Métodos Quantitativos

Aula 11. Regressão linear, parte 3

Pedro H. G. Ferreira de Souza pedro.ferreira@ipea.gov.br

Mestrado Profissional em Políticas Públicas e Desenvolvimento Instituto de Pesquisa Econômica Aplicada (Ipea)

12 dez. 2022

Recapitulação

Introdução

Variáveis qualitativas ou categóricas

Transformações em variáveis

Interações entre variáveis

Mais sobre valores preditos e resíduos

Cuidados no mundo real

Encerramento do semestre

Recapitulação

Introdução

Variáveis qualitativas ou categóricas

Transformações em variáveis

Interações entre variáveis

Mais sobre valores preditos e resíduos

Cuidados no mundo real

Encerramento do semestre

Regressão multivariada

O que vimos

- 1. Estimação no R e intepretação dos coeficientes
- 2. Viés de variável omitida
- 3. Inferência, testes de hipóteses e ICs
- 4. Pressupostos de OLS multivariada
- 5. Comparação e seleção de modelos

Recapitulação

Introdução

Variáveis qualitativas ou categóricas

Transformações em variáveis

Interações entre variáveis

Mais sobre valores preditos e resíduos

Cuidados no mundo real

Encerramento do semestre

O que ficou de fora?

Até agora usamos só Variáveis quantitativas, assumindo linearidade e separabilidade dos efeitos parciais.

Mas o que acontece se...

- Quisermos usar variáveis qualitativas ou discretas?
- Os efeitos parciais não forem lineares?
- Os efeitos parciais dependerem de interações entre variáveis?

... e muito mais.

Objetivos de hoje

- 1. OLS com variáveis qualitativas
 - Variáveis binárias e multinomiais
- 2. Transformações em variáveis
 - Logaritmos e polinômios
- 3. Interações entre variáveis
- 4. Mais sobre valores preditos e resíduos
- 5. Cuidados no mundo real

Pacotes

```
# Pacotes de uso geral
library(tidyverse)
library(broom)
# Pacote para estatisticas descritivas
library(summarytools)
# Pacote para visualizacao de resultados de modelos
library(modelsummary)
# Pacote para ler arquivos csv
library(readr)
# Pacotes com bases de dados
library(HistData)
library(causaldata)
```

Bases de dados #1 e #2

restaurantes <- restaurant inspections

Bases de dados #3

Download

Baixem o arquivo pnadc2021_limpa.csv na página da aula 11 no GitHub.

- Arquivo contém seleção de variáveis (renomeadas) da PNADC 2021, do IBGE, com filtro para manter apenas indivíduos ocupados que trabalham pelo menos 30 horas semanais.
- São 109,818 observações e 8 variáveis

Leitura

Recapitulação

Introdução

Variáveis qualitativas ou categóricas

Transformações em variáveis

Interações entre variáveis

Mais sobre valores preditos e resíduos

Cuidados no mundo rea

Encerramento do semestre

Como fazer?

Para variáveis independentes com k categorias, incluímos no modelo k-1 variáveis binárias ou dummy, omitindo uma categoria de referência.

 O coeficiente de uma variável dummy oferece comparação direta entre aquela categoria e a categoria de referência

Exemplo

Suponha uma variável $z = \{0, 1, 2\}$ e as variáveis indicadoras $z_1 = (z == 1)$ e $z_2 = (z == 2)$, com o modelo $E(y) = \alpha + \beta_1 z_1 + \beta_2 z_2$.

