Solved Problems in Mathematical Methods for Physicists

Carlos Faz

December 4, 2020

Disclaimer

This document shows the solution to the problems of chapter 2 and 3 of Mathematical Methods for Physicist 7^{th} —ed by George Arfken solved by Carlos Faz in LATEX. This document was typeset with the help of KOMA-Script and LATEX using the kaobook class.

Publisher

First printed in December by Carlos Faz

No copyright

6 This book is released into the public domain using the CC0 code. To the extent possible under law.

Publisher

First printed in March 2020 by Carlos Faz

Última modificación December 4, 2020. Versión: kaol.2

Contents

1	Mathematical Preliminaries	1
2	Determinants and Matrices	3
3	Vector Analysis	27

Mathematical Preliminaries

Show that matrix multiplication is associative, (AB)C = A(BC)

Solution The product BC is defined because the column of B and rows of C are same. Suppose D = BC Then element of D is of the form

$$d_{ik} = \sum_{j} b_{ij} c_{jk}$$

Now the product AD is defined because the column of A and rows of D are same. Then element of E is of the form

$$e_{lk} = \sum_{k} a_{li} \left(\sum_{j} b_{ij} c_{jk} \right)$$

Therefore, the matrix $\mathbf{E} = \mathbf{A}(\mathbf{BC})$ have the elements e_{lk} . The product \mathbf{AB} is defined because the column of \mathbf{A} and rows of \mathbf{B} are same. Let, $\mathbf{D} = \mathbf{AB}$. Then element of \mathbf{D} is of the form

$$d_{lj} = \sum_{i} a_{li} b_{ij}$$

Now the product DC is defined because the column of D and rows of C are same. Let, E = DC. Then element of D is of the form

$$e_{lk} = \sum_{j} \left(\sum_{i} a_{li} b_{ij} \right) c_{jk}$$

Therefore, the matrix $\mathbf{E} = (\mathbf{A}\mathbf{B})\mathbf{C}$ have the elements e_{lk} Therefore,

$$A(BC) = (AB)C$$

Hence, matrix multiplication is associative.

2.2.2

Show that

$$(\mathbf{A} + \mathbf{B})(\mathbf{A} - \mathbf{B}) = \mathbf{A}^2 - \mathbf{B}^2$$

if and only if A and B commute

$$[\mathbf{A}, \mathbf{B}] = 0$$

Solution

$$(A + B)(A - B) = (A - B)(A + B) = A(A + B) - B(A + B)$$

 $(A + B)(A - B) = A^2 + AB - BA - B^2$
 $(A + B)(A - B) = A^2 - B^2 + (AB - BA)$

Because A and B conmute, the term (AB-BA) equals to zero, hence is proved.

$$(\mathbf{A} + \mathbf{B})(\mathbf{A} - \mathbf{B}) = \mathbf{A}^2 - \mathbf{B}^2$$

(a) Complex numbers, a + ib, with a and b real, may be represented by (or are isomorphic with) 2×2 matrices:

$$a + ib \longleftrightarrow \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

Show that this matrix representation is valid for

- (i) addition
- (ii) multiplication
- (b) Find the matrix corresponding to $(a + ib)^{-1}$.

Solution (a) Let us start with addition. For complex numbers, we have (straightforwardly)

$$(a+ib) + (c+id) = (a+c) + i(b+d)$$

whereas, if we used matrices we would get

$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix} + \begin{bmatrix} c & d \\ -d & c \end{bmatrix} = \begin{bmatrix} (a+c) & (b+d) \\ -(b+d) & (a+c) \end{bmatrix}$$

which shows that the sum of matrices yields the proper representation of the complex number (a + c) + i(b + d). We now handle multiplication in the same manner. First, we have

$$(a+ib)(c+id) = (ac-bd) + i(ad+bc)$$

while matrix multiplication gives

$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix} \begin{bmatrix} c & d \\ -d & c \end{bmatrix} = \begin{bmatrix} (ac - bd) & (ad + bc) \\ -(ad + bc) & (ac - bd) \end{bmatrix}$$

which is again the correct result.

Solution (*b*) Find the matrix corresponding to $(a + ib)^{-1}$ We can find the matrix in two ways. We first do standard complex arithmetic

$$(a+ib)^{-1} = \frac{1}{a+ib} = \frac{a-ib}{(a+ib)(a-ib)} = \frac{1}{a^2+b^2}(a-ib)$$

This corresponds to the 2×2 matrix

$$(a+ib)^{-1} \longleftrightarrow \frac{1}{a^2+b^2} \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

Alternatively, we first convert to amatrix representation, and then find the inverse matrix

$$(a+ib)^{-1} \leftrightarrow \begin{bmatrix} a & b \\ -b & a \end{bmatrix}^{-1} = \frac{1}{a^2+b^2} \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

Either way, we obtain the same result.

If **A** is an $n \times n$ matrix, show that

$$\det(-\mathbf{A}) = (-1)^n \det \mathbf{A}.$$

Solution An elementary deinition of the determinant of a matrix $\mathbf{A} = (a_{i,j})$ is given by the expression

$$\det(\mathbf{A}) = \sum_{\pi} s(\pi) a_{1,\pi(1)} \cdots a_{n,\pi(n)}$$

where the sum is extended over all permutations of the set 1, ..., n and $s(\pi) = \pm 1$ is the sign of the permutation π . Since each summand is the product of exactly n of the entries of the matrix, if you reverse all the signs each summand–and so the whole sum-will be altered by a factor of $(-1)^n$.

2.2.5

(a) The matrix equation $\mathbf{A}^2 = 0$ does not imply $\mathbf{A} = 0$. Show that the most general 2×2 matrix whose square is zero may be written as

$$\begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix}$$

where a and b are real or complex numbers.

(b) If $\mathbf{C} = \mathbf{A} + \mathbf{B}$, in general

$$\det C \neq \det A + \det B$$
.

Construct a specific numerical example to illustrate this inequality.

Solution (a) Let

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

be a 2×2 matrix. Then

$$\mathbf{A}^2 = \begin{bmatrix} a^2 + bc & (a+d)b \\ (a+d)c & d^2 + bc \end{bmatrix}$$

Now find a, b, c, d such that $a^2 + bc = (a + d)b = (a + d)c = d^2 + bc = 0$. Note that if a + d = 0 and ad - bc = 0, then all these equations are satisfied. For instance, put a = -d = 1, b = -c = 1 or put a = d = 0, b = 0, c = 1. Then the matrices

$$\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

are not 0 but their squares are 0.

2.2.6

Given

$$\mathbf{K} = \begin{bmatrix} 0 & 0 & i \\ -i & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

show that

$$\mathbf{K}^n = \mathbf{K}\mathbf{K}\mathbf{K} \cdots (n \text{ factors}) = 1$$

(with the proper choice of $n, n \neq 0$).

Solution We calculate for different n

$$\mathbf{K}^{2} = \begin{bmatrix} 0 & -i & 0 \\ 0 & 0 & 1 \\ i & 0 & 0 \end{bmatrix} \quad \mathbf{K}^{3} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \quad \mathbf{K}^{4} = \begin{bmatrix} 0 & 0 & -i \\ i & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
$$\mathbf{K}^{5} = \begin{bmatrix} 0 & i & 0 \\ 0 & 0 & -1 \\ -i & 0 & 0 \end{bmatrix} \quad \mathbf{K}^{6} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

With this, the answer is n = 6

2.2.7

Verify the Jacobi identity,

$$[A, [B, C]] = [B, [A, C]] - [C, [A, B]]$$

Solution

$$\begin{split} [A[B,C]] &= [A,BC-CB] = A(BC-CB) - (BC-CB)A \\ [A[B,C]] &= A(BC) - A(CB) - (BC)A + (CB)A \\ [B[C,A]] &= [B,CA-AC] = B(CA-AC) - (CA-AC)B \\ [B[C,A]] &= B(CA) - B(AC) - (CA)B + (AC)B \\ [C[A,B]] &= [C,AB-BA] = C(AB-BA) - (AB-BA)C \\ [C[A,B]] &= C(AB) - C(BA) - (AB)C + (BA)C \end{split}$$

A, B, C are obey associative law C(AB) = (CA)B, C(BA) = (CB)A, (AB)C = A(BC) and (BA)C = B(AC)

$$\begin{split} [C[A,B]] &= (CA)B - (CB)A - A(BC) + B(AC) \\ [C[A,B]] &= [A,[B,C]] + [B[C,A]] + [C[A,B]] \\ &= (A(BC) - A(CB) - (BC)A + (CB)A) + (B(CA) - B(AC) - (CA)B \\ &+ (AC)B) + (CA)B - (CB)A - A(BC) + B(AC) = 0 \end{split}$$

2.2.8

Show that the matrices

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

satisfy the commutation relations

$$[A, B] = C$$
, $[A, C] = 0$, and $[B, C] = 0$

Solution We simply multiply the matrices

$$\mathbf{C} = [\mathbf{A}, \mathbf{B}] = \mathbf{A}\mathbf{B} - \mathbf{B}\mathbf{A}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = C$$

$$[\mathbf{A}, \mathbf{C}] = A\mathbf{C} - \mathbf{C}\mathbf{A} = 0$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0$$

$$[\mathbf{B}, \mathbf{C}] = \mathbf{B}\mathbf{C} - \mathbf{C}\mathbf{B} = 0$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = 0$$

Let

$$i = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}, \quad j = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad k = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$$

(a) $i^2 = j^2 = k^2 = -I$, where **I** is the unit matrix.

(b)
$$ij = -ji = k$$
, $jk = -kj = i$, $ki = -ik = j$

These three matrices (i, j, and k) plus the unit matrix 1 form a basis for quaternions. An alternate basis is provided by the four 2 ×2 matrices, $i\sigma_1$, $i\sigma_2$, $-i\sigma_3$, and 1, where the σ_i are the Pauli spin matrices of Example 2.2.1.

Solution

$$i^{2} = j^{2} = k^{2} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$ij = -ij = k = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$$

$$jk = -kj = i = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

$$ki = -ik = j = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

A matrix with elements $a_{ij} = 0$ for j < i may be called upper right triangular. The elements in the lower left (below and to the left of the main diagonal) vanish. Show that the product of two uper right triangular matrices is an upper right triangular matrix.

Solution We build 2 matrix with terms a, b, c, x, y, z that can take any

$$\begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} x & y & z \\ 0 & u & w \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} a \times x & b \times u + a \times y & b \times w + a \times z \\ 0 & d \times u & d \times w \\ 0 & 0 & 0 \end{bmatrix}$$

Hence is demostrated that the product of two upper right triangular matrices is an upper right triagular matrix.

2.2.11

The three Pauli spin matrices are

$$\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \text{and} \quad \sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Show that

$$(a) (\sigma_i)^2 = \hat{1}_2$$

(a)
$$(\sigma_i)^2 = \hat{1}_2$$

(b) $\sigma_i \sigma_j = i \sigma_k$, $(i, j, k) = (1, 2, 3)$ or a cyclic permutation thereof,
(c) $\sigma_i \sigma_i + \sigma_i \sigma_i = 2\delta_{ii} \hat{1}_2$: $\hat{1}_2$ is the 2 × 2 unit matrix.

(c)
$$\sigma_i \sigma_j + \sigma_j \sigma_i = 2\delta_{ij} \hat{1}_2$$
; $\hat{1}_2$ is the 2 × 2 unit matrix.

Solution For i = 1, j = 2, k = 3

$$\sigma_i \sigma_j = \sigma_1 \sigma_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} = i \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = i \sigma_3 = i \sigma_k$$

For i = 2, j = 3, k = 1

$$\sigma_i \sigma_j = \sigma_2 \sigma_3 = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} = i \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = i \sigma_3 = i \sigma_k$$

For i = 2, j = 3, k = 1

$$\sigma_i \sigma_j = \sigma_3 \sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = i \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = i \sigma_2 = i \sigma_k$$

So, we conclude that $\sigma_1 \sigma_i = i \sigma_k$

Solution | (c) For this proof we need only to work out the commutation relation and use the proofs done in part (a) and (b)

$$\sigma_2 \sigma_1 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & i \end{bmatrix} = -i \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = -i\sigma_3$$

$$\sigma_1 \sigma_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = -i \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix} = -i\sigma_2$$

$$\sigma_3 \cdot \sigma_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix} = -i \begin{bmatrix} 0 & i \\ 1 & 0 \end{bmatrix} = -i\sigma_1$$

$$\left. \begin{array}{l} \sigma_i \sigma_j + \sigma_j \sigma_i = \sigma_i \sigma_j - \sigma_i \sigma_j = 0 \\ \\ \sigma_i \sigma_j + \sigma_j \sigma_i = 2\sigma_i^2 \end{array} \right\} \quad \begin{array}{l} \text{for } j \neq i \\ \\ \text{for } j = i \end{array}$$

since $\sigma_i^2 = 1$ and using the kronecker delta we have

$$\sigma_i \sigma_j + \sigma_j \sigma_i = 2\delta_{ij} 1$$

2.2.12

One description of spin-1 particles uses the matrices

$$\mathbf{M}_{x} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad \mathbf{M}_{y} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{bmatrix}$$

and

$$\mathbf{M}_z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

(a) $[\mathbf{M}_x, \mathbf{M}_y] = i\mathbf{M}_z$, and so on (cyclic permutation of indices). Using the Levi-Civita symbol, we may write

$$\left[\mathbf{M}_{i},\mathbf{M}_{j}\right]=i\sum_{k}\varepsilon_{ijk}\mathbf{M}_{k}$$

- (b) $\mathbf{M}^2 \equiv \mathbf{M}_x^2 + \mathbf{M}_y^2 + \mathbf{M}_z^2 = 2\mathbf{I}_3$, where \mathbf{I}_3 is the 3×3 unit matrix.
- (c) $\left[\mathbf{M}^2, \mathbf{M}_i\right] = 0$ $\left[\mathbf{M}_z, \mathbf{L}^+\right] = \mathbf{L}^+$ $\left[\mathbf{L}^+, \mathbf{L}^-\right] = 2\mathbf{M}_z$ where $\mathbf{L}^+ \equiv \mathbf{M}_x + i\mathbf{M}_y$ and $\mathbf{L}^- \equiv \mathbf{M}_x i\mathbf{M}_y$

