

AD-A216 321

(2)

**SYSTEM COST  
PROBABILITY DISTRIBUTIONS  
for  
ACES ARCHITECTURES**

**JOHN L. DYER**

**May 30, 1989**

DTIC  
ELECTED  
JAN 04 1990  
S E D

SPARTA, Inc.  
7926 Jones Branch Drive  
Suite 1070  
McLean, VA 22102-3303  
(703) 448-0210



**SPARTA, INC.**

DISTRIBUTION STATEMENT A  
Approved for public release;  
Distribution Unlimited

89 .7 26 031  
90 01 03 053

## UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

## REPORT DOCUMENTATION PAGE

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |                                                                                                                                                                                                                                            |                                                             |                              |                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------|----------------------------------|
| 1a. REPORT SECURITY CLASSIFICATION<br><b>UNCLASSIFIED</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | 1b. RESTRICTIVE MARKINGS                                                                                                                                                                                                                   |                                                             |                              |                                  |
| 2a. SECURITY CLASSIFICATION AUTHORITY<br><b>DD254 29 July 89</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          | 3. DISTRIBUTION/AVAILABILITY OF REPORT                                                                                                                                                                                                     |                                                             |                              |                                  |
| 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE<br>Declassify on: DADR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |                                                                                                                                                                                                                                            |                                                             |                              |                                  |
| 4. PERFORMING ORGANIZATION REPORT NUMBER(S)<br><b>T036-017</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          | 5. MONITORING ORGANIZATION REPORT NUMBER(S)                                                                                                                                                                                                |                                                             |                              |                                  |
| 6a. NAME OF PERFORMING ORGANIZATION<br><b>SPARTA, Inc.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6b. OFFICE SYMBOL<br>(If applicable)                     | 7a. NAME OF MONITORING ORGANIZATION<br><b>Strategic Defense Initiative Organization</b>                                                                                                                                                    |                                                             |                              |                                  |
| 6c. ADDRESS (City, State, and ZIP Code)<br><b>7926 Jones Branch Drive<br/>Suite 1070<br/>McLean, VA 22102-3303</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          | 7b. ADDRESS (City, State, and ZIP Code)<br><b>The Pentagon<br/>Washington, DC 20301</b>                                                                                                                                                    |                                                             |                              |                                  |
| 8a. NAME OF FUNDING/SPONSORING<br>ORGANIZATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8b. OFFICE SYMBOL<br>(If applicable)                     | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER<br><b>SDI084-88-C-0018<br/>May 24, 1988</b>                                                                                                                                                |                                                             |                              |                                  |
| 8c. ADDRESS (City, State, and ZIP Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          | 10. SOURCE OF FUNDING NUMBERS                                                                                                                                                                                                              |                                                             |                              |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          | PROGRAM<br>ELEMENT NO.<br>--                                                                                                                                                                                                               | PROJECT<br>NO.<br>--                                        | TASK<br>NO.<br>--            | WORK UNIT<br>ACCESSION NO.<br>-- |
| 11. TITLE (Include Security Classification)<br><b>System Cost Probability Distributions for ACES Architectures</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |                                                                                                                                                                                                                                            |                                                             |                              |                                  |
| 12. PERSONAL AUTHOR(S)<br><b>Dyer, John L.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |                                                                                                                                                                                                                                            |                                                             |                              |                                  |
| 13a. TYPE OF REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13b. TIME COVERED<br>FROM <b>Mar 89</b> TO <b>May 89</b> |                                                                                                                                                                                                                                            | 14. DATE OF REPORT (Year, Month, Day)<br><b>1989 May 30</b> | 15. PAGE COUNT<br><b>106</b> |                                  |
| 16. SUPPLEMENTARY NOTATION The views, opinions and findings contained in this report are those of the author and should not be construed as an official Department of Defense position, policy, or decisions, unless so designated by other official documentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          |                                                                                                                                                                                                                                            |                                                             |                              |                                  |
| 17. COSATI CODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          | 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)<br><b>Ballistic Missile Defense Strategic Defense System<br/>Architectures<br/>Cost Effectiveness Guided Missile Defense<br/>Cost Risk Distributions</b> |                                                             |                              |                                  |
| 19. ABSTRACT (Continue on reverse if necessary and identify by block number) This report derives functional forms and presents the probability distributions for the acquisition and program costs for strategic defense system architectures developed in the second phase of the SDIO sponsored Architecture Comparative Evaluation Study (ACES). The input data are the nominal costs for each of the elements and the cost risk distributions for three elements, one each at low, medium and high risk. These are used as the basis for the cost risk distributions for all the other elements. Both log-normal and normal, independent and correlated distributions are used as the basis for deriving the total cost risk distributions for these alternatives. The results are the probability distributions for the acquisition and program costs for each of five architectures: the DAB Baseline, two all ground based weapon architectures and two all space based architectures. The description of the architectures and the nominal cost models are presented in the ACES report, not in this report. The results show a relatively tight (+ 10-15%) distribution about the nominal acquisition and program costs. This is due to our including only technical cost risk and correlations. The larger uncertainty is undoubtedly political: mission, threat and funding. <i>R. W. Dyer, Cost Effectiveness (ACES)</i> |                                                          |                                                                                                                                                                                                                                            |                                                             |                              |                                  |
| 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT<br><input type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT <input checked="" type="checkbox"/> DTIC USERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |                                                                                                                                                                                                                                            | 21. ABSTRACT SECURITY CLASSIFICATION<br><b>UNCLASSIFIED</b> |                              |                                  |
| 22a. NAME OF RESPONSIBLE INDIVIDUAL<br><b>Dyer, John L.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                          |                                                                                                                                                                                                                                            | 22b. TELEPHONE (Include Area Code)<br><b>(703) 448-0210</b> | 22c. OFFICE SYMBOL           |                                  |

## TABLE OF CONTENTS

|     |                                                                                                                               |    |
|-----|-------------------------------------------------------------------------------------------------------------------------------|----|
| I   | INTRODUCTION .....                                                                                                            | 1  |
|     | PROBLEM DEFINTION.....                                                                                                        | 1  |
|     | INPUT DATA.....                                                                                                               | 2  |
|     | CONTENTS.....                                                                                                                 | 5  |
| II  | SUMMARY.....                                                                                                                  | 6  |
|     | RESULTS FOR INDEPENDENT DISTRIBUTIONS.....                                                                                    | 6  |
|     | RESULTS FOR ALTERNATIVE RISK DISTRIBUTIONS .....                                                                              | 7  |
|     | RESULTS FOR DEPENDENT DISTRIBUTIONS.....                                                                                      | 9  |
| III | APPROACH USING LOG-NORMAL DISTRIBUTIONS.....                                                                                  | 16 |
|     | RESULTS .....                                                                                                                 | 23 |
| IV  | APPROACH USING NORMAL DISTRIBUTIONS.....                                                                                      | 25 |
| V   | SENSITIVITIES TO ASSUMPTIONS.....                                                                                             | 31 |
|     | DIFFERENTIATING RISK ACCORDING TO PROGRAM<br>PHASE.....                                                                       | 31 |
|     | COMPUTING COST ESTIMATES ASSUMING PROGRAM<br>INTER- DEPENDENCIES.....                                                         | 32 |
|     | APPENDIX A: LOG-NORMAL DISTRIBUTIONS                                                                                          |    |
|     | APPENDIX B: CURVE FITS TO INPUT DATA                                                                                          |    |
|     | APPENDIX C: RESULTS FOR LOG-NORMAL DISTRIBUTION FITS FOR<br>DAB ARCHITECTURE ASSUMING INPUT DATA ARE 50%<br>CONFIDENCE VALUES |    |
|     | APPENDIX D: RESULTS FOR LOG-NORMAL DISTRIBUTION FITS FOR<br>DAB ARCHITECTURE ASSUMING INPUT DATA ARE<br>EXPECTED VALUES       |    |
|     | APPENDIX E: RESULTS FOR NORMAL DISTRIBUTION FITS FOR DAB<br>ARCHITECTURE ASSUMING INPUT DATA ARE<br>EXPECTED VALUES           |    |
|     | APPENDIX F: SENSITIVITY TO RISK SPLIT BETWEEN PHASES FOR DAB<br>ARCHITECTURE FOR NORMAL DISTRIBUTION FITS                     |    |
|     | APPENDIX G: RESULTS FOR CORRELATED NORMAL DISTRIBUTION<br>FITs FOR ALL ARCHITECTURES                                          |    |

## LIST OF FIGURES

|           |                                                                             |    |
|-----------|-----------------------------------------------------------------------------|----|
| Figure 1  | Spring 88 Estimate Updates BSTS Risk Analysis.....                          | 3  |
| Figure 2  | Spring 88 Estimate Updates SSTS Risk Analysis .....                         | 4  |
| Figure 3  | Spring 88 Estimate Updates SBI Risk Analysis.....                           | 5  |
| Figure 4  | Comparison of Upper Bounds of Acquisition Costs.....                        | 12 |
| Figure 5  | Comparison of Acquisition Cost Ranges.....                                  | 13 |
| Figure 6  | Comparison of Upper Bounds of Program Costs.....                            | 14 |
| Figure 7  | Comparison of Program Cost Ranges.....                                      | 15 |
| Figure 8  | Comparison of Fitted Log Normal Distribution with Input Curve for BSTS..... | 18 |
| Figure 9  | Comparison of Fitted Log Normal Distribution with Input Curve for SSTS..... | 19 |
| Figure 10 | Comparison of Fitted Log Normal Distribution with Input Curve for SBI ..... | 20 |
| Figure 11 | Comparison of Fitted Normal Distribution with Input Curve for BSTS.....     | 27 |
| Figure 12 | Comparison of Fitted Normal Distribution with Input Curve for SSTS.....     | 28 |
| Figure 13 | Comparison of Fitted Normal Distribution with Input Curve for SBI .....     | 29 |
| Figure 14 | Program Costs for DAB Architecture .....                                    | 34 |
| Figure 15 | Acquisition Costs for DAB Architecture.....                                 | 36 |
| Figure 16 | Program Costs for DAB Architecture .....                                    | 37 |

|                          |              |
|--------------------------|--------------|
| Accession For            |              |
| NTIS GRA&I               |              |
| DTIC TAB                 |              |
| Unannounced              |              |
| Justification <i>per</i> |              |
| By _____                 |              |
| Distribution/            |              |
| Availability Codes       |              |
| Dist                     | Avail and/or |
|                          | Special      |
| A-1                      |              |

## LIST OF TABLES

|          |                                                                                                                                                               |    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 1  | Summary of Acquisition and Program Costs Derived with Independent Log-Normal Distributions Assuming Nominal Inputs are 50% Confidence Values of Cost.....     | 8  |
| Table 2  | Summary of Acquisition and Program Costs Derived with Independent Log-Normal Distributions Assuming Nominal Inputs are Expected Values of Cost.....           | 8  |
| Table 3  | Summary of Acquisition and Program Costs Derived with Independent Normal Distributions.....                                                                   | 9  |
| Table 4  | Summary of Acquisition and Program Costs Derived with Normal Distributions and Assuming Program Phases and Elements are Correlated with Coefficient 0.50..... | 10 |
| Table 5  | Summary of Acquisition and Program Costs when Program Elements are Completely Correlated.....                                                                 | 10 |
| Table 6  | Log-Normal Distribution Definitions .....                                                                                                                     | 16 |
| Table 7  | Log-Normal Fits to Input Data.....                                                                                                                            | 17 |
| Table 8  | Risk Categories Assumed.....                                                                                                                                  | 21 |
| Table 9  | Summary of Acquisition and Program Costs Derived with Independent Log-Normal Distributions Assuming Inputs are 50% Confidence Values of Cost.....             | 23 |
| Table 10 | Summary of Acquisition and Program Costs Derived with Independent Log-Normal Distributions Assuming Inputs are Expected Values of Cost .....                  | 24 |
| Table 11 | Normal Distribution Definitions .....                                                                                                                         | 25 |
| Table 12 | Normal Fits to Input Data.....                                                                                                                                | 26 |
| Table 13 | Summary of Acquisition and Program Costs Derived with Independent Normal Distributions.....                                                                   | 30 |
| Table 14 | Comparison of Architecture Cost Ranges for Two Different Assumptions About the Split Between Program Phase Cost Variations.....                               | 32 |

## LIST OF ACRONYMS

|        |                                                                 |
|--------|-----------------------------------------------------------------|
| ACES   | Architecture Comparative Evaluation Study                       |
| BP     | Brilliant Pebbles                                               |
| BSTS   | Boost Surveillance and Tracking System                          |
| CCSOIF | Command, Control and System Operating and Integrating Functions |
| DAB    | Defense Acquisition Board                                       |
| ERIS   | Exoatmospheric Reentry Vehicle Intercept System                 |
| GSTS   | Ground-Based Space Surveillance and Tracking System             |
| HEDI   | High Endoatmospheric Intercept System                           |
| LCH    | Launch                                                          |
| MGBR   | Midcourse Ground-Based Radar                                    |
| SBI    | Space Based Interceptor                                         |
| SEI    | System Engineering and Integration                              |
| SSTS   | Space Surveillance and Tracking System                          |
| TGBR   | Terminal Ground-Based Radar                                     |

## I INTRODUCTION

The purposes of this paper are to present estimates of the probability distributions for the acquisition and program costs for the alternative architectures discussed in the Architecture Comparative Evaluation Study (ACES) [Ref 1], and to describe the procedures we used to develop them. In our first pass through these evaluations, we will assume that the distributions for the cost of R&D and Investment for an element have equal risk and that all cost distributions are statistically independent. Later, we will relax these assumptions.

## PROBLEM DEFINTION

We are seeking a method for determining the probability distributions of two kinds of system costs: acquisition costs and program costs. The acquisition costs are defined as the costs of the R&D and Investment phases on all the defense elements that are deployed with an architecture. The program costs consists of the R&D costs on all the elements that are to be deployed in the initial deployment, the Investment costs for all the elements deployed in the initial deployment, and the R&D costs of the elements to be deployed in the next phase of deployment. Thus the program costs include all of the acquisitions costs for an initial deployment plus R&D on near term follow-on elements not included initially.

The architectures are ballistic missile defense systems composed of the following sensor, interceptor and battle management elements:

- boost surveillance and tracking system (BSTS),
- space surveillance and tracking system (SSTS),
- space based interceptor (SBI) or Brilliant Pebbles (BP),
- ground-based space surveillance and tracking system (GSTS),
- midcourse ground-based radar (MGBR),
- exoatmospheric reentry vehicle intercept system (ERIS),
- terminal ground-based radar (TGBR),
- high endoatmospheric intercept system (HEDI),

---

<sup>1</sup> Dyer, JL. et al. "Architecture Comparative Evaluation Study (U)" Volume II, SPARTA Technical Report, McLean, VA SECRET (March 3, 1989)

command, control and system operating and integrating functions (CCSOIF),  
system engineering and integration (SEI),  
and launch (LCH).

The quantities and qualities of each of these elements, and the cost-quantity estimating relationships are described in the ACES final report.

As we will use the term, the system costs for an architecture includes only the costs for the full scale engineering development (R&D) and deployment (Investment) phase; operations and support (O&S) costs are not included.

#### INPUT DATA

The inputs to these evaluations of system cost were 1) the nominal costs for each of two phases (R&D and Investment) for each of the elements to be considered in the near term architectures (from ACES) and 2) the cost distributions from the USAF for the combined costs (R&D plus Investment) for three elements: BSTS, SSTS and SBI. We will use the ACES inputs as the nominal costs (either expected values or 50% confidence values), and the USAF data as the source of the cost risk distributions about those nominal values.

In ACES, we have nominal cost estimates for the appropriate quantities of each element in each of its two phases. We do not have cost risk assessments for all of the elements contained in each of these architectures. The three element cost risk estimates that we do have are presented in Figures 1 through 3 for the BSTS, SSTS and SBI respectively. The nominal values in the figures are assumed to have been superseded by the ACES data. However, we can and will use the nature of the underlying distributions for estimating the cost risk. We will determine the characteristics of the distributions from curve fits to the data we take off of these three figures.

We will develop total system costs (total R&D and Investment) from these input data for three different sets of premises: 1) the element costs are log-normally distributed and the nominal (ACES) costs are estimates at the 50% confidence level, 2) the element costs are log-normally distributed and

the nominal costs are expected value estimates, and 3) the costs are normally distributed and the nominal cost are most likely cost estimates.



Figure 1. Spring 88 Estimate Updates  
BSTS Risk Analysis



Figure 2. Spring 88 Estimate Updates  
SSTS Risk Analysis Results



**Figure 3. Spring 88 Estimate Updates  
SBI Risk Analysis Results**

## CONTENTS

A summary of the results and our recommended estimates are in the next section. Section II covers the detailed results for the log-normal distribution assumption sets. Section III covers the detailed results for the normal distribution assumption set. In the last section, Section IV, we will examine the sensitivity to our assumptions on risk associated with different program phases and on element independence. A summary of the pertinent features of the log-normal and the normal distribution is presented in Appendix A.

## **II SUMMARY**

In this section, we present three sets of results. In the first subsection, we present the system acquisition and program costs for all five architectures assuming that the cost distributions for each element are independent and that the underlying distributions in each phase for each element are not only independent, but have the same distribution. In the second subsection, we examine a change in the nature of the distribution of risks between R&D and Investment phases. In the third subsection, we present the results for the case where distributions for both phases and elements are correlated. For the costs of the architectures, we recommend using the program costs listed in Table 5. Though these costs are derived without rigorous estimation of the correlation between programs, assuming a complete correlation does model the feature that all elements of an architecture operating at the required performance levels in the necessary quantities are needed to make an architecture meet its mission.

### **RESULTS FOR INDEPENDENT DISTRIBUTIONS**

In Tables 1 through 3, we present the system acquisition and program costs we have developed for each architecture from each of our sets of premises on the nature of the distributions. As we should expect, all three system costs distributions are relatively tight (low variances) and are relatively close in value to one another. The tightness should be expected as a result of the assumption of independence of the distributions of costs for each phase and for each element. The closeness should be expected because the fitted underlying distributions are approximately equal. (We note that the nominal program reserve - an added cost - is not included here.)

Table 1 presents the estimates we made assuming that: 1) the cost distributions for each phase for each element have log-normal distributions, 2) that both the R&D and Investment phases have equivalent cost risk distributions (equal coefficients of variation), and 3) that the input cost data (nominal values) for each phase for each element were equivalent to cost estimates made at the 50% confidence level. The first assumption distinguishes the results of Table 1 from Table 3. The last assumption distinguishes the results of Table 1 from those of Table 2.

Table 2 presents the estimates we made assuming that: 1) the cost distributions for each phase for each element have log-normal distributions, 2) that both the R&D and Investment phases have equivalent cost risk distributions, and 3) that the input cost data (nominal values) for each phase for each element were equivalent to expected value cost estimates.

Table 3 presents the estimates we made assuming that: 1) the cost distributions for each phase for each element have normal distributions, 2) that both the R&D and Investment phases have equivalent cost risk distributions, and 3) that the input cost data for each phase for each element were equivalent to expected value cost estimates (equivalent to 50% confidence estimates for normal distributions).

By the assumption that the input cost data are 50% confidence values the results in Table 1 are biased away from the sum of the nominal costs that is generally cited as the cost of the system. The bias also makes both the lower and upper bounds higher than we see in either Tables 2 or 3. The results of Tables 2 and 3 are essentially equivalent to one another. Except for roundoff differences, the two distributions are everywhere the same.

## RESULTS FOR ALTERNATIVE RISK DISTRIBUTIONS

The tightness of the distributions seems to belie the intuitive notion that cost estimates should have large ranges when the systems are only now reaching maturity and are still demanding advances in technology. We considered two alternative assumptions: one on the split of the risk between R&D and Investment and the other on independence. Changing the split in risks did not change the essential nature of the distributions. Following the relative sizes of the TRACE accounts in US Army cost estimates, we assumed that R&D has three times the relative risk as the Investment phase. We modeled this by having the coefficient of variation of the R&D be three times the coefficient of variation for the Investment. For the DAB Architecture, it increased the estimated costs by 1B\$.

**Table 1**  
**Summary of Acquisition and Program Costs Derived**  
**with Independent Log-Normal Distributions**  
**Assuming Nominal Inputs are 50% Confidence Values of Cost**

| Acquisition Costs |               |           |     |       |    |
|-------------------|---------------|-----------|-----|-------|----|
| Probability       |               |           |     |       |    |
|                   | Architectures |           |     |       |    |
|                   | ERIS          | ERIS/HEDI | DAB | SBICV | BP |
| 0.20              | 45            | 62        | 66  | 65    | 37 |
| 0.50              | 47            | 64        | 70  | 72    | 39 |
| 0.80              | 49            | 66        | 74  | 79    | 40 |

  

| Program Costs |               |           |     |       |    |
|---------------|---------------|-----------|-----|-------|----|
| Probability   |               |           |     |       |    |
|               | Architectures |           |     |       |    |
|               | ERIS          | ERIS/HEDI | DAB | SBICV | BP |
| 0.20          | 55            | 69        | 69  | 75    | 46 |
| 0.50          | 58            | 71        | 73  | 81    | 48 |
| 0.80          | 60            | 74        | 77  | 88    | 50 |

**Table 2**  
**Summary of Acquisition and Program Costs Derived with**  
**Independent Log-Normal Distributions**  
**Assuming Nominal Inputs are Expected Values of Cost**

| Acquisition Costs |               |           |     |       |    |
|-------------------|---------------|-----------|-----|-------|----|
| Probability       |               |           |     |       |    |
|                   | Architectures |           |     |       |    |
|                   | ERIS          | ERIS/HEDI | DAB | SBICV | BP |
| 0.20              | 44            | 61        | 64  | 64    | 36 |
| 0.50              | 46            | 63        | 68  | 70    | 38 |
| 0.80              | 48            | 65        | 72  | 77    | 40 |

  

| Program Costs |               |           |     |       |    |
|---------------|---------------|-----------|-----|-------|----|
| Probability   |               |           |     |       |    |
|               | Architectures |           |     |       |    |
|               | ERIS          | ERIS/HEDI | DAB | SBICV | BP |
| 0.20          | 54            | 68        | 67  | 73    | 46 |
| 0.50          | 57            | 70        | 71  | 79    | 47 |
| 0.80          | 59            | 73        | 75  | 86    | 49 |

**Table 3**  
**Summary of Acquisition and Program Costs Derived**  
**with Independent Normal Distributions**

| Acquisition Costs |      |           |     |       |    |
|-------------------|------|-----------|-----|-------|----|
| Probability       |      |           |     |       |    |
| Architectures     |      |           |     |       |    |
|                   | ERIS | ERIS/HEDI | DAB | SBICV | BP |
| 0.20              | 44   | 61        | 64  | 64    | 36 |
| 0.50              | 46   | 63        | 68  | 70    | 38 |
| 0.80              | 48   | 65        | 72  | 77    | 40 |

  

| Program Costs |      |           |     |       |    |
|---------------|------|-----------|-----|-------|----|
| Probability   |      |           |     |       |    |
| Architectures |      |           |     |       |    |
|               | ERIS | ERIS/HEDI | DAB | SBICV | BP |
| 0.20          | 54   | 68        | 68  | 73    | 46 |
| 0.50          | 57   | 70        | 72  | 80    | 48 |
| 0.80          | 59   | 73        | 75  | 86    | 50 |

### RESULTS FOR DEPENDENT DISTRIBUTIONS

We considered two kinds of interdependence. The first was a dependence between the costs for the R&D phase and for the Investment phase; the second was a dependence between the costs for the different element programs. Of the two, the latter was the more important. We did not have a basis for estimating the covariance between phases or between elements. In order to proceed, we assumed two values of the correlation coefficient, one for between phases and one for between program elements, and we assumed that these correlation coefficients were everywhere the same. We then examined the system costs as a function of changing values in those two coefficients. Thus, the results can only be considered indicative. Of course, the upper bound on the costs cannot be higher than when we assume all program elements are completely correlated. Assuming underlying normal distributions, Table 4 presents the system cost results for the assumption that the correlation coefficient both between program phases and between program elements was 0.50. As expected, these costs are higher than those presented in Table 3, but only by about 5%.

**Table 4**  
**Summary of Acquisition and Program Costs Derived**  
**with Normal Distributions and Assuming Program Phases and**  
**Elements are Correlated with Coefficient 0.50**

|             |    | Acquisition Costs |           |     |       |    |
|-------------|----|-------------------|-----------|-----|-------|----|
| Probability |    | Architectures     |           |     |       |    |
|             |    | ERIS              | ERIS/HEDI | DAB | SBICV | BP |
| 0.20        | 42 |                   | 58        | 61  | 61    | 34 |
| 0.50        | 46 |                   | 63        | 68  | 70    | 38 |
| 0.80        | 51 |                   | 68        | 75  | 80    | 42 |

  

|             |    | Program Costs |           |     |       |    |
|-------------|----|---------------|-----------|-----|-------|----|
| Probability |    | Architectures |           |     |       |    |
|             |    | ERIS          | ERIS/HEDI | DAB | SBICV | BP |
| 0.20        | 51 |               | 64        | 64  | 70    | 43 |
| 0.50        | 57 |               | 70        | 72  | 80    | 48 |
| 0.80        | 62 |               | 77        | 79  | 90    | 52 |

In Table 5, we present the same data for the case where the programs are completely correlated (the coefficient of correlation between phases is still at 0.50). After adding in the program reserve amount, these are the costs we recommend using for estimates of the costs of the ACES Architectures.

The upper bounds (80% Confidence Values) on the system acquisition costs as a function of the assumed correlation coefficient between elements are compared for each of the five architectures in Figure 4. While the correlation coefficient is not known, its distribution of values will undoubtedly lie somewhere between the bounds given. In the bar graph of Figure 5, we present the system acquisition costs so that both upper (80%) and lower (20%) confidence bounds for correlated and uncorrelated cases and the expected value can be seen. The larger and the smaller values for the upper and lower confidence bounds are for the completely correlated case; the smaller and larger values for the upper and lower confidence bounds are for the completely independent case. The same kinds of data are presented in Figures 6 and 7 for the system program costs. The correlated cost uncertainties for the DAB Architecture are approximately 14%.

**Table 5**  
**Summary of Acquisition and Program Costs**  
**when Program Elements are Completely Correlated**

| Acquisition Costs |               |           |     |       |    |
|-------------------|---------------|-----------|-----|-------|----|
| Probability       | Architectures |           |     |       |    |
|                   | ERIS          | ERIS/HEDI | DAB | SBICV | BP |
| 0.20              | 41            | 57        | 59  | 59    | 33 |
| 0.50              | 46            | 63        | 68  | 70    | 38 |
| 0.80              | 52            | 69        | 77  | 82    | 43 |

  

| Program Costs |               |           |     |       |    |
|---------------|---------------|-----------|-----|-------|----|
| Probability   | Architectures |           |     |       |    |
|               | ERIS          | ERIS/HEDI | DAB | SBICV | BP |
| 0.20          | 49            | 62        | 62  | 67    | 41 |
| 0.50          | 57            | 70        | 72  | 80    | 48 |
| 0.80          | 64            | 79        | 82  | 92    | 54 |

We note in passing that evaluating the completely correlated case with the log-normal distributions instead of with the normal distributions will yield very similar results



Figure 4. Comparison of Upper Bounds of Acquisition Costs



Figure 5. Comparison of Acquisition Cost Ranges



Figure 6. Comparison of Upper Bounds of Program Costs

## 20 TO 80% COST UNCERTAINTIES



Figure 7. Comparison of Program Cost Ranges

### III APPROACH USING LOG-NORMAL DISTRIBUTIONS

The assumptions implicit in our approach in this section of the report are the following:

The costs (random variables) for each phase (R&D and Investment) for each element in an architecture are independent.

The probability function for the cost of a phase for an element has a log-normal distribution.

The nature of the cost distribution is constant by phase, that is, the cost risk distribution (probability of a cost) for an element in R&D is similar to the risk distribution for deployment (investment). We will represent this assumption by saying that the coefficient of variation remains constant.

The elements are divided into three categories: those with high risk, those with moderate risk, and those with low risk. Within a constant risk category, the coefficient of variation is the same.

Important relationships for the log-normal density function are given in Table 6.

**Table 6.  
Log-Normal Distribution Definitions**

---

Density Function

$$f_X(x) = \exp[-1/2(\ln x - \mu)^2/\sigma^2] / [\sqrt{2\pi} \sigma x] \quad 0 < x < \infty$$
$$\mu > 0$$
$$\sigma > 0$$

Cumulative Distribution Function

$$F_X(x) = \Phi[(\ln x - \mu) / \sigma]$$

Fifty Percent Confidence Value

$$X_{50} = \exp(\mu)$$

Expected Value

$$E(X) = \exp[\mu + (1/2)\sigma^2]$$

Variance

$$VAR(X) = \{\exp[2\sigma^2] - \exp[\sigma^2]\} \exp[2\mu]$$

Mode

$$x^* = \exp(\mu - \sigma^2)$$

Coefficient of Variation

$$\sqrt{VAR(X)/E(X)} = \sqrt{[\exp(\sigma^2) - 1]}$$

---

In order to fit the log-normal distribution to the input data, we must find values for  $\mu$  and  $\sigma$ . On each figure of Figures 1-3, we are given the 50% confidence value. Its natural logarithm is equal to  $\mu$ . To find the value of  $\sigma$ , we derived the normal equation for its regression only to find, after simplifications, the intractable result

$$\delta D / \delta \sigma = 0$$

$$n$$

$$= \sum_{i=1}^n [\Phi(\Theta_i) - P_i] \exp(-(1/2)\Theta_i^2) \Theta_i$$

where  $D$  is the sum of the squares of the differences between the log-normal distribution to be fit and the probabilities that were taken from the curves,  $\Theta_i$  is equal to  $[\log(x_i - \mu)]/\sigma$ ,  $x_i$  is the  $i$ th cost point and  $P_i$  is the corresponding probability from the figure. To find the value of  $\sigma^*$ , the optimal estimate to minimize the differences, we searched over the values of  $\sigma$ . The results are given in Table 7. The data extracted from Figures 1-3 and used in the calculations leading to the values of  $\sigma$  are contained in Appendix B.

**Table 7**  
**Log-Normal Fits to Input Data**

| System | $\mu$       | $\sigma$ | $\sqrt{VAR/E}(x)$ |
|--------|-------------|----------|-------------------|
| BSTS   | ln(7.9)     | 0.12308  | 0.12355           |
| SSTS   | ln(8.7)     | 0.18352  | 0.18508           |
| SBI    | ln(14.3324) | 0.28108  | 0.28672           |

Figure 8 compares the log-normal curve fit to the input data extracted from Figure 1 for the BSTS. Figures 9 and 10 similarly compare the curve fits to the data of Figures 2 and 3 for the SSTS and the SBI respectively.

We have characterized these three systems as representing three classes of risk: low, moderate and medium. We have applied these risk categories to each of the elements in the set of architectures investigated in ACES. The results of that application are given in Table 8.



Figure 8. Comparison of Fitted Log Normal Distribution with Input Curve for BSTS



Figure 9. Comparison of Fitted Log Normal Distribution with Input Curve for SSTS



**Figure 10. Comparison of Fitted Log Normal Distribution with Input Curve for SBI**

**Table 8**  
**Risk Categories Assumed**

| System            | System                 |
|-------------------|------------------------|
| Low Risk Category | Moderate Risk Category |
| BSTS              | SSTS                   |
| GBR               | GSTS                   |
| ERIS              |                        |
| SEI               | High Risk Category     |
| LAUNCH            | SBI                    |
|                   | CC/SOIF                |

Using these data and assumptions, we can now develop the total costs for each of the architectures. For the log-normal distributions, we have two procedures. In the first, we will take the input costs we have for R&D and Investment to be the 50% confidence estimates for each phase for each of the elements, devise their distributions according to the risk categories, and then sum those costs according to the rules we have developed for estimating the convolution of log-normal distributions. In the second procedure, we will take the input costs we have for R&D and Investment to be the expected value estimates for each phase for each element, and then proceed in the same manner as above.

In the first procedure, for each phase for the  $i$ th element, we assume that the inputs are  $C_{50}$ , the 50% confidence cost for the respective R&D and investment costs, and  $cv$ , the coefficient of variation for that element. We derive the parameters for the corresponding log-normal distribution as

$$\mu_i = \ln(C_{50})$$

$$\sigma_i = \sqrt{\ln(1+cv^2)}$$

For example, if the nominal costs for BSTS R&D are 5.4B\$, if that 5.4B\$ is equivalenced to  $C_{50}$ , and if it is in a low risk category, then

|                                             |                            |
|---------------------------------------------|----------------------------|
| $\mu_1 = \ln(5.4) = 1.6864$                 | Derived from Nominal Costs |
| $cv = 0.12308$                              | Taken from Risk Category   |
| $\sigma_1 = \sqrt{[\ln(1+cv^2)]}$<br>0.1226 | Derived from $cv$          |

In the second procedure, for each phase for the  $i$ th element, we assume that the inputs are  $E(X)$ , the expected value for the respective R&D and

investment costs, and  $cv$ , the coefficient of variation for that element. We derive the parameters for the corresponding log-normal distribution as

$$\sigma_i = \sqrt{\ln(1+cv^2)}$$

$$\mu_i = \ln[E(X)] - \sigma_i^2/2$$

For example, if the nominal costs for BSTS R&D are 5.4B\$, if that 5.4B\$ is equivalenced to  $E(X)$ , and if it is in a low risk category, then

|                                   |                            |
|-----------------------------------|----------------------------|
| $cv = 0.12308$                    | Taken from Risk Category   |
| $\sigma_1 = \sqrt{[\ln(1+cv^2)]}$ | Derived from $cv$          |
| 0.1226                            |                            |
| $\mu_1 = \ln(5.4) - \sigma_1^2/2$ | Derived from Nominal Costs |
| = 1.6789                          |                            |

For the log-normal distribution, we approximate the convolutions by assuming that the convolution will yield (see Appendix A for justification of this approximation) a log-normal like distribution characterized by parameters whose values are derived from the sum of the expected values and variances. The algorithm is given as follows:

$$E(X) = \sum E(X_i)$$

$$\alpha = \ln[E(X)]$$

$$\beta = VAR(X) = \sum VAR(X_i)$$

$$\mu = 1/2\{4\alpha - \ln[\beta + \exp(2\alpha)]\}$$

$$\sigma = \sqrt{[2(\alpha-\mu)]}$$

where  $\alpha$  and  $\beta$  are intermediate values, and  $\mu$  and  $\sigma$  are the parameters of the resultant log-normal distribution for the total system costs.

We will use this algorithm to combine the costs for the R&D phase and the Investment phase, and to combine the costs for each of the elements. We will first develop the acquisition costs as the sum of the R&D and Investment costs for the elements that are deployed in an architecture. Then, we will develop the program costs as the sum of the R&D costs for all of the elements being considered for Phase One, either for immediate or slightly later deployment, and the investment costs for the elements to be immediately deployed.

## RESULTS

Assuming the first procedure, that is, nominal costs are 50% confidence estimates, Table 9 presents a summary of the costs for each of the architectures. The supporting data tables presenting the sums of expected values and variances are illustrated in Appendix C for the DAB Architecture.

**Table 9**  
**Summary of Acquisition and Program Costs Derived**  
**with Independent Log-Normal Distributions**  
**Assuming Inputs are 50% Confidence Values of Cost**

| Acquisition Costs |               |           |     |       |    |
|-------------------|---------------|-----------|-----|-------|----|
| Probability       | Architectures |           |     |       |    |
|                   | ERIS          | ERIS/HEDI | DAB | SBICV | BP |
| 0.20              | 45            | 62        | 66  | 65    | 37 |
| 0.50              | 47            | 64        | 70  | 72    | 39 |
| 0.80              | 49            | 66        | 74  | 79    | 40 |

  

| Program Costs |               |           |     |       |    |
|---------------|---------------|-----------|-----|-------|----|
| Probability   | Architectures |           |     |       |    |
|               | ERIS          | ERIS/HEDI | DAB | SBICV | BP |
| 0.20          | 55            | 69        | 69  | 75    | 46 |
| 0.50          | 58            | 71        | 73  | 81    | 48 |
| 0.80          | 60            | 74        | 77  | 88    | 50 |

Assuming the second procedure, that is, nominal costs are expected values, Table 10 presents the results of our calculations. The supporting data tables presenting the sums of expected values and variances are illustrated in Appendix D for the DAB Architecture.

**Table 10**  
**Summary of Acquisition and Program Costs Derived**  
**with Independent Log-Normal Distributions**  
**Assuming Inputs are Expected Values of Cost**

| Acquisition Costs |      |           |     |       |    |
|-------------------|------|-----------|-----|-------|----|
| Probability       |      |           |     |       |    |
| Architectures     |      |           |     |       |    |
|                   | ERIS | ERIS/HEDI | DAB | SBICV | BP |
| 0.20              | 44   | 61        | 64  | 64    | 36 |
| 0.50              | 46   | 63        | 68  | 70    | 38 |
| 0.80              | 48   | 65        | 72  | 77    | 40 |

  

| Program Costs |      |           |     |       |    |
|---------------|------|-----------|-----|-------|----|
| Probability   |      |           |     |       |    |
| Architectures |      |           |     |       |    |
|               | ERIS | ERIS/HEDI | DAB | SBICV | BP |
| 0.20          | 54   | 68        | 67  | 73    | 46 |
| 0.50          | 57   | 70        | 71  | 79    | 47 |
| 0.80          | 59   | 73        | 75  | 86    | 49 |

#### IV APPROACH USING NORMAL DISTRIBUTIONS

In this section, we derive the system costs assuming normal distributions as the distributions underlying the risk assessment data. The assumptions implicit in our approach are the following:

The costs (random variables) for each phase (R&D and Investment) for each element in an architecture are independent.

The probability function for the cost of a phase for an element has a normal distribution.

The nature of the cost distribution is constant by phase. We will represent this assumption by saying that the coefficient of variation remains constant.

The elements are divided into three categories: those with high risk, those with moderate risk, and those with low risk. Within a constant risk category, the coefficient of variation is the same.

Important relationships for the normal density function are given in Table 11.

**Table 11**  
**Normal Distribution Definitions**

---

Density Function

$$f_X(x) = \exp [-(1/2)(x - \mu)^2 / \sigma^2] / [\sqrt{2\pi} \sigma]$$
$$-\infty < x < \infty$$
$$-\infty < \mu < \infty$$
$$\sigma > 0$$

Cumulative Distribution Function

$$F_X(x) = \Phi[(x - \mu) / \sigma]$$

Fifty Percent Confidence Value

$$X_{50} = \mu$$

Expected Value

$$E(X) = \mu$$

Variance

$$VAR(X) = \sigma^2$$

Mode

$$x^* = \mu$$

Coefficient of Variation

$$\sqrt{VAR(X)/E(X)} = \sigma/\mu$$

---

In order to fit the normal distribution to the input data, we must find values of  $\mu$  and  $\sigma$ . On each figure of Figures 1-3, we are given the 50% confidence value. It is equal to  $\mu$ . To find the value of  $\sigma$ , we derived the normal equation for its regression only to find, after simplifications, the intractable result

$$\delta D / \delta \sigma = 0$$

$$= \sum_{i=1}^n [\Phi(\Theta_i) - P_i] \exp(-(1/2)\Theta_i^2)$$

where  $D$  is the sum of the squares of the differences between the normal distribution to be fit and the probabilities that were taken from the curves,  $\Theta_i$  is equal to  $[x_i - \mu]/\sigma$ ,  $x_i$  is the  $i$ th cost point and  $P_i$  is the corresponding probability from the figure. To find the value of  $\sigma^*$ , the optimal estimate to minimize the differences, we searched over the values of  $\sigma$ . The results are given in Table 12. The data extracted from Figures 1-3 and used in the calculations leading to the values of  $\sigma$  are contained in Appendix B.

**Table 12**  
Normal Fits to Input Data

| System | $\mu$   | $\sigma$ | $\sigma/\mu$ |
|--------|---------|----------|--------------|
| BSTS   | 7.9     | 0.97241  | 0.1231       |
| SSTS   | 8.7     | 1.58450  | 0.1821       |
| SBI    | 14.3324 | 3.99300  | 0.2786       |

Figure 11 compares the normal curve fit to the input data extracted from Figure 1 for the BSTS. Figures 12 and 13 similarly compare the curve fits to the data of Figures 2 and 3 for the SSTS and the SBI respectively.

Using these data and assumptions, we can now develop the total costs for each of the architectures. For each phase for the  $i$ th element, we assume that the inputs are  $C_{50}$ , the 50% confidence cost for the respective R&D and investment costs, and  $cv$ , the coefficient of variation for that element. We derive the parameters for the corresponding normal distribution as

$$\mu_i = C_{50}$$

$$\sigma_i = \mu_i cv$$



**Figure 11. Comparison of Fitted Normal Distribution with Input Curve for BSTS**



Figure 12. Comparison of Fitted Normal Distribution with Input Curve for SSTS



Figure 13. Comparison of Fitted Normal Distribution with Input Curve for SBI

For example, if the nominal costs for BSTS R&D are 5.4B\$, if that 5.4B\$ is equivalenced to C<sub>50</sub>, and if it is in a low risk category, then

|                       |                            |
|-----------------------|----------------------------|
| $\mu_1 = 5.4$         | Derived from Nominal Costs |
| $cv = 0.1231$         | Taken from Risk Category   |
| $\sigma_1 = \mu_1 cv$ | Derived from cv            |
| $= 0.6647$            |                            |

For the normal distribution, we have a closed form expression for the convolutions, which yield a normal distribution with the values for the two parameters being

$$\mu = E(X) = \sum E(X_i)$$

$$\sigma^2 = VAR(X) = \sum VAR(X_i)$$

We will use this algorithm to combine the costs for the R&D phase and the Investment phase, and to combine the costs for each of the elements.

Table 13 presents the results of our calculations. The supporting data tables illustrating the sums of expected values and variances are presented in Appendix E for the DAB Architecture.

**Table 13**  
**Summary of Acquisition and Program Costs Derived**  
**with Independent Normal Distributions**

| Acquisition Costs |               |           |     |       |    |
|-------------------|---------------|-----------|-----|-------|----|
| Probability       | Architectures |           |     |       |    |
|                   | ERIS          | ERIS/HEDI | DAB | SBICV | BP |
| 0.20              | 44            | 61        | 64  | 64    | 36 |
| 0.50              | 46            | 63        | 68  | 70    | 38 |
| 0.80              | 48            | 65        | 72  | 77    | 40 |

  

| Program Costs |               |           |     |       |    |
|---------------|---------------|-----------|-----|-------|----|
| Probability   | Architectures |           |     |       |    |
|               | ERIS          | ERIS/HEDI | DAB | SBICV | BP |
| 0.20          | 54            | 68        | 68  | 73    | 46 |
| 0.50          | 57            | 70        | 72  | 80    | 48 |
| 0.80          | 59            | 73        | 75  | 86    | 50 |

## V SENSITIVITIES TO ASSUMPTIONS

Recognizing that the range of values about the 50% confidence values is a lot less than we are accustomed to seeing, we began to examine some of our assumptions.

### DIFFERENTIATING RISK ACCORDING TO PROGRAM PHASE

The first assumption we will investigate is the assumption that the risk distribution for R&D and Investment is the same. We will examine here the consequences of making an alternative assumption.

In developing a cost breakdown, the USA generally assigns some 15% of R&D and some 5% of the investment costs to risk mitigation. We will use these estimates to derive the variances of R&D and Investment programs from the coefficients of variations obtained from the USAF input data on total programs. (See Figures 1 through 3.) The problem is to find the standard deviations for an R&D program,  $\sigma_1$ , and Investment program,  $\sigma_2$ , when we know the expected values,  $\mu_1$  and  $\mu_2$  of these two phases, and when we know the coefficient of variation of the entire program. Seeing as how our disparate assumptions about the underlying distributions hardly affect our answers, we will work with the normal distribution since that is the easiest one to use. We can now state the problem as

Find  $\sigma_1$  and  $\sigma_2$  given  $\mu_1$ ,  $\mu_2$ , cv, and the relationships

$$\begin{aligned} \text{cv} &= \sigma / \mu \\ \sqrt{(\sigma_1^2 + \sigma_2^2)} &= \text{cv} \\ \frac{\mu_1 + \mu_2}{\sigma_1^2 + \sigma_2^2} &= \text{cv} \end{aligned}$$

and

$$\sigma_1 / \mu_1 = 3 \sigma_2 / \mu_2$$

where the unsubscripted variables apply to the combined program data.

A little algebra yields

$$\sigma_1 = 3 \sigma_2 \mu_1 / \mu_2$$

and

$$\sigma_2^2 = \frac{[\text{cv} (\mu_1 + \mu_2) \mu_2]^2}{9 \mu_1^2 + \mu_2^2}$$

Replacing these different estimates of variation for the estimates that assumed both phases of a program were equal yields no significant difference. In Appendix F, we present the results for the DAB Architecture assuming the values of  $\sigma_1$  and  $\sigma_2$  defined above. Table 14 compares those data with the data obtained from Table 13.

**Table 14**  
**Comparison of Architecture Cost Ranges for**  
**Two Different Assumptions About the Split Between**  
**Program Phase Cost Variations**

| Acquisition Costs<br>Prob | Assuming<br>Equal Risks | Assuming<br>3:1 Risk Ratio | Differences |
|---------------------------|-------------------------|----------------------------|-------------|
| 0.20                      | 64.46                   | 63.36                      | 1.10        |
| 0.50                      | 68.31                   | 68.31                      | 0.00        |
| 0.80                      | 72.16                   | 73.26                      | -1.10       |
| Program Costs<br>Prob     | Assuming<br>Equal Risks | Assuming<br>3:1 Risk Ratio | Differences |
| 0.20                      | 67.71                   | 66.58                      | 1.13        |
| 0.50                      | 71.59                   | 71.59                      | 0.00        |
| 0.80                      | 75.47                   | 76.60                      | -1.13       |

#### **COMPUTING COST ESTIMATES ASSUMING PROGRAM INTER-DEPENDENCIES**

The second assumption we will investigate is independence. In the earlier sections, we assumed that the costs for the phases of a program element, that is, the cost distributions for the R&D and Investment phases, were independent one from another, and that all of the program elements were also independent one from another. It is to these assumptions that we owe the tractability of analysis of the log-normal distributions and the ease of the analysis for the normal distribution. Here, in this subsection, we examine possible implications of interdependencies by assuming that the program phases and the program elements may not be independent.

**IMPACT OF CORRELATION WITHIN A PROGRAM.** Assuming that the underlying distributions are normal, but correlated, we derive the distribution for the sum of the R&D cost and the Investment cost and factor that into the total system costs. To do so, we further assume that the correlation coefficient,  $\rho$ , is known. If we let  $X_1$  be the random R&D costs,

normally distributed with mean  $\mu_1$  and variance  $\sigma_1^2$  and  $X_2$  be the random Investment costs, normally distributed with mean  $\mu_2$  and variance  $\sigma_2^2$ , and  $Z_i$ , their sum for the  $i$ th program element, then  $Z_i$  is normally distributed with parameters

$$E(Z_i) = \mu_1 + \mu_2$$

$$\text{VAR}(Z_i) = \sigma_1^2 + \sigma_2^2 + 2\rho\sigma_1\sigma_2$$

Provided that we make the assumption that we know the mean and the variance of the distributions for the costs of the two phases, (actually determined for this exercise by analogy to Figures 1-3 and through the coefficient of variation) then we can first compute the distributions of the costs for the individual programs, taking into account the correlations, and then compute the total system cost distributions (assuming still that the program elements are independent). For the DAB Architecture, the 20% confident, 50% confident and 80% confident costs are presented in Figure 14 as a function of the assumed correlation coefficient. (In generating this plot, note that we have assumed that the correlation coefficient between R&D and Investment is the same for all program elements.)

**IMPACT OF PROGRAM CORRELATION.** Assuming that the underlying program element distributions are normal, but that they are correlated with one another, we can also derive the distribution for the total system costs. To do this we must know the covariance matrix, that is, the correlations of the cost distributions for each program element with the cost distributions of each of the other program elements in the system. As above, we will assume that we know the covariance matrix. For our sensitivity analysis, we will assume that the correlation coefficient between any two programs is identical to  $\rho$ , that is,  $\text{COV}[Z_i, Z_j] = \rho\sigma_i\sigma_j$ . If we let  $Z$  be the total system costs, then  $Z$  is normally distributed with parameters

$$E(Z) = \sum_{i=0}^n E(Z_i)$$

$$\text{VAR}(Z) = \sum_{i=0}^n \sum_{j=0}^n \text{COV}[Z_i, Z_j]$$



Figure 14. Program Costs for DAB Architecture

where  $n$  is the number of program elements whose costs are to be summed for the acquisition or program costs.

For the DAB Architecture, we plot in Figure 15 the 20%, 50% and 80% confident costs for the total acquisition costs and in Figure 16 the same quantities for the total program costs.

For the calculations in Figures 15 and 16, we have assumed that the correlation coefficient between R&D and Investment cost distributions is equal to 0.50.

Just as a further point of reference, consider the following comparison. For a correlation coefficient of unity for the correlation between programs and a correlation coefficient of 0.5 for the correlation between R&D and Investment, the program costs were estimated at 81B\$. If we assumed unity for both correlation coefficients, the program costs were estimated at 82.1B\$.

Just as a bound to use with these results, consider the cost of the acquisition for the DAB architecture, derived assuming that the total acquisition costs had the same coefficient of variation we assumed for the SBI program. That  $cv$  was 0.2786. Given the mean value of the acquisition as 68B\$, the standard deviation should be 18.95 B\$. AT 20% confidence, the acquisition costs we calculate should be more than 52.1B\$. AT 80% confidence, the acquisition costs should be less than 84.0B\$. Obviously, the 50% confident number is still 68B\$. Note that the costs we have derived in Figure 15 for the acquisition costs for the fully correlated case are within those bounds.

**COST ESTIMATES WITH LARGER VARIANCES.** We note that the costs bounds just developed, assuming full correlations between programs, are still tight relative to what might be expected. For a program that is at this stage of its development and still requires advances in technology, some might expect that the cost ranges should be broader than that, for example, the upper value of the range being something like twice the lower value. However, the procedure we have applied here seems consistent with what we know, and uses our current best estimates of the variations.



Figure 15. Acquisition Costs for DAB Architecture



Figure 16. Program Costs for DAB Architecture

We have experimented (made mistakes in our inputs) with larger variances for the log-normal distributions and obtained instances where the range of values (ratio of 80% confident values to 20% confident values) did have close to a factor of two between them (for the DAB architecture, we manufactured a case where the lower -- 20% confidence -- was 62B\$ and the upper bound -- 80% confidence -- was 109B\$). However, the variances we used to get those results were much larger than any we are currently deriving from Figures 1-3. Just to illustrate, the coefficient of variation we used to obtain the almost 2:1 range with the log-normal distribution were, for the low risk elements, 0.1215, for the moderate risk elements, 0.3031, and for the high risk elements, 1.2258. These can be compared with the coefficient of variation we are now using with the log-normal distribution: 0.12136 for the low risk elements, 0.1851 for the moderate risk elements, and 0.2867 for the high risk elements. There had to be a factor of two increase in the variation for the moderate risk elements and a factor of four increase in the variation of the high risk elements for us to find a value close to the 2:1 ratio between the upper and lower bounds.

If the cost ranges are to reflect a higher ratio than we have found here in this report, then the input estimates of variation must increase. This, of course, will not set well with program managers. On the other hand, the cost variations we include do not include the many sources of variation that come from outside a program manager's control, but still typically increase the costs of a program element: politically inspired delays, mission changes and threat modifications. Incorporating these variations, if we could, would significantly increase the variation, and the range of estimates we would find.

## **Appendix A**

### **Log-Normal Distributions**

## Appendix A

### Log-Normal Distributions

The purpose of this appendix is to present some features of the log-normal distribution. The notation is taken from Ref A-1.

Though there are a number of alternative expressions for the density function of the log-normal distribution, the form of the log-normal density function we will use here is given by

$$f_X(x) = \exp [-(1/2)(\ln x - \mu)^2/\sigma^2] / [\sqrt{(2\pi)} \sigma x] \quad 0 < x < \infty$$

This density function is also a function of the values of the two parameters,  $\mu$  and  $\sigma$ , whose features we will explore below.

The log-normal cumulative distribution function is then

$$F_X(x) = \int_0^x \exp [-(1/2)(\ln y - \mu)^2/\sigma^2] dy / [\sqrt{(2\pi)} \sigma y]$$

We can transform this equation by substituting

$$\begin{aligned} u &= (\ln y - \mu)/\sigma \\ du &= dy / (\sigma y) \end{aligned}$$

to obtain

$$F_X(x) = \int_{-\infty}^{(\ln x - \mu)/\sigma} \exp [-(1/2)u^2] du / \sqrt{(2\pi)}$$

which is equivalent to

$$F_X(x) = \Phi [(\ln x - \mu) / \sigma]$$

where  $\Phi(x)$  is the cumulative standard normal function.

The Expected Value of  $x$ ,  $E(X)$ , is given by

$$E(X) = \int_0^\infty x \exp [-(1/2)(\ln x - \mu)^2/\sigma^2] dx / [\sqrt{(2\pi)} \sigma x]$$

Again substituting

$$u = (\ln x - \mu) / \sigma$$

$$du = dx / (\sigma x)$$

$$\exp(\sigma u + \mu) = x$$

we obtain

$$E(X) = \int_{-\infty}^{\infty} \exp(\sigma u + \mu) \exp[-(1/2)u^2] du / \sqrt{2\pi}$$

$$E(X) = \int_{-\infty}^{\infty} \exp[-(1/2)(u^2 - 2\sigma u - 2\mu)] du / \sqrt{2\pi}$$

$$E(X) = \int_{-\infty}^{\infty} \exp[-(1/2)(u^2 - 2\sigma u + \sigma^2 - \sigma^2 - 2\mu)] du / \sqrt{2\pi}$$

$$E(X) = \int_{-\infty}^{\infty} \exp[-(1/2)((u - \sigma)^2 - (\sigma^2 + 2\mu))] du / \sqrt{2\pi}$$

$$E(X) = \int_{-\infty}^{\infty} \exp[-(1/2)(u - \sigma)^2] \exp[(1/2)(\sigma^2 + 2\mu)] du / \sqrt{2\pi}$$

$$E(X) = \exp[(1/2)(\sigma^2 + 2\mu)] \int_{-\infty}^{\infty} \exp[-(1/2)(u - \sigma)^2] du / \sqrt{2\pi}$$

$$E(X) = \exp[(1/2)(\sigma^2 + 2\mu)]$$

The Second Moment of  $x$ ,  $E(X^2)$ , is given by

$$E(X^2) = \int_0^{\infty} x^2 \exp[-(1/2)(\ln x - \mu)^2 / \sigma^2] dx / [\sqrt{2\pi} \sigma x]$$

Again substituting

$$\begin{aligned} u &= (\ln x - \mu) / \sigma \\ du &= dx / (\sigma x) \\ \exp(\sigma u + \mu) &= x \end{aligned}$$

we obtain

$$E(X^2) = \int_{-\infty}^{\infty} \exp[2(\sigma u + \mu)] \exp[-(1/2)u^2] du / \sqrt{2\pi}$$

$$E(X^2) = \int_{-\infty}^{\infty} \exp[-(1/2)(u^2 - 4\sigma u - 4\mu)] du / \sqrt{2\pi}$$

$$E(X^2) = \int_{-\infty}^{\infty} \exp[-(1/2)(u^2 - 4\sigma u + 4\sigma^2 - 4\sigma^2 - 4\mu)] du / \sqrt{2\pi}$$

$$E(X^2) = \int_{-\infty}^{\infty} \exp[-(1/2)(u - 2\sigma)^2] \exp[2\sigma^2 + 2\mu] du / \sqrt{2\pi}$$

$$E(X^2) = \exp[2\sigma^2 + 2\mu] \int_{-\infty}^{\infty} \exp[-(1/2)(u - 2\sigma)^2] du / \sqrt{2\pi}$$

$$E(X^2) = \exp[2\sigma^2 + 2\mu]$$

The Variance of X is given by

$$\begin{aligned} \text{VAR}(X) &= E(X^2) - E^2(X) \\ &= \exp[2\sigma^2 + 2\mu] - \exp[\sigma^2 + 2\mu] \\ &= \{\exp[2\sigma^2] - \exp[\sigma^2]\} \exp[2\mu] \end{aligned}$$

The Mode of the distribution is obtained by finding the value of x which makes the derivative of the density function equal to zero. Setting

$$f'_X(x) = -\sqrt{2\pi} \{(\ln x - \mu) / \sigma + \sigma\} \exp[-(1/2)(\ln x - \mu)^2 / \sigma^2] = 0$$

we have for the mode at  $x^*$

$$(\ln x^* - \mu) / \sigma = -\sigma$$

or

$$x^* = \exp(\mu - \sigma^2)$$

The coefficient of variation is defined as the ratio of the standard deviation ( $\sqrt{\text{VAR}(X)}$ ) to the expected value ( $E(X)$ ). We are using it here as a standard deviation normalized by the mean. We illustrate in Figure A-1 the similarity of five different log-normal distributions which have the same coefficient of variation, but have with values of  $\exp(\mu)$  ranging from 5 to 9 in steps of one. The similarity between the resulting cumulative distributions is obvious. Though the  $\sigma$  parameter remains constant, the variance does not: it increases as  $\mu$  increases.

Using the multiplicative property of exponents, the square root of the variance becomes

$$\sqrt{\text{VAR}(X)} = \exp(\mu)[\exp(2\sigma^2) - \exp(\sigma^2)]^{(1/2)}$$

Expressing the expected value as a product of two exponential terms, we can rewrite it as

$$E(X) = \exp(\mu) \exp(\sigma^2/2) = \exp(\mu) [\exp(\sigma^2)]^{(1/2)}$$

The ratio of the two equations above yields for the coefficient of variation, cv,

$$\begin{aligned} \sqrt{\text{VAR}(X)/E(X)} &= \{ [\exp(2\sigma^2) - \exp(\sigma^2)] \exp(-\sigma^2) \}^{(1/2)} \\ &= [\exp(\sigma^2) - 1]^{(1/2)} = cv \end{aligned}$$

This equation can be turned around to provide a value for  $\sigma$  if the coefficient of variation is known.

$$\sigma = \sqrt{\ln(1+cv^2)}$$

This equation does not have an explicit dependence on  $\mu$ .

We note in Table A-1 the value of the log normal cumulative distribution function for several of the key values of  $x$ .



Figure A-1. Comparison of Log Normal Risk Distributions

**Table A-1**  
**Log-Normal Function Values**

| x                                  | $F_X(x)$          |
|------------------------------------|-------------------|
| $E(X) = \exp[\mu + (1/2)\sigma^2]$ | $\Phi(-\sigma/2)$ |
| $Mode(X) = \exp(\mu - \sigma^2)$   | $\Phi(-\sigma)$   |
| $\exp(\mu - 1.2801\sigma)$         | 0.10              |
| $\exp(\mu - 0.8391\sigma)$         | 0.20              |
| $\exp(\mu - 0.5216\sigma)$         | 0.30              |
| $\exp(\mu - 0.2513\sigma)$         | 0.40              |
| $\exp(\mu)$                        | 0.50              |
| $\exp(\mu + 0.8391\sigma)$         | 0.80              |
| $\exp(\mu + 1.6445\sigma)$         | 0.95              |
| $\exp(\mu + 2.3276\sigma)$         | 0.99              |

If I have two independent random variables with log-normal distributions, say  $X_1$  and  $X_2$ , and I want to determine the distribution of the sum of two log-normals,  $Z = X_1 + X_2$ , I could proceed with either the method of convolutions or of characteristic functions. However, since I could make neither of these methods yield tractable expressions, I have fallen back on the following approximation: I have assumed that the resulting distribution has a log-normal distribution with parameters  $\mu$  and  $\sigma$  determined from the distributions of the variables to be added together. I now need only to determine those values.

Since I have assumed that the distributions are independent, I know the following to be true

$$E(Z) = E(X_1) + E(X_2)$$

$$\text{VAR}(Z) = \text{VAR}(X_1) + \text{VAR}(X_2)$$

Since I have assumed that all distributions are log-normal, I also know the dependencies of each of these quantities on their respective parameters. Thus, for the sum of two log-normal distributions, I can write

$$E(Z) = \exp(\mu + (1/2)\sigma^2) = \exp(\mu_1 + (1/2)\sigma_1^2) + \exp(\mu_2 + (1/2)\sigma_2^2) = A$$

$$\begin{aligned}
 \text{VAR}(Z) &= \exp(2\mu)[\exp(2\sigma^2)-\exp(\sigma^2)] \\
 &= \exp(2\mu_1)[\exp(2\sigma_1^2)-\exp(\sigma_1^2)] \\
 &\quad + \exp(2\mu_2)[\exp(2\sigma_2^2)-\exp(\sigma_2^2)] \\
 &= \beta
 \end{aligned}$$

The subscripted variables are assumed known and fixed and thus the expressions yield constants, A and  $\beta$ , from which we must determine  $\mu$  and  $\sigma$ . We can write  $\sigma$  in terms of  $\mu$  by taking the logarithm of both sides of the first equation and manipulating the result:

$$\begin{aligned}
 \ln[\exp(\mu + (1/2)\sigma^2)] &= \ln[A] = \alpha \\
 \mu + (1/2)\sigma^2 &= \alpha \\
 \sigma^2 &= 2(\alpha - \mu)
 \end{aligned}$$

Substituting for  $\sigma^2$  in the expression for the variance of Z we obtain

$$\exp(2\mu) [\exp\{4(\alpha-\mu)\} - \exp\{2(\alpha-\mu)\}] = \beta$$

Multiplying through by the exponent outside the brackets on the left

$$\exp\{4\alpha-2\mu\} - \exp\{2\alpha\} = \beta$$

Taking the logarithm of both sides

$$\{4\alpha-2\mu\} = \ln(\beta + \exp\{2\alpha\})$$

Manipulating the resulting expression

$$\mu = (1/2)[4\alpha - \ln(\beta + \exp\{2\alpha\})]$$

With  $\mu$  known, we can also solve for  $\sigma$ .

We illustrate the quality of the approximation with several examples of distributions of sums of log-normals. Let us assume the two log-normal variables have distributions with the parameters given in Table A-2.

**Table A-2**  
**Parameter Values for First Example**

| Parameter  | X <sub>1</sub> | X <sub>2</sub>  |
|------------|----------------|-----------------|
| $\mu_i$    | ln8            | ln5             |
| $\sigma_i$ | 1              | 1               |
| E(X)       | 13.19          | 8.24            |
| VAR(X)     | 298.93         | 116.77          |
| A          |                | 21.43           |
| $\alpha$   |                | 3.06            |
| $\beta$    |                | 415.70          |
| $\mu$      |                | 2.743 = ln15.52 |
| $\sigma$   |                | 0.803           |

To test the quality of the approximation, we show in Figure A-2 the convolution of the two distributions (computed numerically) with the curve generated by the approximation. As it turns out, the approximation looks fair. This quality of fit suggests that there is something very much like a log-normal result to the convolution.

We tried a second example as well. The parameters are given in Table A-3. The two products, one a numerical convolution and the other the product of our approximation, are presented in Figure A-3. Again, the fit is very close.

**Table A-3**  
**Parameter Values for Second Example**

| Parameter  | X <sub>1</sub> | X <sub>2</sub>   |
|------------|----------------|------------------|
| $\mu_i$    | ln8            | ln5              |
| $\sigma_i$ | 0.50           | 0.50             |
| E(X)       | 9.06           | 5.67             |
| VAR(X)     | 23.34          | 9.12             |
| A          |                | 14.73            |
| $\alpha$   |                | 2.69             |
| $\beta$    |                | 32.46            |
| $\mu$      |                | 2.620 = ln13.739 |
| $\sigma$   |                | 0.373            |

Finally, in Table A-4, we present an example that approximates some of the values assumed for  $\sigma_i$  in the body of the report. In Figure A-4, we compare the approximation with the numerical convolution. The result is a perfect fit within the resolution of the graph.

**Table A-4**  
**Parameter Values for Third Example**

| Parameter  | X <sub>1</sub> | X <sub>2</sub>  |
|------------|----------------|-----------------|
| $\mu_i$    | ln8            | ln5             |
| $\sigma_i$ | 0.10           | 0.10            |
| E(X)       | 8.04           | 5.03            |
| VAR(X)     | 0.65           | 0.25            |
| A          |                | 13.06           |
| a          |                | 2.57            |
| $\beta$    |                | 0.90            |
| $\mu$      |                | 2.567 = ln13.03 |
| $\sigma$   |                | 0.077           |

The three examples given above suggest (and do no more than that) that our approximation is good enough for an estimate of the convolution of two log-normal distributions. When we are adding the results from several, we will assume that the approximation holds good. However, we could also assume that the sum of a large number of log-normal distributions will result in an approximately normal distribution by the central limit theorem.

The relationship between the log-normal and the normal distribution becomes apparent through the transformation

$$z = \ln x$$

By Ref A-2, we have that if

$$z = g(x)$$

then

$$f_z(z) = \sum f_x(x_i) / |g'(x_i)|$$

where  $x_i$  are all the real roots associated with the value of  $z$  and where  $g'(x)$  is the derivative of  $g(x)$  with respect to  $x$ .



Figure A-2. Comparison of Computer Convolution and Approximation for Third Example



Figure A-3. Comparison of Computer Convolution and Approximation for Second Example



Figure A-4. Comparison of Computer Convolution and Approximation for First Example

In our case, we have only one real root, namely,

$$\exp(z) = x$$

Noting that  $g'(x) = 1/x$  and that  $1/|g'(x)|$  is equal to  $x$ , we have

$$\begin{aligned}f_z(z) &= x f_x(\exp(z)) \\&= x \exp [-(1/2) (\ln(\exp(z)) - \mu)^2 / \sigma^2] / [\sqrt{(2\pi)} \sigma x] \\&= \exp[-(1/2)(z-\mu)^2 / \sigma^2] / \sqrt{(2\pi)} \sigma \quad -\infty \leq z \leq \infty\end{aligned}$$

As everyone will recognize, this is the normal distribution function. We also have

$$\begin{aligned}E(Z) &= \mu \\VAR(Z) &= \sigma^2 \\Mode(Z) &= \mu \\cv &= \sigma/\mu\end{aligned}$$

It should be noted that the parameters of the transformed normal density function are readily convertible into the parameters of the log-normal density function; however, the natures of the parameters are very different from one another.

List of References

- A-1. Parzen, E., Stochastic Processes, Holden-Day, San Fransisco, 1962
- A-2. Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw-Hill Book Company, New York, 1965

**Appendix B**

**Curve Fits to Input Data**

## Appendix B

### Curve Fits to Input Data

The following tables contain the data used in the calculations given in the report. Table B-1 presents the fitting parameters for the data taken from Figures 1 through 3 of the main body of the report. Table B-2 presents the data from Figure 1, the plot of probability versus system cost for the BSTS, and compares the curve fits for both the log-normal and the normal curve distributions. Table B-3 presents the same data for the SSTS and Table B-4 presents the same data for the SBI.

**Table B-1**  
**Curve Fit Parameters**

| System | Log-Normal |          | Normal |          |
|--------|------------|----------|--------|----------|
|        | $\mu$      | $\sigma$ | $\mu$  | $\sigma$ |
| BSTS   | ln(7.9)    | 0.12308  | 7.9    | 0.97241  |
| SSTS   | ln(8.7)    | 0.18352  | 8.7    | 1.5845   |
| SBI    | ln(14.33)  | 0.28108  | 14.33  | 3.99300  |

**Table B-2**  
**Curve Fit Data for BSTS**

| Probability | Cost | Log-Normal<br>Cost | Normal<br>Cost |
|-------------|------|--------------------|----------------|
| 0.00        | 6.59 | --                 | --             |
| 0.10        | 6.89 | 6.75               | 6.60           |
| 0.20        | 7.16 | 7.12               | 7.08           |
| 0.30        | 7.40 | 7.41               | 7.39           |
| 0.40        | 7.64 | 7.66               | 7.66           |
| 0.50        | 7.88 | 7.90               | 7.90           |
| 0.60        | 8.15 | 8.15               | 8.14           |
| 0.70        | 8.42 | 8.42               | 8.41           |
| 0.80        | 8.90 | 8.76               | 8.72           |
| 0.90        | 9.35 | 9.25               | 9.14           |

**Table B-3**  
**Curve Fit Data for SSTS**

| Probability | Cost  | Log-Normal Cost | Normal Cost |
|-------------|-------|-----------------|-------------|
| 0.00        | 6.00  | --              | --          |
| 0.10        | 6.84  | 6.88            | 6.67        |
| 0.20        | 7.35  | 7.46            | 7.37        |
| 0.30        | 7.83  | 7.91            | 7.87        |
| 0.40        | 8.22  | 8.31            | 8.30        |
| 0.50        | 8.70  | 8.70            | 8.70        |
| 0.60        | 9.06  | 9.11            | 9.10        |
| 0.70        | 9.50  | 9.57            | 9.53        |
| 0.80        | 10.05 | 10.15           | 10.03       |
| 0.90        | 10.80 | 11.00           | 10.73       |

**Table B-4**  
**Curve Fit Data for SBI**

| Probability | Cost  | Log-Normal Cost | Normal Cost |
|-------------|-------|-----------------|-------------|
| 0.05        | 9.10  | 9.03            | 7.77        |
| 0.10        | 10.00 | 10.00           | 9.22        |
| 0.20        | 11.20 | 11.32           | 10.98       |
| 0.30        | 12.30 | 12.38           | 12.25       |
| 0.35        | 12.95 | 12.87           | 12.80       |
| 0.40        | 13.50 | 13.35           | 13.33       |
| 0.50        | 14.33 | 14.33           | 14.33       |
| 0.60        | 15.50 | 15.38           | 15.34       |
| 0.70        | 16.90 | 16.60           | 16.42       |
| 0.80        | 18.30 | 18.14           | 17.68       |
| 0.90        | 20.20 | 20.54           | 19.44       |
| 0.95        | 21.50 | 22.75           | 20.90       |

## **Appendix C**

**RESULTS FOR LOG-NORMAL DISTRIBUTION FITS  
FOR DAB ARCHITECTURE  
ASSUMING INPUT DATA ARE 50% CONFIDENCE VALUES**

ACQUISITION COSTS FOR DAB ARCHITECTURE

| System | CV     | C50   | MU    | SIG   | R&D    | EX    | VARK |
|--------|--------|-------|-------|-------|--------|-------|------|
| BSTS   | 0.1236 | 5.40  | 1.686 | 0.123 | 5.441  | 0.452 |      |
| SSTS   | 0.1851 | 3.80  | 1.335 | 0.184 | 3.865  | 0.512 |      |
| SBI    | 0.2867 | 4.10  | 1.411 | 0.281 | 4.265  | 1.496 |      |
| GSTS   | 0.1851 | 1.30  | 0.262 | 0.184 | 1.322  | 0.060 |      |
| MGBR   | 0.1236 | 1.90  | 0.262 | 0.123 | 1.310  | 0.026 |      |
| ERIS   | 0.1236 | 2.40  | 0.675 | 0.123 | 2.418  | 0.089 |      |
| CCSOIF | 0.2867 | 4.00  | 1.386 | 0.281 | 4.161  | 1.423 |      |
| SEI    | 0.1236 | 3.70  | 1.308 | 0.123 | 3.728  | 0.212 |      |
| LCH    | 0.1236 | 3.40  | 1.224 | 0.123 | 3.426  | 0.179 |      |
|        |        |       |       |       |        |       |      |
|        |        |       |       |       |        |       |      |
| TOTALS |        | 29.40 |       |       | 29.936 | 4.449 |      |
|        |        |       |       |       | 3.399  |       |      |
|        |        |       |       |       | ALPHA  | BETA  |      |
|        |        |       |       |       |        |       |      |
|        |        |       |       |       | 3.397  | 0.070 |      |

ACQUISITION COSTS FOR DAB ARCHITECTURE

| System | C50   | MU    | SIG   | INV    | EX     | VARK |
|--------|-------|-------|-------|--------|--------|------|
| BSTS   | 2.60  | 0.956 | 0.123 | 2.620  | 0.105  |      |
| SSTS   | 5.40  | 1.686 | 0.184 | 5.492  | 1.033  |      |
| SBI    | 13.60 | 2.610 | 0.281 | 14.148 | 16.455 |      |
| GSTS   | 2.00  | 0.693 | 0.184 | 2.034  | 0.142  |      |
| MGBR   | 2.00  | 0.693 | 0.123 | 2.015  | 0.062  |      |
| ERIS   | 3.51  | 1.256 | 0.123 | 3.537  | 0.191  |      |
| CCSOIF | 3.30  | 1.194 | 0.281 | 3.433  | 0.969  |      |
| SEI    | 1.30  | 0.262 | 0.123 | 1.310  | 0.026  |      |
| LCH    | 5.20  | 1.649 | 0.123 | 5.240  | 0.419  |      |
|        |       |       |       |        |        |      |
|        |       |       |       |        |        |      |
| TOTALS | 38.91 |       |       | 39.826 | 19.402 |      |
|        |       |       |       | 3.685  |        |      |
|        |       |       |       | ALPHA  | BETA   |      |
|        |       |       |       |        |        |      |
|        |       |       |       | 3.678  | 0.110  |      |

## ACQUISITION COSTS FOR DAB ARCHITECTURE

-----TOTALS-----

| System | EX     | VARX   | PROB | COSTRD | COSTINV | COSTTOT |
|--------|--------|--------|------|--------|---------|---------|
| BSTS   | 8.061  | 0.557  | 0.1  | 27.29  | 34.38   | 63.64   |
| SSTS   | 9.356  | 1.545  | 0.2  | 28.15  | 36.09   | 65.63   |
| SBI    | 18.413 | 17.951 | 0.3  | 28.79  | 37.37   | 67.10   |
| GSTS   | 3.356  | 0.202  | 0.4  | 29.34  | 38.50   | 68.38   |
| MGBR   | 3.325  | 0.088  | 0.5  | 29.86  | 39.59   | 69.59   |
| ERIS   | 5.955  | 0.280  | 0.6  | 30.39  | 40.70   | 70.80   |
| CCSOIF | 7.594  | 2.392  | 0.7  | 30.98  | 41.93   | 72.18   |
| SEI    | 5.038  | 0.238  | 0.8  | 31.68  | 43.42   | 73.80   |
| LCH    | 8.665  | 0.598  | 0.9  | 32.68  | 45.59   | 76.11   |
| TOTALS | 69.764 | 23.851 |      |        |         |         |
|        | 4.245  |        |      |        |         |         |
|        | MU     | 4.2427 |      |        |         |         |
|        | SIG    | 0.0699 |      |        |         |         |

## PROGRAM COSTS FOR DAB ARCHITECTURE

| System | CV     | C50   | MU    | SIG   | EX     | VARK  |
|--------|--------|-------|-------|-------|--------|-------|
| BSTS   | 0.1236 | 5.40  | 1.686 | 0.123 | 5.441  | 0.452 |
| SSTS   | 0.1851 | 3.80  | 1.335 | 0.184 | 3.865  | 0.512 |
| SBI    | 0.2867 | 4.10  | 1.411 | 0.281 | 4.265  | 1.496 |
| GSTS   | 0.1851 | 1.30  | 0.262 | 0.184 | 1.322  | 0.060 |
| MGBR   | 0.1236 | 1.30  | 0.262 | 0.123 | 1.310  | 0.026 |
| ERIS   | 0.1236 | 2.40  | 0.875 | 0.123 | 2.418  | 0.089 |
| TGBR   | 0.1236 | 1.10  | 0.095 | 0.123 | 1.108  | 0.019 |
| HEDI   | 0.1236 | 1.50  | 0.405 | 0.123 | 1.511  | 0.035 |
| CCSOIF | 0.2867 | 4.25  | 1.447 | 0.281 | 4.421  | 1.607 |
| SEI    | 0.1236 | 4.11  | 1.413 | 0.123 | 4.141  | 0.262 |
| LCH    | 0.1236 | 3.40  | 1.224 | 0.123 | 3.426  | 0.179 |
| TOTALS |        | 32.66 |       |       | 33.229 | 4.736 |
|        |        |       |       |       | 3.503  |       |
|        |        |       |       |       | ALPHA  | BETA  |
|        |        |       |       | 3.501 | 0.065  |       |

## PROGRAM COSTS FOR DAB ARCHITECTURE

| System | C50   | MU    | SIG   | EX     | VARK   |
|--------|-------|-------|-------|--------|--------|
| BSTS   | 2.60  | 0.956 | 0.123 | 2.620  | 0.105  |
| SSTS   | 5.40  | 1.686 | 0.184 | 5.492  | 1.033  |
| SBI    | 13.60 | 2.610 | 0.281 | 14.148 | 16.455 |
| GSTS   | 2.00  | 0.693 | 0.184 | 2.034  | 0.142  |
| MGBR   | 2.00  | 0.693 | 0.123 | 2.015  | 0.062  |
| ERIS   | 3.51  | 1.256 | 0.123 | 3.537  | 0.191  |
| TGBR   | 0.00  | 0.000 | 0.000 | 0.000  | 0.000  |
| HEDI   | 0.00  | 0.000 | 0.000 | 0.000  | 0.000  |
| CCSOIF | 3.32  | 1.200 | 0.281 | 3.454  | 0.981  |
| SEI    | 1.30  | 0.262 | 0.123 | 1.310  | 0.026  |
| LCH    | 5.20  | 1.649 | 0.123 | 5.240  | 0.419  |

|-----  
| PROGRAM COSTS FOR DAB ARCHITECTURE  
|-----

|-----|-----TOTALS-----|

| System | EX     | VARM   | PROB | COSTRD | COSTINV | COSTTOT |
|--------|--------|--------|------|--------|---------|---------|
| BSTS   | 8.061  | 0.557  | 0.1  | 30.49  | 34.39   | 66.91   |
| SSTS   | 9.356  | 1.545  | 0.2  | 31.39  | 36.11   | 68.92   |
| SBI    | 18.413 | 17.951 | 0.3  | 32.05  | 37.39   | 70.40   |
| GSTS   | 3.356  | 0.202  | 0.4  | 32.62  | 38.52   | 71.69   |
| MGBR   | 3.325  | 0.088  | 0.5  | 33.16  | 39.61   | 72.91   |
| ERIS   | 5.955  | 0.280  | 0.6  | 33.71  | 40.72   | 74.15   |
| TGBR   | 1.108  | 0.019  | 0.7  | 34.31  | 41.95   | 75.51   |
| HEDI   | 1.511  | 0.035  |      |        |         |         |
| COSOIF | 7.875  | 2.588  | 0.8  | 35.03  | 43.45   | 77.14   |
| SEI    | 5.451  | 0.288  | 0.9  | 36.05  | 45.61   | 79.46   |
| LCH    | 8.665  | 0.598  |      |        |         |         |
| <br>   |        |        |      |        |         |         |
| <br>   |        |        |      |        |         |         |
| TOTALS | 73.078 | 24.149 |      |        |         |         |
|        | 4.292  |        |      |        |         |         |
|        |        |        |      |        |         |         |
|        | MU     | 4.2893 |      |        |         |         |
|        | SIG    | 0.0672 |      |        |         |         |

|-----|-----|

## **Appendix D**

### **RESULTS FOR LOG-NORMAL DISTRIBUTION FITS FOR DAB ARCHITECTURE ASSUMING INPUT DATA ARE EXPECTED VALUES**

ACQUISITION COSTS FOR DAB ARCHITECTURE

| System | CV     | E(X)  | MU    | SIG   | EX     | VARX  | R&D |
|--------|--------|-------|-------|-------|--------|-------|-----|
| BSTS   | 0.1236 | 5.40  | 1.679 | 0.123 | 5.400  | 0.445 |     |
| SSTS   | 0.1851 | 3.80  | 1.318 | 0.184 | 3.799  | 0.494 |     |
| SBI    | 0.2867 | 4.10  | 1.370 | 0.281 | 4.093  | 1.378 |     |
| GSTS   | 0.1851 | 1.30  | 0.245 | 0.184 | 1.300  | 0.058 |     |
| MGBR   | 0.1236 | 1.30  | 0.255 | 0.123 | 1.300  | 0.026 |     |
| ERIS   | 0.1236 | 2.40  | 0.868 | 0.123 | 2.400  | 0.088 |     |
| CCSOIF | 0.2867 | 4.00  | 1.345 | 0.281 | 3.994  | 1.311 |     |
| SEI    | 0.1236 | 3.70  | 1.301 | 0.123 | 3.700  | 0.209 |     |
| LCH    | 0.1236 | 3.40  | 1.216 | 0.123 | 3.400  | 0.176 |     |
| TOTALS |        | 29.40 |       |       | 29.385 | 4.185 |     |
|        |        |       |       |       | 3.380  |       |     |
|        |        |       |       |       | ALPHA  | BETA  |     |
|        |        |       | 3.378 | 0.070 |        |       |     |

ACQUISITION COSTS FOR DAB ARCHITECTURE

| System | EX    | MU    | SIG   | EX     | VARX   | INV |
|--------|-------|-------|-------|--------|--------|-----|
| BSTS   | 2.60  | 0.948 | 0.123 | 2.600  | 0.103  |     |
| SSTS   | 5.40  | 1.670 | 0.184 | 5.400  | 0.999  |     |
| SBI    | 13.60 | 2.571 | 0.281 | 13.600 | 15.205 |     |
| GSTS   | 2.00  | 0.676 | 0.184 | 2.000  | 0.137  |     |
| MGBR   | 2.00  | 0.686 | 0.123 | 2.000  | 0.061  |     |
| ERIS   | 3.51  | 1.248 | 0.123 | 3.510  | 0.188  |     |
| CCSOIF | 3.30  | 1.154 | 0.281 | 3.300  | 0.895  |     |
| SEI    | 1.30  | 0.255 | 0.123 | 1.300  | 0.026  |     |
| LCH    | 5.20  | 1.641 | 0.123 | 5.200  | 0.413  |     |
| TOTALS | 38.91 |       |       | 38.910 | 18.027 |     |
|        |       |       |       | 3.661  |        |     |
|        |       |       |       | ALPHA  | BETA   |     |
|        |       | 3.655 | 0.109 |        |        |     |

ACQUISTION COSTS FOR DAB ARCHITECTURE

| System | TOTALS |        | PROB | COSTRD | COSTINV | COSTTOT |
|--------|--------|--------|------|--------|---------|---------|
|        | EX     | VARX   |      |        |         |         |
| BSTS   | 8.000  | 0.548  |      |        |         |         |
| SSTS   | 9.199  | 1.493  | 0.1  | 26.82  | 33.65   | 62.38   |
| SBI    | 17.693 | 16.583 | 0.2  | 27.65  | 35.31   | 64.30   |
| GSTS   | 3.300  | 0.195  | 0.3  | 28.27  | 36.55   | 65.73   |
| MGBR   | 3.300  | 0.087  | 0.4  | 28.81  | 37.64   | 66.96   |
| ERIS   | 5.910  | 0.276  | 0.5  | 29.31  | 38.68   | 68.13   |
| CCSOIF | 7.294  | 2.206  | 0.6  | 29.83  | 39.75   | 69.32   |
| SEI    | 5.000  | 0.235  | 0.7  | 30.40  | 40.94   | 70.63   |
| LCH    | 8.600  | 0.589  | 0.8  | 31.07  | 42.38   | 72.19   |
|        |        |        | 0.9  | 32.04  | 44.46   | 74.42   |
| TOTALS | 68.295 | 22.212 |      |        |         |         |
|        |        | 4.224  |      |        |         |         |
|        | MU     | 4.2215 |      |        |         |         |
|        | SIG    | 0.0689 |      |        |         |         |

PROGRAM COSTS FOR DAB ARCHITECTURE

| System | CV     | EX    | MU    | SIG   | EX     | VARX  | R&D |
|--------|--------|-------|-------|-------|--------|-------|-----|
| BSTS   | 0.1236 | 5.40  | 1.679 | 0.123 | 5.400  | 0.445 |     |
| SSTS   | 0.1851 | 3.80  | 1.318 | 0.184 | 3.800  | 0.495 |     |
| SBI    | 0.2867 | 4.10  | 1.371 | 0.281 | 4.100  | 1.382 |     |
| GSTS   | 0.1851 | 1.30  | 0.246 | 0.184 | 1.300  | 0.058 |     |
| MGBR   | 0.1236 | 1.30  | 0.255 | 0.123 | 1.300  | 0.026 |     |
| ERIS   | 0.1236 | 2.40  | 0.868 | 0.123 | 2.400  | 0.088 |     |
| TGBR   | 0.1236 | 1.10  | 0.088 | 0.123 | 1.100  | 0.018 |     |
| HEDI   | 0.1236 | 1.50  | 0.398 | 0.123 | 1.500  | 0.034 |     |
| CCSOIF | 0.2867 | 4.25  | 1.407 | 0.281 | 4.250  | 1.485 |     |
| SEI    | 0.1236 | 4.11  | 1.406 | 0.123 | 4.110  | 0.258 |     |
| LCH    | 0.1236 | 3.40  | 1.216 | 0.123 | 3.400  | 0.176 |     |
|        |        |       |       |       |        |       |     |
| TOTALS |        | 32.66 |       |       | 32.660 | 4.465 |     |
|        |        |       |       |       | 3.486  |       |     |
|        |        |       |       |       | ALPHA  | BETA  |     |
|        |        |       |       | 3.484 | 0.065  |       |     |

PROGRAM COPROGRAM COSTS FOR DAB ARCHITECTURE

| System | EX    | MU    | SIG   | EX     | VARX   | INV |
|--------|-------|-------|-------|--------|--------|-----|
| BSTS   | 2.60  | 0.948 | 0.123 | 2.600  | 0.103  |     |
| SSTS   | 5.40  | 1.670 | 0.184 | 5.400  | 0.999  |     |
| SBI    | 13.60 | 2.571 | 0.281 | 13.600 | 15.205 |     |
| GSTS   | 2.00  | 0.676 | 0.184 | 2.000  | 0.137  |     |
| MGBR   | 1.80  | 0.580 | 0.123 | 1.800  | 0.049  |     |
| ERIS   | 3.51  | 1.248 | 0.123 | 3.510  | 0.188  |     |
| TGBR   | 0.00  | 0.000 | 0.000 | 0.000  | 0.000  |     |
| HEDI   | 0.00  | 0.000 | 0.000 | 0.000  | 0.000  |     |
| CCSOIF | 3.32  | 1.160 | 0.281 | 3.320  | 0.906  |     |
| SEI    | 1.30  | 0.255 | 0.123 | 1.300  | 0.026  |     |
| LCH    | 5.20  | 1.641 | 0.123 | 5.200  | 0.413  |     |
|        |       |       |       |        |        |     |
| TOTALS | 38.73 |       |       | 38.730 | 18.027 |     |
|        |       |       |       | 3.657  |        |     |
|        |       |       |       | ALPHA  | BETA   |     |
|        |       | 3.651 | 0.109 |        |        |     |

-----  
 PROGRAM COSTS FOR DAB ARCHITECTURE

| TOTALS     |        |        |        |        |         |         |  |
|------------|--------|--------|--------|--------|---------|---------|--|
| System     | EX     | VARX   | PROB   | COSTRD | COSTINV | COSTTOT |  |
| BSTS       | 8.000  | 0.548  | 0.1    | 30.00  | 33.47   | 65.43   |  |
| SSTS       | 9.200  | 1.494  | 0.2    | 30.87  | 35.13   | 67.38   |  |
| SBI        | 17.700 | 16.587 | 0.3    | 31.51  | 36.37   | 68.81   |  |
| GSTS       | 3.300  | 0.195  | 0.4    | 32.07  | 37.46   | 70.05   |  |
| MGBR       | 3.100  | 0.075  | 0.5    | 32.59  | 38.50   | 71.23   |  |
| ERIS       | 5.910  | 0.276  | 0.6    | 33.13  | 39.57   | 72.43   |  |
| TGBR       | 1.100  | 0.018  | 0.7    | 33.71  | 40.76   | 73.74   |  |
| HEDI       | 1.500  | 0.034  |        |        |         |         |  |
| CCSOIF     | 7.570  | 2.391  | 0.8    | 34.41  | 42.20   | 75.31   |  |
| SEI        | 5.410  | 0.284  | 0.9    | 35.40  | 44.28   | 77.55   |  |
| LCH        | 8.600  | 0.589  |        |        |         |         |  |
| <br>TOTALS |        | 71.390 | 22.492 |        |         |         |  |
|            |        | 4.268  |        |        |         |         |  |
|            |        | MU     | 4.2660 |        |         |         |  |
|            |        | SIG    | 0.0664 |        |         |         |  |

## **Appendix E**

### **RESULTS FOR NORMAL DISTRIBUTION FITS FOR DAB ARCHITECTURE ASSUMING INPUT DATA ARE EXPECTED VALUES**

ACQUISTION COSTS FOR DAB ARCHITECTURE

| System | CV     | C50   | EX     | VARX  |
|--------|--------|-------|--------|-------|
| BSTS   | 0.1231 | 5.40  | 5.400  | 0.442 |
| SSTS   | 0.1821 | 3.80  | 3.800  | 0.479 |
| SBI    | 0.2786 | 4.10  | 4.100  | 1.305 |
| GSTS   | 0.1821 | 1.30  | 1.300  | 0.056 |
| MGBR   | 0.1231 | 1.30  | 1.300  | 0.026 |
| ERIS   | 0.1231 | 2.40  | 2.400  | 0.087 |
| CCSOIF | 0.2786 | 4.00  | 4.000  | 1.242 |
| SEI    | 0.1231 | 3.70  | 3.700  | 0.207 |
| LCH    | 0.1231 | 3.40  | 3.400  | 0.175 |
| TOTALS |        | 29.40 | 29.400 | 2.005 |

ACQUISTION COSTS FOR DAB ARCHITECTURE

| System | C50   | EX     | VARX   |
|--------|-------|--------|--------|
| BSTS   | 2.60  | 2.600  | 0.102  |
| SSTS   | 5.40  | 5.400  | 0.967  |
| SBI    | 13.60 | 13.600 | 14.356 |
| GSTS   | 2.00  | 2.000  | 0.133  |
| MGBR   | 2.00  | 2.000  | 0.061  |
| ERIS   | 3.51  | 3.510  | 0.187  |
| CCSOIF | 3.30  | 3.300  | 0.845  |
| SEI    | 1.30  | 1.300  | 0.026  |
| LCH    | 5.20  | 5.200  | 0.410  |
| TOTALS | 38.91 | 38.910 | 4.134  |

ACQUISITION COSTS FOR DAB ARCHITECTURE

| TOTALS |        |         |  |      |        |         |         |
|--------|--------|---------|--|------|--------|---------|---------|
| System | EX     | VARX    |  | PROB | COSTRD | COSTINV | COSTTOT |
| BSTS   | 8.000  | 0.544   |  | 0.1  | 26.83  | 33.62   | 62.43   |
| SSTS   | 9.200  | 1.446   |  | 0.2  | 27.72  | 35.44   | 64.46   |
| SBI    | 17.700 | 15.661  |  | 0.3  | 28.35  | 36.75   | 65.91   |
| GSTS   | 3.300  | 0.189   |  | 0.4  | 28.90  | 37.87   | 67.16   |
| MGBR   | 3.300  | 0.086   |  | 0.5  | 29.40  | 38.91   | 68.31   |
| ERIS   | 5.910  | 0.274   |  | 0.6  | 29.90  | 39.95   | 69.46   |
| CCSOIF | 7.300  | 2.087   |  | 0.7  | 30.45  | 41.07   | 70.71   |
| SEI    | 5.000  | 0.233   |  | 0.8  | 31.08  | 42.38   | 72.16   |
| LCH    | 8.600  | 0.585   |  | 0.9  | 31.97  | 44.20   | 74.19   |
| TOTALS | 68.310 | 4.594   |  |      |        |         |         |
|        | MU     | 68.3100 |  |      |        |         |         |
|        | SIG    | 4.5940  |  |      |        |         |         |

PROGRAM COSTS FOR DAB ARCHITECTURE

| System | CV     | C50   | EX     | VARX  |
|--------|--------|-------|--------|-------|
| BSTS   | 0.1231 | 5.40  | 5.400  | 0.442 |
| SSTS   | 0.1821 | 3.80  | 3.800  | 0.479 |
| SBI    | 0.2786 | 4.10  | 4.100  | 1.305 |
| GSTS   | 0.1821 | 1.30  | 1.300  | 0.056 |
| MGBR   | 0.1231 | 1.30  | 1.300  | 0.026 |
| ERIS   | 0.1231 | 2.40  | 2.400  | 0.087 |
| TGBR   | 0.1231 | 1.10  | 1.100  | 0.018 |
| HEDI   | 0.1231 | 1.50  | 1.500  | 0.034 |
| CCSOIF | 0.2786 | 4.25  | 4.250  | 1.402 |
| SEI    | 0.1231 | 4.11  | 4.110  | 0.256 |
| LCH    | 0.1231 | 3.40  | 3.400  | 0.175 |
| TOTALS |        | 32.66 | 32.660 | 2.069 |

PROGRAM COPROGRAM COSTS FOR DAB ARCHIT

| System | C50   | EX     | VARX   |
|--------|-------|--------|--------|
| BSTS   | 2.60  | 2.600  | 0.102  |
| SSTS   | 5.40  | 5.400  | 0.967  |
| SBI    | 13.60 | 13.600 | 14.356 |
| GSTS   | 2.00  | 2.000  | 0.133  |
| MGBR   | 2.00  | 2.000  | 0.061  |
| ERIS   | 3.51  | 3.510  | 0.187  |
| TGBR   | 0.00  | 0.000  | 0.000  |
| HEDI   | 0.00  | 0.000  | 0.000  |
| CCSOIF | 3.32  | 3.320  | 0.856  |
| SEI    | 1.30  | 1.300  | 0.026  |
| LCH    | 5.20  | 5.200  | 0.410  |
| TOTALS | 38.93 | 38.930 | 4.135  |

PROGRAM COSTS FOR DAB ARCHITECTURE

| System | TOTALS |         | PROB | COSTRD | COSTINV | COSTTOT |
|--------|--------|---------|------|--------|---------|---------|
|        | EX     | VARX    |      |        |         |         |
| BSTS   | 8.000  | 0.544   |      |        |         |         |
| SSTS   | 9.200  | 1.446   | 0.1  | 30.01  | 33.64   | 65.67   |
| SBI    | 17.700 | 15.661  | 0.2  | 30.92  | 35.46   | 67.71   |
| GSTS   | 3.300  | 0.189   | 0.3  | 31.58  | 36.77   | 69.18   |
| MGBR   | 3.300  | 0.086   | 0.4  | 32.14  | 37.89   | 70.43   |
| ERIS   | 5.910  | 0.274   | 0.5  | 32.66  | 38.93   | 71.59   |
| TGBR   | 1.100  | 0.018   | 0.6  | 33.18  | 39.97   | 72.75   |
| HEDI   | 1.500  | 0.034   | 0.7  | 33.74  | 41.09   | 74.00   |
| CCSOIF | 7.570  | 2.258   | 0.8  | 34.40  | 42.40   | 75.47   |
| SEI    | 5.410  | 0.282   | 0.9  | 35.31  | 44.22   | 77.51   |
| LCH    | 8.600  | 0.585   |      |        |         |         |
| TOTALS | 71.590 | 4.623   |      |        |         |         |
|        | MU     | 71.5900 |      |        |         |         |
|        | SIG    | 4.6235  |      |        |         |         |

**Appendix F**

**SENSITIVITY TO RISK  
SPLIT BETWEEN PHASES  
FOR DAB ARCHITECTURE  
FOR NORMAL DISTRIBUTION FITS**

| ACQUISITION COSTS FOR DAB ARCHITECTURE |        |       |        |        |
|----------------------------------------|--------|-------|--------|--------|
| System                                 | CV     | C50   | EX     | VARK   |
| BSTS                                   | 0.1231 | 5.40  | 5.400  | 0.945  |
| SSTS                                   | 0.1821 | 3.80  | 3.800  | 2.292  |
| SBI                                    | 0.2786 | 4.10  | 4.100  | 10.941 |
| GSTS                                   | 0.1821 | 1.30  | 1.300  | 0.286  |
| MGBR                                   | 0.1231 | 1.30  | 1.300  | 0.131  |
| ERIS                                   | 0.1231 | 2.40  | 2.400  | 0.428  |
| CCSOIF                                 | 0.2786 | 4.00  | 4.000  | 3.845  |
| SEI                                    | 0.1231 | 3.70  | 3.700  | 0.374  |
| LCH                                    | 0.1231 | 3.40  | 3.400  | 0.690  |
| TOTALS                                 |        | 29.40 | 29.400 | 4.487  |

| ACQUISITION COSTS FOR DAB ARCHITECTURE |       |        |        |
|----------------------------------------|-------|--------|--------|
| System                                 | C50   | EX     | VARK   |
| BSTS                                   | 2.60  | 2.600  | 0.024  |
| SSTS                                   | 5.40  | 5.400  | 0.514  |
| SBI                                    | 13.60 | 13.600 | 13.376 |
| GSTS                                   | 2.00  | 2.000  | 0.075  |
| MGBR                                   | 2.00  | 2.000  | 0.034  |
| ERIS                                   | 3.51  | 3.510  | 0.102  |
| CCSOIF                                 | 3.30  | 3.300  | 0.291  |
| SEI                                    | 1.30  | 1.300  | 0.005  |
| LCH                                    | 5.20  | 5.200  | 0.231  |
| TOTALS                                 | 38.91 | 38.910 | 3.828  |



|-----|  
| PROGRAM COSTS FOR DAB ARCHITECTURE |  
|-----|

| System | CV     | C50   | EX     | VARM   |
|--------|--------|-------|--------|--------|
| BSTS   | 0.1231 | 5.40  | 5.400  | 0.945  |
| SSTS   | 0.1821 | 3.80  | 3.800  | 2.292  |
| SBI    | 0.2786 | 4.10  | 4.100  | 10.941 |
| GSTS   | 0.1821 | 1.30  | 1.300  | 0.286  |
| MGBR   | 0.1231 | 1.30  | 1.300  | 0.131  |
| ERIS   | 0.1231 | 2.40  | 2.400  | 0.428  |
| TGBR   | 0.1231 | 1.10  | 1.100  | 0.131  |
| HEDI   | 0.1231 | 1.50  | 1.500  | 0.428  |
| CCSOIF | 0.2786 | 4.25  | 4.250  | 4.165  |
| SEI    | 0.1231 | 4.11  | 4.110  | 0.439  |
| LCH    | 0.1231 | 3.40  | 3.400  | 0.690  |
|        |        |       |        |        |
| TOTALS |        | 32.66 | 32.660 | 4.591  |
|        |        |       |        |        |
|        |        |       |        |        |
|        |        |       |        |        |

|-----|  
| PROGRAM COSTS FOR DAB ARCHITECTURE |  
|-----|

| System | C50   | EX     | VARM   |
|--------|-------|--------|--------|
| BSTS   | 2.60  | 2.600  | 0.024  |
| SSTS   | 5.40  | 5.400  | 0.514  |
| SBI    | 13.60 | 13.600 | 13.376 |
| GSTS   | 2.00  | 2.000  | 0.075  |
| MGBR   | 2.00  | 2.000  | 0.034  |
| ERIS   | 3.51  | 3.510  | 0.102  |
| TGBR   | 0.00  | 0.000  | 0.000  |
| HEDI   | 0.00  | 0.000  | 0.000  |
| CCSOIF | 3.32  | 3.320  | 0.282  |
| SEI    | 1.30  | 1.300  | 0.005  |
| LCH    | 5.20  | 5.200  | 0.231  |
|        |       |        |        |
| TOTALS | 38.93 | 38.930 | 3.827  |
|        |       |        |        |
|        |       |        |        |
|        |       |        |        |

## |-----| PROGRAM COSTS FOR DAB ARCHITECTURE |-----|

## |-----| -----TOTALS----- |-----|

| System | EX     | VARX    |  |      |        |         |         |  |
|--------|--------|---------|--|------|--------|---------|---------|--|
| BSTS   | 8.000  | 0.970   |  | PROB | COSTRD | COSTINV | COSTTOT |  |
| SSTS   | 9.200  | 2.807   |  | 0.1  | 26.76  | 34.03   | 63.94   |  |
| SBI    | 17.700 | 24.317  |  | 0.2  | 28.81  | 35.72   | 66.53   |  |
| GSTS   | 3.300  | 0.361   |  | 0.3  | 30.27  | 36.93   | 68.47   |  |
| MGBR   | 3.300  | 0.165   |  | 0.4  | 31.51  | 37.97   | 70.09   |  |
| ERIS   | 5.910  | 0.529   |  | 0.5  | 32.66  | 38.93   | 71.59   |  |
| TGBR   | 1.100  | 0.131   |  | 0.6  | 33.81  | 39.89   | 73.09   |  |
| HEDI   | 1.500  | 0.428   |  | 0.7  | 35.05  | 40.93   | 74.71   |  |
| CCSOIF | 7.570  | 4.448   |  | 0.8  | 36.51  | 42.14   | 78.60   |  |
| SEI    | 5.410  | 0.444   |  | 0.9  | 38.54  | 43.83   | 79.24   |  |
| LCH    | 8.600  | 1.121   |  |      |        |         |         |  |
|        |        |         |  |      |        |         |         |  |
| TOTALS | 71.590 | 5.977   |  |      |        |         |         |  |
|        |        |         |  |      |        |         |         |  |
|        | MU     | 71.5900 |  |      |        |         |         |  |
|        | SIG    | 5.9766  |  |      |        |         |         |  |

**Appendix G**

**RESULTS FOR CORRELATED  
NORMAL DISTRIBUTION FITS  
FOR ALL ARCHITECTURES**

ACQUISITION COSTS FOR DAB ARCHITECTURE

| System | CV     | C50   | R&D             |                 |
|--------|--------|-------|-----------------|-----------------|
|        |        |       | EX              | VARX            |
| BSTS   | 0.1231 | 5.40  | 5.400           | 0.442           |
| SSTS   | 0.1821 | 3.80  | 3.800           | 0.479           |
| SBI    | 0.2786 | 4.10  | 4.100           | 1.305           |
| GSTS   | 0.1821 | 1.30  | 1.300           | 0.056           |
| MGBR   | 0.1231 | 1.30  | 1.300           | 0.026           |
| ERIS   | 0.1231 | 2.40  | 2.400           | 0.087           |
| CCSOIF | 0.2786 | 4.00  | 4.000           | 1.242           |
| SEI    | 0.1231 | 3.70  | 3.700           | 0.207           |
| LCH    | 0.1231 | 3.40  | 3.400           | 0.175           |
| TOTALS |        | 29.40 | 29.100<br>MUR&D | 2.005<br>SIGR&D |

ACQUISITION COSTS FOR DAB ARCHITECTURE

| System | C50   | INV             |                 |
|--------|-------|-----------------|-----------------|
|        |       | EX              | VARX            |
| BSTS   | 2.60  | 2.600           | 0.102           |
| SSTS   | 5.40  | 5.400           | 0.967           |
| SBI    | 13.60 | 13.600          | 14.356          |
| GSTS   | 2.00  | 2.000           | 0.133           |
| MGBR   | 2.00  | 2.000           | 0.061           |
| ERIS   | 3.51  | 3.510           | 0.187           |
| CCSOIF | 3.30  | 3.300           | 0.845           |
| SEI    | 1.30  | 1.300           | 0.026           |
| LCH    | 5.20  | 5.200           | 0.410           |
| TOTALS | 38.91 | 38.910<br>MUINV | 4.134<br>SIGINV |

ACQUISITION COSTS FOR DAB ARCHITECTURE

| System | TOTALS |         | Correlation between Phases |        |         | 0.50  |
|--------|--------|---------|----------------------------|--------|---------|-------|
|        | EX     | VARX    | PROB                       | COSTRD | COSTINV |       |
| BSTS   | 8.000  | 0.757   |                            |        |         |       |
| SSTS   | 9.200  | 2.126   | 0.1                        | 26.83  | 33.62   | 57.39 |
| SBI    | 17.700 | 19.989  | 0.2                        | 27.72  | 35.44   | 61.15 |
| GSTS   | 3.300  | 0.275   | 0.3                        | 28.35  | 36.75   | 63.86 |
| MGBR   | 3.300  | 0.126   | 0.4                        | 28.90  | 37.87   | 66.17 |
| ERIS   | 5.910  | 0.402   | 0.5                        | 29.40  | 38.91   | 68.31 |
| CCSOIF | 7.300  | 3.112   | 0.6                        | 29.90  | 39.95   | 70.45 |
| SEI    | 5.000  | 0.306   | 0.7                        | 30.45  | 41.07   | 72.76 |
| LCH    | 8.600  | 0.853   | 0.8                        | 31.08  | 42.38   | 75.47 |
|        |        |         | 0.9                        | 31.97  | 44.20   | 79.23 |
| TOTALS | 68.310 | 5.286   |                            |        |         |       |
|        | MU     | SIG     |                            |        |         |       |
|        | MU     | 68.3100 |                            |        |         |       |
|        | SIG    | 8.5294  |                            |        |         |       |

PROGRAM COSTS FOR DAB ARCHITECTURE

| System | CV     | C50   | EX     | R&D    | VARX |
|--------|--------|-------|--------|--------|------|
| BSTS   | 0.1231 | 5.40  | 5.400  | 0.442  |      |
| SSTS   | 0.1821 | 3.80  | 3.800  | 0.479  |      |
| SBI    | 0.2786 | 4.10  | 4.100  | 1.305  |      |
| GSTS   | 0.1821 | 1.30  | 1.300  | 0.056  |      |
| MGBR   | 0.1231 | 1.30  | 1.300  | 0.026  |      |
| ERIS   | 0.1231 | 2.40  | 2.400  | 0.087  |      |
| TGBR   | 0.1231 | 1.10  | 1.100  | 0.018  |      |
| HEDI   | 0.1231 | 1.50  | 1.500  | 0.034  |      |
| CCSOIF | 0.2786 | 4.25  | 4.250  | 1.402  |      |
| SEI    | 0.1231 | 4.11  | 4.110  | 0.256  |      |
| LCH    | 0.1231 | 3.40  | 3.400  | 0.175  |      |
| TOTALS |        | 32.66 | 32.660 | 2.069  |      |
|        |        |       | MUR&D  | SIGR&D |      |

PROGRAM COSTS FOR DAB ARCHITECTURE

| System | C50   | EX     | INV    | VARX |
|--------|-------|--------|--------|------|
| BSTS   | 2.60  | 2.600  | 0.102  |      |
| SSTS   | 5.40  | 5.400  | 0.967  |      |
| SBI    | 13.60 | 13.600 | 14.356 |      |
| GSTS   | 2.00  | 2.000  | 0.133  |      |
| MGBR   | 2.00  | 2.000  | 0.061  |      |
| ERIS   | 3.51  | 3.510  | 0.187  |      |
| TGBR   | 0.00  | 0.000  | 0.000  |      |
| HEDI   | 0.00  | 0.000  | 0.000  |      |
| CCSOIF | 3.32  | 3.320  | 0.856  |      |
| SEI    | 1.30  | 1.300  | 0.026  |      |
| LCH    | 5.20  | 5.200  | 0.410  |      |
| TOTALS | 38.93 | 38.930 | 4.135  |      |
|        |       | MUINV  | SIGINV |      |

PROGRAM COSTS FOR DAB ARCHITECTURE

| -----TOTALS----- |        |        |         |        |         |         |
|------------------|--------|--------|---------|--------|---------|---------|
| System           | EX     | VARX   | PROB    | COSTRD | COSTINV | COSTTOT |
| BSTS             | 8.000  | 0.757  |         |        |         |         |
| SSTS             | 9.200  | 2.126  | 0.1     | 30.01  | 33.64   | 59.72   |
| SBI              | 17.700 | 19.989 | 0.2     | 30.92  | 35.46   | 63.81   |
| GSTS             | 3.300  | 0.275  | 0.3     | 31.58  | 36.77   | 66.75   |
| MGBR             | 3.300  | 0.126  | 0.4     | 32.14  | 37.89   | 69.26   |
| ERIS             | 5.910  | 0.402  | 0.5     | 32.66  | 38.93   | 71.59   |
| TGBR             | 1.100  | 0.018  | 0.6     | 33.18  | 39.97   | 73.92   |
| HEDI             | 1.500  | 0.034  | 0.7     | 33.74  | 41.09   | 76.43   |
| CCSOIF           | 7.570  | 3.353  | 0.8     | 34.40  | 42.40   | 79.37   |
| SEI              | 5.410  | 0.363  | 0.9     | 35.31  | 44.22   | 83.46   |
| LCH              | 8.600  | 0.853  |         |        |         |         |
| TOTALS           |        | 71.590 | 5.319   |        |         |         |
|                  |        | MU     | SIG     |        |         |         |
|                  |        | MU     | 71.5900 |        |         |         |
|                  |        | SIG    | 9.2740  |        |         |         |

Correlation Between Phases      0.50

Correlation

Between ----- Acquisition Costs ----- Program Costs -----

| Programs | 20%   | 50%   | 80%   | 20%   | 50%   | 80%   |
|----------|-------|-------|-------|-------|-------|-------|
| 0.0      | 63.87 | 68.31 | 72.75 | 67.13 | 71.59 | 76.05 |
| 0.1      | 63.21 | 68.31 | 73.41 | 66.29 | 71.59 | 76.89 |
| 0.2      | 62.63 | 68.31 | 73.99 | 65.58 | 71.59 | 77.60 |
| 0.3      | 62.10 | 68.31 | 74.52 | 64.93 | 71.59 | 78.25 |
| 0.4      | 61.61 | 68.31 | 75.01 | 64.35 | 71.59 | 78.83 |
| 0.5      | 61.15 | 68.31 | 75.47 | 63.81 | 71.59 | 79.37 |
| 0.6      | 60.73 | 68.31 | 75.89 | 63.30 | 71.59 | 79.88 |
| 0.7      | 60.32 | 68.31 | 76.30 | 62.83 | 71.59 | 80.35 |
| 0.8      | 59.93 | 68.31 | 76.69 | 62.37 | 71.59 | 80.81 |
| 0.9      | 59.57 | 68.31 | 77.05 | 61.94 | 71.59 | 81.24 |
| 1.0      | 59.21 | 68.31 | 77.41 | 61.53 | 71.59 | 81.65 |

ACQUISITION COSTS FOR ERIS ARCHITECTURE

| System | CV     | R&D   |        |        |
|--------|--------|-------|--------|--------|
|        |        | C50   | EX     | VARX   |
| BSTS   | 0.1231 | 5.40  | 5.400  | 0.442  |
| SSTS   | 0.1821 | 3.80  | 3.800  | 0.479  |
| GSTS   | 0.1821 | 1.30  | 1.300  | 0.056  |
| MGBR   | 0.1231 | 1.30  | 1.300  | 0.026  |
| ERIS   | 0.1231 | 2.40  | 2.400  | 0.087  |
| CCSOIF | 0.2786 | 3.98  | 3.980  | 1.229  |
| SEI    | 0.1231 | 2.81  | 2.810  | 0.120  |
| LCH    | 0.1231 | 1.30  | 1.300  | 0.026  |
| TOTALS |        | 22.29 | 22.290 | 1.570  |
|        |        |       | MUR&D  | SIGR&D |

ACQUISITION COSTS FOR ERIS ARCHITECTURE

| System | C50   | INV    |        |
|--------|-------|--------|--------|
|        |       | EX     | VARX   |
| BSTS   | 2.60  | 2.600  | 0.102  |
| SSTS   | 4.32  | 4.320  | 0.619  |
| GSTS   | 2.75  | 2.750  | 0.251  |
| MGBR   | 2.00  | 2.000  | 0.061  |
| ERIS   | 6.02  | 6.020  | 0.549  |
| CCSOIF | 3.90  | 3.900  | 1.181  |
| SEI    | 0.82  | 0.820  | 0.010  |
| LCH    | 1.60  | 1.600  | 0.039  |
| TOTALS | 24.01 | 24.010 | 1.677  |
|        |       | MUINV  | SIGINV |

ACQUISITION COSTS FOR ERIS ARCHITECTURE

| System | TOTALS |         | Correlation between Phases |        |         | 0.50  |
|--------|--------|---------|----------------------------|--------|---------|-------|
|        | EX     | VARX    | PROB                       | COSTRD | COSTINV |       |
| BSTS   | 8.000  | 0.757   |                            |        |         |       |
| SSTS   | 8.120  | 1.642   | 0.1                        | 20.28  | 21.86   | 39.86 |
| GSTS   | 4.050  | 0.425   | 0.2                        | 20.97  | 22.60   | 42.08 |
| MGBR   | 3.300  | 0.126   | 0.3                        | 21.47  | 23.14   | 43.68 |
| ERIS   | 8.420  | 0.855   | 0.4                        | 21.90  | 23.59   | 45.04 |
| CCSOIF | 7.880  | 3.615   | 0.5                        | 22.29  | 24.01   | 46.30 |
| SEI    | 3.630  | 0.165   | 0.6                        | 22.68  | 24.43   | 47.56 |
| LCH    | 2.900  | 0.096   | 0.7                        | 23.11  | 24.88   | 48.92 |
|        |        |         | 0.8                        | 23.61  | 25.42   | 50.52 |
|        |        |         | 0.9                        | 24.30  | 26.16   | 52.74 |
| TOTALS | 46.300 | 2.771   |                            |        |         |       |
|        | MU     | SIG     |                            |        |         |       |
|        | MU     | 46.3000 |                            |        |         |       |
|        | SIG    | 5.0295  |                            |        |         |       |

PROGRAM COSTS FOR ERIS ARCHITECTURE

| System        | CV     | C50          | EX            | R&D          | VARX |
|---------------|--------|--------------|---------------|--------------|------|
| BSTS          | 0.1231 | 5.40         | 5.400         | 0.442        |      |
| SSTS          | 0.1821 | 3.80         | 3.800         | 0.479        |      |
| SBI           | 0.2786 | 4.10         | 4.100         | 1.305        |      |
| GSTS          | 0.1821 | 1.30         | 1.300         | 0.056        |      |
| MGBR          | 0.1231 | 1.30         | 1.300         | 0.026        |      |
| ERIS          | 0.1231 | 2.40         | 2.400         | 0.087        |      |
| TGBR          | 0.1231 | 1.10         | 1.100         | 0.018        |      |
| HEDI          | 0.1231 | 1.50         | 1.500         | 0.034        |      |
| CCSOIF        | 0.2786 | 4.25         | 4.250         | 1.402        |      |
| SEI           | 0.1231 | 4.11         | 4.110         | 0.256        |      |
| LCH           | 0.1231 | 3.40         | 3.400         | 0.175        |      |
| <b>TOTALS</b> |        | <b>32.66</b> | <b>32.660</b> | <b>2.069</b> |      |
|               |        |              | MUR&D         | SIGR&D       |      |

PROGRAM COSTS FOR ERIS ARCHITECTURE

| System        | C50          | EX            | INV          | VARX |
|---------------|--------------|---------------|--------------|------|
| BSTS          | 2.60         | 2.600         | 0.102        |      |
| SSTS          | 4.32         | 4.320         | 0.619        |      |
| SBI           | 0.00         | 0.000         | 0.000        |      |
| GSTS          | 2.75         | 2.750         | 0.251        |      |
| MGBR          | 2.00         | 2.000         | 0.061        |      |
| ERIS          | 6.02         | 6.020         | 0.549        |      |
| TGBR          | 0.00         | 0.000         | 0.000        |      |
| HEDI          | 0.00         | 0.000         | 0.000        |      |
| CCSOIF        | 3.90         | 3.900         | 1.181        |      |
| SEI           | 0.82         | 0.820         | 0.010        |      |
| LCH           | 1.00         | 1.600         | 0.039        |      |
| <b>TOTALS</b> | <b>24.01</b> | <b>24.010</b> | <b>1.677</b> |      |
|               |              | MUINV         | SIGINV       |      |

-----  
 PROGRAM COSTS FOR ERIS ARCHITECTURE

| -----TOTALS----- |       |        |         |        |         |         |
|------------------|-------|--------|---------|--------|---------|---------|
| System           | EX    | VARX   | PROB    | COSTRD | COSTINV | COSTTOT |
| BSTS             | 8.000 | 0.757  | 0.1     | 30.01  | 21.86   | 48.38   |
| SSTS             | 8.120 | 1.642  | 0.2     | 30.92  | 22.60   | 51.23   |
| SBI              | 4.100 | 1.305  | 0.3     | 31.58  | 23.14   | 53.29   |
| GSTS             | 4.050 | 0.425  | 0.4     | 32.14  | 23.59   | 55.04   |
| MGBR             | 3.300 | 0.126  | 0.5     | 32.66  | 24.01   | 56.67   |
| ERIS             | 8.420 | 0.855  | 0.6     | 33.18  | 24.43   | 58.30   |
| TGBR             | 1.100 | 0.018  | 0.7     | 33.74  | 24.88   | 60.05   |
| HEDI             | 1.500 | 0.034  | 0.8     | 34.40  | 25.42   | 62.11   |
| CCSOIF           | 8.150 | 3.869  | 0.9     | 35.31  | 26.16   | 64.96   |
| SEI              | 4.930 | 0.317  |         |        |         |         |
| LCH              | 5.000 | 0.296  |         |        |         |         |
| <br>TOTALS       |       | 56.670 | 3.106   |        |         |         |
|                  |       | MU     | SIG     |        |         |         |
|                  |       | MU     | 56.6700 |        |         |         |
|                  |       | SIG    | 6.4788  |        |         |         |

Correlation Between Phases      0.50

Correlation

| Between Programs | Acquisition Costs |      |       | Program Costs |       |       |
|------------------|-------------------|------|-------|---------------|-------|-------|
|                  | 20%               | 50%  | 80%   | 20%           | 50%   | 80%   |
| 0.0              | 43.97             | 46.3 | 48.63 | 54.06         | 56.67 | 59.28 |
| 0.1              | 43.49             | 46.3 | 49.11 | 53.30         | 56.67 | 60.04 |
| 0.2              | 43.08             | 46.3 | 49.52 | 52.68         | 56.67 | 60.66 |
| 0.3              | 42.72             | 46.3 | 49.88 | 52.15         | 56.67 | 61.19 |
| 0.4              | 42.38             | 46.3 | 50.22 | 51.67         | 56.67 | 61.67 |
| 0.5              | 42.08             | 46.3 | 50.52 | 51.23         | 56.67 | 62.11 |
| 0.6              | 41.80             | 46.3 | 50.80 | 50.83         | 56.67 | 62.51 |
| 0.7              | 41.53             | 46.3 | 51.07 | 50.45         | 56.67 | 62.89 |
| 0.8              | 41.27             | 46.3 | 51.33 | 50.10         | 56.67 | 63.24 |
| 0.9              | 41.03             | 46.3 | 51.57 | 49.76         | 56.67 | 63.58 |
| 1.0              | 40.80             | 46.3 | 51.80 | 49.44         | 56.67 | 63.90 |

ACQUISITION COSTS FOR ERIS/HEDI ARCHITECTURE

| System        | CV     | R&D   |        |        |
|---------------|--------|-------|--------|--------|
|               |        | C50   | EX     | VARX   |
| BSTS          | 0.1231 | 5.40  | 5.400  | 0.442  |
| SSTS          | 0.1821 | 3.80  | 3.800  | 0.479  |
| GSTS          | 0.1821 | 1.30  | 1.300  | 0.056  |
| MGBR          | 0.1231 | 1.30  | 1.300  | 0.026  |
| ERIS          | 0.1231 | 2.40  | 2.400  | 0.087  |
| TGBR          | 0.1231 | 1.10  | 1.100  | 0.018  |
| HEDI          | 0.1231 | 1.50  | 1.500  | 0.034  |
| CCSOIF        | 0.2786 | 4.23  | 4.230  | 1.389  |
| SEI           | 0.1231 | 3.22  | 3.220  | 0.157  |
| LCH           | 0.1231 | 1.30  | 1.300  | 0.026  |
| <b>TOTALS</b> |        | 25.55 | 25.550 | 1.647  |
|               |        |       | MUR&D  | SIGR&D |

ACQUISITION COSTS FOR ERIS/HEDI ARCHIT

| System        | C50  | INV   |        |
|---------------|------|-------|--------|
|               |      | EX    | VARX   |
| BSTS          | 2.60 | 2.600 | 0.102  |
| SSTS          | 4.32 | 4.320 | 0.619  |
| GSTS          | 2.75 | 2.750 | 0.251  |
| MGBR          | 2.00 | 2.000 | 0.061  |
| ERIS          | 5.08 | 5.080 | 0.391  |
| TGBR          | 6.16 | 6.160 | 0.575  |
| HEDI          | 5.86 | 5.860 | 0.520  |
| CCSOIF        | 5.93 | 5.930 | 2.729  |
| SEI           | 1.26 | 1.260 | 0.024  |
| LCH           | 1.60 | 1.600 | 0.039  |
| <b>TOTALS</b> |      | 37.56 | 2.305  |
|               |      | MUINV | SIGINV |

ACQUISITION COSTS FOR ERIS/HEDI ARCHITECTURE

| System     | TOTALS |        | Correlation between Phases |        |         |         | 0.50 |
|------------|--------|--------|----------------------------|--------|---------|---------|------|
|            | EX     | VARX   | PROB                       | COSTRD | COSTINV | COSTTOT |      |
| BSTS       | 8.000  | 0.757  |                            |        |         |         |      |
| SSTS       | 8.120  | 1.642  | 0.1                        | 23.44  | 34.61   | 55.75   |      |
| GSTS       | 4.050  | 0.425  | 0.2                        | 24.17  | 35.63   | 58.29   |      |
| MGBR       | 3.300  | 0.126  | 0.3                        | 24.69  | 36.36   | 60.11   |      |
| ERIS       | 7.480  | 0.663  | 0.4                        | 25.14  | 36.98   | 61.67   |      |
| TGBR       | 7.260  | 0.696  | 0.5                        | 25.55  | 37.56   | 63.11   |      |
| HEDI       | 7.360  | 0.688  | 0.6                        | 25.96  | 38.14   | 64.55   |      |
| CCSOIF     | 10.160 | 6.065  | 0.7                        | 26.41  | 38.76   | 66.11   |      |
| SEI        | 4.480  | 0.243  | 0.8                        | 26.93  | 39.49   | 67.93   |      |
| LCH        | 2.900  | 0.096  | 0.9                        | 27.66  | 40.51   | 70.47   |      |
| <br>TOTALS |        | 63.110 | 3.376                      |        |         |         |      |
|            |        | MU     | SIG                        |        |         |         |      |
|            |        | MU     | 63.1100                    |        |         |         |      |
|            |        | SIG    | 5.7460                     |        |         |         |      |

PROGRAM COSTS FOR ERIS/HEDI ARCHITECTURE

| System        | CV     | C50          | R&D           |              |
|---------------|--------|--------------|---------------|--------------|
|               |        |              | EX            | VARX         |
| BSTS          | 0.1231 | 5.40         | 5.400         | 0.442        |
| SSTS          | 0.1821 | 3.80         | 3.800         | 0.479        |
| SBI           | 0.2786 | 4.10         | 4.100         | 1.305        |
| GSTS          | 0.1821 | 1.30         | 1.300         | 0.056        |
| MGBR          | 0.1231 | 1.30         | 1.300         | 0.026        |
| ERIS          | 0.1231 | 2.40         | 2.400         | 0.087        |
| TGBR          | 0.1231 | 1.10         | 1.100         | 0.018        |
| HEDI          | 0.1231 | 1.50         | 1.500         | 0.034        |
| CCSOIF        | 0.2786 | 4.25         | 4.250         | 1.402        |
| SEI           | 0.1231 | 4.11         | 4.110         | 0.256        |
| LCH           | 0.1231 | 3.40         | 3.400         | 0.175        |
| <br>          |        |              |               |              |
| <b>TOTALS</b> |        | <b>32.66</b> | <b>32.660</b> | <b>2.069</b> |
|               |        |              | MUR&D         | SIGR&D       |

PROGRAM COSTS FOR ERIS/HEDI ARCHITECTURE

| System        | C50          | INV           |              |
|---------------|--------------|---------------|--------------|
|               |              | EX            | VARX         |
| BSTS          | 2.60         | 2.600         | 0.102        |
| SSTS          | 4.32         | 4.320         | 0.619        |
| SBI           | 0.00         | 0.000         | 0.000        |
| GSTS          | 2.75         | 2.750         | 0.251        |
| MGBR          | 2.00         | 2.000         | 0.061        |
| ERIS          | 5.08         | 5.080         | 0.391        |
| TGBR          | 6.16         | 6.160         | 0.575        |
| HEDI          | 5.86         | 5.860         | 0.520        |
| CCSOIF        | 5.93         | 5.930         | 2.729        |
| SEI           | 1.26         | 1.260         | 0.024        |
| LCH           | 1.60         | 1.600         | 0.039        |
| <br>          |              |               |              |
| <b>TOTALS</b> | <b>37.56</b> | <b>37.560</b> | <b>2.305</b> |
|               |              | MUINV         | SIGINV       |

PROGRAM COSTS FOR ERIS/HEDI ARCHITECTURE

| TOTALS |        |        |         |      |        |         |         |
|--------|--------|--------|---------|------|--------|---------|---------|
| System | EX     | VARX   |         | PROB | COSTRD | COSTINV | COSTTOT |
| BSTS   | 8.000  | 0.757  |         | 0.1  | 30.01  | 34.61   | 60.26   |
| SSTS   | 8.120  | 1.642  |         | 0.2  | 30.92  | 35.63   | 63.69   |
| SBI    | 4.100  | 1.305  |         | 0.3  | 31.58  | 36.36   | 66.16   |
| GSTS   | 4.050  | 0.425  |         | 0.4  | 32.14  | 36.98   | 68.27   |
| MGBR   | 3.300  | 0.126  |         | 0.5  | 32.66  | 37.56   | 70.22   |
| ERIS   | 7.480  | 0.663  |         | 0.6  | 33.18  | 38.14   | 72.17   |
| TGBR   | 7.260  | 0.696  |         | 0.7  | 33.74  | 38.76   | 74.28   |
| HEDI   | 7.360  | 0.688  |         | 0.8  | 34.40  | 39.49   | 76.75   |
| CCSOIF | 10.180 | 6.088  |         | 0.9  | 35.31  | 40.51   | 80.18   |
| SEI    | 5.370  | 0.359  |         |      |        |         |         |
| LCH    | 5.000  | 0.296  |         |      |        |         |         |
| TOTALS |        | 70.220 | 3.612   |      |        |         |         |
|        |        | MU     | SIG     |      |        |         |         |
|        |        | MU     | 70.2200 |      |        |         |         |
|        |        | SIG    | 7.7772  |      |        |         |         |

Correlation Between Phases      0.50

Correlation

| Between  | Acquisition Costs |       |       | Program Costs |       |       |
|----------|-------------------|-------|-------|---------------|-------|-------|
| Programs | 20%               | 50%   | 80%   | 20%           | 50%   | 80%   |
| 0.0      | 60.29             | 63.11 | 65.93 | 67.19         | 70.22 | 73.25 |
| 0.1      | 59.79             | 63.11 | 66.43 | 66.24         | 70.22 | 74.20 |
| 0.2      | 59.36             | 63.11 | 66.86 | 65.47         | 70.22 | 74.97 |
| 0.3      | 58.97             | 63.11 | 67.25 | 64.81         | 70.22 | 75.63 |
| 0.4      | 58.62             | 63.11 | 67.60 | 64.23         | 70.22 | 76.21 |
| 0.5      | 58.29             | 63.11 | 67.93 | 63.69         | 70.22 | 76.75 |
| 0.6      | 57.98             | 63.11 | 68.24 | 63.20         | 70.22 | 77.24 |
| 0.7      | 57.69             | 63.11 | 68.53 | 62.74         | 70.22 | 77.70 |
| 0.8      | 57.42             | 63.11 | 68.80 | 62.31         | 70.22 | 78.13 |
| 0.9      | 57.15             | 63.11 | 69.07 | 61.89         | 70.22 | 78.55 |
| 1.0      | 56.90             | 63.11 | 69.32 | 61.50         | 70.22 | 78.94 |

ACQUISITION COSTS FOR BP ARCHITECTURE

|        |        | R&D   |        |        |
|--------|--------|-------|--------|--------|
| System | CV     | C50   | EX     | VARX   |
| BSTS   | 0.1231 | 5.40  | 5.400  | 0.442  |
| SSTS   | 0.1821 | 3.80  | 3.800  | 0.479  |
| SBI    | 0.2786 | 3.50  | 3.500  | 0.951  |
| CCSOIF | 0.2786 | 3.52  | 3.520  | 0.962  |
| SEI    | 0.1231 | 2.83  | 2.830  | 0.121  |
| LCH    | 0.1231 | 3.40  | 3.400  | 0.175  |
| TOTALS |        | 22.45 | 22.450 | 1.769  |
|        |        |       | MUR&D  | SIGR&D |

ACQUISITION COSTS FOR BP ARCHITECTURE

|        |       | INV    |        |  |
|--------|-------|--------|--------|--|
| System | C50   | EX     | VARX   |  |
| BSTS   | 2.60  | 2.600  | 0.102  |  |
| SSTS   | 4.32  | 4.320  | 0.619  |  |
| SBI    | 1.10  | 1.100  | 0.094  |  |
| CCSOIF | 1.97  | 1.970  | 0.301  |  |
| SEI    | 0.55  | 0.550  | 0.005  |  |
| LCH    | 4.91  | 4.910  | 0.365  |  |
| TOTALS | 15.45 | 15.450 | 1.219  |  |
|        |       | MUINV  | SIGINV |  |

ACQUISITION COSTS FOR BP ARCHITECTURE

| TOTALS |        | Correlation between Phases |      |        |         | 0.50    |
|--------|--------|----------------------------|------|--------|---------|---------|
| System | EX     | VARX                       | PROB | COSTRD | COSTINV | COSTTOT |
| BSTS   | 8.000  | 0.757                      | 0.1  | 20.19  | 13.89   | 32.06   |
| SSTS   | 8.120  | 1.642                      | 0.2  | 20.97  | 14.43   | 34.07   |
| SBI    | 4.600  | 1.344                      | 0.3  | 21.53  | 14.81   | 35.52   |
| CCSOIF | 5.490  | 1.801                      | 0.4  | 22.01  | 15.14   | 36.75   |
| SEI    | 3.380  | 0.150                      | 0.5  | 22.45  | 15.45   | 37.90   |
| LCH    | 8.310  | 0.793                      | 0.6  | 22.89  | 15.76   | 39.05   |
|        |        |                            | 0.7  | 23.37  | 16.09   | 40.28   |
|        |        |                            | 0.8  | 23.93  | 16.47   | 41.73   |
|        |        |                            | 0.9  | 24.71  | 17.01   | 43.74   |
| TOTALS | 37.900 | 2.547                      |      |        |         |         |
|        | MU     | SIG                        |      |        |         |         |
|        | MU     | 37.9000                    |      |        |         |         |
|        | SIG    | 4.5637                     |      |        |         |         |

PROGRAM COSTS FOR BP ARCHITECTURE

| System | CV     | C50   | EX     | VARX   | R&D |
|--------|--------|-------|--------|--------|-----|
| BSTS   | 0.1231 | 5.40  | 5.400  | 0.442  |     |
| SSTS   | 0.1821 | 3.80  | 3.800  | 0.479  |     |
| SBI    | 0.2786 | 3.50  | 3.500  | 0.951  |     |
| GSTS   | 0.1821 | 1.30  | 1.300  | 0.056  |     |
| MGBR   | 0.1231 | 1.30  | 1.300  | 0.026  |     |
| ERIS   | 0.1231 | 2.40  | 2.400  | 0.087  |     |
| TGBR   | 0.1231 | 1.10  | 1.100  | 0.018  |     |
| HEDI   | 0.1231 | 1.50  | 1.500  | 0.034  |     |
| CCSOIF | 0.2786 | 4.25  | 4.250  | 1.402  |     |
| SEI    | 0.1231 | 4.11  | 4.110  | 0.256  |     |
| LCH    | 0.1231 | 3.40  | 3.400  | 0.175  |     |
| TOTALS |        | 32.06 | 32.060 | 1.981  |     |
|        |        |       | MUR&D  | SIGR&D |     |

PROGRAM COSTS FOR BP ARCHITECTURE

| System | C50   | EX     | VARX   | INV |
|--------|-------|--------|--------|-----|
| BSTS   | 2.60  | 2.600  | 0.102  |     |
| SSTS   | 4.32  | 4.320  | 0.619  |     |
| SBI    | 1.10  | 1.100  | 0.094  |     |
| GSTS   | 0.00  | 0.000  | 0.000  |     |
| MGBR   | 0.00  | 0.000  | 0.000  |     |
| ERIS   | 0.00  | 0.000  | 0.000  |     |
| TGBR   | 0.00  | 0.000  | 0.000  |     |
| HEDI   | 0.00  | 0.000  | 0.000  |     |
| CCSOIF | 1.97  | 1.970  | 0.301  |     |
| SEI    | 0.55  | 0.550  | 0.005  |     |
| LCH    | 4.91  | 4.910  | 0.365  |     |
| TOTALS | 15.45 | 15.450 | 1.219  |     |
|        |       | MUINV  | SIGINV |     |

PROGRAM COSTS FOR BP ARCHITECTURE

| TOTALS |       |        |         |      |        |         |         |
|--------|-------|--------|---------|------|--------|---------|---------|
| System | EX    | VARX   |         | PROB | COSTRD | COSTINV | COSTTOT |
| BSTS   | 8.000 | 0.757  |         | 0.1  | 29.52  | 13.89   | 40.47   |
| SSTS   | 8.120 | 1.642  |         | 0.2  | 30.40  | 14.43   | 42.89   |
| SBI    | 4.600 | 1.344  |         | 0.3  | 31.03  | 14.81   | 44.64   |
| GSTS   | 1.300 | 0.056  |         | 0.4  | 31.56  | 15.14   | 46.13   |
| MGBR   | 1.300 | 0.026  |         | 0.5  | 32.06  | 15.45   | 47.51   |
| ERIS   | 2.400 | 0.087  |         | 0.6  | 32.56  | 15.76   | 48.89   |
| TGBR   | 1.100 | 0.018  |         | 0.7  | 33.09  | 16.09   | 50.38   |
| HEDI   | 1.500 | 0.034  |         | 0.8  | 33.72  | 16.47   | 52.13   |
| CCSOIF | 6.220 | 2.353  |         | 0.9  | 34.60  | 17.01   | 54.55   |
| SEI    | 4.660 | 0.295  |         |      |        |         |         |
| LCH    | 8.310 | 0.793  |         |      |        |         |         |
| TOTALS |       | 47.510 | 2.721   |      |        |         |         |
|        |       | MU     | SIG     |      |        |         |         |
|        |       | MU     | 47.5100 |      |        |         |         |
|        |       | SIG    | 5.5027  |      |        |         |         |

Correlation Between Phases      0.50

Correlation

| Between Programs | Acquisition Costs |      |       | Program Costs |       |       |
|------------------|-------------------|------|-------|---------------|-------|-------|
|                  | 20%               | 50%  | 80%   | 20%           | 50%   | 80%   |
| 0.0              | 35.76             | 37.9 | 40.04 | 45.23         | 47.51 | 49.79 |
| 0.1              | 35.33             | 37.9 | 40.47 | 44.61         | 47.51 | 50.41 |
| 0.2              | 34.97             | 37.9 | 40.83 | 44.10         | 47.51 | 50.92 |
| 0.3              | 34.64             | 37.9 | 41.16 | 43.65         | 47.51 | 51.37 |
| 0.4              | 34.34             | 37.9 | 41.46 | 43.26         | 47.51 | 51.76 |
| 0.5              | 34.07             | 37.9 | 41.73 | 42.89         | 47.51 | 52.13 |
| 0.6              | 33.82             | 37.9 | 41.98 | 42.56         | 47.51 | 52.46 |
| 0.7              | 33.58             | 37.9 | 42.22 | 42.24         | 47.51 | 52.78 |
| 0.8              | 33.35             | 37.9 | 42.45 | 41.94         | 47.51 | 53.08 |
| 0.9              | 33.13             | 37.9 | 42.67 | 41.66         | 47.51 | 53.36 |
| 1.0              | 32.92             | 37.9 | 42.88 | 41.39         | 47.51 | 53.63 |

-----| ACQUISITION COSTS FOR SBI ARCHITECTURE |-----

| System | CV     | C50   | R&D             |                 |
|--------|--------|-------|-----------------|-----------------|
|        |        |       | EX              | VARX            |
| BSTS   | 0.1231 | 5.40  | 5.400           | 0.442           |
| SSTS   | 0.1821 | 3.80  | 3.800           | 0.479           |
| SBI    | 0.2786 | 4.10  | 4.100           | 1.305           |
| CCSOIF | 0.2786 | 3.53  | 3.530           | 0.967           |
| SEI    | 0.1231 | 2.91  | 2.910           | 0.128           |
| LCH    | 0.1231 | 3.40  | 3.400           | 0.175           |
| TOTALS |        | 23.14 | 23.140<br>MUR&D | 1.870<br>SIGR&D |

-----| ACQUISITION COSTS FOR SBI ARCHITECTURE |-----

| System | C50   | INV             |                 |
|--------|-------|-----------------|-----------------|
|        |       | EX              | VARX            |
| BSTS   | 2.60  | 2.600           | 0.102           |
| SSTS   | 5.40  | 5.400           | 0.967           |
| SBI    | 25.96 | 25.960          | 52.308          |
| CCSOIF | 1.99  | 1.990           | 0.307           |
| SEI    | 1.59  | 1.590           | 0.038           |
| LCH    | 9.59  | 9.590           | 1.394           |
| TOTALS | 47.13 | 47.130<br>MUINV | 7.424<br>SIGINV |

-----| ACQUISITION COSTS FOR SBI ARCHITECTURE |-----

| System | TOTALS |        | Correlation between Phases |         |         |         | 0.50 |
|--------|--------|--------|----------------------------|---------|---------|---------|------|
|        | EX     | VARX   | PROB                       | COSTRD  | COSTINV | COSTTOT |      |
| BSTS   | 8.000  | 0.757  |                            |         |         |         |      |
| SSTS   | 9.200  | 2.126  | 0.1                        | 20.75   | 37.63   | 55.95   |      |
| SBI    | 30.060 | 61.875 | 0.2                        | 21.57   | 40.90   | 60.88   |      |
| CCSOIF | 5.520  | 1.820  | 0.3                        | 22.16   | 43.26   | 64.44   |      |
| SEI    | 4.500  | 0.237  | 0.4                        | 22.67   | 45.26   | 67.46   |      |
| LCH    | 12.990 | 2.063  | 0.5                        | 23.14   | 47.13   | 70.27   |      |
|        |        |        | 0.6                        | 23.61   | 49.00   | 73.08   |      |
|        |        |        | 0.7                        | 24.12   | 51.00   | 76.10   |      |
|        |        |        | 0.8                        | 24.71   | 53.36   | 79.66   |      |
|        |        |        | 0.9                        | 25.53   | 56.63   | 84.59   |      |
| TOTALS | 70.270 | 8.299  | MU                         | SIG     |         |         |      |
|        |        |        | MU                         | 70.2700 |         |         |      |
|        |        |        | SIG                        | 11.1851 |         |         |      |

PROGRAM COSTS FOR SBI ARCHITECTURE

| System | CV     | C50   | R&D    |        |
|--------|--------|-------|--------|--------|
|        |        |       | EX     | VARX   |
| BSTS   | 0.1231 | 5.40  | 5.400  | 0.442  |
| SSTS   | 0.1821 | 3.80  | 3.800  | 0.479  |
| SBI    | 0.2786 | 4.10  | 4.100  | 1.305  |
| GSTS   | 0.1821 | 1.30  | 1.300  | 0.056  |
| MGBR   | 0.1231 | 1.30  | 1.300  | 0.026  |
| ERIS   | 0.1231 | 2.40  | 2.400  | 0.087  |
| TGBR   | 0.1231 | 1.10  | 1.100  | 0.018  |
| HEDI   | 0.1231 | 1.50  | 1.500  | 0.034  |
| CCSOIF | 0.2786 | 4.25  | 4.250  | 1.402  |
| SEI    | 0.1231 | 4.11  | 4.110  | 0.256  |
| LCH    | 0.1231 | 3.40  | 3.400  | 0.175  |
|        |        |       |        |        |
| TOTALS |        | 32.66 | 32.660 | 2.069  |
|        |        |       | MUR&D  | SIGR&D |
|        |        |       |        |        |

PROGRAM COSTS FOR SBI ARCHITECTURE

| System | C50   | INV    |        |
|--------|-------|--------|--------|
|        |       | EX     | VARX   |
| BSTS   | 2.60  | 2.600  | 0.102  |
| SSTS   | 5.40  | 5.400  | 0.967  |
| SBI    | 25.96 | 25.960 | 52.308 |
| GSTS   | 0.00  | 0.000  | 0.000  |
| MGBR   | 0.00  | 0.000  | 0.000  |
| ERIS   | 0.00  | 0.000  | 0.000  |
| TGBR   | 0.00  | 0.000  | 0.000  |
| HEDI   | 0.00  | 0.000  | 0.000  |
| CCSOIF | 1.99  | 1.990  | 0.307  |
| SEI    | 1.59  | 1.590  | 0.038  |
| LCH    | 9.59  | 9.590  | 1.394  |
|        |       |        |        |
| TOTALS | 47.13 | 47.130 | 7.424  |
|        |       | MUINV  | SIGINV |
|        |       |        |        |

-----  
 PROGRAM COSTS FOR SBI ARCHITECTURE

| System     | TOTALS |         | PROB  | COSTRD | COSTINV | COSTTOT |
|------------|--------|---------|-------|--------|---------|---------|
|            | EX     | VARX    |       |        |         |         |
| BSTS       | 8.000  | 0.757   |       |        |         |         |
| SSTS       | 9.200  | 2.126   | 0.1   | 30.01  | 37.63   | 64.40   |
| SBI        | 30.060 | 61.875  | 0.2   | 30.92  | 40.90   | 69.70   |
| GSTS       | 1.300  | 0.056   | 0.3   | 31.58  | 43.26   | 73.52   |
| MGBR       | 1.300  | 0.026   | 0.4   | 32.14  | 45.26   | 76.77   |
| ERIS       | 2.400  | 0.087   | 0.5   | 32.66  | 47.13   | 79.79   |
| TGBR       | 1.100  | 0.018   | 0.6   | 33.18  | 49.00   | 82.81   |
| HEDI       | 1.500  | 0.034   | 0.7   | 33.74  | 51.00   | 86.06   |
| CCSOIF     | 6.240  | 2.366   | 0.8   | 34.40  | 53.36   | 89.88   |
| SEI        | 5.700  | 0.393   | 0.9   | 35.31  | 56.63   | 95.18   |
| LCH        | 12.990 | 2.063   |       |        |         |         |
| <br>TOTALS |        | 79.790  | 8.355 |        |         |         |
|            | MU     |         | SIG   |        |         |         |
|            | MU     | 79.7900 |       |        |         |         |
|            | SIG    | 12.0225 |       |        |         |         |

Correlation Between Phases      0.50

Correlation

| Between  | Acquisition Costs |       |       | Program Costs |       |       |
|----------|-------------------|-------|-------|---------------|-------|-------|
| Programs | 20%               | 50%   | 80%   | 20%           | 50%   | 80%   |
| 0.0      | 63.31             | 70.27 | 77.23 | 72.78         | 79.79 | 86.80 |
| 0.1      | 62.76             | 70.27 | 77.78 | 72.07         | 79.79 | 87.51 |
| 0.2      | 62.25             | 70.27 | 78.29 | 71.41         | 79.79 | 88.17 |
| 0.3      | 61.77             | 70.27 | 78.77 | 70.81         | 79.79 | 88.77 |
| 0.4      | 61.32             | 70.27 | 79.22 | 70.24         | 79.79 | 89.34 |
| 0.5      | 60.88             | 70.27 | 79.66 | 69.70         | 79.79 | 89.88 |
| 0.6      | 60.47             | 70.27 | 80.07 | 69.19         | 79.79 | 90.39 |
| 0.7      | 60.08             | 70.27 | 80.46 | 68.71         | 79.79 | 90.87 |
| 0.8      | 59.69             | 70.27 | 80.85 | 68.24         | 79.79 | 91.34 |
| 0.9      | 59.33             | 70.27 | 81.21 | 67.80         | 79.79 | 91.78 |
| 1.0      | 58.97             | 70.27 | 81.57 | 67.36         | 79.79 | 92.22 |