高等代数 I 习题课讲义

龚诚欣

gong cheng xin @pku.edu.cn

2024年12月12日

目录

1	第 1 次习题课:向量,Gauss-Jordan 消元法	3
	1.1 问题	3
	1.2 解答	3
2	第 2 次习题课: 矩阵的基本运算, 集合论	4
	2.1 问题	4
	2.2 解答	5
3	第 3 次习题课: 行列式 (1)	6
	3.1 问题	6
	3.2 解答	7
4	第 4 次习题课: 行列式 (2)	9
	4.1 问题	9
	4.2 解答	10
5	第 5 次习题课:线性空间,行列式 (3)	12
	5.1 问题	12
	5.2 解答	13
6	第 6 次习题课: 秩 (1)	14
	6.1 问题	14
	6.2 解答	14
7	第7次习题课: 秩(2),线性方程组的解空间	15
	7.1 问题	15
	7.2 解答	16
8	期中考试	18
	8.1 问题	18
	8.2 解答	18
9	第 8 次习题课: 可逆矩阵	19
	9.1 问题	19
	9.2 解答	20

10	第 9 次习题课: 矩阵的分块, 正交矩阵	21
	10.1 问题	21
	10.2 解答	21
11	第 10 次习题课: 线性映射	23
	11.1 问题	23
	11.2 解答	23
12	第 11 次习题课:特征值,特征向量	24
	12.1 问题	
	12.2 解答	25
13	第 12 次习题课: 矩阵的相似与对角化	26
	13.1 问题	26
	13.2 解答	27
14	致谢	29

1 第 1 次习题课:向量, Gauss-Jordan 消元法

1.1 问题

- 1.1 问应 1.用 Gauss 消元法解以下方程组,并用向量表示解的集合: $\begin{cases} x_1 2x_2 + 3x_3 4x_4 &= 4 \\ x_2 x_3 + x_4 &= -3 \\ x_1 + 3x_2 4x_4 &= 1 \\ -7x_2 + 3x_3 + x_4 &= -3 \end{cases}$
- 何时表示系数唯一?
- 3. 用向量运算的性质证明: 若一组向量 $\alpha_1, \cdots, \alpha_s$ 线性表出某个向量 β 的方式唯一 (不唯一), 则 $\alpha_1, \cdots, \alpha_s$ 表出任何 向量-如果能表出的话,方式都唯一(不唯一).
- 4. 某食品厂有四种原料 A, B, C, D. 问能否用这四种原料配制含脂肪 5%, 碳水化合物 12%, 蛋白质 15% 的食品?

单位: %	A	В	С	D
脂肪	8	6	3	2
碳水化合物	5	25	10	15
蛋白质	15	5	20	10

- 5. (1) 求复矩阵 $A = \begin{bmatrix} 1 & -i & -1 \\ 2 & 2 & -2 \\ i & 1+i & -i \end{bmatrix}$ 的行简化阶梯型矩阵 $\operatorname{rref}(A)$; (2) 求齐次方程组 AX = 0 在复数域上的解集合; (3) 求齐次方程组 AX = 0 在实数域上的解集合; (4) 当 y_1, y_2, y_3 满足什么关系时, 方程组 $AX = (y_1, y_2, y_3)^T$ 有解?
- 6. 已知向量 α, β 不共线, 并看成是由原点出发的有向线段 OA 与 OB. 设 $u, v \in \mathbb{R}$ 且 u+v=1, 问向量 $OC=u\alpha+v\beta$ 的终点 C 在什么位置, \overrightarrow{AC} 与 \overrightarrow{CB} 的比值是多少, 何时比值为正数.
- 7. 求单叶双曲面 $x^2 + y^2 z^2 = 1$ 上的所有直线.
- 8. (1) 利用向量运算求空间中三角形重心的公式; (2) 四面体 ABCD 每个顶点到对面三角形的重心作连线. 证明: 这四 条线交于一点,这一点称为四面体的重心;且每条连线被重心分割为长度比为3:1的两条线段.
- 9. 求以下两个方程组的解,并解释这两组解为何有较大差异? $\begin{cases} .835x + .667y = .168 \\ .333x + .266y = .067 \end{cases}, \begin{cases} .835x + .667y = .168 \\ .333x + .266y = .067 \end{cases}$
- 10. 考虑带截距的线性回归 $y \sim x_1 + \cdots + x_p$, 参考上一题, 你有什么想:

1.2 解答

1.
$$\begin{bmatrix} 1 & -2 & 3 & -4 & 4 \\ 0 & 1 & -1 & 1 & -3 \\ 1 & 3 & 0 & -4 & 1 \\ 0 & -7 & 3 & 1 & -3 \end{bmatrix} \overset{\circlearrowleft}{\longrightarrow} \begin{bmatrix} 1 & -2 & 3 & -4 & 4 \\ 0 & 1 & -1 & 1 & -3 \\ 0 & 5 & -3 & 0 & -3 \\ 0 & -7 & 3 & 1 & -3 \end{bmatrix} \overset{\circlearrowleft}{\longrightarrow} \begin{bmatrix} 1 & -2 & 3 & -4 & 4 \\ 0 & 1 & -1 & 1 & -3 \\ 0 & 5 & -3 & 0 & -3 \\ 0 & -7 & 3 & 1 & -3 \end{bmatrix} \overset{\circlearrowleft}{\longrightarrow} \begin{bmatrix} 1 & -2 & 3 & -4 & 4 \\ 0 & 1 & -1 & 1 & -3 \\ 0 & 0 & 2 & -5 & 12 \\ 0 & 0 & -4 & 8 & -24 \end{bmatrix} \overset{\circlearrowleft}{\longrightarrow} \overset{\circlearrowleft}{\longrightarrow} \begin{bmatrix} 1 & -2 & 3 & -4 & 4 \\ 0 & 1 & -1 & 1 & -3 \\ 0 & 1 & -1 & 1 & -3 \\ 0 & 0 & 2 & -5 & 12 \\ 0 & 0 & 0 & -2 & 0 \end{bmatrix} \Rightarrow (x_1, x_2, x_3, x_4) = (-8, 3, 6, 0).$$

$$\begin{bmatrix} 1 & -2 & 3 & -4 & 4 \\ 0 & 1 & -1 & 1 & -3 \\ 0 & 0 & 2 & -5 & 12 \\ 0 & 0 & 0 & -2 & 0 \end{bmatrix} \Rightarrow (x_1, x_2, x_3, x_4) = (-8, 3, 6, 0)$$

②一三①
$$\begin{bmatrix}
1 & -2 & a & 1 \\
1 & 1 & 2 & b \\
4 & 5 & 10 & -1
\end{bmatrix}
3 - = 4 * ①
$$\begin{bmatrix}
1 & -2 & a & 1 \\
0 & 3 & 2 - a & b - 1 \\
0 & 13 & 10 - 4a & -5
\end{bmatrix}
3 - = \frac{13}{3} * ②
\begin{bmatrix}
1 & -2 & a & 1 \\
0 & 3 & 2 - a & b - 1 \\
0 & 0 & \frac{4}{3} + \frac{1}{3}a & -\frac{13}{3}b - \frac{2}{3}
\end{bmatrix}$$
因此, 当
$$a \neq -4 \quad \text{或} \quad a = -4, b = -\frac{13}{2} \quad \text{th}, \beta \text{ 能被线性表出, 且对于前者表出系数唯一.}$$$$

3. 只需注意到表出某个向量 β 唯一 $\Leftrightarrow (k_1\alpha_1 + \cdots + k_s\alpha_s = 0) \Rightarrow k_1 = \cdots = k_s = 0)$.

$$2 - 8 * 1$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -2 & -5 & -6 & -3 \\ 0 & 0 & -45 & -50 & -23 \\ 0 & 0 & 30 & 25 & 15 \end{bmatrix}$$

$$*3\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -2 & -5 & -6 & -3 \\ 0 & 0 & -45 & -50 & -23 \\ 0 & 0 & 0 & -\frac{25}{3} & -\frac{1}{3} \end{bmatrix},$$

数向量是 $(y_1, \frac{y_2-2y_1}{2+2i}, y_3 - \frac{1+i}{4}y_2 + \frac{1-i}{2}y_1)$, 因此只有当 $y_3 - \frac{1+i}{4}y_2 + \frac{1-i}{2}y_1 = 0$ 时才有解. 6. $\overrightarrow{AC} = (u-1)\alpha + v\beta$, $\overrightarrow{CB} = -u\alpha + (1-v)\beta$, $\frac{\overrightarrow{AC}}{\overrightarrow{CB}} = \frac{1-u}{u} = \frac{v}{1-v}$, 因此 $A, C, B \equiv$ 点共线, 且当 0 < u, v < 1 时比值为 正数.

7.
$$(x-z)(x+z) = (1-y)(1+y)$$
,因此直线可以表示形式为
$$\begin{cases} x-z = k(1-y) \\ x+z = \frac{1}{k}(1+y) \end{cases}$$
,即是
$$\begin{cases} x+ky-z = k \\ kx-y+kz = 1 \end{cases}$$
.特别

地, 当 $y = \pm 1$ 时, $z = \pm x$ 也是位于该曲面上的直线.

- 8. $A = (x_1, y_1, z_1), B = (x_2, y_2, z_2), C = (x_3, y_3, z_3),$ 设 BC, AC, AB 中点分别为 D, E, F, 设 $G = (\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}, \frac{z_2 + z_3}{3}, \frac{z_1 + z_2 + z_3}{3}, \frac{z_2 + z_3}{3}, \frac{z_1 + z_2 + z_3}{3}, \frac{z_1 + z_2 + z_3}{3}, \frac{z_2 + z_3}{3}, \frac{z_1 + z_2 + z_3}{3}, \frac{z_2 + z_3}{3}, \frac{z_1 + z_2 + z_3}{3}, \frac{z_2 + z_3}{$ 只需验证 \overrightarrow{AG} , \overrightarrow{BG} , \overrightarrow{CG} 分别与 \overrightarrow{AD} , \overrightarrow{BE} , \overrightarrow{CF} 共线即可. 第二问同理, 重心是取四个点的坐标平均.
- 9. 用 Gauss 消元法可求得解为 (1,-1) 和 (-666,834). 原因是系数矩阵比较奇异, 用现在的知识来说, 就是行简化阶梯 型矩阵的对角元数值比较小.
- 10. 可以对回归系数做适当的惩罚, 如 L_2 正则 (Ridge); 回归变量中可能存在着强相关变量, 干扰回归结果.

第 2 次习题课: 矩阵的基本运算, 集合论

2.1 问题

1. (1) 用向量表示平面
$$x + 2y + 3z = 1$$
; (2) 用向量表示直线
$$\begin{cases} x + 2y + 3z = 1 \\ 3x + 2y + z = -1 \end{cases}$$
; (3) 求平面
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + k \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + k \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, k, l \in \mathbb{R}$$
 的平面方程.

2. 设矩阵
$$A = \begin{bmatrix} 2 & 4 & 1 & 0 & 8 \\ 3 & 6 & -1 & 0 & 7 \\ 1 & 2 & 2 & 0 & 7 \\ 2 & 4 & 1 & 1 & 9 \end{bmatrix}$$
. (1) 解齐次方程组 $AX = 0$; (2) 已知 $X = (1,1,2,3,0)^T$ 是方程组 $AX = \beta$ 的一个

解, 写出 $AX = \beta$ 的所有解

- 3. 用 $\mathbb{Q}(\sqrt{3})$ 表示从全体有理数及 $\sqrt{3}$ 出发, 反复作加减乘除四则运算能得到的所有数的集合, 称为由 $\sqrt{3}$ 生成的数域. (1) 证明 $\mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3} : a, b \in \mathbb{Q}\}$; (2) 数域 $\mathbb{Q}(\sqrt{3})$ 中的每个数写成 $a + b\sqrt{3}, a, b \in \mathbb{Q}$ 的方式唯一.
- 4. 用 $\mathbb{Z}(\sqrt{-5})$ 表示从全体整数及 $\sqrt{-5}$ 出发, 通过加乘二则运算能得到的所有数的集合, 称为由 $\sqrt{-5}$ 生成的整环. 证 明在此环中,不可约数和素数不等价.

- 5. 若 $\alpha_1, \dots, \alpha_r$ 能线性表出 β_1, \dots, β_s , 且 β_1, \dots, β_s 又能线性表出 $\gamma_1, \dots, \gamma_t$, 证明 $\alpha_1, \dots, \alpha_r$ 能线性表出 $\gamma_1, \dots, \gamma_t$.
- 6. 考虑 n 个城市之间的航班问题: 记 $H=(a_{ij})$ 为邻接矩阵, 这里 a_{ij} 表示从城市 i 到 j 的航班数. (1) 解释 H^k 的

$$(i,j)$$
 元的含义; (2) 设 $H=\begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 3 \\ 0 & 0 & 2 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$, 从哪个城市到哪个城市恰好要倒两次飞机?有几种不同的航班选择?哪

两个城市的通行需要倒的航班次数最多?

- 7. 设 A 是有向图 G 的邻接矩阵, 证明 G 中的循环三角形的个数等于 $tr(A^3)/3$.
- 8. 由集合 A 的所有子集组成的集合称为 A 的幂集, 记为 P(A). 设集合 A 非空, 证明 card(P(A)) > card(A).
- 9. X 为非空集合, 映射 $f: P(X) \to P(X)$ 满足 $f(A) \subset f(B), \forall A \subset B$. 那么存在 $T \subset X$ 使得 f(T) = T.
- 10. (1) 找到 [0,1] 到 $[0,1] \times [0,1]$ 的双射; (2) 找到 (0,1) 到 \mathbb{R} 的双射.
- 11. 罗素悖论: 某班的同学在习题课上作游戏. 每个学生可以给班里任意多同学发一次短信 (可包括自己). 记 X 是全体没有给自己发短信的同学构成的集合. 若某同学猜中 X 并给且只给 X 中的每个同学发了短信,则该同学获胜. 问:此游戏有无获胜者?
- 12. 学习使用 numpy 包, 并实现矩阵的基本运算.

2.2 解答

- 1. (1) 先求得一个点坐标 (1,0,0), 再去求 x+2y+3z=0 的一组基础解系: (2,-1,0) 和 (3,0,-1), 因此向量表示为 $(1,0,0)+k(2,-1,0)+l(3,0,-1),k,l\in\mathbb{R}$.
- (2) 先求得一个点坐标 (0,-1,1), 再去求方向向量 $(1,2,3)\times(3,2,1)=(-4,8,4)$, 因此向量表示为 (0,-1,1)+t(-1,2,1), $t\in\mathbb{R}$.
- (3) 先求得一个点坐标 (1,1,2), 再去求法向量 $(1,2,0)\times(2,0,1)=(2,-1,-4)$, 因此平面可表示为 2x-y-4z=-7.

$$2 - = \frac{3}{2} * \mathbb{O}$$

$$3 - = \frac{1}{2} * \mathbb{O}$$

$$3 - = \frac{1}{2} * \mathbb{O}$$

$$4 \quad 1 \quad 0 \quad 8 \\ 3 \quad 6 \quad -1 \quad 0 \quad 7 \\ 1 \quad 2 \quad 2 \quad 0 \quad 7 \\ 2 \quad 4 \quad 1 \quad 1 \quad 9$$

$$3 - = \frac{1}{2} * \mathbb{O}$$

$$4 \quad 1 \quad 0 \quad 8 \\ 0 \quad 0 \quad -\frac{5}{2} \quad 0 \quad -5 \\ 0 \quad 0 \quad \frac{3}{2} \quad 0 \quad 3 \\ 0 \quad 0 \quad 0 \quad 1 \quad 1$$

$$2 + = \frac{5}{3} * \mathbb{O}$$

$$2 + = \frac{5}{3} * \mathbb{O}$$

$$0 \quad 0 \quad 0 \quad 0 \quad 0 \\ 0 \quad 0 \quad \frac{3}{2} \quad 0 \quad 3 \\ 0 \quad 0 \quad 0 \quad 1 \quad 1$$

$$\Rightarrow \begin{cases} x_4 = -x_5 \\ x_3 = -2x_5 \\ x_1 + 2x_2 = -3x_5 \end{cases} \Rightarrow$$

 $X = (-3n - 2m, m, -2n, -n, n)^T, m, n \in \mathbb{R}$ 是自由变元.

- (2) 解集是基础解系加上代表元, 即 $(1-3n-2m,1+m,2-2n,3-n,n)^T$.
- 3. (1) 只需证明 $\{a+b\sqrt{3}: a,b\in\mathbb{Q}\}$ 对于加減乘除封闭. (2) 只需证明 $\sqrt{3}$ 不是有理数 (因为 $a_1+b_1\sqrt{3}=a_2+b_2\sqrt{3}\Leftrightarrow \sqrt{3}=\frac{a_1-a_2}{b_2-b_1}\in\mathbb{Q}$). 用反证法, $\sqrt{3}=\frac{a}{b}$, $\gcd(a,b)=1$, 那么 $a^2=3b^2\Rightarrow 3|a\Rightarrow 9|a^2\Rightarrow 3|b^2\Rightarrow 3|b$, 矛盾.
- 4. 类似可知 $\mathbb{Z}(\sqrt{-5}) = \{a+b\sqrt{-5}: a,b\in\mathbb{Z}\}$. 容易证明 $2+\sqrt{-5}$ 是不可约数: $2+\sqrt{-5} = (a+b\sqrt{-5})(c+d\sqrt{-5}) \Rightarrow 9 = (2+\sqrt{-5})(2-\sqrt{-5}) = (a+b\sqrt{-5})(a-b\sqrt{-5})(c+d\sqrt{-5})(c-d\sqrt{-5}) = (a^2+5b^2)(c^2+5d^2)$ 无解; 但是 $2+\sqrt{-5}|3\times 3$ 而 $2+\sqrt{-5}|3$, 因此不是素数.
- 5. $(\beta_1, \dots, \beta_s) = (\alpha_1, \dots, \alpha_r)A, (\gamma_1, \dots, \gamma_t) = (\beta_1, \dots, \beta_s)B \Rightarrow (\gamma_1, \dots, \gamma_t) = (\alpha_1, \dots, \alpha_r)(AB)$, 因此可以线性表出.
- 6. (1) 从 $a_{ij}^2 = \sum_s a_{is} a_{sj}$ 可以看出 H^k 的 (i,j) 元表示从 i 到 j 乘坐恰 k 次航班有多少种乘坐方式. (2) $1 \to 3, 1 \to 4, 2 \to 1, 2 \to 5, 3 \to 2, 3 \to 4, 4 \to 1, 5 \to 2, 5 \to 3$,分别有 1, 1, 1, 3, 1, 3, 3, 1, 2 种航班选择; $2 \to 4, 4 \to 2$ 都要倒 3 次,是最多的.
- 7. 由上题知 A^3 的 (i,i) 元表示从 i 到 i 有几条恰走 3 次的路径, 三角形会在结点上算 3 次, 因此要除以 3.
- 8. 本题的关键是处理集合 A 包含无穷元素的情形. 假设存在一一映射 $f: A \mapsto P(A)$, 则考虑集合 $A = \{x: x \notin f(x)\}$. 此时若 $f^{-1}(A) \notin A$, 则根据定义 $f^{-1}(A) \in A$; 反之亦矛盾.
- 9. 我们的思路应当去找满足条件 $A \subset f(A)$ 的最大集合, 即令 $T = \{ \cup_{\alpha} A_{\alpha} : A_{\alpha} \subset f(A_{\alpha}) \}$. 根据定义有 $T = \cup_{\alpha} A_{\alpha} \subset \cup_{\alpha} f(A_{\alpha}) = f(U_{\alpha} A_{\alpha}) = f(T)$, 再根据题给条件有 $f(T) \subset f(f(T)) \Rightarrow f(T) \subset T$.

- 10. (1) 全部写成无限小数, 然后作映射 $0.a_1a_2a_3a_4a_5a_6\cdots \to (0.a_1a_3a_5\cdots,0.a_2a_4a_6\cdots)$; (2) $y=\tan(\pi x-\frac{\pi}{2})$.
- 11. 因此在 ZF 公理体系中, 我们不考虑包含自身作为元素的集合.
- 12. 从 pip install numpy 开始. 学习使用 np.zeros, np.random, np.mean, np.sum, np.dot, np.linalg.det, np.eye 等函 数,并做切片和取值运算.

3 第 3 次习题课: 行列式 (1)

3.1 问题

- 1. 用行列式求解线性方程组 $\begin{cases} 2x_1 3x_2 = 7 \\ 5x_1 + 4x_2 = 6 \end{cases}$
- 2. 求以下向量在三维几何空间张成的平行六面体体积: $\alpha_1 = (3, 2, 1), \alpha_2 = (0, 3, 0), \alpha_3 = (7, 4, 2).$
- 3. 判断以下向量组的定向: (1,1), (3,-2); (2,1,0), (1,0,3), (1,1,1); (x,y,z), (z,x,y), (y,z,x); (x,y,z), (y,z,x), (z,x,y); 其中 x+y+z>0 且互不相等
- 4. 计算行列式: (1) $\begin{vmatrix} x-2 & 2 & -2 \\ 2 & x+1 & -4 \\ -2 & -4 & x+1 \end{vmatrix}$; (2) $\begin{vmatrix} 3 & 2 & 0 & 0 \\ 5 & 3 & 0 & 0 \\ -12 & -4 & 3 & 4 \\ 3 & x & 5 & 7 \end{vmatrix}$.
- 5. 对 n 阶矩阵 A 作如下操作: 第 1 行加上第 2 行的 k 倍, 第 2 行加上第 3 行的 k 倍, 以此类推; 最后, 第 n 行加上此 时第 1 行的 k 倍. 问做这些变换相当于在 A 左边乘一个什么样的矩阵? A 的行列式值会如何变化? 如果第 n 行加上 的是原来第 1 行的 k 倍呢?