Solution For (a)

$$\mathbf{M}_{x}\mathbf{M}_{y} = \frac{1}{2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} i & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & -i \end{bmatrix}$$

$$\mathbf{M}_{y}\mathbf{M}_{x} = \frac{1}{2} \begin{bmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -i & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & i \end{bmatrix}$$

$$\mathbf{M}_{x}\mathbf{M}_{y} - \mathbf{M}_{y}\mathbf{M}_{x} = \frac{1}{2} \begin{bmatrix} i & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & -i \end{bmatrix} + \frac{1}{2} \begin{bmatrix} i & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & -i \end{bmatrix}$$
$$\mathbf{M}_{x}\mathbf{M}_{y} - \mathbf{M}_{y}\mathbf{M}_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
$$\mathbf{M}_{x}\mathbf{M}_{y} - \mathbf{M}_{y}\mathbf{M}_{x} = \mathbf{M}_{z}$$

Solution For (b)

$$\mathbf{M}_{x}^{2} = \frac{1}{2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{z}^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{M}_{y}^{2} = \frac{1}{2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

Now

$$\mathbf{M}_x^2 + \mathbf{M}_y^2 + \mathbf{M}_z^2 = 2\mathbf{I}$$

Solution (c) we substitute

$$\mathbf{M}^2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad \mathbf{M}_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

and

$$\begin{bmatrix} \mathbf{M}^2, \mathbf{M}_x \end{bmatrix} = \mathbf{M}^2 \mathbf{M}_x - \mathbf{M}_x \mathbf{M}^2$$

$$\mathbf{M}^2 \mathbf{M}_x = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \times \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 2 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix}$$

$$\mathbf{M}_x \mathbf{M}^2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 2 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix}$$

$$\begin{bmatrix} \mathbf{M}^2, \mathbf{M}_x \end{bmatrix} = \mathbf{M}^2 \mathbf{M}_x - \mathbf{M}_x \mathbf{M}^2 = 0$$

Therefore, $[\mathbf{M}^2, \mathbf{M}_i] = 0$ Now, we substitute

$$\mathbf{M}_z = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{array} \right)$$

and

$$\mathbf{L}^{+} = \mathbf{M}_{x} + i\mathbf{M}_{y} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$[\mathbf{M}_{z}, \mathbf{L}^{+}] = \mathbf{M}_{z} \mathbf{L}^{+} - \mathbf{L}^{+} \mathbf{M}_{z}$$

$$\mathbf{M}_{z} \mathbf{L}^{+} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \times \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{L}^{+} \mathbf{M}_{z} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} = 0$$

$$[\mathbf{M}_{z}, \mathbf{L}^{+}] = \mathbf{M}_{z} \mathbf{L}^{+} - \mathbf{L}^{+} \mathbf{M}_{z} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{L}^{+}$$

$$[\mathbf{M}_{z}, \mathbf{L}^{+}] = \mathbf{M}_{z} \mathbf{L}^{+} - \mathbf{L}^{+} \mathbf{M}_{z} = \mathbf{L}^{+}$$

Now, substitute

$$\mathbf{L}^{+} = \mathbf{M}_{x} + i\mathbf{M}_{y} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

and

$$\mathbf{L}^{-} = \mathbf{M}_{x} - i\mathbf{M}_{y} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}$$
$$[\mathbf{L}^{+}, \mathbf{L}^{-}] = \mathbf{L}^{+}\mathbf{L}^{-} - \mathbf{L}^{-}\mathbf{L}^{+}$$

$$\mathbf{L}^{+}\mathbf{L}^{-} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \times \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\mathbf{L}^{-}\mathbf{L}^{+} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} \times \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
$$[\mathbf{L}^{+}, \mathbf{L}^{-}] = \mathbf{L}^{+}\mathbf{L}^{-} - \mathbf{L}^{-}\mathbf{L}^{+} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} = 2\mathbf{M}_{z}$$

Therefore, $[L^+, L^-] = L^+L^- - L^-L^+ = 2M_z$

2.2.13

Repeat Exercise 2.2.12, using the matrices for a spin of 3/2,

$$\mathbf{M}_{x} = \frac{1}{2} \begin{pmatrix} 0 & \sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & 2 & 0 \\ 0 & 2 & 0 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}, \ \mathbf{M}_{y} = \frac{i}{2} \begin{pmatrix} 0 & -\sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & -2 & 0 \\ 0 & 2 & 0 & -\sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}$$

and

$$\mathbf{M}_z = \frac{1}{2} \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix}$$

Solution For (*a*) we consider that $[\mathbf{M}_x, \mathbf{M}_y]$

$$= \frac{i}{4} \begin{bmatrix} 0 & \sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & 2 & 0 \\ 0 & 2 & 0 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{bmatrix} \begin{bmatrix} 0 & -\sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & -2 & 0 \\ 0 & 2 & 0 & -\sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{bmatrix} -$$

$$= \frac{i}{4} \begin{bmatrix} 0 & -\sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & -2 & 0 \\ 0 & 2 & 0 & -\sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{bmatrix} \begin{bmatrix} 0 & \sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & 2 & 0 \\ 0 & 2 & 0 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{bmatrix}$$

$$= \frac{i}{2} \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$

$$= i\mathbf{M}_z$$

Similarly we can show that $[\mathbf{M}_y, \mathbf{M}_z] = i\mathbf{M}_x$ and $[\mathbf{M}_z, \mathbf{M}_x] = i\mathbf{M}_y$ Thus, $[\mathbf{M}_i, \mathbf{M}_j] = i\sum_k \varepsilon_{ijk}\mathbf{M}_k$ where i, j, k can take values 1,2,3 or x, y, z.

Solution For (b) we consider that

$$\mathbf{M}^2 \equiv \mathbf{M}_x^2 + \mathbf{M}_y^2 + \mathbf{M}_z^2$$

$$=\frac{1}{4}\begin{bmatrix} 0 & \sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & 2 & 0 \\ 0 & 2 & 0 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{bmatrix}^2 - \frac{1}{4}\begin{bmatrix} 0 & -\sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & -2 & 0 \\ 0 & 2 & 0 & -\sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{bmatrix}^2 + \frac{1}{4}\begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}^2$$

$$= 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= 21_3$$

Solution For (c) we obtain the result from the previous part

$$[\mathbf{M}^2, \mathbf{M}_i] = [21_3, \mathbf{M}_i]$$

$$= 21_3 \mathbf{M}_i - 2\mathbf{M}_i 1_3$$

$$= 2\mathbf{M}_i - 2\mathbf{M}_i$$

$$= 0$$

$$[\mathbf{M}_{z}, \mathbf{L}^{+}] = [\mathbf{M}_{z}, \mathbf{M}_{x} + i\mathbf{M}_{y}]$$

$$= [\mathbf{M}_{z}, \mathbf{M}_{x}] - [i\mathbf{M}_{y}, \mathbf{M}_{z}]$$

$$= [\mathbf{M}_{z}, \mathbf{M}_{x}] - i[\mathbf{M}_{y}, \mathbf{M}_{z}]$$

$$= i\mathbf{M}_{y} - i(i\mathbf{M}_{x})$$

$$= i\mathbf{M}_{y} + \mathbf{M}_{x}$$

$$= \mathbf{M}_{x} + i\mathbf{M}_{y}$$

$$= \mathbf{L}^{+}$$

And finally

$$[\mathbf{L}^{+}, \mathbf{L}^{-}] = [\mathbf{M}_{x} + i\mathbf{M}_{y}, \mathbf{M}_{x} - i\mathbf{M}_{y}]$$

$$= [\mathbf{M}_{x}, \mathbf{M}_{x}] - [\mathbf{M}_{x}, i\mathbf{M}_{y}] + [i\mathbf{M}_{y}, \mathbf{M}_{x}] - [i\mathbf{M}_{y}, i\mathbf{M}_{y}],$$

$$= 0 - i[\mathbf{M}_{x}, \mathbf{M}_{y}] - [\mathbf{M}_{x}, i\mathbf{M}_{y}] - 0$$

$$= -2i(i\mathbf{M}_{z})$$

$$= 2\mathbf{M}_{z}$$

2.2.14

If **A** is a diagonal matrix, with all diagonal elements different, and **A** and **B** commute, show that **B** is diagonal.

Solution Given matrix **A** is diagonal matrix

$$\mathbf{A} = \text{diag}(a_1, a_2, a_3, ...a_n)$$

and $B = (b_{ij})$. Here **A** and **B** matrix conmute **AB** = **BA**, so

$$(a_i - a_j)b_{kl} = 0 \quad \text{for } k \neq l$$

$$b_{kl} = 0$$
 for $k \neq l$

Hence from the above statement we can say that is also a diagonal matrix

2.2.15

If **A** and **B** are diagonal, show that **A** and **B** commute.

Solution consider two $n \times n$ matrices **A** and **B**, which are diagonal.

$$\mathbf{A} = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix}$$

$$\mathbf{AB} = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix} \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix} = \begin{bmatrix} a_1b_1 & 0 \\ 0 & a_2b_2 \end{bmatrix}$$

$$\mathbf{BA} = \left[\begin{array}{cc} b_1 & 0 \\ 0 & b_2 \end{array} \right] \left[\begin{array}{cc} a_1 & 0 \\ 0 & a_2 \end{array} \right] = \left[\begin{array}{cc} b_1 a_1 & 0 \\ 0 & b_2 a_2 \end{array} \right]$$

Commutative properts of addition:

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix} + \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix} = \begin{bmatrix} a_1 + b_1 & 0 \\ 0 & a_2 + b_2 \end{bmatrix}$$

$$\mathbf{B} + \mathbf{A} = \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix} + \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix} = \begin{bmatrix} b_1 + a_1 & 0 \\ 0 & b_2 + a_2 \end{bmatrix}$$

Hence, diagonal matrices, when added commute.

2.2.16

Show that Tr(ABC) = Tr(CBA) if any two of the three matrices commute.

Solution The trace of a matrix is the sum of its diagonal elements. Therefore, the trace of the product of three matrices **A**, **B**, and **C** is given by

$$Tr(\mathbf{ABC}) = \sum_{iik} \mathbf{A}_{ij} \mathbf{B}_{jk} \mathbf{C}_{ki}$$

By using the fact that i, j, and k are dummy summation indices with the same range, this sum can be written in the equivalent forms

$$\sum_{ijk} \mathbf{A}_{ij} \mathbf{B}_{jk} \mathbf{C}_{ki} = \sum_{ijk} \mathbf{C}_{ki} \mathbf{A}_{ij} \mathbf{B}_{jk} = \sum_{ijk} \mathbf{B}_{jk} \mathbf{C}_{ki} \mathbf{A}_{ij}$$

But the second and third of these are

$$\sum_{ijk} \mathbf{C}_{ki} \mathbf{A}_{ij} \mathbf{B}_{jk} = \mathrm{Tr}(\mathbf{C} \mathbf{A} \mathbf{B})$$

and

$$\sum_{iik} \mathbf{B}_{jk} \mathbf{C}_{ki} \mathbf{A}_{ij} = \mathrm{Tr}(\mathbf{BCA})$$

respectively. Thus, we obtain the relation

$$Tr(ABC) = Tr(CAB) = Tr(BCA)$$

2.2.17

2.2.17 Angular momentum matrices satisfy a commutation relation

$$[\mathbf{M}_j, \mathbf{M}_k] = i\mathbf{M}_l \quad j, k, l \text{ cyclic}$$

Solution Taking the trace of both sides of the given expression, we have

$$\operatorname{Tr}(i\mathbf{M}_k) = \operatorname{Tr}(\mathbf{M}_i\mathbf{M}_j - \mathbf{M}_j\mathbf{M}_i)$$

Hence

$$i \operatorname{Tr} (\mathbf{M}_k) = \operatorname{Tr} (\mathbf{M}_i \mathbf{M}_i) - \operatorname{Tr} (\mathbf{M}_i \mathbf{M}_i)$$

since $Tr(\mathbf{AB}) = Tr(\mathbf{BA})$, we see that $Tr(\mathbf{M}_k) = 0$ for any k.

A and **B** anticommute: $\mathbf{AB} = -\mathbf{BA}$. Also, $\mathbf{A}^2 = 1$, $\mathbf{B}^2 = 1$. Show that $\mathrm{Tr}(\mathbf{A}) = \mathrm{Tr}(\mathbf{B}) = 0$. Note. The Pauli and Dirac matrices are specific examples.

Solution Since $\mathbf{B}^2 = I$, \mathbf{B} is non-singular and its inverse exists. Therefore, $\mathbf{A} = -\mathbf{B}^{-1}\mathbf{A}\mathbf{B}$. Taking the trace, we get

$$\operatorname{Tr}(\mathbf{A}) = -\operatorname{Tr}(\mathbf{B}^{-1}\mathbf{A}\mathbf{B}) = -\operatorname{Tr}(\mathbf{A}\mathbf{B}\mathbf{B}^{-1}) = -\operatorname{Tr}(\mathbf{A})$$

We see that $Tr(\mathbf{A}) = 0$. Similarly, we find $Tr(\mathbf{B}) = 0$

2.2.19

- (a) If two nonsingular matrices anticommute, show that the trace of each one is zero. (Nonsingular means that the determinant of the matrix is nonzero.)
- (b) For the conditions of part (a) to hold, **A** and **B** must be $n \times n$ matrices with n even. Show that if n is odd, a contradiction results.

