Name: Aishwarya Gandhi

SBU ID:111424452

Email: aishwarya.gandhi@stonybrook.edu

ESE 555 ASSIGNMENT 2

Objective: Design and verify a four-input parity generator consisting of three XOR gates in the 45 nm CMOS technology.

Design Objective:

- Minimize the power delay product
- Worst case propagation delay < 200ps

XOR Gate Design [Circuit Schematic]:

XOR Symbol:

XOR Gate Design[Layout]:

Parity Generator [Circuit Schematic]:

Wp= 160nm Lp=50nm

Wn=100nm Ln=50nm

Parity Generator[Layout]:

Wp= 160nm Lp=50nm

Wn=100nm Ln=50nm

Transient Simulation:

Average propagation delay= 138.4ps

Estimating Wn and Wp for least power delay product:

Wp (nm)	Wn (nm)	Propagation delay low- high (ps)	Propagation delay high- low(ps)	Avg. delay (ps)	Current (µA)	Power (µW)	Power delay product (Ws * 10 ⁻¹⁸)
180	90	120.97	156.03	138.5	27.62	30.38	4207.54
170	90	128.31	154.20	141.25	27.09	29.79	4208.52
160	90	133.04	157.51	145.26	26.49	29.14	4232.59
170	100	127.12	145.19	136.15	28.16	30.98	4217.47
<mark>160</mark>	<mark>100</mark>	136.086	<mark>140.64</mark>	<mark>138.4</mark>	<mark>27.59</mark>	<mark>30.34</mark>	<mark>4199.66</mark>
150	100	141.16	145.02	143.09	27.00	29.70	4249.88

Power delay product is minimum for Wp=160nm Wn=100nm.

Thus, **Wp= 160nm Lp=50nm**

Wn=100nm Ln=50nm is selected for the design.

Successful DRC Results:

Successful LVS Results:

Parasitic Report:

Post-layout simulation data:

Average propagation delay= 142ps