Universidade Federal de São Paulo

Semáforo Inteligente

Sistemas Embarcados

Aluno Henrique Monteiro de Moraes Professor Sergio Ronaldo Barros dos Santos

Horário Ter e Qui - 10:00-12:00

Conteúdo

1	Descrição do projeto													
	1.1 Descrição													
	1.2 Objetivo													
2	Funcionamento do sistema													
	2.1 <i>Hardware</i>													
	2.2 Esquema elétrico													
	2.3 Software													
	2.4 Fluxograma do Software													
2	Lista de componentes básicos													

1 Descrição do projeto

1.1 Descrição

Diante da situação caótica do trânsito nas grandes cidades brasileiras, somado aos acidentes que envolvem travessias de pedestres e no cruzamento de vias movimentadas, surgiu-se a ideia de desenvolver um semáforo inteligente para tentar diminuir ao máximo esses problemas que nosso país enfrenta.

Este projeto atende situações em que se necessite a atravessia de pedestres e o cruzamento de veículos à essa mesma via, cujo trânsito varia de acordo com o horário do dia, podendo este ser baixo ou extremamente intenso e, médio para intenso na maior parte do dia.

Porém é importante enfatizar que a ideia principal deste semáforo é desafogar o trânsito desta via principal. Ao momento que o pedestre apertar o botão para travessia ou algum veículo for detectado na para atravessia, conta-se x segundos dependendo do tráfego da via principal.

1.2 Objetivo

O objetivo do semáforo inteligente aqui desenvolvido é poder ser aplicado em qualquer cidade do mundo. Além disso, o modo como o *software* foi desenvolvido permite que, alterando-se as variáveis globais, altera-se o tempo em que as luzes do semáforo ficam acesas ou apagadas. Desta forma aumenta-se ainda mais o leque de aplicação deste projeto.

2 Funcionamento do sistema

2.1 Hardware

- Buzzer: Auxilia o pedestre deficiente visual de modo que, quando o sinal está verde para o pedestre, o buzzer fica apitando em um intervalo de 0,5 em 0,5 segundos e, quando está a 3 segundos de fechar, fica com sinal alto constante, gerando um apito constante. Trata-se de um buzzer ativo que gera ruídos sonoros a partir da excitação elétrica de componentes piezoelétricos.
- *Push Botton* com resistor externo *Pull Down:* Permite que o pedestre inicie o processo de atravessia da via principal. Trata-se de uma simples chave mecânica que, ao apertado, os contatos dos terminais de cada lado ligam-se entre si.
- Display de 7 segmentos com decodificador BCD 4511: Para mostrar a contagem regressiva aos veículos (tanto de abertura quanto de fechamento) da via principal utiliza-se estes componentes. O display utilizado possui catodo comum para todos os LED's, juntamente com um resistor de 300Ω para limitar a tensão nos mesmos. Já o decoder possui 4 pinos de entrada e 7 de saída (um para cada LED do display. O decoder permite economia no espaço da memória, além de não precisar do uso de várias portas para se utilizar o display.
- Relé: O relé permite o acionamento da lâmpada caso esteja noite (pouca luminosidade) e o pedestre aperte o botão para atravessar a via principal. Ao receber um sinal da GPIO, um diodo emissor de luz é ligado e um fototransistor (cuja função é atuar como uma chave) detecta essa luz permitindo que a fonte externa de 5V alimente as bobinas.

A bobina, ao o ser energizada pelo acionamento do botão, gera um campo magnético que atua como um ímã e, consequentemente, atrai uma pequena haste permitindo o fechamento do circuito. Ao interromper o fluxo de corrente, a bobina deixa de agir como um íma e o circuito abre novamente.

