Analysis of a GRTS Survey Design for a Finite Resource

Thomas Kincaid

May 23, 2011

Contents

L	Preliminaries	1
2	Read the survey design and analytical variables data file	1
3	Analysis of site status evaluation variables	3
1	Analysis of lake condition variables	7
5	Analysis of lake condition variables correcting for population size	8
	Analysis of quantitative variables This document presents analysis of a GRTS survey design for a finite resource. The	
SOI	ource used in the analysis is small lakes in Florida. The analysis will include calculation	\cdot of three

This document presents analysis of a GRTS survey design for a finite resource. The finite resource used in the analysis is small lakes in Florida. The analysis will include calculation of three types of population estimates: (1) estimation of proportion and size (number of lakes) for site evaluation status categorical variables; (2) estimation of proportion and size for lake condition categorical variables; and (3) estimation of the cumulative distribution function (CDF) and percentiles for quantitative variables. Testing for difference between CDFs from subpopulations also will be presented.

1 Preliminaries

The initial step is to use the library function to load the spsurvey package. After the package is loaded, a message is printed to the R console indicating that the spsurvey package was loaded successfully.

Load the spsurvey package

> library(spsurvey)

Version 2.2 of the spsurvey package was loaded successfully.

2 Read the survey design and analytical variables data file

The original Florida small lakes data file contains more than 3,800 records and 29 basins. To produce a more manageable number of records, only six basins were retained in the data that will be analyzed, which produced a file containing 930 records.

The next step is to read the data file, which includes both survey design variables and analytical variables. The read delim function is used to read the tab-delimited file and assign it to a data frame named FL_lakes. The nrow function is used to determine the number of rows in the FL_lakes data frame, and the resulting value is assigned to an object named nr. Finally, the initial six lines and the final six lines in the FL_lakes data frame are printed using the head and tail functions, respectively.

Read the survey design and analytical variables data file

```
> FL_lakes <- read.delim("FL_lakes.tab")
> nr <- nrow(FL_lakes)</pre>
```

Display the initial six lines in the data file.

> head(FL_lakes)

	siteID	xcoord	ycoord	wgt	basin	status	TNT
1	FLW03414-0014	8635535	12860896	5.369048	NWFWMD-1	Sampled	Target
2	FLW03414-0046	8636136	12886783	5.369048	NWFWMD-1	Physical Barrier	Target
3	FLW03414-0062	8617834	12869126	5.369048	NWFWMD-1	NonTarget	NonTarget
4	FLW03414-0078	8673500	12883071	5.369048	NWFWMD-1	Physical Barrier	Target
5	FLW03414-0086	8631884	12816428	5.369048	NWFWMD-1	${\tt NonTarget}$	NonTarget
6	FLW03414-0118	8607699	12856644	5.369048	NWFWMD-1	NonTarget	${\tt NonTarget}$
	pH_cat colifor	rm_cat or	kygen turk	oidity			
1	(0,6]	(0,5]	9.9	0.4			
2	<na></na>	<na></na>	NA	NA			
3	<na></na>	<na></na>	NA	NA			
4	<na></na>	<na></na>	NA	NA			
5	<na></na>	<na></na>	NA	NA			
6	<na></na>	<na></na>	NA	NA			

Display the final six lines in the data file.

> tail(FL_lakes)

TNT	status	basin	wgt	ycoord	xcoord	siteID	
Target	Dry	SWFWMD-4	4.80791	12694963	8880656	FLW03414-3878	925
Target	Sampled	SWFWMD-4	4.80791	12732977	8892406	FLW03414-3886	926
Target	Dry	SWFWMD-4	4.80791	12723056	8836528	FLW03414-3894	927
Target	Landowner Denial	SWFWMD-4	4.80791	12725502	8923107	FLW03414-3918	928
Target	Dry	SWFWMD-4	4.80791	12715824	8861298	FLW03414-3926	929
${\tt NonTarget}$	${\tt NonTarget}$	SWFWMD-4	4.80791	12715641	8888601	FLW03414-3950	930
			bidity	kygen turl	rm_cat or	pH_cat colifor	
			NA	NA	<na></na>	<na></na>	925
			8.2	1.98	(5,50]	(6,8]	926
			NA	NA	<na></na>	<na></na>	927
			NA	NA	<na></na>	<na></na>	928
			NA	NA	<na></na>	<na></na>	929
			NA	NA	<na></na>	<na></na>	930

The sample of small lakes in Florida is displayed in Figure 1. The sample sites for each basin are displayed using a unique color. First, the levels function is used to extract the set of basin names, and the result is assigned to object basin. Next, the rainbow function is called to select a set of six colors, and the result is assigned to object cols. The plot function is then used to produce the basic figure, but plotting of sample points is suppressed. The for function is used to loop through the set of six basins and plot color-coded points for each basin using the points function. Finally, the legend function is used to add a legend to the figure, and the title function is used to create a figure title.

