References Cited

- [1] R. R. Alexander. Generic longevity of articulate brachiopods in relation to the mode of stabilization on the substrate. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 21:209–226, 1977.
- [2] J. Alroy. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 127:285–311, 1996.
- [3] J. Alroy. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. *Science*, 280:731–734, 1998. doi: 10.1126/science.280.5364.731.
- [4] J. Alroy. Speciation and extinction in the fossil record of North American mammals. In R. K. Butlin, J. R. Bridle, and D. Schluter, editors, *Speciation and patterns of diversity*, pages 302–323. Cambridge University Press, Cambridge, 2009.
- J. Alroy. A simple Bayesian method of inferring extinction. *Paleobiology*, 40(4):584-607, July 2014. ISSN 0094-8373. doi: 10.1666/13074. URL http://www.bioone.org/doi/abs/10.1666/13074.
- [6] J. Alroy, P. L. Koch, and J. C. Zachos. Global climate change and North American mammalian evolution. *Paleobiology*, 26(1981):259–288, 2000.
- [7] K. Angielczyk, P. D. Roopnarine, and S. C. Wang. Modeling the role of primary productivity disruption in end-Permian extinctions, Karoo Basin, South Africa. *The Nonmarine Permian*, New Mexico Museum of Natural History and Science Bulletin, 30:16–23, 2005.
- [8] S. Banerjee, M. M. Wall, and B. P. Carlin. Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. *Biostatistics (Oxford, England)*, 4(1):123–42, Jan. 2003. ISSN 1465-4644. doi: 10.1093/biostatistics/4.1.123. URL http://www.ncbi.nlm.nih.gov/pubmed/12925334.
- [9] T. K. Baumiller. Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. *Paleobiology*, 19(3):304–321, 1993.
- [10] A. Birand, A. Vose, and S. Gavrilets. Patterns of species ranges, speciation, and extinction. *The American naturalist*, 179(1):1–21, Jan. 2012. ISSN 1537-5323. doi: 10.1086/663202. URL http://www.ncbi.nlm.nih.gov/pubmed/22173457.
- [11] J. L. Blois and E. A. Hadly. Mammalian Response to Cenozoic Climatic Change. *Annual Review of Earth and Planetary Sciences*, 37(1):181–208, May 2009. ISSN 0084-6597. doi: 10.1146/annurev.earth.031208.100055.
- [12] J. H. Brown and B. A. Maurer. Evolution of species assembalges: effects of energetic constraints and species dynamics on the diversification of the North American avidauna. *The American Naturalist*, 130(1):1–17, 1987.
- [13] J. Damuth. Home range, home range overlap, and species energy use among herbivorous mammals. *Biological Journal of the Linnean Society*, 15:185–193, 1979.

- [14] J. Damuth. Population density and body size in mammals. Nature, 290:699-700, 1981. URL http://www.jstor.org/stable/10.2307/2461771http://www.nature.com/nature/journal/v290/n5808/abs/290699a0.html.
- [15] A. D. Davidson, A. G. Boyer, H. Kim, S. Pompa-Mansilla, M. J. Hamilton, D. P. Costa, G. Ceballos, and J. H. Brown. Drivers and hotspots of extinction risk in marine mammals. Proceedings of the National Academy of Sciences, 109(9):3395-400, Feb. 2012. ISSN 1091-6490. doi: 10.1073/pnas.1121469109. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3295301&tool=pmcentrez&rendertype=abstract.
- [16] J. M. Drake. Tail probabilities of extinction time in a large number of experimental populations. Ecology, page 140206083444001, Feb. 2014. ISSN 0012-9658. doi: 10.1890/13-1107.1. URL http://www.esajournals.org/doi/abs/10.1890/13-1107.1.
- [17] S. Finnegan, J. L. Payne, and S. C. Wang. The Red Queen revisited: reevaluating the age selectivity of Phanerozoic marine genus extinctions. *Paleobiology*, 34(3):318-341, Sept. 2008. ISSN 0094-8373. doi: 10.1666/07008.1. URL http://www.bioone.org/doi/abs/10.1666/ 07008.1.
- [18] J. J. Flynn and A. R. Wyss. Recent advances in South American mammalian paleontology. Trends in ecology & evolution, 13(11):449-54, Nov. 1998. ISSN 0169-5347. URL http://www.ncbi.nlm.nih.gov/pubmed/21238387.
