Stochastic Integration – II

Jianing Yao
Department of MSIS-RUTCOR
Rutgers University, the State University of New Jersey
Piscataway, NJ 08854 USA

March 30, 2015

1 Second Order Taylor Polynomials and Remainder

1.1 Functions of a scalar variable

Let f be a function defined on \mathbb{R} and let $a \in \mathbb{R}$, the second order Taylor polynomial of f at a is

$$P_{2,a}(x) = f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^{2}$$

It is the unique quadratic function satisfying $P_{2,a}(a) = f(a)$, $P'_{2,a}(a) = f'(a)$ and $P''_{2,a}(a) = f''(a)$. The remainder $R_a(x)$ is defined by

$$f(x) = P_{2,a}(x) + R_a(x)$$

= $f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2 + R_a(x)$

 $P_{2,a}$ should be thought of as a quadratic approximation to f near a; $R_a(x)$ is the difference between f and $P_{2,a}$. How good is it?

Theorem 1.1 If f, f' and f'' exist and are continuous everywhere,

$$\lim_{x \to a} \frac{|R_a(x)|}{(x-a)^2} = 0 \tag{1}$$

Thus $|R_a(x)|$ is an order of magnitude smaller than the quadratic terms in $P_{2,a}(x)$ as $x \to a$.

1.2 Multi-variable Function

Now, we consider function of multiple arguments, $f: \mathbb{R}^{\ltimes} \to \mathbb{R}$, i.e., $f(x_1, x_2, ..., x_n)$ for $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$.

Definition 1.1 $f \in C^2$ if f_{x_i} , f_{x_i,x_j} exist and are continuous for all i and j, $1 \le i, j \le n$. Here,

$$f_{x_i}(x) = \frac{\partial f}{\partial x_i}(x), \ f_{x_i,x_j}(x) = \frac{\partial^2 f}{\partial x_i \partial x_j}(x)$$

The second order Taylor polynomial of f at $a = (a_1, ..., a_n)$ is

$$P_{2,a}(x) = f(a) + \sum_{i=1}^{n} f_{x_i}(a)(x_i - a_i) + \frac{1}{2} \sum_{i,j=1}^{n} f_{x_i,x_j}(a)(x_i - a_i)(x_j - a_j)$$

In the case n=2, $P_{2,a}(x)$ written out is

$$P_{2,a}(x) = f(a) + f_{x_1}(a)(x_1 - a) + f_{x_2}(a)(x_2 - a_2) + \frac{1}{2}f_{x_1,x_2}(a)(x_1 - a)^2 + f_{x_1,x_2}(a)(x_1 - a)(x_2 - a_2) + \frac{1}{2}f_{x_2,x_2}(a)(x_2 - a_2)^2$$
(2)

Similarly, $R_{2,a}(x)$ is defined as

$$f(x) = P_{2,a}(x) + R_a(x) \tag{3}$$

Theorem 1.2 If $f \in C^2$,

$$\lim_{x \to a} \frac{|R_a(x)|}{\sum_{i=1}^n (x_i - a_i)^2} = 0 \tag{4}$$

Again, $R_a(x)$ is of an order smaller than the term in $P_{2,a}(x)$ as $x \to a$.

1.3 Convenient Form

For function of a scalar variable, we can express Taylor formula as follows:

$$f(y + \Delta y) - f(y) = f'(y)\delta y + \frac{1}{2}f''(y)\Delta y^2 + o((\Delta y)^2)$$
 (5)

Here, $\lim_{\Delta y \to 0} \frac{o(\Delta y)^2}{(\Delta y)^2} = 0$. For function of *n*-variables, replacing *a* by $y = (y_1, ..., y_n)$ and *x* by $x = y + \Delta y$, where $\Delta y = (\Delta y_1, ..., \Delta y_n)$,

$$f(y + \Delta y) - f(y) = \sum_{i=1}^{n} f_{x_i}(y) \Delta y_i + \frac{1}{2} \sum_{i,j=1}^{n} f_{x_i,x_j}(y) \Delta y_i \Delta y_j + o(\sum_{i=1}^{n} (\Delta y_i)^2)$$
 (6)

2 Stochastic Calculus

Throughout, $(\Omega, \mathcal{F}, \mathbb{P})$ is the probability space, W is a Brownian motion defined on it and $\{\mathcal{F}_t\}_{t\geq 0}$ is a filtration for W.

