MATH-F-112 - MATHÉMATIQUES Exercices - Module A

Renato Costa Ribeiro

 $24\ {\rm septembre}\ 2015$

Table des matières

1 Logique 2

Chapitre 1

Logique

1.1

- m. $V \Rightarrow D$

1.2

- (1). $A \vee B \vee C$
- (2). $C \Rightarrow A$
- (3). $B \Rightarrow (A \lor C)$

Pour savoir si A est le coupable il faut : $(1) \land (2) \land (3)$

			$A \lor B \lor C$	$C \Rightarrow A$		$B \Rightarrow (A \lor C)$		
A	\mathbf{B}	$\mathbf{C} \mid$	(1)	(2)	$A \vee C$	(3)	$(1) \wedge (2) \wedge (3)$	$(1) \land (2) \land (3) \Leftrightarrow A$
0	0	0	0	1	0	1	0	1
0	0	1	1	0	1	1	0	1
0	1	0	1	1	0	0	0	1
0	1	1	1	0	1	1	0	1
1	0	0	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1

Comme nous pouvons le constater, la dernière colonne uprouve que $(1) \land (2) \land (3) \Leftrightarrow A$. A est donc le coupable.

1.3

a. Faux. Faisons une table de vérité pour le cas où $P \Rightarrow L$ et $L \Rightarrow P$. Le résultat n'est pas le même. L'affirmation est donc fausse.

P	L	$P \Rightarrow L$	$L \Rightarrow P$
0	0	1	1
0	1	1 1	0
1	0	0	1
1	1	1	1

- b. Vrai. $E \Rightarrow C$ et $C \Rightarrow P$.
- c. Faux. $(P \lor T) \Leftrightarrow (P \Rightarrow \neg T)$

P	T	$\neg T$	$P \vee T$	$P \Rightarrow \neg T$
0	0	1	0	1
0	1	0	1	1
1	0	1	1	1
1	1	0	1	0

- d. Vrai. $R \Rightarrow H$
- e. Vrai. $N \Rightarrow F$
- f. Faux. $(D \Rightarrow P) \Leftrightarrow (\neg D \Rightarrow \neg P)$

D	P	$D \Rightarrow P$	$\neg D \Rightarrow \neg P$
0	0	1	1
0	1	1 1	0
1	0	0	1
1	1	1 1	1

g. Vrai. $(D \Rightarrow P) \Leftrightarrow (\neg P \Rightarrow \neg D)$

1.9

b. Démontrons que $\forall m \in \mathbb{N} \setminus \{0\}$:

$$\underbrace{1^3 + 2^3 + \ldots + m^3}_{\sum_{i=1}^m i^3} = \frac{m^2(m+1)^2}{4}$$

 \cdot Cas de base :

Lorsque m = 1, on a bien que :

$$\underbrace{1^3 + \dots + m^3}_{= 1} = \underbrace{\frac{m^2(m+1)^2}{4}}_{= 1}$$

· <u>Cas récursif :</u>