Experiments of Boundary Stimulations of Social Influence Networks

Moses A. Boudourides & Sergios T. Lenis

Department of Mathematics University of Patras, Greece

23rd Summer School & Conference on "Dynamical Systems and Complexity" Kalandra University Camping AUTh, August 27 – September 3, 2016

Scripts and simulations at:

https://github.com/mboudour/SocInlfluenceSims

Diffusion Processes

The IBV Problem of Diffusion

$$\begin{array}{lcl} \frac{\partial u}{\partial t} & = & \alpha \Delta u, x \in \Omega, t > 0, \\ u(x,t) & = & f(x,t), x \in \partial \Omega, t > 0, \\ u(x,0) & = & g(x), x \in \Omega \ \ \text{(where } f(x,0) = g(x), x \in \partial \Omega \text{)}. \end{array}$$

Discretization in Time and Space

$$u(x, t + \delta t) = u(x, t) + u_t(x, t)\delta t + O(\delta t^2),$$

$$u(x + \delta x, t) = u(x, t) + u_x(x, t)\delta x + \frac{1}{2}u_{xx}(x, t)\delta x^2 + O(\delta x^3),$$

$$u(x - \delta x, t) = u(x, t) - u_x(x, t)\delta x + \frac{1}{2}u_{xx}(x, t)\delta x^2 + O(\delta x^3),$$

$$u_t(x, t) = \frac{u(x, t + \delta t) - u(x, t)}{\delta t} + O(\delta t),$$

$$u_{xx}(x, t) = \frac{u(x - \delta x, t) - 2u(x, t) + u(x + \delta x, t)}{\delta x^2} + O(\delta x^2).$$

The Case of One-Dimensional Lattice

$$\Omega = \{x_j : j = 1, \dots, n\},$$

$$\partial \Omega = \{x_1, x_n\},$$

$$t \in \{t_m : m = 0, 1, \dots\}.$$

FIGURE 4.1. The computational molecule of the explicit scheme.

Notation

$$x_j = j, \quad j = 1, ..., n,$$
 $t_m = m, \quad m = 0, 1, ...,$
 $u(x_j, t_m) = u_j^m,$
 $f(x_j, t_m) = f_j^m,$
 $g(x_j) = g_j.$

• The Parameter r

$$r = \alpha \frac{\delta t}{\delta x^2}.$$

The One-Dimensional Lattice Ω as a Graph

The Discrete Equation of Diffusion

$$u_j^{k+1} - u_j^k = r(u_{j-1}^k + u_{j+1}^k) - 2ru_j^k, j \in \Omega, k = 0, 1, \dots,$$

 $u_j^k = f_j, j \in \partial\Omega, k = 0, 1, \dots,$
 $u_j^0 = g_j, j \in \Omega.$

Stability Condition

$$r < \frac{1}{2}$$

ullet Adjacency between nodes of Ω

$$i \sim j \Leftrightarrow |i - j| = 1.$$

Adjacency Matrix

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 1 & 0 & 1 & \cdots & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 1 & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 \end{bmatrix}.$$

• Degrees of nodes of Ω

$$\deg_i = \sum_{i=1}^n A_{ij} = \left\{ \begin{array}{l} 2, \ \text{for } i = 2, \dots, n-1, \\ 1, \ \text{for } i = 1, n. \end{array} \right.$$

Notation

- Let D denote the diagonal degree matrix such that D_{ii} = deg_i.
- Let I denote the diagonal unit matrix such that $I_{ii} = 1$.

 Thus, the discrete equation of diffusion in vector form is written as:

$$u^{k+1} - u^k = r(A - D)u^k =$$

= $-rLu^k$, in $\Omega, k = 0, 1, ...$,
 $u^k = f$, on $\partial\Omega, k = 0, 1, ...$,
 $u^0 = g$, in Ω .

where the $n \times n$ matrix L = D - A denotes the (combinatorial) Laplacian matrix $L = L_{ij}$ of graph Ω :

$$L_{ij} = \left\{ egin{array}{ll} \deg_i, & ext{whenever } i = j, \ -1, & ext{whenever } i \sim j, \ 0, & ext{otherwise}. \end{array}
ight.$$

The Discrete Equation of Diffusion on a Graph G

• Let G = (V, E) be a (general) graph, such that the set of vertices V is partitioned in two subsets:

$$V = \Omega \cup \partial \Omega$$
,

assuming that

$$\partial\Omega = \{x \notin \Omega \colon \exists y \in S \text{ such that } y \sim x\}.$$

 The discrete equation of diffusion on G with Dirichlet boundary conditions is (in vector form):

$$u^{k+1} - u^k = -rLu^k$$
, in $\Omega, k = 0, 1, ...$,
 $u^k = 0$, on $\partial\Omega, k = 0, 1, ...$,
 $u^0 = g$, in Ω .

where L is the Laplacian matrix of G.

