CS/DS 552: Class 3

Jacob Whitehill

Probability theory: more review

Jensen's inequality

 When dealing with expectations of convex functions f, there is the handy Jensen's inequality:

- $\mathbb{E}[f(x)] \ge f(\mathbb{E}[x])$
- Special case that is relevant to VAEs:
 - $\log \mathbb{E}_x[f(x)] \ge \mathbb{E}_x[\log f(x)]$ (note the sign flips since log is *concave*)

- Consider two probability distributions P(z), Q(z).
- How can we quantify the distance between them?

 The Kullback-Leibler (KL) divergence quantifies the distance of Q from P as the log ratio of probabilities at each z weighted by the probability of z according to P.

$$D_{\mathrm{KL}}(P(\mathbf{z}) \parallel Q(\mathbf{z})) = \int_{\mathbf{z}} P(\mathbf{z}) \log \frac{P(\mathbf{z})}{Q(\mathbf{z})} d\mathbf{z}$$

 The Kullback-Leibler (KL) divergence quantifies the distance of Q from P as the log ratio of probabilities at each z weighted by the probability of z according to P.

$$D_{\mathrm{KL}}(P(\mathbf{z}) \parallel Q(\mathbf{z})) = \int_{\mathbf{z}} P(\mathbf{z}) \log \frac{P(\mathbf{z})}{Q(\mathbf{z})} d\mathbf{z}$$

Note that the KL divergence is always non-negative.

$$D_{\mathrm{KL}}(P(\mathbf{z}) \parallel Q(\mathbf{z})) = \int_{\mathbf{z}} P(\mathbf{z}) \log \frac{P(\mathbf{z})}{Q(\mathbf{z})} d\mathbf{z} \ge 0$$

We can also write the KL divergence as:

$$D_{\mathrm{KL}}(P(\mathbf{z}) \parallel Q(\mathbf{z})) = \int_{\mathbf{z}} P(\mathbf{z}) \log \frac{P(\mathbf{z})}{Q(\mathbf{z})} d\mathbf{z}$$
$$= -\int_{\mathbf{z}} P(\mathbf{z}) \log \frac{Q(\mathbf{z})}{P(\mathbf{z})} d\mathbf{z}$$

Kullback-Leibler Divergence: Examples

KL-divergence for Gaussian distributions

For the special case of two Gaussian distributions

$$P(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}) \text{ and } Q(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mu, \operatorname{diag}[\sigma_1^2, \dots, \sigma_m^2])$$

there is a closed formula for the KL-divergence:

$$D_{\text{KL}}(Q(\mathbf{z}) \parallel P(\mathbf{z})) = -\frac{1}{2} \sum_{j=1}^{m} (1 + \log(\sigma_j^2) - \mu_j^2 - \sigma_j^2)$$

• Importantly, this function is differentiable in μ and σ (this will become useful later).

Variational autoencoders (VAEs)

- Fundamentally, a VAE is an LVM, where we posit that each
 x is "generated" by a latent code z:
 - 1. Sample $\mathbf{z} \sim P(\mathbf{z}) \in \mathbb{R}^d$ using an easy-to-sample $P(\mathbf{z})$.
 - 2. Compute $\mathbf{x} = P_{\theta}(\mathbf{x} \mid \mathbf{z}) \in \mathbb{R}^m$, where g is some "decoder" function with parameters θ .

- Architecturally, however, and because of how it is trained, a VAE consists of an encoder NN Q_{ϕ} and decoder NN P_{θ} .
 - $Q_{\phi}(\mathbf{z} \mid \mathbf{x})$ outputs a probability distribution over **Z** given **X**.
 - $P_{\theta}(\mathbf{x} \mid \mathbf{z})$ outputs a probability distribution over **X** given **Z**.

- Most commonly, Q_{ϕ} is constrained to output a Gaussian distribution over latent codes \mathbf{z} given input \mathbf{x} .
- How do we force Q_{ϕ} to output a Gaussian distribution?