- Ouando $z_1 == 1$, $E(y) = \alpha + \beta_1 \rightarrow \text{média de y para esse grupo (e}$ vice-versa para z_2)
- Teste t dos coeficientes avalia H₀ de que média do grupo é igual à da categoria de referência
- \blacksquare Teste F da regressão avalia H_0 conjunta de que todos os grupos têm

Exemplo com colera

```
mean(colera$cholera drate)
freq(colera$water)
## [1] 66.13158
## Frequencies
## colera$water
## Type: Factor
##
                                % Valid % Valid Cum. % Total
##
                        Freq
                                  52.63
                                                                52.63
##
          New River
                          20
                                                    52.63
##
                 Kew
                           6
                                  15.79
                                                    68.42
                                                                15.79
                          12
                                  31.58
##
          Battersea
                                                   100.00
                                                                31.58
                <NA>
##
                           0
                                                                 0.00
## Total
Souza, P. H. G. F • Aula 11 • 12 dez. 2022
                                 100.00
                                                   100.00
                                                               100,00
```

Exemplo com colera

Como water já está formatada como variável factor com três categorias, basta incluir no comando da regressão:

```
col1 <- lm(cholera drate ~ water, data = colera)</pre>
summary(col1)
```

Podemos comparar modelos também:

```
col2 <- lm(cholera drate ~ water + elevation, data = colera)</pre>
col3 <- lm(cholera drate ~ water + elevation + pop dens,
           data = colera)
col4 <- lm(cholera drate ~ water + elevation + pop dens +
           house valpp, data = colera)
msummary(list(col1, col2, col3, col4), output = "markdown",
         stars = TRUE, gof omit = c('BIC|AIC|Log|Num. Obs|F')
```

```
##
## Call:
## lm(formula = cholera drate ~ water, data = colera)
##
## Residuals:
##
     Min 10 Median 30
                               Max
## -94.25 -16.80 -4.30 22.84 82.75
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 47.800 7.969 5.998 7.76e-07 ***
## waterKew -32.800 16.589 -1.977 0.0559 .
## waterBattersea 74.450 13.013 5.721 1.80e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '
##
## Residual standard error: 35.64 on 35 degrees of freedom
## Multiple R-squared: 0.5752, Adjusted R-squared: 0.551
## F-statistic: 23.7 on 2 and 35 DF, p-value: 3.11e-07
```

	Model 1	Model 2	Model 3	Model 4
(Intercept)	47.800***	53.364***	46.863**	64.503**
	(7.969)	(9.416)	(14.410)	(18.004)
waterKew	-32.800+	-24.403	-21.938	-8.259
	(16.589)	(18.212)	(18.839)	(20.373)
waterBattersea	74.450***	69.595***	72.802***	68.532***
	(13.013)	(13.703)	(14.829)	(14.758)
elevation		-0.133	-0.125	-0.159
		(0.121)	(0.123)	(0.122)
pop_dens			0.045	0.050
			(0.075)	(0.073)
house_valpp				-2.945
				(1.869)
Num.Obs.	38	38	38	38
R2	0.575	0.590	0.594	0.623
R2 Adj.	0.551	0.554	0.545	0.565
RMSE	34.20	33.61	33.43	32.20

Codificação de variáveis categóricas

Variáveis categóricas nem sempre estão codificadas como factor, mas isso não é um problema.

Se a variável já for uma dummy numérica ou character, não há problema; caso contrário, recodificar com mutate() e factor() ou só pedir para o R considerar como factor na regressão.

Restaurantes

\$ Year

qlimpse(restaurantes)

\$ NumberofLocations <dbl> 9, 66, 79, 86, 53, 89, 28, 37, 109, Souza, P. H. G. F. Aula 11 · 12 dez. 2022

<dbl> 2017, 2015, 2016, 2003, 2017, 2008,

Exemplo com restaurantes

```
table(restaurantes$Weekend)
print(c(min(restaurantes$Year), max(restaurantes$Year)))
##
## FALSE TRUE
## 26968 210
## [1] 2000 2019
```

```
table(restaurantes$Weekend)
print(c(min(restaurantes$Year), max(restaurantes$Year)))
##
## FALSE TRUE
## 26968 210
## [1] 2000 2019
res1 <- lm(inspection score ~ NumberofLocations + Weekend,
           data = restaurantes)
res2 <- lm(inspection score ~ NumberofLocations + Weekend +
           as.factor(Year), data = restaurantes)
msummary(list(res1, res2), output = "markdown",
         stars = TRUE, statistic = NULL,
         gof omit = c('BIC|AIC|Log|Num. Obs|F'))
```

