CH NG VII

HÀM BOOLE

Ký hi u n là s nguyên ≥ 1 .

I. HÀM BOOLE:

1.1/ **IS BOOLE NH PHÂN:** Cho B = $\{1, 0\}$. Ta xác nh *các phép toán* trên B nh sau: $\forall x, y \in B (x, y \text{ g i là } các \text{ bi } n \text{ Boole}),$ $\overline{x} = 1 - x \text{ (bù Boole)}, x \land y = x.y \text{ (tích Boole)},$ $x \lor y = x + y - x.y \text{ (t ng Boole)}.$

X	1	0
\overline{x}	0	1

X	1	1	0	0
y	1	0	1	0
x∧y	1	0	0	0

X	1	1	0	0
y	1	0	1	0
x∨y	1	1	1	0

K t qu tính toán c a các phép toán "bù Boole, tích Boole và t ng Boole "thì gi ng nh tìm chân tr c a các phép toán "ph nh, h i và tuy n m nh ".

C u trúc i s $(B, -, \wedge, \vee) \equiv (B, -, \cdot, \vee)$ g i là i s Boole nh phân.

C u trúc này c ng th a 10 lu t nh trong i s m nh : $\forall x, y, z \in B$, ta có

* Lu t bù kép : $\frac{1}{x} = x$.

* Lu t 1 y $ng : x.x = x v a x \lor x = x$.

* Lu t giao hoán : x.y = y.x .
* Lu t h p thu : $x.(x \lor y) = x = x \lor (x.y)$.

* Lu t bù De Morgan : $\overline{x.y} = \overline{x} \vee \overline{y}$ và $\overline{x \vee y} = \overline{x} \cdot \overline{y}$.

* Lu t k t h p:(x.y).z = x.(y.z) và $(x \lor y) \lor z = x \lor (y \lor z)$.

* Lu t phân ph $i: x.(y \lor z) = x.y \lor x.z \quad và \quad x \lor (y.z) = (x \lor y).(x \lor z)$.

* Lu t th ng tr : x.0 = 0 và $x \lor 1 = 1$ (ta luôn dùng ký hi u . thay cho \land).

1.2/ HÀM BOOLE:

a) $\forall X = (x_1, x_2, \dots, x_n) \in B^n$, ta nói $X = (x_1, x_2, \dots, x_n)$ là m t vector Boole. M i anh x $f: B^n \rightarrow B = \{0, 1\}$

$$X = \ (x_1,\,x_2,\,...\,\,,\,x_n) \mapsto f\left(X\right) = f\left(x_1,\,x_2,\,...\,\,,\,x_n\right)$$

g i là m thàm Boole n bi n.

b) M i hàm Boole n bi n c môt b ng m t b ng giá tr có 2^n c t ghi các giá tr c a hàm Boole theo 2^n vector Boole.

<u>Ví d:</u>

a) Các c tri A, B, C b phi u tín nhi m ng viên D. Ta có các bi n Boole t ng ng a, b, c (a = 1 n u A tín nhi m D ho c a = 0 n u trái l i. T ng t cho các bi n Boole b và c). Ta có hàm Boole f th hi n k t qu b phi u tín nhi m $f: B^3 \to B, \ \forall (a,b,c) \in B^3$,

f(a,b,c) = 1 (n u D c tín nhi m ≥ 2 phi u) ho c f(a,b,c) = 0 (n u trái l i).

a	1	1	1	0	1	0	0	0
b	1	1	0	1	0	1	0	0
С	1	0	1	1	0	0	1	0
f(a,b,c)	1	1	1	1	0	0	0	0

B ng giá tr c a hàm Boole f (x,y,z).

b) Cho các công t c i n X, Y, Z trong m t m ch i n nh sau (công t c i n $X' = \overline{X}$ có tr ng thái óng, m luôn luôn trái ng c v i công t c X):

Ta có các bi n Boole t ng ng x, y, z (x = 1 n u A óng, x = 0 n u A m, $x' = \overline{x}$. T ng t cho các bi n Boole y và z). Ta có hàm Boole g th hi n tr ng thái c a m ch i n: g: $B^3 \to B$, $\forall (x, y, z) \in B^3$, g (x,y,z) = 1 (n u có i n qua m ch: X, Y u óng ho c X m, Z óng) ho c g (x,y,z) = 0 (n u trái l i).

X	1	1	1	1	1	0	0	0
<u>y</u>	1	1	0	1	0	1	0	0
Z	1	0	1	1	0	0	1	0
g(x,y,z)	1	1	0	1	0	0	1	0

B ng giá tr c a hàm Boole g(x,y,z).

1.3/ IS BOOLE C A CÁC HÀM BOOLE:

 $t F_n = (T p h p các hàm Boole n bi n) = \{ f | f : B^n \rightarrow B \}.$

Ta có $|F_n| = 2^{2^n}$ (b ng giá tr có 2^n c t, m i c t có 2 kh n ng ch n giá tr). Trong F_n , có các hàm Boole c bi t là hàm boole h ng \mathbf{O} (ch nh n giá tr 0) và hàm boole h ng \mathbf{I} (ch nh n giá tr 1).

