FCUE: FORWARD CONCEALMENT PERMUTATION AND ENCRYPTION

- Input:
 - 1. a grayscale image, I_{GC} ,
 - 2. secret message {S},
 - 3. secret keys, [HK], [PK], and [EK]
- Processes:
 - 1. GMWRDH Embedding: Applying GMWRDH(n, M, Z, I_{GC}) to produce I'_{G1} , I'_{G2} , I'_{G3} .
 - 2. Channel Composition: Compositing I_{G1}' , I_{G2}' , I_{G3}' to form I_{PC}' .
 - 3. Channel Permutation: Random permutation with [PK] to produce I'_{PMC} .
 - 4. RT Encryption: Applying RT Encryption on I'_{PC} using [EK] to produce I'_{EC} .
- Output:
 - 1. an encrypted marked color image, I'_{EC} .

BDIX: BACKWARD DECRYPTION INVERSE-PERMUTATION AND EXTRACTING

- Input:
 - 1. an encrypted marked color image, I'_{EC}
 - 2. secret keys, [DK], [PK], [XK]
- Process:
 - 1. IRT Decryption: Applying IRT with [DK] to decrypt I_{EC}^{\prime} and produce I_{PUC}^{\prime} .
 - 2. Channel Inverse Permutation: Applying inverse permutate with [PK] on I'_{PUC} to produce I'_{PC} .
 - 3. Channel Decomposition: Retrieve three marked grayscale images $I_{G1}', I_{G2}', I_{G3}'$ from I_{PC}' .
 - 4. Message extraction: Extract secret message {S} using [XK] from I'_{G1} , I'_{G2} , I'_{G3} .
 - 5. Restoring image: Using I'_{G1} , I'_{G2} , I'_{G3} to produce I_{RG} .
- Output:
 - 1. secret message, {S}.
 - 2. restored image, I_{RG} .

FCUE: FORWARD CONCEALMENT PERMUTATION AND ENCRYPTION (COLOR IMAGES)

- Input:
 - 1. a color image, I_{CC} ,
 - 2. secret message {S},
 - 3. secret keys, [HK], [PK], and [EK]
- Processes:
 - 1. GMWRDH Embedding: Applying GMWRDH(n, M, Z, I_{CC}) to produce I'_{C1} , I'_{C2} , I'_{C3} .
 - 2. Channel Composition: Compositing I'_{C1} , I'_{C2} , I'_{C3} to form I'_{PC} .
 - 3. Channel Permutation: Random permutation with [PK] to produce I'_{PMC} .
 - 4. RT Encryption: Applying RT Encryption on I'_{PC} using [EK] to produce I'_{EC} .
- Output:
 - 1. an encrypted marked color image, I'_{EC} .

BDIX: BACKWARD DECRYPTION INVERSE-PERMUTATION AND EXTRACTING (COLOR IMAGE)

- Input:
 - 1. an encrypted marked color image, I'_{EC}
 - 2. secret keys, [DK], [PK], [XK]
- Process:
 - 1. IRT Decryption: Applying IRT with [DK] to decrypt I_{EC}^{\prime} and produce I_{PUC}^{\prime} .
 - 2. Channel Inverse Permutation: Applying inverse permutate with [PK] on I'_{PUC} to produce I'_{PC} .
 - 3. Channel Decomposition: Retrieve three marked color images I'_{C1} , I'_{C2} , I'_{C3} from I'_{PC} .
 - 4. Message extraction: Extract secret message {S} using [XK] from $I_{C1}', I_{C2}', I_{C3}'$.
 - 5. Restoring image: Using I'_{C1} , I'_{C2} , I'_{C3} to produce I_{RC} .
- Output:
 - 1. secret message, {S}.
 - 2. restored image, I_{RC} .

BDIX: Extracting Secret Messages and Restoring Cover Image (Color Image) Permutation Keys (2H*1.5V) Decryption Keys I'_{PUC} Channel Channel Decomposition IRT Inverse Decryption Permutation I'_{G}, I'_{R}, I'_{B} (2H*1.5V) I_R', I_G', I_B' (H*V) (2H*1.5V) I'_{EC} (Encrypted Marked Color Image $\overline{I_{RC}}$ Restored Cover Message (H*V) Extraction Color Image and Image Restoration Secret Messages {S} Extraction Keys [XK]

