$$

7.1.2. Sustitución en la ecuación diferencial

Reemplazando en la ecuación diferencial discretizada:

$$r_i \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} + \frac{u_{i+1} - u_{i-1}}{2h} = 0$$

7.1.3. Ecuación final para cada nodo interno

Finalmente, agrupando términos se obtiene la ecuación discretizada para cada nodo interno:

$$\left(\frac{r_i}{h^2} - \frac{1}{2h}\right)u_{i-1} - \frac{2r_i}{h^2}u_i + \left(\frac{r_i}{h^2} + \frac{1}{2h}\right)u_{i+1} = 0$$

De esta forma, es posible construir la matriz de coeficientes del sistema lineal.

$$A \cdot \mathbf{u} = \mathbf{b}$$
.

Siendo u la temperatura incógnita a lo largo del espesor de la tubería.

7.1.4. Consideración de las condiciones de frontera

En los nodos frontera, i = 0 y i = N, las temperaturas (o valores de u) están dados directamente:

$$u_0 = u(r_1) = 406$$
°C, $u_N = u(r_2) = 16$ °C

Estas condiciones se incorporan en el vector \mathbf{b} del sistema lineal resultante.

7.2. Matriz y vector del sistema

El sistema de ecuaciones resultante se expresa en forma matricial:

$$A \cdot \mathbf{T} = \mathbf{b}$$

La matriz A y el vector **b** obtenidos resultan en la siguiente matriz tridiagonal:

	1	2	3	4	5	6	7	8	9	10	11
1	-205.2	103.1									
2	103.1	-207.2	104.1								
3		104.1	-209.2	105.1							
4			105.1	-211.2	106.1						
5				106.1	-213.2	107.1					
6					107.1	-215.2	108.1				
7						108.1	-217.2	109.1			
8							109.1	-219.2	110.1		
9								110.1	-221.2	111.1	
10									111.1	-223.2	112.1
11										112.1	-225.2

Cuadro 16: Matriz A tridiagonal.

Para los nodos internos $(i=2,\ldots,N-1)$, no hay aportes adicionales en las ecuaciones, por lo que sus ecuaciones discretizadas no contienen términos independientes. En consecuencia:

$$b_i = 0$$
 para $i = 2, ..., N - 1$

Sin embargo, en las ecuaciones correspondientes a los nodos vecinos de las fronteras (i = 1 y i = N - 1), aparecen las temperaturas de frontera conocidas. Estas contribuyen a los términos independientes de **b**.

• Para i=1, la ecuación discretizada incluye el valor conocido de la frontera en i=0:

$$\left(\frac{r_1}{h^2} - \frac{1}{2h}\right)u_0 - \frac{2r_1}{h^2}u_1 + \left(\frac{r_1}{h^2} + \frac{1}{2h}\right)u_2 = 0$$

Pasamos el término conocido al segundo miembro:

$$-\frac{2r_1}{h^2}u_1 + \left(\frac{r_1}{h^2} + \frac{1}{2h}\right)u_2 = -\left(\frac{r_1}{h^2} - \frac{1}{2h}\right)u_0$$

Así, para i = 1:

$$b_1 = -(\frac{r_1}{h^2} - \frac{1}{2h})u_0$$

Sustituyendo los valores numéricos correspondientes, se obtiene:

$$b_1 = -41452.6$$

ullet Para i=11, la ecuación incluye la temperatura conocida en la frontera i=N=12:

$$\left(\frac{r_{11}}{h^2} - \frac{1}{2h}\right)u_{10} - \frac{2r_{11}}{h^2}u_{11} + \left(\frac{r_{11}}{h^2} + \frac{1}{2h}\right)u_{12} = 0$$

Llevando el término conocido al lado derecho de la ecuación:

$$\left(\frac{r_{11}}{h^2} - \frac{1}{2h}\right)u_{10} - \frac{2r_{11}}{h^2}u_{11} + = -\left(\frac{r_{11}}{h^2} + \frac{1}{2h}\right)u_{12}$$

Por lo que:

$$b_{11} = -(\frac{r_{11}}{h^2} + \frac{1}{2h})u_{12}$$

Evaluando con los valores del problema:

$$b_{11} = -(101, 6mm + 11 + \frac{1}{2}) * 16^{\circ}$$
C

$$b_{11} = -1809, 6$$

7.2.1. Vector final b

Así, el vector **b** queda definido como:

$$\mathbf{b} = \begin{bmatrix} -41452,6\\0\\0\\\vdots\\0\\-1809,6 \end{bmatrix}$$