Ta xác $\ \ \,$ nh $\ \ \,$ các $\ \ \,$ phép toán trên $\ \ \,$ $\ \ \,$ nh $\ \ \,$ sau:

 $\forall f, g \in F_n, \forall X = (x_1, x_2, ..., x_n) \in B^n,$

$$\overline{f}(X) = \mathbf{1}(X) - f(X)$$
 (bù Boole)

$$(f \land g)(X) = f(X).g(X)$$
 (tích Boole)

 $f(X) \vee g(X) = f(X) + g(X) - f(X).g(X) \text{ (t ng Boole)}.$

C u trúc i s $(F_n, -, \land, \lor)$ g i là *i s Boole c a các hàm Boole n bi n*. C u trúc này c ng th a 10 lu t nh trong i s m nh : $\forall f, g, h \in F_n$, ta có

- * Lu t bù kép : $\overline{f} = f$.
- * Lu tl y ng: f.f = f và $f \lor f = f$.
- * Lu t giao hoán : $f \cdot g = g \cdot f$.
 * Lu t h p thu : $f \cdot (f \vee g) = f = f \vee (f \cdot g)$.
- * Lu t bù De Morgan : $\overline{f \cdot g} = \overline{f} \vee \overline{g}$ và $\overline{f \vee g} = \overline{f} \cdot \overline{g}$.
- * Lu t k t h p:(f.g).h = f.(g.h) và $(f \lor g) \lor h = f \lor (g \lor h).$
- * Lu t phân ph $i: f.(g \lor h) = f.g \lor f.h$ và $f \lor (g.h) = (f \lor g).(f \lor h).$
- * Lu t th ng tr : f .O = O và $f \lor 1 = 1$ (ta luôn dùng ký hi u . thay cho \land).

<u>Ví d</u>: Cho f, $g \in F_2$ và các hàm **O**, **1**, \overline{f} , \overline{g} , f. g, $f \vee g$ c th hi n trong b ng giá tr d i ây:

X	1	1	0	0
у	1	0	1	0
1 (x,y)	1	1	1	1
$\mathbf{O}(\mathbf{x},\mathbf{y})$	0	0	0	0
f(x,y)	1	0	0	1
g(x,y)	1	0	1	0
$\overline{f}(x,y)$	0	1	1	0
$\overline{g}(x,y)$	0	1	0	1
(f .g)(x,y)	1	0	0	0
$(f \lor g)(x,y)$	1	0	1	1

II. CÁC D NG BI U DI N C A HÀM BOOLE:

2.1/ T N (CÁC HÀM BOOLE C B N): Trong F_n , xét 2n hàm Boole c b n (ta c ng g i chúng là 2n t $\phi_{i}\left(x_{1},\,x_{2},\,...\,,\,x_{n}\right)\;=\;x_{i}\;\;\text{và}\;\;\psi_{i}\left(x_{1},\,x_{2},\,...\,,\,x_{n}\right)\;=\;\overline{x}_{i}\;\;(\;1\leq i\leq n\;).$ T nay v sau, ta ký hi u n gi n $\varphi_i = x_i$ và $\psi_i = \overline{x}_i$ ($1 \le i \le n$).

Ví d: $F_5 = \{ f \mid f : B^5 \rightarrow B \} \text{ c\'o } 10 \text{ t} \quad \text{n là } x_i, \overline{x_i} (1 \le i \le 5).$ $\phi_2(1, \boldsymbol{0}, 1, 1, 0) = x_2(1, \boldsymbol{0}, 1, 1, 0) = \boldsymbol{0} \ \text{và} \ \psi_5(0, 1, 1, 0, \boldsymbol{0}) = \overline{x}_5(0, 1, 1, 0, \boldsymbol{0}) = \overline{0} = \boldsymbol{1}.$ $\overline{x}_2 x_3 \overline{x}_5 x_1 \overline{x}_3 = \overline{x}_2 \overline{x}_5 x_1 (x_3 \overline{x}_3) = \overline{x}_2 \overline{x}_5 x_1. \mathbf{O} = \mathbf{O} \text{ (giao hoán, k t h p, bù, th ng tr)}.$ $x_4 \overline{x}_2 x_1 \overline{x}_5 \vee x_4 \overline{x}_2 x_1 x_5 = (x_4 \overline{x}_2 x_1)(\overline{x}_5 \vee x_5) = x_4 \overline{x}_2 x_1.1 = x_4 \overline{x}_2 x_1$ (phân ph i, k t h p, bù, trung hòa).

2.2/ NTH C:

 $M \ t \ n \ th \ c \ trong \ F_n \ là tích Boole c a m t s t n sao cho tích này \neq 0$. Trong m t n th c, không th có m t ng th i x_i và \bar{x}_i [vì $x_i\bar{x}_i = \mathbf{0}$] và ta không ghi l p l i các t n [vì $x_i x_i = x_i$ và \overline{x}_i $\overline{x}_i = \overline{x}_i$] $(1 \le i \le n)$.

B c c a m t n t h c là s tn khác nhau có m t trong

n th c trong F_n có b c (deg = degree) t 1

n th c có b c n trong F_n (cao nh t) c g i là m t n th c t i ti u. M t

n th $\,c\,t\,$ i ti $\,u\,$ trong $\,\bar{F}_{\,n}\,$ có $\,d\,$ ng $\,t\,$ ng quát M i

 $m = y_1 y_2 \dots y_n$ trong $oldsymbol{o} y_i = x_i$ ho $oldsymbol{c} \overline{x}_i$ $(1 \le i \le n)$.

Ví d: Xét các n th c trong F_5 (theo 5 bi n Boole x, y, z, t và u): $m_1 = \overline{z}$, $m_2 = y\overline{u}$, $m_3 = \overline{x}\overline{y}\overline{t}$, $m_4 = yztu$ và $m_5 = x\overline{y}\overline{z}tu$. Ta có $deg(m_i) = i (1 \le i \le 5)$ và $m_5 = x \overline{y} \overline{z} t u$ là m t nth c t i ti u.

2.3/ A TH C: M t ath c f trong F_n làt ng Boole c a m t s n th c (trong F_n).

Ta vi t $f = m_1 \vee m_2 \vee ... \vee m_k \ (m_1, m_2, ..., m_k \ là các n th c trong F_n)$.

