Regression Models Project 1

Dann Hekman

Saturday, March 07, 2015

Evaluating Fuel Economy of Manual vs. Automatic Transmissions using Regression Analysis

Executive Summary

There is a common belief that cars with a manual transmission are more fuel-efficient than automatics. Using 1974 data from *Motor Trends* we can analyze this claim using linear regression analysis. Based on the analysis presented below, manual transmission cars get on average 7.24 more miles per gallon than automatic cars. Although tempered, this main effect remains significant at the 5% confidence level, even when controlling for weight and acceleration of the vehicle.

Research Question

We start our analysis by examining the claim that manual transmission cars have better gas mileage than automatic cars. We can load the data and do some basic analysis in R on this dataset.

```
data(mtcars)
str(mtcars)
```

```
'data.frame':
                    32 obs. of 11 variables:
   $ mpg : num
                 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
                 6 6 4 6 8 6 8 4 4 6 ...
   $ disp: num
                 160 160 108 258 360 ...
                 110 110 93 110 175 105 245 62 95 123 ...
##
           num
##
                 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
   $ drat: num
##
         : num
                 2.62 2.88 2.32 3.21 3.44 ...
##
   $ qsec: num
                 16.5 17 18.6 19.4 17 ...
##
   $ vs : num
                 0 0 1 1 0 1 0 1 1 1 ...
                 1 1 1 0 0 0 0 0 0 0 ...
##
         : num
                 4 4 4 3 3 3 3 4 4 4 ...
   $ gear: num
   $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
```

Specifically, our variables of interest are mpg and am, which is coded to 0 for automatic transmissions, and 1 for manual transmission. We can regress

$$(1) Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

where X_i is the as variable in the mtcars dataset. Simple Least Squares regression will give the average mpg for automatics (X = 0) and β_1 will give the added average miles per gallon of a manual transmission. Looking at just the transmission, we can see that automatic transmission vehicles have an average of 17.15 miles per gallon, and manuals get an additional 7.24 miles per gallon on average (24.39 total).

```
model <- lm(mpg ~ am, data=mtcars)
summary(model)$coef</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.147368 1.124603 15.247492 1.133983e-15
## am 7.244939 1.764422 4.106127 2.850207e-04
```

Correction for Car Weight

Before jumping to the conclusion that manual transmissions are more fuel efficient, we should try to control for other variables in the dataset.

(2)
$$Y_i = \beta_0 + \beta_1 X_i + \sum \beta_j X_i j + \epsilon_i$$

where β_1 is the coefficient for the dummy variable as and the sum of β_i and X_i includes all other variables.

```
model <- lm(mpg ~ ., data=mtcars)
summary(model)$coef</pre>
```

```
##
             Estimate Std. Error
                                t value
                                        Pr(>|t|)
## (Intercept) 12.30337416 18.71788443 0.6573058 0.51812440
## cyl
           -0.11144048 1.04502336 -0.1066392 0.91608738
## disp
           ## hp
           0.78711097 1.63537307 0.4813036 0.63527790
## drat
## wt
           -3.71530393 1.89441430 -1.9611887 0.06325215
## qsec
           0.82104075 0.73084480 1.1234133 0.27394127
## vs
            0.31776281 2.10450861 0.1509915 0.88142347
            2.52022689 2.05665055 1.2254035 0.23398971
## am
## gear
            0.65541302 1.49325996 0.4389142 0.66520643
           ## carb
```

Model Selection using the AIC function in R, we systematically removed variables, one at a time, until we could minimize the AIC output. Below are a subset of the models reviewed

```
AIC(lm(mpg ~ wt + cyl + disp + hp + drat + qsec + vs + am + gear + carb,data=mtcars))

## [1] 163.7098

AIC(lm(mpg ~ wt + disp + hp + drat + qsec + am + gear + carb,data=mtcars))

## [1] 159.7853

AIC(lm(mpg ~ wt + disp + hp + drat + qsec + am,data=mtcars))

## [1] 156.2687

AIC(lm(mpg ~ wt + qsec + am,data=mtcars))

## [1] 154.1194
```

```
#Removing any more raises the AIC
AIC(lm(mpg ~ qsec + am,data=mtcars))

## [1] 175.6022

AIC(lm(mpg ~ wt + am,data=mtcars))

## [1] 168.0292

AIC(lm(mpg ~ wt + qsec,data=mtcars))
```

