МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Объектно-ориентированное программирование» Тема: Создание классов, конструкторов и методов классов.

Студент гр. 0381	Дзаппала Д.
Преподаватель	Жангиров Т.Р

Санкт-Петербург 2021

Цель работы.

Реализовать класс поля, который хранит набор клеток в виде двумерного массива. Реализовать класс клетки, которая хранит информацию о ее состоянии, а также того, что на ней находится. Создать интерфейс эл-та клетки. Обеспечить отсутствие утечки памяти.

Задание.

Игровое поле представляет из себя прямоугольную плоскость разбитую на клетки. На поле на клетках в дальнейшем будут располагаться игрок, враги, элементы взаимодействия. Клетка может быть проходимой или непроходимой, в случае непроходимой клетки, на ней ничего не может располагаться. На поле должны быть две особые клетки: вход и выход. В дальнейшем игрок будет появляться на клетке входа, а затем выполнив определенный набор задач дойти до выхода.

Требования:

- Реализовать класс поля, который хранит набор клеток в виде двумерного массива.
- Реализовать класс клетки, которая хранит информацию о ее состоянии, а также того, что на ней находится.
 - Создать интерфейс элемента клетки.
- Обеспечить появление клеток входа и выхода на поле. Данные клетки не должны быть появляться рядом.
- Для класса поля реализовать конструкторы копирования и перемещения, а также соответствующие операторы.
 - Гарантировать отсутствие утечки памяти.

Потенциальные паттерны проектирования, которые можно использовать:

• Итератор (Iterator) - обход поля по клеткам и получение косвенного доступа к ним

• Строитель (Builder) - предварительное конструирование поля с необходимым параметрами. Например, предварительно задать кол-во непроходимых клеток и алгоритм их расположения

Выполнение работы.

Класс FieldCage.

Класс представляет клетку поля. В private области содержатся свойства клетки: х координату, у координату, тип клетки и ее статус. В header файле клетки также определены три класса перечислений: Status, Type и CageSize. Status содержит два эл-та: NOT_AVAILABLE и AVAILABLE. Статус клетки обозначает свободна ли эта клетка, то есть можно ли на нее перейти. Туре содержит 4 эл-та: Exit, Common, Entry, Wall. CageSize содержит эл-т Size, то есть размер пикселей для клетки. В классе объявлены геттеры/сеттеры для всех полей класса.

Класс Field.

Класс предоставляет поле игры. Объект хранит в себе двумерный массив объектов клетки cageArray, статические поля height и width. В классе реализованы конструкторы: конструктор по умолчанию (выделяет память под массив), конструктор копирования, перемещением, конструктор, который принимает объект класса CreateField, после чего делаем swap массивов Также, в классе Field есть вложенный класс классов. iterator поведенческий паттерн проектирования, который дает возможность последовательно обходить эл-ты массива клеток.

Класс CreateField.

Класс нужен только как аргумент для конструктора объекта Field. Он принимает в конструктор константную строку с названием файла, в котором содержится карта поля. Класс содержит приватное поле cages — двумерный массива клеток. В конструкторе выделяется память под массив, открывается файл, считываются типы клеток, которые записываются в клетки.

Класс FieldView.

Класс для отрисовки или вывода в консоль клеток. В header файле есть класс перечисления OutMode с двумя эл-тами: CLI и GUI. Класс содержит два поля: метод вывода (OutMode), ассоциативный контейнер тар, с парой ключ-значение Type-std::string. В случае вывода поля графическим способом, нам нужны картинки для спрайтов. В классе есть метод loadPictures, который принимает std::initializer_list<std::string> с упорядоченными по типу клетки константными строками с путем до картинки. Для вывода поля перегружен оператор (<<) выходного потока, который принимает аргументом ссылку на объект Field(поле).

В проекте используется графическая библиотека SFML.

Класс IObject.

Класс, представляющий интерфейс объекта, который будет находиться на поле на клетке. Клетка будет иметь поле типа указатель на Object. Класс содержит виртуальный метод Name.

Выводы.

Были реализованы классы для представления клетки и поля, которое и содержит эти клетки. В итоге получилось игровое поле, которое отрисовывается с помощью библиотеки SFML.

ПРИЛОЖЕНИЕ A UML ДИАГРАММА КЛАССОВ

