实验一 单管放大电路 实验报告

姓名:	= ★ \ /

学号:____2016011452__

班级: 自64

桌号: 6

日期: 2018年3月23日

目录

1	实验	:目的	1
2	实验	· · · · · · · · · · · · · · · · · · ·	1
	2.1	实验必做	1
	2.2	实验选做	2
3	预习	- 1 任务	2
	3.1	复习共射放大电路的基本工作原理	2
	3.2	测量 9011 的输出特性曲线及在静态工作点附近的 β 值 \dots	2
	3.3	估算图 1 单管共射放大电路的 \dot{A}_u 、 $R_{\rm i}$ 、 $R_{\rm o}$	2
	3.4	利用 Multisim 对图 1 单管放大电路进行仿真。完成第 2 节中的全部测试内容。	5
		3.4.1 晶体管输出特性曲线	5
		3.4.2 放大电路静态工作点	6
		3.4.3 放大电路的主要性能指标	ϵ
		3.4.4 静态工作点对放大电路动态性能的影响	7
		3.4.5 选做任务	8
	3.5	操作步骤和记录表格	ç
		3.5.1 操作步骤	ç
		3.5.2 数据表格	11
4	部分	波形截图	13
5	数捷	· · · · · · · · · · · · · · · · · · ·	14
	5.1	必做任务	14
		5.1.1 $I_{CQ} = 1 \text{mA} \dots$	14
		5.1.2 $I_{CQ} = 2mA$	15
	5.2	选做任务	16
6	实验	中电路出现的故障及原因分析	18
7	总结	、分析发射极电阻对放大电路动态参数的影响	18
8	总结	放大电路主要性能指标的测量方法	19
		8.0.1 静态参数	19
		8.0.2 动态参数	19
9	思考	题	19

1 实验目的

- 1. 掌握放大电路静态工作点的调整与测量方法;掌握放大电路主要性能指标的测量方法。
- 2. 理解静态工作点对放大电路动态性能的影响,测量与分析各电阻参数对放大电路静态工作点和动态特性的影响。
- 3. 掌握晶体管输出特性、放大电路静态工作点和动态参数的仿真测量方法。

2 实验内容

2.1 实验必做

实验电路如图 1 所示。通过调节可变电阻 R_W 改变电路静态工作点。按照"先静态后动态"的原则, 先调整好静态工作点,再测量放大电路的各项动态参数。

图 1: 单管共射放大电路

1. 晶体管输出特性曲线

测量晶体管 9011 输出特性曲线及在静态工作点附近的 beta 值。

2. 放大电路静态工作点

调节 $R_{\rm W}$,使 $I_{\rm CO}$ =1mA,测量 $U_{\rm CO}$ 、 $U_{\rm EO}$ 和 $R_{\rm b1}$ 的值。

- 3. 放大电路的主要性能指标在 $I_{CQ}=1$ mA 时,测量电压放大倍数 \dot{A}_u 、输入电阻 R_i 、输出电阻 R_o 和幅频特性中的下限截止频率 f_L 和上限截止频率 f_H 。输入信号选有效值 $U_i \approx 5$ mV,频率为 10kHz 的正弦波。
- 4. 静态工作点对放大电路动态性能的影响调节 R_W ,使 $I_{CQ}=2mA$,测量 R_{b1} 、 R_i 、 R_o 、 f_L 、 f_H ,观察它们的变化。

2.2 实验选做

发射极电阻对动态性能的影响: 改接电容 $C_{\rm e}$, 使之与 $R_{\rm e2}$ 并联, 测量 $I_{\rm CQ}$ =1mA 下的 \dot{A}_u 、 $R_{\rm i}$ 、 $R_{\rm o}$,与 上面测量结果相比较,总结发射极电阻对电路动态性能的影响。

预习任务 3

复习共射放大电路的基本工作原理

基本共射放大电路中静态工作点的表达式如下:

$$\begin{cases} I_{\text{BQ}} = \frac{V_{\text{BB}} - U_{\text{BEQ}}}{R_{\text{b}}} \\ I_{\text{CQ}} = \bar{\beta}I_{\text{BQ}} = \beta I_{\text{BQ}} \\ U_{\text{CFO}} = V_{\text{CC}} - I_{\text{CO}}R_{\text{c}} \end{cases}$$
(1a)

$$I_{\text{CQ}} = \bar{\beta}I_{\text{BQ}} = \beta I_{\text{BQ}}$$
 (1b)

$$U_{\rm CEQ} = V_{\rm CC} - I_{\rm CQ} R_{\rm c} \tag{1c}$$

动态参数表达式如下:

$$\begin{cases} \dot{A}_{u} = -\frac{\beta(R_{c}//R_{L})}{R_{b} + r_{be}} \\ R_{i} = R_{b} + r_{be} \end{cases}$$
(2a)
$$\begin{cases} A_{u} = -\frac{\beta(R_{c}//R_{L})}{R_{b} + r_{be}} \\ (2b) \end{cases}$$
(2b)

$$R_{\rm i} = R_{\rm b} + r_{\rm be} \tag{2b}$$

$$R_{\rm o} = R_{\rm c}$$
 (2c)

其中

$$r_{\rm be} \approx r_{\rm bb'} + \beta \frac{U_{\rm T}}{I_{\rm CO}} \tag{3}$$

测量 9011 的输出特性曲线及在静态工作点附近的 β 值

利用学习机和示波器,得到9011的输出特性曲线,如图2所示。从中使用光标读取两条相邻曲线对 应的 $I_{\rm C}$ 值,得到 $\Delta I_{\rm C}=1.15$ V (Υ方向 1V 对应 $I_{\rm C}$ 实际值 1mA)。由于本次实验中 $I_{\rm B}$ 的扫描间隔为 5μA, 则可以求得:

$$\beta = \frac{\Delta I_{\rm C}}{\Delta I_{\rm B}} = \frac{1.15\text{mA}}{5\mu\text{A}} = 230\tag{4}$$

