Modelos de precios y teoría de portafolio

Gabriel Vergara Schifferli

2 Noviembre 2021

Modelos de precios para considerar en umbrales sostenibles para la gestión de riesgo en portafolios de crypto activos.

Agenda

- 1. Retornos
- 2. Ejemplos de series
- 3. Variables exógenas
- 4. Teoría de portafolio
- 5. Estructura de portafolio

Retornos

Retorno simple

Manteniendo un activo por un periodo simple desde t-1 hasta t, se tiene el rendimiento bruto considerando el precio en tiempo t, P_t :

$$1 + R_t = \frac{P_t}{P_{t-1}} \iff P_t = P_{t-1}(1 + R_t)$$

entonces el retorno simple :

$$R_t = \frac{P_t}{P_{t-1}} - 1 = \frac{P_t - P_{t-1}}{P_t}$$

Retorno multiperiodo

Ahora, considerando el mantener un activo por k periodos, se tiene el rendimiento bruto $R_t[k] = \frac{P_t - P_{t-k}}{P_{t-k}}$:

$$1 + R_{t}[k] = \frac{P_{t}}{P_{t-k}} = \frac{P_{t}}{P_{t-1}} \frac{P_{t-1}}{P_{t-2}} \cdots \frac{P_{t-k+1}}{P_{t-k}}$$
$$= (1 + R_{t})(1 + R_{t-1}) \cdots (1 + R_{t-k+1})$$
$$= \prod_{j=0}^{k-1} (1 + R_{t-j})$$

Como $R_{\rm f}[k]$ es un rendimiento sobre k periodos para "anualizarlo" o llevarlo a la misma unidad de periodo:

$$\textit{Annualized}\{R_t[k]\} = \left[\prod_{j=0}^{k-1} (1 + R_{t-j})\right]^{1/k} - 1 = \exp\left\{\frac{1}{k} \sum_{j=0}^{k-1} \ln(1 + R_{t-j})\right\} - 1$$

esto es, el rendimiento bruto medio es la media geométrica de los rendimientos brutos de cada periodo.

Si R_t es suficientemente pequeño, entonces $ln(1+R_t) \approx R_t$

Log-Retornos

considerando $p_t = ln(P_t)$ el log-precio, se tiene que:

$$r_t = ln(1 + R_t) = ln \left[\frac{P_t}{P_{t-1}} \right] = p_t - p_{t-1}$$

luego, el log-retorno en k periodos:

$$r_t[k] = ln(1 + R_t[k]) = \sum_{j} ln(1 + R_{t-j}) = \sum_{j} r_{t-j}$$

y se tiene las relacaciones

$$r_t = ln(1 + R_t) \iff R_t = e^{r_t} - 1$$

 $P_t = P_{t-1}(1 + R_t) \iff P_t = P_{t-1}e^{r_t}$

Además,

$$R_t \in [-1, \infty), \quad r_t \in \mathbb{R}$$

Aproximación de retornos

Por expansión de Taylor:

$$ln(x) = ln(x_0) + \frac{1}{x_0}(x - x_0) + h(x)(x - x_0)$$

Considerando que $x=1+R_t$ y $x_0=1$ se tiene que

$$ln(1+R_t) = ln(1) + \frac{1}{1}(1+R_t-1) + h(1+R_t)(R_t)
r_t = R_t + h(1+R_t)R_t$$

Modelo de precios

Considerando la serie de log-retornos $\{r_t,\ t\in\mathbb{N}\}$ y el modelo:

$$\begin{cases} r_t = & \mu_t + a_t & \textit{return ec.} \\ \mu_t = & \phi_0 + \phi_1 r_{t-1} & \textit{mean ec.} \\ a_t = & \sigma_t \varepsilon_t \\ \sigma_t^2 = & \alpha \sigma_{t-1}^2 + (1-\alpha) a_{t-1}^2 & \textit{volatiliy ec.} \\ \varepsilon_t \sim & \textit{N}(0,1) & \textit{error dist.} \end{cases}$$

esto es, $r_t \sim AR(1) - IGARCH(1,1) - norm$,

se tiene que
$$r_t = \mu_t + \sigma_t \epsilon_t \Rightarrow r_t \sim \textit{N}(\mu_t, \sigma_t^2)$$

Luego considerando los predictores a paso h:

$$r_t(h) = E(r_{t+h}|\mathcal{F}_t)$$

 $\sigma_t^2(h) = E(\sigma_{t+h}^2|\mathcal{F}_t)$

donde \mathcal{F}_t es la información disponible hasta t.

