

N-Channel Enhancement Mode Power MOSFET

Description

The GT045N10M uses advanced trench technology to provide excellent $R_{\rm DS(ON)}$, low gate charge. It can be used in a wide variety of applications.

General Features

• V_{DS} 100V • I_{D} (at V_{GS} = 10V) 120A • $R_{DS(ON)}$ (at V_{GS} = 10V) < 4.5mΩ

• 100% Avalanche Tested

RoHS Compliant

Application

- Power switch
- DC/DC converters

Schematic diagram

TO-263

Ordering Information

Device Package		Marking	Packaging	
GT045N10M	TO-263	GT045N10	800pcs/Reel	

Absolute Maximum Ratings $T_C = 25^{\circ}C$, unless otherwise noted				
Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Continuous Drain Current	I _D	120	А	
Pulsed Drain Current (note1)	I _{DM}	480	Α	
Gate-Source Voltage	V_{GS}	±20	V	
Power Dissipation	P _D	180	W	
Single pulse avalanche energy (note2)	E _{AS}	240	mJ	
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 To 150	°C	

Thermal Resistance					
Parameter	Symbol	Value	Unit		
Thermal Resistance, Junction-to-Ambient	R _{thJA}	60	°C/W		
Maximum Junction-to-Case	R _{thJC}	0.69	°C/W		

Specifications $T_J = 25^{\circ}C$, t		wise noted				
Parameter	Symbol	Test Conditions		Value	ı	Unit
			Min.	Тур.	Max.	
Static Parameters						
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_D = 250\mu A$	100			V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 100V, V_{GS} = 0V$			1	μΑ
Gate-Source Leakage	I _{GSS}	V_{GS} = $\pm 20 V$			±100	nA
Gate-Source Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	٧
Drain-Source On-Resistance	R _{DS(on)}	$V_{GS} = 10V, I_D = 30A$		3.8	4.5	mΩ
Forward Transconductance	g _{FS}	$V_{GS} = 5V, I_{D} = 30A$		37		S
Dynamic Parameters	•		1	1		
Input Capacitance	C _{iss}	$V_{GS} = 0V$, $V_{DS} = 50V$, f = 1.0MHz		4284		pF
Output Capacitance	C _{oss}			1321		
Reverse Transfer Capacitance	C _{rss}			43		
Total Gate Charge	Q_g	$V_{DD} = 50V,$ $I_{D} = 30A,$ $V_{GS} = 10V$		60		nC
Gate-Source Charge	Q _{gs}			21		
Gate-Drain Charge	Q_{gd}			11		
Turn-on Delay Time	t _{d(on)}	V_{DD} = 50V, I_{D} = 30A, R_{G} = 4.7 Ω		58		
Turn-on Rise Time	t _r			13		
Turn-off Delay Time	t _{d(off)}			39		ns
Turn-off Fall Time	t _f			8		
Drain-Source Body Diode Characte	ristics					
Continuous Body Diode Current	Is	T _C = 25°C			120	Α
Body Diode Voltage	V _{SD}	$T_J = 25^{\circ}C$, $I_{SD} = 30A$, $V_{GS} = 0V$			1.2	V
Reverse Recovery Charge	Qrr	I _F = 30A, V _{GS} = 0V		140		nC
Reverse Recovery Time	Trr	di/dt=100A/us		60		ns

Notes

1. Repetitive Rating: Pulse width limited by maximum junction temperature

- 2. EAS condition : Tj=25°C ,VDD=50V,VGS=10V,L=0.5mH,Rg=25 Ω
- 3. Identical low side and high side switch with identical $R_{\mbox{\scriptsize G}}$

Gate Charge Test Circuit

Switch Time Test Circuit

EAS Test Circuit

0

Typical Characteristics $T_J = 25^{\circ}\text{C}$, unless otherwise noted

Vgs Gate-Source Voltage (V)

Figure 2. Transfer Characteristics

V_{GS}, Gate-to-Source Voltage (V)

Figure 5. Capacitance

Figure 4. Gate Charge

Figure 6. Source-Drain Diode Forward

R_{DS(on)}, (Normalized)

Typical Characteristics $T_J = 25^{\circ}\text{C}$, unless otherwise noted

Figure 7. Drain-Source On-Resistance

Figure 8. Safe Operation Area

V_{DS}, Drain-Source Voltage(V)

Figure 9. Normalized Maximum Transient Thermal Impedance

ID, Drain Current(A)

TO-263 Package Information

COMMON DIMENSIONS

CVMDO	mm			
SYMBO	MIN	NOM	MAX	
A	4. 52	4. 57	4.62	
A1	9. 95	10.00	10.05	
A2	6. 30	6.40	6. 50	
b	1. 30	1. 50	1.70	
b2	1.17	1. 27	1. 37	
С	14.80	15. 00	15. 20	
D	9. 05	9. 10	9. 15	
D1	1. 90	2. 10	2. 30	
D2	-	2. 54	-	
Е	-	0.80	_	
E3	-	4. 57	-	
е	_	1. 30	-	
e0	-	1. 30	-	
e1	1. 73	3	_	
H1	-	2.40	-	
L	_	2.50	_	
L1	-	0.50	_	
Ø P	_	1. 50	-	
R	-	0.50	-	
Q1	0. 10	-	0. 15	
Q2	0	_	0.02	