Math 15910: Problem Set 7

Underland, Jake

2021 - 08 - 09

Contents

Exercise 1 Problem 3.2.9	1 1
Exercise 2	2
Exercise 3	2
Exercise 4	3
Exercise 5 Problem 3.4.3	3
Exercise 6	3
Exercise 7 Problem 3.6.5	3
Exercise 8	4
Bonus	4

Exercise 1

Problem 3.2.9

Suppose $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$

1. Show that $\lim_{n\to\infty}(x_n+y_n)=x+y$

Proof. From the supposition, we know that for all $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that for all n > N,

$$|x_n - x| < \epsilon$$

$$|y_n - y| < \epsilon$$

Let
$$\epsilon = \frac{\epsilon'}{2}$$
. Then,

$$|x_n-x|<\frac{\epsilon'}{2}$$

$$|y_n-y|<\frac{\epsilon'}{2}$$

From triangle inequality,

$$\begin{split} |x_n+y_n-x-y| \leq |x_n-x|+|y_n-y| < \frac{\epsilon'}{2} + \frac{\epsilon'}{2} \\ |x_n+y_n-(x+y)| < \epsilon' \end{split}$$

This holds for all $\epsilon' > 0$. Thus, x + y is the limit.

2. Show that if for all $n \in \mathbb{N}y_n \neq 0$ and $y \neq 0$, then $\lim_{n \to \infty} \left(\frac{1}{y_n}\right) = \frac{1}{y}$.

Proof. Since $\lim_{n\to\infty}y_n=y$, it is obvious that $\lim_{n\to\infty}|y_n|=|y|$. Then, for all $\epsilon>0$, there exists an N such that for all n>N, $|y_n|$ becomes arbitrarily close to |y|. Thus, we can say with certainty that there exists N_1 such that for all $n>N_1$, $|y_n|>\frac{|y|}{2}$. This implies $\frac{1}{|y_n|}<\frac{2}{|y|}$. Further, let $\epsilon=\epsilon'\frac{|y|^2}{2}$. Then, there also exists N_2 such that for all $n>N_2$, $|y_n-y|<\epsilon$. Now, let us set $N=\max\{N_1,N_2\}$. Then,

$$\begin{split} &|\frac{1}{y_n} - \frac{1}{y}| \\ &= |\frac{y - y_n}{y_n y}| \\ &= \frac{|y_n - y|}{|y_n||y|} \\ &< \epsilon' \frac{|y|^2}{2} \cdot \frac{2}{|y|} \cdot \frac{1}{|y|} \\ &= \epsilon' \end{split}$$

Therefore, for all $\epsilon'>0$, there exists $N\in\mathbb{N}$ such that for all n>N, $|\frac{1}{y_n}-\frac{1}{y}|<\epsilon'$. Thus, $\lim_{n\to\infty}(\frac{1}{y_n})=\frac{1}{y}$.

Exercise 2

Let $m \in \mathbb{N}$. Prove that $(x_n)_{n \in \mathbb{N}}$ converges iff $(x_{m+n})_{n \in \mathbb{N}}$ converges. Moreover, show that $\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{m+n}$

Proof. If $(x_n)_{n\in\mathbb{N}}$ converges to x, then we know that for all $\epsilon>0$ there exists an $N\in\mathbb{N}$ such that for all n>N, $|x_n-x|<\epsilon$. Since m+n>n, (x_{m+n}) also converges to the same limit x.

If $(x_{m+n})_{n\in\mathbb{N}}$ converges to x, then for all $\epsilon>0$ there exists an $N_1\in\mathbb{N}$ such that for all $m+n>N_1$, $|x_{m+n}-x|<\epsilon$. Then, take $N_2=N_1+m$. For all $n+m>N_2, n+m>N_1+m>N_1$. Furthermore, $n+m>N_1+m\implies n>N_1$. Thus, $|x_n-x|<\epsilon$. Such an N_2 exists for all ϵ , given that $(x_{m+n})_{n\in\mathbb{N}}$ converges. Thus, $(x_n)_{n\in\mathbb{N}}$ converges iff $(x_{m+n})_{n\in\mathbb{N}}$, and their limits are equivalent.

Exercise 3

Show that $(x_n)_{n\in\mathbb{N}}$ converges to L if and only if every subsequence of $(x_n)_{n\in\mathbb{N}}$ converges to L

Proof. Let b_n be a subsequence of x_n . If

Exercise 4

Show that every bounded open interval $(a,b) \subseteq \mathbb{R}$ can be described as $\{x \in \mathbb{R} | |x-x_0| < \epsilon\}$ for some value $x_0 \in \mathbb{R}$ and some $\epsilon > 0$. What are the values of x_0 and ϵ in terms of a and b? And conversely, given x_0 and ϵ , what are the endpoints of the interval $\{x \in \mathbb{R} | |x-x_0| < \epsilon\}$?

Proof. In this definition, x_0 denotes the median point between a and b, or $\frac{a+b}{2}$, and ϵ denotes half of the length of the interval $\frac{|b-a|}{2}$. $\{x \in \mathbb{R} | |x-x_0| < \epsilon\}$ says that for every $x \in R$ such that the distance between x and x_0 , the median point of the interval (a,b), measured by $|x-x_0|$, must be less than ϵ which is the distance from this median point to a or b. Thus the endpoints of this interval can be described as $x_0 \pm \epsilon$, and the interval can be restated as $(x_0 - \epsilon, x_0 + \epsilon)$ or the symmetric neighborhood of x_0 .