<u>Ví d</u>: Xét a th c f trong F_5 (theo 5 bi n Boole x, y, z, t và u): $f(x,y,z,t,u) = \overline{x} \ \overline{y} z \ t \lor \overline{z} \lor y \ \overline{t} \ u \lor y \overline{u} \ .$ Ta có $f(1,1,0,0,1) = \overline{1}.\overline{1}.0.0 \lor \overline{0} \lor 1.\overline{0}.1 \lor 1.\overline{1} = 0 \lor 1 \lor 1 \lor 0 = 1.$

2.4/ D NGN IR ICHÍNH T C CHO HÀM BOOLE:

2.5/ \overrightarrow{T} \overrightarrow{N} \overrightarrow{D} \overrightarrow{N} \overrightarrow{G} \overrightarrow{N} \overrightarrow{I} \overrightarrow{R} \overrightarrow{I} \overrightarrow{C} \overrightarrow{H} \overrightarrow{N} \overrightarrow{H} \overrightarrow{D} \overrightarrow{N} \overrightarrow{D} \overrightarrow{D} \overrightarrow{N} \overrightarrow{D} \overrightarrow{D}

<u>Ví d</u>: Cho $f \in F_3$ (theo 3 bi n Boole x_1, x_2, x_3) có b ng giá tr nh sau:

Boole f.

X ₁	1	1	1	0	1	0	0	0
\mathbf{x}_2	1	1	0	1	0	1	0	0
\mathbf{x}_3	1	0	1	1	0	0	1	0
$f(x_1,x_2,x_3)$	1	0	1	1	0	1	0	1

 $\begin{array}{l} \text{Ta th y } f\left(1,1,1\right) = f\left(1,0,1\right) = f\left(0,1,1\right) = f\left(0,1,0\right) = f\left(0,0,0\right) = 1. \\ (1,1,1) \mapsto m_1 = x_1 x_2 x_3 \;, \\ (1,0,1) \mapsto m_2 = x_1 \, \overline{x}_2 \, x_3 \;, \\ (0,1,0) \mapsto m_4 = \, \overline{x}_1 \, x_2 \, \overline{x}_3 \; \text{ và } \left(0,0,0\right) \mapsto m_4 = \, \overline{x}_1 \, \overline{x}_2 \, \overline{x}_3 \,. \end{array}$

Do ód ng n i r i chính t c c a f là $f = m_1 \vee m_2 \vee m_3 \vee m_4 \vee m_5$ hay vi t c th $f(x_1, x_2, x_3) = x_1 x_2 x_3 \vee x_1 \overline{x_2} x_3 \vee \overline{x_1} x_2 x_3 \vee \overline{x_1} x_2 \overline{x_3} \vee \overline{x_1} \overline{x_2} \overline{x_3}$.

b) Tìm t m t d ng a th c c a f: dùng $u \lor \overline{u} = 1$ (lu t bù) và lu t trung hòa nâng b c các n th c trong a th c. Ph i h p thêm các lu t phân ph i, k t h p, giao hoán và l y ng khai tri n và rút g n v d ng n i r i chính t c cho f.

2.6/ **NH LÝ:** Cho $f \in F_n$ và $f \neq \mathbf{O}$.

Khi ó f có th vi t thành m t hay nhi u d ng a th c khác nhau (trong ó có d ng n i r i chính t c c a f là m t d ng a th c c bi t c a f). Nh v y ta có th bi u di n các hàm Boole d i d ng a th c (n gi n) mà không c n dùng n b ng giá tr (vi c này khá c ng k nh ph c t p khi $n \ge 4$).

2.7/ SO SÁNH CÁC D NG A TH C: Cho $f \in F_n$ và $f \neq O$.

Gi s f có 2 d ng a th c (v i các n th c $u_1, u_2, ..., u_p, v_1, v_2, ..., v_q$): $f = u_1 \lor u_2 \lor ... \lor u_p (1) \quad và \quad f = v_1 \lor v_2 \lor ... \lor v_q (2)$

a) Tr ng h p 1: Ta nói (1) và (2) n gi n nh nhau n u

* p = q.

* $deg(u_i) = deg(v_i)$ ($1 \le i \le p$).

[có th hoán v $v_1, v_2, ..., v_q$ tr c khi so sánh các b c].

- - * $p \le q$.
 - * $deg(u_i) \le deg(v_i) \ (1 \le i \le p).$

[có th hoán v $v_1, v_2, ..., v_q$ tr c khi so sánh các b c].

- * Có ít nh t m t d u < x y ra trong các d u \le nói trên.
- c) Tr ng h p 3 : Ta nói (1) và (2) không so sánh c v i nhau n u tr ng h p 1 và tr ng h p 2 không x y ra.

$\underline{\text{Ví d}}$:

a) Cho $f \in F_4$ và f có 3 d ng a th c nh sau:

$$f(x,y,z,t) = x y \vee \overline{x} z t \vee x \overline{z} \vee \overline{x} \overline{y} t = u_1 \vee u_2 \vee u_3 \vee u_4 (1) (p = 4)$$

= $x \overline{z} \vee \overline{y} \overline{z} t \vee x y \vee \overline{x} z t = v_1 \vee v_2 \vee v_3 \vee v_4 (2) (q = 4)$

$$= x \overline{z} \vee \overline{x} y z t \vee \overline{x} \overline{y} t \vee \overline{x} \overline{y} z t \vee x y = w_1 \vee w_2 \vee w_3 \vee w_4 \vee w_5 (3) (r = 5).$$

Ta có (1) và (2) n gi n nh nhau [p = q = 4 và $deg(u_i) = deg(v_i)$ khi $1 \le i \le 4$].

Ta có (1) n gi n h n (3) [p = 4 < r = 5 và $deg(u_i) \le deg(w_i)$ khi $1 \le i \le 4$].

b) Cho $g \in F_4$ và g có 2 d ng ath c nh sau:

$$g(x,y,z,t) = z \overline{t} \vee x \overline{y} z \vee \overline{x} y \overline{z} t \vee \overline{x} y z = u_1 \vee u_2 \vee u_3 \vee u_4 (4) (p = 4)$$

$$= \overline{x} y \overline{z} t \vee x \overline{y} z t \vee z \overline{t} \vee \overline{x} y z t = v_1 \vee v_2 \vee v_3 \vee v_4 (5) (q = 4).$$

Ta c n hoán v v_3 v i v_1 r i ký hi u l i các ch s tr c khi so sánh các b c : $g(x,y,z,t) = z\overline{t} \lor x\overline{y}zt \lor \overline{x}y\overline{z}t \lor \overline{x}yzt = w_1 \lor w_2 \lor w_3 \lor w_4$ (6) (r = 4).