Entonces, bajo errores normales $(\epsilon_t \sim \textit{N}(0,1))$, se tiene que

$$\begin{aligned} r_t(1) &= & E(r_{t+1}|\mathcal{F}_t) = \phi_0 + \phi_1 r_t \\ \sigma_t^2(1) &= & E(\sigma_{t+1}^2|\mathcal{F}_t) = \alpha \sigma_t^2 + (1-\alpha)a_t^2 \\ \hat{r}_{t+1} \sim & N(r_t(1), \sigma_t^2(1)) \end{aligned}$$

Por lo tanto, se tiene que el predictor del precio P_{t+1} viene dado por:

$$\hat{P}_{t+1} = P_t e^{\hat{r}_{t+1}} \iff \hat{p}_{t+1} = p_t + \hat{r}_{t+1}$$

luego,

$$\hat{p}_{t+1} \sim \textit{N}(p_t + r_t(1), \sigma_t^2(1)) \iff P_{t+1} | \mathcal{F}_t \sim \textit{LN}(p_t + r_t(1), \sigma_t^2(1))$$

Ejemplos de series

Proceso fuertemente estacionario:

Un proceso $\{x_t: t \in T\}$ se dice fuertemente estacionario si la distribución conjunta de cualquier conjunto finito $\{x_{t_1}\dots x_{t_n}\}$ es invariante ante traslaciones, es decir, si $t_1,\dots t_n \in T$ y h tal que $\{t_1+h,\dots t_n+h\} \in T$ se debe cumplir que

$$\mathbb{P}[x_{t_1} \leq x_1, \dots, x_{t_n} \leq x_n] = \mathbb{P}[x_{t_{1+h}} \leq x_1, \dots, x_{t_{n+h}} \leq x_n].$$

Corolario:

Para un proceso $\{x_t:t\in T\}$ fuertemente estacionario tal que $\mathbb{E}[x_t]<\infty\ \forall t$, entonces la media $\mathbb{E}[x_t]$ es constante para todo t. El caso análogo para la varianza.

Proceso débilmente estacionario:

Un proceso $\{x_t: t\in T\}$ se dice débilmente estacionario si $\mathbb{E}[x_t^2]<\infty$ para todo t, y su media $\mathbb{E}[x_t]$ es contante y además la covarianza $Cov[x_t,x_{t+h}]$ solo depende del rezago h para todo h tal que $t+h\in T$.

- Propiedades estadísticas del proceso se mantienen constantes en el tiempo.
- Todos los valores del proceso son comparables.

Figure 1: Gráficos de precios de BNB/USDT y retornos logarítmicos con frecuencia horaria en un periodo de 5 meses. Descargados desde *Binance-python* API.

Estadísticas de Resumen

Estadísticas	BNB/USDT
N° obs.	3665
Mínimo	-0.153333
Q1	-0.004623
Mediana	0.000269
Media	0.000152
Q3	0.005320
Máximo	0.086442
Desv. std.	0.010651
Asimetría	-0.844992
Curtosis	20.77724

(a) Tabla resumen de estadísticas.

- (b) Histograma de retornos logarítmicos.
- Augmented Dickey-Fuller H0: Serie no estacionaria

 $PValue < 0.01 \Rightarrow Serie estacionaria$

Phillips-Perron H0: Serie tiene raíz unitaria

 $\mathsf{PValue} < 0.01 \Rightarrow \mathsf{Serie} \; \mathsf{estacionaria}$

Figure 3: Función de autocorrelación y autocorrelación parcial para log-retornos de BNB USDT.

- Ljung-Box H0 : Son independientes
 - Lag 1 PValue $= 0.8441 \Rightarrow$ No hay autocorrelación de orden 1
 - Lag 2 PValue = $0.4034 \Rightarrow No hay autocorrelación de orden 2$
 - Lag 3 PValue $= 0.0911 \Rightarrow$ No hay autocorrelación de orden 3

Figure 4: Función de autocorrelación y autocorrelación parcial para log-retornos cuadráticos de BNB USDT.

Simulaciones

Para la serie de retornos se estimaron los siguientes modelos para luego realizar una simulación de una serie de precios.

- ARMA-norm
- GARCH-norm
- IGARCH-norm
- gjrGARCH-sstd
- ARMA-eGARCH-std
- MS-GARCH-gjrGARCH-norm-sstd

Se estimó el modelo, se generó la data sintética r_t para una trayectoria de 1000 valores, luego se construyó la serie de precios sumando una constante para deja la escala similar a la serie de BNB/USDT.

Figure 5: $p_t = -0.3p_{t-1} + 0.1p_{t-2} + 0.1a_{t-1} + a_t$, std = 0.01065058, $a_t \sim N(0, std^2)$

Figure 6: $p_t = -0.3p_{t-1} + 0.1p_{t-2} + 0.1a_{t-1} + a_t$, std = 0.01065058, $a_t \sim N(0, std^2)$

Variables Exógenas

ARMA-X

$$r_t = \phi + \underbrace{\sum_{i=1}^p \phi_i r_{t-i}}_{\textit{autorregresivo}} + \underbrace{\sum_{i=1}^q \theta_i a_{t-i}}_{\textit{media m\'ovil}} + \underbrace{\sum_{i=1}^b \eta_i u_i}_{\textit{ex\'ogeno}} + \underbrace{a_t}_{\textit{innovaci\'or}}$$

- Volumen de transacción
- Índice de sentimiento
- Índice de volatildiad (VIX)
- RSI, RVI, TRIX, VI, SMI...

Mixed Data Sampling (MIDAS)

- $\{y_t, t \in \mathbb{Z}\}$ proceso de baja frecuencia (LF)
- $\{x_{\tau}, \ \tau \in \mathbb{Z}\}$ un proceso de alta frecuencia (HF)

entonces en cada periodo t se observa el proceso x_{τ} en $m \in \mathbb{N}$ periodos de alta frecuencia con $\tau = (t-1)m+j, \ j=1,\dots,m$. entonces se tiene la regresión MIDAS:

MIDAS Regression

$$y_t = \sum_{j=1}^{p} \alpha_1 y_{t-j} + \sum_{j=1}^{m} \beta_j x_{tm-j} + \varepsilon_t$$

Formulación vectorial de la regresión MIDAS

$$\mathbf{m} = \mathbf{6}, \ \mathbf{p} = \mathbf{1}$$

$$\begin{pmatrix} y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_{n-1} \end{pmatrix} \alpha_1 + \begin{pmatrix} x_6 & \dots & x_1 \\ \vdots & \vdots & \vdots \\ x_{3n} & \dots & x_{3n-5} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_5 \end{pmatrix} + \begin{pmatrix} \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$
Por cada observación de y_t se tienen 6 observaciones de x_T

Portafolio de Markowitz

- Considerando r_i los retornos de los activos x_i
- Además, si r_i no es independiente de r_i
- Considerando una distribución normal

Entonces se tiene que $r = (r_1, \dots, r_n)^T \sim N_n(\mu, \Sigma)$.

