MA109 Short Notes

Aditya Byju

Course Professor: Prof. Ravi Raghunathan Ref: Prof's slides
Why are pirates the best at calculus?
because a true pirate never forgets the c

Calculus - 1

September 2021

Contents

Introduction	3
Limits	3
Continuity	5
Differentiation	6
Integration	7
Two variable functions	9
n variable functions	11

Introduction

- A sequence in a set X is a function $a: \mathbb{N} \to X$, that is, a function from the natural numbers to X
- Sequence of partial sums is given by $\{s_n\}_{n=1}^{\infty}$, where s_n is:

$$s_n = \sum_{k=1}^n a_k$$

- Def: A sequence is said to be a monotonically increasing sequence if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$
- Def: A sequence is said to be a monotonically decreasing sequence if $a_n \geq a_{n+1}$ for all $n \in \mathbb{N}$
- A monotonic sequence is one that is either monotonically increasing or monotonically decreasing
- A sequence is called eventually monotonically decreasing when it becomes monotonically increasing or decreasing after some stage

Limits

• **Def:** A sequence a_n tends to a limit l/converges to a limit l, if for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that:

$$|a_n - l| < \epsilon$$

whenever n > N. This is what we mean when we write:

$$\lim_{n \to \infty} a_n = l$$

- If a sequence has a limit it is said to be convergent. A sequence that does not converge is said to diverge, or to be divergent.
- The Sandwich theorems:
 - Theorem 1: If a_n , b_n and c_n are convergent sequences such that $a_n \leq b_n \leq c_n$ for all n, then:

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n \le \lim_{n \to \infty} c_n$$

- Theorem 2: Suppose $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n$. If b_n is a sequence satisfying $a_n \le b_n \le c_n$ for all n, then b_n converges and:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n$$

Note that in the second theorem we do not assume that b_n converges, thus we get the convergence of b_n for free

- **Def:** A sequence a_n is said to be bounded if there is a real number M > 0 such that $|a_n| \leq M$ for every $n \in N$. A sequence that is not bounded is called unbounded.
- Bounded sequences don't necessarily converge for e.g. $a_n = (-1)^n$
- Lemma: Every convergent sequence is bounded
- **Def:** A sequence a_n is said to be bounded above (resp. bounded below) if $a_n < M$ (resp. $a_n > M$) for some $M \in \mathbb{R}$. A sequence that is bounded both above and below is obviously bounded.

- **Theorem:** A monotonically increasing (resp. decreasing) sequence which is bounded above (resp. below) converges
- The limit of a monotonically increasing sequence a_n bounded above is the supremum or least upper bound (lub) of the sequence
- The limit of a monotonically decreasing sequence a_n bounded below is the infimum or greatest lower bound (glb) of the sequence
- A sequence bounded above may not have a maximum but will always have a supremum
- If we change finitely many terms of a sequence it does not affect the convergence and boundedness properties of a sequence. If it is convergent, the limit will not change. If it is bounded, it will remain bounded though the supremum may change.
- **Def:** a sequence a_n in \mathbb{R} is said to be a Cauchy sequence if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that:

$$|a_n - a_m| < \epsilon$$

for all m, n > N

- **Theorem:** every Cauchy sequence in \mathbb{R} converges (to a real number)
- **Theorem:** every convergent sequence (in any set X) is Cauchy
- A set X in which every Cauchy sequence converges (to a limit in X) is called a complete set. The real numbers are complete.
- Two sequence $\{a_n\}$ and $\{b_n\}$ will be related to each other (and we write $a_n \sim b_n$) if:

$$\lim_{n \to \infty} |a_n - b_n| = 0$$

This is an equivalence relation and it is a fact that it partitions the set S into disjoint classes. The set of disjoint classes is denoted by S/\sim . If two sequences converge to the same limit, they are necessarily in the same class. A real number is an equivalence class in S/\sim . So a real number should be thought of as the collection of all rational sequences which converge to it.