估算图 1 单管共射放大电路的 A_u 、 R_i 、 R_o

估算中 β 取实测值。设晶体管 $U_{\rm BEO} \approx 0.7 \rm V$,若 β 在 150 \sim 260、 $U_{\rm CEO}$ 为 1mA \sim 2mA 间,则 $r_{\rm bb'}$ 取值范 围为 $650\Omega \sim 950\Omega$ 。

直流通路如图 3 所示。将输入回路等效,不难求得:

$$\begin{cases} V_{\rm BB} = \frac{R_{\rm b2}}{R_{\rm b2} + R_{\rm b1}} \cdot V_{\rm CC} \\ R_{\rm b} = R_{\rm b2} / / R_{\rm b1} \end{cases} \tag{5a}$$

• $I_{CO}=1$ mA

图 2: 9011 输出特性曲线图

手动

首先通过直流通路求出此刻的 R_{b1} 。

$$I_{\text{BQ}} = \frac{I_{\text{CQ}}}{\beta} = \frac{1\text{mA}}{230} = 4.35\mu\text{A}$$
 (6)

注意到直流通路中应有:

$$I_{\text{BQ}} = \frac{V_{\text{BB}} - U_{\text{BEQ}}}{R_{\text{b}} + (1+\beta)R_{\text{e}}} \tag{7}$$

其中 $R_e = R_{e1} + R_{e2} = 200 + 1000\Omega = 1.2 k\Omega$ 。假设 $U_{BEQ} = 0.7 V$,则可以反解出来 R_{b1} :

$$R_{b1} = \frac{R_{b2}V_{CC} - R_{b2}U_{BEQ} - (1+\beta)R_{e}R_{b2}I_{BQ}}{R_{b2}I_{BO} + (1+\beta)R_{e}I_{BO} + U_{BEO}}$$
(8)

代入数据,解得 $R_{b1} = 76.85 \text{k}\Omega$ 。此时 $R_{b} = R_{b1} / / R_{b2} = 12.55 \text{k}\Omega$

下面估算 r_{be} 。常温下 $U_T \approx 26 \text{mV}$, $r_{bb'}$ 和 I_{CO} 以其取值范围的中间值代入, 即 $r_{bb'} = (650\Omega + 950\Omega)/2 =$ 800 Ω ; β 用实测值 230 代入,则由式 (3):

$$r_{\rm be} = r_{\rm bb'} + \beta \frac{U_{\rm T}}{I_{\rm CO}} = 800 + 230 \cdot \frac{26 \text{m}}{1.5 \text{m}} \Omega = 6.78 \text{k}\Omega$$
 (9)

事实上,本电路有别于基本共射放大电路。其动态参数的表达式与式(2a)(2b)(2c)略有不同:

$$\begin{cases} \dot{A}_{u} = -\frac{\beta(R_{c}//R_{L})}{r_{be}} \\ R_{i} = R_{b}//r_{be} \end{cases}$$
(10a)
$$R_{i} = R_{b} / r_{be}$$
(10b)

$$R_{\rm o} = R_{\rm c} \tag{10c}$$

则可以计算得到:

$$\begin{cases} \dot{A}_u = -67.97 & \text{(11a)} \\ R_i = 4.40 \text{k}\Omega & \text{(11b)} \end{cases}$$

$$R_0 = 3.3 k\Omega \tag{11c}$$

 U_{co} 和 U_{EO} 可以通过简单的欧姆定律求得,则:

$$U_{\rm CO} = V_{\rm CC} - I_{\rm CO}R_{\rm c} = 12 - 1\text{m} \cdot 3.3\text{kV} = 8.7\text{V}$$
 (12a)

$$\begin{cases} U_{\text{CQ}} = V_{\text{CC}} - I_{\text{CQ}} R_{\text{c}} = 12 - 1 \text{m} \cdot 3.3 \text{kV} = 8.7 \text{V} \\ U_{\text{EQ}} = R_{\text{e}} \cdot \frac{1 + \beta}{\beta} I_{\text{CQ}} = 1.2 \text{k} \cdot \frac{1 + 230}{230} \cdot 1 \text{mV} = 1.205 \text{V} \\ U_{\text{CEQ}} = U_{\text{CQ}} - U_{\text{EQ}} = 7.50 \text{V} \end{cases}$$
(12a)

$$U_{CEQ} = U_{CQ} - U_{EQ} = 7.50V$$
 (12c)

• $I_{CQ}=2mA$

易得静态工作点参数:

$$U_{CQ} = V_{CC} - I_{CQ}R_{c} = 12 - 2m \cdot 3.3kV = 5.4V$$
 (13a)

$$\begin{cases} U_{\text{CQ}} = V_{\text{CC}} - I_{\text{CQ}} R_{\text{c}} = 12 - 2\text{m} \cdot 3.3 \text{kV} = 5.4 \text{V} \\ U_{\text{EQ}} = R_{\text{e}} \cdot \frac{1 + \beta}{\beta} I_{\text{CQ}} = 1.2 \text{k} \cdot \frac{1 + 230}{230} \cdot 2\text{mV} = 2.41 \text{V} \end{cases}$$
(13a)

$$U_{CEQ} = U_{CQ} - U_{EQ} = 1.42V$$
 (13c)

