# More on Word Vectors

Deep Natural Language Processing, 2022 Paweł Budzianowski

# Attendance policy

### Submitting reports

- Use template provided in the Moodle/Pegaz
- Overleaf [Disclaimer: Open Advertisement]



# Recordings

# **GPU Usage**

### Main idea of the word2vec

Iterate through each word of the whole corpus.

Predict the words around the center word.



### Main idea of the word2vec

Iterate through each word of the whole corpus.

Predict the words around the center word.



$$P(O = o | C = c) = rac{\exp(\mathbf{u}_o^T \mathbf{v}_c)}{\sum_{w \in Vocab} \exp(\mathbf{u}_w^T \mathbf{v}_c)}.$$

### Main idea of the word2vec



- Same predictions at each position!
- We want a model that gives a reasonably high probability to all words that occur in the context.

### Stop words issue

- Stop words: AND, OR, THE and more
- All word vectors have a high probability component related with high frequency word effect
- The crude way to get rid of it is often the case that the first component is related to it.

### Visualising Word Vectors

2 dimensional pictures are exceedingly misleading.

### Visualising Word Vectors [Manning 2019]



### Visualising Word Vectors

- 2 dimensional pictures are exceedingly misleading.
- For example:

Nokia is close to Samsung and should be also to Yahoo and Google and Finland?

 High dimensional space is not intuitive and some crazy stuff can happen out there that it's hard to reason about.

# Training Skip-gram

### **Optimization Basics**

- We have a cost function  $J(\theta)$  we want to minimize
- Gradient Descent is an algorithm to minimize  $J(\theta)$
- Idea: for current value of  $\theta$ , calculate gradient of  $J(\theta)$  then take small step in the direction of negative gradient and repeat.

### Update rule

$$heta_{new} = heta_{old} - lpha 
abla J( heta)$$

### Going down the slope



# Going down the slope





### Local vs Global Minima



# Saddle points



### What is going on

#### How SGD Selects the Global Minima in Over-parameterized Learning: A Dynamical Stability Perspective

#### Lei Wu

School of Mathematical Sciences Peking University Beijing, 100081, P.R. China leiwu@pku.edu.cn

#### Chao Ma

Program in Applied and Computational Mathematics Princeton University Princeton, NJ 08544, USA chaom@princeton.edu

#### Weinan E

Department of Mathematics and Program in Applied and Computational Mathematics Princeton University, Princeton, NJ 08544, USA and Beijing Institute of Big Data Research, Beijing, 100081, P.R. China weinan@math.princeton.edu

#### **Bad Global Minima Exist and SGD Can Reach Them**

#### Shengchao Liu

Quebec Artificial Intelligence Institute (Mila) Université de Montréal liusheng@mila.quebec

#### Dimitris Papailiopoulos

University of Wisconsin-Madison dimitris@papail.io

#### **Dimitris Achlioptas**

University of Athens optas@di.uoa.gr



### Naive optimisation

- $J(\theta)$  is a function of all windows in the corpus
- So computing the gradient can be potentially very expensive

### Naive optimisation

- $J(\theta)$  is a function of all windows in the corpus
- So computing the gradient can be potentially very expensive

- That is why we rely on stochastic gradient update
- This of course introduces the noise that can destroy the learning at some point
- Batch vs Online setting

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} \boldsymbol{J}_{\text{minibatch}}(\boldsymbol{\theta})$$

### Convergence rates

- For convex *f*, gradient descent with diminishing step sizes satisfies

$$f(x^{(k)}) - f^* = O(1/\sqrt{k})$$

- When *f* is differentiable with Lipschitz gradient, we get for suitable fixed step sizes

$$f(x^{(k)}) - f^* = O(1/k)$$

- For convex *f*, SGD with diminishing step sizes satisfies:

$$\mathbb{E}[f(x^{(k)})] - f^* = O(1/\sqrt{k})$$

### Adam Optimized [Kingma and Ba, 2013]

- Fixed learning step size can create problems.
- Adaptive Moment Estimation

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} \boldsymbol{J}_{\text{minibatch}}(\boldsymbol{\theta})$$

