Formale Grundlagen der Informatik II 5. Übungsblatt

Fachbereich Mathematik
Prof. Dr. Martin Otto

SoSe 2015 1. Juli 2015

Julian Bitterlich, Felix Canavoi, Kord Eickmeyer, Daniel Günzel

Aufgabe G1 (Quiz	Ouiz)
------------------	-------

- (a) Sei S = (c, f, P) und F eine geschlossene erfüllbare Formel in Skolem-Normalform; f sei dabei ein zweistelliges Funktions- und P ein zweistelliges Relationssymbol. Geben Sie die Trägermenge $T_0(S)$ aller variablenfreien Terme über S für mögliche Herbrandmodelle von F an.
 - $\square M_1 := \emptyset$
 - $\Box M_2 := \{c, x, y, f \times Pcy\}$
 - $\square M_3 := \{c, Pcc, PPccc, PcPcc, \ldots\}$
 - $\Box M_4 := \{c, fcc, ffccc, fcfcc, \ldots\}$
- (b) In der FO mit Gleichheit gibt es Formeln, die nur in Strukturen, deren Trägermengen höchstens zwei Elemente enthalten, erfüllbar sind. □ Falsch

Begründung: Die Formel $\forall x \forall y \forall z ((x = y) \lor (x = z))$ ist nur in Strukturen erfüllbar, deren Trägermengen höchstens zwei Elemente enthalten. Anmerkung: Die Formel $\exists x \exists y \neg (x = y)$ ist dagegen nur in Strukturen erfüllbar, deren Grundmengen mindestens zwei Elemente enthalten.

- (c) Jede PNF-Formel (pränexe Normalform) ist auch in SKNF (Skolem-Normalform). \Box Ja \Box Nein Begründung: Gegenbeispiel: $\exists x Px$ ist nicht in SKNF, da sie nicht ausschließlich All-Quantoren enthält.

Aufgabe G2

Betrachten Sie folgende Formelmenge, wobei P ein einstelliges Relations-, sowie L und R zweistellige Relationssymbole seien:

- (1) $\forall x \exists y R x y$
- (2) $\forall x \exists y L x y$
- (3) $\exists x P x$
- (4) $\forall x \forall y (Lxy \rightarrow Rxy)$
- (5) $\forall x \forall y ((Px \land Rxy) \rightarrow Py)$
- (a) Bringen Sie die Sätze (1)–(5) in Skolemnormalform.
- (b) Zeigen Sie dass die Sätze (1)–(5) erfüllbar sind, indem sie ein Herbrandmodell angeben.
- (c) Zeigen Sie, dass die Formelmenge unerfüllbar wird, wenn (3) durch die Formel

(3')
$$\exists x (Px \land \forall y (Lxy \rightarrow \neg Py))$$

ersetzt wird. Argumentieren Sie dass es kein Herbrandmodell für die neue Formelmenge geben kann.

Hinweis: Durch das Ersetzen von (3) durch (3') ändert sich die Trägermenge des Herbrandmodells *nicht* (wenn wir dieselbe Skolemkonstante "c" verwenden).

Aufgabe G3

Wir betrachten die folgenden Formeln:

$$\varphi_1 := \forall x [\exists y (Rxy \land \neg \exists x Ryx) \lor \forall y \exists z (Rxz \land Rzy)]$$

$$\varphi_2 := \exists x [\forall y \neg Rxy \to \exists y \forall z (Rxy \land Rzy)]$$

$$\varphi_3 := \forall x \forall y [Rxy \to \exists z (Rxz \land Rzy \land \neg \exists x (Rzx \land Rxz))]$$

- (a) Geben Sie äquivalente Formeln in Pränex-Normalform an.
- (b) Wandeln Sie ihre Ergebnisse aus (a) in Skolem-Normalform um.
- (c) Betrachten Sie die Formel $\varphi := \forall x \exists y Rx y$ und die Skolem-Normalform $\psi := \forall x Rx s x$.
 - i. Beweisen Sie, dass $\psi \models \varphi$ gilt.
 - ii. Geben Sie ein Gegenbeispiel an, welches zeigt, dass $\varphi \not\models \psi$.

Aufgabe G4

Betrachten Sie die Signatur $S = (0, \le, L)$, wobei 0 eine Konstante, \le ein 2-stelliges und L ein 1-stelliges Relationssymbol ist.

Wir modellieren in dieser Signatur einen Datenspeicher. Die Konstante 0 steht für die Adresse des ersten Speicherblocks, \leq bezeichnet die Ordnung der Speicheradressen und Lx steht dafür, dass der Speicherblock mit der Adresse x gesperrt ist.

- (a) Formalisieren Sie die folgenden Aussagen in FO:
 - i. Kein Speicherblock ist gesperrt.
 - ii. Nicht mehr als 3 Speicherblöcke sind gesperrt.
 - iii. Es sind genau 5 Speicherblöcke gesperrt.
 - iv. Ein Anfangsstück des Speichers ist gesperrt, jedoch nicht der gesamte Speicher.
- (b) Zeigen Sie, dass es keine Formel ϕ in FO gibt, die aussagt, dass nur endlich viele Speicherblöcke gesperrt sind.