类似可以求得 $R_{b1} = 41.14k\Omega$,并有:

$$\dot{A}_u = -121.59$$
 (14a)

$$\begin{cases} A_u = -121.59 & (14a) \\ R_i = 2.82k\Omega & (14b) \end{cases}$$

$$R_{\rm o} = 3.3 \text{k}\Omega \tag{14c}$$

将所有理论计算值整理如表1所示。

表 1: 理论计算值汇总

$I_{\rm CQ}/{ m mA}$	$U_{\sf CQ}/{\sf V}$	$U_{ t EQ}/{ t V}$	$U_{\sf CEQ}/{\sf V}$	$R_{\rm b1}/{\rm k}\Omega$	\dot{A}_u	$R_{\rm i}/{\bf k}\Omega$	$R_{\rm o}/{\bf k}\Omega$
1	8.7	1.205	7.50	76.85	-67.97	4.40	3.3
2	5.401	2.411	2.99	41.14	-121.59	2.82	3.3

3.4 利用 Multisim 对图 1 单管放大电路进行仿真。完成第 2 节中的全部测试内容。

电路图如图 5 所示。首先编辑三极管模型,调整 β 为实测值 230。下面对各项实验任务进行测量。

图 5: 仿真电路图

图 6: I_{CQ} =1mA 时 R_w 的调节

3.4.1 晶体管输出特性曲线

使用 IV 分析仪进行测量, 电路如图 7 所示。

图 7: 三极管输出特性曲线仿真电路

测量结果如图 8。从中可以计算出 $\beta \approx 230$ 。

图 8: 三极管输出特性曲线仿真结果

3.4.2 放大电路静态工作点

首先将信号源短路,再使用电流探针和万用表结合,测量 $I_{\rm C}$ 。逐步调节 $R_{\rm W}$,使得 $I_{\rm CQ}$ =1mA。如图 6,则 $R_{\rm W}=55.3{\rm k}\Omega$ 。进而使用万用表测量静态工作点的 $U_{\rm CQ}=8.7{\rm V}, U_{\rm EQ}=1.205{\rm V}, R_{\rm b1}=75.3{\rm k}\Omega$ 。则 $U_{\rm CEO}=7.50{\rm V}$ 。

3.4.3 放大电路的主要性能指标

电压放大倍数 \dot{A}_u 使用万用表测量可得 $U_{\rm i}=4.941\,{\rm mV}, U_{\rm o}=359.424\,{\rm mV}$ 。则 $|\dot{A}_u|=U_{\rm o}/U_{\rm i}=72.7$ 。从图 9 中可以看出,输入输出信号反相。则可知测量值 $\dot{A}_u=-72.7$ 。

图 9: $I_{CO} = 1$ mA 时输入输出波形

输入输出电阻 为测量输入电阻,我在输入回路中串联一个电阻 R_1 ,并测量电阻 R_1 两端对地电压 U_i 和 U_i' 。此处 R_1 应该取的接近于输入电阻,根据之前的估算结果,我将 R_1 取为 $4k\Omega$ 。测得 $U_i = 2.539$ mV, $U_i' = 4.969$ mV。则

$$R_{\rm i} = \frac{U_{\rm i}}{U_{\rm i}' - U_{\rm i}} \cdot R_1 = \frac{2.539}{4.969 - 2.539} \times 4k\Omega = 4.18k\Omega$$
 (15)

为测量输出电阻,我先测量负载开路的电压 $U_{\rm o}'=576.87{
m mV}$;接着选取一个与 $R_{\rm o}$ 接近的负载,此处根据理论计算值不妨取 $R_{\rm L}=3{
m k}\Omega$ 。测得 $U_{\rm oL}=298.12{
m mV}$ 。则

$$R_{\rm o} = \left(\frac{U_{\rm o}'}{U_{\rm oL}} - 1\right)R_{\rm L} = \left(\frac{576.87}{298.12} - 1\right) \cdot 3.3k\Omega = 3.09k\Omega \tag{16}$$

幅频特性截止频率 通过 Multisim 的交流分析功能,可以方便地做出幅频特性曲线,如图 10 所示。测量 $|\dot{A}_u|_{\text{max}} = 73.1983$,选择 $\dot{A}_u = |\dot{A}_u|_{\text{max}}/\sqrt{2}$ 的两个频率,即为 f_L 和 f_H 。从中读取到 $f_L = 133.89$ Hz, $f_H = 81.17$ MHz。

图 $10: I_{CQ} = 1$ mA 时幅频特性曲线

3.4.4 静态工作点对放大电路动态性能的影响

首先调节 $R_{\rm W}$ 使得 $I_{\rm CQ}=2{\rm mA}$,可得 $R_{\rm W}=20.06{\rm k}\Omega$ 。则 $R_{\rm b1}=40.06{\rm k}\Omega$ 。此时可以测得 $U_{\rm CQ}=5.401{\rm V}$, $U_{\rm EO}=2.411{\rm V}$,则 $U_{\rm CEO}=2.99{\rm V}$ 。

电压放大倍数 用万用表的交流档来测量输入电压 $U_{\rm i}$ 和输出电压 $U_{\rm o}$,可得 $U_{\rm i}=4.893$ mV, $U_{\rm o}=661.87$ mV。则

$$|\dot{A}_u| = \frac{U_o}{U_i} = \frac{661.87}{4.893} = 135.27$$
 (17)

考虑到输入输出交流信号为反相,可得 $\dot{A}_u = -135.27$ 。

输入输出电阻 类似地,在输入回路中串联一个电阻 R_1 ,根据理论计算值取 $R_1=2.8$ k Ω 。使用万用表测得 $U_{\bf i}'=4.951$ mV, $U_{\bf i}=2.224$ mV,则

$$R_{\rm i} = \frac{U_{\rm i}}{U_{\rm i}' - U_{\rm i}} \cdot R_1 = \frac{2.224}{4.951 - 2.224} \times 2.8 \text{k}\Omega = 2.28 \text{k}\Omega$$
 (18)

