YAMAHA'L SI

V9958 INSX-VIDEO TECHNICAL DATA BOOK

YAMAHA

V9958TECHNICAL DATA BOOK CATALOG No.: 249958Y 1988.12

PREFACE

This booklet describes those specifications which have been added, modified or deleted on the basis of specifications of V9938. The ones not found here have remained the same as V9938 but note that some, even the same, may be included here due to the convenience of editing. For specifications of V9938, refer to "V9938 MSX-VIDEO Technical Data Book".

December 1988 YAMAHA Corporation Semiconductor Division

TABLE OF CONTENTS

	ページ
1 GENERAL DESCRIPTION	1
2 FEATURES	1
3 INTERNAL STRUCTURE BLOCK DIAGRAM	2
4 PIN LAYOUT AND FUNCTIONS	3
5 REGISTER DESCRIPTION	5
5-1 Added Registers	5
5-1-1 Horizontal Scroll Function	5
5-1-2 Wait Function	7
5-1-3 Command Function	8
5–1–4 YJK-Type Data Display Function ······	8
5-2 Modified Register	1 0
5-3 Deleted Functions	1 1
6 MODIFIED TERMINALS DESCRIPTION	1 2
T ELECTRICAL CHARACTERISTICS	1 3
7-1 Maximum Ratings	1.3
7-2 Recommended Operating Conditions	1 3
7-3 Electrical Characteristics Under Recommended	
Operating Conditions	1 4
7-3-1 External Input Clock Timing	1 4
7-3-2 DC Characteristics	15
7-3-3 Input/Output Capacity ·····	15
7-3-4 External Output Clock Timing	16
7-3-5 CPU-MSX-VIDEO Interface	1.7
7-3-6 MSX-VIDEO-VRAM Interface	2 0
7-3-7 RGB Output Level	23
7-3-8 Sync. Signal Output Level	2.3
7-3-9 RGB Signal AC Characteristics	2.3
7-3-10 Sync. Signal AC Characteristics	2 4
7-3-11 Color Bus	2 7
7-3-12 VDS	2 8
8 MSX-VIDEO CIRCUIT DIAGRAM	2 9
9 PACKAGE DIMPNSTONAL DIACRAM	2.0

7-3 Electrical Characteristics Under Recommended Operating Conditions

7-3-1 External Input Clock Timing

No.	Symbol	Item	Min.	Typ.	Max.	Unit
1	fXTAL	XTAL clock frequency	20.26	21.48	22.55	MHz
2	TXWH	XTAL clock high-level pulse width	5			ns
3	TXWL	XTAL clock low-level pulse width	5		}	ns
4	TXR	XTAL clock rise time	<u> </u>		10	ns
5	TXF	XTAL clock fall time	1	1	10	ns
6	TXD21	XTAL clock delay time2→1	0			ns
7	TXD12	XTAL clock delay timel→2	0	1		ns
8	TLIXD	DLCLK (input)-XTAL clock delay time	20		50	ns
9	TW1	XTAL1 pulse width	12			ns
10	TW2	XTAL2 pulse width	20	!	!	ns
11	TPD	XTAL1-XTAL2 relative delay time	15		24	ns

