# GROTHENDIECK GROUP AND GENERALIZED MUTATION RULE FOR 2-CALABI-YAU TRIANGULATED CATEGORIES

#### YANN PALU

Abstract. We compute the Grothendieck group of certain 2-Calabi-Yau triangulated categories appearing naturally in the study of the link between quiver representations and Fomin-Zelevinsky's cluster algebras. In this setup, we also prove a generalization of Fomin-Zelevinsky's mutation rule.

### Introduction

In their study [6] of the connections between cluster algebras (see [22]) and quiver representations, P. Caldero and B. Keller conjectured that a certain antisymmetric bilinear form is well—defined on the Grothendieck group of a cluster—tilted algebra associated with a finite—dimensional hereditary algebra. The conjecture was proved in [19] in the more general context of Hom-finite 2-Calabi—Yau triangulated categories. It was used in order to study the existence of a cluster character on such a category  $\mathcal{C}$ , by using a formula proposed by Caldero–Keller.

In the present paper, we restrict to the case where  $\mathcal{C}$  is algebraic (i.e. is the stable category of a Frobenius category). We first use this bilinear form to prove a generalized mutation rule for quivers of cluster—tilting subcategories in  $\mathcal{C}$ . When the cluster—tilting subcategories are related by a single mutation, this shows, via the method of [9], that their quivers are related by the Fomin—Zelevinsky mutation rule. This special case was already proved in [3], without assuming  $\mathcal{C}$  to be algebraic.

We also compute the Grothendieck group of the triangulated category C. In particular, this allows us to improve on results by M. Barot, D. Kussin and H. Lenzing: We compare the Grothendieck group of a cluster category  $C_A$  with the group  $\overline{K}_0(C_A)$ . The latter group was defined in [1] by only considering the triangles in  $C_A$  which are induced by those of the derived category. More precisely, we prove that those two groups are isomorphic for any cluster category associated with a finite dimensional hereditary algebra, with its triangulated structure defined by B. Keller in [16].

This paper is organized as follows: The first section is dedicated to notation and necessary background from [8], [9], [17], [19]. In section 2, we compute the Grothendieck group of the triangulated category  $\mathcal{C}$ . In section 3, we prove a generalized mutation rule for quivers of cluster–tilting subcategories in  $\mathcal{C}$ . In particular, this yields a new proof of the Fomin–Zelevinsky mutation rule, under the restriction that  $\mathcal{C}$  is algebraic. We finally show that  $K_0(\mathcal{C}_A) = \overline{K}_0(\mathcal{C}_A)$  for any finite dimensional hereditary algebra A.

### ACKNOWLEDGEMENTS

This article is part of my PhD thesis, under the supervision of Professor B. Keller. I would like to thank him deeply for introducing me to the subject and for his infinite patience.

#### Contents

| Introduction                                                               | 1  |
|----------------------------------------------------------------------------|----|
| Acknowledgements                                                           | 1  |
| 1. Notations and background                                                | 2  |
| 1.1. Fomin–Zelevinsky mutation for matrices                                | 2  |
| 1.2. Cluster—tilting subcategories                                         | 3  |
| 1.3. The antisymmetric bilinear form                                       | 3  |
| 2. Grothendieck groups of algebraic 2-CY categories with a cluster-tilting |    |
| subcategory                                                                | 4  |
| 2.1. A short exact sequence of triangulated categories                     | 4  |
| 2.2. Invariance under mutation                                             | 5  |
| 2.3. Grothendieck groups                                                   | 8  |
| 3. The generalized mutation rule                                           | 9  |
| 3.1. The rule                                                              | 10 |
| 3.2. Examples                                                              | 12 |
| 3.3. Back to the mutation rule                                             | 13 |
| 3.4. Cluster categories                                                    | 14 |
| References                                                                 | 14 |

### 1. NOTATIONS AND BACKGROUND

Let  $\mathcal{E}$  be a Frobenius category whose idempotents split and which is linear over a given algebraically closed field k. By a result of Happel [10], its stable category  $\mathcal{C} = \underline{\mathcal{E}}$  is triangulated. We assume moreover, that  $\mathcal{C}$  is Hom-finite, 2-Calabi–Yau and has a cluster–tilting subcategory (see section 1.2), and we denote by  $\Sigma$  its suspension functor. Note that we do not assume that  $\mathcal{E}$  is Hom-finite.

We write  $\mathcal{X}(\ ,\ )$ , or  $\mathrm{Hom}_{\mathcal{X}}(\ ,\ )$ , for the morphisms in a category  $\mathcal{X}$  and  $\mathrm{Hom}_{\mathcal{X}}(\ ,\ )$  for the morphisms in the category of  $\mathcal{X}$ -modules. We also denote by  $X^{\hat{}}$  the projective  $\mathcal{X}$ -module represented by  $X:\ X^{\hat{}}=\mathcal{X}(?,X)$ .

1.1. Fomin–Zelevinsky mutation for matrices. Let  $B = (b_{ij})_{i,j \in I}$  be a finite or infinite matrix, and let k be in I. The Fomin and Zelevinsky mutation of B (see [8]) in direction k is the matrix

$$\mu_k(B) = (b'_{ij})$$

defined by

$$b'_{ij} = \begin{cases} -b_{ij} & \text{if } i = k \text{ or } j = k, \\ b_{ij} + \frac{|b_{ik}|b_{kj} + b_{ik}|b_{kj}|}{2} & \text{else.} \end{cases}$$

Note that  $\mu_k(\mu_k(B)) = B$  and that if B is skew-symmetric, then so is  $\mu_k(B)$ .

We recall two lemmas of [9], stated for infinite matrices, which will be useful in section 3. Note that lemma 7.2 is a restatement of [2, (3.2)]. Let  $S = (s_{ij})$  be the matrix defined by

$$s_{ij} = \left\{ \begin{array}{ll} -\delta_{ij} + \frac{|b_{ij}| - b_{ij}}{2} & \text{if } i = k, \\ \delta_{ij} & \text{else.} \end{array} \right.$$

**Lemma 7.1** ([9, Geiss-Leclerc-Schröer]): Assume that B is skew-symmetric. Then,  $S^2 = 1$  and the (i, j)-entry of the transpose of the matrix S is given by

$$s_{ij}^{\mathsf{t}} = \left\{ \begin{array}{ll} -\delta_{ij} + \frac{|b_{ij}| + b_{ij}}{2} & \text{if } j = k, \\ \delta_{ij} & \text{else.} \end{array} \right.$$

The matrix S yields a convienent way to describe the mutation of B in the direction k:

**Lemma 7.2** ([9, Geiss-Leclerc-Schröer], [2, Berenstein-Fomin-Zelevinsky]): Assume that B is skew-symmetric. Then we have:

$$\mu_k(B) = S^{\mathrm{t}}BS.$$

Note that the product is well-defined since the matrix S has a finite number of non vanishing entries in each column.

- 1.2. Cluster-tilting subcategories. A cluster-tilting subcategory (see [17]) of C is a full subcategory T such that
  - a)  $\mathcal{T}$  is a linear subcategory;
  - b) for any object X in  $\mathcal{C}$ , the contravariant functor  $\mathcal{C}(?,X)|_{\mathcal{T}}$  is finitely generated;
  - c) for any object X in C, we have  $C(X, \Sigma T) = 0$  for all T in T if and only if X belongs to T.

We now recall some results from [17], which we will use in the sequel. Let  $\mathcal{T}$  be a cluster–tilting subcategory of  $\mathcal{C}$ , and denote by  $\mathcal{M}$  its preimage in  $\mathcal{E}$ . In particular  $\mathcal{M}$  contains the full subcategory  $\mathcal{P}$  of  $\mathcal{E}$  formed by the projective-injective objects, and we have  $\mathcal{M} = \mathcal{T}$ .

