

Part II: Link Prediction

Zequn Sun

Knowledge Graph Representation Learning

- Embed the discrete symbolic representations of KGs into continuous vector space.
- Why representation learning?
 - Good features are essential for successful machine learning.
 - Mitigate symbolic heterogeneities.
 - Build a unified semantic space serving knowledge-driven applications.
- KG representation learning vs. network embedding

relational structures vs. topological structures

Link Prediction

- Infer the missing relation triples in a KG.
- Input
 - query (head entity, relation, ?) or
 - query (?, relation, tail entity)
- Scoring function
 - Measure the plausibility of relation triples.
 - The learning objective is to differentiate between positive triples and negatives.
- Representative models
 - Translation-based models & semantic matching models
 - Deep models
 - Non-Euclidean models

Translation-based Models: TransE/TransH/TransR

- Translation-based KG embedding methods interpret a relation as a translation vector from its head entity to tail entity.
 - Head entity vector tail entity vector ≈ relation vector
- Inspired by word embeddings
 - Russia Moscow ≈ capital
 - France Paris ≈ capital
- Where to translate relation embeddings?
 - TransE (Bordes et al., NIPS-2013): in the joint vector space
 - TransH (Wang et al., AAAI-2014): on the relation-specific hyperplane
 - TransR (Lin et al., AAAI-2015): in the relation-specific space

Translation-based Models: TransEdge (Sun et al., ISWC-2019)

• Contextualize relation representations in terms of specific head-tail entity pairs.

Relation-contextualized translation

Semantic Matching Models: RESCAL/DistMult/HolE/TuckER

- Semantic matching KG embedding models exploit similarity-based functions to measure the plausibility of relation triples.
 - Bilinear embeddings: RESCAL (Nickel et al., ICML-2011), DistMult (Yang et al., ICLR-2015)
 - Holographic embeddings: HOLE (Nickel et al., AAAI-2016)

- Tensor decomposition embeddings: TuckER (Balazevic et al., EMNLP-2019)
 - Binary tensor representation of a KG

Deep Models: ConvE/CompGCN

Convolutional neural networks: ConvE (Dettmers et al., AAAI-2018)

■ Model the interactions between entities and relations by convolutional operations over 2D shaped

embeddings.

Relational GNN: CompGCN (Vashishth et al., ICLR-2020)

■ Use entity-relation composition operations

for paid barband aggregation

for neighborhood aggregation.

Deep Models: RSN (Guo et al., ICML-2019)

- Recurrent skipping network
 - Entities and relations appear alternately in a path.
 - A path consists of many relational triples as basic units.
 - RNNs overlook element types and local units of triples.
 - Type-based NCE
 - Entity prediction
 - Relation prediction
 - Entities participate in predicting
 - the subsequent relations
 - the relational object entities

Non-Euclidean Methods: RotatE/ATTH

- Complex embeddings: RotatE (Sun et al., ICLR-2019)
 - Define each relation as a rotation from the head entity to the tail entity in the complex vector space.
 - Propose self-adversarial negative sampling for embedding learning.

- Hyperbolic embeddings: ATTH (Chami et al., ACL-2020)
 - The amount of space covered by hyperbolic geometry grows exponentially with the radius.
 - Capture hierarchical and logical patterns at low dimensions.
 - Lift existing embedding techniques (e.g., relation translation and rotation) into hyperbolic space.

Link Prediction Datasets

- FB15K and WN18 (Bordes et al., NIPS-2013)
 - Subsets of Freebase and WordNet, respectively
 - Suffer from the test data "leakage" issue due to reverse triples.

Dataset	#entities	#relations	#train	#valid	#test
FB15k	14,951	1,345	483,142	50,000	59,071
FB15k-237	14,541	237	272,115	17,535	20,046
WN18	40,943	18	141,442	5,000	5,000
WN18RR	40,943	11	86,835	3,034	3,134

- □ (A Room With A View, *film/directed_by*, James Ivory)
- □ (James Ivory, *director/film*, A Room With A View)
- Current benchmark (reverse triples removed, more challenging)
 - FB15K-237 (Toutanova and Chen, CVSC-2015)
 - WN18RR (Dettmers et al., AAAI-2018)
- Realistic Re-evaluation of Link Prediction (Akrami et al., SIGMOD-2020)
 - Existing embedding models would have been biased toward learning trivial patterns for link prediction.
 - Link prediction is still a difficult task without truly effective automated solution.

End of Part II