Приложение № 2.2.1.8 к Основной образовательной программе среднего общего образования, утвержденной приказом директора от 10.12.2021 г. № 37-П/2021

ОБЩЕОБРАЗОВАТЕЛЬНАЯ АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ «ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР «УСТЬ-ЛАБИНСКИЙ ЛИЦЕЙ»

РАБОЧАЯ ПРОГРАММА

учебного предмета «Математика» углубленного уровня среднего общего образования для универсального (математика) профиля

Рабочую программу составили:

Учитель

И.А. Толмачев

И.А. Кудлай

Данная рабочая программа обеспечивает достижение образовательных результатов, предусмотренных ФГОС СОО по учебному предмету «Математика» углубленного уровня среднего общего образования и выполнение основной образовательной программы ОАНО «Усть-Лабинский Лицей» (далее – Лицей).

Настоящая рабочая программа разработана на основе рабочей программы учебного предмета «Математика» на углубленном уровне среднего общего образования к УМК авторов С.М. Никольского, М.К. Потапова, Н.Н. Решетникова и к УМК автора Е.В. Потоскуева.

Настоящая рабочая программа реализуется за 2 учебных года в течение 1 и 2 полугодий.

Учебный предмет «Математика» углубленного уровня среднего общего образования состоит из двух учебных курсов, каждый из которых состоит из двух учебных модулей:

- учебный курс «Математика. 10 класс. Углубленный уровень» 1 год обучения:
 - учебный модуль «Алгебра и начала математического анализа. 10 класс.
 Углубленный уровень» 1 год обучения;
 - учебный модуль «Геометрия. 10 класс. Углубленный уровень» 1 год обучения.
- учебный курс «Математика. 11 класс. Углубленный уровень» 2 год обучения:
 - учебный модуль «Алгебра и начала математического анализа. 11 класс.
 Углубленный уровень» 2 год обучения;
 - учебный модуль «Геометрия. 11 класс. Углубленный уровень» 2 год обучения.

В соответствии с учебным планом Лицея рабочая программа рассчитана на 544 часов: 280 часов в 10 классе (35 недель по 8 часов в неделю: 4 часа на алгебру и математический анализ, 4 часа на геометрию), 264 часа в 11 классе (33 недели по 8 часов в неделю: 4 часа на алгебру и математический анализ, 4 часа на геометрию).

Преподавание ведется по учебникам УМК:

- 1. «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (углубленный уровень). 10 класс». С.М. Никольский, М.К. Потапов, Н.Н. Решетников. АО «Издательство «Просвещение».
- «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (углубленный уровень). 11 класс». С.М. Никольский, М.К. Потапов, Н.Н. Решетников. – АО «Издательство «Просвещение».

- 3. «Математика: алгебра и начала математического анализа, геометрия. Геометрия. Углубленный уровень (учебник, задачник). 10 класс». Е.В. Потоскуев, Л.И. Звавич. OOO «Дрофа»; АО «Издательство «Просвещение».
- 4. «Математика: алгебра и начала математического анализа, геометрия. Геометрия. Углубленный уровень (учебник, задачник). 11 класс». Е.В. Потоскуев, Л.И. Звавич. ООО «Дрофа»; АО «Издательство «Просвещение».

1. Планируемые результаты освоения учебного предмета «Математика» углубленного уровня среднего общего образования

Предметные результаты

В результате изучения учебного модуля «Алгебра и начала математического анализа» на углубленном уровне обучающийся научится:

- свободно оперировать¹ понятиями: конечное множество, элемент множества, подмножество, пересечение, объединение и разность множеств, числовые множества на координатной прямой, отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;
- оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;
- проверять принадлежность элемента множеству;
- находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;
- проводить доказательные рассуждения для обоснования истинности утверждений.

В повседневной жизни и при изучении других предметов:

- использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;
- проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов.

Раздел «Числа и выражения»

 свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел,

¹ Здесь и далее: знать определение понятия, знать и уметь обосновывать свойства (признаки, если они есть) понятия, характеризовать связи с другими понятиями, представляя одно понятие как часть целостного комплекса, использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.

- иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
- доказывать и использовать признаки делимости суммы и произведения при выполнении вычислений и решении задач;
- выполнять округление рациональных и иррациональных чисел с заданной точностью;
- сравнивать действительные числа разными способами;
- упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;
- находить НОД и НОК разными способами и использовать их при решении задач;
- выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней;
- выполнять стандартные тождественные преобразования тригонометрических,
 логарифмических, степенных, иррациональных выражений.

- выполнять и объяснять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;
- записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;
- составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов.

Раздел «Уравнения и неравенства»

- свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;
- решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3-й и 4-й степеней, дробно-рациональные и иррациональные;
- овладеть основными типами показательных, логарифмических, иррациональных, степенных уравнений и неравенств и стандартными методами их решений и применять их при решении задач;
- понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;

- владеть методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;
- использовать метод интервалов для решения неравенств, в том числе дробнорациональных и включающих в себя иррациональные выражения;
- решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;
- владеть разными методами доказательства неравенств;
- решать уравнения в целых числах;
- изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами;
- свободно использовать тождественные преобразования при решении уравнений и систем уравнений.

- составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;
- выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;
- составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов.

Раздел «Функции»

- свободно оперировать понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции; уметь применять эти понятия при решении задач;
- владеть понятием степенная функция; строить ее график и уметь применять свойства степенной функции при решении задач;
- владеть понятиями показательная функция, экспонента; строить их графики и уметь применять свойства показательной функции при решении задач;
- владеть понятием логарифмическая функция; строить ее график и уметь применять свойства логарифмической функции при решении задач;
- владеть понятиями тригонометрические функции; строить их графики и уметь применять свойства тригонометрических функций при решении задач;

- владеть понятием обратная функция; применять это понятие при решении задач;
- применять при решении задач свойства функций: четность, периодичность, ограниченность;
- применять при решении задач преобразования графиков функций;
- владеть понятиями числовая последовательность, арифметическая и геометрическая прогрессия.

- определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, точки перегиба, период и т.п.);
- интерпретировать свойства в контексте конкретной практической ситуации.

Раздел «Статистика и теория вероятностей, логика и комбинаторика»

- оперировать основными описательными характеристиками числового набора,
 понятием генеральная совокупность и выборкой из нее;
- оперировать понятиями: частота и вероятность события, сумма и произведение вероятностей, вычислять вероятности событий на основе подсчета числа исходов;
- владеть основными понятиями комбинаторики и уметь их применять при решении задач;
- иметь представление об основах теории вероятностей;
- иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин;
- иметь представление о математическом ожидании и дисперсии случайных величин.

В повседневной жизни и при изучении других предметов:

- вычислять или оценивать вероятности событий в реальной жизни;
- выбирать методы подходящего представления и обработки данных.

Раздел «Текстовые задачи»

- решать разные задачи повышенной трудности;
- строить модель решения задачи, проводить доказательные рассуждения при решении задачи;
- решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;
- анализировать и интерпретировать полученные решения в контексте условия задачи,
 выбирать решения, не противоречащие контексту.

- решать практические задачи и задачи из других предметов.

Раздел «История математики»

- иметь представление о вкладе выдающихся математиков в развитие науки;
- понимать роль математики в развитии России.

Раздел «Методы математики»

- использовать основные методы доказательства, проводить доказательство и выполнять опровержение;
- применять основные методы решения математических задач;
- на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства.

В результате изучения учебного модуля «Алгебра и начала математического анализа» на углубленном уровне обучающийся получит возможность научиться:

Раздел «Элементы теории множеств и математической логики»

- оперировать понятием определения, основными видами определений, основными видами теорем;
- понимать суть косвенного доказательства;
- оперировать понятиями счетного и несчетного множества;
- задавать множества перечислением и характеристическим свойством;
- применять метод математической индукции для проведения рассуждений и доказательств и при решении задач;
- применять общие теоретико-множественные и логические подходы при решении олимпиадных задач.

В повседневной жизни и при изучении других предметов:

 использовать теоретико-множественный язык и язык логики для описания реальных процессов и явлений, при решении задач других учебных предметов.

