Internet Protocol - IP

2017/18 Q2

Jaime Delgado

DAC - UPC

Contents

- Unit 1: IP.
- Unit 2: Other supporting protocols and services.
- Unit 3: Routing algorithms.
- Unit 4: Security.

Contents Unit 1

IP:

- IP addresses.
- Routing tables.
- Fragmentation.
- IP protocol (header).

Contents Unit 1

IP:

- IP addresses.
- Routing tables.
- Fragmentation.
- IP protocol (header).

Subnet example

R1 interfaces: ppp0, e0 (subnet B), e1 (subnet C) R2 interfaces: e0 (subnet C), e1 (subnet B) R1 ppp address: 200.200.202.1 Risp ppp address: 200.200.202.2 R1 subnet B address: 200.200.200.33 R1 subnet C address: 200.200.200.66 R2 subnet A address: 200.200.200.1 R2 subnet C address: 200.200.200.65

Routing table 200.200.200.67

Where do I want to go?		How do I get there?	
Destination network	Mask	Gateway	Interface
.64 (my subnet, C)	/27	Direct	EO
.0 (subnet A)	/27	.65 (R2)	EO
.32 (subnet B)	/27	.66 (R1)	EO
0.0.0.0 (rest of the world)	/0	.66 (R1)	EO

Routing table Router R1

Where do I want to go?		How do I get there?	
Destination network	Mask	Gateway	Interface
.32 (my subnet, B)	/27	Direct	EO
.64 (my subnet C)	/27	Direct	E1
.0 (subnet A)	/27	.65 (R2)	E1
0.0.0.0 (rest of the world)	/0	200.200.202 .2 (Risp)	ppp0

Contents Unit 1

IP:

- IP addresses.
- Routing tables.
- Fragmentation.
- IP protocol (header).

Options	Padding	
Destination Address		
Source	Address	
Identification +-+-+-+-+-+-+-	D M Fragment F F Offset	
	Total length	
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5		

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5		
+-+-+-+-+-+-+-+-+-+-+-+-+-+ Version	Total length	
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+	D M Fragment F F Offset	
Time To Live Protocol +-+-+-+-+-+-+-+-+-+-+-+-+-]	
Source Address		
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-		
+-+-+-+-+-+-+-+-+-+-+-+-+-+	Padding	I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	+-	$\cdot - + - +$

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5		
Version IHL	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	
	D M Fragment F F Offset	
Time To Live Protocol	Header Checksum	
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-		
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-		
Options	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5	6 7 8 9 <mark>0</mark> 1 2 3 4 5 6 7 8 9 <mark>0</mark> 1	
Version IHL Type of Service	Total length	
	D M Fragment F F Offset	
Time To Live Protocol	Header Checksum	
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-		
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-		
Options	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	

IPv4 Header

IPv4 Header

IPv6 Header

IPv4 vs. IPv6 Header

Contents Unit 2

Other supporting protocols and services:

- ARP (Address Resolution Protocol).
- ICMP (Internet Control Message Protocol).
- DHCP (Dynamic Host Configuration Protocol).
- NAT (Network Address Translation).
- DNS (Domain Name System).

Contents Unit 2

Other supporting protocols and services:

- ARP (Address Resolution Protocol).
- ICMP (Internet Control Message Protocol).
- DHCP (Dynamic Host Configuration Protocol).
- NAT (Network Address Translation).
- DNS (Domain Name System).

NAT (Network Address Translation)

- Service in Router
- NAT table: Private and (mapped) Public addresses

Private address Public address

- Static and Dynamic (more efficient)
- IP-address and Port (transport address) (other info if other protocols):
 NAPT or PAT (P="port")

Private address Local port Public address External port

If communication starts from outside:
 DNAT (Destination NAT)

Contents Unit 2

Other supporting protocols and services:

- ARP (Address Resolution Protocol).
- ICMP (Internet Control Message Protocol).
- DHCP (Dynamic Host Configuration Protocol).
- NAT (Network Address Translation).
- DNS (Domain Name System).

- Application protocol needed for IP:
 - Obtain IP addresses from "names".
- Domain/sub-domain/host name:
 - Hierarchical structure: "myhost.ac.upc.edu"
 - .edu is a TLD (Top Level Domain).
- IP of myhost.ac.upc.edu (node/host name) know by local Name Server of ac.upc.edu
- DNS format & protocol needed.