Por lo tanto, si $w = (w_1, \dots, w_n)^T$ son los pesos asignados a cada activo x_i :

- $w^T 1 = 1$
- $w_i \ge 0 \ \forall i$ si no hay short selling
- $\Rightarrow w^T r \sim N(w^T \mu, w^T \Sigma w)$

Considerando el portafolio $P_w = w^T r$, se tiene que

- $E(P_w) = \mu_P = w^T \mu$
- $Var(P_w) = \sigma_P^2 w^T \Sigma w \Rightarrow \text{volatilidad o riesgo: } \sqrt{w^T \Sigma w}$
- $\min_i \mu_i \leq \mu_P \leq \max_i \mu_i$

Portafolio de mínima varianza

$$\begin{aligned} \min_{w} & Var(P_{w}) = w^{T} \Sigma w \\ (PMV) & s.a. \\ & w^{T} \mathbf{1} - 1 = 0 \\ & w_{i} \geq 0 \ \forall i \end{aligned}$$

EF

$$\min_{w} Var(P_{w}) = w^{T} \Sigma w$$

$$(EF) \quad s.a.$$

$$w^{T} 1 - 1 = 0$$

$$E(P_{w}) = w^{T} r = r_{p}$$

$$w_{i} > 0 \ \forall i$$

Se resuelve para $r_p=w^Tr_{PMV}$ hasta $r_p=\max\{r_i\}$ si es que no existe dominancia sobre (r_{max},σ_{max}^2) , entonces se tiene una frontera en la cual se tienen todas todas las combinaciones de máximo retorno esperado dado un nivel de riesgo σ_p^2

Figure 7: Rentabilidad bruta de los activos durante un periodo de 5 meses. Rentabilidad Bruta = $\frac{P_t}{P_0}$.

Considerando el sistema dinámico

$$\begin{cases} w_{t+1} = D(w_t, u_t, R_t) & 0 \le t \le T \\ w_0 = w_0 \\ l_j(t, w_t, u_t, R_t) \ge \theta_j & j = 1, 2, \dots, p \end{cases}$$

donde $w_t = (x_t, y_t)$ con x_t los cryptoactivos e y_t nuestro activo libre de riesgo (FIAT) e.g. USDT y R_t el vector de retornos de los activos en tiempo t.

Se tiene que $w_t^T 1 = 1$ y $0 \le w_{i_t} \le 1 \ \forall i, t.$

Entonces, si se tiene 700USD, con $w_t = (0.7, 0.3)$ y x_t tuvo una rentabilidad del 5% ($R_t = 0.05$)

$$\begin{pmatrix} x_{t+1} \\ y_{t+1} \end{pmatrix} = D(w_t, R_t) = \frac{1}{x_t(1+R_t) + y_t} \begin{pmatrix} x_t(1+R_t) \\ y_t \end{pmatrix}$$

en monto se tendría 724.5USD y $w_{t+1} = (0.71, 0.29)$

o equivalentemente en monto (514.5, 210)

más generalmente, con
$$x_t = (x_t^{(1)}, \dots, x_t^{(n)})^T$$
 y $R_t = (R_t^{(1)}, \dots, R_t^{(n)})^T$
$$(x_{t+1}^T, y_{t+1})^T = \frac{1}{x_t^T (\mathbf{1}_n + R_t) + y_t} diag[\mathbf{1}_{n+1} + (R_t^T, 0)](x_t^T, y_t)^T$$

Entonces, aplicando una decisión de venta de activos en tiempo t, $u_t = (u_t^{(1)}, \dots, u_t^{(n)})$ asumiendo que se realiza al inicio del periodo t, es decir, al momento de realizarse la proporción del activo $x^{(i)}$ es exactamente $x_t^{(i)}$, por lo tanto, la cantidad de FIAT y_t crece y se tiene que:

$$y_{t+1} = \frac{y_t - u_t^T x_t}{(x_t + \sum_{i=1}^n e_i x_t^{(i)} u_t^{(i)})^T (\mathbf{1}_n + R_t) + y_t - u_t^T x_t}$$

utilizando la convención de signo que $u^{(i)}>0$ es compra y $u^{(i)}<0$ es venta

$$x_{t+1}^{(i)} = \frac{x_t^{(i)}(1+u_t^{(i)})(1+R_t^{(i)})}{(x_t+\sum_{i=1}^n e_i x_t^{(i)} u_t^{(i)})^T (\mathbf{1}_n+R_t) + y_t - u_t^T x_t}$$