Momentum 'trick'

$$m \leftarrow \beta_1 m + (1 - \beta_1) \nabla_{\theta} J_{\text{minibatch}}(\theta)$$
  
 $\theta \leftarrow \theta - \alpha m$ 

Keeping track of the gradient magnitude

$$v \leftarrow \beta_2 v + (1 - \beta_2) \left( \nabla_{\theta} J_{\text{minibatch}}(\theta) \odot \nabla_{\theta} J_{\text{minibatch}}(\theta) \right)$$
  
 $\theta \leftarrow \theta - \alpha \odot m / \sqrt{v}$ 

### AdamW Optimizer [Loshchilov and Hutter, 2017]

- Decoupled weight decay regularization
- A GOTO optimizer a.d. 2022

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \nabla_{\boldsymbol{\theta}} \boldsymbol{J}_{\text{minibatch}}(\boldsymbol{\theta})$$

# Skip-gram in Practice

### Naive softmax

- The normalization factor is way too expensive to compute

$$P(O=o|C=c) = rac{\exp(\mathbf{u}_o^T\mathbf{v}_c)}{\sum_{w\in Vocab} \exp(\mathbf{u}_w^T\mathbf{v}_c)}.$$

- In practise, you go for negative sampling
- Main idea train binary logistic classifier for a true pair (center word and the one in the context) against several noise pairs drawn randomly from the vocabulary.

### The skip-gram model

Overall objective to maximize:

$$J_t( heta) = \log \sigma(u_o^T v_c) + \sum_{i=1}^k \mathbb{E}_{j \sim P(w)}[\log \sigma(-u_j^T v_c)]$$

The sigmoid function looks like this:



### The skip-gram model

- We typically take *k* negative samples
- Maximize probability that real outside word appears or minimize the probability that random words appear around center word
- How do we sample?

$$P(w) = U(w)^{(3/4)}/Z$$

The power component makes less frequent words sampled more often.

### Global knowledge versus local context windows

 Skip-gram may do better on the analogy task but they poorly utilize the statistics of the corpus

 Global models efficiently leverage statistical information but poor performance on analogy tasks

### But why not capture co-occurrence counts directly?

- We can use a co-occurrence matrix X
- We could do either: windows vs full document
- Window: similarly to word2vec, let's use window around each word.
   These models captures both syntactic POS and semantic information.
- Word-document co-occurrence matrix will give general topics leading to "Latent Semantic Analysis"

### Example: Window based co-occurrence matrix

- Window length to choose (similarly to word2vec)
- Symmetric it doesn't matter whether words are in the left or right context
- Example from the practical:
   Ala ma kota i psa.
   Ala lubi kota.

| •     | START | Ala | mieć | kot | i | pies | lubić | END |
|-------|-------|-----|------|-----|---|------|-------|-----|
| START | 0     | 2   | 0    | 0   | 0 | 0    | 0     | 0   |
| Ala   | 2     | 0   | 1    | 0   | 0 | 0    | 1     | 0   |
| mieć  | 0     | 1   | 0    | 1   | 0 | 0    | 0     | 0   |
| kot   | 0     | 0   | 1    | 0   | 1 | 0    | 1     | 1   |
| i     | 0     | 0   | 0    | 1   | 0 | 1    | 0     | 0   |
| pies  | 0     | 0   | 0    | 0   | 1 | 0    | 0     | 1   |
| lubić | 0     | 1   | 0    | 1   | 0 | 0    | 0     | 0   |
| END   | 0     | 0   | 0    | 1   | 0 | 1    | 0     | 0   |

### Problems?

- Increase in size with vocabulary
- Very high dimensional requires a lot of storage
- You could go for sparse matrices but it only partially solves the problem

- Subsequent classification models have sparsity issues and hence models are less robust

### Solution: low dimensional vectors

 Idea: store most of the important information in a fixed, small number of dimensions: a dense vector

- Usually 25-1000 dimensions, similar to word2vec
- How to reduce dimensionality?

### Method 1: Dimensionality Reduction

- Brief look at Algebra 2!

