National University of Colombia Algorithms (Group 1)

Lab4

Cristian David Tafur Devia October 2018

1 Complete the following table

Algorithm	Function	Worst case	Best case	Average	Space com-
		time com-	time com-	case time	plexity
		plexity	plexity	complexity	
The simplest	Dado un numero de entrada	$O(\sqrt{n})$	$O(\sqrt{n})$	$O(\sqrt{n})$	$O(\sqrt{n})$
primality by	n, verifica si algún entero				
trial division	primo m de 2 a n divide uni-				
	formemente n sin dejar resto.				
	Si n es divisible por cualquier				
	m, entonces n es compuesto,				
	de lo contrario es primo.				
Binary	Algoritmo de búsqueda que	$O(\log(n))$	O(1)	$O(\log(n))$	O(1)
search	encuentra la posición de un				
	valor en un array ordenado.				
	Compara el valor con el ele-				
	mento en el medio del array,				
	si no son iguales, la mitad en				
	la cual el valor no puede estar				
	es eliminada y la búsqueda				
	continúa en la mitad restante				
	hasta que el valor se encuen-				
T3: 1: /1	tre.	0// 1 *1 \	0// 1 *1 \	0// 1 *1 \	C
Finding the	1) Almacene los primeros	O((n-k)*k)	O((n-k)*k)	O((n-k)*k)	6
smallest	k elementos en una matriz				
or largest item in an	temporal temp [0k-1]. 2) Encuentra el elemento mas				
unsorted unsorted					
	pequeño / mas grande en temp [] 3) Para cada elemento				
array	x en arr [k] hasta arr [n 1] Si				
	x en arr [k] nasta arr [n 1] 51 x es mayor que el numero, lo				
	elimina de tem e inserte x.				
	4) Imprime los elementos de				
	temp				
	,P				

Algorithm	Function	Worst case time com-	Best case time com-	Average case time	Space complexity
Kadanes Al-	Busca todos los segmentos	plexity O(n)	plexity O(n)	complexity O(n)	O(1)
gotirhm	contiguos positivos de la matriz. Y realiza un seguimiento de la suma maxima del segmento contiguo entre todos los segmentos positivos. Cada vez que obtiene una suma positiva, la compara con max y la intercambia si es mayor				
Sieve of Eratosthenes	Algoritmo que permite hal- lar todos los numeros primos menores que un numero nat- ural dado n	$O(n \log \log(n))$	$O(n \log \log(n))$	$O(n \log \log(n))$	O(n)
Merge Sort	Divide el arreglo de llegada en dos partes, repitiendo este proceso para cada segmento dividido, ordenando el ar- reglo más pequeño para luego mezclarlo con los demás orde- nando por completo el arreglo final	O(n log(n))	$\Omega(nlog(n))$	$\theta(nlog(n))$	O(n)
Heap Sort	Encuentra el máximo ele- mento y lo ubica en el final, repitiendo el proceso para cada elemento restante	$O(\log(n))$	$\Omega(nlog(n))$	$\theta(nlog(n))$	O(1)
Quick Sort	El destino de las particiones es, dada una matriz y un elemento x de la matriz como pivote, coloca x en su posicion correcta en la matriz ordenada y coloca todos los elementos mas pequeños (mas pequeños que x) antes de x, y coloca todos los elementos mayores (mayores que x) después de X	O(n ²)	$\Omega(nlog(n))$	$\theta(nlog(n))$	O(log(n))
Tim Sort	Dividimos el Array en bloques conocidos como Run. Ordenamos esas ejecuciones utilizando insertion sort una por una y luego las combinamos con la funcion de combinacion utilizada en merge sort. Si el tama no de Array es menor que el de ejecucion, entonces Array se ordena simplemente utilizando Insertion Sort. El tama no de ejecucion puede variar de 32 a 64 dependiendo del tama no de la matriz. Tenga en cuenta que la funcion merge funciona bien cuando los arreglos secundarios de tama no son potencias de 2. La idea se basa en el hecho de que insertion sort funciona bien para arreglos peque nos.	O(n log(n))	$\Omega(n)$	heta(nlog(n))	O(n)

Algorithm	Function	Worst case	Best case	Average	Space com-
		time com-	time com-	case time	plexity
		plexity	plexity	complexity	
Convex Hull	Parte de la suposicion del	O(nlog(n))	O(nlog(n))	O(nlog(n))	
using Divide	conocimiento previo del casco				
and Conquer	convexo de la mitad izquierda				
Algorith	y derecha, para fusionarlos, se				
	encuentra la tangente supe-				
	rior e inferior a los cascos con-				
	vexos derecho e izquierdo				
Insertion	Toma el elemento i+1 del ar-	$O(n^2)$	O(n)	$O(n^2)$	O(1)
Sort	reglo y lo compara con toda la				
	lista previamente ordenada,				
	deteniendose cuando se en-				
	cuentra un elemento menor				
	(todos los elementos may-				
	ores han sido desplazados				
	una posicion a la derecha)o				
	cuando ya no se encuentran				
	elementos (todos los elemen-				
	tos fueron desplazados y este				
	es el mas peque no). En este				
	punto se inserta el elemento				
	_				
	i+1 desplazando los demas el-				
T31 1 TT7 1	ementos.	0/17713\	0/17713)	0/17713)	0/17/2)
	llSe inicializan las matrices Se	$\theta(V ^3)$	$\theta(V ^3)$	$\theta(V ^3)$	$\theta(V ^2)$
algorithm	consideran vertices como in-				
	termedios y se actualiza la				
	matriz Se eligen todos los ver-				
	tices y se actualizan todas las				
	rutas mas cortas como un ver-				
	tice intermedio en la ruta mas				
	corta. Para cada (i, j) de los				
	vertices de origen y destino,				
	hay dos casos posibles. 1) k				
	no es un vertice intermedio en				
	la ruta mas corta de i a j.				
	Mantenemos el valor de dist				
	[i][j] tal como es. 2) k es un				
	vertice intermedio en la ruta				
	mas corta de i a j. Actual-				
	izamos el valor de dist [i][j]				
	como dist [i][k] + dist [k] [j]				
	$si dist [i][j] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				
	[k][j]				
Calculate	Las permutaciones sin repeti-	$O(n^2 * n!)$			
the permu-	cion de n elementos son los				
tations of	distintos grupos de n elemen-				
n distinct	tos que se pueden hacer, de				
elements	forma que dos grupos se difer-				
without	encian unicamente en el or-				
repetitions	den de colocacion de los ele-				
_	mentos. Consideremos el con-				
	junto $A = a, b, c, d, e En$				
	tonces las permutaciones de				
	estos elementos son: abcde,				
	acbde, dbeca, adcea, bedac,				
	cdbae, caebd, edabc, etc.				
	111110, 00000, 000,			I .	

Algorithm	Function	Worst	case	Best	case	Average	Space com-
		time	com-	time	com-	case time	plexity
D::1 + 1 1	T . 1	plexity		plexity $O(V ^2)$		complexity	0(17
Dijkstra's al-	Teniendo un grafo dirigido	$O(\mid E \mid + \mid V \mid log \mid V \mid)$		O(+V)	(2)		O(V +
gorithm	ponderado de N nodos no ais- lados, sea x el nodo inicial.	$ v \iota \iota \iota g $	<i>V</i>)				E
	Un vector D de tama no N						
	guardara al final del algo-						
	ritmo las distancias desde x						
	hasta el resto de los nodos. 1.						
	Inicializar todas las distancias						
	en D con un valor infinito, ex-						
	ceptuand o la de x, que se						
	debe colocar en 0. 2. Sea						
	a = x (a como nodo actual.)						
	3.Se recorren todos los no-						
	dos adyacentes de a, excepto los nodos marcados. Se les						
	llamara nodos no marcados						
	vi. 4. Para el nodo actual,						
	se calcula la distancia tenta-						
	tiva desde dicho nodo hasta						
	sus vecinos con: $dt(vi) = Da$						
	+ d(a,vi).Esdecir, la distancia						
	tentativa de 'vi0 es la distan-						
	cia que actualmente tiene el						
	nodo en el vector D mas la						
	distancia desde dicho nodo 'a						
	0 hasta el nodo vi. Si la dis-						
	tancia tentativa es menor que la distancia almacenada en el						
	vector, se actualiza el vector						
	con esta distancia tentativa.						
	Es decir, si $dt(vi)$; $DviDvi =$						
	dt(vi) 5. Se marca como com-						
	pleto el nodo a. 6. Se toma						
	como proximo nodo actual el						
	de menor valor en D y se re-						
	gresa al paso 3, mientras exis-						
	tan nodos no marcados. Una						
	vez terminado al algoritmo, D						
Naive Ma-	estara completamente lleno. Si A es una matriz cuadrada	$O(n^3)$		$O(n^3)$		$O(n^3)$	
trix Inver-	n n, entonces se puede usar la	O(II-)		O(II.)		O(II)	
sion	reduccion de fila para calcu-						
	lar su matriz inversa, si ex-						
	iste. Primero, la matriz de						
	identidad n n se aumenta a la						
	derecha de A, formando una						
	matriz de bloque n2n[A—I].						
	Ahora a travesde la aplica-						
	cion de operaciones de fila el-						
	ementales, encuentre la forma						
	escalonada reducida de esta matriz n2n. La matriz A es						
	invertible si y solo si el bloque						
	izquierdo puede reducirse a la						
	matriz de identidad I; en este						
	caso, el bloque derecho de la						
	matriz final es A 1. Si el al-						
	goritmo no puede reducir el						
	bloque izquierdo a I, A no es						
	invertible.						

Algorithm	Function	Worst	case	Best	case	Average		Space	com-
		$_{ m time}$	com-	time	com-	case ti	me	plexity	
		plexity		plexity		complexity	V		
Calculate	Las permutaciones con	O(n*m)					O(n)	
the permu-	repeticion de n elementos en								
tations of n	las que el primer elemento se								
distinct of n	repite n1veces, el segundo n2								
distinct with	veces, y el ultimo se repite								
repetitions	nreces, son los distintos								
	grupos de n elementos que								
	se pueden hacer de forma								
	que en cada grupo, cada								
	elemento aparezca el numero								
	de veces indicado. Ademas,								
	dos grupos se diferencian								
	unicamente en el orden de								
	la colocacion. Se representa								
	por Pnn1,,nr. Para saber								
	cuantas permutaciones con								
	repeticion de n elementos, en								
	las que el primer elemento								
	se repite n1veces, el segundo								
	n2veces, y el ultimo se								
	repite n veces.								

2 Cormen Exercises

2.1 Exercise 1.2-2

Suppose we are comparing implementations of insertion sort and merge sort on the same machine. For inputs of size n, insertion sort runs in $8n^2$ steps, while merge sort runs in 64 n lg n steps. For which values of n does insertion sort beat merge sort?

$$t = 8n^2, t = 64nlog(n)$$

Se realiza la siguiente desigualdad:

$$8n^2 < 64nlog(n), paralocual : n < 8log(n)$$

$$(1.1 < n < 43.55993)$$
$$(1 < n < 43)$$

2.2 Exercise 1.2-3

$$t = 100n^2$$
$$t = 2^n$$

Desigualdad:

$$100n^2 < 2^n$$

Graficamente:

(n > 14.32)

Respuesta: 15

2.3 Problem 1-1 - solve from 1 microsecond (10^-6s) for step to for 1 nanoseconds (10^-9s) for step

	Equivalencia	1 second	1 minute	1 hour	1 day	1 month	1 year	1 century
microsecond s		1e6	6e7	3.6e9	8.64e10	2.628e12	3.154e13	3.156e15
lg n	n = 2^t	2^(e6)	2^(6e7)	2^(3.6e19)	2^(8.64e10)	2^(2.628e12)	2^(3.153e13)	3.156e15
√n	n = t^2	1e12	3.6315	1.29e19	7.46e21	7.72e24	9.95e26	9.96e30
n	n = t	1e6	6e7	3.6e9	8.64e10	2.628e12	3.154e13	3.156e15
n lg n	n = t*log10(<u>t</u>)/log10(2)	62764	2801417	133378058	2755147513	71870856404	797633893349	6.86e13
n^2	n = √t	1000	7745	60000	293938	1609968	5615692	56176151
n^3	n = 3√t	100	391	1532	4420	13736	31593	146679
2^n	log 2^n = log2 t	19	25	31	36	41	44	51
n!		9	11	12	13	15	16	17

2.4 Problem 3-1

a)
$$polinomiop(n)->f(n)$$

$$O(n^k)->g(n)$$

$$0<=f(n)<=cg(n)paratodon>=0$$

$$cg(n)-f(n)>=0$$

$$cg(n)>=f(n)$$

$$R/n^k>=p(n)$$
 b)
$$p(n)->f(n)$$

$$n^k->g(n)$$

$$0< cg(n)<=f(n)paratodon>=0$$

$$f(n)-cg(n)>=0$$

$$f(n)>=cg(n)$$
 Respuesta:

nespuesta.

$$p(n) >= n^k$$

c) Por el siguiente Teorema

Teorema

For any two functions f(n) and g(n), we have $f(n) = \theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Como n^k es cota superior de p(n) O y cota inferior Ω entonces también es $\theta(n^k)$

3 Dasgupta, Papadimitriou and Vazirani

3.1 Exercise 0.1

En cada una de las siguientes situaciones, indique si f = O (g), o $f = \Omega(g)$, o ambos (en cuyo caso $f = \theta(g)$).

Tenemos que:

f = O(g(n)) significa que f(n) no crece tan rapido como g(n)

 $f = \Omega(g(n))$ significa que g = O(f(n))

f = $\theta(g(n))$) indica que f(n)=O(g(n)) y g(n)=O(f(n)) o (f = $\omega(g(n))$) lo que significa que f = O(g(n)) y f = $\Omega(g(n))$

Para cada uno de los items, se graficaron las funciones propuestas para comparar si eran cotas superiores, inferiores o ambas en dado caso.

3.2 Exercise 0.2

Fórmula de serie geométrica:

$$\sum_{i=1}^{n} ar(k-1) = a \bullet \frac{(1-r^{n})}{(1-r)}$$

Entonces:

$$g(n) = \frac{c \bullet (n+1) - 1}{c - 1}$$

a) c < 1

$$\lim_{x \to \infty} \frac{(0-1)}{(c-1)} = \frac{1}{1-c}$$

$$1 > 1 - cn + 1 > 1 - c$$

$$\frac{1}{1-c} > g(n) > 1$$

Como el valor de los términos está disminuyendo, se puede determinar que esta operación es $\theta(1)$

$$\begin{array}{c} b)c = 1 \\ g(n) = 1 + 1 + 1 + 1 + \dots + 1 = n + 1 = O(n) \\ c) \ c > 1 \\ \\ cn + 1 > cn + 1 - 1 > cn \\ \\ \frac{c}{1 - c} \bullet cn > g(n) > \frac{1}{1 - c} \bullet cn \end{array}$$

Como el valor de los términos está en aumento, se puede concluir que esta operación es $\theta(cn)$

3.3 Solve
$$T(n) = 2 T(n-2) + 2$$

$$T(n) = 2T(n-2) + 2, n = 2k$$

$$= 2(2T(n-4) + 2) + 2$$

$$= 4T(n-4) + 2 * 2 + 2$$

$$= 4(2T(n-6) + 2) + 2 * 2 + 2$$

$$= 2^{3}T(n-2*3) + 2^{3} + 2^{2} + 2$$

$$= 2^{k}T(0) + 2^{k}(1) + 2^{k}(2) + \dots + 2^{k}(2) + \dots$$