7.3. Tabla de temperaturas

Resolviendo el sistema de ecuaciones lineales, se obtiene la estimación de la temperatura para cada radio. Comparando con los valores reales de la temperatura obtenidos de la solución exacta, se puede apreciar el error real del método.

r(mm)	u_num(°C)	$u_{-}exact(^{\circ}C)$	Error(°C)
101.6	406.000000	406.000000	0.000000
102.6	371.784547	371.784521	2.597534e-05
103.6	337.900961	337.900915	4.646965e-05
104.6	304.342866	304.342804	6.173676e-05
105.6	271.104067	271.103995	7.201770e-05
106.6	238.178547	238.178469	7.754139e-05
107.6	205.560454	205.560375	7.852541e-05
108.6	173.244101	173.244026	7.517656e-05
109.6	141.223957	141.223889	6.769155e-05
110.6	109.494641	109.494584	5.625751e-05
111.6	78.050917	78.050876	4.105254e-05
112.6	46.887690	46.887668	2.224620e-05
113.6	16.000000	16.000000	0.000000

Cuadro 17: Temperaturas estimadas numéricamente y comparación con los valores exactos para distintos radios.

El error máximo obtenido ya es muy inferior a 0.02, por lo cual no es necesario realizar un refinamiento adicional del paso h. Los errores cometidos tienen origen en la discretización de la ecuación por el uso de un método numérico, y en errores de redondeo cometidos durante la solución del sistema de ecuaciones lineales.

Además, se observa que se obtuvieron para un mismo paso h= 1 mm, errores de un orden de magnitud menor a los obtenidos por el método de RK2, evidenciando una mejora significativa en la precisión de los resultados. En particular, el error máximo del método directo fue del orden de 7.85×10^{-5} °C, mientras que en el método del tiro con RK2 y h=1 mm se alcanzó un error máximo de aproximadamente 3.17×10^{-4} °C.

7.4. Calculo del orden de precisión del método directo.

Se vuelve a utilizar la fórmula aplicada en incisos anteriores para estimar el orden de precisión (p) del método:

$$p \approx \frac{\log\left(\frac{E(h_1)}{E(h_2)}\right)}{\log\left(\frac{h_1}{h_2}\right)}$$

Para un paso h=1 mm, se obtuvo un error máximo de 7.852541e-05 °C. Reduciendo el paso a h=0.25 mm, se obtiene como error máximo en la solución de 4.9185921398e-06 °C.

Reemplazando dichos datos en la fórmula, se obtiene:

$$p \approx \frac{\log\left(\frac{7,852541e - 05}{4,9185921398e - 06}\right)}{\log\left(\frac{1}{0,252}\right)}$$

$$p \approx 1,99842$$

Consecuentemente se obtiene un orden de precisión de aproximadamente 2, lo cual coincide con la teoría, ya que las derivadas de la ecuación fueron aproximadas con operadores de segundo orden. De esta forma, el error disminuye cuadrática-mente a medida que se reduce el paso.

8. Conclusiones

En la siguiente sección se detalla el análisis y conclusiones de los resultados obtenidos en el desarrollo del trabajo.

8.1. Aplicación de los métodos utilizados y comparación con la teoría

En el presente trabajo se aplicaron tres métodos numéricos para resolver un problema de valores de contorno que consiste en hallar la distribución de temperaturas a lo largo del espesor de una tubería cilíndrica. Los métodos utilizados fueron Euler explícito, Euler implícito y Runge-Kutta de segundo orden (RK2). Para poder emplear estos métodos en un problema de valores de contorno, se aplicó el método del tiro, transformando el problema en uno de valores iniciales. Finalmente, el problema también fue resuelto mediante un método directo (diferencias divididas).

Los resultados obtenidos mostraron un comportamiento coherente con la teoría. En todos los casos fue posible aproximarse a la solución exacta, validando así la correcta implementación de los algoritmos.

Figura 3: Comparación de los errores obtenidos para cada método con un paso $h=1\,\mathrm{mm}$.

