M6 Project Overview

Video Surveillance for Road Traffic Monitoring

Team 5:

Ignacio Galve Ceamanos iceamanos1998@gmail.com

Brian Guang Jun Du briandu8@gmail.com

Eric Henriksson Martí
eckehenrikssonmarti@gmail.com

José Manuel López Camuñas joseplcam@gmail.com

Today's menu

Reminder of objectives and dataset

Multi-target single camera tracking (MTSC)

Multi-target multi- camera tracking (MTMC)

Takeaways

CVPR 2022 AI City Challenge

Objective

- Keep track of and differentiate between moving vehicles appearing in sequences taken from static cameras
- Establish correspondences between identified tracks across different cameras

Dataset

Road footage from 3 of the sequences:

Seq.	Time [min.]	# Cams.	# IDs
1	17.13	5	95
3	23.33	6	18
4	17.97	25	71

Process

Vehicle **detection**

- Adaptive Gaussian modelling
- Trained object detection NN
- Pretrained object detection NN

- Non-maxima suppression
- Application of ROI

Establishing tracks

- Maximum overlap
- Kalman filtering

Evaluating tracking

- Precision, IDP
- Recall, IDR
- IDF1

Post-processing

- Disregarding static cars
- Minimum detection sizing
- Discarding short tracks
- Discarding detects touching edges

Pre-processing

Vehicle detection a) Adaptive Gaussian modelling

- 1) "Modelling" background based on first 25% of frames
- 2) Adapt mean and variance on the go based on background pixels
- 3) Post-processing and final detections

Background/foreground distinction

Ground truthDetections

Morphological operations

Eric Henriksson - Team 5

Vehicle detection

b) NN trained on Al City Challenge dataset

Object detection model

RetinaNet

Pre-trained on COCO (ResNet-101-FPN backbone)

Inference

Sequence 3

Data

Sequences 1 and 4

(1/30 of frames)

Conditions

Images per batch: 2 Learning rate: 1e-3 Maximum iterations: 3000

Batch size per image: 512

"Problematic" ground truth

Not tight bounding boxes

Parked cars not considered

Unclear criteria regarding far away cars

Vehicle detection

c) NN pre-trained on COCO

"truck" classes

Object detection model Faster RCNN Pre-trained on COCO (ResNet-101-FPN backbone) Sequence 3 Considering "car" and

Successful at identifying most vehicles, including parked and far away ones.

Pre-processing

Non-Maxima Suppression

Dealing with cluttered detections

If IoU between detection boxes > 0.8

Only keep one with highest confidence

Application of ROI

Ignoring detections outside region of interest

Discard detections that have their centre in the zero-value area of the ROI

Establishing tracks

a) Maximum overlap

 Determine track IDs by establishing matches between box detections in consecutive frames through the evaluation of maximum IoU

b) Kalman filter (SORT)

 Consideration of the predicted movement of detections when establishing matches

Post-processing

Disregarding static cars

Checking movement of track centres during seq.

Discarding short tracks

Removing tracks that last for less than 5 frames

Discarding detects. close to edge

Dealing with cluttered detections

Mi

Minimum detection sizing

Ignoring detections smaller than 0.7 of the minimum detection box in the ground truth

• "§

• "Static" motrice

Precision

How many of the detections are correct

Recall

How many of the correct detections are identified

Evaluation metrics

"Dynamic" metrics

IDP

To which extent are tracks correct

IDR

To which extent are correct tracks identified

IDF1

Balanced combination of IDP and IDR

Eric Henriksson - Team 5

Overv	iew of resu	IDF1 (SEQ 3)							
Detection method	Tracking method	c010	c011	c012	c013	c014	c015	Average	
	Max. overlap	No	0.414	0.272	0.073	0.244	0.437	0.018	0.243
Adaptive	iviax. Overlap	Yes	0.333	0.494	0.095	0.279	0.444	0.444	3 0.243 4 0.348 2 0.239 2 0.376 3 0.015 5 0.228 3 0.021 6 0.262 1 0.109 7 0.550 1 0.144
Gaussian modelling	Kalman filter	No	0.402	0.272	0.068	0.222	0.446	0.022	0.239
		Yes	0.348	0.492	0.088	0.282	0.522	0.522	0.376
	Max. overlap	No	0.041	0.011	0.002	0.005	0.030	0.003	0.015
RetinaNet trained		Yes	0.342	0.232	0.250	0.242	0.302	0.005	0.228
on AI city dataset	Kalman filter	No	0.049	0.028	0.002	0.009	0.037	0.003	0.021
		Yes	0.360	0.238	0.255	0.366	0.345	0.006	0.262
	May overlan	No	0.199	0.046	0.018	0.140	0.252	0.001	0.109
Faster RCNN pretrained on	Max. overlap	Yes	0.754	0.337	0.667	0.869	0.545	0.127	0.550
COCO	Kalman filter	No	0.397	0.049	0.018	0.146	0.255	0.001	0.144
	Namian inter	Yes	0.768	0.472	0.824	0.767	0.742	0.129	0.617

