ECE4634 Digital Communications Fall 2007

Instructor: Dr. R. Michael Buehrer

Lecture #2: Review of Signals and

the Fourier Transform

- Information in communication systems is transferred through the use of EM waves
- At each point in the system, we observe signals.
 These signals can be described mathematically using both the time and the frequency domains.
- While the time domain is more familiar to most students, often the frequency domain is more intuitive for understanding certain signal characteristics
- At the receiver we observe both the desired waveform as well as undesired waveforms such as noise and interference.
- Reading
 - Sections 2.1-2.3

Objectives for this Lecture

- Review important properties of signals
- Review a key mathematical tool for analyzing communication systems the Fourier Transform
 - Motivation for Fourier Theory
 - Common Fourier Transforms
 - Fourier Transform Properties

- Design digital communication systems, given constraints on data rate, bandwidth, power, fidelity, and complexity;
- Analyze the performance of a digital communication link when additive noise is present in terms of the signal-to-noise ratio and bit error rate;
- Compute the power and bandwidth requirements of modern communication systems, including those employing ASK, PSK, FSK, and QAM modulation formats;
- Design a scalar quantizer for a given source with a required fidelity and determine the resulting data rate;
- Determine the auto-correlation function of a line code and determine its power spectral density;
- Determine the power spectral density of bandpass digital modulation formats.

Physically Realizable Waveforms

- Have finite time duration (finite energy!)
- Occupy finite frequency spectrum
- Are continuous
- Have finite peak value
- Are real-valued
- All real-world signals will have these properties, although sometimes we use mathematical models which violate these conditions.

- •Extends to infinity in time.
- •Has infinite frequency extent
- •Ends after T seconds
- •Has finite frequency content

Mathematical Representations

- Thus, when we analyze communication systems we use mathematical models.
- These models allow for convenient analysis but are not completely accurate concerning the real world.
- Fortunately, they provide close enough approximation that the conclusions reached using the models are still valid.

• Energy:
$$E = \int_{-\infty}^{\infty} w^2(t)dt$$

• A signal w(t) is an Energy Signal if $0 < E < \infty$

• Power:
$$P = \langle w^2(t) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} w^2(t) dt$$

- For periodic signals, power can be computed by integrating over one period
- A signal w(t) is a Power Signal if $0 < P < \infty$

Decibels

- Analog and Digital Communications
- Base 10 logarithmic measure of power ratios
- Useful when:
 - Power and energy levels vary over orders of magnitude
 - It is the ratio of two powers that is important
- When comparing power or energy:

$$dB = 10\log_{10}(P_1/P_2)$$

 Sometimes it is useful to compare a power with 1 W or with 1 mW:

$$dBW = 10\log_{10}(P_1/1W)$$

 $dBm = 10\log_{10}(P_1/1mW)$

For voltages or currents: $dB = 20 \log_{10} (V_1/V_2)$ $= 20 \log_{10} (I_1/I_2)$

 A complex number is a number composed of two real numbers, one which represents the "real" part and one which represents the "imaginary" part (originally created for defining roots of a polynomial)

z = x + jyReal part Imaginary part

We define addition and multiplication as

$$z=x+jy$$

$$c=a+jb$$

$$z+c=(x+a)+j(y+b)$$

$$z*c=(xa-yb)+j(ya+xb)$$
RM Buehrer
Virginia Tech
Fall 2007

RM Buehrer Virginia Tech Fall 2007

Why do we care?

- Answer: Because of phase!
- In communications we often deal with sinusoidal signals
 - Further we may always represent a signal as the sum (or integral) of sinusoidal signals
 - Sinusoids are conveniently represented using complex numbers because of phase

$$x(t) = A\cos(\omega_c t + \theta)$$

$$= A\cos\theta\cos(\omega_c t) - A\sin\theta\sin(\omega_c t)$$

A convenient short hand is:

$$\tilde{x}(t) = Ae^{j\theta}$$

where the frequency ω_c is assumed

The original signal is then represented as

$$x(t) = \operatorname{Re}\left\{\tilde{x}(t)e^{j\omega_{c}t}\right\}$$

- Note that while $\tilde{x}(t)$ is complex, the true signal x(t) is always real. The complex nature is simply a convenient mathematical construct to readily handle phase components
- Further note that

$$\tilde{x}(t) = Ae^{j\theta}$$
$$= A\cos\theta + jA\sin\theta$$

- This form will be particularly convenient when we analyze bandpass communication systems
- Note that while physical signals are always "real", the imaginary part of $\tilde{x}(t)$ will have physical meaning as we will see later in the course

Phase represents time delay of a sinusoid

RM Buehrer Virginia Tech Fall 2007 Phase can be represented by a weighted sum of cos and sin

Euler's Identities

•
$$e^{jx} = \cos(x) + j\sin(x)$$

$$\cos(x) = \frac{e^{jx} + e^{-jx}}{2}$$

• Note: $\left| e^{jx} \right| = 1$

This is termed a *phasor* representation of sinusoidal signals. We will use this representation extensively.