- Most commonly, Q_{ϕ} is constrained to output a Gaussian distribution over latent codes **z** given input **x**.
- How do we force Q_{ϕ} to output a Gaussian distribution?
 - Given \mathbf{x} , Q_{ϕ} needs to output:

- Most commonly, Q_{ϕ} is constrained to output a Gaussian distribution over latent codes **z** given input **x**.
- How do we force Q_{ϕ} to output a Gaussian distribution?
 - Given \mathbf{x} , Q_{ϕ} needs to output:
 - Mean µz
 - Covariance matrix Σ

• As a simplification, Q_{ϕ} can output a diagonal covariance matrix parameterized by just a vector [σ_1^2 , ..., σ_d^2].

- As a simplification, Q_{ϕ} can output a diagonal covariance matrix parameterized by just a vector [σ_1^2 , ..., σ_d^2].
- All in all, Q_{ϕ} outputs 2d entries, where the first d specify the mean and the second d specify the covariance.

- As a simplification, Q_{ϕ} can output a diagonal covariance matrix parameterized by just a vector [σ_{1}^{2} , ..., σ_{d}^{2}].
- All in all, Q_{ϕ} outputs 2d entries, where the first d specify the mean and the second d specify the covariance.
- We must force positivity of $[\sigma_{1}^{2}, ..., \sigma_{d}^{2}]$, e.g., by exponentiating the output of Q_{ϕ} .

- P_{θ} is usually one of:
 - 1. Gaussian $\mathcal{N}(\mu_{\mathbf{x}},\mathbf{I})$ with mean $\mu_{\mathbf{x}}$ and I-covariance
 - Useful for predicting data from \mathbb{R}^m .
 - NN: no activation function.
 - 2. Element-wise Bernoulli with mean μ_x .
 - Useful for predicting data from $[0,1]^m$.
 - NN: logistic activation function.

• With Q_{ϕ} , we can estimate from input $\mathbf{x} \in \mathbb{R}^m$ the latent code $\mathbf{z} \in \mathbb{R}^d$ that generated it.

- With Q_{ϕ} , we can estimate from input $\mathbf{x} \in \mathbb{R}^m$ the latent code $\mathbf{z} \in \mathbb{R}^d$ that generated it.
- With P_{θ} , we can use input code $\mathbf{z} \in \mathbb{R}^d$ to generate $\mathbf{x} \in \mathbb{R}^m$.

- With Q_{ϕ} , we can estimate from input $\mathbf{x} \in \mathbb{R}^m$ the latent code $\mathbf{z} \in \mathbb{R}^d$ that generated it.
- With P_{θ} , we can use input code $\mathbf{z} \in \mathbb{R}^d$ to generate $\mathbf{x} \in \mathbb{R}^m$.
- $P(\mathbf{x} \mid \mathbf{z})$ represents how likely the VAE believes a particular example \mathbf{x} is to be generated from latent code \mathbf{z} .
- For good reconstruction quality, we want $P(\mathbf{x} \mid \mathbf{z}) = P_{\theta}(Q_{\phi}(\mathbf{x}))$ to be *high*.

- The parameters ϕ and θ are trained using maximum-likelihood estimation (MLE).
- We aim to maximize the likelihood of our observed training data, given P's parameters θ , i.e.: $P_{\theta}(\{\mathbf{x}^{(i)}\}_{i=1}^n)$
- Using a MLE approximation technique, we will also optimize Q's parameters ϕ along the way.

- Define networks Q_{ϕ} and decoder P_{θ} .
- Initialize parameters ϕ and θ .

- Define networks Q_{ϕ} and decoder P_{θ} .
- Initialize parameters ϕ and θ .
- For each mini-batch:
 - Select \tilde{n} examples: $\{\mathbf{x}^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^m$

$$\begin{array}{c} \mathcal{N}(\epsilon;\mathbf{0},\mathbf{I})\leadsto\epsilon\\ \mathbf{x}\underset{Q_{\phi}(\mathbf{z}|\mathbf{x})}{\longrightarrow}(\mu,\sigma^2)\xrightarrow{}\epsilon\odot\sigma+\mu\rightarrow P_{\theta}(\mathbf{x}\mid\mathbf{z})\\ \text{Input} & \text{Hidden} & \text{26} & \text{Output} \end{array}$$

