Clustering techniques

```
from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive
```

Imports

```
[ ] L, 1 celda oculta
```

Functions

```
[ ] L, 3 celdas ocultas
```

→ Load Data

Choose desired filename in cell below

```
datafile = "/content/drive/MyDrive/nimbus-test3-CH3-fixed.csv"
```

Renaming

```
[ ] L, 3 celdas ocultas
```

▼ Re-Order data by time

```
reordered_data = data.sort_values(
   by="Filename",
   key=lambda x: np.argsort(index_natsorted(data["Filename"]))
)
```

reordered_data

Filename	RMS	tsne-2	tsne-1	
2004.04.16.23.42.55	1.697124	68.715034	30.908306	826
2004.04.16.23.52.55	1.188294	65.962940	34.486343	825
2004.04.17.00.02.55	0.970453	69.245735	31.244444	813
2004.04.17.00.12.55	1.552761	68.182550	31.777418	860
2004.04.17.00.22.55	1.749911	66.935420	33.993640	858
2004.04.18.01.52.55	6.183291	60.927776	46.104366	991
2004.04.18.02.02.55	24.815157	59.602410	47.453750	993
2004.04.18.02.12.55	9.229391	64.904370	38.144264	983
2004 04 18 02 22 55	98 199024	59 155186	47 969376	995

```
reordered_data.loc[:,"Filename"] = reordered_data.loc[:,"Filename"].apply(parseFilenameToDate)
```

<ipython-input-11-256ec5d2b8df>:1: DeprecationWarning: In a future version, `df.iloc[:, i] = newvals` will attempt to set t
reordered_data.loc[:,"Filename"] = reordered_data.loc[:,"Filename"].apply(parseFilenameToDate)

04-17 12

04-17 06

04-17 15

04-17 18

04-18 00

data = reordered_data

▼ Plot with colours

```
def new_fromRMStoMedium(value):
 if (value < 1.80):
   return "Good"
 if (value < 4.50):
   return "Satisfactory"
  if (value < 11.20):
   return "Unsatisfactory (alert)"
   return "Unacceptable (danger)"
def new_tokenizeRMS(column):
 Transforms a column of a df into a tokenized column
 according to ISO-10816, RMS mm/s
 # For Medium Machine Class II
 result = column.apply(new_fromRMStoMedium)
 return result
tokenized = new_tokenizeRMS(data["RMS"])
seaborn_palette = sns.color_palette()
custom_palette = {
    "Good": seaborn_palette[0],
    "Satisfactory" : seaborn_palette[2],
```

```
"Unsatisfactory (alert)" : seaborn_palette[1],
"Unacceptable (danger)" : seaborn_palette[3]
}
plt.figure(figsize=(10,10))
sns.scatterplot(
     x="tsne-1", y="tsne-2",
     hue=tokenized,
     palette=custom_palette,
     data=data,
     legend="full",
     alpha=0.7
)
       <Axes: xlabel='tsne-1', ylabel='tsne-2'>
                                                                                    RMS
                                                                               Good
Satisfactory
Unsatisfactory (alert)
Unacceptable (danger)
          72
          70
        tsne-2
          62
          60
```

40

45

```
plt.figure(figsize=(6,4))
sns.scatterplot(
    x="tsne-1", y="tsne-2",
    hue=tokenized,
    palette=custom_palette,
    data=data,
    legend="full",
    alpha=0.7
)
```

25

30

▼ Split to only the necessary data for models

```
tsne_data = data.iloc[:, :2]
tsne_data
```

	tsne-1	tsne-2	
826	30.908306	68.715034	
825	34.486343	65.962940	
813	31.244444	69.245735	
860	31.777418	68.182550	
858	33.993640	66.935420	
991	46.104366	60.927776	
993	47.453750	59.602410	
983	38.144264	64.904370	
995	47 969376	59 155186	

```
plt.figure(figsize=(10,10))
sns.scatterplot(
    x="tsne-1", y="tsne-2",
    data=tsne_data
)
```


Clustering

For the data that is more prone to fail, look for groups that may give more info about the state of the machine

allo oto soto to oto

Number of clusters known

K-Means

▼ Applying the algorithm

```
n_{clusters} = 2
seed = 0
model = KMeans(n_clusters=n_clusters, random_state=seed, n_init="auto")
kmeans = model.fit_predict(tsne_data)
kmeans
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0,
          0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1,
          1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
          0,\ 1,\ 0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 0,\ 0,\ 0,\ 1,\ 1,\ 0,\ 0,
          1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1,
          1, 1, 1, 1, 1, 1, 1], dtype=int32)
c1 = model.cluster_centers_[0]
c2 = model.cluster_centers_[1]
plt.figure(figsize=(10,10))
plt.scatter(x=c1[0], y=c1[1], color="cyan", edgecolors="black", marker="^", s=200)
plt.scatter(x=c2[0], y=c2[1], color="orange", edgecolors="black", marker="^", s=200)
sns.scatterplot(
   x="tsne-1", y="tsne-2",
   data=tsne_data,
   hue=kmeans,
   palette=sns.color_palette(),
   legend="full",
   alpha=0.7
)
```