为测量输出电阻,测量开路电压 $U_0'=1.034\mathrm{V}$,选择负载 $R_\mathrm{L}=3.3\mathrm{k}\Omega$,测量得到 $U_\mathrm{ol}=553.25\mathrm{m}\mathrm{V}$,则

$$R_{\rm o} = \left(\frac{U_{\rm o}'}{U_{\rm ol}} - 1\right) R_{\rm L} = \left(\frac{1.034}{553.25 \text{m}} - 1\right) \cdot 3.3 \text{k}\Omega = 2.87 \text{k}\Omega \tag{19}$$

图 11: $I_{CQ} = 2mA$ 时幅频特性曲线

幅频特性截止频率 幅频特性曲线如图 11。测量 $|\dot{A}_u|_{\text{max}} = 136.0771$,读取 $\dot{A}_u = |\dot{A}_u|_{\text{max}} \sqrt{2}$ 的两个频率 $f_{\text{L}} = 239.96$ Hz, $f_{\text{H}} = 74.79$ MHz。

将各仿真数据总结如表2。

表 2: 仿真数据汇总

$I_{\rm CQ}/{ m mA}$	$U_{\sf CQ}/{\sf V}$	$U_{\rm EQ}/{ m V}$	$U_{\sf CEQ}/{\sf V}$	$R_{\rm b1}/{\rm k}\Omega$	\dot{A}_u	$R_{\rm i}/{ m k}\Omega$	$R_{\rm o}/{ m k}\Omega$	$f_{ m L}/{ m Hz}$	$f_{ m H}/{ m MHz}$
1	8.7	1.205	7.50	75.3	-72.7	4.18	3.09	133.89	81.17
2	5.401	2.411	2.99	40.06	-135.27	2.28	2.87	239.96	74.79

3.4.5 选做任务

将电容 C_e 并联在 R_{e2} 两端。如图 12 所示。

放大倍数 \dot{A}_u 测量输入电压 $U_{\rm i} = 4.975 \,{\rm mV}$,输出电压 $U_{\rm o} = 43.649 \,{\rm mV}$,则

$$\dot{A}_u = \frac{U_o}{U_i} = \frac{43.649 \text{m}}{4.975 \text{m}} = 8.77 \tag{20}$$

图 12: 选做任务电路(部分)

理论值:

$$\dot{A}_u = -\frac{\beta R_c / / R_L}{r_{be} + (1+\beta) R_{e1}} = -87.80$$
 (21)

输入电阻 R_i 类似地,在输入回路中串联一个电阻 $R_1=10$ k Ω 。使用万用表测得 $U_i'=4.987$ m $V,U_i=2.504$ mV,则

$$R_{\rm i} = \frac{U_{\rm i}}{U_{\rm i}' - U_{\rm i}} \cdot R_1 = \frac{2.504}{4.987 - 2.504} \times 10 \text{k}\Omega = 10.08 \text{k}\Omega$$
 (22)

理论值:

$$R_{\rm i} = R_{\rm b} / / (r_{\rm be} + (1+\beta)R_{\rm el}) = 10.15 \text{k}\Omega$$
 (23)

输出电阻 测量开路电压 $U_{\rm o}'=71.657{
m mV}$,选择负载 $R_{\rm L}=3.3{
m k}\Omega$,测量得到 $U_{\rm ol}=35.978{
m mV}$,则

$$R_{\rm o} = (\frac{U_{\rm o}'}{U_{\rm ol}} - 1)R_{\rm L} = (\frac{71.657}{35.978} - 1) \cdot 3.3k\Omega = 3.27k\Omega$$
 (24)

理论值: $R_o = R_c = 3.3 \text{k}\Omega$

3.5 操作步骤和记录表格

3.5.1 操作步骤

测量晶体管 9011 输出特性曲线及在静态工作点附近的 β 值 直接利用学习机上的三极管测试接口完成。

放大电路静态工作点 连接电路后,将信号源短路,调节滑动变阻器使得 $I_{CQ} = 1$ mA。使用示波器测量 U_{CQ}, U_{EQ} 等参数,使用万用表测量 R_W 的值。

放大电路的主要性能指标

- 1. 放大倍数用示波器测量 U_0 与 U_i , 并求比值。
- 2. 输入电阻

在输入回路串入一个已知电阻 R_1 ,在输入端加入正弦小信号,用示波器分别测量 R_1 两端对地电压的有效值,即可求出输入电流,由此推出输入电阻为

$$R_{\rm i} = \frac{U_{\rm i}}{U_{\rm i}' - U_{\rm i}} R_{\rm i} \tag{25}$$

为了减小测量误差,选取的 R_1 的阻值应与 R_i 接近。

3. 输出电阻

在输入端加正弦小信号,将负载电阻 R_L 开路,测量电路的开路输出电压 U'_0 ,然后接入合适的负载电阻 R_L ,测量带载输出电压 U_{oL} 。输出电阻为

$$R_{\rm o} = \left(\frac{U_{\rm o}'}{U_{\rm oL}}\right) R_{\rm L} \tag{26}$$

4. 截止频率利用函数信号发生器产生一系列频率的正弦波,依次测量放大倍数。

静态工作点对放大电路动态性能的影响 对于 $I_{CQ}=2$ mA 重复上述过程。

3.5.2 数据表格

 $I_{\rm CQ}=1{\rm mA}$

表 3: 直流参数测量

类型	$U_{\sf CQ}/{\sf V}$	$U_{\sf EQ}/{\sf V}$	U_{CE}/V	$R_{ m W}/{ m k}\Omega$	$R_{\rm b1}/{\rm k}\Omega$
理论	8.7	1.205	7.50	56.85	76.85
仿真	8.7	1.205	7.50	55.3	75.3
实测					

