How to Exchange Secrets with Oblivious Transfer*

Michael O. Rabin[†]
May 20, 1981

Explanation for Scanned Web-Posted Version

This is a scanned version of Michael O. Rabin's original handwritten manuscript of his paper. It appeared in print as a Harvard University Technical Report, but at some point the university ran out of copies. At that time copies of the hand written version started to circulate, and were the only ones available. As access to these copies has become difficult, I have scanned my copy of the paper and I'm posting it on the web for others to read.

Note that the manuscript has a different title¹, but the paper is most commonly (if not only) cited with this title. Thus, I assume that it should continue to be cited in this manner. Even though this paper appears on this website, the proper citation is [1].

—Tal Rabin

About This Typeset

This paper puts forward the notion of "Oblivious Transfers." Being a well-known and frequently cited paper, it was a pity that such an invaluable masterpiece is only available as scanned handwriting. Thus, I felt I should typeset the manuscript, and here is the result.

While typesetting, I tried to stick to the original manuscript as much as possible. However, there has been some cases, such as a few typos or punctuation marks, which were corrected. The original paper did not have any footnotes. Therefore, anything which appears in the footnote has been added after typesetting.

As in many papers on cryptography, Alice and Bob play the role of participants of the given cryptographic protocols. For the sake of readability, Alice's and Bob's messages were shown in red and blue, respectively.

This work was carefully proofread by one of my colleagues. That said, I will be thankful if you inform me of any possible mistakes.²

-M.S.Dousti

^{*}Typeset using LATEX by M.S. Dousti (dousti@ce.sharif.edu). Proofread by Y. Sobhdel (sobhdel@ce.sharif.edu).

[†]Professor M.O. Rabin kindly read and approved this typeset.

¹The original title is "How to Exchange Secrets".

²Thanks to H.M. Moghaddam for mentioning a minor mistake in an earlier version.

1 Introduction

Bob and Alice each have a secret, SB and SA, respectively, which they wish to exchange. For example, SB may be the password to a file that Alice wants to access (we shall refer to this file as Alice's file), and SA the password to Bob's file. Can they set up a protocol to exchange the secrets without using a trusted third party and without a safe mechanism for the simultaneous exchange of messages?

To exclude the possibility of randomizing on the possible digits of the password, we assume that if an incorrect password is used then the file is erased, and that Bob and Alice want to guarantee that this will not happen to their respective files. Because of this assumption, we can take, without loss of generality, SA and SB to be single bits.

As stated, there is nothing to prevent Bob from giving Alice a wrong password S, possibly even in exchange for the correct secret SA. Now Bob will read his file, while Alice, using $S \neq SB$, will destroy her file.

We assume that the correct passwords SB and SA are indelibly transcribed as prefixes to Alice's and Bob's files. Furthermore, Alice and Bob have a procedure to give each other signed messages (contracts), and can resort to subsequent adjudication to prove fraud.

Under these conditions, Bob can, for example, give Alice a message "My secret is S, signed Bob". If Alice now uses the password S and $S \neq SB$, then her file, with the exception of the prefix containing SB, is destroyed and Alice can resort to adjudication with a provable case against Bob.

The above mentioned message, however, does not provide a solution to the EOS³ problem. Alice can receive the signed message, and read her file without giving SA to Bob. When Bob goes to court, Alice can say: "I gave Bob the password SA and he has not used it; I am willing to reveal it again right now." Even if Bob obtains SA at the time of adjudication, Alice has gained an advantage by having read the file well ahead of him.

With all the above assumptions the problem still seems to be unsolvable. Any EOS protocol must have the form: Alice gives to Bob some information I_1 , Bob gives to Alice J_1 , Alice gives to Bob I_2 , etc. There must exist a first k such that, say, Bob can determine SA from I_1, \ldots, I_k , while Alice cannot determine SB from J_1, \ldots, J_{k-1} . Bob can withhold J_k from Alice and thus obtain SA without revealing SB.