External Input Clock Timing

INTERNAL STRUCTURE BLOCK DIAGRAM

4 PIN LAYOUT AND FUNCTIONS

Pin Name	Pin No.	I/O	Function
CD0 LSB	40	I/O	CPU data bus
CDI	39	I/O	"
CD2	38	I/O	
CD3	37	I/O	GND 1 64 XTAL2
CD4	36	I/O	DHCER 2 63 XTAL 1 DECER 3 62 RAS
CD5	35	I/O	VRESET 4 6t CAST
CD6	34	I/O	#SYNC 5 60 CASI
CD7 MSB	32	I/O	BLEO 7 58 VDD
MODE 0	29	I	CPU interface-mode select CPUCLK/VDS # 57 R/W AD 7
MODE 1	28	I	* YS 10 55 AD6
CSR	31	I	CPU-MSX-VIDEO read strobe CBDR 11 54 AD 5 53 AD 4
$\overline{\text{CSW}}$	30	I	CPU-MSX-VIDEO read strobe C7
RDO LSB	41	I/O	VRAM data bus
RD1	42	I/O	" C3 16 19 AD 0
RD2	43	I/O	C2 17 18 RD7
RD3	44	I/O	" CN 19 16 RD 5
RD4	45	I/O	GND/DAC 20 45 RD 4 VDD/DAC 21 44 RD 3
RD5	46	I/O	G 22 43 RD2
RD6	47	I/O	R 23 42 RD1 B 24 11 RD0
RD7 MSB	48	I/O	# INT 25 40 CD 0
AD0 LSB	49	0	VRAM address bus WAIT 26 39 CD 1
AD1	50	Ö	MODE 1 28 37 CD 3
AD2	51	Ö	MODE 0 29 36 CD 4 CSW 30 35 CD 5
AD3	52	ŏ	CD 6
AD4	53	ŏ	CD7 32 33 VBB
AD5	54	ő	,,
AD6	55	Ö	*
AD7 MSB	56	ŏ	,,
\overline{RAS}	62	Ö	VRAM row address strobe
CAS 0	61	ő	VRAM column address strobe 0 (first half of VRAM)
CAS 1	60	ŏ	VRAM column address strobe I (last half of VRAM)
CAS X	59	Ö	VRAM column address strobe X (for expansion VRAM)
R/\overline{W}	57	ŏ	VRAM write strobe
G	22	Ö	Linear RGB signal output
R	23	ŏ	*
В	24	Ö	*
YS	10	Ö	Signal for switching between MSX-VIDEO RGB output and external video
BIEO	7		signals. (For superimpose) \[\frac{\text{YS}}{\text{YS}} = \text{High: MSX-VIDEO output is transparent} \] \[\frac{\text{YS}}{\text{YS}} = \text{Low: MSX-VIDEO output is not transparent} \]
BLEO	7	0	Indicates No. 1 field/No. 2 field blanking with 3-value output. Open drain output
			High ; No. 2 field and active.
			Middle: No. 1 field and active.
			Low ; Linear erase interval.

Pin Name	Pin No.	I/O	Function
HSYNC	5	0	High: Timig other than HSYNC or color burst timing. Low: HSYNC or timing other than color burst.
CSYNC	6	0	Composite SYNC output.
CBDR	11	0	Indicates color bus direction. High: Color bus is input Low: Color bus is output
C0 LSB	19	I/O	Color bus.
C1	18	I/O	Normally color code is output. Used as input port when digitizing.
C2	17	I/O	"
C3	16	I/O	"
C4	15	I/O	"
C5	14	I/O	"
C6	13	I/O	"
C7 MSB	12	I/O	*
DHCLK	2	0	Dot clock output at high resolution. Approx. 10.74MHz open drain output.
DLCLK	3	I/O	Dot clock output at low resolution. Approx. 5.37MHz open drain output. As input is also possible by using the mode register, it is used for multi MSX-VIDEO.
XTAL 1	63	Ι	Used for XTAL connection. Also used for input when using an externally generated clock.
XTAL 2	64	I	
CP <u>UCL</u> K/ VDS	8	0	1/6 of XTAL frequency is output. VRAM data select VDS - Low: VRAM access for display data. VDS - High: VRAM access for other than the above.
INT	25	0	CPU interrupt output, open drain output Low: Generates interrupt.
RESET	9	1	Each circuit in MSX-VIDEO is initial reset.
VRESET	4	I	VSYNC input.
HRESET	27	I	HSYNC input.
WAIT	26	0	Wait signal to CPU is output.
VDD	58	I	5V power supply.
GND	1	I	Ground 0V.
GND*DAC	20	I	Ground 0V.
Voo•DAC	21	I	5V power supply.
Vas	33	0	Baseboard voltage.

