RUDIN CHAPTER 7 SOLUTIONS

JOHN WANG

1. Problem 7.2

Theorem 1.1. If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set E, prove that $\{f_n + g_n\}$ converges uniformly on E.

Proof. Since $\{f_n\}$ converges uniformly to a limit, say f, then we see that for every $\epsilon > 0$, there exists an N_1 such that $|f_n(x) - f(x)| < \epsilon$ for all $n \ge N_1$ and $x \in E$. The same is true for $\{g_n\}$, namely that for every $\epsilon > 0$, there exists an N_2 such that $|g_n(x) - f(x)| < \epsilon$ for all $n \ge N_2$ and $x \in E$. Thus, there exists an $N = \max\{N_1, N_2\}$ such that for every $n \ge N$ and every $\epsilon > 0$, we obtain:

$$|f_n(x) - f(x) + g_n(x) - g(x)| = |(f_n(x) + g_n(x)) - (f(x) + g(x))| < 2\epsilon$$

Therefore, since ϵ was arbitrary, we see that $\{f_n + g_n\}$ converges uniformly on E.

Theorem 1.3. If, in addition, $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions, prove that $\{f_ng_n\}$ converges uniformly on E.

Proof. Fix $\epsilon > 0$. Again, we know that there exists an N_1 such that for $n > N_1$, we obtain $|f_n(x) - f(x)| < \epsilon$ for all $x \in E$. There also exists an N_2 such that for $n > N_2$ we obtain $|g_n(x) - g(x)| < \epsilon$. Both these statements are true because $\{f_n\} \to f$ and $\{g_n\} \to g$. Next, we will prove a lemma:

Lemma 1.4. Every uniformly convergent sequence of bounded functions $\{h_n\}$ is uniformly bounded.

Proof. A sequence of bounded functions means that for every n, we have $|h_n(x)| < M_n$. Now pick N so that for all n > N, $|h_n(x) - h(x)| < 1$ for all $x \in E$. Therefore, we see:

$$(1.5) |f_n(x)| \le |f_n(x) - f(x)| + |f(x) - f_N(x)| + |f_N(x)| < 2 + M_N$$

Now pick $M = \max\{M_1, \dots, M_{N-1}, 2 + M_N\}$. It is clear that $|f_n(x)| < M$ for all $n \in \mathbb{N}$. Therefore, we have shown that $\{h_n\}$ is uniformly bounded.

Now, we can use the above lemma and say that $|f_n(x)| < M$ and $|g_n(x)| < L$. Therefore, we see that for $n > N_2$, we have

$$|g(x)| \le |g(x) - g_n(x)| + |g_n(x)| < \epsilon + L$$

Thus, using the triangle inequality on $|f_n(x)g_n(x) - f(x)g(x)|$, we can obtain for $n > \max\{N_1, N_2\}$:

$$|f_n(x)g_n(x) - f(x)g(x)| \leq |f_n(x)g_n(x) - f_n(x)g(x)| + |f_n(x)g(x) - f(x)g(x)|$$

$$= |f_n(x)||g_n(x) - g(x)| + |g(x)||f_n(x) - f(x)|$$

Since ϵ was arbitrary, we see that $\{f_ng_n\}$ converges uniformly.

2. Problem 7.3

Theorem 2.1. Construct sequences $\{f_n\}, \{g_n\}$ which converge uniformly in some set E but such that $\{f_ng_n\}$ does not converge uniformly on E.

Proof. Consider the two sequences $f_n(x) = x + \frac{1}{n}$ and $g_n(x) = x + \frac{1}{n}$ for $x \in \mathbb{R}$. Then we see that $f_n(x) \to x$ and $g_n(x) \to x$ as $n \to \infty$. It is easy to see that $x + \frac{1}{n}$ converges uniformly because $|x + \frac{1}{n} - x| = |\frac{1}{n}|$. Therefore, we use the Archimedean principle to pick an N such that for all n > N, $\frac{1}{n} < \epsilon$. Therefore, both $\{f_n\}$ and $\{g_n\}$ converge uniformly.

However, we see that $\{f_ng_n\}$ does not converge uniformly, even though it converges pointwise to x^2 . We have $f_n(x)g_n(x)=(x+\frac{1}{n})^2$ for $x\in\mathbb{R}$. Next, we can see the following:

(2.2)
$$\left| \left(x + \frac{1}{n} \right)^2 - x^2 \right| = \left| x^2 + \frac{2x}{n} + \frac{1}{n^2} - x^2 \right|$$

$$= \left| \frac{2nx+1}{n^2} \right|$$

However, we can pick n = N and set $\epsilon = 1$. Since we have $x \in \mathbb{R}$, we can choose x = N, which gives $\left|\frac{2N^2+1}{N^2}\right| = \left|2 + \frac{1}{N^2}\right| > \epsilon = 1$. Therefore, we see that $\{f_ng_n\}$ does not converge uniformly.

