

Verfahren zum spezifischen Schnellnachweis getränkeschädlicher Mikroorganismen

- 5 Die Erfindung betrifft ein Verfahren zum spezifischen Schnellnachweis getränkeschädlicher Mikroorganismen durch in situ-Hybridisierung. Weiter betrifft die Erfindung spezifische Oligonukleotidsonden, die im Rahmen des Nachweisverfahrens eingesetzt werden sowie Kits, die diese Oligonukleotidsonden enthalten.
- 10 Unter dem Oberbegriff „Alkoholfreie Getränke“ (AfG) werden Getränkegruppen wie Fruchtsäfte, Fruchtnektare, Fruchtkonzentrate, Fruchtpürees, Erfrischungsgetränke und Wässer zusammengefasst.
- 15 Generell können alkoholfreie Getränke aufgrund ihrer sehr vielseitigen Zusammensetzung aus Nähr- und Wuchsstoffen als potenziell gefährdet durch das Wachstum eines breiten Spektrums von Mikroorganismen eingestuft werden.
- Nach heutigem Kenntnisstand werden hauptsächlich Hefen, Schimmelpilze, Milchsäurebakterien, Essigsäurebakterien, Bazillen und Alicyclobazillen im AfG-
- 20 Bereich vorgefunden und somit als "getränkeschädliche Mikroorganismen" beschrieben.
- Die Kontaminationen mit diesen Mikroorganismen führen in der Regel nicht zu gesundheitlichen Schäden des Konsumenten, sie gehen aber meist mit Trübungen, Geschmacks- und Geruchsveränderungen des Endprodukts einher und führen durch
- 25 einen daraus resultierenden Imageverlust zu hohen wirtschaftlichen Einbußen für die produzierende Industrie.
- In Fruchtsäften und Fruchtnektaren können sich aufgrund der meist natürlicherweise hohen Konzentration an Fruchtsäuren und einem damit verbundenen niedrigen pH-
- 30 Wert (pH-Bereich 2,5 bis 4,5) i.d.R. nur acidophile oder acidotolerante Mikroorganismen (z.B. Milchsäurebakterien, Alicyclobazillen, säuretolerante Hefe-

und Schimmelpilzarten) vermehren und somit zu einer Schädigung dieser Getränke führen.

Eine Maßnahme zur Einschränkung des Verderbs durch Mikroorganismen stellt die
5 Carbonisierung von Getränken dar. Dieses Verfahren wird sehr häufig bei der Herstellung von Erfrischungsgetränken eingesetzt. Durch die Zugabe von CO₂ wird im Produkt ein nahezu anaerobes Milieu geschaffen und nur mikroaerophile, fakultativ anaerobe und anaerobe Mikroorganismen (z.B. Milchsäurebakterien, Essigsäurebakterien und Hefen) sind in der Lage, dieses Milieu zu tolerieren.

10 Stille Getränke werden in den meisten Fällen einem Pasteurisierungsprozess unterzogen, um eine lange Stabilität und Qualität dieser Produkte zu gewährleisten. Durch die Pasteurisierung sollen möglichst umfassend alle vegetativen Mikroorganismen abgetötet werden. Allerdings findet dadurch keine Eliminierung
15 der durch Bazillen und Alicyclobazillen gebildeten Sporen statt. Zudem sind auch einige Schimmelpilzarten in der Lage, diesen Prozess ohne Schaden zu überstehen und nachfolgend Produktschäden hervorzurufen.

Ein entscheidender Faktor in der Gewährleistung der biologischen Qualität von
20 Getränken ist die Fahndung nach der Ursache der Kontamination, um diese endgültig zu beseitigen.
Im Allgemeinen werden dabei zwei Kontaminationswege unterschieden: Als Primärkontamination werden Kontaminationen bezeichnet, bei denen Mikroorganismen durch die Rohstoffe oder durch Verunreinigungen im Prozess in
25 das Produkt eingetragen werden.
Sekundärkontaminationen sind Kontaminationen, die nach der eigentlichen Produktion des Getränks im Abfüllbereich auftreten.

Die Herausforderung, die sich durch diese verschiedenen Faktoren an die
30 mikrobiologische Qualitätskontrolle stellt, besteht darin, umfassend und schnell alle

- 3 -

im Produkt vorhandenen Keime zu identifizieren, um möglichst rasch entsprechende Gegenmaßnahmen einleiten zu können.

- Bislang erfolgt der konventionelle Nachweis von AfG-Schädlingen durch mehrtägige
- 5 Anreicherung der Untersuchungsprobe in einem Selektivmedium und anschließende Lichtmikroskopie. Zudem müssen zur genauen Bestimmung des AfG-Verderbers weitere physiologische Tests (wie Gram-Färbung, Zuckerverwertungsreihen) durchgeführt werden.
- Die Nachteile dieser ausschließlich kultivierungsabhängigen Methode liegen in der
- 10 langen Analysedauer, welche erhebliche logistische Kosten in den getränkeproduzierenden Betrieben verursacht. Darüber hinaus droht nach der Auslieferung von Produkten, deren mikrobiologischer Befund noch nicht einwandfrei feststand ein beträchtlicher Imageverlust für das betreffende Unternehmen, wenn im Fall von Kontaminationen Rückholaktionen von verdorbenen
- 15 Produktchargen nötig werden.

Im Folgenden werden die getränkeschädlichen Mikroorganismen und deren Nachweis, wie er im Stand der Technik erfolgt, im Detail beschrieben.

- 20 Hefen und Schimmelpilze:
- Zu denjenigen Mikroorganismen, die eine Hitzebehandlung überleben und anschließend Probleme in den Getränken verursachen können, zählen vor allem die Schimmelpilze *Byssochlamys fulva* und *B. nivea*, *Neosartorya fischeri* und *Talaromyces flavus* sowie einige Hefen. In carbonisierten Getränken sind die
- 25 säuretoleranten, fermentativen Vertreter der Hefen (*Saccharomyces spp.*, *Dekkera spp.* und *Zygosaccharomyces bailii*) vorherrschend. Neben der Beeinträchtigung der Produkte durch Geschmacksveränderungen und Trübung geht von diesen „gärfähigen Hefen“ eine potenzielle Gefahr durch fallweise Explosion („Bombagen“) der Abfüllbehältnisse aus.

Der Nachweis von Hefen und Schimmelpilzen im AfG-Bereich erfolgt derzeit über die Kultivierung auf entsprechenden Nährmedien (z.B. SSL-Bouillon, OFS-Medium, Malzextrakt-Medium, Würze-Agar) und dauert zwischen 2 und 7 Tagen. Ein Nachweis auf Gattungs- oder gar Arrebene ist sehr zeitaufwendig und wird in der 5 Regel nicht durchgeführt.

Milchsäurebakterien:

- Die Vertreter der Milchsäurebakterien sind gram-positive, nicht sporenbildende, Katalase-negative Stäbchen oder Kokken, die sich durch einen sehr hohen 10 Nährstoffanspruch (vor allem an Vitaminen, Aminosäuren, Purinen und Pyrimidinen) auszeichnen. Wie der Name schon andeutet, sind alle Milchsäurebakterien in der Lage, als Gärprodukt Milchsäure herzustellen.
- Aufgrund ihres anaeroben Wachstums und der für anaerobe Mikroorganismen 15 atypische hohe Toleranz und Unempfindlichkeit gegenüber Sauerstoff werden sie als aerotolerante Anaerobier bezeichnet.
- Bis dato werden u.a. die Gattungen Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Carnobacterium, Bifidobacterium, Enterococcus, Pediococcus, 20 Weissella und Streptococcus unter dem Begriff „Milchsäurebakterien“ geführt.
- Milchsäurebakterien haben in der Lebensmittelindustrie eine ambivalente Rolle. Einerseits ist ihr Vorhandensein in manchen Prozessen, wie z.B. der Herstellung von Sauerkraut, erwünscht und somit nicht wegzudenken. Andererseits kann ihr 25 Vorkommen in Bier oder Fruchtsäften zu einem Verderb dieser Produkte führen. Das Wachstum dieser Bakterien äußert sich vornehmlich durch Trübung, Säuerung, Gas- und Schleimbildung.

- 5 -

- In der AfG-Industrie sind hauptsächlich die Bakteriengattungen Leuconostoc, Lactococcus, Lactobacillus, Oenococcus, Weissella und Pediococcus als Kontaminanten von Bedeutung.
- Milchsäurebakterien werden durch 5- bis 7-tägige Inkubation bei 25 °C auf MRS-
5 Agar (pH 5,7) nachgewiesen.

Essigsäurebakterien:

- Mit dem Trivialnamen „Essigsäurebakterien“ werden Bakterien der Gattungen Acetobacter, Gluconobacter, Gluconoacetobacter und Acidomonas bezeichnet.
- 10 Bakterien dieser Gattungen sind gram-negative, obligat aerobe, Oxidase-negative Stäbchen, deren optimale Vermehrungstemperatur um 30 °C liegt.
- Essigsäurebakterien sind in der Lage, sich auch bei pH-Werten um 2,2 bis 3,0 zu vermehren und können daher in Getränken mit diesem pH-Wert Produktschäden hervorrufen.
- 15 Phylogenetisch werden Bakterien dieser Gattung als Mitglieder der Alphaproteobakterien eingestuft.
- Die Produktschädigungen gehen zumeist mit Trübungen und
20 Geschmacksveränderungen durch die Bildung von Essigsäure und Gluconsäure einher.

- Für den Nachweis von Essigsäurebakterien haben sich vor allem ACM-Agar (Inkubationszeit: 14 Tage) und DSM-Agar (Inkubationszeit: 3 bis 5 Tage) bewährt.
- 25 Bazillen:
- Bazillen sind gram-positive aerobe, z.T. fakultativ anaerobe, zumeist Katalase-positive sporenbildende Stäbchen. In der AfG-Industrie wurde bis dato hauptsächlich *Bacillus coagulans* als Verderbniserreger identifiziert.

- 6 -

Der Nachweis erfolgt durch Ausstrich des Untersuchungsmaterials auf Dextrose-Caseinpepton-Agar oder Hefeextrakt-Pepton-Dextrose-Stärke-Agar und anschließender Inkubation bei 55 °C (Inkubationszeit: 3 Tage). Um eine Aktivierung bzw. eine Auskeimung der *B. coagulans*-Sporen zu erreichen, wird vor der 5 eigentlichen Inkubation eine Erwärmung der Probe bei 80 °C für 10 min empfohlen.

Alicyclobazillen:

Alicyclobazillen sind gram-positive, aerobe, thermophile und Katalase-positive sporenbildende Stäbchen. Vertreter dieser Gattung bilden ω -alicyclische Fettsäuren 10 als zelluläre Hauptfettsäuren.

In der AfG-Industrie wurde bis dato weltweit hauptsächlich *Alicyclobacillus acidoterrestris* als Verderbniserreger nachgewiesen. In seltenen Fällen wurden auch *A. acidocaldarius* und *A. acidiphilus* in verdorbenen Getränken identifiziert.

15 Der optimale Wachstumstemperaturbereich für *Alicyclobacillus spp.* liegt zwischen 26 und 55 °C. Der pH-Bereich, in dem sich Bakterien dieser Gattung vermehren können, liegt zwischen 2,2 und 5,8.

Das Wachstum von *A. acidoterrestris* führt in Fruchtsäften zu Verderb, der sich 20 infolge der Bildung von Guajakol und Di-Bromphenol in Geruchs- und Geschmacksveränderungen äußert. Eine Kontamination mit diesem Organismus verläuft zumeist inapparent, was bedeutet, dass nur in seltenen Fällen eine Trübung in den infizierten Getränken auftritt.

Alicyclobazillen können über mehrtägige Kultivierung bei 44 bis 46 °C auf 25 Orangenserum-Agar, Kartoffel-Dextrose-Agar, K-Agar, YSG-Agar oder BAM-Agar nachgewiesen werden. Zudem ist zur sicheren Bestätigung des Befundes eine Reihe physiologischer Tests notwendig. Um eine Aktivierung bzw. eine Auskeimung der *Alicyclobacillus ssp.*-Sporen zu erreichen, wird vor der eigentlichen Inkubation eine Erwärmung der Probe bei 80 °C für 10 min empfohlen.

Die bisher in der Routineanalytik eingesetzten Nachweisverfahren für getränkeschädliche Mikroorganismen sind sehr langwierig und teilweise zu ungenau und verhindern somit schnelle und wirkungsvolle Gegenmaßnahmen zum Erhalt des kontaminierten Produktes. Die Ungenauigkeit resultiert beim Nachweis aus einer

- 5 fehlenden Differenzierung bis auf Gattungs- und/oder Artenbene.

Als logische Konsequenz aus den Schwierigkeiten, welche bei traditionellen Kultivierungsverfahren beim Nachweis von getränkeschädlichen Mikroorganismen auftreten, bieten sich daher Nachweisverfahren auf Nukleinsäurebasis zur schnellen, 10 sicheren und spezifischen Identifizierung von Verderbniserregern in alkoholfreien Getränken an.

Bei der PCR, der Polymerase-Kettenreaktion, wird mit spezifischen Primern ein charakteristisches Stück des jeweiligen Mikroorganismengenoms amplifiziert. Findet 15 der Primer seine Zielstelle, so kommt es zu einer millionenfachen Vermehrung eines Stücks der Erbsubstanz. Bei der anschließenden Analyse, z.B. mittels eines DNA-Fragmenten auftrennenden Agarose-Gels, kann eine qualitative Bewertung stattfinden. Im einfachsten Fall führt dies zu der Aussage, dass die Zielstellen für die verwendeten Primer in der untersuchten Probe vorhanden waren. Weitere Aussagen 20 sind nicht möglich; diese Zielstellen können sowohl von einem lebenden Bakterium, als auch von einem toten Bakterium oder von nackter DNA stammen. Da die PCR-Reaktion auch bei Anwesenheit eines toten Bakteriums oder nackter DNA positiv ausfällt, kommt es hier häufig zu falsch positiven Ergebnissen. Eine Weiterführung dieser Technik stellt die quantitative PCR dar, bei der versucht wird, eine Korrelation 25 zwischen der Menge an vorhandenen Mikroorganismen und der Menge an amplifizierter DNA herzustellen. Vorteile der PCR liegen in ihrer hohen Spezifität, leichten Anwendbarkeit und im geringen Zeitaufwand. Wesentliche Nachteile sind ihre hohe Anfälligkeit für Kontaminationen und damit falsch positive Ergebnisse sowie die bereits erwähnte fehlende Möglichkeit, zwischen lebenden und toten 30 Zellen bzw. nackter DNA zu unterscheiden.

- Einen einzigartigen Ansatz, die Spezifität der molekularbiologischen Methoden wie der PCR mit der Möglichkeit der Mikroorganismenvisualisierung, wie sie die Antikörper-Methoden ermöglichen, zu verbinden, bietet die Methode der
- 5 Fluoreszenz-In-Situ-Hybridisierung (FISH; Amann, R. I., W. Ludwig und K.-H. Schleifer, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbial. Rev. 59, S. 143-169). Hierbei können Mikroorganismenarten, -gattungen oder -gruppen hochspezifisch identifiziert und visualisiert werden.
- 10 Die FISH-Technik basiert auf der Tatsache, dass es in Mikroorganismenzellen bestimmte Moleküle gibt, die aufgrund ihrer lebenswichtigen Funktion im Laufe der Evolution nur wenig mutiert sind: Die 16S, 18S, 23S und 26S ribosomale Ribonukleinsäure (rRNA). Sie sind Bestandteile der Ribosomen, den Orten der
- 15 Proteinbiosynthese, und können aufgrund ihrer ubiquitären Verbreitung, ihrer Größe, und ihrer strukturellen und funktionellen Konstanz als spezifische Marker dienen (Woese, C. R., 1987. Bacterial evolution. Microbiol. Rev. 51, S. 221-271). Ausgehend von einer vergleichenden Sequenzanalyse können phylogenetische Beziehungen allein aufgrund dieser Daten aufgestellt werden. Dazu müssen diese
- 20 Sequenzdaten in ein Alignment gebracht werden. Im Alignment, welches sich auf Kenntnisse über die Sekundärstruktur und Tertiärstruktur dieser Makromoleküle stützt, werden die homologen Positionen der ribosomalen Nukleinsäuren in Einklang miteinander gebracht.
- 25 Ausgehend von diesen Daten können phylogenetische Berechnungen durchgeführt werden. Der Einsatz modernster Computertechnologie macht es möglich, auch großangelegte Berechnungen schnell und effektiv auszuführen, sowie große Datenbanken, welche die Alignment-Sequenzen der 16S, 18S, 23S und 26S rRNA beinhalten, anzulegen. Durch den schnellen Zugriff auf dieses Datenmaterial können
- 30 neu erhaltene Sequenzen in kurzer Zeit phylogenetisch analysiert werden. Diese

rRNA Datenbanken können dazu verwendet werden, art- und gattungsspezifische Gensonden zu konstruieren. Hierbei werden alle verfügbaren rRNA Sequenzen miteinander verglichen und für bestimmte Sequenzstellen Sonden entworfen, die spezifisch eine Mikroorganismenart, -gattung oder -gruppe erfassen.

5

- Bei der FISH (Fluoreszenz-In-Situ-Hybridisierung)-Technik werden diese Gensonden, die zu einer bestimmten Region auf der ribosomalen Zielsequenz komplementär sind, in die Zelle eingeschleust. Die Gensonden sind i.d.R. kleine, 16 bis 20 Basen lange, einzelsträngige Desoxyribonukleinsäurestücke und richten sich gegen eine Zielregion, welche typisch für eine Mikroorganismenart oder eine Mikroorganismengruppe ist. Findet die fluoreszenzmarkierte Gensonde in einer Mikroorganismenzelle ihre Zielsequenz, so bindet sie daran und die Zellen können aufgrund ihrer Fluoreszenz mit Hilfe eines Fluoreszenzmikroskops detektiert werden.
- 10 15 Die FISH-Analyse wird grundsätzlich auf einem Objektträger durchgeführt, da die Mikroorganismen bei der Auswertung durch Bestrahlung mit einem hochenergetischen Licht visualisiert, also sichtbar gemacht werden. Hierin liegt allerdings einer der Nachteile der klassischen FISH-Analyse: da auf einem Objektträger naturgemäß nur relativ kleine Volumina analysiert werden können, ist 20 die Sensitivität der Methode unbefriedigend und für eine verlässliche Analyse nicht ausreichend.

- Mit der vorliegenden Erfindung werden daher die Vorteile der klassischen FISH-Analyse mit denen der Kultivierung verknüpft. Durch einen vergleichsweise kurzen 25 Kultivierungsschritt wird sichergestellt, dass die nachzuweisenden Mikroorganismen in ausreichender Zahl vorliegen, bevor der Nachweis der Mikroorganismen mittels spezifischer FISH durchgeführt wird.

- Die Durchführung der in der vorliegenden Anmeldung beschriebenen Verfahren zum 30 spezifischen Nachweis von getränkeschädlichen Hefen der Gattungen

- Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces und Saccharomycodes, insbesondere der Spezies
Zygosaccharomyces bailii, Z. mellis, Z. rouxii, Z. bisporus, Z. fermentati, Z. microellipsoides, Hanseniaspora uvarum, Candida intermedia, C. crusei
- 5 *(Issatchenka orientalis), C. parapsilosis, Brettanomyces bruxellensis, B. naardenensis, Dekkera anomala, Pichia membranaefaciens, P. minuta, P. anomala, Saccharomyces exiguum, S. cerevisiae, Saccharomycodes ludwigii* oder zum spezifischen Nachweis von getränkeschädlichen Schimmelpilzen der Gattungen Mucor, Byssochlamys, Neosartorya, Aspergillus und Talaromyces, insbesondere der
- 10 Spezies *Mucor racemosus, Byssochlamys nivea, Neosartorya fischeri, Aspergillus fumigatus und A. fischeri, Talaromyces flavus, T. bacillisporus und T. flavus* oder zum spezifischen Nachweis von getränkeschädlichen Bakterien der Gattungen Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der
- 15 Spezies *Lactobacillus collinoides, Leuconostoc mesenteroides, L. pseudomesenteroides, Oenococcus oeni, Bacillus coagulans, Alicyclobacillus ssp., A. acidoterrestris, A. cycloheptanicus und A. herbarius* umfasst somit die folgenden Schritte:
- 20 - Kultivieren der in der untersuchten Probe enthaltenen getränkeschädlichen Mikroorganismen
- Fixieren der in der Probe enthaltenen getränkeschädlichen Mikroorganismen
- Inkubieren der fixierten Mikroorganismen mit mindestens einer Oligonukleotidsonde, ggf. zusammen mit einer Kompetitorsonde, um eine Hybridisierung herbeizuführen,
- 25 - Entfernen bzw. Abwaschen der nicht hybridisierten Oligonukleotidsonden und
- Detektieren der mit den Oligonukleotidsonden hybridisierten getränkeschädlichen Mikroorganismen.

- 11 -

Im Rahmen der vorliegenden Erfindung wird unter „Kultivieren“ die Vermehrung der in der Probe enthaltenen Mikroorganismen in einem geeigneten Kultivierungsmedium verstanden.

- 5 Zum Nachweis von Hefen und Schimmelpilzen kann die Kultivierung z.B. in SSL-Bouillon für 24 h bei 25 °C erfolgen. Zum Nachweis von Milchsäurebakterien kann die Kultivierung z.B. in MRS-Bouillon für 48 h bei 30 °C erfolgen. Zum Nachweis von Essigsäurebakterien kann die Kultivierung z.B. auf DSM-Agar für 48 h bei 28 °C erfolgen. Zum Nachweis von Bazillen, vornehmlich *B. coagulans*, kann die
- 10 Kultivierung z.B. auf Dextrose-Caseinpepton-Agar für 48 h bei 55 °C erfolgen. Zum Nachweis von Alicyclobazillen kann die Kultivierung z.B. in BAM-Bouillon für 48 h bei 44 °C erfolgen.
Der Fachmann kann die geeigneten Kultivierungsverfahren für jeden zu untersuchenden Mikroorganismus bzw. jede Mikroorganismengruppe dem Stand der
- 15 Technik entnehmen.

- Im Rahmen der vorliegenden Erfindung wird unter „Fixieren“ der Mikroorganismen eine Behandlung verstanden, mit der die Hülle der Mikroorganismen für Nukleinsäuresonden durchlässig gemacht wird. Zur Fixierung wird üblicherweise Ethanol verwendet. Kann die Zellwand trotz dieser Behandlung nicht von den Nukleinsäuresonden penetriert werden, so sind dem Fachmann ausreichend weitere Maßnahmen bekannt, die zu demselben Ergebnis führen. Dazu zählen beispielsweise der Einsatz von Methanol, Mischungen von Alkoholen, einer niederprozentigen Paraformaldehydlösung oder einer verdünnten Formaldehydlösung, enzymatische Behandlungen oder ähnliches. Es kann sich in einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ein enzymatischer Schritt zum vollständigen Aufschluss der Mikroorganismen anschließen. Als Enzyme sind hier bspw. Lysozym, Proteinase K und Mutanlysin zu nennen. Dem Fachmann sind hier genügend geeignete Verfahren bekannt, und er wird auf einfache Weise feststellen

- 12 -

können, welches Mittel für den Zellaufschluss eines bestimmten Mikroorganismus besonders geeignet ist.

Im Rahmen der vorliegenden Erfindung werden für die „Hybridisierung“ die
5 fixierten Mikroorganismen mit fluoreszenzmarkierten Oligonukleotidsonden
inkubiert. Diese Oligonukleotidsonden können nach dem Fixieren die Zellhülle
penetrieren und an die der Oligonukleotidsonde entsprechende Zielsequenz im
Zellinneren binden. Die Bindung ist als Ausbildung von Wasserstoffbrücken
zwischen komplementären Nukleinsäurestücken zu verstehen.

10 Die Oligonukleotidsonde kann dabei komplementär zu einer chromosomalen oder
episomalen DNA sein, aber auch zu einer mRNA oder rRNA des nachzuweisenden
Mikroorganismus. Von Vorteil ist es, eine Oligonukleotidsonde zu wählen, die zu
einem Bereich komplementär ist, der in einer Kopienzahl von mehr als 1 im
15 nachzuweisenden Mikroorganismus vorhanden ist. Die nachzuweisende Sequenz
liegt bevorzugt 500 bis 100.000 mal pro Zelle vor, besonders bevorzugt 1.000 bis
50.000 mal. Aus diesem Grunde wird bevorzugt eine Sequenz aus der rRNA als
Zielsequenz verwendet, da die Ribosomen in der Zelle als Orte der
Proteinbiosynthese viele tausendmal in jeder aktiven Zelle vorliegen.

20 Bei der Nukleinsäuresonde im Sinne der Erfindung kann es sich um eine DNA- oder
RNA-Sonde handeln, die in der Regel zwischen 12 und 100 Nukleotide umfassen
wird, bevorzugt zwischen 15 und 50, besonders bevorzugt zwischen 17 und 25
Nukleotide. Die Auswahl der Nukleinsäuresonden geschieht unter dem
25 Gesichtspunkt, ob eine komplementäre Sequenz in dem nachzuweisenden
Mikroorganismus vorliegt. Durch diese Auswahl einer definierten Sequenz kann eine
Mikroorganismenart, eine Mikroorganismengattung oder eine ganze
Mikroorganismengruppe erfasst werden. Komplementarität sollte bei einer Sonde
von 15 Nukleotiden über 100 % der Sequenz gegeben sein. Bei Oligonukleotiden mit

mehr als 15 Nukleotiden sind je nach Länge ein bis mehrere Fehlpaarungsstellen erlaubt.

- Zur Erhöhung der Spezifität von Nukleinsäuresonden können Kompetitorsonden 5 eingesetzt werden. Unter dem Begriff "Kompetitorsonden" werden im Rahmen der vorliegenden Erfindung insbesondere Oligonukleotide verstanden, die eventuell auftretende ungewollte Bindungen der Nukleinsäuresonden abdecken und dabei eine höhere Sequenzähnlichkeit zu nicht nachzuweisenden Mikroorganismengattungen bzw. -spezies aufweisen als zu den nachzuweisenden Mikroorganismengattungen 10 bzw. -spezies. Durch den Einsatz von Kompetitorsonden kann verhindert werden, dass die Nukleinsäuresonde an die Nukleinsäuresequenz der nicht nachzuweisenden Mikroorganismengattungen bzw. -spezies bindet und zu falschen Signalen führt. Die unmarkierte Kompetitorsonde wird immer zusammen mit der entsprechenden markierten Oligonukleotidsonde eingesetzt.
- 15 Die Kompetitorsonde sollte komplementär sein zu einer Nukleinsäuresequenz mit hoher Sequenzähnlichkeit zur Nukleinsäuresequenz der nachzuweisenden Mikroorganismengattungen bzw. -spezies. Besonders bevorzugt ist die Kompetitorsonde komplementär zur rRNA von nicht nachzuweisenden 20 Mikroorganismengattungen bzw. -spezies.
- Bei der Kompetitorsonde kann es sich im Sinne der Erfindung um eine DNA- oder RNA-Sequenz handeln, die in der Regel zwischen 12 und 100 Nukleotide umfassen wird, bevorzugt zwischen 15 und 50, besonders bevorzugt zwischen 17 und 25 25 Nukleotide. Durch die Auswahl einer definierten Sequenz kann die Hybridisierung der markierten Oligonukleotidsonde an die Nukleinsäuresequenz einer Bakterienart, einer Bakteriengattung oder einer ganzen Bakteriengruppe abgeblockt werden. Komplementarität zu der abzublockenden Nukleinsäuresequenz sollte bei einer Sonde von 15 Nukleotiden über 100 % der Sequenz gegeben sein. Bei

Oligonukleotiden mit mehr als 15 Nukleotiden sind je nach Länge ein bis mehrere Fehlpaarungsstellen erlaubt.

Im Rahmen der erfindungsgemäßen Verfahren haben die erfindungsgemäßen

- 5 Nukleinsäuresondenmoleküle die nachstehend angegebenen Längen und Sequenzen (alle Nukleinsäuresondenmoleküle sind in 5'-3'-Richtung notiert).

Die erfindungsgemäßen Nukleinsäuresondenmoleküle sind zum spezifischen Nachweis von getränkeschädlichen Hefen der Gattungen *Zygosaccharomyces*,

- 10 *Hanseniaspora*, *Candida*, *Brettanomyces*, *Dekkera*, *Pichia*, *Saccharomyces* und *Saccharomycodes*, insbesondere der Spezies *Zygosaccharomyces bailii*, *Z. mellis*, *Z. rouxii*, *Z. bisporus*, *Z. fermentati*, *Z. microellipsoides*, *Hanseniaspora uvarum*, *Candida intermedia*, *C. crusei* (*Issatchenkia orientalis*), *C. parapsilosis*, *Brettanomyces bruxellensis*, *B. naardenensis*, *Dekkera anomala*, *Pichia membranaefaciens*, *P. minuta*, *P. anomala*, *Saccharomyces exiguum*, *S. cerevisiae*, *Saccharomycodes ludwigii* oder zum spezifischen Nachweis von getränkeschädlichen Schimmelpilzen der Gattungen *Mucor*, *Byssochlamys*, *Neosartorya*, *Aspergillus* und *Talaromyces*, insbesondere der Spezies *Mucor racemosus*, *Byssochlamys nivea*, *Neosartorya fischeri*, *Aspergillus fumigatus* und *A. fischeri*, *Talaromyces flavus*, *T. bacillisporus* und *T. flavus* oder zum spezifischen Nachweis von getränkeschädlichen Bakterien der Gattungen *Lactobacillus*, *Leuconostoc*, *Oenococcus*, *Weissella*, *Lactococcus*, *Acetobacter*, *Gluconobacter*, *Gluconoacetobacter*, *Bacillus* und *Alicyclobacillus*, insbesondere der Spezies *Lactobacillus collinoides*, *Leuconostoc mesenteroides*, *L. pseudomesenteroides*, *Oenococcus oeni*, *Bacillus coagulans*, *Alicyclobacillus ssp.*, *A. acidoterrestris*, *A. cycloheptanicus* und *A. herbarius* geeignet und werden dementsprechend in dem erfindungsgemäßen Nachweisverfahren eingesetzt.

Im Rahmen der vorliegenden Erfindung können Sonden, die unterschiedliche Arten

- 30 von Mikroorganismen nachweisen, zusammen eingesetzt werden, um dadurch den

- 15 -

gleichzeitigen Nachweis von unterschiedlichen Arten von Mikroorganismen zu ermöglichen. Dies führt ebenfalls zu einer Beschleunigung des Nachweisverfahrens.

- a) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Hefen
5 nachweisen:

SEQ ID No. 1: 5'- GTTGACCAAGATTCTCCGCTC

- Die Sequenz SEQ ID No. 1 ist vor allem zum Nachweis von Mikroorganismen der
10 Gattung *Zygosaccharomyces* geeignet.

SEQ ID No. 2: 5'- GTTGACCAAGATTTCCGCTCT

SEQ ID No. 3: 5'- GTTGACCAAATTTCCGCTCT

SEQ ID No. 4: 5'- GTTGTCCAAATTCTCCGCTCT

- 15 Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 2 bis SEQ ID No. 4 werden als unmarkierte Kompetitorsonden für den Nachweis von Mikroorganismen der Gattung *Zygosaccharomyces* gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 1 eingesetzt, um das Binden der markierten, für Mikroorganismen der
20 Gattung *Zygosaccharomyces* spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für Mikroorganismen der Gattung *Zygosaccharomyces* sind, zu verhindern.

SEQ ID No. 5: 5'- CCCGGTCGAATTAAAACC

25 SEQ ID No. 6: 5'- GCCCGGTCGAATTAAAAC

SEQ ID No. 7: 5'- GGCCCGGTCGAATTAAAAA

SEQ ID No. 8: 5'- AGGCCCGGTCGAATTAAA

SEQ ID No. 9: 5'- AAGGCCCGGTCGAATTAA

SEQ ID No. 10: 5'- ATATTCGAGCGAACGCC

30 SEQ ID No. 11: 5'- AAAGATCCGGACCGGCCG

- 16 -

	SEQ ID No. 12	5'- GGAAAGATCCGGACCGGC
	SEQ ID No. 13	5'- GAAAGATCCGGACCGGCC
	SEQ ID No. 14	5'- GATCCGGACC GGCG ACC
	SEQ ID No. 15	5'- AGATCCGGACC GGCG AC
5	SEQ ID No. 16	5'- AAGATCCGGACC GGCGA
	SEQ ID No. 17	5'- GAAAGGCCCGG TCGA ATT
	SEQ ID No. 18	5'- AAAGGCCCGG TCGA ATT
	SEQ ID No. 19	5'- GGAAAGGCCCGG TCGA AT
	SEQ ID No. 20	5'- AGGAAAGGCCCGG TCGAA
	SEQ ID No. 21	5'- AAGGAAAGGCCCGG TCGA

Die Sequenzen SEQ ID No. 5 bis SEQ ID No. 21 sind vor allem zum Nachweis von *Zygosaccharomyces bailii* geeignet.

15 SEQ ID No. 22: 5'- ATAGCACTGGGATCCTCGCC

Die Sequenz SEQ ID No. 22 ist vor allem zum Nachweis von *Zygosaccharomyces fermentati* geeignet.

20 SEQ ID No. 23: 5'- CCAGCCCCAAAGTTACCTTC
 SEQ ID No. 24: 5'- TCCTTGACGTAAAGTCGCAG

Die Sequenzen SEQ ID No. 23 und SEQ ID No. 24 sind vor allem zum Nachweis von *Zygosaccharomyces microellipsoides* geeignet.

25
 SEQ ID No. 25: 5'- GGAAGAAAACCAGTACGC
 SEQ ID No. 26: 5'- CCGGTCGGAAGAAAACCA
 SEQ ID No. 27: 5'- GAAGAAAACCAGTACGCG
 SEQ ID No. 28: 5'- CCCGGTCGGAAGAAAACC
30 SEQ ID No. 29: 5'- CGGTCGGAAGAAAACCAG

	SEQ ID No. 30:	5'- GGTCGGAAGAAAACCA GT
	SEQ ID No. 31:	5'- AAGAAAACCAGTACCGGG
	SEQ ID No. 32:	5'- GTACCGGGAAAAATCCGG
	SEQ ID No. 33:	5'- AGTACCGGGAAAAATCCG
5	SEQ ID No. 34:	5'- GCGGAAAAATCCGGACCG
	SEQ ID No. 35:	5'- CGGAAGAAAACCAGTACG
	SEQ ID No. 36:	5'- GCCCGGT CGGAAGAAAAC
	SEQ ID No. 37:	5'- CGCGGAAAAATCCGGACC
	SEQ ID No. 38:	5'- CAGTACCGGGAAAAATCC
10	SEQ ID No. 39:	5'- AGAAAACCAGTACCGGA
	SEQ ID No. 40:	5'- GGCCCCGGT CGGAAGAAA
	SEQ ID No. 41:	5'- ATAAACACCACCCGATCC
	SEQ ID No. 42:	5'- ACGCGGAAAAATCCGGAC
	SEQ ID No. 43:	5'- GAGAGGCCCGGT CGGAAG
15	SEQ ID No. 44:	5'- AGAGGCCCGGT CGGAAGA
	SEQ ID No. 45:	5'- GAGGCCCGGT CGGAAGAA
	SEQ ID No. 46:	5'- AGGCCCGGT CGGAAGAAA
	SEQ ID No. 47:	5'- CCGAGTGGGT CAGTAAAT
	SEQ ID No. 48:	5'- CCAGTACCGGGAAAAATC
20	SEQ ID No. 49:	5'- TAAACACCACCCGATCCC
	SEQ ID No. 50:	5'- GGAGAGGCCCGGT CGGAA
	SEQ ID No. 51:	5'- GAAAACCAGTACCGGA
	SEQ ID No. 52:	5'- TACCGGGAAAAATCCGG
	SEQ ID No. 53:	5'- GCCCACAGGGACCCAGGG
25	SEQ ID No. 54:	5'- TCACCAAGGGCCACAGGG
	SEQ ID No. 55:	5'- GGGCCACAGGGACCCAGG
	SEQ ID No. 56:	5'- TTCACCAAGGGCCACAGG
	SEQ ID No. 57:	5'- ACAGGGACCCAGGGCTAG
	SEQ ID No. 58:	5'- AGGGCCACAGGGACCCAG
30	SEQ ID No. 59:	5'- GTTCACCAAGGGCCACAG

- 18 -

	SEQ ID No. 60:	5'- GCCACAGGGACCCAGGGC
	SEQ ID No. 61:	5'- CAGGGACCCAGGGCTAGC
	SEQ ID No. 62:	5'- AGGGACCCAGGGCTAGCC
	SEQ ID No. 63:	5'- ACCAAGGGCCACAGGGAC
5	SEQ ID No. 64:	5'- CCACAGGGACCCAGGGCT
	SEQ ID No. 65:	5'- CACAGGGACCCAGGGCTA
	SEQ ID No. 66:	5'- CACCAAGGGCCACAGGGA
	SEQ ID No. 67:	5'- GGGACCCAGGGCTAGCCA
	SEQ ID No. 68:	5'- AGGAGAGGCCCGGTCGGA
10	SEQ ID No. 69:	5'- AAGGAGAGGCCCGGTCGG
	SEQ ID No. 70:	5'- GAAGGAGAGGCCCGGTCG
	SEQ ID No. 71:	5'- AGGGCTAGCCAGAAGGAG
	SEQ ID No. 72:	5'- GGGCTAGCCAGAAGGAGA
	SEQ ID No. 73:	5'- AGAAGGAGAGGCCCGGTC
15	SEQ ID No. 74:	5'- CAAGGGCCACAGGGACCC
	SEQ ID No. 75:	5'- CCAAGGGCCACAGGGACC

Die Sequenzen SEQ ID No. 25 bis SEQ ID No. 75 sind vor allem zum Nachweis von *Zygosaccharomyces mellis* geeignet.

20

	SEQ ID No. 76:	5'- GTCGGAAAAACCAAGTACG
	SEQ ID No. 77:	5'- GCCCGGTCGGAAAAACCA
	SEQ ID No. 78:	5'- CCGGTCGGAAAAACCACT
	SEQ ID No. 79:	5'- CCCGGTCGGAAAAACCAAG
25	SEQ ID No. 80:	5'- TCGGAAAAACCAAGTACGC
	SEQ ID No. 81:	5'- CGGAAAAACCAAGTACGCG
	SEQ ID No. 82:	5'- GGAAAAACCAAGTACCGGG
	SEQ ID No. 83:	5'- GTACGCGGAAAAATCCGG
	SEQ ID No. 84:	5'- AGTACGCGGAAAAATCCG
30	SEQ ID No. 85:	5'- GCGGAAAAATCCGGACCG

	SEQ ID No. 86:	5'- GGTCGGAAAAACCAGTAC
	SEQ ID No. 87:	5'- ACTCCTAGTGGTGCCCTT
	SEQ ID No. 88:	5'- GCTCCACTCCTAGTGGTG
	SEQ ID No. 89:	5'- CACTCCTAGTGGTGCCCT
5	SEQ ID No. 90:	5'- CTCCACTCCTAGTGGTGC
	SEQ ID No. 91:	5'- TCCACTCCTAGTGGTGCC
	SEQ ID No. 92:	5'- CCACTCCTAGTGGTGCCC
	SEQ ID No. 93:	5'- GGCTCCACTCCTAGTGGT
	SEQ ID No. 94:	5'- AGGCTCCACTCCTAGTGG
10	SEQ ID No. 95:	5'- GGCCCGGT CGGAAAAACC
	SEQ ID No. 96:	5'- GAAAAAACCAGTACGCGGA
	SEQ ID No. 97:	5'- CGCGGAAAAATCCGGACC
	SEQ ID No. 98:	5'- CAGTACGCGGAAAAATCC
	SEQ ID No. 99:	5'- CGGTCGGAAAAACCAGTA
15	SEQ ID No. 100:	5'- AAGGCCCGGT CGGAAAAAA
	SEQ ID No. 101:	5'- CAGGCTCCACTCCTAGTG
	SEQ ID No. 102:	5'- CTCCTAGTGGTGCCCTTC
	SEQ ID No. 103:	5'- TCCTAGTGGTGCCCTTCC
	SEQ ID No. 104:	5'- GCAGGCTCCACTCCTAGT
20	SEQ ID No. 105:	5'- AGGCCCGGT CGGAAAAAC
	SEQ ID No. 106:	5'- ACGCGGAAAAATCCGGAC
	SEQ ID No. 107:	5'- CCAGTACGCGGAAAAATC
	SEQ ID No. 108:	5'- CTAGTGGTGCCCTTCCGT
	SEQ ID No. 109:	5'- GAAAGGCCCGGT CGGAAA
25	SEQ ID No. 110:	5'- AAAGGCCCGGT CGGAAAA
	SEQ ID No. 111:	5'- TACGCGGAAAAATCCGGA
	SEQ ID No. 112:	5'- GGAAAGGCCCGGT CGGAA
	SEQ ID No. 113:	5'- ATCTCTCCGAAAGGT CG
	SEQ ID No. 114:	5'- CATCTCTCCGAAAGGT CG
30	SEQ ID No. 115:	5'- CTCTCCGAAAGGT CGAG

- 20 -

- SEQ ID No. 116: 5'- CTTCCGAAAGGTCGAGAT
SEQ ID No. 117: 5'- TCTCTTCCGAAAGGTCGA
SEQ ID No. 118: 5'- TCTTCCGAAAGGTCGAGA
SEQ ID No. 119: 5'- CCTAGTGGTGCCCTTCCG
5 SEQ ID No. 120: 5'- TAGTGGTGCCCTTCCGTC
SEQ ID No. 121: 5'- AGTGGTGCCCTTCCGTCA
SEQ ID No. 122: 5'- GCCAAGGTTAGACTCGTT
SEQ ID No. 123: 5'- GGCCAAGGTTAGACTCGT
SEQ ID No. 124: 5'- CCAAGGTTAGACTCGTTG
10 SEQ ID No. 125: 5'- CAAGGTTAGACTCGTTGG
SEQ ID No. 126: 5'- AAGGTTAGACTCGTTGGC

Die Sequenzen SEQ ID No. 76 bis SEQ ID No. 126 sind vor allem zum Nachweis von *Zygosaccharomyces rouxii* geeignet.

15

SEQ ID No. 127: 5'- CTCGCCTCACGGGGTTCTCA

Die Sequenz SEQ ID No. 127 ist vor allem zum gleichzeitigen Nachweis von *Zygosaccharomyces mellis* und *Zygosaccharomyces rouxii* geeignet.

20

- SEQ ID No. 128: 5'- GGCCC GGTCGAAATTAAA
SEQ ID No. 129: 5'- AGGCC CGGTGAAATTAA
SEQ ID No. 130: 5'- AAGGCC CGGTGCGAAATT
SEQ ID No. 131: 5'- AAAGGCC CGGTGCGAAATT
25 SEQ ID No. 132: 5'- GAAAGGCC CGGTGCGAAAT
SEQ ID No. 133: 5'- ATATCGAGCGAAACGCC
SEQ ID No. 134: 5'- GGAAAGGCC CGGTGCGAAA
SEQ ID No. 135: 5'- AAAGATCCGGACC CGGCC
SEQ ID No. 136: 5'- GGAAAGATCCGGACC CGGC
30 SEQ ID No. 137: 5'- GAAAGATCCGGACC CGGCC

- 21 -

- SEQ ID No. 138: 5'- GATCCGGACCGGCCGACC
SEQ ID No. 139: 5'- AGATCCGGACCGGCCGAC
SEQ ID No. 140: 5'- AAGATCCGGACCGGCCGA
SEQ ID No. 141: 5'- AGGAAAGGCCGGTCGAA
5 SEQ ID No. 142: 5'- AAGGAAAGGCCGGTCGA

Die Sequenzen SEQ ID No. 128 bis SEQ ID No. 142 sind vor allem zum Nachweis von *Zygosaccharomyces bisporus* geeignet.

- 10 SEQ ID No. 143: 5'-CGAGCAAAACGCCTGCTTG
SEQ ID No. 144: 5'-CGCTCTGAAAGAGAGTTGCC

Die Sequenzen SEQ ID No. 143 und SEQ ID No. 144 sind vor allem zum Nachweis von *Hanseniaspora uvarum* geeignet.

- 15 SEQ ID No. 145: 5'-AGTTGCCCTACACTAGAC
SEQ ID No. 146: 5'-GCTTCTCCGTCCCGCGCCG

Die Sequenzen SEQ ID No. 145 und SEQ ID No. 146 sind vor allem zum Nachweis 20 von *Candida intermedia* geeignet.

SEQ ID No. 147: 5'- AGATTYTCCGCTCTGAGATGG

- Das Nukleinsäuresondenmoleküle gemäß SEQ ID No. 147 wird als unmarkierte 25 Kompetitorsonde für den Nachweis von *Candida intermedia* gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 146 eingesetzt, um das Binden der markierten, für *Candida intermedia* spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für *Candida intermedia* sind, zu verhindern.

- 22 -

SEQ ID No. 148: 5'- CCTGGTTCGCCAAAAAGGC

Die Sequenz SEQ ID No. 148 ist vor allem zum Nachweis von *Candida parapsilosis* geeignet.

