Activité 4.2 - Structure des protéines

Objectifs:

- Comprendre la structure tridimensionnelles des protéines.
- Comprendre les actions biologiques des protéines.

Contexte: Les protéines sont des molécules complexes dont la structure tridimensionnelle unique leur donne des propriétés biologiques particulières.

→ Comment la structure tridimensionnelle des protéines influence leur propriétés biologiques ?

Document 1 - Structures des protéines

Un polypeptide est une chaîne d'acides α -aminés. Une protéine est une macromolécule composée d'un ou plusieurs polypeptides repliés. C'est la géométrie tridimensionnelle de la protéine qui lui donne ses propriétés particulière.

Une des plus petites protéine du corps humain est l'insuline, avec deux chaînes de 51 acides α -aminés. La plus grande protéine du corps humain est la **titine**, avec plus de 34 000 acides α -aminés. On peut décomposer la structure des protéines en quatre échelles :

Structure primaire : séquence d'acides aminés qui compose la protéine, elle est codé dans de l'ADN.

Structure secondaire : enroulement local des chaînes peptidiques à causes des interactions électrostatiques entre les acides aminés. Deux structures particulières se retrouvent fréquemment dans les protéines, les hélices alpha et les feuillets bêtas. Ces structures ont donc des représentations particulières dites en « ruban » pour faciliter leur visualisation dans la structure complexe d'une protéine.

Structure tertiaire : repliement tridimensionnel de la protéine en une structure compacte avec une géométrie unique qui lui donne ses propriétés biologiques. Cette géométrie est lié au interaction électrostatique entre les acides aminés et aux molécules d'eau qui entourent la protéine.

Structure quaternaire : assemblage de plusieurs protéines pour former une nouvelle protéine plus efficace ou pour en faciliter le transport dans l'organisme ou au sein d'une cellule.

Document 2 - Production des protéines

Les protéines sont produites dans les cellules avec l'information génétique contenue dans l'ADN.

Pour produire une protéine, l'information génétique est transmise par les ARN messagers aux ribosomes. Les ribosomes assemblent les acides α -aminés pour former des peptides en lisant les différent codons stockés dans la séquence nucléotidique de l'ARNm. Ces peptides sont ensuite repliés et assemblées dans la cellule pour leur donner leur structure tertiaire (ou quaternaire) et en faire une protéine fonctionnelle, avec les bonnes propriétés biologiques. Un mauvais repliement des peptides engendre des protéines inactive ou dysfonctionnelle, ce qui peut être dangereux pour l'organisme.

La structure tertiaire peut aussi être détruite, en modifiant le pH, avec une oxydation ou en augmentant la température, ce qui rend inactive la protéine : on parle de **dénaturation**.

Document 3 – Rôle des protéines dans l'organisme

Les protéines sont souvent spécialisées pour remplir un rôle biologique et assurent le bon fonctionnement de notre organisme. On trouve ainsi des :

- protéines structurelles, pour assurer la cohésion de certains tissus (kératine pour les ongles ou les cheveux, collagène pour la peau, titine dans les muscles) ou des cellules en formant leur cytosquelette;
- protéines **transporteuses**, pour assurer le transfert de molécule dans et en dehors des cellules (hémoglobine qui transporte le dioxygène);
- protéines régulatrices, pour régler l'activité d'autres protéines ou pour contrôler l'expression des gènes;
- protéines de signalisation, qui captent des signaux extérieurs pour les transmettre dans l'organisme ou dans une cellule, comme les protéines hormonales qui assurent la communication entre différentes parties du corps (insuline produite par les reins pour réguler les glucides dans le sang);
- protéines **réceptrices**, pour détecter les molécules ou les protéines envoyées par les autres cellules et agir en conséquence. On distingue
 - les **protéines sensorielles**, qui détectent les signaux environnementaux (lumière, température, etc.) et répondent en émettant d'autres signaux dans la cellule;
 - et les **récepteurs d'hormones**, qui détectent les hormones et entraînent une action de la cellule (la détection d'insuline entraîne l'absorption du glucose);
- protéines **motrices**, pour permettre à certaines parties du corps de bouger (l'actine et la myosine permettent au muscle de se contracter);
- protéines de stockage, pour stocker des acides aminés et permettre la biosynthèse d'autres protéines (l'ovalbumine dans le blanc d'œuf permet le développement des embryons de poulet);
- protéines **enzymatiques**, pour modifier la vitesse de presque toutes les réactions chimiques qui ont lieu dans la cellule.

	1	-	_	Γ	01	nn	er	la	a f	Ol	ac	ti	or	ı l	bi	ol	lo	gi	q	u	е	d	е	la	ı .	kέ	ér	at	tiı	ne	,	d	е	la	1 1	m	y	OS	ir	ıе	ϵ	et	d	е	[']	nέ	'n	10	g]	lo	bi	n	e.			
٠.													•			•													•								•										•		•			•			 •	
		٠.													٠.								•																•																	