Раздел «Числа и выражения»

- владеть основными понятиями теории делимости при решении стандартных задач
- свободно выполнять тождественные преобразования тригонометрических,
 логарифмических, степенных выражений;
- владеть формулой бинома Ньютона;
- уметь выполнять запись числа в позиционной системе счисления;
- применять при решении задач теоретико-числовые функции: число и сумма делителей,
 функцию Эйлера;

- применять при решении задач цепные дроби;
- применять при решении задач многочлены с действительными и целыми коэффициентами;
- понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;
- переводить числа из одной системы записи (системы счисления) в другую;
- свободно оперировать числовыми множествами при решении задач;
- понимать причины и основные идеи расширения числовых множеств;
- владеть основными понятиями теории делимости при решении стандартных задач;
- иметь базовые представления о множестве комплексных чисел;
- применять при решении задач теорему о линейном представлении НОД;
- применять при решении задач Китайскую теорему об остатках;
- применять при решении задач Малую теорему Ферма.
- использовать творчески общие алгебраические и специфические свойства целочисленных, тригонометрических, показательных, логарифмических выражений, а также многочленов (в том числе и с комплексными корнями) при решении олимпиадных задач;
- владеть понятиями приводимый и неприводимый многочлен и применять их при решении задач;
- применять при решении задач Основную теорему алгебры;
- применять при решении задач простейшие функции комплексной переменной как геометрические преобразования.

Раздел «Уравнения и неравенства»

- свободно определять тип и выбирать метод решения показательных и логарифмических уравнений и неравенств, иррациональных уравнений и неравенств, тригонометрических уравнений и неравенств, их систем;
- свободно решать системы линейных уравнений (в том числе и произвольного количества неизвестных);
- решать основные типы уравнений и неравенств с параметрами;
- применять теорему Безу к решению уравнений;
- применять теорему Виета для решения некоторых уравнений степени выше второй;
- составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты;

- использовать программные средства при решении отдельных классов уравнений и неравенств.
- использовать аппарат решения уравнений и неравенств творчески при решении олимпиадных задач;
- применять при решении задач неравенства Коши Буняковского, Бернулли;
- иметь представление о неравенствах между средними степенными.

Раздел «Функции»

- владеть понятием асимптоты и уметь его применять при решении задач;
- владеть понятиями выпуклости функции вверх и вниз и уметь их применять при решении задач;
- применять при решении задач свойства и признаки арифметической и геометрической прогрессий;
- использовать творчески функциональный подход при решении олимпиадных задач;
- использовать весь аппарат дифференциального исчисления функций одной вещественной переменной для построения и продвинутого исследования общих гладких функций;
- применять методы решения простейших дифференциальных уравнений первого и второго порядков.

В повседневной жизни и при изучении других учебных предметов:

 определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.).

Раздел «Статистика и теория вероятностей, логика и комбинаторика»

- иметь представление о кодировании, двоичной записи, двоичном дереве;
- иметь представление о деревьях и уметь применять при решении задач;
- владеть понятием связность и уметь применять компоненты связности при решении задач;
- владеть понятиями конечные и счетные множества и уметь их применять при решении задач;
- уметь применять метод математической индукции.
- иметь представление о совместных распределениях случайных величин;
- понимать суть закона больших чисел и выборочного метода измерения вероятностей;
- иметь представление о нормальном распределении и примерах нормально распределенных случайных величин;
- иметь представление о корреляции случайных величин;

- владеть основными понятиями теории графов (граф, вершина, ребро, степень вершины, путь в графе) и уметь применять их при решении задач;
- использовать комбинаторные и вероятностные методы творчески при решении олимпиадных задач;
- иметь представление о центральной предельной теореме;
- иметь представление о выборочном коэффициенте корреляции и линейной регрессии;
- иметь представление о статистических гипотезах и проверке статистической гипотезы, о статистике критерия и ее уровне значимости;
- иметь представление о связи эмпирических и теоретических распределений;
- уметь осуществлять пути по ребрам, обходы ребер и вершин графа;
- иметь представление об эйлеровом и гамильтоновом пути, иметь представление о трудности задачи нахождения гамильтонова пути;
- уметь применять принцип Дирихле при решении задач.