5

SEQ ID No. 149: 5'-GATTCTCGGCCCATGGG

Die Sequenz SEQ ID No. 149 ist vor allem zum Nachweis von *Candida crusei* (*Issatchenka orientalis*) geeignet.

10

SEQ ID No. 150: 5'- ACCCTCTACGGCAGCCTGTT

Die Sequenz SEQ ID No. 150 ist vor allem zum gleichzeitigen Nachweis von *Dekkera anomala* und *Brettanomyces (Dekkera) bruxellensis* geeignet.

15

SEQ ID No. 151: 5'- GATCGGTCTCCAGCGATTCA

Die Sequenz SEQ ID No. 151 ist vor allem zum Nachweis von *Brettanomyces (Dekkera) bruxellensis* geeignet.

20

SEQ ID No. 152: 5'- ACCCTCCACGGCGGCCTGTT

Die Sequenz SEQ ID No. 152 ist vor allem zum Nachweis von *Brettanomyces (Dekkera) naardenensis* geeignet.

25

SEQ ID No. 153: 5'- GATTCTCCGCGCCATGGG

Die Sequenz SEQ ID No. 153 ist vor allem zum Nachweis von *Pichia membranaefaciens* geeignet.

30

- 23 -

SEQ ID No. 154: 5'- TCATCAGACGGGATTCTCAC

Die Sequenz SEQ ID No. 154 ist vor allem zum gleichzeitigen Nachweis von *Pichia minuta* und *Pichia anomala* geeignet.

5

SEQ ID No. 155: 5'- CTCATCGCACGGGATTCTCAC

SEQ ID No. 156: 5'- CTCGCCACACGGGATTCTCAC

Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 155 und SEQ ID No. 156
10 werden als unmarkierte Kompetitorsonden für den gemeinsamen Nachweis von
Pichia minuta und *Pichia anomala* gemeinsam mit der Oligonukleotidsonde gemäß
SEQ ID No. 154 eingesetzt, um das Binden der markierten, für *Pichia minuta* und
Pichia anomala spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die
nicht spezifisch für *Pichia minuta* und *Pichia anomala* sind, zu verhindern.

15

SEQ ID No. 157: 5'-AGTTGCCCTCCTCTAAAGC

Die Sequenz SEQ ID No. 157 ist vor allem zum Nachweis von *Saccharomyces exiguum* geeignet.

20

SEQ ID No. 158: 5'-CTGCCACAAGGACAAATGGT

SEQ ID No. 159: 5'-TGCCCCCTCTTAAGCAAAT

Die Sequenzen SEQ ID No. 158 und SEQ ID No. 159 sind vor allem zum Nachweis
25 von *Saccharomyces ludwigii* geeignet.

SEQ ID No. 160: 5'-CCCCAAAGTTGCCCTCTC

Die Sequenz SEQ ID No. 160 ist vor allem zum Nachweis von *Saccharomyces cerevisiae* geeignet.

- 24 -

SEQ ID No. 161: 5'-GCCGCCCAAGTCGCCCTCTAC
SEQ ID No. 162: 5'-GCCCCAGAGTCGCCTTCTAC

- 5 Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 161 und SEQ ID No. 162 werden als unmarkierte Kompetitorsonden für den Nachweis von *Saccharomyces cerevisiae* gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 160 eingesetzt, um das Binden der markierten, für *Saccharomyces cerevisiae* spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für
10 *Saccharomyces cerevisiae* sind, zu verhindern.

b) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Schimmelpilze nachweisen:

- 15 SEQ ID No. 163: 5'-AAGACCAGGCCACCTCAT

Die Sequenz SEQ ID No. 163 ist vor allem zum Nachweis von *Mucor racemosus* geeignet.

- 20 SEQ ID No. 164: 5'- CATCATAGAACACCGTCC

Die Sequenz SEQ ID No. 164 ist vor allem zum Nachweis von *Byssochlamys nivea* geeignet.

- 25 SEQ ID No. 165: 5'- CCTTCCGAAGTCGAGGTTTT

Die Sequenz SEQ ID No. 165 ist vor allem zum spezifischen Nachweis von *Neosartorya fischeri* geeignet.

- 30 SEQ ID No. 166: 5'- GGGAGTGGGCCAACTC

- 25 -

Die Sequenz SEQ ID No. 166 ist vor allem zum gleichzeitigen Nachweis von *Aspergillus fumigatus* und *A. fischeri* geeignet.

5 SEQ ID No. 167: 5'- AGCGGTCGTTCGCAACCCT

Die Sequenz SEQ ID No. 167 ist vor allem zum Nachweis von *Talaromyces flavus* geeignet.

10 SEQ ID No. 168: 5'- CCGAAGTCGGGGTTTGC GG

Die Sequenz SEQ ID No. 168 ist vor allem zum gleichzeitigen Nachweis von *Talaromyces bacillisporus* und *T. flavus* geeignet.

15 c) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Milchsäurebakterien nachweisen:

SEQ ID No. 169: 5'- GATAGCCGAAACCACCTTTC

SEQ ID No. 170: 5'- GCCGAAACCACCTTCAAAC

20 SEQ ID No. 171: 5'- GTGATAGCCGAAACCACCTT

SEQ ID No. 172: 5'- AGTGATAGCCGAAACCACCT

SEQ ID No. 173: 5'- TTTAACGGATGCGTTGAC

SEQ ID No. 174: 5'- AAGTGATAGCCGAAACCACC

SEQ ID No. 175: 5'- GGTTGAATAACCGTCAACGTC

25 SEQ ID No. 176: 5'- GCACAGTATGTCAAGACCTG

SEQ ID No. 177: 5'- CATCCGATGTGCAAGCACTT

SEQ ID No. 178: 5'- TCATCCGATGTGCAAGCACT

SEQ ID No. 179: 5'- CCGATGTGCAAGCACTTCAT

SEQ ID No. 180: 5'- CCACTCATCCGATGTGCAAG

30 SEQ ID No. 181: 5'- GCCACAGTCGCCACTCATC

- 26 -

	SEQ ID No. 182:	5'- CCTCCGCGTTGTCACCGGC
	SEQ ID No. 183:	5'- ACCAGTTCGCCACAGTTCGC
	SEQ ID No. 184:	5'- CACTCATCCGATGTGCAAGC
	SEQ ID No. 185:	5'- CCAGTTGCCACAGTTGCC
5	SEQ ID No. 186:	5'- CTCATCCGATGTGCAAGCAC
	SEQ ID No. 187:	5'- TCCGATGTGCAAGCACTTCA
	SEQ ID No. 188:	5'- CGCCACTCATCCGATGTGCA
	SEQ ID No. 189:	5'- CAGTTGCCACAGTTGCCA
	SEQ ID No. 190:	5'- GCCACTCATCCGATGTGCAA
10	SEQ ID No. 191:	5'- CGCCACAGTTGCCACTCAT
	SEQ ID No. 192:	5'- ATCCGATGTGCAAGCACTTC
	SEQ ID No. 193:	5'- GTTCGCCACAGTTGCCACT
	SEQ ID No. 194:	5'- TCCTCCGCGTTGTCACCGG
	SEQ ID No. 195:	5'- CGCCAGGGTTCATCCTGAGC
15	SEQ ID No. 196:	5'- AGTTGCCACAGTTGCCAC
	SEQ ID No. 197:	5'- TCGCCACAGTTGCCACTCA
	SEQ ID No. 198:	5'- TTAACGGGATGCGTTCGACT
	SEQ ID No. 199:	5'- TCGCCACTCATCCGATGTGC
	SEQ ID No. 200:	5'- CCACAGTTGCCACTCATCC
20	SEQ ID No. 201:	5'- GATTAAACGGGATGCGTTCG
	SEQ ID No. 202:	5'- TAACGGGATGCGTTCGACTT
	SEQ ID No. 203:	5'- AACGGGATGCGTTCGACTTG
	SEQ ID No. 204:	5'- CGAAGGTTACCGAACCGACT
	SEQ ID No. 205:	5'- CCGAAGGTTACCGAACCGAC
25	SEQ ID No. 206:	5'- CCCGAAGGTTACCGAACCGA
	SEQ ID No. 207:	5'- TTCCCTCCGCGTTGTCACCG
	SEQ ID No. 208:	5'- CCGCCAGGGTTCATCCTGAG
	SEQ ID No. 209:	5'- TCCTTCCAGAAGTGATAGCC
	SEQ ID No. 210:	5'- CACCAGTTGCCACAGTTCG
30	SEQ ID No. 211:	5'- ACGGGATGCGTTCGACTTGC

	SEQ ID No. 212:	5'- GTCCTTCCAGAAGTGATAGC
	SEQ ID No. 213:	5'- GCCAGGGTTCATCCTGAGCC
	SEQ ID No. 214:	5'- ACTCATCCGATGTGCAAGCA
	SEQ ID No. 215:	5'- ATCATTGCCTTGGTGAACCG
5	SEQ ID No. 216:	5'- TCCCGCGTTGTCACCGGCAG
	SEQ ID No. 217:	5'- TGAACCGTTACTCCACCAAC
	SEQ ID No. 218:	5'- GAAGTGATAGCCGAAACCAC
	SEQ ID No. 219:	5'- CCGCGTTGTCACCGGCAGT
	SEQ ID No. 220:	5'- TTCGCCACTCATCCGATGTG
10	SEQ ID No. 221:	5'- CATTAAACGGGATGCGTTCG
	SEQ ID No. 222:	5'- CACAGTTGCCACTCATCCG
	SEQ ID No. 223:	5'- TTGCCACAGTTGCCACTC
	SEQ ID No. 224:	5'- CTCCGCGTTGTCACCGGCA
	SEQ ID No. 225:	5'- ACGCCGCCAGGGTTCATCCT
15	SEQ ID No. 226:	5'- CCTTCCAGAAGTGATAGCCG
	SEQ ID No. 227:	5'- TCATTGCCTTGGTGAACCGT
	SEQ ID No. 228:	5'- CACAGTATGTCAAGACCTGG
	SEQ ID No. 229:	5'- TTGGTGAACCGTTACTCCAC
	SEQ ID No. 230:	5'- CTTGGTGAACCGTTACTCCA
20	SEQ ID No. 231:	5'- GTGAACCGTTACTCCACCAA
	SEQ ID No. 232:	5'- GGCTCCCGAAGGTTACCGAA
	SEQ ID No. 233:	5'- GAAGGTTACCGAACCGACTT
	SEQ ID No. 234:	5'- TGGCTCCCGAAGGTTACCGA
	SEQ ID No. 235:	5'- TAATACGCCGCGGGTCTTC
25	SEQ ID No. 236:	5'- GAACCGTTACTCCACCAACT
	SEQ ID No. 237:	5'- TACGCCGCCGGTCTTCAG
	SEQ ID No. 238:	5'- TCACCAGTTGCCACAGTTC
	SEQ ID No. 239:	5'- CCTTGGTGAACCGTTACTCC
	SEQ ID No. 240:	5'- CTCACCAGTTGCCACAGTT
30	SEQ ID No. 241:	5'- CGCCGCCAGGGTTCATCCTG

	SEQ ID No. 242:	5'- CCTTGGTGAACCATTACTCC
	SEQ ID No. 243:	5'- TGGTGAACCATTACTCCACC
	SEQ ID No. 244:	5'- GCCGCCAGGGTTCATCCTGA
	SEQ ID No. 245:	5'- GGTGAACCATTACTCCACCA
5	SEQ ID No. 246:	5'- CCAGGGTTCATCCTGAGCCA
	SEQ ID No. 247:	5'- AATACGCCGCAGGGTCCTTCC
	SEQ ID No. 248:	5'- CACGCCGCCAGGGTTCATCC
	SEQ ID No. 249:	5'- AGTCGCCACTCATCCGATG
	SEQ ID No. 250:	5'- CGGGATGCGTTCGACTTGCA
10	SEQ ID No. 251:	5'- CATTGCCTTGGTGAACCGTT
	SEQ ID No. 252:	5'- GCACGCCGCCAGGGTTCATC
	SEQ ID No. 253:	5'- CTTCCTCCGCGTTGTCACC
	SEQ ID No. 254:	5'- TGGTGAACCGTTACTCCACC
	SEQ ID No. 255:	5'- CCTTCCTCCGCGTTGTCAC
15	SEQ ID No. 256:	5'- ACGCCGCCGGGTCCCTCCAGA
	SEQ ID No. 257:	5'- GGTGAACCGTTACTCCACCA
	SEQ ID No. 258:	5'- GGGTCCTCCAGAACGTGATA
	SEQ ID No. 259:	5'- CTTCCAGAACGTGATAGCCGA
	SEQ ID No. 260:	5'- GCCTTGGTGAACCAATTACTC
20	SEQ ID No. 261:	5'- ACAGTCGCCACTCATCCGA
	SEQ ID No. 262:	5'- ACCTTCCTCCGCGTTGTCA
	SEQ ID No. 263:	5'- CGAACCGACTTGGGTGTTG
	SEQ ID No. 264:	5'- GAACCGACTTGGGTGTTGC
	SEQ ID No. 265:	5'- AGGTTACCGAACCGACTTG
25	SEQ ID No. 266:	5'- ACCGAACCGACTTGGGTGT
	SEQ ID No. 267:	5'- TTACCGAACCGACTTGGGT
	SEQ ID No. 268:	5'- TACCGAACCGACTTGGGTG
	SEQ ID No. 269:	5'- GTTACCGAACCGACTTGGGG

- 29 -

Die Sequenzen SEQ ID No. 169 bis SEQ ID No. 269 sind vor allem zum Nachweis von *Lactobacillus collinoides* geeignet.

- SEQ ID No. 270: 5'- CCTTTCTGGTATGGTACCGTC
5 SEQ ID No. 271: 5'- TGCACCGCGGAYCCATCTCT

Die Sequenzen SEQ ID No. 270 und SEQ ID No. 271 sind vor allem zum Nachweis von Mikroorganismen der Gattung Leuconostoc geeignet.

- 10 SEQ ID No. 272: 5'- AGTTGCAGTCCAGTAAGCCG
SEQ ID No. 273: 5'- GTTGCAGTCCAGTAAGCCGC
SEQ ID No. 274: 5'- CAGTTGCAGTCCAGTAAGGCC
SEQ ID No. 275: 5'- TGCAGTCCAGTAAGCCGCCT
SEQ ID No. 276: 5'- TCAGTTGCAGTCCAGTAAGC
15 SEQ ID No. 277: 5'- TTGCAGTCCAGTAAGCCGCC
SEQ ID No. 278: 5'- GCAGTCCAGTAAGCCGCCCT
SEQ ID No. 279: 5'- GTCAGTTGCAGTCCAGTAAG
SEQ ID No. 280: 5'- CTCTAGGTGACGCCGAAGCG
SEQ ID No. 281: 5'- ATCTCTAGGTGACGCCGAAG
20 SEQ ID No. 282: 5'- TCTAGGTGACGCCGAAGCGC
SEQ ID No. 283: 5'- TCTCTAGGTGACGCCGAAGC
SEQ ID No. 284: 5'- CCATCTCTAGGTGACGCCGA
SEQ ID No. 285: 5'- CATCTCTAGGTGACGCCGA
SEQ ID No. 286: 5'- TAGGTGACGCCGAAGCGCCT
25 SEQ ID No. 287: 5'- CTAGGTGACGCCGAAGCGCC
SEQ ID No. 288: 5'- CTTAGACGGCTCCTTCCTAA
SEQ ID No. 289: 5'- CCTTAGACGGCTCCTTCCTA
SEQ ID No. 290: 5'- ACGTCAGTTGCAGTCCAGTA
SEQ ID No. 291: 5'- CGTCAGTTGCAGTCCAGTAA
30 SEQ ID No. 292: 5'- ACGCCGAAGGCCCTTTAAC

- 30 -

	SEQ ID No. 293:	5'- GACGCCGAAGCGCCTTTAA
	SEQ ID No. 294:	5'- GCCGAAGCGCCTTTAACTT
	SEQ ID No. 295:	5'- CGCCGAAGCGCCTTTAACT
	SEQ ID No. 296:	5'- GTGACGCCGAAGCGCCTTT
5	SEQ ID No. 297:	5'- TGACGCCGAAGCGCCTTTA
	SEQ ID No. 298:	5'- AGACGGCTCCTTCCTAAAAG
	SEQ ID No. 299:	5'- ACGGCTCCTTCCTAAAAGGT
	SEQ ID No. 300:	5'- GACGGCTCCTTCCTAAAAGG
	SEQ ID No. 301:	5'- CCTTCCTAAAAGGTTAGGCC

10

Die Sequenzen SEQ ID No. 272 bis SEQ ID No. 301 sind vor allem zum gleichzeitigen Nachweis von *Leuconostoc mesenteroides* und *L. pseudomesenteroides* geeignet.

15	SEQ ID No. 302:	5'- GGTGACGCCAAAGCGCCTTT
	SEQ ID No. 303:	5'- AGGTGACGCCAAAGCGCCTT
	SEQ ID No. 304:	5'- TAGGTGACGCCAAAGCGCCT
	SEQ ID No. 305:	5'- CTCTAGGTGACGCCAAAGCG
	SEQ ID No. 306:	5'- TCTAGGTGACGCCAAAGCGC
20	SEQ ID No. 307:	5'- CTAGGTGACGCCAAAGCGCC
	SEQ ID No. 308:	5'- ACGCCAAAGCGCCTTTAAC
	SEQ ID No. 309:	5'- CGCCAAAGCGCCTTTAACT
	SEQ ID No. 310:	5'- TGACGCCAAAGCGCCTTTA
	SEQ ID No. 311:	5'- TCTCTAGGTGACGCCAAAGC
25	SEQ ID No. 312:	5'- GTGACGCCAAAGCGCCTTT
	SEQ ID No. 313:	5'- GACGCCAAAGCGCCTTTAA
	SEQ ID No. 314:	5'- ATCTCTAGGTGACGCCAAAG
	SEQ ID No. 315:	5'- CATCTCTAGGTGACGCCAA
	SEQ ID No. 316:	5'- TCCATCTCTAGGTGACGCCA
30	SEQ ID No. 317:	5'- CCATCTCTAGGTGACGCCAA

- 31 -

	SEQ ID No. 318:	5'- CTGCCTTAGACGGCTCCCC
	SEQ ID No. 319:	5'- CCTGCCTTAGACGGCTCCC
	SEQ ID No. 320:	5'- GTGTCATGCGACACTGAGTT
	SEQ ID No. 321:	5'- TGTGTCATGCGACACTGAGT
5	SEQ ID No. 322:	5'- CTTGTGTCATGCGACACTG
	SEQ ID No. 323:	5'- TTGTGTCATGCGACACTGAG
	SEQ ID No. 324:	5'- TGCCTTAGACGGCTCCCCCT
	SEQ ID No. 325:	5'- AGACGGCTCCCCCTAAAAGG
	SEQ ID No. 326:	5'- TAGACGGCTCCCCCTAAAAG
10	SEQ ID No. 327:	5'- GCCTTAGACGGCTCCCCCTA
	SEQ ID No. 328:	5'- GCTCCCCCTAAAAGGTTAGG
	SEQ ID No. 329:	5'- GGCTCCCCCTAAAAGGTTAG
	SEQ ID No. 330:	5'- CTCCCCCTAAAAGGTTAGGC
	SEQ ID No. 331:	5'- TCCCCCTAAAAGGTTAGGCC
15	SEQ ID No. 332:	5'- CCCTAAAAGGTTAGGCCACC
	SEQ ID No. 333:	5'- CCCCTAAAAGGTTAGGCCAC
	SEQ ID No. 334:	5'- CGGCTCCCCCTAAAAGGTTA
	SEQ ID No. 335:	5'- CCCCTAAAAGGTTAGGCCA
	SEQ ID No. 336:	5'- CTTAGACGGCTCCCCCTAAA
20	SEQ ID No. 337:	5'- TTAGACGGCTCCCCCTAAAA
	SEQ ID No. 338:	5'- GGGTCGCAACTCGTTGTAT
	SEQ ID No. 339:	5'- CCTTAGACGGCTCCCCCTAA
	SEQ ID No. 340:	5'- ACGGCTCCCCCTAAAAGGTT
	SEQ ID No. 341:	5'- GACGGCTCCCCCTAAAAGGT

25

Die Sequenzen SEQ ID No. 302 bis SEQ ID No. 341 sind vor allem zum Nachweis von *Leuconostoc pseudomesenteroides* geeignet.

	SEQ ID No. 342:	5'- ACGCCGCAAGACCATCCTCT
30	SEQ ID No. 343:	5'- CTAATACGCCGCAAGACCAT

	SEQ ID No. 344:	5'- TACGCCGCAAGACCATCCTC
	SEQ ID No. 345:	5'- GTTACGATCTAGCAAGCCGC
	SEQ ID No. 346:	5'- AATACGCCGCAAGACCATCC
	SEQ ID No. 347:	5'- CGCCGCAAGACCATCCTCTA
5	SEQ ID No. 348:	5'- GCTAATACGCCGCAAGACCA
	SEQ ID No. 349:	5'- ACCATCCTCTAGCGATCCAA
	SEQ ID No. 350:	5'- TAATACGCCGCAAGACCATC
	SEQ ID No. 351:	5'- AGCCATCCCTTCTGGTAAG
	SEQ ID No. 352:	5'- ATACGCCGCAAGACCATCCT
10	SEQ ID No. 353:	5'- AGTTACGATCTAGCAAGCCG
	SEQ ID No. 354:	5'- AGCTAATACGCCGCAAGACC
	SEQ ID No. 355:	5'- GCCGCAAGACCATCCTCTAG
	SEQ ID No. 356:	5'- TTACGATCTAGCAAGCCGCT
	SEQ ID No. 357:	5'- GACCATCCTCTAGCGATCCA
15	SEQ ID No. 358:	5'- TTGCTACGTCACTAGGAGGC
	SEQ ID No. 359:	5'- ACGTCACTAGGAGGCGGAAA
	SEQ ID No. 360:	5'- TTTGCTACGTCACTAGGAGG
	SEQ ID No. 361:	5'- GCCATCCCTTCTGGTAAGG
	SEQ ID No. 362:	5'- TACGTCACTAGGAGGCGGAA
20	SEQ ID No. 363:	5'- CGTCACTAGGAGGCGGAAAC
	SEQ ID No. 364:	5'- AAGACCATCCTCTAGCGATC
	SEQ ID No. 365:	5'- GCACGTATTTAGCCATCCCT
	SEQ ID No. 366:	5'- CTCTAGCGATCCAAAAGGAC
	SEQ ID No. 367:	5'- CCTCTAGCGATCCAAAAGGA
25	SEQ ID No. 368:	5'- CCATCCTCTAGCGATCCAAA
	SEQ ID No. 369:	5'- GGCACGTATTTAGCCATCCC
	SEQ ID No. 370:	5'- TACGATCTAGCAAGCCGCTT
	SEQ ID No. 371:	5'- CAGTTACGATCTAGCAAGCC
	SEQ ID No. 372:	5'- CCGCAAGACCATCCTCTAGC
30	SEQ ID No. 373:	5'- CCATCCCTTCTGGTAAGGT

- 33 -

	SEQ ID No. 374:	5'- AGACCATCCTCTAGCGATCC
	SEQ ID No. 375:	5'- CAAGACCATCCTCTAGCGAT
	SEQ ID No. 376:	5'- GCTACGTCACTAGGAGGC GG
	SEQ ID No. 377:	5'- TGCTACGTCACTAGGAGGCG
5	SEQ ID No. 378:	5'- CTACGTCACTAGGAGGCGGA
	SEQ ID No. 379:	5'- CCTCAACGTCAGTTACGATC
	SEQ ID No. 380:	5'- GTCACTAGGAGGCGGAAACC
	SEQ ID No. 381:	5'- TCCTCTAGCGATCCAAAAGG
	SEQ ID No. 382:	5'- TGGCACGTATTAGCCATCC
10	SEQ ID No. 383:	5'- ACGATCTAGCAAGCCGCTTT
	SEQ ID No. 384:	5'- GCCAGTCTCTCAACTCGGCT
	SEQ ID No. 385:	5'- AAGCTAATACGCCGCAAGAC
	SEQ ID No. 386:	5'- GTTGCTACGTCACTAGGAG
	SEQ ID No. 387:	5'- CGCCACTCTAGTCATTGCCT
15	SEQ ID No. 388:	5'- GGCCAGCCAGTCTCTCAACT
	SEQ ID No. 389:	5'- CAGCCAGTCTCTCAACTCGG
	SEQ ID No. 390:	5'- CCCGAAGATCAATTAGCGG
	SEQ ID No. 391:	5'- CCGGCCAGTCTCTCAACTCG
	SEQ ID No. 392:	5'- CCAGCCAGTCTCTCAACTCG
20	SEQ ID No. 393:	5'- TCATTGCCTCACTTCACCCG
	SEQ ID No. 394:	5'- GCCAGCCAGTCTCTCAACTC
	SEQ ID No. 395:	5'- CACCCGAAGATCAATTAGC
	SEQ ID No. 396:	5'- GTCATTGCCTCACTTCACCC
	SEQ ID No. 397:	5'- CATTGCCTCACTTCACCCGA
25	SEQ ID No. 398:	5'- ATTGCCTCACTTCACCCGAA
	SEQ ID No. 399:	5'- CGAAGATCAATTAGCGGGCT
	SEQ ID No. 400:	5'- AGTCATTGCCTCACTTCACC
	SEQ ID No. 401:	5'- TCGCCACTCTAGTCATTGCC
	SEQ ID No. 402:	5'- TTGCCTCACTTCACCCGAAG
30	SEQ ID No. 403:	5'- CGGCCAGTCTCTCAACTCGG

- 34 -

	SEQ ID No. 404:	5'- CTGGCACGTATTTAGCCATC
	SEQ ID No. 405:	5'- ACCCGAAGATCAATT CAGCG
	SEQ ID No. 406:	5'- TCTAGCGATCCAAAAGGACC
	SEQ ID No. 407:	5'- CTAGCGATCCAAAAGGACCT
5	SEQ ID No. 408:	5'- GCACCCATCGTTACGGTAT
	SEQ ID No. 409:	5'- CACCCATCGTTACGGTATG
	SEQ ID No. 410:	5'- GCCACTCTAGTCATTGCCTC
	SEQ ID No. 411:	5'- CGTTGCTACGTCACTAGGA
	SEQ ID No. 412:	5'- GCCTCAACGTCAGTTACGAT
10	SEQ ID No. 413:	5'- GCCGGCCAGTCTCTCAACTC
	SEQ ID No. 414:	5'- TCACTAGGAGGCGGAAACCT
	SEQ ID No. 415:	5'- AGCCTAACGTCAGTTACGA
	SEQ ID No. 416:	5'- AGCCAGTCTCTCAACTCGGC
	SEQ ID No. 417:	5'- GGCCAGTCTCTCAACTCGGC
15	SEQ ID No. 418:	5'- CAAGCTAACGCCCCAAGA
	SEQ ID No. 419:	5'- TTCGCCACTCTAGTCATTGC
	SEQ ID No. 420:	5'- CCGAAGATCAATT CAGCGGC
	SEQ ID No. 421:	5'- CGCAAGACC AT CCTCTAGCG
	SEQ ID No. 422:	5'- GCAAGACC AT CCTCTAGCGA
20	SEQ ID No. 423:	5'- GCGTTGCTACGTCACTAGG
	SEQ ID No. 424:	5'- CCACTCTAGTCATTGCCTCA
	SEQ ID No. 425:	5'- CACTCTAGTCATTGCCTCAC
	SEQ ID No. 426:	5'- CCAGTCTCTCAACTCGGCTA
	SEQ ID No. 427:	5'- TTACCTTAGGCACCGGCCTC
25	SEQ ID No. 428:	5'- ACAAGCTAACGCCCCAAG
	SEQ ID No. 429:	5'- TTTACCTTAGGCACCGGCCT
	SEQ ID No. 430:	5'- TTTTACCTTAGGCACCGGCC
	SEQ ID No. 431:	5'- ATTACCTTAGGCACCGGC
	SEQ ID No. 432:	5'- GATTTACCTTAGGCACCGG
30	SEQ ID No. 433:	5'- CTCACTTCACCCGAAGATCA

- 35 -

	SEQ ID No. 434:	5'- ACGCCACCAGCGTTCATCCT
	SEQ ID No. 435:	5'- GCCAAGCGACTTGGGTACT
	SEQ ID No. 436:	5'- CGGAAAATTCCCTACTGCAG
	SEQ ID No. 437:	5'- CGATCTAGCAAGCCGCTTC
5	SEQ ID No. 438:	5'- GGTACCGTCAAGCTGAAAAC
	SEQ ID No. 439:	5'- TGCCTCACTTCACCCGAAGA
	SEQ ID No. 440:	5'- GGCCGGGCCAGTCTCTCAACT
	SEQ ID No. 441:	5'- GGTAAGGTACCGTCAAGCTG
	SEQ ID No. 442:	5'- GTAAGGTACCGTCAAGCTGA
10	SEQ ID No. 443:	5'- CCGCAAGACCATCCTCTAGG
	SEQ ID No. 444:	5'- ATTTAGCCATCCCTTCTGG

Die Sequenzen SEQ ID No. 342 bis SEQ ID No. 444 sind vor allem zum Nachweis von *Oenococcus oeni* geeignet.

15	SEQ ID No. 445:	5'- AACCCCTTCATCACACACAG
	SEQ ID No. 446:	5'- CGAAACCCCTTCATCACAC
	SEQ ID No. 447:	5'- ACCCTTCATCACACACACGC
	SEQ ID No. 448:	5'- TACCGTCACACACTGAAC
20	SEQ ID No. 449:	5'- AGATACCGTCACACACTG
	SEQ ID No. 450:	5'- CACTCAAGGGCGGAAACC
	SEQ ID No. 451:	5'- ACCGTCACACACTGAACA
	SEQ ID No. 452:	5'- CGTCACACACTGAACAGT
	SEQ ID No. 453:	5'- CCGAAACCCCTTCATCACA
25	SEQ ID No. 454:	5'- CCGTCACACACTGAACAG
	SEQ ID No. 455:	5'- GATAACCGTCACACACTGA
	SEQ ID No. 456:	5'- GGTAAGATAACCGTCACAC
	SEQ ID No. 457:	5'- CCCTTCATCACACACGCG
	SEQ ID No. 458:	5'- ACAGTGTTTACGAGCCG
30	SEQ ID No. 459:	5'- CAGTGTTTACGAGCCGA

	SEQ ID No. 460:	5'- ACAAAGCGTCGACTTGC
	SEQ ID No. 461:	5'- CGGATAACGCTTGGAAACA
	SEQ ID No. 462:	5'- AGGGCGGAAACCCTCGAA
	SEQ ID No. 463:	5'- GGGCGGAAACCCTCGAAC
5	SEQ ID No. 464:	5'- GGCGGAAACCCTCGAACAA
	SEQ ID No. 465:	5'- TGAGGGCTTCACTTCAAG
	SEQ ID No. 466:	5'- AGGGCTTCACTTCAAGAC
	SEQ ID No. 467:	5'- GAGGGCTTCACTTCAGA
	SEQ ID No. 468:	5'- ACTGCACTCAAGTCATCC
10	SEQ ID No. 469:	5'- CCGGATAACGCTTGGAAC
	SEQ ID No. 470:	5'- TCCGGATAACGCTTGGAA
	SEQ ID No. 471:	5'- TATCCCCTGCTAAGAGGT
	SEQ ID No. 472:	5'- CCTGCTAAGAGGTAGGTT
	SEQ ID No. 473:	5'- CCCTGCTAAGAGGTAGGT
15	SEQ ID No. 474:	5'- CCCCTGCTAAGAGGTAGG
	SEQ ID No. 475:	5'- TCCCCCTGCTAAGAGGTAG
	SEQ ID No. 476:	5'- ATCCCCCTGCTAAGAGGTA
	SEQ ID No. 477:	5'- CCGTTCCCTTCTGGTAAG
	SEQ ID No. 478:	5'- GCCGTTCCCTTCTGGTAA
20	SEQ ID No. 479:	5'- AGCCGTTCCCTTCTGGTA
	SEQ ID No. 480:	5'- GCACGTATTTAGCCGTT
	SEQ ID No. 481:	5'- CACGTATTTAGCCGTTCC
	SEQ ID No. 482:	5'- GGCACGTATTTAGCCGTT
	SEQ ID No. 483:	5'- CACTTCCCTACTGCAC
25	SEQ ID No. 484:	5'- CCACCTTCCTACTGCA
	SEQ ID No. 485:	5'- TCCACCTTCCTACTGC
	SEQ ID No. 486:	5'- CTTCCTACTGCACTC
	SEQ ID No. 487:	5'- TAGCCGTTCCCTTCTGGT
	SEQ ID No. 488:	5'- TTAGCCGTTCCCTTCTGG
30	SEQ ID No. 489:	5'- TTATCCCCTGCTAAGAGG

- 37 -

	SEQ ID No. 490:	5'- GTTATCCCCTGCTAAGAG
	SEQ ID No. 491:	5'- CCCGTTGCCACTCTTG
	SEQ ID No. 492:	5'- AGCTGAGGGCTTCAC TT
	SEQ ID No. 493:	5'- GAGCTGAGGGCTTCAC TT
5	SEQ ID No. 494:	5'- GCTGAGGGCTTCAC TT
	SEQ ID No. 495:	5'- CTGAGGGCTTCAC TTCA

Die Sequenzen SEQ ID No. 445 bis SEQ ID No. 495 sind vor allem zum Nachweis von Bakterien der Gattung Weissella geeignet.

10

	SEQ ID No. 496:	5' CCCGTGTCCCGAAGGAAC
	SEQ ID No. 497:	5' GCACGAGTATGTCAAGAC
	SEQ ID No. 498:	5' GTATCCCGTGTCCCGAAG
	SEQ ID No. 499:	5' TCCCGTGTCCCGAAGGAA
15	SEQ ID No. 500:	5' ATCCCGTGTCCCGAAGGA
	SEQ ID No. 501:	5' TATCCCGTGTCCCGAAGG
	SEQ ID No. 502:	5' CTTACCTTAGGAAGCGCC
	SEQ ID No. 503:	5' TTACCTTAGGAAGCGCCC
	SEQ ID No. 504:	5' CCTGTATCCCGTGTCCCG
20	SEQ ID No. 505:	5' CCACCTGTATCCCGTGT C
	SEQ ID No. 506:	5' CACCTGTATCCCGTGTCC
	SEQ ID No. 507:	5' ACCTGTATCCCGTGTCCC
	SEQ ID No. 508:	5' CTGTATCCCGTGTCCC GA
	SEQ ID No. 509:	5' TGTATCCCGTGTCCC GAA
25	SEQ ID No. 510:	5' CACGAGTATGTCAAGACC
	SEQ ID No. 511:	5' CGGTCTTACCTTAGGAAG
	SEQ ID No. 512:	5' TAGGAAGCGCCCTCCTTG
	SEQ ID No. 513:	5' AGGAAGCGCCCTCCTGC
	SEQ ID No. 514:	5' TTAGGAAGCGCCCTCCTT
30	SEQ ID No. 515:	5' CTTAGGAAGCGCCCTCCT

	SEQ ID No. 516:	5' CCTTAGGAAGGCCCTCC
	SEQ ID No. 517:	5' ACCTTAGGAAGGCCCTC
	SEQ ID No. 518:	5' TGCACACAATGGTTGAGC
	SEQ ID No. 519:	5' TACCTTAGGAAGGCCCT
5	SEQ ID No. 520:	5' ACCACCTGTATCCGTGT
	SEQ ID No. 521:	5' GCACCACCTGTATCCGT
	SEQ ID No. 522:	5' CACCACCTGTATCCGTG
	SEQ ID No. 523:	5' GCGGTTAGGCAACCTACT
	SEQ ID No. 524:	5' TGCAGGTTAGGCAACCTAC
10	SEQ ID No. 525:	5' TTGCGGTTAGGCAACCTA
	SEQ ID No. 526:	5' GGTCTTACCTTAGGAAGC
	SEQ ID No. 527:	5' GCTAATACAACGCGGGAT
	SEQ ID No. 528:	5' CTAATACAACGCGGGATC
	SEQ ID No. 529:	5' ATACAACGCGGGATCATC
15	SEQ ID No. 530:	5' CGGTTAGGCAACCTACTT
	SEQ ID No. 531:	5' TGCACCACCTGTATCCCG
	SEQ ID No. 532:	5' GAAGGCCCTCCTGCGG
	SEQ ID No. 533:	5' GGAAGGCCCTCCTGCG
	SEQ ID No. 534:	5' CGTCCCTTCTGGTTAGA
20	SEQ ID No. 535:	5' AGCTAATACAACGCGGGA
	SEQ ID No. 536:	5' TAGCTAATACAACGCGGG
	SEQ ID No. 537:	5' CTAGCTAATACAACGCGG
	SEQ ID No. 538:	5' GGCTATGTATCATCGCCT
	SEQ ID No. 539:	5' GAGCCACTGCCTTTACA
25	SEQ ID No. 540:	5' GTCGGCTATGTATCATCG
	SEQ ID No. 541:	5' GGTGGCTATGTATCATC
	SEQ ID No. 542:	5' CAGGTCGGCTATGTATCA
	SEQ ID No. 543:	5' CGGCTATGTATCATGCC
	SEQ ID No. 544:	5' TCGGCTATGTATCATCGC
30	SEQ ID No. 545:	5' GTCTTACCTTAGGAAGCG

SEQ ID No. 546: 5' TCTTACCTTAGGAAGCGC

Die Sequenzen SEQ ID No. 496 bis SEQ ID No. 546 sind vor allem zum Nachweis von Bakterien der Gattung Lactococcus geeignet.

5

d) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Essigsäurebakterien nachweisen:

- | | | |
|----|-----------------|---------------------------|
| | SEQ ID No. 547: | 5'- GTACAAACCGCCTACACGCC |
| 10 | SEQ ID No. 548: | 5'- TGTACAAACCGCCTACACGC |
| | SEQ ID No. 549: | 5'- GATCAGCACGATGTCGCCAT |
| | SEQ ID No. 550: | 5'- CTGTACAAACCGCCTACACG |
| | SEQ ID No. 551: | 5'- GAGATCAGCACGATGTCGCC |
| | SEQ ID No. 552: | 5'- AGATCAGCACGATGTCGCCA |
| 15 | SEQ ID No. 553: | 5'- ATCAGCACGATGTCGCCATC |
| | SEQ ID No. 554: | 5'- TCAGCACGATGTCGCCATCT |
| | SEQ ID No. 555: | 5'- ACTGTACAAACCGCCTACAC |
| | SEQ ID No. 556: | 5'- CCGCCACTAAGGCCGAAACC |
| | SEQ ID No. 557: | 5'- CAGCACGATGTCGCCATCTA |
| 20 | SEQ ID No. 558: | 5'- TACAAACCGCCTACACGCC |
| | SEQ ID No. 559: | 5'- AGCACGATGTCGCCATCTAG |
| | SEQ ID No. 560: | 5'- CGGCTTTAGAGATCAGCAC |
| | SEQ ID No. 561: | 5'- TCCGCCACTAAGGCCGAAAC |
| | SEQ ID No. 562: | 5'- GACTGTACAAACCGCCTACA |
| 25 | SEQ ID No. 563: | 5'- GTCCGCCACTAAGGCCGAAA |
| | SEQ ID No. 564: | 5'- GGGGATTTCACATCTGACTG |
| | SEQ ID No. 565: | 5'- CATAACAAGCCCTGGTAAGGT |
| | SEQ ID No. 566: | 5'- ACAAGCCCTGGTAAGGTTCT |
| | SEQ ID No. 567: | 5'- ACAAAACCGCCTACACGCC |
| 30 | SEQ ID No. 568: | 5'- CTGACTGTACAAACCGCCTA |

- 40 -

	SEQ ID No. 569:	5'- TGACTGTACAAACCGCCTAC
	SEQ ID No. 570:	5'- ACGATGTCGCCATCTAGCTT
	SEQ ID No. 571:	5'- CACGATGTCGCCATCTAGCT
	SEQ ID No. 572:	5'- CGATGTCGCCATCTAGCTTC
5	SEQ ID No. 573:	5'- GCACGATGTCGCCATCTAGC
	SEQ ID No. 574:	5'- GATGTCGCCATCTAGCTTCC
	SEQ ID No. 575:	5'- ATGTCGCCATCTAGCTTCCC
	SEQ ID No. 576:	5'- TGTCGCCATCTAGCTTCCA
	SEQ ID No. 577:	5'- GCCATCTAGCTTCCACTGT
10	SEQ ID No. 578:	5'- TCGCCATCTAGCTTCCACT
	SEQ ID No. 579:	5'- CGCCATCTAGCTTCCACTG
	SEQ ID No. 580:	5'- GTCGCCATCTAGCTTCCCAC
	SEQ ID No. 581:	5'- TACAAGCCCTGGTAAGGTT
	SEQ ID No. 582:	5'- GCCACTAAGGCCGAAACCTT
15	SEQ ID No. 583:	5'- ACTAAGGCCGAAACCTTCGT
	SEQ ID No. 584:	5'- CTAAGGCCGAAACCTTCGTG
	SEQ ID No. 585:	5'- CACTAAGGCCGAAACCTTCG
	SEQ ID No. 586:	5'- AAGGCCGAAACCTTCGTGCG
	SEQ ID No. 587:	5'- CCACTAAGGCCGAAACCTTC
20	SEQ ID No. 588:	5'- TAAGGCCGAAACCTTCGTGC
	SEQ ID No. 589:	5'- AGGCCGAAACCTTCGTGCGA
	SEQ ID No. 590:	5'- TCTGACTGTACAAACCGCCT
	SEQ ID No. 591:	5'- CATCTGACTGTACAAACCGC
	SEQ ID No. 592:	5'- ATCTGACTGTACAAACCGCC
25	SEQ ID No. 593:	5'- CTTCGTGCAGTTGCATGTG
	SEQ ID No. 594:	5'- CCTTCGTGCAGTTGCATGT
	SEQ ID No. 595:	5'- CTCTCTAGAGTGCCCCACCCA
	SEQ ID No. 596:	5'- TCTCTAGAGTGCCCCACCAA
	SEQ ID No. 597:	5'- ACGTATCAAATGCAGCTCCC
30	SEQ ID No. 598:	5'- CGTATCAAATGCAGCTCCA

- 41 -

	SEQ ID No. 599:	5'- CGCCACTAAGGCCGAAACCT
	SEQ ID No. 600:	5'- CCGAACACCTTCTGTGCGACTT
	SEQ ID No. 601:	5'- GCCGAAACACCTTCTGTGCGACT
	SEQ ID No. 602:	5'- AACCTTCGTGCGACTTGCAT
5	SEQ ID No. 603:	5'- CGAACACCTTCTGTGCGACTTG
	SEQ ID No. 604:	5'- ACCTTCGTGCGACTTGCATG
	SEQ ID No. 605:	5'- GAAACACCTTCTGTGCGACTTGC
	SEQ ID No. 606:	5'- GGCCGAAACACCTTCTGTGCGAC
	SEQ ID No. 607:	5'- AAACACCTTCTGTGCGACTTGC
10	SEQ ID No. 608:	5'- CACGTATCAAATGCAGCTCC

Die Sequenzen SEQ ID No. 547 bis SEQ ID No. 608 sind vor allem zum gleichzeitigen Nachweis von Bakterien der Gattungen Acetobacter und Gluconobacter geeignet.

