1

An efficient algorithm for non-negative matrix factorization

Mai-Quyen Pham and Thierry Chonavel

I. Introduction

II. PROBLEM FORMULATION

In this framework we are interested in the minimization of the following quadratic cost function

$$F: \mathbb{R}_{+}^{m \times p} \times \mathbb{R}_{+}^{p \times n} \to \mathbb{R}_{+}: (\mathbf{X}, \mathbf{H}) \mapsto \frac{1}{2} \|\mathbf{Y} - \mathbf{X}\mathbf{H}\|^{2}$$
 (1)

where $\|\cdot\|$ denotes the Frobenius norm and $\mathbf{Y} \in \mathbb{R}_+^{m \times n}$ is a given non-negative matrix. Solving this problem allows us to reduce the rank of the given matrix \mathbf{Y} , for this reason p is often chosen to be smaller than n and m [2], [3]. Several applications ... []

To end this section, let us introduce the following notations: \odot and \oslash will denote the Hadamard (elementwise) product and division of two matrices. $diag(\mathbf{v})$ will represent the diagonal matrix with diagonal entries defined from vector \mathbf{v} and $vec(\mathbf{M})$ the vector formed by the successive columns of matrix \mathbf{M} .

III. PROPOSED METHOD

We propose to use the Majorize-Minimize (MM) subspace algorithm [1] which is based on the idea of constructing at the current iteration a convex quadratic majorizing approximation function (also called an auxiliary function [3]) of the cost function.

Definition 1. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function and $\mathbf{x} \in \mathbb{R}^n$. Let us define, for every $\mathbf{x}' \in \mathbb{R}^n$,

$$g(\mathbf{x}, \mathbf{x}') = f(\mathbf{x}) + (\mathbf{x} - \mathbf{x}')^{\top} \nabla f(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \mathbf{x}'\|_{\mathbf{A}_{\mathbf{x}}}^{2}$$
(2)

Mai-Quyen Pham and Thierry Chonavel are with IMT Atlantique; UMR CNRS 6285 Lab-STICC (e-mail: firstname.lastname@imt-atlantique.fr).

$$G_{\mathbf{H}}(\mathbf{X}, \mathbf{X}') = F(\mathbf{X}', \mathbf{H}) + \mathbb{1}_{m}^{\top} ((\mathbf{X} - \mathbf{X}) \odot \nabla_{\mathbf{X}} F(\mathbf{X}', \mathbf{H})) \mathbb{1}_{p} + \frac{1}{2} \| \operatorname{vec} (\mathbf{X} - \mathbf{X}') \|_{\mathbf{A}_{\mathbf{H}}(\mathbf{X}')}^{2}$$

$$G_{\mathbf{X}}(\mathbf{H}, \mathbf{H}') = F(\mathbf{X}, \mathbf{H}') + \mathbb{1}_{p}^{\top} ((\mathbf{H} - \mathbf{H}') \odot \nabla_{\mathbf{X}} F(\mathbf{X}, \mathbf{H}')) \mathbb{1}_{n} + \frac{1}{2} \| \operatorname{vec} (\mathbf{H} - \mathbf{H}') \|_{\mathbf{A}_{\mathbf{X}}(\mathbf{H}')}^{2}$$
(3)

where $\mathbf{A}_{\mathbf{x}} \in \mathbb{R}^{n \times n}$ is a positive semi-definite matrix and $\|\cdot\|_{\mathbf{A}_{\mathbf{x}}}^2$ denotes the weighted Euclidean norm induced by matrix $\mathbf{A}_{\mathbf{x}}$, that is, $\forall \mathbf{z} \in \mathbb{R}^n$, $\|\mathbf{z}\|_{\mathbf{A}_{\mathbf{x}}}^2 = \mathbf{z}^{\top} \mathbf{A}_{\mathbf{x}} \mathbf{z}$. Then, $\mathbf{A}_{\mathbf{x}}$ satisfies the majoration condition for f at \mathbf{x} if $g(\mathbf{x},\cdot)$ is a quadratic marojant function of f at \mathbf{x} , that is, for every $\mathbf{x} \in \mathbb{R}^n$, $f(\mathbf{x}) \leq g(\mathbf{x},\mathbf{x}')$.

Based on this definition, we introduce the following functions: where $\nabla_{\mathbf{X}} F(\mathbf{X}', \mathbf{H}) \in \mathbb{R}^{n \times p}$ and $\nabla_{\mathbf{H}} F(\mathbf{X}, \mathbf{H}') \in \mathbb{R}^{p \times m}$ denote the partial gradients of F with respect to the variables \mathbf{X} and \mathbf{H} , computed at $(\mathbf{X}', \mathbf{H})$ and $(\mathbf{X}, \mathbf{H}')$ respectively.

