ASSIGNMENT-3

In [2]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [4]:

```
data=pd.read_csv("Titanic-Dataset.csv")
```

In [5]:

data.head()

Out[5]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
4										•

In [6]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtyp	es: float64(2), int64(5), obj	ect(5)

memory usage: 83.7+ KB

In [7]:

data.describe()

Out[7]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200
4							•

localhost:8888/notebooks/Downloads/ml smart/ASSIGNMENT-3.ipynb

HANDALING NULL VALUES

```
data.isnull().any()
```

Out[8]:

In [8]:

PassengerId False Survived False **Pclass** False Name False False Sex Age True SibSp False Parch False Ticket False Fare False Cabin True Embarked True dtype: bool

In [9]:

```
data.isnull().sum()
```

Out[9]:

PassengerId 0 Survived 0 **Pclass** 0 Name 0 Sex 0 Age 177 SibSp 0 Parch 0 0 Ticket Fare 0 687 Cabin Embarked 2 dtype: int64

FILLING NULL VALUES IN AGE COLUMN WITH MEAN

```
In [11]:
```

```
mean=data["Age"].mean()
```

```
In [12]:
```

```
data["Age"]=data["Age"].fillna(mean)
```

```
In [13]:
data["Age"].tail()
Out[13]:
       27.000000
886
887
       19.000000
       29.699118
888
889
       26.000000
890
       32.000000
Name: Age, dtype: float64
In [14]:
data["Age"].isnull().sum()
Out[14]:
0
```

FILLING NULL VALUES IN EMBARKED COLUMN WITH MODE

```
In [15]:
em_mode=data["Embarked"].mode()

In [16]:
data["Embarked"]=data["Embarked"].fillna(em_mode[0])

In [17]:
data["Embarked"].isnull().sum()

Out[17]:
0
```

FILLING NULL VALUES IN CABIN COLUMN WITH MODE

```
In [18]:
c_mode=data["Cabin"].mode()
```

```
In [19]:
data["Cabin"]
Out[19]:
0
        NaN
1
        C85
2
        NaN
3
       C123
        NaN
886
        NaN
887
        B42
        NaN
888
       C148
889
890
        NaN
Name: Cabin, Length: 891, dtype: object
In [20]:
c_mode
Out[20]:
0
         B96 B98
1
     C23 C25 C27
2
               G6
Name: Cabin, dtype: object
In [21]:
data["Cabin"]=data["Cabin"].fillna(c_mode[2])
In [22]:
data["Cabin"].isnull().sum()
Out[22]:
In [23]:
data["Cabin"]
Out[23]:
         G6
0
1
        C85
2
         G6
3
       C123
4
         G6
886
         G6
887
        B42
888
         G6
889
       C148
890
         G6
Name: Cabin, Length: 891, dtype: object
```

In [24]:

data.isnull().sum()

Out[24]:

PassengerId 0 Survived **Pclass** 0 Name Sex 0 Age 0 SibSp Parch 0 Ticket 0 Fare 0 Cabin **Embarked** dtype: int64

DATA VISUALISATION

In [29]:

cor=data.corr()

C:\Users\venka\AppData\Local\Temp\ipykernel_9632\1426905697.py:1: FutureWa
rning: The default value of numeric_only in DataFrame.corr is deprecated.
In a future version, it will default to False. Select only valid columns o
r specify the value of numeric_only to silence this warning.
 cor=data.corr()

In [30]:

cor

Out[30]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
Passengerld	1.000000	-0.005007	-0.035144	0.033207	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.069809	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.331339	0.083081	0.018443	-0.549500
Age	0.033207	-0.069809	-0.331339	1.000000	-0.232625	-0.179191	0.091566
SibSp	-0.057527	-0.035322	0.083081	-0.232625	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.179191	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.091566	0.159651	0.216225	1.000000

In [31]:

sns.heatmap(cor,annot=True)

Out[31]:

<Axes: >

HANDILING WITH OUTLIERS

```
In [32]:
```

```
sns.boxplot(data["Age"])
```

Out[32]:

<Axes: >

In [33]:

```
Age_q1=data.Age.quantile(0.25)
Age_q3=data.Age.quantile(0.75)
print(Age_q1)
print(Age_q3)
```

22.0

35.0

In [34]:

```
IQR_Age=Age_q3-Age_q1
IQR_Age
```

Out[34]:

13.0

In [35]:

```
ul_Age=Age_q3+1.5*IQR_Age
ul_Age
```

Out[35]:

