

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

B. Tech. (Electronics & Telecommunication Engineering)

Syllabus

(Semester V-VI)

2020 Iteration (w.e.f. 2021-22)

(Autonomous Institute Affiliated to University of Mumbai)

	Sem V											
No	Type	Code	Course	L	T	P	O	E	C			
1	PC	EC301	Analog and Digital	3	0	2	6	11	4			
			Communication									
2	PC	EC302	Control Systems	3	0	2	6	11	4			
3	PC	EC303	Digital Signal Processing	3	0	2	5	10	4			
4	PC	EC304	Electromagnetic Waves	3	0	2	5	10	4			
5	SBC	EC305	Java Programming Lab	0	1	2	2	05	2			
6	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	0	0	0	2	02	1			
7	HSSE	HSEX3	HSS-III	2	0	0	3	05	2			
8	S/M	SCX2/MNX2	SCOPE-II/Minor-II						3			
	TOTAL 21											

	Sem V	I (Cat 1- For St	udents who have NOT preferred	seme	ster lo	ng in	terns	hip)		
No	Type	Code	Course	L	T	P	О	E	C	
1	OE	OEXXX	Open Elective-I						3	
2	PC	EC306	Fundamentals of Antenna	3	0	2	06	11	4	
3	PC	EC307	Computer Communication	3	0	2	06	11	4	
			Network							
4	PE	EC3X1	PE-I						3	
5	PE	EC3X2	PE-II						3	
6	SBC	EC308	Mini Project-II						3	
7	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	0	0	0	2	02	1	
8	S/M	SCX3/MNX3	SCOPE-III/Minor-III						3	
	TOTAL 21									

	Sem VI (Cat 2-For Students who have preferred semester long internship)										
No	Type	Code	Course	L	T	P	0	E	C		
1	PE*	EC3X1	PE-I						3		
2	PE*	EC3X2	PE-II						3		
4	SBC	EC310	Industry Internship						15		
5	S/M*	SCXX/MNXX	SCOPE-III/Minor-III						3		
*To be completed online mode or allied courses from MOOCs 2									21		

	Sem VII											
No	Type	Code	Course	L	T	P	O	E	C			
1	OE	OEXXX	OE-II						3			
2	OE	OEXXX	OE-III*						3			
3	PE	EC4X3	PE-III						3			
4	PE	EC4X4	PE-IV						3			

(Autonomous Institute Affiliated to University of Mumbai)

5	SBC	EC401	Main Project Stage-I						2		
6	ABL	SV4X/ST4X	SEVA-IV/SATVA-IV						2		
7	S/M/H	SC4X/MN4X	SCOPE-IV/Minor-IV/Honors-I						3		
		/HOXX									
			TOTAL						16		
*OE	*OE-III must be from Basic Science Elective or Engineering Science Elective										
	Sem VIII (Option A : Cat1/Cat2)										
No	Type	Code	Course	L	T	P	O	E	C		
1	OE *	OEHXX	OE-IV						3		
2	PE	EC4X5	PE-V						3		
3	PE	EC4X6	PE-VI						3		
4	SBC	EC402	Main Project Stage-II					12	6		
5	ABL	SV4X/ST4X	SEVA-IV/SATVA-IV					04	2		
6	Н	HOXX	Honors-II						3		
*May be taken from MOOCs, Essentially Humanities, Management related											
	TOTAL 17										

	Sem VIII (Option B : Only for Cat1 students)										
No	Type	Code	Course	L	T	P	0	E	C		
2	SBC	EC403	Main Project Stage-II					36	16		
3	ABL	SV4X/ST4X	SEVA-IV/SATVA-IV					04	1		
4	Н	HOXX	Honors-II						3		
	*May be taken from MOOCs, Essentially Humanities, Management related										
	TOTAL 17										

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

PROGRAM ELECTIVE COURSES

Assumptions

- Some Elective courses may be of interest to the students of both the branches.
- 4 Electives are sufficient to specialize in a particular vertical/thread/area.

PE/TD	PE1	PE2	PE3	PE4	PE5	PE6
THREAD 1:	1T11:	1T12:	1T13:	1T14:	1T11,	1T11,
Communication	Mobile and	Microwave	Wireless	Next	1T12,	1T12,
	Wireless	Communication	Sensor	Generation	1T21,	1T21,
	communication		Networks	Network	1T22,	1T22,
THREAD 2:	1T21:	1T22:	1T23:	1T24:	1X,	1X,
Signal	Speech and	DSP Processors	Image& Video	Principles Soft	1Y, 2X,	1Y, 2X,
Processing	Audio		Processing	Computing	2X, 2Y	2X, 2Y
	Processing				2T11,	2T11,
General	1X:	1Y:	1P:	1Q:	2T12,	2T12,
	Information	Optical fiber	Artificial	Telecomm	2T21,	2T21,
	Theory and	Communication	Intelligence	Network	2T22	2T22
	Coding		and Machine	Operations &	EC306*	EC306*
			Learning	Management	EC307*	EC307*
	1T11,1T12, 1T21,1T22, 1X,1Y, EC306* EC307* 2X, 2Y 2T11,2T12, 2T21,2T22	1T11,1T12, 1T21,1T22, 1X, 1Y, EC306* EC307* 2X,2Y 2T11,2T12, 2T21,2T22	1T13, 1T14, 1T23, 1T24 1P, 1Q, 2P, 2Q, 2T13, 2T14, 2T23, 2T24	1T13, 1T14, 1T23, 1T24 1P, 1Q, 2P, 2Q, 2T13, 2T14, 2T23, 2T24		

^{*}EC306 (Fundamentals of Antenna) and EC307 (Computer Communication Networks) are available only for Category 2 Students.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Sem-V

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	,	Teachi (Hı	ing Sc s/wee			Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total
		3	0	2	5	10	3	0	1	4
PC					Exam	inatio	n Scher	ne	1 1 CSE	
	Analog and Digital	Component			ISE M		ISE E		SE	Total
EC301	Communication	The	Theory		75	7	' 5	1:	50	300
		Laboratory		5	50	-	-	5	50	100

Pre-requi	site Course Codes, if any. EC202: Electronic Devices						
_	MA203: Probability and Stochastic Processes						
	EC207: Signals and Systems						
	bjective: The objective is to equip the students with basic knowledge for analyzing analog						
and digita	al communication systems ranging from data networks and internet to mobile data						
	communication systems such as cellular and WiFi systems. Specifically, the students will learn how						
	e communication system resources including bandwidth and power by selecting a proper						
	and/or analog/pulse/digital modulation scheme						
Course O	utcomes (CO): At the end of the course students will be able to						
EC301.1	Describe various entities of analog, pulse, and digital communication system.						
EG201.2							
EC301.2	Apply concepts of signals and systems to analyze behavior of modulated signals in time						
	domain, frequency domain and signal space.						
EC301.3	Analyze and compute system performance measures such as efficiency, bit rate and						
	bandwidth of various analog, pulsed and digital modulation methods.						
EC301.4	Analyze the behavior of a various analog, pulse, and digital modulation schemes in						
	presence of noise.						
EC301.5	Compare various modulation and demodulation techniques.						
EC301.6	Examine various wired and wireless applications and further infer health, safety, and						
	environment aspects of wired and wireless systems.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC301.1	3				-				-	-		1
EC301.2	2	2			3				3	3		
EC301.3	2	2			3				3	3		1
EC301.4	3	3			3				3	3		1
EC301.5	2	2			3				3	3		
EC301.6	1	1				1	1	1	3	3		3

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC301.1	2	2				
EC301.2	2	2		2	1	
EC301.3	2	2		2	1	
EC301.4	2	2		2	1	
EC301.5	2	2				
EC301.6	1	1				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember✓	Understand✓	Apply✓	Analyze✓	Evaluate	Create

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Continuous-Wave Modulation	1,2	
	1.1	Review of signals and systems, Frequency domain representation		10
		of signals, classification of Frequency spectrum, Block diagram of		
		an analog and digital communication system, Need for modulation.		
	1.2	Principles of Amplitude Modulation Systems- DSB, SSB and VSB		
		modulations, Principle of FDM.		
	1.3	Angle Modulation, Representation of FM and PM signals, Spectral		
		characteristics of angle modulated signals.		
	1.4	Super heterodyne receiver		
	1.5	Noise in amplitude modulation systems, Noise in Frequency		
		modulation systems. Pre-emphasis and De-emphasis, Threshold		
		effect in angle modulation.		
2	Title	Pulse Modulation	1,2	08
	2.1	Sampling process. Types of Pulse modulation		
	2.2	Pulse code modulation (PCM), Differential pulse code modulation.		
	2.3	Delta modulation, Noise considerations in PCM, Time Division		
		multiplexing, Digital Multiplexers		
3	Title	Baseband Pulse Transmission	1,2	10
	3.1	Baseband receiver, Probability of error of integrate and dump		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	1			1			
		receiver, Matched filter, optimum filter					
	3.2	Line coding and Power spectral density (PSD) of line codes, inter					
		symbol Interference and Nyquist criterion, Raised cosine filter,					
	3.3	Duobinary encoding, Introduction to linear and adaptive					
		equalization					
4	Title	Pass band Digital Modulation schemes	2	14			
	4.1	BPSK, DPSK, QPSK, M-ary PSK, QAM, BFSK, M-ary FSK,					
		MSK-Principle of working, PSD, and Signal space analysis					
	4.2	Digital Modulation tradeoffs, Probability of Error evaluations of					
		various modulations. (Derivation not expected)					
	4.3	Synchronization and Carrier Recovery for Digital modulation.					
	4.4	Introduction to OFDM					
5	Self-	a. Case study (any one)		06			
	Stud	1. Effect of various Communication systems on health, safety, and					
	y	environment.					
		2. Professional engineering regulations, legislation and standards					
		related to communication.					
		3. Code of ethics for wired and wireless systems for					
		user/devices/companies					
		b. Research article (any one)					
		1.Applications of analog and digital modulations					
		2.Digital modulations specifications and effect of various					
		parameters in wireless networks such as WLAN					
		3. Software defined radio for digital communication					
		4. Error correction codes for digital communication					
		5.Comparative analysis of analog and digital communication					
		through applications					
	•		Total	42+6			

