Latent Derivative Bayesian Last Layer Networks

Summary Notes by Max Guo

July 6, 2022

(?) - denotes a lack of familiarity or understanding of a particular concept at time of reading (?) - denotes a confusion as to why the authors included this

1 Information

• **Year**: 2021

• Conference: AISTATS

• Authors:

Name	Institute
Joe Watson	Technical University Darmstadt
Jihao Andreas Lin	Technical University Darmstadt
Pascal Klink	Technical University Darmstadt
Joni Pajarinen	Technical University Darmstadt, Aalto University
Jan Peters	Technical University Darmstadt

2 Research Problem

Bayesian Last Layer (BLL) models have overconfident predictions outside of the data distribution.

3 Existing Approaches and Shortcomings

• BNNs

- Intractable inference \rightarrow use approximate inference
- Approximate Inference Drawbacks:
 - * Unintuitive priors, expensive training, inaccurate posteriors, large model parameter spaces
- Inaccurate uncertainty quantification.

• Gaussian Processes (GPs)

- Drawbacks:
 - * Exact computation does not scale well
 - * Some kernels suffer from curse of dimensionality
- Sparse methods improve scalability (... but we still like parametric models?)

• BLLs

- Neural network learns features, then apply a Bayesian Linear Regression

- Trained using type-II maximum likelihood.
- Drawbacks:
 - * Overparameterization leads to overfitting, limiting predictive uncertainty

4 High Level Contribution

The authors impose a functional prior in the BLL model that involves the model's Jacobian with respect to the inputs to improve the calibration of the epistemic uncertainty expressed by the model.

5 Technical Contributions

5.1 BLL

- GBLL = Gaussian process with linear kernel
- TBLL = Place inverse gamma prior on σ^2 (noise variance), obtaining Student-t weight posterior and predictive distribution.

5.2 Latent Derivative Priors

- Derivatives of a GP are also a GP (?)
- Main Idea: Place functional prior π on the derivatives z through a functional KL:

$$\min_{\mathbf{a}} D_{KL}(\pi(\mathbf{z}|\mathbf{x})||p(\mathbf{z}|\mathbf{x}, \mathcal{D}, \theta)) \tag{1}$$

• Joint training objective:

$$\max_{\theta} \log p(\mathcal{D}|\theta) - D_{KL}(\pi(\mathbf{z}|\mathbf{x})||p(\mathbf{z}|\mathbf{x}, \mathcal{D}, \theta))$$
 (2)

- Interpreted as maximizing entropy, i.e. choosing diverse features
- ... or as a latent variable model; objective resembles the ELBO (?)
- Practical Aspects:
 - Functional KL between stochastic processes (e.g. π) is infinite dimensional integral
 - * Remedy: Use finite index set \mathcal{T} and evaluate divergence there. Authors use noisy perturbations of the training dataset (OOD)
 - * Estimate of the LD fKL, using $\mathcal{T} = \{s_j \sim \mathcal{N}(\cdot|x_j, \gamma I)\}_{j=1}^n$:

$$\frac{1}{|\mathcal{T}|} \sum_{s_i \in \mathcal{T}} D_{KL}(\pi(z|s_j)||p(z|s_j, \mathcal{D}, \theta))$$
(3)

- Choose the latent derivative prior to be a GP with $\mu_{\pi}(x) = \mathbf{0}$ and $\Sigma_{\pi}(x) = \mathbf{I}$. (use domain knowledge to set this)
- Scaling LD prior with aleatoric uncertainty reduces unfitting. (Future work: alternative approaches to specifying prior)

6 Experimentation

• Tasks: Nonlinear regression, Active learning, Bayesian optimization

• Nonlinear Regression

- Benchmarks: standard BLL, nonparametric GP, regularized network (MAP), BNN approaches (MFVI, Monte Carlo Dropout, Ensembles, SWAG)
- Tasks:
 - * "Gap": Cartpole, CO2, Sarcos, WAM
 - * "Standard": UCI
- Results:
 - * In the gap tasks, LDBLL outperforms standard BLL in terms of test log likelihood
 - * In the standard regression, results were comparable (OOD uncertainty not useful)
 - * GP, MC dropout, and Ensembles performed better on both gap and standard regression tasks
 - · Authors raise questions about how to design the LD prior.

• Active Learning

- Datasets: Cartpole
- LDTBLL matches GP (RMSE and Log likelihood), outperforms standard BLL.

• Bayesian Optimization

- Datasets: Sinc in a Haystack (toy, f(x) = sinc(6(x-1))), Hartmann6 (standard BO benchmark)
- Results:
 - * Sinc LDTBLL outperforms TBLL
 - * Hartmann6 GP is superior and converges faster than LDBLL and BLL. LDBLL converges faster than BLL but both to converge suboptimal values.

7 Further Work

- Specification of the LD prior on a given task or dataset.
- Multivariate prediction tasks (model-based control, classification)

8 My Questions and Thoughts

• This is quite similar to LUNA, the authors modify the training objective in order to increase diversity of the functions via variance in the gradient at a set of points in the data distribution.