Introduction

Reminder of the problem

What is left to d

Diversity

Harvest every da

Harvest different species each day Analysis

Plant's size

Architecture of a growth module

Optimization:

Optimal number

Conclusion

Annexe

Plant Growth Scheduling

Salima Jaoua and Dana Kalaaji Supervised by Jonas Racine

EPFL

June 3, 2021

Overview

Introduction
Reminder of the problem
What is left to do

Diversity constraints

Harvest every day Harvest different species each day Analysis

Plant's size

Architecture of a growth module

Analysis

Optimization final task

Optimal number of

Conclusion

Annex

- Introduction
 - Reminder of the problem
 - What is left to do
- 2 Diversity constraints
 - Harvest every day
 - Harvest different species each day
 - Analysis
- Plant's size
 - Problem
 - Architecture of a growth module
 - Analysis
- 4 Optimization: final task
 - Optimal number of modules
- Conclusion
- 6 Annexe

Recall: GrowthBotHub

Introduction

Reminder of the

problem
What is left to do

Diversity

constraints

Harvest every d

species each day Analysis

Plant's size

Problem Architecture of

Architecture of growth module Analysis

Optimization: final task

Optimal number modules

Conclusion

Annexe

Association at EPFL

Recall: GrowthBotHub

Reminder of the

- Association at EPFL
- Fully automated farm

Recall: GrowthBotHub

Introduction Reminder of the

problem

What is left to do

What is left to do

Diversity

Harvest every da Harvest different species each day

Plant's size

Architecture of a growth module

Optimization

Optimal number of modules

Annove

- Association at EPFL
- Fully automated farm

Introduction

Reminder of the

What is left to do

Diversity

constrain

Harvest every di Harvest different species each day

Plant's size

Problem
Architecture of a growth module

Optimization:

Optimal number modules

Conclusion

Annexe

Each plant has needs that changes over time

Introduction

Reminder of the

What is left to do

constrain

Harvest different species each day Analysis

Plant's size

Problem
Architecture of a growth module
Analysis

Optimization:

Optimal number

Conclusion

Annexe

- Each plant has needs that changes over time
- Each module contains certain nutrients

Introduction

Reminder of the

What is left to do

Diversity

Harvest different species each day Analysis

Plant's size

Architecture of a growth module

Analysis

Optimization final task

Optimal number

Conclusion

Annexe

- Each plant has needs that changes over time
- Each module contains certain nutrients
- A plant need to be moved between modules a certain points in time

Introduction

Reminder of the

What is left to do

Diversity constraint

Harvest different species each day Analysis

Plant's size

Architecture of a growth module

Analysis

Optimization: final task

Optimal number

Conclusion

Annexe

- Each plant has needs that changes over time
- Each module contains certain nutrients
- A plant need to be moved between modules a certain points in time

Max number of plants: What to plant? Where? When?

Introduction

Reminder of the problem

What is left to do

Diversity

Harvest different species each day Analysis

Plant's size

Architecture of a growth module Analysis

Optimization: final task

Optimal number

Conclusion

Annexe

- Each plant has needs that changes over time
- Each module contains certain nutrients
- A plant need to be moved between modules a certain points in time

Max number of plants: What to plant? Where? When?

Our goal:

Introduction

Reminder of the problem

What is left to do

Diversity constraint

Harvest different species each day Analysis

Plant's size

Architecture of a growth module

Analysis

Optimization: final task

Optimal number modules

Conclusion

Annexe

- Each plant has needs that changes over time
- Each module contains certain nutrients
- A plant need to be moved between modules a certain points in time

Max number of plants: What to plant? Where? When?

- Our goal:
 - Improve and optimize last semester's algorithm

Introduction

Reminder of the

What is left to do

Diversity constraint

Harvest different species each day Analysis

Plant's size

Architecture of a growth module

Analysis

Optimization:

Optimal number of

Conclusion

Annexe

- Each plant has needs that changes over time
- Each module contains certain nutrients
- A plant need to be moved between modules a certain points in time

Max number of plants: What to plant? Where? When?

- Our goal:
 - Improve and optimize last semester's algorithm
 - Re-scheduling

Reminder of the

problem

Multi-commodity flow

Reminder of the

problem

Multi-commodity flow

Reminder of the

problem

Multi-commodity flow and Time-expanded graph

Reminder of the

Reminder of the

Reminder of the

Introduction Reminder of the

problem

vvnat is left to do

constrain

Harvest every day

species each day Analysis

Plant's size

Architecture of a growth module

Optimization: final task

Optimal numbe modules

Conclusion

Annexe

Multi-commodity flow and Time-expanded graph

Introduction

Reminder of the problem

What is left to do

constrain

constrain

Harvest different species each day

Plant's size

Architecture of growth module

Optimization:

Optimal number

Conclusion

Annexe

$\label{lem:multi-commodity flow and Time-expanded graph} \\$

Reminder of the

problem
What is left to do

constrain

Harvest every day Harvest different species each day

Plant's size

- ..

