AMERICAN UNIVERSITY OF ARMENIA

College of Science and Engineering

CS 120 Introduction to Object-Oriented Programming

MIDTERM EXAM

Date / Time:

Friday, March 17 2017 at 17:30

Duration:

2 hours

Attention:

ANY TYPE OF COMMUNICATION IS STRICTLY PROHIBITED

Write down your section, name and ID# at the top of all used pages

Participation:

Problem 1: Consider below a C++ function float kahan(float num1, float num2, float& compensation) that implements the Kahan Summation Algorithm for high-precision compensated summation of two float arguments float num1 and float num2:

```
float kahan(float num1, float num2, float &compensation)
{
    float result;
    num2 -= compensation;
    result = num1 + num2;
    compensation = (result - num1) - num2;
    return result;
```

Using this function, write a C++ function float pi(int n) that computes the value π by the following formula:

$$\pi = 2\sum_{k=0}^{n} \frac{(2k-1)!!}{(2k)!!(2k+1)} = \frac{2}{1*1} + \frac{1}{2}*\frac{2}{3} + \frac{1*3}{2*4}*\frac{2}{5} + \frac{1*3*5}{2*4*6}*\frac{2}{7} + \cdots$$

Recall that n!! is the product of odd numbers from I to n, if n is odd; and is the product of even numbers from I to I to I to I is even. The double factorial of non-positive numbers equals to I by definition.

The initial value of float compensation is 0.0.

Float p (n + n) p double a double p doubl

Problem 2: Write a Java method public static double[] lin(double[] data) that takes as its argument an array of data points double [] data, and returns a two-element array - the first element being the slope of the linear regression and the second element being the intercept. The linear regression approximates the data points by the linear formula

$$y=k\,x+b,$$

where the slope k and the intercept b are computed as

$$k = \frac{\overline{xy} - \overline{x} \, \overline{y}}{\overline{x^2} - \overline{x}^2}, b = \overline{y} - k \, \overline{x}$$

Here \bar{x} is the mean of the x coordinates, \bar{y} is the mean of the y coordinates, \bar{x}^2 is the mean of the squares of the x coordinates, and \overline{xy} is the mean of the products of the x and y coordinates. Use the element indices of the array double[] data as x coordinates and the element values as y coordinates. You may assume and use the method double mean(double[] a).

public Hatedoublelin [] dufa) ?
double and = remark La]
for (Winos could int (4+12
double The X = men dante (1) pain
par fenker vaceur (houtet 7 a) x xun vunn.

Problem 3: Write a Java function public static double area(double[][] vertex) that takes as its argument a 2-by-n array of a convex polygon's vertex coordinates double[][] vertex - the x coordinates in the first row and y coordinates in the second row. It returns polygon's area as follows:

1. Divides the polygon into triangles by connecting the *first* vertex with the n^{th} and $(n+1)^{st}$ vertices;

2. Adds the areas of the constructed triangles using the formula $area = \sqrt{p(p-a)(p-b)(p-c)}$, where

a, b and c are the sides and p = (a + b + c)/2.

You may assume and use a method double dist(double x1, double y1, double x2, double y2) that takes as its arguments coordinates of two points and returns the distance between them.

doubte control white I want of an action the I and a fee = that

doubte a = fret make correspondent of the supertails

doubte be a transfer to I make the correspondent of the supertails

doubte c = doubt correspondent of the correspondent o

Problem 4: Write a Java method public static void magic4N(int[][] square) that creates a magic square of a 4N-by-4N size using the following algorithm:

1. Creates an array of the same size as int[][] square and fills it forward with successive integers assigning I to the top-left element;

2. Creates anther array of the same size as *int[][]* square and fills it backward with successive integers assigning I to the bottom-right element;

3. Divides the original *int[][] square* into 16 blocks of the same size – 4 blocks per row and column. In the on-diagonal (shaded) blocks copies the elements from the first array, and in the off-diagonal

blocks copies the elements from second array.

1	2				F- 100	7	8
9	10			1.5		15	16
B. Talbert		19	20	21	22		
		27	28	29	30		
		35	36	37	38		The second
		43	44	45	46		1
49	50		1		-	55	56
57	58				0718	63	64

1275	越窜	59	60	61	62		
		51	52	53	54	新元明 》	
41	42		SALE.		S. S. Sylve	47	10
33	34	SECTION.	10/04/25	With the same			48
25	26			经验3199	豐寶四	39	40
23		3 5 5 5 5 5	725	15103.55	在形 层	31	32
17	18		THE REAL PROPERTY.		SE ST	23	24
		11	12	13	14	English.	
	741	3	4	5	6		P. San

57 58 63 64
Phrente part pour hund me just min int [4/2][40]
0110 120m20; 20m / 20m2 coloner knothment)
Von (int column Colom Renthrand)
Int House to Irong Coots-can-fourentransbengen-
mainten
print konswert , were not T4n7 [4n]
You I'm some o; row = back with denyth course)
point forment = new int I4n 7 [4n] for (int rom=0; rom = back next town of length courts) for (int col=0; coal & booknown Term Englicular) Bor (int col=0; coal & booknown = back wantrowleding
(becknund length - row)
int [][] = mu mt [4][4]
Use the backside, if needed part of ele part back unonf
Use the backside, if needed problem 4 of 4
90P. MT-17034 L034