Solution For (a) if the matrices are non-singular, then writing $\mathbf{A} = -\mathbf{B}\mathbf{A}\mathbf{B}^{-1}$ and taking the trace, we get $\operatorname{Tr}\mathbf{A} = -\operatorname{Tr}\mathbf{A}$. Hence $\operatorname{Tr}\mathbf{A} = 0$, and the procedure for \mathbf{B} is analogous.

Solution For (b) now, we compute the determinant of both sides of $\mathbf{AB} = -\mathbf{BA}$: this yields det \mathbf{A} det $\mathbf{B} = (-1)^N$ det \mathbf{B} det \mathbf{A} , where N stands for size of matrices. Now since the \mathbf{A} , \mathbf{B} are non-singular, both sides of the equality are non-zero and the equality is possible only for even N.

2.2.20

If A^{-1} has elements

$$\left(\mathbf{A}^{-1}\right)_{ij} = a_{ij}^{(-1)} = \frac{\mathbf{C}_{ji}}{|\mathbf{A}|}$$

where C_{ji} is the ji th cofactor of |A|, show that

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$

Hence A^{-1} is the inverse of **A** (if $|A| \neq 0$).

Solution | We have to consider that

$$(A^{-1}A)_{ij} = \sum_{k} a_{ik}^{-1} a_{kj}$$

$$= \sum_{k} \frac{C_{ki}}{|A|} a_{kj}$$

$$= \frac{1}{|A|} \sum_{k} C_{ki} a_{kj}$$

$$= \frac{1}{|A|} |A| \delta_{ij}$$

$$= \delta_{ij}$$

Thus, $A^{-1}A = 1$. Hence, by definition of inverse of a matrix A^{-1} is the inverse of A(if $|A| \neq 0$).

2.2.21

Find the matrices \mathbf{M}_L such that the product $\mathbf{M}_L \mathbf{A}$ will be \mathbf{A} but with:

- (a) The i th row multiplied by a constant $k(a_{ij} \rightarrow ka_{ij}, j = 1, 2, 3, ...)$
- (b) The i th row replaced by the original i th row minus a multiple of the m^{th} row $(a_{ij} \rightarrow a_{ij} Ka_{mj}, i = 1, 2, 3, \ldots)$
- (c) The i th and m th rows interchanged $(a_{ij} \rightarrow a_{mj}, a_{mj} \rightarrow a_{ij}, j = 1, 2, 3, \ldots)$

Solution For (a) Here \mathbf{M}_L will be the identity matrix the i th row multiplied by k, i.e., \mathbf{M}_L is given by

$$\begin{bmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}$$

Solution For (b) Here \mathbf{M}_L will be the identity matrix with a change which is that the entry in the i th row and m^{th} column will be -k instead of 0. Note that, we have obtained this matrix from the identity matrix by replacing the ith row by the original ith row minus a multiple of the mth row.

$$\begin{bmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & \cdots & -k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}$$

Solution For (c) Here we obtain the matrix \mathbf{M}_L from the identity matrix by just inter changing the ith row and mth row.

$$\begin{bmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \\ \end{bmatrix}$$

Find the matrices M_R such that the product AM $_R$ will be A but with:

- (a) The i th column multiplied by a constant $k\left(a_{ji} \rightarrow ka_{ji}, j=1,2,3,\ldots\right)$
- (*b*) The *i* th column replaced by the original *i* th column minus a multiple of the m^{th} column $(a_{ji} \rightarrow a_{ji} ka_{jm}, j = 1, 2, 3, ...)$
- (c) The i th and m th columns interchanged $(a_{ji} \rightarrow a_{jm}, a_{jm} \rightarrow a_{ji}, j = 1, 2, 3, ...)$

Solution For (a), here \mathbf{M}_L will be the identity matrix the i th row multiplied by k, i.e., \mathbf{M}_L is given by

$$\begin{bmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}$$

Solution For (b), here \mathbf{M}_L will be the identity matrix with a change which is that the entry in the i th row and m^{th} column will be -k instead of 0. Note that, we have obtained this matrix from the identity matrix by replacing the ith row by the original ith row minus a multiple of the mth row.

$$\begin{bmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & \cdots & -k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}$$

Solution For (c), here we obtain the matrix \mathbf{M}_L from the identity matrix by just inter changing the ith row and mth row.

$$\begin{bmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}$$

Find the inverse of

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 4 \end{bmatrix}$$

Solution Calculating **A**⁻¹

$$\mathbf{A}^{-1} = \frac{1}{7} \begin{bmatrix} 7 & -7 & 0 \\ -7 & 11 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

2.2.24

Matrices are far too useful to remain the exclusive property of physicists. They may appear wherever there are linear relations. For instance, in a study of population move- ment the initial fraction of a fixed population in each of n areas (or industries or religions, etc.) is represented by an n -component column vector \mathbf{P} .

The movement of people from one area to another in a given time is described by an $n \times n$ (stochastic) matrix \mathbf{T} . Here \mathbf{T}_{ij} is the fraction of the population in the j th area that moves to the i^{th} area. (Those not moving are covered by i=j.) With \mathbf{P} describing the initial population distribution, the final population distribution is given by the matrix equation $\mathbf{TP} = \mathbf{Q}$. From its definition, $\sum_{i=1}^{n} \mathbf{P}_i = 1$

(a) Show that conservation of people requires that

$$\sum_{i=1}^n \mathbf{T}_{ij} = 1, \quad j = 1, 2, \dots, n$$

(b) Prove that

$$\sum_{i=1}^{n} \mathbf{Q}_i = 1$$

continues the conservation of people.

Solution For (a) The equation of part states that **T** moves people from area j but does not change their total number.

Solution For (*b*) Write the component equation $\sum_j \mathbf{T}_{ij} \mathbf{P}_j = \mathbf{Q}_i$ and sum over *i*. This summation replaces \mathbf{T}_{ij} by unity, leaving that the sum pver \mathbf{P}_j equals the sum over \mathbf{Q}_i , hence conserving people.

2.2.25

Given a 6 × 6 matrix A with elements $a_{ij} = 0.5^{|i-j|}, i, j = 0, 1, 2, \dots, 5$, find \mathbf{A}^{-1}

$$\mathbf{A} = \begin{bmatrix} 1 & 0.5 & 0.5^2 & 0.5^3 & 0.5^4 & 0.5^5 \\ 0.5 & 1 & 0.5 & 0.5^2 & 0.5^3 & 0.5^4 \\ 0.5^2 & 0.5 & 1 & 0.5 & 0.5^2 & 0.5^3 \\ 0.5^3 & 0.5^2 & 0.5 & 1 & 0.5 & 0.5^2 \\ 0.5^4 & 0.5^3 & 0.5^2 & 0.5 & 1 & 0.5 \\ 0.5^5 & 0.5^4 & 0.5^3 & 0.5^2 & 0.5 & 1 \end{bmatrix}$$

Solution

$$\mathbf{A}^{-1} = \frac{1}{3} \begin{bmatrix} 4 & -2 & 0 & 0 & 0 & 0 \\ -2 & 5 & -2 & 0 & 0 & 0 \\ 0 & -2 & 5 & -2 & 0 & 0 \\ 0 & 0 & -2 & 5 & -2 & 0 \\ 0 & 0 & 0 & -2 & 5 & -2 \\ 0 & 0 & 0 & 0 & -2 & 4 \end{bmatrix}$$

Show that the product of two orthogonal matrices is orthogonal.

Solution Let Q and P be orthogonal matrices. Therefore $\mathbf{Q}^T Q = I$ and $\mathbf{P}^T P = I$. We have that

$$(PQ)^T(PQ) = \mathbf{Q}^T \mathbf{P}^T P I Q = \mathbf{Q}^T Q = I$$

Therefore, a product of two orthogonal matrix is an orthogonal matrix.

2.2.27

If A is orthogonal, show that its determinant = ± 1 .

Solution We know that

$$\det \mathbf{A}^{T} = \det \mathbf{A}$$

$$\mathbf{A}^{T} \mathbf{A} = I$$

$$\det \mathbf{A}^{T} = \det I = 1$$

$$\det \mathbf{A}^{T} \mathbf{A} \det \mathbf{A}^{T} \det \mathbf{A}$$

$$(\det \mathbf{A})^{2} = \det \mathbf{A} \det \mathbf{A}^{T} = \det \mathbf{A}^{T} \det \mathbf{A} = \det \mathbf{A}^{T} A = 1$$

So we must have

$$det \mathbf{A} = \pm 1$$

2.2.28

Show that the trace of the product of a symmetric and an antisymmetric matrix is zero.

Solution If $\tilde{\mathbf{A}} = -\mathbf{A}$, $\tilde{\mathbf{S}} = \mathbf{S}$, then

$$Tr(\widetilde{SA}) = Tr(SA) = Tr(\widetilde{AS}) = -Tr(AS)$$

2.2.29

 ${\bf A}$ is 2×2 and orthogonal. Find the most general form of

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Solution From $\tilde{\mathbf{A}} = \mathbf{A}^{-1}$ and $\det(\mathbf{A}) = 1$ we have

$$\mathbf{A}^{-1} = \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix} = \tilde{\mathbf{A}} = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix}$$

This gives det (**A**) = $a_{11}^2 + a_{12}^2 = 1$, hence

$$a_{11} = \cos \theta = a_{22}, \quad a_{12} = \sin \theta = -a_{21},$$

the standard 2×2 rotation matrix.

2.2.30

Show that

$$\det\left(\mathbf{A}^{*}\right) = \left(\det\mathbf{A}\right)^{*} = \det\left(\mathbf{A}^{\dagger}\right)$$

Solution We calculate the determinant of **A***

$$\det(\mathbf{A}^*) = \sum_{i_k} \varepsilon_{i_1 i_2 \dots i_n} a_{1 i_1}^* a_{2 i_2}^* \dots a_{n i_n}^* = \left(\sum_{i_k} \varepsilon_{i_1 i_2 \dots i_n} a_{1 i_1} a_{2 i_2} \dots a_{n i_n}\right)$$

Because, for any A,

$$det(\mathbf{A}) = det(\mathbf{\tilde{A}}), det(\mathbf{A}^*) = det(\mathbf{A}^{\dagger})$$

2.2.31

Three angular momentum matrices satisfy the basic commutation relation

$$[\mathbf{J}_x,\mathbf{J}_y]=i\mathbf{J}_z$$

(and cyclic permutation of indices). If two of the matrices have real elements, show that the elements of the third must be pure imaginary.

Solution We know that basic commutation relation is $[J_i, J_j] = iJ_k$, where i j and k are indices in cyclic permutation. Here it is clear that J_x , J_y are real, so also must be their commutator. So according to commutator rule it requires that J_z be pure imaginary.

2.2.32

Show that $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$

Solution

$$(\mathbf{A}\mathbf{B})^{\dagger} = \widetilde{\mathbf{A}^*\mathbf{B}^*} = \widetilde{\mathbf{B}}^*\widetilde{\mathbf{A}}^* = \mathbf{B}^{\dagger}\mathbf{A}^{\dagger}$$

2.2.33

A matrix $C = S^{\dagger}S$. Show that the trace is positive definite unless S is the null matrix, in which case Tr(C) = 0.

Solution As

$$\mathbf{C}_{jk} = \sum_{n} S_{nj}^* S_{nk}$$

$$\mathrm{Tr}(\mathbf{C}) = \sum_{nj} \left| S_{nj} \right|^2$$

If **A** and **B** are Hermitian matrices, show that (AB + BA) and i(AB - BA) are also Hermitian.

Solution If
$$A^{\dagger} = A$$
, $B^{\dagger} = B$, then

$$(\mathbf{A}\mathbf{B} + \mathbf{B}\mathbf{A})^{\dagger} = \mathbf{B}^{\dagger}\mathbf{A}^{\dagger} + \mathbf{A}^{\dagger}\mathbf{B}^{\dagger} = \mathbf{A}\mathbf{B} + \mathbf{B}\mathbf{A}$$
$$-i\left(\mathbf{B}^{\dagger}\mathbf{A}^{\dagger} - \mathbf{A}^{\dagger}\mathbf{B}^{\dagger}\right) = i(\mathbf{A}\mathbf{B} - \mathbf{B}\mathbf{A})$$

2.2.35

The matrix **C** is not Hermitian. Show that then $C+C^{\dagger}$ and $i(C-C^{\dagger})$ are Hermitian. This means that a non-Hermitian matrix may be resolved into two Hermitian parts,

$$\mathbf{C} = \frac{1}{2} \left(\mathbf{C} + \mathbf{C}^{\dagger} \right) + \frac{1}{2i} i \left(\mathbf{C} - \mathbf{C}^{\dagger} \right)$$

This decomposition of a matrix into two Hermitian matrix parts parallels the decomposition of a complex number z into x + iy, where $x = (z + z^*)/2$ and $y = (z - z^*)/2i$

Solution If $C^{\dagger} \neq C$, then

$$(i\mathbf{C}_{-})^{\dagger} \equiv \left(\mathbf{C}^{\dagger} - \mathbf{C}\right)^{\dagger} = \mathbf{C} - \mathbf{C}^{\dagger} = -i\mathbf{C}_{-}^{\dagger},$$
$$(\mathbf{C}_{-})^{\dagger} = \mathbf{C}_{-}$$
$$\mathbf{C}_{+}^{\dagger} = \mathbf{C}_{+} = \mathbf{C} + \mathbf{C}^{\dagger}$$

2.2.36

A and **B** are two noncommuting Hermitian matrices:

$$AB - BA = iC$$

Prove that **C** is Hermitian.

Solution Let's consider

$$-i\mathbf{C}^{\dagger} = (\mathbf{A}\mathbf{B} - \mathbf{B}\mathbf{A})^{\dagger}$$
$$-i\mathbf{C}^{\dagger} = \mathbf{B}^{\dagger}\mathbf{A}^{\dagger} - \mathbf{A}^{\dagger}\mathbf{B}^{\dagger}$$
$$-i\mathbf{C}^{\dagger} = B\mathbf{A} - \mathbf{A}\mathbf{B}$$
$$-i\mathbf{C}^{\dagger} = -i\mathbf{C}$$

2.2.37

Two matrices **A** and **B** are each Hermitian. Find a necessary and sufficient condition for their product **AB** to be Hermitian.

