MOUVEMENT DANS UN CHAMP UNIFORME ETUDE ENERGETIQUE

Objectifs

- Mettre en œuvre une démarche expérimentale pour étudier un mouvement.
- Connaître et exploiter les trois lois de Newton ; les mettre en œuvre pour étudier des mouvements dans des champs de pesanteur et électrostatique uniformes.

I. Mouvement d'un projectile dans un champ de pesanteur.

Une balle de tennis est lancée avec un vecteur vitesse initiale $\overrightarrow{v_0}$ dans le référentiel terrestre muni d'un repère $(0, \vec{1}, \vec{j}, \vec{k})$. Son déplacement est enregistré à l'aide d'une caméra située dans un plan perpendiculaire au mouvement. On note α l'angle formé par le vecteur vitesse et l'axe (Ox) du repère.

Lancer « atelier scientifique » puis ouvrir le fichier « projectile.avi » dans S:\Ressources Profs\Physique Chimie\CALVO TS\TP mouvement champ uniforme, à partir de video, traitement manuel.

- Réaliser l'étalonnage à l'aide du document ci-contre et placer l'origine du repère
- Réaliser le pointage du centre d'inertie de la balle lors de son mouvement
- 1) Afficher les courbes x(t) et y(t) représentant l'évolution des coordonnées du centre d'inertie de la balle au cours du temps. Imprimez les courbes (à rendre avec la copie)
- 2) Modéliser ces courbes par la fonction appropriée et noter les équations horaires correspondantes(en négligeant les termes qui peuvent l'être)
- 3) Déterminer la date t_F et les coordonnées (X_F,Y_F) du point d'altitude maximale. Son ordonnée Y_F est appelée « flèche » du mouvement.

$$t_F = \hspace{1cm} X_F = \hspace{1cm} Y_F =$$

4) Déterminer la date et les coordonnées (X_P, Y_P) du point d'altitude égale à celle de départ. Son abscisse X_P est appelée « portée » du mouvement.

$$t_P = \hspace{1cm} X_P = \hspace{1cm} Y_{P} =$$

Quelle relation existe-t-il entre X_P et X_F ?

- 5) Créer dans le tableau les grandeurs $V_X(t)$ et $V_Y(t)$. Imprimez les courbes $V_X(t)$ et $V_Y(t)$. (à rendre avec la copie)
- 6) Modéliser ces courbes par la fonction appropriée et noter les équations horaires correspondantes.

- 7) Ces équations vous semblent-t-elles valider la théorie selon laquelle la vitesse $\vec{V} = \frac{d\overrightarrow{OM}}{dt}$
- 8) Déterminer les coordonnées du vecteur vitesse initiale $\overrightarrow{V_0}$. $V_{0x} = V_{0y} =$

En déduire la valeur de l'angle du lancer α .

- 9) Déterminer la valeur de $V_Y(t_F)$: le résultat obtenu était-il prévisible ?
- 10) Quel renseignement nous apporte le signe de V_Y(t) ?
- 11) Créer à partir des courbes modélisées Vxm(t) et Vym(t) les courbes $a_X(t)$ et $a_Y(t)$ en utilisant l'outil « dérivée » dans « affichage/traitement des données »(<u>décocher la case lissage</u>).

Vous pourrez changer les échelles : clic droit, représentation

Imprimez les courbes $a_X(t)$ et $a_Y(t)$ (à rendre avec la copie).

- 12) Comparer a_Y avec la valeur du champ de pesanteur terrestre \vec{g} .
- 13) Afficher la trajectoire Y=f(X) de la balle et la modéliser par une fonction appropriée. Noter l'équation obtenue.
- 14) Vérifier à l'aide de l'équation de la trajectoire précédente les valeurs trouvées au début pour la portée X_P puis la flèche Y_F du mouvement.
- 15) La trajectoire serait-elle identique si on lançait avec les mêmes conditions initiales une boule de pétanque à la place de la balle de tennis ? Justifier.

II. ETUDE ENERGETIQUE:

Montrer qu'il y a conservation de l'énergie mécanique de la balle durant la chute. Collez ci-dessous les graphiques représentant Ec, Epp et Em en fonction du temps.