ADLAIR MILITARY & DEFENCE

DISEÑO: Fuselaje

- Nueva forma del fuselaje
 - Reducir superficie mojada
 - Optimizar espacio interior
 - Fuselaje cilíndrico -> fuselaje más rectangular

DISEÑO

- Modelado de la planta alar
 - Ala hexagonal siguiendo los parámetros de Aerodinámica
 - Introducción del perfil NACA a través de macros
 - Incorporación de winglets
 - Volumen de combustible disponible: 57.25 m³

DISEÑO: Estabilizadores horizontal y vertical

- Introducción de los perfiles NACA mediante macros
- Volumen de combustible disponible: 11.782 m³

ESTRUCTURAS MISIÓN 1

MISIÓN 2

Estabilidad longitudinal

- Nuevo trimado:
- Debido al cambio del centro de gravedad
- Mejora de eficiencia
- Cambio de margen estático (en torno al 12%)

Estabilidad lateral

- Control direccional para:
 - Fallo de motor ($\beta = 0, v = 1.2 v_{TO}$)
 - Viento cruzado en crucero $(\beta = 15, v' = 0.2v_{stall})$
 - Dimensionado del estabilizador vertical
 - Dimensionado del rudder para que cumpla condición de viento cruzado con deflexión máxima de ∓23°

1 Engine Inoperative

Cross Wind

Derivadas de estabilidad

Estabilidad dinámica (preliminar)

Ratio de giro para aeronave de Clase II

- Velocidad de maniobra $1.3v_{stall}$ a altura de maniobra y configuracion limpia
- Deflexion maxima de alerón
 20 º
- Clase II: 45º en 1.4 s (FAA)
- Para ello se hizo un diseño de aleron propio

Datos del alerón:

- Superficie respecto la del ala = 5%
- Superficie de 6.42 m2
- Distancia de 0.7 a 0.95 respecto b/2 medido desde la raíz

ACTUACIONES

• Misión 1: Observación/Vigilancia/Intercepción, Búsqueda y Rescate

$$W_{to} = 63229,69 \text{ Kg}$$

* Perfil de subida igual al recomendado en el RFP

Distancias despegue:

Nominal	High Hot	Fallo de motor
333,78 m	518,14 m	367,48 m

Carga de combustible: 29727,08 kg

• Distancia recorrida: 5408,348 km

• Tiempo empleado: 16,12 h

• CASM: 15,78 cent

Misión 2: Misión de carga

$$W_{to} = 76163,12 \text{ Kg}$$

Misión 2: Misión de carga

Distancias despegue:

Nominal	Fallo de motor	High-hot	High-Hot (grass)
445,28 m	489,03 m	548,23 m	566,60

Carga de combustible: 29653,41 kg

Distancia recorrida: 7613,16 km

Tiempo empleado: 12,65 h

CASM: 3,50 cent \$

Carga de combustible reserva: 2124,73 kg -> 7,1%

Misión 3: Transporte/MED-EVAC

$$W_{to} = 76163,12 \text{ Kg}$$

Misión 3: Misión de Transporte

Distancias despegue:

Nominal	Fallo de motor	High-hot
394,54 m	473,13 m	481,97 m

Carga de combustible: 41631,91 kg

Distancia recorrida: 10139,86 km

Tiempo empleado: 16,5 h

CASM: 8,94 cent \$

Misión 3: Evacuación Médica

Distancias despegue:

Nominal	Fallo de motor	High-hot
394,54 m	473,13 m	481,97 m

Carga de combustible: 44886,48 kg

Distancia recorrida: 10803,39 km

Tiempo empleado: 17,55 h

CASM: 9,01 cent \$

PROPULSIÓN

Modelo	Potencia [shp]	SFC [lb/(shp hr)]	Peso [lb]	Longitud [in]	Diámetro [in]
T57-P-1 (PW)	15.000	0,47	3.600	146,1	48,3
TP400-D6 (Europrop)	12.000	0,35	4.035	164,57	47,95
XT37-NA-3 (Turbodyne)	10.000	0,67	6.000	167	46

Alternativa elegida, menos consumo específico

Escalado por un factor de 1,3:

relación entre longitud y diámetro:

$$x_{LD} = \frac{Longitud}{Di\'{a}metro} = \frac{164,57}{47,95} = 3,432$$

relación entre longitud y altura:

$$x_{LH} = \frac{Longitud}{Altura} = \frac{164,57}{35,82} = 4,593$$

volumen del motor base:

$$V_{BASE} = Longitud \cdot Diámetro \cdot Altura = 282715, 57 in^3$$

El volumen del motor escalado será

$$V_{SCALING} = F_{SCALING} \cdot V_{BASE} = 367530,24 \text{ in}^3$$

Las dimensiones del motor escalado serán

$$Longitud_{SCALING} = (F_{SCALING} \cdot V_{BASE} \cdot x_{LD} \cdot x_{LH})^{\frac{1}{3}} = 174,87 \text{ in}^3$$

$$Di\acute{a}metro_{SCALING} = \frac{Longitud_{SCALING}}{x_{LD}} = 52{,}33$$
 in

El nuevo peso vendrá definido por
$$We = \frac{F_{SCALING}}{(P_0/We)_{BASE}} = \frac{1.2}{12000/4035} \cdot 12000 = 5245,5 \text{ lb}$$

Hélice: Se mantiene la geometría de la hélice e la configuración nominal Nº palas: 8

$$P_{nominal}/P_{escalado} = \frac{12000}{15600} = (\frac{5,334}{D_{H\acute{e}lice}})^5 \rightarrow D_{H\acute{e}lice} = 5,621m$$

Modelo	Potencia [shp]	SFC [lb/(shp hr)]	Peso [kg]	Longitud [m]	Diámetro [m]
TP400-D6 (Europrop)	15.600	0,35	2379,42	4,56	1,33

AERODINÁMICA: Diseño de HLD

- Sin dispositivos de borde de ataque
- Fowler flap monorranurado
- Incremento de sustentación por:
- ➤ Aumento de superficie
- >Aumento de curvatura

Original source: https://commons.wikimedia.org/wiki/File:Airfoil lift improvement devices (flaps).png

δ_f(º)		CL_max	CL_max op	CL_0	α_0L(º)	α_s(º)	α_ΤΟ	ΔCD
	0	1,755	1,21875	0,14043647	-1,500000	18,2451314	11,5174524	0
	5	1,97601718	1,372234155	0,38246994	-4,085156	18,0206567	10,5716583	0,008111702
1	10	2,18646117	1,51837581	0,61792045	-6,600000	17,7535623	9,6177516	0,065350166
1	15	2,31500017	1,607639009	0,84371595	-9,011719	16,7147670	8,1594519	0,080078732
2	20	2,45013188	1,701480472	1,05795471	-11,300000	15,8698257	6,8734901	0,137305113
	25	2,55743119	1,775993885	1,25697951	-13,425781	14,8901070	5,5435856	0,177655349
3	30	2,61792233	1,81800162	1,43245195	-15,300000	13,6619933	4,1180509	0,209459521
. 3	35	2,70331025	1,877298783	1,56842663	-16,752344	13,1216767	3,2990593	0,255717061
	40	2,74004279	1,90280749	1,63842543	-17,500000	12,7663602	2,8238612	0,276030341
4	45	2,76174272	1,91787689	1,60251173	-17,116406	13,3817307	3,3684110	0,282933467

GEOMETRÍA

- 0,2<y/(b/2)<0,7c_f=0,25c

ANÁLISIS DE LOS ESTABILIZADORES

• Estabilizador Horizontal

t. Horizon	ital		
cht	1,2	b/2	7,96625
lht	13,95	c_r	5,31513
S(m^2)	65,8649	c_t	2,95285
AR	3,85402	x_t	3,43691
Ψ(º)	23,337	Δ_m	0,32995
λ	0,5556	X_wing	19,4
		Δ_0.25	19,6618
		Δ_0.5	15,8103

	OpenSVP	XFLR5	Media
C_{D0}	0,007002	0,005299	0,006151
K1	-0,001581	-0,003226	-0,002403
K2	0,08258	0,08927	0,08593
$C_{L\delta}$	3,7019	3,4771	3,5895

• Estabilizador Vertical

E	st. Vertical			
	cvt	0,08	b/2	8,47953
	Iht	13,95	c_r	7,50833
	S(m^2)	43,91	c_t	2,84835
	AR	6,55	x_t	5,95377
	Ψ(2)	35,074	Δ_m	0,49301
	λ	0,3794	X_wing	17,2068

C_{D0}	<i>K</i> 1	K2	C_{L0}	$C_{L\beta}$
0,008264	-0,01503	0,1963	0	2,3059

