Math 449: Numerical Applied Mathematics Lecture 11

09/25/2017 Wenzhen
Today's topic: LU Decomposition

Today: LU decomposition (continued)

Last time: Gaussian elimination is equivalent to decomposing A=LU.

h. unit

Advantage: Storing L allows us to solve any other $A\overrightarrow{x}=\overrightarrow{c}$ without having to redother elimination process for A.

Reduce solving $A \vec{z} = \vec{b}$ to :

LU decompose A.

Solve triangular system by substitution O(n2) ops.

LU decomp algorithm.

For
$$i = 1, ..., n$$
.

$$lij = \frac{1}{u_{ij}} \left[a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \right] (j=1, ..., i+1)$$

$$u_{ij} = a_{ij} - \sum_{k=1}^{j+1} l_{ik} u_{kj} \qquad (j=i, ..., n)$$

Note: Requires $uj \neq 0$ j=1,...,n cost of LU decomposition.

all n rows of L:

$$\sum_{i=1}^{n} (i-1)^{2} = 0^{2} + 1^{2} + 2^{2} + \cdots + (n-1)^{2}$$

$$= \frac{n(n-1)(n-2)}{6} \quad ops.$$

$$j^{\text{th}}$$
 column of \mathcal{U} : $\frac{j(j-1)}{2}$ mult $\frac{j(j-1)}{2}$ sub

All of
$$u$$
:
$$\sum_{j=1}^{n} j(j-1) = \sum_{j=1}^{n} (j^{2}-j)$$

$$= \sum_{j=1}^{n} j^{2} - \sum_{i=1}^{n} j$$

$$= \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)(2n+1-3)}{6}$$

All of
$$U$$

$$\frac{2n(n+1)(n-1)}{6}$$

Total cost of LU decomposition:

$$\frac{n(n-1)}{6} \left[\left(2n-1 \right) + \left(2n+2 \right) \right]$$

$$\frac{n(n-1)(4n+1)}{6} \quad ops. \qquad \frac{2}{3}n^3 + O(n^2)$$

So, if A has an LU decomposition, then solving $A\vec{x} = \vec{b}$ takes $\frac{2}{3}n^3 + O(n^2)$ ops.

Cheaper to solve
$$A\vec{x} = \vec{b}$$
, then to compute $\vec{z} = A^{-1}\vec{b}$

$$A\vec{z} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \vec{e}_1$$

$$i^{th}$$
 column A^{-1} is the solution of $A\vec{x} = \vec{e}_i$ $\vec{e}_i = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ = i^{th} entry.

Also i^{th} col of I

Computing
$$A^{-1}$$
 requires solving $A\vec{x} = e_i$ $i=1,...,n$.

$$\frac{2}{3}n^3 + O(n^2)$$

Solve n different triangular systems by substitution.

This cost O(n3)

ATD takes O(n2)

When does LU decomp fail?

Thm
$$A = \begin{pmatrix} a_{11} & \cdots & a_{1k} & \cdots & a_{1n} \\ \vdots & & & \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} & \cdots & a_{kn} \\ \vdots & & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{nk} & \cdots & a_{nn} \end{pmatrix}$$

$$k^{th} \text{ leading principle submatrix of } A.$$

If $A \in \mathbb{R}^{n \times n}$, and if $A^{(k)} \in \mathbb{R}^{k \times k}$ is nonsingular for k = 1, ..., n-1. then we can decompose A = LU.

Ex.
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 $A^{(1)} = (0)$ singular.

After k rows of LU decomposition algorithm.

$$\begin{pmatrix} L \\ l_{21} \\ \vdots \\ l_{k1} - - l \end{pmatrix} \begin{pmatrix} u_{11} \cdots u_{1k} & u_{1n} \\ \vdots & \vdots \\ u_{nk} & u_{kn} \end{pmatrix} = \begin{pmatrix} a_{11} \cdots a_{1k} \cdots a_{1n} \\ \vdots \\ a_{k1} \cdots a_{kk} & a_{kn} \end{pmatrix}$$

$$A^{(k)} = L^{(k)} U^{(k)}$$

A^(k) monsingular \iff det $(A^{(k)}) \neq 0$ det $A^{(k)} = (\det(L^{(k)}) \det(U^{(k)})) = u_{11} u_{22} \cdots u_{kk}$ So if det $A^{(k)} \neq 0$, then $u_j \neq 0$ for $j = 1, \dots, k$ If this is true for $k = 1, \dots, n-1$. then we need to solve $A\vec{x} = \vec{b}$ then to compate $\vec{z} = A^{-1}\vec{b}$

 $\det\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = -1 \neq 0$ so we should be able to solve $A\vec{x} = \vec{b}$

Observe that if we switch rows I and 2.

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \xrightarrow{\longrightarrow} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \xrightarrow{R2} \text{ this does have a LU decomposition.}$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ this procedure is called pivoting.}$$