- [19] M. Foote. Survivorship analysis of Cambrian and Ordovician Trilobites. *Paleobiology*, 14(3): 258–271, 1988.
- [20] M. Foote. Estimating taxonomic durations and preservation probability. *Paleobiology*, 23(3): 278-300, 1997. URL http://www.psjournals.org/paleoonline/?request=get-abstract&issn=0094-8373&volume=23&issue=3&page=278.
- [21] M. Foote. Origination and extinction components of taxonomic diversity: general problems. Paleobiology, 26(sp4):74–102, Dec. 2000. ISSN 0094-8373. doi: 10.1666/0094-8373(2000)26[74: OAECOT]2.0.CO;2. URL http://www.bioone.org/doi/abs/10.1666/0094-8373%282000% 2926%5B74%3AOAECOT%5D2.0.CO%3B2.
- [22] M. Foote. Substrate affinity and diversity dynamics of Paleozoic marine animals. *Paleobiology*, 32(3):345-366, Sept. 2006. ISSN 0094-8373. doi: 10.1666/05062.1. URL http://www.bioone.org/doi/abs/10.1666/05062.1.
- [23] M. Foote and D. Raup. Fossil preservation and the stratigraphic ranges of taxa. *Paleobiology*, 22(2):121-140, 1996. URL http://www.psjournals.org/paleoonline/?request=get-abstract&issn=0094-8373&volume=022&issue=02&page=0121.
- [24] M. Fortelius, J. Eronen, J. Jernvall, L. Liu, D. Pushkina, J. Rinne, A. Tesakov, I. Vislobokova, Z. Zhang, and L. Zhou. Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. *Evolutionary Ecology Research*, 4:1005–1016, 2002.
- [25] K. J. Gaston. Geographic range limits: achieving synthesis. Proceedings. Biological sciences / The Royal Society, 276(1661):1395–406, Apr. 2009. ISSN 0962-8452. doi: 10.1098/

- rspb.2008.1480. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2677218&tool=pmcentrez&rendertype=abstract.
- [26] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. *Bayesian data analysis*. Chapman and Hall, Boca Raton, FL, 3 edition, 2013.
- [27] S. J. Gould and R. Lewontin. The Spandrels of San Marco and the Panglossian Paradigm: A critique of the adaptationist programme. *Proceedings of the Royal Society B: Biological Sciences*, 205(1161):581–598, 1979.
- [28] P. G. Harnik. Direct and indirect effects of biological factors on extinction risk in fossil bivalves. *Proceedings of the National Academy of Sciences of the United States of America*, 108(33):13594-9, Aug. 2011. ISSN 1091-6490. doi: 10.1073/pnas.1100572108. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3158225&tool=pmcentrez&rendertype=abstract.
- [29] P. G. Harnik, C. Simpson, and J. L. Payne. Long-term differences in extinction risk among the seven forms of rarity. *Proceedings of the Royal Society B: Biological Sciences*, (October), Oct. 2013. ISSN 0962-8452. doi: 10.1098/rspb.2012.1902. URL http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2012.1902.
- [30] M. R. Helmus, T. J. Bland, C. K. Williams, and A. R. Ives. Phylogenetic Measures of Biodiversity. *The American naturalist*, 169(3), Jan. 2007. ISSN 1537-5323. doi: 10.1086/511334. URL http://www.ncbi.nlm.nih.gov/pubmed/17230400.
- [31] J. G. Ibrahim, M.-H. Chen, and D. Sinha. *Bayesian Survival Analysis*. Springer, New York, 2001.
- [32] D. Jablonski. Background and mass extincitons: the alternation of macroevolutionary regimes. *Science*, 231(4734):129–133, 1986.
- [33] D. Jablonski and G. Hunt. Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organismic versus species-level explanations. *The American naturalist*, 168(4):556-64, Oct. 2006. ISSN 1537-5323. doi: 10.1086/507994. URL http://www.ncbi.nlm.nih.gov/pubmed/17004227.
- [34] D. Jablonski and K. Roy. Geographical range and speciation in fossil and living molluscs. Proceedings. Biological sciences / The Royal Society, 270(1513):401-6, Feb. 2003. ISSN 0962-8452. doi: 10.1098/rspb.2002.2243. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1691247&tool=pmcentrez&rendertype=abstract.
- [35] C. M. Janis. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. *Annual Review of Ecology and Systematics*, 24:467–500, 1993.
