r							
$ au_{1}^{\#2} lpha$	0	0	0	- <u>i</u> kr ₅ +2 k ³ r ₅	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	0	$\frac{6 k^2 r_5 + t_1}{(1 + 2 k^2)^2 r_5 t_1}$
$ au_{1}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	$\frac{6k^2r_5+t_1}{2(k+2k^3)^2r_5t_1}$	0	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$
$\sigma_{1^-\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	0	$\frac{i}{k r_5 + 2 k^3 r_5}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{lphaeta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\!$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha^{\beta}$	$\sigma_1^{\#2} + \alpha^{\beta}$	$\tau_{1}^{#1} + \alpha \beta$	$\sigma_{1}^{\#_{1}} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

	$\sigma_0^{\#1}$	$\tau_0^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^+}^{\#1}\dagger$	0	0	0	0
$\tau_{0^{+}}^{\#1}$ †	0	0	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$

	#	1	1	1	3	3	3	2	17
Source constraints	SO(3) irreps	$\tau_{0+}^{\#2} == 0$	$t_0^{#1} == 0$	$\sigma_{0+}^{\#1} == 0$	$t_{1}^{\#2}{}^{\alpha} + 2 \bar{l} k \sigma_{1}^{\#2}{}^{\alpha} == 0$	$t_{1}^{\#1}{}^{\alpha} == 0$	+ i k c	$\tau_{2+}^{\#1}\alpha\beta - 2\overline{\imath}k\sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

	$\omega_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1-lpha}^{\#1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1}^{\#1}\alpha$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1}\dagger^{\alpha\beta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{#1}$ † lpha	0	0	0	$k^2 r_5 + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u>i kt_1</u> 3
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	0	$\frac{1}{3}i\sqrt{2}kt_1$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3}ikt_1$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$

$\omega_{2}^{\#1}_{+}$ $\alpha_{2}^{\#1}_{+}$ $\alpha_{2}^{\#1}_{-}$ $\alpha_{3}^{\#1}$	0	0	<u>t1</u> 2
$f_2^{\#1}_2 \alpha \beta$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
	<i>t</i> 1/2	$\frac{ikt_1}{\sqrt{2}}$	0
·	$\omega_{2}^{\#1} + ^{lphaeta}$	$f_{2}^{\#1} + \alpha \beta$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

$\sigma_{2}^{\#1}{}_{lphaeta}$	0	0	$\frac{2}{t_1}$
$\tau_2^{\#1}{}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
	$\sigma_{2+}^{\#1} +^{\alpha\beta}$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2}^{*1} +^{lphaeta\chi}$

	Massive particle		
? /	Pole residue:	$-\frac{1}{r_2} > 0$	
$J^P = 0^-$	Polarisations:	1	
k^{μ}	Square mass:	$\frac{t_1}{r_2} > 0$	
?	Spin:	0	
	Parity:	Odd	

 $\frac{\text{Unitarity conditions}}{r_2 < 0 \&\& r_5 < 0 \&\& t_1 < 0}$