3 Analysis of site status evaluation variables

The first analysis that will be examined is calculation of extent estimates for site status evaluation variables. Extent is measured both by the proportion of the resource in status evaluation categories and by size of the resource in each category. For a finite resource like lakes, size refers to the number of lakes in a category. For calculating extent estimates (and for all of the analyses we will consider), the survey design weights are incorporated into the calculation process. Two site status variables will be examined: (1) status, which classifies lakes into six evaluation categories and (2) TNT, which classifies lakes as either "Target" or "NonTarget". The table and addmargins functions are used to create tables displaying the count for each code (level) of the two status variables.

```
> addmargins(table(FL_lakes$status))
```

A table displaying the number of values for each level of the status variable follows:

Dry	Landowner Denial	${\tt NonTarget}$
223	119	317
Otherwise Unsampleable	Physical Barrier	Sampled
1	99	171
Sum		
930		

> addmargins(table(FL_lakes\$TNT))

A table displaying the number of values for each level of the TNT variable follows:

Plot of Florida Small Lake Sites Color-Coded by Basin

Figure 1: Florida Small Lake Sample Sites.

NonTarget Target Sum
317 613 930

The cat. analysis function in the spsurvey package will be used to calculate extent estimates. Four data frames constitute the primary input to the cat.analysis function. The first column (variable) in the four data frames provides the unique identifier (site ID) for each sample site and is used to connect records among the data frames. The siteID variable in the FL_lakes data frame is assigned to the siteID variable in the data frames. The four data frames that will be created are named as follows: sites, subpop, design, and data.cat. The sites data frame identifies sites to use in the analysis and contains two variables: (1) site ID - site ID values and (2) Use - a logical vector indicating which sites to use in the analysis. The rep (repeat) function is used to assign the value TRUE to each element of the Use variable. Recall that nr is an object containing the number of rows in the FL_lakes data frame. The subpop data frame defines populations and, optionally, subpopulations for which estimates are desired. Unlike the sites and design data frames, the subpop data frame can contain an arbitrary number of columns. The first variable in the subpop data frame identifies site ID values and each subsequent variable identifies a type of population, where the variable name is used to identify type. A type variable identifies each site with a character value. If the number of unique values for a type variable is greater than one, then the set of values represent subpopulations of that type. When a type variable consists of a single unique value, then the type does not contain subpopulations. For this analysis, the subpop data frame contains three variables: (1) siteID - site ID values, (2) CombinedBasins - which will be used to calculate estimates for all of the basins combined, and (3) Basin - which will be used to calculate estimates for each basin individually. The basin variable in the FL_lakes data frame is assigned to the Basin variable in the subpop data frame. The design data frame consists of survey design variables. For the analysis under consideration, the design data frame contains the following variables: (1) site ID - site ID values; (2) wgt - final, adjusted, survey design weights; (3) xcoord - x-coordinates for location; and (4) ycoord - y-coordinates for location. The wgt, xcoord, and ycoord variables in the design data frame are assigned values using variables with the same names in the FL_lakes data frame. Like the subpop data frame, the data cat data frame can contain an arbitrary number of columns. The first variable in the data.cat data frame identifies site ID values and each subsequent variable identifies a response variable. The two response variables are Status and Target_NonTarget, which are assigned the status and TNT variables, respectively, in the FL_lakes data frame. Missing data (NA) is allowed for the response variables, which are the only variables in the input data frames for which NA values are allowed.

Create the sites data frame.

Create the data.cat data frame.

Use the cat.analysis function to calculate extent estimates for the site status evaluation variables.