3. Problem 7.4

Theorem 3.1. Consider $f(x) = \sum_{n=1}^{\infty} \frac{1}{1+n^2x}$. For what values x does the series converge absolutely?

Proof. The series diverges for x=0, simply because the sequence of partial sums of 1 does not converge to 0. Also, the series is not defined for $x=-\frac{1}{n^2}$, so it does not converge absolutely. However, for all $x\in\mathbb{R}$ other than the ones mentioned above, the series converges absolutely. We can use comparison test to show the following:

(3.2)
$$\sum_{n=1}^{\infty} \left| \frac{1}{1+n^2 x} \right| \le \sum_{n=1}^{\infty} \left| \frac{1}{n^2 x} \right| = |x| \sum_{n=1}^{\infty} \frac{1}{n^2}$$

And since $\sum \frac{1}{n^2}$ converges by being a geometric series with p=2, we see that the series on the left converges by comparison test. Therefore, the series $\sum_{n=1}^{\infty} \frac{1}{1+n^2x}$ converges absolutely for all x other than x=0 and $x=-\frac{1}{n^2}$.

Theorem 3.3. The series converges uniformly for all intervals $[a,b] \in E$ such that a,b are the same sign and there does not exist a number $-\frac{1}{n^2}$ in the interval.

Proof. If the assumptions are satisfied, then we see that $\frac{1}{1+n^2x}$ is either monotonically increasing or monotonically decreasing, depending on the sign of x. Therefore, we have either $\left|\frac{1}{1+n^2x}\right| \leq \left|\frac{1}{1+n^2a}\right|$ or we have $\frac{1}{1+n^2x} \leq \left|\frac{1}{1+n^2b}\right|$. Since all of the terms well defined (by our assumption that there do not exist terms of the form $-\frac{1}{n^2}$), we see that $|f_n(x)| \leq M_n$ for all $x \in E$, where $M_n = \left|\frac{1}{1+n^2a}\right|$ or $M_n = \left|\frac{1}{1+n^2b}\right|$. Since we know that $\sum M_n$ converges for both M_n , we know that $\sum f_n$ also converges by a theorem in Rudin.

Theorem 3.4. f is continuous wherever the series converges.

Proof. We see that $f_n(x) = \frac{1}{1+n^2x}$ is continuous wherever f(x) is defined. Since this corresponds to the intervals where f(x) is uniformly convergent, we see that $f_n(x)$ is continuous on E, where E is the set of x for which f(x) is uniformly convergent. Therefore, by a theorem in Rudin, since $\{f_n\}$ is a sequence of continuous functions on E, and $f_n \to f$ uniformly on E, then we know that f is continuous on E.

Theorem 3.5. *f* is not bounded.

Proof. Suppose by contradiction that f is bounded by some number M so that $|f(x)| < \frac{M}{2}$ for all $x \in E$. Then we can choose $x = \frac{1}{M^2}$ and see that

(3.6)
$$f\left(\frac{1}{M^2}\right) = \sum_{n=1}^{\infty} \frac{1}{1 + \frac{n^2}{M^2}}$$

$$\geq \frac{1}{1 + \frac{1}{M^2}} + \frac{1}{1 + \frac{2^2}{M^2}} + \ldots + \frac{1}{1 + \frac{M^2}{M^2}}$$

$$(3.8) \geq \frac{1}{2} + \frac{1}{2} + \ldots + \frac{1}{2}$$

$$= \frac{M}{2}$$

Thus, we have found a number x for which $|f(x)| \ge \frac{M}{2}$ which is a contradiction. Therefore, f is not bounded.

4. Problem 7.6

Theorem 4.1. Prove that the series $\sum_{n=1}^{\infty} (-1)^n \frac{x^2+n}{n^2}$ converges uniformly in every bounded interval.

