A Book of Abstract Algebra (2nd Edition)

Chapter 30, Problem 3EE

Bookmark

Show all steps: ON

Problem

We will show that $2\pi/5$ is a constructible angle, and it will follow that the regular pentagon is constructible.

Prove that

$$4\cos^2\frac{2\pi}{5} + 2\cos\frac{2\pi}{5} - 1 = 0$$

(HINT: Use parts 1 and 2.) Conclude that $\cos (2\pi/5)$ is a root of the quadratic $4x^2 - 2x - 1$.

Step-by-step solution

Step 1 of 5

Here, objective is to prove that $4\cos^2\frac{2\pi}{5} + 2\cos\frac{2\pi}{5} - 1 = 0$ and $\cos\frac{2\pi}{5}$ is a root of

 $4x^2 - 2x - 1 = 0$

Comment

Step 2 of 5

De Moivre's theorem:

$$\omega = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$$
 is a complex fifth root of unity.

Since
$$x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1)$$

$$\omega$$
 is a root of $P(x) = (x^4 + x^3 + x^2 + x + 1)$

Comment

Step 3 of 5

Consider
$$\omega = \cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}$$

$$\left(\omega + \frac{1}{\omega}\right) = \cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5} + \cos\frac{2\pi}{5} - i\sin\frac{2\pi}{5}$$

$$\left(\omega + \frac{1}{\omega}\right) = 2\cos\frac{2\pi}{5}$$

Comment

Step 4 of 5

Consider ω is a root of $P(x) = (x^4 + x^3 + x^2 + x + 1)$

Then,
$$P(\omega) = 0$$

$$(\omega^4 + \omega^3 + \omega^2 + \omega + 1) = 0$$

$$\omega^{2}(\omega^{2} + \omega + 1 + \omega^{-1} + \omega^{-2}) = 0$$

$$\omega^2 = 0$$
 or

$$\omega^2 + \omega + 1 + \omega^{-1} + \omega^{-2} = 0$$

$$\omega^2 + \omega^{-2} + 2 + \omega + \omega^{-1} - 1 = 0$$

$$\left(\omega + \frac{1}{\omega}\right)^2 + \left(\omega + \frac{1}{\omega}\right) - 1 = 0$$

$$\left(2\cos\frac{2\pi}{5}\right)^2 + \left(2\cos\frac{2\pi}{5}\right) - 1 = 0$$
$$4\cos^2\frac{2\pi}{5} + 2\cos\frac{2\pi}{5} - 1 = 0$$

Comment

Step 5 of 5

put
$$x = \cos \frac{2\pi}{5}$$
 in above equation, then

$$4x^2 - 2x - 1 = 0$$

Hence,
$$4\cos^2\frac{2\pi}{5} + 2\cos\frac{2\pi}{5} - 1 = 0$$
 and $\cos\frac{2\pi}{5}$ is a root of $4x^2 - 2x - 1 = 0$

Comment

COMPANY

About Chegg
Chegg For Good
College Marketing
Corporate Development
Investor Relations
Jobs
Join Our Affiliate Program
Media Center
Site Map

LEGAL & POLICIES

Honor Shield

Advertising Choices
Cookie Notice
General Policies
Intellectual Property Rights
Terms of Use
Global Privacy Policy
Honor Code

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks Mobile Apps Chegg Coupon Sell Textbooks Chegg Play Solutions Manual Chegg Study Help Study 101 College Textbooks Textbook Rental eTextbooks **Used Textbooks** Flashcards Digital Access Codes Learn Chegg Money Chegg Math Solver

CHEGG NETWORK

EasyBib Internships.com Thinkful

CUSTOMER SERVICE

Customer Service
Give Us Feedback
Help with eTextbooks
Help to use EasyBib Plus
Manage Chegg Study
Subscription
Return Your Books
Textbook Return Policy