Name:	Teacher:

ST MARK'S COPTIC ORTHODOX COLLEGE

Mathematics Department

2009

Year 11 Extension 1

Semester One Examination

GENERAL INSTRUCTION

- o Reading time 5 minutes
- Working Time 2 hours
- o Write in black or blue pen only
- o Approved calculators may be used

- All necessary working must be shown
- o Begin each question on a different booklet
- Attempt all questions
- All question are of equal value

Section	1	2	3	4	5	6	7	Total
Mark								/84

Question 1 (12 marks) Start work on a new page

2

a) Factorise, then simplify $\frac{9-x}{81-x^2}$

2

Mark

b) Simplify $\frac{\sqrt{5}-1}{\sqrt{5}+1} + \frac{\sqrt{5}+1}{\sqrt{5}-1}$

3

c) Solve for *x*: |2x - 1| < 3

2

d) Solve for x: $\frac{5}{2x-1} < 1$

3

e) Write $\frac{1+\sqrt{7}}{3-\sqrt{7}}$ in the form $a+b\sqrt{7}$, where a and b are rational.

2

Question 2 (12 marks) Start work on a new page

a) A (-2, 5) and B (1, 2) are two fixed points. Find the coordinates of the point P which divides AB externally in the ratio 3:2.

2

b) ABC is a triangle inscribed in a circle. MAN is the tangent to the circle at A. Points D, E lie on AB, AC respectively, so that DE is parallel to MAN.

- Explain why angles MAB and ACB are equal

 Hence show that BCED is a cyclic quadrilateral
 - 3

c) Sketch the graph y = |x - 3|

i)

ii)

2

d) Solve the equation $2x - 9 = \frac{-9}{x}$

2 2

e) On the same set of axes, sketch the graph of y = 2x - 9 and $y = \frac{-9}{x}$

a)

A, B, C and D are four points on a circle such that AB is parallel to CD. Prove that AD = BCHint: Let E be the point of intersection of AD and BC. 4

b) Find the acute angle between the lines 3x - y = 4 and 2x + 3y = 4. Write your answer to the nearest minute.

2

c) Find $\lim_{x\to 3} \frac{x^3 - 27}{x - 3}$

2

d) Prove $\frac{\tan x - \tan y}{\tan x + \tan y} = \frac{\sin(x-y)}{\sin(x+y)}$

4

Question 4 (12 marks) Start work on a new page

Marks

a)

$$AC = AD = BC = DE$$
. Prove $AB = AE$

4

b) Find the value of the pronumeral giving reasons

4

e) Find the value of the pronumeral, giving reasons. Hint show $\triangle ABD$ is Similar to $\triangle ADC$.

A

3

2

3

Question 5 (12 marks) Start work on a new page

- a) A student lies down on the ground and views the top of a church tower at an angle of elevation of 40°. If the student is 50m from the foot of the tower, which is on the same level with the student, how high is the tower to 2 decimal places? Draw a neat diagram
- b) From a sailboat the window of a light house is seen at an angle of elevation of 40°. After moving towards the lighthouse a distance of 50m, the angle of elevation is found to be 43°. How far off is the sailboat from the lighthouse to the nearest metre?
- c) From a ship that is running due north the lighthouse is seen at the bearing of N30^oE, and after 2km of sailing the lighthouse is seen at N48^oE.
 - (i) Draw a neat diagram, illustrating the above information
 - (ii) Calculate the distance from the ship to the lighthouse to 2 decimal places.

Question 6 (12 marks) Start work on a new page

2

a) Sketch $f(x) = \frac{1}{x^2 - 1}$ Show all essential features.

3

Marks

b) If θ is an acute angle and $tan\theta = \alpha$, express $\cos \theta$, $\sin \theta$ in terms of α

2

c) Solve $4\sin^2 x = 1,0^{\circ} \le x \le 360^{\circ}$

2

d) Solve $3\cos^2 x = 8\sin x$, $0 \le x \le 360$, giving your answer to the nearest minute

3

e) If $sin\alpha = \frac{1}{2}$, find the exact value of $\cos 2\alpha$

2

a) (i) Write the expansion for $\cos (\alpha + \theta)$

3

1

(ii) Hence or otherwise prove that $\cos 3\theta = 4\cos^3\theta - 3\cos\theta$

3

- (iii) Solve $8\cos^3\theta 6\cos\theta \sqrt{3} = 0$ for $0^\circ \le \theta \le 360^\circ$
- b) Donna is standing at D and observes the angle of elevation of the tip of a flagpole A, on top of a building to be 22^0 . Her friend Kate, who is standing at K, 400 metres due east of Donna, finds the angle of elevation of the tip of the flagpole to be 20^0 . The building is due north of Donna and B is the base of the building. The points B, D and K are all on level ground.

(i) Show that the height h, of the flagpole above the ground is given by

3

$$h = \frac{400}{\sqrt{(\cot^2 20 - \cot^2 22)}}$$

(ii) Find the value of h, correct to 3 significant figures.