	n	-		
	SEARCH REG	WEST FORM	The second second	
Blacksone		Serial		
Requestor's <u>Jeffle</u> Name: <u>Jeffle</u>	E. Russel			
Date: 5-15-96	Phone: 3	08-3975 A	art Unit: 1811	
Search Topic:				
Please write a detailed statement of s hat may have a special meaning. Give	ve examples or relevant citation	ons, authors keywords, etc., i	f known. For sequences, p	e any terms
a copy of the sequence. You may it	nclude a copy of the broadest	and/or most relevant claim(s). 'n de salation 'n de salation	ra mentera da per
	Genesia PIR/Su	•	vence Search	<i>o</i> ∼
SEQ TO NOS S	6,58,60,67.67	1, and 66,		
				6
	A.	Thank yo	ο, Ο	
		7 3	5/_	
**************************************		. 0		ļ. '
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	٠			
	•••	•		!!
4			e de la companya del companya de la companya del companya de la co	
	-			
			•	

	•		~. ~.	
		•	<i>:</i>	
:	,			
•	*			
				0.0
5/20/90	STAFF	USE ONLY		5-198.
Date completed:	300-4259	earch Site	Vendors	Suite
Searcher: CI)	<u> </u>	STIC CM-1	ST	1
Elapsed time:		Pre-S	Di	alog PS.
CPU time:		ype of Search N.A. Sequence	Ge	ninfo
Number of Searches:		A.A. Sequence		C RC/Questel
Number of Databases:		Bibliographic	0	her /
	·		0000	12

• •

Release 2.1D John F. Collins, Biocomputing Research Unit. Copyright (c) 1993, 1994, 1995 University of Edinburgh,

U.K.

Distribution rights by IntelliGenetics, Inc.

MPsrch_pp protein - protein database search, using Smith-Waterman
algorithm

Run on: Thu May 16 15:22:10 1996; MasPar time 6.67 Seconds

547.908 Million cell

1

updates/sec

Tabular output not generated.

Title: >US-08-121-713B-56

Description: (1-441) from US08121713B.pep

Perfect Score: 3231 S e q u e n c e :

MMVLLHAVYSIVFVDVIIIK......FIADIGIGVGMPQMKKILKM 441

Scoring table: PAM 150

Gap 11

Searched: 70887 seqs, 8282111 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: a-geneseq22

1:part1 2:part2 3:part3 4:part4 5:part5 6:part6

7:part7

8:part8 9:part9 10:part10 11:part11 12:part12

13:part13

14:part14

Statistics: Mean 34.639; Variance 146.216; scale 0.237

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

Result Qu

Query
Score Match Length DB ID

Description

No. S Pred. No.

1 3231 100.0 441 13 R71381 Vaccinia virus semaph 0.00e+00

2	608	18.8	122	13	R71385	Variola major virus s
9.74e-47 3	158	4.9	477	13	R74175	Human collapsin.
1.37e-04	158	4.9	771	13	R71380	Human semaphorin III
1.37e-04 5	150	4.6	724	13	R71383	Drosophila semaphorin
6.35e-04 6	144	4.5	712	13	R71384	Tribolium semaphorin
1.98e-03 7	137	4.2	730	13	R71379	Grasshopper semaphori
7.35e-03 8	125	3.9	650	13	R71382	Drosophila semaphorin
6.68e-02 9	100	3.1	1025	13	R70126	Serum opacity factor
5.38e+00 10	101	3.1	2749	3	R13887	Inositol-3-phosphate
4.54e+00 11	96	3.0	325	2	P70428	Polypeptide encoded b
1.05e+01 12	97	3.0	1256	5	R27746	Muramidase released p
8.90e+00 13	95	2.9	304	4	R22403	Partial sequence of N
1.24e+01 14	90	2.8	78	7	R39225	Hydrophobic protein d
2.81e+01 15	89	2.8			R60800	Rape abscission/dehis
3.30e+01						-
16 2.81e+01	90	2.8	482	3	R21409	NADH dehydrogenase su
17 5.33e+01	86	2.7		13	R71123	SG-1.
18 5.33e+01	86	2.7	208	13	R71127	Synthetic protein G f
19 5.33e+01	86	2.7	562	2	P91904	Sequence of amy B hea
20 3.87e+01	88	2.7	672	14	R73593	Cotransporter protein
21 3.87e+01	88	2.7	700	13	R70235	P. falciparum EBL-e2.
22 5.33e+01	86	2.7	911	3	R15355	Human erythrocyte mem
23	86	2.7	1498	14	R77085	Hamster sulphonylurea
5.33e+01 24	86	2.7	1582	14	R77088	Hamster sulphonylurea
5.33e+01 25	83	2.6	45	1	R02230	Sequence of the E5 on
8.53e+01 26	83	2.6	547	7	R34668	Ap Serotype 7 60kDa T
8.53e+01 27	84	2.6	677	8	R43652	Plant potassium chann
7.30e+01 28 8.53e+01	83	2.6	699	4	R22187	Sequence of luteinisi

29 6.24e+01	85	2.6	1274	7	R34714	Bacillus subtilis srf
30	84	2.6	1498 1	4	R77084	Rat sulphonylurea rec
7.30e+01 31	84	2.6	1582 1	4	R77087	Rat sulphonylurea rec
7.30e+01 32	81	2.5	338	3	R21420	Streptomyces clavulig
1.16e+02 33	82	2.5	453	3	R14645	Tea gene product (20.
9.97e+01 34	82	2.5	453 1	.0	R53467	Tea T-cell transmembr
9.97e+01 35	82	2.5	501	5	R27741	Sequence transcribed
9.97e+01 36	82	2.5	502	3	R15226	HincII restriction en
9.97e+01 37	81	2.5	710 1	. 4	R72856	C. albicans FKS1 homo
1.16e+02 38	81	2.5	920	2	R11993	Glutamate receptor 5-
1.16e+02 39	82	2.5	986	9	R25141	JAK2.
9.97e+01 40	81	2.5	1054 1	.1	R58610	Yeast HMG-CoA reducta
1.16e+02 41	82	2.5	1129 1	.3	R70830	Murine JAK2 kinase.
9.97e+01 42	81	2.5	1451	5	R27819	CCVInsavc spike prote
1.16e+02 43	82	2.5	1684	3	R14948	Bacterial amylase A-1
9.97e+01 44	82	2.5	2351	2	P70448	Human factor VIII:c
9.97e+01 45 1.16e+02	81	2.5	3898	3	R10473	Hog cholera virus gen

ALIGNMENTS

RESULT 1

ID R71381 standard; Protein; 441 AA.

AC R71381;

DT 21-NOV-1995 (first entry)

DE Vaccinia virus semaphorin IV protein.

KW Semaphorin; grasshopper; human; vaccinia virus; Drosophila; Tribolium;

KW variola major virus; smallpox; semaphorin receptor binding activity;

KW modulation; nerve cell growth; immune response; viral pathogenesis;

KW neurological disease; neuro-regeneration; oncological infection.

OS Vaccinia virus.

PN W09507706-A.

PD 23-MAR-1995.

```
13-SEP-1994; U10151.
_{
m PF}
    13-SEP-1993; US-121713.
PR
    (REGC ) UNIV CALIFORNIA.
PA
    Bentley DR, Goodman CS, Kolodkin AL, Matthes D;
PI
PΙ
    O'Connor T;
    WPI; 95-131177/17.
DR
DR
    N-PSDB; 087443.
    New class of semaphorin peptide(s) and polypeptide(s) - are
PT
PT
    potent modulators of nerve cell growth and regeneration
PS
    Example 2; Page 65-67; 101pp; English.
CC
    The sequence of the vaccinia virus semaphorin IV protein.
    The gene sequence was isolated as the A39R open reading frame
CC
sequence
CC
      from variola, based on sequence homology searches of a
database with the
     grasshopper, Tribolium and Drosophila semaphorin sequences.
The proteins
      encoded by the grasshopper semaphorin I (Q87441), human
semaphorin III
    (Q87442), vaccinia virus semaphorin IV, Drosophila semaphorin
I and II
     (Q87444-5), Tribolium semaphorin I (Q87446) or variola major
CC
(smallpox)
     virus semaphorin IV (Q87447) genes were used to generate a
series of
     peptides (R70370-R70418), which retain semaphorin receptor
binding
CC
     activity.
                 The semaphorin derived or semaphorin receptor
derived peptides
      are potent modulators of nerve cell growth, immune
responsiveness and
     viral pathogenesis. They can be used in diagnosis and
treatment of
CC
   neurological disease and neuro-regeneration, immune modulation
and
CC
    diagnosis and treatment of viral and oncological infection and
diseases.
    Sequence 441 AA;
SO
                       100.0%;
                               Score 3231; DB 13; Length 441;
 Query Match
 Best Local Similarity 100.0%;
                               Pred. No. 0.00e+00;
 Matches
           441; Conservative 0; Mismatches
                                              0; Indels
                                                           0;
Gaps
      0;
mmvllhavysivfvdviiikvqryindiltldifylfkmipllfilfyfangiewhkfet 60
MMVLLHAVYSIVFVDVIIIKVORYINDILTLDIFYLFKMIPLLFILFYFANGIEWHKFET 60
seeiistyllddvlytgvngavytfsnnklnktgltnnnyittsikvedadkdtlvcgtn 120
```



```
pathogenesis;
KW
        neurological disease; neuro-regeneration; oncological
infection.
OS
    Variola major virus.
PN
    W09507706-A.
     23-MAR-1995.
PD
PF
    13-SEP-1994; U10151.
    13-SEP-1993; US-121713.
PR
    (REGC ) UNIV CALIFORNIA.
PA
PΙ
    Bentley DR, Goodman CS, Kolodkin AL, Matthes D;
ΡI
    O'Connor T;
    WPI; 95-131177/17.
DR
    N-PSDB; Q87447.
DR
PT
    New class of semaphorin peptide(s) and polypeptide(s) - are
PT
    potent modulators of nerve cell growth and regeneration
PS
    Example 2; Page 90-91; 101pp; English.
CC
    The sequence of the variola major (smallpox) virus semaphorin
IV protein.
CC
    The gene sequence was isolated as the A43R open reading frame
sequence
    from variola based on sequence homology searches of a database
CC
with the
CC
     grasshopper, Tribolium and Drosophila semaphorin sequences.
The proteins
      encoded by the grasshopper semaphorin I (Q87441), human
semaphorin III
     (Q87442), vaccinia virus semaphorin IV (Q87443), Drosophila
semaphorin I
CC
    and II (Q87444-5), Tribolium semaphorin°I (Q87446) or variola
major
     (smallpox) virus semaphorin IV genes were used to generate a
CC
series of
     peptides (R70370-R70418), which retain semaphorin receptor
CC
binding
                 The semaphorin derived or semaphorin receptor
CC
      activity.
derived peptides
CC
       are potent modulators of nerve cell growth,
responsiveness and
      viral pathogenesis. They can be used in diagnosis and
treatment of
   neurological disease and neuro-regeneration, immune modulation
CC
and
CC
    diagnosis and treatment of viral and oncological infection and
diseases.
    Sequence
               122 AA;
SQ
                        18.8%;
                                Score 608; DB 13; Length 122;
  Query Match
  Best Local Similarity 91.5%;
                                Pred. No. 9.74e-47;
 Matches
            86; Conservative
                               3; Mismatches
                                               4;
                                                    Indels
                                                             1;
Gaps
      1;
                                      b
y-lytadnvipkdglqgafvdkdgtydkvyilftvtigskrivkipyiaqmclndecqps 61
```

```
Q
YDLYTADNVIPKDGLRGAFVDKDGTYDKVYILFTDTIGSKRIVKIPYIAOMCLNDEGGPS 241
Db
      62 slsshrwstllkvelecdidgrsysqinhsktik 95
         242 SLSSHRWSTFLKVELECDIDGRSYRQIIHSRTIK 275
QУ
RESULT
    R74175 standard; Protein; 477 AA.
ID
    R74175;
AC
DT
    01-NOV-1995 (first entry)
DE
    Human collapsin.
    Collapsin; antibody; therapy.
KW
OS
    Homo sapiens.
FH
                    Location/Qualifiers
    Key
                    9..19
FT
    Binding site
    /note= "antibody binding site"
FT
    Binding_site 51..65 /note= "antibody binding site"
FT
FT
    US5416197-A.
PN
PD
    16-MAY-1995.
PF
    15-OCT-1993; 136922.
    15-OCT-1993; US-136922.
PR
    (UYPE-) UNIV PENNSYLVANIA.
PA
    Luo Y, Raper JA;
PΙ
    WPI; 95-193478/25.
DR
    N-PSDB: Q92331.
DR
    New antibody to human collapsin - used to inhibit the activity
PT
of
PT
       collapsin, to induce neurite out-growth and to treat
individuals with
PT
    nerve damage.
    Claim 2; Columns 15-18; 11pp; English.
PS
    An antibody capable of specifically binding at least a portion
CC
of
     the collapsin protein can be used to purify human collapsin
CC
and
                                              It can be used to
CC
     to inhibit the activity of the protein.
induce
CC
    neurite outgrowth by neuronal cells and to treat individuals
CC
    suffering from nerve damage.
               477 AA;
SO
    Sequence
                         4.9%;
                                Score 158; DB 13;
                                                   Length 477;
 Query Match
                                Pred. No. 1.37e-04;
 Best Local Similarity 32.7%;
                               29; Mismatches 33;
                                                    Indels 14;
 Matches
            37; Conservative
Gaps 10;
                                     b
dkvyfffrenaidgehsgkatharigqickndfgghrslv-nkwttflkarlicsvpgpn 67
         :
```

```
Q Y 2 0 8 DKVYILFTD-TIGSKRIVKIPY--IAOMCLNDEGGPSSLSSHRWSTFLKVELECDI---D 261
Db
     68 gidthfdelqdvflmnfkdpknpvvygvfttssnifkgsavcmysmsdvrrvf 120
            : : :: :
                         262 GR-S-YRQI--IHSRTIKTDNDTILY-VFFDSPYS-K-SALCTYSMNTIKQSF 307
Qy
RESULT
ID
    R71380 standard; Protein; 771 AA.
AC
    R71380;
    21-NOV-1995
                 (first entry)
DT
DE
    Human semaphorin III protein.
     Semaphorin; grasshopper; human; vaccinia virus; Drosophila;
KW
Tribolium;
     variola major virus; smallpox; semaphorin receptor binding
KW
activity;
       modulation; nerve cell growth; immune response; viral
KW
pathogenesis;
        neurological disease; neuro-regeneration; oncological
KW
infection.
OS
    Homo sapiens.
PN
    W09507706-A.
PD
    23-MAR-1995.
    13-SEP-1994; U10151.
PF
    13-SEP-1993; US-121713.
PR
PA
    (REGC ) UNIV CALIFORNIA.
PΙ
    Bentley DR, Goodman CS, Kolodkin AL, Matthes D;
PΙ
    O'Connor T;
    WPI; 95-131177/17.
DR
    N-PSDB; Q87442.
DR
PT
    New class of semaphorin peptide(s) and polypeptide(s) - are
PT
    potent modulators of nerve cell growth and regeneration
PS
    Example 2; Page 60-63; 101pp; English.
CC
      The sequence of the human semaphorin III protein.
proteins
      encoded by the grasshopper semaphorin I (Q87441), human
CC
semaphorin III,
    vaccinia virus semaphorin IV (Q87443), Drosophila semaphorin
I and II
     (Q87444-5), Tribolium semaphorin I (Q87446) or variola major
CC
(smallpox)
     virus semaphorin IV (Q87447) genes were used to generate a
CC
series of
     peptides (R70370-R70418), which retain semaphorin receptor
CC
binding
      activity.
                 The semaphorin derived or semaphorin receptor
CC
derived peptides
       are potent modulators of nerve cell growth,
CC
responsiveness and
      viral pathogenesis. They can be used in diagnosis and
CC
treatment of
   neurological disease and neuro-regeneration, immune modulation
CC
and
```

```
diagnosis and treatment of viral and oncological infection and
diseases.
    Sequence
               771 AA;
SO
 Query Match 4.9%; Score 158; DB 13; Length 771; Best Local Similarity 32.7%; Pred. No. 1.37e-04;
           37; Conservative 29; Mismatches 33; Indels 14;
 Matches
Gaps 10;
dkvyfffrenaidgehsgkatharigqickndfgghrslv-nkwttflkarlicsvpgpn 299
         Q
                                              0
DKVYILFTD-TIGSKRIVKIPY--IAQMCLNDEGGPSSLSSHRWSTFLKVELECDI---D 261
    300 gidthfdelgdvflmnfkdpknpvvygvfttssnifkgsavcmysmsdvrrvf 352
Db
           262 GR-S-YRQI--IHSRTIKTDNDTILY-VFFDSPYS-K-SALCTYSMNTIKQSF 307
Qу
RESULT
    R71383 standard; Protein; 724 AA.
ID
AC
    R71383;
DT
    21-NOV-1995
                (first entry)
    Drosophila semaphorin II protein.
DE
     Semaphorin; grasshopper; human; vaccinia virus; Drosophila;
ΚW
Tribolium;
     variola major virus; smallpox; semaphorin receptor binding
ΚW
activity;
      modulation; nerve cell growth; immune response; viral
pathogenesis;
        neurological disease; neuro-regeneration; oncological
KW
infection.
OS
    Drosophila sp.
    WO9507706-A.
PN
    23-MAR-1995.
PD
PF
    13-SEP-1994; U10151.
    13-SEP-1993; US-121713.
PR
    (REGC ) UNIV CALIFORNIA.
PA
PΙ
    Bentley DR,
                Goodman CS,
                             Kolodkin AL, Matthes D;
ΡI
    O'Connor T;
    WPI; 95-131177/17.
DR
    N-PSDB; Q87445.
DR
    New class of semaphorin peptide(s) and polypeptide(s) - are
PT
    potent modulators of nerve cell growth and regeneration
PT
PS
    Example 2; Page 79-82; 101pp; English.
     The sequence of the Drosophila semaphorin II protein.
CC
gene was
CC
     isolated by PCR using primers based on sequence homology
between the
    complete grasshopper and partial Tribolium and Manduca (moth)
semaphorin
CC
     gene sequences. The products gave two different sequences,
```

```
each of which
       was used to obtain its respective complete sequence:
CC
semaphorin I
     (Q87444) and II. The proteins encoded by the grasshopper
semaphorin I
      (Q87441), human semaphorin III (Q87442), vaccinia virus
semaphorin IV,
      Drosophila semaphorin I and II, Tribolium semaphorin I
(Q87446) or
     variola major (smallpox) virus semaphorin IV (Q87447) genes
were used to
     generate a series of peptides (R70370-R70418), which retain
semaphorin
      receptor binding activity. The semaphorin derived or
CC
semaphorin receptor
    derived peptides are potent modulators of nerve cell growth,
     responsiveness and viral pathogenesis. They can be used in
CC
diagnosis and
     treatment of neurological disease and neuro-regeneration,
immune
       modulation and diagnosis and treatment of viral and
CC
oncological infection
    and diseases.
CC
               724 AA;
SQ
    Sequence
  Query Match
                         4.6%; Score 150; DB 13;
                                                   Length 724;
 Best Local Similarity 31.8%; Pred. No. 6.35e-04; Matches 34; Conservative 26; Mismatches 38;
                               26; Mismatches 38;
                                                     Indels
Gaps
      8;
                               2
               b
vyfffretaveyincgkavysriarvckkdvgg-knllahnwatylkarlncsisgefpf 323
         VYILFTDT-IGSKRIVKIPY--IAOMCLNDEGGPSSLSSHRWSTFLKVELECDIDGR-S- 264
     324 yfneigsvyglpsdksrffatfttstngligsavcsfhineigaafn 370
Db
             1:| ::|: :: | | : ||:|:: :| | :|:
     265 YRQIIHSR-TIKTDNDTILYVFFDSPYS-K-SALCTYSMNTIKQSFS 308
Qу
RESULT
    R71384 standard; Protein; 712 AA.
ID
AC
    R71384;
DT
    21-NOV-1995
                (first entry)
DE
    Tribolium semaphorin I protein.
     Semaphorin; grasshopper; human; vaccinia virus; Drosophila;
ΚW
Tribolium;
     variola major virus; smallpox; semaphorin receptor binding
KW
      modulation; nerve cell growth; immune response; viral
pathogenesis;
```

```
neurological disease; neuro-regeneration; oncological
KW
infection.
     Tribolium sp.
OS
PN
     WO9507706-A.
PD
     23-MAR-1995.
     13-SEP-1994; U10151.
PF
     13-SEP-1993; US-121713.
PR
     (REGC ) UNIV CALIFORNIA.
PA
ΡI
     Bentley DR, Goodman CS, Kolodkin AL, Matthes D;
ΡI
     O'Connor T;
DR
     WPI; 95-131177/17.
    N-PSDB; Q87446.
DR
    New class of semaphorin peptide(s) and polypeptide(s) - are
PT
     potent modulators of nerve cell growth and regeneration
PT
     Example 2; Page 85-88; 101pp; English.
PS
     The sequence of the beetle Tribolium semaphorin I protein.
CC
The gene was
     isolated by PCR using Tribolium genomic DNA.
                                                     The proteins
CC
encoded by the
      grasshopper semaphorin I (Q87441), human semaphorin III
(Q87442),
    vaccinia virus semaphorin IV (Q87443, Drosophila semaphorin I
CC
and II
    (Q87444-5), Tribolium semaphorin I or variola major (smallpox)
virus
    semaphorin IV (Q87447) genes were used to generate a series of
CC
peptides
      (R70370-R70418), which retain semaphorin receptor binding
CC
activity.
    semaphorin derived or semaphorin receptor derived peptides are
     modulators of nerve cell growth, immune responsiveness and
CC
viral
    pathogenesis. They can be used in diagnosis and treatment of
CC
neurological
       disease and neuro-regeneration, immune modulation and
CC
diagnosis and
     treatment of viral and oncological infection and diseases.
CC
               712 AA;
SQ
     Sequence
                                 Score 144; DB 13;
                          4.5%;
                                                     Length 712;
  Query Match
                                 Pred. No. 1.98e-03;
 Best Local Similarity 32.8%;
            22; Conservative
                                18; Mismatches 21; Indels
 Matches
Gaps 5;
                                2
               b
fvn-svayqdyifffyretaveymncqkviysrvarvckddkggphq-srdrwtsflkar 263
                      ::::: :| : :
          ||:
                : |
                                       |: |
                                               :|::| :| |||
||::||
FVDKDGTYDK-VYILFTDT-IGSKRIVKIPY--IAOMCLNDEGGPSSLSSHRWSTFLKVE 255
     264 lncsipg 270
Db
          1: | | |
```

