Properties of Relations

Previous Lecture

Cartesian product, the cardinality of Cartesian product
Binary relations, higher arity relations

Discrete Mathematics - Relations

Binary Relations

A binary relation from set A to set B is any subset of A × B.
 If A = B then we say that the relation is on the set A

`x is a brother of y' \subseteq People \times People

 $\begin{tabular}{lll} `x is older than y' & \subseteq & People \times People \\ `x is an owner of y' & \subseteq & People \times Properties \\ \end{tabular}$

Discrete Mathematics
Andrei Bulator

Discrete Mathematics - Rel

More Relations (cntd)

- Binary relations can be generalized to subsets of Cartesian products of more than two sets.
- Any subset of the Cartesian product of 3 sets is called a ternary relation
 - `x and y are parents of z' is a subset of People × People × People
- Any subset of the Cartesian product of k sets is called a k-ary relation

$$\{\,(a_1,a_2,\ldots,a_k)\mid a_1+a_2+\ldots+a_k=3\,\,\}$$
 is a subset of $\mathbb{R}\times\mathbb{R}\times\ldots\times\mathbb{R}$

Discrete Mathematics - Relation

Sets, Relations, and Predicates

 Observe that sets, relations and predicates are essentially the same object.

 $\begin{tabular}{lll} Unary predicate & Set & A = \{x \mid P(x)\} \\ Binary predicate & Binary relation & R = \{(x,y) \mid P(x,y)\} \\ Termary predicate & Termary relation & R = \{(x,y,z) \mid P(x,y,z)\} \\ \end{tabular}$

Discrete Mathematics - Relations

Relational Databases

A relational database is a collection of tables like

No.	Name	Student ID	Supervisor	Thesis title
1.	Bradley Coleman	30101234	Petra Berenbrink	Algebraic graph theory

A table consists of a schema and an instance ...

The instance of this table is a 5-ary relation, a subset of the Cartesian product

 ${\textstyle {\mathbb Z}}^{{\scriptscriptstyle +}\!\!\times} \, \mathsf{Names} \times \mathsf{8\text{-}strings_of_digits} \times \mathsf{Names} \times \mathsf{Meaningful_Sentences}$

Discrete Mathematics - Relation

reie Matternaties - Relations

Describing Binary Relations

A list of pairs.

Among 6 people, Mark, Jerry, John, Randy, Aaron, and Ralph, Mark and Randy are brothers, and also John, Aaron and Ralph are brothers

A = {Mark, Jerry, John, Randy, Aaron, Ralph } Brotherhood = { (x,y) | x is a brother of y}

= { (Mark,Randy), (Randy,Mark), (John,Aaron), (Aaron,John), (John,Ralph), (Ralph,John), (Aaron,Ralph), (Ralph,Aaron) }

Discrete Mathematics - Relation

Describing Binary Relations (cntd)

Matrix of a relation.

Matrix of a relation $R \subseteq A \times B$ is a rectangular table, rows of which are labeled with elements of A (in any but fixed order), and columns are labeled with elements of B. We write 1 in the intersection of row a and column b if and only if $(a,b) \in R$; otherwise we write 0.

Brotherhood			Jerry				
	Mark Jerry John Randy Aaron	(0	0	0	1	0	0,
	Jerry	0	0	0	0	0	0
	John	0	0	0	0	1	1
	Randy	1	0	0	0	0	0
	Aaron	0	0	1	0	0	1
	Rainh	l n	0	1	0	1	0

Describing Binary Relations (cntd) Graph of a relation Graph of a relation $R \subset A \times B$ consists of two sets of vertices labeled by elements of A and B. A vertex a is connected to a vertex b with an edge (arc) if and only if $(a,b) \in R$. If A = B then we may use only one set of vertices Mark Mark Jerry Jerry John Randy Randy John ◄ Ralph Ralnh

Ralph

Cartesian Product, Intersection and Union

Theorem. For any sets A,B,C $(1) \ A \times (B \cap C) = (A \times B) \cap (A \times C)$ $(2) \ A \times (B \cup C) = (A \times B) \cup (A \times C)$ $(3) \ (A \cap B) \times C = (A \times C) \cap (B \times C)$ $(4) \ (A \cup B) \times C = (A \times C) \cup (B \times C)$ $Proof \ (of (2))$ $A \times (B \cup C) = \{(a,b) \mid a \in A \land b \in B \cup C\}$ $= \{(a,b) \mid (a \in A \land b \in B) \lor (a \in A \land b \in C)\}$ $= \{(a,b) \mid (a \in A \land b \in B) \cup ((a,b) \mid a \in A \land b \in C)\}$ $= \{(a,b) \mid (a \in A \land b \in B) \cup ((a,b) \mid a \in A \land b \in C)\}$ $= (A \times B) \cup (A \times C)$ Q.E.D.

Properties of Binary Relations – Symmetricity

A binary relation R ⊆ A × A is said to be symmetric if, for any a,b ∈ A, if (a,b) ∈ R then (b,a) ∈ R.

The relation Brotherhood ('x is a brother of y') on the set of men is symmetric, because if a is a brother of b then b is a brother of a

Matrix:

Graph:

Graph is symmetric

Graph is symmetric

Discrete Mat	hematics – Equiva	lences		
	reflexive	symmetric	transitive	anti-symmetric
Brotherhood x is a brother of y				
Neighborhood x is a neighbor of y				
x≤y				
x,y are intergers and x divides y				