Obfuscation and Weak Multilinear Maps

Mark Zhandry – Princeton University

Joint work with Saikrishna Badrinarayanan, Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan

Obfuscation [BGIRSVY'01,GGHRSW'13]

Compiler: "scrambles" program, hiding implementation

"Industry accepted" security notion: indist. Obfuscation $P_1(x) = P_2(x) \forall (x) \Rightarrow iO(P_1) \approx_c iO(P_2)$

[GGHRSW'13,SW'13, BZ'13, BST'13, GGHR'13, BP'14, HJKSWZ'14, CLTV'14, ...]

Multilinear Maps (a.k.a. graded encodings) [BS'03,GGH'13,CLT'13,GGH'15]

Main tool for all constructions of obfuscation

Levels 1,...,k, Field/Ring F Enc secret $a \in F, i \in [k]$ $[a]_i$ $[a]_{i} + [b]_{i}$ $[a+b]_i$ $[a]_i \times$ [b]_i $[ab]_{i+i}$ public IsZero $[a]_k$ Yes/No

Multilinear Maps (a.k.a. graded encodings) [BS'03,GGH'13,CLT'13,GGH'15]

k levels: compute arbitrary degree **k** polynomials

Asymmetric mmaps: additional restrictions

• E.g. multilinear polynomials

Obfuscation From Multilinear Maps

Applications of Multilinear Maps

"Zeroizing" Attacks on MMaps

"Zeroizing" Attacks on MMaps

(Note: apps still possible using obfuscation)

Central Questions

Q1: Is obfuscation secure?

Q2: If so, how to show it?

This Work: Focus on GGH'13 Mmaps

Background...

Level i encoding of x:
$$\frac{x + g s}{z^i}$$
 (mod q)

Level i encoding of x:
$$\frac{x + g s}{z^i}$$
 (mod q)

Add within levels

$$\frac{x_1+gs_1}{z^i} + \frac{x_2+gs_2}{z^i} = \frac{(x_1+x_2)+g(s_1+s_2)}{z^i}$$

Level i encoding of x:
$$\frac{x + g}{z^i}$$
 (mod q)

- Add within levels
- Multiplication makes levels add

$$\frac{x_1+gs_1}{z^i} \cdot \frac{x_2+gs_2}{z^j} = \frac{(x_1x_2)+g(s_1x_2+s_2x_1+gs_1s_2)}{z^{i+j}}$$

Level i encoding of x:
$$\frac{x + g}{z^i}$$
 s (mod q)

- Add within levels
- Multiplication makes levels add
- Test for zero at "top level" k

Public parameter
$$\mathbf{p_{zt}} = \frac{\mathbf{h} \mathbf{z^k}}{\mathbf{g}}$$
 "not too big"

$$Pzt = \frac{gs}{z^k} = hs$$
 "not too big" $Pzt = \frac{x+gs}{z^k} = \frac{hx}{g} + hs$

Level i encoding of x:
$$\frac{x + g}{z^i}$$
 s (mod q)

- Add within levels
- Multiplication makes levels add
- Test for zero at "top level" k

Notes:

- z must be secret (else can go down levels)
- g must be secret ([GGH'13] show attack otherwise)

Required for (Most) Applications

"Re-randomization"

- Needed for most (direct) applications
- Needed to use any "simple" assumption on mmaps

Add random subset of low-level zeros

Successful zero test \Rightarrow top level zero

Required for (Most) Applications

Two low-level zeros:

Dangerous For Security

Required for (Most) Applications

Zeroizing attacks:

- GGH'13: "Source group" assumptions (e.g. DLin, Subgroup decision) are false
- CGHLMMRST'15: Immunizations don't work
- HJ'16: MDDH is false, multiparty NIKE broken
- Probably other assumptions broken too (MDHE, etc)

Dangerous For Security

Required for (Most) Applications

Dangerous For Security

What about Obf/WE/SKFE?

Good News:

No re-randomization needed in application

no low-level zeros (explicit or implicit)

Bad News:

Top level zeros may still be generated during use Re-rand still needed for "simple" assumptions

Central Questions (Restated)

Q1: Can top-level zeros be used to attack iO?

Q2: How to argue security against zeroizing attacks?

Q1: Affirmative!

