

AI Based Network Intrusion Detection System (NIDS)

by Seran Gemechu

Introduction

TRADITIONAL IDS SOLUTIONS OFTEN FAIL AGAINST MODERN, EVOLVING ATTACKS.

THIS PROJECT DEVELOPS AN IDS
USING ANN TO CLASSIFY
ANOMALOUS NETWORK TRAFFIC.

NSL-KDD & Features

http

olit (2)

• Contains labeled network traffic data classified as 'Normal' or 'Anomalous'.

262

0

- Feature categories:
 - o Basic features: protocol, duration, src_bytes, dst_bytes
 - User/Content-based features: failed logins, root access, file creation
 - Traffic-based features: connection rates, packet anomalies

Methodology

High Level Model Architecture

- Input Layer: 41+ features from NSL-KDD dataset.
- Hidden Layers:
 - 128 neurons --> 64 neurons --> 32 neurons
 - FP + BP + ReLU activation
- Output Layer:
 - o 1 neuron
 - Sigmoid for binary classification
- Model performance evaluated using: Accuracy, Precision, Recall, F1-Score, CM

Future Work & Expected Challenges

- Handling imbalanced data within the dataset.
- CNNs or RNNs for better feature extraction.
- Implement unsupervised learning (Autoencoders) for anomaly detection.
- Deploy the model for real-time traffic analysis.

Expected Outcome

- AI-ANN based IDS provides high accuracy and adaptability.
- Can be improved further with hybrid models and real-world deployment.

Timeline

- Week 1: EDA
- Week 2-3: Model architecture design and initial training.
- Week 4-5: Performance tuning and evaluation.
- Week 6: Deployment and real-time testing (optional).

