# Тахеометрические работы (съемочное обоснование и тахеометрическая съемка): Методическое пособие / Е.В. Меньшова - Москва, 2020

Пользователи сайта имеют право использовать размещенные на этом сайте материалы лишь в некоммерческих целях. При этом обязательным является сохранение всех авторских прав, а также установка активной гиперссылки на оригинал.

Запрещено использование любых материалов и любой информации сайта в коммерческих целях, если на эти действия нет письменного согласия автора сайта. Копирование информации в других целях, а также несоблюдение указанных условий будет истолковано как присвоение авторских прав на текстовую и иную скопированную информацию.

## Содержание

| Рекогносцировка хода                              | 3  |
|---------------------------------------------------|----|
|                                                   |    |
| Проложение тахеометрического хода                 | 4  |
| Порядок измерений на пункте хода                  | 5  |
| Камеральная обработка результатов измерений       | 8  |
| Ведомость вычисления координат точек хода         | 9  |
| Ведомость вычисления высот тахеометрического хода | 11 |
| Тахеометрическая съемка                           | 12 |

#### Рекогносцировка хода

Рекогносцировка хода выполняется всей бригадой совместно с руководителем бригады. Руководитель бригады должен познакомить бригаду с участком съемки и пунктами исходного обоснования.

Местоположение пунктов хода необходимо намечать таким образом, чтобы длины сторон были в пределах 100-120 метров, обеспечивалась хорошая обзорность с пунктов хода для дальнейшей съемки ситуации и рельефа.

Пункты намечают не менее чем в 3 метрах от кромки автомобильных дорог. Пункты хода закрепляются на местности деревянными кольями, вбитыми в дно выемки (глубиной не более 5 см), имеющую различную форму — треугольник, круг, квадрат, крест (для безошибочного опознавания на местности). Колья должны выступать над поверхностью дна углубления не более на 0,5–1 см.

Следует учитывать, что из-за ограниченного количества исходных пунктов, не следует производить съемку с этих пунктов. При необходимости выполнения съемки надо сделать рядом выносную точку.

#### Проложение тахеометрического хода

Порядок проложения тахеометрического хода следующий:

- 1. Установить прибор над пунктом (точкой) хода и привести его в рабочее положение. Рееечники в это время устанавливают рейки на соседних пунктах хода в отвесном положении (см. ниже п.3).
- 2. Измеряется высота прибора от верха колышка до оси вращения трубы с точностью до десятых долей сантиметра. Измерение производят с помощью 2-х метровой металлической рулетки: сначала от верха колышка до верхней грани головки штатива, потом от верхней грани головки штатива до оси вращения зрительной трубы. Далее вычисляют среднее из результатов измерений и округляют его до целых сантиметров.
- 3. Установка вех и реек на предыдущем и последующем пунктах хода. Вехи следует устанавливать (втыкать в землю), за колом в створе наблюдаемой линии, как показано на рисунке. Рейки устанавливаются на колышек таким образом, чтобы их оси проходили через центр колышка и занимали отвесное положение. Для наиболее точной установки реек в отвесное положение следует использовать отвесы.



#### Порядок измерений на пункте хода

#### Измерение горизонтальных углов:

- а) навести трубу на предыдущую точку хода при круге «лево».
- б) установить отсчет по горизонтальному кругу в пределах  $0^{\circ}00'-0^{\circ}01'$  (не следует стараться точно установить отсчет  $0^{\circ}00,0'$ , так как при этом неизбежно большее влияние коллимационной ошибки).
- в) проверить наведение трубы на предыдущую точку хода и сделать отсчет по горизонтальному кругу.
- г) навести трубу на последующую точку хода при круге «лево» и сделать отсчет по горизонтальному кругу.
- д) перевести трубу через зенит и при круге «право» выполнить наблюдения на последующий и предыдущий пункты хода с производством отсчетов по горизонтальному кругу.
- е) расхождение значений угла в полуприемах допускается не более 1'. При неудовлетворительных результатах измерения следует повторить.