表 4: 放大倍数测量

类型	$U_{\mathrm{i}}/\mathrm{mV}$	U_{o}/mV	\dot{A}_u
理论			-67.97
仿真	4.941	359.424	-72.7
实测			

表 5: 输入输出电阻测量

类型	$U_{\rm i}/{ m mV}$	$U_{\rm i}'/{ m mV}$	$R_1/\mathbf{k}\Omega$	$R_{\mathrm{i}} = \frac{U_{\mathrm{i}}}{U_{\mathrm{i}}' - U_{\mathrm{i}}} R_{\mathrm{1}} / \mathrm{k}\Omega$	$U_{\rm o}'/{ m mV}$	$U_{ m oL}/{ m mV}$	$R_{\rm L}/{\rm k}\Omega$	$R_{\rm o}=(rac{U_{ m o}'}{U_{ m oL}}-1)R_{ m L}/{ m k}\Omega$
理论				4.4				3.3
仿真	2.539	4.969	4	4.18	576.87	298.12	3	3.09
实测								

表 6: 截止频率测量

$ \dot{A}_u $ 頻率 ω/Hz 月 \dot{A}_u	频率 ω/Hz				
\dot{A}_u 频率 ω /Hz	$ \dot{A}_u $				
频率 ω/Hz \dot{A}_u $$	频率 ω/Hz				
\dot{A}_u	$ \dot{A}_u $				
类型 f _L /Hz f _H /Hz 仿真 133.89 81.17M					
仿真 133.89 81.17M	$ \dot{A}_u $				
	类型	$f_{ m L}/{ m Hz}$	$f_{ m H}/2$	Hz	
实测	仿真	133.89	81.1	17M	
2104	实测				

表 7: 直流参数测量

类型	$U_{\sf CQ}/{\sf V}$	$U_{\sf EQ}/{\sf V}$	U_{CE}/V	$R_{ m W}/{ m k}\Omega$	$R_{\rm b1}/{\rm k}\Omega$
理论	5.4	2.41	1.42	21.14	41.14
仿真	5.401	2.411	2.99	20.06	40.06
实测					

表 8: 放大倍数测量

类型	$U_{ m i}/{ m mV}$	$U_{ m o}/{ m mV}$	\dot{A}_u
理论			-121.59
仿真	4.893	661.87	-135.27
实测			

表 9: 输入输出电阻测量

类型	$U_{\rm i}/{ m mV}$	$U_{\rm i}'/{ m mV}$	R_1	$R_{\rm i} = \frac{U_{\rm i}}{U_{\rm i}' - U_{\rm i}} R_1 / {\rm k}\Omega$	$U_{\rm o}'/{ m mV}$	$U_{ m oL}/{ m mV}$	R_{L}	$R_{ m o}=(rac{U_{ m o}'}{U_{ m oL}}-1)R_{ m L}/{ m k}\Omega$
理论				2.82				3.3
仿真	2.224	4.951	2.8	2.28	1.034	553.25	3.3	2.87
实测								

表 10: 截止频率测量

频率 ω/Hz				
$ \dot{A}_u $				
频率 ω/Hz				
$ \dot{A}_u $				
频率 ω/Hz				
$ \dot{A}_u $				
类型	$f_{ m L}/{ m Hz}$	$f_{ m H}/$	Hz	
仿真	239.96	74.4	19M	
实测				

选做任务:

表 11: 放大倍数测量

类型	$U_{ m i}/{ m mV}$	U_{o}/mV	\dot{A}_u
理论			-8.78
仿真	4.975	43.649	-8.77
实测			

表 12: 输入输出电阻测量

类型	$U_{\rm i}/{ m mV}$	$U_{\rm i}'/{ m mV}$	$R_1/\mathrm{k}\Omega$	$R_{\rm i} = \frac{U_{\rm i}}{U_{\rm i}' - U_{\rm i}} R_1 / {\rm k}\Omega$	$U_{ m o}'/{ m mV}$	$U_{ m oL}/{ m mV}$	$R_{\rm L}/{\rm k}\Omega$	$R_{\rm o}=(\frac{U_{\rm o}'}{U_{\rm oL}}-1)R_{\rm L}/{\rm k}\Omega$
理论				10.15				3.3
仿真	2.504	4.987	10	10.08	71.657	35.978	3.3	3.27
实测								

4 部分波形截图

部分波形如图 13 所示。

图 13: 放大电路输入输出波形

5 数据处理

5.1 必做任务

5.1.1 $I_{CO} = 1$ **mA**

调节滑动变阻器 $R_{\rm W}$ 使得 $R_{\rm c}$ 上的电压为 3.3V,则 $I_{\rm CQ}=1$ mA。测得此时的静态参数如表 13 所示。需要指出的是,本次实验中测得 $V_{\rm CC}=11.88$ V,而仿真和理论计算时使用的 $V_{\rm CC}=12$ V,故实测的 $U_{\rm CQ}$ 的值恰好比仿真和理论值少了 0.12V,这也说明了静态工作点调节的比较好,保证了 $I_{\rm CQ}=1$ mA。实测的 $R_{\rm W}$ 与 $R_{\rm b}1$ 的取值也与仿真值和理论值较为接近。分别使用示波器的两个探头测量 $U_{\rm i}$ 和 $U_{\rm o}$ 的值,并计算出放

