

Data Analytics in Business EFIMM0141

Stock Price Prediction

Instructor: Dr. Aniekan Essien

Group 3

Agenda

Data Preparation

Results and Analysis

Part 2

Part 4

Introduction

Models

Conclusion

Part 1

Part 3

Part 5

01 Introduction

Company Background, Project Overview, Market Insights

Company Background & Project Overview

Apple Inc.

- Overview of Apple Inc.
 - Founded in 1976, Cupertino, California
 - o Known for iPhone, iPad, Mac

Business Challenge

 Forecast stock prices to guide financial planning

Project Objective

 Predict Apple Inc. (AAPL) stock prices using historical data and technical indicators

Image Source: The Brand Hopper, 2023. Innovate, Integrate, Dominate: Success Factors of Apple Inc. Available at: https://thebrandhopper.com/2023/11/27/innovate-integrate-dominate-success-factors-of-apple-inc/ (Accessed: 29 October 2024)

Methodology, Data & Market Insights

Methodology

Models used- LSTM, ARIMA, MoE

Data Source

 Yahoo Finance- 2 years of hourly stock data

Evaluation Metrics

Accuracy- MAE, RMSE, MAPE

Market Position

- Stock price rose from \$151 to \$231
- iPhone sales = 50% of revenue; services grew 10% annually

02 Data Preparation

Data Preparation, EDA, Data Processing

Data Preparation

Technical Indicators

Variable Name	Indicator Name	Purpose	Calculation
RSI	Relative Strength Index	Overbought/Oversold	0-100; avg gains/losses over 14 periods
ADX	Average Directional Index	Trend Strength	0-100; higher values = stronger trend
ATR	Average True Range	Volatility	Based on the "True range" of price changes over 14 periods
BB_width	Bollinger Bands Width	Volatility/Breakouts	(Upper - Lower Band) / Middle Band
VWAP	Volume Weighted Average Price	Fair Price by Volume	Cumulative sum of (Volume * Avg Price) / Cumulative Volume
IMI	Intraday Momentum Index	Intraday Momentum	Intraday gains vs. losses over 14 periods

Note: True Range is the max of: 1) High - Low, 2) High - Previous Close, 3) Low - Previous Close

Data Preparation

Environmental Variables

Variable Name	Indicator Name	Purpose	
NASDAQ_close	Nasdaq-100	Technology Market Representative	
XLK_close	The Technology Select Sector SPDR® Fund	Professional Investment Guidance	
TSMC_close	Taiwan Semiconductor Manufacturing Company Limited	Upstream Supplier	
VIX_close	Chicago Board Options Exchange's Volatility Index	Fear Gauge	
IRX_close	13-week Treasury Bill Yield	Risk-free Rate	

Exploratory Data Analysis

Non-normal distribution

Exploratory Data Analysis

Data Processing

Removed Variables:

Raw values & variables with correlation > 0.95

Added Time-based Variables:

Hour_sin, Hour_cos, DayOfWeek_sin, DayOfWeek_cos

Final Variables:

'NASDAQ_close', 'XLK_close', 'TSMC_close', 'VIX_close', 'IRX_close', 'RSI', 'ADX', 'ATR', 'BB_width', 'VWAP', 'IMI', 'Hour_sin', 'Hour_cos', 'DayOfWeek sin', 'DayOfWeek cos'

Scaling:

RobustScaler

Validation:

Most recent 10% of training set

03 Models

ARIMA, LSTM, MoE

Stationarity Testing

- An ADF test was conducted to check for stationarity:
 - **p-value > 0.05** indicates non-stationarity
 - ADF statistic higher than critical values confirms non-stationarity

Model	ADF Statistic	P-value	Critical Values		es
			1%	5%	10%
Training Dataset	-0.71	0.85		-3.43	
ARIMA_1D	-20.42	0.0		-2.86	
ARIMA_2D	-10.11	1.01e-17		-2.57	

2 Initial Model Development

- The initial ARIMA model inputs:
 - Closing prices
 - First-order differencing (d=1) was applied for stabilization.
 - The optimal ARIMA order determined was (0, 1, 0) by minimizing AIC.

Model Refinement

- To enhance stability, second-order differencing (d=2) was applied:
 - This yielded an improved optimal order of (5, 2, 0).
 - The refined model (with d=2) was chosen as the final outcome due to better performance.

