Bloom Filters

Joaquim Madeira

Version 0.1 – November 2017

Overview

- Motivation
- Hash Tables A quick review
- Hash Functions A quick review
- Bloom Filters
- Counting Bloom Filters

Set Membership

- Given an arbitrary sized string s and a set S
- Does s belong to S?
- Easy answer for small sets!
 - Complexity ?
- BUT "difficult" answer for huge sets!
 - E.g., Big-Data applications

Hash Tables

- Data structure for storing key-value pairs
- No ordering !!
- BUT, fast access !!
- No duplicate keys !!

Hash Tables

- Two main operations :
- Insert (put) a key-value pair into the table
 - If key already exists, update the value
- Search for (get) the value associated with a given key

Hash Tables

- Additional operations :
- contains(key)
- delete(key)
- is_empty()
- Keys iterator

...

Hashing

- To reference key-value pairs stored in a table
- Perform arithmetic operations that transform search keys into array indices
 - □ FAST!!
- Ideally, different keys would map to different indices
- BUT, collisions do occur !!

Hash Tables – Toy Example

- Download the file hash_table_V_1.py
- Identify the available operations
- Create a table and insert several key-value pairs
- What kind of keys can be used?
- How are collisions resolved?
- What operations are missing?

HashTables – Time complexity

- The time complexity of searches by hashing can be as low as O(1) or as high as O(N)
- Worst-case ?
- Distinct keys $K_i \neq K_j$ collide: $h(K_i) = h(K_j)$
- The entire table must be searched to find the correct entry
- Or to conclude it is not there!

Hash Functions

- Pseudo-random mathematical functions used to compute indices for table look-up
 - Keys are mapped to small integers
- Indices should be evenly distributed
 - Even if there are regularities in the data
- There are many hash functions
 - With different degrees of complexity
 - And with differences in performance
 - For different applications

Simple Hash Functions

Division method

- Choose a prime m that isn't close to a power of 2
- $h(k) = k \mod m$
- Works badly for many types of patterns in the input data
- Knuth's variant
 - $h(k) = k(k+3) \mod m$
 - Supposedly works much better than the raw division method

Simple Hash Functions

```
def hash(astring, tablesize):
    sum = 0
    for pos in range(len(astring)):
        sum = sum + ord(astring[pos])
    return sum%tablesize
```

Anagrams will be given the same values...

Hash Functions – DJB31MA

```
uint hash(const uchar* s, int len, uint seed)
{
   uint h = seed;
   for (int i=0; i < len; ++i)
       h = 31 * h + s[i];
   return h;
}</pre>
```

Non-cryptographic Hash Functions

- Suitable for hash table lookup but not for crytography / secure uses
- Fast computation

- FNV Fowler-Noll-Vo hash function
- Murmur Hash
 - Multiply and rotate

. . . .

Universal Hashing

- Issue
 - There always exist keys that are mapped to the same integer / index
- Consider a set of hash functions H
- H is universal (good), if
 - □ For all keys $0 \le i \le j \le M$
 - □ Probability (h(i) = h(j)) ≤ 1 / M, for h randomly selected from H

Approximate Membership Queries

- Given a set $S = \{x_1, x_2, ..., xn\}$
- Answer queries of the form: Is y in S?

- Data structure should be FAST and SMALL
 - Faster than searching through S
 - Smaller than explicit representation

Approximate Membership Queries

- How to get speed and size improvements?
- Allow some probability of error !!
- False positives
 - $y \notin S$ but reporting $y \in S$
- False negatives
 - $y \in S$ but reporting $y \notin S$

Bloom Filters

- B. H. Bloom, 1970
- Use hash functions to determine approximate set membership
- Allow for fast set membership tests on very large data sets
- Applications
 - Spell-Checking / Text Analysis
 - Network monitoring

...