类型	$U_{\sf CQ}/{\sf V}$	$U_{\sf EQ}/{\sf V}$	U_{CE}/V	$R_{ m W}/{ m k}\Omega$	$R_{ m b1}/{ m k}\Omega$
理论	8.7	1.205	7.50	56.85	76.85
仿真	8.7	1.205	7.50	55.3	75.3
实测	8.58	1.214	7.366	58.6	78.7

表 13: $I_{CO} = 1$ mA 静态参数测量结果

大倍数,如表 14。可以发现实测的 U_i 与仿真相比较小,这可能是因为信号源内阻与仿真时指定的 R_s 值不同,从而导致了电路实际的输入电压有所偏差。但事实上,这个偏差不会影响到放大倍数。实测结果中放大倍数与仿真值较为接近,而与理论值相差较大。由于理论计算时对于三极管的参数 $r_{bb'}$ 只是取了一个估计值,放大倍数的计算与实际值必然会有偏差。从实验结果来看,本次实验中使用得到三极管的实际参数应该更加接近于仿真时的模型参数。

类型	$U_{ m i}/{ m mV}$	U_{o}/mV	\dot{A}_u
理论			-67.97
仿真	4.941	359.424	-72.7
实测	4.85	356.20	-73.4

表 14: $I_{CO} = 1$ mA 放大倍数测量结果

输入输出电阻的测量方法与 3.4.3 节相同,结果如表 15 。由于实验盒中的电阻有限,实际中选取的 R_1 和 R_L 与仿真时选取的可能有所不同。可以看到实测结果与理论值和仿真值相差不大,相比之下更接近理论值。这可能是由于仿真软件内部的模型算法与理论计算的算法不同,而在输入输出电阻的测量上看,我们采用的模型要优于 Multisim 的模型。

类型	$U_{\rm i}/{ m mV}$	$U_{\rm i}'/{\rm mV}$	$R_1/\mathrm{k}\Omega$	$R_{ m i}=rac{U_{ m i}}{U_{ m i}'-U_{ m i}}R_1/{ m k}\Omega$	$U_{\rm o}'/{ m mV}$	$U_{ m oL}/{ m mV}$	$R_{\rm L}/{\rm k}\Omega$	$R_{ m o}=(rac{U_{ m o}'}{U_{ m oL}}-1)R_{ m L}/{ m k}\Omega$
理论				4.4				3.3
仿真	2.539	4.969	4	4.18	576.87	298.12	3	3.09
实测	2.35	4.89	4.7	4.35	584.6	278.70	3	3.29

表 15: $I_{CO} = 1$ mA 输入输出电阻测量结果

为了测量截止频率,我选取了不同的频率,并测量 \dot{A}_u 的值。其结果如表 16。其中 \dot{A}_u 最大为 74.17,故将 其除以 $\sqrt{2}$ 可知截止频率对应的 \dot{A}_u 应该为 52.44。从表中可以查得,截止频率约为 $f_L=78$ Hz, $f_H=3.5$ MHz。这里可以看到,对于 f_L 仿真值和实测值的差别不算太大,但是 f_H 相差却很大。高频下的截止频率为:

$$f_{\rm H} = \frac{1}{2\pi R C_{\pi}'} \tag{27}$$

其中 RC'_{π} 是 C'_{π} 所在回路的时间常数。 C'_{π} 是混合 π 模型中的参数,与晶体管内参和其静态工作点有关;R 是从 C'_{π} 看入回路中的等效电阻,与电路中的电阻以及晶体管的参数有关。由于 Multisim 中晶体管的参数与实验中的晶体管参数不同,故仿真值和实测值不同。另一方面,Multisim 使用的是 EM2 和 GP 模型,也可能由此产生误差。

ω/Hz	60	75	78	80	100	200	300	400	700
\dot{A}_u	46.90	51.20	52.00	55.70	57.10	68.00	70.10	70.72	72.16
ω/Hz	1k	5k	10k	50k	100k	1M	3M	3.5M	4M
\dot{A}_u /	72.37	73.20	73.40	73.65	74.17	69.57	55.60	51.31	47.22
类型		$f_{ m L}/{ m Hz}$				$f_{ m H}$	/Hz		

表 16: $I_{CQ} = 1$ mA 截止频率测量结果

仿真133.8981.17M实測783.5M

由于测量了较多的频率对应的 \dot{A}_u 值,我作出了幅频特性曲线,如图 14 所示。其中横坐标为对数坐标,可见其趋势与理论相符。

5.1.2 $I_{\text{CO}} = 2$ **mA**

测得静态参数如表 17 所示。需要注意本次实验中测得 $V_{\text{CC}} = 11.77\text{V}$,此时 U_{CQ} 的理论值应该为 11.77-6.6V = 5.17V,可知 U_{CO} 的值与理论值十分接近。实测的 $R_{\text{W}} = R_{\text{b}}1$ 的取值也与仿真值和理论值较为接近。

类型	$U_{\sf CQ}/{\sf V}$	$U_{\sf EQ}/{\sf V}$	$U_{\sf CE}/{\sf V}$	$R_{ m W}/{ m k}\Omega$	$R_{ m b1}/{ m k}\Omega$
理论	5.4	2.41	1.42	21.14	41.14
仿真	5.401	2.411	2.99	20.06	40.06
实测	5.16	2.426	2.734	20.72	40.82

