MissingHE

An R package to handle missing data in trial-based health economic evaluations

Andrea Gabrio

Maastricht University (FHML)

Department of Methodology and Statistics

email: a.gabrio@maastrichtuniversity.nl

EuHEA Conference, Wien, 2024

Monday, July 1, 2024

Part I

Introduction to statistical modelling in HTA

Individual-level data in HTA

 Typically collected from clinical studies (e.g. RCTs) at multiple time points

	Demographics			HRQL data				Resource use data				Clinical outcome				
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	M	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}
2	1	M	21		0.12	0.16		0.38	1 204	1808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

 $y_{ij} = \text{Survival time}$, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... $u_{ij} = \text{Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...)}$

c_{ii} = Use of resources (drugs, hospital, GP appointments, ...)

Individual-level data in HTA

 Typically collected from clinical studies (e.g. RCTs) at multiple time points

		Demographics			HRQL data			Resource use data				Clinical outcome				
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}
2	1	M	21		0.12	0.16		0.38	1 204	1808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

 $y_{ij} = \text{Survival time}$, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... $u_{ij} = \text{Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...)}$ $c_{ij} = \text{Use of resources (drugs, hospital, GP appointments, ...)}$

• Outcome measures evaluated over time, e.g. QALYs and total costs as

$$e_i = \sum_{j=1}^J \left(u_{ij} + u_{ij-1}\right) \frac{\delta_j}{2} \quad \text{and} \quad c_i = \sum_{j=1}^J c_{ij}, \ \left[\delta_j = \frac{\mathsf{T}_j - \mathsf{T}_{j-1}}{\mathsf{Unit} \ \mathsf{of} \ \mathsf{T}}\right]$$

Individual-level data in HTA

 Typically collected from clinical studies (e.g. RCTs) at multiple time points

		Demographics			HRQL data			Resource use data				Clinical outcome				
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}
2	1	M	21		0.12	0.16		0.38	1 204	1808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

 $y_{ij} = \text{Survival time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... <math>u_{ij} = \text{Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...)}$

• Outcome measures evaluated over time, e.g. QALYs and total costs as

QALY = "Area Under the Curve"

 c_{ij} = Use of resources (drugs, hospital, GP appointments, ...)

What should I be worried about?

- Potential correlation between costs & benefits
 - Strong positive/negative correlation effective treatments are innovative and result from intensive and lengthy research
 - Methods: Seemingly unrelated regression (Zellner, 1962); joint modelling

What should I be worried about?

- Potential correlation between costs & benefits
 - Strong positive/negative correlation effective treatments are innovative and result from intensive and lengthy research
 - Methods: Seemingly unrelated regression (Zellner, 1962); joint modelling
- Non-normality of the outcomes
 - Costs usually skewed and benefits may be bounded in [0;1] with possible spikes (e.g. zero costs)
 - Methods: transformations; Generalised Linear Modelling; two-part/hurdle models

What should I be worried about?

- Potential correlation between costs & benefits
 - Strong positive/negative correlation effective treatments are innovative and result from intensive and lengthy research
 - Methods: Seemingly unrelated regression (Zellner, 1962); joint modelling
- Non-normality of the outcomes
 - Costs usually skewed and benefits may be bounded in [0;1] with possible spikes (e.g. zero costs)
 - Methods: transformations; Generalised Linear Modelling; two-part/hurdle models
- and of course missing data
 - May occur in multiple variables and substantially reduce the sample size
 - Methods: No easy solution!
 - Any method relies on untestable assumptions
 - Use a principled approach based on well-defined statistical model for the complete data, and explicit assumptions about missingness

Part II

Missing Data

- How much missingness?
 - If few variables and small rates (e.g.< 5%) unlikely to affect results

- How much missingness?
 - If few variables and small rates (e.g. $\!<5\%$) unlikely to affect results
- Which variables and patterns?
 - Outcomes vs predictors, dropout vs intermittent

- How much missingness?
 - If few variables and small rates (e.g. $\!<5\%$) unlikely to affect results
- Which variables and patterns?
 - Outcomes vs predictors, dropout vs intermittent
- Why missingness occurred?
 - Random chance, individual characteristics observed/unobserved

- How much missingness?
 - If few variables and small rates (e.g.< 5%) unlikely to affect results
- Which variables and patterns?
 - Outcomes vs predictors, dropout vs intermittent
- Why missingness occurred?
 - Random chance, individual characteristics observed/unobserved
- Different assumptions about the mechanism underlying missingness
- Rubin's taxonomy (Rubin, 1986) groups the mechanisms into:
 - Missing Completely At Random does not depend on observed/unobserved data
 - Missing At Random does not depend on unobserved data given the observed data
 - Missing Not At Random depends on unobserved data given the observed data

Sensitivity analysis - MNAR

- Fully probabilistic approach (i.e. fundamentally Bayesian):
- Specify the joint distribution $p(y,m\mid\omega)$ using a **Pattern mixture** model approach:

$$p(y, m \mid \omega) = p(y \mid m, \omega^{\text{PMM}}) p(m \mid \omega^{\text{PMM}})$$

Pattern mixture models

- A marginal model for the missingness patterns $p(m \mid \omega^{\mathrm{PMM}})$ and a conditional model for the response within each pattern $p(y \mid m, \omega^{\mathrm{PMM}})$
- Intuitive to formulate assumptions for each pattern but difficult to fit with sparse data

Sensitivity analysis - MNAR

- Fully probabilistic approach (i.e. fundamentally Bayesian):
- Specify the joint distribution $p(y,m\mid\omega)$ using a **Selection model** approach:

$$p\left(m\mid y,\omega^{\mathrm{SM}}\right)p\left(y\mid\omega^{\mathrm{SM}}\right)$$

Selection models

- A marginal model for the response $p(y \mid \omega^{\rm SM})$ and the missing data mechanism $p(m \mid y, \omega^{\rm SM})$
- Directly model the distribution of y but impact of missingness assumptions unclear

Missing data in HTA – Conclusions

Often, little or no information is available about missingness

Missing data in HTA - Conclusions

- Often, little or no information is available about missingness
- Restrict the analysis to a single scenario (MAR) is unlikely to provide a realistic assessment of cost-effectiveness

Missing data in HTA - Conclusions

- Often, little or no information is available about missingness
- Restrict the analysis to a single scenario (MAR) is unlikely to provide a realistic assessment of cost-effectiveness
- Selection and pattern mixture models represent possible choices to perform sensitivity analysis to MNAR
 - Rely on untestable assumptions about the unobserved data
 - Useful to assess the robustness of the results to a range of plausible departures

Missing data in HTA – Conclusions

- Often, little or no information is available about missingness
- Restrict the analysis to a single scenario (MAR) is unlikely to provide a realistic assessment of cost-effectiveness
- Selection and pattern mixture models represent possible choices to perform sensitivity analysis to MNAR
 - Rely on untestable assumptions about the unobserved data
 - Useful to assess the robustness of the results to a range of plausible departures
- The Bayesian approach allows the incorporation of external evidence into the analysis for:
 - The selection of the assumptions to explore
 - The quantification of the impact of missingness on decision-making

Part III

missingHE: dealing with missing data in HTA

missingHE: package design

 The missingHE package provides different functions to fit Bayesian models for missing data in trial-based HTA

GitHub repository: https://github.com/AnGabrio/missingHE CRAN repository: https://cran.r-project.org/web/packages/missingHE

missingHE: package design

 The missingHE package provides different functions to fit Bayesian models for missing data in trial-based HTA

GitHub repository: https://github.com/AnGabrio/missingHE CRAN repository: https://cran.r-project.org/web/packages/missingHE

- Example: selection model
- The selection function takes several inputs
 - data: the dataframe object (containing e, c, t)
 - model.eff & model.cost: the formulae for the effect and cost model. Joint models are always formulated as $p(e,c) = p(e)p(c \mid e)$
 - $model.me\ \&\ model.mc:$ the formulae for the missing data mechanism for e and c
 - dist_e & dist_c: distributions assumed for e and c
 - type: the type of missing data mechanism (i.e. MAR/MNAR)
 - ...: optional inputs (e.g. MCMC iterations, user-defined priors, save model code, etc.)
 - > selection(data = MenSS, model.eff = e \sim u.0, model.cost = c \sim e,
 - + model.me = me \sim age + e, model.mc = mc \sim age, type = "MNAR",
- $+ \quad \text{n.iter} = 2000, \, \text{dist_e} = \text{"norm"}, \, \text{dist_c} = \text{"gamma"}, \, \text{prior} = \text{my.prior})$

• Start with assuming a joint model for the observed data $p(e,c\mid\theta)$ based on a Normal for e and a Gamma for c while also adjusting for u_0 :

$$e_{it} \sim \text{Normal}\left(\phi_{iet}, \sigma_{ct}^2\right), \quad \phi_{iet} = \alpha_{0et} + \alpha_{1et}u_{0it}$$

$$c_{it} \sim \text{Gamma}\left(\frac{\phi_{ict}^2}{\sigma_{ct}^2}, \frac{\phi_{ict}}{\sigma_{ct}^2}\right), \quad \log(\phi_{ict}) = \alpha_{0ct} + \alpha_{1ct}e_{it}$$

- When specified, covariates are always included at the (conditional) mean level using appropriate link functions for both e and c models and must be fully-observed.

- Example: selection model
- \bullet Next, assume MNAR mechanism for e and MAR mechanism for c given age

$$m_{iet} \sim \mathrm{Bernoulli}\left(\pi_{iet}\right), \quad \log \mathrm{it}(\pi_{iet}) = \gamma_{0et} + \gamma_{1et} \mathrm{age}_{it} + \delta_e e_{it}$$

$$m_{ict} \sim \mathrm{Bernoulli}\left(\pi_{ict}\right), \quad \mathrm{logit}(\pi_{ict}) = \gamma_{0ct} + \gamma_{1ct} \mathrm{age}_{it}$$

 \bullet When specified, covariates are always included at the (conditional) probability level using a logit link function for both m_e and m_c models and must be fully-observed.