Eric Henriksson - Team 5

Overview of results - Additional sequences

					IDF1 (SEQ 1)		
					Camera			
Detection method	Tracking method	Post processing	c001	c002	c003	c004	c005	Average
Faster RCNN pretrained on COCO	Kalman filter	Yes	0.727	0.613	0.723	0.675	0.610	0.670

IDF1 (SEQ 4)														
Camera														
c016	c017	c018	c019	c020	c021	c022	c023	c024	c025	c026	c027	c028	c029	Average
0.658	0.566	0.744	0.958	0.694	0.832	0.874	0.730	0.566	0.543	0.635	0.798	0.611	0.684	0.707

Creating custom vehicle dataset

Different views

Custom dataset generated from cropping the video frames with ground truth detections

Each unique track ID is used as a class

3 sequences 24 cameras 132 vehicles

Matching methods a) Metric Learning - Triplet network (ResNet18)

Triplet network - **ResNet**18

Visualizing learnt representations on the **test** set

Matching methods a) Metric Learning - Triplet network (ResNet18)

Training config.

Batch size: 32

Learning rate: 1e-3

Epochs: 20

Optimizer: SGD

Lr scheduler: gamma-0.1, step 3

Loss margin: 0.5

Loss: Triplet margin lose

Distance Metric

Hist. comparison: Hellinger

The hardest problem is check whether a distance between car embeddings is a TP or not

Set a **threshold** computed by averaging the distances of TP retrievals at 1

Query - 244

Track 259 - Dist 0.238

Track 242 - Dist 0.245

Track 244 - Dist 0.266

Matching methods a) CNN - ResNet18

- Pretrained ResNet18 from torchvision (on COCO dataset) fine-tuned with our train dataset
 - 94% accuracy for train set
- Extracted Features from the last FC layer (512 features)

Training config.

Batch size: 8

Learning rate: 1e-3

Epochs: 5

Optimizer: SGD

Momentum: 0.9

Matching methods b) 3D Color histogram

- Extract the 3D (3 channels) colour histogram of each image, normalize it and then flatten into a single vector
- Tested on different colour spaces: RGB, HSV and LAB
- HSV performs slightly better than other colour spaces

Matching methods c) SIFT features

- Extract keypoints and descriptors per image with SIFT
- Apply ratio test to discard missmatched points
- Use number of matching points as distance metric (1/num. matches)

Matching pre-processing

- It is important to select a "good" frame for matching, therefore, we create a selection of **image representation** for each track.
- Reld tracks with closest anchor track if better than threshold

MTSC - detection

Metric Learning

Track 0

Track 3

Track 7

A selection of **image representation**

Cross camera matching / Relabeling

- 1. Compare image representations between the first two cameras.
- 2. Get track with minimum distance.
- 3. Check if it's smaller than the threshold of new tracks.
- a. **Smaller**: assign anchor track to current detection.
 - b. **Bigger**: new global track, add to anchor list.
- 4. Repeat until all cameras in sequential order have been checked.
- 5. Remove tracks that only appears in one camera

Overview of results

		SEQ 3									
Method		IDF1	IDP	IDR	Precision (detection)	Recall (detection)					
Baseline		0.271	0.217	0.357	0.356	0.584					
Metric Learning		0.385	0.392	0.385	0.770	0.767					
	RGB	0.365	0.370	0.345	0.770	0.767					
Colour Histogram	HSV	0.371	0.372	0.371	0.770	0.767					
	Lab	0.370	0.372	0.368	0.770	0.767					
SIFT		0.364	0.375	0.363	0.770	0.767					
CNN		0.325	0.444	0.263	0.778	0.483					

Overview of results

		SEQ 1									
Method		IDF1	IDP	IDR	Precision (detection)	Recall (detection)					
Baseline		0.382	0.401	0.461	0.712	0.887					
Metric Learning		0.470	0.462	0.523	0.725	0.887					
Colour Histogram	HSV	0.456	0.414	0.506	0.725	0.887					
SIFT											
CNN		0.452	0.524	0.502	0.726	0.888					

Overview of results

		SEQ 4									
Method		IDF1	IDP	IDR	Precision (detection)	Recall (detection)					
Baseline		0.404	0.408	0.399	0.791	0.774					
Metric Learning		0.431	0.435	0.426	0.792	0.775					
Colour Histogram	HSV	0.423	0.428	0.419	0.792	0.775					
SIFT		0.447	0.437	0.471	0.799	0.784					
CNN		0.409	0.414	0.405	0.791	0.774					

Key takeaways

MTSC tracking

- Several methods can be used to detect dynamic objects in video footage
- Kalman helps generate more robust tracks than maximum overlap
- Pre and post-processing are key, especially for non learning-based methods
- When using training-based methods, tracking performance greatly depends on the quality of the ground truth

MTMC tracking

- Several learning and non learning-based methods can be used to match detections in tracks
- Set a new track threshold has been the hardest step, preventing us from getting better results
- Timing-related constraints could help improve MTMC tracking

Thank you!