	Model 1	Model 2
(Intercept)	94.851***	96.808***
NumberofLocations	-0.019***	-0.018***
WeekendTRUE	1.498***	1.328**
as.factor(Year)2001		0.578*
as.factor(Year)2002		0.522+
as.factor(Year)2003		1.091***
as.factor(Year)2004		-1.506***
as.factor(Year)2005		-1.980***
as.factor(Year)2006		-3.507***
as.factor(Year)2007		-2.873***
as.factor(Year)2008		-2.882***
as.factor(Year)2009		-3.470***
as.factor(Year)2015		-0.896***
as.factor(Year)2016		-2.520***
as.factor(Year)2017		-2.121***
as.factor(Year)2018		-2.654***
as.factor(Year)2019		-1.101***
Num.Obs.	27178	27178
R2	0.065	0.105
R2 Adj.	0.065	0.105

Exemplo com a PNADC

```
freq(pnadc$reqiao, headings = FALSE, report.nas = FALSE)
```

```
##
##
                Frea
                               % Cum.
##
##
                14427
                       13.14
                               13.14
                26322
                       23.97
                               37.11
##
               32844
##
                       29.91
                               67.01
##
           4
                23030
                       20.97 87.98
               13195
##
                       12.02
                               100.00
               109818
                       100.00
                               100.00
##
       Total
```

summary(lm(renda trabalho ~ factor(regiao), data = pnadc))

```
##
## Call:
## lm(formula = renda trabalho ~ factor(regiao), data = pnadc)
##
## Residuals:
##
     Min
            10 Median 30
                             Max
  -2796 -1346 -750 70 297354
##
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                 2020.00
                            28.36
                                  71.221
                                          <2e-16 ***
## factor(regiao)2 -352.36
                            35.29 -9.985
                                          <2e-16 ***
## factor(regiao)3 625.56
                            34.03 18.385
                                          <2e-16 ***
## factor(regiao)4 729.73
                            36.17 20.174
                                          <2e-16 ***
## factor(regiao)5 778.26
                            41.04 18.965
                                          <2e-16 ***
## ---
## Signif. codes: 0 '***'
                       0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
##
## Residual standard error: 3407 on 109813 degrees of freedom
```

Recapitulação

Introdução

Variáveis qualitativas ou categóricas

Transformações em variáveis

Interações entre variáveis

Mais sobre valores preditos e resíduos

Cuidados no mundo rea

Encerramento do semestre

Por que transformar variáveis?

Linearidade

Em MQO, a linearidade diz respeito aos parâmetros estimados: efeitos parciais dos coeficientes são lineares, ou seja, aumento de uma unidade em x aumenta a média condicional predita em β .

MQO é muito flexível porque pode incorporar não linearidades a partir de transformações em variáveis.

As duas transformações mais comuns são:

- Aplicação de logaritmos no y ou em algum x
- Inclusão de polinômios em algum x

Logaritmos (i)

Por que aplicar?

- Às vezes a teoria prevê efeitos multiplicativos;
- Em muitos casos, logaritmos geram melhor aderência aos pressupostos do modelo clássico;
- Logaritmos são menos sensíveis a outliers
- etc

Uma boa regra de bolso é aplicar logs em variáveis monetárias (quando todos os valores são positivos).

Interpretação de logs

■ Se y ou algum x está em log, interpretação passa a ser em termos de mudanças percentuais (ver próximos slides)

Logaritmos (ii)

Interpretação

Modelo	Dependente	Independente	Interpretação de eta_1
Nível-nível Nível-log	y y	x log(x)	$\Delta y = \beta_1$ para $\Delta x = 1$ aprox: $\Delta y = \beta_1/100$ para $\Delta x = 1\%$, exato: $\Delta y = \beta_1 log(1 + c)$ para
Log-nível	log(y)	x	$\Delta x = c\%$ aprox: $\Delta y = 100\beta_1\%$ para $\Delta x = 1$, exato: $\Delta y = 100(e^{\beta_1} - 1)\%$ para $\Delta x = 1$
Log-Log	log(y)	log(x)	aprox: $\Delta y = \beta_1 \%$ para $\Delta x = 1\%$, exato: $\Delta y = 100((1 + c)^{\beta_1} - 1)\%$ para $\Delta x = c\%$

(Na prova vou pedir para voces usarem as interpretações aproximadas!)