Architecture of growth module
Analysis

Optimization: final task

Optimal number of

Conclusion

Annexe

Last time: 1 node = 1 hole

Introduction

Reminder of the

What is left to do

Constrain

Harvest every day

species each day Analysis

Plant's size

Problem
Architecture of growth module
Analysis

Optimization:

Optimal number of

Conclusion

Annexe

Last time: 1 node = 1 hole

• Algorithm crashes after 12h on real-sized inputs

Introduction Reminder of the

problem
What is left to do

What is left to do

constraint

Harvest different species each day

Plant's size

Architecture of a growth module Analysis

Optimization final task

Optimal number

Conclusion

Annexe

Last time: 1 node = 1 hole

• Algorithm crashes after 12h on real-sized inputs

Introduction Reminder of the

What is left to do

Diversity

problem

Harvest different species each day Analysis

Plant's size

Architecture of a growth module

Analysis

Optimization:

Optimal number modules

Conclusion

Annexe

Last time: 1 node = 1 hole

• Algorithm crashes after 12h on real-sized inputs

Reminder of the problem

What is left to do

Diversity

Harvest different species each day

Plant's size

Architecture of a growth module

Analysis

Optimization final task

Optimal number modules

Conclusion

Annexe

Last time: 1 node = 1 hole

• Algorithm crashes after 12h on real-sized inputs

Tray edges	7200	720
Transfer edges	84600	846
Source edges	7220	722
Sink edges	7220	722
Total edges	106240	3010

Reminder of the problem

What is left to do

Last time: 1 node = 1 hole

Algorithm crashes after 12h on real-sized inputs

Our solution: reduced the size of the graph

Tray edges	7200	720
Transfer edges	84600	846
Source edges	7220	722
Sink edges	7220	722
Total edges	106240	3010

Algorithm is able to run with real-size data

Introduction
Reminder of the problem

What is left to do

Diversity

Harvest different species each day Analysis

Plant's size

Architecture of a growth module

Analysis

Optimization final task

Optimal number modules

Conclusion

Annex

Last time: 1 node = 1 hole

Algorithm crashes after 12h on real-sized inputs

Tray edges	7200	720
Transfer edges	84600	846
Source edges	7220	722
Sink edges	7220	722
Total edges	106240	3010

- Algorithm is able to run with real-size data
- Finds a 95% optimal solution in less than 2 minutes

Introduction
Reminder of the problem

What is left to do

Diversity

Harvest different species each day Analysis

Plant's size

Architecture of a growth module

Analysis

Optimization final task

Optimal number modules

Conclusion

Annex

Last time: 1 node = 1 hole

Algorithm crashes after 12h on real-sized inputs

Tray edges	7200	720
Transfer edges	84600	846
Source edges	7220	722
Sink edges	7220	722
Total edges	106240	3010

- Algorithm is able to run with real-size data
- Finds a 95% optimal solution in less than 2 minutes

Reminder of the

eminder of the oblem

What is left to do

Diversity

constrain

Harvest different species each day

Plant's size

Problem
Architecture of a

Architecture of growth module Analysis

Optimization final task

Optimal number modules

Conclusion

Annexe

Some of our goals changed :

Introduction Reminder of the

What is left to do

vviiat is left to t

constrain

Harvest different species each day Analysis

Plant's size

Architecture of a growth module

Optimization final task

Optimal number

Conclusion

Annexe

Some of our goals changed :

- We want to obtain at least one plant everyday, with different species each day
- → New diversity constraints

Reminder of the

What is left to do

Diversity

Harvest every da Harvest different species each day Analysis

Plant's size

Problem Architecture of a

Architecture of a growth module Analysis

Optimization: final task

modules

Conclusion

Annexe

Some of our goals changed :

- We want to obtain at least one plant everyday, with different species each day
- → New diversity constraints

We also need to take care of our original ones :

Reminder of the

What is left to do

Diversity

Harvest every day Harvest different species each day Analysis

Plant's size

Problem
Architecture of a growth module

Optimization:

Optimal number

Conclusion

Annexe

Some of our goals changed :

- We want to obtain at least one plant everyday, with different species each day
- → New diversity constraints

We also need to take care of our original ones :

Constraint about the plant's size

Introduction
Reminder of the

What is left to do

Diversity

Harvest every day Harvest different species each day Analysis

Plant's size

Problem
Architecture of a growth module

Optimization final task

Optimal number modules

Conclusion

Annexe

Some of our goals changed :

- We want to obtain at least one plant everyday, with different species each day
- → New diversity constraints

We also need to take care of our original ones :

Constraint about the plant's size

And a new goal has been added :

Introduction
Reminder of the

What is left to do

Diversity

Harvest every day Harvest different species each day Analysis

Plant's size

Problem
Architecture of a growth module

Analysis

Optimization

inal task

Annex

Some of our goals changed:

- We want to obtain at least one plant everyday, with different species each day
- → New diversity constraints

We also need to take care of our original ones :

Constraint about the plant's size

And a new goal has been added :

• Total number of growth modules $(\in [12, 16])$ unknown

Introduction
Reminder of the

What is left to do

Diversity

Harvest every day Harvest different species each day Analysis

Plant's size

Problem

Architecture of a growth module
Analysis

Optimization final task

Optimal number

Conclusion

Annex

Some of our goals changed :