Раздел «Текстовые задачи»

- решать разные задачи творческого и олимпиадного уровня трудности;
- анализировать условие задачи, выбирать оптимальный метод решения задачи,
 рассматривая различные методы;
- переводить при решении задачи информацию из одной формы записи в другую,
 используя при необходимости схемы, таблицы, графики, диаграммы;
- по возможности обходиться без сложных систем уравнений и неравенств при исследовании различных моделей задачи;
- использовать идеи непрерывности при решении текстовых задач.

Раздел «История математики»

- иметь представление о связи историй развития математики и других наук, в том числе физики;
- иметь возможность проследить развитие общематематических и частных понятий от их интуитивных истоков до современных строгих формализаций;
- иметь возможность сопоставить пути развития математики в России и других странах.
- иметь представление об истории технических наук в целом;
- владеть знанием об основных вехах развития современных подходов и формализма в математике.

Раздел «Методы математики»

- применять математические знания к исследованию окружающего мира (моделирование физических процессов, задачи экономики);
- применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач;
- пользоваться прикладными программами и программами символьных вычислений для исследования математических объектов;
- использовать методологию и философию математической науки для интерпретации подходов к изучению конкретных тем;
- реализовывать самостоятельно программные средства и электроннокоммуникационные системы для решения математических задач на основе идей математической оптимизации.

В результате изучения учебного модуля «Геометрия» на углубленном уровне обучающийся научится:

Раздел «Планиметрия и стереометрия»

- владеть геометрическими понятиями при решении задач и проведении математических рассуждений;
- самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новых классах фигур, проводить в несложных случаях классификацию фигур по различным основаниям;
- исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах;
- решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;
- уметь формулировать и доказывать геометрические утверждения;
- владеть понятиями стереометрии: призма, параллелепипед, пирамида, тетраэдр;
- иметь представления об аксиомах стереометрии и следствиях из них и уметь применять их при решении задач;
- уметь строить сечения многогранников с использованием различных методов, в том числе и метода следов;
- иметь представление о скрещивающихся прямых в пространстве и уметь находить угол и расстояние между ними;

- применять теоремы о параллельности прямых и плоскостей в пространстве при решении задач;
- уметь применять параллельное проектирование для изображения фигур;
- уметь применять перпендикулярности прямой и плоскости при решении задач;
- владеть понятиями ортогональное проектирование, наклонные и их проекции, уметь применять теорему о трех перпендикулярах при решении задач;
- владеть понятиями расстояние между фигурами в пространстве, общий перпендикуляр двух скрещивающихся прямых и уметь применять их при решении задач;
- владеть понятием угол между прямой и плоскостью и уметь применять его при решении задач;
- владеть понятиями двугранный угол, угол между плоскостями, перпендикулярные плоскости и уметь применять их при решении задач;
- владеть понятиями призма, параллелепипед и применять свойства параллелепипеда при решении задач;
- владеть понятием прямоугольный параллелепипед и применять его при решении задач;
- владеть понятиями пирамида, виды пирамид, элементы правильной пирамиды и уметь применять их при решении задач;
- иметь представление о теореме Эйлера, правильных многогранниках;
- владеть понятием площади поверхностей многогранников и уметь применять его при решении задач;
- владеть понятиями тела вращения (цилиндр, конус, шар и сфера), их сечения и уметь применять их при решении задач;
- владеть понятиями касательные прямые и плоскости и уметь применять из при решении задач;
- иметь представления о вписанных и описанных сферах и уметь применять их при решении задач;
- владеть понятиями объем, объемы многогранников, тел вращения и применять их при решении задач;
- иметь представление о развертке цилиндра и конуса, площади поверхности цилиндра и конуса, уметь применять их при решении задач;
- иметь представление о площади сферы и уметь применять его при решении задач;
- уметь решать задачи на комбинации многогранников и тел вращения;
- иметь представление о подобии в пространстве и уметь решать задачи на отношение объемов и площадей поверхностей подобных фигур.

 составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат.

Раздел «Векторы и координаты в пространстве»

- владеть понятиями векторы и их координаты;
- уметь выполнять операции над векторами;
- использовать скалярное произведение векторов при решении задач;
- применять уравнение плоскости, формулу расстояния между точками, уравнение сферы при решении задач;
- применять векторы и метод координат в пространстве при решении задач.

