Demand Side Management for a Campus Infrastructure

TEAM MEMBERS

BATCH: A6 ASWIN NATESH. V (212712105023)

TYPE: IN-HOUSE

BADRI NARAYANAN. N (212712105025)

GUIDE: DR. SG BHARATHI DASAN

GANDHI RAJAN. R

(212712105031)

MOHAMED SAQIB. A (212712105061)

Sri Venkateswara College of Engineering

Pennalur, Sriperumbudur Taluk Anna University: Chennai 600 025

Project Objectives

- To reduce the peak electricity demand by:
 - Improving the load curve
 - Proper Utilization of Diesel Generators
 - Effective utilization of existing Photovoltaic Panels

Abstract

- Due to large industrial and overall development of the country, demand for electricity has seen to be exponentially increased during last decade.
- Demand side management (DSM) is one of the important functions in a grid that allows consumers to make informed decisions regarding their energy consumption, and helps the energy providers reduce the peak load demand and reshape the load profile.
- A load shifting demand side management technique is utilized here to transfer low priority consumer loads from high demand to off peak periods, which can intern reduce critical peak demand.
- <u>Simulations</u> are carried out for a <u>university infrastructure</u>, utilizing the existing photo-voltaic array DG generators.
- These existing assets are treated as a local grid and evaluated for four different operational scenarios. The results show significant cost savings are achievable with the proposed optimization strategy

Overview

- Simulations have been carried out for a campus infrastructure utilizing existing assets such as DG Sets & PV Panels.
 - SCENARIO 1 Primary Supply alone
 - SCENARIO 2 DSM during peak demand hours
 - SCENARIO 3 Primary Supply with PV Integration
 - SCENARIO 4 DSM with PV during Peak demand hour
 - SCENARIO 5 Diesel Generator with PV Integration

Literature Survey

Author	Paper Title	Year	Summary
Nandkishor Kinhekar	Utility Oriented Demand Side Management Using Smart AC and Micro DC Grid Cooperative	2015	Demonstrated a load shifting demand side management (DSM) technique used to shift AC industrial loads in response to time of day (TOD) tariff
Logenthiran.T	Demand Side Management in Smart Grid Using Heuristic Optimization	2012	Proposed a day-ahead load shifting technique, mathematically formulated as a minimization problem
Govardhan.M	Impact of demand side management on unit commitment problem	2014	Uses two essential approaches of energy balance (i.e. energy shifting) and load reduction during peak hours.

DSM Strategies

Load Shifting

- Most widely applied load management technique in current distribution networks.
- Shifting of loads from peak periods to off peak periods
- Alternative to traditional load shedding

DSM Modelling

Load Shifting Process

Device Parameters

Device Name
Device Number
Device Rating
Initial Scheduling Time
Operation Time
Operation period
Maximum permissible delay
Original Delay

- Each and every device data stored in separate memory connected to microprocessor.
- These data can be retrieved at any time and it implies the device details like device type, starting time, operation time, etc.,
- This data tells about the information, when to switch on/off the particular device during real time load shifting

CONSTRAINTS INVOLVED

DSM Modelling

Proposed load shifting technique is mathematically formulated as follows.

$$Minimize \sum_{t=1}^{N} (ACP_{ac}(t) - Objective(t))^{2}$$

Where Objective(t) is the value of the objective curve at time t $ACP_{ac}(t)$ is the actual consumption at time t.

Objective(t) =
$$\frac{C_m}{C_{max}} \times \frac{1}{C(t)} \times \sum_{s=1}^{N=48} P_{fixa}(s)$$

Shifting of Loads

$$Connect(t) = \sum_{i=1}^{N} \sum_{k=1}^{D} Y_{kit} \times P_{1k} + \sum_{l=1}^{j-1} \sum_{i=1}^{t-1} \sum_{k=1}^{D} Y_{ki(t-1)} \times P_{(1+l)k} \times \Delta t$$

Where Y_{kit} is the number of devices of type that are shifted from time step i to t,D is the number of device types, P_{1k} and $P_{(1+l)k}$ are the power consumptions at time steps 1 and (1+l).

$$Disconnect(t) = \sum_{q=t+1}^{t+m} \sum_{k=1}^{D} Y_{kq} \times P_{1k} + \sum_{l=1}^{J-1} \sum_{q=t+1}^{t+m} \sum_{k=1}^{D} Y_{kq(t-1)} \times P_{(1+l)k} \times \Delta t$$

Where Y_{ktq} is the number of devices of type that are delayed from time step t to q , m is the maximum allowable delay.