Query Match

```
RESULT
     R71379 standard; Protein; 730 AA.
ID
AC
     R71379;
DT
     21-NOV-1995
                 (first entry)
\mathtt{DE}
     Grasshopper semaphorin I protein.
     Semaphorin; grasshopper; human; vaccinia virus; Drosophila;
KW
Tribolium;
KW
     variola major virus; smallpox; semaphorin receptor binding
activity;
       modulation; nerve cell growth; immune response; viral
pathogenesis;
KW
        neurological disease; neuro-regeneration; oncological
infection.
OS
     Grasshopper sp.
PN
     WO9507706-A.
     23-MAR-1995.
PD
PF
     13-SEP-1994; U10151.
PR
     13-SEP-1993; US-121713.
     (REGC ) UNIV CALIFORNIA.
PΑ
PΙ
     Bentley DR, Goodman CS, Kolodkin AL, Matthes D;
PΙ
     O'Connor T;
DR
     WPI; 95-131177/17.
     N-PSDB; Q87441.
DR
PT
     New class of semaphorin peptide(s) and polypeptide(s) - are
PT
     potent modulators of nerve cell growth and regeneration
PS
     Example 1; Page 68-72; 101pp; English.
CC
     The sequence of the grasshopper semaphorin I protein.
                                                               The
proteins
     encoded by the grasshopper semaphorin I, human semaphorin III
CC
(Q87442),
     vaccinia virus semaphorin IV (Q87443), Drosophila semaphorin
CC
I and II
CC
     (Q87444-5), Tribolium semaphorin I (Q87446) or variola major
(smallpox)
     virus semaphorin IV (Q87447) genes were used to generate a
series of
     peptides (R70370-R70418), which retain semaphorin receptor
CC
binding
CC
      activity.
                  The semaphorin derived or semaphorin receptor
derived peptides
        are potent modulators of nerve cell growth,
CC
responsiveness and
      viral pathogenesis. They can be used in diagnosis and
treatment of
    neurological disease and neuro-regeneration, immune modulation
CC
and
CC
    diagnosis and treatment of viral and oncological infection and
diseases.
SQ
     Sequence
                730 AA;
```

4.2%; Score 137; DB 13; Length 730;

```
Best Local Similarity 31.1%; Pred. No. 7.35e-03;
            38; Conservative 29; Mismatches 40; Indels 15;
 Matches
Gaps 11;
                               2
               b
fvntmeyndfiffffretaveyincgkaiysrvarvckhdkggphq-ggdrwtsflksrl 266
                | ::::| :| :
                                 FVDKDGTYDKVYILFTDT-IGSKRIVKIPY--IAQMCLNDEGGPSSLSSHRWSTFLKVEL 256
ncsvpgdypfyfneiqstsdiiegnyggqvekliygvfttpvnsiggsavcafsmksile 326
         : |
1|:|::||::|
ECDIDGR-S-YROIIHSRT--IKTD-NDTI--L-YVFFDSP-YSK--SALCTYSMNTIKO 305
     327 sf 328
Db
     306 SF 307
Qy
RESULT
ID
    R71382 standard; Protein; 650 AA.
AC
    R71382;
    21-NOV-1995
                (first entry)
DT
    Drosophila semaphorin I protein.
DE
     Semaphorin; grasshopper; human; vaccinia virus; Drosophila;
KW
Tribolium;
     variola major virus; smallpox; semaphorin receptor binding
KW
activity;
      modulation; nerve cell growth; immune response; viral
ΚW
pathogenesis;
       neurological disease; neuro-regeneration; oncological
KW
infection.
    Drosophila sp.
OS
    WO9507706-A.
PN
    23-MAR-1995.
PD
PF
    13-SEP-1994; U10151.
    13-SEP-1993; US-121713.
PR
    (REGC ) UNIV CALIFORNIA.
PA
    Bentley DR,
                Goodman CS, Kolodkin AL, Matthes D;
PΙ
PΙ
    O'Connor T;
    WPI; 95-131177/17.
DR
DR
    N-PSDB; Q87444.
PT
    New class of semaphorin peptide(s) and polypeptide(s) - are
    potent modulators of nerve cell growth and regeneration
PT
PS
    Example 2; Page 74-77; 101pp; English.
    The sequence of the Drosophila semaphorin I protein.
CC
was
     isolated by PCR using primers based on sequence homology
CC
between the
    complete grasshopper and partial Tribolium and Manduca (moth)
CC
```

```
semaphorin
     gene sequences. The products gave two different sequences,
CC
each of which
       was used to obtain its respective complete sequence:
semaphorin I and II
    (087445). The proteins encoded by the grasshopper semaphorin
I(Q87441),
    human semaphorin III (Q87442), vaccinia virus semaphorin IV,
CC
Drosophila
      semaphorin I and II, Tribolium semaphorin I (Q87446) or
variola major
     (smallpox) virus semaphorin IV (Q87447) genes were used to
generate a
     series of peptides (R70370-R70418), which retain semaphorin
CC
receptor
      binding activity. The semaphorin derived or semaphorin
CC
receptor derived
    peptides are potent modulators of nerve cell growth, immune
     responsiveness and viral pathogenesis. They can be used in
CC
diagnosis and
     treatment of neurological disease and neuro-regeneration,
CC
immune
CC
       modulation and diagnosis and treatment of viral and
oncological infection
    and diseases.
    Sequence 650 AA;
SQ
                         3.9%;
                               Score 125; DB 13; Length 650;
 Query Match
 Best Local Similarity 37.3%; Pred. No. 6.68e-02;
          22; Conservative
                               12; Mismatches 20;
                                                    Indels 5;
 Matches
Gaps
      4;
               b
                               1
vyfffretavefincgkaiysrvarvckwdkggphrfr-nrwtsflksrlncsipg-dy 171
         2
                                              1
VYILFTDT-IGSKRIVKIPY--IAOMCLNDEGGPSSLSSHRWSTFLKVELECDIDGRSY 265
RESULT
ID
    R70126 standard; Protein; 1025 AA.
AC
    R70126;
DT
    31-OCT-1995 (first entry)
    Serum opacity factor (SOF22).
DE
     serum opacity factor; diagnostic; high density lipoprotein;
KW
HDL:
KW
    apolipoprotein; coronary disease; Streptococcus pyogenes.
    Streptococcus pyogenes strain 22 D734.
OS
FH
                    Location/Qualifiers
FT
    Peptide
                    1..29
    /note= "signal sequence"
FT
FT
    Protein
                   30..1025
FT
    /note= "mature SOF22"
```

```
FT
     Cleavage site
                     29..30
FT
     /note= "putative signal sequence cleavage site"
FT
                     780..807
FT
     /note= "proline-rich motif present in the majority
FT
     of streptococcal surface proteins"
FT
                     820..828
     /note= "proline-rich motif present in the majority
FT
     of streptococcal surface proteins"
FT
FT
                     849..857
     Region
FT
     /note= "proline-rich motif present in the majority
FT
     of streptococcal surface proteins"
FT
                     928..935
     Region
     /note= "proline-rich motif present in the majority
FT
FT
     of streptococcal surface proteins"
FT
     Domain
                     820..828
     /label= repeat 1
FT
FT
                     848..857
     Domain
FT
     /label= repeat_2
FT
     Domain
                     888..896
FT
     /label= repeat_3
\operatorname{FT}
                     927..935
     Domain
     /label= repeat_4
FT
FT
     Domain
                     990..995
FT
     /note= "LPXTGX motif, found in surface proteins
FT
     from gram positive bacteria, with a
FT
     conservative replacement T to S"
PN
     WO9506721-A.
PD
     09-MAR-1995.
     30-AUG-1994; U09926.
PF
PR
     01-SEP-1993; US-115227.
PR
     22-AUG-1994; US-115227.
     (UYRQ ) UNIV ROCKEFELLER.
PA
PΙ
     Fischetti VA, Rakonjac J, Robbins J;
DR
     WPI; 95-115437/15.
DR
     N-PSDB; Q83181.
     A process for producing a polypeptide with apolipoproteinase
PT
PT
     activity - by cloning a DNA sequence coding for a protein
with
PT
    serum opacity factor activity and isolating said polypeptide.
PS
     Claim 8; Fig 4A-C; 46pp; English.
CC
     SOF22 (serum opacity factor 22) is encoded by the sof22 gene
(083181)
    from Streptococcus strain D734 and flanking regions. SOF22 has
CC
      apolipoproteinase activity, cleaving apolipoprotein APO-1,
CC
from high
CC
    density lipoprotein (HDL). Cleavage of APO-1 from HDL leads to
CC
    coaquiation of the remaining fraction resulting in opalesence.
This
CC
    observation is a useful tool for qualitatively determining the
CC
     concentration of HDL in mammalian sera, low levels of which
contribute
CC
     to coronary heart disease.
                1025 AA;
SQ
     Sequence
```

```
3.1%; Score 100; DB 13; Length 1025;
 Query Match
 Best Local Similarity 32.0%; Pred. No. 5.38e+00;
          16; Conservative 13; Mismatches 20;
                                                   Indels
                                                            1;
 Matches
Gaps
      1;
     319 kekkskkrghivlfsqgestfsydihnk-sdskilktrvnenittsnplf 367
Db
         373 KEKENEHREYRIYFIKENSIYSFDTKSKQTRSSQVDARLFSVMVTSKPLF 422
Qy
RESULT
        10
    R13887 standard; Protein; 2749 AA.
ID
    R13887;
AC
DT
    27-NOV-1991 (first entry)
DE
    Inositol-3-phosphate binding peptide.
    I-3-P; transformation; inositol.
KW
    J03183482-A.
PN
    09-AUG-1991.
PD
    14-DEC-1989; 324256.
PF
    14-DEC-1989; JP-324256.
PR
PA
    (KYOW ) KYOWA HAKKO KOGYO KK.
    WPI; 91-277584/38.
DR
DR
    N-PSDB; Q13593.
                polypeptide having binding affinity to
PT
           New
inositol-3-phosphate -
    prepd. by culturing cell contq. recombinant plasmid comprising
PT
    DNA and vector DNA
PT
PS
    Disclosure; Fig 2(1-3); 11pp; Japanese.
    The sequence encoding this peptide may be included in a
CC
       plasmid/vector for transformation of a host cell and
CC
mass-prodn.
CC
    of the peptide.
    Sequence 2749 AA;
SQ
 Query Match
                        3.1%; Score 101; DB 3; Length 2749;
 Best Local Similarity 26.8%; Pred. No. 4.54e+00; Matches 22; Conservative 21; Mismatches 34;
                                                    Indels
Gaps
      4;
                        2
                                    4
lllfdlvyreetllnviksvtrngrsiiltavlalilvylfsivgylffkddfilevdrl 2473
         ::|: ||
                    :::
Q
MVLLHAVYSI-VFVDVI--IIKVQR-YI-NDILTLDIFYLFKMIPLLFILFYFANGIEWH 56
Db
    2474 pnetavpetgeslandflysdv 2495
                : | :| ||: |
      57 KFETSEEIISTYLLDDVLYTGV 78
Qу
Search completed: Thu May 16 15:22:51 1996
Job time: 41 secs.
```

Release 2.1D John F. Collins, Biocomputing Research Unit. Copyright (c) 1993, 1994, 1995 University of Edinburgh,

U.K.

Distribution rights by IntelliGenetics, Inc.

MPsrch_pp protein - protein database search, using Smith-Waterman algorithm

Run on: Thu May 16 15:20:29 1996; MasPar time 13.87

Seconds

803.752 Million cell

1

updates/sec

Tabular output not generated.

Title: >US-08-121-713B-56

Description: (1-441) from US08121713B.pep

Perfect Score: 3231

S e q u e n c e : MMVLLHAVYSIVFVDVIIIK......FIADIGIGVGMPQMKKILKM 441

Scoring table: PAM 150

Gap 11

Searched: 82306 seqs, 25270970 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: pir46

1:ann1 2:ann2 3:ann3 4:unann1 5:unann2 6:unann3

7:unann4

8:unann5 9:unann6 10:unann7 11:unann8 12:unrev1

13:unrev2

Statistics: Mean 47.658; Variance 115.370; scale 0.413

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

0

Result Query

No. Score Match Length DB ID Description

Pred. No.

1 3231 100.0 441 6 S29921 hypothetical protein 0.00e+00

2 0.00e+00	2907	90.0	403	6	E42521	A39R protein - vacci
	2137	66.1	295	6	JQ1775	SalL9R protein - vac
	1019	31.5	142	6	JQ1776	SalF1R protein - vac
5	721	22.3	139	6	JQ1846	15R protein - variol
1.39e-95 6	713	22.1	139	6	I36852	A44R protein - vario
3.07e-94 7	608	18.8	122	6	н36852	A43R protein - vario
1.09e-76 8	608	18.8	122	6	JQ1845	14R protein - variol
1.09e-76 9	489	15.1	74	6	G36852	A42R protein - vario
4.24e-57 10	477	14.8	69	6	JQ1844	13R protein - variol
3.80e-55 11	158	4.9	771	11	D49423	semaphorin III precu
8.74e-07 12	157	4.9	772	10	A49069	collapsin - chicken
1.18e-06 13	150	4.6	724	10	C49423	semaphorin II precur
9.21e-06 14	147	4.5	711	13	A49423	semaphorin I precurs
2.20e-05 15	137	4.2	730	10	ЈН0798	fasciclin IV precurs
3.78e-04 16	125	3.9	656	10	B49423	semaphorin I - fruit
1.01e-02 17	113	3.5	1036	12	S55984	probable homeobox-do
2.31e-01 18	109	3.4	522	11	A31556	glucose transport pr
6.30e-01 19	110	3.4	523	11	S05319	glucose transport pr
4.91e-01 20	110	3.4	523	11	s06920	glucose transport pr
4.91e-01 21	106	3.3	113	11	B44887	glucose transporter
1.31e+00 22	102	3.2	443	9	B26696	hypothetical protein
3.43e+00 23	104	3.2	445	9	E22845	hypothetical protein
2.13e+00 24	101	3.1	169	12	S51910	G4 protein - Saurole
4.34e+00 25	100	3.1	343	3	MMBEA5	cell fusion protein
5.49e+00 26	100	3.1	343	3	A42746	cell fusion protein
5.49e+00 27	101	3.1	499	4	S01528	NADH dehydrogenase (
4.34e+00 28	101	3.1	499	1	DELVN4	NADH dehydrogenase (
4.34e+00						

29	101	3.1	500	6	C34955	hypothetical protein
4.34e+00 30	99	3.1	609	4	s04757	NADH dehydrogenase (
6.93e+00 31	101	3.1	2749	2	ACMSIT	inositol-trisphospha
4.34e+00 32	97	3.0	263	9	S52492	hypothetical protein
1.10e+01 33	96	3.0	325	2	TVHUAS	transforming protein
1.38e+01 34	96	3.0	365	1	,S26019	ubiquinolcytochrom
1.38e+01 35	96	3.0	406	12	s34396	type I site-specific
1.38e+01 36	96	3.0	443	4	F30010	NADH dehydrogenase (
1.38e+01 37	96	3.0	474	8	JX0301	ubiquinolcytochrom
1.38e+01 38	96	3.0	587	10	S41409	envelysin (EC 3.4.24
1.38e+01 39	96	3.0	587	10	S12805	envelysin (EC 3.4.24
1.38e+01 40	97	3.0	656	9	S49745	hypothetical protein
1.10e+01 41	96	3.0	712	3	BVBRCB	cyaB protein - Borde
1.38e+01 42	97	3.0	1256	3	A43829	muramidase-released
1.10e+01 43	96	3.0	2670	6	A46719	inositol 1,4,5-trisp
1.38e+01 44	97	3.0	2734	6	B36579	inositol 1,4,5-triph
1.10e+01 45	97	3.0	2749	6	A36579	inositol 1,4,5-triph
1.10e+01						

ALIGNMENTS

```
RESULT
          1
                 S29921
                            #type complete
ENTRY
                 hypothetical protein 15 - vaccinia virus
TITLE
                 #formal_name vaccinia virus
ORGANISM
                      20-Feb-1995 #sequence_revision 20-Feb-1995
DATE
#text change
                   20-Feb-1995
ACCESSIONS
                 S29921
REFERENCE
                 S29907
   #authors
                 Amegadzie, B.Y.
                 submitted to the EMBL Data Library, January 1991
   #submission
   #accession
                 S29921
      ##status
                      preliminary
      ##molecule type DNA
      ##residues_
                      1-441 ##label AME
      ##cross-references EMBL:X57318
```

```
FEGPSGVKWFDIKEKENEHREYRIYFIKENSIYSFDTKSKQTRSSQVDARLFSVMVTSKP 420
     421 lfiadigigvgmpqmkkilkm 441
Db
         421 LFIADIGIGVGMPQMKKILKM 441
Qy
RESULT
ENTRY
                        #type complete
              A39R protein - vaccinia virus (strain Copenhagen)
TITLE
              #formal name vaccinia virus
ORGANISM
              host Homo sapiens (man)
  #note
                   09-Nov-1990 #sequence revision 09-Nov-1990
DATE
#text change
                08-Apr-1994
ACCESSIONS
              E42521
              A33172
REFERENCE
  #authors
              Johnson, G.P.
              submitted to GenBank, June 1990
  #submission
  #accession
              E42521
                   preliminary
     ##status
     ##molecule_type DNA
     ##residues_
                  1-403 ##label JOH
               #length 403 #molecular-weight 45741 #checksum
SUMMARY
8167
 Query Match
                     90.0%;
                            Score 2907; DB 6;
                                             Length 403;
                            Pred. No. 0.00e+00;
 Best Local Similarity 99.0%;
          399; Conservative 2; Mismatches
                                               Indels
                                           2;
                                                      0:
 Matches
Gaps
     0;
mipllfilfyfangiewhkfetseeiistyllddvlytgvngavytfsnnklnktgltnn 60
9
MIPLLFILFYFANGIEWHKFETSEEIISTYLLDDVLYTGVNGAVYTFSNNKLNKTGLTNN 98
nyittsikvedadkdtlvcqtnngnpkcwkidqsddpkhrgrqyapyqnskvtiisynec 120
        Q
NYITTSIKVEDADKDTLVCGTNNGNPKCWKIDGSDDPKHRGRGYAPYONSKVTIISHNGC 158
vlsdiniskegikrwrrfdgpcgydlytadnvipkdglrgafvdkdgtydkvyilftdti 180
VLSDINISKEGIKRWRRFDGPCGYDLYTADNVIPKDGLRGAFVDKDGTYDKVYILFTDTI 218
                            1
                                                       1
D
             b
```

```
gskrivkipyiaqmclndeggpsslsshrwstflkvelecdidgrsyrqiihsrtiktdn 240
GSKRIVKIPYIAOMCLNDEGGPSSLSSHRWSTFLKVELECDIDGRSYRQIIHSRTIKTDN 278
dtilyvffdspysksalctysmntikqsfstsklegytkqlpspapgiclpagkvvshtt 300
9
DTILYVFFDSPYSKSALCTYSMNTIKOSFSTSKLEGYTKOLPSPASGICLPAGKVVPHTT 338
feviekynvlddiikplsngpifegpsgvkwfdikekenehreyriyfikensiysfdtk 360
FEVIEKYNVLDDIIKPLSNOPIFEGPSGVKWFDIKEKENEHREYRIYFIKENSIYSFDTK 398
     361 skgtrssgvdarlfsvmvtskplfiadigigvgmpgmkkilkm 403
Db
        QУ
     399 SKQTRSSQVDARLFSVMVTSKPLFIADIGIGVGMPQMKKILKM 441
RESULT
              JQ1775
ENTRY
                        #type complete
TITLE
              SalL9R protein - vaccinia virus (strain WR)
              #formal name vaccinia virus
ORGANISM
                   30-Sep-1993 #sequence revision 30-Sep-1993
DATE
#text change
                30-Sep-1993
ACCESSIONS
              J01775
REFERENCE
              JQ1767
  #authors
              Smith, G.L.; Chan, Y.S.; Howard, S.T.
              J. Gen. Virol. (1991) 72:1349-1376
  #journal
  #title
               Nucleotide sequence of 42kbp of vaccinia virus
strain WR from
                near the right inverted terminal repeat.
  #accession
              JQ1775
     ##molecule type DNA
     ##residues
                   1-295 ##label SMI
     ##cross-references DDBJ:D11079
                                                #checksum
                          #molecular-weight 33699
               #length 295
SUMMARY
7539
 Query Match
                     66.1%;
                            Score 2137; DB 6;
                                             Length 295;
 Best Local Similarity
                     99.7%;
                            Pred. No. 0.00e+00;
          290; Conservative
                            0; Mismatches
                                               Indels
                                                      1:
 Matches
Gaps
      1;
mmvllhavysivfvdviiikvqryindiltldifylfkmipllfilfyfangiewhkfet 60
```

```
MMVLLHAVYSIVFVDVIIIKVQRYINDILTLDIFYLFKMIPLLFILFYFANGIEWHKFET 60
seeiistyllddvlytgvngavytfsnnklnktgltnnnyittsikvedadkdtlvcgtn 120
1
                                   6
SEEIISTYLLDDVLYTGVNGAVYTFSNNKLNKTGLTNNNYITTSIKVEDADKDTLVCGTN 120
ngnpkcwkidgsddpkhrgrgyapyqnskvtiishngcvlsdiniskegikrwrrfdgpc 180
1
NGNPKCWKIDGSDDPKHRGRGYAPYQNSKVTIISHNGCVLSDINISKEGIKRWRRFDGPC 180
gydlytadnvipkdglrgafvdkdgtydkvyilftdtigskrivkipyiaqmclndeggp 240
1
GYDLYTADNVIPKDGLRGAFVDKDGTYDKVYILFTDTIGSKRIVKIPYIAQMCLNDEGGP 240
Db
     241 sslsshrwstflkvelecdidgrsyrqiihsrtiktdndtilyvffdsphy 291
        241 SSLSSHRWSTFLKVELECDIDGRSYRQIIHSRTIKTDNDTILYVFFDSP-Y 290
Qy
RESULT
              JQ1776
                       #type complete
ENTRY
              SalF1R protein - vaccinia virus (strain WR)
TITLE
              #formal name vaccinia virus
ORGANISM
                  30-Sep-1993 #sequence revision 30-Sep-1993
DATE
#text change
                30-Sep-1993
              JQ1776
ACCESSIONS
              JQ1767
REFERENCE
              Smith, G.L.; Chan, Y.S.; Howard, S.T.
  #authors
              J. Gen. Virol. (1991) 72:1349-1376
  #journal
               Nucleotide sequence of 42kbp of vaccinia virus
  #title
strain WR from
               near the right inverted terminal repeat.
              JQ1776
  #accession
     ##molecule type DNA
                  1-142 ##label SMI
     ##residues
     ##cross-references DDBJ:D11079
              #length 142 #molecular-weight 16133 #checksum
SUMMARY
5310
                     31.5%;
                           Score 1019; DB 6; Length 142;
 Query Match
 Best Local Similarity 99.3%;
                           Pred. No. 3.01e-146;
                                             Indels
                                                    0;
 Matches
        141; Conservative
                           1; Mismatches
                                         0;
```

