Algebraic K Theory

ZIXI LI

Qiuzhen College, Tsinghua University 2024

目录

第一部	分 经典 K 理论	1
第一章	K_0,K_1,K_2	2
1.1	环的 <i>K</i> ₀	2
1.2	对称幺半范畴、Abel 范畴和正合范畴的 K_0	3
	1.2.1 对称幺半范畴	3
	1.2.2 Abel 范畴	3
	1.2.3 正合范畴	4
1.3	Waldhausen 范畴的 K_0	6
	1.3.1 例:链复形范畴	
1.4	环的 K_1	11
1.5		12
1.6	环的 <i>K</i> ₂	16
第二章	高阶 K 理论的经典构造	18
第一早 2.1	新的高阶 <i>K</i> 理论	
2.2	对称幺半范畴的高阶 K 理论: $B(S^{-1}S)$	
	2.2.1 BS 到 BS ⁻¹ S 的过渡: 群化	
	2.2.2 + 构造与 BS ⁻¹ S	
0.0	2.2.3 有趣的例子	
2.3	正合范畴的高阶 K 理论: Quillen Q -构造	
	2.3.1 <i>QQ</i> 构造与乘积	
	$2.3.2 +=Q \dots \qquad \qquad$	
2.4	Waldhausen 范畴的高阶 K 理论: Waldhausen wS• 构造	
2.5	Waldhausen 范畴 K 理论的基本性质	
	加性定理	
	局部化	28
	逼近定理	29
	消解定理	29
	Dévissage	29
	Nisnevich 下降	29
	$2.5.1$ A^1 -不变性: K 理论基本定理、非连合 K 理论	29

第二部	分 现代 <i>K</i> 理论	30
第三章	∞-观点的代数 K 理论	31
3.1	$\mathbb{E}_1/\mathbb{E}_{\infty}$ -幺半群和群	31
3.2	稳定 ∞-范畴	34
3.3	∞-算畴	35
3.4	\mathbb{E}_{∞} -环谱	39
3.5	群化定理	42
3.6	循环不变判别与 Quillen + 构造	42
第四章	稳定 ∞ -范畴的 K 理论	45
4.1	Waldhausen S -构造	45
4.2	万有加性不变量与加性定理	46
	4.2.1 稳定 ∞-范畴的工具: Verdier 序列	46
	4.2.2 加性定理	49
4.3	纤维化定理和局部化定理	53

第一部分

经典 K 理论

第一章 K_0, K_1, K_2

1.1 环的 K_0

定义 1.1.1 (群化). 存在如下伴随对:

Group Completion:**AbMon ₹ Ab**:Forgetful

左伴随称为 Abel 幺半群的群化:它将幺半群 M 变为 $M^{-1}M := \mathbb{Z}^M/([m+n]-[m]-[n])$

定义 1.1.2 (环的 K_0). $K_0(R)$ 定义为有限投射 R-模的同构类在直和下构成的幺半群 $\mathbf{P}(R)$ 的 群化,它是 $\mathbf{Ring} \to \mathbf{Ab}$ 的函子。

进一步如果 R 交换, K_0 是 $\mathbf{CRing} \to \mathbf{CRing}$ 的函子,乘积由张量积 \otimes_R 给出。

命题 1.1.3 (保持滤余极限). $R = \underline{\lim} R_i$, 则 $K_0(R) \cong \underline{\lim} K_0(R_i)$ 。

证明. 注意有限生成投射 R 模 P 一定形如 $P_i \otimes_{R_i} R$, 其余内容自明。

命题 1.1.4 (函子性,换基). 给定 $f: R \to S$, $P \mapsto P \otimes_R S$ 给出了

$$f^*: K_0(R) \to K_0(S)$$

如果 S 自身是有限生成投射右 R 模, 那么 $Q \mapsto Q \otimes_S S$ 给出了

$$f_*: K_0(S) \to K_0(R)$$

注记 (Projection Formula). R 是交换环, A 是 R-代数使得其作为 R 模是有限生成投射的。那么

$$f_*(x \cdot f^*y) = f_*(x) \cdot y, \forall x \in K_0(A), y \in K_0(R)$$

命题 1.1.5 (Mayer-Vietoris 序列). 考虑 *Milnor* 方块 (即 $f:R\to S$, R 的理想 I 满足 f 将 I 同构地射到某个 S 的理想,此时如下图表称为 *Milnor* 方块)

$$R \xrightarrow{f} S$$

$$\downarrow \qquad \qquad \downarrow$$

$$R/I \xrightarrow{\bar{f}} S/I$$

那么有正合列

$$GL(S/I) \xrightarrow{\partial} K_0(R) \xrightarrow{\Delta} K_0(S) \oplus K_0(R/I) \xrightarrow{\pm} K_0(S/I)$$

并且边缘映射 ∂ 的像是双陪集 $GL(S)\backslash GL(S/I)/GL(R/I)$ 。

证明. 只需指出边缘映射 ∂ 的构造: 定义 $\partial_n: GL_n(S/I) \to K_0(R)$ 为 $g \mapsto [P] - [R^n]$, 这里 P 构造取为如下映射的核:

$$S \times R/I \rightarrow S/I : (m_1, m_2) \mapsto \bar{m}_1 - g(\bar{f}(m_2))$$

(直观上说,这是将 S,R/I 上的两个模沿着 S/I 上的"转移函数"粘结)这样构造出来的 P 仍然是有限生成投射的。

命题 1.1.6 (切除). $I \in R$ 的理想,考虑增广环 $R \oplus I$, $K_0(I) = K_0(R,I) := \ker(K_0(R \oplus I) \to K_0(R))$ 。那么存在正合列

$$GL(R) \to GL(R/I) \xrightarrow{\partial} K_0(I) \to K_0(R) \to K_0(R/I)$$

证明. 在 Mayer-Vietoris 序列命题 1.1.5中取 R 为这里的 I ,S 为这里的 R 即可。

注记. 事实上, $K_0(R,I)$ 可以记为 $K_0(I)$ 因为它和 R 的选取无关,这依然可以通过观察 M-V 序列得到。

1.2 对称幺半范畴、Abel 范畴和正合范畴的 K_0

1.2.1 对称幺半范畴

定义 1.2.1 (对称幺半范畴的 K_0). 给定对称幺半范畴 S,假定其对象的同构类构成了一个集合 S^{iso} ,那么 S 的幺半结构使得 S^{iso} 成为 Abel 幺半群。定义 $K_0(S)$ 为 S^{iso} 的群化。

命题 1.2.2 (共尾性). T 是对称幺半范畴 S 的全子范畴,如果 T 包含单位 e 并且在有限乘积下封闭,那么 T 也是对称幺半的。称 T 在 S 中共尾,如果对每个 $s \in S, \exists s' \in S \text{s.t.} s \otimes s' \cong t, \exists t \in T$ 。此时:

- 1. $K_0(T)$ 是 $K_0(S)$ 的子群
- 2. 每个 $K_0(S)$ 的元素都形如 $[s] [t], s \in S, t \in T$
- 3. $K_0(S)$ 中 [s] = [s'] 说明对某个 $t \in T$, $s \otimes t \cong s' \otimes t$

1.2.2 Abel 范畴

定义 1.2.3 (Abel 范畴的 K_0). 给定 Abel 范畴 A, 定义其 $K_0(A)$ 为 A 中元素生成的自由 Abel 群商去正合列 $0 \to A' \to A \to A'' \to 0$ 给出的关系 [A] - [A'] - [A'']。

如下自动满足:

- 1. [0] = 0 ($\Re A' = A$)
- 2. $A \cong A' \implies [A] = [A']$ ($\mathfrak{P}(A'') = 0$)
- 3. $[A' \oplus A''] = [A'] + [A'']$ ($\Re A = A' \oplus A''$)

命题 1.2.4 (泛性质: 万有加性不变量). A 上的加性函数(到 Abel 群的映射 $f: A \to \Gamma$ 满足 f(A) = f(A') + f(A''))穿过 $K_0(A)$ 。

命题 1.2.5 (函子性:正合函子诱导群同态). 自动地:正合函子 $f: \mathcal{A} \to \mathcal{B}$ 给出 Abel 群同态 $K_0(\mathcal{A}) \to K_0(\mathcal{B})$ 。

命题 1.2.6 (保持滤余极限). 对于小 Abel 范畴和正合函子组成的滤过系统 $\{A_i\}$,有 AbCat 中的滤余极限 $A = \lim_{n \to \infty} A_i$,那么:

$$K_0(\mathcal{A}) = \underline{\lim} K_0(\mathcal{A}_i)$$

定理 1.2.7 (Dévissage). $\mathcal{B} \subseteq A$ 是小 Abel 范畴,如果 \mathcal{B} 是正合子范畴、对子对象商对象封闭、任何 A 中的对象 A 都有一个有限滤过 $A = A_n \supset \cdots \supset A_0 = 0$ 使得 A_i/A_{i-1} 是 \mathcal{B} 的对象,那 A : 嵌入 (由于正合子范畴是正合函子) 给出了同构:

$$K_0(\mathcal{B}) \cong K_0(\mathcal{A})$$

证明. 只需注意 dévissage 给出的滤过使得我们可以将 A 中的对象 A 对应的 [A] 变为 $\sum [A_i/A_{i-1}]$ 。 良定义性源于两个有限滤过有共同的加细(Zassenhaus 蝴蝶引理),其余只需验证。

定理 1.2.8 (局部化:长正合列). A 是小 Abel 范畴, B 是 A 的 Serre 子范畴, 有正合列:

$$K_0(\mathcal{B}) \to K_0(\mathcal{A}) \stackrel{K_0(loc)}{\longrightarrow} K_0(\mathcal{A}/\mathcal{B})$$

注记. Serre 子范畴是指 Abel 子范畴并且在子对象、商对象和扩张下封闭。对于 Serre 子范畴 $\mathcal{B} \subseteq \mathcal{A}$, \mathcal{A} 中态射称为是 \mathcal{B} -同构,如果其核和余核都是 \mathcal{B} 中的对象。局部化 \mathcal{A}/\mathcal{B} 是指对 \mathcal{B} -同构版局部化,其局部化范畴是 Abel 的,局部化函子是正合的。

证明. 只需证明 $K_0(\mathcal{B}) \to K_0(\mathcal{A})$ 的余核 Γ 和 $K_0(\mathcal{A}/\mathcal{B})$ 同构。注意有自然的满射 $\Gamma \to K_0(\mathcal{A}/\mathcal{B})$,只需给出其逆 $\gamma(loc(A)) = [A]$: 这是良定义的。

如果 $loc(A_1) \cong loc(A_2)$,那么存在 $A_1 \stackrel{f}{\leftarrow} A \stackrel{g}{\rightarrow} A_2$ 使得 $f \not\in \mathcal{B}$ -同构。由于 $loc(A_1) \cong loc(A_2)$,那么 g 也是 \mathcal{B} -同构。因此在 $K_0(\mathcal{A})$ 中:

$$[A] = [A_1] + [\ker(f)] - [\operatorname{coker}(f)] = [A_2] + [\ker(g)] - [\operatorname{coker}(g)]$$

那么这就说明了结果。

现在只需验证 γ 是群同态:这是直截了当的。

1.2.3 正合范畴

定义 1.2.9 (正合范畴). 一个正合范畴是指偶对 (\mathcal{C},\mathcal{E}), 其中 \mathcal{C} 是加性范畴, \mathcal{E} 是一族形如 $\{0 \to B \to C \to D \to 0\}$ 的态射,满足:存在到 Abel 范畴 \mathcal{A} 的嵌入使得 \mathcal{C} 是 \mathcal{A} 的满子范畴, \mathcal{E} 是全体 \mathcal{C} 中的 (在 \mathcal{A} 的 Abel 结构下的)正合列, \mathcal{C} 在扩张下封闭。

称一个态射是容许单射,如果它作为某个 \mathcal{E} 中的 $B \to C$ 出现。

称正合范畴之间的函子是正合函子。如果它是加性函子并且将短正合列映为短正合列。

定义 1.2.10 (正合范畴的 K_0). $K_0(\mathcal{C})$ 定义与 Abel 情况相同。

注记. 正合范畴的反范畴 \mathcal{C}^{op} 自动有着正合范畴结构: 将原有短正合列翻转即可, 于是 $K^0(\mathcal{C})\cong K^0(\mathcal{C}^{op})$ 。

命题 1.2.11 (函子性:正合函子诱导群同态).同 Abel 范畴。

命题 1.2.12 (保持滤余极限). $\{C_i\}$ 是正合范畴和正合函子组成的滤过系统,那么

$$K_0(\varinjlim \mathcal{C}_i) = \varinjlim K_0(\mathcal{C}_i)$$

命题 1.2.13 (共尾性). $\mathcal{B} \in \mathcal{C}$ 的正合子范畴,并且在扩张下封闭。对于任何 \mathcal{C} 中的对象 \mathcal{C} ,存在 \mathcal{C} 中对象 \mathcal{C}' 使得 $\mathcal{C} \mid \mathcal{C}'$ 是 \mathcal{B} 中的对象,那么 $\mathcal{K}_0(\mathcal{B})$ 是 $\mathcal{K}_0(\mathcal{C})$ 的子群。

命题 1.2.14 (积). 正合范畴之间的双正合函子 $F: A \times B \to C$ 给出了双线性映射

$$K_0(\mathcal{A}) \otimes K_0(\mathcal{B}) \to K_0(\mathcal{C})$$

定义 1.2.15. \mathcal{P} 是 Abel 范畴 \mathcal{A} 的加性子范畴, \mathcal{C} 是 \mathcal{A} 的一个对象, 它的 \mathcal{P} -消解是指:

$$\cdots \to P_n \to \cdots \to P_1 \to P_0 \to C \to 0$$

使得 $P_i \in \mathcal{P}$ 。 C 的 \mathcal{P} -维数是指其消解的最小长度。

定理 1.2.16 (消解定理). $\mathcal{P} \subseteq \mathcal{C} \subseteq \mathcal{A}$, $\mathcal{A} \not\in Abel 范畴$, $\mathcal{C} \not\in \mathcal{L}$ 正合范畴。如果:

- 1. 每个 C 中的对象都有有限 P-维数
- 2. C 对 A 中满射的核封闭

那么 $\mathcal{P} \subseteq \mathcal{C}$ 给出了同构 $K_0(\mathcal{P}) \cong K_0(\mathcal{C})_{\circ}$

证明. $K_0(\mathcal{P}) \to K_0(\mathcal{C})$ 的满射是容易的: 因为对于任何 $\mathcal{C} \in \mathcal{C}$, 考虑其有限长消解

$$0 \to P_n \to \cdots \to P_0 \to C$$

那么 $[C] = \sum (-1)^i [P_i]$,从而这就说明了满射。下面只需证明良定义性和加性,一般情况参见 [Wei13, II.7.6]。对于 \mathcal{P} 是投射对象的特例,这个结果是很好说明的:因为这不过是可提升性和 马蹄引理。

例子 (重要例子: $\mathbf{H}(R)$). 取 $\mathbf{H}(R)$ 为全体拥有有限生成投射摸给出的有限长消解的 R-模 M 构成的全子范畴; $\mathbf{H}_n(R)$ 为全体拥有长度 $\leq n$ 的上述消解的 R-模构成的全子范畴。马蹄引理说明了它们都是 Rmod 的正合子范畴。那么对 $\mathbf{P}(R) \subseteq \mathbf{H}(R)$ 运用消解引理就说明了:

$$K_0(R) \cong K_0 \mathbf{H}(R) \cong K_0 \mathbf{H}_n(R), \forall n > 1$$

特别地, 我们考虑局部化的情况: S 是非零因子构成的乘性子集, 称 M 模是 S-挠的, 如果 $\exists s \in S, Ms = 0$ 。取 $\mathbf{H}_S(R)$ 为全体 $\mathbf{H}(R)$ 中的有限生成 S-挠模, 同样定义 $\mathbf{H}_{n,S}(R)$ 。那么

$$K_0\mathbf{H}_S(R) \cong H_0\mathbf{H}_{n,S}(R) \cong K_0\mathbf{H}_{1,S}(R), \forall n \geq 1$$

这是因为任何 $\mathbf{H}_{n,S}(R)$ 中的模 N, 如果 Ns=0, 就有正合列

$$0 \to L \to (R/sR)^m \to N \to 0$$

现在取 N 的长度为 n 的消解, $(R/sR)^m$ 自然有长度为 1 的消解。我们来看这两个消解 $P_{\bullet} \to (R/sR)^m, Q_{\bullet} \to N$,那么投射性保证了有消解之间的链映射。现在取 $P_0' = \ker P_0 \oplus Q_1 \to Q_0$,那么映映射锥 $\cdots P_1 \oplus Q_2 \to P_0'$ 给出了 L 的长度 n-1 的消解。那么归纳就说明了结果。

特别地,在这一情况下:

$$K_0\mathbf{H}_S(R) \to K_0(R) \to K_0(S^{-1}R)$$

是正合的: 如果 $[P] \in K_0(R)$ 在 $K_0(S^{-1}R)$ 中消失, 那么 $S^{-1}P$ 是稳定自由的, 即: $(S^{-1}R)^{m+n} \cong S^{-1}P \oplus (S^{-1}R)^m$ 。通过通分,这给出了 $f: R^{m+n} \to P \oplus R^m$,其核、余核是 S-挠模。但是 S 是非零因子,于是 $\ker f = 0$,从而 $M = \operatorname{coker} f \in \mathbf{H}_{1,S}(R)$,这就是 [P] 的原像。

以上,我们简要给出了加性框架下的 K_0 的大致结果,注意我们省略了很多有助于计算环的 K_0 的相关内容。

1.3 Waldhausen 范畴的 K_0

我们下面给出一个使用范围更广的 K 理论构造,它建立在比正合范畴要求更弱的范畴之上。

定义 1.3.1 (余纤维化范畴). 一个余纤维化范畴是一个范畴 C 以及一族在复合下封闭的态射族 Cof_{C} (其中态射称为余纤维化), 满足:

- 1. 所有同构都是余纤维化
- 2. 存在零对象 0, 使得唯一的映射 $0 \to A$ 是余纤维化, $\forall A \in \mathcal{C}$
- 3. 纤维化沿任何态射的推出都存在, 并且也推出为纤维化

作为推论, 余纤维化范畴存在有限余积; 每个余纤维化 $A \hookrightarrow B$ 都有余核 B/A, 称 $A \hookrightarrow B \twoheadrightarrow B/A$ 为余纤维化序列。

定义 1.3.2 (Waldhausen 范畴). 一个 Waldhausen 范畴 \mathcal{C} 是指一个余纤维化范畴 \mathcal{C} ,以及一族 在复合下封闭的态射族 $W_{\mathcal{C}}$ (其中态射称为弱等价),满足:

- 1. 所有同构都是弱等价
- 2. 弱等价粘结性质成立: 即对如下形式的图表

$$\begin{array}{cccc} C &\longleftarrow & A & \longrightarrow & B \\ \vdots & & & \vdots & & \vdots \\ \ddots & & & & \downarrow & & \vdots \\ C' &\longleftarrow & A' & \longrightarrow & B' \end{array}$$

其诱导的推出之间的态射 $B \cup_A C \to B' \cup_{A'} C'$ 也是弱等价。

更进一步,如果弱等价满足 2-out-of-3 性质(即 f,g,fg 中有两者是弱等价推出第三者也是),那么称 Waldhausen 范畴是饱和的。

定义 1.3.3 (Waldhausen 范畴的 K_0). 对于 Waldhausen 范畴 C, 取 $K_0(C)$ 为其元素 C 生成的自由 Abel 群商去如下关系:

- 1. [C] = [C'], 如果存在弱等价 $C \xrightarrow{\sim} C'$
- 2. [C] = [B] + [C/B],如果存在余纤维序列 $B \hookrightarrow C \rightarrow C/B$

如同 Abel 范畴中的情况一样,再一次有

- 1. [0] = 0
- 2. $[B \] \ C] = [B] + [C]$
- 3. 对于余纤维化的推出有: $[B \cup_A C] = [B] + [C] [A]$

命题 1.3.4 (正合范畴 K_0 =Waldhausen 范畴 K_0). 每个正合范畴都是 Waldhausen 范畴,其中余纤维化是容许单射,弱等价是同构。那么此时 K_0 的两个定义相同。

定义 1.3.5 (双 Waldhausen 范畴). 称 \mathcal{C} 是双纤维化范畴,如果 \mathcal{C} 是余纤维化范畴,并且 \mathcal{C} 中的全体 $\mathcal{B} \to \mathcal{B}/\mathcal{A}$ 在 \mathcal{C}^{op} 中 (i.e. $\mathcal{B}/\mathcal{A} \to \mathcal{B}$) 构成的态射族使得 \mathcal{C}^{op} 也是余纤维化。记这个族为 $\mathcal{Q}uot_{\mathcal{C}}$ 。

称 \mathcal{C} 是双 Waldhausen 范畴, 如果 $(\mathcal{C}, Cof_{\mathcal{C}}, W_{\mathcal{C}})$ 和 $(\mathcal{C}^{op}, Quot_{\mathcal{C}}, W_{\mathcal{C}}^{op})$ 都是 Waldhausen 范畴。

注记. 正合范畴是双 Waldhausen 范畴。

定义 1.3.6 (正合函子, Waldhausen 子<mark>范畴).</mark> Waldhausen 范畴之间的函子 F 称为正合函子, 如果它保持零对象、余纤维化、弱等价和沿着余纤维化的推出。此时正合函子 F 给出了同态 $K_0(F): K_0(\mathcal{C}) \to K_0(\mathcal{D})$ 。

Waldhausen 子范畴是一个 Waldhausen 范畴 $\mathcal C$ 的携带 Waldhausen 结构的子范畴 $\mathcal A$,使

- 1. $A \hookrightarrow C$ 是正合函子
- 2. A 中的余纤维化恰好是 C 中全体使得余核在 A 中的余纤维化
- 3. A 中的余纤维化恰好是 C 中全体在 A 中的余纤维化

注记. 正合范畴之间的函子(视作 Waldhausen 范畴时)是正合的当且仅当它是加性的、并且保持短正合列。这和前文的定义相符。

命题 1.3.7 (积). Waldhausen 范畴之间的 $F: A \times B \to C$ 如果对每个分量都是正合的,那么它给出了双线性映射

$$K_0(\mathcal{A}) \otimes K_0(\mathcal{B}) \to K_0(\mathcal{C})$$

定理 1.3.8 (局部化:长正合列). 假定余纤维化范畴 C 有两族弱等价 $v \subseteq w$ 都使得它们构成 Waldhausen 范畴,分别记为 vC 和 wC。

假定 wC 是饱和的, C^w 是全体 w-acyclic 对象(即 $0 \rightarrow c$ 是 w 中的弱等价)张成的满子 范畴,那么 C^w 是 vC 的 Waldhausen 子范畴。

如果任何 C 中的态射 $f:C_1\to C_2$ 可以分解为余纤维化 $C_1\hookrightarrow C$ 和 v 中的弱等价 $C\to C_2$, 那么:

$$C^w \to vC \to wC$$

给出了如下正合列

$$K_0(\mathcal{C}^w) \to K_0(v\mathcal{C}) \to K_0(w\mathcal{C}) \to 0$$

证明. 和 Abel 范畴的情况同理。

例子. 取 Waldhausen 范畴 (C, Cof, v), G 是一个 Abel 群, 以及给定一个满同态 $\pi: K_0(C) \to G$ 。 取 C^{π} 为全体使得 $\pi([C]) = 0$ 的 C 中对象张成的 Waldhausen 子范畴。

