Fields, Bounds, and Absolute Values

February 20, 2023 12:36

1.1 The Real Numbers:

Field Axioms 1.1.1:

- F1 Commutativity: a + b = b + a
- F2 Associativity: (a + b) + c = a + (b + c)
- F3 Additive Identity: $\exists 0 \in \mathbb{F}$ such that 0 + a = a
- F4 Additive Inverse: $\exists (-a) \in \mathbb{F}$ such that a + (-a) = 0
- F5 Commutativity: $a \cdot b = b \cdot a$
- F6 Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- F7 Multiplicative Identity: $\exists 1 \in \mathbb{F}$ such that $1 \cdot a = a$
- F8 Multiplicative Inverse: $\exists a^{-1} \in \mathbb{F}$ such that $a \cdot a^{-1} = 1$ for $a \neq 0$
- F9 Distributivity: $a \cdot (b + c) = a \cdot b + a \cdot c$

Ordered Fields 1.2.1:

An ordered field is a field \mathbb{F} along with a relation < satsifying:

- 01 Transitivity: If a < b and b < c, then a < c
- 02 (< is a total order): Exactly one holds:
 - \circ a < b
 - \circ a=b
 - \circ b < a
- 03: If a < b, then a + c < b + c
- 04: If a < b and 0 < c, then $a \cdot c < b \cdot c$

Bounds 1.3.1:

For $S \subseteq \mathbb{F}$ be a subset, and $a \in \mathbb{F}$:

- a is an upper bound for S if $x \le a \ \forall x \in S$
- a is a lower bound for S if $x \ge a \ \forall x \in S$

S is bounded above if there exists an upper bound for S S is bounded below if there exists a lower bound for S S is bounded if it's bounded above and bounded below

If a set contains its bound, we can write:

- $a = \max(S)$ if $a \in S$ and a is an upper bound for S
- $a = \min(S)$ if $a \in S$ and a is a lower bound for S

Supremum and Infimum 1.3.5:

For $S \subseteq \mathbb{F}$ a non-empty subset and $a \in \mathbb{F}$:

a is a least upper bound (or supremum) for *S* if:

- *a* is an upper bound for *S*
- For any upper bound b of S, we have $b \ge a$ In this case, we write $a = \sup(S)$

a is a greatest lower bound (or infimum) for *S* if:

- a is a lower bound for S
- For any lower bound b of S, we have $b \le a$ In this case, we write $a = \inf(S)$

Note:

- $\sup(S) = \infty$ if S is not bounded above
- $\inf(S) = -\infty$ if *S* is not bounded below
- $\sup(\emptyset) = -\infty$ and $\inf(\emptyset) = \infty$

Field Completeness 1.3.8:

For an ordered field \mathbb{F} , we say that \mathbb{F} is complete if: For any $S \subseteq \mathbb{F}$ a nonempty and bounded above set, $\sup(S)$ exists

Proposition 1.3.11:

For any $S \subseteq \mathbb{R}$ nonempty and bounded below, $\inf(S)$ exists

Theorem 1.3.13: Archimedean Property

The set $N_{\geq 1}$ is not bounded above

Absolute Value 1.4:

For some $a \in \mathbb{R}$, we define the absolute value:

$$|a| = \begin{cases} a, & a \ge 0 \\ -a, & a < 0 \end{cases}, \quad |a| = \max\{a, -a\}$$

Properties of Absolute Values 1.4.1:

- |-x| = |x|
- $-|x| \le x \le |x|$
- $-|xy| = |x| \times |y|$
- $|x + y| \le |x| + |y|$ Triangle Inequality
- $||x| |y|| \le |x y|$

Distance 1.4.2:

We define the distance between *x* and *y* as:

$$d(x,y) = |x - y|$$

Properties of Distances 1.4.3:

- d(x,y) = d(y,x)
- $d(x, y) = 0 \leftrightarrow x = y$
- $-d(x,z) \le d(x,y) + d(y,z)$