- We want to obtain at least one plant everyday, with different species each day
- → New diversity constraints

We also need to take care of our original ones :

Constraint about the plant's size

And a new goal has been added:

- Total number of growth modules $(\in [12, 16])$ unknown
- → Goal: find best combination of growth modules

Diversity

Introduction

0 1 1 61

What is left to do

Diversity constraint

constraints

Harvest different species each day Analysis

Plant's size

Problem
Architecture of a growth module
Analysis

Optimization:

Optimal number modules

Conclusion

Annexe

We keep the current diversity constraint

Diversity

Introduction

Reminder of the

What is left to do

Diversity constraints

Harvest different species each day

Plant's size

Problem
Architecture of a growth module
Analysis

Optimization final task

Optimal number

Conclusion

Annexe

We keep the current diversity constraint

• number of plants of each species is close to the average

Diversity

Introduction

Reminder of the problem

What is left to do

Diversity constraints

Harvest different species each day Analysis

Plant's size

Problem
Architecture of a growth module

Optimization final task

modules

Conclusion

Annexe

We keep the current diversity constraint

• number of plants of each species is close to the average

$$\begin{aligned} & \text{maximize} & & \sum_{\rho=1}^{P} \sum_{d=1}^{\text{size}(k_{\rho})} \sum_{(i,j) \in \delta^{+}(s_{\rho})} x_{ijk_{\rho_{d}}} \\ & \text{subject to} & & \sum_{(i,j) \in \delta^{+}(n)} x_{ijk} - \sum_{(i,j) \in \delta^{-}(n)} x_{ijk} = 0 \quad \forall n \in V - \{S,T\} \\ & & \forall (i,j) \in E \quad \sum_{\rho=1}^{N} \sum_{d=1}^{\text{size}(k_{\rho})} x_{ijk_{\rho_{d}}} \leq 5 \\ & & \forall \rho \in \{1....N\} \sum_{d=1}^{\text{size}(k_{\rho})} \sum_{(i,j) \in \delta^{+}(s_{\rho})} x_{ijk_{\rho_{d}}} \geq \frac{\sum_{\rho=1}^{N} \sum_{d=1}^{\text{size}(k_{\rho})} \sum_{(i,j) \in \delta^{+}(s_{\rho})} x_{ijk_{\rho_{d}}}}{N} - \epsilon \end{aligned}$$

→ ensures that we have a long term diversity

Introduction

Reminder of the problem

What is left to d

Diversity

Harvest every day

Harvest different species each day

Plant's size

Problem

Architecture of growth module

Analysis

Optimization:

Optimal number modules

Conclusion

Annexe

Divide the new constraint into two smaller ones

Introduction

Reminder of the problem

What is left to o

constraints

Harvest every day

Harvest different species each day Analysis

Plant's size

Architecture of growth module

Optimization: final task

Optimal number modules

Conclusion

Annexe

Divide the new constraint into two smaller ones

• Indicate if we harvest a plant on a given day

Introduction

Reminder of the problem

What is left to d

constraints

Harvest every day

Harvest different species each day Analysis

Plant's size

Architecture of a growth module

Optimization:

Optimal number modules

Conclusion

Annexe

Divide the new constraint into two smaller ones

• Indicate if we harvest a plant on a given day Add a variable $(z_d)_{d\in\{1...D\}}$ where D is the total number of days

Introduction

Reminder of the problem

What is left to d

Constraints Harvest every day

Harvest different species each day Analysis

Plant's size

Architecture of a growth module

Optimization final task

Ontimal number

Conclusion

Annexe

Divide the new constraint into two smaller ones

• Indicate if we harvest a plant on a given day Add a variable $(z_d)_{d\in\{1...D\}}$ where D is the total number of days

• Goal: $z_d = 0 \ \forall d \in \{1 \dots D\}$

Introduction

Reminder of the problem

What is left to d

constraints

Harvest every day Harvest different species each day Analysis

Plant's size

Architecture of a growth module

Optimization: final task

modules

Annovo

Divide the new constraint into two smaller ones

• Indicate if we harvest a plant on a given day Add a variable $(z_d)_{d\in\{1...D\}}$ where D is the total number of days

$$ullet$$
 Goal: $z_d=0 \ orall d \in \{1\dots D\}$ $\underline{\wedge}$ may be impossible

Introduction

Reminder of the problem What is left to de

constraints

Harvest every day Harvest different

species each day Analysis

Plant's size

Architecture of a growth module

Optimization: final task

modules

Conclusion

Annexe

Divide the new constraint into two smaller ones

- Indicate if we harvest a plant on a given day Add a variable $(z_d)_{d \in \{1...D\}}$ where D is the total number of days
- Goal: $z_d = 0 \ \forall d \in \{1 ... D\}$

 \longrightarrow penalize the objective function each day where we don't harvest a plant.

