MATH 307 — Quiz #1

Question:	1	2	3	Total
Points:	10	6	5	20
Score:				

1.

(a) (2 points) Compute $|z|^2$, where $z = \frac{5i}{(1-i)(2-i)(3-i)}$.

- (b) (2 points) Express $\operatorname{Log}\left(\frac{1}{4} \frac{1}{4}i\right)$ in the form x + iy. Here, Log denotes the principal branch of the logarithm.
- (c) (2 points) Express $z = (\sqrt{3} i)^6$ in the form $re^{i\theta}$.
- (d) (2 points) Let $w = e^{\bar{z}^2/2}$. Express Re(w) and Im(w) in terms of x = Re(z) and y = Im(z).
- (e) (2 points) Find all values of $(-8i)^{1/3}$. Express them in the form x + iy.
- 2. Sketch the sets in the complex plane, each on its own set of axes. Label radii, angles, etc. so that your meaning is unambiguous

(a) (2 points)
$$A = \left\{ z = re^{i\theta} : 1 \le r \le 2 \text{ and } -\frac{\pi}{3} \le \theta \le \frac{\pi}{3} \right\}$$

- (b) (2 points) $B = \{e^{i\pi/6}z^2 : z \in A\}$
- (c) (2 points) $C = \{z : z^2 \in A\}$
- 3. (5 points) Let $\sqrt{\cdot}$ be the branch of the square root defined by

$$\sqrt{re^{i\theta}} = \sqrt{r}e^{i\theta/2}$$
 for $\theta \in [\pi, 3\pi)$.

For which z does $\sqrt{z^2} = z$ hold?

Hint: Write $z = re^{i\psi}$ with $\psi \in [-\frac{\pi}{2}, 3\pi)$. When computing z^2 , consider the cases $\psi \in [-\frac{\pi}{2}, \frac{\pi}{2})$ and $\psi \in [\frac{\pi}{2}, \frac{3\pi}{2})$ separately. In each case, identify a k such that $2\psi + 2\pi k$ belongs to $[\pi, 3\pi)$.