Master in Artificial Intelligence and Robotics

Data-driven identification of a one-link robot with flexible joint

Lagrangian Neural Network applied to elastic robots

Course: Robotics 2

Professor: Alessandro De Luca

Tutor: Pietro Pustina

Students: Lorenzo Cirillo 1895955, Claudio Schiavella 1884561

INTRODUCTION

- Robot dynamic model
 - Relationship between applied forces and motion
 - D'Alembert, Hamilton,
- Euler-Lagrange equations
 - Modeling and control
 - Symbolic form equations of motions
- Modeling systems

 Neural networks

 Lagrangian NN

PARAMETRIC LAGRANGIAN

Lagrangian

$$L(q, \dot{q}) = T(q, \dot{q}) - U(q)$$

- Kinetic $T(q, \dot{q})$ and potential U(q) energy
- Generalized coordinates $q \in \mathbb{R}^N$
 - N = robot DOF

Euler-Lagrange equations

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = u_i \qquad i = 1, \dots, N$$

$$i=1,\ldots,N$$

- Non-conservative forces u_i
 - Considered null in our application

PARAMETRIC LAGRANGIAN

Parametric Lagrangian

$$\ddot{q} = \left(\nabla_{\dot{q}} \nabla_{\dot{q}}^T L\right)^{-1} \left[\nabla_q L - (\nabla_q \nabla_{\dot{q}}^T L) \dot{q}\right]$$

- Lagrangian analytical expression not always known
- Alternative approach
 - Automatic differentiation

RIGID ROBOT

1R robot with y-axis agreeing with gravity

Model:
$$(I + md^2)\ddot{q} + mg_0 d \sin(q) = 0$$

Acceleration:

$$\ddot{q} = -\frac{1}{I + md^2} mg_0 d \sin(q)$$

- Coriolis and Centrifugal term not present
 - One single link
 - Contribute to the joint when it is moving is null

ELASTIC ROBOT

1R robot with y-axis agreeing with gravity

Model:
$$\begin{cases} (I + md^2)\ddot{q} + mg_0d\sin(q) + k(q - \theta) = 0\\ I_m\ddot{\theta} + k(\theta - q) = 0 \end{cases}$$

Accelerations:

$$\begin{cases} \ddot{q} = -\frac{1}{I + md^2} [mg_0 d \sin(q) + k(q - \theta)] \\ \ddot{\theta} = \frac{1}{I_m} k(q - \theta) \end{cases}$$

- Again Coriolis and Centrifugal term not present
 - Constant inertia matrix

BASELINE NN

- Classic feedforward neural network
 - Only fully connected layers
- Learn \(\bar{q}\) directly from \(\bar{q}\) and \(q\)
 - Not considering Lagrangian and relative constraints
- Function of a comparison baseline
 - Same structure of Lagrangian NN to comparison reasons

LAGRANGIAN NN

- Same baseline structure, completely different approach
 - Very close to robot nature
- Learn Lagrangian
 - Functional programming context
 - Predictions benefit of the Lagrangian approach features
- *q* obtained from parametric Lagrangian

SIMULATIONS

- Type 1: Observe behavior of the two networks
 - Trajectory tracking
 - Trajectory error
 - Energy conservation
- Type 2: Introduce noise
 - Same tests as in type 1
 - Highlight network robustness in not ideal context

RIGID CASE

Robot parameters

Parameter	Measure	
Length	0.30 [m]	
Base radius	0.01[m]	
CoM distance	0.15 [m]	
Mass	0.25[kg]	
Inertia	$0.01125 [kg m^2]$	

Network setup

Characteristic	Value	
Layers	4	
Neurons	500	
Activation	Softplus	
Loss	MSE	
Regularization	L2 penalty	
Train epochs	10 000	

RIGID CASE – NETWORK TRAINING

Train and test losses

Initial conditions:

$$q(0) = 1,33 \, rad \, \dot{q}(0) = 0,2 \frac{rad}{s}$$

Initial conditions:

$$q(0) = 0 \ rad \ \dot{q}(0) = 4 \frac{rad}{s}$$

Initial conditions:

$$q(0) = 2,66 \, rad \, \dot{q}(0) = 0,5 \frac{rad}{s}$$

RIGID CASE

Motor parameters

Network setup

Parameter	Measure	Configuration	Units	Layers
Height	0.04 [m]	Α	300	2
Base radius	0.02 [m]	В	500	4
Mass	$\boldsymbol{0}.\boldsymbol{4}[\boldsymbol{k}\boldsymbol{g}]$	С	700	5
Reduction ratio	160			
Inertia	$0.0128 [kg m^2]$			
Stiffness constant	50 [Nm/rad]			

ELASTIC CASE

Robot parameters

Parameter	Measure	
Length	0.30 [m]	
Base radius	0.01[m]	
CoM distance	0.15 [m]	
Mass	0.25[kg]	
Inertia	$0.01125 [kg m^2]$	

Network setup

Characteristic	Value	
Layers	4	
Neurons	500	
Activation	Softplus	
Loss	MSE	
Regularization	L2 penalty	
Train epochs	10 000	

ELASTIC CASE – CONFIGURATION A

Train and test losses

Initial conditions:

$$\begin{cases} q(0) = 2,66 \ rad \ \dot{q}(0) = 0,5 \frac{rad}{s} \\ \theta(0) = 3,06 \ rad \ \dot{\theta}(0) = 1 \frac{rad}{s} \end{cases}$$

Initial conditions:

$$\begin{cases} q(0) = 1,33 \ rad \ \dot{q}(0) = 1 \frac{rad}{s} \\ \theta(0) = 1,51 \ rad \ \dot{\theta}(0) = 0,5 \frac{rad}{s} \end{cases}$$

ELASTIC CASE – CONFIGURATION B

Train and test losses

ELASTIC CASE – CONFIGURATION C

Train and test losses

CONCLUSIONS

- At least in the rigid case, LNN performances are very good
 - Both in trajectory error and energy conservation
- Unfortunately, bad results in elastic case
- Elastic LNN seems to improve as network complexity increase
 - More wide/deep network and more initial conditions
 - High computational resources needed
- Paper LNN approach works on unitary configurations
 - We reject this in preference to real robot parameters

THANK YOU