- Achilles and the tortoise (Zeno's paradox): in a race, the quickest runner can never overtake the slowest, since the pursuer must first reach the point whence the pursued started, so that the slower must always hold a lead
- **Def:** A function $f:(a,b) \to \mathbb{R}$ is said to tend to (or converge to) a limit l at a point $x_0 \in [a,b]$ if for all $\epsilon > 0$ there exists $\delta > 0$ such that:

$$|f(x) - l| < \epsilon$$

for all $x \in (a, b)$ such that $0 < |x - x_0| < \delta$. In this case, we write:

$$\lim_{x \to x_0} f(x) = l$$

- The limit of a function may exist even if the function is not defined at that point
- The Sandwich theorems (for functions):
 - Theorem 1: As $x \to x_0$, if $f(x) \to l_1$, $g(x) \to l_2$ and $h(x) \to l_3$ for functions f, g, h on some interval (a,b) such that $f(x) \le g(x) \le h(x)$ for all $x \in (a,b)$, then:

$$l_1 \leq l_2 \leq l_3$$

- Theorem 2: Suppose $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = l$ and If g(x) is a function satisfying $f(x) \le g(x) \le h(x)$ for all $x \in (a, b)$, then g(x) converges to a limit as $x \to x_0$ and:

$$\lim_{x \to x_0} g(x) = l$$

Note that in the second theorem we do not assume that g(x) converges, thus we get the convergence of g(x) for free

- **Lemma:** let $f:(a,b) \to \mathbb{R}$ be a function such that $\lim_{x \to c} f(x)$ exists for some $c \in [a,b]$. If $c \in (a,b)$, there exists an (open) interval $I = (c \eta, c + \eta) \subset (a,b)$ such that f(x) is bounded on I. If c = a, then there is an open interval $I_1 = (a, a + \eta)$ such that f(x) is bounded on I_1 . Similarly if c = b, there exists an open interval $I_2 = (b \eta, b)$ such that f(x) is bounded on I_2 .
- **Def:** We say that $f: \mathbb{R} \to \mathbb{R}$ tends to a limit l as $x \to \infty$ (resp. $x \to -\infty$) if for all $\epsilon > 0$ there exists $X \in \mathbb{R}$ such that:

$$|f(x) - l| < \epsilon$$

whenever x > X (resp. x < X), and we write:

$$\lim_{x \to \infty} f(x) = l \quad or \quad \lim_{x \to -\infty} f(x) = l$$

Continuity

- **Def:** if $f:[a,b] \to \mathbb{R}$ is a function and $c \in [a,b]$, then f is said to be continuous at the point c if and only if $\lim_{x \to c} f(x) = f(c)$
- A function f on (a,b) (resp. [a,b]) is said to be continuous if and only if it is continuous at every point c in (a,b) (resp. [a,b]). If f is not continuous at a point c we say that it is discontinuous at c, or that c is a point of discontinuity for f.
- Rational functions are functions of the form R(x) = P(x)/Q(x) where P(x) and Q(x) are polynomials
- **Theorem:** let $f:(a,b) \to (c,d)$ and $g:(c,d) \to (e,f)$ be functions such that f is continuous at x_0 in (a,b) and g is continuous at $f(x_0) = y_0$ in (c,d). Then the function g(f(x)) (also written as $g \circ f(x)$ sometimes) is continuous at x_0 . So the composition of continuous functions is continuous.
- The intermediate value theorem: Suppose $f:[a,b] \to \mathbb{R}$ is a continuous function. For every u between f(a) and f(b) there exists $c \in [a,b]$ there such that f(c) = u. Functions which have this property are said to have the Intermediate Value Property (IVP).
- Theorem: every polynomial of odd degree has at least one real root
- The extreme value theorem: a continuous function on a closed bounded interval [a, b] is bounded and attains its infimum and supremum, that is, there are points x_1 and x_2 in [a, b] such that $f(x_1) = m$ and $f(x_2) = M$, where m and M denote the infimum and supremum respectively
- Theorem: a function f(x) is continuous at a point a if and only if for every sequence $x_n \to a$, $\lim_{x_n \to a} f(x_n) = f(a)$. A function that satisfies the above property is said to be sequentially continuous.
- Theorem: a function $f:(a,b)\to\mathbb{R}$ is continuous at c if and only if it is sequentially continuous at c
- Functions that satisfy the property below for some α (not necessarily greater than 1) are said to be Lipschitz continuous with exponent α :

$$\left| \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right| \le C \lim_{h \to 0} |h|^{\alpha - 1} = 0$$