Introduction

problem

What is left to do

Diversity

constrain

Harvest every da

Harvest different species each day

Analysis

Plant s size

Architecture of growth module
Analysis

Optimization final task

Optimal number

Conclusion

Annexe

• Need to diversify the outcomes each day \rightarrow add a variable for every edge:

Indicator of flow

Introduction

problem What is left to do

Diameter

constraints

Harvest every d

Harvest different species each day

Analysis

Plant's size

Architecture of growth module

Analysis

Optimization final task

Optimal number

Conclusion

Annexe

 \bullet Need to diversify the outcomes each day \to add a variable for every edge:

Introduction

problem

What is left to do

Discoultry

constraints

Harvest every d

Harvest different species each day

Plant's size

Architecture of growth module

Analysis

Optimization final task

Optimal number

Conclusion

Annexe

 \bullet Need to diversify the outcomes each day \to add a variable for every edge:

Indicator of flow

$$y_{ij} = 1 \text{ if } x_{ijk} > 0 \ \forall (i,j) \in E \ \forall k$$

Introduction

problem

What is left to do

Wilat is left to

constraint

U----

Harvest different species each day

Analysis

Plant's size

Architecture of a growth module

Optimization final task

Optimal number o modules

Conclusion

Annexe

• Need to diversify the outcomes each day \rightarrow add a variable for every edge:

Indicator of flow

$$y_{ij} = 1 \text{ if } x_{ijk} > 0 \ \forall (i,j) \in E \ \forall k$$

Limit number of days in a where we can harvest a specie

Introduction

Reminder of the problem

What is left to do

Diversity

constraint

Harvest different species each day

Analysis

Plant's size

Architecture of a growth module

Analysis

Optimization final task

Optimal number

Conclusion

Annexe

• Need to diversify the outcomes each day \rightarrow add a variable for every edge:

Indicator of flow

$$y_{ij} = 1 \text{ if } x_{ijk} > 0 \ \forall (i,j) \in E \ \forall k$$

- Limit number of days in a where we can harvest a specie
 - ightarrow Once we harvest a plant of type p, we cannot harvest another one for the next 3 days

Introduction

Reminder of the problem

What is left to do

Diversity

constraint

Harvest different species each day

species each day Analysis

Plant's size

Architecture of a growth module

Analysis

Optimization final task

nnai task

Conclusion

Annexe

• Need to diversify the outcomes each day \rightarrow add a variable for every edge:

Indicator of flow

$$y_{ij} = 1 \text{ if } x_{ijk} > 0 \ \forall (i,j) \in E \ \forall k$$

- Limit number of days in a where we can harvest a specie
 - \rightarrow Once we harvest a plant of type p, we cannot harvest another one for the next 3 days

$$\forall d \ \forall p = 1...N \ \sum_{d}^{d+3} y_{t_{p_d}} \leq 1$$

Introduction

Reminder of the

What is left to o

Diversity

constrain

Harvest different

species each day

Analysis

Plant's size

Architecture of growth module

Optimization final task

Optimal number

Conclusion

Annexe

At least a plant per day constraint:

Analysis

At least a plant per day constraint:

- More even distribution over time
- Some loss of plant but negligible

Introduction

problem What is left to do

Constraint

Harvest every

species each day

Plant's size

Flant's Size

Architecture of a growth module

Optimization:

Optimal number

Conclusion

Annexe

At least a plant per day constraint:

- More even distribution over time
- Some loss of plant but negligible
- Does not affect the running time

What is left to do

Analysis

At least a plant per day constraint:

- More even distribution over time
- Some loss of plant but negligible
- Does not affect the running time

Introduction

Reminder of the problem

What is left to do

Diversity

Harvest every day Harvest different species each day

species each day Analysis

Plant's size

Architecture of a growth module

Optimization: final task

modules

Conclusion

Annexe

At least a plant per day constraint:

- More even distribution over time
- Some loss of plant but negligible
- Does not affect the running time

- Really slows down the code: from 2min to +3h!
- If we limit the harvesting of a same species of plants to at least every...

Analysis

At least a plant per day constraint:

- More even distribution over time
- Some loss of plant but negligible
- Does not affect the running time

- Really slows down the code: from 2min to +3h!
- If we limit the harvesting of a same species of plants to at least every...
 - ...2 days \rightarrow we obtain $\frac{2}{3}$ of the total number of plants

Introduction
Reminder of the problem
What is left to do

Diversity

Harvest every day Harvest different species each day

species each day Analysis

Plant's size

Problem

Architecture of a growth module

Analysis

Optimization: final task

Optimal numbe modules

Conclusion

Annexe

At least a plant per day constraint:

- More even distribution over time
- Some loss of plant but negligible
- Does not affect the running time

- Really slows down the code: from 2min to +3h!
- If we limit the harvesting of a same species of plants to at least every...
 - ...2 days \rightarrow we obtain $\frac{2}{3}$ of the total number of plants
 - ...3 days \rightarrow we obtain 0 plants

Introduction
Reminder of the problem
What is left to do

Diversity constraint:

Harvest every day Harvest different species each day

species each day Analysis

Plant's size

Architecture of a growth module

Optimization: final task

modules

Λ

At least a plant per day constraint:

- More even distribution over time
- Some loss of plant but negligible
- Does not affect the running time