The following proposition will be used implicitly, extensively in this paper. **Proposition** [17, Keller–Reiten]:

- a) The category mod  $\underline{\mathcal{M}}$  of finitely presented  $\underline{\mathcal{M}}$ -modules is abelian.
- b) For each object  $X \in \mathcal{C}$ , there is a triangle

$$\Sigma^{-1}X \longrightarrow T_1^X \longrightarrow T_0^X \longrightarrow X$$

of C, with  $T_0^X$  and  $T_1^X$  in T.

Recall that the perfect derived category per  $\mathcal{M}$  is the full triangulated subcategory of the derived category of  $\mathcal{D}\operatorname{Mod}\mathcal{M}$  generated by the finitely generated projective  $\mathcal{M}$ -modules.

**Proposition** [17, Keller–Reiten]:

a) For each  $X \in \mathcal{E}$ , there are conflations

$$0 \longrightarrow M_1 \longrightarrow M_0 \longrightarrow X \longrightarrow 0$$
 and  $0 \longrightarrow X \longrightarrow M^0 \longrightarrow M^1 \longrightarrow 0$ 

in  $\mathcal{E}$ , with  $M_0$ ,  $M_1$ ,  $M^0$  and  $M^1$  in  $\mathcal{M}$ .

b) Let Z be in mod  $\underline{\mathcal{M}}$ . Then Z considered as an  $\mathcal{M}$ -module lies in the perfect derived category per  $\mathcal{M}$  and we have canonical isomorphisms

$$D(\operatorname{per} \mathcal{M})(Z,?) \simeq (\operatorname{per} \mathcal{M})(?,Z[3]).$$

1.3. The antisymmetric bilinear form. In section 3, we will use the existence of the antisymmetric bilinear form  $\langle , \rangle_a$  on  $K_0 \pmod{\underline{\mathcal{M}}}$ . We thus recall its definition from [6].

Let  $\langle \ , \ \rangle$  be a truncated Euler form on mod  $\underline{\mathcal{M}}$  defined by

$$\langle M, N \rangle = \dim \operatorname{Hom}_{\mathcal{M}}(M, N) - \dim \operatorname{Ext}^{1}_{\mathcal{M}}(M, N)$$

for any  $M, N \in \text{mod } \underline{\mathcal{M}}$ . Define  $\langle \ , \ \rangle_a$  to be the antisymmetrization of this form:

$$\langle M, N \rangle_a = \langle M, N \rangle - \langle N, M \rangle.$$

This bilinear form descends to the Grothendieck group  $K_0 \pmod{\underline{\mathcal{M}}}$ :

Lemma [19, section 3]: The antisymmetric bilinear form

$$\langle M, N \rangle_a : \mathrm{K}_0(\mathrm{mod}\,\mathcal{M}) \times \mathrm{K}_0(\mathrm{mod}\,\mathcal{M}) \longrightarrow \mathbb{Z}$$

is well-defined.

YANN PALU

4

# 2. Grothendieck groups of algebraic 2-CY categories with a cluster-tilting subcategory

We fix a cluster-tilting subcategory  $\mathcal{T}$  of  $\mathcal{C}$ , and we denote by  $\mathcal{M}$  its preimage in  $\mathcal{E}$ . In particular  $\mathcal{M}$  contains the full subcategory  $\mathcal{P}$  of  $\mathcal{E}$  formed by the projective-injective objects, and we have  $\underline{\mathcal{M}} = \mathcal{T}$ .

We denote by  $\mathcal{H}^b(\mathcal{E})$  and  $\mathcal{D}^b(\mathcal{E})$  respectively the bounded homotopy category and the bounded derived category of  $\mathcal{E}$ . We also denote by  $\mathcal{H}^b_{\mathcal{E}-ac}(\mathcal{E})$ ,  $\mathcal{H}^b(\mathcal{P})$ ,  $\mathcal{H}^b(\mathcal{M})$  and  $\mathcal{H}^b_{\mathcal{E}-ac}(\mathcal{M})$  the full subcategories of  $\mathcal{H}^b(\mathcal{E})$  whose objects are the  $\mathcal{E}$ -acyclic complexes, the complexes of projective objects in  $\mathcal{E}$ , the complexes of objects of  $\mathcal{M}$  and the  $\mathcal{E}$ -acyclic complexes of objects of  $\mathcal{M}$ , respectively.

## 2.1. A short exact sequence of triangulated categories.

**Lemma 1.** Let  $A_1$  and  $A_2$  be thick, full triangulated subcategories of a triangulated category A and let B be  $A_1 \cap A_2$ . Assume that for any object X in A there is a triangle  $X_1 \longrightarrow X \longrightarrow X_2 \longrightarrow \Sigma X_1$  in A, with  $X_1$  in  $A_1$  and  $X_2$  in  $A_2$ . Then the induced functor  $A_1/B \longrightarrow A/A_2$  is a triangle equivalence.

*Proof.* Under these assumptions, denote by F the induced triangle functor from  $\mathcal{A}_1/\mathcal{B}$  to  $\mathcal{A}/\mathcal{A}_2$ . We are going to show that the functor F is a full, conservative, dense functor. Since any full conservative triangle functor is fully faithful, F will then be an equivalence of categories.

We first show that F is full. Let  $X_1$  and  $X'_1$  be two objects in  $A_1$ . Let f be a morphism from  $X_1$  to  $X'_1$  in  $A/A_2$  and let



be a left fraction which represents f. The morphism w is in the multiplicative system associated with  $\mathcal{A}_2$  and thus yields a triangle  $\Sigma^{-1}A_2 \to Y \xrightarrow{w} X_1' \to A_2$  where  $A_2$  lies in the subcategory  $\mathcal{A}_2$ . Moreover, by assumption, there exists a triangle  $Y_1 \to Y \to Y_2 \to \Sigma Y_1$  with  $Y_i$  in  $\mathcal{A}_i$ . Applying the octahedral axiom to the composition  $Y_1 \to Y \to X_1'$  yields a commutative diagram whose two middle rows and columns are triangles in  $\mathcal{A}$ 



Since  $Y_2$  and  $A_2$  belong to  $\mathcal{A}_2$ , so does Z. And since  $X_1'$  and  $Y_1$  belong to  $\mathcal{A}_1$ , so does Z. This implies, that Z belongs to  $\mathcal{B}$ . The morphism  $Y_1 \to X_1'$  is in the multiplicative system of  $\mathcal{A}_1$  associated with  $\mathcal{B}$  and the diagram



is a left fraction which represents f. This implies that f is the image of a morphism in  $\mathcal{A}_1/\mathcal{B}$ . Therefore the functor F is full.

We now show that F is conservative. Let  $X_1 \xrightarrow{f} Y_1 \to Z_1 \to \Sigma X_1$  be a triangle in  $\mathcal{A}_1$ . Assume that Ff is an isomorphism in  $\mathcal{A}/\mathcal{A}_2$ , which implies that  $Z_1$  is an object of  $\mathcal{A}_2$ . Therefore,  $Z_1$  is an object of  $\mathcal{B}$  and f is an isomorphism in  $\mathcal{A}_1/\mathcal{B}$ .

We finally show that F is dense. Let X be an object of the category  $\mathcal{A}/\mathcal{A}_2$ , and let  $X_1 \to X \to X_2 \to \Sigma X_1$  be a triangle in  $\mathcal{A}$  with  $X_i$  in  $\mathcal{A}_i$ . Since  $X_2$  belongs to  $\mathcal{A}_2$ , the image of the morphism  $X_1 \to X$  in  $\mathcal{A}/\mathcal{A}_2$  is an isomorphism. Thus X is isomorphic to the image by F of an object in  $\mathcal{A}_1/\mathcal{B}$ .