Application protocol:

Application protocol:

Application protocol:

Unit 2

Other supporting protocols and services:

- ARP (Address Resolution Protocol).
- ICMP (Internet Control Message Protocol).
- DHCP (Dynamic Host Configuration Protocol).
- NAT (Network Address Translation).
- DNS (Domain Name System).

Example with DHCP, DNS, ARP

The Internet

Ri: Router

The Internet

Ri: Router

The Internet

Ri: Router

A wants to send a datagram to B

A wants to send a datagram to B

Protocols sequence

- A wants to send a datagram to B
- Host A starts → DHCP
- A needs to ask DNS for IP of host B (domain name)
- A checks Routing Table to know where to send DNS request (DNS server) → to R1
- A needs to find R1 \rightarrow ARP
- A sends DNS Request to R1
- Once IP address of Host B known, datagram is sent to R1, after checking Routing Table.

DHCP


```
Frame 1: 314 bytes on wire (2512 bits), 314 bytes captured (2512 bits)
```

Ethernet II, Src: Grandstr 01:fc:42 (00:0b:82:01:fc:42), Dst: Broadcast (ff:ff:ff:ff:ff)

Internet Protocol Version 4, Src: 0.0.0.0, Dst: 255.255.255.255

User Datagram Protocol, Src Port: 68, Dst Port: 67

Bootstrap Protocol (Discover)

DHCP Discover

```
Source
                                                314 DHCP Discover - Transaction ID 0x3d1d
   10.000000 0.0.0.0
                             255.255.255.DHCP
   20.000295 192.168.0.1
                                            DHCP 342 DHCP Offer - Transaction ID 0x3d1d
                             192.168.0.10
  3 0.070031 0.0.0.0
                             255.255.255.DHCP 314 DHCP Request - Transaction ID 0x3d1e
                                            DHCP 342 DHCP ACK
   4 0.070345 192.168.0.1
                                                               - Transaction ID 0x3d1e
                             192.168.0.10
> Ethernet II, Src: Grandstr 01:fc:42 (00:0b:82:01:fc:42), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
Internet Protocol Version 4, Src: 0.0.0.0, Dst: 255.255.255.255
User Datagram Protocol, Src Port: 68, Dst Port: 67

    Bootstrap Protocol (Discover)

  Message type: Boot Request (1)
  Hardware type: Ethernet (0x01)
  Hardware address length: 6
  Hops: 0
  Transaction ID: 0x00003d1d
  Seconds elapsed: 0
 Bootp flags: 0x0000 (Unicast)
  Client IP address: 0.0.0.0
  Your (client) IP address: 0.0.0.0
  Next server IP address: 0.0.0.0
  Relay agent IP address: 0.0.0.0
  Client MAC address: Grandstr 01:fc:42 (00:0b:82:01:fc:42)
  Server host name not given
  Boot file name not given
  Magic cookie: DHCP
 → Option: (53) DHCP Message Type (Discover)
 > Option: (61) Client identifier
 Option: (50) Requested IP Address
 → Option: (55) Parameter Request List
 → Option: (255) End
  Padding: 00000000000000
```

DHCP Discover – IP/UDP

Time to live (in ttl) 1 bute

[Stream index: 0]

DHCP Offer

Client MAC address: Grandstr 01:fc:42 (00:0b:82:01:fc:42) Server host name not given Boot file name not given Magic cookie: DHCP → Option: (53) DHCP Message Type (Offer) Option: (1) Subnet Mask → Option: (58) Renewal Time Value

→ Option: (59) Rebinding Time Value → Option: (51) IP Address Lease Time > Option: (54) DHCP Server Identifier

> Option: (255) End

DHCP Request

Bootstrap Protocol (Request)

Message type: Boot Request (1) Hardware type: Ethernet (0x01) Hardware address length: 6

Hops: 0

Transaction ID: 0x00003d1e

Seconds elapsed: 0

> Bootp flags: 0x0000 (Unicast)
 Client IP address: 0.0.0.0

Your (client) IP address: 0.0.0.0 Next server IP address: 0.0.0.0 Relay agent IP address: 0.0.0.0

