Module: Analyse numériques

Chapitre 3 : Intégration Numérique

Exercice 4

Énoncé

Le but de cet exercice est de déterminer une approximation de la valeur $\ln(2)$. On considère la fonction $f:[-1;1] \longrightarrow \mathbb{R}$ définie aux points d'abscisses $-1;-\frac{1}{2};0;\frac{1}{2}$ et 1 par :

i	0	1	2	3	4
Xi	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1
$f(x_i)$	$\frac{1}{2}$	2 5	$\frac{1}{3}$	$\frac{2}{7}$	$\frac{1}{4}$

On désigne par $I(f) = \int_{-1}^{1} f(x) dx$

- Déterminer I^c_T(f) la valeur approchée de I(f) par la formule composite des trapèzes, avec 4 sous intervalles de [-1;1].
- ② Déterminer $I_S^c(f)$ la valeur approchée de I(f) par la formule composite de Simpson, avec 2 sous intervalles de [-1;1].
- Sachant que $f(x) = \frac{1}{3+x}$, calculer la valeur exacte de I(f).
- Calculer l'erreur d'intégration pour les deux approximations I^c_T(f) et I^c_S(f) de l'intégrale I(f). En déduire laquelle des deux méthodes qui approche le mieux la valeur de In(2).

Correction

1 Pour a = -1, b = 1, n = 4, et $h = \frac{b-a}{n} = \frac{1}{2}$; on a:

$$I_T^c = \frac{h}{2} \left(f(a) + f(b) + 2 \sum_{k=1}^{n-1} f(a+kh) \right)$$

$$= \frac{\frac{1}{2}}{2} \left(f(-1) + f(1) + 2 \sum_{k=1}^{4-1} f(-1+kh) \right)$$

$$= \frac{1}{4} \left(f(-1) + 2(f(-\frac{1}{2}) + f(0) + f(\frac{1}{2})) + f(1) \right)$$

$$= \frac{1}{4} \left(\frac{1}{2} + 2(\frac{2}{5} + \frac{1}{3} + \frac{2}{7}) + \frac{1}{4} \right)$$

$$= 0.697$$

Correction (suite)

② Pour a = -1, b = 1, n = 2p, p = 1, et $h = \frac{b-a}{p} = \frac{2}{2} = 1$; on a:

$$I_{S}^{c} = \frac{h}{3} \left(f(a) + f(b) + 2 \sum_{k=1}^{p-1} f(a+2kh) + 4 \sum_{k=0}^{p-1} f(a+(2k+1)h) \right)$$

$$= \frac{1}{3} \left(f(-1) + f(1) + 4 \sum_{k=0}^{0} f(-1+(2k+1)) \right)$$

$$= \frac{1}{3} \left(\frac{1}{2} + \frac{1}{4} + 4 \frac{1}{3} \right)$$

$$= 0.6944$$

Correction (suite)

② Pour a = -1, b = 1, n = 2p, p = 1, et $h = \frac{b-a}{n} = \frac{2}{2} = 1$; on a:

$$I_{S}^{c} = \frac{h}{3} \left(f(a) + f(b) + 2 \sum_{k=1}^{p-1} f(a+2kh) + 4 \sum_{k=0}^{p-1} f(a+(2k+1)h) \right)$$

$$= \frac{1}{3} \left(f(-1) + f(1) + 4 \sum_{k=0}^{0} f(-1+(2k+1)) \right)$$

$$= \frac{1}{3} \left(\frac{1}{2} + \frac{1}{4} + 4 \frac{1}{3} \right)$$

$$= 0.6944$$

 $I = [\ln(3+x)]_{-1}^{1} = \ln(2).$

Correction (suite)

② Pour a = -1, b = 1, n = 2p, p = 1, et $h = \frac{b-a}{n} = \frac{2}{2} = 1$; on a:

$$I_{S}^{c} = \frac{h}{3} \left(f(a) + f(b) + 2 \sum_{k=1}^{p-1} f(a+2kh) + 4 \sum_{k=0}^{p-1} f(a+(2k+1)h) \right)$$

$$= \frac{1}{3} \left(f(-1) + f(1) + 4 \sum_{k=0}^{0} f(-1+(2k+1)) \right)$$

$$= \frac{1}{3} \left(\frac{1}{2} + \frac{1}{4} + 4 \frac{1}{3} \right)$$

$$= 0.6944$$

- $I = [\ln(3+x)]_{-1}^1 = \ln(2).$
- On a |I I^c_T| = 0.004, |I I^c_S| = 0.001. Donc parmi les méthodes proposées, la méthode de Simpson approche le mieux la valeur de ln(2).