Lecture 12: CPU – Superscalar

Hunjun Lee hunjunlee@hanyang.ac.kr

Our next stuff: Can we make CPU faster?

- The latency of the CPU:
 - wall clock time = (time/cyc) x (cyc/inst) x (inst/program) → 料
 - time/cyc: the critical path delay
 - cyc/inst: the number of cycles to execute a instruction
 - inst/program: ISA and compiler determine this

How to make a faster CPU?

(1) Reduce time / cyc

Increase inst / cyc

↑

ILP: Instruction-level parallelism 独 约里台及 Laurent 格

- ILP is the parallel or simultaneous execution of a sequence of instructions
 - Inter-dependent instructions cannot be executed in parallel
- Program ILP = Avg. # of instructions / Cycle (step)
 - How many instructions are simultaneously executed in parallel

```
| code1: | code2: |
```

Max ILP = 1 (execute serially)

Max ILP = 3 (execute parallel)

How to exploit ILP: Pipeline

- Pipelining: executing multiple instructions in parallel
 - Operation latency = 1
 - Peak IPC = 1
 - HW ILP = # of instructions / # of cycles required = 1 ជា = ៤៤៤
 - We parallelize instructions at the cost of #cycles

Make the pipeline deeper (superpipeline)

p zan fetch st it duch

- Superpipeline execution (split a cycle into M minor cycles):
 - **Operation latency =** 1 baseline cycle (M minor cycles)
 - **Peak IPC =** M per baseline cycle
 - HW ILP = # of instructions / # of (baseline) cycles required = M

Recall: Is 5-stage pipeline sufficient?

- There are still plenty of combinational delay between regiters
- "Superpipelining" increases pipelining degree such that even intrinsic operations (e.g., ALU, RF read/write, memory access) require multiple stages
- Potential problem: "more data hazards"

Pipeline stall even w/ forwarding

Recall: But above all, you cannot pipeline till infinity!

There are diminishing returns on clock speed

- Complicates hardware (there should be tons of wires for data forwarding)
- You cannot always solve the dependency problem w/ forwarding!

We need to use superscalar!!!

Superscalar Machines

- Superscalar (+ pipelined) execution
 Operation latency = 1 baseline cycle
 - Peak IPC = N per baseline cycle
 - HW ILP = # of instructions / # of cycles required = N

$$t_0$$
 t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_9 t_{10} t_{11} t_{12}

```
Inst<sub>0</sub> IF ID EX M WB
Inst<sub>1</sub> IF ID EX M WB
Inst<sub>2</sub> IF ID EX M WB
Inst<sub>3</sub> IF ID EX M WB
Inst<sub>4</sub> IF ID EX M WB
Inst<sub>5</sub> IF ID EX M WB
Inst<sub>6</sub> IF ID EX M WB
Inst<sub>7</sub> IF ID EX M WB
Inst<sub>8</sub> IF ID EX M WB
Inst<sub>8</sub> IF ID EX M WB
```

DH321 32 ALL SF 241

Example 2-way superscalar datapath

Superscalar vs. Superpipelined

Superscalar Parallelism

Operation Latency: 1

Issuing Rate: N

Superscalar Degree: N

VS.

Superpipeline Parallelism

Operation Latency: 1

Issuing Rate: M

Superpipelined Degree: M

We need to exploit both methodologies (N and M) to maximize the performance benefits

How to maximize the ILP? Instruction scheduling

Static scheduling (or VLIW)

- Compiler groups instructions to be issued together
- Compiler detects and avoids hazards Lemotron & Grouping ধার

Dynamic scheduling

- CPU examines instruction stream and chooses instructions to issue each cycle
- Compiler can help by reordering instructions (out-of-order execution)
- CPU resolves hazards using advanced techniques at runtime

Compiler Cost: Static > by name

VLIW (Very Long Instruction Word)

- Compiler groups instructions into "issue packets"
 - It determines the group of instructions that can be issued on a single cycle ક્ષાન ભાગાના કાર્યા ભાગાના કાર્યા ભાગાના કાર્યા ભાગાના કાર્યા ભાગાના કાર્યા કાર્યા
 - Determined <u>by pipeline resources!</u>
- Compiler must remove some/all hazards
 - Reorder instructions into issue packets 要知 twen se but decident €
 - No dependencies within a packet
 - True or false dependencies (or both?) ← 둘다 2억!
 - Pad with nop if necessary (cannot be parallelized)
 - Possibly some dependencies between packets

MIPS with static dual issue

- → Two-issue packets!: the packet will sate Line sate with the machen
 - One ALU/branch instruction ← MEM State ×
 - One load/store instruction
 - 64-bit aligned
 - ALU/branch, then load/store