现在如果 C 中的任何态射都可以分解为余纤维化和 v 中弱等价,我们取另一个弱等价结构 w 为全体使得 $\pi([A])=\pi([B])$ 的态射 $A\to B$,它满足局部化长正合列定理的条件,因此就有

$$K_0(\mathcal{C}^\pi) \to K_0(\mathcal{C}) \to G \to 0$$

但是更进一步, C^{π} 是共尾的,因为对于任何 $C \to 0$ 可以分解为 $C \hookrightarrow C'' \overset{\sim}{\to} 0$,于是取 C''/C,就有:

$$\pi([C \prod (C''/C)]) = \pi([C]) + \pi([C''/C]) = \pi([C'']) = 0$$

那么由共尾性,这就说明了我们的正合列实际上可以延长为:

$$0 \to K_0(\mathcal{C}^{\pi}) \to K_0(\mathcal{C}) \to G \to 0$$

定理 1.3.9 (逼近定理). 如果 $F: A \to B$ 是 Waldhausen 范畴之间的正合函子, 假设 F 还满足:

- 1. 态射 f 是弱等价 \iff 其像 F(f) 是弱等价
- 2. \mathcal{B} 中态射 $b: F(A) \to B$ 可以分解为 \mathcal{A} 中余纤维化 $a: A \hookrightarrow A'$ 在 F 下的像和弱等价 $F(A') \xrightarrow{\sim} B$ 。
- 3. 在上述分解中如果 b 是弱等价,那么 a 也可以被选择为一个弱等价。

此时 F 给出了同构

$$K_0(\mathcal{A}) \cong K_0(\mathcal{B})$$

证明. 首先我们对 $0 \hookrightarrow B$ 应用条件 2. 对任何 B 都存在一个弱等价 $F(A) \xrightarrow{\sim} B$ 。现在如果 $F(A) \to B$ 是弱等价,取出对应的 A',那么 $A \to A'$ 也是弱等价,于是这两件事就共同说明了: $K_0(A) \to K_0(\mathcal{B})$ 是满的,并且 A 中对象的弱等价类和 \mathcal{B} 中对象的弱等价类同构。

现在对于余纤维序列 $B \hookrightarrow C \to C/B$, 由第一句话存在 $F(A) \overset{\sim}{\to} B$ 。再对 $F(A) \to C$ 做分解,取出对应的 $A \hookrightarrow A'$,以及 $F(A') \overset{\sim}{\to} C$,我们就有

$$\begin{array}{cccc}
0 &\longleftarrow & F(A) & \longleftarrow & F(A') \\
\parallel & & \downarrow & & \downarrow \\
0 &\longleftarrow & B & \longleftarrow & C
\end{array}$$

于是由弱等价的粘合,这就给出了 $F(A'/A) \to C/B$ 是弱等价。从而: $[C] = [B] + [C/B] \iff [A'] = [A] + [A'/A]$,这就说明了一切。

1.3.1 例: 链复形范畴

以上是 Waldhausen 范畴的 K_0 的大致结果。下面以链复形范畴为例计算其 Waldhausen 范畴 K_0 。

命题 1.3.10. 考虑 Abel 范畴 A (更一般地,正合范畴),其链复形范畴 Ch(A) 和有界链复形范畴 $Ch^b(A)$ 在如下结构下成为饱和双 Waldhausen 范畴:

余纤维化:逐项单射的链映射;弱等价:拟同构。

命题 1.3.11.

$$K_0(\mathbf{Ch}(\mathcal{A})) = 0$$

证明. 注意对于链映射 $f: B \to C$,有链复形的短正合列 $0 \to C \to cone(f) \to B[-1] \to 0$,因此 [C] + [B(-1)] = [cone(f)]。特别地:取 f = id 就有:

$$[C] + [C(-1)] = [cone(id)] = 0$$

因此 $[C[n]] = (-1)^n [C]$ 。现在对于任何一个上有界链复形 C,考虑

$$B = C \oplus C[2] \oplus C[4] \oplus \cdots$$

那么有正合列

$$0 \to B[2] \to B \to C \to 0$$

于是 [C] = [B] - [B[2]] = [B] - [B] = 0。

对于下有界链复形同理,但是任何一个链复形 C 都可以分离成如下短正合列

$$0 \to B \to C \to D \to 0$$

其中 $B_n = 0, n > 0$; $B_n = C_n, n \le 0$, D 同理。B, D 分别上下有界,于是 [C] = [B] + [D] = 0,这就说明了结果。

定理 1.3.12.

$$K_0(\mathcal{A}) \cong K_0 \mathbf{Ch}^b(\mathcal{A})$$

其中 $K_0(\mathcal{A}) \to K_0(\mathbf{Ch}^b(\mathcal{A}))$ 由 $\mathcal{A} \to \mathbf{Ch}^b(\mathcal{A}) : A \mapsto (\cdots \to 0 \to A \to 0 \to \cdots)$ 诱导; $K_0(\mathbf{Ch}^b(\mathcal{A})) \to K_0(\mathcal{A})$ 由 $[C] \mapsto \sum (-1)^i [C_i]$ 给出。

证明. 两侧的同构映射都已经给出, 直接验证就可以说明结果。

我们还有更多链复形范畴:

命题 1.3.13. 同调有界链复形范畴 $\mathbf{Ch}^{hb}(A)$, 上有界同调有界链复形范畴 $\mathbf{Ch}^{hb}(A)$ 都是 Waldhausen 子范畴。事实上,它们都是饱和双 Waldhausen 范畴。

定理 1.3.14. 对于 $Ch^b(A) \subseteq Ch^{hb}_-(A)$, 有:

$$K_0(\mathbf{Ch}^b(\mathcal{A})) \cong K_0(\mathbf{Ch}^{hb}(\mathcal{A}))$$

证明. 我们运用定理 1.3.9。注意拟同构当然在嵌入下保持,于是第一条成立。现在对于任何有界复形 B 以及上有界同调有界链复形 C,以及链映射 $f: B \to C$ 。考虑温和截断

$$\tau_{>n}C = (\cdots \to C_{n+1} \to \ker(C_{n+1} \to C_n) \to 0 \to \cdots)$$

这是一个有界链复形,并且在 $i \geq n$ 处的同调与 C 同构。因此对充分小 n 有拟同构 $\tau_{\geq n}C \xrightarrow{\sim} C$ 。 现在 $f: B \to C$ 当然穿过 $\tau_{\geq n}$ (对充分小 n),取映射柱 A,就有:

余纤维化 $B\hookrightarrow A$,以及弱等价 $A\stackrel{\sim}{\longrightarrow} \tau_{\geq n}C\stackrel{\sim}{\longrightarrow} C$ 。这就验证了条件成立,于是逼近定理说明了一切。

同理, 我们还有:

定理 1.3.15. $Ch_+^{hb}(A) \subseteq Ch^{hb}(A)$ 满足逼近定理定理 *1.3.9*,从而诱导了 K_0 的同构。 **推论 1.3.16.**

$$K_0\mathbf{Ch}^{hb}(\mathcal{A}) \cong K_0\mathbf{Ch}^{hb}(\mathcal{A}) \cong K_0\mathbf{Ch}^{hb}(\mathcal{A}) \cong K_0\mathbf{Ch}^{b}(\mathcal{A}) \cong K_0(\mathcal{A})$$

证明. 只需处理 Chhb 的情况: 这是因为

$$K_0\mathbf{Ch}^{hb}(\mathcal{A}) \cong K_0\mathbf{Ch}^{hb}(\mathcal{A}^{op}) \cong K_0\mathbf{Ch}^{hb}(\mathcal{A}^{op}) \cong K_0\mathbf{Ch}^{hb}(\mathcal{A})$$

这就说明了结果。 □

例子 (完美复形范畴和环的 K_0). 取交换环 R, 称 R-模链复形 M_{\bullet} 是完美的,如果存在有限生成投射 R-模组成的有界链复形 P_{\bullet} 到 M_{\bullet} 的拟同构。全体完美链复形组成了一个 Waldhausen 子范畴 $\mathbf{Ch}_{nerf}(R)$ 。

我们宣称逼近定理对 $\mathbf{Ch}^b(\mathbf{P}(R))\subseteq \mathbf{Ch}^b_{perf}(R)$ 成立: 因为我们只需要从某个起点开始反复使用投射模的提升性质。

同时我们可以仿照上一命题的证明方法说明 $K_0\mathbf{Ch}_{perf}^b(R)\cong K_0\mathbf{Ch}_{perf}(R)$ (通过考虑上有界子范畴 etc.),于是这就说明了:

$$K_0\mathbf{Ch}_{perf}(R) \cong K_0\mathbf{Ch}^b\mathbf{P}(R) \cong K_0(R)$$

例子 (带支撑的链复形). 取 $S \in R$ 的乘性子集, $\mathbf{Ch}_S^b\mathbf{P}(R)$ 是所有满足在局部化 $S^{-1}E$ 下正合的链复形 E 构成的 Waldhausen 子范畴。它的 K_0 记为 $K_0(R \ on \ S)$ 。注意显而易见地我们有另外一组弱等价(即在 S^{-1} 下后是拟同构),那么局部化长正合列立刻说明了:

$$K_0(R \ on \ S) \to K_0(R) \to K_0(wC) \to 0$$

然而 $wC \to \mathbf{Ch}^b \mathbf{P}(S^{-1}R)$ 给出了 K_0 上的单射。这是因为全体形如 $S^{-1}P$ 的模构成的范畴 \mathcal{B} 在 $\mathbf{S}^{-1}\mathbf{R}$ 中是共尾的(它包含所有 $(S^{-1}R)^n$),于是这直接说明了单射。

因此我们有正合列

$$K_0(R \ on \ S) \to K_0(R) \to K_0(S^{-1}R)$$

注记. 逼近定理对 $w\mathcal{C} \to \mathbf{Ch}^b(\mathcal{B})$ 成立。

1.4 环的 K₁

定义 1.4.1 (环的 K_1). 环 R 的 K_1 定义为

$$K_1(R) := GL(R)/[GL(R), GL(R)]$$

其中 $GL(R) = \varinjlim GL_n(R)$,嵌入通过嵌入到左上角,在 (n+1,n+1) 处添加 1 实现。 这个构造有显然的函子性。

我们给出这个交换子 [GL(R), GL(R)] 更精确的描述。

考虑初等矩阵 $e_{ij}(r)$ (除了 (i,j) 处为 r、对角线处为 1, 其它元素均为 0), 取全体这样的初等矩阵在 $GL_n(R)$ 里生成的子群,记为 $E_n(R)$ 。

引理 1.4.2. $n \geq 3$ 时 $E_n(R)$ 是完美群 (交换化后为平凡群),作为推论得到 $E_n(R) \subseteq [GL_n(R), GL_n(R)]_{\circ}$

证明.
$$i,j,k$$
 互不相同,则 $e_{ij}(r)=[e_{ik}(r),e_{kj}(1)]$

定理 1.4.3 (Whithead 引理). $E(R) = \varinjlim E_n(R)$ 是 GL(R) 的交换子群,于是 $K_1(R) = GL(R)/E(R)$ 。

证明. 只需证明每个交换子都是 E(R) 中的元素: 这是因为 $GL_n(R)$ 中的交换子在 GL(R) 中可以和如下 $GL_{2n}(R)$ 中的元素等同:

$$[g,h] \sim \begin{pmatrix} g & \\ & g^{-1} \end{pmatrix} \begin{pmatrix} h & \\ & h^{-1} \end{pmatrix} \begin{pmatrix} g^{-1}h^{-1} & \\ & hg \end{pmatrix}$$

但是在 $GL_{2n}(R)$ 中我们有:

$$\begin{pmatrix} g & \\ & g^{-1} \end{pmatrix} = \begin{pmatrix} 1 & g \\ & 1 \end{pmatrix} \begin{pmatrix} 1 & \\ -g^{-1} & 1 \end{pmatrix} \begin{pmatrix} 1 & g \\ & 1 \end{pmatrix} \begin{pmatrix} & -1 \\ 1 & \end{pmatrix}$$

同时注意到 $w_{ij} := e_{ij}(1)e_{ji}(-1)e_{ij}(1)$,因此观察 $w_{jk}w_{ij}$ 给出了所有在标准基下 $\{\pm \vec{e}_1, \pm \vec{e}_2, \cdots, \pm \vec{e}_n\}$ 作用为三循环的矩阵,于是能够表出所有作用为偶置换的矩阵。

这就说明了
$$\begin{pmatrix} -1 \\ 1 \end{pmatrix} \in E_{2n}(R)$$
,于是这就说明了 $[g,h] \in E_{2n}(R)$ 。

命题 1.4.4 (K_1 的同调描述).

$$K_1(R) = H_1(GL(R); \mathbb{Z}) = \varinjlim H_1(GL_n(R); \mathbb{Z})$$

更进一步:取tP如下,对象为有限生成投射摸的同构类,态射 $P \to P'$ 为使得 $P \oplus Q \cong P'$ 的Q的同构类。那么它有共尾子范畴 R^n ,从而:

$$K_1(R) = \varinjlim_{P \subseteq t\mathbf{P}} H_1(Aut(P); \mathbb{Z})$$

定义 1.4.5 (相对 K_1 群). 对于 R 的理想 I,取 GL(I) 为 GL(R) → GL(R/I) 的核。定义 E(R,I) 为 E(R) 中包含 $e_{ij}(x), x \in I$ 的最小的正规子群。类似 Whitehead 引理的论证说明 E(R,I) 是 GL(I) 的正规子群,并且包含 GL(I) 的交换子。

因此定义 $K_1(R,I) := GL(I)/E(R,I)$, 这是一个 Abel 群。此构造有显然的函子性。

命题 1.4.6 (K 群长正合列). 存在正合列

$$K_1(R,I) \to K_1(R) \to K_1(R/I) \xrightarrow{\partial} K_0(I) \to K_0(R) \to K_0(R/I)$$

证明. 考虑命题 1.1.6:

$$0 \to GL(I) \to GL(R) \to GL(R/I) \to K_0(I) \to K_0(R) \to K_0(R/I)$$

那么直接观察 E 的表现: E(R) 满地映到 E(R/I),只需证明 $K_1(R)$ 处的正合性。

假定 $g \in GL(R)$ 在 $K_1(R/I)$ 下的像是 0,即 $\bar{g} \in GL(R/I)$ 是 E(R/I) 的元素。现在取原像 $e \in E(R)$,那么 $ge^{-1} \in GL(I)$,从而给出了在 $K_1(R,I)$ 中的原像。

我们现在将 K_0 的 Mayer-Vietoris 序列 (命题 1.1.5) 延长:

命题 1.4.7 (Mayer-Vietoris 序列). 考虑 *Milnor* 方块 (即 $f: R \to S$, R 的理想 I 满足 f 将 I 同构地射到某个 S 的理想, 此时如下图表称为 *Milnor* 方块)

$$R \xrightarrow{f} S$$

$$\downarrow \qquad \qquad \downarrow$$

$$R/I \xrightarrow{\bar{f}} S/I$$

那么有正合列

$$K_1(R) \stackrel{\Delta}{\to} K_1(S) \oplus K_1(R/I) \stackrel{\pm}{\to} K_1(S/I) \stackrel{\partial}{\to} K_0(R) \stackrel{\Delta}{\to} K_0(S) \oplus K_0(R/I) \stackrel{\pm}{\to} K_0(S/I)$$

证明. 考虑命题 1.1.5, 其最左端由于 $K_0(R)$ 是 Abel 的可以替换成为 $K_1(S/I)$ (Abel 化泛性质), 这就给出了这里的长正合列,并且在 K_0 处的正合性都已经证过。

现在回忆命题 1.1.5对 ∂ 的像的描述,这直接给出了 $K_1(S/I)$ 的正合性。最后最左侧的正合性证明如下:

如果 $g \in GL_n(R/I), h \in GL_n(S)$,存在初等矩阵 $\bar{e} \in E(S/I)$ 使得 $\bar{f}(\bar{g})\bar{e} \equiv h$, mod I,取 $e \in E_n(S)$ 为原像, $\bar{f}(\bar{g}) \equiv he^{-1}$ mod I,那么由于 $R \not\in S, R/I$ 的拉回,存在 $g \in GL_n(R)$ 和 $\bar{g} \mod I$ 同余,并且 $f(g) = he^{-1}$,这就说明了一切。

1.5 环的 K₁-K₀ 基本定理

定理 1.5.1 (环局部化 K_1 - K_0 正合列). $S \in R$ 的乘性子集(为简便起见假定其不含零因子:事实上结论对一般的乘性子集也正确)。那么有

$$K_1(R) \to K_1(S^{-1}R) \to K_0(R \ on \ S) \to K_0(R) \to K_0(S)$$

证明. 首先指明边缘同态: 它将每个 $\alpha \in GL(S^{-1}R)$ 射至这个映射(诱导的自然链映射: Complexes concentrated at 0) 的映射锥。良定义性验证略: [Wei13, III.3.1]

后三项正合是第 1.3.1 节,在中间处正合见 [Wei13, III.3.1.5]。第二项处正合是因为我们通过将 $K_0(R \ on \ S)$ 和 $K_0\mathbf{H}_S(R)$ 等同后可以手动验证得到: [Wei13, III.3.2]。

定义 1.5.2 (NK 群). 定义

$$NK_0(R) = \ker(K_0(R) \to K_0(R[t])) = K_0(R[t], (t-r))$$

$$NK_1(R) = \ker(K_0(R) \to K_0(R[t])) = K_1(R[t], (t-r))$$

定义 1.5.3. 定义 Nil(R) 为全体 (P, ν) 在 End(R) 中张成的子范畴,其中 P 是有限生成投射 R-模, ν 是 P 的幂零自同态。这是一个正合子范畴。容易验证: $[(P,\nu)] \rightarrow [P]$ 给出了一个直和分解

$$K_0$$
Nil $(R) \cong K_0(R) \oplus Nil_0(R)$

其中 $Nil_0(R)$ 是上述遗忘映射的核,它被如下形式的元素生成 $[(R^n, \nu)] - n[(R, 0)]$ 。

命题 1.5.4.

$$K_0(R[t] \ on \ \{t^n\}) \cong K_0 \mathbf{Nil}(R) \cong K_0(R) \oplus Nil_0(R)$$

证明. 我们先证如下结果: Nil(R) 和 $H_{1,\{t^n\}}(R[t])$ 之间存在范畴等价。这是因为对于 $(P,\nu) \in Nil(R)$,取 R[t] 模 P,使得 t 的作用恰好是 ν ,它是 $H_{1,\{t^n\}}(R[t])$ 中的对象: 挠性显然,消解由

$$0 \to P[t] \xrightarrow{1-\nu} P[t] \to P \to 0$$

给出。

反过来,对于任何 $M \in \mathbf{H}_{1,s}(R[t])$,其投射消解是 $0 \to P \to Q \to M \to 0$: 由于 M 被某个 t^n 作用零化,将上述消解作用上 $-\otimes_{R[t]} R[t]/(t^n)$ 就有:

$$0 \to \operatorname{Tor}_1^{R[t]}(M, R[t]/(t^n)) \to P/t^n P \to Q/t^n Q \to M \otimes_{R[t]} R[t]/(t^n) \to 0$$

但是第一项就是 M: 对 $0 \to R[t] \to R[t] \to R[t]/(t^n) \to 0$ 计算长正合列得到:

$$0 \to \operatorname{Tor}_1^{R[t]}(M, R[t]/(t^n)) \to M \stackrel{t^n}{\to} M \to M \otimes_{R[t]} R[t]/(t^n) \to 0$$

 t^n 零化 M, 因此这就说明第一项是 M。

现在就有短正合列:

$$0 \to M \to P/t^n P \to P/t^n Q \to 0$$

(注意 $\ker(Q/t^nQ \to M \otimes_{R[t]} R[t]/(t^n)) = P/t^nQ$)

然而 P/t^nP 是投射模, P/t^nQ 的投射 R-维数不超 1, 那么 M 是投射模。

现在由第 1.2.3 节,这就说明了
$$K_0$$
Nil $(R) \cong K_0$ H $_{\{t^n\}}(R[t])$ 。

引理 1.5.5. 映射 $\cdot t: K_0(R) \to K_1(R[t, t^{-1}])$ 是分裂单射。

证明,考虑

$$K_0(R) \xrightarrow{\cdot t} K_1(R[t, t^{-1}]) \xrightarrow{\partial} K_0 \mathbf{Nil}(R) \to K_0(R)$$

这里后两个箭头是结合定理 1.5.1和上一命题得到的,一些计算说明它的确给出了提升。 □

注记. 这里的乘积是指自然的 $K_0(R)\otimes K_1(S)\to K_1(R\otimes S)$ 。它的构造是给定投射 R-模 P 和 S^m 的自同构,这能够被诱导为 $R\otimes S=(P\otimes S)\oplus (P'\otimes S)$ 上的自同构,一些验证说明良定义性,于是这就给出了乘积。

定理 1.5.6.

$$Nil_0(R) \cong NK_1(R),$$

于是

$$K_0$$
Nil $(R) \cong K_0(R) \oplus NK_1(R)$

证明. 我们有复合映射 δ (将下述映射复合):

$$K_1(R[s], s) \to K_1(R[s]) \to K_1(R[s, s^{-1}])$$

以及 $(t = s^{-1})$

$$K_1(R[t, t^{-1}]) \xrightarrow{\partial} K_0(R[t] \text{ on } \{t^n\}) \to Nil_0(R)$$

另一方面我们有: Nil(R) 到 $K_1(R[s])$ 的加性映射: $(P, \nu) \mapsto (\cdot (1 - \nu s)) \in Aut(P[s]) \rightarrow K_1(R[s])$, 因此这给出了 $Nil_0(R) \rightarrow K_1(R[s], s)$, 记为 τ_{\circ}

我们来说明上述两个映射互逆。这只需承认如下引理, 此时

$$\tau \delta([g]) = \tau \delta([1 - \nu s]) = \tau[(R^n, \nu)] = (1 - \nu s)$$
$$\delta \tau([(R^n, \nu)] - n[(R, 0)]) = \delta(1 - \nu s) = [(R^n, \nu)] - n[(R, 0)]$$

引理 1.5.7 (Higman's Trick). $\forall g \in GL(R[t], t)$,存在幂零矩阵使得 $[g] = [1 - \nu t] \in K_1(R[t])$ 。

证明. 这几乎是多项式环中元素可逆 ⇔ 单位可逆,高阶幂零的高维版本的重述: [Wei13, III.3.5.1]

下面我们将上述结果组装起来:

定理 1.5.8 (K_1 基本定理). 存在分裂满射 $K_1(R[t,t^{-1}]) \xrightarrow{\partial} K_0(R)$, 其逆是 $[P] \mapsto [P] \cdot t$ 。并且这个映射组成了如下自然分裂的正合列:

$$0 \to K_1(R) \xrightarrow{\Delta} K_1(R[t]) \oplus K_1(R[t^{-1}]) \xrightarrow{\pm} K_1(R[t,t^{-1}]) \xrightarrow{\partial} K_0(R) \to 0$$

证明. $K_1(R) \to K_1(R[t]), K_1(R) \to K_1(R[t^{-1}])$ 的映射显然分裂(提升映射为赋值 t=1)。定理 1.5.1给出了:

$$K_1(R[t]) \to K_1(R[t, t^{-1}]) \to K_0(\mathbf{Nil}(R))$$

现在左侧映射是单射,因为 $K_1(R[t]) \cong K_1(R) \oplus K_1(R[t],t)$ (分裂性),并且 $K_1(R)$ 是 $K_1(R[t,t^{-1}])$ 的直和项,我们现在只需看 $K_1(R[t],t) \to K_1(R[t,t^{-1}])/K_1(R)$ 是否为单射。但这是因为定理 1.5.6中的同构穿过这个映射,于是这就说明了左侧映射单。

右侧项 $K_0(Nil(R))$ 有直和分解,将这些组装起来就得到了结果。

一个有趣的事实是可以依次归纳地定义负数阶 K 理论:

定义 1.5.9 (负数阶 K 理论).

$$K_{-n}(R) := \operatorname{coker}(K_{-n+1}(R[t]) \oplus K_{-n+1}(R[t^{-1}]) \to K_{-n+1}(R[t,t^{-1}]))$$