Solution

$$(\mathbf{A}\mathbf{B})^{\dagger} = \mathbf{B}^{\dagger}\mathbf{A}^{\dagger} = \mathbf{B}\mathbf{A} = \mathbf{A}\mathbf{B}$$

With this, we can say that $[\mathbf{A}, \mathbf{B}] = 0$

Show that the reciprocal (that is, inverse) of a unitary matrix is unitary.

Solution

$$\left(\mathbf{U}^{\dagger}\right)^{\dagger} = \mathbf{U}$$

$$\left(\mathbf{U}^{\dagger}\right)^{\dagger} = \left(\mathbf{U}^{-1}\right)^{\dagger}$$

2.2.39

Prove that the direct product of two unitary matrices is unitary.

Solution

$$\begin{split} \left(U_{1}U_{2}\right)^{\dagger} &= U_{2}^{\dagger}U_{1}^{\dagger} \\ \left(U_{1}U_{2}\right)^{\dagger} &= U_{2}^{-1}U_{1}^{-1} \\ \left(U_{1}U_{2}\right)^{\dagger} &= \left(U_{1}U_{2}\right)^{-1} \end{split}$$

2.2.40

If σ is the vector with the σ_i as components given in Eq. (2.61), and p is an ordinary vector, show that

$$(\sigma \cdot p)^2 = p^2 \hat{1}_2$$

where $\hat{1}_2$ is a 2 × 2 unit matrix.

Solution

$$(\mathbf{p} \cdot \mathbf{\sigma})^{2} = (p_{x}\sigma_{1} + p_{y}\sigma_{2} + p_{z}\sigma_{3})^{2}$$

$$p_{x}^{2}\sigma_{1}^{2} + p_{y}^{2}\sigma_{2}^{2} + p_{z}^{2}\sigma_{3}^{2} + p_{x}p_{y}(\sigma_{1}\sigma_{2} + \sigma_{2}\sigma_{1}) + p_{x}p_{z}(\sigma_{1}\sigma_{3} + \sigma_{3}\sigma_{1})$$

$$+ p_{y}p_{z}(\sigma_{1}\sigma_{2} + \sigma_{2}\sigma_{1}) = p_{x}^{2} + p_{y}^{2} + p_{z}^{2} = \mathbf{p}^{2}$$

2.2.41

Use the equations for the properties of direct products, Eqs. (2.57) and (2.58), to show that the four matrices γ^{μ} , $\mu = 0, 1, 2, 3$, satisfy the conditions listed in Eqs. (2.74) and (2.75).

Solution Writing $\gamma^0 = \sigma_3 \otimes \mathbf{1}$ and $\gamma^i = \gamma \otimes \sigma_i (i = 1, 2, 3)$, where

$$\gamma = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

and noting fron Eq. (2.57) that if $\mathbf{C} = \mathbf{A} \otimes B$ and $\mathbf{C}' = \mathbf{A}' \otimes B'$ then $\mathbf{CC}' = \mathbf{AA}' \otimes BB'$

$$(\gamma^0)^2 = \sigma_3^2 \otimes \mathbf{1}_2^2 = \hat{\mathbf{1}}_2 \otimes \mathbf{1}_2 = \hat{\mathbf{1}}_4, \quad (\gamma^i)^2 = \gamma^2 \otimes \sigma_i^2 = (-\hat{\mathbf{1}}_2) \otimes \mathbf{1}_2 = -\hat{\mathbf{1}}_4$$

$$\gamma^0 \gamma^i = \sigma_3 \gamma \otimes \mathbf{1}_2 \sigma_i = \sigma_1 \otimes \sigma_i, \quad \gamma^i \gamma^0 = \gamma \sigma_3 \otimes \sigma_i \mathbf{1}_2 = (-\sigma_1) \otimes \sigma_i$$

$$\gamma^i \gamma^j = \gamma^2 \otimes \sigma_i \sigma_j \quad \gamma^j \gamma^i = \gamma^2 \otimes \sigma_j \sigma_i$$

It is obvious from the second line of the above equation set that $\gamma^0 \gamma^i + \gamma^i \gamma^0 = 0$; from the third line of the equation set we find $\gamma^i \gamma^j + \gamma^j \gamma^i$ is zero if $j \neq i$ because then $\sigma_i \sigma_i = -\sigma_i \sigma_i$

2.2.42

Show that γ^5 , Eq. (2.76), anticommutes with all four γ^{μ} .

Solution

$$\begin{split} \gamma^0 &= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}, \quad \gamma^1 = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}, \gamma^2 = \begin{bmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{bmatrix} \\ \gamma^3 &= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad \gamma^5 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \\ \gamma^0 \gamma^5 &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \\ \gamma^5 \gamma^0 &= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \\ \gamma^5 \gamma^1 &= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \gamma^5 \gamma^2 &= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \gamma^5 \gamma^2 &= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i & 0 & 0 \\ 0 & 0 & 0 & i \\ 0 & 0 & 0 & i \end{bmatrix} \\ \gamma^5 \gamma^2 &= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -i & 0 & 0 \\ 0 & 0 & 0 & i \\ 0 & 0 & 0 & -i \\ 0 & 0 & 0 & -i \end{bmatrix} \\ \gamma^5 \gamma^3 &= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0$$

This shows that γ^5 anticommutes with all four $\gamma^{\mu}(\mu = 0, 1, 2, 3)$

In this problem, the summations are over $\mu=0,1,2,3$. Define $g_{\mu\nu}=g^{\mu\nu}$ by the relations

$$g_{00}=1; \quad g_{kk}=-1, \quad k=1,2,3; \quad g_{\mu v}=0, \quad \mu \neq v$$

and define γ_{μ} as $\sum g_{v\mu}\gamma^{\mu}$. Using these definitions, show that

(a)
$$\sum \gamma_{\mu} \gamma^{\alpha} \gamma^{\mu} = -2 \gamma^{\alpha}$$

(b)
$$\sum \gamma_{\mu} \gamma^{\alpha} \gamma^{\beta} \gamma^{\mu} = 4g^{\alpha\beta}$$

(c)
$$\sum \gamma_{\mu} \gamma^{\alpha} \gamma^{\beta} \gamma^{\nu} \gamma^{\mu} = -2 \gamma^{\nu} \gamma^{\beta} \gamma^{\alpha}$$

Solution No solution yet.

2.2.44

If $\mathbf{M} = \frac{1}{2} (1 + \gamma^5)$, where γ^5 is given in Eq. (2.76), show that

$$\mathbf{M}^2 = \mathbf{M}$$

Note that this equation is still satisfied if γ is replaced by any other Dirac matrix listed in Eq. (2.76)

Solution Consider
$$\mathbf{M}^2 = \left[\frac{1}{2} \left(1 + \gamma^5\right)\right]^2$$

$$= \frac{1}{4} \left(\hat{1}_4 + 2\gamma^5 + (\gamma^5)^2\right)$$

$$= \frac{1}{4} \left(\hat{1}_4 + 2\gamma^5 + \hat{1}_4\right)$$

$$= \frac{1}{4} \left(2\hat{1}_4 + 2\gamma^5\right)$$

$$= \frac{1}{2} \left(\hat{1}_4 + \gamma^5\right)$$

$$= \mathbf{M}$$

Thus, $\mathbf{M}^2 = \mathbf{M}$

2.2.45

Prove that the 16 Dirac matrices form a linearly independent set.

Solution No solution yet.

If we assume that a given 4×4 matrix **A** (with constant elements) can be written as a linear combination of the 16 Dirac matrices (which we denote here as Γ_i)

$$\mathbf{A} = \sum_{i=1}^{16} c_i \Gamma_i$$

show that

$$c_i \sim \operatorname{trace}(\mathbf{A}\Gamma_i)$$

The matrix $\mathbf{C}=i\gamma^2\gamma^0$ is sometimes called the charge conjugation matrix. Show that $\mathbf{C}\gamma^\mu\mathbf{C}^{-1}=-\left(\gamma^\mu\right)^T$

Solution No solution yet.

2.2.47

The matrix $\mathbf{C} = i\gamma^2\gamma^0$ is sometimes called the charge conjugation matrix. Show that $\mathbf{C}\gamma^{\mu}\mathbf{C}^{-1} = -\left(\gamma^{\mu}\right)^T$

Solution Here

$$\gamma^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}, \quad \gamma^1 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}, \gamma^2 = \begin{bmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{bmatrix}$$

$$\gamma^3 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Consider
$$\mathbf{C}\gamma^0\mathbf{C}^{-1} = i\gamma^2\gamma^0\gamma^0 (i\gamma^2\gamma^0)^{-1}$$

$$C\gamma^{2}C^{-1} = i\gamma^{2}\gamma^{0}\gamma^{2} (i\gamma^{2}\gamma^{0})^{-1}$$

$$= \gamma^{2}\gamma^{0}\gamma^{2} (\gamma^{0})^{-1} (\gamma^{2})^{-1}$$

$$= -\gamma^{2}$$

$$= - (\gamma^{2})^{T}$$

$$C\gamma^{3}C^{-1} = i\gamma^{2}\gamma^{0}\gamma^{3} (i\gamma^{2}\gamma^{0})^{-1}$$

$$= \gamma^{2}\gamma^{0}\gamma^{3} (\gamma^{0})^{-1} (\gamma^{2})^{-1}$$

$$= \gamma^{3}$$

$$= - (\gamma^{3})^{T}$$

Thus,
$$\mathbf{C}\gamma^{\mu}\mathbf{C}^{-1} = -(\gamma^{\mu})^{T} (\mu = 0, 1, 2, 3)$$

(a) Show that, by substitution of the definitions of the γ^μ matrices from Eqs. (2.70) and (2.72), that the Dirac equation, Eq. (2.73), takes the following form when written as 2 × 2 blocks (with ψ_L and ψ_S column vectors of dimension 2). Here L and S stand, respectively, for "large" and "small" because of their relative size in the nonrelativistic limit):

$$\begin{bmatrix} mc^2 - E & c\left(\sigma_1p_1 + \sigma_2p_2 + \sigma_3p_3\right) \\ -c\left(\sigma_1p_1 + \sigma_2p_2 + \sigma_3p_3\right) & -mc^2 - E \end{bmatrix} \begin{bmatrix} \psi_L \\ \psi_S \end{bmatrix} = 0$$

(*b*) To reach the nonrelativistic limit, make the substitution $\mathbf{E} = mc^2 + \varepsilon$ and approximate $-2mc^2 - \varepsilon$ by $-2mc^2$. Then write the matrix equation as two simultaneous two-component equations and show that they can be rearranged to yield

$$\frac{1}{2m} \left(p_1^2 + p_2^2 + p_3^2 \right) \psi_L = \varepsilon \psi_L$$

which is just the Schrödinger equation for a free particle.

(c) Explain why is it reasonable to call ψ_L and ψ_S "large" and "small."

Solution No solution yet.

2.2.49

Show that it is consistent with the requirements that they must satisfy to take the Dirac gamma matrices to be (in 2×2 block form)

$$\gamma^0 = \begin{bmatrix} 0 & \mathbf{1}_2 \\ \mathbf{1}_2 & 0 \end{bmatrix}, \quad \gamma^i = \begin{bmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{bmatrix}, \quad (i = 1, 2, 3)$$

This choice for the gamma matrices is called the Weyl representation.

Solution If $C = A \otimes B$ and $C' = A' \otimes B'$ then $CC' = AA' \otimes BB'$ we have

$$(\gamma^0)^2 = \sigma_2^2 \otimes \hat{1}_2^2$$

$$= \hat{1}_2 \otimes \hat{1}_2 \quad \text{as } \sigma_i^2 = 1$$

$$= \hat{1}_4$$

as
$$\gamma^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -\hat{1}_2$$

$$(\gamma')^2 = \gamma^2 \otimes \sigma_i^2$$

$$= (-\hat{1}_2) \otimes \hat{1}_2$$

$$= -\hat{1}_4$$

$$= -1$$

as
$$\sigma_1 \gamma = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = -\sigma_3$$

$$\gamma^0 \gamma^i = \sigma_1 \gamma \otimes \mathbf{l}_2 \sigma_i$$

$$= (-\sigma_3) \otimes \sigma_i$$

$$\gamma^i \gamma^0 = \gamma \sigma_1 \otimes \sigma_i \mathbf{l}_2$$

$$= \sigma_3 \otimes \sigma_i$$

as
$$\gamma \sigma_1 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \sigma_3$$
 Thus $\gamma^0 \gamma^i + \gamma^i \gamma^0 = 0$

$$\gamma^i \gamma^j = \gamma^2 \otimes \sigma_i \sigma_j$$

$$\gamma^j \gamma^i = \gamma^2 \otimes \sigma_j \sigma_i = \gamma^2 \otimes (-\sigma_i \sigma_j)$$

as $\sigma_i \sigma_j + \sigma_j \sigma_i = 0$. Thus, $\gamma^i \gamma^j + \gamma^j \gamma^i = 0$ if $j \neq i$

2.2.50

Show that the Dirac equation separates into independent 2×2 blocks in the Weyl representation (see Exercise 2.2.49) in the limit that the mass m approaches zero. This observation is important in the ultra relativistic regime where the rest mass is inconsequential, or for particles of negligible mass (e.g., neutrinos).

