

AUGUSTO MATHIAS ADAMS

RELATÓRIO DE ESTÁGIO

Relatório de Estágio apresentado como parte da avaliação na disciplina TE349 – Estágio Obrigatório, no curso de Graduação em Engenharia Elétrica Ênfase em Sistemas Embarcados, Setor de Tecnologia, Universidade Federal do Paraná, como requisito parcial à obtenção do título de Engenheiro Eletricista.

Estagiário: Augusto Mathias Adams

Matrícula: GRR20172143

Empresa: UFPR

Departamento: Grupo de Fenômenos da Eletri-

cidade Atmosférica (FEA/UFPR)

Setor: Desenvolvimento e Inovação em Detec-

tores de Descargas Atmosféricas

Supervisor: Prof. Dr. Mateus Duarte Teixeira

Período: 26/02/2024 - 29/06/2024.

Orientador: Prof. Dr. Armando Heilmann

SUMÁRIO

1	INT	RODUÇÃO	3
		CONTEXTO	3
2		/IDADES REALIZADAS	4
	2.1	ATUALIZAÇÃO DOS ALGORITMOS DA REDE STORMDETECTOR	4
		2.1.1 Rede SDN	4
		2.1.2 Interface TrackingStorm	4
	2.2	PRECIFICAÇÃO DAS TECNOLOGIAS ENVOLVIDAS NA CONCEPÇÃO	
		DO SISTEMA STORMDETECTOR V2	5
		2.2.1 Projeto de Hardware	5
		2.2.2 Projeto de Software	8
		2.2.2.1 Softwares Adicionais	9
	2.3	PROJETO DE ESTRUTURA DE FIXAÇÃO E LEVANTAMENTO DE RE-	
		QUISITOS PARA LOCAIS DESTINADOS À INSTALAÇÃO DE DETEC-	
		TORES STORMDETECTOR V2	10
	2.4	POSSÍVEIS MELHORIAS DO DISPOSITIVO STORMDETECTOR V2 .	11
3	COI	NCLUSÕES	13

1 INTRODUÇÃO

1.1 CONTEXTO

O Grupo de Fenômenos da Eletricidade Atmosférica da Universidade Federal do Paraná (*FEA/UFPR*) desenvolve desde 2018 um sistema de detecção, localização e processamento de informações de descargas atmosféricas, incluindo:

- **Dispositivo StormDetector (SD)**: Um detector remoto de descargas atmosféricas com uma distância máxima de detecção de 20 km.
- Rede StormDetector (SDN): Uma rede de localização de raios baseada em detectores dispostos de forma aleatória, operando com algoritmos de estimativa de posição inicial e otimização de geolocalização.
- Interface TrackingStorm (TS): Uma interface interativa para visualização de informações sobre descargas atmosféricas, incluindo localização de raios, dinâmica de tempestades e emissão de alertas.

O FEA/UFPR desenvolve o StormDetector V2, com lançamento previsto para setembro de 2024, visando maior eficiência e acurácia de detecção. Este novo detector tem eficiência de detecção total nos eventos CG e IC acima de 95%, além de um alcance de detecção superior a 100 km para eventos IC.

A base tecnológica do *StormDetector V2*, juntamente com a atualização da *Rede SDN* e da Interface *TrackingStorm*, possibilitará a criação de uma *startup* dedicada à comercialização de tecnologias de detecção e monitoramento de raios. Em face a esta nova demanda, torna-se necessário atividades adicionais, tais como levantamento de requisitos de locais para a instalação dos novos detectores, precificação das tecnologias envolvidas e atualização dos algoritmos.

2 ATIVIDADES REALIZADAS

No decorrer do estágio, foram desenvolvidas diversas tarefas, abrangendo desde a pesquisa de locais estratégicos para a instalação dos novos detectores, passando pela precificação das tecnologias envolvidas e atualização de algoritmos da rede.