Ta có (4) n gi n h n (6) [p = r = 4, $deg(u_i) \le deg(w_i)$ khi $1 \le i \le 4$ và $deg(u_2) = 3 < deg(w_2) = 4$].

c) Cho $h \in F_4$ và h có 2 d ng a th c nh sau:

$$h(x,y,z,t) = x \vee \overline{x} y z \overline{t} = u_1 \vee u_2 (7) (p = 2)$$

$$= x z \vee y z \overline{t} \vee x \overline{z} = v_1 \vee v_2 \vee v_3 (8) (q = 3).$$

Ta có (7) và (8) không so sánh c v i nhau.

2.8/D NG CÔNG TH C A TH C T I TI U C A HÀM BOOLE:

Cho $f \in F_n$ và $f \neq \mathbf{O}$. Ta ã bi t f có m thay nhi u d ng a th c khác nhau (trong ó d ng n i r i chính t c c a f là d ng a th c ph c t p nh t c a f). B ng cách so sánh các d ng a th c c a f, ta ch n ra các d ng a th c n gi n

nh t có th c cho f (ngh a là không có d ng nào khác n gi n h n chúng). Chúng chính là các công th c a th c t i ti u c a f.

Ph m vi ch ng trình là tìm các công th c a th c t i ti u c a các hàm Boole không quá 4 bi n b ng ph ng pháp bi u KARNAUGH.

III. PH NG PHÁP BI U KARNAUGH:

3.1/ B NG MÃ: Cho is Boole nh phân $B = \{1, 0\}$.

a) B ng mã cho B¹ (bi n Boole x):

X	\overline{x}
1	0

b) B ng mã cho B² (các bi n Boole x và y):

	X	\overline{x}
y	11	01
\overline{y}	10	00

c) B ng mã cho B³ (các bi n Boole x, y và z):

	X	X	\overline{x}	\overline{x}
Z	101	111	011	001
\overline{z}	100	110	010	000
	\overline{y}	y	y	\overline{y}

d) B ng mã cho B4 (các bi n Boole x, y, z và t):

	X	X	\overline{x}	\overline{x}	
Z	1010	1110	0110	0010	\overline{t}
Z	1011	1111	0111	0011	t
\overline{z}	1001	1101	0101	0001	t
\overline{z}	1000	1100	0100	0000	\overline{t}
	\overline{y}	y	y	\overline{y}	

3.2/ GHI CHÚ:

- a) Khái ni m " k nhau" trong b ng mã c hi u nh sau:
 - * Dòng (c t) 1 k v i dòng (c t) 2. Dòng (c t) 2 k v i dòng (c t) 3.
 - * Dòng (c t) 3 k v i dòng (c t) 4. Dòng (c t) 4 k v i dòng (c t) 1. B ng mã c ng có th c xem nh m t m t tr nên có th u n cong theo chi u d c ho c chi u ngang dòng (c t) 4 k v i dòng (c t) 1.
- b) Hai ô " k nhau " trong b ng mã có mã s ch sai khác nhau m t v trí.

3.3/ BI U KARNAUGH C A HÀM BOOLE:

Cho $f \in F_n (n \le 4)$ và b ng giá tr c a f.

Ta ý các vector Boole $(u_1,u_2,...,u_n)$ trong b ng giá tr có f $(u_1,u_2,...,u_n) = 1$.

M i vector Boole $(u_1, u_2, ..., u_n)$ nh v y t ng ng v i ô có cùng mã s $u_1u_2 \dots u_n$ trong b ng mã c a B^n . ánh d u các ô t ng ng ó trong b ng mã. T ph p S g m các ô c ánh d u g i là bi u Karnaugh c a hàm Boole f và ta ký hi u bi u ó là S = Kar(f) hay g n h n n a là S = K(f).

<u>Ví d</u>: Cho $f \in F_3$ (theo 3 bi n Boole x_1, x_2, x_3) có b ng giá tr nh sau:

\mathbf{x}_1	1	1	1	0	1	0	0	0
\mathbf{x}_2	1	1	0	1	0	1	0	0
X ₃	1	0	1	1	0	0	1	0
$f(x_1,x_2,x_3)$	1	0	1	1	0	1	0	1

Ta th y f(1,1,1) = f(1,0,1) = f(0,1,1) = f(0,1,0) = f(0,0,0) = 1. ánh d u các ô có mã s t ng ng 111, 101, 011, 010 và 000 trong b ng $m\tilde{a}$ c a B^3 , ta c bi u S = Kar(f) g m 5 ô nh sau:

	X	X	\overline{x}	\overline{x}
Z	101	111	011	
\overline{z}			010	000
	\overline{y}	y	y	\overline{y}

Ta có the v bi u S = Kar(f) m t cách ngi nh nn a là

*	*	*	
		*	*

3.4/ NH N XÉT: M thàm Boole $f \in F_n$ c xác nh n u bi t m t trong các y u t sau:

- a) B ng giá tr c a f.
- b) M td ng ath cc a f.
- c) D ng n i r i chính t c c a f (d ng a th c c bi t và ph c t p nh t c a f).
- Karnaugh c a f (n u $n \le 4$). d) Bi u

3.5/ M NH : Cho f, $g \in F_n$ $(n \le 4)$. Khi δ :

- a) $K(\overline{f})$ là ph n bù c a K(f) trong b ng $m\tilde{a}$ c a B^n .
- b) $K(f \cdot g) = K(f) \cap K(g)$ và $K(f \vee g) = K(f) \cup K(g)$.
- c) $f \le g \iff K(f) \subset K(g)$. Suy ra $f = g \iff K(f) = K(g)$.