54.5

```
In [37]:

11_Age=Age_q1-1.5*IQR_Age
11_Age

Out[37]:
2.5

In [38]:

median_Age=data["Age"].median()
median_Age

Out[38]:
29.69911764705882

In [39]:

data["Age"]=np.where(data["Age"]>ul_Age,median_Age,data["Age"])

In [40]:

(data["Age"]>54.5).sum()
```

Out[40]:

0

In [41]:

```
sns.boxplot(data["Age"])
```

Out[41]:

<Axes: >


```
In [42]:
```

```
sns.boxplot(data["Fare"])
```

Out[42]:

<Axes: >

In [43]:

```
fare_q1=data.Fare.quantile(0.25)
fare_q3=data.Fare.quantile(0.75)
print(fare_q1)
print(fare_q3)
```

7.9104

31.0

In [46]:

```
IQR_Fare=fare_q3-fare_q1
IQR_Fare
```

Out[46]:

23.0896

In [48]:

```
upperlimit_Fare=fare_q3+1.5*IQR_Fare
upperlimit_Fare
```

Out[48]:

65.6344

```
In [49]:
```

```
lower_limit_Fare=fare_q1-1.5*IQR_Fare
lower_limit_Fare
```

Out[49]:

-26.724

In [50]:

```
median_Fare=data["Fare"].median()
median_Fare
```

Out[50]:

14.4542

In [51]:

```
data['Fare']=np.where((data['Fare']>upperlimit_Fare),median_Fare,data['Fare'])
```

In [52]:

```
sns.boxplot(data["Fare"])
```

Out[52]:

<Axes: >


```
In [53]:
```

```
(data["Fare"]>65).sum()
```

Out[53]:

0

dropping the variables

In [54]:

```
data.drop(['Name'],axis=1,inplace=True)
```

In [55]:

data

Out[55]:

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cŧ
0	1	0	3	male	22.000000	1	0	A/5 21171	7.2500	
1	2	1	1	female	38.000000	1	0	PC 17599	14.4542	
2	3	1	3	female	26.000000	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	female	35.000000	1	0	113803	53.1000	С
4	5	0	3	male	35.000000	0	0	373450	8.0500	
886	887	0	2	male	27.000000	0	0	211536	13.0000	
887	888	1	1	female	19.000000	0	0	112053	30.0000	
888	889	0	3	female	29.699118	1	2	W./C. 6607	23.4500	
889	890	1	1	male	26.000000	0	0	111369	30.0000	С
890	891	0	3	male	32.000000	0	0	370376	7.7500	

891 rows × 11 columns

In [56]:

```
data.drop(['Ticket'],axis=1,inplace=True)
```

In [57]:

data

Out[57]:

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Emba
0	1	0	3	male	22.000000	1	0	7.2500	G6	
1	2	1	1	female	38.000000	1	0	14.4542	C85	
2	3	1	3	female	26.000000	0	0	7.9250	G6	
3	4	1	1	female	35.000000	1	0	53.1000	C123	
4	5	0	3	male	35.000000	0	0	8.0500	G6	
886	887	0	2	male	27.000000	0	0	13.0000	G6	
887	888	1	1	female	19.000000	0	0	30.0000	B42	
888	889	0	3	female	29.699118	1	2	23.4500	G6	
889	890	1	1	male	26.000000	0	0	30.0000	C148	
890	891	0	3	male	32.000000	0	0	7.7500	G6	

891 rows × 10 columns

In [58]:

data.drop(["PassengerId"],axis=1,inplace=True)

In [59]:

data

Out[59]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked
0	0	3	male	22.000000	1	0	7.2500	G6	S
1	1	1	female	38.000000	1	0	14.4542	C85	С
2	1	3	female	26.000000	0	0	7.9250	G6	S
3	1	1	female	35.000000	1	0	53.1000	C123	S
4	0	3	male	35.000000	0	0	8.0500	G6	S
886	0	2	male	27.000000	0	0	13.0000	G6	S
887	1	1	female	19.000000	0	0	30.0000	B42	S
888	0	3	female	29.699118	1	2	23.4500	G6	S
889	1	1	male	26.000000	0	0	30.0000	C148	С
890	0	3	male	32.000000	0	0	7.7500	G6	Q

891 rows × 9 columns

```
In [60]:
```

```
data.drop(["Cabin"],axis=1,inplace=True)
```

In [61]:

data

Out[61]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.000000	1	0	7.2500	S
1	1	1	female	38.000000	1	0	14.4542	С
2	1	3	female	26.000000	0	0	7.9250	S
3	1	1	female	35.000000	1	0	53.1000	S
4	0	3	male	35.000000	0	0	8.0500	S
886	0	2	male	27.000000	0	0	13.0000	S
887	1	1	female	19.000000	0	0	30.0000	S
888	0	3	female	29.699118	1	2	23.4500	S
889	1	1	male	26.000000	0	0	30.0000	С
890	0	3	male	32.000000	0	0	7.7500	Q