As a corollary, we have the following:

**Lemma 2.** The following sequence of triangulated categories is short exact:

$$0 \longrightarrow \mathcal{H}^{b}_{\mathcal{E}-ac}\left(\mathcal{M}\right) \longrightarrow \mathcal{H}^{b}\left(\mathcal{M}\right) \longrightarrow \mathcal{D}^{b}\left(\mathcal{E}\right) \longrightarrow 0.$$

Remark: This lemma remains true if C is d-Calabi–Yau and  $\underline{\mathcal{M}}$  is (d-1)-cluster–tilting, using section 5.4 of [17].

*Proof.* For any object X in  $\mathcal{H}^b(\mathcal{E})$ , the existence of an object M in  $\mathcal{H}^b(\mathcal{M})$  and of a quasi-isomorphism w from M to X is obtained using the approximation conflations of Keller–Reiten (see section 1.2). Since the cone of the morphism w belongs to  $\mathcal{H}^b_{\mathcal{E}-ac}(\mathcal{E})$ , lemma 1 applies to the subcategories  $\mathcal{H}^b_{\mathcal{E}-ac}(\mathcal{M})$ ,  $\mathcal{H}^b(\mathcal{M})$  and  $\mathcal{H}^b_{\mathcal{E}-ac}(\mathcal{E})$  of  $\mathcal{H}^b(\mathcal{E})$ .

**Proposition 3.** The following diagram is commutative with exact rows and columns:



Proof. The column on the right side has been shown to be exact in [18] and [20]. The second row is exact by lemma 2. The subcategories  $\mathcal{H}^b_{\mathcal{E}-ac}(\mathcal{M})$  and  $\mathcal{H}^b(\mathcal{P})$  of  $\mathcal{H}^b(\mathcal{M})$  are left and right orthogonal to each other. This implies that the induced functors  $i_{\mathcal{M}}$  and  $i_{\mathcal{P}}$  are fully faithful and that taking the quotient of  $\mathcal{H}^b(\mathcal{M})$  by those two subcategories either in one order or in the other gives the same category. Therefore the first row is exact.

2.2. Invariance under mutation. A natural question is then to which extent the diagram (D) depends on the choice of a particular cluster—tilting subcategory. Let thus  $\mathcal{T}'$  be another cluster—tilting subcategory of  $\mathcal{C}$ , and let  $\mathcal{M}'$  be its preimage in  $\mathcal{E}$ . Let  $\operatorname{Mod} \mathcal{M}$  (resp.  $\operatorname{Mod} \mathcal{M}'$ ) be the category of  $\mathcal{M}$ -modules (resp.  $\mathcal{M}'$ -modules), i.e. of k-linear contravariant functors from  $\mathcal{M}$  (resp.  $\mathcal{M}'$ ) to the category of k-vector spaces.

Let X be the  $\mathcal{M}$ - $\mathcal{M}'$ -bimodule which sends the pair of objects (M, M') to the k-vector space  $\mathcal{E}(M, M')$ . The bimodule X induces a functor  $F = ? \otimes_{\mathcal{M}'} X : \operatorname{Mod} \mathcal{M}' \longrightarrow \operatorname{Mod} \mathcal{M}$  denoted by  $T_X$  in [15, section 6.1].

Recall that the perfect derived category per  $\mathcal{M}$  is the full triangulated subcategory of the derived category  $\mathcal{D} \operatorname{Mod} \mathcal{M}$  generated by the finitely generated projective  $\mathcal{M}$ -modules.

**Proposition 4.** The left derived functor

$$\mathbb{L}F: \mathcal{D} \operatorname{Mod} \mathcal{M}' \longrightarrow \mathcal{D} \operatorname{Mod} \mathcal{M}$$

is an equivalence of categories.

*Proof.* Recall that if X is an object in a category  $\mathcal{X}$ , we denote by  $X^{\hat{}}$  the functor  $\mathcal{X}(?,X)$  represented by X. By [15, 6.1], it is enough to check the following three properties:

- 1. For all objects M', M'' of  $\mathcal{M}$ , the group  $\operatorname{Hom}_{\mathcal{D}\operatorname{Mod}\mathcal{M}}(\mathbb{L}FM'', \mathbb{L}FM'''[n])$  vanishes for  $n \neq 0$  and identifies with  $\operatorname{Hom}_{\mathcal{M}'}(M', M'')$  for n = 0;
- 2. for any object M' of  $\mathcal{M}'$ , the complex  $\mathbb{L}FM'$  belongs to per  $\mathcal{M}$ ;
- 3. the set  $\{\mathbb{L}FM'$ ,  $M' \in \mathcal{M}'\}$  generates  $\mathcal{D} \operatorname{Mod} \mathcal{M}$  as a triangulated category with infinite sums.

Let M' be an object of  $\mathcal{M}'$ , and let  $M_1 > \longrightarrow M_0 \longrightarrow M'$  be a conflation in  $\mathcal{E}$ , with  $M_0$  and  $M_1$  in  $\mathcal{M}$ , and whose deflation is a right  $\mathcal{M}$ -approximation (c.f. section 4 of [17]). The surjectivity of the map  $M_0 \cap \longrightarrow \mathcal{E}(?, M')|_{\mathcal{M}}$  implies that the complex  $P = (\cdots \to 0 \to M_1 \cap M_0 \to 0 \to \cdots)$  is quasi-isomorphic to  $\mathbb{L}FM' \cap = \mathcal{E}(?, M')|_{\mathcal{M}}$ . Therefore  $\mathbb{L}FM' \cap B$  belongs to the subcategory per  $\mathcal{M}$  of  $\mathcal{D}$  Mod  $\mathcal{M}$ . Moreover, we have, for any  $n \in \mathbb{Z}$  and any  $M'' \in \mathcal{M}'$ , the equality

$$\operatorname{Hom}_{\mathcal{D}\operatorname{Mod}\mathcal{M}}(\mathbb{L}FM'\hat{},\mathbb{L}FM''\hat{}[n]) = \operatorname{Hom}_{\mathcal{H}^{\mathsf{b}}\operatorname{Mod}\mathcal{M}}(P,\mathcal{E}(?,M'')|_{\mathcal{M}}[n])$$

where the right-hand side vanishes for  $n \neq 0, 1$ . In case n = 1 it also vanishes, since  $\operatorname{Ext}^1_{\mathcal{E}}(M', M'')$  vanishes. Now,

$$\operatorname{Hom}_{\mathcal{H}^{b} \operatorname{Mod} \mathcal{M}} (P, \mathcal{E}(?, M'')|_{\mathcal{M}}) \simeq \operatorname{Ker} (\mathcal{E}(M_{0}, M'') \to \mathcal{E}(M_{1}, M''))$$
  
  $\simeq \mathcal{E}(M', M'').$ 

It only remains to be shown that the set  $R = \{\mathbb{L}FM', M' \in \mathcal{M}'\}$  generates  $\mathcal{D} \operatorname{Mod} \mathcal{M}$ . Denote by  $\mathcal{R}$  the full triangulated subcategory with infinite sums of  $\mathcal{D} \operatorname{Mod} \mathcal{M}$  generated by the set R. The set  $\{M', M \in \mathcal{M}\}$  generates  $\mathcal{D} \operatorname{Mod} \mathcal{M}$  as a triangulated category with infinite sums. Thus it is enough to show that, for any object M of  $\mathcal{M}$ , the complex M concentrated in degree 0 belongs to the subcategory  $\mathcal{R}$ . Let M be an object of  $\mathcal{M}$ , and let  $M > \stackrel{i}{\longrightarrow} M'_0 \stackrel{p}{\longrightarrow} M'_1$  be a conflation of  $\mathcal{E}$  with  $M'_0$  and  $M'_1$  in  $\mathcal{M}'$ . Since  $\operatorname{Ext}^1_{\mathcal{E}}(?, M)|_{\mathcal{M}}$  vanishes, we have a short exact sequence of  $\mathcal{M}$ -modules

$$0 \longrightarrow \mathcal{E}(?, M)|_{\mathcal{M}} \longrightarrow \mathcal{E}(?, M'_0)|_{\mathcal{M}} \longrightarrow \mathcal{E}(?, M'_1)|_{\mathcal{M}} \longrightarrow 0,$$

which yields the triangle

$$M^{\hat{}} \longrightarrow \mathbb{L}FM_0^{\hat{}} \longrightarrow \mathbb{L}FM_1^{\hat{}} \longrightarrow \Sigma M^{\hat{}}.$$

As a corollary of proposition 4, up to equivalence the diagram (D) does not depend on the choice of a cluster—tilting subcategory. To be more precise: Let G be the functor which sends an object X in the category  $\mathcal{H}^b(\mathcal{M}')$  to a representative of  $(\mathbb{L}F)X^{\hat{}}$  in  $\mathcal{H}^b(\mathcal{M})$ , and a morphism in  $\mathcal{H}^b(\mathcal{M}')$  to the induced one in  $\mathcal{H}^b(\mathcal{M})$ .