- Define networks Q_{ϕ} and decoder P_{θ} .
- Initialize parameters ϕ and θ .
- For each mini-batch:
 - Select \tilde{n} examples: $\{\mathbf{x}^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^m$
 - Sample \tilde{n} noise vectors: $\{\epsilon^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^d$

$$\mathcal{N}(\epsilon;\mathbf{0},\mathbf{I})\leadsto \epsilon$$
 $\mathbf{x} \xrightarrow[Q_{\phi}(\mathbf{z}|\mathbf{x})]{} (\mu,\sigma^2) \xrightarrow{} \epsilon\odot\sigma + \mu \to P_{ heta}(\mathbf{x}\mid\mathbf{z})$ Input Hidden 27 Output

- Define networks Q_{ϕ} and decoder P_{θ} .
- Initialize parameters ϕ and θ .
- For each mini-batch:
 - Select \tilde{n} examples: $\{\mathbf{x}^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^m$
 - Sample \tilde{n} noise vectors: $\{\epsilon^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^d$
 - Compute: $(\mu^{(i)}, \sigma^{(i)})^2 = Q_{\phi}(\mathbf{z}^{(i)} \mid \mathbf{x}^{(i)}), \ \forall i$

$$\mathcal{N}(\epsilon;\mathbf{0},\mathbf{I})\leadsto\epsilon$$
 $\mathbf{x} \xrightarrow[Q_{\phi}(\mathbf{z}|\mathbf{x})]{} (\mu,\sigma^2) o \epsilon\odot\sigma + \mu o P_{ heta}(\mathbf{x}\mid\mathbf{z})$ Input Hidden 28 Output

Input Hidden **Output**

- Define networks Q_{ϕ} and decoder P_{θ} .
- Initialize parameters ϕ and θ .
- For each mini-batch:
 - Select \tilde{n} examples: $\{\mathbf{x}^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^m$
 - Sample \tilde{n} noise vectors: $\{\epsilon^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^d$
 - Compute: $(\mu^{(i)}, \sigma^{(i)^2}) = Q_{\phi}(\mathbf{z}^{(i)} \mid \mathbf{x}^{(i)}), \ \forall i$
 - Compute: $\mathbf{z}^{(i)} = \epsilon^{(i)} \odot \sigma^{(i)} + \mu^{(i)}$

$$\mathbf{x} \underset{Q_{\phi}(\mathbf{z}|\mathbf{x})}{\longrightarrow} (\mu, \sigma^2) \to \epsilon \odot \sigma + \mu \to P_{\theta}(\mathbf{x} \mid \mathbf{z})$$

Input Hidden 29 Output

- Define networks Q_{ϕ} and decoder P_{θ} .
- Initialize parameters ϕ and θ .
- For each mini-batch:
 - Select \tilde{n} examples: $\{\mathbf{x}^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^m$
 - Sample \tilde{n} noise vectors: $\{\epsilon^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^d$
 - Compute: $(\mu^{(i)}, \sigma^{(i)}^2) = Q_{\phi}(\mathbf{z}^{(i)} \mid \mathbf{x}^{(i)}), \ \forall i$
 - Compute: $\mathbf{z}^{(i)} = \epsilon^{(i)} \odot \sigma^{(i)} + \mu^{(i)}$
 - Compute likelihood:

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$

- Define networks Q_{ϕ} and decoder P_{θ} .
- Initialize parameters ϕ and θ .
- For each mini-batch:
 - Select \tilde{n} examples: $\{\mathbf{x}^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^m$
 - Sample \tilde{n} noise vectors: $\{\epsilon^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^d$
 - Compute: $(\mu^{(i)}, \sigma^{(i)}^2) = Q_{\phi}(\mathbf{z}^{(i)} \mid \mathbf{x}^{(i)}), \ \forall i$
 - Compute: $\mathbf{z}^{(i)} = \epsilon^{(i)} \odot \sigma^{(i)} + \mu^{(i)}$
 - Compute likelihood:

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$

• Update ϕ and θ using back-propagation.