<ipython-input-59-5e60b7af5bcf>:4: UserWarning: The palette list t sns.scatterplot(<Axes: xlabel='tsne-1', ylabel='tsne-2'>

▼ Analyse results with RUL

Thresholds:

- Good: <1.80
- Satisfactory: <4.50
- Unsatisfactory (Alert): <11.20
- Unnaceptable (Danger): >=11.20

alert_threshold = 4.5

kmeans_data = data
kmeans_data["Class"] = model.labels_
kmeans_data

```
### 1 ### 1 ### 1.697124 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0

### 2004-04-16 23:42:55 0
```



```
plt.figure(figsize=(17,5))
plt.scatter(kmeans_data["Filename"], kmeans_data["Class"])
```


kmeans_data["Alert"] = kmeans_data["RMS"] >= alert_threshold kmeans_data

	tsne-1	tsne-2	RMS	Filename	Class	Alert
826	30,908306	68.715034	1.697124	2004-04-16 23:42:55	0	False
825	34.486343	65.962940	1.188294	2004-04-16 23:52:55	0	False
813	31.244444	69.245735	0.970453	2004-04-17 00:02:55	0	False
860	31.777418	68.182550	1.552761	2004-04-17 00:12:55	0	False
858	33.993640	66.935420	1.749911	2004-04-17 00:22:55	0	False

```
plt.figure(figsize=(17,5))
```

 $sns.scatterplot(x=kmeans_data["Filename"], y=kmeans_data["Class"], hue=kmeans_data["Alert"], palette=["green", "red"]) \\$

Explicación puntos intercalados

```
plt.figure(figsize=(17,5))
plt.plot(kmeans_data["Filename"], kmeans_data["RMS"])
plt.axhline(y=alert_threshold, color='r', linestyle='-')
plt.show()
```


▼ Same for more clusters

```
n_clusters = 3
seed = 0

model = KMeans(n_clusters=n_clusters, random_state=seed, n_init="auto")
kmeans = model.fit_predict(tsne_data)
kmeans
```

```
0,\ 2,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 2,\ 2,\ 1,\ 2,\ 2,\ 0,\ 2,\ 2,\ 1,\ 0,
            0, 1, 1, 0, 0, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1,
            0, 2, 1, 0, 0, 0, 2, 2, 2, 0, 1, 1, 1, 1, 1, 0, 2, 0, 2, 1, 2, 2,
            2, 2, 0, 0, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1,
            2, 1, 2, 2, 1, 2, 2, 0, 2, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0, 2, 1, 0, 2,
            2, 0, 2, 2, 2, 0, 2, 2, 0, 2, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 2, 1,
            1, 1, 1, 1, 1, 2, 1, 1], dtype=int32)
cc = model.cluster_centers_
plt.figure(figsize=(10,10))
plt.scatter(x=cc[0][0], y=cc[0][1], color="cyan", edgecolors="black", marker="^", s=200) plt.scatter(x=cc[1][0], y=cc[1][1], color="orange", edgecolors="black", marker="^", s=200)
\verb|plt.scatter|(x=cc[2][0], y=cc[2][1], color="green", edgecolors="black", marker="^", s=200)|
sns.scatterplot(
    x="tsne-1", y="tsne-2",
    data=tsne_data,
    hue=kmeans,
    palette=sns.color_palette(),
    legend="full",
    alpha=0.7
)
     <ipython-input-71-9eef67d06d3d>:5: UserWarning: The palette list | 
       sns.scatterplot(
      <Axes: xlabel='tsne-1', ylabel='tsne-2'>
                                                                     012
       74
       72
       64
       62
       60
         25
                       30
                                    35
                                                              45
```

```
kmeans_data = data
kmeans_data["Class"] = model.labels_
kmeans_data["Alert"] = kmeans_data["RMS"] >= alert_threshold
```

Unknown number of Clusters

Hierarchical Clustering: AgglomerativeClustering

Depending on the linkage, different results can be obtained:

- · 'ward' minimizes the variance of the clusters being merged.
- 'average' uses the average of the distances of each observation of the two sets.
- 'complete' or 'maximum' linkage uses the maximum distances between all observations of the two sets.
- 'single' uses the minimum of the distances between all observations of the two sets.