Corollary 5. The following diagram is commutative



and the functor G is an equivalence of categories.

We denote by  $\operatorname{per}_{\underline{\mathcal{M}}} \mathcal{M}$  the full subcategory of  $\operatorname{per} \mathcal{M}$  whose objects are the complexes with homologies in  $\operatorname{mod} \underline{\mathcal{M}}$ . The following lemma will allow us to compute the Grothendieck group of  $\operatorname{per}_{\mathcal{M}} \mathcal{M}$  in section 2.3:

**Lemma 6.** The canonical t-structure on  $\mathcal{D} \operatorname{Mod} \mathcal{M}$  restricts to a t-structure on  $\operatorname{per}_{\mathcal{M}} \mathcal{M}$ , whose heart is  $\operatorname{mod} \underline{\mathcal{M}}$ .

*Proof.* By [13], it is enough to show that for any object  $M^{\bullet}$  of  $\operatorname{per}_{\underline{\mathcal{M}}} \mathcal{M}$ , its truncation  $\tau_{\leq 0} M^{\bullet}$  in  $\mathcal{D}\operatorname{Mod} \mathcal{M}$  belongs to  $\operatorname{per}_{\underline{\mathcal{M}}} \mathcal{M}$ . Since  $M^{\bullet}$  is in  $\operatorname{per}_{\underline{\mathcal{M}}} \mathcal{M}$ ,  $\tau_{\leq 0} M^{\bullet}$  is bounded, and is thus formed from the complexes  $\operatorname{H}^{i}(M^{\bullet})$  concentrated in one degree by taking iterated extensions. But, for any i, the  $\mathcal{M}$ -module  $\operatorname{H}^{i}(M^{\bullet})$  actually is an  $\underline{\mathcal{M}}$ -module. Therefore, by [17] (see section 1.2), it is perfect as an  $\mathcal{M}$ -module and it lies in  $\operatorname{per}_{\mathcal{M}} \mathcal{M}$ .

The next lemma already appears in [21]. For the convenience of the reader, we include a proof.

**Lemma 7.** The Yoneda equivalence of triangulated categories  $\mathcal{H}^b(\mathcal{M}) \longrightarrow \operatorname{per} \mathcal{M}$  induces a triangle equivalence  $\mathcal{H}^b_{\mathcal{E}-ac}(\mathcal{M}) \longrightarrow \operatorname{per}_{\underline{\mathcal{M}}} \mathcal{M}$ .

*Proof.* We first show that the cohomology groups of an  $\mathcal{E}$ -acyclic bounded complex M vanish on  $\mathcal{P}$ . Let P be a projective object in  $\mathcal{E}$  and let E be a kernel in  $\mathcal{E}$  of the map  $M^n \longrightarrow M^{n+1}$ . Since M is  $\mathcal{E}$ -acyclic, such an object exists, and moreover, it is an image of the map  $M^{n-1} \longrightarrow M^n$ . Any map from P to  $M^n$  whose composition with  $M^n \to M^{n+1}$  vanishes factors through the kernel  $E \rightarrowtail M^n$ . Since P is projective, this factorization factors through the deflation  $M^{n-1} \to E$ .



Therefore, we have  $H^n(M)(P) = 0$  for all projective objects P, and  $H^n(M)$  belongs to  $\operatorname{mod} \underline{\mathcal{M}}$ . Thus the Yoneda functor induces a fully faithful functor from  $\mathcal{H}^b_{\mathcal{E}-ac}(\mathcal{M})$  to  $\operatorname{per}_{\underline{\mathcal{M}}} \mathcal{M}$ . To prove that it is dense, it is enough to prove that any object of the heart  $\operatorname{mod} \underline{\mathcal{M}}$  of the t-structure on  $\operatorname{per}_{\underline{\mathcal{M}}} \mathcal{M}$  is in its essential image.

But this was proved in [17, section 4] (see section  $\overline{1.2}$ ).

Proposition 8. There is a triangle equivalence of categories

$$\operatorname{per}_{\mathcal{M}} \mathcal{M} \xrightarrow{\cong} \operatorname{per}_{\mathcal{M}'} \mathcal{M}'$$

*Proof.* Since the categories  $\mathcal{H}^b(\mathcal{P})$  and  $\mathcal{H}^b_{\mathcal{E}-ac}(\mathcal{M})$  are left-right orthogonal in  $\mathcal{H}^b(\mathcal{M})$ , this is immediate from corollary 5 and lemma 7.

2.3. **Grothendieck groups.** For a triangulated (resp. additive, resp. abelian) category  $\mathcal{A}$ , we denote by  $K_0^{\mathrm{tri}}(\mathcal{A})$  or simply  $K_0(\mathcal{A})$  (resp.  $K_0^{\mathrm{add}}(\mathcal{A})$ , resp.  $K_0^{\mathrm{ab}}(\mathcal{A})$ ) its Grothendieck group (with respect to the mentioned structure of the category). For an object A in A, we also denote by [A] its class in the Grothendieck group of A.

The short exact sequence of triangulated categories

$$0 \longrightarrow \mathcal{H}^{b}_{\mathcal{E}-ac}\left(\mathcal{M}\right) \longrightarrow \mathcal{H}^{b}\left(\mathcal{M}\right)/\mathcal{H}^{b}\left(\mathcal{P}\right) \longrightarrow \underline{\mathcal{E}} \longrightarrow 0$$

given by proposition 3 induces an exact sequence in the Grothendieck groups

$$(*) \qquad \mathrm{K}_{0}\left(\mathcal{H}^{b}_{\mathcal{E}-ac}\left(\mathcal{M}\right)\right) \longrightarrow \mathrm{K}_{0}\left(\mathcal{H}^{b}\left(\mathcal{M}\right)/\mathcal{H}^{b}\left(\mathcal{P}\right)\right) \longrightarrow \mathrm{K}_{0}\left(\underline{\mathcal{E}}\right) \longrightarrow 0.$$

Lemma 9. The exact sequence (\*) is isomorphic to an exact sequence

$$(**) \quad \mathrm{K}_0^{ab} \left( \bmod \underline{\mathcal{M}} \right) \stackrel{\varphi}{\longrightarrow} \mathrm{K}_0^{add} \left( \underline{\mathcal{M}} \right) \longrightarrow \mathrm{K}_0^{tri} \left( \underline{\mathcal{E}} \right) \longrightarrow 0.$$

