$10_{71} \ (K10a_{10})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{27} + 5u^{25} + \dots + b + u, -u^{39} - u^{38} + \dots + a - 4u, u^{40} + 2u^{39} + \dots + 4u^2 + 1 \rangle$$

 $I_2^u = \langle b + u + 1, a, u^2 + u + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 42 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{27} + 5u^{25} + \dots + b + u, -u^{39} - u^{38} + \dots + a - 4u, u^{40} + 2u^{39} + \dots + 4u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{39} + u^{38} + \dots - 5u^{2} + 4u \\ -u^{27} - 5u^{25} + \dots + 4u^{2} - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{21} + 4u^{19} + \dots - 4u^{2} + 3u \\ -u^{39} - 2u^{38} + \dots - u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{39} - u^{38} + \dots + 3u - 1 \\ -2u^{39} - 4u^{38} + \dots - 4u^{2} - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{9} - 2u^{7} - 3u^{5} - 2u^{3} - u \\ -u^{9} - u^{7} - u^{5} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

 $=u^{39}+9u^{38}+17u^{37}+66u^{36}+94u^{35}+285u^{34}+329u^{33}+852u^{32}+826u^{31}+1962u^{30}+1576u^{29}+3630u^{28}+2362u^{27}+5577u^{26}+2755u^{25}+7286u^{24}+2421u^{23}+8227u^{22}+1323u^{21}+8198u^{20}-136u^{19}+7289u^{18}-1361u^{17}+5878u^{16}-1976u^{15}+4322u^{14}-1882u^{13}+2864u^{12}-1394u^{11}+1700u^{10}-826u^{9}+838u^{8}-385u^{7}+329u^{6}-157u^{5}+92u^{4}-42u^{3}+7u^{2}-5u+6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{40} - 21u^{39} + \dots - 3u + 1$
c_2, c_4	$u^{40} + 3u^{39} + \dots + 3u + 1$
c_3, c_7	$u^{40} + u^{39} + \dots - 8u + 4$
c_5, c_9	$u^{40} - 2u^{39} + \dots + 4u^2 + 1$
c_6	$u^{40} + 15u^{39} + \dots + 120u + 16$
c_8, c_{10}	$u^{40} - 14u^{39} + \dots - 8u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{40} - y^{39} + \dots + 17y + 1$
c_{2}, c_{4}	$y^{40} - 21y^{39} + \dots - 3y + 1$
c_3, c_7	$y^{40} - 15y^{39} + \dots - 120y + 16$
c_5, c_9	$y^{40} + 14y^{39} + \dots + 8y + 1$
c ₆	$y^{40} + 17y^{39} + \dots + 2016y + 256$
c_8,c_{10}	$y^{40} + 26y^{39} + \dots + 44y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.725993 + 0.653238I		
a = -1.77855 + 1.81598I	0.63968 + 1.74616I	0.044303 - 1.257582I
b = -2.56295 - 0.04821I		
u = 0.725993 - 0.653238I		
a = -1.77855 - 1.81598I	0.63968 - 1.74616I	0.044303 + 1.257582I
b = -2.56295 + 0.04821I		
u = 0.657117 + 0.787048I		
a = 1.66831 + 0.40061I	-1.07354 - 2.17702I	-2.16670 + 4.43587I
b = 0.89334 + 1.41707I		
u = 0.657117 - 0.787048I		
a = 1.66831 - 0.40061I	-1.07354 + 2.17702I	-2.16670 - 4.43587I
b = 0.89334 - 1.41707I		
u = 0.096376 + 1.028080I		
a = 0.442341 + 0.052565I	2.32493 - 2.41163I	2.33571 + 3.34704I
b = -0.722317 + 0.146557I		
u = 0.096376 - 1.028080I		
a = 0.442341 - 0.052565I	2.32493 + 2.41163I	2.33571 - 3.34704I
b = -0.722317 - 0.146557I		
u = -0.824710 + 0.626683I		
a = -1.67414 - 1.41541I	-1.20323 - 7.65538I	-1.63964 + 4.86252I
b = -2.39518 + 0.13829I		
