Espaços Métricos - Capítulo 1

Fabio Zhao Yuan Wang*

Considere o espaço euclidiano \mathbb{R}^n . Os pontos de \mathbb{R}^n são listas $x=(x_1,\cdots,x_n)$ onde $x_i\in\mathbb{R}$ para todo $i\in\mathbb{N}_{\leq n}$. Há três maneiras de definir distância entre dois pontos em \mathbb{R}^n . Dados $x=(x_1,\cdots,x_n)$ e $y=(y_1,\cdots,y_n)$,

$$d(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{\frac{1}{2}}, \qquad d'(x,y) = \sum_{i=1}^{n} |x_i - y_i|, \qquad d''(x,y) = \max_{i \in \mathbb{N}_{\leq n}} |x_i - y_i|.$$

Proposição 1: Sejam d, d' e d'' métricas de \mathbb{R}^n definidas como a pouco. Para cada $x, y \in \mathbb{R}^n$, temos que:

$$d''(x,y) \stackrel{(1)}{\leq} d(x,y) \stackrel{(2)}{\leq} d'(x,y) \stackrel{(3)}{\leq} n \cdot d''(x,y),$$

onde $n \in \mathbb{N}$.

Dem: Vejamos a desigualdade (1). Seja $j \in \mathbb{N}_{\leq n}$ tal que $|x_j - y_j| = d''(x,y)$, então,

$$|x_j - y_j| = \sqrt{(x_j - y_j)^2} \le \sqrt{(x_j - y_j)^2 + C},$$

onde $C \in \mathbb{R}_{\geq 0}$. Note que, para $A = \mathbb{N}_{\leq n} \setminus \{j\}$, temos que $d_j(x,y) = \sqrt{\sum\limits_{i \in A} |x_i - y_i|} \geq 0$, visto que d_j é na verdade a métrica d aplicada a pontos em \mathbb{R}^{n-1} . Com isto, seja $C = d_j^2(x,y)$,

$$d''(x,y) = |x_j - y_j| \le \sqrt{(x_j - y_j)^2 + d_j^2(x,y)} = \sqrt{d^2(x,y)} = d(x,y).$$

Para a desigualdade (2), considere $(d')^2$ e seja $a_i = |x_i - y_i|$ para $i \in \mathbb{N}_{\leq n}$, ou seja,

$$(d'(x,y))^{2} = \left(\sum_{i=1}^{n} |x_{i} - y_{i}|\right)^{2} = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{i} \cdot a_{j}\right) = \left(\sum_{k=1}^{n} a_{k}^{2}\right) + \sum_{i=1}^{n} \left(\sum_{\substack{j=1\\j \neq i}}^{n} a_{i} \cdot a_{j}\right)$$

$$= d^{2}(x,y) + \sum_{i=1}^{n} \left(\sum_{\substack{j=1\\j \neq i}}^{n} a_{i} \cdot a_{j}\right) \ge d^{2}(x,y), \tag{eq1}$$

visto que d' e d são não-negativos, de (eq1), segue que $d(x,y) \le d'(x,y)$. Por fim, para a desigualdade (3), note que para todo $k \in \mathbb{N}_{\le n}$, $|x_k - y_k| \le \max_{i \in \mathbb{N}_{\le n}} |x_i - y_i|$, (\star) . Sendo assim, aplicando n vezes a expressão em (\star) e em seguida, combinando cada uma delas numa só expressão, segue que,

$$d'(x,y) = \sum_{i=1}^{n} |x_i - y_i| \le n \cdot \max_{i \in \mathbb{N}_{\le n}} |x_i - y_i| = d''(x,y),$$

^{*} **1** Universidade Tecnológica Federal do Paraná, Cidade, Paraná, Brasil. ■ fabioyuan@gmail.com.

Daqui, vejamos outros exemplos de espaços métricos.

Exemplo 1: Seja X um conjunto arbitrário. Uma função real $f: X \to \mathbb{R}$ chama-se *limitada* quando existe uma constante k > 0 tal que $|f(x)| \le k$ para todo $x \in X$. Note que a soma e o produto de funções limitadas são também limitadas. Denotando o conjunto das funções limitadas que vão de X a \mathbb{R} como $\mathcal{B}(X;\mathbb{R})$, é possível definirmos uma métrica em $\mathcal{B}(X;\mathbb{R})$ tal que, para $f,g \in \mathcal{B}(X;\mathbb{R})$,

$$d(f,g) = \sup_{x \in X} |f(x) - g(x)|.$$
 (m1)

Esta é a chamada métrica da convergência uniforme, ou métrica do sup.