Solution In the Weyl representation, the matrices γ^0 , α_i and the wave function ψ written as 2 × 2 blocks take the forms

$$\gamma^0 = \begin{bmatrix} 0 & \hat{1}_2 \\ \hat{1}_2 & 0 \end{bmatrix}, \quad \alpha_i = \begin{bmatrix} -\sigma_i & 0 \\ 0 & \sigma_i \end{bmatrix} \quad \text{and} \quad \psi = \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix}$$

In block form $\left[\gamma^0 mc^2 + \alpha \cdot p\right] \psi = E\psi$ becomes

$$\begin{bmatrix} \begin{bmatrix} 0 & mc^2 \\ mc^2 & 0 \end{bmatrix} + \begin{bmatrix} -\sigma \cdot p & 0 \\ 0 & \sigma \cdot p \end{bmatrix} \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix} = E \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix}$$

If m is zero, this matrix equation becomes two independent equations, one for ψ_1 , and one for ψ_2 In this limit, one set of solutions will be with $\psi_2 = 0$ and ψ_1 a solution to $-\sigma \cdot p\psi_1 = E\psi_1$ and a second set of solutions will have $\psi_1 = 0$ and a set of ψ_2 identical to the previously found set of ψ_1 but with values of E of the opposite sign.

2.2.51

- (a) Given $\mathbf{r}' = \mathbf{U}\mathbf{r}$, with \mathbf{U} a unitary matrix and \mathbf{r} a (column) vector with complex elements, show that the magnitude of \mathbf{r} is invariant under this operation.
- (b) The matrix **U** transforms any column vector **r** with complex elements into **r**', leaving the magnitude invariant: $\mathbf{r}^{\dagger}\mathbf{r} = \mathbf{r}'^{\dagger}\mathbf{r}'$. Show that **U** is unitary.

Solution For (a) We show that the magnitude of r is invariant i.e. $\mathbf{r'}^{\dagger}\mathbf{r'} = \mathbf{r}^{\dagger}r$. Consider $\mathbf{r'}^{\dagger}\mathbf{r'} = (\mathbf{Ur})^{\dagger}\mathbf{Ur}$

$$= r^{\dagger}U^{\dagger}Ur$$

$$= r^{\dagger}1r$$

$$= r^{\dagger}r$$

This shows that the magnitude of r is invariant under this operation.

Solution For (b) all
$$r$$
, $\mathbf{r'}^{\dagger}\mathbf{r'} = \mathbf{r}^{\dagger}r$

$$(\mathbf{Ur})^{\dagger}\mathbf{Ur} = \mathbf{r}^{\dagger}r$$

$$\mathbf{r}^{\dagger}\mathbf{U}^{\dagger}\mathbf{Ur} = \mathbf{r}^{\dagger}1r$$

$$\mathbf{U}^{\dagger}\mathbf{U} = 1$$

This shows that *U* is unitary.

If $\mathbf{P} = \hat{\mathbf{e}}_x \mathbf{P}_x + \hat{\mathbf{e}}_y \mathbf{P}_y$ and $\mathbf{Q} = \hat{\mathbf{e}}_x \mathbf{Q}_x + \hat{\mathbf{e}}_y \mathbf{Q}_y$ are any two nonparallel (Also nonantiparallectors in the xy-plane, show that $\mathbf{P} \times \mathbf{Q}$ is in the z-direction.

Solution We write the *P* and *Q* vectors as

$$\mathbf{P} = \langle \mathbf{P}_x, \mathbf{P}_y, 0 \rangle \quad \mathbf{Q} = \langle \mathbf{Q}_x, \mathbf{Q}_y, 0 \rangle$$

So

$$\mathbf{P} \times \mathbf{Q} = \begin{vmatrix} \hat{\mathbf{e}}_x & \hat{\mathbf{e}}_y & \hat{\mathbf{e}}_z \\ \mathbf{P}_x & \mathbf{P}_y & 0 \\ \mathbf{Q}_x & \mathbf{Q}_y & 0 \end{vmatrix} = (\mathbf{P}_x \mathbf{Q}_y - \mathbf{Q}_x \mathbf{P}_y) \hat{\mathbf{e}}_z$$

3.2.2

Prove that $(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{A} \times \mathbf{B}) = (\mathbf{A}\mathbf{B})^2 - (\mathbf{A} \cdot \mathbf{B})^2$

Solution

$$(\mathbf{A} \times \mathbf{B})^2 = (|\mathbf{A}||\mathbf{B}|\sin\theta)^2$$
$$(\mathbf{A} \times \mathbf{B})^2 = \mathbf{A}^2 \times \mathbf{B}^2 \times \sin^2\theta$$
$$(\mathbf{A} \times \mathbf{B})^2 = \mathbf{A}^2 \times \mathbf{B}^2 \times (1 - \cos^2\theta)$$
$$(\mathbf{A} \times \mathbf{B})^2 = \mathbf{A}^2 \times \mathbf{B}^2 - \mathbf{A}^2 \times \mathbf{B}^2 \times (\cos^2\theta)$$
$$(\mathbf{A} \times \mathbf{B})^2 = \mathbf{A}^2\mathbf{B}^2 - (\mathbf{A} \cdot \mathbf{B})^2$$

3.2.3

Using the vectors

$$\mathbf{P} = \mathbf{\hat{e}}_x \cos \theta + \mathbf{\hat{e}}_y \sin \theta$$

$$\mathbf{Q} = \mathbf{\hat{e}}_x \cos \varphi - \mathbf{\hat{e}}_y \sin \varphi$$

$$\mathbf{R} = \mathbf{\hat{e}}_x \cos \varphi + \mathbf{\hat{e}}_y \sin \varphi$$

prove the familiar trigonometric identities

$$\sin(\theta + \varphi) = \sin\theta\cos\varphi + \cos\theta\sin\varphi$$

$$\cos(\theta + \varphi) = \cos\theta\cos\varphi - \sin\theta\sin\varphi$$

Solution Consider $P \cdot Q$ as

$$\mathbf{P} \cdot \mathbf{Q} = (\hat{x}\cos\theta + \hat{y}\sin\theta) \cdot (\hat{x}\cos\varphi - \hat{y}\sin\varphi) + \hat{y}\sin\theta\hat{x}\cos\varphi - \hat{y}\sin\theta\sin\varphi$$

$$\mathbf{P} \cdot \mathbf{Q} = (1 \times \cos \theta \cos \varphi) - (0 \times \cos \theta \sin \varphi) + (0 \times \sin \theta \cos \varphi) - (1 \times \sin \theta \sin \varphi)$$

$$\mathbf{P} \cdot \mathbf{Q} = \cos \theta \cos \varphi - \sin \theta \sin \varphi$$

And by the product rule, $\mathbf{P} \cdot \mathbf{Q} = \cos(\theta + \varphi)$

$$\cos(\theta + \varphi) = \cos\theta\cos\varphi - \sin\theta\sin\varphi$$

(a) Find a vector **A** that is perpendicular to

$$\mathbf{U} = 2\mathbf{\hat{e}}_x + \mathbf{\hat{e}}_y - \mathbf{\hat{e}}_z$$

$$\mathbf{V} = \mathbf{\hat{e}}_x - \mathbf{\hat{e}}_y + \mathbf{\hat{e}}_z$$

(*b*) What is **A** if, in addition to this requirement, we demand that it have unit magnitude?

Solution For (a) we have $\mathbf{U} = 2\hat{\mathbf{e}}_x + \hat{\mathbf{e}}_y - \hat{\mathbf{e}}_z$, $V = \hat{\mathbf{e}}_x - \hat{\mathbf{e}}_y + \hat{\mathbf{e}}_z$

$$\mathbf{U} \times \mathbf{V} = \begin{vmatrix} \hat{\mathbf{e}}_x & \hat{\mathbf{e}}_y & \hat{\mathbf{e}}_z \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{vmatrix} = \hat{\mathbf{e}}_x (1-1) - \hat{\mathbf{e}}_y (2+1) + \hat{\mathbf{e}}_z (-2-1)$$

$$\mathbf{U} \times \mathbf{V} = -\hat{\mathbf{e}}_y(3) + \hat{\mathbf{e}}_z(-3) = -3\hat{\mathbf{e}}_y - 3\hat{\mathbf{e}}_z$$

Solution For (*b*) We know **A** is $-3\hat{\mathbf{e}}_y - 3\hat{\mathbf{e}}_z$, so the magnitude of **A** is

$$|\mathbf{A}| = \sqrt{3^2 + 3^2} = \sqrt{18} = 3\sqrt{2}$$

From this

$$\mathbf{A} = \frac{-3\hat{\mathbf{e}}_y - 3\hat{\mathbf{e}}_z}{3\sqrt{2}} = \frac{-\hat{\mathbf{e}}_y - \hat{\mathbf{e}}_z}{\sqrt{2}}$$

3.2.5

If four vectors a, b, c, and d all lie in the same plane, show that

$$(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = 0$$

Hint. Consider the directions of the cross-product vectors.

Solution Since all four vectors lie in the same plane, the cross product of any two of them would be orthogonal to the plane. Thus:

$$\mathbf{v}_1 = (\mathbf{a} \times \mathbf{b})$$

$$\mathbf{v}_2 = (\mathbf{c} \times \mathbf{d})$$

By definition, it \mathbf{v}_1 and \mathbf{v}_2 are parallel, so $\mathbf{v}_1 \times \mathbf{v}_2 = 0$

3.2.6

Derive the law of sines (see Fig. 3.4):

$$\frac{\sin \alpha}{|\mathbf{A}|} = \frac{\sin \beta}{|\mathbf{B}|} = \frac{\sin \gamma}{|\mathbf{C}|}$$

Solution We have $\mathbf{A} - \mathbf{B} - \mathbf{C} = 0$ so we cross both sides by \mathbf{A}

$$\mathbf{A} \times \mathbf{A} - \mathbf{A} \times \mathbf{B} - \mathbf{A} \times \mathbf{C} = \mathbf{A} \times 0$$
$$0 - \mathbf{A} \times \mathbf{B} - \mathbf{A} \times \mathbf{C} = 0$$
$$-\mathbf{A} \times \mathbf{B} - \mathbf{A} \times \mathbf{C} = 0$$
$$-\mathbf{A} \times \mathbf{C} = \mathbf{A} \times B$$

$$\mathbf{C} \times \mathbf{A} = \mathbf{A} \times B$$
$$|\mathbf{C}||\mathbf{A}|\sin \beta = |\mathbf{A}|\mathbf{B}|\sin \gamma$$

Again, we cross both sides of $\mathbf{A} - \mathbf{B} - \mathbf{C} = 0$ by \mathbf{B}

$$\mathbf{B} \times \mathbf{A} - \mathbf{B} \times \mathbf{B} - \mathbf{B} \times \mathbf{C} = \mathbf{B} \times 0$$

$$\mathbf{B} \times \mathbf{A} - \mathbf{B} \times \mathbf{C} = 0$$

$$\mathbf{B} \times \mathbf{A} = \mathbf{B} \times C$$

$$|\mathbf{B}||A|\sin \gamma = |\mathbf{B}||\mathbf{C}|\sin \alpha$$

$$|\mathbf{A}|\sin \gamma = |\mathbf{C}|\sin \alpha$$

$$\frac{\sin \gamma}{|\mathbf{C}|} = \frac{\sin \alpha}{|\mathbf{A}|}$$

3.2.7

The magnetic induction **B** is defined by the Lorentz force equation,

$$\mathbf{F} = q(\mathbf{v} \times \mathbf{B})$$

Carrying out three experiments, we find that if

$$\mathbf{v} = \hat{\mathbf{e}}_x, \quad \frac{\mathbf{F}}{q} = 2\hat{\mathbf{e}}_z - 4\hat{\mathbf{e}}_y$$

$$\mathbf{v} = \hat{\mathbf{e}}_y, \quad \frac{\mathbf{F}}{q} = 4\hat{\mathbf{e}}_x - \hat{\mathbf{e}}_z$$

$$\mathbf{v} = \hat{\mathbf{e}}_z, \quad \frac{\mathbf{F}}{q} = \hat{\mathbf{e}}_y - 2\hat{\mathbf{e}}_x$$

From the results of these three separate experiments calculate the magnetic induction ${\bf B}.$

Solution From the first condition $v = \hat{\mathbf{e}}_x$, $\frac{F}{q} = 2\hat{\mathbf{e}}_z - 4\hat{\mathbf{e}}_{\dot{y}}$

$$\mathbf{v} \times \mathbf{B} = \begin{vmatrix} \hat{\mathbf{e}}_{x} & \hat{\mathbf{e}}_{y} & \hat{\mathbf{e}}_{z} \\ 1 & 0 & 0 \\ \mathbf{B}_{x} & \mathbf{B}_{y} & \mathbf{B}_{z} \end{vmatrix} = \hat{\mathbf{e}}_{x}(0) - \hat{\mathbf{e}}_{y}(\mathbf{B}_{z}) + \hat{\mathbf{e}}_{z}(\mathbf{B}_{y}) = -\hat{\mathbf{e}}_{y}(\mathbf{B}_{z}) + \hat{\mathbf{e}}_{z}(\mathbf{B}_{y})$$

$$\frac{\mathbf{F}}{q} = 2\hat{\mathbf{e}}_z - 4\hat{\mathbf{e}}_j,$$

$$\mathbf{v} \times \mathbf{B} = -\hat{\mathbf{e}}_y (\mathbf{B}_z) + \hat{\mathbf{e}}_z (\mathbf{B}_y)$$

$$\mathbf{B}_z = 4, \mathbf{B}_y = 2$$

Now, from the second condition $v = \hat{\mathbf{e}}_y$, $\frac{F}{q} = 4\hat{\mathbf{e}}_x - \hat{\mathbf{e}}_z$

$$\mathbf{v} \times \mathbf{B} = \begin{vmatrix} \hat{\mathbf{e}}_{x} & \hat{\mathbf{e}}_{y} & \hat{\mathbf{e}}_{z} \\ 0 & 1 & 0 \\ \mathbf{B}_{x} & \mathbf{B}_{y} & \mathbf{B}_{z} \end{vmatrix} = \hat{\mathbf{e}}_{x} (\mathbf{B}_{z}) - \hat{\mathbf{e}}_{y} (0) - \hat{\mathbf{e}}_{z} (\mathbf{B}_{x}) = \hat{\mathbf{e}}_{x} (\mathbf{B}_{z}) - \hat{\mathbf{e}}_{z} (\mathbf{B}_{x})$$

$$\frac{\mathbf{F}}{q} = 4\hat{\mathbf{e}}_{x} - \hat{\mathbf{e}}_{z}$$

$$\mathbf{v} \times \mathbf{B} = \hat{\mathbf{e}}_{x} (\mathbf{B}_{z}) - \hat{\mathbf{e}}_{z} (\mathbf{B}_{x})$$

$$B_z = 4$$
, $B_x = 1$

From the third condition

$$v = \hat{\mathbf{e}}_{z}$$

$$\frac{\mathbf{F}}{q} = \hat{\mathbf{e}}_{y} - 2\hat{\mathbf{e}}_{x}$$

$$\mathbf{v} \times \mathbf{B} = \begin{vmatrix} \hat{\mathbf{e}}_{x} & \hat{\mathbf{e}}_{y} & \hat{\mathbf{e}}_{z} \\ 0 & 0 & 1 \\ \mathbf{B}_{x} & \mathbf{B}_{y} & \mathbf{B}_{z} \end{vmatrix} = \hat{\mathbf{e}}_{x} (-\mathbf{B}_{y}) - \hat{\mathbf{e}}_{y} (-\mathbf{B}_{x}) - \hat{\mathbf{e}}_{z} (0) = -\hat{\mathbf{e}}_{x} (\mathbf{B}_{y}) + \hat{\mathbf{e}}_{y} (\mathbf{B}_{x})$$

$$\mathbf{v} \times \mathbf{B} = -\hat{\mathbf{e}}_{x} (\mathbf{B}_{y}) + \hat{\mathbf{e}}_{y} (\mathbf{B}_{x})$$

$$\frac{\mathbf{F}}{q} = \hat{\mathbf{e}}_{y} - 2\hat{\mathbf{e}}_{x}$$

$$\mathbf{B}_{y} = 2, \mathbf{B}_{x} = 1$$

3.2.8

You are given the three vectors A, B, and C,

$$\mathbf{A} = \mathbf{\hat{e}}_x + \mathbf{\hat{e}}_y$$
$$\mathbf{B} = \mathbf{\hat{e}}_y + \mathbf{\hat{e}}_z$$
$$\mathbf{C} = \mathbf{\hat{e}}_x - \mathbf{\hat{e}}_z$$

Therefore, from above three conditions magnetic induction is given by ${\bf B}=\hat x+2\hat y+4\hat z$

Solution For (a), $\mathbf{A} \cdot \mathbf{B} \times \mathbf{C} = 0$. Because **A** is the plane of **B** and **C**. The parallelepiped has zero height above the BC plane. So therefore volume will be zero. Therefore, the scalar triple product is zero.

Solution For (b)

$$(\mathbf{B} \times \mathbf{C}) = \begin{vmatrix} \mathbf{\hat{e}}_x & \mathbf{\hat{e}}_y & \mathbf{\hat{e}}_z \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{vmatrix} = \mathbf{\hat{e}}_x(-1) - \mathbf{\hat{e}}_y(-1) + \mathbf{\hat{e}}_z(-1) = -\mathbf{\hat{e}}_x + \mathbf{\hat{e}}_y - \mathbf{\hat{e}}_z$$

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \begin{vmatrix} \hat{\mathbf{e}}_x & \hat{\mathbf{e}}_y & \hat{\mathbf{e}}_z \\ 1 & 1 & 0 \\ -1 & 1 & -1 \end{vmatrix} = \hat{\mathbf{e}}_x(-1) - \hat{\mathbf{e}}_y(-1) + \hat{\mathbf{e}}_z(1+1) = -\hat{\mathbf{e}}_x + \hat{\mathbf{e}}_y + 2\hat{\mathbf{e}}_z$$

3.2.9

Prove Jacobi's identity for vector products:

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = 0$$

Solution From **BAC** – **CAB** rule $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = b(a.c) - c(a.b)$. The entire equation an written as

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + b \times (c \times a) + c \times (\mathbf{a} \times \mathbf{b}) = [b(a \cdot \mathbf{c}) - c(ab)] + [(b \cdot a)c - (b \cdot \mathbf{c})a] + [(c \cdot b)a - (c \cdot a)b]$$

since the dot product is commutative so they becomes zero. Therefore,

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + b \times (c \times a) + c \times (\mathbf{a} \times \mathbf{b}) = 0$$

A vector **A** is decomposed into a radial vector \mathbf{A}_r and a tangential vector \mathbf{A}_t . If $\hat{\mathbf{r}}$ is a unit vector in the radial direction, show that (a) $\mathbf{A}_r = \hat{\mathbf{r}}(\mathbf{A} \cdot \hat{\mathbf{r}})$ and (b) $\mathbf{A}_t = -\hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \mathbf{A})$

Solution Let
$$\mathbf{A} = \mathbf{A}_r \hat{\mathbf{r}} + \mathbf{A}_i \hat{\theta}$$

$$\mathbf{A} \cdot \hat{\mathbf{r}} = \mathbf{A}_r$$
, as $\hat{\mathbf{r}} \cdot \hat{\mathbf{r}} = 1$

The left-hand side is:

$$\mathbf{A}_r = \mathbf{A}_r \hat{\mathbf{r}}$$

since $\hat{\mathbf{r}}$ is the unit vector. The right-hand side is:

$$\hat{\mathbf{r}}(\mathbf{A} \cdot \hat{\mathbf{r}}) = \hat{\mathbf{r}}(\mathbf{A}_r) = \mathbf{A}_r \hat{\mathbf{r}}$$

For (*b*), taking dot product of both sides of the equation $\mathbf{A}_t = -\hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \mathbf{A})$ by $\hat{\mathbf{r}}$ we get

$$\mathbf{A}_t \cdot \mathbf{\hat{r}} = [-\mathbf{\hat{r}} \times (\mathbf{\hat{r}} \times \mathbf{A})] \cdot \mathbf{\hat{r}}$$

The left-hand side is:

$$\mathbf{A}_t \cdot \mathbf{\hat{r}} = \mathbf{A}_t \, \hat{\boldsymbol{\theta}} \cdot \mathbf{\hat{r}} = 0$$

$$[-\hat{\mathbf{r}} \times (\hat{\mathbf{r}} \times \mathbf{A})] \cdot \hat{\mathbf{r}} = [\hat{\mathbf{r}} \times (\mathbf{A} \times \hat{\mathbf{r}})] \cdot \hat{\mathbf{r}}$$

$$= [\mathbf{A}(\hat{\mathbf{r}} \cdot \hat{\mathbf{r}}) - \hat{\mathbf{r}}(\mathbf{A} \cdot \hat{\mathbf{r}})] \cdot \hat{\mathbf{r}}$$

$$= [\mathbf{A} - \hat{\mathbf{r}}\mathbf{A}_r] \cdot \hat{\mathbf{r}}$$

$$= \mathbf{A} \cdot \hat{\mathbf{r}} - \mathbf{A}_r \hat{\mathbf{r}} \cdot \hat{\mathbf{r}}$$

$$= \mathbf{A}_r - \mathbf{A}_r$$

$$= 0$$

3.2.11

Prove that a necessary and sufficient condition for the three (nonvanishing) vectors \mathbf{A} , \mathbf{B} , and \mathbf{C} to be coplanar is the vanishing of the scalar triple product

$$\mathbf{A} \cdot \mathbf{B} \times \mathbf{C} = 0$$

Solution It should be keep in mind that scalar triple product can also be represent as the volume of parallelepiped which is formed by three vectors. So we can say that if scalar triple product is equal to zero then vectors are coplanar as the parallelepipeds have no volume.

3.2.12

Three vectors A, B, and C are given by

$$A = 3\hat{e}_x - 2\hat{e}_y + 2\hat{z} B = 6\hat{e}_x + 4\hat{e}_y - 2\hat{z} C = -3\hat{e}_x - 2\hat{e}_y - 4\hat{z}$$

Compute the values of $A \cdot B \times C$ and $A \times (B \times C)$, $C \times (A \times B)$ and $B \times (C \times A)$

Solution First we can find $B \times C$ and then can permorm dot product

$$\mathbf{B} \times \mathbf{C} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ 6 & 4 & -2 \\ -3 & -2 & -4 \end{vmatrix} = \hat{x}(-16-4) - \hat{y}(-24-6) + \hat{z}(-12+12) = -20\hat{x} + 30\hat{y}$$

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = (3\hat{x} - 2\hat{y} + 2\hat{z}) \cdot (-20\hat{x} + 30\hat{y}) = -60 - 60 = -120$$

With this, $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = -120$

Solution For (b) we have that the vector **A**

$$\mathbf{A} = (3\hat{x} - 2\hat{y} + 2\hat{z})$$

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ 3 & -2 & 2 \\ -20 & 30 & 0 \end{vmatrix} = \hat{x}(-60) - \hat{y}(40) + \hat{z}(50)$$

With this,

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (-60)\hat{x} - (40)\hat{y} + (50)\hat{z}$$

Solution For (c)

$$(\mathbf{A} \times \mathbf{B}) = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ 3 & -2 & 2 \\ 6 & 4 & -2 \end{vmatrix} = \hat{x}(-4) - \hat{y}(-18) + \hat{z}(24)$$

$$\mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ -3 & -2 & -4 \\ -4 & 18 & 24 \end{vmatrix} = \hat{x}(26) - \hat{y}(-88) + \hat{z}(-62)$$

Solution For (d)

$$(\mathbf{C} \times \mathbf{A}) = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ -3 & -2 & -4 \\ 3 & -2 & 2 \end{vmatrix} = \hat{x}(-12) - \hat{y}(6) + \hat{z}(12)$$

$$\mathbf{B} \times (\mathbf{C} \times \mathbf{A}) = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ 6 & 4 & -2 \\ -12 & -6 & 12 \end{vmatrix} = \hat{x}(36) - \hat{y}(48) + \hat{z}(12)$$

3.2.13

Show that

$$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D}) - (\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C})$$

Solution Let $C \times D = m$. Now, consider the scalar triple product $(A \times B) \cdot m$. since cross and dot product can be interchanged, we have,

$$(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{m} = \mathbf{A} \cdot (\mathbf{B} \times \mathbf{m})$$

Resubstituting m we get

$$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = \mathbf{A} \cdot [\mathbf{B} \times (\mathbf{C} \times \mathbf{D})]$$
$$= \mathbf{A} \cdot [(\mathbf{B} \cdot \mathbf{D})\mathbf{C} - (\mathbf{B} \cdot \mathbf{C})\mathbf{D}]$$
$$= (\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D}) - (\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C})$$

Thus,
$$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D}) - (\mathbf{A} \cdot \mathbf{D})(\mathbf{B} \cdot \mathbf{C})$$

Show that $(\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{B} \times \mathbf{D})\mathbf{C} - (\mathbf{A} \cdot \mathbf{B} \times \mathbf{C})\mathbf{D}$

Solution Let $A \times B = m$

$$(\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \times \mathbf{D}) = \mathbf{m} \times (\mathbf{C} \times \mathbf{D})$$
$$= (\mathbf{m} \cdot \mathbf{D})\mathbf{C} - (\mathbf{m} \cdot \mathbf{C})\mathbf{D}$$
$$= ((\mathbf{A} \times \mathbf{B}) \cdot \mathbf{D})\mathbf{C} - ((\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C})\mathbf{D}$$
$$= (\mathbf{A} \cdot (\mathbf{B} \times \mathbf{D}))\mathbf{C} - (\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}))\mathbf{D}$$

3.2.15

An electric charge q_1 moving with velocity \mathbf{v}_1 produces a magnetic induction \mathbf{B} given by

$$\mathbf{B} = \frac{\mu_0}{4\pi} q_1 \frac{\mathbf{v}_1 \times \hat{\mathbf{r}}}{r^2} \quad \text{(mks units)},$$

where $\hat{\mathbf{r}}$ is a unit vector that points from q_1 to the point at which \mathbf{B} is measured (Biot and Savart law).

(a) Show that the magnetic force exerted by q_1 on a second charge q_2 , velocity \mathbf{v}_2 , is given by the vector triple product

$$\mathbf{F}_2 = \frac{\mu_0}{4\pi} \frac{q_1 q_2}{r^2} \mathbf{v}_2 \times (\mathbf{v}_1 \times \mathbf{\hat{r}})$$

- (*b*) Write out the corresponding magnetic force F_1 that q_2 exerts on q_1 . Define your unit radial vector. How do F_1 and F_2 compare?
- (c) Calculate \mathbf{F}_1 and \mathbf{F}_2 for the case of q_1 and q_2 moving along parallel trajectories side by side.