Singular Value Decomposition of co-occurrence matrix X

- Factorizes X into  $X = U\Sigma V^T$  where U and V are orthonormal
- Keep only k singular values (the largest), in order to generalize new X is the best rank k approximation to the old X in terms of least squares
- Classical linear algebra result expensive to compute for large matrices

### Hacks to *X* (Rohde et al. 2005)

- Scaling (through log) the counts in the cells can help a lot!
- Problem: function words (the, he has) are too frequent -> syntax has
   too much impact.
- Some fixes:
  - Using ceiling function min(X, t), with t = 100.
  - Ignore them all.
- Ramped windows that count closer words more.
- Use Pearson correlations instead of counts, then set negative values to 0.

# Interesting semantic patterns emerge in the vectors [Rohde et al. 2005]



## Count based vs direct prediction

#### Two schools:

- 1) a) Fast training
  - b) Efficient usage of statistics,
  - c) Primarily used to capture word similarity
  - d) High importance to large counts

- 2) a) Scales with corpus size
  - b) Inefficient usage of statistics
  - c) Capture complex patterns beyond word similarity

## Count based vs direct prediction

- Can we combine both of these schools?
- Let's look at ratios of co-occurrence probabilities they should encode meaning components

## Count based vs direct prediction

- Can we combine both of these schools?
- Let's look at ratios of co-occurrence probabilities they should encode meaning components

| Probability and Ratio | k = solid            | k = gas              | k = water          | k = fashion        |
|-----------------------|----------------------|----------------------|--------------------|--------------------|
|                       |                      | $6.6\times10^{-5}$   |                    |                    |
| P(k steam)            | $2.2 \times 10^{-5}$ | $7.8\times10^{-4}$   | $2.2\times10^{-3}$ | $1.8\times10^{-5}$ |
| P(k ice)/P(k steam)   | 8.9                  | $8.5 \times 10^{-2}$ | 1.36               | 0.96               |

- Q: How can we capture ratios of co-occurrences probabilities as linear meaning components in a word vector space?
- If you could make a dot product a log of co-occurrence probability:

$$w_i \cdot w_j = \log P(i|j)$$

- What we want to arrive at is:

$$J = \sum_{i,j=1}^V f(X_{ij}) (w_i^T ilde{w}_j - \log X_{ij})^2$$

- A general statement of the desired model

$$F(w_i, w_j, ilde{w}_k) = rac{\log P(k|i)}{\log P(k|j)}$$

 Since vector spaces are inherently linear structures, the most natural way to do this is with vector differences

$$F(w_i - w_j, ilde{w}_k) = rac{\log P(k|i)}{\log P(k|j)}$$

 We don't want to obfuscate the linear structure we are trying to capture

$$F((w_i-w_j)^T ilde{w}_k)=rac{\log P(k|i)}{\log P(k|j)}$$

- The distinction between a word and a context word is arbitrary and we are free to exchange the two roles
- The F should be a homomorphism between two groups  $(\mathbb{R},+)$  and  $(\mathbb{R}_{>0},\times)$

$$F((w_i-w_j)^T ilde{w}_k)=rac{F(w_i^T ilde{w}_k)}{F(w_k^T ilde{w}_k)}$$

- If *F* is exp the solution takes the form:

$$F(w_i^T ilde{w}_k) = \log P(k|i) = \log(X_{ik}) - \log(X_i)$$

- We also need the symmetry which is blocked by the  $\log(X_i)$  As it is independent of k we can push it into the bias. We arrive at:

$$w_i^T ilde{w}_k + b_i + ilde{b}_k = \log(X_{ik})$$

# Encoding meaning in vector differences [Pennington et al., 2014]

Casting it as a LSP and adding a weighting function gives the final model

$$J = \sum_{i,j=1}^V f(X_{ij}) (w_i^T ilde{w}_j + b_i + ilde{b}_j - \log X_{ij})^2$$

- Fast training
- Scalable to huge corpora
- Good performance even with small corpus and small vectors

# Encoding meaning in vector differences [Pennington et al., 2014]

Casting it as a LSP and adding a weighting function gives the final model

$$J = \sum_{i,j=1}^V f(X_{ij}) (w_i^T ilde{w}_j + b_i + ilde{b}_j - \log X_{ij})^2$$

- Fast training
- Scalable to huge corpora
- Good performance even with small corpus and small vectors



Figure 1: Weighting function f with  $\alpha = 3/4$ .

