

A Neural Network Model to Identify Relative Movements from Wearable Devices

Caroline John, Zachary Mueller, Lakshmi Prayaga, and Krishna Devulapalli

Purpose of Our Research

- Movement tracking is used daily by anyone with fitness-based technology
- When accurate and reliable, can help health experts provide advice

https://images-na.ssl-images-amazon.com/images/I/51VUmODNuOL._AC_SX425_.jpg https://p7.hiclipart.com/preview/100/919/704/apple-watch-series-2-apple-watch-series-3-apple-watch-series-1-apple.jpg

Our Approach

- Utilizing creative feature engineering
- Neural Networks
- The fast.ai library & PyTorch

Experiment Setup

- Apple Watch Health readings from six individuals
- Each performed the following for one minute:
 - Running, walking, working at a computer, walking up and down the stairs, walking and talking, standing, and standing while talking

Collected Data:

- Accelerometer and user acceleration (X,Y,Z)
- Relative Quarternion and Gravitational Motion (X, Y, Z)
- Pitch, yaw, and roll
- Gyroscopic Rotation (X, Y, Z)
- Relative Altitude (m)

Feature Engineering

- Based on works by Kodak et al[1]
- 171 new unique features
 - Sum of Squares, Rolling Mean (20 instances), Variance, Root Mean Square
- We introduced a "Time Step"

[1] - S. Konak, F. Turan, M. Shoaib, and O. Durmaz Incel, "Feature engineering for activity recognition from wrist-worn motion sensors,"

PECCS, 2016. doi:10.5220/0006007100760084

Neural Network Setup

 7 Layer model with three fully connected layers (1000 and 500 neurons)

An added embedding matrix post-feature

engineering

Neural Network Setup (cont)

- Cross Entropy and Label Smoothing Cross Entropy loss functions were compared
- Adam optimizer and Ranger optimizer were compared

Trained for five epochs at a found learning

rate for each

Results (Adam)

Variation	Total Features	Validation	Test
Base CEL	20	$95.27 \pm 0\%$	$85.14 \pm 0\%$
Base LSCE	20	$94.94 \pm 0\%$	$84.44\pm0\%$
Base + T.S. CEl	115	$96.71 \pm 0\%$	$85.75 \pm 0\%$
Base + T.S. LSCE	115	$96.55\pm0\%$	$95.99 \pm 1\%$
F.E. CEL	96	$99.89 \pm 0\%$	$87.96 \pm 1.7\%$
F.E. LSCE	96	$99.92 \pm 0\%$	$92.40 \pm 1.0\%$
F.E. + T.S. CEL	191	$99.87 \pm 0\%$	$93.35 \pm 1.3\%$
F.E. + T.S. LSCE	191	$99.94 \pm 0\%$	$94.98 \pm 1.0\%$

^{*} Cross-Entropy Loss (CEL)

^{*} Label Smoothing Cross-Entropy (LSCE)

^{*} Time Step (T.S.)

^{*} Feature Engineering (F.E.)

Results (Ranger)

Variation	Total Features	Validation	Test
Base CEL	20	$96.07 \pm 1.1\%$	$85.33 \pm 0.3\%$
Base LSCE	20	$86.16 \pm 1.1\%$	$85.19 \pm 0.3\%$
Base + T.S. CEl	115	$97.32 \pm 0\%$	$86.91 \pm 0\%$
Base + T.S. LSCE	115	$97.33 \pm 0\%$	$86.59 \pm 1\%$
F.E. CEL	96	$99.98 \pm 0\%$	$97.09 \pm 0\%$
F.E. LSCE	96	$99.97 \pm 0\%$	$97.80 \pm 0\%$
F.E. + T.S. CEL	191	$99.87 \pm 0\%$	$98.17 \pm 0\%$
F.E. + T.S. LSCE	191	$99.97 \pm 0\%$	$97.89 \pm 0\%$

^{*} Cross-Entropy Loss (CEL)

^{*} Label Smoothing Cross-Entropy (LSCE)

^{*} Time Step (T.S.)

^{*} Feature Éngineering (F.E.)

Results (cont.)

 Relative Percentage improvement between Ranger and Adam with Feature Engineering and Label Smoothing

Results (cont.)

 Relative Percentage improvement between Ranger and Adam with Feature Engineering and a "Time Step" and Label Smoothing

Important Findings and Future Work

- Performance of Label Smoothing was relative to the number of features used
- Outperformed previous works on this dataset with Random Forests (83%)
- Combining a Neural Network's embeddings with Random Forest

Extensions to this Research

- Take the last 30 milliseconds
- Perform feature engineering based on the training data
- Feed through the model on either CPU or on a server

Questions?