

UNIVERSIDADE ZAMBEZE

FACULDADE DE ENGENHARIA AMBIENTAL E DOS RECURSOS NATURAIS Ficha de preparação para teste 2 da disciplina de Análise Matemática 1/2024 Exercícios de aplicação

(1	1)	Considere	a função	definida	implicitamente:	$3x^3$	$+ y^2$	= 12
----	----	-----------	----------	----------	-----------------	--------	---------	------

a)	Ache a equação da recta tangente à curva no ponto (1; 3).	b)	Ache a expressão $\frac{d^2y}{dx^2} = y$ ``

(2) Considere a função definida implicitamente: $2y^3 - x^2y^2 = x^3$.

a) Ache o valor numérico de $\frac{dy}{dx} _{(x=1;y=3)}$	b) Ache o valor numérico de $\frac{dy}{dx} _{(x=2;y=-2)}$
--	---

- (3) Verifique a validade das condições do teorema de Cauchy para as funções $f(x) = x^2 + 2x$ e g(x) = 4x - 2 no intervalo [0; 1], caso seja válido, determine o valor de x_0 correspondente.
- (4) Considere a função $f(x) = x^3 4x$. Verifique a validade do teorema de Lagrange no segmento $[\mathbf{2};\mathbf{3}]$, caso seja válido, determine o valor de x_0 correspondente.
- (5) Considere a função $f(x) = \sqrt[3]{x-1}$ Verifique a validade do teorema de Rolle no segmento [0;2], caso seja válido, determine o valor de x_0 correspondente.
 - (6) Determine o polinómio de Taylor do quarto grau da função h(x) = Ln(2x), em torno do ponto $x_0 = 2$. Neste caso, ache o valor de h(2,3), e estime o erro de aproximação que se comete.
- (7) Mostre que $f(x) = x^3 + 7x 1$ possui apenas uma raiz real.
- (8) Calcule os seguintes limites:

$\lim_{x \to +\infty} \frac{4x^3}{e^{x^3}}$ b) $\lim_{x \to 2} \frac{2^{2-x}-1}{2-x}$	c) $\lim_{x \to +\infty} \frac{\operatorname{Ln}(x^2)}{2x+1}$	d) $\lim_{x \to 0} \frac{\cos(3x) - 1}{2x}$
---	---	---

(9) Usando técnicas de integração adequadas, e com o uso da tabela de integrais imediatas, ache as seguintes integrais:

a) $\int (x^2 - 4ax + \frac{1}{2x-3})^{-3}$) dx b) ∫	$\frac{x^2 - 3x + 2}{(2x - 3)^2 (x^2 + 1)} dx$	$c) \int \frac{3x+2}{\sqrt{x^2-2x+3}} dx$	d) $\int \frac{sen^3(x)}{cos^2(x)} dx$			
e) $\int \frac{3x^2 + x + 3}{x(x^2 + 3)} dx$ f)	$\int \frac{2x-5}{x^2+4x+5} dx$	$\mathbf{g}) \int_0^{\frac{\pi}{6}} \cos^3(x) dx$	$\mathbf{h}) \int_0^{\frac{\pi}{4}} sen^2(x) dx$	i) $\int_{-\frac{\pi}{2}}^{\pi} \cos^3(x) \operatorname{sen}(x) dx$			
Caro estudante, os exercícios a seguir, não serão avaliados no teste 2.							

Fim