Summer/Winter/Semester2

Tutorial Solutions 13

2015

This tutorial explores goodness of fit tests and confidence intervals.

Goodness of Fit Test

Context A total of n observed frequencies over g classes

and a proposed probability model needing k estimated parameters

Hypothesis H_0 : Model fits data

 $\tau = \sum_{i} \frac{(O_i - E_i)^2}{E_i} = \sum_{i} \frac{O_i^2}{E_i} - n \overset{H_0}{\sim} \chi_{g-k-1}^2$ Test Statistic

Confidence Intervals

 $\hat{p} \pm Z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ $\hat{p} \pm Z \frac{1}{2\sqrt{n}}$ $\bar{x} \pm Z \frac{\sigma}{\sqrt{n}}$ $\bar{x} \pm t_{n-1} \frac{s}{\sqrt{n}}$ Proportion Test (approx)

Proportion Test (conservative)

Z test

t test

 $\bar{x} - \bar{y} \pm t_{n_x + n_y - 2} \ s_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}$ 2 sample t test

1. Goodness of Fit Test - no parameters estimated

A sample of 100 plants have genotypes A, B, and C occurring with the frequencies 18, 55 and 100 respectively. We are interested in the null hypothesis that A, B, and C are in the ratio of 1:2:1.

(a) Preparation: Fill out the following table

Genotype	A	В	С	Total
Observed frequency, O_i	18	55	27	100
Expected frequency, E_i				100

(b) Hypothesis: State H_0 and H_1 .

(c) Assumptions: What are the assumptions for a χ^2 test and are they valid here?

(d) Test statistic: What is the test statistic and its distribution under H_0 ?

(e) P-value: Calculate the p-value using the χ^2 tables. Confirm using R.

> 1-pchi(2.62,2)

(f) Conclusion: Draw your conclusion based on the p-value.

Solution

(a) Preparation

Genotype	A	В	С	Total
Observed frequency, O_i	18	55	27	100
Expected frequency, E_i	25	50	25	100

- (b) $\boxed{\mathrm{H}}\ H_0:$ The Genotypes A, B and C occur in the ratio 1:2:1 vs $H_1:$ Not $H_0.$
- (c) $\boxed{\mathbf{A}}$ We need $E_i \geq 1$ (true here), and no more than 20% of $E_i < 5$ (Cochran's Rule also true here).

(d)
$$\boxed{\mathbf{T}} \tau = \sum_{i} \frac{(O_i - E_i)^2}{E_i} = \sum_{i} \frac{O_i^2}{E_i} - 100 \stackrel{H_0}{\sim} \chi_{g-k-1}^2 = \chi_{3-0-1}^2 = \chi_2^2$$

Observed value: $\tau_0 = \frac{18^2}{25} + \frac{55^2}{50} + \frac{27^2}{25} - 100 = 2.62.$

(e) P

Using Table:

P-value = $P(\chi_2^2 > 2.62) \in (0.1, 0.9)$.

Using R:

> 1-pchisq(2.62,2)

[1] 0.2698201

- (f) C Given P value >> 0.05, we retain H_0 and conclude that the sample is consistent with Genotypes in the ratio 1:2:1.
- 2. Goodness of Fit Test no parameters estimated

The number of fatal accidents on NSW roads in months with 31 days in 1993 were:

Test the claim that the accident rate is the same for all months.

Hint: Show that the $\tau = 12.09$ and p value is close to 0.05.

