ECE/CS 578 Assignment 2

* Due: 11:59 pm on October 13, 2023 (submit via Canvas)

1. DES

64 bits DES input and 56-bit key are given. Apply two round reduced DES and find the related ciphertext. You can find the related permutation tables and S-boxes from the lecture notes or DES Standardization document (shared on Canvas - DES-fips46-3.pdf).

Input:

bit#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
bit	0	1	1	0	1	0	1	0	0	0	1	1	0	1	0	1	0	1	0	1	0	0	1	1	0	0	1	0	0	0	0	1
bit#	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
bit	0	1	1	0	1	0	0	0	1	0	0	1	1	1	1	1	1	1	0	1	1	1	0	0	0	0	1	0	1	0	1	0

DES Key:

bit#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
bit	1	0	1	0	1	1	0	0	0	1	1	1	1	1	0	1	1	1	0	1	0	0	1	1
h:+ 44	25	20	27	20	20	20	21	22	22	24	25	20	27	20	20	40	41	42	42	11	45	10	47	40
bit#	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
bit	1	1	0	0	1	1	1	0	0	0	0	1	1	0	0	1	1	0	0	1	0	1	1	0
bit#	49	50	51	52	53	54	55	56																
bit	0	0	1	0	0	0	1	1																

2. AES

Compute the given steps below. You can use AES specification for more explanation. Show your work and present the results in a table to make it easy to follow.

- a- Convert the given 128-bit input to Hexadecimal form.
- b- Write the input in a state diagram (4 by 4 matrix).
- c- Apply SubBytes Step: use AES S-box to substitute the input.
- d- Apply ShiftRows Step.
- e- Apply Mixcolumns Step: use Irreducible polynomial $P(x) = x^8 + x^4 + x^3 + x + 1$.
- f- Apply AddRoundKey Step: use the given round key.

128-bit input

bit#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
bit	0	1	0	1	0	1	1	0	1	1	1	0	0	0	1	0	0	0	0	1	1	0	0	1	1	0	1	1	0	0	1	0
bit#	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
bit	0	1	0	0	0	1	0	0	1	0	1	1	0	0	1	1	1	1	0	1	1	0	1	1	0	1	0	0	0	0	1	1
bit#	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
bit	1	0	0	0	0	0	0	1	0	0	0	1	1	1	1	0	1	0	0	1	1	1	0	1	0	0	1	1	1	0	1	0
bit#	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128
bit	1	0	0	1	1	1	1	0	1	0	0	0	0	1	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	1	1	1

AES S-box Table

	- 1								7	7							
		0	1	2	3	4	5	6	7	8	9	a	ь	С	d	е	f
	0	63	7c	77	7ь	f2	6Ъ	6f	с5	30	01	67	2Ъ	fe	d7	ab	76
	1	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
	2	ь7	fd	93	26	36	3f	f7	C	34	a5	e5	f1	71	d8	31	15
	3	04	с7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	Ъ2	75
	4	09	83	2c	1a	1b	6e	5a	a0	52	3Ъ	d6	Ъ3	29	e3	2f	84
	5	53	d1	00	ed	20	fc	Ъ1	5Ъ	6a	cb	be	39	4a	4c	58	cf
	6	d 0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
	7	51	a3	40	8f	92	9d	38	f5	bc	Ъ6	da	21	10	ff	f3	d2
x	8	cd	0c	13	ec	5f	97	44	17	с4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	Ъ8	14	de	5e	0Ъ	ф
	a	e0	32	3a	0a	49	06	24	5c	c2	d 3	ac	62	91	95	e4	79
	ь	e7	c8	37	6d	8d	d 5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	С	ba	78	25	2e	1c	a6	Ъ4	с6	e8	dd	74	1f	4b	bd	8Ъ	8a
	d	70	3e	Ъ5	66	48	03	f6	0e	61	35	57	Ъ9	86	c1	1d	9e
	e	e1	f8	98	11	69	d9	8e	94	9Ъ	1e	87	e9	ce	55	28	df
	f	8c	a1	89	0d	bf	e6	42	68	41	99	2d	0f	ъ0	54	рр	16

Round Key

bit#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
bit	0	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1	1	0	1	0	0	1	1	0	1	1	0	1	0	1	1	0
bit#	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
bit	0	1	1	1	0	1	1	0	1	0	0	1	0	0	1	1	0	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
bit#	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
bit	1	1	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1	1	0	0	1	0	0	0	1	1	0	0	1	1	0	1
bit#	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128
bit	1	1	1	1	0	0	0	1	1	0	1	1	0	1	0	1	0	1	1	1	0	0	1	0	0	1	1	1	0	0	1	0

- **3- Modular Arithmetic** is the basis of many cryptosystems. As a consequence, we will address this topic with several problems in this and upcoming chapters.
 - a- Compute the results:
 - i. 37 · 3 mod 23
 - ii. 19 · 13 mod 23
 - iii. 18 · 15 mod 12
 - iv. $15 \cdot 29 + 11 \cdot 15 \mod 23$
 - b. Find the greatest common divisor of the given numbers (use Euclidean Algorithm).
 - i. 8 and 17
 - ii. 5 and 17
 - iii. 5 and 37
 - iv. 10 and 15
 - c. Find the inverses of the given numbers in the given modular spaces (use Extended Euclidean Algorithm).
 - i. $8^{-1} \mod 17$
 - ii. $5^{-1} \mod 17$
 - iii. $5^{-1} \mod 37$
 - iv. $10^{-1} \mod 15$
 - d. List all elements of modulo 216 with no multiplicative inverse.