5 REGISTER DESCRIPTION

5-1 Added Registers

Shown below are the registers newly added to the existing V9938 registers.

	b7	ь6	b5		b4	•	ь3	ь2	bl	ь0
#25		CMD	VDS	!	YAE	1	YJK	WTE	MSK	SP2
#26			H08	1	Н07	1	Н06	H05	H04	Н03
#27 [Ī				Н02	Н01	Н00

The above three registers are cleared to "0" by the RESET signal and if used in that state, will function compatibly with V9938.

#25 b7 #26 b6, b7 Make sure to set "0" for these empty bit positions. #27 b3 \sim b7

5-1-1 Horizontal Scroll Function.

	ь7	b6	b5	b4	ь3	ъ2	ЬI		ь0	
#25 <u>[</u>			!	1	1	!	 MSK		SP2	
#26		,	Н08	H07	H06	H05	К04	-	Н03	by character units
#27 [1			H02	![01		Н00	

HCS-HCO Used to set the scroll volume of still pictures in the horizontal direction one dot at a time.

(In G5 and G6 modes, scrolling is in 2-dot units.)

- SP2 0: Sets the horizontal screeen size to 1 page. (Initial value)

 Scrolling is done within one page and the non-displayed left side of the page is displayed on the right hand side of the screen.
 - 1: Sets the horizontal screen size to two pages.

 Scrolling is done within 2 pages and if the first page is displayed first, then the second page will appear at the scroll operation.

MSK 0: The left 8 dots are not masked. (Initial value)

1: The left 8 dots are masked and the border color is output.

There is no need to mask if the value in #27 is "0".

(In G5 and G6 modes, the number of masked dots is 16.)

During scrolling, once the dots disappear to the left of the screen or once the dots 1 to 7 appear on the screen, their data are not controlled by V9958 and there is no guarantee on what will be displayed.

To ensure proper display on the screen, therefore, masking is necessary.

© Screen dispaly for HO8-HO3

The screen is shifted to the left as specified in 8-dot units (in G5 and G6 modes, the screen is shifted in 16-dot units).

• When SP2 = 0

	Display s	creen
1107 - 3	8 dots	
0	0 . 1	30 31 1 line
1	1 2 .	31 0

31	31 0		29	-	30
		 		-	

Note) NOS is ignored

100 0	The second secon	y screen	
H08 – 3	8 dots		
0	0 1	31 32	62 63 1 1 ine
1	1 2 ;	, 32 , 33 ;	63 0
:			
		:	
31	31 32	62 ; 63 !	29 30
32	32 / 33 /	63 [0]	; 30 31
		:	
i			
63	[63] 0 [30 31 :	61 62

Note) When SP2 = 1, bit 5 (A15) of the pattern name table base address register (R#2) should be set to "1".

The base address of each table will be as follows.

Pattern name table (PNT) : 0 to 31 (when A15 is set to "0")

32 to 63 (when A15 is set to "1")

Pattern generator table (PGT) : The base address remains unchanged

even when scroll value is changed.

Color table (CT): The base address remains unchanged even when scroll value is changed.

Screen display for HO2-HO0

The screen is shifted to the right as specified in I-dot unit (in G5 and G6 modes, the screen is shifted in 2-dot units).

(Example) T When scrolling to the left one dot at a time

	RESET	Initial					
#26	0	A Section 1	1	1	2	(Count	up)
#27	0	7	6	0	7	(Count	down)
	1	dot to	2 dots t	o 8 dots to	9 dots	s to eft	

2 When scrolling to the right one dot at a time

	RESET	Initial					
#26	0	0	0	31		(Count do	own)
#27	0	1	2	0		(Count up)
		l dot to the right	2 dots t	to 8 dors to	9 dot the r	s to ight	

5-1-2 Wait Function (to speed up the writing time of data from CPU to VRAM)

	b?	ь6	b5 b4	b3	b2	b1	ь0
++05!					LITT	1	
4720				:	, Vall		

WTE 0: Disables the WAIT function. (Initial value)
Works in the same way as V9938.