Compute_distances for dendogram representations

```
linkage = "ward"
```

Dendogram

Plot dendogram

No more than p levels of the dendrogram tree are displayed. A "level" includes all nodes with p merges from the final merge.

```
n_{clusters} = None
distance threshold = 0
compute_distances = True
model = AgglomerativeClustering(linkage=linkage, n_clusters=n_clusters,
                                distance threshold=distance threshold, compute distances=compute distances)
clustering = model.fit_predict(tsne_data)
clustering
     array([ 82, 110, 141, 161, 133, 139, 114, 104, 150, 126, 94, 103, 143,
             99, 159, 121, 140, 80, 128, 125, 108, 62, 93, 115, 119, 111,
            101, 160, 134, 69, 142, 116, 89, 144, 127, 102, 137, 90, 151,
            85, 138, 123, 129, 153, 57, 120, 46, 117, 112, 107, 100, 152, 71, 87, 145, 70, 130, 79, 81, 88, 39, 40, 63, 109, 124,
            118, 155, 131, 75, 147, 154, 59, 86, 53, 135,
                                                               84, 148, 61,
             66, 34, 43, 122, 92, 136, 60, 68, 95, 30,
                                                               58, 105, 113,
             96, 64, 76, 97, 106, 157,
                                          37,
                                               91, 149, 132,
                                                               29, 158, 14,
            156, 74, 52, 65, 146, 28,
                                           50, 55, 42, 19,
             27, 98, 49, 45, 51,
                                      41,
                                           31, 20, 48, 77,
                                                               72,
                                                                    32,
                                                                         73,
             13, 78, 44, 25, 15,
                                     54, 36, 21, 38, 22,
                                                               6, 18, 67,
             35, 24, 33, 16, 10,
                                      9,
                                           7, 23, 17, 26,
                                       0])
plt.title(f"Hierarchical Clustering Dendrogram - linkage: {linkage}")
plot_dendrogram(model, truncate_mode="level", p=3)
plt.xlabel("Number of points in node (or index of point if no parenthesis).")
```

```
plt.ylabel("Level")
plt.show()
```


▼ 5 clusters, different linkages

```
n_{clusters} = 5
distance_threshold = None
compute_distances = True
model = AgglomerativeClustering(linkage=linkage, n_clusters=n_clusters,
                              \verb|distance_threshold=distance_threshold|, compute_distances=compute_distances||
clustering = model.fit_predict(tsne_data)
clustering
    2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 2, 2, 1, 3, 3, 1, 0, 2, 1, 1, 4, 2,
           0, 4, 3, 0, 0, 3, 0, 0, 4, 3, 4, 4, 3, 4, 0, 0, 4, 0, 4, 4, 4, 4,
           0, 3, 3, 0, 0, 2, 0, 0, 0, 0, 4, 4, 4, 3, 3, 0, 0, 2, 0, 3, 1, 1,
           1, 1, 0, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3, 3, 1, 3, 1, 3, 1, 3, 3,
           1, 3, 0, 1, 4, 1, 1, 0, 1, 3, 3, 1, 1, 1, 0, 2, 2, 2, 1, 3, 2, 1,
           1, 0, 1, 1, 1, 2, 1, 1, 0, 1, 4, 4, 2, 3, 4, 0, 4, 0, 4, 3, 0, 3,
           3, 4, 3, 4, 4, 0, 4, 4])
plt.figure(figsize=(10,10))
sns.scatterplot(
   x="tsne-1", y="tsne-2",
   data=tsne_data,
   hue=clustering,
   palette=sns.color_palette(),
   legend="full",
   alpha=0.7
)
```

```
<ipython-input-98-65eb2b0fc0e0>:2: UserWarning: The palette list I sns.scatterplot(
```

<Axes: xlabel='tsne-1', ylabel='tsne-2'>

cluster_data = data
cluster_data["Class"] = model.labels_
cluster_data["Alert"] = cluster_data["RMS"] >= alert_threshold
cluster_data

	tsne-1	tsne-2	RMS	Filename	Class	Alert
826	30.908306	68.715034	1.697124	2004-04-16 23:42:55	0	False
825	34.486343	65.962940	1.188294	2004-04-16 23:52:55	0	False
813	31.244444	69.245735	0.970453	2004-04-17 00:02:55	0	False
860	31.777418	68.182550	1.552761	2004-04-17 00:12:55	0	False
858	33.993640	66.935420	1.749911	2004-04-17 00:22:55	0	False
001	16 101366	60 Q27776	E 183201	2004-04-18	1	Тгид

```
plt.figure(figsize=(17,5))
sns.scatterplot(x=cluster_data["Filename"], y=cluster_data["Class"], hue=cluster_data["Alert"], palette=["green","red"])
```