为了说明负数阶 K 理论满足相似的基本定理, 我们采用如下抽象后的定义进行论证:

定义 1.5.10 (缩并函子). 对于函子 $F: \mathbf{CRing} \to \mathbf{Ab}$, 定义

$$LF(R) = \operatorname{coker}(F(R[t]) \oplus F(R[t^{-1}]) \to F(R[t, t^{-1}]))$$

记下述序列为 Seq(F,R):

$$0 \to F(R) \xrightarrow{\Delta} F(R[t]) \oplus F(R[t^{-1}]) \xrightarrow{\pm} F(R[t, t^{-1}]) \to LF(R) \to 0$$

称 F 是无环 (acyclic) 的,如果 Seq(F,R) 对所有 R 都正合。称 F 是缩并函子,如果 F 无环并且满射 $F(R[t,t^{-1}]) \rightarrow LF(R)$ 存在一个对 t,R 都自然的分裂。

命题 1.5.11. 给定缩并函子之间的态射 $\eta: F \Rightarrow F'$, 即交换图

$$LF(R) \xrightarrow{h} F(R[t, t^{-1}])$$

$$\downarrow \qquad \qquad \downarrow \eta_{R[t, t^{-1}]}$$

$$LF'(R) \xrightarrow{h'} F'(R[t, t^{-1}])$$

那么 $\ker \eta$, $\operatorname{coker} \eta$ 都是缩并函子。

特别地,取 η 为 $F(-[t])\oplus F(-[t^{-1}])\to F(-[t,t^{-1}])$ 的余核,注意缩并函子在直和下保持,于是这就说明F是缩并函子 \Longrightarrow LF也是。

证明. $Seq(F,R) \rightarrow Seq(F',R)$ 是分裂正合列之间的映射,并且两个分裂是相容的。于是两个链映射的核和余核也是分裂正合列,那么这就直接说明了结果。

推论 1.5.12 (负数阶 K 理论基本定理).

$$0 \to K_{-n}(R) \xrightarrow{\Delta} K_{-n}(R[t]) \oplus K_{-n}(R[t^{-1}]) \xrightarrow{\pm} K_{-n}(R[t,t^{-1}]) \xrightarrow{\partial} K_{-n-1}(R) \to 0$$

类似地,通过不断对 Mayer-Vietoris 序列作用 L (取余核), 我们有:

定理 1.5.13 (负数阶 K 理论 Mayer-Vietoris 序列). 条件同 Mayer-Vietoris 序列, 我们可将其延长为:

$$K_{1}(R) \xrightarrow{\Delta} K_{1}(S) \oplus K_{1}(R/I) \xrightarrow{\pm} K_{1}(S/I) \xrightarrow{\partial} K_{0}(R) \xrightarrow{\Delta} K_{0}(S) \oplus K_{0}(R/I) \xrightarrow{\pm} K_{0}(S/I)$$

$$\xrightarrow{\partial} K_{-1}(R) \xrightarrow{\Delta} K_{-1}(S) \oplus K_{-1}(R/I) \xrightarrow{\pm} K_{-1}(S/I) \xrightarrow{\partial} K_{-2}(R) \xrightarrow{\Delta} K_{-2}(S) \oplus K_{-2}(R/I) \xrightarrow{\pm} K_{-2}(S/I) \to \cdots$$

1.6 环的 K_2

定义 1.6.1 (环的 K_2). $K_2(R)$ 定义为 $\phi: St(R) \to E(R)$ 的核。这里 $St(R) = \varinjlim St_n(R)$, $St_n(R)$ 则是由 $x_{ij}(r), i \neq j, i, j \in \{1, \dots, n\}$ 在如下关系下生成的群:

$$x_{ij}(r)x_{ij}(s) = x_{ij}(r+s)$$

$$[x_{ij}(r), x_{kl}(s)] = \begin{cases} 1 & j \neq k \text{ and } i \neq l \\ x_{il}(rs) & j = k \text{ and } i \neq l \\ x_{kj}(-sr) & j \neq k \text{ and } i = l \end{cases}$$

注意 E(R) 中的初等矩阵 $e_{ij}(r)$ 也满足这一关系,因此我们自然有 $\phi_n: St_n(R) \to E_n(R)$,从而给出了满足要求的映射。特别地,有正合列:

$$0 \to K_2(R) \to St(R) \stackrel{\phi}{\to} GL(R) \to K_1(R) \to 0$$

定理 1.6.2 (Steinberg). $K_2(R)$ 恰好是 St(R) 的中心。

证明. 如果 $x \in St(R)$ 和每个 St(R) 的元素都交换,那么其像和 E(R) 的每个元素都交换。但 E(R) 的中心平凡: [Wei13, EIII.1.8],于是 $x \in K_2(R)$ 。

反过来如果 $y \in K_2(R)$,那么 $\phi(y) = 1$,从而 $\phi([y,p]) = \phi(p)\phi(p)^{-1} = 1, \forall p \in St(R)$ 。选择充分大的 n 使得 $y \in St_n(R)$,即被 $x_{ij}(r), i, j \leq$ 表出。现在对于 $p = x_{kn}(s)$,Steinberg 关系说明 [y,p] 属于 $x_{in}(r), i < n$ 生成的子群 P_n 中。然而 ϕ 将 P_n 单地射入 E(R) 中:[Wei13, EIII.5.2]。因此 $\phi([y,p]) = 1$ 就说明 [y,p] = 1。从而 y 和每个 $x_{kn}(s)$ 交换;对于 x_{nk} 同理。进一步 $x_{kl}(s) = [x_{kn}(s), x_{nl}(1)]$,这就说明了 y 和任何 St(R) 中的元素交换。

我们发现 St(R) 和群上同调以及中心扩张很有关系。

定义 1.6.3 (中心扩张). G 是一个群,A 是一个 Abel 群。G 被 A 的中心扩张是指一个正合列 $0 \to A \to X \stackrel{\pi}{\to} G \to 0$,使得 A 是 X 的中心。

称中心扩张分裂,如果它恰好是 $0 \to A \to A \times G \xrightarrow{pr} G \to 0$ 。

两个 (G 被 A 的) 扩张 X,Y 是等价的,如果 $f:X\to Y$ 限制在 A 上是 id 并诱导了 G 上的 id。

称中心扩张 $0 \to A \to X \to G \to 0$ 是泛中心扩张,如果对于任何其他中心扩张 $0 \to B \to Y \to G \to 0$,都存在唯一的扩张之间的映射(即 $f: X \to Y$ 使得 f 诱导到 G 上是 id)。

命题 1.6.4 (代数事实). 扩张的等价类和 $H^2(G,A)$ ——对应。G 有泛中心扩张当且仅当 G 是 完美群,此时这个泛中心扩张形如

$$0 \to H_2(G, \mathbb{Z}) \to [F, F]/[R, F] \to G \to 0$$

其中 $F/R \cong G$, F 是自由群, R 是关系。

定理 1.6.5 (Kervaire, Steinberg). St(R) 是 E(R) 的泛中心扩张,因此 $K_2(R) \cong H_2(E(R); \mathbb{Z})_{\circ}$

命题 1.6.6.

$$K_2(R) \cong \varinjlim_{P \in t\mathbf{P}} H_2([Aut(P), Aut(P)]; \mathbb{Z})$$

证明. 这依然是共尾性保证的。

定理 1.6.7 (K 群长正合列). K 群长正合列可以延长到 K_2 项。

定理 1.6.8 (Mayer-Vietoris). 对于 $I,J \subseteq R$, $I \cap J = 0$ 。 R,S = R/J 关于理想 I 构成 Milnor 方块,此时 Mayer-Vietoris 序列可以延长到 K_2 项。

第二章 高阶 K 理论的经典构造

2.1 环的高阶 K 理论

定义 2.1.1 (环的 K 理论). 定义 $BGL(R)^+$ 为满足如下要求的 CW 复形 X 以及一个映射 $BGL(R) \to BGL(R)^+$:

- 1. $\pi_1(BGL(R))^+ \cong K_1(R)$,并且 $BGL(R) \to BGL(R)^+$ 的映射在 π_1 上诱导的是典范的 $GL(R) \twoheadrightarrow K_1(R)_{\circ}$
- 2. 对于任何 $K_1(R)$ -模 M, $H_*(BGL(R); M) \cong H_*(BGL(R)^+; M)$ 。

定义 K 理论空间为: $K(R) = K_0(R) \times BGL(R)^+$ 。定义环 R 的高阶 K 理论为 $K_n(R) = \pi_n BGL(R)^+, n \ge 1$,更进一步地: $K_n(R) = \pi_n K(R), n \ge 0$.

我们下来说明空间的 +-构造是如何进行的。

定义 2.1.2 (+-构造). X 是一个带基点的 CW 复形,P 是 $\pi_1(X)$ 的完美正规子群(在下文中除非特别指定 P,P 默认取为最大完美子群:它自动正规)。 $f: X \to Y$ 称为 X (关于 P)的 +-构造,如果 f 的同伦纤维是同调可缩的,并且 $P = \ker(\pi_1(X) \to \pi_1(Y))$ 。

引理 2.1.3. X,Y 是连通 CW 复形,那么 $f:X\to Y$ 的同伦纤维同调可缩 $\iff H_*(X,M)\cong H_*(Y,M)$ 对所有 $\pi_1(Y)$ -模 M 成立。

П

证明. Serre 谱序列, 见 [Wei13, IV.1.6]

注记. 由上述引理, 明显将 +-构造应用到 BGL(R) 上就得到了 $BGL(R)^+$ 。我们下面来说明 + 构造的存在性和同伦唯一性: 这能够帮助我们说明前文定义的确是良好的。

定理 2.1.4 (Quillen +-构造). 对于 $\pi_1(X)$ 的完美正规子群 P:

- 1. +-构造 $f: X \to Y$ 存在
- 2. 如果 $f: X \to Y$ 是 X 关于 P 的 +-构造, $g: X \to Z$ 使得 $g_*(P) = 0 \in \pi_1(Z)$,那么存在同伦意义下唯一的映射 $h: Y \to Z$ 使得 g = hf
- 3. 特别地,上述命题说明了任何两个 +-构造在同伦意义下唯一。

证明. 我们先来说明存在性:

• 先设 $P = \pi_1(X)$, 于是由 P 完美: $H_1(P; \mathbb{Z}) = 0$ 。此时分以下几步:

- 1. 取 P 的一组生成元 $\{\varphi_i \colon S^1 \to X\}_{i \in I}$,并且不妨设 φ_i 都打到 X 的一维骨架中
- 2. 沿着 φ_i 粘上一组二维胞腔 $\{e_i^2\}_{i\in I}$, 所得 CW 复形暂记作 X'. 于是 $\pi_1(X') = 0$, 且 空间对 (X', X) 的相对同调只在二阶非零, 被这些 e_i^2 自由生成
- 3. 由于 $H_1(X) = 0$, 有短正合列

$$0 \to H_2(X) \to H_2(X') \to H_2(X', X) \to 0$$

取 e_i^2 在 $H_2(X')$ 的原像 ψ_i .

- 4. 由 Hurewicz 定理, $H_2(X') = \pi_2(X')$. 取映射 $\psi_i : S^2 \to X'$ 代表 ψ_i ,可不妨设 ψ_i 都打到 X' 的二维骨架中。
- 5. 再沿 ψ_i 粘上一组三维胞腔 $\{e_i^3\}_{i\in I}$, 所得 CW 复形就是 X_P^+ , 则 $\pi_1(X_P^+) = \pi_1(X') = 0$, 而由构造, X 到 X_P^+ 的自然含入映射诱导同调群的同构。
- 再看一般情况. 此时令 \widetilde{X}_P 为 P 对应的 X 的覆叠,然后按上面的方法作 $\widetilde{X}_P^+ \supseteq \widetilde{X}_P$,再作推出 $X_P^+ = X \cup_{\widetilde{X}_P} \widetilde{X}_P^+$ 。由于同调群的切除定理,自然含入映射 $X \to X_P^+$ 诱导同调群的同构. 由 van Kampen 定理:

$$\pi_1(X_P^+) = \pi_1(X) \sqcup_{\pi_1(\widetilde{X}_P)} \pi_1(\widetilde{X}_P^+) = \frac{\pi_1(X)}{\langle gHg^{-1} \mid g \in \pi_1(X) \rangle}.$$

推论 2.1.5. 取纤维化的正合列 $\pi_2(BG) \to \pi_2(BG^+) \to \pi_1(Fib) \to G \to G/P \to 0$, 而 $\pi_2(BG) = 0$, 并且 $\pi_2(BG^+)$ 是中心。但是 $\pi_1(Fib)$ 完美 (因为 Fib 同调可缩),于是中心 扩张的代数事实就说明了 $\pi_2BGL(R)^+ = H_2(GL(R), \mathbb{Z})$,从而和原有定义相符。

命题 2.1.6 (积, Lodav). 自然的张量积 $A^p \otimes B^q \cong (A \otimes B)^{pq}$ 诱导了

$$\varphi_{pq}: BGL_p(A)^+ \times BGL_q(B)^+ \to BGL_{pq}(A \otimes B)^+$$

,从而诱导了 $\gamma: K_p(A) \otimes K_q(B) \to K_{p+q}(A \otimes B)$.

这个乘积映射构造对 A,B 均有函子性,并且满足双线性性和结合性,同时如果 A 自身交换那么 $K_p(A)\otimes K_q(A)\to K_{p+q}(A\otimes A)\to K_{p+q}(A)$ 是分次交换的。

2.2 对称幺半范畴的高阶 K 理论: $B(S^{-1}S)$

定义 2.2.1 $(S^{-1}S)$. 对于对称幺半范畴 S, 定义范畴 $S^{-1}S$ 如下: $S^{-1}S$ 的对象形如 $(m,n), m, n \in Obj(S)$ 。态射是如下的等价类:

$$(m_1,m_2) \stackrel{s \otimes}{\longrightarrow} (s \otimes m_1, s \otimes m_2) \stackrel{(f,g)}{\longrightarrow} (n_1,n_2)$$

其中它和

$$(m_1, m_2) \xrightarrow{t \otimes} (t \otimes m_1, t \otimes m_2) \xrightarrow{(f', g')} (n_1, n_2)$$

等价是指如果存在 $\alpha:s\stackrel{\cong}{\longrightarrow}t$ 使得 (f',g') 和 α 的复合给出了 $(f,g)_{\circ}$

注记. $S^{-1}S$ 也是对称幺半范畴: $(m,n)\otimes(m',n')=(m\otimes m',n\otimes n')$ 。自然的函子 $S\to S^{-1}S$: $m\mapsto(m,e)$ 是幺半的。

定义 2.2.2 (对称幺半群胚的 K 理论). 对称幺半范畴 S 如果是群胚 (每个态射都是同构),那 么其 K 理论定义为:

$$K_n(S) = \pi_n(BS^{-1}S)$$

 $BS^{-1}S$ 称为 K 理论空间。这里 B 是指范畴的几何实现,即:|NC|(先取单纯脉,再取单纯集的几何实现)

2.2.1 BS 到 BS⁻¹S 的过渡: 群化

这套理论的起点是对于对称幺半范畴 S,其几何实现 BS 有着自然的 H-空间结构:这是因为

$$(BS) \times (BS) \cong B(S \times S) \to BS$$

是满足要求的乘积,其中最后一个箭头是由 S 上的幺半结构给出的,对称幺半范畴的公理恰好保证了这一乘积满足同伦交换、同伦结合性以及同伦单位元的存在性。

另一方面,我们注意到 $B(S^{-1}S)$ 上有着自然的同伦逆映射:这是由 $S^{-1}S \xrightarrow{inv} S^{-1}S$ 给出的。因此 K 理论空间的构造可以说是某种 BS 的群化,或者更抽象一点说,某个幺半群(或者 ∞ — 幺半群,H-空间)的群(∞ -群)化。现在我们仅从 H-空间的情况入手,对于更一般的情况留至下一部分讨论。

定义 2.2.3 (群化). 称同伦结合 H-空间是群状 (group-like) 的,如果它有同伦逆。对于一个同伦交换、结合的 H-空间 X,其群化是指一个 H-空间 Y,以及一个 H-空间态射 $X \to Y$,使得 $\pi_0(Y)$ 是交换幺半群 $\pi_0(X)$ 的群化,并且对于任何交换环 k:

$$H_*(Y;k) \cong \pi_0(X)^{-1}H_*(X;k)$$

然而: CW 同伦结合 H-空间是群状的 $\iff \pi_0$ 是群。现在如果 X 是 CW 复形,我们进一步也要求 Y 是 CW 复形,那么定义自动要求 Y 也是群状的。

有关群化的完备性和唯一性,我们有如下两个结果:

引理 2.2.4 (群状的群化是自身). X 是群状 H-空间,那么 X 是自身的群化,并且任何群化 $f: X \to Y$ 都是同伦等价。

证明. 由定义,这是对 $\pi_1(X)$ 的平凡子群做 + 构造,那么定理 2.1.4就说明了结果。

定理 2.2.5 (群化的唯一性). X 是 H-空间使得 $\pi_0(X)$ 是可数的(或者存在可数的共尾子幺半群),那么对于任何两个群化 $f': X \to X', f'': X \to X''$,存在同伦等价 $g: X' \to X''$ (在弱同伦等价下唯一),使得 gf' 和 f'' 是弱同伦等价的。并且 g 也弱同伦等价于一个 H-空间映射。

例子. $\mathbb{Z} \times BGL(R)^+$ 是 H-空间 $S = \prod GL_n(R)$ 的群化。

接下来我们主要的目标是说明在上述群化的意义下: $BS^{-1}S$ 是 BS 的群化。

定义 2.2.6. 称幺半范畴 S 作用在另一个范畴 X 上,如果存在函子 $\square: S \times X \to X$,使得存在 自然同构 $s\square(t\square x) \cong (s\square t)\square x$, $e\square x \cong x$ 并满足若干融贯性条件。

此时定义范畴 $\langle S, X \rangle$ 如下:对象和 X 相同, x 到 y 的态射是如下偶对的等价类

$$(s, s \square x \xrightarrow{\phi} y)$$

等价是指存在 $\alpha: s \cong s'$ 使得它和 ϕ 的复合给出了 ϕ' 。

对于 S 在 X 上的作用,它自然诱导了 S 在 $S \times X$ 上的作用(在每个分量上都有作用:前者由幺半结构给出)。记 $S^{-1}X = \langle S, S \times X \rangle$:容易看出这和 $S^{-1}S$ 的记法是相容的。S 在 $S^{-1}X$ 上有自然的作用: $s\square(t,x) = (s \otimes t,x)$ 。

定理 2.2.7 (Quillen). 如果 S 是群胚,并且每个平移诱导的 $Aut(s) \to Aut(s \otimes t)$ 都是单射,那么:

$$(\pi_0 S)^{-1} H_q(X) \to H_q(S^{-1} X)$$

对任何 X,q 都是同构。

作为推论: $B(S^{-1}S)$ 是 BS 的群化: 取 X = S 即可。

证明. 投影函子 $\rho: S^{-1}X \to < S, S >$ 诱导了纤维列 $X \to S^{-1}X \to < S, S >$ 。那么计算其 Serre 谱序列就给出了结果。

2.2.2 + 构造与 $BS^{-1}S$

取 $S = \mathbf{F}(R) = \prod GL_n(R)$ 为有限生成自由 R-模的幺半范畴的极大子群胚: 那么

定理 2.2.8. 对于 $S = \coprod GL_n(R)$, $K(S) = B(S^{-1}S)$ 是 $BS = \coprod BGL_n(R)$ 的群化, 并且

$$B(S^{-1}S) \simeq \mathbb{Z} \times BGL(R)^+$$

证明. 为了应用 H-空间群化的唯一性,我们只需构造一个 $BGL(R) \to B(S^{-1}S)$ 的诱导上同调之间同构的映射。现在由于几何实现是左 Kan 扩张,它是左伴随从而保持余极限。因此 BGL(R) = hocolim $BGL_n(R)$: 即 $BGL_n(R)$ 的映射望远镜 (mapping telescope)。

现在我们构造 $BGL_n(R) \to B(S^{-1}S)$ 的映射: 这是通过 $GL_n(R) \to Aut_{S^{-1}S}(R^n, R^n)$ 诱导的 $BGL_n(R) \to B(S^{-1}S)$ 完成的,并且这一系列映射在 n 变动下是交换的: 即:

$$GL_n(R) \longrightarrow Aut(R^n, R^n)$$

$$\downarrow \qquad \qquad \downarrow \oplus (R,R)$$

$$GL_{n+1}(R) \longrightarrow Aut(R^{n+1}, R^{n+1})$$

因此取余极限,就给出了一个 $BGL(R) \to B(S^{-1}S)$ 的映射。它射入了单位元在 $B(S^{-1}S)$ 中的所处的连通分支,记为 Y_S 。

我们现在来证明 $BGL(R) \to Y_S$ 诱导了 \mathbb{Z} -系数同调的同构。那么唯一性定理定理 2.1.4就说明了结果。由定理 2.2.7, $H_*B(S^{-1}S)$ 是 $H_*(BS)$ 在 $\pi_0(S) = \{e^n\}$ 处的局部化,其中 $e \in \pi_0BS$ 是一个生成元。

但是这个局部化就是 $H_*(Y_S)\otimes \mathbb{Z}[e,e^{-1}]$, 其中 e 含义同前。于是这就说明 $H_*(Y_S)\cong H_*(BS)\cong H_*(BGL(R))$ 。

或者更一般地:

定理 2.2.9. S 是对称幺半群胚,每个平移诱导的 $Aut(s) \to Aut(s \otimes t)$ 是单射。并且更进一步:S 中有可数个对象 s_1, \dots ,使得 $s_{n+1} = s_n \otimes a_s, \exists a_s \in S$,并且 $\forall s \in S$, $\exists s', n, \text{s.t.} s \otimes s' \cong s_n$ 。此时定义 $Aut(S) = \text{colim } Aut_S(s_n)$,那么:

交换子群 $E \leq Aut(S)$ 是完美正规子群, $K_1(S) = Aut(S)/E$, $(BAut(S))^+$ 是 K(S) 中单位元的连通分支,于是

$$K(S) \simeq K_0(S) \times (BAut(S))^+$$

我们下面来处理共尾性:

定义 2.2.10. 幺半函子 $f: S \to T$ 称为共尾的,如果对每个 $t \in T, \exists t', s, s.t. t \otimes t' \cong f(s)$ 。

定理 2.2.11 (共尾性). 如果 $f: S \to T$ 是共尾的: 那么

- 1. T 作用到 X 上,那么 S 通过 f 也有在 X 上的作用。那么 $S^{-1}X \simeq T^{-1}X$
- 2. 如果 $Aut_S(s)\cong Aut_T(f(s))$,那么 K(S) 和 K(T) 的单位元所在连通分支是同伦等价的,于是 $K_n(S)\cong K_n(T)$, $\forall n\geq 1$ 。

证明. 第一部分由定义验证。第二部分则是因为 $H_*(Y_S) = \operatorname{colim} H_*(BAut(s))$,但是由共尾性它就是 $\operatorname{colim} H_*(BAut(f(s)))$,从而是 $H_*(Y_T)$ 。但是 H-空间之间的诱导同调同构的映射是同伦等价,这就说明了结果。 1

推论 2.2.12. 由于 $\mathbf{F}(R) \to \mathbf{P}(R)$ 是共尾的,并且上述命题的条件被满足。这就说明了 $\mathbf{F}(R)$ 的 K 理论空间和 $\mathbf{P}(R)$ 相同。

2.2.3 有趣的例子

例子. 考虑 $S = \coprod \Sigma_n = \mathbf{Sets}_{fin}$,其中后者是指有限集范畴的极大子群胚。再考虑无穷置换群 $\Sigma_{\infty} = \mathrm{colim}\,\Sigma_n$,那么仿照证明环的 K 理论和 $\mathbf{F}(R)$ 的 K 理论相容的方法,我们可以再次说明: $B(S^{-1}S) \simeq K(\mathbf{Sets}_{fin})$ 和 $\mathbb{Z} \times (B\Sigma_{\infty})^+$ 同伦等价。更进一步地还有如下三者等价 $(Barratt-Priddy-Quillen)^2$:

- 1. BSets_{fin} 的群化: K(Sets_{fin})
- 2. $\mathbb{Z} \times B\Sigma_{\infty}^+$
- 3. $\Omega^{\infty} S = \lim \Omega^n S^n$

于是 $K_n(\mathbf{Sets}_{fin}) = \pi_n^s$ 。

¹同调 Whitehead 定理,见https://mathoverflow.net/questions/283970/attribution-of-theorem-saying-that-inducing-

²BPQ 定理的证明: https://www.math.uwo.ca/faculty/jardine/preprints/preprint-barratt2.pdf

2.3 正合范畴的高阶 K 理论: Quillen Q-构造

定义 2.3.1 (QA). 对于正合范畴 A, 定义 QA 如下: 其对象和 A 相同, A 到 B 的态射为如下形式图表的等价类:

$$A \twoheadleftarrow I \hookrightarrow B$$

其中等价关系是指图表间的映射使得在 I 上是同构,A, B 上是 id。

 $A \leftarrow I \hookrightarrow B$ 和 $B \leftarrow J \hookrightarrow C$ 的复合是通过取: $K = I \times_B J$ 给出的 $A \leftarrow K \hookrightarrow C$ 完成的。

命题 2.3.2. BQA 是一个连通 CW 复形,并且 $\pi_1(BQA) \cong K_0(A)$ 。 其中对应于 $[A] \in K_0(A)$ 的 $\pi_1(BQA)$ 的元素由 $0 \hookrightarrow A \rightarrow 0$ 表出。这里 QA 中的(容许)单、满射是通过上一定义中将 I 取为 A (或 B) 得到的。

证明. 这个命题的主要证明步骤是如下引理: 如果 T 是范畴 C 的极大树, 那么 $\pi_1(BC)$ 有如下展示: 它由每个 C 中的态射 f 生成, 记为 [f], 商去的关系为:

- 1. $[t] = 1, \forall t \in T, [id_c] = 1, \forall c \in C$
- 2. $[f] \cdot [g] = [f \circ g], \forall f, g \in C$

这是因为第一条关系给出了 BC 的 1-骨架的基本群, 第二条关系源于 BC 的 2-胞腔。

然而考虑零对象出发的单射 $0 \hookrightarrow A \in QA$,这构成了一个极大树。因此由上述引理,我们就能够说明结果。

定义 2.3.3 (正合范畴的 K 理论). A 是小正合范畴, $KA = \Omega BQA$, 并定义

$$K_n(\mathcal{A}) = \pi_n K \mathcal{A} = \pi_{n+1}(BQ\mathcal{A})$$

构造的函子性源于 $F: A \to \mathcal{B}$ 诱导了 $QA \to Q\mathcal{B}$ 。

注记. 这里有集合论困难:在 A 不是小范畴的时候我们前面在证明 $\pi_1K = K_0$ 时会遇到极大树大小超出集合的困难。因此对于这样的范畴我们将其 K 理论空间替换为 K(A'),其中 A' 的对象由 A 对象的同构类组成:这里我们假定这样的同构类构成了集合。那么 A 和 A' 等价,并且 K(A') 和 A' 的选取无关。

命题 2.3.4 (共尾性). \mathcal{B} 是 \mathcal{A} 的正合子范畴, 在扩张下封闭。更进一步它共尾(即 $\forall A \in \mathcal{A}, \exists A' \in \mathcal{A}, \text{s.t.} A \oplus A'' \in \mathcal{B}$ 。 那么 $BQ\mathcal{B}$ (同伦等价于) $BQ\mathcal{A}$ 中对应子群 $K_0(\mathcal{B}) \leq K_0(\mathcal{A}) = \pi_1(BQ\mathcal{A})$ 的覆叠。

因此 $K_n(\mathcal{B}) \cong K_n(\mathcal{A}), \forall n > 0_\circ$

2.3.1 QQ 构造与乘积

定义 2.3.5. *A* 是小正合范畴, *QQA* 定义为如下 2-范畴: 其 2-态射形如如下图表的等价类, 其 中等价是指图表之间的同构映射并且限制在四个角上是恒等映射:

注记. 这里我们采用的 2-范畴模型是单纯集模型(因此准确地说是 (2,1)-范畴),这里的 2-态射我们指定的恰好就是 $\Delta^1 \times \Delta^1$ 的映入方式。

定理 2.3.6 (Waldhausen).

$$\Omega BQQA \simeq BQA$$

更进一步我们还能够仿照 QQ 构造继续定义 Q^nA , 并且也满足 $\Omega BQ^{n+1}A \simeq BQ^nA$ 。于是我们有一列 BQ^nA (n=0 时取为 ΩBQA ,它们给出了一个 Ω -谱 $\mathbf{K}(A)$,并且 K(A) 是无穷环路空间。

定义 2.3.7. 给定双正合函子 $F: A \times \mathcal{B} \to \mathcal{C}$,它们诱导了 $QA \otimes Q\mathcal{B} \to bi(Q\mathcal{C})$,但是它穿过 $QQ\mathcal{C}$,因此这就给出了: $QA \otimes Q\mathcal{B} \to QQ\mathcal{C}$ 。

具体来说: $A_0 \leftarrow A_1 \hookrightarrow A_2, B_0 \leftarrow B_1 \hookrightarrow B_2$ 映为:

$$A_{0} \otimes B_{0} \longleftarrow A_{1} \otimes B_{0} \longleftarrow A_{2} \otimes B_{0}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$A_{0} \otimes B_{1} \longleftarrow A_{1} \otimes B_{1} \longleftarrow A_{2} \otimes B_{1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$A_{0} \otimes B_{2} \longleftarrow A_{1} \otimes B_{2} \longleftarrow A_{2} \otimes B_{2}$$

现在将几何实现作用在这个映射上: $BQA \times BQB \to BQQC$ 。通过进一步要求双正合函子 F 将 (A,0) 映为 0; (0,B) 映为 0 (这总可以通过进行某些范畴等价的替换完成),上述映射将 $QA \otimes 0$, $0 \otimes QB$ 都映为 0, 于是 $BQA \times 0$, $0 \times BQB$ 都被映为 0, 因此这给出了映射:

$$BQA \wedge BQB \rightarrow BQQC$$

进一步它可以延展为 K 理论谱 $\mathbf{K}(\mathcal{A}) \wedge \mathbf{K}(\mathcal{B}) \to \mathbf{K}(\mathcal{C})$ 之间的映射。于是这给出了:

$$K_i(\mathcal{A}) \otimes K_j(\mathcal{B}) = \pi_{i+1}(BQ\mathcal{A}) \otimes \pi_{j+1}(BQ\mathcal{B}) \to$$

 $\pi_{i+j+2}(BQ\mathcal{A} \wedge BQ\mathcal{B}) \to \pi_{i+j+2}(BQQ\mathcal{C}) \cong K_{i+j}(\mathcal{C})$

2.3.2 + = Q

对于正合范畴 \mathcal{A} ,一方面我们可以用 $B(S^{-1}S)$ 构造给出 K 理论空间: 取 $S=\mathrm{iso}\mathcal{A}$ (幺半结构由直和给出);另一方面我们可以用 Quillen Q 构造给出一个 K 理论空间。

通过对比 K_0 我们发现,这两个构造并不一定相同。但是如果 A 是分裂正合范畴(所有短正合列都分裂)那么 K_0 的确相同。我们现在来说明这个结果:

定理 2.3.8 (Quillen +=Q). \mathcal{A} 是分裂正合范畴, $S=iso\mathcal{A}$,那么 $\Omega BQ\mathcal{A}\simeq B(S^{-1}S)$,即 $K_n(\mathcal{A})\cong K_n(S)_\circ$

推论 2.3.9. 取 $\mathcal{A} = \mathbf{P}(R)$, 那么这就说明了 $K_n(R) \cong K_n \mathbf{P}(R)$ 。

我们下面来证明这个结果:

定义 2.3.10. 给定正合范畴 A, 定义 $\mathcal{E}A$ 如下: 其对象为 A 中的正合列, 两个正合列 $E': (A' \to B' \to C')$ 到 $E: (A \to B \to C)$ 的态射定义为如下图表的等价类, 其中等价关系由图表之间的同构给出并且其在除了 C'' 外的所有元素处限制都是恒等映射。

注意最右侧实际上是 QA 中的一个态射。我们记 \mathcal{E}_C 为 \mathcal{E} 中全体第三项是 C 的对象,态射满足 C'=C''=C 并且其间的箭头都是 id 张成的子范畴的极大子群胚。因此 \mathcal{E}_C 中的态射形如

特别地: $\mathcal{E}_0 = \text{iso}A$: 这是因为其中对象都形如 $A \to A \to 0$,其间态射都是同构。更一般地: 对任何 C, \mathcal{E}_C 都是对称幺半范畴,并且存在忠实幺半函子 $\eta_C: S \to \mathcal{E}_C: (A \mapsto A \to A \oplus C \to C)$ 。这是因为幺半结构由如下给出: 对于 $E_i = (A_i \to B_i \to C)$, $E_1 \otimes E_2 = (A_1 \oplus A_2 \to B_1 \times_C B_2 \to C)$ 即满足要求。

引理 2.3.11. 如果 A 是分裂正合的,那么 $S^{-1}S \to S^{-1}\mathcal{E}_C$ 诱导了同伦等价。这里 S = isoA。证明. 这件事的直观自然是 \mathcal{E}_C 中的元素在分裂正合范畴中都来自于 η_C 的像。

投影给出了纤维化 $S^{-1}S \to S^{-1}\mathcal{E}_C \to \langle S, \mathcal{E}_C \rangle$ 。于是只需证明 $L = \langle S, \mathcal{E}_C \rangle$ 是可缩的。这是因为 L 有着 \mathcal{E}_C 诱导的幺半结构。因此 BL 是 H-空间,但是 L 是连通的(因为 \mathcal{E}_C 中的每个元素都来自 η_C ,于是每个 $x = (0 \to C \to C)$ 到 $y = (A \to B \to C)$ 的态射都由 $(s, s \otimes x = y)$ 见证:其中 s = A,那么此时 $s \otimes x = y$)于是 BL 是群状的。

现在考虑 L 上的幺半结构给出的自然变换 $E \to E \otimes E$,因此这给出了 id 和乘 2 映射之间的同伦。由于同伦逆(群状),这说明零映射和恒等映射同伦,于是 BL 可缩。

引理 2.3.12. 对于每个 QA 中的态射 $\varphi: C' \to C$,它诱导了 $\varphi^*: \mathcal{E}_C \to \mathcal{E}_{C'}$,以及一个自然变换 $\eta_E: \varphi^* \implies \iota_{\mathcal{E}_C}:$ 它由 $\varphi^*(E) \to E$ 给出。

证明. 我们来构造 φ^* : 选定一个 $C' \leftarrow C'' \hookrightarrow C$ 。取 $B' = B \times_C C''$,那么这给出了 $A \hookrightarrow B' \twoheadrightarrow C''$:它是 A 中的正合列。同样考虑复合 $B' \twoheadrightarrow C'' \twoheadrightarrow C'$,取它的核给出 $A' \hookrightarrow B' \twoheadrightarrow C'$ 。那么定义:

$$\varphi^*(A \hookrightarrow B \twoheadrightarrow C) = (A' \hookrightarrow B' \twoheadrightarrow C')$$

定理 2.3.13. A 是分裂正合范畴, S = isoA, 那么:

$$S^{-1}S \to S^{-1}\mathcal{E}\mathcal{A} \xrightarrow{T} Q\mathcal{A}$$

这里 T 的定义是由 $t: \mathcal{E}A \to QA$ (映至正合列第三项) 给出的: 因为对任何 A', $t(A' \otimes E) = t(E)$, 所以这个映射穿过 $S^{-1}\mathcal{E}A_{\circ}$

特别地,上一命题说明 $t: \mathcal{E}A \to QA$ 以 φ^* 为水平移动构成了纤维范畴。

证明. 由 Quillen 定理 B,我们只需说明 φ^* 诱导了同伦等价。特别地,只需假定 φ 形如 $0 \hookrightarrow C$ 和 $0 \leftarrow C$ 。

对于第一种情况, $S^{-1}S \to S^{-1}\mathcal{E}_C$ 和 $\varphi^*: S^{-1}\mathcal{E}_C \to S^{-1}S (= S^{-1}\mathcal{E}_0)$ 的复合给出了 id,但已证前者是同伦等价,这就说明了 φ^* 也是。

对于第二种情况, $\varphi^*: S^{-1}S \to S^{-1}\mathcal{E}_C$ 和同伦等价 $S^{-1}S \to S^{-1}\mathcal{E}_C$ 的逆复合给出了 $A \mapsto A \oplus C$ 。但是前文已证存在 $S^{-1}S$ 中 $A \mapsto A \oplus C$ 的自然变换,于是这就给出了结果。

因此 Quillen 定理
$$B$$
 就说明了结果。 \Box

+=Q 的证明. 只需证明 $S^{-1}\mathcal{E}A$ 可缩。但这是因为 $\mathcal{E}A$ 可缩以及 S 可逆地作用在其上。 $\qquad \Box$

这样我们就完成了+=Q定理的证明,更进一步地,可以证明两种构造的乘积结构也相符。

2.4 Waldhausen 范畴的高阶 K 理论: Waldhausen wS. 构造

定义 2.4.1. C 是余纤维化范畴, 我们定义 S_nC 为如下范畴: 其对象 A_{\bullet} 为一列余纤维化:

$$A_{\bullet}: 0 = A_0 \hookrightarrow A_1 \hookrightarrow \cdots \hookrightarrow A_n$$

态射为两个序列之间的态射族。

当 \mathcal{C} 是 Waldhausen 范畴时,我们现在说明 $S_n\mathcal{C}$ 是 Waldhausen 范畴。

首先对于每个 A_{\bullet} , 指定好一个商 $A_{ij} = A_j/A_i$, 使得诸 A_{ij} 相容(注意余纤维化范畴都有 余核): 即有如下交换图

 $A_{\bullet} \to B_{\bullet}$ 称为弱等价,如果每个 $A_i \to B_i$ (于是 $A_{ij} \to B_{ij}$ 都是 C 中的弱等价。

 $A_{\bullet} \to B_{\bullet}$ 称为余纤维化,如果对于每个 $0 \le i < j < k \le n$:

$$(A_{ij} \hookrightarrow A_{ik} \twoheadrightarrow A_{jk}) \rightarrow (B_{ij} \hookrightarrow B_{ik} \twoheadrightarrow B_{jk})$$

满足 $A_{ij} \rightarrow B_{ij}, A_{jk} \rightarrow B_{jk}, B_{ij} \cup_{A_{ij}} A_{ik} \rightarrow B_{ik}$ 是余纤维化.

我们定义函子 $\partial_0: S_n\mathcal{C} \to S_{n-1}\mathcal{C}$ 为删去上述阶梯状图表的最下一行。即:

$$\partial_0(A_{\bullet}): 0 = A_1 1 \hookrightarrow A_{12} \hookrightarrow \cdots \hookrightarrow A_{1n}$$

并配合上相应的 A_{ij} 。

更进一步地, 定义 $\partial_i: S_n\mathcal{C} \to S_{n-1}\mathcal{C}$ 为删去 A_{i*} 所在的行以及包含 A_i 的一列。

类似地, 定义 $s_i: S_n\mathcal{C} \to S_{n+1}\mathcal{C}$ 为重复 A_i , 并相应的定义 $A_{i,i+1}=0$ 。

可以验证 ∂_i, s_i 都是正合函子。诸多 $S_n \mathcal{C}$ 构成了一个单纯范畴 $S_\bullet \mathcal{C}$ 。进一步,弱等价张成的子范畴 wS_n 也一起构成了一个单纯范畴 $wS_\bullet \mathcal{C}$,其几何实现 $|wS_\bullet \mathcal{C}|$ 为 $\mathbf{Cat}^{\Delta^{op}}$ 的几何实现,它同构于 $\prod B(wS_n \mathcal{C}) \times \Delta^n / \sim$ 。

命题 2.4.2. \mathcal{C} 是 Waldhausen 范畴, $\pi_1|wS_{\bullet}\mathcal{C}|\cong K_0(\mathcal{C})$

证明. 对于单纯空间 X_{\bullet} 使得 X_0 是一点,那么 $|X_{\bullet}|$ 连通,并且 $\pi_1|X_{\bullet}|$ 由 $\pi_0(X_1)$ 的元素生成,商去 $\partial_1(x) = \partial_2(x)\partial_0(x), \forall x \in \pi_0(X_2)$ 。

现在看 $X_{\bullet} = BwS_{\bullet}C$,那么 $\pi_0(BwS_1C)$ 恰好是对象的弱等价类, $\pi_0(BwS_2C)$ 恰好是余纤维序列。那么由定义这就说明了结果。

定义 2.4.3 (Waldhausen 范畴的 K 理论). C 是小 Waldhausen 范畴, 其其 K 理论空间定义为:

$$K(\mathcal{C}) = \Omega |wS_{\bullet}\mathcal{C}|$$

$$K_n(\mathcal{C}) = \pi_n K(\mathcal{C}) = \pi_{n+1} |wS_{\bullet}\mathcal{C}|$$

定义 2.4.4 (相对 K 理论空间). $f: \mathcal{B} \to \mathcal{C}$ 是正合函子,取 $S_n f = S_n \mathcal{B} \times_{S_n \mathcal{C}} S_{n+1} \mathcal{C}$ 。其中 $S_{n+1} \mathcal{C} \to S_n \mathcal{C}$ 由 ∂_0 给出。

于是这就给出了一个序列 $C \to S_{\bullet}f \to S_{\bullet}\mathcal{B}$ 。其中第一个箭头是 $C \mapsto (0, C = \cdots = C)$ 。作用上 S_{\bullet} 得到:

$$S_{\bullet}C \to S_{\bullet}(S_{\bullet}f) \to S_{\bullet}(S_{\bullet}B)$$

以及

$$wS_{\bullet}C \to wS_{\bullet}(S_{\bullet}f) \to wS_{\bullet}(S_{\bullet}B)$$

特别地,双单纯集也能够给出一个同伦纤维序列,因此我们可以取 $K(f)=\Omega^2|wS_{\bullet}S_{\bullet}f|$,那么 $\pi_nK(f)=K_n(f)$ 能够放入长正合列

$$\cdots \to K_0(f) \to K_0(\mathcal{B}) \to K_0(\mathcal{C}) \to K_{-1}(f) \to 0$$

中。

定理 2.4.5. 当 f = id 时 $wS_{\bullet}f$ 是可缩的:

推论 2.4.6. 对 $f: \mathcal{C} \to \mathcal{C}$ 应用前述结果就说明: $|wS_{\bullet}\mathcal{C}| \simeq \Omega |wS_{\bullet}S_{\bullet}\mathcal{C}|$ 。 更进一步,考虑

$$\Omega|wS_{\bullet}C|, |wS_{\bullet}C|, |wS_{\bullet}S_{\bullet}C|, \cdots$$

给出了一个连合 Ω -谱 $\mathbf{K}(\mathcal{C})$, 称为 \mathcal{C} 的 K 理论谱。

2.5 Waldhausen 范畴 K 理论的基本性质

加性定理

定义 2.5.1. 称 Waldhausen 范畴之间的函子 $F', F, F'': \mathcal{B} \to \mathcal{C}$ 给出了一个短正合列 $F' \to F \to F''$,如果它在每个 $B \in \mathcal{B}$ 上的作用都给出了余纤维列,并且每个余纤维化 $A \hookrightarrow B$ 都满足 $F(A) \cup_{F'(A)} F'(B) \to F(B)$ 是余纤维化。

定理 2.5.2 (加性定理). $F' \to F \to F''$ 是函子的短正合列。那么作为 H-空间映射: $F_* \simeq F'_* + F''_*$,从而诱导了群同态之间的加法。

局部化

定义 2.5.3 (扩张公理). Waldhausen 范畴 \mathcal{C} 满足扩张公理, 如果对任何余纤维列之间的映射 $f:(A \to B \to C) \to (A' \to B' \to C')$, 如果 $A \to A', C \to C'$ 是弱等价, 那么 $B \to B'$ 也是弱等价。

定义 2.5.4 (映射柱函子). \mathcal{C} 是 Waldhausen 范畴,一个映射柱函子 T 是一个箭头范畴出发 $\mathcal{C}/\mathcal{C} \to \mathcal{C}$ 的函子,配备上自然变换 $j_1: s \Rightarrow T, j_2: t \Rightarrow T, p: T \Rightarrow t$,满足对每个 $f: A \to B$,有如下交换图

同时满足:

- 1. $T(0 \hookrightarrow A) = A$,并且 p, j_2 诱导了 $Hom(0 \to A, 0 \to B)$,Hom(A, B) 之间的自言同构。
- 2. $j_1 \coprod j_2 : A \coprod B \hookrightarrow T(f)$ 是余纤维化, $\forall f : A \to B$
- 3. 给定 \mathcal{C}/\mathcal{C} 对象之间的态射 $(a,b):f\to f'$ (其中 a,b 描述首尾之间的态射) 如果 a,b 是弱等价,那么 $T(f)\to T(f')$ 也是。
- 4. 给定 \mathcal{C}/\mathcal{C} 对象之间的态射 $(a,b):f\to f',$ 如果 a,b 是余纤维化,那么 $T(f)\to T(f')$ 和 如下态射

$$A'\coprod_A T(f)\coprod_B B' \to T(f')$$

(其中推出的存在性由第二条性质保证)都是余纤维化

定义 2.5.5 (柱公理). $p: T(f) \to B$ 是弱等价。

定理 2.5.6 (Waldhausen 局部化定理). A 是余纤维化范畴, 并配备了两个弱等价 $v(A) \subseteq w(A)$, 使得在 v,w 下 A 都成为 Waldhausen 范畴。如果 (A,w) 满足柱公理,w(A) 满足饱和和扩张公理,那么

$$K(\mathcal{A}^w) \to K(\mathcal{A}, v) \to K(\mathcal{A}, w)$$

是同伦纤维化,其中 A^w 是全体使得 $0 \rightarrow A$ 是弱等价的元素张成的满子范畴。

定理 2.5.7 (Gillet-Waldhausen: 链复形范畴). A 是正合范畴, 在取满射的核下封闭。那么 $A \subseteq \mathbf{Ch}^b(A)$ 诱导了 K 理论空间之间的同伦等价。

定理 2.5.8 (共尾性). (A,v) 是 Waldhausen 范畴,携带有映射柱函子满足柱公理。如果有满射 $\pi: K_0(A) \to G$, \mathcal{B} 为使得 $\pi[B] = 0$ 的对象张成的满子范畴。

那么 $vS_{\bullet}\mathcal{B} \to vS_{\bullet}\mathcal{A} \to BG$ 以及其解环 $K(\mathcal{B}) \to K(\mathcal{A}) \to \Omega BG = G$ 是同伦纤维。特别地 $K_n(\mathcal{B}) \cong K_n(\mathcal{A}), n > 0$,并且 $0 \to K_0(\mathcal{B}) \to K_0(\mathcal{A}) \to G \to 0$ 是短正合列。

逼近定理

定理 2.5.9 (逼近定理). $F: A \rightarrow B$ 是饱和 Waldhausen 范畴之间的正合函子,满足

- 1. 态射 f 是弱等价 \iff 其像 F(f) 是弱等价
- 2. A 存在满足柱公理的映射柱函子
- 3. 如下逼近提升性质 (App) 成立: \mathcal{B} 中态射 $b:F(A)\to V$ 可以分解为 A 重余纤维化 $a:A\hookrightarrow A'$ 在 F 下的像和弱等价 $F(A')\hookrightarrow B_{\circ}$

那么 $wS_{\bullet}A \to wS_{\bullet}B$, 于是 $K(A) \to K(B)$ 都是同伦等价。

消解定理

定理 2.5.10 (消解定理). $\mathcal{P} \subseteq \mathcal{H}$ 是一个全子正合范畴, 使得 \mathcal{P} 对 \mathcal{H} 中满射的核封闭。并且每个 \mathcal{H} 中的对象都有有限 \mathcal{P} -维数, 那么:

$$K(\mathcal{P}) \simeq K(\mathcal{H})$$

定理 2.5.11 (Thomason-Trobaugh 消解定理). $A \subseteq \mathcal{B}$ 都是某个 Abel 范畴的链复形范畴 $Ch(\mathcal{M})$ 的饱和 Waldhausen 子范畴,并且它们在映射锥和平移下封闭。如果 A, \mathcal{B} 的导出范畴是等价的,那么 $KA \simeq K\mathcal{B}$ 。

Dévissage

定理 2.5.12 (Dévissage). $\mathcal{B} \subseteq A$ 是 Abel 范畴之间的嵌入,使得 \mathcal{B} 是正合子范畴、对子对象商对象封闭、任何 \mathcal{A} 中的对象 \mathcal{A} 都有一个有限滤过 $\mathcal{A} = \mathcal{A}_n \supset \cdots \supset \mathcal{A}_0 = 0$,使得 $\mathcal{A}_i/\mathcal{A}_{i-1}$ 是 的对象,那么 $\mathcal{K}(\mathcal{A}) \simeq \mathcal{K}(\mathcal{B})$ 。

证明. 应用 Quillen 定理 A,只需说明逗号范畴 Qi/B 是可缩的。

注记. Waldhausen 范畴的 Dévissage 仍未被解决。

Nisnevich 下降

2.5.1 A^1 -不变性: K 理论基本定理、非连合 K 理论

Todo.