١.

```
Gaps
      0;
mntikqsfstsklegytkqlpspapgiclpagkvvphttfeviekynvlddiikplsnqp 60
MNTIKOSFSTSKLEGYTKQLPSPASGICLPAGKVVPHTTFEVIEKYNVLDDIIKPLSNQP 359
ifeqpsqvkwfdikekenehreyriyfikensiysfdtkskqtrssqvdarlfsvmvtsk 120
Q
                              3
IFEGPSGVKWFDIKEKENEHREYRIYFIKENSIYSFDTKSKQTRSSQVDARLFSVMVTSK 419
Db
     121 plfiadigigvgmpqmkkilkm 142
         Qу
     420 PLFIADIGIGVGMPQMKKILKM 441
         5
RESULT
ENTRY
               JQ1846
                          #type complete
TITLE
               15R protein - variola major virus
ORGANISM
               #formal name variola major virus
                    03-May-1994 #sequence revision 03-May-1994
DATE
#text change
                 03-May-1994
               JQ1846
ACCESSIONS
REFERENCE
               JQ1832
               Aguado, B.; Selmes, I.P.; Smith, G.L.
  #authors
               J. Gen. Virol. (1992) 73:2887-2902
  #journal
  #title
               Nucleotide sequence of 21.8 kbp of variola major
virus strain
                 Harvey and comparison with vaccinia virus.
  #accession
               JQ1846
     ##molecule type DNA
                    1-139 ##label AGU
     ##residues
     ##experimental source strain Harver
                #length 139 #molecular-weight 16349
SUMMARY
                                                   #checksum
2421
                       22.3%;
                              Score 721; DB 6; Length 139;
 Query Match
 Best Local Similarity 75.4%;
                              Pred. No. 1.39e-95;
                              9; Mismatches 25;
                                                  Indels
                                                          0:
 Matches
          104; Conservative
Gaps
      0;
                                   b
mntikqsfstsnwediqsnyclqllvyvyqlekvvphntfdvieqynvldniikplsnqp 60
         | | | | | | | | | | | | | | | | | |
                                                1|||:|||||
```

MNTIKOSFSTSKLEGYTKOLPSPASGICLPAGKVVPHTTFEVIEKYNVLDDIIKPLSNQP 359

```
ifkgpsdvkwfdikekenehrkyriyfikentiysfntkskqtrssqvdaqlfsvmvtsk 120
                 IFEGPSGVKWFDIKEKENEHREYRIYFIKENSIYSFDTKSKQTRSSQVDARLFSVMVTSK 419
     121 plfiadigievgmprikn 138
Db
        420 PLFIADIGIGVGMPQMKK 437
QУ
        6
RESULT
                       #type complete
              I36852
ENTRY
              A44R protein - variola virus (strain India-1967)
TITLE
              #formal name variola virus
ORGANISM
DATE
                  30-Sep-1993 #sequence revision 30-Sep-1993
#text change
                30-Sep-1993
ACCESSIONS
              I36852
REFERENCE
              A36859
  #authors
              Blinov, V.M.
              submitted to GenBank, November 1992
  #submission
  #description not shown.
  #accession
              I36852
                  preliminary
     ##status
     ##molecule type DNA
                  1-139 ##label BLI
     ##residues
     ##cross-references GB:X69198
               #length 139 #molecular-weight 16409 #checksum
SUMMARY
1680
                            Score 713; DB 6; Length 139;
                     22.1%;
 Query Match
 Best Local Similarity 74.6%; Pred. No. 3.07e-94;
         103; Conservative 9; Mismatches 26;
                                              Indels
                                                     0;
 Matches
Gaps
     0;
                                 b
mntikqsfstsnwediqsnyclqllvyvyqlekvvphntfdvieqynvldniikplfnqp 60
        3
MNTIKQSFSTSKLEGYTKQLPSPASGICLPAGKVVPHTTFEVIEKYNVLDDIIKPLSNQP 359
ifkgpsdvkwfdikekenehrkyriyfikentiysfntkskqtrssqvdaqlfsvmvtsk 120
                              3
                                         6
0
IFEGPSGVKWFDIKEKENEHREYRIYFIKENSIYSFDTKSKQTRSSQVDARLFSVMVTSK 419
Db
     121 plfiadigievgmprikn 138
        420 PLFIADIGIGVGMPOMKK 437
Qy
```

```
RESULT
                H36852
                          #type complete
ENTRY
                A43R protein - variola virus (strain India-1967)
TITLE
ORGANISM
                #formal name variola virus
                     30-Sep-1993 #sequence revision 30-Sep-1993
DATE
#text change
                  30-Sep-1993
                H36852
ACCESSIONS
REFERENCE
                A36859
   #authors
                Blinov, V.M.
                submitted to GenBank, November 1992
   #submission
   #description not shown.
                H36852
   #accession
     ##status
                     preliminary
     ##molecule type DNA
                     1-122 ##label BLI
     ##residues
     ##cross-references GB:X69198
                #length 122 #molecular-weight 14301 #checksum
SUMMARY
8838
                                                 Length 122;
                        18.8%;
                               Score 608; DB 6;
  Query Match
                               Pred. No. 1.09e-76;
 Best Local Similarity 91.5%;
            86; Conservative
                               3; Mismatches 4;
                                                    Indels
                                                            1;
 Matches
Gaps
      1;
                                     b
D
y-lytadnvipkdglqgafvdkdgtydkvyilftvtigskrivkipyiaqmclndecgps 61
         Q
YDLYTADNVIPKDGLRGAFVDKDGTYDKVYILFTDTIGSKRIVKIPYIAOMCLNDEGGPS 241
Db
      62 slsshrwstllkvelecdidgrsysqinhsktik 95
         242 SLSSHRWSTFLKVELECDIDGRSYRQIIHSRTIK 275
Qy
        15
RESULT
ENTRY
                JH0798
                           #type complete
               fasciclin IV precursor - American bird grasshopper
TITLE
                #formal name Schistocerca americana #common name
ORGANISM
American
                  bird grasshopper
                     30-Sep-1993 #sequence revision 30-Sep-1993
DATE
#text change
                  11-Apr-1995
                JH0798
ACCESSIONS
REFERENCE
                JH0798
                  Kolodkin, A.; Matthes, D.J.; O'Connor, T.P.;
   #authors
Patel, N.H.;
                  Admon, A.; Bentley, D.; Goodman, C.S.
                Neuron (1992) 9:831-845
   #journal
                Fasciclin IV: Sequence, expression, and function
   #title
during
```

7

```
growth cone guidance in the grasshopper embryo.
                JH0798
  #accession
     ##molecule type mRNA
     ##residues_
                 1-730 ##label KOL
     ##cross-references GB:L00709
     ##experimental source embryo
          This protein plays a role in growth cone guidance in the
COMMENT
developing
            central nervous system.
                glycoprotein; transmembrane protein
KEYWORDS
FEATURE
  1-22
                      #domain signal sequence #status predicted
#label SIG\
                        #product fasciclin IV #status predicted
  23-730
#label MAT\
  23-627
                     #domain extracellular #label EXT\
  628-652
                     #domain transmembrane #label TMM\
                     #domain intracellular #label INT\
   653-730
  44,71,163,267,360,
  539
                     #binding site carbohydrate (Asn) (covalent)
#status
                       predicted
                 #length 730 #molecular-weight 81214 #checksum
SUMMARY
5881
 Query Match 4.2%; Score 137; DB 10; Length 730; Best Local Similarity 31.1%; Pred. No. 3.78e-04;
         38; Conservative 29; Mismatches 40;
                                                    Indels 15:
 Matches
Gaps 11;
               b
fvntmeyndfiffffretaveyincgkaiysrvarvckhdkggphgfgd-rwtsflksrl 266
         FVDKDGTYDKVYILFTDT-IGSKRIVKIPY--IAOMCLNDEGGPSSLSSHRWSTFLKVEL 256
ncsvpgdypfyfneiqstsdiiegnyggqvekliygvfttpvnsiggsavcafsmksile 326
         :|:|:|:|:|:
                                        : | | :|
||:|::||::|
Q
ECDIDGR-S-YRQIIHSRT--IKTD-NDTI--L-YVFFDSP-YSK--SALCTYSMNTIKQ 305
     327 sf 328
Db
         306 SF 307
Qy
```

Search completed: Thu May 16 15:21:52 1996 Job time: 83 secs.

Release 2.1D John F. Collins, Biocomputing Research Unit. Copyright (c) 1993, 1994, 1995 University of Edinburgh,

U.K.

Distribution rights by IntelliGenetics, Inc.

protein - protein database search, using Smith-Waterman MPsrch pp algorithm

Thu May 16 15:19:36 1996; MasPar time 8.33 Run on:

Seconds

811.743 Million cell

1

updates/sec

Tabular output not generated.

>US-08-121-713B-56

(1-441) from US08121713B.pep Description:

3231 Perfect Score:

Sequence:

MMVLLHAVYSIVFVDVIIIK......FIADIGIGVGMPQMKKILKM 441

PAM 150 Scoring table:

Gap 11

43470 seqs, 15335248 residues Searched:

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: swiss-prot31

1:part1 2:part2 3:part3 4:part4 5:part5 6:part6

7:part7

8:part8

Mean 49.812; Variance 96.211; scale 0.518 Statistics:

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being

and is derived by analysis of the total score distribution.

SUMMARIES

Result Query Score Match Length DB ID Description No.

용

Pred. No.

0.00e+00

403 7 VA39 VACCC PROTEIN A39. 2907 90.0

^{3231 100.0} 441 7 VA39 VACCV PROTEIN A39. 1

0.00.10	^					
0.00e+0	109	3.4	522	3	GTR2_RAT	GLUCOSE TRANSPORTER T
7.87e-0	110	3.4	523	3	GTR2_MOUSE	GLUCOSE TRANSPORTER T
5.84e-0	100	3.1	343	2	CELF_HSVEB	CELL FUSION PROTEIN P
1.05e+0	100	3.1	365	2	CYB_ASCSU	CYTOCHROME B (EC 1.10
1.05e+0	101	3.1	499	5	NU4C_MARPO	NADH-PLASTOQUINONE OX
7.93e-0	101	3.1	500	5	PCD6_MOUSE	PROTEIN PCD-6 (FRAGME
7.93e-0	99	3.1	609	5	NU5M_RAT	NADH-UBIQUINONE OXIDO
1.38e+0	101	3.1	2749	4	IP3R_MOUSE	INOSITOL 1,4,5-TRISPH
7.93e-0	96	3.0	325	4	MAS_HUMAN	MAS PROTO-ONCOGENE.
3.13e+0	96	3.0	587	3	HE_PARLI	HATCHING ENZYME PRECU
3.13e+0	96	3.0	712	2	CYAB_BORPE	CYCLOLYSIN SECRETION
3.13e+0	97	3.0	1256	5	MRP_STRSU	MURAMIDASE-RELEASED P
2.39e+0	97	3.0	2749	4	IP3R_RAT	INOSITOL 1,4,5-TRISPH
2.39e+0	94	2.9	91	8	YVBG_VACCC	HYPOTHETICAL 11.2 KD
5.32e+0 17	94	2.9	198	2	COP_CLOPE	COPY NUMBER PROTEIN (
5.32e+0	95	2.9	338	1	ANX2_HUMAN	ANNEXIN II (LIPOCORTI
4.09e+0 19	94	2.9	447	5	NU4M_APIME	NADH-UBIQUINONE OXIDO
5.32e+0	94	2.9	499	3	GAB_LYMST	GAMMA-AMINOBUTYRIC-AC
5.32e+0 21	93	2.9	506	2	CP5I_CANTR	CYTOCHROME P450 LIIB1
6.92e+0	94	2.9	532	8	YHB7_YEAST	HYPOTHETICAL 61.2 KD
5.32e+0 23	94	2.9	707	3	HLYB_ACTPL	HAEMOLYSIN SECRETION
5.32e+0 24	94	2.9	1951	2	CIN3_RAT	SODIUM CHANNEL PROTEI
5.32e+0 25	91	2.8	167	8	YPA2_ASCIM	HYPOTHETICAL 19.7 KD
1.16e+0 26	90	2.8	204	1	BACR_HALHM	BACTERIORHODOPSIN (BR
1.50e+0 27	92	2.8	259	1	BAC2_HALS2	ARCHAERHODOPSIN 2 PRE
8.97e+0 28	90	2.8	267	1	BLO5_PSEAE	BETA-LACTAMASE OXA-5
1.50e+0. 29	1 92	2.8	277	1	BLO7_ECOLI	BETA-LACTAMASE OXA-7
					_	

8.97e+00						
30	92	2.8	291	7	SUAR_RAT	ARYL SULFOTRANSFERASE
8.97e+00 31	90	2.8	303	8	YE15_YEAST	HYPOTHETICAL 33.7 KD
1.50e+01 32	91	2.8	413	3	HEMO_HYACE	HEMOLIN PRECURSOR (P4
1.16e+01 33	90	2.8	483	8	XYLB_STAXY	XYLULOSE KINASE (EC 2
1.50e+01 34	91	2.8	501	5	PHR1_SINAL	DEOXYRIBODIPYRIMIDINE
1.16e+01 35	92	2.8	554	5	NU5M_APIME	NADH-UBIQUINONE OXIDO
8.97e+00 36	91	2.8	580	5	P69_MYCHR	TRANSPORT SYSTEM PERM
1.16e+01 37	91	2.8	702	1	ATI1_VARV	81 KD A-TYPE INCLUSIO
1.16e+01 38	90	2.8	707	3	HLYB ECOLI	HAEMOLYSIN SECRETION
1.50e+01 39	90	2.8	707	3	HLY2 ECOLI	HAEMOLYSIN SECRETION
1.50e+01 40	91	2.8	718	5	- NAMI CANFA	SODIUM/MYO-INOSITOL C
1.16e+01 41	91	2.8	774	8	- VP4_ROTHT	OUTER CAPSID PROTEIN
1.16e+01 42	92	2.8	775	8	- VP4 ROTHM	OUTER CAPSID PROTEIN
8.97e+00 43	92	2.8	776	8	VP4_ROTHN	OUTER CAPSID PROTEIN
8.97e+00					_	
44 8.97e+00	92	2.8	1522	2	CIN1_LOLBL	SODIUM CHANNEL PROTEI
45 8.97e+00	92	2.8	1590	3	GCN2_YEAST	PROTEIN KINASE GCN2 (

ALIGNMENTS

```
RESULT
                     STANDARD;
ID
     VA39 VACCV
                                    PRT;
                                            441 AA.
     P247\overline{6}4;
AC
     01-MAR-1992 (REL. 21, CREATED)
DT
     01-MAR-1992 (REL. 21, LAST SEQUENCE UPDATE)
DT
     01-JUL-1993 (REL. 26, LAST ANNOTATION UPDATE)
DT
     PROTEIN A39.
DΕ
     A39R OR (SALL9R AND SALF1R).
GN
OS
     VACCINIA VIRUS (STRAIN WR).
           VIRIDAE;
                      DS-DNA ENVELOPED
OC
                                            VIRUSES; POXVIRIDAE;
CHORDOPOXVIRINAE;
     ORTHOPOXVIRUSES.
OC
RN
     [1]
     SEQUENCE FROM N.A.
RΡ
RM
     91310644
RA
     AMEGADZIE B.Y., AHN B.-Y., MOSS B.;
     J. BIOL. CHEM. 266:13712-13718(1991). - Deteb-se sequence not
RL
```

```
RN
    [2]
RΡ
    SEQUENCE FROM N.A.
RM
    91259063
    SMITH G.L., CHAN Y.S., HOWARD S.T.;
RA
    J. GEN. VIROL. 72:1349-1376(1991).
RL
    -!- CAUTION: IN REF.2 THIS SEQUENCE IS IN TWO PART (SALL9R AND
CC
       SALF1R) DUE TO THE PRESENCE OF FRAMESHIFT COMPARED TO THAT
CC
OF
CC
       REF.1.
    EMBL; M61187; VACRNAPS.
DR
DR
    EMBL; D11079; PXVACRHF.
    EMBL; X57318; VVDNA.
DR
    PIR; S29921; S29921.
DR
    SEOUENCE
              441 AA; 50185 MW;
                               1082834 CN;
SO
                     100.0%;
                             Score 3231; DB 7;
                                              Length 441;
 Query Match
 Best Local Similarity 100.0%;
                             Pred. No. 0.00e+00;
          441; Conservative
                            0; Mismatches
                                          0;
                                               Indels
                                                       0:
 Matches
Gaps
      0;
mmvllhavysivfvdviiikvqryindiltldifylfkmipllfilfyfangiewhkfet 60
MMVLLHAVYSIVFVDVIIIKVORYINDILTLDIFYLFKMIPLLFILFYFANGIEWHKFET 60
seeiistyllddvlytgvngavytfsnnklnktgltnnnyittsikvedadkdtlvcgtn 120
SEEIISTYLLDDVLYTGVNGAVYTFSNNKLNKTGLTNNNYITTSIKVEDADKDTLVCGTN 120
ngnpkcwkidqsddpkhrgrgyapyqnskvtiishngcvlsdiniskegikrwrrfdgpc 180
NGNPKCWKIDGSDDPKHRGRGYAPYONSKVTIISHNGCVLSDINISKEGIKRWRRFDGPC 180
qydlytadnvipkdqlrgafvdkdqtydkvyilftdtiqskrivkipyiaqmclndeggp 240
GYDLYTADNVIPKDGLRGAFVDKDGTYDKVYILFTDTIGSKRIVKIPYIAQMCLNDEGGP 240
sslsshrwstflkvelecdidgrsyrgiihsrtiktdndtilyvffdspysksalctysm 300
SSLSSHRWSTFLKVELECDIDGRSYROIIHSRTIKTDNDTILYVFFDSPYSKSALCTYSM 300
```

```
ntikqsfstsklegytkqlpspasgiclpagkvvphttfeviekynvlddiikplsnqpi 360
NTIKOSFSTSKLEGYTKOLPSPASGICLPAGKVVPHTTFEVIEKYNVLDDIIKPLSNOPI 360
fegpsgvkwfdikekenehreyriyfikensiysfdtkskgtrssgvdarlfsvmvtskp 420
FEGPSGVKWFDIKEKENEHREYRIYFIKENSIYSFDTKSKQTRSSQVDARLFSVMVTSKP 420
     421 lfiadigigvgmpgmkkilkm 441
Db
        Qу
     421 LFIADIGIGVGMPQMKKILKM 441
RESULT
    VA39 VACCC
                  STANDARD; PRT; 403 AA.
ID
AC
    P21062;
DT
    01-FEB-1991 (REL. 17, CREATED)
    01-FEB-1991 (REL. 17, LAST SEQUENCE UPDATE)
\mathtt{DT}
    01-FEB-1991 (REL. 17, LAST ANNOTATION UPDATE)
\mathtt{DT}
    PROTEIN A39.
DΕ
GN
    A39R.
    VACCINIA VIRUS (STRAIN COPENHAGEN).
OS
                   DS-DNA
                           ENVELOPED
                                     VIRUSES; POXVIRIDAE;
OC
         VIRIDAE;
CHORDOPOXVIRINAE;
    ORTHOPOXVIRUSES.
OC
RN
    [1]
    SEQUENCE FROM N.A.
RP
RM
    91021027
    GOEBEL S.J., JOHNSON G.P., PERKUS M.E., DAVIS S.W., WINSLOW
RA
J.P.,
    PAOLETTI E.;
RA
    VIROLOGY 179:247-266(1990).
\mathtt{RL}
RN
RP
    COMPLETE GENOME.
    GOEBEL S.J., JOHNSON G.P., PERKUS M.E., DAVIS S.W., WINSLOW
RA
J.P.,
    PAOLETTI E.;
RA
    VIROLOGY 179:517-563(1990).
RL
    EMBL; M35027; PXVACCG.
DR
    PIR; E42521; E42521.
DR
    SEQUENCE 403 AA; 45741 MW; 907305 CN;
SQ
 Query Match
                      90.0%;
                              Score 2907; DB 7; Length 403;
                              Pred. No. 0.00e+00;
 Best Local Similarity 99.0%;
         399; Conservative 2; Mismatches
                                            2;
                                                 Indels
                                                         0;
 Matches
Gaps
     0;
```

b

D

1

Release 2.1D John F. Collins, Biocomputing Research Unit.

Copyright (c) 1993, 1994, 1995 University of Edinburgh,

U.K.

Distribution rights by IntelliGenetics, Inc.

MPsrch_pp protein - protein database search, using Smith-Waterman
algorithm

Run on: Thu May 16 15:25:47 1996; MasPar time 9.88

Seconds

612.229 Million cell

1

updates/sec

Tabular output not generated.

Title: >US-08-121-713B-58

Description: (1-730) from US08121713B.pep

Perfect Score: 5233

Sequence:

MRAALVAVAALLWVALHAAA......KNANSSAENKPIQKVKKTYI 730

Scoring table: PAM 150

Gap 11

Searched: 70887 seqs, 8282111 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: a-geneseq22

1:part1 2:part2 3:part3 4:part4 5:part5 6:part6

7:part7

8:part8 9:part9 10:part10 11:part11 12:part12

13:part13

14:part14

Statistics: Mean 37.226; Variance 160.823; scale 0.231

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

용

Result Query

No. Score Match Length DB ID Description

Pred. No.

1 5233 100.0 730 13 R71379 Grasshopper semaphori

0.00e+00						
	2394	45.7	712	13	R71384	Tribolium semaphorin
3	2060	39.4	650	13	R71382	Drosophila semaphorin
8.26e-187 4	963	18.4	724	13	R71383	Drosophila semaphorin
4.89e-79 5_	910	17.4	771	13	R71380	Human semaphorin III
6.77e-74 6	659	12.6	477	13	R74175	Human collapsin.
1.00e-49	137	2.6	441	13	R71381	Vaccinia virus semaph
2.37e-02 8	101	1.9	122	13	R71385	Variola major virus s
1.07e+01 9	98	1.9	499	12	R60609	Tobamovirus replicati
1.73e+01 10	101	1.9	572	13	R78520	Partial ALK protein.
1.07e+01 11	98	1.9	793	10	R53758	H. influenzae PAK 120
1.73e+01 12	98	1.9	797	10	R53755	H. influenzae b Eagen
1.73e+01 13	98	1.9	797	10	R53756	H. influenzae b Minn
1.73e+01 14	98	1.9	797	10	R53754	H. influenzae b Ca D1
1.73e+01 15	97	1.9	3647	1	R05041	Filamentous haemagglu
2.02e+01 16	95	1.8	348	4	R27662	C-terminal region of
2.77e+01 17	95	1.8	455	4	R23973	Transmembrane form of
2.77e+01 18	96	1.8	516	1	P81987	Recombinant human lys
2.37e+01 19	92	1.8	558	2	P70430	Human neuroleukin.
4.41e+01 20	94	1.8	792	10	R53757	H. influenzae SB33 D1
3.23e+01 21	95	1.8	826	5	R26042	P. yoelii SSP2 antige
2.77e+01 22	94	1.8	1337	14	R85203	huDEP-1.
3.23e+01 23	88	1.7	441	3	P50309	Endoglucanase plasmid
8.10e+01 24	88	1.7	458	14	R79539	Endoglucanase-I prote
8.10e+01 25	88	1.7	458	14	R77263	T. longibrachiatum en
8.10e+01 26	88	1.7	459	3	P50134	Sequence encoded by e
8.10e+01 27	91	1.7	586	2	R07998	Asparagine synthetase
5.14e+01 28	90	1.7	604	10	R51268	Sequence of murine pr

5.98e+01					
29	90	1.7	661 2	R07504	Merozite apical-end-l
5.98e+01 30	87	1.7	705 10	R66597	Human L5/3 tumour sup
9.41e+01 31	87	1.7	705 10	R66598	Human L5/3 tumour sup
9.41e+01 32	87	1.7	711 10	R66602	Human L5/3 tumour sup
9.41e+01 33	87	1.7	713 10	R66603	Encoded by full-lengt
9.41e+01 34	91	1.7	768 5	R27683	Rabbit beta-8 intergi
5.14e+01 35 5.98e+01	90	1.7	769 1	P80836	Beta subunit of human
36 5.98e+01	90	1.7	769 1	R07113	Recombinant beta-subu
37 5.98e+01	90	1.7	769 4	R24256	Beta-subunit CD18 of
38	87	1.7	941 2	R07478	Cellulase.
9.41e+01 39	91	1.7	4987 3	R10834	Rianodin receptor.
5.14e+01 40	85	1.6	274 10	R54837	B. lichen subtilisin
1.27e+02 41	85	1.6	600 8	R44614	Thermostable ligase.
1.27e+02 42	86	1.6	622 1	P91632	Rhoptry membrane anti
1.09e+02 43	86	1.6	768 5	R27684	Human beta-8 intergin
1.09e+02 44	86	1.6	1140 14	R72386	XAP-1, part of the DN
1.09e+02 45 1.27e+02	85	1.6	3898 2	R06996	Protein characteristi

ALIGNMENTS Search completed: Thu May 16 15:26:23 1996 Job time: 36 secs.

