Spectres de vibration des molecules CH₃COOH, CH₃COOD, CD₃COOH et CD₃COOD—III.

Spectres infrarouges des cristaux*

MICHEL HAURIE et ALEXANDER NOVAK
Laboratoire de Spectroscopie Infrarouge, Faculté des Sciences de Bordeaux

(Received 21 September 1964)

Abstract—The infra-red spectra of the crystals of CH_3COOH , CH_3COOD , CD_3COOH and CD_3COOD at 0° and at -180°C have been investigated in the 4000–400 cm⁻¹ region. The spectra are interpreted using the one-dimensional crystal approximation and the fundamentals are assigned and compared to those of the respective dimers and monomers. The origin of the multiple bands of the broad νOH and νOD absorptions is discussed.

Introduction

Dans ce mémoire, nous présentons une étude, par spectroscopie infrarouge, des cristaux d'acide acétique et de ses dérivés deutériés, dans le but de comparer les données spectroscopiques du cristal avec celles du liquide et du gaz publiées dans nos travaux précédents [1, 2].

Les spectres infrarouges de l'acide acétique CH₃COOH à l'état solide étaient le plus souvent examinés à l'occasion d'études générales concernant le groupement carboxylique. Bratož, Hadži et Sheppard [3] et Corish et Chapman [4] ont analysé respectivement le massif d'absorption vOH et la région 1800–700 cm⁻¹. Plus récemment, Bentley et ses collaborateurs [5] publiaient le spectre entre 700 et 350 cm⁻¹ tandis que Stanevich [6] interprétait les bandes dues aux vibrations intermoléculaires au-dessous de 250 cm⁻¹. Cependant, le spectre du cristal CH₃COOH ne fait pas l'objet, à notre connaissance, d'interprétation détaillée. Seuls Bellamy et ses collaborateurs [7] discutent de la structure du massif vOH de l'acide acétique en fonction de l'état physique. Nous n'avons rien trouvé dans la littérature concernant les acides deutériés à l'état solide.

PARTIE EXPERIMENTALE

La préparation de l'acide acétique et de ses dérivés deutériés a déjà été décrite [1]. Nous avons utilisé pour l'étude des échantillons à 0° et à -180° C une cellule pour les basses températures de type classique [8] avec la glace ou l'azote liquide

- [1] M. HAURIE et A. NOVAK, J. Chim. Phys. 62, 137 (1965).
- [2] M. HAURIE et A. NOVAK, J. Chim. Phys. 62, 146 (1965).
- [3] S. Bratoz, D. Hadzi et N. Sheppard, Spectrochim. Acta 8, 249 (1956).
- [4] P. J. Corish et D. Chapman, J. Chem. Soc. 1746 (1957).
- [5] F. F. BENTLEY, M. T. RYAN et J. E. KATON, Spectrochim. Acta 20, 685 (1964).
- [6] A. E. Stanevich, Opt. i Spektroskop., Sbornik stat. Akad. nauk. SSSR 2, 205 (1963).
- [7] L. J. BELLAMY, R. T. LAKE et R. J. PACE, Spectrochim. Acta 19, 443 (1963).
- [8] E. L. WAGNER et D. F. HORNIG, J. Chem. Phys. 18, 296 (1950).

^{*} Ce travail a bénéficié de l'aide matérielle du Commissariat à l'Energie Atomique.

comme réfrigérants. Les cristaux de l'acide acétique et de ses dérivés deutériés étaient préparés par refroidissement d'un film liquide entre deux faces de KBr à l'intérieur de la cellule. Afin d'éviter l'hydratation de l'échantillon la préparation des films liquides s'effectuait dans une boîte à gants desséchée. Nous avons vérifié la cristallisation en examinant le film cristallin entre nicols croisés.

Les spectres infrarouges ont été enregistrés dans la région de 4000 à 550 cm⁻¹ à l'aide d'un spectromètre Perkin–Elmer modèle 421 équipé de deux réseaux et, dans la région de 650 à 400 cm⁻¹, à l'aide d'un Infracord Perkin–Elmer modèle 137 armé d'un prisme de KBr. L'erreur de mesure est respectivement de ± 2 et ± 5 cm⁻¹ pour les spectres enregistrés sur les appareils PE 421 et 137.

RESULTATS ET DISCUSSION

Les spectres infrarouges des cristaux de $\mathrm{CH_3COOH}$, $\mathrm{CH_3COOD}$, $\mathrm{CD_3COOH}$ et $\mathrm{CD_3COOD}$ à $-180^{\circ}\mathrm{C}$ sont représentés sur les Figs. 1 et 2. Les Tableaux 1 et 2 rassemblent les nombres d'onde et les intensités relatives des bandes d'absorption des quatre acides à 0° et à $-180^{\circ}\mathrm{C}$ ainsi que l'attribution proposée.

