# O Mundo do Aspirador de Pó

Elvis Herandes Ribeiro — Jan Pierre Agenciano da Silva Rocha Lucas Leite de Oliveira

Outubro 2018

#### Resumo

Esse trabalho tem como objetivo simular um mundo de aspirador de pó melhor do que foi mostrado para nós em sala de aula, e para isso usamos de alguns artifícios da Inteligência Artificial como uma busca baseada no algoritmo de Dijkstra, para achar o melhor caminho possível para recolher o máximo de sujeira, e métodos para simular a sujeira em uma sala que ficasse o mais próximo de realidade possível.

# Sumário

| 1        | Intr              | rodução                    |   |  |  |  |  |  |  |  |  |
|----------|-------------------|----------------------------|---|--|--|--|--|--|--|--|--|
| <b>2</b> | Desenvolvimento   |                            |   |  |  |  |  |  |  |  |  |
|          | 2.1 Ambiente      |                            |   |  |  |  |  |  |  |  |  |
|          | 2.2               | Agente                     | 4 |  |  |  |  |  |  |  |  |
|          |                   | 2.2.1 Sensores             | 4 |  |  |  |  |  |  |  |  |
|          |                   | 2.2.2 Atuadores            | 4 |  |  |  |  |  |  |  |  |
|          | 2.3               | Função do Agente           | 4 |  |  |  |  |  |  |  |  |
|          | 2.4               | Programa do Agente         | 4 |  |  |  |  |  |  |  |  |
|          |                   | 2.4.1 Busca                | 4 |  |  |  |  |  |  |  |  |
|          |                   | 2.4.2 Método de Penalidade | , |  |  |  |  |  |  |  |  |
|          | 2.5               | Aprendizado                | , |  |  |  |  |  |  |  |  |
| 3        | Execução e Testes |                            |   |  |  |  |  |  |  |  |  |
| 4        | Con               | nclusão                    |   |  |  |  |  |  |  |  |  |

## 1 Introdução

O mundo do aspirador de pó estudado em sala, consiste em um robô que não conhece nada mais do que seu estado atual e se esse espaço possui sujeira, e a partir disso ele tem apenas três ações para ser feito, 2 de movimentação, que é mover-se para direita ou esquerda e a opção de sugar caso no lugar exista alguma sujeira.

Na nossa adaptação além da opção de sugar, o robô pode ter 8 opções de movimento, e aprendizado, que através de um algoritmo de busca, define quais os lugares de uma sala sujam mais e que devem ser limpos com uma frequência maior do que os outros lugares, podendo fazer uma adaptação nesse caminho caso a sujeira repentinamente mude de lugar.

### 2 Desenvolvimento

Nesse tópico vamos falar um pouco mais de pontos críticos e que são importantes para a nossa simulação.

#### 2.1 Ambiente

Um ambiente em inteligência artificial significa o lugar em que o agente vai atuar.

O nosso ambiente é representado por duas salas, uma representa a sala real que é o que realmente vemos e que realmente possui o valor da sujeira, e a outra sala que chamamos de sala virtual que representa uma estimativa da porcentagem de sujeira que pode ter em cada lugar.

Para representarmos mais especificamente cada lugar, é preciso uma abstração melhor do que é cada sala, então para isso, dividimos as salas em quadrantes, pois a partir de agora podemos ter dados mais preciso de cada lugar no ambiente.

| Sa                         | la Virt                    | ual                        | Sala Real       |                 |                 |  |
|----------------------------|----------------------------|----------------------------|-----------------|-----------------|-----------------|--|
| ID:0<br>p: 0,00<br>af:0,01 | ID:1<br>p: 0,05<br>af:0,21 | ID:2<br>p: 0,12<br>af:0,15 | ID:0<br>s: 0,00 | ID:1<br>s: 0,50 | ID:2<br>s: 2,30 |  |
| ID:3<br>p: 0,16<br>af:0,32 | D:4<br>p: 0,38<br>af:0,77  | ID:5<br>p: 0,09<br>af:0,41 | ID:3<br>s: 2,80 | 1D:4<br>s: 2,60 | ID:5<br>s: 1,20 |  |
| ID:6<br>p: 0,20<br>af:0,41 | ID:7<br>p: 0,35<br>af:0,43 | ID:8<br>p: 0,20<br>af:0,41 | ID:6<br>s: 2,80 | ID:7<br>s: 4,40 | ID:8<br>s: 2,60 |  |

Figura 1: À esquerda, a estimativa que o agente faz sobre a sala. À direita, a sala real.