6. 计算行列式
$$\begin{vmatrix} b_2 & 1 & 0 & \cdots & 0 \\ b_3 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_n & 0 & 0 & \cdots & 1 \end{vmatrix}$$
 $\begin{vmatrix} 1 + x_1^2 & x_1x_2 & x_1x_3 & x_1x_4 \end{vmatrix}$

7. 计算行列式
$$\begin{vmatrix} x_2x_1 & 1+x_2^2 & x_2x_3 & x_2x_4 \\ x_3x_1 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ x_4x_1 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix}$$

8. 计算行列式
$$\begin{vmatrix} x_1 & a_1 & x_2 & x_3 & \cdots & x_n \\ x_1 & x_2 - a_2 & x_3 & \cdots & x_n \\ x_1 & x_2 & x_3 - a_3 & \cdots & x_n \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

7. 计算行列式
$$\begin{vmatrix} 1+x_1^2 & x_1x_2 & x_1x_3 & x_1x_4 \\ x_2x_1 & 1+x_2^2 & x_2x_3 & x_2x_4 \\ x_3x_1 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ x_4x_1 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix}$$
8. 计算行列式
$$\begin{vmatrix} x_1-a_1 & x_2 & x_3 & \cdots & x_n \\ x_1 & x_2-a_2 & x_3 & \cdots & x_n \\ x_1 & x_2 & x_3-a_3 & \cdots & x_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & x_3 & \cdots & x_n-a_n \end{vmatrix}$$
9. 计算行列式
$$D_n = \begin{vmatrix} \alpha & \beta \\ \gamma & \alpha & \beta \\ \gamma &$$

10. 计算行列式
$$D_n = \begin{vmatrix} \cos \alpha & 1 & 0 & \cdots & 0 & 0 \\ 1 & 2\cos \alpha & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2\cos \alpha & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2\cos \alpha & 1 \\ 0 & 0 & 0 & \cdots & 1 & 2\cos \alpha \end{vmatrix} \in \mathbb{R}^{n \times n}.$$

11. 计算行列式
$$D_n = \begin{vmatrix} \frac{1}{a_1+b_1} & \frac{1}{a_1+b_2} & \cdots & \frac{1}{a_1+b_n} \\ \frac{1}{a_2+b_1} & \frac{1}{a_2+b_2} & \cdots & \frac{1}{a_2+b_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{a_n+b_1} & \frac{1}{a_n+b_2} & \cdots & \frac{1}{a_n+b_n} \end{vmatrix} \in \mathbb{R}^{n \times n}.$$

3.2 解答

3.2 解答

1.
$$x_1 = \begin{vmatrix} 7 & -3 \\ 6 & 4 \\ 2 & -3 \\ 5 & 4 \end{vmatrix} = 2, x_2 = \begin{vmatrix} 2 & 7 \\ 5 & 6 \\ 2 & -3 \\ 5 & 4 \end{vmatrix} = -1.$$

2. $V = ||(\alpha_1, \alpha_2, \alpha_3)|| = |\begin{vmatrix} 3 & 0 & 7 \\ 2 & 3 & 4 \\ 1 & 0 & 2 \end{vmatrix}| = 3.$

3. $\begin{vmatrix} 1 & 3 \\ 1 & -2 \end{vmatrix} = -5 \Rightarrow$ 左手; $\begin{vmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 3 & 1 \end{vmatrix} = -4 \Rightarrow$ 左手; $\begin{vmatrix} x & z & y \\ y & x & z \\ z & y & x \end{vmatrix} = x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - y^2 - z^2) \ge 0 \Rightarrow$ 右手; $\begin{vmatrix} x & y & z \\ y & z & x \end{vmatrix} = 3xyz - x^3 - y^3 - z^3 \le 0 \Rightarrow$ 左手.

3.
$$\begin{vmatrix} 1 & 3 \\ 1 & -2 \end{vmatrix} = -5 \Rightarrow$$
 $£ \$; \begin{vmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 3 & 1 \end{vmatrix} = -4 \Rightarrow$ $£ \$; \begin{vmatrix} x & z & y \\ y & x & z \\ z & y & x \end{vmatrix} = x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - y^2)$

$$yz - zx$$
) $\geq 0 \Rightarrow$ 右手; $\begin{vmatrix} x & y & z \\ y & z & x \\ z & x & y \end{vmatrix} = 3xyz - x^3 - y^3 - z^3 \leq 0 \Rightarrow$ 左手.

4. (1)
$$\begin{vmatrix} x-2 & 2 & -2 \\ 2 & x+1 & -4 \\ -2 & -4 & x+1 \end{vmatrix} = (x-2)(x+1)^2 + 16 + 16 - 4(x+1) - 16(x-2) - 4(x+1) = x^3 - 27x + 54;$$
(2)
$$\begin{vmatrix} 3 & 2 & 0 & 0 \\ 5 & 3 & 0 & 0 \\ -12 & -4 & 3 & 4 \\ 3 & x & 5 & 7 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 5 & 3 \end{vmatrix} * \begin{vmatrix} 3 & 4 \\ 5 & 7 \end{vmatrix} = -1.$$

$$(2) \begin{vmatrix} 3 & 2 & 0 & 0 \\ 5 & 3 & 0 & 0 \\ -12 & -4 & 3 & 4 \\ 3 & x & 5 & 7 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 5 & 3 \end{vmatrix} * \begin{vmatrix} 3 & 4 \\ 5 & 7 \end{vmatrix} = -1.$$

5. 相当于左乘
$$\begin{bmatrix} 1 & k & 0 & 0 & \cdots & 0 \\ 0 & 1 & k & 0 & \cdots & 0 \\ 0 & 0 & 1 & k & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ k & k^2 & 0 & 0 & \cdots & 1 \end{bmatrix}$$
, 其行列式无变化, 因为是初等变换. 后面一问相当于左乘
$$\begin{bmatrix} 1 & k & 0 & 0 & \cdots & 0 \\ 0 & 1 & k & 0 & \cdots & 0 \\ 0 & 0 & 1 & k & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ k & 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

其行列式有变化, 因为最后一步不是初等变换, 相较于原值乘上了 $1 + (-1)^{n-1}k^n$.

$$\begin{bmatrix} a_1 - \sum_{i=2}^n a_i b_i & a_2 & a_3 & \cdots & a_n \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \end{bmatrix}$$
 6. 用第一列减去第 i 列的 b_i 倍, $i=2,3,\cdots,n$, 得到

用第一列减去第
$$i$$
 列的 b_i 倍, $i=2,3,\cdots,n$, 得到 0 0 1 \cdots 0 $= a$

7. 法 1(加边法):
$$\begin{vmatrix} 1+x_1^2 & x_1x_2 & x_1x_3 & x_1x_4 \\ x_2x_1 & 1+x_2^2 & x_2x_3 & x_2x_4 \\ x_3x_1 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ x_4x_1 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} = \begin{vmatrix} 1 & x_1 & x_2 & x_3 & x_4 \\ 0 & 1+x_1^2 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & x_2x_1 & 1+x_2^2 & x_2x_3 & x_2x_4 \\ 0 & x_3x_1 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ 0 & x_4x_1 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix}, 然后用第 $i+1$ 行减去第 $1$$$

行的
$$x_i$$
 倍, $i = 1, 2, 3, 4$, 得到
$$\begin{vmatrix} 1 & x_1 & x_2 & x_3 & x_4 \\ -x_1 & 1 & 0 & 0 & 0 \\ -x_2 & 0 & 1 & 0 & 0 \\ -x_3 & 0 & 0 & 1 & 0 \\ -x_4 & 0 & 0 & 0 & 1 \end{vmatrix} = 1 + x_1^2 + x_2^2 + x_3^2 + x_4^2.$$

法 2(拆项法):
$$\begin{vmatrix} 1+x_1^2 & x_1x_2 & x_1x_3 & x_1x_4 \\ x_2x_1 & 1+x_2^2 & x_2x_3 & x_2x_4 \\ x_3x_1 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ x_4x_1 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} = \begin{vmatrix} 1+x_1^2 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0+x_2x_1 & 1+x_2^2 & x_2x_3 & x_2x_4 \\ 0+x_3x_1 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ 0+x_4x_1 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} = \begin{vmatrix} 1 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & 1+x_2^2 & x_2x_3 & x_2x_4 \\ 0 & x_3x_2 & 1+x_3^2 & x_3x_4 \end{vmatrix} + \begin{vmatrix} 1 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ 0 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} + \begin{vmatrix} 1 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ 0 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} + \begin{vmatrix} 1 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ 0 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} + \begin{vmatrix} 1 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ 0 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} + \begin{vmatrix} 1 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ 0 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} + \begin{vmatrix} 1 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ 0 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} + \begin{vmatrix} 1 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ 0 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} + \begin{vmatrix} 1 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ 0 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} + \begin{vmatrix} 1 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ 0 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} + \begin{vmatrix} 1 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ 0 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} + \begin{vmatrix} 1 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ 0 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix} + \begin{vmatrix} 1 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & x_1x_2 & x_1x_3 & x_1x_4 \\ 0 & x_1x_$$

$$\begin{vmatrix} x_1^2 & x_1x_2 & x_1x_3 & x_1x_4 \\ x_2x_1 & 1+x_2^2 & x_2x_3 & x_2x_4 \\ x_3x_1 & x_3x_2 & 1+x_3^2 & x_3x_4 \\ x_4x_1 & x_4x_2 & x_4x_3 & 1+x_4^2 \end{vmatrix}$$

, 然后再依次拆第 2、3、4 列, 只需注意到若两列成比例则行列式为 0, 因此最后只剩下五

 $\begin{bmatrix} a_1 & 0 & 0 & \cdots & 0 \\ 0 & -a_2 & 0 & \cdots & 0 \\ 0 & 0 & -a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -a_n \end{bmatrix}, \begin{bmatrix} x_1 & 0 & 0 & \cdots & 0 \\ x_1 & -a_2 & 0 & \cdots & 0 \\ x_1 & 0 & -a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1 & 0 & 0 & \cdots & -a_n \end{bmatrix},$ 8. 采用第 7 题的法 2(拆项法), 最后剩下 n+1 项:

$$\begin{vmatrix} -a_1 & x_2 & 0 & \cdots & 0 \\ 0 & x_2 & 0 & \cdots & 0 \\ 0 & x_2 & -a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & x_2 & 0 & \cdots & -a_n \end{vmatrix}, \dots, 它们分别是 $(-1)^n a_1 a_2 \cdots a_n, (-1)^{n-1} x_1 a_2 \cdots a_n, (-1)^{n-1} a_1 x_2 \cdots a_n, \dots, \underbrace{\text{整理得到原}}_{\text{行列式为}} (-1)^{n-1} a_1 a_2 \cdots a_n \left[\left(\sum_{i=1}^n \frac{x_i}{a_i} \right) - 1 \right].$
9. 若 $\beta \gamma = 0$, 则行列式为 α^n . 对于一般情形,按第一行展开得到 $D_n = \alpha D_{n-1} - \beta \gamma D_{n-2}$, 且有初值条件 $D_1 = \alpha$, $D_2 = \alpha^2 - \beta \gamma$, 然后用数列的特征值和特征公式设 $D_n = A \left(\frac{\alpha + \sqrt{\alpha^2 - 4\beta \gamma}}{2} \right)^n + B \left(\frac{\alpha - \sqrt{\alpha^2 - 4\beta \gamma}}{2} \right)^n$, 代入 $n = 1, 2$ 解出 $A \cap B$, 得到 $D_n = \frac{(\alpha + \sqrt{\alpha^2 - 4\beta \gamma})^{n+1} - (\alpha - \sqrt{\alpha^2 - 4\beta \gamma})^{n+1}}{2^{n+1} \sqrt{\alpha^2 - 4\beta \gamma}}.$$$

10. n=1 时, $D_1=\cos\alpha$; n=2 时, $D_2=\cos2\alpha$; 因此可以猜测 $D_n=\cos n\alpha$. 然后用数学归纳法, 对第一行展开得到 $D_{n+1} = 2\cos\alpha D_n - D_{n-1} = \cos(n+1)\alpha$, 知该假设成立.

11. 法 1: 将第 1 行至第 n-1 行减去第 n 行, 并提出各行和各列公因子, 得

$$D_n = \frac{\prod_{i=1}^{n-1} (a_n - a_i)}{\prod_{j=1}^{n} (a_n + b_j)} \begin{vmatrix} \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_2} & \cdots & \frac{1}{a_1 + b_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{a_{n-1} + b_1} & \frac{1}{a_{n-1} + b_2} & \cdots & \frac{1}{a_{n-1} + b_n} \\ 1 & 1 & \cdots & 1 \end{vmatrix};$$

再将第 1 列至第 n-1 列减去第 n 列, 并提出各行和各列的公因子, 得

$$D_n = \frac{\prod_{i=1}^{n-1} (a_n - a_i) \prod_{j=1}^{n-1} (b_n - b_j)}{\prod_{j=1}^{n} (a_n + b_j) \prod_{i=1}^{n-1} (a_i + b_n)} \begin{vmatrix} \frac{1}{a_1 + b_1} & \ddots & \frac{1}{a_1 + b_{n-1}} & 1\\ \vdots & \vdots & \ddots & \vdots\\ \frac{1}{a_{n-1} + b_1} & \cdots & \frac{1}{a_{n-1} + b_{n-1}} & 1\\ 0 & \cdots & 0 & 1 \end{vmatrix}.$$

按第 n 行展开得到递推式 $D_n = \frac{\prod_{i=1}^{n-1}(a_n - a_i) \prod_{j=1}^{n-1}(b_n - b_j)}{\prod_{j=1}^{n}(a_n + b_j) \prod_{i=1}^{n-1}(a_i + b_n)} D_{n-1}$, 并直接计算出 D_2 , 得

$$D_n = \frac{\prod_{1 \le j < i \le n} (a_i - a_j)(b_i - b_j)}{\prod_{i=1}^n \prod_{j=1}^n (a_i + b_j)}.$$

法 2: 若 $a_i = a_j$ 或 $b_i = b_j (i \neq j)$, 即两行 (或两列) 相同, 则 $D_n = 0$. 因此 D_n 含有因子 $\prod_{1 < j < i < n} (a_i - a_j)(b_i - b_j)$. 将 D_n 的每一行的公分母都作为公因子提到行列式符号之外,得 $D_n = \frac{1}{\prod_{i=1}^n \prod_{j=1}^n (a_i + b_j)} D_n'$. 显然 D_n' 也含有上述因子. 另一方面, 由于 D'_n 的 (i,j) 元为 $\prod_{k\neq j}(a_i+b_k)$, 所以每一个 a_i 在 D'_n 的展开式中的次数均为 n-1, 因此设 $D_n=$ $\lambda \prod_{1 \leq j < i \leq n} (a_i - a_j)(b_i - b_j)$. 为确定常数 λ 的值, 我们不妨令 $a_i = -b_i, i = 1, 2, \cdots, n$. 此时 D'_n 为对角行列式, 且有 $D_n = \prod_{i \neq j} (a_i - a_j) = \prod_{1 \leq j \leq i \leq n} (a_i - a_j)(b_i - b_j) \Rightarrow \lambda = 1$. 因此可得一样的结果.

4 第 4 次习题课: 行列式 (2)

4.1 问题

1. 计算行列式
$$D_n = \begin{vmatrix} 1 & 2 & 3 & \cdots & n \\ n & 1 & 2 & \cdots & n-1 \\ n-1 & n & 1 & \cdots & n-2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2 & 3 & 4 & \cdots & 1 \end{vmatrix}$$
. 你能求出行列式 $E_n = \begin{vmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{vmatrix}$ 的通式吗?
$$\begin{vmatrix} a & b & b & \cdots & b \\ c & a & b & \cdots & b \\ c & a & b & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c & c & c & \cdots & a_n \end{vmatrix}$$
 3. $A \not\in n$ 阶矩阵, $\alpha = (1, 1, \cdots, 1)^T \not\in n$ 维列向量,且 $|A| = a, |A - \alpha\alpha^T| = b,$ 求 $|A + 2\alpha\alpha^T|$.

$$2. (1) 计算行列式 $D_n = \begin{vmatrix} a & b & b & \cdots & b \\ c & a & b & \cdots & b \\ c & c & a & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c & c & c & \cdots & a \end{vmatrix}; (2) 计算行列式 $E_n = \begin{vmatrix} a_1 & b & b & \cdots & b \\ c & a_2 & b & \cdots & b \\ c & c & a_3 & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c & c & c & \cdots & a_n \end{vmatrix}.$$$$

- 4. 考虑 3 线行列式 $D_n = \begin{bmatrix} 1 & 1 & 1 \\ & b_3 & a_3 & \ddots & \\ & & & \end{bmatrix}$,记其顺序主子式为 D_1, D_2, \cdots, D_n ,并假设它们都不为 0. 证明递推

关系 $D_s = a_s D_{s-1} - b_s c_s D_{s-2}, s \ge 3$, 并将该矩阵 M_n 写成下三角矩阵和对角元都为 1 的上三角矩阵的乘积.

5. 试确定所有 3 阶 (0,1) 行列式 (即所有元素只能是 0 或 1) 的最大值, 并给出证明和取到最大值的一个构造

6. 设
$$a_1, a_2, \dots, a_n \in \mathbb{N}_+$$
, 证明 n 阶行列式 $D_n = \begin{bmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} \end{bmatrix}$ 能被 $2!3! \cdots (n-1)!$ 整除.

- 7. 设矩阵 $A \in \mathbb{R}^{n \times n}$ 非平凡. 证明: 若矩阵 A 的每一个元素 a_{ij} 的代数余子式 $A_{ij} = a_{ij}$, 则 $|A|^{n-2} = 1$.
- 8. 若方阵每一行每一列都恰有一个元素为 1, 其余的元素都是 0, 则称此方阵为置换矩阵. (1) 写出所有的 3 阶置换矩阵 这些矩阵最少可由其中的几个通过反复作乘法得到? (2) 证明任意 n 阶置换矩阵都可由以下 n-1 个矩阵反复作乘法得

到:
$$\begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}, \dots, \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

进一步, 任意 n 阶置换矩阵都可由以下两个矩阵反复作乘法得到: $T=\begin{bmatrix}0&1&0&0&\cdots&0\\1&0&0&0&\cdots&0\\0&0&1&0&\cdots&0\\0&0&0&1&\cdots&0\\\vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&0&\cdots&1\end{bmatrix}, S=\begin{bmatrix}0&1&0&0&\cdots&0\\0&0&1&0&\cdots&0\\0&0&0&1&\cdots&0\\\vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&0&\cdots&1\\1&0&0&0&\cdots&0\end{bmatrix}.$

9. 设
$$n \geq 3, f_1, f_2, \dots, f_n$$
 是次数 $\leq n-2$ 的多项式, 证明: 对 $\forall a_1, a_2, \dots, a_n \in \mathbb{R}$, 行列式
$$\begin{vmatrix} f_1(a_1) & f_2(a_2) & \cdots & f_n(a_1) \\ f_1(a_2) & f_2(a_2) & \cdots & f_n(a_2) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(a_n) & f_2(a_n) & \cdots & f_n(a_n) \end{vmatrix} \equiv$$

0, 并举例说明条件"次数 $\leq n-2$ "不可去.

10. 计算行列式
$$D_n = \begin{vmatrix} 1 & \cos \phi_1 & \cos 2\phi_1 & \cdots & \cos(n-1)\phi_1 \\ 1 & \cos \phi_2 & \cos 2\phi_2 & \cdots & \cos(n-1)\phi_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \cos \phi_n & \cos 2\phi_n & \cdots & \cos(n-1)\phi_n \end{vmatrix}$$
.

