KUMMER THEORY FOR ELLIPTIC CURVES

SEBASTIANO TRONTO

ABSTRACT. These are the notes for an expository talk on the results of [2] given at the Leiden algebra seminar.

1. Introduction

Fix a number field K and an algebraic closure \overline{K} of K. Let E be an elliptic curve over K without CM over \overline{K} . For $M \in \mathbb{Z}_{\geq 1}$ we denote by

$$E[M] := \{ P \in E(\overline{K}) \mid MP = 0 \}$$

the group of M-torsion points and by

$$K_M := K(E[M])$$

the M-th division field of E, that is the field generated by the coordinates of the M-torsion points of E. Alternatively, one can consider the action of $\operatorname{Gal}(\overline{K} \mid K)$ on E[M] and define K_M as the subfield of \overline{K} fixed by the subgroup of $\operatorname{Gal}(\overline{K} \mid K)$ that acts trivially on E[M]. This shows that $K_M \mid K$ is Galois.

Let now $\alpha \in E(K)$ be a point of infinite order. For $N \in \mathbb{Z}_{\geq 1}$ We denote by

$$N^{-1}\alpha := \{ \beta \in \overline{K} \mid N\beta = \alpha \}$$

the set of N-division points of α . Fixing $\beta \in N^{-1}\alpha$ gives a bijection

$$\varphi_{\beta}: N^{-1}\alpha \longrightarrow E[N]$$

$$\beta' \longmapsto \beta' - \beta$$

Notice that $K(N^{-1}\alpha) \supseteq K(E[N])$. For $M, N \in \mathbb{Z}_{\geqslant 1}$ with $N \mid M$ we let

$$K_{M,N} := K(E[M], N^{-1}\alpha)$$

which is a Galois extension of K. We are interested in studying extensions of K of this form; for example, we want to compute their degree. Since the extensions of the form $K_M \mid K$ are largely studied in the literature, we focus on the "Kummer part" $K_{M,N} \mid K_M$.

Remark 1.1. In the above, one can replace E by any commutative algebraic group over K. For example if one takes $E = \mathbb{G}_m$, the extension $K_{M,N}$ becomes $K(\zeta_M, \sqrt[N]{\alpha})$, that is a classical Kummer extension. In this situation, the degree $[K_{M,N}:K_M]$ is close to N: in fact there is a constant $C=C(K,\alpha)$ such that $N/[K_{M,N}:K_M]$ divides C for any M and N.

Our goal is to give an explicit version of the following result:

Theorem 1.2 (See [3]). There is a constant $C = C(E, K, \alpha)$ such that $N^2/[K_{M,N} : K_M]$ divides C for any pair of positive integers M, N with $N \mid M$.

More precisely, we give an explicit value for C that only depends on the ℓ -adic torsion representations associated with E/K and on divisibility properties of the point α .

It is enough to consider the case M=N: in fact, assume that there is a constant $C\geqslant 1$ such that $M^2/[K_{M,M}:K_M]$ divides C for all positive integers M. Then for any $N\mid M$, since $[K_{M,M}:K_{M,N}]$ divides $(M/N)^2$, we have that

$$\frac{N^2}{[K_{M,N}:K_M]} = \frac{N^2[K_{M,M}:K_{M,N}]}{[K_{M,M}:K_M]} \quad \text{divides} \quad \frac{M^2}{[K_{M,M}:K_M]},$$

which in turn divides C.

2. Galois representations

2.1. The torsion representation. The Galois group $\operatorname{Gal}(\overline{K} \mid K)$ acts on $E(\overline{K})$. Since E[N] is defined over K, the action restricts to E[N]. Moreover it respects the group structure of E, so we get a map $\rho_N : \operatorname{Gal}(\overline{K} \mid K) \to \operatorname{Aut}(E[N])$, which we call the $(\operatorname{mod} N)$ -torsion representation associated with E. Fixing a basis of E[N] induces an isomorphism $\operatorname{Aut}(E[N]) \cong \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$, and thus we identify this map with $\rho_N : \operatorname{Gal}(\overline{K} \mid K) \to \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$.

