代码运行结果如下:

```
Inorder traversal of the constructed tree:
3 : Black 7 : Black 8 : Red 10 : Black 11 : Red 18 : Red 22 : Black 26 : Red
进程已结束,退出代码为 0
```

绘制成红黑树如下:

发现, 代码输出结果基本正确。

同时,为了探究红黑树的性能,我将红黑树与 set 进行了比较,插入各种类型数据的情况如下:

=== Performance Comparison ===			
Size	RBTree (ms)	std::set (ms)	Ratio
1000	0.179	0.324	0.552469
10000	1.599	3.463	0.461738
100000	11.568	23.235	0.49787

可以发现,红黑树性能比set好接近一倍