Examen d'Intégration et Application mardi 19 décembre 2017

documents autorisés : 2 feuilles au format A4, recto-verso Calculettes et tout appareil de communication interdits.

Note: rendre les exercices 1, 2, 3 sur une copie, et les exercices 4 et 5 sur une autre copie.

1 Continuité/dérivation d'intégrale (6 pts)

Soit $\epsilon > 0$, $I = [\epsilon, +\infty[$, et $f(t, x) = e^{-tx} \frac{\sin x}{x}$. On note $d\mu_x$ la mesure de Lebesgue sur \mathbb{R} . On pose pour $t \in I$, $F(t) = \int_{[0, +\infty[} f(t, x) d\mu_x]$.

- 1. Montrer que pout x > 0, $\frac{|\sin x|}{x} \le 1$. On pourra faire une étude rapide de fonction à cet effet. En déduire que $\forall (t,x) \in I \times]0, +\infty[, |f(t,x)| \le e^{-\epsilon x}$.
- 2. Montrer que F est bien définie pour tout $t > \epsilon$ et que F est continue en tout $t > \epsilon$.
- 3. Montrer en utilisant avec précision un théorème du cours que F est dérivable en tout $t > \epsilon$ et que $F'(t) = \int_{[0,+\infty[} -e^{tx}\sin(x)d\mu_x.$
- 4. Par un argument rigoureux mettant en jeu les intégrales de Riemann, montrer que

$$F'(t) = \lim_{y \to +\infty} [e^{-tx} \cos(x)]_0^y + \lim_{y \to +\infty} \int_0^y t^2 e^{-tx} \sin(x) d\mu_x.$$

En déduire que $F'(t) = -\frac{1}{1+t^2}$

5. Montrer que $\lim_{n\to+\infty} F(n) = 0$. En déduire une expression de F(t) (penser à arctan).

2 Théorie de la mesure (4 pts)

Les mesures de cet énoncé sont à considérer sur un espace mesurable fixé (E, \mathcal{E}) . Soient μ_1 et μ_2 sont deux mesures, et α_1 et α_2 deux scalaires strictement positifs.

- 1. Montrer (en 5 lignes max) que la fonction μ définie par $\mu(E) = \alpha_1 \mu_1(E) + \alpha_2 \mu_2(E)$ est une mesure.
- 2. Soit $A \in \mathcal{E}$. Soit $\mathbb{1}_A$ la fonction indicatrice de A. Que vaut $\int \mathbb{1}_A d\mu$?
- 3. Donner la valeur de $\int f d\mu$ dans le cas où f est intégrable par rapport aux deux mesures μ_1 et μ_{2*} Expliquer votre résultat.

3 Changement de variable (2 pts)

On a $\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$ (Riemann impropre) et $d\mu$ la mesure de Lebesgue sur \mathbb{R} .

- 1. Argumenter précisément le calcul des valeurs de $\int_{[0,+\infty]} e^{-x^2} d\mu$, puis de $\int_{[-\infty,+\infty]} e^{-x^2} d\mu$.
- 2. Calculer rigoureusement $I = \int_{]-\infty,+\infty[\times]-\infty,+\infty[} e^{-(x+y)^2} e^{-(x-y)^2} d\mu \otimes d\mu$ en utilisant le changement de variable u = x + y, v = x y.

Principe d'incertitude d'Heisenberg (6 pts)

Note : dans cet exercice, les intégrales considérées sont des intégrales de Lebesque prises par rapport à la mesure de Lebesque.

L'objectif de cet exercice est de démontrer une formule reliant la localisation temporelle d'un signal à sa localisation fréquentielle. Dans un autre contexte, cette formule correspond au principe d'incertitude d'Heisenberg. qui exprime qu'on ne peut pas déterminer de façon (très) précise à la fois la position et la vitesse d'une particule. Plus précisément, soit x une fonction de $\mathbb R$ dans $\mathbb C$ continûment dérivable, telle que x, x', et $t\mapsto tx(t)$ soient dans $L^2(\mathbb{R})$. On pose

$$\sigma_x^2 = \int_{\mathbb{R}} t^2 |x(t)|^2 dt$$

$$\sigma_{\hat{x}}^2 = \int_{\mathbb{R}} f^2 |\hat{x}(f)|^2 df$$

 σ_x^2 et σ_x^2 sont appelées respectivement dispersion d'énergie de x en temps et dispersion d'énergie en fréquence. On va alors montrer que

$$\sigma_x \sigma_{\hat{x}} \geqslant \frac{E}{4\pi}$$

où $E = \int_{\mathbb{R}} |x(t)|^2 dt$ est l'énergie de x. On admettra pour cela les deux résultats suivants :

- a) $\lim_{|t|\to+\infty} t|x(t)|^2=0$ b) $\hat{x'}(f)=2i\pi f \hat{x}(f)$ (noter qu'on considère des fonctions de $L^2(\mathbb{R})$ et non de $L^1(\mathbb{R})$)
- 1. Exprimer $\sigma_{\hat{x}}^2$ en fonction d'une intégrale sur x' (on justifiera le calcul).
- 2. D'autre part, en utilisant le fait que $(x\overline{x})' = x'\overline{x} + x\overline{x}'$ ainsi que l'inégalité de Cauchy-Schwarz, montrer

$$\left| \int_{\mathbb{R}} t \left(|x(t)|^2 \right)' dt \right| \le 4\pi \sigma_x \sigma_{\widehat{x}}$$

Rappel de l'inégalité de Cauchy-Schwarz : si x et y sont deux fonctions de $L^2(\mathbb{R})$, alors

$$\left| \int_{\mathbb{R}} x(t) \overline{y(t)} dt \right| \leq \left(\int_{\mathbb{R}} |x(t)|^2 dt \right)^{1/2} \left(\int_{\mathbb{R}} |y(t)|^2 dt \right)^{1/2}$$

3. Calculer alors $\int_{\mathbb{R}} t \left(|x(t)|^2\right)' dt$ en utilisant le résultat a) ci-dessus, et conclure.

Distributions : transformée de Fourier et dérivée (4 pts) 5

Soit T une distribution tempérée $(T \in \mathcal{S}'(\mathbb{R}))$. On rappelle que

- a la tranformée de Fourier de T est définie par : $\forall \varphi \in \mathcal{S}(\mathbb{R}), \ \langle \widehat{T}, \varphi \rangle = \langle T, \widehat{\varphi} \rangle$
- la dérivée k-ème de T est définie par : $\langle T^{(k)}, \varphi \rangle = (-1)^k \langle T, \varphi^{(k)} \rangle$

En utilisant ces définitions ainsi que les relations entre transformée de Fourier et dérivées (au sens des fonctions),

- 1. Dérivée de la transformée : $\forall k \in \mathbb{N}, \ \widehat{T}^{(k)} = (-\widehat{2j\pi x})^k T$
- 2. Transformée de la dérivée « $\forall k \in \mathbb{N}, \ \widehat{T^{(k)}} = (2j\pi f)^k \widehat{T}$