Predictive Modelling - V

Ensemble Models

Rita P. Ribeiro

Data Mining I - 2023/2024

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

.

Summary

- Ensembles: Motivation
- Types Ensembles
- Ensemble Methods
 - Random Forest
 - AdaBoost
 - XGBoost

Ensembles

Predictive Modelling: Where we at?

- Probabilistic Approaches
 - e.g. Naive Bayes, Bayesian Networks
- Mathematical Formulae
 - e.g. multiple linear regression
- Logical Approaches
 - e.g. CART
- Distance-based Approaches
 - e.g. kNN
- Optimization Approaches
 - e.g. SVM, ANN
- Ensemble Approaches
 - e.g. Random Forest, XgBoost

Ensemble Models

- Ensembles: collections of models that are used together to address a certain prediction problem
- · Different learning algorithms exploit:
 - different languages for representing generalizations of the examples;
 - · different search spaces;
 - · different evaluation functions of the hypothesis;
- For complex problems it is hard to find a model that "explains" all observed data
- There is no overall better algorithm → No free lunch theorem

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

4

Ensemble Models

- Averaging over a set of models typically leads to significantly better results, given certain conditions.
- An ensemble of classifiers improves over individual classifiers iif (Dietterich 2002):
 - · they perform better than random guess;
 - · they have non-correlated errors;
 - they commit errors in different regions of the instance space.

Ensemble Models

How to achieve such diversity?

- Combining outputs in different ways
- Perturbing the set of training examples
 - Homogeneous Models (Bagging, Boosting)
 - Heterogeneous Models (Cascading, Stacking)
- Perturbing the set of attributes

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

6

Bias-Variance Trade-off

The Bias-Variance Decomposition of Prediction Error

- The prediction error of a model can be split in two main components: the bias and the variance components
- bias: error that is due to the poor ability of the model to fit the seen data
- variance: error related to the sensibility of the model to the given training data

Bias-Variance Trade-off

When learning a prediction model, there is bias-variance trade-off.

- Decreasing the bias by adjusting more to the training sample → higher variance - the over-fitting phenomenon
- Decreasing the variance by being less sensitive to the given training data → higher bias

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

8

Bias-Variance Trade-off

- Ensembles are able to reduce both components of the error
- Their approach consists on:
 - · applying the same algorithm to different samples of the data
 - use the resulting models in a voting/averaging schema to obtain predictions for new cases

Types of Ensembles

Types of Ensembles

- Independent or Parallel Models
- Coordinated or Sequential Models

Types of Ensembles: Independent or Parallel Models

- Construct the models independently in a way that ensures some diversity among them
- · How to reach diversity?
 - applying the models on somewhat different training sets
 - applying the models on data sets using different predictors

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

11

Types of Ensembles: Coordinated or Sequential Models

- Construct a "larger" model by composing it from smaller and integrated models
- Each individual model has a weighted participation in the ensemble predictions
- What is the right component models and their respective weight to achieve a good predictive performance?

Ensemble Methods

Ensembles using Independent Models: Bagging

Bagging or Bootstrap Aggregating (Breiman 1996)

- Method that obtains a set of k models using different bootstrap samples of the given training data
 - sample with replacement of the same size as the available data
 - for each learner, a small proportion of examples will be different
- If the base learner has a high variance (i.e. very sensitive to variations on the training sample), this will ensure diversity among the k models
- Bagging should be applied to base learners with high variance

Ensembles using Independent Models: Bagging

- Requires unstable algorithms (greedy like)
- · Algorithms sensible to small perturbations of the training set;
 - Decision trees, Rule learners, etc.
- Easy to implement with any algorithm.
- Easy to implement in parallel environments.
- The bias-variance argument:
 - Error decreases due to reduction in the variance component.

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

14

Ensembles using Independent Models: Random Forests

Varying the Predictors

- Another way of generating a diverse set of models is by using different randomly chosen predictors
- The idea is similar to bagging but instead of generating samples of the cases we generate samples of the variables

Random Forests (Breiman 2001)

- Combine the ideas of bagging together with the idea of random selection of predictors
- Set of tree-based models where each tree is obtained from a bootstrap sample of the original data and uses random selection of variables during tree growth

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

16

Ensembles using Independent Models: Random Forests

Learning phase (main idea)

- For t = 1 to T, T is number of trees
 - draw a random sample with replacement from the training set D_t
 - train a tree model $h_t(\mathbf{x})$ on D_t without pruning
 - at each candidate split in the learning process, uses a random subset of the *m* features.
- Return $\{h_t(\mathbf{x})|1 \le t \le T\}$

Prediction phase

 Predict the class obtained by majority vote, or the value by averaging the output of each tree

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

18

Ensembles using Independent Models: Random Forests

Other Uses of Random Forests: Variable Importance

- Which variables have the most predictive power?
- Two importance measures:
 - how much the accuracy decreases / mean square error increases when the variable is excluded
 - how much the impurity decreases when the variable is chosen to split a node.

