Série N°5

- 1. Combien de bascules sont nécessaires pour le MAR et le MBR d'une mémoire 1 K*4 bits?
- 2. Combien de mots, devrait contenir une mémoire si son MAR est de 8bits?
- 3. En utilisant comme unité des RAM 256*4 bits, concevoir une mémoire de:
 - a) 1 K*4 bits
 - b) 1 K*8 bits.

1. Nombre de bascules MAR : $1k = 1 * 2^{10} \rightarrow nb$ bits $10 \rightarrow 10$ bascules.

Nombre de bascules MBR: 4bits 4 bascules

- 1. Combien de bascules sont nécessaires pour le MAR et le MBR d'une mémoire 1 K*4 bits?
- 2. Combien de mots, devrait contenir une mémoire si son MAR est de 8bits?
- 3. En utilisant comme unité des RAM 256*4 bits, concevoir une mémoire de:
 - a) 1 K*4 bits
 - b) 1 K*8 bits.

2. Nombre de Mots: 2 nb bits = 2 8 mots = 256 mots

- 1. Combien de bascules sont nécessaires pour le MAR et le MBR d'une mémoire 1 K*4 bits?
- 2. Combien de mots, devrait contenir une mémoire si son MAR est de 8bits?
- 3. En utilisant comme unité des RAM 256*4 bits, concevoir une mémoire de:
 - a) 1 K*4 bits
 - b) 1 K*8 bits.

a) Nombre de RAMs pour réaliser 1K * 4 bits à l'aide de 256 * 4bits :

$$1k = 2^{10} / 256 = 2^8 = 2^{10-8} = 4$$

a) Réaliser 1K * 4 bits à l'aide de 256 * 4bits :

CS1 = /A8/A9

CS2 = /A8 A9

CS3 = A8/A9

CS4 = A8 A9

- 1. Combien de bascules sont nécessaires pour le MAR et le MBR d'une mémoire 1 K*4 bits?
- 2. Combien de mots, devrait contenir une mémoire si son MAR est de 8bits?
- 3. En utilisant comme unité des RAM 256*4 bits, concevoir une mémoire de:
 - a) 1 K*4 bits
 - b) 1 K*8 bits.

B) Nombre de RAMs pour réaliser 1K * 8 bits à l'aide de 256 * 4bits :

Parallel: $1k(2^{10})/256(2^8) = 4$.

Série: 8bits / 4Bits = 2.

On dispose d'une machine dont le bus d'adresse est sur 16 bits et le bus de données est sur 8 bits. La mémoire de cette machine est composée d'une RAM de 32Kilo*8 et d'une ROM de 16Kilo×8.

- 1. Quellessont les tailles des registre d'adresse MAR et MBR ?
- 2. Donner le schéma fonctionnel de cette RAM en utilisant des mémoires de 32k×4bits
- 3. Donner le schéma fonctionnel global (RAM+ROM), en précisant les adresses de chaque boitier.

```
1) RAM : MAR : 32 K = 2<sup>5</sup> * 2<sup>10</sup> → 15 bits,
MBR : 8 bits,
```

ROM: MAR: 16 k = $2^{4*} 2^{10} \rightarrow 14$ bits

MBR: 8bits

2) NB RAMs = 8bits / 4bits = 2 (série),

On dispose d'une machine dont le bus d'adresse est sur 16 bits et le bus de données est sur 8 bits. La mémoire de cette machine est composée d'une RAM de 32Kilo*8 et d'une ROM de 16Kilo×8.

- 1. Quellessont les tailles des registre d'adresse MAR et MBR ?
- 2. Donner le schéma fonctionnel de cette RAM en utilisant des mémoires de 32k×4bits
- 3. Donner le schéma fonctionnel global (RAM+ROM), en précisant les adresses de chaque boitier.

3) Le schéma fonctionnel global (RAM+ROM)

3) Le schéma fonctionnel global (RAM+ROM)

Soit une mémoire RAM de 4Kilos*4 représentée par le shéma suivant :

- Quel est le rôle des brôches R/W et CS dans un circuit mémoire.
- De combien de bits est constituée la donnée stockée dans cette mémoire.
- De quelle capacité est cette mémoire(en Kbits puis en Koctets).
- Quel doit être l'état du signal VMA (Valid Memory Access) et l'état des lignes A12 à A15 pour sélectionnercette mémoire.