Ví d: Cho f, $g \in F_3$ có các bi u Karnaugh nh sau:

*		*	*
	*	*	
			• •

Kar(f) (5 ô)

*	*		*
	*	*	*

Karnaugh c a các hàm Boole \overline{f} , \overline{g} , f.g và $f \vee g$ 1 n l t nh sau: Ta suy ra bi u

* *		*	
	*		*

 $Kar(f)(3 \hat{0})$

		*			
*					
$V_{ar}(\bar{a})(2\hat{a})$					

	*			*	
		*	*		
,	$Kar(f, g) (A, \hat{g})$				

3.6/BIU CAMT NTH C:

Cho $n \ th \ c \ m \in F_n$. Ta $\tilde{a} \ bi \ t \ 1 \le \deg(m) \le n$.

- a) N u deg(m) = p thì K(m) là m t hình ch nh t (m r ng) có 2^{n-p} ô.
- b) N u deg(m) = n (m là n th c t i ti u) thì K(m) có úng 1 ô.

Ví d : Cho n = 4.

a) m = z và $u = \overline{y}$ [deg(m) = deg(u) = 1].

X	X			
*	*	*	*	
*	*	*	*	t
				t
	y	y		
	*	* *	* * *	* * * * *

Kar(z)

	X *	X			
Z	*			*	
Z	*			*	t
	*			*	t
	*			*	
	\overline{y}	y	y	\overline{y}	

Kar (\overline{y}) .

Kar(z) là hình ch nh t và Kar(\overline{y}) là hình ch nh t m r ng có $2^{4-1} = 8$ ô. b) m = x \overline{t} và u = \overline{x} y [deg(m) = deg(u) = 2].

	X	X		
Z	*	*		\overline{t}
Z				t
				t
	*	*		\overline{t}
		y	y	

 $Kar(x \bar{t})$

	X	X	<i>x</i> ∗	\overline{x}	
Z			*		\overline{t}
Z			*		t
			*		t
			*		\overline{t}
		y	y		

 $Kar(\overline{x} y)$.

 $\operatorname{Kar}(x\,\overline{t})$ là hình ch nh t m r ng và $\operatorname{Kar}(\overline{x}\,y)$ là hình ch nh t có $2^{4-2}=4$ ô. c) $m=\overline{x}\,zt$ và $u=\overline{y}\,z\,\overline{t}$ [$\operatorname{deg}(m)=\operatorname{deg}(u)=3$].

	X	X	\overline{x}	\overline{x}	
Z					
Z			*	*	t
					t
		y	y		
		y	J	\	

 $Kar(\bar{x} zt)$

	X	X				
Z	*			*	\overline{t}	
Z					t	
					t	
					\overline{t}	
	\overline{y}	y	y	\overline{y}		
V (====)						

 $Kar(\overline{y} z \overline{t}).$

 $\operatorname{Kar}(\overline{x} \operatorname{zt})$ là hình ch nh t và $\operatorname{Kar}(\overline{y} \operatorname{z} \overline{t})$ là hình ch nh t m r ng có $2^{4-3} = 2$ ô. d) $m = \overline{x} \operatorname{yz} \overline{t}$ [$\operatorname{deg}(m) = 4$ và m là n th c t i ti u].

X	X	\overline{x}	\overline{x}	
		*		\overline{t}
				t
				t
				\overline{t}
	y	y		
	X		*	

 $Kar(\bar{x} yz\bar{t}).$

 $Kar(\bar{x} zt)$ là hình ch nh t có $2^{4-4} = 1$ ô.

3.7/BIU CAMTATHC:

Cho $a\ th\ c\ f=m_1\vee m_2\vee...\vee m_k\ (m_1,m_2\,,...\,,m_k\ l\grave{a}\ \emph{c\'ac}\quad n\ th\ c\ c\ a\ F_n\).$ N u $n\leq 4$ thì $Kar(f)=Kar(m_1)\cup Kar(m_2)\cup...\cup Kar(m_k).$

	X	X	\overline{x}	\overline{x}	
Z	•	•	-	-	\overline{t}
Z	•	•	_	_	t
	•	•	+		t
	.~	•		~	\overline{t}
		y	y		

3.8/ T BÀO VÀ T BÀO L N TRONG BI U :

Cho $f \in F_n (n \le 4)$ và S = Kar(f).

- a) M t t bào trong S là m t hình ch nh t (m r ng) có s \hat{o} là 2^r $(0 \le r \le 4)$. Nh v y s \hat{o} c a m t t bào có th là 1, 2, 4, 8 và 16.
 - M t t bào trong S chính là bi u c a m t n th c $n\grave{a}o$ \acute{o} trong F_n .

Ví d

a) M ts t bào 1 ô và 2 ô.

 $T_1 = \overline{x} yz\overline{t} (1 \ \hat{0}), T_2 = x y\overline{z} t (1 \ \hat{0}), T_3 = (x \lor \overline{x})y z t = y z t (2 \ \hat{0}),$ $T_4 = x \overline{y} \overline{z} (t \lor \overline{t}) = x \overline{y} \overline{z} (2 \ \hat{0}), T_5 = \overline{y} z\overline{t} (2 \ \hat{0}), T_6 = x y\overline{t} (2 \ \hat{0}).$

b) M ts t bào 4 ô.

$$\begin{split} T_1 &= \, \overline{z} \, \, \overline{t} \, \, (4 \, \hat{o}), \, T_2 = x \, y \, (4 \, \hat{o}), \, T_3 = \, \, \overline{x} \, t \, (4 \, \hat{o}), \\ T_4 &= \, x \, \overline{t} \, (4 \, \hat{o}), \, T_5 = \, \, \overline{y} \, t \, (4 \, \hat{o}), \, T_6 = \, \, \overline{y} \, \overline{t} \, (2 \, \hat{o}). \end{split}$$

c) M t s t bào 8 ô và 16 ô.