Variable Importance: an example

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

20

Ensembles using using Independent Models: Random Forests

Hyperparameters

- Number of trees
 - recommended number of trees is 1000.
 - to obtain more reliable statistics for the attribute importance, 5000 trees are recommended.
- Number of attributes to randomly select at each node
 - · it must be tuned
 - its optimum value is problem dependent.
 - rule of thumb: \sqrt{p} , p is the number of predictive attributes

Pros

- Do not require elaborate tuning of the hyper-parameters. Often these can/should be optimized.
- The most important parameter to tune is the number of trees to grow, typically the larger the best.
- Do not need to worry about creating very complex trees.

Cons

Do not provide the interpretability level of a Decision Tree

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

22

Ensembles using Coordinated Models: Boosting

Boosting (Schapire 1990)

Can a set of weak learners create a single strong learner?

- A "weak" learner is a model that alone is unable to correctly approximate the unknown predictive function
- A "strong" learner has that ability
- Boosting algorithms work by iteratively creating a strong learner by adding at each iteration a new weak learner to make the ensemble
- Weak learners are added with weights that reflect the learner's predictive power

Ensembles using Coordinated Models: Boosting

- After each addition the data is re-weighted such that cases that are still poorly predicted gain more weight
- The weight indicates the probability of the example being select in a uniform sampling;
- This means that each new weak learner will focus on the errors of the previous ones
- It fits many real-world problems, where observed examples tend to have different learning difficulty levels.
 - e.g. examples close to the decision surface are typically more difficult

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

24

Ensembles using Coordinated Models: Boosting

• The prediction: weighted voting/average of each learner.

Ensembles using Coordinated Models: Boosting

Three ways through which boosting can be carried out:

- Adaptive Boosting or AdaBoost (Freund and Schapire 1996)
- Gradient Boosting Machine (Friedman 2000)
- XGBoost (Chen and Guestrin 2016)

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

26

Ensembles using Coordinated Models: AdaBoost

AdaBoost or Adaptive Boosting (Freund and Schapire 1996)

- Iterative process: new models are added to form an ensemble
- Adaptive: at each new iteration of the algorithm, the new models are built to try to overcome the errors made in the previous iterations
- · At each iteration the weights of the training cases are adjusted
- Cases wrongly predicted get their weight increased to make new models focus on accurately predicting them
- The main hyperparameter is number of iterations
- AdaBoost was created for classification although variants for regression exist

Ensembles using Coordinated Models: AdaBoost

Source: https://medium.com/divyagera2402

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

28

Ensembles using Coordinated Models: Boosting

The Algorithm (main idea)

- Start with uniform weights $w_i^{(1)} = 1/|D|$ for all $\mathbf{x}_i \in D$
- For t = 1 to T
 - build weak model $h_t(\mathbf{x})$
 - calculate weighted error $e_t = \sum_i w_i^{(t)} I(y_i \neq h_t(\mathbf{x}_i))$
 - the weight of this weak model: $\alpha_t = \frac{1}{2} ln \left(\frac{1 e_t}{e_t} \right)$
 - update case weights $w_i^{(t+1)} = \frac{w_i^{(t)} exp(-\alpha_t I(y_i \neq h_t(\mathbf{x}_i)))}{Z_t}$ where Z_t is chosen to make all $w_i^{(t+1)}$ sum up to 1
- Return a form of additive model composed of t weak models

$$H(\mathbf{x}) = \sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})$$

Ensembles using Coordinated Models: Boosting

Evolution of the error as you increase the number of weak learners.

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

30

Ensembles using Coordinated Models: GBM

Gradient Boosting Machine (Friedman 2000)

- Sequential ensemble learning
- Contrary to AdaBoost, it does not adjust the examples weights at every iteration
- It fits the new learner to the residual errors made by the previous learner
- The present learner is always more effective than the previous one
- Goal: at each step, adds a weak learner to increase the performance and build a strong learner.

Ensembles using Coordinated Models: GBM

- Re-defines boosting as a numerical optimization problem
- Objective: minimize the loss function of the model by adding weak learners using a gradient-descent procedure.
- Major difference: how it identifies the shortcomings of weak learners (e.g. decision trees).
- It uses gradients in the loss function as a measure indicating how good are model's coefficients are at fitting the underlying data
- Like AdaBoost, it can be used for both classification and regression problems

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

32

Ensembles using Coordinated Models: GBM

Learning phase (main idea)

 Build an additive tree model by adding new trees to complement the already-built ones