- **Def:** the function f is said to attain a maximum (resp. minimum) at a point $x_0 \in X$ if $f(x) \le f(x_0)$ (resp. $f(x) \ge f(x_0)$) for all $x \in X$
- **Def:** let $f: X \to \mathbb{R}$ be a function and x_0 be in X. Suppose there is an sub-interval $x_0 \in (c, d) \subset X$ such that $f(x_0) \geq f(x)$ (resp. $f(x_0) \leq f(x)$) for all $x \in (c, d)$, then f is said to have a local maximum (resp. local minimum) at x_0

Differentiation

- Fermat's theorem: if $f: X \to \mathbb{R}$ is differentiable and has a local minimum or maximum at a point $x_0 \in X$, $f'(x_0) = 0$
- Rolle's theorem: Suppose $f:[a,b] \to \mathbb{R}$ is a continuous function which is differentiable in (a,b) and f(a) = f(b). Then there is a point x_0 in (a,b) such that $f'(x_0) = 0$
- If P(x) is a polynomial of degree n with n real roots, then all the roots of P'(x) are also real
- The mean value theorem: Suppose that $f:[a,b] \to \mathbb{R}$ is a continuous function and that f is differentiable in (a,b). Then there is a point x_0 in (a,b) such that:

$$\frac{f(b) - f(a)}{b - a} = f'(x_0)$$

- Rolle's theorem is a special case of the Mean Value Theorem (MVT)
- **Theorem:** if f satisfies the hypotheses of the MVT, and further $f'(x_0)$ for every $x \in (a, b)$, f is a constant function
- **Darboux's theorem:** Let $f:(a,b) \to \mathbb{R}$ be a differentiable function. If c, d, c < d are points in (a,b), then for every u between f'(c) and f'(d), there exists an x in [c,d] such that f'(x) = u
- A point x_0 in (a,b) such that $f'(x_0)=0$ is often called a stationary point
- Second derivative test: assume that $f:[a,b] \to \mathbb{R}$ is a continuous function and that f is differentiable on (a,b). Also assume that f'(x) is differentiable at x_0 , that is, that the second derivative $f''(x_0)$ exists. Then:
 - If $f''(x_0) > 0$, the function has a local minimum at x_0
 - If $f''(x_0) < 0$, the function has a local maximum at x_0
 - If $f''(x_0) = 0$, no conclusion can be drawn
- **Def:** a point of inflection x_0 for a function f is a point where the function changes its behavior from concave to convex (or vice-versa). At such a point $f''(x_0) = 0$, but this is only a necessary, and not a sufficient condition.
- **Def:** let I denote an interval (open or closed or half-open). A function $f: I \to \mathbb{R}$ is said to be concave (or sometimes concave downwards) if:

$$f(tx_1 + (1-t)x_2) \ge tf(x_1) + (1-t)f(x_2)$$

for all x_1 and x_2 in I and $t \in [0, 1]$.

Similarly, a function is said to be convex (or concave upwards) if:

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

By replacing the \geq and \leq signs above by strict inequalities we can define strictly concave and strictly convex functions.

- Every convex function is Lipschitz continuous with $\alpha = 1$
- A convex function is differentiable at all but at most countably many points
- A twice differentiable function on an interval will be convex if its second derivative is everywhere non-negative. If the second derivative is positive, the function will be strictly convex.
- The space $C^k(I)$, will denote the space of k times continuously differentiable functions on an (open) interval I, for some fixed $k \in \mathbb{N}$, that is, the space of functions for which k derivatives exist and such that the k^{th} derivative is a continuous function. The space $C^{\infty}(I)$ will consist of functions that lie in $C^k(I)$ for every $k \in \mathbb{N}$. Such functions are called smooth or infinitely differentiable functions.
- The Taylor polynomials: given a function f(x) which is n times differentiable at some point x_0 in an interval I, we can associate to it a family of polynomials $P_0(x)$, $P_1(x)$,..., $P_n(x)$ called the Taylor polynomials of degrees $0, 1, \ldots, n$ at x_0 as follows:

$$P_n(x) = f(x_0) + f^{(1)}(x_0)(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

