

# Mathématiques

Classe: BAC

Chapitre: Intégrales

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba



# Définition et conséquences

### Définition

Soit f une fonction continue sur un intervalle I et F une primitive de f sur I. a et b deux réels de I.

On appelle : intégrale de f entre a et b le réel noté :

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

### Conséquences

Soit f une fonction continue sur un intervalle I . a et b

• 
$$\int_{a}^{a} f(x)dx = 0$$
 et  $\int_{a}^{b} cte \ dx = (b-a) \times cte$ 

$$\bullet \int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx.$$

# **Propriétés**

Soit f et g deux fonctions continues sur un intervalle I. a, b et c trois réels de I.

1. Relation de Chasles  $\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$ 

2. Pour tous réels  $\alpha$  et  $\beta$  $\int_{a}^{b} \alpha f(x) + \beta g(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$ 

3. Intégrations par parties  $\int_{a}^{b} u'(x)v(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u(x)v'(x)dx$  *u* et *v* sont des fonctions dérivables et leurs fonctions dérivées sont continues.

# Intégrales et inégalités

1. Si  $\begin{cases} a \le b \\ \forall x \in I, f(x) \ge 0 \end{cases}$  Alors :  $\int_a^b f(x) dx \ge 0$ 

2. Si f est positive sur [a,b], (a < b) et ne s'annule qu'en un nombre fini de réel , alors  $\int_a^b f(x)dx > 0$ .

3. Si  $\begin{cases} a \le b \\ \forall x \in I, f(x) \le g(x) \end{cases}$  Alors:  $\int_a^b f(x) dx \le f(x) dx \le f(x) dx \le f(x)$ 

4. Si f est continue sur [a, b] alors :  $\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx.$ 

#### Valeur moyenne et inégalité de la moyenne

# Définition

Soit *f* une fonction continue sur un intervalle [a, b], (a < b). On appelle valeur moyenne de f sur [a,b] le réel  $\overline{f} = \frac{1}{h-a} \int_{a}^{b} f(x) dx$ .

# Théorème (inégalité de la moyenne)

Soit f une fonction continue sur [a, b], (a < b). Soit m et M deux réels. Si pour tout x de [a, b] $m \le f(x) \le M$  alors  $m \le \overline{f} \le M$ 

#### Corollaire

Soit f une fonction continue sur [a, b]. Il existe  $c \in [a, b]$  tel que f = f(c).

# Fonction définie à l'aide d'une intégrale

#### Théorème

Soit f une fonction définie sur un intervalle I et  $a \in I$ . Alors la fonction F définie sur I par :  $F(x) = \int_{-x}^{x} f(t)dt$  est la primitive de f qui s'annule en a.

### Conséquences

Soit f une fonction définie sur un intervalle I et  $a \in I$ . Alors la fonction F définie sur I par :  $F(x) = \int_{a}^{x} f(t)dt$ est dérivable sur I et  $\forall x \in I$ , F'(x) = f(x).

#### Théorème

Soit u une fonction définie sur un intervalle I et f une fonction définie sur un intervalle J. Si

$$u$$
 est dérivable sur  $I$   
fest continue sur  $J$   
 $\forall x \in I, \quad u(x) \in J$   
 $a \in J$ 

Alors la fonction  $F: x \mapsto \int_{a}^{u(x)} f(t)dt$  est dérivable sur I et  $F'(x) = u'(x) \cdot f(u(x))$ 



### Théorème

Soit f une fonction continue sur un intervalle I centré en 0 et  $a \in I$ .

- Si f est impaire alors  $\int_{-a}^{a} f(x) dx = 0$ .
- Si f est paire alors  $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$ .

#### Théorème

Soit f une fonction continue sur  $\mathbb R$  , périodique de période T .

Pour tout réel 
$$a$$
,  $\int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx$ 

# Calcul d'aire

#### Définition

Le plan est muni d'un repère orthogonal.

Soit f une fonction continue et positive sur [a,b], (a < b). L'aire (en ua) de la partie du plan limitée par la courbe de f, l'axe des abscisses et les droites x = a et x = b

est le réel 
$$\int_a^b f(x)dx$$

# Définition

Le plan est muni d'un repère orthogonal. Soit f une fonction continue sur [a,b], (a < b). L'aire (en ua) de la partie du plan limitée par la courbe de f, l'axe des abscisses et les droites x=a et x=b est le réel  $\int_a^b |f(x)| dx$ 



# Interprétation de la valeur moyenne

Le plan est muni d'un repère orthogonal.

Soit f une fonction continue et positive sur [a,b], (a < b).

L'aire de la surface du plan limitée par la courbe de f, les droites x = a, x = b et y = 0 est égale à celle du rectangle de côtés (b-a) et  $\overline{f}$ .

# Définition

Le plan est muni d'un repère orthogonal. Soit f et g deux fonctions continues sur [a,b], (a < b). L'aire (en ua) de la partie du plan limitée par la courbe de f, celle de g et les droites x=a et x=b est le réel  $\int_a^b |f(x)-g(x)|dx$ 

## Calcul de volume

#### Définition

L'espace est muni d'un repère orthonormé  $(0, \vec{i}, \vec{j}, \vec{k})$ .

Soit f une fonction continue et positive sur [a,b]. Le volume  $\mathcal{V}$  du solide de révolution engendré par la rotation de la courbe de f dans le plan  $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$  autour de l'axe  $\left(O, \overrightarrow{i}\right)$  est le réel  $\mathcal{V} = \pi \int_a^b f^2(x) dx$ 









Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba



www.takiacademy.com



**73.832.000**