Note que, para $X = \mathbb{N}_{\leq n}$ e $f, g : X \to \mathbb{R}$ limitadas, é possível construir as sequências $(x_k)_{k \in \mathbb{N}_{\leq n}}$ e $(y_k)_{k \in \mathbb{N}_{\leq n}}$, tais que para todo $k \in \mathbb{N}_{\leq n}$, temos que $x_k = f(k)$ e $y_k = g(k)$. Deste modo, se temos $x, y \in \mathbb{R}^n$ tais que a i-ésima coordenada de x equivale a x_i , e análogamente para y, tem-se que (m1) pode ser reduzida a métrica d'' de \mathbb{R}^n .

Exemplo 2: (Espaços vetoriais normados) Considere um espaço vetorial E sobre o corpo \mathbb{R} . Uma norma em E é uma função $| : E \to \mathbb{R}$, que a cada vetor $x \in E$ é associado o número real |x|, denominado norma de x, de modo a serem cumpridas as seguintes condições para cada $u, v \in E$ e $\lambda \in \mathbb{R}$:

- N1) Se $x \neq 0_E$, então $|x| \neq 0_R$;
- N2) $|\lambda \cdot x| = |\lambda||x|$;
- N3) $|x + y| \le |x| + |y|$.

Um *espaço vetorial normado* é um par $(E,|\cdot|)$ onde E é um espaço vetorial sobre o corpo dos reais e $|\cdot|$ é uma *norma* em E. Exemplos de espaços vetoriais normados são $(\mathbb{R}^n,|\cdot|)$, $(\mathbb{R}^n,|\cdot|')$ e $(\mathbb{R}^n,|\cdot|'')$, onde, para $x=(x_1,\cdots,x_n)\in\mathbb{R}^n$, se tem

$$|x| = d(x, 0_{\mathbb{R}^n}), \quad |x|' = d'(x, 0_{\mathbb{R}^n}), \quad |x|'' = d''(x, 0_{\mathbb{R}^n})$$

Outro exemplo de espaço vetorial normado é $\mathcal{B}(X,\mathbb{R})$, onde $||f|| = \sup_{x \in X} |f(x)|$. Note que foi utilizado a notação ||f|| para denotar a norma da função f, a fim de não confundir com a função $|f|: X \to \mathbb{R}$, tal que |f|(x) = |f(x)|, a qual chamamos de 'função módulo de f'.

Todo espaço vetorial normado (E, | |) torna-se um espaço métrico por meio da definição d(x,y) = |x-y|. Esta métrica diz-se *proveniente da norma* | |. Por exemplo, as métricas d, d' e d'' em \mathbb{R}^n são provenientes das normas | |, | |' e | |'', respectivamente. Também, a métrica do sup em $\mathcal{B}(X;\mathbb{R})$ é proveniente da norma que acabamos de introduzir neste espaço. Podemos então escrever ||f-g|| em vez de d(f,g).

Note que as propriedades de uma métrica que provém de uma norma resultam imediatamente das análogas para a norma. Por exemplo, a desigualdade triangular é obtida através de (N3).

Exemplo 3: (Espaços vetoriais com produto interno) Seja E um espaço vetorial real. Um proudto interno em E é uma função $\langle \ , \ \rangle : E \times E \to \mathbb{R}$, que associa a cada par ordenado de vetores $x,y \in E$ um número real $\langle x,y \rangle$ chamado o produto interno de x por y, de modo a serem cumpridas as condições abaixo, para $x,x',y \in E$ e $\lambda \in \mathbb{R}$, temos:

- P1) $\langle x + x', y \rangle = \langle x, y \rangle + \langle x', y \rangle$;
- P2) $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$;
- P3) $\langle x, y \rangle = \langle y, x \rangle$;
- P4) $x \neq 0 \implies \langle x, x \rangle > 0$.

A partir do produto interno, define-se a norma de um vetor $x \in E$ pondo $|x| = \sqrt{\langle x, x \rangle}$, ou seja, $|x|^2 = \langle x, x \rangle$. As propriedades N1 e N2 são imediatas. Quanto a N3, ela decorre da Desigualdade de Cauchy-Schwarz, $|\langle x, y \rangle| \le |x| \cdot |y|$.