The positive matrices $A_{\mathbf{H}}(\mathbf{X}')$ and $A_{\mathbf{X}}(\mathbf{H}')$ are chosen in such way that $G_{\mathbf{H}}(\mathbf{X}, \mathbf{X}')$ and $G_{\mathbf{X}}(\mathbf{H}, \mathbf{H}')$ represent majorizing functions of $F(\mathbf{X}, \mathbf{H})$ for any \mathbf{X}' and \mathbf{H}' respectively.

Then, as in [2], [3], we consider the following iterative alternanting procedure to minimize F:

- initialize $\mathbf{X}^0 \in^{m \times p}_+$ and $\mathbf{H}^0 \in^{p \times n}_+$
- for k = 0, 1, 2, ... calculate

$$\mathbf{X}^{k+1} = \arg\min_{\mathbf{X}} G_{\mathbf{H}^k}(\mathbf{X}, \mathbf{X}^k)$$

$$\mathbf{H}^{k+1} = \arg\min_{\mathbf{H}} G_{\mathbf{X}^{k+1}}(\mathbf{H}, \mathbf{H}^k).$$
(4)

Now we turn our attention to the choice of the matrices $A_{\mathbf{H}^k}(\mathbf{X})$ and $A_{\mathbf{X}}^{k+1}(Hm)$. We want above functions $\mathbf{X} \to G_{\mathbf{H}^k}(\mathbf{X}, \mathbf{X}^k)$ and $\mathbf{H} \to G_{\mathbf{X}^{k+1}}(\mathbf{H}, \mathbf{H}^k)$ to be quadratic majorant functions of F. Adapting to the matrix notations used here the definitions proposed in [2], [3] we get

$$\mathbf{A}_{\mathbf{H}^{k}}(\mathbf{X}^{k}) = \operatorname{diag}\left[\operatorname{vec}\left(\left(\mathbf{X}^{k}\mathbf{H}^{k}\mathbf{H}^{k^{\top}}\right) \oslash \mathbf{X}^{k}\right)\right] \\ \mathbf{A}_{\mathbf{X}^{k+1}}(\mathbf{H}^{k}) = \operatorname{diag}\left[\operatorname{vec}\left(\left(\mathbf{X}^{k+1^{\top}}\mathbf{X}^{k+1}\mathbf{H}^{k}\right) \oslash \mathbf{H}^{k}\right)\right]$$
(5)

They have shown that these choices yield majorizing functions of F for $G_{\mathbf{H}}$ and $G_{\mathbf{X}}$ and convergence of iterations (4) is guaranteed.

The purpose of our work is to improve the speed of convergence of the MM algorithm thanks to an improved choice of matrices $A_{\mathbf{H}}$ and $A_{\mathbf{X}}$. To this end, we replace matrices $A_{\mathbf{H}^k}(\mathbf{X}^k)$ and $A_{\mathbf{X}^{k+1}}(\mathbf{H}^k)$ by matrices $A_{\mathbf{H}^k}(\mathbf{U}^k)$ and $A_{\mathbf{X}^{k+1}}(\mathbf{V}^k)$ where \mathbf{U} and \mathbf{V} are positive matrices. We propose to select these matrices as solutions of the following convex optimization problems:

$$\begin{cases}
\mathbf{U}^{k} = \arg\min_{\mathbf{U} \geq 0} \sum_{i,j} \frac{\left(\mathbf{X}^{k} \mathbf{H}^{k} \mathbf{H}^{k^{\top}}\right)_{i,j}}{\mathbf{U}_{i,j}} \quad \text{s.t. } \|\mathbf{U}\|_{1} = \alpha \\
\mathbf{V}^{k} = \arg\min_{\mathbf{V} \geq 0} \sum_{i,j} \frac{\left(\mathbf{X}^{k+1^{\top}} \mathbf{X}^{k+1} \mathbf{H}^{k}\right)_{i,j}}{\mathbf{V}_{i,j}} \quad \text{s.t. } \|\mathbf{V}\|_{1} = \beta
\end{cases}$$
(6)

Particular solutions of this problem are given as follows:

Proposition 1. Letting $\mathbf{B} = \mathbf{X}^k \mathbf{H}^k \mathbf{H}^{k\top}$, a particular solutions of problem (6) for \mathbf{U}^k is given by

$$\mathbf{U}_{i,j}^{k} = \begin{cases} \mathbf{X}_{i,j}^{k} & \text{if } (i,j) \notin I\\ \tilde{\alpha} \frac{\sqrt{\mathbf{B}_{i,j}}}{\sum\limits_{(i,j) \in I} \sqrt{\mathbf{B}_{i,j}}} & \text{otherwise} \end{cases}$$
(7)

where $I = \{(i,j) \in (1:m) \times (1:n); \ \mathbf{B}_{i,j} \neq 0\}$ and $\tilde{\alpha} = \alpha - \sum_{(i,j) \notin I} \mathbf{X}_{i,j}^k$.