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Simulation and implementation of double sideband full carrier for various modulation index.
2	Implement the frequency modulation circuit to obtain FM waveforms and calculate modulation index
3	Analyze effect of pre-emphasis and de-emphasis on FM waveforms.
4	Implementation of natural sampling and reconstruction of waveforms
5	Implementation and detection of pulse amplitude modulation.
6	Implementation of Binary Phase Shift Keying.
7	Implementation of Binary Frequency shift keying.
8	Duo binary Encoder.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

9	Simulation of digital modulation scheme and analysis of Power spectral density.
10	Simulation and analysis of signal space of various modulations in presence of noise.
11	Signal transmission through Raised cosine filter and eye pattern analysis.
12	Simulation of OFDM.
13	Mini project in analog/pulse/digital modulation methods.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Communications Systems	Fourth	Haykin S	John Wiley	2001
				and Sons	
2	Principles of	Second	Taub H. and	Tata McGraw	2001
	Communication Systems		Schilling D. L	Hill	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital	Third	Haykin S	John Wiley	2001
	Communication.			and Sons	
2.	Communication	Fourth	Proakis J. G.	Pearson	2002
	Systems Engineering		and Salehi M.	Education	
3.	Digital and Analog	Fourth	B.P.Lathi	Oxford	2017
	Communication				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	,	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total	
		3	0	2	6	11	3	0	1	4	
PC		Examination					n Scheme			•	
	Control Systems	Comp	onent	.]	ISE	I	MSE		ESE	Total	
EC302		Theory			75		75		150	300	
		Laboratory			50				50	100	

Pre-requi	site Course Codes, if any.	MA101: Engineering Calculus				
		MA102: Differential Equations and Complex Analysis				
		EC 101: Digital Systems and Microprocessors				
		EC 203: Probability and Stochastic Processes				
		EC 204: Electronic Instruments and Measurement Lab				
Course O	Course Objectives: To develop a system for real life application by applying the concepts of control					
system the	system theory and allied techniques for system performance evaluation.					
Course O	utcomes (CO): At the end o	f the course students will be able to				
EC302.1	Classify different types of	control systems, component of control system and formulate				
EC302.1	mathematical modeling of the given system.					
EC302.2	Apply various methods for	representation of the given control system.				
EC302.3	Analyze the transient and st	teady state behavior of given system for standard test inputs.				
EC302.4	Analyze the stability of syst	tems in time domain and frequency domain.				
EC302.5	Discuss the concept of cont	rollability and observability using state variable model.				
EC302.6	Evaluate the system perform	nance with the use of compensators & controllers.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC302.1	3				2			3	3	2	2	2
EC302.2		3			2			3	3	2	2	2
EC302.3		3			2			3	3	2	2	2
EC302.4		3			2			3	3	2	2	2
EC302.5		3			2			3	3	2	2	2
EC302.6	3				2	2		3	3	2	2	2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC302.1	1	1	2		-	
EC302.2	1	1	2		-	
EC302.3	1	1	2		2	
EC302.4	1	1	2		2	
EC302.5	1	1	2		2	
EC302.6	1	1	2		2	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate✓	Create

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to control system and system Modeling		
	1.1	Introduction to control system:	1,2	10
		Definition of system, Notion of feedback, Open loop and closed		
		loop systems; feedback and feed forward control structure;		
		Examples of control systems.		_
	1.2	Dynamic Response: Standard test signals; Transient and steady	1,2	
		state behavior of first and second order systems; Generalized		
		error coefficients, steady state errors in feedback control systems		
	1.2	and their types.	1.0	
	1.3	Control System Modeling: Types of model's Impulse response	1,2	
		model, State variable model, Transfer function model, Modeling		
2	Title	of electrical systems and translational mechanical systems.		10
4	2.1	Representation of Control System and State Space Analysis Block diagram representation of systems, Block diagram	1,2	10
	4.1	reduction methods, closed loop transfer function, signal flow	1,2	
		graph. Mason's gain rule		
	2.2	State Space Analysis: Concepts of state space, State equations,	1,2	
	2.2	State transition matrix, properties of state transition matrix,	1,2	
		Solution of homogeneous systems.		
	2.3	Controllability and Observability: Concept of controllability,	3,4	
		Controllability analysis of LTI systems, Concept of observability,	,	
		Observability analysis of LTI systems using Kalman approach.		
3	Title	Time Domain System Stability Analysis		8
	3.1	Concepts of Stability Concept of absolute, relative and robust	1,2	
		stability		
	3.2	Routh-Hurwitz stability criteria	1,2	
	3.3	Root Locus Analysis: Root-locus concepts; General rules for	1,2	
		constructing root-locus, Root-locus analysis of control systems.		
4	Title	Frequency Domain System Stability Analysis		8
	4.1	Relation between time and frequency response	1,2	_
	4.2	Bode Plot: Magnitude and phase plot, Method of plotting Bode	1,2	
		plot; Stability analysis by using Gain and phase margins on the		
		Bode plots		_
	4.3	Polar plots, Nyquist stability criterions; Nyquist plot; Gain and	1,2	
	(D) (1	phase margins.		
5	Title	Compensators & Controllers		6

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	5.1	Types of compensators, Realization of basic compensators – cascade compensation in time domain and frequency domain.	1,2	
	5.2	Controllers: Concept of ON/OFF controllers; Concept of P, PI,	1,2	
		PD and PID Controllers.		
	5.3	Advanced Control Systems: Introduction to Robust Control,	3,4	
		Adaptive control and Model predictive control, Neuro-fuzzy		
		controllers.		
6	Self-	Examples on open loop and closed loop control system, Modeling	1,2,3,	
	Study	of rotational mechanical systems, Pole placement using state	4,5	
		feedback Popov-Belevitch-Hautus (PBH) test in state space,		
		Design of lag, lead and lag-lead compensator using Bode plot and		
		Root locus techniques, Design of real-life applications of control		
		system.		
	-		Total	42

Laboratory Component:

Exp.	Experiment Details	Marks
No.		CO
1	To obtain the characteristics of control system components:	05
	i. To plot the Synchro transmitter characteristics and Synchro transmitter and	CO1
	receiver as an error detector.	
	ii. To plot characteristics of Potentiometer and its loading effect for different	
	conditions of load.	
2	To demonstrate the working of real-life feedback control system and obtain their	05
	characteristics:	CO1
	i. To plot Speed torque characteristic of DC servo motor.	
	ii. To determine the line and load regulation characteristics of AC servo voltage	
	stabilizer at different line and load conditions and observe the mechanism of AC	
	voltage stabilization as an example of closed control system.	
3	To develop a program in Matlab/Scilab/LabVIEW:	05
	i. To define the given closed loop transfer function of system and plot their poles &	CO2
	zeros on s-plane.	
	ii. To reduce the given control system block diagram or signal flow graph.	
4	To develop a program in Matlab/Scilab/LabVIEW:	10
	i. To obtain the step response of a given first/second order control system and	CO3
	obtain its time domain parameters from this step response. Compare these results	
	with mathematical calculations.	
	ii. To determine step response for a Type 0, Type 1, Type 2 systems and find error	
	coefficients.	
	iii. To find solution for a given control system described by its state space equation	
	in terms of state transition matrix, zero input response, zero state response,	
	complete response.	
5	Develop a program in Matlab/Scilab/LabVIEW:	10
	i. To obtain the root locus of a system described by its Transfer Function with unity	CO4
	feedback, Comment on the stability of this given control system. Compare these	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	results with mathematical calculations.	
	ii. To find gain margin and phase margin of the system described by its Transfer	
	Function with unity feedback using Bode/Nyquist plot. Comment on the stability of	
	this given control system. Compare these results with mathematical calculations.	
6	Develop a program in Matlab/Scilab/LabVIEW:	10
	i. To find whether a given control system described by its state space equation is	CO5
	controllable or not, observable or not, to find rank of matrix and using rank	
	comment on system controllability and observability.	
	ii. To design a controller and observer via state space.	
7	Evaluate the effect of Compensator/PID controller on performance of the control	5
	system.	CO6

ISE Evaluation: CO1-CO6

Mini-Project: Identify the model of control system for real life application and demonstrate controlling action for the same.

This is group activity. Students will form a group of minimum 3 students. Students will develop the block diagram of the system first, then design each block using appropriate components. Simulate the complete block diagram using any tool like Matlab, Scilab or LabVIEW. The duration of this activity is a complete semester, but evaluation will be done in phases and rubrics designed. In the first phase students will develop the block diagram for the given problem statement. In the second phase students will develop the block diagram and simulate each of the block diagrams and test it for input-output relationship. In the third phase students will interface all the designed blocks to obtain final input-output relationship of the system. Hardware implementation is optional.

