Числовая ось

Числовой осью назовем прямую с выбранной на ней точкой O (начало координат), масштабным отрезком OE (его длина равна 1) и положительное направление от O к E

Несоразмеримые отрезки

Существование несоразмеримых отрезков показывает, что *не все точки числовой оси соответствуют* рациональным числам

Бесконечные десятичные дроби

Выясним, сколько раз единичный отрезок укладывается в ОМ. Возможны два случая:

- 1) Единичный отрезок укладывается в ОМ целое число раз a_0 с остатком меньше I. Тогда a_0 результат измерения отрезка ОМ по недостатку с точностью до I.
- 2) Единичный отрезок укладывается в ОМ целое число раз $a_0 + 1$

Выясним, сколько раз 1/10 единичного отрезка укладывается в ОМ. Возможны те же два случая, обозначим результат за a_1

и считаем, что $a_0.a_1$ — результат измерения отрезка ОМ по недостатку с точностью 1/10 Аналогичную операцию можно повторять сколь угодно раз, получая все более точные измерения.

$$M \to a_0$$
; $a_0.a_1$; ... $a_0.a_1a_2...a_n$

Таким образом, каждой точке М на числовой оси можно поставить в соответствие бесконечную десятичную дробь:

 $a_0.a_1a_2...$

Иногда дробь периодическая:

$$a_0.a_1a_2...a_n(c_1c_2...c_k)(c_1c_2...c_k)...$$

Эквивалентность и равенство рациональных чисел

Принято считать, что $\frac{1}{2} = 0.5 = 0.5(0); \frac{1}{2} \leftrightarrow 0.4999(9)$

Множество вещественных чисел

— Это множество бесконечных десятичных дробей с введенными на нем операциями порядка.

Модуль бесконечной десятичной дроби

Модулем бесконечной десятичной дроби будем называть взятое со знаком + его представление в виде бесконечной десятичной дроби, т.е.

Введение отношения порядка

Пусть $a = \pm a_0.a_1a_2..., b = \pm b_0.b_1b_2...$

- 1) a=b , если равны целые части $a_0=b_0$ и десятичные $a_n=b_n$, а числа a и b имеют $o\partial u h$ знак
- 2) $a_1 = b_1$, $a_2 = b_2$, ... $a_n = b_n$, $a_{n+1} > b_{n+1} \Rightarrow a > b$, $a \ge 0$, $b \ge 0$
- 3) $a \ge 0$, $b \le 0 \Rightarrow a \ge b$
- 4) a, b вещественные $\Rightarrow a > b, b < 0 \Leftrightarrow |b| > |a|$

Множество вещественных чисел удовлетворяет всем аксиомам множества рациональных чисел