$\begin{array}{c} L\ddot{o}sungen \overset{\text{\tiny Learning}}{Z} \overset{\ddot{U}}{U} \overset{\text{\tiny LUTEX}}{U} bungsaufgab\overset{\text{\tiny Edition}}{e} 03_{:)} \\ \text{Gruppe: Mi 08-10 SR 2, Barbara Rieß} \end{array}$

Linus Keiser

November 16, 2023

Aufgabe 9

(a) i.

Wahrheitstabelle für $x \to y$

$$\begin{array}{c|ccc} x & y & x \rightarrow y \\ \hline W & W & W \\ W & F & F \\ F & W & W \\ F & F & W \end{array}$$

Wahrheitstabelle für $\neg(x \land \neg y)$

$$\begin{array}{c|cc} x & y & \neg(x \land \neg y) \\ \hline W & W & W \\ W & F & F \\ F & W & W \\ F & F & W \\ \end{array}$$

Der Vergleich der beiden Wahrheitstabellen zeigt, dass die Werte in der Ergebnisspalte für jede mögliche Kombination von x und y identisch sind. Daher können wir schlussfolgern, dass die Aussagen $x \to y$ und $\neg(x \land \neg y)$ logisch äquivalent sind.

(a) ii.

Wahrheitstabelle für $x \leftrightarrow y$

$$\begin{array}{c|ccc} x & y & x \leftrightarrow y \\ \hline W & W & W \\ W & F & F \\ F & W & F \\ F & F & W \\ \end{array}$$

Wahrheitstabelle für $(x \to y) \land (y \to x)$

$$\begin{array}{c|ccc} x & y & (x \rightarrow y) \land (y \rightarrow x) \\ \hline W & W & W \\ W & F & F \\ F & W & F \\ F & F & W \\ \end{array}$$

Der Vergleich der beiden Wahrheitstabellen zeigt, dass die Werte in der Ergebnisspalte für jede mögliche Kombination von x und y identisch sind. Daher können wir schlussfolgern, dass die Aussagen $x \leftrightarrow y$ und $(x \to y) \land (y \to x)$ logisch äquivalent sind.

(b)

$$\begin{array}{lll} \text{Negation:} & \neg x & = x \mid x \\ \text{Konjunktion:} & x \wedge y & = (x \mid y) \mid (x \mid y) \\ \text{Disjunktion:} & x \vee y & = (x \mid x) \mid (y \mid y) \\ \text{Implikation:} & x \rightarrow y & = x \mid (y \mid y) \\ \text{Äquivalenz:} & x \leftrightarrow y & = ((x \mid y) \mid (x \mid y)) \mid ((x \mid x) \mid (y \mid y)) \\ \end{array}$$

Aufgabe 10

(a) Direkter Beweis, dass wenn x durch 3 teilbar ist, x^2 auch durch 3 teilbar ist:

Gegeben ist, dass $x \in \mathbb{N}$ und x durch 3 teilbar ist. Daraus folgt, dass es eine ganze Zahl k gibt, sodass x = 3k. Wir müssen zeigen, dass x^2 ebenfalls durch 3 teilbar ist.

Zu zeigen: ist $x \in \mathbb{N}$ durch 3 teilbar, so ist auch x^2 durch 3 teilbar.

Beweis. Wir berechnen:

$$x^2 = (3k)^2 = 9k^2 = 3(3k^2).$$

Da $3k^2$ eine ganze Zahl ist (denn k ist eine ganze Zahl und das Quadrat einer ganzen Zahl ist wiederum eine ganze Zahl), ist x^2 das Produkt von 3 und einer ganzen Zahl, also durch 3 teilbar.

(b) Indirekter Beweis, dass wenn y^2 durch 3 teilbar ist, y auch durch 3 teilbar ist:

 $Aussage\ zu\ beweisen:$ Wenn y^2 durch 3 teilbar ist, dann muss ydurch 3 teilbar sein.

