University of Central Florida Department of Computer Science

CDA 5106: Spring 2022

Machine Problem 1: Cache Design, Memory Hierarchy Design

by

Ashish Jain

Honor Pledge: "I have neither given nor received unauthorized aid on this test or assignment."
Student's electronic signature:Ashish Jain
(sign by typing your name)

Graph1: L1 Cache Exploration on Miss Rate

Rows: Associativity

Column: Log2(Size)

	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0
1	0.82278	0.73898	0.61739	0.51696	0.40052	0.28432	0.20396	0.15164	0.06474	0.06304	0.05871
2	0.81703	0.71160	0.59050	0.44773	0.33129	0.22179	0.11673	0.06871	0.04193	0.02582	0.02582
4	0.81180	0.70135	0.56520	0.42561	0.29522	0.18687	0.08588	0.03383	0.02628	0.02582	0.02582
8	0.81007	0.70000	0.55339	0.40708	0.28328	0.17399	0.06583	0.02726	0.02582	0.02582	0.02582
full	0.80795	0.69813	0.55198	0.39552	0.27217	0.16708	0.05899	0.02582	0.02582	0.02582	0.02582

Discussion:

- 1. Discuss trends in the graph. For a given associativity, how does increasing cache size affect miss rate? For a given cache size, what is the effect of increasing associativity? For a given associativity as you increase the cache size the Miss Rate decreases. For a given cache size as you increase the associativity the Miss Rate decreases.
- 2. Estimate the compulsory miss rate from the graph

 Compulsory Miss Rate is the rate when we bring blocks from the memory. Thus for our table, the larger cache size and full associativity will give us the compulsory miss rate, as it will take minimum number of blocks from memory. Compulsory Miss Rate= 0.02582
- 3. For each associativity, estimate the conflict miss rate from the graph

 Conflict miss rate is due smaller cache associativity. Hence, we take average of differences with
 the fully associativity. Direct mapped cache = 0.078904 ,Associativity 2 = 0.031259, Associativity
 4 = 0.011689, Associativity 8 = 0.003933, Fully associative cache = 0

Rows = ASSOC, Columns = Log2(SIZE)

	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0
1	82.392797	74.027090	61.886005	51.859830	40.215830	28.630417	20.629353	15.458627	6.840800	6.747812	6.434451
2	81.843329	71.321691	59.231131	44.967195	33.323195	22.402917	11.935446	7.171727	4.567603	3.027929	3.149744
4	81.326820	70.289496	56.705685	42.772173	29.733173	18.920936	8.859250	3.702481	3.008280	3.039685	3.146418
8	81.153820	70.180686	55.528065	40.920911	28.540911	17.653354	6.871511	3.067213	2.983236	3.040925	3.160177
ful1	80.950484	69.989515	55.380948	39.750581	27.415581	16.913608	6.123740	2.858281	2.904486	2.978009	3.057728

Discussion:

1. For a memory hierarchy with only an L1 cache and BLOCKSIZE = 32, which configuration yields the best (i.e., lowest) AAT?

The best AAT of 2.858281 is given by Cache Size of 2^17 with fully associativity

Graph3: Replacement Policy Study

Rows = ASSOC, Columns = Log2(SIZE)

		10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0
LF	RU 81.3	32682	70.289496	56.705685	42.772173	29.733173	18.920936	8.85925	3.702481	3.00828
OF	T 61.5	51882	50.552496	39.467685	29.578173	20.465173	12.577936	6.25825	3.418481	2.99428

Discussion:

Discuss trends in the graph. Which replacement policy yields the best AAT? The AAT of Optimal replacement policy is comparatively less than the AAT of LRU. I cannot

comment on the AAT of PLRU as I haven't implemented that. Hence, best replacement policy is Optimal.

Graph 4 Inclusion Property Study

	11.0	12.0	13.0	14.0	15.0	16.0
non-inclusive	71.270014	56.341472	41.304321	28.730632	17.73269	6.939276
inclusive	71.586961	56.357658	41.304341	28.730632	17.73269	6.939276

Discussion:

1. Discuss trends in the graph. Which inclusion property yields a better AAT?

At least for the gcc_trace file, I did not see much difference in the AATs of non-inclusive and inclusive properties. But as observed, for initial cache sizes, the AAT for inclusive are slightly higher than that of non-inclusive. Hence, we can conclude that in general non-inclusive yields a better AAT.