

Discussion Topics

- 1. Intro
- 2. Problem statement
- 3. CAN Bus architecture on Hydra
- 4. CAN Bus characteristics
- 5. Tester capabilities
- 6. Tester hardware architecture
- 7. Tester firmware
- 8. Demo
- 9. Tester cables
- 10. Issues encountered
- 11. Conclusion and next steps

2. Problem Statement

Due to instrument complexity, it is difficult for field engineers to troubleshoot CAN network issues on Hydra.

The CAN Bus Failure Analyzer will aid in basic testing of the network and eliminating common wiring problems.

3. Overview of Hydra CAN Network Architecture

4. CAN Bus Physical Layer

5. Tester Capabilities

6. Tester Hardware Architecture

Board Stack

Metro Hole Pattern

Board Outer Dimensions

Proto Board

ExpressSCH and ExpressPCB

Adafruit Metro

- <u>Link</u>
- Processor: ATmega 328P
- Micro is 8-bit
- 32KB flash, 2KB RAM, 16 MHz
- 20 GPIO pins of which 6 are A/D
- USB to Serial Converter
- Arduino IDE compatible

LCD Display

SIEMENS ... lealthineers

- Link
- 16x2 RGB backlight LCD
- Plugs in to Arduino Classic (UNO, Duemilanove, Diecimilla and Arduino Mega R3)
- I2C Interface
- 5V logic compatible only

7. Tester Firmware

Signal Flow Template

Voltage Curve Fit

PWR SUPPLY INPUT VOLTAGE	COUNTS
1	160
1.5	238
2	316
2.5	395
3	474

Regression Statistics	
Multiple R	0.99999432
R Square	0.999988641
Adjusted R Square	0.999984854
Standard Error	0.003076708
Observations	5
ANOVA	
	df
Regression	1
Residual	3
Total	4
	Coefficients
Intercept	-0.016537603
X Variable 1	0.006369354


```
int volt_read = analogRead(VAPin);
float voltage = volt_read * SLOPE + Y_INT;
```

Resistance Curve Fit

INPUT RESISTANCE	COUNTS
50.3	486
99.4	394
149.2	297

Regressio	n Statistics
Multiple R	0.999937435
R Square	0.999874873
Adjusted R Square	0.999749746
Standard Error	0.782276645
Observations	3
ANOVA	
	df
Regression	1
Residual	1
Total	2
	Coefficients
Intercept	304.8986137
X Variable 1	-0.523191029


```
int counts = analogRead(ARPin);
float ohms = counts * SLOPE + Y_INT;
```

Functional Flow Diagram - DEMO

Resistance Test Setup

9. Tester Cables

Accessory Cables

CABLE #1 (111) – Common Cable

PIN#		PIN#
1	CAN_H_UP (WHITE W/TAN STRIPE)	1
2	CAN_L_UP (TAN W/WHITE STRIPE)	2
3	ISO_GND_UP (WHITE W/BROWN STRIPE)——	3
4	CHAS_GND_UP(BROWN W/WHITE STRIPE)	4
5	——CABLE_SEN2_GND (WHITE W/PINK STRIPE)—	- 5
6	NC (PINK W/WHITE STRIPE)	- 6
7	CAN_H_DN (WHITE W/ORANGE STRIPE)	7
8	CAN_L_DN (ORANGE W/WHITE STRIPE)	- 8
9	ISO_GND_DN (WHITE W/YELLOW STRIPE)—	9
10	CHAS_GND_DN (YELLOW W/WHITE STRIPE)	10
11	CABLE_SENO (WHITE W/GREEN STRIPE)	11
12	CABLE_SEN1 (GREEN W/WHITE STRIPE)	12
13	CABLE_SEN2 (WHITE W/BLUE STRIPE)	13
14	CABLE_SENO_GND (BLUE W/WHITE STRIPE)	14
15	CABLE_SEN1_GND (WHITE W/VIOLET STRIP)	15
	EXTRA WIRE (VIOLET W/WHITE STRIPE)	

CABLE #2 (011) – INTO NETWORK uMATE-N-LOK

FEM U/D 2x4

CABLE #3 (101) - INTO DCM uMATE-N-LOK MALE D 2x4Healthineers

CABLE #4 (001) - CAN FROM DC DIST uMATE-

N-LOK MALE D 2x2

CABLE #5 (110) – FROM LUMO D RJ45

CABLE #6 (010) - GANTRY IA CAN uMATE-N-LOK

MALE U/D 2x8

CABLE #7 (100) – GANTRY BULK CAN uMATE-N-LOK

CABLE #8 (000) – KVASSER PROTO CABLE uMATE-N-

LOK MALE D 1x4

Cable Test Cases

-2 DIRECTION -

CABLE 1
COMMON CABLE
111
CAN_H_UP
CAN_L_UP
ISO_GND_UP
CHAS_GND_UP
CAN_H_DN
CAN_L_DN
ISO_GND_DN
CHAS GND DN

CABLE 2
uMATE-N-LOK FEM U/D
011
CAN_H_UP
CAN_L_UP
ISO_GND_UP
CHAS_GND_UP
CAN_H_DN
CAN_L_DN
ISO_GND_DN
CHAS_GND_DN

CABLE 5
LUMO D RJ45
110
CAN_H_UP
CAN_L_UP
CHAS_GND_UP
CAN_H_DN
CAN_L_DN
CHAS_GND_DN

CABLE 6
uMATE-N-LOK MALE 2x8
110
CAN_H_UP
CAN_L_UP
ISO_GND_UP
CHAS_GND_UP
CAN_H_DN
CAN_L_DN
ISO_GND_DN
CHAS_GND_DN

CABLE 7
GANTRY BULK CAN uMATE-N-LOK MALE U/D 2x8
011
CAN_H_UP
CAN_L_UP
ISO_GND_UP
CHAS_GND_UP
CAN_H_DN
CAN_L_DN
ISO_GND_DN
CHAS_GND_DN

-1 DIRECTION —

CABLE 3
uMATE-N-LOK-MALE 4x4
101
CAN_H_DN
CAN_L_DN
ISO_GND_DN
CHAS_GND_DN

CABLE 4
u-MATE-N-LOK MALE 2x2
001
CAN_H_DN
CAN_L_DN
ISO_GND_DN
CHAS_GND_DN

CABLE 8	
KVASSER	
000	
CAN_H_DN	
CAN_L_DN	
ISO_GND_DN	
CHAS_GND_DN	

10. Issues encountered

Board Issues:

- OP-AMP + and terminals reversed in schematic and layout of shield PCB
- One digital input pin did not read properly so jumped wire to another available pin

Experimental Setup Issues:

- When grounding power supply to test circuit, regulation circuit brought CAN H and CAN_L voltages close together when termination resistor was present. Workaround was to test voltages without resistors in place.
- When measuring resistance, power supply connections corrupted resistance values even with power supply being off. Workaround was to completely connect power supplies for resistance testing.

Firmware Issues:

- Although smaller voltage and resistance measurement applications work fine, there is an issue with reading correct voltages in fully integrated application

11. Conclusion and Next Steps

Concept appears to be workable after initial testing on the bench. With only 50% memory flash usage, there is room for expanding or rewriting firmware routines.

Immediate Next Steps:

Debug integrated application

Long-term Next Steps:

- Re-spin board to correct issues that required reworks
- Add battery check circuit
- Test unit when connected to active CAN network on bench as well as an instrument in active and passive states