#### Измерение вертикальных углов и дальномерных расстояний:

- а) при круге «лево» выполнить визирование на предыдущий пункт хода на высоту прибора или определенную высоту визирования. Сделать отсчет по вертикальному кругу.
- б) навести нижнюю дальномерную нить на целое число делений на рейке (удобно брать 1 метр отсчет по рейке 1000) и сделать дальномерный отсчет.
- в) выполнить визирование на последующий пункт хода на высоту прибора или определенную высоту визирования. Сделать отсчет по вертикальному кругу.
- г) навести нижнюю дальномерную нить на целое число делений на рейке и сделать дальномерный отсчет.
- д) перевести трубу через зенит и при круге «право» выполнить аналогичные наблюдения на последующий и предыдущий пункты хода.
- е) постоянство места нуля на станции (точке) хода должно быть в пределах 1'.
- ж) ввести поправку в дальномерное расстояние и вычислить наклонное расстояние *S*. Расхождения между соответствующими измеренными расстояниями (с учетом поправок в расстояния) допускаются не более 1/200 и вычисляются по формулам:

$$\Delta S = \left| S_{np} - S_{o\delta p} \right|; \quad \frac{\Delta S}{S_{cp}} \le \frac{1}{200}.$$

До перехода на следующий пункт хода должны быть выполнены все вычисления на станции, в том числе вычислены горизонтальные проложения и превышения между пунктами хода. Для одноименной линии расхождение между горизонтальными проложениями, полученными в прямом и обратном направлениях, не должно быть более 1/200.

Расхождение между превышениями, полученными в прямом и обратном направлениях, не должно быть более 10 см при расстояниях между пунктами меньше 250 метров.

#### Обработка журнала тахеометрического хода состоит из следующего алгоритма:

- 1. Вычисляют углы поворота (с точностью до 0,1') и средние значения углов (с точностью до 0,1'). При вычислении средних значений округление выполняют «по Гауссу», то есть в четную сторону!
- 2. Вычисляют место нуля и углы наклона по формулам:

$$MO = \frac{JI + II}{2}$$
,  $v = \frac{JI - III}{2}$ ,  $v = JI - MO$ ,  $v = II + MO$ .

3. Вычисляют средние значения дальномерных отсчетов по формуле:

$$l = \frac{l_{u} + l_{\kappa p}}{2},$$

где  $l_{\nu}$  — дальномерный отсчет, взятый по черной стороне рейки,  $l_{\kappa p}$  — дальномерный отсчет, взятый по красной стороне рейки. Округление выполнить до 0,1 см по правилам округления.

4. Вычислить наклонные расстояния S с точностью до 0,1 м, измеренные нитяным дальномером, по формуле:

$$S = 100 \cdot l + P$$
,

где l – средний дальномерный отсчет в см, P – поправка в дальномерное расстояние.

5. Вычислить горизонтальное проложение до 0,1 м:

$$D = S \cdot \cos^2 \nu.$$

6. Вычислить превышение до 0,01 м:

$$h' = D \cdot tgv$$
,  
 $\Delta = i - v$ ,  
 $h = h' + \Delta$ .

Дата 1 июля 20 13 г. Погода ЯСНО
Наблюдал Кольчугина А.

Записывал и вычислял Третьякова Е.

|                          | № виз<br>Унктов<br>< |        |          |          | 5+ V     | 2        | 1.20 11 +4 18,1 | <      | P.64     | 7- U 061 | 1 N 14   | 2.00     | 5'21 b- U |
|--------------------------|----------------------|--------|----------|----------|----------|----------|-----------------|--------|----------|----------|----------|----------|-----------|
| Yrov<br>A                | Средний              |        | 151 31.2 | 151 31,4 |          | 151 31,7 |                 |        | 236 14.7 | 871 926  |          | 236 14.9 |           |
| горизонталь-<br>ный круг | Отсчеты              | 0 01,2 | 7 02 151 |          | 180 00'8 |          | 331 32,6        | 0 02.7 |          | HZ1 953  | 180 03.1 |          | 26 18,0   |
|                          | 1 >                  | 97W    | <        | _        |          | -        |                 | H948   | <        |          | P,64     | _        |           |

+2,56

+ 0,23

31.3

17.6

7 +

31.2

+ 2,33

31.3

31.1

5'00

0

1

~\$~\$~

4 0 4

+ 1

Отсчеты по дально-

круг

Q

меру

>

+

WO

Уроверипа Усмещина А. 01.04,2013.

