Experimento: A Relação de Duane-Hunt e a Constante de Planck

Material Utilizado:

- 1 unidade de raios-X (LEYBOLD 554800)
- 1 tubo de raios-X de molibdênio (LEYBOLD 554861)
- 1 goniômetro (LEYBOLD 554831)
- 1 colimador
- 1 monocristal de NaCl (LEYBOLD 55478)
- 1 tubo de Geiger-Müller (LEYBOLD 55901)

Objetivo do Experimento: Determinar experimentalmente a dependência, com a alta tensão U do anodo, do limite inferior λ_{\min} do comprimento de onda do espectro contínuo de emissão de raios—X do molibdênio. Determinar a constante de Planck a partir da relação de Duane—Hunt.

Definições e Referências

Artigo histórico:

Duane William & Hunt Franklin 1915, *On X-Rays Wave-lengths*, Proceedings of the American Physical Society.

Roteiro do fabricante:

LEYBOLD Physics Leaflets P6.3.3.3 Duane–Hunt relation and determination of Planck's constant.

Manuais de instrução:

LEYBOLD 554800 and 554801 x-ray apparatus and x-ray apparatus Mo, complete.

LEYBOLD 554831 goniometer.

LEYBOLD 554861 x-ray tube Mo.

LEYBOLD 55901 end-window counter for alfa, beta, gamma radiation and x-rays.

LEYBOLD 55477-55478 LiF and NaCl crystals for Bragg reflection.

Energia máxima E_{max} , e comprimento de onda mínimo λ_{min} , de um fóton, emitido em decorrência da desaceleração de um eletron por um anodo submetido a uma alta tensão U.

$$eU = E_{\max} = \frac{hc}{\lambda_{\min}}$$

onde é h a constante de Planck, e a carga elementar e c a velocide da luz.

<u>Dependência do comprimento de onda mínimo</u> λ_{min} <u>com a alta tensão</u> U.

$$\lambda_{\min} = \left(\frac{hc}{e}\right) \frac{1}{U}.$$

Figure 12.1.1: X-ray emission from a metal target using an electron beam. The voltage listed above each curve is the accelerating voltage used to create the electron beam. Each accelerating voltage has a minimum wavelength, λ_0 , below which emission does not occur. The dashed line shows λ_0 for an accelerating voltage of 40 kV.

(David Harvey, LibreTextsCHEMISTRY) (chem.libretexts.org)

(Prof. Djalma Nardy Domingues, Abril de 2014)

PROCEDIMENTO

1. Neste experimento, em conexão com a unidade de raios—X, você fará uso do software *LEYBOLD Rontgengerat X-ray 554 801 & 554 811—Version 1.25*, de um colimador e um monocristal de NaCl. Insira o colimador e o monocristal na unidade de raios-X. Siga as instruções específicas contidas no roteiro original *LEYBOLD Physics Leaflets P6.3.3.3 Duane—Hunt relation and determination of Planck's constant*.

Nas ações seguintes, o arranjo experimental terá as seguintes definições:

- o PC será conectado à unidade de raios –X mediante um cabo apropriado (cabo com conectores USB–A macho / USB–B macho);
- modo de operação "COUPLED" para a o goniômetro e tubo contador;
- corrente de emissão I = 1.00 mA;
- incremento de passo angular $\Delta\beta = 0.1^{\circ}$;
- tempo de medição Δt por passo angular e limites para o ângulo de alvo, inferior β_{\min} e superior β_{\max} , conforme tabela abaixo.

U(kV)	Δt (s)	β _{min} (°)	β _{max} (°)	
22,0	30	5,2	6,2	
24,0	30	5,0 6,2		
26,0	20	4,5	6,2	
28,0	20	3,8	6,0	
30,0	10	3,2 6,0		
32,0	10	2,5 6,0		
34,0	10	2,5 6,0		
35,0	10	2,5 6,0		

Leia no referido roteiro original as instruções sobre o procedimento de como obter (mediante o uso de teclas e chaves) os ajustes acima explicitados.