The DeGroot-Friedkin-Johnsen Model of Social Influence

- Let G = (V, E) be a **graph** of *n* persons, i.e., we assume form now on that **vertices** \equiv **persons**.
- For each person $i \in V$ and time k = 0, 1, 2, ... (in the discrete case considered here), let $v_i^k \in \mathbb{R}$ denote i's **opinion** at time k.
- ullet Person's i opinion at time t is updated at next instance t+1 according to the following equation of the

DeGroot-Friedkin-Johnsen Model of Social Influence:

$$v_i^{k+1} = s_i N v_i^k + (1 - s_i) v_i^0,$$

- where $N v_i^t$ is the average opinion of i's neighbors
- and s_i is person's i susceptibility coefficient, a scalar parameter in the interval (0, 1].

- Remarks on the defition of the susceptibility coefficient:
 - If $s_i = 0$, then *i*'s opinion does not change $(v_i^k = v_i^0$, for each time $k = 1, 2, \ldots$). Such a person is called **stubborn** or **persistent** in her opinion.
 - If s_i = 1, then i adopts the average opinion of her neighbors
 N v_i^t. Such a person is called malleable or fully compliant in
 adopting her neighbor's influence.
 - If $0 < s_i < 1$, then *i*'s opinion is inserted in-between $N v_i^t$ and v_i^0 , where the exact inserted position is weighted by s_i .
- Remaks on the definition of matrix N, which is called walk matrix on graph G:
 - Denoting by A, D the adjacency and the degree matrix of G, we have

$$N = D^{-1}A$$
.

 Moreover, denoting by L, I the Laplacian and the unit matrix of G, we have

$$N = I - D^{-1}L.$$

Reduction of Social Influence to a Diffusion Process

• Denoting by S the $n \times n$ diagonal matrix with its diagonal entries equal to the s_i 's, if

$$S = I$$

(i.e., if all persons are fully malleable), then the DeGroot–Friedkin–Johnsen model of social influence becomes (in vector form):

$$v^{k+1} = N v^k,$$

i.e., since $N = I - D^{-1}L$,

$$v^{k+1} - v^k = -D^{-1} L v^k,$$

which is a diffusion equation with a variable diffusion coefficient equal to D^{-1} .

Reduction of Diffusion Process to Social Influence

 If G is a d-regular graph, for a sufficiently large positive integer d, and

$$r=rac{1}{d},$$

then the equation of a diffusion process (in vector form) becomes:

$$u^{k+1} - u^k = -D^{-1}Lu^k = Nu^k - u^k,$$

i.e.,

$$u^{k+1} = Nu^k$$

which is a process of social influence (in the DeGroot–Friedkin–Johnsen model) for S=I (i.e., when all persons are fully malleable).

The Boundary of a Social Influence Process

- Suppose that we have a process of social influence on a graph G = (V, E) of n persons indexed by i = 1, 2, ..., n such that each person has a coefficient of susceptibility $s_i \in [0, 1]$.
- Assumptions and Notation:
 - *G* is connected.
 - $V = \Omega \cup \partial \Omega$, where $\Omega \cap \partial \Omega = \emptyset$.
 - $\Omega = \{i \in V : s_i > 0\}.$
 - $\bullet \ \partial\Omega = \{i \in V : s_i = 0\}.$
 - $|\partial \Omega| < n$.
 - $\forall j \in \delta\Omega, \exists i \in \Omega, i \sim j$.

Sources of Boundary Stimulations to Social Influence

• Given a process of social influence on a graph $G = (\Omega \cup \partial \Omega, E)$ with regards to a vector of susceptibility coefficients $s = \{s_i\}_{i \in \Omega}$, person $j_b \in \partial \Omega$ is said to be a source of boundary stimulation, or a persistent source, if j_s fires up the process governed by the following IBVP:

$$\begin{array}{rcl} v_i^{k+1} & = & s_i \; N \; v_i^k + (1-s_i) \psi_i, \; \text{for} \; i \in \Omega, \, k=1,2,\ldots, \\ v_{j_b}^k & = & 1, \; \text{for} \; k=0,1,\ldots, \\ v_i^1 & = & \psi_i, \; \text{for} \; i \in \Omega. \end{array}$$

where

$$\psi_i = \left\{ \begin{array}{ll} \frac{\mathbf{s}_i}{\deg_i}, & \text{ whenever } i \sim j_b, \\ \mathbf{0}, & \text{ whenever } i \nsim j_b. \end{array} \right.$$