Soit une mémoire RAM de 4Kilos*4 représentée par le shéma suivant :

Adresses Directes

A11 _____ A0

VMA

1)

Role de R/ \overline{W} : c'est la fonction de lecture écriture (on utilisera dans ce cours RW= 1 pour la lecture et RW = 0 pour l'écriture)

Role de CS (Chip Select) : c'est l'entrée qui permet d'activer ou de désactiver la RAM

- Quel est le rôle des brôches R/W et CS dans un circuit mémoire.
- De combien de bits est constituée la donnée stockée dans cette mémoire.
- 3. De quelle capacité est cette mémoire(en Kbits puis en Koctets).
- Quel doit être l'état du signal VMA (Valid Memory Access) et l'état des lignes A12 à A15 pour sélectionnercette mémoire.

Soit une mémoire RAM de 4Kilos*4 représentée par le shéma suivant :

2) Nombre de bits du MBR (Mot mémoire): 4Bits

3) Capacité en bits : $4 \text{ k} * 4 \text{ bits} = 2^2 * 2^{10} * 2^2 = 2^4 * 2^{10} \text{ bits} = 2^{14} \text{bits}$

Capacité en Kbits : $2^{14}/2^{10} = 2^4$ kbits

Capacité en Koctets : 2^4 kbits / 8 bits = $2^4/2^3$ = 2^1 Koctet,

Capacité en Koctets : 2^{14} bits / 8 bits = 2^{11} octet = $2^{11}/2^{10}$ = 2^{1} Koctet,

 Quel doit être l'état du signal VMA (Valid Memory Access) et l'état des lignes A12 à A15 pour sélectionnercette mémoire.

Soit une mémoire RAM de 4Kilos*4 représentée par le shéma suivant :

4) L'état de VMA: 1

$$A12 = 0$$

$$A13 = 1$$

$$A14 = 0$$

$$A15 = 0$$

 Quel doit être l'état du signal VMA (Valid Memory Access) et l'état des lignes A12 à A15 pour sélectionnercette mémoire.

Soit une mémoire RAM de 4Kilos*4 représentée par le shéma suivant :

Astuce:

Pour le calcul des adresses il faut savoir que :

ex:
$$2^5 = 100000$$
 $2^6 = 1000000$

$$2^6 = 1000000$$

ex:
$$2^5 - 1 = 11111$$
 $2^6 - 1 = 111111$

$$2^{6}-1=111111$$

4) Les plages d'adressages :

Min: $0010\ 0000\ 0000\ 0000 = 2000_{(16)}$

Max: 0010 1111 1111 1111 = $2FFF_{(16)}$

Max: = Min + NbMots-1 = $2000 + 2^{12} - 1 =$

- 5. Donner la plage d'adresse(en Héxadécimal)utilisée par cette mémoire.
- 6. On veut augmenter la taille de la donnée à 16bits en associant plusieurs mémoire 5 4K*4, donner le branchement necessaires.

- 5. Donner la plage d'adresse(en Héxadécimal)utilisée par cette mémoire.
- On veut augmenter la taille de la donnée à 16bits en associant plusieurs mémoire 4K*4, donner le branchement necessaires.

6) Nombre de RAMs = 16bits / 4bits = 4 RAMs (série)

- 5. Donner la plage d'adresse(en Héxadécimal)utilisée par cette mémoire.
- 6. On veut augmenter la taille de la donnée à 16bits en associant plusieurs mémoire 4K*4, donner le branchement necessaires.

Soit un circuit défini par le fonctionnement et le schéma bloc suivant :

<u>FonctionnementSchéma</u>

Q_1	Q_0	X	Q ₁ +	Q_0^+
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	1
1 1	1	0	1	1
1	1	1	1 0	0

- Réaliser le circuit C permettant de donner (J0, K0) et (J1, K1).
 On veut réaliser le même fonctionnement en utilisant des bascules D au lieu des bascules JK et une mémoire ROM au lieu du circuit C.
- 2) Donner la table de vérité et le nouveau schéma bloc (préciser bien les entrées sorties). Combien de bit demandé dans la ROM ?

