Surrogate Modelling and Uncertainty Quantification

Internship at IBM Research Daresbury

Thanks to...

Małgorzata Zimoń

IBM Research Staff

Sci-Tech Daresbury

- Opened in 1967 as the Daresbury Nuclear laboratory
- Houses > 1,000 people working at ~100 tech companies

IBM Research UK

- IBM has ~350,000 employees worldwide
- ~60 researchers working for IBM Research UK based Daresbury and Hursley
- Research areas include computational chemistry, life sciences, physical science and engineering, quantum computing

Surrogate Modelling

- Computer simulations can be expensive to run, and
 to understand the output statistics require many
 iterations
- Fast approximations of simulations can be built to quickly construct output statistics, called surrogates

- We focus on two popular non-intrusive surrogate methods - Polynomial Chaos Expansion and Gaussian Process Emulation
- We want to build surrogates non-intrusively, i.e. not knowing anything about the internal processes of the simulation

Research Aim: Rare Event Modelling

Surrogate Modelling

•
$$y(x) \approx \sum_{k=0}^{n} c_k \psi_k(x)$$

- GPE can be used as an interpolation, with uncertainty information provided
- It acts as a joint probability distribution function for simulation outputs $f(x_i)$

Pareto Distribution

- Considering computational expense and the desire to capture rare events, where should the cutoff value be?
- How accurate can the surrogate methods be in approximating the simulator, and the mean and variance of the outputs?
- There is often a tension between approximating the model across the support and estimating the statistical moments

Domain Decomposition

- The resulting training points poorly sampled the region where the bulk of the data lies, resulting in poor statistical estimation
- Domain decomposition provides one way to mitigate against this issue

Multi-Component Surrogate

Visualising and Quantifying Uncertainty for Higher Dimensional Simulations

Band Depth and Functional Box Plots

•Functional boxplots allow for the quantification and visualisation of uncertainty in the outputs of stochastic, time-series simulations

•BD^j
$$(g(x)) = P[f(x) \subset B(f_1(c), ..., f_j(x))]$$

•
$$BD_J(g(x)) = \sum_{j=2}^J BD^j(g(x))$$

Visualising Uncertainty for Higher Dimension Inputs

• This provides a means to assess the performance of a surrogate. Not just important for UQ result, but also different modelling techniques.

Overall Experience

- Nice atmosphere, very 'uncorporate' from an interns persepective
- Range of scientific backgrounds: astronomy, chemistry, computer science etc.
- A lot of academic freedom, but not total
- Good system of accountability
- Journal clubs, seminars, conferences etc. made it feel similar to a university
- Opportunity for future collaboration

