L-P-Bourguiba de Tunis

Date: 17 / 3/2011

Sujet de mathématiques

Classes: 4 M1 -4M8

Durée: 4 H

EXERCICE 1: (4 points)

Répondre par vrai ou faux

1/Le plan P est rapporté à un ROND (o, \vec{u}, \vec{v}) .

On considère la transformation du plan g qui à tout M d'affixe z associe M'

d'affixe z' défini par : z'=2iz-2+i

g est une similitude indirecte de centre I d'affixe i de rapport 2 et d'axe Δ d'équation : $v\!\!=\!\!x\!\!+\!1$

$$2/5^{750} - 1 \equiv 0 \pmod{7}$$

$$3/ \text{Si } n \equiv 1 \pmod{7} \text{ alors } (3n+4) \land (4n+3)=7$$

4/Soient a et b deux entiers naturels non nuls .S'ils existent deux entiers u et v tel que au+bv=2 alors a \land b = 2

$$5/\lim_{x \to +\infty} \frac{\ln x}{\sqrt{x}} = +\infty$$

6/ Soit la fonction f définie sur R par : $f(x) = e^{\frac{x}{2}} - e^{-\frac{x}{2}}$ f est une bijection de IR sur IR

l'application réciproque de f est définie par: $f^{-1}(x) = 2\ln(\frac{x + \sqrt{x^2 + 4}}{2})$

EXERCICE 2: (6 points)

Soit dans le plan orienté un triangle ABC rectangle en B tel que AB= 3 et BC=4

et
$$(\overrightarrow{BC}, \overrightarrow{BA}) \equiv \frac{\pi}{2} [2\pi].$$

1/Soit f la similitude directe telle que f(A)=B et f(B)=C

- a. Déterminer le rapport et l'angle de f.
- b. Soit H le projeté orthogonal de B sur (AC)

Montrer que H est le centre de f

$$2/Soit D=f(C)$$

- a. Montrer que D appartient à (BH)
- b. Construire le point D.

3/ Soit g la similitude indirecte telle que g(A)=B et g(B)=C

On désigne par Ω le centre de g

- a. Montrer que $\log^{-1} = S_{BC}$
- b. Soit E=g(C). Déterminer $S_{BC}(E)$. Construire le point E.
- 4/ a. Préciser la nature de gog et montrer que $\Omega \in (AC) \cap (BE)$
 - b. Construire Ω et l'axe Δ

EXERCICE 3: (4points)

On considère dans ZxZ l'équation (E) : 5x-3y=11.

- 1/a. Citer le théorème permettant d'affirmer que l'équation (E) a des solutions.
 - b. Vérifier que si le couple (x,y) est solution de l'équation E ,alors $x \equiv 1 \pmod{3}$
- c. En déduire une solution particulière de (E)
 - d. Résoudre dans ZxZ l'équation (E)
- 2/Déterminer les entiers n tel que $(3n+1) \wedge (5n-2) = 11$
- 3/ On considère le système (S) : $\begin{cases} x \equiv 4 \pmod{5} \\ x \equiv 2 \pmod{3} \end{cases}$
- a. Dans le cas où x un entier solution de (S) montrer que : $\begin{cases} 9x \equiv 6 \pmod{15} \\ 10x \equiv 5 \pmod{15} \end{cases}$
- b. En déduire l'ensemble des solutions du système.

EXERCICE4:(6 points)

Soit f la fonction définie sur]-1,+ ∞ [par : $f(x) = x - \ln(1+x)$

On désigne par C la courbe représentative de f dans un repère orthonormé (O, \vec{i}, \vec{j}) (unité graphique 1cm)

PARTIE A

- 1.Dresser le tableau de variation de f.
- 2.En déduire que pour tout x de $]-1,+\infty[$: $ln(1+x) \le x$
- 3. Tracer C.
- 4. Calculer l'aire A de la partie du plan limité par la courbe C la droite Δ : y = x et les droites d'équations x=0 et x=0

PARTIE B

On considère la suite (S_n) définie sur N^* par : $S_n = \sum_{1}^n \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}$.

- 1/a. Montrer que pour tout k>0: $\ln(1+k)$ - $\ln k \le \frac{1}{k}$
 - b. En déduire que pour tout n de N* : $ln(1+n) \le S_n$. Et calculer $\lim_{n \to +\infty} S_n$
- 2/On considère les suites (C_n) et (γ_n) définie sur N* par : C_n= S_n-ln(n) et γ_n = C_n $\frac{1}{n}$
- a. Démontrer que pour tout n de N* : $C_{n+1} C_n = -f(-\frac{1}{n+1})$ et $\gamma_{n+1} \gamma_n = f(\frac{1}{n})$
- b. En déduire le sens de variation de (C_n) puis de (γ_n) .
- 3/a. Démontrer que les suites (C_n) et (γ_n) sont adjacentes.
- La limite commune de ces deux suites est appelée la constante d'Euler C
 - b. Donner un encadrement de la constante d'Euler C d'amplitude 10⁻¹.