fast label propagation algorithm for community detection

Vincent A. Traag

Leiden University Centre for Science and Technology Studies Lovro Šubelj

University of Ljubljana Faculty of Computer and Information Science

NetSci '23

community detection

many approaches with different interpretations & algorithms

graph partitioning, objective functions, networks dynamics, generative models etc.

label propagation one of fastest algorithms

but not most robust or preferable for small networks

even faster variant today

label propagation

heuristic algorithm for community detection

- 1. create singleton partition $\{c_i\}_{i=1}^n \leftarrow \{1, 2, 3 \dots n\}$
- 2. update each label c_i to most common label in neighborhood Γ_i

$$\begin{aligned} \{c\} \leftarrow & \operatorname{argsmax}_c \sum_j A_{ij} \delta(c_j, c) \\ & c_i \leftarrow \operatorname{random}_c \{c\} \end{aligned}$$

3. repeat 2. until convergence or stopping criteria

community structure pprox local optima of $\sum_{ij} A_{ij} \delta(c_i, c_j)$

global optima $c_i = c$ is trivial and uninteresting

algorithm guarantees \rightarrow labels c_i are locally optimal

each node i has most neighbors with label ci

algorithm variants

LPA

original label propagation algorithm

retention

label propagation algorithm with retention strategy

- 1. update order
- update c_i in parallel (oscillations) update c_i in random order (\checkmark)

2. breaking ties

always sample $c_i \leftarrow \operatorname{random}_c\{c\}$ (LPA) only when $c_i \notin \{c\}$ (retention) 3. stopping criteria

all c_i are locally optimal (LPA) no c_i has changed (retention)

fast variant

queue

maintain queue of nodes that could update their label after updating c_i push neighbors $j \in \Gamma_i$ to queue if $c_j \neq c_i$

FLPA

fast variant of label propagation algorithm FLPA has same guarantees as LPA

1. update order

2. breaking ties

3. stopping criteria

queue of nodes to update (FLPA)

always sample $c_i \leftarrow \operatorname{random}_c\{c\}$ (LPA)

queue is empty (FLPA)

.

theoretical graphs

analysis for three theoretical graphs

LPA, FLPA & retention strategy find same partition but FLPA has lower complexity

Graph	LPA	retention	FLPA	
	$\Omega(2m)$	⊖(2 <i>m</i>)	$\Theta\left(m+\frac{1}{n-2}\right)$	
~	$\Theta\left(2m+\frac{2n(n-2)}{(n-1)^2}\right)$	Θ(2 <i>m</i>)	$\Theta\left(m+\frac{n-2}{(n-1)^2}\right)$	
	depends on <i>n</i>	pprox 2.7 nodes	pprox 4.1 nodes	

random graphs

Erdős-Rényi graphs without structure

LPA & FLPA find no community structure different from retention strategy

community structure

SBM graphs with 100 planted communities

LPA & FLPA find planted community structure different from retention strategy

other structure

synthetic graphs with different structure

FLPA is consistently faster than LPA & Leiden algorithm

social networks

small social networks with sociological partitioning of nodes

LPA & FLPA find similar partitions better than retention strategy

large networks (1/2)

comparison of partitions of large empirical networks

LPA & FLPA find similar partitions different from Leiden algorithm

large networks (2/2)

runtime for large empirical networks

FLPA up to $700\times$ faster than LPA & $15\times$ faster than retention strategy

Network	Nodes	Edges	Algorithm	Time (s)	Speedup
			LPA	185.0	188.5×
com-dblp	317 080	1 049 866	retention	10.6	$10.8 \times$
			FLPA	1.0	
roadnet-ca			LPA	940.4	161.8×
	1 965 206	5 533 214	retention	23.2	4.0×
			FLPA	5.8	
			LPA	26 704.4	705.2×
us-patents	3 774 768	16 522 438	retention	601.8	$15.9 \times$
			FLPA	37.9	
			LPA	977.3	63.8×
foursquare	3 935 215	22 809 624	retention	117.6	7.7×
			FLPA	15.3	
			LPA	2 248.1	30.2×
livejournal	4 847 571	68 993 773	retention	959.6	$12.9 \times$
			FLPA	74.4	
			LPA	1 343.5	93.0×
twitter-sample	5 384 162	16 011 444	retention	92.8	6.4×
			FLPA	14.5	

conclusions

LPA is useful for fast first look at network

other slower methods are arguably more robust and preferable

FLPA is consistently faster than LPA with same guarantees

FLPA seems to bring benefits to LPA at no additional costs

FLPA is generally preferable to LPA

graph_info(G), network compression, FLPA followed by Leiden etc.

thank you!

arXiv:2209.13338v2

http://github.com/vtraag/igraph/tree/flpa

Traag & Šubelj (2023). Large network community detection by fast label propagation. Scientific Reports 13, 2701.

Vincent A. Traag

v.a.traag@cwts.leidenuniv.nl http://www.traag.net

Lovro Šubelj University of Ljubljana

lovro.subelj@fri.uni-lj.si
http://lovro.fri.uni-lj.si