The Goal Attainment Scaling Method is Robust to Violations of Normality in Goal Scales: A Simulation Study.

Taylor Dunn¹, Justin Stanley¹, Kari Knox¹, Sanja Stanojevic^{1,2}, Susan Howlett^{1,2}, Kenneth Rockwood^{1,2}

¹ Ardea Outcomes ² Dalhousie University

Background

- Goal attainment scaling (GAS) is a patient-centric outcome measure that captures meaningful change through personally identified goals of treatment.
- GAS is generally a three-step process:

IDENTIFY GOALS

Clinician interviews subject/caregiver to identify goals of treatment (usually 3)

BUILD GAS SCALES

MEASURE ATTAINMENT

Set 5-point attainment Rate during follow-up scales for each identified goal whether the goals have been attained

- A key assumption in the GAS method is that scores on the 5-point scales approximate a normal distribution.
- Using data simulation techniques (introduced by Urach et al. 2019), we investigated whether GAS statistical properties varied if the assumption of normality was violated.

Results

Normally-distributed scores vs uniformly-distributed scores

Statistical power does not differ significantly between normally-distributed and uniformly-distributed scores

Power vs simulated treatment effect for 60 subjects

Measured effect sizes slightly higher with normally-distributed compared to uniformly-distributed scores

Simulated vs mean measured effect size for 60 subjects

- Normally-distributed scores do not differ appreciably from uniformlydistributed scores in terms of power to detect a treatment effect.
- Measured effect size is slightly higher with normally-distributed scores, but only for large simulated effect sizes.

Results (cont.)

Difference in power (normal - uniform) for all simulation scenarios

• For the most part, there is less than a 2% difference in power to detect a treatment effect.

Methods

- We employed a latent variable model (Urach et al. 2019) to generate GAS data.
- The following parameters were varied: number of subjects, treatment effect size, and number of goals per subject.
- Latent goal scores were discretized into 5-point scales following **uniform** and **normal** distributions.
- 10,000 trials were simulated for each set of parameters.
- Two-sided *t*-tests on GAS T-scores were used to test the null hypothesis of no treatment effect.
- Power was the percentage of simulations detecting a significant effect at α = 0.05. Standardized effect sizes were computed as Cohen's *d*.