- 1. К какому способу машинного обучения относится линейная регрессия?
 - Обучение без учителя
 - Обучение с учителем
 - Обучение с подкреплением
 - Обучение без подкрепления
- 2. Что обычно используется в качестве метрики производительности для линейной регрессии?
 - Средняя абсолютная ошибка
 - Логистическая функция потерь
 - Среднеквадратичная ошибка
 - F1-мера
- 3. В случае одного регрессора сколько параметров необходимо определить для решения задачи линейной регрессии?
 - 1
 - 2
 - 3
 - 4
- 4. При градиентном спуске как на каждом шаге изменяются искомые параметры?
 - В сторону увеличения первой производной
 - В сторону уменьшения первой производной
 - В сторону увеличения второй производной
 - В сторону уменьшения второй производной
- 5. В чем особенность стохастического градиентного спуска?
 - Значения частных производных вычисляются по всему набору данных
 - Значения частных производных заменяются на случайные числа
 - Значения частных производных вычисляются по небольшой группе случайно выбранных элементов данных
 - Значения частных производных вычисляются по одному, случайно выбранному элементу данных
- 6. В множественной линейной регрессии
 - Один регрессор и одна зависимая переменная
 - Несколько регрессоров и одна зависимая переменная
 - Один регрессор и несколько зависимых переменных
 - Несколько регрессоров и несколько зависимых переменных
- 7. Какой тип задач машинного обучения решает логистическая регрессия?
 - Регрессия
 - Классификация
 - Кластеризация
 - Всё вышеперечисленное
- 8. К чему приводит регуляризация?
 - Смещение и разброс уменьшаются
 - Смещение уменьшается, разброс увеличивается
 - Смещение увеличивается, разброс уменьшается
 - Смещение и разброс увеличиваются

- 9. Что из нижеперечисленного не является типом регуляризации?
 - Lasso
 - Logloss
 - Elastic Net
 - Ridge
- 10. Условная вероятность Р(А|В) это
 - Вероятность наступления А при условии, что В уже произошло.
 - Вероятность наступления В при условии, что А уже произошло.
 - Вероятность наступления А при условии, что В не произошло.
 - Вероятность наступления В при условии, что А не произошло.
- 11. Если события А и В независимы, то чему равна условная вероятность Р(А|В)?
 - P(A) P(B)
 - P(A)
 - P(B)
 - P(A) / P(B)
- 12. Для определения Р(А|В) с помощью теоремы Байеса нужно знать
 - P(A)
 - P(B)
 - P(B|A)
 - Всё вышеперечисленное.
- 13. Теорема Байеса позволяет
 - Уточнить вероятность гипотезы до проведения эксперимента.
 - Вычислить вероятность успешного проведения эксперимента.
 - Уточнить вероятность гипотезы после проведения эксперимента.
 - Вычислить вероятность неуспешного проведения эксперимента.
- 14. В чём заключается «наивность» Байесовского классификатора?
 - Значения параметров в элементе не могут повторяться.
 - Параметры элементов в наборе данных считаются независимыми.
 - Количество классов равно двум.
 - Порядок следования параметров в элемент определяет их важность.
- 15. С каким минусом Байесовского классификатора борется сглаживание Лапласа?
 - Низкая скорость обучения.
 - Параметры должны быть независимыми.
 - Значения параметров должны быть категориальными.
 - Невозможно работать со значениями параметров, которых не было в обучающей выборке.
- 16. Что из перечисленного не является плюсом Байесовского классификатора?
 - Хорошо работает в случае малого количества элементов.
 - Хорошо работает в случае большого количества параметров.
 - Возможность работы с числовыми значениями параметров.
 - Быстрые обучения и работа.
- 17. Какие типы задач решают наивный Байесовский классификатор и логистическая регрессия?

- Наивный Байесовский классификатор задачу классификации, логистическая регрессия – задачу регрессии.
- Наивный Байесовский классификатор задачу регрессии, логистическая регрессия задачу классификации.
- Оба алгоритма решают задачу регрессии.
- Оба алгоритма решают задачу классификации.
- 18. Какие из алгоритмов относятся к генеративному и дискриминативному подходу?
 - Наивный Байесовский классификатор и логистическая регрессия оба относятся к генеративному подходу.
 - Наивный Байесовский классификатор и логистическая регрессия оба относятся к дискриминативному подходу.
 - Наивный Байесовский классификатор генеративный подход, логистическая регрессия дискриминативный подход.
 - Наивный Байесовский классификатор дискриминативный подход, логистическая регрессия генеративный подход.
- 19. Какие типы задач машинного обучения решаются методом k-ближайших соседей?
 - Кластеризация и классификация.
 - Классификация и регрессия.
 - Регрессия и кластеризация.
 - Только кластеризация.
- 20. Что означает k в методе k-ближайших соседей?
 - Количество используемых параметров из набора данных.
 - Размер обучающей выборки.
 - Количество элементов, необходимых для принятия решения.
 - Размерность пространства, в котором производятся вычисления.
- 21. Что утверждает гипотеза компактности?
 - Более близкие объекты чаще относятся к одному и тому же классу, чем к разным.
 - Более близкие объекты чаще относятся к разным классам, чем к одному и тому же.
 - Количество элементов в каждом классе примерно одинаково.
 - Количество классов не превышает заранее выбранное значение.
- 22. Что из перечисленного не является проблемой метода k-ближайших соседей?
 - Алгоритм медленно работает с большими наборами данных.
 - Алгоритм плохо работает с большим числом параметров.
 - Алгоритм плохо интерпретируем.
 - Необходимо заранее выбрать функцию расстояния.
- 23. Для решения какой проблемы метода k-ближайших соседей применяется кроссвалидация?
 - Необходимо заранее выбрать значение k.
 - Алгоритм медленно работает из-за периферийных элементов.
 - Алгоритм плохо работает с несбалансированными данными.
 - Алгоритм совершает ошибки из-за выбросов.
- 24. Что из перечисленного не относится к преимуществам метода k-ближайших соседей?

- Нет требований к значениям параметров.
- Обучающая выборка может легко дополняться.
- Устойчивость к несбалансированным данным.
- Нет явного процесса обучения.
- 25. Что происходит с числом кластеров в процессе работы метода k-средних?
 - Число кластеров увеличивается от 1 до k.
 - Число кластеров уменьшается от k до 1.
 - Число кластеров всё время равно k.
 - Число кластеров никак не зависит от k.
- 26. Что из перечисленного не является недостатком метода k-средних?
 - Алгоритм плохо распараллеливается.
 - Алгоритм останавливается в первом достигнутом локальном минимуме.
 - Нужно заранее знать число кластеров k.
 - Результат зависит от изначального выбора центроидов.
- 27. Что применяется для определения наилучшего значения k в методе k-средних?
 - Коэффициент силуэта.
 - Перебалансировака данных.
 - Кросс-валидация.
 - Гипотеза компактности.