Application – Spell-Checkers

 Determine if candidate words are members of the set of words in a dictionary

 The Bloom filter should be large enough to allow the inclusion of additional words by the user

Application – Text Analysis

- Find related passages in different reports
- Constructing a Bloom Filter of all the words in each passage
- Computing the normalized dot product of all Bloom filter pairs
- The result of every dot product is a similarity measure

Application – Web-Caching

Bloom filters are used in WWW caching proxy servers

 Proxy servers intercept requests from clients and either fulfill the requests themselves or re-issue them to servers

Application – Email Spam

We know 1 billion "good" email addresses

If an email comes from one of these, it is NOT spam

How check for spam in a FAST way ?

Bloom Filters

- *Is y in S*?
- A Bloom filter
 - Provides an answer in constant time
 - Time to hash
- Uses a small amount of memory space
- BUT, with some small probability of being wrong!

1^{st} – Register the elements of set S

Start with an *m* bit array, filled with 0s.

Hash each item x_j in S k times. If $H_i(x_j) = a$, set B[a] = 1.

[Mitzenmacher]

2nd – Process the queries

To check if y is in S, check B at $H_i(y)$. All k values must be 1.

Possible to have a false positive; all k values are 1, but y is not in S.

[Mitzenmacher]

Basic operations

- Initialization
 - Clear all cells

- Insertion
 - Compute the values of k hash functions
 - Set the corresponding cells, if needed
 - It takes constant time, but proportional to k

Basic operations

- Membership test
 - Compute the values of k hash functions
 - Check if the corresponding cells have been set
 - If any such cell is not set, the searched element is not a member of the set

- Worst-case ?
- Checking all k cells!
 - Set elements and false positives

Bloom Filter – Simple Demos

- Bloom Filters by Example
 - http://billmill.org/bloomfilter-tutorial/
- Bloom Filters
 - https://www.jasondavies.com/bloomfilter/

Bloom Filters – Toy Example

- Download the file bloom_filter_V_1.py
- Identify the available operations
- Create a Bloom filter and insert several items
- Perform membership tests for various items
 - Belonging and not belonging to the set

Bloom Filters – Behaviour

- Deterministic hash functions!
- No attempt to solve hashing collisions!
- Can we get false negatives ?
- Probability of false positives ?
- How to minimize ?

Bloom Filter – Parameters

- The behaviour of a Bloom filter is determined by four parameters
- n set elements registered in B
- = $m = c \times n$ cells in B (i.e., bits)
- k independent, random hash functions
- f is the fraction of cells set to 1

Bloom Filter – Parameters

How to choose m, the size of the filter?

How to choose k, the number of hash functions?

How do we choose the best k value?

Probabilities – After 1 insertion

- Initially all bits are set to zero
- Inserting one element
- What is the probability of b_i = 1, after using the first hash function?
 - Equal probability for any cell

$$P(b_i = 1) = \frac{1}{m}$$

 $P(b_i = 0) = 1 - \frac{1}{m}$

Probabilities – After 1 insertion

 After computing the k hash functions and setting k cells

$$P(b_i=0) = \left(1 - \frac{1}{m}\right)^k$$

Probabilities – After n insertions

- After inserting all n set elements, by computing each time k hash values
 - Assuming independence

$$P(b_i = 0) = \left(1 - \frac{1}{m}\right)^{k \times n}$$

Probabilities – After n insertions

$$P(b_i = 0) = \left(1 - \frac{1}{m}\right)^{k \times n}$$

$$P(b_i = 1) = 1 - \frac{a^k}{m}, \qquad a = \left(1 - \frac{1}{m}\right)^n$$

Probability of a false positive

- Testing the membership of an item not in S entails a positive answer
 - Corresponding k bits are set to 1
- The probability of that happening is

$$p = \left(1 - a^k\right)^k$$

$$p \approx \left(1 - e^{-kn/m}\right)^k$$

Example

= n = 1 billion items, m = 8 billion bits

$$\mathbf{k} = 1$$
: $p \approx (1 - e^{-1/8}) = 0.1175$

$$\mathbf{k} = 2$$
: $p \approx (1 - e^{-2/8})^2 = 0.0493$

What happens as we keep increasing k?