- Note that, for the VAE, we want to maximize a likelihood instead of minimizing a loss.
- The likelihood consists of two components:
 - The reconstruction probability is computed w.r.t. each dimension of $\mathbf{x}^{(i)} \in \mathbb{R}^m$ and then summed, e.g.:

$$\mathbf{x}^{(i)} = [0.1, 0.8, 0.7, 0.23, 0.5, ...] // Ground-truth $\mathbf{\hat{x}}^{(i)} = [0.08, 0.83, 0.58, 0.21, 0.42, ...] // E[\mathbf{x}^{(i)} | \mathbf{z}^{(i)}]$$$

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$

- Note that, for the VAE, we want to maximize a likelihood instead of minimizing a loss.
- The likelihood consists of two components:
 - The reconstruction probability is computed w.r.t. each dimension of $\mathbf{x}^{(i)} \in \mathbb{R}^m$ and then summed, e.g.:

$$\mathbf{x}^{(i)} = [0.1, 0.8, 0.7, 0.23, 0.5, ...] // Ground-truth $\hat{\mathbf{x}}^{(i)} = [0.08, 0.83, 0.58, 0.21, 0.42, ...] // E[\mathbf{x}^{(i)} | \mathbf{z}^{(i)}]$
Log-like.$$

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \ \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$

- Note that, for the VAE, we want to maximize a likelihood instead of minimizing a loss.
- The likelihood consists of two components:
 - The reconstruction probability is computed w.r.t. each dimension of $\mathbf{x}^{(i)} \in \mathbb{R}^m$ and then summed, e.g.:

$$\mathbf{x}^{(i)} = [0.1, 0.8, 0.7, 0.23, 0.5, ...] // Ground-truth $\hat{\mathbf{x}}^{(i)} = [0.08, 0.83, 0.58, 0.21, 0.42, ...] // E[\mathbf{x}^{(i)} | \mathbf{z}^{(i)}]$
Log-like.$$

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$

- Note that, for the VAE, we want to maximize a likelihood instead of minimizing a loss.
- The likelihood consists of two components:
 - The reconstruction probability is computed w.r.t. each dimension of $\mathbf{x}^{(i)} \in \mathbb{R}^m$ and then summed, e.g.:

$$\mathbf{x}^{(i)} = [0.1, 0.8, 0.7, 0.23, 0.5, ...] // Ground-truth $\hat{\mathbf{x}}^{(i)} = [0.08, 0.83, 0.58, 0.21, 0.42, ...] // E[\mathbf{x}^{(i)} | \mathbf{z}^{(i)}]$
Log-like.$$

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \ \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$

- Note that, for the VAE, we want to maximize a likelihood instead of minimizing a loss.
- The likelihood consists of two components:
 - The reconstruction probability is computed w.r.t. each dimension of $\mathbf{x}^{(i)} \in \mathbb{R}^m$ and then summed, e.g.:

$$\mathbf{x}^{(i)} = [0.1, 0.8, 0.7, 0.23, 0.5, ...] // Ground-truth $\mathbf{\hat{x}}^{(i)} = [0.08, 0.83, 0.58, 0.21, 0.42, ...] // E[\mathbf{x}^{(i)} | \mathbf{z}^{(i)}]$$$

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \ \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$

Optimization objective

- Note that, for the VAE, we want to maximize a likelihood instead of minimizing a loss.
- The likelihood consists of two components:
 - The KL-divergence is differentiable w.r.t. μ and σ , which in turn are differentiable w.r.t. ϕ .

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$

$$\log P(\mathbf{x}) = \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$

$$\begin{split} \log P(\mathbf{x}) &= \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z}) d\mathbf{z} \end{split}$$
 Definition of conditional probability

$$\log P(\mathbf{x}) = \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$
$$= \log \int_{\mathbf{z}} P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z}) d\mathbf{z}$$

- We are in trouble!
 - This integral is the product of P(z) (e.g., Gaussian) and P(x | z) (i.e., the decoder NN). We cannot resolve it!
 - We cannot integrate numerically (intractable)!
- We cannot even evaluate $P(\mathbf{x})$, let alone optimize it!

$$\log P(\mathbf{x}) = \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$
$$= \log \int_{\mathbf{z}} P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z}) d\mathbf{z}$$

• By introducing auxiliary parameters ϕ through an encoder network Q, we actually make the optimization easier...

$$\begin{split} \log P(\mathbf{x}) &= \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \frac{P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} d\mathbf{z} \end{split}$$
 This holds for any non-zero Q.

$$\begin{split} \log P(\mathbf{x}) &= \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \frac{P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} d\mathbf{z} \quad \text{Note also that we can interpret this function as the expectation w.r.t. Q(z | x).} \end{split}$$