> Extent_Estimates <- cat.analysis(sites, subpop, design, data.cat)

The extent estimates for all basins combined are displayed using the print function. The object produced by cat.analysis is a data frame containing thirteen columns. The first five columns identify the population (Type), subpopulation (Subpopulation), response variable (Indicator), levels of the response variable (Category), and number of values in a category (NResp). A category labeled "Total" is included for each combination of population, subpopulation, and response variable. The next four columns in cat.analysis provide results for the proportion estimates: the proportion estimate ((Estimate.P), standard error of the estimate (StdError.P), lower confidence bound (LCB95Pct.P), and upper confidence bound (UCB95Pct.P). Argument conf for cat.analysis allows control of the confidence bound level. The default value for conf is 95, hence the column names for confidence bounds contain the value 95. Supplying a different value to the conf argument will be reflected in the confidence bound names. Confidence bounds are obtained using the standard error and the Normal distribution multiplier corresponding to the confidence level. The final four columns in cat.analysis provide results for the size (units) estimates: the units estimate (Estimate.U), standard error of the estimate (StdError.U), lower confidence bound (LCB95Pct.U), and upper confidence bound (UCB95Pct.U).

> print(Extent_Estimates[c(1:7, 45:47),])

	Туре	Subpopula	tion	Indicator		Category	NResp
1	CombinedBasins	All Ba	sins	Status		Dry	223
2	CombinedBasins	All Ba	sins	Status	Landown	ner Denial	119
3	${\tt CombinedBasins}$	All Ba	sins	Status		NonTarget	317
4	CombinedBasins	All Ba	sins	Status	Otherwise Uns	sampleable	1
5	CombinedBasins	All Ba	sins	Status	Physica	al Barrier	99
6	CombinedBasins	All Ba	sins	Status		Sampled	171
7	CombinedBasins	All Ba	sins	Status		Total	930
45	CombinedBasins	All Ba	sins Target	_NonTarget		NonTarget	317
46	CombinedBasins	All Ba	sins Target	_NonTarget		Target	613
47	CombinedBasins	All Ba	sins Target	_NonTarget		Total	930
	Estimate.P S	tdError.P	LCB95Pct.P	UCB95Pct.P	Estimate.U	StdError.U	J
1	23.01117939 0	.97818958	21.093963	24.9283957	1184.155291	50.203673	3
2	13.32737468 0	.99082497	11.385393	15.2693559	685.826701	50.983555	5
3	36.91250997 1	.16116454	34.636669	39.1883507	1899.517763	60.323864	<u> </u>
4	0.09422536 0	.08499027	0.000000	0.2608032	4.848837	4.373590)
5	8.47917794 0	.71450383	7.078776	9.8795797	436.338497	36.735872	2
6	18.17553265 1	.03427992	16.148381	20.2026840	935.312910	53.208168	3
7	100.00000000 0	.00000000	100.000000	100.0000000	5146.000000	9.282499)
45	36.91250997 1	.16116454	34.636669	39.1883507	1899.517763	60.323864	<u> </u>
46	63.08749003 1	.16116454	60.811649	65.3633307	3246.482237	59.226647	7

```
47 100.0000000 0.00000000 100.000000 100.000000 5146.000000
                                                                  9.282499
   LCB95Pct.U UCB95Pct.U
    1085.7579 1282.55268
1
2
     585.9008 785.75263
3
    1781.2852 2017.75036
4
       0.0000
                13.42092
5
     364.3375 508.33948
6
     831.0268 1039.59900
7
    5127.8066 5164.19336
    1781.2852 2017.75036
46
    3130.4001 3362.56433
   5127.8066 5164.19336
```

The write table function is used to store the extent estimates as a comma-separated value (csv) file. Files in csv format can be read by programs such as Microsoft Excel.

```
> write.table(Extent_Estimates, file="Extent_Estimates.csv", sep=",",
+ row.names=FALSE)
```

4 Analysis of lake condition variables

The second analysis that will be examined is estimating resource proportion and size for lake condition variables. Two lake condition variables will be examined: (1) pH_cat, which classifies lakes by categories of pH value and (2) coliform_cat, which classifies lakes by categories of fecal coliform count. The table and addmargins functions are used to create tables displaying the count for each level of the two lake condition variables.

```
> addmargins(table(FL_lakes$pH_cat))
```