Proof. We need to show that the sequence $\{s_i\}$ of partial sums converges uniformly on every closed interval $x \in [a,b]$. So let $s_i = \sum_{n=1}^i (-1)^n \frac{x^2+n}{n^2}$ and fix $\epsilon > 0$. Now we want to show that there exists some N such that for i,j>N we have $|s_i(x)-s_j(x)|<\epsilon$ for all $x\in [a,b]$. Indeed, expanding this out, and assuming without loss of generality that i>j>N, we obtain the following:

$$(4.2) |s_i(x) - s_j(x)| = \left| \sum_{n=1}^i (-1)^n \frac{x^2 + n}{n^2} - \sum_{n=1}^j (-1)^n \frac{x^2 + n}{n^2} \right|$$

$$= \left| \sum_{n=j}^{i} (-1)^n \frac{x^2 + n}{n^2} \right|$$

(4.4)
$$= \left| \sum_{n=j}^{i} (-1)^n \frac{x^2}{n^2} \right| + \left| \sum_{n=j}^{i} (-1)^n \frac{1}{n} \right|$$

Clearly, the series on the right converges uniformly on x because it does not depend on x and it also is an alternating series that converges. The series on the left converges uniformly on some interval [a,b] because we can let $M = \max\{a,b\}$ and get:

$$\left| (-1)^n \frac{x^2}{n^2} \right| \le \frac{M^2}{n^2}$$

(4.6)
$$\left| \sum_{n=j}^{i} (-1)^n \frac{x^2}{n^2} \right| \le \sum_{n=j}^{i} \left| (-1)^n \frac{x^2}{n^2} \right| \le \sum_{n=j}^{i} \frac{M^2}{n^2}$$

Since the series $\sum \frac{M^2}{n^2}$ converges by begin a geometric series with p=2, we see that $\sum (-1)^n \frac{x^2}{n^2}$ also converges by a theorem in Rudin. Therefore, $\{s_i\}$ is the sum of two convergent series which, by problem 7.2, shows that s_i converges uniformly and thus that the series $\sum_{n=1}^{\infty} (-1)^n \frac{x^2+n}{n^2}$ converges uniformly on every bounded interval [a, b].

Theorem 4.7. The series $\sum_{n=1}^{\infty} (-1)^n \frac{x^2+n}{n^2}$ does not converge absolutely for any value of x.

Proof. We must show that $\sum_{n=1}^{\infty} \left| (-1)^n \frac{x^2 + n}{n^2} \right| = \sum_{n=1}^{\infty} \left| \frac{x^2 + n}{n^2} \right|$ does not converge for any x. Indeed, we see that the following is true:

(4.8)
$$\sum_{n=1}^{\infty} \left| (-1)^n \frac{x^2 + n}{n^2} \right| = \sum_{n=1}^{\infty} \left| \frac{x^2 + n}{n^2} \right|$$

$$= \sum_{n=1}^{\infty} \left| \frac{x^2}{n^2} \right| + \sum_{n=1}^{\infty} \frac{1}{n}$$

Since the series on the right diverges by begin a geometric series with p=1, we can only hope for convergence if the series on the left is negative. However, we see that it will never be negative, so that the entire series diverges. Therefore, $\sum_{n=1}^{\infty} (-1)^n \frac{x^2+n}{n^2}$ does not converge absolutely.

5. Problem 7.7

Theorem 5.1. For $n \in \mathbb{N}$ and $x \in \mathbb{R}$, put $f_n(x) = \frac{x}{1+nx^2}$. Then $\{f_n\}$ converges uniformly to a function f.

Proof. Fix $\epsilon > 0$ and $x \in \mathbb{R}$. Using the Cauchy criterion, all we must do is show that there exists an N such that $|f_n(x) - f_m(x)| < \epsilon$ for n, m > N. Suppose n > m without loss of generality. Now, we see that the

following is true:

(5.2)
$$|f_n(x) - f_m(x)| = \left| \frac{x}{1 + nx^2} - \frac{x}{1 + mx^2} \right|$$

(5.3)
$$= \frac{x(1+mx^2) - x(1+nx^2)}{(1+nx^2)(1+mx^2)}$$

$$= \frac{x^3(m-n)}{1+mx^2+nx^2+nmx^4}$$

$$= \frac{x^3(m-n)}{1+mx^2+nx^2+nmx^4}$$

$$\leq \frac{x^3(m-n)}{nmx^4}$$

$$= \frac{1}{n} - \frac{1}{m}$$

Using the Archimedean principle, it is clear that we can select N large enough with n, m > N such that $\frac{1}{n} - \frac{1}{m} < \epsilon$. Therefore, we see that the series converges uniformly by the Cauchy criterion for all $x \in \mathbb{R}$. \square

Theorem 5.7. The equation $f'(x) = \lim_{n \to \infty} f'_n(x)$ is correct if $x \neq 0$ but false for x = 0.