After controlling for weight and the time to drive one 4th of a mile, manual vs. automatic is still a statistically significant predictor of gas mileage at the 5%, but not at the 1% level, and furthermore, the magnitude is less than the effect of weight once you control for the other two variables. Our final model is

$$(3) Y_i = \beta_0 + \beta_1 w t_i + \beta_2 q sec_i + \beta_3 a m_i + \epsilon_i$$

Where wt is the car weight (in 1000 lbs), qsec is the time to drive one quarter mile, and am is a dummy variable where 0=automatic and 1=manual.

```
summary(lm(mpg ~ wt + qsec + am,data=mtcars))$coef
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.617781 6.9595930 1.381946 1.779152e-01
## wt -3.916504 0.7112016 -5.506882 6.952711e-06
## qsec 1.225886 0.2886696 4.246676 2.161737e-04
## am 2.935837 1.4109045 2.080819 4.671551e-02
```

Conclusions

[1] 156.7205

After controlling for other factors and validating the model using the Akaike Information Criterion (AIC), we conclude that manual transmission vehicles do, on average, have a better gas mileage. This relationship between mpg, transmission, and weight is very well illustrated by the following graph.

```
library(ggplot2)
q<-qplot(x=wt,y=mpg,data=mtcars,colour=as.factor(am))
q<-q + scale_color_discrete(name="Transmission",labels=c("Automatic","Manual"))
q<-q + ggtitle("Miles per Gallon by Weight and Transmission")
q<-q + xlab("Weight (1000lbs)") + ylab("Miles Per Gallon")
q</pre>
```


So we can see clearly that automatics tend to be both heavier and have a lower gas mileage, but comparibly weighted manual transmission vehicles still tend to have slightly better gas mileage, as seen with equation (3).

