FILIÈRE MP

COMPOSITION DE MATHÉMATIQUES – A – (XLCR)

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

** *

Pour $n \geq 1$, l'espace des polynômes à coefficients réels de degré inférieur ou égal à n est noté $\mathbb{R}_n[X]$. Étant donnés deux polynômes non nuls P et Q à coefficients réels, leur plus grand commun diviseur (pgcd) unitaire est noté $P \wedge Q$.

Si $r \geq 1$ est un second entier, $\mathcal{M}_{r,n}(\mathbb{R})$ désigne l'espace vectoriel des matrices à r lignes et n colonnes à coefficients complexes. La notation $M = (m_{ij})$ signifie que le coefficient à la ligne i et colonne j de la matrice M est m_{ij} . On note plus simplement $\mathcal{M}_n(\mathbb{R}) = \mathcal{M}_{n,n}(\mathbb{R})$, dont la matrice identité est $I_n \in \mathcal{M}_n(\mathbb{R})$. Le polynôme caractéristique χ_M de $M \in \mathcal{M}_n(\mathbb{R})$ est défini par

$$\chi_M(X) = \det(XI_n - M).$$

Le polynôme caractéristique est donc unitaire.

Pour $M \in \mathcal{M}_{r,n}(\mathbb{R})$, ${}^tM \in \mathcal{M}_{n,r}(\mathbb{R})$ désigne la matrice transposée. On rappelle qu'une matrice carrée $M \in \mathcal{M}_n(\mathbb{R})$ est symétrique si ${}^tM = M$, orthogonale si ${}^tMM = I_n$. On notera $S_n(\mathbb{R})$ (respectivement $O_n(\mathbb{R})$) l'ensemble des matrices symétriques (resp. orthogonales) de taille n. Étant donné un n-uplet (a_1, \ldots, a_n) de nombres réels,

$$\Delta(a_1,\ldots,a_n) = \left(\begin{array}{cc} a_1 & & \\ & \ddots & \\ & & a_n \end{array}\right)$$

désigne la matrice diagonale associée.

Si $M \in S_n(\mathbb{R})$, son spectre est réel. On convient de ranger ses valeurs propres (comptées avec leurs ordres de multiplicité) dans l'ordre décroissant $\lambda_1 \geqslant \cdots \geqslant \lambda_n$. On note alors $\operatorname{Sp}(M) = (\lambda_1, \ldots, \lambda_n)$, qui est donc un n-uplet $\operatorname{ordonn\acute{e}}$.

Un n+1-uplet $\widehat{\lambda}=(\lambda_1\geqslant \cdots \geqslant \lambda_{n+1})\in \mathbb{R}^{n+1}$ et un n-uplet $\widehat{\mu}=(\mu_1\geqslant \cdots \geqslant \mu_n)\in \mathbb{R}^n$, ordonnés, sont dit enlacés si $\lambda_j\geqslant \mu_j\geqslant \lambda_{j+1}$ pour tout $j\in\{1,\ldots,n\}$. Ils sont strictement enlacés si $\lambda_j>\mu_j>\lambda_{j+1}$ pour tout j. Par exemple, (4,3,2,1) et $(\pi,e,\sqrt{2})$ sont strictement enlacés.

Questions préliminaires

- 1. (a) Montrer que $O_n(\mathbb{R})$ est un sous-groupe du groupe $\mathrm{GL}_n(\mathbb{R})$ des matrices inversibles.
 - (b) Montrer que $O_n(\mathbb{R})$ est une partie compacte de $\mathcal{M}_n(\mathbb{R})$.

- 2. Soit M et N dans $S_n(\mathbb{R})$. Montrer qu'il existe $U \in O_n(\mathbb{R})$ tel que $N = UMU^{-1}$, si et seulement si $\chi_M = \chi_N$.
- 3. Soit $\widehat{\lambda} = (\lambda_1 \geqslant \cdots \geqslant \lambda_{n+1}) \in \mathbb{R}^{n+1}$ et $\widehat{\mu} = (\mu_1 \geqslant \cdots \geqslant \mu_n) \in \mathbb{R}^n$. Soit $x \in \mathbb{R}$. Formons

$$\hat{\lambda}' = (\lambda_1 \geqslant \dots \geqslant \lambda_i \geqslant x > \lambda_{i+1} \geqslant \dots \geqslant \lambda_{n+1})$$

en choisissant l'entier $i \in \{0, ..., n+1\}$ convenablement. Si $x > \lambda_1$, on a donc i = 0, tandis que si $x \leq \lambda_{n+1}$, on a i = n+1. On forme de même

$$\widehat{\mu}' = (\mu_1 \geqslant \cdots \geqslant \mu_i \geqslant x > \mu_{i+1} \geqslant \cdots \geqslant \mu_n).$$

On suppose que $\widehat{\lambda}$ et $\widehat{\mu}$ sont enlacés. Montrer que $j \leq i \leq j+1$. En examinant chacun des deux cas j=i ou i-1, montrer que $\widehat{\lambda}'$ et $\widehat{\mu}'$ sont enlacés.

