Chapter IR:III

III. Retrieval Models

- Overview of Retrieval Models
- Boolean Retrieval
- Vector Space Model
- □ Binary Independence Model
- □ Okapi BM25
- □ Divergence From Randomness
- □ Latent Semantic Indexing
- □ Explicit Semantic Analysis
- □ Language Models
- □ Combining Evidence
- □ Learning to Rank

Retrieval Model $\mathcal{R} = \langle \mathbf{D}, \mathbf{Q}, \rho \rangle$ [Generic Model] [Boolean] [VSM] [BIM] [BM25] [LSI] [ESA] [LM]

Document representations D.

- \Box $T = \{t_1, \ldots, t_m\}$ is the set of m index terms (lemmatized or stemmed words)
- \Box T are the atoms of a logical formula for d with operators \land , \lor , \neg , and brackets
- $\mathbf{d} = (\bigwedge_{t \in d} t) \land \neg(\bigwedge_{t \notin d} t)$, where $\mathcal{I}_{\mathbf{d}}(t) = 1$ if t occurs in d, and $\mathcal{I}_{\mathbf{d}}(t) = 0$ otherwise.

Query representations Q.

 \Box q is a logical formula over T.

Relevance function ρ .

- $\rho(d,q) = \mathcal{I}(\mathbf{d} \to \mathbf{q})$, where \to is the logical implication.
- $\rho(d,q)=1$ indicates relevance of d to q, and $\rho(d,q)=0$ otherwise.
- $R_a \subseteq D$ is the set of documents $d \in D$ relevant to q, i.e., with $\rho(d,q) = 1$
- $\rho'(d,q) = P(\mathcal{I}(\mathbf{d} \to \mathbf{q}) = 1) = P(\mathbf{d} \to \mathbf{q}) = P(q \mid d)$ relaxes relevance scoring

Retrieval Model $\mathcal{R} = \langle \mathbf{D}, \mathbf{Q}, \rho \rangle$ [Generic Model] [Boolean] [VSM] [BIM] [BM25] [LSI] [ESA] [LM]

Document representations D.

- \Box $T = \{t_1, \ldots, t_m\}$ is the set of m index terms (lemmatized or stemmed words).
- \Box *T* are the atoms of a logical formula for *d* with operators \land , \lor , \neg , and brackets.
- $\mathbf{d} = (\bigwedge_{t \in d} t) \land \neg(\bigwedge_{t \notin d} t)$, where $\mathcal{I}_{\mathbf{d}}(t) = 1$ if t occurs in d, and $\mathcal{I}_{\mathbf{d}}(t) = 0$ otherwise.

Query representations Q.

 \Box q is a logical formula over T.

Relevance function ρ .

- $\rho(d,q) = \mathcal{I}(\mathbf{d} \to \mathbf{q})$, where \to is the logical implication.
- \square $R_q \subseteq D$ is the set of documents $d \in D$ relevant to q, i.e., with $\rho(d,q) = 1$.
- $\rho'(d,q) = P(\mathcal{I}(\mathbf{d} \to \mathbf{q}) = 1) = P(\mathbf{d} \to \mathbf{q}) = P(q \mid d)$ relaxes relevance scoring.

Remarks:

 \Box $\mathcal{I}: T \to \{0,1\}$ and $\mathcal{I}: \{\alpha \mid \alpha \text{ is a logical formula over } T\} \to \{0,1\}$ is the evaluation or interpretation function that assigns truth values to the atoms T as well as to propositional formulas over them.

Relevance Function ρ

What query is illustrated?

Relevance Function ρ

What query is illustrated?

$$\mathbf{q} = t_1 \wedge (t_2 \vee \neg t_3) \equiv (t_1 \wedge \neg t_2 \wedge \neg t_3) \vee (t_1 \wedge t_2 \wedge \neg t_3) \vee (t_1 \wedge t_2 \wedge t_3)$$