## Encoding meaning in vector differences [Pennington et al. 2014]



# Encoding meaning in vector differences [Pennington et al. 2014]

| Model             | Size | WS353       | MC          | RG          | SCWS        | RW          |
|-------------------|------|-------------|-------------|-------------|-------------|-------------|
| SVD               | 6B   | 35.3        | 35.1        | 42.5        | 38.3        | 25.6        |
| SVD-S             | 6B   | 56.5        | 71.5        | 71.0        | 53.6        | 34.7        |
| SVD-L             | 6B   | 65.7        | <u>72.7</u> | 75.1        | 56.5        | 37.0        |
| CBOW <sup>†</sup> | 6B   | 57.2        | 65.6        | 68.2        | 57.0        | 32.5        |
| SG <sup>†</sup>   | 6B   | 62.8        | 65.2        | 69.7        | <u>58.1</u> | 37.2        |
| GloVe             | 6B   | 65.8        | 72.7        | <u>77.8</u> | 53.9        | 38.1        |
| SVD-L             | 42B  | 74.0        | 76.4        | 74.1        | 58.3        | 39.9        |
| GloVe             | 42B  | <u>75.9</u> | <b>83.6</b> | <u>82.9</u> | <u>59.6</u> | <u>47.8</u> |
| CBOW*             | 100B | 68.4        | 79.6        | 75.4        | 59.4        | 45.5        |

## **Evaluation issues**

### How to evaluate word vectors?

Related to general evaluation in NLP: intrinsic vs extrinsic

#### Intrinsic:

- Evaluation on a specific intermediate subtask
- Fast to compute
- Helps to understand that system
- Not clear if really helpful unless correlation to real taks is established

#### Extrinsic:

- Evaluation on a real task
- Can take a long time to compute accuracy
- Unclear if the subsystem is the problem or its interaction or other subsystems
- If replacing exactly on subsystems with another improves accuracy -> winning

## **Evaluation issues**

#### Automatic Evaluation Leaderboard

| Rank | Team ID | Best Spec #  | Success Rate | Complete Rate | Book Rate | Inform P/R/FI  | Turn(succ/all) |
|------|---------|--------------|--------------|---------------|-----------|----------------|----------------|
| Ī    | Ī       | Submission3  | 93           | 95.2          | 94.6      | 84.1/96.2/88.1 | 12.5/12.7      |
| 2    | 2       | Submission5  | 91.4         | 96.9          | 96.2      | 80.2/97.3/86.0 | 15.3/15.7      |
| 3    | 3       | Submission I | 90.8         | 94.4          | 96.7      | 81.0/95.4/85.9 | 13.4/13.6      |
| 4    | 4       | Submission2  | 89.8         | 94.6          | 96.3      | 72.4/96.0/80.1 | 15.1/15.8      |
| 5    | 5       | Submission2  | 83.3         | 88.5          | 89.1      | 81.1/90.3/83.5 | 13.5/13.8      |
| 6    | 6       | Submission I | 67.7         | 88.5          | 90.8      | 70.4/85.6/75.2 | 12.8/14.2      |
| 7    | 7       | Submission4  | 57.8         | 87.1          | 85        | 68.7/81.6/72.6 | 13.7/16.4      |