-3,01 +2,58 -3,00

- 2,59

34.7

4'00

0

10'5 -

34.5

17,8

4

١

34,5

- 0,32

30,9

06.2

1

39.9

- 2.22

31,1

5'00

0

1

### Камеральная обработка результатов измерений

Камеральную обработку начинают с проверки полевых журналов «во вторую руку». Все вычисления должны быть проверены, проверяющий расписывается на каждой проверенной странице.

Исходными данными для вычисления координат пунктов являются координаты начального и конечного пунктов хода, а также дирекционные углы исходных направлений. Если дирекционные углы неизвестны, то их получают из решения обратной геодезической задачи.

#### Ведомость вычисления координат точек хода

| Названия                    |     | β<br>вые) | α       |       | D                         | ΔΧ     | ΔΥ              | X      | Y      |
|-----------------------------|-----|-----------|---------|-------|---------------------------|--------|-----------------|--------|--------|
| пунктов                     | 0   | Ť         | 0       | '     | M                         | M      | M               | M      | M      |
|                             |     | -0,2      | 130     | 17,4  |                           |        |                 |        |        |
| ПП40                        | 286 | 00,4      |         |       |                           | 0,0    | 0,0             | 5086,3 | 3051,4 |
|                             |     | -0,3      | 236     | 17,5  | 155,9                     | -86,5  | -129,7          |        |        |
| I                           | 205 | 34,6      |         |       |                           | -0,1   | +0,1            | 4999,8 | 2921,7 |
|                             |     | -0,3      | 261     | 51,9  | 188,4                     | -26,7  | -186,5          |        |        |
| II                          | 55  | 49,8      |         |       |                           | 0,0    | 0,0             | 4973,0 | 2735,3 |
|                             |     | -0,3      | 137     | 41,4  | 158,5                     | -117,2 | 106,7           |        |        |
| III                         | 242 | 38,8      |         |       |                           | 0,0    | 0,0             | 4855,8 | 2842,0 |
|                             |     | -0,2      | 200     | 20,0  | 166,2                     | -155,8 | -57,7           |        |        |
| ПП92                        | 163 | 44,1      |         |       |                           |        |                 | 4700,0 | 2784,3 |
|                             |     |           | 184     | 03,8  |                           |        |                 |        |        |
| $\Sigmaeta_{	ext{np.}}=$    | 953 | 47,7      |         |       | $\Sigma_{\mathrm{np.}} =$ | -386,2 | -267,2          |        |        |
| $\Sigma eta_{	ext{reop}} =$ | 953 | 46,4      |         |       | $\Sigma_{ m reop} =$      | -386,3 | -267,1          |        |        |
| $f_{eta} =$                 |     | +1,3      | [ D ] = | 669,0 | $f_x$ , $f_y =$           | +0,1   | -0,1            |        |        |
| пред. $f_{\beta}$ =         |     | $\pm 2,2$ |         |       | $f_D =$                   | 0,1    | доп $f_D =$     | 0,8    |        |
|                             |     |           |         |       | $f_D/[D]=$                | 1/6700 | доп. $f_D/[D]=$ | 1/800  |        |

Вычисляется сумма измеренных углов  $\Sigma \beta_{\scriptscriptstyle{U3M}}$  и теоретическая сумма измеренных углов:

$$\Sigma \beta_{meop} = \alpha_{KOH} - \alpha_{HAY} + 180^{\circ}(n+1)$$
,

где n – число сторон в ходе.

Угловая невязка рассчитывается по формуле:

$$f_{\beta} = \Sigma \beta_{np} - \Sigma \beta_{meop}.$$

Угловая невязка в тахеометрическом ходе не должна превышать предельную невязку:

$$npe\partial. f_{\beta} = 1'\sqrt{n+1}$$
.

Поправки в углы поворота вычисляются до 0,1′ по формуле:

$$v_{\beta} = -\frac{f_{\beta}}{n+1}$$
.

Должно выполняться условие  $\left[v_{\beta}\right] = -f_{\beta}$ .

Дирекционные углы сторон хода вычисляются до 0,1' с использованием исправленных горизонтальных углов:

$$\alpha_i = \alpha_{i-1} + (\beta_{np.i} + v_i) \pm 180^{\circ}$$
.

При этом должно выполняться условие  $\alpha_{n+1} = \alpha_{\kappa on}$ .

Практические приращения координат при измерении линий нитяным дальномером вычисляются до 0,1 м по формулам:

$$\Delta x_{nn,i} = D_i \cos \alpha_i;$$

$$\Delta y_{np.i} = D_i \sin \alpha_i.$$

После вычисления приращений координат вычисляются суммы практических приращений координат  $\sum \Delta x_{np.}$ ;  $\sum \Delta y_{np.}$  и теоретические суммы приращений координат по формулам:

$$\begin{split} \sum \Delta x_{meop.} &= X_{\text{кон.}} - X_{\text{нач.}}; \\ \sum \Delta y_{meop.} &= Y_{\text{кон.}} - Y_{\text{нач.}}. \end{split}$$

Вычисляются невязки:

$$f_{\Delta x} = \sum \Delta x_{np.} - \sum \Delta x_{meop.};$$
  
$$f_{\Delta y} = \sum \Delta y_{np.} - \sum \Delta y_{meop.}.$$

Абсолютная и относительная линейные невязки по ходу вычисляются по формулам:

$$f_{D} = \sqrt{f_{\Delta x}^{2} + f_{\Delta y}^{2}};$$
$$\frac{f_{D}}{[D]}.$$

Допустимую линейную невязку и допустимую относительную линейную невязку по ходу вычисляются по формулам:

$$\partial on. f_D = \frac{\sum D}{400\sqrt{n}};$$

$$\frac{\partial on. f_D}{[D]}.$$

Относительная линейная невязка по ходу не должна превышать для нитяного дальномера величины 1/500.

Если полученная линейная невязка удовлетворяет требованиям, то вычисляют поправки в приращение координат:

$$v_{\Delta x_i} = -\frac{f_{\Delta x}}{[D]}D_i; \ v_{\Delta y_i} = -\frac{f_{\Delta y}}{[D]}D_i.$$

Должны выполняться условия:  $\left\lceil v_{\Delta x_i} \right\rceil = -f_{\Delta x}$ ,  $\left\lceil v_{\Delta y_i} \right\rceil = -f_{\Delta y}$ .

Поправки вводятся в соответствующие приращения координат:

$$\Delta x_{ucnp.} = \Delta x_{np.i} + v_{\Delta x_i};$$
  
$$\Delta y_{ucnp.} = \Delta y_{np.i} + v_{\Delta y_i}.$$

Должны выполняться условия:  $\left[\Delta x_{ucnp.}\right] = \left[\Delta x_{meop.}\right]$ ,  $\left[\Delta y_{ucnp.}\right] = \left[\Delta y_{meop.}\right]$ .

После вычисления поправок и исправленных приращений координат вычисляются исправленные координаты:

$$X_{i} = X_{i-1} + \Delta x_{ucnp.i};$$
  
$$Y_{i} = Y_{i-1} + \Delta y_{ucnp.i}.$$

Должны выполняться условия:  $X_{n+1} = X_{\kappa o \mu}$ ,  $Y_{n+1} = Y_{\kappa o \mu}$ .

Вычисления высот пунктов тахеометрического хода производят по такой же схеме, как и для координат.

#### Ведомость вычисления высот тахеометрического хода

| Названия<br>пунктов | D, м  | h <sub>ср</sub> , м | Vi, M | h <sub>испр</sub> , м | Н, м   |
|---------------------|-------|---------------------|-------|-----------------------|--------|
| ПП40                |       |                     |       |                       | 305,45 |
|                     | 155,9 | +5,53               | 0,00  | +5,53                 |        |
| I                   |       |                     |       |                       | 310,98 |
|                     | 188,4 | +0,26               | 0,00  | +0,26                 |        |
| II                  |       |                     |       |                       | 311,24 |
|                     | 158,5 | +4,12               | 0,00  | +4,12                 |        |
| III                 |       |                     |       |                       | 315,36 |
|                     | 166,2 | -1,11               | 0,00  | -1,11                 |        |
| ПП92                |       |                     |       |                       | 314,25 |
| Суммы               | 669,0 | +8,80               | 0,00  | +8,80                 | ·      |

$$\Sigma_{\text{reop}}$$
 +8,80  
 $f_h$  = 0,00  
 $f_{h \text{ доп}}$  = ±13 cm

Вычисляют сумму практических превышений  $\sum h_{np.}$  и теоретическую сумму превышений по формуле:

$$\sum h_{meop.} = H_{\kappa o H.} - H_{\mu a y.}$$

Высотную невязку находят по формуле:

$$f_h = \sum h_{np.} - \sum h_{meop.}.$$

Допустимую невязку вычисляют по формуле:

$$\partial on. f_h = \frac{0.04 \cdot [D](M)}{\sqrt{n}} (cM).$$

Если  $f_h \leq \partial on. f_h$  вычисляют поправки в превышения по формуле:

$$v_{h_i} = -\frac{f_h}{[D]}D_i.$$

Должно выполняться условие:  $\left[v_{h_i}\right] = -f_h$  .

Далее вычисляют исправленные превышения:

$$h_{ucnp.} = h_{np.i} + v_{h_i}.$$

Должно выполняться условие:  $\begin{bmatrix} h_{ucnp.} \end{bmatrix} = \begin{bmatrix} h_{meop.} \end{bmatrix}$ .

После вычисления поправок вычисляются исправленные координаты:

$$H_i = H_{i-1} + h_{ucnp.i}.$$

11

Должно выполняться условие:  $H_{n+1} = H_{\kappa on.}$ .

#### Тахеометрическая съемка

В условиях учебной практики тахеометрическую съемку выполняют отдельно от проложения хода. Предметы и контуры местности, которые подлежат съемке, указаны в Инструкции по топографической съемке. На рисунке указано расположение реечных точек при съемке ситуации (а) и рельефа (б).



При съемке следует также руководствоваться книгой условных знаков для масштабов 1:500-1:5000 и пояснениями к ним.

Тахеометрическая съемка выполняется полярным методом. Теодолит центрируется на станции с точностью 1 см. Измеряется высота прибора, определяется место нуля вертикального круга. Рабочее положение прибора – круг «лево».

Ориентирование лимба осуществляется на заднюю или переднюю точку хода (около  $0^{\circ}00,0'$ ).

После ориентирования приступают к набору пикетов:

а) наводят вертикальную нить на ось симметрии рейки и производят отсчет по горизонтальному кругу до десятых долей минуты.

- б) наводят горизонтальную нить на определенную высоту визирования, вычисляют величину i-v (где i высота прибора, а v высота визирования), и записывают ее в журнал; производят отсчет по вертикальному кругу до десятых долей минуты.
- в) наводят нижнюю дальномерную нить на целое число делений на рейке и производят дальномерный отсчет.
- г) отмечают пикет на абрисе съемки.

По окончании съемки на станции производят проверку ориентирования лимба: выполняют визирование на пункт, по которому был ориентирован лимб, и делают отсчет по горизонтальному кругу. Изменение ориентирования допускается не более 1,5′. Если изменение больше допуска, то съемку на станции повторяют.

Для того чтобы свести к минимуму повторные измерения, рекомендуется через каждые 10 пикетов проверять ориентирование лимба. В таком случае, если произойдет нарушение ориентирования лимба, повторять придется не более 10 пикетов.

