Theoretische Informatik HS24

Nicolas Wehrli Übungsstunde 04 15. Oktober 2024

ETH Zürich nwehrl@ethz.ch

Heute

- 1 Feedback zur Serie
- 2 Beweise für Nichtregularität
 - Kurze Wiederholung vom letzten Mal
 - Theorie für Nichtregularitätsbeweise continued
 - Sprachen mit Einsymbolalphabet
- 3 Nichtdeterministische Endliche Automaten

Feedback zur Serie

Feedback

- Generell gut gelöst. War nicht das schwierigste Blatt.
- Aufpassen auf Flüchtigkeitsfehler!
- λ nicht vergessen!
- Macht euch bei den Klassen das Leben nicht schwer.

Beweise für Nichtregularität

Theorie für Nichtregularitätsbeweise - Lemma 3.3

Sei $A=(Q,\Sigma,\delta_A,q_0,F)$ ein EA. Seien $x,y\in\Sigma^*,x\neq y$, so dass

$$\hat{\delta}_A(q_0, x) = p = \hat{\delta}_A(q_0, y)$$

für ein $p \in Q$ (also $x, y \in \text{Kl}[p]$). Dann existiert für jedes $z \in \Sigma^*$ ein $r \in Q$, so dass xz und $yz \in \text{Kl}[r]$, also gilt insbesondere

$$xz \in L(A) \iff yz \in L(A)$$

Generelle Tips:

- Betrachtet |Q| + 1 Wörter für Pigeonhole-Principle.
- Geeigneten Suffix finden.

Sei L regulär. Dann existiert eine Konstante $n_0 \in \mathbb{N}$, so dass jedes Wort $w \in \Sigma^*$ mit $|w| \ge n_0$ in drei Teile x, y und z zerlegen lässt, das heisst w = yxz, wobei

- (i) $|yx| \le n_0$ (ii) $|x| \ge 1$ (iii) entweder $\{yx^kz \mid k \in \mathbb{N}\} \subseteq L$ oder $\{yx^kz \mid k \in \mathbb{N}\} \cap L = \emptyset$.

Beweis

Sei $L \in \Sigma^*$ regulär. Dann existiert ein EA $A = (Q, \Sigma, \delta_A, q_0, F)$, so dass L(A) = L.

Sei $n_0 = |Q|$ und $w \in \Sigma^*$ mit $|w| \ge n_0$. Dann ist $w = w_1 w_2 ... w_{n_0} u$, wobei $w_i \in \Sigma$ für $i = 1, ..., n_0$ und $u \in \Sigma^*$. Betrachten wir die Berechnung auf $w_1 w_2 ... w_{n_0}$:

$$(q_0, w_1 w_2 w_3 ... w_{n_0}) \mid_{\overline{A}} (q_1, w_2 w_3 ... w_{n_0}) \mid_{\overline{A}} ... \mid_{\overline{A}} (q_{n_0-1}, w_{n_0}) \mid_{\overline{A}} (q_{n_0}, \lambda)$$

In dieser Berechnung kommen $n_0 + 1$ Zustände $q_0, q_1, ..., q_{n_0}$ vor. Da $|Q| = n_0$, existieren $i, j \in \{0, 1, ..., n_0\}, i < j$, so dass $q_i = q_j$. Daher haben wir in der Berechnung die Konfigurationen

$$(q_0, w_1 w_2 w_3 ... w_{n_0}) \Big|_{A}^{*} (q_i, w_{i+1} w_{i+2} ... w_{n_0}) \Big|_{A}^{*} (q_i, w_{j+1} ... w_{n_0}) \Big|_{A}^{*} (q_{n_0}, \lambda)$$

Dies impliziert

$$(q_i, w_{i+1}w_{i+2}...w_j) \stackrel{|*}{|_A} (q_i, \lambda)$$
 (1)

Wir setzen nun $y = w_1...w_i$, $x = w_{i+1}...w_j$ und $z = w_{j+1}...w_{n_0}u$, so dass w = yxz.

