

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ CAMPUS BOA VIAGEM CURSO DE ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

ALGOVIEW

DOCUMENTO DE REQUISITOS

BOA VIAGEM - CEARÁ 2023

ALGOVIEW

DOCUMENTO DE REQUISITOS

AlgoView Especificação de Requisitos de Sistema

Versão <0.1>

Equipe:
Antony Michael Alves Chagas
Kaique Brayan Andrade Lima
Lívia Pereira Mota
Lívia Pereira Noronha
Jhone do Vale Rodrigues

BOA VIAGEM - CEARÁ 2023

Documento de Requisitos do AlgoView

1. Introdução

1.1 Finalidade

Este documento descreve os requisitos para o desenvolvimento do AlgoView, uma plataforma educacional voltada para o ensino e prática de estruturas de dados e algoritmos. O AlgoView busca proporcionar uma experiência interativa e visualmente intuitiva para facilitar o aprendizado dos usuários.

1.2 Escopo

O AlgoView incluirá recursos abrangentes para as seguintes estruturas de dados:

- Árvores
- Pilhas
- Filas
- Vetor
- Grafos
- Hash Table
- Heaps
- Listas

O sistema visa ser uma ferramenta eficaz para o ensino e aprendizado dessas estruturas, oferecendo uma abordagem prática e interativa.

1.3 Definições, Acrônimos e Abreviações

As definições e acrônimos usados neste documento estão listados no final do documento.

2. Descrição Geral

2.1 Perspectiva do Produto

O AlgoView será uma aplicação web acessível por meio de navegadores de internet. Os usuários, incluindo alunos e instrutores, terão acesso a uma plataforma interativa para visualização e prática de estruturas de dados.

2.2 Funções do Produto

2.2.1 Visualização de Estruturas de Dados

Os usuários poderão visualizar uma variedade de estruturas de dados, incluindo árvores, pilhas, filas, vetores, grafos, hash table, heaps e listas. Cada estrutura será apresentada com representações visuais claras e detalhadas.

2.2.2 Execução Interativa

Capacidade de executar operações interativas em cada estrutura de dados, permitindo que os usuários observem passo a passo as manipulações e entendam o funcionamento de cada operação.

2.2.3 Playground de Codificação

Os usuários terão acesso a um ambiente de codificação integrado, onde poderão criar, modificar e executar código relacionado a cada estrutura de dados. Isso permitirá a prática ativa e a aplicação dos conceitos aprendidos.

2.2.4 Feedback em Tempo Real

Durante a execução de operações, o sistema fornecerá feedback em tempo real, destacando áreas relevantes e facilitando a compreensão do processo.

3. Requisitos Funcionais

3.1 Visualização de Árvores

3.1.1 Exibição Gráfica

- Os usuários poderão visualizar árvores binárias e não binárias.
- Cada nó da árvore será representado graficamente, com informações como valor, filhos e altura.

3.1.2 Operações Interativas

- Os usuários poderão realizar operações interativas em árvores, como inserção, remoção, busca e percurso em ordens diferentes.

3.1.3 Playground de Codificação

- Os usuários poderão escrever código para manipular árvores e ver os resultados visualmente.

3.2 Visualização de Pilhas

3.2.1 Representação Gráfica

- As pilhas serão apresentadas graficamente, mostrando claramente os elementos e a ordem de empilhamento.

3.2.2 Operações Interativas

- Os usuários poderão realizar operações de pilha, como push, pop e verificação do topo.

3.2.3 Playground de Codificação

- Implementação e execução de algoritmos relacionados a pilhas.

3.3 Visualização de Filas

3.3.1 Representação Gráfica

- Filas serão visualizadas graficamente, indicando a ordem de entrada e saída dos elementos.

3.3.2 Operações Interativas

- Os usuários poderão realizar operações de fila, como enfileirar, desenfileirar e verificar o início da fila.

3.3.3 Playground de Codificação

- Implementação e execução de algoritmos relacionados a filas.

3.4 Visualização de Vetor

3.4.1 Representação Gráfica

- Vetores serão apresentados graficamente, mostrando a disposição dos elementos e seus índices.

3.4.2 Operações Interativas

- Os usuários poderão realizar operações em vetores, incluindo inserção, remoção e busca.

3.4.3 Playground de Codificação

- Implementação e execução de algoritmos relacionados a vetores.

3.5 Visualização de Grafos

3.5.1 Representação Gráfica

- Grafos serão visualizados graficamente, destacando nós e arestas.

3.5.2 Operações Interativas

- Os usuários poderão realizar operações em grafos, como adição de nós, arestas e busca em profundidade/largura.

3.5.3 Playground de Codificação

- Implementação e execução de algoritmos relacionados a grafos.

3.6 Visualização de Hash Table

3.6.1 Representação Gráfica

- Hash Tables serão apresentadas visualmente, exibindo as entradas e as colisões.

3.6.2 Operações Interativas

- Os usuários poderão realizar operações em Hash Tables, como inserção, busca e remoção.

3.6.3 Playground de Codificação

- Implementação e execução de algoritmos relacionados a Hash Tables.

3.7 Visualização de Heaps

3.7.1 Representação Gráfica

- Heaps serão visualizadas graficamente, mostrando a estrutura de árvore e a ordem dos elementos.

3.7.2 Operações Interativas

- Os usuários poderão realizar operações em Heaps, como inserção, remoção e construção de Heap.

3.7.3 Playground de Codificação

- Implementação e execução de algoritmos relacionados a Heaps.

3.8 Visualização de Listas

3.8.1 Representação Gráfica

- Listas serão apresentadas graficamente, destacando os nós e suas relações.

3.8.2 Operações Interativas

- Os usuários poderão realizar operações em Listas, como inserção, remoção, inversão e busca.

3.8.3 Playground de Codificação

- Implementação e execução de algoritmos relacionados a Listas.

4. Requisitos Não Funcionais

4.1 Desempenho

- O sistema deve responder rapidamente às interações do usuário para garantir uma experiência fluida.

4.2 Usabilidade

- A interface do usuário deve ser intuitiva e fácil de usar, adequada para usuários iniciantes e avançados.

4.3 Segurança

- O sistema deve garantir a segurança dos dados dos usuários, protegendo informações pessoais e garantindo a integridade do sistema.

4.4 Compatibilidade

- O AlgoView deve ser compatível com os principais navegadores da web, como Chrome, Firefox e Safari.

4.5 Manutenção

- O código-fonte deve ser modular e bem documentado para facilitar a manutenção e futuras atualizações.

4.6 Escalabilidade

- O sistema deve ser projetado para lidar com um número crescente de usuários e estruturas de dados.

5. Definições e Acrônimos

- AlgoView: Plataforma de estrutura de dados.
- Árvores: Estrutura de dados hierárquica que consiste em nós conectados por arestas.
- **Pilhas:** Estrutura de dados que segue o princípio LIFO (Last In, First Out).
- Filas: Estrutura de dados que segue o princípio FIFO (First In, First Out).
- **Vetor**: Arranjo contíguo de elementos, indexado por números inteiros.
- Grafos: Conjunto de nós conectados por arestas.
- **Hash Table:** Estrutura de dados que mapeia chaves para valores usando uma função hash.
- **Heaps:** Estrutura de dados de árvore usada para representar uma coleção de elementos com uma ordem específica.
- Listas: Sequência de elementos onde cada elemento aponta para o próximo na sequência.