3. Convert the ϵ -NFA to a DFA.

Minimal DFA

Minimal DFA

Ctatas	Inputs		
States	0	1	
Q0	Q1	Q2	
Q1	Q3	Q4	
Q2	Q4	Q3	
Q3	Q5	Q5	
Q4	Q5	Q5	
Q5	Q5	Q5	

Minimizing the above DFA:

Step-1: Create the pairs of all the states involved in DFA.

Step-2: Mark all the pairs (Qa,Qb) such a that Qa is Final state and Qb is Non-Final State.

Step-3: If there is any unmarked pair (Qa,Qb) such a that δ (Qa,x) and δ (Qb,x) is marked, then mark (Qa,Qb). Here x is a input symbol. Repeat this step until no more marking can be made.

- •Check for the unmarked pair Q2,Q1
 - Check when x=0 : $\delta(Q2,0)$ = Q4 and $\delta(Q1,0)$ = Q3, check if the pair Q4,Q3 is marked and no it is not marked.
 - Check when $x=1:\delta(Q2,1)=Q3$ and $\delta(Q1,1)=Q4$, check if the pair Q4,Q3 is marked and no it is not marked.
 - Hence we cannot mark the pair Q2,Q1.
- •Check for the unmarked pair Q3,Q0
 - Check when x=0 : $\delta(Q3,0) = Q5$ and $\delta(Q0,0) = Q1$, check if the pair Q5,Q1 is marked and no it is not marked.
 - Check when $x=1:\delta(Q3,1)=Q5$ and $\delta(Q0,1)=Q2$, check if the pair Q5,Q2 is marked and no it is not marked.
 - Hence we cannot mark the pair Q3,Q0.
- •Check for the unmarked pair Q4,Q0
 - Check when x=0: $\delta(Q4,0) = Q5$ and $\delta(Q0,0) = Q1$, check if the pair Q5,Q1 is marked and no it is not marked.
 - Check when $x=1:\delta(Q4,1)=Q5$ and $\delta(Q0,1)=Q2$, check if the pair Q5,Q2 is marked and no it is not marked.
 - Hence we cannot mark the pair Q4,Q0.

- Check for the unmarked pair Q4,Q3
 - Check when x=0: $\delta(Q4,0) = Q5$ and $\delta(Q3,0) = Q5$, Such pair of state Q5,Q5 don't exists.
 - Check when $x=1:\delta(Q4,1)=Q5$ and $\delta(Q3,1)=Q5$, Such pair of state Q5,Q5 don't exists.
 - Hence we cannot mark the pair Q4,Q3.
- Check for the unmarked pair Q5,Q1
 - Check when x=0 : $\delta(Q5,0) = Q5$ and $\delta(Q1,0) = Q3$, check if the pair Q5,Q3 is marked and yes it is marked.
 - Hence we can mark the pair Q5,Q1.

100 100 100 100 100

- •Check for the unmarked pair Q5,Q2
 - •Check when x=0: $\delta(Q5,0) = Q5$ and $\delta(Q2,0) = Q4$, check if the pair Q5,Q4 is marked and yes it is marked.
 - •Hence we can mark the pair Q5,Q2

Q0 Q1 Q2 Q3 Q4 Q5

- •We have checked for all the unmarked pairs but don't need to stop here we need to continue this process until no more marking
- •Check for the unmarked pair Q2,Q1
 - •Check when x=0: $\delta(Q2,0) = Q4$ and $\delta(Q1,0) = Q3$, check if the pair Q4,Q3 is marked and no it is not marked.
 - •Check when $x=1:\delta(Q2,1)=Q3$ and $\delta(Q1,1)=Q4$, check if the pair Q4,Q3 is marked and no it is not marked.
 - •Hence we cannot mark the pair Q2,Q1.
- •Check for the unmarked pair Q3,Q0
 - •Check when x=0: $\delta(Q3,0) = Q5$ and $\delta(Q0,0) = Q1$, check if the pair Q5,Q1 is marked and yes it is marked.
 - •Hence we can mark the pair Q3,Q0.

Q0 Q1 Q2 Q3 Q4 Q5

Ctatas	Inputs		
States	0	1	
Q0	Q1Q2	Q1Q2	
Q1Q2	Q3Q4	Q3Q4	
Q3Q4	Q5	Q5	
Q5	Q5	Q5	