C4 Rețele de calculatoare

Sergiu Nisioi sergiu.nisioi@unibuc.ro

Anul II, FMI, UniBuc, 2021-2022

De data trecută

HTTP/1.1

- FCFS first-come-first-served scheduling, serverul răspunde la obiectele cerute în ordine
- obiecte mai mici riscă să stea blocate până la transmisia obiectelor mari, head-of-line blocking (HOL)
- retransmiterea segmentelor de TCP blochează transmisia tuturor obiectelor

HTTP/2 [RFC 7540, 2015]

- obiectele cerute sunt returnate în funcție de prioritatea specificată de client (NU FCFS)
- posibilitatea de a trimite (push) obiecte care nu au fost cerute în prealabil către client
- divizarea obiectelor în frame-uri

De data trecută: HOL blocking

HTTP 1.1: client requests 1 large object (e.g., video file) and 3 smaller objects

objects delivered in order requested: O₂, O₃, O₄ wait behind O₁

De data trecută: HTTP/2 HOL blocking solution

O₂, O₃, O₄ delivered quickly, O₁ slightly delayed

HTTP/3 și QUIC

- RFC9000
- TLS inclus
- siguranța trimiterii
- controlul fluxului
- controlul congestiei
- load balancing
- fluxuri independente
- conexiunea se bazează pe un ID, independentă de IP

https://www.akamai.com/blog/performance/http3-and-quic-past-present-and-future

https://blog.cloudflare.com/the-road-to-quic/ https://www.youtube.com/watch?v=idViw4anA6E

https://howhttps.works/

Despre metodele de criptare, puteți citi și <u>în bibliografie</u>

TLS 1.2 vs 1.3

TLS 1.2 (Full Handshake) TLS 1.3 (Full Handshake)

liant Sarver

mai detaliat:

https://www.davidwong.fr/tls13/

https://www.wipro.com/blogs/suresha-ejari/five-ways-tls-1-3-will-take-your-privacy-and-performance-readiness-to-the-next-level/

Exercițiu

Un alt serviciu de cloud este digitalocean, folosind acest link obțineți un credit de 100 de dolari pentru două luni:

https://m.do.co/c/420cdd035b02

- dacă folosiți link-ul de mai sus, susțineți echipa de practică de la HLT https://nlp.unibuc.ro;-)
- pe DigitalOcean aveţi posibilitatea să creaţi un droplet care poate fi ţinut live pe toată perioada în care aveţi credit disponibil
- generați o pereche de chei publică-privată pentru a vă conecta la server

un tutorial de generarea a cheilor este aici

Porturi

- când ajunge mesajul la adresa IP destinație, care este procesul căruia trebuie să îi fie înmânat mesajul
- la nivelul aplicație și transport
 porturile reprezintă niște numere prin care se identifică aplicațiile între ele

De ce mai avem nevoie de porturi, dacă avem PID?

Secure Shell - SSH

https://www.openssh.com/history.html

- SSH este o aplicație client-server care permite instanțierea unui **shell** pe un calculator care se află într-o altă locație pe rețea
- alternativă la telent și rlogin (aplicații nesecurizate)
- folosește protocolul TCP pentru transport. De ce?
- de obicei portul 22 este rezervat pentru SSH
- permite și crearea unui **tunel** prin care să se transmită date în mod securizat
- cea mai sigură metodă este conectarea prin pereche cheie publică-cheie privată; merge și prin conexiune pe bază de parolă

un tutorial pentru crearea unui tunel este aici

Server deschis pe 0.0.0.0

- am executat <u>simple_flask.py</u> pe un server setând host=0.0.0.0 şi port=8001
- 0.0.0.0 nu este o adresă rutată, ci reprezintă orice adresă

Ce protocol la nivelul transport este folosit?

- am configurat în security groups ca portul
 8001 să fie deschis pentru conexiuni din toată lumea
- serverul este accesibil de oriunde din lume, dar nu e securizat şi îl folosesc mai mult pentru teste

Cum facem să nu fie accesibil pentru oricine? Cum îl accesăm doar noi?

```
⊗ ≫ ≡
      opc@adnotare: ~/computer-networks/capito...
  opc@adnotare: ~/computer-n... ×
                                  snisioi@snisioi-ThinkPad-T470...
 * Environment: production
   Use a production WSGI server instead.
 * Debug mode: off
 * Running on http://localhost:8002/ (Press CTRL+C to quit)
 pc@adnotare:~/computer-networks/capitolul2/src$ vim simple flask.p
opc@adnotare:~/computer-networks/capitolul2/src$ python3 simple fla
sk.pv
 * Serving Flask app 'simple flask' (lazy loading)
 * Environment: production
   Use a production WSGI server instead.
 * Debug mode: off
 * Running on all addresses.
   WARNING: This is a development server. Do not use it in a produc
tion deployment.
 * Running on http://165.227.138.225:8001/ (Press CTRL+C to quit)
188.26.90.49 - - [07/Mar/2022 13:22:22] "GET / HTTP/1.1" 200 -
188.26.90.49 - - [07/Mar/2022 13:22:23] "GET /favicon.ico HTTP/1.1"
200 -
```

