Report on the completion of the sixth task.

1. The purpose of the task.

The main goal of this project is to investigate how do normalizations, dropouts, batch sizes and activation functions affect the NN performance.

2. Experiments.

- a) Experiments with presence / absence of dropout and batch normalization.
 - i) Experiment #1 (absence of dropout and batch normalization, sigmoid function, batch size = 12, layers = 2)

ii) Experiment #2 (absence of dropout and presence of batch normalization, sigmoid function, batch size = 12, layers = 2)

iii) Experiment #3 (presence of dropout and absence of batch normalization, sigmoid function, batch size = 12, layers = 2)

iv) Experiment #4 (presence of dropout and batch normalization, sigmoid function, batch size = 12, layers = 2)

- b) Experiments with the different activation functions.
 - i) Experiment #1 (softmax, 2 layers, 12 batch size)

ii) Experiment #2 (ReLU, 2 layers, 12 batch size)

iii) Experiment #3 (Tanh, 2 layers, 12 batch size)

c) Experiment with 3 hidden layers (sigmoid function, 12 batch size)

Train/test loss curves, final accuracy: 97.6%

d) Experiment with 128 batch size (sigmoid function, 3 layers)

3. Conclusion.

- As we can clearly see, the presence of batch normalization and dropout layer basically increases the accuracy of the model and gives very little loss on the train set.

- -Softmax has the worst performance of all activation functions. ReLU and Tanh give slight loss on a training set, but the test set stays the same.
- Neither the increase in layers nor the size of batches give significant improvement to the network.