University of Waterloo CS 466 — Advanced Algorithm Spring 2013 Problem Set 2 Siwei Yang - 20258568

- 1. [8 marks: The Need for Paid Exchanges] In discussing Move to Front and other self-organizing heuristics the model was very important. In the model in which swapping the requested element with one immediately in front of it (and perhaps repeating this many times) as a free exchange, bring the question as to whether paid exchanges are necessary to achieve the offline optimal. Clearly they are not necessary to come within a factor of two of optimal under this model.
 - a. Show that the offline optimal to service the request a_3 , a_2 , a_3 , a_2 is 8. The list is initially in the order a_1 , a_2 , a_3 .

Assume we know the procedures to achieve offline optimal. Then, let $\delta_0, \delta_1, \delta_2, \delta_3$ represent the ordering before the before first, second, third and fourth accesses; let c_0, c_1, c_2, c_3 represent the cost for first, second, third and fourth accesses.

We know that $c_0, c_1, c_2, c_3 \ge 1$. Assuming $c_0 = 1$, then the access cost for a_2 in δ_0 is greater than 1. Since c_1 is at least access cost for a_2 in δ_0 , we have $c_1 \ge 2$. Thus,

$$c_0 + c_1 \ge 3 \tag{1}$$

Otherwise $c_0 \geq 2$, and $c_1 \geq 1$, we still have equation 1.

And for the same reason, we have

$$c_2 + c_3 \ge 3 \tag{2}$$

Now, looking at the initial ordering $\delta_0 = a_1, a_2, a_3$, we have $c_0 = 3$. if no paid exchange is made during first access, $c_1 \geq 2$. Thus, we have

$$c_0 + c_1 \ge 5 \tag{3}$$

which leads to

$$c_0 + c_1 + c_2 + c_3 > 8 \tag{4}$$

Thus, the total cost is at least 8.

If paid exchange costing k is made during first access, Then we have $c_1 \geq 1$. Therefore, we easily have

$$k + c_0 + c_1 > 5 \tag{5}$$

which leads to

$$k + c_0 + c_1 + c_2 + c_3 \ge 8 \tag{6}$$

Thus, the total cost is at least 8.

From above, we conclude the optimal **total cost is at least 8**. And we actually achieve the total cost of 8 if we have $\delta_1 = a_2, a_3, a_1$ is derivied from a_1, a_2, a_3 after one paid and one free exchanges as well as $\delta_1 = \delta_2 = \delta_3$. Therefore, the optimal **total cost is 8**.

b. Also show that the optimal offline algorithm without using these paid exchanges is 9.

Consider δ_1 , if a_3 move forward with free exchange, then δ_1 has a_2 at it's end which means $c_1 = 3$. Thus

$$c_0 + c_1 = 6 (7)$$

Combining with equation 2, we have

$$c_0 + c_1 + c_2 + c_3 \ge 9 \tag{8}$$

Otherwise, δ_1 has a_3 at it's end which means $c_3 = 3$. Thus

$$c_2 + c_3 > 4$$
 (9)

Combining with equation 3, we have

$$c_0 + c_1 + c_2 + c_3 \ge 9 \tag{10}$$

From above, we conclude the optimal **total cost is at least 9**. And we actually achieve the total cost of 9 if we have $\delta_1 = a_1, a_2, a_3$ is derivied from δ_0 with no exchanges; $\delta_2 = a_2, a_1, a_3$ is derivied from δ_1 with one free exchanges as well as $\delta_2 = \delta_3$. Therefore, the optimal **total cost is 9**.

2. [6 marks] In a splay tree we use double rotations to move an element to the root. It was mentioned that moving the requested element to the root by a sequence can give very bad amortized behavior. Prove that this amortized cost can be $\Theta(n)$ (actually you can get it to n)for an arbitrarily long sequence of requests on a tree with n nodes, with a starting configuration of your choice. (You need not deal with either insertions or deletions.)