15	SEQ ID No. 609:	5'- GCTCACCGGCTTAAGGTCAA
	SEQ ID No. 610:	5'- CGCTCACCGGCTTAAGGTCA
	SEQ ID No. 611:	5'- TCGCTCACCGGCTTAAGGTTC
	SEQ ID No. 612:	5'- CTCACCGGCTTAAGGTCAAA
20	SEQ ID No. 613:	5'- CCCGACCGTGGTCGGCTGCG
	SEQ ID No. 614:	5'- GCTCACCGGCTTAAGGTCAA
	SEQ ID No. 615:	5'- CGCTCACCGGCTTAAGGTCA
	SEQ ID No. 616:	5'- TCGCTCACCGGCTTAAGGTTC
	SEQ ID No. 617:	5'- CTCACCGGCTTAAGGTCAAA
25	SEQ ID No. 618:	5'- CCCGACCGTGGTCGGCTGCG
	SEQ ID No. 619:	5'- TCACCGGCTTAAGGTCAAAC
	SEQ ID No. 620:	5'- CAACCCTCTCTCACACTCTA
	SEQ ID No. 621:	5'- ACAACCCTCTCACACTCT
	SEQ ID No. 622:	5'- CCACAACCCTCTCACACT
30	SEQ ID No. 623:	5'- AACCCCTCTCACACTCTAG

- 42 -

	SEQ ID No. 624:	5'- CACAACCCTCTCTCACACTC
	SEQ ID No. 625:	5'- TCCACAACCCTCTCACAC
	SEQ ID No. 626:	5'- TTCCACAACCCTCTCTCACA
	SEQ ID No. 627:	5'- ACCCTCTCTCACACTCTAGT
5	SEQ ID No. 628:	5'- GAGCCAGGTTGCCGCCCTCG
	SEQ ID No. 629:	5'- AGGTCAAACCAACTCCCATG
	SEQ ID No. 630:	5'- ATGAGCCAGGTTGCCGCCCT
	SEQ ID No. 631:	5'- TGAGCCAGGTTGCCGCCCTC
	SEQ ID No. 632:	5'- AGGCTCCTCCACAGGCGACT
10	SEQ ID No. 633:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 634:	5'- GCAGGCTCCTCCACAGGCGA
	SEQ ID No. 635:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 636:	5'- GTTCGCTCACCGGCTTAAGG
	SEQ ID No. 637:	5'- GGTCGCTCACCGGCTTAAG
15	SEQ ID No. 638:	5'- ATTCCACAACCCTCTCTCAC
	SEQ ID No. 639:	5'- TGACCCGACCGTGGTCGGCT
	SEQ ID No. 640:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 641:	5'- GAATTCCACAACCCTCTCTC
	SEQ ID No. 642:	5'- AGCCAGGTTGCCGCCCTCGC
20	SEQ ID No. 643:	5'- GCCAGGTTGCCGCCCTCGCC
	SEQ ID No. 644:	5'- GGAATTCCACAACCCTCTCT
	SEQ ID No. 645:	5'- GGGATTCCACAACCCTCTC
	SEQ ID No. 646:	5'- AACGCAGGCTCCTCCACAGG
	SEQ ID No. 647:	5'- CGGCTTAAGGTCAAACCAAC
25	SEQ ID No. 648:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 649:	5'- CACCGGCTTAAGGTCAAACCC
	SEQ ID No. 650:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 651:	5'- ACCAACATCCAGCACACAT
	SEQ ID No. 652:	5'- TCGCTGACCCGACCGTGGTC
30	SEQ ID No. 653:	5'- CGCTGACCCGACCGTGGTCG

	SEQ ID No. 654:	5'- GACCCGACCGTGGTCGGCTG
	SEQ ID No. 655:	5'- GCTGACCCGACC GTGGTCGG
	SEQ ID No. 656:	5'- CTGACCCGACC GTGGTCGGC
	SEQ ID No. 657:	5'- CAGGCGACTTGC GCCTTGA
5	SEQ ID No. 658:	5'- TCATGCGGTATTAGCTCCAG
	SEQ ID No. 659:	5'- ACTAGCTAATCGAACGCAGG
	SEQ ID No. 660:	5'- CATGCGGTATTAGCTCCAGT
	SEQ ID No. 661:	5'- CGCAGGCTCCTCCACAGGCG
	SEQ ID No. 662:	5'- ACGCAGGCTCCTCCACAGGC
10	SEQ ID No. 663:	5'- CTCAGGTGT CATGCGGTATT
	SEQ ID No. 664:	5'- CGCCTTGACCCTCAGGTGT
	SEQ ID No. 665:	5'- ACCCTCAGGTGT CATGCGGT
	SEQ ID No. 666:	5'- CCTCAGGTGT CATGCGGTAT
	SEQ ID No. 667:	5'- TTTGACCCCTCAGGTGT CATG
15	SEQ ID No. 668:	5'- GACCCTCAGGTGT CATGCGG
	SEQ ID No. 669:	5'- TGACCCTCAGGTGT CATGCG
	SEQ ID No. 670:	5'- GCCTTGACCCTCAGGTGTC
	SEQ ID No. 671:	5'- TTGACCCTCAGGTGT CATGC
	SEQ ID No. 672:	5'- CCCTCAGGTGT CATGCGGTA
20	SEQ ID No. 673:	5'- CCTTGACCCTCAGGTGTCA
	SEQ ID No. 674:	5'- CTTGACCCTCAGGTGT CAT
	SEQ ID No. 675:	5'- AGTTATCCCCACCCATGGA
	SEQ ID No. 676:	5'- CCAGCTATCGATCATCGCCT
	SEQ ID No. 677:	5'- ACCAGCTATCGATCATCGCC
25	SEQ ID No. 678:	5'- CAGCTATCGATCATCGCCTT
	SEQ ID No. 679:	5'- AGCTATCGATCATCGCCTTG
	SEQ ID No. 680:	5'- GCTATCGATCATCGCCTTGG
	SEQ ID No. 681:	5'- CTATCGATCATCGCCTTGGT
	SEQ ID No. 682:	5'- TTCGTGCGACTTGCATGTGT
30	SEQ ID No. 683:	5'- TCGATCATCGCCTTGGTAGG

	SEQ ID No. 684:	5'- ATCGATCATGCCCTGGTAG
	SEQ ID No. 685:	5'- CACAGGCGACTTGCAGCCTT
	SEQ ID No. 686:	5'- CCACAGGCGACTTGCAGCCTT
	SEQ ID No. 687:	5'- TCCACAGGCGACTTGCAGCCT
5	SEQ ID No. 688:	5'- TCCTCACAGGCGACTTGCAG
	SEQ ID No. 689:	5'- CCTCACAGGCGACTTGCAGC
	SEQ ID No. 690:	5'- CTCCACAGGCGACTTGCAGCC
	SEQ ID No. 691:	5'- ACAGGCGACTTGCAGCCTTG
	SEQ ID No. 692:	5'- GCTCACCGGCTTAAGGTCAA
10	SEQ ID No. 693:	5'- CGCTCACCGGCTTAAGGTCA
	SEQ ID No. 694:	5'- TCGCTCACCGGCTTAAGGTCA
	SEQ ID No. 695:	5'- CTCACCGGCTTAAGGTCAAA
	SEQ ID No. 696:	5'- CCCGACCGTGGTCGGCTGCG
	SEQ ID No. 697:	5'- TCACCCGGCTTAAGGTCAAAC
15	SEQ ID No. 698:	5'- CAACCCCTCTCACACTCTA
	SEQ ID No. 699:	5'- ACAACCCCTCTCACACTCT
	SEQ ID No. 700:	5'- CCACAACCCCTCTCACACT
	SEQ ID No. 701:	5'- AACCCCTCTCACACTCTAG
	SEQ ID No. 702:	5'- CACAACCCCTCTCACACTC
20	SEQ ID No. 703:	5'- TCCACAAACCCCTCTCACAC
	SEQ ID No. 704:	5'- TTCCACAAACCCCTCTCACAC
	SEQ ID No. 705:	5'- ACCCTCTCTCACACTCTAGT
	SEQ ID No. 706:	5'- GAGCCAGGTTGCCGCCTCG
	SEQ ID No. 707:	5'- AGGTCAAACCAACTCCCAG
25	SEQ ID No. 708:	5'- ATGAGCCAGGTTGCCGCCTT
	SEQ ID No. 709:	5'- TGAGCCAGGTTGCCGCCTTC
	SEQ ID No. 710:	5'- AGGCTCCTCCACAGGCGACT
	SEQ ID No. 711:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 712:	5'- GCAGGCTCCTCCACAGGCGA
30	SEQ ID No. 713:	5'- TTCGCTCACCGGCTTAAGGT

	SEQ ID No. 714:	5'- GTTCGCTCACCGGCTTAAGG
	SEQ ID No. 715:	5'- GGTCGCTCACCGGCTTAAG
	SEQ ID No. 716:	5'- ATTCCACAAACCCTCTCAC
	SEQ ID No. 717:	5'- TGACCCGACCGTGGTCGGCT
5	SEQ ID No. 718:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 719:	5'- GAATTCCACAAACCCTCTCTC
	SEQ ID No. 720:	5'- AGCCAGGTTGCCGCCTCGC
	SEQ ID No. 721:	5'- GCCAGGTTGCCGCCTCGCC
	SEQ ID No. 722:	5'- GGAATTCCACAAACCCTCTCT
10	SEQ ID No. 723:	5'- GGGATTCCACAAACCCTCTC
	SEQ ID No. 724:	5'- AACGCAGGCTCCTCACAGG
	SEQ ID No. 725:	5'- CGGCTTAAGGTCAAACCAAC
	SEQ ID No. 726:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 727:	5'- CACCGGCTTAAGGTCAAACC
15	SEQ ID No. 728:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 729:	5'- ACCAACATCCAGCACACAT
	SEQ ID No. 730:	5'- TCGCTGACCCGACCGTGGTC
	SEQ ID No. 731:	5'- CGCTGACCCGACCGTGGTCG
	SEQ ID No. 732:	5'- GACCCGACCGTGGTCGGCTG
20	SEQ ID No. 733:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 734:	5'- CTGACCCGACCGTGGTCGGC
	SEQ ID No. 735:	5'- CAGGCGACTTGCGCCTTGA
	SEQ ID No. 736:	5'- TCATGCGGTATTAGCTCCAG
	SEQ ID No. 737:	5'- ACTAGCTAATCGAACGCAGG
25	SEQ ID No. 738:	5'- CATGCGGTATTAGCTCCAGT
	SEQ ID No. 739:	5'- CGCAGGCTCCTCCACAGGCG
	SEQ ID No. 740:	5'- ACGCAGGCTCCTCCACAGGC
	SEQ ID No. 741:	5'- CTCAGGTGTATGCGGTATT
	SEQ ID No. 742:	5'- CGCCTTGACCCCTCAGGTGT
30	SEQ ID No. 743:	5'- ACCCTCAGGTGTATGCGGT

	SEQ ID No. 744:	5'- CCTCAGGTGTCATGCGGTAT
	SEQ ID No. 745:	5'- TTTGACCCTCAGGTGTCATG
	SEQ ID No. 746:	5'- GACCCTCAGGTGTCATGCGG
	SEQ ID No. 747:	5'- TGACCCTCAGGTGTCATGCG
5	SEQ ID No. 748:	5'- GCCTTGACCCTCAGGTGTC
	SEQ ID No. 749:	5'- TTGACCCTCAGGTGTCATGC
	SEQ ID No. 750:	5'- CCCTCAGGTGTCATGCGTA
	SEQ ID No. 751:	5'- CCTTGACCCTCAGGTGTCA
	SEQ ID No. 752:	5'- CTTTGACCCTCAGGTGTCA
10	SEQ ID No. 753:	5'- AGTTATCCCCACCCATGGA
	SEQ ID No. 754:	5'- CCAGCTATCGATCATCGCCT
	SEQ ID No. 755:	5'- ACCAGCTATCGATCATCGCC
	SEQ ID No. 756:	5'- CAGCTATCGATCATGCCCTT
	SEQ ID No. 757:	5'- AGCTATCGATCATGCCCTTG
15	SEQ ID No. 758:	5'- GCTATCGATCATGCCCTTGG
	SEQ ID No. 759:	5'- CTATCGATCATGCCCTTGGT
	SEQ ID No. 760:	5'- TTCGTGCGACTTGCATGTGT
	SEQ ID No. 761:	5'- TCGATCATGCCCTTGGTAGG
	SEQ ID No. 762:	5'- ATCGATCATGCCCTTGGTAG
20	SEQ ID No. 763:	5'- CACAGGCGACTTGC GCCCTT
	SEQ ID No. 764:	5'- CCACAGGCGACTTGC GCCCTT
	SEQ ID No. 765:	5'- TCCACAGGCGACTTGC GCCT
	SEQ ID No. 766:	5'- TCCTCCACAGGCGACTTGC G
	SEQ ID No. 767:	5'- CCTCCACAGGCGACTTGC G
25	SEQ ID No. 768:	5'- CTCCACAGGCGACTTGC G
	SEQ ID No. 769:	5'- ACAGGCGACTTGC G
	SEQ ID No. 770:	5'- TCACCGGCTTAAGGTCAAAC
	SEQ ID No. 771:	5'- CAACCCTCTCACACTCTA
	SEQ ID No. 772:	5'- ACAACCCTCTCACACTCT
30	SEQ ID No. 773:	5'- CCACAACCCTCTCACACT

	SEQ ID No. 774:	5'- AACCCCTCTCTCACACTCTAG
	SEQ ID No. 775:	5'- CACAACCCCTCTCTCACACTC
	SEQ ID No. 776:	5'- TCCACAAACCCTCTCTCACAC
	SEQ ID No. 777:	5'- TTCCACAAACCCTCTCTCACAC
5	SEQ ID No. 778:	5'- ACCCTCTCTCACACTCTAGT
	SEQ ID No. 779:	5'- GAGCCAGGTTGCCGCCTTCG
	SEQ ID No. 780:	5'- AGGTCAAACCAACTCCCATG
	SEQ ID No. 781:	5'- ATGAGCCAGGTTGCCGCCTT
	SEQ ID No. 782:	5'- TGAGCCAGGTTGCCGCCTTC
10	SEQ ID No. 783:	5'- AGGCTCCTCCACAGGCGACT
	SEQ ID No. 784:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 785:	5'- GCAGGCTCCTCCACAGGCGA
	SEQ ID No. 786:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 787:	5'- GTTCGCTCACCGGCTTAAGG
15	SEQ ID No. 788:	5'- GGTCGCTCACCGGCTTAAG
	SEQ ID No. 789:	5'- ATTCCACAACCCCTCTCAC
	SEQ ID No. 790:	5'- TGACCCGACCGTGGTCGGCT
	SEQ ID No. 791:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 792:	5'- GAATTCCACAACCCCTCTC
20	SEQ ID No. 793:	5'- AGCCAGGTTGCCGCCTTCGC
	SEQ ID No. 794:	5'- GCCAGGTTGCCGCCTTCGCC
	SEQ ID No. 795:	5'- GGAATTCCACAACCCCTCTCT
	SEQ ID No. 796:	5'- GGGATTCCACAACCCCTCTC
	SEQ ID No. 797:	5'- AACGCAGGCTCCTCCACAGG
25	SEQ ID No. 798:	5'- CGGCTTAAGGTCAAACCAAC
	SEQ ID No. 799:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 800:	5'- CACCGGCTTAAGGTCAAACCC
	SEQ ID No. 801:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 802:	5'- ACCAACATCCAGCACACAT
30	SEQ ID No. 803:	5'- TCGCTGACCCGACCGTGGTC

	SEQ ID No. 804:	5'- CGCTGACCCGACCGTGGTCG
	SEQ ID No. 805:	5'- GACCCGACCGTGGTCGGCTG
	SEQ ID No. 806:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 807:	5'- CTGACCCGACCGTGGTCGGC
5	SEQ ID No. 808:	5'- CAGGCGACTTGCGCCTTGA
	SEQ ID No. 809:	5'- TCATGCGGTATTAGCTCCAG
	SEQ ID No. 810:	5'- ACTAGCTAATCGAACGCAGG
	SEQ ID No. 811:	5'- CATGCGGTATTAGCTCCAGT
	SEQ ID No. 812:	5'- CGCAGGCTCCTCCACAGGCG
10	SEQ ID No. 813:	5'- ACGCAGGCTCCTCCACAGGC
	SEQ ID No. 814:	5'- CTCAGGTGTCATGCGGTATT
	SEQ ID No. 815:	5'- CGCCTTGACCCTCAGGTGT
	SEQ ID No. 816:	5'- ACCCTCAGGTGTCATGCGGT
	SEQ ID No. 817:	5'- CCTCAGGTGTCATGCGGTAT
15	SEQ ID No. 818:	5'- TTTGACCCTCAGGTGTCATG
	SEQ ID No. 819:	5'- GACCCTCAGGTGTCATGCGG
	SEQ ID No. 820:	5'- TGACCCTCAGGTGTCATGCG
	SEQ ID No. 821:	5'- GCCTTGACCCTCAGGTGTC
	SEQ ID No. 822:	5'- TTGACCCTCAGGTGTCATGC
20	SEQ ID No. 823:	5'- CCCTCAGGTGTCATGCGGT
	SEQ ID No. 824:	5'- CCTTGACCCTCAGGTGTCA
	SEQ ID No. 825:	5'- CTTTGACCCTCAGGTGTAT
	SEQ ID No. 826:	5'- AGTTATCCCCACCCATGGA
	SEQ ID No. 827:	5'- CCAGCTATCGATCATCGCCT
25	SEQ ID No. 828:	5'- ACCAGCTATCGATCATCGCC
	SEQ ID No. 829:	5'- CAGCTATCGATCATGCCCTT
	SEQ ID No. 830:	5'- AGCTATCGATCATGCCCTTG
	SEQ ID No. 831:	5'- GCTATCGATCATGCCCTTGG
	SEQ ID No. 832:	5'- CTATCGATCATGCCCTTGGT
30	SEQ ID No. 833:	5'- TTCGTGCGACTTGCATGTGT

- 49 -

SEQ ID No. 834:	5'- TCGATCATGCCCTGGTAGG
SEQ ID No. 835:	5'- ATCGATCATGCCCTGGTAG
SEQ ID No. 836:	5'- CACAGGCGACTTGCAGCCTT
SEQ ID No. 837:	5'- CCACAGGCGACTTGCAGCCTT
5 SEQ ID No. 838:	5'- TCCACAGGCGACTTGCAGCCT
SEQ ID No. 839:	5'- TCCTCCACAGGCGACTTGCAG
SEQ ID No. 840:	5'- CCTCCACAGGCGACTTGCAGC
SEQ ID No. 841:	5'- CTCCACAGGCGACTTGCAGCC
SEQ ID No. 842:	5'- ACAGGCGACTTGCAGCCTT

10

Die Sequenzen SEQ ID No. 609 bis SEQ ID No. 842 sind vor allem zum gleichzeitigen Nachweis von Bakterien der Gattungen Acetobacter, Gluconobacter und Gluconoacetobacter geeignet.

15 e) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Bazillen nachweisen:

SEQ ID No. 843:	5'- AGCCCCGGTTTCCCAGGCGTT
SEQ ID No. 844:	5'- CGCCTTCCTTTCTCCA
20 SEQ ID No. 845:	5'- GCCCCGGTTTCCCAGGCGTTA
SEQ ID No. 846:	5'- GCGGCCTTCCTTTCTCTC
SEQ ID No. 847:	5'- TAGCCCCGGTTTCCCAGGCGT
SEQ ID No. 848:	5'- CCGGGTACCGTCAAGGCGCC
SEQ ID No. 849:	5'- AAGCCGCCTTCCTTTCC
25 SEQ ID No. 850:	5'- CCCCGGTTTCCCAGGCGTTAT
SEQ ID No. 851:	5'- CCGGGCGTTATCCCAGTCTTA
SEQ ID No. 852:	5'- AGCCGCCTTCCTTTCCCT
SEQ ID No. 853:	5'- CCGCCTTCCTTTCCCTCC
SEQ ID No. 854:	5'- TTAGCCCCGGTTTCCCAGGCG
30 SEQ ID No. 855:	5'- CCCGGCGTTATCCCAGTCTT

- 50 -

	SEQ ID No. 856:	5'- GCCGGGTACCGTCAAGGCGC
	SEQ ID No. 857:	5'- GGCCGGGTACCGTCAAGGCG
	SEQ ID No. 858:	5'- TCCC GGCGTTATCCCAGTCT
	SEQ ID No. 859:	5'- TGGCCGGGTACCGTCAAGGC
5	SEQ ID No. 860:	5'- GAAGCCGCCTTCCTTTTC
	SEQ ID No. 861:	5'- CCCGGTTTCCCAGGCGTTATC
	SEQ ID No. 862:	5'- CGGC GTTATCCCAGTCTTAC
	SEQ ID No. 863:	5'- GGCG TTATCCCAGTCTTACA
	SEQ ID No. 864:	5'- GCGTTATCCCAGTCTTACAG
10	SEQ ID No. 865:	5'- CGGGTACCGTCAAGGCGCCG
	SEQ ID No. 866:	5'- ATTAGCCCCGGTTCCCGGC
	SEQ ID No. 867:	5'- AAGGGGAAGGCCCTGTCTCC
	SEQ ID No. 868:	5'- GGCCCTGTCTCCAGGGAGGT
	SEQ ID No. 869:	5'- AGGCCCTGTCTCCAGGGAGG
15	SEQ ID No. 870:	5'- AAGGCCCTGTCTCCAGGGAG
	SEQ ID No. 871:	5'- GCCCTGTCTCCAGGGAGGTC
	SEQ ID No. 872:	5'- CGTTATCCCAGTCTTACAGG
	SEQ ID No. 873:	5'- GGGTACCGTCAAGGCGCCGC
	SEQ ID No. 874:	5'- CGGCAACAGAGTTTACGAC
20	SEQ ID No. 875:	5'- GGGGAAGGCCCTGTCTCCAG
	SEQ ID No. 876:	5'- AGGGGAAGGCCCTGTCTCCA
	SEQ ID No. 877:	5'- GCAGCCGAAGCCGCCTTCC
	SEQ ID No. 878:	5'- TTCTTCCCCGGCAACAGAGT
	SEQ ID No. 879:	5'- CGGC ACTT GTT CTT CCCC GG
25	SEQ ID No. 880:	5'- GTT CTT CCCC GGCAACAGAG
	SEQ ID No. 881:	5'- GGC ACTT GTT CTT CCCC GG
	SEQ ID No. 882:	5'- GCACTT GTT CTT CCCC GG
	SEQ ID No. 883:	5'- CACTT GTT CTT CCCC GGCAA
	SEQ ID No. 884:	5'- TCTT CCCC GGCAACAGAGTT
30	SEQ ID No. 885:	5'- TT GTT CTT CCCC GGCAACAG

	SEQ ID No. 886:	5'- ACTTGTCTTCCCCGGCAAC
	SEQ ID No. 887:	5'- TGTTCTCCCCGGCAACAGA
	SEQ ID No. 888:	5'- CTTGTCTTCCCCGGCAACAA
	SEQ ID No. 889:	5'- ACGGCACTTGTTCTTCCCCG
5	SEQ ID No. 890:	5'- GTCCGCCGCTAACCTTTAA
	SEQ ID No. 891:	5'- CTGGCCGGGTACCGTCAAGG
	SEQ ID No. 892:	5'- TCTGGCCGGGTACCGTCAAG
	SEQ ID No. 893:	5'- TTCTGGCCGGGTACCGTCAA
	SEQ ID No. 894:	5'- CAATGCTGGCAACTAAGGTC
10	SEQ ID No. 895:	5'- CGTCCGCCGCTAACCTTTA
	SEQ ID No. 896:	5'- CGAAGCCGCCTTCCTTTT
	SEQ ID No. 897:	5'- CCGAAGCCGCCTTCCTTT
	SEQ ID No. 898:	5'- GCCGAAGCCGCCTTCCTTT
	SEQ ID No. 899:	5'- AGCCGAAGCCGCCTTCCTT
15	SEQ ID No. 900:	5'- ACCGTCAAGGCGCCGCCCTG
	SEQ ID No. 901:	5'- CCGTGGCTTCTGGCCGGGT
	SEQ ID No. 902:	5'- GCTTCTGGCCGGGTACCGT
	SEQ ID No. 903:	5'- GCCGTGGCTTCTGGCCGGG
	SEQ ID No. 904:	5'- GGCTTCTGGCCGGGTACCG
20	SEQ ID No. 905:	5'- CTTCTGGCCGGGTACCGTC
	SEQ ID No. 906:	5'- TGGCTTCTGGCCGGGTACC
	SEQ ID No. 907:	5'- GTGGCTTCTGGCCGGGTAC
	SEQ ID No. 908:	5'- CGTGGCTTCTGGCCGGGT
	SEQ ID No. 909:	5'- TTTCTGGCCGGGTACCGTCA
25	SEQ ID No. 910:	5'- GGGAAAGGCCCTGTCTCCAGG
	SEQ ID No. 911:	5'- CGAAGGGGAAGGCCCTGTCT
	SEQ ID No. 912:	5'- CCGAAGGGGAAGGCCCTGTC
	SEQ ID No. 913:	5'- GAAGGGGAAGGCCCTGTCTC
	SEQ ID No. 914:	5'- GGCGCCGCCCTGTTCGAACG
30	SEQ ID No. 915:	5'- AGGCGCCGCCCTGTTCGAAC

- 52 -

	SEQ ID No. 916:	5'- AAGGCGCCGCCCTGTCGAA
	SEQ ID No. 917:	5'- CCCGGCAACAGAGTTTACG
	SEQ ID No. 918:	5'- CCCCGGCAACAGAGTTTAC
	SEQ ID No. 919:	5'- CCATCTGTAAGTGGCAGCCG
5	SEQ ID No. 920:	5'- TCTGTAAGTGGCAGCCGAAG
	SEQ ID No. 921:	5'- CTGTAAGTGGCAGCCGAAGC
	SEQ ID No. 922:	5'- CCCATCTGTAAGTGGCAGCC
	SEQ ID No. 923:	5'- TGTAAGTGGCAGCCGAAGCC
	SEQ ID No. 924:	5'- CATCTGTAAGTGGCAGCCGA
10	SEQ ID No. 925:	5'- ATCTGTAAGTGGCAGCCGAA
	SEQ ID No. 926:	5'- CAGCCGAAGCCGCCTTCCT
	SEQ ID No. 927:	5'- GGCAACAGAGTTTACGACC
	SEQ ID No. 928:	5'- CCGGCAACAGAGTTTACGA
	SEQ ID No. 929:	5'- TTCCCCGGCAACAGAGTTT
15	SEQ ID No. 930:	5'- CTTCCCCGGCAACAGAGTTT
	SEQ ID No. 931:	5'- TCCCCGGCAACAGAGTTTA
	SEQ ID No. 932:	5'- CCGTCCGCCGCTAACCTTT

Die Sequenzen SEQ ID No. 843 bis SEQ ID No. 932 sind vor allem zum Nachweis
20 von *Bacillus coagulans* geeignet.

	f) Nukleinsäuresondenmoleküle, die spezifisch getränkeschädliche Alicyclobazillen nachweisen:	
25	SEQ ID No. 933:	5'- CTTCCTCCGACTTACGCCGG
	SEQ ID No. 934:	5'- CCTCCGACTTACGCCGGCAG
	SEQ ID No. 935:	5'- TTCCTCCGACTTACGCCGGC
	SEQ ID No. 936:	5'- TCCTCCGACTTACGCCGGCA
	SEQ ID No. 937:	5'- TCCGACTTACGCCGGCAGTC
30	SEQ ID No. 938:	5'- CCGACTTACGCCGGCAGTCA

	SEQ ID No. 939:	5'- GCCTTCCTCCGACTTACGCC
	SEQ ID No. 940:	5'- CCTTCCTCCGACTTACGCCG
	SEQ ID No. 941:	5'- GCTCTCCCCGAGCAACAGAG
	SEQ ID No. 942:	5'- CTCTCCCCGAGCAACAGAGC
5	SEQ ID No. 943:	5'- CGCTCTCCCCGAGCAACAGA
	SEQ ID No. 944:	5'- CTCCGACTTACGCCGGCAGT
	SEQ ID No. 945:	5'- TCTCCCCGAGCAACAGAGCT
	SEQ ID No. 946:	5'- CGACTTACGCCGGCAGTCAC
	SEQ ID No. 947:	5'- TCGGCACTGGGGTGTGTCCC
10	SEQ ID No. 948:	5'- GGCACTGGGGTGTGTCCCC
	SEQ ID No. 949:	5'- CTGGGGTGTGTCCCCCAAC
	SEQ ID No. 950:	5'- CACTGGGGTGTGTCCCCCA
	SEQ ID No. 951:	5'- ACTGGGGTGTGTCCCCCAA
	SEQ ID No. 952:	5'- GCACTGGGGTGTGTCCCC
15	SEQ ID No. 953:	5'- TGGGGTGTGTCCCCCAACA
	SEQ ID No. 954:	5'- CACTCCAGACTTGCTCGACC
	SEQ ID No. 955:	5'- TCACTCCAGACTTGCTCGAC
	SEQ ID No. 956:	5'- CGGCACTGGGGTGTGTCCC
	SEQ ID No. 957:	5'- CGCCTTCCTCCGACTTACGC
20	SEQ ID No. 958:	5'- CTCCCCGAGCAACAGAGCTT
	SEQ ID No. 959:	5'- ACTCCAGACTTGCTCGACCG
	SEQ ID No. 960:	5'- CCCATGCCGCTCTCCCCGAG
	SEQ ID No. 961:	5'- CCATGCCGCTCTCCCCGAGC
	SEQ ID No. 962:	5'- CCCCATGCCGCTCTCCCCGA
25	SEQ ID No. 963:	5'- TCACTCGGTACCGTCTCGCA
	SEQ ID No. 964:	5'- CATGCCGCTCTCCCCGAGCA
	SEQ ID No. 965:	5'- ATGCCGCTCTCCCCGAGCAA
	SEQ ID No. 966:	5'- TTCGGCACTGGGGTGTGTCC
	SEQ ID No. 967:	5'- TGCCGCTCTCCCCGAGCAAC
30	SEQ ID No. 968:	5'- TTCACTCCAGACTTGCTCGA

- 54 -

	SEQ ID No. 969:	5'- CCCGCAAGAAGATGCCTCCT
	SEQ ID No. 970:	5'- AGAAGATGCCTCCTCGCGGG
	SEQ ID No. 971:	5'- AAGAAGATGCCTCCTCGCGG
	SEQ ID No. 972:	5'- CGCAAGAAGATGCCTCCTCG
5	SEQ ID No. 973:	5'- AAGATGCCTCCTCGCGGGCG
	SEQ ID No. 974:	5'- CCGCAAGAAGATGCCTCCTC
	SEQ ID No. 975:	5'- GAAGATGCCTCCTCGCGGGC
	SEQ ID No. 976:	5'- CCCCCGCAAGAAGATGCCTCC
	SEQ ID No. 977:	5'- CAAGAAGATGCCTCCTCGCG
10	SEQ ID No. 978:	5'- TCCTTCGGCACTGGGGTGTG
	SEQ ID No. 979:	5'- CCGCTCTCCCCGAGCAACAG
	SEQ ID No. 980:	5'- TGCCTCCTCGCGGGCGTATC
	SEQ ID No. 981:	5'- GACTTACGCCGGCAGTCACC
	SEQ ID No. 982:	5'- GGCTCCTCTCTCAGCGGCC
15	SEQ ID No. 983:	5'- CCTTCGGCACTGGGGTGTGT
	SEQ ID No. 984:	5'- GGGGTGTGTCCCCCAACAC
	SEQ ID No. 985:	5'- GCCGCTCTCCCCGAGCAACA
	SEQ ID No. 986:	5'- AGATGCCTCCTCGCGGGCGT
	SEQ ID No. 987:	5'- CACTCGGTACCGTCTCGCAT
20	SEQ ID No. 988:	5'- CTCACTCGGTACCGTCTCGC
	SEQ ID No. 989:	5'- GCAAGAAGATGCCTCCTCGC
	SEQ ID No. 990:	5'- CTCCAGACTTGCTCGACCGC
	SEQ ID No. 991:	5'- TTACGCCGGCAGTCACCTGT
	SEQ ID No. 992:	5'- CTTCGGCACTGGGGTGTGTC
25	SEQ ID No. 993:	5'- CTCGCGGGCGTATCCGGCAT
	SEQ ID No. 994:	5'- GCCTCCTCGCGGGCGTATCC
	SEQ ID No. 995:	5'- ACTCGGTACCGTCTCGCATG
	SEQ ID No. 996:	5'- GATGCCTCCTCGCGGGCGTA
	SEQ ID No. 997:	5'- GGGTGTGTCCCCCAACACC
30	SEQ ID No. 998:	5'- ACTTACGCCGGCAGTCACCT

	SEQ ID No. 999:	5'- CTTACGCCGGCAGTCACCTG
	SEQ ID No. 1000:	5'- ATGCCTCCTCGCGGGCGTAT
	SEQ ID No. 1001:	5'- GCGCCGCAGGCTCCTCTCTC
	SEQ ID No. 1002:	5'- GGTGTGTCCCCCAACACCT
5	SEQ ID No. 1003:	5'- GTGTGTCCCCCAACACCTA
	SEQ ID No. 1004:	5'- CCTCGCGGGCGTATCCGGCA
	SEQ ID No. 1005:	5'- CCTCACTCGGTACCGTCTCG
	SEQ ID No. 1006:	5'- TCCTCACTCGGTACCGTCTC
	SEQ ID No. 1007:	5'- TCGCGGGCGTATCCGGCATT
10	SEQ ID No. 1008:	5'- TTTCACTCCAGACTTGCTCG
	SEQ ID No. 1009:	5'- TACGCCGGCAGTCACCTGTG
	SEQ ID No. 1010:	5'- TCCAGACTTGCTCGACCGCC
	SEQ ID No. 1011:	5'- CTCGGTACCGTCTCGCATGG
	SEQ ID No. 1012:	5'- CGCGGGCGTATCCGGCATT
15	SEQ ID No. 1013:	5'- GCGTATCCGGCATTAGCGCC
	SEQ ID No. 1014:	5'- GGGCTCCTCTCTCAGCGGCC
	SEQ ID No. 1015:	5'- TCCCCGAGCAACAGAGCTTT
	SEQ ID No. 1016:	5'- CCCCGAGCAACAGAGCTTA
	SEQ ID No. 1017:	5'- CCGAGCAACAGAGCTTACA
20	SEQ ID No. 1018:	5'- CCATCCCAGGTTGAGCCAT
	SEQ ID No. 1019:	5'- GTGTCCCCCAACACCTAGC
	SEQ ID No. 1020:	5'- GCAGGGCGTATCCGGCATTAG
	SEQ ID No. 1021:	5'- CGAGCGGCTTTGGGTTTC
	SEQ ID No. 1022:	5'- CTTCACTCCAGACTTGCTC
25	SEQ ID No. 1023:	5'- TTCCTTCGGCACTGGGGTGT
	SEQ ID No. 1024:	5'- CCGCCTCCTCCGACTTACG
	SEQ ID No. 1025:	5'- CCCGCCTCCTCCGACTTAC
	SEQ ID No. 1026:	5'- CCTCCTCGCGGGCGTATCCG
	SEQ ID No. 1027:	5'- TCCTCGCGGGCGTATCCGGC
30	SEQ ID No. 1028:	5'- CATTAGCGCCCGTTCCGGG

- 56 -

- SEQ ID No. 1029: 5'- GCATTAGCGCCGTTCCGG
SEQ ID No. 1030: 5'- GGCATTAGCGCCGTTCCG
SEQ ID No. 1031: 5'- GTCTCGCATGGGGCTTCCA
SEQ ID No. 1032: 5'- GCCATGGACTTCACTCCAG
5 SEQ ID No. 1033: 5'- CATGGACTTCACTCCAGAC

Die Sequenzen SEQ ID No. 933 bis SEQ ID No. 1033 sind vor allem zum Nachweis von Bakterien der Gattung *Alicyclobacillus* geeignet.

10

- SEQ ID No. 1034: 5'- CCTTCCTCCGGCTTACGCCGGC
SEQ ID No. 1035: 5'- CCTTCCTCCGACTTGCGCCGGC
SEQ ID No. 1036: 5'- CCTTCCTCCGACTTCAACGGGC

15 Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 1034 bis SEQ ID No. 1036 werden als unmarkierte Kompetitorsonden für den Nachweis von Bakterien der Gattung *Alicyclobacillus* gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 933 eingesetzt, um das Binden der markierten, für Bakterien der Gattung *Alicyclobacillus* spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die
20 nicht spezifisch für Bakterien der Gattung *Alicyclobacillus* sind, zu verhindern.

- SEQ ID No. 1037: 5'- ACCGTCTCACAAAGGAGCTT
SEQ ID No. 1038: 5'- TACCGTCTCACAAAGGAGCTT
SEQ ID No. 1039: 5'- GTACCGTCTCACAAAGGAGCT
25 SEQ ID No. 1040: 5'- GCCTACCCGTGTATTATCCG
SEQ ID No. 1041: 5'- CCGTCTCACAAAGGAGCTTC
SEQ ID No. 1042: 5'- CTACCCGTGTATTATCCGGC
SEQ ID No. 1043: 5'- GGTACCGTCTCACAAAGGAGC
SEQ ID No. 1044: 5'- CGTCTCACAAAGGAGCTTCC
30 SEQ ID No. 1045: 5'- TCTCACAAAGGAGCTTCCAC

- 57 -

	SEQ ID No. 1046:	5'- TACCCGTGTATTATCCGGCA
	SEQ ID No. 1047:	5'- GTCTCACAAAGGAGCTTCCA
	SEQ ID No. 1048:	5'- ACCCGTGTATTATCCGGCAT
	SEQ ID No. 1049:	5'- CTCGGTACCGTCTCACAAAGG
5	SEQ ID No. 1050:	5'- CGGTACCGTCTCACAAAGGAG
	SEQ ID No. 1051:	5'- ACTCGGTACCGTCTCACAAAG
	SEQ ID No. 1052:	5'- CGGCTGGCTCCATAACGGTT
	SEQ ID No. 1053:	5'- ACAAGTAGATGCCTACCGT
	SEQ ID No. 1054:	5'- TGGCTCCATAACGGTTACCT
10	SEQ ID No. 1055:	5'- CAAGTAGATGCCTACCGTG
	SEQ ID No. 1056:	5'- CACAAGTAGATGCCTACCCG
	SEQ ID No. 1057:	5'- GGCTCCATAACGGTTACCTC
	SEQ ID No. 1058:	5'- ACACAAGTAGATGCCTACCC
	SEQ ID No. 1059:	5'- CTGGCTCCATAACGGTTACC
15	SEQ ID No. 1060:	5'- GCTGGCTCCATAACGGTTAC
	SEQ ID No. 1061:	5'- GGCTGGCTCCATAACGGTTA
	SEQ ID No. 1062:	5'- GCTCCATAACGGTTACCTCA
	SEQ ID No. 1063:	5'- AAGTAGATGCCTACCGTGT
	SEQ ID No. 1064:	5'- CTCCATAACGGTTACCTCAC
20	SEQ ID No. 1065:	5'- TGCCTACCGTGTATTATCC
	SEQ ID No. 1066:	5'- TCGGTACCGTCTCACAAAGGA
	SEQ ID No. 1067:	5'- CTCACAAGGAGCTTCCACT
	SEQ ID No. 1068:	5'- GTAGATGCCTACCGTGTAT
	SEQ ID No. 1069:	5'- CCTACCGTGTATTATCCGG
25	SEQ ID No. 1070:	5'- CACTCGGTACCGTCTCACAA
	SEQ ID No. 1071:	5'- CTCAGCGATGCAGTTGCATC
	SEQ ID No. 1072:	5'- AGTAGATGCCTACCGTGTGA
	SEQ ID No. 1073:	5'- GCGGCTGGCTCCATAACGGT
	SEQ ID No. 1074:	5'- CCAAAGCAATCCAAGGTTG
30	SEQ ID No. 1075:	5'- TCCATAACGGTTACCTCAC

	SEQ ID No. 1076:	5'- CCCGTGTATTATCCGGCATT
	SEQ ID No. 1077:	5'- TCTCAGCGATGCAGTTGCAT
	SEQ ID No. 1078:	5'- CCATAACGGTTACCTCACCG
	SEQ ID No. 1079:	5'- TCAGCGATGCAGTTGCATCT
5	SEQ ID No. 1080:	5'- GGCGGCTGGCTCCATAACGG
	SEQ ID No. 1081:	5'- AAGCAATCCCAAGGTTGAGC
	SEQ ID No. 1082:	5'- TCACTCGGTACCGTCTCACA
	SEQ ID No. 1083:	5'- CCGAGTGTTATTCCAGTCTG
	SEQ ID No. 1084:	5'- CACAAGGAGCTTCCACTCT
10	SEQ ID No. 1085:	5'- ACAAGGAGCTTCCACTCTC
	SEQ ID No. 1086:	5'- TCACAAGGAGCTTCCACTC
	SEQ ID No. 1087:	5'- CAGCGATGCAGTTGCATCTT
	SEQ ID No. 1088:	5'- CAAGGAGCTTCCACTCTCC
	SEQ ID No. 1089:	5'- CCAGTCTGAAAGGCAGATTG
15	SEQ ID No. 1090:	5'- CAGTCTGAAAGGCAGATTGC
	SEQ ID No. 1091:	5'- CGGCGGCTGGCTCCATAACG
	SEQ ID No. 1092:	5'- CCTCTCTCAGCGATGCAGTT
	SEQ ID No. 1093:	5'- CTCTCTCAGCGATGCAGTTG
	SEQ ID No. 1094:	5'- TCTCTCAGCGATGCAGTTGC
20	SEQ ID No. 1095:	5'- CTCTCAGCGATGCAGTTGCA
	SEQ ID No. 1096:	5'- CAATCCCAAGGTTGAGCCTT
	SEQ ID No. 1097:	5'- AATCCCAAGGTTGAGCCTTG
	SEQ ID No. 1098:	5'- AGCAATCCCAAGGTTGAGCC
	SEQ ID No. 1099:	5'- CTCACTCGGTACCGTCTCAC
25	SEQ ID No. 1100:	5'- GCAATCCCAAGGTTGAGCCT
	SEQ ID No. 1101:	5'- GCCTTGGACTTCACTTCAG
	SEQ ID No. 1102:	5'- CATAACGGTTACCTCACCGA
	SEQ ID No. 1103:	5'- CTCCTCTCTCAGCGATGCAG
	SEQ ID No. 1104:	5'- TCGGCGGGCTGGCTCCATAAC
30	SEQ ID No. 1105:	5'- AGTCTGAAAGGCAGATTGCC

- 59 -

	SEQ ID No. 1106:	5'- TCCTCTCTCAGCGATGCAGT
	SEQ ID No. 1107:	5'- CCCAAGGTTGAGCCTTGGAC
	SEQ ID No. 1108:	5'- ATAACGGTTACCTCACCGAC
	SEQ ID No. 1109:	5'- TCCCAAGGTTGAGCCTTGGA
5	SEQ ID No. 1110:	5'- ATTATCCGGCATTAGCACCC
	SEQ ID No. 1111:	5'- CTACGTGCTGGTAACACAGA
	SEQ ID No. 1112:	5'- GCCGCTAGCCCCGAAGGGCT
	SEQ ID No. 1113:	5'- CTAGCCCCGAAGGGCTCGCT
	SEQ ID No. 1114:	5'- CGCTAGCCCCGAAGGGCTCG
10	SEQ ID No. 1115:	5'- AGCCCCGAAGGGCTCGCTCG
	SEQ ID No. 1116:	5'- CCGCTAGCCCCGAAGGGCTC
	SEQ ID No. 1117:	5'- TAGCCCCGAAGGGCTCGCTC
	SEQ ID No. 1118:	5'- GCTAGCCCCGAAGGGCTCGC
	SEQ ID No. 1119:	5'- GCCCGAAGGGCTCGCTCGA
15	SEQ ID No. 1120:	5'- ATCCCAAGGTTGAGCCTTGG
	SEQ ID No. 1121:	5'- GAGCCTTGGACTTCACTTC
	SEQ ID No. 1122:	5'- CAAGGTTGAGCCTTGGACTT
	SEQ ID No. 1123:	5'- GAGCTTCCACTCTCCTTGT
	SEQ ID No. 1124:	5'- CCAAGGTTGAGCCTTGGACT
20	SEQ ID No. 1125:	5'- CGGGCTCCTCTCAGCGAT
	SEQ ID No. 1126:	5'- GGAGCTTCCACTCTCCTTG
	SEQ ID No. 1127:	5'- GGGCTCCTCTCAGCGATG
	SEQ ID No. 1128:	5'- TCTCCTTGTGCGCTCTCCCCG
	SEQ ID No. 1129:	5'- TCCTTGTGCGCTCTCCCCGAG
25	SEQ ID No. 1130:	5'- AGCTTCCACTCTCCTTGTGTC
	SEQ ID No. 1131:	5'- CCACTCTCCTTGTGCGCTCTC
	SEQ ID No. 1132:	5'- GGCTCCTCTCAGCGATGC
	SEQ ID No. 1133:	5'- CCTTGTGCGCTCTCCCCGAGC
	SEQ ID No. 1134:	5'- CACTCTCCTTGTGCGCTCTCC
30	SEQ ID No. 1135:	5'- ACTCTCCTTGTGCGCTCTCCC

- 60 -

SEQ ID No. 1136: 5'- CTCTCCTTGTGCGCTCTCCCC
SEQ ID No. 1137: 5'- GCGGGCTCCTCTCTCAGCGA
SEQ ID No. 1138: 5'- GGCTCCATCATGGTTACCTC

- 5 Die Sequenzen SEQ ID No. 1037 bis SEQ ID No. 1138 sind vor allem zum Nachweis von *Alicyclobacillus acidoterrestris* geeignet.

SEQ ID No. 1139: 5'- CCGTCTCCTAACGGAGCTTCCA

- 10 Das Nukleinsäuresondenmolekül gemäß SEQ ID No. 1139 wird als unmarkierte Kompetitorsonde für den Nachweis von *Alicyclobacillus acidoterrestris* gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 1044 eingesetzt, um das Binden der markierten, für *Alicyclobacillus acidoterrestris* spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für *Alicyclobacillus acidoterrestris* sind,
15 zu verhindern.

SEQ ID No. 1140: 5'- TCCCTCCTAACGGTTACCTCA

SEQ ID No. 1141: 5'- TGGCTCCATAA(A/T)GGTTACCTCA

- 20 Die Nukleinsäuresondenmoleküle gemäß SEQ ID No. 1140 bis SEQ ID No. 1141 werden als unmarkierte Kompetitorsonden für den Nachweis von *Alicyclobacillus acidoterrestris* gemeinsam mit der Oligonukleotidsonde gemäß SEQ ID No. 1057 eingesetzt, um das Binden der markierten, für *Alicyclobacillus acidoterrestris* spezifischen Oligonukleotidsonde an Nukleinsäuresequenzen, die nicht spezifisch für
25 *Alicyclobacillus acidoterrestris* sind, zu verhindern.

