15

CLAIMS

What is claimed is:

A method for self-routing a plurality of packets through a 2ⁿ×2ⁿ switch, the
switch having 2ⁿ external output ports labeled with 2ⁿ distinct binary output addresses in the form of b₁b₂...b_n, and composed of a plurality of switching cells interconnected into a k-stage bit-permuting network which is characterized by the guide γ(1), γ(2), ..., γ(k) where γ is a mapping from the set {1, 2, ..., k} to the set {1, 2, ..., n}, each of the packets destined for a rectangular set of output addresses represented by a quaternary sequence Q₁,
Q₂, ..., Q_n, where each Q_j is a quaternary symbol in any of the three values: '0-bound', '1-bound', and 'bicast', wherein each of the switching cells is a sorting cell associated with the partial order "'0-bound' ≺ 'bicast' ≺ '1-bound'", the method comprising

generating the routing tag $Q_{\gamma(1)}Q_{\gamma(2)}...Q_{\gamma(k)}$ for each of the packets with reference to the guide and the destination output addresses of the packet, and

routing each of the packets through the network by using $Q_{\gamma(j)}$ in the routing tag of the packet in the j-th stage cell, $1 \le j \le k$, to select an output or both outputs from the j-th stage cell to emit the packet.

10

15

5

2. A 2ⁿ×2ⁿ self-routing switch comprising

an array of 2^n external input ports and an array of 2^n external output ports with 2^n distinct binary output addresses in the form of $b_1b_2...b_n$ for routing a packet, the packet being either a real data packet destined for a rectangular set of output addresses represented by a quaternary sequence $Q_1, Q_2, ..., Q_n$, where each Q_j is a quaternary symbol having one of the values of '0-bound', '1-bound' or 'bicast', or being an idle packet having no pre-determined destination output address,

a switch fabric having a plurality of switching cells interconnected into a k-stage bit-permuting network which is characterized by the guide $\gamma(1), \gamma(2), \ldots, \gamma(k)$, where γ is a mapping from the set $\{1, 2, \ldots, k\}$ to the set $\{1, 2, \ldots, n\}$,

a tag generator circuit, coupled to the external input ports, for generating a routing tag $1d_{\gamma(1)}d_{\gamma(2)}...d_{\gamma(k)}$ for the packet with reference to the guide of the bit-permuting network and the destination address of the packet, and

a routing control circuit, coupled to the switching cells, for routing the packet through the switch by using $1d_{\gamma(j)}$ in the routing tag in the j-th stage cell, $1 \le j \le k$, to select an output from the j-th stage cell to emit the packet.