La structure cristalline de l'acide acétique a été déterminée par Jones et Temple-TON [9]: les molécules de CH₃COOH s'associent entre elles sous forme de chaînes infinies par des liaisons hydrogène telles que la distance $R_{0\cdots0}$ soit égale à 2,61Å (Fig. 3). La structure correspond à celle du groupe spatial $Pna-C_{2v}$ et la maille contient quatre molécules CH₃COOH. Le groupe de maille est isomorphe du groupe fini C_{2v} et on devrait donc attendre quatre composantes, dont trois actives en infrarouge, pour chacune des 18 vibrations fondamentales du monomère CH₂COOH. L'existence des chaînes infinies et le fait que les liaisons hydrogène entre les molécules voisines dans une chaîne sont considérablement plus importantes que les interactions de Van der Waals entre les chaînes voisines, permet cependant de considérer, dans une première approximation, une chaîne comme isolée; on peut donc adopter l'hypothèse du cristal unidimensionnel comme cela a été fait pour les chaînes de l'acide formique [10] et de l'hydrogénocarbonate de sodium [11]. Le groupe infini pour une chaîne isolée est isomorphe du groupe fini C_s et le motif de la chaîne comprend deux molécules CH₃COOH: on s'attend à ce que chacune des 18 vibrations fondamentales du monomère éclate en deux composantes, actives en infrarouge, correspondant aux mouvements en phase et en opposition de phase des molécules voisines. Nous classons les vibrations du cristal d'une part en vibrations planes A' et hors du plan A'' analogues à celles du monomère, mais sans pouvoir distinguer, dans le cas d'un éclatement, les mouvements en phase et en opposition de phase, et d'autre part en vibrations du groupe CH3, OH et du squelette [1, 2].

Région de 4000 à 2000 cm $^{-1}$

On attend dans cette région les vibrations de valence des groupements hydroxyle et méthyle. Les vibrations νCH_3 et νCD_3 donnent naissance à des bandes de très faible intensité, observées respectivement sur les spectres de CH₃COOD et CD₃COOH; nous les avons attribuées [2] par analogie avec les dimères (Fig. 3).

^[9] R. E. Jones et D. H. Templeton, Acta Cryst. 11, 484 (1958).

^[10] R. C. MILLIKAN et K. S. PITZER, J. Am. Chem. Soc. 80, 3515 (1958).

^[11] A. NOVAK, P. SAUMAGNE et L. D. C. Bok, J. Chim. Phys. 60, 1385 (1963).

Fig. 1. Spectres infrarouges de ${
m CH_3COOH}$ (A) et de ${
m CH_3COOD}$ (B). Cristal à $-180\,^{\circ}{
m C}$. Le trait pointillé représente les bandes d'absorption dues aux molécules contenant le groupement OH.

Massif vOH—L'origine des bandes multiples du massif vOH sur les spectres infrarouges des acides carboxyliques a été discutée par plusieurs auteurs [2, 3, 7, 13]. Dans l'article précédent [2], nous avons pu montrer en comparant les spectres des acides CH₃COOH et CD₃COOH à l'état gazeux et liquide que les sous-maximums du massif vOH des dimères sont attribuables aux combinaisons binaires et ainsi confirmer dans ce cas particulier l'hypothèse de Bratož, Hadži et Sheppard [3]. Le cristal de l'acide acétique semble particulièrement favorable pour la vérification de cette hypothèse. La symétrie de la chaîne du polymère permet, en effet, l'activité

^[12] J. Karle et L. O. Brockway, J. Am. Chem. Soc. 66, 574 (1944)—(Fig. 3, p. 1223).

^[13] G. C. PIMENTEL et A. L. McCLELLAN, The Hydrogen Bond, p. 104, W. H. Freeman, San Francisco 1960.

Fig. 2. Spectres infrarouges de CD₃COOH (A) et de CD₃COOD (B). Cristal à -180°C.

Le trait pointillé représente les bandes d'absorption dues aux molécules contenant le groupement OD.

en infrarouge des harmoniques et combinaisons de toutes les vibrations fondamentales et l'effet de la température sur les bandes fondamentales et de combinaison des cristaux $\mathrm{CH_{3}COOH}$ et $\mathrm{CD_{3}COOH}$ est un critère supplémentaire pour l'attribution des bandes de combinaison.