Observando el gráfico, puede notarse que los errores máximos se concentran en el centro del intervalo, lo cual es lógico ya que la información conocida del problema está dada en los extremos del dominio. De esta forma, la solución se fuerza a coincidir con los valores de contorno en los extremos, reduciendo el error en esos puntos, mientras que en el interior del intervalo la solución es menos conocida, lo que da lugar a mayores errores. También debe aclararse que el error en el

extremo final del dominio r_ext es muy bajo, pero no completamente nulo debido a los errores de redondeo.

Además, al comparar los errores obtenidos con cada método para un mismo tamaño de paso, se observa que los de primer orden (Euler explícito e implícito) presentan una precisión similar, sin diferencias significativas entre ellos.

En cambio, al contrastar estos errores con los del método RK2, se aprecia una mejora considerable en la reducción del error. Esto confirma que RK2, al ser de orden superior, ofrece resultados más precisos. La explicación teórica de esto radica en que el método evalúa un promedio de la pendiente dentro del intervalo de cada paso, permitiendo así una mejor estimación del comportamiento de la solución.

Para aún más precisión, puede verse que el método de diferencias finitas resultó en errores más pequeños. Esto se debe a que aproxima directamente la solución en todo el intervalo, discretizando la ecuación diferencial en un sistema de ecuaciones lineales. Además, utiliza ambos valores dato en el contorno del dominio de forma directa, sin necesidad de ajustar la derivada en un extremo, lo cual introduce un error adicional. A diferencia de los métodos anteriores, el método de diferencias finitas construye y resuelve de forma simultánea todo el sistema de ecuaciones, mientras que el método del tiro introduce un error de redondeo adicional en cada paso que se resuelve.

Sin embargo, debe evaluarse la conveniencia de aplicar este método según el tipo de problema. En algunos casos, puede generarse una matriz de gran tamaño, lo que implica un alto costo computacional.

Además, en sistemas mal condicionados, métodos como la eliminación de Gauss para la resolución del sistema de ecuaciones lineales pueden amplificar los errores. Por otro lado, si el problema a tratar es no lineal, será necesario usar métodos iterativos como Newton-Raphson, lo que introduce nuevas fuentes de error a la solución.

Por todo lo mencionado, se justifica el uso de métodos de segundo orden como RK2, en problemas donde se busca obtener mayor precisión incluso con pasos relativamente grandes. Aunque estos métodos suelen ser más costosos computacionalmente y pueden volverse inestables si el paso no se elige adecuadamente. Por lo tanto, la elección del método a utilizar para resolver el problema debe realizarse planteando un equilibrio entre precisión buscada, eficiencia y complejidad del problema.

8.2. Tipos de errores y su importancia

Durante la resolución del problema se identificaron dos tipos principales de errores: los **errores** de truncamiento (producidos por la discretización, es decir, el proceso de convertir un problema matemático continuo en uno numérico) y los **errores de redondeo** (originados por la representación finita de los números en la computadora).

Los errores de truncamiento suelen predominar en métodos de orden inferior, como el método de Euler explícito, especialmente cuando se emplean pasos grandes. Por otro lado, los errores de redondeo se vuelven más relevantes al utilizar pasos muy pequeños, ya que al disminuir el tamaño del paso, aumenta la cantidad de puntos utilizados en la discretización, incrementando así las operaciones numéricas y la acumulación de errores de redondeo.

Asimismo, es posible que el problema esté afectado por errores inherentes a los datos de entrada, debidos a imprecisiones en la medición del radio externo e interno de la tubería, o en la temperatura de las paredes. No obstante, dado que el enunciado no especifica márgenes de error ni incertidumbre en los datos, se asumió que estos son exactos y que los errores de entrada son nulos.

8.3. Relación entre el error y el tamaño del paso

Tal como indica la teoría, se observó una relación directa entre el tamaño del paso h y la magnitud del error para cada método, definiendo el error global entre la solución numérica y la exacta como:

$$|U_n - y_n| \approx \mathcal{O}(h^p)$$

Siendo $\mathcal{O}(h^p)$ una función que tiende a cero conforme $h \to 0$, y p el orden de precisión.

Para Euler explícito e implícito, el error global disminuyó linealmente al reducir h, verificándose un orden cercano a 1; es decir, si el paso se reduce a la mitad, el error también se reduce aproximadamente a la mitad.

Por otra parte, en el método RK2, el error disminuyó cuadráticamente con h, confirmando su orden 2. Esto permitió obtener alta precisión en los resultados incluso con h=1 mm, sin necesidad de refinar más el paso.

