Data Structure - LLDs - (1 Week) <u>List of data structures</u>

	Lists	
		Design Linked List
		Design Skiplist
	Stacks	
		Implement Stack using Queues
		Design a Stack With Increment Operation
		LRU Cache
		Min Stack
		Max Stack
		Dinner Plate Stacks
		Implement Queue using Stacks
	Queue	
_	-	Design Circular Queue
	– Hashta	
_		Design HashMap
		Design HashSet
П	BST	<u> </u>
_		Binary Search Tree Iterator
		Serialize and Deserialize BST
П	Heaps	SCHILLIZE AND DESCHILLIZE DST
	•	Design Twitter
		Kth Largest Element in a Stream
П		PrefixTree, suffixTree)
_	,	Implement Trie (Prefix Tree)
		Add and Search Word - Data structure design
		ack Tree
_		Find Median from Data Stream
		Count of Range Sum
		cci Heaps
_		Fibonacci Heaps
П	Disjoin	
_	•	Review of two popular approaches, Disjoint Sets and DFS
П		al Trees/Segment Tree
		Lazy Dynamic Segment Tree - A general template
		A Recursive approach to Segment Trees, Range Sum Queries & Lazy Propagation
П		Tree Data Structures(Graphs)
_		Serialize and Deserialize N-ary Tree
		Encode N-ary Tree to Binary Tree
	_	Encode iv dry free to bindry free
		Algorithms - Analysis Time and Space - (3 Weeks)
_		
	Sorting	•
		Selection Sort - Merge Sorted Array
		Bubble Sort - Sort Colors
		Insertion Sort - Insertion Sort List
		Merge Sort - <u>Sort an Array</u>

		Quick Sort Kth Largest Element in an Array	
	_	□ K Closest Points to Origin	
		Counting Sort - Relative Sort Array Tree sort - Convert Sorted List to Binary Search Tree	
		Bucket Sort - Top K Frequent Elements	
		Radix Sort - Maximum Gap	
		Topological sort - Covered in Graphs	
	_	iopological sorte covered in Graphs	
	Divide	-and-Conquer	- 2 Days
		The maximum-subarray problem - Maximum Subarray	-
		Strassen's algorithm for matrix multiplication - Divide and Conqu	<u>ier Set 5</u>
		(Strassen's Matrix Multiplication)	
		The substitution method for solving recurrences	
		The recursion-tree method for solving recurrences	
		The master method for solving recurrences	
_	D	ata Barana aranta a	2 D
_		nic Programming	- 2 Days
		Rod cutting - Integer Break Dynamic Programming for the confused: Rod cutting problem	
		Matrix-chain multiplication - <u>Burst Balloons</u>	
		Elements of dynamic programming	
		Longest common subsequence - Longest Common Subsequence	
		Optimal binary search trees	
		☐ Unique Binary Search Trees	
		Unique Binary Search Trees II	
Ц		y Algorithms	- 2 Days
		An activity-selection problem - Minimum Number of Arrows to Bu	<u>ırst Balloons</u>
		Elements of the greedy strategy	wara Engineer
	_	Huffman codes - Construct Huffman Tree, Google Onsite Soft Huffman Coding Algorithm, Minimum Cost Tree From Leaf Value	
	П	Matroids and greedy methods - Matroid intersection in simple wo	
		A task-scheduling problem as a matroid - <u>Task Scheduler</u>	n'us
	_		
	Graph	Algorithms	- 6 Days
	Leetco	ode Pattern 1 DFS + BFS == 25% of the problems	
		N-ary Tree Preorder Traversal	
		N-ary Tree Postorder Traversal	
		N-ary Tree Level Order Traversal	
		BFS	
		Binary Tree Level Order Traversal	
		Binary Tree Level Order Traversal II	
		□ <u>Web Crawler Multithreaded</u>	
		□ Web Crawler □ Cut Off Trace for Calf Frant	
		□ Course Schodule	
		□ Course Schedule DFS	
		ט וע	

			Binary Tree Postorder Traversal
			Binary Tree Preorder Traversal
			Binary Tree Inorder Traversal
			<u>Is Graph Bipartite?</u>
			Remove Invalid Parentheses
			Construct Binary Tree from Preorder and Inorder Traversal
			gical Sort - Topological Sort
		-	ly Connected Components - SCC - <u>Course Schedule</u> , <u>Facebook Minimur</u>
			r of people to spread a message, Airbnb Cover all vertices with the
			umber of vertices, Critical Connections in a Network
			ım spanning Tree - Prim's Algorithm
	_		Cheapest Flights Within K Stops
			Minimum Height Trees
			Number of Operations to Make Network Connected
			Connecting Cities With Minimum Cost
	П		st Path Algos -
	_		Bellman-Ford - <u>Network Delay Time</u> ,
		_	https://leetcode.com/problems/get-watched-videos-by-your-friends/
			Dijkstra's algorithm
		_	Reachable Nodes In Subdivided Graph
			□ Shortest Path Visiting All Nodes
			Floyd-Warshall
		_	☐ Find the City With the Smallest Number of Neighbors at a
			Threshold Distance
			□ Evaluate Division
		_	☐ All-pairs shortest paths - Johnson's algorithm for sparse graphs
			GeeksforGeeks
		_	Johnson's algorithm The Ford-Fulkerson method
		ш	
			□ Google Onsite Network flow for the matrix with given row
			and column sums
			☐ Ford-Fulkerson Algorithm for Maximum Flow Problem
_	Microsoft	The ac	satio Almovithuse
			retic Algorithms - 2 Days
			ninese remainder theorem - Check If It Is a Good Array
			est common divisor
			Greatest Common Divisor of Strings
			X of a Kind in a Deck of Cards
			Google OA Summer Intern 2020 Greatest Common Divisor
			s of an element
			Pow(x, n)
	_		Sort Integers by The Power Value
			A public-key cryptosystem
			Keys and Rooms
	_		Shortest Path to Get All Keys
	u	_	factorization
			Largest Component Size by Common Factor
			Minimum Factorization