В результате изучения учебного модуля «Геометрия» на углубленном уровне обучающийся получит возможность научиться:

Раздел «Планиметрия и стереометрия»

- иметь представление об аксиоматическом методе;
- владеть понятием геометрические места точек в пространстве и уметь применять их для решения задач;
- уметь применять для решения задач свойства плоских и двугранных углов,
 трехгранного угла, теоремы косинусов и синусов для трехгранного угла;
- владеть понятием перпендикулярное сечение призмы и уметь применять его при решении задач;
- иметь представление о двойственности правильных многогранников;
- владеть понятиями центральное и параллельное проектирование и применять их при построении сечений многогранников методом проекций;
- иметь представление о развертке многогранника и кратчайшем пути на поверхности многогранника;
- иметь представление о конических сечениях;
- иметь представление о касающихся сферах и комбинации тел вращения и уметь применять их при решении задач;
- применять при решении задач формулу расстояния от точки до плоскости;
- владеть разными способами задания прямой уравнениями и уметь применять при решении задач;
- применять при решении задач и доказательстве теорем векторный метод и метод координат;

- иметь представление об аксиомах объема, применять формулы объемов прямоугольного параллелепипеда, призмы и пирамиды, тетраэдра при решении задач;
- применять теоремы об отношениях объемов при решении задач;
- применять интеграл для вычисления объемов и поверхностей тел вращения,
 вычисления площади сферического пояса и объема шарового слоя;
- иметь представление о движениях в пространстве: параллельном переносе,
 симметрии относительно плоскости, центральной симметрии, повороте
 относительно прямой, винтовой симметрии, уметь применять их при решении задач;
- иметь представление о площади ортогональной проекции;
- иметь представление о трехгранном и многогранном угле и применять свойства плоских углов многогранного угла при решении задач;
- иметь представления о преобразовании подобия, гомотетии и уметь применять их при решении задач;
- уметь решать задачи на плоскости методами стереометрии;
- уметь применять формулы объемов при решении задач.

Раздел «Векторы и координаты в пространстве»

- находить объем параллелепипеда и тетраэдра, заданных координатами своих вершин;
- задавать прямую в пространстве;
- находить расстояние от точки до плоскости в системе координат;
- находить расстояние между скрещивающимися прямыми, заданными в системе координат.

2. Содержание и тематическое планирование учебного предмета «Математика» углубленного уровня среднего общего образования

1 год обучения (учебный курс «Математика. 10 класс. Углубленный уровень») Учебный модуль «Алгебра и начала математического анализа. 10 класс. Углубленный уровень»

Наименование темы	Коли- чество часов	Содержание темы
Тема 1.	5	Повторение и систематизация знаний курса алгебры
Повторение		основного общего образования
Тема 2. Теория множеств	9	Начала теории множеств и общий язык отображений. Элементы логики. Метод математической индукции
Тема 3.	15	Натуральные и целые числа. Деление с остатком целых
Действительные		чисел. Сравнения. Наибольший общий делитель и
числа и их		наименьшее общее кратное. Простые числа.
подмножества		Рациональные и иррациональные числа
Тема 4.	19	Обобщённый угол. Радианная мера. Синус, косинус,
Тригонометрические		тангенс, котангенс. Арксинус, арккосинус, арктангенс,
функции		арккотангенс. Тригонометрические формулы. Метод
		вспомогательного аргумента. Тригонометрические
		уравнения
Тема 5.	12	Корень натуральной степени. Обобщение понятия
Показательные и		степени. Показательная и обобщенная степенная
логарифмические		функции. Понятие логарифма. Преобразования
функции		логарифмов. Показательные и логарифмические
		уравнения и неравенства
Тема 6.	8	Повторение и систематизация знаний, полученных за
Повторение и		первое полугодие
систематизация		
знаний		
Тема 7.	31	Определение предела последовательности.
Введение в анализ		Арифметические и порядковые свойства предела
		последовательности. Определение предела функции.
		Арифметические и порядковые свойства предела
		функции. Производная. Исследование функции при
		помощи производной
Тема 8.	11	Элементы комбинаторики. Правила суммы и
Начала		произведения. Числа размещений и сочетаний. Бином
комбинаторики		Ньютона
Тема 9.	14	Классическое определение вероятности. Случайные
Введение в теорию		события. Условная вероятность. Формула полной
вероятностей		