4.2 解答

1. 把后 n-1 列加到第一列, 提出公因子 $\frac{1}{2}n(n+1)$, 用第 (1,1) 元消去同列其他元素, 再按第一列展开得到 n-1 阶行列式:

$$D_{n} = \frac{1}{2}n(n+1) \begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 1 & 1 & 2 & \cdots & n-2 & n-1 \\ 1 & n & 1 & \cdots & n-3 & n-2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 4 & 5 & \cdots & 1 & 2 \\ 1 & 3 & 4 & \cdots & n & 1 \end{vmatrix} = \frac{1}{2}n(n+1) \begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 0 & -1 & -1 & \cdots & -1 & -1 \\ 0 & n-2 & -2 & \cdots & -2 & -2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 2 & 2 & \cdots & 2-n & 2-n \\ 0 & 1 & 1 & \cdots & 1 & 1-n \end{vmatrix}$$
$$= \frac{1}{2}n(n+1) \begin{vmatrix} -1 & -1 & \cdots & -1 & -1 \\ n-2 & -2 & \cdots & -2 & -2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 2 & 2 & \cdots & 2-n & 2-n \\ 1 & 1 & \cdots & 1 & 1-n \end{vmatrix}.$$

用所得 n-1 阶行列式的第 (1,1) 元消去同行的其他元素, 再按第一行展开得到 n-2 阶上三角行列式:

$$D_{n} = \frac{1}{2}n(n+1) \begin{vmatrix} -1 & 0 & \cdots & 0 & 0 \\ n-2 & -n & \cdots & -n & -n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 2 & 0 & \cdots & -n & -n \\ 1 & 0 & \cdots & 0 & -n \end{vmatrix} = -\frac{1}{2}n(n+1) \begin{vmatrix} -n & \cdots & -n & -n \\ & \ddots & \vdots & \vdots \\ & & -n & -n \\ & & & -n \end{vmatrix} = (-1)^{n-1}\frac{n+1}{2}n^{n-1}.$$

2. (1) 用倒数第一行减去倒数第二行, 然后用倒数第二行减去倒数第三行, 以此类推, 得到

$$D_n = \begin{vmatrix} a & b & b & \cdots & b & b \\ c - a & a - b & 0 & \cdots & 0 & 0 \\ 0 & c - a & a - b & \cdots & 0 & 0 \\ 0 & 0 & c - a & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & c - a & a - b \end{vmatrix}.$$

接最后一列展开, 知 $D_n = b(-1)^{n+1}(c-a)^{n-1} + (a-b)D_{n-1}$. 初始条件是 $D_1 = a$, 因此知 $D_n = \frac{b(a-c)^n - c(a-b)^n}{b-c}$.

(2) 按第
$$n$$
 列拆项, 得 $E_n = \begin{vmatrix} a_1 & b & b & \cdots & b+0 \\ c & a_2 & b & \cdots & b+0 \\ c & c & a_3 & \cdots & b+0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c & c & c & \cdots & b+(a_n-b) \end{vmatrix} = \begin{vmatrix} a_1 & b & b & \cdots & b \\ c & a_2 & b & \cdots & b \\ c & c & a_3 & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c & c & c & \cdots & b+(a_n-b) \end{vmatrix} + (a_n-b)E_{n-1} = b(a_1-c)(a_2-b)$
 $c) \cdots (a_{n-1}-c) + (a_n-b)E_{n-1}$; 按第 n 列拆项 (或由对称性), 得 $E_n = c(a_1-b)(a_2-b)\cdots(a_{n-1}-b) + (a_n-c)E_{n-1}$.

$$c)\cdots(a_{n-1}-c)+(a_n-b)E_{n-1};$$
 接第 n 列拆坝 (政田対称性),得 $E_n=c(a_1-b)(a_2-b)\cdots(a_{n-1}-b)+(a_n-c)E_{n-1}.$ 两式联立得 $E_n=\frac{bf(c)-cf(b)}{b-c}$,其中 $f(x)=(a_1-x)(a_2-x)\cdots(a_n-x).$

$$\begin{vmatrix} a_{11}+x & a_{12}+x & \cdots & a_{1n}+x \\ a_{21}+x & a_{22}+x & \cdots & a_{2n}+x \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}+x & a_{n2}+x & \cdots & a_{nn}+x \end{vmatrix} = \begin{vmatrix} a_{11}+x & a_{12}+x & \cdots & a_{1n}+x \\ a_{21}-a_{11} & a_{22}-a_{12} & \cdots & a_{2n}-a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}-a_{11} & a_{n2}-a_{12} & \cdots & a_{nn}-a_{1n} \end{vmatrix}$$
,因此是线性函数,由 $f(0)=a, f(-1)=b$ 知 $f(x)=a+(a-b)x$,因此 $f(2)=3a-2b$.

是线性函数. 由 f(0) = a, f(-1) = b 知 f(x) = a + (a - b)x, 因此 f(2) = 3a - 2b.

定线性函数. 田
$$f(0) = a, f(-1) = b$$
 知 $f(x) = a + (a - b)x$, 因此 $f(2) = 3a - 2b$.

4. 按最后一行展开立刻得到递推关系, $M_n = \begin{bmatrix} D_1 & 0 \\ b_2 & \frac{D_2}{D_1} & 0 \\ & b_3 & \frac{D_3}{D_2} & \ddots \\ & \ddots & \ddots & 0 \\ & & b_{n-1} & \frac{D_{n-1}}{D_{n-2}} & 0 \\ & & b_n & \frac{D_n}{D_{n-1}} \end{bmatrix} \begin{bmatrix} 1 & c_2 \frac{1}{D_1} \\ & 1 & c_3 \frac{D_1}{D_2} \\ & & 1 & c_4 \frac{D_2}{D_3} \\ & & \ddots & \ddots \\ & & & \ddots & \ddots \\ & & & & 1 \end{bmatrix}$

5. 按第 1 行展开,得到 $D = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12} \begin{vmatrix} a_{23} & a_{21} \\ a_{33} & a_{31} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \le 3$. 下面证明 $D \neq 3$. 若不然,则必有 $a_{11} = a_{12} = a_{13} = 1$, 且 $a_{12} = a_{13} = 1$, 且 $a_{13} = a_{14} = a_{15} = a_{15}$

5. 按第 1 行展开,得到
$$D = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12} \begin{vmatrix} a_{23} & a_{21} \\ a_{33} & a_{31} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \le 3$$
. 下面证明 $D \neq 3$. 若不然,则必有 $a_{11} = a_{12} = a_{13} = 1$,且 $\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{21} \end{vmatrix} = \begin{vmatrix} a_{23} & a_{21} \\ a_{21} & a_{22} \end{vmatrix} = 1$. 前两个行列式为 1 可以得到 $a_{22} = a_{33} = 1$, $a_{23} = a_{31} = 1$,

而此时
$$\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = a_{21}a_{32} - a_{22}a_{31} = a_{21}a_{32} - 1 \le 0$$
,矛盾. 因此 $D \le 2$,一个构造是 $\begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 2$.

6. 注意到
$$D_n = \begin{vmatrix} 1 & a_1 & a_1(a_1-1) & \cdots & a_1(a_1-1) \cdots (a_1-n+2) \\ 1 & a_2 & a_2(a_2-1) & \cdots & a_2(a_2-1) \cdots (a_2-n+2) \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & a_n & a_n 1(a_n-1) & \cdots & a_n(a_n-1) \cdots (a_n-n+2) \end{vmatrix}$$
 (利用初等列变换,用后面的列加减前面的列),

再将第 k 列提取公因子 $(k-1)!, k=3,4,\dots,n$ 即可.

7. 首先容易看出
$$|A| = \sum_{i=1}^{n} a_{ij} A_{ij} = \sum_{i=1}^{n} a_{ij}^{2} > 0$$
. 其次 $|A|^{2} = |AA^{T}| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \begin{vmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{vmatrix} =$

$$\begin{vmatrix} |A| & 0 & \cdots & 0 \\ 0 & |A| & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & |A| \end{vmatrix} = |A|^n \Rightarrow |A|^{n-2} = 1.$$

相邻对换的乘积, 因此可被这 n-1 个相邻对换生成; 进一步, 所有相邻对换都可被表示为 $S^{n-k}TS^k, k=0,1,\cdots,n-1$, 因此可被 S,T 生成.

9. 不妨设
$$a_1, a_2, \cdots, a_n$$
 互不相同. 考虑 $F(x) = \begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f_1(a_2) & f_2(a_2) & \cdots & a_n(a_2) \\ \vdots & \vdots & \ddots & \vdots \\ f_1(a_n) & f_2(a_n) & \cdots & f_n(a_n) \end{vmatrix}$, 这是一个至多 $n-2$ 次多项式, 有至少

 a_2, a_3, \dots, a_n 这 n-1 个不同的根, 因此必恒等于 0. 若删去条件 "次数 $\leq n-2$ ", 则可令 $f_k(x) = x^{k-1}$, 此时原行列式 构成 Vandermonde 行列式, 只要 a_1, a_2, \dots, a_n 两两不同就不为 0.

10. 由高中三角函数知识知 $\cos k\theta = 2^{k-1}\cos^k\theta + P_{k-2}(\cos\theta)$, 其中 P_{k-2} 是 k-2 次多项式. 因此通过初等列变换有

$$D_{n} = 2^{\frac{(n-1)(n-2)}{2}} \begin{vmatrix} 1 & \cos\phi_{1} & \cos^{2}\phi_{1} & \cdots & \cos^{n-1}\phi_{1} \\ 1 & \cos\phi_{2} & \cos^{2}\phi_{2} & \cdots & \cos^{n-1}\phi_{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \cos\phi_{n} & \cos^{2}\phi_{n} & \cdots & \cos^{n-1}\phi_{n} \end{vmatrix} = 2^{\frac{(n-1)(n-2)}{2}} \prod_{1 \leq j < i \leq n} (\cos\phi_{i} - \cos\phi_{j}).$$

第 5 次习题课:线性空间,行列式 (3)

5.1 问题

- 1. 在正实数集 \mathbb{R}^+ 上定义运算加法 $a \oplus b = ab, \forall a, b \in \mathbb{R}^+$ 和数乘 $ka = a^k, \forall k \in \mathbb{Q}$, 证明 \mathbb{R}^+ 在这两种运算下构成 \mathbb{Q} -线 性空间; 并问 $110, \sqrt{105}$ 是否属于 $span\{1, 2, \dots, 10\}$.
- 2. 设 $W = \{f(x)|f(1) = 0, f(x) \in \mathbb{R}[x]_n\}$, 这里 $\mathbb{R}[x]_n$ 表示实数域 \mathbb{R} 上的次数小于 n 的多项式添上零多项式构成的线 性空间. (1) 证明 W 是 $\mathbb{R}[x]_n$ 的线性子空间; (2) 求 W 的维数和一组基.
- 3. 判断以下向量组线性相关还是线性无关; 若线性相关, 试找出其中一个线性无关的部分组, 同时能线性表出向量组其

余的每个向量. (1)
$$A$$
 的列向量组; (2) A 的行向量组. $A = \begin{bmatrix} 2 & -1 & 1 & -6 & 8 \\ 1 & -2 & -4 & 3 & -2 \\ -7 & 8 & 10 & 3 & -10 \\ 4 & -5 & -7 & 0 & 5 \end{bmatrix}$.

- 4. 已知 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关, 试判断以下各向量组的线性相关性: (1) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$; (2) $\alpha_1, \alpha_2 \alpha_3$ $\alpha_3, \alpha_1 - \alpha_3 + \alpha_4; (3) \alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4; (4) \alpha_1 + \alpha_4, \alpha_2 + 8\alpha_4, \alpha_2 + 5\alpha_3 + \alpha_4, 3\alpha_1 + 7\alpha_2 + \alpha_3, \alpha_1 - \alpha_3.$ 5. 设 $\alpha_1, \alpha_2, \cdots, \alpha_s, \beta$ 为 s+1 个 n 维向量, 且 $\beta = \alpha_1 + \alpha_2 + \cdots + \alpha_s$. 证明向量组 $\beta - \alpha_1, \beta - \alpha_2, \cdots, \beta - \alpha_s$ 线性无 关的充要条件是 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关.
- 6. 设 f(x) 是复系数一元多项式, 且对于任意整数 n 有 f(n) 仍是整数. 证明或否定: (1) f(x) 系数都是有理数; (2) f(x)系数都是整数.

7. 计算行列式
$$D = \begin{vmatrix} 1 & 2 & 4 & 5 & 7 & 4 \\ 2 & 3 & 0 & 0 & 2 & 2 \\ 3 & 0 & 0 & 0 & 0 & 1 \\ 5 & 0 & 0 & 0 & 0 & 2 \\ 5 & 5 & 0 & 0 & 6 & 8 \\ 3 & 5 & 7 & 8 & 6 & 4 \end{vmatrix}$$

8. 计算行列式 $D_1 = \begin{vmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{vmatrix}$ 和 $D_2 = \begin{vmatrix} 0 & 741 & 886 & 114 & 514 \\ -741 & 0 & 1919 & 810 & 2002 \\ -886 & -1919 & 0 & 520 & 1314 \\ -114 & -810 & -520 & 0 & 220 \\ -514 & -2002 & -1314 & -220 & 0 \end{vmatrix}$

- 9. 设 $A, B \in \mathbb{R}^{n \times n}$, I 表示 n 阶单位矩阵. 计算行列式 $D_1 = \begin{vmatrix} I & -B \\ A & 0 \end{vmatrix}$ 和 $D_2 = \begin{vmatrix} I & -B \\ 0 & AB \end{vmatrix}$, 并证明 $D_1 = D_2$.
- 10. 求 n 阶方阵 $A = (a_{ij})$ 的行列式 A, 其中 $a_{ij} = \frac{\alpha_i^n \beta_j^n}{\alpha_i \beta_i}, i, j = 1, 2, \dots, n$.

5.2 解答

- 1. 交換律结合律显然; 零元存在: $1 \oplus a = a \oplus 1 = a$; 负元存在: $a \oplus \frac{1}{a} = \frac{1}{a} \oplus a = 1$; 幺元存在: $1a = a^1 = a$; 左分配律: $(k+l)a = a^{k+l} = a^k a^l = ka \oplus la;$ 右分配律: $k(a \oplus b) = (ab)^k = a^k b^k = ka \oplus kb.$ $\sqrt{105}$ 属于, 因为 $105 = \frac{1}{2}(3 \oplus 5 \oplus 7);$ 110 不属于, 因为整数只能生成它的倍数的某个次方, 而 110 = 11 × 10 其中 11 是素数无法生成.
- 2. (1) 容易证明对 $\forall f(x), g(x) \in W \Rightarrow af(x) + bg(x) \in W$, 因此是线性子空间. (2) 令 $f(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, $f(1) = 0 \Rightarrow a_0 + a_1 + \dots + a_{n-1} = 0$, 因此 $f(x) = a_1(x-1) + a_2(x^2-1) + \dots + a_{n-1}(x^{n-1}-1)$. 下面我们只需证明 $x-1, x^2-1, \dots, x^{n-1}-1$ 确实是 W 的一组基, 而其线性无关性是显然的, 所以 $\dim W = n-1$.
- 3. (1) 线性相关; 其中第 1 列、第 2 列和第 5 列构成线性无关组, 且 $2\alpha_1 + 3\alpha_2 = \alpha_3$, $-5\alpha_1 4\alpha_2 = \alpha_4$;
- (2) 线性相关; 其中第 2 行、第 3 行和第 4 行构成线性无关组, 且 $-\frac{3}{2}\beta_2 \frac{1}{2}\beta_3 = \beta_1$.
- 4. (1) 线性相关; $(\alpha_1 + \alpha_2) (\alpha_2 + \alpha_3) + (\alpha_3 + \alpha_4) (\alpha_4 + \alpha_1) = 0$. (2) 线性无关. (3) 线性无关. (4) 线性相关; 因为 这有五个向量却只有四个自由度.
- 5. 用矩阵表示为 $(\beta \alpha_1, \beta \alpha_2, \dots, \beta \alpha_s) = (\alpha_1, \alpha_2, \dots, \alpha_s)$ $\begin{pmatrix} 1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & 1 & 0 \end{pmatrix} := (\alpha_1, \alpha_2, \dots, \alpha_s)P.$ 容易计算得

到
$$\det P = (s-1)(-1)^{s-1} \neq 0$$
,因此两者线性无关等价.

6. (1) 设 $f(x) = a_0 + a_1 x + \dots + a_m x^m (a_m \neq 0)$. 取 $x_k = k$ 代入,得到线性方程组
$$\begin{cases} a_0 + a_1 x_0 + \dots + a_m x_0^m = f(x_0), \\ a_0 + a_1 x_1 + \dots + a_m x_1^m = f(x_1), \\ \dots \\ a_0 + a_1 x_m + \dots + a_m x_m^m = f(x_m). \end{cases}$$
其系数行列式是 Vandermonde 行列式不为 0,因此由 Cramer 法则其有唯一解 $a_i = \frac{D_i}{D}, i = 0, 1, \dots, m$. 由于 D_i 的元

素均为整数, 因此 a_i 是有理数. (2) 结论不对, 反例是 $f(x) = \frac{1}{2}x^2 + \frac{1}{2}x$.

7. 按第 3、4 行展开:
$$D = (-1)^{3+4+1+6} \begin{vmatrix} 3 & 1 \\ 5 & 2 \end{vmatrix} * \begin{vmatrix} 2 & 4 & 5 & 7 \\ 3 & 0 & 0 & 2 \\ 5 & 0 & 0 & 6 \\ 5 & 7 & 8 & 6 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 5 & 7 \\ 3 & 0 & 0 & 2 \\ 5 & 0 & 0 & 6 \\ 5 & 7 & 8 & 6 \end{vmatrix} .$$
 再按第 2、3 行展开: $D = (-1)^{2+3+1+4} \begin{vmatrix} 3 & 2 \\ 5 & 6 \end{vmatrix} *$

8. 前者是偶数阶斜对称矩阵. 若
$$a=0$$
. 则按第 1、2 行展开, 得到 $D_1=(-1)^{1+2+3+4}\begin{vmatrix} b & c \\ d & e \end{vmatrix}*\begin{vmatrix} -b & -d \\ -c & -e \end{vmatrix}=(be-cd)^2$. 若 $a\neq 0$, 则将第 1 行的 $\frac{d}{a}$ 倍和第 2 行的 $\frac{b}{a}$ 倍加到第 3 行上, 将第 1 行的 $\frac{e}{a}$ 倍和第 2 行的 $\frac{e}{a}$ 倍加到第 4 行上, 得到
$$D_2=\begin{vmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ 0 & 0 & 0 & f+\frac{cd}{a}-\frac{be}{a} \\ 0 & 0 & -f+\frac{be}{a}-\frac{cd}{a} & 0 \end{vmatrix}$$
. 然后按第 1、2 行展开, 得到 $D_1=(af-be+cd)^2$.

后者是奇数阶斜对称矩阵, 因此行列式为 $D_2=0$ (因为 $|M_2|=|M_2^T|=|-M_2|=(-1)^{2k+1}|M_2|\Rightarrow |M_2|=0$).

- 9. 按前 n 行展开, 得到 $D_1 = |A||B|$, $D_2 = |AB|$. 将后面 n 行减去前面 n 行的 A 倍 (按矩阵 (I, -B) 左乘 A 理解), 可使 M_1 转化为 M_2 .
- 10. 利用 $x^n y^n = (x y)(x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \dots + xy^{n-2} + y^{n-1})$ 及行列式乘法规则 |AB| = |A||B|, 知

$$|A| = \begin{vmatrix} 1 & \alpha_1 & \alpha_1^2 & \cdots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_n & \alpha_n^2 & \cdots & \alpha_n^{n-1} \end{vmatrix} \begin{vmatrix} \beta_1^{n-1} & \beta_2^{n-1} & \cdots & \beta_n^{n-1} \\ \beta_1^{n-2} & \beta_2^{n-2} & \cdots & \beta_n^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_1 & \beta_2 & \cdots & \beta_n \\ 1 & 1 & \cdots & 1 \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} \prod_{1 \le j < i \le n} (\alpha_i - \alpha_j)(\beta_i - \beta_j).$$

6 第 6 次习题课: 秩 (1)

A 列组的秩和一个极大无关组, 并用此极大无关组表出 A 的每个列向量. (2) 求 A 行空间的维数和一组基, 写出 A 的 各个行向量在此基下的坐标. (3) a, b 取何值时, 向量 (3, a, b, b, 3) 属于 A 的行空间?