Optimal value of k

Optimal value of k

- To determine the value of k that minimizes p we minimize log p, which is more tractable
- And get

$$k_{opt} \approx \frac{m}{n} \times \ln 2 \approx 0.693 \times \frac{m}{n}$$

- Use the closest integer to k_{opt}
- For the previous example : $k_{opt} \approx 5.54 \approx 6$

Which Hash Functions?

- No need to use cryptographic hash functions!
- You can simulate k hash functions by simply combining two hash functions
 - Kirsch and Mitzenmacher (2006)
- Compute one base hash function on unsigned 64-bit numbers
- Take the upper half and the lower half of that value and return them as two 32 bit numbers

Bloom Filters – Toy Example – Tasks

- Carry out computational experiments with different filter parameters (m, n, k)
- Generate a random set of keys and insert pairs key-value
- Perform membership tests
- Analyze the percentage of false positives

Bloom Filters – Wrap-up

- No false negatives and limited memory usage
 - Great for pre-processing before more expensive checks
- Suitable for hardware implementation
 - Hash computations can be parallelized
- Error rate can be decreased by increasing the number of hash functions and allocated memory space

Bloom Filters – Wrap-up

- Useful for applications where an imperfect set membership test can be helpfully applied to a large data set of unknown composition
- Advantage over hash tables is Bloom filter speed and error rate

Bloom Filters – Pending Issues

- Cannot represent multi-sets
 - I.e., sets with repeated elements
- Cannot query the multiplicity of an item

Deleting an item is not possible!

Multi-set representation

- Now, each filter cell is a w-bit counter
 - $\mathbf{w} = 4$ seems to be enough for most applications

- To insert an element, increase the value of each corresponding cell
- Test membership checks if each of the required cells is non-zero

- To delete an element, decrease the value of each corresponding cell
- Deletions necessarily introduce false negative errors !!
 - □ How?

- To retrieve the count of an element :
- Compute its set of counters
- And return the minimum value as a frequency estimate

Start with an *m* bit array, filled with 0s.

Hash each item x_i in S k times. If $H_i(x_i) = a$, add 1 to B[a].

[Mitzenmacher]

To delete x_i decrement the corresponding counters.

Can obtain a corresponding Bloom filter by reducing to 0/1.

[Mitzenmacher]

Counting Bloom Filters – Issues

- Counter overflow
 - No more increments after reaching 2^w 1
 - BUT, now we have undercounts !!
- Choice of counter width w
 - A large w diminishes space savings and introduces unused space (many zeros)
 - A small w quickly leads to maximum values
 - Trade-off...

Counting Bloomm Filters in Practice

- If insertions/deletions are rare compared to look-ups
 - Keep a CBF in "off-chip memory"
 - Keep a BF in "on-chip memory"
 - Update the BF when the CBF changes
- Keep space savings of a Bloom filter
- But can deal with deletions
- Popular design for network devices

References

- J. Leskovec, A. Rajaraman and J. D. Ullman, Mining of Massive Datasets, 2014 – Chapter 4
- B. H. Bloom, Space/Time Trade-offs in Hash Coding with Allowable Errors, Commun. ACM, July 1970
- J. Blustein and A. El-Maazaw, Bloom Filters A Tutorial, Analysis, and Survey, TR CS 2002-10, Dalhousie University, Halifax, NS, Canada, December 2002
- A. Broder and M. Mitzenmacher, Network Applications of Bloom Filters: A Survey, *Internet Mathematics*, Vol. 1, N. 4, 2004

Acknowledgments

- An earlier version of some of these slides was developed by Professor Carlos Bastos
- Part of the slides adapted from original slides of
 - J. Leskovec, A Rajaraman and J. Ullman Mining of Massive Datasets – <u>www.mmds.org</u>
 - M. Mitzenmacher, Bloom Filters and Such 2014
 Summer School on Hashing, Copenhagen, DK