Model matematyczny epidemii

Mikołaj Bartkowiak 148164 Szymon Stanisławski 150192

1 Zmienne

Zmienne wykorzystywane w modelowaniu matematycznym epidemii wśród populacji:

- N(t) całkowita populacja w chwili t, w tym:
 - o S liczba osób podatnych na zakażenie (osoby niezakażone),
 - *I* liczba osób zakażonych, w tym:
 - I_s liczba osób zakażonych wykazujących objawy zakażenia (przypadki symptomatyczne),
 - I_a liczba osób zakażonych nie wykazujących objawów zakażenia (przypadki asymptomatyczne).
 - Q liczba osób na kwarantannie (osoby te przestrzegają kwarantanny i nie zakażają pozostałych osób w populacji, nawet jeżeli przynależą do osób zakażonych),
 - o *R* liczba ozdrowieńców lub zaszczepionych: osób które przeszły zakażenie i/lub uzyskały odporność,
 - D liczba osób, które zmarły w wyniku zakażenia.

Osoby zakażone, które wykazują objawy charakteryzują się niższym współczynnikiem zarażania innych osób w populacji ze względu na podjęcie stosownych środków ostrożności pod wpływem objawów, które pozwalają ograniczyć rozprzestrzenianie się zakażenia w populacji. Z kolei osoby zakażone, które nie wykazują objawów mogą być nieświadome zakażenia i w wyniku tego nieumyślnie zarażać inne osoby w populacji.

2 Parametry

Parametry wykorzystywane w modelowaniu matematycznym epidemii wśród populacji:

- β_s współczynnik zarażania pozostałych osób w populacji przez osoby wykazujące objawy zakażenia (przypadki symptomatyczne),
- β_a współczynnik zarażania pozostałych osób w populacji przez osoby nie wykazujące objawów zakażenia (przypadki asymptomatyczne),
- ψ odsetek osób, które prawidłowo noszą maseczki (0 $\leq \psi \leq$ 1),
- ξ spodziewany spadek zakażeń związany z używaniem maseczek (0 $\leq \xi \leq$ 1),
- λ_s , λ_a , λ_q wskaźnik ozdrowienia kolejno dla osób będących zarażonych symptomatycznie (I_s), asymptomatyczne (I_a) i będących na kwarantannie (Q),

- α_s, α_a wskaźnik osób izolujących się kolejno podczas zakażenia symptomatycznego i asymptomatycznego,
- δ_s, δ_q wskaźnik śmiertelności kolejno dla osób zakażonych i wykazujących objawy oraz dla osób przebywających na kwarantannie.

3 Równania różnicowe

4 Literatura

[1] K. Nishizawa, P. Riyapan, S. E. Shuaib and A. Intarasit, "A Mathematical Model of COVID-19 Pandemic: A Case Study of Bangkok, Thailand," *Computational and Mathematical Methods in Medicine*, vol. 2021, 2021.