1: Enables the WAIT function.

When the CPU accesses the VRAM, accesses to all ports on V9958 is held in the WAIT state until access to the VRAM of V9958 is completed.

However, WAIT function is not provided for incomplete access to the register and the color palette or for the data ready status of commands.

5-1-3 Command Function

	ь7	P6	b5	b4	ь3	b2	ь1	ხ0
#25		CMD					!	

CMD 0: The command function is not expanded.

The command function can be used only in G4 to G7 modes as with the conventional type. (Initial value)

1: Enables the command function in all display modes. In G4 to G7 modes, it works in the same way as with the conventional type and as G7 mode in any other mode. Therefore, it is necessary to set the parameters by using x-y coordinates of G7 mode.

5-1-4 YJK-Type Data Display Function

-	b7	b6	b5	b4	ь3	b2	b1	b0
#25 <u> </u>				YAE	YJK			

YJK 0: Handles the data on VRAM as RGB type data.(Initial value)

(Example: G7 mode = 3,3 and 2 bits each)

Displayed colors of the sprite are the same sa the conventional type.

1: Handles the data on VRAM as YJK type data, converts them to RGB signals (5 bits each) and outputs them through RGB terminals as analog signals.

The color palette is used to display colors of the sprite in G7 mode.

YAE 0: Without attributes

	C7	C6	C5	C4	C3	C2	C1	C0
1 dot			Y_1				KL.	***
l dot			Ϋ́z				ŔĤ	
l dot			Υ ₃				JL	
l dot			Y 4				JH	

for 1 dot and color specification can be made up to 2¹⁷.

YJK type data is categorized based on the data on 4 continuous dots as follows.

 $Y_1 \cdot KL \cdot KH \cdot JL \cdot JH$: color data for the 1st dot $Y_2 \cdot KL \cdot KH \cdot JL \cdot JH$: color data for the 2nd dot $Y_3 \cdot KL \cdot KH \cdot JL \cdot JH$: color data for the 3rd dot $Y_4 \cdot KL \cdot KH \cdot JL \cdot JH$: color data for the 4th dot

1: With attributes

	C7	C6	C5	C4	c_3	C2	C1	CO
1 dot		Ϋ́	1	***	Α		ΚL	***
1 dot		Y	z		Α		KIL	
l dot		Y	3		Α		ĴĹ.	
l dot		Y	4		Α		JJI,	

A: Attribute

When A = 0

Just like when YAE="0", \blacksquare indicates color data for 1 dot and color specification can be made up to 216. (The "A" bit is ignored.) When A=1

 Y_1 , Y_2 , Y_3 , and Y_4 become color codes respectively and they areoutput as RGB signals through the color palette. (16 colors) The KL, KH, JL and JH data are ignored then.

© Combination of YJK and YAE data

YJK	YAE	VRAM data					
0	0	Via the conventional color palette .					
	1	Via the conventional color palette					
1	0	Via the YJK → RGB conversion table					
1	1	$A=0$: Via the YJK \rightarrow RGB conversion table					
	<u> </u>	A=1 : Via the color palette					

- ⑤ The formulas for YJK-RGB conversion are as follows.
 - 1) From YJK to RGB

$$R = Y + J$$

$$G = Y + K$$

$$B = \frac{5}{4}Y - \frac{J}{2} - \frac{K}{4}$$

2) From RGB to YJK

$$Y = \frac{B}{2} + \frac{R}{4} + \frac{G}{8}$$

$$J = R - Y$$

$$K = G - Y$$

5-2 Modified Register

Shown below is the register whose function has been modified from V9938.

	b7	ъ6	ь5	b4	ь3	b2	b1	ь0	
S#1	FL	LPS	0	0	0	1	0	FH	Status Register 1
					ID#				

When the power is turned ON, the ID# is returned to b! to b5 of the status register 1, indicating that V9938 is connected at "0" and V9958 is connected at "2".