#	X	У
1	\mathbf{x}_1	<i>y</i> ₁
2	\mathbf{x}_2	<i>y</i> ₂
3	\mathbf{x}_3	<i>y</i> ₃

#	X	У
1	\mathbf{x}_1	$\ell(y_1,h_1(\mathbf{x}_1))$
2	\mathbf{x}_2	$\ell(y_2,h_1(\mathbf{x}_2))$
3	\mathbf{x}_3	$\ell(y_3,h_1(\mathbf{x}_3))$

#	X	y
1	X ₁	$\ell(y_1, h_1(\mathbf{x}_1) + h_2(\mathbf{x}_1))$
2	\mathbf{x}_2	$\ell(y_2, h_1(\mathbf{x}_2) + h_2(\mathbf{x}_2))$
3	\mathbf{x}_3	$\ell(y_1, h_1(\mathbf{x}_1) + h_2(\mathbf{x}_1)) \ell(y_2, h_1(\mathbf{x}_2) + h_2(\mathbf{x}_2)) \ell(y_3, h_1(\mathbf{x}_3) + h_2(\mathbf{x}_3))$
		•••

Ensembles using Coordinated Models: GBM

Learning phase (main idea) - cont.

- Objective: minimize $Obj = \sum_{i=1}^{n} \ell(y_i, \hat{y}_i) + \sum_{k=1}^{K} \mathcal{R}(h_k)$ where
 - $\sum_{i=1}^{n} \ell(y_i, \hat{y}_i)$ is the training loss
 - · measures how well the model fits on training data
 - $\sum_{k=1}^{K} \mathcal{R}(h_k)$ is the regularization term
 - measures the complexity of trees (nr of leafs and L₂-norm of leaf scores)

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

34

Ensembles using Coordinated Models: GBM

Prediction phase

· Response is the optimal linear combination of all decision trees

Ensembles using Coordinated Models: GBM

Hyperparameters

- Learning rate (α) is a multiplying factor on the errors for the subsequent trees.
 - It controls how fast the model learns: the lower α , the slower the model learns.
 - The advantage of slower learning rate: the model becomes more robust and avoids overfitting.
 - However, learning slowly comes at a cost: it takes more time to train the model
- Number of trees used in the model.
 - If the learning rate is low, we need more trees to train the model.
 - However, it creates a high risk of overfitting to use too many trees.
- DATA MINING I 23/24 PREDICTIVE MODELLING V

36

Ensembles using Coordinated Models: XGBoost

eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin 2016)

- · An advanced version of Gradient Boosting Method
- Software and hardware optimization
 - a scalable tree boosting system
- Some features:
 - clever penalisation of trees: weights of the trees that are calculated with less evidence is shrunk more heavily
 - extra randomisation parameter to reduce correlation between trees
 - parallelization, cache optimization, distributed computing, etc.

Ensembles using Coordinated Models: XGBoost

Feature Importance

- How useful each feature was in the construction of the boosted decision trees?
- The more the feature is selected for splitting, the higher its relative importance.
- Importance is calculated for a single decision tree by number of times the feature is selected for splitting, weighted by the improvement to the model as a result of each split.
- The feature importances are then averaged across all of the the decision trees within the model.

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

38

Ensemble Methods: Wrap-up

- Well designed ensembles of predictive models allow improvement of performance over their individual elements.
- · Necessary conditions:
 - · variability between elements;
 - low error correlation;
 - · each individual model must be better than a random choice

Ensemble Methods: Wrap-up

Bagging Methods

- Error reduction due to reduction in variance;
- Effective with unstable models;

Boosting Methods

- Error reduction due to reduction in bias and variance;
- Risky in problems with noise (increase of the error);

- DATA MINING I 23/24 - PREDICTIVE MODELLING - V

40

References

References

- Breiman, Leo. 1996. "Bagging Predictors." Machine Learning 24 (2): 123-40.
- ——. 2001. "Random Forests." *Machine Learning* 45 (1): 5–32.
- Chen, Tianqi, and Carlos Guestrin. 2016. "XGBoost: A Scalable Tree Boosting System." In *22nd ACM SIGKDD*, 785–94.
- Dietterich, Thomas. 2002. "Ensemble Learning." In *The Handbook of Brain Theory and Neural Networks*, 2nd ed., 405–8. MIT Press.
- Flach, Peter. 2012. *Machine Learning: The Art and Science of Algorithms That Make Sense of Data*. Cambridge University Press.
- Freund, Yoav, and Robert E. Schapire. 1996. "Experiments with a New Boosting Algorithm." In *13th ICML*, 148–56. Morgan Kaufmann.
- Friedman, Jerome H. 2000. "Greedy Function Approximation: A Gradient Boosting Machine." *Annals of Statistics* 29: 1189–1232.
- Gama, João. 2018. "KDD Course." Slides.
- Schapire, Robert E. 1990. "The Strength of Weak Learnability." *Machine Learning* 5 (2): 197–227. Torgo, Luís. 2017. "Data Mining i Course." Slides.