Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

Acceleration

Graphs

Homework 2

## Lesson 2: Motion in One Dimension

Henry Ding

August 7, 2025

## Homework Questions?

Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

Acceleration

Granhs

Homowork

### Reference Frames

Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

Acceleration

Graphs

Homework 2



#### **Definition**

Motion must be defined relative to a **reference frame**.

#### **Definition**

A **coordinate system** in each reference frame specifies position, velocity, acceleration, etc.

# Coordinate System

Lesson 2: Motion n One Dimension

Henry Ding

#### Position

√elocity

Acceleration

Graphs

Homework 2



## Position and Displacement

Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

Acceleration

∍rapns

Homework 2



#### Definition

**Position** is a vector pointing from the **origin** of the coordinate system. **Displacement** is the change in position from one location to another

$$\Delta \mathbf{d}_{AB} = \mathbf{d}_B - \mathbf{d}_A$$
.

#### Δ Prefix

In the sciences,  $\Delta$  often represents a change in something.



### Displacement vs. Distance

Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

 $\mathsf{Acceleration}$ 

∍raphs

Homework 2



#### Definition

**Distance** is a scalar equal to the total length of the path between two locations, which means distance is always positive. It is not the same as displacement!

### Example

What is the displacement from  $\langle -3 \, \text{m}, 2 \, \text{m} \rangle$  to  $\langle 0 \, \text{m}, 4 \, \text{m} \rangle$ ? What distance is covered traveling in a straight line between those two points?



## Average and Instantaneous Velocity

Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

Acceleration

Graphs

Homework 2

#### **Definition**

**Average velocity** is the total displacement  $\Delta \mathbf{d}$  between two points divided by the time  $\Delta t$  taken to travel between those points:

$$\mathbf{v}_{\mathrm{avg}} = rac{\Delta \mathbf{d}}{\Delta t} = rac{\mathbf{d}_f - \mathbf{d}_i}{t_f - t_i}.$$

- $\mathbf{v}_{avg}$  is a vector parallel to  $\Delta \mathbf{d}$ , which shows the direction of movement. The magnitude  $||\mathbf{v}_{avg}||$  tells you the rate of movement.
- **v**<sub>avg</sub> tells us about average movement, not the finer details!



## Instantaneous Velocity

Lesson 2: Motion n One Dimension

Henry Ding

Position

Velocity

Acceleration

Graphs

Homework 🛭



### Definition

When the displacement  $\Delta \mathbf{d}$  becomes infinitely small, the average velocity describes the **instantaneous velocity v**.  $\mathbf{v}$  is a vector describing the rate and direction of motion at a specific point.

## Average Speed

Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

Acceleration

Granhs

Homework 2

#### Definition

**Average speed** is the total distance d between two points divided by time  $\Delta t$  taken to travel between those points:

$$v_{\text{avg}} = \frac{d}{\Delta t}$$

Note,  $v_{\text{avg}}$  is a scalar and is always positive. However, in most cases  $v_{\text{avg}} \neq ||\mathbf{v}_{\text{avg}}||$ , even though both are scalars!

### Example

Anne finishes a race on a circular race track with radius 30 m in 15 s. From the start to end of the race, what is her (a) average velocity (b) average speed?

## Instantaneous Speed

Lesson 2: Motion in One Dimension

Henry Ding

Positior

Velocity

Acceleration

Graphs

Homework 2

#### **Definition**

**Instantaneous speed** v is the average speed  $v_{\rm avg}$  as the two points become infinitely close to each other. Turns out, this is just the magnitude of the instantaneous velocity  $\mathbf{v}$ 

$$v = ||\mathbf{v}||$$
.



#### Example

Anne finishes a race on a circular race track with radius 30 m in 15 s. If travels at a uniform speed (her instantaneous speed is constant throughout the track), then her Instantaneous speed is always equal to her average speed.

### Acceleration

Lesson 2: Motion in One Dimension

Henry Ding

**Positior** 

Velocity

Acceleration

Cranha

Homework 2

#### **Definition**

**Average acceleration** is the change in instantaneous velocity  $\Delta \mathbf{v} = \mathbf{v}_f - \mathbf{v}_i$  divided by the time taken  $\Delta t$ 

$$a_{ ext{avg}} = rac{\Delta \mathbf{v}}{\Delta t}.$$

#### Definition

**Instantaneous acceleration** a is the average acceleration as the time change  $\Delta t$  becomes infinitely small.

■ Acceleration has units of (meter / second) / second or  $m/s^2$ .