## **Evaluation issues**

| Automatic | Evaluation • | <br>Human | Evaluati   | on Leaderboa | ard                     |                 |                               |                                 |                                |       |
|-----------|--------------|-----------|------------|--------------|-------------------------|-----------------|-------------------------------|---------------------------------|--------------------------------|-------|
| Rank      | Team ID      | Rank      | Team<br>ID | Best Spec #  | Average<br>Success Rate | Success Rate w/ | Success Rate w/o DB Grounding | Language<br>Understanding Score | Response Appropriateness Score | Turns |
| 1         | 1            |           |            |              |                         |                 | •                             |                                 |                                |       |
|           |              | 1         | 1          | Submission5  | 74.8                    | 70.2            | 79.4                          | 4.54                            | 4.47                           | 18.5  |
| 2         | 2            | 1         | 2          | Submission I | 74.8                    | 68.8            | 80.8                          | 4.51                            | 4.45                           | 19.4  |
| 3         | 3            | 3         | 7          | Submission4  | 72.3                    | 62              | 82.6                          | 4.53                            | 4.41                           | 17.1  |
| 4         | 4            | 4         | 6          | Submission I | 70.6                    | 60.8            | 80.4                          | 4.41                            | 4.41                           | 20.1  |
| 5         | 5            | 5         | 3          | Submission3  | 67.8                    | 60              | 75.6                          | 4.56                            | 4.42                           | 21    |
| 6         | 6            | 6         | 4          | Submission2  | 60.3                    | 51.4            | 69.2                          | 4.49                            | 4.22                           | 17.7  |
| 7         | 7            | 7         | 5          | Submission2  | 58.4                    | 50.4            | 66.4                          | 4.15                            | 4.06                           | 19.7  |

## Intrinsic word vector evaluation [Pennington et al., 2019]





## Intrinsic word vector evaluation [Pennington et al., 2019]



## Word Analogy [Mikolov, 2013]

| Model                   | Dim. | Size | Sem.        | Syn.        | Tot.        |
|-------------------------|------|------|-------------|-------------|-------------|
| ivLBL                   | 100  | 1.5B | 55.9        | 50.1        | 53.2        |
| HPCA                    | 100  | 1.6B | 4.2         | 16.4        | 10.8        |
| GloVe                   | 100  | 1.6B | 67.5        | <u>54.3</u> | 60.3        |
| SG                      | 300  | 1B   | 61          | 61          | 61          |
| CBOW                    | 300  | 1.6B | 16.1        | 52.6        | 36.1        |
| vLBL                    | 300  | 1.5B | 54.2        | 64.8        | 60.0        |
| ivLBL                   | 300  | 1.5B | 65.2        | 63.0        | 64.0        |
| GloVe                   | 300  | 1.6B | 80.8        | 61.5        | 70.3        |
| SVD                     | 300  | 6B   | 6.3         | 8.1         | 7.3         |
| SVD-S                   | 300  | 6B   | 36.7        | 46.6        | 42.1        |
| SVD-L                   | 300  | 6B   | 56.6        | 63.0        | 60.1        |
| CBOW <sup>†</sup>       | 300  | 6B   | 63.6        | <u>67.4</u> | 65.7        |
| $\mathbf{SG}^{\dagger}$ | 300  | 6B   | 73.0        | 66.0        | 69.1        |
| GloVe                   | 300  | 6B   | <u>77.4</u> | 67.0        | <u>71.7</u> |
| CBOW                    | 1000 | 6B   | 57.3        | 68.9        | 63.7        |
| SG                      | 1000 | 6B   | 66.1        | 65.1        | 65.6        |
| SVD-L                   | 300  | 42B  | 38.4        | 58.2        | 49.2        |
| GloVe                   | 300  | 42B  | <u>81.9</u> | <u>69.3</u> | <u>75.0</u> |

## Analogy evaluation and hyperparameters



## More training time matters



(b) GloVe vs Skip-Gram

## Data quality!



### Another intrinsic word vector evaluation

- Word vector distances and their correlation with human judgements
- Example dataset: WordSim353