 $T_{1} = t (8 \hat{0}), T_{2} = \overline{t} (8 \hat{0}), T_{3} = \overline{x} (8 \hat{0}), T_{4} = \overline{y} (8 \hat{0}),$ $T_{5}(c \quad 16 \hat{0} c \text{ a b ng}) = (x \vee \overline{x})(y \vee \overline{y})(z \vee \overline{z})(t \vee \overline{t}) = \mathbf{1} \text{ (hàm Boole h ng 1)}.$

d) Cho S = Kar(f) và các t bào T_1, T_2, T_3, T_4, T_5 và T_6 nh hình d i ây :

Ta có T_1 , T_2 , T_3 , T_4 là các t bào l n và T_5 , T_6 là các t bào không l n (vì $T_5 \subset T_3$ và $T_5 \neq T_3$, $T_6 \subset T_4$ và $T_6 \neq T_4$).

IV. CÔNG TH C A TH C T I TI U CHO HÀM BOOLE:

4.1/ PHÉP PH T ITI U CHO T PH P: Cho các t ph p S, $T_1, T_2, ...$ và T_k .

a) N u S = $T_1 \cup T_2 \cup ... \cup T_k$ thì { $T_1, T_2, ..., T_k$ } g i là m t phép ph c a S.

b) N u S = $T_1 \cup T_2 \cup ... \cup T_k$ và $\forall j \in \{1, 2, ..., k\}, \bigcup_{i=1 \ i \neq j}^k T_i \neq S$ (b b t b t k

 T_j nào ra u d n n ph n h i c a các t p h p còn l i không ph c S) thì ta nói $\{T_1, T_2, ..., T_k\}$ g i là m t phép ph t i ti u c a S.

c) N u S = T₁ \cup T₂ \cup ... \cup T_k và $\exists j \in \{1, 2, ..., k\}, \bigcup_{i=1 \atop i \neq j}^k T_i = S$ thì ta nói

 $\{T_1,T_2,\ldots,T_k\}$ g i là m t $ph\acute{e}p$ ph ch a t i ti u c a S (khi b b t T_j , ph n h i c a các t p h p con l i v n ph c S).

Ví d: Cho $S = \{1, 2, 3, 4, 5, 6\}.$

- a) Xét $T_1 = \{ 2, 3, 6 \}$, $T_2 = \{ 1, 4, 6 \}$ và $T_3 = \{ 1, 3, 5 \}$. $Ta có T_1 \cup T_2 \cup T_3 = S$, $T_1 \cup T_2 \neq S$, $T_1 \cup T_3 \neq S$ và $T_2 \cup T_3 \neq S$ nên $\{ T_1, T_2, T_3 \}$ là m t phép ph t i ti u c a S.
- b) Xét $Z_1 = \{ 1, 2, 5 \}$, $Z_2 = \{ 4, 5 \}$, $Z_3 = \{ 2, 3, 5 \}$ và $Z_4 = \{ 3, 6 \}$. Ta có $Z_1 \cup Z_2 \cup Z_3 \cup Z_4 = S$ và $Z_1 \cup Z_2 \cup Z_4 = S$ nên $\{ Z_1, Z_2, Z_3, Z_4 \}$ là m t phép ph ch a t i ti u c a S (vì d Z_3).

4.2/ THU T TOÁN TÌM CÔNG TH C A TH C T I TI U CHO HÀM BOOLE:

Cho $f \in F_n (n \le 4)$ và S = Kar(f).

- a) Ý t ng chính:
 - * Tìm t t c các t bào l n c a S.
 - * Ch ra m t s phép ph c a S (ph b ng các t bào l n c a nó).
 - * Gi li các phép ph titi u c a S t các phép ph nói trên (s lo i).
 - * Vi t các công the cathechoft ng ng vi các phép phot i ti u trên.
 - * So sánh các công th c a th c v a vi t ch n ra các công th c t i u cho f (lo i chính th c).
- b) Thu t toán c th:
 - * Xác nh t t c các t bào l n c a S (ch rõ v trí c a chúng trên bi u và g i tên chúng).
 - * Ch n ô P_1 (tùy ý) \in S và t bào l n T_1 (tùy ý) th a $P_1 \in T_1$. Ch n ô P_2 (tùy ý) \in S \ T_1 và t bào l n T_2 (tùy ý) th a $P_2 \in T_2$. Ch n ô P_3 (tùy ý) \in S \ $(T_1 \cup T_2)$ và t bào l n T_3 (tùy ý) th a $P_3 \in T_3$. Ch n ô P_4 (tùy ý) \in S \ $(T_1 \cup T_2 \cup T_3)$ và t bào l n T_4 (tùy ý) th a $P_4 \in T_4$.

Ti p t c quá trình trên cho n khi $S \setminus (T_1 \cup T_2 \cup ... \cup T_k) = \emptyset$, ngh a là ta có c m t phép ph $S = T_1 \cup T_2 \cup ... \cup T_k$.

- * K t thúc quá trình ch n các ô và các t bào l n, ta thu c m t hay nhi u $ph\acute{e}p$ ph c a S (ph b ng $c\acute{a}c$ t $b\grave{a}o$ l n c a $n\acute{o}$).
- * Gi l i các phép ph t i ti u c a S t các phép ph nói trên (s lo i).
- * Vi t các công th c a th c cho f t ng ng v i m i phép ph t i ti u trên
- * So sánh các công the cather vavit chun ra các công the cather ngin nh t có the cather a chun hì các công the cather titiu caf.

(lo i chính th c).