Thm* [MSZ'16]: The branching program obfuscators in [BGKPS'14, PST'14, AGIS'14, BMSZ'16] over GGH'13 do not satisfy iO

*Small heuristic component

(Single input) Branching Programs

$$X = 11001:$$
 $IMP_{X}(\{A_{i,b}\}) = A_{1,1} A_{2,0} A_{3,1} A_{4,1} A_{5,0} A_{6,0} A_{7,1} A_{8,1}$

If $IMP_x = 0$, output 1, otherwise output 0

[BMSZ'16] Obfuscator

Building on [GGHRSW'13,BR'14,BGKPS'14,AGIS'14,...]

[BMSZ'16] Over GGH'13

Randomized Branching Program

Encoding randomness

$$B_{i,b} = \alpha_{i,b} R_i^{-1} A_{i,b} R_{i+1}$$

Obfuscation encodings

$$C_{i,b} = \frac{B_{i,b} + g S_{i,b}}{B_{i,b}} \mod q$$

Evaluation:

$$T_x = P_{zt} \times IMP_x(C_{i,b}) \mod q$$
 test if "not too big"

$$T_{x} = \underbrace{P_{zt}} \times IMP_{x}(C_{i,b}) \mod q$$

$$= \underbrace{h}_{g} \times IMP_{x}(B_{i,b} + g S_{i,b}) \mod q$$

$$= \underbrace{h}_{g} \times IMP_{x}(B_{i,b}) + D_{x}(\alpha_{i,b}, S_{i,b}, R_{i})$$

$$+ g \times E_{x}(\alpha_{i,b}, S_{i,b}, R_{i}) \mod q$$

Suppose
$$P(x) = 1$$
 $| MP_x(B_{i,b}) = 0$

$$T_{x} = \frac{h}{g} \times AP_{x}(B_{i,b}) + D_{x}(\alpha_{i,b}, S_{i,b}, R_{i}) + g \times E_{x}(\alpha_{i,b}, S_{i,b}, R_{i}) \mod q$$

"not too big", so holds over Z

Suppose
$$P(x) = 1$$

$$T_{x} = D_{x}(\alpha_{i,b}, S_{i,b}, R_{i}) + g \times E_{x}(\alpha_{i,b}, S_{i,b}, R_{i})$$

Efficiency: Poly-many free vars

Exp-many inputs: Pick larger poly set of $\mathbf{D}_{\mathbf{x}}$

Algebraic dependence:

$$\exists \text{ poly } \mathbf{Q}: \mathbf{Q}(\mathbf{D}_{x1}, \mathbf{D}_{x2}, \dots) = \mathbf{0}$$

Algebraic dependence:
$$\exists \text{ poly } Q: Q(D_{x1}, D_{x2}, ...) = 0$$

Annihilating polynomial

$$Q(T_{x1}, T_{x2}, ...) = Q(D_{x1}+gE_{x1}, D_{x2}+gE_{x2}, ...)$$

= $Q(D_{x1}, D_{x2}, ...) + gQ' + g^2Q'' + ...$
= $gQ' + g^2Q'' + ...$ Multiple of g

Goal: find \mathbf{Q} that annihilates $\mathbf{P_1}$, but not $\mathbf{P_2}$

Distinguishing Attack*

Extends to any "purely algebraic" obfuscator

Problem: in general, annihilation is hard

Thm ([Kay'09]): Unless PH collapses, there are dependent polys for which an annihilating polynomial requires super-polynomial sized circuits

Question: Can annihilating polys be found for particular obfuscators/programs?

Consider "single-input" setting (used to prove iO) Suppose "trivial" branching program: $A_{i,0}=A_{i,1}=A_i$

Explicit annihilating polynomial for [BMSZ'16]:

$$\begin{split} q &= (D_{000}D_{111})^2 + (D_{001}D_{110})^2 + (D_{010}D_{101})^2 + (D_{100}D_{011})^2 \\ &- 2D_{000}D_{111}D_{001}D_{110} - 2D_{000}D_{111}D_{010}D_{101} - 2D_{000}D_{111}D_{100}D_{011} \\ &- 2D_{001}D_{110}D_{010}D_{101} - 2D_{001}D_{110}D_{100}D_{011} - 2D_{010}D_{101}D_{100}D_{011} \\ &+ 4D_{000}D_{011}D_{101}D_{111} + 4D_{111}D_{001}D_{010}D_{100} \end{split}$$

Computed by reducing problem to finite size, then brute-force search

For dual input:

- First, reduce problem to finite size
- Brute-force annihilating poly in constant time
- Haven't found it yet, but still gives poly-time attack

Other obfuscators:

• [BR'14,BGKPS'14, PST'14, AGIS'14]: similar analysis

Also attack ORE (SKFE) [BLRSZZ'15] over GGH'13

Now What?

Goal: Argue security of other schemes

Problem: Cannot use "simple" assumptions

Solution: Argue security in abstract attack models

Restricted Black Box Fields

 \mathbf{F} = Field, \mathbf{P} = class of polynomials on \mathbf{n} variables

^{*} Often need greater functionality requirements for protocols. This model suffices for our discussion

Obfuscation in Restricted BBFs

(model used by [BR'14,BGKPS'14,AGIS'14,Z'15,AB'15,BMSZ'16])

Obfuscate(C):

- If IsZero gives "True", output 1
- If **IsZero** gives "False", output 0

Our Attack: Model is false for GGH'13

A Conservative Model [BMSZ'16]

BBF with restricted polynomial class **P**

Obfuscation for evasive functions [BMSZ'16]

Honest executions always give non-zero

Thm([BMSZ'16]): Only way for "level respecting" adversary to get zero is through honest program executions

Impossible to find zeros anywhere for evasive funcs

Compare to prior "abstract model" theorems:

Thm([BR'14, BGKPS'14, ...]): For "level respecting" adversary, can guess output of **IsZero** just by knowing **P(x)**

Doesn't say if/when finding a zero is possible

A Conservative Model [BMSZ'16]

Model useless in "non-evasive" settings, e.g. iO, SKFE

Need model that allows for zeros to occur

Characterizing Attacks

All Known Classical Attacks

Compute polynomials obeying level restrictions

Several top level zero encodings

Characterizing Attacks

All Known Classical Attacks

Compute polynomials obeying level restrictions

Several top level zero encodings

Polynomial in the zeros

Refined Abstract Model for Mmap attacks

Write
$$p(a_1+gs_1, ..., a_n+gs_n)$$

= $c + dg + ...$

If c ≠ 0, output "False"

If c = 0, output "True", d

Unrestricted BBF

d₁ d₂ d₃ ...

If $q(d_1, d_2, ...) = 0$, adversary wins

* Also need to assume degree << |F|

Refined Abstract Model for Mmap attacks

Seems to capture intuition behind attacks

Proof in refined model

Heuristic evidence of security against current attacks

But keep in mind that:

Attack in refined model

Attack on actual protocol

Blocking Attacks [GMMSSZ'16]

Notably absent from attacked schemes: [GGHRSW'13]

Random diagonal converts even "trivial" branching programs into non-trivial ones

Blocking Attacks [GMMSSZ'16]

Our fix: append random block matrix

Potentially as small as 2×2

Blocking Attacks [GMMSSZ'16]

Let $\mathbf{BP_E}$ be branching program defined by \mathbf{E} matrices Let $\mathbf{E_x}$ be evaluation of $\mathbf{BP_E}$ on input \mathbf{x}

Thm: If polynomial \mathbb{Q} annihilates $\{\mathbb{D}_x\}^*$, then it annihilates $\{\mathbb{E}_x\}$ as well

Let $\mathbf{BP_F}$ be any $\mathbf{BP, F_x}$ evaluation of $\mathbf{BP_F}$

Thm: If polynomial \mathbb{Q} annihilates $\{E_x\}^*$, then it annihilates $\{F_x\}$ as well

Example Proof Sketch

Thm: If polynomial \mathbb{Q} annihilates $\{E_x\}^*$, then it annihilates $\{F_x\}$ as well

Let
$$E_{i,b} = F_{i,b} + r E'_{i,b}$$
random
$$\Rightarrow E_x = F_x + r F'_x + r^2 F''_x + ...$$

$$\Rightarrow Q(\{E_x\}) = Q(\{F_x\}) + r Q' + r^2 Q'' + ...$$

By Schwartz-Zippel, if Pr[Q = 0] = non-negl, Then Q must be identically $O \Rightarrow Q(\{F_*\}) = 0$

Branching Program Unannihilateability

Assumption: For any efficient polynomial **Q***, there is a branching program not annihilated by **Q**

"Easy" fact: PRFs in NC¹ give unannihilateable branching programs

Corollary: Assuming BPUA (or NC¹ PRFs), our obfuscator is secure in the weak mmap model for [GGH'13]

Future Directions

- Substantiate BPUA (P ≠ NP, general OWF, etc)
- Attack GGH'13 without annihilating polys
- Extend to obfuscation for circuits

 Mostly solved: [DGGMM'16] assuming NC¹ PRFs
- Extend attacks to CLT'13, GGH'15

 Partial progress: [CLLT'16] for single-input iO over CLT'13
- Useful abstract attack model for CLT'13, GGH'15

Thanks!