Network: Internet Operation

Jae Hyeon Kim

Reference

William Stalling, Data and Computer Communications 10/E, Prentice Hall

Internetwork Operation

- Consider mechanisms for handling growth in network traffic
 - from low-volume text based terminal/email
 - to high volume multi-media web/voice/video
- Historically, IP protocols gave best-effort datagram delivery to all services
- Now, applications want variety of QoS (Quality Of Service) in IP networks
 - explore some new network services and functions

Multicasting

- Multicast means the act of sending a packet from a source to a number of members of a multicast group
- Has a number of practical applications
 - multimedia "broadcast"
 - teleconferencing
 - database
 - distributed computing
 - real time workgroups
- Have design issues in addressing / routing

LAN Multicast

- LAN multicast is easy
 - send to IEEE 802 multicast MAC address
 - since broadcast all stations will see packet, those in multicast group will accept it
 - only single copy of packet is needed
- But it is getting to be harder in internetwork environment
- IP includes addresses that refer to group of hosts on one or more networks =: multicast address
 - cf) IP address refers to an individual host on a particular network

Multicast Example

(b) Packets generated for multicast transmission

Broadcast, Multiple Unicast, Multicast

- Broadcast a copy of packet to each network
 - if server does not know members of group
 - requires 13 copies of packet
- Multiple unicast
 - send packet only to networks that have hosts in group
 - 11 packets
- True multicast
 - transmit single packet along spanning tree
 - routers replicate packets at branch points of spanning tree
 - 8 packets required

Traffic Generated by Various Multicasting Strategies

			Broadcas	t		Multiple Unicast				Multicast
	S → N2	S → N3	S → N5	S → N6	Total	S → N3	S → N5	S → N6	Total	
N1	1	1	1	1	4	1	1	1	3	1
N2										
N3		1			1	1			1	1
N4			1	1	2		1	1	2	2
N5			1		1		1		1	1
N6				1	1			1	1	1
L1	1				1					
L2										
L3		1			1	1			1	1
L4			1	1	2		1	1	2	1
L5										
Total	2	3	4	4	13	3	4	4	11	8

Requirements for Multicasting

- Router have to forward more than one copy of packet
- Need convention to identify multicast addresses (IPv4 Class D or IPv6 prefix)
 - nodes/router translate between IP multicast addresses and list of networks containing group members
- Required for hosts to join/leave multicast group
 - which networks include members of given group
 - sufficient info to work out shortest path to each network
- Routing algorithm to calculate shortest path

Internet Group Management Protocol (1)

- RFC 3376 (IGMP v3) to exchange multicast group information between hosts & routers on a LAN
 - hosts send messages to routers to subscribe to and unsubscribe from multicast group
 - routers check which multicast groups of interest to which hosts
- IGMP operation : join
 - IGMP host wants to make itself known as group member to other hosts and routers on LAN
 - to join, the host send IGMP membership report message
 - sent in IP datagram with the multicast destination address
 - the group member routers receive & learn new member

Internet Group Management Protocol (2)

- IGMP operation : keeping list valid
 - routers periodically issue IGMP general query message
 - in datagram with all-hosts multicast address
 - hosts respond with report message
 - router needs to know at least one group member still active
 - each host in group sets timer with random delay
 - if timer expires, host sends report message
- IGMP operation : leave
 - host leaves group by sending leave group message to all routers static multicast address
 - router determines if it have any remaining group members using group-specific query message

Mobile IP

- Enables computers to maintain Internet connectivity while moving from one Internet attachment point to another
- Particularly suited for wireless connections
- mobile implies:
 - a user is connected to one or more applications across the Internet
 - the user's point of attachment changes dynamically
 - all connections are automatically maintained despite the change of attachment

Basic Capabilities of Mobile IP

- Network discovery
 - used to identify prospective foreign agents, by means of beacon
 - then a care-of address is dynamically acquired for a temporary IP address of current network
- New address registration
 - the care-of address must be registered to home agent in order to redirect datagram reached to home to the foreign agent
 - authenticated registration procedure is used
- Datagram tunneling
 - forwards IP datagram from a home address to a care-of address

Mobile IP Scenario

Internetwork Quality of Service

- Internet traffic continues to grow and change
 - demand for real-time responses
 - increasing use of audio, image, and video
 - heavy use of the World Wide Web
- Packet-switching technology with routers functioning as switches was not designed to handle voice and video
 - strong need to support a variety of traffic with QoS requirements within TCP/IP

Internet Traffic Categories

- Elastic traffic
 - can cope with wide changes in delay and/or throughput
 - traditional TCP/IP traffic
 - eg. FTP, email, telnet, SNMP, HTTP
- Inelastic traffic
 - does not easily adapt to network variations, e.g. real time traffic
 - requirements : throughput, delay, jitter, packet loss
- New Internet architecture requirements:
 - resource reservation protocol
 - elastic traffic still needs to be supported

ISA Approach

- Integrated Service Architecture (ISA)
 - intended to provide QoS transport over IP-based Internet
 - defined in RFC 1633
 - portions already being implemented in some routers
 - sharing capacity on congestion is the central design issue
- To manage congestion and provide QoS, it makes use of:
 - admission control
 - routing algorithm
 - queuing discipline
 - discard policy

ISA Services

- ISA service for a flow of packets is defined on two levels:
 - a number of general categories of service are provided, each of which provides a certain general type of service guarantees
 - guaranteed : service provides assured capacity
 - controlled load: tightly approximates the behavior visible to applications
 - best effort
 - within each category, the service for a particular flow is specified by the values of certain parameters
 - referred to as a traffic specification (TSpec)

Resource Reservation: RSVP

- Resource ReSerVation Protocol: RFC 2205
 - provides supporting functionality for ISA
- Applications reserves resources in-between routers to meet QoS
 - enables routers to decide ahead of time if they can meet the delivery requirement for a multicast transmission
- Goals and characteristics
 - unicast and multicast
 - receiver-initiated reservation
 - maintaining soft state in the Internet
 - providing different reservation styles
 - transparent operation through non-RSVP routers

Receiver-Initiated Reservation

- Since receivers specify the desired QoS, it makes sense for them to make resource reservations
 - different members of the same multicast group may have different resource requirements
 - QoS requirements may differ depending on the output equipment, processing power, and link speed of the receiver
 - routers can aggregate multicast resource reservations to take advantage of shared path segments

RSVP Operation

Differentiated Services (DS)

- ISA and RSVP are relatively complex to deploy
- Designed to provide simple, low overhead tool
 - specified in RFC 2475
 - IP packets labeled for differing QoS using existing IPv4 Type of Service or IPv6 DS field, so no change to IP is required
- Key characteristics:
 - SLA(Service Level Agreement) is established prior to use of DS
 - DS is implemented in individual routers
 - most widely accepted QoS in enterprise networks

DS Field IPv6

	Class		Drop Precedence
100	Class 4 - best service	010	Low - most important
011	Class 3	100	Medium
010	Class2	110	High - least important
001	Class 1		

(b) Codepoints for assured forwarding PHB

PHB(Per Hop Behavior)