Cada quadrante possui seus atributos, que se difere para cada tipo de sala. No caso da sala real, cada quadrante possui o seu Id, a sujeira que possui no chão, e um multiplicador de sujeira, que é utilizado para incrementar a sujeira a cada espaço de tempo e simular

o acumulo em um determinado local. Já na sala virtual, eles possuem a porcentagem de sujeira e alguns outros atributos que são usados para que o robô utilize na busca de um caminho ideal de limpeza, o que gera a aprendizagem dele.

### 2.2 Agente

Um Agente é tudo que pode ser considerado capaz de perceber seu ambiente por meio de sensores e de agir sobre esse ambiente por meio de atuadores. No projeto, o robô é o nosso agente e ele usa alguns sensores para saber o que acontece no ambiente, e de acordo com o que esses sensores fazem, as ações são tomadas pelos atuadores que agem no ambiente.

#### 2.2.1 Sensores

Os sensores são uados para que o agente se comunique com o ambiente. Nós utilizamos dois tipos de sensores, o HPS (Home Positioning System), que ajuda o agente a se localizar no ambiente normalmente, e um sensor de sujeira, que é responsável por saber o quanto de sujeira ele coletou em cada quadrante que ele passa da sala real.

#### 2.2.2 Atuadores

Os atuadores são os responsáveis por receber determinada ação e colocar em prática então, como atuadores nós possuímos as rodinhas, pois são elas que possibilitam o robô se mover no ambiente nas posições definidas na imagem 1.0, e a ação de sugar uma sujeira de um determinado local, que é de muita importância para o objetivo do robô.

### 2.3 Função do Agente

A função do agente define o comportamento do agente em determinada situação, ela mapeia qualquer sequência de percepções específica para uma ação, e é isso que a nossa busca faz.

## 2.4 Programa do Agente

Os programas de agentes é o responsável por implementar a função do agente e ele tem como entrada somente a percepção atual, como a entrada dos sensores, e é dele que se espera a ação que será feita e passada para que os atuadores executem.

Para isso nós aplicamos um algoritmo de busca, que tende a achar um caminho ideal para coletar sujeira que deve ser percorrido toda vez pelo robô.

#### 2.4.1 Busca

A nossa busca é baseada em um algoritmo que é aplicado em grafos chamado Dijkstra, então para isso a primeira coisa que precisamos fazer é transformar a matriz que possuímos e que simboliza uma sala em um grafo direcionado, onde todos os quadrantes adjacentes são vizinhos dele, e a porcentagem de ter sujeira no lugar é o peso da aresta.

O algoritmo de Dijktra basicamente nos retorna a distância do quadrante atual para todas os outros quadrantes, então precisamos calcular o inverso da porcentagem já que queremos o caminho mais sujo, sendo assim ele sabe o caminho que deve ser percorrido para chegar em um determinado lugar e que tenha o maior número de sujeira, então basta o robô percorrer esse caminho e ir limpado todas as casas que ele passar. Acontece que a medida que o algoritmo vai rodando, o robô começa a aprender um caminho que tende ao ótimo, graças a aprendizagem que implementamos.

#### 2.4.2 Método de Penalidade

A penalidade é algo importante pois graças a ela podemos quantificar se o caminho que o robô percorreu foi bom ou ruim.

No nosso projeto, a primeira coisa que o robô faz é limpar a sala completamente para que podemos incluir o  $\alpha$  inicial em cada quadrante da sala virtual, a partir daí o robô começa a executar a busca e vai percorrer vários caminhos coletando sujeira, à medida que o robô coleta a sujeira na sala real, nós verificamos se o tanto de sujeira que nós coletamos correspondia a sujeira que a gente esperava que tivesse naquele lugar.

Se o valor for próximo, nós não ajustamos a porcentagem, agora caso a sujeira tenha uma discrepância muito grande do esperado, nós aumentamos o  $\alpha$ da sujeira naquele lugar, sendo assim o nosso robô vai começar a passar mais vezes no quadrante, e vai adaptando de acordo com o tempo.

### 2.5 Aprendizado

O aprendizado na inteligência artificial é algo muito importante, pois todo agente racional precisa aprender a partir do que ele percebe para que ele possa ter uma autonomia e compensar um conhecimento prévio e incorreto.

Sendo assim o nosso robô possui um aprendizado, graças a abstração de sala que construímos no tópico anterior, pois ele não pode acessar a sala real, somente a sala virtual, então é através da sala que calculamos uma probabilidade que chamamos de  $\alpha$ , é ela que define pra qual lugar o robô vai, dentro da sala virtual, e esse  $\alpha$  ele vai adaptando a sala real, até que chega um ponto que o robô será capaz de achar o caminho ótimo para limpar a sala.

## 3 Execução e Testes

Para simular o desempenho do robô ao longo do tempo, assumimos que o ambiente está sempre se sujando. O objetivo é que no infinito ele consiga adaptar a sala virtual de modo que fique idêntica à sala real.

Como é difícil analisar as duas salas e definir uma norma que calcule o quanto uma sala está distante da outra, usamos um fator de comparação que é dado pela seguinte razão:

$$\frac{sujeiraColetada}{distanciaPercorrida} \tag{1}$$

, ou seja, a sujeira coletada influencia positivamente na pontuação e a distância percorrida, negativamente.

Para ilustrar a eficiencia do agente com a Busca citada na seção 2.4.1, comparemos com a busca Subida de Encosta.

Ambas as buscas começarão com o mesmo cenário retratado na figura 3 Com um teste de 1 minuto obtemos os seguintes resultados:

| Sala Virtual                |                             |                             |                             |                             |                             |                             |                  |                  | Sa               | la Real          | l                |                  |                  |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| t:0,00                      | ID:1<br>p: 0,00<br>af:0,00  | ID:2<br>p: 0,00<br>af:0,00  | ID:3<br>p: 0,00<br>af:0,00  | ID:4<br>p: 0,00<br>af:0,00  | ID:5<br>p: 0,00<br>af:0,00  | ID:6<br>p: 0,00<br>af:0,00  | ID:0<br>s: 1,09  | ID:1<br>s: 1,09  | ID:2<br>s: 1,09  | ID:3<br>s: 1,09  | ID:4<br>s: 1,09  | ID:5<br>s: 1,09  | ID:6<br>s: 1,09  |
| ID:7<br>p: 0,00<br>af:0,00  | D:8<br>p: 0,00<br>af:0,00   | ID:9<br>p: 0,00<br>af:0,00  | ID:10<br>p: 0,00<br>af:0,00 | ID:11<br>p: 0,00<br>af:0,00 | ID:12<br>p: 0,00<br>af:0,00 | ID:13<br>p: 0,00<br>af:0,00 | ID:7<br>s: 2,08  | ID:8<br>s: 2,08  | ID:9<br>s: 2,08  | ID:10<br>s: 2,08 | ID:11<br>s: 2,08 | ID:12<br>s: 2,08 | ID:13<br>s: 2,08 |
| ID:14<br>p: 0,00<br>af:0,00 | ID:15<br>p: 0,00<br>af:0,00 | ID:16<br>p: 0,00<br>af:0,00 | ID:17<br>p: 0,00<br>af:0,00 | ID:18<br>p: 0,00<br>af:0,00 | ID:19<br>p: 0,00<br>af:0,00 | ID:20<br>p: 0,00<br>af:0,00 | ID:14<br>s: 3,07 | ID:15<br>s: 3,07 | ID:16<br>s: 3,07 | ID:17<br>s: 3,07 | ID:18<br>s: 3,07 | ID:19<br>s: 3,07 | ID:20<br>s: 3,07 |
| ID:21<br>p: 0,00<br>af:0,00 | ID:22<br>p: 0,00<br>af:0,00 | ID:23<br>p: 0,00<br>af:0,00 | ID:24<br>p: 0,00<br>af:0,00 | ID:25<br>p: 0,00<br>af:0,00 | ID:26<br>p: 0,00<br>af:0,00 | ID:27<br>p: 0,00<br>af:0,00 | ID:21<br>s: 4,06 | ID:22<br>s: 4,06 | ID:23<br>s: 4,06 | ID:24<br>s: 4,06 | ID:25<br>s: 4,06 | ID:26<br>s: 4,06 | ID:27<br>s: 4,06 |
| ID:28<br>p: 0,00<br>af:0,00 | ID:29<br>p: 0,00<br>af:0,00 | ID:30<br>p: 0,00<br>af:0,00 | ID:31<br>p: 0,00<br>af:0,00 | ID:32<br>p: 0,00<br>af:0,00 | ID:33<br>p: 0,00<br>af:0,00 | ID:34<br>p: 0,00<br>af:0,00 | ID:28<br>s: 5,05 | ID:29<br>s: 5,05 | ID:30<br>s: 5,05 | ID:31<br>s: 5,05 | ID:32<br>s: 5,05 | ID:33<br>s: 5,05 | ID:34<br>s: 5,05 |
| ID:35<br>p: 0,00<br>af:0,00 | ID:36<br>p: 0,00<br>af:0,00 | ID:37<br>p: 0,00<br>af:0,00 | ID:38<br>p: 0,00<br>af:0,00 | ID:39<br>p: 0,00<br>af:0,00 | ID:40<br>p: 0,00<br>af:0,00 | ID:41<br>p: 0,00<br>af:0,00 | ID:35<br>s: 6,04 | ID:36<br>s: 6,04 | ID:37<br>s: 6,04 | ID:38<br>s: 6,04 | ID:39<br>s: 6,04 | ID:40<br>s: 6,04 | ID:41<br>s: 6,04 |
| ID:42<br>p: 0,00<br>af:0,00 | ID:43<br>p: 0,00<br>af:0,00 | ID:44<br>p: 0,00<br>af:0,00 | ID:45<br>p: 0,00<br>af:0,00 | ID:46<br>p: 0,00<br>af:0,00 | ID:47<br>p: 0,00<br>af:0,00 | ID:48<br>p: 0,00<br>af:0,00 | ID:42<br>s: 7,03 | ID:43<br>s: 7,03 | ID:44<br>s: 7,03 | ID:45<br>s: 7,03 | ID:46<br>s: 7,03 | ID:47<br>s: 7,03 | ID:48<br>s: 7,03 |

