CS 422 - DBMS

Lesson 6 - Chapter 12

WHOLENESS OF THE LESSON

The entity-relationship data model is based on a perception of the real world that consists of a set of basic objects called entities, and of relationships among these entities. Entities and relationships can have attributes. Science & Technology of Consciousness: Knowledge is perceived differently in different states of consciousness. In unity consciousness, one perceives all objects in terms of the Self.

Chapter 12 - Objectives

- How to use Entity-Relationship (ER) modeling in database design.
- How to build an ER model from a requirements specification.
- Basic concepts associated with ER model.
- Diagrammatic technique for displaying ER model using Unified Modelling Language (UML).
- How to identify and resolve problems with ER models called connection traps.

ERD of Branch user views of DreamHome

Concepts of the ER Model

Entity types

Relationship types

Attributes

Entity type

- Group of objects with same properties, identified by enterprise as having an <u>independent existence</u>.
- Represents a person, place or a thing that you want to track in a database.

Entity occurrence (entity instance)

- Uniquely identifiable object of an entity type.
- This will be each record or row in a table.

Examples of Entity Types

Physical existence

Staff Part

Property Supplier

Customer Product

Conceptual existence

Viewing Sale

Inspection Work experience

ER Diagram of Staff And Branch Entity Types

Relationship Types

Relationship type

- Set of meaningful associations among entity types.
- Relationship describes how one or more entities interact with each other.
- A verb is often used to describe the relationship.

Relationship occurrence

 Uniquely identifiable association, which includes one occurrence from each participating entity type.

ER diagram of Branch Has Staff relationship

Semantic net of *Has* relationship type

- Semantic net is an object level model.
- Entity type is Branch and entity occurrences are B003, B007. Same is the case with Staff.
- Relationship occurrences are r1, r2, r3

Degree of Relationship Type

- Degree of Relationship Type is the number of participating entity types in a relationship.
- A relationship of degree :
 - one is unary
 - two is binary
 - three is ternary
 - four is quaternary
- The term "complex relationship" is used to describe relationships with degrees higher than binary.

Binary relationship called *POwns*

Ternary relationship called *Registers*

Quaternary relationship called *Arranges*

Recursive Relationship

- Recursive Relationship (Unary relationship)
 - A relationship type in which the same entity type participates more than once in <u>different roles</u>.

- Relationships may be given role names to indicate purpose that each participating entity type plays in a relationship.
 - The use of role names clarifies the purpose of each relationship.
 - Role names are usually not required if the function of the participating entities in a relationship is unambiguous.

Recursive relationship called Supervises with role names

Entities Associated Through 2 Distinct Relationships With Role Names

- Some entities may have multiple relationships.
- An extra line is needed for each relationship type.

Attributes

Attribute

- Property of an entity or a relationship type.
- These will become the columns in the table.

Attribute Domain

- Set of allowable values for one or more attributes.
- Attributes may share a domain.
 - The address attribute of the Branch, PrivateOwner and BusinessOwner entity types share the same domain of all possible addresses.
- Domains can also be composed of domains.
 - Domain of address attribute is made up of subdomains: street, city and postCode.

Types of Attributes

Simple Attributes (Atomic attributes)

- Attribute composed of a single component with an independent existence.
- Cannot be further subdivided into smaller components.
- E.g. city, position, etc.

Composite Attributes

- Attribute composed of multiple components, each with an independent existence.
- Can be further subdivided into smaller components with an independent existence of their own.
- E.g. name, address, etc.

Types of Attributes contd...

Single-valued Attributes

- Attribute that holds a single value for each occurrence of an entity type.
- E.g. name, currentAddress, etc.

Multi-valued Attributes

- Attribute that holds multiple values for each occurrence of an entity type.
- E.g. email, phone, etc.

Types of Attributes contd...

Derived Attributes

- Attribute that represents a value that is derivable from value of a related attribute, or set of attributes, not necessarily in the same entity type.
- Derived attributes are never stored in a table.
- E.g. Age, profit, loss, etc.

Concept of Keys in ERD

Candidate Key

 Minimal set of attributes that uniquely identifies each occurrence of an entity type.

Primary Key

 Candidate key selected to uniquely identify each occurrence of an entity type.

Composite Key

A candidate key that consists of two or more attributes.

ER Diagram of Staff and Branch Entities and their Attributes

Additional tags that can be used include partial PK {PPK} (when an attribute forms part of a composite PK) and alternate key {AK}.

Classification of Entity Types

Strong Entity Type (parent/owner/dominant)

- Entity type that is not existence-dependent on some other entity type.
- Each entity occurrence is uniquely identifiable using the PK attribute(s) of that entity type.
- E.g. Client, Customer, Textbook, etc.

Weak Entity Type (child/dependent/subordinate)

- Entity type that is existence-dependent on some other entity type.
- Each entity occurrence cannot be uniquely identified using only the attributes associated with that entity type.
- E.g. Preference, Order, Edition, etc.

Strong entity type called *Client* and weak entity type called *Preference*

Attributes on Relationships Relationship called *Advertises* with attributes

To record the date when the property was advertised and the cost of this advertisement, we associate this information with the *Advertises* relationship as attributes called *dateAdvert* and *cost*, rather than with the *Newspaper* or the *PropertyForRent* entities.

Main Point

The E-R model employs three basic concepts: entity types, relationship types, and attributes.

Science & Technology of Consciousness: On the subjective side, Rishi (knower), Devata (process of knowing) and Chhandas (known) are the three basic qualities that structure all of creation.