- **4.3**/ **GHI CHÚ:** Vi c ch n các ô P₁, P₂, P₃, ... là tùy ý trong các ph m vi cho phép. Tuy nhiên ta có th ch n theo *các th t u tiên sau* thu t toán ti n hành c *nhanh g n h n*:
 - * u tiên 1: ch n tr c các ô ch thu c 1 t bào l n và l y t t c các t bào l n t ng ng v i các ô ó.

- * u tiên 2 : xét ti p các ô ch thu c 2 t bào l n. N u có nhi u ô cùng u tiên 2 thì ch n tr c các ô có c i m "không chung t bào l n v i các ô ã b xóa".
- * u tiên thông th ng: ch n tr c ô hàng trên (so v i các ô hàng d i), n u nhi u ô cùng hàng trên thì ch n tr c ô phía tr ái. u tiên thông th ng ch t o ra s th ng nh t trong vi c ch n ô.

Ví d:

a) $f \in F_4$ có S = K(f) v i $K(f) = \{ (1,1), (1,3), (1,4), (2,2), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4) \}.$

Các t bào l n trong S là $\in T_1 = \overline{z}$, $T_2 = \overline{y} \ \overline{t}$, $T_3 = \overline{x} \ \overline{t}$ và $T_4 = xyt$. u tiên $1: (1,1) \in T_2$, $(1,3) \in T_3$, $(2,2) \in T_4$ và $(3,1) \in T_1$. Ta có $S \setminus (T_2 \cup T_3 \cup T_4 \cup T_1) = \emptyset$ nên $S = T_2 \cup T_3 \cup T_4 \cup T_1$ là phép ph duy nh t c a S.

 $T_2 \rightarrow T_3 \rightarrow T_4 \rightarrow T_1$ (s ph c a S).

Do ó f $(x,y,z) = \overline{y} \ \overline{t} \lor \overline{x} \ \overline{t} \lor xyt \lor \overline{z} \ là công th c a th c t i ti u (duy nh t) c a f.$ $b) <math>g \in F_4$ có $S = K(g) = \{ (1,1), (1,2), (1,3), (2,3), (3,2), (3,3), (4,4) \}.$

Các t bào l n trong S là

$$\begin{split} T_1 &= \ xz\,\overline{t} \ , T_2 = \ yz\,\overline{t} \ , T_3 = \overline{x} \ yz, T_4 = \overline{x} \ yt \ , T_5 = y\,\overline{z} \ t \ \ va \ T_6 = \overline{x} \ \overline{y} \ \overline{z} \ \overline{t} \ . \\ & u \ tiên \ 1: (1, 1) \in \ T_1 \ , (3, 2) \in \ T_5 \ \ va \ \ (4, 4) \in \ T_6 \ . \ Ta \ co \ S \setminus (T_1 \cup T_5 \cup T_6) \neq \varnothing. \\ & u \ tiên \ 2: \ ch \ n \ \ (1, 3) \in \ S \setminus (T_1 \cup T_5 \cup T_6) \ \ va \qquad \circ y \ \ (1, 3) \in \ (T_2 \cap T_3). \ Ta \ 1 \ i \ co \ S \setminus (T_1 \cup T_5 \cup T_6 \cup T_2) \neq \varnothing \ \ nên \ ch \ n \ \ (2, 3) \in \ S \setminus (T_1 \cup T_5 \cup T_6 \cup T_2) \ \ va \qquad \circ y \ \ (2, 3) \in \ (T_3 \cap T_4). \end{split}$$

 $Do S \setminus (T_1 \cup T_5 \cup T_6 \cup T_2 \cup T_3) = \emptyset \ \text{n\'en} \ S = T_1 \cup T_5 \cup T_6 \cup T_2 \cup T_3 \ (1).$

Do $S \setminus (T_1 \cup T_5 \cup T_6 \cup T_2 \cup T_4) = \emptyset$ nên $S = T_1 \cup T_5 \cup T_6 \cup T_2 \cup T_4$ (2).

 $Do \ S \setminus (T_1 \cup T_5 \cup T_6 \cup T_3) = \varnothing \ \text{n\'en} \ S = T_1 \cup T_5 \cup T_6 \cup T_3 \ (3).$

S các phép ph c a S là $T_1 \rightarrow T_5 \rightarrow T_6 \rightarrow T_2 \rightarrow T_3$

$$\begin{array}{ccc} \downarrow & \downarrow \\ T_3 & T_4 \end{array}$$

Phép ph (1) chat i tiu [d T_2 khi so v i phép ph (3)] nên b lo i. Các phép ph (2) và (3) ut i tiu.

T (2) và (3), ta vi t các công th c a th c t ng ng cho g: $g(x,y,z) = xz\overline{t} \vee y\overline{z} t \vee \overline{x} \overline{y} \overline{z} \overline{t} \vee yz\overline{t} \vee \overline{x} yt$ (*).

 $g(x,y,z) = xz \,\overline{t} \vee y \,\overline{z} \,t \vee \overline{x} \,\overline{y} \,\overline{z} \,\overline{t} \vee \overline{x} \,yz \,(**).$

Ta có (**) là công th c a th c t i ti u cho g [lo i (*) vì nó ph c t p h n (**)]. c) $h \in F_4$ có $S = K(h) = \{ (1,2), (2,2), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2) \}.$

Các t bào l n trong S là

 $Do S \setminus (T_1 \cup T_2 \cup T_4 \cup T_5) = \emptyset \ \text{n\'en} \ S = T_1 \cup T_2 \cup T_4 \cup T_5 \ (1).$

Do $S \setminus (T_1 \cup T_2 \cup T_4 \cup T_6) = \emptyset$ nên $S = T_1 \cup T_2 \cup T_4 \cup T_6$ (2).

Ta 1 i có $S \setminus (T_1 \cup T_2 \cup T_5) \neq \emptyset$ nên ch n $(2,3) \in S \setminus (T_1 \cup T_2 \cup T_5)$ và ý $(2,3) \in (T_3 \cap T_4)$.