5-3 Deleted Functions

- 1) Composite video output
- 2) Mouse/lightpen interface

As a result of these deletions, the following bits of the internal register become meaningless. Therefore, set these meaningless bits to "O" when writing into the registers.

	ь7	b6	b5	b4	ь3	b2	b1	ь0	
R#0	. 0	DG	IE2	IE1	M5	M4	М3	0	Mode Register 0
R#8	HS	LP	TP	СВ	VR	0	SPD	BW	Mode Register 2
S#1	FL	LPS		I	D #	1	1	FII	Status Register 1

6 MODIFIED TERMINALS DESCRIPTION

The following table shows those terminals whose function has been modified and those whose function has been deleted and then newly added.

Pin	V 9 9 5 8		V 9 9 3 8		
No.	Terminal name	1/0	Terminal name	I/0	Remarks
4	VRESET	I	VDS	0	Added after deleted
5	HSYNC	0	HSYNC	I/0	Modified
6	CSYNC	0	CSYNC	I/0	Modified
8	CPUCLK/VDS	0	CPUCLK	0	Modified
2 1	VDD/DAC	I	VIDEO	0	Added after deleted
26	WAIT	0	LPS	I	Added after deleted
2.7	HRESET	I	LPD	I	Added after deleted

The rest of the terminals remain the same as those of V9938.

- 1. Deleted terminal
 - VIDEO
 - · LPS
 - · LPD
 - VDS
- 2. Added terminal function
 - · VDD/DAC \implies Analog power source
 - · WAIT ⇒ I/O WAIT output
 - · HRESET

 Tri-level logic input of HSYNC and CSYNC separated.
- 3. Modified terminal functions

 - · CPUCLK/VDS⇒ CPUCLK output or VDS output
- © Output selection between CPUCLK and $\overline{\text{VDS}}$

	b?	ъ6	b5	b4	ь3	b2	b1	ь0
#25			VDS					

VDS 0: The CPUCLK signal is output. (Initial value)

1: The VDS signal is output.

ELECTRICAL CHARACTERISTICS 7

7-1 Maximum Ratings

Symbol	Item	Rating	Unit
. Vpp	Power supply voltage	-0.5 - +7.0	V
Vin	Input voltage	-0.5 ~ +7.0	V
Ts	Storage temperature	-50 - +125	°C
То	Operating temperature	0-+70	°C

7-2 Recommended Operating Conditions

Symbol	Item	Minimum	Typical	Maximum	Unit
VDD	Power supply voltage	4.75	5.00	5.25	V
Vss	Power supply voltage		0		V
TA	Operating ambient temperature	0		70	°C
Vil. 1	Low level input voltage (group 1)	-0.3		0.8	V
Vil 2	Low level input voltage (group 2)	-0.3		0.8	· V
Vil. 3	External clock low level input voltage (group 3)	-0.3		0.8	V
ViH 1	High level input voltage (group 1)	2.2		VDD	V
Vin 2	High level input voltage (group 2)	2.2		VDD	V
V _{1H} 3	External clock high level input voltage (group 3)	3.5		VDD	V

CSR. RD0-7, C0-7, LPS, LPD, RESET, DLCLK, VRESET, HRESET CD0-7, MODE 0, MODE 1, CSW XTAL 1, XTAL 2 Note: Group 1 Group 2 Group 3

1 GENERAL DESCRIPTION

This LSI is a video display Processor (VDP) which is applicable to new media. It uses an N-channel silicon gate MOS and has a linear RGB output. It is software compatible with TMS9918A and V9938.

2 FEATURES

- · 5V power supply.
- · Outputs linear RGB.
- · Built-in color palette for display in up to 512 colors.
- Capable of simultaneous display of 19,268 colors by using YJK system display.
- · Capable of displaying up to 512×424 Pixels and 16 colors.
- · Bit mapped graphics.
- · Capable of displaying maximum of 256 colors simultaneously.
- · 16% byte~128% byte useable for display memory.
- \cdot 16K \times 1b, 16K \times 4b, 64K \times 1b and 64K \times 4b DRAMs are useable.
- 256 addresses, 4ms auto refresh function of DRAM.
- · Expansion video memory can be connected.
- · Eight sprites can be displayed for each horizontal line.
- · Colors for sprites can be specified for each horizontal line.
- · Area move, line, search and other commands.
- · Command function usable in every display mode.
- · Logical operation function.
- Addresses can be specified by coordinates.
- · Capable of external synchronization.
- · Capable of superimposition.
- · Capable of digitization.
- · Multi MSX-VIDEO configurations are possible.
- · External color palettes can be added by utilizing color bus output.
- · Vertical and horizontal scroll function.
- · Wait function to CPU.

No.	Symbol	Item	Min.	Тур.	Max.	Unit
1	TRESET	RESET low level pulse width	10			ms

7-3-2 DC Characteristics

Symbol	Item	Condition	Minimum	Typical	Maximum	Unit
Vol 4	Low level output voltage (group 4)	Iot - 1.6mA			0.4	V .
Vol 5	Low level output voltage (group 5)	Iot. = 1.6mA	4		0.4	V
Vol 6	Low level output voltage (group 6)	Iot-10mA			0.4	V
Vol 7	Low level output voltage (group 7)	Iot = 1.6mA			0.4	V
Von 4	High level output voltage (group 4)	Іон = 100μА	2.4			v
Vон 5	High level output voltage (group 5)	Іон - 60μА	2.7			V
Iri	Input leak current				10	μΑ
ILO	Output leak current (when floating)				25	μΑ
dal	Current consumption				230	mA

CD0-7, RD0-7, AD0-7, $\overline{\text{VDS}}$, CBDR, CPUCLK/ $\overline{\text{VDS}}$, C0-7, $\overline{\text{HSYNC}}$, $\overline{\text{CSYNC}}$, $\overline{\text{WAIT}}$, $\overline{\text{YS}}$ $\overline{\text{RAS}}$, $\overline{\text{CAS}}$ 0, $\overline{\text{CAS}}$ 1, $\overline{\text{CASX}}$, $\overline{\text{R/W}}$ $\overline{\text{DLCLK}}$, $\overline{\text{DHCLK}}$ Note: Group 4

Group 5

Group 6 Group 7

7-3-3 Input/Output Capacity

Symbol	I tem	Condition	Min.	Тур,	Max.	Unit
CIN COUT	Input capacity Output capacity	VIN =0 V VOUT=0 V			10 10	99 99

7-3-4 External Output Clock Timing

No.	Symbol	Item	Condition	Min.	Typ.	Max.	Unit
8	fDHCLK	DHCLK frequency		10.13	10.74	11.28	MHz
9	THWL	DHCLK low-level pulse width		20			пs
10	THF	DHCLK fall time		1		25	ns
11	FDLCLK	DLCLK frequency	Cl.=50 PF	5.06	5.37	5.64	MHz
12	TLOWL	DLCLK(output) low- level pulse width		60			ns
13	TLOF	DLCLK(output) fall time		i 		15	ns
14	THLOD	DHCLK-DLCLK (output) delay time		-15		15	ns
15	fCPUCLA	CPUCLK frequency		3.37	3.58	3.76	MHz
16	TCWH	CPUCLK high-level pulse width	CL=100PF	110			ns
17	TCWL	CPUCLK low-level pulse width		110			ns
18	TCR	CPUCLK rise time			1	, 25	ns
19	TCF	CPUCLK fall time	5		:	; 25	ns
20	TLOHXD	DLCLK(output) high- XTAL deiny time	CL=50PF	20 .		50	ns
21	TLOLXD	DLCLK(output) low- XTAL delay time		20		50	ns

Note: The values shown for $\overline{\text{DHCLK}}$ and $\overline{\text{DLCLK}}$ assume that RL = 1 k ohm.

