

遨游"视"界 做你所想 Explore World, Do What You Want

少米之炊-终端资源受限的VR视频传输

杨付正 西安电子科技大学

遨游"视"界 做你所想 Explore World, Do What You Want

LiveVideoStackCon 2019 深圳

2019.12.13-14

成为讲师: speaker@livevideostack.com

成为志愿者: volunteer@livevideostack.com

赞助、商务合作: kathy@livevideostack.com

- 2. 观看视角优先的全景视频DASH
- 3. Cloud VR关键技术及体验质量

- 2. 观看视角优先的全景视频DASH
- 3. Cloud VR关键技术及体验质量

北京

2019

VR临场感 (Presence) 体验

体验质量QoE Quality of Experience

临场感 Presence

身临其境 "being there"

- the experience of being engaged by the representations of a virtual world.
- the feeling of being in a perceptible external world around the self.

James J. Cummings and Jeremy N. Baillenson, "How Immersive Is Enough? A Meta-Analysis of the Effect of Immersive Technology on User Presence." Media Psychology, 00:1–38, 2015.

Comparison-based Subjective Assessment Method

主观实验场景

北京 2019 遨游"视"界 做你所想 Explore World, Do What You Want

VR临场感 (Presence) 主观体验

b游"视"界 做你所想 Explore World, Do What You Want

Comparison-based Subjective Assessment Method

真实场景

虚拟场景

Wenjie Zou, Wei Zhang, Jiarun Song, Fuzheng Yang, Patrick LE CALLET, "A Novel Method for Assessing the Spatial Presence of Omnidirectional Videos: Comparing Virtual and Real World." IEEE Access, 2019.

VR临场感体验客观质量评价

云VR临场感指数 Cloud VR PI(π)

Cloud X业务体验模型系列

云游戏体验模型(Cloud gMOS)

Cloud X业务体验模型系列

VR临场感体验质量评价框架

北京 2019 遨游"视"界 做你所想 Explore World, Do What You Want

技术域参数 临场感

华为 mLab《云VR临场感指数 Cloud VR PI》

Zou W, Yang F, Li Y, Yu H. Framework for assessing 360-video experience quality. 119th MPEG meeting, ISO/IEC JTC1/SC29/WG11 MPEG2017/M41242, July 2017, Torino, Italy.

Xidian MMC Lab.

VR临场感体验质量——分辨率

高硬解码能力 绝大多数独立头显不支持8K, GeForce RTX 2080 Ti、骁龙855支持8K

VR临场感体验质量——码率

VR临场感体验质量——时延

低时延

MTP (Motion-To-Photon)

云VR中时延问题:

- 2. 观看视角优先的全景视频DASH
- 3. Cloud VR关键技术及体验质量

传统方式全景视频DASH

基于Tile的观看视角优先

遨游"视"界 做你所想 Explore World, Do What You Want

有限观看视角

优先观看视角

基于Tile的观看视角优先

有限观看视角

Tiling

基于Tile的观看视角优先

解码资源受限

码流融合

Tiling

视角切换

视角切换

码流融合

观看视角优先的全景视频DASH

观看视角优先的全景视频DASH

- ▶ 面向Tile融合的投影格式
- ▶ 面向Tile融合的编码器
- ▶ 面向Tile融合快速码流切换
- ▶ 面向三层视频流的下载策略
- > Tile码流融合

面向Tile融合的投影格式

面向Tile融合的投影格式

面向Tile融合的H.265/HEVC编码器

面向Tile融合的H.265/HEVC编码器

Motion Constrained Tile Streaming (MCTS)

- Slice和Tile间关系限制;
- 帧间预测运动矢量限制;
- ▶ 帧间运动估计限制;
- 环路滤波边界限制;

空域:

时域:

面向Tile融合快速码流切换

传统DASH视频流

基于随机视频段的快速切换流

缺点: 增加存储空间

Xidian MMC Lab

基于随机参考帧的快速切换流

缺点:失真传播

Xidian MMC Lab.

面向三层视频流的下载策略

面向三层视频流的下载策略

北京 2019

Tile码流融合

Tile码流融合

- ▶ 码流头信息的修改;
- 解析头信息
- 语法元素的替换
- 生成新的头信息

- 2. 观看视角优先的全景视频DASH
- 3. Cloud VR关键技术及体验质量

Cloud VR系统——云端

压缩 传输

北京 2019

Cloud VR系统——网络传输

QUIC(Quick UDP Internet Connection)

- 初次建链3次握手,再次建链1次握手;
- 对连接的区别基于连接ID和秘钥;
- 对于数据发送采用Pacing机制;
- 接收乱序包可能造成快重传和拥塞窗口降低;
- 重传使用新包号;
- 拥塞窗口初始值较大,丢包有条件减窗,慢启动和拥塞避免阶段有条件增窗。

TCP

- 建链均为3次握手;
- 对连接的区别基于源目的IP地址与端口号;
- 拥塞窗口未满就能发不控制;
- 接收乱序包回复同样的ACK,造成队头阻塞与重传;
- 重传使用原有包号(重传模糊);
- 拥塞窗口初始值很小,丢包无条件减窗,慢启动和拥塞避免阶段有条件增窗(重复ACK)。

Cloud VR系统——客户端

实施策略

视频传输解码

Surface

Unity视频渲染

Android

播放策略

Cloud VR时延测量

评估参数提取&客观评估

总结

1. VR业务临场感体验评价: 主客观方法都面临困难

2. 观看视角优先的全景视频DASH:解码资源受限

3. Cloud VR:降低网络时延、抖动是关键

Thank you