A table displaying the number of values for each level of the pH category variable follows:

```
(0,6] (6,8] (8,14] Sum
78 82 11 171
```

> addmargins(table(FL_lakes\$coliform_cat))

A table displaying the number of values for each level of the fecal coliform category variable follows:

As for extent estimates, the cat.analysis function will be used to calculate condition estimates. The sites data frame for this analysis differs from the one used to calculate extent estimates. The Use logical variables in sites is set equal to the value "Sampled", so that only sampled sites are used in the analysis. The subpop and design data frames created in the prior analysis can be reused for this analysis. The data.cat data frame contains the two lake condition variables: pHCat and ColiformCat. Variables pH_cat and coliform_cat in the FL_lakes data frame are assigned to pHCat and ColiformCat, respectively.

Create the sites data frame.

Create the data.cat data frame.

- > data.cat <- data.frame(siteID=FL_lakes\$siteID,</pre>
- + pHCat=FL_lakes\$pH_cat,
- + ColiformCat=FL_lakes\$coliform_cat)

Use the cat.analysis function to calculate estimates for the lake condition variables.

> Condition_Estimates <- cat.analysis(sites, subpop, design, data.cat)

Print the lake condition estimates for all basins combined.

> print(Condition_Estimates[c(1:4, 28:32),])

	Туре	Subpopt	ulation I	Indicator	Category N	Resp	Estimat	ce.P
1	CombinedBasins	All	Basins	${ t pHCat}$	(0,6]	78	42.915	5056
2	CombinedBasins	All	Basins	${ t pHCat}$	(6,8]	82	50.396	3558
3	CombinedBasins	All	Basins	${ t pHCat}$	(8,14]	11	6.688	3386
4	CombinedBasins	All	Basins	${ t pHCat}$	Total	171	100.000	0000
28	CombinedBasins	All	Basins Col	iformCat	(0,5]	97	55.986	8933
29	CombinedBasins	All	Basins Col	iformCat	(5,50]	40	24.108	3155
30	CombinedBasins	All	Basins Col	iformCat	(50,500]	31	18.521	1502
31	CombinedBasins	All	Basins Col	iformCat (50	00,5e+03]	2	1.383	3410
32	CombinedBasins	All	Basins Col	iformCat	Total	170	100.000	0000
	StdError.P LCB	95Pct.P	UCB95Pct.F	Estimate.U	StdError.U	LCB9	95Pct.U	UCB95Pct.U
1	2.8588764 37	.311761	48.518350	401.39005	26.951025	348	3.56702	454.21309
2	3.0201364 44	.477200	56.315917	471.36552	28.641865	415	5.22849	527.50254
3	1.5707294 3	.609813	9.766959	62.55734	14.654986	33	3.83409	91.28058
4	0.0000000 100	.000000	100.000000	935.31291	7.420134	920	0.76971	949.85611
28	2.8786468 50	.344889	61.628977	519.19950	26.501223	467	7.25806	571.14095
29	3.0407982 18	.148300	30.068010	223.56900	28.550181	167	7.61167	279.52632
30	2.4525384 13	.714615	23.328389	171.76069	22.676735	127	7.31511	216.20628
31	0.8259436 0	.000000	3.002230	12.82917	7.665908	(0.00000	27.85407
32	0.0000000 100	.000000	100.000000	927.35836	7.408810	912	2.83736	941.87937

Use the write table function to write the condition estimates as a csy file.

```
> write.table(Condition_Estimates, file="Condition_Estimates.csv", sep=",",
+ row.names=FALSE)
```

5 Analysis of lake condition variables correcting for population size

The frame is a data structure containing spatial location data in addition to other attributes regarding a resource of interest and is used to create a survey design. A frame often takes the form of a shapefile. The frame can be used to obtain size values (e.g., number of lakes) for the

populations and subpopulations examined in an analysis. Examination of the Estimates. U column in the Condition_Estimates data frame produced by cat.analysis reveals that the estimated Total value for both condition variables and each combination of population value and subpopulation value does not sum to the corresponding frame size value. For example, the Total entry in the Estimate.U column for the pHcat variable, population "CombinedBasins" and subpopulation "All Basins" is 935 (rounded to a whole number). The corresponding frame size value is 5,146. The popsize (population size) argument to cat.analysis provides a mechanism for forcing the Total category to equal a desired value. First, the c (combine) function is used to create a named vector of frame size values for each basin. Output from the c function is assigned to an object named framesize. The popsize argument is a list, which is a particular type of R object. The popsize list must include an entry for each population type included in the subpop data frame, i.e., CombinedBasins and Basin for this analysis. The sum function applied to framesize is assigned to the CombinedBasins entry in the popsize list. Recall that the basin population type contains subpopulations, i.e., basins. When a population type contains subpopulations, the entry in the popsize list also is a list. The as list function is applied to framesize, and the result is assigned to the Basin entry in the popsize list.