Example

Document representation:

$$\mathbf{d} = \mathsf{chrysler} \wedge \mathsf{deal} \wedge \mathsf{usa}$$

$$\wedge \mathsf{china} \wedge \neg \mathsf{cat} \wedge \mathsf{sales}$$

$$\wedge \neg \mathsf{dog} \wedge \dots$$

Query representation:

$$\mathbf{q} = \mathbf{usa} \wedge (\mathbf{dog} \vee \neg \mathbf{cat})$$

$$\equiv (\mathbf{usa} \wedge \mathbf{dog}) \vee (\mathbf{usa} \wedge \neg \mathbf{cat})$$

$$\equiv (\mathbf{usa} \wedge \neg \mathbf{dog} \wedge \neg \mathbf{cat}) \vee$$

$$(\mathbf{usa} \wedge \mathbf{dog} \wedge \neg \mathbf{cat}) \vee$$

$$(\mathbf{usa} \wedge \mathbf{dog} \wedge \neg \mathbf{cat})$$

Relevance function:

$$\rho(d,q) = \mathcal{I}(\mathbf{d} \to \mathbf{q}) = 1$$
, since $\mathcal{I}_{\mathbf{d}}(\mathtt{usa}) = 1$, $\mathcal{I}_{\mathbf{d}}(\mathtt{dog}) = 0$, and $\mathcal{I}_{\mathbf{d}}(\mathtt{cat}) = 0$.

Remarks:

- \Box The symbol " \equiv " denotes "is logically equivalent with".
- What does logical equivalence mean?
- A Boolean query in disjunctive normal form can be answered straightforward using an inverted index in parallel for each conjunction.
- □ A Boolean query in canonical disjunctive normal form will retrieve each document only once.

Query Refinement: "Searching by Numbers"

Best practice in Boolean retrieval: (re)formulate queries until the number of documents retrieved is manageable. Example: pages about President Lincoln.

- 1. lincoln
 Results: many pages about cars, places, people
- 2. president \(\) lincoln

 A result: "Ford Motor Company today announced that Darryl Hazel will succeed Brian Kelley as president of Lincoln Mercury."
- 3. president ∧ lincoln ∧ ¬automobile ∧ ¬car

 Not a result: "President Lincoln's body departs Washington in a nine-car funeral train."
- **4.** president \land lincoln \land ¬automobile \land biography \land life \land birthplace \land gettysburg Results: \emptyset
- 5. president \(\) lincoln \(\) \(\) automobile \(\) (biography \(\) life \(\) birthplace \(\) gettysburg)

 A result: "\(\) President's \(\) Day \(-\) Holiday activities \(-\) crafts, mazes, word searches, \(\). 'The \(\) Life \(\) of Washington' Read the entire book online! Abraham Lincoln Research \(\) Site"

Discussion

Advantages:

- Precision: in principle, any subset of documents from a collection can be designated by a Boolean query
- as in data retrieval, other fields are possible (e.g., date, document type, etc.)
- simple, efficient implementation

Disadvantages:

- retrieval effectiveness depends entirely on the user
- cumbersome query formulation (e.g., expertise required)
- no possibility to weight query terms
- no ranking; binary relevance scoring is too restrictive for most practical purposes (exceptions: medical retrieval, patent retrieval, eDiscovery (law))
- the size of the result set is difficult to be controlled

Retrieval Model $\mathcal{R} = \langle \mathbf{D}, \mathbf{Q}, \rho \rangle$ [Generic Model] [Boolean] [VSM] [BIM] [BM25] [LSI] [ESA] [LM]

Document representations D.

- \Box $T = \{t_1, \ldots, t_m\}$ is the set of m index terms (word stems, without stop words)
- \Box T is interpreted as set of dimensions of an m-dimensional vector space.
- \square $\omega: \mathbf{D} \times T \to \mathbf{R}$ is a term weighting function, quantifying term importance.
- $\mathbf{d} = (w_1, \dots, w_m)^T$, where $w_i = \omega(\mathbf{d}, t_i)$ is the term weight of the *i*-th term in T.

Query representations Q.

 $\mathbf{q} = (w_1, \dots, w_m)^T$, where $w_i = \omega(\mathbf{q}, t_i)$ is the term weight of the *i*-th term in T.

Relevance function ρ .

- \square Distance and similarity functions φ serve as relevance functions.
- $\rho(d,q) = \varphi(\mathbf{d},\mathbf{q}) = \mathbf{d}^T\mathbf{q}$, the scalar product of vectors \mathbf{d} and \mathbf{q} .
- Normalizing d and q calculates cosine similarity.

Retrieval Model $\mathcal{R} = \langle \mathbf{D}, \mathbf{Q}, \rho \rangle$ [Generic Model] [Boolean] [VSM] [BIM] [BM25] [LSI] [ESA] [LM]

Document representations D.

- \Box $T = \{t_1, \ldots, t_m\}$ is the set of m index terms (word stems, without stop words).
- \Box *T* is interpreted as set of dimensions of an *m*-dimensional vector space.
- \square $\omega: \mathbf{D} \times T \to \mathbf{R}$ is a term weighting function, quantifying term importance.
- $\mathbf{d} = (w_1, \dots, w_m)^T$, where $w_i = \omega(\mathbf{d}, t_i)$ is the term weight of the *i*-th term in T.

Query representations Q.

 $\mathbf{q} = (w_1, \dots, w_m)^T$, where $w_i = \omega(\mathbf{q}, t_i)$ is the term weight of the *i*-th term in T.

Relevance function ρ .

- \Box Distance and similarity functions φ serve as relevance functions.
- $\rho(d,q) = \varphi(\mathbf{d},\mathbf{q}) = \mathbf{d}^T\mathbf{q}$, the scalar product of vectors \mathbf{d} and \mathbf{q} .
- Normalizing d and q calculates cosine similarity.

Relevance Function ρ : Cosine Similarity

Relevance Function ρ : Cosine Similarity

The scalar product $\mathbf{a}^T\mathbf{b}$ between two m-dimensional vectors \mathbf{a} and \mathbf{b} , where φ denotes the angle between them, is defined as follows:

$$\mathbf{a}^{T}\mathbf{b} = ||\mathbf{a}|| \cdot ||\mathbf{b}|| \cdot \cos(\varphi)$$

$$\Leftrightarrow \cos(\varphi) = \frac{\mathbf{a}^{T}\mathbf{b}}{||\mathbf{a}|| \cdot ||\mathbf{b}||},$$

where ||x|| denotes the L2 norm of vector x:

$$||\mathbf{x}|| = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

Let $\rho(\mathbf{q}, \mathbf{d}) = \cos(\varphi)$ be the relevance function of the vector space model.

Example

$$\mathbf{d} = egin{pmatrix} \mathsf{chrysler} & w_1 \ \mathsf{usa} & w_2 \ \mathsf{cat} & w_3 \ \mathsf{dog} & w_4 \ \mathsf{mouse} & w_5 \end{pmatrix} = egin{pmatrix} \mathsf{chrysler} & 1 \ \mathsf{usa} & 4 \ \mathsf{cat} & 3 \ \mathsf{dog} & 7 \ \mathsf{mouse} & 5 \end{pmatrix}$$

$$\mathbf{d'} = \begin{pmatrix} \text{chrysler } 0.05 \\ \text{usa} & 0.2 \\ \text{cat} & 0.15 \\ \text{dog } & 0.35 \\ \text{mouse } & 0.25 \end{pmatrix} \text{,} \qquad \mathbf{q'} = \begin{pmatrix} \text{chrysler } 0.2 \\ \text{usa} & 0.2 \\ \text{cat } & 0.2 \\ \text{dog } & 0.2 \\ \text{elephant } & 0.2 \end{pmatrix}$$

Example

$$\mathbf{d} = egin{pmatrix} \mathsf{chrysler} & w_1 \ \mathsf{usa} & w_2 \ \mathsf{cat} & w_3 \ \mathsf{dog} & w_4 \ \mathsf{mouse} & w_5 \end{pmatrix} = egin{pmatrix} \mathsf{chrysler} & 1 \ \mathsf{usa} & 4 \ \mathsf{cat} & 3 \ \mathsf{dog} & 7 \ \mathsf{mouse} & 5 \end{pmatrix}$$

$$\mathbf{d'} = \begin{pmatrix} \text{chrysler } 0.05 \\ \text{usa} & 0.2 \\ \text{cat} & 0.15 \\ \text{dog } & 0.35 \\ \text{mouse } & 0.25 \end{pmatrix} \text{,} \qquad \mathbf{q'} = \begin{pmatrix} \text{chrysler } 0.2 \\ \text{usa} & 0.2 \\ \text{cat } & 0.2 \\ \text{dog } & 0.2 \\ \text{elephant } & 0.2 \end{pmatrix}$$

Example

$$\mathbf{d} = egin{pmatrix} \mathsf{chrysler} & w_1 \ \mathsf{usa} & w_2 \ \mathsf{cat} & w_3 \ \mathsf{dog} & w_4 \ \mathsf{mouse} & w_5 \end{pmatrix} = egin{pmatrix} \mathsf{chrysler} & 1 \ \mathsf{usa} & 4 \ \mathsf{cat} & 3 \ \mathsf{dog} & 7 \ \mathsf{mouse} & 5 \end{pmatrix}$$

$$\mathbf{d'} = \begin{pmatrix} \text{chrysler } 0.05 \\ \text{usa} & 0.2 \\ \text{cat} & 0.15 \\ \text{dog } & 0.35 \\ \text{mouse } & 0.25 \\ \text{elephant } 0.0 \end{pmatrix} \text{,} \qquad \mathbf{q'} = \begin{pmatrix} \text{chrysler } 0.2 \\ \text{usa} & 0.2 \\ \text{cat } & 0.2 \\ \text{dog } & 0.2 \\ \text{mouse } & 0.0 \\ \text{elephant } 0.2 \end{pmatrix}$$

The angle φ between \mathbf{d}' and \mathbf{q}' is about 48° , $\cos(\varphi) \approx 0.67$.

The weights in d' and q' denote the relative term frequency $w_i' = \frac{w_i}{\sum_{j=1}^5 w_j}$. Dimensions are aligned with zero padding. The product $\mathbf{d}'^T \mathbf{q}' = 0.15$, the norms $||\mathbf{d}'|| = 0.5$ and $||\mathbf{q}'|| = 0.447$.

Term Weighting: $tf \cdot idf$ [BIM Relevance Function]

To compute the weight w for a term t from document d under the vector space model, the most commonly employed term weighting scheme $\omega(t)$ is $tf \cdot idf$:

- \Box tf(t,d) denotes the normalized term frequency of term t in document d. The basic idea is that the importance of term t is proportional to its frequency in document d. However, t's importance does not increase linearly: the raw frequency must be normalized.
- \neg df(t,D) denotes the document frequency of term t in document collection D. It counts the number of documents that contain t at least once.
- \Box idf(t,D) denotes the inverse document frequency

$$idf(t, D) = \log \frac{|D|}{df(t, D)}$$

The importance of term t in general is inversely proportional to its document frequency.

A term weight ω for term t in document $d \in D$ is computed as follows

$$\omega(t) = tf(t, d) \cdot idf(t, D).$$

Term Weighting: $tf \cdot idf$ [BIM Relevance Function]

To compute the weight w for a term t from document d under the vector space model, the most commonly employed term weighting scheme $\omega(t)$ is $tf \cdot idf$:

- \Box tf(t,d) denotes the normalized term frequency of term t in document d. The basic idea is that the importance of term t is proportional to its frequency in document d. However, t's importance does not increase linearly: the raw frequency must be normalized.
- \Box df(t,D) denotes the *document frequency* of term t in document collection D. It counts the number of documents that contain t at least once.
- lueta idf(t,D) denotes the inverse document frequency:

$$idf(t, D) = \log \frac{|D|}{df(t, D)}$$

The importance of term *t* in general is inversely proportional to its document frequency.

A term weight ω for term t in document $d \in D$ is computed as follows:

$$\omega(t) = \mathbf{tf}(t, d) \cdot \mathbf{idf}(t, D).$$

Term Weighting: $tf \cdot idf$ [BIM Relevance Function]

To compute the weight w for a term t from document d under the vector space model, the most commonly employed term weighting scheme $\omega(t)$ is $tf \cdot idf$:

- \Box tf(t,d) denotes the normalized term frequency of term t in document d. The basic idea is that the importance of term t is proportional to its frequency in document d. However, t's importance does not increase linearly: the raw frequency must be normalized.
- \Box df(t,D) denotes the *document frequency* of term t in document collection D. It counts the number of documents that contain t at least once.
- \Box *idf*(t, D) denotes the *inverse document frequency*:

$$idf(t, D) = \log \frac{|D|}{df(t, D)}$$

The importance of term t in general is inversely proportional to its document frequency.

A term weight ω for term t in document $d \in D$ is computed as follows:

$$\omega(t) = \mathbf{tf}(t, d) \cdot \mathbf{idf}(t, D).$$

Term Weighting: $tf \cdot idf$ [BIM Relevance Function]

To compute the weight w for a term t from document d under the vector space model, the most commonly employed term weighting scheme $\omega(t)$ is $tf \cdot idf$:

- \Box tf(t,d) denotes the normalized term frequency of term t in document d. The basic idea is that the importance of term t is proportional to its frequency in document d. However, t's importance does not increase linearly: the raw frequency must be normalized.
- \Box df(t,D) denotes the *document frequency* of term t in document collection D. It counts the number of documents that contain t at least once.
- \Box *idf*(t, D) denotes the *inverse document frequency*:

$$idf(t, D) = \log \frac{|D|}{df(t, D)}$$

The importance of term t in general is inversely proportional to its document frequency.

A term weight ω for term t in document $d \in D$ is computed as follows:

$$\omega(t) = tf(t, d) \cdot idf(t, D).$$

Term Weighting: tf · idf

Plot of the function $\mathit{idf}(t,D) = \log \frac{|D|}{\mathit{df}(t,D)}$ for |D| = 100.

Remarks:

- Term frequency weighting was invented by Hans Peter Luhn: "There is also the probability that the more frequently a notion and combination of notions occur, the more importance the author attaches to them as reflecting the essence of his overall idea." [Luhn 1957]
- \Box The importance of a term t for a document d is not linearly correlated with its frequency. Several normalization factors have been proposed [Wikipedia]:
 - tf(t,d)/|d|
 - $1 + \log(tf(t,d))$ for tf(t,d) > 0
 - $k + (1-k)\frac{tf(t,d)}{\max_{t' \in d}(tf(t',d))}$, where k serves as smoothing term; typically k = 0.4
- Inverse document frequency weighting was invented by Karen Spärck Jones: "it seems we should treat matches on non-frequent terms as more valuable than ones on frequent terms, without disregarding the latter altogether. The natural solution is to correlate a term's matching value with its collection frequency."

 [Spärck Jones 1972]
- Spärck Jones gives little theoretical justification for her intuition. Given the success of *idf* in practice, over the decades, numerous attempts at a theoretical justification have been made.
 A comprehensive overview has been compiled by <u>Robertson 2004</u>.
- For example, interpreting the term $\frac{|D|}{df(t,D)}$ as inverse of the probability $P_{df}(t) = \frac{df(t,D)}{|D|}$ of t occurring in a random document in D yields $idf(t,D) = \log \frac{|D|}{df(t,D)} = -\log P_{df}(t)$. Logarithms fit relevance functions ρ since both are additive, yielding the interpretation: "The less likely (on a random basis) it is that a given combination of terms occurs, the more likely it is that a document containing this combination is relevant to the question." [Robertson 1972]

Query Refinement: Relevance Feedback

Given a result set R for a query q, and subsets $R^+ \subseteq R$ and $R^- \subseteq R$ of relevant and non-relevant documents, where $R^+ \cap R^- = \emptyset$, the query representation \mathbf{q} can be refined with the document representations \mathbf{R} using Rocchio's update formula:

$$\mathbf{q}' = \alpha \cdot \mathbf{q} + \beta \cdot \frac{1}{|\mathbf{R}^+|} \sum_{\mathbf{d}^+ \in \mathbf{R}^+} \mathbf{d}^+ - \gamma \cdot \frac{1}{|\mathbf{R}^-|} \sum_{\mathbf{d}^- \in \mathbf{R}^-} \mathbf{d}^-,$$

where α , β , and γ adjust the impact of original query and (non-)relevant documents.

Query Refinement: Relevance Feedback

Given a result set R for a query q, and subsets $R^+ \subseteq R$ and $R^- \subseteq R$ of relevant and non-relevant documents, where $R^+ \cap R^- = \emptyset$, the query representation \mathbf{q} can be refined with the document representations \mathbf{R} using Rocchio's update formula:

$$\mathbf{q}' = \alpha \cdot \mathbf{q} + \beta \cdot \frac{1}{|\mathbf{R}^+|} \sum_{\mathbf{d}^+ \in \mathbf{R}^+} \mathbf{d}^+ - \gamma \cdot \frac{1}{|\mathbf{R}^-|} \sum_{\mathbf{d}^- \in \mathbf{R}^-} \mathbf{d}^-,$$

where α , β , and γ adjust the impact of original query and (non-)relevant documents.

Observations:

- \Box Terms not in query q may get added; often a limit is imposed (say, 50).
- □ Terms may accrue negative weight; such weights are set to 0.
- Moves the query vector closer to the centroid of relevant documents.
- □ Works well if relevant documents cluster; less suited for multi-faceted topics.

Relevance feedback can be obtained directly from the user, indirectly through user interaction, or automatically assuming the top-retrieved documents as relevant.

Discussion

Advantages:

- Improved retrieval performance compared to Boolean retrieval
- Partial query matching: not all query terms need to be present in a document for it to be retrieved
- \Box The relevance function ρ defines a ranking among the retrieved documents with respect to their computed similarity to the query

Disadvantages:

Index terms are assumed to occur independent of one another