2.1 ATUALIZAÇÃO DOS ALGORITMOS DA REDE STORMDETECTOR

2.1.1 Rede SDN

O *StormDetector V1* é um estimador de distância de descargas atmosféricas, baseado no circuito integrado *AS3935*, emitindo alertas sobre proximidade de descargas. A rede *StormDetector* (*SDN*) é uma rede de curto alcance (15 km) que utiliza algoritmos para separação de eventos e o algoritmo *Levenberg-Marquardt* para geolocalização.

O StormDetector V2 requer mudanças na SDN, adaptando-se ao modo TOA ou ATD, com uma linha de base aumentada para 100 km. Devido à ausência de estimativa de distância, o algoritmo de eparação de eventos original não pode ser utilizado, propondo-se um novo algoritmo de agrupamento baseado em programação evolutiva.

2.1.2 Interface TrackingStorm

A interface de visualização de descargas *TrackingStorm* é uma interface *WEB* para visualização de dados referentes a descargas atmosféricas, com os seguintes produtos principais:

- Raios: Localização dos raios dos últimos 15 minutos na Rede SDN.
- Áreas de Tempestade: Agrupamento de raios em áreas de alta densidade.
- Probabilidade de Ocorrência de Raios em Áreas Amplas (WAP): Predetermina áreas amplas com possíveis raios nos próximos minutos.
- Rastreamento de Tempestades: Mantém históricos dos centroides das tempestades.
- Dinâmica da Tempestade: Calcula movimento, velocidade e direção das tempestades, e Taxa Média de Descargas (MSR).

- Densidade de Extensão de Flashes (DEF): Quantifica a intensidade da tempestade por densidade de flashes no solo.
- Nível de Risco de Raios: Define o nível de risco de raios em uma escala de 4 níveis.
- Alertas: Previsões de alertas baseadas na dinâmica e na área da tempestade.

As atualizações incluem:

- Classificação da descarga nos produtos Raios, WAP, DEF e Nível de Risco de Raios;
 - O Nível de Risco de Raios considera apenas descargas nuvem-solo (CG).
 - WAP e DEF são calculados para cada tipo de evento e para todos os eventos.
- Sistema de alertas antecipado para descargas nuvem-solo com base em descargas intra-nuvem (IC).

A interface foi atualizada para o *framework REACT* na construção da interface cliente e *Django*, em *Python*, para a implementação do servidor.

2.2 PRECIFICAÇÃO DAS TECNOLOGIAS ENVOLVIDAS NA CONCEPÇÃO DO SISTEMA STORMDETECTOR V2

2.2.1 Projeto de Hardware

Os diagramas esquemáticos e placas para o dispositivo *StormDetector V2* foram desenvolvidas utilizando o *software EDA KiCad* [®] e os componentes utilizados na construção do protótipo são sumarizados na TABELA 1.

TABELA 1 – COMPONENTES DO PROJETO DE HARDWARE DO STORMDETEC-TOR V2

Componente	Quantidade	Custo Unitário	Custo Total		
Barra De Pinos Fê-					
mea Mci 180º Pci	3	R\$ 0,50	R\$ 1,50		
2.54mm 2x20					
Barra De Pinos He-					
ader Mci 180º Pci	4	R\$ 2,00	R\$ 8,00		
2.54mm 2x20					

