SQL Server 2012: Evaluating and Sizing Hardware

Module 2: Choosing the Correct Hardware for Your Workload

Glenn Berry Glenn@SQLskills.com

Introduction

- SQL Server workload types
- OLTP workloads
- DW/DSS workloads
- OLAP workloads
- Mixed workloads
- Database maintenance workloads
- Database backup workloads
- Database restore workloads
- Effects of HA/DR technology on workload
- Workload size and intensity

SQL Server Workload Types

- Several common SQL Server workload types
 - The workload type will influence your hardware and storage choices
- Very common to have a mixture of workload types
 - Actual mixed workload characteristics in a single database
 - Mixed workload characteristics from multiple databases
 - Mixed workload from database maintenance, backups, and HA/DR effects
- Effects of workload are seen in CPU usage patterns
 - Single-threaded or multi-threaded query workloads
 - Volume of concurrent queries
- Storage subsystem usage is affected by workload types
 - Sequential or random I/O workload
 - Read or write workload
 - Changing points of I/O activity depending on workload patterns
 - Reading from data files, writing to transaction log file, etc.

OLTP Workloads

- One of the most common workload types
- Higher numbers of short-duration transactions
 - Relatively high percentage of write activity
- Most queries are fairly simple, and short duration (less than 1 sec)
 - Most queries execute on a single logical processor core
 - Single-threaded processor performance is very important
- Sequential write activity to the transaction log file
 - Writing to the transaction log file can be a common bottleneck
- Combination of random reads and writes from data file(s)
 - Can have a high level of write activity
 - Random I/O performance is very important
- TPC-E OLTP benchmark is useful for evaluating OLTP systems
 - Good tool for comparing and sizing systems

DW/DSS Workloads

- Another common workload type
 - Relational data warehouse or decision support systems
- Higher numbers of long-duration select queries
 - Relatively high percentage of read activity
 - Very little write activity, except during data loads
- Most queries are fairly complex, long duration (more than 1 sec)
 - Many queries may execute on multiple, logical processor cores
 - They are parallelized by the query processor
 - Total number of logical cores is very important
 - Single-threaded processor performance is still important
- Sequential write activity to the transaction log file during loads
 - Writing to the transaction log file can be a bottleneck during data loads
- Combination of sequential and random reads from data file(s)
 - Sequential I/O performance is very important
 - Random I/O performance is also important

OLAP Workloads

- A less common workload type, but becoming more popular
- High numbers of MDX queries
 - Very high percentage of random read activity from cube file(s)
 - Very little write activity, except during cube builds and refreshes
- Most queries are fairly complex, and long duration (more than 1 sec)
 - Many queries may execute on multiple, logical processor cores
 - Total number of logical cores is very important
 - Single-threaded processor performance is still important
 - Total amount of physical RAM is very important
- Sequential write activity to the cube file(s) during loads
- Sequential reads from source data file(s) during loads
 - Sequential performance is very important

Mixed Workloads

- Very unusual to have a single "pure" workload type on a server
- Various reasons for this situation
 - OLTP database that also has a reporting workload
 - DW database that is updated frequently
 - Multiple databases with different workload types
 - Multiple databases with same workload type
- Database maintenance activity
 - Index maintenance, statistics updates, DBCC CHECKDB activity
- Database backup and restore activity
 - Full, differential, and log backups
 - Native or 3rd-party compression
- HA/DR activity
 - AlwaysOn AG replicas, database mirroring, log shipping

Database Maintenance Workloads

Index maintenance and index creation operations

- Sequential reads from data file(s)
- Sequential and random writes to data file(s)
- Sequential writes to log file
- Some extra CPU activity

Compressing indexes with data compression

- Same as index creation, but lower sequential writes to data file(s)
- Significant extra CPU activity (control with MAXDOP option)

DBCC CHECKDB operations

- Sequential reads from data file(s)
 - Will read in parallel when data files are on multiple logical drives
- Significant extra CPU activity
 - Very little when using WITH PHYSICAL_ONLY option

Database Backup Workloads

Full database backups

- Sequential writes to backup file(s)
- Sequential reads from data file(s)
- Sequential reads from log file

Differential database backups

Similar to full database backups, but more random reads from data file(s)

Transaction log backups

Sequential reads from log file

Using native backup compression

- Reduced sequential I/O write requirements
- Extra CPU activity (typically 5-10%)

Using 3rd party backup compression

- Reduced sequential I/O write requirements
- Extra CPU activity (can be much higher, depending on compression setting)

Database Restore Workloads

Full database restores

- Sequential reads from backup file(s)
- Sequential writes to data file(s)
- Sequential writes to log file

Differential database restores

Similar to full database restores, but more random writes to data file(s)

Transaction log restores

Similar to full database restores, but more random writes to data file(s)

Using native backup compression

- Reduced sequential I/O read requirements
- Extra CPU activity (typically 5-10%)

Using 3rd-party backup compression

- Reduced sequential I/O read requirements
- Extra CPU activity (can be much higher, depending on compression setting)

Effects of HA/DR Technology on Workload

- Traditional failover cluster instance with shared storage
 - No effect on the workload
- Log shipping
 - Virtually no effect on the workload
- Database mirroring
 - Extra read activity on the principal database log file
- Transactional replication
 - Extra read activity on the publication database log file
 - Read and write activity in the distribution database (if local distributor)
- AlwaysOn availability groups
 - Extra read activity on the primary database log file

Workload Size and Intensity

- Common measurements of workload intensity
 - Transactions per second
 - Batch requests per second
- Number of concurrent users
 - Another measurement of workload intensity
- Number of databases
 - Higher number of databases can randomize your I/O workload
- Size of databases
 - Affects disk space requirements
 - Usually affects buffer pool memory requirements
- Log generation rate
 - MB/minute
- Watch Erin Stellato's Baselining and Benchmarking course
 - http://bit.ly/ZIWyQ9

Summary

- There are several different basic workload types
 - OLTP
 - DW/DSS
 - □ OLAP
- There are also mixed workload types
 - Some databases have mixed workloads
 - Multiple databases create a mixed workload
 - Maintenance and backup/restore activity create mixed workloads
 - HA/DR technologies create extra workload activity
- Consider your overall workload when selecting and sizing hardware
 - Also very important for storage subsystem sizing and configuration

What is Next

Module 3 will cover processor selection for SQL Server 2012

- Workload type and size considerations
- Determining your server form factor
- Overall budget considerations
- SQL Server 2012 licensing considerations
- The importance of single-threaded processor performance
- The importance of total core counts for scalability
- Using TPC-E benchmark results to compare processor performance
- Using Geekbench to compare processor performance
- Processor power efficiency considerations