The way out of this difficulty is to construct an EOS protocol such that, from the fact that Bob knows SA, Alice can deduce SB.

To render this feasible, we make a final assumption that if Bob uses SA to read his file then Alice knows about this and vice versa.

The general problem of exchange of secrets, without the particular setting and assumptions discussed above, was suggested to me by Richard DeMillo.

2 The EOS Protocol

We assume that Alice has a public key K_A and Bob has a public key K_B which they can use for encryption and for digital signatures. Every message sent by Alice to Bob will be signed by her, using K_A , and similarly for Bob.

³Exchange of Secrets

Alice chooses two large primes p, q and creates a one-time key $n_A = p \cdot q$. She then gives Bob a message: "The one-time key is n_A , signed Alice". Bob chooses primes p_1, q_1 and gives $n_B = p_1 \cdot q_1$ to Alice in a signed message.

Bob now chooses randomly an $x \le n_A$, computes $c = x^2 \mod n_A$, and gives Alice the message " $E_{K_B}(x)$ is the encoding by my public key K_B of my chosen number, and c is the square $\mod n_A$ of that number, signed Bob".⁴

Alice who knows the factors p, q of n_A calculates an x_1 such that $x_1^2 = c \mod n_A$. (See [2] for the square-root extraction algorithm and for the facts used in the next paragraphs.) Alice now gives Bob the message: " x_1 is a square-root $\mod n_A$ of c, signed Alice".

Bob calculates the g.c.d $(x - x_1, n_A) = d$. With probability 1/2 we have [d = p or d = q], so that with probability 1/2 Bob now has the factorization $n_A = p \cdot q$. However, since Alice does not know Bob's x, she does not know whether Bob has the factorization of n_A .

We refer to this mode of transferring information, where the sender does not know whether the recipient actually received the information, as an **oblivious transfer**.

Next Bob effects an oblivious transfer of n_B to Alice.

Define

$$\nu_B = \begin{cases} 0 & \text{if } (x - x_1, n_A) = p \text{ or } q, \\ 1 & \text{otherwise.} \end{cases}$$

Thus $\nu_B = 0$ iff after the above oblivious transfer of the factorization of n_A from Alice to Bob, he knows the factors. Alice's bit ν_A is defined in a similar way.

Recall that SA and SB are each a single bit. Bob forms the exclusive-or $\varepsilon_B = S_B \oplus \nu_B$ (Reader: $S_B = SB!$), and gives it to Alice in a signed message " ε_B is the exclusive-or of my secret with my state of knowledge of the factors of n_A , signer, Bob." Knowledge of ε_B does not contribute anything to Alice's ability to access her file.

Similarly, Alice forms $\varepsilon_A = S_A \oplus \nu_A$ and gives it to Bob in a signed message.

We came to the final round of the EOS protocol. Alice places her secret S_A as the center bit in an otherwise random message m_A . She then encodes m_A as $E_{n_A}(m_A) = C$ using any of the public-key systems which require the factors p,q of n_A for decoding. (We may, for example use the encoding $E_{n_A}(m_A) = m_A^2 \mod n_A$ of [1], provided that we have a fixed small prefix of m_A to distinguish m_A among the 4 square roots $\mod n_A$ of $E_{n_A}(m_A)$.) Alice sends $d_A = E_{n_A}(m_A)$ to Bob in a signed message.

Bob follows the same steps using S_B and n_B and sends the encoded result to Alice.

Theorem 1. The above protocol gives, under the assumptions in the Introduction, a solution of the Exchange of Secrets Problem. The probability that neither side will obtain the other's secret is 1/4.

Proof. We omit the proof that the signed messages exchanged between Alice and Bob, and the indelible incorporation of S_A and S_B in the files, provide each participant with a provable case against the other, if the other one cheated.