• **Theorem:** let I be an open interval and suppose that $[a,b] \subset I$. Suppose that $f \in \mathcal{C}^n(I)$ $(n \ge 0)$ and suppose that $f^{(n)}$ is differentiable on I. Then there exists $c \in (a,b)$ such that:

$$f(b) = P_n(b) + \frac{f^{n+1}(c)}{(n+1)!}(b-a)^{n+1}$$

where $P_n(x)$ denotes the Taylor polynomial of degree n at a.

• We sometimes write:

$$P_n(x) = \sum_{k=-0}^n \frac{f_{(k)}(a)}{k!} (x-a)^k$$
, and $R_n(x) = \frac{f_{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$

Thus we can also write $f(b) = P_n(b) + R_n(b)$

- When n = 0 in Taylor's Theorem we get the MVT. When n = 1, we get the Extended Mean Value Theorem.
- Given a smooth function f(x) on $a \in I \subset R$ we can write down its associated Taylor polynomials $P_n(x)$ around any point a in \mathbb{R}
- When we use Taylor series to approximate a function in an interval I, we must make sure that $R_n(x) \to 0$ as $n \to \infty$, for all $x \in I$
- We say that a function f(x) is analytic in an (open) interval I, if for each point $a \in I$, the Taylor polynomial of the function f(x) around a, converges to f(x) in some (possibly smaller) interval containing a. This means that $R_n(x) \to 0$ for all x in some interval $a \in (c, d) \subset I$

Integration

• **Def:** given a closed interval [a, b], a partition P of [a, b] is simply a collections of points:

$$P = \{a = x_0 < x_1 < \dots < x_{n-1} < x_n = b\}$$

We can think of the points of the partition as dividing the original interval [a, b] into sub-intervals $I_j = [x_{j-1}, x_j], \ 1 \ge j \ge n$

- **Def:** A partition $P' = \{a = x'_0 < x'_1 < \ldots < x'_{n-1} < x'_n = b\}$ is said to be a refinement of the partition P if for each $x_i \in P$, there exists an $x'_j \in P'$ such that $x_i = x'_j$. Intuitively, a refinement P' of a partition P will break some of the sub-intervals in P into smaller sub-intervals.
- **Def:** Given a partition $P = \{a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b\}$ and a function $f : [a,b] \to \mathbb{R}$, we define two associated quantities. First we set: $M_i = \sup_{x \in [x_{i-1},x_i]} f(x)$ and $m_i = \inf_{x \in [x_{i-1},x_i]} f(x)$, $1 \ge i \ge n$. We define the Lower sum as:

$$L(f, P) = \sum_{j=1}^{n} m_j (x_j - x_{j-1})$$

Similarly, we define the Upper sum as:

$$U(f,P) = \sum_{j=1}^{n} M_j(x_j - x_{j-1})$$

• We define the lower Darboux integral of f by:

$$L(f) = \sup\{L(f, P) : P \text{ is a partition of } [a, b]\}$$

where the supremum is taken over all partitions of [a, b]. Similarly, we define the upper Darboux integral of f by:

$$U(f) = \sup \{ U(f, P) : P \text{ is a partition of } [a, b] \}$$

and again the infimum is over all partitions of [a, b]. If L(f) = U(f), then we say that f is Darboux-integrable and define:

$$\int_{a}^{b} f(t)dt = U(f) = L(f)$$

This common value of the two integrals is called the Darboux integral.