Note also that we can expectation w.r.t. Q(z | x).

$$\begin{split} \log P(\mathbf{x}) &= \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \frac{P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} d\mathbf{z} \\ &\geq \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log \left(P(\mathbf{x} \mid \mathbf{z}) \frac{P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} \right) d\mathbf{z} \quad \text{Jensen's inequality} \end{split}$$

This is called the Evidence Lower Bound (ELBO).

$$\begin{split} \log P(\mathbf{x}) &= \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \frac{P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} d\mathbf{z} \\ &\geq \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log \left(P(\mathbf{x} \mid \mathbf{z}) \frac{P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} \right) d\mathbf{z} \quad \text{Jensen's inequality} \end{split}$$

- It turns out (see Prince, sec. 17.4.1) that, if Q(z | x) = P(z), then this inequality is actually an equality.
- Hence, this lower-bound can actually be made "tight" if Q is powerful enough to approximate P(z).

$$\log P(\mathbf{x}) = \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$

$$= \log \int_{\mathbf{z}} P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z}) d\mathbf{z}$$

$$= \log \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \frac{P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} d\mathbf{z}$$

$$\geq \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log \left(P(\mathbf{x} \mid \mathbf{z}) \frac{P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} \right) d\mathbf{z}$$

$$= \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log \frac{P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} d\mathbf{z} + \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log P(\mathbf{x} \mid \mathbf{z}) d\mathbf{z}$$

$$\log P(\mathbf{x}) = \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$

$$= \log \int_{\mathbf{z}} P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z}) d\mathbf{z}$$

$$= \log \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \frac{P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} d\mathbf{z}$$

$$\geq \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log \left(P(\mathbf{x} \mid \mathbf{z}) \frac{P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} \right) d\mathbf{z}$$

$$= \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log \frac{P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} d\mathbf{z} + \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log P(\mathbf{x} \mid \mathbf{z}) d\mathbf{z}$$

$$= -D_{KL}(Q(\mathbf{z} \mid \mathbf{x}) \parallel P(\mathbf{z})) + \mathbb{E}_{Q}[\log P(\mathbf{x} \mid \mathbf{z})]$$

Definitions of KL-divergence and expectation.

- In other words: to maximize $P(\mathbf{x})$, we want to:
 - Minimize KL-divergence of hidden state w.r.t. standard normal distribution.

and

Maximize the reconstruction probability.

$$\mathbf{x} \xrightarrow{\mathbf{Q}_{\phi}} \mathbf{z} \xrightarrow{\mathbf{P}_{\theta}} \mathbf{x}$$

$$= -D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z} \mid \mathbf{x}) \parallel P(\mathbf{z})) + \mathbb{E}_{Q_{\phi}}[\log P_{\theta}(\mathbf{x} \mid \mathbf{z})]$$

Conceptually, we have changed from an optimization:

$$\underset{\theta}{\operatorname{arg}} \max_{f(\theta)} f(\theta)$$
 We cannot even evaluate $f(\theta)$

to:

Conceptually, we have changed from an optimization:

$$\underset{\theta}{\operatorname{arg}} \max f(\theta)$$
 We cannot even evaluate $f!$

to:

$$\underset{\theta,\phi}{\operatorname{arg}} \max_{g} g(\theta,\phi)$$
 We can both estimate and (using SGD) optimize $g!$

where we can just discard ϕ afterwards.

Conceptually, we have changed from an optimization:

$$\underset{\theta}{\operatorname{arg}} \max f(\theta)$$
 We cannot even evaluate $f!$

to:

$$\underset{\theta,\phi}{\operatorname{arg}} \max_{g} g(\theta,\phi)$$
 We can both estimate and (using SGD) optimize $g!$

where we can just discard ϕ afterwards.

Under what conditions can this actually work?

Conceptually, we have changed from an optimization:

$$\underset{\theta}{\operatorname{arg}} \max f(\theta)$$
 We cannot even evaluate $f!$

to:

 $\underset{\theta,\phi}{\operatorname{arg}} \max_{g} g(\theta,\phi)$ We can both estimate and (using SGD) optimize g!

where we can just discard ϕ afterwards.