 The total number of controllable devices at a particular time step must be less than or equal to the total number of available devices at that time step. A constraint related to this can be formulated as: -

$$\sum_{t=1}^{N} Y_{kit} \leq Ctrlable(i)$$

• The power balancing equation for entire distribution system is given as :-

$$\begin{split} P_{L,dc}(t) \,+\, P_{L,ac}(t) \,+\, \sum_{i=1}^{btnum} P_{bt,i,t}^c + P_{\left(\frac{ac}{dc}\right)Loss}(t) \\ &= \sum_{i=1}^{btnum} P_{bt,i,t}^d - P_{\left(\frac{dc}{ac}\right)Loss}(t) \quad + P_{G,ac}(t) \end{split}$$

Optimization through GA

In the genetic algorithm process is as follows:

- Step 1. Determine the number of chromosomes, generation, and mutation rate and crossover rate value
- Step 2. Generate chromosome-chromosome number of the population, and the initialization value of the genes chromosomechromosome with a random value
- Step 3. Process steps 4-7 until the number of generations is met
- Step 4. Evaluation of fitness value of chromosomes by calculating objective function
- Step 5. Chromosomes selection
- Step 5. Crossover
- Step 6. Mutation
- Step 7. New Chromosomes (Offspring)
- Step 8. Solution (Best Chromosomes)

Evolution Environment

Genetic Algorithm Evolution Flow

• The optimization of the DSM model built is solved using genetic algorithm, and values shown in Table 4.1 are passed on during the program runtime to obtain the optimized solution. These values are arrived from a reference paper [21].

Parameters	Settings
Number of chromosomes	50
Number of generations	800
Cross-over rate	0.9
Mutation rate	0.04

Test System

- The system considered for simulation is from Mumbai, the capital city of Maharashtra state in India. The approximate population and spread over area of the city is 12.5 million and 437.5 km², respectively.
- As this test system has already been studied and analysed applying DSM strategy whose results are discussed by Nandkishor Kinhekar [17], is considered here for simulation.

Hourly Forecasted Load

Time	Price	Hourly Forecasted Load (kW)						
Time	Price	Residential	Commercial	Industrial				
08:00 - 09:00	12.00	729.4	923.5	2045.5				
09:00 - 10:00	9.19	713.5	1154.4	2435.1				
10:00 - 11:00	12.27	713.5	1443.0	2629.9				
11:00 – 12:00	20.69	808.7	1558.4	2727.3				
12:00 – 13:00	26.82	824.5	1673.9	2435.1				
14:00 – 15:00	13.81	745.2	1673.9	2678.6				
15:00 – 16:00	17.31	681.8	1587.3	2629.9				
16:00 – 17:00	16.42	667	1558.4	2532.5				
17:00 – 18:00	9.83	951.4	1673.9	2094.2				
18:00 – 19:00	8.63	1220.9	1818.2	1704.5				
19:00 – 20:00	8.87	1331.9	1500.7	1509.7				

Time	Duin	Hourly Forecasted Load (kW)					
Time	Price	Residential	Commercial	Industrial			
20:00 – 21:00	8.35	1363.6	1298.7	1363.6			
22:00 – 23:00	16.19	1046.5	923.5	1120.1			
23:00 - 00:00	8.87	761.1	577.2	1022.7			
00:00 - 01:00	8.65	475.7	404.0	974			
01:00 - 02:00	8.11	412.3	375.2	876.6			
02:00 - 03:00	8.25	364.7	375.2	827.9			
03:00 - 04:00	8.10	348.8	404.0	730.5			
04:00 - 05:00	8.14	269.6	432.9	730.5			
05:00 - 06:00	8.13	269.6	432.9	779.2			
06:00 - 07:00	8.34	412.3	432.9	1120.1			
07:00 - 08:00	9.35	539.1	663.8	1509.7			

Test System – Residential Area

	Hourly Co	Number of		
Device Type	1st Hr	2nd Hr	3rd Hr	Devices
Dryer	1.2	-	-	189
Dish Washer	0.7	-	-	288
Washing	0.5	0.4	-	268
Machine				
Oven	1.3	-	-	279
Iron	1.0	-	-	340
Vacuum Cleaner	0.4	-	-	158
Fan	0.20	0.20	0.20	288
Kettle	2.0	-	-	406
Toaster	0.9	-	-	48
Rice-Cooker	0.85	-	-	59
Hair Dryer	1.5	-	-	58
Blender	0.3	-	-	66
Frying Pan	1.1	-	-	101
Coffee Maker	0.8	-	-	56
Total	-	-	-	2604