U.K.

Distribution rights by IntelliGenetics, Inc.

MPsrch_pp protein - protein database search, using Smith-Waterman
algorithm

Run on: Thu May 16 15:24:16 1996; MasPar time 21.66

Seconds

851.723 Million cell

1

updates/sec

Tabular output not generated.

Title: >US-08-121-713B-58

Description: (1-730) from US08121713B.pep

Perfect Score: 5233

S e q u e n c e : MRAALVAVAALLWVALHAAA.....KNANSSAENKPIQKVKKTYI 730

Scoring table: PAM 150

Gap 11

Searched: 82306 segs, 25270970 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: pir46

1:ann1 2:ann2 3:ann3 4:unann1 5:unann2 6:unann3

7:unann4

8:unann5 9:unann6 10:unann7 11:unann8 12:unrev1

13:unrev2

Statistics: Mean 50.468; Variance 112.049; scale 0.450

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

Result Query

No. Score Match Length DB ID Description

Pred. No.

1 5220 99.8 730 10 JH0798 fasciclin IV precurs 0.00e+00 2 2403 45.9 711 13 A49423 semaphorin I precurs

0.00e+00

3 0.00e+00	2086	39.9	656	10	B49423	semaphorin I - fruit
4	963	18.4	724	10	C49423	semaphorin II precur
1.54e-14' 5	916	17.5	772	10	A49069	collapsin - chicken
8.14e-139	910	17.4	771	11	D49423	semaphorin III precu
1.05e-13'	147	2.8	403	6	E42521	A39R protein - vacci
1.63e-05 8	137	2.6	441	6	S29921	hypothetical protein
3.30e-04 9	131	2.5	295	6	JQ1775	SalL9R protein - vac
1.90e-03 10	109	2.1	329	8	H64115	phenylalaninetRNA
7.89e-01 11	109	2.1	535	3	WMBEW1	UL21 protein - human
7.89e-01 12	108	2.1	551	10	s52287	urbain - silkworm
1.02e+00 13	105	2.0	330	10	B48835	kinesin-like protein
2.18e+00 14	103	2.0	422	9	S56966	probable membrane pr
3.58e+00 15	106	2.0	4969	11	A37113	ryanodine receptor,
1.69e+00 16	103	2.0	5037	10	A54161	ryanodine-binding pr
3.58e+00 17	101	1.9	122	6	н36852	A43R protein - vario
5.85e+00 18	101	1.9	122	6	JQ1845	14R protein - variol
5.85e+00 19	99	1.9	268	9	S14068	seed protein precurs
9.48e+00 20	99	1.9	268	9	S05471	embryonic abundant p
9.48e+00 21	98	1.9	268	9	S04136	embryonic abundant p
1.20e+01 22	97	1.9	268	8	C64138	methionine aminopept
1.52e+01 23	97	1.9	287	11	S12738	T-cell alloantigen R
1.52e+01 24	100	1.9	421	10	S53818	XPMC2 protein - Afri
7.45e+00 25	97	1.9	502	13	B46570	H+-transporting ATP
1.52e+01 26	99	1.9	535	6	C24187	hypothetical protein
9.48e+00 27	98	1.9	535	1	EUHUGC	glucosylceramidase (
1.20e+01 28	101	1.9	564	7	I64134	D-lactate dehydrogen
5.85e+00 29 1.20e+01	98	1.9	797	7	JC4078	D-15 protective surf

30	100	1.9	917	2	ACGAE	glutamate receptor p
7.45e+00 31	97	1.9	1031	9	A29839	RAD2 protein - yeast
1.52e+01 32	100	1.9	1295	6	A35886	polymorphic epitheli
7.45e+00 33 1.20e+01	98	1.9	1615	3	T8MTMW	180K protein - tomat
34	96	1.8	380	4	S40049	glucose-1-phosphate
1.93e+01 35	96	1.8	380	12	S36625	glucose-1-phosphate
1.93e+01 36	96	1.8	427	13	S29812	transcobalamin - hum
1.93e+01 37	96	1.8	515	4	A32931	glucosylceramidase (
1.93e+01 38	95	1.8	630	11	A39344	tumor-associated muc
2.43e+01 39	96	1.8	712	9	S45308	SSK1 protein - yeast
1.93e+01 40	96	1.8	808	8	F64102	protective surface a
1.93e+01 41	95	1.8	826	12	S27834	sporozoite surface p
2.43e+01 42	95	1.8	826	9	A45559	sporozoite surface p
2.43e+01 43	96	1.8	976	9	s45738	pleiotropic drug res
1.93e+01 44	96	1.8	976	9	S46661	PDR3 protein - yeast
1.93e+01 45 2.43e+01	95	1.8	1264	6	A35175	episialin A - human

RESULT 1	
ENTRY	JH0798 #type complete
TITLE	fasciclin IV precursor - American bird grasshopper
ORGANISM	#formal name Schistocerca americana #common name
American	–
	bird grasshopper
DATE	30-Sep-1993 #sequence revision 30-Sep-1993
#text change	
- -	11-Apr-1995
ACCESSIONS	JH0798
REFERENCE	JH0798
#authors	Kolodkin, A.; Matthes, D.J.; O'Connor, T.P.;
Patel, N.H.;	
	Admon, A.; Bentley, D.; Goodman, C.S.
#journal	Neuron (1992) 9:831-845
#title	Fasciclin IV: Sequence, expression, and function
during	
	growth cone guidance in the grasshopper embryo.

```
JH0798
   #accession
      ##molecule_type mRNA
                     1-730 ##label KOL
      ##residues
      ##cross-references GB:L00709
      ##experimental source embryo
          This protein plays a role in growth cone guidance in the
COMMENT
developing
            central nervous system.
KEYWORDS
                glycoprotein; transmembrane protein
FEATURE
   1-22
                       #domain signal sequence #status predicted
#label SIG\
                        #product fasciclin IV #status predicted
   23-730
#label MAT\
   23-627
                     #domain extracellular #label EXT\
   628-652
                     #domain transmembrane #label TMM\
                     #domain intracellular #label INT\
   653-730
   44,71,163,267,360,
   539
                     #binding site carbohydrate (Asn) (covalent)
#status
                       predicted
                 #length 730 #molecular-weight 81214 #checksum
SUMMARY
5881
                        99.8%;
                                Score 5220; DB 10; Length 730;
  Query Match
 Best Local Similarity 99.9%; Pred. No. 0.00e+00;
          729; Conservative 0; Mismatches 1; Indels 0;
 Matches
Gaps 0;
RESULT
                A49423
ENTRY
                           #type complete
TITLE
                    semaphorin I precursor - beetle (Tribolium
confusum)
ORGANISM
                #formal name Tribolium confusum
                     12-Dec-1994 #sequence revision 12-Dec-1994
DATE
#text change
                  12-Dec-1994
ACCESSIONS
                A49423
                A49423
REFERENCE
                Kolodkin, A.L.; Matthes, D.J.; Goodman, C.S.
   #authors
   #journal
                Cell (1993) 75:1389-1399
   #title
                     The Semaphorin genes encode a family of
transmembrane and
                  secreted growth cone guidance molecules.
                A49423
   #accession
                     preliminary
      ##status
                     1-711 ##label KOL
      ##residues
      ##cross-references GB:L26080
                 #length 711 #molecular-weight 79623 #checksum
SUMMARY
4552
                        45.9%;
                                Score 2403; DB 13; Length 711;
 Query Match
 Best Local Similarity 50.6%; Pred. No. 0.00e+00;
 Matches 361; Conservative 145; Mismatches 178; Indels 29;
```

```
Gaps 23;
          3
RESULT
                 B49423
                            #type fragment
ENTRY
                semaphorin I - fruit fly (Drosophila melanogaster)
TITLE
(fragment)
                 #formal name Drosophila melanogaster
ORGANISM
                      06-Jan-1995 #sequence revision 06-Jan-1995
DATE
#text change
                   27-Jan-1995
                 B49423
ACCESSIONS
REFERENCE
                 A49423
                 Kolodkin, A.L.; Matthes, D.J.; Goodman, C.S.
   #authors
                 Cell (1993) 75:1389-1399
   #journal
   #title
                      The Semaphorin genes encode a family of
transmembrane and
                   secreted growth cone guidance molecules.
                 B49423
   #accession
                       preliminary; not compared with conceptual
      ##status
translation
      ##molecule type mRNA
                      1-656 ##label KOL
      ##residues
      ##cross-references GB:L26082
                      nucleotide sequence not given
      ##note
GENETICS
   #gene
                 semaI
                 #length 656 #checksum 3860
SUMMARY
  Query Match
                         39.9%;
                                 Score 2086; DB 10;
                                                       Length 656;
  Best Local Similarity 52.4%; Pred. No. 0.00e+00;
            300; Conservative 134; Mismatches 111;
                                                       Indels 28;
  Matches
Gaps 17;
RESULT
ENTRY
                 C49423
                            #type complete
TITLE
                  semaphorin II precursor - fruit fly (Drosophila
melanogaster)
ORGANISM
                 #formal name Drosophila melanogaster
DATE
                      06-Jan-1995 #sequence revision 06-Jan-1995
#text change
                   27-Jan-1995
                 C49423
ACCESSIONS
REFERENCE
                 A49423
   #authors
                 Kolodkin, A.L.; Matthes, D.J.; Goodman, C.S.
                 Cell (1993) 75:1389-1399
   #journal
   #title
                      The Semaphorin genes encode a family of
transmembrane and
                   secreted growth cone guidance molecules.
   #accession
                 C49423
      ##status
                       preliminary; not compared with conceptual
translation
      ##molecule type mRNA
                      1-724 ##label KOL
      ##residues
      ##cross-references GB:L26083
```

```
##note
                      nucleotide sequence not given
GENETICS
   #gene
                 sema II
SUMMARY
                 #length 724 #molecular-weight 82971 #checksum
6082
                         18.4%;
                                 Score 963; DB 10; Length 724;
  Query Match
                                 Pred. No. 1.54e-147;
 Best Local Similarity 37.5%;
 Matches
           199; Conservative 119; Mismatches 159;
                                                      Indels 53;
Gaps 32;
RESULT
                 A49069
                            #type complete
ENTRY
                 collapsin - chicken
TITLE
ORGANISM
                 #formal name Gallus gallus #common name chicken
DATE
                      07-Apr-1994 #sequence revision 07-Apr-1994
#text change
                   07-Apr-1994
ACCESSIONS
                 A49069
                 A49069
REFERENCE
   #authors
                 Luo, Y.; Raible, D.; Raper, J.A.
                 Cell (1993) 75:217-227
   #iournal
                  Collapsin: a protein in brain that induces the
   #title
collapse and
                   paralysis of neuronal growth cones.
                 A49069
   #accession
      ##status
                       preliminary; not compared with conceptual
translation
      ##molecule_type mRNA
                      1-772 ##label LUO
      ##residues
      ##cross-references GB:U02528
                 #length 772 #molecular-weight 88867 #checksum
SUMMARY
9712
 Query Match
                         17.5%;
                                 Score 916; DB 10; Length 772;
 Best Local Similarity 35.1%; Pred. No. 8.14e-139;
          176; Conservative 124; Mismatches 160;
                                                      Indels 42;
 Matches
Gaps 30;
RESULT
                 D49423
                            #type complete
ENTRY
TITLE
                 semaphorin III precursor - human
ORGANISM
                 #formal name Homo sapiens #common name man
                      06-Jan-1995 #sequence revision 06-Jan-1995
DATE
#text change
                   27-Jan-1995
                 D49423
ACCESSIONS
REFERENCE
                 A49423
   #authors
                 Kolodkin, A.L.; Matthes, D.J.; Goodman, C.S.
                Cell (1993) 75:1389-1399
   #journal
   #title
                      The Semaphorin genes encode a family of
transmembrane and
                   secreted growth cone guidance molecules.
                D49423
   #accession
```

##status preliminary
##molecule_type mRNA
##residues 1-771 ##label KOL
##cross-references GB:L26081
##note nucleotide sequence not given
SUMMARY #length 771 #molecular-weight 88889 #checksum
6249

Query Match 17.4%; Score 910; DB 11; Length 771; Best Local Similarity 34.8%; Pred. No. 1.05e-137; Matches 174; Conservative 120; Mismatches 168; Indels 38; Gaps 27; Search completed: Thu May 16 15:25:30 1996 Job time: 74 secs.

U.K.

Distribution rights by IntelliGenetics, Inc.

protein - protein database search, using Smith-Waterman MPsrch pp algorithm

Run on:

Thu May 16 15:23:09 1996; MasPar time 12.67

Seconds

883.721 Million cell

updates/sec

Tabular output not generated.

Title:

>US-08-121-713B-58

Description:

(1-730) from US08121713B.pep

Perfect Score:

5233

Sequence:

1

MRAALVAVAALLWVALHAAA......KNANSSAENKPIQKVKKTYI 730

Scoring table:

PAM 150

Gap 11

Searched:

43470 seqs, 15335248 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database:

swiss-prot31

1:part1 2:part2 3:part3 4:part4 5:part5 6:part6

7:part7

8:part8

Statistics:

Mean 52.570; Variance 88.484; scale 0.594

Pred. No. is the number of results predicted by chance to

score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

용

Result Query

No. Score Match Length DB ID Description Pred. No.

1 2.8 403 7 VA39 VACCC PROTEIN A39. 147

6.42e-08

2.6 441 7 VA39 VACCV PROTEIN A39. 137

3.01e-06				_	0444	
3 5.86e-02	109	2.1	535	7	UL21_HSV11	PROTEIN UL21.
4 1.53e-01	106	2.0	4969	6	RYNC_RABIT	RYANODINE RECEPTOR, C
5	99	1.9	268	2	EA30_VICFA	EMBRYONIC ABUNDANT PR
1.32e+00 6	98	1.9	268	2	EA92_VICFA	EMBRYONIC ABUNDANT PR
1.78e+00 7	97	1.9	287	6	RT6H_MOUSE	T-CELL DIFFERENTIATIO
2.38e+00 8	97	1.9	502	1	ATPB_CYTLY	ATP SYNTHASE BETA CHA
2.38e+00 9	99	1.9	535	7	UL21_HSV1E	PROTEIN UL21.
1.32e+00 10	100	1.9	917	3	GLRK_LYMST	GLUTAMATE RECEPTOR PR
9.79e-01 11	97	1.9	1031	6	RAD2_YEAST	DNA REPAIR PROTEIN RA
2.38e+00 12	98	1.9	1615	6	RRPO_TMVTO	PUTATIVE RNA-DIRECTED
1.78e+00 13	92	1.8	252	3	ETFB_PARDE	ELECTRON TRANSFER FLA
9.91e+00 14	94	1.8	256	4	LP1_BOMMO	LOW MOLECULAR LIPOPRO
5.66e+00 15	94	1.8	264	6	POTC_ECOLI	SPERMIDINE/PUTRESCINE
5.66e+00 16	93	1.8	273	4	KSGA_ECOLI	METHYLTRANSFERASE (ME
7.50e+00 17	95	1.8	287	7	UL24_ILTVT	PROTEIN UL24 HOMOLOG
4.26e+00 18	92	1.8	289	6	ROB_ECOLI	RIGHT ORIGIN-BINDING
9.91e+00 19	93	1.8	296	6	RFBF_SHIFL	DTDP-RHAMNOSYL TRANSF
7.50e+00 20	94	1.8	318	8	YAD5_CLOAB	HYPOTHETICAL 36.9 KD
5.66e+00 21	93	1.8	327	7	SYFA_ECOLI	PHENYLALANYL-TRNA SYN
7.50e+00 22	94	1.8	329	1	ARAF_ECOLI	L-ARABINOSE-BINDING P
5.66e+00 23	96	1.8	380	3	GLGC_BACSU	GLUCOSE-1-PHOSPHATE A
3.19e+00 24	92	1.8	398	8	YKUO_YEAST	HYPOTHETICAL 46.9 KD
9.91e+00 25	93	1.8	427	7	TCO2_HUMAN	TRANSCOBALAMIN II PRE
7.50e+00 26	93	1.8	448	3	GNTP_BACSU	GLUCONATE PERMEASE.
7.50e+00 27	96	1.8	515	3	GLCM_MOUSE	GLUCOSYLCERAMIDASE PR
3.19e+00 28	93	1.8	536	3	GLCM_HUMAN	GLUCOSYLCERAMIDASE PR
7.50e+00 29	92	1.8	558	3	G6PI_HUMAN	GLUCOSE-6-PHOSPHATE I

.

```
9.91e+00
                               MUC1 MOUSE MUCIN 1 PRECURSOR (PO
                1.8
                       630
                           5
          95
   30
4.26e+00
                                           HYPOTHETICAL 75.9 KD
          93
                1.8
                       659
                               YHH5 YEAST
   31
7.50e+00
                                           HYPOTHETICAL 73.3 KD
          94
                1.8
                       661
                            8
                               YK65 CAEEL
   32
5.66e+00
                       750
                                           METHIONYL-TRNA SYNTHE
          92
                1.8
                            7
                               SYMC YEAST
   33
9.91e+00
                                           CELL SURFACE ADHESION
          92
                1.8
                       769
                               ITB2 BOVIN
   34
9.91e+00
                       826
                               SSP2 PLAYO
                                           SPOROZOITE SURFACE PR
          95
                1.8
                            7
   35
4.26e+00
                                           PLEIOTROPIC DRUG RESI
   36
          96
                1.8
                       976
                               PDR3 YEAST
3.19e+00
                1.8
                      1255
                            5
                               MUC1 HUMAN
                                           MUCIN 1 PRECURSOR (PO
          95
   37
4.26e+00
          92
                1.8
                      3898
                               POLG BVDVS
                                           GENOME POLYPROTEIN.
                            6
   38
9.91e+00
          91
                1.7
                       193
                            7
                               VA57 VACCC
                                           GUANYLATE KINASE HOMO
   39
1.31e+01
                1.7
                       337
                               G3PX HORVU
                                           GLYCERALDEHYDE 3-PHOS
          91
                            3
   40
1.31e+01
   41
          91
                1.7
                       337
                            3
                               G3PC MAIZE
                                           GLYCERALDEHYDE 3-PHOS
1.31e+01
                1.7
                               AIDA ECOLI ADHESIN AIDA-I PRECUR
          91
                      1286
   42
                           1
1.31e+01
                1.7
                                           VACUOLAR PROTEIN SORT
   43
          91
                      1579 5
                               PEP1 YEAST
1.31e+01
          91
                1.7
                      1615 6
                               RRPO TMVKR
                                           PUTATIVE RNA-DIRECTED
   44
1.31e+01
          91
                1.7
                      2473 7
                               TOR2 YEAST
                                           PHOSPHATIDYLINOSITOL
   45
1.31e+01
```

```
RESULT
    VA39 VACCC
                    STANDARD;
                                  PRT;
                                          403 AA.
ID
AC
     P21062;
     01-FEB-1991 (REL. 17, CREATED)
DT
     01-FEB-1991 (REL. 17, LAST SEQUENCE UPDATE)
DT
     01-FEB-1991 (REL. 17, LAST ANNOTATION UPDATE)
DT
     PROTEIN A39.
DE
GN
     VACCINIA VIRUS (STRAIN COPENHAGEN).
OS
          VIRIDAE;
                     DS-DNA ENVELOPED
                                          VIRUSES; POXVIRIDAE;
OC
CHORDOPOXVIRINAE;
     ORTHOPOXVIRUSES.
OC
RN
     [1]
     SEQUENCE FROM N.A.
RΡ
RM
     91021027
     GOEBEL S.J., JOHNSON G.P., PERKUS M.E., DAVIS S.W., WINSLOW
RA
J.P.,
```

```
PAOLETTI E.;
RA
    VIROLOGY 179:247-266(1990).
RL
RN
RΡ
    COMPLETE GENOME.
    GOEBEL S.J., JOHNSON G.P., PERKUS M.E., DAVIS S.W., WINSLOW
RA
J.P.,
RA
    PAOLETTI E.;
    VIROLOGY 179:517-563(1990).
RL
DR
    EMBL; M35027; PXVACCG.
    PIR; E42521; E42521.
DR
    SEQUENCE 403 AA; 45741 MW; 907305 CN;
SO
                     2.8%; Score 147; DB 7; Length 403;
 Query Match
 Best Local Similarity 28.7%; Pred. No. 6.42e-08;
        66; Conservative 49; Mismatches 84; Indels 31;
 Matches
Gaps 22;
                  b
nyittsikvedadkdtlvcgtnngnpkcwk--i-dgs--ddpkhrgrgyapyqnskvtii 115
        NYIRVLAKIDD-DR-VLICGTNAYKPLCRHYALKDGDYVVEKEYEGRGLCPFDPDHNSTA 166
             b
synecvlsdinisk-eqikrwrrfdgpcgydlytadnvipkdglrga-fvdkdgtydkvy 173
         |:| | :: | :| | :: |: |: |:
1 ::
Q
IYSEGQLYSATVADFSGTDPLI-YRGP----L-RTERSDLKO-LNAPNFVNTMEYNDFIF 219
             b
ilftdt-igskrivkipy--iaqmclndeggpsslsshrwstflkvelecdidgr-s-yr 228
        : |
Q
FFFRETAVEYINCGKAIYSRVARVCKHDKGGPHQ-GGDRWTSFLKSRLNCSVPGDYPFYF 278
     229 giihsrt--iktd-ndti--l-yvffdsp-ysk--salctysmntikqsf 269
Db
          279 NEIQSTSDIIEGNYGGQVEKLIYGVFTTPVNSIGGSAVCAFSMKSILESF 328
QУ
```

Search completed: Thu May 16 15:23:58 1996 Job time: 49 secs.

U.K.

Distribution rights by IntelliGenetics, Inc.

MPsrch_pp protein - protein database search, using Smith-Waterman
algorithm

Run on: Thu May 16 15:29:05 1996; MasPar time 9.00

Seconds

598.003 Million cell

1

updates/sec

Tabular output not generated.

Title: >US-08-121-713B-60

Description: (1-650) from US08121713B.pep

Perfect Score: 4680

Sequence:

EDDCQNYIRIMVVPSPGRLF......TTPSSRIVVATTSEHCVPTR 650

Scoring table: PAM 150

Gap 11

Searched: 70887 segs, 8282111 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: a-geneseq22

1:part1 2:part2 3:part3 4:part4 5:part5 6:part6

7:part7

8:part8 9:part9 10:part10 11:part11 12:part12

13:part13

14:part14

Statistics: Mean 36.494; Variance 155.724; scale 0.234

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

ક

Result Query

No. Score Match Length DB ID Description

Pred. No.

