[8] 짝지은 표본 t검정

1. 짝지은 표본 t-검정

ex. 예술 프로그램이 참가자의 사회적 관심, 참여, 즐거움, 이탈, 부정적인 영향, 슬픔, 혼란에 영향을 끼친다는 가설을 검정하려고 합니다.

- 사전 테스트와 사후 테스트에서 참가자들의 점수 차이가 연구의 핵심
- 참가자는 2번 이상 시험을 봄
- 집단은 두 개 존재
- 적절한 검정통계는 종속 평균에 대한 t검정

2. 검정통계량

- 1) 차이값 D = post pre
- D bar = D의 평균 = 표본 차이값의 평균
- 단일표본 Z검정과 동일한 방법으로 검정할 수 있으므로 참고하기
- : 표본평균 대신에 D bar
- : 표준오차의 표준편차 대신에 D의 표준편차 (σD) 를 넣고 계산

짝지은 t 검정 Paired t-test

- Sample mean of the d_i is, $\overline{d} = \frac{\sum_{i=1}^n d_i}{n}$
- · And the standard deviation is,

$$s_d = \sqrt{\frac{\sum_{i=1}^{n} (d_i - \overline{d})^2}{n-1}} = \sqrt{\left[\sum_{i=1}^{n} d_i^2 - \left(\sum_{i=1}^{n} d_i\right)^2 / n\right] / (n-1)}$$

where n is number of pairs.

- Test statistics is $t = \frac{\overline{d} \Delta_0}{s_d / \sqrt{n}}$, d.f.=n-1
- If $t > t_{n-1,1-\alpha/2}$ or $t < -t_{n-1,1-\alpha/2}$ then we reject H_0 .

3) 가설 검정

a. 귀무가설과 연구가설의 진술

- H0: µ사후테스트 = µ사전테스트, µdiff = 0

- H1 : x사후테스트 > x사전테스트 , D bar ≠ 0

- b. 귀무가설과 관련된 위험 수준(또는 유의수준 또는 1종 오류) 설정
- c. 적절한 검정통계의 선택
- d. 검정통계량(획득된 값)의 계산
- e. 특정 통계에 대한 임계값 표를 사용하여 귀무가설을 기각하는 데 필요한 값 결정
- 자유도 = n-1
- f. 검정통계량(획득된 값)과 임계값의 비교
- · t분포표에서 임계값 찾기

14

α df	0.4	0.25	0.1	0.05	0.025	0.01	0.005	0.0025	0.001	0.0005
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318.31	636.62
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	14.089	22.327	31.599
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	7.453	10.215	12.924
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	0.265	0.718	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.437
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.318
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.221
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.140
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.073
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.015
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.965
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.922
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.883
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.850
24	0.057	0.505	4.202	4.704		0.540	0.004	2.425	2.507	2.040
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.819
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.792
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.768
24	0.256	0.685	1.318	1.711	2.064	2.492	2.797	3.091	3.467	3.745
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787	3.078	3.450	3.725
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.707
27	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.057	3.421	3.690
28	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.674
29	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.038	3.396	3.659
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.646
40	0.255	0.681	1.303	1.684	2.021	2.423	2.704	2.971	3.307	3.551
60	0.254	0.679	1.296	1.671	2.000	2.390	2.660	2.915	3.232	3.460
120	0.254	0.677	1.289	1.658	1.980	2.358	2.617	2.860	3.160	3.373
00	0.253	0.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291
00	0.253	0.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291

+) 엑셀로 풀어보기 - 수작업

사전테스트	사후테스트	차이(후-전)	차이평균		
3	7	4	2.058823529		
5	8	3	차이 표준편차		
4	6	2	1.477776549		
6	7	1	표본크기		
5	8	3	17		
5	9	4	검정통계량	분자	분모
4	6	2	5.744269579	0.358413459	2.058824
5	6	1			
3	7	4	자유도	임계값(t값)	
6	8	2	16	1.746	
7	8	1			
8	7	-1	임계값<검통량		
7	9	2	귀무가설 기각		
6	10	4			
7	9	2			
8	9	1			
8	8	0			

+) 엑셀로 풀어보기 - 데이터 분석도구 활용

t-검정: 쌍체 비교		
	사전테스트	사후테스트
평균	5.705882353	7.764705882
분산	2.720588235	1.441176471
관측수	17	17
피어슨 상관 계수	0.499451575	
가설 평균차	0	
자유도	16	
t 통계량	-5.74426958	
P(T<=t) 단측 검정	1.50826E-05	
t 기각치 단측 검정	1.745883676	
P(T<=t) 양측 검정	3.01652E-05	
t 기각치 양측 검정	2.119905299	

+) 문제

- 1. 다음의 예시에서 독립 평균과 종속 평균의 t검정 중 어떤 통계 작업을 수행할 것인지 서술하세요.
- 1) 두 집단은 발목 염좌에 대한 다른 수준의 치료를 받았습니다. 어떤 치료가 더효과적이었습니까?

(정답:독립표본 t검정)

2) 어느 간호학 연구자는 추가 재택 간호를 받은 환자가 일반 재택 간호를 받은 다른 환자보다 회복 속도가 더 빠른지 알고 싶습니다.

(정답:독립표본 t검정)

3) 사춘기 소년 집단은 대인관계 기술에 대한 상담을 받은 후, 이러한 상담이 가족의 화목함 정도에 영향을 주는지를 알아보기 위해 9월과 5월에 검사를 받았습니다.

(정답: 짝지은 표본 t검정)

4) 한 집단의 성인 남성 집단에는 고혈압을 줄이기 위한 지침이 제공된 반면, 다른 집단에게는 아무런 지침을 주지 않았습니다. 그런 후에 두 집단의 남성들의 혈압을 지침 제공 전후로 나누어 측정했습니다.

(정답: 짝지은 표본 t검정)

- 2. 두 집단이 동일하게 비교되는 데이터의 경우, 귀무가설을 기각하는 종속 표본의 임계값이 독립 표본의 임계값보다 더 높습니다. 그 이유는 무엇일까요? (정답)
- 독립표본은 두 집단, 서로 다른 사람을 대상으로 차이 검정
- 짝지은 표본은 두 집단이지만 같은 사람을 대상으로 차이 검정 = 차이값의 검정
- 하나를 비교하는 것이 더 정확 = 더 정확하다는 것은 오류가 발생할 확률이 더 낮다 = 유의수준이 더 작아진다!

- 오른쪽으로 이동하는 것과 같다 = 임계값이 더 커진 것과 같음 = 더 엄격해짐

[9] 분산분석

- **1.** 분산분석
- 단순 분산분석 : 집단 사이의 변수의 차이에 대해 조사 > 같은참가자들이 두 번 이상 테스트를 받지 않음 > 집단의 수는 세 집단 이상
- 반복측정 분산분석 : 집단 사이의 변수의 차이에 대해 조사 > 같은참가자들이 두 번 이상 테스트를 받음 > 집단의 수는 세 집단 이상
- **우리는 two-way anova 말고 one-way만 진행!
- 1) 변수 관련
- 처리 변수(treatment variable) = 그룹 변수(집단 편성 요인 grouping factor)
- ex. 자녀가 속한 집단
- 종속 변수(결과)
- ex. 언어 발달

> one-way anova

X	J단 1 (주당	5시간) 집단	2 (주당 10시간)	집단 3 (주당 20시간)	
6	선어 발달 시험	험점수 언어	l 발달 시험 점수	언어 발달 시험 점수	
			유치원에 다니는 시간		
		집단 1 (주당 5시간)	집단 2 (주당 10시간)	집단 3 (주당 20시간)	
성별	남성	언어 발달 시험 점수	언어 발달 시험 점수	언어 발달 시험 점수	
	여성	언어 발달 시험 점수	언어 발달 시험 점수	언어 발달 시험 점수	

> two-way anova

(성별 변수가 추가됨)

3) F-검정통계량 < SST = SSB + SSW > 중요!!

a. between : 그룹 간 변동

-제곱합 : SSB

-평균 제곱합 : MSB = SSB/자유도(k-1) : 집단 간 분산

*k: 그룹의 개수

b. within : 그룹 내 변동

-제곱합 : SSW

-평균 제곱합 : MSW = SSB/자유도(n-k) : 집단 내 분산

c. total

-제곱합 : SST

-평균 제곱합 : MST = SST/자유도(n-1)

(아래 표 : 분산분석표)

요 인	제곱합	자유도	평균제곱	검정통계량 (F)
집단 간	$SSB = \sum_{i} \sum_{j} (\overline{x_{i}} - \overline{\overline{x}})^{2}$	k-1	$MSB = \frac{SSB}{k-1}$	$F = \frac{MSB}{MSW}$
집단 내	$SSW = \sum_{i} \sum_{j} (x_{ij} - \overline{x_i})^2$	n-k	$MSW = \frac{SSW}{n-k}$	
합계	$SST = \sum_{i} \sum_{j} (x_{ij} - \overline{\overline{x}})^2$	n-1		

4) one-way anova

- 어떤 분석이든 다음 조건이 맞으면 단순 아노바가 사용되어야 함
- a. 오직 하나의 차원이나 처리(그룹 변수 하나)
- b. 집단 편성 요인 내에 3가지 이상의 수준이 존재
- c. 평균 점수로 집단 간의 차이를 비교
- 5) 가설검정
- a. 귀무가설과 연구가설의 진술
- 귀무가설 H0 : μ1 = μ2 = μ3
- 연구가설 H1 : x̄1≠ x̄2 or x̄1≠ x̄3 or x̄2≠ x̄3 > 분산분석의 한계점 : 다중비교(사후검정)
- 연구가설은 t검정 때만큼 간단하지 않음
- 세 개 이상의 평균을 가지고 있으며 연구가설은 모든 평균이 동일하지 않다고 주장
- 세 개의 평균이 모두 다른지. 두개씩만 다른지 알 수 없음 > 분산 분석의 한계점
- 모든 F검정은 무방향성이므로 평균의 차이에 대해 가정하는 방향이 없다는 점에 주의
- > 차이가 있다는 것은 알지만, 어느 그룹에서 차이가 있는지는 모름 >> 따라서 사후검정 진행!
- b. 귀무가설과 관련된 위험 수준(또는 유의수준 또는 1종 오류) 설정 > 유의수준 설정
- c. 적절한 검정통계의 선택 : F = MSB / MSW
- d. 검정통계량(획득된 값)의 계산
- F비율, 집단 간 제곱합(SSB), 집단 내 제곱합(SSW), 제곱의 총합(SST=SSB+SSW)
- between / within 변동성을, 편차라는 개념 이용해서 계산하기 (보통 within 사용)
- e. 특정 통계에 대한 적절한 임계값 표를 사용하여 귀무가설을 기각하는 데 필요한 값 설정
- F(k-1) = 검정통계량 으로 표기
- 방향성이 없으므로, 우측검정으로 실시
- f. 검정통계량(획득된 값)과 임계값 비교
- Tukey 라는 사후검정 방법 사용하여 사후검정 실시

6) between / within 변동성 계산하기

- : 편차라는 개념 이용하여 계산
- 하나의 표본 안에서 계산하는 게 일반적: within