- Really slows down the code: from 2min to +3h!
- If we limit the harvesting of a same species of plants to at least every...
 - ...2 days \rightarrow we obtain $\frac{2}{3}$ of the total number of plants
 - ullet ...3 days o we obtain 0 plants
- ullet More cons than pros o dropped by the association

Introduction

Reminder of the

What is left to o

Diversity

constrain

Harvest different

Analysis

Analysis

Plant's size

Problem
Architecture of a

Architecture of growth module Analysis

Optimization: final task

Optimal number

Conclusion

Annexe

Each growth module can carry up to 5 plants

Introduction

Reminder of the problem

What is left to do

Diversity

constrain

species each

Analysis

Plant's size

Architecture of a growth module

Optimization final task

Optimal number

Conclusior

Annexe

Each growth module can carry up to 5 plants

 \rightarrow Constraint: each module can contain at most 2 types of plant from the same kind

Reminder of the problem

What is left to do

Diversity

constraint

Harvest differer species each da

Analysis

Plant's size

Architecture of a growth module

Optimization

Optimal number

Conclusion

Annexe

Each growth module can carry up to 5 plants

- \rightarrow Constraint: each module can contain at most 2 types of plant from the same kind
- only changes the capacity per commodity of an edge

Introduction

Reminder of the problem

What is left to do

Diversity

constraint

Harvest differen species each day

species each day Analysis

Plant's size

Problem
Architecture of a growth module

Optimization final task

Optimal number of modules

Conclusion

Annexe

Each growth module can carry up to 5 plants

- ightarrow Constraint: each module can contain at most 2 types of plant from the same kind
- only changes the capacity per commodity of an edge

Introduction

Reminder of the problem

What is left to do

Diversity

constraint

Harvest differen species each day

Analysis

Plant's size

Architecture of a growth module

Analysis

Optimization final task

Optimal number o modules

Annexe

Each growth module can carry up to 5 plants

- \rightarrow Constraint: each module can contain at most 2 types of plant from the same kind
- only changes the capacity per commodity of an edge

Analysis of this constraint

Does not reduce the total number of plants

What is left to do

Analysis

Each growth module can carry up to 5 plants

- → Constraint: each module can contain at most 2 types of plant from the same kind
- only changes the capacity per commodity of an edge

- Does not reduce the total number of plants
- Running time is the same

What is left to do

Analysis

Each growth module can carry up to 5 plants

- → Constraint: each module can contain at most 2 types of plant from the same kind
- only changes the capacity per commodity of an edge

- Does not reduce the total number of plants
- Running time is the same
- Constraint not respected to perfection

Introduction
Reminder of the problem
What is left to do

Diversity

Harvest every da Harvest different species each day

species each day

Analysis

Plant's size

Problem

Architecture of a growth module

Analysis

Optimization final task

modules

.

Each growth module can carry up to 5 plants

- ightarrow Constraint: each module can contain at most 2 types of plant from the same kind
- only changes the capacity per commodity of an edge

- Does not reduce the total number of plants
- Running time is the same
- Constraint not respected to perfection
 - → Compromise between constraint

Introduction
Reminder of the problem
What is left to do

Diversity

Harvest every d

Analysis

Plant's size

Architecture of a growth module

Optimization final task

modules

Each growth module can carry up to 5 plants

- \rightarrow Constraint: each module can contain at most 2 types of plant from the same kind
- only changes the capacity per commodity of an edge

- Does not reduce the total number of plants
- Running time is the same
- Constraint not respected to perfection
 - \rightarrow Compromise between constraint perfectly respected or good output and running time

Problem

Graph's architecture changed

What is left to do

Problem

Graph's architecture changed → need to update last semester's plants' size constraint

1 node = 1 type of module

Introduction

Reminder of the problem

What is left to do

constrain

Harvest different species each day Analysis

Plant's size

Problem

Architecture of a growth module

Architecture of a growth module Analysis

Optimization: final task

Ontimal number

Conclusion

Annexe

Graph's architecture changed → need to update last semester's plants' size constraint

- 1 node = 1 type of module
- Can't control the size plants each growth module

Introduction

Reminder of the problem

What is left to o

Diversity constraint

Harvest different species each day Analysis

Plant's size

Problem
Architecture of a growth module

Optimization:

Optimal number of modules

modules

Annexe

Graph's architecture changed \longrightarrow need to update last semester's plants' size constraint

1 node = 1 type of module

- Can't control the size plants each growth module
- We need to have control over the arrangement of a growth module

Changing the architecture

Architecture of a growth module

Change the algorithm: one node = one growth module

Introduction

problem What is left to do

Constrain

Harvest every da Harvest different species each day

Harvest differen species each da Analysis

Plant's size

Architecture of a

growth module Analysis

Optimization final task

Optimal number

Conclusion

Annexe

Change the algorithm: one node = one growth module

Control over what happens inside a module

Introduction

problem
What is left to do

constrain

Harvest different species each day

Plant's size

1 10111 3 3120

Architecture of a growth module

Optimization final task

Optimal number

Conclusion

Annexe

Change the algorithm: one node = one growth module

- Control over what happens inside a module
- Knowledge on what plants are inside what module

What is left to do

Architecture of a growth module

Change the algorithm: one node = one growth module

- Control over what happens inside a module
- Knowledge on what plants are inside what module

Introduction

Reminder of the problem

What is left to do

Diversity

Harvest different species each day Analysis

Plant's size

Problem
Architecture of a

growth module
Analysis

Optimization final task

modules

Annexe

Change the algorithm: one node = one growth module

- Control over what happens inside a module
- Knowledge on what plants are inside what module

Analysis:

Does it run on real-sized inputs ?