Les massifs ν OH sur les spectres des cristaux CH₃COOH et CD₃COOH à 0°C montrent un maximum d'absorption vers 2927 cm⁻¹ accompagné de plusieurs sous-maximums et épaulements. Lorsqu'on abaisse la température du cristal à -180° C, de nouvelles bandes apparaissent; les bandes satellites deviennent plus fines, leur absorption au maximum d'intensité augmente et leurs fréquences s'élèvent (Fig. 4). Par contre, la bande centrale se déplace vers les basses fréquences et éclate en deux composantes (Fig. 4); elle peut donc être assignée à la vibration fondamentale ν OH. Toutes les autres bandes sont attribuées aux harmoniques et combinaisons parce que, par refroidissement du cristal à -180° C, les fréquences fondamentales situées dans

Tableau 1. Nombres d'onde et intensités des bandes d'absorption infrarouge (a) des cristaux CH_3COOH et CH_3COOD

СН₃СООН			CH ³ COOD			
0°C	-180°C	Attribution	0°C	180°C	Attribution	
	3078 ép	$\nu C = O + \delta'_s CH_s$		3040 tf	$\nu'_{\rm s}{ m CH_3}$	
2993 ép	2993 ép	$v_{\rm C=O} + \delta_{s}_{\rm CH_{s}}$		3000 tf	$\nu_a ^{ m CH_3}$	
2927 F	2899) _F	ОТТ		2950 tf	ν CH,	
2927 F	2852) F	vOH		$2870 \mathrm{\ tf}$	$2\delta'$, CH_3	
	2814 m	$2\delta OH$		2270 ép	$\nu C = O + \nu OD$	
	2794 m	δ'_{s} CH ₃ + δ_{s} CH ₃	2217 F	2194 F	vOD	
2756 ép	$2764 \mathrm{m}$	$\delta ext{OH} + \delta_s ext{CH}_s$	2114 m	$2126 \; \mathrm{F}$	2δ OD	
-	2741 ép	v^{C} —O + $\delta'_{s}^{\text{CH}}_{3}$	2059 m	$2071~\mathrm{F}$	$\rho_s CH_3 + \delta OD$	
2663 m	2677 F	v CO + δ OH	$2016~\mathrm{\acute{e}p}$	2026 ép	δ COO + δ ', CH	
$2612 \mathrm{m}$	$2625~\mathrm{F}$	ν C—O $+ \delta_s$ CH ₃	-	1956 tf	. •	
	2595 ép	, , ,	101 = 0	1000	$(\delta COO + \nu C - C)$	
2514 f	2540 m	2ν C—O	1915 f	$1923 \mathrm{\ m}$	δ OD + ν C—C	
2429 ép	2436 f	$ ho_s ext{CH}_3 + \delta ext{OH}$		1865 f	ν C—C + ρ CH	
1	2251 tf	$\delta_s^{\circ} ext{CH}_3 + u ext{C} ext{ ext{C}}$	1740 f	1749 f	, 1 Pra	
2137 tf	$2160 \mathrm{\ tf}$	vČÖ + v CC	1645) F	1644 _F		
	2041 tf	δ COO $+$ δ OH	1634 F	1629 F	$\nu C = O$	
	1834 ép	$2\gamma OH$,	$1522^{'}\mathrm{tf}$	ν OD $+ \nu$ C—C	
	1813 m	2ν C—C		1467 ép	$\delta COO + \nu C - C$	
1500	1793 f		1.40 T.C	•	δ'_{s} CH ₃	
1753 f	1754 f		1437 f	1444 m	$\delta_a^{\rm CH_3}$	
$1659)_{\mathbf{F}}$	$1657)_{\mathbf{F}}$		1 000 T3	1395) _F		
1645 F	1640}F	ν C=O	1388 F	1385 F	$\delta_s \mathrm{CH_3}$ (b)	
,	1569 ['] f		1314 TF	$1322'\mathbf{TF}$	rCO (b)	
1519 f	1539 m	δ COO + ν C—C		1300 m	ν C—C + δ CCO	
	$1522\mathrm{\acute{e}p}$	ν OH + δ COO	1065 m	$1072 \; \mathbf{F}$	δOD	
	1485 f	$\rho_a \text{CH}_3 + \delta \text{CCO}$	1045 f	1046 F	$\rho_a \mathrm{CH}_3$	
1404	1448)	$\delta_{\mathbf{s}}^{\mathbf{r}} \mathbf{CH}_{\mathbf{s}}^{\mathbf{r}}$	1005 F	1010 F	ρ_s CH ₃	
l 44 0 ép	1439 m	δ_a CH $_a$	851 F	857 F	vČ $-$ Č	
	1424 F	, - •	660 F	678 F	γ OD	
1411 F	1412) F	$\delta \mathrm{OH}$ (b)	200 17	611	•	
	1359)	e cutt	$600~\mathrm{F}$	$egin{array}{c} 611 \ 606 \ \end{array}$ \mathbf{F}	δCOO	
1351 f	1353 m	$\delta_s \mathrm{CH_3}$		580 f	γ CCO	
1000 MT	1297) _{TF}	0 0 0		440.73	•	
1268 TF	1284 TF	νC—O (b)		446 F	δ CCO	
	1226 ép					
1190 ép	1192 tf					
•	1130 tf					
1047 f	1049 F	$ ho_a ext{CH}_3$				
1019 F	1022 F	$\rho_s CH_3$				
906 F	923 F	γOH				
884 m	908 F	v^{C} —C				
629 F	635 F	δCOO				
	592 f	γCCO				
450 F	450 F	SCCO				