- Display LCD: Mostra aos pedestres e veículos da via secundária a contagem regressiva de abertura e fechamento do sinal. Trata-se de um visor contendo duas linhas de 16 caracteres cada. Cada caracter dispõe de uma matriz retangular 5x8 de luzes que, dependendo da combinação, formam determinado caractere. Nele também é mostrado a temperatura do ambiente, "lida" a cada 1 segundo pelo thermistor NTC.
- Sensor reflexivo TCRT5000: Apesar de não ser o compenente ideal para a função que exerce, ele é utilizado para identificar quando há veículos na via secundária querendo atravessar a via principal. Possui um led que emite radiação infravermelha e um fototransistor que, ao receber o infravermelho refletido (emitido pelo led) emite um sinal de entrada digital no GPIO do arduíno.
- Potenciômetro B10K: É o potenciômetro que simula o tráfego da via principal através do valor de sua resistência que, através da entrada analógica, varia de 0 a 1023Ω .
- Sensor de luminosidade LDR e Sensor de temperatura NTC 10Kr: O primeiro trata-se de um fotocondutor que varia sua resistência de acordo com a luz que o incide, ou seja, quanto maior a luminosidade do local, menor é a resistência do componente. Esta resistência é convertida em tensão através de um divisor de tensão e ligada à uma entrada analógica do arduíno.

O segundo diminui sua resistência com o aumento da temperatura (por ser NTC). Assim como o LDR, este sensor também converte a resistência em tensão através de um divisor de tensão.

2.2 Esquema elétrico

Figura 1: Esquema elétrico do projeto

2.3 Software

Para melhor entendimento do código, é imporante lembrar que o projeto todo foi desenvolvido com objetivo principal desafogar o tráfego das vias em que nos horários de picos são intensos.

O código todo é basicamente divido em duas partes:

- Ocorre evento: Há pedestres querendo atravassar a via principal ou veículos querendo atravessar a mesma,
- Não ocorre evento: mantendo-se assim o semáforo da via principal aberto e os semáforos para pedestre e via secundária fechados

A partir disso, a função loop() é mostrada abaixo:

```
void loop()
{
```

```
pwmLDR = map(analogRead(pinoLDR), 0, 1023, 10, 255);
if (eventoOcorrido())
    semaforoSecundario();
else
    semaforoPrincipal();
}
```

Enquanto não se tem eventos, a função eventoOcorrido retorna false e então a função semaforoPrincipal é chamada, cujo objetivo é manter o led verde da via principal aceso, juntamente com os leds vermelhos da via secundária e de atravessia do pedestre.

Como pode-se perceber, todos os cálculos e funcionamento do projeto estão na função sema foro Secundario, que é um tanto quanto complexa devido ao fato de ser toda desenvolvida através da função millis. A Figure 2 abaixo mostra o ciclo de um evento, seja ele um pedestre solicitando atravessia ou um veículo solicitando cruzamento.

Vermelho Via Principal									
Amarelo Via Principal									
Verde Via Principal									
Vermelho Pedestre									
Verde Pedestre									
Vermelho Via Secundária									
Amarelo Via Secundária									
Verde Via Secundária									

Figura 2: Ciclo de um evento quando o tráfego está baixo

Na Figure 2, cada divisão de quadrado representa 1 segundo e este ciclo é executado quando o tráfego está baixo (apenas como exemplo para entendimento do processo). Os quadrados em azul representam o *delay* do fechamento de um sinal para a abertura do outro, de modo a evitar possíveis colisões. Já os quadrados em verde claro representa o tempo em que o sinal verde para pedestre está fechando, ou seja, ele fica piscando para que o pedestre entenda que ele está próximo a fechar.

A função que executa o tempo em que cada led deve permanecer HIGH ou LOW é mostrado abaixo. Ela recebe como parâmetro o led em questão, o tempo que ele ficará HIGH, o tempo que ele ficará LOW, o tempo de atraso (dependendo do tráfego da via principal) e o valor da função millis ao se iniciar o ciclo.

