Language Models are Unsupervised Multitask Learners

Presented by: Adam Zelzer, Nitzan Ron

Introduction

About the Paper

- Alec Radford, Jeffrey Wu, Rewon Child, David Luan, A paper by **(g) OpenAl** employees and founders: Dario Amodei and Ilya Sutskever.
- Published in 2019.
- Describes GPT-II, the second generation of GPT models.

What is a Language Model?

to predict the next word in a sentence based on its previous A language model is a machine learning model that is able content.

Prior Work

Previous Models

The field of NLP was relatively new at the time. There were a couple of different attempts and approaches to language modeling:

ELMo (University of Washington, 2018)
BERT (Google, 2018)
MQAN (Salesforce, 2018)
GPT-I (OpenAI, 2018)

Embeddings from Language Model.

ELMo Embeddings

- Based on an LSTM architecture.
- Provides context sensitive word embeddings.
- Fine-tuned for specific tasks.

- Bidirectional Encoder
 Representations from
 Transformer.
- Trained in a semi-supervised setting.
- Can be Fine-tuned for specific tasks, such as QA.

MOAN

- Multi-task Question
 Answering Network.
- Utilizes both LSTMs and transformers.
- Multitask learner.
- Typically fine-tuned for specific tasks (QA).

GPT-I

- **G**enerative **P**re-trained **T**ransformer.
- Predecessor to GPT-II.
- Trained in an unsupervised setting.
- General purpose model, able to generate coherent text.

Main Idea - MORE!

Language Modeling

Language is structured in a sequential ordering.

Given a sequence of symbols $x=(s_1,\ldots,s_n)$, the model estimates the distribution:

$$p(x) = \prod_{i=1}^{n} p(s_i|s_1, \dots, s_{i-1})$$

Multitask Learning

Instead of learning: p(output | input)

We can learn: p(output | input, task)

This can be done easily with language modeling, using training examples of the form:

(task, input, output)

For example:

(translate from language A to B, <text in language A>, <text in language B>) label input task

Required Dataset

contain task descriptions, text inputs and labels would be needed. There is no such dataset, and creating one is an To achieve multitask learning, a dataset whose objects immense job.

Solution - Unsupervised Learning

The researchers conjectured that an unlabeled, yet large, high demonstration tasks in different domains that would help the quality, and diverse dataset would include enough language model learn them.

This conjecture resulted in the creation of the WebText database.

Training Data - Prior Work

Most prior work trained language models on a single domain of text.

Common Crawl

Dataset containing web-page text, scraped from billions of pages.

Large

Diverse

WebText

Dataset containing Reddit pages whose Karma rating is 3 and above.

High-quality

Resulting Dataset

Resulting dataset statistics (after deduplication):

- **45M** links
- 8M documents
 - **40GB** of text

Naturally Occurring Tasks

Example of naturally occurring demonstrations of different tasks found throughout the WebText training set: "I'm not the cleverest man in the world, but like they say in French: Je ne suis pas un imbecile [I'm not a fool]. phrase in French language indicator phrase in English

Model and details

Mode

- Word embedding
- Positional encoding
- Masked attention
- Feed-forward network
- Softmax

GPT-II - Model Sizes

Compared to GPT-I

GPT-I is equivalent to the smallest size of GPT-II in terms of architecture, with the exception of the following:

- Layer normalization was moved to the input of each Transformer block.
- Context size was increased from 512 to 768.
- Batch size was augmented from 64 to 512.
- Vocabulary size was expanded from 40,000 tokens to 50,257.

Results

Perplexity

Perplexity measures a language model's uncertainty in predicting the next word, with lower values indicating better performance, the model predicts the data well.

$$Perp(x) = \frac{1}{\sqrt[n]{p(x)}}$$

Zero-Shot Results

1BW (PPL)	21.8	75.20	55.72	44.575	42.16
PTB (PPL)	46.54	65.85	47.33	40.31	35.76
WikiTex-t2 (PPL)	39.14	29.41	22.76	19.93	18.34
CBT-CN (ACC)	85.7	87.65	92.35	93.45	93.30
LAMBADA (ACC)	59.23	45.99	55.48	60.12	63.24
LAMBADA (PPL)	8.66	35.13	15.60	10.87	8.63
	SOTA	M7IT	345M	762M	1542M

Zero-Shot Results

Winograd Schema Challenge

"The **trophy** doesn't fit into the brown suitcase because **it** is too large."

"The trophy doesn't fit into the brown suitcase because it is too small."

In both cases, the model succeeded.

Summarization

- Added text **TL; DR:** after the article and generated 100 tokens with Top 2 random sampling.
- Utilized CNN and Daily Mail datasets.
- Used 3 generated sentences from these 100 tokens to create the summary.

Generalization vs. Memorization

It is important to analyze how much test data also shows up in the training data to assess the generalization error accurately.

	PTB	WikiText-2	enwik8	text8	WikiText-103	1BW
Dataset train	2.67%	0.66%	7.50%	2.34%	%60'6	13.19%
WebText train	0.88%	1.63%	6.31%	3.94%	2.42%	3.75%

WebText Underfitting

What's next?

Practical Performance

zero-shot performance of GPT-II is still far from usable, and quantitative metrics. In terms of practical applications, the While the model is qualitatively performing the tasks, its performance is still only rudimentary according to often no better than random for many tasks.

In addition, many other practical tasks remain to be evaluated.

Fine-tuning

specific tasks and purposes. Thus, the potential with The work done so far did not include fine-tuning for fine-tuning remains unclear. The researchers plan to explore fine-tuning on different benchmarks in order to improve results.

Our thoughts

More parameters seem to improve the model substantially, so it is natural to try increasing model size.

| neural | neural | data | dat

Conclusions

Summary and Conclusions

- A LLM trained on a sufficiently large and diverse dataset is able to perform well across many domains.
- GPT-II demonstrates SOTA performance on 7 out of 8 tested language modeling datasets.
- corpus allows a model to learn how to perform many Maximizing the likelihood of a sufficiently varied text tasks without the need for explicit supervision.

A thought-provoking question

OpenAl didn't release the code for the GPT-II model.

Why do you think that is?

Do you agree with their choice?