Passing to the limit on the powers of a fixed prime ℓ we get an action on $T_{\ell}(E) = \varprojlim E[\ell^n] \cong \mathbb{Z}^2_{\ell}$, and thus a representation $\rho_{\ell^{\infty}} : \operatorname{Gal}(\overline{K} \mid K) \to \operatorname{GL}_2(\mathbb{Z}_{\ell})$, called ℓ -adic torsion representation. Taking the product over all primes we get a representation $\rho_{\infty} : \operatorname{Gal}(\overline{K} \mid K) \to \operatorname{GL}_2(\hat{\mathbb{Z}})$, called the adelic torsion representation.

We denote by H_z the image of ρ_z for $z \in \mathbb{N} \cup \{\ell^{\infty} \mid \ell \text{ prime}\} \cup \{\infty\}$.

Theorem 2.1 (Serre). The image of ρ_{∞} is open in $\operatorname{GL}_2(\hat{\mathbb{Z}})$. Equivalently, $\rho_{\ell^{\infty}}$ is surjective for almost all primes ℓ and its image is open in $\operatorname{GL}_2(\mathbb{Z}_{\ell})$ for all ℓ .

Recall that a subgroup of $GL_2(\hat{\mathbb{Z}})$ or $GL_2(\mathbb{Z}_\ell)$ is open if and only if it is closed and of finite index. Since

$$\operatorname{GL}_2(\mathbb{Z}_\ell) \supseteq I + \ell M_2(\mathbb{Z}_\ell) \supseteq I + \ell^2 M_2(\mathbb{Z}_\ell) \supseteq \cdots \supseteq I + \ell^n M_2(\mathbb{Z}_\ell) \supseteq \cdots$$

is a fundamental system of neighborhoods of the indentity in $GL_2(\mathbb{Z}_\ell)$, the image of $\rho_{\ell^{\infty}}$ must contain $I + \ell^n M_2(\mathbb{Z}_\ell)$ for some n. We call a minimal such n a parameter of maximal growth for the ℓ -adic torsion representation, and we denote it by n_{ℓ} .

2.2. The Kummer representation. Consider the action of $\operatorname{Gal}(\overline{K} \mid K_N)$ on $N^{-1}\alpha$. Fixing an element $\beta \in N^{-1}\alpha$ we get a map

$$\kappa_N \operatorname{Gal}(\overline{K} \mid K_N) \longrightarrow E[N]$$

$$\sigma \longmapsto \sigma(\beta) - \beta$$

This map does not depend on the choice of β : if fact each $\beta' \in N^{-1}\alpha$ is of the form $\beta' = \beta + T$ for some $T \in E[N]$, thus $\sigma(\beta') - \beta' = \sigma(\beta + T) - \beta - T = \sigma(\beta) + \sigma(T) - \beta - T = \sigma(\beta) - \beta$ since σ fixes E[N].

Moreover, the kernel of κ_N is exactly $\operatorname{Gal}(\overline{K} \mid K_{N,N})$, so that we have an injective map $\operatorname{Gal}(K_{N,N} \mid K_N) \hookrightarrow E[N]$. This tells us in particular that $[K_{N,N} : K_N]$ divides N^2 .

Moreover, from the fundamental Galois theory exact sequence

$$1 \to \operatorname{Gal}(K_{N,N} \mid K_N) \to \operatorname{Gal}(K_{N,N} \mid K) \to \operatorname{Gal}(K_{N,N} \mid K_N) \to 1$$

one sees that H_N acts on $V_N := \operatorname{Im} \kappa_N$ by conjugation. This action coincides with the natural action of $\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$ on $(\mathbb{Z}/N\mathbb{Z})^2$.

3. The ℓ -adic and adelic failures

Elementary field theory gives

$$\begin{split} \frac{N^2}{[K_{N,N}:K_N]} &\stackrel{(*)}{=} \prod_{\substack{\ell \mid N \\ \ell \text{ prime}}} \frac{\ell^{2v_\ell(N)}}{[K_{N,\ell^{v_\ell(N)}}:K_N]} = \\ &= \prod_{\substack{\ell \mid N \\ \ell \text{ prime}}} \frac{\ell^{2v_\ell(N)}}{[K_{\ell^{v_\ell(N)},\ell^{v_\ell(N)}}:K_{\ell^{v_\ell(N)}}]} \cdot \frac{[K_{\ell^{v_\ell(N)},\ell^{v_\ell(N)}}:K_{\ell^{v_\ell(N)}}]}{[K_{N,\ell^{v_\ell(N)}}:K_N]} = \\ &= \prod_{\substack{\ell \mid N \\ \ell \text{ prime}}} \frac{\ell^{2v_\ell(N)}}{[K_{\ell^{v_\ell(N)},\ell^{v_\ell(N)}}:K_{\ell^{v_\ell(N)}}]} \cdot [K_{\ell^{v_\ell(N)},\ell^{v_\ell(N)}} \cap K_N:K_{\ell^{v_\ell(N)}}] \end{split}$$

where (*) holds because the degree $[K_{N,\ell^{v_\ell(N)}}:K_N]$ is a power of ℓ , so the fields $K_{N,\ell^{v_\ell(N)}}$ are linearly disjoint over K_N , and clearly they generate all of $K_{N,N}$.

Definition 3.1. Let ℓ be a prime and N a positive integer. Let $n := v_{\ell}(N)$. We call

$$A_\ell(N) := \frac{\ell^{2n}}{[K_{\ell^n,\ell^n}:K_{\ell^n}]}$$

the ℓ -adic failure at N and

$$B_{\ell}(N) := \frac{[K_{\ell^n,\ell^n} : K_{\ell^n}]}{[K_{N,\ell^n} : K_N]} = [K_{\ell^n,\ell^n} \cap K_N : K_{\ell^n}]$$

the adelic failure at N (related to ℓ). Notice that both $A_{\ell}(N)$ and $B_{\ell}(N)$ are powers of ℓ .

Example 3.2. It is clear that the ℓ -adic failure $A_{\ell}(N)$ can be nontrivial, that is, different from 1. Suppose for example that $\alpha = \ell \beta$ for some $\beta \in E(K)$: then we have

$$K_{\ell^n,\ell^n} = K_{\ell^n}(\ell^{-n}\alpha) = K_{\ell^n}(\ell^{-n+1}\beta),$$

and the degree of this field over K_{ℓ^n} is at most $\ell^{2(n-1)}$, so $\ell^2 \mid A_{\ell}(N)$. In Example 4.4 we will show that the ℓ -adic failure can be non-trivial also when α is strongly ℓ -indivisible.

We have to show the following:

- (1) For every ℓ there is an explicit $a_{\ell} \in \mathbb{N}$ such that $A_{\ell}(N)$ divides $\ell^{a_{\ell}}$ for every N, and $a_{\ell} = 0$ for almost all ℓ .
- (2) For every ℓ there is an explicit $b_{\ell} \in \mathbb{N}$ such that $B_{\ell}(N)$ divides $\ell^{b_{\ell}}$ for every N, and $b_{\ell} = 0$ for almost all ℓ .

4. The ℓ -adic failure

In case $\rho_{\ell^{\infty}}$ is surjective, the following result takes care of the ℓ -adic failure:

Theorem 4.1 (Jones-Rouse, [1, Theorem 5.2]). Assume that $\rho_{\ell^{\infty}}$ is surjective and that α is ℓ -indivisible in E(K). If $\ell = 2$ assume moreover that $K_{2,2} \not\subseteq K_4$. Then $A_{\ell}(N) = 1$ for every N.

When the ℓ -adic torsion representation is not surjective and the point α is not necessarily indivisible, it is still possible to bound the ℓ -adic failure by "how much" the hypotheses of the Theorem fail.

In particular, a bound on the divisibility of the point α in the tower of ℓ -power division field tells us that there exist some non-trivial elements in V_{ℓ^n} for n big enough.

Lemma 4.2. If $\alpha \in E(K)$ is not ℓ^{d+1} -divisible over $K_{\ell^{\infty}}$, then $V_{\ell^{\infty}}$ contains a vector of valuation at most d.

Then, if H_{ℓ^n} is big enough, we can use the action of H_{ℓ^n} on V_{ℓ^n} to move this element around and make V_{ℓ^n} larger.

Lemma 4.3. Suppose that $V_{\ell^{\infty}}$ contains a vector of valuation at most d and that H_{ℓ^n} contains all matrices that are congruent to the identity modulo ℓ^n . Then $V_{\ell^{\infty}}$ contains $\ell^{d+n}\mathbb{Z}^2_{\ell}$.

Idea of proof. Assume that $v:=\ell^d\mathbf{e}_1\in V_{\ell^\infty}$. Then for any $g=I+\ell^nM\in H_{\ell^\infty}$ we have $V_{\ell^\infty}\ni gv-v=\ell^{n+d}M\mathbf{e}_1$. Letting M vary we get all of $\ell^{d+n}\mathbb{Z}_\ell^2$.