Client MAC address: Grandstr_01:fc:42 (00:0b:82:01:fc:42) Client hardware address padding: 0000000000000000000

Server host name not given Boot file name not given

Magic cookie: DHCP

→ Option: (53) DHCP Message Type (Request)

Option: (61) Client identifier
 Option: (50) Requested IP Address
 Option: (54) DHCP Server Identifier
 Option: (55) Parameter Request List

> Option: (255) End

Padding: 00

DHCP Ack

Next server IP address: 0.0.0.0 Relay agent IP address: 0.0.0.0

Client MAC address: Grandstr 01:fc:42 (00:0b:82:01:fc:42)

Server host name not given Boot file name not given

Magic cookie: DHCP

→ Option: (53) DHCP Message Type (ACK)

→ Option: (58) Renewal Time Value > Option: (59) Rebinding Time Value

> Option: (51) IP Address Lease Time > Option: (54) DHCP Server Identifier

> Option: (1) Subnet Mask

> Option: (255) End

DNS

DNS - ARP

No.	Time	Source	Destination	Protocol C	ength Info
	2 0.554532	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	4 0.556282	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	22 8.381676	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 Who has 192.168.1.63? Tell 192.168.1.1
	23 8.381696	IntelCor_3a:04:3a	Mitrasta_3d:35:90	ARP	42 192.168.1.63 is at 5c:e0:c5:3a:04:3a
	26 10.581077	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	28 10.583178	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	51 20.598894	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	53 20.600845	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	78 30.633732	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	80 30.635448	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	150 40.660490	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	152 40.664348	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	523 47.181598	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 Who has 192.168.1.63? Tell 192.168.1.1
	524 47.181617	IntelCor_3a:04:3a	Mitrasta_3d:35:90	ARP	42 192.168.1.63 is at 5c:e0:c5:3a:04:3a
	1593 50.691356	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	1594 50.693206	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	12608 60.758095	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	12609 60.760331	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	13504 70.804026	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	13505 70.805997	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	13843 80.825163	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	13846 80.826847	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	14496 86.062337	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 Who has 192.168.1.63? Tell 192.168.1.1
	14497 86.062362	IntelCor_3a:04:3a	Mitrasta_3d:35:90	ARP	42 192.168.1.63 is at 5c:e0:c5:3a:04:3a
	14498 86.409500	WistronN_f2:c3:21	Broadcast	ARP	60 Gratuitous ARP for 192.168.1.58 (Request)
	14499 86.411352	WistronN_f2:c3:21	Broadcast	ARP	60 Who has 192.168.1.58? Tell 0.0.0.0

> Frame 2: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 0

Ethernet II, Src: IntelCor_3a:04:3a (5c:e0:c5:3a:04:3a), Dst: Broadcast (ff:ff:ff:ff:ff)

- > Destination: Broadcast (ff:ff:ff:ff:ff)
- > Source: IntelCor_3a:04:3a (5c:e0:c5:3a:04:3a)
 - Type: ARP (0x0806)
- > Address Resolution Protocol (request)

DNS - ARP Request

No.	Time	Source	Destination	Protocol ^	Length Info
	2 0.554532	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	4 0.556282	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	22 8.381676	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 Who has 192.168.1.63? Tell 192.168.1.1
	23 8.381696	IntelCor_3a:04:3a	Mitrasta_3d:35:90	ARP	42 192.168.1.63 is at 5c:e0:c5:3a:04:3a
	26 10.581077	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	28 10.583178	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	51 20.598894	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	53 20.600845	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	78 30.633732	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	80 30.635448	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	150 40.660490	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	152 40.664348	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	523 47.181598	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 Who has 192.168.1.63? Tell 192.168.1.1
	524 47.181617	IntelCor_3a:04:3a	Mitrasta_3d:35:90	ARP	42 192.168.1.63 is at 5c:e0:c5:3a:04:3a
	1593 50.691356	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	1594 50.693206	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	12608 60.758095	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	12609 60.760331	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	13504 70.804026	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	13505 70.805997	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	13843 80.825163	IntelCor_3a:04:3a	Broadcast	ARP	42 Who has 192.168.1.1? Tell 192.168.1.63
	13846 80.826847	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 192.168.1.1 is at e0:41:36:3d:35:90
	14496 86.062337	Mitrasta_3d:35:90	IntelCor_3a:04:3a	ARP	42 Who has 192.168.1.63? Tell 192.168.1.1
	14497 86.062362	IntelCor_3a:04:3a	Mitrasta_3d:35:90	ARP	42 192.168.1.63 is at 5c:e0:c5:3a:04:3a
	14498 86.409500	WistronN_f2:c3:21	Broadcast	ARP	60 Gratuitous ARP for 192.168.1.58 (Request)
	14499 86.411352	WistronN_f2:c3:21	Broadcast	ARP	60 Who has 192.168.1.58? Tell 0.0.0.0

```
> Frame 2: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 0
```

Hardware type: Ethernet (1) Protocol type: IPv4 (0x0800)

Hardware size: 6 Protocol size: 4 Opcode: request (1)

Sender MAC address: IntelCor_3a:04:3a (5c:e0:c5:3a:04:3a)

Sender IP address: 192.168.1.63

Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00)

Target IP address: 192.168.1.1

> Ethernet II, Src: IntelCor_3a:04:3a (5c:e0:c5:3a:04:3a), Dst: Broadcast (ff:ff:ff:ff:ff)

Address Resolution Protocol (request)

DNS - ARP Reply

```
Time
                       Source
                                          Destination
                                                            Protocol
                                                                         Length Info
No.
         2 0.554532
                       IntelCor 3a:04:3a Broadcast
                                                            ARP.
                                                                           42 Who has 192.168.1.1? Tell 192.168.1.63
                       Mitrasta 3d:35:90 IntelCor 3a:04:3a ARP
                                                                           42 192.168.1.1 is at e0:41:36:3d:35:90
        4 0.556282
        22 8.381676
                       Mitrasta 3d:35:90 IntelCor 3a:04:3a ARP
                                                                           42 Who has 192.168.1.63? Tell 192.168.1.1
                       IntelCor 3a:04:3a Mitrasta 3d:35:90 ARP
                                                                           42 192.168.1.63 is at 5c:e0:c5:3a:04:3a
        23 8.381696
                       IntelCor 3a:04:3a Broadcast
                                                            ARP
                                                                           42 Who has 192.168.1.1? Tell 192.168.1.63
        26 10.581077
        28 10.583178
                       Mitrasta 3d:35:90 IntelCor 3a:04:3a ARP
                                                                           42 192.168.1.1 is at e0:41:36:3d:35:90
        51 20.598894
                       IntelCor 3a:04:3a Broadcast
                                                            ARP.
                                                                           42 Who has 192.168.1.1? Tell 192.168.1.63
        53 20.600845
                       Mitrasta 3d:35:90 IntelCor 3a:04:3a ARP
                                                                           42 192.168.1.1 is at e0:41:36:3d:35:90
        78 30.633732
                       IntelCor 3a:04:3a Broadcast
                                                            ARP.
                                                                           42 Who has 192.168.1.1? Tell 192.168.1.63
                       Mitrasta 3d:35:90 IntelCor 3a:04:3a ARP
        80 30.635448
                                                                           42 192.168.1.1 is at e0:41:36:3d:35:90
       150 40.660490
                       IntelCor 3a:04:3a Broadcast
                                                            ARP.
                                                                           42 Who has 192.168.1.1? Tell 192.168.1.63
       152 40.664348
                       Mitrasta 3d:35:90 IntelCor 3a:04:3a ARP
                                                                           42 192.168.1.1 is at e0:41:36:3d:35:90
       523 47.181598
                       Mitrasta 3d:35:90 IntelCor 3a:04:3a ARP
                                                                           42 Who has 192.168.1.63? Tell 192.168.1.1
                       IntelCor 3a:04:3a Mitrasta 3d:35:90 ARP
       524 47.181617
                                                                           42 192.168.1.63 is at 5c:e0:c5:3a:04:3a
      1593 50.691356
                       IntelCor 3a:04:3a Broadcast
                                                            ARP.
                                                                           42 Who has 192.168.1.1? Tell 192.168.1.63
      1594 50.693206
                       Mitrasta 3d:35:90 IntelCor 3a:04:3a ARP
                                                                           42 192.168.1.1 is at e0:41:36:3d:35:90
                       IntelCor 3a:04:3a Broadcast
     12608 60.758095
                                                            ARP.
                                                                           42 Who has 192.168.1.1? Tell 192.168.1.63
     12609 60.760331
                       Mitrasta 3d:35:90 IntelCor 3a:04:3a ARP
                                                                           42 192.168.1.1 is at e0:41:36:3d:35:90
                       IntelCor 3a:04:3a Broadcast
     13504 70.804026
                                                            ARP.
                                                                           42 Who has 192.168.1.1? Tell 192.168.1.63
     13505 70.805997
                       Mitrasta 3d:35:90 IntelCor 3a:04:3a ARP
                                                                           42 192.168.1.1 is at e0:41:36:3d:35:90
     13843 80.825163
                       IntelCor 3a:04:3a Broadcast
                                                            ARP.
                                                                           42 Who has 192.168.1.1? Tell 192.168.1.63
     13846 80.826847
                       Mitrasta 3d:35:90 IntelCor 3a:04:3a ARP
                                                                           42 192.168.1.1 is at e0:41:36:3d:35:90
     14496 86.062337
                       Mitrasta 3d:35:90 IntelCor 3a:04:3a ARP
                                                                           42 Who has 192.168.1.63? Tell 192.168.1.1
     14497 86.062362 IntelCor 3a:04:3a Mitrasta 3d:35:90 ARP
                                                                           42 192.168.1.63 is at 5c:e0:c5:3a:04:3a
     14498 86.409500 WistronN f2:c3:21 Broadcast
                                                                           60 Gratuitous ARP for 192.168.1.58 (Request)
                                                            ARP.
     14499 86.411352 WistronN f2:c3:21 Broadcast
                                                            ARP.
                                                                           60 Who has 192.168.1.58? Tell 0.0.0.0
```

```
> Frame 4: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 0
```

