BCHE2030 TUTORIAL 3

CONTENTS

Proteins:

amino acid charisteristic

Pka value and ionization properties

Protein structure:

Amino acid sequence & Homologous protein, Protein Folding (Protein II p1-12, p27-35)

Secondary, tertiary structure

1. HOW CAN I DISTINGUISH WHETHER THE CARBON ATOM IN AN ALDEHYDE GROUP IS NEUTRAL, POSITIVELY OR NEGATIVELY CHARGED?

The carbonyl carbon can be neutral or carry a partial positive charge due to the presence of a *more* electronegative oxygen atom

The carbonyl carbon in aldehyde has two resonance structures.

2. WHAT ARE ALPHA AND BETA ANOMERS?

In alpha anomers, the hydroxyl group bonded to the anomeric carbon is pointing downwards whereas in beta anomers, it is pointing upwards.

α-D-fructofuranose

β-D-fructofuranose

20 AMINO ACID

- Hydrophobic amino acids
- Polar amino acids
- -> +ve charged
- -> -ve charged

Amino Acids Are The Building Blocks Of Proteins In Living Organisms. There Are Over 500 Amino Acids Found In Nature - However, The Human Genetic Code Only Directly Encodes 20. 'essential' Amino Acids Must Be Obtained From The Diet,
Whilst Non-essential Amino Acids Can Be Synthesised In The Body.

HYDROPHOBIC AMINO ACID

- R group have similar eletronegativity -> hydrophobic
- 2. L & I have same chemical component
- 3. P aliphatic ring restrict in peptide angle
- 4. M is code for start codon (AUG)

AROMATIC AMINO ACID

aromatic ring on the side chain of each of these three amino acids

aromatic

POLAR (NERUTAL) AMINO ACID

common phosphorylation site of protein

Nitrogen carrier

Disulfur bond formation

Intra-Inter bond

POLAR (-VE CHARGED) AMINO ACID

POLAR (+VE CHARGED) AMINO ACID

PKA VALUE

PKA VALUE

ISOELECTRIC POINT

 H_2N OH

ISOLECTRIC POINT (DEFINITIONS)

The characteristic pH at which the net charge of the molecule is zero.

Given by the average of the pKas that involve the zwitterion.

The pH at which the amino acid does <u>NOT migrate</u> in an <u>electric field</u>. (Laboratory applications)

Recall zwitterion: able to act as either an acid or a base (lecture slide 27)

ISOELECTRIC POINT

(pk1+ pk2)/2

(pk1+ pkR) /2

(pkR+pk2)/2

SECONDARY STRUCTURE OF PROTEIN

- conformation of a region of a peptide → Secondary (e.g.alpha helix)
- conformation of a peptide as one entity → Tertiary

(e.g. myoglobin)

 conformation of multiple peptide → Quaternary

(e.g. hemoglobin)

Primary protein structure is sequence of a chain of amino acids

Levels of protein organization

Secondary protein structure occurs when the sequence of amino acids are linked by hydrogen bonds

Tertiary protein structure occurs when certain attractions are present between alpha helices and pleated sheets.

Ouaternary protein structure is a protein consisting of more than one amino acid chain.

PEPTIDE ANGLE

- peptide bond (HN-CO) = semi-planar, no rotation
- Usually, peptide bond adapt trans conformation
- Cis is seldomly allowed (except when Proline involved)

less steric hindrance between R groups

RAMACHANDRAN PLOT

- Phi ϕ :C(0)-N-C(α)-C(0) bonds
- Psi ψ :N-C(α)-C(0)-N bonds
- clockwise: positive
- anticlockwise: negative

reverse -> negative when clockwise

ALPHA HELIX

- bury peptide backbone
- side chains pointing outside
- Hydrogen bond between CO and NH among backbone
- Interaction between n and n+3/4 residue (facing same direction)
- compact

Figure 4-4
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W.H. Freeman and Company

BETA STRAND

- Parallel or antiparallel(anti more stable)
- side chain pointing alternating direction
- more extended
- zig-zag, not a flat strand

6.5 Å

DEDUCE SECONDARY STRUCTURE FROM SEQUENCE

- NOT GUARANTEED!!! (might have exception)
- Consider globular protein only (membrane and fibrous excluded) → amphipathic secondary structure
- Consider distribution of amino acids, not singular AA

TERTIARY AND QUATERNARY STRUCTURE

Secondary structures groups together -> forming motif

One protein can have more than 1 motifs

TERTIARY AND QUATERNARY STRUCTURE

- covalent (S-S) and non-covalent interaction
 - disulphide bond, hydrophobic interaction, charge interaction,
 Hydrogen bond between side chains
- Mostly related to side chains, not backbone
- May involved other groups (heme, FAD, lipoate ...)

membrane protein (contact with hydrophobic fatty acid)

globular protein
(contact with
hydrophilic
environment)

QUII 1

Which of the following amino acids would you expect to see in a protein present in the transmembrane region?