PC offoll PC+82 Fetch

Pad an unused instruction with nop ← ₺\

	Address	Instruction type			Pip	eline Sta	ges		
	n	ALU/branch	IF	ID	EX	MEM	WB		
	n + 4	Load/store	IF	ID	EX	MEM	WB		
1	n + 8	ALU/branch		IF	ID	EX	MEM	WB	
	n + 12	Load/store		IF	ID	EX	MEM	WB	
>	n + 16	ALU/branch			IF	ID	EX	MEM	WB
	n + 20	Load/store			IF	ID	EX	MEM	WB

MIPS with static dual issue

Hazards in the dual-issue MIPS

More instructions are executed in parallel

EX data hazard

- Can't use ALU result in load/store in same packet

Load-use hazard

- Still one cycle use latency

Hazards in the dual-issue MIPS

It also suffers from false dependencies

Write after read hazard

- You cannot place two instruction with WAR hazard

```
add $t0, $s0, $s1

load $s0, 0($t1)

Split into two packets, effectively a stall
```

Write after write hazard

- The two packed instructions cannot write to the same register

```
load $t0, 0($s0)
add $t0, $t1, $s1
Split into two packets, effectively a stall
```

Scheduling example

Schedule instructions in the loop for dual-issue MIPS!

	ALU/branch	Load/store	cycle
Loop:	nop Delay Slot	lw \$t0 , 0(\$s1)	1
	addi \$s1 , \$s1,-4	nop	2
	addu \$t0, \$t0, \$s2	nop	3
	bne \$s1 , \$zero, Loop	sw \$t0 , 4(\$s1)	4

IPC = 5/4 = 1.25 (2-way superscalar)

Loop unrolling - 100PE

the Uncolling 2世野

 Replicate loop body to expose more parallelism + reduce loop-control overhead

```
# Unroll loop by 4
            addi $s1, $zero, 400
                                                  # \$s1 = 400
            Loop:
                    lw $t0, 0($s1)
                    addu $t0, $t0, $s2
                    sw $t0, 0($s1)
                    lw $t0, -4($s1)
                    addu $t0, $t0, $s2
 Decrement +
                    sw $t0, -4($s1)
Branch once per
                    lw $t0, -8($s1)
  four loops
                    addu $t0, $t0, $s2
                    sw $t0, -8($s1)
                    lw $t0, -12($s1)
                    addu $t0, $t0, $s2
                         $t0, -12($s1)
                    SW
                    addi $$1, $$1, €16 ← 2018 -4, 4 Unio(1040) -16
                         $s1, $zero, Loop # branch $s1!=0
                    bne
```

Loop unrolling & Scheduling & Low Atoms

	ALU/branch Uncolong	Load/store	cycle
Loop:	nop	lw ,\$t0 , 0(\$s1)	1
	nop (stall)	nop	2
	addu \$t0 , \$t0 , \$s2 _ www	nop	3
	nop	sw \$t0, 0(\$s1) < wAR	4
	nop	sw \$t0, 0(\$s1) was lw \$t0, -4(\$s1)	5
	nop (stall)	nop	6
	addu \$t0, \$t0, \$s2	nop	7
	nop	sw \$t0 , -4(\$s1)	8
	nop	lw \$t0 , -8(\$s1)	9
	nop (stall)	nop	10
	addu \$t0, \$t0, \$s2	nop	11
	nop	sw \$t0 , -8(\$s1)	12
	nop	lw \$t0 , -12(\$s1)	13
	addi \$s1 , \$s1 , -16	nop	14
	addu \$t0, \$t0, \$s2	nop	15
	bne \$s1 , \$zero, Loop	sw \$t0 , 4(\$s1)	16

Loop unrolling & Scheduling

	ALU/branch	Load/store	cycle
_oop:	nop	lw \$t0 , 0(\$s1)	1
	nop (stall)	nop	2
	addu \$t0, \$t0, \$s2	nop	3
	nop	sw \$t0 , 0(\$s1)	4
	nop	s (no cycle reduction) structions are reduced	5
	nop (stall) nor 4 loops	s (no cycle is are reduced	1
	even thought sonside	s (no cycle reduction) are reduced as $\frac{1}{1}$ (no cycle reduction) are reduced as $\frac{1}{1}$ ($\frac{1}{1}$) $$	
	- vve de la paralle	elization opportunion	11
	improved parame	sw \$t0 , -8(\$s1)	12
		lw \$t0 , -12(\$s1)	13
	addi \$s1 , \$s1 , -16	nop	14
	addu \$t0, \$t0, \$s2	nop	15

Why low IPC?