- Properties of Darboux integral:
 - $-L(f) \ge U(f)$
 - for any two partitions P_1 and P_2 , we have: $L(f, P_1) \leq U(f, P_2)$
 - if P' is a refinement of P then: $L(f,P) \leq L(f,P') \leq U(f,P') \leq U(f,P)$
- Suppose that for each of the intervals I_j we are given a point $t_j \in I_j$. We will denote the collection of points t_j by t. The pair (P,t) is sometimes called a tagged partition.
- **Def:** We define the Riemann sum associated to the function f, and the tagged partition (P,t) by:

$$R(f, P, t) = \sum_{j=1}^{n} f(t_j)(x_j - x_{j-1})$$

 $L(f,P) \le R(f,P,t) \le \overline{U(f,P)}$

- We define the norm of a partition P (denoted ||P||) by $||P|| = \max_{i} \{|x_i x_{i-1}|\}, 1 \le j \le n$
- The Reimann integral has two definitions:
 - A function $f:[a,b]\to\mathbb{R}$ is said to be Riemann integrable if for some $R\in\mathbb{R}$ and every $\epsilon>0$ there exists $\delta>0$ such that:

$$|R(f, P, t) - R| < \epsilon$$

whenever $||P|| < \delta$. In this case R is called the Riemann integral of the function f on the interval [a, b]

- A function $f:[a,b]\to\mathbb{R}$ is said to be Riemann integrable if for some $R\in\mathbb{R}$ and every $\epsilon>0$ there exists a $\delta>0$ and a partition P such that for every tagged refinement (P',t') of P with $||P'|| \leq \delta$:

$$|R(f, P', t') - R| < \epsilon$$

The nice thing about the above definition is that one only has to check that |R(f, P', t') - R| is small for refinements of a fixed partition, and not for all partitions

- **Theorem:** the Riemann integral (using either definition) exists if and only if the Darboux integral exists and in this case the two integrals are equal
- Riemann integration theorem: if $f:[a,b] \to \mathbb{R}$ be a function that is bounded, and continuous at all but finitely many points of [a,b], then f is Riemann integrable on [a,b]. In fact, one can allow even countably many discontinuities and the theorem will remain true.
- Theorem: suppose f is Riemann integrable on [a, b] and $c \in [a, b]$. Then:

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

- The fundamental theorem of calculus:
 - Part 1: let $f:[a,b] \to \mathbb{R}$ be a continuous function, and let:

$$F(x) = \int_{a}^{x} f(t)dt$$

for any $x \in [a, b]$. Then F(x) is continuous on [a, b], differentiable on (a, b) and F'(x) = f(x) for all $x \in (a, b)$

Part 2: let $f:[a,b] \to \mathbb{R}$ be given and suppose there exists a continuous function $g:[a,b] \to \mathbb{R}$ which is differentiable on (a,b) and which satisfies g'(x) = f(x). Then, if f is Riemann integrable on [a,b], then:

$$\int_{a}^{b} f(t)dt = g(b) - g(a)$$

Note that this statement does not assume that the function f(t) is continuous

• The mean value theorem for integration: let $f : [a,b] \to \mathbb{R}$ be a continuous function and assume that f is differentiable in (a,b). The MVT for integration says that there exists $c \in (a,b)$ such that:

$$\int_{a}^{b} f(t)dt = f(c)(b-a)$$

Two variable functions

- The natural domain of a function is the domain on which it is defined
- The level sets of functions are the sets of the form $\{(x,y) \in \mathbb{R}^2 \mid f(x,y) = c\}$, where c is a constant. The level set "lives" in the xy-plane. One can also plot (in three dimensions) the surface z = f(x,y). By varying the value of c in the level curves one can get a good idea of what the surface looks like. When one plots the f(x,y) = c for some constant c one gets a curve. Such a curve is usually called a contour line (the contour "lives" in the z = c plane).
- The graph of the function $z = x^2 + y^2$ lying above the xy-plane is a paraboloid of revolution
- The three variable definitions for limit and continuity are analogous to the two variable cases. We simply have to replace the absolute value function on \mathbb{R} by the distance function on \mathbb{R}^m .