Solution For (a) The magnetic force \mathbf{F}_2 is defined by the Lorentz force equation,

$$\begin{aligned} \mathbf{F}_2 &= q_2 \left(\mathbf{v}_2 \times \mathbf{B}_1 \right) \\ &= \frac{\mu_0}{4\pi} q_1 q_2 \frac{\mathbf{v}_2 \times \left(\mathbf{v}_1 \times \mathbf{\hat{r}} \right)}{r^2} \end{aligned}$$

and

$$\mathbf{B}_1 = \frac{\mu_0}{4\pi} q_1 \frac{\mathbf{v}_1 \times \hat{\mathbf{r}}}{r^2}$$

For (b) The magnetic force \mathbf{F}_1 is defined by the Lorentz force equation,

$$\mathbf{F}_1 = q_1 (\mathbf{v}_1 \times \mathbf{B}_2)$$

$$= -\frac{\mu_0}{4\pi} q_1 q_2 \frac{\mathbf{v}_1 \times (\mathbf{v}_2 \times \hat{\mathbf{r}})}{r^2}$$

and

$$\mathbf{B}_2 = \frac{\mu_0}{4\pi} q_2 \frac{\mathbf{v}_2 \times (-\hat{\mathbf{r}})}{r^2}$$

From part we have,

$$\mathbf{F}_2 = \frac{\mu_0}{4\pi} q_1 q_2 \frac{\mathbf{v}_2 \times (\mathbf{v}_1 \times \mathbf{\hat{r}})}{r^2}$$

since $-\mathbf{v}_1 \times (\mathbf{v}_2 \times \hat{\mathbf{r}}) \neq \mathbf{v}_2 \times (\mathbf{v}_1 \times \hat{\mathbf{r}})$, $\mathbf{F}_1 \neq \mathbf{F}_2$ For (c) we have that

$$\begin{aligned} \mathbf{F}_1 &= -\frac{\mu_0}{4\pi} q_1 q_2 \frac{\mathbf{v} \times (\mathbf{v} \times \hat{\mathbf{r}})}{r^2} \\ &= -\frac{\mu_0}{4\pi} q_1 q_2 \frac{\mathbf{v} (\mathbf{v} \cdot \hat{\mathbf{r}}) - \hat{\mathbf{r}} (\mathbf{v} \cdot v)}{r^2} \\ &= -\frac{\mu_0}{4\pi} q_1 q_2 \frac{0 - \hat{\mathbf{r}} (\mathbf{v} \cdot v)}{r^2} \\ &= \frac{\mu_0}{4\pi} q_1 q_2 \frac{\mathbf{v}^2 \hat{\mathbf{r}}}{r^2} \end{aligned}$$

and

$$\mathbf{F}_{2} = \frac{\mu_{0}}{4\pi} q_{1} q_{2} \frac{\mathbf{v} \times (\mathbf{v} \times \hat{\mathbf{r}})}{r^{2}}$$

$$= \frac{\mu_{0}}{4\pi} q_{1} q_{2} \frac{\mathbf{v}(\mathbf{v} \cdot \hat{\mathbf{r}}) - \hat{\mathbf{r}}(\mathbf{v} \cdot \mathbf{v})}{r^{2}}$$

$$= \frac{\mu_{0}}{4\pi} q_{1} q_{2} \frac{0 - \hat{\mathbf{r}}(\mathbf{v} \cdot \mathbf{v})}{r^{2}}$$

$$= -\frac{\mu_{0}}{4\pi} q_{1} q_{2} \frac{\mathbf{v}^{2} \hat{\mathbf{r}}}{r^{2}}$$

Thus, $\mathbf{F}_1 = -\mathbf{F}_2$

Chapter 3.3

3.3.1 A rotation $\varphi_1 + \varphi_2$ about the z -axis is carried out as two successive rotations φ_1 and φ_2 , each about the z-axis. Use the matrix representation of the rotations to derive the trigonometric identities

Solution

$$\begin{split} \cos\left(\varphi_1+\varphi_2\right) &= \cos\varphi_1\cos\varphi_2 - \sin\varphi_1\sin\varphi_2 \\ \sin\left(\varphi_1+\varphi_2\right) &= \sin\varphi_1\cos\varphi_2 + \cos\varphi_1\sin\varphi_2 \\ \left[\begin{array}{c} \cos\left(\varphi_1+\varphi_2\right)\sin\left(\varphi_1+\varphi_2\right) \\ -\sin\left(\varphi_1+\varphi_2\right)\cos\left(\varphi_1+\varphi_2\right) \end{array} \right] &= \left[\begin{array}{c} \cos\varphi_2\sin\varphi_2 \\ -\sin\varphi_2\cos\varphi_2 \end{array} \right] \left[\begin{array}{c} \cos\varphi_1\sin\varphi_1 \\ -\sin\varphi_1\cos\varphi_1 \end{array} \right] \\ &= \left[\begin{array}{c} \cos\varphi_1\cos\varphi_2 - \sin\varphi_1\sin\varphi_2 \\ -\cos\varphi_1\sin\varphi_2 - \sin\varphi_1\cos\varphi_2 \end{array} \right. & \sin\varphi_1\cos\varphi_2 + \cos\varphi_1\sin\varphi_2 \\ -\cos\varphi_1\sin\varphi_2 - \sin\varphi_1\cos\varphi_2 \end{array} \right] \end{split}$$

3.3.2 A corner reflector is formed by three mutually perpendicular reflecting suffices. Show that a a ay of light incident tupon the cometor (striking all three surfaces) is reflected back along a line parallel to the line of incidence. Hint. Consider the effect of a reflection on the components of a vector describing the direction of the light ray.

Solution Here we are asked prove that the ray of light incident upon the corner reflector is reflected of back along line parallel to line of incidence.

So for this align the reflecting surfaces with xy, xz, and yz planes. If an incoming ray strikes the xy plane, the z component of its direction of propagation is reversed. A strike on the xz plane reverses its y component, and a strike on yz plane reverses its x component.

3.3.3 Let x and y be column vectors. Under an orthogonal transformation S, they become x' = Sx and y' = Sy. Show that $(x')^T y' = x^T y$, a result equivalent to the invariance of the dot product under a rotational transformation.

Solution It is given that *S* is orthogonal, if so its transpose is also its inverse. From this

$$(x')^T = (Sx)^T = x^T \mathbf{S}^T = x^T \mathbf{S}^{-1}$$

Then

$$(x')^T y' = x^T \mathbf{S}^{-1} S y = x^T y$$

Therefore $(x')^T y' = x^T y$

 $\boxed{\textbf{3.3.4}}$ Given the orthogonal transformation matrix *S* and vectors a and **b**,

$$S = \begin{bmatrix} 0.80 & 0.60 & 0.00 \\ -0.48 & 0.64 & 0.60 \\ 0.36 & -0.48 & 0.80 \end{bmatrix} \quad \mathbf{a} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$$

- (a) Calculate det(S).
- (b) Verify that $\mathbf{a} \cdot \mathbf{b}$ is invariant under application of \mathbf{S} to \mathbf{a} and \mathbf{b} .
- (c) Determine what happens to $\mathbf{a} \times \mathbf{b}$ under application of \mathbf{S} to \mathbf{a} and \mathbf{b} . Is this what is expected?

Solution For (a) given

$$S = \begin{bmatrix} 0.80 & 0.60 & 0.00 \\ -0.48 & 0.64 & 0.60 \\ 0.36 & -0.48 & 0.80 \end{bmatrix}$$

$$\det(S) = \det \begin{bmatrix} 0.80 & 0.60 & 0.00 \\ -0.48 & 0.64 & 0.60 \\ 0.36 & -0.48 & 0.80 \end{bmatrix} = 1$$

Solution For (b) we show that $a \cdot b$ is invariant under application of **S** to a and b.

$$\mathbf{a'} = \mathbf{S}\mathbf{a}$$

$$= \begin{bmatrix} 0.80 & 0.60 & 0.00 \\ -0.48 & 0.64 & 0.60 \\ 0.36 & -0.48 & 0.80 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0.80 \\ 0.12 \\ 1.16 \end{bmatrix}$$

$$\mathbf{b'} = \mathbf{Sb}$$

$$= \begin{bmatrix} 0.80 & 0.60 & 0.00 \\ -0.48 & 0.64 & 0.60 \\ 0.36 & -0.48 & 0.80 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$$

$$= \begin{bmatrix} 1.20 \\ 0.68 \\ -1.76 \end{bmatrix}$$

$$a \cdot b = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix} = -1$$

$$a' \cdot b' = \begin{bmatrix} 0.80 & 0.12 & 1.16 \end{bmatrix} \begin{bmatrix} 1.20 \\ 0.68 \\ -1.76 \end{bmatrix} = -1$$

Thus, $a \cdot b$ is invariant under application of **S** to a and b.

Solution For (c) we find $\mathbf{a} \times \mathbf{b}$

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} i & j & k \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{vmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$$

$$\mathbf{S}(\mathbf{a} \times \mathbf{b}) = \begin{bmatrix} 0.80 & 0.60 & 0.00 \\ -0.48 & 0.64 & 0.60 \\ 0.36 & -0.48 & 0.80 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} -1 \\ 2.8 \\ 0.4 \end{bmatrix}$$

$$\mathbf{a'} \times \mathbf{b'} = \begin{vmatrix} i & j & k \\ 0.80 & 0.12 & 1.16 \\ 1.20 & 0.68 & -1.76 \end{vmatrix} = \begin{bmatrix} -1 \\ 2.8 \\ 0.4 \end{bmatrix}$$

Thus, $S(a \times b) = a' \times b'$ and hence $a \times b$ is a vector.

3.3.5 Using **a** and **b** as defined in Exercise 3.3.5 but with

$$S = \begin{bmatrix} 0.60 & 0.00 & 0.80 \\ -0.64 & -0.60 & 0.48 \\ -0.48 & 0.80 & 0.36 \end{bmatrix} \quad \text{and} \quad \mathbf{c} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

- (a) Calculate det(S).
- (b) $\mathbf{a} \times \mathbf{b}$
- $(c) (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
- (d) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$

Solution For (a) Given that

$$S = \begin{bmatrix} 0.60 & 0.00 & 0.80 \\ -0.64 & -0.60 & 0.48 \\ -0.48 & 0.80 & 0.36 \end{bmatrix}$$

Then

$$det(S) = det \begin{bmatrix} 0.60 & 0.00 & 0.80 \\ -0.64 & -0.60 & 0.48 \\ -0.48 & 0.80 & 0.36 \end{bmatrix} = 1$$

Apply **S** to \mathbf{a} , \mathbf{b} , and c.

$$\mathbf{a'} = \mathbf{S}\mathbf{a}$$

$$= \begin{bmatrix} 0.60 & 0.00 & 0.80 \\ -0.64 & -0.60 & 0.48 \\ -0.48 & 0.80 & 0.36 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1.40 \\ -0.16 \\ -0.12 \end{bmatrix}$$

$$\mathbf{b'} = \mathbf{Sb}$$

$$= \begin{bmatrix} 0.60 & 0.00 & 0.80 \\ -0.64 & -0.60 & 0.48 \\ -0.48 & 0.80 & 0.36 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$$

$$= \begin{bmatrix} -0.80 \\ -1.68 \\ 1.24 \end{bmatrix}$$

$$\mathbf{c}' = \mathbf{S}\mathbf{c}$$

$$= \begin{bmatrix} 0.60 & 0.00 & 0.80 \\ -0.64 & -0.60 & 0.48 \\ -0.48 & 0.80 & 0.36 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 3.60 \\ -0.44 \\ 0.92 \end{bmatrix}$$

Now, we determine what happen to $\mathbf{a} \times \mathbf{b}$ under application of \mathbf{S} to \mathbf{a} , \mathbf{b} , \mathbf{c} .

Solution For
$$(b)$$

$$(a \times b) = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$$

$$\mathbf{S}(\mathbf{a} \times \mathbf{b}) = \begin{bmatrix} 0.60 & 0.00 & 0.80 \\ -0.64 & -0.60 & 0.48 \\ -0.48 & 0.80 & 0.36 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$$
$$= \begin{bmatrix} 0.40 \\ 1.64 \\ 2.48 \end{bmatrix}$$

$$\mathbf{a'} \times \mathbf{b'} = \begin{vmatrix} i & j & k \\ 1.40 & -0.16 & -0.12 \\ -0.80 & -1.68 & 1.24 \end{vmatrix} = \begin{bmatrix} -0.40 \\ -1.64 \\ -2.48 \end{bmatrix}$$

Thus, $S(a \times b) = a' \times b'$

Solution For (c) we determine what happen to $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ under application of **S** to \mathbf{a} , \mathbf{b} , \mathbf{c}

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \begin{bmatrix} -2 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = -4 + 1 + 6 = 3$$

$$(\mathbf{a'} \times \mathbf{b'}) \cdot \mathbf{c'} = \begin{bmatrix} -0.40 & -1.64 & -2.48 \end{bmatrix} \cdot \begin{bmatrix} 3.60 \\ -0.44 \\ 0.92 \end{bmatrix} = -3$$

Thus, $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = -(\mathbf{a}' \times \mathbf{b}') \cdot \mathbf{c}'$

Solution For (*d*) We now determine what happen to $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ under application of **S** to \mathbf{a} , \mathbf{b} , \mathbf{c} .

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \\ 2 & 1 & 3 \end{vmatrix} = \begin{bmatrix} 2 \\ 11 \\ -2 \end{bmatrix}$$

$$\mathbf{S}(\mathbf{a} \times (\mathbf{b} \times \mathbf{c})) = \begin{bmatrix} 0.60 & 0.00 & 0.80 \\ -0.64 & -0.60 & 0.48 \\ -0.48 & 0.80 & 0.36 \end{bmatrix} \begin{bmatrix} 2 \\ 11 \\ -2 \end{bmatrix} = \begin{bmatrix} -0.40 \\ -8.84 \\ 7.12 \end{bmatrix}$$

$$\mathbf{a}' \times (\mathbf{b}' \times \mathbf{c}') = \begin{vmatrix} 1.40 & -0.16 & -0.12 \\ -0.80 & -1.68 & 1.24 \\ 3.60 & -0.44 & 0.92 \end{vmatrix} = \begin{bmatrix} -0.40 \\ -8.84 \\ 7.12 \end{bmatrix}$$

Thus, $S(\mathbf{a} \times (\mathbf{b} \times \mathbf{c})) = \mathbf{a}' \times (\mathbf{b}' \times \mathbf{c}')$

Chapter 3.4

- 3.4.1 Another set of Euler rotations in common use is
- (1) a rotation about the x_3 -axis through an angle φ , counterclockwise,
- (2) a rotation about the x'_1 -axis through an angle θ , counterclockwise,
- (3) a rotation about the x_3'' -axis through an angle ψ , counterclockwise. If

$$\alpha = \varphi - \pi/2$$

$$\alpha = \varphi - \pi/2$$

$$\beta = \theta$$

$$\gamma = \psi + \pi/2$$
or
$$\varphi = \alpha + \pi/2$$

$$\theta = \beta$$

$$\psi = \gamma - \pi/2$$

show that the final systems are identical.