#### Example

Andrea changes from an initial velocity of  $\langle 5 \text{ m/s}, -1 \text{ m/s} \rangle$  to a final velocity of  $\langle 3 \text{ m/s}, 12 \text{ m/s} \rangle$  in 10 s. What is her average acceleration?

## Position vs. Time Graphs

Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

Acceleration

Graphs

Homework



In one dimension, vectors only have one component along a single axis. We can just work with scalars that can be any sign.

■ **note**: to distinguish between distance and position, we will use x for position in one dimension.



## Position vs. Time Graph Example

Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

Acceleration

Graphs

Homework 2

### Theorem (Slope on a Position vs. Time Graph)

The slope on a x(t) graph gives the instantaneous velocity as the time interval becomes infinitely small.

#### Example

Consider the following x(t) graph. Determine the instantaneous velocities at (a) t = 2 s (b) t = 17 s. Determine the average velocities from (c) t = 0 s to t = 10 s (d) t = 0 s to t = 20 s.



## Velocity vs. Time Graphs

Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

Acceleration

Graphs

Homework 2

v(t) graphs tell us the instantaneous velocity at different times.

#### Example

Consider the following v(t) graph. Determine the instantaneous acceleration at (a) t = 2 s (b) t = 7 s. What is the average acceleration from t = 0 s to t = 10 s?



### Theorem (Slope on a Velocity vs. Time Graph)

The slope on a v(t) graph gives instantaneous acceleration.



## Velocity vs. Time Graph Example

Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

Acceleration

Graphs

Homework 2

#### Example

Consider the following v(t) graph. Determine the average velocity from t = 0 s to t = 10 s. What is the displacement from t = 0 s to t = 10 s?



The rectangular area under a v(t) graph gives the displacement!

## Area Under Velocity vs. Time Graph

Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

Acceleration

Graphs

Homework 2

For velocity varying with time, split up the graph into rectangles.





Each rectangle has area  $v(t)\Delta t = \Delta d$ , so the whole area is total displacement.

#### Theorem

The area under a v(t) graph for a time interval is equal to the displacement during that interval.

## Area Under Velocity vs. Time Graph Example

Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

Acceleration

Graphs

Homework 2

### Example

Find the total displacement for the following v(t) graph from t = 0 s to t = 10 s. What is the average velocity from this time interval? Qualitatively graph the position x(t).



## Another Velocity vs. Time Graph Example

Lesson 2: Motion in One Dimension

Henry Ding

Positior

Velocity

Acceleration

Graphs

Homework 2

### Example

A biker is at x = 0 at t = 0. Graph the biker's position x(t) given v(t):

### Motion with Constant Acceleration

Lesson 2: Motion in One Dimension

Henry Ding

**Positior** 

Velocity

Acceleratior

Graphs

Homework 2

We will often deal with situations involving constant acceleration, so that the instantaneous acceleration a is the same value at all times. Recall then that the slope on a v(t) graph is always constant. In other words, our v(t) graph is a straight line.

#### Example

Consider the following graph. Find the constant acceleration a.



## Average Velocity with Constant Acceleration

Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

Acceleration

Graphs

Homework 2

### Example

Consider the following graph. Find the average velocity  $v_{avg}$  from  $t_i$  to  $t_f$ .



## Displacement with Constant Acceleration

Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

Acceleration

Graphs

Homework 2

### Example

Consider the following graph. Find the displacement from  $t_i$  to  $t_f$ .



## Displacement given Initial, Final Velocities

Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

Acceleration

Graphs

Homework 2

#### Theorem (Kinematic Formulas)

For constant acceleration

$$v_f = v_i + at \tag{1}$$

$$v_{\text{avg}} = \frac{v_i + v_f}{2} \tag{2}$$

$$\Delta x = v_{\text{avg}}t = \left(\frac{v_i + v_f}{2}\right)t \tag{3}$$

$$\Delta x = v_i t + \frac{1}{2} a t^2 \tag{4}$$

However, note from Eq. (1)

$$t=\frac{v_f-v_i}{a},$$

so from Eq. (3)

$$\Delta x = \left(\frac{v_i + v_f}{2}\right) \left(\frac{v_f - v_i}{a}\right)$$

$$\Rightarrow v_f^2 - v_i^2 = 2a\Delta x.$$

## Constant Acceleration Example

Lesson 2: Motion in One Dimension

Henry Ding

Positior

Velocity

Acceleration

Graphs

Homework 2

### Example

A boat accelerates from 0 m/s to 8 m/second in 5 s. What is the boat's (a) acceleration (b) average velocity (c) displacement?