u = -0.824710 - 0.626683I		
a = -1.67414 + 1.41541I	-1.20323 + 7.65538I	-1.63964 - 4.86252I
b = -2.39518 - 0.13829I		
u = -0.789408 + 0.675423I		
a = 1.235380 + 0.007261I	-3.72005 - 2.44717I	-4.96365 + 1.04542I
b = 1.156310 - 0.509552I		
u = -0.789408 - 0.675423I		
a = 1.235380 - 0.007261I	-3.72005 + 2.44717I	-4.96365 - 1.04542I
b = 1.156310 + 0.509552I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.386153 + 0.965172I		
a = -0.238506 + 0.455641I	0.74845 - 2.81821I	-1.95524 + 6.55211I
b = -0.397991 + 0.639039I		
u = 0.386153 - 0.965172I		
a = -0.238506 - 0.455641I	0.74845 + 2.81821I	-1.95524 - 6.55211I
b = -0.397991 - 0.639039I		
u = -0.023616 + 1.041760I		
a = -1.087150 - 0.838239I	6.00686 + 1.32070I	7.28134 - 0.72610I
b = 0.393277 - 1.005930I		
u = -0.023616 - 1.041760I		
a = -1.087150 + 0.838239I	6.00686 - 1.32070I	7.28134 + 0.72610I
b = 0.393277 + 1.005930I		
u = -0.650732 + 0.672523I		
a = 0.172779 + 0.250083I	1.25887 + 0.68759I	-0.543601 + 0.759704I
b = -0.359504 - 0.987978I		
u = -0.650732 - 0.672523I		
a = 0.172779 - 0.250083I	1.25887 - 0.68759I	-0.543601 - 0.759704I
b = -0.359504 + 0.987978I		
u = 0.095598 + 1.116440I		
a = -0.834103 + 0.849030I	5.21580 - 6.90989I	5.24227 + 6.39245I
b = 0.370183 + 0.684126I		
u = 0.095598 - 1.116440I		
a = -0.834103 - 0.849030I	5.21580 + 6.90989I	5.24227 - 6.39245I
b = 0.370183 - 0.684126I		
u = 0.639866 + 0.934630I		
a = -0.19632 + 1.43499I	-0.60920 - 2.86826I	-1.22261 + 1.95241I
b = -1.28155 + 0.60102I		
u = 0.639866 - 0.934630I		
a = -0.19632 - 1.43499I	-0.60920 + 2.86826I	-1.22261 - 1.95241I
b = -1.28155 - 0.60102I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.777168 + 0.837928I		
a = -0.91272 - 1.60741I	-6.21108 + 0.22925I	-5.84725 + 0.24543I
b = -2.00597 - 0.19942I		
u = -0.777168 - 0.837928I		
a = -0.91272 + 1.60741I	-6.21108 - 0.22925I	-5.84725 - 0.24543I
b = -2.00597 + 0.19942I		
u = -0.762796 + 0.899428I		
a = 1.74060 + 0.53261I	-6.02457 + 5.56367I	-5.18066 - 6.01609I
b = 2.07413 - 1.05941I		
u = -0.762796 - 0.899428I		
a = 1.74060 - 0.53261I	-6.02457 - 5.56367I	-5.18066 + 6.01609I
b = 2.07413 + 1.05941I		
u = -0.651476 + 0.987984I		
a = 0.197553 + 0.008658I	2.21178 + 4.43619I	1.72906 - 5.48285I
b = -0.673463 - 1.012420I		
u = -0.651476 - 0.987984I		
a = 0.197553 - 0.008658I	2.21178 - 4.43619I	1.72906 + 5.48285I
b = -0.673463 + 1.012420I		
u = 0.559538 + 1.043730I		
a = 0.204110 + 0.051194I	2.37466 + 0.03317I	2.30074 - 1.92960I
b = -0.743272 + 0.884629I		
u = 0.559538 - 1.043730I		
a = 0.204110 - 0.051194I	2.37466 - 0.03317I	2.30074 + 1.92960I
b = -0.743272 - 0.884629I		
u = 0.674430 + 1.003370I		
a = 1.99901 - 1.47152I	1.68055 - 7.12390I	1.84913 + 6.13601I
b = 3.05304 + 1.06309I		
u = 0.674430 - 1.003370I		
a = 1.99901 + 1.47152I	1.68055 + 7.12390I	1.84913 - 6.13601I
b = 3.05304 - 1.06309I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.710235 + 0.337827I		