- 2. 设向量组 $\alpha_1, \dots, \alpha_r$ 能线性表出 β_1, \dots, β_s , 并且有 $\beta_i = b_{i1}\alpha_1 + \dots + b_{ir}\alpha_r, \forall i = 1, 2, \dots, s$. 证明若矩阵 $B = (b_{ij})_{s \times r}$ 列向量线性无关,则 β_1, \dots, β_s 也能线性表出 $\alpha_1, \dots, \alpha_r$.
- 3. 证明: 若组 I 能线性表出组 II, 且 rank(I) = rank(II), 则组 II 也能表出组 I.
- 4. 矩阵 A,B,C 满足 $A_{m\times n}B_{n\times p}=C_{m\times p}$. 证明: (1) A 的列向量组能线性表出 C 的列向量组; (2) $\mathrm{rank}(A)\geq\mathrm{rank}(C)$; (3) 若矩阵 B 行满秩, 则 $\operatorname{rank}(A) = \operatorname{rank}(C)$, 且 C 的列向量组也能线性表出 A 的列向量组.
- 5. 对不同的 λ 取值, 讨论矩阵 $A = \begin{bmatrix} 1 & \lambda & -1 & 2 \\ 2 & -2 & \lambda & 5 \\ 1 & 2 & -3 & 1 \end{bmatrix}$ 的秩. 6. 若矩阵 $A = (a_{ij})_{n \times n}$ 满足 $|a_{ii}| > \sum_{j \neq i} |a_{ij}|, \forall 1 \leq i \leq n$, 则称 A 是主对角占优矩阵. 证明 $\det(A) \neq 0$. 进一步, 证明
- 若 $a_{ii} > 0, \forall 1 \leq i \leq n,$ 则 $\det(A) > 0.$
- 7. 设矩阵 $A = (a_{ij})_{n \times n}$ 满足 (1) $a_{ii} > 0, \forall 1 \le i \le n$; (2) $a_{ij} < 0, \forall 1 \le i \ne j \le n$; (3) $\sum_{i=1}^{n} a_{ij} = 0, \forall 1 \le j \le n$. 求矩阵 A 的秩.
- 8. 设线性方程组 $a_{i1}x_1+\cdots+a_{in}=b_i, 1\leq i\leq n$ 的系数矩阵 A 的秩等于矩阵 $B=\begin{bmatrix}A&b\\b^T&0\end{bmatrix}$ 的秩. 证明该方程组有解, 并问其逆命题是否成立.
- 9. 设 $A \in \mathbb{R}^{m \times n}, \beta = (b_1, \dots, b_m)^T$. 证明下列命题相互等价: (1) $Ax = \beta$ 有解; (2) $A^Tx = 0$ 的解均满足 $x^T\beta = 0$; (3)
- 10. 设 $A = (a_{ij})_{n \times n}$, 且 $|a_{ii}a_{jj}| > \sum_{k \neq i} |a_{ik}| \sum_{l \neq j} |a_{jl}|$ 对任意 $1 \leq i \neq j \leq n$ 成立. 证明 $\det(A) \neq 0$.

 11. 利用矩阵 $\begin{pmatrix} I_{s \times s} & 0_{s \times m} \\ 0_{n \times s} & A_{n \times s}B_{s \times m} \end{pmatrix}$ 的初等行列变换证明 $s + \operatorname{rank}(AB) \geq \operatorname{rank}(A) + \operatorname{rank}(B)$.

 12. 设 A, B 是幂等矩阵 (即 $A^2 = A, B^2 = B$), 且 I A B 满秩, 证明 $\operatorname{rank}(A) = \operatorname{rank}(B)$.

6.2 解答

1. A 的简化阶梯型矩阵是 $A=\begin{bmatrix}1&0&2&0&3\\0&1&-1&0&5\\0&0&0&1&-1\\0&0&0&0&0\end{bmatrix}$. (1) 列秩是 3, 一个极大无关组是 β_1,β_2,β_4 , 且 $\beta_3=2\beta_1-\beta_2,\beta_5=1$

 $3\beta_1 + 5\beta_2 - \beta_4$. (2) 行空间维数和列秩相同,一组基是 $\alpha_1, \alpha_2, \alpha_4$, 且 $\alpha_3 = -\frac{31}{9}\alpha_1 - \frac{55}{9}\alpha_2 + \frac{17}{9}\alpha_4$, $\alpha_5 = -\frac{20}{9}\alpha_1 - \frac{23}{9}\alpha_2 + \frac{22}{9}\alpha_4$. (3) 仔细计算即可. a = 4, b = 2.

- 2. 只需证明能表出 α_1 . 利用高斯消元法去解方程 $\beta_{i1}=b_{i1}\alpha_1+\cdots+b_{ir}\alpha_r$, 由于 B 列满秩, 因此其简化阶梯型矩阵必 (可用递推法或归纳法证明之), 从而 α_1 能被 β_1, \dots, β_s 线性表出.
- 3. 设 β_1, \dots, β_s 是组 II 极大线性无关组. 任取组 I 向量 α , 由于组 I 能表出 $\beta_1, \dots, \beta_s, \alpha$, 从而 $\mathrm{rank}(\beta_1, \dots, \beta_s, \alpha) \leq s$, 即 $\beta_1, \dots, \beta_s, \alpha$ 线性相关. 由于 β_1, \dots, β_s 线性无关, 因此它们能表出 α .

- 4. (1) 由矩阵乘法定义知 $c_i = b_{1i}a_1 + \cdots + b_{ni}a_n$, $\forall 1 \leq i \leq p$. (2) 由第 (1) 问结论立得. (3) 用第 2 题结论立得.
- 5. 显然矩阵 A 的秩至少为 2(第 1 列和第 4 列线性无关), 至多为 3. 下面考虑第 2 列和第 3 列能否被第 1 列和第 4 列 线性表出. 先看第 2 列和最后两行, 知表出系数必然为 4 和 -2, 因此 $\lambda = 0$, 此时验证第 3 列知确实能被第 1 列和第 4 列线性表出. 综上, $\lambda = 0$ 时秩为 2, 否则为 3.
- 6. (1) 反证法. 假设 A 的列向量组线性相关, 那么存在不全为 0 的系数使得 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = 0$. 我们不妨设 在这 n 个系数里面 k_1 的绝对值最大, 那么就有 $k_1a_{11}+k_2a_{12}+\cdots+k_na_{1n}=0$. 但是 $|k_1a_{11}+k_2a_{12}+\cdots+k_na_{1n}|\geq$ $|k_1a_{11}| - |k_2a_{12}| - \dots - |k_na_{1n}| \ge |k_1a_{11}| - |k_1|(|a_{12}| + \dots + |a_{1n}|) > 0$, 矛盾. 因此 $\det(A) \ne 0$.

$$(2) 考虑函数 \ A(t) = \begin{bmatrix} a_{11} & a_{12}t & a_{13}t & \cdots & a_{1n}t \\ a_{21}t & a_{22} & a_{23}t & \cdots & a_{2n}t \\ a_{31}t & a_{32}t & a_{33} & \cdots & a_{3n}t \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1}t & a_{n2}t & a_{n3}t & \cdots & a_{nn} \end{bmatrix}. \ \mathbb{m}$$
么任意 $t \in [0,1], \ A(t)$ 都是主对角阵占优矩阵,因此 $\det(A(t)) \neq a_{n1}t + a_{n2}t + a_{n3}t + \cdots + a_{nn} \end{bmatrix}$

- 0. 由于 $\det(A(0)) > 0$, 由函数连续性知 $\det(A(1)) > 0$, 此即原命题.
- 7. 首先由条件 (3) 知 |A|=0, 因此 ${\rm rank}(A)\leq n-1$. 其次考虑 A 中元素 a_{11} 的余子式 M_{11} , 由条件 (1)(2) 知其严格 主对角占优, 因此 $M_{11} > 0$. 这意味着 rank(A) = n - 1.
- 8. (1) $\operatorname{rank}(A) \leq \operatorname{rank}(A, b) \leq \operatorname{rank}\begin{bmatrix} A & b \\ b^T & 0 \end{bmatrix} = \operatorname{rank}(B) = \operatorname{rank}(A)$, 因此每一步都取等号,从而方程组有解. (2) 不成立,考虑 $\begin{cases} x_1 + 2x_2 = 1 \\ 3x_1 + 4x_2 = 3 \end{cases}$, $\operatorname{rank}(A) = 2$, $\operatorname{max}(B) = 3$.

- $(2) \Rightarrow (3)$: 显然.

(2)
$$\Rightarrow$$
 (3): $\frac{1}{3}$ $\frac{1}{3}$

10. 反证法. 假设 $\det(A) = 0$, 则 Ax = 0 有非零解 (c_1, \dots, c_n) . 若仅有 $c_i \neq 0$, 则 A 的第 i 列全零, 与条件矛盾. 下设第 i, j 个分量不为 0, 且 $|c_i| \ge |c_j| \ge |c_k|, i \ne j$. 考察第 i 个和第 j 个等式, 有 $|a_{ii}c_i| \cdot |a_{jj}c_j| = |\sum_{k \ne i} a_{ik}c_k| \cdot |\sum_{l \ne j} a_{jl}c_l| \le |c_i|$

$$|c_{j}||\sum_{k\neq i}a_{ik}|\cdot|c_{i}|\sum_{l\neq j}|a_{jl}|\Rightarrow|a_{ii}a_{jj}|\leq\sum_{k\neq i}|a_{ik}|\sum_{l\neq j}a_{jl},$$
 矛盾.
$$11.\begin{pmatrix}I&0\\0&AB\end{pmatrix}\overset{\textcircled{2}+=A\times\textcircled{1}}{\longrightarrow}\begin{pmatrix}I&0\\A&AB\end{pmatrix}\underset{\textcircled{2}-=\textcircled{1}\times B}{\longrightarrow}\begin{pmatrix}I&-B\\A&0\end{pmatrix},$$
 最左边矩阵秩为 $s+\operatorname{rank}(AB)$, 最右边矩阵秩大

于等于 $\operatorname{rank}(A) + \operatorname{rank}(B)$.

12.
$$A(I-A-B) = -AB$$
, 因此 $\operatorname{rank}(A) = \operatorname{rank}(A(I-A-B)) = \operatorname{rank}(A)$, 同理 $\operatorname{rank}(B) = \operatorname{rank}(AB)$.

第 7 次习题课: 秩 (2), 线性方程组的解空间

7.1问题

- 1. 设 $A \to m \times n$ 矩阵. 证明 A 的列向量组线性无关当且仅当 A 至少有一个 n 阶非零子式.
- 2. 设矩阵 A 的列向量为 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$, 其中 $\alpha_1,\alpha_2,\alpha_3$ 线性无关, $\alpha_4=2\alpha_2-\alpha_3$, 且 $\beta=\alpha_1+\alpha_3+\alpha_4$. (1) 求 $AX=\beta$ 的通解. (2) 求 A 行空间的一组基. (3) 将 A 分解为一个列满秩与一个行满秩矩阵的乘积.
- 3. 计算矩阵 $A = \begin{bmatrix} 2 & 2 & 4 & 8 & 7 \\ 2 & 2 & 4 & 8 & 7 \\ 2 & 1 & 2 & 5 & 2 \end{bmatrix}$ 的秩 r, 并计算其 r 阶非零子式的个数.
- 4. 设矩阵 $A=(\alpha_1,\cdots,\alpha_n)$ 列满秩, $B=(\beta_1,\cdots,\beta_s), C=(\gamma_1,\cdots,\gamma_s)$ 满足 AB=C. 证明: (1) B 的解空间和 C 的 解空间相同; (2) 若 $\beta_{i_1}, \beta_{i_2}, \dots, \beta_{i_r}$ 线性无关, 则 $\gamma_{i_1}, \gamma_{i_2}, \dots, \gamma_{i_r}$ 也线性无关; 特别地, 有 $\operatorname{rank}(B) = \operatorname{rank}(C)$.
- 5. 设 W 是矩阵空间 $M_n(K)$ 的一个子空间. 证明: 若 $\dim(W) \ge n^2 n + 1$, 则 W 中至少包含一个满秩的矩阵.

6. 已知矩阵
$$\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$$
 满秩, 求两直线
$$\frac{x-a_3}{a_1-a_2} = \frac{x-b_3}{b_1-b_2} = \frac{x-c_3}{c_1-c_2}, \frac{x-a_1}{a_2-a_3} = \frac{y-b_1}{b_2-b_3} = \frac{z-c_1}{c_2-c_3} \text{ 的位置关系.}$$

- 7. 设 $B \neq 3 \times 4$ 矩阵, $(2,0,1,3)^T$ 是齐次方程组 BX = 0 的一个解. 设 A 是将行向量 (2,0,1,3) 添加到 B 的最下面 得到的方阵. 已知 A 的 (4,1) 元的余子式为 6, 求 det(A).
- 8. $A \in m \times n$ 矩阵, $b \in m \times 1$ 矩阵. 证明线性方程组 $A^T A x = A^T b$ 总有解.
- 9. 设数域 K 上的 n 阶方阵 A 的第 (i,j) 元是 $a_i b_j$. 求 $\det(A)$, 并计算当 $n \ge 2$ 且 $a_1 \ne a_2, b_1 \ne b_2$ 时 AX = 0 的解 空间维数和一组基.
- 10. 设 A, B 是数域 K 上的 n 阶方阵, AX = 0, BX = 0 分别有 l, m 个线性无关的解向量. 证明: (1) (AB)X = 0 至少 有 $\max(l, m)$ 个线性无关的解向量; (2) 如果 l+m>n, 那么 (A+B)X=0 必有非零解; (3) 如果 AX=0 和 BX=0没有公共的非零解向量, 且 l+m=n, 那么 K^n 中的任一向量 α 都可以唯一的分解为 $\alpha=\beta+\gamma$, 其中 β,γ 分别是 AX = 0 和 BX = 0 的解向量.
- 11. A, B 都是 $m \times n$ 矩阵, 线性方程组 AX = 0 和 BX = 0 同解. 问 A, B 的列向量组是否等价、行向量组是否等价.
- 12. 证明: 若数域 K 上的 n 阶方阵 $A = (a_{ij})$ 的主对角元 a_{ij} 均不为零, 则存在向量 X 使得 AX 的每个分量都不为零.
- 13. 证明: AX = 0 有强非零解 (解向量的每个系数都不为零) 的充要条件是 A 的任一列向量均可表示为其余列向量的 线性组合.
- 14. 设 $A \in \mathbb{R}$ 阶方阵, 证明: (1) 若 $A^{k-1}\alpha \neq 0$, $A^k\alpha = 0$, 那么 α , $A\alpha$, \cdots , $A^{k-1}\alpha$ 线性无关; (2) $\operatorname{rank}(A^n) = \operatorname{rank}(A^{n+1})$.

7.2 解答

- 1. 充分性: 存在 n 阶非零子式 \Rightarrow 在这 n 阶子式内的列向量组线性无关 \Rightarrow 作为延长组的 A 列向量组线性无关. 必要性: A 列向量组线性无关 \Rightarrow rank $(A) = n \Rightarrow$ 行向量组秩也为 $n \Rightarrow$ 存在 n 个线性无关的行向量 \Rightarrow 这 n 个线性无 关的行向量构成的子式行列式非零.
- 2. (1) 其实是去求解方程 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 + x_4(2\alpha_2 \alpha_3) = \alpha_1 + 2\alpha_2 \Rightarrow x_1 = 1, x_2 + 2x_4 = 2, x_3 x_4 = 0 \Rightarrow 通解$
- $(2)(3) \operatorname{rank}(A) = 3, 且有分解 \ A = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \end{pmatrix}, 因此行空间一组基为 <math>(1,0,0,0), (0,1,0,2), (0,0,1,-1).$ $3. \ \text{先求出其行简化阶梯矩阵} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \text{知其秩为 3, 且有 5 个列极大线性无关组 (第 5 列必选, 第 2 列、第}$
- 3 列至多选一个, 其余随意); 观察原矩阵易知有 2 个行极大无关组 (第 2 行、第 3 行至多选一个, 其余随意); 因此有 $2 \times 5 = 10$ 个 3 阶非零子式.
- 4. (1) 由于 A 列满秩, 因此 $AX = 0 \Rightarrow X = 0$, 即 $CX = ABX = 0 \Rightarrow BX = 0$. 反过来则显然.
- (2) 只需注意到 $k_1\gamma_{i_1} + \cdots + k_r\gamma_{i_r} = 0 \Leftrightarrow (\alpha_1, \cdots, \alpha_n)(k_1\beta_{i_1} + \cdots + k_r\beta_{i_r}) = 0 \Leftrightarrow k_1\beta_{i_1} + \cdots + k_r\beta_{i_r} = 0$. 后一问取极 大线性无关组知 $rank(B) \le rank(C)$, 由矩阵乘法又知道 $rank(C) = rank(AB) \le rank(B)$.
- 5. 将 $M_n(K)$ 的矩阵平铺开看成是 n^2 维的行向量, 并取该子空间的一组基 A_1, \dots, A_r . 把这 r 个行向量在 axis = 0 方 向拼成 $r \times n^2$ 的矩阵, 并可得到其简化阶梯型矩阵 J. 注意到 J 的行向量 B_1, \dots, B_r 也是该子空间的一组基, 这组基 的线性组合能使得矩阵在某 r 个位置取到任意的值. 下面用归纳法证明: 任取 $n \times n$ 矩阵 A 中的 $n^2 - n + 1$ 个位置, 我们总可以在这些位置填上 0 或 1, 使得不管矩阵 A 其余的 n-1 个位置填什么数, A 的行列式总为 ± 1 . 假设命题对 n-1 级的方阵成立, 考察 n 阶方阵. 由抽屉原理, 总有一行 (不妨设是第 i 行), 该行的 n 个元素都可任意填选. 再选一 列 (不妨设是第 j 列), 该列中存在某个位置不能任意填选. 取 (i,j) 元为 $1,(i,\neq j)$ 元为 0, 那么在 (i,j) 元的余子式中 最多只有 n-2 个元素不能任选, 由归纳假设知总可在子阵中能任意填选的地方填上 0 或 1, 使得 (i,i) 元的余子式取 ± 1 . 在此填法下, n 阶方阵 A 的行列式是 (i,j) 元的代数余子式, 即 ± 1 . 由数学归纳法知命题得证.
- 6. 由矩阵满秩知 $(a_1-a_2,b_1-b_2,c_1-c_2)$ 和 $(a_2-a_3,b_2-b_3,c_2-c_3)$ 线性无关 (用第一列减第二列和用第二列减第三

列), 因此不平行. 再检查是否相交, 只需验证 $x_3 + k(x_1 - x_2) = x_1 + t(x_2 - x_3), x = a, b, c$ 对于 k, t 是否有解. 由于矩 阵满秩, 该方程系数必须满足 t+1=k-1=t+k=0, 因此 t=-1, k=1. 从而两直线相交.

7. 即
$$|(\alpha_2, \alpha_3, \alpha_4)| = 6$$
,问 $\begin{vmatrix} -\frac{1}{2}\alpha_3 - \frac{3}{2}\alpha_4 & \alpha_2 & \alpha_3 & \alpha_4 \\ 2 & 0 & 1 & 3 \end{vmatrix}$. 按第四行展开得 $|A| = 2*(-6) - 1*|(-\frac{1}{2}\alpha_3 - \frac{3}{2}\alpha_4, \alpha_2, \alpha_4)| + 3*|(-\frac{1}{2}\alpha_3 - \frac{3}{2}\alpha_4, \alpha_2, \alpha_3)| = -42$.

8. 先证明 $\operatorname{rank}(A^T A) = \operatorname{rank}(A)$. 首先显然 $\operatorname{rank}(A^T A) \leq \operatorname{rank}(A)$, 其次 $A^T A x = 0 \Rightarrow x^T A^T A x = 0 \Rightarrow ||Ax||_2^2 = 0 \Rightarrow$ $Ax = 0 \Rightarrow \operatorname{Ker}(A^T A) \subset \operatorname{Ker}(A) \Rightarrow \operatorname{rank}(A^T A) \geq \operatorname{rank}(A)$. 接着, 由于 $\operatorname{rank}(A^T A) \leq \operatorname{rank}(A^T A, A^T b) \leq \operatorname{rank}(A^T A) = \operatorname{rank}(A^T A)$ $rank(A) = rank(A^T A)$ 知系数矩阵和增广矩阵秩相等, 因此方程有解.

9. (1)
$$n=1$$
 时 $|A|=a_1-b_1, n=2$ 时 $|A|=(a_1-a_2)(b_1-b_2).$ $n>2$ 时由于 $A=\begin{pmatrix} a_1 & -1\\ a_2 & -1\\ \vdots & \vdots\\ a_n & -1 \end{pmatrix}\begin{pmatrix} 1 & 1 & \cdots & 1\\ b_1 & b_2 & \cdots & b_n \end{pmatrix}$, 因

此 $\operatorname{rank}(A) \leq 2$, 从而 |A| = 0.

