Rheinisch-Westfälische Technische Hochschule Aachen Lehrstuhl I für Mathematik Prof. Dr. Christof Melcher

Übungen zur Höheren Mathematik 3 Serie 03 vom 26. Oktober 2009

Teil A

Aufgabe A7 Bestimmen Sie mit Hilfe von Satz 4.10 (Lagrange-Multiplikator) das achsenparallele Rechteck mit dem größten Umfang dessen Eckpunkte auf der Ellipse

$$\left\{ (x_1, x_2) \in \mathbb{R}^2; \quad \frac{x_1^2}{2} + \frac{x_2^2}{4} = 1 \right\}$$

liegen.

Aufgabe A8 Betrachten Sie die Funktion $F:(0,\frac{\pi}{3})\to\mathbb{R}$, definiert durch

$$F(y) := \int_{0}^{\sin(y)} \arctan(\tan(y) - x) dx.$$

Zeigen Sie, dass F differenzierbar ist und berechnen Sie F'(0).

Aufgabe A9 Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine differenziebare Funktion. Durch $F: \mathbb{R}^3 \to \mathbb{R}$, definiert

$$F(y,a,b) := \int_{a}^{b} f(x,y)dx$$

wird eine differenzierbare Funktion festgelegt. Berechnen Sie im Fall $f(x, y) := y^2 \exp(x)$, $a = a(y) := \log(y)$, $b = b(y) = 2\log(y)$ für y > 0 die Ausdrücke

$$\frac{\partial}{\partial y}F(y, a(y), b(y))$$
 sowie $\frac{d}{dy}F(y, a(y), b(y)).$

Aufgabe A10 Man bestimme die Punkte der Sattelfläche $x^2 - y^2 = 8z$, die vom Punkt $\overline{P} = (0,0,2)$ den kleinsten Abstand besitzen und prüfe, ob dieser Abstand kleiner als 1 ist. Verwenden Sie hierfür die explizite Methode (d.h. Einsetzen der Nebenbedingung).

Teil B

Aufgabe B9 Bestimmen Sie mit Hilfe von Satz 4.10 (Lagrange-Multiplikator) den achsenparallelen Quader mit dem größten Volumen dessen Eckpunkte auf dem Ellipsoid

$$\left\{ (x_1, x_2, x_3) \in \mathbb{R}^3; \quad x_1^2 + \frac{x_2^2}{4} + \frac{x_3^2}{8} = 1 \right\}$$

liegen.

Aufgabe B10 Betrachten Sie die folgenden Mengen

$$\Omega_1 := \{x \in \mathbb{R}^2; ||x - (1,3)|| < 1\},$$

$$\Omega_2 := \{(r\cos(\varphi), r\sin(\varphi)) \in \mathbb{R}^2; \ 0 \le r < 1, \quad \frac{\pi}{4} < \varphi < \frac{3}{4}\pi, \quad \frac{5}{4}\pi < \varphi < \frac{7}{4}\pi\},$$

$$\Omega_3 := \{(x_1, x_2) \in \mathbb{R}^2; \max\{|x_1|, |x_2|\} < 1\}.$$

Skizzieren Sie die angegebenen Mengen. Handelt es sich um Gebiete? Geben Sie eine Parametrisierung der Randkurven an und zeichen Sie den Umlaufsinn in Ihre Skizze ein.

Aufgabe B11 Betrachten Sie die Funktion $F:(-\frac{1}{2},\frac{1}{2})\to\mathbb{R}$, definiert durch

$$F(y) := \int_{\arcsin(y)}^{\pi} \exp(y \sin(x)) dx.$$

Zeigen Sie, dass F differenzierbar ist und berechnen Sie F'(0).

Aufgabe B12 Lösen Sie Aufgabe A10 mit der Methode der Langrange-Mulitplikatoren.

Aufgabe B13 Sei $f: M \subset \mathbb{R}^n \to \mathbb{R}$, M offen, nicht leer, eine auf ihrem Definitionsbereich differenzierbare Funktion. Geben Sie für die folgenden Aussagen jeweils deren Wahrheitswert an.

