

Linguistically-Driven Strategy for Concept

Prerequisites Learning on Italian

Alessio Miaschi*, , Chiara Alzetta*, , Franco Alberto Cardillo*, Felice Dell'Orletta*

*Dipartimento di Informatica, Università di Pisa, *DIBRIS, Università degli Studi di Genova *Istituto di Linguistica Computazionale "Antonio Zampolli" (ILC-CNR), Pisa ItaliaNLP Lab – www.italianlp.it

alessio.miaschi@phd.unipi.it, chiara.alzetta@edu.unige.it, {francoalberto.cardillo,felice.dellorletta}@ilc.cnr.it

Research Issue

Learning Objects (LOs) are small and re-usable educational elements (e.g. lecture notes, multimedia content, presentations) with direct, succinct and homogeneous content. Uncovering educational relationships between LOs is a difficult and time consuming practice usually performed by domain experts when creating lectures and textbooks. The **prerequisite relation** is the most fundamental pedagogical relation: it defines what one needs to know before approaching a new content. In this work we present a deep learning method for prerequisite learning between concepts corresponding to LOs represented as Wikipedia pages.

	AL-CPL			ITA-PREREQ			
Domain	Concepts	Pairs	Prerequisites	Concepts	Pairs	Prerequisites	
Data Mining	120	826	292	75	429	154	
Geometry	89	1,681	524	73	1,338	430	
Physics	153	1,962	487	131	1,651	409	
Precalculus	224	2,060	699	176	1,504	502	
Total	586	6,529	2,002	455	4,922	1,495	

Learning Objects Prerequisite Relations Example:

Prerequisite Learning Approach

MODEL

FEATURES

Lexical features: Word embeddings Global features:

- In text: if B_t/A_t appears in A/B.
- Count: how many times B_t/A_t is mentioned in A/B.
- In first line: if B_t/A_t appears in A/B's first line, i.e. A/B definition.
- In title: If B_t appears in A_t .
- Length: the number of words of A/B.
- Jaccard Sim.: the Jaccard similarity between A and B.
- Jaccard Sim. (Nouns): the Jaccard similarity between nouns appearing in *A* and *B*.
- RefD: the RefD metric between A and B.
- LDA Entropy: the Shannon entropy of the LDA vector of *A/B*.
- LDA Cross Entropy: the cross entropy between the LDA vector of A/B and B/A.

SETTINGS

- **Datasets:** three datasets: AL-CPL, its Italian version ITA-PREREQ, English Reduced, covering four domains, namely Data Mining, Geometry, Physics and Precalculus.
- Classifiers: three classification models:
- M1 (only lexical features),
- M2 (only global features),
- M3 (combination lexical and global features).

Each classifier is tested both in a in-domain and cross-domain scenario.

- Baseline: Zero Rule algorithm.
- Evaluation: in terms of F1
- in-domain: 5-fold cross validation
- cross-domain: leave-one-domain-out (training on three domains, testing on the fourth).

Results

IN-DOMAIN

		Data Mining	Geometry	Physics	Precalculus	Avg.
	Baseline	66.66	67.86	75.22	66.66	69.1
ITA DDEDEO	M1	72.45	86.89	79.28	90.53	82.28
ITA-PREREQ	M2	64.25	85.27	76.26	89.02	78.7
	M3	77.91	90.01	85.08	93.91	86.72
	Baseline	66.66	67.86	75.22	66.66	69.1
English Dodusod	M1	85.36	92.03	84.4	90.84	88.15
English Reduced	M2	70.78	89.05	78.52	89.62	81.99
	M3	85.6	94.1	88.49	95.22	90.85
	Baseline	66.66	68.82	75.17	66.66	69.32
AL-CPL	M1	88.81	92.43	83.49	92.48	89.30
AL-GPL	M2	73.29	89.66	80.72	90.9	83.64
	M3	89.66	95.69	88.54	94.95	92.21

CROSS-DOMAIN

		Data Mining	Geometry	Physics	Precalculus	Avg.
ITA-PREREQ	Baseline	66.66	67.86	75.22	66.66	69.1
	M1	28.07	62.99	45.34	59.88	49.07
	M2	37.09	79.53	71.56	83.66	67.96
	M3	30.36	76.33	69.6	83.4	64.92
English Reduced	Baseline	66.66	67.86	75.22	66.66	69.1
	M1	47.83	69.17	28.97	69.18	53.78
	M2	59.91	75.8	75.05	85.81	74.14
	M3	41.9	80.24	58.33	79.52	64.99
AL CDI	Baseline	66.66	68.82	75.17	66.66	69.32
	M1	37.89	70.04	39.31	71.98	54.80
AL-CPL	M2	50.89	80.41	74.74	87.14	73.29
	M3	38.78	82.53	63.67	84.41	67.34

Incremental Training Experiments

100 90 80 70 10% 20% 25% 50% 100%

AL-CPL

Approach: incrementally adding new concept pairs examples into the training set of M3.

Experiments: we split the dataset in training (70%) and test set (30%). We performed 5 experiments, feeding the M3 neural network model with different runs of 10%, 20%, 25%, 50% and 100% of the training set. We used a k-fold cross as validation strategy, with k equal to 10, 5, 4 and 2 according to the percentages of data samples previously defined.

ITA-PREREQ