Solution | The Euler rotations given in the text is: 1. a rotation about the x_3 – axis through an angle α , counterclockwise 2. a rotation about the x_2' - axis through an angle β , counterclockwise 3. a rotation about the x_3'' axis through an angle γ , counterclockwise. The Euler rotation defined here differ from those in the text in that the inclination of the polar axis is about that x'_1 -axis rather than the x'_2 - axis. Therefore, to achieve the same polar orientation, we must place the x'_1 -axis where the x'_2 -axis was using the text rotation. This requires an additional first rotation of $\frac{\pi}{2}$. After inclining the polar axis, the rotational position is now $\frac{\pi}{2}$ greater than form the text rotation, so the third Euler angle must be $\frac{\pi}{2}$ less than its original value.

3.4.2 Suppose the Earth is moved (rotated) so that the north pole goes to 30° north, 20° west (original latitude and longitude system) and the 10° west meridian points due south (also in the original system). (a) What are the Euler angles describing this rotation? (b) Find the corresponding direction cosines.

Solution

3.4.3 Verify that the Euler angle rotation matrix, Eq. (3.37), is invariant under the transformation

$$\alpha \to \alpha + \pi$$
, $\beta \to -\beta$, $\gamma \to \gamma - \pi$

Solution The Euler rotation matrix $S(\alpha, \beta, \gamma)$ is :

$$\mathbf{S}(\alpha, \beta, \gamma) = \begin{bmatrix} \cos \gamma \cos \beta \cos \alpha - \sin \gamma \sin \alpha & \cos \gamma \cos \beta \sin \alpha + \sin \gamma \cos \alpha & -\cos \gamma \sin \beta \\ -\sin \gamma \cos \beta \cos \alpha - \cos \gamma \sin \alpha & -\sin \gamma \cos \beta \sin \alpha + \cos \gamma \cos \alpha & \sin \gamma \sin \beta \\ \sin \beta \cos \alpha & \sin \beta \sin \alpha & \cos \beta \end{bmatrix}$$

Using the transformation $\alpha \to \alpha + \pi$, $\beta \to -\beta$, $\gamma \to \gamma - \pi$ we get,

$$\mathbf{S}(\alpha+\pi,-\beta,\gamma-\pi) = \begin{bmatrix} \cos\gamma\cos\beta\cos\alpha - \sin\gamma\sin\alpha & \cos\gamma\cos\beta\sin\alpha + \sin\gamma\cos\alpha & -\cos\gamma\sin\beta \\ -\sin\gamma\cos\beta\cos\alpha & -\sin\gamma\cos\beta\sin\alpha + \cos\gamma\cos\alpha & \sin\gamma\sin\beta \\ \sin\beta\cos\alpha & \sin\beta\sin\alpha & \cos\beta \end{bmatrix}$$

as $\cos \alpha \to -\cos \alpha$, $\sin \alpha \to -\sin \alpha$; $\cos \beta \to \cos \beta$, $\sin \beta \to -\sin \beta$; $\sin \gamma \to -\sin \beta$ $-\sin \gamma$, $\cos \gamma \rightarrow -\cos \gamma$ Thus, $\mathbf{S}(\alpha, \beta, \gamma) = \mathbf{S}(\alpha + \pi, -\beta, \gamma - \pi)$ Hence, $\mathbf{S}(\alpha, \beta, \gamma)$ is invariant under the transformation $\alpha \to \alpha + \pi, \beta \to -\beta, \gamma \to -\beta$ $\gamma - \pi$

3.4.4 Show that the Euler angle rotation matrix $\mathbf{S}(\alpha, \beta, \gamma)$ satisfies the following relations: (a) $\mathbf{S}^{-1}(\alpha, \beta, \gamma) = \tilde{\mathbf{S}}(\alpha, \beta, \gamma)$ (b) $\mathbf{S}^{-1}(\alpha, \beta, \gamma) = \mathbf{S}(-\gamma, -\beta, -\alpha)$

Solution For (a) The three Euler rotations $S_1(\alpha)$, $S_2(\beta)$, $S_3(\gamma)$ are an orthogonal matrix. So, $\mathbf{S}(\alpha, \beta, \gamma) = S_3(\gamma)S_2(\beta)S_1(\alpha)$ must also be orthogonal. Therefore $\mathbf{S}^{-1}(\alpha, \beta, \gamma) = \tilde{\mathbf{S}}(\alpha, \beta, \gamma)$, by the definition of an orthogonal matrix.

Solution For (b) we have

$$\mathbf{S}(\alpha, \beta, \gamma) = \begin{bmatrix} \cos \gamma \cos \beta \cos \alpha - \sin \gamma \sin \alpha & \cos \gamma \cos \beta \sin \alpha + \sin \gamma \cos \alpha & -\cos \gamma \sin \beta \\ -\sin \gamma \cos \beta \cos \alpha - \cos \gamma \sin \alpha & -\sin \gamma \cos \beta \sin \alpha + \cos \gamma \cos \alpha & \sin \gamma \sin \beta \\ \sin \beta \cos \alpha & \sin \beta \sin \alpha & \cos \beta \end{bmatrix}$$

$$\mathbf{S}(-\gamma, -\beta, -\alpha) = \begin{bmatrix} \cos \gamma \cos \beta \cos \alpha - \sin \gamma \sin \alpha & -\sin \gamma \cos \beta \cos \alpha - \cos \gamma \sin \alpha & \sin \beta \cos \alpha \\ \cos \gamma \cos \beta \sin \alpha + \sin \gamma \cos \alpha & -\sin \gamma \cos \beta \sin \alpha + \cos \gamma \cos \alpha & \sin \beta \sin \alpha \\ -\cos \gamma \sin \beta & \sin \gamma \sin \beta & \cos \beta \end{bmatrix}$$

$$\mathbf{S}^{-1}(\alpha, \beta, \gamma) = \tilde{\mathbf{S}}(\alpha, \beta, \gamma)$$

$$= \begin{bmatrix} \cos \gamma \cos \beta \cos \alpha - \sin \gamma \sin \alpha & -\sin \gamma \cos \beta \cos \alpha - \cos \gamma \sin \alpha & \sin \beta \cos \alpha \\ \cos \gamma \cos \beta \sin \alpha + \sin \gamma \cos \alpha & -\sin \gamma \cos \beta \sin \alpha + \cos \gamma \cos \alpha & \sin \beta \sin \alpha \\ -\cos \gamma \sin \beta & \sin \gamma \sin \beta & \cos \beta \end{bmatrix}$$

Thus,
$$\mathbf{S}^{-1}(\alpha, \beta, \gamma) = \mathbf{S}(-\gamma, -\beta, -\alpha)$$

3.4.5 The coordinate system (x, y, z) is rotated through an angle Φ counterclockwise about an axis defined by the unit vector $\hat{\mathbf{n}}$ into system (x', y', z'). In terms of the new coordinates the radius vector becomes

$$\mathbf{r}' = \mathbf{r}\cos\Phi + \mathbf{r}\times\mathbf{n}\sin\Phi + \mathbf{\hat{n}}(\mathbf{\hat{n}}\cdot\mathbf{r})(1-\cos\Phi)$$

(a) Derive this expression from geometric considerations. (b) Show that it reduces as expected for $\hat{\bf n} = \hat{\bf e}_z$. The answer, in matrix form, appears in Eq. (3.35) (c) Verify that $r'^2 = r^2$.

Solution For (a) the projection of r on the rotation axis is not changed by the rotation; it is $(\mathbf{r} \cdot \hat{\mathbf{n}})\hat{\mathbf{n}}$. The portion of r perpendicular to the rotation axis can be written $r - (\mathbf{r} \cdot \hat{\mathbf{n}})\hat{\mathbf{n}}$. Upon rotation through an angle Φ , this vector perpendicular to the rotation axis will consist of a vector in its original direction $(r - (\mathbf{r} \cdot \hat{\mathbf{n}})\hat{\mathbf{n}})\cos\Phi$ plus a vector perpendicular both to it and to $\hat{\mathbf{n}}$ given by $(r - (\mathbf{r} \cdot \hat{\mathbf{n}})\hat{\mathbf{n}})\sin\Phi \times \hat{\mathbf{n}}$; this reduces to $\mathbf{r} \times \hat{\mathbf{n}}\sin\Phi$ Adding these contributions, we get the required result.

Solution For (*b*) if $\hat{\mathbf{n}} = \hat{\mathbf{e}}_z$, the formula $\mathbf{r}' = \mathbf{r}\cos\Phi + \mathbf{r} \times n\sin\Phi + \hat{\mathbf{n}}(\hat{\mathbf{n}} \cdot \mathbf{r})(1 - \cos\Phi)$ becomes

$$\mathbf{r}' = (x\hat{\mathbf{e}}_x + y\hat{\mathbf{e}}_y + z\hat{\mathbf{e}}_z)\cos\Phi + (y\hat{\mathbf{e}}_x - x\hat{\mathbf{e}}_y)\sin\Phi + \hat{\mathbf{e}}_z(z\hat{\mathbf{e}}_z)(1 - \cos\Phi)$$

$$= (x\hat{\mathbf{e}}_x + y\hat{\mathbf{e}}_y + z\hat{\mathbf{e}}_z)\cos\Phi + (y\hat{\mathbf{e}}_x - x\hat{\mathbf{e}}_y)\sin\Phi + z(1 - \cos\Phi)\hat{\mathbf{e}}_z$$

$$= x\cos\Phi\hat{\mathbf{e}}_x + y\cos\Phi\hat{\mathbf{e}}_y + z\cos\Phi\hat{\mathbf{e}}_z + y\sin\Phi\hat{\mathbf{e}}_x - x\sin\Phi\hat{\mathbf{e}}_y + z(1 - \cos\Phi)\hat{\mathbf{e}}_z$$

as $r = x\hat{\mathbf{e}}_x + y\hat{\mathbf{e}}_y + z\hat{\mathbf{e}}_z$, $\mathbf{r} \times n = \mathbf{r} \times \hat{\mathbf{e}}_z = y\hat{\mathbf{e}}_x - x\hat{\mathbf{e}}_y$ and Simplifying, this reduces to

$$\mathbf{r}' = (x\cos\Phi + y\sin\Phi)\mathbf{\hat{e}}_x + (y\cos\Phi - x\sin\Phi)\mathbf{\hat{e}}_y + z\mathbf{\hat{e}}_z$$

This corresponds to the rotational transformation whose matrix form is

$$S_1(\alpha) = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Solution For (c) we expand r'^2 , recognizing that the second term of

$$\mathbf{r}' = \mathbf{r}\cos\Phi + \mathbf{r} \times n\sin\Phi + \hat{\mathbf{n}}(\hat{\mathbf{n}}\cdot\mathbf{r})(1-\cos\Phi)$$

$$\mathbf{r}'^2 = \mathbf{r}'\cdot\mathbf{r}'$$

$$= (\mathbf{r}\cos\Phi + \mathbf{r}\times\hat{\mathbf{n}}\sin\Phi + \hat{\mathbf{n}}(\hat{\mathbf{n}}\cdot\mathbf{r})(1-\cos\Phi)) \cdot (\mathbf{r}\cos\Phi + \mathbf{r}\times\hat{\mathbf{n}}\sin\Phi + \hat{\mathbf{n}}(\hat{\mathbf{n}}\cdot\mathbf{r})(1-\cos\Phi))$$

$$= r^2\cos^2\Phi + (\mathbf{r}\cdot\mathbf{r}\times\hat{\mathbf{n}})\sin\Phi\cos\Phi + (\hat{\mathbf{n}}\cdot\mathbf{r})^2(1-\cos\Phi)\cos\Phi + (\mathbf{r}\times\hat{\mathbf{n}}\cdot\mathbf{r})\sin\Phi\cos\Phi$$

$$+ (\mathbf{r}\times\hat{\mathbf{n}}\cdot\mathbf{r}\times\hat{\mathbf{n}})\sin^2\Phi + (\mathbf{r}\times\hat{\mathbf{n}}\cdot\hat{\mathbf{n}})(\hat{\mathbf{n}}\cdot\mathbf{r})\sin\Phi(1-\cos\Phi) + (\hat{\mathbf{n}}\cdot\mathbf{r})^2(1-\cos\Phi)\cos\Phi$$

$$+ (\hat{\mathbf{n}}\cdot\mathbf{r}\times\hat{\mathbf{n}})(\hat{\mathbf{n}}\cdot\mathbf{r})\sin\Phi(1-\cos\Phi) + (\hat{\mathbf{n}}\cdot\mathbf{r})^2(1-\cos\Phi)^2$$

$$r'^2 = r^2\cos^2\Phi + (\mathbf{r}\times\hat{\mathbf{n}}\cdot\mathbf{r}\times\hat{\mathbf{n}})\sin^2\Phi + (\hat{\mathbf{n}}\cdot\mathbf{r})^2(1-\cos\Phi)^2 + 2(\hat{\mathbf{n}}\cdot\mathbf{r})^2(1-\cos\Phi)\cos\Phi$$
as $(\mathbf{r}\cdot\mathbf{r}\times\hat{\mathbf{n}}) = (\mathbf{r}\times\hat{\mathbf{n}}\cdot\mathbf{r}) = (\mathbf{r}\times\hat{\mathbf{n}}\cdot\hat{\mathbf{n}}) = (\hat{\mathbf{n}}\cdot\mathbf{r}\times\hat{\mathbf{n}})(\hat{\mathbf{n}}\cdot\mathbf{r}) = 0$

$$r'^2 = r^2\cos^2\Phi + (\mathbf{r}\times\hat{\mathbf{n}}\cdot\mathbf{r}\times\hat{\mathbf{n}})\sin^2\Phi + (\hat{\mathbf{n}}\cdot\mathbf{r})^2(1-\cos\Phi)^2 + 2(\hat{\mathbf{n}}\cdot\mathbf{r})^2(1-\cos\Phi)\cos\Phi$$

$$= r^2 + (\hat{\mathbf{n}}\cdot\mathbf{r})^2(-\sin^2\Phi + 1 + \cos^2\Phi - 2\cos^2\Phi)$$