Wir überprüfen nun die Eigenschaften (i),(ii) und (iii):

- (i) $yx = w_1...w_i w_{i+1}...w_j$ und daher $|yx| = j \le n_0$.
- (ii) Da $|x| \ge j i$ und i < j, ist $|x| \ge 1$.
- (iii) (1) impliziert $(q_i, x^k) \mid_A^* (q_i, \lambda)$ für alle $k \in \mathbb{N}$. Folglich gilt für alle $k \in \mathbb{N}$:

$$(q_0, yx^kz) \mid_A^* (q_i, x^kz) \mid_A^* (q_i, z) \mid_A^* (\hat{\delta}_A(q_i, z), \lambda)$$

Wir sehen, dass für alle $k \in \mathbb{N}$ die Berechnungen im gleichen Zustand $q_{end} = \hat{\delta}_A(q_i, z)$ enden. Falls also $q_{end} \in F$, akzeptiert A alle Wörter aus $\{yx^kz \mid k \in \mathbb{N}\}$. Falls $q_{end} \notin F$, dann akzeptiert A kein Wort aus $\{yx^kz \mid k \in \mathbb{N}\}$.

8

Sei L regulär. Dann existiert eine Konstante $n_0 \in \mathbb{N}$, so dass jedes Wort $w \in \Sigma^*$ mit $|w| \ge n_0$ in drei Teile x, y und z zerlegen lässt, das heisst w = yxz, wobei

- (i) $|yx| \le n_0$ (ii) $|x| \ge 1$ (iii) entweder $\{yx^kz \mid k \in \mathbb{N}\} \subseteq L$ oder $\{yx^kz \mid k \in \mathbb{N}\} \cap L = \emptyset$.

Generelle Tips:

- Das gewählte Wort hängt sehr wahrscheinlich von n_0 ab.
- Es ist meist einfacher, das Wort so zu konstruieren, dass man nur ein Zeichen pumpt (i.e. *x* besteht nur aus einem Zeichen).
- Aufpassen auf Quantoren! Wir dürfen ein Wort wählen (mit Länge $> n_0$) und müssen dann zeigen, dass keine Partition davon existiert, die (i)-(iii) erfüllt.

Theorie für Nichtregularitätsbeweise - Satz 3.1 (Kolmogorov)

Sei $L \subseteq (\Sigma_{\text{bool}})^*$ eine reguläre Sprache. Sei $L_x = \{y \in (\Sigma_{\text{bool}})^* \mid xy \in L\}$ für jedes $x \in (\Sigma_{\text{bool}})^*$. Dann existiert eine Konstante **const**, so dass für alle $x, y \in (\Sigma_{\text{bool}})^*$

$$K(y) \le \lceil \log_2(n+1) \rceil +$$
 const,

 $K(y) \leq \lceil \log_2(n+1) \rceil + \ \mathbf{const},$ falls y das n-te Wort in der Sprache L_x ist.

Wie wir sehen werden, beruht der Nichtregularitätsbeweis darauf, dass die Differenz von $|w_{n+1}| - |w_n|$ für kanonische Wörter $(w_i)_{i \in \mathbb{N}}$ beliebig gross werden kann.

Beispielaufgabe 2 - Kolmogorov Methode

Verwenden Sie die Methode der Kolmogorov-Komplexität, um zu zeigen, dass die Sprache

$$L_1 = \{0^{n^2 \cdot 2^n} \mid n \in \mathbb{N}\}$$

nicht regulär ist.

Beispielaufgabe 2 - Kolmogorov Methode

Angenommen L_1 sei regulär.

