Static-40

Title

A thin cylinder subjected to a uniform axial loading

Description

Determine the displacements and the stresses.

Structural geometry and analysis model

MODEL

Analysis Type

3-D static analysis

Unit System

m, N

Dimension

Radius 1 m Height 4 m

Element

Plate element

Material

```
Modulus of elasticity E = 2.1 \times 10^{11} \text{ Pa}
Poisson's ratio v = 0.3
```

Sectional Property

Thickness 0.02 m

Boundary Condition

```
Node 1, 11: Constrain D_Y and D_Z
Node 2~5, 7~10, 12~15, 17~20: Constrain D_Z
Node 6, 16: Constrain D_X and D_Z
```

Load Case

An axial pressure load, p = 10000 N/m is applied to the top of the cylinder.

Results

X-displacement (δ_X) and *Z-displacement* (δ_Z)

Stresses (σ_Z)

Comparison of Results

Unit: m, N/m²

Results	Theoretical	MIDAS/Civil
Displacement (δ_X)	9.52×10 ⁻⁶	9.52×10 ⁻⁶
Displacement (δ_z)	-7.14×10^{-7}	-7.14×10^{-7}
Stress (σ_z)	5.00×10^5	5.00×10^5

Reference

R.J. Roark et, W.C. Young, "Formulas for stress and strain", 5th edition, New York McGraw-Hill, 1975