Examen A:

	I. Utilizando el teorema del impulso y momento angular resuelve los siguientes ejercicios: (20pts)
1.	Un trompo giratorio con un momento de inercia de 3 kg·m² está girando a 6 rad/s. Alguien le da un impulso aplicando un torque de 5 N·m durante 3 segundos. ¿Cuál será su momento angular final?
2.	Una rueda de camión en un taller mecánico con un momento de inercia de 9 kg·m² gira inicialmente a 4 rad/s. Se le aplica un torque de 11 N·m durante 6 segundos. ¿Cuál será su momento angular final?
3.	Un dado con un momento de inercia de 1.1 kg·m² gira inicialmente a 3 rad/s. Se le aplica un torque de 2 N·m durante 4 segundos. ¿Cuál será su momento angular final?
4.	Un trompo de juguete con un momento de inercia de 1.5 kg·m² está girando a 5 rad/s. Alguien le da un impulso aplicando un torque de 4 N·m durante 2 segundos. ¿Cuál será su momento angular final?

II. Utilizando la fórmula de momento resuelve los siguientes ejercicios: (15pts)
Un avión de 5000 kg vuela a 250 m/s. ¿Cuál es su momento lineal?
Un balón de fútbol de 0.45kg se mueve a 15m/s. ¿Cuál es su momento lineal?
Un ciclista y su bicicleta tienen una masa total de 80kg y viajan a 15m/s. ¿Cuál es su momento lineal?
Utilizando la fórmula de impulso resuelve los siguientes ejercicios: (15pts)
1. Un boxeador lanza un golpe aplicando una fuerza de 120N sobre el guante del rival durante 0.05 segundos. ¿Cuál es el impulso transferido?
Un jugador de tenis golpea la pelota con una raqueta aplicando 60N de fuerza durante 0.1 segundos. ¿Cuál es el impulso generado?
Un golfista golpea la bola con un palo aplicando 150N de fuerza durante 0.02segundos. ¿Cuál es el impulso recibido por la bola?

IV.	Utilizando el teorema del impulso y momento resuelve los siguientes ejercicios:
1.	Un tren de 5,000kg frena a 25m/s a 5m/s en 10 segundos. ¿Cuál fue la fuerza aplicada por los frenos?
2.	Un niño de 50kg patina sobre hielo y es empujado, aumentando su velocidad de 2 m/s a 6m/s en 3 segundos. ¿Cuál fue la fuerza neta aplicada sobre él?
_	
3.	Un astronauta en el espacio empuja una herramienta de 5kg, haciéndola moverse de 0m/s a 2m/s en 0.8 segundos. ¿Qué fuerza aplicó sobre la herramienta?
4.	Un coche de 1,000 kg choca con una barrera de seguridad, pasando de 30m/s a 0m/s en 0.5 segundos. ¿Cuál fue la fuerza experimentada por el coche?
V.	Utilizando la fórmula de momento angular resuelve los siguientes ejercicios:
1.	Un hombre sentado en una silla giratoria tiene un momento de inercia de 6 kg·m² y comienza a girar a 2 rad/s. ¿Cuál es su momento angular?
2.	Una moneda tiene un momento de inercia de 0.002 kg·m² y gira a 15 rad/s. ¿Cuál es su momento angular?
3.	Las aspas de un ventilador tienen un momento de inercia de 1.5 kg·m² y giran a 10 rad/s. ¿Cuál es su momento angular?
4.	Un niño en un juego de feria tiene un momento de inercia de 15 kg·m² y gira a 3 rad/s. ¿Cuál es su momento angular?

- VI. Escoge: (10pts)
- 1. El impulso es:
- a. Empuje o fuerza que aplicas a algo.
- b. Cantidad de movimiento que tiene algo.
- c. Ninguna de las anteriores.
- 2. El momento es:
- a. Empuje o fuerza que aplicas a algo.
- b. Cantidad de movimiento que tiene algo.
- c. Ninguna de las anteriores.
- 3. El Teorema del impulso y momento nos dice que:
- a. Un impulso que actúa sobre un objeto es igual al momento final del objeto menos su momento inicial.
- b. El producto entre el momento de inercia de un objeto que rota su velocidad angular.
- c. El impulso angular de un objeto es igual al cambio en su momento angular.
- 4. El Teorema del impulso y momento angular nos dice que:
 - a. Un impulso que actúa sobre un objeto es igual al momento final del objeto menos su momento inicial.
 - b. El producto entre el momento de inercia de un objeto que rota su velocidad angular.
 - c. El impulso angular de un objeto es igual al cambio en su momento angular.
- 5. El momento angular es:
 - El producto entre el momento de inercia de un objeto que rota su velocidad angular.
 - b. Cantidad de movimiento que tiene algo.