Introduction

Reminder of the problem

What is left to do

Diversity

Harvest different species each day Analysis

Plant's size

Problem

Architecture of a growth module

Analysis

Optimization final task

Optimal number

Conclusion

Annexe

Change the algorithm: one node = one growth module

- Control over what happens inside a module
- Knowledge on what plants are inside what module

- Does it run on real-sized inputs ? Yes !!
- Running time: from less than 2 min to more than 3h30

Introduction

Reminder of the problem

What is left to do

Diversity constraint

Harvest different species each day Analysis

Plant's size

Problem
Architecture of a

growth module
Analysis

Optimization final task

modules

Annexe

Change the algorithm: one node = one growth module

- Control over what happens inside a module
- Knowledge on what plants are inside what module

- Does it run on real-sized inputs ? Yes !!
- Running time: from less than 2 min to more than 3h30
- Still good for its purpose

Reminder of the

Reminder of the problem What is left to do

Diversity constraints

Harvest every da Harvest different species each day Analysis

Plant's size

Architecture of a growth module

Optimization final task

Optimal numbe modules

Conclusion

Annexe

Change the algorithm: one node = one growth module

- Control over what happens inside a module
- Knowledge on what plants are inside what module

- Does it run on real-sized inputs ? Yes !!
- Running time: from less than 2 min to more than 3h30
- Still good for its purpose → run the code once for the next 6 months

Introduction

Reminder of the problem

What is left to d

Diversity

constrain

Harvest different species each day

Analysis

r Idiit 5 Size

Problem
Architecture of a growth module

Optimization

Optimal number

Conclusion

Annexe

• Best case: we know the size of each specie over time

Architecture of a growth module

- Best case: we know the size of each specie over time
 - \rightarrow Precise algorithm

Introduction

Reminder of the

What is left to d

Diversity

constrain

Harvest different species each day

Plant's size

r latit 5 Size

Architecture of a growth module

Optimization

Optimal number

Conclusion

- Best case: we know the size of each specie over time
 - \rightarrow Precise algorithm
- Problem: no experiment done by GrowBotHub

Introduction

Reminder of the

What is left to de

Diversity

Harvest every da

Harvest different species each day Analysis

Plant's size

. Idiic 5 5ize

Architecture of a growth module

Optimization

Optimal number modules

Conclusion

- Best case: we know the size of each specie over time
 - \rightarrow Precise algorithm
- Problem: no experiment done by GrowBotHub
 - \rightarrow No data on the plant's size !

Introduction

Reminder of the problem

What is left to d

Diversity

Harvest different species each day

Plant's size

1 14111 3 3120

Architecture of a growth module

Optimization: final task

Ontimal number

Canaluaian

- Best case: we know the size of each specie over time
 - \rightarrow Precise algorithm
- Problem: no experiment done by GrowBotHub
 - \rightarrow No data on the plant's size !
 - ightarrow Can't control the size of plants in a growth module if we have no data

Introduction

Reminder of the problem What is left to do

constrain

Harvest different species each day Analysis

Plant's size

Problem
Architecture of a growth module

Optimization

Ontimal number

. .

Annex

- Best case: we know the size of each specie over time
 - \rightarrow Precise algorithm
- Problem: no experiment done by GrowBotHub
 - \rightarrow No data on the plant's size !
 - \rightarrow Can't control the size of plants in a growth module if we have no data

We still need to find some way to implement this constraint

Architecture of a

growth module

Introduction

Reminder of the

What is left to o

constraint

constraint

Harvest different species each day Analysis

Plant's size

_

Architecture of a growth module

Optimization

Optimal number

Conclusion

Annexe

Architecture of a

growth module

Determine biggest plants as they will cause problem over time How?

 \longrightarrow 3 out of our 6 plants will not cause problem :

Architecture of a growth module

- \longrightarrow 3 out of our 6 plants will not cause problem :
 - Radish and Endive: small.

Introduction

Reminder of the

What is left to do

Diversity

Harvest different species each day Analysis

Plant's size

1 10111 3 312

Architecture of a growth module

growth module Analysis

Optimization final task

Optimal number

Conclusion

Annexe

- \longrightarrow 3 out of our 6 plants will not cause problem :
 - Radish and Endive : small.
 - Strawberries : not in the same growth module.

