考研高数

枫聆

2021年5月25日

目录

1	经典证明	2
2	函数极限	3

经典证明

Definition 1.1. 连续函数在闭区间上有界 若 real-valued 函数 f 在闭区间 [a,b] 上连续,那么它在其上有界.

证明. f(x) 非空子区间 [a,x],求其上确界 假设 B 是使得 f(x) 在形如闭区间 [a,x] 上有界的 $x \in [a,b]$ 集合,显然 $a \in B$,所以 B 非空。若 $e \in B$ 且 e > a,那么 a 和 e 之间的点都是在 B 里面的,所以实际上 B 是一个闭区间.我们再考虑 B 的上确界,根据 x 的取法,有 $x \le b$,如果我们能证明它的上确界在 b 出取得,那么整个命题就得证.现在假设 $\sup(B) < b$,由于 B 是一个闭区间,所以 $\sup(B) \in B$ 。由于 f 是连续的,那么足够靠近 $\sup(B)$ 的地方,即 $s - \sup(B) < \delta$ 且 $s > \sup(B)$,有 $|f(s) - f(\sup(B))| < \varepsilon$,那么 $[\sup(B), s]$ 也是有界,这是和 $\sup B$ 是 B 的上确界矛盾的.

Definition 1.2. 若 real-valued 函数 f 在闭区间 [a,b] 连续,那们存在 $c,d \in [a,b]$ 使得

$$f(c) \le f(x) \le f(d), \ x \in [a,b].$$

证明.

Definition 1.3. 如果 real-valued 函数 f 在闭区间 [a,b] 上连续,且在开区间 (a,b) 内可导,若有 f(a)=f(b),那么存在至少一个 $c \in (a,b)$ 使得

$$f'(c) = 0.$$

证明.

函数极限