8.4. Comportamiento de la solución si en lugar de aplicar el método del tiro, se hubiera utilizado el valor exacto de la derivada

Si en lugar de aplicar el método del tiro se utilizara directamente el valor exacto de la derivada radial de la temperatura en el radio interno, el problema podría resolverse como un problema de valores iniciales, aplicando un único tiro. Esto permitiría reducir el tiempo de cálculo y eliminar los errores asociados a la interpolación entre tiros.

■ Derivada exacta de la función

Para conocer este valor exacto de la derivada, se requiere la solución exacta de la ecuación diferencial (que, en la práctica, suele ser desconocida).

Se procede a derivar la solución exacta de la EDO:

$$T(r) = (T_1 - T_2) \cdot \frac{\ln\left(\frac{r_2}{r}\right)}{\ln\left(\frac{r_2}{r_1}\right)} + T_2$$

Derivando respecto de r:

$$\frac{dT}{dr} = \frac{T_1 - T_2}{\ln\left(\frac{r_2}{r_1}\right)} \cdot \frac{d}{dr}(\ln(\frac{r_2}{r_1}))$$

Finalmente, resulta:

$$\frac{dT}{dr} = -\frac{T_1 - T_2}{\ln\left(\frac{r_2}{r_1}\right)} \cdot \frac{1}{r}$$

Reemplazando por los datos del problema y evaluando la función en el radio interno, se obtiene la pendiente exacta:

$$\frac{dT}{dr} = -\frac{406 - 16}{\ln\left(\frac{113.6}{101.6}\right)} \cdot \frac{1}{101.6} \approx -34,38358715$$

Se procede a resolver el problema partiendo de dicho valor de la derivada y aplicando un solo tiro. A continuación se disponen los errores obtenidos en las siguientes tablas y junto a los obtenidos durante el desarrollo del trabajo, cuando se aplicó el método del tiro:

Para Euler Explícito

Paso (n)	r (mm)	Error (tiro)	Error (derivada)
0	101.60	0.0000	0.0000
1	102.60	0.0250	0.1681
2	103.60	0.0449	0.3297
3	104.60	0.0599	0.4849
4	105.60	0.0701	0.6340
5	106.60	0.0757	0.7772
6	107.60	0.0769	0.9147
7	108.60	0.0738	1.0466
8	109.60	0.0667	1.1732
9	110.60	0.0556	1.2947
10	111.60	0.0407	1.4111
11	112.60	0.0221	1.5226
12	113.60	0.0000	1.6295

Cuadro 18: Comparación del error absoluto usando el método del tiro y con la derivada exacta en Euler explícito.

lacktriangle Para Euler Implícito

Paso (n)	r (mm)	Error (tiro)	Error (derivada exacta)
0	101.60	0.000000	0.0000
1	102.60	0.024385	0.1638
2	103.60	0.043772	0.3212
3	104.60	0.058347	0.4726
4	105.60	0.068288	0.6180
5	106.60	0.073765	0.7577
6	107.60	0.074940	0.8918
7	108.60	0.071971	1.0206
8	109.60	0.065007	1.1442
9	110.60	0.054192	1.2628
10	111.60	0.039665	1.3765
11	112.60	0.021559	1.4855
12	113.60	0.000000	1.5900

Cuadro 19: Comparación del error absoluto usando el método del tiro y la derivada exacta en Euler implícito.

■ Para RK2

Paso (n)	r (mm)	Error (tiro)	Error (derivada exacta)
0	101.60	0.000000	0.0000
1	102.60	0.000105	0.0011
2	103.60	0.000188	0.0022
3	104.60	0.000250	0.0032
4	105.60	0.000291	0.0042
5	106.60	0.000313	0.0052
6	107.60	0.000317	0.0062
7	108.60	0.000304	0.0071
8	109.60	0.000274	0.0080
9	110.60	0.000227	0.0089
10	111.60	0.000166	0.0097
11	112.60	0.000090	0.0106
12	113.60	0.000000	0.0114

Cuadro 20: Comparación del error absoluto usando el método del tiro y la derivada exacta en RK2.

Como puede observarse, al aplicar el método sugerido se obtienen errores significativamente mayores que los logrados previamente con el método del tiro, a pesar de haber utilizado la derivada exacta.

La explicación radica en que el método del tiro ajusta la pendiente inicial para alcanzar el valor solicitado en el extremo final, minimizando así el error en el borde opuesto y compensando las limitaciones del método numérico empleado. Por esta razón, los errores en los extremos son menores que en las zonas centrales.