Assign frame size values.

Use the cat.analysis function to calculate estimates for the lake condition variables.

- > Condition_Estimates_popsize <- cat.analysis(sites, subpop, design, data.cat,
- + popsize=list(CombinedBasins=sum(framesize),
- + Basin=as.list(framesize)))

Print the lake condition estimates for all basins combined.

> print(Condition_Estimates_popsize[c(1:4, 28:32),])

	Type	Subpopt	ulation	Ιı	ndicator		Category	${\tt NResp}$	Estimat	e.P	
1	${\tt CombinedBasins}$	All	${\tt Basins}$		pHCat		(0,6]	78	42.915	056	
2	${\tt CombinedBasins}$	All	Basins		pHCat		(6,8]	82	50.396	5558	
3	${\tt CombinedBasins}$	All	Basins		pHCat		(8,14]	11	6.688	386	
4	${\tt CombinedBasins}$	All	Basins		pHCat		Total	171	100.000	0000	
28	${\tt CombinedBasins}$	All	Basins	Col	iformCat		(0,5]	97	55.986	933	
29	${\tt CombinedBasins}$	All	Basins	Col	iformCat		(5,50]	40	24.108	3155	
30	${\tt CombinedBasins}$	All	Basins	Col	iformCat		(50,500]	31	18.521	.502	
31	${\tt CombinedBasins}$	All	Basins	Col	iformCat	(50	0,5e+03]	2	1.383	3410	
32	${\tt CombinedBasins}$	All	Basins	Col	iformCat		Total	170	100.000	0000	
	StdError.P LCB	95Pct.P	UCB95P	ct.P	Estimate	e.U	StdError.	U LCB	95Pct.U	UCB95Pct.U	J
1	2.8588764 37	.311761	48.518	350	2208.408	376	147.1177	78 192	20.0632	2496.7543	3
2	3.0201364 44	.477200	56.315	5917	2593.406	689	155.4162	22 228	38.7967	2898.0171	L
3	1.5707294 3	.609813	9.766	3959	344.184	435	80.8297	73 18	35.7610	502.6077	7
4	NA	NA		NA	5146.000	000	ľ	JA	NA	NA	1
28	2.8786468 50	.344889	61.628	3977	2881.087	756	148.1351	16 259	90.7480	3171.4271	L
29	3.0407982 18	.148300	30.068	3010	1240.605	567	156.4794	18 93	33.9115	1547.2998	3
30	2.4525384 13	.714615	23.328	3389	953.116	648	126.2076	3 70	05.7541	1200.4789)
31	0.8259436 0	.000000	3.002	2230	71.190	029	42.5030)6	0.0000	154.4948	3
32	NA	NA		NA	5146.000	000	ľ	JA	NA	NA	1

Use the write table function to write the condition estimates as a csy file.

6 Analysis of quantitative variables

The third analysis that will be examined is estimating the CDF and percentiles for quantitative variables. Two quantitative variables will be examined: (1) oxygen - dissolved oxygen value and (2) turbidity - turbidity value. The summary function is used to summarize the data structure of the two quantitative variables.

```
> summary(FL_lakes$oxygen)
```

Summarize the data structure of the dissolved oxygen variable:

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.830 4.880 6.870 6.468 8.310 12.480 759.000
```

> summary(FL_lakes\$turbidity)

Summarize the data structure of the turbidity variable:

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.150 1.100 1.700 8.055 3.800 400.000 759.000
```

The cont.analysis function will be used to calculate estimates for quantitative variables. Input to the cont.analysis function is the same as input for the cat.analysis function except that the data frame containing response variables is named cont.data rather than cat.data. The sites, subpop, and design data frames created in the analysis of lake condition variables can be reused for this analysis. The data.cont data frame contains the two quantitative variables: DissolvedOxygen and Turbidity. Variables oxygen and turbidity in the FL_lakes data frame are assigned to DissolvedOxygen and Turbidity, respectively. The popsize argument is included in the call to cont.analysis.

