Supplementary Comparing Android to iOS

CSCI3310 Mobile Computing & Application Development

Comparison between Android & iOS

- Programming Language
- Developer friendliness
- Application framework
- IDE User interface
- Performance
- Others

Comparison between Android & iOS

Language

iOS: Objective C or Swift

Android: Java or Kotlin

Developer Friendly

- Garbage collection is much more friendly to programmer than ownership handling of memory
- Android is fully open sourced while iOS is closed source
- iOS simplifies coding on certain instances, but at the cost of complicating /hindering usage in some other ways

Comparison between Android & iOS

User interface

Android is quickly catching up with huge improvement in UI

Application framework

- Android model an app as a set of Activities, Services & Content Providers
- iOS sandboxes an app as a traditional application on an OS (MVC)

Performance

- To combat the efficiency issues with Java Virtual machine, ART is developed, NDK can also be used
- iOS already taken advantage of C's high performance

Android vs. iOS [App Development]

Language

- Objective C has a more steep learning curve,
 especially when deal with memory management
- Swift is competitive as it got many new designs
- Java is more friendly as most programmers learnt
 Java before
- Kotlin is comparable to Swift in terms of the design

Android vs. iOS [Development Friendliness]

- Developer Friendliness
 - Garbage collection is much more friendly to programmer than ownership handling of memory

Android vs. iOS [Development Friendliness]

- Developer Friendliness
 - Memory management is the developer's job
 - Developers has to go through a painful process to turn a phone into development version in iOS

Debug Memory Graph in iOS app

Android vs. iOS [App Development]

- Application framework
 - iOS sandboxes an app as a traditional application on an OS (MVC)
 - Android model an app as a set of Services, activities & Content Providers, MVP realized in Adaptor-backed Views

Objects in iOS App

- Custom Objects
- System Objects
- Either system or custom objects

Or MVP? MVVM?

Stack Overflow: MVC vs MVP

RecyclerView in iOS?

 Similar Adapter-ViewHolder design pattern is also used in iOS:

Android	ios
RecyclerView	UICollectionView
Adapter	UICollectionViewDataSource
ViewHolder	UICollectionViewCell
LayoutManager	UICollectionViewLayout

Fragment in iOS?

 iOS can do something similar by include child view controller inside another view controller

Android vs. iOS [IDE UI]

- IDE User interface
 - Xcode is very user friendly
 - Android Studio is having significant improvement in IDE UI

Xcode & iOS Storyboard

 graphically construct and configure your application's windows and views

 Starting from iOS5, storyboard was introduced to enable pure graphical way for editing MVC's view

Android Jetpack Navigation

 Android introduces similar Navigation Editor via Android Jetpack Library since Android Studio 3.2

Android vs. iOS [Screen fragmentation]

The current Android SDK version supports more than 20 resolutions. However, only about ten of these are in active use.

Apple, on the other hand, has only **six generalized sizes** for its screens. The only big change that happened with Apple devices took place last year when they moved to Retina displays – the resolution doubled, while screen sizes remained the same.

Android vs. iOS [Hardware Components]

Mostly similar in both platforms but sensors on different devices vary in terms of **precision tracking**, motion **processing**, measurement **ranges**, and so on, which means that an **app may perform differently** depending on the mobile device it's running on.

Android vs. iOS [support & revenues]

Documentation & Support

- Both iOS & Android now have extensive documentation & sample code, whereas Android backward support need more works (iOS basically inhibit old versions); StackOverflow gives non-official ample solutions
- iOS is simpler and coherent
- Openness of Android brought difficulties in supporting huge variety of hardware spectrum, which is problematic to small developers; New layout features did help to ease the pain

Revenues

- Apple's In-App Purchase brings more flexibility to app users
- Android is catching up with iAd, In-App Purchase.

Android vs. iOS [Optimization]

Performance

- iOS has advantage of C's high performance
- To combat the efficiency issues with Java Virtual machine, ART is developed, NDK can also be used

Android vs. iOS [Optimization]

- Hardware-aware Optimization
 - iOS's emulator is based on x86-64 Mac hardware, so ARM aware optimization cannot be tested on emulator
 - Android Studio provides ARM emulator images for ARM intrinsic (C-like wrapper of assembly) for initial optimization tests.

Reference

Android vs iOS

https://www.diffen.com/difference/Android_vs_iOS

 Does iOS have something similar to Android's RecyclerView?

https://stackoverflow.com/questions/34227364/does-ios-have-something-similar-to-androids-recyclerview

Equivalent of Fragment (Android) in iOS

https://stackoverflow.com/questions/28167644/equivalent-of-fragment-android-in-ios