In the same way, letting $\mathbf{C} = \mathbf{X}^{k+1} \mathbf{X}^{k+1} \mathbf{H}^k$, a particular solutions of problem (6) for \mathbf{V}^k is given

In the same way, letting $\mathbf{C} = \mathbf{X}^{k+1\top} \mathbf{X}^{k+1} \mathbf{H}^k$, a particular solutions of problem (6) for \mathbf{V}^k is given by ...

Let us remark that $A_{\mathbf{H}^k}(\mathbf{U})$ and $A_{\mathbf{X}^{k+1}}(\mathbf{V})$ are invariant up to a scalling factor of \mathbf{U} and \mathbf{V} and thus the choice of α and β is not very critical [CHECK ON SIMULATIONS]

Proof. The Laplacian for the optimization of U is given by

$$L(\mathbf{U}) = \sum_{ij} \frac{\mathbf{B}_{ij}}{\mathbf{U}_{ij}} + \lambda (\sum_{ij} \mathbf{U}_{ij} - \alpha) - \sum_{ij} \mu_{ij} \mathbf{U}_{ij}.$$
 (8)

For KKT conditions to be satisfied for (7) we must have $\frac{\mathbf{B}_{ij}}{\mathbf{U}_{ij}^2} = \lambda - \mu_{ij}$ and $\mu_{ij}\mathbf{U}_{ij} = 0$. Then, setting $\mu_{ij} = 0$ if $\mathbf{B}_{ij} \neq 0$ or $\mathbf{X}_{ij} \neq 0$ and $\mu_{ij} = \lambda$ otherwise, with $\lambda = \left(\frac{\sum\limits_{(i,j)\in I}\sqrt{\mathbf{B}_{i,j}}}{\tilde{\alpha}}\right)^2$, it is clear that (7) satisfies the KKT conditions.

...

Note that alternative constraints such that $\|\mathbf{U}\mathbf{H}^k\|_1 = \|\mathbf{Y}\|_1$ or $\|\mathbf{X}^{k+1}\mathbf{V}\|_1 = \|\mathbf{Y}\|_1$ can be considered instead of $\|\mathbf{U}\|_1 = \alpha$ or $\|\mathbf{V}\|_1 = \beta$. However, similar simulation results have been obtained with this choice.

IV. CONVERGENCE RATE ANALYSIS

V. EXPERIMENTAL RESULS

We choose to factorize one random positive matrix \mathbf{Y} of size 50×50 into the product of two positive matrices \mathbf{X} of size 50×20 and \mathbf{H} of size 20×50 . So that the rank of the matrix \mathbf{V} is reduced.

Fig. 1: Objective function values versus iterations for different majorizing functions (Lee et ell, proposed 1 and proposed 2), for data without noise (left), and data with SNR of 35 dB.

Noise level		SNR (dB)	without noise	55	45	35
		Error	0	2.00e-4	6.00e-4	2.00e-3
Lee et all		SNR (db)	38	38	38	37
		Error	1.23e-3	1.04e-3	0.66e-3	0.88e-3
		Nb Iteration	10000	10000	10000	10000
Proposed method	proposed 1	SNR (dB)	120	59	50	39
		Error	1.00e-7	1.10e-4	0.33e-3	1.10e-3
		Nb Iteration	6553	10000	10000	10000
	proposed 2	SNR (dB)	120	59	50	39
		Error	1.00e-7	1.10e-4	0.33e-3	1.10e-3
		Nb Iteration	6556	10000	10000	10000

Fig. 2: Comparison between Lee *et all* and proposed method. These results are averaged over 100 random noise realizations.

VI. CONCLUSIONS

REFERENCES

- [1] David R. Hunter and Kenneth Lange. A tutorial on mm algorithms. American Statistician, 58(1):30-37, February 2004.
- [2] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 1999.
- [3] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization. In *Advances in Neural Information Processing Systems*. MIT Press, 2001.