

PARTIE 1 : ANALYSE Chapitre 1 : Analyse fonctionnelle

Diagramme de contexte statique Diagramme de cas d'utilisation

3ème année A

Année universitaire : 2020-2021

Henda SFAXI henda.sfaxi@esprit.tn

Plan du cours

- Objectifs
- Diagramme de contexte statique
- Diagramme de cas d'utilisation

Objectifs

- Identifier les utilisateurs potentiels du système
- Recenser les fonctionnalités du futur système
- Identifier les besoins attendus par chaque utilisateur

Précision linguistique

- L'étape de modélisation vise à cerner des aspects relatifs au logiciel à développer
- Voici quelques termes utilisés pour désigner le logiciel demandé par un client:
 - Futur logiciel
 - Futur système
 - Système étudié
 - Système

Diagramme de contexte statique

- Permet d'identifier les acteurs (primaires et secondaires) du futur logiciel (système étudié)
- Permet de spécifier le nombre d'instances d'acteurs reliés au système à un moment t donné
- N'est pas un diagramme UML

Diagramme de contexte statique

• Exemple:

- Système étudié : DAB (Distributeur Automatique de Billets)
- Acteurs identifiés :
 - Client de la banque
 - Banquier
- Représentation :

Diagramme de contexte statique du système DAB

• Interprétation :

- Deux types d'acteurs interagissent avec Le DAB :
 - Client de la banque
 - Banquier
- À un instant t donné :
 - Il y a au plus un seul client qui interagit avec le DAB et au minimum aucun client qui interagit avec le DAB
 - Il y a au plus un seul banquier qui interagit avec le DAB et au minimum aucun banquier qui interagit avec le DAB

Diagramme de cas d'utilisation

Objectifs du diagramme

- Liste les fonctionnalités du système d'un point de vue utilisateur
- Capture des besoins fonctionnels
- Peut se baser sur le cahier des charges

Source: http://info.arqendra.net/download.php?filename=Files%2F_UML_cours.pdf

Objectifs du diagramme

- Identifier les différentes catégories d'utilisateurs
- Identifier les besoins
 - Faire l'inventaire des fonctionnalités attendues par tous les utilisateurs

Déterminer :

- Les besoins fonctionnels : Quoi? Pourquoi?
- Les catégories d'utilisateurs : A qui?
- Les éventuelles relations entre ces éléments : Qui fait quoi?

Objectifs du diagramme

Illustration de l'importance des cas d'utilisation

Concepts clés du diagramme

- Éléments syntaxiques clés:
 - Acteur
 - <u>C</u>as d'<u>u</u>tilisation (CU)
 - Relations (CU-CU / CU-Acteur / Acteur-Acteur)

12

Acteur

- Abstraction d'un rôle joué par une entité externe qui interagit avec le système étudié
- Représentations graphiques :

 Acteur humain : Rôle joué par un individu ou un groupe d'individus

 Acteur système : Rôle joué par du matériel ou du logiciel

Acteur

• Remarque :

Une même personne peut être représentée par 1..* acteurs

- Exemple : Système Esprit On Line (EOL)
 - Ahmed est étudiant en cours du soir et est en même temps un agent administratif à Esprit
 - Il est donc représenté par deux acteurs :

Cas d'utilisation (CU)

Cas d'utilisation

- Fonctionnalité offerte par le futur logiciel (système étudié) aux futurs utilisateurs
- Représente un besoin ou une partie d'un besoin fonctionnel
- Représente un service constitué par un ensemble d'étapes avec un déclenchement, un déroulement et une fin
- Représentation graphique :

(2/2)

Cas d'utilisation

- Un CU est toujours déclenché par un acteur
- Convention de nommage des CUs:
 - Soit sous la forme de verbe à l'infinitif
 - Exemples:

- Soit sous la forme de noms
 - Exemples:

Frontière du système

Frontière du système

- Permet de délimiter le système:
 - Les fonctionnalités offertes par le système sont listées
 - Les fonctionnalités automatiques ne sont pas listées
 - Les acteurs sont à l'extérieur
- Représentation : Cadre avec le nom du système en haut
- Exemple:

Relations

Relation acteur-cas d'utilisation
Relations cas d'utilisation-cas d'utilisation
Relation acteur-acteur

- Relation acteur-cas d'utilisation
 - Relation d'association
- Relations cas d'utilisation-cas d'utilisation
 - Dépendances explicitées par des stéréotypes
 - Généralisation/spécialisation
- Relation acteur-acteur
 - Généralisation/spécialisation

Relations : Cas d'utilisation - Acteur Association

- Lien permettant la communication entre un acteur et un cas d'utilisation
- Représentation : Représentée par un trait continu
- Exemple : Acheter produits association

On dit qu'un acteur **principal** ou **primaire** *déclenche* le cas d'utilisation

Relations: Cas d'utilisation - Acteur **Association**

- Acteur primaire Vs. Acteur secondaire: (1/2)
 - Acteur primaire ou principal
 - Utilise le système pour obtenir un service (une fonctionnalité)
 - Obtient un résultat observable (la fonctionnalité demandée)
 - Répond aux questions : À qui va servir le système? Qui va l'utiliser? Qui le système doit-il aider?