Renda do trabalho na PNADC

```
ggplot(data = pnadc, aes(x = renda_trabalho)) +
  geom_density(bw = .1, alpha = .5, fill = 'indianred1') +
  theme_minimal(base_size = 24)
```


Log Renda do trabalho na PNADC

```
ggplot(data = pnadc, aes(x = log(renda_trabalho))) +
  geom_density(bw = .1, alpha = .5, fill = 'indianred1') +
  theme_minimal(base_size = 24)
```


Polinômios

É comum utilizarmos polinômios - principalmente termos quadráticos - para incorporar não linearidades nas variáveis. Por exemplo, podemos estimar $y = \alpha + \beta_1 x + \beta_2 x^2 + \epsilon$.

■ Efeito marginal sobre y varia conforme o valor de x: $\Delta y \approx (\beta_1 + 2\beta_2 x)\Delta x$

Exemplo: PNADC

```
bra1 <- lm(log(renda_trabalho) ~ factor(regiao) + homem + anos_estudo +</pre>
           poly(idade, degree = 2), data = pnadc)
msummary(bra1, output = "markdown", stars = TRUE, statistic = NULL)
```

	Model 1
(Intercept)	6.015***
factor(regiao)2	-0.166***
factor(regiao)3	0.201***
factor(regiao)4	0.327***
factor(regiao)5	0.293***
homem	0.274***
anos_estudo	0.100***
poly(idade, degree = 2)1	67.605***
poly(idade, degree = 2)2	-26.723***
Num.Obs.	109818
R2	0.348
R2 Adj.	0.348

Exemplo: cólera

```
col5 <- lm(log(cholera deaths) ~ water + log(popn),</pre>
           data = colera)
col6 <- lm(log(cholera deaths) ~ water + log(popn) +</pre>
             poly(pop dens, degree = 2), data = colera)
msummary(list(col5, col6),
         output = "markdown", stars = TRUE,
         qof omit = c('BIC|AIC|Log|Num. Obs|F'))
```

(Output no próximo slide).

Exemplo: cólera

	Model 1	Model 2
(Intercept)	-5.890**	-5.840**
	(1.791)	(1.923)
waterKew	-1.192***	-1.128***
	(0.259)	(0.276)
waterBattersea	0.923***	0.966***
	(0.204)	(0.232)
log(popn)	1.040***	1.033***
	(0.163)	(0.174)
poly(pop_dens, degree = 2)1		0.514
		(0.606)
poly(pop_dens, degree = 2)2		-0.239
		(0.599)
Num.Obs.	38	38
R2	0.755	0.762
• Aula 11 • 12 dez. 2022	0.777	0.725

Recapitulação

Introdução

Variáveis qualitativas ou categóricas

Transformações em variáveis

Interações entre variáveis

Mais sobre valores preditos e resíduos

Cuidados no mundo rea

Encerramento do semestre

Do que se trata?

O modelo que vimos até agora foi:

$$E(y) = \alpha + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k$$

Por definição, esse modelo pressupõe que os efeitos parciais de cada regressor não dependem dos valores dos outros regressores.

Às vezes, esse modelo é inadequado por ser simples demais. Podemos enriquecê-lo incluindo interações entre os regressores, de modo que a relação entre um dado x e o y podem variar conforme o nível de outra variável independente

 Por exemplo, o retorno salarial por anos de estudo pode variar conforme o gênero, idade ou região

Interação entre variáveis quantitativas

Abordagem mais comum é via inclusão do produto cruzado para a interação entre variáveis:

$$E(y) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

Equivale a criar uma variável "artificial" $x_3 = x_1x_2$. Observem que podemos reescrever:

- $E(y) = (\alpha + \beta_2 x_2) + (\beta_1 + \beta_3 x_2)x_1 = \alpha' + \beta' x_1$
- $\alpha' = \alpha + \beta_2 x_2$
- $\beta' = \beta_1 + \beta_3 x_2$

