- 1. Let $f(x,y) = x\cos(xy)$.
 - (a) Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

(b) Find all of the second partial derivatives of f(x, y).

- (c) What can you say about $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$?
- 2. Use the contour plot for f(x,y) below to find the sign of each of the indicated partial derivatives.

- (a) f_x
- (b) f_y
- (c) f_{xx}
- (d) f_{yy}

3. If f(x,y) is as in question 1, use your answer to 1 to find ∇f and $\operatorname{Hess}(f)$ when x=1 and y=0.

4. Find the equation of the plane tangent to $f(x,y) = x^2y + e^{2x-y}$ at the point (1,2).

5. Find the point(s) at which the plane tangent to the surface $z = x^2 + y^2 + x^2y + 4$.

6. The heat index (perceived temperature) I can be modelled as a function of the actual temperature T and the relative humidity H. When $T=94^{\circ}\mathrm{F}$ and H=70%, I is measured to be 118°F. Furthermore, $I_T(94,70)$ is measured to be 3 and $I_H(94,70)$ is measured to be 0.5. Estimate I(95,72).