Proof. We must show that $\{f'_n\}$ converges uniformly for all $x \neq 0$. Then we can apply a theorem in Rudin because we know that $\{f\}$ converges uniformly, and thus it converges pointwise at all $x_0 \in \mathbb{R} \setminus 0$. Therefore, let us examine $\{f'_n\}$ using the quotient rule:

$$(5.8) f_n'(x) = \frac{d}{dx} \frac{x}{1 + nx^2}$$

(5.9)
$$= \frac{dx \ 1 + nx^2}{1 + nx^2 - x(2nx)}$$

$$(5.10) = \frac{1 - nx^2}{(1 + nx)^2}$$

Now we must show that $\{f'_n\}$ converges uniformly for all $x \neq 0$. So, pick $x \in \mathbb{R} \setminus 0$ and fix $\epsilon > 0$. We can use Cauchy criterion and obtain for n > m:

$$|f'_n(x) - f'_m(x)| = \left| \frac{1 - nx^2}{(1 + nx)^2} - \frac{1 - mx^2}{(1 + mx)^2} \right|$$

(5.11)
$$|f'_{n}(x) - f'_{m}(x)| = \left| \frac{1 - nx^{2}}{(1 + nx)^{2}} - \frac{1 - mx^{2}}{(1 + mx)^{2}} \right|$$
(5.12)
$$\leq \left| \frac{(1 - nx^{2})(1 + mx)^{2} - (1 - mx^{2})(1 + nx)^{2}}{m^{2}n^{2}x^{4}} \right|$$
(5.13)
$$= \left| \frac{2x(m - n) + x^{2}(m^{2} - n^{2})}{m^{2}n^{2}x^{4}} \right|$$
(5.14)
$$= \left| \frac{2}{mn^{2}x^{3}} - \frac{2}{m^{2}nx^{3}} \right| + \left| \frac{1}{n^{2}x^{2}} - \frac{1}{m^{2}x^{2}} \right|$$

$$= \left| \frac{2x(m-n) + x^2(m^2 - n^2)}{m^2 n^2 x^4} \right|$$

$$= \left| \frac{2}{mn^2x^3} - \frac{2}{m^2nx^3} \right| + \left| \frac{1}{n^2x^2} - \frac{1}{m^2x^2} \right|$$

Thus, we can choose an N with n, m > N so that $|f'_n(x) - f'_m(x)| < \epsilon$. To see this, we note that the term on the right can be made arbitrarily small using the archimedean principle, say to less than $\epsilon/2$. Next, the term on the left can be made arbitrarily small as well. We see that $\frac{2}{x^3}$ is divided either mn^2 or m^2n , and even if x is negative, we can choose m, n large enough so that the term becomes arbitrarily small using the archimedean principle. Therefore, $|f'_n(x) - f'_m(x)| < \epsilon$ for $x \in \mathbb{R} \setminus 0$ implying uniform convergence on the same set.

This means we can apply the theorem in Rudin which states that for $\{f_n\}$ differentiable on [a,b], if $f_n(x_0)$ converges for some point $x_0 \in [a, b]$ and if $\{f'_n\}$ converges unformly on [a, b], then $f'(x) = \lim_{n \to \infty} f'_n(x)$. Thus, the first part of the problem is completed. We are left to show that this is false for x = 0.

This can be easily seen because $f'_n(0) = 1$ for all $n \in \mathbb{N}$. However, first we will show that f(0) = 0. It is clear that $f_n(0) = 0$. Therefore, we have $|f_n(0) - f(0)| = |0 - 0| = 0$. Moreover, $0 < \epsilon$ for all $\epsilon > 0$. Therefore, we see that f(0) = 0 by the uniform convergence we proved earlier. Moreover, f'(0) = 0. However, as we have seen, $f'_n(0) = 1$ for all $n \in \mathbb{N}$, which shows that $\lim_{n \to \infty} f'_n(0) = 1 \neq 0 = f'(0)$.

6. Problem 7.10

Theorem 6.1. Letting (x) denote the fractional part of the real number x, consider the function f(x) = $\sum_{n=1}^{\infty} \frac{(nx)}{n^2}$ for $x \in \mathbb{R}$. Find all the discontinuities of f and show that they form a countable dense set.

