CS 33

Data Representation (Part 3)

Byte Ordering

- Four-byte integer
 - -0x76543210
- Stored at location 0x100
 - which byte is at 0x100?
 - which byte is at 0x103?

10	32	54	76
0x100	0x101	0x102	0x103

Little-endian

76 54 32 10 0x100 0x101 0x102 0x103

Big-endian

Byte Ordering (2)

Quiz 1

```
int main() {
  long x=1;
  func((int *)&x);
  return 0;
}

void func(int *arg) {
  printf("%d\n", *arg);
}
```

What value is printed on a big-endian 64-bit computer?

- a) 1
- b) 0
- c) 2^{32}
- d) 2³²-1

Which Byte Ordering Do We Use?

00010203 03020100

Fractional binary numbers

• What is 1011.101₂?

Fractional Binary Numbers

- bits to right of "binary point" represent fractional powers of 2
- represents rational number: $\sum_{k=1}^{\infty} b_k imes 2^k$

Representable Numbers

Limitation #1

- can exactly represent only numbers of the form n/2^k
 - » other rational numbers have repeating bit representations

Limitation #2

- just one setting of decimal point within the w bits
 - » limited range of numbers (very small values? very large?)

IEEE Floating Point

IEEE Standard 754

- established in 1985 as uniform standard for floating point arithmetic
 - » before that, many idiosyncratic formats
- supported on all major CPUs

Driven by numerical concerns

- nice standards for rounding, overflow, underflow
- hard to make fast in hardware
 - » numerical analysts predominated over hardware designers in defining standard

Floating-Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- sign bit s determines whether number is negative or positive
- significand M normally a fractional value in range [1.0,2.0)
- exponent E weights value by power of two
- Encoding
 - MSB s is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

S	exp	frac
3	СХР	TTUC

Precision options

Single precision: 32 bits

S	ехр	frac
1	8-bits	23-bits

Double precision: 64 bits

S	ехр	frac	
1	11-bits	52-bits	

Extended precision: 80 bits (Intel only)

S	ехр	frac
1	15-bits	64-bits

"Normalized" Values

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as biased value: E = Exp Bias
 - exp: unsigned value exp
 - bias = 2^{k-1} 1, where k is number of exponent bits
 - » single precision: 127 (Exp: 1...254, E: -126...127)
 - » double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac
 - minimum when frac=000...0 (M = 1.0)
 - maximum when frac=111...1 (M = 2.0ϵ)
 - get extra leading bit for "free"

Normalized Encoding Example

```
• Value: float F = 15213.0;

- 15213<sub>10</sub> = 11101101101101<sub>2</sub>

= 1.1101101101101<sub>2</sub> x 2<sup>13</sup>
```

Significand

```
M = 1.101101101_2
frac = 11011011011010000000000_2
```

Exponent

```
E = 13
bias = 127
exp = 140 = 10001100<sub>2</sub>
```

Result:

0 10001100 1101101101101000000000 s exp frac

Denormalized Values

- Condition: exp = 000...0
- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- Significand coded with implied leading 0:
 M = 0.xxx...x2
 - xxx...x: bits of frac

Cases

- $\exp = 000...0$, frac = 000...0
 - » represents zero value
 - » note distinct values: +0 and -0 (why?)
- $-\exp = 000...0$, frac $\neq 000...0$
 - » numbers closest to 0.0
 - » equispaced

Special Values

- Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - represents value ∞ (infinity)
 - operation that overflows
 - both positive and negative
 - e.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - not-a-number (NaN)
 - represents case when no numeric value can be determined
 - e.g., sqrt(-1), ∞ ∞ , $\infty \times 0$

Visualization: Floating-Point Encodings

Tiny Floating-Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only)

	s	exp	frac	E	Value
	0	0000	000	-6	0
	0	0000	001	-6	1/8*1/64 = 1/512 closest to zero
Denormalized	0	0000	010	-6	2/8*1/64 = 2/512
numbers	•••				
	0	0000	110	-6	6/8*1/64 = 6/512
	0	0000	111	-6	7/8*1/64 = 7/512 largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512 smallest norm
	0	0001	001	-6	9/8*1/64 = 9/512
	0	0110	110	-1	14/8*1/2 = 14/16
	0	0110	111	-1	15/8*1/2 = 15/16 closest to 1 below
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	9/8*1 = 9/8 closest to 1 above
	0	0111	010	0	10/8*1 = 10/8
	0	1110	110	7	14/8*128 = 224
	0	1110	111	7	15/8*128 = 240 largest norm
	0	1111	000	n/a	inf

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- bias is $2^{3-1}-1=3$

S	exp	frac
1	3-bits	2-bits

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- bias is 3

S	exp	frac
1	3-bits	2-bits

Quiz 2

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- bias is 3

S	exp	frac
1	3-bits	2-bits

What number is represented by 0 010 10?

- a) 3
- b) 1.5
- c) .75
- d) none of the above

Mapping Real Numbers to Float

- The real number 3 is represented as 0 100 10
- The real number 3.5 is represented as 0 100 11
- How is the real number 3.4 represented?
 0 100 11
- How is the real number π represented?
 0 100 10

Mapping Real Numbers to Float

- If R is a real number, it's mapped to the floating-point number whose value is closest to R
- What if it's midway between two values?
 - rounding rules determine outcome

Floats are Sets of Values

- If A, B, and C are successive floating-point values
 - e.g., 010001, 010010, and 010011
- B represents all real numbers from midway between A and B through midway between B and C

Significance

Normalized numbers

- for a particular exponent value E and an S-bit significand, the range from 2^E up to 2^{E+1} is divided into 2^S equi-spaced floating-point values
 - » thus each floating-point value represents 1/2^s of the range of values with that exponent
 - » all bits of the significand are important
 - » we say that there are S significant bits for reasonably large S, each floating-point value covers a rather small part of the range
 - high accuracy
 - for S=23 (32-bit float), accurate to one in 2²³ (.0000119% accuracy)

Significance

Unnormalized numbers

- high-order zero bits of the significand aren't important
- in 8-bit floating point, 0 0000 001 represents 2-9
 - » it is the only value with that exponent: 1 significant bit (either 2⁻⁹ or 0)
- 0 0000 010 represents 2-8
 0 0000 011 represents 1.5*2-8
 - » only two values with exponent -8: 2 significant bits (encoding those two values, as well as 2⁻⁹ and 0)
- fewer significant bits mean less accuracy
- 0 0000 001 represents a range of values from .5*2-9
 to 1.5*2-9
- 50% accuracy

+/- Zero

- Only one zero for ints
 - an int is a single number, not a range of numbers, thus there can be only zero
- Floating-point zero
 - a range of numbers around the real 0
 - it really matters which side of 0 we're on!
 - » a very large negative number divided by a very small negative number should be positive

$$-\infty/-0 = +\infty$$

» a very large positive number divided by a very small negative number should be negative

$$+\infty$$
 /-0 = $-\infty$

CS 33

Intro to Machine Programming

Machine Model

Memory

Instructions Instructions or are Data **Data**

Processor: Some Details

Execution engine

Instruction pointer

Condition codes

Processor: Basic Operation

```
while (forever) {
  fetch instruction IP points at
  decode instruction
  fetch operands
  execute
  store results
  update IP and condition code
}
```

Instructions ...

Op code Operand1 Operand2 ...

Operands

- Form
 - immediate vs. reference
 - » value vs. address
- How many?
 - **-3**
- » add a,b,c
 - $\cdot c = a + b$
- **2**
- » add a,b
 - b += a

Operands (continued)

- Accumulator
 - special memory in the processor
 - » known as a register
 - » fast access
 - allows single-operand instructions
 - » add a
 - acc += a
 - » add b
 - acc += b

From C to Assembler ...

```
if (a < b)
a = (b + c) * d;
                                c = 1;
          b, %acc
                            else
   mov
                                d = 1;
   add c, %acc
       d, %acc
   mul
       %acc,a
   mov
                                       a,b
                                cmp
                                jge
                                       . L1
                                                  immediate
                                                  operand
                               mov
                                jmp
                                       .L2
                            .L1
                                                  immediate
                                                  operand
                               mov
```

.L2

Condition Codes

- Set of flags giving status of most recent operation:
 - zero flag
 - » result was zero
 - sign flag
 - » for signed arithmetic interpretation: sign bit is set
 - overflow flag
 - » for signed arithmetic interpretation
 - carry flag (generated by carry or borrow out of mostsignificant bit)
 - » for unsigned arithmetic interpretation
- Set implicitly by arithmetic instructions
- Set explicitly by compare instruction
 - cmp a,b
 - » sets flags based on result of b-a

Examples (1)

- Assume 32-bit arithmetic
- x is 0x80000000
 - TMIN if interpreted as two's-complement
 - 2³¹ if interpreted as unsigned
- x-1 (0x7ffffffff)
 - TMAX if interpreted as two's-complement
 - 2³¹-1 if interpreted as unsigned
 - zero flag is not set
 - sign flag is not set
 - overflow flag is set
 - carry flag is not set