891 rows × 8 columns

Splitting the data

In [62]:

y=data["Survived"]

In [63]:

y.head()

Out[63]:

3 1

Name: Survived, dtype: int64

In [64]:

data

Out[64]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.000000	1	0	7.2500	S
1	1	1	female	38.000000	1	0	14.4542	С
2	1	3	female	26.000000	0	0	7.9250	S
3	1	1	female	35.000000	1	0	53.1000	S
4	0	3	male	35.000000	0	0	8.0500	S
886	0	2	male	27.000000	0	0	13.0000	S
887	1	1	female	19.000000	0	0	30.0000	S
888	0	3	female	29.699118	1	2	23.4500	S
889	1	1	male	26.000000	0	0	30.0000	С
890	0	3	male	32.000000	0	0	7.7500	Q

891 rows × 8 columns

ENCODING

In [65]:

from sklearn.preprocessing import LabelEncoder

In [66]:

le=LabelEncoder()

In [67]:

data["Sex"]=le.fit_transform(data["Sex"])

In [68]:

```
data["Sex"]
```

Out[68]:

886 1 887 0

888 0 889 1 890 1

Name: Sex, Length: 891, dtype: int32

In [69]:

data.head()

Out[69]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	22.0	1	0	7.2500	S
1	1	1	0	38.0	1	0	14.4542	С
2	1	3	0	26.0	0	0	7.9250	S
3	1	1	0	35.0	1	0	53.1000	S
4	0	3	1	35.0	0	0	8.0500	S

In [70]:

data["Embarked"]=le.fit_transform(data["Embarked"])

In [71]:

data.head()

Out[71]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	22.0	1	0	7.2500	2
1	1	1	0	38.0	1	0	14.4542	0
2	1	3	0	26.0	0	0	7.9250	2
3	1	1	0	35.0	1	0	53.1000	2
4	0	3	1	35.0	0	0	8.0500	2

```
In [72]:
data["Pclass"].nunique()
Out[72]:
3
In [73]:
data["Pclass"].unique()
Out[73]:
array([3, 1, 2], dtype=int64)
In [74]:
data["Sex"].unique()
Out[74]:
array([1, 0])
In [75]:
data["Embarked"].unique()
Out[75]:
array([2, 0, 1])
```

Spliting the train and test data

```
In [76]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(data,y,test_size=0.3,random_state=0)

In [77]:
x_train.shape,x_test.shape,y_train.shape,y_test.shape

Out[77]:
((623, 8), (268, 8), (623,), (268,))
```

Feature Scaling

```
In [78]:
from sklearn.preprocessing import StandardScaler
```

```
9/21/23, 11:06 AM
                                            ASSIGNMENT-3 - Jupyter Notebook
 In [79]:
  sc=StandardScaler()
 In [80]:
 x_train=sc.fit_transform(x_train)
 In [81]:
 x_train
 Out[81]:
 array([[ 1.25474307, -1.5325562 , 0.72592065, ..., -0.47299765,
           0.67925137, 0.56710989],
         [1.25474307, -1.5325562, -1.37756104, ..., -0.47299765,
          -0.26059483, -2.03075381],
         [-0.79697591, 0.84844757, 0.72592065, ..., 1.93253327,
           2.26045064, 0.56710989],
         [-0.79697591, 0.84844757, 0.72592065, ..., -0.47299765,
         -0.78281017, -0.73182196],
         [1.25474307, 0.84844757, -1.37756104, ..., -0.47299765,
          -0.03170555, 0.56710989],
         [-0.79697591, -0.34205431, 0.72592065, ..., 0.72976781,
           1.64661898, 0.56710989]])
 In [82]:
 x_test=sc.fit_transform(x_test)
 In [83]:
 x_{test}
 Out[83]:
 array([[-0.77151675, 0.77963055, 0.76537495, ..., -0.47809977,
          -0.15813988, -1.76531134],
         [-0.77151675, 0.77963055, 0.76537495, ..., -0.47809977,
          -0.72165412, 0.63014911],
         [-0.77151675, 0.77963055, 0.76537495, ..., 0.87064484,
           1.03823178, -0.56758111],
         . . . ,
         [-0.77151675, 0.77963055, 0.76537495, ..., -0.47809977,
          -0.15847431, -1.76531134],
         [1.29614814, 0.77963055, -1.30654916, ..., -0.47809977,
          -0.72607524, 0.63014911],
         [-0.77151675, -1.64991582, 0.76537495, ..., -0.47809977,
           0.92369033, -1.76531134]])
```

In []: