Appl. No. 10/617,436 Amdt. Dated December 6, 2004 Reply to Office action of September 21, 2004

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claim 1 (currently amended): A compound of Formula (I)

$$R^5$$
 R^4
 R^3
 R^3
 R^2
 R^3
 R^2

the stereoisomers and prodrugs thereof, and the pharmaceutically acceptable salts of said compounds, stereoisomers, and prodrugs, wherein:

W is oxygen, sulfur, -SO-, -S(O)₂, -CH₂-, -CF₂-, -CHF-, -C(O)-, -CH(OH)-, -NR^a, or -C(=CH₂)-;

 R^1 , R^2 , R^3 , and R^6 are each independently hydrogen, halogen, -(C_1 - C_8)alkyl, -CF₃, -O(C_1 - C_8)alkyl, or -CN;

 R^4 is hydrogen, -(C₁-C₁₂)alkyl substituted with zero to three substituents independently selected from Group V, -(C₂-C₁₂)alkenyl, -(C₂-C₁₂)alkynyl, halogen, -CN, -OR^b, -SR^c, -S(O)₂R^c, aryl, -(C₃-C₁₀)cycloalkyl, -S(O)₂NR^cR^d, -C(O)NR^cR^d, -C(O)OR^c, -NR^aC(O)R^d, -NR^aC(O)NR^cR^d, -NR^aS(O)₂R^d, or -C(O)R^c; or

 R^3 and R^4 are taken together along with the carbon atoms to which they are attached to form a carbocyclic ring of formula -(CH₂)_i- in which i is 3, 4, 5, or 6; and wherein said carbocyclic ring is substituted with zero to four substituents independently selected from -(C_1 - C_4)alkyl, -OR^b, oxo, -CN, phenyl, or - NR^aR⁸;

R⁵ is hydroxy, -O(C₁-C₆)alkyl, -OC(O)R^f, fluorine, or -C(O)OR^c;

 R^a for each occurrence is independently hydrogen, or $-(C_1-C_6)$ alkyl substituted with zero or one $-(C_3-C_6)$ cycloalkyl or methoxy;

 R^b for each occurrence is independently hydrogen, -(C₁-C₁₂)alkyl substituted with zero to three substituents independently selected from Group V, aryl, -(C₃-C₁₀)cycloalkyl, -C(O)NR^cR^d, or -C(O)R^f;

 R^c and R^d for each occurrence are each independently hydrogen, -(C_1 - C_{12})alkyl substituted with zero to three substituents independently selected from Group VI, -(C_2 - C_{12})alkenyl, -(C_2 - C_{12})alkynyl, aryl, or, -(C_3 - C_{10})cycloalkyl,

provided that when R^4 is the moiety $-SR^c$, $-S(O)R^c$, or $-S(O)_2R^c$, R^c is other than hydrogen;

 R^f for each occurence is independently -(C₁-C₁₀)alkyl substituted with zero to three substituents independently selected from Group VI, -(C₂-C₁₂)alkenyl, -(C₂-C₁₀)alkynyl, -(C₃-C₁₀)cycloalkyl, or aryl;

 R^g for each occurrence is independently hydrogen, -(C₁-C₆)alkyl, -(C₂-C₆)alkenyl, aryl, -C(O)R^f, -C(O)NR^aR^f, -S(O)₂R^f, or -(C₃-C₈)cycloalkyl;

Group V is halogen, -CF₃, -OCF₃, -OH, oxo, -(C₁-C₆)alkoxy, -CN, aryl, -(C₃-C₁₀)cycloalkyl, -SR^f, -S(O)₂R^f, -S(O)₂NR^aR^f, -NR^aR^g, or -C(O)NR^aR^f;

Group VI is halogen, hydroxy, oxo, - (C_1-C_6) alkoxy, aryl, - (C_3-C_8) cycloalkyl, -CN, or -OCF₃;

provided that when R^4 is $-(C_1-C_{12})$ alkyl substituted with zero to three substituents independently selected from Group V, wherein said Group V substituent is oxo, said oxo group is substituted on a carbon atom other than the C_1 carbon atom in $-(C_1-C_{12})$ alkyl;

aryl for each occurence is independently phenyl or naphthyl substituted with zero to four substituents independently selected from halogen, -(C_1 - C_6)alkyl, -CN, -SR^f, -S(O)₂R^f, -S(O)₂R^f, -(C_3 - C_6)cycloalkyl, -S(O)₂NR^aR^f, - NR^aR^g, -C(O)NR^aR^f, -OR^b, -perfluoro-(C_1 - C_4)alkyl, or -COOR^f;

provided that when said substituent(s) on aryl are $-SR^f$, $-S(O)R^f$, $-S(O)_2R^f$, $-S(O)_2NR^aR^f$, $-NR^aR^g$, $-C(O)NR^aR^f$, $-OR^b$, or $-COOR^f$, said substituents R^b , R^f , and R^g , are other than aryl or heteroaryl;

T-290

P.005/008 F-943

Appl. No. 10/617,436 Amdt. Dated December 6, 2004 Reply to Office action of September 21, 2004

PATENT PFIZER ANN ARBOR MI

X is

Claim 2 (original): A compound according to claim 1 wherein W is oxygen.

Claim 3 (previously amended): A compound according to claim 1 wherein:

R¹ is located at the 3-position and R² is located at the 5-position, wherein R¹ and R² are each independently hydrogen, -(C₁-C₆)alkyl, halogen, or -CN;

 R^3 is hydrogen, $-(C_1-C_4)$ alkyl or halogen;

R⁴ is -(C₁-C₁₀)alkyl substituted with zero to three substituents independently selected from fluoro, hydroxy, oxo, aryl, or -(C3-C8)cycloalkyl, S(O)2NR°Rd, - $C(O)NR^cR^d, -S(O)_2R^c, -(C_3-C_8) \\ cycloalkyl, -C(O)R^c, -OR^b, -SR^c, -S(O)R^c, -NR^aC(O)R^d, -NR^aC(O)R^d,$ -NR^aC(O)NR^aR^d, or -NR^aS(O)₂R^d; or

R³ and R⁴ are taken together along with the carbon atoms to which they are attached to form a carbocyclic ring of formula -(CH₂); in which i is 3, 4, 5 or 6; and wherein said carbocyclic ring is each substituted with zero to four substituents independently selected from -(C₁-C₄)alkyl, -OR^b, oxo, -CN, phenyl, or -NR^aR^g;

provided that when R⁴ is -(C₁-C₁₀)alkyl substituted with zero to three substituents, said oxo group is substituted on a carbon atom other than the C1 carbon atom in $-(C_1-C_{10})$ alkyl;

R⁵ is -OH, -OC(O)R^f, -C(O)OR^e, or -F; wherein R^f is-(C₁-C₁₀)alkyl substituted with zero to three substituents independently selected from Group VI;

R⁶ is hydrogen, halogen or -(C₁-C₄)alkyl; and

X is

Appl. No. 10/617,436 Amdt. Dated December 6, 2004 Reply to Office action of September 21, 2004

Claim 4 (previously amended): A compound according to claim 3 wherein

R¹ and R² are each independently hydrogen, -(C₁-C₆)alkyl, halogen, or -CN; R³ is hydrogen:

 R^4 is $-(C_1-C_{10})$ alkyl substituted with zero to three substituents independently selected from fluoro, hydroxy, oxo, aryl, or $-(C_3-C_8)$ cycloalkyl, $-S(O)_2NR^cR^d$, $-C(O)NR^cR^d$, $-S(O)_2R^c$, $-(C_3-C_8)$ cycloalkyl, $-C(O)R^c$, $-OR^b$, $-SR^c$, $-S(O)R^c$, $-NR^aC(O)R^c$, $-NR^aC(O)NR^cR^d$, or $-NR^aS(O)_2R^d$;

R⁵ is -OH, fluoro, or -OC(O)R^f wherein R^f is-(C₁-C₁₀)alkyl substituted with zero to three substituents independently selected from Group VI; and

R⁶ is hydrogen.

Claim 5 (previously amended): A compound according to claim 4 wherein

R¹ and R² are both methyl, bromo, or chloro;

 $R^4 \text{ is } -(C_1\text{-}C_{10}) \text{alkyl, substituted with zero to two substituents independently} \\ \text{selected from fluoro, hydroxy, oxo, aryl, or } -(C_3\text{-}C_8) \text{cycloalkyl, } S(O)_2 NR^cR^d, -\\ C(O)NR^cR^d, -S(O)_2 R^c, -(C_3\text{-}C_8) \text{cycloalkyl,} -C(O)R^c, -OR^b, -SR^c, -S(O)R^c, -NR^aC(O)R^d, -NR^aC(O)NR^cR^d, \text{ or } -NR^aS(O)_2 R^d; \text{ and} \\ \\ -NR^aC(O)NR^cR^d, \text{ or } -NR^aS(O)_2 R^d; \text{ and} \\ \\ \\ \frac{1}{2} \frac{$

R⁵ is -OH.

Claim 6 (previously amended): A compound selected from the group consisting of:

2-[3,5-dichloro-4-(4-hydroxy-3-isopropyl-phenoxy)-benzyl]-

[1,2,4]oxadiazolidine-3,5-dione;

Appl. No. 10/617,436 Amdr. Dated December 6, 2004 Reply to Office action of September 21, 2004

2-[4-(3-isopropyl-4-methoxy-phenoxy)-3,5-dimethyl-benzyl]-

[1,2,4]oxadiazolidine-3,5-dione; and;

2-[4-(4-hydroxy-3-isopropyl-phenoxy)-3,5-dimethyl-benzyl]-

[1,2,4]oxadiazolidine-3,5-dione;

the stereoisomers and prodrugs thereof, and the pharmaceutically acceptable salts of said compounds, stereoisomers, and prodrugs.

Claims 7-17 (previously cancelled)

Claim 18 (original): A pharmaceutical composition comprising a compound of Formula (I), a stereoisomer or prodrug thereof, or a pharmaceutically acceptable salt of said compound, stereoisomer or prodrug, as defined in claim 1.

Claims 19-25 (previously cancelled)
Claims 26 and 27 (cancelled)