 ⁽a) Nombres d'onde en cm⁻¹—TF: très fort; F: fort; m: moyen; f: faible; tf: très faible; ép: épaulement.
 (b) Vibrations couplées.

la région de 2000 à 400 cm⁻¹ s'élèvent, exception faite pour la fréquence ν C=O (Tableaux 1 et 2).

Les massifs ν OH des acides CH_3COOH et CD_3COOH ont des allures différentes et on dénombre moins de bandes dans celui de CD_3COOH . Cette diminution n'est pas due à la disparition des bandes ν CH₃ par deutériation du groupement méthyle comme le montre le spectre de CH_3COOD (Fig. 1). Nous pensons que les bandes observées sur le spectre de l'acide CH_3COOH et qui n'ont pas d'équivalents dans celui de l'acide CD_3COOH sont dues aux combinaisons mettant en jeu les vibrations

Tableau 2. Nombre d'ondes et intensités des bandes d'absorption infrarouge (a) des cristaux CD_3COOH et CD_3COOD

CD ₃ COOH			$\mathrm{CD_3COOD}$			
0°C	-180°C	Attribution	0°C	−180°C	Attribution	
	3058 ép			2273 ép	$\nu C = O + \nu OD$	
2998 tf	3003 m	$\nu C = O + \delta OH$		2202 ép		
	$2899)_{\mathbf{F}}$	OTT	2232 F	2187 F	ν OD	
2927 F	2806) F	vOH	2142 ép	$2152 \mathrm{\ m}$	νC —O + $\rho_s \text{CD}_s$	
	2738 ép		2102 f	2107 m	ν C—O + ν Č—Č	
	2700 ép	$\nu_{\rm C}=0+\delta_{\rm *CD_a}$	2061 f	2077 m	$2\delta_s \text{CD}_3$	
2645 m	2655 F	v C—O + δ OH	1836 tf	1851 f	$\delta'_{s}^{2}\mathrm{CD_{3}} + \rho_{s}^{2}\mathrm{CD_{3}}$	
2519 f	2550 F	$2\nu C$ —O	1735 f	$1740 \mathrm{m}$		
	2272.4	(ν', CD_3)	$1650~\mathrm{F}$	1640 F	$\nu C = O$	
2270 tf	2270 tf	$v_a^{\rm CD_3}$		1609 ép	2ν C—C	
2107 tf	2116 tf	$v_s^{\rm CD_3}$	1585 ép	1584 ép	$ ho_a ext{CD}_3 + \gamma ext{OD}$	
	1810 f	$2\gamma OH$	1380 ép	1380 ép	$vC-C + \delta COO$	
1752 f	1752 m	•	10/2 FFF	1352 TF)		
1643 F	1641 F	νC==O	1342 TF	1329 TF	νC—O et 2γOD	
1440 ép	1450 ép	ν C—C + δ COO		1236 tf		
•	1424 m	$ ho_s ext{CD}_3 + \delta ext{COO}$	1095 m	$\frac{1103}{1007}$ m	δ OD	
1397 m	1404 F	δOH (b)	1099 m	1097	000	
1267 TF	$1287 \; \mathrm{TF}$	νC—O (b)		(1045 F	$oldsymbol{\delta_s}^{ ext{CD}_3}$	
	1230 f		1036 F	{		
1045 tf	1059	\$ CD		(1035 ép	$\delta_{s}^{\prime}^{\prime}$ CD $_{s}$	
	1059 1051)m	$oldsymbol{\delta_s}^{ ext{CD}_3}$			$\delta_a^{\rm CD_3}$	
1000 16		$(\delta'_{s}^{C}D_{s})$	$923 \mathrm{m}$	924 m	$ ho_a ext{CD}_3$	
1030 tf	1035 m	$\delta_a^{ m CD_3}$	833 f	841 f	$\rho_s \text{CD}_3$	
	1015 ép	(2 0	802 m	808 F	ν C—C	
920 m	000 T	$ ho_a CD_3$	$650~\mathrm{m}$	672 F	γ OD	
889 m	920 F	lγOH	584 m	591 F	δ COO	
		(*		505 f	γ CCO	
849 m	856 F}	aro and aro		422 f)	δCCO	
833 f	835 F	$ u \text{C}$ —C et $ ho_s \text{CD}_3$		399 F	0000	
600 m	607 F	δCOO		•		
	510 f	γ CCO				
	420 f)	δCCO				
	400 F	0000				

⁽a) Nombres d'onde en cm⁻¹—TF: très fort; F: fort; m: moyen; f: faible; tf: très faible; ép: épaulement.
(b) Vibrations couplées.