• **Def:** the partial derivative of $f: U \to \mathbb{R}$ with respect to x_1 at the point (a, b) is defined by:

$$\frac{\partial f}{\partial x_1}(a,b) = \lim_{x_1 \to b} \frac{f((a,x_1)) - f((a,b))}{x_1 - a}$$

Similarly, one can define the partial derivative with respect to x_2 . In this case the variable x_1 is fixed and f is regarded only as a function of x_2 :

$$\frac{\partial f}{\partial x_2}(a,b) = \lim_{x_2 \to b} \frac{f((a,x_2)) - f((a,b))}{x_2 - a}$$

• Def: the partial derivatives are special cases of the directional derivative. Let v = (v1, v2) be a unit vector. Then v specifies a direction in \mathbb{R}^2 . The directional derivative of f in the direction v at a point $x = (x_1, x_2)$ is denoted by $\nabla_v f(x)$ and is defined as:

$$\lim_{t \to 0} \frac{f(x+tv) - f(x)}{t} = \lim_{t \to 0} \frac{f((x_1 + tv_1, x_2 + tv_2)) - f(x_1, x_2)}{t}$$

 $\nabla_v f(x)$ measures the rate of change of the function f at x along the path x+tv. If we take v=(1,0) in the above definition, we obtain $\frac{\partial f}{\partial x_1}$, while v=(0,1) yields $\frac{\partial f}{\partial x_2}$.

- All directional derivatives may exist at a point even if the function is discontinuous
- The equation of the tangent plane to z = f(x, y) at the point (x_0, y_0) is:

$$f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

• Differentiability for functions of two variables: a function $f:U\to\mathbb{R}$ is said to be differentiable at a point (x_0,y_0) if $\frac{\partial f}{\partial x}(x_0,y_0)$, and $\frac{\partial f}{\partial y}(x_0,y_0)$ exist and:

$$\lim_{(h,k)\to 0} \frac{|f(x_0+h,y_0+k)-f(x_0,y_0)-\frac{\partial f}{\partial x}(x_0,y_0)h-\frac{\partial f}{\partial y}(x_0,y_0)k|}{||(h,k)||} = 0$$

We could rewrite this as:

$$|f((x_0, y_0) + (h, k)) - f(x_0, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)h - \frac{\partial f}{\partial y}(x_0, y_0)k| = \epsilon_1(h, k)||(h, k)||$$

where $\epsilon_1(h, k)$ is a function that goes to 0 as $||(h, k)|| \to 0$. This form of differentiability now looks exactly like the one variable version.

• **Def:** we can rewrite the differentiability criterion once more as follows. We define the 1×2 matrix:

$$Df(x_0, y_0) = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0, y_0) & \frac{\partial f}{\partial y}(x_0, y_0) \end{pmatrix}$$

The function f(x, y) is said to be differentiable at a point (x_0, y_0) if there exists a matrix denoted $Df(x_0, y_0)$ with the property that:

$$f((x_0, y_0) + (h, k)) - f(x_0, y_0) - Df(x_0, y_0) \begin{pmatrix} h \\ k \end{pmatrix} = \epsilon_1(h, k) ||(h, k)||$$

for some function $\epsilon_1(h,k)$ which goes to zero as (h,k) goes to zero. Viewing the derivative as a matrix allows us to view it as a linear map from $\mathbb{R}^2 \to \mathbb{R}$. The matrix $Df(x_0, y_0)$ is called the total derivative of the function f(x,y) at the point (x_0,y_0) .

• When viewed as a row vector rather than as a matrix, the Derivative matrix is called the gradient and is denoted $\nabla f(x_0, y_0)$. Thus:

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

In terms of the coordinate vectors i and j the gradient can be written as:

$$\nabla f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)i + \frac{\partial f}{\partial y}(x_0, y_0)j$$

- Every differentiable function is continuous
- **Theorem:** let $f: U \to \mathbb{R}$. If the partial derivatives $\frac{\partial f}{\partial x}(x, y)$ and $\frac{\partial f}{\partial y}(x, y)$ exist and are continuous in a neighbourhood of a point (x_0, y_0) (that is in a region of the plane of the form $\{(x, y) \mid ||(x, y) (x_0, y_0)|| < r\}$ for some r > 0), then f is differentiable at (x_0, y_0) .
- The derivative of the composite function z(t) = f(x(t), y(t)) from I to \mathbb{R} is given by:

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

n variable functions

- A continuous mapping $c: I \to \mathbb{R}^n$ of an interval I to \mathbb{R} is called a curve in \mathbb{R}^n (n=2,3)
- For a curve c(t) = g(t)i + h(t)j + k(t)k in \mathbb{R}^3 its tangent or velocity vector at the point $c(t_0)$ is given by $c'(t_0) = g'(t_0)i + h'(t_0)j + k'(t_0)k$

 $\nabla_v f = \frac{df}{dt} = \nabla f \cdot v$

• The direction at which the function f is changing the fastest at the point (x_0, y_0, z_0) :

$$v = \frac{\nabla f(x_0, y_0, z_0)}{||\nabla f(x_0, y_0, z_0)||}$$

• A general type of surface S is defined implicitly as:

$$S = \{(x, y, z) \mid f(x, y, z) = b\}$$

- If S is a surface, a tangent plane to S at a point $s \in S$ (if it exists) is a plane that contains the tangent lines at s to all curves passing through s and lying on S
- Notation f_x is for the partial derivative $\frac{\partial f}{\partial x}$
- Functions which take values in \mathbb{R} are called scalar valued functions, and those functions which take values in \mathbb{R}^n , n > 1 are called vector valued functions
- Limit and continuity of n variable functions are analogous to the previous cases
- **Theorem:** let U be a subset of \mathbb{R}^m (m = 1, 2, 2, ...). The function $f: U \to \mathbb{R}^n$ is continuous if and only if each of the functions $f_i: U \to \mathbb{R}$, $1 \le i \le n$, is continuous
- When m = n, vector valued functions are often called vector fields
- In physics, vector force fields that arise from scalar potential functions are called conservative fields

• **Def:** a function $f: U \to \mathbb{R}^n$, where U is a subset of \mathbb{R}^m is said to be differentiable at a point x if there exists an $n \times m$ matrix Df(x) such that:

$$\lim_{||h|| \to 0} \frac{||f(x+h) - f(x) - Df(x) \cdot h||}{||h||} = 0$$

Here $x = (x_1, x_2, ..., x_m)$ and $h = (h_1, h_2, ..., h_m)$ are vectors in \mathbb{R}^m . The matrix Df(x) is usually called the total derivative of f. It is also referred to as the Jacobian matrix.

• Properties of total derivative:

$$D(f+g)(x) = Df(x) + Dg(x)$$

$$D(f \circ g)(x) = Df(g(x)) \circ Dg(x)$$

• By the following notation:

$$\frac{\partial^n f}{\partial x_1^{n_1} \partial x_2^{n_2} \dots \partial x_3^{n_3}}$$

we mean to take the partial derivative of f with respect to x_k , n_k times, then take the partial derivative with respect to x_{k-1} , n_{k-1} times, and so on until you take the partial derivative with respect to x_1 , n_1 times. The number n is nothing but $n_1 + n_2 + \ldots + n_k$. It is called the order of the mixed partial derivative.

- A function is said to be smooth if it belongs to C^k for all $k \geq 1$
- **Def:** We will say that the function f(x, y) attains a local minimum at the point (x_0, y_0) (or that (x_0, y_0) is a local minimum point of f) if there is a disc:

$$D_r(x_0, y_0) = \{(x, y) \mid ||(x, y) - (x_0, y_0)|| < r\} \subseteq U$$

of radius r > 0 around (x_0, y_0) such that $f(x, y) \ge f(x_0, y_0)$ for every point (x, y) in $Dr(x_0, y_0)$. Similarly, we can define a local maximum point.