Proof. First, note that, by [21], see also lemma 7, we have an isomorphism between the Grothendieck groups  $K_0\left(\mathcal{H}_{\mathcal{E}-ac}^b(\mathcal{M})\right)$  and  $K_0\left(\operatorname{per}_{\underline{\mathcal{M}}}\mathcal{M}\right)$ . The t-structure on  $\operatorname{per}_{\underline{\mathcal{M}}}\mathcal{M}$  whose heart is  $\operatorname{mod}\underline{\mathcal{M}}$ , see lemma 6, in turn yields an isomorphism between the Grothendieck groups  $K_0^{\operatorname{tri}}\left(\operatorname{per}_{\underline{\mathcal{M}}}\mathcal{M}\right)$  and  $K_0^{\operatorname{ab}}\left(\operatorname{mod}\underline{\mathcal{M}}\right)$ . Next, we show that the canonical additive functor  $\underline{\mathcal{M}} \stackrel{\alpha}{\longrightarrow} \mathcal{H}^b\left(\mathcal{M}\right)/\mathcal{H}^b\left(\mathcal{P}\right)$  induces an isomorphism between the Grothendieck groups  $K_0^{\operatorname{add}}\left(\underline{\mathcal{M}}\right)$  and  $K_0^{\operatorname{tri}}\left(\mathcal{H}^b\left(\mathcal{M}\right)/\mathcal{H}^b\left(\mathcal{P}\right)\right)$ . For this, let us consider the canonical additive functor  $\underline{\mathcal{M}} \stackrel{\beta}{\longrightarrow} \mathcal{H}^b\left(\underline{\mathcal{M}}\right)$  and the triangle functor  $\mathcal{H}^b\left(\mathcal{M}\right) \stackrel{\gamma}{\longrightarrow} \mathcal{H}^b\left(\underline{\mathcal{M}}\right)$ . The following diagram describes the situation:

$$\mathcal{H}^{b}\left(\underline{\mathcal{M}}\right) \xleftarrow{\gamma} \mathcal{H}^{b}\left(\mathcal{M}\right)$$

$$\downarrow^{\beta} \qquad \qquad \downarrow^{\gamma} \qquad \downarrow^{\gamma}$$

$$\underline{\mathcal{M}} \xrightarrow{\alpha} \mathcal{H}^{b}\left(\mathcal{M}\right) / \mathcal{H}^{b}\left(\mathcal{P}\right)$$

The functor  $\gamma$  vanishes on the full subcategory  $\mathcal{H}^b(\mathcal{P})$ , thus inducing a triangle functor, still denoted by  $\gamma$ , from  $\mathcal{H}^b(\mathcal{M})/\mathcal{H}^b(\mathcal{P})$  to  $\mathcal{H}^b(\underline{\mathcal{M}})$ . Furthermore, the functor  $\beta$  induces an isomorphism at the level of Grothendieck groups, whose inverse  $K_0(\beta)^{-1}$  is given by

$$\mathbf{K}_{0}^{\mathrm{tri}}\left(\mathcal{H}^{b}\left(\underline{\mathcal{M}}\right)\right) \longrightarrow \mathbf{K}_{0}^{\mathrm{add}}\left(\underline{\mathcal{M}}\right)$$

$$[M] \longmapsto \sum_{i \in \mathbb{Z}} (-1)^{i} [M^{i}].$$

As the group  $K_0^{tri}\left(\mathcal{H}^b\left(\mathcal{M}\right)/\mathcal{H}^b\left(\mathcal{P}\right)\right)$  is generated by objects concentrated in degree 0, it is straightforward to check that the morphisms  $K_0(\alpha)$  and  $K_0(\beta)^{-1}K_0(\gamma)$  are inverse to each other.

As a consequence of the exact sequence (\*\*), we have an isomorphism between  $K_0^{\text{tri}}(\underline{\mathcal{E}})$  and  $K_0^{\text{add}}(\underline{\mathcal{M}})/\operatorname{Im}\varphi$ . In order to compute  $K_0^{\text{tri}}(\underline{\mathcal{E}})$ , the map  $\varphi$  has to be made explicit. We first recall some results from Iyama–Yoshino [12] which generalize results from [4]: For any indecomposable M of  $\underline{\mathcal{M}}$  not in  $\mathcal{P}$ , there exists  $M^*$  unique up to isomorphism such that  $(M, M^*)$  is an exchange pair. This means that M and  $M^*$  are not isomorphic and that the full additive subcategory of  $\mathcal{C}$  generated

by all the indecomposable objects of  $\underline{\mathcal{M}}$  but those isomorphic to M, and by the indecomposable objects isomorphic to  $M^*$  is again a cluster-tilting subcategory. Moreover, dim  $\underline{\mathcal{E}}(M, \Sigma M^*) = 1$ . We can thus fix two (non-split) exchange triangles

$$M^* \to B_M \to M \to \Sigma M^*$$
 and  $M \to B_{M^*} \to M^* \to \Sigma M$ .

We may now state the following:

**Theorem 10.** The Grothendieck group of the triangulated category  $\underline{\mathcal{E}}$  is the quotient of that of the additive subcategory  $\underline{\mathcal{M}}$  by all relations  $[B_{M^*}] - [B_M]$ :

$$K_0^{tri}\left(\underline{\mathcal{E}}\right) \simeq K_0^{add}\left(\underline{\mathcal{M}}\right)/([B_{M^*}] - [B_M])_M.$$

Proof. We denote by  $S_M$  the simple  $\underline{\mathcal{M}}$ -module associated to the indecomposable object M. This means that  $S_M(M')$  vanishes for all indecomposable objects M' in  $\underline{\mathcal{M}}$  not isomorphic to M and that  $S_M(M)$  is isomorphic to k. The abelian group  $\mathrm{K}_0^{\mathrm{ab}}$  (mod  $\underline{\mathcal{M}}$ ) is generated by all classes  $[S_M]$ . In view of lemma 9, it is sufficient to prove that the image of the class  $[S_M]$  under  $\varphi$  is  $[B_{M^*}] - [B_M]$ . First note that the  $\mathcal{M}$ -module  $\mathrm{Ext}_{\mathcal{E}}^1(?,M^*)|_{\mathcal{M}}$  vanishes on the projectives ; it can thus be viewed as an  $\underline{\mathcal{M}}$ -module, and as such, is isomorphic to  $S_M$ . After replacing  $B_M$  and  $B_{M'}$  by isomorphic objects of  $\underline{\mathcal{E}}$ , we can assume that the exchange triangles  $M^* \to B_M \to M \to \Sigma M^*$  and  $M \to B_{M^*} \to M^* \to \Sigma M$  come from conflations  $M^* \to B_M \to M$  and  $M \to B_{M^*} \to M^*$ . The spliced complex

$$(\cdots \to 0 \to M \to B_{M^*} \to B_M \to M \to 0 \to \cdots)$$

denoted by  $C^{\bullet}$ , is then an  $\mathcal{E}$ -acyclic complex, and it is the image of  $S_M$  under the functor  $\operatorname{mod} \underline{\mathcal{M}} \subset \operatorname{per}_{\underline{\mathcal{M}}} \mathcal{M} \simeq \mathcal{H}^b_{\mathcal{E}-ac}(\mathcal{M})$ . Indeed, we have two long exact sequences induced by the conflations above:

$$0 \to \mathcal{M}(?, M) \to \mathcal{M}(?, B_{M^*}) \to \mathcal{E}(?, M^*)|_{\mathcal{M}} \to \operatorname{Ext}^1_{\mathcal{E}}(?, M)|_{\mathcal{M}} = 0$$
 and

$$0 \to \mathcal{E}(?, M^*)|_{\mathcal{M}} \to \mathcal{M}(?, B_M) \to \mathcal{M}(?, M) \to \operatorname{Ext}^1_{\mathcal{E}}(?, M^*)|_{\mathcal{M}} \to \operatorname{Ext}^1_{\mathcal{E}}(?, B_M)|_{\mathcal{M}}.$$

Since  $B_M$  belongs to  $\mathcal{M}$ , the functor  $\operatorname{Ext}^1_{\mathcal{E}}(?, B_M)$  vanishes on  $\mathcal{M}$ , and the complex:

$$(C^{\hat{}}): (\cdots \to 0 \to M^{\hat{}} \to (B_{M^*})^{\hat{}} \to (B_M)^{\hat{}} \to M^{\hat{}} \to 0 \to \cdots)$$

is quasi-isomorphic to  $S_M$ .

