# Analyzing Research Trend in Deep Learning with Knowledge Mining

A project using NLP, topic modeling, and citation analysis to study deep learning research trends (2019–2024).

# Analyzing Research Trend in Deep Learning with NLP

 This study explores how topic modeling and keyword-based NLP techniques can uncover patterns in deep learning research from 2019– 2024.

#### **Data Collection**

- The Scopus API was used to retrieve research papers on deep learning. The goal is to cover five years of research to analyze trends over time.
- 500 deep learning paper titles (2019– 2024) were collected and cleaned. Each title was tokenized for topic modeling and trend analysis.

|    | A                                     | В                                                                      | C                            | D         |
|----|---------------------------------------|------------------------------------------------------------------------|------------------------------|-----------|
| 1  | Title                                 | Year                                                                   | Journal                      | Citations |
| 2  | Application of deep learning algor    | 1/1/2026                                                               | Skeletal Radiology           | 0         |
| 3  | The Common Curricular Base and        | 12/18/2025                                                             | Encontros Bibli              | 0         |
| 4  | Deep learning in flower quantifica:   | 12/10/2025                                                             | Acta Scientiarum - Technolo  | 0         |
| 5  | Perceived Information Revisited II    | 12/9/2025                                                              | IACR Transactions on Crypto  | 0         |
| 6  | Vision Mamba and xLSTM-UNet for       | 12/1/2025                                                              | Scientific Reports           | 0         |
| 7  | Predicting triage of pediatric patie  | 12/1/2025                                                              | International Journal of Emi | 0         |
| 8  | Rolling bearing remaining useful l    | 12/1/2025                                                              | Scientific Reports           | 0         |
| 9  | SignEdgeLVM transformer model for     | 12/1/2025                                                              | Discover Computing           | 0         |
| 10 | An intelligent ransomware based (     | 12/1/2025                                                              | Scientific Reports           | 0         |
| 11 | Pixel level deep reinforcement lear   | 12/1/2025                                                              | Scientific Reports           | 0         |
| 12 | Artificial intelligence-driven transl | 12/1/2025                                                              | Journal of Translational Me  | 0         |
| 13 | Assessing and developing college      | 12/1/2025                                                              | International Journal of Edu | 0         |
| 14 | Convolutional block attention gate    | 12/1/2025                                                              | BMC Medical Imaging          | 0         |
| 15 | Myocardial pertusion imaging SPE      | 12/1/2025                                                              | EJNMMI Physics               | 0         |
| 16 | CPHNet: a novel pipeline for anti-F   | 12/1/2025                                                              | Respiratory Research         | 0         |
| 17 | Electrochemical ohmic memristor       | 12/1/2025                                                              | Nature Communications        | 0         |
| 18 | Prediction of particulate matter PN   | 12/1/2025                                                              | Journal of Air Pollution and | 0         |
| 19 | Identification of enterotype for pat  | tification of enterotype for pat 12/1/2025 Journal of Translational Me |                              | 0         |
| 20 | A large-scale open image dataset      | 12/1/2025                                                              | Scientific Data              | 0         |
| 21 | A multi-dilated convolution netwo     | 12/1/2025                                                              | Scientific Reports           | 0         |
| 22 | A novel approach for the detection    | 12/1/2025                                                              | Scientific Reports           | 0         |
| 23 | A vehicle trajectory prediction mod   | 12/1/2025                                                              | Scientific Reports           | 0         |
| 24 | Precise engineering of gene expres    | 12/1/2025                                                              | Genome Biology               | 0         |
| 25 | Linear attention based spatiotemp     | 12/1/2025                                                              | Scientific Reports           | 1         |
| 26 | Leveraging large language models      | 12/1/2025                                                              | Scientific Reports           | 0         |

### **Data Processing**

 500 deep learning paper titles (2019– 2024) were collected and cleaned. Each title was tokenized for topic modeling and trend analysis.