Server deschis pe localhost

- **localhost** este un **nume** rezervat pentru o clasă de adrese IPv4 **127.0.0.0/8** și singura adresă IPv6 0:0:0:0:0:0:0:1, scrisă cu notația <u>CIDR</u> ::1/128
- orice server deschis pe localhost va fi deschis pe interfața de loopback
- nu va fi accesibil de nicăieri în afara host-ului local

Aplicație server deschisă pe localhost pe server, accesibilă local prin tunel SSH

- simple_flask.py deschis cu localhost:8002 pe server-ul remote (serverul se numeşte adnotare)
- prin <u>ssh</u> -L, redirecţionăm mesajele care vin pe portul local 8083 către adresa —
 localhost:8002 de pe server
- putem accesa aplicaţia din browserul local folosind portul local pe care tocmai l-am alocat (8083)

Dynamic Port Forwarding (nerecomandat)

Putem transforma server-ul într-un **proxy** securizat prin care să trimitem toate mesajele.

- dynamic port forwarding deschide un canal de comunicare de pe adresa localhost:8081 către server, encapsulând orice mesaj de la nivelele inferioare
- la nivelul browserului putem seta
 SOCKS proxy ca fiind
 localhost:8081
- dacă verificăm în browser care este adresa IP, vom vedea că este chiar adresa serverului pe care am instanțiat conexiunea
 SSH cu dynamic port forwarding

Domain Name System (DNS). Ce e?

- traduce un **nume** în adresa **IP** corespunzătoare
- crearea de alias pentru un nume (hostname-ul poate fi ceva complicat de reţinut)
- numele este dat de un registrar: http://www.internic.net
- în mod tradițional, presupune că adresa IP este statică (nu se schimbă)
- alias pentru un numele unui server de e-mail
- servicii web replicate mai multe IP-uri pot corespunde unui singur nume
- certificatele SSL sunt obținute pentru nume, nu pentru adrese IP
- poate fi folosit pentru blocarea accesului la site-uri în funcție de numele lor
- puteți citi mai multe și <u>în bibliografie</u>

Domain Name System

Tutoriale

- Tutorial clar
- Tutorial ok

- Cursuri Jim Kurose

Root Servers

- absolut necesare, sunt folosite în ultimă instanță, atunci când nu există informația în cache
- oferă o funcție esențială internetului
- ICANN (Internet Corporation for Assigned Names and Numbers) manages root DNS domain
- FAQs
- sunt clonate în toată lumea şi afișează aceeaşi adresă IP!

```
a.root-servers.net.
b.root-servers.net.
...
m.root-servers.net.
```

13 logical root name "servers" worldwide each "server" replicated many times (~200 servers in US)

https://root-servers.org/

Anycast

- severe care există în mai multe regiuni ale lumii, anunță că au aceeași adresă IP
- când un client face cererea de rezolvare a numelui, aceasta este redirecționată către adresa IP cea mai apropiată dpdv geografic

https://www.imperva.com/blog/how-anycast-works/

Top-level Domain (TLD)

Mai multe tipuri de TLD:

- Infrastructure top level domains (ARPA)
- Generic top level domains (gTLD):
- Restricted generic top level domains (grTLD)/.t
- Sponsored top level domains (sTLD)
- Country code top level domains (ccTLD)
- Test top level domains (tTLD)
- TLD servers pentru .ro:
 - sec-dns-b.rotld.ro.
 - dns-at.rotld.ro
 - sec-dns-a.rotld.ro.
 - dns-ro.denic.de.
 - dns-c.rotld.ro.
 - primary.rotld.ro.