RUDIN CHAPTER 7

Proof. First, we will show that f converges uniformly on \mathbb{R} . Let $f_k(x) = \sum_{n=1}^k \frac{(nx)}{n^2}$ be the partial sum of f(x). We must show that the sequence $\{f_k\}$ converges uniformly for all $x \in \mathbb{R}$. We observe that (nx) < 1for all numbers $nx \in \mathbb{R}$. Therefore, we have the following:

$$\left| \frac{(nx)}{n^2} \right| \le \frac{1}{n^2}$$

Since we know that $\sum \frac{1}{n^2}$ converges by being geometric with p=2, we see that by a theorem in Rudin, f(x) converges uniformly for all $x \in \mathbb{R}$.

Next, we will note that g(x) = (x) is discontinuous for all $x \in \mathbb{Z}$. Now, let $g_n(x) = (nx)$. We see that $g_n(x)$ is discontinuous for all $nx \in \mathbb{Z}$. In other words, $g_n(x)$ is discontinuous for $x = \frac{m}{n}$ where $m, n \in \mathbb{Z}$. This means that $g_n(x)$ is discontinuous for all $x \in \mathbb{Q}$. Now, we will show that f(x) is discontinuous for $x \in \mathbb{Q}$. If $x \in \mathbb{Q}$, we see the following:

(6.3)
$$f_k(x) = \sum_{n=1}^k \frac{(nx)}{n^2} = \sum_{n=1}^k \frac{g_n(x)}{n^2}$$

Moreover, we see that $\lim_{t\to x^-} g_n(t) = 1$ and $\lim_{t\to x^+} g_n(t) = 0$. This holds for all x and n, so that:

$$\lim_{t \to x^{-}} g_n(t) \ge \lim_{t \to x^{+}} g_n(t)$$

Thus, we can take the limit that of $f_k(t)$ as $t \to x^-$ and $t \to x^+$:

(6.5)
$$\lim_{t \to x^+} f_k(t) = \lim_{t \to x^+} \sum_{n=1}^k \frac{g_n(t)}{n^2} = \sum_{n=1}^k \lim_{t \to x^+} g_n(t) \frac{1}{n^2} = 0$$

(6.6)
$$\lim_{t \to x^{-}} f_{k}(t) = \lim_{t \to x^{-}} \sum_{n=1}^{k} \frac{g_{n}(t)}{n^{2}} = \sum_{n=1}^{k} \lim_{t \to x^{-}} g_{n}(t) \frac{1}{n^{2}} = \sum_{n=1}^{k} \frac{1}{n^{2}}$$

Since we know that $f_k(x) \to f(x)$ uniformly, a theorem in Rudin says that we can swap limits in the following way:

(6.7)
$$\lim_{k \to \infty} \lim_{t \to x^+} f_k(t) = \lim_{t \to x^+} \lim_{k \to \infty} f_k(t) = \lim_{t \to x^+} f(t)$$

(6.7)
$$\lim_{k \to \infty} \lim_{t \to x^{+}} f_{k}(t) = \lim_{t \to x^{+}} \lim_{k \to \infty} f_{k}(t) = \lim_{t \to x^{+}} f(t)$$
(6.8)
$$\lim_{k \to \infty} \lim_{t \to x^{-}} f_{k}(t) = \lim_{t \to x^{-}} \lim_{k \to \infty} f_{k}(t) = \lim_{t \to x^{-}} f(t)$$

Moreover, we already know the expressions for the term on the left:

(6.9)
$$\lim_{k \to \infty} \lim_{t \to \infty} f_k(t) = \lim_{k \to \infty} 0 = 0$$

(6.9)
$$\lim_{k \to \infty} \lim_{t \to x^{+}} f_{k}(t) = \lim_{k \to \infty} 0 = 0$$

$$\lim_{k \to \infty} \lim_{t \to x^{-}} f_{k}(t) = \lim_{k \to \infty} \sum_{n=1}^{k} \frac{1}{n^{2}} = \sum_{n=1}^{\infty} \frac{1}{n^{2}}$$

Thus, we have obtained expressions for the left and right limits of the function f at $x \in \mathbb{Q}$:

(6.11)
$$\lim_{t \to x^{+}} f(t) = 0 \qquad \lim_{t \to x^{-}} f(t) = \sum_{n=1}^{\infty} \frac{1}{n^{2}}$$

Therefore, we see that the left and right limits of f(x) are not equal, so that the function is discontinuous at $x \in \mathbb{Q}$. Now we need only show that f(x) is continuous at all $x \notin \mathbb{Q}$. Well, we know by problem 4.16 in a previous problem set that (x) is continuous at all $x \notin \mathbb{N}$. Therefore, we see that $f_k(x)$ is continuous at all $x \notin \mathbb{Q}$. Since $f_k(x) \to f(x)$ uniformly, we see that f(x) is continuous for all $x \notin \mathbb{Q}$ by a theorem in Rudin. Therefore, we have shown that the only points of discontinuity are $x \in \mathbb{Q}$.