^{1 4680 100.0 650 13} R71382 Drosophila semaphorin

0.00e+00 2	2060	44.0	730	13	R71379	Grasshopper semaphori
1.87e-189 3	1595	34.1	712	13	R71384	Tribolium semaphorin
5.76e-143 4	898	19.2	724	13	R71383	Drosophila semaphorin
6.63e-74 5	804	17.2	771		R71380	Human semaphorin III
1.07e-64 6	614	13.1	477		R74175	Human collapsin.
3.07e-46						-
7 1.36e-01	125	2.7	441	13	R71381	Vaccinia virus semaph
8 1.13e+01	99	2.1	216	5	R27223	GTP binding protein.
9	98	2.1	685	14	R77781	Polyphosphate kinase.
1.33e+01 10	98	2.1	820	11	R53228	Rice starch branching
1.33e+01 11	98	2.1	820	9	R47468	Branching enzyme of r
1.33e+01 12	95	2.0	122	13	R71385	Variola major virus s
2.15e+01 13	94	2.0	751	4	R23582	Branching enzyme.
2.52e+01 14	94	2.0	768	5	R27683	Rabbit beta-8 intergi
2.52e+01 15	92	2.0	1195	1	R05530	High density lipoprot
3.45e+01 16	92	2.0	1292	1	R05531	High density lipoprot
3.45e+01 17	95	2.0	3079	11	R59926	GAP protein Ira2.
2.15e+01	89	1.9	215	13	R77287	T-cell receptor alpha
18 5.51e+01						
19 7.50e+01	87	1.9	226	3	R15661	C-terminally truncate
20 7.50e+01	87	1.9	246	3	R15660	Osmotin-like antifung
21	88	1.9	250	3	P60726	Triose phosphate isom
6.43e+01 22	89	1.9	268	3	P60237	Sequence of the alpha
5.51e+01 23	89	1.9	268	13	R77288	T-cell receptor alpha
5.51e+01 24	89	1.9	270	3	P50256	Sequence of T-cell an
5.51e+01 25	90	1.9	393	12	R60700	Human ERK-5.
4.72e+01 26	89	1.9	547	12	R67381	L. pneumophila HtpB g
5.51e+01 27	89	1.9	667	5	R26912	ALS C3 mutant of toba
5.51e+01 28	89	1.9	667	3	R11974	Tobacco SURA-C3 mutan

5.51e+01						
29	89	1.9	667	1	P81150	Herbicide resistant f
5.51e+01 30	89	1.9	667	12	R63081	ALS SURA-C3 (P197E) m
5.51e+01 31	89	1.9	768	5	R27684	Human beta-8 intergin
5.51e+01 32	91	1.9	783	13	R70841	E. coli polymerase-II
4.04e+01 33	91	1.9	783	5	R24441	E. coli DNA polymeras
4.04e+01 34	89	1.9	950	2	R06376	Product of the ssc1 q
5.51e+01						
35 6.43e+01	88	1.9	1822	10	R55273	Beta subunit of integ
36	84	1.8	310	2	R11119	Recombinant L-2-hydro
1.18e+02 37	84	1.8	334	3	R21413	NADH dehydrogenase 1.
1.18e+02 38	84	1.8	491	13	R72369	Human auxillary cytoc
1.18e+02 39	85	1.8	657	6	R28964	Notch hN5k full lengt
1.02e+02 40	85	1.8	740	5	R27530	Plasmodium falciparum
1.02e+02				_		-
41	85	1.8	740	13	R68838	Plasmodium falciparum
1.02e+02 42	84	1.8	825	12	R60811	Rice starch branching
1.18e+02 43	84	1.8	958	1	P81181	Sequence of glucoamyl
1.18e+02 44	84	1.8	958	2	R07575	Glucoamylase encoded
1.18e+02 45 1.02e+02	85	1.8	2938	11	R59923	GAP protein Iral.

RESULT 1

ID R71382 standard; Protein; 650 AA.

AC R71382;

DT 21-NOV-1995 (first entry)

DE Drosophila semaphorin I protein.

KW Semaphorin; grasshopper; human; vaccinia virus; Drosophila; Tribolium;

KW variola major virus; smallpox; semaphorin receptor binding
activity;

KW modulation; nerve cell growth; immune response; viral pathogenesis;

KW neurological disease; neuro-regeneration; oncological infection.

OS Drosophila sp.

PN W09507706-A.

```
PD
     23-MAR-1995.
     13-SEP-1994; U10151.
PF
PR
     13-SEP-1993; US-121713.
     (REGC ) UNIV CALIFORNIA.
PA
                 Goodman CS, Kolodkin AL, Matthes D;
PΙ
     Bentley DR,
PΙ
     O'Connor T;
DR
     WPI: 95-131177/17.
DR
     N-PSDB; 087444.
PT
     New class of semaphorin peptide(s) and polypeptide(s) - are
PT
     potent modulators of nerve cell growth and regeneration
PS
     Example 2; Page 74-77; 101pp; English.
CC
    The sequence of the Drosophila semaphorin I protein. The gene
was
CC
      isolated by PCR using primers based on sequence homology
between the
    complete grasshopper and partial Tribolium and Manduca (moth)
CC
semaphorin
     gene sequences. The products gave two different sequences,
CC
each of which
       was used to obtain its respective complete sequence:
semaphorin I and II
     (Q87445). The proteins encoded by the grasshopper semaphorin
I (Q87441),
    human semaphorin III (Q87442), vaccinia virus semaphorin IV,
Drosophila
      semaphorin I and II, Tribolium semaphorin I (087446) or
variola major
CC
     (smallpox) virus semaphorin IV (Q87447) genes were used to
generate a
     series of peptides (R70370-R70418), which retain semaphorin
CC
receptor
      binding activity. The semaphorin derived or semaphorin
CC
receptor derived
    peptides are potent modulators of nerve cell growth, immune
CC
CC
     responsiveness and viral pathogenesis. They can be used in
diagnosis and
      treatment of neurological disease and neuro-regeneration,
CC
immune
       modulation and diagnosis and treatment of viral and
CC
oncological infection
CC
    and diseases.
SO
     Sequence
               650 AA;
                        100.0%;
                                Score 4680;
 Query Match
                                             DB 13;
                                                     Length 650;
 Best Local Similarity 100.0%;
                                Pred. No. 0.00e+00;
 Matches
          650; Conservative
                                0; Mismatches
                                                0;
                                                     Indels
                                                              0;
Gaps
Search completed: Thu May 16 15:29:43 1996
Job time : 38 secs.
```

U.K.

Distribution rights by IntelliGenetics, Inc.

MPsrch_pp protein - protein database search, using Smith-Waterman
algorithm

Run on: Thu May 16 15:27:37 1996; MasPar time 19.47

Seconds

843.866 Million cell

1

updates/sec

Tabular output not generated.

Title: >US-08-121-713B-60

Description: (1-650) from US08121713B.pep

Perfect Score: 4680

Sequence:

EDDCQNYIRIMVVPSPGRLF......TTPSSRIVVATTSEHCVPTR 650

Scoring table: PAM 150

Gap 11

Searched: 82306 seqs, 25270970 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: pir46

1:ann1 2:ann2 3:ann3 4:unann1 5:unann2 6:unann3

7:unann4

8:unann5 9:unann6 10:unann7 11:unann8 12:unrev1

13:unrev2

Statistics: Mean 49.809; Variance 113.161; scale 0.440

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

용

Result Query

No. Score Match Length DB ID Description

Pred. No.

1 4600 98.3 656 10 B49423 semaphorin I - fruit 0.00e+00

2 0.00e+00	2077	44.4	730 10	JH079	fasciclin IV precurs
3	1606	34.3	711 13	B A4942	semaphorin I precurs
8.68e-263	898	19.2	724 10	C4942	semaphorin II precur
1.02e-132 5	815	17.4	772 10	A4906	o collapsin - chicken
9.89e-118	804	17.2	771 11	D4942	semaphorin III precu
9.44e-116	139	3.0	329 8	Н6411	.5 phenylalaninetRNA
1.98e-04 8	125	2.7	295 6	JQ177	5 SalL9R protein - vac
1.08e-02 9	125	2.7	403 6	E4252	A39R protein - vacci
1.08e-02 10	125	2.7	441 6	S2992	hypothetical protein
1.08e-02 11	114	2.4	208 5	A3820	ypt family - maize
2.10e-01 12	111	2.4	305 6	s0831	.2 gamma-hordein 1 prec
4.59e-01 13	114	2.4	331 1	SYECE	TA phenylalaninetRNA
2.10e-01 14	107	2.3	201 5	s3618	GTP-binding protein
1.27e+00 15	109	2.3	688 8	B A4770	triacylglycerol lipa
7.65e-01 16	107	2.3	1238 7	s1794	virulence protein by
1.27e+00 17	101	2.2	379 10) s3171	.9 proline-rich protein
5.56e+00 18	105	2.2	491 4	A3104	testosterone 16alpha
2.09e+00 19	103	2.2	602 6	s3811	.1 amino acid transport
3.42e+00 20	103	2.2	757 6	A4859	transferrin receptor
3.42e+00 21	104	2.2	792 7	s2055	pyruvate, water dikin
2.68e+00 22	102	2.2	857 5	s0594	gelation factor - sl
4.36e+00 23	102	2.2	971 3	3 JQ163	outer capsid protein
4.36e+00 24	103	2.2	1238 7	s1794	virulence protein bv
3.42e+00 25	105	2.2	1518 8	B A4481	.1 glucosyltransferase
2.09e+00 26	100	2.1	142 6	JQ177	6 SalF1R protein - vac
7.06e+00 27	96	2.1	203 13	8 S4178	hypothetical protein
1.81e+01 28	96	2.1	216 5	JS064	GTP-binding protein
1.81e+01					

29	96	2.1	216	4	S06620	DNA-directed RNA pol
1.81e+01 30	96	2.1	216	5	s33900	GTP-binding protein
1.81e+01 31	97	2.1	257	1	PWSPD	H+-transporting ATP
1.43e+01 32	97	2.1	334	1	DEQYG	glyceraldehyde-3-pho
1.43e+01 33	99	2.1	365	7	в30930	flagellar basal body
8.96e+00 34	96	2.1	386	12	S47163	DNA-directed RNA pol
1.81e+01 35	98	2.1	492	4	s27160	cytochrome P450 2B12
1.13e+01 36	100	2.1	515	10	C40581	embryonic nuclear pr
7.06e+00 37	100	2.1	537	10	B40581	embryonic nuclear pr
7.06e+00 38	100	2.1	539	10	A40581	embryonic nuclear pr
7.06e+00 39	96	2.1	605	12	S16561	glutaminefructose-
1.81e+01 40	100	2.1	622	11	S24241	protein kinase rck (
7.06e+00 41	98	2.1	820	9	JX0243	1,4-alpha-glucan bra
1.13e+01 42	98	2.1	820	9	s34037	1,4-alpha-glucan bra
1.13e+01 43	100	2.1	1187	13	JC4155	PEZ protein - human
7.06e+00 44	100	2.1	1189	11	JC2366	protein tyrosine pho
7.06e+00 45 1.81e+01	96	2.1	1238	7	A40185	virulence protein by

RESULT 1 ENTRY TITLE (fragment)	B49423 #type fragment semaphorin I - fruit fly (Drosophila melanogaster)
ORGANISM	<pre>#formal_name Drosophila melanogaster</pre>
DATE	06-Jan-1995 #sequence revision 06-Jan-1995
<pre>#text change</pre>	- -
	27-Jan-1995
ACCESSIONS	B49423
REFERENCE	A49423
#authors	Kolodkin, A.L.; Matthes, D.J.; Goodman, C.S.
#journal	Cell (1993) 75:1389-1399
#title	The Semaphorin genes encode a family of
transmembrane	<u> </u>
	secreted growth cone guidance molecules.
#accession	B49423

```
##status preliminary; not compared with conceptual
translation
      ##molecule_type mRNA
      ##residues 1-656 ##label KOL
      ##cross-references GB:L26082
                      nucleotide sequence not given
      ##note
GENETICS
                 semaI
   #gene
                 #length 656 #checksum 3860
SUMMARY
                         98.3%; Score 4600; DB 10; Length 656;
  Query Match
 Best Local Similarity 98.6%; Pred. No. 0.00e+00;
Matches 647; Conservative 2; Mismatches 1; Indels 6;
Gaps
Search completed: Thu May 16 15:28:48 1996
Job time: 71 secs.
```

U.K.

Distribution rights by IntelliGenetics, Inc.

MPsrch_pp protein - protein database search, using Smith-Waterman
algorithm

Run on: Thu May 16 15:26:40 1996; MasPar time 11.43

Seconds

871.717 Million cell

1

updates/sec

Tabular output not generated.

Title: >US-08-121-713B-60

Description: (1-650) from US08121713B.pep

Perfect Score: 4680

Sequence:

EDDCQNYIRIMVVPSPGRLF......TTPSSRIVVATTSEHCVPTR 650

Scoring table: PAM 150 Gap 11

Searched: 43470 segs, 15335248 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: swiss-prot31

1:part1 2:part2 3:part3 4:part4 5:part5 6:part6

7:part7

8:part8

Statistics: Mean 51.745; Variance 90.696; scale 0.571

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

Result Query

No. Score Match Length DB ID Description

Pred. No.

1 125 2.7 403 7 VA39_VACCC PROTEIN A39.

3.11e-04

2 125 2.7 441 7 VA39_VACCV PROTEIN A39.

3.11e-04 3 114 2.4 208 8 YPT1 MAIZE GTP-BINDING PROTEIN Y

1.27e-02						
4	111	2.4	305	4	HORG_HORVU	GAMMA-HORDEIN 1 PRECU
3.35e-02 5	114	2.4	327	7	SYFA_ECOLI	PHENYLALANYL-TRNA SYN
1.27e-02 6	107	2.3	201	6	RAB9_CANFA	RAS-RELATED PROTEIN R
1.19e-01 7	109	2.3	688	4	LIP_STAEP	LIPASE PRECURSOR (EC
6.33e-02 8	106	2.3	793	6	PPSA_ECOLI	PHOSPHOENOLPYRUVATE S
1.62e-01 9	107	2.3	1238	1	BVGS_BORBR	VIRULENCE SENSOR PROT
1.19e-01 10	105	2.2	491	2	CPB9_MOUSE	CYTOCHROME P450 IIB9
2.20e-01 11	103	2.2	602	3	GAP1_YEAST	GENERAL AMINO ACID PE
4.04e-01 12	102	2.2	857	3	GELA_DICDI	GELATION FACTOR (ACTI
5.46e-01 13	102	2.2	971	8	VP2_EHDV1	OUTER CAPSID PROTEIN
5.46e-01 14	103	2.2	1238	1	BVGS_BORPA	VIRULENCE SENSOR PROT
4.04e-01 15	96	2.1	203	8	YOR5_THER8	HYPOTHETICAL 23.9 KD
3.14e+00 16	96	2.1	216	6	RPOU_METVA	DNA-DIRECTED RNA POLY
3.14e+00 17	96	2.1	216	1	ARA3_ARATH	RAS-RELATED PROTEIN A
3.14e+00 18	97	2.1	257	1	ATPD_SPIOL	ATP SYNTHASE DELTA CH
2.36e+00 19	97	2.1	334	3	G3P_PYRWO	GLYCERALDEHYDE 3-PHOS
2.36e+00 20	99	2.1	365	3	FLGI_SALTY	FLAGELLAR P-RING PROT
1.32e+00 21	98	2.1	492	2	CPBC_RAT	CYTOCHROME P450 IIB12
1.77e+00 22	96	2.1	604	5	NODM_RHIME	GLUCOSAMINEFRUCTOSE
3.14e+00 23	100	2.1	622	4	KRCK_MOUSE	PROTEIN KINASE RCK (E
9.88e-01 24	98	2.1	684	6	PPK_KLEAE	POLYPHOSPHATE KINASE
1.77e+00 25	98	2.1	820	3	GLGB_ORYSA	1,4-ALPHA-GLUCAN BRAN
1.77e+00 26	96	2.1	1238	1	BVGS_BORPE	VIRULENCE SENSOR PROT
3.14e+00 27	93	2.0	195	1	ARA5_ARATH	RAS-RELATED PROTEIN A
7.25e+00 28	94	2.0	217	6	RIC2_ORYSA	RAS-RELATED PROTEIN R
5.50e+00 29	92	2.0	218	8	YPT3_NICPL	GTP-BINDING PROTEIN Y
9.53e+00 30	92	2.0	246	6	PYG2_ANASP	PHYCOBILISOME ROD-COR

9.53e+00						
31	94	2.0	287	7	UL24_ILTVT	PROTEIN UL24 HOMOLOG
5.50e+00 32	92	2.0	330	5	MTHT_METTF	MODIFICATION METHYLAS
9.53e+00 33	93	2.0	357	5	MTLD_ENTFA	MANNITOL-1-PHOSPHATE
7.25e+00 34 9.53e+00	92	2.0	380	3	GAL1_SALTY	GALACTOKINASE (EC 2.7
35 5.50e+00	94	2.0	649	7	SYM_BACST	METHIONYL-TRNA SYNTHE
36 4.16e+00	95	2.0	687	6	PPK_ECOLI	POLYPHOSPHATE KINASE
37 5.50e+00	94	2.0	768	4	ITB8_RABIT	INTEGRIN BETA-8 SUBUN
38 4.16e+00	95	2.0	783	8	YAF3_YEAST	HYPOTHETICAL 87.5 KD
39 5.50e+00	94	2.0	825	7	SWI3_YEAST	TRANSCRIPTION REGULAT
40 9.53e+00	92	2.0	1004	5	MV10_MOUSE	PUTATIVE GTP-BINDING
41 7.25e+00	93	2.0	1041	6	RAG1_CHICK	V(D)J RECOMBINATION A
42 4.16e+00	95	2.0	1379	5	MET_MOUSE	HEPATOCYTE GROWTH FAC
43 5.50e+00	94	2.0	1390	5	MET_HUMAN	HEPATOCYTE GROWTH FAC
44 4.16e+00	95	2.0	2366	7	TOXB_CLODI	TOXIN B.
45 4.16e+00	95	2.0	3079	4	IRA2_YEAST	INHIBITORY REGULATOR

```
VA39 VACCC
                      STANDARD;
                                      PRT;
ID
                                              403 AA.
     P21062;
AC
     01-FEB-1991 (REL. 17, CREATED)
DT
     01-FEB-1991 (REL. 17, LAST SEQUENCE UPDATE)
01-FEB-1991 (REL. 17, LAST ANNOTATION UPDATE)
DT
DT
     PROTEIN A39.
DE
     A39R.
GN
     VACCINIA VIRUS (STRAIN COPENHAGEN).
OS
            VIRIDAE; DS-DNA ENVELOPED VIRUSES;
                                                            POXVIRIDAE;
OC
CHORDOPOXVIRINAE;
     ORTHOPOXVIRUSES.
OC
RN
     [1]
     SEQUENCE FROM N.A.
RP
     91021027
RM
     GOEBEL S.J., JOHNSON G.P., PERKUS M.E., DAVIS S.W., WINSLOW
RA
J.P.,
RA
     PAOLETTI E.;
     VIROLOGY 179:247-266(1990).
RL
```

RESULT

```
RN
    [2]
    COMPLETE GENOME.
RP
     GOEBEL S.J., JOHNSON G.P., PERKUS M.E., DAVIS S.W., WINSLOW
RA
J.P.,
RA
    PAOLETTI E.;
    VIROLOGY 179:517-563(1990).
RL
    EMBL; M35027; PXVACCG.
DR
    PIR; E42521; E42521.
DR
    SEQUENCE 403 AA; 45741 MW; 907305 CN;
SO
                         2.7%;
                                Score 125; DB 7; Length 403;
 Query Match
 Best Local Similarity 37.3%; Pred. No. 3.11e-04; Matches 22; Conservative 12; Mismatches 20; Indels 5;
Gaps 4;
               b
vyilftdt-igskrivkipy--iaqmclndeggpsslsshrwstflkvelecdidgrsy 227
         Q
VYFFFRETAVEFINCGKAIYSRVARVCKWDKGGPHRFR-NRWTSFLKSRLNCSIPG-DY 171
Search completed: Thu May 16 15:27:20 1996
Job time: 40 secs.
```

U.K.

Distribution rights by IntelliGenetics, Inc.

MPsrch_pp protein - protein database search, using Smith-Waterman
algorithm

Run on: Thu May 16 15:32:28 1996; MasPar time 9.80

Seconds

611.795 Million cell

1

updates/sec

Tabular output not generated.

Title: >US-08-121-713B-62

Description: (1-724) from US08121713B.pep

Perfect Score: 5375

S e q u e n c e : MSLLQLSPLLALLLLCSSV.....TRQNFSCNQHPNEIFRKPNV 724

Scoring table: PAM 150

Gap 11

Searched: 70887 seqs, 8282111 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: a-geneseq22

1:part1 2:part2 3:part3 4:part4 5:part5 6:part6

7:part7

8:part8 9:part9 10:part10 11:part11 12:part12

13:part13

14:part14

Statistics: Mean 36.943; Variance 161.422; scale 0.229

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

૪

Result Query

No. Score Match Length DB ID Description

Pred. No.

^{1 5375 100.0 724 13} R71383 Drosophila semaphorin

0.00e+00 2	963	17.9	730 13	R71379	Grasshopper semaphori
3.25e-78 3	898	16.7	650 13	R71382	Drosophila semaphorin
5.59e-72					•
4 7.89e-71	886	16.5	712 13	R71384	Tribolium semaphorin
5 1.63e-62	799	14.9	771 13	R71380	Human semaphorin III
6 5.43e-48	646	12.0	477 13	R74175	Human collapsin.
7	150	2.8	441 13	R71381	Vaccinia virus semaph
2.43e-03 8	109	2.0	122 13	R71385	Variola major virus s
2.95e+00 9	105	2.0	1257 9	R46627	Neurocan core protein
5.65e+00 10	95	1.8	124 11	R59943	Anti-VLA4 rAb humanis
2.76e+01 11	95	1.8	235 14	R70101	LIYV RNA 2 ORF 6 pept
2.76e+01					
12 1.47e+01	99	1.8	236 1	P93910	Y22 light chain of an
13 1.47e+01	99	1.8	371 1	P93558	Linkered human IgG1 (
14 2.76e+01	95	1.8	371 1	P91918	Sequence of the linke
15	95	1.8	452 14	R70420	Lettuce infectious ye
2.76e+01 16	96	1.8	554 13	R70827	Anti-cataract immunot
2.36e+01 17	96	1.8	1451 5	R27819	CCVInsavc spike prote
2.36e+01 18	97	1.8	1822 10	R55273	Beta subunit of integ
2.02e+01 19	90	1.7	94 4	R22580	Light chain VL16.1 fr
5.93e+01				R39818	-
20 5.09e+01	91	1.7	106 8		HP1/2 Vk.
21 5.09e+01	91	1.7	106 11	R59937	HP1/2 Vk.
22 5.09e+01	91	1.7	106 8	R39567	Sequence of the varia
23 5.09e+01	91	1.7	106 11	R58750	Anti-VLA4 Ab HP1/2 V-
24	89	1.7	107 5	R25413	Light chain variable
6.89e+01 25	91	1.7	128 11	R59935	VK3 (DQMDY) VL.
5.09e+01 26	91	1.7	128 11	R58752	Anti-VLA4 SVMDY V-kap
5.09e+01 27	91	1.7	128 11		VK2 (SVMDY) VL.
5.09e+01					
28	91	1.7	129 13	R70256	Anti-VLA-4 humanized

.