Create the data.cont data frame.

Use the cont.analysis function to calculate CDF and percentile estimates for the quantitative variables.

```
> CDF_Estimates <- cont.analysis(sites, subpop, design, data.cont,
+ popsize=list(CombinedBasins=sum(framesize),
+ Basin=as.list(framesize)))</pre>
```

The object produced by cont.analysis is a list containing two objects: (1) CDF, a data frame containing the CDF estimates and (2) Pct, a data frame containing percentile estimates plus estimates of population values for mean, variance, and standard deviation. Format for the CDF data frame is analogous to the data frame produced by cat.analysis. For the CDF data frame, however,

the fourth column is labeled Value and contains the value at which the CDF was evaluated. Unlike the data frames produced by the other analysis functions we have examined, the Pct data frame contains only nine columns since there is a single set of estimates rather than two sets of estimates. In addition, the fourth column is labeled Statistic and identifies either a percentile or the mean, variance, or standard deviation. Finally, since percentile estimates are obtained by inverting the CDF estimate, the percentile estimates do not have a standard error value associated with them.

Use the write table function to write the CDF estimates as a csv file.

```
> write.table(CDF_Estimates$CDF, file="CDF_Estimates.csv", sep=",",
+ row.names=FALSE)
```

The cont.cdfplot function in spsurvey can be used to produce a PDF file containing plots of the CDF estimates. The primary arguments to cont.cdfplot are a character string containing a name for the PDF file and the CDF data frame in the CDF_Estimates object. In addition, we make use of the logx argument to cont.cdfplot, which controls whether the CDF estimate is displayed using a logarithmic scale for the x-axis. The logx argument accepts two values: (1) "", do not use a logarithmic scale and (2) "x" - use a logarithmic scale. For this analysis, dissolved oxygen is displayed using the original response scale and turbidity is displayed using a logarithmic scale.

Produce a PDF file containing plots of the CDF estimates.

```
> cont.cdfplot("CDF_Estimates.pdf", CDF_Estimates$CDF, logx = c("",
+ "x"))
```

Print the percentile estimates for dissolved oxygen for all basins combined.

> print(CDF_Estimates\$Pct[1:10,])

	Type Si	ubpopul	ation	Indicator		${\tt Statistic}$	NResp	Estimate
1	CombinedBasins	All B	asins	${\tt DissolvedOxygen}$		5Pct	8	1.578342
2	CombinedBasins	All B	asins	${\tt DissolvedOxygen}$		10Pct	17	2.285793
3	CombinedBasins	All B	asins	${\tt DissolvedOxygen}$		25Pct	42	4.624982
4	CombinedBasins	All B	asins	${\tt DissolvedOxygen}$		50Pct	83	6.809475
5	CombinedBasins	All B	asins	${\tt DissolvedOxygen}$		75Pct	129	8.333775
6	CombinedBasins	All B	asins	${\tt DissolvedOxygen}$		90Pct	153	9.428672
7	CombinedBasins	All B	asins	${\tt DissolvedOxygen}$		95Pct	163	9.996570
21	CombinedBasins	All B	asins	${\tt DissolvedOxygen}$		Mean	171	6.477253
31	CombinedBasins	All B	asins	${\tt DissolvedOxygen}$		Variance	171	6.442747
41	CombinedBasins	All B	asins	${\tt DissolvedOxygen}$	Std.	${\tt Deviation}$	171	2.538257
	StdErro	r LCB9	5Pct	UCB95Pct				
1		0.954	7733	2.003741				
2		1.753	2574	3.384512				
3		4.108	7030	5.506430				
4		6.562	2078	7.141814				
5		7.971	0307	8.553521				
6		9.022	1821	9.885101				
7		9.754	7248	10.458964				
21	0.148923428773653	3 6.185	3680	6.769137				
31	0.562255761580149	9 5.340	7460	7.544748				
41	0.110756285008553	3 2.321	1784	2.755335				

Use the write table function to write the percentile estimates as a csv file.

```
> write.table(CDF_Estimates$Pct, file="Percentile_Estimates.csv", sep=",",
+ row.names=FALSE)
```

