

2 α	_		_		_	_	_
$f_{1}^{#2}$	0	0	0	0	0	0	0
$f_{1^{ ext{-}}}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	$-k^2 r_1$	0	0	0
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+\alpha\beta$	$\frac{\sqrt{2} t_2}{3}$	t 2 3	$-\frac{1}{3}$ \bar{l} kt_2	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{I}\sqrt{2}kt_2$	0	0	0	0
·	$\omega_{1}^{\#1} + ^{\alpha\beta}$	$\omega_1^{\#2} + ^{lphaeta}$	$f_1^{#1} + \alpha^{\beta}$	$\omega_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{#2} +^{\alpha}$

$ au_{1}^{\#2}$	0	0	0	0	0	0	0
$\tau_{1^-}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\sigma_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	$-\frac{1}{k^2 r_1}$	0	0	0
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$\sigma_{1}^{\#1} \dagger^{lphaeta}$	$\sigma_1^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} \dagger^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} + \alpha$

$\sigma_{2^{+}}^{\#1} \uparrow^{\alpha\beta} = 0 0 0$ $\tau_{2^{+}}^{\#1} \uparrow^{\alpha\beta} = 0 0 0$		$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\tau_{2+}^{\#1} + \alpha \beta = 0 0 0$	$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
	$\tau_2^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_2^{\#1} + \alpha\beta\chi \qquad \qquad 0 \qquad \qquad \frac{1}{k^2 r_1}$	$\sigma_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{1}{k^2 r_1}$

 $k^2 r_2 + t_2$

 $\sigma_{0}^{\#1}$ †

 $\sigma_{0}^{\#1}\,\dagger$

	#	1	1	1	ε	ε	ε	0 3	3	2	2	28
Source collistifallits	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0}^{#1} == 0$	$\sigma_{0+}^{\#1} == 0$	$\tau_{1}^{\#2\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\sigma_{1}^{\#2}{}^{\alpha} == 0$	+ 1	$\sigma_{1+}^{\#1}\alpha\beta == \sigma_{1+}^{\#2}\alpha\beta$	$\tau_{2+}^{\#1\alpha\beta} == 0$	$\sigma_{2+}^{\#1}\alpha\beta=0$	Total #:

	Ма
? /	Pol
$J^P = 0^-$	Pol
k^{μ}	Squ
?	
?	Spi
	Par

	Massive partic	le
? /	Pole residue:	$-\frac{1}{r_2} > 0$
$J^P = 0^-$	Polarisations:	1
k^{μ}	Square mass:	$-\frac{t_2}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

(No massless particles)