Transient and Steady Solutions to Boundary Stimulations

- Let $v_i^k(j_b) = v_i^k(j_b; s)$ be the **transient** solution to the IBVP of social influence stimulated by source j_b with regards to the vector of susceptibility coefficients $s = \{s_i\}_{i \in \Omega}$.
- Then, for any $i \in \Omega$, the following limit exists:

$$\lim_{k\to\infty} v_i^k(j_b;s) = \overline{v}_i(j_b;s).$$

• $\overline{v}(j_b) = \overline{v}(j_b; s) = {\overline{v}_i(j_b; s)}_{i \in \Omega}$ is the **steady state** solution to the BV of social influence on G, which is stimulated by source j_s with regards to s:

$$\overline{v}(j_b) = (I - SN)^{-1} (I - S) \psi,$$

where $\psi = \{\psi_i\}_{i \in \Omega}$.

• If, for all $i \in \Omega$, $s_i = 1$, then

$$\lim_{k\to\infty} v_i^k(j_b;\mathbf{1}) = 1, \text{ for any } i\in\Omega.$$

Synchronization from One Source of Alternating Boundary Simulation to Social Influence

• A person $j_a \in \partial \Omega$ is said to be an **alternating source of boundary stimulation**, or an **alternating source**, if j_a fires up a process of social influence on graph G that satisfies the following IBVP:

$$v_i^{k+1} = s_i N v_i^k + (1 - s_i) v_i^0$$
, in $\Omega, k = 0, 1, ...,$
 $v_{j_a}^k = 1, k = 0, 2, 4, ...,$
 $v_{j_a}^k = -1, k = 1, 3, 5, ...,$
 $v_i^0 = 0$, in Ω .

• Note that the opinion of the source j_a constantly oscillates between +1 and -1 without being influenced by her neighbors (although, as a source, j_a does influence her neighbors).

Synchronization in the Kuramoto Model

The Kuramoto Model of Synchronization among Coupled Oscillators on a Graph

Oscillators are located on the nodes of graph G = (V, E). Each oscillator $i \in V$ marches on a circular track with a preferred speed ω_i . The position of oscillator i on the circle is given by an angle θ_i . However, since oscillators are considered to be **coupled** with regards to their graph proximities, i's angular position θ_i depends on her neighbors' angular positions θ_j according to the following equation:

$$\begin{array}{rcl} \theta_i^{k+1} - \theta_i^k & = & \omega_i + \alpha \frac{\sum_{j \sim i} \sin(\theta_j^k - \theta_i^k)}{\deg_i}, \text{ in } \Omega, k = 0, 1, \dots, \\ \theta_i^0 & = & \phi_i, \text{ in } \Omega. \end{array}$$

The Influentiability Matrix of a Graph Influence Process of Boundary Stimulations

- By a **graph influence process**, we mean a process of social influence on a graph G = (V, E) with regards to a vector of susceptibility coefficients $s = \{s_i\}_{i \in V}$.
- The **influentiability matrix** of a graph influence process stimulated on the boundary of graph G is defined as the following $n \times n$ matrix $\mathcal{U}^{\infty} = \{\mathcal{U}^{\infty}_{ij}(s)\}_{i,j \in V}$:

$$\mathcal{U}_{ij}^{\infty}(s) = \left\{ egin{array}{ll} 1, & ext{for } i=j, \ \overline{v}_{i}(i;s), & ext{for } i
eq j. \end{array}
ight.$$

The Influence Degree Centrality Index of a Node in a Graph Influence Process

• Given a graph influence process on a graph G = (V, E) with regards to a vector of susceptibility coefficients $s = \{s_i\}_{i \in V}$, the **influence degree centrality index** of node $i \in V$ is defined as follows:

$$C_{influence-degree}(i;s) = rac{1}{n-1} \sum_{j \sim i} \mathcal{U}_{i,j}^{\infty}(s)$$
 $= rac{1}{n-1} \sum_{i \sim i} \overline{v}_{j}(i;s).$

• Denoting by ${\bf 1}$ the $\mathbb{R}^{|V|}$ vector having all its components equal to 1, we get

$$c_{influence-degree}(i; \mathbf{1}) = \frac{1}{n-1} \deg_i = c_{degree}(i),$$

where $c_{degree}(i)$ is the **degree centrality index** of node $i \in V$.

For the Karate network:

