Цель работы:

- Ознакомиться с популярными аддитивными технологиями 3Dпечати сложных металлических изделий;
- Изучить причины появления деформаций и остаточного напряжения. Ознакомиться со способами их минимизирования
- Ознакомиться с существующим программным обеспечением для прогнозирования деформаций и остаточного напряжения.
- Провести прогнозирование остаточного напряжения и деформаций изделия в программном обеспечение по заданной 3D-модели.

Аддитивные технологии

Аддитивные технологии (от английского Additive Fabrication) – обобщенное название технологий, предполагающих изготовление изделия по данным цифровой модели методом послойного добавления материала

Область применения аддитивных технологий:

- строительство;
- сельскохозяйственная промышленность;
- машиностроение;
- судостроение;
- космонавтика;
- медицина и фармакология.

SLM или Selective laser melting

Это технология производства сложных изделий посредством лазерного плавления металлического порошка по математическим САD-моделям

камера SLMмашины заполнена инертным газом (аргоном или азотом).

EBM или Electron Beam Melting

Электронно-лучевая плавка. Главное отличие от SLM заключается в использовании электронных излучателей (т.н. электронных пушек). В основе технологии лежит использование электронных пучков высокой мощности для сплавки металлического порошка в вакуумной камере.

DMLS или direct metal laser sintering

В технологие DMLS частицы порошка нагреваются меньше и спекаются между собой, не переходя в жидкую фазу, а в SLM лазер расплавляет металлический порошок.

Печатать можно практически из любого металла и сплава, находящихся в форме порошка. Титан, сталь, нержавейка - все это может использоваться для производства детали.

Остаточное напряжение

• Остаточное напряжение появляется в изделие в процессе термообработки, при переходе из жидкого агрегатного состояния в твёрдое, при механической воздействие или обработке.

• Остаточное напряжение приводит к уменьшению прочности и максимально допустимой нагрузки, на которую будет рассчитано изделие.

Способы устранение

- Термическая обработка
- Изостатическое газовое прессование
- Использование комбинированных схем направлений движения лазера
- Подбор температурных режимов плавления/спекания
- Использование дополнительных опор и поддержек

Прогнозирование остаточного напряжения

ANSYS Additive инструмент моделирования точной формы детали, получаемых в процессе 3D-печати

Заключение

- Изучены технологии аддитивного производства сложных металлических конструкций
- Изучены способы устранения остаточных напряжений и усадочных деформаций
- Произведено прогнозирование остаточных напряжений вызванного неравномерными циклическими температурными воздействиями и способы их устранения в ANSYS Additive.

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Волгоградский государственный университет» институт математики и информационных технологий кафедра информационных систем и компьютерного моделирования

Информационная модель программного комплекса для расчета остаточного напряжения и деформаций металлоконструкций

Работу выполнил: студент группы ПРИ-171 Губенко И.Б. Научный руководитель: к.ф.-м.н., доц. каф. ИСКМ Храпов С.С.

Цель работы:

- Ознакомиться с технологиями с аддитивными производства сложных металлических изделий, методами расчета остаточного напряжения и деформаций;
- Разработать диаграмму Ганта, включающую этапы планирования разработки программного комплекса.
- Разработать и описать структуру программного комплекса в рамках диаграмм, отражающих структуру, состояния и способы использования программы.

Требования к программному комплексу

разрабатываем программный комплекс включает себя модули:

- для расчета остаточного напряжения и деформаций металлоконструкций
- модуль представления расчетов в воксельном виде с выделенными участками подверженными остаточному напряжения и деформациям
- модуль визуализации модели в интерфейсе программы

Диаграмма Ганта

— это популярный тип столбчатых **диаграмм**, который используется для иллюстрации плана, графика работ по какому-либо проекту.

	2	Havana	2	еДлительно	2020					2021						
	Задача	Начало	Заверше		Авг	Сен	Окт	Ноя	Дек	Янв	Фев	Map /	Апр	Май	Июн	
		30.09	10.05	15284												
1	Общая продолжительность	30.09	10.05	15284		/		Общая продолжительность								
1.1	Общая продолжительность	30.09	10.05	15284				Общая продолжительность								
1.1.1	— Подготовка к разработке программного ком	30.09	14.11	3204			Подготовка	кр		5					10	
1.1.2	Разработка информационной модели прогр	16.11	17.12	2244	X .			→ Разра	аботк	1					2	
1.1.3	Н Составление пояснительной записки	18.12	19.01	2164					→ Сост	авле					3/4	
1.1.4	Разработка программного комплекса	20.01	10.05	7604	0, 1					14	Разработка і	программног	о комплекса		1./1	
1.1.5	— Создание пояснительной записки	27.04	07.05	804									C			

Рисунок 1 — Диаграмма Ганта

Диаграмма IDEFO

IDEFO — методология функционального моделирования (англ. function modeling) и графическая нотация, предназначенная для формализации и описания бизнес-процессов.

Диаграмма IDEFO

Рисунок 3 — Декомпозиция основного процесса IDEF0

Диаграмма поток данных DFD

DFD — общепринятое сокращение от англ. data flow diagrams — диаграммы потоков данных. Так называется методология графического структурного анализа, описывающая внешние по отношению к системе источники и адресаты данных, логические функции, потоки данных и хранилища данных, к которым осуществляется доступ.

16

Диаграмма поток данных DFD

Рисунок 5 — Декомпозиция основного процесса DFD

Диаграмма вариантов использования

Диаграммы вариантов использования описывают взаимоотношения и зависимости между группами вариантов использования и действующих лиц, участвующими в процессе.

Диаграмма классов UML

Диаграмма классов (англ. class diagram) — структурная диаграмма языка моделирования UML, демонстрирующая общую структуру иерархии классов системы,

Заключение

- Создана модель информационной системы программного комплекса для расчета остаточного напряжения и деформаций металлоконструкций
- Создана диаграмма Ганта
- Создана диаграмма IDEFO
- Создана диаграмма DFD
- Создана диаграмма вариантов использования
- Создана диаграмма классов