- a) Arginine
- b) Leucine
- c) Glutamine
- d) Histidine

QUIZI

Which of the following amino acids would you expect to see in a protein present in the transmembrane region?

- a) Arginine (positively charged polar amino acid)
- b) Leucine (non-polar amino acid)
- c) Glutamine (neutral and polar amino acid)
- d) Histidine (positively charged polar amino acid)

PEPTIDE EXAMPLE

What is the charge of the following peptide chain at physiological pH (pH = 7.4)?

TMWEGKAD

PEPTIDE EXAMPLE

What is the charge of the following peptide chain at physiological pH (pH = 7.4)?

AMINO ACID SEQUENCE

Protein sequence presented using the **abbreviation**s of the 20 amino acids

- It is directional!
 - (N-end)TMWEGKAD(C-end) is different from (N-end)DAKGEWMT(C-end)
 - o One example about "end-specificity": N-end rule
- We can BLAST the sequence of a protein to find other proteins with similar primary structure (and very often, they will be its homologous proteins)

DIRECTIONAL: N-END RULE (NO NEED TO KNOW DETAILS; IT'S IN CMBI4001)

The N-end Rule: in-vivo half-life of proteins

- The N-terminus of a protein can undergo a diverse posttranslational modifications
 - create degradation signal (N-degron) that mediate protein destruction via the N-end rule pathway of ubiquitin-mediated proteolysis.
- N-recognin: The E3 Ub ligases that recognize N-degron

Three key features that determine **an N-degron**:

- a primary N-terminal destabilizing amino acid ('X');
- an unstructured N-terminal region ensuring the N-residue is exposed and accessible;
- an appropriately positioned downstream lysine(s) (K) to act as a receptor site for ubiquitin conjugation.

Take-away message: N terminus and C terminus has their own function respectively.

So (N-end) TMWEGKAD (C-end) is definitely different from (N-end) DAKGEWMT (C-end).

BLASTP

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE TYPE=B
lastSearch&LINK LOC=blasthome

to blast for protein sequence!

BLAST = basic local alignment search tool

Do you know what protein "mkalivlglv llsvtvqgkv fercelartl krlgmdgyrg islanwmcla kwesgyntra tnynagdrst dygifqinsr ywcndgktpg avnachlscs allqdniada vacakrvvrd pqgirawvaw rnrcqnrdvr qyvqgcgv" is? What proteins have similar sequence to it?

Blast it!

