Escuela de Ingeniería Informática / Bases de Datos / EJERCICIOS - MAYO 2016

MODELO ER (40%)

Crear un diagrama Entidad-Relación (que modele capturando la mayor semántica posible), usando características extendidas si es necesario y convertirlo posteriormente a una serie de **tablas del modelo de datos relacional**, para una empresa que se dedica al alquiler de viviendas:

- La empresa dispone de varias oficinas repartidas por el país. A cada oficina se le asigna un personal y un encargado que encabeza la gestión de la oficina. La información de interés de una oficina consiste en su número de oficina único, dirección y número de teléfono.
- Sobre cada encargado se mantiene una información adicional. Entre ella está la fecha en que el encargado se hace cargo de la oficina y el incentivo que recibe en función de la marcha de la oficina.
- De los empleados se mantiene el DNI, número único de empleado, dirección, teléfono, salario y la fecha de incorporación a la oficina en la que está destinado.
- Cada oficina dispone de una serie de viviendas para alquilar. A cada vivienda se le asigna un número de vivienda. Además, se necesita la dirección, tipo de vivienda (unifamiliar, piso), número de habitaciones, precio de alquiler y el propietario de la vivienda.
- Cada empleado de una oficina se ocupa de todos los asuntos relacionados con una vivienda determinada. En algunos casos especiales hasta 3 empleados pueden gestionar una vivienda determinada.
- Los propietarios pueden ser personas particulares o bien empresas. En el caso de particulares, simplemente se necesita conocer el DNI del propietario, nombre, dirección y teléfono. Para las empresas se necesita el CIF de la empresa, nombre, dirección, teléfono y persona de contacto dentro de la empresa.
- Las personas interesadas en visitar una vivienda para alquilarla son los inquilinos en potencia, los clientes de la empresa. Un cliente puede llamar a una oficina determinada para concertar una visita a una vivienda en una fecha determinada. En la visita siempre irá acompañado de uno de los empleados de la oficina encargados de gestionarla. A resultas de la visita se generan unos comentarios del cliente acerca de la vivienda que son de interés para la empresa.
- Para hacer un seguimiento de los clientes y ofrecerles viviendas que puedan ser de su interés se registra su DNI, nombre, dirección, teléfono, tipo preferido de vivienda y precio máximo de alquiler admisible por el cliente.

Indicar en un listado las RESTRICCIONES QUE NO QUEDAN RECOGIDAS EN EL DIAGRAMA.

Nota: Sólo es necesario representar aquellos atributos de las entidades que sean fundamentales para comprender el esquema. Representar de la manera más amplia (de la manera que parezca más razonable) aquellos aspectos que no queden completamente definidos en el enunciado anterior. Razonar en cada caso la representación que se elige.

SQL (40%)

Para la base de datos del anexo, escribir expresiones en SQL para las siguientes consultas (convertirlas a ANSI SQL86 (SQL1) en caso de usar características de un SQL más avanzado).

- a) Obtener los códigos de pieza (P#) suministrados para cualquier proyecto de Londres por un proveedor de Londres.
- b) Obtener el nombre de los proyectos (NOMJ) a los que se suministra alguna pieza de Londres y cuyo total de piezas suministradas (al proyecto) es mayor de 150.
- c) Obtener el nombre de las piezas que son suministradas a todos los proyectos desarrollados en la misma ciudad de fabricación de la pieza.
- d) Obtener pares de códigos y nombres de proyectos (J#, NOMJ, J#, NOMJ) que se desarrollan en la misma ciudad y además tienen en su suministro al menos una pieza en común.

Escribir esta consulta también en Álgebra Relacional

NORMALIZACIÓN (20%)

Encontrar una descomposición de producto sin pérdida (PSP), que conserve las dependencias (CD), y normalizada

en 3FN o BCNF lo mejor posible (mínimo número de esquemas y de redundancia, etc.) del esquema de relaciones:

```
R = (A, B, C, D, E, F, G, H, I, J, K)
F = \{E \rightarrow FB, BG \rightarrow E, D \rightarrow IJ, G \rightarrow AFH
```

Indicar la forma normal de cada relación y mostrar que la descomposición encontrada efectivamente es de producto sin pérdida y conserva las dependencias.

ANEXO

Proveedor (S): Proveedores de piezas para los proyectos

Pieza (P): Piezas Proyecto (J): Proyectos

SPJ : Proveedor relacionado con las piezas que suministra para cada proyecto

Proveedor (S): Código de proveedor, nombre, estado, ciudad de residencia

<u>S#</u>	NOMS	EST	CIUDADS
s2	salazar	20	londres
s1	jaramillo	10	paris
s3	bernal	30	paris
s4	caicedo	20	londres
s5	aldana	30	atenas

Pieza (P): Código de pieza, nombre, color, peso, ciudad de fabricación

<u>P#</u>	NOMP	COLOR	PESO	CIUDADP
p1	tuerca	rojo	12	londres
p2	perno	verde	17	paris
p3	tornillo	azul	17	roma
p4	tornillo	rojo	14	londres
p5	leva	azul	12	paris
p6	rueda	rojo	19	londres

Proyecto (J): Código de proyecto, nombre, ciudad de montaje

<u>J#</u>	NOMJ	CIUDADJ
j 1	clasificadora	paris
j2	perforadora	roma
j3	lectora	atenas
j4	consola	atenas
i5	cotejadora	londres
j6	terminal	oslo
j7	cinta	londres

SPJ: Código proveedor, código de pieza, código de proyecto, cantidad de la pieza que el proveedor suministra al proyecto

p1 p3 p4 p5 p6

<u>S#</u>	s5	<u>P#</u>
s1	s5	<u>P#</u> p1
s1	s5	p1
s2	s5	p3
s2	s5	p3
s2	s5	p3
s2		p5
s3		p3
s3		p4
s4		р6
s4		р6
s5		p2
s5		p2
s5		p5
s5		p5

J #	CTD
<u>jn</u> j1	200
j4	700
	400
j1	
j2	200
j3	200
j4	500
j5	600
ј6	400
j7	800
j2	100
j1	200
j2	500
j3	300
j7	300
j2	200
j4	100
j5	500
j7	100
j2	200
j4	1000
j4	1200
j4	800
j4	400
j4	500