5.09e+01					
29	92	1.7	154 13	R70828	MAb 4197X light chain
4.37e+01 30	93	1.7	278 3	P60007	Sequence of oncogene
3.75e+01 31	90	1.7	304 1	P91816	Mammalian T lymphocyt
5.93e+01 32	89	1.7	351 8	R41542	B15R product.
6.89e+01 33	89	1.7	351 2	R24251	Vaccinia virus B18R p
6.89e+01 34	89	1.7	354 2	R06429	SP1-like protein enco
6.89e+01 35	89	1.7	375 14	R79120	Neuropeptide Y/peptid
6.89e+01 36 5.93e+01	90	1.7	407 13	R65494	Marek's disease virus
37 5.09e+01	91	1.7	419 2	R06428	SP1-like protein enco
38	94	1.7	424 2	R06430	SP1-like protein enco
3.22e+01 39	94	1.7	424 2	P93998	Amino acid sequence o
3.22e+01 40	91	1.7	426 3	R12458	Pregnancy-specific be
5.09e+01 41	93	1.7	699 3	R14202	Gamma-cyclodextrin gl
3.75e+01 42	91	1.7	830 13	R65216	P-selectin.
5.09e+01 43	88	1.6	489 8	R42176	Murine MDM2.
8.01e+01 44	88	1.6	750 1	P82867	Enkephalinase (rat).
8.01e+01 45 8.01e+01	88	1.6	750 1	P90393	Human common acute ly

RESULT 1

ID R71383 standard; Protein; 724 AA.

AC R71383;

DT 21-NOV-1995 (first entry)

DE Drosophila semaphorin II protein.

KW Semaphorin; grasshopper; human; vaccinia virus; Drosophila; Tribolium;

KW variola major virus; smallpox; semaphorin receptor binding
activity;

KW modulation; nerve cell growth; immune response; viral pathogenesis;

KW neurological disease; neuro-regeneration; oncological infection.

OS Drosophila sp.

PN W09507706-A.

```
23-MAR-1995.
PD
     13-SEP-1994; U10151.
PF
    13-SEP-1993; US-121713.
PR
PA
     (REGC ) UNIV CALIFORNIA.
ΡI
    Bentley DR,
                 Goodman CS, Kolodkin AL, Matthes D;
    O'Connor T;
PΙ
    WPI; 95-131177/17.
DR
    N-PSDB; Q87445.
DR
    New class of semaphorin peptide(s) and polypeptide(s) - are
PT
    potent modulators of nerve cell growth and regeneration
PT
PS
    Example 2; Page 79-82; 101pp; English.
     The sequence of the Drosophila semaphorin II protein.
                                                             The
CC
gene was
      isolated by PCR using primers based on sequence homology
CC
between the
    complete grasshopper and partial Tribolium and Manduca (moth)
CC
semaphorin
     gene sequences. The products gave two different sequences,
CC
each of which
       was used to obtain its respective complete sequence:
semaphorin I
                        The proteins encoded by the grasshopper
      (Q87444) and II.
CC
semaphorin I
      (Q87441), human semaphorin III (Q87442), vaccinia virus
semaphorin IV,
      Drosophila semaphorin I and II, Tribolium semaphorin I
(Q87446) or
     variola major (smallpox) virus semaphorin IV (Q87447) genes
CC
were used to
     generate a series of peptides (R70370-R70418), which retain
CC
semaphorin
       receptor binding activity. The semaphorin derived or
semaphorin receptor
    derived peptides are potent modulators of nerve cell growth,
CC
immune
     responsiveness and viral pathogenesis. They can be used in
CC
diagnosis and
     treatment of neurological disease and neuro-regeneration,
CC
immune
       modulation and diagnosis and treatment of viral and
oncological infection
CC
     and diseases.
SO
     Sequence 724 AA;
                       100.0%;
                                Score 5375; DB 13;
                                                     Length 724;
  Query Match
 Best Local Similarity 100.0%;
                                Pred. No. 0.00e+00;
           724; Conservative 0; Mismatches 0; Indels
                                                              0;
 Matches
      0;
Search completed: Thu May 16 15:33:08 1996
Job time : 40 secs.
```

U.K.

Distribution rights by IntelliGenetics, Inc.

MPsrch_pp protein - protein database search, using Smith-Waterman
algorithm

Run on: Thu May 16 15:31:05 1996; MasPar time 21.38

Seconds

855.707 Million cell

updates/sec

Tabular output not generated.

Title: >US-08-121-713B-62

Description: (1-724) from USO8121713B.pep

Perfect Score: 5375

Sequence: 1

MSLLQLSPLLALLLLLCSSV......TRQNFSCNQHPNEIFRKPNV 724

Scoring table: PAM 150

Gap 11

Searched: 82306 seqs, 25270970 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: pir46

1:ann1 2:ann2 3:ann3 4:unann1 5:unann2 6:unann3

7:unann4

8:unann5 9:unann6 10:unann7 11:unann8 12:unrev1

13:unrev2

Statistics: Mean 49.968; Variance 111.741; scale 0.447

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

용

Result Query

No. Score Match Length DB ID Description

Pred. No.

^{1 5375 100.0 724 10} C49423 semaphorin II precur 0.00e+00

2	970	18.0	730	10	ЈН0798	fasciclin IV precurs
4.78e-148	898	16.7	656	10	B49423	semaphorin I - fruit
8.89e-135 4	897	16.7	711	13	A49423	semaphorin I precurs
1.36e-134 5	806	15.0	772	10	A49069	collapsin - chicken
6.56e-118	799	14.9	771	11	D49423	semaphorin III precu
1.25e-116	150	2.8	403	6	E42521	A39R protein - vacci
5.83e-06 8	150	2.8	441	6	S29921	hypothetical protein
5.83e-06 9	133	2.5	295	6	JQ1775	SalL9R protein - vac
9.48e-04 10	115	2.1	466	1	DCBYO	ornithine decarboxyl
1.45e-01 11	112	2.1	637	1	HJECDR	helicase (EC 3.6.1
3.21e-01 12	114	2.1	1149	4	S14169	DNA-directed RNA pol
1.89e-01 13	114	2.1	1287	4	A43488	genome polyprotein -
1.89e-01 14	115	2.1	1535	13	S46224	peroxidasin - fruit
1.45e-01 15	112	2.1	1763	1	RRWWF9	RNA-directed RNA pol
3.21e-01 16	109	2.0	122	6	н36852	A43R protein - vario
7.00e-01 17	109	2.0	122	6	JQ1845	14R protein - variol
7.00e-01 18	107	2.0	240	13	JC4121	pregnancy-specific g
1.17e+00 19	107	2.0	1087	12	S41797	xylanase (EC 3.2.1.9
1.17e+00 20	105	2.0	1257	11	S28764	neurocan - rat
1.94e+00 21	103	1.9	253	8	JQ0091	hypothetical 29K pro
3.19e+00 22	104	1.9	319	7	S49263	shiga-like toxin typ
2.49e+00 23	103	1.9	339	9	S45471	hypothetical protein
3.19e+00 24	103	1.9	379	12	S26851	site-specific DNA-me
3.19e+00 25	100	1.9	664		S44756	C14B9.2 protein - Ca
6.64e+00 26	100	1.9	1147		A41674	myosin-light-chain k
6.64e+00 27	100	1.9	1176		JN0583	myosin-light-chain k
6.64e+00 28 2.49e+00	104	1.9	1268		S52781	neurocan - mouse

29	103	1.9	1314	9	S19488	probable membrane pr
3.19e+00 30	103	1.9	1390	1	TVHUME	hepatocyte growth fa
3.19e+00 31 5.21e+00	101	1.9	1404	10	A48196	transforming protein
32	99	1.8	111.	5	PH1028	Ig heavy chain V reg
8.45e+00 33 1.07e+01	98	1.8	206	6	S31681	hypothetical protein
34	97	1.8	452	6	A36429	integrin beta-4 chai
1.36e+01 35 1.07e+01	98	1.8	524	10	S35341	kettin - fruit fly (
36	98	1.8	769	9	S50966	hypothetical protein
1.07e+01 37 1.07e+01	98	1.8	890	3	JQ1947	genome polyprotein 2
38	99	1.8	1323	10	PN0568	connectin 3B - chick
8.45e+00 39 1.36e+01	97	1.8	1805	13	S12380	integrin beta-4 chai
40	99	1.8	1951	10	S27356	aggrecan – chicken
8.45e+00 41 8.45e+00	99	1.8	2071	13	s39796	aggrecan - chicken
42	98	1.8	2292	3	GNNYED	genome polyprotein -
1.07e+01 43 1.07e+01	98	1.8	2292	3	GNNYEB	genome polyprotein -
44	98	1.8	2292	12	S55401	capsid polyprotein p
1.07e+01 45 1.36e+01	97	1.8	2292	6	s35961	capsid polyprotein p

RESULT 1	
ENTRY	C49423 #type complete
TITLE	semaphorin II precursor - fruit fly (Drosophila
melanogaster)	
ORGANISM	<pre>#formal_name Drosophila melanogaster</pre>
DATE	06-Jan-1995 #sequence_revision 06-Jan-1995
<pre>#text_change</pre>	
	27-Jan-1995
ACCESSIONS	C49423
REFERENCE	A49423
#authors	Kolodkin, A.L.; Matthes, D.J.; Goodman, C.S.
#journal	Cell (1993) 75:1389-1399
#title	The Semaphorin genes encode a family of
transmembrane	
	secreted growth cone guidance molecules.
#accession	C49423

```
preliminary; not compared with conceptual
     ##status
translation
     ##molecule_type mRNA
     ##residues 1-724 ##label KOL
     ##cross-references GB:L26083
     ##note nucleotide sequence not given
GENETICS
  #gene
IMARY
              sema II
              #length 724 #molecular-weight 82971 #checksum
SUMMARY
6082
                     100.0%; Score 5375; DB 10; Length 724;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 0.00e+00;
 Matches 724; Conservative 0; Mismatches 0; Indels 0;
Search completed: Thu May 16 15:32:11 1996
```

Job time: 66 secs.

U.K.

Distribution rights by IntelliGenetics, Inc.

MPsrch_pp protein - protein database search, using Smith-Waterman
algorithm

Run on: Thu May 16 15:30:00 1996; MasPar time 12.58

Seconds

882.268 Million cell

updates/sec

Tabular output not generated.

Title: >US-08-121-713B-62

Description: (1-724) from US08121713B.pep

Perfect Score: 5375

Sequence: 1

MSLLQLSPLLALLLLCSSV.....TRQNFSCNQHPNEIFRKPNV 724

Scoring table: PAM 150

Gap 11

Searched: 43470 segs, 15335248 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: swiss-prot31

1:part1 2:part2 3:part3 4:part4 5:part5 6:part6

7:part7

8:part8

Statistics: Mean 51.877; Variance 88.790; scale 0.584

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

Result Query

No. Score Match Length DB ID Description

Pred. No.

1 150 2.8 403 7 VA39_VACCC PROTEIN A39.

1.94e-08 2 150 2.8 441 7 VA39 VACCV PROTEIN A39.

1.94e-08 3	115	2.1	466	2	DCOR YEAST	ORNITHINE DECARBOXYLA
7.14e-03	114	2.1	1149	6	- RPC2 YEAST	DNA-DIRECTED RNA POLY
9.98e-03					_	
5 9.98e-03	114	2.1	1287	6	POLN_FCVC6	NON-STRUCTURAL POLYPR
6 1.94e-02	112	2.1	1763	6	POLN_FCVF9	NON-STRUCTURAL POLYPR
7	107	2.0	1087	8	XYNX_CLOTM	EXOGLUCANASE XYNX PRE
9.77e-02 8	103	1.9	253	8	YMG1_MYCGE	HYPOTHETICAL 29.1 KD
3.42e-01 9	103	1.9	339	8	YBS6_YEAST	HYPOTHETICAL 40.2 KD
3.42e-01 10	100	1.9	664	3	ER72_CAEEL	PROBABLE ERP72 PROTEI
8.50e-01 11	103	1.9	1314	4	KCW3_YEAST	PUTATIVE SERINE/THREO
3.42e-01 12	103	1.9	1390	5	MET_HUMAN	HEPATOCYTE GROWTH FAC
3.42e-01 13	95	1.8	115	7	TVC2_MOUSE	T-CELL RECEPTOR GAMMA
3.68e+00 14	95	1.8	135	7	TVC4_MOUSE	T-CELL RECEPTOR GAMMA
3.68e+00 15	96	1.8	492	8	VSM1_TRYBB	VARIANT SURFACE GLYCO
2.76e+00 16	95	1.8	575	6	PUT2_YEAST	DELTA-1-PYRROLINE-5-C
3.68e+00 17	96	1.8	647	7	VE1_HPV34	E1 PROTEIN.
2.76e+00 18	95	1.8	659	1	BYR2_SCHPO	PROTEIN KINASE BYR2 (
3.68e+00 19	96	1.8	737	7	VE02_VARV	PROTEIN E2.
2.76e+00 20	98	1.8	890	6	POL2_BAYMG	GENOME POLYPROTEIN 2
1.54e+00 21	97	1.8	1875	4	ITB4_HUMAN	INTEGRIN BETA-4 SUBUN
2.07e+00 22	97	1.8	2290	6	POLG_EMCV	GENOME POLYPROTEIN (C
2.07e+00 23	98	1.8	2292	6	POLG_EMCVD	GENOME POLYPROTEIN (C
1.54e+00 24	98	1.8	2292	6	POLG_EMCVB	GENOME POLYPROTEIN (C
1.54e+00 25	96	1.8	2303	6	POLG_TMEVG	GENOME POLYPROTEIN (C
2.76e+00 26	95	1.8	2303	6	POLG_TMEVB	GENOME POLYPROTEIN (C
3.68e+00 27	94	1.7	282	7	STR_STAAU	STREPTOMYCIN RESISTAN
4.90e+00 28	91	1.7	308	1	ABCA_AERSA	ABCA PROTEIN.
1.13e+01 29	92	1.7	318	7	SLTA_BP933	SHIGA-LIKE TOXIN II S

```
8.57e+00
                1.7
                       326 8
                               VS09 ROTHV
                                           GLYCOPROTEIN VP7 (SER
   30
          94
4.90e+00
                1.7
                       368
                               YCZ2 YEAST
                                           HYPOTHETICAL 40.1 KD
   31
          93
6.49e+00
          91
                1.7
                       393
                           3
                               FDH PSESR
                                           FORMATE DEHYDROGENASE
   32
1.13e+01
          91
                1.7
                       417
                            5
                               PBG1 HUMAN
                                           PREGNANCY-SPECIFIC BE
   33
1.13e+01
                                           PREGNANCY-SPECIFIC BE
          91
                1.7
                       419
                           5
                               PBGD HUMAN
   34
1.13e+01
          91
                1.7
                       428
                           5
                               PBGC HUMAN
                                           PREGNANCY-SPECIFIC BE
   35
1.13e+01
                1.7
                                           B-LYMPHOCYTE ANTIGEN
   36
          94
                       556
                               CD19 HUMAN
4.90e+00
                1.7
                       648
                               KMLC CHICK
                                           MYOSIN LIGHT CHAIN KI
          91
   37
1.13e+01
          92
                1.7
                       657
                               HCYB PANIN
                                           HEMOCYANIN B CHAIN.
                            3
   38
8.57e+00
          93
                1.7
                       811
                            3
                               FS22 DROME
                                           FASCICLIN II, PHOSPHA
   39
6.49e + 00
                1.7
                       830
                               LEM3 HUMAN
                                           P-SELECTIN PRECURSOR
          91
                           4
   40
1.13e+01
   41
          93
              1.7
                       873
                            3
                               FS21 DROME
                                           FASCICLIN II, MEMBRAN
6.49e+00
          92
                1.7
                                           PROBABLE DNA-DIRECTED
                       896
                           6
                               RPOP NEUCR
   42
8.57e+00
          91
                                           MYOSIN LIGHT CHAIN KI
   43
                1.7
                      1258
                               KML2 CHICK
1.13e+01
          94
                1.7
                      1322 7
                               SUS DROME
                                           SUPPRESSOR OF SABLE P
   44
4.90e+00
          94
                1.7
                               VGL2 CVCAI E2 GLYCOPROTEIN PRECU
                      1451 8
   45
4.90e+00
```

```
RESULT
     VA39 VACCC
                    STANDARD;
                                   PRT: 403 AA.
ID
     P210\overline{6}2;
AC
     01-FEB-1991 (REL. 17, CREATED)
\mathsf{DT}
     01-FEB-1991 (REL. 17, LAST SEQUENCE UPDATE)
DT
     01-FEB-1991 (REL. 17, LAST ANNOTATION UPDATE)
DT
     PROTEIN A39.
DE
GN
     A39R.
OS
     VACCINIA VIRUS (STRAIN COPENHAGEN).
OC
          VIRIDAE;
                      DS-DNA ENVELOPED
                                           VIRUSES; POXVIRIDAE;
CHORDOPOXVIRINAE;
     ORTHOPOXVIRUSES.
OC
RN
     [1]
     SEQUENCE FROM N.A.
RΡ
     91021027
RM
     GOEBEL S.J., JOHNSON G.P., PERKUS M.E., DAVIS S.W., WINSLOW
RA
J.P.,
```

```
RA
    PAOLETTI E.;
    VIROLOGY 179:247-266(1990).
RL
RN
RΡ
    COMPLETE GENOME.
    GOEBEL S.J., JOHNSON G.P., PERKUS M.E., DAVIS S.W., WINSLOW
RA
J.P.,
    PAOLETTI E.;
RA
    VIROLOGY 179:517-563(1990).
RL
DR
    EMBL; M35027; PXVACCG.
DR
    PIR; E42521; E42521.
SO
    SEOUENCE 403 AA; 45741 MW; 907305 CN;
                       2.8%; Score 150; DB 7; Length 403;
 Query Match
 Best Local Similarity 31.8%; Pred. No. 1.94e-08; Matches 34; Conservative 26; Mismatches 38;
                                                 Indels 9;
Gaps 8;
                                            7
D
                              1
              b
vyilftdt-igskrivkipy--iaqmclndeggpsslsshrwstflkvelecdidgr-s- 226
         :
VYFFFRETAVEYINCGKAVYSRIARVCKKDVGG-KNLLAHNWATYLKARLNCSISGEFPF 323
Db
     227 yrqiihsr-tiktdndtilyvffdspys-k-salctysmntikqsfs 270
            324 YFNEIQSVYQLPSDKSRFFATFTTSTNGLIGSAVCSFHINEIQAAFN 370
Qy
```

Search completed: Thu May 16 15:30:48 1996 Job time: 48 secs.

U.K.

Distribution rights by IntelliGenetics, Inc.

MPsrch_pp protein - protein database search, using Smith-Waterman
algorithm

Run on: Thu May 16 15:36:00 1996; MasPar time 9.64

Seconds

611.897 Million cell

1

updates/sec

Tabular output not generated.

Title: >US-08-121-713B-64

Description: (1-712) from USO8121713B.pep

Perfect Score: 5145

S e q u e n c e : MVVKILVWSICLIALCHAWM.....SKDLNIASDGTLQKIKKTYI 712

Scoring table: PAM 150

Gap 11

Searched: 70887 seqs, 8282111 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: a-geneseq22

1:part1 2:part2 3:part3 4:part4 5:part5 6:part6

7:part7

8:part8 9:part9 10:part10 11:part11 12:part12

13:part13

14:part14

Statistics: Mean 36.742; Variance 151.200; scale 0.243

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

Result Query

No. Score Match Length DB ID Description

Pred. No.

1 5145 100.0 712 13 R71384 Tribolium semaphorin

0.00e+00					
	2394	46.5	730 13	R71379	Grasshopper semaphori
3	1595	31.0	650 13	R71382	Drosophila semaphorin
3.26e-148 4	886	17.2	724 13	R71383	Drosophila semaphorin
2.09e-75 5	771	15.0	771 13	R71380	Human semaphorin III
9.58e-64 6	613	11.9	477 13	R74175	Human collapsin.
7.43e-48	144	2.8	441 13	R71381	Vaccinia virus semaph
2.90e-03			122 13		-
8 5.04e-01	116	2.3			Variola major virus s
9 1.32e+01	97	1.9	700 3	R13227	Novel endoglucanase.
10	96	1.9	763 10	R53778	Sequence of human amy
1.56e+01	99	1.9	1651 12	R63222	Pre-pro-cobra C3 prot
9.49e+00 12	93	1.8	261 14	R74184	Type I RIP pokeweed a
2.55e+01 13	93	1.8	261 3	R13112	Anti-viral protein.
2.55e+01 14	93	1.8	261 7	R37298	Plant type I RIP Poke
2.55e+01 15	92	1.8	1451 5	R27819	CCVInsavc spike prote
3.00e+01					
16 7.81e+01	86	1.7	158 14	R76778	Murine T-LIF.
17 4.14e+01	90	1.7	166 6	R32907	Vdelta3 (WM14).
18	86	1.7	178 1	P82943	N-terminal of leukaem
7.81e+01 19	86	1.7	181 11	R60130	Mouse LIF.
7.81e+01 20	86	1.7	203 7	R33379	Cytokine mLIF.
7.81e+01 21	86	1.7	203 1	P82945	Leukaemia inhibitory
7.81e+01 22	85	1.7	216 4	P30205	Sequence encoded by d
9.13e+01 23	88	1.7	235 14	R70101	LIYV RNA 2 ORF 6 pept
5.70e+01 24	89	1.7	270 3		Murine IL-1 precursor
4.86e+01					-
25 5.70e+01	88	1.7	294 7		Pokeweed antiviral pr
26 4.86e+01	89	1.7	331 8	R42260	Mature decorin PT-65.
27	89	1.7	353 1	R05160	Sequence of human bon
4.86e+01 28	. 85	1.7	371 3	P60055	Partial Factor VII pe

.

9.13e+01						
29	85	1.7	406	7	R35764	Factor VII (VII).
9.13e+01 30	85	1.7	406	4	P30203	Sequence encoded by p
9.13e+01 31	85	1.7	444	12	R64205	Factor VII - modified
9.13e+01 32	88	1.7	452	14	R70420	Lettuce infectious ye
5.70e+01 33	85	1.7	453	3	P60057	Factor IX/Factor VII
9.13e+01 34	85	1.7	466	3	P60056	Factor VII peptide en
9.13e+01 35	85	1.7	466	8	R52562	Factor VIII.
9.13e+01 36	85	1.7	1071	12	R60796	Rice sucrose phosphat
9.13e+01 37	85	1.7	1536	12	R63505	Haemophilus high mole
9.13e+01 38	85	1.7	1536	8	R41723	High molecular weight
9.13e+01 39	85	1.7	1536	8	R41725	High molecular weight
9.13e+01 40	89	1.7	1642	12	R63223	Cobra CVF1 .
4.86e+01 41	88	1.7	3144	11	R58777	Protein encoded by Hu
5.70e+01 42	87	1.7	3722	2	R10145	Cephalosporin antibio
6.67e+01 43	83	1.6	106	7	R35638	Tryptophan aporepress
1.24e+02 44	83	1.6	220	4	P30195	Sequence encoded by V
1.24e+02 45 1.07e+02	84	1.6	1399	8	R38698	S-PRV-055 TGE virus g

RESULT 1

ID R71384 standard; Protein; 712 AA.