1 Première Partie

Soit $\widehat{\mu} = (\mu_1 > \dots > \mu_n) \in \mathbb{R}^n$.

4. On définit les polynômes

$$Q_0 = \prod_{k=1}^{n} (X - \mu_k)$$
 et $\forall j \in \{1, \dots, n\}, P_j = \frac{Q_0}{(X - \mu_j)}.$

- (a) Montrer que la famille $(Q_0, P_1, P_2, \dots, P_n)$ est une base de $\mathbb{R}_n[X]$.
- (b) Soit $j \in \{1, \dots, n\}$. Vérifier que $(-1)^{j-1}P_j(\mu_j) > 0$.
- 5. Soit $P \in \mathbb{R}[X]$ un polynôme unitaire de degré n+1.
 - (a) Montrer qu'il existe un unique vecteur $(a, \alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{R}^{n+1}$ tel que

$$P = (X - a)Q_0 - \sum_{j=1}^{n} \alpha_j P_j.$$
 (1)

- (b) On suppose que les nombres réels $\alpha_1, \ldots, \alpha_n$ sont tous strictement positifs. Montrer que P a n+1 racines réelles distinctes $\lambda_1 > \cdots > \lambda_{n+1}$, et que $\widehat{\lambda} = (\lambda_1 > \cdots > \lambda_{n+1})$ et $\widehat{\mu}$ sont strictement enlacés.
- (c) Réciproquement, on suppose que P a n+1 racines réelles distinctes $\lambda_1 > \cdots > \lambda_{n+1}$, et que $\widehat{\lambda} = (\lambda_1 > \cdots > \lambda_{n+1})$ et $\widehat{\mu}$ sont strictement enlacés. Montrer que, pour tout $j \in \{1, \ldots, n\}, \ \alpha_j > 0$.
- 6. On se donne des entiers $m_k \ge 1$ pour $k = 1, \ldots, n$. On pose

$$Q_1 = \prod_{k=1}^{n} (X - \mu_k)^{m_k} \quad \text{et, cette fois-ci,} \quad P_j = \frac{Q_1}{X - \mu_j}.$$

Montrer que

$$Q_1 \wedge Q_1' = \prod_{k=1}^n (X - \mu_k)^{m_k - 1}.$$

7. Soit $(a, \alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{R}^{n+1}$ et soit $P \in \mathbb{R}[X]$ défini par la formule

$$P = (X - a)Q_1 - \sum_{j=1}^{n} \alpha_j P_j.$$

- (a) Donner une expression de $P \wedge Q_1$ en fonction des μ_j , des m_j et de l'ensemble J des indices pour lesquels $\alpha_j = 0$.
- (b) On suppose que les nombres $\alpha_1, \ldots, \alpha_n$ sont positifs ou nuls.

Montrer que les racines de P sont toutes réelles.

On admettra par la suite que, dans ce cas le plus général, le (N+1)-uplet des racines de P et le N-uplet des racines de Q_1 sont enlacés.

2 Deuxième Partie

8. Soit r et s deux entiers naturels non nuls. Soit $A \in \mathcal{M}_r(\mathbb{R})$, $B \in \mathcal{M}_{r,s}(\mathbb{R})$, $C \in \mathcal{M}_{s,r}(\mathbb{R})$ et $D \in \mathcal{M}_s(\mathbb{R})$. On suppose de plus que A est inversible. On considère la matrice $M \in \mathcal{M}_{r+s}(\mathbb{R})$ ayant la forme par blocs suivante

$$M = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right].$$

Trouver deux matrices $U \in \mathcal{M}_{r,s}(\mathbb{R})$ et $V \in \mathcal{M}_s(\mathbb{R})$ telles que

$$M = \left[\begin{array}{cc} A & 0 \\ C & I_s \end{array} \right] \cdot \left[\begin{array}{cc} I_r & U \\ 0 & V \end{array} \right].$$

et en déduire que

$$\det(M) = \det(A) \cdot \det(D - CA^{-1}B).$$

On pourra admettre par la suite que cette formule reste vraie lorsque M et ses blocs A, \ldots, D sont à coefficients dans le corps $\mathbb{R}(X)$ des fractions rationnelles.