Frequency

 For a sinusoidal function the frequency is the inverse of the time it takes to complete one cycle (i.e., the period)

RM Buehrer Virginia Tech Fall 2007

Frequency

- Any signal can be expressed as the weighted sum of sinusoids of varying frequencies and phases.
- Many physical objects respond to EM waves based on the frequency of the wave. Thus, we are interested in the frequency of signals.
- Fourier Theory allows us to view the 'frequency content' of a signal by decomposing the signal into an infinite sum (or an integral) of sinusoids.
- The Fourier Transform tells us how much of each frequency is needed.
 - Magnitude tells us the amount of each frequency
 - The phase tells us how much cos vs sin

The Fourier Transform

- One of the most common mathematical tools for analyzing a signal or waveform is the Fourier Transform.
- The Fourier Transform provides us with information concerning the frequency content.
- This is useful for:
 - Determining bandwidth
 - Demodulating frequency modulated signals
 - Understanding how objects or systems will respond to a signal (Transfer Function)
 - Equalization

The Fourier Transform

• The Fourier Transform of a signal *w*(*t*) is given by:

$$W(f) = F\{w(t)\} = \int_{-\infty}^{\infty} w(t)e^{-j2\pi ft}dt$$

• The Inverse Fourier Transform is given by:

$$w(t) = F^{-1}\{W(f)\} = \int_{-\infty}^{\infty} W(f)e^{j2\pi ft}df$$

We correlate the signal with a complex sinusoid of frequency f to determine how much of that frequency is present.

- We denote a Fourier Transform pair by: $\psi(t) \Leftrightarrow W(f)$
- The Fourier Transform always exists if w(t) is an Energy
 Signal

RM Buehrer Virginia Tech Fall 2007 We sum complex sinusoids of different frequencies *f*, weighting them by the amount of each frequency contained by the signal.

Why do we use complex sinusoids?

- Answer: We are interested in phase
- If we defined the Fourier Transform as

$$W(f) = F\{w(t)\} = \int_{-\infty}^{\infty} w(t)\cos(2\pi f)dt$$

we would lose any signal information related to $sin(\omega t)$

- If we only used sin(ωt) in the transform, we would lose any signal information related to cos(ωt)
- Thus we must have both: $e^{j\omega t} = cos(\omega t) + jsin(\omega t)$

Interpretation of Fourier Transform

- The Fourier Transform may be thought of as a tool for looking at a signal from a different perspective
 - Consider how different a chair might look when viewed from different angles

- Frequency measures the rate of change
 - High frequency corresponds to rapid change with time
 - Low frequency corresponds to slow change with time

Fourier Transform Example 2.1: Rectangular Pulse

$$rect\left(\frac{t}{T}\right) = \begin{cases} 1, & |t| \le T/2 \\ 0, & |t| > T/2 \end{cases}$$

$$W(f) = \int_{-T/2}^{T/2} 1 \cdot e^{-j2\pi ft} dt = \frac{e^{-j\pi f T} - e^{j\pi f T}}{-j2\pi f}$$

$$\sin(x) = \left(e^{jx} - e^{-jx}\right) / 2j$$

$$W(f) = \frac{\sin(\pi f T)}{\pi f} = T \frac{\sin(\pi f T)}{\pi f T} = T \operatorname{sinc}(f T)$$

RM Buehrer Virginia Tech Fall 2007

As we expand the duration of the pulse, the signal changes less rapidly.

Thus the signal has more low frequency content.

Time expands → Frequency compresses

Approach to Finding Fourier Transform Pairs

- We could continue to find transform pairs according to the definition, but this is inefficient
- In general, we compile a table of known transform pairs
- We also compile a table of simple rules for modifying transform pairs.
- Using the known pairs and transform properties we can find most transforms needed.