Relations : Cas d'utilisation - Acteur Association

- Acteur primaire Vs. Acteur secondaire: (2/2)
 - Acteur secondaire
 - Fournit toutes les informations nécessaires au bon fonctionnement du système étudié pour les acteurs primaires
 - Répond à la question : Qui va aider le système à finaliser la fonctionnalité voulue par l'acteur primaire?
 - Remarque : Un même acteur peut être principal pour un cas d'utilisation et secondaire pour un autre cas d'utilisation

Relations : Cas d'utilisation - Acteur Association

- Cas d'utilisation Acteur secondaire
 - Ajout du stéréotype « Secondary » sur la relation
 - NB: Les stéréotypes peuvent être écrits en français ou en anglais
 - Exemple:

Relations: Cas d'utilisation - Cas d'utilisation Inclusion

- Lorsqu'un cas d'utilisation principal englobe un autre cas d'utilisation intéressant à montrer
- Permet d'identifier un sous-ensemble commun à plusieurs cas
- Représentation:

- Interprétation : C1 inclut C2
 - ⇒ Toute activation de C1 entraîne *obligatoirement* une activation de C2
 - ⇒ C2 fait partie de C1 (C2 est inclus dans C1)

• Exemples :

Relations: Cas d'utilisation - Cas d'utilisation Inclusion

Relations: Cas d'utilisation - Cas d'utilisation Inclusion

Attention :

Étant donné que la mise à jour du compte se fait automatiquement par le DAB, elle ne doit pas figurer comme cas d'utilisation

Relations: Cas d'utilisation - Cas d'utilisation Extension (1/3)

- L'extension permet d'identifier des comportements alternatifs : *optionnels*
- Représentation :

• Interprétation : C2 est une extension de (étend) C1

- ⇒ C2 est une façon particulière de réaliser C1
- ⇒ C2 peut ne pas être activable directement

Relations: Cas d'utilisation - Cas d'utilisation Extension (2/3)

• Exemples :

Relations: Cas d'utilisation - Cas d'utilisation Extension (3/3)

- Il est possible de définir un point d'extension :
 - Indique le moment/la condition où intervient l'extension
- Exemple:

(outil utilisé StarUML)

 Remarque : la représentation varie selon l'outil de modélisation utilisé

- L'héritage est un concept fondamental en programmation, en analyse et en conception orientée objet
- Cette idée appliquée aux acteurs et aux cas d'utilisation est appelée généralisation / spécialisation

- Utilisée lorsqu'un cas d'utilisation peut être réalisé de plusieurs façons
- Le cas d'utilisation général peut être considéré comme un cas d'utilisation abstrait

• Représentation : Généralisation

Cas spécifique 1

Acteur

Cas Spécifique 2

Spécialisation

Relations: Cas d'utilisation - Cas d'utilisation Généralisation (3/3)

• Exemple :

Le site eAchats offre deux possibilités de paiement :

- Par CB
- Par Bitcoins

Relations: Acteur - Acteur *Généralisation*

- La seule relation possible entre deux acteurs
- Utilisée lorsqu'un acteur bénéficie de toutes les fonctionnalités d'un autre acteur
- Représentation :

L'acteur A est une généralisation de l'acteur B

→ l'acteur A bénéficie de *toutes* les fonctionnalités de l'acteur B, l'inverse n'est pas vrai

Relations: Acteur - Acteur *Généralisation*

• Exemple :

Résumons...

• Devoir:

- Comprendre le problème
- Délimiter le champ de l'étude

 déterminer les frontières du système
- Identifier les acteurs
- Identifier les cas d'utilisations
- Définir les relations entre ces éléments
- Dresser un premier diagramme de cas d'utilisation

Granularité d'un diagramme de cas d'utilisation (DCU)

- Granularité : niveau de detail d'un DCU
- Un DCU peut être :
 - Global ou général
 - Détaillé
 - Le raffinement d'un seul cas d'utilisation

DCU Global ou général

• Exemple :

DCU détaillé

• Exemple 1:

DCU détaillé

• Exemple 2 :

DCU Le raffinement d'<u>un cas</u> d'utilisation

• Modèle 1:

• Modèle 2:

Des questions?