- Informative priors on δ_e must be specified. By default **missingHE** uses a standard normal but hyperprior values can be changed using the optional argument
- Define a new list with object named delta.prior.e containing the new prior mean and sd values for δ_e (logit scale). For example:

```
> my.prior <- list("delta.prior.e" = c(5, 1))
```


- Informative priors on δ_e must be specified. By default **missingHE** uses a standard normal but hyperprior values can be changed using the optional argument
- Define a new list with object named delta.prior.e containing the new prior mean and sd values for δ_e (logit scale). For example:

```
> my.prior <- list("delta.prior.e" = c(5, 1))
```

Pass my.prior as argument to the selection function and run

```
> NG.sel=selection(data = MenSS, model.eff = e ~ u.0, model.cost = c ~ e,
+ model.me = me ~ age + e, model.mc = mc ~ age, type = "MNAR",
+ n.iter = 2000, dist e = "norm", dist c = "gamma", prior = my.prior)
```


missingHE: package design

 The missingHE package provides different functions to fit Bayesian models for missing data in trial-based HTA

GitHub repository: https://github.com/AnGabrio/missingHE CRAN repository: https://cran.r-project.org/web/packages/missingHE

missingHE: how to check posterior results

• We can check posterior summaries for μ_e and μ_c using the print or coef command

> print(NG.sel)

	mean	sd	2.5%	25%	50%	75%	97.5%	Rhat	n.eff
mu_e[1]	0.838	0.017	0.803	0.827	0.839	0.849	0.870	1.013	120
mu_e[2]	0.894	0.022	0.851	0.879	0.893	0.908	0.941	1.028	63
mu_c[1]	230.018	72.516	128.264	179.254	219.503	265.533	414.828	1.026	64
mu_c[2]	292.425	183.210	96.164	174.251	239.750	348.376	838.010	1.054	47

missingHE: how to check posterior results

• We can check imputations by variable and arm using plot. For example, to display the imputed e in the reference (t=2) group we type

> plot(NG.sel, outcome = "effects_arm2")

missingHE: package design

 The missingHE package provides different functions to fit Bayesian models for missing data in trial-based HTA

GitHub repository: https://github.com/AnGabrio/missingHE CRAN repository: https://cran.r-project.org/web/packages/missingHE

missingHE: how to assess convergence and model fit

- Diagnostic tools for MCMC convergence (e.g. Rhat) can provide useful insights into potential issues of the algorithm
- Graphical MCMC diagnostics can be obtained for each model parameter. For example, we can use the diagnostic command to examine posterior traceplots for the mean effects by arm
- > diagnostic(NG.sel, type = "traceplot", param = "mu.e")

missingHE: how to assess convergence and model fit

- Fit of the model assessed using Posterior Predictive Checks (PPCs)
- PPCs via statistics or graphical tools. For example, we can use the ppc command to examine histograms based on posterior densities (e.g. for costs).

> ppc(NG.sel, type = "dens overlay", outcome = "costs", ndisplay = 15)

missingHE: package design

 The missingHE package provides different functions to fit Bayesian models for missing data in trial-based HTA

 $\label{lem:compository:https://github.com/AnGabrio/missingHE CRAN repository: https://cran.r-project.org/web/packages/missingHE \\$

missingHE: how to evaluate cost-effectiveness with BCEA

- Finally, standardised CEA output can be obtained by post-processing the results from the model fitted in missingHE using functions from the BCEA package (Baio, 2014)
- For example, CE acceptability curves can be computed via the function ceac.plot to the object cea stored inside the model output
- > library(BCEA)
- > ceac.plot(NG.sel\$cea)

Part IV

Discussion and conclusions

Discussion

- Individual-level HTA data are subject to some complexities (including missingness!) that are typically ignored by the "standard" approach
- A Bayesian approach allows to increase model complexity to jointly account for these complexities with relatively little expansion to the basic model
- MAR can be used as reference assumption but plausible MNAR departures should be explored in sensitivity analysis to assess robustness of results
- Possible to expand the framework to a longitudinal setting to handle missingness more efficiently (Gabrio et al. (2022). RJSS: Series A, 607-629)

missingHE: what to know and how to use it

- Specifies a set of pre-defined Bayesian models using the R2jags package
- Is linked to the BCEA package, which provides summary HTA results
- A comprehensive guide to the use of the package and the interpretation of the output is provided through a series of online vignettes
 - Introduction: a guide to the use of the main functions of the package
 - <u>Fitting MNAR models</u>: how to specify MNAR assumptions for each type of modelling approach available
 - Model Customisation: how to customise the model in different ways
- Instructions on how to use missingHE to fit and assess different types of models can be accessed by typing help on the different functions of the package
- A short course and code are available on my GitHub page

