Master Practical Course Interactive Visual Data Analysis

Today

Assignment 11: Implement a paper!

Smoke Surfaces: An Interactive Flow Visualization Technique Inspired by Real-World Flow Experiments,

W. von Funck, T. Weinkauf, H. Theisel, and H.-P. Seidel, *IEEE Transactions on Visualization and Computer Graphics*, 14(6):1396–1403, 2008. (Homepage)

- You can build upon exisisting features like particle tracing and streak lines
- Some simplifications
- Let's have a look at streak surfaces first...

Streak Surfaces

- Reminder Streak Line: Repeatedly seed particles from a point, render as line strip
- Streak Surface: Repeatedly seed particles from a line/1D curve, triangulate and render surface

Streak Surfaces

- Seed a regular array of particles (n streak lines of length m with seeding points on a line)
- Surface triangulation: $2 \cdot (n-1) \cdot (m-1)$ triangles

Streak Surfaces

Problem: Particles can diverge arbitrarily need to adapt surface mesh after each advection step

Edge split / flip / collapse operations to adapt surface*

*Time and Streak Surfaces for Flow Visualization in Large Time-Varying Data Sets Krishnan, H., Garth, C.; Joy, K.I.

Smoke Surfaces

- Problem: Particles can diverge arbitrarily → need to adapt surface mesh after each advection step
- Smoke Surfaces: Avoid remeshing, couple shape of triangles to opacity (mimics thin layers of smoke)

Smoke Surfaces

Smoke Surfaces

Transparency & Depth

- Criteria for calculating triangle transparency are described in the paper
- Problem: Possibly multiple layers of smoke
 - → Depth sorting required
 - Sort all smoke triangles according to z-value (can fail)
 - Order independent transparency: Depth Peeling, Stencil Routed A-Buffer, Concurrent Linked Lists
- Next week: Concurrent Linked Lists

Blending Order

Blending of two fragments:

$$(C_{new}, \alpha_{new}) = (C_F, \alpha_F) \circ (C_B, \alpha_B)$$
 such that:

$$C_{new}\alpha_{new} = C_F\alpha_F + (1 - \alpha_F)C_B\alpha_B = C_F\alpha_F + C_B\alpha_B - C_B\alpha_F\alpha_B$$

$$\alpha_{new} = \alpha_F + (1 - \alpha_F)\alpha_B = \alpha_F + \alpha_B - \alpha_F\alpha_B$$

In general o is not commutative:

$$(C_F, \alpha_F) \circ (C_B, \alpha_B) \neq (C_B, \alpha_B) \circ (C_F, \alpha_F)$$

• Special case: If $C_F=C_B$, then \circ is commutative!

Order Independent Blending

- Simplification: Constant color
 - All layers of smoke have the same color (but alpha can vary)
 - No Phong lighting (no brighter and darker fragments)
 - No surface texture
- → Rendering order doesn't matter
- → Smoke surfaces will look rather unimpressive for now

Questions?