En cambio, al imponer únicamente la pendiente inicial, aunque en principio podría parecer suficiente para integrar el sistema (dado que se utiliza la derivada exacta), el método numérico acumula errores significativos a medida que avanza. Esto se refleja en los errores obtenidos. Particularmente, en el punto inicial, donde se conoce la temperatura y su derivada, el error es bajo, pero aumenta progresivamente conforme se avanza en el espesor, alcanzando valores de orden mucho mayor que en los casos anteriores. Por otro lado, aproximándose al punto final, la magnitud de los errores se vuelve más significativa.

9. Anexo

A continuación se presenta el código fuente desarrollado para la resolución del Trabajo Práctico. El código está organizado por archivos y funciones, con comentarios relevantes para su comprensión.

9.1. Constantes: ctes.py

```
import numpy as np
import matplotlib.pyplot as plt

# Datos del problema

R1 = 101.6  # mm
R2 = 113.6  # mm

T1 = 406  # C

T2 = 16  # C

S1 = -100  # valor inicial del primer tiro
S2 = -1  # valor inicial del segundo tiro

h = 1.0  # paso de 1 mm
```

9.2. Funciones útiles: utils.py

```
1 # Soluci n exacta para comparar
def T_exacta(r):
      return (T1 - T2) * np.log(R2 / r) / np.log(R2 / R1) + T2
_{5} # M todo del tiro para resolver el sistema de ecuaciones diferenciales
6 def metodo_del_tiro(h, func):
      # Derivadas iniciales para los tiros
      s1, s2 = S1, S2
      r, u1 = func(s1, h)
r, u2 = func(s2, h)
10
11
12
      # Interpolaci n lineal
13
      s_{new} = s2 + ((s1-s2)/(u1[-1] - u2[-1])) * (T2-u2[-1])
15
      # Ejecutar {func} una sola vez con la derivada corregida
16
      r, u3 = func(s_new, h)
17
18
19
      return r, u3, s_new
20
21 # M todo para encontrar el valor ptimo de h que cumple con la tolerancia
22 def tolerance_reduction(h_max, func, tolerance, max_iterations=20):
23
      Encuentra el valor m s grande de h en [h_min, h_max] tal que el error m ximo
24
      sea <= tolerance.
      Usa b squeda binaria.
25
26
27
      iter_count = 0
      h_{opt} = h_{max}
28
      h_{min} = 0
29
30
      r, u, s_final = metodo_del_tiro(h_max, func)
31
       errores = [abs(u[i] - T_exacta(r[i])) for i in range(len(r))]
32
       error_max = max(errores)
33
34
      if error_max < tolerance:</pre>
35
36
37
      while (h_max - h_min) > 1e-6 and iter_count < max_iterations:</pre>
           h_{mid} = round(((h_{min} + h_{max}) / 2.0), 4)
38
           r, u, s_final = metodo_del_tiro(h_mid, func)
39
40
           if r[-1] > R2:
              r[-1] = R2
41
```



```
42
           errores = [abs(u[i] - T_exacta(r[i])) for i in range(len(r))]
43
           error_max = max(errores)
44
45
           if error_max < tolerance:</pre>
               # Puede que haya uno m s grande que tambi n cumpla la condici n
47
48
               h_{min} = h_{mid}
               h_opt = h_mid
49
           else:
50
               # Demasiado grande, reducir
51
               h_max = h_mid
52
53
54
           iter_count += 1
55
56
      r, u, s_final = metodo_del_tiro(h_opt, func)
    return r, u, s_final, h_opt
```

9.3. Euler Explícito: eulerExp.py

```
_{1} # Euler expl cito para un sistema de ecuaciones diferenciales
def euler_explicit_system(s, h):
      r = R1
      u = T1
      v = s
      r_values = [r]
6
      u_values = [u]
8
      v_values = [v]
      while r + h < R2:
10
          u = u + h * v
11
           v = v + h * (-v / r)
12
          r += h
13
          r_values.append(r)
14
15
           u_values.append(u)
16
           v_values.append(v)
17
      # ltimo paso ajustado para llegar exactamente a R2 (caso borde)
18
      h_{final} = R2 - r
19
20
      if h_final > 0:
21
           u = u + h_{final} * v
          v = v + h_final * (-v / r)
22
          r = R2
23
          r_values.append(r)
24
25
           u_values.append(u)
26
           v_values.append(v)
27
28
      for i in range(len(r_values)):
          r_i = r_values[i]
u_i = u_values[i]
30
31
           u_exact = T_exacta(r_i)
32
           error = abs(u_i - u_exact)
33
34
     return np.array(r_values), np.array(u_values), error
```

