[thm]Definition

Notes 8302-01 Harmonic Analysis Seminar - Steve Hofmann

Patrick Spencer

Contents

1.	Monday, August 25, 2014	6
Bibliog	graphy	9

6 CONTENTS

1. Monday, August 25, 2014

1.1. Review of measure theory.

DEFINITION 1.1. A set function is a mapping $\mu: P(x) \to Y$ where Y is a Banach space. Y is usually \mathbb{R} or \mathbb{C} .

Definition 1.2. A set function is an outer measure if

- (i) $\mu(A) \ge 0, \forall A \subseteq X, \mu(\emptyset) = 0$
- (ii) (monotonicity) If $A \subseteq B$ then $\mu(A) \le \mu(B)$.
- (iii) (Subaditivity) Given a countable collection $\{A_k\}_{k=1}^{\infty}$ of subsets of X,

$$\mu(\bigcup_{k=1}^{\infty} A_k) \le \mu\left(\sum_{k=1}^{\infty} A_k\right)$$

FACT 1.3. Every outer measure includes a measure in the following way.

DEFINITION 1.4. Given an outmeasure μ a subset $E \subseteq X$ is measurable if it satisfies the following Caratheadory Criterion: $\forall A \subseteq X \ \mu(A) = \mu(A \cap E) + \mu(A \setminus E)$. Notice A does not have to necessarily be μ -measurable.

Equivalently we have that E is μ -measurable iff $\mu(A_1 \cap A_2) = \mu(A_1) + \mu(A_2)$ whenever $\mu(A_2 \subseteq E)$ and $A_2 \cap E = \emptyset$.

PROPOSITION 1.5. (exercise) Let μ be an outer measure on X. If $\mu(Z) = 0$ then Z is μ -measurable.

Note 1.6. This says \emptyset is measurable. This also says the E^c is measurable.

PROPOSITION 1.7. (exercise) Given an outer measure μ the collection of all μ -measurable sets forms a σ -algebra.

DEFINITION 1.8. An outer measure μ is a mesaure when restricted to its measurable sets.

THEOREM 1.9. (exercise) Suppose μ is an outer measure and that $\{A_k\}_{k=1}^{\infty}$ is a collection of μ -measurable sets.

- (1) If $\{A_k\}_{k=1}^{\infty}$ are pairwise disjoint then $\sigma(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mu(A_k)$.
- (2) If $A_1 \subseteq \dots A_k \subseteq A_{k+1} \subseteq \dots$ then $\lim_{k \to \infty} \mu(A_k) = \mu(\bigcup_{k=1}^{\infty} A_k)$.
- (3) If $A_1 \supseteq A_2 \supseteq \ldots$ and $\mu(A_1) < \infty$ then $\lim_{k \to \infty} \mu(A_k) = \mu(\cap_{k=1}^{\infty} A_k)$.

DEFINITION 1.10. Suppose X is a topological space. The Borel σ -algebra is the smallest σ -alg. that contains all the open set.

DEFINITION 1.11. A subset $A \subseteq X$ is σ -finite w.r.t. μ if $A = \bigcup_{k=1}^{\infty} B_k$ where B_k is a μ -measurable set and $\mu(B_k) < \infty, \forall k$.

DEFINITION 1.12. (1) μ is regular if $\forall A \subseteq X$ there exists a μ -measurable set B so that $A \subseteq B$ and $\mu(A) = \mu(B)$.

- (2) μ is a Borel measure if every Borel set is μ -measurable.
- (3) μ is Borel regular if μ is Borel and $\forall A \subseteq \mathbb{R}$ (or X) there exists a Borel set B with $A \subseteq B$ and $\mu(A) = \mu(B)$.
- (4) μ is a Radon measure if μ is Borel and if $\mu(K) < \infty$ for every cpt set K.

THEOREM 1.13. Let μ be a regular measure on X. If $A_1 \subseteq A_2 \subseteq ...$ then $\lim_{k\to\infty} \mu(A_k) = \mu(\bigcup_{k=1}^{\infty} A_k)$

the significance of this theorem is that we are not requiring the A_k to be μ -measurable.

THEOREM 1.14. Suppose μ is a Borel regular on \mathbb{R}^n and $A \subseteq \mathbb{R}^n$ is μ -measurable with $\mu(A) < \infty$. Then $\mu|_A$ is a Radon measure. Here $\mu|_A$ is defined as $\mu|_A(B) = \mu(A \cap B)$.

Bibliography