Лабораторная работа 3.4.2. Закон Кюри-Вейсса

Абакшин Василий, Б05-207

24 июня 2024 г.

Краткая теория

В данной лабораторной работе предлагается проверить закон Кюри-Вейсса: при температуре выше температуры Кюри:

$$\chi \sim \frac{1}{T - \theta_P}$$

 θ_P - парамагнитная точка Кюри.

Исследуемый материал будет помещен в катушку индуктивности, из-за чего её индуктивность будет меняться с температурой:

$$L-L_0 \sim \mu-1=\chi$$

Изменение индуктивности будем наблюдать с помощью изменения периода колебаний: $au=2\pi\sqrt{LC},$ поэтому

$$L - L_0 \sim \tau^2 - \tau_0^2 \rightarrow \chi \sim \tau^2 - \tau_0^2 \rightarrow \frac{1}{\tau^2 - \tau_0^2} \sim T - \theta_P$$

Здесь L_0 и au_0 - индуктивность и период колебаний без образца в катушке соответственно.

Экспериментальная установка

Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC -автогенератора.

Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой

контакт между образцом и рабочей жидкостью 3 в термостате. Ртутный термометр 4 используется для приближённой оценки температуры.

При изменении температуры меняется магнитная восприимчивость образца χ , а следовательно, самоиндукция катушки и период колебаний τ автогенератора. Для измерения периода используется частотомер.

Измерения проводятся в интервале температур от 14° С до 40° С. Температура исследуемого образца всегда несколько отличается от температуры дистиллированной воды в сосуде. Эта разность температур фиксируется термопарой, чувствительность которой $K = 24 \frac{\text{град}}{\text{мB}}$. ЭДС термопары измеряется цифровым вольтметром.

Результаты измерений и их обработка

Полученные значения τ при разных температурах записаны в таблице. Показания цифрового вольтметра изменялись достаточно сильно, поэтому примем их погрешность $\sigma_U = 0,002$ мВ, что в измерении температуры даст погрешность $0,05^{\circ}C$. Вместе с погрешностью измерения температуры в термостате $0,05^{\circ}$ получаем погрешность $0,07^{\circ}C$ в измерении температуры образца.

Период колебаний без образца внутри катушки: $\tau_0 = 6,9092$ мкс.

$t, ^{\circ}C$	ΔU , мВ	$t_{\text{обр}}, ^{\circ}C$	τ , MKC
14,15	-0,0100	13,91	7,923
16,08	-0,013	15,768	7,865
18,14	-0,0045	18,032	7,738
20,10	-0,009	19,884	7,583
22,10	-0,007	21,932	7,366
24,10	-0,006	23,956	7,197
28,10	-0,016	27,716	7,091
32,07	-0,0165	31,674	7,044
36,09	-0,007	35,922	7,016
40,07	-0,014	39,734	7,003

Таблица 1: Значения периода колебаний в зависимости от температуры образца

По этим данным строит график $\frac{1}{\tau^2-\tau_0^2}=f(T)$. Аппроксимируем прямой часть графика, начиная с пятого значения. Получили прямую $y\approx 0,035x-0,58$. Тогда она пересечет ось абсцисс в точке $\theta_P=(16,84\pm1,44)^{\circ}C$ ($\varepsilon=8,5\%$) Точку Кюри по графику определить достаточно сложно, если аппроксимировать первые несколько значений прямой, то точка Кюри будет примерно $\theta=5,35^{\circ}C$.

Выводы

В данной лабораторной работе мы проверили выполнимость закона Кюри-Вейсса, получив график зависимости $\frac{1}{\tau^2-\tau_0^2}=f(T)$. Зависимость совпадает с теоретической по характеру, но значения точки Кюри и парамагнитной температуры Кюри достаточно сильно отличаются от теоретических: $\theta_{th}=20,2^{\circ}C,~~\theta_{P_{th}}>\theta_{th}$. Различия связаны, прежде всего, с способом получения данных: график построен в координатах $\frac{1}{\tau^2-\tau_0^2}=f(T),$ а $\frac{1}{\tau^2-\tau_0^2}\sim\frac{1}{\chi},$ то есть строго равенства нет, есть только пропорциональность, а парамагнитная температура Кюри определяется из графика $\frac{1}{\chi}(T)$. Температура Кюри определялась экстраполяцией прямой на нелинейной зависимости, для которой мало точек, поэтому значения неточные.

Рис. 1: Зависимость $\frac{1}{\tau^2 - \tau_0^2} = f(T)$