A média de y continua uma função linear de x_1 , mas a inclinação do efeito parcial varia conforme x_2 muda $\to \beta_1$ equivale ao efeito parcial de x_1 somente quando x_2 = 0

Outras interações

É ainda mais comum usarmos interações entre variáveis categóricas e variáveis contínuas:

$$E(y) = \alpha + \beta_1 d + \beta_2 x_1 + \beta_3 dx_1$$

No modelo, o coeficiente β_1 desloca o intercepto para o grupo em que d=1, enquanto o coeficiente β_3 permite que a inclinação da reta (efeito parcial) também varie entre grupos.

Na prática, o teste de hipóteses para $H_0: \beta_3 = 0$ avalia se o efeito parcial de fato varia ou não

Exemplo: PNADC

```
bra2 <- lm(log(renda trabalho) ~ factor(regiao) + homem +</pre>
             branco + anos estudo + poly(idade, degree = 2),
           data = pnadc)
bra3 <- lm(log(renda trabalho) ~ factor(regiao) + branco +</pre>
             homem * anos estudo + poly(idade, degree = 2),
           data = pnadc)
bra4 <- lm(log(renda trabalho) ~ factor(regiao) + homem +</pre>
             branco * anos estudo + poly(idade, degree = 2),
           data = pnadc)
bra5 <- lm(log(renda trabalho) ~ factor(regiao) + anos estudo +</pre>
             branco * homem + poly(idade, degree = 2),
           data = pnadc)
msummary(list(bra2, bra3, bra4, bra5), output = "markdown",
         stars = TRUE)
```

	Model 1	Model 2	Model 3	Model 4
(Intercept)	6.013***	5.878***	6.080***	6.010***
	(0.008)	(0.012)	(0.009)	(0.009)
factor(regiao)2	-0.174***	-0.174***	-0.176***	-0.174***
	(0.007)	(0.007)	(0.007)	(0.007)
factor(regiao)3	0.166***	0.170***	0.164***	0.166***
	(0.007)	(0.007)	(0.007)	(0.007)
factor(regiao)4	0.252***	0.256***	0.252***	0.252***
	(0.007)	(0.007)	(0.007)	(0.007)
factor(regiao)5	0.275***	0.277***	0.275***	0.275***
	(0.008)	(0.008)	(0.008)	(0.008)
homem	0.275***	0.459***	0.275***	0.279***
	(0.004)	(0.013)	(0.004)	(0.006)
branco	0.135***	0.134***	-0.035**	0.140***
	(0.004)	(0.004)	(0.012)	(0.007)
anos_estudo	0.097***	0.108***	0.091***	0.097***
	(0.0005)	(0.0009)	(0.0007)	(0.0005)
poly(idade, degree = 2)1	65.436***	65.188***	65.324***	65.454***
	(0.680)	(0.679)	(0.679)	(0.680)
poly(idade, degree = 2)2	-27.321***	-27.364***	-27.040***	-27.312***
	(0.653)	(0.653)	(0.653)	(0.653)
homem × anos_estudo		-0.016***		
		(0.001)		
branco × anos_estudo			0.015***	
			(0.001)	
branco × homem				-0.008
				(0.008)
Num.Obs.	109818	109818	109818	109818
R2	0.354	0.355	0.355	0.354

Mais sobre interações

- Sempre incluam no modelo os efeitos principais quando forem usar interações
- Ou seja, o modelo deve ser $E(y) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$, e não $E(y) = \alpha + \beta x_1 x_2$
- 2. Na prática, termos quadráticos equivalem à interação de uma variável com ela mesma
- Nada impede a inclusão de interações entre três (ou mais) variáveis, mas a interpretação fica muito complicada
- É tentador testar todas as interações possíveis, mas não se esqueçam de que modelos são úteis justamente por simplificarem o mundo

Recapitulação

Introdução

Variáveis qualitativas ou categóricas

Transformações em variáveis

Interações entre variáveis

Mais sobre valores preditos e resíduos

Cuidados no mundo rea

Encerramento do semestre

Salvando valores preditos

A "reta" da regressão gera valores preditos (médias condicionais) para cada observação do banco de dados...

$$\hat{y} = a + b_1 x_1 + b_2 x_2 + ... + b_k x_k$$

... e os resíduos para cada observação são dados por $y - \hat{y}$.