AC R71384;

DT 21-NOV-1995 (first entry)

DE Tribolium semaphorin I protein.

KW Semaphorin; grasshopper; human; vaccinia virus; Drosophila; Tribolium;

KW variola major virus; smallpox; semaphorin receptor binding
activity;

KW modulation; nerve cell growth; immune response; viral pathogenesis;

KW neurological disease; neuro-regeneration; oncological infection.

OS Tribolium sp.

PN W09507706-A.

```
23-MAR-1995.
PD
PF
     13-SEP-1994; U10151.
    13-SEP-1993; US-121713.
PR
PA
     (REGC ) UNIV CALIFORNIA.
    Bentley DR, Goodman CS, Kolodkin AL, Matthes D;
ΡI
PΙ
    O'Connor T;
    WPI; 95-131177/17.
DR
    N-PSDB; Q87446.
DR
PT
    New class of semaphorin peptide(s) and polypeptide(s) - are
    potent modulators of nerve cell growth and regeneration
PT
    Example 2; Page 85-88; 101pp; English.
PS
     The sequence of the beetle Tribolium semaphorin I protein.
CC
The gene was
     isolated by PCR using Tribolium genomic DNA.
                                                     The proteins
CC
encoded by the
      grasshopper semaphorin I (Q87441), human semaphorin III
CC
    vaccinia virus semaphorin IV (Q87443, Drosophila semaphorin I
CC
and II
    (Q87444-5), Tribolium semaphorin I or variola major (smallpox)
CC
virus
    semaphorin IV (Q87447) genes were used to generate a series of
CC
peptides
      (R70370-R70418), which retain semaphorin receptor binding
          The
activity.
    semaphorin derived or semaphorin receptor derived peptides are
     modulators of nerve cell growth, immune responsiveness and
CC
viral
    pathogenesis. They can be used in diagnosis and treatment of
CC
neurological
       disease and neuro-regeneration, immune modulation and
CC
diagnosis and
    treatment of viral and oncological infection and diseases.
CC
SQ
     Sequence
                712 AA;
                                 Score 5145; DB 13;
                                                      Length 712;
                        100.0%;
 Query Match
 Best Local Similarity 100.0%;
```

Query Match 100.0%; Score 5145; DB 13; Length 712; Best Local Similarity 100.0%; Pred. No. 0.00e+00; Matches 712; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

Search completed: Thu May 16 15:36:34 1996 Job time: 34 secs.

U.K.

Distribution rights by IntelliGenetics, Inc.

MPsrch_pp protein - protein database search, using Smith-Waterman
algorithm

Run on: Thu May 16 15:34:41 1996; MasPar time 21.12

Seconds

851.914 Million cell

updates/sec

Tabular output not generated.

Title: >US-08-121-713B-64

Description: (1-712) from US08121713B.pep

Perfect Score: 5145

Sequence:

MVVKILVWSICLIALCHAWM.....SKDLNIASDGTLQKIKKTYI 712

Scoring table: PAM 150

Gap 11

Searched: 82306 seqs, 25270970 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: pir46

1:ann1 2:ann2 3:ann3 4:unann1 5:unann2 6:unann3

7:unann4

8:unann5 9:unann6 10:unann7 11:unann8 12:unrev1

13:unrev2

Statistics: Mean 49.858; Variance 106.968; scale 0.466

Pred. No. is the number of results predicted by chance to

score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

용

Result Query

No. Score Match Length DB ID Description

Pred. No.

1 5127 99.7 711 13 A49423 semaphorin I precurs 0.00e+00

2 0.00e+00	2389	46.4	730	10	JH0798	fasciclin IV precurs
3	1604	31.2	656	10	B49423	semaphorin I - fruit
5.91e-278 4	886	17.2	724	10	C49423	semaphorin II precur
2.46e-138 5	789	15.3	772	10	A49069	collapsin - chicken
8.12e-120 6	771	15.0	771	11	D49423	semaphorin III precu
2.14e-116 7	144	2.8	295	6	JQ1775	SalL9R protein - vac
1.55e-05 8	144	2.8	403	6	E42521	A39R protein - vacci
1.55e-05 9	144	2.8	441	6	S29921	hypothetical protein
1.55e-05 10	125	2.4	329	8	H64115	phenylalaninetRNA
5.01e-03 11	116	2.3	122	6	JQ1845	14R protein - variol
6.61e-02 12	116	2.3	122	6	н36852	A43R protein - vario
6.61e-02 13	113	2.2	103	12	s45435	hypothetical protein
1.52e-01 14	109	2.1	331	1	SYECFA	phenylalaninetRNA
4.51e-01 15	107	2.1	2769	2	UIBO	thyroglobulin precur
7.68e-01 16	105	2.0	195	6	B36838	D11L protein - vario
1.30e+00 17	104	2.0	642	1	SYRTAL	5-aminolevulinate sy
1.69e+00 18	102	2.0	663	9	S55164	hypothetical protein
2.82e+00 19	103	2.0	796	6	A35775	integrin beta-5 chai
2.18e+00 20	103	2.0	799	6	A38308	integrin beta-5 chai
2.18e+00 21	103	2.0	799	6	S12534	integrin beta-5 chai
2.18e+00 22	96	1.9	166	11	S04934	T-cell receptor delt
1.26e+01 23	98	1.9	191	5	A35981	sperm membrane prote
7.73e+00 24	97	1.9	197	7	S01240	heat shock protein B
9.89e+00 25	96	1.9	213	8	PQ0489	cyclin 1 - alfalfa (
1.26e+01 26	96	1.9	213	8	S29924	cyclin - alfalfa (fr
1.26e+01 27	98	1.9	315	3	WZVZB4	37K HindIII-C protei
7.73e+00 28 6.03e+00	99	1.9	339	7	A42259	endo-beta-N-acetylgl

29 7.73e+00	98	1.9	355	10	JH0446	75K autoantigen - hu
7.73e+00 30 7.73e+00	98	1.9	402	12	S55465	chalcone synthase 2
7.73e+00 31 9.89e+00	97	1.9	585	13	S55466	calicin - human (fra
32 6.03e+00	99	1.9	689	12	S47780	glycine-tRNA ligase
33 6.03e+00	99	1.9	689	1	SYECGB	glycinetRNA ligase
34 9.89e+00	97	1.9	700	8	B41897	cellulase (EC 3.2.1.
35 1.26e+01	96	1.9	763	5	A49321	amyloid precursor pr
36 7.73e+00	98	1.9	765	5	S42880	amyloid precursor-li
7.73e+00 37 7.73e+00	98	1.9	765	11	S47528	amyloid precursor-li
7.73e+00 38 9.89e+00	97	1.9	875	1	ITECAP	DNA topoisomerase (A
39 1.26e+01	96	1.9	1133	6	S12597	M polyprotein precur
40 1.26e+01	96	1.9	1133	3	GNVUSR	M polyprotein precur
41 1.26e+01	96	1.9	1133	3	A43964	M polyprotein precur
1.26e+01 42 1.26e+01	96	1.9	1276	12	S11455	botulinum neurotoxin
43 1.26e+01	96	1.9	1390	1	TVHUME	hepatocyte growth fa
1.26e+01 44 1.26e+01	96	1.9	1451	3	JQ1719	E2 glycoprotein prec
45 6.03e+00	99	1.9	1651	2	C3NJ	complement C3 precur

RESULT I	
ENTRY	A49423 #type complete
TITLE	semaphorin I precursor - beetle (Tribolium
confusum)	
ORGANISM	<pre>#formal_name Tribolium confusum</pre>
DATE	12-Dec-1994 #sequence_revision 12-Dec-1994
#text change	
_	12-Dec-1994
ACCESSIONS	A49423
REFERENCE	A49423
#authors	Kolodkin, A.L.; Matthes, D.J.; Goodman, C.S.
#journal	Cell (1993) 75:1389-1399
#title	The Semaphorin genes encode a family of
transmembrane	
	secreted growth cone guidance molecules.
#accession	A49423

##status preliminary
##residues 1-711 ##label KOL
##cross-references GB:L26080
SUMMARY #length 711 #molecular-weight 79623 #checksum
4552

Query Match 99.7%; Score 5127; DB 13; Length 711;
Best Local Similarity 99.9%; Pred. No. 0.00e+00;
Matches 711; Conservative 0; Mismatches 0; Indels 1;
Gaps 1;
Search completed: Thu May 16 15:35:42 1996

Job time : 61 secs.

U.K.

Distribution rights by IntelliGenetics, Inc.

protein - protein database search, using Smith-Waterman MPsrch pp algorithm

Thu May 16 15:33:25 1996; MasPar time 12.38 Run on:

Seconds

881.667 Million cell

updates/sec

Tabular output not generated.

Title: >US-08-121-713B-64

Description: (1-712) from US08121713B.pep

5145 Perfect Score:

. 1 Sequence:

MVVKILVWSICLIALCHAWM.....SKDLNIASDGTLQKIKKTYI 712

Scoring table: PAM 150

Gap 11

Searched: 43470 seqs, 15335248 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: swiss-prot31

1:part1 2:part2 3:part3 4:part4 5:part5 6:part6

7:part7

8:part8

Mean 51.891; Variance 83.088; scale 0.625 Statistics:

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

Result

Query Score Match Length DB ID Description No.

용

Pred. No.

2.8 144403 7 VA39 VACCC PROTEIN A39. 1

4.02e-08

2.8 441 7 VA39 VACCV PROTEIN A39. 144

4.02e-08						
3 2.38e-02	109	2.1	327	7	SYFA_ECOLI	PHENYLALANYL-TRNA SYN
4	107	2.1	2769	7	THYG_BOVIN	THYROGLOBULIN PRECURS
4.70e-02 5	105	2.0	195	7	VC04_VARV	PROTEIN C4.
9.21e-02 6	104	2.0	642	3	HEM1_RAT	5-AMINOLEVULINIC ACID
1.28e-01 7	103	2.0	799	4	ITB5_HUMAN	INTEGRIN BETA-5 SUBUN
1.78e-01 8	98	1.9	191	1	APP2 RAT	AMYLOID-LIKE PROTEIN
8.88e-01 9	97	1.9	197	3	- GRPE ECOLI	HEAT SHOCK PROTEIN GR
1.21e+00 10	100	1.9	203	6	 RL15 HUMAN	60s RIBOSOMAL PROTEIN
4.71e-01 11	96	1.9	213	2	CG1 MEDSA	CYCLIN 1 (FRAGMENT).
1.65e+00 12	98	1.9	315	7	VC04 VACCV	PROTEIN C4.
8.88e-01 13	99	1.9	339	2	EBA1 FLAME	ENDO-BETA-N-ACETYLGLU
6.48e-01					_	
14 1.65e+00	96	1.9	640	3	HEM1_HUMAN	5-AMINOLEVULINIC ACID
15 6.48e-01	99	1.9	688	7	SYGB_ECOLI	GLYCYL-TRNA SYNTHETAS
16 1.21e+00	97	1.9	700	3	GUNA_BACLA	ENDOGLUCANASE A PRECU
17	96	1.9	763	1	APP2_HUMAN	AMYLOID-LIKE PROTEIN
1.65e+00 18	97	1.9	875	3	GYRA_ECOLI	DNA GYRASE SUBUNIT A
1.21e+00 19	96	1.9	1133	8	VGLM_SEOU8	M POLYPROTEIN PRECURS
1.65e+00 20	96	1.9	1133	8	VGLM_SEOUS	M POLYPROTEIN PRECURS
1.65e+00 21	96	1.9	1133	8	VGLM_HANTB	M POLYPROTEIN PRECURS
1.65e+00 22	96	1.9	1276	1	BXD_CLOBO	BOTULINUM NEUROTOXIN
1.65e+00 23	96	1.9	1390	5	MET_HUMAN	HEPATOCYTE GROWTH FAC
1.65e+00 24	96	1.9	1451	8	VGL2 CVCAI	E2 GLYCOPROTEIN PRECU
1.65e+00 25	99	1.9	1651	2	CO3 NAJNA	COMPLEMENT C3 PRECURS
6.48e-01 26	91	1.8	221	1	ARP4 TOBAC	AUXIN-INDUCED PROTEIN
7.39e+00 27	93	1.8	261	6	RIPS PHYAM	ANTIVIRAL PROTEIN S (
4.10e+00 28	92	1.8	316	7	VC04 VACCC	PROTEIN C4.
5.51e+00 29	92	1.8	422	4	K1CR MOUSE	KERATIN, TYPE I CYTOS
43	24	1.0	744	7	WICK-HOOSE	MERATIN, TIPE I CITOS

```
5.51e+00
                        430
                                           3-PHOSPHOSHIKIMATE 1-
          92
                1.8
                           1
                               AROA STAAU
   30
5.51e+00
          91
                1.8
                        535
                               UL21 HSV11
                                           PROTEIN UL21.
                            7
   31
7.39e+00
                1.8
                        560
                                            60 KD INNER-MEMBRANE
          91
                            1
                                60IM PSEPU
   32
7.39e+00
          93
                1.8
                        604
                               NODM RHIME
                                            GLUCOSAMINE--FRUCTOSE
   33
4.10e+00
          92
                1.8
                        695
                               APP2 MOUSE
                                           AMYLOID-LIKE PROTEIN
                             1
   34
5.51e+00
                                           PUTATIVE 30 RIBOSOMAL
          91
                1.8
                        712
                             6
                               RS3 CHLRE
   35
7.39e+00
          93
                1.8
                      1071
                            7
                               UBPI YEAST
                                           PUTATIVE UBIQUITIN CA
   36
4.10e+00
          95
                1.8
                                            POL POLYPROTEIN (CONT
                      1157
                                POL SFV3L
   37
2.24e+00
          95
                1.8
                      1161
                            6
                                POL SFV1
                                           POL POLYPROTEIN (CONT
   38
2.24e+00
          91
                1.8
                      1229
                                SIP3 YEAST
                                           SIP3 PROTEIN.
   39
7.39e+00
   40
          90
                1.7
                        121
                             3
                               GLB TETTH
                                           MYOGLOBIN (HEMOGLOBIN
9.87e+00
          90
                1.7
                        253
                                           HYPOTHETICAL 29.9 KD
                            8
                               Y29K NPVAC
   41
9.87e+00
          90
                1.7
                        274
                                           HALORHODOPSIN PRECURS
   42
                            1
                               BACH HALSP
9.87e+00
                1.7
   43
          90
                        370
                             2
                                DNAJ ERYRH
                                           DNAJ PROTEIN.
9.87e+00
          90
                1.7
                        458
                                DESM XENLA
                                           DESMIN.
   44
9.87e+00
          90
                1.7
                        798
                                ITB7 HUMAN
                                           INTEGRIN BETA-7 SUBUN
   45
9.87e+00
```

```
RESULT
           1
     VA39 VACCC
                      STANDARD;
                                        PRT; 403 AA.
ID
AC
     P210\overline{6}2;
DT
     01-FEB-1991 (REL. 17, CREATED)
     01-FEB-1991 (REL. 17, LAST SEQUENCE UPDATE)
01-FEB-1991 (REL. 17, LAST ANNOTATION UPDATE)
DT
DT
DΕ
     PROTEIN A39.
GN
     A39R.
     VACCINIA VIRUS (STRAIN COPENHAGEN).
OS
            VIRIDAE;
                       DS-DNA ENVELOPED
                                               VIRUSES; POXVIRIDAE;
OC
CHORDOPOXVIRINAE;
OC
     ORTHOPOXVIRUSES.
RN
     [1]
     SEOUENCE FROM N.A.
RΡ
RM
     91021027
      GOEBEL S.J., JOHNSON G.P., PERKUS M.E., DAVIS S.W., WINSLOW
RA
J.P.,
```

```
RA
    PAOLETTI E.;
    VIROLOGY 179:247-266(1990).
RL
RN
RP
    COMPLETE GENOME.
     GOEBEL S.J., JOHNSON G.P., PERKUS M.E., DAVIS S.W., WINSLOW
RA
J.P.,
    PAOLETTI E.;
RA
    VIROLOGY 179:517-563(1990).
RL
DR
    EMBL; M35027; PXVACCG.
    PIR; E42521; E42521.
DR
    SEOUENCE 403 AA; 45741 MW; 907305 CN;
SO
                        2.8%; Score 144; DB 7; Length 403;
 Ouery Match
 Best Local Similarity 32.8%; Pred. No. 4.02e-08; Matches 22; Conservative 18; Mismatches 21; Indels 6;
Gaps 5;
                               1
              b
fvdkdgtydk-vyilftdt-igskrivkipy--iaqmclndeggpsslsshrwstflkve 217
         | | : : | | |
FVN-SVAYGDYIFFFYRETAVEYMNCGKVIYSRVARVCKDDKGGPHQ-SRDRWTSFLKAR 263
Db
     218 lecdidg 224
         1:1 1
     264 LNCSIPG 270
Qv.
Search completed: Thu May 16 15:34:23 1996
Job time: 58 secs.
```

U.K.

Distribution rights by IntelliGenetics, Inc.

MPsrch_pp protein - protein database search, using Smith-Waterman
algorithm

Run on: Thu May 16 15:37:53 1996; MasPar time 2.71

Seconds

373.317 Million cell

updates/sec

Tabular output not generated.

Title: >US-08-121-713B-66

Description: (1-122) from US08121713B.pep

Perfect Score: 940

Sequence:

MIYLYTADNVIPKDGLQGAF......MYSLIVLFQVRIMYLFYEYH 122

Scoring table: PAM 150

Gap 11

Searched: 70887 segs, 8282111 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: a-geneseq22

1:part1 2:part2 3:part3 4:part4 5:part5 6:part6

7:part7

8:part8 9:part9 10:part10 11:part11 12:part12

13:part13

14:part14

Statistics: Mean 29.350; Variance 116.666; scale 0.252

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

용

Result Query

No. Score Match Length DB ID Description

Pred. No.

1 940 100.0 122 13 R71385 Variola major virus s

1.38e-86 2	608	64.7	441	13	R71381	Vaccinia virus semaph
1.63e-51 3	116	12.3	477	13	R74175	Human collapsin.
2.87e-02 4	116	12.3	712	13	R71384	Tribolium semaphorin
2.87e-02 5	116	12.3	771		R71380	Human semaphorin III
2.87e-02	109	11.6	724		R71383	Drosophila semaphorin
6 1.14e-01						-
7 5.36e-01	101	10.7	730	13	R71379	Grasshopper semaphori
8	95	10.1	650	13	R71382	Drosophila semaphorin
1.67e+00 9	85	9.0	325	2	P70428	Polypeptide encoded b
1.06e+01 10	84	8.9	2254	14	R76949	ACCase.
1.27e+01 11	83	8.8	651	14	R74042	Maize carbonic-anhydr
1.51e+01 12	83	8.8	655	14	R74044	Carbonic-anhydrase.
1.51e+01 13	83	8.8	970	14	R72458	Porphyromonas gingiva
1.51e+01						
14 2.58e+01	80	8.5	348	7	R38483	Rhodopsin protein.
15 3.08e+01	79	8.4	387	10	R53702	Sequence of castor mi
16	79	8.4	456	9	R49136	Sequence of lag E whi
3.08e+01 17	78	8.3	510	7	R34674	Insulinoma-associated
3.67e+01 18	78	8.3	2240	11	R67819	Acetyl CoA carboxylas
3.67e+01 19	77	8.2	1206	3	P60679	Sequence of Rift Vall
4.37e+01 20	77	8.2	1206	1	P82995	Rift Valley fever vir
4.37e+01 21	76	8.1	287	10	R53544	Thyroid hormone recep
5.20e+01 22	76	8.1	360	3	P83252	Sequence encoded by t
5.20e+01				5	R24948	-
23 5.20e+01	76	8.1	529			Sequence encoded by h
24 5.20e+01	76	8.1	529	3	R13503	HSF.
25 5.20e+01	76	8.1	764	3	R12504	Canine thyroid stimul
26	76	8.1	1074	4	R24102	Marek's disease virus
5.20e+01 27	75	8.0	349	1	P90554	Bovine rhodopsin.
6.18e+01 28	74	7.9	293	8	R41268	vWF fragment Arg441-V

7.33e+01						
29	74	7.9	293	2	R23659	Mutant Cys-free matur
7.33e+01 30	74	7.9	456	1	P93114	EGR2.
7.33e+01	/ 4	7.9	400	1	E 2 2 T T 4	EGRZ.
31	74	7.9	456	11	R63130	Human Egr-2.
7.33e+01 32	74	7.9	470	7	R34467	Encoded by Hepatitis
7.33e+01	/ 1	1.9	4/0	,	KJ4407	Encoded by nepatitis
33	74	7.9	470	7	R34476	Encoded by Hepatitis
7.33e+01						
34	74	7.9	470	7	R34478	Encoded by Hepatitis
7.33e+01 35	73	7.8	59	12	R63135	Egr-1 nuclear localiz
8.70e+01	, 5	7.0	55	12	100100	ngi i nacicai iocariz
36	73	7.8	84	1	R04534	Amino terminal portio
8.70e+01	5 0	7.0	0.0	11	562126	D 1
37 8.70e+01	73	7.8	89	11	R63136	Egr-1 polynucleotide
38	73	7.8	250	11	R60153	Nematode-inducible tr
8.70e+01						
39	73	7.8	250	7	R33913	Sequence encoded by T
8.70e+01	=0				500110	- 1
40 8.70e+01	73	7.8	533	1	P93113	Egr-1.
41	73	7.8	533	11	R63129	Mouse Egr-1 clone OC3
8.70e+01	, 0	, • •			1.00	
42	73	7.8	543	1	R24022	Human promyelo-leukae
8.70e+01						
43	73	7.8	668	1	P81186	Sequence encoded by n
8.70e+01 44	73	7.8	668	1	P82924	Cowpox virus protein
8.70e+01	75	7.0	000	1	F02924	cowpox vilus procein
45	73	7.8	683	8	R40386	betaIG-H3 protein.
8.70e+01						•

RESULT 1

- ID R71385 standard; Protein; 122 AA.
- AC R71385;
- DT 21-NOV-1995 (first entry)
- DE Variola major virus semaphorin IV protein.
- KW Semaphorin; grasshopper; human; vaccinia virus; Drosophila; Tribolium;
- KW variola major virus; smallpox; semaphorin receptor binding activity;
- KW modulation; nerve cell growth; immune response; viral pathogenesis;
- KW neurological disease; neuro-regeneration; oncological infection.
- OS Variola major virus.
- PN W09507706-A.

```
PD
     23-MAR-1995.
PF
     13-SEP-1994; U10151.
    13-SEP-1993; US-121713.
PR
PA
     (REGC ) UNIV CALIFORNIA.
ΡI
                 Goodman CS, Kolodkin AL, Matthes D;
    Bentley DR,
PΙ
    O'Connor T;
    WPI: 95-131177/17.
DR
    N-PSDB; 087447.
DR
PT
    New class of semaphorin peptide(s) and polypeptide(s) - are
    potent modulators of nerve cell growth and regeneration
PT
PS
    Example 2; Page 90-91; 101pp; English.
    The sequence of the variola major (smallpox) virus semaphorin
CC
IV protein.
    The gene sequence was isolated as the A43R open reading frame
CC
sequence
    from variola based on sequence homology searches of a database
CC
     grasshopper, Tribolium and Drosophila semaphorin sequences.
CC
The proteins
      encoded by the grasshopper semaphorin I (Q87441), human
semaphorin III
     (Q87442), vaccinia virus semaphorin IV (Q87443), Drosophila
CC
semaphorin I
    and II (Q87444-5), Tribolium semaphorin I (Q87446) or variola
major
     (smallpox) virus semaphorin IV genes were used to generate a
CC
series of
     peptides (R70370-R70418), which retain semaphorin receptor
CC
binding
                 The semaphorin derived or semaphorin receptor
CC
      activity.
derived peptides
       are potent modulators of nerve cell growth,
responsiveness and
      viral pathogenesis. They can be used in diagnosis and
treatment of
    neurological disease and neuro-regeneration, immune modulation
CC
and
CC
   diagnosis and treatment of viral and oncological infection and
diseases.
SO
    Sequence
               122 AA;
 Query Match
                        100.0%;
                                 Score 940; DB 13;
                                                     Length 122;
 Best Local Similarity 100.0%;
                                 Pred. No. 1.38e-86;
                                                      Indels
                                                               0;
 Matches
           122; Conservative
                                0; Mismatches
                                                 0;
Search completed: Thu May 16 15:38:03 1996
Job time : 10 secs.
```

U.K.

