mercredi 4 novembre 2015 09:53

First order logic

Logic formulas are defined on a signature

(fr, fe, ..., fr, ..., fr)

functions operators predicator about their

constants

A signature is a syntactique notion, function fi

has no special meaning it just represents any function

Ex: $\forall x \forall y \quad x + y = y + x \quad \text{means that } + \text{ is commutative,}$ whatever "+" is

The only information about symbols in the signature is their arities: the number of argument to the function/operata/predicate

Ex: (+,-, cos, <)

Limany predicate (no link with order)

un any function (no link with opposite)

binary operator (no link with addition)

A constant is a O-any function

Note that an n-any function can be represented by a (n+1)-any predicate:

The n-any function f is represented by the (n+1)-any predicate F defined by:

 $F(x_1,...,x_n,y)$ if and only if $f(x_1,...,x_n)=y$

Ex: if cos is represented by Cos, the fact it is surjective

is expressed by $\forall x \exists y \in (os(y, x))$ Remark that not all preclicate represent a function; it must verifies that $\forall x_{n,...,x_n} \exists ! y \in (x_n,...,x_n,y)$ I "there exists a unique ... "see below"

Building first order formulas

Terms one: {variables x
constraints i
functions/operators applied to terms cos(2)+i

Atomic formula are: \(\) 0- any medicates
\(\) Predicates applied to terms

\(\) \(\) Predicates applied to terms

\(\) \(\)

Defining new functions" (# define in logic)

When you have that a familia $\forall z_1,..., z_m \exists y \varphi$ is true/proved, you can introduced a new functionnal symbol (not in the signature; not to be added to the signature) to denote the y, unique or not, given by the formula from $z_1..., z_m$

Ly It is a sharkut to be replaced by an existential quantification

Ex: $\forall x \exists y \quad x+y=0$ allows to define a unary operator
The formula $\forall x \forall y \quad -(x+y)=(-x)+(-y)$ is in fact $\forall x \forall y \quad \exists a_1 \exists a_2 \exists a_3 \quad a_1 x=0 \quad \lambda \quad a_2 t y=0 \quad \lambda \quad a_3 = a_1 + a_2$

Jecond ader logic

Je cond order logic allows to quantify on predicates (dus on functions or sets)

Ex: a formula that states that there exists an order relation fight order variables $\exists R \ \forall x \ R(x,x) \ \wedge \ \forall x \ \forall y \ R(x,y) \wedge \ R(y,x) => x = y$

Second adu $\wedge \forall x \forall y \forall 3 R(a,y) \wedge R(y,3) => R(a,3)$

a formula that states that any stable set is full or empty:

 $\forall S \ \forall x \ S(x) \Rightarrow S(f(x)) \Rightarrow \forall x \ \neg S(x) \ \lor \ \forall x \ S(x)$ Ly here S(x) means on is in the set

represented by predicate S

a formula which states that only the identity commutes with f: $a = F(x) \quad b = F(f(x))$

 $\forall F \forall x \exists ! y F(x,y) \Rightarrow \forall x \exists a \exists b F(x,a) \land F(f(x),b)$ "for all function F" $\land f(a) = b \Rightarrow \forall x F(x,x)$

As this last famula is a bit tedions to read, we write, by abuse of notations:

 $\forall E \forall x x \in E \Rightarrow f(x) \in E \Rightarrow \forall x x \notin E$ $\forall g, \forall x g(f(x)) = f(g(x)) \Rightarrow \forall x g(x) = x$

Remarks

"such that" has a different meaning for \forall and \exists . \forall \times such that \times 1, we have $\frac{1}{2} < \times$ is \forall \times \times \times 1 \Longrightarrow $\frac{1}{2} < \times$ while \exists \times such that \times 1 where $\frac{1}{2} < \times$ is \exists \times \times 2 \times 1 \times 2 \times 2

Monadic second order logic is the restriction of second order logic to unary predicates: one can only quantify on sets and elements

Ex: $\forall E \forall x x \in E \Rightarrow f(x) \in E \Rightarrow \forall x x \notin E$

Definability/ decidability

A structure is a tuple (E, o) where E is the domain of the structure (a set or a class)

and or a list of predicates, functions, operators or constants defined on E:

- constants are elements of E

- predicates, operators and function range over E:

if f is a binary function, for all x and y

of E, f(x,y) has a value in E

The elements of o seen as syntactic objects form the signature of the structure. For a structure, any close famula on this signature is either true a false

The theory of a structure I is the set of all the true (first order) famulas of on the Signature of the structure: Th (I) = d p I I = p]

The [monadic] second order theory of a structure is the Set of all the [monadic] second order true (without fee variables) formulas on the signature of the structure

A she ory is decidable if there exists an algorithm which tell if a famula is true or not

Theorem - She theory of (N,+,<) is decidable

- She theory of (N, +, x) is undecidable - The theory of $(\mathbb{R}, +, <, 0)$ is decidable - the MSO theory of (N,S) is decidable (S:xH>x+1) A n-any predicate P (function, set) is [X] definable in a structure if there exists a [x] formula of with De, , ..., Den as only free variables such that fa all $a_{n,...}$, $a_{n} \in E$, $P(a_{n,...}, a_{n})$ is true if and only if The formula quhere is is replaced by a; is true is definable in

N , +>: ned by In x+n=y < is definable in (IN, +): x < y defined by $\neg y \le n \left(\neg \exists n \ y + n = x \right)$

 \leq is MSO definable in $\langle N, S \rangle$ (S(x) = x+1) $x \leq y$ defined by

YE (xEE x Yh hEE => S(h)EE) => y EE

"y belongs to all set containing x and stable under S"

co-languages and formulas

Let $\Sigma = \{a_0, ..., a_{1\Sigma 1-1}\}$ be a finite alphabet and u an w-word

We define, for $a \in \mathbb{Z}$, P_a the set $P_a = \{n \in \mathbb{N}, u_n = a\}$

An w-language \mathcal{L} is [X]-definable in a structure $\mathcal{L} = \langle IN, \sigma \rangle$ if the predicate \mathcal{L} defined by $\mathcal{L} = \langle IN, \sigma \rangle$ if the predicate $\mathcal{L} = \langle IN, \sigma \rangle$ if $\mathcal{L} = \langle IN, \sigma \rangle$ is $\mathcal{L} = \langle IN, \sigma \rangle$ is $\mathcal{L} = \langle IN, \sigma \rangle$ and $\mathcal{L} = \langle IN, \sigma \rangle$ is $\mathcal{L} = \langle IN, \sigma \rangle$ and $\mathcal{L} = \langle IN, \sigma \rangle$ is $\mathcal{L} = \langle IN, \sigma \rangle$ and $\mathcal{L} = \langle IN, \sigma \rangle$ is $\mathcal{L} = \langle IN, \sigma \rangle$ and $\mathcal{L} = \langle IN, \sigma \rangle$ is $\mathcal{L} = \langle IN, \sigma \rangle$ and $\mathcal{L} = \langle IN, \sigma \rangle$ is $\mathcal{L} = \langle IN, \sigma \rangle$ and $\mathcal{L} = \langle IN, \sigma \rangle$ is $\mathcal{L} = \langle IN, \sigma \rangle$ and $\mathcal{L} = \langle IN, \sigma \rangle$ is $\mathcal{L} = \langle IN, \sigma \rangle$ and $\mathcal{L} = \langle IN, \sigma \rangle$ is $\mathcal{L} = \langle IN, \sigma \rangle$ is

Theorem: an ω -language is MSO-definable in $\langle IN, \langle \rangle$ if and only if it is ω -regular

Ex (if):

Remark: we need only existential se cond order quantifications

Application: automatic structures.

Juppose (E, o) is a structure where:

_ there is an injection J:E -> Z

- For all m-any predicate PEO, D(P) is an

 $\omega - \text{regular language an alphabet } \sum_{n=1}^{\infty} \text{where}$ $D(P) = \left\{ \left(u_{0}^{(0)}, \dots, u_{n-1}^{(n-1)} \right) \dots \left(u_{k}^{(n)} \dots u_{k}^{(n-1)} \right) \dots \right\}$ $u^{(1)} = D(e_{0})$ $(n-1) = D(e_{0})$ $P(e_{0}, \dots, e_{n-1}) \text{ is true }$ $-D(E) \text{ is an } \omega - \text{regular language}$ $\text{Then, } (E, \sigma) \text{ has a decidable theory}$