Problem 1

Part a

Python 1: XORing with 8003

```
import time

def main():
    L = [2**(10),2**(20),2**(30)]
    for i in L:
        start = time.time()
        for counter in range(0,i+1,1):
            xor = counter ^ 8003
        end = time.time()
    print(end-start)
```

CPU: I7-1165G7 (4 cores - 8 threads - 2.8GHz Clock Speed)

RAM: 16GB

Language: Python

Use the for the CPU time formula:

CPU time = Intructions count
$$\times$$
 $CPI \times$ Clock Cycle

Since we use the same code for every counter 2^{10} , 2^{20} , 2^{30} , 2^{330} so the CPI will be the same. Lets consider the two cases 2^{30} and 2^{330} which is CPU Time_A and CPU Time_B respectively. There is only one intruction (XORing) in the body of the code. Therefore, the total instructions count for CPU Time_A is 2^{30} instructions and for CPU Time_B is 2^{330} instructions. Clock cycle will always be the same. In addition, this algorithm has the 0(n) run time.

$$38.3 = 2^{30} \times CPI \times \text{Clock Cyle}$$
 CPU $\text{Time}_B = 2^{330} \times CPI \times \text{Clock Cyle}$

Divide both equations, we have:

$$\frac{38.3}{\text{CPU Time}_B} = \frac{2^{30}}{2^{330}}$$

Therefore

CPU Time_B =
$$\frac{2^{330} \times 38.3}{2^{30}} = 7.8 \times 10^{91} seconds = 2.47 \times 10^{84} years$$

Part b

Python 2: Dividing with 4009

```
import time

def main():
    L = [2**(10),2**(20),2**(30)]
    for i in L:
        start = time.time()
        for counter in range(0,i+1,1):
            xor = counter / 4009
        end = time.time()
        print(end-start)
```

Use the same logic that we used to solve part a since this question, we have:

$$\frac{31.3 \times 2^{330}}{2^{30}} = 6.374 \times 10^{91} \text{ seconds} = 2.02 \times 10^{84} years$$

Figure 1: Result when XORing and Dividing

Problem 2

- 1. $G_2(s \parallel t \parallel z) = G_1(s) \parallel (t \oplus z)$ G_2 is not a secure PRG for the following reasons:
 - (a) $G_1(s)$ is a secure PRG
 - (b) $t \oplus z$ is not random since z is random but t is not necessarly random; therefore, half of the string could be not necessarly random.

Therefore, the attacker could ignore the $G_1(s)$ and go after the $t \oplus z$ part. Hence, $G_2(s)$ is **Not A Secure PRG**

- 2. $G_3(s) = G_0(\bar{s}) \oplus 1^{2n}$
 - (a) $G_0(\bar{s})$ is a secure PRG since $G_0(s)$ is the PRG and \bar{s} will not change the distribution of 0, 1
 - (b) $1^{2n} = 1^n$ which is a string of 1 that has length n. This is a fixed pattern.

We basically flip the bit of $G_0(\bar{s})$. In orther words, $G_3(s) = {^{\sim}}G_0(\bar{s})$. We use argument from 1 to say that $G_0(\bar{s})$ is a secure PRG. Therefore, $G_3(s)$ is a **Secure PRG**

- 3. $G_4(s \parallel z) = ((s \parallel z) \oplus G_0(s)) \parallel G_0(s)$
 - (a) $G_0(s)$ is a secure PRG
 - (b) $s \oplus z$ will produce another random string since both s and z are random.
 - (c) $((s \parallel z) \oplus G_0(s))$ is a secure PRG due to the above properties.
 - (d) $((s \parallel z) \oplus G_0(s)) \parallel G_0(s)$ is a secure PRG since we concatenate property c with property a.

Therefore, $G_4(s)$ is **A Secure PRG**.

- 4. $G_5(s) = \mathsf{msb}(G_0(s)) \parallel G_0(s) \parallel G_1(z)$, where msb is the most significant bit.
 - (a) $G_0(s)$ and $G_1(s)$ are a secure PRG
 - (b) The attacker knows the algorithm that constructed G_0 but he doesn't know the seed. However, he still has a non-negligible chance of guessing $msb(G_0(s))$ which in this case is 50%

Basically, the problem becomes,

$$50\% \{0,1\} \parallel PRG \parallel PRG$$

 $G_5(s)$ is **A Secure PRG** since he only has 50% change of guessing the correct MSB of $G_5(s)$, and the rest of $G_5(s)$ are still random.

Problem 3