Новосибирский государственный технический университет Факультет прикладной математики и информатики Кафедра вычислительных технологий

Анализ систем источник-приёмник в задачах морской геоэлектрики

Жигалов Петр Сергеевич

Научный руководитель: д.т.н., проф. Шурина Элла Петровна

Новосибирск 27 июня 2016 г. **Цель работы:** решение трёхмерной прямой задачи морской геоэлектрики векторным методом конечных элементов

Задачи:

- Исследование влияния слоя воздуха при различной глубине источника электромагнитного возмущения
- Исследование целесообразности применения РМL-слоя для ограничения области моделирования в задачах морской геоэлектрики на низких частотах
- Исследование поведения электромагнитного поля при различном расположении источника поля и искомого объекта друг относительно друга

Уравнение Гельмгольца:

$$\nabla \times (\mu^{-1}\nabla \times \mathbf{E}) + k^2 \mathbf{E} = -i\omega \mathbf{J}, \quad k^2 = i\omega\sigma - \omega^2 \varepsilon \tag{1}$$

Е – напряжённость электрического поля (В/м),

 σ – электрическая проводимость (См/м),

 $\varepsilon = \varepsilon_r \varepsilon_0$ – диэлектрическая проницаемость (Ф/м),

 $\mu = \mu_r \mu_0$ – магнитная проницаемость (Гн/м),

J – плотность стороннего электрического тока (A/M^2) .

Краевые условия:

$$\mathsf{E} \times \mathsf{n}|_{S_1} = \mathsf{E}^g, \tag{2}$$

$$\sigma \mathbf{E} \cdot \mathbf{n}|_{S_2} = 0. \tag{3}$$

Пространства:

$$\mathbb{H}(\operatorname{rot},\Omega) = \{ \mathbf{v} \in [\mathbb{L}^2(\Omega)]^3 : \nabla \times \mathbf{v} \in [\mathbb{L}^2(\Omega)]^3 \}, \tag{4}$$

$$\mathbb{H}_0(\operatorname{rot},\Omega) = \{ \mathbf{v} \in \mathbb{H}(\operatorname{rot},\Omega) : \mathbf{v} \times \mathbf{n}|_{\partial\Omega} = 0 \}. \tag{5}$$

Вариационная постановка: Найти $\mathbf{E} \in \mathbb{H}_0(\mathrm{rot}\,,\Omega)$, такое что $\forall \mathbf{v} \in \mathbb{H}_0(\mathrm{rot}\,,\Omega)$ будет выполнено:

$$\int_{\Omega} \mu^{-1} \nabla \times \mathbf{E} \cdot \nabla \times \overline{\mathbf{v}} \, d\Omega + \int_{\Omega} k^{2} \mathbf{E} \cdot \overline{\mathbf{v}} \, d\Omega = -\int_{\Omega} i\omega \mathbf{J} \cdot \overline{\mathbf{v}} \, d\Omega. \quad (6)$$

РМL-слой Ω^{PML} является подобластью Ω со специальными коэффициентами, построенными таким образом, чтобы обеспечить полное поглощение электрического поля внутри слоя и не допустить его отражения от внутренних границ и прохождения через внешние границы слоя.

Расчётные области без PML-слоя и с PML-слоем:

Комплексное растяжение координат:

$$\tilde{x} = \int_{0}^{x} s_{x}(t) dt, \qquad \tilde{y} = \int_{0}^{y} s_{y}(t) dt, \qquad \tilde{z} = \int_{0}^{z} s_{z}(t) dt, \qquad (7)$$

$$\left\{ egin{aligned} &s_j(au)=1 & ext{- вне РМL-слоя,} \ &s_j(au)=1+\chi\left(rac{d(au)}{\delta}
ight)^m, & m\geq 1 & ext{- внутри РМL-слоя,} \end{aligned}
ight.$$

где $d(\tau)$ — расстояние в j-м направлении от внутренней границы PML-слоя, δ — толщина PML-слоя, χ — некоторое комплексное число, причём $\mathrm{Re}(\chi) \geq 0$, $\mathrm{Im}(\chi) \geq 0$.