⁴I don't see any reason why the author included $E_{K_B}(x)$ in the Bob's message. It seems to compromise the security of the protocol, since Alice, having the factors of n_A , can find all square roots of c, encrypt them with K_B , and find the one corresponding to x. (This is the case if Bob uses a **deterministic** public-key cryptosystem.)

It is clear that if either Alice or Bob stop participation in the EOS protocol before the final phase, in which case the other one will also stop, then neither can know the other's secret.

Assume that Alice has given Bob, in the final phase, the encoded secret $d_A = E_{n_A}(m_A)$. If Bob in fact knows the factorization $n_A = p \cdot q$, in which case $\nu_B = 0$, he can decode d_A , finding m_A and S_A . If Bob now uses the password (bit) S_A to read his file, then, by assumption, Alice will know this. Again, by assumption, Bob would attempt reading his file only if he knows S_A with certainty (a mistake will destroy the file). Thus Alice knows that $\nu_B = 0$ and hence that $\varepsilon_B = S_B \oplus \nu_B = S_B$ so that she knows S_B .

If Bob gave Alice $d_B = E_{n_B}(m_B)$ in the final phase, then the above argument applies to yield that if Alice reads her file before Bob, then Bob will know S_A .

Thus, if either Alice or Bob reads her or his file, the other one will know the password for his or her file.

The probability, when the protocol was completed, that neither one knows the other's secret is $(1/2)^2 = 1/4$.

Remark 1. In the case that the exchange of secrets has not been effected, it is not possible to iterate the procedure. One participant, say Alice, may actually know S_B after the first round but deliberately not access her file until after the second round. Bob may not know whether ν_A was 0 in the first or second round and then will not be able to read his file.

Remark 2. The probability of success of the EOS protocol can be enhanced by modifying the oblivious transfer of information subprotocol. After receiving n_A from Alice, Bob chooses two numbers $x, y \le n_A$ and gives Alice the squares $x^2, y^2 \mod n_A$. Alice gives Bob two square roots $x_1, y_1 \mod n_A$ of x^2 and y^2 respectively. Now Bob has a probability 3/4 of knowing the factorization $n_A = p \cdot q$.

When Bob gives Alice $\varepsilon_B = S_B \oplus \nu_B$, she knows that with probability 3/4, $\varepsilon_B = S_B$. Since we assume that Alice is determined to guarantee that her file will not be erase, it still follows that she will not use ε_B as the password. Rather, as before, she will wait until she either can read S_B by deciphering $E_{n_B}(m_B)$, or can infer $\nu_B = 0$ from the fact that Bob has accessed his file.

The above double iteration of the oblivious transfer of information is also effected from Bob to Alice. The rest of the EOS protocol is as before.

Each participant has now just a 1/4 probability of not knowing the factorization of the other's one-time key. Thus the probability of non-termination of the EOS protocol is $(1/4)^2 = 1/16$.

There is a limit beyond which the above enhancement cannot be carried. If, for example, the oblivious transfer subprotocol is modified so that $\Pr[\nu_B=0]\sim 1/32,\!000$ then $\Pr[\varepsilon_B=S_B]=1-1/32,\!000$. Now there is a real temptation for Alice to halt the protocol after receiving ε_B , and use ε_B as the password to her file.

3 Conclusion

Let us mention some problems for further research.

The oblivious transfer of information subprotocol is valid even without any of the assumptions we made in order to make EOS feasible. What other applications can one find for this subprotocol?

Can any of the assumptions we made be relaxed or eliminated without losing the possibility of EOS?

Is it possible to construct an EOS protocol which will always terminate, or can one prove that the non-zero probability of non-termination is essential?

References

- [1] Michael O. Rabin. *How To exchange Secrets with Oblivious Transfer*, Technical Report TR-81, Aiken Computation Lab, Harvard University, 1981.
- [2] Michael O. Rabin. *Digitalized Signatures and Public-Key Functions as Intractable as Factorization*, MIT/LCS/TR-212, 1979.