(2) n=2 时 $|A|\neq 0$, 因此解空间只有零解, 维数为 0, 不存在基. n>2 时, 由于 ${\rm rank}(A)\leq 2$ 且显然 $A\begin{pmatrix} 1,2\\1,2 \end{pmatrix}\neq 0$, 因

此 $\operatorname{rank}(A)=2$,解空间维数是 n-2. 因此只需解方程 $\begin{pmatrix} 1 & 1 & \cdots & 1 \\ b_1 & b_2 & \cdots & b_n \end{pmatrix} X=0$ 即可 (这个分解后的系数矩阵秩也为

2, 因此同解). 直接计算得到一组基为
$$\eta_i = \left(\frac{b_i - b_2}{b_2 - b_1}, \frac{b_1 - b_i}{b_2 - b_1}, 0, \dots, 0, \underbrace{1}_{\widehat{\mathfrak{g}}_i \wedge}, 0 \dots, 0\right)^T, i = 3, 4, \dots, n.$$

$$10. (1) n - \operatorname{rank}(AB) \ge \max(n - \operatorname{rank}(A), n - \operatorname{rank}(B)) \ge \max(l, m).$$

- 10. (1) $n \operatorname{rank}(AB) \ge \max(n \operatorname{rank}(A), n \operatorname{rank}(B)) \ge \max(l, n)$
- (2) rank $(A+B) \le \text{rank}(A) + \text{rank}(B) \le n l + n m < n$, 因此 (A+B)X = 0 必有非零解.
- (3) 设 $\alpha_1, \dots, \alpha_l$ 与 β_1, \dots, β_m 分别是 AX = 0, BX = 0 线性无关的解. 考虑方程 $\lambda_1 \alpha_1 + \dots + \lambda_l \alpha_l + \mu_1 \beta_1 + \dots + \mu_m \beta_m = 0$ 0, 则 $\lambda_1\alpha_1+\cdots+\lambda_l\alpha_l=-\mu_1\beta_1-\cdots-\mu_m\beta_m$ 是 AX=0 和 BX=0 的公共解. 由题意知其必然为零向量, 又由 $\{\alpha_i\}_{i=1}^l,\{\beta_j\}_{i=1}^m$ 线性无关性知 $\lambda_1=\dots=\lambda_l=\mu_1=\dots=\mu_m=0$. 因此 $\alpha_1,\dots,\alpha_l,\beta_1,\dots,\beta_m$ 整体线性无关. 又由于 l+m=n, 因此他们是 K^n 一组基, 从而任一向量都可唯一被它们线性表出, 相应的被表出的两部分也就对应了 β 和 γ . 唯一性可由 $\alpha = \beta_1 + \gamma_1 = \beta_2 + \gamma_2 \Rightarrow \beta_1 - \beta_2 = \gamma_2 - \gamma_1$ 是 AX = 0 和 BX = 0 的公共解 $\Rightarrow \beta_1 - \beta_2 = \gamma_2 - \gamma_1 = 0$

础解系 X_1, \dots, X_r 构成 $n \times r$ 矩阵 C. 考虑线性方程组 $C^T X = 0$, 其解空间维数为 $n - r = \operatorname{rank}(A)$. 由于 $C^T A^T = 0$, 因此 A 的行空间是该解空间的一个子空间. 由于它们维数相等, 因此 A 的行空间就是该解空间. 同理 B 的行空间也是 该解空间.

12. 注意到 $W_i = \{X \in K^n : (a_{i1}, \dots, a_{in})X = 0\}, i = 1, 2, \dots, n$ 都是 K^n 的 n-1 维子空间, 由于有限个 n-1 维子 空间张不满 n 维全空间, 从而存在 $X_0 \in K^n \setminus (W_1 \cup W_2 \cup \cdots \cup W_n)$, 此时 AX_0 的每个分量都不为零.

13. 必要性. 设 $X=(x_1,\cdots,x_n)^T$ 是强非零解, 则 $\alpha_i=\sum_{k\neq i}(-\frac{x_k}{x_i})\alpha_k, \forall i=1,\cdots,n$.

充分性. 不妨设
$$\alpha_i = \sum_{k \neq i} t_{ki} \alpha_k, \forall i = 1, \cdots, n,$$
 则记 $T = \begin{pmatrix} 1 & -t_{12} & -t_{13} & \cdots & -t_{1,n-1} & -t_{1,n} \\ -t_{21} & 1 & -t_{23} & \cdots & -t_{2,n-1} & -t_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -t_{n-1,1} & -t_{n-1,2} & -t_{n-1,3} & \cdots & 1 & -t_{n-1,n} \\ -t_{n1} & -t_{n2} & -t_{n3} & \cdots & -t_{n,n-1} & 1 \end{pmatrix}$, 从

而 AT = 0. 由于 T 的任一主对角元均不为零, 从而存在 X_0 使得 TX_0 每个分量都不为零, 此即该强非零解.

14. (1) 设 $\lambda_1 \alpha + \lambda_2 A \alpha + \dots + \lambda_k A^{k-1} \alpha = 0$, 两边左乘 A^{k-1} 知 $\lambda_1 = 0$, 再左乘 A^{k-2} 知 $\lambda_2 = 0$, 以此类推知线性无关. (2) 显然 $A^nX = 0 \Rightarrow A^{n+1}X = 0$. 若存在 $A^{n+1}\alpha = 0$ 但 $A^n\alpha \neq 0$, 则根据 (1) 结论知 $\alpha, A\alpha, \dots, A^n\alpha$ 线性无关, 这是 n 维空间是不可能的. 因此 A^{n+1} 和 A^n 解空间相同, 从而 $\operatorname{rank}(A^n) = \operatorname{rank}(A^{n+1})$.

8 期中考试

8.1 问题

1. 求
$$n$$
 阶行列式
$$\begin{vmatrix} 1 + x_1 y_1 & x_1 y_2 & \cdots & x_1 y_n \\ x_2 y_1 & 1 + x_2 y_2 & \cdots & x_2 y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_n y_1 & x_n y_2 & \cdots & 1 + x_n y_n \end{vmatrix}.$$

2. 设 $\alpha_1, \dots, \alpha_r$ 与 β_1, \dots, β_s 是 \mathbb{R}^n 中的两个线性无关组. 证明 $\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_s$ 线性无关当且仅当 $\langle \alpha_1, \dots, \alpha_r \rangle \cap$ $\langle \beta_1, \cdots, \beta_s \rangle = \{0\}.$

3. 设矩阵
$$A = \begin{bmatrix} b_n & x & 0 & \cdots & 0 \\ b_{n-1} & -1 & x & \ddots & \vdots \\ \vdots & 0 & -1 & \ddots & 0 \\ b_2 & \vdots & \ddots & \ddots & x \\ x+b_1 & 0 & \cdots & 0 & -1 \end{bmatrix}$$
. (1) 将 A 写成一个上三角矩阵与一个下三角矩阵的乘积; (2) 求 A 的行

列式.

4. 设 $\alpha_1, \dots, \alpha_r$ 与 β_1, \dots, β_r 是 \mathbb{R}^n 中的两个向量组, 其中 β_1, \dots, β_r 线性无关. 证明存在无穷多个实数 k, 使得向量 组 $\alpha_1 + k\beta_1, \dots, \alpha_r + k\beta_r$ 线性无关.

5. 已知矩阵 $A = [\alpha_1, \alpha_2, \cdots, \alpha_5]$ 与 $\begin{bmatrix} 2 & 1 & 2 & 5 & 3 \\ 2 & 2 & 4 & 8 & 7 \\ 3 & 1 & 2 & 6 & 3 \end{bmatrix}$ 的行向量组等价,且 $\alpha_2 = (2, 1, 2, 1)^T, \alpha_5 = (7, 3, 7, 3)^T$. 又知方

程组 $AX = \beta$ 的一个解为 $X = (1,1,-1,0,1)^T$, 这里 $\beta = (7,5,7,4)^T$. (1) 写出矩阵 A 及其行简化阶梯形矩阵 J; (2) 求 A 行空间的一组基, 并确定当 a,b 为何值时, (5,3,6,a,b) 落在 A 的行空间里; (3) 求方程组 $AX=\beta$ 的所有解; (4)求所有矩阵 B, 使得 $A = [\alpha_1, \alpha_2, \alpha_5]B$.

6. 设
$$A_{ij}$$
 是行列式 $D = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$ 中 (i,j) 元的代数余子式. 证明
$$\begin{vmatrix} a_{11} & \cdots & a_{1n} & x_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} & x_n \\ x_1 & \cdots & x_n & y \end{vmatrix} = Dy - \sum_{i,j=1}^n A_{ij} x_i x_j.$$

7. 已知矩阵 A 的列数与矩阵 B 的行数相等. 记 A 的解空间为 W, B 的列空间为 V. 证明 rank(B) = rank(AB) 当且 仅当 $V \cap W = \{0\}$.

8.2 解答

1. 利用拆项大法, 注意若有两列成比例则行列式为 0. 从而最后只会剩下 n+1 个行列式: $\begin{vmatrix} x_1y_1 & 0 & 0 & \cdots & 0 \\ x_2y_1 & 1 & 0 & \cdots & 0 \\ x_3y_1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_ny_1 & 0 & 0 & \cdots & 1 \end{vmatrix}$, \cdots

$$\begin{vmatrix} 1 & 0 & \cdots & 0 & x_1y_n \\ 0 & 1 & \cdots & 0 & x_2y_n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & x_{n-1}y_n \\ 0 & 0 & \cdots & 0 & x_ny_n \end{vmatrix}, \begin{vmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{vmatrix}, 相加得到原行列式为 $1 + \sum_{i=1}^n x_iy_i$.$$

2. "⇒": 若 $x = \lambda_1 \alpha_1 + \dots + \lambda_r \alpha_r = \mu_1 \beta_1 + \dots + \beta_s \in \langle \alpha_1, \dots, \alpha_r \rangle \cap \langle \beta_1, \dots, \beta_s \rangle$, 则 $\lambda_1 \alpha_1 + \dots + \lambda_r \alpha_r - \mu_1 \beta_1 - \dots - \mu_s \beta_s = \lambda_1 \alpha_1 + \dots + \lambda_r \alpha_r - \mu_1 \beta_1 + \dots + \lambda_r \alpha_r +$ $0 \Rightarrow \lambda_1 = \dots = \lambda_r = \mu_1 = \dots = \mu_s = 0 \Rightarrow x = 0.$

" \Leftarrow ": 考虑 $\lambda_1\alpha_1 + \cdots + \lambda_r\alpha_r + \mu_1\beta_1 + \cdots + \beta_s = 0$, 这意味着 $\lambda_1\alpha_1 + \cdots + \lambda_r\alpha_r = -\mu_1\beta_1 - \cdots - \mu_s\beta_s \in \langle \alpha_1, \cdots, \alpha_r \rangle$ $\langle \beta_1, \cdots, \beta_s \rangle = \{0\} \Rightarrow \lambda_1 \alpha_1 + \cdots + \lambda_r \alpha_r = 0, \mu_1 \beta_1 + \cdots + \mu_s \beta_s = 0.$ 由两组向量 $\{\alpha_i\}_{i=1}^r, \{\beta_j\}_{j=1}^s$ 各自内部的线性无关 性知 $\lambda_1 = \cdots = \lambda_r = \mu_1 = \cdots = \mu_s = 0$, 因此整体也线性无关.

3. (1) 通过行变换 (倒数第二行加上倒数第一行的 x 倍, 倒数第三行加上倒数第二行的 x 倍, \cdots) 得到 A = LU, 其中

$$L = \begin{bmatrix} 1 & -x & 0 & \cdots & 0 & 0 \\ 0 & 1 & -x & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -x \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}, U = \begin{bmatrix} x^n + b_1 x^{n-1} + \cdots + b_n & 0 & 0 & \cdots & 0 & 0 \\ x^{n-1} + b_1 x^{n-2} + \cdots + b_{n-1} & -1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x^2 + b_1 x + b_2 & 0 & 0 & \cdots & -1 & 0 \\ x + b_1 & 0 & 0 & \cdots & 0 & -1 \end{bmatrix}.$$

- (2) $|A| = |L||U| = (-1)^{n-1}(x^n + b_1x^{n-1} + \dots + b_n).$
- 4. 将 β_1, \dots, β_r 扩充为 \mathbb{R}^n 的一组基 β_1, \dots, β_n ,并任意选择 n-r 个向量 $\alpha_{r+1}, \dots, \alpha_n$. 行列式 $|(\alpha_1 + k\beta_1, \dots, \alpha_n + k\beta_n)|$ 是一个关于 k 的至多 n 次多项式,其等于零至多只有 n 个解 (令 $k \to \infty$ 知此多项式不恒为零),且在该行列式不等于零时 $\alpha_1 + k\beta_1, \dots, \alpha_r + k\beta_r$ 线性无关,因此存在无穷多个实数 k.
- 5. (1) 容易得到 $\alpha_1 \alpha_3 = (-2, 1, -2, 0)^T$, 并求出题给定的矩阵行空间一组基是 (1, 0, 0, 1, 0), (0, 1, 2, 3, 0), (0, 0, 0, 0, 1). 考虑其前三个分量, 由能被这组基表出知 $\alpha_3 = 2\alpha_2 = (4, 2, 4, 2)^T$, $\alpha_1 = (2, 3, 2, 2)^T$, 从而 $\alpha_4 = (8, 6, 8, 3)$. 因此

$$A = \begin{bmatrix} 2 & 2 & 4 & 8 & 7 \\ 3 & 1 & 2 & 6 & 3 \\ 2 & 2 & 4 & 8 & 7 \\ 2 & 1 & 2 & 5 & 3 \end{bmatrix}, J = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

- (2) 一组基为 (1,0,0,1,0), (0,1,2,3,0), (0,0,0,0,1). 考察各系数, 知当 $a=14,b\in\mathbb{R}$ 时, 该向量落在 A 的行空间里.
- (3) 先求出 AX = 0 的解, 即 $(\alpha_1, \alpha_2, 2\alpha_2, \alpha_1 + 3\alpha_2, \alpha_5)X = 0$, 其中 $\alpha_1, \alpha_2, \alpha_5$ 线性无关. 通解为 $(t_1, 3t_1 2t_2, t_2, -t_1, 0)^T$, $t_1, t_2 \in \mathbb{R}$ 是自由变元. 因此 $AX = \beta$ 的通解是 $(t_1 + 1, 3t_1 2t_2 + 1, t_2 1, -t_1, 1)^T$.
- 6. 按最后一行展开,得到 LHS = $D_y^1 + \sum_{i=1}^n (-1)^{n+i+1} x_i D_i$, 其中 D_i 是把 D 中第 i 列删去,最后一列补上 $(x_1, \cdots, x_n)^T$ 得到的行列式. 再按最后一列对所有 D_i 展开,得到 $D_i = \sum_{j=1}^n (-1)^{n+j} (-1)^{i+j} A_{ij} x_j$,直接代入得到 RHS.
- 7. 注意到 $rank(B) = rank(AB) \Leftrightarrow Ker(B) = Ker(AB)$.
- "⇒": 考虑 $x \in V \cap W$, 则可设 x = By. 由于 ABy = Ax = 0, 因此 $y \in \text{Ker}(AB) = \text{Ker}(B) \Rightarrow By = 0 \Rightarrow x = 0$.
- " \leftarrow ": 显然 $\operatorname{rank}(AB) \leq \operatorname{rank}(B)$. 若 $\operatorname{rank}(AB) < \operatorname{rank}(B)$, 则 $\operatorname{Ker}(AB) \neq \operatorname{Ker}(B)$, 即 $\exists x \in \operatorname{Ker}(AB)$ 但 $x \notin \operatorname{Ker}(B)$, 此时 $Bx \neq 0$, 但是 $Bx \in V \cap W$.

9 第8次习题课:可逆矩阵

9.1 问题

- 1. n 阶方阵 A, B, A + B 均可逆, 证明 $A^{-1} + B^{-1}$ 也可逆并求其逆矩阵.
- 2. n 阶方阵 A, B 满足 A + B = AB, 证明 AB = BA.
- 3. 证明可逆的上三角矩阵的逆仍为上三角矩阵.

4. 计算矩阵
$$A = \begin{bmatrix} 1 & 2 & 3 & \cdots & n \\ & 1 & 2 & \cdots & n-1 \\ & & 1 & \cdots & n-2 \\ & & & \ddots & \vdots \\ & & & & 1 \end{bmatrix}$$
 的逆.

- 5. $A \in n$ 阶方阵, 试根据 rank(A) 的取值讨论 $rank(A^*)$, 其中 A^* 是它的伴随矩阵.
- 6. 己知 $I_{m \times m} A_{m \times n} B_{n \times m}$ 可逆, 证明 $I_{n \times n} B_{n \times m} A_{m \times n}$ 也可逆并求其逆矩阵.

7. A 是 n 阶可逆矩阵, α, β 是 n 维列向量, 且矩阵 $A + \alpha \beta^T$ 可逆, 证明 $(A + \alpha \beta^T)^{-1} = A^{-1} - \frac{A^{-1} \alpha \beta^T A^{-1}}{1 + \beta^T A^{-1} \alpha}$.

8. 计算矩阵
$$A = \begin{bmatrix} 1+a_1 & 1 & \cdots & 1 \\ 1 & 1+a_2 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1+a_n \end{bmatrix}$$
 的逆, 其中 $a_i > 0, \forall i = 1, 2, \cdots, n$.

- 9. 设 A 是 n 阶方阵, 求 (A*)*.
- 10. 设 n 阶方阵 A 恰有 k 个 n-1 阶子式等于 0, 其中 $1 \le k \le n-1$. 证明 A 可逆.
- 11. 设 A, B 是 n 阶方阵, A^*, B^* 为对应的伴随矩阵, 试求 2n 阶方阵 $M = \begin{bmatrix} A & O \\ O & B \end{bmatrix}$ 的伴随矩阵.
- 12. A 是 n 阶方阵 $(n \ge 3)$, $A^3 = O$, 证明矩阵 $M = \begin{bmatrix} I & A \\ A & I \end{bmatrix}$ 可逆, 并求其逆.

9.2 解答

- 1. 由于 $[(A+B)^{-1}B](I+B^{-1}A) = I$, 因此 $(I+B^{-1}A)(A+B)^{-1}B = I \Rightarrow (A^{-1}+B^{-1})A(A+B)^{-1}B = (I+B^{-1}A)(A+B)^{-1}B = I \Rightarrow (A^{-1}+B^{-1})A(A+B)^{-1}B = I \Rightarrow (A^{-1}+B^{-1})A(A+B)^{-1}B$.
- 2. $A + B = AB \Rightarrow (A I)(B I) = I \Rightarrow (B I)(A I) = I \Rightarrow BA = A + B = AB$.
- 3. 将单位矩阵拼在原矩阵右边, 其行变换只需不断用上面的行加减下面的行, 此操作只会将单位矩阵变成上三角矩阵.

- 5. 当 $\operatorname{rank}(A) = n$ 时,由于 $AA^* = |A|I$,从而 A^* 可逆,因此 $\operatorname{rank}(A^*) = n$. 当 $\operatorname{rank}(A) = n 1$ 时,由于 $AA^* = 0$,且 $\operatorname{dim}(\operatorname{Ker}(A)) = n \operatorname{rank}(A) = 1$,又有 A 中存在 n 1 阶非零子式,因此 A^* 不全零, $\operatorname{rank}(A^*) = 1$. 当 $\operatorname{rank}(A) \le n 2$ 时, A 中不存在 n 1 阶非零子式,因此 A^* 全零,从而 $\operatorname{rank}(A^*) = 0$.
- 6. $(I-BA)(I+B(I-AB)^{-1}A) = I-BA+B(I-AB)^{-1}A-BAB(I-AB)^{-1}A = I-BA+B(I-AB)(I-AB)^{-1}A = I$, 因此 $(I-BA)^{-1} = I + B(I-AB)^{-1}A$.
- 7. 注意到 $A + \alpha \beta^T = A(I + A^{-1}\alpha\beta^T)$, 因此 $(A + \alpha\beta^T)^{-1} = (I + A^{-1}\alpha\beta^T)^{-1}A^{-1} = (I A^{-1}\alpha(1 + \beta^TA^{-1}\alpha)^{-1}\beta^T)A^{-1} = A^{-1} \frac{A^{-1}\alpha\beta^TA^{-1}}{1+\beta^TA^{-1}\alpha}$.

8.
$$A = \operatorname{diag}(a_1, \dots, a_n)(I_n + \begin{bmatrix} \frac{1}{a_1} \\ \frac{1}{a_2} \\ \vdots \\ \frac{1}{a_n} \end{bmatrix} \begin{bmatrix} 1 & \dots & 1 \end{bmatrix}) \Rightarrow A^{-1} = (I_n - (1 + \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n})^{-1} \begin{bmatrix} \frac{1}{a_1} \\ \frac{1}{a_2} \\ \vdots \\ \frac{1}{a_n} \end{bmatrix} \begin{bmatrix} 1 & \dots & 1 \end{bmatrix}) \operatorname{diag}(\frac{1}{a_1}, \dots, \frac{1}{a_n}).$$

- 9. 当 n=2 时,由伴随矩阵定义知 $(A^*)^*=A$. 当 n>2 时,若 A 可逆,由 $A^*=|A|(A^*)^{-1}$ 知 $(A^*)^*=|A^*|A^{-1}=|A|^{n-1}|A|^{-1}A=|A|^{n-2}A$.若 A 不可逆此结论也对,因为 $\operatorname{rank}(A^*)=1$, A^* 的伴随矩阵全零.
- 10. 反证法. 若 $\operatorname{rank}(A) \leq n-1$, 则由第 5 题结论知 $\operatorname{rank}(A^*) = 1$. 任取某个 $A_{ij}^* = 0$, 由于其秩为 1, 因此其第 i 行全零, 这与恰有 k 个子式为 0 矛盾.