Tableau 3. Nombres d'onde des combinaisons $\delta OH + \nu C - O$ et $2\nu C - O$ et des vibrations fondamentales correspondantes

CH ₃ COOH		$\mathrm{CD_3COOH}$		Attribution	
0°C	-180 C	0°C	-180°C		
1411	1418	1397	1404	δОН	
1268	1284	1267	1287	νCO	
				δΟΗ + νCΟ	
2663	2677	2645	$\boldsymbol{2655}$	observé	
2679	2702	$\boldsymbol{2664}$	2691	calculé	
				2vC—O	
2514	2540	2519	2550	${f observ\'e}$	
2536	2568	2534	2574	calculé	

fondamentales du groupement CH₃. Par exemple, les bandes relevées sur le spectre de CH₃COOH à -180° C vers 2764, 2625 et 2436 cm⁻¹ peuvent être attribuées respectivement aux combinaisons δ OH(1418) + δ_s CH₃(1356) = 2774, δ_s CH₃(1356) + ν C—O(1290) = 2646 et δ OH(1418) + ρ_s CH₃(1022) = 2440 (Tableau 1). D'autre part,

les bandes communes aux massifs ν OH des acides CH₃COOH et CD₃COOH, telles que les bandes fortes vers 2650 et 2540 cm⁻¹ environ, peuvent être assignées respectivement à la combinaison δ OH + ν C—O et à la première harmonique 2ν C—O; pour chaque acide, elles se déplacent en effet en passant de 0° à -180°C dans le même sens que les fondamentales correspondantes. Ce comportement est illustré dans le Tableau 3.

Fig. 3. Structure de l'acide acétique associé (a) état cristallin, Réf. [9]—(b) état gazeux, Réf. [12].

Les longueurs sont exprimées en Ångströms.

On attend deux composantes de la vibration fondamentale ν OH et on observe, ainsi qu'on l'a déjà mentionné, deux bandes de même intensité vers 2899 et 2852 cm⁻¹ sur le spectre de CH₃COOH et vers 2899 et 2806 cm⁻¹ sur celui de CD₃COOH. L'attribution à la vibration ν OH de la première bande semble certaine tandis que la seconde peut être due soit à la deuxième composante de cette vibration, soit à une combinaison qui devient importante à -180° C par suite d'interaction avec la vibration ν OH se déplaçant vers les basses fréquences. Pour répondre à cette question nous avons étudié le spectre de l'acide CD₃COOH (environ 3%) dans une matrice de CD₃COOD à -180° C (Fig. 4). On n'observe qu'une bande ν OH vers 2927 cm⁻¹, ce qui semble être en faveur de la première hypothèse; cependant, comme on ne peut distinguer la totalité du spectre de CD₃COOH dans la matrice, nous ne pouvons nous prononcer avec certitude.

 $Massif\ v{\rm OD}$ —Sur les spectres des cristaux CH₃COOD et CD₃COOD on peut, en utilisant l'effet de la température, distinguer la bande $v{\rm OD}$ des combinaisons. Ces

dernières sont moins nombreuses que celles relevées dans le massif ν OH, probablement parce que le nombre de combinaisons binaires possibles ayant des fréquences entre 2300 et 2000 cm⁻¹ est plus faible. Cette circonstance facilite l'attribution des bandes de combinaisons proposée dans les Tableaux 1 et 2.

Fig. 4. (A) Spectres infrarouges de CD₃COOH à 0°C (trait pointillé) et à -180°C (trait continu).

(B) Spectre infrarouge de CD COOH (~2°2°) dens la matrice de CD COOD.

(B) Spectre infrarouge de CD₃COOH ($\simeq 3\%$) dans la matrice de CD₃COOD. Cristal à -180° C.

Région de 2000 à 1200 cm $^{-1}$

Sur le spectre du cristal ${\rm CH_3COOH}$, il existe beaucoup de bandes d'absorption dont de nombreuses bandes de combinaison, qui ne sont pas toujours d'intensité faible. Ces dernières peuvent être distinguées des bandes fondamentales en comparant les spectres des quatre espèces isotopiques et grâce aux données concernant les dimères correspondants [2]. C'est ainsi que les bandes situées vers 1650, 1440, 1411, 1351 et 1268 cm⁻¹ sur le spectre de ${\rm CH_3COOH}$ à 0°C sont identifiées comme bandes fondamentales du polymère et attribuées respectivement aux vibrations $v{\rm C}$ =0, δ_a et δ_s 'CH₃, δ OH, δ_s CH₃ et $v{\rm C}$ —O (Tableau 1).

