Applying the Answer-Clue-Style approach to VQG

Chrys Ngouma Kuruba Vijaya Lakshmi

What we will cover

- Visual Question Generation/Answering (VQG/VQA)
- System architecture
- Datasets
- Evaluation methods and results
- Challenges

The task of Visual Question Generation (VQG)

- Interdisciplinary task involving computer vision and NLP
- VQG consists of generating meaningful questions based on an input image

Applications of VQA

- Medical VQA (Abacha et al., 2019)
- VQA for visually impaired people (Gurari et al., 2018)
- Video Surveillance (Toor et al., 2019)
- Education and cultural heritage (Bongini et al., 2020)
- Advertising (Husain et al., 2017)
- And more

Our goal is generate visual QA pairs from unlabelled images

Ref: arXiv:2103.02937

System Architecture Overview

Asking Questions the Human Way: Scalable Question-Answer Generation from Text Corpus (umontreal.ca)

Datasets

GPT2-ACS was trained on the SQuAD1.1 dataset

The Stanford Question Answering Dataset

AoA is a model pretrained on MSCOCO dataset

COCO Common Objects in Context

We evaluate our approach on the VQA validation set

Attention on Attention for Image Captioning (AoA)

AOA Model Architecture

- Attention on Attention (AoA) module, an extension to the conventional attention mechanism, to determine the relevance of attention results.
- Apply AoA to both the encoder and decoder to constitute AoANet: in the encoder, AoA helps to better model
 relationships among different objects in the image; in the decoder, AoA filters out irrelative attention results and keeps
 only the useful ones.
- When this paper was released, this method achieved a new state-of-the-art performance on MS COCO dataset with
 129.6 CIDEr-D (C40) score on the official online testing server.
- We have used pretrained model from the authors published code in Github to get captions on images.

Ref: 1908.06954.pdf (arxiv.org)

ASC-aware Question Generation

$$P(a|p) = P(a|POS(a), NER(a), length(a)),$$

$$P(s|a, p) = P(s|POS(a), NER(a)),$$

$$P(c|s, a, p) = P(c|POS(c), NER(c), DepDist(c, a)).$$

P(a, c, s|p) = P(a|p)P(s|a, p)P(c|s, a, p)

- Sequential sampling
- Learn from existing dataset

Answer-Clue-Style Sampler

Problem: the caption most likely do not contain the exact answer

Our approach:

- We first look for a candidate chunk that is the most similar (at least 70%) to the answer
 e.g. doughnut → donut, elephant → animal, or young woman → blonde person
- If no match, we sample a random answer the way the ACS sampler intended

GPT2 Pretrained Model

• Finetune pretrained language model

Results

- 47% of the questions are well formatted while 83% are relevant to the images
- Most of the answers are not correct or irrelevant

q: "What is in the back of the truck?"

a: "elephant"

q: "What is a common transportation option in Portugal?"

a: "cars"

q: "What is on a pole and on what?"

a: "a sign on a pole"

Human Evaluation

We use three volunteers to vote on whether the generated questions and answers are well formatted, meaningful, and relevant to the images.

Experimen	Ours	
Ougation is Delevant	Yes	83%
Question is Relevant	No	17%
Question is Well-formed	Yes	47%
	Partially	36%
	No	17%
Answer is Correct	Yes	38%
	Partially	12%
	No	50%

Performance comparison

This approach underperforms the baselines on most metrics

Models	Bleu-1	Bleu-2	Bleu-3	Bleu-4	ROUGE-L	METEOR	CIDEr	Relevance
IA2Q	32.43	15.49	9.24	6.23		11.21	36.22	90.00
V-IA2Q	36.91	17.79	10.21	6.25		12.39	36.39	92.20
Krishna et al. (2019)	47.40	28.95	19.93	14.49	49.10	18.35	85.99	97.20
Ours	19.45	7.50	3.31	1.38	23.94	15.32	21.24	83.00

Challenges and Observations

- The AoA model fails to capture small details in the picture leading to loss of information
- The generated questions sometimes contain unrelated and/or repeated information
- Model struggles with "yes/no" question types

caption: "A sandwich on a plate on a table"

original q: "What kind of bread was used to make the

sandwich?"

original a: "weat"

q: "What was on a table on the day of the assassination?"

caption: "A group of people riding on the back of an elephant"

original q: "Are these people in the jungle?"

original a: "yes"

q: "Is riding on the back of an elephant a group of people or a group of people?"

Challenges and Observations

Writing the caption in more active voice improves the relevance of the questions

c: "A sandwich on a plate on a table"

q: "What was on a table on the day of the assassination?"

c: "A sandwich is on a plate on a table"

q: "What is on a plate?"

c: "A clock on the wall above a table with a clock"

q: "What type of clock is above a table in the Notre

Dame library?"

c: "A clock on the wall is above a table with a clock"

q: "What is above a table on the wall?"

Possible Improvements

Visual information extraction

- Using a region captioning model such as Multi-level Scene Description Network (MSDN)
- End-to-end training on the VQA dataset

Question generation

- Extend the question styles list (e.g. "how many", "what kind of", "what type of", "which
 of", etc.
- Exclude words with certain POS tags when sampling answers (e.g. DT, CC, EX, etc.)
- To date the GPT2-ACS reports 53.5 % of correct answers and 74.5% of good questions on Wikipedia datasets. Further work on the GPT2-ACS could improve our results.

Questions?