Structural Constraints

- Constraints that may be placed on entity types that participate in a relationship.
- The constraints should reflect the restrictions on the relationships as perceived in the "real world."
- Main type of constraint on relationships is called multiplicity.
 - Represents policies (called business rules) established by user or company.

- Multiplicity number (or range) of possible occurrences of an entity type that may relate to a single occurrence of an associated entity type through a particular relationship.
- Determining the multiplicity normally requires examining the precise relationships between the data given in an enterprise constraint using sample data.
- Sample data must be a true representation of all the data being modeled.

Multiplicity of Staff Manages Branch relationship

Semantic net of *Staff Manages Branch* relationship type

Cardinality & Participation Constraints

Multiplicity actually consists of two separate constraints known as cardinality and participation.

Cardinality

 Describes maximum number of possible relationship occurrences for an entity participating in a given relationship type.

Participation

 Determines whether all or only some entity occurrences participate in a relationship.

• The cardinality of a relationship appears as the maximum value for the multiplicity ranges on either side of the relationship.

For example, the *Manages* relationship has a one-to-one (1:1) cardinality and this is represented by multiplicity ranges with a maximum value of 1 on both sides of the relationship.

Participation

- The participation of entities in a relationship appears as the minimum values for the multiplicity ranges on either side of the relationship.
- Participation for a given entity in a relationship is represented by the minimum value on the opposite side of the relationship; that is the minimum value for the multiplicity beside the related entity.

Types of Participation Constraints

Mandatory participation

- All entity occurrences are involved in a particular relationship.
- Represented as minimum value of 1.

Optional participation

- Only some entity occurrences are involved in a particular relationship.
- Represented as minimum value of 0.

- Optional participation for the Staff entity in the Manages relationship is shown as a minimum value of 0 for the multiplicity beside the Branch entity.
- Mandatory participation for the Branch entity in the Manages relationship is shown as a minimum value of 1 for the multiplicity beside the Staff entity.

Summary of Multiplicity Constraints

Alternative ways to represent multiplicity constraints	Meaning
01 11 (or just 1) 0* (or just *) 1* 510 0, 3, 6–8	Zero or one entity occurrence Exactly one entity occurrences Zero or many entity occurrences One or many entity occurrences Minimum of 5 up to a maximum of 10 entity occurrences Zero or three or six, seven, or eight entity occurrences

Binary Relationship Types

The most common degree for relationships is binary.

- Binary relationships are generally referred to as being:
 - one-to-one (1:1)
 - one-to-many (1:*)
 - many-to-many (*:*)

Staff *Manages* Branch - 1:1 relationship

Staff *Oversees* PropertyForRent – 1:* relationship

Semantic net of Staff *Oversees*PropertyForRent relationship type

Newspaper *Advertises*PropertyForRent *:* relationship

Semantic net of Newspaper *Advertises*PropertyForRent relationship type

Problems with ER Models

- Problems may arise when designing a conceptual data model; these problems are called as connection traps.
- Often occur due to a misinterpretation of the meaning of certain relationships.
- Two main types of connection traps are called fan traps and chasm traps.

Problems with ER Models

1. Fan Trap

- Where an ER model represents a relationship between entity types, but pathway between certain entity occurrences is ambiguous.
- A fan trap may exist where two or more 1:* relationships fan out from the same entity.

Semantic Net of ER Model with Fan Trap

At which branch office does staff number SG37 work?

• Inability to answer this question is the result of a fan trap associated with the misrepresentation of the correct relationships between the Staff, Division, and Branch entities.

Restructuring ER Model to Remove Fan Trap

Semantic Net of Restructured ER Model with Fan Trap Removed

SG37 works at branch B003.

Problems with ER Models

2. Chasm Trap

- Where an ER model suggests the existence of a relationship between entity types, but pathway does not exist between certain entity occurrences.
- A chasm trap may occur where there are one or more relationships with a minimum multiplicity of zero (i.e. optional participation) forming part of the pathway between related entities.

Semantic Net of ER Model with Chasm Trap

At which branch office is property PA14 available?

The inability to answer this question is considered to be a loss of information (as we know a property must be available at a branch), and is the result of a chasm trap.

ER Model Restructured To Remove Chasm Trap

Semantic Net of Restructured ER Model with Chasm Trap Removed

Main Point

The overall logical structure of a database can be expressed graphically by an E-R diagram which gives a holistic overview of the data that will be in the database. It is important that each relationship be understood in terms of the whole diagram; otherwise connection traps may occur.

Science & Technology of Consciousness: A graphical technique employed by Vedic science is the unified field chart which gives a holistic overview of a discipline and links all knowledge with the Self.

ERD of Branch user views of DreamHome

UNITY CHART

CONNECTING THE PARTS OF KNOWLEDGE WITH THE WHOLENESS OF KNOWLEDGE:

E-R Modeling as a Database Design Technique

- The E-R model employs three basic concepts: entity sets, relationship sets, and attributes.
- 2. An ER diagram is a graphic technique for expressing the wholeness of a database. Entities are very slippery things; one person's entity may be another person's relationship!
- 3. <u>Transcendental consciousness</u> is the experience of the simplest and most abstract state of awareness which underlies all states of greater excitation.
- 4. <u>Impulses within the Transcendental Field</u>: Nature accomplishes what it needs by having its impulses in the transcendental field be as efficient as possible.
- 5. Wholeness moving within itself: In unity consciousness one experiences that all layers of the universe are only different expressions of the same infinite field of pure consciousness.