7-3-5 CPU-MSX-VIDEO Interface

No.	Symbol	I tem	Condition	Min.	Typ.	Max.	Unit
1	TASR	Address setup time (related to CSR)	-	Ó			ns
2	TASW	Address setup time (related to CSW)		30			ns
3	TAHW	Address hold time		50			ns
4	TDSW	Data setup time		30		!	ns
5	TDHW	Data hold time		30		1	ns
6	TCSW	CSW pulse width		186	700	2000	ns
7	TCSR	CSR pulse width		186	700	2000	ns
8	TRAC	Data access time	CL=300PF		100	150	ns
9	TPVX, A	Data invalid time		0	:		ns
10	TPVX	Data disable time	i		65	100	ns
11	TW1W	CSW pulse width high, 2nd-1st, 1st-2nd byte		2			us
12	TW2W	CSW pulse width high, 2nd-3rd, 3rd-3rd, 3rd-1st byte		8			us
13	TS1RW	CSR-CSW setup time, lst-lst byte	! !	. 2		:	us
14	TS2RW	CSR-CSW setup time, 3rd-1st byte		8			นร
15	TS1WR	CSW-CSR setup time, 2nd-1st byte		2			นร
16	TS2WR	CSW-CSR setup time, 2nd-3rd byte		8			us
17	TWIR	CSR pulse width high, 1st-1st byte		2			us
18	TW2R	CSR pulse width high, 3rd-1st, 3rd-3rd byte		8			us
19	TWCS	WAIT delay time (for CSR and CSW)				130	ns
20	TRACW	Data access time (from WAIT)				100	ns

Note) 8 indicates the value when $\overline{\text{WAIT}}$ does not become low.

CPU-MSX-VIDEO Write Cycle Interface

CPU-MSX-VIDEO Read Cycle Interface

Note) The value n (n=1,2,3) in each pulse indicates the "n"th byte transmitted from CPU.

MSX-VIDEO Register Read Timing

Note) The value n (n=1,2,3) in each pulse indicates the "n"th byte transmitted from CPU.

MSX-VIDEO Register Write Timing

7-3-6 MSX-VIDEO-VRAM Interface

No.	Symbol	Item	Condition	Min.	Тур.	Max.	Unit
1	TRC	Memory read/write cycle time		266	279		
2	TPC	Page mode cycle time		177	186		
4	TDSC	Read data setup time		. 20	ļ		
5	TDHC	Read data hold time		0			
6	TRP	RAS precharge time		90			
7	TRAS	RAS pulse width		130	1	1	!
8	TRSH	RAS hold time		60]
9	TCAS	CAS pulse width		85	1		_
10	TCSH	CAS hold time		140			
11	TRCD	RAS-CAS delay time		40	<u> </u>		
12	TCRP	CAS-RAS precharge time		90	1		
13	TRARD	Row address-RAS delay time		50		!	
14	TRAIL	. Row address hold time	:	12	!	<u>:</u>	
15	TCACD	Column address-CAS delay time	CL=150PF	0			
16	TCAH	Column address hold time	:	100	:		ns
17	TCAR	Column address hold time(for RAS)	! !	130		-	-
18	TRCD	Read command-CAS delay time		30	-	<u> </u>	
19	TRCH	Read command hold time		30		ļ	-
20	TWCH	Write command hold time		70	!		-
21	TWRH	Write command hold time (for RAS)		150			4
22	TWP	Write command pulse width	-	120	<u> </u>	<u> </u>	_
23	TRWL	Write command-RAS read time	<u> </u>	150			_
24	TCWL	Write command-CAS read time		120	ļ		-
25		Write data-CAS delay time		0		-	_
26	HOT	Write data hold time	. ·	50	<u> </u>		
27	TDHR	Write data hold time (for RAS)		110	:		
28	TWCD	Write command-CAS delay time		30		!	-
29	TCP	CAS precharge time (page mode cycle)	:	70		-	