9.4. Euler Implícito: eulerImp.py

```
# M todo de Euler impl cito para un sistema de ecuaciones diferenciales

def euler_implicit_system(s, h):
    r = R1
    u = T1
    v = s
    r_values = [r]
    u_values = [u]
    v_values = [v]

num_pasos = int(np.ceil((R2 - R1) / h))

for _ in range(num_pasos):
```



```
r += h
13
           # ltimo paso ajustado para llegar exactamente a R2 (caso borde)
14
           if r > R2:
15
               r = R2
16
               h_{real} = r - r_{values}[-1]
17
               v = v / (1 + (h_real / r))
18
19
               u = u + h_real * v
           else:
20
               v = v / (1 + (h / r))
21
               u = u + h * v
22
           r_values.append(r)
23
24
           u_values.append(u)
25
           v_values.append(v)
26
27
      num_pasos = int(np.ceil((R2 - R1) / h))
28
      for i in range(len(r_values)):
29
           r_i = r_values[i]
30
           u_i = u_values[i]
31
32
           u_{exact} = T_{exacta}(r_i)
           error = abs(u_i - u_exact)
33
34
35
    return np.array(r_values), np.array(u_values), error
```

9.5. Runge-Kutta de segundo orden: RK2.py

```
_{1} # # M todo de Runge-Kutta-2 para resolver un sistema de ecuaciones diferenciales
def rk2_system(s, h):
      r = R1
      u = T1
4
       v = s
      r_values = [R1]
      u_values = [T1]
7
       v_values = [s]
8
9
      while r + h < R2:
10
11
           q1u = h * v
           q1v = h * (-v / r)
12
           r_{temp} = r + h
13
           q2u = h * (v + q1v)
14
           q2v = h * (-(v + q1v) / r_temp)
15
           u = u + 0.5 * (q1u + q2u)
16
17
           v = v + 0.5 * (q1v + q2v)
           r = r_temp
18
19
           r_values.append(r)
           u_values.append(u)
20
21
           v_values.append(v)
22
      h_final = R2 - r
# ltimo paso ajustado para llegar exactamente a R2 (caso borde)
23
24
       if h_final > 0:
25
           q1u = h_final * v
26
           q1v = h_final * (-v / r)
27
           r_temp = r + h_final
28
           q2u = h_final * (v + q1v)
29
           q2v = h_final * (-(v + q1v) / r_temp)
30
           u = u + 0.5 * (q1u + q2u)
31
32
           v = v + 0.5 * (q1v + q2v)
           r = r_temp
33
           r_values.append(r)
34
35
           u_values.append(u)
36
           v_values.append(v)
37
       for i in range(len(r_values)):
           r_i = r_values[i]
u_i = u_values[i]
39
40
           u_exact = T_exacta(r_i)
41
           error = abs(u_i - u_exact)
42
43
   return np.array(r_values), np.array(u_values), error
44
```


9.6. Diferencias divididas: difDivididas.py

```
# M todo de Diferencias Divididas
def diferencias_dividas(h = 1.0):
      # N mero de nodos internos
      N = int((R2 - R1) / h)
      r_nodes = np.array([R1 + i*h for i in range(N+1)])
6
      # Matriz y vector del sistema
      A = np.zeros((N-1, N-1))
      b = np.zeros(N-1)
9
10
11
      for i in range(1, N):
          r = r_nodes[i]
12
          a_i = (r - h/2) / h**2
13
          b_i = -2 * r / h**2
14
          c_i = (r + h/2) / h**2
15
16
          if i > 1:
17
              A[i-1, i-2] = a_i
18
19
          A[i-1, i-1] = b_i
          if i < N-1:</pre>
20
21
              A[i-1, i] = c_i
22
          if i == 1:
23
              b[0] -= a_i * T1
24
           if i == N-1:
25
              b[-1] -= c_i * T2
26
      # Resoluci n del sistema
28
29
      T_internal = np.linalg.solve(A, b)
      T_full = np.concatenate(([T1], T_internal, [T2]))
30
31
    return r_nodes, T_full.tolist()
```