Matematika 2 Sistemi diferencijalnih jednačina (DJ) Petar Katić

Sistem DJ može ići do proizvoljnog reda. Mi radimo maksnimalno do drugog reda.

Homogeni sistem jednačina 1

Oblik:

$$y_1' = a_{11}x + a_{12}y_2 y_2' = a_{21}x + a_{22}y_2$$

$$\begin{split} Y' &= \begin{bmatrix} y_1' \\ y_2' \end{bmatrix} \; ; \; \; Y = Y_H = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \; ; \; \; A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \; ; \; \; \mathbf{Y}' = \mathbf{A} \cdot \mathbf{Y} \\ \text{Rješavamo jednačinu} \begin{vmatrix} a_{11} - \lambda & a_{21} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0 \; \text{i nalazimo} \; \lambda_{1/2}. \end{split}$$

$\lambda_{1/2} \in \mathbb{R} \; ; \; \lambda_1 \neq \lambda_2$ 1.1

Rješavamo dva slučaja:

$$\{\lambda = \lambda_1 ; v = v_1\} i$$

$$\{\lambda = \lambda_2 ; v = v_2\}.$$

U oba slučaja, rješimo $\begin{bmatrix} a_{11} - \lambda & a_{21} \\ a_{21} & a_{22} - \lambda \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ i nađemo odnos između x i y. Uvrstimo odnos u $\begin{vmatrix} x \\ y \end{vmatrix}$ i izvučemo promjenljivu.

Ostaje nam vektor $v = \begin{bmatrix} j \\ k \end{bmatrix}$, gdje su j i k brojevi.

Konačno rješenje je: $Y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = C_1 v_1 e^{\lambda_1 t} + C_2 v_2 e^{\lambda_2 t}$.

$\lambda_{1/2} \in \mathbb{R} \; ; \; \lambda_1 = \lambda_2$ 1.2

Kada izračunamo $\lambda_{1/2}$ i uočimo da je rješenje višestruko, računamo ν_1 kao inače.

Zatim računamo v_2^* preko formule $(A - \lambda I) \cdot v_2^* = v_1$.

Ta formula matrično ima oblik: $\begin{bmatrix} a_{11} - \lambda_1 & a_{21} \\ a_{21} & a_{22} - \lambda_1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = v_1.$

Nakon što nađemo odnos između x i y, sređujemo vektor $\begin{vmatrix} x \\ y \end{vmatrix}$.

Ako izvučemo, na primjer, y, dobićemo vektor oblika $y \begin{vmatrix} j \\ k \end{vmatrix} + \begin{vmatrix} m \\ n \end{vmatrix}$, $j, k, m, n \in \mathbb{R}$.

Zaključujemo da je $v_2^* = \begin{bmatrix} m \\ n \end{bmatrix}$.

Konačno rješenje je: $Y = C_1 v_1 e^{\lambda_1 t} + C_2 (v_2^* + t v_1) e^{\lambda_1 t}$

1.3 $\lambda_{1/2} \in \mathbb{C}$

 $\lambda_{1/2}$ su konjugovani parovi, a $v_{1/2}$ računamo kao inače.

Biramo ili λ_1 i ν_1 ili λ_2 i $varv_2$ i uvrštavamo ih u formulu $Y = C_1 \nu e^{\lambda t}$.

Dobijamo oblik
$$Y = C_1 \begin{bmatrix} j \\ k \end{bmatrix} e^{mt} e^{nti} , j, k, m, n \in \mathbb{R}.$$

Primjećujemo da je $e^{nti} = \cos nt + i \sin nt$.

Tu vrijednost množimo sa vektorom $\begin{bmatrix} j \\ k \end{bmatrix}$.

Dobijamo
$$Y = C_1 e^{mt} \begin{bmatrix} \dots \\ \dots \end{bmatrix} + C_1 e^{mt} i \begin{bmatrix} \dots \\ \dots \end{bmatrix}.$$

Ako uvažimo $C_2 = iC_1$, $C_2 \in \mathbb{C}$, dobijamo konačni oblik: $Y = C_1 e^{mt} \begin{bmatrix} \cdots \\ \cdots \end{bmatrix} + C_2 e^{mt} \begin{bmatrix} \cdots \\ \cdots \end{bmatrix}$.

2 Nemohomgeni sistem jednačina

Oblik:

$$y_1' = a_{11}x + a_{12}y + b_1$$

$$y_2' = a_{21}x + a_{22}y + b_2$$

$$Y' = \begin{bmatrix} y_1' \\ y_2' \end{bmatrix} \; ; \; \; Y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \; ; \; \; A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \; ; \; \; B = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \; ; \; \; \mathbf{Y}' = \mathbf{A} \cdot \mathbf{Y} + \mathbf{B}$$

Rješavanje:

Računamo Y_H kao inače.

Onda, zapisujemo x i y iz Y, tako da su u obliku:

$$x = C_1 y_{11} + C_2 y_{12}$$

$$y = C_1 y_{21} + C_2 y_{22}$$

Rješavamo sistem sa dvije nepoznate $(C'_1(t), C'_2(t))$:

$$C_1'(t)y_{11} + C_2'(t)y_{12} = b_1$$

$$C_1'(t)y_{21} + C_2'(t)y_{22} = b_2$$

Integrališemo i dobijemo $C_1(t)$ i $C_2(t)$.

Dobijamo
$$Y_P = \begin{bmatrix} C_1(t)y_{11} + C_2(t)y_{12} \\ C_1(t)y_{21} + C_2(t)y_{22} \end{bmatrix}.$$

Konačno, $Y = Y_H + Y_P$.