A -180° C toutes ces bandes deviennent plus fines et éclatent en deux composantes comme prévu; ces deux composantes ne correspondent pas toujours aux mouvements en phase et en opposition de phase des molécules voisines du motif, une résonance de Fermi avec une autre vibration pouvant donner également un effet semblable.

L'étude des quatre spectres de l'acide acétique montre que le phénomène de couplage existe entre les vibrations δOH et νC —O des polymères CH_3COOH et CD_3COOH d'une part, et, entre les vibrations $\delta_s CH_3$ et νC —O des polymères CH_3 COOD d'autre part, couplages tout à fait analogues à ceux des dimères correspondants [2]. La fréquence de la vibration νC —O non perturbée vers 1342 cm⁻¹ sur le spectre de CD_3COOD à 0°C se rapproche beaucoup de celle du dimère. La bande correspondante du cristal à $-180^{\circ}C$ est formée de deux composantes de même intensité vers 1352 et 1319 cm⁻¹. Il semble que cet éclatement ne soit pas un effet du cristal, mais soit provoqué par une résonance de Fermi entre l'harmonique $2\gamma OD$ et la vibration νC —O; en effet, pour le cristal CD_3COOD à $-180^{\circ}C$, seule la bande νC —O montre un éclatement aussi important et seul l'harmonique $2\gamma OD$ a une fréquence aussi voisine de celle de la vibration νC —O.

Région de 1200 à 400 cm $^{-1}$

Sur le spectre de CH₃COOH à -180° C nous attribuons respectivement les quatre bandes fines et intenses vers 1049, 1022, 923 et 908 cm⁻¹ aux vibrations fondamentales ρ_a CH₃, ρ_s CH₃, γ OH et ν C—C; en effet, les deux premières ne sont pas observées sur les spectres des acides contenant le groupe CD₃ et la troisième est absente des spectres des acides RCOOD. La bande ν C—C, d'une intensité beaucoup plus importante que la bande analogue du dimère, se déplace progressivement de 908 à 808 cm⁻¹ dans la série CH₃COOH, CH₃COOD, CD₃COOH et CD₃COOD. Ce comportement se rapproche de celui déjà observé pour la bande ν C—C des dimères [2]. Le doublet vers 923 et 908 cm⁻¹, observé sur le spectre du cristal CH₃COOH, correspond donc aux vibrations ν OH et ν C—C et ne représente certainement pas deux bandes ν OH comme il a été suggéré [14]: sur le spectre de CH₃COOD dans les mêmes conditions, seule la bande ν C—C vers 857 cm⁻¹ persiste, tandis que la bande ν OD est relevée à 678 cm⁻¹. Les fréquences ρ_a CH₃ et ρ_s CH₃ de CH₃COOD apparaissent peu changées par rapport à celles de CH₃COOH et la bande δ OD est identifiée à 1072 cm⁻¹.

Sur les spectres infrarouges des cristaux CD₃COOH et CD₃COOD (Fig. 2, Tableau 2) nous attribuons respectivement les fréquences caractéristiques du groupement CD₃ relevées vers 1050, 1035, 924 et 840 cm⁻¹ environ aux vibrations fondamentales δ_s CD₃, δ_a et δ'_s CD₃, ρ_a CD₃ et ρ_s CD₃. L'attribution des vibrations δ_s CD₃ et δ_a , δ'_s CD₃ est analogue à celle du dimère correspondant. Les valeurs des rapports (δ CH₃/ δ CD₃), pour les vibrations de déformation, correspondent assez bien à l'effet isotopique calculé pour un groupement CH₃ isolé [15]. Sur le spectre du cristal CD₃COOH à -180° C la bande ρ_a CD₃ se trouve masquée par celle due à γ OH car à 0°C ces deux bandes sont bien séparées à 922 et 892 cm⁻¹. L'apparition de deux

^[14] I. FISCHMEISTER, Spectrochim. Acta 20, 1071 (1964).

^[15] S. Krimm, Advances in Polymer Science 2, 51 (1960).

bandes d'intensités très voisines à 856 et 835 cm⁻¹, sur le spectre du cristal CD₃COOH à -180° C, peut s'interpréter par une résonance de Fermi entre les vibrations ν C—C et ρ_s CD₃. A 0°C, en effet, l'absorption ρ_s CD₃ à 833 cm⁻¹ apparaît moins intense que celle à 849 cm⁻¹ due à ν C—C (Tableau 2). De plus, sur le spectre du cristal CD₃COOD à -180° C la bande caractéristique de la vibration ρ_s CD₃ à 841 cm⁻¹ est considérablement plus faible que celle à 808 cm⁻¹ due à ν C—C. Le couplage entre les vibrations δ OD et δ_s CD₃ dans le cristal CD₃COOD semble donc analogue à celui du dimère correspondant.