表 17: $I_{CO} = 2mA$ 静态参数测量结果

测量并计算出放大倍数如表 18。实测值仍然与仿真值比较接近,这也是 $r_{\mathrm{bb'}}$ 取值不同造成的。

输入输出电阻的测量结果如表 19 。相比之下,实测值更加接近于理论值,这也和 $I_{CQ}=1$ mA 的情况一样。

不同频率下的 \dot{A}_u 测量值见表 20。测得 \dot{A}_u 最大值为 135.8,算出截止频率的 $\dot{A}_u=135.8\sqrt{2}=96.03$ 可得对应的截止频率约为 $f_L=155$ Hz, $f_H=2.45$ MHz。仍然由于电路的高频模型参数不同,高频段实测

图 14: $I_{CQ} = 1$ mA 的幅频特性

表 18: $I_{CQ}=2$ mA 放大倍数测量结果

类型	$U_{\mathrm{i}}/\mathrm{mV}$	$U_{ m o}/{ m mV}$	\dot{A}_u
理论			-121.59
仿真	4.893	661.87	-135.27
实测	4.88	650.4	-133.28

表 19: $I_{CQ} = 2mA$ 输入输出电阻测量结果

类型	$U_{\rm i}/{ m mV}$	$U_{\rm i}'/{ m mV}$	$R_1/\mathrm{k}\Omega$	$R_{\mathrm{i}} = \frac{U_{\mathrm{i}}}{U_{\mathrm{i}}' - U_{\mathrm{i}}} R_{1} / \mathrm{k}\Omega$	$U_{\rm o}'/{ m mV}$	$U_{ m oL}/{ m mV}$	$R_{\rm L}/{\rm k}\Omega$	$R_{\rm o} = (\frac{U_{\rm o}'}{U_{\rm oL}} - 1)R_{\rm L}/{\rm k}\Omega$
理论				2.82				3.3
仿真	2.224	4.951	2.8	2.28	1.034	553.25	3.3	2.87
实测	2.57	4.92	2.4	2.62	1.067	513.1	3	3.24

值与仿真值相差较大。作出了幅频特性曲线,如图 15 所示。由于在低频段取点较少,该曲线在低频段未能较好地反映转折点。

5.2 选做任务

放大倍数和输入输出电阻的测量结果如表 21 和表 22 所示。可见实测值与仿真值和理论值十分接近。不过,输入和输出电阻的实测值和仿真值相比都略小,这可能是由于晶体管内部存在电阻,在理论计算时被忽略(例如 r_{ce}),而实测和仿真时由于此类电阻的并联,会使测量值偏小。

表 20: $I_{CQ}=2$ mA 截止频率测量结果

ω /Hz	150	155	-	180	20	00	10k	C	20k	50k	100k
\dot{A}_u	95.8	96.2	9	7.91	10)6	133.	2	133.8	134.78	135.8
ω/Hz	200k	500k	C	21\	1	2.	3M	2	.45M	3M	3.5M
\dot{A}_u	135.4	131.9	6	106	.7	9	9.1	ç	96.05	87.5	80.1

类型	$f_{ m L}/{ m Hz}$	$f_{ m H}/{ m Hz}$
仿真	239.96	74.49M
实测	155	2.45M

图 15: $I_{CQ}=2$ mA 的幅频特性

表 21: 选做任务放大倍数测量结果

类型	$U_{ m i}/{ m mV}$	U_{o}/mV	\dot{A}_u
理论			-8.78
仿真	4.975	43.649	-8.77
实测	4.984	43.57	-8.74

表 22: 选做任务输入输出电阻测量结果

类型	$U_{\rm i}/{ m mV}$	$U_{\rm i}'/{ m mV}$	$R_1/\mathrm{k}\Omega$	$R_{\mathrm{i}} = rac{U_{\mathrm{i}}}{U_{\mathrm{i}}' - U_{\mathrm{i}}} R_{\mathrm{1}} / \mathrm{k}\Omega$	$U_{ m o}'/{ m mV}$	$U_{ m oL}/{ m mV}$	$R_{\rm L}/{\rm k}\Omega$	$R_{ m o}=(rac{U_{ m o}'}{U_{ m oL}}-1)R_{ m L}/{ m k}\Omega$
理论				10.15				3.3
仿真	2.504	4.987	10	10.08	71.657	35.978	3.3	3.27
实测	2.495	4.996	10	9.98	72.96	34.99	3	3.26

6 实验中电路出现的故障及原因分析

本次实验整体来说比较顺利,但是在调节波形的过程中出现了几次问题。

- 1. 第一次是首次接入电路时,我发现很难将波形调节稳定。后来我知道,这是因为输入信号是小信号 (5mV),很容易受到噪声的影响。后来我使用示波器上的高频抑制、噪声抑制等功能,成功地将波 形调节稳定,开始测量。
- 2. 第二次是做选做任务时,我发现输出电压波形根本无法显示。我检查了几次电路都没有发现问题。后来秦老师告诉我,可能是输出电压太小,导致经过×10 探头衰减后信号更加微弱,从而信号不稳定。于是我检查了发射极电阻的阻值。由于实验盒中没有 200Ω 的电阻,我在实验前在发射极电阻上使用一个 1.2kΩ 来代替 1kΩ 和 200Ω 电阻串联;但是在选做时需要将这两个电阻分开,于是我在 229 房间的元件盒中拿了一个 200Ω 电阻。然而我却发现,这个电阻实际上是 1kΩ,这就导致了放大倍数急剧减小。我发现这个问题后,赶紧更换了电阻,然而由于当时第一周的实验时间已经结束,我不得不停止实验。

在第二周的实验上,我不到 10min 就成功完成了选做任务,看来的确是电阻阻值的问题。下次实验一定要注意,接线前要检查元件是否与标称值相同。

7 总结、分析发射极电阻对放大电路动态参数的影响

为了叙述方便,下面所说的 R_e 均指交流通路中仍然存在的发射极电阻(即没有被旁路电容短路)。放大倍数与发射极电阻的关系如下式所示:

$$\dot{A}_{u} = -\frac{\beta R_{c} / / R_{L}}{r_{be} + (1 + \beta) R_{e}}$$
 (28)

