Étude d'une montagne russe (10 points)

Correction réalisée avec l'aide de Léa V. et Paul C. élèves au lycée Louis Armand d'Eaubonne 95600.

1. Étude de la chaine énergétique

1.1. Donner la forme d'énergie à faire apparaître dans chaque cadre numéroté de 1 à 3.

Cadre 1 : énergie électrique (énergie reçue par le moteur du train)

Cadre 2 : énergie mécanique (plus précisément énergie cinétique)

Cadre 3 : pertes sous forme de chaleur (énergie thermique)

1.2. Montrer que l'énergie cinétique du train E_{train} à la fin de la phase de lancement vaut $E_{\text{train}} = 3.9 \text{ MJ}$.

$$E_{\text{train}} = \frac{100 \times 10^{3}}{3600} = \frac{100}{3,6}$$

$$E_{\text{train}} = \frac{100 \times 10^{3}}{3600} = \frac{100}{3,6}$$

$$= \frac{100 \times 10^{3}}{3600} = \frac{100}{3,6}$$

 $rac{E_{train}}{F}$

1.3. Déterminer la valeur du rendement η = $E_{\'{e}lectrique}$. Commenter la valeur obtenue en apportant un regard critique sur les données fournies par le constructeur.

$$E_{\text{électrique}} = P. \Delta t \qquad P = 1,5 \text{ MW et } \Delta t = 2,5 \text{ s}$$

$$E_{\text{électrique}} = 1,5 \times 2,5 = 3,8 \text{ MJ}$$

$$\eta = \frac{E_{\text{train}}}{E_{\text{électrique}}}$$

$$\eta = \frac{3,858}{3,75} = 1,0 \times 10^{2}\%$$

$$1.5 \times 2.5$$

$$3.858024691 = 6/3.75 = 6$$

$$1.028806584 = 0$$

Le rendement est supérieur à 100%, ce qui est impossible ; les données fournies par le constructeur ne sont pas assez précises ou fausses.

2. Simulation de la propulsion du train

2.1. Compléter la ligne 24 du programme de simulation en modifiant la partie entre les crochets [...] afin de calculer les coordonnées $v_{\rm x}[k]$ des vecteurs vitesses aux différents points de la trajectoire.

Il s'agit de faire calculer la vitesse qui est le rapport d'une distance sur une durée : Soit v_x .extend([(x[k+1]-x[k])/(t[k+1]-t[k])])

2.2. Déterminer graphiquement les valeurs Δv_2 et Δv_4 des normes des vecteurs $\Delta \vec{v}$ aux points M_2 et M_4 .

 ΔV_2 correspond à une flèche de 1,9 cm, or on a une échelle de 5 m.s⁻¹ pour 1,8 cm

Soit
$$\|\Delta v_z\| = \frac{1.9 \times 5}{1.8} = 5.3 \text{ m.s}^{-1}$$

 ΔV_4 correspond à 1,9 cm, or on a une échelle de 5 m.s⁻¹ pour 1,8 cm

Soit
$$\Delta V_4$$
 correspond à 1,9 cm, or or $\Delta V_4 = \frac{1,9 \times 5}{1,8} = 5,3 \text{ m.s}^{-1}$.

- 2.3. Expliquer comment semble évoluer le vecteur $^{\Delta \vec{V}}$ au cours de la phase de lancement du train.
- Le vecteur variation de vitesse semble avoir une valeur (norme) constante : la vitesse augmente de façon régulière. Le mouvement semble uniformément accéléré.

- 2.4. Donner la relation approchée entre le vecteur variation de vitesse $^{ec{\Delta}\,ec{V}}$ du train et la somme des forces extérieures $\sum \vec{F}_{ext}$ qui s'appliquent sur celui-ci. $\sum \vec{F}_{ext} = m.\frac{\Delta V}{\Delta t}$
- 2.5. En déduire les caractéristiques du vecteur $\sum \overrightarrow{F_{\text{ext}}}$.

La somme des forces extérieures $\sum_{ext} \overline{F_{ext}}$ est modélisée par un vecteur de **direction** colinéaire au vecteur ΔV , et de même sens que ΔV .

 $\sum F_{\it ext}^{\it T}$ est donc orientée dans le **sens** du mouvement.

Sa **valeur** est
$$\left\| \Sigma F \right\| = \text{m.} \frac{\left\| \Delta V \right\|}{\Delta t}$$
 avec $m = 10 \text{ t} = 10 \times 10^3 \text{ kg}$ $\left\| \Delta V \right\| = 5,3 \text{ m.s}^{-1}$ $\Delta t = 0,5 \text{ s}$ $\left\| \Sigma F \right\| = 10 \times 10^3 \times \frac{5,3}{0.5} = 1,1 \times 10^5 \text{ N}$

- 3. Étude du train lors de la première ascension
- 3.1. Exprimer le travail $W_{CD}(\vec{P})$ du poids sur le trajet CD en fonction de \vec{CD} et de \vec{P} puis montrer que $W_{CD}(\vec{P}) = m \cdot g \cdot (y_C - y_D)$.

$$W_{CD}(P) = P.CD$$

On définit un repère (Oxy) avec Ox horizontal orienté vers la droite et Oy vertical orienté vers le haut. Dans ce repère, on a
$$P = \begin{bmatrix} 0 \\ -m.g \end{bmatrix}$$
 et $CD = \begin{bmatrix} x_D - x_C \\ y_D - y_C \end{bmatrix}$

$$W_{\rm CD} (P) = 0.(x_{\rm D} - x_{\rm C}) + (-m.g).(y_{\rm D} - y_{\rm C}) = -m.g.(y_{\rm D} - y_{\rm C}) = m \cdot g \cdot (y_{\rm C} - y_{\rm D}).$$

3.2. Donner la valeur du travail $W_{cp}(\vec{R})$ de la force de réaction des rails lors de la première montée. Justifier.

$$W_{CD}(R) = R.CD = ||R||.||CD||.cos(R,CD)$$

La force de réaction des rails R est perpendiculaire au déplacement CD.

$$W_{CD}(R) = \|R\|.\|CD\|.\cos 90^{\circ} = 0 \text{ J}$$

3.3. Établir l'expression de l'altitude maximale h_{max} que pourrait atteindre le train en l'absence de frottements puis calculer sa valeur. Commenter.

Entre C et D on néglige les frottements, l'énergie mécanique du train se conserve :

$$E_{\rm m}(C) = E_{\rm m}(D)$$

$$E_c(C) + E_{PP}(C) = E_c(D) + E_{PP}(D)$$

Le niveau de référence de l'énergie potentielle de pesanteur est choisi pour l'altitude v = 0 donc Epp(C) = 0 J.

$$\frac{1}{2}.m.v_{C}^{2} = \frac{1}{2}.m.v_{D}^{2} + m.g.h_{max}$$

 $v_{C} = v_{max} = 100 \text{ km.h}^{-1} \text{ et } V_{D} = 0 \text{ m.s}^{-1}$
 $\frac{1}{2}.m.v_{max}^{2} = m.g.h_{max}$
 $\frac{1}{2}.v_{max}^{2} = g.h_{max}$

$$h_{\text{max}} = \frac{V_{\text{max}}^2}{2.g}$$

$$\frac{\left(\frac{100}{3.6}\right)^2}{2 \times 9.81} = 39.3 \text{ m}$$

On retrouve une valeur voisine de celle donnée par le fabricant (38 m), il existe quelques frottements que nous avons négligé ici.