Solution

fboxPreparation

Month	Jan	Mar	May	July	Aug	Oct	Dec	Total
O_i	44	56	٠.				63	360
E_i	$\frac{360}{7}$	360						

- $\boxed{\mathrm{H}}\ H_0: \mathrm{The\ months\ have\ the\ same\ number\ of\ fatal\ accidents} \quad \mathrm{vs}\ H_1: \mathrm{Not}\ H_0.$
- A We need $E_i \ge 1$ (true here), and no more than 20% of $E_i < 5$ (Cochran's Rule also true here).

$$\boxed{\mathbf{T}} \ \tau = \sum_{i} \frac{(O_i - E_i)^2}{E_i} = \sum_{i} \frac{O_i^2}{E_i} - 100 \ \overset{H_0}{\sim} \ \chi_{g-k-1}^2 = \chi_{7-0-1}^2 = \chi_6^2$$

Observed value:
$$\tau_0 = \frac{44^2}{360/7} + \frac{56^2}{360/7} + \dots + \frac{63^2}{360/7} - 360 = 12.09.$$

Using Table:

P-value = $P(\chi_6^2 > 12.09) \in (0.05, 0.1)$.

C Given P-value > 0.05 (just), we retain H_0 and conclude that the months seem to have similar number of fatal accidents.

Check in R:

> x=c(44,56,37,42,59,59,63)

 $> t = sum(x^2/(360/7))-360$

> t

[1] 12.08889

> 1-pchisq(t,6)

[1] 0.06001493

3. Goodness of Fit Test - no parameters estimated

100 observations are made on a random variable only taking values 0, 1, 2 and 3. The frequencies are shown below:

Value	0	1	2	3
Frequency	22	38	32	8

A goodness of fit test is applied to see if these frequencies are well-described by $\mathcal{B}(3,0.5)$ probabilities.

- (a) Show that the χ^2 goodness-of-fit statistic is 9.653.
- (b) Show that the corresponding p-value is somewhere in the interval (0.01, 0.025).
- (c) What is your conclusion?

Solution

Preparation

Value	0	1	2	3	Total
Frequency O_i	22	38	32	8	100
E_i	12.5	37.5	37.5	12.5	100

where $E_i = 100 \times p_i$, where p_i is probability from Bin(3, 0.5).

So
$$E_i = 100 \times {3 \choose i} (0.5)^i (0.5)^{3-i}$$
.

Eg
$$E_1 = 100 \times \binom{3}{0} (0.5)^0 (0.5)^3 = 12.5 = E_3.$$

- $|H|H_0$: These frequencies are well-described by $\mathcal{B}(3,0.5)$ probabilities. vs H_1 : Not H_0 .
- A We need $E_i \ge 1$ (true here), and no more than 20% of $E_i < 5$ (Cochran's Rule also true here).

$$(O_i - I)$$

$$\boxed{\mathbf{T}} \ \tau = \sum_{i} \frac{(O_i - E_i)^2}{E_i} = \sum_{i} \frac{O_i^2}{E_i} - 100 \quad \stackrel{H_0}{\sim} = \chi_{4-0-1}^2 = \chi_3^2$$

Observed value:
$$\tau_0 = \frac{22^2}{12.5} + \frac{38^2}{37.5} + \dots + \frac{8^2}{12.5} - 360 = 9.653$$
. (b P Using Table: P-value = $P(\chi_3^2 > 9.653) \in (0.01, 0.025)$.

- (c) $\boxed{\mathrm{C}}$ Given P-value < 0.05, we reject H_0 and conclude that the $\mathcal{B}(3,0.5)$ is not a good fit for data.

4. Goodness of Fit Test - 1 parameter estimated

For the previous question, we want to see if another binomial distribution might explain the frequencies better.

(a) Preparation: Estimate p using

$$\hat{p}$$
 = overall proportion of successes = $\frac{(0)(22) + (1)(38) + (2)(32) + (3)(8)}{(3)(100)}$

(b) Preparation: Fill out the frequencies

Value	0	1	2	3	Total
Observed frequency, O_i	22	38	32	8	100
Expected frequency, E_i					100

where
$$E_i = 100 \binom{3}{i} (\hat{p})^i (1 - \hat{p})^{3-i}$$
.

(c) Test the hypothesis that the frequencies are well-described by $\mathcal{B}(3,\hat{p})$ probabilities.