Hardware type: Ethernet (1) Protocol type: IPv4 (0x0800)

Hardware size: 6 Protocol size: 4 Opcode: reply (2)

Sender MAC address: Mitrasta_3d:35:90 (e0:41:36:3d:35:90)

Sender IP address: 192.168.1.1

Target MAC address: IntelCor_3a:04:3a (5c:e0:c5:3a:04:3a)

Target IP address: 192.168.1.63

> Ethernet II, Src: Mitrasta_3d:35:90 (e0:41:36:3d:35:90), Dst: IntelCor_3a:04:3a (5c:e0:c5:3a:04:3a)

[→] Address Resolution Protocol (reply)

DNS Request IP/UDP

```
Source
                                          Destination
                                                             Protocol
                                                                          Length Info
          Time
       171 44.703751
                       192.168.1.63
                                          80.58.61.250
                                                             DNS
                                                                            74 Standard query 0xdf3c A www.google.com
                                                                            90 Standard query response 0xdf3c A www.google.com A 216.58.214.164
       172 44.709958
                       80.58.61.250
                                                             DNS
                                          192.168.1.63
                                                                            74 Standard query 0xdc91 A www.google.com
       174 44.717829
                      192.168.1.63
                                          80.58.61.250
                                                             DNS
                      80.58.61.250
                                                                            90 Standard query response 0xdc91 A www.google.com A 216.58.211.196
       175 44.724166
                                          192.168.1.63
                                                             DNS.
       178 44.736042
                      192.168.1.63
                                                                            74 Standard guery 0xdc53 AAAA www.google.com
                                          80.58.61.250
                                                             DNS
       180 44.741684 80.58.61.250
                                          192.168.1.63
                                                             DNS
                                                                           102 Standard query response 0xdc53 AAAA www.google.com AAAA 2a00:1450:4003:801::2004
Ethernet II, Src: IntelCor 3a:04:3a (5c:e0:c5:3a:04:3a), Dst: Mitrasta 3d:35:90 (e0:41:36:3d:35:90)

    Internet Protocol Version 4, Src: 192.168.1.63, Dst: 80.58.61.250

    0100 .... = Version: 4
    .... 0101 = Header Length: 20 bytes (5)
  > Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
    Total Length: 60
    Identification: 0x04ab (1195)
  > Flags: 0x00
    Fragment offset: 0
    Time to live: 128
    Protocol: UDP (17)
    Header checksum: 0xe5ea [validation disabled]
    [Header checksum status: Unverified]
    Source: 192.168.1.63
    Destination: 80.58.61.250
    [Source GeoIP: Unknown]
    [Destination GeoIP: Unknown]

    User Datagram Protocol, Src Port: 57619, Dst Port: 53

    Source Port: 57619
    Destination Port: 53
    Length: 40
    Checksum: 0x6055 [unverified]
    [Checksum Status: Unverified]
    [Stream index: 9]

    Domain Name System (query)

    [Response In: 172]
    Transaction ID: 0xdf3c
```