### Example

A train, initially moving at  $-3 \,\text{m/s}$  accelerates at a rate of  $2 \,\text{m/s}$  second over 4 m. What is the train's final velocity? How long does it take the train to accelerate to this final velocity?

### Free Fall

Lesson 2: Motion in One Dimension

Henry Ding

**Positior** 

Velocity

Acceleratio

**Graphs** 

Homework :

Objects near the surface of the Earth fall towards the ground with an acceleration of around  $g = 9.81 \,\mathrm{m/s^2}$ .

#### Example

Donna throws a ball straight up at  $5 \,\mathrm{m/s}$ . How long does it take for (a) the ball to stop moving (b) the ball to return to Donna. Approximate  $g = 10 \,\mathrm{m/s^2}$ .

#### Example

Maria drops a ball from a cliff of height 80 m above the ground. How long does it take for the ball to reach the ground? What is the ball's velocity when it hits the ground? Approximate  $g = 10 \,\text{m/s}^2$ .

#### Example

Marie throws a ball straight up at  $3\,\mathrm{m/s}$  on a cliff of height  $30\,\mathrm{m}$  above the ground. How long does it take for the ball to fall to the ground? Use  $g=9.81\,\mathrm{m/s^2}$ 

### Homework Conventions

Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

Acceleration

Granhe

Homework 2

When solving physics problems,

Define variables for numbers.

ex. "Let 
$$x_f = 5.0 \,\mathrm{m}, x_i = 3.0 \,\mathrm{m}, \Delta t = 2.0 \,\mathrm{s}.$$
"

Solve symbolically using variables.

ex. "
$$v_{\text{avg}} = (x_f - x_i)/\Delta t$$
."

■ Plug in numbers only at the end to find your answer.

ex. "
$$v_{\text{avg}} = (5.0 \,\text{m} - 3.0 \,\text{m})/2.0 \,\text{s} = 1.0 \,\text{m/s}$$
."

### Why?

- **I** Speed: it's faster to write a, x than write out 9.81 m/s or 4.82 m.
- Accuracy: it's easier to mistake 4.0 for 4.6, but harder to write x instead of v. Also, it's easier to plug everything into a calculator once at the end, instead of constantly using the calculator for every step of the problem.

For excellent tips on general problem solving strategies, I highly recommend checking out this chapter by Harvard lecturer David Morin. (Warning: the reading is quite long and assumes some more advanced math/physics knowledge, but the main ideas should be accessible.)

### Homework 2

Lesson 2: Motion in One Dimension

Henry Ding

Positior

Velocity

Acceleration

Granhs

Homework 2

#### Textbook Problems

- OpenStax Physics (High School) Chapter 3 Concept Items 3, 15
- OpenStax Physics (High School) Chapter 3 Problems 12, 15
- OpenStax Physics (High School) Chapter 3 Multiple Choice Test Prep 18, 19, 25, 26

#### Physics, Volume 1, 5th Edition, Chapter 2 Multiple Choice 10

An object is tossed vertically into the air with an initial velocity of 8 m/s. Using the sign convention up is positive, how does the vertical component of the acceleration  $a_y$  of the object (after leaving the hand) vary during the flight of the object?

- (a) On the way up  $a_v > 0$ , on the way down  $a_v < 0$ .
- (b) On the way up  $a_v < 0$ , on the way down  $a_v > 0$ .
- (c) On the way up  $a_v > 0$ , on the way down  $a_v < 0$ .
- (d) On the way up  $a_v < 0$ , on the way down  $a_v < 0$ .

### Homework 2

Lesson 2: Motion in One Dimension

Henry Ding

Position

Velocity

Acceleration

Graphs

Homework 2

#### Physics, Volume 1, 5th Edition, Chapter 2 Exercise 13

The minute hand of a wall clock measures 11.3 cm from axis to tip. What is the displacement vector of its tip (a) from a quarter after the hour to half past, (b) in the next half hour, and (c) in the next hour?

#### Physics, Volume 1, 5th Edition, Chapter 2 Exercise 31, 32

How far does the runner whose velocity-time graph is shown in Fig. 2-34 travel in 16 s? What is the acceleration of the runner at t = 11 s?