Test System – Commercial Area

Device Type	Hourly Co	Hourly Consumption of Device (kW)				
	1st Hr	2nd Hr	3rd Hr	Devices		
Water Dispenser	2.5	-	-	156		
Dryer	3.5	-	-	117		
Kettle	3.0	2.5	-	123		
Oven	5.0	-	-	77		
Coffee Maker	2.0	2.0	-	99		
Fan/AC	3.5	3.0	-	93		
Air Conditioner	4.0	3.5	3.0	56		
Lights	2.0	1.75	1.5	87		
Total	-	-	-	808		

Test System – Industrial Area

	Н	Hourly Consumption of Device (kW)					
Device Type	1st	2nd	3rd	4th	5th	6th	Number
	Hr	Hr	Hr	Hr	Hr	Hr	Devices
Water							
Heater	12.5	12.5	12.5	12.5	-	-	39
Welding							
Machine	25.0	25.0	25.0	25.0	25.0	-	35
Fan/AC	30.0	30.0	30.0	30.0	30.0	-	16
Arc Furnace	50.0	50.0	50.0	50.0	50.0	50.0	8
Induction							
Motor	100	100	100	100	100	100	5
DC Motor	150	150	150	-	-	-	6
Total	-	-	-	-	-	-	109

CAMPUS LOAD STUDY

Campus one line diagram

CAMPUS LOAD STUDY

Period - (24 Hrs)

- 1. Mechanical
- 2. Electrical
- 3. Computer Science
- 4. Marine
- 5. ECE & Civil
- 6. Mechanical Workshop
- 7. Air Conditioners Overall
- 8. Canteen
- 9. Hostel
- 10. Library & Admin Block
- 11. Lighting Loads Classrooms

Campus Load Study - Individual Departments - 15th March 2016

Time Stamp		PSMB 1 & 4			PSMB 2		PSMB 3			PSMB 12		
		EEE Dept			MEC Dept		CSE Dept		MR Dept			
	R Phase	Y Phase	B Phase	R Phase	Y Phase	B Phase	R Phase	Y Phase	B Phase	R Phase	Y Phase	B Phase
9:00:00 AM	5.00	12.50	10.00	16.60	5.00	20.00	51.00	47.20	52.00	47.00	75.00	60.00
9:30:00 AM	6.00	27.00	133.00	15.00	0.00	17.00	60.00	44.40	61.60	50.00	88.00	75.00
10:00:00 AM	5.00	45.00	12.00	18.00	0.00	20.00	57.50	47.10	62.60	75.00	150.00	80.00
10:30:00 AM	4.00	15.00	19.00	18.00	0.00	30.00	63.70	48.70	60.20	50.00	140.00	85.00
11:00:00 AM	10.00	20.00	12.00	10.00	0.00	12.00	53.90	49.50	60.40	78.00	135.00	90.00
11:30:00 AM	4.00	25.00	20.00	10.00	0.00	10.00	55.10	43.00	57.60	75.00	140.00	100.00
12:00:00 PM	10.00	26.00	25.00	10.00	0.00	25.00	41.00	31.80	49.20	75.00	150.00	125.00
12:30:00 PM	5.00	38.00	18.00	10.00	0.00	10.00	41.20	31.20	48.20	70.00	150.00	112.00
1:00:00 PM	5.00	25.00	15.00	40.00	0.00	40.00	50.10	40.70	65.80	80.00	160.00	120.00
1:30:00 PM	20.00	40.00	35.00	66.00	5.00	66.00	49.50	52.20	66.80	100.00	145.00	110.00
2:00:00 PM	25.00	50.00	38.00	35.00	0.00	35.00	53.30	41.70	64.90	105.00	125.00	110.00
2:30:00 PM	20.00	50.00	25.00	25.00	0.00	40.00	53.90	46.40	63.30	85.00	120.00	130.00
3:00:00 PM	10.00	20.00	20.00	30.00	0.00	13.00	52.50	45.90	62.00	55.00	120.00	125.00
3:30:00 PM	10.00	50.00	25.00	0.00	0.00	0.00	34.70	31.70	34.30	35.00	75.00	85.00
4:00:00 PM	5.00	37.50	17.50	0.00	0.00	0.00	20.85	20.35	22.05	17.50	37.50	46.25
4:30:00 PM	0.00	25.00	10.00	0.00	0.00	0.00	7.00	9.00	9.80	0.00	0.00	7.50
5:00:00 PM	0.00	17.50	5.00	0.00	0.00	0.00	7.05	9.15	10.00	0.00	0.00	7.50
5:30:00 PM	0.00	10.00	0.00	0.00	0.00	0.00	7.10	9.30	10.20	0.00	0.00	7.50
6:00:00 PM	5.00	10.00	0.00	0.00	0.00	0.00	6.90	9.35	10.15	12.50	0.00	3.75
6:30:00 PM	10.00	10.00	0.00	0.00	0.00	0.00	6.70	9.40	10.10	25.00	0.00	0.00
7:00:00 PM	10.00	10.00	0.00	0.00	0.00	0.00	6.70	9.40	10.10	25.00	0.00	0.00
7:30:00 PM	5.00	5.00	0.00	0.00	0.00	0.00	7.20	9.50	10.35	12.50	0.00	0.00
8:00:00 PM	0.00	0.00	0.00	0.00	0.00	0.00	7.70	9.60	10.60	0.00	0.00	0.00

