CS 391L Machine Learning Assignment 3

Name: Shun Zhang Email address: jensen.zhang@utexas.edu EID: sz4554

Problem 1

(a)

$$Cov(y) = E((y - E(y)(y - E(y)^{T})$$
 (1)

$$= E((Ax + b - E(Ax + b))(Ax + b - E(Ax + b))^{T})$$
 (2)

$$= E((Ax - E(Ax))(Ax - E(Ax))^{T})$$
 Linearity of E
(3)

$$= AE((x - E(x))(x - E(x))^{T})A^{T}$$
 (4)

$$= A\Sigma A^{T}$$
 Def. of Cov.
(5)

(b) Base case: when k=0, $Ix=\lambda^0 x$. When k=1, by the definition of eigenvalue and eigenvector, $Ax=\lambda x$.

Inductive hypothesis: assume $A^k x = \lambda^k x$ for some $k \in \mathbb{N}$. Want to show $A^{k+1} x = \lambda^{k+1} x$.

$$A^k x = \lambda^k x I.H. (6)$$

$$A^{k+1}x = A\lambda^k x \tag{7}$$

$$A^{k+1}x = \lambda^k Ax \tag{8}$$

$$A^{k+1}x = \lambda^{k+1}x \qquad Ax = \lambda x \tag{9}$$

If k<0, we already know $A^{-k}x=\lambda^{-k}x$. By algebra, $\lambda^kA^{-k}x=x$, $\lambda^kx=A^kx$.

Problem 2

(a)

$$r = 1 - \frac{H(Y|X)}{H(X)} \tag{10}$$

$$=\frac{H(X) - H(Y|X)}{H(X)}\tag{11}$$

$$= \frac{I(Y|X)}{H(X)}$$
 Def. of Mutual Information (12)

(b)
$$H(Y|X) \ge 0$$
, $H(X) > 0$. So $\frac{H(Y|X)}{H(X)} \ge 0$, $1 - \frac{H(Y|X)}{H(X)} \le 1$.
 $H(Y|X) < H(X)$, so $\frac{H(Y|X)}{H(X)} \le 1$, $1 - \frac{H(Y|X)}{H(X)} \ge 0$.

Therefore, $0 \le r \le 1$.

(c) r = 0 when two variables are independent. r = 1 when two variables are perfectly correlated (positively linearly related).

Problem 3

(a) $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$. Compared to $\frac{1}{1 + e^{-x}}$, tanh has a steeper slope. In the literature, tanh has a good property in its derivative to reduce error as calculated by an error function [1].

To be an appropriate sigmoid function, tanh needs to be scaled to range of from 0 to 1.

(b) We know W^k is 2×2 .

$$\frac{\partial H}{\partial w_{ij}^k} = \frac{\partial}{\partial w_{ij}^k} (\lambda^{k+1})^T g(W^k x^k) \tag{13}$$

$$= \frac{\partial}{\partial w_{ij}^k} (\lambda_1^{k+1} g(w_{11} x_1^k + w_{12} x_2^k) + \lambda_2^{k+1} g(w_{21} x_1^k + w_{22} x_2^k))$$
 (14)

$$= \lambda_1^{k+1} \frac{\partial}{\partial w_{ij}^k} g(w_{11} x_1^k + w_{12} x_2^k) + \lambda_2^{k+1} \frac{\partial}{\partial w_{ij}^k} g(w_{21} x_1^k + w_{22} x_2^k)$$
 (15)

Therefore, for $w_{11}, w_{12}, w_{21}, w_{22}$, there is $\frac{\partial H}{\partial w_{ij}^k} = \lambda^{k+1} x_j^k g'(w_i^k x^k)$.

Problem 4

(a) IG(Color) = 0.1043

 $\mathrm{IG}(\mathrm{Size}) = 0.4086$

IG(Noise) = 0.0207

For small size,

IG(Color) = 0.3219

IG(Noise) = 0.0729

For medium size,

IG(Color) = 0.1226

IG(Noise) = 0.1226

For large size, IG is clearly 0.

The decision tree is

For inconsistent data, the probability of each possible outcome is shown in the parenthesis.

(b) If the event of missing a datum is uniformly random over all the attributes, then it doesn't harm if we simply delete that line.

Problem 5

(a) $\min \frac{1}{3}\pi r^2 h$ such that $A = \pi r \sqrt{r^2 + h^2} + \pi r^2$,

Use Lagrange multiplier, $H = \frac{1}{3}\pi r^2 h + \lambda (\pi r \sqrt{r^2 + h^2} + \pi r^2 - A)$.

$$h = \sqrt{\frac{2A}{\pi}}, \ r = \sqrt{\frac{A}{4\pi}}.$$

Problem 6

Each node has m possible attributes. So there are no more than m^n configuration of the decision tree. The number of different classifiers is also no more than m^n .

We know that for data set with size of k, a decision tree should have 2^k decisions. So the VC dimension is $\log_2 m^n = n \log_2 m = O(n \log(m))$.

Problem 7

The smallest positive integer p is 2.

When p = 1, $k(x, x_i) = 1 + x^T x_i = 1 + x_1 x_{i1} + x_2 x_{i2}$. So $\Phi(x) = (1, x_1, x_2)^T$. Clearly, as (x_1, x_2) cannot be separated by SVM, adding a bias of 1 doesn't help

When
$$p=2$$
 — same case as the class note — $k(x,x_i)=(1+x^Tx_i)^2=(1+x_1x_{i1}+x_2x_{i2})^2=1+x_1^2x_{i1}^2+x_2^2x_{i2}^2+2x_1x_{i1}+2x_2x_{i2}+2x_1x_{i1}x_2x_{i2}$. Then $\Phi(x)=(1,x_1^2,x_2^2,\sqrt{2}x_1,\sqrt{2}x_2,\sqrt{2}x_1x_2)^T$. Let $\lambda=\begin{pmatrix}\lambda_1\\\lambda_2\\\lambda_3\\\lambda_4\end{pmatrix}$. $Q(\lambda)=I\lambda-\frac{1}{2}\lambda^TA\lambda$, where $A=\begin{pmatrix}9&-1&-1&1\\-1&9&1&-1\\-1&1&9&-1\\1&-1&-1&9\end{pmatrix}$, the

elements of which are computed by the kernel function. The solution is λ_i for i = 1, 2, 3, 4. They are all support vectors, and they are linearly separable.

Using a value of p larger than minimum would unnecessarily map the data to higher dimension. The classifier becomes more flexible in lower dimension, and thus may overfit the data.

However, if it has a regularization term, it doesn't have such downside. For example, if the regularization term is $||w||_1$, then it becomes sparse coding.

References

[1] Kalman, B.L.; Kwasny, S.C., Why tanh: choosing a sigmoidal function, Neural Networks, 1992. IJCNN., International Joint Conference on , vol.4, no., pp.578,581 vol.4, 7-11 Jun 1992.