• **Def:** a point (x_0, y_0) is called a <u>critical point</u> of f(x, y) if:

$$f_x(x_0, y_0) = f_y(x_0, y_0) = 0$$

At a critical point, the tangent plane is horizontal, that is, it is parallel to the xy-plane

- The first derivative test: if (x_0, y_0) is a local extremum point (that is, a minimum or a maximum point) and if $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ exist, then (x_0, y_0) is a critical point
- **Def:** the Hessian of f is defined by the matrix:

$$\begin{pmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{yx}(x_0, y_0) & f_{yy}(x_0, y_0) \end{pmatrix}$$

The determinant of the Hessian is sometimes called the discriminant and is sometimes denoted D

- Theorem: assume that (x_0, y_0) is a critical point of f(x, y)
 - if D > 0 and $f_{xx}(x_0, y_0) > 0$, then (x_0, y_0) is a local minimum of f
 - if D > 0 and $f_{xx}(x_0, y_0) < 0$, then (x_0, y_0) is a local maximum of f
 - if D < 0, then (x_0, y_0) is a saddle point of f
 - If D=0, further examination of the function is necessary
- **Def:** a saddle point is a critical point which is not a local extremum (that is, a local maximum or a local minimum) of the function

• Taylor's theorem in two varibles: If f is a C^2 function in a disc around (x_0, y_0) , then:

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + f_x h + f_y k + \frac{1}{2!} [f_{xx} h^2 + 2f_{xy} hk + f_{yy} k^2] + \tilde{R}_2(h, k)$$

where $\tilde{R}_2(h,k)/||(h,k)||^2 \to 0$ as $||(h,k)|| \to 0$

- Closed bounded intervals are called compact sets
- Theorem: a continuous function on a compact set in \mathbb{R}^2 will attain its extreme values
- **Def:** a point (x_0, y_0) such that $f(x, y) \leq f(x_0, y_0)$ or $f(x, y) \geq f(x_0, y_0)$ for all (x, y) in the domain being considered is called a global maximum or minimum point respectively
- Suppose we are given a function f(x, y) in two variables. We would like maximize or minimize it subject to the constraint that g(x, y) = c. In geometric terms, we want to find the maximum or minimum values of f while staying on the curve g(x, y) = c. Then we are looking for points (x_0, y_0) such that:

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$$

subject to the constraint condition, $g(x_0, y_0) = c$. The λ above is called the Lagrange multiplier.

- The four squares theorem: every positive integer can be written as a sum of four squares
- Theorem: the function $x_1^2 + x_2^2 + x_3^2 + x_4^2$ represents every natural number
- An *n*-ary quadratic form over the real numbers is a function from \mathbb{R}^n or \mathbb{Z}^n to \mathbb{R} of the form:

$$q(x_1, x_2, \dots, x_n) = \sum_{1 \le i, j \le n} q_{ij} x_i x_j, \ a_{ij} \in \mathbb{R}$$

The example $x_1^2 + x_2^2 + x_3^2 + x_4^2$ is an example of a quartenary quadratic form. It is a diagonal form, that is, only square terms appear.

- A quadratic form is called positive definite if $q(x_1, \ldots, x_n) > 0$ for all (x_1, \ldots, x_n) in $\mathbb{R}^n \setminus \{(0, 0, \ldots, 0)\}$
- The Bhargava-Hanke theorem: if a positive definite (integral) quadratic form represents every number $n \le 290$, then it represents all natural numbers
- Any rectangle R in the plane can be described as the set of points in the cartesian product $[a, b] \times [c, d]$ of two closed intervals
- For taking a partition of the above rectangle we take a partition P_1 of [a, b] and a partition P_2 of [c, d] and take the product of the two partitions. Thus if $P_1 = \{a = x_0, x_1, \ldots, x_m = b\}$ and $P_2 = \{c = y_0, y_1, \ldots, y_n = d\}$, we take the collection of points $P = \{(x_i, y_j) \mid 1 \le i \le m, 1 \le j \le n$. The point (x_i, y_j) is the left bottom corner of the rectangle $R_{ij} = (x_i, x_{i+1}) \times (y_i, y_{j+1})$. As i and j vary, we get a family of rectangles R_{ij} , $0 \le i \le m-1$, $0 \le j \le n-1$. By identifying each rectangle with its left bottom corner we can think of P as the collection of these rectangles R_{ij} . Clearly, $R = \bigcup_{i,j} R_{ij}$, and the collection of rectangles P is called a partition of R.