We know that $\mathbb{Q} \subset \mathbb{R}$ is a countable dense subset of \mathbb{R} . Therefore, we have shown that the points of discontinuities of f(x) are a countable dense set, which completes the proof.

Theorem 6.12. Show that f is nevertheless Riemann-integrable on every bounded interval [a, b].

Proof. We know that on any bounded interval [a, b], we have only finitely many discontinuity points. In fact, we will have n(b-a)+1 number of discontinuity points. Since $\alpha=x$ is continuous at every point in [a,b], we see that $\alpha = x$ is continuous at every point for which $f_k(x) = \sum_{n=1}^k \frac{(nx)}{n^2}$ is discontinuous. Therefore, we can apply a theorem in Rudin and see that $f_k \in \mathcal{R}$.

Next, since we know that $f_k \to f$ uniformly and that $f_k \in \mathcal{R}$ on [a,b], we also know that $f \in \mathcal{R}$ on [a,b]by a theorem in Rudin. This completes the proof.

7. Problem 7.12

Theorem 7.1. Suppose g and f_n for $n \in \mathbb{N}$ are defined on $(0,\infty)$ and are Riemann-integrable on [t,T] whenever $0 < t < T < \infty$, $|f_n| \le g_n$, $f_n \to f$ uniformly on every compact subset of $(0,\infty)$, and $\int_0^\infty g(x)dx < \infty$. Prove that $\lim_{n\to\infty} \int_0^\infty f_n(x)dx = \int_0^\infty f(x)dx$.

Proof. First, we will show that f is integrable on $[0,\infty)$. We do this by noting that $f_n \to f$ uniformly and each $f_n \in \mathscr{R}$, which implies by a theorem in Rudin that $f \in \mathscr{R}$. Moreover, we can show that \int_0^∞ is finite because we know that each $|f_n| \leq g$. Therefore, since f_n is uniformly convergent, which implies pointwise convergence, we see that $|f(x)| \leq g(x)$ for all $x \in [0,\infty)$. Thus, for $n > m \in [0,\infty)$, we must have $|\int_m^n f(x) dx| \leq \int_n^m |f(x)| dx \leq \int_n^m g(x) dx$. Since we have $\int_0^\infty g(x) dx < \infty$, we know that there exists an J such that for all j > J, we have

Since we have $\int_0^\infty g(x)dx < \infty$, we know that there exists an J such that for all j > J, we have $\int_j^\infty g(x)dx < \epsilon$. To see why this is the case, we can assume the contrary. Then $\int_c^\infty g(x) > \epsilon$ for all $c \in [0, \infty)$. Thus, we would have:

(7.2)
$$\lim_{d \to \infty} \int_0^d g(x) dx = \int_0^c g(x) dx + \lim_{d \to \infty} \int_c^d g(x) dx$$

$$\leq \int_0^c g(x) dx + \lim_{d \to \infty} (d - c)\epsilon$$

Since the integral term on the left is finite for a finite c, and the term on the right diverges, this would imply that $\int_0^\infty g(x)dx \not< \infty$, which is a contradiction of our assumption. Hence, there must exist a J such that for j > J, we have $\int_j^\infty g(x)dx < \epsilon$.

Moreover, since $f_n \to f$ uniformly, we can choose an N such that for all n > N and all $x \in [0, \infty)$, we have $|f_n(x) - f(x)| < \epsilon$. Therefore, we obtain the following:

(7.4)
$$\left| \int_0^\infty f_n(x) - \int_0^\infty f(x) \right| = \int_0^j |f_n(x) - f(x)| dx + \int_j^\infty |f_n(x) - f(x)| dx$$

$$(7.5) \leq \int_0^j |f_n(x) - f(x)| dx + \int_i^\infty 2g(x) dx$$

$$(7.6) \leq \epsilon(j-0) + 2\epsilon$$

$$(7.7) \leq \epsilon(j+2)$$

Since $\epsilon > 0$ was arbitrary and j is a constant, we see that $\int_0^\infty f_n(x) \to \int_0^\infty f(x)$ as $n \to \infty$.