第二部分

现代 K 理论

第三章 ∞ -观点的代数 K 理论

记号: 生像构成的 ∞ -范畴记为 An = N(Kan)

技术性结果: Lurie Straightening Equivalence: $Cocart(\mathcal{C}) \sim Fun(\mathcal{C}, Cat_{\infty})$, 即到 \mathcal{C} 的 coCartesian 纤维化等价于 \mathcal{C} 出发到 Cat_{∞} 的函子。

3.1 $\mathbb{E}_1/\mathbb{E}_{\infty}$ -幺半群和群

定义 3.1.1 (\mathbb{E}_1 -幺半群). \mathcal{C} 是有有限积的 ∞ -范畴,并且有终对象 *。 \mathcal{C} 中的 Cartesian 幺半群 是指一个函子 $X:\Delta^{op}\to\mathcal{C}$ 使得:

- 1. $X_0 \simeq *$
- 2. Segal 映射 $e_i:[1] \to [n]: 0 \mapsto i, 1 \mapsto i+1, i \in \{0, \dots, n-1\}$ 诱导的映射 $X_n \to \prod_{i=0}^{n-1} X_i$ 是等价。

记 $Mon(\mathcal{C}) \subseteq Fun(\Delta^{op}, \mathcal{C})$ 为全体 Cartesian 幺半群张成的子 ∞ -范畴。如果 $\mathcal{C} = An$,它被称 为 \mathbb{E}_1 -幺半群;如果 $\mathcal{C} = Cat_{\infty}$,它被称为幺半 ∞ -范畴。

注记. 特别地,一个 $Mon(Cat_{\infty})$ 的对象可以被 coCartesian 纤维化 $p: \mathcal{C} \to \Delta^{op}$ 描述。准确地说:

一个幺半 ∞-范畴包含一个

- 1. 单纯集 €
- 2. coCartesian 纤维化 $p_{\otimes}: \mathcal{C}^{\otimes} \to \Delta^{op}$
- 3. 对于每个 n, Segal 映射的 coCartesian 提升给出的 $\mathcal{C}_{[n]}^{\otimes} \to \mathcal{C}_{\{i,i+1\}}^{\otimes}$ 给出了等价

$$\mathcal{C}_{[n]}^{\otimes} o (\mathcal{C}_{[1]}^{\otimes})^n$$

这种描述方式是通过将诸多 X_n 视作映射 p_{\otimes} 的纤维完成的。

定义 3.1.2 (\mathbb{E}_1 -群). \mathcal{C} 是有有限积的 ∞ -范畴。一个 \mathcal{C} 中的 Cartesian 幺半群称为 Cartesian 群,如果

$$(pr_1, \circ): X_1 \times X_1 \to X_1 \times X_1: (f, g) \mapsto (f, f \circ g)$$

是等价。这里。由 $X_1 \times X_1 \stackrel{Segal}{\longrightarrow} X_2 \stackrel{d_1:0 \mapsto 0,1 \mapsto 2}{\longrightarrow} X_1$ 给出。

同样记 Cartesian 群张成的满子范畴为 $Grp(\mathcal{C}) \subseteq Mon(\mathcal{C})$ 。

定理 3.1.3 (May's Recognition Principle). 我们有如下等价:

$$Mon(An) \simeq (*/Cat_{\infty})_{>1}$$

$$Grp(An) \simeq (*/An)_{>1}$$

这里 $(*/Cat_{\infty})_{\geq 1}$ 由满足 $\pi_0 coreC \simeq *$ 的 C 张成, 其中 coreC 指极大子 ∞ -群胚。 更具体地说, 我们有等价:

$$B: Grp(An) \leftrightarrows (*/An)_{\geq 1}: \Omega$$

其中 B 是沿单纯集取极限 $\operatorname{colim}_{\Delta^{op}}$, Ω 是 An 中的拉回图表定义的:

特别地对于 $* \to K$, ΩK 可以理解为 $\operatorname{Hom}_K(k,k)$, k 是 * 的像: 这和环路空间的直觉相符。

推论 3.1.4. $X \in Mon(An)$ 是 \mathbb{E}_1 -群 $\iff \pi_0 X_1$ 是群。

证明. 这是因为由 $Mon(An) \simeq (*/Cat_{\infty})$,假定 $X \simeq \operatorname{Hom}_{\mathcal{C}}(x,x)$ 。如果 X 是 \mathbb{E}_1 -群,那么 \mathcal{C} 进一步是 Kan 复形,于是所有 x 的到自身的态射都是等价,于是 $\pi_0 X_1$ 是群。

反过来如果 $\pi_0 X_1$ 是群,那么所有 x 的到自身的态射都是等价。然而极大子群胚 $core \mathcal{C}$ 满足 $\pi_0 core \mathcal{C}$ 是零,这就说明所有态射都是等价,从而 \mathcal{C} 是 Kan 复形。

注记. 这本质上是在说 \mathbb{E}_1 -群和 1-连通空间等价,转换方式是通过 Ω 和 B 完成的。

命题 3.1.5 (\mathbb{E}_1 -群化). 嵌入 $Grp(An) \subseteq Mon(An)$ 有左伴随

$$(-)^{\infty-grp}: Mon(An) \to Grp(An)$$

它由 $X^{\infty-grp} \simeq \Omega BX$ 给出。

证明. 这件事情的本质是 $An \subseteq Cat_{\infty}$ 的嵌入有左伴随 $|-|: Cat_{\infty} \to An$ (将所有态射可逆化: 左 Bousfield 局部化)。这个左伴随限制到 $*/Cat_{\infty}$,etc., 再利用前述等价过渡就给出了结果。 \square

命题 3.1.6. 每个幺半 1-范畴决定了一个幺半 ∞ -范畴, 我们通过描述 coCartesian 纤维化 p_{\otimes} : $C^{\otimes} \to \Delta^{op}$ 来完成这个构造。

定义 $obj(\mathcal{C}^\otimes)=\coprod_{n\geq 0}obj(\mathcal{C})^n$,即其元素可以记为 $(n,x_1,\cdots,x_n)_\circ$ 态射定义为

 $\operatorname{Hom}_{\mathcal{C}^{\otimes}}((n,x),(m,y)) = \{(\alpha,f) | \alpha : [m] \to [n] \in \Delta, f = (f_1,\cdots,f_m), f_j : x_{\alpha(j-1)+1} \otimes \cdots \otimes x_{\alpha(j)} \to y_j \in Mor(\mathcal{C})\}$

态射的复合 $(\alpha, f): (n, x) \to (m, y); (\beta, g): (m, y) \to (k, z)$ 定义为: 第一个分量是 $\alpha \circ \beta: [k] \to [n]$,第二个分量是

$$x_{\alpha\beta(j-1)+1} \otimes x_{\alpha\beta(j)} = \bigotimes_{i=1}^{\beta(j)-\beta(j-1)} (x_{\alpha(\beta(j-1)+i-1)+1} \otimes \cdots \otimes x_{\alpha(\beta(j-1)+i)})$$

那么将 $f_{\beta(i-1)+i}$ 和 g_i 复合就得到了正确的结果。

 p_{\otimes} 定义为遗忘掉第二个分量。我们来说明这是 coCartesian 纤维化。给定 $\alpha:[m] \to [n], (n,x) \in \mathcal{C}^{\otimes}$,其 coCartesian 提升定义为:

$$\alpha_*:(n,x)\to(m,x_{\alpha(0)+1}\otimes\cdots\otimes x_{\alpha(1)},\cdots,x_{\alpha(m-1)+1}\otimes\cdots x_{\alpha(m)})$$

定义 3.1.7. 考虑 P(R) (有限生成投射 R-模的极大子群胚),它在直和下自动构成幺半 1-范畴。 前述构造给出了一个对应的幺半 ∞ -范畴:

$$Proj(R) \in Mon(Grpd_1) \subseteq Mon(An)$$

那么环 R 的 K 理论空间定义为:

$$k(R) = Proj(R)^{\infty - grp} \in Grp(An)$$

定义 3.1.8 (\mathbb{E}_{∞} -幺半群和 \mathbb{E}_{∞} -群). 定义 \mathbb{F}^{op} 为有限集和部分定义映射构成的范畴。记 $< n > = \{1, \dots, n\}$ 。存在一个函子

$$Cut:\Delta^{op}\to \mathbb{F}^{op}$$

将

$$[n] \mapsto \langle n \rangle, \alpha^{op} \mapsto (i \mapsto \begin{cases} undef & i \leq \alpha(0) \\ j & \alpha(j-1) < i \leq \alpha(j) \end{cases}$$
$$undef \quad i > \alpha(n)$$

 \mathcal{C} 是有有限积的 ∞ -范畴, \mathcal{C} 中的 Cartesian 交换幺半群是指一个函子 $X: \mathbb{F}^{op} \to \mathcal{C}$,使得 $X \circ Cut: \Delta^{op} \to \mathcal{C}$ 是一个 Cartesian 幺半群。如果它还是 Cartesian 群,那么称 X 为 Cartesian 交换群。

同样地, 张成的满子范畴分别记为 $CMon(\mathcal{C}), CGrp(\mathcal{C}) \subset Fun(\mathbb{F}^{op}, \mathcal{C})$

命题 3.1.9. 每个对称幺半 1-范畴决定了一个 $CMon(Cat_{\infty})$ 中的对象。仍然通过给出 coCartesian 纤维化 $p_{\infty}: \mathcal{C}^{\otimes} \to \mathbb{F}^{op}$ 完成构造。

定义 $obj(\mathcal{C}^{\otimes})$ 元素形如 $(n, x_1, \cdots, x_n), n \in \mathbb{F}^{op}_{\circ}$ $(n, x) \to (m, y)$ 为 $\alpha : < n > \to < m > 以$ 及 $f_j: \otimes_{i \in \alpha^{-1}(j)} x_i \to y_j$ 。 复合的定义通过 σ 完成。

事实上 p_{\otimes} 沿着 $Cut:\Delta^{op}\to \mathbb{F}^{op}$ 就是遗忘掉交换结构后前文构造的到 Δ^{op} 的 coCartesian 纤维化。

定理 3.1.10. 我们有如下水平伴随对之间的交换图:

$$\begin{array}{ccc} CMon(An) & \xrightarrow{B} & CMon(An) \\ & \downarrow^{Cut^*} & \downarrow^{ev_1} \\ Mon(An) & \xrightarrow{\Omega} & */An \end{array}$$

并且:

1. 上方伴随对限制到 CGrp(An) 使 B 成为了一个全忠实函子

- 2. B,Ω 均取值于 CGrp(An)
- $3. \Omega B: CMon(An) \to CGrp(An)$ 是 $CGrp(An) \subseteq CMon(An)$ 的左伴随
- 4. B 的本质像是 $CGrp(An)_{\geq 1}$ (其中 $CGrp(An)_{\geq i}$ 是指使得 $\pi_j X_1 = 0, \forall j < i$ 的 X 张成的 ∞ -子范畴。

证明. 我们说明最底下的伴随对:

$$\operatorname{Hom}_{Mon(An)}(M, \Omega_x X) \simeq \operatorname{Hom}_{Grp(An)}(M^{\infty - grp}, \Omega_x X)$$

$$\simeq \operatorname{Hom}_{Grp(An)}(\Omega BM, \Omega_x X_x) \simeq \operatorname{Hom}_{(*/An)_{>1}}(BM, X_x) \simeq \operatorname{Hom}_{*/An}(BM, X)$$

上方伴随对是因为对 $B: Mon(An) \rightleftharpoons */An: \Omega$ 使用 $Fun(\mathbb{F}^{op}, -)$ 并限制得到了 CMon(Mon(An)), CMon 之间的限制,一些事实可以说明这就是所求的伴随对。

推论 3.1.11. Mon(An), CMon(An) 的群化是一致的,因此 k(R) 也是 \mathbb{E}_{∞} -群。这是因为对称 幺半范畴给出了 \mathbb{E}_{∞} 幺半 ∞ -范畴。

定义 3.1.12 (半加性和加性 ∞ -范畴). 一个 ∞ -范畴 \mathcal{C} 称为半加性的,如果它有有限余积和积,有零对象,并且每个 $x,y\in\mathcal{C}$, $\begin{pmatrix} \mathrm{id}_x & 0 \\ 0 & \mathrm{id}_y \end{pmatrix}$ 诱导的 $x\sqcup y\to x\times y$ 是等价(这里 0 指 $x\to 0\to y$)。此时记这个积为双积 \oplus 。

一个
$$\infty$$
-范畴 \mathcal{C} 成为加性的,如果剪切映射 $\begin{pmatrix} \mathrm{id}_x & \mathrm{id}_x \\ 0 & \mathrm{id}_x \end{pmatrix}$: $x \oplus x \to x \oplus x$ 是等价。

定理 3.1.13. 对于半加性 ∞ -范畴 \mathcal{C} : $CMon(\mathcal{C}) \to Mon(\mathcal{C}) \to \mathcal{C}$ 是等价; 如果 \mathcal{C} 是加性的,那 \mathcal{C} $\mathcal{$

如果 C 有积,那么 CMon(C),CGrp(C) 分别是半加性和加性的。记 Cat_{∞}^{\times} 为全体有有限积的 ∞ -范畴和保持这些积的函子张成的子范畴, $Cat_{\infty}^{add}\subseteq Cat_{\infty}^{semi-add}\subseteq Cat_{\infty}^{\times}$ 为 Cat_{∞}^{\times} 内张成的全子范畴。那么:

$$CMon: Cat_{\infty}^{\times} \rightarrow Cat_{\infty}^{semi-add}; CGrp: Cat_{\infty}^{\times} \rightarrow Cat_{\infty}^{add}$$

分别是两个嵌入的右伴随。

注记. "Abel 群范畴中的 Abel 群对象/群对象构成的范畴还是 Abel 群范畴。"

3.2 稳定 ∞-范畴

定义 3.2.1 (谱). \mathcal{C} 如果有有限积和拉回(称为有有限极限),那么就有环路函子 $\Omega:*/\mathcal{C}\to */\mathcal{C}$ 。 定义 $Sp(\mathcal{C})=\lim(\cdots\stackrel{\Omega}{\to}*/\mathcal{C}\stackrel{\Omega}{\to}*/\mathcal{C})$ 为 \mathcal{C} 的谱对象 ∞ -范畴。

定理 3.2.2. C 如果有有限极限, 那么遗忘函子

$$Sp(CGrp(\mathcal{C})) \to Sp(\mathcal{C})$$

是等价。

证明. $Sp(CGrp(\mathcal{C})) = CGrp(Sp(\mathcal{C}))$, 因此由定理 3.1.13只需说明 $Sp(\mathcal{C})$ 是加性的,但这是直接计算完成的。

当然我们也有直接的说法: $\Omega: Sp(\mathcal{C}) \to Sp(\mathcal{C})$ 是等价,它可以被分解为 $\Omega: Sp(\mathcal{C}) \to Grp(Sp(\mathcal{C})) \xrightarrow{ev_1} Sp(\mathcal{C})$,只需说明 $Sp(\mathcal{C})$ 的环路 Ω 具有 CGrp 结构。

定义 3.2.3 (谱的同伦群). $Sp(\mathcal{C}) \simeq \lim_{\mathbb{Z}} (*/\mathcal{C})$,于是可以定义 $\Omega^{\infty-i} : Sp(\mathcal{C}) \to \mathcal{C}$ 为射入极限图表中第 i 分量的函子。

定义 $\pi_i(X) = \pi_0(\Omega^{\infty+i}X)_{\circ}$

特别地, $f: X \to Y \in Sp(\mathcal{C})$ 是等价 \iff 诱导了同伦群的等价:这是因为这等价于每个 $\Omega^{\infty-i}f$ 是等价。

总结上述讨论:

定理 3.2.4. 1. Sp(C) 有有限极限, 并且极限可逐次计算。

- $2. \Omega: Sp(\mathcal{C}) \to Sp(\mathcal{C})$ 是等价
- 3. Sp(C) 是加性的。

定理 3.2.5 (Recognition Principle).

$$B^{\infty}: CGrp(An) \to Sp$$

是全忠实的,并且其本质像是所有连合谱: $\pi_i X = 0, \forall i < 0$ 。

这里 B^{∞} 是由 $B^n: CGrp(An) \to CGrp(An)$ 得到的,诸 B^n 相容: 因为 $\Omega BX \simeq X, \forall X \in CGrp(An)$ (Ω 下移同伦群,而 B 的定义就是上移同伦群),从而给出了 B^{∞} 。特别地:

$$\pi_i(B^{\infty}X) = \pi_i(X_1, *), \forall X \in CGrp(An)$$

证明. 一切内容只是 $Sp(CGrp(An)) \simeq Sp(An) = Sp$ 。本质像是全体连合谱的原因是 B 的本质像是 $CGrp(An)_{\geq 1}$ 。

定义 3.2.6.

$$Cat^{st}_{\infty}, Cat^{lex}_{\infty}, Cat^{rex}_{\infty}$$

分别是由:稳定 ∞ -范畴和保持所有有限极限和有限余极限的函子;有有限极限的 ∞ -范畴和保持所有有限极限的函子;有有限余极限的 ∞ -范畴和保持所有有限余极限的函子。

3.3 ∞-算畴

定义 3.3.1. \mathbb{F}^{op} 中的态射称为惰性的:如果它在其定义域上是双射;称为活性的:如果它处处有定义。

定义 3.3.2 (∞ -算畴). 一个 (多色对称) ∞ -算畴是指 ∞ -范畴之间的函子 $p: \mathcal{O} \to \mathbb{F}^{op}$, 满足:

1. 每个 \mathbb{F}^{op} 中的惰性映射都有 coCartesian 提升: 即有一个 \mathcal{O} 中的提升态射满足它是 co-Cartesian 边

- 2. coCartesian 提升给出的 $\mathcal{O}: \mathbb{F}_{int}^{op} \to Cat_{\infty}$ 满足 Segal 条件: 即 $\mathcal{O}_0 \simeq *, \mathcal{O}_n \simeq \prod \mathcal{O}_1$ (通过 Segal 映射 ρ_1, \dots, ρ_n 诱导)
- 3. 对于 $x, y \in \mathcal{O}, p(x) = \langle m \rangle, p(y) = \langle n \rangle$, 由上一条件,记 $y = (y_1, \dots, y_n), y_i \in \mathcal{O}_1$ 。那么如下图表是拉回图表

$$\operatorname{Hom}_{\mathcal{O}}(x,y) \xrightarrow{(\rho_{1},\cdots,\rho_{n})} \prod_{i=1}^{n} \operatorname{Hom}_{\mathcal{O}}(x,y_{i})$$

$$\downarrow^{p} \qquad \qquad \downarrow^{p}$$

$$\operatorname{Hom}_{\mathbb{F}^{op}}(< m >, < n >) \xrightarrow{(\rho_{1},\cdots,\rho_{n})} \prod_{i=1}^{n} \operatorname{Hom}_{\mathbb{F}^{op}}(< m >, < 1 >)$$

称 \mathcal{O} 中的态射是惰性的,如果它是 $\mathbb{\Gamma}$ 中的惰性态射的 p-coCartesian 提升;称 \mathcal{O} 中的态射是活性的,如果它是 $\mathbb{\Gamma}$ 中的活性态射的提升。

记 Op_{∞} 为 $Cat_{\infty}/\mathbb{F}^{op}$ 中 ∞ -算畴和保持惰性态射的函子张成的 ∞ -子范畴。

命题 3.3.3 (∞-算畴是对称幺半 ∞-范畴的判别). 由于 ∞-算畴满足 Segal 条件, coCartesian unstraightening 给出了一个函子

$$(-)^{\otimes}: CMon(Cat^{\infty}) \to Op_{\infty}$$

此时一个 ∞ -算畴 $p: \mathcal{O} \to \mathbb{F}^{op}$ 是一个对称 $\mathbf{\Delta + \infty}$ -范畴 (即是上述函子的本质像),当且仅当如下条件成立:

 $1. \ \forall < n > \in \mathbb{F}^{op}, (a_1, \dots, a_n) \in \mathcal{O}_n$,存在 \mathcal{O}_1 中的元素 $a \simeq a_1 \otimes \dots \otimes a_n$;即存在 $g: (a_1, \dots, a_n) \to g$ 是 $f_n : < n > \to < 1 > (这里 <math>f_n$ 是唯一的活性映射)的提升,满足:

$$g: \operatorname{Hom}_{\mathcal{O}_1}(a,-) \implies \operatorname{Hom}_{\mathcal{O}}^{act}((a_1,\cdots,a_n),-)$$

是等价.