Dans la région entre 650 et 400 cm^{-1} , enfin, on attribue respectivement sur le spectre de CH_3COOH à -180°C les trois bandes fondamentales vers 635, 592 et 450 cm^{-1} aux vibrations de déformation δCOO , γCCO et δCCO par analogie avec le dimère [2]. Les bandes correspondantes sur les spectres des acides deutériés se déplacent vers les basses fréquences dans la série CH_3COOD , CD_3COOH , CD_3COOD tout en gardant leur intensité relative. Les fréquences des vibrations fondamentales de l'acide acétique et de ses dérivés deutériés à l'état solide à -180°C sont résumées dans le Tableau 4.

Vibration		CH ₃ COOH	CH^3COOD	CD_3COOH	CD ₃ COOD
A'vOH	(OD)	2875	2194	2852	2187
ν' , CH_3	(CD _a)	(b)	3040	2270	(b)
$\nu_s \mathrm{CH_3}$	(CD ₃)	(b)	2950	2116	(b)
νC=Ö	` 0'	1648	1637	1641	1640
δ' CH ₃	(CD_3)	1448, 1439	1444	1035	1035
δ_s CH.	(CD _a)	1356	1390*	1055	1045
δÖH	(OD)	1418*	1072	1404*	1100
ν CO	, ,	1284*	1322*	1287*	1340
$ ho_s \mathrm{CH_3}$	(CD_2)	1022	1010	835	841
νČČ	` 3'	908	857	856	808
SCOO		625	608	607	501

446

3000

1444

1046

678

400

2270

1035

920

920 (b)

399

(b)

1035

924

672

505

Tableau 4. Nombres d'onde des vibrations fondamentales des cristaux CH₃COOH, CH₃COOD, CD₃COOH et CD₃COOD à -180°C (a)

δCCO

 $\delta_a CH_2$

 ν OH

νCCO

 $A''v_a$ CH₃

 (CD_3)

(CD₉)

 (CD_3)

(OD)

Comparaison des vibrations fondamentales des monomères, dimères et polymères de l'acide acétique

450

(b)

1448, 1439

1049

923

Influence de l'autoassociation—La liaison hydrogène ou la température influence très peu les vibrations du groupement méthyle quel que soit le mode d'association. Les fréquences νCH_3 et νCD_3 , en particulier, varient au maximum de ± 10 cm⁻¹ autour de la valeur moyenne pour les diverses formes des acides; l'intensité des bandes infrarouges est toujours assez faible. Les fréquences δ_a , $\delta_s' \text{CH}_3$ et $\rho_a \text{CH}_3(\text{CD}_3)$ sont également très peu sensibles à l'association. Par contre les fréquences $\delta_s \text{CH}_3$ et $\rho_s \text{CH}_3$ varient de 30 cm⁻¹ environ en passant des molécules libres aux molécules associées; cette variation, souvent accompagnée par un changement d'intensité relative de la bande correspondante, est imputable principalement à un couplage avec les autres vibrations.

⁽a) valeur moyenne dans le cas de deux composantes.

⁽b) masqué.

^{*} vibrations couplées.

Toutes les autres vibrations de l'acide acétique sont sensibles à la liaison hydrogène. Les fréquences νOH et $\nu C=0$, en particulier, s'abaissent fortement avec l'association tandis que les fréquences νOH , δOH , $\nu C=0$ et $\nu C=0$ s'élèvent.

Sur le Tableau 5, nous comparons les paramètres structuraux [9, 12, 16] et les fréquences de l'acide acétique [1, 2] et de l'acétate de sodium [16, 17]. Pour les

	CH3COOH					
Distances [Å]	Monomère (Réf. [12])	Dimère (Réf. [12])			CH ₃ COONa (Réf. [16])	
C-0 C=0 OH0	$1,43 \pm 0,03$ $1,24 \pm 0,03$	$1,36 \pm 0,04$ $1,25 \pm 0,03$ $2,76 \pm 0,06$	$1,29 \pm 0,02$ $1,24 \pm 0,02$ $2,61 \pm 0,02$		1,27 1,27	
Fréquences (cm ⁻¹)	(Réf. [1])	(Réf. [2]) (a)	(b)	(b)	(Réf. [16])	
vOH vC=O vC=O (c) vC=C δOD (e) vOH	3583 1788 1300 847 1004 534	3028 1695 1347 886 1088 934	2927 1652 1342 884 1095 906	2875 1648 1340 908 1100 923	1582 1425 923	

