ACTIVITE (en deux parties):

RESOLUTIONS D'EQUATIONS « DU SECOND DEGRE »

PARTIE 1: Résolutions graphiques

En prenant des valeurs de x dans l'intervalle [-3 ; 3], on souhaite tracer la parabole P représentant la fonction du second degré $f(x) = 2x^2$ sur le repère orthogonal ci-dessous.

Pour cela compléter le tableau de valeurs ci-dessous :

×	-3	-2,5	-2	-1,5	-1	-0,5	0	0,5	1	1,5	2	2,5	3
У													

Bac Pro Problèmes du second degré

Ei	٠.,	А	^	n	0	1	
r.	ш	a	e.	п		•	

1) 5	Sur le renère	nrécédent t	tracer la dro	oite D. d'éa	uation v = -	$\mathbf{v} + 6$

A · 1	
Aide	
Tiluc	

X	
y = -x + 6	

b)	Résou	ıdre	grap	hiqu	emer	nt l'é	quat	ion (du se	con	d de	gré	2 x	2 =	- x +	6				
			• • • • •						• • • • •		• • • • •	• • • • •					 		 	 ٠.
																	 	• • • •	 	 ٠.

Etude n° 2:

 Sur le repère précéd 	ent tracer la droite Di	$_{1}$ d'equation $v =$	-x-2
--	-------------------------	-------------------------	------

Aide:

Х	
y = - x - 2	

b) Résoudre graphiquement l'équation du second degré	

Etude n°3:

a) Sur le repère précédent tracer la droite D_1 d'équation y = 8 x - 8

Aide:

X	
y = 8 x - 8	

b) Résoudre graphiquement l'équation du second degré	$2x^2 = 8x - 8$

<u>CONCLUSION</u> :	

PARTIE 2: Résolutions par le calcul

En appliquant la méthode et les formules données dans le cours, <u>résoudre par le calcul</u> les équations du second degré étudiées graphiquement dans la partie 1.

Puis comparer avec les résultats obtenus précédemment.

Etude n°1: Résolution de l'équation $2 x^2 = -x + 6$

1)	
2)	
3)	
4)	
5)	
	Etude n°2 : Résolution de l'équation $2 x^2 = -x - 2$
1)	
2)	
3)	
4)	
	Etude n°3 : Résolution de l'équation $2 x^2 = 8 x - 8$
1)	
2)	
3)	
4)	
 5)	

TRAVAIL EN GROUPES

A SAVOIR:

La représentation graphique des fonctions du second degré de la forme $f(x) = a x^2 + b x + c$ est une parabole.

L'« allure » de la parabole dépend du coefficient a qui est devant x 2 :

Si a est positif, la parabole a pour allure :

Si a est négatif, la parabole a pour allure :

« Pas contente »

1) Pour tout x appartenant à l'intervalle [-4;5], on définit les fonctions suivantes :

$$\mathbf{f}_1(\mathbf{x}) = -\mathbf{x}^2 + \mathbf{x} + 12$$

$$\mathbf{f}_{2}(\mathbf{x}) = 3\mathbf{x}^{2} - 12\mathbf{x} + 9$$

$$\mathbf{f}_3(\mathbf{x}) = 2 \, \mathbf{x}^2 + 8 \, \mathbf{x} + 8$$

$$\mathbf{f}_4(\mathbf{x}) = 8\mathbf{x}^2 + \mathbf{x} + 1$$

$$\mathbf{f}_{5}(\mathbf{x}) = -5 \, \mathbf{x}^{2} + 20 \, \mathbf{x} - 20$$

$$f_6(x) = x^2 + 5$$

Résoudre à l'aide des formules du cours les équations du second degré ci-dessous :

- $\mathbf{a)} \qquad \mathbf{f}_{1}(\mathbf{x}) = 0$
- $\mathbf{f}_{2}(\mathbf{x}) = 0$
- $\mathbf{f}_{3}(\mathbf{x}) = 0$
- $\mathbf{f}_{4}(\mathbf{x}) = 0$
- $e) f_5(\mathbf{x}) = 0$
- $\mathbf{f}_{\mathbf{6}}(\mathbf{x}) = 0$
- 2) Les représentations graphiques de ces fonctions sont données ci-après.