Оператор ∇ в новых координатах:

$$\tilde{\nabla} = \left[\frac{1}{s_x} \frac{\partial}{\partial x}, \frac{1}{s_y} \frac{\partial}{\partial y}, \frac{1}{s_z} \frac{\partial}{\partial z} \right]. \tag{9}$$

Вариационная постановка:

Найти $\mathbf{E} \in \mathbb{H}_0(\mathrm{rot}\,,\widehat{\Omega} = \Omega \setminus \Omega^{PML})$ и $\widetilde{\mathbf{E}} \in \mathbb{H}_0(\mathrm{rot}\,,\Omega^{PML})$, такие что $\forall \mathbf{v} \in \mathbb{H}_0(\mathrm{rot}\,,\widehat{\Omega})$ и $\forall \widetilde{\mathbf{v}} \in \mathbb{H}_0(\mathrm{rot}\,,\Omega^{PML})$ будет выполнено:

$$\begin{cases}
\int_{\widehat{\Omega}} \mu^{-1} \nabla \times \mathbf{E} \cdot \nabla \times \overline{\mathbf{v}} \, d\widehat{\Omega} + \int_{\widehat{\Omega}} k^{2} \mathbf{E} \cdot \overline{\mathbf{v}} \, d\widehat{\Omega} = -\int_{\widehat{\Omega}} i\omega \mathbf{J} \cdot \overline{\mathbf{v}} \, d\widehat{\Omega} \\
\int_{\Omega^{PML}} \mu^{-1} \widetilde{\nabla} \times \widetilde{\mathbf{E}} \cdot \widetilde{\nabla} \times \widetilde{\overline{\mathbf{v}}} \, d\Omega^{PML} + \int_{\Omega^{PML}} k^{2} \widetilde{\mathbf{E}} \cdot \widetilde{\overline{\mathbf{v}}} \, d\Omega^{PML} = 0.
\end{cases} (10)$$

Описание расчётной области

Исследование влияния слоя воздуха

Норма разности решений при изменении заглубления h источника электромагнитного поля:

h	5	10	50	100	200	300	400
$\frac{\ E^{air} - E^{noair}\ _{\mathbb{L}^2}}{\ E^{air}\ _{\mathbb{L}^2}}$	0.44	0.40	0.24	0.14	0.07	0.04	0.02

with air

200 400

with air

200 400

Исследование влияния слоя воздуха

$Re(\mathbf{E}_{v})$ по линии y = 0, z = -610:

Описание расчётной области

Варьирование коэффициентов растяжения:

			Im(χ) в Ω ₂		Im(χ) в Ω ₃	$\frac{\ \operatorname{Re}(\mathbf{E}_y^{Gak} - \mathbf{E}_y^{PML})\ }{\ \operatorname{Re}(\mathbf{E}_y^{Gak})\ }$	Время, бак	Время, PML
3	0	1	5	3	1	0.106636		592
3	1	0	6	2	1	0.0925	650	599
4	0	1	5	3	1	0.0947	050	731
4	1	0	6	2	1	0.0910		591

Варьирование толщины РМL-слоя:

6	$\ \operatorname{Re}(\mathbf{E}_{y}^{Gak}-\mathbf{E}_{y}^{PML})\ $	Время,	Время,
δ_k	$\ \operatorname{Re}(\mathbf{E}_y^{Gak})\ $	бак	PML
80	0.1199	673	1289
100	0.0910	650	591
120	0.0784	609	1142

Варьирование размера области, на границе которой вводится РМL-слой:

, , , , , , , , , , , , , , , , , , ,	$\ \operatorname{Re}(\mathbf{E}_{y}^{Gak}-\mathbf{E}_{y}^{PML})\ $	Время,	Время,	
I_k	$\ \operatorname{Re}(\mathbf{E}_{y}^{Gak})\ $	бак	PML	
500	0.187456	628	587	
600	0.0909998	650	591	
800	0.0440642	718	658	

Исследование эффективности PML-слоя

Картины электрического поля $\mathrm{Re}(\mathbf{E}_y)$ при параметрах $\chi_{\Omega_1}=(4,0)$, $\chi_{\Omega_2}=(1,6)$, $\chi_{\Omega_2}=(3,2)$ m=3, $l_k=600$ м и $\delta_k=100$ м в сечении плоскостью y=0:

Описание расчётной области

Картины электрического поля $\text{Re}(\mathsf{E}_z)$ при $l_2=0$ в сечении плоскостью z=-601:

Картины электрического поля $\mathrm{Re}(\mathsf{E}_z)$ при $\mathit{l}_2 = -100$ м в сечении плоскостью z = -601:

Картины электрического поля $Re(\mathsf{E}_z)$ при $I_2 = -200$ м в сечении плоскостью z = -601:

- Расчёты, в которых в область моделирования не включается воздух, допустимы только при расположении источника электромагнитного поля на большой глубине.
- Применение РМL-слоя позволяет получить достаточно точные решения, однако его применение не приводит к резкому уменьшению размерности систем уравнений и, как следствие, к уменьшению времени решения.
- Проводящий объект хорошо «виден» на некотором расстоянии от морского дна, а непроводящий только вблизи дна или при небольшом заглублении приёмника в грунт. Наибольший отклик на источник электромагнитного возмущения для непроводящего объекта наблюдался в том случае, когда источник располагался со смещением от центра симметрии объекта.