2.1 It \bar{o} Process

Definition 2.1 A stochastic process of the form:

$$X(t) = X(0) + \int_0^t \beta(s)ds + \int_0^t \alpha(s)dW(s), \ t \le T.$$
 (7)

where (i) $\{\beta(s)\}_{0 \leq s \leq T}$, $\{\alpha(s)\}_{0 \leq s \leq T}$ are stochastic process adapted to $\{\mathcal{F}_t\}_{t \geq 0}$; (ii) the integrals in (7) are well-defined; and (iii) X(0) is \mathcal{F}_0 -measurable, is called an It \bar{o} process.

Another notation we used to express (7) is the differential form:

$$dX(t) = \beta(t)dt + \alpha(t)dW(t) \tag{8}$$

But why bother with this formal, differential notation? Because differential can be given intuitive meanings that help one understand It \bar{o} calculus conceptually and that help guide modeling and computation using It \bar{o} process. As in ordinary calculus, 'dt' should be thought of as an infinitesimally small increment in the t variable. Differentials of a stochastic process should be thought of as forward increments of the process over a time interval of duration 'dt'; thus

$$dX(t) = X(t+dt) - X(t), \ dW(t) = W(t+dt) - W(t)$$
(9)

Here, forward means that the differential at t is the increment over the time interval [t, t+dt] going forward into the future. Then (8) can be interpreted as saying:

$$X(t+dt) - X(t) = \beta(t)dt + \alpha(t)[W(t+dt) - W(t)]$$
(10)

This expression makes clear that the change in X due to W over an infinitesimally small interval is the product of an \mathcal{F}_t -measurable random variable $\alpha(t)$ – remember, we assume $\alpha(\cdot)$ is adapted to the filtration – times the forward increment W(t+dt)-W(t), which is independent of $\alpha(t)$. That Itō integral are built by adding up such products is a central concept of stochastic calculus. An integral is a limit of sum of increments, so formally, $X(t) - X(0) = \int_0^t dX(s)$. By replacing dX(s) by $\beta(s)ds + \alpha(s)dW(s)$, one is led from the formal expression (8) back to (7). If $\alpha = 0$, the differential notation $dX(t) = \beta(t)dt$ gives a different way to express the ordinary integral $X(t) - X(0) = \int_0^t \beta(s)ds$.

2.2 Differentials and Modeling

Usually one constructs It \bar{o} process models starting from a differential point of view. To illustrate, we write down a generalized *Black-Scholes-Merton* model for the price of a risky asset. Let $\{S(t), 0 \leq t \leq T\}$ denote the price process. The return on owning one share over the time interval [t, t+dt] is

$$\frac{S(t+dt) - S(t)}{S(t)} \tag{11}$$

Think of this as a random value that consists of a known expected rate of return

$$\alpha(t) = \frac{\mathbb{E}\left[\frac{S(t+dt)-S(t)}{S(t)}|\mathcal{F}_t\right]}{dt}$$
(12)