| Word 1   | Word 2   | Human (mean) | 1  | 2   | 3   | 4  | 5  | 6  | 7   | 8  | 9  | 10 | 11 | 12 | 13 |
|----------|----------|--------------|----|-----|-----|----|----|----|-----|----|----|----|----|----|----|
| love     | sex      | 6.77         | 9  | 6   | 8   | 8  | 7  | 8  | 8   | 4  | 7  | 2  | 6  | 7  | 8  |
| tiger    | cat      | 7.35         | 9  | 7   | 8   | 7  | 8  | 9  | 8.5 | 5  | 6  | 9  | 7  | 5  | 7  |
| tiger    | tiger    | 10.00        | 10 | 10  | 10  | 10 | 10 | 10 | 10  | 10 | 10 | 10 | 10 | 10 | 10 |
| book     | paper    | 7.46         | 8  | 8   | 7   | 7  | 8  | 9  | 7   | 6  | 7  | 8  | 9  | 4  | 9  |
| computer | keyboard | 7.62         | 8  | 7   | 9   | 9  | 8  | 8  | 7   | 7  | 6  | 8  | 10 | 3  | 9  |
| computer | internet | 7.58         | 8  | 6   | 9   | 8  | 8  | 8  | 7.5 | 7  | 7  | 7  | 9  | 5  | 9  |
| plane    | car      | 5.77         | 6  | 6   | 7   | 5  | 3  | 6  | 7   | 6  | 6  | 6  | 7  | 3  | 7  |
| train    | car      | 6.31         | 7  | 7.5 | 7.5 | 5  | 3  | 6  | 7   | 6  | 6  | 6  | 9  | 4  | 8  |
|          |          |              |    |     |     |    |    |    |     |    |    |    |    |    |    |

### Another intrinsic word vector evaluation

| Model                 | Size | WS353       |
|-----------------------|------|-------------|
| SVD                   | 6B   | 35.3        |
| SVD-S                 | 6B   | 56.5        |
| SVD-L                 | 6B   | 65.7        |
| CBOW <sup>†</sup>     | 6B   | 57.2        |
| $\mathbf{SG}^\dagger$ | 6B   | 62.8        |
| GloVe                 | 6B   | 65.8        |
| SVD-L                 | 42B  | 74.0        |
| GloVe                 | 42B  | <b>75.9</b> |
| CBOW*                 | 100B | 68.4        |
|                       |      |             |

## Word senses and word sense ambiguity

- Most words have lots of meanings!
- Especially common words
- And words that have existed for a long time

- Example: dzban

 Does one vector capture all these meanings or do we have a mess?

# Linear algebraic structure of word senses with applications to polysemy [Arora et al., 2018]

- An average of different possible vectors for a word
- Sparse coding can recover vectors that approximately capture the senses

| spring    |            |           |       |              |  |  |  |  |
|-----------|------------|-----------|-------|--------------|--|--|--|--|
| beginning | dampers    | flower    | creek | humid        |  |  |  |  |
| until     | brakes     | flowers   | brook | winters      |  |  |  |  |
| months    | suspension | flowering | river | summers      |  |  |  |  |
| earlier   | absorbers  | fragrant  | fork  | ppen         |  |  |  |  |
| year      | wheels     | lilies    | piney | warm         |  |  |  |  |
| last      | damper     | flowered  | elk   | temperatures |  |  |  |  |

### Extrinsic word vector evaluation

Extrinsic evaluation of word vectors - that's what really matters for us and practitioners

Name entity recognition should help!

### Extrinsic word vector evaluation

Extrinsic evaluation of word vectors - that's what really matters for us and practitioners

Name entity recognition should help!

| Model       | Dev  | Test | ACE  | MUC7 |
|-------------|------|------|------|------|
| Discrete    | 91.0 | 85.4 | 77.4 | 73.4 |
| SVD         | 90.8 | 85.7 | 77.3 | 73.7 |
| SVD-S       | 91.0 | 85.5 | 77.6 | 74.3 |
| SVD-L       | 90.5 | 84.8 | 73.6 | 71.5 |
| <b>HPCA</b> | 92.6 | 88.7 | 81.7 | 80.7 |
| <b>HSMN</b> | 90.5 | 85.7 | 78.7 | 74.7 |
| CW          | 92.2 | 87.4 | 81.7 | 80.2 |
| <b>CBOW</b> | 93.1 | 88.2 | 82.2 | 81.1 |
| GloVe       | 93.2 | 88.3 | 82.9 | 82.2 |

### Literature:

- 1. Pennington et al., 2014 <a href="https://aclanthology.org/D14-1162/">https://aclanthology.org/D14-1162/</a>
- WordSim353 <u>https://gabrilovich.com/resources/data/wordsim353/wordsim353.ht</u>
   <u>ml</u>
- 3. Arora et al., 2018 https://arxiv.org/pdf/1601.03764.pdf