Marceli Jędryka

Algorytmy Geometryczne – Labolatorium 1

Środowisko oraz sprzęt:

- → Wszystkie ćwiczenia zostały wykonane w Jupyter Notebook przy użyciu języka python oraz bibliotek Numpy i Matplotlip.
- → Obliczenia przeprowadzone na systemie operacyjnym Windows 10 x64 z procesorem Intel Core i5-10210U CPU 2.11 GHz.

1.Generowanie zbiorów punktów o losowych współrzędnych spełniających następujące warunki:

- a) 10^5 losowych punktów o współrzędnych z przedziału [-1000, 1000]
- b) 10^5 losowych punktów o współrzędnych z przedziału [-10^14, 10^14]
- c) 1000 losowych punktów leżących na okręgu o środku (0,0) i promieniu R=100
- d) 1000 losowych punktów o współrzędnych z przedziału [-1000, 1000] leżących na prostej wyznaczonej przez wektor (a, b),

- 2. Implementacja funkcji pomocniczych pozwalających na określenie po której stronie prostej zawierającej punkty a = [-1.0, 0.0] oraz b = [1.0, 0.1] znajdują się wygenerowane punkty.
 - → det_2x2 funkcja obliczająca wyznacznik macierzy 2x2 wykorzystująca własnoręcznie zaimplementowany wzór
 - → det_3x3 funkcja obliczająca wyznacznik macierzy 2x2 wykorzystująca własnoręcznie zaimplementowany wzór
 - → det_2x2_numpy funkcja obliczająca wyznacznik macierzy 2x2 wykorzystująca metodę biblioteki numpy
 - → det_3x3_numpy funkcja obliczająca wyznacznik macierzy 3x3 wykorzystująca metodę biblioteki numpy
 - → pick side funkcja określająca położenie punktu względem prostej
 - → assign_points funkcja tworząca zbiory punktów leżących po lewej i prawej stronie prostej oraz punktów leżących na tej prostej
- 3. Analiza wyników dla poszczególnych zbiorów, używając różnych metod obliczania wyznacznika oraz poziomu tolerancji zera z zakresu od 10^-16 do 10^-4. Reprezentacja graficzna poniższych danych znajduje się w pliku geometria.ipnb

a) tab1

Epsilon/ Metoda	det_2x2	det_3x3	det_2x2_numpy	det_3x3_numpy
10^-4	Left:49750 Right:50250 Middle:0	Left:49750 Right:50250 Middle:0	Left:49750 Right:50250 Middle:0	
10^-8	Left:50291 Right:49709 Middle:0	Left:50291 Right:49709 Middle:0	Left:50291 Right:49709 Middle:0	
10^-12	Left:50028 Right:49972 Middle:0	Left:50028 Right:49972 Middle:0	Left:50028 Right:49972 Middle:0	
10^-16	Left:49814 Right:50186 Middle:0	Left:49814 Right:50186 Middle:0	Left:49814 Right:50186 Middle:0	

Obserwacja: W zależności od tolerancji zmienia się ilość punktów po lewej i prawej stronie, jednakże jest ona taka sama dla każdej metody obliczania wyznacznika z daną tolerancją. Punkty leżące na prostej nie występują.

b) tab2

tabz				
Epsilon/ Metoda	det_2x2	det_3x3	det_2x2_numpy	det_3x3_numpy
10^-4	Left:50007 Right:49990 Middle:3	Left:50010 Right:49990 Middle:0	Left:500009 Right:49991 Middle:0	Left:50010 Right:49990 Middle:0
10^-8	Left:50133 Right:49861 Middle:6	Left:50137 Right:49863 Middle:0	Left:50136 Right:49864 Middle:0	
10^-12	Left:49746 Right:50244 Middle:10	Left:49749 Right:50251 Middle:0	Left:49752 Right:50248 Middle:0	
10^-16	Left:49890 Right:50104 Middle:6	Left:49892 Right:50108 Middle:0	Left:49892 Right:50108 Middle:0	

Obserwacja: Punkty występujące na prostej pojawiają się tylko w przypadku użycia metody det_2x2. Wraz ze zmieniającą się tolerancją obliczeń wyniki ulegają zmianie, co więcej w zależności od użytej metody wyniki różnią się o średnio 2,9 punktu.

C) tab3

tab3				
Epsilon/ Metoda	det_2x2	det_3x3	det_2x2_numpy	det_3x3_numpy
10^-4	Left:515 Right:485 Middle:0	Left:515 Right:485 Middle:0	Left:515 Right:485 Middle:0	Left:515 Right:485 Middle:0
10^-8	Left:489 Right:511 Middle:0	Left:489 Right:511 Middle:0	Left:489 Right:511 Middle:0	
10^-12	Left:518 Right:482 Middle:0	Left:518 Right:482 Middle:0	Left:518 Right:482 Middle:0	
10^-16	Left:526 474 Middle:0	Left:526 474 Middle:0	Left:526 474 Middle:0	Left:526 474 Middle:0

Obserwacja: Wraz ze zmieniającą się tolerancją dla zera zmieniają się także wyniki, jednakże rozpatrując poszczególne tolerancje widzimy, że każda metoda obliczania wyznacznika przypisuje punkty w taki sam sposób. Nie pojawiają się punkty występujące na prostej.

d) tab4

Epsilon/ Metoda	det_2x2	det_3x3	det_2x2_numpy	det_3x3_numpy
10^-4	Left:0	Left:0	Left:0	Left:512
	Right:0	Right:0	Right:0	Right:484
	Middle:1000	Middle:1000	Middle:1000	Middle:4
10^-8	Left:0	Left:0	Left:0	Left:0
	Right:0	Right:0	Right:0	Right:0
	Middle:1000	Middle:1000	Middle:1000	Middle:1000
10^-12	Left:74	Left:0	Left:130	Left:0
	Right:80	Right:0	Right:154	Right:0
	Middle:846	Middle:1000	Middle:716	Middle:1000
10^-16	Left:142	Left:167	Left:534	Left:432
	Right:126	Right:415	Right:452	Right:531
	Middle:732	Middle:418	Middle:14	Middle:37

Obserwacja: Wraz ze zmniejszającą się tolerancją dla zera okazuje się, że istnieją punkty, które nie należą do prostej. Co więcej w zależności od użytej metody ilość takich punktów zmienia się. Analizując graficzne ułożenie punktów możemy zauważyć, że najwięcej punktów leżących na prostej znajduje się blisko punktów a i b. Im dalej od punktów tworzących tym więcej wygenerowanych punktów nie leży na prostej.

4. Wnioski

Analizując powyższe tabele dowiadujemy się, że wyniki mogą się różnić w zależności od użytej metody, a także od poziomu tolerancji zera dla obliczeń, z którą klasyfikujemy punkty. Pierwsze trzy zbiory zawierają punkty wygenerowane w bardzo dużym przedziale, a co za tym idzie ich zagęszczenie przy prostej jest względnie niewielkie, czego efektem jest brak występowania różnic w klasyfikacji w przypadku zbiorów a oraz c. W zbiorze b różnice się pojawiały, lecz były bardzo niewielkie i wynosiły średnio zaledwie 2,9 punktu w zależności od użytej metody obliczania wyznacznika. W przypadku zbioru d, gdzie punkty były generowane na badanej prostej odchylenia były zauważalne dopiero przy bardzo małej tolerancji dla zera wynoszącej 10^-12. Przy jeszcze większym zmniejszeniu tolerancji okazywało się, że różnice w klasyfikacji punktów pomiędzy metodami napisanymi ręcznie a bibliotecznymi są bardzo duże.