(We condition on \mathcal{F}_t because the rate is known given the information in \mathcal{F}_t) plus an random fluctuation of zero mean around this rate. One way to model this is

$$\frac{dS(t)}{S(t)} = \frac{S(t+dt) - S(t)}{S(t)} = \alpha(t)dt + \sigma(t)dW(t)$$
(13)

where $\sigma(\cdot)$ is an \mathcal{F}_t -adapted volatility process. The fluctuation $\sigma(t)dW(t) = \sigma(t)(W(t+dt) - W(t))$ has variance $\sigma^2(t)dt$ and, since W(t+dt) - W(t) is independent of the past \mathcal{F}_t , it has zero mean. The random input W(t+dt) - W(t) driving the fluctuation in dS(t) is independent of \mathcal{F}_t and hence is not predictable in any way from past information. The model one gets from (13) is thus

$$dS(t) = \alpha(t)S(t)dt + \sigma(t)S(t)dW(t)$$
(14)

where $\alpha(\cdot)$ and $\sigma(\cdot)$ are $\{\mathcal{F}_t\}_{t\geq 0}$ -adapted. This equation is an example of a stochastic differential equation, written in integral form, it is equivalent to:

$$S(t) = S(0) + \int_0^t \alpha(s)S(s)ds + \int_0^t \sigma(s)S(s)dW(s)$$

$$\tag{15}$$

These equations do not give explicit formula for S(t), $t \ge 0$. Rather they specify a condition that S(t) should satisfy. Whether, a solution S(t), $t \ge 0$, to these equation exists is a different matter that will be treated later. When α and σ are non-random and constant, we get the standard *Black-Scholes* price model:

$$dS(t) = \alpha S(t)dt + \sigma S(t)dW(t)$$
(16)

2.3 Products of Differentials

Since integrals are limits of sums over finer and finer partitions, it makes intuitive sense to think of

$$\int_0^t (dW(s))^2 = \lim_{\|\Pi\| \to 0} \sum_{i=1}^n [W(t_{i+1}) - W(t_i)]^2$$
(17)

where Π is a partition of [0, t]. But we know this limit is quadratic variation of Brownian motion leading to the formal identity:

$$\int_0^t (dW(s))^2 = [W, W](t) = t, \ t > 0$$
(18)

Again, one should think of this identity in a purely formal way. By considering its differential form, it suggests the formal identity:

$$(dW(t))^2 = dt (19)$$

To generalize this idea, we will express rigorous identity for quadratic variation and quadratic cross variation using products of differentials; that is

$$dX(t)dY(t) = d[X,Y](t)$$
(20)

where

$$[X,Y] = \lim_{\|\Pi\| \to 0} \sum_{i=1}^{n-1} [X(t_{i_1}) - X(t_i)][Y(t_{i+1}) - Y(t_i)]$$
(21)

It is easy to shown

$$\lim_{\|\Pi\| \to 0} \sum_{i=0}^{n-1} [t_{i+1} - t_i]^2 = 0 \tag{22}$$

$$\lim_{\|\Pi\| \to 0} \sum_{i=0}^{n-1} [t_{i+1} - t_i] [W(t_{i+1}) - W(t_i)] = 0$$
(23)

We will write

$$(dt)^2 = d[t, t] = 0 (24)$$

$$dtdW(t) = d[t, W] = 0 (25)$$

At the formal level, it is valid to apply the usual algebraic rule to products of differentials. Thus, if $dX(t) = \beta(t)dt + \alpha(t)dW(t)$,

$$dX(t)dt = \beta(t)(dt)^2 + \alpha(t)dW(t)dt = 0$$
(26)

$$dX(t)dW(t) = \beta(t)dtdW(t) + \alpha(t)(dW)^{2}(t) = \alpha(t)dt$$
(27)

and

$$(dX(t))^{2} = \beta^{2}(t)(dt)^{2} + 2\beta(t)\alpha(t)dtdW(t) = \alpha^{2}(t)(dW(t))^{2} = \alpha^{2}(t)dt$$
 (28)

3 It \bar{o} 's Rule

Let X(t), $0 \le t \le T$, be an It \bar{o} process, and let f be a function of a real variable. We want to ask: is f(X(t)) an It \bar{o} process; if so, what is d[f(X(t))]?

Let's first investigate the case when $dX(t) = \beta(t)dt$, that is, when

$$X(t) = X(0) + \int_0^t \beta(s)ds$$
 (29)

our question above is answered by the chain rule from calculus.