Introduction

What is left to do

Diversity constraint

Harvest different species each day Analysis

Plant's size

Architecture of a growth module

growth module Analysis

Optimization: final task

Optimal number o modules

Annexe

- \longrightarrow 3 out of our 6 plants will not cause problem :
 - Radish and Endive: small.
 - Strawberries : not in the same growth module.
- ⇒ Lettuce, Fennel, Cabbage : ∧Big plants

Introduction Reminder of the

What is left to

Diversity constraint

Harvest different species each day Analysis

Plant's size

Problem
Architecture of a

Architecture of growth module Analysis

Optimization final task

modules

Conclusion

Annexe

- \longrightarrow 3 out of our 6 plants will not cause problem :
 - Radish and Endive: small.
 - Strawberries : not in the same growth module.
- ⇒ Lettuce, Fennel, Cabbage : ∧Big plants
- \longrightarrow they will cause problem in the growth modules of type 2

Introduction

Reminder of the

What is left to do

Diversity

Harvest every day

Harvest different species each day Analysis

Plant's size

Architecture of a

growth module

Optimization:

Optimal number

Conclusion

Figure: A growth module with its dimensions.

Introduction

Reminder of the problem

What is left to o

constrain

Harvest every di Harvest different species each day

species each day Analysis

Plant's size

Architecture of growth module

Analysis

Optimization final task

Optimal number modules

Conclusion

Annexe

Add a constraint to avoid having more than two big plants in one growth module.

Introduction

Reminder of the problem

What is left to d

Diversity constrain

Harvest every da Harvest different species each day

Plant's size

Flant's Size

Architecture of a growth module

Analysis

Optimization final task

Optimal number modules

Conclusion

Annexe

Add a constraint to avoid having more than two big plants in one growth module.

Plants too big only once reached modules of type 2

Introduction

Reminder of the

What is left to o

constrain

Harvest every da Harvest different species each day

Analysis

Plant's size

Doobless

growth mo

Analysis

Optimization

Optimal number modules

Conclusion

Annexe

Add a constraint to avoid having more than two big plants in one growth module.

- Plants too big only once reached modules of type 2
- Strawberries : ✓

Introduction

Reminder of the problem

What is left to o

constrain:

Harvest every da Harvest different species each day Analysis

Plant's size

1 14111 3 3120

growth modu

Analysis

Optimization final task

Optimal number of modules

Λ

Add a constraint to avoid having more than two big plants in one growth module.

- Plants too big only once reached modules of type 2
- Strawberries : ✓

Analysis.

Introduction

problem
What is left to d

Diversity

Harvest every da Harvest different species each day Analysis

Plant's size

Flant S Size

Problem

growth modu

Analysis

Optimization final task

Optimal number o modules

- . .

Annexe

Add a constraint to avoid having more than two big plants in one growth module.

- Plants too big only once reached modules of type 2
- Strawberries : ✓

Analysis.

- Number of plants remains the same
- Running time

Optimal number of modules

 \longrightarrow Total number of growth modules (\in [12, 16]) unknown General idea:

Introduction

- Reminder of the problem

 What is left to do
- What is left to

constraint

- Harvest different species each day Analysis
- Plant's size

1 10111 3 3120

Architecture of a growth module

Optimization final task

Optimal number of modules

Conclusion

- \longrightarrow Total number of growth modules (\in [12,16]) unknown General idea:
 - run algorithm and output best combination

Introduction

Reminder of the problem

What is left to do

constraint

Harvest different species each day Analysis

Plant's size

Architecture of growth module

Optimization final task

Optimal number of modules

Conclusion

- \longrightarrow Total number of growth modules (\in [12, 16]) unknown General idea:
 - run algorithm and output best combination
 - give this as inputs to the scheduling algorithm

Introduction

Reminder of the problem

What is left to do

constraint

Harvest different species each day Analysis

Plant's size

Architecture of growth module

Optimization final task

Optimal number of modules

Conclusion

- \longrightarrow Total number of growth modules (\in [12, 16]) unknown General idea:
 - run algorithm and output best combination
 - give this as inputs to the scheduling algorithm

Introduction Reminder of the problem What is left to do

- Diversity
- Harvest every da Harvest different species each day
- Plant's size

Flant S Size

Architecture of a growth module Analysis

Optimization final task

Optimal number of modules

Conclusion

Annexe

- \longrightarrow Total number of growth modules (\in [12,16]) unknown General idea:
 - run algorithm and output best combination
 - give this as inputs to the scheduling algorithm

Implementation:

- ullet run scheduling algo on all combination of modules ightarrow output best one
- ullet Brute force o each iteration needs to run fast

Reminder of the problem What is left to do

Diversity

Harvest every day Harvest different species each day Analysis

Plant's size

Problem
Architecture of a

growth module Analysis

final task
Optimal number of

modules

Annexe

 \longrightarrow Total number of growth modules (\in [12,16]) unknown General idea:

- run algorithm and output best combination
- give this as inputs to the scheduling algorithm

Implementation:

- ullet run scheduling algo on all combination of modules ightarrow output best one
- ullet Brute force o each iteration needs to run fast
- use old algo version (1 node = 1 type of module)

Introduction Reminder of the problem What is left to do

Diversity

Harvest every day Harvest different species each day Analysis

Plant's size

Problem

Architecture of a growth module Analysis

Optimization final task

Optimal number of modules

Conclusion

Annexe

- \longrightarrow Total number of growth modules (\in [12,16]) unknown General idea:
 - run algorithm and output best combination
 - give this as inputs to the scheduling algorithm

Implementation:

- ullet run scheduling algo on all combination of modules ightarrow output best one
- ullet Brute force o each iteration needs to run fast
- use old algo version (1 node = 1 type of module)
- each iteration takes a few minutes instead of a few hours!