VRAM Read Cycle

7-3-7 R.G.B. Output Level

Symbol	Item	Measurement Conditions	Minimum	Typical	Maximum	Unit
VRGB 31	R.G.B. maximum output voltage	RL - 470Ω	2.8	3.1	3.5	V
VRGB 0	R.G.B. minimum output voltage (black level)		1.9	2.2	2.5	V
VP-P	R.G.B. VRGB31-VRGB0 potential difference	4450 11011	0.8	0.9	1.1	V
DRGB	R.G.B. VP-P deviation				5.0	%

^{*}Typical values are given under conditions of Vnn-5.00V, TA-25°C.

7-3-8 Sync Signal Output Level

Symbol	ltem	Measurement Conditions	Minimum	Typical	Maximum	Unit
VTLVH 1	3-value output high level BLEO		4.5		VDD	V
VTLVM 1	3-value output intermediate level BLEO	$RL = 1K\Omega$	2.5		3.5	V
Vti.vi. 1	3-value output low level BLEO				0.4	V

7-3-9 R.G.B. Signal AC Characteristics

No.	Symbol	Item	Measurement Conditions	Minimum	Typical	Maximum	Unit
13	TrRGB	R.G.B. signal rise time (VRGB0→VRGB31)	RL-470Ω CL-150pF			60	ns
14	TfRGB	R.G.B. signal fall time (VRGB31 - VRGB0)				60	ns

Note) Measurement is 10%-90%

7-3-10 Sync, Signal AC Characteristics

No.	Symbol	Item	Condition	Min.	Typ.	Max.	Unit
1	TfSY 1	BLEO intermediate level- low level fall time				100	
2	TrSY 1	BLEO low level-intermediate level rise time				140	
3	TrSY 2	BLEO low level-high level rise time				220	
4	TfSY 2	BLEO high level-low level fall time	CL=50PF			110	ns
5	TDSY	CSYNC, HSYNC Output delay time				100	
6	THSY	CSYNC, HSYNC Output hold time		20		 	
7	TrSY 6	YS rise time		•	ť.	25	
8	TfSY 6	₹S fall time			Ē Ģ	25	

2nd Field

7-3-11 Color Bus

No.	Symbol	I tem	Condition	Min.	Typ.	Max.	Unit
1	TDCBO	DLCLK-color bus output delay time	CL=50PF			190	
2	THCBO	DLCLK-color bus output hold time		40			ns
3	TSCBI	Color bus input setup time		0			
4	THCBI	Color bus input hold time		20			

7-3-12 VDS

Na	Symbol	Item	Condition	Min.	Typ.	Max.	Unit
1	TDVDSL	DLCLK-VDS low level delay time		50		100	
2	TDVDSH	DLCLK-VDS high level delay time	CL=50PF	50		100	ns
3	TSVDS	VDS setup time (for CASO and CASI)		20			
4	THVDS	VDS hold time (for CASO and CASI)		0			

9 PACKAGE DIMENSIONAL DIAGRAM

DIMENSIONS IN MM

The specifications of this product are subject to improvement changes without prior notice.

AGENCY -

YAMAHA CORP. Address inquires to: Electronic System Division

· U.S.A.

YAMAHA Systems Technology. 3051 North First Street San Jose, California 95134

Tel. 408-433-5260

Toyooka Factory 203, Matsunokijima, Toyooka-mura,

103, Matsunosijima, 10900ki-mira, 1wata-gun. Shizuoka-ken. 438-01 Electronic Equipment business section Tel. 053962-4918 Fax. 053962-5054

■ Tokyo Office

3-4, Surugadai Kanda, Chiyoda-ku, Tokyo, 104 Ryumeikan Bldg. 4F Tel. 03-255-4481

Osaka Office

3-12-9, Minamisenba, Minami-ku,

Osaka-city, Osaka, 542 Shinsaibeshi Plaza Bldg. 4F Tel. 06-252-7980