Soit un circuit défini par le fonctionnement et le schéma bloc suivant :

<u>FonctionnementSchéma</u>

Q_1	Q_0	X	Q ₁ +	Q_0^+
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1 0	0

Q ₁	$\mathbf{Q_0}$	Х	Q1+	Q0+	J ₁	K ₁	J ₀	K ₀
0	0	0	0	0	0	Х	0	X
0	0	1	0	1	0	X	1 1 	X
0	1	0	0	1	0	X	X	0
0	1	1	1	0	1	Χ	Χ	1
1	0	0	1	0	Х	0	0	X
1	0	1	1	1	Χ	0	1	Χ
1	1	0	1	1	Χ	0	X	0
1	1	1	0	0	Χ	1	Χ	1

Table d'excitation (J K)

Q	Q [†]	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

$$J1 = Q_0 X$$
 $K1 = Q_0 X$ $J0 = X$ $K0 = X$

Soit un circuit défini par le fonctionnement et le schéma bloc suivant :

Table d'excitation (D)

<u>FonctionnementSchéma</u>

Q_1	Q_0	X	Q ₁ ⁺	Q ₀ ⁺
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Q_1	Q_0	Х	Q ₁ +	Q ₀ +	D ₁	D ₀
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	1	0	1
0	1	1	1	0	1	0
1	0	0	1	0	1	0
1	0	1	1	1	1	1 1
1	1 1	0	1	1	1	1
1	1	1	0	0	0	0

Q	Q⁺	T
0	0	0
0	1	1
1	0	0
1	1	1

$$D1 = Q1/X + Q1/Q0 + Q1Q0X$$

$$D0 = Q0/X + /Q0X$$

	X
	X
1 0 0 1 0 DEC 3 X 8	
1 0 1 1 1 1 1 X	X
	To the second se
1 1 0 0 0	

On considère une machine avec la configuration suivante : une mémoire centrale de taille **2 MØ**, avec des mots mémoires de **4 octets** et un bus d'adresse de taille **20bits**.

- 1- Calculer la taille minimale du bus d'adresse qui permet d'adresser cette mémoire.
- 2- Déterminer la plage d'adressage de cette mémoire (adresse minimale et adresse maximale en Hexa).
- 3- En fait, cette mémoire est constituée de deux blocs séparés. Le premier est une RAM de taille 1 M octets de mots de 4 octets adressable à partir de l'adresse (00000)16 et le deuxième est une ROM de taille 1 M octets de mots de 4 octets adressable à partir de l'adresse (60000)16.
 - a- Donner le schéma de la mémoire en montrant les connexions nécessaires.
 - b- Déterminer les deux plages d'adressage respectivement de la RAM et la ROM.
- 4- Est-ce que la mémoire centrale de cet ordinateur est extensible ? Si oui, déterminer la taille de la mémoire d'extension et le nombre minimum de blocs mémoires (de même taille que les précédents) qu'on peut rajouter ? Justifier.

Q1 : Calculer le nombre de bits minimal pour adresser <u>la RAM</u>

Q1


```
nb mots = Taille de la mémoire adressable / taille mot
nb mots = 2Mo/4o = 2<sup>21</sup> octet/ 2<sup>2</sup> octet = 2<sup>19</sup>Mots
NB mots = 2<sup>nbBitsMAR</sup>
NB bits = 19
```


On considère une machine avec la configuration suivante : une mémoire centrale de taille **2 MØ**, avec des mots mémoires de **4 octets** et un bus d'adresse de taille **20bits**.

- 1- Calculer la taille minimale du bus d'adresse qui permet d'adresser cette mémoire.
- 2- Déterminer la plage d'adressage de cette mémoire (adresse minimale et adresse maximale en Hexa).
- 3- En fait, cette mémoire est constituée de deux blocs séparés. Le premier est une RAM de taille 1 M octets de mots de 4 octets adressable à partir de l'adresse (00000)16 et le deuxième est une ROM de taille 1 M octets de mots de 4 octets adressable à partir de l'adresse (60000)16.
 - a- Donner le schéma de la mémoire en montrant les connexions nécessaires.
 - b- Déterminer les deux plages d'adressage respectivement de la RAM et la ROM.
- 4- Est-ce que la mémoire centrale de cet ordinateur est extensible ? Si oui, déterminer la taille de la mémoire d'extension et le nombre minimum de blocs mémoires (de même taille que les précédents) qu'on peut rajouter ? Justifier.

Q2 : Déterminer la plage d'adressage de cette RAM.

Q2


```
Plage d'adresses :
```

```
\rightarrow Min = 0000 0000 0000 0000 0000 (00000<sub>16</sub>)
```

$$\rightarrow$$
 max 2¹⁹-1 = 0111 1111 1111 1111 1111 (7FFFF₁₆)

00000

FFFFF

On considère une machine avec la configuration suivante : une mémoire centrale de taille **2 MØ**, avec des mots mémoires de **4 octets** et un bus d'adresse de taille **20bits**.