Wir betrachten

$$L_{0^{m^2 \cdot 2^m + 1}} = \{ y \mid 0^{m^2 \cdot 2^m + 1} y \in L_1 \}.$$

Da

$$(m+1)^{2} \cdot 2^{m+1} = (m^{2} + 2m + 1) \cdot 2^{m+1}$$
$$= m^{2} \cdot 2^{m} + m^{2} \cdot 2^{m} + (2m+1) \cdot 2^{m+1}$$
$$= m^{2} \cdot 2^{m} + (m^{2} + 4m + 2) \cdot 2^{m}$$

ist für jedes $m\in\mathbb{N}$ das Wort $y_1=0^{(m^2+4m+2)\cdot 2^m-1}$ das kanonisch erste Wort der Sprache $L_{0^{m^2\cdot 2^m+1}}.$

Beispielaufgabe 2 - Kolmogorov Methode

Nach Satz 3.1 existiert eine Konstante *c*, unabhängig von *m*, so dass

$$K(y_1) \le \lceil \log_2(1+1) \rceil + c = 1 + c.$$

Die Anzahl aller Programme, deren Länge kleiner oder gleich 1+c sind, ist endlich.

Da es aber unendlich viel Wörter der Form $0^{(m^2+4m+2)\cdot 2^m-1}$ gibt, ist dies ein Widerspruch.

Demzufolge ist L_1 nicht regulär.

13

Beispielaufgabe 3 - Direkte Methode (Lemma 3.3)

Verwende eine direkte Argumentation über den Automaten (unter Verwendung von Lemma 3.3), um zu zeigen, dass die Sprache

$$L_2 = \{ w \in \{0,1\}^* \mid |u|_0 \le |u|_1 \text{ für alle Präfixe } u \text{ von } w \}$$

nicht regulär ist.

Beispielaufgabe 3 - Direkte Methode (Lemma 3.3)

Angenommen L_2 sei regulär.

Dann existiert ein Endlicher Automat $A = (Q, \{0, 1\}, \delta, q_0, F)$ mit $L(A) = L_2$.

Wir betrachten die Wörter

$$1, 1^2, ..., 1^{|Q|+1}$$

Per Pigeonhole-Principle existiert $i, j \in \{1, ..., |Q| + 1\}$ mit i < j, so dass

$$\hat{\delta}(q_0, 1^i) = \hat{\delta}(q_0, 1^j).$$

Nach Lemma 3.3 gilt nun für alle $z \in \{0,1\}^*$

$$1^i z \in L_2 \iff 1^j z \in L_2$$

Beispielaufgabe 3 - Direkte Methode (Lemma 3.3)

Sei $z = 0^j$. Wir haben dann also

$$1^i z = 1^i 0^j \notin L_2,$$

da i < j und ein Wort auch ein Präfix von sich selbst ist (Die Bedingung $|1^{i}0^{j}|_{0} \leq |1^{i}0^{j}|_{1}$ wird verletzt).

Aber wir haben auch

$$1^j z = 1^j 0^j \in L_2,$$

was zu einem Widerspruch führt. Also ist die Annahme falsch und L_2 nicht regulär.

16

Sprachen mit Einsymbolalphabet

Angenommen es handelt sich bei $L\subseteq \Sigma^*$ um eine Sprache über einem unären Alphabet ($|\Sigma|=1, \Sigma=\{x\}$).

Dann gilt:

$$\forall w \in \Sigma^* : w = x^{|w|}$$

Insbesondere gibt es für jede Länge nur ein Wort.

Sei die Folge $(w_i)_{i\in\mathbb{N}}$ kanonisch geordnet, so dass $w_i\in L$ (Wenn L endlich betrachten wir nur endlich viele Wörter der Folge).

Durch das gilt folgendes

$$\forall w \in \Sigma^*. \ \forall k \in \mathbb{N}. \ |w_k| < |w| < |w_{k+1}| \implies w \notin L$$

Zeigen Sie, dass

$$L = \{0^{n \cdot \lceil \sqrt{n} \rceil} \mid n \in \mathbb{N}\}$$

nicht regulär ist.