|    | A                                     | В                                                                      | C                            | D         |
|----|---------------------------------------|------------------------------------------------------------------------|------------------------------|-----------|
| 1  | Title                                 | Year                                                                   | Journal                      | Citations |
| 2  | Application of deep learning algor    | 1/1/2026                                                               | Skeletal Radiology           | 0         |
| 3  | The Common Curricular Base and        | 12/18/2025                                                             | Encontros Bibli              | 0         |
| 4  | Deep learning in flower quantifica:   | 12/10/2025                                                             | Acta Scientiarum - Technolo  | 0         |
| 5  | Perceived Information Revisited II    | 12/9/2025                                                              | IACR Transactions on Crypto  | 0         |
| 6  | Vision Mamba and xLSTM-UNet for       | 12/1/2025                                                              | Scientific Reports           | 0         |
| 7  | Predicting triage of pediatric patie  | 12/1/2025                                                              | International Journal of Emi | 0         |
| 8  | Rolling bearing remaining useful l    | 12/1/2025                                                              | Scientific Reports           | 0         |
| 9  | SignEdgeLVM transformer model for     | 12/1/2025                                                              | Discover Computing           | 0         |
| 10 | An intelligent ransomware based (     | 12/1/2025                                                              | Scientific Reports           | 0         |
| 11 | Pixel level deep reinforcement lear   | 12/1/2025                                                              | Scientific Reports           | 0         |
| 12 | Artificial intelligence-driven transl | 12/1/2025                                                              | Journal of Translational Me  | 0         |
| 13 | Assessing and developing college      | 12/1/2025                                                              | International Journal of Edu | 0         |
| 14 | Convolutional block attention gate    | 12/1/2025                                                              | BMC Medical Imaging          | 0         |
| 15 | Myocardial perfusion imaging SPE      | 12/1/2025                                                              | EJNMMI Physics               | 0         |
| 16 | CPHNet: a novel pipeline for anti-F   | 12/1/2025                                                              | Respiratory Research         | 0         |
| 17 | Electrochemical ohmic memristor       | 12/1/2025                                                              | Nature Communications        | 0         |
| 18 | Prediction of particulate matter PN   | iction of particulate matter PN 12/1/2025 Journal of Air Pollution and |                              | 0         |
| 19 | Identification of enterotype for pat  | at 12/1/2025 Journal of Translational Me                               |                              | 0         |
| 20 | A large-scale open image dataset      | 12/1/2025                                                              | Scientific Data              | 0         |
| 21 | A multi-dilated convolution netwo     | 12/1/2025                                                              | Scientific Reports           | 0         |
| 22 | A novel approach for the detection    | 12/1/2025                                                              | Scientific Reports           | 0         |
| 23 | A vehicle trajectory prediction mod   | 12/1/2025                                                              | Scientific Reports           | 0         |
| 24 | Precise engineering of gene expres    | 12/1/2025                                                              | Genome Biology               | 0         |
| 25 | Linear attention based spatiotemp     | 12/1/2025                                                              | Scientific Reports           | 1         |
| 26 | Leveraging large language models      | 12/1/2025                                                              | Scientific Reports           | 0         |

### **Data Processing**

Each title
 was
 tokenized
 for topic
 modeling
 and trend
 analysis.

```
11 # Create corpus from the Title column
   corp <- corpus(data, text_field = "Title")</pre>
13
   # Tokenize and clean
   toks <- tokens(corp, remove_punct = TRUE, remove_numbers = TRUE) %>%
     tokens_remove(stopwords("en"))
   # Create document-feature matrix
   # Trim rare terms (appear in only 1 doc)
   dfm_trimmed <- dfm_trim(dfm, min_termfreq = 2)</pre>
   dfm_trimmed
   # Convert dfm to topicmodels-compatible format
   dtm <- convert(dfm_trimmed, to = "topicmodels")</pre>
    # Optional: Remove empty documents (just in case)
   row_totals <- apply(dtm, 1, sum)</pre>
   dtm <- dtm[row_totals > 0, ]
    # Set number of topics
   lda model <- LDA(dtm. k = k. control = list(seed = 1234))</pre>
39
                                                                                   R Script *
```

```
> words_per_topic
   1   2   3   4   5
416 416 416 416 416
> |
```

#### Understanding Text Data with Wordclouds

Initial wordclouds
 revealed frequent terms
 like 'deep', 'learning',
 'neural', and 'medical'.
 These guided our manual
 topic group creation.



# Understanding Text Data with Wordclouds

 This visualization highlights frequently occurring keywords from deep learning paper titles. Word size indicates frequency, while color intensity (yellow to red) reflects average citation impact.

Word Cloud Colored by log(Avg. Citation Impact)







#### Keyword Cooccurrence Network

Visualized how key terms are co-occuring. Terms like 'image', 'segmentation', and 'covid-19' formed meaningful clusters related to medical Al and vision tasks.



### Citation-Weighted Network

 Word node sizes and colors were scaled by citation count, showing impactful terms like 'transfer', 'networks', and 'survey'.



## Manual Topic Grouping

 Three themes were created: Medical & Diagnostic AI, Vision & Recognition Models, and General Deep Learning, using clustered keyword sets.

|   | A                           | В                                                                                                                 | C | D | E | F | G | Н |  | J | K |
|---|-----------------------------|-------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--|---|---|
| 1 | Grouped_Topic               | Words                                                                                                             |   |   |   |   |   |   |  |   |   |
| 2 | Medical & Diagnostic Al     | covid-19, cancer, diagnosis, medical, images, X-ray, learning, series, graph, deep                                |   |   |   |   |   |   |  |   |   |
| 3 | Vision & Recognition Models | architecture, artificial, convolutional, deep, intelligence, neural, segmentation, transformer, network, learning |   |   |   |   |   |   |  |   |   |
| 4 | General Deep Learning       | classification, machine, model, transfer, survey, prediction, computing, deep, object, learning                   |   |   |   |   |   |   |  |   |   |
| 5 |                             |                                                                                                                   |   |   |   |   |   |   |  |   |   |

# Topic Trends Over Time

 Paper counts for each topic were tracked yearly. Medical AI peaked early (COVID-19), while Vision topics showed steady interest.





## Citation-Weighted Topic Impact

 General DL had highest average citations per paper. Medical AI had high volume but lower per-paper influence.





# Journal vs. Topic Mapping

 Each journal was uniquely assigned to one dominant topic. Top 5 per topic showed specialization in medical, vision, or general DL areas.



#### Conclusion

 Using NLP, topic modeling, and citation analysis, we identified evolving interests and influential subfields in deep learning research.