Distribution rights by IntelliGenetics, Inc.

MPsrch_pp protein - protein database search, using Smith-Waterman
algorithm

Run on: Thu May 16 15:37:18 1996; MasPar time 5.36

Seconds

575.185 Million cell

1

updates/sec

Tabular output not generated.

Title: >US-08-121-713B-66

Description: (1-122) from US08121713B.pep

Perfect Score: 940

Sequence:

MIYLYTADNVIPKDGLQGAF.....MYSLIVLFQVRIMYLFYEYH 122

Scoring table: PAM 150

Gap 11

Searched: 82306 segs, 25270970 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: pir46

1:ann1 2:ann2 3:ann3 4:unann1 5:unann2 6:unann3

7:unann4

8:unann5 9:unann6 10:unann7 11:unann8 12:unrev1

13:unrev2

Statistics: Mean 40.357; Variance 91.599; scale 0.441

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

ઠ

Result Query

No. Score Match Length DB ID Description

Pred. No.

1 940 100.0 122 6 JQ1845 14R protein - variol 5.14e-146

2 5.14e-146	940	100.0	122	6	н36852	A43R protein - vario
3	608	64.7	295	6	JQ1775	SalL9R protein - vac
1.18e-85 4	608	64.7	403	6	E42521	A39R protein - vacci
1.18e-85 5	608	64.7	441	6	S29921	hypothetical protein
1.18e-85	117	12.4	120	4	s27251	NADH dehydrogenase (
1.40e-03 7	117	12.4	120	1	DERZN3	NADH dehydrogenase (
1.40e-03 8	117	12.4	120	4	s01599	NADH dehydrogenase (
1.40e-03 9	117	12.4	120	1	DENTN3	NADH dehydrogenase (
1.40e-03 10	117	12.4	120	1	DELVN3	NADH dehydrogenase (
1.40e-03 11	117	12.4	120	4	S04434	NADH dehydrogenase (
1.40e-03 12	117	12.4	772	10	A49069	collapsin - chicken
1.40e-03 13	116	12.3	711	13	A49423	semaphorin I precurs
1.89e-03 14	116	12.3	771	11	D49423	semaphorin III precu
1.89e-03 15	115	12.2	120	4	S04435	NADH dehydrogenase (
2.55e-03 16	109	11.6	724	10	C49423	semaphorin II precur
1.50e-02 17	102	10.9	118	9	S53860	NADH dehydrogenase c
1.11e-01 18	101	10.7	730	10	JH0798	fasciclin IV precurs
1.47e-01 19	100	10.6	128	3	QQVZF6	F6 protein - vaccini
1.95e-01 20	100	10.6	128	6	C42513	L5R protein - vaccin
1.95e-01 21	100	10.6	128	6	B36845	M5R protein - variol
1.95e-01 22	100	10.6	128	6	s33091	L5R protein - variol
1.95e-01 23	98	10.4	501		S48120	deoxyribodipyrimidin
3.39e-01 24	98	10.4	587	9	A31776	lactose permease - y
3.39e-01 25	95	10.1		10	B49423	semaphorin I - fruit
7.68e-01 26	87	9.3	250	9	C60944	cytochrome b - Leish
6.30e+00 27	87	9.3	324	5	S29619	transforming protein
6.30e+00	87	9.3	324	2	TVRTAS	
28 6.30e+00	0 /	9.0	244	۷	TAVINO	transforming protein

29 1.05e+01	85	9.0	833	9	A31593	heat shock transcrip
30	85	9.0	833	9	A31592	heat shock transcrip
1.05e+01 31 1.05e+01	85	9.0	4753	10	S27801	LDL receptor-related
32	85	9.0	4753	10	A47437	LDL-receptor-related
1.05e+01 33 1.34e+01	84	8.9	118	4	S25944	NADH dehydrogenase (
34	84	8.9	302	4	B44349	maturation-promoting
1.34e+01 35 1.34e+01	84	8.9	302	4	A44349	maturation-promoting
36	84	8.9	325	2	TVHUAS	transforming protein
1.34e+01 37 1.34e+01	84	8.9	1058	3	WMBE52	UL52 protein - human
38	83	8.8	194	11	s28850	membrane protein PMP
1.72e+01 39 1.72e+01	83	8.8	317	8	B41662	probable pheromone-r
40	83	8.8	1164	1	RNVZCP	DNA-directed RNA pol
1.72e+01 41 2.20e+01	82	8.7	121	4	C42573	NADH dehydrogenase (
42	82	8.7	423	11	B40470	glucocorticoid-induc
2.20e+01 43 2.20e+01	82	8.7	477	6	S25822	transposase (inserti
44	82	8.7	491	11	C40470	glucocorticoid-induc
2.20e+01 45 2.20e+01	82	8.7	5126	13	S40450	ryanodine receptor/c

RESULT 1	
ENTRY	JQ1845 #type complete
TITLE	14R protein - variola major virus
ORGANISM	<pre>#formal_name variola major virus</pre>
DATE	03-May-1994 #sequence_revision 03-May-1994
<pre>#text_change</pre>	_
	03-May-1994
ACCESSIONS	JQ1845
REFERENCE	JQ1832
#authors	Aguado, B.; Selmes, I.P.; Smith, G.L.
#journal	J. Gen. Virol. (1992) 73:2887-2902
#title	Nucleotide sequence of 21.8 kbp of variola major
virus strain	
	Harvey and comparison with vaccinia virus.
#accession	JQ1845
##molecule_	_type DNA

```
1-122 ##label AGU
     ##residues
     ##experimental source strain Harver
                #length 122 #molecular-weight 14301 #checksum
SUMMARY
8838
                     100.0%;
                             Score 940; DB 6; Length 122;
 Query Match
                             Pred. No. 5.14e-146;
 Best Local Similarity 100.0%;
          122; Conservative 0; Mismatches 0;
                                                         0;
                                                 Indels
Gaps 0;
                                                          1
                                   b
D
mivlytadnvipkdglggafvdkdgtydkvyilftvtigskrivkipyiagmclndecgp 60
1
MIYLYTADNVIPKDGLQGAFVDKDGTYDKVYILFTVTIGSKRIVKIPYIAQMCLNDECGP 60
D
                   b
sslsshrwstllkvelecdidgrsysqinhsktikqimiryymyslivlfqvrimylfye 120
SSLSSHRWSTLLKVELECDIDGRSYSOINHSKTIKOIMIRYYMYSLIVLFOVRIMYLFYE 120
Db
     121 yh 122
         | |
     121 YH 122
Qy
RESULT
ENTRY
               H36852 #type complete
               A43R protein - variola virus (strain India-1967)
TITLE
               #formal name variola virus
ORGANISM
                    30-Sep-1993 #sequence revision 30-Sep-1993
DATE
#text change
                 30-Sep-1993
               H36852
ACCESSIONS
REFERENCE
               A36859
  #authors
               Blinov, V.M.
  #submission submitted to GenBank, November 1992
  #description not shown.
  #accession
               H36852
                   preliminary
     ##status
     ##molecule_type DNA
     ##residues
                   1-122 ##label BLI
     ##cross-references GB:X69198
SUMMARY
                #length 122 #molecular-weight 14301 #checksum
8838
                     100.0%;
                             Score 940; DB 6; Length 122;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 5.14e-146;
          122; Conservative 0; Mismatches 0;
                                                 Indels
                                                       0;
 Matches
Gaps
      0;
```

ς;

```
1
miylytadnvipkdglqgafvdkdgtydkvyilftvtigskrivkipyiaqmclndecgp 60
MIYLYTADNVIPKDGLOGAFVDKDGTYDKVYILFTVTIGSKRIVKIPYIAOMCLNDECGP 60
sslsshrwstllkvelecdidgrsysginhsktikgimiryymyslivlfqvrimylfye 120
Q
SSLSSHRWSTLLKVELECDIDGRSYSOINHSKTIKOIMIRYYMYSLIVLFQVRIMYLFYE 120
Db
     121 yh 122
        121 YH 122
Qy
        3
RESULT
              JQ1775
                        #type complete
ENTRY
              SalL9R protein - vaccinia virus (strain WR)
TITLE
ORGANISM
              #formal name vaccinia virus
                   30-Sep-1993 #sequence revision 30-Sep-1993
DATE
#text change
                30-Sep-1993
ACCESSIONS
              J01775
REFERENCE
              JQ1767
              Smith, G.L.; Chan, Y.S.; Howard, S.T.
  #authors
              J. Gen. Virol. (1991) 72:1349-1376
  #journal
               Nucleotide sequence of 42kbp of vaccinia virus
  #title
strain WR from
                near the right inverted terminal repeat.
  #accession
              JQ1775
     ##molecule type DNA
                   1-295 ##label SMI
     ##residues
     ##cross-references DDBJ:D11079
               #length 295 #molecular-weight 33699
                                                #checksum
SUMMARY
7539
                            Score 608; DB 6;
                                             Length 295;
                     64.7%;
 Query Match
 Best Local Similarity 91.5%;
                            Pred. No. 1.18e-85;
          86; Conservative
                            3; Mismatches
                                          4:
                                               Indels
                                                      1;
 Matches
Gaps
     1;
             b
ydlytadnvipkdglrgafvdkdgtydkvyilftdtigskrivkipyiaqmclndeggps 241
        111
Y-LYTADNVIPKDGLQGAFVDKDGTYDKVYILFTVTIGSKRIVKIPYIAQMCLNDECGPS 61
     242 slsshrwstflkvelecdidgrsyrqiihsrtik 275
Db
```

```
RESULT
                          #type complete
ENTRY
               A39R protein - vaccinia virus (strain Copenhagen)
TITLE
                #formal name vaccinia virus
ORGANISM
               host Homo sapiens (man)
  #note
                    09-Nov-1990 #sequence revision 09-Nov-1990
DATE
#text change
                  08-Apr-1994
                E42521
ACCESSIONS
               A33172
REFERENCE
   #authors
               Johnson, G.P.
               submitted to GenBank, June 1990
   #submission
   #accession
               E42521
     ##status
                    preliminary
     ##molecule type DNA
                    1-403 ##label JOH
     ##residues
                #length 403 #molecular-weight 45741 #checksum
SUMMARY
8167
                               Score 608; DB 6; Length 403;
                       64.7%;
 Query Match
 Best Local Similarity 91.5%; Pred. No. 1.18e-85;
           86; Conservative 3; Mismatches
                                             4;
                                                   Indels
                                                           1;
 Matches
Gaps
      1;
ydlytadnvipkdglrgafvdkdgtydkvyilftdtigskrivkipyiaqmclndeggps 203
         | | |
Y-LYTADNVIPKDGLQGAFVDKDGTYDKVYILFTVTIGSKRIVKIPYIAQMCLNDECGPS 61
Db
     204 slsshrwstflkvelecdidgrsyrqiihsrtik 237
         62 SLSSHRWSTLLKVELECDIDGRSYSQINHSKTIK 95
QУ
RESULT
                          #type complete
ENTRY
                hypothetical protein 15 - vaccinia virus
TITLE
ORGANISM
                #formal name vaccinia virus
                     20-Feb-1995 #sequence revision 20-Feb-1995
DATE
#text change
                  20-Feb-1995
                S29921
ACCESSIONS
REFERENCE
                S29907
   #authors
                Amegadzie, B.Y.
               submitted to the EMBL Data Library, January 1991
   #submission
  #accession
                S29921
     ##status
                    preliminary
     ##molecule type DNA
     ##residues
                    1-441 ##label AME
```

```
##cross-references EMBL:X57318
                 #length 441 #molecular-weight 50185 #checksum
SUMMARY
6034
                                Score 608; DB 6; Length 441; Pred. No. 1.18e-85;
                        64.7%;
  Query Match
  Best Local Similarity 91.5%;
            86: Conservative
                                3; Mismatches 4;
                                                    Indels
                                                             1;
  Matches
       1;
Gaps
                                1
               b
ydlytadnvipkdglrgafvdkdgtydkvyilftdtigskrivkipyiaqmclndeggps 241
          Q
Y-LYTADNVIPKDGLQGAFVDKDGTYDKVYILFTVTIGSKRIVKIPYIAQMCLNDECGPS 61
      242 slsshrwstflkvelecdidgrsyrqiihsrtik 275
Db
          QУ
       62 SLSSHRWSTLLKVELECDIDGRSYSQINHSKTIK 95
          6
RESULT
ENTRY
                 S27251
                           #type complete
TITLE
               NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain
3 - wheat
                   chloroplast
                     #formal name chloroplast Triticum aestivum
ORGANISM
#common name
                  common wheat
DATE
                      03-May-1994 #sequence revision 20-Feb-1995
#text change
                  11-Aug-1995
                 S27251
ACCESSIONS
REFERENCE
                 S09666
   #authors
                Nixon, P.J.; Gounaris, K.; Coomber, S.A.; Hunter,
C.N.; Dyer,
                   T.A.; Barber, J.
                 J. Biol. Chem. (1989) 264:14129-14135
   #journal
                psbG is not a photosystem two gene but may be an
   #title
ndh gene.
   #cross-references MUID:89340519
   #accession
                 S27251
      ##molecule type DNA
      ##residues
                     1-120 ##label NIX
      ##cross-references EMBL:J04954
GENETICS
                ndhC
   #gene
                chloroplast
   #genome
                #superfamily NADH dehydrogenase (ubiquinone) chain
CLASSIFICATION
KEYWORDS
                  chloroplast; membrane-associated complex; NAD;
oxidoreductase
                 #length 120 #molecular-weight 13685 #checksum
SUMMARY
- 5998
```

U.K.

Distribution rights by IntelliGenetics, Inc.

MPsrch_pp protein - protein database search, using Smith-Waterman
algorithm

Run on: Thu May 16 15:36:51 1996; MasPar time 3.34

Seconds

560.446 Million cell

1

updates/sec

Tabular output not generated.

Title: >US-08-121-713B-66

Description: (1-122) from US08121713B.pep

Perfect Score: 940

S e q u e n c e :

MIYLYTADNVIPKDGLQGAF.....MYSLIVLFQVRIMYLFYEYH 122

Scoring table: PAM 150

Gap 11

Searched: 43470 seqs, 15335248 residues

Post-processing: Minimum Match 0%

Listing first 45 summaries

Database: swiss-prot31

1:part1 2:part2 3:part3 4:part4 5:part5 6:part6

7:part7

8:part8

Statistics: Mean 42.200; Variance 76.909; scale 0.549

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

Result Query

No. Score Match Length DB ID Description

Pred. No.

1 608 64.7 403 7 VA39 VACCC PROTEIN A39.

2.66e-106

2 608 64.7 441 7 VA39_VACCV PROTEIN A39.

	2 ((= 10(
	2.66e-106 3	117	12.4	120	5	NU3C_MARPO	NADH-PLASTOQUINONE OX
	5.26e-05 4	117	12.4	120	5	NU3C_TOBAC	NADH-PLASTOQUINONE OX
	5.26e-05 5	117	12.4	120	5	NU3C_MAIZE	NADH-PLASTOQUINONE OX
	5.26e-05 6	117	12.4	120	5	NU3C_ORYSA	NADH-PLASTOQUINONE OX
	5.26e-05 7	117	12.4	120	5	NU3C_WHEAT	NADH-PLASTOQUINONE OX
	5.26e-05 8	115	12.2	120	5	NU3C_SYNY3	NADH-PLASTOQUINONE OX
	1.09e-04 9	100	10.6	128	8	VL05_VACCV	PROTEIN L5 (PROTEIN F
	1.99e-02 10	100	10.6	128	8	VL05_VARV	PROTEIN L5.
	1.99e-02 11	98	10.4	501	5	PHR1_SINAL	DEOXYRIBODIPYRIMIDINE
•	3.86e-02 12	98	10.4	587	4	LACP KLULA	LACTOSE PERMEASE.
	3.86e-02 13	87	9.3	324	4	MAS MOUSE	MAS PROTO-ONCOGENE.
	1.26e+00 14	87	9.3	324	4	MAS RAT	MAS PROTO-ONCOGENE.
	1.26e+00 15	85	9.0	833	4	HSF YEAST	HEAT SHOCK FACTOR PRO
	2.29e+00 16	84	8.9	118	5	- NU3M MARPO	NADH-UBIQUINONE OXIDO
	3.08e+00 17	84	8.9	302	2	CC22 XENLA	CELL DIVISION CONTROL
	3.08e+00 18	84	8.9	302	2	CC21 XENLA	CELL DIVISION CONTROL
	3.08e+00 19	84	8.9	325	4	— MAS HUMAN	MAS PROTO-ONCOGENE.
	3.08e+00 20	84	8.9	1058	7	UL52 HSV11	DNA REPLICATION PROTE
	3.08e+00 21	83	8.8	193	5	- PMP2 RAT	22 KD PEROXISOMAL MEM
	4.13e+00 22	. 83	8.8	1164	6	- RPO2 COWPX	DNA-DIRECTED RNA POLY
	4.13e+00 23	82	8.7	121	5	– NQO7 PARDE	NADH-UBIQUINONE OXIDO
	5.51e+00 24	82	8.7	423	3	GCRC MOUSE	PROBABLE G PROTEIN-CO
	5.51e+00 25	82	8.7	477	7	TRAF BACTI	TRANSPOSASE FOR INSER
•	5.51e+00 26	81	8.6	87	2	CYC6 APHFL	CYTOCHROME C6 (SOLUBL
•	7.35e+00 27	81	8.6	451	4	HSF XENLA	HEAT SHOCK FACTOR PRO
•	7.35e+00 28	81	8.6	1164	6	RPO2 VARV	DNA-DIRECTED RNA POLY
•	7.35e+00 29	80	8.5	143	2	EAG BACSU	HYPOTHETICAL 16.4 KD
	23	00	0.5	T#2	4	PAG_DACSU	HIEOTHETICAL TO.4 KD

```
9.77e+00
                                OPSD CANFA
                 8.5
    30
           80
                        348
                             5
                                            RHODOPSIN.
9.77e+00
                 8.5
           80
                        348
                                OPSD CRIGR
                                            RHODOPSIN.
    31
9.77e+00
           80
                 8.5
                        348
                             5
                                OPSD HUMAN
                                            RHODOPSIN.
   32
9.77e+00
                 8.5
    33
           80
                        348
                             5
                                OPSD SHEEP
                                            RHODOPSIN.
9.77e+00
                                OPSD MOUSE
          80
                 8.5
                        348
                             5
                                            RHODOPSIN.
   34
9.77e+00
           80
                 8.5
                        447
                             5
                                            NADH-UBIQUINONE OXIDO
                                NU4M ANOGA
   35
9.77e+00
                                YEU3 YEAST
                 8.5
                        706
                             8
                                            HYPOTHETICAL 81.5 KD
   36
           80
9.77e+00
           80
                 8.5
                        858
                                CHS2 RHIOL
                                            CHITIN SYNTHASE 2 (EC
   37
9.77e+00
           79
                 8.4
                        234
                             3
                                GLNA DUNSA
                                            GLUTAMINE SYNTHETASE
    38
1.29e+01
    39
           79
                 8.4
                        244
                             5
                                MLS2 STAAU
                                            RRNA ADENINE N-6-METH
1.29e+01
           79
                 8.4
                        273
                                PSAB YERPE
                                            CHAPERONE PROTEIN PSA
                             6
    40
1.29e+01
          79
                 8.4
                        468
   41
                             5
                                NIFB KLEPN
                                            NIFB PROTEIN.
1.29e+01
           79
                 8.4
                            7
                                VG13 BPML5
                                            GENE 13 PROTEIN (GP13
                        593
   42
1.29e+01
           79
                 8.4
                        649
                                TFC1 YEAST
                                            TRANSCRIPTION FACTOR
    43
1.29e+01
           79
                 8.4
                        739
                                DCLY HAFAL · LYSINE DECARBOXYLASE
    44
1.29e+01
           79
                 8.4
                       1164
                                RPO2 VACCV DNA-DIRECTED RNA POLY
   45
1.29e+01
```

```
RESULT
    VA39 VACCC
                    STANDARD;
                                   PRT;
                                           403 AA.
ID
     P210\overline{6}2;
AC
     01-FEB-1991 (REL. 17, CREATED)
DT
     01-FEB-1991 (REL. 17, LAST SEQUENCE UPDATE)
DT
     01-FEB-1991 (REL. 17, LAST ANNOTATION UPDATE)
DT
DE
     PROTEIN A39.
GN
     A39R.
    VACCINIA VIRUS (STRAIN COPENHAGEN).
OS
OC
          VIRIDAE;
                      DS-DNA ENVELOPED VIRUSES; POXVIRIDAE;
CHORDOPOXVIRINAE;
OC
     ORTHOPOXVIRUSES.
RN
     [1]
RP
     SEQUENCE FROM N.A.
RM
     91021027
     GOEBEL S.J., JOHNSON G.P., PERKUS M.E., DAVIS S.W., WINSLOW
RA
J.P.,
```

```
PAOLETTI E.;
RA
    VIROLOGY 179:247-266(1990).
RL
RN
    COMPLETE GENOME.
RΡ
    GOEBEL S.J., JOHNSON G.P., PERKUS M.E., DAVIS S.W., WINSLOW
RA
J.P.,
RA
    PAOLETTI E.;
    VIROLOGY 179:517-563(1990).
RL
    EMBL; M35027; PXVACCG.
DR
    PIR; E42521; E42521.
DR
                     45741 MW; 907305 CN;
    SEQUENCE 403 AA;
SQ
                      64.7%; Score 608; DB 7; Length 403;
 Query Match
 Best Local Similarity 91.5%; Pred. No. 2.66e-106;
         86; Conservative 3; Mismatches 4;
                                                Indels
 Matches
Gaps 1;
D
             b
ydlytadnvipkdglrgafvdkdgtydkvyilftdtigskrivkipyiaqmclndeggps 203
         +111
Q.
Y-LYTADNVIPKDGLOGAFVDKDGTYDKVYILFTVTIGSKRIVKIPYIAQMCLNDECGPS 61
Db
     204 slsshrwstflkvelecdidgrsyrqiihsrtik 237
         62 SLSSHRWSTLLKVELECDIDGRSYSQINHSKTIK 95
Qy
Search completed: Thu May 16 15:37:02 1996
Job time: 11 secs.
```