- [36] C. M. Janis, J. Damuth, and J. M. Theodor. Miocene ungulates and terrestrial primary productivity: where have all the browsers gone? *Proceedings of the National Academy of Sciences*, 97(14):7899-904, July 2000. ISSN 0027-8424. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=16642&tool=pmcentrez&rendertype=abstract.
- [37] J. Jernvall and M. Fortelius. Common mammals drive the evolutionary increase of hypsodonty in the Neogene. *Nature*, 417(6888):538–40, May 2002. ISSN 0028-0836. doi: 10.1038/417538a.

- [38] J. Jernvall and M. Fortelius. Maintenance of trophic structure in fossil mammal communities: site occupancy and taxon resilience. *American Naturalist*, 164(5):614–624, Nov. 2004. ISSN 1537-5323. doi: 10.1086/424967.
- [39] C. N. Johnson. Determinats of loss of mammal species during the Late Quaternary 'megafauna' extinctions: life history and ecology, but not body size. *Proceedings of the Royal Society B: Biological Sciences*, 269:2221–2227, 2002. doi: 10.1098/rspb.2002.2130.
- [40] J. A. Kitchell, D. L. Clark, and A. M. Gombos. Biological selectivity of extinction: a link between background and mass extinction. *Palaios*, 1(5):504–511, 1986.
- [41] D. G. Kleinbaum and M. Klein. Survival analysis: a self-learning text. Springer, New York, NY, 2 edition, 2005.
- [42] L. H. Liow, M. Fortelius, E. Bingham, K. Lintulaakso, H. Mannila, L. Flynn, and N. C. Stenseth. Higher origination and extinction rates in larger mammals. *Proceedings of the National Academy of Sciences*, 105(16):6097, 2008. URL papers2://publication/uuid/5A93DDA3-204F-4D9C-AFAC-A15722A18C61.
- [43] S. K. Lyons. A quantitative model for assessing community dynamics of pleistocene mammals. The American naturalist, 165(6):E168-85, June 2005. ISSN 1537-5323. doi: 10.1086/429699. URL http://www.ncbi.nlm.nih.gov/pubmed/15937741.
- [44] S. K. Lyons, P. J. Wagner, and K. Dzikiewicz. Ecological correlates of range shifts of Late Pleistocene mammals. *Philosophical transactions of the Royal Society of London. Series B, Biological sciences*, 365(1558):3681-93, Nov. 2010. ISSN 1471-2970. doi: 10.1098/rstb.2010.0263. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2981999&tool=pmcentrez&rendertype=abstract.
- [45] B. J. Macfadden. Origin and evolution of the grazing guild in New World terrestrial mammals. Trends in ecology & evolution, 12(5):182–187, 1997.
- [46] B. J. Macfadden. Extinct mammalian biodiversity of the ancient New World tropics. *Trends in ecology & evolution*, 21(3):157–65, Mar. 2006. ISSN 0169-5347. doi: 10.1016/j.tree.2005.12.003. URL http://www.ncbi.nlm.nih.gov/pubmed/16701492.
- [47] J. D. Marcot. The fossil record and macroevolutionary history of North American ungulate ungulate mammals: standardizing variation in intensity and geography of sampling. *Paleobiology*, 40(2):237–254, Feb. 2014. ISSN 0094-8373. doi: 10.1666/13052. URL http://www.bioone.org/doi/abs/10.1666/13052.
- [48] L. G. Marshall, S. D. Webb, J. J. Sepkoski, and D. M. Raup. Mammalian evolution and the Great American interchange. *Science*, 215(4538):1351–1357, 1982.
- [49] A. P. Martin and S. R. Palumbi. Body size, metabolic rate, generation time, and the molecular clock. *Proceedings of the National Academy of Sciences*, 90(9):4087-91, May 1993. ISSN 0027-8424. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=46451&tool=pmcentrez&rendertype=abstract.
- [50] J. S. Mitchell, P. D. Roopnarine, and K. D. Angielczyk. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America. *Proceedings*

- of the National Academy of Sciences of the United States of America, 109(46):18857-61, Nov. 2012. ISSN 1091-6490. doi: 10.1073/pnas.1202196109. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3503193&tool=pmcentrez&rendertype=abstract.
- [51] S. Nürnberg and M. Aberhan. Habitat breadth and geographic range predict diversity dynamics in marine Mesozoic bivalves. *Paleobiology*, 39(3):360–372, Apr. 2013. ISSN 0094-8373. doi: 10.1666/12047. URL http://www.bioone.org/doi/abs/10.1666/12047.
- [52] J. L. Payne and S. Finnegan. The effect of geographic range on extinction risk during background and mass extinction. *Proceedings of the National Academy of Sciences of the United States of America*, 104(25):10506-11, June 2007. ISSN 0027-8424. doi: 10.1073/pnas.0701257104. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1890565&tool=pmcentrez&rendertype=abstract.
- [53] R. H. Peters. *The ecological implications of body size*. Cambridge University Press, Cambridge, 1983.
- [54] S. A. Price, S. S. B. Hopkins, K. K. Smith, and V. L. Roth. Tempo of trophic evolution and its impact on mammalian diversification. *Proceedings of the National Academy of Sciences of the United States of America*, 109(18):7008–12, May 2012. ISSN 1091-6490. doi: 10.1073/pnas. 1117133109. URL http://www.ncbi.nlm.nih.gov/pubmed/22509033.
- [55] D. L. Rabosky. Extinction rates should not be estimated from molecular phylogenies. *Evolution*, 64(6):1816-24, June 2010. ISSN 1558-5646. doi: 10.1111/j.1558-5646.2009.00926.x. URL http://www.ncbi.nlm.nih.gov/pubmed/20030708.
- [56] P. Raia, C. Meloro, A. Loy, and C. Barbera. Species occupancy and its course in the past: macroecological patterns in extinct communities. *Evolutionary Ecology Research*, 8:181–194, 2006.
- [57] D. M. Raup. Taxonomic survivorship curves and Van Valen's Law. *Paleobiology*, 1(1):82–96, Jan. 1975. ISSN 0036-8075. doi: 10.1126/science.49.1254.50. URL http://www.ncbi.nlm.nih.gov/pubmed/17777225.
- [58] D. M. Raup. A kill curve for Phanerozoic marine species. Paleobiology, 17(1):37-48, 1991.
- [59] D. M. Raup. Extinction: Bad Genes or Bad Luck? Norton, New York, 1991.
- [60] D. M. Raup and G. E. Boyajian. Patterns of generic extinction in the fossil record. *Paleobiology*, 14(2):109–125, 1988.
- [61] P. D. Roopnarine, K. D. Angielczyk, S. C. Wang, and R. Hertog. Trophic network models explain instability of Early Triassic terrestrial communities. *Proceedings. Biolog*ical sciences / The Royal Society, 274(1622):2077-86, Sept. 2007. ISSN 0962-8452. doi: 10.1098/rspb.2007.0515. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi? artid=2706195&tool=pmcentrez&rendertype=abstract.
- [62] M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105(4):1118-23, Jan. 2008. ISSN 1091-6490. doi: 10.1073/pnas.0706851105. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2234100&tool=pmcentrez&rendertype=abstract.

- [63] M. Rosvall, D. Axelsson, and C. Bergstrom. The map equation. *The European Physical Journal Special Topics*, 178(14):13-24, 2009. URL http://www.springerlink.com/index/H8193132U6432363.pdf.
- [64] K. Roy, G. Hunt, D. Jablonski, A. Z. Krug, and J. W. Valentine. A macroevolutionary perspective on species range limits. *Proceedings. Biological sciences / The Royal Society*, 276(1661):1485-93, Apr. 2009. ISSN 0962-8452. doi: 10.1098/rspb.2008.1232. URL http://www.pubmedcentral. nih.gov/articlerender.fcgi?artid=2677224&tool=pmcentrez&rendertype=abstract.
- [65] J. J. Sepkoski. Stratigraphic biases in the analysis of taxonomic survivorship. *Paleobiology*, 1 (4):343–355, 1975.
- [66] C. A. Sidor, D. A. Vilhena, K. D. Angielczyk, A. K. Huttenlocker, S. J. Nesbitt, B. R. Peecook, J. S. Steyer, R. M. H. Smith, and L. A. Tsuji. Provincialization of terrestrial faunas following the end-Permian mass extinction. *Proceedings of the National Academy of Sciences*, 110(20): 8129–33, May 2013. ISSN 1091-6490. doi: 10.1073/pnas.1302323110.
- [67] C. Simpson. Levels of selection and large-scale morphological trends. PhD thesis, University of Chicago, 2006.
- [68] G. G. Simpson. Tempo and Mode in Evolution. Columbia University Press, New York, 1944.