- (a) Dann ist f auf M auch stetig.
- (b) Die Funktion f ist partiell differenzierbar.
- (c) Verschwinden die partiellen Ableitungen von f überall, so ist f konstant.
- (d) f ist Riemann-integrierbar.
- (e) Mit dem Satz von Taylor folgt:

$$\forall_{x,x_0 \in M} f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.$$

B9.)

 $V(x_1, x_2, x_3) = 2x_1 \cdot 2x_2 \cdot 2x_3 = 8x_1 x_2 x_3$ (weil Ellipsoid un ol. Usepung geht)

Maximiere V(x, x, x, x)

$$= \int \begin{pmatrix} 8 \star_2 \star_3 \\ 8 \star_1 \star_2 \\ 8 \star_1 \star_7 \end{pmatrix} + \lambda \begin{pmatrix} 2 \star_7 \\ \star_2/2 \\ \star_3/4 \end{pmatrix} = 0$$

$$2\lambda x_1 = -8x_2x_3 | x_1 \rangle$$

 $\lambda \frac{x_2}{2} = -8x_1x_3 | x_2 \rangle$
 $\frac{\lambda}{4}x_3 = -8x_1x_4 | x_3 \rangle$

$$x_1 = \sqrt{\frac{\pi}{3}}$$
 $x_2 = \sqrt{\frac{4}{3}}$ $x_3 = \sqrt{\frac{8}{3}}$

$$V(x_1, x_2, x_3) = 8 \cdot \sqrt{\frac{4}{3}} \sqrt{\frac{8}{3}} = 8 \cdot \sqrt{\frac{32}{27}}$$

1210.) Si= { x & R2 | 11x-(1,3)11<1} 5. DEZ. 2014 In ist offen zusammenhängend t=0 => Ny ist etn Gebiet. Parametrisierung von Ila: $\gamma: [0, 2\pi) \rightarrow \mathbb{R}^2, t \mapsto \begin{pmatrix} \cos(t) + 1 \\ \sin(t) + 1 \end{pmatrix}$ Sty := } (r. cos(q), r. sin(q)) ∈ R?; 0 ≤ v < 1, Nr 82 M<9<37, 50<9<20 Menge ist zusammen hängend Ist wicht often (Wegen (0,0)) => keta Gebiet Sl3:= {(x, x,) ETR2; max {|x,1, |x2|} < 7 } $y(t) = \begin{cases} y = t - 1, x = 1 & 0 \le t \le 2 \\ y = 1, x = 2 - t & 1 & 0 \le t \le 3 \\ y = - 1, x = \frac{t - 2}{2} & 1 \le t \le 3 \\ y = t - t, x = - 1 & 0 \le t \le 3 \end{cases}$ X=[-[]] -> R, t+> (t) 12=[1/4 , 4] -> 12 , t +> (cos(t)) 83=[-12,127-> m2, th) (t) 84=[311,54]->Re, t-> (str(t))

1311.) Satz 5.3. (Leibniz-Regel)

Sei Getr Gebiet und x(y), (S(y))

selen aut [c,d] diff bar.

f and of selen cent G steking.

setze $\phi(y) = F(y, \alpha(y), \beta(y))$ $\beta(y)$ $= \begin{cases} f(x, y) dx, y \in [c, d] \\ \alpha(y) \end{cases}$

Dann ist $\phi(y)$ cent [c,d] stetig und cliff bar und es gilt:

 $\frac{d\phi}{dy} = \int \frac{\partial f}{\partial y} (x, y) dx + f(\beta(y), y) \beta'(y) - f(\alpha(y), y) \alpha'(y)$

O(y) = arcsin(y) O(y) = T $C = -\frac{1}{2}$ $C = -\frac{1}{2}$

f(x,y)=exp(y.sin(x))

 $F'(y) = \int \sin(x) \exp(y \cdot \sin(x)) dx + \exp(y \cdot \sin(x)) \cdot 0$ $= \exp(y^2) \cdot \frac{1}{\sqrt{1-y^2}}$

 $F'(0) = \int_{0}^{4} \sin(x) \cdot e^{0} \cdot dx - 1$ $= \left[-\cos(x) \right]_{0}^{TT} - 1 = 1 + 1 - 1 = 1$

12/3.) a,) w b. I w c.) f d)fe.) f