8. Problem 7.14

Theorem 8.1. Let f be a continuous real function on \mathbb{R}^1 with the following properties: $0 \le f(t) \le 1$, f(t+2) = f(t) for every t, and

(8.2)
$$f(t) = \begin{cases} 0 & (0 \le t \le \frac{1}{3}) \\ 1 & (\frac{2}{3} \le t \le 1) \end{cases}$$

Put $\Phi(t) = (x(t), y(t))$ where $x(t) = \sum_{n=1}^{\infty} 2^{-n} f(3^{2n-1}t)$ and $y(t) = \sum_{n=1}^{\infty} 2^{-n} f(3^{2n}t)$. Prove that Φ is continuous and that Φ maps I = [0, 1] onto the unit square $I^2 \subset \mathbb{R}^2$. In fact, show that Φ maps the Cantor set onto I^2 .

Proof. First, we will show that Φ is continuous. To do this, it is enough to show that x(t) and y(t) are continuous. First, we know that f is a continuous function by assumption of the real line. Moreover, we see that $x_i(t)$ and $y_i(t)$ are bounded:

(8.3)
$$x_i(t) = \sum_{n=1}^i 2^{-n} f(3^{2n-1}t) \le \sum_{n=1}^i |2^{-n} f(3^{2n-1}t)| \le \sum_{n=1}^i 2^{-n}$$

(8.4)
$$y_i(t) = \sum_{n=1}^{i} 2^{-n} f(3^{2n}t) \le \sum_{n=1}^{i} |2^{-n} f(3^{2n}t)| \le \sum_{n=1}^{i} 2^{-n}$$

Since $\sum 2^{-n}$ converges, we see that $x_i \to x$ and $y_i \to y$ uniformly. Moreover, since each x_i and y_i is continuous, as it is a sum of multiples of a continuous function f, we see that x and y are continuous due to uniform convergence. Thus, we have shown that Φ is also continuous.

RUDIN CHAPTER 7 SOLUTIONS

Now we must show that Φ maps the Cantor set onto I^2 . It is clear that we must have each $(x_0, y_0) \in I^2$ of the form

(8.5)
$$x_0 = \sum_{n=1}^{\infty} 2^{-n} a_{2n-1}, \qquad y_0 = \sum_{n=1}^{\infty} 2^{-n} a_{2n}$$

Where each a_i is either 0 or 1. It is clear then that $t_0 = \sum_{i=1}^{\infty} 3^{-i-1}(2a_i)$ converges, since it is a geometric series, and moreover, it converges to a number in the range [0,1] since a_i can be either 0 or 1. Therefore, we can compute $3^k t_0$ in the following manner:

$$3^k t_0 = \sum_{i=1}^{\infty} 3^{k-i-1} (2a_i)$$

$$= 2\sum_{i=1}^{k-1} 3^{k-1-i}(a_i) + \sum_{j=0}^{\infty} 3^{-j-1}(2a_{k+j})$$

$$= 2N + \sum_{j=0}^{\infty} 3^{-j-1} (2a_{k+j})$$

Here, N is an integer. Since f(x+2) = f(x), we see that f(2N+x) = f(x) so that we obtain the following expression:

(8.9)
$$f(3^k t_0) = \sum_{j=0}^{\infty} 3^{-j-1} (2a_{k+j})$$

Now there are two options for a_k . We can either have $a_k = 0$, in which case we see that the first term with j = 0 is 0, so we get:

(8.10)
$$\sum_{j=0}^{\infty} 3^{-j-1} (2a_{j+k}) = \sum_{j=1}^{\infty} 3^{-j-1} 2a_{j+k}$$

We can obtain a lower bound by assuming $a_i = 0$ for all i > k and an upper bound by assuming $a_i = 1$ for all i > k. We see that the first series converges to 0. The second series converges as follows:

(8.11)
$$\sum_{j=1}^{\infty} 3^{-j-1} (2a_{j+k}) = \frac{2}{3} \sum_{j=1}^{\infty} \frac{1}{3^j}$$

$$= \frac{2}{3} \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{1}{3}$$

Therefore, when $a_k = 0$, we see:

(8.13)
$$0 \le \sum_{k=0}^{\infty} 3^{-j-1} (2a_{j+k}) \le \frac{1}{3} \quad \Rightarrow \quad f(3^k t_0) = 0 = a_k$$

We can perform similar bounds for when $a_k=1$. There, we see that the first term when j=0 is equal to $\frac{2}{3}$. Since we have already found the bounds for $\sum_{j=1}^{\infty} 3^{-j-1} 2a_{j+k}$, we can just add them to $\frac{2}{3}$. Thus, we see that when $a_k=1$, we have:

(8.14)
$$\frac{2}{3} \le \sum_{j=0}^{\infty} 3^{-j-1} (2a_{j+k}) \le 1 \quad \Rightarrow \quad f(3^k t_0) = 1 = a_k$$

By the definition of x(t) and y(t), we see that $\Phi(t_0) = (x_0, y_0)$, which implies that Φ is surjective. Moreover, the points t_0 are clearly the points appearing in the Cantor set. Thus, we have completed the proof.

