15.9

evens Honor system."

Alexander of Solitons of Soliton

a.)

Energy is being absorbed

No.

p=10(3) p=30 Watts Energy is being absorbed $V_{0} = \frac{700}{34}$ $V_{0} = \frac{700}{34}$ $V_{0} = \frac{700}{34}$ $V_{0} = \frac{700}{34}$ $V_{0} = \frac{700}{34}$

P= 20(-3)
P= -60 walts
Energy is being
supplied

P.37

A and B one in series

i_b=-i_a i_b+i_c-3=0 i_a=-2A 2+i_c=3 i_c=1A

3 + i e i d = 0

P. 38

*P1.38. Find the values of the other currents in Figure P1.38 if i a =2 A, i b =3 A, i d =-5 A, and

$$ict in - ie = 0$$

$$ic = ict in$$

$$ie = 1t$$

$$ic = SA$$

$$ie + ig = ib + id$$

P. 43

P1.43. Solve for the other voltages shown in Figure P1.43 given that V a =5 V, v b =7 V, v b

$$v_c + v_e - v_b = 0$$

$$v_c = v_b - v_e$$

P.44

Px = 10 (2) PB = 12W

P x = - 20 W

Pc= Vcic
Pb= 4(1)
Pc= 4(1) Pc= 4(1)
Po= 4M P = 4 W

- V ~ V & V X = 1

P_A = V_K i_K P_B = -6(-1) V_b = -6 V_o

P_A = 10 (7) P_B = -6(-1)

-ic-16.i2=0

Vo = Vol (Paralle)

PA+PB+Pc+Pb=0 -20+12+4+4=0

P (54

onsider the circuit shown in Figure P1.64. Use Ohm's law, KVL, and KCL to find V x

12= 12+18+ 1c

125.57171 1 = 2.5

V= iz Rz Vz = 2.5 (5) = 12.5 V

V = iR V = i(5) $i = \frac{1}{2}A$ V - 5 V

5=1(10)

For any loop. 12.5 + 5 = V x