SEQ ID No. 1142: 5'- CTTCCTCCGGCTTGCGCCGG

SEQ ID No. 1143: 5'- CGCTCTTCCC(G/T)TGACTGA

SEQ ID No. 1144: 5'- CCTCGGGCTCCTCCATC(A/T)GC

Die Sequenzen SEQ ID No. 1142 bis SEQ ID No. 1144 sind vor allem zum gleichzeitigen Nachweis von *Alicyclobacillus cycloheptanicus* und *A. herbarius* geeignet.

- 5 Gegenstand der Erfindung sind auch Abwandlungen der obigen Oligonukleotidsequenzen, die trotz der Abweichungen in der Sequenz und/oder Länge eine spezifische Hybridisierung mit Ziel-Nukleinsäuresequenzen des jeweiligen Mikroorganismus zeigen und sich dadurch für den Einsatz des erfindungsgemäßen Verfahrens eignen und einen spezifischen Nachweis des
10 jeweiligen Mikroorganismus gewährleisten. Hierunter fallen insbesondere
- a) Nukleinsäuremoleküle, die (i) mit einer der obigen Oligonukleotidsequenzen (SEQ ID No. 1, 5 bis 146, 148 bis 154, 157 bis 160, 163 bis 1033, 1037 bis 1138, 1142 bis 1144) in mindestens 80 %, bevorzugt in mindestens 90 % und besonders bevorzugt in mindestens 92 %, 94 %, 96 % der Basen
15 übereinstimmen, oder die (ii) sich von obigen Oligonukleotidsequenzen durch eine oder mehrere Deletionen und/oder Additionen unterscheiden und eine spezifische Hybridisierung mit Nukleinsäuresequenzen von getränkeschädlichen Hefen der Gattungen *Zygosaccharomyces*,
Hanseniaspora, Candida, Brettanomyces, Dekkera, Pichia, Saccharomyces
20 und Saccharomycodes, insbesondere der Spezies *Zygosaccharomyces bailii*, *Z. mellis*, *Z. rouxii*, *Z. bisporus*, *Z. fermentati*, *Z. microellipsoïdes*, *Hanseniaspora uvarum*, *Candida intermedia*, *C. crusei* (*Issatchenkia orientalis*), *C. parapsilosis*, *Brettanomyces bruxellensis*, *B. naardenensis*, *Dekkera anomala*, *Pichia membranaefaciens*, *P. minuta*, *P. anomala*,
25 *Saccharomyces exiguis*, *S. cerevisiae*, *Saccharomycodes ludwigii* oder von getränkeschädlichen Schimmelpilzen der Gattungen Mucor, Byssochlamys, Neosartorya, Aspergillus und Talaromyces, insbesondere der Spezies *Mucor racemosus*, *Byssochlamys nivea*, *Neosartorya fischeri*, *Aspergillus fumigatus* und *A. fischeri*, *Talaromyces flavus*, *T. bacillisporus* und *T. flavus* oder von
30 getränkeschädlichen Bakterien der Gattungen Lactobacillus, Leuconostoc,

- Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter,
Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der Spezies
Lactobacillus collinoides, *Leuconostoc mesenteroides*, *L.*
pseudomesenteroides, *Oenococcus oeni*, *Bacillus coagulans*, *Alicyclobacillus*
5 *ssp.*, *A. acidoterrestris*, *A. cycloheptanicus* und *A. herbarius* ermöglichen.
Dabei bedeutet „spezifische Hybridisierung“, dass unter den hier
beschriebenen oder dem Durchschnittsfachmann im Zusammenhang mit in
situ-Hybridisierungstechniken bekannten stringenten
Hybridisierungsbedingungen nur die ribosomale RNA der Ziel-Organismen,
10 nicht aber die rRNA von Nicht-Ziel-Organismen an das Oligonukleotid
bindet.
- b) Nukleinsäuremoleküle, die mit einer zu den unter a) genannten
Nukleinsäuremolekülen oder einer zu den Sonden SEQ ID No. 1, 5 bis 146,
148 bis 154, 157 bis 160, 163 bis 1033, 1037 bis 1138, 1142 bis 1144
15 komplementären Sequenz unter stringenten Bedingungen (s.u.) hybridisieren.
- c) Nukleinsäuremoleküle, die eine Oligonukleotidsequenz von SEQ ID No. 1, 5
bis 146, 148 bis 154, 157 bis 160, 163 bis 1033, 1037 bis 1138, 1142 bis
1144 oder die Sequenz eines Nukleinsäuremoleküls nach a) oder b) umfassen
und zusätzlich zu den genannten Sequenzen bzw. deren Abwandlungen nach
20 a) oder b) mindestens ein weiteres Nukleotid aufweisen und eine spezifische
Hybridisierung mit Nukleinsäuresequenzen von Ziel-Organismen
ermöglichen.
- Ebenso sind Gegenstand der Erfindung Abwandlungen der obigen
25 Kompetitorsondensequenzen, die trotz der Abweichungen in der Sequenz und/oder
Länge eine spezifische Hybridisierung mit Nukleinsäuresequenzen von nicht
nachzuweisenden Mikroorganismengattungen bzw. -spezies gewährleisten und
dadurch das Binden der Oligonukleotidsonde an die Nukleinsäuresequenzen der
nicht nachzuweisenden Mikroorganismengattungen bzw. -spezies verhindern. Sie
30 eignen sich für den Einsatz des erfindungsgemäßen Verfahrens und gewährleisten

einen spezifischen Nachweis des jeweiligen Mikroorganismus. Hierunter fallen insbesondere

- a) Nukleinsäuremoleküle, die (i) mit einer der obigen Oligonukleotidsequenzen (SEQ ID No. 2 bis 4, 147, 155 bis 156, 161 bis 162, 1034 bis 1036, 1139 bis 1141) in mindestens 80 %, bevorzugt in mindestens 90 % und besonders bevorzugt in mindestens 92 %, 94 %, 96 % der Basen übereinstimmen, oder die (ii) sich von obigen Oligonukleotidsequenzen durch eine oder mehrere Deletionen und/oder Additionen unterscheiden und das Binden einer spezifischen Oligonukleotidsonde an die Nukleinsäuresequenz eines nicht nachzuweisenden Mikroorganismus verhindern.
- b) Nukleinsäuremoleküle, die mit einer zu den unter a) genannten Nukleinsäuremolekülen oder einer zu den Sonden SEQ ID No. 2 bis 4, 147, 155 bis 156, 161 bis 162, 1034 bis 1036, 1139 bis 1141 komplementären Sequenz unter stringenten Bedingungen (s.u.) hybridisieren.
- c) Nukleinsäuremoleküle, die eine Oligonukleotidsequenz von SEQ ID No. 2 bis 4, 147, 155 bis 156, 161 bis 162, 1034 bis 1036, 1139 bis 1141 oder die Sequenz eines Nukleinsäuremoleküls nach a) oder b) umfassen und zusätzlich zu den genannten Sequenzen bzw. deren Abwandlungen nach a) oder b) mindestens ein weiteres Nukleotid aufweisen und das Binden einer spezifischen Oligonukleotidsonde an die Nukleinsäuresequenz eines nicht nachzuweisenden Mikroorganismus verhindern.

Der Grad der Sequenzidentität eines Nukleinsäuresondenmoleküls mit den Oligonukleotidsonden mit der SEQ ID No. 1 bis SEQ ID No. 1144 kann mit üblichen Algorithmen bestimmt werden. Geeignet ist hierzu beispielsweise das Programm zur Bestimmung der Sequenzidentität, das unter <http://www.ncbi.nlm.nih.gov/BLAST> (auf dieser Seite z.B. der Link „Standard nucleotide-nucleotide BLAST [blastn]“) zugänglich ist.

- 64 -

- „Hybridisieren“ kann im Rahmen dieser Erfindung gleichbedeutend sein mit „komplementär“. Im Rahmen dieser Erfindung sind auch solche Oligonukleotide umfasst, die mit dem (theoretischen) Gegenstrang eines erfindungsgemäßen Oligonukleotids, einschließlich der erfindungsgemäßen Abwandlungen der SEQ ID 5 No. 1 bis SEQ ID No. 1144, hybridisieren.

- Der Begriff „stringente Bedingungen“ steht allgemein für Bedingungen, unter denen eine Nukleinsäuresequenz präferenziell an ihre Zielsequenz hybridisieren wird, und zu einem deutlich geringeren Ausmaß oder gar nicht an andere Sequenzen.
- 10 Stringente Bedingungen sind z.T. Sequenz-abhängig und werden unter verschiedenen Umständen unterschiedlich sein. Längere Sequenzen hybridisieren spezifisch bei höheren Temperaturen. Im Allgemeinen werden stringente Bedingungen so ausgewählt, dass die Temperatur etwa 5°C unter dem thermischen Schmelzpunkt (T_m) für die spezifische Sequenz bei einer definierten Ionenstärke und 15 einem definierten pH liegt. Die T_m ist die Temperatur (unter definierter Ionenstärke, pH und Nukleinsäurekonzentration), bei der 50 % der zu der Zielsequenz komplementären Moleküle zu der Zielsequenz im Gleichgewichtszustand hybridisieren.
- 20 Die erfindungsgemäßen Nukleinsäuresondenmoleküle können im Rahmen des Nachweisverfahrens mit verschiedenen Hybridisierungslösungen eingesetzt werden. Verschiedene organische Lösungsmittel können hierbei in Konzentrationen von 0 % bis 80 % eingesetzt werden. Durch das Einhalten von stringenten Hybridisierungsbedingungen wird gewährleistet, dass das
- 25 Nukleinsäuresondenmolekül auch tatsächlich mit der Zielsequenz hybridisiert. Moderate Bedingungen im Sinne der Erfindung sind z.B. 0 % Formamid in einem Hybridisierungspuffer wie er nachfolgend beschrieben ist. Stringente Bedingungen im Sinne der Erfindung sind beispielsweise 20 % bis 80 % Formamid im Hybridisierungspuffer.

- Im Rahmen des erfindungsgemäßen Verfahrens zum spezifischen Nachweis von Hefen der Gattungen *Zygosaccharomyces*, *Hanseniaspora*, *Candida*, *Brettanomyces*, *Dekkera*, *Pichia*, *Saccharomyces* und *Saccharomycodes*, insbesondere der Spezies *Zygosaccharomyces bailii*, *Z. mellis*, *Z. rouxii*, *Z. bisporus*, *Z. fermentati*, *Z. microellipsooides*, *Hanseniaspora uvarum*, *Candida intermedia*, *C. crusei* (*Issatchenkia orientalis*), *C. parapsilosis*, *Brettanomyces bruxellensis*, *B. naardenensis*, *Dekkera anomala*, *Pichia membranaefaciens*, *P. minuta*, *P. anomala*, *Saccharomyces exiguum*, *S. cerevisiae*, *Saccharomycodes ludwigii* enthält eine typische Hybridisierungslösung 0 % bis 80 % Formamid, bevorzugt 20 % bis 60 % Formamid, besonders bevorzugt 40 % Formamid. Sie hat außerdem eine Salzkonzentration von 0,1 Mol/l bis 1,5 Mol/l, bevorzugt von 0,7 Mol/l bis 1,0 Mol/l, besonders bevorzugt von 0,9 Mol/l, wobei es sich bei dem Salz vorzugsweise um Natriumchlorid handelt. Weiter umfasst die Hybridisierungslösung üblicherweise ein Detergens, wie z.B. Natriumdodecylsulfat (SDS), in einer Konzentration von 0,001 % bis 0,2 %, vorzugsweise in einer Konzentration von 0,005 % bis 0,05 %, besonders bevorzugt in einer Konzentration von 0,01 %. Zum Puffern der Hybridisierungslösung können verschiedene Verbindungen wie Tris-HCl, Natrium-Citrat, PIPES oder HEPES verwendet werden, die üblicherweise in Konzentrationen von 0,01 Mol/l bis 0,1 Mol/l eingesetzt werden, bevorzugt von 0,01 Mol/l bis 0,05 Mol/l, in einem pH-Wert-Bereich von 6,0 bis 9,0, bevorzugt 7,0 bis 8,0. Die besonders bevorzugte erfindungsgemäße Ausführung der Hybridisierungslösung beinhaltet 0,02 Mol/l Tris-HCl, pH 8,0.
- Im Rahmen des erfindungsgemäßen Verfahrens zum spezifischen Nachweis von Schimmelpilzen der Gattungen *Mucor*, *Byssochlamys*, *Neosartorya*, *Aspergillus* und *Talaromyces*, insbesondere der Spezies *Mucor racemosus*, *Byssochlamys nivea*, *Neosartorya fischeri*, *Aspergillus fumigatus* und *A. fischeri*, *Talaromyces flavus*, *T. bacillisporus* und *T. flavus* enthält eine typische Hybridisierungslösung 0 % bis 80 % Formamid, bevorzugt 10 % bis 60 % Formamid, besonders bevorzugt 20 % Formamid. Sie hat außerdem eine Salzkonzentration von 0,1 Mol/l bis 1,5 Mol/l,

- bevorzugt von 0,7 Mol/l bis 1,0 Mol/l, besonders bevorzugt von 0,9 Mol/l, wobei es sich bei dem Salz vorzugsweise um Natriumchlorid handelt. Weiter umfasst die Hybridisierungslösung üblicherweise ein Detergens, wie z.B. Natriumdodecylsulfat (SDS), in einer Konzentration von 0,001 % bis 0,2 %, vorzugsweise in einer
- 5 Konzentration von 0,005 % bis 0,05 %, besonders bevorzugt in einer Konzentration von 0,01 %. Zum Puffern der Hybridisierungslösung können verschiedene Verbindungen wie Tris-HCl, Natrium-Citrat, PIPES oder HEPES verwendet werden, die üblicherweise in Konzentrationen von 0,01 Mol/l bis 0,1 Mol/l eingesetzt werden, bevorzugt von 0,01 Mol/l bis 0,05 Mol/l, in einem pH-Wert-Bereich von 6,0
- 10 bis 9,0, bevorzugt 7,0 bis 8,0. Die besonders bevorzugte erfindungsgemäße Ausführung der Hybridisierungslösung beinhaltet 0,02 Mol/l Tris-HCl, pH 8,0.

Im Rahmen des erfindungsgemäßen Verfahrens zum spezifischen Nachweis von Bakterien der Gattungen Lactobacillus, Leuconostoc, Oenococcus, Weissella,

15 Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der Spezies *Lactobacillus collinoides*, *Leuconostoc mesenteroides*, *L. pseudomesenteroides*, *Oenococcus oeni*, *Bacillus coagulans*, *Alicyclobacillus ssp.*, *A. acidoterrestris*, *A. cycloheptanicus* und *A. herbarius* enthält eine typische Hybridisierungslösung 0 % bis 80 % Formamid, bevorzugt 10 % bis 60

20 % Formamid, besonders bevorzugt 20 % Formamid. Sie hat außerdem eine Salzkonzentration von 0,1 Mol/l bis 1,5 Mol/l, bevorzugt von 0,7 Mol/l bis 1,0 Mol/l, besonders bevorzugt von 0,9 Mol/l, wobei es sich bei dem Salz vorzugsweise um Natriumchlorid handelt. Weiter umfasst die Hybridisierungslösung üblicherweise ein Detergens, wie z.B. Natriumdodecylsulfat (SDS), in einer Konzentration von 0,001

25 % bis 0,2 %, vorzugsweise in einer Konzentration von 0,005 % bis 0,05 %, besonders bevorzugt in einer Konzentration von 0,01 %. Zum Puffern der Hybridisierungslösung können verschiedene Verbindungen wie Tris-HCl, Natrium-Citrat, PIPES oder HEPES verwendet werden, die üblicherweise in Konzentrationen von 0,01 Mol/l bis 0,1 Mol/l eingesetzt werden, bevorzugt von 0,01 Mol/l bis 0,05

30 Mol/l, in einem pH-Wert-Bereich von 6,0 bis 9,0, bevorzugt 7,0 bis 8,0. Die

besonders bevorzugte erfindungsgemäße Ausführung der Hybridisierungslösung beinhaltet 0,02 Mol/l Tris-HCl, pH 8,0.

Es versteht sich, dass der Fachmann die angegebenen Konzentrationen der

- 5 Bestandteile des Hybridisierungspuffers derart auswählen kann, dass die gewünschte Stringenz der Hybridisierungsreaktion erzielt wird. Besonders bevorzugte Ausführungsformen geben stringente bis besonders stringente Hybridisierungsbedingungen wieder. Unter Einsatz dieser stringenten Bedingungen kann der Fachmann feststellen, ob ein bestimmtes Nukleinsäuremolekül einen
- 10 spezifischen Nachweis von Nukleinsäuresequenzen von Ziel-Organismen ermöglicht und somit im Rahmen der Erfindung zuverlässig eingesetzt werden kann.

Die Konzentration der Nukleinsäuresonde im Hybridisierungspuffer ist abhängig von der Art ihrer Markierung und der Anzahl der Zielstrukturen. Um eine schnelle und

- 15 effiziente Hybridisierung zu ermöglichen, sollte die Anzahl der Nukleinsäuresondenmoleküle die Anzahl der Zielstrukturen um mehrere Größenordnungen überschreiten. Allerdings ist bei der Fluoreszenz in situ-Hybridisierung (FISH) darauf zu achten, dass eine zu hohe Menge an fluoreszenzmarkierten Nukleinsäuresondenmolekülen zu erhöhter
- 20 Hintergrundfluoreszenz führt. Die Konzentration der Nukleinsäuresondenmoleküle sollte deshalb in einem Bereich zwischen 0,5 bis 500 ng/µl liegen. Die im Rahmen der erfindungsgemäßen Verfahren bevorzugte Konzentration beträgt 1 bis 10 ng jedes verwendeten Nukleinsäuresondenmoleküls pro µl Hybridisierungslösung. Das verwendete Volumen der Hybridisierungslösung sollte zwischen 8 µl und 100 ml
- 25 liegen, bei einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Verfahren beträgt es 30 µl.

Die Konzentration der Kompetitorsonde im Hybridisierungspuffer ist abhängig von der Anzahl der Zielstrukturen. Um eine schnelle und effiziente Hybridisierung zu

- 30 ermöglichen, sollte die Anzahl der Kompetitorsondenmoleküle die Anzahl der

Zielstrukturen um mehrere Größenordnungen überschreiten. Die Konzentration der Kompetitorsondenmoleküle sollte deshalb in einem Bereich zwischen 0,5 bis 500 ng/ μ l liegen. Die im Rahmen der erfindungsgemäßen Verfahren bevorzugte Konzentration beträgt 1 bis 10 ng jedes verwendeten Kompetitorsondenmoleküls pro

5 μ l Hybridisierungslösung. Das verwendete Volumen der Hybridisierungslösung sollte zwischen 8 μ l und 100 ml liegen, bei einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Verfahren beträgt es 30 μ l.

Die Dauer der Hybridisierung beträgt üblicherweise zwischen 10 Minuten und 12
10 Stunden; bevorzugt erfolgt die Hybridisierung für etwa 1,5 Stunden. Die Hybridisierungstemperatur beträgt bevorzugt zwischen 44 °C und 48 °C, besonders bevorzugt 46 °C, wobei der Parameter der Hybridisierungstemperatur, wie auch die Konzentration an Salzen und Detergencien in der Hybridisierungslösung in Abhängigkeit von den Nukleinsäuresonden, insbesondere deren Längen und dem
15 Grad der Komplementarität zur Zielsequenz in der nachzuweisenden Zelle optimiert werden kann. Der Fachmann ist mit einschlägigen Berechnungen hierzu vertraut.

Nach erfolgter Hybridisierung sollten die nicht hybridisierten und überschüssigen Nukleinsäuresondenmoleküle entfernt bzw. abgewaschen werden, was üblicherweise
20 mittels einer herkömmlichen Waschlösung erfolgt. Diese Waschlösung kann, falls gewünscht, 0,001 % bis 0,1 % eines Detergens wie SDS, bevorzugt 0,005 % bis 0,05 %, besonders bevorzugt 0,01 %, sowie Tris-HCl in einer Konzentration von 0,001 Mol/l bis 0,1 Mol/l, bevorzugt 0,01 Mol/l bis 0,05 Mol/l, besonders bevorzugt 0,02 Mol/l enthalten, wobei der pH-Wert von Tris-HCl im Bereich von 6,0 bis 9,0,
25 vorzugsweise bei 7,0 bis 8,0, besonders bevorzugt bei 8,0 liegt. Ein Detergens kann enthalten sein, ist aber nicht zwingend erforderlich. Weiter enthält die Waschlösung üblicherweise NaCl, wobei die Konzentration je nach benötigter Stringenz von 0,003 Mol/l bis 0,9 Mol/l, bevorzugt von 0,01 Mol/l bis 0,9 Mol/l, beträgt. Des weiteren kann die Waschlösung EDTA enthalten, wobei die Konzentration vorzugsweise

- 69 -

0,005 Mol/l beträgt. Ferner kann die Waschlösung auch dem Fachmann geläufige Konservierungsmittel in geeigneten Mengen enthalten.

Allgemein kommen bei dem Waschschnitt Pufferlösungen zum Einsatz, die

- 5 prinzipiell sehr ähnlich aussehen können wie die Hybridisierungspuffer (gepufferte Natriumchloridlösung), nur dass der Waschschnitt in der Regel in einem Puffer mit niedrigerer Salzkonzentration bzw. bei höherer Temperatur durchgeführt wird. Zur theoretischen Abschätzung der Hybridisierungsbedingungen kann folgende Formel verwendet werden:

10

$$Td = 81,5 + 16,6 \lg[\text{Na}^+] + 0,4 \times (\% \text{ GC}) - 820/n - 0,5 \times (\% \text{ FA})$$

Td = DissoziationsTemperatur in °C

$[\text{Na}^+]$ = Molarität der Natriumionen

15 % GC = Anteil der Guanin- und Cytosinnukleotide an der Anzahl der Basen

n = Länge des Hybrids

%FA = Formamid Gehalt

Mit Hilfe dieser Formel kann z.B. der Formamidanteil (der wegen der Toxizität des

- 20 Formamids möglichst gering sein sollte) des Waschpuffers durch einen entsprechend niedrigeren Natriumchloridgehalt ersetzt werden. Allerdings ist dem Fachmann aus der umfangreichen Literatur zu in situ-Hybridisierungsmethoden bekannt, dass und auf welche Weise die genannten Bestandteile variiert werden können. Bezuglich der Stringenz der Hybridisierungsbedingungen gilt das oben im Zusammenhang mit dem
25 Hybridisierungspuffer Gesagte.

Das „Abwaschen“ der nicht gebundenen Nukleinsäuresondenmoleküle erfolgt üblicherweise bei einer Temperatur im Bereich von 44 °C bis 52 °C, bevorzugt von 44 °C bis 50 °C und besonders bevorzugt bei 46 °C für eine Dauer von 10 bis 40

- 30 Minuten, vorzugsweise für 15 Minuten.

- 70 -

Die spezifisch hybridisierten Nukleinsäuresondenmoleküle können anschließend in den jeweiligen Zellen detektiert werden. Voraussetzung hierfür ist, dass das Nukleinsäuresondenmolekül nachweisbar ist, z.B. dadurch dass das

- 5 Nukleinsäuresondenmolekül durch kovalente Bindung mit einem Marker verknüpft ist. Als detektierbare Marker werden z.B. fluoreszierende Gruppen wie z.B. CY2 (erhältlich von Amersham Life Sciences, Inc., Arlington Heights, USA), CY3 (ebenfalls erhältlich von Amersham Life Sciences), CY5 (ebenfalls zu beziehen von Amersham Life Sciences), FITC (Molecular Probes Inc., Eugene, USA), FLUOS
10 (erhältlich von Roche Diagnostics GmbH, Mannheim, Deutschland), TRITC (erhältlich von Molecular Probes Inc. Eugene, USA), 6-FAM oder FLUOS-PRIME verwendet, die dem Fachmann alle wohlbekannt sind. Auch chemische Marker, radioaktive Marker oder enzymatische Marker wie Meerrettich-Peroxidase, saure Phosphatase, alkalische Phosphatase und Peroxidase können verwendet werden. Für
15 jedes dieser Enzyme ist eine Reihe von Chromogenen bekannt, die anstelle des natürlichen Substrates umgesetzt werden können und entweder zu farbigen oder zu fluoreszierenden Produkten umgesetzt werden können. Beispiele für solche Chromogene sind in der nachfolgenden Tabelle angegeben:

20

Tabelle

	Enzyme	Chromogen
25	1. Alkalische Phosphatase und saure Phosphatase	4-Methylumbelliferylphosphat (*), Bis(4-Methylumbelliferylphosphat), (*) 3-O-Methylfluoreszein, Flavon-3-Diphosphatriammoniumsalz (*), p-Nitrophenylphosphatdinatriumsalz

	2. Peroxidase	Tyraminhydrochlorid (*), 3-(p-Hydroxyphenyl)-Propionsäure (*), p-Hydroxy-phenethylalkohol(*),
5		2,2'-Azino-di-3-ethylbenzthiazolinsulfonsäure (ABTS), ortho-Phenylendiamindihydrochlorid, o-Dianisidin, 5-Aminosalicylsäure, p-Ucresol (*),
10	3. Meerrettichperoxidase	3,3'-dimethoxybenzidin, 3-Methyl-2-benzothiazolinhydrazon, Tetramethylbenzidin $H_2O_2 + Diammoniumbenzidin$
	4. β -D-Galaktosidase	$H_2O_2 + Tetramethylbenzidin$ o-Nitrophenyl- β -D-galaktopyranosid, 4-Methylumbelliferyl- β -D-galaktosid
15	5. Glukoseoxidase	ABTS, Glukose und Thiazolylblau

*Fluoreszenz

Schließlich ist es möglich, die Nukleinsäuresondenmoleküle so zu gestalten, dass an 20 ihrem 5'- oder 3'-Ende eine weitere zur Hybridisierung geeignete Nukleinsäuresequenz vorhanden ist. Diese Nukleinsäuresequenz umfasst wiederum ca. 15 bis 100, bevorzugt 15 bis 50 Nukleotide. Dieser zweite Nukleinsäurebereich kann wiederum von einem Nukleinsäuresondenmolekül erkannt werden, welches durch eines der oben erwähnten Mittel nachweisbar ist.

25 Eine weitere Möglichkeit besteht in der Kopplung der nachweisbaren Nukleinsäuresondenmoleküle mit einem Hapten, das anschließend mit einem das Hapten erkennenden Antikörper in Kontakt gebracht werden kann. Als Beispiel für solch ein Hapten kann Digoxigenin angeführt werden. Dem Fachmann sind über die 30 angegebenen Beispiele hinaus noch weitere wohlbekannt.

Die abschließende Auswertung ist in Abhängigkeit von der Art der Markierung der verwendeten Sonde mit einem Lichtmikroskop, Epifluoreszenzmikroskop, Chemoluminometer, Fluorometer u.a. möglich.

5

Ein wichtiger Vorteil der in dieser Anmeldung beschriebenen Verfahren zum spezifischen Nachweis von getränkeschädlichen Hefen der Gattungen

Zygosaccharomyces, *Hanseniaspora*, *Candida*, *Brettanomyces*, *Dekkera*, *Pichia*, *Saccharomyces* und *Saccharomycodes*, insbesondere der Spezies

- 10 *Zygosaccharomyces bailii*, *Z. mellis*, *Z. rouxii*, *Z. bisporus*, *Z. fermentati*, *Z. microellipsoides*, *Hanseniaspora uvarum*, *Candida intermedia*, *C. crusei* (*Issatchenkia orientalis*), *C. parapsilosis*, *Brettanomyces bruxellensis*, *B. naardenensis*, *Dekkera anomala*, *Pichia membranaefaciens*, *P. minuta*, *P. anomala*, *Saccharomyces exiguum*, *S. cerevisiae*, *Saccharomycodes ludwigii* oder zum spezifischen Nachweis von getränkeschädlichen Schimmelpilzen der Gattungen Mucor, Byssochlamys, Neosartorya, Aspergillus und Talaromyces, insbesondere der Spezies *Mucor racemosus*, *Byssochlamys nivea*, *Neosartorya fischeri*, *Aspergillus fumigatus* und *A. fischeri*, *Talaromyces flavus*, *T. bacillisporus* und *T. flavus* oder zum spezifischen Nachweis von getränkeschädlichen Bakterien der Gattungen Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der Spezies *Lactobacillus collinoides*, *Leuconostoc mesenteroides*, *L. pseudomesenteroides*, *Oenococcus oeni*, *Bacillus coagulans*, *Alicyclobacillus ssp.*, *A. acidoterrestris*, *A. cycloheptanicus* und *A. herbarius* gegenüber den weiter oben beschriebenen Nachweismethoden ist die außergewöhnliche Schnelligkeit. Im Vergleich zu herkömmlichen Kultivierungsverfahren, die bis zu zehn Tage benötigen, liegt das Ergebnis bei Anwendung der erfindungsgemäßen Verfahren innerhalb von 24 bis 48 Stunden vor.

Ein weiterer Vorteil liegt in der Befähigung, eine genaue Unterscheidung der nachzuweisenden, getränkerelevanten Mikroorganismen vorzunehmen. Mit bislang geläufigen Verfahren wurde beim Nachweis keine Differenzierung der Mikroorganismen bis auf Gattungs- und/oder Artenbene vorgenommen, da die

- 5 Differenzierung entweder gar nicht möglich oder zu zeitaufwendig war.

Ein weiterer Vorteil liegt in der Spezifität dieses Verfahrens. Durch die verwendeten Nukleinsäuresondenmoleküle können hochspezifisch getränkeschädliche Hefen der Gattungen Zygosaccharomyces, Hanseniaspora, Candida, Brettanomyces, Dekkera,

- 10 Pichia, Saccharomyces und Saccharomycodes, insbesondere der Spezies *Zygosaccharomyces bailii*, *Z. mellis*, *Z. rouxii*, *Z. bisporus*, *Z. fermentati*, *Z. microellipsoides*, *Hanseniaspora uvarum*, *Candida intermedia*, *C. crusei* (*Issatchenkia orientalis*), *C. parapsilosis*, *Brettanomyces bruxellensis*, *B. naardensis*, *Dekkera anomala*, *Pichia membranaefaciens*, *P. minuta*, *P. anomala*,
- 15 *Saccharomyces exiguum*, *S. cerevisiae*, *Saccharomycodes ludwigii* oder getränkeschädliche Schimmelpilzen der Gattungen Mucor, Byssochlamys, Neosartorya, Aspergillus und Talaromyces, insbesondere der Spezies *Mucor racemosus*, *Byssochlamys nivea*, *Neosartorya fischeri*, *Aspergillus fumigatus* und *A. fischeri*, *Talaromyces flavus*, *T. bacillisporus* und *T. flavus* oder getränkeschädliche
- 20 Bakterien der Gattungen Lactobacillus, Leuconostoc, Oenococcus, Weissella, Lactococcus, Acetobacter, Gluconobacter, Gluconoacetobacter, Bacillus und Alicyclobacillus, insbesondere der Spezies *Lactobacillus collinoides*, *Leuconostoc mesenteroides*, *L. pseudomesenteroides*, *Oenococcus oeni*, *Bacillus coagulans*, *Alicyclobacillus* ssp., *A. acidoterrestris*, *A. cycloheptanicus* und *A. herbarius*
- 25 nachgewiesen werden. Durch die Visualisierung der Mikroorganismen kann eine gleichzeitige visuelle Kontrolle stattfinden. Falsch positive Ergebnisse, wie sie häufig bei der Polymerase-Ketten-Reaktion auftreten, sind somit ausgeschlossen.

Ein weiterer Vorteil der erfindungsgemäßen Verfahren liegt in der leichten Handhabbarkeit. So können durch die Verfahren leicht große Mengen an Proben auf das Vorhandensein der genannten Mikroorganismen getestet werden.

- 5 Schließlich stellt die Möglichkeit des gleichzeitigen Nachweises mehrerer der genannten Keime durch den Einsatz von entsprechenden Mischungen von Sonden einen wesentlichen Vorteil gegenüber dem Stand der Technik dar. Dadurch können alle in der Praxis relevanten getränkeschädlichen Mikroorganismen in wenigen Versuchsansätzen nachgewiesen werden.
- 10 Verschiedene Sonden können dabei mit unterschiedlichen Markierungen versehen sein, so dass die verschiedenen, nachgewiesenen Mikroorganismen auf einfache und zuverlässige Weise diskriminiert werden können. Z. B. kann ein erstes Oligonukleotid spezifisch mit einem grünen Fluoreszenzfarbstoff markiert werden und zum
- 15 Nachweis einer ersten Mikroorganismengattung oder –art dienen. Ein zweites Oligonukleotid wird ebenfalls spezifisch, etwa mit einem roten Fluoreszenzfarbstoff, markiert und dient dem Nachweis einer zweiten Mikroorganismengattung oder –art. Die als Kompetitorsonden bezeichneten Oligonukleotide bleiben unmarkiert und verhindern das Binden des markierten ersten und/oder zweiten Oligonukleotids an Bakterien, die nicht zur nachzuweisenden Gattung oder Spezies gehören. Die verschiedenen Marker, z.B. ein grüner Fluoreszenzfarbstoff einerseits und ein roter Fluoreszenzfarbstoff andererseits, sind voneinander auf einfache Weise unterscheidbar, z.B. durch den Einsatz verschiedener Filter in der Fluoreszenzmikroskopie.
- 20 25 Die erfindungsgemäßen Verfahren können vielfältig angewendet werden.

So können beispielsweise alkoholfreie Getränke (z.B. Fruchtsäfte, Fruchtnektare, Fruchtkonzentrate, Fruchtpürees, Erfrischungsgetränke und Wässer) auf die Anwesenheit der nachzuweisenden Mikroorganismen untersucht werden.

Auch können beispielsweise Umweltproben auf das Vorhandensein der nachzuweisenden Mikroorganismen untersucht werden. Diese Proben können hierzu z.B. aus dem Boden entnommen oder auch Teile von Pflanzen sein.

- 5 Das erfindungsgemäße Verfahren kann weiter zur Untersuchung von Abwasserproben oder Silageproben eingesetzt werden.

- Das erfindungsgemäße Verfahren kann weiter zur Untersuchung medizinischer Proben, z.B. von Stuhlproben, Blutkulturen, Sputum, Gewebeproben (auch Schnitte),
10 Wundmaterial, Urin, Proben aus dem Respirationstrakt, Implantate und Katheteroberflächen eingesetzt werden.

- Ein weiteres Anwendungsgebiet für das erfindungsgemäße Verfahren ist die Kontrolle von Lebensmitteln. In bevorzugten Ausführungsformen werden die
15 Lebensmittelproben aus Milch oder Milchprodukten (Joghurt, Käse, Quark, Butter, Buttermilch), Trinkwasser, alkoholischen Getränken (z.B. Bier, Wein, Spirituosen), Backwaren oder Fleischwaren entnommen.

- Ein weiteres Anwendungsgebiet für das erfindungsgemäße Verfahren ist die
20 Untersuchung pharmazeutischer und kosmetischer Produkte, z.B. Salben, Cremes, Tinkturen, Säfte, Lösungen, Tropfen etc.

- Erfindungsgemäß werden weiterhin Kits zur Durchführung der entsprechenden Verfahren zur Verfügung gestellt. Die in diesen Kits enthaltene
25 Hybridisierungsanordnung ist z.B. in der deutschen Patentanmeldung 100 61 655.0 beschrieben. Auf die in diesem Dokument enthaltene Offenbarung bezüglich der in situ-Hybridisierungsanordnung wird hiermit ausdrücklich Bezug genommen.

- Außer der beschriebenen Hybridisierungsanordnung (als VIT-Reaktor bezeichnet)
30 umfassen die Kits als wichtigsten Bestandteil die jeweilige Hybridisierungslösung

- mit den weiter oben beschriebenen für die nachzuweisenden Mikroorganismen spezifischen Nukleinsäuresondenmolekülen (VIT-Lösung). Weiterhin ist jeweils enthalten der entsprechende Hybridisierungspuffer (Solution C) und ein Konzentrat der entsprechenden Waschlösung (Solution D). Weiterhin sind enthalten
- 5 gegebenenfalls Fixierungslösungen (Solution A und Solution B) sowie gegebenenfalls eine Einbettlösung (Finisher). Gegebenenfalls sind Lösungen zur parallelen Durchführung einer Positivkontrolle (Positive Control) sowie einer Negativkontrolle (Negative Control) enthalten.
- 10 Das folgende Beispiel soll die Erfindung erläutern, ohne sie einzuschränken:
- Beispiel
- Spezifischer Schnellnachweis getränkeschädlicher Mikroorganismen in einer Probe
- 15 Eine Probe wird in geeigneter Weise 20 bis 48 h kultiviert. Zum Nachweis von Hefen und Schimmelpilzen kann die Kultivierung z.B. in SSL-Bouillon für 24 h bei 25 °C erfolgen. Zum Nachweis von Milchsäurebakterien kann die Kultivierung z.B. in MRS-Bouillon für 48 h bei 30 °C erfolgen. Zum Nachweis von
- 20 Essigsäurebakterien kann die Kultivierung z.B. auf DSM-Agar für 48 h bei 28 °C erfolgen. Zum Nachweis von Bazillen, vornehmlich *B. coagulans* kann die Kultivierung z.B. auf Dextrose-Caseinpepton Agar für 48 h bei 55 °C erfolgen. Zum Nachweis von Alicyclobazillen kann die Kultivierung z.B. in BAM-Bouillon für 48 h bei 44 °C erfolgen.
- 25 Zu einem Aliquot der Kultur wird dasselbe Volumen Fixierungslösung (Solution B, Ethanol absolut) zugegeben. Alternativ kann auch ein Aliquot der Kultur zentrifugiert werden (4 000 g, 5 min, Raumtemperatur) und – nach Verwerfen des Überstandes – das Pellet in 4 Tropfen Fixierungslösung (Solution B) aufgenommen
- 30 werden.

- 77 -

- Zur Durchführung der Hybridisierung wird ein geeignetes Aliquot der fixierten Zellen (bevorzugt 5 µl) auf einen Objektträger aufgebracht und getrocknet (46 °C, 30 min oder bis vollständig trocken). Alternativ können die Zellen auch auf andere
- 5 Trägermaterialien (z. B. eine Mikrotiterplatte oder einen Filter) aufgebracht werden. Anschließend werden die getrockneten Zellen vollständig dehydratisiert durch erneuten Zusatz der Fixierungslösung (Solution B). Der Objektträger wird erneut getrocknet (Raumtemperatur, 3 min oder bis vollständig trocken).
- 10 Anschließend wird auf die fixierten, dehydratisierten Zellen die Hybridisierungslösung (VIT-Lösung, Hybridisierungspuffer mit markierten Sondenmolekülen) mit den weiter oben beschriebenen für die nachzuweisenden Mikroorganismen spezifischen Nukleinsäuresondenmolekülen aufgebracht. Das bevorzugte Volumen beträgt 40 µl. Der Objektträger wird anschließend in einer mit
- 15 Hybridisierungspuffer (Solution C) befeuchteten Kammer, bevorzugt dem VIT-Reaktor (siehe DE 100 61 655.0), inkubiert (46 °C, 90 min).
- Anschließend wird der Objektträger aus der Kammer entnommen, die Kammer mit Waschlösung befüllt (Solution D, 1:10 verdünnt in destilliertem Wasser) und der
- 20 Objektträger in dieser inkubiert (46 °C, 15 min).
- Anschließend wird die Kammer mit destilliertem Wasser befüllt, der Objektträger kurz eingetaucht und anschließend in seitlicher Stellung luftgetrocknet (46 °C, 30 min oder bis vollständig trocken).
- 25 Anschließend wird der Objektträger in einem geeigneten Medium (Finisher) eingebettet.
- Abschließend wird die Probe mit Hilfe eines Fluoreszenzmikroskops analysiert.
- 30

PATENTANSPRÜCHE

1. Verfahren zum Nachweis von getränkeschädlichen Mikroorganismen in einer Probe, wobei der Nachweis mittels mindestens einer Oligonukleotidsonde
5 erfolgt, die eine Nukleinsäuresequenz aufweist, ausgewählt aus der Gruppe bestehend aus (sämtliche Sequenzen in 5' → 3'-Richtung):

SEQ ID No. 1:	5'- GTTGACCAGATTCTCCGCTC
SEQ ID No. 5:	5'- CCCGGTCGAATTAAAACC
10 SEQ ID No. 6:	5'- GCCCGGTGCGAATTAAAAC
SEQ ID No. 7:	5'- GGCCC GGTCGAATTAAAA
SEQ ID No. 8:	5'- AGGCCCGGTGCGAATTAAA
SEQ ID No. 9:	5'- AAGGCCCGGTGCGAATTAA
SEQ ID No. 10:	5'- ATATTCGAGCGAACGCC
15 SEQ ID No. 11:	5'- AAAGATCCGGACCGGCCG
SEQ ID No. 12	5'- GGAAAGATCCGGACCGGC
SEQ ID No. 13	5'- GAAAGATCCGGACCGGCC
SEQ ID No. 14	5'- GATCCGGACCGGCCGACC
SEQ ID No. 15	5'- AGATCCGGACCGGCCGAC
20 SEQ ID No. 16	5'- AAGATCCGGACCGGCCGA
SEQ ID No. 17	5'- GAAAGGCCCGGTGCGAATT
SEQ ID No. 18	5'- AAAGGCCCGGTGCGAATT
SEQ ID No. 19	5'- GGAAAGGCCCGGTGCGAAT
SEQ ID No. 20	5'- AGGAAAGGCCCGGTGCAA
25 SEQ ID No. 21	5'- AAGGAAAGGCCCGGTGCA
SEQ ID No. 22:	5'- ATAGCACTGGGATCCTCGCC
SEQ ID No. 23:	5'- CCAGCCCCAAAGTTACCTTC
SEQ ID No. 24:	5'- TCCTTGACGTAAAGTCGCAG
SEQ ID No. 25:	5'- GGAAGAAAACCAGTACGC

	SEQ ID No. 26:	5'- CCGGTCGGAAGAAAAACCA
	SEQ ID No. 27:	5'- GAAGAAAACCAGTACGCG
	SEQ ID No. 28:	5'- CCCGGTCGGAAGAAAAACC
	SEQ ID No. 29:	5'- CGGTTCGGAAGAAAAACCAG
5	SEQ ID No. 30:	5'- GGTCGGAAGAAAACCAGT
	SEQ ID No. 31:	5'- AAGAAAACCAGTACGCGG
	SEQ ID No. 32:	5'- GTACGCGGAAAAATCCGG
	SEQ ID No. 33:	5'- AGTACGCGGAAAAATCCG
	SEQ ID No. 34:	5'- GCGGAAAAATCCGGACCG
10	SEQ ID No. 35:	5'- CGGAAGAAAACCAGTACG
	SEQ ID No. 36:	5'- GCCCGGTCGGAAGAAAAC
	SEQ ID No. 37:	5'- CGCGGAAAAATCCGGACC
	SEQ ID No. 38:	5'- CAGTACGCGGAAAAATCC
	SEQ ID No. 39:	5'- AGAAAACCAGTACGCGGA
15	SEQ ID No. 40:	5'- GGCCCCGGTCGGAAGAAAA
	SEQ ID No. 41:	5'- ATAAACACCAACCCGATCC
	SEQ ID No. 42:	5'- ACGCGGAAAAATCCGGAC
	SEQ ID No. 43:	5'- GAGAGGCCCGGTCGGAAG
	SEQ ID No. 44:	5'- AGAGGCCCGGTCGGAAGA
20	SEQ ID No. 45:	5'- GAGGCCCGGTCGGAAGAA
	SEQ ID No. 46:	5'- AGGCCCGGTCGGAAGAAA
	SEQ ID No. 47:	5'- CCGAGTGGGTCACTAAAT
	SEQ ID No. 48:	5'- CCAGTACGCGGAAAAATC
	SEQ ID No. 49:	5'- TAAACACCAACCCGATCCC
25	SEQ ID No. 50:	5'- GGAGAGGCCCGGTCGGA
	SEQ ID No. 51:	5'- GAAAACCAGTACGCGGAA
	SEQ ID No. 52:	5'- TACGCGGAAAAATCCGGA
	SEQ ID No. 53:	5'- GGCCACAGGGACCCAGGG
	SEQ ID No. 54:	5'- TCACCAAGGGCCACAGGG
30	SEQ ID No. 55:	5'- GGGCCACAGGGACCCAGG