Do $S \setminus (T_1 \cup T_2 \cup T_5 \cup T_3) = \emptyset$ nên $S = T_1 \cup T_2 \cup T_5 \cup T_3$ (3).

Do $S \setminus (T_1 \cup T_2 \cup T_5 \cup T_4) = \emptyset$ nên $S = T_1 \cup T_2 \cup T_5 \cup T_4$ (4).

S các phép ph c a S là $T_1 \rightarrow T_2 \rightarrow T_4 \rightarrow T_5$

Phép ph (4) trùng v i phép ph (1). Các phép ph (1), (2) và (3) u t i ti u. T (1), (2) và (3), ta vi t các công th c a th c t ng ng cho h:

 $h(x,y,z) = xy \lor x \overline{z} \lor \overline{x} z t \lor \overline{x} \overline{y} t = xy \lor x \overline{z} \lor \overline{x} z t \lor \overline{y} \overline{z} t = xy \lor x \overline{z} \lor \overline{x} \overline{y} t \lor yzt.$ Các công th c trên (n gi n nh nhau) là các công th c a th c t i ti u c a h.

d) Mu n vi t d ng n i r i chính t c c a f (hay \overline{f}), ta g i tên n th c t ng ng v i m i ô c a K(f) [hay K(\overline{f})] r i l y t ng Boole c a chúng. Trong ph n c), ta có h(x,y,z,t) = xyz \overline{t} \vee xyzt \vee \overline{x} yzt \vee x \overline{y} zt \vee x

V. IS CÁCM CH I N:

5.1/ HÀM BOOLE C A M CH I N:

a) M ch i n là m th th ng bao g m các công t c i n và các dây d n.

M i công t c i n t ng ng v i m t bi n Boole (bi n Boole này = 1 ho c
0 tùy thu c vào tr ng thái óng ho c m c a công t c). Hai công t c A và
B (t ng ng v i các bi n Boole a và b) trên m t dây d n s c m c n i
ti p ho c m c song song. Ta có hàm Boole theo hai bi n
t (a, b) = 1 (n u có i n qua dây) ho c t (a, b) = 0 (n u trái l i).

C u trúc m c n i ti p t(a, b) = ab.

C u trúc m c song song $t(a, b) = a \lor b$.

b) Xét m ch i n có n công t c i n A_1, A_2, \ldots, A_n (ng v i các bi n Boole a_1, a_2, \ldots, a_n). Ta có hàm Boole theo n bi n $f(a_1, a_2, \ldots, a_n) = 1 \ (\text{n u có i n qua m ch}) \ \text{ho c} = 0 \ (\text{n u trái l i}).$ T các c u trúc m c n i ti p ho c m c song song trong m ch i n, ta có th vi t $f(a_1, a_2, \ldots, a_n)$ d i d ng m t a th c theo (a_1, a_2, \ldots, a_n) trong F_n .

<u>Ví d</u>: Cho m t m ch i n v i các công t c i n X, Y, Z và T nh sau: (ây $X' = \overline{X}$, $Z' = \overline{Z}$, $x' = \overline{x}$ và $z' = \overline{z}$):

Ta vi thàm Boole f c a m ch i n trên d i d ng a th c. Ta có $f(x,y,z,t) = [x(y \lor z) \lor \overline{z} \overline{x}]t = (xy \lor xz \lor \overline{x} \overline{z})t$ $= xyt \lor xzt \lor \overline{x} \overline{z}t$ (d ng a th c c a f).

5.2/ C NG: C ng là m t thi t b i n có m t hay nhi u dòng i n i vào và ch có m t dòng i n i ra.

Có 3 lo i c ng: c ng AND, c ng OR và c ng NOT (ng v i các phép toán tích Boole, t ng Boole và bù Boole).

5.3/ THI TK M NG CÁC C NG T NG H P HÀM BOOLE:

Cho $f \in F_n$. Ta bi t f có m t hay nhi u d ng a th c khác nhau.

- a) Ta có th d a vào m t d ng a th c tùy ý c a f thi t k m t m ng (g m các c ng AND, OR, NOT) t ng h p f.
- b) ti u hóa, ta nên dùng m t công th c a th c t i ti u c a f thi t k m ng các c ng t ng h p nó. Ta s ti t gi m c chi phí mua s m các c ng và dây d n.

<u>Ví d</u>: $f \in F_3$ và $f(x,y,z) = xyz \lor xy\overline{z} \lor \overline{x}y\overline{z} \lor x\overline{y}\overline{z}$ (ây là m t d ng a th c c a f và c ng là d ng n i r i chính t c c a f).

a) D a vào d ng a th c trên, ta thi t k m ng các c ng t ng h p f nh sau:

M ng các c ng (ch a t i u hóa) t ng h p hàm boole f.

b) Ta tìm m t công th c a th c t i ti u cho f tr c khi thi t k m ng các c ng cho nó.

 $V \quad S = Kar(f) = K(xyz) \cup K(xy\overline{z}) \cup K(\overline{x}y\overline{z}) \cup K(x\overline{y}\overline{z}) \text{ trong b ng mã } B^3.$

Các t bào l n trong S là $T_1=xy,\,T_2=x\,\overline{z}$ và $T_3=y\,\overline{z}$. u tiên $1\colon (1,\,2)\in T_1,\,(2,1)\in T_2$ và $(2,3)\in T_3$. Ta có $S\setminus (T_1\cup T_2\cup T_3)=\varnothing$ nên $S=T_1\cup T_2\cup T_3$ là phép ph duy nh t c a S ($T_1\to T_2\to T_3$). Do ó f $(x,y,z)=xy\vee x\,\overline{z}\vee y\,\overline{z}$ là công th c a th c t i ti u (duy nh t) c a f T_3 thi t k m ng các c ng t ng h p f d a theo công th c a th c t i ti u trên.

M ng các c ng (ãt i u hóa) t ng h p hàm boole f.