In the proposition above we can take $n=n_\ell$, so it remains to bound the divisibility of α in K_{ℓ^n} . First of all, write $\alpha=\ell^{d(\alpha,K)}\beta+T$, where $\beta\in E(K)$ is indivisible in $E(K)/E(K)_{\mathrm{tors}}$ and $T\in E(K)$ has order a power of ℓ . We call $d(\alpha,K)$ the ℓ -divisibility parameter of α over K.

The point β may not be indivisible in $E(K_{\ell^n})/E(K_{\ell^n})_{\text{tors}}$, so the ℓ -divisibility of α may increase.

Example 4.4. Consider the elliptic curve E over \mathbb{Q} given by the equation

$$y^2 + y = x^3 - 216x - 1861$$

with Cremona label 17739g1. We have $E(\mathbb{Q}) \cong \mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$, with a generator of the free part given by $P = \left(\frac{23769}{400}, \frac{3529853}{8000}\right)$, which is indivisible in $E(\mathbb{Q})/E(\mathbb{Q})_{\text{tors}}$.

The 3-torsion field of E is given by $\mathbb{Q}(z)$, where z is any root of $x^6 + 3$. Over this field the point

$$Q = \left(\frac{803}{400}z^4 - \frac{416}{400}z^2 + \frac{507}{400}, \frac{89133}{8000}z^4 - \frac{199071}{8000}z^2 - \frac{95323}{8000}\right) \in E(\mathbb{Q}(z))$$

is such that 3Q = P.

From the study of the cohomology groups $H^1(H_{\ell^k}, E[\ell^n])$ it follows that this phenomenon is also bounded by n_ℓ .

Proposition 4.5. If
$$\alpha = \ell^{d(\alpha,K)}\beta + T$$
 with β and T as above, then $d(\alpha,K_{\ell^{\infty}}) \leq d(\alpha,K) + n_{\ell}$.

It follows that that we can take $a_{\ell} = 4n_{\ell} + 2d$ for all the finitely many primes such that the ℓ -adic torsion representation is not surjective or $d(\alpha, K) \neq 0$, and $a_{\ell} = 0$ for all other primes.

5. The adelic failure

Recall that the adelic failure is $B_{\ell}(N) = [K_{\ell^n,\ell^n} \cap K_N : K_{\ell^n}]$, where $\ell = v_{\ell}(N)$. Let $R = N/\ell^n$ and consider the following diagram:

It is clear that $B_{\ell}(N) = [F:T]$, so we want to bound this quantity.

The extension $F \mid T$ is abelian, and if T = K one can - with a bit of work - conclude that $[F : K] \mid \ell^{2n_\ell}$. A result of Campagna and Stevenhagen tells us that there is a finite and explicit set of primes S, depending only on E and K, such that T = K holds for every $\ell \notin S$.

For the finitely remaining primes, one sets $\tilde{K}=\prod_{p\in S}K_p$ and repeats the argument: now we do have $\tilde{K}_{\ell^n}\cap \tilde{K}_R=\tilde{K}$, and $[\tilde{F}:\tilde{T}]$ divides $[\tilde{K}:K]\cdot \ell^{2\tilde{n}_\ell}$, where \tilde{n}_ℓ is the usual parameter for E/\tilde{K} . It is not hard to see that $\tilde{n}_\ell\leqslant n_\ell+v_\ell([\tilde{K}:K])$.

If follows that one can take $b_\ell = 2n_\ell + 3v_\ell([\tilde{K}:K])$ for the finitely primes ℓ that DO NOT satisfy the following conditions:

- $\rho_{\ell^{\infty}}$ is surjective;
- $\ell \in S$;
- α is ℓ -indivisible in $E(K)/E(K)_{\text{tors}}$;

and $b_{\ell} = 0$ for all ℓ that satisfy all the conditions above.

REFERENCES

- [1] R. Jones, J. Rouse, Galois Theory of Iterated Endomorphisms.
- [2] LOMBARDO, D. TRONTO, S., Explicit Kummer Theory for Elliptic Curves, preprint arXiv:1909.05376.
- [3] RIBET, K., Kummer theory on extensions of abelian varieties by tori, Duke Math. J. 46 (1979), 745–761.