	Коли-	
Наименование темы	чество	Содержание темы
	часов	
		вероятности. Формула Байеса. Геометрическая
		вероятность
Тема 10.	8	Тригонометрические уравнения, неравенства, системы.
Тригонометрия и		Показательные уравнения, неравенства, системы.
логарифмы		Логарифмические уравнения, неравенства, системы
Тема 11.	8	Повторение и систематизация знаний, полученных за
Повторение и		второе полугодие
систематизация		
знаний		

1 год обучения (учебный курс «Математика. 10 класс. Углубленный уровень») Учебный модуль «Геометрия. 10 класс. Углубленный уровень»

	Коли-	
Наименование темы	чество	Содержание темы
	часов	-
Тема 1.	5	Вычисление элементов треугольника. Формулы площади
Повторение		треугольника: формула Герона, выражения площади
планиметрии		треугольника через радиус вписанной, вневписанной и
		описанной окружностей. Теорема синусов. Теорема
		косинусов. Теоремы Чевы и Менелая
Тема 2.	8	Основные понятия стереометрии: точка, прямая,
Введение в		плоскость, пространство. Понятие об аксиоматическом
стереометрию		способе построения геометрии. Аксиомы геометрии и
		следствия из них
Тема 3.	18	Начальные сведения о многогранниках. Изображение
Начала построения		пространственных фигур. Пирамида, тетраэдр, призма,
сечений		параллелепипед. Построения на проекционном чертеже.
		Построение сечений многогранников плоскостями
Тема 4.	25	Параллельность прямых. Взаимное расположение прямых
Параллельность в		в пространстве. Скрещивающиеся прямые.
пространстве		Параллельность прямой и плоскости, параллельность
		плоскостей. Взаимное расположение прямых и
		плоскостей в пространстве. Построение сечений
		многогранников с использованием параллельности в
		пространстве
Тема 5.	8	Повторение и систематизация знаний, полученных за
Повторение и		первое полугодие
систематизация		
знаний		

	Коли-	
Наименование темы	чество	Содержание темы
	часов	
Тема 6.	25	Угол между прямыми в пространстве.
Перпендикулярность	20	Перпендикулярность прямой и плоскости. Перпендикуляр
и углы в		и наклонная. Расстояние от точки до прямой, от точки до
пространстве		плоскости, от прямой до плоскости. Расстояние между
пространстве		плоскостями. Угол между прямой и плоскостью.
		Двугранный угол, линейный угол двугранного. Угол
		между плоскостями, перпендикулярность плоскостей.
Тема 7.	23	- · · · ·
	23	Параллельное проектирование и его свойства. Решение
Параллельное		планиметрических задач с помощью параллельного
проектирование и		проектирования. Ортогональное проектирование.
расстояния в		Площадь ортогональной проекции многоугольника.
пространстве		Центральное проектирование. Расстояние между
TT. O	20	скрещивающимися прямыми, методы его нахождения.
Тема 8.	20	Вершины, ребра, грани многогранника. Развертка.
Начала геометрии		Многогранные углы. Выпуклые многогранники. Теорема
многогранников		Эйлера. Правильные многогранники: тетраэдр, куб,
		октаэдр, додекаэдр и икосаэдр. Призма, ее основания,
		боковые ребра, высота, боковая поверхность. Прямая и
		наклонная призма. Правильная призма. Параллелепипед. Куб.
		Пирамида, ее основание, боковые ребра, высота, боковая
		поверхность. Треугольная пирамида. Правильная
		пирамида. Усеченная пирамида.
		Тетраэдр, классы тетраэдров: равногранные,
		ортоцентрические, каркасные. Симметрии в кубе, в
		параллелепипеде, в призме и пирамиде. Понятие о
		симметрии в пространстве: центральная, осевая,
		зеркальная симметрии. Примеры симметрий в
		окружающем мире.
Тема 9.	8	Повторение и систематизация знаний, полученных за
Повторение и		второе полугодие
систематизация		
знаний		
		I .

