Clase 18¹ - Aplicación de transistores a circuitos analógicos (I)

Amplificador Emisor Común

Contenido:

- 1. Principios Fundamentales de los amplificadores
- 2. Amplificador Emisor Común
- 3. Máxima señal sin distorsión
- 4. Eficiencia de potenia
- 5. Ejemplo de Emisor Común

Lectura recomendada:

- Gray, Hurst, Lewis, Meyer, "Analysis and Design of Analog Integrated Circuits", Ch. 3, §§3.1–3.3.
- Sedra, Smith, "Microelectronic Circuits", Ch. 5 §§5.7.
- Howe, Sodini, "Microelectronics: An Integrated Approach", Ch. 8, §§8.1–8.2.

¹Esta clase es una adaptación, realizada por los docentes del curso 86.03 − Dispositivos Semiconductores de la FIUBA, de la correspondiente hecha por el prof.Jesús A. de Alamo para el curso 6.012 − Microelectronic Devices and Circuits del MIT.Cualquier error debe adjudicarse a la adaptación.

1. Principios fundamentales de los amplificadores

¿Cuál es el objetivo de un amplificador?

El objetivo es convertir potencia de la fuente de alimentación en potencia de señal de salida.

Generalmente tiene tres bloques constitutivos:

- Fuente de alimentación
- Amplificador de pequeña señal ($\uparrow A_v \ y \uparrow R_{IN}$)
- Amplificador de potencia ($\uparrow A_i \text{ y} \downarrow R_{OUT}$)

Rendimiento de potencia:

$$\eta = \frac{P_{OUT}}{P_{DC}} \times 100$$

Objetivo de los amplificadores: amplificación de señal.

Principales caractersticas del amplificador:

• La $se\tilde{n}al$ de salida es una réplica sin distorsión de la $se\tilde{n}al$ de entrada:

$$v_{out} = A_v \ v_{in}$$

• El amplificador debe tener relación lineal de transferencia entrada—salida.

2. Amplificador Emisor Común

Consideremos el siguiente amplificador:

¿Cómo funciona?

- $v_{OUT}(t) = V_{OUT} + v_{out}(t)$. Prestar atención a la notación:
 - $-v_{OUT}(t)$: Tensión total, depende del tiempo.
 - $-V_{OUT}$: Tensión de continua o polarización, no depende del tiempo.
 - $-v_{out}(t)$: señal alterna, depende del tiempo.
- V_B y R_C seleccionados para polarizar el transistor en MAD y obtener el $punto\ Q = Quiescent = Reposo$ deseado.

- $v_{BE} \uparrow \Rightarrow i_C \uparrow \Rightarrow i_R \uparrow \Rightarrow v_{OUT} \downarrow$
- $A_{vo} = \frac{v_{out}}{v_{in}} < 0$; la salida está en contrafase con la entrada
- $|A_v| = \left|\frac{v_{out}}{v_{in}}\right| > 1$, si el amplificador está bien diseñado.

Trazamos la recta de carga:

Para los amplificadores es importante conocer:

- El punto de polarización de los transistores
- La máxima señal de salida y entrada sin distorsión
- La ganancia de tensión A_{vo} del amplificador
- Las resistencias de entrada y salida del amplificador

□ Punto de polarización

Seleccionamos V_B y R_C para que el TBJ esté en MAD y para obtener la tensión V_{OUT} deseada.

Para el análisis de polarización, se asume que la fuente de señal v_s se encuentra pasivada, i.e. es un corto circuito, y que los capacitores son circuitos abiertos.

Suponemos que el TBJ está en MAD:

$$I_C = \beta I_B$$

$$I_B = \frac{V_B - V_{BE}}{R_s}$$

$$V_{BE} = 0.7 \,\mathrm{V}$$

$$I_R = \frac{V_{CC} - V_{OUT}}{R_C}$$

$$I_C = I_R = \beta \frac{V_B - V_{BE}}{R_s} = \frac{V_{CC} - V_{OUT}}{R_C}$$

Entonces:

$$V_B = V_{BE} + \frac{R_s V_{CC} - V_{OUT}}{\beta R_C}$$

Finalmente verificamos que el punto Q este en zona de MAD:

$$V_{CE} = V_{CC} - I_C R_C > V_{CE_{sat}} \simeq 0.2 \,\mathrm{V}$$

\square Ganancia de tensión A_{vo} de pequeña señal

Pasivamos las fuentes de tensión continua (cortocircuitos) y reemplazamos el transistor por su modelo equivalente de pequeña señal para bajas frecuencias:

$$v_{out} = -g_m \ v_{in} \ (r_o//R_C)$$

Luego la ganancia de tensión sin carga es:

$$A_{vo} = \frac{v_{out}}{v_{in}} = -g_m \ (r_o//R_C)$$

- \square Resistencia de entrada, R_{IN}
- Cálculo de la resistencia de entrada, R_{IN} :
 - Aplicamos una tensión de prueba v_t en la entrada.
 - Calculamos la corriente i_t resultante.
 - Finalmente $R_{IN} = v_t/i_t$

La tensión v_t es aplicada directamente en v_{be} , entonces se enciende el generador controlado.

Sin embargo, la corriente $g_m \times v_{be}$ no influye en la corriente de prueba i_t .

Además, al existir r_{π} , $i_t \neq 0$.

$$\Rightarrow R_{IN} = \frac{v_t}{i_t} = r_\pi$$

Esta es la resistencia de entrada "inherente" al circuito. Puede modificarse si se utilizan resistores para polarizar el circuito.

- \square Resistencia de salida, R_{OUT}
- Cálculo de la resistencia de salida, R_{OUT} :
 - Cargamos al amplificador a su entrada con R_s
 - Aplicamos una tensión de prueba v_t en la salida.
 - Calculamos la corriente i_t resultante.
 - Calculamos $R_{OUT} = v_t/i_t$

El generador controlado no se enciende.

$$v_{be} = 0 \implies g_m v_{be} = 0$$

$$i_t = i_c + \frac{v_t}{R_C} = \frac{v_t}{r_o} + \frac{v_t}{R_C}$$

$$\implies v_t = i_t (r_o / / R_C)$$

$$R_{OUT} = \frac{v_t}{i_t} = r_o / / R_C$$

\square Ganancia de tensión A_{vs} de pequeña señal

Se puede también definir la ganancia de tensión respecto de la fuente de señal v_s :

$$A_{vs} = \frac{v_{out}}{v_s} = \frac{v_{out}}{v_{in}} \frac{v_{in}}{v_s}$$

Para el emisor-común:

$$v_{in} = \frac{R_{IN}}{R_{IN} + R_s} v_s \Rightarrow \frac{v_{in}}{v_s} = \frac{R_{IN}}{R_{IN} + R_s}$$

$$\Rightarrow A_{vs} = \frac{R_{IN}}{R_{IN} + R_s} \frac{v_{out}}{v_{in}} = \frac{R_{IN}}{R_{IN} + R_s} A_{vo}$$

 \square Relación de compromiso de A_{vo} , R_C , V_{CC} e I_{CQ}

Examinemos la dependencia con la polarización:

$$|A_{vo}| = g_m (r_o / / R_C) \simeq g_m R_C$$

Reescribimos $|A_{vo}|$ de la siguiente forma:

$$|A_{vo}| \simeq g_m R_C = \frac{I_C}{V_{th}} \frac{V_{CC} - V_{OUT}}{I_C} = \frac{V_{CC} - V_{OUT}}{V_{th}}$$

Para un V_{OUT} fijo, la ganancia depende sólo de V_{CC} . Hay que elegir I_C y R_C para obtener el V_{OUT} deseado.

3. Máxima señal sin distorsión:

La disorsión ocurre cuando el transistor no está trabajando en el régimen que correponde.

La relación de la señal de salida con la señal de entrada no será lineal.

Existirá una deformación de la señal de salida y entonces:

- □ Máxima señal de entrada sin distorsión
- Hay que verificar que v_{be} se encuentre dentro del rango de validez del modelo de pequeña señal:

$$v_{be} \le 10 \,\mathrm{mV}_{pico}$$

Si no se verifica esta condición el amplificador distorsiona por alinealidad.

- □ Máxima señal de salida sin distorsión
- Límite superior: para v_s demasiado negativa el transistor se va al corte, i.e. toda la corriente de señal anula la corriente de polarización

$$i_{c} = -I_{CQ} \implies i_{C} = 0$$

$$v_{OUT,max} = V_{CC}$$

$$\implies v_{out,max} = I_{CQ}R_{C} = V_{CC} - V_{CEQ}$$

• Límite inferior: para v_s muy positiva el TBJ entrará en régimen de saturación. El caso límite tolerable es:

$$v_{OUT,min} = V_{CEsat}$$

$$\Rightarrow v_{out,max} = V_{CEQ} - V_{CEsat}$$

Atención: estas son cotas máximas de v_{OUT} , que se alcancen o no dependerá de A_{vo} y v_{in} .