Examen B:

	I. Llena los blancos: (10pts)
1.	El es el empuje o la fuerza que aplicas a algo durante un tiempo determinado, y esto hace que el objeto cambie su velocidad.
2.	El impulso angular de un objeto es igual al cambio en su momento angular es conocido como:
3.	El es la cantidad de movimiento que tiene algo.
4.	El producto entre el momento de inercia de un objeto que rota su velocidad angular es conocido como:
5.	Un impulso que actúa sobre un objeto es igual al momento final del objeto menos su momento inicial es conocido como:
I.	Utilizando la fórmula de momento angular resuelve los siguientes ejercicios:
5.	Un hombre sentado en una silla giratoria tiene un momento de inercia de 6 kg·m² y comienza a girar a 2 rad/s. ¿Cuál es su momento angular?
6.	Una moneda tiene un momento de inercia de 0.002 kg·m² y gira a 15 rad/s. ¿Cuál es su momento angular?
7.	Las aspas de un ventilador tienen un momento de inercia de 1.5 kg·m² y giran a 10 rad/s. ¿Cuál es su momento angular?
8.	Un niño en un juego de feria tiene un momento de inercia de 15 kg·m² y gira a 3 rad/s. ¿Cuál es su momento angular?

VII.	Utilizando el teorema del impulso y momento resuelve los siguientes ejercicios:
5.	Un tren de 5,000kg frena a 25m/s a 5m/s en 10 segundos. ¿Cuál fue la fuerza aplicada por los frenos?
6.	Un niño de 50kg patina sobre hielo y es empujado, aumentando su velocidad de 2 m/s a 6m/s en 3 segundos. ¿Cuál fue la fuerza neta aplicada sobre él?
7.	Un astronauta en el espacio empuja una herramienta de 5kg, haciéndola moverse de 0m/s a 2m/s en 0.8 segundos. ¿Qué fuerza aplicó sobre la herramienta?
8.	Un coche de 1,000 kg choca con una barrera de seguridad, pasando de 30m/s a 0m/s en 0.5 segundos. ¿Cuál fue la fuerza experimentada por el coche?
VIII	. Utilizando la fórmula de impulso resuelve los siguientes ejercicios: (15pts)
4.	1. Un boxeador lanza un golpe aplicando una fuerza de 120N sobre el guante del rival durante 0.05 segundos. ¿Cuál es el impulso transferido?
5.	Un jugador de tenis golpea la pelota con una raqueta aplicando 60N de fuerza durante 0.1 segundos. ¿Cuál es el impulso generado?
6.	Un golfista golpea la bola con un palo aplicando 150N de fuerza durante 0.02segundos. ¿Cuál es el impulso recibido por la bola?

IX.	Utilizando el teorema del impulso y momento angular resuelve los siguientes
	ejercicios:

- 5. Un trompo giratorio con un momento de inercia de 3 kg·m² está girando a 6 rad/s. Alguien le da un impulso aplicando un torque de 5 N·m durante 3 segundos. ¿Cuál será su momento angular final?
- 6. Una rueda de camión en un taller mecánico con un momento de inercia de 9 kg·m² gira inicialmente a 4 rad/s. Se le aplica un torque de 11 N·m durante 6 segundos. ¿Cuál será su momento angular final?
- 7. Un dado con un momento de inercia de 1.1 kg·m² gira inicialmente a 3 rad/s. Se le aplica un torque de 2 N·m durante 4 segundos. ¿Cuál será su momento angular final?
- 8. Un trompo de juguete con un momento de inercia de 1.5 kg·m² está girando a 5 rad/s. Alguien le da un impulso aplicando un torque de 4 N·m durante 2 segundos. ¿Cuál será su momento angular final?
- X. Utilizando la fórmula de momento resuelve los siguientes ejercicios: (15pts)
- 4. Un avión de 5000 kg vuela a 250 m/s. ¿Cuál es su momento lineal?
- 5. Un balón de fútbol de 0.45kg se mueve a 15m/s. ¿Cuál es su momento lineal?
- 6. Un ciclista y su bicicleta tienen una masa total de 80kg y viajan a 15m/s. ¿Cuál es su momento lineal?