- 80 -

	SEQ ID No. 56:	5'- TTCACCAAGGGCCACAGG
	SEQ ID No. 57:	5'- ACAGGGACCCAGGGCTAG
	SEQ ID No. 58:	5'- AGGGCCACAGGGACCCAG
	SEQ ID No. 59:	5'- GTTCACCAAGGGCCACAG
5	SEQ ID No. 60:	5'- GCCACAGGGACCCAGGGC
	SEQ ID No. 61:	5'- CAGGGACCCAGGGCTAGC
	SEQ ID No. 62:	5'- AGGGACCCAGGGCTAGCC
	SEQ ID No. 63:	5'- ACCAAGGGCCACAGGGAC
	SEQ ID No. 64:	5'- CCACAGGGACCCAGGGCT
10	SEQ ID No. 65:	5'- CACAGGGACCCAGGGCTA
	SEQ ID No. 66:	5'- CACCAAGGGCCACAGGGA
	SEQ ID No. 67:	5'- GGGACCCAGGGCTAGCCA
	SEQ ID No. 68:	5'- AGGAGAGGCCCGGTGGGA
	SEQ ID No. 69:	5'- AAGGAGAGGCCCGGTGG
15	SEQ ID No. 70:	5'- GAAGGAGAGGCCCGGTGCG
	SEQ ID No. 71:	5'- AGGGCTAGCCAGAAGGAG
	SEQ ID No. 72:	5'- GGGCTAGCCAGAAGGAGA
	SEQ ID No. 73:	5'- AGAAGGAGAGGCCCGGT
	SEQ ID No. 74:	5'- CAAGGGCCACAGGGACCC
20	SEQ ID No. 75:	5'- CCAAGGGCCACAGGGACC
	SEQ ID No. 76:	5'- GTCGGAAAAACCAAGTACG
	SEQ ID No. 77:	5'- GCCCGGTCGGAAAAACCA
	SEQ ID No. 78:	5'- CCGGTCGGAAAAACCAAGT
	SEQ ID No. 79:	5'- CCCGGTCGGAAAAACCAAG
25	SEQ ID No. 80:	5'- TCGGAAAAACCAAGTACGC
	SEQ ID No. 81:	5'- CGGAAAAACCAAGTACGCG
	SEQ ID No. 82:	5'- GGAAAAACCAAGTACGCGG
	SEQ ID No. 83:	5'- GTACGCGGAAAAATCCGG
	SEQ ID No. 84:	5'- AGTACGCGGAAAAATCCG
30	SEQ ID No. 85:	5'- GCGGAAAAATCCGGACCG

	SEQ ID No. 86:	5'- GGTCGGAAAAACCAGTAC
	SEQ ID No. 87:	5'- ACTCCTAGTGGTGCCCTT
	SEQ ID No. 88:	5'- GCTCCACTCCTAGTGGTG
	SEQ ID No. 89:	5'- CACTCCTAGTGGTGCCCT
5	SEQ ID No. 90:	5'- CTCCACTCCTAGTGGTGC
	SEQ ID No. 91:	5'- TCCACTCCTAGTGGTGCC
	SEQ ID No. 92:	5'- CCACTCCTAGTGGTGCCC
	SEQ ID No. 93:	5'- GGCTCCACTCCTAGTGGT
	SEQ ID No. 94:	5'- AGGCTCCACTCCTAGTGG
10	SEQ ID No. 95:	5'- GGCCCCGGTCGGAAAAACC
	SEQ ID No. 96:	5'- GAAAAAACCAGTACCGGGA
	SEQ ID No. 97:	5'- CGCGGAAAAATCCGGACC
	SEQ ID No. 98:	5'- CAGTACCGGGAAAAATCC
	SEQ ID No. 99:	5'- CGGTCGGAAAAACCAGTA
15	SEQ ID No. 100:	5'- AAGGCCCGGTCGGAAAAAA
	SEQ ID No. 101:	5'- CAGGCTCCACTCCTAGTG
	SEQ ID No. 102:	5'- CTCCTAGTGGTGCCCTTC
	SEQ ID No. 103:	5'- TCCTAGTGGTGCCCTTCC
	SEQ ID No. 104:	5'- GCAGGCTCCACTCCTAGT
20	SEQ ID No. 105:	5'- AGGCCCGGTCGGAAAAAC
	SEQ ID No. 106:	5'- ACGCGGAAAAATCCGGAC
	SEQ ID No. 107:	5'- CCAGTACCGGGAAAAATC
	SEQ ID No. 108:	5'- CTAGTGGTGCCCTTCCGT
	SEQ ID No. 109:	5'- GAAAGGCCCGGTCGGAAA
25	SEQ ID No. 110:	5'- AAAGGCCCGGTCGGAAAA
	SEQ ID No. 111:	5'- TACCGGGAAAAATCCGGA
	SEQ ID No. 112:	5'- GGAAAGGCCCGGTCGGAA
	SEQ ID No. 113:	5'- ATCTCTCCGAAAGGTCG
	SEQ ID No. 114:	5'- CATCTCTCCGAAAGGTC
30	SEQ ID No. 115:	5'- CTCTCCGAAAGGTCGAG

	SEQ ID No. 116:	5'- CTTCCGAAAGGTCGAGAT
	SEQ ID No. 117:	5'- TCTCTTCCGAAAGGTCGA
	SEQ ID No. 118:	5'- TCTTCCGAAAGGTCGAGA
	SEQ ID No. 119:	5'- CCTAGTGGTGCCCTTCG
5	SEQ ID No. 120:	5'- TAGTGGTGCCCTTCGTC
	SEQ ID No. 121:	5'- AGTGGTGCCCTTCGTCA
	SEQ ID No. 122:	5'- GCCAAGGTTAGACTCGTT
	SEQ ID No. 123:	5'- GGCCAAGGTTAGACTCGT
	SEQ ID No. 124:	5'- CCAAGGTTAGACTCGTTG
10	SEQ ID No. 125:	5'- CAAGGTTAGACTCGTTGG
	SEQ ID No. 126:	5'- AAGGTTAGACTCGTTGGC
	SEQ ID No. 127:	5'- CTCGCCTCACGGGTTCTCA
	SEQ ID No. 128:	5'- GGCCC GGTCGAAATTAAA
	SEQ ID No. 129:	5'- AGGCCCGGTCGAAATTAA
15	SEQ ID No. 130:	5'- AAGGCCCGGTCGAAATTAA
	SEQ ID No. 131:	5'- AAAGGCCCGGTCGAAATT
	SEQ ID No. 132:	5'- GAAAGGCCCGGTCGAAAT
	SEQ ID No. 133:	5'- ATATTGAGCGAAACGCC
	SEQ ID No. 134:	5'- GGAAAGGCCCGGTCGAAA
20	SEQ ID No. 135:	5'- AAAGATCCGGACC GGCG
	SEQ ID No. 136:	5'- GGAAAGATCCGGACC GGCG
	SEQ ID No. 137:	5'- GAAAGATCCGGACC GGCG
	SEQ ID No. 138:	5'- GATCCGGACC GGCG ACC
	SEQ ID No. 139:	5'- AGATCCGGACC GGCG AC
25	SEQ ID No. 140:	5'- AAGATCCGGACC GGCGA
	SEQ ID No. 141:	5'- AGGAAAGGCCCGGTCGAA
	SEQ ID No. 142:	5'- AAGGAAAGGCCCGGTCGA
	SEQ ID No. 143:	5'- CGAGCAAAACGCCCTGCTTG
	SEQ ID No. 144:	5'- CGCTCTGAAAGAGAGTTGCC
30	SEQ ID No. 145:	5'- AGTTGCCCTACACTAGAC

	SEQ ID No. 146:	5'-GCTTCTCCGTCCCGCGCCG
	SEQ ID No. 148:	5'- CCTGGTTCGCCAAAAAGGC
	SEQ ID No. 149:	5'-GATTCTCGGCCCATGGG
	SEQ ID No. 150:	5'- ACCCTCTACGGCAGCCTGTT
5	SEQ ID No. 151:	5'- GATCGGTCTCCAGCGATTCA
	SEQ ID No. 152:	5'- ACCCTCCACGGCGGCCTGTT
	SEQ ID No. 153:	5'- GATTCTCCGCGCCATGGG
	SEQ ID No. 154:	5'- TCATCAGACGGGATTCTCAC
	SEQ ID No. 157:	5'-AGTTGCCCTCCTCTAAGC
10	SEQ ID No. 158:	5'-CTGCCACAAGGACAAATGGT
	SEQ ID No. 159:	5'-TGCCCCCTCTTCTAAGCAAAT
	SEQ ID No. 160:	5'-CCCCAAAGTTGCCCTCTC
	SEQ ID No. 163:	5'-AAGACCAGGCCACCTCAT
	SEQ ID No. 164:	5'- CATCATAGAACACCGTCC
15	SEQ ID No. 165:	5'- CCTTCCGAAGTCGAGGTTTT
	SEQ ID No. 166:	5'- GGGAGTGTGCCAACTC
	SEQ ID No. 167:	5'- AGCGGTCGTTCGCAACCT
	SEQ ID No. 168:	5'- CCGAAGTCGGGGTTTGC GG
	SEQ ID No. 169:	5'- GATAGCCAAACCACCTTC
20	SEQ ID No. 170:	5'- GCCGAAACCACCTTCAAAC
	SEQ ID No. 171:	5'- GTGATAGCCGAAACCACCT
	SEQ ID No. 172:	5'- AGTGATAGCCGAAACCACCT
	SEQ ID No. 173:	5'- TTTAACGGGATGCGTCGAC
	SEQ ID No. 174:	5'- AAGTGATAGCCGAAACCACC
25	SEQ ID No. 175:	5'- GGTTGAATACCGTCAACGTC
	SEQ ID No. 176:	5'- GCACAGTATGTCAAGACCTG
	SEQ ID No. 177:	5'- CATCCGATGTGCAAGCACTT
	SEQ ID No. 178:	5'- TCATCCGATGTGCAAGCACT
	SEQ ID No. 179:	5'- CCGATGTGCAAGCACTTCAT
30	SEQ ID No. 180:	5'- CCACTCATCCGATGTGCAAG

	SEQ ID No. 181:	5'- GCCACAGTTGCCACTCATC
	SEQ ID No. 182:	5'- CCTCCGCGTTGTCACCGGC
	SEQ ID No. 183:	5'- ACCAGTTGCCACAGTTCGC
	SEQ ID No. 184:	5'- CACTCATCCGATGTGCAAGC
5	SEQ ID No. 185:	5'- CCAGTTGCCACAGTTGCC
	SEQ ID No. 186:	5'- CTCATCCGATGTGCAAGCAC
	SEQ ID No. 187:	5'- TCCGATGTGCAAGCACTTCA
	SEQ ID No. 188:	5'- CGCCACTCATCCGATGTGCA
	SEQ ID No. 189:	5'- CAGTTGCCACAGTTGCCA
10	SEQ ID No. 190:	5'- GCCACTCATCCGATGTGCAA
	SEQ ID No. 191:	5'- CGCCACAGTTGCCACTCAT
	SEQ ID No. 192:	5'- ATCCGATGTGCAAGCACTTC
	SEQ ID No. 193:	5'- GTTCGCCACAGTTGCCACT
	SEQ ID No. 194:	5'- TCCTCCCGTTGTCACCGG
15	SEQ ID No. 195:	5'- CGCCAGGGTTCATCCTGAGC
	SEQ ID No. 196:	5'- AGTTGCCACAGTTGCCAC
	SEQ ID No. 197:	5'- TCGCCACAGTTGCCACTCA
	SEQ ID No. 198:	5'- TTAACGGGATGCGTTGACT
	SEQ ID No. 199:	5'- TCGCCACTCATCCGATGTGC
20	SEQ ID No. 200:	5'- CCACAGTTGCCACTCATCC
	SEQ ID No. 201:	5'- GATTAAACGGGATGCGTTCG
	SEQ ID No. 202:	5'- TAACGGGATGCGTTGACTT
	SEQ ID No. 203:	5'- AACGGGATGCGTTGACTTG
	SEQ ID No. 204:	5'- CGAAGGTTACCGAACCGACT
25	SEQ ID No. 205:	5'- CCGAAGGTTACCGAACCGAC
	SEQ ID No. 206:	5'- CCCGAAGGTTACCGAACCGA
	SEQ ID No. 207:	5'- TTCCCTCCCGTTGTCACCG
	SEQ ID No. 208:	5'- CCGCCAGGGTTCATCCTGAG
	SEQ ID No. 209:	5'- TCCTTCCAGAAGTGATAGCC
30	SEQ ID No. 210:	5'- CACCAGTTGCCACAGTTCG

	SEQ ID No. 211:	5'- ACGGGATGCGTCGACTTGC
	SEQ ID No. 212:	5'- GTCCTTCCAGAAGTGATAGC
	SEQ ID No. 213:	5'- GCCAGGGTTCATCCTGAGCC
	SEQ ID No. 214:	5'- ACTCATCCGATGTGCAAGCA
5	SEQ ID No. 215:	5'- ATCATTGCCTTGGTGAACCG
	SEQ ID No. 216:	5'- TCCGCGTTGTCACCGGCAG
	SEQ ID No. 217:	5'- TGAACC GTTACTCCACCAAC
	SEQ ID No. 218:	5'- GAAGTGATAGCCGAAACCAC
	SEQ ID No. 219:	5'- CCGCGTTGTCACCGGCAGT
10	SEQ ID No. 220:	5'- TTCGCCACTCATCCGATGTG
	SEQ ID No. 221:	5'- CATTAAACGGGATGCGTCG
	SEQ ID No. 222:	5'- CACAGTTGCCACTCATCCG
	SEQ ID No. 223:	5'- TTCGCCACAGTTGCCACTC
	SEQ ID No. 224:	5'- CTCCGCGTTGTCACCGGCA
15	SEQ ID No. 225:	5'- ACGCCGCCAGGGTTCATCCT
	SEQ ID No. 226:	5'- CCTTCCAGAAGTGATAGCCG
	SEQ ID No. 227:	5'- TCATTGCCTTGGTGAACCGT
	SEQ ID No. 228:	5'- CACAGTATGTCAAGACCTGG
	SEQ ID No. 229:	5'- TTGGTGAACCGTTACTCCAC
20	SEQ ID No. 230:	5'- CTTGGTGAACCGTTACTCCA
	SEQ ID No. 231:	5'- GTGAACCGTTACTCCACCAA
	SEQ ID No. 232:	5'- GGCTCCCGAAGGTTACCGAA
	SEQ ID No. 233:	5'- GAAGGTTACCGAACCGACTT
	SEQ ID No. 234:	5'- TGGCTCCCGAAGGTTACCGA
25	SEQ ID No. 235:	5'- TAATACGCCGCCGGTCCTTC
	SEQ ID No. 236:	5'- GAACCGTTACTCCACCAACT
	SEQ ID No. 237:	5'- TACGCCGCCGGTCCTCCAG
	SEQ ID No. 238:	5'- TCACCAGTTGCCACAGTTC
	SEQ ID No. 239:	5'- CCTTGGTGAACCGTTACTCC
30	SEQ ID No. 240:	5'- CTCACCAGTTGCCACAGTT

	SEQ ID No. 241:	5'- CGCCGCCAGGGTTCATCCTG
	SEQ ID No. 242:	5'- CCTTGGTGAACCATTACTCC
	SEQ ID No. 243:	5'- TGGTGAACCATTACTCCACC
	SEQ ID No. 244:	5'- GCCGCCAGGGTTCATCCTGA
5	SEQ ID No. 245:	5'- GGTGAACCATTACTCCACCA
	SEQ ID No. 246:	5'- CCAGGGTTCATCCTGAGCCA
	SEQ ID No. 247:	5'- AATACGCCGCCGGTCCTTCC
	SEQ ID No. 248:	5'- CACGCCGCCAGGGTTCATCC
	SEQ ID No. 249:	5'- AGTCGCCACTCATCCGATG
10	SEQ ID No. 250:	5'- CGGGATGCGTTCGACTTGCA
	SEQ ID No. 251:	5'- CATTGCCTTGGTGAACCGTT
	SEQ ID No. 252:	5'- GCACGCCGCCAGGGTTCATC
	SEQ ID No. 253:	5'- CTTCCCTCCGCCGTTGTCA
	SEQ ID No. 254:	5'- TGGTGAACCGTTACTCCACC
15	SEQ ID No. 255:	5'- CCTTCCTCCGCCGTTGTCA
	SEQ ID No. 256:	5'- ACGCCGCCGGTCCTCCAGA
	SEQ ID No. 257:	5'- GGTGAACCGTTACTCCACCA
	SEQ ID No. 258:	5'- GGGTCCTTCCAGAACGTGATA
	SEQ ID No. 259:	5'- CTTCCAGAACGTGATAGCCGA
20	SEQ ID No. 260:	5'- GCCTTGGTGAACCATTACTC
	SEQ ID No. 261:	5'- ACAGTTGCCACTCATCCGA
	SEQ ID No. 262:	5'- ACCTTCCTCCGCCGTTGTCA
	SEQ ID No. 263:	5'- CGAACCGACTTGGGTGTTG
	SEQ ID No. 264:	5'- GAACCGACTTGGGTGTTGC
25	SEQ ID No. 265:	5'- AGGTTACCGAACCGACTTG
	SEQ ID No. 266:	5'- ACCGAACCGACTTGGGTGT
	SEQ ID No. 267:	5'- TTACCGAACCGACTTGGGT
	SEQ ID No. 268:	5'- TACCGAACCGACTTGGGTG
	SEQ ID No. 269:	5'- GTTACCGAACCGACTTGGG
30	SEQ ID No. 270:	5'- CCTTCCTGGTATGGTACCGTC

	SEQ ID No. 271:	5'- TGCACCGCGGAYCCATCTCT
	SEQ ID No. 272:	5'- AGTTGCAGTCCAGTAAGCCG
	SEQ ID No. 273:	5'- GTTGCAGTCCAGTAAGCCGC
	SEQ ID No. 274:	5'- CAGTTGCAGTCCAGTAAGCC
5	SEQ ID No. 275:	5'- TGCAGTCCAGTAAGCCGCCT
	SEQ ID No. 276:	5'- TCAGTTGCAGTCCAGTAAGC
	SEQ ID No. 277:	5'- TTGCAGTCCAGTAAGCCGCC
	SEQ ID No. 278:	5'- GCAGTCCAGTAAGCCGCCCT
	SEQ ID No. 279:	5'- GTCAGTTGCAGTCCAGTAAG
10	SEQ ID No. 280:	5'- CTCTAGGTGACGCCGAAGCG
	SEQ ID No. 281:	5'- ATCTCTAGGTGACGCCGAAG
	SEQ ID No. 282:	5'- TCTAGGTGACGCCGAAGCGC
	SEQ ID No. 283:	5'- TCTCTAGGTGACGCCGAAGC
	SEQ ID No. 284:	5'- CCATCTCTAGGTGACGCCGA
15	SEQ ID No. 285:	5'- CATCTCTAGGTGACGCCGAA
	SEQ ID No. 286:	5'- TAGGTGACGCCGAAGCGCCT
	SEQ ID No. 287:	5'- CTAGGTGACGCCGAAGCGCC
	SEQ ID No. 288:	5'- CTTAGACGGCTCCTCCTAA
	SEQ ID No. 289:	5'- CCTTAGACGGCTCCTCCTA
20	SEQ ID No. 290:	5'- ACGTCAGTTGCAGTCCAGTA
	SEQ ID No. 291:	5'- CGTCAGTTGCAGTCCAGTAA
	SEQ ID No. 292:	5'- ACGCCGAAGCGCCTTTAAC
	SEQ ID No. 293:	5'- GACGCCGAAGCGCCTTTAA
	SEQ ID No. 294:	5'- GCCGAAGCGCCTTTAACTT
25	SEQ ID No. 295:	5'- CGCCGAAGCGCCTTTAACT
	SEQ ID No. 296:	5'- GTGACGCCGAAGCGCCTTT
	SEQ ID No. 297:	5'- TGACGCCGAAGCGCCTTTA
	SEQ ID No. 298:	5'- AGACGGCTCCTCCTAAAAG
	SEQ ID No. 299:	5'- ACGGCTCCTCCTAAAAGGT
30	SEQ ID No. 300:	5'- GACGGCTCCTCCTAAAAGG

	SEQ ID No. 301:	5'- CCTTCCTAAAAGGTTAGGCC
	SEQ ID No. 302:	5'- GGTGACGCCAAAGCGCCTT
	SEQ ID No. 303:	5'- AGGTGACGCCAAAGCGCCT
	SEQ ID No. 304:	5'- TAGGTGACGCCAAAGCGCCT
5	SEQ ID No. 305:	5'- CTCTAGGTGACGCCAAAGCG
	SEQ ID No. 306:	5'- TCTTAGGTGACGCCAAAGCGC
	SEQ ID No. 307:	5'- CTAGGTGACGCCAAAGCGCC
	SEQ ID No. 308:	5'- ACGCCAAAGCGCCTTTAAC
	SEQ ID No. 309:	5'- CGCCAAAGCGCCTTTAAT
10	SEQ ID No. 310:	5'- TGACGCCAAAGCGCCTTTA
	SEQ ID No. 311:	5'- TCTCTAGGTGACGCCAAAGC
	SEQ ID No. 312:	5'- GTGACGCCAAAGCGCCTTT
	SEQ ID No. 313:	5'- GACGCCAAAGCGCCTTTAA
	SEQ ID No. 314:	5'- ATCTCTAGGTGACGCCAAAG
15	SEQ ID No. 315:	5'- CATCTCTAGGTGACGCCAA
	SEQ ID No. 316:	5'- TCCATCTCTAGGTGACGCCA
	SEQ ID No. 317:	5'- CCATCTCTAGGTGACGCCAA
	SEQ ID No. 318:	5'- CTGCCTTAGACGGCTCCCC
	SEQ ID No. 319:	5'- CCTGCCTTAGACGGCTCCCC
20	SEQ ID No. 320:	5'- GTGTCATGCGACACTGAGTT
	SEQ ID No. 321:	5'- TGTGTCATGCGACACTGAGT
	SEQ ID No. 322:	5'- CTTTGTGTCATGCGACACTG
	SEQ ID No. 323:	5'- TTGTGTCATGCGACACTGAG
	SEQ ID No. 324:	5'- TGCCTTAGACGGCTCCCCCT
25	SEQ ID No. 325:	5'- AGACGGCTCCCCCTAAAAGG
	SEQ ID No. 326:	5'- TAGACGGCTCCCCCTAAAAG
	SEQ ID No. 327:	5'- GCCTTAGACGGCTCCCCCTA
	SEQ ID No. 328:	5'- GCTCCCCCTAAAAGGTTAGG
	SEQ ID No. 329:	5'- GGCTCCCCCTAAAAGGTTAG
30	SEQ ID No. 330:	5'- CTCCCCCTAAAAGGTTAGGC

- 89 -

	SEQ ID No. 331:	5'- TCCCCCTAAAAGGTTAGGCC
	SEQ ID No. 332:	5'- CCCTAAAAGGTTAGGCCACC
	SEQ ID No. 333:	5'- CCCCTAAAAGGTTAGGCCAC
	SEQ ID No. 334:	5'- CGGCTCCCCCTAAAAGGTTA
5	SEQ ID No. 335:	5'- CCCCCCTAAAAGGTTAGGCCA
	SEQ ID No. 336:	5'- CTTAGACGGCTCCCCCTAAA
	SEQ ID No. 337:	5'- TTAGACGGCTCCCCCTAAAA
	SEQ ID No. 338:	5'- GGGTCGCAACTCGTTGTAT
	SEQ ID No. 339:	5'- CCTTAGACGGCTCCCCCTAA
10	SEQ ID No. 340:	5'- ACGGCTCCCCCTAAAAGGTT
	SEQ ID No. 341:	5'- GACGGCTCCCCCTAAAAGGT
	SEQ ID No. 342:	5'- ACGCCGCAAGACCATCCTCT
	SEQ ID No. 343:	5'- CTAATACGCCGCAAGACCAT
	SEQ ID No. 344:	5'- TACGCCGCAAGACCATCCTC
15	SEQ ID No. 345:	5'- GTTACGATCTAGCAAGCCGC
	SEQ ID No. 346:	5'- AATACGCCGCAAGACCATCC
	SEQ ID No. 347:	5'- CGCCGCAAGACCATCCTCTA
	SEQ ID No. 348:	5'- GCTAATACGCCGCAAGACCA
	SEQ ID No. 349:	5'- ACCATCCTCTAGCGATCCAA
20	SEQ ID No. 350:	5'- TAATACGCCGCAAGACCATC
	SEQ ID No. 351:	5'- AGCCATCCCTTCTGGTAAG
	SEQ ID No. 352:	5'- ATACGCCGCAAGACCATCCT
	SEQ ID No. 353:	5'- AGTTACGATCTAGCAAGCCG
	SEQ ID No. 354:	5'- AGCTAATACGCCGCAAGACC
25	SEQ ID No. 355:	5'- GCCGCAAGACCATCCTCTAG
	SEQ ID No. 356:	5'- TTACGATCTAGCAAGCCGCT
	SEQ ID No. 357:	5'- GACCATCCTCTAGCGATCCA
	SEQ ID No. 358:	5'- TTGCTACGTCACTAGGAGGC
	SEQ ID No. 359:	5'- ACGTCACTAGGAGGCGGAAA
30	SEQ ID No. 360:	5'- TTTGCTACGTCACTAGGAGG

- 90 -

	SEQ ID No. 361:	5'- GCCATCCCTTCTGGTAAGG
	SEQ ID No. 362:	5'- TACGTCACTAGGAGGCGGAA
	SEQ ID No. 363:	5'- CGTCACTAGGAGGCGGAAAC
	SEQ ID No. 364:	5'- AAGACCATCCTCTAGCGATC
5	SEQ ID No. 365:	5'- GCACGTATTTAGCCATCCCT
	SEQ ID No. 366:	5'- CTCTAGCGATCCAAAAGGAC
	SEQ ID No. 367:	5'- CCTCTAGCGATCCAAAAGGA
	SEQ ID No. 368:	5'- CCATCCTCTAGCGATCCAAA
	SEQ ID No. 369:	5'- GGCACGTATTTAGCCATCCC
10	SEQ ID No. 370:	5'- TACGATCTAGCAAGCCGCTT
	SEQ ID No. 371:	5'- CAGTTACGATCTAGCAAGCC
	SEQ ID No. 372:	5'- CCGCAAGACCATCCTCTAGC
	SEQ ID No. 373:	5'- CCATCCCTTCTGGTAAGGT
	SEQ ID No. 374:	5'- AGACCATCCTCTAGCGATCC
15	SEQ ID No. 375:	5'- CAAGACCATCCTCTAGCGAT
	SEQ ID No. 376:	5'- GCTACGTCACTAGGAGGCGG
	SEQ ID No. 377:	5'- TGCTACGTCACTAGGAGGCG
	SEQ ID No. 378:	5'- CTACGTCACTAGGAGGCGGA
	SEQ ID No. 379:	5'- CCTCAACGTCAGTTACGATC
20	SEQ ID No. 380:	5'- GTCACTAGGAGGCGGAAACC
	SEQ ID No. 381:	5'- TCCTCTAGCGATCCAAAAGG
	SEQ ID No. 382:	5'- TGGCACGTATTTAGCCATCC
	SEQ ID No. 383:	5'- ACGATCTAGCAAGCCGCTT
	SEQ ID No. 384:	5'- GCCAGTCTCTCAACTCGGCT
25	SEQ ID No. 385:	5'- AAGCTAATACGCCGCAAGAC
	SEQ ID No. 386:	5'- GTTGCTACGTCACTAGGAG
	SEQ ID No. 387:	5'- CGCCACTCTAGTCATTGCCT
	SEQ ID No. 388:	5'- GGCCAGCCAGTCTCTCAACT
	SEQ ID No. 389:	5'- CAGCCAGTCTCTCAACTCGG
30	SEQ ID No. 390:	5'- CCCGAAGATCAATTAGCGG

- 91 -

	SEQ ID No. 391:	5'- CCGGCCAGTCTCTCAACTCG
	SEQ ID No. 392:	5'- CCAGCCAGTCTCTCAACTCG
	SEQ ID No. 393:	5'- TCATTGCCTCACTTACCCG
	SEQ ID No. 394:	5'- GCCAGCCAGTCTCTCAACTC
5	SEQ ID No. 395:	5'- CACCCGAAGATCAATTCACTCG
	SEQ ID No. 396:	5'- GTCATTGCCTCACTTACCC
	SEQ ID No. 397:	5'- CATTGCCTCACTTACCCGA
	SEQ ID No. 398:	5'- ATTGCCTCACTTACCCGAA
	SEQ ID No. 399:	5'- CGAAGATCAATTCACTCGGGCT
10	SEQ ID No. 400:	5'- AGTCATTGCCTCACTTCAACC
	SEQ ID No. 401:	5'- TCGCCACTCTAGTCATTGCC
	SEQ ID No. 402:	5'- TTGCCTCACTTACCCGAAG
	SEQ ID No. 403:	5'- CGGCCAGTCTCTCAACTCGG
	SEQ ID No. 404:	5'- CTGGCACGTATTTAGCCATC
15	SEQ ID No. 405:	5'- ACCCGAAGATCAATTCACTCG
	SEQ ID No. 406:	5'- TCTAGCGATCCAAAAGGACC
	SEQ ID No. 407:	5'- CTAGCGATCCAAAAGGACCT
	SEQ ID No. 408:	5'- GCACCCATCGTTACGGTAT
	SEQ ID No. 409:	5'- CACCCATCGTTACGGTATG
20	SEQ ID No. 410:	5'- GCCACTCTAGTCATTGCCTC
	SEQ ID No. 411:	5'- CGTTGCTACGTCACTAGGA
	SEQ ID No. 412:	5'- GCCTCAACGTCAAGTTACGAT
	SEQ ID No. 413:	5'- GCCGGCCAGTCTCTCAACTC
	SEQ ID No. 414:	5'- TCACTAGGAGGCGGAAACCT
25	SEQ ID No. 415:	5'- AGCCTCAACGTCAAGTTACGA
	SEQ ID No. 416:	5'- AGCCAGTCTCTCAACTCGGC
	SEQ ID No. 417:	5'- GGCCAGTCTCTCAACTCGGC
	SEQ ID No. 418:	5'- CAAGCTAACAGCCGCAAGA
	SEQ ID No. 419:	5'- TTCGCCACTCTAGTCATTGC
30	SEQ ID No. 420:	5'- CCGAAGATCAATTCACTCGGGC

- 92 -

	SEQ ID No. 421:	5'- CGCAAGACCATCCTCTAGCG
	SEQ ID No. 422:	5'- GCAAGACCATCCTCTAGCGA
	SEQ ID No. 423:	5'- GCGTTGCTACGTCACTAGG
	SEQ ID No. 424:	5'- CCACTCTAGTCATTGCCTCA
5	SEQ ID No. 425:	5'- CACTCTAGTCATTGCCTCAC
	SEQ ID No. 426:	5'- CCAGTCTCTCAACTCGGCTA
	SEQ ID No. 427:	5'- TTACCTTAGGCACCGGCCTC
	SEQ ID No. 428:	5'- ACAAGCTAATACGCCGCAAG
	SEQ ID No. 429:	5'- TTTACCTTAGGCACCGGCCT
10	SEQ ID No. 430:	5'- TTTTACCTTAGGCACCGGCC
	SEQ ID No. 431:	5'- ATTTTACCTTAGGCACCGGC
	SEQ ID No. 432:	5'- GATTTACCTTAGGCACCGG
	SEQ ID No. 433:	5'- CTCACTTCACCCGAAGATCA
	SEQ ID No. 434:	5'- ACGCCACCAGCGTTCATCCT
15	SEQ ID No. 435:	5'- GCCAAGCGACTTGGGTACT
	SEQ ID No. 436:	5'- CGGAAAATTCCCTACTGCAG
	SEQ ID No. 437:	5'- CGATCTAGCAAGCCGCTTC
	SEQ ID No. 438:	5'- GGTACCGTCAAGCTGAAAAC
	SEQ ID No. 439:	5'- TGCCTCACTTCACCCGAAGA
20	SEQ ID No. 440:	5'- GGCGGCCAGTCTCTCAACT
	SEQ ID No. 441:	5'- GGTAAGGTACCGTCAAGCTG
	SEQ ID No. 442:	5'- GTAAGGTACCGTCAAGCTGA
	SEQ ID No. 443:	5'- CCGCAAGACCATCCTCTAGG
	SEQ ID No. 444:	5'- ATTTAGCCATCCCTTCTGG
25	SEQ ID No. 445:	5'- AACCCCTTCATCACACACG
	SEQ ID No. 446:	5'- CGAAACCCCTTCATCACAC
	SEQ ID No. 447:	5'- ACCCTTCATCACACACACGC
	SEQ ID No. 448:	5'- TACCGTCACACACTGAAC
	SEQ ID No. 449:	5'- AGATACCGTCACACACTG
30	SEQ ID No. 450:	5'- CACTCAAGGGCGGAAACC

	SEQ ID No. 451:	5'- ACCGTACACACACTGAACA
	SEQ ID No. 452:	5'- CGTCACACACACTGAACAGT
	SEQ ID No. 453:	5'- CCGAAACCCTTCATCACA
	SEQ ID No. 454:	5'- CCGTCACACACACTGAACAG
5	SEQ ID No. 455:	5'- GATAACCGTCACACACACTGA
	SEQ ID No. 456:	5'- GGTAAGATAACCGTCACAC
	SEQ ID No. 457:	5'- CCCTTCATCACACACACGCG
	SEQ ID No. 458:	5'- ACAGTGTTTACGAGCCG
	SEQ ID No. 459:	5'- CAGTGTACGAGGCCGA
10	SEQ ID No. 460:	5'- ACAAAGCGTTCGACTTGC
	SEQ ID No. 461:	5'- CGGATAACGCTTGGAAACA
	SEQ ID No. 462:	5'- AGGGCGGAAACCCTCGAA
	SEQ ID No. 463:	5'- GGGCGGAAACCCTCGAAC
	SEQ ID No. 464:	5'- GGCGGAAACCCTCGAACAA
15	SEQ ID No. 465:	5'- TGAGGGCTTCACTTCAAG
	SEQ ID No. 466:	5'- AGGGCTTCACTTCAAGAC
	SEQ ID No. 467:	5'- GAGGGCTTCACTTCAAG
	SEQ ID No. 468:	5'- ACTGCACTCAAGTCATCC
	SEQ ID No. 469:	5'- CCGGATAACGCTTGGAAAC
20	SEQ ID No. 470:	5'- TCCGGATAACGCTTGGAA
	SEQ ID No. 471:	5'- TATCCCCTGCTAAGAGGT
	SEQ ID No. 472:	5'- CCTGCTAAGAGGTAGGTT
	SEQ ID No. 473:	5'- CCCTGCTAAGAGGTAGGT
	SEQ ID No. 474:	5'- CCCCTGCTAAGAGGTAGG
25	SEQ ID No. 475:	5'- TCCCCCTGCTAAGAGGTAG
	SEQ ID No. 476:	5'- ATCCCCCTGCTAAGAGGTA
	SEQ ID No. 477:	5'- CCGTTCCCTTCTGGTAAG
	SEQ ID No. 478:	5'- GCCGTTCCCTTCTGGTAA
	SEQ ID No. 479:	5'- AGCCGTTCCCTTCTGGTA
30	SEQ ID No. 480:	5'- GCACGTATTAGCCGTT

	SEQ ID No. 481:	5'- CACGTATTAAGCCGTTCC
	SEQ ID No. 482:	5'- GGCACGTATTAAGCCGTT
	SEQ ID No. 483:	5'- CACTTCCTCTACTGCAC
	SEQ ID No. 484:	5'- CCACTTCCCTACTGCA
5	SEQ ID No. 485:	5'- TCCACTTCCCTACTGC
	SEQ ID No. 486:	5'- CTTCCCTACTGCACTC
	SEQ ID No. 487:	5'- TAGCCGTTCCCTTCTGGT
	SEQ ID No. 488:	5'- TTAGCCGTTCCCTTCTGG
	SEQ ID No. 489:	5'- TTATCCCCGTGCTAAGAGG
10	SEQ ID No. 490:	5'- GTTATCCCCTGCTAAGAG
	SEQ ID No. 491:	5'- CCCGTTCGCCACTCTTG
	SEQ ID No. 492:	5'- AGCTGAGGGCTTCACTT
	SEQ ID No. 493:	5'- GAGCTGAGGGCTTCACCT
	SEQ ID No. 494:	5'- GCTGAGGGCTTCACCTC
15	SEQ ID No. 495:	5'- CTGAGGGCTTCACTTCA
	SEQ ID No. 496:	5' CCCGTGTCCCGAAGGAAC
	SEQ ID No. 497:	5' GCACGAGTATGTCAAGAC
	SEQ ID No. 498:	5' GTATCCCGTGTCCCGAAG
	SEQ ID No. 499:	5' TCCCGTGTCCCGAAGGAA
20	SEQ ID No. 500:	5' ATCCCGTGTCCCGAAGGA
	SEQ ID No. 501:	5' TATCCCGTGTCCCGAAGG
	SEQ ID No. 502:	5' CTTACCTTAGGAAGCGCC
	SEQ ID No. 503:	5' TTACCTTAGGAAGCGCCC
	SEQ ID No. 504:	5' CCTGTATCCCGTGTCCCG
25	SEQ ID No. 505:	5' CCACCTGTATCCCGTGTGTC
	SEQ ID No. 506:	5' CACCTGTATCCCGTGTCC
	SEQ ID No. 507:	5' ACCTGTATCCCGTGTCCC
	SEQ ID No. 508:	5' CTGTATCCCGTGTCCCGA
	SEQ ID No. 509:	5' TGTATCCCGTGTCCCGAA
30	SEQ ID No. 510:	5' CACGAGTATGTCAAGACC

	SEQ ID No. 511:	5' CGGTCTTACCTTAGGAAG
	SEQ ID No. 512:	5' TAGGAAGCGCCCTCCTTG
	SEQ ID No. 513:	5' AGGAAGCGCCCTCCTGC
	SEQ ID No. 514:	5' TTAGGAAGCGCCCTCCTT
5	SEQ ID No. 515:	5' CTTAGGAAGCGCCCTCCT
	SEQ ID No. 516:	5' CCTTAGGAAGCGCCCTCC
	SEQ ID No. 517:	5' ACCTTAGGAAGCGCCCTC
	SEQ ID No. 518:	5' TGCACACAATGGTTGAGC
	SEQ ID No. 519:	5' TACCTTAGGAAGCGCCCT
10	SEQ ID No. 520:	5' ACCACCTGTATCCGTGT
	SEQ ID No. 521:	5' GCACCACCTGTATCCCGT
	SEQ ID No. 522:	5' CACCACCTGTATCCCGTG
	SEQ ID No. 523:	5' GCGGTTAGGCAACCTACT
	SEQ ID No. 524:	5' TGC GGTTAGGCAACCTAC
15	SEQ ID No. 525:	5' TTGCGGTTAGGCAACCTA
	SEQ ID No. 526:	5' GGTCTTACCTTAGGAAGC
	SEQ ID No. 527:	5' GCTAATACAACGCGGGAT
	SEQ ID No. 528:	5' CTAATACAACGCGGGATC
	SEQ ID No. 529:	5' ATACAACGCGGGATCATC
20	SEQ ID No. 530:	5' CGGTTAGGCAACCTACTT
	SEQ ID No. 531:	5' TGCACCACCTGTATCCCG
	SEQ ID No. 532:	5' GAAGCGCCCTCCTGCGG
	SEQ ID No. 533:	5' GGAAGCGCCCTCCTGCG
	SEQ ID No. 534:	5' CGTCCCTTCTGGTTAGA
25	SEQ ID No. 535:	5' AGCTAATACAACGCGGGA
	SEQ ID No. 536:	5' TAGCTAATACAACGCGGG
	SEQ ID No. 537:	5' CTAGCTAATACAACGCGG
	SEQ ID No. 538:	5' GGCTATGTATCATCGCCT
	SEQ ID No. 539:	5' GAGCCACTGCCTTTACA
30	SEQ ID No. 540:	5' GTCGGCTATGTATCATCG

	SEQ ID No. 541:	5' GGTGGCTATGTATCATC
	SEQ ID No. 542:	5' CAGGTGGCTATGTATCA
	SEQ ID No. 543:	5' CGGCTATGTATCATGCC
	SEQ ID No. 544:	5' TCGGCTATGTATCATCGC
5	SEQ ID No. 545:	5' GTCTTACCTTAGGAAGCG
	SEQ ID No. 546:	5' TCTTACCTTAGGAAGCGC
	SEQ ID No. 547:	5'- GTACAAACCGCCTACACGCC
	SEQ ID No. 548:	5'- TGTACAAACCGCCTACACGC
	SEQ ID No. 549:	5'- GATCAGCACGATGTCGCCAT
10	SEQ ID No. 550:	5'- CTGTACAAACCGCCTACACG
	SEQ ID No. 551:	5'- GAGATCAGCACGATGTCGCC
	SEQ ID No. 552:	5'- AGATCAGCACGATGTCGCCA
	SEQ ID No. 553:	5'- ATCAGCACGATGTCGCCATC
	SEQ ID No. 554:	5'- TCAGCACGATGTCGCCATCT
15	SEQ ID No. 555:	5'- ACTGTACAAACCGCCTACAC
	SEQ ID No. 556:	5'- CCGCCACTAAGGCCGAAACC
	SEQ ID No. 557:	5'- CAGCACGATGTCGCCATCTA
	SEQ ID No. 558:	5'- TACAAACCGCCTACACGCC
	SEQ ID No. 559:	5'- AGCACGATGTCGCCATCTAG
20	SEQ ID No. 560:	5'- CGGTTTAGAGATCACGAC
	SEQ ID No. 561:	5'- TCCGCCACTAAGGCCGAAAC
	SEQ ID No. 562:	5'- GACTGTACAAACCGCCTACA
	SEQ ID No. 563:	5'- GTCCGCCACTAAGGCCGAAA
	SEQ ID No. 564:	5'- GGGGATTTCACATCTGACTG
25	SEQ ID No. 565:	5'- CATAACAAGCCCTGGTAAGGT
	SEQ ID No. 566:	5'- ACAAGCCCTGGTAAGGTTCT
	SEQ ID No. 567:	5'- ACAAAACCGCCTACACGCCCT
	SEQ ID No. 568:	5'- CTGACTGTACAAACCGCCTA
	SEQ ID No. 569:	5'- TGACTGTACAAACCGCCTAC
30	SEQ ID No. 570:	5'- ACGATGTCGCCATCTAGCTT

	SEQ ID No. 571:	5'- CACGATGTCGCCATCTAGCT
	SEQ ID No. 572:	5'- CGATGTCGCCATCTAGCTTC
	SEQ ID No. 573:	5'- GCACGATGTCGCCATCTAGC
	SEQ ID No. 574:	5'- GATGTCGCCATCTAGCTTCC
5	SEQ ID No. 575:	5'- ATGTCGCCATCTAGCTTCCC
	SEQ ID No. 576:	5'- TGTCGCCATCTAGCTTCCA
	SEQ ID No. 577:	5'- GCCATCTAGCTTCCACTGT
	SEQ ID No. 578:	5'- TCGCCATCTAGCTTCCACT
	SEQ ID No. 579:	5'- CGCCATCTAGCTTCCACTG
10	SEQ ID No. 580:	5'- GTCGCCATCTAGCTCCCAC
	SEQ ID No. 581:	5'- TACAAGCCCTGGTAAGGTTTC
	SEQ ID No. 582:	5'- GCCACTAAGGCCGAAACCTT
	SEQ ID No. 583:	5'- ACTAAGGCCGAAACCTTCGT
	SEQ ID No. 584:	5'- CTAAGGCCGAAACCTTCGTG
15	SEQ ID No. 585:	5'- CACTAAGGCCGAAACCTTCG
	SEQ ID No. 586:	5'- AAGGCCGAAACCTTCGTGCG
	SEQ ID No. 587:	5'- CCACTAAGGCCGAAACCTTC
	SEQ ID No. 588:	5'- TAAGGCCGAAACCTTCGTGC
	SEQ ID No. 589:	5'- AGGCCGAAACCTTCGTGCGA
20	SEQ ID No. 590:	5'- TCTGACTGTACAAACCGCCT
	SEQ ID No. 591:	5'- CATCTGACTGTACAAACCGC
	SEQ ID No. 592:	5'- ATCTGACTGTACAAACCGCC
	SEQ ID No. 593:	5'- CTTCGTGCGACTTGCATGTG
	SEQ ID No. 594:	5'- CCTTCGTGCGACTTGCATGT
25	SEQ ID No. 595:	5'- CTCTCTAGAGTGCCCACCCA
	SEQ ID No. 596:	5'- TCTCTAGAGTGCCCACCAA
	SEQ ID No. 597:	5'- ACGTATCAAATGCAGCTCCC
	SEQ ID No. 598:	5'- CGTATCAAATGCAGCTCCC
	SEQ ID No. 599:	5'- CGCCACTAAGGCCGAAACCT
30	SEQ ID No. 600:	5'- CCGAAACCTTCGTGCGACTT