Authority RRs: 0
Additional RRs: 0

Oueries

Questions: 1 Answer RRs: 0

> Flags: 0x0100 Standard query

Contents

- Unit 1: IP.
- Unit 2: Other supporting protocols and services.
- Unit 3: Routing algorithms.
- Unit 4: Security.

Routing algorithms

- Exterior vs. Interior algorithms.
- Dynamic process of completing Routing Tables.
- Objective: Minimize number of Hops (metrics).
- Routers "talk" with neighbors to learn best routes.
- RIP: Routing Information Protocol.

Exercise 2, dated 3/11/2016.

Routing Information Protocol

- RIP updates every 30". Down if no update in 180".
- RIP update: Destination + Metrics.
- Triggered updates when changes occur.
- Infinite metric = 16.
- Count to infinity

 Split horizon
 (with Poisoned Reverse).
- RIPv2: Send masks;
 Multicast address 224.0.0.9 (All RIPv2 routers).
- Protocol over UDP.

Routing algorithms – Test question

Control 3/11/2016 - Test. Pregunta 8

☐ Els missatges RIP Updates utilitzen UDP

En relació a RIP
☐ El Count to Infinity permet superar la mètrica 16
☐ Si un router està connectat a la mateixa xarxa d'un altr router, a RIP la mètrica entre ells és 0
☐ L'Split Horizon permet enviar en els Updates entrades referides al gateway que estigi a la interface per on s'envia el Update

Open Shortest Path First (OSPF)

- *Link State* protocol:
 - Routers monitor neighbors and send information to all OSPF routers (Link State Advertisements, LSA).
- LSA encapsulated into IP datagrams with multicast destination address 224.0.0.5, and routed using flooding.
- LSA only sent when changes occur, or when a LSA Request is received.
- Neighbor routers are monitored using a hello protocol.
- OSPF routers maintain a LS database. Shortest Path First algorithm to build routing table entries.
- Metric computed with link bitrates, delays, etc.

Contents

- Unit 1: IP.
- Unit 2: Other supporting protocols and services.
- Unit 3: Routing algorithms.
- Unit 4: Security.

Security - Introduction

Threats

- External vs. Internal
- Access: Internal vs. External, Authorized vs. Non
- Actions: Read, Copy, Modify, Delete, Add, ...
- Data introduction: virus, hoax, ... malware
- Denial of service
- Communications: Interception, Manipulation, Impersonation ("suplantación"), Repudiation

Threats and their protection mechanisms:

Physical, Technical, Organizational (policies).

Security - Introduction

Protection mechanisms

- Preventive, Detective, Corrective
- External attacks protection (firewalls, ...)
- Availability
- Communication services:
 Confidentiality, Integrity,
 Authentication, No repudiation
- Basic mechanism: CRYPTOGRAPHY

IP Security

- Handling of Security:
 - Different communications levels.
 - Protocol and information format.
 - User application process.
- Mechanisms at IP level:
 - Firewalls
 - VPN (Virtual Private Networks)

IP Security - Firewalls

Firewalls

- -Implement network access control → ACL (Access Control Lists)
- Software or Hardware. In Routers.
- "Filtering" on:
 - IP header information.
 - Transport, Application information.

IP Security - VPN

- VPN (Virtual Private Networks)
 - -Through the open Internet

-Implemented with *Tunneling*

IP Security - VPN

Tunnelling

- IP over IP.
- -IPSec.

— ...

Tunnel as a private address subnetwork

IP Security - VPN

IP Security

- Exercise 1, question "f", dated 20/1/2017.
 - Firewalls (ACL)
- Exercise 1, question "f", dated 3/11/2016.
 - Firewalls (ACL)
- Exercise 1, question "h", dated 3/11/2016.
 - -VPN (tunnels)