Esame scritto di Geometria 2

UNIVERSITÀ DEGLI STUDI DI TRENTO CORSO DI LAUREA IN MATEMATICA A.A. 2014/2015 Settembre 2015

Esercizio 1

Sia \mathbb{E}^4 lo spazio euclideo a quattro dimensioni con un sistema di coordinate cartesiane (x,y,z,w) di centro O. Si considerino la retta r passante per il punto P:(1,2,0,-1) e avente direttrice $d_r=(-1,0,0,1)$, il sottospazio euclideo s:x+w-2=y-z-3=z+w=0 e il punto Q tale che $\overrightarrow{PQ}=(3,0,2,1)$.

- Ricavare delle equazioni cartesiane per il piano π parallelo a r e a s e passante per Q;
- Dire se esiste un piano τ ortogonale a π che interseca π esattamente in Q. In caso affermativo scriverne delle equazioni cartesiane.
- Calcolare la proiezione ortogonale del punto P su π e su τ .

Esercizio 2

Sia \mathbb{P}^2 il piano proiettivo reale e sia $[x_0, x_1, x_2]$ un sistema di coordinate proiettive. Si consideri, al variare del parametro $k \in \mathbb{R}$, la conica di equazione

$$\mathscr{C}_k: kx_0^2 + 2kx_0x_2 + (2-2k)x_1x_2 + (1-k)x_2^2 = 0.$$

- Si dica per quali valori di k, \mathcal{C}_k è degenere e si classifichi \mathcal{C}_k per questi valori;

Esercizio 3

Si consideri \mathbb{R}^2 munito della topologia euclidea e il suo sottospazio $X = \mathbb{R} \times [-1, 1]$. Si consideri la relazione di equivalenza

$$(x_1, y_1) \sim (x_2, y_2) \iff (x_1, y_1) = (x_2, y_2)$$
 oppure

$$x_1 = -x_2 = 1$$
 e $y_1 = -y_2$ oppure $x_1 = -x_2 = -1$ e $y_1 = -y_2$

Si consideri $Y := X / \sim$ munito della topologia quoziente e la relativa proiezione π da X a Y.

- Si dica se *Y* è compatto o connesso;
- Detti $P_n := \pi\left(\left((-1)^n, \frac{1}{n}\right)\right)$ e $Q_n := \pi\left(\left(\frac{1}{n}, (-1)^n\right)\right)$ dire se le successioni $\{P_n\}_{n\geq 1}$ e $\{Q_n\}_{n\geq 1}$ hanno limite.
- Ricavare un sottospazio Z di X tale che $\pi(Z)$ è omeomorfo a una circonferenza.

Esercizio 4

Sia $X = [-1, 1) \times [-1, 1]$ munito della distanza $d: X \times X \to \mathbb{R}$ tale che

$$d((x_1,y_1),(x_2,y_2)) = \sqrt{\min(|x_2-x_1|,2-|x_2-x_1|)^2 + (y_2-y_1)^2}.$$

- Si rappresentino le bolle $B_{1/2}(0,1)$ e $B_{1/2}(-1,0)$ (bolle rispetto alla distanza d);
- Si scriva, giustificando la risposta, un aperto denso *A* diverso da *X*;
- Detti $P_n := \left(1 \frac{1}{n}, \frac{1}{4}\right)$ e $Q_n := \left(\frac{1}{4}, (-1)^n \left(1 \frac{1}{n}\right)\right)$ dire se la successione $\{P_n\}_{n \ge 1}$ converge e se $\{Q_n\}_{n > 1}$ è di Cauchy.

Soluzione dell'esercizio 1

Ricaviamo la giacitura del sottospazio euclideo *s* (che è una retta poichè le 3 equazioni che lo definiscono sono indipendenti). Per farlo otteniamo prima una scrittura parametrica di *s*.

$$s: \begin{cases} x+w-2=0 \\ y-z-3=0 \\ z+w=0 \end{cases} \begin{cases} x=-w+2 \\ y=z+3 \\ z=-w \end{cases} \begin{cases} x=2-t \\ y=3-t \\ z=-t \\ w=t \end{cases}$$

La giacitura di s è quindi generata da $d_s := (1,1,1,-1)$. Un Siccome il piano π deve essere parallelo tanto a r quanto a s, abbiamo che le giaciture di r e di s devono essere sottospazi vettoriali di $G(\pi)$. Siccome $d_r = (-1,0,0,1)$ e d_s sono indipendenti e siccome $\dim(G(\pi)) = 2$ per ipotesi, abbiamo che una base per $G(\pi)$ è $\{d_r,d_s\}$. Siccome π passa per il punto

$$Q = P + \overrightarrow{PQ} = (1, 2, 0, -1) + (3, 0, 2, 1) = (4, 2, 2, 0),$$

possiamo quindi scrivere delle equazioni parametriche per π :

$$\pi: \left\{ \begin{array}{l} x = 4 - t - u \\ y = 2 - u \\ z = 2 - u \\ w = t + u \end{array} \right.$$

Ricavando i parametri e andando a sostituire otteniamo le equazioni cartesiane cercate:

$$\pi: \begin{cases} u = 2 - z \\ x = 4 - t - 2 + z = 2 - t + z \\ y = z \\ w = t + 2 - z \end{cases} \begin{cases} u = 2 - z \\ t = 2 - x + z \\ y = z \\ w = 2 - x + z + 2 - z = 4 - x \end{cases} \begin{cases} y - z = 0 \\ w + x - 4 = 0 \end{cases}$$

Il piano τ esiste perchè siamo nello spazio euclideo di dimensione 4. Per la precisione è il piano passante per Q la cui giacitura è il complemento ortogonale di $G(\pi)$ in \mathbb{R}^4 . Abbiamo quindi

$$G(\tau) = G(\pi)^{\perp} = \{ v = (a, b, c, d) \in \mathbb{R}^4 \mid \langle v, d_r \rangle = \langle v, d_s \rangle = 0 \} =$$

$$= \{ (a, b, c, d) \in \mathbb{R}^4 \mid d - a = a + b + c - d = 0 \} = \{ (a, b, c, d) \in \mathbb{R}^4 \mid a - d = b + c = 0 \}.$$

che quindi è generata dai vettori $v_1 = (1,0,0,1)$ e $v_2 = (0,1,-1,0)$. Delle equazioni parametriche per τ sono quindi

$$\tau: \begin{cases} x = 4 + t \\ y = 2 + u \\ z = 2 - u \\ w = t \end{cases}$$

da cui si ricavano le equazioni cartesiane

$$\begin{cases} x - w - 4 = 0 \\ y + z - 4 = 0 \end{cases}.$$

Definiamo, per comodità, i due versori $u_i := \frac{1}{|v_i|} v_i$ per $i \in \{1,2\}$ che costituiscono una base ortonormale di $G(\tau)$. Per proiettare il punto P su τ basta proiettare il vettore \overrightarrow{QP} sulla giacitura di τ . Questa proiezione è data dal vettore

$$f_{\tau} := \langle \overrightarrow{OP}, u_1 \rangle u_1 + \langle \overrightarrow{OP}, u_2 \rangle u_2 =$$

$$= -\frac{\sqrt{2}}{2} < (3,0,2,1), (1,0,0,1) > u_1 - \frac{\sqrt{2}}{2} < (3,0,2,1), (0,1,-1,0) > u_2 = -4\frac{\sqrt{2}}{2}u_1 + 2\frac{\sqrt{2}}{2}u_2 = -2v_1 + v_2 = (-2,1,-1,-2)$$

da cui si ricava anche la proiezione f_{π} di \overrightarrow{QP} di $G(\pi)$ per differenza:

$$f_{\pi} := \overrightarrow{QP} - f_{\tau} = (-3, 0, -2, -1) - (-2, 1, -1, -2) = (-1, -1, -1, 1).$$

I punti cercati sono quindi

$$P_{\pi} = Q + f_{\pi} = (4, 2, 2, 0) + (-1, -1, -1, 1) = (3, 1, 1, 1),$$

 $P_{\tau} = Q + f_{\tau} = (4, 2, 2, 0) + (-2, 1, -1, -2) = (2, 3, 1, -2).$

Soluzione dell'esercizio 2

La matrice della conica è

$$A_k = \begin{bmatrix} k & 0 & k \\ 0 & 0 & 1 - k \\ k & 1 - k & 1 - k \end{bmatrix}$$

il cui determinante è

$$\operatorname{Det}(A_k) = (k-1) \left| \begin{bmatrix} k & k \\ 0 & 1-k \end{bmatrix} \right| = -k(k-1)^2.$$

La conica è quindi degenere se e solo se $k \in \{0,1\}$. Per questi due valori la conica si scrive come

$$\mathscr{C}_0: x_1x_2 + x_2^2 = 0$$
 $\mathscr{C}_1: x_0^2 + x_0x_2 = 0$

e quindi, in entrambi i casi si decompone come l'unione di due rette incidenti (e non coincidenti) di \mathbb{P}^2 (per la precisione $x_1 + x_2 = 0$ e $x_2 = 0$ per la prima conica e x_0 e $x_0 + x_2 = 0$ per la seconda conica). In entrambi i casi l'equazione canonica è quindi $X_0^2 - X_1^2 = 0$.

Poniamo ora k = 2. La matrice è

$$A_2 = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 0 & -1 \\ 2 & -1 & -1 \end{bmatrix}$$

e il suo determinante è pari a $-2(2-1)^2 = -2$. La traccia è 1 quindi almeno un autovalore è positivo. Usando l'informazione sul segno del determinante l'unica possibilità per la segnatura della matrice è (2,1). La forma canonica di \mathcal{C}_2 è $X_0^2 + X_1^2 - X_2^2 = 0$. Per ottenere la proiettività completiamo i quadrati:

$$0 = 2x_0^2 + 4x_0x_2 - x_2^2 - 2x_1x_2 = 2x_0^2 + 4x_0x_2 + \underline{2x_2^2} - \underline{2x_2^2} - x_2^2 - 2x_1x_2 =$$

$$= 2(x_0 + x_2)^2 - 3\left(x_2^2 - 2\frac{1}{3}x_1x_2 + \frac{1}{9}x_1^2 - \frac{1}{9}x_1^2\right) = (\sqrt{2}(x_0 + x_2))^2 - \left(\sqrt{3}\left(x_2 - \frac{1}{3}x_1\right)\right)^2 + \frac{1}{3}x_1^2 =$$

$$= (\sqrt{2}(x_0 + x_2))^2 + \left(\frac{\sqrt{3}}{3}x_1\right)^2 - \left(\sqrt{3}\left(x_2 - \frac{1}{3}x_1\right)\right)^2$$

Una proiettività che riduce a forma canonica è quindi

$$\begin{cases} X_0 = \sqrt{2}(x_0 + x_2) \\ X_1 = \frac{\sqrt{3}}{3}x_1 \\ X_2 = \sqrt{3}(x_2 - \frac{1}{3}x_1) \end{cases}$$

Soluzione dell'esercizio 3

Siccome X è prodotto di spazi connessi ([-1,1] e \mathbb{R} muniti della topologia euclidea) è esso stesso connesso. Essendo π continua abbiamo che $\pi(X) = Y$ è connesso¹.

Mostriamo che Y non è compatto scrivendo un ricoprimento aperto che non ammette un sottoricoprimento finito. Per farlo basta ricavare un ricoprimento di aperti saturi di X che non ha un sottoricoprimento finito. Si consideri la collezione $\mathscr U$ composta dagli insiemi

$$U_n := (-n, n) \times [-1, 1]$$

i quali sono aperti in X perchè U_n è intersezione di un aperto di \mathbb{R}^2 con $X:U_n=((-n,n)\times (-2,2))\cap X$. Si vede facilmente che è un ricoprimento di X che non ammette un sottoricoprimento finito. Per concludere basta mostrare che gli U_n sono aperti saturi. La classe di equivalenza di (x,y) con $x\neq \pm 1$ è $[(x,y)]=\{(x,y)\}$ mentre le altre classi di equivalenza sono composte da due punti cioè sono insiemi del tipo $\{(1,y),(-1,-y)\}$. Da ciò si conclude immediatamente che U_n è saturo e si deduce quindi che Y (come X) non è compatto.

Gli insiemi $U_1 = (-1/2, 1/2) \times (1/2, 1]$ e $U_2 = (-1/2, 1/2) \times [-1, -1/2)$ sono aperti saturi disgiunti da cui deduciamo che $V_i = \pi(U_i)$ sono aperti disgiunti di Y. Siccome ci sono infiniti termini della successione $\{Q_n\}$ in V_1 e in V_2 (per la precisione $Q_{2m} \in V_1$ e $Q_{2m+1} \in V_2$ per $m \ge 1$) si ha che questa successione non può avere limite.

Mostriamo che P = [(1,0)] è il limite della successione $\{P_n\}_{n\geq 1}$. Se V è un arbitrario intorno aperto di P allora $\pi^{-1}(V) = U$ è un aperto saturo che contiene tutti i punti della classe di equivalenza di (1,0) cioè che contiene $\{(1,0),(-1,0)\}$. Questo vuol dire che U deve contenere un intorno aperto A di (1,0) e un intorno aperto B di (-1,0). In particolare $((-1)^{2n},\frac{1}{2n})=(1,\frac{1}{2n})$ è definitivamente in A mentre $((-1)^{2n+1},\frac{1}{2n+1})=(-1,\frac{1}{2n+1})$ è definitivamente in B: questo vuol dire che P_n è definitivamente in U. Quindi P è limite della successione.

Si consideri una circonferenza C contenuta in $W:=[2,+\infty)\times[-1,1]$ (ad esempio $C=\{(x,y)\,|\,(x-4)^2+y^2=1\}$). Siccome la relazione di equivalenza è banale sui punti di W si ha che $\pi|_W$ è un omeomorfismo tra W e $\pi(W)$. Di conseguenza $\pi(C)$ è omeomorfa a una circonferenza e possiamo soddisfare le richieste ponendo Z:=C. Un'altra possibilità (tra le tante!) è quella di considerare l'insieme $D:=[-1,1]\times\{0\}$. La relazione di equivalenza è banale nei punti di $(-1,1)\times\{0\}$ mentre gli altri due punti, gli estremi, sono in relazione tra di loro. Operativamente stiamo prendendo un intervallo chiuso sull'asse x e stiamo incollando i suoi estremi: il quoziente $\pi(D)$ è una circonferenza e possiamo quindi porre Z:=D.

Soluzione dell'esercizio 4

Incominciamo a considerare i punti che appartengono alla bolla $B_{1/2}(0,1)$. Un punto (x,y) di X è in $B_{1/2}(0,1)$ se e solo se

$$d((x,y),(0,1)) = \sqrt{\min(|-x|,2-|x|)^2 + (1-y)^2} < \frac{1}{2}.$$

Siccome $|x| \le 2 - |x|$ per ogni $x \in [-1, 1)$, avremo che l'ultima formula diventa

$$d((x,y),(0,1)) = \sqrt{x^2 + (y-1)^2} < \frac{1}{2}.$$

In particolare, la palla $B_{1/2}(0,1)$ è composta da tutti e soli i punti di X che hanno distanza euclidea minore di 1/2 da (0,1).