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Control Systems Engineering	Fifth	I. J. Nagrath, M. Gopal	New Age	2012
				International	
2	Modern Control Engineering	Fifth	Ogata. K	Prentice Hall	2010
	-			of India	

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Control Systems: Principle	First	M. Gopal	Tata McGraw	1998
	and design		_	Hill	
2	Modern Control System	Eleventh	Richard C. Dorf	Pearson	2013
	-		and Robert H.		
			Bishop		
3	Control Systems	Sixth	Norman Nise	John Wiley &	2011
	Engineering			Sons	
4	Linear Control System	First	Constantine H.	Mcgraw-Hill	1975
	Analysis and Design:		Houpis and John J.		
	Conventional and Modern		D'Azzo		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs/week)					Credits Assigned			
(Category)	Course Name	\mathbf{L}	T	P	О	E	${f L}$	T	P	Total
Code										
		3	0	2	5	10	3	0	1	4
PC	D:=:4-1 C:==-1		Examination			ation	Scheme			
	Digital Signal Processing	Compo	nent	IS	E	M	SE	ES	SE	Total
EC303		Theo	ry	7	5	7	75	15	50	300
		Labora	tory	5	0			5	0	100

Pre-requisit	e Course Codes, if any.	EC207: Signals and Systems				
Course Obje	Course Objective: To develop mathematical foundation of system and design digital filters					
Course Out	comes (CO): At the end of the	e course students will be able to				
EC303.1	Classify and perform various	s operations on signals and systems.				
EC303.2	Apply DFT properties and il	lustrate FFT algorithms.				
EC303.3	Apply Z Transform on discre	ete time signals.				
EC303.4	Analyze LTI System using Z	Z Transform.				
EC303.5	Design and Realize Digital f	ïlters.				
EC303.6	Analyze Multirate Signal Pro	ocessing.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC303.1	3	1	2		2							
EC303.2	1	1	2		2							
EC303.3	1	1	2		2							
EC303.4	1	1	2		2							
EC303.5	1	1	2		2							
EC303.6	1	1	2		2							2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC303.1		2				2	
EC303.2		2				2	
EC303.3		2				2	
EC303.4		2				2	
EC303.5		2				2	
EC303.6		1				2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand	✓ Apply	✓ Analyze	✓ Evaluate	Create
---------------------	---------	-----------	------------	--------

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Theory Component

Module	Unit	Topics	Ref.	Hrs.
No.	No.	Topics	KCI.	1115.
1	Title	Overview of Discrete Time Signals	6,7,8	
	1.1	Sampling of Continuous Time Signal, Standard Discrete Time Signals: Impulse Signal, Unit Step, Unit Ramp, Sinusoidal, Exponential.		08
	1.2	Classification of Signals: Deterministic and non-deterministic, Periodic and a periodic, Symmetric (even) and Asymmetric (odd), Energy and Power, Causal and Anti-causal signals.		
	1.3	Operations of Signals: Shifting, Scaling, Time Reversal, Addition and Multiplication, Convolution (Linear and Circular), Correlation		
2	Title	Discrete Fourier Transform (DFT)	1, 3	12
	2.1	Discrete Time Fourier transform (DTFT), Discrete Fourier Transform (DFT), Properties of DFT, Inverse DFT.		
	2.2	Fast Fourier Transform: Radix-2 Decimation in Time Fast Fourier Transform (DIT-FFT) and Decimation in Frequency Fast Fourier Transform (DIF-FFT) algorithms, Real and Complex Calculations using FFT, Linear and Circular Convolution using FFT,		
	2.3	Filtering of long data sequence, Overlap Add Method, Overlap Save Method		
3	Title	Z-Transform	6,7	04
	3.1	Z-Transform of discrete time signals, Properties of Z-Transform, Relation between Z-Transform and DTFT,		
	3.2	Inverse Z-Transform, Long division Method, Partial Fraction Expansion Method		
4	Title	Linear Time Invariant (LTI) Systems	1,4	08
	4.1	Classification of systems: Static and dynamic, time variant and time invariant, linear and nonlinear, causal and non-causal, stable and unstable systems.		
	4.2	Impulse Response, Transfer Function, Differential Equation, Stability of Systems, Frequency Response, Solution of Differential Equation using Z-Transform		
	4.3	LTI systems as frequency-selective filters like; Low pass, High pass, Band pass, Invertibility of LTI systems, Minimum-phase, Maximum-phase, Mixed-phase systems		
5	Title	Design of Digital filters and Implementation	1,2	10
	5.1	Design of Infinite Impulse Response (IIR) filters using Impulse Invariant Method and Bilinear Transformation Method, Butterworth and Chebyshev Type I filter design.		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	5.2	Concepts of Finite Impulse Response (FIR) filter, symmetric and anti-symmetric FIR filter, FIR filter design using Window method and Frequency sampling method.		
	5.3	Realization structures for IIR and FIR filters using direct Form		
		Realization, cascade, parallel structures; Linear Phase Realization,		
		Frequency Sampling Realization.		
6	Self-	1.Multirate Signal Processing: Down-sampling and Up-sampling	1,5	*5
	Study	by integer factors; Decimator and Interpolator, Sampling rate		
		conversion by non-integer factor.		
		2. Application of Filter : Sub-band filters.		
			Total	42+*5

Laboratory Component

Sr. No	Title of the Experiment
1	Discrete Convolution and Correlation
2	Discrete Fourier Transform
3	Fast Fourier Transform
4	Linear Filtering using Overlap Add Method/ Overlap Save Method.
5	Design of Butterworth IIR Filter using Impulse invariant method
6	Design of Butterworth IIR Filter using Bilinear Transformation method
7	Linear phase FIR Filter design using Windowing method
8	Linear phase FIR Filter design using Frequency sampling method
9	Multirate Signal Processing
10	Mini Project on real Time DTSP application

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Signal Processing:	Fourth	J. Proakis, D. G.	Pearson	2014
	Principles, Algorithms and		Manolakis, and D. Sharma	Education	
	Applications				
2	Digital Signal Processing	Fourth	Ramesh Babu	Scitech	2014
3	Digital Signal Processing	-	S.Salivahanan, A	Tata	2010
			Vallavaraj, C Gnanapriya	McGraw Hill	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Signals and Systems	Second	Alan V Oppenheim, Alan	Pearson	2002
			S, Willsky and A Hamid		
			Nawab		
2	Signals and Systems	Third	Simon Haykin and Barry	John Wiley	2002
			Van Veen	& Sons	
3	Theory and	Second	L. R. Rabiner and B. Gold	Prentice-	2006
	Applications of Digital			Hall	
	Signal Processing			Han	
4	Multirate Systems and	First	P.P. Vaidyanathan,	Pearson	1992
	Filter Banks				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	О	E	L	T	P	Total
	Electromagnetic Engineering	3	0	2	6	11	3	0	1	4
PC		_			Examinatio			n Scheme		
		Comp	onent		ISE	I	MSE	I	ESE	Total
EC304		The	eory		75		75	-	150	300
		Labor	ratory		50				50	100

Pre-requi	isite Course Codes, if any.	MA101: Engineering Calculus					
		MA102: Differential Equations and Complex Analysis					
		MA201: Linear Algebra					
Course O	Course Objective: To teach fundamentals of Electromagnetic Waves						
Course O	Course Outcomes (CO): At the end of the course students will be able to						
EC304.1	Apply basic laws of electroma	agnetic and Maxwell's equations.					
EC304.2	Illustrate the behavior of EM	waves and travelling of waves in free space as well as media.					
EC304.3	Solve problems related to the	propagation of electromagnetic waves.					
EC304.4	Discuss the types of antennas	and their parameters.					
EC304.5	Discuss types of radio wave p	ropagation.					
EC304.6	Design applications using Ele	ctromagnetic Waves theory.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC304.1	1	1	2		2					3		
EC304.2	1	1	2		2							
EC304.3	1	1	2		2					3		
EC304.4	1	1	3		2					1		
EC304.5	1	1	2		2							
EC304.6	1	1	3		2					2		3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC304.1		2			2	
EC304.2		2			2	
EC304.3		2			2	
EC304.4		2			2	
EC304.5		2			2	
EC304.6		1			1	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember√ Underst	and $\sqrt{}$ Apply $\sqrt{}$	Analyze√	Evaluate	Create
-------------------	-------------------------------	----------	----------	--------

(Autonomous Institute Affiliated to University of Mumbai)

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Coordinate system transformation and vector calculus		
_	1.1	Cartesian, cylindrical and spherical coordinate, Differential length,	2	3
	1.1	area and volume, line surface and volume integrals.	_	
	1.2	Del Operator, Gradient of scalar, Divergence of a vector and		
	1,2	Divergence Theorem, Curl of a Vector and Stoke's Theorem,		
		Laplacian Theorem, Classification of a Vector Field.		
2	Title	Basic Laws of Electromagnetic and Maxwells Equations	1	9
	2.1	Coulombs law, Electric fields due to continuous charge distributions,		
		Gauss law and its applications, Electric potential (Magnetic vector		
		potential and Electrical Scalar Potential), relationship between E and		
		V, Poisson and Laplace equations, Bio-Savarts law, Amperes law.		
	2.2	Boundary conditions for static electric and magnetic fields		
	2.3	Faradays Law, Displacement current, Maxwells Equations: Integral		
		and differential form for static and time varying fields and its		
		interpretation		
3	Title	Electromagnetic Wave Propagation	1,2	9
	3.1	Wave equation: Derivation and its solution in Cartesian co-ordinates.		
	3.2	Solution of wave equations: Partially conducting media, perfect		
		dielectrics and good conductors, Concept of Skin Depth.		
	3.3	Electromagnetic Power: Poynting Vector and power flow in free		
		space and in dielectric, conducting media.		
	3.4	Polarization of wave: Linear, Circular and Elliptical.		
	3.5	Propagation in different media: Behavior of waves for normal and		
		oblique incidence in dielectrics and conducting media.		_
4	Title	Waveguide	1,2	6
	4.1	Wave propagation in parallel plane waveguide (No derivation		
		expected), Analysis of waveguide general approach (No derivation		
	4.2	expected), in waveguide.		
	4.2	Rectangular waveguide, Modal propagation in rectangular		
		waveguide, Surface currents on the waveguide walls, Field		
5	Title	visualization, Attenuation. Transmission Lines	1.2	9
3	5.1		1,2	9
	3.1	Power frequency lines: Representation, losses and efficiency in power lines, effect of length, calculation of inductance and		
		capacitance.		
		Radio frequency lines: Representation, propagation constant,		
		attenuation constant, phase constant, group velocity, input		
		impedance, characteristic impedance, trade-off between attenuation		
		and power transfer, reflection coefficient, standing wave ratio,		
		VSWR, ISWR, ABCD parameters of transmission line.		
		1011 K, 1011 K, 1100 parameters of transmission fine.		l