	SEQ ID No. 601:	5'- GCCGAAACCTCGTGCAGCT
	SEQ ID No. 602:	5'- AACCTCGTGCAGACTTCAT
	SEQ ID No. 603:	5'- CGAACCTCGTGCAGACTTG
	SEQ ID No. 604:	5'- ACCTCGTGCAGACTTCATG
5	SEQ ID No. 605:	5'- GAAACCTCGTGCAGACTTC
	SEQ ID No. 606:	5'- GGCGAAACCTCGTGCAGAC
	SEQ ID No. 607:	5'- AAACCTCGTGCAGACTTC
	SEQ ID No. 608:	5'- CACGTATCAAATGCAGCTCC
	SEQ ID No. 609:	5'- GCTCACCGGCTTAAGGTCAA
10	SEQ ID No. 610:	5'- CGCTCACCGGCTTAAGGTCA
	SEQ ID No. 611:	5'- TCGCTCACCGGCTTAAGGT
	SEQ ID No. 612:	5'- CTCACCGGCTTAAGGTCAA
	SEQ ID No. 613:	5'- CCCGACCGTGGTCGGCTGCG
	SEQ ID No. 614:	5'- GCTCACCGGCTTAAGGTCAA
15	SEQ ID No. 615:	5'- CGCTCACCGGCTTAAGGTCA
	SEQ ID No. 616:	5'- TCGCTCACCGGCTTAAGGT
	SEQ ID No. 617:	5'- CTCACCGGCTTAAGGTCAA
	SEQ ID No. 618:	5'- CCCGACCGTGGTCGGCTGCG
	SEQ ID No. 619:	5'- TCACCGGCTTAAGGTCAAAC
20	SEQ ID No. 620:	5'- CAACCCTCTCTCACACTCTA
	SEQ ID No. 621:	5'- ACAACCCTCTCTCACACTCT
	SEQ ID No. 622:	5'- CCACAACCCCTCTCACACT
	SEQ ID No. 623:	5'- AACCCCTCTCACACTCTAG
	SEQ ID No. 624:	5'- CACAACCCCTCTCACACTC
25	SEQ ID No. 625:	5'- TCCACAACCCCTCTCACAC
	SEQ ID No. 626:	5'- TTCCACAACCCCTCTCTCACA
	SEQ ID No. 627:	5'- ACCCTCTCTCACACTCTAGT
	SEQ ID No. 628:	5'- GAGCCAGGTTGCCGCCTCG
	SEQ ID No. 629:	5'- AGGTCAAACCAACTCCCCATG
30	SEQ ID No. 630:	5'- ATGAGCCAGGTTGCCGCCTT

	SEQ ID No. 631:	5'- TGAGCCAGGTTGCCGCCCTTC
	SEQ ID No. 632:	5'- AGGCTCCTCCACAGGCGACT
	SEQ ID No. 633:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 634:	5'- GCAGGCTCCTCCACAGGCGA
5	SEQ ID No. 635:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 636:	5'- GTTCGCTCACCGGCTTAAGG
	SEQ ID No. 637:	5'- GGTCGCTCACCGGCTTAAG
	SEQ ID No. 638:	5'- ATTCCACAAACCCTCTCTCAC
	SEQ ID No. 639:	5'- TGACCCGACCGTGGTCGGCT
10	SEQ ID No. 640:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 641:	5'- GAATTCCACAAACCCTCTCTC
	SEQ ID No. 642:	5'- AGCCAGGTTGCCGCCCTCGC
	SEQ ID No. 643:	5'- GCCAGGTTGCCGCCCTCGCC
	SEQ ID No. 644:	5'- GGAATTCCACAAACCCTCTCT
15	SEQ ID No. 645:	5'- GGGATTCCACAAACCCTCTC
	SEQ ID No. 646:	5'- AACGCAGGCTCCTCCACAGG
	SEQ ID No. 647:	5'- CGGCTTAAGGTCAAACCAAC
	SEQ ID No. 648:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 649:	5'- CACCGGCTTAAGGTCAAACCC
20	SEQ ID No. 650:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 651:	5'- ACCAACATCCAGCACACAT
	SEQ ID No. 652:	5'- TCGCTGACCCGACCGTGGTC
	SEQ ID No. 653:	5'- CGCTGACCCGACCGTGGTCG
	SEQ ID No. 654:	5'- GACCCGACCGTGGTCGGCTG
25	SEQ ID No. 655:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 656:	5'- CTGACCCGACCGTGGTCGGC
	SEQ ID No. 657:	5'- CAGGCGACTTGCGCCTTGA
	SEQ ID No. 658:	5'- TCATGCGGTATTAGCTCCAG
	SEQ ID No. 659:	5'- ACTAGCTAATCGAACGCAGG
30	SEQ ID No. 660:	5'- CATGCGGTATTAGCTCCAGT

- 100 -

	SEQ ID No. 661:	5'- CGCAGGCTCCTCCACAGGCG
	SEQ ID No. 662:	5'- ACGCAGGCTCCTCCACAGGC
	SEQ ID No. 663:	5'- CTCAGGTGTATGCGGTATT
	SEQ ID No. 664:	5'- CGCCTTGACCCTCAGGTGT
5	SEQ ID No. 665:	5'- ACCCTCAGGTGTATGCGGT
	SEQ ID No. 666:	5'- CCTCAGGTGTATGCGGTAT
	SEQ ID No. 667:	5'- TTTGACCCTCAGGTGTATG
	SEQ ID No. 668:	5'- GACCCTCAGGTGTATGCGG
	SEQ ID No. 669:	5'- TGACCCTCAGGTGTATGCG
10	SEQ ID No. 670:	5'- GCCTTGACCCTCAGGTGTC
	SEQ ID No. 671:	5'- TTGACCCTCAGGTGTATGC
	SEQ ID No. 672:	5'- CCCTCAGGTGTATGCGGTAA
	SEQ ID No. 673:	5'- CCTTGACCCTCAGGTGTCA
	SEQ ID No. 674:	5'- CTTTGACCCTCAGGTGTCAT
15	SEQ ID No. 675:	5'- AGTTATCCCCCACCCATGGA
	SEQ ID No. 676:	5'- CCAGCTATCGATCATCGCCT
	SEQ ID No. 677:	5'- ACCAGCTATCGATCATCGCC
	SEQ ID No. 678:	5'- CAGCTATCGATCATGCCCTT
	SEQ ID No. 679:	5'- AGCTATCGATCATGCCCTTG
20	SEQ ID No. 680:	5'- GCTATCGATCATGCCCTTGG
	SEQ ID No. 681:	5'- CTATCGATCATGCCCTTGGT
	SEQ ID No. 682:	5'- TTCGTGCGACTTGCATGTGT
	SEQ ID No. 683:	5'- TCGATCATGCCCTTGGTAGG
	SEQ ID No. 684:	5'- ATCGATCATGCCCTTGGTAG
25	SEQ ID No. 685:	5'- CACAGGCGACTTGCAGCCTT
	SEQ ID No. 686:	5'- CCACAGGCGACTTGCAGCCTT
	SEQ ID No. 687:	5'- TCCACAGGCGACTTGCAGCCT
	SEQ ID No. 688:	5'- TCCTCCACAGGCGACTTGCAG
	SEQ ID No. 689:	5'- CCTCCACAGGCGACTTGCAGC
30	SEQ ID No. 690:	5'- CTCCACAGGCGACTTGCAGCC

	SEQ ID No. 691:	5'- ACAGGCGACTTGCGCCTTG
	SEQ ID No. 692:	5'- GCTCACCGGCTTAAGGTCAA
	SEQ ID No. 693:	5'- CGCTCACCGGCTTAAGGTCA
	SEQ ID No. 694:	5'- TCGCTCACCGGCTTAAGGTG
5	SEQ ID No. 695:	5'- CTCACCGGCTTAAGGTCAAA
	SEQ ID No. 696:	5'- CCCGACCGTGGTCGGCTGCG
	SEQ ID No. 697:	5'- TCACCGGCTTAAGGTCAAAC
	SEQ ID No. 698:	5'- CAACCCTCTCTCACACTCTA
	SEQ ID No. 699:	5'- ACAACCCTCTCTCACACTCT
10	SEQ ID No. 700:	5'- CCACAACCCCTCTCACACT
	SEQ ID No. 701:	5'- AACCCCTCTCTCACACTCTAG
	SEQ ID No. 702:	5'- CACAACCCCTCTCTCACACTC
	SEQ ID No. 703:	5'- TCCACAAACCCCTCTCACAC
	SEQ ID No. 704:	5'- TTCCACAAACCCCTCTCACA
15	SEQ ID No. 705:	5'- ACCCTCTCTCACACTCTAGT
	SEQ ID No. 706:	5'- GAGCCAGGTTGCCGCCTTCG
	SEQ ID No. 707:	5'- AGGTCAAACCAACTCCCATG
	SEQ ID No. 708:	5'- ATGAGCCAGGTTGCCGCCTT
	SEQ ID No. 709:	5'- TGAGCCAGGTTGCCGCCTTC
20	SEQ ID No. 710:	5'- AGGCTCCTCCACAGGCGACT
	SEQ ID No. 711:	5'- CAGGCTCCTCCACAGGCGAC
	SEQ ID No. 712:	5'- GCAGGCTCCTCCACAGGCGA
	SEQ ID No. 713:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 714:	5'- GTTCGCTCACCGGCTTAAGG
25	SEQ ID No. 715:	5'- GGTCGCTCACCGGCTTAAG
	SEQ ID No. 716:	5'- ATTCCACAAACCCCTCTCAC
	SEQ ID No. 717:	5'- TGACCCGACCGTGGTCGGCT
	SEQ ID No. 718:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 719:	5'- GAATTCCACAAACCCCTCTC
30	SEQ ID No. 720:	5'- AGCCAGGTTGCCGCCTTCGC

	SEQ ID No. 721:	5'- GCCAGGTTGCCGCCTCGCC
	SEQ ID No. 722:	5'- GGAATTCCACAACCCTCTCT
	SEQ ID No. 723:	5'- GGGATTCCACAACCCTCTC
	SEQ ID No. 724:	5'- AACGCAGGCTCCTCACAGG
5	SEQ ID No. 725:	5'- CGGCTTAAGGTCAAACCAAC
	SEQ ID No. 726:	5'- CCGGCTTAAGGTCAAACCAA
	SEQ ID No. 727:	5'- CACCGGCTTAAGGTCAAACC
	SEQ ID No. 728:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 729:	5'- ACCAACATCCAGCACACAT
10	SEQ ID No. 730:	5'- TCGCTGACCCGACCGTGGTC
	SEQ ID No. 731:	5'- CGCTGACCCGACCGTGGTCG
	SEQ ID No. 732:	5'- GACCCGACCGTGGTCGGCTG
	SEQ ID No. 733:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 734:	5'- CTGACCCGACCGTGGTCGGC
15	SEQ ID No. 735:	5'- CAGGCGACTTGCGCCTTGA
	SEQ ID No. 736:	5'- TCATGCGGTATTAGCTCCAG
	SEQ ID No. 737:	5'- ACTAGCTAATCGAACGCAGG
	SEQ ID No. 738:	5'- CATGCGGTATTAGCTCCAGT
	SEQ ID No. 739:	5'- CGCAGGCTCCTCACAGGCG
20	SEQ ID No. 740:	5'- ACGCAGGCTCCTCACAGGC
	SEQ ID No. 741:	5'- CTCAGGTGTATGCGGTATT
	SEQ ID No. 742:	5'- CGCCTTGACCCCTCAGGTGT
	SEQ ID No. 743:	5'- ACCCTCAGGTGTATGCGGT
	SEQ ID No. 744:	5'- CCTCAGGTGTATGCGGTAT
25	SEQ ID No. 745:	5'- TTTGACCCCTCAGGTGTATG
	SEQ ID No. 746:	5'- GACCCTCAGGTGTATGCGG
	SEQ ID No. 747:	5'- TGACCCTCAGGTGTATGCG
	SEQ ID No. 748:	5'- GCCTTGACCCCTCAGGTGTC
	SEQ ID No. 749:	5'- TTGACCCCTCAGGTGTATGC
30	SEQ ID No. 750:	5'- CCCTCAGGTGTATGCGGT

	SEQ ID No. 751:	5'- CCTTGACCCCTCAGGTGTCA
	SEQ ID No. 752:	5'- CTTGACCCCTCAGGTGTCAT
	SEQ ID No. 753:	5'- AGTTATCCCCCACCCATGGA
	SEQ ID No. 754:	5'- CCAGCTATCGATCATCGCCT
5	SEQ ID No. 755:	5'- ACCAGCTATCGATCATCGCC
	SEQ ID No. 756:	5'- CAGCTATCGATCATGCCCTT
	SEQ ID No. 757:	5'- AGCTATCGATCATGCCCTTG
	SEQ ID No. 758:	5'- GCTATCGATCATGCCCTTGG
	SEQ ID No. 759:	5'- CTATCGATCATGCCCTTGGT
10	SEQ ID No. 760:	5'- TTCGTGCGACTTGCATGTGT
	SEQ ID No. 761:	5'- TCGATCATGCCCTGGTAGG
	SEQ ID No. 762:	5'- ATCGATCATGCCCTGGTAG
	SEQ ID No. 763:	5'- CACAGGCGACTTGC GCCCTT
	SEQ ID No. 764:	5'- CCACAGGCGACTTGC GCCCTT
15	SEQ ID No. 765:	5'- TCCACAGGCGACTTGC GCCT
	SEQ ID No. 766:	5'- TCCTCCACAGGCGACTTGC G
	SEQ ID No. 767:	5'- CCTCCACAGGCGACTTGC G
	SEQ ID No. 768:	5'- CTCCACAGGCGACTTGC G
	SEQ ID No. 769:	5'- ACAGGCGACTTGC GCCTTG
20	SEQ ID No. 770:	5'- TCACCGGCTTAAGGTCAAAC
	SEQ ID No. 771:	5'- CAACCCTCTCTCACACTCTA
	SEQ ID No. 772:	5'- ACAACCCTCTCTCACACTCT
	SEQ ID No. 773:	5'- CCACAACCCTCTCTCACACT
	SEQ ID No. 774:	5'- AACCCCTCTCTCACACTCTAG
25	SEQ ID No. 775:	5'- CACAACCCTCTCTCACACTC
	SEQ ID No. 776:	5'- TCCACAAACCCTCTCTCACAC
	SEQ ID No. 777:	5'- TTCCACAAACCCTCTCTCAC
	SEQ ID No. 778:	5'- ACCCTCTCTCACACTCTAGT
	SEQ ID No. 779:	5'- GAGCCAGGTTGCCGCCCTCG
30	SEQ ID No. 780:	5'- AGGTCAAACCAACTCCCAG

	SEQ ID No. 781:	5'- ATGAGCCAGGTTGCCGCCTT
	SEQ ID No. 782:	5'- TGAGCCAGGTTGCCGCCTTC
	SEQ ID No. 783:	5'- AGGCTCCTCCACAGGCGACT
	SEQ ID No. 784:	5'- CAGGCTCCTCCACAGGCGAC
5	SEQ ID No. 785:	5'- GCAGGCTCCTCCACAGGCGA
	SEQ ID No. 786:	5'- TTCGCTCACCGGCTTAAGGT
	SEQ ID No. 787:	5'- GTTCGCTCACCGGCTTAAGG
	SEQ ID No. 788:	5'- GGTCGCTCACCGGCTTAAG
	SEQ ID No. 789:	5'- ATTCCACAACCCCTCTCAC
10	SEQ ID No. 790:	5'- TGACCCGACC GTGGT CGGCT
	SEQ ID No. 791:	5'- CCCTCTCTCACACTCTAGTC
	SEQ ID No. 792:	5'- GAATTCCACAACCCCTCTCTC
	SEQ ID No. 793:	5'- AGCCAGGTTGCCGCCTCGC
	SEQ ID No. 794:	5'- GCCAGGTTGCCGCCTCGCC
15	SEQ ID No. 795:	5'- GGAATTCCACAACCCCTCTCT
	SEQ ID No. 796:	5'- GGGATTCCACAACCCCTCTC
	SEQ ID No. 797:	5'- AACGCAGGCTCCTCCACAGG
	SEQ ID No. 798:	5'- CGGCTTAAGGTCAAACCAAC
	SEQ ID No. 799:	5'- CGGGCTTAAGGTCAAACCAA
20	SEQ ID No. 800:	5'- CACCGGCTTAAGGTCAAACCC
	SEQ ID No. 801:	5'- ACCGGCTTAAGGTCAAACCA
	SEQ ID No. 802:	5'- ACCAACATCCAGCACACAT
	SEQ ID No. 803:	5'- TCGCTGACCCGACCGTGGTC
	SEQ ID No. 804:	5'- CGCTGACCCGACCGTGGTCG
25	SEQ ID No. 805:	5'- GACCCGACCGTGGTCGGCTG
	SEQ ID No. 806:	5'- GCTGACCCGACCGTGGTCGG
	SEQ ID No. 807:	5'- CTGACCCGACCGTGGTCGGC
	SEQ ID No. 808:	5'- CAGGCGACTTGCGCCTTGA
	SEQ ID No. 809:	5'- TCATGCGGTATTAGCTCCAG
30	SEQ ID No. 810:	5'- ACTAGCTAATCGAACGCAGG

	SEQ ID No. 811:	5'- CATGCGGTATTAGCTCCAGT
	SEQ ID No. 812:	5'- CGCAGGCTCCTCCACAGGCG
	SEQ ID No. 813:	5'- ACGCAGGCTCCTCCACAGGC
	SEQ ID No. 814:	5'- CTCAGGTGTATGCGGTATT
5	SEQ ID No. 815:	5'- CGCCTTGACCCTCAGGTGT
	SEQ ID No. 816:	5'- ACCCTCAGGTGTATGCGGT
	SEQ ID No. 817:	5'- CCTCAGGTGTATGCGGTAT
	SEQ ID No. 818:	5'- TTTGACCCTCAGGTGTATG
	SEQ ID No. 819:	5'- GACCCTCAGGTGTATGCGG
10	SEQ ID No. 820:	5'- TGACCCTCAGGTGTATGCG
	SEQ ID No. 821:	5'- GCCTTGACCCTCAGGTGTC
	SEQ ID No. 822:	5'- TTGACCCTCAGGTGTATGC
	SEQ ID No. 823:	5'- CCCTCAGGTGTATGCGGTAA
	SEQ ID No. 824:	5'- CCTTGACCCTCAGGTGTCA
15	SEQ ID No. 825:	5'- CTTGACCCTCAGGTGTCA
	SEQ ID No. 826:	5'- AGTTATCCCCACCCATGGA
	SEQ ID No. 827:	5'- CCAGCTATCGATCATCGCCT
	SEQ ID No. 828:	5'- ACCAGCTATCGATCATCGCC
	SEQ ID No. 829:	5'- CAGCTATCGATCATCGCCTT
20	SEQ ID No. 830:	5'- AGCTATCGATCATGCCCTTG
	SEQ ID No. 831:	5'- GCTATCGATCATGCCCTTGG
	SEQ ID No. 832:	5'- CTATCGATCATGCCCTTGGT
	SEQ ID No. 833:	5'- TTCGTGCGACTTGCATGTGT
	SEQ ID No. 834:	5'- TCGATCATGCCCTGGTAGG
25	SEQ ID No. 835:	5'- ATCGATCATGCCCTGGTAG
	SEQ ID No. 836:	5'- CACAGGCGACTTGC GCCCTT
	SEQ ID No. 837:	5'- CCACAGGCGACTTGC GCCCTT
	SEQ ID No. 838:	5'- TCCACAGGCGACTTGC GCCT
	SEQ ID No. 839:	5'- TCCTCCACAGGCGACTTGC G
30	SEQ ID No. 840:	5'- CCTCCACAGGCGACTTGC G

	SEQ ID No. 841:	5'- CTCCACAGGCGACTTGC GCC
	SEQ ID No. 842:	5'- ACAGGGCGACTTGCGC CTTG
	SEQ ID No. 843:	5'- AGCCCCGGTTCCCGGGCG TT
	SEQ ID No. 844:	5'- CGCCTTCCTTTCTCCA
5	SEQ ID No. 845:	5'- GCCCCGGTTCCCGGCC GTTA
	SEQ ID No. 846:	5'- GCCGCCTTCCTTTCTC
	SEQ ID No. 847:	5'- TAGCCCCGGTTCCCGGC GT
	SEQ ID No. 848:	5'- CCGGGTACCGTCAAGGCG CC
	SEQ ID No. 849:	5'- AAGCCGCCTTCCTTTCC
10	SEQ ID No. 850:	5'- CCCCGGTTCCCGGCC GTTAT
	SEQ ID No. 851:	5'- CCGGCGTTATCCCAGTCT TA
	SEQ ID No. 852:	5'- AGCCGCCTTCCTTTCTC
	SEQ ID No. 853:	5'- CCGCCTTCCTTTCTCC
	SEQ ID No. 854:	5'- TTAGCCCCGGTTCCCGGC G
15	SEQ ID No. 855:	5'- CCCGGCGTTATCCCAGTCT T
	SEQ ID No. 856:	5'- GCCGGGTACCGTCAAGGCG C
	SEQ ID No. 857:	5'- GGCCGGGTACCGTCAAGGCG
	SEQ ID No. 858:	5'- TCCCGGCGTTATCCCAGTCT
	SEQ ID No. 859:	5'- TGGCCGGGTACCGTCAAGGC
20	SEQ ID No. 860:	5'- GAAGCCGCCTTCCTTTTC
	SEQ ID No. 861:	5'- CCCGGTTCCCGGCC GTTATC
	SEQ ID No. 862:	5'- CGCGTTATCCCAGTCTTAC
	SEQ ID No. 863:	5'- GGCGTTATCCCAGTCTTACA
	SEQ ID No. 864:	5'- GCGTTATCCCAGTCTTACAG
25	SEQ ID No. 865:	5'- CGGGTACCGTCAAGGCGCC G
	SEQ ID No. 866:	5'- ATTAGCCCCGGTTCCCGGC
	SEQ ID No. 867:	5'- AAGGGGAAGGCCCTGTCTCC
	SEQ ID No. 868:	5'- GGCCCTGTCTCCAGGGAGGT
	SEQ ID No. 869:	5'- AGGCCCTGTCTCCAGGGAGG
30	SEQ ID No. 870:	5'- AAGGCCCTGTCTCCAGGGAG

	SEQ ID No. 871:	5'- GCCCTGTCTCCAGGGAGGTC
	SEQ ID No. 872:	5'- CGTTATCCCAGTCTTACAGG
	SEQ ID No. 873:	5'- GGGTACCGTCAAGGCGCCGC
	SEQ ID No. 874:	5'- CGGCAACAGAGTTTACGAC
5	SEQ ID No. 875:	5'- GGGGAAGGCCCTGTCTCCAG
	SEQ ID No. 876:	5'- AGGGGAAGGCCCTGTCTCCA
	SEQ ID No. 877:	5'- GCAGCCGAAGCCGCCCTTCC
	SEQ ID No. 878:	5'- TTCTTCCCCGGCAACAGAGT
	SEQ ID No. 879:	5'- CGGCACTTGTTCTTCCCCGG
10	SEQ ID No. 880:	5'- GTTCTTCCCCGGCAACAGAG
	SEQ ID No. 881:	5'- GGCACTTGTTCTTCCCCGGC
	SEQ ID No. 882:	5'- GCACTTGTTCTTCCCCGGCA
	SEQ ID No. 883:	5'- CACTTGTTCTTCCCCGGCAA
	SEQ ID No. 884:	5'- TCTTCCCCGGCAACAGAGTT
15	SEQ ID No. 885:	5'- TTGTTCTTCCCCGGCAACAG
	SEQ ID No. 886:	5'- ACTTGTTCTTCCCCGGCAAC
	SEQ ID No. 887:	5'- TGTTCTTCCCCGGCAACAGA
	SEQ ID No. 888:	5'- CTTGTTCTTCCCCGGCAAACA
	SEQ ID No. 889:	5'- ACGGCACTTGTTCTTCCCCG
20	SEQ ID No. 890:	5'- GTCCGCCGCTAACCTTTAA
	SEQ ID No. 891:	5'- CTGGCCGGGTACCGTCAAGG
	SEQ ID No. 892:	5'- TCTGGCCGGGTACCGTCAAG
	SEQ ID No. 893:	5'- TTCTGGCCGGGTACCGTCAA
	SEQ ID No. 894:	5'- CAATGCTGGCAACTAAGGTC
25	SEQ ID No. 895:	5'- CGTCCGCCGCTAACCTTTA
	SEQ ID No. 896:	5'- CGAAGCCGCCTTCCTTTT
	SEQ ID No. 897:	5'- CCGAAGCCGCCTTCCTTT
	SEQ ID No. 898:	5'- GCCGAAGCCGCCTTCCTTT
	SEQ ID No. 899:	5'- AGCCGAAGCCGCCTTCCTT
30	SEQ ID No. 900:	5'- ACCGTCAAGGCGCCGCCCTG

	SEQ ID No. 901:	5'- CCGTGGCTTCCTGGCCGGGT
	SEQ ID No. 902:	5'- GCTTTCTGGCCGGGTACCGT
	SEQ ID No. 903:	5'- GCCGTGGCTTCCTGGCCGGG
	SEQ ID No. 904:	5'- GGCTTCCTGGCCGGGTACCG
5	SEQ ID No. 905:	5'- CTTTCTGGCCGGGTACCGTC
	SEQ ID No. 906:	5'- TGGCTTCCTGGCCGGGTACC
	SEQ ID No. 907:	5'- GTGGCTTCCTGGCCGGGTAC
	SEQ ID No. 908:	5'- CGTGGCTTCCTGGCCGGGTAA
	SEQ ID No. 909:	5'- TTTCTGGCCGGGTACCGTCA
10	SEQ ID No. 910:	5'- GGGAAAGGCCCTGTCTCCAGG
	SEQ ID No. 911:	5'- CGAAGGGGAAGGCCCTGTCT
	SEQ ID No. 912:	5'- CCGAAGGGGAAGGCCCTGTC
	SEQ ID No. 913:	5'- GAAGGGGAAGGCCCTGTCTC
	SEQ ID No. 914:	5'- GGCGCCGCCCTGTTCGAACG
15	SEQ ID No. 915:	5'- AGGCGCCGCCCTGTTCGAAC
	SEQ ID No. 916:	5'- AAGGCGCCGCCCTGTTCGAA
	SEQ ID No. 917:	5'- CCCGGCAACAGAGTTTACG
	SEQ ID No. 918:	5'- CCCCCGCAACAGAGTTTAC
	SEQ ID No. 919:	5'- CCATCTGTAAGTGGCAGCCG
20	SEQ ID No. 920:	5'- TCTGTAAGTGGCAGCCGAAG
	SEQ ID No. 921:	5'- CTGTAAGTGGCAGCCGAAGC
	SEQ ID No. 922:	5'- CCCATCTGTAAGTGGCAGCC
	SEQ ID No. 923:	5'- TGTAAGTGGCAGCCGAAGCC
	SEQ ID No. 924:	5'- CATCTGTAAGTGGCAGCCGA
25	SEQ ID No. 925:	5'- ATCTGTAAGTGGCAGCCGAA
	SEQ ID No. 926:	5'- CAGCCGAAGCCGCCTTCCT
	SEQ ID No. 927:	5'- GGCAACAGAGTTTACGACC
	SEQ ID No. 928:	5'- CCGGCAACAGAGTTTACGA
	SEQ ID No. 929:	5'- TTCCCCGGCAACAGAGTTT
30	SEQ ID No. 930:	5'- CTTCCCCGGCAACAGAGTT

	SEQ ID No. 931:	5'- TCCCCGGCAACAGAGTTTA
	SEQ ID No. 932:	5'- CCGTCCGCCGCTAACCTTT
	SEQ ID No. 933:	5'- CTTCCTCCGACTTACGCCGG
	SEQ ID No. 934:	5'- CCTCCGACTTACGCCGGCAG
5	SEQ ID No. 935:	5'- TTCCTCCGACTTACGCCGGC
	SEQ ID No. 936:	5'- TCCTCCGACTTACGCCGGCA
	SEQ ID No. 937:	5'- TCCGACTTACGCCGGCAGTC
	SEQ ID No. 938:	5'- CCGACTTACGCCGGCAGTCA
	SEQ ID No. 939:	5'- GCCTTCCTCCGACTTACGCC
10	SEQ ID No. 940:	5'- CCTTCCTCCGACTTACGCCG
	SEQ ID No. 941:	5'- GCTCTCCCCGAGCAACAGAG
	SEQ ID No. 942:	5'- CTCTCCCCGAGCAACAGAGC
	SEQ ID No. 943:	5'- CGCTCTCCCCGAGCAACAGA
	SEQ ID No. 944:	5'- CTCCGACTTACGCCGGCAGT
15	SEQ ID No. 945:	5'- TCTCCCCGAGCAACAGAGCT
	SEQ ID No. 946:	5'- CGACTTACGCCGGCAGTCAC
	SEQ ID No. 947:	5'- TCGGCACTGGGGTGTGTCCC
	SEQ ID No. 948:	5'- GGCACTGGGGTGTGTCCCC
	SEQ ID No. 949:	5'- CTGGGGTGTGTCCCCCAAC
20	SEQ ID No. 950:	5'- CACTGGGGTGTGTCCCCCA
	SEQ ID No. 951:	5'- ACTGGGGTGTGTCCCCCAA
	SEQ ID No. 952:	5'- GCACTGGGGTGTGTCCCCC
	SEQ ID No. 953:	5'- TGGGGTGTGTCCCCCAACA
	SEQ ID No. 954:	5'- CACTCCAGACTTGCTCGACC
25	SEQ ID No. 955:	5'- TCACTCCAGACTTGCTCGAC
	SEQ ID No. 956:	5'- CGGCACTGGGGTGTGTCCCC
	SEQ ID No. 957:	5'- CGCCTTCCTCCGACTTACGC
	SEQ ID No. 958:	5'- CTCCCCGAGCAACAGAGCTT
	SEQ ID No. 959:	5'- ACTCCAGACTTGCTCGACCG
30	SEQ ID No. 960:	5'- CCCATGCCGCTCTCCCCGAG

- 110 -

	SEQ ID No. 961:	5'- CCATGCCGCTCTCCCCGAGC
	SEQ ID No. 962:	5'- CCCCCATGCCGCTCTCCCCGA
	SEQ ID No. 963:	5'- TCACTCGGTACCGTCTCGCA
	SEQ ID No. 964:	5'- CATGCCGCTCTCCCCGAGCA
5	SEQ ID No. 965:	5'- ATGCCGCTCTCCCCGAGCAA
	SEQ ID No. 966:	5'- TTCGGCACTGGGGTGTGTCC
	SEQ ID No. 967:	5'- TGCCGCTCTCCCCGAGCAAC
	SEQ ID No. 968:	5'- TTCACTCCAGACTTGCTCGA
	SEQ ID No. 969:	5'- CCCGCAAGAACAGATGCCTCCT
10	SEQ ID No. 970:	5'- AGAACAGATGCCTCCTCGCGGG
	SEQ ID No. 971:	5'- AAGAACAGATGCCTCCTCGCGG
	SEQ ID No. 972:	5'- CGCAAGAACAGATGCCTCCTCG
	SEQ ID No. 973:	5'- AAGATGCCTCCTCGCGGGCG
	SEQ ID No. 974:	5'- CCGCAAGAACAGATGCCTCCTC
15	SEQ ID No. 975:	5'- GAAGATGCCTCCTCGCGGGC
	SEQ ID No. 976:	5'- CCCCCGCAAGAACAGATGCCTCC
	SEQ ID No. 977:	5'- CAAGAACAGATGCCTCCTCGCG
	SEQ ID No. 978:	5'- TCCTTCGGCACTGGGGTGTG
	SEQ ID No. 979:	5'- CCGCTCTCCCCGAGCAACAG
20	SEQ ID No. 980:	5'- TGCCTCCTCGCGGGCGTATC
	SEQ ID No. 981:	5'- GACTTACGCCGGCAGTCACC
	SEQ ID No. 982:	5'- GGCTCCTCTCTCAGCGGCC
	SEQ ID No. 983:	5'- CCTTCGGCACTGGGGTGTGT
	SEQ ID No. 984:	5'- GGGGTGTGTCCCCAACAC
25	SEQ ID No. 985:	5'- GCCGCTCTCCCCGAGCAACA
	SEQ ID No. 986:	5'- AGATGCCTCCTCGCGGGCGT
	SEQ ID No. 987:	5'- CACTCGGTACCGTCTCGCAT
	SEQ ID No. 988:	5'- CTCACTCGGTACCGTCTCGC
	SEQ ID No. 989:	5'- GCAAGAACAGATGCCTCCTCGC
30	SEQ ID No. 990:	5'- CTCCAGACTTGCTCGACCGC

	SEQ ID No. 991:	5'- TTACGCCGGCAGTCACCTGT
	SEQ ID No. 992:	5'- CTTCGGCACTGGGGTGTGTC
	SEQ ID No. 993:	5'- CTCGCGGGCGTATCCGGCAT
	SEQ ID No. 994:	5'- GCCTCCTCGCGGGCGTATCC
5	SEQ ID No. 995:	5'- ACTCGGTACCGTCTCGCATG
	SEQ ID No. 996:	5'- GATGCCTCCTCGCGGGCGTA
	SEQ ID No. 997:	5'- GGGTGTGTCCCCCAACACC
	SEQ ID No. 998:	5'- ACTTACGCCGGCAGTCACCT
	SEQ ID No. 999:	5'- CTTACGCCGGCAGTCACCTG
10	SEQ ID No. 1000:	5'- ATGCCTCCTCGCGGGCGTAT
	SEQ ID No. 1001:	5'- GCGCCGCGGGCTCCTCTCTC
	SEQ ID No. 1002:	5'- GGTGTGTCCCCCAACACCT
	SEQ ID No. 1003:	5'- GTGTGTCCCCCAACACCTA
	SEQ ID No. 1004:	5'- CCTCGCGGGCGTATCCGGCA
15	SEQ ID No. 1005:	5'- CCTCACTCGGTACCGTCTCG
	SEQ ID No. 1006:	5'- TCCTCACTCGGTACCGTCTC
	SEQ ID No. 1007:	5'- TCGCGGGCGTATCCGGCATT
	SEQ ID No. 1008:	5'- TTTCACTCCAGACTTGCTCG
	SEQ ID No. 1009:	5'- TACGCCGGCAGTCACCTGTG
20	SEQ ID No. 1010:	5'- TCCAGACTTGCTCGACCGCC
	SEQ ID No. 1011:	5'- CTCGGTACCGTCTCGCATGG
	SEQ ID No. 1012:	5'- CGCGGGCGTATCCGGCATTA
	SEQ ID No. 1013:	5'- GCGTATCCGGCATTAGCGCC
	SEQ ID No. 1014:	5'- GGGCTCCTCTCTCAGCGGCC
25	SEQ ID No. 1015:	5'- TCCCCGAGCAACAGAGCTTT
	SEQ ID No. 1016:	5'- CCCCGAGCAACAGAGCTTTA
	SEQ ID No. 1017:	5'- CCGAGCAACAGAGCTTTACA
	SEQ ID No. 1018:	5'- CCATCCCATGGTTGAGCCAT
	SEQ ID No. 1019:	5'- GTGTCCCCCAACACCTAGC
30	SEQ ID No. 1020:	5'- CGGGCGGTATCCGGCATTAG

SEQ ID No. 1021: 5'- CGAGCGGCTTTGGGTTTC
SEQ ID No. 1022: 5'- CTTTCACTCCAGACTTGCTC
SEQ ID No. 1023: 5'- TTCCTTCGGCACTGGGGTGT
SEQ ID No. 1024: 5'- CCGCCTTCCTCCGACTTACG
5 SEQ ID No. 1025: 5'- CCCGCCTTCCTCCGACTTAC
SEQ ID No. 1026: 5'- CCTCCTCGCGGGCGTATCCG
SEQ ID No. 1027: 5'- TCCTCGCGGGCGTATCCGC
SEQ ID No. 1028: 5'- CATTAGCGCCCCTTCCGGG
SEQ ID No. 1029: 5'- GCATTAGCGCCCCTTCCGG
10 SEQ ID No. 1030: 5'- GGCATTAGCGCCCCTTCCG
SEQ ID No. 1031: 5'- GTCTCGCATGGGGCTTCCA
SEQ ID No. 1032: 5'- GCCATGGACTTCACTCCAG
SEQ ID No. 1033: 5'- CATGGACTTCACTCCAGAC
SEQ ID No. 1037: 5'- ACCGTCTCACAAAGGAGCTT
15 SEQ ID No. 1038: 5'- TACCGTCTCACAAAGGAGCTT
SEQ ID No. 1039: 5'- GTACCGTCTCACAAAGGAGCT
SEQ ID No. 1040: 5'- GCCTACCCGTGTATTATCCG
SEQ ID No. 1041: 5'- CCGTCTCACAAAGGAGCTTC
SEQ ID No. 1042: 5'- CTACCCGTGTATTATCCGGC
20 SEQ ID No. 1043: 5'- GGTACCGTCTCACAAAGGAGC
SEQ ID No. 1044: 5'- CGTCTCACAAAGGAGCTTCC
SEQ ID No. 1045: 5'- TCTCACAAAGGAGCTTCCAC
SEQ ID No. 1046: 5'- TACCCGTGTATTATCCGGCA
SEQ ID No. 1047: 5'- GTCTCACAAAGGAGCTTCCA
25 SEQ ID No. 1048: 5'- ACCCGTGTATTATCCGGCAT
SEQ ID No. 1049: 5'- CTCGGTACCGTCTCACAAAGG
SEQ ID No. 1050: 5'- CGGTACCGTCTCACAAAGGAG
SEQ ID No. 1051: 5'- ACTCGGTACCGTCTCACAAAG
SEQ ID No. 1052: 5'- CGGCTGGCTCCATAACGGTT
30 SEQ ID No. 1053: 5'- ACAAGTAGATGCCTACCCGT

SEQ ID No. 1054: 5'- TGGCTCCATAACGGTTACCT
SEQ ID No. 1055: 5'- CAAGTAGATGCCTACCCGTG
SEQ ID No. 1056: 5'- CACAAGTAGATGCCTACCCG
SEQ ID No. 1057: 5'- GGCTCCATAACGGTTACCTC
5 SEQ ID No. 1058: 5'- ACACAAGTAGATGCCTACCC
SEQ ID No. 1059: 5'- CTGGCTCCATAACGGTTACC
SEQ ID No. 1060: 5'- GCTGGCTCCATAACGGTTAC
SEQ ID No. 1061: 5'- GGCTGGCTCCATAACGGTTA
SEQ ID No. 1062: 5'- GCTCCATAACGGTTACCTCA
10 SEQ ID No. 1063: 5'- AAGTAGATGCCTACCCGTGT
SEQ ID No. 1064: 5'- CTCCATAACGGTTACCTCAC
SEQ ID No. 1065: 5'- TGCCTACCCGTGTATTATCC
SEQ ID No. 1066: 5'- TCGGTACCGTCTCACAAAGGA
SEQ ID No. 1067: 5'- CTCACAAGGAGCTTCCACT
15 SEQ ID No. 1068: 5'- GTAGATGCCTACCCGTGTAT
SEQ ID No. 1069: 5'- CCTACCCGTGTATTATCCGG
SEQ ID No. 1070: 5'- CACTCGGTACCGTCTCACAA
SEQ ID No. 1071: 5'- CTCAGCGATGCAGTTGCATC
SEQ ID No. 1072: 5'- AGTAGATGCCTACCCGTGTA
20 SEQ ID No. 1073: 5'- GC GGCTGGCTCCATAACGGT
SEQ ID No. 1074: 5'- CCAAAGCAATCCCAAGGTTG
SEQ ID No. 1075: 5'- TCCATAACGGTTACCTCACC
SEQ ID No. 1076: 5'- CCCGTGTATTATCCGGCATT
SEQ ID No. 1077: 5'- TCTCAGCGATGCAGTTGCAT
25 SEQ ID No. 1078: 5'- CCATAACGGTTACCTCACCG
SEQ ID No. 1079: 5'- TCAGCGATGCAGTTGCATCT
SEQ ID No. 1080: 5'- GGCGGCTGGCTCCATAACGG
SEQ ID No. 1081: 5'- AAGCAATCCCAAGGTTGAGC
SEQ ID No. 1082: 5'- TCACTCGGTACCGTCTCACA
30 SEQ ID No. 1083: 5'- CCGAGTGTTATTCCAGTCTG

SEQ ID No. 1084: 5'- CACAAGGAGCTTCCACTCT
SEQ ID No. 1085: 5'- ACAAGGAGCTTCCACTCTC
SEQ ID No. 1086: 5'- TCACAAGGAGCTTCCACTC
SEQ ID No. 1087: 5'- CAGCGATGCAGTTGCATCTT
5 SEQ ID No. 1088: 5'- CAAGGAGCTTCCACTCTCC
SEQ ID No. 1089: 5'- CCAGTCTGAAAGGCAGATTG
SEQ ID No. 1090: 5'- CAGTCTGAAAGGCAGATTGC
SEQ ID No. 1091: 5'- CGGCGGCTGGCTCCATAACG
SEQ ID No. 1092: 5'- CCTCTCTCAGCGATGCAGTT
10 SEQ ID No. 1093: 5'- CTCTCTCAGCGATGCAGTTG
SEQ ID No. 1094: 5'- TCTCTCAGCGATGCAGTTGC
SEQ ID No. 1095: 5'- CTCTCAGCGATGCAGTTGCA
SEQ ID No. 1096: 5'- CAATCCAAGGTTGAGCCTT
SEQ ID No. 1097: 5'- AATCCAAGGTTGAGCCTTG
15 SEQ ID No. 1098: 5'- AGCAATCCAAGGTTGAGCC
SEQ ID No. 1099: 5'- CTCACTCGGTACCGTCTCAC
SEQ ID No. 1100: 5'- GCAATCCAAGGTTGAGCCT
SEQ ID No. 1101: 5'- GCCTTGGACTTCACCCAG
SEQ ID No. 1102: 5'- CATAACGGTTACCTCACCGA
20 SEQ ID No. 1103: 5'- CTCCTCTCTCAGCGATGCAG
SEQ ID No. 1104: 5'- TCGGCGGCTGGCTCCATAAC
SEQ ID No. 1105: 5'- AGTCTGAAAGGCAGATTGCC
SEQ ID No. 1106: 5'- TCCTCTCTCAGCGATGCAGT
SEQ ID No. 1107: 5'- CCCAAGGTTGAGCCTTGGAC
25 SEQ ID No. 1108: 5'- ATAACGGTTACCTCACCGAC
SEQ ID No. 1109: 5'- TCCAAGGTTGAGCCTTGGGA
SEQ ID No. 1110: 5'- ATTATCCGGCATTAGCACCC
SEQ ID No. 1111: 5'- CTACGTGCTGGTAACACAGA
SEQ ID No. 1112: 5'- GCCGCTAGCCCCGAAGGGCT
30 SEQ ID No. 1113: 5'- CTAGCCCCGAAGGGCTCGT

SEQ ID No. 1114: 5'- CGCTAGCCCCGAAGGGCTCG
SEQ ID No. 1115: 5'- AGCCCCGAAGGGCTCGCTCG
SEQ ID No. 1116: 5'- CCGCTAGCCCCGAAGGGCTC
SEQ ID No. 1117: 5'- TAGCCCCGAAGGGCTCGCTC
5 SEQ ID No. 1118: 5'- GCTAGCCCCGAAGGGCTCGC
SEQ ID No. 1119: 5'- GCCCCGAAGGGCTCGCTCGA
SEQ ID No. 1120: 5'- ATCCAAGGTTGAGCCTTGG
SEQ ID No. 1121: 5'- GAGCCTTGGACTTCACCTC
SEQ ID No. 1122: 5'- CAAGGTTGAGCCTTGGACTT
10 SEQ ID No. 1123: 5'- GAGCTTCCACTCTCCTTGT
SEQ ID No. 1124: 5'- CCAAGGTTGAGCCTTGGACT
SEQ ID No. 1125: 5'- CGGGCTCCTCTCTCAGCGAT
SEQ ID No. 1126: 5'- GGAGCTTCCACTCTCCTTG
SEQ ID No. 1127: 5'- GGGCTCCTCTCTCAGCGATG
15 SEQ ID No. 1128: 5'- TCTCCTTGTGCGCTCTCCCCG
SEQ ID No. 1129: 5'- TCCTTGTGCGCTCTCCCCGAG
SEQ ID No. 1130: 5'- AGCTTCCACTCTCCTTGTGTC
SEQ ID No. 1131: 5'- CCACTCTCCTTGTGCGCTCTC
SEQ ID No. 1132: 5'- GGCTCCTCTCTCAGCGATGC
20 SEQ ID No. 1133: 5'- CCTTGTGCGCTCTCCCCGAGC
SEQ ID No. 1134: 5'- CACTCTCCTTGTGCGCTCTCC
SEQ ID No. 1135: 5'- ACTCTCCTTGTGCGCTCTCCC
SEQ ID No. 1136: 5'- CTCTCCTTGTGCGCTCTCCCC
SEQ ID No. 1137: 5'- GCGGGCTCCTCTCAGCGA
25 SEQ ID No. 1138: 5'- GGCTCCATCATGGTTACCTC
SEQ ID No. 1142: 5'- CTTCCTCCGGCTTGCGCCGG
SEQ ID No. 1143: 5'- CGCTCTTCCGA(G/T)TGACTGA
SEQ ID No. 1144: 5'- CCTCGGGCTCCTCCATC(A/T)GC

2. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattung *Zygosaccharomyces* mittels der Oligonukleotidsonde SEQ ID No. 1 nachgewiesen werden.
- 5 3. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Zygosaccharomyces bailii* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 5 bis SEQ ID No. 21, nachgewiesen wird.
- 10 4. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Zygosaccharomyces fermentati* mittels der Oligonukleotidsonde SEQ ID No. 22 nachgewiesen wird.
- 15 5. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Zygosaccharomyces microellipsoides* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 23 bis SEQ ID No. 24, nachgewiesen wird.
- 20 6. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Zygosaccharomyces mellis* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 25 bis SEQ ID No. 75, nachgewiesen wird.
- 25 7. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Zygosaccharomyces rouxii* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 76 bis SEQ ID No. 126, nachgewiesen wird.

8. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen *Zygosaccharomyces mellis* und *Zygosaccharomyces rouxii* gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 127 nachgewiesen werden.
- 5 9. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Zygosaccharomyces bisporus* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 128 bis SEQ ID No. 142, nachgewiesen wird.
- 10 10. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Hanseniaspora uvarum* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 143 und SEQ ID No. 144, nachgewiesen wird.
- 15 11. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Candida intermedia* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 145 und SEQ ID No. 146, nachgewiesen wird.
- 20 12. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Candida parapsilosis* mittels der Oligonukleotidsonde SEQ ID No. 148 nachgewiesen wird.
- 25 13. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Candida crusei* (*Issatchenkia orientalis*) mittels der Oligonukleotidsonde SEQ ID No. 149 nachgewiesen wird.
- 30 14. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen *Brettanomyces (Dekkera) anomala* und *Dekkera bruxellensis* gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 150 nachgewiesen werden.

- 118 -

15. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Brettanomyces (Dekkera) bruxellensis* mittels der Oligonukleotidsonde SEQ ID No. 151 nachgewiesen wird.

5

16. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Brettanomyces (Dekkera) naardenensis* mittels der Oligonukleotidsonde SEQ ID No. 152 nachgewiesen wird.

10

17. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Pichia membranaefaciens* mittels der Oligonukleotidsonde SEQ ID No. 153 nachgewiesen wird.

15

18. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen *Pichia minuta* und *Pichia anomala* gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 154 nachgewiesen werden.

20

19. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Saccharomyces exiguum* mittels der Oligonukleotidsonde SEQ ID No. 157 nachgewiesen wird.

25

20. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Saccharomyces ludwigii* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 158 und SEQ ID No. 159, nachgewiesen wird.

21. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Saccharomyces cerevisiae* mittels der Oligonukleotidsonde SEQ ID No. 160 nachgewiesen wird.

30

- 119 -

22. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Mucor racemosus* mittels der Oligonukleotidsonde SEQ ID No. 163 nachgewiesen wird.
- 5 23. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Byssochlamys nivea* mittels der Oligonukleotidsonde SEQ ID No. 164 nachgewiesen wird.
- 10 24. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Neosartorya fischeri* mittels der Oligonukleotidsonde SEQ ID No. 165 nachgewiesen wird.
- 15 25. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen *Aspergillus fumigatus* und *A. fischeri* gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 166 nachgewiesen werden.
- 20 26. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Talaromyces flavus* mittels der Oligonukleotidsonde SEQ ID No. 167 nachgewiesen wird.
- 25 27. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen *Talaromyces bacillisporus* und *T. flavus* gleichzeitig mittels der Oligonukleotidsonde SEQ ID No. 168 nachgewiesen werden.
- 25 28. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Lactobacillus collinoides* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 169 bis SEQ ID No. 269, nachgewiesen wird.

- 120 -

29. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattung *Leuconostoc* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 270 bis SEQ ID No. 271, nachgewiesen werden.

5

30. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen *Leuconostoc mesenteroides* und *L. pseudomesenteroides* gleichzeitig mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 272 bis SEQ ID No. 301, nachgewiesen werden.

10

31. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Leuconostoc pseudomesenteroides* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 302 bis SEQ ID No. 341, nachgewiesen wird.

15

32. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Oenococcus oeni* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 342 bis SEQ ID No. 444, nachgewiesen wird.

20

33. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattung *Weissella* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 445 bis SEQ ID No. 495, nachgewiesen werden.

25

34. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattung *Lactococcus* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 496 bis SEQ ID No. 546, nachgewiesen werden.

30

35. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattungen *Acetobacter* und *Gluconobacter* gleichzeitig mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 547 bis SEQ ID No. 608, nachgewiesen werden.

5

36. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattungen *Acetobacter*, *Gluconobacter* und *Gluconoacetobacter* gleichzeitig mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 609 bis SEQ ID No. 842, 10 nachgewiesen werden.

37. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Bacillus coagulans* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 843 bis SEQ ID No. 932, 15 nachgewiesen wird.

38. Verfahren nach Anspruch 1, wobei getränkeschädliche Mikroorganismen der Gattung *Alicyclobacillus* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 933 bis 20 SEQ ID No. 1033, nachgewiesen werden.

39. Verfahren nach Anspruch 1, wobei der getränkeschädliche Mikroorganismus *Alicyclobacillus acidoterrestris* mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 1037 25 bis SEQ ID No. 1138, nachgewiesen wird.

40. Verfahren nach Anspruch 1, wobei die getränkeschädlichen Mikroorganismen *Alicyclobacillus cycloheptanicus* und *A. herbarius* gleichzeitig mittels mindestens einer Oligonukleotidsonde, ausgewählt aus der Gruppe bestehend 30 aus SEQ ID No. 1142 bis SEQ ID No. 1144, nachgewiesen werden.

41. Verfahren nach Anspruch 2,
dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.
- 5
42. Verfahren nach Anspruch 41,
dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 1 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 2 bis SEQ ID No. 4, verwendet wird.
- 10
43. Verfahren nach Anspruch 11,
dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.
- 15
44. Verfahren nach Anspruch 43,
dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 146 zusammen mit der Kompetitorsonde SEQ ID No. 147 verwendet wird.
- 20
45. Verfahren nach Anspruch 18,
dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.
- 25
46. Verfahren nach Anspruch 45,
dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 154 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 155 bis SEQ ID No. 156, verwendet wird.
- 30
47. Verfahren nach Anspruch 21,
dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.

- 123 -

48. Verfahren nach Anspruch 47,
dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 160 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend
5 aus SEQ ID No. 161 bis SEQ ID No. 162, verwendet wird.
49. Verfahren nach Anspruch 38,
dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.
- 10 50. Verfahren nach Anspruch 49,
dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 933 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 1034 bis SEQ ID No. 1036, verwendet wird.
- 15 51. Verfahren nach Anspruch 39,
dadurch gekennzeichnet, dass die mindestens eine Oligonukleotidsonde zusammen mit einer oder mehreren Kompetitorsonden verwendet wird.
- 20 52. Verfahren nach Anspruch 51,
dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 1044 zusammen mit der Kompetitorsonde SEQ ID No. 1139 verwendet wird.
- 25 53. Verfahren nach Anspruch 51,
dadurch gekennzeichnet, dass die Oligonukleotidsonde SEQ ID No. 1057 zusammen mit einer oder mehreren Kompetitorsonden, ausgewählt aus der Gruppe bestehend aus SEQ ID No. 1140 und SEQ ID No. 1141, verwendet wird.

54. Verfahren nach einem der Ansprüche 1 bis 53,
dadurch gekennzeichnet, dass es die folgenden Schritte umfasst:
- a) Kultivieren der in der Probe enthaltenen getränkeschädlichen Mikroorganismen,
 - b) Fixieren der in der Probe enthaltenen getränkeschädlichen Mikroorganismen,
 - 5 c) Inkubieren der fixierten Mikroorganismen mit mindestens einer Oligonukleotidsonde, ggf. zusammen mit einer Kompetitorsonde,
 - d) Entfernen nicht hybridisierter Oligonukleotidsonden,
 - e) Detektieren und Visualisieren sowie ggf. Quantifizieren der getränkeschädlichen Mikroorganismen mit den hybridisierten Oligonukleotidsonden.
- 10
55. Verfahren nach einem der Ansprüche 1 bis 54,
dadurch gekennzeichnet, dass es sich bei der Probe um eine Probe aus alkoholfreien Getränken handelt.
- 15 56. Kit zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 55, enthaltend mindestens ein Oligonukleotid nach Anspruch 1.

V7588.ST25.txt
SEQUENCE LISTING

<110> Vermicon AG

<120> Method for the specific fast detection of microorganisms which
are harmful to beverages

<130> V 7588

<140> PCT/
<141> 2004-09-23

<150> DE 103 44 057.7
<151> 2003-09-23

<160> 1144

<170> PatentIn version 3.3

<210> 1
<211> 21
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1
gtttgaccag attctccgct c

21

<210> 2
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 2
gtttgaccag attttccgct ct

22

<210> 3
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 3
gtttgaccaa attttccgct ct

22

<210> 4
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 4
gtttgtccaa attctccgct ct

22

<210> 5

v7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 5
cccggtcgaa ttaaaacc 18

<210> 6
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 6
gcccggtcga attaaaac 18

<210> 7
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 7
ggcccggtcg aattaaaa 18

<210> 8
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 8
aggcccggtc gaattaaa 18

<210> 9
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 9
aaggcccggt cgaattaa 18

<210> 10
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 10

V7588.ST25.txt

atattcgagc gaaacgcc 18
<210> 11
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 11
aaagatccgg accggccg 18
<210> 12
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 12
ggaaagatcc ggaccggc 18
<210> 13
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 13
gaaagatccg gaccggcc 18
<210> 14
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 14
gatccggacc ggccgacc 18
<210> 15
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 15
agatccggac cggccgac 18
<210> 16
<211> 18
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 16
aagatccgga ccggccga 18

<210> 17
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 17
gaaaggccccg gtcgaatt 18

<210> 18
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 18
aaaggccccg tcgaattta 18

<210> 19
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 19
ggaaaggccc ggtcgaat 18

<210> 20
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 20
aggaaaaggcc cggtcgaa 18

<210> 21
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 21
aaggaaaaggc ccggtcga 18

<210> 22

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 22
atagcactgg gatcctcgcc 20

<210> 23
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 23
ccagccccaa agttaccttc 20

<210> 24
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 24
tccttgacgt aaagtgcgcag 20

<210> 25
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 25
ggaagaaaaac cagtacgc 18

<210> 26
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 26
ccggtcggaa gaaaacca 18

<210> 27
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 27

V7588.ST25.txt

gaagaaaacc agtacgcg

18

<210> 28
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 28
cccggtcggaa agaaaacc

18

<210> 29
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 29
cggtcggaa agaaaacc

18

<210> 30
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 30
ggtcggaa agaaaacc

18

<210> 31
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 31
aagaaaacca gtacgcgg

18

<210> 32
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 32
gtacgcggaa aaatccgg

18

<210> 33
<211> 18
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide
<400> 33
agtacgcgga aaaatccg 18

<210> 34
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 34
gcggaaaaat ccggaccg 18

<210> 35
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 35
cggaagaaaa ccagtagc 18

<210> 36
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 36
gcccggtcgg aagaaaac 18

<210> 37
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 37
cgcgaaaaaa tccggacc 18

<210> 38
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 38
cagtagcgcgg aaaaatcc 18

<210> 39

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 39
agaaaaccag tacgcgga 18

<210> 40
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 40
ggcccggtcg gaagaaaa 18

<210> 41
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 41
ataaacacca cccgatcc 18

<210> 42
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 42
acgcggaaaa atccggac 18

<210> 43
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 43
gagaggcccg gtcggaag 18

<210> 44
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 44

v7588.ST25.txt

agaggcccggt tcggaaga 18
<210> 45
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 45
gaggcccggt cggaagaa 18
<210> 46
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 46
aggcccggtc ggaagaaa 18
<210> 47
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 47
ccgagtgggt cagtaaat 18
<210> 48
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 48
ccagtacgctg gaaaaatc 18
<210> 49
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 49
taaacaccac ccgatccc 18
<210> 50
<211> 18
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 50
ggagaggccc ggtcgaa 18

<210> 51
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 51
gaaaaccagt acgcggaa 18

<210> 52
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 52
tacgcggaaa aatccgga 18

<210> 53
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 53
ggccacaggg acccaggg 18

<210> 54
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 54
tcaccaaggg ccacaggg 18

<210> 55
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 55
gggccacagg gacccagg 18

<210> 56

v7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 56
ttcaccaagg gccacagg 18

<210> 57
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 57
acagggaccc agggctag 18

<210> 58
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 58
agggccacag ggacccag 18

<210> 59
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 59
gttcaccaag ggccacag 18

<210> 60
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 60
gccacaggga cccagggc 18

<210> 61
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 61

V7588.ST25.txt

cagggaccca gggctagc

18

<210> 62
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 62
agggacccag ggctagcc

18

<210> 63
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 63
accaagggcc acagggac

18

<210> 64
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 64
ccacagggac ccagggct

18

<210> 65
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 65
cacagggacc cagggcta

18

<210> 66
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 66
caccaagggc cacaggga

18

<210> 67
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 67
gggacccagg gctagcca 18

<210> 68
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 68
aggagaggcc cggtcgga 18

<210> 69
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 69
aaggagaggc ccggtcgg 18

<210> 70
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 70
gaaggagagg cccggtcg 18

<210> 71
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 71
agggctagcc agaaggag 18

<210> 72
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 72
gggctagcca gaaggaga 18

<210> 73

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 73
agaaggagag gccccggc 18

<210> 74
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 74
caagggccac agggaccc 18

<210> 75
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 75
ccaagggcca cagggacc 18

<210> 76
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 76
gtcgaaaaaa ccagtacg 18

<210> 77
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 77
gccccggtcgg aaaaacca 18

<210> 78
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 78

v7588.ST25.txt

ccggtcggaa aaaccagt	18
<210> 79	
<211> 18	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 79	
cccggtcggaa aaaaccag	18
<210> 80	
<211> 18	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 80	
tcggaaaaaac cagtacgc	18
<210> 81	
<211> 18	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 81	
cggaaaaacc agtacgcg	18
<210> 82	
<211> 18	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 82	
ggaaaaacca gtacgcgg	18
<210> 83	
<211> 18	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 83	
gtacgcggaa aaatccgg	18
<210> 84	
<211> 18	
<212> DNA	
<213> Artificial	

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 84
agtacgcgga aaaatccg 18

<210> 85
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 85
gcggaaaaat ccggaccg 18

<210> 86
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 86
ggtcggaaaa accagtac 18

<210> 87
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 87
actcctagtg gtgccctt 18

<210> 88
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 88
gctccactcc taggggtg 18

<210> 89
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 89
cactcctagt ggtgccct 18

<210> 90

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 90
ctccactcctt agtgggtgc 18

<210> 91
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 91
tccactccta gtgggtgcc 18

<210> 92
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 92
ccactccttag tggtgccc 18

<210> 93
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 93
ggctccactc ctagtggt 18

<210> 94
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 94
aggctccact cctagtggt 18

<210> 95
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 95

V7588.ST25.txt

ggcccggtcg gaaaaacc

18

<210> 96
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 96
gaaaaaccag tacgcgga

18

<210> 97
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 97
cgcgaaaaa tccggacc

18

<210> 98
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 98
cagtacgcgg aaaaatcc

18

<210> 99
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 99
cggtcgaaa aaccagta

18

<210> 100
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 100
aaggccccgt cgaaaaaa

18

<210> 101
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 101
caggctccac tcctagtg 18

<210> 102
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 102
tccttagtgg tgcccttc 18

<210> 103
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 103
tcctagtggt gcccttcc 18

<210> 104
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 104
gcaggctcca ctcctagt 18

<210> 105
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 105
aggcccggtc ggaaaaac 18

<210> 106
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 106
acgcggaaaa atccggac 18

<210> 107

v7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 107
ccagtacgca gaaaaatc 18

<210> 108
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 108
ctagtgggtgc cttccgt 18

<210> 109
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 109
gaaaggccccg gtcggaaa 18

<210> 110
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 110
aaaggccccg tcggaaaa 18

<210> 111
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 111
tacgcggaaa aatccgga 18

<210> 112
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 112

ggaaaggccc ggtcgaa v7588.ST25.txt 18
<210> 113
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 113
atctttccg aaaggtcg 18

<210> 114
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 114
catctttcc gaaaggtc 18

<210> 115
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 115
ctcttccgaa aggtcgag 18

<210> 116
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 116
tttccgaaag gtcgagat 18

<210> 117
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 117
tctttccga aaggtcga 18

<210> 118
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220> oligonucleotide
<223> DNA
<400> 118
tcttccgaaa ggtcgaga 18

<210> 119
<211> 18
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> DNA
<400> 119
ccttagtggtg cccttccg 18

<210> 120
<211> 18
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> DNA
<400> 120
tagtggtgcc cttccgtc 18

<210> 121
<211> 18
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> DNA
<400> 121
agtggtgccc ttccgtca 18

<210> 122
<211> 18
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> DNA
<400> 122
gccaaaggta gactcgtt 18

<210> 123
<211> 18
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> DNA
<400> 123
ggccaagggtt agactcg 18

<210> 124

v7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 124
ccaaggtag actcgttg 18

<210> 125
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 125
caaggttaga ctcgttgg 18

<210> 126
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 126
aaggttagac tcgttggc 18

<210> 127
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 127
ctcgccctcac ggggttctca ... 20

<210> 128
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 128
ggccccgtcg aaattaaa 18

<210> 129
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 129

aggcccggtc gaaattaa v7588.ST25.txt 18
<210> 130
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 130
aaggcccggt cgaaattaa 18

<210> 131
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 131
aaaggccccg tcgaaatt 18

<210> 132
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 132
gaaaggccccg gtcgaaat 18

<210> 133
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 133
atattcgagc gaaacgcc 18

<210> 134
<211> 18
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 134
ggaaaaggcccc ggtcgaaa 18

<210> 135
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 135
aaagatccgg accggccg 18

<210> 136
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 136
ggaaagatcc ggaccggc 18

<210> 137
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 137
gaaagatccg gaccggcc 18

<210> 138
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 138
gatccggacc ggccgacc 18

<210> 139
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 139
agatccggac cggccgac 18

<210> 140
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 140
aagatccgga ccggccga 18

<210> 141

v7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 141
aggaaaggcc cggtcgaa 18

<210> 142
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 142
aaggaaaggc ccgtcgaa 18

<210> 143
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 143
cgagcaaaac gcctgctttg 20

<210> 144
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 144
cgctctgaaa gagagttgcc 20

<210> 145
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 145
agttggcccc tacactagac 20

<210> 146
<211> 19
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 146

V7588.ST25.txt	
gcttctccgt cccgcggcg	19
<210> 147	
<211> 21	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 147	
agattytccg ctctgagatg g	21
<210> 148	
<211> 19	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 148	
cctggttcgc caaaaaggc	19
<210> 149	
<211> 18	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 149	
gattctcggc cccatggg	18
<210> 150	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 150	
accctctacg gcagcctgtt	20
<210> 151	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 151	
gatcggtctc cagcgattca	20
<210> 152	
<211> 20	
<212> DNA	
<213> Artificial	

V7588.ST25.txt

<220>		
<223> oligonucleotide		
<400> 152		
accctccacg gcggcctgtt		20
<210> 153		
<211> 18		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 153		
gattctccgc gccatggg		18
<210> 154		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 154		
tcatcagacg ggattctcac		20
<210> 155		
<211> 22		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 155		
ctcatcgcac gggattctca cc		22
<210> 156		
<211> 22		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 156		
ctcggcacac gggattctca cc		22
<210> 157		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 157		
atggccccc tcctctaagg		20
<210> 158		

v7588.ST25.txt

<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 158		
ctgccacaag gacaaatggt		20
<210> 159		
<211> 21		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 159		
tgccccctct tctaagcaa a t		21
<210> 160		
<211> 18		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 160		
ccccaaagtt gccctctc		18
<210> 161		
<211> 23		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 161		
cccgccccaa agtcgccc tc tac		23
<210> 162		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 162		
ccccagagt cgc tt ct ac		20
<210> 163		
<211> 18		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 163		

	v7588.ST25.txt	
aagaccaggc cacctcat		18
<210> 164		
<211> 18		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 164		
catcatagaa caccgtcc		18
<210> 165		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 165		
ccttccgaag tcgagggttt		20
<210> 166		
<211> 17		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 166		
gggagtgttg ccaactc		17
<210> 167		
<211> 19		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 167		
agcggtcggt cgcaaccct		19
<210> 168		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 168		
ccgaagtgcgg gttttgcgg		20
<210> 169		
<211> 20		
<212> DNA		
<213> Artificial		

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 169
gatagccgaa accacctttc 20

<210> 170
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 170
gccgaaacca cctttcaaac 20

<210> 171
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 171
gtgatagccg aaaccacctt 20

<210> 172
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 172
agtatagcc gaaaccacctt 20

<210> 173
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 173
tttaacggga tgcgttcgac 20

<210> 174
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 174
aagtatagc cgaaaccacc 20

<210> 175

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 175
ggttgaatac cgtcaacgtc 20

<210> 176
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 176
gcacagtgatg tcaagacctg 20

<210> 177
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 177
catccgatgt gcaaggactt 20

<210> 178
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 178
tcatccgatg tgcaaggact 20

<210> 179
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 179
ccgatgtgca agcacttcat 20

<210> 180
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 180

ccactcatcc gatgtgcaag

v7588.ST25.txt

20

<210> 181
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 181
gccacagtgc gccactcatc

20

<210> 182
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 182
cctccgcgtt tgtcaccggc

20

<210> 183
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 183
accagttcgcc cacagttcg

20

<210> 184
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 184
cactcatccg atgtgcaagc

20

<210> 185
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 185
ccagttcgcc acagttcgcc

20

<210> 186
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 186
ctcatccgat gtgcaaggcac 20

<210> 187
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 187
tccgatgtgc aagcacttca 20

<210> 188
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 188
cgccactcat ccgatgtgca 20

<210> 189
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 189
cagttcgcca cagttcgcca 20

<210> 190
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 190
gccactcatc cgatgtgcaa 20

<210> 191
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 191
cgccacagt cgccactcat 20

<210> 192

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 192
atccgatgtg caagcacttc 20

<210> 193
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 193
gttcgccaca gttcgccact 20

<210> 194
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 194
tcctccgcgt ttgtcaccgg 20

<210> 195
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 195
cgccagggtt ctttcgttggc 20

<210> 196
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 196
agttcgccac agttcgccac 20

<210> 197
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 197

V7588.ST25.txt 20

tcggccacagt tcgcccactca

<210> 198
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 198
ttaacggat gcgttcgact 20

<210> 199
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 199
tcggccactca tccgatgtgc 20

<210> 200
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 200
ccacagttcg ccactcatcc 20

<210> 201
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 201
gatttaacgg gatgcgttcg 20

<210> 202
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 202
taacgggatg cgttcgactt 20

<210> 203
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 203
aacgggatgc gttcgacttg 20

<210> 204
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 204
cgaagggtac cgaaccgact 20

<210> 205
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 205
ccgaaggta ccgaaccgac 20

<210> 206
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 206
cccgaaggtt accgaaccga 20

<210> 207
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 207
ttcctccgcg tttgtcacccg 20

<210> 208
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 208
ccgccagggt tcatcctgag 20

<210> 209

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 209
tccttccaga agtgatagcc 20

<210> 210
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 210
caccagttcg ccacagttcg 20

<210> 211
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 211
acgggatgcg ttcgacttgc 20

<210> 212
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 212
gtccttccag aagtgatagc 20

<210> 213
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 213
gccagggttc atcctgagcc 20

<210> 214
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 214

actcatccga tgtgcaagca v7588.ST25.txt 20

<210> 215
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 215
atcattgcct tggtgaaccg 20

<210> 216
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 216
tccgcgttg tcacccggcag 20

<210> 217
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 217
tgaaccgtta ctccaccaac 20

<210> 218
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 218
gaagtgtatag ccgaaaccac 20

<210> 219
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 219
ccgcgtttgt caccggcagt 20

<210> 220
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide
<400> 220
ttcgccactc atccgatgtg 20

<210> 221
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 221
catttaacgg gatgcgttcg 20

<210> 222
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 222
cacagttcgc cactcatccg 20

<210> 223
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 223
ttcgccacag ttgcggactc 20

<210> 224
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 224
ctccgcgtt gtcaccggca 20

<210> 225
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 225
acgcccggccag ggttcatcct 20

<210> 226

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 226
ccttccagaa gtgatagccg 20

<210> 227
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 227
tcattgcctt ggtgaaccgt 20

<210> 228
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 228
cacagtatgt caagacctgg 20

<210> 229
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 229
ttggtaacc gttactccac 20

<210> 230
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 230
cttggtaac cgttactcca 20

<210> 231
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 231
:

	v7588.ST25.txt	
gtgaaccgtt actccaccaa		20
<210> 232		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 232		
ggctcccgaa ggttaccgaa		20
<210> 233		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 233		
gaaggttacc gaaccgactt		20
<210> 234		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 234		
tggctccgaa aggttaccga		20
<210> 235		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 235		
taatacgcgg cgggtccttc		20
<210> 236		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 236		
gaaccgttac tccaccaact		20
<210> 237		
<211> 20		
<212> DNA		
<213> Artificial		

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 237
tacggccgcgg gtccttccag 20

<210> 238
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 238
tcaccaggatc gccacagttc 20

<210> 239
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 239
ccttggtgaa ccgttactcc 20

<210> 240
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 240
ctcaccaggatc cgccacagtt 20

<210> 241
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 241
cgccgccagg gttcatcctg 20

<210> 242
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 242
ccttggtgaa ccattactcc 20

<210> 243

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 243
tggtaacca ttactccacc 20

<210> 244
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 244
gccgcaggg ttcatcctga 20

<210> 245
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 245
ggtaaccat tactccacca 20

<210> 246
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 246
ccagggttca tcctgagcca 20

<210> 247
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 247
aatacgccgc gggtccttcc 20

<210> 248
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 248

v7588.ST25.txt

cacggccca gggttcatcc

20

<210> 249
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 249
agttcgccac tcatccgatg

20

<210> 250
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 250
cgggatgcgt tcgacttgca

20

<210> 251
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 251
cattgccttg gtgaaccgtt

20

<210> 252
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 252
gcacgcccgc agggttcatc

20

<210> 253
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 253
cttcctccgc gtttgtcacc

20

<210> 254
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 254
tggtgaaccg ttactccacc 20

<210> 255
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 255
ccttcctccg cgtttgcac 20

<210> 256
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 256
acggccgcggg tccttccaga 20

<210> 257
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 257
ggtgaaccgt tactccacca 20

<210> 258
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 258
gggtccttcc agaagtgata 20

<210> 259
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 259
cttcagaag tgatagccga 20

<210> 260

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 260
gccttggta accattactc 20

<210> 261
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 261
acagttcgcc actcatccga 20

<210> 262
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 262
accttcctcc gcgttgtca 20

<210> 263
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 263
cgaaccgact ttgggtgttg 20

<210> 264
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 264
gaaccgactt tgggtgttgc 20

<210> 265
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 265

v7588.ST25.txt 20
aggttaccgaa accgactttg

<210> 266
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 266
accgaaccgaa ctttgggtgt 20

<210> 267
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 267
ttaccgaaccg gactttgggt 20

<210> 268
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 268
taccgaaccg actttgggtg 20

<210> 269
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 269
gttaccgaac cgactttggg 20

<210> 270
<211> 21
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 270
cctttctgggt atggtaaccgt c 21

<210> 271
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide
<400> 271
tgcaccgcgg ayccatctct 20

<210> 272
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 272
agttgcagtc cagtaagccg 20

<210> 273
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 273
gttgcagtcc agtaagccgc 20

<210> 274
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 274
cagttgcagt ccagtaagcc 20

<210> 275
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 275
tgcagtccag taagccgcct 20

<210> 276
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 276
tcagttgcag tccagtaagc 20

<210> 277

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 277
ttgcagtcca gtaagccgcc 20

<210> 278
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 278
gcagtcagg aagccgcctt 20

<210> 279
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 279
gtcagttgca gtccagtaag 20

<210> 280
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 280
ctcttaggtga cgccgaagcg 20

<210> 281
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 281
atctcttaggt gacgccgaag 20

<210> 282
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 282

v7588.ST25.txt

tctaggtgac gccgaagcgc

20

<210> 283
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 283
tctctagg tgacgcccga

20

<210> 284
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 284
ccatctctag tgacgcccga

20

<210> 285
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 285
catctctagg tgacgcccga

20

<210> 286
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 286
taggtgacgc cgaagcgcc

20

<210> 287
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 287
ctaggtgacg ccgaagcgcc

20

<210> 288
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide
<400> 288
cttagacggc tccttcctaa 20

<210> 289
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 289
ccttagacgg ctccttccta 20

<210> 290
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 290
acgtcagttg cagtccagta 20

<210> 291
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 291
cgtcagttgc agtccagtaa 20

<210> 292
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 292
acgccgaagc gccttttaac 20

<210> 293
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 293
gacgccgaag cgccctttaa 20

<210> 294

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 294
gccgaagcgc ctttaactt 20

<210> 295
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 295
cgccgaagcg ctttttaact 20

<210> 296
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 296
tgacgcccga aggcctttt 20

<210> 297
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 297
tgacgcccga gcgcctttt 20

<210> 298
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 298
agacggctcc ttccctaaaag 20

<210> 299
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 299

acggctcctt cctaaaaggt v7588.ST25.txt 20

<210> 300
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 300
gacggctcct tcctaaaaagg 20

<210> 301
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 301
ccttcctaaa aggttaggcc 20

<210> 302
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 302
ggtgacgcca aagcgcctt 20

<210> 303
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 303
aggtagcgc aaagcgcc 20

<210> 304
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 304
tagtgacgc caaagcgcc 20

<210> 305
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 305
ctctaggtga cgccaaagcg 20

<210> 306
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 306
tctaggtgac gccaaaggcgc 20

<210> 307
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 307
ctaggtgacg ccaaaggcgc 20

<210> 308
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 308
acgccaaagc gccttttaac 20

<210> 309
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 309
cgccaaagcg ccttttaact 20

<210> 310
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 310
tgacgccaaa ggcgcctttta 20

<210> 311

v7588.ST25.txt

```
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 311
tctcttaggtt acccccaaggc
```

20

```
<210> 312
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 312
gtgacgccaa agcgccttt
```

20

<210> 313
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 313
gacgccaaag cgccttttaa

20

```
<210> 314
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 314
atctcttaggt gacgccaaag
```

20

```
<210> 315
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 315
catctcttaqq tqacqccaaa
```

20

<210> 316
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 316

	v7588.ST25.txt	
tccatctcta ggtgacgcca		20
<210> 317		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 317		
ccatctctag gtgacgccaa		20
<210> 318		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 318		
ctgccttaga cggctcccc		20
<210> 319		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 319		
cctgccttag acggctcccc		20
<210> 320		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 320		
gtgtcatgcg acactgagtt		20
<210> 321		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 321		
tgtgtcatgc gacactgagt		20
<210> 322		
<211> 20		
<212> DNA		
<213> Artificial		

v7588.ST25.txt

<220> oligonucleotide
<223> oligonucleotide
<400> 322
ctttgtgtca tgcgacactg 20

<210> 323
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> oligonucleotide
<400> 323
tttgtgtcatg cgacactgag 20

<210> 324
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> oligonucleotide
<400> 324
tgccttagac ggctccccct 20

<210> 325
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> oligonucleotide
<400> 325
agacggctcc ccctaaaaagg 20

<210> 326
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> oligonucleotide
<400> 326
tagacggctc cccctaaaaag 20

<210> 327
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> oligonucleotide
<400> 327
gccttagacg gctcccccta 20

<210> 328

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 328
gctccccccta aaaggttagg 20

<210> 329
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 329
ggctccccct aaaaggttag 20

<210> 330
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 330
ctccccctaa aaggtaggc 20

<210> 331
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 331
tccccctaaa aggttaggcc 20

<210> 332
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 332
ccctaaaaagg ttaggccacc 20

<210> 333
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 333

ccctaaaag gtaggccac

v7588.ST25.txt

20

<210> 334
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 334
cggctcccc taaaaggta

20

<210> 335
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 335
ccccctaaaa ggtaggcca

20

<210> 336
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 336
cttagacggc tccccctaaa

20

<210> 337
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 337
tttagacggct cccccctaaaa

20

<210> 338
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 338
gggttcgcaa ctcgttgat

20

<210> 339
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 339
ccttagacgg ctccccctaa 20

<210> 340
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 340
acggctcccc ctaaaagggt 20

<210> 341
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 341
gacggctccc cctaaaaggt 20

<210> 342
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 342
acgccgcaag accatcctct 20

<210> 343
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 343
ctaatacgcc gcaagaccat 20

<210> 344
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 344
tacccgcaa gaccatcctc 20

<210> 345

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 345
gttacgatct agcaagccgc 20

<210> 346
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 346
aatacgccgc aagaccatcc 20

<210> 347
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 347
cgccgcaaga ccatcctcta 20

<210> 348
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 348
gctaatacgc cgcaagacca 20

<210> 349
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 349
accatcctct agcgatccaa 20

<210> 350
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 350

V7588.ST25.txt

taatacgccg caagaccatc

20

<210> 351
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 351
agccatccct ttctggtaag

20

<210> 352
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 352
atacgccgca agaccatcct

20

<210> 353
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 353
agttacgatc tagcaagccg

20

<210> 354
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 354
agctaatacg ccgcaagacc

20

<210> 355
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 355
gccgcaagac catcctctag

20

<210> 356
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 356
ttacgatcta gcaagccgct 20

<210> 357
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 357
gaccatcctc tagcgatcca 20

<210> 358
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 358
ttgctacgtc actaggaggc 20

<210> 359
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 359
acgtcactag gaggcgaaaa 20

<210> 360
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 360
tttgctacgt cactaggagg 20

<210> 361
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 361
gccatccctt tctggtaagg 20

<210> 362

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 362
tacgtcacta ggaggcggaa 20

<210> 363
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 363
cgtcactaggg aggccggaaac 20

<210> 364
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 364
aagaccatcc tcttagcgatc 20

<210> 365
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 365
gcacgtattt agccatccct 20

<210> 366
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 366
ctctagcgat ccaaaaaggac 20

<210> 367
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 367

v7588.ST25.txt
cctctagcga tccaaaagga 20

<210> 368
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 368
ccatcctcta gcgatccaaa 20

<210> 369
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 369
ggcacgtatt tagccatccc 20

<210> 370
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 370
tacgatctag caagccgctt 20

<210> 371
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 371
cagttagcat ctagcaagcc 20

<210> 372
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 372
ccgcaagacc atcctctagc 20

<210> 373
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 373
ccatcccttt ctggtaaggt 20

<210> 374
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 374
agaccatcct ctagcgatcc 20

<210> 375
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 375
caagaccatc ctcttagcgat 20

<210> 376
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 376
gctacgtcac taggaggcgg 20

<210> 377
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 377
tgctacgtca ctaggaggcg 20

<210> 378
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 378
ctacgtcact aggaggcgg 20

<210> 379

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 379
cctcaacgtc agttacgatc 20

<210> 380
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 380
gtcacttagga ggccggaaacc 20

<210> 381
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 381
tcctctagcg atccaaaagg 20

<210> 382
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 382
tggcacgtat ttagccatcc 20

<210> 383
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 383
acgatctagc aagccgcattt 20

<210> 384
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 384

v7588.ST25.txt

gccagtctct caactcggt		20
<210> 385		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 385		
aagctaatac gccgcaagac		20
<210> 386		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 386		
gttgctacg tcactaggag		20
<210> 387		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 387		
cgcactcta gtcattgcct		20
<210> 388		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 388		
ggccagccag tctctcaact		20
<210> 389		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 389		
cagccagtct ctcaactcg		20
<210> 390		
<211> 20		
<212> DNA		
<213> Artificial		

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 390
cccgaaagatc aattcagcgg 20

<210> 391
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 391
ccggccagtc tctcaactcg 20

<210> 392
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 392
ccagccagtc tctcaactcg 20

<210> 393
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 393
tcattgcctc acttcacccg 20

<210> 394
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 394
gccagccagt ctctcaactc 20

<210> 395
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 395
cacccgaaga tcaattcagc 20

<210> 396

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 396
gtcattgcct cacttcaccc 20

<210> 397
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 397
cattgcctca cttcacccga 20

<210> 398
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 398
attgcctcac ttcacccgaa 20

<210> 399
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 399
cgaagatcaa ttcagcggt 20

<210> 400
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 400
agtcatggcc tcacttcacc 20

<210> 401
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 401

V7588.ST25.txt

tcgccactct agtcattgcc

20

<210> 402
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 402
ttgcctcact tcacccgaag

20

<210> 403
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 403
cggccagtct ctcaactcg

20

<210> 404
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 404
ctggcacgtt ttttagccatc

20

<210> 405
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 405
acccgaagat caattcagcg

20

<210> 406
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 406
tctagcgatc caaaaggacc

20

<210> 407
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>		
<223>	oligonucleotide	
<400>	407	
	ctagcgatcc aaaaggacct	20
<210>	408	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	408	
	gcacccatcg tttacggtat	20
<210>	409	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	409	
	cacccatcgt ttacggtatg	20
<210>	410	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	410	
	gccactctag tcattgcctc	20
<210>	411	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	411	
	cgttgctac gtcactagga	20
<210>	412	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	412	
	gcctcaacgt cagttacgat	20
<210>	413	

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 413
gccggccagt ctctcaactc 20

<210> 414
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 414
tcacttaggag gcggaaacct 20

<210> 415
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 415
agcctcaacg tcagttacga 20

<210> 416
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 416
agccagtctc tcaactcgcc 20

<210> 417
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 417
ggccagtctc tcaactcgcc 20

<210> 418
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 418

caagctaata cgccgcaaga v7588.ST25.txt 20

<210> 419
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 419
ttcgccactc tagtcattgc 20

<210> 420
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 420
ccgaagatca attcagcggc 20

<210> 421
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 421
cgcaagacca tcctctagcg 20

<210> 422
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 422
gcaagaccat cctctagcga 20

<210> 423
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 423
gcgttgcata cgtcactagg 20

<210> 424
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 424
ccactctagt cattgcctca 20

<210> 425
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 425
cactctagtc attgcctcac 20

<210> 426
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 426
ccagtctctc aactcggtca 20

<210> 427
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 427
ttacacctagg caccggcctc 20

<210> 428
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 428
acaagcta at acgcccgaag 20

<210> 429
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 429
tttacaccttag gcaccggcct 20

<210> 430

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 430
tttaccta ggcaccggcc 20

<210> 431
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 431
atttacctt aggcaccggc 20

<210> 432
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 432
gatttacctt taggcaccgg 20

<210> 433
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 433
ctcacttcac ccgaagatca 20

<210> 434
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 434
acgccaccag cgttcatcct 20

<210> 435
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 435

		v7588.ST25.txt	
gccaaagcgac	tttgggtact		20
<210>	436		
<211>	20		
<212>	DNA		
<213>	Artificial		
<220>			
<223>	oligonucleotide		
<400>	436		
cgaaaaattc	cctactgcag		20
<210>	437		
<211>	20		
<212>	DNA		
<213>	Artificial		
<220>			
<223>	oligonucleotide		
<400>	437		
cgatctagca	agccgcttc		20
<210>	438		
<211>	20		
<212>	DNA		
<213>	Artificial		
<220>			
<223>	oligonucleotide		
<400>	438		
ggtaccgtca	agctgaaaac		20
<210>	439		
<211>	20		
<212>	DNA		
<213>	Artificial		
<220>			
<223>	oligonucleotide		
<400>	439		
tgcctcactt	cacccgaaga		20
<210>	440		
<211>	20		
<212>	DNA		
<213>	Artificial		
<220>			
<223>	oligonucleotide		
<400>	440		
ggccggccag	tctctcaact		20
<210>	441		
<211>	20		
<212>	DNA		
<213>	Artificial		

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 441
ggtaaggtac cgtcaagctg 20

<210> 442
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 442
gtaaggtacc gtcaagctga 20

<210> 443
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 443
ccgcaagacc atcctctagg 20

<210> 444
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 444
attagccat cccttctgg 20

<210> 445
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 445
aacccttcat cacacacg 18

<210> 446
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 446
cgaaaccctt catcacac 18

<210> 447

v7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 447
acccttcatc acacacgc 18

<210> 448
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 448
taccgtcaca cactgaac 18

<210> 449
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 449
agataaccgtc acacactg 18

<210> 450
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 450
cactcaaggg cgcaaacc 18

<210> 451
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 451
accgtcacac actgaaca 18

<210> 452
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 452

v7588.ST25.txt
cgtcacacac tgaacagt 18

<210> 453
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 453
ccgaaaccct tcatcaca 18

<210> 454
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 454
ccgtcacaca ctgaacag 18

<210> 455
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 455
gataccgtca cacactga 18

<210> 456
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 456
ggtaagatac cgtcacac 18

<210> 457
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 457
ccttcatca cacacgca 18

<210> 458
<211> 18
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 458
acagtgtttt acgagccg 18

<210> 459
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 459
cagtgtttta cgagccga 18

<210> 460
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 460
acaaggcggtt cgacttgc 18

<210> 461
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 461
cggataacgc ttggaaca 18

<210> 462
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 462
aggcgaaaaa ccctcgaa 18

<210> 463
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 463
ggcgaaaaac cctcgaac 18

<210> 464

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 464
ggcggaaacc ctcgaaca 18

<210> 465
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 465
tgagggcttt cacttcag 18

<210> 466
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 466
agggctttca cttcagac 18

<210> 467
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 467
gagggctttc acttcaga 18

<210> 468
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 468
actgcactca agtcatcc 18

<210> 469
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 469

v7588.ST25.txt

ccggataacg cttggAAC	18
<210> 470	
<211> 18	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 470	
tccggataac gcttggAA	18
<210> 471	
<211> 18	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 471	
tatccccTgc taagaggT	18
<210> 472	
<211> 18	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 472	
cctgctaAGA ggtAGGTT	18
<210> 473	
<211> 18	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 473	
ccctgctaAG aggtAGGT	18
<210> 474	
<211> 18	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 474	
cccctgctaa gaggtAGG	18
<210> 475	
<211> 18	
<212> DNA	
<213> Artificial	

V7588.ST25.txt

<220> oligonucleotide
<223> DNA
<400> 475
tccccctgcta agaggtag 18

<210> 476
<211> 18
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> DNA
<400> 476
atccccctgct aagaggtta 18

<210> 477
<211> 18
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> DNA
<400> 477
ccgttccttt ctggtaag 18

<210> 478
<211> 18
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> DNA
<400> 478
gccgttcctt tctggtaa 18

<210> 479
<211> 18
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> DNA
<400> 479
agccgttcct ttctggta 18

<210> 480
<211> 18
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> DNA
<400> 480
gcacgtattt agccgttc 18

<210> 481

v7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 481
cacgtattta gccgttcc 18

<210> 482
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 482
ggcacgtatt tagccgtt 18

<210> 483
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 483
cactttccctc tactgcac 18

<210> 484
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 484
ccactttcct ctactgca 18

<210> 485
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 485
tccactttcc tctactgc 18

<210> 486
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 486

v7588.ST25.txt

cttcctcta ctgcactc**18**

<210> 487
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 487
tagccgttcc tttctggt

18

<210> 488
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 488
ttagccgttc ctttctgg

18

<210> 489
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 489
ttatccccctg ctaagagg

18

<210> 490
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 490
gttatccccct gctaagag

18

<210> 491
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 491
cccggttcgcc actctttg

18

<210> 492
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 492
agctgaggc tttcactt 18

<210> 493
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 493
gagctgaggg ctttcact 18

<210> 494
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 494
gctgaggcgt ttcacttc 18

<210> 495
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 495
ctgaggcgt tcacttca 18

<210> 496
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 496
cccggtccc gaaggaac 18

<210> 497
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 497
gcacgagttt gtcaagac 18

<210> 498

v7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 498
gtatcccgtg tccccgaag 18

<210> 499
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 499
tcccggtcc cgaaggaa 18

<210> 500
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 500
atcccggtgc ccgaaggaa 18

<210> 501
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 501
tatcccggtt cccgaagg 18

<210> 502
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 502
cttacaccttag gaagcgcc 18

<210> 503
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 503

v7588.ST25.txt

ttaccttagg aagcgccc		18
<210> 504		
<211> 18		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 504		
cctgtatccc gtgtcccg		18
<210> 505		
<211> 18		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 505		
ccacaccttat cccgtgtc		18
<210> 506		
<211> 18		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 506		
cacctgtatc ccgtgtcc		18
<210> 507		
<211> 18		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 507		
acctgtatcc cgtgtccc		18
<210> 508		
<211> 18		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 508		
ctgtatcccg tgtccccga		18
<210> 509		
<211> 18		
<212> DNA		
<213> Artificial		

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 509
tgtatcccggt gtcccgaa 18

<210> 510
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 510
cacgagtatg tcaagacc 18

<210> 511
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 511
cggctttacc ttaggaag 18

<210> 512
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 512
taggaagcgc ctccttg 18

<210> 513
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 513
aggaagcgcc ctccttg 18

<210> 514
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 514
ttaggaagcg ccctcctt 18

<210> 515

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 515
ccttaggaagc gccctcct 18

<210> 516
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 516
ccttaggaag cgccctcc 18

<210> 517
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 517
accttaggaa gcgcctc 18

<210> 518
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 518
tgcacacaaat ggttgagc 18