其中 $\operatorname{Hom}_{\mathcal{O}}^{act}((a_1, \cdots, a_n), b)$ 是指 $\operatorname{Hom}_{\mathcal{O}}((a_1, \cdots, a_n), b)$ 沿 $f_n: * \to \operatorname{Hom}_{\mathbb{F}^{op}}(< n >, < 1 >)$ 的拉回。

2. 前文的张量积 g 是结合的: 即 $a_1 \otimes a_2 \otimes a_3 \simeq (a_1 \otimes a_2) \otimes a_3 \simeq a_1 \otimes (a_2 \otimes a_3)$

证明. 对比定义, Segal 条件自动满足, 惰性映射自动有 coCartesian 提升, 只需说明活性映射有 coCartesian 映射, 但这就是条件。

定义 3.3.4 (松幺半函子和强幺半函子). 对于对称幺半 ∞ -范畴 $p: \mathcal{C}^{\otimes} \to \mathbb{F}^{op}, q: \mathcal{D}^{\otimes} \to \mathbb{F}^{op}$: 其间的 ∞ -算畴态射称为松幺半函子; 其间将 p-coCartesian 边映至 q-coCartesian 边的 ∞ -算畴态射称为强幺半函子。

如果一个 ∞ -范畴 \mathcal{C} 有有限积,那么它的积理应给出一个对称幺半结构。这被称为 Cartesian 幺半结构;同理对于余积我们也有 coCartesian 幺半结构。构造参见 [Lur17, 2.4]。

定义 3.3.5 (∞ -算畴上的代数). 对于两个 ∞ -算畴 $p: \mathcal{O} \to \mathbb{F}^{op}, p': \mathcal{O}' \to \mathbb{F}^{op}$ 。定义 $Fun_{\mathbb{F}^{op}}(\mathcal{O}, \mathcal{O}')$ 为 $Fun(\mathcal{O}, \mathcal{O}')$ 沿 $p: * \to Fun(\mathcal{O}, \mathbb{F}^{op})$ 的拉回。取 $Fun^{Op_{\infty}}(\mathcal{O}, \mathcal{O}')$ 为 ∞ -算畴态射在 $Fun_{\mathbb{F}^{op}}(\mathcal{O}, \mathcal{O}')$ 张成的全子 ∞ -范畴。

对于 ∞-算畴 \mathcal{O} 以及 \mathcal{C} 上的一个对称幺半结构 \mathcal{C}^{\otimes} → \mathbb{F}^{op} , 记:

$$Alg_{\mathcal{O}}(\mathcal{C}) := Fun^{Op_{\infty}}(\mathcal{O}, \mathcal{C}^{\otimes})$$

为 C 中 O-代数的 ∞ -范畴。

更一般地,定义 \mathcal{O} -幺半范畴的 ∞ -范畴为由满足 Segal 条件的 $F:\mathcal{O}\to\mathcal{C}$ (即张成的全子范畴 $\mathcal{O}Mon(\mathcal{C})\subseteq Fun(\mathcal{O},\mathcal{C})$ 。现在对于另一个 ∞ -算畴 \mathcal{O}' ,以及 ∞ -算畴态射 $\alpha:\mathcal{O}'\to\mathcal{O}$ 。如果 \mathcal{C} 是 $\mathcal{O}Mon(Cat_{\infty})$ 的元素,考虑它的 coCartesian unstraightening $\mathcal{C}^{\otimes}\in Op_{\infty}/\mathcal{O}$ 。定义 $Alg_{\mathcal{O}'/\mathcal{O}}(\mathcal{C}^{\otimes})$ 为拉回:

$$\begin{array}{cccc} Alg_{\mathcal{O}'/\mathcal{O}}(\mathcal{C}^{\otimes}) & \longrightarrow Fun^{Op_{\infty}}(\mathcal{O}',\mathcal{C}^{\otimes}) \\ & & \downarrow & & \downarrow \\ * & \xrightarrow{\alpha} & Fun^{Op_{\infty}}(\mathcal{O}',\mathcal{O}) \end{array}$$

例子. 在第二个定义中取 \mathcal{O} 为 $\mathrm{id}: \mathbb{F}^{op} \to \mathbb{F}^{op}$, 那么 $Alg_{\mathcal{O}'/\mathcal{O}}(\mathcal{C}^{\otimes})$ 自动变为 $Alg_{\mathcal{O}'}(\mathcal{C}^{\otimes})$ 。

定理 3.3.6. $Alg_{\mathcal{O}}(\mathcal{C}^{\times}) \simeq \mathcal{O}Mon(\mathcal{C})$,特别地 $Alg_{\mathbb{C}omm}(\mathcal{C}^{\times}) \simeq CMon(\mathcal{C})$ 。基于此,我们将这个 ∞ -算畴记为 $\mathbb{C}omm$ 或 \mathbb{E}_{∞} 。

定理 3.3.7 (Day Covolution). \mathcal{C}^{\otimes} 是对称幺半 ∞ -范畴,满足 \mathcal{C} 是弱可缩的 (即 $\mathcal{D} \to Fun(\mathcal{C}, \mathcal{D})$ 是全忠实的 $\forall \mathcal{D}$,特别地:有始对象或终对象的 ∞ -范畴自动是弱可缩的)。对于 ∞ -算畴 \mathcal{O} ,我们有构造 $Day(\mathcal{C}^{\otimes}, \mathcal{O})$ 满足:

- 1. $Day(C^{\otimes}, \mathcal{O}) \to \mathbb{F}^{op}$ 给出了一个 ∞-算畴,其中基底范畴是 $Fun(C, \mathcal{O}_1)$ 。
- 2. Day Convolution 构造是 ∞ -算畴函子性的: 即对于 ∞ -算畴态射 $q: \mathcal{C}^{\otimes} \to \mathcal{C}'^{\otimes}, p: \mathcal{O} \to \mathcal{O}'$, 诱导的 Day Convolution 之间的态射也是 ∞ -算畴态射
- 3. 如果 O 来自某个余完备对称幺半范畴 D,并且 $-\otimes_D$ (在两个变量)都和余极限交换,那么 $Day(C^\otimes, D^\otimes)$ 给出了 Fun(C, D) 的对称幺半结构。此时幺半结构有着具体的描述:

$$(F_1 \otimes_{Day} F_2)(c) \simeq \operatorname{colim}_{d \otimes_{\mathcal{C}} d' \to c} (F_1(d) \otimes_{\mathcal{D}} F_2(d'))$$

(最后一条是 convolution 名称的直观)

定义 3.3.8. \mathcal{O} 是 ∞ -算畴, $F: \mathcal{I} \to \mathcal{O}_1$ 是一个图表, 那么 F 的极限/余极限称为算畴的 (operadic), 如果 $\forall x_1, \dots, x_n, y \in \mathcal{O}_1$:

$$\operatorname{Hom}_{\mathcal{O}}^{act}((\operatorname{colim} F, x_2, \cdots, x_n), y) \simeq \lim \operatorname{Hom}_{\mathcal{O}}^{act}((F(-), x_2, \cdots, x_n), y)$$

或

$$\operatorname{Hom}_{\mathcal{O}}^{act}((x_1, x_2, \cdots, x_n), \lim F) \simeq \lim \operatorname{Hom}_{\mathcal{O}}^{act}((x_1, x_2, \cdots, x_n), F(-))$$

- 一个 ∞ -算畴称为带点的/半加性的/加性的/稳定的: 如果其基底范畴 \mathcal{O}_1 是带点的/半加性的/加性的/稳定的,并且这些性质所需的极限/余极限是算畴的。具体来说:
 - 1. O 称为带点 ∞-算畴, 如果 O_1 有零对象, 并且始对象和终对象都是算子的。记 $Op_\infty^* \subseteq Op_\infty$ 为由有算畴的终对象的 ∞-算畴和保持终对象的态射张成的子范畴;记 $Op_\infty^{pt} \subseteq Op_\infty^*$ 为带点 ∞-算畴张成的全子范畴。

- 2. O 称为半加性/加性 ∞ -算畴,如果 O_1 是半加性/加性的,并且有限积和有限余积都是算子的。记 $Op_{\infty}^{\times} \subseteq Op_{\infty}$ 为由有算畴的有限积的 ∞ -算畴和保持这些积的态射张成的子范畴;记 $Op_{\infty}^{add} \subseteq Op_{\infty}^{\times mi-add} \subseteq Op_{\infty}^{\times}$ 为半加性/加性 ∞ -算畴张成的全子范畴。
- 3. \mathcal{O} 称为稳定 ∞ -算畴,如果 \mathcal{O}_1 是稳定的,并且其中所有有限极限和有限余极限都是算子的。记 $Op_{\infty}^{lex} \subseteq Op_{\infty}$ 为由有算畴有限极限和保持所有有限极限的态射张成的子范畴;记 $Op_{\infty}^{st} \subseteq Op_{\infty}^{lex}$ 为稳定 ∞ -算畴张成的全子范畴。

定义 3.3.9. 对于 ∞ -算畴 \mathcal{O} , 定义如下 ∞ -算畴

$$\mathcal{O}^{Op_{\infty}}_*, CMon^{Op_{\infty}}(\mathcal{O}), CGrp^{Op_{\infty}}(\mathcal{O}), Sp^{Op_{\infty}}(\mathcal{O})$$

考虑 1-范畴 [1] 上取最小值给出的幺半结构:它给出了 $[1]^{\min} \to \mathbb{F}^{op}$ 。现在对于 \mathcal{O}_{∞}^* ,定义

$$\mathcal{O}^{Op_{\infty}}_{\star} \subseteq Day([1]^{\min}, \mathcal{O})$$

为 $Fun([1], \mathcal{O}_1)$ 中所有使得 F(0)=* 的 F 的全子范畴张成的子 ∞ -算畴(这里全子范畴 $\mathcal{D}\subseteq \mathcal{O}_1$ 张成子 ∞ -算畴是指全体 $d\simeq (d_1,\cdots,d_n), d_i\in \mathcal{D}$ 张成的全子范畴:它的确是 ∞ -算畴)

类似地,对于 $\mathcal{O} \in Op_{\infty}^{\times}$,定义

$$CGrp^{Op_{\infty}}(\mathcal{O}) \subseteq CMon^{Op_{\infty}}(\mathcal{O}) \subseteq Day((\mathbb{\Gamma}^{op})^{\times}, \mathcal{O})$$

为全子范畴 $CGrp(\mathcal{O}_1) \subseteq CMon(\mathcal{O}_1) \subseteq Fun(\mathbb{F}^{op}, \mathcal{O}_1)$ 张成的子 ∞ -算畴。这里 $(\mathbb{F}^{op})^{\times}$ 指 Cartesian 幺半结构。

最后,对于 $\mathcal{O} \in Op^{lex}_{\infty}$,定义

$$Sp^{Op_{\infty}}(\mathcal{O}) \subseteq Day((\mathbb{F}^{op})^{\wedge}, \mathcal{O})$$

为 $Sp(\mathcal{O}_1) \subseteq Fun(\mathbb{F}^{op}, \mathcal{O}_1)$ 张成的子 ∞ -算畴,其中 $\mathbb{F}^{op} \subseteq */An$ 指包含 \mathbb{S}^0 并在有限余极限下 封闭的最小的子 ∞ -范畴, \mathbb{F}^{op} 上的(拓扑意义下)Smash Product 给出了一个幺半结构 $(\mathbb{F}^{op})^{\wedge}$, $Sp(\mathcal{O}_1)$ 指约化切除函子张成的全子范畴。

现在 ∞-算畴态射

$$\mathbb{C}omm \to [1]^{min} \to (\mathbb{F}^{op})^{\times} \to (\mathbb{F}^{op})^{\wedge}$$

通过 Day Convolution 的函子性诱导了

$$\mathcal{O} \leftarrow \mathcal{O}_*^{Op_\infty} \leftarrow CMon^{Op_\infty}(\mathcal{O}) \leftarrow CGrp^{Op_\infty}(\mathcal{O}) \leftarrow Sp^{Op_\infty}(\mathcal{O})$$

定理 3.3.10. 上述四个构造是四个嵌入 $Op^{pt}_{\infty} \subseteq Op^*_{\infty}, Op^{add}_{\infty} \subseteq Op^{semi-add}_{\infty} \subseteq Op^{\times}_{\infty}, Op^{st}_{\infty} \subseteq Op^{lex}_{\infty}$ 的右伴随。

下面我们希望上述构造能够将 $\mathcal{O} \simeq \mathcal{C}^{\otimes}$ 的对称幺半性质继承:这是由如下判别给出的。

命题 3.3.11 (幺半性质的继承). 如果 $\mathcal{O} \simeq \mathcal{C}^{\otimes}$ 使得 \mathcal{C} 余完备并且所有余极限都是算畴的(即 $\mathbf{n} - \otimes_{\mathcal{C}} -$ 交换),并且如下嵌入有左伴随:

$$*/\mathcal{C} \subseteq Ar(\mathcal{C}), CMon(\mathcal{C}) \subseteq Fun(\mathbb{F}^{op}, \mathcal{C})$$

$$CGrp(\mathcal{C}) \subseteq Fun(\mathbb{F}^{op}, \mathcal{C}), Sp(\mathcal{C}) \subseteq Fun(\mathbb{F}^{op}, \mathcal{C})$$

 $(Ar(C) = Fun(\Delta^1, C)$ 那么前述四个构造都是对称幺半 ∞ -范畴,同时余完备且所有余极限都是算畴的。并且 ∞ -算畴态射

$$\mathcal{O} \leftarrow \mathcal{O}_*^{Op_\infty} \leftarrow CMon^{Op_\infty}(\mathcal{O}) \leftarrow CGrp^{Op_\infty}(\mathcal{O}) \leftarrow Sp^{Op_\infty}(\mathcal{O})$$

各自有强幺半的左伴随

$$(-)_+: \mathcal{O} \to \mathcal{O}^{Op_{\infty}}_*, Free^{CMon}: \mathcal{O} \to CMon^{Op_{\infty}}(\mathcal{O})$$

$$Free^{CGrp}: \mathcal{O} \to CGrp^{Op_{\infty}}(\mathcal{O}), \Sigma^{\infty}: \mathcal{O} \to Sp^{Op_{\infty}}(\mathcal{O})$$

当然其他箭头还有各自的左伴随, 例如 B^{∞} 和 $(-)^{\infty-grp}$ 。

于是我们终于完成了重要命题的证明:

定义 3.3.12. Sp = Sp(An) 上有典范的对称幺半结构: $Sp^{\otimes} = Sp^{Op_{\infty}}(An^{\times})$,并且它和所有余极限交换。

3.4 Е∞-环谱

定义 3.4.1. 对任何对称幺半 ∞-范畴 \mathcal{C}^{\otimes} ,定义

$$CAlg(\mathcal{C}^{\otimes}) = Alg_{\mathbb{C}omm}(\mathcal{C}^{\otimes})$$

特别地,对于携带前述定义幺半结构的 Sp, 我们定义

$$CAlg = Alg_{\mathbb{C}omm}(Sp^{\otimes})$$

为 \mathbb{E}_{∞} -环谱的 ∞ -范畴。特别地, \mathbb{E}_{∞} -环谱有一个基底的谱:它由

$$CAlg \simeq Fun^{Op_{\infty}}(\mathbb{C}omm, Sp^{\otimes}) \to Sp$$

这里的箭头是由限制到 $<1>\in \mathbb{F}^{op}$ 的原像上给出的 $<1>\to Sp$ 的像。

例子. $CRing \simeq CAlg(Ab^{\times})$

例子. 现在 $CAlg(An^{\times}) \simeq CMon(An)$,考虑 $S[-] := \Sigma^{\infty}(-)_{+} : An^{\times} \to Sp^{\otimes}$: 由于命题 3.3.11, $\Sigma^{\infty}, (-)_{+}$ 都是强幺半的,那么我们有函子

$$S[-]: CMon(An) \rightarrow CAlg$$

定理 3.4.2. 考虑 K 理论空间 $k(R) \in CGrp(An)$, 连合谱 $B^{\infty}k(R)$ 具有 \mathbb{E}_{∞} -环谱结构。

证明. $\mathbf{P}(R)$ 上的 \oplus , \otimes 使得 $\mathbf{P}(R) \subseteq CMon(Grpd)$ 进一步变为 $CAlg(CMon^{Op_{\infty}}(Grpd_1^{\times})) \subseteq CAlg(CMon^{Op_{\infty}}(An^{\times}))$ 中的对象。但是命题 3.3.11保证了 $(-)^{\infty-grp}$, B^{∞} 都是强幺半的,从而 $B^{\infty}k(R)$ 被送入 CAlg(Sp) = CAlg 中,因此是 \mathbb{E}_{∞} -环谱。

稳定同伦论的一个重要纲领就是谱范畴表现得如同 Ab, \mathbb{E}_{∞} -环谱范畴则表现得如同 CRing。 我们简要介绍几个与之相关的性质。

定义 3.4.3 (Eilenberg-Maclane 函子). 我们有带点空间和导出范畴之间的伴随

$$\tilde{C}_{\bullet}: */An \rightleftharpoons \mathcal{D}_{\geq 0}(\mathbb{Z}): K$$

其中 \tilde{C}_{\bullet} 是取约化奇异链复形; K 是取空间 $\prod K(H_i(C_{\bullet}),i)$ 。 这个伴随对在谱范畴中变成

$$C_{\bullet}: Sp \rightleftarrows \mathcal{D}(\mathbb{Z}): H$$

其中 $C_{\bullet}(X) \simeq \operatorname{colim} \tilde{C}_{\bullet}(\Omega^{\infty-i}X)[-i]$, $HC = (K(C), K(C[1]), K(C[2]), \cdots)$ 。 现在引入幺半结构,前述函子进一步提升成 ∞ -算畴之间的函子

$$H: \mathcal{D}(\mathbb{Z})^{\otimes_{\mathbb{Z}}^{\mathbb{L}}} \to Sp^{\otimes}$$

即 H 是松幺半函子。更一般地: $C_{\bullet}(-,R)=C_{\bullet}(-)\otimes_{\mathbb{Z}}^{L}R:Sp\to\mathcal{D}(R)$ 有左伴随 $H:\mathcal{D}(R)\to Sp$ 并且是松幺半函子。

- **定义 3.4.4** (模谱). 1. 定义 ∞ -算畴 $\mathbb{E}_1 = \mathbb{A}ssoc \to \mathbb{F}^{op}$ 如下: $\mathbb{A}ssoc$ 的对象为有限集,态射 $I \to J$ 是一个 \mathbb{F}^{op} 中的态射配合上为每个原像 $\alpha^{-1}(j)$ 指定的顺序。态射的复合由 \mathbb{F}^{op} 的复合以及字典序给出。现在显然的投影函子 $\mathbb{A}ssoc \to \mathbb{F}^{op}$ 给出了一个 ∞ -算畴, $\mathbb{A}ssoc_1 = \{*\}$ 。
 - 2. 定义 ∞ -算畴 $\mathbb{L}Mod \to \mathbb{F}^{op}$ 如下: $\mathbb{L}Mod$ 的对象为 $(I,S), I \in \mathbb{F}^{op}, S \subseteq I$ 。 $(I,S) \to (J,T)$ 包含一个 $\mathbb{A}ssoc$ 中的态射 $\alpha: I \to J$ 使得 $\alpha(S) = T$ 并且 $\forall t \in T, \alpha^{-1}(t) \cap S$ 包含的恰好 是 $\alpha^{-1}(t)$ 的极大元。态射的复合由 $\mathbb{A}ssoc$ 给出。现在显然的投影函子 $\mathbb{L}Mod \to \mathbb{F}^{op}$ 给出 了一个 ∞ -算畴, $\mathbb{L}Mod_1 = \{a = (<1>,\varnothing), m = (<1>,<1>)\}$,它们应当分别被理解 为来自 A 和 M。我们关于 $\alpha^{-1}(t)$ 的要求恰好使得来自 M 的因子总是位于最右侧,于是 这给出的是左 A 模。

现在 $* \in \mathbb{A}ssoc_1$ 射至 $a \in \mathbb{L}Mod_1$ 给出了唯一的 ∞ -算畴态射 $\mathbb{A}ssoc \to \mathbb{L}Mod$,从而诱导了 $a^* : Alg_{\mathbb{L}Mod}(\mathcal{C}^{\otimes}) \to Alg_{\mathbb{A}ssoc}(\mathcal{C}^{\otimes})$ 现在对于 $A \in Alg_{\mathbb{A}ssoc}(\mathcal{C}^{\otimes})$,定义

$$LMod_{A}(\mathcal{C}^{\otimes}) \longrightarrow Alg_{\mathbb{L}Mod}(\mathcal{C}^{\otimes})$$

$$\downarrow \qquad \qquad \downarrow a^{*}$$

$$* \xrightarrow{A} Alg_{\mathbb{A}ssoc}(\mathcal{C}^{\otimes})$$

现在回到 Sp,每个 \mathbb{E}_{∞} -环谱 R 都给出了一个 $Alg_{\mathbb{A}ssoc}(Sp^{\otimes})$ 的元素 (通过 $CAlg \to Alg_{\mathbb{A}ssoc}$)。 那么定义 R-模谱构成的 ∞ -范畴为

$$Mod_R := LMod_R(Sp^{\otimes})$$

定理 3.4.5. R 是离散环,

$$\mathcal{D}(R) \simeq LMod_{R[0]}(\mathcal{D}(R)^{\otimes_{R}^{L}}) \xrightarrow{H} LMod_{HR}(Sp^{\otimes}) \simeq Mod_{HR}$$

是等价。

下面我们引入环谱的张量积:

定理 3.4.6. $LMod_A(\mathbb{C}^{\otimes})$ 上有标准的张量积结构: 它可以通过

$$M \otimes_A N \simeq \operatorname{colim}_{\Lambda^{op}} Bar(M, A, N)$$

计算得到。其中 $Bar(M,A,N):\Delta^{op}\to \mathcal{C}$ 将 [n] 送至 $M\otimes A^n\otimes N$ 。并且 A 是张量积单位元。 $hom_{Mod_R}:Mod_R^{op}\times Mod_R\to Sp$ 自然提升到 $Mod_R^{op}\times Mod_R\to Mod_R$,并且它满足 $hom_{-\otimes_R}$ 伴随。

对于 CAlg 中的态射 $R \to S$, $S \otimes_R -: Mod_R \to Mod_S$ 是对称幺半函子,并满足结合律。同时它还有遗忘函子右伴随 $Mod_S \to Mod_R$ 是的它作用在基底谱上是 id。这个遗忘函子也有右伴随:它是 $hom_R(S,-): Mod_R \to Mod_S$ 。

下面我们引入环谱的局部化:

定义 3.4.7. $R \in CAlg$ 是 \mathbb{E}_{∞} -环谱, $M \in Mod_R$, $S \subseteq \pi_0(R)$ 。称 $M \in S$ -局部的, 如果 $\forall s \in S$:

$$M \simeq \mathbb{S} \otimes M \stackrel{s \otimes \mathrm{id}_M}{\longrightarrow} R \otimes M \to M$$

是等价。

定义 3.4.8. 对于 $s \in \pi_0(R)$, 定义局部化

$$M[s^{-1}] := \operatorname{colim}(M \xrightarrow{\cdot s} M \to \cdots)$$

对于任何 $S \subseteq \pi_0(R)$: 如果 $T \subseteq S$ 是有限集, $T = \{s_1, \cdots, s_n\}$, 定义 $M[T^{-1}] = M[(s_1 \cdots s_n)^{-1}]$, 那么定义局部化

$$M[S^{-1}] := \operatorname{colim}_{finite} T \subseteq M[T^{-1}]$$

命题 3.4.9. $-[S^{-1}]: Mod_R \to Mod_R$ 是到 S-局部模的 Bousfield 局部化。

证明. 像是 S-局部的只是因为观察其在同伦群上的作用即可,而同伦群能够检测等价。 $-[S^{-1}]$ 仍然是 Mod_R 中对象则相对不平凡。

我们还进一步希望环的局部化仍然是环,即 \mathbb{E}_{∞} -结构在前述余极限构造下被保持。这的确正确:

定理 3.4.10. $R[S^{-1}]$ 有着典范的 \mathbb{E}_{∞} -环谱结构, $R \to R[S^{-1}]$ 是 \mathbb{E}_{∞} -环谱间的映射。并且:

$$R[S^{-1}] \otimes_R -: Mod_R \to Mod_{R[S^{-1}]}$$

诱导了到 S-局部 Mod_R 对象的 Bousfield 局部化。并且我们还有局部化的泛性质: $\forall T \in CAlg$,

$$\operatorname{Hom}_{CAlg}(R[S^{-1}],T) \subseteq \operatorname{Hom}_{CAlg}(R,T)$$

是全体将 $S \subseteq \pi_0(R)$ 射入 $\pi_0(T)$ 单位的那些态射。

3.5 群化定理

定理 3.5.1 (McDuff-Segal 群化定理). 对任何 $E \in Sp, M \in CMon(An)$,定义 $E[-] = S[-] \otimes_S E$ 。 那么有典范等价

$$(E[M])[\pi_0(M)^{-1}] \to E[M^{\infty-grp}]$$

(作为 S[M]-模谱) 特别地:

$$H_*(M^{\infty-grp},\mathbb{Z}) \simeq H_*(M,\mathbb{Z})[\pi_0(M)^{-1}]$$

证明. 首先回忆命题 3.3.11给出的伴随 $S[-]:An^\times\rightleftarrows Sp^\otimes:\Omega^\infty$ 。由于两侧都(至少是松)幺半函子,我们有 $CAlg(An^\times)\rightleftarrows CAlg(Sp^\otimes)$ 之间的伴随。但是由于 $CAlg(An^\times)$ 就是 CMon(An),这给出了 \mathbb{E}_∞ -环谱和 \mathbb{E}_∞ -幺半群之间的伴随。

