1

MULTIPLE SEQUENCE DETECTOR 1100 and 0100

Ganga Gopinath

Components1sequence detector1II-ASTATE DIAGRAM1II-BSTATE TABLE1II-CTRUTH TABLE1

CONTENTS

I

II

I. COMPONENTS

Components	Value	Quantity
Resistor	220 Ohm	1
Arduino	UNO	1
Seven Segment Display		1
Decoder	7447	1
Flip Flop	7474	2
Bread Board		1
Jumper Wires		20

II. SEQUENCE DETECTOR

A sequence detector accepts as input a string of bits: either 0 or 1. Its output goes to 1 when a target sequence has been detected. There are two basic types: overlap and non-overlap. In a sequence detector that allows overlap, the final bits of one sequence can be the start of another sequence. Our examples 1100 and 0100 sequence detector. It raises an output of 1 when the last 4 binary bits received 1100 or 0100.

A. STATE DIAGRAM

State diagrams are used to give an abstract description of the behavior of a system. This behavior is represented as a series of events that can occur in one or more possible states. State diagram is represented in Figure 1

Figure 1: State Diagram for Sequence

B. STATE TABLE

From state diagram, state table can be generated in Table II.

Present State	Input	Next state	Output
S0	0	S5	0
S0	1	S1	0
S1	0	S5	0
S1	1	S2	0
S2	0	S3	0
S2	1	S2	0
S3	0	S4	1
S3	1	S4	0
S4	0	S5	0
S4	1	S1	0
S5	0	S5	0
S5	1	S2	0

Table I: .STATE TABLE

C. TRUTH TABLE

Present State	Input	Next state	Output
A B C	X	P Q R	Y
0 0 0	0	101	0
0 0 0	1	0 0 1	0
0 0 1	0	101	0
0 0 1	1	0 1 0	0
0 1 0	0	0 1 1	0
0 1 0	1	0 1 0	0
0 1 1	0	100	1
0 1 1	1	010	0
100	0	101	0
100	1	0 0 1	0
1 0 1	0	101	0
1 0 1	0	0 1 0	0

Table II: .TRUTH TABLE

D. Karnaugh Map

C	10			
$AB \setminus$	00	01	11	10
00	1	0	0	1
01	0	0	0	1
11	X	X	X	X
10	1	0	0	1

$$P = B'X' + CX'$$

$$Q = CX + BX'$$

(2)

$$R = B'X' + C'X' + B'C'$$
 (3)

CX										
$AB \setminus$	00	01	11	10						
00	0	0	0	0						
01	0	0	0	1						
11	X	X	X	X						
10	0	0	0	0						

$$Y = CX'B \tag{4}$$

4 PROCEDURE

- 1. Generate the CLOCK signal using the blink program.
- 2. Connect the Arduino, 7447 ,two 7474 ICs,LED and seven segment according to Table III.
- 3.Intelligently use the codes in
- (1) https://github.com/Gangagopinath/ASSIGNMENT-1/blob/main

	INI	PUT			OUTPUT					5V				
	A	В	С	X	P	Q	R	Y	CLOCK		J V			
Arduino	4	3	2	10	6	7	8	9	13					
7474	5	9			2	12			CLK1	CLK2	1	4	10	13
7474			5				2		CLK1	CLK2	1	4	10	13
7447	7	1	2											
								LED						

Table III: Connection Table