<210> 519
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 519
taccttagga agcgccct 18

<210> 520
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 520

v7588.ST25.txt

accacctgtatccccgtgt**18**

<210> 521
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 521
gcaccacccgtg tatccccgt

18

<210> 522
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 522
caccacccgtt atccccgtg

18

<210> 523
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 523
gcgggttaggc aacctact

18

<210> 524
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 524
tgcggttagg caacctac

18

<210> 525
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 525
ttgcggtag gcaacctaa

18

<210> 526
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 526
ggtcttacct taggaagc 18

<210> 527
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 527
gctaatacaa cgcggtat 18

<210> 528
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 528
ctaatacaac gcgggatc 18

<210> 529
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 529
atacaacgcg ggatcatc 18

<210> 530
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 530
cggttaggca acctactt 18

<210> 531
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 531
tgcacccacct gtatcccg 18

<210> 532

V7588.ST25.txt

<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 532
gaagcgccct cttgcgg 18

<210> 533
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 533
gaaagcgccc tccttg 18

<210> 534
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 534
cgtcccttgc tggtaga 18

<210> 535
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 535
agctaatacaca acgcggga 18

<210> 536
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 536
tagctaatac aacgcggg 18

<210> 537
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 537

v7588.ST25.txt

ctagctaata caacgcgg 18

<210> 538
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 538
ggctatgtat catcgccct 18

<210> 539
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 539
gagccactgc cttttaca 18

<210> 540
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 540
gtcggctatg tatcatcg 18

<210> 541
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 541
ggtcggctat gtatcatc 18

<210> 542
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 542
caggtcggt atgtatca 18

<210> 543
<211> 18
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 543
cggttatgta tcatcgcc 18

<210> 544
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 544
tcggctatgt atcatcgc 18

<210> 545
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 545
gtcttacctt aggaagcg 18

<210> 546
<211> 18
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 546
tcttacacctt ggaagcgc 18

<210> 547
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 547
gtacaaaccg cctacacgccc 20

<210> 548
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 548
tgtacaaacc gcctacacgc 20

<210> 549

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 549
gatcagcacg atgtcgccat 20

<210> 550
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 550
ctgtacaaac cgcctacacg 20

<210> 551
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 551
gagatcagca cgatgtcgcc 20

<210> 552
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 552
agatcagcac gatgtcgcca 20

<210> 553
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 553
atcagcacga tgtcgccatc 20

<210> 554
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 554

v7588.ST25.txt

tcagcacgat gtcgccatct		20
<210> 555		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 555		
actgtacaaa ccgcctacac		20
<210> 556		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 556		
ccggcactaa ggccgaaacc		20
<210> 557		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 557		
cagcacgatg tcgccatcta		20
<210> 558		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 558		
tacaaaccgc ctacacgccc		20
<210> 559		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 559		
agcacgatgt cgccatctag		20
<210> 560		
<211> 20		
<212> DNA		
<213> Artificial		

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 560
cggcttttag agatcagcac 20

<210> 561
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 561
tccgccacta aggccgaaac 20

<210> 562
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 562
gactgtacaa accgcctaca 20

<210> 563
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 563
gtccgccact aaggccgaaa 20

<210> 564
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 564
ggggatttca catctgactg 20

<210> 565
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 565
catacaagcc ctggtaaggt 20

<210> 566

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 566
acaagccctg gtaaggttct 20

<210> 567
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 567
acaaaccggcc tacacgccc 20

<210> 568
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 568
ctgactgtac aaaccgccta 20

<210> 569
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 569
tgactgtaca aaccgcctac 20

<210> 570
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 570
acgatgtcgc catctagctt 20

<210> 571
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 571

cacgatgtcg ccatctagct

v7588.ST25.txt

20

<210> 572
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 572
cgatgtcgcc atctagcttc

20

<210> 573
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 573
gcacgatgtc gccatctagc

20

<210> 574
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 574
gatgtcgcca tctagttcc

20

<210> 575
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 575
atgtcgccat cttagttccc

20

<210> 576
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 576
tgtcgccatc tagttcccc

20

<210> 577
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 577
gccatctagc ttcccactgt 20

<210> 578
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 578
tcgccccatcta gcttcccact 20

<210> 579
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 579
cgccatcttag cttcccactg 20

<210> 580
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 580
gtcgccatct agttcccac 20

<210> 581
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 581
tacaaggccct ggtaaggttc 20

<210> 582
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 582
gccactaagg ccgaaacctt 20

<210> 583

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 583
actaaggccg aaaccttcgt 20

<210> 584
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 584
ctaaggccga aaccttcgtg 20

<210> 585
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 585
cactaaggcc gaaaccttcg 20

<210> 586
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 586
aaggccgaaa cttcgtgcg 20

<210> 587
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 587
ccactaaggc cgaaaccttc 20

<210> 588
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 588

taaggccgaa actttcgtgc v7588.ST25.txt 20
<210> 589
<211> 20
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 589
aggccgaaac cttcgtgcga 20

<210> 590
<211> 20
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 590
tctgactgt acaaaccgcct 20

<210> 591
<211> 20
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 591
catctgactg tacaaaccgc 20

<210> 592
<211> 20
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 592
atctgactgt acaaaccgcc 20

<210> 593
<211> 20
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 593
cttcgtgcga cttgcatttg 20

<210> 594
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220> oligonucleotide
<223> DNA
<400> 594
ccttcgtgcg acttgcatgt 20

<210> 595
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> DNA
<400> 595
ctctctagag tgccccaccca 20

<210> 596
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> DNA
<400> 596
tctcttagagt gcccacccaa 20

<210> 597
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> DNA
<400> 597
acgtatcaaa tgcagctccc 20

<210> 598
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> DNA
<400> 598
cgtatcaaat gcagctccc 20

<210> 599
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> DNA
<400> 599
cgccactaag gccgaaacct 20

<210> 600

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 600
ccgaaacctt cgtgcgactt 20

<210> 601
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 601
gccgaaacct tcgtgcgact 20

:

<210> 602
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 602
aaccttcgtg cgacttgcat 20

<210> 603
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 603
cgaaaccttc gtgcgacttg 20

:

<210> 604
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 604
acttcgtgc gacttgcatg 20

<210> 605
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 605

gaaaccccttcg tgcgacttgc 20
<210> 606
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 606
ggccgaaacc ttcgtgcgac 20

<210> 607
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 607
aaaccttcgt gcgacttgca 20

<210> 608
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 608
cacgtatcaa atgcagctcc 20

<210> 609
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 609
gctcaccggc ttaaggtaaa 20

<210> 610
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 610
cgctcaccgg cttaaggtaa 20

<210> 611
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220> oligonucleotide
<223> oligonucleotide
<400> 611
tcgctcaccg gcttaagg²⁰tc

<210> 612
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> oligonucleotide
<400> 612
ctcacccggct taaggtcaaa²⁰

<210> 613
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> oligonucleotide
<400> 613
cccgaccgtg gtcggctg²⁰cgc

<210> 614
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> oligonucleotide
<400> 614
gctcacccggc ttaagg²⁰tca

<210> 615
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> oligonucleotide
<400> 615
cgctcaccgg cttaagg²⁰tca

<210> 616
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> oligonucleotide
<400> 616
tcgctcaccg gcttaagg²⁰tc

<210> 617

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 617
ctcacccggct taaggtcaaa 20

<210> 618
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 618
cccgaccgtg gtcggctgcg 20

<210> 619
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 619
tcacccggctt aaggtcaaac 20

<210> 620
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 620
caaccctctc tcacactcta 20

<210> 621
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 621
acaaccctct ctcacactct 20

<210> 622
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 622

V7588.ST25.txt

20

ccacaaccct ctctcacact

<210> 623

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 623

aaccctctc cacactctag

20

<210> 624

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 624

cacaaccctc tctcacactc

20

<210> 625

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 625

tccacaaccc tctctcacac

20

<210> 626

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 626

ttccacaacc ctctctcaca

20

<210> 627

<211> 20

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 627

accctctctc acactctagt

20

<210> 628

<211> 20

<212> DNA

<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 628
gagccaggtt gccgccttcg 20

<210> 629
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 629
aggtaaaacc aactcccatg 20

<210> 630
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 630
atgagccagg ttgccgcctt 20

<210> 631
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 631
tgagccaggt tgccgccttc 20

<210> 632
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 632
aggctcctcc acaggcgact 20

<210> 633
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 633
caggctcctc cacaggcgac 20

<210> 634

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 634
gcaggctcct ccacaggcga 20

<210> 635
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 635
ttcgctcacc ggcttaaggt 20

<210> 636
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 636
gttcgctcac cggcttaagg 20

<210> 637
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 637
ggtcgctca ccggcttaag 20

<210> 638
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 638
attccacaac cctctctcac 20

<210> 639
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 639

tgacccgacc gtggtcggct

v7588.ST25.txt

20

<210> 640
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 640
ccctctctca cactctagtc

20

<210> 641
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 641
gaattccaca accctctc

20

<210> 642
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 642
agccaggttg ccgccttcgc

20

<210> 643
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 643
gccaggttgc cgccatcgcc

20

<210> 644
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 644
ggaattccac aaccctctct

20

<210> 645
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 645
gggaattcca caaccctctc 20

<210> 646
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 646
aacgcaggct cctccacagg 20

<210> 647
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 647
cggcttaagg tcaaaccAAC 20

<210> 648
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 648
ccggcttaag gtcaaACCAA 20

<210> 649
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 649
cacggctta aggtCAAACC 20

<210> 650
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 650
accggcttaa ggtCAAACCA 20

<210> 651

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 651
acccaacatc cagcacacat 20

<210> 652
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 652
tcgctgaccc gaccgtggtc 20

<210> 653
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 653
cgctgacccg accgtggtcg 20

<210> 654
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 654
gaccggacccg tggtcggctg 20

<210> 655
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 655
gctgacccga ccgtggtcgg 20

<210> 656
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 656

v7588.ST25.txt

ctgacccgac cgtggtcggc

20

<210> 657
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 657
caggcgactt gcgcctttga

20

<210> 658
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 658
tcatgcggta ttagctccag

20

<210> 659
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 659
actagctaatt cgaacgcagg

20

<210> 660
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 660
catgcggtat tagctccagt

20

<210> 661
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 661
cgcaggctcc tccacaggcg

20

<210> 662
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220> oligonucleotide
<223> 662
acgcaggctc ctccacaggc 20

<210> 663
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> 663
ctcagggtgc atgcggatt 20

<210> 664
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> 664
cgccctttgac cctcaggtgt 20

<210> 665
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> 665
accctcaggt gtcatgcgg 20

<210> 666
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> 666
cctcaggtgt catgcggat 20

<210> 667
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> 667
tttgaccctc aggtgtcatg 20

<210> 668

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 668
gaccctcagg tgtcatgcgg 20

<210> 669
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 669
tgaccctcag gtgtcatgcg 20

<210> 670
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 670
gcctttgacc ctcaggtgtc 20

<210> 671
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 671
ttgaccctca ggtgtcatgc 20

<210> 672
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 672
ccctcaggtg tcatgcggta 20

<210> 673
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 673

v7588.ST25.txt
20

cctttgaccc tcaggtgtca
<210> 674
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 674
ctttgaccct caggtgtcat
20

<210> 675
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 675
agttatcccc cacccatggga
20

<210> 676
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 676
ccagctatcg atcatgcct
20

<210> 677
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 677
accagctatc gatcatcgcc
20

<210> 678
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 678
cagctatcga tcatgcctt
20

<210> 679
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220> oligonucleotide
<223> 679
agctatcgat catgcgccttg 20

<210> 680
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> 680
gctatcgatc atgcgccttgg 20

<210> 681
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> 681
ctatcgatca tcgccttggt 20

<210> 682
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> 682
ttcgatgcac ttgcatgtgt 20

<210> 683
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> 683
tcgatcatcg ccttggtagg 20

<210> 684
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> 684
atcgatcatc gccttggtag 20

<210> 685

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 685
cacaggcgac ttgcgccttt

20

<210> 686
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 686
ccacaggcga cttgcgcctt

20

<210> 687
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 687
tccacaggcg acttgcgctt

20

<210> 688
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 688
tcctccacagcgacttgcg

20

<210> 689
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 689
cctccacaggcgacttgcg

20

<210> 690
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 690

ctccacaggc gacttgcgcc

v7588.ST25.txt

20

<210> 691
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 691
acaggcgact tgcgcctttg

20

<210> 692
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 692
gctcacccggc ttaaggtcaa

20

<210> 693
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 693
cgctcacccgg cttaaggtca

20

<210> 694
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 694
tcgctcacccg gcttaaggtc

20

<210> 695
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 695
ctcacccggct taaggtcaaa

20

<210> 696
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 696
cccgaccgtg gtcggctgcg 20

<210> 697
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 697
tcaccggctt aaggtcaaac 20

<210> 698
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 698
caaccctctc tcacactcta 20

<210> 699
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 699
acaaccctct ctcacactct 20

<210> 700
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 700
ccacaaccct ctctcacact 20

<210> 701
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 701
aacccctctct cacactctag 20

<210> 702

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 702
cacaaccctc tctcacactc 20

<210> 703
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 703
tccacaaccc tctctcacac 20

<210> 704
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 704
ttccacaacc ctctctcaca 20

<210> 705
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 705
accctctctc acactcttagt 20

<210> 706
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 706
gagccaggtt gccgccttcg 20

<210> 707
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 707

v7588.ST25.txt

aggtaaaacc aactccatg 20

<210> 708
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 708
atgagccagg ttgccgcctt 20

<210> 709
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 709
tgagccaggt tgccgccttc 20

<210> 710
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 710
aggccctcc acaggcgact 20

<210> 711
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 711
caggccctc cacaggcgac 20

<210> 712
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 712
gcaggccct ccacaggcg 20

<210> 713
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220> oligonucleotide
<223> Artificial
<400> 713 ttcgctcacc ggcttaaggt 20

<210> 714
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> Artificial
<400> 714 gttcgctcac cggcttaagg 20

<210> 715
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> Artificial
<400> 715 gttcgctca ccggcttaag 20

<210> 716
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> Artificial
<400> 716 attccacaac cctctctcac 20

<210> 717
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> Artificial
<400> 717 tgacctcgacc gtggtcggct 20

<210> 718
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> Artificial
<400> 718 ccctctctca cactcttagtc 20

<210> 719 ---

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 719
gaattccaca accctctctc 20

<210> 720
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 720
agccaggttg ccgccttcgc 20

<210> 721
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 721
gccaggttgc cgccttcgc 20

<210> 722
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 722
ggaattccac aaccctctctc 20

<210> 723
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 723
gggaattcca caaccctctc 20

<210> 724
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 724

v7588.ST25.txt

aacgcaggct cctccacagg

20

<210> 725
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 725
cggcttaagg tcaaaccAAC

20

<210> 726
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 726
ccggcttaag gtcaaaccAA

20

<210> 727
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 727
cacggctta aggtcaaACC

20

<210> 728
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 728
accggcttaa ggtcaaACCA

20

<210> 729
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 729
acccaacatC cagcacACAT

20

<210> 730
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 730
tcgctgaccc gaccgtggtc 20

<210> 731
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 731
cgctgaccgc accgtggtcg 20

<210> 732
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 732
gaccgcaccg tggtcggctg 20

<210> 733
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 733
gctgaccgcg ccgtggtcgg 20

<210> 734
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 734
ctgaccgcac cgtggtcggc 20

<210> 735
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 735
caggcgactt gcgcctttga 20

<210> 736

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 736
tcatgcggta ttagctccag 20

<210> 737
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 737
actagctaatt cgaacgcagg 20

<210> 738
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 738
catgcggtat tagctccagt 20

<210> 739
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 739
cgcaggctcc tceacaggcg 20

<210> 740
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 740
acgcaggctc ctccacaggc 20

<210> 741
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 741

v7588.ST25.txt

ctcagggtgc atgcggatt

20

<210> 742
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 742
cgccttgac cctcagggt

20

<210> 743
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 743
accctcaggt gtcatgcggt

20

<210> 744
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 744
cctcagggtgt catgcggtat

20

<210> 745
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 745
tttgaccctc aggtgtcatg

20

<210> 746
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 746
gaccctcagg tgtcatgcgg

20

<210> 747
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 747
tgacccttag gtgtcatgcg 20

<210> 748
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 748
gccttgacc ctcaggtgac 20

<210> 749
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 749
ttgaccctca ggtgtcatgc 20

<210> 750
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 750
ccctcaggtg tcatgcggta 20

<210> 751
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 751
cctttgacc tcaggtgtca 20

<210> 752
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 752
cttgaccct caggtgtcat 20

<210> 753

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 753
agttatcccc cacccatgga 20

<210> 754
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 754
ccagctatcg atcatgcct 20

<210> 755
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 755
accagctatac gatcatcgcc 20

<210> 756
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 756
cagctatcga tcatgcctt 20

<210> 757
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 757
agctatcgat catgccttg 20

<210> 758
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 758

v7588.ST25.txt

gctatcgatc atgcgccttgg 20

<210> 759
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 759
ctatcgatca tcgcgccttgg 20

<210> 760
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 760
ttcgtgcgac ttgcatgtgt 20

<210> 761
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 761
tcgatcatcg ccttggtagg 20

<210> 762
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 762
atcgatcatc gccttggtag 20

<210> 763
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 763
cacaggcgac ttgcgccttt 20

<210> 764
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 764
ccacaggcga cttgcgcctt 20

<210> 765
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 765
tccacaggcg acttgcgccc 20

<210> 766
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 766
tcctccacag gcgacttgcg 20

<210> 767
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 767
cctccacagg cgacttgcg 20

<210> 768
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 768
ctccacaggc gacttgcgcc 20

<210> 769
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 769
acaggcgact tgccgccttg 20

<210> 770

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 770
tcacccggctt aaggtcaaac 20

<210> 771
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 771
caaccctctc tcacactcta 20

<210> 772
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 772
acaaccctct ctcacactct 20

<210> 773
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 773
ccacaaccct ctctcacact 20

<210> 774
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 774
aacccctctc cacactctag 20

<210> 775
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 775

v7588.ST25.txt

cacaaccctc tctcacactc

20

<210> 776
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 776
tccacaaccc tctctcacac

20

<210> 777
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 777
ttccacaacc ctctctcaca

20

<210> 778
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 778
accctctctc acactcttagt

20

<210> 779
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 779
gagccaggtt gccgccttcg

20

<210> 780
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 780
aggtaaaacc aactccatcg

20

<210> 781
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 781
atgagccagg ttgccgcctt 20

<210> 782
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 782
tgagccaggt tgccgccttc 20

<210> 783
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 783
aggctcctcc acaggcgact 20

<210> 784
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 784
caggctcctc cacaggcgac 20

<210> 785
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 785
gcaggctcct ccacaggcg 20

<210> 786
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 786
ttcgctcacc ggcttaaggt 20

<210> 787

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 787
gttcgctcac cggcttaagg 20

<210> 788
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 788
ggttcgctca ccggcttaag 20

<210> 789
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 789
attccacaaac cctctctcac 20

<210> 790
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 790
tgacccgacc gtggtcggct- 20

<210> 791
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 791
ccctctctca cactcttagtc 20

<210> 792
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 792

	v7588.ST25.txt	
gaattccaca accctctctc		20
<210> 793		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 793		
agccaggttg ccgccttcgc		20
<210> 794		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 794		
gccaggttgc cgccttcgc		20
<210> 795		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 795		
ggaattccac aaccctctct		20
<210> 796		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 796		
gggaattcca caaccctctc		20
<210> 797		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 797		
aacgcaggct cctccacagg		20
<210> 798		
<211> 20		
<212> DNA		
<213> Artificial		

v7588.ST25.txt

<220>
<223> oligonucleotide
<400> 798
cggcttaagg tcaaaccAAC
20

<210> 799
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 799
ccggcttaag gtcaaACCAA
20

<210> 800
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 800
accggctta aggtCAAACC
20

<210> 801
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 801
accggcttaa ggtCAAACCA
20

<210> 802
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 802
acccaacatC cAGCACACAT
20

<210> 803
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 803
tcgctgacCC gaccgtggTC
20

<210> 804

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 804
cgctgaccgc accgtggtcg 20

<210> 805
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 805
gacccgaccg tggtcggctg 20

<210> 806
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 806
gctgacccga ccgtggtcgg 20

<210> 807
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 807
ctgacccgac cgtggtcggc 20

<210> 808
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 808
caggcgactt gcgcctttga 20

<210> 809
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 809

v7588.ST25.txt

tcatgcggta tttagctccag

20

<210> 810
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 810
actagctaat cgaacgcagg

20

<210> 811
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 811
catgcgttat tagtccagt

20

<210> 812
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 812
cgcaggctcc tccacaggcg

20

<210> 813
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 813
acgcaggctc ctccacaggc

20

<210> 814
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 814
ctcaggtgtc atgcggattt

20

<210> 815
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 815
cgcccttgac cctcagggtgt 20

<210> 816
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 816
accctcaggt gtcatgcggt 20

<210> 817
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 817
cctcagggtgt catgcggat 20

<210> 818
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 818
tttacccttc aggtgtcatg 20

<210> 819
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 819
gaccctcagg tgtcatgcgg 20

<210> 820
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 820
tgaccctcag gtgtcatgcg 20

<210> 821

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 821
gccttgacc ctcaggtgtc 20

<210> 822
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 822
ttgaccctca ggtgtcatgc 20

<210> 823
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 823
ccctcaggta tcatgcggta 20

<210> 824
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 824
ccttgaccc tcaggtgtca 20

<210> 825
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 825
ctttgaccct caggtgtcat 20

<210> 826
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 826

v7588.ST25.txt

agttatcccc cacccatgga		20
<210> 827		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 827		
ccagctatcg atcatcgctt		20
<210> 828		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 828		
accagctatc gatcatcgcc		20
<210> 829		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 829		
cagctatcga tcatcgccctt		20
<210> 830		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 830		
agctatcgat catcgcctttg		20
<210> 831		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> oligonucleotide		
<400> 831		
gctatcgatc atcgccttgg		20
<210> 832		
<211> 20		
<212> DNA		
<213> Artificial		

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 832
ctatcgatca tcgccttggt 20

<210> 833
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 833
ttcgtgcgac ttgcatgtgt 20

<210> 834
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 834
tcgatcatcg ccttggtagg 20

<210> 835
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 835
atcgatcatc gccttggtag 20

<210> 836
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 836
cacaggcgac ttgcgcctt 20

<210> 837
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 837
ccacaggcgaa cttgcgcctt 20

<210> 838

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 838
tccacaggcg acttgcgccc 20

<210> 839
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 839
tcctccacagc gcgacttgcg 20

<210> 840
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 840
cctccacagg cgacttgcg 20

<210> 841
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 841
ctccacaggc gacttgcgcc 20

<210> 842
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 842
acaggcgaact tgcgccctttg 20

<210> 843
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 843

V7588.ST25.txt

agccccggtt tcccggtt

20

<210> 844
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 844
cgcccttcct ttttcctcca

20

<210> 845
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 845
gccccggttt cccggcgta

20

<210> 846
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 846
gccgccttc cttttcctc

20

<210> 847
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 847
tagccccggt ttcccggt

20

<210> 848
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 848
ccgggtaccg tcaaggcgcc

20

<210> 849
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 849
aagccgcctt tccttttcc 20

<210> 850
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 850
ccccggtttc ccggcggtat 20

<210> 851
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 851
ccggcggtat cccagtccta 20

<210> 852
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 852
agccgccttt cctttttcct 20

<210> 853
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 853
ccgcctttcc tttttcctcc 20

<210> 854
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 854
ttagccccgg tttcccccgg 20

<210> 855

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 855
cccgccgtta tccccagtctt 20

<210> 856
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 856
gcccgggtacc gtcaaggcgc 20

<210> 857
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 857
ggccgggtac cgtcaaggcg 20

<210> 858
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 858
tccccggcgtt atccccagtct 20

<210> 859
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 859
tggccgggtta ccgtcaaggc 20

<210> 860
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 860

V7588.ST25.txt

gaagccgcct ttccttttc	20
<210> 861	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 861	
cccggttcc cggcgttatc	20
<210> 862	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 862	
cggcgttatc ccagtcttac	20
<210> 863	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 863	
ggcggttatcc cagtcttaca	20
<210> 864	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 864	
gcgttatccc agtcttacag	20
<210> 865	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 865	
cgggtaccgt caaggcgccg	20
<210> 866	
<211> 20	
<212> DNA	
<213> Artificial	

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 866
attagcccg gtttccggc 20

<210> 867
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 867
aagggaagg ccctgtctcc 20

<210> 868
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 868
ggccctgtct ccagggaggt 20

<210> 869
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 869
aggccctgtc tccagggagg 20

<210> 870
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 870
aaggccctgt ctccagggag 20

<210> 871
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 871
gccctgtctc cagggaggtc 20

<210> 872

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 872
cgttatccca gtcttacagg 20

<210> 873
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 873
gggtaccgtc aaggcgccgc 20

<210> 874
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 874
cggcaacaga gttttacgac 20

<210> 875
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 875
ggggaaggcc ctgtctccag 20

<210> 876
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 876
aggggaaggc cctgtctcca 20

<210> 877
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 877

v7588.ST25.txt

gcagccgaag ccgccttcc 20
<210> 878
<211> 20
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 878
ttcttccccg gcaacagagt 20

<210> 879
<211> 20
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 879
cggcacttgt tcttccccgg 20

<210> 880
<211> 20
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 880
gttcttcccc ggcaacagag 20

<210> 881
<211> 20
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 881
ggcacttgtt cttccccggc 20

<210> 882
<211> 20
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide
<400> 882
gcacttgttc ttccccggca 20

<210> 883
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220> oligonucleotide
<223> 883
cacttgttct tccccggcaa 20

<210> 884
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> 884
tcttcccccgg caacagagtt 20

<210> 885
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> 885
ttgttcttcc cggcaacag 20

<210> 886
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> 886
acttgttctt ccccggaac 20

<210> 887
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> 887
tgttcttccc cggcaacaga 20

<210> 888
<211> 20
<212> DNA
<213> Artificial

<220> oligonucleotide
<223> 888
cttgttcttc cccggcaaca 20

<210> 889

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 889
acggcacttg ttcttcccccg 20

<210> 890
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 890
gtccggcgct aacctttaa 20

<210> 891
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 891
ctggccgggt accgtcaagg 20

<210> 892
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 892
tctggccggg taccgtcaag 20

<210> 893
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 893
ttctggccgg gtaccgtcaa 20

<210> 894
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 894

v7588.ST25.txt

caatgctggc aactaaggc	20
<210> 895	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 895	
cgtccgccc taacctttt	20
<210> 896	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 896	
cgaagccgc tttcctttt	20
<210> 897	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 897	
ccgaagccgc ctttccttt	20
<210> 898	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 898	
gccgaagccg ctttccttt	20
<210> 899	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 899	
agccgaagcc gctttcctt	20
<210> 900	
<211> 20	
<212> DNA	
<213> Artificial	

v7588.ST25.txt

<220>
<223> oligonucleotide
<400> 900
accgtcaagg cgccgcccctg 20

<210> 901
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 901
ccgtggcttt ctggccgggt 20

<210> 902
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 902
gctttctggc cgggtaccgt 20

<210> 903
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 903
gccgtggctt tctggccggg 20

<210> 904
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 904
ggctttctgg ccgggtaccg 20

<210> 905
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 905
cttctggcc gggtaaccgtc 20

<210> 906

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 906
tggcttctg gccgggtacc 20

<210> 907
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 907
gtggcttct ggccgggtac 20

<210> 908
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 908
cgtggtttc tggccggta 20

<210> 909
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 909
tttctggccg ggtaccgtca 20

<210> 910
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 910
gggaaggccc tgtctccagg 20

<210> 911
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 911

cgaaggggaa ggccctgtct v7588.ST25.txt 20

<210> 912
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 912
ccgaaggggaa aggccctgtc 20

<210> 913
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 913
gaaggggaaag gccctgtctc 20

<210> 914
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 914
ggcgccgccc tgttcgaacg 20

<210> 915
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 915
aggcgccgcc ctgttcgaac 20

<210> 916
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 916
aaggcgccgc cctgttcgaa 20

<210> 917
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 917
ccggcaaca gagttttacg 20

<210> 918
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 918
ccccggcaac agagttttac 20

<210> 919
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 919
ccatctgtaa gtggcagccg 20

<210> 920
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 920
tctgtaagtg gcagccgaag 20

<210> 921
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 921
ctgtaagtgg cagccgaagc 20

<210> 922
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 922
cccatctgtta agtggcagcc 20

<210> 923

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 923
tgtaagtggc agccgaagcc 20

<210> 924
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 924
catctgtaa g tggcagccga 20

<210> 925
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 925
atctgtaa ggcagccgaa 20

<210> 926
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 926
cagccgaagc cgcctttcct 20

<210> 927
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 927
ggcaacagag tttagcacc 20

<210> 928
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 928

V7588.ST25.txt

ccggcaacag agttttacga	20
<210> 929	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 929	
ttccccggca acagagttt	20
<210> 930	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 930	
cttccccggc aacagagttt	20
<210> 931	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 931	
tccccggcaa cagagttta	20
<210> 932	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 932	
ccgtccgccc ctaaccttt	20
<210> 933	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide	
<400> 933	
tttcctccga cttacccgg	20
<210> 934	
<211> 20	
<212> DNA	
<213> Artificial	

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 934
cctccgactt acgcccgcag 20

<210> 935
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 935
ttcctccgac ttacgccggc 20

<210> 936
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 936
tcctccgact tacgccggca 20

<210> 937
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 937
tccgacttac gccggcagtc 20

<210> 938
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 938
ccgacttacg ccggcagtca 20

<210> 939
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 939
gccttcctcc gacttacgcc 20

<210> 940

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 940
ccttcctccg acttacgccc 20

<210> 941
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 941
gctctccccc agcaacagag 20

<210> 942
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 942
ctctccccga gcaacagagc 20

<210> 943
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 943
cgctctcccc gagcaacaga 20

<210> 944
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 944
ctccgactta cgccggcagt 20

<210> 945
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 945

v7588.ST25.txt

tctccccgag caacagagct 20

<210> 946
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 946
cgacttacgc cggcagtcac 20

<210> 947
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 947
tcggcaactgg ggtgtgtccc 20

<210> 948
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 948
ggcactgggg tgtgtccccc 20

<210> 949
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 949
ctggggtgtg tccccccaac 20

<210> 950
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 950
caactggggtg tgtcccccca 20

<210> 951
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 951
actggggtgt gtccccccaa 20

<210> 952
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 952
gcactgggt gtgtccccc 20

<210> 953
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 953
tggggtgtgt cccccaaca 20

<210> 954
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 954
cactccagac ttgctcgacc 20

<210> 955
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 955
tcactccaga cttgctcgac 20

<210> 956
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 956
cggaactggg gtgtgtcccc 20

<210> 957

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 957
cgcccttcctc cgacttacgc 20

<210> 958
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 958
ctccccgagc aacagagctt 20

<210> 959
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 959
actccagact tgctcgaccg 20

<210> 960
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 960
cccatgccgc tctcccccag 20

<210> 961
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 961
ccatgccgct ctcccccagc 20

<210> 962
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 962

v7588.ST25.txt

ccccatgccc ctctcccgaa

20

<210> 963
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 963
tcactcggtt ccgtctcgca

20

<210> 964
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 964
catggcgctc tccccgagca

20

<210> 965
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 965
atggcgctct ccccgagcaa

20

<210> 966
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 966
ttcggcactg gggtgtgtcc

20

<210> 967
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 967
tgccgctctc cccgagcaac

20

<210> 968
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide
<400> 968
ttcactccag acttgctcga 20

<210> 969
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 969
cccgcaagaa gatgcctcct 20

<210> 970
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 970
agaagatgcc tcctcgcg 20

<210> 971
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 971
aagaagatgc ctcctcg 20

<210> 972
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 972
cgcaagaaga tgcctcctcg 20

<210> 973
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 973
aagatgcctc ctcgcggcg 20

<210> 974

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 974
ccgcaagaag atgcctcctc 20

<210> 975
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 975
gaagatgcct cctcgccggc 20

<210> 976
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 976
ccccgcaaga agatgcctcc 20

<210> 977
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 977
caagaagatg ctcctcgcg 20

<210> 978
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 978
tctttcggca ctggggtg 20

<210> 979
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 979

v7588.ST25.txt

ccgctctccc	cgagcaacag	20
<210>	980	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	980	
tgcctcctcg	cgggcgtatc	20
<210>	981	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	981	
gacttacgcc	ggcagtcacc	20
<210>	982	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	982	
ggcttcctctc	tcagcggccc	20
<210>	983	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	983	
ctttcggcac	tggggtgtgt	20
<210>	984	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	984	
ggggtgtgtc	cccccaacac	20
<210>	985	
<211>	20	
<212>	DNA	
<213>	Artificial	

V7588.ST25.txt

<220> oligonucleotide

<400> 985

gccgctctcc ccgagcaaca

20

<210> 986

<211> 20

<212> DNA

<213> Artificial

<220> oligonucleotide

<400> 986

agatgcctcc tcgcggcgt

20

<210> 987

<211> 20

<212> DNA

<213> Artificial

<220> oligonucleotide

<400> 987

cactcggtac cgtctcgcat

20

<210> 988

<211> 20

<212> DNA

<213> Artificial

<220> oligonucleotide

<400> 988

ctcactcggt accgtctcgc

20

<210> 989

<211> 20

<212> DNA

<213> Artificial

<220> oligonucleotide

<400> 989

gcaagaagat gcctcctcgc

20

<210> 990

<211> 20

<212> DNA

<213> Artificial

<220> oligonucleotide

<400> 990

ctccagactt gctcgaccgc

20

<210> 991

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 991
ttacgccggc agtcacctgt 20

<210> 992
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 992
cttcggcaact ggggtgtgtc 20

<210> 993
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 993
ctcgcgggcg tatccggcat 20

<210> 994
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 994
gcctcctcgc gggcgtatcc 20

<210> 995
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 995
actcggtacc gtctcgcatg 20

<210> 996
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 996

v7588.ST25.txt

20

gatgcctcct cgcggcgta

<210> 997
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 997
gggtgtgtcc ccccaacacc

20

<210> 998
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 998
acttacgccc gcagtcacct

20

<210> 999
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 999
cttacgccgg cagtcacctg

20

<210> 1000
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1000
atgcctcctc gcggcgat

20

<210> 1001
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1001
gcgccgcggg ctccctctc

20

<210> 1002
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 1002
ggtgtgtccc cccaaacacct 20

<210> 1003
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1003
gtgtgtcccc ccaaacaccta 20

<210> 1004
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1004
cctcgcgggc gtagatccggca 20

<210> 1005
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1005
cctcactcgg taccgtctcg 20

<210> 1006
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1006
tcctcactcg gtaccgtctc 20

<210> 1007
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1007
tcgcgggcgt atccggcatt 20

<210> 1008

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1008
tttcactcca gacttgctcg 20

<210> 1009
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1009
tacgcccggca gtcacccgtg 20

<210> 1010
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1010
tccagacttg ctcgaccgcc 20

<210> 1011
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1011
ctcggtagcc tctcgcatgg 20

<210> 1012
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1012
cgccccgcgtt tccggcattt 20

<210> 1013
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1013

V7588.ST25.txt

gcgtatccgg cattagcgcc

20

<210> 1014
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1014
gggctcctct ctcagcggcc

20

<210> 1015
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1015
tccccgagca acagagcttt

20

<210> 1016
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1016
ccccgagcaa cagagctta

20

<210> 1017
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1017
ccgagcaaca gagcttaca

20

<210> 1018
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1018
ccatccccatg gttgaggcat

20

<210> 1019
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>		
<223>	oligonucleotide	
<400>	1019	
	gtgtccccc aacacctagc	20
<210>	1020	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	1020	
	gcgggcgtat ccggcattag	20
<210>	1021	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	1021	
	cgagcggctt tttgggtttc	20
<210>	1022	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	1022	
	ctttcactcc agacttgctc	20
<210>	1023	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	1023	
	ttccttcggc actggggtgt	20
<210>	1024	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	oligonucleotide	
<400>	1024	
	ccgccttcct ccgacttacg	20
<210>	1025	

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1025
cccgccttcc tccgacttac 20

<210> 1026
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1026
cctcctcgcg ggcgtatccg 20

<210> 1027
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1027
tcctcgcggg cgtatccggc 20

<210> 1028
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1028
cattagcgcc cgtttccggg 20

<210> 1029
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1029
gcattagcgc ccgtttccgg 20

<210> 1030
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1030

v7588.ST25.txt

ggcattagcg cccgttccg

20

<210> 1031
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1031
gtctcgcatg gggtttcca

20

<210> 1032
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1032
gccatggact ttcactccag

20

<210> 1033
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1033
catggacttt cactccagac

20

<210> 1034
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1034
ccttcctccg gcttacgccc gc

22

<210> 1035
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1035
ccttcctccg acttgcgccg gc

22

<210> 1036
<211> 22
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide
<400> 1036
ccttcctccg actttcaccg gc 22

<210> 1037
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1037
accgtctcac aaggagctt 20

<210> 1038
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1038
taccgtctca caaggagctt 20

<210> 1039
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1039
gtaccgtctc acaaggagct 20

<210> 1040
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1040
gcctacccgt gtattatccg 20

<210> 1041
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1041
ccgtctcaca aggagcttc 20

<210> 1042

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1042
ctacccgtgt attatccggc 20

<210> 1043
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1043
ggtaccgtct cacaaggagc 20

<210> 1044
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1044
cgtctcacaa ggagcttcc 20

<210> 1045
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1045
tctcacaaagg agctttccac 20

<210> 1046
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1046
tacccgtgta ttatccggca 20

<210> 1047
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1047

v7588.ST25.txt

gtctcacaag gagtttcca 20

<210> 1048
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1048
acccgtgtat tatccggcat 20

<210> 1049
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1049
ctcggtaccg tctcacaagg 20

<210> 1050
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1050
cggtaccgtc tcacaaggag 20

<210> 1051
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1051
actcggtacc gtctcacaag 20

<210> 1052
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1052
cggtggctc cataacggtt 20

<210> 1053
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220>
<223> oligonucleotide

<400> 1053
acaagtagat gcctacccgt 20

<210> 1054
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1054
tggctccata acggttacct 20

<210> 1055
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1055
caagtagatg cctacccgtg 20

<210> 1056
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1056
cacaagtaga tgcctacccg 20

<210> 1057
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1057
ggctccataa cggttacctc 20

<210> 1058
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1058
acacaagtag atgcctaccc 20

<210> 1059

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1059 ctggctccat aacggttacc 20

<210> 1060
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1060 gctggctcca taacggttac 20

<210> 1061
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1061 ggctggctcc ataacggta 20

<210> 1062
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1062 gctccataac ggttacctca 20

<210> 1063
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1063 aagtagatgc ctacccgtgt 20

<210> 1064
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1064

v7588.ST25.txt

ctccataacg gttacacctac 20

<210> 1065
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1065
tgcctacccg tgtattatcc 20

<210> 1066
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1066
tcggtaccgt ctcacaagga 20

<210> 1067
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1067
ctcacaagga gctttccact 20

<210> 1068
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1068
gttagatgcct acccggttat 20

<210> 1069
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1069
cctacccgtg tattatccgg 20

<210> 1070
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 1070
cactcggtac cgtctcacaa 20

<210> 1071
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1071
ctcagcgatg cagttgcattc 20

<210> 1072
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1072
agtagatgcc tacccgtgta 20

<210> 1073
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1073
gcggctggct ccataacggt 20

<210> 1074
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1074
ccaaagcaat cccaaaggttg 20

<210> 1075
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1075
tccataaacgg ttacacctacc 20

<210> 1076

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1076
cccggttatt atccggcatt 20

<210> 1077
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1077
tctcagcgat gcagttgcat 20

<210> 1078
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1078
ccataacggt tacctcacccg 20

<210> 1079
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1079
tcagcgatgc agttgcacatct 20

<210> 1080
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1080
ggcggctggc tccataacgg 20

<210> 1081
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1081

V7588.ST25.txt

aagcaatccc aagggttggc 20

<210> 1082
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1082
tcactcggtt ccgtctcaca 20

<210> 1083
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1083
ccgagtgtta ttccagtgctg 20

<210> 1084
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1084
cacaaggagc ttccactct 20

<210> 1085
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1085
acaaggagct ttccactctc 20

<210> 1086
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1086
tcacaaggag ctttccactc 20

<210> 1087
<211> 20
<212> DNA
<213> Artificial

V7588.ST25.txt

<220> oligonucleotide
<223> Artificial
<400> 1087
cagcgtatgc gttgcatttt 20

<210> 1088
<211> 20
<212> DNA
<213> Artificial
<220> oligonucleotide
<223> Artificial
<400> 1088
caaggagctt tccactctcc 20

<210> 1089
<211> 20
<212> DNA
<213> Artificial
<220> oligonucleotide
<223> Artificial
<400> 1089
ccagtctgaa aggtagttt 20

<210> 1090
<211> 20
<212> DNA
<213> Artificial
<220> oligonucleotide
<223> Artificial
<400> 1090
cagtctgaaa ggcagatttt 20

<210> 1091
<211> 20
<212> DNA
<213> Artificial
<220> oligonucleotide
<223> Artificial
<400> 1091
cggcggttgg ctccataacg 20

<210> 1092
<211> 20
<212> DNA
<213> Artificial
<220> oligonucleotide
<223> Artificial
<400> 1092
cctctcttcag cgatgcaggtt 20

<210> 1093

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1093
ctctctcagc gatgcaggttg 20

<210> 1094
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1094
tcttcagcg atgcaggttgc 20

<210> 1095
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1095
ctctcagcga tgcaggttca 20

<210> 1096
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1096
caatcccaag gttgaggcctt 20

<210> 1097
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1097
aatcccaagg ttgaggccttg 20

<210> 1098
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1098

V7588.ST25.txt

agcaatccca aggtttagcc 20

<210> 1099
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1099
ctcactcggt accgtctcac 20

<210> 1100
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1100
gcaatcccaa ggttgagcct 20

<210> 1101
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1101
gccttggact ttcacttcag 20

<210> 1102
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1102
cataacgggtt acctcaccga 20

<210> 1103
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1103
ctcctctctc agcgatgcag 20

<210> 1104
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 1104
tcggcggctg gctccataac 20

<210> 1105
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1105
agtctgaaag gcagattgcc 20

<210> 1106
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1106
tcctctctca gcgatgcagt 20

<210> 1107
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1107
cccaagggtt agccttggac 20

<210> 1108
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1108
ataacggta cctcaccgac 20

<210> 1109
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1109
tcccaagggtt gagccttgga 20

<210> 1110

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1110
attatccggc attagcaccc 20

<210> 1111
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1111
ctacgtgctg gtaaacacaga 20

<210> 1112
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1112
gccgcctagcc ccgaaggggct 20

<210> 1113
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1113
ctagccccga agggctcgct 20

<210> 1114
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1114
cgctagcccc gaaggggctcg 20

<210> 1115
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1115

v7588.ST25.txt

agccccgaag ggctcgctcg 20

<210> 1116
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1116
ccgctagccc cgaagggctc 20

<210> 1117
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1117
tagccccgaa gggctcgctc 20

<210> 1118
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1118
gctagcccg aagggctcgc 20

<210> 1119
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1119
gcccccgaagg gctcgctcga 20

<210> 1120
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1120
atcccaaggt tgagccttgg 20

<210> 1121
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide

<400> 1121
gaggccttgaa ctttcacttc 20

<210> 1122
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1122
caagggttag ccttggactt 20

<210> 1123
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1123
gagctttcca ctctcccttgt 20

<210> 1124
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1124
ccaaggttga gccttggact 20

<210> 1125
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1125
cgggctccctc tctcagcgat 20

<210> 1126
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1126
ggagctttcc actctcccttg 20

<210> 1127

V7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1127
gggctcctct ctcagcgatg 20

<210> 1128
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1128
tctcccttgtc gctctcccg 20

<210> 1129
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1129
tccttgcgc tctccccgag 20

<210> 1130
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1130
agcttccac tctcccttgtc 20

<210> 1131
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1131
ccactctcct tgtcgctctc 20

<210> 1132
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1132

v7588.ST25.txt

ggctcctctc tcagcgatgc 20

<210> 1133
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1133
ccttgcgt ctccccgagc 20

<210> 1134
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1134
caactccctt gtcgctctcc 20

<210> 1135
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1135
actctcccttg tcgctctccc 20

<210> 1136
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1136
ctctcccttgt cgctctcccc 20

<210> 1137
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1137
gcgggctcct ctctcagcga 20

<210> 1138
<211> 20
<212> DNA
<213> Artificial

v7588.ST25.txt

<220>
<223> oligonucleotide
<400> 1138
ggctccatca tggttacctc 20

<210> 1139
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1139
ccgtctccata aggagcttca 22

<210> 1140
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1140
tccctcccta acggttacct 22

<210> 1141
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1141
tggctccata awggttacct 22

<210> 1142
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1142
cttcctccgg cttgcgccgg 20

<210> 1143
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide
<400> 1143
cgctcttccc gaktgactga 20

<210> 1144

v7588.ST25.txt

<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 1144
cctcgggctc ctccatcwgc

20

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.