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	5.2	Smith Chart: Impedance locus diagram, impedance matching.		
6	Title	Applications of Electromagnetics	2,3	6
	Self-	Xerography. Laser printer, Faraday's cage, lightning, RF MEMS,	1,2,6	06
	Study	Magnetic levitation, Metamaterials, RFID, Stealth aircraft, remote sensing, radio astronomy, EMI and Electromagnetic Compatibility,		
		Different types of antennas.		
Total				42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Basic operations on scalar and vectors
	Working with Numbers: Scalars and Vectors using any simulation platform or Python.
	Working with Complex Numbers using any simulation platform or Python.
	Working with Matrices using any simulation platform or Python.
2	Curl and Divergence
	Numerical Computation of Divergence and Curl.
	Numerical Computation of Divergence and Curl for a Current Carrying Wire.
3	Write a program that displays the distribution of the electric potential due to an electric
4	dipole with a moment located at the origin of a spherical coordinate system.
4	Numerical Integration and Calculating the Electric Field from a Ring of Charge.
5	3-D and 2-D radiation patterns of a Hertzian dipole using MATLAB/Python.
6	Antenna parameters
	Visualization of a wireless system with two antennas.
	Radiation patterns of a small loop antenna.
	Radiation patterns of a quarter-wave monopole.
7	Waveguide: Verify the relationship between wavelength of an EM wave in air and inside a
	rectangular waveguide.
8	Simulating the Two-ray Propagation Model in any simulation platform or Python.
9	Using Virtual Lab: Introduction to Smith chart and its application for the unknown
	impedance measurement using virtual lab IIT K
10	Measurement of Frequency and wavelength of a waveguide using Microwave bench setup.
11	Using Virtual Lab: Study of field pattern of various modes inside a rectangular waveguide
	using virtual lab IIT K
12	Case Study- The student is required to develop a simple tool to carry out unit conversions
	that are associated with EM-related calculations.

Text Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Electromagnetic Waves	Third	R.K. Shevgaonkar	Tata McGraw Hill	2009
2	Principles of	Sixth	Matthew N.O.	Oxford International	2015
	Electromagnetics		Sadiku	Student	

(Autonomous Institute Affiliated to University of Mumbai)

Reference Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Engineering	Third	W.H. Hayt, and J.A.	McGrawHill	2006
	Electromagnetics		Buck		
2	Electromagnetic Waves and	Second	Edward C. Jordan	Pearson	2006
	Radiating Systems		and Keth G. Balmin	Publications	
3	Engineering	Third	Nathan Ida	Springer	2015
	Electromagnetics			Publications	
4	Antennas & Wave	Fourth	J.D. Kraus, R.J.	McGrawHill	2011
	Propagation		Marhefka, and A.S.		
			Khan		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teach	Teaching Scheme (Hrs/week)					Credits Assigned			
(Category)	Course Name	L	T	P	0	\mathbf{E}	L	T	P	Total	
Code											
		0	1	2	1	4	0	1	1	2	
(SBC)	Java Programming Lab	Examination Scheme									
		Comp	onent	ISI	ISE (%) MSE (%) ESE (%)			Total			
EC305	Lab		eory	1	.00*					100	
		Laboratory			50				50 [#]	100	

Pre-requi	site Course Codes, if any.	CS101: Problem Solving using Imperative Programming					
		CS102: Problem Solving using OOPs					
Course C	Objective: To learn Object-C	Oriented programming paradigm using Java programming					
	language.						
Course O	Course Outcomes (CO): At the end of the course students will be able to						
EC305.1	Demonstrate programming us	sing basic constructs of JAVA.					
EC305.2	Apply Inheritance and polym	orphism for a given scenario.					
EC305.3	Apply abstraction and except	ion handling to create an efficient program.					
EC305.4	Use Generic classes and colle	ection for solving problem.					
EC305.5	Develop a mini project based	on the real-world problem.					

Note:

#= oral exam-20 marks and Lab experiment-30 marks

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC305.1	3				2							2
EC305.2	2				2							2
EC305.3	2				2							2
EC305.4	2				2							2
EC305.5	2	1	1	1	2	1			2	2		2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC305.1		2		2		
EC305.2		2		2		
EC305.3		2		2		
EC305.4		2		2		
EC305.5		2		2		

^{*=} Tutorial-50 marks and Mini Project-50 marks (Preferably based on real-world problem statement from Industry/Academia/Research)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create✓

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to JAVA	1,2,3	3
_	1.1	Fundamentals of Java Programming: Classes, JDK, JRE, JVM,	1,2,3	
		Unicode system, I/O using Scanner class and Buffered Reader		
		class.		
	1.2	Instance variables, Methods, Constructors.		
	1.3	Object class, Nested class, Access Specifiers, Abstract Classes		
		and Wrapper Classes.		
2	Title	OOP Concepts Mapping to JAVA	1,2,3	4
	2.1	Inheritance (IS – A), Aggregation & Composition (Has – A)		
		Method overloading & overriding, this, super, final keyword,		
		Static.		
	2.2	Autoboxing and Unboxing, Polymorphism.		
	2.3	Packages and Interfaces: Package concept, creating user defined		
		package, Access control protection, Interface.		
3	Title	Exception Handling and Multithreading	1,2,3	4
	3.1	Try and catch block, Multiple catch block, Nested try, finally		
		block, Throw, Throws keywords, Exception propagation,		
		Custom exception.		
	3.2	Create thread using Thread and Runnable class. Thread methods,		
		schedule, sleep, join, Thread priority, Thread group, perform		
_		multiple tasks using multiple thread Thread synchronization.		_
4	Title	Generics and Collection	1,2,3	3
	4.1	Creating Generic Classes, Generic Methods, Bounded Type		
	4.2	Collection's framework, methods of collection interface (Array		
		list, Linked list, Queue etc.)		
			Total	14

Laboratory Component, if any.

Sr. No	Title of the Experiment
1	Program on I/O using command line arguments, scanner class, Buffered Reader etc.
2	Program on Constructor, types of constructors and constructor overloading.
3	Program on Polymorphism, Runtime polymorphism.
4	Program on Inheritance, Abstract Class, Interface.
5	Program on Nested Class, Aggregation, Composition.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

6	Program on Multithreading.
7	Program on Exception Handling. (built in and User defined)
8	Program on Package and access modifiers.
9	Program on Generics
10	Program on Collection

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Java Programming	First	Ralph	Tata McGraw-	2009
	From the Group Up		Bravaco, Shai	Hill	
			Simoson		
2	Java The Complete	Eleventh	Herbert	Tata McGraw-	2019
	Reference		Schildt	Hill	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	An introduction to	Third	Jaime Nino,	Wiley Student	2008
	Programming and Object		Frederick A. Hosch	Edition	
	Oriented Design using Java				
2	Java Programming A	First	C Xavier	Tata McGraw-	2011
	Practical Approach			Hill	
3	Java TM Programming	Fourth	Ken Arnold, James	The (Java	2005
	Language		Gosling, David	Series) by Sun	
			Holmes	•	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Sem-VI

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teachin	eme (Hrs/week)			Credits Assigned				
(Category)	Course Name	L	T	P	О	E	L	T	P	Total
Code										
		3	0	2	6	11	3	0	1	4
PC	Fundamentals of		Ex	amin	ation	Scheme				
	Antenna	Compo	nent	IS	E	M	ISE	F	ESE	Total
EC306		Theory		75		75		1	150	300
		Labora	tory	50					50	100

Pre-requisite	e Course Codes, if any. EC304: Electromagnetic Waves				
Course Obje	ective: The objective of the course is to provide a fundamental understanding of				
Antennas					
Course Outcomes (CO): At the end of the course students will be able to					
EC306.1	Calculate the fundamental parameters of Antenna.				
EC306.2	Describe fundamental theory of antennas.				
EC306.3	Select antenna based on applications.				
EC306.4	Evaluate antenna based on applications.				
EC306.5	Design Antenna Arrays.				
EC306.6	Design antenna based on given requirements.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC306.1	2	3						2	2	2		
EC306.2	2	3						2	2	2		
EC306.3		2						2	2	2		
EC306.4		2		2				2	2	2		
EC306.5		2		2				2	2	2		
EC306.6	2	1						2	2	2		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC306.1		2				-	
EC306.2		2				2	
EC306.3		2				2	
EC306.4		2				2	
EC306.5		2				2	
EC306.6		1				1	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Remember Understand	Apply	Analyze	Evaluate	Create
---------------------	-------	---------	----------	--------