VaR en múltiples posiciones

En el caso de 2 activos:

$$\rho_{12} = \frac{\textit{Cov}(\textit{r}_{1t}, \textit{r}_{2t})}{\sqrt{\textit{VaR}(\textit{r}_{1t})\textit{VaR}(\textit{r}_{2t})}}$$

entonces,

$$VaR = \sqrt{VaR_1^2 + VaR_2^2 + 2
ho_{12}VaR_1VaR_2}$$

En el caso de m activos:

$$VaR = \sqrt{\sum_{i=1}^{m} VaR_i^2 + 2\sum_{i < j}^{m} \rho_{ij} VaR_i VaR_j}$$

Métricas de riesgo

Coherencia

Una métrica de riesgo ρ aplicada a las posiciones $\mathcal{Y}, \mathcal{Y}_1$ y \mathcal{Y}_2 es coherente ssi cumple las sguientes codiciones (Artzner et al. 1999):

1. Invarianza ante traslaciones:

Sumando un retorno constante c al retorno total, el riesgo se reducen en la misma cantidad

$$\rho(\mathcal{Y} + c) = \rho(\mathcal{Y}) - c$$

2. Homogeneidad:

$$\rho(\lambda \mathcal{Y}) = \lambda \rho(\mathcal{Y}), \quad \lambda > 0$$

3. Monotonicidad:

Si la posición \mathcal{Y}_1 es 1° orden-estocásticamente dominante de la posición \mathcal{Y}_2 (\mathcal{Y}_1 tiene mayor retorno que \mathcal{Y}_2 en cualquier estado), entonces se tiene que

$$F_{\mathcal{Y}_1}(x) \le F_{\mathcal{Y}_2}(x); \quad \rho(\mathcal{Y}_1) \le \rho(\mathcal{Y}_2)$$

esto es, \mathcal{Y}_1 domina a \mathcal{Y}_2

4. Subaditividad:

$$\rho(\mathcal{Y}_1 + \mathcal{Y}_2) \le \rho(\mathcal{Y}_1) + \rho(\mathcal{Y}_2)$$

Métricas de riesgo

Consistencia y Elicitablilidad

Considerando I el intervalo de los posibles resultados, y $\mathcal F$ la CDF concentrada en I.

- 1. una función de Scoring es una función $\mathcal{F}-$ integrable $S:I\times I\to\mathbb{R}$
- 2. S es F—consistente para un funcional $T: \mathcal{F} \to I$ si $E(S(T(F)), F) \le E(S(x, F)) \ \forall F \in \mathcal{F} \ y \ \forall x \in I$
- 3. S es estrictamente \mathcal{F} -consistente oara T si es \mathcal{F} -consistente para T y $E(S(T(F)),F)=E(S(x,F))\Rightarrow x=T(F)\ \forall F\in\mathcal{F}\ \forall x\in I$
- 4. Un funcional $T: \mathcal{F} \to I$ es elicitable si existe función de scoring estrictamente \mathcal{F} -consistente para la función T.

- Coherencia ⇒ medir riesgo apropiadamente en multiples posiciones.
- Consistencia y Elicitabilidad ⇒ Necesario para construir tests.

Quantile Loss

$$QL_t^{\alpha}(r_t) = (\alpha - I_t(\alpha))(r_t - VaR_t^{\alpha})$$

FZL

De una familia más general (Fissler y Ziegel 2016), una forma particular: (funciones de scoring fuertemente consistentes para VaR y ES)

$$S(VaR_t^{\alpha}, ES_t^{\alpha}, r_t) = \frac{1}{-ES_t^{\alpha}} \left(ES_t^{\alpha} - VaR_t^{\alpha} + \frac{(VaR_t^{\alpha} - r_t)1_{\{r_t < VaR_t^{\alpha}\}}}{\alpha} \right) + In(-ES_t^{\alpha})$$

- VaR falla en la subaditividad (coherencia).
- ES falla en elicitabilidad.
- (VaR, ES) es elicitable.

Modelos de precios y teoría de portafolio

Gabriel Vergara Schifferli

2 Noviembre 2021

Modelos de precios para considerar en umbrales sostenibles para la gestión de riesgo en portafolios de crypto activos.