⁽a) Valeur moyenne des fréquences infrarouges et Raman.

fréquences δ OD et ν C—O nous utilisons celles de l'acide CD₃COOD au lieu de celles de l'acide CH₃COOH parce que, pour ce dernier, les vibrations δ OH et ν C—O se trouvent fortement couplées. Dans la série: monomère, dimère, polymère à 0° et à —180°C de l'acide acétique, acétate de sodium, les distances ν C—O et ν C—O d'une part, et les fréquences ν C—O et ν C—O d'autre part, se rapprochent. Ce fait indique que la contribution ionique CH₃COO—H+ dans la structure de l'acide acétique associé devient importante et qu'elle augmente avec la force de la liaison hydrogène. En effet, la plupart des fréquences du polymère (Tableau 4) sont plus proches des fréquences de l'ion acétate [16, 17] que de celles du monomère [1].

Dimères et polymères—Les données structurales et spectroscopiques du Tableau 5 montrent que la liaison hydrogène apparaît plus forte dans le polymère du cristal à 0°C que dans le dimère fermé. La distance intermoléculaire $R_{0\cdots 0}$ est plus courte et la différence entre les distances interatomiques rC—O et rC—O diminue du monomére au polymère. Ce fait se répercute sur les spectres de vibration: les fréquences rOH et rC—O se trouvent effectivement plus basses dans le polymère. Les fréquences rOH et rC—O, rC—C et celles dues aux vibrations de déformation du squelette varient peu pour les deux formes associées; en particulier le couplage, d'une part, entre les vibrations rOH et rC—O pour les acides rOH et rC—O pour les divides rOH et rC—O pour l'acide rOH et rOH0 est pratiquement le même pour les dimères et les polymères. Il nous semble difficile de

⁽b) Valeur moyenne dans le cas de deux composantes.

⁽e) Fréquences de CD₈COOD.

^[16] K. NAKAMURA, J. Chem. Soc. Japan 79, 1411 (1958).

^[17] L. H. JONES et E. McLAREN, J. Chem. Phys. 22, 1796 (1954).

comparer les fréquences γOH car on n'observe pas de bande γOH sur le spectre Raman du dimère.

Influence de la température sur les spectres des cristaux—Un abaissement de la température des cristaux de $\mathrm{CH_3COOH}$ et $\mathrm{CD_3COOH}$ fait diminuer les fréquences vOH et vC =O et augmenter toutes les autres. La liaison hydrogène du cristal semble donc plus forte à $-180^{\circ}\mathrm{C}$ qu'à 0°C. Un déplacement de la bande vOH en fonction de la température était observé aussi pour d'autres cristaux [10, 11] dont les molécules ou ions s'associent en chaînes infinies par l'intermédiaire de liaisons hydrogène. Le glissement semble plus important quand la liaison hydrogène devient plus forte: le déplacement relatif de la bande vOH , $\Delta \mathrm{v/v} = [\mathrm{vOH}(0^{\circ}\mathrm{C}) - \mathrm{vOH}(-180^{\circ}\mathrm{C})]/\mathrm{vOH}(0^{\circ}\mathrm{C})$ est plus grand, par exemple, pour le cristal de NaHCO3 dont la bande fondamentale vOH se trouve vers 2540 cm⁻¹ [11], que pour l'acide acétique.

Effet isotopique—Pour l'acide acétique nous avons observé que les valeurs du rapport $\nu OH/\nu OD$ diminuent dans la série monomère (1, 35), dimére cyclique (1, 33), polymère à 0°C (1, 32) et polymère à -180°C (1, 31). Ce fait joue en faveur de l'hypothèse, suggérée par UBBELOHDE at GALLAGHER [18], d'une liaison deutérium plus faible que la liaison hydrogène. En outre, si la liaison deutérium du cristal de l'acide acétique était considérée plus faible, on prévoit que l'influence de la température sur la fréquence νOD devrait être moins importante que sur la fréquence νOH . Effectivement, le déplacement relatif de la bande νOD des cristaux CH_3COOD et CD_3COOD (Tableaux 1 et 2) apparaît inférieur à celui des bandes νOH des cristaux CH_3COOH et CD_3COOH .

Remerciements—Nous remercions Mr. Hagenmuller pour la mise à notre disposition du spectromètre 137 Infracord. Nous exprimons notre vive gratitude à Mile M. L. Josien et à Mr. J. Lascombe pour avoir suggéré cette étude et pour les discussions dont ils nous ont fait bénéficier.

^[18] A. R. UBBELOHDE et K. J. GALLAGHER, Acta Cryst. 8, 71 (1955).