Data Science - Syllabus

Statistics

- Understand the fundamentals of statistics
- Learn how to work with different types of data
- How to plot different types of data
- Calculate the measures of central tendency, asymmetry, and variability
- Calculate correlation and covariance
- Distinguish and work with different types of distributions
- Estimate confidence intervals
- Perform hypothesis testing
- Make data driven decisions
- Understand the mechanics of regression analysis
- Carry out regression analysis
- Use and understand dummy variables
- Understand the concepts needed for data science even with Python and R!

Python & R Language

- Introduction
- Basic constructs
- Various Libraries in Python and R Language
- OOPs in Python
- NumPy for mathematical computing
- SciPy for scientific computing
- Data manipulation
- Data visualization with Matplotlib
- Machine Learning using Python
- Supervised learning
- Unsupervised Learning
- Python integration with Spark

Machine Learning

1. Introduction

Definition of learning systems. Goals and applications of machine learning. Aspects of developing a learning system: training data, concept representation, function approximation.

2. Regression

Studying various regression techniques used for classification and Prediction in Supervised Learning.

3. **Decision Tree Learning**

Representing concepts as decision trees. Recursive induction of decision trees. Picking the best splitting attribute: entropy and information gain. Searching for simple trees and computational complexity. Overfitting, noisy data, and pruning.

4. Ensemble Learning

(read this paper) Using committees of multiple hypotheses. Bagging, boosting, and DECORATE. Active learning with ensembles.

5. Experimental Evaluation of Learning Algorithms

Measuring the accuracy of learned hypotheses. Comparing learning algorithms: cross-validation, learning curves, and statistical hypothesis testing.

6. Artificial Neural Networks

Neurons and biological motivation. Linear threshold units. Perceptrons: representational limitation and gradient descent training. Multilayer networks and backpropagation. Hidden layers and constructing intermediate, distributed representations. Overfitting, learning network structure, recurrent networks.

7. Support Vector Machines

Maximum margin linear separators. Quadractic programming solution to finding maximum margin separators. Kernels for learning non-linear functions.

8. Bayesian Learning

Probability theory and Bayes rule. Naive Bayes learning algorithm. Parameter smoothing. Generative vs. discriminative training. Logisitic regression. Bayes nets and Markov nets for representing dependencies.

9. Instance-Based Learning

Constructing explicit generalizations versus comparing to past specific examples. k-Nearest-neighbor algorithm. Case-based learning.

10. Text Classification

Bag of words representation. Vector space model and cosine similarity. Relevance feedback and Rocchio algorithm. Versions of nearest neighbor and Naive Bayes for text.

11. Clustering and Unsupervised Learning

Learning from unclassified data. Clustering. Hierarchical Aglomerative Clustering. k-means partitional clustering. Expectation maximization (EM) for soft clustering. Semi-supervised learning with EM using labeled and unlabled data.