There is an extremely large # of dependencies

```
# Unroll loop by 4
        addi $s1, $zero, 400
                                               # $s1 = 400
        Loop:
           lw $t0, 16($s1) RAW
addu $t0, $t0, $s2 Hazard
sw $t0, 16($s1)
               lw $t0, 12($s1)
WAW / WAR
               addu $t0, $t0, $s2
Hazard
                sw $t0, 12($s1)
               lw $t0, 16($s1)
                addu $t0, $t0, $s2
                sw $t0, 16($s1)
                lw $t0, 16($s1)
                addu $t0, $t0, $s2
                sw $t0, 16($s1)
                addi $s1, $s1,-16
                bne $s1, $zero, Loop # branch $s1!=0
```

SW-based Register renaming

Compiler renames registers to remove false dependencies

```
# Unroll loop by 4
addi $s1, $zero, 400
                                    # \$s1 = 400
Loop:
       lw $t0, 16($s1)
       addu $t0, $t0, $s2
       sw $t0, 16($s1)
       lw $t1, 12($s1)
       addu $t1, $t1, $s2
       sw $t1, 12($s1)
       lw $t2, 16($s1)
       addu $t2, $t2, $s2
       sw $t2, 16($s1)
       lw $t3, 16($s1)
       addu $t3, $t3, $s2
       sw $t3, 16($s1)
       addi $s1, $s1,-16
       bne $s1, $zero, Loop # branch $s1!=0
```

Scheduling after renaming

	ALU/branch	Load/store	cycle
Loop:	addi \$s1 , \$s1,-16	nop	1
	nop	lw \$t0 , 16(\$s1)	2
	nop	lw \$t1, 12(\$s1) Stall the	3
	addu \$t0, \$t0, \$s2	lw \$t2 , 8(\$s1)	4
	addu \$t1, \$t1, \$s2	lw \$t3 , 4(\$s1)	5
	addu \$t2, \$t2, \$s2	sw \$t0 , 16(\$s1)	6
	addu \$t3, \$t3, \$s2	sw \$t1 , 12(\$s1)	7
	nop	sw \$t2 , 8(\$s1)	8
	bne \$s1 , \$zero, Loop	sw \$t3 , 4(\$s1)	9

Scheduling after renaming

	ALU/branch	Load/store	cycle
Loop:	addi \$s1 , \$s1,-16	nop	1
	nop	lw \$t0 , 16(\$s1)	2
	nop	lw \$t1 , <u>12(\$s1)</u>	3
	addu \$t0 , \$t0 , \$s2	reduction)	4
	addu \$t0, \$t0, \$s2 9 cycles per 4 loops Consider IPC: Benefits from parallelization	(7 cycle Total ek! = 1.555 > 1.25 In the improved Topportunities	9

Sum up ... Renaming & scheduling increases ILP!!

 We can execute previously dependent (false dependency) instructions in parallel

div r1 r2 r3 mul r4 r1 r5 add r1 r3 r6 sub r3 r1 r5

Original

div r1 r2 r3
mul r4 r1 r5
add r8 r3 r6
sub r9 r8 r5

Rename

div r1 r2 r3 add r8 r3 r6 mul r4 r1 r5 sub r9 r8 r5

Rename + Reorder

div r1 r2 r3
add r8 r3 r6
mul r4 r1 r5
sub r9 r8 r5

Original + Superscalar

MIPS with static dual issue

- Two-issue packets!
 - One ALU/branch instruction
 - One load/store instruction
 - 64-bit aligned
 - ALU/branch, then load/store
 - Pad an unused instruction with nop

Address	Instruction type		Pipeline Stages					
n	ALU/branch	IF	ID	EX	MEM	WB		
n + 4	Load/store	IF	ID	EX	MEM	WB		
n + 8	ALU/branch		IF	ID	EX	MEM	WB	
n + 12	Load/store		IF	ID	EX	MEM	WB	
n + 16	ALU/branch			IF	ID	EX	MEM	WB
n + 20	Load/store			IF	ID	EX	MEM	WB

MIPS with static dual issue

How to maximize the ILP? Instruction scheduling

Static scheduling (or VLIW)

- Compiler groups instructions to be issued together
- Packages them into "issue slots"
- Compiler detects and avoids hazards

Dynamic scheduling

- CPU examines instruction stream and chooses instructions to issue each cycle
- Compiler can help by reordering instructions (out-of-order execution)
- CPU resolves hazards using advanced techniques at runtime

Superscalar Processing

- Parallel N-instruction fetch
- Parallel N-instruction decode
- Parallel N-instruction renaming → (detect dependencies in parallel)

 → આ 사이 병에 사이 보는 수 있다.
 - Simultaneously allocate ROB, RS ...
- Dispatch N instructions in parallel (different execution units)
- Commit N instructions in parallel (N write ports RF)
- **•** ...