Para a demonstração da forma geral da Desigualdade de Cauchy-Schwarz, isto é, a Desigualdade de Hölder, considere os seguintes lemas:

Lema 1: (Desigualdade de Young) Para qualquer a, b não-negativos, e sejam p e q expoentes conjugados, isto é,

$$\frac{1}{p} + \frac{1}{q} = 1$$
, onde, $p, q > 1$,

temos que

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Dem: Considere a função $f(x) = x^p$. Note que, como p > 1, então $f''(x) = p(p-1)x^{p-2}$. Se x é não-negativo, então x^{p-2} também é não-negativo. Mais ainda,

$$p > 1 \implies (p-1) > 0 \implies p(p-1) > 0$$
,

sendo assim, $f''(x) \ge 0$. Deste modo, temos que f(x) é uma função convexa para todo x não-negativo. Das propriedades de funções convexas, temos que, para quaisquer $x, a \in \mathbb{R}_{\ge 0}$,

$$f(x) \ge f(a) + f'(a)(x - a).$$

Com isto, seja a = 1,

$$f(x) \ge f(1) + f'(1)(x-1) = 1^p + p(1)^{p-1}(x-1) = 1 + p(x-1),$$

ou seja,

$$x^p \ge 1 + p(x-1), \quad x \in \mathbb{R}_{>0}, \quad p > 1.$$

Visto que, por hipótese, a e b são não-negativos, então $x = ab^{1-q} \ge 0$, deste modo,

$$\frac{a^{p}b^{(1-q)p}}{p} \ge 1 + p(ab^{1-q} - 1),$$

$$\frac{a^{p}b^{(1-q)p}}{p} \ge \frac{1}{p} + (ab^{1-q} - 1) \implies \frac{a^{p}b^{-q}}{p} \ge \frac{1}{p} + (ab^{1-q} - 1),$$

$$\frac{a^{p}}{p} \ge b^{q}\left(\frac{1}{p} - 1\right) + ab \implies \frac{a^{p}}{p} + \frac{b^{q}}{q} \ge ab.$$

Lema 2: Sejam p e q expoentes conjugados e considere duas sequências $(x_i)_{i \in \mathbb{N}_{\leq n}}$ e $(y_i)_{i \in \mathbb{N}_{\leq n}}$, tais que,

$$\sum_{i=1}^{n} |x_i|^p = 1, \qquad \sum_{i=1}^{n} |y_i|^q = 1,$$

então,

$$\sum_{i=1}^{n} |x_i \cdot y_i| \le 1.$$

Dem: Ora, da Desigualdade de Young, como $|x_i| \ge 0$ e $|y_i| \ge 0$ para todo $i \in \mathbb{N}_{\le n}$, então,

$$|x_i| \cdot |y_i| \le \frac{|x_i|^p}{p} + \frac{|y_i|^q}{q}, \quad \forall i \in \mathbb{N}_{\le n}$$

deste modo.

$$\sum_{i=1}^{n} |x_i y_i| \le \sum_{i=1}^{n} \left(\frac{|x_i|^p}{p} + \frac{|y_i|^q}{q} \right) = \frac{1}{p} \sum_{i=1}^{n} |x_i|^p + \frac{1}{q} \sum_{i=1}^{n} |y_i|^q = \frac{1}{p} + \frac{1}{q} = 1,$$

Teorema: (Desigualdade de Hölder) Sejam p e q expoentes conjugados e considere as sequências $x = (x_i)_{i \in \mathbb{N}_{< n}}$ e $y = (y_i)_{i \in \mathbb{N}_{< n}}$. Então,

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}$$

Dem: Se x ou y são nulos, temos o que queríamos. Considere x e y não-nulos e as sequências $(\alpha_i)_{i\in\mathbb{N}_{\leq n}}$ e $(\beta_i)_{i\in\mathbb{N}_{\leq n}}$ tais que $\alpha_i=\left|\frac{x_i}{\left(\sum_{w=1}^{\infty}|x_w|^p\right)^{1/p}}\right|$ e $\beta_i=\left|\frac{y_i}{\left(\sum_{w=1}^{\infty}|y_w|^q\right)^{1/q}}\right|$. Com isto, temos que $\sum_{i=1}^n\alpha_i^p=1,\qquad \sum_{i=1}^n\beta_i^q=1.$

Deste modo, do Lema 2,

$$\sum_{i=1}^{n} \alpha_i \beta_i \le 1$$

ou seja,

$$\sum_{i=1}^{n} \left(\left| \frac{x_i}{\left(\sum_{w=1}^{n} |x_w|^p\right)^{1/p}} \right| \left| \frac{y_i}{\left(\sum_{w=1}^{\infty} |y_w|^q\right)^{1/q}} \right| \right) \le 1$$

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}.$$

Note que, para demonstrar a Desigualdade de Cauchy-Schwarz, basta utilizar a Desigualdade de Hölder com p = q = 2 e em seguida aplicar a desigualdade triangular.

Mais ainda, para o caso $n \to \infty$, a Desigualdade de Hölder e o **Lema 2** são satisfeitos quando as sequências x e y são elementos de ℓ^w , onde $w = \max\{p, q\}$.

Teorema: (Desigualdade de Minkowski) Seja p > 1 e considere as sequências x e y em l^p , então,

$$\left(\sum_{i=1}^{\infty} |x_i + y_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^{\infty} |y_i|^p\right)^{1/p}$$