As chamadas da função acima são realizadas na função sema foro Secundario da função loop. O trecho do código das chamadas da função piscaLed é mostrada abaixo:

```
piscaLed (pinoVerde1, tempoAtraso, tempoCiclo - tempoAtraso, 0,
           millis_referencia );
piscaLed (pinoAmarelo1, tempoLedAmarelo, tempoCiclo - tempoLedAmarelo,
          tempoAtraso, millis_referencia);
piscaLed(pinoVermelho1, tempoEspera * 2 + tempoLedVerdePedestre +
          tempoLedVerdePedestreFim, tempoAtraso + tempoLedAmarelo,
          tempoAtraso + tempoLedAmarelo, millis_referencia);
piscaLed (pinoVerde3, tempoLedVerdePedestre, tempoCiclo -
         tempoLedVerdePedestre, tempoAtraso + tempoLedAmarelo +
         tempoEspera, millis_referencia);
piscaLed \, (\, pino Amarelo \, 3 \, , \, \, tempo Led Amarelo \, , \, \, tempo Ciclo \, - \, tempo Led Amarelo \, , \, \,
         tempoAtraso + tempoLedAmarelo + tempoEspera +
         tempoLedVerdePedestre, millis_referencia);
piscaLed (pinoVermelho3, tempoCiclo - tempoLedVerdePedestre -
         tempoLedVerdePedestreFim - 1000, tempoLedVerdePedestre +
         tempoLedAmarelo, 0, millis_referencia);
 int t;
 t = verificaTime(tempoCiclo - tempoLedVerdePedestreFim,
                   tempoLedVerdePedestreFim, tempoCiclo - tempoEspera,
                   millis_referencia);
 if (t = 1)
   piscaLed (pinoVerde2, tempoLedVerdePedestre, tempoCiclo -
            tempoLedVerdePedestre, tempoAtraso + tempoLedAmarelo +
            tempoEspera, millis_referencia);
 else
   piscaLed(pinoVerde2, 100, 100, 100, millis_referencia);
 piscaLed (pinoVermelho2, tempoCiclo - tempoLedVerdePedestre -
          tempoLedVerdePedestreFim, tempoLedVerdePedestre +
          tempoLedVerdePedestreFim, tempoCiclo - tempoEspera,
          millis_referencia);
```

Com relação ao código acima, observa-se que a o led verde para o pedestre chama a função *picaLed* em duas ocasiões distintas: A primeira é quando o led deve ficar aceso constantemente. A segunda refere-se ao tempo que o led fica piscando, pois desta forma o pedestre saberá que o tempo de travessia está se esgotando.

Ainda na Figure 2, o que caracteriza este ser um semáforo inteligente é o sinal verde da via principal. Este é o único valor que varia e isto depende da intensidade do tráfego da via principal (dado através do potenciômetro), de modo que, se o tráfego estiver:

• intenso: este valor é de 15 segundos;

• **médio**: 10 segundos;

• baixo: 5 segundos;

}

No código, este sinal verde é representado pela variável tempoAtraso, ou seja, é o tempo de atraso que a mudança do sinal comece a ser efetuada. Seu cálculo é feito através da função abaixo:

Por fim, a última função essencial para cálculo dos tempos em que as luzes do semáforo ficarão acesas ou apagadas é a que calcula o cálculo do ciclo total, como segue abaixo.

Por questão de limite de páginas, neste relatório não será apresentado os códigos referentes aos componentes: fotoresistor LDR; termistor (sensor de temperatura); display LCD mostrando a temperatura e contagem regressiva para o pedestre/motorista da via secundária; display de 7 segmentos para mostrar a contagem regressiva para os motoristas da via principal; relé para acender a luz para o pedestre caso a luminosidade do ambiente esteja baixa e do buzzer, que auxilia pedestres deficientes visuais.

Em suma foi apresentado apenas o essencial de um semáforo inteligente no que diz respeito ao *software*, pois o que foi citado no parágrafo anterior foram apenas incrementos para deixar o projeto mais interessante do ponto de vista de uma aplicação.

2.4 Fluxograma do Software

Figura 3: Fluxograma

3 Lista de componentes básicos

Os componentes utilizados no projeto foram os seguintes:

- 8 Leds, que representam as luzes do semáforo
- Resistores
 - 8 de 470Ω para os leds
 - -4 de $10\mathrm{K}\Omega$ para botão, termistor, LDR e fototransistor do TCRT5000
 - -3 de 1K Ω em série para ajustar o contraste do display LCD
 - -2 de 150Ω em séria para o emissor de infravermelho do TCRT5000
 - 1 de 300Ω para o display de 7 segmentos
- 1 Buzzer ativo
- 1 Potenciômetro B10K
- 1 Push Botton configurado da forma pull down
- 1 Termistor NTC 103
- 1 Sensor LDR
- 1 Sensor reflexivo TCRT5000
- 1 Display de LCD 16x2
- 1 Display de 7 segmentos
- 1 Modulo Relé de dois canais