Theory Component

Module	Unit	Topics	Ref	Hrs.
No.	No.		•	
1		Fundamental Concepts:	1	08
(CO1)	1.1	Introduction, types of Antennas, Radiation mechanism, Poynting		
		vector, Steradian concept, Power intensity		
	1.2	Antenna Parameter: Radiation pattern, Radiation power density,		
		Radiation Intensity, Gain, Directivity, HPBW, FNBW, Beam		
		efficiency, Bandwidth, Polarization, Input Impedance, Reflection		
		coefficient, Return loss, VSWR, Antenna Efficiency, Effective		
		Aperture, Communication link and Friis transmission equation.		1.0
2		Radiation from wires and loops	1	10
(CO2,	2.1	Introduction, Infinitesimal dipole: Radiation zones, Total radiated		
CO3)		power, Radiation resistance, Directivity, Effective area, Short dipole,		
		Finite-length dipole: Radiated power, Radiation resistance, Directivity,		
		Effective area, Half-wave dipole and its properties, Loop antenna.	1	0.6
3		Aperture Antennas	1	06
(CO3,	3.1	Introduction, Field equivalence principle, Love's equivalence		
CO4)		principle, Electrical and magnetic conductor equivalence principle,		
		Computation of field quantities of aperture antenna, Relation between		
4		wire and aperture antennas, Horn antenna design principle.	1	10
4		Antenna Arrays	1	10
(CO5)	4.1	Introduction, Two-element array, Example problems, Pattern		
		multiplication concept, N-element array, Uniform array, Array factor,		
		Broad-side and end-fire arrays, Phased array, Directivity and pattern characteristic of linear uniform array, non-uniform array, Binomial		
		array, Dolph-Chebyshev array concept, Design principle of Chebyshev		
		array and examples, Planar arrays		
5		Microstrip Antennas		
(CO6)	3.1	Introduction: Rectangular Patch, Circular Patch, Parametric study,	1,4	08
(000)	3.1	Circularly polarized antennas, Axial Ratio, MSA suspended	1,7	00
		Configuration.		
	3.2	MSA Arrays and Feed Networks, Corporate and Series Feeds		
6 (Self		Advanced Antennas:		06
Study)		Reflector antenna, Dielectric Resonator antenna, Metamaterial based		
Study)		antennas, Wearable antenna, Reconfigurable antennas, Ultra-wideband		
		antennas, Smart Antennas		
	•		Total	42

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Dubblut	ory Component, if any. (withinfull 10 Laboratory experiments are expected)
Sr. No	Title of the Experiment
1	Design a Dipole Antenna using HFSS
2	Design a monopole Antenna using HFSS
3	Design a Horn Antenna using HFSS
4	Design a Helical Antenna using HFSS
5	Design a Microstrip Patch Antenna
6	To calculate and infer various fundamental parameters of antenna like Radiation
	pattern, Radiation power density, Radiation Intensity, Gain, Directivity, HPBW and
	FNBW using Scilab.
7	To calculate the power delivered to the Receiver Antenna.
8	To design a Pyramidal Horn Antenna in E-plane and H-plane
9	To show Pattern Multiplication phenomena in an Antenna using two infinitesimal
	dipoles.
10	To design Array factor pattern of N-element of uniform amplitude of Broadside Array.
11	To design Array factor pattern of N-element of uniform amplitude of End-fire Array
12	To design Array factor pattern of N-element of non-uniform amplitude of Broadside /
	End-fire Array using Binomial Array method.
13	To design Array factor pattern of N-element of non-uniform amplitude of Broadside
	/End-fire Array using DolphTschebyscheff Array method.

Text Books:

S. N.	Title	Authors	Edition	Publisher	Year
1	Antenna Theory: Analysis	Constantine A.	Fourth	Wiley	1982
	and Design	Balanis			

Reference Books:

S. N.	Title	Authors	Edition	Publisher	Year
1	Antennas & Wave	J.D. Kraus, R.J.	Fourth	McGraw Hill	2011
	Propagation	Marhefka, and			
		A.S. Khan			
2	Handbook of Microstrip	R. James and P.S.	Third	Peter	1989
	Antennas	Hall		Peregrinus	
3	Antennas and Radio Wave	R. E. Collin	Fourth	McGraw-Hill	1985
	Propagation				
4	Broadband Microstrip	Girish Kumar and	First	Artech House	2003
	antennas	K.P. Ray			

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs/week)					Credits Assigned			
(Category) Code	Course Name	L	Т	P	O	E	L	T	P	Total
	Computer	3	-	2	5	10	3	-	1	4
PC		Examination Scheme								
	Communication	Compo	nent	IS	E	M	SE	E	SE	Total
EC207	Networks	Theory		75		7	75	150		300
EC307		Laboratory		50					0	100

Pre-requisit	e Course Codes, if any. EC301: Analog and Digital Communication						
Course Obje	Course Objective: The objective of the course is to provide a fundamental understanding of						
ComputerCo	ComputerCommunication networks.						
Course Out	comes (CO): At the end of the course students will be able to						
EC307.1	Apply Conceptual understanding and functional aspects of computer communication						
EC307.1	and telecom networks.						
EC307.2	Analyze design and configure small and medium sized computer network that meets a						
EC307.2	specific need for communications.						
EC307.3	Simulate computer networks and analyze the simulation results including troubleshoot						
EC307.3	connectivity problem occurring at layers of TCP/IP model.						
EC307.4	Apply the principles behind the Modern Network approaches such as SDN NFV and						
EC307.4	IoT and security issues.						

CO-PO Correlation Matrix: (1-Weak, 2-Medium, 3-Strong)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC307.1	3	3										
EC307.2			3	2	3							2
EC307.3			3		3	2						
EC307.4	2	2							3	3		3

CO-PEO/PSO Correlation Matrix: (1-Weak, 2-Medium 3-Strong)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC307.1		2				
EC307.2		2		3		
EC307.3		2			3	
EC307.4		2				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create

Theory Component

Modu le No.	Unit No.	Topics	Ref	Hr
1	Title	Fundamental of Computer Networks	1	s. 08
1	1.1	Basic definitions. Networking devices. Layering architecture: The OSI model. Description of layers.	1	08
	1.2	The Internet protocols TCP/IP protocol suit, IP Protocol and address. What is the Internet? Delay in the Internet (trace route and ping). History of the Internet. Security in the Internet.		
2	Title	Enterprise Network Design	2	06
	2.1	Network requirements, Planning and Design, Structured Wiring and Structured Network Design consist of Core Layer, Distribution Layer, and Access.		
	2.2	Network Design methodology &Network Design considerations Core La yer Technologies. Investigating Server Farms and Security Integrating, Remote Sites into the Network Design.		
3	Title	Transport and Application Layer	1,3	06
	3.1	Transport Protocols introduction. Reliable data transfer - Stop-and-wait and Go-back-N design and evaluation. TCP and UDP semantics and syntax. TCP RTT estimation. Principles of congestion control - efficiency and fairness, reactive and proactive. Socket's programming A simple client-server implementation.		
	3.2	Application layer: Application layer protocols, Client-server as a key model. Web, HTTP, FTP, SMTP, POP3, and DNS. Peer-to-peer file sharing networks.		
4	Title	Software Defined Network and Network Function Visualization	5	10
	4.1	Network Requirements - The SDN Approach - SDN- and NFV-Related Standards - SDN Data Plane - OpenFlow Logical Network Device - OpenFlow Protocol - SDN Control Plane Architecture - REST API - SDN Application Plane Architecture.		
	4.2	NFV Concepts - NFV Reference Architecture - NFV Infrastructure - Virtualized Network Functions - NFV Management and Orchestration - NFV Use Cases - SDN and NFV		
5	Title	Internet of Things (IoT) SECURITY	1,3	10
	5.1	Threats and attacks. Symmetric and public key cryptography. IPsec-Authentication Header-Encapsulating security payload,		
	5.2	Secure sockets-Secure Socket Layer (SSL) - Firewalls and Internet access- Packet filter firewall- Proxy firewall- VPNs - Mobile IP -		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Header Compression – Voice over IP –	
	Title	Networks	5
6	Self-	Types of Networks, Transmission media, Network Topologies	
	Study		ł
Total			42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Evnewiment
Sr. No	Title of the Experiment
1	Network Lab set up
2	IP Networking & Network Commands: ifconfig, ping, traceroute, netstat, arp ,nslookup dig
	& route etc.
3	Network Protocol Analyzers: TCPDUMP & Wireshark
4	Installation & Configuration of Web Server (at least four) using open-source tool
5	Network Socket Programming
6	Installation and configuration of open-source Network simulator software
7	Firewall Implementation (IPTABLES)
8	Implementation of SDN
9	Implementation of VPN
10	Cryptography using open source tools/Crypt tools and open SSL

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	TCP/IP protocol suit	Fourth	Behrouz A.	McGraw Hill	2009
			Forouzan (Author)	Education	
2	Introducing Network	-	CCNA Discovery	-	-
	Design Concepts		Learning Guide		
3	Computer Networking: A	Fifth	J. F. Kurose and K. W.	Prentice Hall	2009
	Top-Down Approach		Ross		
4	Data Communication and	Fourth	B.A.Forouzan	McGraw Hill	2017
	Networking				
5	Information Security:	First	Deven Shah	Wiley	2007
	Principles and Practice			-	

Reference Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Foundations of Modern		William Stallings	Addison-Wesley	2015
	Networking: SDN, NFV,			ISBN:	
	QoE, IoT, and Cloud			9780134175393	
2	Computer Networks	Fifth	A.Tanenbaum	Pearson Education	2013
3	Data and Computer	Tenth	William Stallings	Pearson Education	2013
	Communications		_		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teachir	Teaching Scheme (Hrs/week)			Credits Assigned				
(Category) Code	Course Name	L	T	P	0	E	L	T	P	Total
		2	-	2	2	6	2	-	1	3
PE-1	Mobile and	Examination					n Scheme			
	Wireless	Compo	nent	IS	E	M	SE	E	SE	Total
EC311	Communication	Theor	ry	5	0	5	50	10	00	200
(1T11)		Labora	tory	5	0			5	0	100