Identifiez les paraboles qui correspondent à chacune de ces fonctions.

(Précisez sur l'axe des ordonnées la fonction reconnue)

Application

1) En vous servant de leurs représentations graphiques, et pour des valeurs de x comprises dans l'intervalle [-4; 5], compléter les tableaux de signe des fonctions f_2, \ldots, f_6 étudiées dans l'exercice précédent.

X	
Signe de $f_2(x) = 3x^2 - 12x + 9$	

X	
Signe de $f_3(x) = 2x^2 + 8x + 8$	

X	
Signe de $f_6(x) = x^2 + 5$	

3) **Résoudre les inéquations :** (pour des valeurs de x comprises dans l'intervalle [-4 ; 5])

Exercice 1:

1) Faites l'étude complète des fonctions du second degré proposées (quand est-ce qu'elles s'annulent, l'allure des paraboles, les tableaux de signes)

Rappel: Pensez à vous faire un dessin!!

- Le signe de a indique l'allure de la parabole : dessinez là (sans repère),
- Puis le calcul de Delta nous informe du nombre de fois que la parabole coupe l'axe des abscisses (2 fois, 1 fois ou zéro fois),
- Enfin le tableau de signe s'écrit facilement par simple observation de votre dessin!

a)
$$-6 x^2 + 24 x - 24$$
 b) $-7x^2 - 42 x + 280$

b)
$$-7x^2 - 42x + 280$$

2) Résoudre sur [-10 : 10]:

a)
$$-6 x^2 + 24 x - 24 \ge 0$$

b)
$$-7x^2 - 42x + 280 < 0$$

c)
$$5 \times x^2 - 180 < 0$$

Exercice 2:

Lors de l'aménagement d'un atelier, il est prévu de réserver une zone pour le service chargé du contrôle qualité. Les conditions de cet aménagement figurent sur le schéma ci-dessous :

Le but de l'étude est de déterminer la dimension x correspondant à une aire de cette zone de 150 m².

- 1) Exprimer la longueur et la largeur de la zone en fonction de x.
- 2) Déduisez-en l'expression de l'aire de la zone qualité en fonction de x.
- 3) Ecrivez l'équation permettant de calculer la valeur de x pour laquelle l'aire de la zone de contrôle est égale à 150 m².
- 4) Résoudre cette équation et donnez la valeur de x solution du problème posé.

Exercice 3:

Bac Pro

Pour accéder à un port de plaisance entre 10 h et 18 h le 12 juillet 2006, un bateau a besoin d'une hauteur d'eau minimale de 2,10 m. La capitainerie doit communiquer au navigateur à quel moment de la journée il peut entrer dans le port.

A cette date, entre 10 h et 18 h, on peut approcher la hauteur d'eau h (en mètres) dans le port en fonction de l'heure t de la journée par la formule :

$$h(t) = -0.125 t^2 + 3.5 t - 22$$

1) Calculez la hauteur d'eau : à 13 h et à 18 h.

2) Résolvez l'équation : h(t) = 2.10

3) Déterminez les valeurs pour lesquelles : $h(t) \ge 2.10$

4) De la question précédente, déduisez, au quart d'heure près, à quel moment de la journée le bateau pourra pénétrer dans le port.

Exercice 4:

La distance de freinage d'une voiture est la distance parcourue entre le moment où le conducteur voit un obstacle est freine et l'arrêt du véhicule. On la notera : d

La distance de freinage dépend de la vitesse du véhicule.

Elle s'exprime par la relation : $d = 0.007 \text{ v}^2 + 0.8 \text{ v}$

v désigne la vitesse en km/h et **d** la distance en m.

- 1) Calculer d lorsque v = 90 km/h.
- 2) Résoudre l'équation : $0.007 \text{ v}^2 + 0.8 \text{ v} = 50$
- 3) En déduire la vitesse correspondant à une distance de freinage de 50 m.