可见发射极电阻越大,放大倍数越小。而且由于表达式中发射极前有系数 $1 + \beta$,故放大倍数其实受发射极电阻的影响很大。

输入电阻与发射极电阻的关系如下:

$$R_{\rm i} = R_{\rm b} / (r_{\rm be} + (1+\beta)R_{\rm e})$$
 (29)

可见输入电阻随发射极电阻增大而增大。 输出电阻的大小与发射极电阻无关。

8 总结放大电路主要性能指标的测量方法

8.0.1 静态参数

- 1. 将小信号源短路。
- 2. 使用万用表或示波器对静态参数进行测量,例如 I_{CQ} , U_{CE} 等。

8.0.2 动态参数

1. 放大倍数 \dot{A}_u : 使用示波器测量输入信号 U_i 和输出信号 U_o 的有效值,注意需要保证波形没有失真。通过公式

$$\dot{A}_u = \frac{U_0}{U_i} \tag{30}$$

可以计算出来 \dot{A}_u 。

2. 输入电阻 R_i : 在输入回路中串联一个电阻 R_1 ,并测量电阻 R_1 两端对地电压 U_i 和 U_i' 。此处 R_1 应该取的接近于输入电阻。则

$$R_{\mathbf{i}} = \frac{U_{\mathbf{i}}}{U_{\mathbf{i}}' - U_{\mathbf{i}}} \cdot R_{\mathbf{1}} \tag{31}$$

3. 输出电阻 R_0 : 测量负载开路的电压 U_0 ; 接着选取一个与 R_0 接近的负载, 测得输出电压 U_{oL} 。则

$$R_{\rm o} = (\frac{U_{\rm o}'}{U_{\rm ol}} - 1)R_{\rm L} \tag{32}$$

4. 截止频率 f_L , f_H : 首先在中频段找到放大倍数的最大值 $|\dot{A}_u|_{max}$,并计算出截止频率对应的放大倍数为 $|\dot{A}_u|_{max}\sqrt{2}$ 。在低频段和高频段找到放大倍数为 $|\dot{A}_u|_{max}\sqrt{2}$ 的两个频率 f_L 和 f_H 。如果考虑输出电压的变化,要注意每次调节频率时都要调节信号源的幅度使得输入电压不变;如果考虑放大倍数的变化,应该每次测量时通过输出电压和输入电压来计算放大倍数。

9 思考题

1. R_{b1} 为什么要由一个电位器和一个固定电阻器串联组成?

答:为了调节静态工作点,需要使用电位器,而若没有固定电阻器的话,当电位器调节到阻值最小时,很可能导致电路中电流过大,从而烧坏元件。所以,需要使用一个电位器和固定电阻器串联来实现调节。同时,计算可知本实验中电位器和固定电阻串联完全可以满足静态工作点的调节需求。

2. 测量放大电路 R_i 时,若串联电阻的阻值比其 R_i 的大得多或小得多,对测量结果会有什么影响?请对测量误差进行分析。

答:测量电压时,电压越小,受噪声影响而产生的相对误差就越大。若串联电阻阻值过大,则在 R_i 上的分压 U_i 就很小,极易受到噪声影响;若串联电阻过大,则在 R_1 上的分压 $U_i' - U_i$ 就很小,同样容易受到噪声影响。所以,串联电阻的阻值比 R_i 过大或过小都会导致测量结果对噪声的敏感性增加。另一方面,如果将 R_1 取得与 R_i 接近,则可以保证 $U_i' - U_i \approx U_i >> U_n$,其中 U_n 为噪声,则对噪声敏感性会降低,使结果更加可靠。

3. 能否用数字万用表测量图 1 所示放大电路的 \dot{A}_u 、 R_i 、 R_o , 为什么?

答:不可以。理由如下:

- (1) 万用表的频率测量范围小(通频带窄)。
- (2) 万用表只能测量有效值,而不能判断波形是否已经失真,不利于及时发现错误。
- (3) 万用表接入时其内部的电阻、电容、电源等会影响电路的直流工作点。
- 4. 设示波器探头 ×1 档的输入电阻为 1M,输入电容(包括电缆线的分布电容)为 200pF,用它来测量图 1 所示放大电路的高频截止频率 f_H 。若设 f_H 大约为 4MHz,试分析 × 1 档探头对测量结果所产生的影响。采取什么办法可消除或减少这种影响?

答: 此时输入电容的容抗为

$$X_c = \frac{1}{2i\pi fC} = \frac{1}{2i\pi \times 4 \times 10^6 \times 200 \times 10^{-12}} = -198.94j\Omega$$
 (33)

测示波器探头的输入阻抗为

$$X = R_{\rm i} / / X_c = 198.94 \angle - 89.99^{\circ} \tag{34}$$

此时在示波器探头上的分压比例

$$\alpha = \frac{X}{R_0 + X} = \frac{198.94 \angle - 89.99^{\circ}}{3.3k + 198.94 \angle - 89.99^{\circ}} = 0.06 \angle - 86.5^{\circ}$$
(35)

可见此时示波器测量的电压已经是实际输出电压有效值的 0.06 倍左右,严重偏离实际值。

为了减小这种影响,需要使用×10 探头。×10 探头内部主动增加了一个电容,以便和示波器的输入电容配合实现阻抗匹配,此时,示波器测量得到的电压会是实际电压的 1/10,而这一比值基本不随信号频率的改变而改变,故只需将测得电压乘以 10 即可得出实际输出电压。