DC-CIR Worksheet

Your Name:		Signature	:							
La	Lab partner(s):									
Co	ourse & Section:	Station #	Date:							
Sec	ction D: Ohm's Law									
1.	DMM reading for the resistor: _	±								
2.	List your data for minimum and r staple to this worksheet a copy of			its. Also,						
	I _{min} : ±	V:	_±							
	$I_{ m max}$: \pm		_±							
3.	List your linear fit parameters, wi	ith error estimates from Orig	in.							
	SLOPE: ±	INTERCEPT:	±							
4.	Comment on the comparison of the	he DMM value and Origin fi	t. (Use additional sheets if 1	necessary.)						

Section E.1: Series Resistors

5. Enter below the data (with error estimates) for series resistors.

Resistor	Resistance	Theoretical Sum	Voltage	Current (A or mA)	_
#	(ohms)	(ohms)	(V)	(circle one)	(ohms)
1					
2					
3					
4					

- 6. Attach a sheet that describes in detail how you found the errors in each entry for two resistors in series. This should include errors in any raw data you took as well as error propagation through any equations that you used (see App. V of the lab manual).
- 7. Compare the theory to the experiment. (Use additional sheets if necessary.)

Section E.2: Parallel Resistors

8. Enter below the data from your table of part E.2 for parallel resistors

Resistor #	Resistance (ohms)	Theoretical Sum (ohms)	Voltage (V)	Current (A or mA) (circle one)	Experimental Sum (ohms)
1	(Onns)	(Onnts)	(*)	(circle one)	(onns)
1					
2					
3					
4					

0	Attach a sheet that descri	مط المعمل سلم مطلب	a fa d	41	1	2	
9.	Attach a sheet that descr	mes in detail no	w you tound	the errors in ea	ach entry for	2 resistors in	paranei.

10.	Compare the theor	y to the expe	eriment. (Use	additional	sheets if necessary	.)
-----	-------------------	---------------	---------------	------------	---------------------	----

Sect	tions F & G.	Where Oh	m's Law	Fails & Power	Limits		
11.	What resista	nce did you	measure w	ith the DMM?		± _	

- 12. Attach your Origin plot of *R vs. I*.
- 13. Comment on Ohm's Law as it applies to the incandescent bulb and compare the DMM reading to the data in your plot: (Use additional sheets if necessary.)

14.	What is the maximum rated	voltage for a	100 Ω , ½-watt resistor	
-----	---------------------------	---------------	--------------------------------	--

- 15. What is your personal resistance? _____
- 16. What voltage across your hands would result in a power that could destroy a 100 Ω , ¼-watt resistor?

GRADE:____ GRADED BY ____ (out of 30 points) (TA's initials)