第 9 次习题课: 矩阵的分块, 正交矩阵 10

10.1 问题

- 1. 证明对任意 n 阶可逆矩阵, 存在方阵 P, L, U 使得 PA = LU, 其中 P 是对换矩阵 (对换单位矩阵某两行所得矩阵) 的积, L 是对角元均为 1 的下三角矩阵, U 是上三角矩阵.
- 2. 求与任意可逆矩阵乘法可交换的矩阵构成的集合.
- 3. 证明行列式为 1 的 n 阶方阵可以写成若干个行列式为 1 的初等矩阵的乘积.
- 4. 已知 $P = \begin{bmatrix} A & I \\ I & I \end{bmatrix}$, 证明 P 可逆当且仅当 I A 可逆, 并利用 $(I A)^{-1}$ 表出 P^{-1} .
- 5. A 是 n 阶方阵, 证明 $\operatorname{rank}(A-I)+\operatorname{rank}(A^2+A+I)=n$ 当且仅当 $A^3=I.$
- 6. A, B 是 n 阶方阵, 且满足 $\operatorname{rank}(I AB) + \operatorname{rank}(I + BA) = n$, 证明或否定: A 是可逆矩阵.
- 7. A, B, C 分别是 $m \times n, n \times s, s \times t$ 矩阵, 证明 $\operatorname{rank}(ABC) \ge \operatorname{rank}(AB) + \operatorname{rank}(BC) \operatorname{rank}(B)$.
- 8. A, B 都是 $m \times n$ 矩阵, 证明 $\operatorname{rank}(A+B) \geq \operatorname{rank}(A, B) + \operatorname{rank}(A^T, B^T) \operatorname{rank}(A) \operatorname{rank}(B)$.
- 9. A, B, C, D 都是 n 阶方阵, AC = CA, AD = CB, 且 A 可逆. 求矩阵 $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ 的秩.
- 10. 矩阵 $A_{m\times m}, B_{m\times n}, C_{n\times m}, D_{n\times n}$ 满足 A 和 $E := D CA^{-1}B$ 可逆. 证明分块矩阵 $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ 也可逆并求其逆.
- 11. A, B, C, D 都是 n 阶方阵, 且 AC = CA, 证明或否定 $\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |AD CB|$.
- 12. $A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$, $B = \begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix}$ 都是 n 阶方阵, 且 A_1 , B_1 都是 r 阶方阵, AB = I. 证明 $|A||B_4| = |A_1|$.

 13. 记 $A_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, $B_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$, 试证明 $A_{\theta}A_{\omega} = A_{\theta+\omega}$, $B_{\theta}B_{\omega} = A_{\theta-\omega}$, $A_{\theta}B_{\omega} = B_{\theta+\omega} = B_{\omega}A_{-\theta}$,
- 14. 设 $\alpha_1 = (1,0,1,0)^T, \alpha_2 = (1,1,0,1)^T, \alpha_3 = (0,1,0,2)^T.$ (1) 求 α_3 在 $\langle \alpha_1,\alpha_2 \rangle$ 上的正交投影; (2) 求 α_3 到 $\langle \alpha_1,\alpha_2 \rangle$ 的距离; (3) 求到 $\langle \alpha_1, \alpha_2 \rangle$ 的正交投影算子 (用矩阵表示).
- 15. 将向量 $\alpha_1 = \frac{1}{3}(2,2,1)^T$ 扩充成 \mathbb{R}^3 中的一组标准正交基.
- 16. U, V 是 \mathbb{R}^n 子空间, $\alpha, \beta \in \mathbb{R}^n$ 是任意两个向量. 证明 $\operatorname{dist}(\alpha + U, \beta + V) = \operatorname{dist}(\alpha \beta, U + V)$.

10.2 解答

1. 由于 A 可逆, 因此第一列必至少存在一个非零元 a_{i1} . 将第 1 行与第 i 行互换使得新矩阵 (1,1) 元非零, 再把第一列 的 (i,1) 元都化成零, $i=2,3,\cdots,n$. 这意味着 $Q_1P_{i1}A=\begin{bmatrix}a'_{11}&\beta\\0&A_{n-1}\end{bmatrix}$, 其中 P_{i1} 是对换矩阵, $Q_1=\begin{bmatrix}1&0\\\alpha&I_{n-1}\end{bmatrix}$. 利用 归纳法, 假设存在 $P_{n-1}A_{n-1} = L_{n-1}U_{n-1}$, 因此

$$\begin{bmatrix} 1 & 0 \\ 0 & P_{n-1} \end{bmatrix} Q_1 P_{i1} A = \begin{bmatrix} a'_{11} & \beta \\ 0 & P_{n-1} A_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & L_{n-1} \end{bmatrix} \begin{bmatrix} a'_{11} & \beta \\ 0 & U_{n-1} \end{bmatrix}.$$

等式右边已经是一个对角元均为 1 的下三角矩阵乘一个上三角矩阵,因此观察等式左边. 注意到 $\begin{vmatrix} 1 & 0 \\ 0 & P_{n-1} \end{vmatrix}$ 是对换矩 阵的积, 而 Q_1 是对角元均为 1 的下三角矩阵, 要是能把这俩矩阵换个位置就好了. 计算知

$$\begin{bmatrix} 1 & 0 \\ 0 & P_{n-1} \end{bmatrix} Q_1 = \begin{bmatrix} 1 & 0 \\ P_{n-1}\alpha & P_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ P_{n-1}\alpha & I_{n-1} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & P_{n-1} \end{bmatrix},$$

这样就可以写出

$$\begin{bmatrix} 1 & 0 \\ 0 & P_{n-1} \end{bmatrix} P_{i1} A = \begin{bmatrix} 1 & 0 \\ P_{n-1} \alpha & I_{n-1} \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 \\ 0 & L_{n-1} \end{bmatrix} \begin{bmatrix} a'_{11} & \beta \\ 0 & U_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -P_{n-1} \alpha & L_{n-1} \end{bmatrix} \begin{bmatrix} a'_{11} & \beta \\ 0 & U_{n-1} \end{bmatrix}.$$

于是令 $P = \begin{bmatrix} 1 & 0 \\ 0 & P_{n-1} \end{bmatrix}, L = \begin{bmatrix} 1 & 0 \\ -P_{n-1}\alpha & L_{n-1} \end{bmatrix}, U = \begin{bmatrix} a'_{11} & \beta \\ 0 & U_{n-1} \end{bmatrix}$ 即可. 显然 n = 1 是平凡的, 因此任意 n 都成立.

- 2. 先验证初等矩阵 P(j,i(1)),即 AP(j,i(1)) = P(j,i(1))A,两边同时减去矩阵 A 得到 $AE_{ij} = E_{ij}A \Rightarrow a_{ii} = a_{jj}, a_{ij} = a_{ij}$ $0, \forall i \neq j$, 因此只能是数量矩阵, 其与所有矩阵都可交换.
- 3. 只需验证 A 可经一系列消法变换 (即不经过第三类初等矩阵 P(i(c))) 化为单位矩阵. 利用归纳法, 由于 A 可逆, 总 可通过消法变换化得到 $a_{11}=1$,从而再通过消法变换化为 $A=\begin{bmatrix} 1 & 0 \\ 0 & A_1 \end{bmatrix}$,n-1 阶方阵 A_1 的行列式为 1,从而可消法 变换化为单位矩阵 I_{n-1} , 因此 A 也可通过消法变换化为单位矩阵 I_n . 显然 n=1 是平凡的.

4. 利用分块初等变换得 $\begin{bmatrix} A & I \\ I & I \end{bmatrix} \begin{bmatrix} I & O \\ -I & I \end{bmatrix} = \begin{bmatrix} A-I & I \\ O & I \end{bmatrix}$, 因此 |P| = |A-I|, 两者可逆性相互等价. 另一方面, 由上式

两边求逆得
$$P^{-1} = \begin{bmatrix} I & O \\ -I & I \end{bmatrix} \begin{bmatrix} A - I & I \\ O & I \end{bmatrix}^{-1} = \begin{bmatrix} I & O \\ -I & I \end{bmatrix} \begin{bmatrix} -(I-A)^{-1} & (I-A)^{-1} \\ O & I \end{bmatrix} = \begin{bmatrix} -(I-A)^{-1} & (I-A)^{-1} \\ (I-A)^{-1} & I - (I-A)^{-1} \end{bmatrix}$$
5. 由裴蜀定理, 存在多项式 f,g 使得 $f(x)(x-1)+g(x)(x^2+x+1)=1$, 即 $f(A)(A-I)+g(A)(A^2+A+I)=I$. 从

而利用分块初等行列变换,

$$\begin{bmatrix} A-I & O \\ O & A^2+A+I \end{bmatrix} \stackrel{\overline{\mathbf{FI}}}{\to} \begin{bmatrix} A-I & f(A)(A-I) \\ O & A^2+A+I \end{bmatrix} \stackrel{\widetilde{\mathbf{FI}}}{\to} \begin{bmatrix} A-I & I \\ O & A^2+A+I \end{bmatrix} \stackrel{\overline{\mathbf{FI}}}{\to} \begin{bmatrix} A-I & I \\ I-A^3 & O \end{bmatrix} \stackrel{\overline{\mathbf{FI}}}{\to} \begin{bmatrix} O & I \\ A^3-I & O \end{bmatrix}.$$

从而 $\operatorname{rank}(A-I) + \operatorname{rank}(A^2 + A + I) = n + \operatorname{rank}(A^3 - I)$, 因此原命题成立

6. 利用分块初等变换, 得

$$\begin{bmatrix} I & O \\ -B & I \end{bmatrix} \begin{bmatrix} I & -A \\ B & I \end{bmatrix} \begin{bmatrix} I & A \\ O & I \end{bmatrix} = \begin{bmatrix} I & O \\ O & I + BA \end{bmatrix}, \quad \begin{bmatrix} I & A \\ O & I \end{bmatrix} \begin{bmatrix} I & -A \\ B & I \end{bmatrix} \begin{bmatrix} I & O \\ -B & I \end{bmatrix} = \begin{bmatrix} I + AB & O \\ O & I \end{bmatrix},$$

从而知 rank(I + BA) = rank(I + AB). 因此原条件等价于 rank(I - AB) + rank(I + AB) = n, 由上一小题的类似结论 知 $(I - AB)(I + AB) = 0 \Rightarrow (AB)^2 = I$, 因此 A 可逆.

7. 利用分块初等变换, 得

$$\begin{bmatrix} ABC & O \\ O & B \end{bmatrix} \stackrel{\text{fi}}{\to} \begin{bmatrix} ABC & AB \\ O & B \end{bmatrix} \stackrel{\text{fij}}{\to} \begin{bmatrix} O & AB \\ BC & B \end{bmatrix},$$

从而知 $\operatorname{rank}(ABC) + \operatorname{rank}(B) \ge \operatorname{rank}(AB) + \operatorname{rank}(BC)$.

8. 令 $P = (I_m, I_m), M = \begin{pmatrix} A & O \\ O & B \end{pmatrix}, Q = \begin{pmatrix} I_n \\ I_n \end{pmatrix},$ 然后代入第 7 题的不等式. 只需注意 $\operatorname{rank}(A^T, B^T) = \operatorname{rank}(A^T, B^T)^T$.

9. 利用分块初等变换,得
$$\begin{pmatrix} I & O \\ -CA^{-1} & I \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} I & -A^{-1}B \\ O & I \end{pmatrix} = \begin{pmatrix} A & O \\ O & D-CA^{-1}B \end{pmatrix}$$
. 由于 $\operatorname{rank}(D-CA^{-1}B)=$

 $\operatorname{rank}(A(D-CA^{-1}B))=0$, 因此 $\operatorname{rank}\begin{pmatrix}A&B\\C&D\end{pmatrix}=\operatorname{rank}(A)=n$.

$$10. \begin{pmatrix} A & B & I & O \\ C & D & O & I \end{pmatrix} \stackrel{\text{fif}}{\to} \begin{pmatrix} A & B & I & O \\ O & D - CA^{-1}B & -CA^{-1} & I \end{pmatrix} \stackrel{\text{fif}}{\to} \begin{pmatrix} I & A^{-1}B & A^{-1} & O \\ O & E & -CA^{-1} & I \end{pmatrix} \stackrel{\text{fif}}{\to} \begin{pmatrix} I & O & A^{-1} + A^{-1}BE^{-1}CA^{-1} & -A^{-1}BE^{-1} \\ O & E & -CA^{-1} & I \end{pmatrix} \stackrel{\text{fif}}{\to} \begin{pmatrix} I & O & A^{-1} + A^{-1}BE^{-1}CA^{-1} & -A^{-1}BE^{-1} \\ O & I & -E^{-1}CA^{-1} & E^{-1} \end{pmatrix} \Rightarrow \begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} + A^{-1}BE^{-1}CA^{-1} & -A^{-1}BE^{-1} \\ -E^{-1}CA^{-1} & E^{-1} \end{pmatrix}.$$

11. 若 A 可逆, 则 $\begin{vmatrix} A & B \\ C & D \end{vmatrix}$ $\stackrel{\text{ff}}{=}$ $\begin{vmatrix} A & B \\ O & D - CA^{-1}B \end{vmatrix} = |A(D - CA^{-1}B)| = |AD - CB|$. 若 A 不可逆, 构造 A(t) = A + tI,

从而存在无穷多个 $t \in \mathbb{R}$ 使得 A(t) 可逆,且对这些 t 成立 $\begin{vmatrix} A(t) & B \\ C & D \end{vmatrix} = |A(t)D - CB|$. 两边都是关于 t 的多项式,因 此对于所有 $t \in \mathbb{R}$ 等式都成立, 特别地对于 t = 0 也成立.

12. 容易计算出
$$\begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} \begin{pmatrix} I_r & B_2 \\ O & B_4 \end{pmatrix} = \begin{pmatrix} A_1 & O \\ A_3 & I_{n-r} \end{pmatrix}$$
, 两边同时取行列式即可.

- 13. A_{θ} 是逆时针旋转 θ 角, B_{θ} 是按逆时针方向的 $\frac{\theta}{2}$ 角做镜面反射. 有了几何含义, 验证这些矩阵乘法也就很简单了.
- 14. 容易求出 $\langle \alpha_1, \alpha_2 \rangle$ 的一组标准正交基是 $\beta_1 = (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0)$ 和 $\beta_2 = (\frac{1}{\sqrt{10}}, \frac{2}{\sqrt{10}}, -\frac{1}{\sqrt{10}}, \frac{2}{\sqrt{10}})$. (1) 投影是 $= (\alpha_3, \beta_1)\beta_1 + (\alpha_3, \beta_2)\beta_2 = (\frac{3}{5}, \frac{6}{5}, -\frac{3}{5}, \frac{6}{5})$. (2) 距离是 $|(0, 1, 0, 2) (\frac{3}{5}, \frac{6}{5}, -\frac{3}{5}, \frac{6}{5})| = |(-\frac{3}{5}, -\frac{1}{5}, \frac{3}{5}, \frac{4}{5})| = \frac{\sqrt{35}}{5}$. (3) 任意向量 $\alpha = (x, y, z, w)$,

其投影是
$$(\alpha, \beta_1)\beta_1 + (\alpha, \beta_2)\beta_2 = (\frac{3x+y+2z+w}{5}, \frac{x+2y-z+2w}{5}, \frac{2x-y+3z-w}{5}, \frac{x+2y-z+2w}{5})$$
,因此算子是 $\frac{1}{5}\begin{pmatrix} 3 & 1 & 2 & 1\\ 1 & 2 & -1 & 2\\ 2 & -1 & 3 & -1\\ 1 & 2 & -1 & 2 \end{pmatrix}$.

- 15. (答案不唯一) $\alpha_2 = \frac{1}{3}(1, -2, 2)^T$, $\alpha_3 = \frac{1}{3}(2, -1, -2)^T$.
- 16. $\operatorname{dist}(\alpha + U, \beta + V) = \min_{\gamma \in U, \delta \in V} \|\alpha + \gamma \beta \delta\| = \min_{\gamma \in U, \delta \in V} \|(\alpha \beta) (\delta \gamma)\|_2 = \operatorname{dist}(\alpha \beta, U + V).$

11 第 10 次习题课: 线性映射

11.1 问题

- 1. (1) ABCD 是中心为原点、边与坐标轴平行的单位正方形. 求所有 \mathbb{R}^2 上所有保持该正方形不变的线性变换,写出它们的矩阵,并证明它们可被两个变换生成. (2) 试求出保持中心为原点的正十二面体不变的线性变换的个数.
- 2. A 是从 K^n 到 K^m 的线性映射,将 Ker A 的一组基 $\alpha_1, \dots, \alpha_s$ 扩充成 K^n 的一组基 $\alpha_1, \dots, \alpha_s, \alpha_{s+1}, \dots, \alpha_n$. (1) 证 明 $\beta_1 = A\alpha_{s+1}, \dots, \beta_r = A\alpha_n$ 线性无关 (其中 r = n s),并构成 Im A 的一组基; (2) 将 β_1, \dots, β_r 扩充成 K^m 的一组基 $\beta_1, \dots, \beta_r, \beta_{r+1}, \dots, \beta_m$,并证明 $A(\alpha_{s+1}, \dots, \alpha_n, \alpha_1, \dots, \alpha_s) = (\beta_1, \dots, \beta_m) \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$; (3) 矩阵 $A = (\gamma_1, \dots, \gamma_m)$

与
$$\begin{pmatrix} 3 & 6 & 1 & 3 & 5 \\ 2 & 4 & 2 & 2 & 6 \\ 2 & 4 & 1 & 2 & 4 \end{pmatrix}$$
 行向量组等价, 求可逆矩阵 P,Q 使得 $AP=Q\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.

- 3. P 是线性空间 V 上的幂等变换 (即 $P^2 = P$), 证明 $P = \operatorname{Ker} P \oplus \operatorname{Im} P$, 且 P 是沿 $\operatorname{Ker} P$ 向 $\operatorname{Im} P$ 的投影, I P 是沿 $\operatorname{Im} P$ 向 $\operatorname{Ker} P$ 的投影.
- 4. P 是实线性空间上的幂等矩阵, 证明 A 是正交投影当且仅当 A 是对称矩阵.
- 5. $\beta \in \mathbb{R}^n$ 是单位向量 ($\|\beta\|_2 = 1$), $P = I \beta\beta^T$, $A = I 2\beta\beta^T$. (1) 证明 P 是幂等对称矩阵, 并写出第 3 题中的 (正交) 直和分解; (2) A 是实对称正交矩阵, 且满足 $A^2 = I$; 计算 $\det(A)$, 并探究 A 的几何性质.
- 6. A_1,A_2,A_3,A_4 是 n 维线性空间上的线性变换,它们之间任意两个均可交换,且 $A_1A_2+A_3A_4=I$. 证明 $\mathrm{Ker}(A_1A_3)=\mathrm{Ker}A_1\oplus\mathrm{Ker}A_3$.
- 7. $A, B \neq n$ 维线性空间上的线性变换, AB = BA, 证明或否定 $rankA^2 + rankB^2 > 2rank(AB)$.
- 8. A, B 是幂等变换, 证明 Ker A = Ker B 当且仅当 AB = A, BA = B.
- 9. A, B 是 n 维线性空间 V 上的线性变换, $A^2 = B^2 = O$, AB + BA = I. (1) 证明 Ker A = A(Ker B), Ker B = B(Ker A), 且 $V = Ker A \oplus Ker B$; (2) 是否存在 n = 2023 维且满足上述约束关系的线性变换; (3) 若 dim V = 2, 证明 A, B 在某组基下的矩阵可以是 $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.
- 10. V_1, V_2, V_3 都是数域 F 上的有限维线性空间, $\varphi: V_1 \to V_2, \psi: V_1 \to V_3$ 是两个线性映射. 证明 ψ 可以写成 $\psi = \sigma \varphi$, 其中 $\sigma: V_2 \to V_3$ 是线性映射的充要条件是 $\operatorname{Ker} \varphi \subset \operatorname{Ker} \psi$.
- 11. $A \in n$ 维线性空间 V 上的线性变换, 证明存在 $r \in \mathbb{N}$ 使得对于 $\forall s \in \mathbb{N}$, $\operatorname{Ker} A^r = \operatorname{Ker} A^{r+s}$.

11.2 解答

1. (1) 只需确定基的像. e_1 可以有 4 种选择, e_2 在 e_1 的基础上有 2 种选择, 因此有 8 种: $\begin{bmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{bmatrix}$, $\begin{bmatrix} 0 & \pm 1 \\ \pm 1 & 0 \end{bmatrix}$. 它

们可由逆时针旋转 90° 和关于 y 轴的反射这两个变换生成, 即 $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.

(2) 只需确定其中任意三个点 (对应的向量) 的像, 这里我们考虑共面的某三个点. 因为有 20 个顶点, 每个顶点又有 3 个邻结点, 和这 2 个点具有原始度量关系的点又有 2 个, 因此有 $20 \times 3 \times 2 = 120$ 个线性变换.

2. (1) $k_1\beta_1 + \dots + k_r\beta_r = A(k_1\alpha_{s+1} + \dots + k_r\alpha_n) = 0 \Rightarrow k_1\alpha_{s+1} + \dots + k_r\alpha_n \in \text{Ker}A \Rightarrow k_1\alpha_{s+1} + \dots + k_r\alpha_n = 0 \Rightarrow k_1 = \dots = k_r = 0$, 因此线性无关. $\forall \alpha \in \text{Im}A, \alpha = A(m_1\alpha_1 + \dots + m_n\alpha_n) = m_{s+1}\beta_1 + \dots + m_n\beta_r$, 因此是一组基. (2) 显然.