Solution

(a) Preparation

Estimate p using

$$\hat{p}$$
 = overall proportion of successes = $\frac{(0)(22) + (1)(38) + (2)(32) + (3)(8)}{(3)(100)} = 0.42$

(b) Preparation

Value	0	1	2	3	Total
Observed frequency, O_i	22	38	32	8	100
Expected frequency, E_i	19.51	42.39	30.69	7.41	100

where
$$E_i = 100 \binom{3}{i} (0.42)^i (1 - 0.42)^{3-i}$$
.

Eg
$$E_0 = 100 \binom{3}{0} (0.42)^0 (1 - 0.42)^3 = 19.5112$$

Check in R:

> 100*dbinom(0,3,0.42)

[1] 19.5112

> 100*dbinom(1,3,0.42)

[1] 42.3864

(c) $\boxed{\mathrm{H}}$ H_0 : These frequencies are well-described by $\mathcal{B}(3,0.42)$ probabilities. vs H_1 : Not H_0 .

A We need $E_i \ge 1$ (true here), and no more than 20% of $E_i < 5$ (Cochran's Rule - also true here).

$$\boxed{\mathbf{T}} \ \tau = \sum_{i} \frac{(O_i - E_i)^2}{E_i} = \sum_{i} \frac{O_i^2}{E_i} - 100 \stackrel{H_0}{\sim} = \chi_{4-1-1}^2 = \chi_2^2$$

Note: k = 1 as we had to estimate 1 parameter \hat{p} .

Observed value:
$$\tau_0 = \frac{22^2}{19.51} + \frac{38^2}{42.39} + \dots + \frac{8^2}{7.41} - 360 = 0.8753231.$$

P

Using Table:

P-value =
$$P(\chi_2^2 > 0.88) \in (0.1, 0.9)$$
.

C Given P - value > 0.05, we retain H_0 and conclude that the $\mathcal{B}(3, 0.42)$ is a good fit for data.

5. CI based on Z test

A sample of size 100 from a population with known $\sigma^2 = 25$ produces a sample mean of 75. Construct an approximate 95% confidence interval for the population mean μ .

Solution

Population: Unknown μ , known $\sigma^2 = 25$. Sample: n = 100 and $\bar{x} = 75$. (Z test)

An approximate 95% confidence interval for the population mean μ is

$$\bar{x} \pm Z_{0.95} \frac{\sigma}{\sqrt{n}}$$

where $Z_{0.95} = q$ such that $P(Z \le q) = 0.975$, so q = 1.96.

So the CI is

$$75 \pm 1.96 \times 5/10$$

which is (74.02, 75.98).

6. Confidence Interval based on t Test

The following computer summary describes a sample from a normal population with unknown variance:

Compute 95% and 99% confidence intervals for the population mean (μ) .

Solution

Population: Unknown μ , unknown σ^2 .

Sample: n = 25, $\bar{x} = 35.06$, s = 1.62. (t test)

An approximate 95% confidence interval for the population mean μ is

$$\bar{x} \pm t_{24;0.95} \frac{s}{\sqrt{n}}$$

where $= t_{24;0.95} = q$ such that $P(t_{24} \le q) = 0.975$, so q = 2.064.

So the CI is

$$35.06 \pm 2.064 \times 1.62/5$$

which is (34.39, 35.73).

An approximate 99% confidence interval for the population mean μ is

$$35.06 \pm t_{24;0.99} \times 1.62/5$$

where $t_{24:0.99} = q$ such that $P(t_{24} \le q) = 0.995$, so q = 2.797.

So the CI is (34.15, 35.97). (wider).

7. CI based on 2 Sample t Test

Two samples have been taken from two independent normal populations with equal variances. From these samples $(n_x = 12, n_y = 15)$ we calculate $\bar{x} = 119.4$, $\bar{y} = 112.7$, $s_x = 9.2$, $s_y = 11.1$. Show that the 99% confidence interval for the difference of means $\mu_x - \mu_y$ is (-4.43, 17.83).

Solution

Populations: Unknown μ_x , μ_y , unknown common σ^2 .