4. Eficiencia de conversión de potencia η

$$\eta = \frac{P_{OUT}}{P_{DC}} \times 100$$

Donde P_{OUT} es la potencia eficaz de la señal de salida

$$P_{OUT} = \frac{1}{2} \cdot \frac{\hat{v}_{out}^2}{R_L}$$

y P_{DC} es la potencia de contínua que consume el circuito.

$$P_{DC} = V_{DD/CC} \cdot I_{D/C}$$

Para un amplificador sin carga $(R_L \to \infty)$, no se entrega potencia a la salida y el rendimiento es nulo.

Si el amplificador entrega potencia a una carga, la máxima eficiencia se obtiene cuando:

$$v_{out} = v_{out,max} = \frac{1}{2} V_{CC} = I_{CQ} \cdot R_L$$

Entonces (esto vale en general):

$$\eta_{max} = \frac{1}{2} \cdot \frac{1/2 \ V_{CC} \cdot I_{CQ} \cdot R_L}{V_{CC} \cdot I_{CQ} \cdot R_L} = 25\%$$

Este 25% es una cota teórica máxima.

5. Ejemplo de Emisor Común

Datos:

$$V_{CC} = 3.3 \,\text{V}, \ R_B = 100 \,\text{k}\Omega, \ R_C = 75 \,\Omega,$$

$$\hat{v}_s = 30 \,\text{mV}, \ R_s = 2 \,\text{k}\Omega,$$

$$\beta = 750, \ V_A \to \infty$$

Punto de polarización

Suponemos M.A.D $\Rightarrow I_C = \beta I_B, V_{BE} = 0.7 \text{ V}, V_{CE} > V_{CE(sat)} = 0.2 \text{ V}.$

$$I_{BQ} = \frac{V_{CC} - V_{BE}}{R_B} = 26 \,\mu\text{A}$$

$$I_{CQ} = \beta \ I_{BQ} = 19.5 \,\mathrm{mA}$$

$$V_{OUT} = V_{CEQ} = V_{CC} - I_{CQ} R_C = 1.8735 V > V_{CE(sat)}$$

Análisis de pequeña señal

Parámetros de pequeña señal del transistor:

$$g_{m} = \frac{\partial i_{C}}{\partial v_{BE}} = \frac{I_{CQ}}{V_{th}} = 0.75 \,\mathrm{S}$$

$$r_{\pi} = \left(\frac{\partial i_{B}}{\partial v_{BE}}\right)^{-1} = \frac{\beta}{g_{m}} = 1 \,\mathrm{k}\Omega$$

$$r_{o} = \left(\frac{\partial i_{C}}{\partial v_{CE}}\right)^{-1} = \frac{V_{A}}{I_{CQ}} \to \infty$$

Parámetros del amplificador:

$$A_{vo} = \frac{v_{out}}{v_{in}} = g_m \ (r_o \parallel R_C) = 56.25$$

$$R_{IN} = R_B \parallel r_\pi \simeq r_\pi = 1 \text{ k}\Omega$$

$$R_{OUT} = R_C \parallel r_o \simeq R_C = 75 \Omega$$

$$A_{vs} = \frac{v_{out}}{v_s} = \frac{R_{IN}}{R_{IN} + R_s} A_{vo} = 18.75$$

Resta verificar que el amplificador no distorsione... queda de tarea :)

Principales conclusiones

- Amplificador Emisor-Común:
 - Resistencia entrada, ganancia de tensión y resistencia de salida "ajustables" con R_C e I_C .
 - Excelente amplificador de trasconductancia,
 Aceptable como amplificador de tensión.
 - Relación de compromiso de A_{vo} , R_C , V_{CC} , I_C y V_{OUT} : Superada mediante el uso de fuente de corriente (próxima clase).
- Necesitamos nuevas configuraciones de amplificadores (se estudiarán en materias posteriores):
 - Para salvar relación de compromiso entre A_{vo} y R_{OUT}
 - Para aquellos casos que se necesite baja R_{IN}