Kontraposition der Aussage: Wenn y nicht durch 3 teilbar ist, dann ist y^2 nicht durch 3 teilbar.

Beweis. Nehmen wir an, y ist nicht durch 3 teilbar. Das bedeutet, y hat bei Division durch 3 entweder den Rest 1 oder den Rest 2. In beiden Fällen zeigen wir, dass y^2 nicht durch 3 teilbar ist.

1. Fall: y = 3k + 1 für ein $k \in \mathbb{Z}$.

$$y^2 = (3k+1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1.$$

Da 3 eine Primzahl ist und der Ausdruck $3(3k^2 + 2k)$ durch 3 teilbar ist, der Term +1 aber nicht, kann y^2 nicht durch 3 teilbar sein.

2. Fall: y = 3k + 2.

$$y^2 = (3k+2)^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1.$$

Ähnlich wie im ersten Fall ist der Ausdruck $3(3k^2+4k+1)$ durch 3 teilbar, aber der Term +1 wiederum nicht, also kann auch hier y^2 nicht durch 3 teilbar sein.

Da in beiden Fällen y^2 nicht durch 3 teilbar ist, wenn y nicht durch 3 teilbar ist, haben wir die Kontraposition der ursprünglichen Aussage bewiesen. Das bedeutet, dass unsere ursprüngliche Aussage wahr sein muss: Wenn y^2 durch 3 teilbar ist, dann muss auch y durch 3 teilbar sein.

(c) Indirekter Beweis, dass $\sqrt{3}$ irrational ist:

Zu zeigen: $\sqrt{3}$ ist irrational.

Wir führen einen Widerspruchsbeweis und nehmen an, dass $\sqrt{3}$ rational ist.

Beweis. Wenn $\sqrt{3}$ rational ist, kann es als Bruch zweier teilerfremder ganzer Zahlen a und b dargestellt werden, d.h. $\sqrt{3} = \frac{a}{b}$, wobei $a, b \in \mathbb{Z}$ und $b \neq 0$.

$$\left(\frac{a}{b}\right)^2 = 3$$
$$a^2 = 3b^2.$$

Da a^2 das Dreifache einer ganzen Zahl ist, muss a^2 und somit a durch 3 teilbar sein. Also gibt es eine ganze Zahl k, sodass a=3k.

Setzen wir dies in die Gleichung $a^2 = 3b^2$ ein:

$$(3k)^2 = 3b^2$$
$$9k^2 = 3b^2$$
$$3k^2 = b^2.$$

Jetzt sehen wir, dass b^2 auch durch 3 teilbar ist, und somit ist b ebenfalls durch 3 teilbar. Dies steht im Widerspruch dazu, dass a und b teilerfremd sein sollen. Daher ist unsere Annahme, dass $\sqrt{3}$ rational ist, falsch, und es folgt, dass $\sqrt{3}$ irrational sein muss.

Aufgabe 11

Zu zeigen: die Summenformel

$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

gilt für alle natürlichen Zahlen n. Wir führen den Beweis mittels vollständiger Induktion.

Beweis. Schritt 1: Induktionsanfang.

Wir müssen zeigen, dass die Formel für n=1 wahr ist. Setzen wir n=1 in die Formel ein, erhalten wir:

$$\sum_{i=1}^{1} i^3 = 1^3 = 1$$

und

$$\frac{1^2(1+1)^2}{4} = \frac{1\cdot 4}{4} = 1.$$

Da beide Seiten gleich sind, ist der Induktionsanfang bewiesen.

Schritt 2: Induktionsschritt.