- 1- Calculer la taille minimale du bus d'adresse qui permet d'adresser cette mémoire.
- 2- Déterminer la plage d'adressage de cette mémoire (adresse minimale et adresse maximale en Hexa).
- 3- En fait, cette mémoire est constituée de deux blocs séparés. Le premier est une RAM de taille 1 M octets de mots de 4 octets adressable à partir de l'adresse (00000)16 et le deuxième est une ROM de taille 1 M octets de mots de 4 octets adressable à partir de l'adresse (60000)16.
 - a- Donner le schéma de la mémoire en montrant les connexions nécessaires.
 - b- Déterminer les deux plages d'adressage respectivement de la RAM et la ROM.
- 4- Est-ce que la mémoire centrale de cet ordinateur est extensible ? Si oui, déterminer la taille de la mémoire d'extension et le nombre minimum de blocs mémoires (de même taille que les précédents) qu'on peut rajouter ? Justifier.

FFFF

Q3 : Si les adresses de RAM commence par 0 et ROM commence par 40000₍₁₆₎, calculer les plages d'adresses de chaque bloque

Q3

RAM:

MIN = 0000 0000 0000 0000 = 00000

MAX = MIN+NB mots-1

= 00000+ 2¹⁸ -1 = 0011 1111 1111 1111 = 3FFFF

00000

3FFFF

FFFFF

40000

Q3 : Si les adresses de RAM commence par 0 et ROM commence par 40000₍₁₆₎, calculer les plages d'adresses de chaque RAM

Q3

ROM:

 $MIN = 40000 = 0100\,0000\,0000\,0000\,0000$

 $MAX = 40000 + 2^{18} - 1 (3FFFF) = 7FFFF$

On considère une machine avec la configuration suivante : une mémoire centrale de taille **2 MØ**, avec des mots mémoires de **4 octets** et un bus d'adresse de taille **20bits**.

- 1- Calculer la taille minimale du bus d'adresse qui permet d'adresser cette mémoire.
- 2- Déterminer la plage d'adressage de cette mémoire (adresse minimale et adresse maximale en Hexa).
- 3- En fait, cette mémoire est constituée de deux blocs séparés. Le premier est une RAM de taille 1 M octets de mots de 4 octets adressable à partir de l'adresse (00000)16 et le deuxième est une ROM de taille 1 M octets de mots de 4 octets adressable à partir de l'adresse (60000)16.
 - a- Donner le schéma de la mémoire en montrant les connexions nécessaires.
 - b- Déterminer les deux plages d'adressage respectivement de la RAM et la ROM.
- 4- Est-ce que la mémoire centrale de cet ordinateur est extensible ? Si oui, déterminer la taille de la mémoire d'extension et le nombre minimum de blocs mémoires (de même taille que les précédents) qu'on peut rajouter ? Justifier.

Q4 : Peut-on ajouter d'autres mémoires de même taille (1Mo) ??

Q4

20 bits → 4Mo (RAM + ROM = 2Mo) 2²⁰
On peut ajouter une mémoire de 2Mo
→ 2 autres Mémoire de 1M,

Q4 : Peut-on ajouter d'autres mémoires de même taille ??

Q4

```
20 bits → 4Mo (RAM + ROM = 2Mo) 2<sup>20</sup>
On peut ajouter 2 autres MEM de 1M,
MEM3: 7FFFF+1 à (7FFFF+1)+3FFFF → 80000 à BFFFF
```

MEM4: BFFFF+1 à (BFFFF+1)+3FFFF → C0000 à FFFFF

Q4 : Peut	RAM:	0000 0000 0000 0000 0000	CS1 = /A19./A18
Q4. Peut		0011 1111 1111 1111 1111	C31 - /A19./A10
	ROM:	01 00 0000 0000 0000 0000	CS2 = /A19.A18
		01 11 1111 1111 1111 1111	C32 - /A19.A16
	MEM1:	10 00 0000 0000 0000 0000	CS3 = A19./A18
		10 11 1111 1111 1111 1111	C35 - A15./A16
	MEM2:	11 00 0000 0000 0000 0000	CS4 - A10 A19
		11 11 1111 1111 1111 1111	CS4 = A19.A18

Q4