Tire Modeling

Lateral and Longitudinal Tire Forces

Gurkan Erdogan, PhD

April 27, 2009

Why Tires are important for Vehicle Control Systems?

- Tires generate the forces that drive and maneuver the vehicle.
- The knowledge of magnitude, direction and limit of the tire forces are essential and valuable for vehicle control systems.
- However, the estimation of these variables in all driving conditions and in real-time is a very challenging task.

Horizontal Tire Forces

How tire force is generated?

 Tire forces are generated inside the contact patch, in other words between the tire and the ground.

- Tire forces are a combination of two factors:
 - Friction/sliding in the contact patch, and
 - Elastic deformations/slipping of the tire.

Background – Friction Forces

Background – Friction Forces

- Stribeck Effect
 - Stribeck (1902) observed that the friction force is decreasing continuously with increasing velocities for low velocities.

Background – Elastic Force

Background – Friction/Elastic Forces

Classification of Tire Mathematical Models

Based on how you attack the problem...

Based on which time behavior you can capture...

Dynamic (Transient)

Models

Steady State Models

Tire Models

through simple physical models

- There are four main players in tire modeling through simple physical models
 - Tread deflection
 - 2. Carcass/belt deflection
 - 3. Distribution of contact pressure
 - 4. Tire-road friction properties

(with and w/o)
(with and w/o)
(symmetric and asymmetric dist.)
(variable friction)

Tire Models

through simple physical models

Brush Model

- BM (Rigid Carcass)
- BM + Linear Carcass Defection
- BM + Parabolic Carcass Defection
- BM + Asymmetric Carcass Deflection

String Model

- Stretched String (No Tread Element)
- BM + Stretched String

Beam Model

Some Concepts - Instantaneous Center of Rotation

Ideally: Reality: 2V **2V** $V_{\mathbf{g}}$ G. Erdogan 12

Some Concepts – Effective Radius

$$V_{eff} = r_{eff} \omega_w = \frac{a}{t}$$

$$= r_{eff} \frac{\phi}{t}$$

$$r_{eff} = \frac{a}{\phi}$$

$$R_{stat} < r_{eff} < R_{w}$$

Brush Model – Pure Longitudinal Slip

through simple physical models

Longitudinal Tire Deformation

Slip Ratio:
$$\sigma_x = \frac{r_{eff} \omega_w - V_x}{\max(V_x, r_{eff} \omega_w)}$$

BM – Pure Longitudinal Slip

Remember...

through simple physical models

Slip Angle: $\alpha = \delta - \theta_V$

through simple physical models

Uniform Normal Force Distribution

through simple physical models

Uniform Normal Force Distribution

Lateral Tire Force :
$$F_{y} = \mu F_{z} - \frac{(\mu F_{z})^{2}}{c_{py}8a^{2}\tan(\alpha)}$$
 Tire Moment:
$$M_{z}^{'} = \frac{(\mu F_{z})^{2}}{8c_{py}a\tan(\alpha)} - \frac{(\mu F_{z})^{3}}{48c_{py}a^{3}\tan^{2}(\alpha)}$$
 Friction Coefficient :
$$\mu = \frac{2c_{py}a\tan(\alpha)}{F_{z}}x_{bs}$$

through simple physical models

Parabolic Normal Force Distribution

Brush Model – Pure Side Slip through simple physical models

Parabolic Normal Force Distribution

Brush Model – Pure Side Slip through simple physical models

- Parabolic Normal Force Distribution
 - Small Slip Angle (as α →0, tan(α)→ α)

$$F_{y} = \int_{-a}^{a} q_{y} dx$$

$$= c_{py} \alpha \int_{-a}^{a} (a - x) dx$$

$$= c_{py} \alpha \int_{-a}^{a} (a - x) dx$$

$$= c_{py} 2a^{2} \alpha$$

$$= C_{F\alpha} \alpha$$

$$= C_{F\alpha} \alpha$$

$$M_{z} = \int_{-a}^{a} q_{y} x dx$$

$$= c_{py} \alpha \int_{-a}^{a} (a - x) x dx$$

$$= -c_{py} 2a^{2} \frac{a}{3} \alpha$$

$$= \frac{a}{3} F_{y}$$

through simple physical models

- Parabolic Normal Force Distribution
 - Large Slip Angles

Lateral Tire Force:

$$F_{y} = 3\mu F_{z} \frac{\tan(\alpha)}{\tan(\alpha_{sl})} \left(1 - \left| \frac{\tan(\alpha)}{\tan(\alpha_{sl})} \right| + \frac{1}{3} \frac{\tan^{2}(\alpha)}{\tan^{2}(\alpha_{sl})} \right)$$

Tire Moment (Lateral):
$$M_z' = -\mu F_z a \frac{\tan(\alpha)}{\tan(\alpha_{sl})} \{1 - 3 \mid \frac{\tan(\alpha)}{\tan(\alpha_{sl})} \mid +3(\frac{\tan(\alpha)}{\tan(\alpha_{sl})})^2 - |\frac{\tan(\alpha)}{\tan(\alpha_{sl})}|^3 \}$$

$$\mu = \frac{2c_{py}a^2}{3F_z}\tan(\alpha_{sl})$$

Brush Model – Combined Slip

through simple physical models

Theoretical Slips

$$\sigma_{x} = \begin{cases} \kappa = \frac{V_{r} - V_{x}}{V_{x}} = -\frac{V_{sx}}{V_{x}} & brake \\ \frac{\kappa}{1 + \kappa} = \frac{V_{r} - V_{x}}{V_{r}} = -\frac{V_{sx}}{V_{r}} & drive \end{cases} \qquad \sigma_{y} = \begin{cases} \tan(\alpha) = -\frac{V_{sy}}{V_{x}} & brake \\ \frac{\tan(\alpha)}{1 + \kappa} = -\frac{V_{sy}}{V_{r}} & drive \end{cases}$$

 $V_r = r_{eff} \omega_w$

$$\sigma_{y} = \begin{cases} \tan(\alpha) = -\frac{V_{sy}}{V_{x}} & brake \\ \frac{\tan(\alpha)}{1+\kappa} = -\frac{V_{sy}}{V_{r}} & drive \end{cases}$$

$$u = (a - x)\sigma_x$$

$$v = (a - x)\sigma_{v}$$

$$\sigma = \sqrt{\sigma_x^2 + \sigma_y^2}$$

Brush Model – Combined Slip

through simple physical models

Tire Force:

$$F = 3\mu F_z \frac{\sigma}{\sigma_m} \left(1 - \frac{\sigma}{\sigma_m} + \frac{1}{3} \frac{\sigma^2}{\sigma_m^2} \right)$$

Tire Moment:

$$M_z' = -\mu F_z a \frac{\sigma}{\sigma_m} \{1 - 3 \frac{\sigma}{\sigma_m} + 3 \frac{\sigma^2}{\sigma_m^2} - \frac{\sigma^3}{\sigma_m^3} \}$$

Friction Coefficient:

$$\mu = \frac{2c_p a^2}{3F_z} \sigma_m$$

Friction Circle:

Brush Model – Combined Slip

through simple physical models

Dugoff's Model

$$F_{x_lin} = C_{\kappa} \sigma_{x}$$
$$F_{y_lin} = C_{\alpha} \sigma_{y}$$

if
$$\sqrt{F_{x_{-}lin}^2 + F_{y_{-}lin}^2} \le \frac{\mu F_z}{2}$$
, $F_x = F_{x_{-}lin} \times 1$

$$if \qquad \sqrt{F_{x_lin}^2 + F_{y_lin}^2} > \frac{\mu F_z}{2}, \quad F_x = F_{x_lin} \times (2\lambda - \lambda^2)$$
$$F_y = F_{y_lin} \times (2\lambda - \lambda^2)$$

$$\lambda = \frac{\mu F_z}{2}$$

$$\sqrt{F_{x_lin}^2 + F_{y_lin}^2}$$

24

String Model through simple physical models

Dynamic (Transient) Tire Models through simple physical models

- The steady state tire models are handy when we have constant linear and angular velocities.
- Experimental data used to validate the slip/force curves are obtained using specialized equipment that allows independent linear and angular velocity modulation so as to cover the whole slip range.
- This steady-state point of view is rarely true in reality, especially when the vehicle goes through continuous successive phases between acceleration and braking.
- Dynamic models capture the transient behavior of the tire-road contact forces under time-varying velocity conditions.
 - Bliman
 - Kinematic TM
 - Dahl TM
 - LuGre TM

Dynamic Models – Relaxation Length

Relaxation length

- is related to the distance needed by the tire to reach a the steady state situation after a step change in slip.
- is the distance needed to build up the steady state tire forces.

Dynamic Models – Dahl Models through simple physical models

The Dahl model is essentially Coulomb friction with a lag.

$$F_{deformation} = F_{friction}$$

$$\sigma_o z = F_{coulomb} \left(1 - e^{\frac{-\sigma_o |x|}{F_{coulomb}}} \right) \operatorname{sgn}(v)$$

$$\dot{z} = v - \frac{\sigma_o |v|}{F_{coulomb}} z$$

Derivation

$$\frac{dF_{deformation}}{dt} = \frac{dF_{friction}}{dt}$$

$$\dot{z} = e^{\frac{-\sigma_o|x|}{F_{coulomb}}} |v| \operatorname{sgn}(v)$$

$$e^{\frac{-\sigma_o|x|}{F_{coulomb}}} = \frac{\dot{z}}{|v| \operatorname{sgn}(v)}$$

Steady State:

$$\dot{z} = 0 \implies z_{ss}$$

$$0 = v - \frac{\sigma_o |v|}{F_{coulomb}} z_{ss}$$

$$z_{ss} = \frac{F_{coulomb}}{\sigma_o} \operatorname{sgn}(v)$$

Dynamic Models –LuGre Models

through simple physical models

$$F_{\textit{deformation}} = F_{\textit{friction}}$$

$$\sigma_{o}z = F_{coulomb} \left(1 - e^{\frac{-\sigma_{o}|x|}{g(v)}} \right) \operatorname{sgn}(v), \quad or$$

$$\sigma_o z + \sigma_1 \dot{z} + f(v) = F_{coulomb} \left(1 - e^{\frac{-\sigma_o |x|}{g(v)}} \right) \operatorname{sgn}(v)$$

$$g(v) = F_{coulomb} + (F_{static} - F_{coulomb}) e^{-|v/v_{stribeck}|^{\alpha}}$$
$$f(v) = \sigma_2 v$$

$$\dot{z} = v - \frac{\sigma_o |v|}{g(v)} z$$

Tire Models

from experimental data only

- Pacejka TM
- Burckhardt TM
- Kiencke and Daiss TM

Pacejka Tire Model (Magic Formula)

from experimental data only

$$a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 F_z$$

$$D = a_1 F_z^2 + a_2 F_z$$

$$BCD = a_3 \sin(a_4 \arctan(a_5 F_z))$$
 (lateral force)

$$BCD = \frac{a_3 F_z^2 + a_4 F_z}{e^{a_5 F_z}}$$
 (longitudinal force)

$$E = a_6 F_z^2 + a_7 F_z + a_8$$

$$C = \frac{2}{\pi} \sin^{-1} \left(\frac{y_s}{D} \right)$$

$$x = X - S_h$$

 $y = D \sin[C \arctan\{Bx - E(Bx - \arctan Bx)\}]$

$$Y(X) = y(x) + S_v$$

B stiffness factor

C shape factor

D peak value

E curvature factor

 S_h horizontal shift

 S_{ν} vertical shift

References

• Vehicle Dynamics and Control, 2005, R. Rajamani

Tire and Vehicle Dynamics, 2005, H.B. Pacejka

• Contact Mechanics, 1987, K.L. Johnson

• Vehicle Dynamics: Theory and Application, 2009, R. N. Jazar

THANKS ...