В процессе съемки ведется абрис. Абрис ведется в журнале съемки или в отдельном журнале. Для ведения абриса рекомендуется выделить отдельного человека, который будет передвигаться вблизи речников и вести абрис. Абрис ведется в примерном масштабе съемки, простым мягким карандашом, в условных знаках. Его ориентируют строго на север местности. На абрисе отмечают ситуацию и формы рельефа, подлежащие съемке, а также направления скатов, бровки, подошвы и т.д.

Нумерация пикетов сплошная на всем участке съемки. Если в бригаде функции записывающего и ведущего абрис не совмещены, тогда через каждые 10 пикетов необходимо сличать нумерацию пикетов в абрисе и журнале.

Пример страницы пикетажного журнала и абриса приведен на рисунке.

| Таблі           | Наблюдал МОЛЕСИНО М<br>Записывал и вычислял | ONE     | NAH(                      | 2 3   | _ 1       | Kone | N=-1<br>Honeyuma | 1 = -10 44 5 Wywaa A. | MO=        | -0.0     | 9 00  |
|-----------------|---------------------------------------------|---------|---------------------------|-------|-----------|------|------------------|-----------------------|------------|----------|-------|
| Ме №<br>пикетов | Горизон-<br>тальный<br>круг                 | т 8     | Верти-<br>кальный<br>круг | . 225 | >         | 10   | Q                | h,                    | i-v        | ų        | Н     |
| Ph 64           | 00 0                                        | -       |                           | 1     |           |      |                  |                       |            |          |       |
|                 |                                             | h-      |                           | 6     | -4 153    | 51,2 | 37.1             | 2,31                  | t9'0+      | 597-190+ | 8751  |
| 194             | 0                                           | 4-      | 3                         | 4     |           | 2    | 163              | -112                  | +63+       | 590-     | 152,8 |
|                 | 202 10                                      | -       | 18                        | 2     |           | 220  | 221              | 810-                  | 160+       | 64'0+    | 154.  |
|                 |                                             | 7       | 27                        | 2     | 800 /     | 65,7 | 663              | t1 F+                 | 44.17      |          | 155.  |
|                 | 102 26                                      | 11      | Z.                        | 2     | 135       | 692  | 869              | 13,40                 | 4,37       | 1.7      | 156,  |
| 88              | 100                                         | ,<br>\$ | 34                        | 7 4   | 1,253     | 412  | 442              | +1,87                 | £90+       |          | 155,0 |
| -               | -                                           | -       | 118                       | 7     | 1841      | 318  | 319              | 11.03                 | 1067       | +        | 155,2 |
|                 | 138 02                                      | 11      | 36                        | 14 17 | 12        | 14.8 | 8.4              | +1,20                 | -0,23      | 1601     | 154.4 |
| 707             |                                             |         | 36                        | 840   | 1344      | 146  | 14,7             | +0.16                 | £6.0+      | £1,23    | 184   |
|                 | 15 848                                      | 0       | 58                        | 36    | 157.7     | 253  | 45%              | -043                  | 1037       | -0.06    | 1533  |
|                 | 2.44                                        |         |                           |       |           |      | Control of the   | Same.                 |            |          |       |
| 500             | 48 36                                       | 700     | P (2.3.7)                 | 0     | 20.04 194 | 17,2 | 17,2             | -1,30 +037            | t6'5+      | -0.93    | 152,5 |
| 100             |                                             | 3       | 69                        | 8     | 09.85092  |      | 14,3             | -1,56                 | 1,56 40,37 | -1.19    | 152,5 |
| 105             | 832                                         | ~       | 8                         | X     | 1301      | 220  | 187              | 1801 960-             | 1031       | 690      | 152.7 |
| 90              | FS £ #1                                     | 9       |                           | 00    | 1630      |      | 34.7             | -0.53                 | 45.04      | 13       | 1 2   |
| Phen            | 00 0                                        |         | 1                         | 1     |           |      |                  |                       |            |          |       |
| +               |                                             | +       |                           |       |           |      |                  |                       |            |          |       |
| $\vdash$        |                                             | -       |                           | +     |           |      |                  |                       |            |          |       |
|                 |                                             | İ       | l                         |       |           |      |                  |                       |            |          |       |

