

Linear Algebra for Machine Learning in Python

Dr. Moritz Wolter

August 12, 2022

High Performance Computing and Analytics Lab

Overview

Introduction

Essential operations

Linear curve fitting

Regularization

Introduction

Motivating linear algebra

Même le feu est régi par les nombres.

Fourier¹ studied the transmission of heat using tools that would later be called an eigenvector-basis. Why would he say something like this?

¹Jean Baptiste Joseph Fourier (1768-1830)

Matrices

 $\mathbf{A} \in \mathbb{R}^{m,n}$ is a real-valued Matrix with m rows and n columns.

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, a_{ij} \in \mathbb{R}.$$
 (1)

3

Essential operations

Addition

To matrices $\mathbf{A} \in \mathbf{R}^{m,n}$ and $\mathbf{B} \in \mathbf{R}^{m,n}$ can be added by adding their elements.

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$
(2)

4

Multiplication

Multiply $\mathbf{A} \in \mathbb{R}^{m,n}$ by $\mathbf{B} \in \mathbb{R}^{n,p}$ produces $\mathbf{C} \in \mathbb{R}^{m,p}$,

$$\mathbf{AB} = \mathbf{C}.\tag{3}$$

To compute C the elements in the rows of A are multiplied with the column elements of C and the products added,

$$c_{ik} = \sum_{j=1}^{m} a_{ij} \cdot b_{jk}. \tag{4}$$

Linear Algebra for Machine Learning in Python —Essential operations

└─Multiplication

Define on the board:

- Dot product $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n$ for two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$.
- Row times column view [Str+09]:

The identity matrix

$$\mathbf{I} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix} \tag{5}$$

Demonstrate multiplication with the inverse by hand. TODO

Matrix inverse

The inverse Matrix \mathbf{A}^{-1} undoes the effects of \mathbf{A} , or in mathematical notation,

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}.\tag{6}$$

The process of computing the inverse is called gaussian elimination.

Linear Algebra for Machine Learning in Python

Essential operations

└─Matrix inverse

The inverse Matrix A^{-1} undoes the effects of A, or in mathematical notation, $\Delta A^{-1} = 1$

Matrix inverse

The process of computing the inverse is called gaussian elimination.

Example on the board:

$$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 2 & 0 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 1 & 3 & 0 & 1 \end{pmatrix} \tag{7}$$

$$\rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 3 & -\frac{1}{2} & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & -\frac{1}{6} & \frac{1}{3} \end{pmatrix} \tag{8}$$

Test the result:

$$\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ -\frac{1}{6} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 2 \cdot \frac{1}{2} + 0 \cdot -\frac{1}{6} & 2 \cdot 0 + 0 \cdot \frac{1}{3} \\ 1 \cdot \frac{1}{2} + 3 \cdot -\frac{1}{6} & 0 \cdot 0 + 3 \cdot \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
(9)

The Transpose

The transpose operation flips matrices along the diagonal, for example in \mathbb{R}^2 ,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
 (10)

Motivation of the determinant

TODO

Computing determinants in two or three dimensions

The two dimensional case:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21} \tag{11}$$

(12)

Computing the determinant of a three dimensional matrix.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \cdot \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \cdot \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

$$(13)$$

Linear Algebra for Machine Learning in Python

—Essential operations

Computing determinants in two or three dimensions

Computing distriminants in two or three dimensions. The two dimensional case: $\begin{vmatrix} z_1 & z_2 \end{vmatrix} = z_1 \cdot z_2 - z_1 \cdot z_2 - z_2 \cdot z_1 \qquad (11)$ (22) Computing the determinant of a three dimensional matrix. $\begin{vmatrix} z_1 & z_2 \end{vmatrix} = z_1 \cdot z_2 \cdot z_2 - z_2 \cdot z_1 \qquad z_2 \cdot z_2 \cdot z_2$ (23) $\begin{vmatrix} z_1 & z_2 \\ z_1 & z_2 & z_2 \end{vmatrix} = z_1 \cdot \begin{vmatrix} z_2 & z_2 \\ z_2 & z_2 \end{vmatrix} - z_2 \cdot \begin{vmatrix} z_2 & z_1 \\ z_2 & z_2 \end{vmatrix} + z_2 \cdot z_2 \begin{vmatrix} z_2 & z_1 \\ z_2 & z_2 \end{vmatrix} = z_2 \cdot z_2$ (33)

(14)

Draw the sign pattern on the board:

The determinant can be expandend along any column as long as the sign pattern is respected.

Determinants in n-dimensions

$$\begin{vmatrix} a_{11} & a_{21} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{m2} & \dots & a_{mn} \end{vmatrix} + a_{21} \begin{vmatrix} a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{m2} & \dots & a_{mn} \end{vmatrix}$$

$$-a_{m1}\begin{vmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \end{vmatrix}$$

Linear curve fitting

What is the best line connecting measurements?

Problem Formulation

A line has the form cx + d, with $c, x, d \in \mathbb{R}$. In matrix language we could ask for every point to be on the line,

$$\begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{pmatrix}. \tag{15}$$

We can treat polynomials as vectors, too! The coordinates populate the matrix rows in $\mathbf{A} \in \mathbb{R}^{n_p \times 2}$, and the coefficients appear in $\mathbf{x} \in \mathbb{R}^2$, with the points we would like to model in $\mathbf{b} \in \mathbb{R}^{n_p}$. The problem now appears in matrix form and can be solved using linear algebra!

The Pseudoinverse [Str+09; DFO20]

The inverse we saw earlier only exsits for sqaure that is n by n matrices. Nonsqaure \mathbf{A} such as the one we just saw, require the pseudoinverse,

$$\mathbf{A}^{\dagger} = (\mathbf{A}^{T} \mathbf{A})^{-1} \mathbf{A}^{T}. \tag{16}$$

Sometimes solving $\mathbf{A}\mathbf{x} + \mathbf{b} = 0$ is implossible, the pseudoinverse considers,

$$\min_{\mathbf{x}} \frac{1}{2} |\mathbf{A}\mathbf{x} - \mathbf{b}|^2 \tag{17}$$

(18)

instead. $\mathbf{A}^{\dagger}\mathbf{b} = \mathbf{x}$ yields the solution.

 $\min_{\mathbf{a}} \frac{1}{2} |\mathbf{A}\mathbf{x} - \mathbf{b}|^2$

 $(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{b} = \mathbf{x}$

$$0 = \nabla_x \frac{1}{2} |\mathbf{A}\mathbf{x} - \mathbf{b}|^2$$

 $= (\mathbf{A}\mathbf{x} - \mathbf{b})\mathbf{A}^T$

 $\mathbf{A}^T \mathbf{h} = \mathbf{A}^T \mathbf{A} \mathbf{x}$

 $= \mathbf{\Delta}^T \mathbf{\Delta} \mathbf{x} - \mathbf{\Delta}^T \mathbf{h}$

 $= \nabla_{\mathbf{x}} \frac{1}{2} (\mathbf{A}\mathbf{x} - \mathbf{b})^T (\mathbf{A}\mathbf{x} - \mathbf{b})$

(24)

(25)

(26)

The Pseudoinverse [Str+09; DFO20

The Pseudoinverse [Str+09; DFO20]

Sometimes solving
$$\mathbf{A}\mathbf{x} + \mathbf{b} = 0$$
 is implossible. One the board, derive:

Linear regression

What about harder problems?

Fitting higher oder polynomials

$$\underbrace{\begin{pmatrix}
1 & x_1^1 & x_1^2 & \dots & x_1^m \\
1 & x_2^1 & x_2^2 & \dots & x_2^m \\
1 & x_3^1 & x_3^2 & \dots & x_3^m \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_n^1 & x_n^2 & \dots & x_n^m
\end{pmatrix}}_{\mathbf{A}} \underbrace{\begin{pmatrix}
c_1 \\ c_2 \\ \vdots \\ c_m
\end{pmatrix}}_{\mathbf{x}} = \underbrace{\begin{pmatrix}
p_1 \\ p_2 \\ \vdots \\ p_n
\end{pmatrix}}_{\mathbf{b}}.$$
(27)

As we saw for the linear regression $\mathbf{A}^{\dagger}\mathbf{b} = \mathbf{x}$ gives us the coefficients.

Overfitting

Below the solution for a polynomial of 7th degree, that is m = 7.

The noise took over! What now?

Regularization

Motivation

• Is there a way to fix the previous example?

Eigenvalue-Decomposition [Str+09]

Eigenvalues let us look into the heart of a sqaure system-matrix $\mathbf{A} \in \mathbb{R}^{n,n}$.

$$\mathbf{A} = \mathbf{S} \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} \mathbf{S}^{-1} = \mathbf{S} \wedge \mathbf{S}^{-1}$$
 (28)

Computing the Decomposition

Singular-Value-Decomposition [Str+09]

Dealing with matrices which aren't sqaure:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \tag{29}$$

Regularized solution

Conclusion

• True scientists know what linear can do for them!

Literature

References

- [DFO20] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for machine learning. Cambridge University Press, 2020.
- [Str+09] Gilbert Strang, Gilbert Strang, Gilbert Strang, and Gilbert Strang. *Introduction to linear algebra*. Vol. 4. Wellesley-Cambridge Press Wellesley, MA, 2009.