Now, in the notations of the proof of lemma 9,  $\varphi[S_M]$  is the image of the class of the  $\mathcal{E}$ -acyclic complex complex  $C^{\bullet}$  under the morphism  $K_0(\beta)^{-1} K_0(\gamma)$ . This is  $[M] - [B_M] + [B_{M^*}] - [M]$  which equals  $[B_{M^*}] - [B_M]$  as claimed.

## 3. The generalized mutation rule

Let  $\mathcal{T}$  and  $\mathcal{T}'$  be two cluster—tilting subcategories of  $\mathcal{C}$ . Let Q and Q' be the quivers obtained from their Auslander—Reiten quivers by removing all loops and oriented 2-cycles.

Our aim, in this section, is to give a rule relating Q' to Q, and to prove that it generalizes the Fomin–Zelevinsky mutation rule. Remark:

- . Assume that  $\mathcal{C}$  has cluster—tilting objects. Then it is proved in [3, Theorem I.1.6], without assuming that  $\mathcal{C}$  is algebraic, that the Auslander—Reiten quivers of two cluster—tilting objects having all but one indecomposable direct summands in common (up to isomorphism) are related by the Fomin—Zelevinsky mutation rule.
- . To prove that the generalized mutation rule actually generalizes the Fomin–Zelevinsky mutation rule, we use the ideas of section 7 of [9].

YANN PALU

3.1. The rule. As in section 2, we fix a cluster-tilting subcategory  $\mathcal{T}$  of  $\mathcal{C}$ , and write  $\mathcal{M}$  for its preimage in  $\mathcal{E}$ , so that  $\mathcal{T} = \underline{\mathcal{M}}$ . Define Q to be the quiver obtained from the Auslander-Reiten quiver of  $\underline{\mathcal{M}}$  by deleting its loops and its oriented 2-cycles. Its vertex corresponding to an indecomposable object L will also be labeled by L. We denote by  $a_{LN}$  the number of arrows from vertex L to vertex N in the quiver Q. Let  $B_{\mathcal{M}}$  be the matrix whose entries are given by  $b_{LN} = a_{LN} - a_{NL}$ .

Let  $R_{\mathcal{M}}$  be the matrix of  $\langle \ , \ \rangle_a : \mathrm{K}_0(\mathrm{mod}\,\underline{\mathcal{M}}) \times \mathrm{K}_0(\mathrm{mod}\,\underline{\mathcal{M}}) \longrightarrow \mathbb{Z}$  in the basis given by the classes of the simple modules.

**Lemma 11.** The matrices  $R_{\mathcal{M}}$  and  $B_{\mathcal{M}}$  are equal:  $R_{\mathcal{M}} = B_{\mathcal{M}}$ .

*Proof.* Let L and N be two non-projective indecomposable objects in  $\mathcal{M}$ . Then  $\dim \operatorname{Hom}(S_L, S_N) - \dim \operatorname{Hom}(S_N, S_L) = 0$  and we have:

$$\langle [S_L], [S_N] \rangle_a = \dim \operatorname{Ext}^1(S_N, S_L) - \dim \operatorname{Ext}^1(S_L, S_N) = b_{L,N}.$$

Let  $\mathcal{T}'$  be another cluster-tilting subcategory of  $\mathcal{C}$ , and let  $\mathcal{M}'$  be its preimage in the Frobenius category  $\mathcal{E}$ . Let  $(M_i')_{i\in I}$  (resp.  $(M_j)_{j\in J}$ ) be representatives for the isoclasses of non-projective indecomposable objects in  $\mathcal{M}'$  (resp.  $\mathcal{M}$ ). The equivalence of categories  $\operatorname{per}_{\underline{\mathcal{M}}} \mathcal{M} \xrightarrow{\sim} \operatorname{per}_{\underline{\mathcal{M}'}} \mathcal{M}'$  of proposition 8 induces an isomorphism between the Grothendieck groups  $K_0(\operatorname{mod} \underline{\mathcal{M}})$  and  $K_0(\operatorname{mod} \underline{\mathcal{M}'})$  whose matrix, in the bases given by the classes of the simple modules, is denoted by S. The equivalence of categories  $\mathcal{D}\operatorname{Mod} \mathcal{M} \xrightarrow{\sim} \mathcal{D}\operatorname{Mod} \mathcal{M}'$  restricts to the identity on  $\mathcal{H}^b(\mathcal{P})$ , so that it induces an equivalence  $\operatorname{per} \mathcal{M}/\operatorname{per} \mathcal{P} \xrightarrow{\sim} \operatorname{per} \mathcal{M}'/\operatorname{per} \mathcal{P}$ . Let T be the matrix of the induced isomorphism from  $K_0(\operatorname{proj} \mathcal{M})/K_0(\operatorname{proj} \mathcal{P})$  to  $K_0(\operatorname{proj} \mathcal{M}')/K_0(\operatorname{proj} \mathcal{P})$ , in the bases given by the classes  $[\mathcal{M}(?, M_j)]$ ,  $j \in J$ , and  $[\mathcal{M}'(?, M_i')]$ ,  $i \in I$ . The matrix T is much easier to compute than the matrix S. Its entries  $t_{ij}$  are given by the approximation triangles of Keller and Reiten in the following way: For all j, there exists a triangle of the form

$$\Sigma^{-1}M_j \longrightarrow \bigoplus_i \beta_{ij}M'_i \longrightarrow \bigoplus_i \alpha_{ij}M'_i \longrightarrow M_j.$$

Then, we have:

**Theorem 12.** a) (Generalized mutation rule) The following equalities hold:

$$t_{ij} = \alpha_{ij} - \beta_{ij}$$

and

$$B_{\mathcal{M}'} = TB_{\mathcal{M}}T^{\mathrm{t}}.$$

- b) The category C has a cluster-tilting object if and only if all its cluster-tilting subcategories have a finite number of pairwise non-isomorphic indecomposable objects.
- c) All cluster-tilting objects of C have the same number of indecomposable direct summands (up to isomorphism).

Note that point c) was shown in [11, 5.3.3(1)] (see also [3, I.1.8]) and, in a more general context, in [7]. Note also that, for the generalized mutation rule to hold, the cluster—tilting subcategories do not need to be related by a sequence of mutation.

*Proof.* Assertions b) and c) are consequences of the existence of an isomorphism between the Grothendieck groups  $K_0 \pmod{\underline{\mathcal{M}}}$  and  $K_0 \pmod{\underline{\mathcal{M}}'}$ . Let us prove the equalities a). Recall from [19, section 3.3], that the antisymmetric bilinear form

 $\langle \ , \ \rangle_a$  on mod  $\underline{\mathcal{M}}$  is induced by the usual Euler form  $\langle \ , \ \rangle_E$  on  $\operatorname{per}_{\underline{\mathcal{M}}} \mathcal{M}$ . The following commutative diagram

$$\operatorname{per}_{\underline{\mathcal{M}}} \mathcal{M} \times \operatorname{per}_{\underline{\mathcal{M}}} \mathcal{M} \xrightarrow{\simeq} \operatorname{per}_{\underline{\mathcal{M}'}} \mathcal{M'} \times \operatorname{per}_{\underline{\mathcal{M}'}} \mathcal{M'}$$

thus induces a commutative diagram

$$\mathrm{K}_0(\mathrm{mod}\,\underline{\mathcal{M}})\times\mathrm{K}_0(\mathrm{mod}\,\underline{\mathcal{M}})\xrightarrow{S\times S}\mathrm{K}_0(\mathrm{mod}\,\underline{\mathcal{M}}')\times\mathrm{K}_0(\mathrm{mod}\,\underline{\mathcal{M}}')$$