a = 0.496293 - 0.392962I	0.39800 - 4.72692I	-1.63267 + 6.05913I
b = -0.069099 + 0.837495I		
u = 0.710235 - 0.337827I		
a = 0.496293 + 0.392962I	0.39800 + 4.72692I	-1.63267 - 6.05913I
b = -0.069099 - 0.837495I		
u = -0.705098 + 1.010600I		
a = -0.462757 - 1.241560I	-2.70648 + 8.09252I	-2.94350 - 6.08172I
b = -1.290960 - 0.160212I		
u = -0.705098 - 1.010600I		
a = -0.462757 + 1.241560I	-2.70648 - 8.09252I	-2.94350 + 6.08172I
b = -1.290960 + 0.160212I		
u = -0.703890 + 1.042830I		
a = 1.61753 + 1.43395I	0.05370 + 13.38520I	0.42075 - 9.35928I
b = 2.91214 - 0.75501I		
u = -0.703890 - 1.042830I		
a = 1.61753 - 1.43395I	0.05370 - 13.38520I	0.42075 + 9.35928I
b = 2.91214 + 0.75501I		
u = 0.566007 + 0.177460I		
a = 0.944370 + 0.216688I	-1.47568 - 0.52119I	-6.28438 + 0.91978I
b = 0.239645 - 0.184623I		
u = 0.566007 - 0.177460I		
a = 0.944370 - 0.216688I	-1.47568 + 0.52119I	-6.28438 - 0.91978I
b = 0.239645 + 0.184623I		
u = -0.222419 + 0.359701I		
a = -0.03404 + 1.68269I	1.75548 + 0.68997I	4.17661 + 0.16492I
b = -0.589808 - 0.653481I		
u = -0.222419 - 0.359701I		
a = -0.03404 - 1.68269I	1.75548 - 0.68997I	4.17661 - 0.16492I
b = -0.589808 + 0.653481I		

II.
$$I_2^u = \langle b + u + 1, \ a, \ u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ -u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u \\ -2u - 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ -u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4u + 1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u+1)^2$
c_3, c_6, c_7	u^2
C ₄	$(u-1)^2$
c_5,c_{10}	$u^2 - u + 1$
c_{8}, c_{9}	$u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^2$
c_3, c_6, c_7	y^2
c_5, c_8, c_9 c_{10}	$y^2 + y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0	1.64493 + 2.02988I	3.00000 - 3.46410I
b = -0.500000 - 0.866025I		
u = -0.500000 - 0.866025I	1.04409 0.000007	2.00000 + 2.464101
a = 0	1.64493 - 2.02988I	3.00000 + 3.46410I
b = -0.500000 + 0.866025I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u+1)^2)(u^{40}-21u^{39}+\cdots-3u+1)$
c_2	$((u+1)^2)(u^{40}+3u^{39}+\cdots+3u+1)$
c_3, c_7	$u^2(u^{40} + u^{39} + \dots - 8u + 4)$
C4	$((u-1)^2)(u^{40}+3u^{39}+\cdots+3u+1)$
<i>C</i> ₅	$(u^2 - u + 1)(u^{40} - 2u^{39} + \dots + 4u^2 + 1)$
c_6	$u^2(u^{40} + 15u^{39} + \dots + 120u + 16)$
c ₈	$(u^2 + u + 1)(u^{40} - 14u^{39} + \dots - 8u + 1)$
<i>c</i> 9	$(u^2 + u + 1)(u^{40} - 2u^{39} + \dots + 4u^2 + 1)$
c_{10}	$(u^2 - u + 1)(u^{40} - 14u^{39} + \dots - 8u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^2)(y^{40} - y^{39} + \dots + 17y + 1)$
c_2, c_4	$((y-1)^2)(y^{40} - 21y^{39} + \dots - 3y + 1)$
c_3, c_7	$y^2(y^{40} - 15y^{39} + \dots - 120y + 16)$
c_5, c_9	$(y^2 + y + 1)(y^{40} + 14y^{39} + \dots + 8y + 1)$
c_6	$y^2(y^{40} + 17y^{39} + \dots + 2016y + 256)$
c_8, c_{10}	$(y^2 + y + 1)(y^{40} + 26y^{39} + \dots + 44y + 1)$