The cont.cdftest function in spsurvey can be used to test for statistical difference between the CDFs from subpopulations. For this analysis we will test for statistical difference between the CDFs from the six basins. The cont.cdftest function will test all possible pairs of basins. Arguments to cont.cdftest are the same as arguments to cont.analysis. Since we are interested only in testing among basins, the subpop data frame is subsetted to include only the siteID and Basin variables. Note that the popsize argument was modified from prior examples to include only the entry for Basin.

```
> CDF_Tests <- cont.cdftest(sites, subpop[,c(1,3)], design, data.cont,
+ popsize=list(Basin=as.list(framesize)))</pre>
```

The print function is used to display results for dissolved oxygen of the statistical tests for difference between CDFs for basins. The object produced by cont.cdftest is a data frame containing eight columns. The first column (Type) identifies the population. The second and third columns (Subpopulation_1 and Subpopulation_2) identify the subpopulations. The fourth column (Indicator) identifies the response variable. Column five contains values of the test statistic. Six test statistics are available, and the default statistic is an F-distribution version of the Wald statistic, which is identified in the data frame as "Wald-F". The default statistic is used in this analysis. For further information about the test statistics see the help file for the cdf.test function in spsurvey, which includes a reference for the test for differences in CDFs. Columns six and seven (Degrees_of_Freedom_1 and Degrees_of_Freedom_2) provide the numerator and denominator degrees of freedom for the Wald test. The final column (p_Value) provides the p-value for the test.

> print(CDF_Tests[1:15,])

	_								
	Туре	Subpopulation_1	Subpopulation_2	Indicator	${\tt Wald_F}$				
1	Basin	NWFWMD-1	NWFWMD-2	${\tt DissolvedOxygen}$	3.1247258				
2	${\tt Basin}$	NWFWMD-1	SFWMD-9	${\tt DissolvedOxygen}$	4.4870771				
3	${\tt Basin}$	NWFWMD-1	SJRWMD-1	DissolvedOxygen	20.2999095				
4	${\tt Basin}$	NWFWMD-1	SRWMD-1	DissolvedOxygen	0.3056232				
5	Basin	NWFWMD-1	SWFWMD-4	DissolvedOxygen	10.6749729				
6	Basin	NWFWMD-2	SFWMD-9	DissolvedOxygen	2.6194412				
7	Basin	NWFWMD-2	SJRWMD-1	DissolvedOxygen	6.0724001				
8	Basin	NWFWMD-2	SRWMD-1	DissolvedOxygen	2.7890870				
9	Basin	NWFWMD-2	SWFWMD-4	DissolvedOxygen	3.8350098				
10	${\tt Basin}$	SFWMD-9	SJRWMD-1	${\tt DissolvedOxygen}$	12.8288933				
11	Basin	SFWMD-9	SRWMD-1	DissolvedOxygen	6.0791083				
12	Basin	SFWMD-9	SWFWMD-4	DissolvedOxygen	14.0910554				
13	Basin	SJRWMD-1	SRWMD-1	DissolvedOxygen	16.9152459				
14	Basin	SJRWMD-1	SWFWMD-4	DissolvedOxygen	5.2459605				
15	Basin	SRWMD-1	SWFWMD-4	DissolvedOxygen	6.3983641				
	Degrees_of_Freedom_1 Degrees_of_Freedom_2 p_Value								
1		2		55 5.183980e-02	2				
2		2		57 1.549813e-02	2				

```
3
                       2
                                            57 2.203619e-07
4
                       2
                                            54 7.379299e-01
5
                       2
                                            51 1.340804e-04
6
                       2
                                            55 8.191417e-02
7
                       2
                                            55 4.141268e-03
                       2
8
                                            52 7.069389e-02
9
                       2
                                            49 2.835610e-02
                       2
                                            57 2.510995e-05
10
                       2
11
                                            54 4.157854e-03
                       2
12
                                            51 1.342917e-05
13
                       2
                                            54 1.977917e-06
14
                       2
                                            51 8.475765e-03
                       2
                                            48 3.440842e-03
15
```

Use the write.table function to write CDF test results as a csv file.

```
> write.table(CDF_Tests, file = "CDF_Tests.csv", sep = ",", row.names = FALSE)
```