This proves the equality  $R_{\mathcal{M}} = S^{t} R_{\mathcal{M}'} S$ , or, by lemma 11,

$$(1) B_{\mathcal{M}} = S^{t} B_{\mathcal{M}'} S.$$

Any object of  $\operatorname{per}_{\underline{\mathcal{M}}} \mathcal{M}$  becomes an object of  $\operatorname{per} \mathcal{M}/\operatorname{per} \mathcal{P}$  through the composition  $\operatorname{per}_{\underline{\mathcal{M}}} \mathcal{M} \hookrightarrow \operatorname{per} \mathcal{M} \twoheadrightarrow \operatorname{per} \mathcal{M}/\operatorname{per} \mathcal{P}$ . Let M and N be two non-projective indecomposable objects in  $\mathcal{M}$ . Since  $S_N$  vanishes on  $\mathcal{P}$ , we have

$$\operatorname{Hom}_{\operatorname{per} \mathcal{M}/\operatorname{per} \mathcal{P}} \left( \mathcal{M}(?, M), S_N \right) = \operatorname{Hom}_{\operatorname{per} \mathcal{M}} \left( \mathcal{M}(?, M), S_N \right)$$
$$= \operatorname{Hom}_{\operatorname{Mod} \mathcal{M}} \left( \mathcal{M}(?, M), S_N \right)$$
$$= S_N(M).$$

Thus dim Hom<sub>per  $\mathcal{M}/\text{per }\mathcal{P}$ </sub>  $(\mathcal{M}(?,M),S_N)=\delta_{MN}$ , and the commutative diagram

$$\operatorname{per} \mathcal{M}/\operatorname{per} \mathcal{P} \times \operatorname{per} \mathcal{M}/\operatorname{per} \mathcal{P} \xrightarrow{\simeq} \operatorname{per} \mathcal{M}'/\operatorname{per} \mathcal{P} \times \operatorname{per} \mathcal{M}'/\operatorname{per} \mathcal{P}$$

$$\operatorname{per} k \xrightarrow{R \operatorname{\mathcal{H}om}},$$

induces a commutative diagram

$$K_0(\operatorname{proj} \mathcal{M})/\operatorname{K}_0(\operatorname{proj} \mathcal{P}) \times K_0(\operatorname{mod} \underline{\mathcal{M}}) \xrightarrow{T \times S} K_0(\operatorname{proj} \mathcal{M}')/\operatorname{K}_0(\operatorname{proj} \mathcal{P}) \times K_0(\operatorname{mod} \underline{\mathcal{M}}')$$

$$Id \qquad \qquad Id \qquad \qquad .$$

In other words, the matrix S is the inverse of the transpose of T:

(2) 
$$S = T^{-t}$$

Equalities (1) and (2) imply what was claimed, that is

$$B_{\mathcal{M}'} = TB_{\mathcal{M}}T^t$$
.

Let us compute the matrix T: Let M be indecomposable non-projective in  $\mathcal{M}$ , and let

$$\Sigma^{-1}M \longrightarrow M_1' \longrightarrow M_0' \longrightarrow M$$

be a Keller–Reiten approximation triangle of M with respect to  $\mathcal{M}'$ , which we may assume to come from a conflation in  $\mathcal{E}$ . This conflation yields a projective resolution

$$0 \longrightarrow (M_1') \widehat{\ } \longrightarrow (M_0') \widehat{\ } \longrightarrow \mathcal{E}(?,M)|_{\mathcal{M}'} \longrightarrow \operatorname{Ext}_{\mathcal{E}}^1(?,M_1')|_{\mathcal{M}'} = 0.$$

so that T sends the class of M to  $[(M'_0)] - [(M'_1)]$ . Therefore,  $t_{ij}$  equals  $\alpha_{ij} - \beta_{ij}$ .  $\square$ 

### 3.2. Examples.

3.2.1. As a first example, let C be the cluster category associated with the quiver of type  $A_4$ :  $1 \to 2 \to 3 \to 4$ . Its Auslander–Reiten quiver is the Moebius strip:



Let  $M=M_1\oplus M_2\oplus M_3\oplus M_4$ , where the indecomposable  $M_i$  corresponds to the vertex labelled by i in the picture. Let also  $M'=M'_1\oplus M'_2\oplus M'_3\oplus M'_4$ , where  $M'_1=M_1$ , and where the indecomposable  $M'_i$  corresponds to the vertex labelled by i' if  $i\neq 1$ . One easily computes the following Keller–Reiten approximation triangles:

so that the matrix T is given by:

$$T = \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & -1 \end{array}\right).$$

We also have

$$B_{M'} = \left(\begin{array}{cccc} 0 & -1 & 1 & 0 \\ 1 & 0 & -1 & 0 \\ -1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

Let maple compute

$$T^{-1}B_{M'}T^{-t} = \left( egin{array}{cccc} 0 & 1 & 0 & 0 \ -1 & 0 & -1 & 1 \ 0 & 1 & 0 & -1 \ 0 & -1 & 1 & 0 \end{array} 
ight),$$

which is  $B_M$ .

3.2.2. Let us look at a more interesting example, where one cannot easily read the quiver of M' from the Auslander–Reiten quiver of C. Let C be the cluster category associated with the quiver Q:



For i = 0, 1, 2, let  $M_i$  be (the image in  $\mathcal{C}$  of) the projective indecomposable (right) kQ-module associated with vertex i. Their dimension vectors are respectively [1,0,0],[2,1,0] and [2,0,1]. Let M be the direct sum  $M_0 \oplus M_1 \oplus M_2$ . Let M' be the direct sum  $M'_0 \oplus M'_1 \oplus M'_2$ , where  $M'_0, M'_1$  and  $M'_2$  are (the images in  $\mathcal{C}$  of) the indecomposable regular kQ-modules with dimension vectors [1,2,0],[0,1,0]

and [2,4,1] respectively. As one can check, using [14], M and M' are two cluster—tilting objects of C. To compute Keller–Reiten's approximation triangles, amounts to computing projective resolutions in mod kQ, viewed as mod  $\operatorname{End}_{\mathcal{C}}(M)$ . One easily computes these projective resolutions, by considering dimension vectors:

$$0 \longrightarrow 8M_0 \longrightarrow M_2 \oplus 4M_1 \longrightarrow M_2' \longrightarrow 0,$$

$$0 \longrightarrow 2M_0 \longrightarrow M_1 \longrightarrow M_1' \longrightarrow 0$$
 and

$$0 \longrightarrow 3M_0 \longrightarrow 2M_1 \longrightarrow M_0' \longrightarrow 0.$$

By applying the generalized mutation rule, one gets the following quiver



which is therefore the quiver of  $\operatorname{End}_{\mathcal{C}}(M')$  since by [5], there are no loops or 2-cycles in the quiver of the endomorphism algebra of a cluster—tilting object in a cluster category.

3.3. Back to the mutation rule. We assume in this section that the Auslander–Reiten quiver of  $\mathcal{T}$  has no loops nor 2-cycles. Under the notations of section 3.1, let k be in I and let  $(M_k, M'_k)$  be an exchange pair (see section 2.3). We choose  $\underline{\mathcal{M}}'$  to be the cluster-tilting subcategory of  $\mathcal{C}$  obtained from  $\underline{\mathcal{M}}$  by replacing  $M_k$  by  $M'_k$ , so that  $M'_i = M_i$  for all  $i \neq k$ . Recall that T is the matrix of the isomorphism  $K_0(\text{proj }\mathcal{M})/K_0(\text{proj }\mathcal{P}) \longrightarrow K_0(\text{proj }\mathcal{M}')/K_0(\text{proj }\mathcal{P})$ .