Pre-requ	isite Course Codes, if any.	EC307: Computer Communication Network				
Course C	Course Objective: The objective of the course is to provide a fundamental understanding of Mobile					
and Wirel	ess Communication.					
Course C	Course Outcomes (CO): At the end of the course students will be able to					
EC311.1	Demonstrate the ability to dis	cuss wireless communication concepts, system capacity and				
EC311.1	service provided.					
EC311.2	Evaluate various path loss and	d fading effects.				
EC311.3	EC311.3 Analyze losses, multipath effects, architecture, and protocols of 3G,4G and 5G systems					
EC311.4	Compare various operational	aspects of Wireless Personal Area Networks.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC311.1	2		2									
EC311.2			2	2	2				2	2		
EC311.3	3				2				2	2		2
EC311.4	2	2										

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC311.1		2				
EC311.2		2	2			
EC311.3		2	2			
EC311.4		2				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Remember	Understand $\sqrt{}$	Apply $\sqrt{}$	Analyze√	Evaluate	Create
----------	----------------------	-----------------	----------	----------	--------

Theory Component

Module	Unit No.	Topics	Ref.	Hrs
1	Title	Introduction to mobile communication	1	5
	1.1	Frequency Division Multiple access, Time Division Multiple access, Spread Spectrum Multiple access, Space Division Multiple access, and OFDM.		
	1.2	Frequency reuse, channel assignment strategies, handoff strategies, interference and system capacity, trunking and grade of service, improving the capacity of cellular systems and related design problems		
2	Title	Mobile Radio Propagation	2,3	10
	2.1	Introduction to radio wave propagation, reflection, diffraction, scattering. Indoor and Outdoor propagation Models. Practical Link Budget Design using path loss models.		
	2.2	Small-Scale Multipath propagation, small scale multipath measurements, types of small-scale fading, fading effects due to Doppler spread. Statistical models for multipath fading channels-Clarks model,2-day Rayleigh fading model, Saleh and Valenzuela indoor model.		
3	Title	3G UMTS Network, 4G LTE and 5G Technologies	4	8
	3.1	UMTS network architecture, Protocol Structure, Channel Structure, Frame slots and symbols, modulation, coding, multiple antenna techniques, WCDMA, Modulation, Handoff and Power Control.		
	3.2	4G LTE network Architecture, LTE Radio Access, Radio-Interface Architecture, Physical Transmission Resources, Downlink and Uplink Physical-Layer Processing, Scheduling and Rate Adaptation.5G Concepts and Architectures, Network Slicing Architecture, mm Wave communication, multiple Cell Types.		
4	Title	Personal Area Network Technologies	3	5
	4.1	Bluetooth: concepts of Piconet , scatternet etc., protocol stack, link types, security, network connection establishments, usage models,		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		etc.		
	4.2	Wifi and ZigBee: components, architecture, network topologies, protocol stack etc.		
5	Self- Study	Rayleigh fading model, Saleh and Valenzuela indoor model. UWB and RFID: technical requirements, components and characteristics, applications.	2,3	4*
		Total (* Not Inc	luded)	28

Laboratory Components:

Sr. No	Title of the experiment
1	Study of GSM modem: i] Install and configure minicom, wvdial & AT Commands ii] Python scripting.
2	Channel Allocation Techniques
3	Modulation Techniques using GNU Radio.
4	Spread Spectrum Modulation, OFDM Modulation.
5	Wireless Path Loss Computations: i] Free-space Propagation Path Loss Modelii] Indoor Propagation Model - Okumura Model etc
6	Wireless Path Loss Computations: iii] Outdoor Propagation Model - Hata Model etc
7	Open-Source LTE/EPC Network Simulation using NS-3, Omnet++
8	Open-Source Personal Area Network simulation using NS-3, Omnet++
9	Millimeter Wave (5G) Network, WiFi Network simulation usingNS-3, Omnet++
10	Virtual Lab.

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Wireless Communications	Third	Theodore S.	Prentice Hall of India,	-
			Rappaport	PTR publication	
2	Wireless Communications	Second	Andreas Molisch	Wiley	-
3	Wireless Network	Third	Vijay Garg	Pearson Education	
	Evolution 2G-3G				

(Autonomous Institute Affiliated to University of Mumbai)

4	4 G Roadmap and	Second	Young Kyun Kim	Artech house	
	Emerging Communication		and Ramjee		
	Technologies		Prasad		

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Wireless Communication	Second	Singhal	TMH	
2	Mobile Communication	Second	C.Y Lee	Wiley	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching	Teaching Scheme (Hrs./week)					Credits Assigned			
(Category) Code	Course Name	L	T	P	0	E	L	T	P	Total	
		2	0	2	6	11	2	0	1	3	
PE-II	Microwave	Examination Scheme									
		Compone	ent	ISE		MS	E	ES	E	Total	
EC312	Communication	Theory	7	50		50)	10	0	200	
(1T12)	IT12)		ory	50				50	0	100	

Pre-requi	site Course Codes, if any.	EC304: Electromagnetic Waves				
Course O	Course Objective: The objective of the course is to provide a fundamental understanding of					
Microwav	e Communication					
Course O	utcomes (CO): At the end of t	the course students will be able to				
EC312.1	Apply EM Wave theory to un	derstand nature of Microwave Signal and their corresponding				
EC312.1	guiding structures.					
EC312.2	Identify Passive Waveguide (Components, Sources and Detectors				
EC312.3	Analyze Passive Waveguide	Components, Sources and Detectors				
EC312.4	Compute amplifier and filter	design parameters on the basis of application/requirement.				
EC312.5	5 Justify choice of amplifier and filter design parameter.					
EC312.6	Design Microwave System co	omponents.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC312.1	3	3	3	1	3					3		
EC312.2	2	2	2	2	3					3		
EC312.3	2	2	2	2	3					3		
EC312.4	2	2	2	2	3					3		
EC312.5	2	2	2	2	3					3		
EC312.6	3	3	3		3					3		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC312.1		2			-	
EC312.2		2			-	
EC312.3		2			2	
EC312.4		2			2	
EC312.5		2			2	
EC312.6		1				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember√ Understa	and $\sqrt{\mathbf{Apply}}$	Analyze√	Evaluate	Create
--------------------	-----------------------------	----------	----------	--------

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Theory Component

Module	Unit	Topics	Ref	Hrs.
No.	No.			
1		Introduction to Microwave Engineering	1	10
	1.1	Lumped and Distributed Elements, Frequency Bands, Characteristics, Application, Advantages and disadvantages		
	1.2	Rectangular and circular waveguides: TE, TM modes, dominant mode		
	1.3	Microwave Components: Resonators, re-entrant cavities, scattering parameters, tees, hybrid ring, directional couplers, phase shifters, terminations, attenuators, ferrite devices such as isolators, gyrators, and circulators.		
2		Microwave Tubes and semiconductor devices	1	10
	2.1	Two Cavity Klystron and Reflex Klystron, Helix Travelling Wave Tube, Cross Field Amplifier, Cylindrical Magnetron.		
	2.2	PIN Diode, Varactor Diode, Schottky Diode, Gunn Diode, Tunnel Diode, IMPATT Diodes.		
3		Microwave Amplifiers and Filters	1	08
	3.1	Two port power gain and stability		
	3.2	Microwave Low pass Filter design		
4(Self		Microwave Frequency Applications:		06
Study)		Radars, Biomedical Devices, Drying materials, Microwave Tomography, Satellite Communication		
	ı		Total	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments using both hardware and software are expected)

	are expected)
Sr. No	Title of the Experiment
1	Model and simulate rectangular waveguide in CAD to study EM wave propagation within it.
2	Model and simulate circular waveguide in CAD to study EM wave propagation within it.
3	Design of Waveguide H-plane TEE using CAD
4	Design of Directional Coupler Using CAD
5	Design of Low pass Filter using CAD
6	Implementation of a technical paper using CAD
7	Microwave bench setup (CO1) A) Introduction to the lab B) Identification of waveguide and
	its components. How to determine the parameters for each component by looking at the data
	sheet. C) Klystron setup and characterization plotting Vr vs Vo D) Frequency and
	wavelength measurement of the signal generated by klystron
8	Determination of parameters of passive components using Bench and VNA. Analysis of
	comparative study to be submitted.
9	Determine the frequency and wavelength in a rectangular waveguide using direct and
	indirect measurement.
10	Design of Planar Hybrid Ring using CAD

(Autonomous Institute Affiliated to University of Mumbai)

Textbooks:

S.	Title	Authors	Edition	Publisher	Year
N.					
1	Microwave Engineering	David M Pozar	Fourth	John Wiley &	2012
				Sons	
2	Microwave Devices and	Samuel Y Liao	Third	Pearson	
	Circuits			Education	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching	g Sch	eme (I	Irs/w	reek)	C	redit	s Assig	gned			
(Category)	Course Name	L	T	P	O	E	L	T	P	Total			
Code													
		2	0	2	8	8	2	0	1	3			
PE-I		Examination Scheme											
	Speech and Audio Processing	Compone	ent	ISE	C	MS	SE	E	SE	Total			
EC321 (1T21)	riddio i rocessing	Theory	7	50		5	0	10	00	200			
		Laborato	50			-	5	50	100				

