A.03.03 – Balanço de Energia

(Sistemas Fechados)

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-04-09 16h11m27s

- Balanço de Energia
 - Primeira Lei da Termodinâmica
 - Balanço de Energia

2 Tópicos de Leitura

Enunciado

- A 1ª lei da Termodinâmica estabelece que:
 - Energia é uma quantidade conservada.

Enunciado

- A 1ª lei da Termodinâmica estabelece que:
 - Energia é uma quantidade conservada.

Este princípio da conservação da energia:

• É exaustivamente confirmado em experimentos.

Logo, no universo observável:

• Não há processos físicos que criem energia,

Logo, no universo observável:

- Não há processos físicos que criem energia,
- Nem processos físicos que destruam energia.

Logo, no universo observável:

- Não há processos físicos que criem energia,
- Nem processos físicos que destruam energia.
- Processos físicos podem apenas converter energia de uma forma a outra.

Logo, no universo observável:

- Não há processos físicos que criem energia,
- Nem processos físicos que destruam energia.
- Processos físicos podem apenas converter energia de uma forma a outra.

A Relatividade Especial de Einstein:

• Unificou as conservações de massa e de energia;

Logo, no universo observável:

- Não há processos físicos que criem energia,
- Nem processos físicos que destruam energia.
- Processos físicos podem apenas converter energia de uma forma a outra.

A Relatividade Especial de Einstein:

- Unificou as conservações de massa e de energia;
- Através da equivalência massa-energia expressa por $E_{eq} = c^2 m$.

Logo, no universo observável:

- Não há processos físicos que criem energia,
- Nem processos físicos que destruam energia.
- Processos físicos podem apenas converter energia de uma forma a outra.

A Relatividade Especial de Einstein:

- Unificou as conservações de massa e de energia;
- Através da equivalência massa-energia expressa por $E_{eq} = c^2 m$.
- Assim, a quantidade $E_{tot} = c^2 m + E_{outras}$ do universo é conservada.

A 1ª lei é central em Termodinâmica. Suas aplicações são vastas e incluem:

• Princípio em variedade de deduções;

A 1^a lei é central em Termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.

A 1ª lei é central em Termodinâmica.

Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.
- Cálculos de processos energéticos.

A 1^a lei é central em Termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.
- Cálculos de processos energéticos.

Exemplo: O que é, afinal, "energia"?

A 1^a lei é central em Termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.
- Cálculos de processos energéticos.

Exemplo: O que é, afinal, "energia"?

— Jack P. Holman (SMU)

A 1ª lei é central em Termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.
- Cálculos de processos energéticos.

Exemplo: O que é, afinal, "energia"?

• "Energia é uma quantidade (escalar)

— Jack P. Holman (SMU)

A 1^a lei é central em Termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.
- Cálculos de processos energéticos.

Exemplo: O que é, afinal, "energia"?

- "Energia é uma quantidade (escalar)
- que é conservada na natureza

— Jack P. Holman (SMU)

A 1ª lei é central em Termodinâmica. Suas aplicações são vastas e incluem:

- Princípio em variedade de deduções;
- Instrumental na definição de propriedades.
- Cálculos de processos energéticos.

Exemplo: O que é, afinal, "energia"?

- "Energia é uma quantidade (escalar)
- que é conservada na natureza
- e que possui unidades de kg·m²/s²."
 - Jack P. Holman (SMU)

A 1^a lei é matematicamente expressa por meio de balanço de energia.

40 + 40 + 43 + 43 +

A 1^a lei é matematicamente expressa por meio de balanço de energia.

A 1^a lei é matematicamente expressa por meio de balanço de energia.

A 1^a lei é matematicamente expressa por meio de balanço de energia.

$$\left(\begin{array}{c} \text{Total de energia que} \\ \text{entra no sistema} \end{array}\right) - \left(\begin{array}{c} \text{Total de energia} \\ \text{que sai do sistema} \end{array}\right) =$$

A 1^a lei é matematicamente expressa por meio de balanço de energia.

$$\left(\begin{array}{c} \text{Total de energia que} \\ \text{entra no sistema} \end{array}\right) - \left(\begin{array}{c} \text{Total de energia} \\ \text{que sai do sistema} \end{array}\right) = \left(\begin{array}{c} \text{Variação líquida de} \\ \text{energia no sistema} \end{array}\right),$$

A 1^a lei é matematicamente expressa por meio de balanço de energia.

Em um processo, o balanço de energia é dado por:

$$\left(\begin{array}{c} \text{Total de energia que} \\ \text{entra no sistema} \end{array}\right) - \left(\begin{array}{c} \text{Total de energia} \\ \text{que sai do sistema} \end{array}\right) = \left(\begin{array}{c} \text{Variação l\'iquida de} \\ \text{energia no sistema} \end{array}\right),$$

que matematicamente se escreve:

$$E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1$$
, para um processo 1–2.

A 1^a lei é matematicamente expressa por meio de balanço de energia.

Em um processo, o balanço de energia é dado por:

$$\left(\begin{array}{c} \text{Total de energia que} \\ \text{entra no sistema} \end{array}\right) - \left(\begin{array}{c} \text{Total de energia} \\ \text{que sai do sistema} \end{array}\right) = \left(\begin{array}{c} \text{Variação l\'iquida de} \\ \text{energia no sistema} \end{array}\right),$$

que matematicamente se escreve:

$$E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1$$
, para um processo 1–2.