Fourier Transform Pairs

		I
Rectangular Pulse	$\operatorname{rect}\left(\frac{t}{T}\right)$	$T[\operatorname{sinc}(fT)]$
Triangular Pulse	$\operatorname{tri}\!\left(rac{t}{T} ight)$	$T\left[\operatorname{sinc}(fT)\right]^2$
Unit Step	u(t)	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$
Signum	$\operatorname{sgn}(t)$	$\frac{1}{j\pi f}$
Constant	1	$\delta(f)$
Impulse at t_o	$\delta(t-t_o)$	$e^{-j2\pi f t_o}$
Sinc	sinc(2Wt)	$\frac{1}{2W}\operatorname{rect}\left(\frac{f}{2W}\right)$
Phasor	$e^{j\omega_o t + arphi}$	$e^{j arphi} \deltaig(f - f_oig)$
Sinusoid	$\cos(2\pi ft + \varphi)$	$\left \frac{1}{2} e^{j\varphi} \delta(f - f_o) + \frac{1}{2} e^{-j\varphi} \delta(f + f_o) \right $
Gaussian	$e^{-\pi(t/t_o)^2}$	$t_o e^{-\pi (f t_o)^2}$

Note: Think of a constant as a sinusoid with an infinite period (f = 0). Does the transform make sense?

Important Transform Properties

- Linearity
- Time Delay
- Scale Change
- Duality
- Modulation
- Convolution
- Differentiation
- Integration

Fourier Transform Properties

Operation	Function	Fourier Transform
Linearity	$a_1 w_1(t) + a_2 w_2(t)$	$a_1W_1(f) + a_2W_2(f)$
Time Scale	w(at)	$\frac{1}{ a }W\left(\frac{f}{a}\right)$
Delay	w(t- au)	$W(f)e^{-j2\pi f\tau}$
Duality	W(t)	w(-f)
Real signal frequency translation	$w(t)\cos(2\pi ft + \theta)$	$\frac{1}{2} \Big[e^{j\theta} W (f - f_c) + e^{-j\theta} W (f + f_c) \Big]$
Complex Signal Frequency Translation	$w(t)e^{j2\pi f_c t}$	$W(f-f_c)$
Bandpass Signal	$\operatorname{Re}\left[g(t)e^{j2\pi f_{c}t}\right]$	$\frac{1}{2}\Big[G\big(f-f_c\big)+G^*\big(-f-f_c\big)\Big]$
Differentiation	$\frac{d^n}{dt^n}w(t)$	$(j2\pi f)^n W(f)$
Integration	$\int_{-\infty}^{t} w(s)ds$	$(j2\pi f)^{-1}W(f) + \frac{1}{2}W(0)\delta(f)$
Convolution	$W_1(t) * W_2(t)$	$W_1(f)W_2(f)$
Multiplication	$w_1(t)w_2(t)$	$W_1(f)*W_2(f)$
Multiplication by t	$t^n w(t)$	$\left(-j2\pi\right)^{-n}\frac{d^{n}W(f)}{df^{n}}$

• Find a mathematical expression for

- Today we have reviewed important concepts from signal and system theory that are particularly useful to communication system analysis
- Most importantly we will extensive use the Fourier Transform to analyze signals and systems in the frequency domain
- You should review
 - Fourier Transform pairs
 - Fourier Transform properties
- Next class we will examine useful functions termed singularity functions, review the concepts of Energy and Power Spectral Density, and the application of Fourier Theory to linear systems

Appendix

Additional Examples

Fourier Transform Example 2.2: Exponential

$$w(t) = u(t)e^{-at} = \begin{cases} e^{-at}, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

$$W(f) = \int_{-\infty}^{\infty} u(t)e^{-at}e^{-j2\pi ft}dt = \int_{0}^{\infty} e^{-(a+j2f\pi)t}dt$$
$$= \left[\frac{e^{-(a+j2f\pi)t}}{a+j2f\pi}\right]_{\infty}^{0} = \frac{1}{a+j2f\pi}$$

•
$$|W(f)| = \frac{1}{\sqrt{a^2 + (2f\pi)^2}}$$

Time Waveform

Spectrum

As time waveform decreases more slowly, the more low frequency content in the wave.

Example 2.3: Cosine Waveform

 Easier to verify some transforms pairs from the inverse transform

$$W(f) = \frac{1}{2}\delta(f - f_c) + \frac{1}{2}\delta(f + f_c)$$

•
$$w(t) = \int_{-\infty}^{\infty} \frac{1}{2} \delta(f - f_c) e^{j2ft\pi} df + \int_{-\infty}^{\infty} \frac{1}{2} \delta(f + f_c) e^{j2ft\pi} df$$

$$= \frac{e^{j2f_ct\pi} + e^{-j2f_ct\pi}}{2}$$

$$= \cos(2\pi f_c t)$$