Figura 2: Cenário inicial para ambas as buscas.

| Tempo(s) | Rendimento(fórmula 1) |                   |  |  |  |  |
|----------|-----------------------|-------------------|--|--|--|--|
|          | Dijkstra              | Subida de Encosta |  |  |  |  |
| 10       | 0.53170               | 0.43959           |  |  |  |  |
| 20       | 0.74868               | 0.80468           |  |  |  |  |
| 30       | 0.79132               | 0.73555           |  |  |  |  |
| 40       | 0.87517               | 0.67400           |  |  |  |  |
| 50       | 0.91933               | 0.81358           |  |  |  |  |
| 60       | 0.93009               | 0.76911           |  |  |  |  |
| 70       | 0.94247               | 0.86631           |  |  |  |  |
| 80       | 0.93870               | 0.81006           |  |  |  |  |
| 90       | 0.94807               | 0.91759           |  |  |  |  |
| 100      | 0.96556               | 0.87719           |  |  |  |  |

Tabela 1: Evolução dos dois algoritmos ao decorrer do tempo.



Grafico 1:Evolução da busca com Dijkstra ao decorrer do tempo.



Grafico 2:Evolução da busca com subida de encosta ao decorrer do tempo.

Podemos observar pela tabela e pelos gráficos que a busca com Dijkstra está em aprendizado linear, enquanto a busca em subida de encosta é um tanto quanto imprevisível. Com um coeficiente de rendimento melhor, a busca com Dijkstra percorre menos espaço e aspira uma quantidade de sujeira maior.

# 4 Conclusão

Depois de construir o nosso projeto e visualizar o comportamento do robô concluímos que o método de busca usado é válido (como comprovado no gráfico 1) e que ele representa bem o comportamento do robô em um mundo real, sendo assim melhor do que o proposto pelo livro.