No R, o jeito mais fácil de criar os valores preditos para o seu banco de dados é com a função augment, do pacote broom:

colera_predicted <- augment(col4)</pre>

. fitted são os valores preditos, . resid são os resíduos

Função predict()

```
bra6 <- lm(log(renda trabalho) ~ homem + branco + anos estudo +</pre>
           poly(idade, degree = 2), data = pnadc)
yhat <- predict(bra6, data.frame(homem = 1, branco = 0,</pre>
                                  anos estudo = 5, idade = 30)
print(yhat)
##
## 6.644839
```

Função predict()

```
bra6 <- lm(log(renda trabalho) ~ homem + branco + anos estudo +</pre>
            poly(idade, degree = 2), data = pnadc)
yhat <- predict(bra6, data.frame(homem = 1, branco = 0,</pre>
                                     anos estudo = 5, idade = 30)
print(yhat)
##
## 6.644839
O valor predito está em log porque o y foi log(renda trabalho)! Para virar
nível, fazer e^{s_e^2/2}e^{\hat{y}}
exp(yhat) * exp(summary(bra6)$sigma^2/2)
##
## 961.8995
```

Análise de resíduos

Muitos testes para diagnóstico de problemas podem ser feitos com os resíduos (ou resíduos padronizados) dos modelos:

- 1. Histograma para verificar normalidade dos resíduos padronizados, bem como potenciais outliers
- 2. Scatterplot entre resíduo vs. valores preditos para verificar linearidade e homoscedasticidade

- (a) Assumptions satisfied
- (b) Nonconstant standard deviation (c) Nonlinear term needed

Recapitulação

Introdução

Variáveis qualitativas ou categóricas

Transformações em variáveis

Interações entre variáveis

Mais sobre valores preditos e resíduos

Cuidados no mundo real

Encerramento do semestre

- Séries temporais e dados em painel normalmente possuem erros autocorrelacionados, o que fere os pressupostos clássicos e exige técnicas específicas
- A maior parte dos bancos de dados amostrais não é coletada por amostra aleatória simples, o que exige o uso de pesos amostrais e desenhos amostrais complexos para cálculo dos erros padrão
- Homoscedasticidade também é um pressuposto frequentemente violado, mas temos tanto testes para detectar a violação (e.g., Breusch-Pagan, White) quanto alternativas para saná-la (MQO com erros padrão robustos, GLS)
- 4. Como o viés de variável omitida é uma ameaça incontornável em dados observacionais, afirmações causais em geral dependem de experimentos ou quase experimentos

Pequena lista...

- 5. Erros de medida são muito prejudiciais, e estão por toda parte.
- Mesmo se o erro for aleatório em algum x, haverá viés de atenuação em todos os coeficientes para variáveis correlacionadas com o x com erro. Se o erro estiver em y, o problema é só de eficiência.
- Se o erro não for aleatório, é mais complicado ainda
- Se há suspeita de erros sérios, pode-se usar modelos de variáveis instrumentais
- 6. MQO tem limitações sérias quando o y é uma variável binária ou multinomial, entre outros casos
- Aproximação linear só funciona bem em casos específicos
- Para variáveis categóricas, pode ser melhor usar modelos logit ou probit

Recapitulação

Introdução

Variáveis qualitativas ou categóricas

Transformações em variáveis

Interações entre variáveis

Mais sobre valores preditos e resíduos

Cuidados no mundo rea

Encerramento do semestre

Datas importantes

26 de dezembro

Data limite para entrega da Atividade #6 e da prova final

6 de janeiro

Entrega das notas.

Recuperação

Caso haja alunos com nota inferior ao mínimo de corte, podemos fazer atividades de recuperação em janeiro.