9. Problem 7.15

Theorem 9.1. Suppose f is a real continuous function on \mathbb{R}^1 , $f_n(t) = f(nt)$ for $n \in \mathbb{N}$, and $\{f_n\}$ is equicontinuous on [0,1]. Then f is constant on $[0,\infty)$.

Proof. Fix $\epsilon > 0$. The equicontinuity condition implies that there exists a $\delta > 0$ such that $|f_n(x) - f_n(y)| < \epsilon$ whenever $|x - y| < \delta$ for all $x, y \in [0, 1]$ and $f_n \in \{f_n\}$. Therefore, let us pick any t > 0 and a corresponding n such that $n > \frac{t}{\delta}$. Then we have $\delta > \frac{t}{n}$. Thus, we have the following expression:

$$(9.2) \left| f(t) - f(0) \right| = \left| f\left(t\frac{n}{n}\right) - f(0) \right| = \left| f_n\left(\frac{t}{n}\right) - f(0) \right| < \epsilon$$

Where the last inequality comes from the equicontinuity condition. Therefore, we see that for any arbitrary t, we have $|f(t) - f(0)| < \epsilon$. Moreover, since ϵ was arbitrary to begin with, we see that f(t) = f(0) for all t > 0. We obtain t > 0 because we have shown it possible to choose n such that $\delta > \frac{t}{n}$, which means we can extend the notion of equicontinuity from [0,1] to show that f is constant on $[0,\infty)$.

10. Problem 7.16

Theorem 10.1. Suppose $\{f_n\}$ is an equicontinuous sequence of functions on a compact set K, and $\{f_n\}$ converges pointwise on K. Prove that $\{f_n\}$ converges uniformly on K.

Proof. First, we will show that f is uniformly continuous. Since $\{f_n\}$ converges pointwise on K, say to some function f, we can fix $\epsilon > 0$ and use the definition of pointwise convergence. We see that for all $x, y \in K$, there exists an $N = \max\{N_1, N_2\}$ such that for n > N, we have $|f_n(x) - f(x)| < \epsilon$ and also $|f_n(y) - f(y)| < \epsilon$. Moreover, equicontinuity implies that there exists a $\delta > 0$ such that $|f_n(x) - f_n(y)| < \epsilon$ if $|x - y| < \delta$. This implies:

$$|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| < 3\epsilon$$

For $x, y \in K$ and $|x - y| < \delta$. Therefore, we see that f satisfies the conditions of uniformly continuity. Next, we will fix an $a \in K$ so that we may obtain the following inequality:

$$|f_n(x) - f(x)| \le |f_n(x) - f_n(a)| + |f_n(a) - f(a)| + |f(a) - f(x)|$$

First, we know that for each a there exists an $M_a \in \mathbb{R}$ such that for all $n > M_a$, we have $|f_n(a) - f(a)| < \epsilon$ by the pointwise convergence of $\{f_n\}$. Next, since we have already fixed $\delta > 0$, we know that $|f_n(x) - f_n(a)| < \epsilon$ for $x \in N_\delta(a)$ by equicontinuity. Finally, we have $|f(a) - f(x)| < \epsilon$ if $x \in N_\delta(a)$ by the uniform continuity of f. Therefore, $|f_n(x) - f(x)| < 3\epsilon$ if $x \in N_\delta(a)$ and $n > M_a$.

Now, we can use compactness of K to find finitely many points a_1, \ldots, a_m such that $K \subset N_\delta(a_1) \cup \ldots \cup N_\delta(a_m)$. This can be done because every open cover has a finite cover in a compact set. Next define $M = \max\{M_{a_1}, \ldots M_{a_m}\}$. Therefore, we can combine the inequalities we found for each a, and we see that $|f_n(x) - f(x)| < \epsilon$ for all $x \in K$ and all n > M. Since ϵ was arbitrary, we see that $\{f_n\}$ converges uniformly in K. This completes the proof.