Distribution Transformer Data Period - (24 Hrs)

Time Stamp		ANSFORMER	Ri	-						
R Ph	ase		TRANSFORMER 1		TRANSFORMER 2			TRANSFORMER 3		
		Y Phase	B Phase	R Phase	Y Phase	B Phase	R Phase	Y Phase	B Phase	
9:00:00 AM	138.00	173.00	173.00	200.00	30.00	225.00	322.10	338.70	312.10	1911.90
9:30:00 AM	152.00	187.00	172.00	340.00	30.00	325.00	391.00	371.00	337.00	2305.00
10:00:00 AM	169.00	237.00	183.00	210.00	120.00	235.00	394.90	372.00	357.40	2278.30
10:30:00 AM	149.00	205.00	179.00	200.00	120.00	210.00	379.00	330.00	331.60	2103.60
11:00:00 AM	143.00	218.00	175.00	200.00	80.00	200.00	378.00	328.00	337.00	2059.00
11:30:00 AM	130.00	214.00	160.00	220.00	25.00	220.00	375.50	313.90	327.90	1986.30
12:00:00 PM	162.00	244.00	206.00	190.00	10.00	200.00	365.70	321.40	322.30	2021.40
12:30:00 PM	181.00	260.00	235.00	180.00	10.00	180.00	390.50	356.30	352.10	2144.90
1:00:00 PM	206.00	230.00	245.00	200.00	20.00	200.00	385.10	388.00	368.80	2242.90
1:30:00 PM	214.00	235.00	205.00	225.00	25.00	225.00	425.50	421.60	385.10	2361.20
2:00:00 PM	256.00	252.00	240.00	210.00	15.00	215.00	372.60	365.70	318.60	2244.90
2:30:00 PM	220.00	240.00	265.00	230.00	15.00	230.00	390.00	375.30	333.60	2298.90
3:00:00 PM	205.00	227.00	246.00	210.00	20.00	240.00	367.20	372.00	334.00	2221.20
3:30:00 PM	150.00	220.00	166.00	150.00	10.00	150.00	235.30	240.20	205.70	1527.20
4:00:00 PM	98.50	140.00	122.00	125.00	10.00	135.00	159.20	156.50	139.55	1085.75
4:30:00 PM	47.00	60.00	78.00	100.00	10.00	120.00	83.10	72.80	73.40	644.30
5:00:00 PM	40.50	45.00	70.00	110.00	10.00	120.00	74.35	65.35	73.45	608.65
5:30:00 PM	34.00	30.00	62.00	120.00	10.00	120.00	65.60	57.90	73.50	573.00
6:00:00 PM	45.50	15.00	48.00	150.00	15.00	160.00	71.78	68.90	75.65	649.83
6:30:00 PM	57.00	0.00	34.00	180.00	20.00	200.00	77.96	79.90	77.80	726.66
7:00:00 PM	57.00	0.00	34.00	180.00	20.00	200.00	77.96	79.90	77.80	726.66
7:30:00 PM	41.00	9.50	42.00	165.00	20.00	175.00	61.43	69.05	79.70	662.68
8:00:00 PM	25.00	19.00	50.00	150.00	20.00	150.00	44.90	58.20	81.60	598.70

Campus target load fixing

- Education institution follows flat tariff for electricity.
- Tracking dynamic pricing is difficult in this scenario, Hence, we divide the time period into four phases.
- For college campus objective curve is fixed by averaging the load for the given time period and the equation is,

$$Objective(t) = \sum_{i=1}^{phases} Load\ factor(i) \times Maximum\ demand(i)$$

Target load curves

AVERAGE LOAD CURVE

Target Load

To Target Load

Typical target load

Target Load during Peak demand hours

CAMPUS DEMAND SIDE MANAGEMENT

IMPLEMENTATION

- SCENARIO 1 Primary Supply alone
- SCENARIO 2 DSM during peak demand hours
- SCENARIO 3 Primary Supply with PV Integration
- SCENARIO 4 DSM with PV during Peak demand hour
- SCENARIO 5 Diesel Generator with PV Integration

SCENARIO 1: Primary Supply alone

- Simulations carried out for a system model powered solely by Primary power supply.
- This model excludes the existing solar panel and Diesel Generators.
- The results obtained on implementing DSM Strategy is shown in the graph.