FQDN - fully qualified domain name; se termină cu punct la sfârșit și indică calea absolută

Server **DNS** Autoritativ

 servere DNS ale unei organizaţii sau autoritatea care se ocupă de maparea între un nume şi o adresă IP pentru organizaţia respectivă 1

- nsl.unibuc.ro.
pentru fmi.unibuc.ro

- ns1.google.com. pentru google.com

ns.ms.mff.cuni.cz.
pentru ufal.mff.cuni.cz

 sunt în general menţinute de organizaţii sau chiar de ISP

 când cumpărăm un domeniu, name server-ul acelei firme de la care cumpărăm domeniul este autoritativ

Server DNS local

- 1. cererile către DNS sunt întâi și întâi adresate DNS-ului local
- acesta răspunde din <u>cache</u>-ul său sau din perechi nume adresă obţinute de-a lungul timpului
- 3. dacă nu are un răspuns, trimite cererea mai departe în ierarhia DNS
- 4. exemplu: router-ul de acasă poate avea un DNS server local
- 5. un **system resolver** server rulează și pe localhost, menținând într-un cache informațiile acumulate de-a lungul timpului

Execrițiu de configurarea a unui server DNS pe calculatorul local: https://www.fosslinux.com/7631/how-to-install-and-configure-dns-on-ubuntu.htm

Intrări DNS (DNS records) mai bine ne uităm în acest tutorial

Type ?	Name ?	Data ?	TTL ②	Ū	<u>0</u>
А	@	3.92.198.40	600 seconds	Delete	Edit
NS	@	ns31.domaincontrol.com.	1 Hour	Can't delete	Can't edit
NS	@	ns32.domaincontrol.com.	1 Hour	Can't delete	Can't edit
CNAME	www	chlorophylla.net.	1 Hour	Delete	Edit
CNAME	_domainconnect	_domainconnect.gd.domaincontrol.com.	1 Hour	Delete	Edit
SOA	@	Primary nameserver: ns31.domaincontrol.com.	1 Hour	Delete	Edit

Intrarea Start of Authority / Zone File adresa de server DNS email primar \$ORIGIN chlorophylla.net. SOA Record 3600 IN SOA ns31.domaincontrol.com. dns.jomax.net. 2022022803 serial nr. se incrementează la fiecare modificare a fișierului 28800 rata de refresh pentru serverul secundar (8h) 72.00 referinta la origin timeout de retry pentru serv. secundar (2h) 604800 perioada de expirare a serv. secundar (7zile), apoi mai este autoritativ 3600 cache time pentru o eroare (1h), când nu găsește numele în acest fișier Record 600 18.206.88.223 (g TN NS Record 3600 TN NS ns31.domaincontrol.com. ← **FQDN** 3600 TN NS ns32.domaincontrol.com.

DNS dinamic

- Schimbare parolă PPPoE
 Schimbare date WIFI și parolă
 Vizualizare loguri conectare
 Control parental
 DNS dinamic
 Administrare porturi
- un serviciu oferit de ISP sau de organizații care vă permite să faceți o mapare între adresele IP variabile pe care le primiți și un nume dat
- obţineţi un nume prin DNS dinamic (sau chiar un nume de la un DNS)
- configurați pe router-ul de acasă laptop-ul vostru să primească același IP de fiecare dată (IP static din subnet)
- 3. configurați pe router-ul de acasă **port forwarding** astfel încât să se redirecționeze mesajele primite pe portul extern către portul deschis de laptop-ul vostru

Exemplu blocare prin DNS

- site-ul <u>https://rt.com</u> este momentan blocat, astfel că intrarea DNS corespunzătoare site-ului se redirecționează către altă pagină
- numele către rt.com nu mai este "rezolvat" sau se redirecționează către o pagină interpusă
- încercați dig rt.com @dns1.rdsnet.ro care (prind digi) vă va redirecționa către http://81.196.9.130/
- putem folosi https://dns.yandex.com/ DNS: dig rt.com @77.88.8.8
- accesarea direct în browser a adresei 185.178.208.5 nu este permisă din motive de protecție împotriva DDoS
 - trebuie să modificăm DNS-ul computerului şi să facem flush la DNS cache (diferit în funcție de SO)

Acces neautorizat

Accesul dumneavoastră către acest site a fost restricționat în baza Deciziei Președintelui Autorității Naționale pentru Administrare și Reglementare în Comunicații nr.145/2021

Exercițiu

descris si aici

- Înscrieți-vă pe github pentru a obține student developer pack: https://education.github.com/pack
- 2. Obțineți un domeniu gratuit timp de un an
- Folosiţi-l pentru a vă mapa IP-ul public de pe AWS sau de la orice alt provider de cloud
- 4. Obțineți un certificat valid prin LetsEncrypt pentru domeniul vostru
- 5. Configurați diferite intrări DNS și urmăriți timpul de propagare

Name.com

About Name.com

Best-in-class domains, email, and hosting

Benefit

One free domain name and free Advanced Security (SSL, privacy protection, and more).

Get access by connecting your GitHub account on Name.com >

Get help at Name.com support

Exemple de comenzi dig

- comenzi DNS folosind dig:

https://github.com/senisioi/computer-networks/tree/2022/capitolul2#dns

https://www.cloudns.net/blog/linux-dig-command-install-use/

Sfârșit