

Cherish every MOMENT:

Long-Context Time Series Foundation Models

Nina Żukowska, Mononito Goswami, Michał Wiliński, Willa Potosnak, Prof. Artur Dubrawski

Contents

- 1. Time Series and Foundation Models
- 2. Context extension in Time Series Foundation Models.
- 3. Our Approach: Infini-Channel Mixer.

Time Series are heterogeneous.

Time Series are heterogeneous.

Foundation models

diverse multi-domain data Foundation Model

Zero-shot

Embedding

In-context Learning

Fine-tuned Model

Embedding

Specialised task performance

Time Series Foundation

Models^[1,2,3] generally model

short **univariate time series.**

- Strong representation learning
- Multiple tasks

[1]Goswami, M., Szafer, K., Choudhry, A., Cai, Y., Li, S., & Dubrawski, A. (2024). MOMENT: A Family of Open Time-series Foundation Models. In International Conference on Machine Learning. arXiv preprint arXiv:2402.03885. Retrieved from https://arxiv.org/abs/2402.03885.

[2]Rasul, K., Ashok, A., Williams, A. R., Ghonia, H., Bhagwatkar, R., Khorasani, A., Darvishi Bayazi, M. J., Adamopoulos, G., Riachi, R., Hassen, N., Biloš, M., Garg, S., Schneider, A., Chapados, N., Drouin, A., Zantedeschi, V., Nevmyvaka, Y., & Rish, I. (2024). Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting. arXiv preprint arXiv:2310.08278.

[3]Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., & Sahoo, D. (2024). Unified Training of Universal Time Series Forecasting Transformers. arXiv preprint arXiv:2402.02592. Retrieved from https://arxiv.org/abs/2402.02592.

But what is Context Expansion?

Expansion of context means:

- Capture intricate dependencies between channels,
 e.g. different leads in electrocardiogram
- To capture long-term dependencies in the same channel
- Improve the predictive accuracy of time series foundation models

[1]Goswami, M., Szafer, K., Choudhry, A., Cai, Y., Li, S., & Dubrawski, A. (2024). MOMENT: A Family of Open Time-series Foundation Models. In International Conference on Machine Learning. arXiv preprint arXiv:2402.03885. Retrieved from https://arxiv.org/abs/2402.03885. [2]Rasul, K., Ashok, A., Williams, A. R., Ghonia, H., Bhagwatkar, R., Khorasani, A., Darvishi Bayazi, M. J., Adamopoulos, G., Riachi, R., Hassen, N., Biloš, M., Garg, S., Schneider, A., Chapados, N., Drouin, A., Zantedeschi, V., Nevmyvaka, Y., & Rish, I. (2024). Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting. arXiv preprint arXiv:2310.08278. [3]Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., & Sahoo, D. (2024). Unified Training of Universal Time Series Forecasting Transformers. arXiv preprint arXiv:2402.02592. Retrieved from https://arxiv.org/abs/2402.02592.

Expand context length along 2 dimensions: time and channels

A possible approach^[3] to mixing channels...

Method:

- Flattening input sequence
- Relative Channel Encoding
- High memory requirement

Channel Mixing

Adapters

Uses already established univariate representations

Graph Transformer layers

E.g., UP2ME

Mixing head

E.g., Tiny Time Mixers

End-to-End Channel Mixers

Homogenous

Channel-mixing is embedded in each layer

Intra-channel Patching

E.g., iTransformer

Relative Encodings

E.g., Moirai

Non-homogenous

Channel-mixing is not embedded in each layer

Dedicated Layers

E.g., Crossformer

Compressive Memory

E.g., Ours

Our approach ...

Method:

Introduce a compressive memory matrix, adding **one trainable parameter** per attention head

Step 1: Aggregate Cross-Channel InformationInitialize compressive memory matrix and normalization term. Aggregate information from all channels.

Step 2: Retrieve Cross-Channel Data

Use query matrix to retrieve and combine inter- and intra-channel information, adjusting with a learned gating scalar for balance.

Experiments and comparing pears and apples...

We use the same model architecture!

Results (Supervised Settings)

Model / Example	Class	Design	Exchange	ETTh1	ETTh2	ETTm1	ETTm2	Weather
N-BEATS MOMENT-Tiny	No Channel Mixing	Channel Independence	0.524 0.249	0.461 0.418	0.410 0.359	0.346 0.339	0.278 0.234	0.211 0.206
UP2ME	Adapter	Graph Transformer	0.240	0.435	0.367	0.340	0.237	0.204
Crossformer	Non-homogeneous End-to-End Mixer	Dedicated Intra- Channel Attention	0.559	0.571	0.654	0.390	0.515	0.227
iTransformer	Homogeneous End-to-End	Multivariate Patching Concatentation + Relative Encoding Compressive Memory	0.245	0.429	0.380	0.353	0.251	0.212
MOIRAI			0.243	0.426	0.357	0.340	0.249	0.216
ICM (Ours)	Channel Mixer		0.232	0.416	0.349	0.333	0.234	0.205

Does Beta Matter? Yes!

Model name	Fine-tune β	Exchange	ETTh1	ETTh2	ETTm1	ETTm2	Weather
MOMENT-Tiny	_	0.250	0.437	0.343	0.333	0.230	0.222
+Infini-Channel Mixer	×	$\frac{0.249}{0.247}$	0.439 0.436	0.336 0.337	0.332 0.330	0.230 0.228	0.219 0.214

Summary

- 1. Taxonomy of Context Extension
- Compressive Memory Matrix Design for Time Series
- 3. Experiments and Benchmarking

Shameless plug...

Thank you