Libor Market Model

Alexandre Humeau

November 16, 2014

1 Derivation

Let us consider a set of dates $(T_i = T_\alpha + (i - \alpha)\delta)_{i=\alpha,...,\beta}$ and the Libor associated to the period $[T_i, T_{i+1}]$

$$L_{t}^{i} = \frac{1}{\delta} \left(\frac{B(t, T_{i})}{B(t, T_{i+1})} - 1 \right)$$

The T_i -forward probability measure is denoted by \mathbb{Q}^i (associated to the numeraire $B(t,T_i)$.

Proposition 1.1. L_t^i is a lognormal martingale of volatility $\sigma_i(t) = c_i g(T_i - t)$ under \mathbb{Q}^{i+1}

Which probability can we take to price a product dependent on all the libors? \mathbb{Q}^{β} the terminal probability.

$$\frac{dL_t^i}{L_t^i} = \gamma^i(t)dW_t + \text{drift}_t^i dt \tag{1}$$

where γ^i is a vectorial volatility function such that $\sigma_i(t) = \|\gamma^i(t)\|$ (function from \mathbb{R}_+ to \mathbb{R}^d) and W a d-dimensional Wiener process

$$\begin{split} \frac{d\mathbb{Q}^{i+1}}{d\mathbb{Q}^{i}}\bigg|_{\mathcal{F}_{T_{i}}} &= \frac{B\left(T_{i}, T_{i+1}\right)}{B\left(T_{i}, T_{i}\right)} \frac{B\left(0, T_{i}\right)}{B\left(0, T_{i+1}\right)} = \frac{1}{1 + \delta L_{T_{i}}^{i}} \frac{B\left(0, T_{i}\right)}{B\left(0, T_{i+1}\right)} \\ \xi_{t}^{i} &= \mathbb{E}^{\mathbb{Q}^{i}} \left[\frac{d\mathbb{Q}^{i+1}}{d\mathbb{Q}^{i}} \middle| \mathcal{F}_{t}\right] = \frac{1}{1 + \delta L_{t}^{i}} \frac{B\left(0, T_{i}\right)}{B\left(0, T_{i+1}\right)} \end{split}$$

Proposition 1.2. Let X_t be a \mathbb{Q}^{i+1} martingale, then $X_t\xi_t^i$ is a \mathbb{Q}^i martingale

We know that $L^{\beta-2}$ is a $\mathbb{Q}^{\beta-1}$ martingale, then $L^{\beta-2}\left(1+\delta L^{\beta-1}\right)$ is a \mathbb{Q}^{β} martingale. Applying Itô's formula yields

$$\left(1+\delta L_t^{\beta-1}\right)dL_t^{\beta-2}+\delta L_t^{\beta-2}dL_t^{\beta-1}+\delta d\langle L^{\beta-2},L^{\beta-1}\rangle_t$$

Taking the drifts,

$$\left(1+\delta L_t^{\beta-1}\right) \mathrm{drift}_t^{\beta-2} L_t^{\beta-2} + \delta \gamma^{\beta-1}(t) \cdot \gamma^{\beta-2}(t) L_t^{\beta-1} L_t^{\beta-2} = 0$$

since $\operatorname{drift}_t^{\beta-1} = 0$. Then

$$\operatorname{drift}_{t}^{\beta-2} = -\frac{\delta \gamma^{\beta-1}(t) \cdot \gamma^{\beta-2}(t) L_{t}^{\beta-1}}{\left(1 + \delta L_{t}^{\beta-1}\right)} \tag{2}$$

The general formula is then the following

Theorem 1.3.

$$\forall k \in [\alpha, \beta], drift_t^k = -\delta \sum_{i=k+1}^{\beta-1} \frac{L_t^i \gamma^k(t) \cdot \gamma^i(t)}{1 + \delta L_t^i}$$

$$= -\delta \sum_{i=k+1}^{\beta-1} \frac{L_t^i \rho^{i,k}(t) \sigma^k(t) \sigma^i(t)}{1 + \delta L_t^i}$$
(3)

where $\rho^{i,k}(t)$ is the correlation between libors i and k

2 Calibration

Proposition 2.1. We have the following pricing formula for the caplet of strike K on the i-th Libor

$$C_{i}(0) = \delta B(0, T_{i+1}) \mathbb{E}^{\mathbb{Q}^{i+1}} \left[\left(L_{T_{i}}^{i} - K \right)^{+} \right]$$

$$= \delta B(0, T_{i+1}) B \& S\left(L_{0}^{i}, K, \int_{0}^{T_{i}} \sigma_{i}(s)^{2} ds \right)$$
(4)

where $(F, K, V) \mapsto B \& S(F, K, V)$ is the Black-Scholes formula

References

[1] A. Brace, D. Gatarek, M. Musiela, *The market model of interest rate dynamics*, 1997, Mathematical Science, 127-155