- 2. Registro do espectro de emissão do molibdênio para diferentes valores de alta tensão do tubo.
- 2a. Inicie o software e apague todos os dados preexistentes (veja roteiro do fabricante). Estabeleça as definições de parâmetros acima descritas, e U = 22,0 kV para a alta tensão do tubo. Inicie o experimento pressionando a tecla SCAN.
- 2b. Faça o registro do espectro também para os demais valores de alta tensão do tubo, conforme explicitado na tabela acima, e fazendo os ajustes necessários nos parâmetros pertintentes.
- 3. Registro das curvas taxa de contagem $R(s^{-1})$ versus comprimento de onda λ .
- 3a. No software, abra a caixa de diálogo "Settings" e informe a distância interplanar para o monocristal utilizado, NaCl.
- 3b. Salve a série de medições sob um nome específico.
- 3c. Produza uma tabela para todos os espectros registrados como a mostrada na folha de dados e resultados. Note que a forma adotada é taxa de contagem R versus comprimento de onda λ. Você pode aproveitar a própria tabela gerada pelo sofware (da LEYBOLD) e copiar eletronicamente os dados pertinentes.
- 3d. Produza uma figura (cópia do diagrama do software) mostrando todas as curvas de emissão registradas.
- 4. Determinação da dependência do limite inferior λ_{\min} do comprimento de onda, para emissão, com a alta tensão U do tubo.
- 4a. Para cada curva de emissão, no diagrama (veja Figura 4 do roteiro do fabricante) clique com o lado direito do mouse na curva selecionada e acesse no software a opção "Best-fit Straight Line". Fazendo uso do lado esquerdo do mouse, marque na curva o intervalo de pontos para o qual você deseja realizar o ajuste linear.
- 4b. Produza uma figura (cópia do diagrama do software) mostrando o ajuste linear obtido para todas as curvas de emissão registradas.

Fig. 4 Sections from the diffraction spectra of x-radiation for the tube high voltages U = 22, 24, 26, 28, 30, 32, 34 and 35 kV (from right to left) with best-fit straight line for determining the limit

- 4c. Salve o arquivo do software com um nome adequado.
- 5. Determinação da constante e Planck a partir da relação de Duane-Hunt.
- 4a. Clique na aba "Planck". Copie a tabela " λ_{min} versus U" do lado esquerdo da tela. Fazendo uso de um software independente construa um gráfico λ_{min} versus 1/U e um correspondente ajuste linear para tal dependência.

Fig. 5 Evaluation of the data $\lambda_{min} = f (1/U) \text{ for confirming the Duane-Hunt relation and determining}$ Planck's constant

4b. Calcule a constante de Planck $\frac{h}{c}$ a partir da relação $h = \frac{eA}{c}$, com a devida propagação de erros.

FOLHA DE DADOS E RESULTADOS

Experimento: A Relação de Duane-Hunt e a Constante de Planck

DEPENDÊNCIA DA CURVA DE EMISSÃO DE RAIOS-X COM O COMPRIMENTO DE ONDA PARA O TUBO DE MOLIBDÊNIO (LEYBOLD 554 861)

U(kV)	22,0	24,0	26,0	28,0	30,0	32,0	34,0	35,0
nλ (pm)	R_0 (1/s)	R_1 (1/s)	$R_2 (1/s)$	R ₃ (1/s)	R ₄ (1/s)	$R_5 (1/s)$	R ₆ (1/s)	R ₇ (1/s)

CURVAS DE EMISSÃO DE RAIOS-X PELO TUBO DE MOLIBDÊNIO (software LEYBOLD)

AVALAÇÃO DOS LIMIARES DE EMISSÃO DE RAIOS-X PELO TUBO DE MOLIBDÊNIO (software LEYBOLD)

DEPENDÊNCIA DO COMPRIMENTO DE ONDA DE CORTE $\lambda_{\min}~$ COM A ALTA TENSÃO U

U(kV)	λ _{min} (pm)

GRÁFICO
$$\lambda_{\min}$$
 VERSUS $1/U$ e AJUSTE LINEAR

$$[\lambda_{\min} = A \left(\frac{1}{U}\right) + B]$$

$$A = (\underline{\qquad} \pm \underline{\qquad}) \text{ pm kV}$$

$$B = (\underline{\qquad} \pm \underline{\qquad}) \text{ pm}$$

CÁLCULO DA CONSTANTE DE PLANCK