SCENARIO 2: DSM during peak demand hours

- The maximum demand exceeds the permitted demand value, during enc semester examinations.
- On doing so, penalty charges are added to the utility bill, which leads to hike in tota consumption charge.

SCENARIO 3: Primary Supply with PV Integration

- Simulations carried out for a system model powered by TNEB and existing 35kW PV Array.
- This model excludes the usage of existing diesel generators.
- The results obtained on implementing DSM Strategy is shown in the graph.

SCENARIO 4: DSM with PV during Peak demand hour

- The scenario 3 is extended with solar integration and applied during peak demand hours.
- This usually occurs during the end semester examination. The results obtained are shown below

SCENARIO 5: DG with PV Integration

- For the optimal use of DG generator, unit commitment problem is solved and based on the demand, DG generators are scheduled.
- Full Load Average Production Cost

$$FLAPC = \frac{Fuel\, cost \times Fuel\, Consumed}{Power\, at\, Full\, load}$$

DG	FLAPC (Rs)	Base Charge (Rs)	Incremental cost (Rs)
1	13.475	808.5	9.43
2	9.671	882	6.77
3	8.575	1029	6

• The commitment scheme would simply use only one of the following combinations as shown in table below.

Combi- nation	MIN kW from combination	MAX kW from combination
3+2+1	270	910
3+2	210	710
3	120	400

Results

	Peak Reduction in %	Cost reduction (Rs)	Cost reduction in %
Non - Peak demand hours			
Primary supply alone	4.545	nil	nil
Primary supply with PV Integration	14.1184	nil	nil
Peak demand hours			
Primary supply alone	3.32	14,960.00	11.39
Primary supply with PV Integration	6.09	37,400.00	28.48
DG with PV Integration	5.762	4,699.00	3.65

Conclusion

- The proposed strategy is a generalized technique based on load shifting, which has been mathematically formulated as a minimization problem.
- A heuristic based evolutionary algorithm is developed for solving the problem.
- The simulation outcomes carried out for a campus infrastructure shows that the proposed algorithm is able to handle a large number of controllable devices of several types, and achieves substantial savings while reducing the peak load demand.

Highlights:-

- Efficient allocation and usage of available DG Sets, which inturn reduces fuel cost, pollution, lifespan and maintenance.
- Best utilization of existing 35kW Photovoltaic panels.
- Support for future expansion of renewable assets.

References:

- [1] Nandkishor Kinhekar and Narayana Prasad Padhy, "Utility Oriented Demand Side Management Using Smart AC and Micro DC Grid Cooperative", Year: 2015, Volume: PP, Issue: 99 Pages: 1 10.
- [2] Thillainathan Logenthiran and Dipti Srinivasan, "Demand Side Management in Smart Grid Using Heuristic Optimization", Year: 2012, Volume: 3, Issue: 3 Pages: 1244 1252.
- [1] Q. Li and M. Zhou, "The future-oriented grid-smart grid," J. Comput., vol. 6, no. 1, pp. 98–105, 2011.
- [2] P. Agrawal, "Overview of DOE microgrid activities," in Proc. Symp. Microgrid, Montreal, QC, Canada, 2006 [Online]. Available: http://der.lbl.gov/2006microgrids_files/USA/Presentation_7_Part1_Poonumgrawal.pdf
- [3] S. Rahman and Rinaldy, "An efficient load model for analyzing demand side management impacts," IEEE Trans. Power Syst., vol. 8, no.3, pp. 1219–1226, Aug. 1993.
- [4] A. I. Cohen and C. C. Wang, "An optimization method for load management scheduling," IEEE Trans. Power Syst., vol. 3, no. 2, pp.612–618, May 1988.
- [5] K.-H. Ng and G. B. Sheblé, "Direct load control-A profit-based load management using linear programming," IEEE Trans. Power Syst., vol. 13, no. 2, pp. 688–694, May 1998.
- [6] F. C. Schweppe, B. Daryanian, and R. D. Tabors, "Algorithms for a spot price responding residential load controller," IEEE Trans. Power Syst., vol. 4, no. 2, pp. 507–516, May 1989.

Thank You!!