Exercise 5

Problem 3.4.3

Suppose that I is a subset of \mathbb{R} . Show that I is an interval if and only if for all $a, b \in I$, with $a \leq b$, the closed interval $[a, b] \subseteq I$.

Proof. Let x, y be the endpoints of I, where x < y. Suppose I is an interval. Take $a, b \in I$. Then, $x \le a$ and $b \le y$, or else $a, b \notin I$. Because, all values between x and y are in I, any value between a and b is also between a and a and a is therefore inside a. From our supposition, $a, b \in I$. Thus, $a, b \in I$.

Now, take the statement if for all $a,b \in I$ such that $a \leq b$, $[a,b] \subseteq I$, then I is an interval. We prove the converse. Suppose I is not an interval. This means I cannot be written in any of the 10 categories described in Definition 3.4.1 of Sally. This means there is a discontinuity between 2 values in I, or 2 values $c,d \in I$ where c < d such that $\frac{c+d}{2} \notin I$. Then, it follows that for some $a,b \in I$ such that $a \leq b$, $[a,b] \nsubseteq I$. Thus, the converse is true, and we have proven the statement.

Exercise 6

Let $I_n = [a_n, b_n]$ for $n \in \mathbb{N}$ be a nested collection of intervals. Suppose that $\inf\{b_n - a_n | n \in \mathbb{N}\} = 0$. Show that the number $\xi \in \cap_{n=1}^{\infty} I_n$ is unique.

Proof. Suppose that $\inf\{b_n-a_n|n\in\mathbb{N}\}=0$. Then, for one of the intervals I_ξ , $a_n=b_n$. Thus, the interval is a point, or unique value ξ such that $a_n=b_n=\xi$. By the Nested Interval Theorem, we know that $\bigcap_{n=1}^\infty I_n\neq\emptyset$. Therefore, there must be at least one value that is found in every interval. However, since we know that one of these intervals only contains one unique value ξ , for any value $i\in I_i$ to be in $\bigcap_{n=1}^\infty I_n$, $i\in I_\xi\implies i=\xi$. Thus, $\xi\in\bigcap_{n=1}^\infty I_n$ is unique.

Exercise 7

Problem 3.6.5

Show that the limit of a convergent sequence is unique.

Proof. Let us denote this sequence by a_n and its limits L,M. Suppose $L \neq M$. Then, for every $\epsilon > 0$, there exists $N_L, N_M \in \mathbb{N}$ such that if $n > N_L$, $|a_n - L| < \epsilon$ and if $n > N_M$, $|a_n - M| < \epsilon$. Let $\epsilon = \frac{|L - M|}{4}$, and $n > \max\{N_L, N_M\}$. Then, from trianble inequality in theorem 3.6.2,

$$\begin{split} |L-M| &\leq |L-a_n| + |a_n-M| < 2\epsilon \\ \implies |L-M| &\leq |L-a_n| + |a_n-M| < \frac{|L-M|}{2} \\ \implies |L-M| &< \frac{|L-M|}{2} \end{split}$$

This is impossible, since |L-M| > 0. Thus, L = M, and the limit of a sequence is unique.

Exercise 8

Show that the sequence $a_n = (-1)^n$ is divergent

Proof. Take $a \in \mathbb{R}$ and $\epsilon = 1$. Then, for all $N \in \mathbb{N}$, take n = 2N > N. Then,

$$\begin{aligned} |a_n - a| &= |(-1)^n - a| \\ &= |(-1)^{2N} - a| \\ &= |1 - a| \end{aligned}$$

If $a \le 0$ or $a \ge 2$, then $|1 - a| \ge \epsilon$, and a is not a limit. If 0 < a < 2, we change n to be 2N + 1 > 2N > N. Then,

$$\begin{aligned} |a_n - a| &= |(-1)^n - a| \\ &= |(-1)^{2N+1} - a| \\ &= |-1 - a| \ge 1 = \epsilon \end{aligned}$$

Thus, for all $a \in \mathbb{R}$, there exists $\epsilon > 0$ such that for all $N \in \mathbb{N}$, there is an n > N such that $|a_n - a| \ge \epsilon$. This shows that the sequence is divergent.

Bonus

Use the nested interval theorem to obtain a new proof of the fact that R is uncountable.

Proof. We already know there is a bijection between (0,1) and \mathbb{R} , so we will prove that (0,1) is uncountable. Suppose it is countable. Then, the elements of (0,1) are subscriptable as $\{a_1,a_2,\ldots,a_n,\ldots\}$. Since (0,1) is a bounded interval in \mathbb{R} , it contains a nested sequence of closed bounded intervals in \mathbb{R} . Let these intervals I_n be such that $a_n \notin I_n$. From the nested interval theorem, $\bigcap_{n=1}^{\infty} I_n$ is nonempty. Then, there exists x_i such that $x_i \in \bigcap_{n=1}^{\infty} I_n$, or x_i is in every single interval I_n . However, this is a contradiction since the set of $I_{n>i}$ do not include x_i by definition. Therefore, (0,1) is not countable, and concomitantly, \mathbb{R} is uncountable.