**Lemma 13.** Then, the (i, j)-entry of the matrix T is given by

$$t_{ij} = \begin{cases} -\delta_{ij} + \frac{|b_{ij}| + b_{ij}}{2} & if \ j = k \\ \delta_{ij} & else. \end{cases}$$

*Proof.* Let us apply theorem 12 to compute the matrix T. For all  $j \neq k$ , the triangle  $\Sigma^{-1}M_j \to 0 \to M'_j = M_j$  is a Keller–Reiten approximation triangle of  $M_j$  with respect to  $\mathcal{M}'$ . We thus have  $t_{ij} = \delta_{ij}$  for all  $j \neq k$ . There is a triangle unique up to isomorphism

$$M'_k \longrightarrow B_{M_k} \longrightarrow M_k \longrightarrow \Sigma M'_k$$

where  $B_{M_k} \longrightarrow M_k$  is a right  $\mathcal{T} \cap \mathcal{T}'$ -approximation. Since the Auslander–Reiten quiver of  $\mathcal{T}$  has no loops and no 2-cycles,  $B_{M_k}$  is isomorphic to the direct sum:  $\bigoplus_{i \in I} (M'_j)^{a_{ik}}$ . We thus have  $t_{ik} = -\delta_{ik} + a_{ik}$ , which equals  $\frac{|b_{ik}| + b_{ik}}{2}$ . Remark that, by lemma 7.1 of [9], as stated in section 1.1, we have  $T^2 = Id$ , so that  $S = T^t$  and

$$s_{ij} = \begin{cases} -\delta_{ij} + \frac{|b_{ij}| - b_{ij}}{2} & \text{if } i = k\\ \delta_{ij} & \text{else.} \end{cases}$$

**Theorem 14.** The matrix  $B_{\mathcal{M}'}$  is obtained from the matrix  $B_{\mathcal{M}}$  by the Fomin–Zelevinski mutation rule in the direction M.

*Proof.* By [2] (see section 1.1), and by lemma 13, we know that the mutation of the matrix  $B_{\mathcal{M}}$  in direction M is given by  $TB_{\mathcal{M}'}T^{\mathsf{t}}$ , which is  $B_{\mathcal{M}}$ , by the generalized mutation rule (theorem 12).

YANN PALU

3.4. Cluster categories. In [1], the authors study the Grothendieck group of the cluster category  $\mathcal{C}_A$  associated to an algebra A which is either hereditary or canonical, endowed with any admissible triangulated structure. A triangulated structure on the category  $\mathcal{C}_A$  is called admissible in [1] if the projection functor from the bounded derived category  $\mathcal{D}^b \pmod{A}$  to  $\mathcal{C}_A$  is exact (triangulated). They define a Grothendieck group  $\overline{\mathrm{K}}_0(\mathcal{C}_A)$  with respect to the triangles induced by those of  $\mathcal{D}^b \pmod{A}$ , and show that it coincides with the usual Grothendieck group of the cluster category in many cases:

**Theorem 15.** [Barot–Kussin–Lenzing] We have  $K_0(\mathcal{C}_A) = \overline{K}_0(\mathcal{C}_A)$  in each of the following three cases:

- (i) A is canonical with weight sequence  $(p_1, \ldots, p_t)$  having at least one even weight.
- (ii) A is tubular,

14

(iii) A is hereditary of finite representation type.

Under some restriction on the triangulated structure of  $C_A$ , we have the following generalization of case (iii) of theorem 15:

**Theorem 16.** Let A be a finite-dimensional hereditary algebra, and let  $C_A$  be the associated cluster category with its triangulated structure defined in [16]. Then we have  $K_0(C_A) = \overline{K}_0(C_A)$ .

*Proof.* By lemma 3.2 in [1], this theorem is a corollary of the following lemma.  $\Box$ 

**Lemma 17.** Under the assumptions of section 3.1, and if moreover  $\underline{\mathcal{M}}$  has a finite number n of non-isomorphic indecomposable objects, then we have an isomorphism  $K_0(\mathcal{C}) \simeq \mathbb{Z}^n / \operatorname{Im} B_{\mathcal{M}}$ .

*Proof.* This is a restatement of theorem 10.

### REFERENCES

- M. Barot, D. Kussin, and H. Lenzing. The Grothendieck group of a cluster category. J. Pure Appl. Algebra, 212(1):33-46, 2008.
- [2] Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky. Cluster algebras. III. Upper bounds and double Bruhat cells. *Duke Math. J.*, 126(1):1-52, 2005.
- [3] Aslak Bakke Buan, Osamu Iyama, Idun Reiten, and Jeanne Scott. Cluster structures for 2-Calabi-Yau categories and unipotent groups. preprint arXiv: math/0701557[math.RT].
- [4] Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, and Gordana Todorov. Tilting theory and cluster combinatorics. Adv. Math., 204(2):572-618, 2006.
- [5] Aslak Bakke Buan, Robert J. Marsh, and Idun Reiten. Cluster mutation via quiver representations. *Comment. Math. Helv.*, 83(1):143-177, 2008.
- [6] Philippe Caldero and Bernhard Keller. From triangulated categories to cluster algebras. to appear in Invent.Math. arXiv: math/0506018[math.RT].
- [7] Raika Dehy and Bernhard Keller. On the combinatorics of rigid objects in 2-Calabi-Yau categories. to appear in Int. Math. Res. Not. preprint arXiv: math/0709.0882/math.RT].
- [8] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2):497-529 (electronic), 2002.
- [9] Christof Geiß, Bernard Leclerc, and Jan Schröer. Rigid modules over preprojective algebras. Invent. Math., 165(3):589-632, 2006.
- [10] Dieter Happel. Triangulated categories in the representation theory of finite-dimensional algebras, volume 119 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1988.
- [11] Osamu Iyama. Auslander correspondence. Adv. Math., 210(1):51-82, 2007.
- [12] Osamu Iyama and Yuji Yoshino. Mutation in triangulated categories and rigid Cohen-Macaulay modules. to appear in Invent. Math. preprint arXiv: math/0607736[math.RT].
- [13] B. Keller and D. Vossieck. Aisles in derived categories. Bull. Soc. Math. Belg. Sér. A, 40(2):239-253, 1988. Deuxième Contact Franco-Belge en Algèbre (Faulx-les-Tombes, 1987).
- [14] Bernhard Keller. Quiver mutation in Java. Java applet available at B. Keller's home page.

- [15] Bernhard Keller. Deriving DG categories. Ann. Sci. École Norm. Sup. (4), 27(1):63-102, 1994.
- [16] Bernhard Keller. On triangulated orbit categories. Doc. Math., 10:551-581 (electronic), 2005.
- [17] Bernhard Keller and Idun Reiten. Cluster-tilted algebras are Gorenstein and stably Calabi-Yau. Adv. Math., 211(1):123-151, 2007.
- [18] Bernhard Keller and Dieter Vossieck. Sous les catégories dérivées. C. R. Acad. Sci. Paris Sér. I Math., 305(6):225-228, 1987.
- [19] Yann Palu. Cluster characters for triangulated 2-Calabi-Yau categories. To appear in Ann. Inst. Fourier, preprint arXiv: math/0703540v2 [math.RT].
- [20] Jeremy Rickard. Derived equivalences as derived functors. J. London Math. Soc. (2), 43(1):37-48, 1991.
- [21] Gonçalo Tabuada. On the structure of Calabi-Yau categories with a cluster tilting subcategory. Doc. Math., 12:193–213 (electronic), 2007.
- [22] Andrei Zelevinsky. What is ... a cluster algebra? Notices Amer. Math. Soc., 54(11):1494– 1495, 2007.

Université Paris 7 - Denis Diderot, UMR 7586 du CNRS, case 7012, 2 place Jussieu, 75251 Paris Cedex 05, France.

 $E ext{-}mail\ address:$  palu@math.jussieu.fr