Pre-requi	site Course Codes, if any.	EC303: Digital Signal Processing				
Course O	bjective: To familiarize the bas	sic & advance mechanisms of speech and audio processing				
Course O	utcomes (CO): At the end of the	he course students will be able to				
EC321.1	EC321.1 Apply concepts of speech coding.					
EC321.2	Analyze Audio Perception& p	Analyze Audio Perception& psycho-acoustic model.				
EC321.3	1 1	sentation, time domain & frequency domain representation of				
	speech.					
EC321.4	4 Analysis of predictive methods of speech.					
EC321.5	Develop systems for various a	pplications of speech & audio processing.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC321.1	2											
EC321.2		2										
EC321.3			2									
EC321.4			2		2							
EC321.5					2							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC321.1	2			2		
EC321.2	2			2		
EC321.3		2			2	
EC321.4		2			2	
EC321.5		2			2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Remember	Understand	Apply√	Analyze√	Evaluate√	Create

Theory Component

Module	Unit	Topics	Ref.	Hrs.			
No.	No.	Topics	KCI.	1115.			
1	Title	Mechanics of speech					
	1.1	Speech production: Mechanism of speech production, Acoustic phonetics – Digital models for speech signals -Sampling speech signals, basics of quantization, delta modulation, and Differential PCM	1,2	8			
	1.2	Signal Processing Models of Audio Perception: Basic anatomy of hearing System. Auditory Filter Banks, Psycho-acoustic analysis: Critical Band Structure, Absolute Threshold of Hearing, Simultaneous Masking, Temporal Masking, Quantization Noise Shaping, MPEG psycho-acoustic model.	1,2				
2	Title	Time domain methods for speech processing		8			
	2.1	Time domain parameters of Speech signal – Methods for extracting the parameters Energy, Average Magnitude, zero crossing Rate – Silence Discrimination using ZCR and energy	1,2				
	2.2 Short Time Auto Correlation Function – Pitch period estimation using Auto Correlation Function.						
3	Title	Frequency domain method for speech processing	1,2	8			
	3.1	Short Time Fourier analysis: Fourier transform and linear filtering interpretations.	4				
	3.2	Sampling rates - Spectrographic displays - Pitch and formant extraction - Analysis by Synthesis - Analysis synthesis systems: Phase vocoder, Channel Vocoder.	2,3				
	3.3	Homomorphic speech analysis: Cepstral analysis of Speech, Formant and Pitch Estimation, Homomorphic Vocoders, Speech coding, speech enhancement.	3,5				
4	Title	Linear predictive analysis, synthesis of speech	3,5	4			
	4.1	Basic Principles of linear predictive analysis – Auto correlation method – Covariance method.					
	4.2	Solution of LPC equations – Cholesky method – Durbin's Recursive algorithm.					
	4.3	Application of LPC parameters – Pitch detection using LPC parameters – Formant analysis – VELP – CELP, Speech synthesis: basics of articulatory, source-filter, and concatenative synthesis – VOIP.					
5	Self Study	Audio compression methods, Audio quality analysis, Spatial Audio Perception and rendering, Speaker identification and verification					

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Total	28
-------	----

Laboratory Component

Sr No.	Experiment Title
1	Speech production
2	Analysis of speech signal
3	Short-time spectrum analysis of speech
4	Spectrographic analysis of speech
5	Linear prediction analysis of speech
6	Formant synthesis
7	Cepstral analysis of speech
8	Analysis by synthesis of speech
9	Manual speech signal-to-symbol transformation
10	Speaker Analysis /speaker recognition

Text Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Speech Communications: Human & Machine	Second	Douglas O'Shaughnessy	IEEE Press, Hardcover 2/e, ISBN: 0780334493.	1999
2	Discrete-Time Speech Signal Processing	First	Thomas F, Quatieri,	Prentice Hall /Pearson Education	2004

Reference Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Speech Processing and Synthesis Toolboxes	First	Donald G. Childers	John Wiley &Sons,September ISBN:0471349593	1999
2	Fundamentals of Speech Recognition	First	L.R. Rabiner and B. H. Juang	Prentice Hall	2009
3	Speech and Audio Signal Processing	Second	Ben Gold and Nelson Morgan	John Wiley and Sons Inc., Singapore	2011
4	Discrete Time Processing of Speech Signals	First	J.R. Deller, J.H.L. Hansen and J.G. Proakis	John Wiley, IEEE Press	1999
5	Digital Processing of Speech Signals	First	L.R.Rabiner and R.W.Schaffer .	Prentice Hall	1979

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teachir	ng Sch	cheme (Hrs/week)			Cı	redits Assigned		
(Category)	Course Name	L	T	P	O	E	L	T	P	Total
Code										
		2	0	2	4	4	2	0	1	3
PE-II		Examination Scheme						9		
	DSP Processors	Compon	ent	ISE		MSI	E	ES	E	Total
EC322 (1T22)		Theor	y	50		50		100)	200
		Laborato	ory	50				50		100

Pre-requi	isite Course Codes, if any. EC303: Digital Signal Processing						
Course O	Course Objective: To develop implementation of DSP algorithms using DSP Processor						
Course O	Course Outcomes (CO): At the end of the course students will be able to						
EC322.1	Evaluate different types of errors in DSP implementation.						
EC322.2	Describe architectures of TMS320XX devices.						
EC322.3	Explore various interfacing devices to DSP Processors.						
EC322.4	Demonstrate Fast DSP algorithms using DSP processor						
EC322.5	Develop DSP application using DSP hardware.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC322.1	2											
EC322.2		2	1									
EC322.3		2	1									
EC322.4	2				1							
EC322.5			2					1	1	1		1

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC322.1		2		2		
EC322.2		2		2		
EC322.3		2		2		
EC322.4		2		2		
EC322.5		2		2		

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	· [Inderstand	✓ Apply	✓ Analyze	✓ Evaluate	Create						
Theory Component												
Module	Unit		Topics Ref. Hrs									

(Autonomous Institute Affiliated to University of Mumbai)

No.	No.			
1	Title	Computational Accuracy in DSP Implementations		
	1.1	Number formats for signals and coefficients in DSP systems. Dynamic Range and Precision, Sources of error in DSP implementations, A/D Conversion errors, DSP Computational	1,2	04
	1.2	errors, D/A Conversion Errors, Compensating filter. Sources of error in DSP implementations, A/D Conversion errors, DSP Computational errors, D/A Conversion Errors.	1,2	
2	Title	Programmable DSP Hardware		08
	2.1	Processing Architectures (von Neumann, Harvard), DSP core algorithms (FIR, IIR, Convolution, Correlation, FFT).	1,2	
	2.2	IEEE standard for Fixed- and Floating-Point Computations, Special Architectures Modules used in Digital Signal Processors (like MAC unit, Barrel shifters), On-Chip peripherals, DSP benchmarking.	1,2	
3	Title	Structural and Architectural Considerations		06
	3.1	Parallelism in DSP processing, Texas Instruments TMS320 Digital Signal Processor Families, Fixed Point &floating-Point TI DSP Processors.	1,2	
	3.2	Data Addressing modes, Memory space of Processors, Program Control, instructions, and programming of TMS320XX Processors.	1,2	
	3.3	On-Chip Peripherals, Interrupts of TMS320XX processors, Pipeline operation of TMS320XX Processors.	1,2	
4	Title	VLIW Architecture		06
	4.1	Current DSP Architectures, GPUs as an alternative to DSP Processors.	1,2	
	4.2	Code Composer Studio, Mixed C and Assembly Language programming, on-chip peripherals, Simple applications developments as an embedded environment.	1,2	
	4.3	Peripherals to Programmable DSP Devices: Memory space organization, External bus interfacing signals, Memory interface, Parallel I/O interface, Programmed I/O, Interrupts and I/O, Direct memory access (DMA).	1,2	
5	Title	Hardware implementation of DSP Algorithms		04
	5.1	The Q-notation, FIR Filters, IIR Filters, Interpolation Filters, Decimation Filters, PID Controller, Adaptive Filters	1,2	
	5.2	An FFT Algorithm for DFT Computation, A Butterfly Computation, Overflow and scaling, Bit-Reversed index generation	1,2	
6	Self- Study	A CODEC interface circuit, A CODEC-DSP interface example.		
			Total	28

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component

Sr. No	Title of the Experiment
1	Harmonic Generation
2	FIR Filtering
3	IIR Filtering
4	Fast Fourier Transform Algorithm
5	Linear Filtering Algorithm
6	Sensor Interface
7	ADC-DAC Interface
8	Real Time Audio Signal Processing
9	Real time Biomedical Signal Processing
10	Real Time Power Signal Processing

Textbooks:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Signal Processors, Architecture, Programming and Applications.	First	B. Venkata Ramani and M. Bhaskar	Tata McGraw Hill (TMH) Publication	2004
				2004	
2	DSP Implementation using DSP microprocessor with Examples from TMS32C54XX	First	Avtar Singh, S.Srinivasan	Thomson Publication	2004

Reference Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	DSP Processor	First	Phil Lapsley,	Wiley Publication	1997
	Fundamentals, Architectures & Features		Jeff Bier, AmitShoham, Edward A. Lee	Publication	
2	Digital Signal Processors Architectures, Implementation and Application	First	Sen M. Kuo&WoonSergGan,	Pearson	2009
3	Architectures for Digital Signal Processing	First	Peter Pirsch,	Wiley Publication	1998
4	Digital Signal Processing	Second	S. Salivahanan A. Vallavaraj G. Gnanapriya	Tata McGraw Hill Publication	2001

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teach	heme	(Hrs/v	Credits Assigned					
(Category) Code	Course Name	L	T	P	О	E	L	T	P	Total
		2	0	2	2	6	2	0	1	3
PE-I	Information	on			Examination Scheme					
	theory and	Compo	Component		ISE N		E	E	SE	Total
EC331 (1X)	coding	Theory		50		50		100		200
		Laboratory		50				50		100

