

Machine Learning

Linear regression with one variable

Model representation

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Classification: Discrete-valuel output

Training set of housing prices (Portland, OR)

-> m = Number of training examples

y's = "output" variable / "target" variable

x's = "input" variable / features

(x,y) - one training

Notation:

Size in feet² (x) 2104

1416

1534

852

460

232

315

178

Andrew Ng

How do we represent h?

$$h_{\mathbf{g}}(x) = \Theta_0 + \Theta_1 x$$
Shorthard: $h(x)$

Linear regression with one variable. Univariate linear regression.

L one vorial

Machine Learning

Linear regression with one variable

Cost function

Training Set

Size in feet ² (x)	Price (\$) in 1000's (y)	
2104	460)
1416	232	h M= 47
1534	315	
852	178	
•••)

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
 θ_i 's: Parameters

How to choose θ_i 's ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

training examples (x,y) \forall \forall \forall \forall Andrew Ng

Machine Learning

Linear regression with one variable

Cost function intuition I

<u>Simplified</u>

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

Cost Function:

 θ_0, θ_1

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal: $\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$

$$\underset{\theta_1}{\text{minimize}} J(\theta_1) \qquad \Diamond_{\prime} \times^{(i)}$$

(for fixed
$$\theta_1$$
, this is a function of x)

$$\frac{h_{\theta}(x)}{3}$$
(function of the particles)

$$\frac{h_{\theta}(x)}{3}$$

$$\frac{h_{\theta}(x)}{2}$$

$$\frac{h_{\theta}(x)}{3}$$

$$\frac{h_{\theta}(x)}{2}$$

$$\frac{h_{\theta}(x)}{3}$$

$$\frac{h_{\theta}(x)}{2}$$

$$\frac{h_{\theta}(x)}{3}$$

$$\frac{h_{\theta}(x)}{2}$$

$$\frac{h_{\theta}(x)}{3}$$

$$\frac{h_{\theta}(x)}{2}$$

$$\frac{h_{\theta}(x)}{3}$$

$$\frac{h_{\theta}(x)}{2}$$

$$\frac{h_{\theta}(x)}{3}$$

$$\frac{$$

$$h_{\theta}(x)$$
 (for fixed θ_1 , this is a function of x) (function of the parameter θ_1)
$$\frac{3}{2}$$

$$y = \frac{1}{2} \sum_{k=0}^{\infty} \left[(0.5 - 1)^k + (1 - 2)^k + (1.5 - 3)^k \right] = \frac{1}{2} \sum_{k=0}^{\infty} \left[(0.5 - 1)^k + (1 - 2)^k + (1.5 - 3)^k \right] = \frac{1}{2} \sum_{k=0}^{\infty} \left[(0.5 - 1)^k + (1 - 2)^k + (1.5 - 3)^k \right] = \frac{1}{2} \sum_{k=0}^{\infty} \left[(0.5 - 1)^k + (1 - 2)^k + (1.5 - 3)^k \right] = \frac{1}{2} \sum_{k=0}^{\infty} \left[(0.5 - 1)^k + (1 - 2)^k + (1.5 - 3)^k \right] = \frac{1}{2} \sum_{k=0}^{\infty} \left[(0.5 - 1)^k + (1 - 2)^k + (1.5 - 3)^k \right] = \frac{1}{2} \sum_{k=0}^{\infty} \left[(0.5 - 1)^k + (1 - 2)^k + (1.5 - 3)^k \right] = \frac{1}{2} \sum_{k=0}^{\infty} \left[(0.5 - 1)^k + (1 - 2)^k + (1.5 - 3)^k \right] = \frac{1}{2} \sum_{k=0}^{\infty} \left[(0.5 - 1)^k + (1 - 2)^k + (1 - 2)^k + (1 - 2)^k \right] = \frac{1}{2} \sum_{k=0}^{\infty} \left[(0.5 - 1)^k + (1 - 2)^k + (1 - 2)^k + (1 - 2)^k \right] = \frac{1}{2} \sum_{k=0}^{\infty} \left[(0.5 - 1)^k + (1 - 2)^k + (1 - 2)^k + (1 - 2)^k \right] = \frac{1}{2} \sum_{k=0}^{\infty} \left[(0.5 - 1)^k + (1 - 2)^k + (1 - 2)^k + (1 - 2)^k + (1 - 2)^k \right] = \frac{1}{2} \sum_{k=0}^{\infty} \left[(0.5 - 1)^k + (1 - 2)^k + (1 -$$

Andrew Ng

Andrew Ng

Machine Learning

Linear regression with one variable

Cost function intuition II

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0, \theta_1$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\theta_1)$

(function of the parameters $heta_0, heta_1$)

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters $heta_0, heta_1$)

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters $heta_0, heta_1$)

Machine Learning

Linear regression with one variable

Gradient descent

Have some function
$$J(\theta_0,\theta_1)$$
 $J(\theta_0,\theta_1)$ $J(\theta_0,\theta_1)$

Outline:

- Start with some θ_0, θ_1 (Say $\Theta_0 = 0, \Theta_1 = 0$)
- Keep changing $\underline{\theta_0},\underline{\theta_1}$ to reduce $\underline{J(\theta_0,\theta_1)}$ until we hopefully end up at a minimum

Gradient descent algorithm

$$\frac{\mathbf{Q}_{i} = \mathbf{q} + \mathbf{1}}{\mathbf{q} + \mathbf{1}} = 0$$

Assignment

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for
$$j = 0$$
 and $j = 1$)

Simultaneously update

So and S

tearning rate

- $temp0 := \theta_0 \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$ \rightarrow temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$
- $\rightarrow \theta_0 := \text{temp}0$
- $\rightarrow \theta_1 := \text{temp1}$

Incorrect:

$$:= \theta_0 - \alpha \frac{\partial}{\partial \theta} J(\theta_0, \theta_1)$$

$$\Rightarrow \underline{\text{temp0}} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\rightarrow \theta_0 := \text{temp0}$$

 $temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$\rightarrow \overline{\theta_1} := \text{temp1}$$

Machine Learning

Linear regression with one variable

Gradient descent intuition

Gradient descent algorithm

Andrew Ng

$$\theta_1 := \theta_1 - \bigcirc \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Machine Learning

Linear regression with one variable

Gradient descent for linear regression

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 1$ and $j = 0$)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{2}{30j} \underbrace{\frac{1}{2m}}_{\text{in}} \underbrace{\frac{2}{5} \left(h_{0}(x^{(i)}) - y^{(i)} \right)^{2}}_{\text{in}}$$

$$= \underbrace{\frac{2}{30j}}_{\text{in}} \underbrace{\frac{2}{5} \left(0. + 0. x^{(i)} - y^{(i)} \right)^{2}}_{\text{in}}$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{def}}{=} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right)$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\text{def}}{=} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right). \quad \chi^{(i)}$$

Gradient descent algorithm

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

update θ_0 and θ_1 simultaneously

 $J(\theta_0,\theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.