Conclusion

Reminder of the problem

What is left to do

Diversity constraint

Harvest every day Harvest different species each day Analysis

Plant's size

Problem
Architecture of a growth module

Optimization

Optimal number

Conclusion

Annexe

	Last semester	Now
Size of the graph	(14412, 212'490)	(2892, 38'280)
Number of modules	8	16
Running time	MemoryError	5h30
Constraint Diversity	8	✓
Plant's size	✓	✓
Number of plants	MemoryError	206

Table: Comparison of the scheduling algorithm before and after our project

Introduction

Reminder of the

What is left to do

constrain

constraint

Harvest different species each day

Plant's size

Problem
Architecture of a growth module

Optimization:

Optimal number

Conclusion

$$\begin{array}{ll} \text{maximize} & \sum_{p=1}^{P} \sum_{d=1}^{\text{size}(k_p)} \sum_{(i,j) \in \delta^+(s_p)} \mathbf{x}_{ijk_{p_d}} - \sum_{d=1}^{D} \mathbf{z}_p - \mathbf{v} \sum_{(i,j) \in E} \mathbf{y}_{ij} \\ \text{subject to} & \sum_{(i,j) \in \delta^+(n)} \mathbf{x}_{ijk} - \sum_{(i,j) \in \delta^-(n)} \mathbf{x}_{ijk} = 0 \ \ \forall n \in V - \{S,T\} \\ & \forall (i,j) \in E \ \sum_{p=1}^{N} \sum_{d=1}^{\text{size}(k_p)} \mathbf{x}_{ijk_{p_d}} \leq 5 \\ & \forall p \in \{1....N\} \sum_{d=1}^{Size(k_p)} \sum_{(i,j) \in \delta^+(s_p)} \mathbf{x}_{ijk_{p_d}} \geq \frac{\sum_{p=1}^{N} \sum_{d=1}^{\text{size}(k_p)} \sum_{(i,j) \in \delta^+(s_p)} \mathbf{x}_{ijk_{p_d}}}{N} - \alpha \ \ \alpha \geq \\ & z_d \geq 0 \\ & z_d \geq 1 - \sum_{p=1}^{N} \mathbf{x}_{t_{p_d}} \\ & \forall (i,j) \in E \ \ \forall p \ \ \forall d \ \ \mathbf{x}_{ijk_{p_d}} \leq 5 \\ & \forall d \ \ \forall p = 1....N \ \ \sum_{d}^{d+3} \mathbf{y}_{t_{p_d}} \leq 1 \\ & \mathbf{x}_{ijk_{p_d}} \leq 2 \end{array}$$

The inputs

Reminder of the problem What is left to do.

Diversity constraint

Harvest different species each day Analysis

Plant's size

Architecture of a growth module
Analysis

Optimization: final task

Optimal number

Conclusion

- 4 types of growth module
 - 6 trays of module 1 ("seedling")
 - 6 trays of module 2 ("vegetative")
 - 2 trays of module 3 ("flowering")
 - 2 trays of module 4 ("development")
- Total number of days: 180 (6month)
- 6 types of plants
 - Lettuce: 30 days in module 1, 25 days in module 2
 - Endive: 20 days in module 1, 40 days in module 2
 - Cabbage: 20 days in module 1, 30 days in module 2
 - Fennel: 20 days in module 1, 30 days in module 2
 - Raddish: 15 days in module 1, 15 days in module 2
 - Strawberry: 49 days in module 1, 21 days in module 2, 28 days in module 3, 19 days in module 4

Graph of the optimal solution of the scheduling problem

Introduction
Reminder of the problem
What is left to do

Diversity constraint

Harvest every da Harvest different species each day Analysis

Plant's size

Problem

Architecture of growth module

Analysis

Optimization final task

Optimal number

Conclusio

Results

Introduction

Reminder of the problem

What is left to d

Diversity

Harvest every day Harvest different species each day Analysis

Plant's size

Architecture of a growth module Analysis

Optimization: final task

Optimal number of

Conclusion

- Total number of lettuces:
- Total number of endives:
- Total number of cabbages:
- Total number of fennels:
- Total number of raddishes:
- Total number of strawberries:
- \longrightarrow Total number of plants: 168

Snippet of the instruction file

Introduction

Reminder of the problem

What is left to do

Constrain

constraint

Harvest different species each day Analysis

Plant's size

Problem Architecture of a

Architecture of growth module Analysis

Optimization:

Optimal number modules

Conclusion

Snippet of the content of a module on a given day

ntroduction

problem

What is left to d

Diversity

Hanvest every de

Harvest differe species each da Analysis

Plant's size

Problem
Architecture of a growth module

Optimization:

Optimal number modules

Conclusion