Appendix

```
#All Variables
AIC(lm(mpg ~ .,data=mtcars))
## [1] 163.7098

#*One Variable Removed
AIC(lm(mpg ~ cyl + disp + hp + drat + qsec + vs + am + gear + carb,data=mtcars))
## [1] 167.0917

AIC(lm(mpg ~ wt + disp + hp + drat + qsec + vs + am + gear + carb,data=mtcars))
## [1] 161.7271

AIC(lm(mpg ~ wt + cyl + hp + drat + qsec + vs + am + gear + carb,data=mtcars))
## [1] 162.5485
```

```
AIC(lm(mpg ~ wt + cyl + disp + hp + qsec + vs + am + gear + carb,data=mtcars))
## [1] 162.0609
AIC(lm(mpg ~ wt + cyl + disp + hp + drat + vs + am + gear + carb,data=mtcars))
## [1] 163.5774
AIC(lm(mpg ~ wt + cyl + disp + hp + drat + qsec + vs + am + carb,data=mtcars))
## [1] 162.002
AIC(lm(mpg ~ wt + cyl + disp + hp + drat + qsec + vs + am + gear,data=mtcars))
## [1] 161.7979
#Two Variables Removed
AIC(lm(mpg ~ wt + hp + drat + qsec + vs + am + gear + carb,data=mtcars))
## [1] 160.562
AIC(lm(mpg ~ wt + disp + drat + qsec + vs + am + gear + carb,data=mtcars))
## [1] 161.2852
AIC(lm(mpg ~ wt + disp + hp + qsec + vs + am + gear + carb,data=mtcars))
## [1] 160.1542
AIC(lm(mpg ~ wt + disp + hp + drat + vs + am + gear + carb, data=mtcars))
## [1] 161.8442
AIC(lm(mpg ~ wt + disp + hp + drat + qsec + am + gear + carb,data=mtcars))
## [1] 159.7853
AIC(lm(mpg ~ wt + disp + hp + drat + qsec + vs + gear + carb,data=mtcars))
## [1] 162.1959
AIC(lm(mpg ~ wt + disp + hp + drat + qsec + vs + am + carb,data=mtcars))
## [1] 160.1196
```

```
AIC(lm(mpg ~ wt + disp + hp + drat + qsec + vs + am + gear,data=mtcars))
## [1] 159.8397
#Three Variables Removed
AIC(lm(mpg ~ disp + hp + drat + qsec + am + gear + carb, data=mtcars))
## [1] 163.2224
AIC(lm(mpg ~ wt + hp + drat + qsec + am + gear + carb, data=mtcars))
## [1] 158.565
AIC(lm(mpg ~ wt + disp + drat + qsec + am + gear + carb, data=mtcars))
## [1] 159.2875
AIC(lm(mpg ~ wt + disp + hp + qsec + am + gear + carb,data=mtcars))
## [1] 158.2609
AIC(lm(mpg ~ wt + disp + hp + drat + am + gear + carb, data=mtcars))
## [1] 161.0116
AIC(lm(mpg ~ wt + disp + hp + drat + qsec + gear + carb,data=mtcars))
## [1] 160.1963
AIC(lm(mpg ~ wt + disp + hp + drat + qsec + am + carb,data=mtcars))
## [1] 158.246
AIC(lm(mpg ~ wt + disp + hp + drat + qsec + am + gear,data=mtcars))
## [1] 157.9333
#Four Variables Removed
AIC(lm(mpg ~ disp + hp + drat + qsec + am + gear, data=mtcars))
## [1] 168.1617
AIC(lm(mpg ~ wt + hp + drat + qsec + am + gear, data=mtcars))
## [1] 158.0406
```

```
AIC(lm(mpg ~ wt + disp + drat + qsec + am + gear, data=mtcars))
## [1] 158.9779
AIC(lm(mpg ~ wt + disp + hp + qsec + am + gear,data=mtcars))
## [1] 156.3469
AIC(lm(mpg ~ wt + disp + hp + drat + am + gear, data=mtcars))
## [1] 161.17
AIC(lm(mpg ~ wt + disp + hp + drat + qsec + gear, data=mtcars))
## [1] 158.4839
AIC(lm(mpg ~ wt + disp + hp + drat + qsec + am,data=mtcars))
## [1] 156.2687
#Five Variables Removed
AIC(lm(mpg ~ disp + hp + drat + qsec + am,data=mtcars))
## [1] 166.1632
AIC(lm(mpg ~ wt + hp + drat + qsec + am,data=mtcars))
## [1] 156.0406
AIC(lm(mpg ~ wt + disp + drat + qsec + am,data=mtcars))
## [1] 156.9826
AIC(lm(mpg ~ wt + disp + hp + qsec + am,data=mtcars))
## [1] 154.974
AIC(lm(mpg ~ wt + disp + hp + drat + am,data=mtcars))
## [1] 159.3035
AIC(lm(mpg ~ wt + disp + hp + drat + qsec,data=mtcars))
## [1] 158.2784
```

```
#Six Variables Removed
AIC(lm(mpg ~ disp + hp + qsec + am,data=mtcars))
## [1] 164.8634
AIC(lm(mpg ~ wt + hp + qsec + am,data=mtcars))
## [1] 154.3274
AIC(lm(mpg ~ wt + disp + qsec + am,data=mtcars))
## [1] 155.494
AIC(lm(mpg ~ wt + disp + hp + am, data=mtcars))
## [1] 158.0667
AIC(lm(mpg ~ wt + disp + hp + qsec,data=mtcars))
## [1] 159.0696
#Seven Variables Removed
AIC(lm(mpg ~ hp + qsec + am,data=mtcars))
## [1] 165.0964
AIC(lm(mpg ~ wt + qsec + am,data=mtcars))
## [1] 154.1194
AIC(lm(mpg ~ wt + hp + am,data=mtcars))
## [1] 156.1348
AIC(lm(mpg ~ wt + hp + qsec,data=mtcars))
## [1] 157.1426
#Eight Variables Removed
AIC(lm(mpg ~ qsec + am,data=mtcars))
## [1] 175.6022
```

```
AIC(lm(mpg ~ wt + am,data=mtcars))

## [1] 168.0292

AIC(lm(mpg ~ wt + qsec,data=mtcars))

## [1] 156.7205

#Final Model
AIC(lm(mpg ~ wt + qsec + am,data=mtcars))

## [1] 154.1194
```