Angenommen $L = \{0^{0 \cdot \lceil \sqrt{0} \rceil}, 0^{1 \cdot \lceil \sqrt{1} \rceil}, 0^{2 \cdot \lceil \sqrt{2} \rceil}, ...\}$ sei regulär.

Seien $w_0, w_1, w_2, ...$ die Wörter von L in kanonischer Reihenfolge. Nach dem Pumping Lemma gibt es ein $n_0 \in \mathbb{N}$, dass die Bedingungen (i)-(iii) erfüllt sind.

Wir wählen $w=w_{n_0^2}=0^{n_0^2\lceil\sqrt{n_0^2}\rceil}\in L.$

Es ist leicht zu sehen das $|w| \ge n_0$ und folglich existiert eine Aufteilung w = yxz $(y = 0^l, x = 0^m \text{ und } z = 0^{n_0^2 \lceil \sqrt{n_0^2} \rceil - l - m})$, die (i)-(iii) erfüllt.

Da nach (i) $|yx| = l + m \le n_0$, folgt $|x| = m \le n_0$.

Aus (ii) folgt $|x| = m \ge 1$.

Wegen $|yx^2z| = |yxz| + |x|$ gilt also $|yxz| < |yx^2z| \le |yxz| + n_0$.

Das nächste Wort in L nach $w_{n_0^2}$ ist $w_{n_0^2+1}$ und es gilt

$$\begin{split} |w_{n_0^2+1}| - |w_{n_0^2}| &= (n_0^2+1) \cdot \lceil \sqrt{n_0^2+1} \rceil - n_0^2 \cdot \lceil \sqrt{n_0^2} \rceil \\ &= (n_0^2+1) \cdot \lceil \sqrt{n_0^2+1} \rceil - n_0^2 \cdot n_0 \\ &> (n_0^2+1) \cdot n_0 - n_0^3 \\ &= n_0 \end{split}$$

Die strikte Ungleichung gilt da $n_0 \in \mathbb{N}$ und $n_0 = \left\lceil \sqrt{n_0^2} \right\rceil < \sqrt{n_0^2 + 1} \le \left\lceil \sqrt{n_0^2 + 1} \right\rceil$.

$$\implies |w_{n_0^2+1}| \ge |w_{n_0^2}| + (n_0+1)$$

Somit gilt

$$|w_{n_0^2}| < |yx^2z| < |w_{n_0^2+1}|$$

Daraus folgt $yx^2z \notin L$, während $yxz \in L$, in Widerspruch zu (iii).

Beispielaufgabe 5 - Kolmogorov Methode

Zeigen Sie, dass

$$L = \{0^{n \cdot \lceil \sqrt{n} \rceil} \mid n \in \mathbb{N}\}$$

nicht regulär ist.

Beispielaufgabe 5 - Kolmogorov Methode

Widerspruchsannahme: Sei L regulär.

Wir betrachten

$$L_{0^{m \cdot \lceil \sqrt{m} \rceil + 1}} = \{ y \in \Sigma^* \mid 0^{m \cdot \lceil \sqrt{m} \rceil + 1} y \in L \}$$

Dann ist für jedes $m \in \mathbb{N}$ das Wort

$$y_1 = 0^{(m+1)\cdot\lceil\sqrt{m+1}\rceil - (m\cdot\lceil\sqrt{m}\rceil + 1)}$$

das kanonisch erste Wort der Sprache $L_{0^{m\cdot \lceil \sqrt{m} \rceil + 1}}.$

Beispielaufgabe 5 - Kolmogorov Methode

Nach Satz 3.1 existiert eine Konstante *c*, so dass gilt

$$K(y_1) \le \lceil \log_2(1+1) \rceil + c = 1 + c$$

für jedes $m \in \mathbb{N}$.