Fetching Multiple Instructions

- Problem #1: alignment problem with memory (cache)
 - You are not able to read instructions at different cache lines in parallel
- Problem #2: branches in-between N instruction sequence?
 - Should predict multiple branches in parallel
 - This incurs additional alignment issues

Preview on the Cache

- ◆ Cache is designed to read multiple words within a single cache block (typically 4~8 words) இந்த கூடு வெளி
- The CPU can access 4 ~ 8 instructions in parallel (only if they are within the same block)

Cache misalignment problem

 Consider a cache with the block size of four words to support four-way superscalar

Cache misalignment problem

 Consider a cache with the block size of four words to support four-way superscalar

There is one instruction @ Block 0 While others are @ Block 1

→ Fetch becomes the bottleneck

Split line fetching

가장 위한 Solution

Block 1: 0x10 ~ 0x1f

Block 3: 0x30 ~ 0x3f

Blach \$9	Cache	Bank 1	
Inst 4	Inst 5	Inst 6	Inst 7
Inst 12	Inst 13	Inst 14	Inst 15

Fetching Multiple Instructions

- Problem #1: alignment problem with memory (cache)
 - You are not able to read instructions at different cache lines in parallel
- Problem #2: branches in-between N instruction sequence?

 All Testuctor ₹ Pol My Brock-1998.
 - Should predict multiple branches in parallel
 - This incurs additional alignment issues

Increasing Branch Throughput

- ◆ There are a lot of branch instructions (15 ~ 20% of the instructions are branches)
- It is likely that there can be multiple branch instructions if you fetch N instructions (for superscalar)

Benchmark	taken %	avg basic block size	str betv en branc	
eqntott	86.2%	4.20	4.87	
espresso	63.8%	4.24	6.65	
xlisp	64.7%	4.34	6.70	
gcc	67.6%	4.65	6.88	
sc	70.2%	4.71	6.71	
compress	60.9%	5.39	8.85	

There is a branch every 4 ~ 8 instructions

Increasing Branch Throughput [ICS'93]

- Let's say that there are an average of four instructions per basic block
 - Then, the maximum superscalar width would be four
- Extend Gag to predict multiple branches (MGag)

Increasing Branch Throughput [ICS'93]

- Let's say that there are an average of four instructions per basic block
 - → Then, the maximum superscalar width would be four
- Extend Gag to predict multiple branches (MGag)

Branch-induced fragmentation

- Cache is good at accessing contiguous data (a single block contains multiple contiguous words)
- Taken instructions are placed in a non-contiguous region
- However, there are tons of taken branches in between (around 10~20%)

Branch-induced fragmentation

- Cache is good at accessing contiguous data (a single block contains multiple contiguous words)
- Taken instructions are placed in a non-contiguous region
- However, there are tons of taken branches in between (around 10~20%)

Benchmark	taken %	avg basic block size	str betw en branc	
eqntott	86.2%	4.20	4.87	
espresso	63.8%	4.24	6.65	
xlisp	64.7%	4.34	6.70	
gcc	67.6%	4.65	6.88	
sc	70.2%	4.71	6.71	
compress	60.9%	5.39	8.85	

Every 4~8 instructions are placed in non-contiguous region

Trace caching [MICRO'96]

 Trace cache allocates instructions from different basic blocks (contiguous instructions) in a single cache line

Cache					
A0	A1	A2	A3		
A4	B0	B1	B2		
B3	B4	ı	ı		
-	-	-	-		
_	C0	C1	-		
_	1	-	-		
D0	D1	D2	D3		
-	-	-	E1		
E2	E3	-	-		

Trace caching [MICRO'96]

 Trace cache allocates instructions from different basic blocks (contiguous instructions) in a single cache line

Cache					
A0	A1	A2	A3		
A4	B0	B1	B2		
B3	B4	ı	-		
-	-	-	-		
-	C0	C1	-		
-	-	1	-		
D0	D1	D2	D3		
-	-	-	E1		
E2	E3	-	_		

Trace Cache			
Metadata: Λ0, 0111,			
A0	A1	A2	A3
A4	B0	B1	B2
B3	B4	C0	C1
D1	D2	D3	D4
E1	E2	E3	-
Use this data if the predictions are 0 -> 1 -> 1			

Trace caching [MICRO'96]

Question?

Announcements:

Reading: finish reading P&H Ch.4

Handouts: none