Rank-74007 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_0^2 X_1 + X_1^2 X_2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1498830441

General information

Number of lines	5
Number of points	25
Number of singular points	3
Number of Eckardt points	1
Number of double points	4
Number of single points	14
Number of points off lines	6
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{5}
Type of lines on points	$3, 2^4, 1^{14}, 0^6$

Singular Points

The surface has 3 singular points:

$$\begin{array}{ll} 0: \ P_{42} = \mathbf{P}(0,1,1,1) = \mathbf{P}(0,1,1,1) \\ 1: \ P_{67} = \mathbf{P}(\omega,\omega^2,\omega,1) = \mathbf{P}(2,3,2,1) \end{array}$$

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{340} = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{340} = \mathbf{Pl}(0,0,0,1,0,0)_9$$

$$\ell_{1} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_{13}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{109} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{109} = \mathbf{Pl}(1, 1, 0, 1, 1, 1)_{189}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & \omega & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{131} = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{131} = \mathbf{Pl}(3, 2, 2, 3, 3, 1)_{350}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & \omega^{2} & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{152} = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{152} = \mathbf{Pl}(2, 3, 3, 2, 2, 1)_{292}$$

Rank of lines: (340, 345, 109, 131, 152)

Rank of points on Klein quadric: (9, 13, 189, 350, 292)

Eckardt Points

The surface has 1 Eckardt points: $0: P_{42} = \mathbf{P}(0, 1, 1, 1) = \mathbf{P}(0, 1, 1, 1).$

Double Points

The surface has 4 Double points: The double points on the surface are:

$$P_3 = (0,0,0,1) = \ell_0 \cap \ell_1$$

$$P_{26} = (0,1,0,1) = \ell_0 \cap \ell_2$$

$$P_{80} = (3,2,3,1) = \ell_2 \cap \ell_3$$

 $P_{67} = (2, 3, 2, 1) = \ell_2 \cap \ell_4$

Single Points

The surface has 14 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_1 = (0,1,0,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_{11} = (0,1,1,0) \ \text{lies on line} \ \ell_1 \\ 2: \ P_{12} = (1,1,1,0) \ \text{lies on line} \ \ell_2 \\ 3: \ P_{17} = (2,2,1,0) \ \text{lies on line} \ \ell_3 \\ 4: \ P_{22} = (3,3,1,0) \ \text{lies on line} \ \ell_4 \\ 5: \ P_{30} = (0,2,0,1) \ \text{lies on line} \ \ell_0 \\ 6: \ P_{33} = (3,2,0,1) \ \text{lies on line} \ \ell_4 \\ 7: \ P_{34} = (0,3,0,1) \ \text{lies on line} \ \ell_0 \end{array}$

8: $P_{36} = (2, 3, 0, 1)$ lies on line ℓ_3 9: $P_{39} = (1, 0, 1, 1)$ lies on line ℓ_2 10: $P_{54} = (1, 0, 2, 1)$ lies on line ℓ_3 11: $P_{61} = (0, 2, 2, 1)$ lies on line ℓ_1 12: $P_{70} = (1, 0, 3, 1)$ lies on line ℓ_4 13: $P_{81} = (0, 3, 3, 1)$ lies on line ℓ_1

The single points on the surface are:

Points on surface but on no line

The surface has 6 points not on any line: The points on the surface but not on lines are: $0: P_0 = (1,0,0,0)$ $1: P_{18} = (3,2,1,0)$ $2: P_{21} = (2,3,1,0)$ $3: P_{27} = (1,1,0,1)$ $\begin{array}{l} 4:\ P_{62}=(1,2,2,1) \\ 5:\ P_{82}=(1,3,3,1) \end{array}$

Line Intersection Graph

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_3	P_{26}

Line 1 intersects

Line	ℓ_0	ℓ_3	ℓ_4
in point	P_3	P_{42}	P_{42}

 ${\bf Line~2~intersects}$

Line	ℓ_0	ℓ_3	ℓ_4
in point	P_{26}	P_{80}	P_{67}

Line 3 intersects

Line	ℓ_1	ℓ_2	ℓ_4
in point	P_{42}	P_{80}	P_{42}

Line 4 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_{42}	P_{67}	P_{42}

The surface has 25 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$9: P_{26} = (0, 1, 0, 1)$	$18: P_{61} = (0, 2, 2, 1)$
$1: P_1 = (0, 1, 0, 0)$	$10: P_{27} = (1, 1, 0, 1)$	19: $P_{62} = (1, 2, 2, 1)$
$2: P_3 = (0,0,0,1)$	11: $P_{30} = (0, 2, 0, 1)$	$20: P_{67} = (2, 3, 2, 1)$
$3: P_{11} = (0, 1, 1, 0)$	$12: P_{33} = (3, 2, 0, 1)$	$21: P_{70} = (1,0,3,1)$
$4: P_{12} = (1, 1, 1, 0)$	13: $P_{34} = (0, 3, 0, 1)$	$22: P_{80} = (3, 2, 3, 1)$
$5: P_{17} = (2, 2, 1, 0)$	$14: P_{36} = (2, 3, 0, 1)$	$23: P_{81} = (0,3,3,1)$
$6: P_{18} = (3, 2, 1, 0)$	15: $P_{39} = (1,0,1,1)$	$24: P_{82} = (1,3,3,1)$
$7: P_{21} = (2, 3, 1, 0)$	16: $P_{42} = (0, 1, 1, 1)$	
$8: P_{22} = (3, 3, 1, 0)$	17: $P_{54} = (1,0,2,1)$	