Pre-requi	isite Course Codes, if any.	EC301: Analog and digital communication					
_	-	EC307: Computer Communication Networks					
Course O	Course Objective: To introduce the principles and applications of information theory. To teach						
study how	v information is measured in terr	ms of probability and entropy. To teach coding schemes,					
including	error correcting codes.						
Course O	Course Outcomes (CO): At the end of the course students will be able to						
EC331.1	Interpret information theory concepts and compute the capacity of various types of						
EC331.1	channels.						
EC331.2	Construct various source code	s and error correction codes.					
EC331.3	Examine information theory	and coding algorithms.					
EC331.4	Estimate various performance parameters of information theory and error correction						
EC331.4	coding algorithms.						
EC331.5	Survey various error correction	n codes used in wired and wireless applications.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC331.1	3											
EC331.2	3		2		2							
EC331.3	3		2	2	2				2	2		
EC331.4	3	3			1							
EC331.5	1	1			1				1	1		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC331.1		2				
EC331.2		2	2			

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

EC331.3	2	2	3	
EC331.4	1			
EC331.5	1			

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember ✓ Understand ✓ Apply ✓ Analyze Evaluate	Create	
--	--------	--

Theory Component

Module	Unit	Topics	Ref	Hrs.
No.	No.		•	
1		Information theory and source coding	1,2	8
	1.1	Block diagram and sub-system description of a digital communication system, measure of information and properties, entropy and its properties, differential entropy and mutual information kraft inequality, optimal codes, bounds on optimal code length, kraft inequality for uniquely decodable codes.		
	1.2	Source Coding, Shannon's Source Coding Theorem, Huffman Source Coding and its second and third order extensions, Shannon Fano coding, Lempel Ziv coding.		
	1.3	Shannon's Channel capacity: discrete memoryless channels and capacity, examples of channel capacity, symmetric channels, AWGN channel and, fading channels, properties of channel capacity, channel coding theorem.		
2		Linear Block Codes	1,2	6
	2.1	Generator and Parity check Matrices, Encoding circuits, Syndrome and Error Detection, Minimum Distance Considerations, Error detecting and Error correcting capabilities.		
	2.2	Standard array and Syndrome decoding.		
	2.3	Hamming Codes, Reed – Muller codes, Golay code, Product codes and Interleaved codes.		
3		Cyclic Codes	1,2	6
	3.1	Introduction, Generator and Parity check Polynomials, Systematic Cyclic codes – Encoding and decoding using Feedback shift register circuits and polynomial method.		
	3.2	Generator matrix for Cyclic codes, Syndrome computation and Error detection.		
	3.3	Meggitt decoder, Cyclic Hamming codes, Golay code, Shortened cyclic codes.		
4		Convolutional Codes	1,2	8

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	4.1	Graphical representation for encoding and decoding using code tree, trellis, state diagram.		
	4.2	Polynomial and time domain method, Viterbi decoding		
	4.3	Introduction to Turbo coding and LDPC codes		
5(Self		Case study (any one): Golay codes, turbo codes, LDPC codes, Reed		4
Study)		Solomon codes, BCH codes		
		,	Total	28

Laboratory Components:

Laborate	ory Components:
Sr. No	Title of the Experiment
1	Write a simulation program to test shannon's source coding, channel coding and channel
	capacity theorem.
2	Write a program to encode and decode a text file and determine the code efficiency using
	Shannon – Fano coding and Huffman Coding
3	Write a program to construct Lempel Ziv Coding and decoding and examine its code
	efficiency
4	Write a program to examine BER performance of linear block code for a coded and
	uncoded BPSK communication system in AWGN channel
5	Write a program to examine BER performance of cyclic codes for a coded and uncoded
	BPSK and QPSK communication system in AWGN channel
6	Write a program to examine BER performance of BPSK modulated linear block coded
	communication system in AWGN channel and fading channel
7	Write a program to examine BER performance of convolutional encoder in a coded and
	uncoded communication system based on 802.11a standard with and without AWGN
	channel
8	Write a program to examine BER performance of convolutional encoder in a coded and
	uncoded OFDM system with and without AWGN channel
9	Write a program to examine BER performance of convolutional encoder in a coded and
	uncoded OFDM system with and without fading channels
10	Simulation either turbo codes/RS codes/ LDPC codes/BCH codes and test their error
	correction capability.

Textbooks:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Communication Systems	Fourth	Haykin Simon	John Wiley and Sons, New Delhi	2014
2	Modern Digital and Analog Communication Systems	Fourth	Lathi B Pand Ding Z	Oxford University Press	2009

(Autonomous Institute Affiliated to University of Mumbai)

Reference Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Information Theory and Reliable Communication		R. G. Gallager	Wiley, ISBN-13: 978- 0471290483	1968
2	Introduction to Coding and Information Theory		Roman, Steven	Springer, ISBN 978-0-387-94704-4	
3	Error Control Coding	Second	Shu Lin & Daniel J. Costello	Prentice Hall	2004
4	Error Control Systems for Digital Communication and Storage		S. B Wicker	Prentice Hall International	1995
5	Digital Communication: Fundamentals and applications	Second	Sklar B, and Ray P. K	Pearson, India	2009
6	Information theory, Coding and Cryptography		Ranjan Bose	TMH publication, ISBN: 978-0-07- 0669017	2008

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teachi	ng Sch	eme (H	rs./we	eek)	C	Credits Assigned		
(Category) Code	Course Name	L	Т	P	0	E	L	Т	P	Total
		2	0	2	6	11	2	0	1	3
PE-II	Ontical Eibar	Examina				nation Scheme				
	Optical Fiber Communication	Compo	nent	ISE		MSE		ES	E	Total
EC332 (1Y)	Communication	Theo	ry	50		50		10	0	200
		Labora	tory	50				50)	100

Pre-requi	site Course Codes, if any.	AS101: Engineering Physics
		EC304: Electromagnetic Waves
Course O	bjective: The objective of the o	course is to provide an understanding of usage of optical fiber
for commi	unication.	
Course O	utcomes (CO): At the End of t	the course students will be able to
EC322.1	Apply EM Wave theory to un	derstand nature of Optical Signal and their corresponding
EC322.1	guiding structures.	
EC322.2	Identify Passive Optical Comp	ponents, Sources and Detectors.
EC322.3	Analyze Passive Optical Com	ponents, Sources and Detectors.
EC322.4	Evaluate losses in the optical	systems.
EC322.5	Compare different Optical Ne	tworks.
EC322.6	Design optical Link Budget sy	ystem.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC322.1	3	3	3	1	3					3		
EC322.2	2	2	2	2	3					3		
EC322.3	2	2	2	2	3					3		
EC322.4	2	2	2	2	3					3		
EC322.5	2	2	2	2	3					3		
EC322.6	3	3	3		3					3		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC322.1		2			2	
EC322.2		2			2	
EC322.3		2			2	
EC322.4		2			2	
EC322.5		2			2	
EC322.6		2			1	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Remember√	Understand√	Apply√	Analyze√	Evaluate	Create

Theory Component

Theory Component							
Module	Unit	Topics	Ref	Hrs.			
No.	No.		•				
1		Optical communication fundamentals	1	10			
	1.1	Block diagram of Optical Communication system, advantages, loss and bandwidth window, ray theory transmission, total internal reflection, acceptance angle, numerical aperture, skew rays and meridional rays					
	1.2	EM waves, modes in planar guide, phase and group velocities, types of fibber according to refractive index profile and mode transmission.					
	1.3	Couplers, Isolators, circulators, multiplexers, filters, fiber gratings, Fabry Perot filters, arrayed waveguide grating, switches and wavelength converters					
2		Optical communication Components	1	08			
	2.1	Sources (LED, LASER), Detectors (PIN, APD) and Amplifiers					
3		Optical Networks and losses in the system		10			
	3.1	Attenuation, absorption, linear and nonlinear scattering losses, bending losses, modal dispersion, waveguide dispersion, dispersion and pulse broadening, dispersion shifted, and dispersion flattened fibers, and nonlinear effects Measurements of attenuation, dispersion and OTDR Optical Networks: Link budget, SONET, SDH, WDM, DWDM					
4(Self		Review of latest optical fiber application and research		06			
Study)							
		,	Total	28			

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment					
1	Setup of Optical fiber communication link and measurement of Bit Error Rate (BER) and					
	Eye pattern analysis					
	A) Setup of analog fiber optic communication link					
	B) Setup of digital fiber optic communication link					
	C)Measurement of Bit Error Rate					
	D)Study and measurement of Eye pattern					
2	Measurement of Numerical Aperture (NA) of optical fiber					
3	Measurement of Losses in Optical Fiber					
4	Study characteristic of LED and Photo detector in optical fiber communication link.					
5	To verify the Brewster's law and to find the Brewster's angle					
6	Michelson's Interferometer- Refractive index of glass plate: To determine the refractive					
	index of a thin glass plate.					
7	To Demonstrate the working of LASER using Phet virtual Lab					

(Autonomous Institute Affiliated to University of Mumbai)

8	Measure propagation loss in plastic fiber and to measure the bending loss.			
9	Plotting optical link power budget.			
10	Mini project on optical network.			

Textbooks:

S. N.	Title	Authors	Edition	Publisher	Year
1	Optical Fiber Communication	John M. Senior	Fourth	Prentice Hall of India Publication	2013
2	Optical Fiber Communication	Gred Keiser	Third	Mc-Graw Hill Publication	2012
3	Optical Networks: A Practical Perspective	Rajiv Ramaswamy and Kumar N. Sivarajan	Third	Elsevier Publication	2010