TABELA 1 – COMPONENTES DO PROJETO DE HARDWARE DO STORMDETECTOR V2

Componente	Quantidade	Custo Unitário	Custo Total
Barra de Pinhos He- ader Mci 180º Pci 2.54mm 2x20	1	R\$ 1,00	R\$ 1,00
Barra de Pinos Reta 1x5	2	R\$ 1,00	R\$ 2,00
Resistor 330R SMD 0603 1/10 W	8	R\$ 0,10	R\$ 0,80
Capacitor 100nF SMD 0805 50V	5	R\$ 0,50	R\$ 2.50
Led Amarelo 5mm Difuso Leitoso 1200mcd 620-625nm	8	R\$ 0,50	R\$ 4,00
Jack J4 P4 2,1mm Para Placa Dc-005	3	R\$ 2,00	R\$ 6,00
Conector USB 2.0 Para Placa	2	R\$ 10,00	R\$ 20,00
Regulador De Ten- são Lm2596 Con- versor Dc-dc Step Down	3	R\$ 30,00	R\$ 90,00
Bateria Litio 18650 12V 5000mAh	1	R\$ 150,00	R\$ 150,00
Placa Protótipo AD9226	1	R\$ 200,00	R\$ 200,00
Placa Protótipo FPGA Spartan 6 AX309	1	R\$ 300,00	R\$ 300,00
Raspberry PI Modelo 4 8GB RAM	1	R\$ 800,00	R\$ 800,00
Filtro Passa Baixa 1MHz RF	1	R\$ 200,00	R\$ 200,00
Antena Mini-Whip 10kHz-30MHz + Cabos	1	R\$ 150,00	R\$ 150,00

TABELA 1 – COMPONENTES DO PROJETO DE HARDWARE DO STORMDETEC-TOR V2

Componente	Quantidade	Custo Unitário	Custo Total
Placa de Intercone-			
xão RPI-FPGA ADC	2	R\$ 8,50	R\$ 17,00
- PCBWay			
Placa de Processa-			
mento de Sinais -	1	R\$ 8,50	R\$ 8,50
PCBWay			
Placa de Alimenta-	1	R\$ 8,50	R\$ 8,50
ção - PCBWay			
Caixa De Montagem	1	R\$ 180,00	R\$ 180,00
35x26x15			
Tripé para fixação	1	R\$ 40,00	R\$ 40,00
		Total Sem Im-	D¢ 2 100 00
		posto	R\$ 2.189,80
		Total Com Im-	D¢ 0 500 00
		posto (60%)	R\$ 3.503,68

FONTE: O Autor, (2024).

O custo unitário do protótipo é de R\$ 3.503,68, com estrutura provisória inclusa.

No projeto está previsto alimentação por painéis solares, cujo orçamento é sumarizado na TABELA 2.

TABELA 2 – ORÇAMENTO DE KIT SOLAR PARA A ALIMENTAÇÃO DO DISPOSITIVO STORMDETECTOR V2

Componente	Quantidade	Custo Unitário	Custo Total
Kit Energia Solar Off			
Grid s/ Inversor -	1	R\$ 2,629.00	R\$ 2.629,00
330Wp 220Ah 12V			
String Box Solar	1	R\$ 590,00	R\$ 590,00
Beny 4E/2S	ı	ΠΦ 390,00	1 (φ 390,00
Suporte Fixação Pai-	4	R\$ 241,90	R\$ 241,90
nel Solar	ı	ΠΦ 241, 3 0	ПФ 24 I,9U
		Total	R\$ 3.460,90

FONTE: O Autor, (2024).

O custo total de *hardware* para o dispositivo *StormDetector V2*, considerando alimentação do dispositivo por energia solar, é de **R\$ 6.964,68**, desconsiderando custos de instalação e aquisição de local.

2.2.2 Projeto de Software

O custo total de implementação dos algoritmos implementados para o dispositivo StormDetector V2 é sumarizado na TABELA 3.

TABELA 3 - LEVANTAMENTO DE COMPLEXIDADE E HORAS GASTAS NA CONS-TRUÇÃO DO SOFTWARE E ALGORITMOS IMPLEMENTADOS EM HARDWARE (FPGA) DO DISPOSITIVO STORMDETECTOR V2

