Experiment 3 Instruction

Dawei Zhong Feb 9, 2021 KAP-B11 Make the curve measurement precise by adjusting the number in Part G, using 2ms

Introduction & Tips

- About: In this lab, you need to study capacitors
- Tips:
 - Read the lab PDF and this instruction together to figure out how to do the lab
 - You are required to take photos in Task D and G, and analyze data in the photo, don't forget that

Hope it helpsc

• Capacitor: Here is the capacitor you might mainly

use in today's lab

 Capacitor and Resistor: Here is the capacitor and resistor you might mainly use in today's lab

 DC Power Supply: You will use it from Part A to Part E instead of battery. Use <u>CV mode (constant voltage)</u>

• Wave generator: You will use it in Part F and Part G

• Oscilloscope: You will use it from Part C to Part G

Connect Wave generator and Oscilloscope:

Rotate Done

Part A - Task A, B in the Report

- Measure half charging/discharging time:
 - Step 1: Connect the circuit as shown, set voltage as 6V
 - Use the <u>200V</u> scale of DMM

Part A - Task A, B in the Report

- Measure half charging/discharging time: Use your stopwatch in your mobile phone
 - Step 1: ...
 - Step 2: Charge the capacitor and find its fully charged voltage U
 - Step 3: Use stopwatch in your phone, measure the time
 - From 0 to 0.5*U
 - From U to 0.5*U
 - Repeat step 3 for <u>two or three</u> times, get average charging/discharging time
 - Compare with calculation

Measure half charging/discharging time:

Step 1: Set your scope

Step1: Press "Mode" until you see this

- Measure half charging/discharging time:
 - Step 1: Set your scope (2V and 2S or 5V and 2S)

- Measure half charging/discharging time:
 - Step 1:...
 - Step 2: Connect circuit
 as shown, set voltage as
 6V, replace DMM with
 scope
 - Step 3: Press "STOP"
 when you get your curve,
 take photo

- Measure half charging/discharging time:
 - What you will get from scope and how you do measurement

- Measure half charging/discharging time:
 - For example, if you set 2V and 2s, here is what they means
 - Note that we have 10 small ticks in one big tick

Part C - Task F, G and H in the Report

- Measure half charging/discharging time:
 - Step 1: Connect circuit as shown
 - Ouse R = $1k\Omega$ and C= 1μ F, or R = $2k\Omega$ and C= 1μ F, or any other such that RC is ~0.001

Part C - Task F, G and H in the Report

- Measure half charging/discharging time:
 - Step 1: Connect circuit as shown
 - Set Wave Generator as square wave, 100 Hz

Part C - Task F, G and H in the Report

- Measure halfcharging/discharging time:
 - Step 1: ...
 - Step 2: Press "AUTO" and you will see the pattern:

Analysis part

- About: In this lab, you need to study capacitors
- Tips:
 - Follow Part A to Part H in the PDF and finish all questions. Remember to put your photo in your lab report
 - Write down the capacitor and resistance you use in each part

Hope it helps