¹Non possiamo trarre la stessa conclusione per la compattezza infatti non è vero che l'immagine di uno spazio non compatto tramite un'applicazione continua non è compatta.

Un punto (x,y) appartiene invece a $B_{1/2}(-1,0)$ se e solo se

$$d((-1,0),(x,y)) = \sqrt{\min(|x+1|,2-|x+1|)^2 + y^2} < \frac{1}{2}.$$

Siccome $|x+1| \le 2 - |x+1|$ se e solo se $x \in [-1,0]$, dovremo distinguere i due casi. Se $x \le 0$ la formula diventa

$$d((x,y),(0,1)) = \sqrt{(x+1)^2 + y^2} < \frac{1}{2}$$

cioè abbiamo tutti i punti di X che appartengono alla palla euclidea di raggio 1/2 e centro (-1,0). Se invece x > 0 (e quindi x + 1 > 0), da

$$d((x,y),(0,1)) = \sqrt{(x-1)^2 + y^2} < \frac{1}{2}$$

otteniamo tutti i punti di X che appartengono alla palla euclidea di raggio 1/2 e centro (1,0). Si veda la figura per una rappresentazione delle palle aperte².

Siccome X è metrico (e quindi T_1 con la topologia indotta da d) abbiamo che $\{(0,1)\}^C$ è un aperto. Dalla descrizione appena fatta degli aperti è chiaro che ogni intorno aperto del punto (0,1) deve contenere infiniti punti. In particolare, $\{(0,1)\}$ non è aperto e $\{(0,1)\}^C$ non è chiuso. La chiusura dell'aperto $\{(0,1)\}^C$ non può che coincidere con X quindi possiamo porre $A = X \setminus \{(0,1)\}$.

Siano $P_n := \left(1 - \frac{1}{n}, \frac{1}{4}\right)$ e $Q_n := \left(\frac{1}{4}, (-1)^n \left(1 - \frac{1}{n}\right)\right)$. Mostriamo che $\{P_n\}_{n \ge 1}$ converge a P = (-1, 1/4). Siccome

$$\left|2 - \frac{1}{n}\right| > 2 - \left|2 - \frac{1}{n}\right|$$

per ogni n avremo

$$d(P,P_n) = \sqrt{\left(\frac{1}{n}\right)^2} = \frac{1}{n}$$

²In figura è rappresentato lo spazio X con evidenziati (in blu e verde) i punti che appartengono alle bolle aperte $B_{1/2}(0,1)$ e $B_{1/2}(-1,0)$ rispettivamente. Attenzione alle linee tratteggiate!

che converge a 0: questo basta per concludere che la successione ha P come limite. Mostriamo che $\{Q_n\}_{n\geq 1}$ è non è di Cauchy. Per ogni n,m avremo

$$d(Q_n, Q_m) = \sqrt{\left((-1)^m \left(1 - \frac{1}{m}\right) - (-1)^n \left(1 - \frac{1}{n}\right)\right)^2}.$$

Se n e m hanno la stessa parità avremo

$$d(Q_n, Q_m) = \sqrt{\left(\frac{1}{m} - \frac{1}{n}\right)^2} = \left|\frac{1}{m} - \frac{1}{n}\right|$$

che possiamo controllare con un numero arbitrariamente piccolo mentre se n e m hanno parità opposta avremo

$$d(Q_n, Q_m) = \sqrt{\left(2 - \frac{1}{m} - \frac{1}{n}\right)^2} = \left|2 - \left(\frac{1}{n} + \frac{1}{m}\right)\right|.$$

Per n e m grandi avremo che $|n^{-1} + m^{-1}|$ è piccolo quindi possiamo maggiorare (definitivamente) la distanza, ad esempio, con 1. Questo basta per mostrare che la successione non è di Cauchy.