Examples (2)

- x is 0xffffffff
 - 1 if interpreted as two's-complement
 - UMAX (2³²-1) if interpreted as unsigned
- x+1 (0x00000000)
 - zero under either interpretation
 - zero flag is set
 - sign flag is not set
 - overflow flag is not set
 - carry flag is set

Examples (3)

- x is 0xffffffff
 - 1 if interpreted as two's-complement
 - UMAX (2³²-1) if interpreted as unsigned
- x+2 (0x00000001)
 - (+)1 under either interpretation
 - zero flag is not set
 - sign flag is not set
 - overflow flag is not set
 - carry flag is set

Quiz 3

- Set of flags giving status of most recent operation:
 - zero flag
 - » result was zero
 - sign flag
 - » for signed arithmetic interpretation: sign bit is set
 - overflow flag
 - » for signed arithmetic interpretation
 - carry flag (generated by carry or borrow out of most-significant bit)
 - » for unsigned arithmetic interpretation
- Set explicitly by compare instruction
 - cmp a,b
 - » sets flags based on result of b-a

Which flags are set to one by "cmp 2,1"?

- a) overflow flag only
- b) carry flag only
- c) sign and carry flags only
- d) sign and overflow flags only
- e) sign, overflow, and carry flags

Jump Instructions

- Unconditional jump
 - just do it
- Conditional jump
 - to jump or not to jump determined by conditioncode flags
 - field in the op code indicates how this is computed
 - in assembler language, simply say
 - » je
 - jump on equal
 - » jne
 - jump on not equal
 - » jg
 - jump on greater than (signed)
 - » etc.

Addresses

```
int a, b, c, d;
int main() {
   a = (b + c) * d;
   ...
}
```

mov	b,%acc
add	c,%acc
mul	d,%acc
mov	%acc,a

1004,%acc
1008,%acc
1012,%acc
%acc,1000

1012: d 1008: c 1004: b global 1000: a variables

Memory

Addresses

```
int b;
int func(int c, int d) {
   int a;
   a = (b + c) * d;
  mov ?, %acc
   add ?, %acc
         ?, %acc
  mul
         %acc,?
  mov
```

- One copy of b for duration of program's execution
 - b's address is the same for each call to func
- Different copies of a, c, and d for each call to func
 - addresses are different in each call

Relative Addresses

- Absolute address
 - actual location in memory
- Relative address
 - offset from some other location

264-1

Base Registers

mov \$10000, %base
mov \$10, 100(%base)

Addresses

```
frame
int b;
                                        previous stack
                                            frame
                                base \rightarrow
int func(long c, long d) {
                                            frame
   long a;
   a = (b + c) * d;
                                  1000:
                                        b
                                            giobai
                                          variables
   mov 1000, %acc
   add -8 (%base), %acc
   mul -16(%base),%acc
   mov %acc, -24(%base)
                                          Memory
```

earlier stack

Quiz 4

Suppose the value in *base* is 10,000. What is the address of *c*?

- a) 10,016
- b) 10,008
- c) 9992
- d) 9984

mov 1000,%acc
add -8(%base),%acc
mul -12(%base),%acc
mov %acc,-16(%base)

earlier stack frame previous stack frame base \rightarrow frame 1000: b global variables

Memory

Registers

Execution engine **Instruction pointer Accumulator Base register** interchangeable more **Condition codes**

Registers vs. Memory

Intel x86

- Intel created the 8008 (in 1972)
- 8008 begat 8080
- 8080 begat 8086
- 8086 begat 8088
- 8086 begat 286
- 286 begat 386
- 386 begat 486
- 486 begat Pentium
- Pentium begat Pentium Pro
- Pentium Pro begat Pentium II
- ad infinitum

IA32

264

- 2³² used to be considered a large number
 - one couldn't afford 2³² bytes of memory, so no problem with that as an upper bound
- Intel (and others) saw need for machines with 64-bit addresses
 - devised IA64 architecture with HP
 - » became known as Itanium
 - » very different from x86
- AMD also saw such a need
 - developed 64-bit extension to x86, called x86-64
- Itanium flopped
- x86-64 dominated
- Intel, reluctantly, adopted x86-64

Why Intel?

- Most CS Department machines are Intel
- An increasing number of personal machines are not
 - Apple has switched to ARM
 - packaged into their M1, M2, etc. chips
 - » "Apple Silicon"
- Intel x86-64 is very different from ARM64 internally
- Programming concepts are similar
- We cover Intel; most of the concepts apply to ARM