

Snowflake Workshop

Elisabetta Parozzi & Luca Pescatore

Argusa

2025

Getting Started

WHY SNOWFLAKE?

- Sclability & Performance Handles large datasets efficiently with automatic scaling and parallel processing.
- **Separation of Storage and Compute** Enables flexible resource management and cost optimization.
- **Cloud-Native Platform** Accessible from anywhere, with built-in security, data sharing, and integration features.
- **SQL-Based & User-Friendly** Leverages standard SQL syntax while supporting advanced analytics and geospatial operations.

Getting Started

WORKSHOP OBJECTIVE

- Learn how to analyze spatial data in Snowflake.
- Work with real Swiss data (students and schools).
- Understand how to join datasets, compute school distances, and derive insights about school accessibility.
- Gain hands-on experience using Snowflake SQL functions for data analysis and transformation.

Steps Overview

Load and Source data:

- Download repository
- Load the csv file
- Source the database

Filter and Organize:

- Separate residential buildings from Schools
- Combine students and residentials
- Join tables for complete information

Calculate Distance:

- We use the tables and views created to calculate the distance between each residential building
- Final dataset

Chat bot App:

We employ CORTEX to inquiry data with a natural language!

Useful links:

LINK WHERE TO SOURCE THE CODE AND THE CSV FILE.

- https://github.com/Argusa-SA/SwissCommunityDayOnData
- Download the repository
- Let's now open Snowflake!

Step 1. Source Database

GO TO THE MARKETPLACE

DOWNLOAD THE FREE DATABASE

Step 1. Add CSV file

LOADING AN EXTERNAL FILE TO THE ANALYSIS

1. Upload & Load with the "+" Button

- From the Snowflake Web UI, navigate to your database → schema → table.
- Click the "+" icon → Load Data.
- Select your local CSV file, define the file format (e.g., comma-delimited, header rows, encoding).
- Snowflake automatically uploads and loads the data directly into the selected table.

- 2. Load via Stage and COPY INTO Command:
 - Create or use an existing internal stage (@mystage) or external stage (e.g., AWS S3).
 - Upload your CSV file to the stage using "COPY INTO" SQL command.

Step 1. Add CSV file

LOADING AN EXTERNAL FILE TO THE ANALYSIS

snowflake ** Q Search for files + Add ne Q SCDD_Workshop.sql SQL Worksheet Python Worksheet ☆ Streamlit App Git Repository □ Dashboard Workshoots □ Table From File Stage ∀iew 不 Add Data ₩ 2020 10 02

Step 2. Filter and Organize Data

STRUCTURE AND PREPARE THE RAW DATA FOR ANALYSIS BY ISOLATING RELEVANT SUBSETS (E.G., RESIDENTIAL BUILDINGS, SCHOOLS, STUDENTS).

1. Filter the Data by Canton

- Extract only the records for Canton Zug (ZG) from the Swiss geographic dataset.
- Create working tables such as buildings_zg for further processing.

2. Identify and Separate Key Building Types

- Residential buildings → filter by building_category = 'residential'.
- Schools → select where building_name ILIKE '%Schul%'.
- Store them in new tables:
 - residences_zg
 - schools zg

```
SELECT *
FROM swiss_geographic_basics.buildings
WHERE canton = 'ZG';
```

```
CREATE OR REPLACE TABLE schools_zg AS

SELECT *

FROM buildings_with_locality_zg

WHERE building_name ILIKE '%Schul%';
```

Step 2. Filter and Organize Data

• 3. Enrich Buildings with Municipality Information

- Join buildings streets to include geographic context: Municipality
- Create a clean, enriched table "buildings with municipality zg".

```
FROM buildings_zg b
JOIN streets_zg s
  ON b.street_id = s.street_id;
```

4. Add Student Information

- Join residences zg with the students table imported from the CSV file
- Result: buildings zg students a dataset linking each student to their residence and allergies.

```
JOTN students s
ON r.building id = s.building id;
```

Step 3. What are we looking for?

DETERMINE THE DISTANCE BETWEEN EACH STUDENT'S RESIDENCE AND THE NEAREST SCHOOL IN CANTON ZUG, USING SNOWFLAKE'S GEOSPATIAL FUNCTIONS.

• 1. Compute Geospatial Distances

- Use the ST_DISTANCE() function to calculate the distance (in meters) between each residence and nearby schools.

 QUALIFY ROW NUMBER() OVER (
- Filter for the closest school using a ranking function:

2. Create the Distance Table

- The result is stored in residence_school_mart_zg, containing:
 - Residence details (address, municipality, student, allergies)
 - Closest school name and ID
 - Calculated distance_meters

www.argusa.ch 22.10.2025 \ 11

ORDER BY ST DISTANCE(r.POINT WGS84, s.POINT WGS84)

PARTITION BY r.building id

Step 3. What are we looking for?

RESULTS

- 3. Analyze Accessibility Insights
 - Aggregate results by municipality.
 - Identify areas where students live farther from schools → potential insight for urban planning or accessibility studies.

SELECT MUNICIPALITY,

GROUP BY MUNICIPALITY;

FROM residence_school_mart_zg

AVG(distance meters) AS avg distance,

MEDIAN(distance meters) AS median distance

Final Step: Streamlit

LET'S LOOK AT THE STREAMLIT BUILT CHAT-BOT

Ask questions about children's food allergies, schools, and residential information

Powered by Snowflake Cortex Search & Al

• Objective:

- Build an interactive Streamlit application connected to Snowflake.
- Use Cortex Search to query student information and allergy data in natural language.

Key Features:

- Conversational Interface: Ask questions such as "Which students in Zug are allergic to peanuts?"
- Real-Time Data Access: Retrieves results directly from Snowflake tables.
- Multilingual Output: Displays translated allergy information (EN, FR, DE, IT).
- User-Friendly Visualization: Explore schools, residences, and allergy data interactively.

