MEDICIÓN

• El propósito de la medición industrial es mejorar la calidad o la eficiencia de la producción.

- La medición puede ser:
 - Directa
 - Indirecta
 - Cuantitativa
 - Cualitativa

FUNCIONES DE UN ELEMENTO DE MEDICIÓN

- SEÑALIZACIÓN (p.e. alarmas)
- INDICACIÓN (escala y un indicador)
- REGISTRO (sobre papel)
- INTEGRACIÓN (p.e. medidor de luz, gas, etc.)
- TRANSMISIÓN (p.e. termocupla, etc.)
- Cualquier combinación de estas funciones puede encontrarse en un elemento de medición.

SENSORES

- La instrumentación y la teoría de control basan sus desarrollos en la necesidad de adquirir señales que provienen del medio con el fin de ser procesadas y analizadas.
- Dado que la instrumentación comienza con la medición, el conocimiento de los instrumentos de medición ayudará a lograr proyectos más seguros, óptimos y rentables.
- Los sensores tienen la función básica de recibir las señales provenientes de los sistemas físicos. Por lo tanto, podrán encontrarse tantos sensores como señales físicas requieran ser procesadas.

SENSORES

- Basado en el principio de conversión de energía, el sensor toma una señal física (fuerza, presión, sonido, temperatura, etc.) y la convierte en otra señal más útil (eléctrica, mecánica, óptica, química, etc.), de acuerdo a la instrumentación aplicada.
- En sentido general, un sensor puede incluir varias etapas de transducción, denominándose primario al sensor que actúa en la primera etapa.

ELEMENTO PRIMARIO (SENSOR): Parte del instrumento que primero utiliza la energía del medio de medición para producir una condición que representa la variable medida.

ELEMENTO SECUNDARIO: Convierte la condición producida por el elemento primario en una condición útil para la función del instrumento.

ELEMENTO DE MANIPULACIÓN: Realiza operaciones en respuesta a la condición producida por el elemento secundario.

Clasificación de los sensores

Según el tipo de señal de entrada:

Mecánica: longitud, área, volumen, masa, flujo, fuerza, torque, presión, velocidad, aceleración, longitud de onda, posición, intensidad acústica.

Térmica: temperatura, calor, entropía, flujo de calor.

Eléctrica: tensión, corriente, resistencia, inductancia, capacitancia, carga, campo eléctrico, frecuencia, constante dieléctrica, momento dipolar.

Magnética: intensidad de campo, densidad de flujo, momento magnético, permeabilidad.

Radiación: intensidad, longitud de onda, polarización, fase, reflectancia, transmitancia, índice de refracción.

Química: concentración, potencial redox, avance de reacción, PH.

Clasificación de los sensores

Según el tipo de señal entregada por el sensor:

Analógicos: La gran mayoría de sensores entregan su señal de manera continua en el tiempo.

Digitales: Son dispositivos cuya salida es discreta. Ejemplos: codificadores de posición, codificadores incrementales, codificadores absolutos, resonadores de cuarzo, galgas acústicas, cilindros vibrantes, de ondas superficiales, caudalímetros de vórtices digitales.

Clasificación de los sensores

Según la naturaleza de la señal eléctrica generada:

Pasivos: Generan señales representativas de las magnitudes a medir por medio de una fuente auxiliar. Por ejemplo, sensores de parámetros variables (de resistencia variable, de capacidad variable, de inductancia variable).

Activos o generadores de señal: Generan señales representativas de las magnitudes a medir sin requerir de fuente alguna de alimentación. Por ejemplo, sensores piezoeléctricos, fotovoltaicos, termoeléctricos, electroquímicos, magnetoeléctricos

• ELEMENTO DE FUNCIONAMIENTO

 Es la parte del instrumento usada para: registrar, señalar, integrar, transmitir o indicar.

INSTRUMENTOS MANUALES

p.e. Puente de Wheatstone

INSTRUMENTOS AUTOMÁTICOS

p.e. Termómetro de vidrio

AUTOOPERADOS

p.e Termómetro de vidrio

NO AUTOOPERADOS

- Necesitan de energía externa (aire comprimido, electricidad, etc)