

Choix d'outils en tournage

Objectifs:

Déterminer, au cours de l'application de la démarche et dans le cadre d'une optimisation de la coupe, les éléments à écrire sur le contrat de phase pour l'usinage de la pièce ; à savoir :

- Les opérations à réaliser,
- ✓ Vc.
- √ f,
- ✓ la plaquette,
- ✓ le porte-plaquette.

À ce stade, on connaît :

- ✓ le dessin de définition de la pièce,
- ✓ la matière de cette pièce,
- ✓ la machine-outil utilisée avec ses caractéristiques (courses, attachements, porte-pièce, puissance disponible).

Aide:

- Feuille de choix d'outil en tournage.

1 - DÉTERMINATION DE LA GÉOMETRIE DE L'OUTIL : LES PLAQUETTES :

Avec:

Et:

LES PORTE - PLAQUETTES EXTÉRIEURS :

P	C	L	N	L
В	1	С	2	D

Avec:

Et:

LES PORTE - PLAQUETTES INTÉRIEURS :

S	25	Т
Н	J	G

S	C	L	С	R
В	1	С	2	D

09

Avec:

H. Type de Barre			
Α	Barre en acier avec adduction interne de réfrigérant		
Е	Barre carbure		
F	Barre antivibratoire		
S	Barre en acier monobloc		

2 - CONDITIONS D'UTILISATION:

DÉTERMINATION DU RAYON DE BEC:

- Ébauche:

Choisir le rayon de bec le plus grand possible :

- ✓ Rayon de bec 对 Robustesse 对
- ✓ Rayon de bec ७ Vibrations ७
- ✓ Les valeurs ne doivent pas dépasser les valeurs du tableau suivant :

Avances maximales f et rayon de bec r_{ϵ}					
r_{ϵ}	0.4	0.8	1.2	1.6	2.4
f (mm/tr)	0.25 à 0.35	0.4 à 0.7	0.5 à 1	0.7 à 1.3	1 à 1.8

<u>Remarque</u>: Les avances les plus élevées s'appliquent aux plaquettes ayant une arête de coupe robuste avec un angle de pointe d'au moins 60° , non réversibles, avec un K_r inférieur à 90° , pour l'usinage d'un matériau facilement usinable et avec une vitesse de coupe modérée.

✓ Dans la pratique, l'avance peut être calculée à l'aide de la formule suivante :

 $f_{\text{\'ebauche}} = \frac{1}{2} \times r_{\epsilon}$

- Finition:

L'état de surface dépend de la combinaison rayon de bec / avance ainsi que de la stabilité de la pièce, du système de fixation de la plaquette et de l'état de la machine.

- ✓ L'état de surface
 ✓ Vc
 ✓,
- \checkmark r_{ϵ} \nearrow vibrations \nearrow ,
- ✓ Les nuances non revêtues donnent un meilleur état de surface que les nuances revêtues.

DÉTERMINATION DE L'AVANCE :

R _{max} (µm)	R _a (µm)	R _{max} (µm)	R _a (µm)
1.6	0.30	7.0	1.4
1.8	0.35	8.0	1.6
2.0	0.40	9.0	1.8
2.2	0.44	10.0	2.0
2.4	0.49	15.0	3.2
2.6	0.53	20.0	4.4
2.8	0.58	25.0	5.8
3.0	0.63	27.0	6.3
3.5	0.71	30.0	7.4
4.0	0.80	35.0	8.8
4.5	0.90	40.0	10.7
5.0	0.99	45.0	12.5
6.0	1.2	50.0	14.0

3 - EXERCICE :

Soit la fabrication de l'axe de came de l'ESR (voir ci-dessous) :

- Choisir l'outil concernant la réalisation du profil 1 en finition.

Vous utiliserez la feuille de choix d'outils en tournage, le GTP et le catalogue Corokey.

Matière: XC 38

Machine: TCN Ernault HES 300 (voir GTP

page 256 - chap 61.16)