现在

$$\operatorname{Hom}_{CAlg}(\mathbb{S}[M^{\infty-grp}],R) \simeq \operatorname{Hom}_{CMon(An)}(M^{\infty-grp},\Omega^{\infty}R)$$

 $\subseteq \operatorname{Hom}_{CMon(An)}(M,\Omega^{\infty}R) \simeq \operatorname{Hom}_{CAlg}(\mathbb{S}[M],R)$

其中含入是那些将 $\pi_0(M)$ 映为 $\pi_0(\Omega^{\infty}R)$ 单位的映射: 这是因为等同到 $(*/Cat_{\infty})_{\geq 1}$ 来看, $\infty-grp$ 的 π_0 平凡。

但是局部化泛性质就直接说明了

$$(\mathbb{S}[M])[\pi_0(M)^{-1}] \simeq \mathbb{S}[M^{\infty-grp}]$$

推论 3.5.2. $H_*(k(R)_0, \mathbb{Z}) \simeq \operatorname{colim} H_*^{grp}(GL_n(R), \mathbb{Z})$

证明, 由群化定理:

$$H_*(k(R), \mathbb{Z}) \simeq H_*(Proj(R), \mathbb{Z})[\pi_0 Proj(R)^{-1}] \simeq \operatorname{colim}(H_*(Proj(R), \mathbb{Z}) \xrightarrow{\cdot [R]} \cdots)$$

但是 $Proj(R) \simeq \coprod_{[P]} BGL(P)$ 。通过分离 0 所在的连通分支,我们发现在第一项中它是 $BGL_1(R)$,第二项 (通过 ·[R] 后变为 $BGL_2(R)$),因此右侧就是 $colim\ H_*(BGL_n(R),\mathbb{Z}) \simeq colim\ H_*^{grp}(GL_n(R),\mathbb{Z})$ 。

3.6 循环不变判别与 Quillen + 构造

对于 $M \in CMon(An) = CAlg(An^{\times})$,一个自然的事实是我们也可以定义 M 上的模对象: 即 $LMod_M(An^{\times})$ 。类似地,做 "局部化"

$$T(M,s) \simeq \operatorname{colim}(M \xrightarrow{\cdot s} \cdots)$$

也给出了一个模。现在我们始终假定 $s \in \pi_0(M)$ 满足 $(\pi_0(M))[s^{-1}] \simeq \pi_0(M)^{grp}$ 。然而我们发现一个问题: T(M,s) 并不一定是 s-局部的。

对于环谱的情况我们直接使用同伦群就得到了结果。在这里尽管 An 也能够使用同伦群探测等价,但是这里我们出现的是基点问题! 如果我们将 T(M,s) 上的乘 s 映射写为一个 $2 \times \infty$

的图表的余极限, 我们发现问题出现在 \mathbb{E}_{∞} -幺半群给出的交换同伦: 即两种乘 s 之间的同伦: 它 当然可能不是 $\mathrm{id} \in \mathrm{Hom}_{Fun(M,M)}(s^2,s^2)$ 。为了严格地探测这个问题,我们定义如下映射。

对于 $M \in CMon(An)$ 以及 $m \in M$, \mathbb{E}_{∞} -群胚给出了 $\mathbb{F}^{op} \to An$ 的函子,并将 < n > 送到 M^n 。那么函子性给出了图表

$$\mathfrak{S}_{n} \longrightarrow \operatorname{Hom}_{\mathbb{F}^{op}}(\langle n \rangle, \langle n \rangle) \longrightarrow \operatorname{Hom}_{An}(M^{n}, M^{n}) \longrightarrow \operatorname{Hom}_{An}(\{(m, \cdots, m)\}, M^{n}) \simeq M^{n}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \downarrow_{n}$$

$$* \xrightarrow{f_{n}: i \mapsto 1} \operatorname{Hom}_{\mathbb{F}^{op}}(\langle n \rangle, \langle 1 \rangle) \longrightarrow \operatorname{Hom}_{An}(M^{n}, M) \longrightarrow \operatorname{Hom}_{An}(\{(m, \cdots, m)\}, M) \simeq M$$

然而第一行箭头 $\mathfrak{S}_n \to M^n$ 将离散空间 \mathfrak{S}_n 的每个点都射为 $\{(m,\cdots,m)\}$ 。因此上述图表延展为

$$\mathfrak{S}_{n} \longrightarrow \{(m, \cdots, m)\}$$

$$\downarrow_{\text{id}} \qquad \qquad \downarrow_{\text{min}}$$

$$\mathfrak{S}_{n} \longrightarrow M^{n}$$

$$\downarrow_{\text{min}} \qquad \downarrow_{\text{min}}$$

$$\downarrow_{\text{min}} \qquad \downarrow_{\text{min}}$$

于是这诱导了

$$\mathfrak{S}_n \to \{(m,\cdots,m)\} \times_{M^n} M^n \times_M \{*\}$$

其中 * 是上述图表中 * 在第二行中的像,于是自然是 $\{m^n\}$ 。现在先计算左边的拉回就得到了:

$$\mathfrak{S}_n \to \{m^m\} \times_M \{m^m\} \simeq \Omega_{m^n} M$$

于是这就给出了 $\mathfrak{S}_n \to \pi_0 \Omega_{m^n} M = \pi_1(M, m^n)$ 。

定理 3.6.1 (循环不变判别). $M \in CMon(An)$, $s \in M$ 使得 $\pi_0(M)[s^{-1}] \simeq \pi_0(M)^{grp}$ 。那么如下等价:

- $1. s: T(M,s) \to T(M,s)$ 是等价
- 2. T(M,s) 的每个连通分支的基本群是 Abel 的
- 3. T(M,s) 的每个连通分支的基本群是超 Abel 的: 即不存在非平凡的完美子群
- 4. $\forall m \in M, \mathfrak{S}_3 \to \pi_1(M, m^3) \to \pi_1(T(M, s), m^3)$ 将 (123) 映为平凡元
- 5. $\exists n \geq 2$ 使得 $\forall m \in M, \mathfrak{S}_n \to \pi_1(M, m^n) \to \pi_1(T(M, s), m^n)$ 将 $(12 \cdots n) \in \mathfrak{S}_n$ 映为平凡 元

在上述条件成立时: T(M,s) 有自然的 \mathbb{E}_{∞} -幺半群结构, 并且 $M^{\infty-grp} \simeq T(M,s)$ 。

证明. $a \implies$ 结论. 我们不证明 T(M,s) 的 \mathbb{E}_{∞} -幺半群结构,它和命题 3.4.9内容相近。T(M,s) 是一个 \mathbb{E}_{∞} -群,因为它的 π_0 是群,而和推论 3.1.4平行的结果立刻说明它是 \mathbb{E}_{∞} -群。因此 $M \to T(M,s)$ 穿过 $M^{\infty-grp} \to T(M,s)$ 。现在由 Yoneda 引理,只需证明 $\forall X \in CGrp(An)$,

$$\operatorname{Hom}_{CMon(An)}(T(M,s),X) \simeq \operatorname{Hom}_{CMon(An)}(M^{\infty-grp},X)$$

进一步我们可以替换成 M/CMon(An)。此时 $\operatorname{Hom}_{CMon(An)}(M^{\infty-grp},X) \simeq \operatorname{Hom}_{CMon(An)}(M,X)$,而 3.4.9 又说明 T(M,s) 是 M 的到 $\{s\}$ -局部对象的 Bousfield 局部化。X 由于是 \mathbb{E}_{∞} -群当然是 s-局部的。因此: $\operatorname{Hom}(T(M,s),X) = \operatorname{Hom}(M,X)$ 。这就验证了 Yoneda 引理从而说明了结果。

结论 $\implies b$. Eckmann-Hilton 论证。不同连通分支是等价的,因为这是 \mathbb{E}_{∞} -群。

 $b \implies c, b \implies d, d \implies e \not= \mathcal{N}_{\circ}$

 $c \implies e$. 取 n = 6, 那么 $\mathfrak{A}_6 \subseteq \mathfrak{S}_6$ 是完美子群。因此 $(12 \cdots 6) \in \mathfrak{A}_6$ 的像平凡。

 $e \implies a$. 由共尾性: $T(M,s) \simeq \operatorname{colim}(M \xrightarrow{s^n} M \to \cdots)$, 那么这里的乘 s 映射变为

$$\operatorname{colim} \left(\begin{array}{c} M \xrightarrow{s^n} M \longrightarrow \cdots \\ s \middle\downarrow & \downarrow^{r^n} \middle\downarrow s \\ M \xrightarrow{s^n} M \longrightarrow \cdots \end{array} \right)$$

其中 $\tau^n \in \operatorname{Hom}_{Fun(M,M)}(s^{n+1},s^{n+1})$ 。那么如果它在 T(M,s) 中的像平凡,乘 s 映射就成为等价。但是这个条件就是 $\mathfrak{S}_n \to \pi_1(M,m^n)$ 将 $(12\cdots n)$ 映为单位元。

定理 3.6.2 (Kervaire-Quillen +-构造). $An^{hypo} \subseteq An$ 是全体超 Abel 空间构成的全子范畴: 其中超 Abel 空间 X 是指使得 $\pi_1(X,e), \forall e \in X$ 是超 Abel 群的空间。那么:

嵌入 $An^{hypo} \subseteq An$ 有左伴随 $(-)^+: An \to An^{hypo}$ 。 $X \to X^+$ 诱导了等价 $S[X] \xrightarrow{\sim} S[X^+]$,从而诱导了同调上的同构。更进一步地, $(-)^+$ 还保持有限积。

证明. 定理 2.1.4.

命题 3.6.3. $M \in CMon(An)$ 中有 $s \in \pi_0(M)$ 使得 $\pi_0(M)[s^{-1}] = \pi_0(M)^{grp}$, 那么:

$$T(M,s)^+ \simeq T(M^+,s) \simeq M^{\infty-grp}$$

证明. $T(M^+,s)$ 的每个连通分支的基本群都是 Abel 的,因为由定理 3.6.1的第五个条件,注意 到 $\mathfrak{A}_6 \subseteq \mathfrak{S}_6$ 是超 Abel 子群,它到 T(M,s) 的群同态穿过 $\pi_1(M^+)$ 。但是 M^+ 已经是超 Abel 空间,于是将 \mathfrak{A}_6 映为单位元。因此 $(12\cdots 6)$ 在 $\pi_1(T(M,s))$ 中的像总是平凡。

我们现在来验证 $T(M^+, s)$ 满足 $(-)^+$ 的泛性质: 即 $\forall Z \in An^{hypo}$

$$\operatorname{Hom}_{An}(T(M^+,s),Z) \simeq \lim(\cdots \to \operatorname{Hom}_{An}(M^+,Z) \xrightarrow{s^*} \operatorname{Hom}_{An}(M^+,Z))$$

 $\simeq \lim(\cdots \to \operatorname{Hom}_{An}(M,Z) \xrightarrow{s^*} \operatorname{Hom}_{An}(M,Z)) \simeq \operatorname{Hom}_{An}(T(M,s),Z) \simeq \operatorname{Hom}_{An}(T(M,s)^+,Z)$ 于是这就说明了 $T(M^+,s) \simeq T(M,s)^+$ 。

现在由定理 3.6.1: $T(M^+,s) \simeq (M^+)^{\infty-grp}$ 。由于 $S[M] \simeq S[M^+]$ 以及群化定理定理 3.5.1, $E[M^{\infty-grp}] \simeq E[(M^+)^{\infty-grp}], \forall E \in Sp$,从而诱导了同调群上的同构。但是2.2.2的同调 White-head 定理就说明了 $M^{\infty-grp} \simeq (M^+)^{\infty-grp}$,这说明了结果。

于是现在我们终于了群化和 + 构造得到的 K 理论空间是一样的:

推论 3.6.4. $k(R) = K_0(R) \times BGL(R)^+$

证明. $k(R) \simeq Proj(R)^{\infty-grp} \simeq T(Proj(R),[R])^+ \simeq \mathrm{colim}(Proj(R) \xrightarrow{\cdot [R]} Proj(R) \to \cdots)$ 但是观察 0 在右侧的连通分支就说明 $k_0(R) \simeq (\mathrm{colim}\,BGL_n(R))^+ \simeq BGL(R)^+$,于是这就说明了一切。

第四章 稳定 ∞ -范畴的 K 理论

4.1 Waldhausen S-构造

现在的目标是定义一个函子 $k: Cat^{st}_{\infty} \to CGrp(An)$ 。 这很明显是 Waldhausen 构造在连合 谱上的推广。

定义 4.1.1. 定义 $S_n \mathcal{C} \subseteq Fun(Ar(\Delta^n), \mathcal{C})$ 为如下函子 F 张成的全子范畴:

- 1. $F(i > i) = 0, \forall i = 0, \dots, n$
- 2. $Ar(\Delta^n)$ 中的方块全部被映为推出-拉回方块。

截断到 1-单形上来看,这恰好就是 Waldhausen 构造!

这是因为 $Ar(\Delta^n)$ 中的 0-单形是 $\operatorname{Hom}_{sSet}(\Delta^0 \times \Delta^1, \Delta^n) = \operatorname{Hom}_{sSet}(\Delta^1, \Delta^n) \stackrel{Yoneda}{=} \operatorname{Hom}_{\Delta}([1], [n]),$ 因此恰好形如 $i \leq j$ 的形式。

而 $Ar(\Delta^n)$ 中的 1-单形则同理是 $Hom_{sSet}(\Delta^1 \times \Delta^1, \Delta^n)$, 它恰好是 Waldhausen 构造图表 中的长方形, etc.

现在通过限制到 $(0 \le 1), (0 \le 2), \cdots, (0 \le n)$,这恰好就说明 $S_n(\mathcal{C}) \simeq Fun(\Delta^{n-1}, \mathcal{C})$,于是自 然 $S_n(\mathcal{C})$ 也是稳定的。进一步我们发现 $S_n(\mathcal{C})\subseteq Fun(Ar(\Delta^n),\mathcal{C})$ 在单纯形的面映射和退化映 射下保持,于是这就给出了

$$S: Cat^{st}_{\infty} \to sCat^{st}_{\infty}$$

定义 $k(\mathcal{C}) = \Omega |coreS(\mathcal{C})|$ ($sCat_{\infty}^{st} \xrightarrow{core} sCat_{\infty} \xrightarrow{|-|} (Cat_{\infty})_{\geq 1} \xrightarrow{\Omega} CGrp$) 这和经典的 Waldhausen 构造是几乎 一样的,其中 core 在于我们指定 wS_{\bullet} 的态射为弱等价。

特别地, $\pi_0|coreS(\mathcal{C})|=0$ 是因为 $\pi_0(coreS(\mathcal{C}))_0=0$: $S_0(\mathcal{C})\simeq *$ 。

我们事实上还有 Quillen Q 构造的推广版。取 $TwAr(\mathcal{C})$ 为 */ $An \to An$ 沿 Hom: $\mathcal{C}^{op} \times \mathcal{C} \to An$ 的拉回。 $TwAr(\Delta^n)$ 直观上也是 $(n+1) \times (n+1)$ 的上三角图表,只不过箭头都指向直角顶点。即:

那么类似 S-构造,我们给出了 Q-构造 $Q(\mathcal{C}) \in sCat_{\infty}$ 。即 $Q_n(\mathcal{C}) \subseteq Fun(TwAr(\Delta^{nop}),\mathcal{C})$ 为将方块映为 \mathcal{C} 中拉回的全子范畴。类似 S 构造中限制到一条边,将图表限制到对角线附近的 折线上,取 $J_n \subseteq TwAr(\Delta^n)^{op}$ 为全体 0-单形和 $(i \leq j)s.t.j \leq i+1$ 的 1-单形张成的子范畴,那 $\Delta Q_n(\mathcal{C}) = Fun(J_n,\mathcal{C})$ 。

定理 4.1.2 (Q=S).

$$k(C) \simeq \Omega |asscat(core(Q(C)))|$$

其中 $|-|: Cat^{\infty} \to An$ 是对所有态射做局部化;

$$asscat: sAn \rightarrow Cat_{\infty}$$

是 $\Delta \to Cat_{\infty}: [n] \mapsto [n]$ 沿 Yoneda 嵌入 $\Delta \to Func(\Delta^{op}, An)$ 的左 Kan 扩张。

4.2 万有加性不变量与加性定理

这一章节中我们严格地阐述 K 理论的本质是 ∞ -版本的万有加性不变量:即对某个群胚 (\mathbb{E}_{∞} -幺半群)取群化。

定理 4.2.1. Cat_{∞}^{st} 是半加性的。

 $Sketch.\ Cat_{\infty}^{st}$ 上的乘积从 Cat_{∞} 中继承。[Lur17, Prop 2.4.3.19] 指出我们只需要找到 ($\Delta: x \to x \times x$) \Rightarrow id 的自然变换,使得 $x \simeq x \times x \to x \times x \to x$ (以及对称的态射)是等价。这是因为 考虑 \mathcal{C} 上的 coCartesian 幺半结构,它给出了 $(-)^{\square}: Cat_{\infty} \to Op_{\infty}$ 。特别地, $\mathcal{C} \in Cat_{\infty}^{st}$ 有有限余积,因此它进一步变为:

$$(-)^{\oplus}: Cat_{\infty}^{st} \to CMon(Cat_{\infty})$$

于是这就给出了一个 $\oplus_{\mathcal{C}}: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$,这就是满足要求的自然变换 $\oplus: \Delta \Rightarrow \mathrm{id}$ 。

4.2.1 稳定 ∞-范畴的工具: Verdier 序列

定义 4.2.2 (Verdier).

1. Cat_{∞}^{st} 中的序列 $A \to \mathcal{B} \to \mathcal{C}$ 称为 Verdier 序列,如果它同时是纤维列和余纤维列,即:

是推出-拉回方块。称它左/右分裂,如果两个函子都有左/右伴随;称它分裂如果两个函子 都有左伴随和右伴随。

- 2. 能够嵌入到 Verdier 序列的 $\mathcal{B} \to \mathcal{C}$ 称为 Verdier 投射, 形如 $\mathcal{A} \to \mathcal{B}$ 则称为 Verdier 内射。 称 Verdier 投射/内射是左/右分裂的,如果它们有左/右伴随
- 3. Verdier 方块是 Cat^{st}_{∞} 中的拉回方块

使得竖直的态射都是 Verdier 投射。一个 Verdier 方块称为左/右分裂/分裂的,如果竖直 的 Verdier 投射是左/右分裂/分裂的。

4. 到有有限极限的范畴的函子 $F: Cat_{\infty}^{st} \to \mathcal{E}$ 称为加性的,如果 F(0) 是终对象并且 F 将分 裂的 Verdier 方块映为 ε 的拉回方块;称为 Verdier 局部化,如果它加性并将所有 Verdier 方块映为 \mathcal{E} 中的拉回方块;称为 Karoubi 局部化,如果它是 Verdier 局部化并且将稠密嵌 人(使得大范畴的对象都典范地是小范畴若干对象的余极限)映为等价。

对应的 $Fun(Cat^{st}_{\infty}, \mathcal{E})$ 的全子范畴记为

$$Fun^{Kar}(Cat^{st}_{\infty}, \mathcal{E}) \subseteq Fun^{Verd}(Cat^{st}_{\infty}, \mathcal{E}) \subseteq Fun^{add}(Cat^{st}_{\infty}, \mathcal{E})$$

一个加性函子 $F:Cat^{st}_{\infty}\to\mathcal{E}$ 称为群状的,如果它穿过 $CGrp(\mathcal{E})$ 。对应的全子范畴记为 $Fun^{grp}(Cat^{st}_{\infty},\mathcal{E})_{\circ}$

例子.

1. 由于 Cat_{∞}^{st} 是半加性的,那么: $A \times C \longrightarrow C$ 是分裂 Verdier 方块。

$$\downarrow \qquad \downarrow \\
\mathcal{A} \longrightarrow 0$$

- $2. C \rightarrow C \rightarrow 0, A \rightarrow A \times C \rightarrow A$ 总是分裂 Verdier 序列。
- 3. 作为推论: 加性函子保持有限积。于是:

$$Fun^{add}(Cat^{st}_{\infty},\mathcal{E}) \simeq Fun^{add}(Cat^{st}_{\infty},CMon(\mathcal{E})) \simeq CMon(Fun^{add}(Cat^{st}_{\infty},\mathcal{E}))$$

其中第一个等价是定理 3.1.13。并且更进一步

$$Fun^{grp}(Cat^{st}_{\infty}, \mathcal{E}) \simeq CGrp(Fun^{add}(Cat^{st}_{\infty}, \mathcal{E}))$$

定理 4.2.3 (Cat^{st}_{∞} 中的纤维列和余纤维列). 给定 Cat^{st}_{∞} 中的 $p: \mathcal{B} \to \mathcal{C}$:

$$fib(p) \simeq \{b \in \mathcal{B} | p(b) \simeq 0\} \subseteq \mathcal{B}$$

由于 p 是正合的,fib(p) 在有限直和以及纤维/余纤维序列下封闭。于是它是 B 的稳定 ∞ -子范畴,并且它给出了正确的纤维列。

给定 Cat^{st}_{∞} 中的 $f: A \to \mathcal{B}$, f 的本质像是指所有和 f(a) 等价的对象张成的全子 ∞ -范畴。 f 的正合性保证了它在有限直和下封闭。取

$$cofib(f) \simeq \mathcal{B}/\mathcal{A} = \mathcal{B}[\{ \text{mod } \mathcal{A} \ equiv. \}^{-1}]$$

其中 $\operatorname{mod} A \ equiv.$ 是指所有 \mathcal{B} 中的 $\varphi: x \to y$ 满足其纤维/余纤维是 f 的本质像生成的稳定 ∞ -子范畴中的对象。可以验证它给出了正确的余纤维列。

定理 4.2.4 (Verdier). $F: A \to \mathcal{B}$ 是稳定 ∞ -范畴间的正合函子

- 1. F 是 Verdier 投射 \iff 它是一个局部化,在这种情况下他是对 mod fib(F) 的局部化
- 2. F 是左/右分裂 Verdier 投射 ⇔ 它有全忠实左/右伴随(即它是左/右 Bousfield 局部化)
- 3. F 是 Verdier 内射 \iff 它全忠实并且本质像在 \mathcal{B} 的收缩中封闭 (即 $\forall B \in essimg, \exists A, i: A \to B, r: B \to A \in essimg, s.t. A \to B \to A = \mathrm{id}_A$)
- 4. F 是左/右分裂 Verdier 内射 ⇔ 它是全忠实的并且有左/右伴随

更进一步地, 左分裂/右分裂 Verdier 序列的左/右伴随诱导了倒转顺序的右分裂/左分裂 Verdier 序列。

分裂 Verdier 序列

$$\mathcal{A} \xrightarrow{g} \mathcal{B} \xrightarrow{q} \mathcal{C}$$

给出了 $gq' \simeq cofib(q \Rightarrow q') \simeq cofib(g' \Rightarrow g) \simeq g'q[1]$ 。并且 $\forall b \in \mathcal{B}$,有推出-拉回方块

$$\downarrow b \longrightarrow fg(b)
\downarrow \qquad \qquad \downarrow
q'p(b) \longrightarrow fgq'p(b)$$

以及

$$\begin{array}{ccc}
fg'qp(b) & \longrightarrow fg'(b) \\
\downarrow & & \downarrow \\
qp(b) & \longrightarrow b
\end{array}$$