(3) 求出 Ker A 的一组基是
$$\begin{pmatrix} 1\\0\\0\\-1\\0 \end{pmatrix}$$
, $\begin{pmatrix} 2\\-1\\0\\0\\0 \end{pmatrix}$, 因此可以求出 $P = \begin{pmatrix} 1&0&0&1&2\\0&0&0&0&-1\\0&1&0&0&0\\0&0&0&-1&0\\0&0&1&0&0 \end{pmatrix}$, $Q = (\gamma_1,\gamma_3,\gamma_5,$ 线性无关的).

- 3. $P|_{\operatorname{Im}P}=\operatorname{id}$, 因为 $\forall \alpha=P\beta\in\operatorname{Im}P$ 有 $P\alpha=P^2\beta=P\beta=\alpha$. 其次 $\operatorname{Ker}P\cap\operatorname{Im}P=\{0\}$, 因为 $\alpha=P\beta\in\operatorname{Ker}P\cap\operatorname{Im}P$ 有 $0=P\alpha=P^2\beta=P\beta=\alpha$. 又因为 $\forall \alpha\in V$ 有 $\alpha=(I-P)\alpha+P\alpha\in\operatorname{Ker}P+\operatorname{Im}P$, 因此有直和分解. 同理知 I-P 的性质, 因为它也是幂等变换, 且 $\operatorname{Ker}(I-P)=\operatorname{Im}P$, $\operatorname{Im}(I-P)=\operatorname{Ker}P$.
- 4. 从上一问我们已知 A 是投影. "⇒": A 是正交投影 ⇒ $\forall \alpha, \beta, \langle (I-A)\alpha, A\beta \rangle = 0 \Rightarrow \forall \alpha, \beta, \alpha^T (I-A^T)A\beta = 0 \Rightarrow A = A^T A$. 同理有 $\forall \alpha, \beta, \langle A\alpha, (I-A)\beta \rangle = 0 \Rightarrow A^T = A^T A$. 因此 $A = A^T$. " \Leftarrow ": $\forall \alpha \in \operatorname{Ker} A, \beta = A\gamma \in \operatorname{Im} A \Rightarrow \langle \alpha, A\gamma \rangle = \langle A^T \alpha, \gamma \rangle = \langle A\alpha, \gamma \rangle = 0$. 因此 $\operatorname{Ker} A \perp \operatorname{Im} A$.
- 5. (1) $P^2 = (I \beta \beta^T)(I \beta \beta^T) = I 2\beta \beta^T + \beta(\beta^T \beta)\beta^T = I \beta \beta^T = P$, 且对称性显然. 直和分解是 $\mathbb{R} = \operatorname{Ker} P \oplus \operatorname{Im} P = \langle \beta \rangle + \langle \beta \rangle^{\perp}$. (2) 对称性显然,且 $A^T A = A^2 = I 4\beta \beta^T + 4\beta \beta^T \beta \beta^T = 1$, 因此正交. $|A| = |I 2\beta \beta^T| = 1 2\beta^T \beta = -1$. 注意到 P 是在 $\langle \beta \rangle^{\perp}$ 上的投影,因此 A 是关于 $\langle \beta \rangle^{\perp}$ 作镜面反射.
- 6. 任取 $\alpha \in \text{Ker}(A_1A_3)$, 有 $\alpha = A_1A_2\alpha + A_3A_4\alpha \in \text{Ker}A_3 + \text{Ker}A_1$; 反之任取 $\beta \in \text{Ker}A_1$, $\gamma \in \text{Ker}A_3$, 有 $A_1A_3(\beta + \gamma) = 0 \Rightarrow \beta + \gamma \in \text{Ker}(A_1A_3)$. 因此 $\text{Ker}A_1 + \text{Ker}A_3 = \text{Ker}(A_1A_3)$. 又由于 $\forall \delta \in \text{Ker}A_1 \cap \text{Ker}A_3 \Rightarrow \delta = A_1A_2\delta + A_3A_4\delta = 0$, 因此是直和.
- 因此是且和.
 7. 结论不对. 可取 $J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $A = \begin{pmatrix} J & J \\ J & J \end{pmatrix}$, $B = \begin{pmatrix} J & I \\ O & J \end{pmatrix}$. $A^2 = O$, $B^2 = \begin{pmatrix} O & 2J \\ O & O \end{pmatrix}$, $AB = BA = \begin{pmatrix} O & J \\ O & O \end{pmatrix}$.
- 8. "⇒": $\forall \alpha, A(A\alpha \alpha) = 0 \Rightarrow B(A\alpha \alpha) = 0 \Rightarrow BA = B$. 同理 AB = A.
- " \Leftarrow ": $\forall \alpha \in \text{Ker} A, B\alpha = BA\alpha = 0 \Rightarrow \text{Ker} A \subset \text{Ker} B$. 同理 $\text{Ker} B \subset \text{Ker} A$.
- 9. (1) $\forall \alpha = A\beta \in A(\operatorname{Ker}B)$, 有 $A\alpha = A^2\beta = O$; $\forall \gamma \in \operatorname{Ker}A$, 有 $\gamma = AB\gamma + BA\gamma = AB\gamma$, 且注意到 $B\gamma \in \operatorname{Ker}(B)$. 因此 $\operatorname{Ker}A = A(\operatorname{Ker}B)$, 同理 $\operatorname{Ker}B = B(\operatorname{Ker}A)$. 又因为 $\forall \delta \in V$ 有 $\delta = AB\delta + BA\delta = A(\operatorname{Ker}B) + B(\operatorname{Ker}A) = \operatorname{Ker}A + \operatorname{Ker}B$, 且 $\theta \in \operatorname{Ker}A \cap \operatorname{Ker}B \Rightarrow \theta = AB\theta + BA\theta = 0$, 因此 $V = \operatorname{Ker}A \oplus \operatorname{Ker}B$.
- (2) 注意到 $\operatorname{Ker} A = A(\operatorname{Ker} B) \subset \operatorname{Im} A$, 且 $\dim(\operatorname{Ker} A) + \dim(\operatorname{Im} A) = n$, 因此 $\dim(\operatorname{Ker} A) \leq \frac{n}{2}$, 同理 $\dim(\operatorname{Ker} B) \leq \frac{n}{2}$. 由 直和关系知 $\dim(\operatorname{Ker} A) + \dim(\operatorname{Ker} B) = n$, 因此 n 只能为偶数.
- (3) 由上一问论证过程知 dim(KerA) = 1. 取 KerA 的一组基 α_1 , 并考虑 $\alpha_2 = B\alpha_1 \in \text{Ker}B$. 由于 Ker $A \cap \text{Ker}B = \{0\}$, 因此 α_1, α_2 线性无关. 在这组基 α_1, α_2 下, A, B 有题设的矩阵表示 $(A\alpha_1 = 0, A\alpha_2 = AB\alpha_1 = \alpha_1 BA\alpha_1 = \alpha_1, B\alpha_1 = \alpha_2, B\alpha_2 = B^2\alpha_1 = 0)$.
- 10. 必要性是显然的,下面证明充分性. 取 $\operatorname{Ker}\varphi$ 的一组基 $\alpha_1, \cdots, \alpha_r$,并扩充成 $\operatorname{Ker}\psi$ 的基 $\alpha_1, \cdots, \alpha_r, \beta_1, \cdots, \beta_s$,又再扩充成 V_1 的一组基 $\alpha_1, \cdots, \alpha_r, \beta_1, \cdots, \beta_s, \gamma_1, \cdots, \gamma_t$. 显然 $\varphi(\beta_1), \cdots, \varphi(\beta_s), \varphi(\gamma_1), \cdots, \varphi(\gamma_t)$ 是 $\operatorname{Im}\varphi$ 的一组基,并又可扩充成 V_2 的一组基 $\varphi(\beta_1), \cdots, \varphi(\beta_s), \varphi(\gamma_1), \cdots, \varphi(\gamma_t), \delta_1, \cdots, \delta_l$. 现在,对于任意 $\beta = \sum_{i=1}^s a_i \varphi(\beta_i) + \sum_{j=1}^t b_j \varphi(\gamma_j) + \sum_{k=1}^l c_k \delta_k \in V_2$,只需定义 $\sigma(\beta) = \sum_{i=1}^t b_j \psi(\gamma_j)$ 即可.
- 11. 先证明存在 $r \in \mathbb{N}$ 使得 $\operatorname{Ker} A^r = \operatorname{Ker} A^{r+1}$. 显然有无穷递升链 $\dim(\operatorname{Ker} A) \leq \dim(\operatorname{Ker} A^2) \leq \dim(\operatorname{Ker} A^3) \leq \cdots$,注意到这条链有上界 n,因此必然存在 r 使得 $\dim(\operatorname{Ker} A^r) = \dim(\operatorname{Ker} A^{r+1})$,这意味着 $\operatorname{Ker} A^r = \operatorname{Ker} A^{r+1}$. 现在开始推广到 r+s: 由于 $A^{r+2}\alpha=0 \Leftrightarrow A^{r+1}(A\alpha)=0 \Leftrightarrow A^r(A\alpha)=0 \Leftrightarrow A^{r+1}\alpha=0$,以此类推知 $\operatorname{Ker} A^{r+s} = \operatorname{Ker} A^r, \forall s \in \mathbb{N}$.

12 第 11 次习题课: 特征值, 特征向量

12.1 问题

1. 矩阵 $\begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$ 诱导了 \mathbb{R}^2 上的线性变换 A. (1) 写出 A 在基 $\alpha_1 = (1,1)^T$, $\alpha_2 = (1,-1)^T$ 下的矩阵; (2) 求在变换 A 下保持不动的直线; (3) $\alpha = y_1\alpha_1 + y_2\alpha_2$, 求 $A\alpha$ 在基 α_1, α_2 下的坐标.

- 2. 求矩阵 $A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{bmatrix}$ 的特征值和特征向量. 你能求出任意一个三阶矩阵的特征值和特征向量吗?
- 3. 3 阶矩阵 A 的特征值是 $\lambda_1, \lambda_2, \lambda_3$, 对应的特征向量是 $(1,0,0)^T, (0,1,0)^T, (-1,0,1)^T$, 求 A^m . 你能推广到 e^A 吗?
- 4. A, B 是 $m \times n$ 和 $n \times m$ 矩阵. 证明 AB 与 BA 有相同的非零特征值,且这些特征值的几何重数和代数重数也相同.
- 5. 利用矩阵方法求出斐波拉契数列的通项公式.
- 6. A 是第一类 3 阶正交矩阵. (1) 证明 $\lambda = 1$ 是 A 的一个特征值. (2) 设 α_1 是 $\lambda = 1$ 的一个单位特征向量,将其扩充 为一组标准正交基 $\alpha_1, \alpha_2, \alpha_3$, 证明 $\alpha_1, A\alpha_2, A\alpha_3$ 仍是一组标准正交基. (3) 已知 $A\alpha_2 = (\cos \theta)\alpha_2 + (\sin \theta)\alpha_3$, 求 $A\alpha_3$. (4) 探究 A 的几何性质.
- 7. A 是第二类 3 阶正交矩阵. (1) 证明 $\lambda = -1$ 是 A 的一个特征值. (2) 设 α_1 是 $\lambda = -1$ 的一个单位特征向量, 将其 扩充为一组标准正交基 $\alpha_1, \alpha_2, \alpha_3$,证明 $A(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$. (3) 探究 A 的几何性质.
- 8. A, B 是二阶实方阵, 且满足 $A^2 + B^2 = O$. 证明 $det(AB BA) \le$
- 9. 求 n 阶循环矩阵 $A = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n & a_n & a_n & a_n & a_n \end{pmatrix}$ 的行列式.
- 10. A, B, C 分别是 $n \times n, m \times m, n \times m$ 矩阵, 其中 n > m, $\operatorname{rank}(C) = m$, 且 AC = CB. 证明 $|\lambda I_m B|$ 整除 $|\lambda I_n A|$.
- 11. A, B 分别是 m, n 阶方阵, 且无公共特征值. 求解矩阵方程 AX = XB(你可以设定一些未知数来表示答案).
- 12. σ, δ, τ 是 n 维线性空间 V 上的线性变换, 满足 $\tau\delta = 0$ 且 $\mathrm{rank}(\sigma) < \mathrm{rank}(\tau)$. 证明 σ 和 δ 存在公共特征向量.
- 13. 现有 n 维线性空间 V 和线性变换 A. 证明特征值的代数重数大于等于几何重数, 并举例说明等号可以不取到.
- 14. n 维空间 V 上的线性变换 A 有 n+1 个特征向量, 且其中任意 n 个线性无关. 求所有可能的 A 构成的集合.

1. (1) 矩阵是 $(\alpha_1, \alpha_2)^{-1} A(\alpha_1, \alpha_2) = \begin{pmatrix} 4 & 0 \\ 1 & 1 \end{pmatrix}$. (2) 保持不动的直线即特征向量, 先解 $|\lambda I - A| = 0 \Rightarrow \lambda = 1, 4$, 然后求得 特征向量分别是 $\beta_1 = (1,-1)^T$, $\beta_2 = (2,1)^{\acute{T}}$, 即这两个向量所对应的直线保持不变. (3) 根据 (1), 坐标为 $(4y_1,y_1+y_2)$. 2. 先解 $|\lambda I - A| = 0 \Rightarrow \lambda = 1$ (重根), 10, 对应的特征向量分别是 $(2, -1, 0)^T$, $(2, 0, 1)^T$, $(1, 2, -2)^T$. 一元三次实方程在 实数范围内必有解,剩下两个解要么都是实数要么是共轭复数

$$3. \ A^m = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda_1^m & & \\ & \lambda_2^m & \\ & & \lambda_3^m \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \lambda_1^m & 0 & \lambda_1^m - \lambda_3^m \\ 0 & \lambda_2^m & 0 \\ 0 & 0 & \lambda_3^m \end{pmatrix}.$$

4. WLOG $m \ge n$. 由 |I - AB| = |I - BA| 知 $|\lambda I - AB| = \lambda^m |I - \lambda^{-1}AB| = \lambda^m |I - \lambda^{-1}BA| = \lambda^{m-n} |\lambda I - BA|$, 因此非 零特征值的代数重数相同. 另一方面, 若 $AB\mu = \lambda \mu$ 对于某个特征值 λ 有解空间 $\langle \mu_1, \dots, \mu_d \rangle$ (基), 则 $\langle B\mu_1, \dots, B\mu_d \rangle$ 属于 $BAX = \lambda X$ 的解空间, 且它们线性无关 $(k_1B\mu_1 + \cdots + k_dB\mu_d = 0 \Rightarrow k_1\mu_1 + \cdots + k_d\mu_d \in \text{Ker}B \Rightarrow \lambda(k_1\mu_1 + \cdots + k_d\mu_d)$ $k_d\mu_d$) = $AB(k_1\mu_1 + \cdots + k_d\mu_d) = 0 \Rightarrow k_1 = \cdots = k_d = 0$). 同理反过来也成立, 因此它们的解空间维数相同, 即非零特 征值的几何重数相同.

5. 先写出递推公式
$$\begin{pmatrix} a_n \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_{n-1} \\ a_{n-2} \end{pmatrix}$$
,做特征值分解 $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} \frac{1+\sqrt{5}}{2} \\ & \frac{1-\sqrt{5}}{2} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}^{-1}$,

 $-\frac{1}{\sqrt{5}}$, 因此 $a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$.

- 6. (1) $|I A| = -|A I| = -|A| |I A^{-1}| = -|I A^{T}| = -|I A| \Rightarrow |I A| = 0.$
- (2) 正交矩阵诱导等距同构, 因此 α_1 , $A\alpha_2$, $A\alpha_3$ (即 $A\alpha_1$, $A\alpha_2$, $A\alpha_3$) 仍是标准正交基.

- (3) 原题可转化为已知 A 的前两列为 $(1,0,0)^T$, $(0,\cos\theta,\sin\theta)^T$, 去补全第三列. 显然是 $(0,-\sin\theta,\cos\theta)^T$, 因此 $A\alpha_3=$ $-(\sin\theta)\alpha_2 + (\cos\theta)\alpha_3$.
- (4) 绕过原点、线向为 α_1 的直线旋转 θ 角.
- 7. (1) $|I + A| = |A||I + A^{-1}| = -|I + A^{T}| = -|I + A| \Rightarrow |-I A| = 0$.
- (2) 原题可转化为已知 A 的前两列为 $(-1,0,0)^T$, $(0,\cos\theta,\sin\theta)^T$, 去补全第三列. 过程与 6(3) 类似.
- (3) 绕过原点、线向为 α_1 的直线旋转 θ 角, 再关于平面 $\langle \alpha_1 \rangle^{\perp}$ 作镜面反射.
- 8. 注意到 $(A+iB)(A-iB) = A^2 + B^2 i(AB-BA)$, 因此 $\det(AB-BA) = -\det(A+iB)\det(A-iB)$. 若 A+iB 有 特征值 λ_1, λ_2 , 则 A - iB 有特征值 $\overline{\lambda_1}, \overline{\lambda_2}$ (两边取共轭), 从而 $-\det(A + iB)\det(A - iB) = -\lambda_1\lambda_2\overline{\lambda_1\lambda_2} = -|\lambda_1\lambda_2|^2 \le 0$.

9. 记
$$J = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}$$
, 则 $A = a_1 I + a_2 J + a_3 J^2 + \dots + a_n J^{n-1}$. 注意到 J 的特征多项式是 $\lambda^n - 1$, 因此其特

征值为 $w_k = e^{\frac{2k\pi i}{n}}, k = 0, 1, \cdots, n-1$, 从而 A 的特征值是 $\sum_{i=1}^n a_i w_k^{i-1}$, 这意味着 $|A| = \prod_{k=1}^n (\sum_{i=1}^n a_i w_k^{i-1})$

$$\begin{vmatrix} \lambda I_m - B & -A_2 \\ O & \lambda I_{n-m} - A_4 \end{vmatrix} = |\lambda I_m - B||\lambda I_{n-m} - A_4|, 此即整除关系$$

 $A_4|, |\lambda I_n - B| = |\lambda I_n - Q^{-1}BQ| = |\lambda I_r - A_1||\lambda I_{n-r} - B_4|.$ 这与无公共特征值矛盾.

征值为 $w_k = e^{\frac{2k\pi i}{n}}, k = 0, 1, \dots, n-1,$ 从而 A 的特征值是 $\sum_{i=1}^n a_i w_k^{i-1},$ 这意味着 $|A| = \prod_{k=1}^n (\sum_{i=1}^n a_i w_k^{i-1}).$ 10. 由于 C 列满秩,因此存在 n 阶可逆矩阵 P 使得 $C = P\begin{pmatrix} I_m \\ O \end{pmatrix}$,从而 AC = CB 可写为 $(P^{-1}AP)P^{-1}C = P^{-1}CB.$ 对 $P^{-1}AP$ 作分块 $\begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$,其中 A_1 是 m 阶方阵,代入上式知 $A_1 = B, A_3 = O.$ 于是 $|\lambda I_n - A| = |\lambda I_n - P^{-1}AP| = \begin{vmatrix} \lambda I_m - B & -A_2 \\ O & \lambda I_{n-m} - A_4 \end{vmatrix} = |\lambda I_m - B||\lambda I_{n-m} - A_4|$,此即整除关系. 11. 方程只有零解.假设存在 AC = CB,并且 $\mathrm{rank}(C) = r \geq 1.$ 则存在 m, n 阶可逆矩阵 P, Q 使得 $PCQ = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$. 由 AC = CB 知 $(PAP^{-1})(PCQ) = (PCQ)(Q^{-1}BQ)$,并作分块 $PAP^{-1} = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}, Q^{-1}BQ = \begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix}$,代入计算得到 $A_1 = B_1, B_2 = O, A_3 = O.$ 因此 A, B 的特征多项式分别为 $|\lambda I_m - A| = |\lambda I_m - PAP^{-1}| = |\lambda I_r - A_1||\lambda I_m - B| = |\lambda I_r - Q^{-1}BQ| = |\lambda I_r - A_1||\lambda I_m - B|$ 这与无公共特征值矛盾

12. 由题设知 $\operatorname{Im}(\delta) \subset \operatorname{Ker}(\tau)$, 因此 $\operatorname{rank}(\delta) \leq n - \operatorname{rank}(\tau)$, 从而 $\operatorname{rank}(\delta) + \operatorname{rank}(\sigma) < n$, $\operatorname{dim}(\operatorname{Ker}(\delta)) + \operatorname{dim}(\operatorname{Ker}(\sigma)) > n$, 故 $\dim(\operatorname{Ker}(\delta) \cap \operatorname{Ker}(\sigma)) > 0$. 取 $\xi \in \operatorname{Ker}(\delta) \cap \operatorname{Ker}(\sigma)$, 这就是它们对应于特征值为 0 的公共特征向量.

13. 设 $\dim V_{\lambda_0} = r$,并取其一组基 $\alpha_1, \cdots, \alpha_r$,然后扩充成 V 的一组基 $\alpha_1, \cdots, \alpha_r, \alpha_{r+1}, \cdots, \alpha_n$. 则 A 在这组基下的矩阵是 $\begin{pmatrix} \lambda_0 I_r & B \\ O & C \end{pmatrix}$,从而 $|\lambda I - A| = |(\lambda - \lambda_0)I_r||\lambda I_{n-r} - C| = (\lambda - \lambda_0)^r|\lambda I_{n-r} - C|$,这表明其代数重数至少是 r. 对于矩阵 $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\lambda = 0$ 是其代数二重特征值,但几何重数是 1.