BLASTP

Seq	uences producing significant alignments	Downloa	ıd Y	Se	elect c	olumns	s Y SI	now	100 🗸
2 9	select all 100 sequences selected GenPe	ot <u>Graphics</u> <u>[</u>	Distanc	e tree	of resu	ılts <u>M</u>	<u>ultiple ali</u>	<u>gnme</u>	ent MSA View
	Description	Scientific Name	Max Score	Total Score	Query Cover	E value ▼	Per. Ident	Acc. Len	Accession
~	lysozyme C precursor [Homo sapiens]	Homo sapiens	303	303	100%	5e-104	100.00%	148	NP_000230.1
~	lysozyme precursor (EC 3.2.1.17) [Homo sapiens]	Homo sapiens	303	303	100%	1e-103	99.32%	148	AAA36188.1
~	LYZ [synthetic construct]	synthetic construction	<u>t</u> 302	302	100%	3e-103	99.32%	148	AKI70658.1
~	lysozyme C precursor [Gorilla gorilla]	Gorilla gorilla	301	301	100%	3e-103	99.32%	148	NP_00126659
~	lysozyme [synthetic construct]	synthetic construct	<u>t</u> 301	301	100%	4e-103	99.32%	148	BAG73364.1
/	LYZ [synthetic construct]	synthetic construct	301	301	100%	4e-103	99.32%	148	AKI70659.1
/	lysozyme C [Pongo abelii]	Pongo abelii	300	300	100%	2e-102	97.97%	148	XP_00282355
	LYZ [synthetic construct]	synthetic construction	300	300	100%	2e-102	99.32%	148	AKI70661.1
	LYZ [synthetic construct]	synthetic construction	300	300	100%	2e-102	99.32%	148	AKI70660.1
	lysozyme C [Nomascus leucogenys]	Nomascus leuco	. 298	298	100%	6e-102	96.62%	148	XP_00325955
/	lysozyme precursor [Homo sapiens]	Homo sapiens	297	297	100%	2e-101	96.62%	148	AAC63078.1
/	RecName: Full=Lysozyme C; AltName: Full=1,4-beta-N-acetylmuramidase C; Flags: Precursor [Hylobates lar	Hylobates lar	295	295	100%	2e-100	95.27%	148	P79180.1
~	lysozyme C [Chlorocebus sabaeus]	Chlorocebus sa	283	283	100%	6e-96	89.86%	148	XP_00800217
~	RecName: Full=Lysozyme C; AltName: Full=1,4-beta-N-acetylmuramidase C; Flags: Precursor [Nasalis larva	Nasalis larvatus	280	280	100%	1e-94	87.84%	148	P79811.1
~	lysozyme C precursor [Macaca mulatta]	Macaca mulatta	280	280	100%	2e-94	88.51%	148	NP_00109520
~	RecName: Full=Lysozyme C; AltName: Full=1,4-beta-N-acetylmuramidase C; Flags: Precursor [Miopithecus t	Miopithecus tala	. 279	279	100%	2e-94	88.51%	148	P79806.1
~]	lysozyme C precursor [Papio anubis]	Papio anubis	279	279	100%	2e-94	88.51%	148	NP_00110611
/	RecName: Full=Lysozyme C; AltName: Full=1,4-beta-N-acetylmuramidase C; Flags: Precursor [Pygathrix ne.	Pygathrix nema	278	278	100%	4e-94	86.49%	148	P79847.1
~	RecName: Full=Lysozyme C; AltName: Full=1,4-beta-N-acetylmuramidase C; Flags: Precursor [Semnopithec	Semnopithecus	278	278	100%	1e-93	86.49%	148	P67977.1

Answer: That sequence is human's lysozyme C precursor! You can also see that in the result list, some homologous proteins have good match to it.

HOMOLOGOUS PROTEINS SHARE SIMILAR SEQUENCE

Residues:

- invariant (totally conserved): the amino acid residue is identical for ALL species
- variant: the amino acid residue is NOT totally identical
 - o conservative substitutions: residues are replaced by amino acids of

similar chemical properties

Ho
$$NH_2$$
 OH NH_2 OH

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro

FYI: The
BLOSUM62 matrix
is derived from
comparing amino
acid substitutions
among proteins
that are no more
than 62% similar —
it's derived from
empirical data

Henikoff, S. & Henikoff, J.G. (1992) Proc. Natl. Acad. Sci. USA 89:10915-10919

WHAT DETERMINES PROTEIN TERTIARY STRUCTURE?

Protein's **primary structure** has enough information dictating its folding (you will learn a lot about this in CMBI4002)

Thermodynamics hypothesis

- ▶ Anfinsen (1972) "The three-dimensional structure of a native protein in its normal physiological milieu is the one in which the Gibbs free energy of the whole system is lowest; that is, the native conformation is determined by the totality of inter-atomic interactions and hence by the amino acid sequence"
- ▶ The tendency to reach this free energy minimum drives proteins fold.

Stabilizing factors: hydrophobic effect hydrogen bond electrostatic interaction (these weak interactions make protein fold properly; urea can disrupt some of these interactions)

SOME FEATURES OF PROTEIN FOLDING

- stepwise process, NOT random trial-and-error
- intramolecular interactions drive proteins towards its functional native state (thermodynamically favourable)
- partially folded intermediates may either: 1) turn to aggregates (often disease-causing) due to **intermolecular** interactions, or 2) assisted by chaperones, fold back to the native conformation

QUII 2

Which statement best explains why antiparallel beta strands are more stable?

- a) Antiparallel beta strands are highly packed
- b) Parallel beta strands form fewer hydrogen bonds between adjacent strands
- c) Antiparallel beta strands form stronger hydrogen bonds between adjacent strands
- d) Parallel beta strands experience greater steric hindrance due to the orientation of R groups.

QUIZ 2

Which statement best explains why antiparallel beta strands are more stable?

- a) Antiparallel beta strands are highly packed
- b) Parallel beta strands form fewer hydrogen bonds between adjacent strands
- c) Antiparallel beta strands form stronger hydrogen bonds between adjacent strands (because the C=O and NH group of peptide bonds in adjacent strands are closer)
- d) Parallel beta strands experience greater steric hindrance due to the orientation of R groups. (R groups extend from sheet and point on alternatively on opposite sides)