Assim, se E_1 , E_{ent} e E_{sai} são conhecidos, então: $E_2 = E_1 + E_{ent} - E_{sai}$.

$$E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1$$

<ロト <回り < 重り < 重り

$$E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1$$

$$\xrightarrow{(d/dt)}$$

$$E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1$$

$$\stackrel{(d/dt)}{\longrightarrow}$$

$$\dot{E}_{ent} - \dot{E}_{sai} = \frac{dE}{dt} \Big|_{sist}$$

$$E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1$$

$$\downarrow(\div m)$$

$$\stackrel{(d/dt)}{\Longrightarrow}$$

$$\dot{E}_{ent} - \dot{E}_{sai} = \left. \frac{dE}{dt} \right|_{sist}$$

$$E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1$$
 $\stackrel{(d/dt)}{\longrightarrow}$ $\dot{E}_{ent} - \dot{E}_{sai} = \left. \frac{dE}{dt} \right|_{sis}$

$$\downarrow(\div m)$$

$$e_{ent} - e_{sai} = \Delta e_{sist} = e_2 - e_1$$

$$E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1$$

$$\downarrow(\div m)$$

$$e_{ent} - e_{sai} = \Delta e_{sist} = e_2 - e_1$$

$$\stackrel{(d/dt)}{\longrightarrow}$$

$$\downarrow(\div m)$$

$$E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1$$

$$\downarrow(\div m)$$

$$e_{ent} - e_{sai} = \Delta e_{sist} = e_2 - e_1$$

$$\stackrel{(d/dt)}{\longrightarrow}$$

$$\dot{E}_{ent} - \dot{E}_{sai} = \frac{dE}{dt} \bigg|_{six}$$

$$\downarrow(\div m)$$

$$\stackrel{(d/dt)}{\longrightarrow}$$

$$\dot{e}_{ent} - \dot{e}_{sai} = \frac{de}{dt}\Big|_{sist}$$

$$E_{ent} - E_{sai} = \Delta E_{sist} = E_2 - E_1$$

$$\downarrow(\div m)$$

$$e_{ent} - e_{sai} = \Delta e_{sist} = e_2 - e_1$$

$$\stackrel{(d/dt)}{\longrightarrow}$$

$$\dot{E}_{ent} - \dot{E}_{sai} = \left. \frac{dE}{dt} \right|_{sist}$$

$$\downarrow(\div m)$$

$$\stackrel{(d/dt)}{\longrightarrow}$$

$$\dot{e}_{ent} - \dot{e}_{sai} = \frac{de}{dt}\Big|_{sist}$$

Em sistemas compressíveis simples, E_{ent} e E_{sai} podem ser apenas nas formas de:

Em sistemas compressíveis simples, E_{ent} e E_{sai} podem ser apenas nas formas de:

calor e

Em sistemas compressíveis simples, E_{ent} e E_{sai} podem ser apenas nas formas de:

- calor e
- 2 trabalho.

Em sistemas compressíveis simples, E_{ent} e E_{sai} podem ser apenas nas formas de:

- calor e
- 2 trabalho.

Em sistemas compressíveis simples, E_{ent} e E_{sai} podem ser apenas nas formas de:

- calor e
- 2 trabalho.

$$E_{ent} = Q_{ent} + W_{ent},$$
 e

Em sistemas compressíveis simples, E_{ent} e E_{sai} podem ser apenas nas formas de:

- calor e
- 2 trabalho.

$$E_{ent} = Q_{ent} + W_{ent},$$

$$E_{sai} = Q_{sai} + W_{sai}.$$

Balancostde Enlergias $\frac{1}{n}$ $\frac{$

40 + 40 + 43 + 43 +

Balanços de Enlérsicas $\frac{1}{2}$ não reativos, E_{sist} inclui as formas:

lacktriangle Microscópicas, agrupadas na energia interna, U_{sist} ,

Balançostde Entergias $\frac{1}{2}$ nto reativos, E_{sist} inclui as formas:

lacktriangle Microscópicas, agrupadas na energia interna, U_{sist} , além das formas macroscópicas:

Balanços de Eplérgicas $\frac{1}{2}$ não reativos, E_{sist} inclui as formas:

- lacktriangle Microscópicas, agrupadas na energia interna, U_{sist} , além das formas macroscópicas:
- ② Cinética, $E_c = mV^2/2$.
- 3 trabalho.
- 4 trabalho.
- trabalho.

Balanços de Eplérgicas $\frac{1}{n}$ \frac

- $lue{1}$ Microscópicas, agrupadas na energia interna, U_{sist} , além das formas macroscópicas:
- ② Cinética, $E_c = mV^2/2$.
- 3 trabalho.
- 4 trabalho.
- 1 trabalho.

$$E_{ent} = Q_{ent} + W_{ent},$$

Balanços de Eplérsicas $\frac{1}{n}$ \frac

- lacktriangle Microscópicas, agrupadas na energia interna, U_{sist} , além das formas macroscópicas:
- ② Cinética, $E_c = m \mathbb{V}^2/2$.
- 3 trabalho.
- 4 trabalho.
- 5 trabalho.

$$E_{ent} = Q_{ent} + W_{ent},$$
 e

$$E_{sai} = Q_{sai} + W_{sai}.$$

Tópicos de Leitura I

Çengel, Y. A. e Boles, M. A.

Termodinâmica 7ª Edição. Seções 2-6 e 4-2.

AMGH. Porto Alegre. ISBN 978-85-8055-200-3.