Da die Länge von $|y_1|$

$$|y_1| = (m+1) \cdot \lceil \sqrt{m+1} \rceil - (m \cdot \lceil \sqrt{m} \rceil + 1)$$

$$\geq (m+1) \cdot \lceil \sqrt{m} \rceil - m \cdot \lceil \sqrt{m} \rceil - 1$$

$$= \lceil \sqrt{m} \rceil - 1 \xrightarrow{m \to \infty} \infty$$

beliebig gross werden kann, gibt es unendlich viele Wörter von dieser Form.

Dies ist ein Widerspruch, da es nur endlich viele Programme der Länge maximal 1+c geben kann.

Nichtdeterministische Endliche

Automaten

Definition NEA

Ein nichtdeterministischer endlicher Automat (NEA) ist ein Quintupel M =

 $(Q, \Sigma, \delta, q_0, F)$. Dabei ist

- (i) Q eine endliche Menge, **Zustandsmenge** genannt,
- (ii) Σ ein Alphabet, **Eingabealphabet** genannt,
- (iii) $q_0 \in Q$ der Anfangszustand,
- (iv) $F\subseteq Q$ die Menge der **akzeptierenden Zustände** und (v) δ eine Funktion von $Q\times \Sigma$ nach $\mathcal{P}(Q)$, **Übergangsfunktion genannt**.

Ein NEA kann zu einem Zustand q und einem gelesenen Zeichen a mehrere oder gar keinen Nachfolgezustand haben.

Konfigurationen für NEAs

Eine **Konfiguration** von M ist ein Tupel $(q, w) \in Q \times \Sigma^*$.

- "M befindet sich in einer Konfiguration $(q, w) \in Q \times \Sigma^*$, wenn M im Zustand q ist und noch das Suffix w eines Eingabewortes lesen soll."
- Die Konfiguration $(q_0, x) \in \{q_0\} \times \Sigma^*$ ist die **Startkonfiguration für das Wort** x.

Ein **Schritt** von M ist eine Relation (auf Konfigurationen) $\Big|_{M} \subseteq (Q \times \Sigma^{*}) \times (Q \times \Sigma^{*})$, definiert durch

$$(q, w) \mid_{\overline{M}} (p, x) \iff w = ax, a \in \Sigma \text{ und } p \in \delta(q, a)$$

Berechnungen für NEAs

Eine **Berechnung von M** ist eine endliche Folge $C_1, ..., C_k$ von Konfigurationen, so dass

$$C_i \mid_{\overline{M}} C_{i+1}$$
 für alle $1 \le i \le k$.

Eine **Berechnung von M auf x** ist eine Berechnung $C = C_0, ..., C_m$, wobei $C_0 = (q_0, x)$ und **entweder** $C_m \in Q \times \{\lambda\}$ **oder** $C_m = (q, ay)$ für ein $a \in \Sigma, y \in \Sigma^*$ und $q \in Q$, so dass $\delta(q, a) = \emptyset$.

Falls $C_m \in F \times \{\lambda\}$, sagen wir, dass C eine **akzeptierende Berechnung** von M auf x ist, und dass M **das Wort** x **akzeptiert**.

Weitere Definitionen

Die Relation $\frac{1}{M}$ ist die reflexive und transitive Hülle von $\frac{1}{M}$, genau wie bei einem EA.

Wir definieren

$$\mathbf{L}(\mathbf{M}) = \{ w \in \Sigma^* \mid (q_0, w) \mid_{\overline{M}}^* (p, \lambda) \text{ für ein } p \in F \}$$

als die von M akzeptierte Sprache.

Zu der Übergangsfunktion δ definieren wir die Funktion $\hat{\delta}:(Q\times\Sigma^*)\to\mathcal{P}(Q)$ wie folgt: (i) $\hat{\delta}(q,\lambda)=\{q\}$ für alle $q\in Q$ (ii) $\hat{\delta}(q,wa)=\bigcup_{r\in\hat{\delta}(q,w)}\delta(r,a)$ für alle $q\in Q,a\in\Sigma,w\in\Sigma^*.$