Sample: $n_x = 12$, $n_y = 15$, $\bar{x} = 119.4$, $\bar{y} = 112.7$, $s_x = 9.2$ and $s_y = 11.1(2 \text{ sample t test})$

From Week 12 Q5, we have $s_p = 10.30724$.

The 99% confidence interval for the difference of means $\mu_x - \mu_y$ is

$$\bar{x} - \bar{y} \pm t_{n_X + n_Y - 2} \ s_p \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}$$

which is

$$119.4 - 112.7 \pm t_{25;0.99} (10.30724) \sqrt{1/12 + 1/15}$$

where $t_{25;0.99} = q$, such that $P(t_{25} \le q) = 0.005$, so q = 2.787. So the CI is (-4.42564, 17.82564).

8. CI based on ProportionTest

A light bulb was tested to estimate the probability ρ of producing the required light output. A sample of 1000 bulbs was tested and 810 functioned correctly. Estimate ρ , and find an approximate and a conservative 98% CI for ρ .

Solution

Population: Unknown ρ

Sample: n = 1000, x = 810. (Proportion Test)

$$\hat{\rho} = \frac{x}{n} = 0.81.$$

An approximate 98% CI for ρ is

$$\hat{p} \pm Z_{0.98} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

where $Z_{0.98} = q$, such that $P(Z \le q) = 0.99$, so q = 2.33.

So the CI is

$$0.81 \pm 2.33 \sqrt{\frac{0.81 (1-0.81)}{1000}}$$

which is (0.75,0.87).

A conservative 98% CI for ρ is

$$0.81 \pm 2.33 \frac{1}{2\sqrt{n}}$$

which gives

$$0.81 \pm \frac{2.33}{20}$$

So the CI is (0.69,0.93).

9. Extension (Assessing the goodness of fit of a normal distribution - estimating 2 parameters)

This is how to use the Chi-squared Test to assess the fit of a Normal distribution to grouped data. For the Normal distribution, 2 parameters need to be estimated (both mean and sd), hence k=2. To perform a goodness of fit test based on grouped data, we need to estimate the parameters (mean and sd) from the grouped data.

```
> x=scan(file=url("http://www.maths.usyd.edu.au/math1005/r/w13.txt"))  # Scan in data
Read 100 items
> hist(x,pr=T)
                              # Produce a histogram of the data
> hist(x,pr=T)$breaks
                              # Display the breaks in the histogram
[1] -2 -1 0 1 2 3 4 5
                             # Find the counts in each interval
> freq=hist(x,pr=T)$counts
> freq
[1] 7 23 24 18 10 13 5
mids=(-2:4)+.5 # Find the midpoints of the intervals.
> mids
[1] -1.5 -0.5 0.5 1.5 2.5 3.5 4.5
> gr.sum=sum(freq*mids)  # Find the sum of grouped data
> gr.sum
[1] 110
> gr.sumsq=sum(freq*mids^2)  # Find the sum of squares of grouped data
> gr.sumsq
[1] 391
> gr.mean=gr.sum/100  # Find the mean of grouped data
> gr.mean
[1] 1.1
> gr.var=1/99* (gr.sumsq - 1/100* gr.sum^2) # Find the variance of grouped data
> gr.var
[1] 2.727273
> gr.sd=sqrt(gr.var) # Find the mean of grouped data
> gr.sd
[1] 1.651446
> curve(dnorm(x,m=gr.mean,s=gr.sd),lty=2,add=T) # Add Normal PDF to the histogram
> lower.probs=pnorm(-1:4,m=gr.mean,s=gr.sd) # Finding expected probabilites
> lower.probs
[1] 0.1017553 0.2526790 0.4758576 0.7071154 0.8750325
[6] 0.9604590
> exp.probs=diff(c(0,lower.probs,1))
> exp.probs
[1] 0.10175530 0.15092370 0.22317860 0.23125775
[5] 0.16791712 0.08542650 0.03954103
> exp.freq= 100* exp.probs
                                                # Expected frequencies
> exp.freq
[1] 10.175530 15.092370 22.317860 23.125775 16.791712
[6] 8.542650 3.954103
> contrib = ((exp.freq-freq)^2)/exp.freq
                                               # Chi squared contributions
> contrib
[1] 0.9910041 4.1431939 0.1267861 1.1361164 2.7470308
[6] 2.3257383 0.2766496
> cbind(freq,exp.freq,contrib)
```

```
freq exp.freq
                     contrib
[1,]
      7 10.175530 0.9910041
[2,]
     23 15.092370 4.1431939
                                  # High contribution, above Normal curve
[3,]
     24 22.317860 0.1267861
     18 23.125775 1.1361164
[4,]
[5,]
     10 16.791712 2.7470308
                                  # High contribution, below Normal curve
[6,]
      13 8.542650 2.3257383
                                  # High contribution, above Normal curve
[7,]
      5 3.954103 0.2766496
> tau.obs=sum(((exp.freq-freq)^2)/exp.freq)
                                                 # Chi-squared test statistic
> tau.obs
[1] 11.74652
> 1-pchisq(tau.obs, df=length(freq)-2-1)
                                                 # P-value
[1] 0.0193392
                                                 # Reject the fit of Normal
```