		Bulb Switcher	
	String	Matching	- 2 Day
		The Rabin-Karp algorithm	
		□ <u>Implement strStr()</u>	
		■ Binary String With Substrings Representing 1 To N	
		□ Shortest Palindrome	
		☐ Find All Anagrams in a String	
		String matching with finite automata	
		The Knuth-Morris-Pratt algorithm	
		☐ Shortest Palindrome	
		□ Rotate String	
		☐ KMP Algorithm for Pattern Searching	
		= Mill / Regoritation Factoring	
	Approx	kimation Algorithms	- 3 Days
_		The vertex-cover problem	Julys
	_	☐ Binary Tree Cameras	
		□ Vertex Cover Problem-2	
		□ Vertex Cover Problem	
		The traveling-salesman problem Find the Shortest Superstring	
		The set-covering problem	
	_	- •	
		□ Video Stitching □ Set Intersection Size At Least Tive	
		□ Set Intersection Size At Least Two	
		□ Non-overlapping Intervals	
	_	Randomization and linear programming	
		The subset-sum problem	
		Partition Equal Subset Sum	
		Partition to K Equal Sum Subsets	
_	Danda	mizad Algarithms	1 Day
_		mized Algorithms	- 1 Day
		Quick Sort	
	L	Min Cut Palindrome Partitioning II	
		Concepts Problems and Math - (1 Week)	
П	Matrix	Operations	
		Programming	
	-	mials - DFT, FFT	
_	-	Itational Geometry	
		Line-segment properties	
		Determining whether any pair of segments intersects	
	_	Finding the convex hull - <u>Erect the Fence</u> , <u>The Skyline Problem</u>	
_	CCD	Finding the closest pair of points - K Closest Points to Origin	
Ш	GCD a		
		X of a Kind in a Deck of Cards	
		Greatest Common Divisor of Strings	
		Nth Magical Number	
		Ugly Number III	

☐ 2 Keys Keyboard

Prime Factorization and Divisors		
Largest Component Size by Common Factor		
2 Keys Keyboard		
Fibonacci Numbers		
Length of Longest Fibonacci Subsequence		
Split Array into Fibonacci Sequence		
☐ Find the Minimum Number of Fibonacci Numbers Whose Sum Is K		
Catalan Numbers - <u>Unique Binary Search Trees</u>		
Modular Arithmetic		
Euler Totient Function		
nCr Computations		
Set Theory		
Factorial		
☐ <u>Last Substring in Lexicographical Order</u>		
□ Snakes and Ladders		
□ Factor Combinations		
Path With Maximum Minimum Value		
□ Number of Closed Islands		
Prime numbers and Primality Tests		
☐ Prime Arrangements		
□ K-th Smallest Prime Fraction		
Sieve Algorithms		
□ Count Primes		
Divisibility and Large Numbers		
Series		
Number Digit		
Triangles		
☐ Triangle		
□ Valid Triangle Number		
Networks - (1 Week)		
<u>Leetcode</u>		
Network Topology, OSI Architecture		
TCP/IP models		
TCP and UDP		
Firewall, DNS, Domains, workgroups		
Protocols i.e ICMP		
OS - (1 week)		
Operating System Tutorial		
<u>Shared Memory Systems</u>		
Cache		
Multithreading		
Producers-consumers problem		
Dining philosophers problem		
Cigarette smokers problem		
☐ Readers-writers problem		

 □ Web Crawler Multithreaded □ Scheduling algorithms □ Deadlock
☐ Virtual Memory
☐ Mutex and semaphore
□ Kernels
□ Paging
Software Design Principles - (2 weeks) <u>System Design Primer</u>
Start learning about Theory of Distributed Systems?
Challenges with distributed systems Microservices Design Guide 👰 - Platform Engineer
MICLOSELVICES DESIGN Guide 💆 - Flatforni Engineer
Cloud design patterns - Azure Architecture Center
Design patterns for microservices Azure Blog and Updates
TO READ:
Domain Driven Design (DDD) Bounded Context (BC) Polyglot Persistence (PP) Command and Query Responsibility Segregation (CQRS) Command Query Separation (CQS) Event-Sourcing (ES) CAP Theorem Eventual Consistency Twelve-Factor App SOLID Principles
Just some things to focus on.
☐ Load balancer
☐ API gateway
Microservices - Scale Cube Concept, MVC - READDatabase Sharding
SQL vs NoSQL - Cassandra, Postgres, Hadoop, Data lake, other algorithms related to data lake, CAP Theorem
Leadership Principles - LPs - (1 Week)
TO BE UPDATED
Resume and Miscellaneous #ADD WHATEVER YOU HAVE PUT IN RESUME
☐ Algos you have mentioned
☐ Project work and related references to read
☐ Achievements and information about it
DEFEDENCES
REFERENCES Introduction to Algorithms - Cormen

Leetcode