Universidad Nacional de Río Negro Física III B - 2020

Unidad 02

Clase U02 C07 / 12

Fecha 28 Abr 2020

Cont Máquinas térmicas

Cátedra Asorey

Web http://gitlab.com/asoreyh/unrn-f3b

Contenidos: Termodinámica, alias F3B, alias F4A

El pistón de doble acción

Abr , H. Asorey - F3B 2020

Un ciclo que funciona El inicio de la revolución industrial

Admisión:

el vapor de alta presión ingresa (ingreso de energía desde la fuente caliente)

Expansión:

comienza la expansión del vapor desplazando al pistón y produciendo trabajo mecánico

Escape:

Rápida salida de vapor de baja presión hacia la fuente fría

Compresión:

La admisión de vapor del otro lado del cilindro comprime el remanente y ecualiza las presiones para la nueva admisión

Muerte térmica

- Fuente caliente: cede calor, se enfría
- Fuente fría: absorbe calor, se calienta
- La máquina térmica "aprovecha" ese flujo para liberar energía en forma de trabajo mecánico "útil"
- Cuando T_c = T_f → no hay flujo de calor → muerte térmica

Ciclo combinado

Mejora de la eficiencia global

H. Asorey - F3B 2020

Ciclo inverso → Máquina frigorifica

- Si entrego trabajo, es posible transferir calor de la fuente fría a la caliente
- Heladera: es una "bomba de calor" que extrae calor de una fuente fría para cederlo a otro a una temperatura mayor, impulsada por un motor externo, usualmente

Máquina reversible e irreversible

Si la máquina térmica no es reversible, Q_c < Q

Ciclo Otto

H. Asorey - F3B 2020

FASES DE UN MOTOR DE 4 TIEMPOS

ADMISIÓN

Pistón baja y entra combustible por la válvula de admisión

El cigueñal da 1/2 revolución

COMPRESIÓN

Pistón sube y el combustible y el aire se comprimen.
Las válvulas están cerradas El cigueñal da ½ revolución

EXPLOSIÓN

La mezcla del combustibley de aire explota. Como las válvulas están cerradas el pistón baja. Potencia El cigueñal da ½ revolución

ESCAPE

Pistón sube y expulsa los gases quemados por la válvula de escape El cigueñal da ½ revolución

EN UN MOTOR DE 4 T SE PRODUCE UNA EXPLOSIÓN (FASE POTENTE) CADA 2 REVOLUCIONES

Ciclo Otto, combustión isócora

El ciclo Otto - realista

H. Asorey - F3B 2020

 $\overline{25}$ v(1/mol)

Ciclo Otto, el motor

Ciclo Diesel

Ciclo Diésel

© 2007 Encyclopædia Britannica, Inc.

Ciclo Diésel o ciclo de combustión isóbara

Ciclo Diésel o ciclo de combustión isóbara

Ciclo Diesel

Ciclo diesel, más realista

Motor transparente

Ciclo de Rankine

- 1) bomba: compresión de agua líquida
- caldera: calentamiento y vaporización del agua líquida. Calentamiento isobárico del vapor
- 3) turbina: expansión adiabática del vapor hasta la presión inicial;
- 4) condensador: enfriamiento y condensación isobárica del vapor. Enfriamiento del agua líquida hasta la temperatura inicial

- El ciclo de Rankine es un ciclo "realista", en la actualidad es utilizado con mejoras
- Se trata de una mejora respecto a otros ciclos basados sólo en gas, al introducir un sistema bifásico (agua y vapor), para evitar comprimir el gas
 - Al comprimir agua líquida, se requiere mucho menos energía en la etapa de compresión.
- Tener en cuenta el calor latente de vaporización y condensación

Turbina de vapor

https://www.youtube.com/watch?v=AyAd-gLO9GE

Trabajamos en la gúia 02