AI330_ Machine Learning Projects_Fall2023

Numerical dataset:

General information about dataset:

Name	Medical Insurance Cost Prediction
Total Number of Samples in Data set	(1338, 7)
No. of samples in training\validation	(1070, 6)
Number of Features	6
No. of samples in testing	(268, 6)

Linear Regression Model:

Model Evalution:

Knn Regressor Model:

Implementation details:

Hyper Parameter:

Values for K = 32

 $best_K = 9$

Results details:

```
# final version
# Make predictions on the Train data
Prediction_Training_Data=final_knn.predict(X_train_scaled)

# R-squared on train data
r2_train=r2_score(Prediction_Training_Data,Y_train)
print('R Squared on Train data = ',r2_train)

R Squared on Train data = 0.8187525607186243

[92] # final version
# Make predictions on the test data
Y_test_pred=final_knn.predict(X_test_scaled)

# R-squared on test data
r2_test=r2_score(Y_test_pred,Y_test)
print('R squared on Test data = ',r2_test)

R squared on Test data = 0.7675351764760497
```

Mean Squared Error On test Data:

```
# Mean Squared Error on test data

mse_test=mean_squared_error(Y_test_pred,Y_test)
print('Mean Squared Error on Test Data=',mse_test)

Mean Squared Error on Test Data= 27839082.124536395
```

```
[ ] rmse values=
[] # final version
     for k in range(1, k value + 1): # (1,32)
        # Create a KNN model with the current k value
        knn = KNeighborsRegressor(n neighbors=k)
        # Perform cross-validation to get a more robust estimate
        scores=cross val score(knn,X train scaled,Y train,cv=5,scoring='neg mean squared error')
         # Calculate and store RMSE
        rmse=sqrt(-scores.mean())
        rmse values.append(rmse)
        print('RMSE value for k=',k ,'is:',rmse)
    RMSE value for k= 1 is: 6657.457023001403
    RMSE value for k= 2 is: 5754.626289955937
    RMSE value for k= 3 is: 5512.408864296902
    RMSE value for k= 4 is: 5388.281980145013
    RMSE value for k= 5 is: 5346.673664516487
    RMSE value for k= 6 is: 5325.016806265275
    RMSE value for k= 7 is: 5290.9998724274365
    RMSE value for k= 8 is: 5268.693278561807
    RMSE value for k= 9 is: 5262.253100504169
    RMSE value for k= 10 is: 5280.3238951788
    RMSE value for k= 11 is: 5266.968272821496
    RMSE value for k= 12 is: 5300.994449859258
    RMSE value for k= 13 is: 5307.495864818422
     DMCE value for b- 11 ic. 5276 761200015101
```

```
Cross Validation with K_folds = 5
train_val_ratio = 0.8
```

specifies that 80% of the data will be used for training the model, and the remaining 20% will be used for validation during cross-validation.

Image Dataset:

a. General information about dataset:

name of dataset:	UTK Face (Age Estimation)
number of classes and their labels:	Classes = 2 , labels = 2
the total number of samples in dataset:	train images = 1839, test images = 774
Size of Each Image:	Images are resized to (28, 28, 3) during preprocessing. ((32,32) with HOG)
the number of samples used in training :	train images = 1283
the number of samples used in testing :	test images = 530

b. Implementation details:

Logistic regression:

Number of Features: Depends on HOG parameters, but not explicitly mentioned.

Feature Names: HOG features are essentially gradients in different orientations, but not explicitly named in this context.

HOG Parameters:

orientations=8: Number of orientation bins.

pixels_per_cell=(4, 4): Size (in pixels) of a cell.

cells_per_block=(1, 1): Number of cells in each block.

Dimension of Resulted Features: (32,32)

Hyperparameters used in your model: (model = LogisticRegression(solver='liblinear'))

the solver is an optimization algorithm that the model uses to find the weights that minimize the cost function. Liblinear is one of the solvers available in scikit-learn's LogisticRegression implementation.

It is specifically designed for linear models, such as logistic regression, and is well-suited for binary and multiclass classification problems.

kmeans as classifiers:

Number of Features: Depends on HOG parameters, but not explicitly mentioned.

Feature Names: HOG features are essentially gradients in different orientations, but not explicitly named in this context.

HOG Parameters:

orientations=8: Number of orientation bins.

pixels_per_cell=(4, 4): Size (in pixels) of a cell.

cells_per_block=(1, 1): Number of cells in each block.

Dimension of Resulted Features: Reduced to 50 components using PCA.

Hyperparameters:

K-Means Hyperparameters:

n_clusters=2: Number of clusters.

random_state=42: Random seed for reproducibility.

n_init=10: Number of runs with different centroid seeds.

c. Results details:

Logistic regression:

Accuracy: 0.8500

ROC curve:

confusion matrix:

loss curve:

kmeans as classifiers:

Accuracy: 0.5697583787996883

Silhouette Coefficient: 0.17459127519351436 Calinski-Harabasz Score: 281.56693799155323 Davies-Bouldin Index: 2.0263179690082835

Evaluation Metrics:

Accuracy: Computed accuracy using scikit-learn's metrics.accuracy_score.

Additional Clustering Metrics:

- Silhouette Coefficient.
- Calinski-Harabasz Score.
- Davies-Bouldin Index.

Visualization:

- Silhouette Plot: Visualized silhouette scores for each cluster.
- Scatter Plot of Clustered Data: Visualization of clustered data in reduced feature space using PCA.