Tutorials

Swayam Chube Problems By: Prof. Ronnie Sebastian

Latest Update: October 23, 2022

Contents

1 Tutorial 1 2

1 Tutorial 1

1. Since $\emptyset, X \in \mathcal{T}_i$ for all i, they are also elements of \mathcal{T} . Let $\{A_{\alpha}\}$ be a collection of open subsets in \mathcal{T} . Then, for all $i \in I$, $\{A_{\alpha}\} \subseteq \mathcal{T}$, therefore $\bigcup_{\alpha} A_{\alpha} \in \mathcal{T}_i$ for all $i \in I$ and therefore is also an element of \mathcal{T} . Finally, let $\{A_1, \ldots, A_n\}$ be a finite collection of elements in \mathcal{T} , then by a similar argument, $\bigcup_{i=1}^n A_i \in \mathcal{T}$ and therefore, \mathcal{T} is a topology.

Let $X = \{a, b, c, d\}$, $\mathcal{T}_1 = \{\emptyset, \{a, b\}, \{c, d\}, X\}$ and $\mathcal{T}_2 = \{\emptyset, \{a, c\}, \{b, d\}, X\}$. But $\{a, b, c\} \notin \mathcal{T}_1 \cup \mathcal{T}_2$, therefore, it is not a topology on X.

2. In the first case, existence is guaranteed by Zorn's lemma. As for uniqueness, suppose \mathcal{T}_1 and \mathcal{T}_2 are two such distinct topologies, then $\mathcal{T}_1 \cap \mathcal{T}_2$ is properly contained in both \mathcal{T}_1 and \mathcal{T}_2 and also contains \mathcal{T}_i for all $i \in I$, contradicting the minimality of \mathcal{T}_1 and \mathcal{T}_2 respectively.

The second case has been answered in the previous problem.

- 3. Trivial.
- 4.
- 5.
- 6.
- 7. Just consider $\bigcup_{x \in A} U_x$.