Solution

```
> x=scan(file=url("http://www.maths.usyd.edu.au/math1005/r/w13.txt"))
Read 100 items
> hist(x,pr=T)
```

Histogram of x


```
> hist(x,pr=T)$breaks
[1] -2 -1 0 1 2 3 4 5
> freq=hist(x,pr=T)$counts
> freq
[1] 7 23 24 18 10 13 5
mids=(-2:4)+.5
> mids
[1] -1.5 -0.5 0.5 1.5 2.5 3.5 4.5
> gr.sum=sum(freq*mids)
> gr.sum
[1] 110
> gr.sumsq=sum(freq*mids^2)
> gr.sumsq
[1] 391
> gr.mean=gr.sum/100
> gr.sum
[1] 110
> gr.var=1/99* (gr.sumsq - 1/100* gr.sum^2)
> gr.var
```

```
[1] 2.727273
```

```
> gr.sd=sqrt(gr.var)
> gr.sd
[1] 1.651446
```

Histogram of x


```
> lower.probs=pnorm(-1:4,m=gr.mean,s=gr.sd)
> lower.probs
[1] 0.1017553 0.2526790 0.4758576 0.7071154 0.8750325
[6] 0.9604590
> exp.probs=diff(c(0,lower.probs,1))
> exp.probs
[1] 0.10175530 0.15092370 0.22317860 0.23125775
[5] 0.16791712 0.08542650 0.03954103
> exp.freq= 100* exp.probs
> exp.freq
[1] 10.175530 15.092370 22.317860 23.125775 16.791712
[6] 8.542650 3.954103
> contrib = ((exp.freq-freq)^2)/exp.freq
> contrib
[1] 0.9910041 4.1431939 0.1267861 1.1361164 2.7470308
[6] 2.3257383 0.2766496
> cbind(freq,exp.freq,contrib)
    freq exp.freq
                      contrib
       7 10.175530 0.9910041
[1,]
      23 15.092370 4.1431939
[2,]
                                # High contribution, above Normal curve
[3,]
      24 22.317860 0.1267861
      18 23.125775 1.1361164
[4,]
[5,]
      10 16.791712 2.7470308
                                # High contribution, below Normal curve
[6,]
          8.542650 2.3257383
                                # High contribution, above Normal curve
      13
        5 3.954103 0.2766496
[7,]
> tau.obs=sum(((exp.freq-freq)^2)/exp.freq)
> tau.obs
[1] 11.74652
```

> 1-pchisq(tau.obs, df=length(freq)-2-1)

[1] 0.0193392

Comment: Perhaps the population that this sample comes from is bimodal, rather than unimodal (Normal). Most of the discrepancy comes from the 2 intervals where the 2 'modes' (peaks) are.

Note we estimate both mean and sd, so k=2

Hence we would reject the fit of Normal.