CS 385Q Fall 2022

Homework 1: Asymptotic Notations

Arjun Koshal

September 27, 2022

Problem 1

```
for i = 0 to A.length - 1 do // runs n times with cost: c1
  if A[i] = = A[i+1] then // runs n-1 times with cost: c2
    return 1 // runs 1 time with cost: c3
  end if
end for
return 0
```

Best Case: The first two elements in the array are duplicates. $T(n) = (c_1 + c_2 + c_3) = b$, for some constant b. Therefore, T(n) = O(1) is the best case.

Worst Case: There would be no duplicates within the array. $T(n) = c_1(n) + c_2(n-1) + c_3 + c_4 = (c_1 + c_2)n - c_2 + c_3 + c_4 = an + b$, for some constants a and b. Therefore, T(n) = O(n) is the worst case.

Problem 2

```
1: i = NIL // runs 1 time with cost c<sub>1</sub>
2: for j = 1 to A.length do // runs n-1 times with cost c<sub>2</sub>
3: if A[j] = v then // runs n-2 times with cost c<sub>3</sub>
4: i = j // runs 1 time with cost c<sub>4</sub>
5: return i // runs 1 time with cost c<sub>5</sub>
6: end if
7: end for
8: return i // runs 1 time with cost c<sub>6</sub>
```

Best Case: The first element j, satisfies A[j] = v. $T(n) = c_1 + c_2 + c_3 + c_4 + c_5 = b$, for some constant b. Therefore, T(n) = O(1) is the best case.

Worst Case: There would be no element j such that A[j] = v. $T(n) = c_1 + c_2(n-1) + c_3(n-2) + c_4 + c_5 + c_6 = c_1 + (c_2 + c_3)n - c_2 - 2c_3 + c_6 = (c_2 + c_3)n + (c_1 - c_2 - 2c_3 + c_6) = an + b$, for some constants a and b. Therefore, T(n) = O(n) is the worst case.

CS 385Q Fall 2022

Problem 3

$$f(n) = n^4 + 10n^2 + 5$$
$$cn^4 > n^4 + 10n^2 + 5$$

We can see that the smallest integral value for the equation above to hold true must be c=2.

$$2n^4 \ge n^4 + 10n^2 + 5$$
$$512 \ge 256 + 160 + 5$$
$$n_0 = 4$$

Problem 4

$$f(n) = 3n^3 - 2n$$
$$c_2 n^3 \ge 3n^3 - 2n$$

We can see that the tightest integral value for the equation above to hold true must be $c_2 = 3$.

$$c_1 n^3 \le 3n^3 - 2n$$

We can see that the tightest integral value for the equation above to hold true must be $c_1 = 2$.

$$3n^3 \ge 3n^3 - 2n$$
$$2n^3 < 3n^3 - 2n$$

It then follows that the tightest integral value that satisfies both the lower and upper bounds is $n_0 = 2$.

Problem 5

Theorem 1. $3n-4 \in \Omega(n^2)$

Proof. Let us disprove this statement using proof by contradiction. Suppose that $3n-4 \in \Omega(n^2)$. Then, it follows

$$3n - 4 \ge cn^2$$

Because 4n > 4, we can express the equation as

$$3n - 4n \ge cn^2$$
$$-n \ge cn^2$$
$$-\frac{1}{c} \ge n$$

Since c>0, it is impossible for $-\frac{1}{c}\geq n$ to hold true. It follows then that $3n-4\in\Omega(n^2)$ is false. $\ \square$

CS 385Q Fall 2022

Problem 6

Function 1: $\Theta(n \lg n)$ Function 2: $\Theta(\sqrt[3]{n})$ Function 3: $\Theta(n^3)$ Function 4: $\Theta(n)$ Function 5: $\Theta(n)$

Problem 7

- a. $\Theta(n^2)$ because there are 2 nested for loops that iterate linearly.
- b. $\Theta(n)$ because the first for loop is not bounded by a variable, so there is a constant number of operations in the outer for loop, whereas he inner for loop iterates linearly.
- c. $\Theta(m \lg n)$ because the outer loop iterates linearly and the inner loop iterates \lg times.
- d. $\Theta(m^2)$ because the outer for loop is bounded by m*m, which is greater than the inner for loop that is bounded by m.