Induktions annahme: Wir nehmen nun an, dass die Formel für ein beliebiges, aber festes n wahr ist:

$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$$

Nun zeigen wir, dass die Formel auch für n+1 gültig ist:

$$\sum_{i=1}^{n+1} i^3 = \sum_{i=1}^{n} i^3 + (n+1)^3.$$

Gemäß unserer Induktionsannahme können wir den ersten Teil der Summe ersetzen:

$$\frac{n^2(n+1)^2}{4} + (n+1)^3.$$

Dies vereinfachen wir zu:

$$\frac{n^2(n+1)^2}{4} + (n+1)^3 = \frac{n^2(n+1)^2 + 4(n+1)^3}{4}$$

$$= \frac{(n+1)^2(n^2 + 4(n+1))}{4} \mid (n+1)^2 \text{ ausklammern}$$

$$= \frac{(n+1)^2(n^2 + 4n + 4)}{4}$$

$$= \frac{(n+1)^2(n+2)^2}{4}.$$

Dies ist genau die Form, die wir für n+1 zeigen wollten:

$$\sum_{i=1}^{n+1} i^3 = \frac{(n+1)^2((n+1)+1)^2}{4}.$$

Da der Induktionsanfang und der Induktionsschritt erfolgreich waren, ist die Formel für alle natürlichen Zahlen n bewiesen.

Aufgabe 12: Potenzen

Teil 1: Bestimmung der kleinsten natürlichen Zahl M

Durch Berechnung finden wir, dass das kleinste M, das größer als 1 ist und für das $2^M > M^2$ gilt, gleich 5 ist, da $2^5 = 32 > 25 = 5^2$. Die Fälle für M < 5 zeigen, dass kein zulässiger kleinerer Wert die Bedingung erfüllt:

$$M = 2$$
: $2^2 = 4 \le 4 = 2^2$,
 $M = 3$: $2^3 = 8 \le 9 = 3^2$,
 $M = 4$: $2^4 = 16 \le 16 = 4^2$.

Teil 2: Beweis der Ungleichung für alle $n \geq M$

Nun beweisen wir, dass $2^n > n^2$ für alle natürlichen Zahlen $n \geq M$ gilt, wobei M = 5 ist.

Beweis. Induktionsanfang:

Für M=5 haben wir bereits gezeigt, dass $2^5=32>25=5^2$. Daher ist der Induktionsanfang bestätigt.

Induktionsschritt:

Induktionsannahme: Wir nehmen an, dass die Ungleichung $2^k > k^2$ für ein beliebiges, aber festes $k \geq 5$ wahr ist.

Es gilt zu zeigen, dass aus $2^k > k^2$ folgt, dass $2^{k+1} > (k+1)^2$. Wir beginnen mit der linken Seite der Ungleichung für k+1:

$$2^{k+1} = 2 \cdot 2^k$$

Unter Verwendung der Induktionsvoraussetzung ergibt sich:

$$2^{k+1} = 2 \cdot 2^k > 2 \cdot k^2$$

Wir zeigen, dass $2 \cdot k^2$ größer als $(k+1)^2$ ist. Dazu betrachten wir die Differenz zwischen $2 \cdot k^2$ und $(k+1)^2$:

$$(k+1)^2 = k^2 + 2k + 1$$
$$2 \cdot k^2 - (k+1)^2 = k^2 - 2k - 1$$

Um zu zeigen, dass $k^2-2k-1>0$ für $k\geq 5$, bemerken wir, dass dies äquivalent ist zu $(k-1)^2-2>0$:

$$k^2 - 2k - 1 = (k-1)^2 - 2$$

Für k=5 ist diese Differenz 14, was offensichtlich positiv ist. Da $(k-1)^2$ als quadratische Funktion schneller wächst als die lineare Funktion 2k, wird diese Differenz für k>5 nur größer. Daher ist $k^2-2k-1>0$ für alle $k\geq 5$.

Daraus folgt:

$$2 \cdot k^2 > k^2 + 2k + 1$$

und somit:

$$2^{k+1} > (k+1)^2$$

Schlussfolgerung:

Da der Induktionsanfang bestätigt ist und der Induktionsschritt für alle $k \ge M$ gilt, folgt nach dem Prinzip der vollständigen Induktion, dass $2^n > n^2$ für alle natürlichen Zahlen $n \ge M$ wahr ist.