Proposition 3.1 If f' exists everywhere and is continuous, then, for (29),

$$d(f(X(t))) = f'(X(t))dX(t) = f'(X(t))\beta(t)dt$$
(30)

Proof. By the fundamental theorem of calculus and the chain rule,

$$f(X(t)) - f(X(0)) = \int_0^t \frac{d}{ds} f(X(s)) ds = \int_0^t f'(X(s)) X'(s) ds$$
 (31)

So $f(X(t)) - f(X(0)) = \int_0^t f'(X(s))\beta(s)ds$, which, in differential notation, is $d[f(X(t))] = f'(X(t))\beta(t)dt$.

Now, let's address the stochastic case: assume now that

$$dX(t) = \beta(t)dt + \alpha(t)dW(t)$$
(32)

and that $f \in C^2$. We will assume that f(X(t)) is $It\bar{o}$ process. To formally compute d[f(X(t))], we will formally approximate

$$f(X(t+dt)) - f(X(t)) \tag{33}$$

and keep only term of order dt; that is, any term which go to zero faster then dt will be discarded. Write

$$X(t+dt) = X(t) + dX(t)$$
(34)

By the Taylor polynomial approximation with X(t) in place of y and dX(t) in place of Δy ,

$$d[f(X(t))] = f(X(t+dt)) - f(X(t))$$
(35)

$$= f'(X(t))dX(t) + \frac{1}{2}f''(X(t))(dX(t))^2 + o((dX(t))^2)$$
(36)

But from last section, we know that $(dX(t))^2 = \alpha^2(t)dt$ and so the $o((dX(t))^2)$ term goes to zero faster than dt and may be neglected. Thus

$$d[f(X(t))] = f'(X(t))\beta(t)dt + \frac{1}{2}f''(X(t))\alpha^{2}(t)dt + f'(X(t))\alpha(t)dW(t)$$
(37)

Let's summarize it as a theorem

Theorem 3.2 (Itō's rule, case a) Let $dX(t) = \beta(t)dt + \alpha(t)dW(t)$ be an Itō process. Let $f \in C^2$. Then f(X(t)) is an Itō process and

$$d[f(X(t))] = [f'(X(t))\beta(t) + \frac{1}{2}f''(X(t))\alpha^{2}(t)]dt + f'(X(t))\alpha(t)dW(t)$$
(38)

In integral form:

$$f(X(t)) = f(X(0)) + \int_0^t [f'(X(s))\beta(s) + \frac{1}{2}f''(X(s))\alpha^2(s)]ds + \int_0^t f'(X(s))\alpha(s)dW(s)$$
(39)

Remark 3.3 We almost proved the above theorem (except some technical stuff), let's switch to some comments instead of going into the details of the proof:

1. The novel term appearing in (38) and (39) that does not appear in the chain rule for function of ordinary integrals is the term

$$\frac{1}{2}f''(X(t))\alpha^2(t)dt\tag{40}$$

The fact this term appear is due to entirely to the fact that the quadratic variation of Brownian motion up to time t equals t for all t. This term called $It\bar{o}$ correction term;

2. It can happen that $f \in C^2$ and

$$\mathbb{E}\left[\int_{0}^{T} [f'(X(t))\alpha(t)]^{2} dt\right] = +\infty \tag{41}$$

However, we require this expectation to be finite to define the stochastic integral term:

$$\int_0^t f'(X(s))\alpha(s)dW(s), \ t \le T \tag{42}$$

But, there is really no problem. One can extend the stochastic integral and define $\int_0^t \gamma(s)dW(s)$, $t \leq T$, assuming only that γ is adapted and

$$\mathbb{P}\left(\int_0^T \gamma^2 ds < +\infty\right) = 1\tag{43}$$

This condition will be satisfied for $\gamma(s) = f'(X(s))\alpha(s)$ if $\mathbb{P}\left(\int_0^T \alpha^2(s)ds < +\infty\right) = 1$. However, if it is really infinity, then it may not be a martingale.