14. A 只能是数乘变换.考虑特征向量 η_0,\cdots,η_n 对应于特征值 $\lambda_0,\cdots,\lambda_n$.考虑 $\eta_0=a_1\eta_1+\cdots+a_n\eta_n$,显然 a_1,\cdots,a_n 均不为 0(否则剔除它对应的 η_i 后剩余的 n 个向量线性相关). 两边同时左乘 A 知 $a_1(\lambda_1-\lambda_0)\eta_1+\cdots+a_n(\lambda_n-\lambda_0)\eta_n=$ $0 \Rightarrow a_1(\lambda_1 - \lambda_0) = \cdots = a_n(\lambda_n - \lambda_0) = 0 \Rightarrow \lambda_0 = \lambda_1 = \cdots = \lambda_n$. 这表明其是数乘变换.

第 12 次习题课: 矩阵的相似与对角化 13

13.1 问题

- 1. 矩阵 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & -2 & 2 \\ 4 & 2 & 1 \end{bmatrix}$, 找到正交矩阵 P 和对角矩阵 D 使得 $A = PDP^T$.

 2. 分块矩阵 $\begin{bmatrix} A & C \\ O & B \end{bmatrix}$ 可对角化,其中 A,B 是方阵.问是否有 A,B 都可对角化?

4. 证明: (1) (Schur 引理) 在复数域上, 任何方阵 A 都相似于上三角矩阵; (2) 若矩阵 A, B 可交换, 则 A, B 有公共的 复特征向量; (3) 若矩阵 A, B 可交换, 则存在可逆复矩阵 U 使得 $U^{-1}AU$ 和 $U^{-1}BU$ 同为上三角矩阵

5.
$$A = \begin{bmatrix} A_1 & A_{12} & \cdots & A_{1n} \\ 0 & A_2 & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_n \end{bmatrix}$$
 是分块上三角矩阵,对角块为 n_i 阶上三角矩阵 $A_i = \begin{bmatrix} \lambda_i & * & \cdots & * \\ 0 & \lambda_i & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_i \end{bmatrix}$, 且 $\lambda_1, \dots, \lambda_n$

- 6. (Roth 定理) $A_{m \times m}, B_{n \times n}, C_{m \times n}$. 证明: 若存在 $m \times n$ 矩阵 X 使得 AX XB = C, 则矩阵 $\begin{bmatrix} A & C \\ O & B \end{bmatrix}$ 与矩阵 $\begin{bmatrix} A & O \\ O & B \end{bmatrix}$ 相似. 该命题的逆命题是否也成立?
- 7. $A, B \in n$ 阶复矩阵, $rank(AB BA) \le 1$, 证明 A, B 可同时上三角化.

【编者注】与第 3 题相比, 本题条件有所放松 (秩要求从 0 放宽到 1), 结论也相应调整.

- 8. n 阶实矩阵 A, B 在复数域上相似, 问它们是否在实数域上相似.
- 9. 2 阶实矩阵 A, B 满足 $A^2 + B^2 = I, AB + BA = O$. 证明存在可逆矩阵 T 使得 $TAT^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, TBT^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- 10. n 维向量 $\alpha = (a_1, \dots, a_n)^T$, $\beta = (b_1, \dots, b_n)^T$, $A = \alpha \beta^T$, 且 $a_1 b_1 \neq 0$. 证明 A 可对角化的充要条件是 $\alpha^T \beta \neq 0$.
- 11. 考虑数域 F 上的 n 阶方阵构成的线性空间 $M_n(F)$. 定义线性运算 $\sigma(A) = A^T$, 求出它的特征向量和对应的特征子
- 12. 矩阵 A= λ · 证明 \mathbb{R}^n 不能分解成 A 的两个非平凡不变子空间的直和, 并求 A 的所有不变子空间.
- 13. 集合 S 由一些可对角化的 n 阶方阵构成, 且其中任意两个矩阵都可交换. 问是否有 S 中所有矩阵都可同时对角化. 【编者注】本题是第3题的一个推广.
- 14. n 阶方阵 A 满足 $A^2 = A$, 证明 rank(A) = tr(A).
- 15. A, B, M 是 n 阶实方阵, AM = MB, 且 A, B 具有相同的特征多项式. 证明对于任意 n 阶实方阵 X, $\det(A XM) =$ $\det(B - XM)$.

13.2 解答

1. $|\lambda I - A| = 0 \Rightarrow \lambda = -3($ 重根),6, 对应的一组标准正交特征向量是 $(\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}, 0)^T, (\frac{4\sqrt{5}}{15}, \frac{2\sqrt{5}}{15}, -\frac{\sqrt{5}}{3})^T, (\frac{2}{3}, \frac{1}{3}, \frac{2}{3})^T$. 因此

$$D = \operatorname{diag}(-3, -3, 6), P = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{4\sqrt{5}}{15} & \frac{2}{3} \\ -\frac{2}{\sqrt{5}} & \frac{2\sqrt{5}}{15} & \frac{1}{3} \\ 0 & -\frac{\sqrt{5}}{3} & \frac{2}{3} \end{bmatrix}.$$

1. |AI - A| = 0 \rightarrow AI = 0 \rightarrow \rightarrow AI = 0 \rightarrow AI对角化, 对原矩阵取转置然后类似证明即可.

3. (1) 有反例
$$A = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}, AB = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

(2) 可以对角化. 不妨设 A 是对角矩阵 $\operatorname{diag}(\lambda_1 I_1, \cdots, \lambda_s I_s)$,并将 B 按照这种格式分块 $\begin{bmatrix} B_{11} & \cdots & B_{1s} \\ \vdots & \ddots & \vdots \\ B_{s1} & \cdots & B_{ss} \end{bmatrix}$,计算 $AB = B_{ss}$

BA 知 $B_{ij} = 0, \forall i \neq j$. 由第二题结论知 B 可对角化 \Rightarrow 每个 B_{ii} 均可对角化, 因此 AB 可对角化

【编者注】本题也说明了 A,B 可同时对角化. 因为可将 B_{ii} 对角化时对应的基矩阵 U_{ii} 按对角线拼接成大矩阵 U, 在此 矩阵对应的基下 A, B 都是对角阵.

4. (1) 对矩阵阶数用数学归纳法. 考虑 A 的某个特征值 λ_1 对应的单位特征向量 α_1 , 扩充成一组标准正交基 $\alpha_1, \cdots, \alpha_n$, 记 $U_1 = [\alpha_1, \cdots, \alpha_n]$. 则 $A = U_1 \begin{bmatrix} \lambda_1 & C_1 \\ 0 & A_1 \end{bmatrix} U_1^{-1}$. 由归纳假设 $A_1 = U_2 B_1 U_2^{-1}$, 其中 B_1 上三角, U_2 正交, 因此

$$A = \underbrace{U_1 \begin{bmatrix} 1 & 0 \\ 0 & U_2 \end{bmatrix}}_{\mathbb{E} \not \Sigma} \underbrace{\begin{bmatrix} \lambda_1 & C_1 U_1 \\ 0 & B_1 \end{bmatrix}}_{\mathbb{E} \not \Xi \not \Pi} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & U_2^{-1} \end{bmatrix}}_{\mathbb{E} \not \Sigma^{-1}} U_1^{-1} \,.$$

- (2) 可设 $A\alpha = \lambda \alpha$, 注意到 $AB\alpha = BA\alpha = \lambda B\alpha \Rightarrow B\alpha$ 也是 A 属于 λ 的特征向量. 从而考虑 $\operatorname{span}\{\alpha, B\alpha, B^2\alpha, \cdots\} := V_{\alpha}$, 注意到 $B(V_{\alpha}) \subset V_{\alpha}$. 因此只需取 $B|_{V_{\alpha}}$ 上的一个特征向量即可.
- (3) 对空间维数用数学归纳法. 考虑 A,B 的某个公共单位特征向量 α_1 , 扩充成一组标准正交基 α_1,\cdots,α_n . 在这组基下 A,B 的矩阵分别是 $\begin{bmatrix} \lambda_1 & C_1 \\ 0 & A_1 \end{bmatrix}$, $\begin{bmatrix} \mu_1 & D_1 \\ 0 & B_1 \end{bmatrix}$. 它们可交换, 因此 A_1,B_1 也可交换. 可定义 $\tilde{A}_1 = P_{\langle \alpha_2,\cdots,\alpha_n \rangle} A_1|_{\langle \alpha_2,\cdots,\alpha_n \rangle}$, 其中 $P_{\langle \alpha_2,\cdots,\alpha_n \rangle}$ 是平行于 $\langle \alpha_1 \rangle$ 的投影算子, 然后类似定义 \tilde{B}_1 . 因此由归纳假设存在 $\langle \alpha_2,\cdots,\alpha_n \rangle$ 上的一组基 β_2,\cdots,β_n 使得 A_1,B_1 为上三角矩阵. 此时, 在基 $\alpha_1,\beta_2,\cdots,\beta_n$ 下, A,B 都是上三角矩阵.
- 5. 容易验证特征值为 $\lambda_1, \dots, \lambda_n$,每个特征值分别为 n_i 重. 由于 A 可对角化当且仅当特征值的对应几何重数也为 n_i 重, 而这当且仅当 $A_i = \lambda_i I_{n_i}$ (考虑 rank(A) 即可, 取其主子式).

6. (1)
$$\begin{bmatrix} I & X \\ O & I \end{bmatrix} \begin{bmatrix} A & C \\ O & B \end{bmatrix} \begin{bmatrix} I & -X \\ O & I \end{bmatrix} = \begin{bmatrix} A & O \\ O & B \end{bmatrix}.$$

(2) 成立. 记 $V = F^{(m+n)\times(m+n)}$, 构造 V 上的线性变换 $\varphi_1(Y) := \begin{pmatrix} A & O \\ O & B \end{pmatrix} Y - Y \begin{pmatrix} A & O \\ O & B \end{pmatrix}$, $\varphi_2(Y) := \begin{pmatrix} A & C \\ O & B \end{pmatrix} Y - Y \begin{pmatrix} A & O \\ O & B \end{pmatrix}$, $\varphi_2(Y) := \begin{pmatrix} A & C \\ O & B \end{pmatrix} Y - Y \begin{pmatrix} A & O \\ O & B \end{pmatrix}$, 由于 $\begin{pmatrix} A & O \\ O & B \end{pmatrix}$, 相似,因此存在可逆矩阵 $T \in V$ 使得 $T^{-1}\begin{pmatrix} A & C \\ O & B \end{pmatrix}$ $T = \begin{pmatrix} A & O \\ O & B \end{pmatrix}$. 简单计算 得 $\varphi_2(Y) = T\varphi_1(T^{-1}Y)$,这表明 $Y \in \text{Ker}\varphi_2 \Leftrightarrow T^{-1}Y \in \text{Ker}\varphi_1$,即 $\dim(\text{Ker}\varphi_1) = \dim(\text{Ker}\varphi_2)$.将 Y 分块为 $\begin{pmatrix} P & Q \\ R & S \end{pmatrix}$,计算可知

$$\begin{aligned} \operatorname{Ker} \varphi_1 &= \left\{ \begin{pmatrix} P & Q \\ R & S \end{pmatrix} : AP = PA, AQ = QB, BR = RA, BS = SB \right\}, \\ \operatorname{Ker} \varphi_2 &= \left\{ \begin{pmatrix} P & Q \\ R & S \end{pmatrix} : AP + CR = PA, AQ + CS = QB, BR = RA, BS = SB \right\}. \end{aligned}$$

再构造线性映射 $\mu_i: \mathrm{Ker} \varphi_i \to F^{n \times (m+n)}, \mu_i \begin{pmatrix} P & Q \\ R & S \end{pmatrix} = (R,S), i=1,2.$ 由于

$$\operatorname{Ker} \mu_1 = \operatorname{Ker} \mu_2 = \left\{ \begin{pmatrix} P & Q \\ O & O \end{pmatrix} : AP = PA, AQ = QB \right\}, \\ \operatorname{Im} \mu_2 \subset \operatorname{Im} \mu_1 = \left\{ (R,S) : BR = RA, BS = SB \right\}, \\ \operatorname{Im} \mu_2 \subset \operatorname{Im}$$

因此由维数关系知 $\operatorname{Im}\mu_1 = \operatorname{Im}\mu_2$. 注意到 $\begin{pmatrix} O & O \\ O & -I \end{pmatrix} \in \operatorname{Ker}\varphi_1$, 因此 $(O, -I) \in \operatorname{Im}\varphi_1 = \operatorname{Im}\varphi_2$, 从而必然存在某个 P,Q 使得 $\begin{pmatrix} P & Q \\ O & -I \end{pmatrix} \in \operatorname{Ker}\varphi_2$, 此时 AQ - QB = C.

【编者注】Roth 定理的另一部分: AX - YB = C 有解 X, Y 的充要条件是 $\operatorname{rank} \begin{pmatrix} A & O \\ O & B \end{pmatrix} = \operatorname{rank} \begin{pmatrix} A & C \\ O & B \end{pmatrix}$. 有兴趣的读者可以试着自己探究证明, 利用分块矩阵的行列变换技巧.

7. 只需找到公共的低维不变子空间, 剩下的可对维数归纳. 不妨设 $\det A = 0$, 否则只需将 A 换成 $A - \lambda_A I$, 其中 λ_A 是 A 的某个特征值. 若 $\ker A$ 不是 B 的不变子空间, 则存在 $\alpha \in \ker A$ 使得 $B\alpha \notin \ker A$. 此时 $(AB - BA)\alpha = AB\alpha \neq 0$, 这也意味着 $\operatorname{Im}(AB - BA) = \operatorname{span}\{AB\alpha\}$. 从而 $\forall \beta \in \mathbb{C}^n$, $(AB - BA)\beta = \lambda_\beta AB\alpha \Rightarrow BA\beta = AB(\beta - \lambda_\beta \alpha)$, 这表明 $\operatorname{Im} A$ 是 B 的不变子空间. 因此 $\operatorname{Ker} A$, $\operatorname{Im} A$ 中必有 B 的不变子空间, 由 $\det A = 0$ 知除非 A = 0, 否则此问题已降维.

8. 是. 设 $(Q_1 + iQ_2)A = B(Q_1 + iQ_2)$, 且它们都是实矩阵. 那么 $Q_1A = BQ_1$, $Q_2A = BQ_2$. 由于 $|Q_1 + \lambda Q_2| = 0$ 至多

只有有限多个解 $(Q_2 = 0)$ 是平凡情形), 从而存在 λ_0 使得 $Q_0 := Q_1 + \lambda_0 Q_2$ 可逆, 此时 $A = Q_0^{-1} B Q_0$, 因此实相似.

9. 用类似于第 9 次习题课第 5 题的办法知 $\operatorname{rank}(I-A) + \operatorname{rank}(I+A) = n$, 即 $\operatorname{Ker}(I-A) + \operatorname{Ker}(I+A) = n$. 又由于 1-x 与 1+x 互质, 从而根据装蜀定理知 $\operatorname{Ker}(I-A) \cap \operatorname{Ker}(I+A) = \{0\}$, 从而 $\mathbb{R}^2 = \operatorname{Ker}(I-A) \oplus \operatorname{Ker}(I+A)$. 这同 样适用于矩阵 B. 且由题意 AB + BA = O 知 A, B 均不为 $\pm I$, 因此 A, B 的特征值均为 ± 1 . 从而存在可逆矩阵 P 使

得 $P^{-1}AP = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. 令 $H = PBP^{-1}$,则 $B^2 = H^2 = I$; $AB + BA = O \Rightarrow (PAP^{-1})H + H(PAP^{-1}) = O$. 这可以

得到 $H = \begin{pmatrix} 0 & h \\ \frac{1}{h} & 0 \end{pmatrix}$ $(h \neq 0)$. 现在取 $T = \begin{pmatrix} 1 & 0 \\ 0 & h \end{pmatrix} P^{-1}$ 即可.

10. 容易验证 $\operatorname{rank}(A) = n - 1$, 且 $|\lambda I - A| = \lambda^{n-1} |\lambda * 1 - \alpha^T \beta| \Rightarrow A$ 有特征值 $\operatorname{O}((n-1)$ 重) 和 $\alpha^T \beta$, 且特征值 0 的几 何重数是 n-1. 因此若 $\alpha^T \beta \neq 0$, 正好有 n 个特征向量; 若 $\alpha^T \beta = 0$, 只有 n-1 个特征向量.

11. 注意到 $\sigma^2(A) = A$. 从而有 2 个特征值 ±1, 对应的特征子空间为 $\mathrm{span}\{E_{11}, \cdots, E_{nn}, E_{ij} + E_{ii}, \cdots\} (1 \le i \ne j \le n)$ 和 span $\{E_{ij} - E_{ji}, \dots\}$ $(1 \le i \ne j \le n)$. 它们维数加起来是 n^2 , 因此可以对角化.

12. (1) 设一个非平凡不变子空间是 W, 并取 $\xi = a_1 e_1 + \cdots + a_n e_n \in W$. 从而 $A\xi = \lambda \xi + \sum_{i=2}^n a_i e_{i-1} \Rightarrow a_2 e_1 + \cdots + a_n e_n \in W$. $a_n e_{n-1} \in W$. 如此往复作用下去, 可知 $e_1 \in W$. 这也表明不可能存在直和, 不变子空间比至少交于 $\operatorname{span}\{e_1\}$.

(2) 设 $a_s \neq 0$ 而 $a_{s+1} = \cdots = a_n = 0$. 根据上问倒数第二步 $a_{s-1}e_1 + a_se_2 \in W$ 知 $e_2 \in W$, 再根据倒数第三步知 $e_3 \in W$, 以此类推. 因此若 $\dim W = m$, 其必为 $\mathrm{span}\{e_1, \dots, e_m\}$. 从而 A 有 n+1 个不变子空间: $\{0\}$, $\mathrm{span}\{e_1\}$, $\mathrm{span}\{e_1, e_2\}$, \cdots , span $\{e_1, e_2, \cdots, e_{n-1}\}, \mathbb{R}^n$.

13. 考虑集合 $M = \{\phi_i \in \operatorname{End}_K(V) : \phi_i \phi_j = \phi_j \phi_i, \, \exists \phi_i \, \exists \gamma \,$ 显然成立. 假设对一切维数小于 n 的线性空间成立, 下面考虑 n 维空间. 任取某非数乘变换 $\phi_0 \in M$, 设 $\lambda_1, \dots, \lambda_s$ 是 其特征值, 对应重数为 n_1, \dots, n_s , 且 $\sum_{i=1}^s n_i = n$, 特征子空间为 V_1, \dots, V_s . 与该分块单位矩阵可交换的矩阵必然也 是相应的分块对角矩阵 (即 V_j 都是 ϕ_i 的不变子空间), 且所有 ϕ_i 在 V_j 上的限制都可交换. 因此由归纳假设, 存在 V_j 的一组基 $\xi_{j1}, \dots, \xi_{j,n_i}$ 使得 $\phi_i|_{V_i}$ 在这组基下的矩阵都是对角阵. 然后把这 s 组基按顺序拼接起来即可.

14. 注意到 $A^2 - A = O$, 用类似于第 9 次习题课第 5 题的办法知 A 可对角化且有特征值 0,1. 因此 A 相似于对角矩 阵 $\operatorname{diag}(I_r, O_{n-r})$. 由于相似矩阵具有相同的秩和迹, 因此 $\operatorname{rank}(A) = \operatorname{tr}(A)$.

15. 设 rankM=r, 则存在可逆矩阵 P,Q 使得 $PMQ=\mathrm{diag}(I_r,O_{n-r})$. 由 AM=MB 得到 $(PAP^{-1})\mathrm{diag}(I_r,O_{n-r})=\mathrm{diag}(I_r,O_{n-r})$ ($Q^{-1}BQ$), 对 PAP^{-1} 和 $Q^{-1}BQ$ 作分块 $\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$, $\begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$, 代入得 $A_{11}=B_{11}$, $A_{21}=B_{12}=O$. 又由 $|\lambda I-A|=|\lambda I-B|$ 知 $A_{22}=B_{22}$. 最后对 $Q^{-1}XP^{-1}$ 作分块 $\begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}$, 计算知 $|A-MX|=|A_{11}-X_{11}||A_{22}|=0$

 $|B_{11} - X_{11}||B_{22}| = |B - XM|.$

致谢 14

感谢北京大学数学科学学院的高峡老师、王福正老师和田青春老师, 他们教会了笔者高等代数的基本知识, 他们的讲义 也成为了笔者的重要参考. 感谢北京大学数学科学学院 22 级本科生吕承融同学, 他提供了大量精彩的题目. 感谢北京 大学数学科学学院 23 级本科生陈全同学, 他极大地辅助了我的教学工作. 感谢选修 2024 秋高等代数 I 习题课 3 班的 全体同学, 他们提供了很多有意思的做法和反馈.