Lecture 5: Aggregate Expenditure and Output in Short Run

Instructor: Fei Tan

@econdojo

@BusinessSchool101

Saint Louis University

Course: Macroeconomics 201

Date: September 13, 2025

The Road Ahead

- 1. Aggregate Expenditure Model
- 2. Determinants of Aggregate Expenditure
- 3. Graphing Goods Market Equilibrium
- 4. Multiplier Effect
- 5. Aggregate Demand Curve

Aggregate Expenditure

- Keynes identified four categories of expenditures
 - consumption (C): expenditure by consumers
 - planned investment (I'): expenditure by firms (NO unplanned changes in inventories)
 - government purchases (G): expenditure by gov't, not including transfer payments
 - net exports (NX): net expenditure by foreigners, exports (EX) imports (IM)
- Goods market equilibrium/IS relation

$$Y = C + I' + G + NX$$
aggregate expenditure (AE)

 \Leftrightarrow actual investment = planned investment

Aggregate Expenditure Model

- A macro model that determines **short-run** output
 - relation between AE (total spending/demand) and GDP (total production/supply)
 - key assumptions: constant price level & no growth
- How AE model works
 - ∘ AE > GDP \Rightarrow inventories \downarrow \Rightarrow (Y,N) \uparrow
 - AE < GDP ⇒ inventories ↑ ⇒ (Y,N) ↓
 - AE = GDP ⇒ inventories unchanged ⇒ goods market equilibrium
- GDP fluctuates due to changes in AE

Determinants of Consumption

Consumption function

$$C=C(Y_D)=c_0+c_1Y_D, \qquad Y_D=Y-T$$

- Some notations
 - \circ C = consumption
 - \circ T = net taxes (taxes net of transfers)
 - $\circ \ Y_D$ = disposable income
 - \circ c_1 = marginal propensity to consume (MPC)
 - \circ c_0 = autonomous consumption
- Other determinants: wealth, expected future income, real interest rate (price of consumption today relative to tomorrow), price level

Consumption Function

- Relation b/w consumption and income (source: BEA)
- MPC = slope of consumption function

U.S. Consumption

- Real consumption, 1979-2017 (source: BEA)
- Consumption follows smooth, upward trend

U.S. Investment

- Real investment, 1979-2017 (source: BEA)
- Investment is subject to larger changes than consumption

U.S. Government Purchases

- Real government purchases, 1979-2017 (source: BEA)
- Government purchases grew steadily in most years

U.S. Net Exports

- Real net exports, 1979-2017 (source: BEA)
- Net exports were negative in most years

Income, Consumption, and Saving

Marginal propensity to consume/save

$$rac{\Delta Y_D}{\Delta Y_D} = rac{\Delta C}{\Delta Y_D} + rac{\Delta S}{\Delta Y_D} \quad \Rightarrow \quad 1 = ext{MPC} + ext{MPS}$$

- Some remarks
 - $\circ \; \Delta$ means 'change in'
 - \circ MPC = $\Delta C/\Delta Y_D = \Delta C/\Delta Y$
 - $\circ \Delta S/\Delta Y_D$ = marginal propensity to save (MPS)
- Example: consumption increases from \$8,000 to \$8,600 as national income increases from \$9,000 to \$10,000

$$MPC = \frac{\$8,600 - \$8,000}{\$10,000 - \$9,000} = 0.6, MPS = 1 - MPC = 0.4$$

Solving for Equilibrium Output

Equilibrium output

$$Y = c_0 + c_1(Y - T) + I + G + NX \ \Rightarrow \quad Y = rac{1}{1 - c_1} [c_0 + I + G + NX - c_1 T]$$

- Some remarks
 - $\circ\;$ autonomous spending: $c_0+I+G+NX-c_1T$
 - \circ multiplier: $1/(1-c_1) > 1$ ($0 < c_1 < 1$)

autonomous spending $\uparrow \Rightarrow Y \uparrow$ more than one for one

ullet Example: $C=500+.5Y_D$, $Y_D=Y-T$, T=600, I=300, G=2000, and NX=0

$$Y = 5000$$
, multiplier = 2

Goods Market Equilibrium

 $\bullet~45^{\circ}\text{-line}$ diagram or Keynesian cross

Goods Market Equilibrium (Cont'd)

Graphing Economic Recession

• Paradox of thrift: short-run vs. long-run

Graphing Multiplier Effect

Example: Multiplier Effect

Round	Change in ${\cal I}$	Change in ${\cal C}$	Change in Y
1	\$100	\$0	\$100
2	\$0	\$75	\$75
3	\$0	\$56	\$56
÷	:	:	:

- Example: MPC = 0.75, $I \uparrow$ by \$100
- Calculate multiplier

$$\Delta Y = \$100 imes (1 + ext{MPC} + ext{MPC}^2 + ext{MPC}^3 + \cdots) \ \Rightarrow \quad ext{multiplier} = rac{\Delta Y}{\Delta I} = rac{1}{1 - ext{MPC}} = 4 \quad ext{(why?)}$$

Higher MPC leads to higher multiplier

Effect of Price Level Change

- $P \uparrow (\downarrow) \Rightarrow$ real value of wealth $\downarrow (\uparrow) \Rightarrow C \downarrow (\uparrow)$
- $P \uparrow (\downarrow) \Rightarrow \text{exports} \downarrow (\uparrow), \text{ imports} \uparrow (\downarrow) \Rightarrow NX \downarrow (\uparrow)$
- $P \uparrow (\downarrow)$ with unchanged money supply $\Rightarrow i \uparrow (\downarrow) \Rightarrow I \downarrow (\uparrow)$

18

Aggregate Demand Curve: First Pass

Price Level	Equilibrium Real GDP
97	\$10.2 trillion
100	10.0 trillion
103	9.8 trillion

 Inverse relation between price level and real GDP, known as aggregate demand curve

Readings & Exercises

- Readings
 - HO: chapter 12
 - BJ: lecture 2 (sec. 1, 2, 3) (supplementary)
- Exercises
 - HO: problem 1.4, 2.11, 3.12, 4.9, 4.13, D12.1