最后这个推出-拉回方块在 Cat_{∞}^{st} 中转化为拉回方块:

$$\mathcal{B} \xrightarrow{g \Rightarrow gq'p} Ar(\mathcal{A}) \downarrow t \downarrow t \\
\mathcal{C} \xrightarrow{qq'} \mathcal{A}$$

4.2.2 加性定理

定义 4.2.5. 给定稳定 ∞ -范畴 Δ 中的推出方块

$$\begin{bmatrix}
0 & \longrightarrow & [n-i] \\
\downarrow & & \downarrow +i \\
[i] & \longrightarrow & [n]
\end{bmatrix}$$

给出了 Verdier 方块:

$$Q_n(\mathcal{C}) \longrightarrow Q_i(\mathcal{C})$$

$$\downarrow \qquad \qquad \downarrow$$

$$Q_{n-i}(\mathcal{C}) \longrightarrow Q_0(\mathcal{C})$$

现在考虑一个加性函子 $F: Cat^{st}_{\infty} \to An$,那么我们有 $F(Q(\mathcal{C})) \in sAn$ 。 定义 $Span^F(\mathcal{C}) = asscat(F(Q(\mathcal{C})))$ 。其中

$$asscat: sAn \rightarrow Cat_{\infty}$$

是 $\Delta \to Cat_{\infty} : [n] \mapsto [n]$ 沿 Yoneda 嵌入 $\Delta \to Func(\Delta^{op}, An)$ 的左 Kan 扩张。

定理 4.2.6 (Waldhausen 加性定理). 如果 $F: Cat_{\infty}^{st} \to An$ 是加性的, 那么:

$$|Span^F(-)|: Cat^{st}_{\infty} \to An$$

也是加性的。其中 $|-|: Cat^{\infty} \to An$ 是对所有态射做局部化;

特别地: $k: Cat^{st}_{\infty} \to An$ 是加性的: 因为 $k(\mathcal{C}) \simeq \Omega |asscat(core(Q(\mathcal{C})))| \simeq \Omega |Span^{core}(\mathcal{C})|$, 而 core 是加性的。第一个等价是定理 4.1.2。

我们分四步证明。

Step 1. $p: \mathcal{C} \to \mathcal{D}$ 如果是分裂 Verdier 投射,那么它是 biCartesian 纤维化。这几乎是如下引理:

引理 4.2.7. $g: \mathcal{B} \rightleftarrows \mathcal{A}: f \not\in Cat_{\infty}$ 中的伴随对,余单位 $c: gf \implies id_{A_{\infty}}$ 那么:

1. A 中态射 $\varphi: x \to y$ 是 f-coCartesian 的 \iff 如下是 A 中推出方块

$$\begin{array}{ccc}
gf(x) & \longrightarrow gf(y) \\
\downarrow & & \downarrow \\
x & \longrightarrow y
\end{array}$$

2. 如果 A 有推出, f 保持推出, g 全忠实。那么 f 是 coCartesian 纤维化。

证明. 回忆 coCartesian 边: $\varphi: x \to y$ 是 f-coCartesian 的 \iff 如下是拉回方块:

$$\operatorname{Hom}(y,z) \longrightarrow \operatorname{Hom}(x,z)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Hom}(f(y),f(z)) \longrightarrow \operatorname{Hom}(f(x),f(z))$$

但是将 $\operatorname{Hom}(f(-), f(-)) = \operatorname{Hom}(gf(-), -)$ 代人,两个方块之间只相差 $\operatorname{Hom}(-, z)$ 作用。

对于第二部分,对于 \mathcal{B} 中态射 $\varphi': x' \to y', x \in \mathcal{A}s.t.f(x) \simeq x'$ 。由于 g 全忠实: $\operatorname{Hom}(z,fg(y')) = \operatorname{Hom}(g(z),g(y')) = \operatorname{Hom}(z,y')$,因此 $y' \simeq fg(y')$ 。于是 $\varphi': f(x) \to y'$ 通过伴随诱导了 $gf(x) \to g(y')$ 。现在取推出方块:

作用 f 给出了:

因此 $\varphi: x \to y$ 是 φ' 的提升,它还是 f-coCartesian 提升。这就说明了结果。

回到第一步:对p和它的全忠实(定理 4.2.4)左伴随/右伴随使用引理就完成了证明。

Step 2. $p: \mathcal{C} \to \mathcal{D}$ 如果是分裂 Verdier 投射 (从而是正合 biCartesian 纤维化),那么 $Span^F(p): Span^F(\mathcal{C}) \to Span^F(\mathcal{D})$ 也是 biCartesian 纤维化。

取 $Span(\mathcal{C}) = Asscat(core(Q(\mathcal{C})))$ 。我们先证明 Span (即 F = core 的情况):

Claim. $Span(\mathcal{C})$ 中的一个态射 $x \to z$, 即一个 $x \leftarrow y \to z$ 是 Span(p)-coCartesian 的,如果 $y \to x$ 是 p-Cartesian 的且 $y \to z$ 是 p-coCartesian 的。

为了证明这件事,我们需要完成的是如下形状图表的提升问题。

其中方块都是拉回。然而 $w \to y$ 由 $y \to x$ 的 p-Cartesian 性给出; $w \to \bullet$ 由 $p(w) \to u$ 的 coCartesian 提升给出。 $w \to \bullet$ 现在是 p-coCartesian 的,于是我们就给出了 $\bullet \to z, \bullet \to v$ 。左 侧方块是拉回由 coCartesian 性的定义恰好仅当 $w \to \bullet$ 是 p-coCartesian 的,于是这就完成了证明。

现在我们来说明 Span(p) 是 biCartesian 纤维化。原因是给定 $x \leftarrow y \rightarrow z$ 。对任何 $p(x) \leftarrow y' \rightarrow z'$,存在 p-Cartesian 提升 $x \leftarrow y$,再做 coCartesian 提升 $y \rightarrow z$ 。再用上一 Claim,我们就完成了 coCartesian 提升;Cartesian 一侧论证是完全对偶的。

对于一般的情况,论证大体是类似的。 $\mathcal{E}\subseteq Q_1(\mathcal{C})$ 取为左侧边是 p-Cartesian,右侧边是 p-coCartesian 的全子范畴,那么我们只需说明

这大体来说就是前一段落的论证。论述细节不表。同样我们有:

那么由于 F 是加性的,作用到第二个方块上,拉回图表恰好说明 $F(\mathcal{E}) \to F(Q_1(\mathcal{C})) \to \mathrm{Hom}([1], Span^F(\mathcal{C}))$ 的像都是 $Span^F(p)$ -coCartesian 边;作用到第一个方块上说明这样的提升是存在的。于是这就完成了第二步的证明。

Step 3. 如果拉回图表的一条边是 biCartesian 纤维化,那么它在 $|-|: Cat_\infty \to An$ (对所有态射做局部化)下的作用也是拉回图表。假定给出拉回图表 $\mathcal{A} \longrightarrow \mathcal{B}$ 。使得 $\mathcal{B} \to \mathcal{D}$

$$\downarrow \qquad \downarrow \\
\tilde{\mathcal{C}} \xrightarrow{p} \tilde{\mathcal{D}}$$

是 biCartesian 纤维化,那么 $A \to \mathcal{C}$ 也是 biCartesian 纤维化。取 $\mathcal{B} \to \mathcal{D}$ 的 straightening $F: \mathcal{D} \to Cat_{\infty}$,由于拉回在 coCartesian Straightening 下变为复合: $A \to \mathcal{C}$ 的 Straightening 是 $F \circ p_{\circ}$

现在由于 $\mathcal{D} \to Cat_{\infty} \to An$ 将每个态射 $\varphi: x \to y$ 映为一个左伴随 $F(\varphi)$ (右伴随是 Cartesian 提升),那么进一步就变成了等价 $|F(\varphi)|$ 。因此它穿过 $|\mathcal{D}|$,设为 $|F|: |\mathcal{D}| \to An$ 。于是利用 left fibration 和到 An 的 Straightening/Unstraightening 等价,我们有拉回:

$$Un^{l}(|F| \circ |p|) \longrightarrow Un^{l}(|F|)$$

$$\downarrow \qquad \qquad \downarrow$$

$$|C| \longrightarrow \mathcal{D}$$

于是只需说明这真的是原有拉回方块在 | - | 下的像。但是这是因为我们有 unstraightening 的直接描述 (Lurie):

$$|Un^{cocart}(F)| \simeq |\operatorname{colim}(D \to Cat_{\infty})| \simeq \operatorname{colim}(D \to Cat_{\infty} \to An)$$

 $\simeq \operatorname{colim}(|D| \to An) \simeq Un^{l}(|F|)$

这就完成了证明。

Step 4. $Span^F(-)$ 将分裂 Verdier 方块映为 Cat_{∞} 中的拉回。

由于 $Q_n = Fun(J_n, -)$ 将拉回映为拉回,并保持全忠实的伴随函子: 那么它将分裂 Verdier 方块映为分裂 Verdier 方块。于是 F(Q(-)) 变为拉回方块。现在只需观察 asscat 的作用: 事实上这是因为对于 sAn 中的对象,我们总有全忠实的

$$asscat(X\times_YZ) \rightarrow asscat(X)\times_{asscat(Y)}asscat(Z)$$

这是因为我们有拉回图表:

$$\operatorname{Hom}_{asscat(X)}(x,y) \xrightarrow{} X_{1}$$

$$\downarrow \qquad \qquad \downarrow^{(d_{1},d_{0})}$$

$$* \xrightarrow{(x,y)} X_{0} \times X_{0}$$

现在我们只需处理这个映射的本质满性: 然而 $core\ asscat(X) \simeq |X^{\times}|$ (X^{\times} 是 Cartesian 幺半结构), 我们只需说明:

$$\pi_0|X^{\times} \times_{Y^{\times}} Z^{\times}| \to \pi_0(|X^{\times}| \times_{|Y^{\times}|} |Z^{\times}|)$$

是满的,如果 $asscat(X) \rightarrow asscat(Y)$ 是 biCartesian 纤维化 (这被 Step2 保证了)。

右侧的连通分支可以表示为 $x \in X_0, y \in Z_0$ 以及 $|Y^{\times}|$ 中联结它们的像一条路。然而这样的路可以通过 biCartesian 纤维化提升为 X 中的一条路,于是这就给出了一个 $\pi_0|X^{\times}\times_{Y^{\times}}Z^{\times}|$ 中的原像。

Step 2, 3, 4 共同说明了结果。□

引理 4.2.8. $F: Cat^{st}_{\infty} \to An$ 如果是群状的,并且 $\mathcal C$ 是稳定 ∞ -范畴。那么:

$$F(Ar(\mathcal{C})) \simeq F(\mathcal{C}) \times F(\mathcal{C})$$

$$F(Q_n(\mathcal{C})) \simeq F(\mathcal{C})^{2n+1}$$

并且 $Span^F(\mathcal{C}) \simeq BF(\mathcal{C})$

注记. 我们能够感性上相信它成立: 群状函子抹去了拉回方块的信息只保留了加性结构。那么 Q_n 中对角线上的 (2n+1)-折线就完全描述了其在 F 下的像。事实上 Waldhausen 加性定理最初的样子就是 $k(Ar(\mathcal{C})) \simeq k(\mathcal{C}) \times k(\mathcal{C})$ 。

定理 4.2.9. 如果 $F: Cat^{st}_{\infty} \to An$ 是群状函子,那么 Cat_{∞} 中的拉回方块

$$\operatorname{Hom}_{\operatorname{Span}^F(\mathcal{C})} \longrightarrow 0/\operatorname{Span}^F(\mathcal{C})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$* \longrightarrow \operatorname{Span}^F(\mathcal{C})$$

在 | - | 的作用下给出了

$$F(\mathcal{C}) \xrightarrow{\qquad \qquad } * \\ \downarrow \qquad \qquad \downarrow_0 \\ * \xrightarrow{\qquad \qquad } |Span^F(\mathcal{C})|$$

因此 $F(\mathcal{C}) \simeq \Omega |Span^F(\mathcal{C})|_{\circ}$

证明. 前一引理已经说明了 $Span^F(\mathcal{C}) \simeq |Span^F(\mathcal{C})| \simeq BF(\mathcal{C})$,但是 $F(\mathcal{C})$ 已经是 \mathbb{E}_{∞} -群(回忆 Verdier 序列的例 3),那么 $\Omega BF(\mathcal{C}) \simeq F(\mathcal{C})$,这就直接说明了结果。

下面我们终于能够完成万有加性不变量这一性质的刻画了:

定理 4.2.10. $Fun^{grp}(Cat^{st}_{\infty}, CGrp(An)) \subseteq Fun^{add}(Cat^{st}_{\infty}, An)$ 有左伴随 $(-)^{grp} \simeq \Omega|Span^{(-)}(\bullet)|$,并且

$$k \simeq core^{grp}$$

因此 K-理论是取群胚 core 的万有群化:这实际上回到了最初的 Grothendieck 群的定义。

证明. $\Omega|Span^F(\mathcal{C})|$ 是加性的,并且 Ω 保持极限,因此这给出了一个群状函子。我们来说明 $L\simeq\Omega|Span^{(-)}(\bullet)|$ 是左 Bousfield 局部化:由 [Lur09, Prop 5.2.7.4],只需找到一个自然变换 $\eta: \mathrm{id} \implies L$ 使得 $\eta_{Lx}: Lx \to LLx, L\eta_x: Lx \to LLx$ 都是等价。

现在前一引理的计算事实上说明了 $F(\mathcal{C}) \simeq \operatorname{Hom}_{Span^F(\mathcal{C})}(0,0), \forall F$ 加性,于是这自动给出了:

$$\operatorname{Hom}_{Span^F(\mathcal{C})}(0,0) \to \operatorname{Hom}_{|Span^F(\mathcal{C})|}(0,0)$$

这实际上就是 id $\implies L$ 的自然变换。上一定理直接帮助我们验证了这个 η 满足要求,因此这说明 L 是 Bousfield 局部化。

最后是计算本质像,但是前一定理帮助说明了所有群状函子 F 都具有形式 $\Omega|Span^F(-)|$,这就完成了证明。

4.3 纤维化定理和局部化定理

我们的目标是证明交换环的局部化诱导了 K 理论上的长正合列,由于交换环 R 的 K 理论在这个情形下实际上是 $\mathcal{D}^{perf}(R)$ 。我们首先对局部化诱导的稳定范畴进行讨论。

定义 4.3.1. 称 $f: R \to S$ 是 \mathbb{E}_{∞} -环之间的局部化,如果乘积 $\mu: S \otimes_R S \to S$ 是等价。

引理 4.3.2. 对于 \mathbb{E}_{∞} -环之间的局部化 $f: R \to S$, 我们有分裂 Verdier 序列

$$Mod_{S} \xrightarrow{f^{*} \longrightarrow} Mod_{R} \xrightarrow{incl.} Mod_{R} \xrightarrow{hom_{R}(I,-)} Mod_{R}^{S-tors}$$

其中 f^* 是遗忘函子, $I \simeq fib(f:R \to S)$, $Mod_R^{S-tors} \subseteq Mod_R$ 是所有使得在 $S \otimes_R -$ 下消失的 R-模谱张成的稳定 ∞ -全子范畴。

定理 4.3.3. 如果 $f: R \to S$ 是 $f: R \to R[s^{-1}], s \in \pi_0(R)$; 或者 R = HA, S = HB, f 是某个 $\varphi: A \to B$ 的导出局部化(指诱导的 $RHom_A(B, -): \mathcal{D}(A) \to \mathcal{D}(B)$ 是右 Bousfield 局部化,等价地 $B \otimes_A^L(B/_{\omega}^LA) \simeq 0$)诱导得到的,那么 f 是 \mathbb{E}_{∞} -环的局部化。

我们现在需要研究的是离散环的到处局部化 $f:R\to S$ 给出的 $\mathcal{D}(S)\to\mathcal{D}(R)\to\mathcal{D}(R)^{S-tors}$ 诱导的 K 理论上的态射。回忆 $\mathcal{D}(R)\simeq Mod_{HR}$ 。

定义 4.3.4. $f: A \to \mathcal{B}$ 是稳定 ∞ -范畴之间的正合函子,那么定义相对 Quillen Q-构造 $Q(f) \in sCat_{\infty}^{*}$ 为如下拉回

$$Q(f) \longrightarrow Null(\mathcal{B})$$

$$\downarrow \qquad \qquad \downarrow d_0$$

$$Q(\mathcal{A}) \longrightarrow Q(\mathcal{B})$$

其中 $Null(\mathcal{B}): \Delta^{op} \to An$ 定义如下: 它满足 $asscat(F(Null()C)) \simeq 0/Span^F(\mathcal{C})$ 。具体构造为: $[0] \star -: \Delta^{op} \to \Delta^{op}$ 诱导了 $dec: sAn \to sAn$ (déclage)。 $[0] \subseteq [0] \star [n]$ 和 $[n] \subseteq [0] \star [n]$ 分别诱导了自然变换:

$$p: dec \Rightarrow const \ ev_0; \quad d_0: dec \Rightarrow id$$

定义 $Null(\mathcal{C}) = fib_0(p : decQ(\mathcal{C}) \to const\mathcal{C})$

定理 4.3.5. $F: Cat^{st}_{\infty} \to An$ 如果是群状的,那么:

$$|F(Q(f))| \to |F(Q(\mathcal{A}))| \to |F(Q(\mathcal{B}))|$$

是纤维列。并且如下等价:

- 1. F 是 Verdier 局部化并且将 Verdier 投射映为 π_0 -满射
- 2. 对任何 Verdier 內射 $i: A \to B$, $|F(Q(i))| \to F(B/A)$ 是等价
- $3. B^{\infty}F: Cat_{\infty}^{st} \to Sp$ 是 Verdier 局部化

定理 4.3.6 (Waldhausen 纤维化定理). 对于稳定子 ∞ -范畴 $A \subseteq \mathcal{B}_{\circ}$ K 是一个有限 ∞ -范畴 (几何实现具有有限同伦型), 取 $Fun^A(K,\mathcal{B}) \subseteq Fun(K,\mathcal{B})$ 为所有对象和逐点 modA-等价的自然变换张成的子范畴。那么:

$$|Fun^{\mathcal{A}}(K,\mathcal{B})| \to Fun(K,\mathcal{B}/\mathcal{A})$$

是忠实的 (诱导了 Hom Kan 复形上 π_0 的单射)。特别注意这里 |-| 是取包络群胚。并且:

- 1. A ⊆ B 是 Verdier 内射, 那么上述映射是等价
- 2. $A \subseteq \mathcal{B}$ 是稠密的,那么 $|Fun^A(K,\mathcal{B})|$ 离散 ($\mathcal{B}/A \simeq 0$,事实上它恰好是离散子群 $K_0Fun(K,\mathcal{B})/K_0Fun(K,\mathcal{B})$ 前两个定理共同说明:
- 推论 4.3.7. $k: Cat_{\infty}^{st} \to An$ 是 Verdier 局部化, $K \simeq B^{\infty}k$ 也是如此。
- 定义 4.3.8 (Karoubi 序列). 取 $Cat^{st}_{\infty, \natural} = Cat^{st}_{\infty}[\{Karoubi\ Equiv\}^{-1}]$, 其中 Karoubi 等价由稠 密子范畴的嵌入生成。一个 Karoubi 序列指 Cat^{st}_{∞} 中的一个序列使得其在 $Cat^{st}_{\infty, \natural}$ 变为纤维-余纤维序列。类似地有 Karoubi 内射和 Karoubi 投射。
- 定理 4.3.9 (Thomason-Neeman 局部化定理). 复合为零的序列 $\mathcal{A} \to \mathcal{B} \to \mathcal{C}$ 是 Karoubi 序列当 且仅当 $Ind(\mathcal{A}) \to Ind(\mathcal{B}) \to Ind(\mathcal{C})$ 是 Verdier 序列。(自然 $Ind(\mathcal{C})$ 是那些保持有限极限的函子 $\mathcal{C}^{op} \to An$)

定义 4.3.10. 对于 \mathbb{E}_{∞} -环谱, 定义

$$k(R) = k(Mod_R^{\omega}); \quad K(R) = K(Mod_R^{\omega})$$

其中上标 ω 指紧对象的全子范畴。

定义 4.3.11. $R \to S$ 是 \mathbb{E}_{∞} -环谱的局部化,称它有完美生成纤维,如果 $I = fib(R \to S)$ 落在 $Mod_R^{S-tors,\omega} = Mod_R^{S-tors} \cap Mod_R^{S-tors}$ 中生成的稳定 ∞ -子范畴内。

这个技术性条件的引入是因为:

引理 4.3.12. $Mod_R^{S-tors,\omega}=Mod_R^{S-tors}\cap Mod_R^{\omega}$ 在 Mod_R^{S-tors} 中生成的稳定 ∞ -子范畴是 $Ind(Mod_R^{S-tors,\omega})$ 。特别地,以下等价:

- 1. $R \rightarrow S$ 有完美生成纤维
- 2. $Ind(Mod_R^{S-tors,\omega}) \rightarrow Mod_R^{S-tors}$ 是等价
- $3.\ Mod_R^{S-tors,\omega} \to Mod_R^\omega \to Mod_S^\omega$ 是 Karoubi 序列。

推论 4.3.13 (Quillen 纤维序列). 如果 $R \to S$ 是 \mathbb{E}_{∞} -环谱之间的局部化使得其有完美生成纤维,那么存在纤维列

$$k(Mod_R^{S-tors,\omega}) \to k(R) \to k(S)$$

特别地,如果离散环 $R \to S$ 是导出局部化,那么存在纤维列

$$k(\mathcal{D}^{perf}(R)^{S-tors}) \to k(R) \to k(S)$$

注记. Efimov 移除了完美生成纤维条件。

最后我们还有 Dévissage 的推广:

定理 4.3.14 (Dévissage). $\mathcal C$ 是配备穷竭 t-结构 ($\mathcal C = \cup \mathcal C_{[-n,n]}$) 的稳定 ∞ -范畴。那么:

- 1. $k(C^{\circ})$ $\simeq k(C)$, 其中左侧是 Abel 范畴的 K 理论。
- 2. \mathcal{D} 是配备穷竭 t-结构的稳定 ∞ -范畴, $F: \mathcal{C} \to \mathcal{D}$ 是正合并且保持 t-结构。如果 $F: \mathcal{C}^{\heartsuit} \to \mathcal{D}^{\heartsuit}$ 全忠实,本质像在子对象和商对象下封闭,并且 $\forall b \in \mathcal{D}^{\heartsuit}$,存在有限滤过:

$$0 = b_0 \subseteq b_1 \subseteq \dots \subseteq b_n = b$$

使得 b_{i+1}/b_i 落在 F 的本质像中。那么 F 诱导了同构 $k(\mathcal{C}) \simeq k(\mathcal{D})$

推论 4.3.15. 对于 Dedekind 整环 R, $\bigoplus_{\mathfrak{m}} \mathcal{D}^{perf}(R/\mathfrak{m}) \to \mathcal{D}^{perf}(R)^{tors}$ 诱导了 K 理论的同构:

$$\oplus K(R/\mathfrak{m}) \to K(\mathcal{D}^{perf}(R)^{tors})$$

于是自动有纤维列

$$\oplus K(R/\mathfrak{m}) \to K(R) \to K(Frac\ R)$$

证明. 简而言之,只需验证这个函子满足 Dévissage 的条件,剩余是代数验证。

参考文献

- [Lur09] Jacob Lurie. "Higher Topos Theory". In: Annals of Mathematics Studies 170 (2009). eprint: math/0608040 (cit. on p. 53).
- [Lur17] Jacob Lurie. Higher Algebra. Preprint. 2017 (cit. on pp. 36, 46).
- [Wei13] Charles Weibel. *The K-book: an introduction to algebraic K-theory*. Vol. 145. Graduate Studies in Math. AMS, 2013 (cit. on pp. 5, 12, 14, 16, 18).