2 год обучения (учебный курс «Математика. 11 класс. Углубленный уровень») Учебный модуль «Алгебра и начала математического анализа. 11 класс. Углубленный уровень»

	Коли-	
Наименование темы	чество	Солорующий тому
Паименование темы		Содержание темы
T. 1	часов	T 1 T
Тема 1.	22	Первичные понятия, факты и приемы. Тригонометрия.
Фундаментальные		Логарифмы. Системы и текстовые задачи. Квадратные
идеи задач олимпиад и		уравнения и неравенства. Дополнительные соображения.
экзаменов		Простейшие приложения
Тема 2.	14	Понятие многочлена от одной переменной. Деление
Алгебра многочленов		многочленов с остатком. Теорема Безу и ее следствия.
		Теорема о рациональном корне многочлена с целыми
		коэффициентами
Тема 3.	18	Расщепление уравнений и неравенств. Развитие метода
Логический перебор		интервалов. Разложение на множители. Возведение
случаев в задачах		уравнений и неравенств в квадрат. Тригонометрические
		уравнения, неравенства, системы и отбор корней на
		тригонометрическом круге
Тема 4.	8	Повторение и систематизация знаний, полученных за
Повторение и		первое полугодие
систематизация знаний		
Тема 5.	22	Исследование квадратного трёхчлена без нахождения
Задачи с параметром	22	корней. Симметрия. Метод областей. Использование
зада ін є параметром		параметра в качестве одной из координат. Зависимость
		графиков функций от параметра. Переменная как
		параметр. Функциональные соображения в задачах с
Тема 6.	1.6	параметром
	16	Сравнение чисел и выражений. Некоторые особенности
Метод равносильных		равносильных преобразований. Метод подстановки и
преобразований		метод сложения при решении систем. Области значений и
		экстремумы функций
Тема 7.	24	Основные типы следствий. Получение и применение
Метод следствий в		оценок. Переход от общего к частному. Следствия в
задачах		задачах с целыми числами
Тема 8.	8	Повторение и систематизация знаний, полученных за
Повторение		второе полугодие
систематизация знаний		

2 год обучения (учебный курс «Математика. 11 класс. Углубленный уровень») Учебный модуль «Геометрия. 11 класс. Углубленный уровень»

Наименование темы	Коли- чество	Содержание темы
TD 1	часов	
Тема 1.	16	Биссекторная плоскость двугранного угла. Биссектриса
Многогранники и		трехгранного угла. Сферы, вписанные в пирамиду, куб,
сферы		призму, условия их существования. Серединная плоскость
		отрезка. Сферы, описанные около пирамиды, куба,
		призмы, условия их существования. Критерий вписанной
		пирамиды. Биссектриса каркаса трехгранного угла. Сферы,
		вписанные в каркас многогранника.
Тема 2.	20	Тела вращения. Шар. Сфера. Конусы. Цилиндры. Объёмы
Тела. Объемы,		пирамиды, призмы, составленных из них многогранников.
площади		Отношение объемов. Метод вспомогательного объема.
поверхностей		Объёмы шара, конуса, цилиндра. Площади поверхностей
		тел вращения: шара, конуса, цилиндра, их частей.
	10	Вычисление объемов с помощью интегралов.
Тема 3.	18	Векторы. Коллинеарность и компланарность. Базисы на
Метод координат		плоскости и в пространстве. Скалярное произведение.
		Угол между векторами, его выражение через скалярное
		произведение. Задание прямой и плоскости в координатах
		уравнениями разных типов. Формулы для вычисления
		расстояний и углов в координатах.
Тема 4.	8	Повторение и систематизация знаний, полученных за
Повторение и		первое полугодие
систематизация		
знаний		
Тема 5.	26	Применение тригонометрии. Касательные, секущие и
Фундаментальные		хорды. Дуги окружности и углы. Медианы, высоты,
задачи планиметрии		биссектрисы. Стереометрия. Квадратные уравнения в
	10	геометрии.
Тема 6.	18	Обоснование геометрической конфигурации. Перебор
Перебор случаев в		вариантов расположения. Неоднозначность в ответе.
геометрии	10	<u> </u>
Тема 7.	18	Сравнение площадей и объемов. Исследование
Задачи творческого		геометрических параметров. Геометрические
уровня сложности	0	преобразования. Дополнительные построения.
Тема 8.	8	Повторение и систематизация знаний, полученных за
Повторение и		второе полугодие
систематизация		
знаний		