- Under what conditions can this actually work?
 - 1. g is a lower bound for f.
 - 2. This lower bound can be made "tight" to f.

• We can approximately maximize $P_{\theta}(\mathbf{x})$ w.r.t. θ by maximizing the lower bound w.r.t. θ and ϕ .

• By iteratively updating Q w.r.t. ϕ , we can increase the upper bound (though it will never exceed $P_{\theta}(\mathbf{x})$).

• By iteratively updating Q w.r.t. ϕ , we can increase the upper bound (though it will never exceed $P_{\theta}(\mathbf{x})$).

• By iteratively updating Q w.r.t. ϕ , we can increase the upper bound (though it will never exceed $P_{\theta}(\mathbf{x})$).

Exercise

• Which curve (ϕ_A or ϕ_B) would you prefer, and why?

Solution

• ϕ_B gives a tighter approximation of $P_{\theta}(\mathbf{x})$.

• This corresponds to $Q(\mathbf{z} \mid \mathbf{x})$ being more similar (lower KL divergence) to our desired prior distribution $P(\mathbf{z})$.

Solution

- However: if the approximation is "too tight", then Q(z | x) ≈ P(z) i.e., Q "ignores" x altogether and adheres "too much" to P(z).
- P thus receives no specific information about \mathbf{x} to reconstruct it with despite the tightness of the bound, SGD has no ability to find the "good" values for θ .

This is called posterior collapse and is a common problem with VAEs.

Solution

• ϕ_A is a looser lower bound, but it will likely yield a better estimate (via SGD) of $argmax_\theta P_\theta(\mathbf{x})$ — which is what we really care about.

• How do we optimize the lower bound w.r.t. θ and ϕ ?

$$-D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z} \mid \mathbf{x}) \parallel P(\mathbf{z})) + \mathbb{E}_{Q_{\phi}}[\log P_{\theta}(\mathbf{x} \mid \mathbf{z})]$$

• The first term has closed-form differentiable solutions when $P(\mathbf{z})$ and $Q_{\phi}(\mathbf{z} \mid \mathbf{x})$ are Gaussian (see earlier slide).

• How do we optimize the lower bound w.r.t. θ and ϕ ?

$$-D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z} \mid \mathbf{x}) \parallel P(\mathbf{z})) + \mathbb{E}_{Q_{\phi}}[\log P_{\theta}(\mathbf{x} \mid \mathbf{z})]$$

 For the second term, we can estimate the expectation by sampling:

$$\mathbb{E}_{Q_{\phi}}[\log P_{\theta}(\mathbf{x} \mid \mathbf{z})] \approx \frac{1}{n} \sum_{i=1}^{n} \log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)})$$

where
$$\mathbf{z}^{(i)} \sim Q_{\phi}(\mathbf{z} \mid \mathbf{x}^{(i)})$$

• How do we optimize the lower bound w.r.t. θ and ϕ ?

$$-D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z} \mid \mathbf{x}) \parallel P(\mathbf{z})) + \mathbb{E}_{Q_{\phi}}[\log P_{\theta}(\mathbf{x} \mid \mathbf{z})]$$

 But sampling a value from a probability distribution is a non-differentiable operation — we can no longer use back-propagation:

$$\mathbf{x} o Q_\phi(\mathbf{z} \mid \mathbf{x}) \overset{\mathsf{sampling}}{\leadsto} P_\theta(\mathbf{x} \mid \mathbf{z})$$
 Input Hidden Output

Reparameterization trick

- Suppose $\mathbf{z} \sim P(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mu, \sigma^2 \mathbf{I})$
- To sample z, we can either:
 - Sample from P(z) directly; or
 - Sample from a standard normal, multiply element-wise by σ, and add μ:

$$\mathbf{z}' \sim \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$$

 $\mathbf{z} = \mathbf{z}' \odot \sigma + \mu$

Reparameterization trick

- In the context of the VAE:
 - Instead of sampling $\mathbf{z} \sim Q_{\phi}(\mathbf{z} \mid \mathbf{x})$ within the computational graph, which would break back-propagation...

Reparameterization trick

- In the context of the VAE:
 - ...we instead sample from outside the graph, multiply the result element-wise by vector σ , and add μ .