Let's give an example:

Proposition 3.4

$$S(t) = S(0) \exp\{ \int_0^t \sigma(s) dW(s) + \int_0^t [\alpha(s) - \frac{1}{2}\sigma^2(s)] ds \}$$
 (44)

solves the price model:

$$dS(t) = \alpha(t)S(t)dt + \sigma(t)S(t)dW(t)$$
(45)

Proof. To show this let $f(x) = S(0) \exp(x)$ and set

$$X(t) = \int_0^t \sigma(s)dW(s) + \int_0^t [\alpha(s) - \frac{1}{2}\sigma^2(s)]ds$$
 (46)

Then, S(t)=f(X(t)) and f'(x)=f"(x)=f(x). Hence, by $\operatorname{It} \bar{o}$'s rule

$$dS(t) = [f'(X(t))[\alpha(t) - \frac{1}{2}\sigma^{2}(t)] + \frac{1}{2}f''(X(t))\sigma^{2}(t)]dt + f'(X(t))\sigma(t)dW(t)$$

$$= S(t)[\alpha(t) - \frac{1}{2}\sigma^{2}(t) + \frac{1}{2}\sigma^{2}(t)]dt + S(t)\sigma(t)dW(t)$$

$$= S(t)\alpha(t)dt + S(t)\sigma(t)dW(t)$$

But actually, it is the unique solution, that is, if we directly solve this stochastic differential equation, we will get (44). How? again, by $\operatorname{It}\bar{o}$'s formula. Let's apply it to $\ln S(t)$,

$$d(\ln S(t)) = \frac{1}{S(t)}d(S(t)) - \frac{1}{2S^{2}(t)}(dS(t))^{2}$$

$$= \frac{1}{S(t)} \left[\alpha(t)S(t)dt + \sigma(t)S(t)dW(t)\right] - \frac{1}{2S^{2}(t)}\sigma^{2}(t)S^{2}(t)dt$$

$$= (\alpha(t) - \frac{1}{2}\sigma^{2}(t))dt + \sigma(t)dW(t)$$

Let's take integral from 0 to T,

$$\ln \frac{S(T)}{S(0)} = \int_0^T (\alpha(t) - \frac{1}{2}\sigma^2(t))dt + \int_0^T \sigma(t)dW(t)$$
 (47)

that is equivalent to:

$$S(T) = S(0) \exp\{\int_0^T (\alpha(t) - \frac{1}{2}\sigma^2(t))dt + \int_0^T \sigma(t)dW(t)\}$$
 (48)

Problem solved!!

To close our discussion, let's give another variants of Itō's rule:

Theorem 3.5 (Itō's rule, case a)Let $dX(t) = \beta(t)dt + \alpha(t)dW(t)$ be an Itō process. Let $f(t,x) \in C^{1,2}$, i.e., $f_t(t,x)$, $f_x(t,x)$ and $f_{xx}(t,x)$ are defined and continuous, then for every $T \geq 0$,

$$f(T, X(T)) = f(0, X(0)) + \int_0^T f_t(t, X(t))dt + \int_0^T f_x(t, X(t))dX(t)$$

$$+ \frac{1}{2} \int_0^T f_{xx}(x, X(t))d[X, X](t)$$

$$= f(0, X(0)) + \int_0^T f_t(t, X(t))dt + \int_0^T f_x(t, X(t))\beta(t)dW(t)$$

$$+ \int_0^T f_x(t, X(t))\alpha(t)dt + \frac{1}{2} \int_0^T f_{xx}(t, X(t))\alpha^2(t)dt$$

The proof is similar to the previous case with algebraic complications.

4 Reference

- 1. Jean Jacod, Philip Protter, "Probability Esentials", Springer, 2004;
- 2. E. Cinlar, "Probability and Stochastics", Springer, 2011
- 3. Daniel, Ocone, "Notes in mathematical finance I 2011"
- 4. Alison Etheridge, "A course in financial calculus", Cambridge, 2002