Subsistema	Un.	Horas	Valor/Hora	Subtotal
DAQP – FPGA	1	300	R\$ 100,00	R\$ 30.000,00
SOFTGPSDO –	1	300	R\$ 100,00	R\$ 30.000,00
FPGA	ı	300	ηφ 100,00	пф 30.000,00
Protocolo				
StormDAQP -	1	50	R\$ 50,00	R\$ 2.500,00
FPGA				
DAQP – RPI	1	50	R\$ 50,00	R\$ 2.500,00
Detector de				
Ruído – ANN –	1	100	R\$ 100,00	R\$ 10.000,00
RPI				
Classificador				
de Eventos -	1	100	R\$ 100,00	R\$ 10.000,00
CNN – RPI				
Requadro de	1	10	R\$ 50,00	R\$ 500,00
Eventos – RPI	•		- 1 (φ σ σ , σ σ	
Device Config –	1	10	R\$ 50,00	R\$ 500,00
RPI	•			
SOFTGPSDO –	1	10	R\$ 50,00	R\$ 500,00
RPI				
Protocolo				
StormDAQP -	1	30	R\$ 50,00	R\$ 1.500,00
Central				
Base de Dados				
StormDetector	1	30	R\$ 50,00	R\$ 1.500,00
V2				
Subsistema	1	30	R\$ 50,00	R\$ 1.500,00
IOT	-			
Interface WEB	1	40	R\$ 50,00	R\$ 2.000,00
Configuração	-		+,	
Total		1060		R\$ 93.000,00
FONTE: O Autor, (2024).				

O custo total estimado em implementação de *softwares* para o dispositivo *StormDetector V2* é de **R\$ 93.000,00**.

2.2.2.1 Softwares Adicionais

O dispositivo *StormDetector V2* foi projetado como elemento de uma rede de localização de raios. Esta rede implementa algoritmos de localização e, juntamente com uma interface de visualização de informações, possibilita a tomada de ações quanto ao alerta de raios.

O orçamento de implementação destes softwares é sumarizado na TABELA 4.

TABELA 4 – LEVANTAMENTO DE PRECIFICAÇÃO E HORAS GASTAS NA CONSTRUÇÃO DA INTERFACE TRACKINGSTORM V2

Subsistema	Un.	Horas	Valor/Hora	Subtotal
Rede SDN	1	400	R\$ 100,00	R\$ 40.000,00
Raios	1	80	R\$ 50,00	R\$ 4.000,00
Áreas de Tem-	1	80	R\$ 50,00	R\$ 4.000,00
pestades				
Rastreamento				
de Tempesta-	1	80	R\$ 50,00	R\$ 4.000,00
des				
Dinâmica das	4	00	D¢ 50.00	D# 4 000 00
Tempestades	1	80	R\$ 50,00	R\$ 4.000,00
Probabilidade				
de Ocorrência				
de Raios em	1	80	R\$ 50,00	R\$ 4.000,00
Áreas Amplas				
(WAP)				
Densidade de				
Extensão de	1	50	R\$ 50,00	R\$ 2.500,00
Flashes (DEF)				
Nível de Risco	1	50	D¢ 50.00	D¢ 0 500 00
de Raios	ı	50	R\$ 50,00	R\$ 2.500,00
Alertas	1	300	R\$ 50,00	R\$ 15.000,00
Total		1200		R\$ 80.000,00

FONTE: O Autor, (2024).

O custo total de implementação é de R\$ 80.000,00.

2.3 PROJETO DE ESTRUTURA DE FIXAÇÃO E LEVANTAMENTO DE REQUISITOS PARA LOCAIS DESTINADOS À INSTALAÇÃO DE DETECTORES *STORMDE- TECTOR V2*

A instalação do detector *StormDetector V2* requer cuidados para garantir um desempenho otimizado para a recepção de sinais de rádio emitidos pelas descargas atmosféricas. Recomenda-se que:

- Localização Elevada: a antena do dispositivo deve ser instalada em um local elevado, evitando obstruções e garantindo a melhora na recepção do sinal. Estruturas como mastros metálicos e postes de até 3 metros servem de apoio à antena e fixação da central de processamento.
- **Distância de Interferências:** a antena deve ser instalada longe de fontes de interferência eletromagnética, como linhas de alta tensão, equipamentos eletrônicos e eletrodomésticos, para reduzir o ruído e melhorar a qualidade do sinal recebido.
- Isolamento de Estruturas Metálicas: não instalar a antena diretamente em estruturas metálicas. A utilização de suportes não condutivos, como postes de PVC ou fibra de vidro, é mandatório.
- Aterramento adequado: A antena do dispositivo detector requer um bom aterramento para funcionar corretamente. O sistema de aterramento deve ser bem projetado e implementado para evitar problemas de desempenho.
- Área Aberta: O local deve ter uma vista clara do céu, sem obstruções significativas ao redor, sendo importante para a recepção de sinais de baixa frequência (VLF/LF/MF), faixa do espectro que concentra a maior parte da energia emitida pelas descargas atmosféricas.

O projeto do sistema de fixação da antena e dispositivo, levando em consideração as recomendações, deve ser uma estrutura fixa para a antena de detecção e *GPS*, a pelo menos 1 metro de distância uma da outra, além ter pelo menos 3 metros de altura, em local plano e livre de interferências. O projeto preliminar da estrutura de fixação se encontra na FIGURA 1.

A estrutura de fixação projetada consiste de:

1. **Base de concreto:** Uma estrutura sólida e nivelada, projetada para suportar o peso e garantir a estabilidade do poste, mitigando movimentação indesejada devido ao vento ou outras forças externas.

FIGURA 1 – ESBOÇO DA ESTRUTURA DE FIXAÇÃO DO DISPOSITIVO STORMDETECTOR V2

FONTE: O Autor, (2024).

- 2. Caixa acondicionadora de circuitos: Um compartimento resistente às intempéries, instalado a 1 metro de altura no poste, destinado a proteger e abrigar os circuitos eletrônicos e equipamentos sensíveis utilizados no sistema.
- 3. **Base de fixação da antena ativa GPS:** Suporte projetado para a antena GPS ativa. O suporte está a 2 metros do solo, minimizando interferências indesejadas para a antena de detecção.
- 4. **Base de fixação da antena detectora:** Um suporte robusto colocado no topo do poste, destinado a fixar a antena detectora de forma segura e estável.
- 5. Poste de fixação metálico ou de PVC: Um mastro de 3 metros de altura, feito de material durável como metal ou PVC, usado para montar todos os componentes em altura adequada.

2.4 POSSÍVEIS MELHORIAS DO DISPOSITIVO STORMDETECTOR V2

• Uso de melhores osciladores - Oscilador disciplinado por GPS: a base de tempo sincronizada do dispositivo StormDetector V2, embora funcione com precisão de 3.901 ns, ainda é dependente de tecnologia embarcada na FPGA utilizada. A placa protótipo escolhida contém um oscilador com estabilidade de 25 partes por milhão (ppm) e, apesar de suficiente para muitas aplicações, não tem estabilidade necessária para a precisão requerida, que é da ordem de 10 partes por bilhão (ppb). O uso de osciladores precisos e até mesmo de osciladores disciplinados por *GPS* (*GPSDO*) são encontrados na literatura técnica como sendo soluções promissoras para o sincronismo verdadeiro, reduzindo a necessidade de sintetizadores de frequência e período feitas nos algoritmos implementados em *hardware* do dispositivo atual.

- Mudanças de Hardware: A FPGA escolhida para o projeto Spartan-6, modelo XC6SLX16-2FTG256C não é recomendada para novos projetos, sendo necessária a sus substituição, caso o dispositivo se torne comercial. Os algoritmos implementados em hardware foram implementados em linguagem VHDL, utilizando somentes primitivas IEEE em 95% do código, prevendo esta possibilidade.
- Mudanças de Software: A introdução de um GPSDO no dispositivo detector traz mudanças significativas nos algoritmos implementados em hardware, simplificando o controle de sincronismo do sistema. