

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERIA

SYLLABUS

PROYECTO CURRICULAR: INGENIERIA ELECTRONICA

NOMBRE DEL DOCENTE:			
ESPACIO ACADÉMICO (Asi	gnatura):		
NANOTECNOLOGÍA	Ι	CÓDIGO: 59	
Obligatorio (): Básico () Comp	plementario ()	CODIGO. 37	
Electivo (X): Intrínsecas (X) Extrínsecas ()		
NUMERO DE ESTUDIANTES:		GRUPO:	
	NÚMERO DE CREDITOS: 3		
TIPO DE CURSO:	TEÓRICO PRACTICO	TEO-PRAC:	
Alternativas metodológicas:			
Clase Magistral (X), Seminario	(X). Seminario – Taller (), T	aller (), Prácticas (),	
Proyectos tutoriados (), Otro:		,, ,,	
,			
HORARIO:			
DIA	HORAS	SALON	
I. JUSTIFICACIÓ	ÓN DEL ESPACIO ACADÉMICO	O (¿El Por Qué?)	
La nanotecnología (NT) es una disc	ciplina bastante joven, que surgió	en los años noventa. Sin embargo, la	
nanotecnología ha ganado tanta imp	ortancia en los últimos años que l	las universidades de todos los rankings	
han introducido o van a introducir	programas de enseñanza de la n	anotecnología. Las predicciones dicen	
que la nanotecnología cambiará nu	estras vidas y la sociedad más de	e lo que la tecnología informática y la	
electricidad han hecho juntas.			
El curso proporcionará una visión	general sobre la nanotecnología.	Mostrará que el nano régimen es tan	
diferente de otros regímenes porque	e tanto los efectos clásicos como	los cuánticos pueden estar activos, lo	
que lleva a propiedades únicas de	e los nano dispositivos. La nano	otecnología es una ciencia altamente	
interdisciplinaria, lo que se reflejar	á en el curso al hacer referencia	a la química, la física, la biología, la	
farmacia y la ingeniería. Se discut	irán las aplicaciones de la nanot	ecnología, ya que están en uso hoy o	
como están planificadas para el futu	ro.		
Prerrequisitos para cursar el espacio	académico. Física de Semiconduc	ctores	

II. PROGRAMACION DEL CONTENIDO (¿El Qué? Enseñar)

OBJETIVO GENERAL

Proporcionar una introducción y una descripción general de la nanotecnología (NT).

OBJETIVOS ESPECÍFICOS

- Ilustrar al estudiante sobre la amplitud de la definición de nanotecnología, dando énfasis a su
 carácter multidisciplinario, y a la necesidad de establecer una comunidad de jóvenes científicos e
 ingenieros dedicados a la apropiación de tecnologías, mediante la creación y fortalecimiento de
 grupos de investigación básica y aplicada.
- Proporcionar herramientas teóricas basadas en la física del estado sólido para la comprensión de propiedades, técnicas de fabricación y caracterización de nanoestructuras y dispositivos basados en materiales nanoestructurados.
- 3. Aplicar el conocimiento de leyes y fenómenos físicos para comprender los métodos modernos usados para la exploración de las propiedades de la materia.
- 4. Comprender la forma en que se fabrican las nanoestructuras y las novedosas propiedades exhibidas por materiales nanoestructurados.
- 5. Caracterizar la Nanotecnología como una multitud de diferentes enfoques ascendentes (bottom-up) y descendentes (top-down).
- 6. Estudiar los MEMS y NEMS.
- 7. Proporcionar una visión de los materiales químicos y las líneas de fabricación que se utilizan hoy en día en la nanotecnología.
- 8. Estudiar nuevas formas de nanoestructuras orgánicas e inorgánicas.
- Demostrar cómo las aplicaciones de la Nanotecnología influirán en la ciencia del mañana y
 cambiarán muchos aspectos de nuestra vida. Se discutirá el impacto de la Nanotecnología en
 nuestra sociedad.

RESULTADOS DE APRENDIZAJE

Describir las principales estrategias de fabricación en la micro y nanoescala: ascendentes (bottom-up) y descendentes (top-down).

Explicar las leyes físicas en la nanoescala y en qué se diferencian de la microescala.

Identificar los conceptos básicos de la estructura electrónica de átomos, moléculas y nanopartículas.

Describir el comportamiento de los MEMS y NEMS.

Identificar los principales materiales químicos utilizados en la Nanotecnología.

Identificar las principales estrategias de fabricación de nanopartículas.

Describir las propiedades de nanoestructuras como: aerogeles, grafeno, fullerenos, nanotubos y nanohilos, y su función en la ingeniería de dispositivos nanoelectrónicos.

PROGRAMA SINTÉTICO

1. Conceptos Generales en Nanotecnología

¿Qué es la nanotecnología?

Historia de la nanotecnología

Clasificación de las diferentes áreas de la nanotecnología

Enfoque de arriba hacia abajo (bottom-up)

Enfoque de abajo hacia arriba (top-down)

El carácter interdisciplinario de la nanotecnología

¿Qué ofrece la nanotecnología para nuestro futuro?

Nanotecnología y las Tecnologías Convergentes

2. Nanotecnología y Nanociencias

¿Por qué se utiliza el término nanotecnología en lugar de nanociencias?

Nanofísica y nanoquímica Física: Mecánica Cuántica

Mecánica cuántica: la física de la pequeñez

Física y Química: Estructura Electrónica de los Átomos

Tipos de enlaces químicos

Interacciones moleculares - Interacciones de van der Waals

Interacciones moleculares: enlaces de hidrógeno Interacciones Moleculares - Efecto Casimir

Interacciones moleculares: efectos hidrofílicos e hidrofóbicos

Interacciones moleculares: apilamiento π

Nanoquímica Química coloidal

Electroquímica y nanotecnología electroquímica

Nanobiología Nanofarmacia Nanomedicina

3. MEMS y NEMS

Definición

Modelo de barra de Euler-Bernoulli

Microbarra - Cantilever

Modos de vibración de la microbarra

Aplicaciones en MEMS en sensores y actuadores: acelerómetros, giroscopios, etc.

La escala nanométrica de estos dispositivos

4. Nanoestructuras

4.1. Aerogeles

Descripción general de los aerogeles

Historia de los aerogeles

Diagramas de fase y temperatura crítica

Formación de aerogeles

Propiedades de los aerogeles

Aplicaciones de Aerogeles

4.2. Grafeno

Grafeno (graphene)

Generación de láminas de grafeno

Grafino (graphyne), (Graphdiyne, graphone, graphane)

Propiedades

Sintesis

Aplicaciones

4.3. Fullerenos: Buckyballs

Descripción general de los fullerenos esféricos

Descubrimiento de los primeros fullerenos

La estructura de Buckminsterfullereno (Fullereno)

Cuerpos platónicos

Análisis del enlace en C₆₀

Otros fullerenos

Otras estructuras posibles para C_{60} : C_{360} , etc.

Síntesis de C₆₀

Fullerenos sustituidos: complejos de fullereno endoédrico

Superconductividad

Propiedades de los Fullerenos

De los fullerenos a las "cebollas" de carbono

4.4. Nanotubos de Carbono NTC

Estructuras idealizadas y reales de los NTC

Historia del Descubrimiento de los NTC

Síntesis de NTC

Espectroscopia láser

Módulo de elasticidad

Propiedades mecánicas de los CNT

Compuestos de CNT

Propiedades eléctricas y electrónicas de los CNT

Propiedades magnéticas de los CNT

Aplicación de CNT

4.5. Nanohilos

Hilos moleculares

Ejemplos de hilos moleculares

Dendrímeros (Nanopartículas Orgánicas)

¿Qué son los dendrímeros?

El estado dendrítico

Propiedades únicas de dendrímero

Aplicación de dendrímeros como nanofármacos y dispositivos nanomédicos

Dendrímeros como módulos reactivos para la síntesis de arquitecturas a nanoescala más complejas

Conclusiones

III. ESTRATEGIAS (¿El Cómo?)

Metodología Pedagógica y Didáctica:

Clases magistrales para proporcionar fundamentos teóricos

Seminario para estimular la investigación sobre aplicaciones y tópicos de interés del estudiante relacionados con el uso de nanotecnologías.

		Horas		Horas	Horas	Total Horas	Créditos
				profesor/semana	Estudiante/semana	Estudiante/semestre	
Tipo de Curso	TD	TC	TA	(TD + TC)	(TD + TC + TA)	16 semanas	

|--|

Trabajo Presencial Directo (TD): trabajo de aula con plenaria de todos los estudiantes.

Trabajo Mediado Cooperativo (TC): Trabajo de tutoría del docente a pequeños grupos individual a los estudiantes.

Trabajo Autónomo (TA): Trabajo con distintas instancias: en abajo del estudiante sin presencia del docente, que se puede r s de trabajo o en forma individual, en casa o en biblioteca.

IV. RECURSOS (¿Con Qué?)

Medios y Ayudas:

Videobeam, PC.

Acceso a internet para ejecución de applets, programas, animaciones y artículos científicos disponibles en la red.

Idealmente, y como propuesta futura, la asignatura debería ser de carácter teórico- experimental. Para ello se requiere invertir en conjunto con el departamento de física, para la dotación de un laboratorio de física moderna que contenga como mínimo un difractómetro de rayos x, microscopios de fuerza atómica y efecto túnel, celdas fotovoltaicas para experimento fotoeléctrico, experimento de difracción de electrones, láseres de helio-neón y cámara de vacío.

BIBLIOGRAFÍA

TEXTO GUÍA

Nanophysics and nanotechnology. Edward L. Wolf. Wiley-VCH Verlag GmbH. Weinheim (Germany) 2006.

TEXTOS COMPLEMENTARIOS

Introducción a la Nanotecnología. Charles P. Poole y Frank J. Owens. Editorial Reverté. Barcelona (España) 2007. ISBN: 978-84-291-7971-2.

Revistas

Materials Research Society Bulletin.

Organic electronics.

Applied physics letters

Journal of applied Physics.

Nature.

Science.

AULA VIRTUAL EN MOODLE

DIRECCIONES DE INTERNET

IBM research Almaden. http://www.almaden.ibm.com/

Nanohub. http://nanohub.org/

Applets sobre Física y matemáticas. http://www.falstad.com/mathphysics.html

Crystal viewer. http://jas.eng.buffalo.edu/education/solid/unitCell/home.html

La esfera de Ewald. http://www.chembio.uoguelph.ca/educmat/chm729/recip/9surew.htm

Applets sobre física y matemáticas. http://www.falstad.com/mathphysics.html

V. ORGANIZACIÓN / TIEMPOS (¿De Qué Forma?)

Espacios, Tiempos, Agrupamientos:

Se recomienda trabajar una unidad cada cuatro semanas, trabajar en pequeños grupos de estudiantes, utilizar Internet para comunicarse con los estudiantes para revisiones de avances y solución de preguntas (esto considerarlo entre las horas de trabajo cooperativo).

VI. EVALUACIÓN (Qué, ¿Cuándo, Cómo?)

Es importante tener en cuenta las diferencias entre evaluar y calificar. El primero es un proceso cualitativo y el segundo un estado terminal cuantitativo que se obtiene producto de la evaluación. Para la obtención de la información necesaria para los procesos de evaluación se requiere diseñar distintos formatos específicos de autoevaluación, coevaluación y heteroevaluación.

	TIPO DE EVALUACIÓN	FECHA	PORCENTAJE
PRIMERA NOTA	Evaluación escrita		25%
SEGUNDA NOTA	Exposición oral		25%
110111	Talleres de ejercicios		20%
EXAMEN FINAL	Evaluación escrita		30%

ASPECTOS PARA EVALUAR DEL CURSO

- 1. Evaluación del desempeño docente
- **2.** Evaluación de los aprendizajes de los estudiantes en sus dimensiones: individual/grupo, teórica/práctica, oral/escrita.
- 3. Autoevaluación:
- **4.** Coevaluación del curso: de forma oral entre estudiantes y docente.

DATOS DEL DOCENTE	
NOMBRE:	
PREGRADO:	
POSTGRADO:	

V. ORGANIZACIÓN / TIEMPOS (¿De Qué Forma?)

ASESORIAS: FIRMA D	DE ESTUDIANTES		
NOMBRE	FIRMA	CÓDIGO	FECHA
FIRMA DEL DOCENT	E		
FECHA DE ENTR	EGA:		