- [69] G. G. Simpson. The Major Features of Evolution. Columbia University Press, New York, 1953.
- [70] G. J. Slater. Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous-Palaeogene boundary. *Methods in Ecology and Evolution*, 4(8):734-744, Aug. 2013. ISSN 2041210X. doi: 10.1111/2041-210X.12084. URL http://doi.wiley.com/10.1111/ 2041-210X.12084.
- [71] F. A. Smith, J. Brown, J. Haskell, and S. Lyons. Similarity of mammalian body size across the taxonomic hierarchy and across space and *The American Naturalist*, 2004. URL http://www.journals.uchicago.edu/doi/abs/10.1086/382898papers2://publication/uuid/D5606802-FD91-49EB-BE2F-E2D314A5E71D.
- [72] F. A. Smith, S. K. Lyons, S. Morgan Ernest, and J. H. Brown. Macroecology: more than the division of food and space among species on continents. *Progress in Physical Geography*, 32(2):115–138, Apr. 2008. ISSN 0309-1333. doi: 10.1177/0309133308094425. URL http://ppg.sagepub.com/cgi/doi/10.1177/0309133308094425.
- [73] A. Solow and W. Smith. On fossil preservation and the stratigraphic ranges of taxa. *Paleobiology*, 23(3):271–277, 1997. URL http://www.psjournals.org/doi/abs/10.1666/0094-8373-23. 3.271.
- [74] D. Strauss and P. M. Sadler. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. *Mathematical Geology*, 21(4):411–427, May 1989. ISSN 0882-8121. doi: 10.1007/BF00897326. URL http://link.springer.com/10.1007/BF00897326.
- [75] C. A. E. Strömberg. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. *Proceedings of the National Academy of Sciences of the United States of America*, 102(34):11980–4, Aug. 2005. ISSN 0027-8424. doi: 10.1073/

- pnas.0505700102. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1189350&tool=pmcentrez&rendertype=abstract.
- [76] C. A. E. Strömberg, R. E. Dunn, R. H. Madden, M. J. Kohn, and A. A. Carlini. Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. *Nature communications*, 4:1478, Jan. 2013. ISSN 2041-1723. doi: 10.1038/ncomms2508. URL http://www.ncbi.nlm.nih.gov/pubmed/23403579.
- [77] S. Tomiya. Body Size and Extinction Risk in Terrestrial Mammals Above the Species Level. The American Naturalist, pages E000–E000, Sept. 2013. ISSN 00030147. doi: 10.1086/673489. URL http://www.jstor.org/stable/info/10.1086/673489.
- [78] L. Van Valen. A new evolutionary law. Evolutionary Theory, 1:1-30, 1973. URL http://ci.nii.ac.jp/naid/10011264287/.
- [79] L. Van Valen. Taxonomic survivorship curves. Evolutionary Theory, 4:129–142, 1979.
- [80] D. A. Vilhena. Boundaries and dynamics of biomes. PhD thesis, University of Washington, 2013.
- [81] D. A. Vilhena, E. B. Harris, C. T. Bergstrom, M. E. Maliska, P. D. Ward, C. A. Sidor, C. A. E. Strömberg, and G. P. Wilson. Bivalve network reveals latitudinal selectivity gradient at the end-Cretaceous mass extinction. *Scientific reports*, 3:1790, May 2013. ISSN 2045-2322. doi: 10.1038/srep01790.
- [82] C. O. Webb, D. D. Ackerly, M. a. McPeek, and M. J. Donoghue. Phylogenies and Community Ecology. *Annual Review of Ecology and Systematics*, 33(1):475-505, Nov. 2002. ISSN 0066-4162. doi: 10.1146/annurev.ecolsys.33.010802.150448. URL http://arjournals.annualreviews.org/doi/abs/10.1146%2Fannurev.ecolsys.33.010802.150448.
- [83] E. P. White, S. K. M. Ernest, A. J. Kerkhoff, and B. J. Enquist. Relationships between body size and abundance in ecology. *TRENDS in Ecology and Evolution and Evolution*, 22(6): 323-30, June 2007. ISSN 0169-5347. doi: 10.1016/j.tree.2007.03.007. URL http://www.ncbi.nlm.nih.gov/pubmed/17399851.
- [84] J. C. Zachos, G. R. Dickens, and R. E. Zeebe. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. *Nature*, 451(7176):279–283, Jan. 2008. ISSN 1476-4687. doi: 10.1038/nature06588.