9. Soit $M \in S_{n+1}(\mathbb{R})$ une matrice symétrique. On écrit M sous la forme par blocs

$$M = \left[\begin{array}{cc} A & y \\ {}^t\!y & a \end{array} \right].$$

avec $a \in \mathbb{R}$, $y \in \mathcal{M}_{n,1}(\mathbb{R})$ et $A \in S_n(\mathbb{R})$.

(a) Si le spectre de A est $\operatorname{Sp}(A) = (\mu_1 \geqslant \cdots \geqslant \mu_n)$, montrer qu'il existe $U \in O_{n+1}(\mathbb{R})$ et $z \in \mathcal{M}_{n,1}(\mathbb{R})$ tels que

$$UM^tU = \begin{bmatrix} \Delta(\mu_1, \dots, \mu_n) & z \\ t_z & a \end{bmatrix}.$$

(b) En déduire qu'il existe des nombres réels positifs ou nuls α_j (pour $j=1,\ldots,n$) tels que

$$\chi_M = (X - a)Q_0 - \sum_{j=1}^n \alpha_j \frac{Q_0}{(X - \mu_j)}, \quad \text{où} \quad Q_0 = \prod_{k=1}^n (X - \mu_k).$$

(c) Montrer que Sp(M) et Sp(A) sont enlacés.

10. Pour $T = (t_{ij}) \in \mathcal{M}_{n+1}(\mathbb{R})$, on note $T_{\leq n}$ la matrice extraite de taille n dont les coefficients sont les t_{ij} pour $1 \leq i, j \leq n$. Soit $M \in S_{n+1}(\mathbb{R})$. Montrer que l'ensemble

$${\rm Sp}((UMU^{-1})_{\leq n}) \in \mathbb{R}^n$$
, pour U parcourant $O_{n+1}(\mathbb{R})$,

noté \mathcal{C}_M , est une partie compacte de \mathbb{R}^n .

- 11. On suppose de plus que les valeurs propres de M sont distinctes. On a donc $Sp(M) = (\lambda_1 > \cdots > \lambda_{n+1})$.
 - (a) Soit $\widehat{\mu} = (\mu_1 > \cdots > \mu_n)$ tel que $\operatorname{Sp}(M)$ et $\widehat{\mu}$ soient strictement enlacés. Montrer que $\widehat{\mu}$ appartient à \mathcal{C}_M .
 - (b) Montrer que

$$C_M = \{ \widehat{\mu} = (\mu_1 \geqslant \cdots \geqslant \mu_n), \text{ tels que } \operatorname{Sp}(M) \text{ et } \widehat{\mu} \text{ soient enlacés} \}.$$
 (2)

3 Troisième Partie

On considère l'application

Diag_n:
$$S_n(\mathbb{R}) \longrightarrow \mathbb{R}^n$$

 $M = (m_{ij}) \longmapsto (m_{11}, m_{22}, \dots, m_{nn}).$

Soit $M \in S_n(\mathbb{R})$. Dans cette partie, on se propose d'étudier l'ensemble suivant

$$\mathcal{D}_M = \{ \operatorname{Diag}_n(UMU^{-1}), \text{ pour } U \text{ parcourant } O_n(\mathbb{R}) \}.$$

- 12. On étudie d'abord le cas n=2. On note alors $\operatorname{Sp}(M)=(\lambda_1 \geqslant \lambda_2)$. Montrer que \mathcal{D}_M est le segment de \mathbb{R}^2 dont les extrémités sont (λ_1, λ_2) et (λ_2, λ_1) .
- 13. Soit $M = (m_{ij}) \in S_n(\mathbb{R})$. On note $\operatorname{Sp}(M) = (\lambda_1 \geqslant \cdots \geqslant \lambda_n) \in \mathbb{R}^n$. On se propose de démontrer que, pour tout $s \in \{1, \ldots, n\}$, on a :

$$\sum_{i=1}^{s} m_{ii} \leqslant \sum_{i=1}^{s} \lambda_i. \tag{3}$$

- (a) Que pensez-vous du cas s = n?
- (b) Exprimer $\sum_{i=1}^{n-1} m_{ii}$ au moyen des valeurs propres de la matrice $M_{\leq n-1}$ obtenue en supprimant la dernière ligne et la dernière colonne de M. En déduire l'inégalité (3) lorsque s = n 1.
- (c) En procédant par récurrence sur n, montrer l'inégalité (3), pour tout $s \in \{1, \ldots, n\}$.

