Задача о максимизации разности корреляций векторов

Требуется построить вектор f_3 по заданным f_1 и f_2 так, чтобы разность корреляций f_2 с f_3 и f_1 с f_3 была максимальной:

$$(f_2 f_3) - (f_1 f_3) = \max. (1)$$

Здесь (f_1f_2) — просто скалярное произведение, в случае сигналов это соответствует коэффициенту корреляции сигналов (ненормированному).

Берём вектор f_3 в плоскости векторов f_1 и f_2 , т. е. $f_3 = \alpha f_1 + \beta f_2$, где α , β — неопределённые вещественные коэффициенты.

Условие максимизации разности корреляций

$$(f_2f_3) - (f_1f_3) = \alpha[(f_1f_2) - (f_1f_1)] + \beta[(f_2f_2) - (f_1f_2)] = \max.$$
 (2)

Эта величина неограниченно растёт при $\alpha, \beta \to \infty$, поэтому введём дополнительное условие нормировки f_3 на единицу: $(f_3f_3) = 1$, или

$$\alpha^{2}(f_{1}f_{1}) + 2\alpha\beta(f_{1}f_{2}) + \beta^{2}(f_{2}f_{2}) = 1.$$
(3)

Из данного уравнения выразим α :

$$\alpha_{1,2} = \frac{-\beta(f_1 f_2) \pm \sqrt{\beta^2 [((f_1 f_2))^2 - (f_1 f_1)(f_2 f_2)] + (f_1 f_1)}}{(f_1 f_1)}.$$
 (4)

Подставим в условие на max, получим выражение для β :

$$\beta_{1,2} = \pm \frac{1}{\sqrt{(f_1 f_1) - 2(f_1 f_2) + (f_2 f_2)}}.$$
 (5)

Тогда $\alpha_{1,2}$ находится по формуле (4). В итоге $f_3 = \alpha f_1 + \beta f_2$. Разные знаки « \pm » дадут или максимум, или минимум. Выберем максимум и получим нужный вектор f_3 .