1 Model Architecture:

- Layers: Two recurrent neural network layers with dropout.
- Normalization: Batch normalization to stabilize training
- Attention Mechanism: Focus on key time steps
- Optimization: Adam optimizer with cosine annealing for smoother convergence

2

Hyperparameter Tuning

- Tool Used: Keras Tuner with Bayesian Optimization
- Parameters Tuned: LSTM units, dropout rates, L2 regularization, learning rate

Name	Value
lstm_units	160
lstm_units_2	32
dropout_rate	0.1
lstm_look_back	20
12_reg	0.0006
learning_rate	0.003
batch_size	16

Model Testing and Evaluation

- Testing Process: Full training dataset with callbacks for early stopping
- **Evaluation:** Inverse transform predictions for accuracy against actual prices

1 Gating Network Mechanism:

- Additional LSTM Layer: Captures temporal dependencies to adapt to data changes
- **Blending Weights:** Two dense layers with softmax activation, constrained between 20% and 80% for balanced influence.

2 Training Process:

- Real-Time Adjustment: Gating network sed actual stock prices as targets to adjust weights.
- Momentum Smoothing: Applied for smoother transitions in weight values across forecasts

04 Results

Model Evaluation and Financial Performance

Model Evaluation

> Key Metrics:

MSE: Mean Squared Error

RMSE: Root Mean Squared Error

MAPE: Mean Absolute Percentage Error

Model	MSE	RMSE	MAPE(%)	Training Time(s)
ARIMA	30.87	5.56	1.98	0.19
LSTM	4.06	2.01	0.67	48.54
МоЕ	7.89	2.81	0.99	11.17

ARIMA

Limited gains in accuracy, despite increased complexity.

LSTM

A trade-off between accuracy and computational demand

MoE

Viable alternative for scenarios where both accuracy and efficiency are required.

> Summary:

LSTM provides the most accurate predictions

MoE suitable for robust prediction with moderate computational demands

ARIMA optimal for rapid, broad trend analyses but may lack the precision necessary

> Trading Strategy:

- Executing a buy order
 If the model predicts a price increase the following day.
- Executing a sell order
 If a price decrease is forecasted.

Financial Performance

On Sept. 15—Apple's product launch event: as a critical time marker for examining model performance.

- Prior-Event Performance Result:
- ARIMA(green line): Struggled to adapt to short-term changes, missed the downward trend.
- LSTM & MoE(orange and purple): Accurately identified the downward trend, effectively reduced losses.

> Performance Result:

- Post-Event Performance: All models showed portfolio value growth, capturing positive price movements.
- Conclusion: LSTM and MoE
 outperformed ARIMA in real time responsiveness and around
 key events, supporting more
 effective trading and portfolio
 growth.

Financial Performance

Backtesting and Metrics:

MoE model

Outperforms in cumulative returns, highest Sharpe Ratio.

synthesize various forecasting advantages

LSTM model

Significant strengths, substantial returns, comparatively high Sharpe Ratio, minimal drawdown

leverage sequential dependencies

ARIMA model

Lower overall returns, more cautious performance.

Strategy	Win/Loss Ratio	Cumulative Return(%)	Annualized Volatility(%)	Max Drawdown(%)	Sharpe Ratio
Benchmark	0.13	2.24	9.07	-7.33	-0.28
ARIMA	0.14	2.37	9.06	-7.33	-0.27
LSTM	0.59	6.67	5.84	-3.21	0.05
MoE	0.67	7.22	5.86	-3.54	0.11

Overall: machine learning models demonstrate a <u>higher sensitivity</u> to short-term fluctuations and a capacity for rapid adaptation.

05 Conclusion

Investment Recommendations,

MoE Strategy

Effective for active investors seeking to maximize returns, manage risk through data-driven trading decisions.

LSTM Model

Balancing substantial returns, lower volatility suitable for those desiring both growth and strong risk control.

ARIMA Model

Identifying broader market trends long-term price movements, economic cycles, shifts influenced by macroeconomic indicators.

٠

Above all,

- Buy and Hold strategy may be appropriate for conservative investors, though forfeits potential gains observed in model-driven approaches.
- Diversified investment strategy combining MoE and LSTM models, can optimize returns while addressing market risks.

Thanks for Watching!

