A 1GHz 0.134pJ 6-bit Absolute-Value Detector for use in Neural Spike Sorting

Vilius Vysniauskas Jonathan Hurwitz Nathan Lee

Design Summary

- Circuit topology: mixed logic using static CMOS and PTL
- Circuit Style: custom (MUX + carry-out calculator)
- Considerations:
 - Minimized number of transistors and critical path delay
 - Considered wire length and angles for layout
 - Approached problem from design angle, attempting customized logic
- Best case = 1.0V for shortest delay, 0.5875V for lowest energy
- Worst case = 0.5875V for longest delay, 1.0V for highest energy

Delay [ps] (best case)	Delay [ps] (worst case)	Layout Size [µm]	Energy [fJ] (best case)	Energy [fJ] (worst case)	Verification
$t_{p_{-}X0 \to OUT} = 371$	$t_{p_X0 \to OUT} = 994$	X = 32.48 Y = 21.905	134	397	Func: Yes
t _{p_X5→OUT} = 219	t _{p_X5→OUT} = 576	$A = 631 \mu m^2$			DRC: Yes
t _p = 371	t _p = 994	AR = 1.61			LVS: Yes

Critical Path Analysis

- Path elements: Bit Inversion + Multiplexer + C5 Logic
- ◆ Total Elements: 4 INV, 1 T-GATE, 9 NOR, 2 NAND

$$t_{critical} = 4t_{INV} + t_{TG} + 9t_{NOR} + 2t_{NAND}$$

Design Optimization

Critical Path

- From the least significant bit of X to the output C5
- Largest delay occurs because signal travels through the most gates

Sizing Strategy

- Decrease the size of all FO1 intermediate gates
 - Greatly reduced energy
- Increase size of gates close to output to improve driving capability
 - Reduction in delay
- Experimented with different gate sizing based on simulation result
 - Further improved results

Functionality Check

Layout

Χ [μm]	Υ [μm]	Α [μm²]	AR
32.48	21.905	631	1.61

Area Calculation

- Defined as X*Y, but with void space around perimeter removed
 - Approximately 80 μm²
- Chose to minimize total area and wire length
 - Width decrease
 - Aspect ratio increase

Discussion

Three most important features

- Eliminated need for separate adder (to create |x|)
- Used carry look-ahead logic to combine absolute value calculation and comparator logic into one stage
- Efficient, high-level design minimized transistor count

Things to consider for next time

- Customized design and cell density greatly increased layout complexity
- Non-uniform cell size complicated area calculations