Compito di Reti Logiche 17/02/2016

Cognome e Nome:	Matricola
Prima della consegna barrare una delle due caselle sottos la consegna.	stanti. L'opzione scelta non può essere modificata dopo
Chiedo che la mia prova scritta sia corretta e valutata sub in questo appello. Prendo atto che, a seguito della mia de re valida al termine di questo appello e non potrà essere u	cisione, la mia prova scritta cesserà di esse-
Chiedo che la mia prova scritta sia corretta e valutata de diritto a ed intenzione di rimandare la prova orale all'app il mio diritto a rimandare la prova orale sarà oggetto di va capo se la verifica darà esiti negativi (per qualunque m	veilo straordinario di Aprile. Prendo atto che verifica, e che dovrò ripetere l'intero esame

Esercizio 1

Sia x un intero in base β = dieci su n = 1 cifra e sia X la sua rappresentazione secondo la codifica BCD (8421).

- 1) <u>Descrivere e sintetizzare</u> in forma PS la rete combinatoria che ha in ingresso la rappresentazione X di x e produce in uscita la rappresentazione Y di -x.
- 2) Calcolare le uscite della rete (istanziando le espressioni algebriche della sintesi) quando *x* assume il *minimo* ed il *massimo* valore rappresentabile.

Esercizio 2

L'unità **XX** che ciclicamente preleva un byte da un Produttore del tipo visto a lezione, lo elabora calcolando quante coppie di bit 01 sono contenute nel byte (qualunque sia la posizione che occupano) ed emette il risultato del conteggio tramite la variabile di uscita *risu*. Per notificare ad un eventuale consumatore che un nuovo conteggio è terminato, pone poi ad 1 la variabile di uscita *finito* per un periodo di clock, dopodiché ricomincia da capo.

- 1) Specificare i collegamenti della figura
- 2) Descrivere e sintetizzare l'unità XX. Nella sintesi evidenziare le equazioni delle reti per le variabili di condizionamento e disegnare la porzione di parte operativa relativa al registro in cui viene via via memorizzato il numero delle coppie di bit 01

Esercizio 1 - soluzione

Per i numeri in oggetto, l'essere $a \leftrightarrow A$ su una cifra in base dieci, significa $-5 \le a < +5$ e

$$A = \begin{vmatrix} a & \text{se } a \ge 0 \\ & 10 + a & \text{se } a < 0 \end{vmatrix}$$

$$\begin{array}{c} a & A \\ & -5 & 5 \\ & -4 & 6 \\ & -3 & 7 \\ & -2 & 8 \\ & -1 & 9 \\ & 0 & 0 \\ & 1 & 1 \\ & 2 & 2 \\ & 3 & 3 \\ & & 4 \end{vmatrix}$$

Il risultato y = -x è rappresentabile se e solo se x > -5. In accordo alla codifica 8421, si ha $X = (x_3x_2x_1x_0)_2$ e $Y = (y_3y_2y_1y_0)_2$, e la rete è descritta dalla seguente tabella di verità:

\boldsymbol{x}	y = -x		X	Y		$x_3 x_2 x_1 x_0$	$y_3y_2y_1y_0$
0	0	•	0	0000		0000	0000
1	-1		1	9		0001	1001
2	-2		2	8		0010	1000
3	- 3	cioè	3	7	cioè	0011	0111
4	-4		4	6		0100	0110
-4	4		6	4		0110	0100
-3	3		7	3		0111	0011
-2	2		7	2		1000	0010
-1	1		9	1		1001	0001
			others			others	

cui corrispondono le mappe di Karnaugh:

x_3	\mathfrak{c}_2				x_3	\mathfrak{c}_2			
x_1x_0	00	01	11	10	x_1x_0	00	01	11	10
00	00	01		00	00	00	10		10
01	10			00	01	01			01
11	01	00			11	11	11		
10	10	01			10	00	00		
y_3y_2				y_1y_0					

Una possibile realizzazione a costo minimo di tipo PS è la seguente:

$$\begin{aligned} y_{3} &= \overline{x}_{2} \cdot \overline{x}_{3} \cdot \left(x_{1} + x_{0} \right) \cdot \left(\overline{x}_{1} + \overline{x}_{0} \right), \\ y_{2} &= \left(x_{2} + x_{0} \right) \cdot \left(x_{1} + \overline{x}_{0} \right) \cdot \left(\overline{x}_{2} + \overline{x}_{0} \right), \\ y_{1} &= \left(x_{1} + x_{2} + x_{3} \right) \cdot \left(\overline{x}_{0} + x_{1} \right) \cdot \left(x_{0} + \overline{x}_{1} \right), \\ y_{0} &= x_{0}. \end{aligned}$$

La rete ha un'uscita di overflow, che va ad 1 quando $X = 5 = (0101)_2$. Dalla sintesi PS si ottiene immediatamente: $ov = x_1 + \overline{x_0} + \overline{x_3}$.

Soluzione Esercizio 2

```
//----
module XX(byte_in,dav_,rfd, risu,finito, p,reset_);
 input p,reset_;
 input [7:0] byte in;
 input dav_;
output rfd;
 output[2:0] risu;
 output finito;
 reg [7:0] APP;
 reg [2:0] RISU;
 reg RFD;
 reg
         FINITO;
 reg [2:0] STAR;
 parameter[2:0] S0=0, S1=1, S2=2, S3=3;
 assign rfd=RFD;
 assign finito=FINITO;
 assign risu=RISU;
 always @(reset ==0) begin STAR=S0; end
 always @(posedge p) if (reset ==1) #3
  casex(STAR)
   S0: begin FINITO<=0; APP<=byte in; RISU=0; RFD<=1;
          STAR \le (dav == 0)?S1:S0; end
   S1: begin RFD<=0; STAR<=(dav ==0)?S1:S2; end
   S2: begin RFD<=1; RISU<=(APP[7:6]=='B01)?(RISU+1): RISU;
           APP<={APP[6:0],1'B0}; STAR<=(APP=='H00)? S3 : S2; end
   S3: begin FINITO<=1; STAR<=S0; end
  endcase
endmodule
//-----
```