4 Quatrième Partie

- 14. On note E l'espace vectoriel \mathbb{R}^2 muni du produit scalaire standard et de la base canonique $\mathcal{B} = \{e_1, e_2\}$. On définit une base $\mathcal{C} = \{\omega_1, \omega_2\}$ de E par $\omega_1 = e_1$ et $\omega_2 = \frac{1}{2}(e_1 + \sqrt{3}e_2)$.
 - (a) Soit $s_1 : E \longrightarrow E$ la symétrie orthogonale par rapport à la droite $\mathbb{R}\omega_1$. Montrer que la matrice de s_1 dans la base \mathcal{C} est $\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$.

- (b) Soit $s_2 : E \longrightarrow E$ la symétrie orthogonale par rapport à la droite $\mathbb{R}\omega_2$. Montrer que la matrice de s_2 dans la base \mathcal{C} est $\begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$.
- 15. Soit H l'ensemble des vecteurs $(m_1, m_2, m_3) \in \mathbb{R}^3$ tels que $m_1 + m_2 + m_3 = 0$. On note H^+ le sous-ensemble des $(m_1, m_2, m_3) \in H$ tels que $m_1 \ge m_2 \ge m_3$. On considère l'application

$$\varphi: H \longrightarrow E$$

 $(m_1, m_2, m_3) \longmapsto (m_1 - m_2)\omega_1 + (m_2 - m_3)\omega_2.$

- (a) Montrer que φ est un isomorphisme linéaire. Décrire $\varphi(H^+)$.
- (b) Montrer que, pour tout $(m_1, m_2, m_3) \in H$, on a

$$s_1 \circ \varphi(m_1, m_2, m_3) = \varphi(m_1, m_3, m_2)$$
 et $s_2 \circ \varphi(m_1, m_2, m_3) = \varphi(m_2, m_1, m_3)$.

- (c) Soit $\widehat{\lambda} = (\lambda_1, \lambda_2, \lambda_3) \in H$ tel que $\lambda_1 > \lambda_2 > \lambda_3$. On note $\mathcal{Q}_{\widehat{\lambda}}$ l'ensemble des $(m_1, m_2, m_3) \in H^+$ tels que $m_1 \leqslant \lambda_1$ et $m_1 + m_2 \leqslant \lambda_1 + \lambda_2$. Montrer que $\varphi(\mathcal{Q}_{\widehat{\lambda}})$ est un quadrilatère dont on décrira les sommets.
- 16. Soit $M \in S_3(\mathbb{R})$ une matrice de trace nulle. On note $\operatorname{Sp}(M) = (\lambda_1 \geqslant \lambda_2 \geqslant \lambda_3)$. On se propose de décrire $\varphi(\mathcal{D}_M)$.
 - (a) Soit $(m_1, m_2, m_3) \in H$. Soit σ une permutation de $\{1, 2, 3\}$. Montrer que $(m_1, m_2, m_3) \in \mathcal{D}_M$ si et seulement si $(m_{\sigma(1)}, m_{\sigma(2)}, m_{\sigma(3)}) \in \mathcal{D}_M$.
 - (b) En utilisant la question 13, montrer que l'intersection $H^+ \cap \mathcal{D}_M$ est incluse dans $\mathcal{Q}_{\widehat{\lambda}}$.
 - (c) Soit $(m_1, m_2, m_3) \in \mathcal{D}_M$. Montrer que le segment de H dont les sommets sont (m_1, m_2, m_3) et (m_2, m_1, m_3) est inclus dans \mathcal{D}_M . On pourra utiliser la question 12. De même, montrer que le segment de H dont les sommets sont (m_1, m_2, m_3) et (m_1, m_3, m_2) est inclus dans \mathcal{D}_M .
 - (d) Montrer que \mathcal{D}_M contient $\mathcal{Q}_{\widehat{\lambda}}$.
 - (e) Montrer que si $\lambda_1 > \lambda_2 > \lambda_3$ alors $\varphi(\mathcal{D}_M)$ est un hexagone, dont on déterminera les sommets.

* *

*