

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{lpha}$	0	0	0	$\frac{1}{k^2 r_5}$	0	0	0
$\tau_1^{\#1}_+ \alpha \beta$	$\frac{i\sqrt{2}}{kr_5+k^3r_5}$	$\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	$\frac{3k^2r_5+2t_2}{(1+k^2)^2r_5t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{3k^2r_5+2t_2}{(k+k^3)^2r_5t_2}$	$-\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 r_5}$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{i\sqrt{2}}{kr_5+k^3r_5}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{\beta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

$f_{1}^{\#2}$	0	0	0	0	0	0	0
$f_{1^{ ext{-}}lpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$ f	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$k^2 r_5$	0	0	0
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+^2$	$\frac{\sqrt{2}t_2}{3}$	2 2 ع	$\left -\frac{1}{3} ikt_2 \right $	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 r_5 + \frac{2 t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
·	$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} + \alpha$

 $k^2 r_2 + t_2$

0

0

#

SO(3) irreps

Source constraints

П

 $\tau_{0}^{\#2} == 0$

1

 $\tau_{0}^{\#1} == 0$

П

 $\sigma_{0}^{\#1} == 0$

		- >	ı	
$t_1^{\#2}\alpha == 0$	\sim			4
Т				
$\tau_{1}^{\#_{1}\alpha} == 0$	3		$\sigma_{0}^{\#1}$ $ec{r}$	1
$\sigma_{1}^{\#2\alpha} == 0$	М	$\sigma_{0}^{\#1}\dagger$	0	
$\frac{1}{t_{+}^{\#1}\alpha\beta} + ik O_{+}^{\#2}\alpha\beta == 0 3$	m	$\tau_{0}^{\#1}$ †	0	
1. T.		τ ^{#2} +	0	
$\sigma_{2}^{\#1}{}^{\alpha\beta\chi} == 0$	2			
$\tau_{2+}^{\#1}\alpha\beta==0$	2	$\sigma_{0}^{\#_{1}} +$	0	
$\sigma_{2+}^{\#1}\alpha\beta=0$	2			
Total #:	30			

0

0

0

0

0

0

0

0

	Massive particle			
? /	Pole residue:	$-\frac{1}{r_2} > 0$		
$J^P = 0^-$	Polarisations:	1		
$\overrightarrow{k^{\mu}}$	Square mass:	$-\frac{t_2}{r_2} > 0$		
·	Spin:	0		
	Parity:	Odd		

(No massless particles)

 $r_2 < 0 \&\& t_2 > 0$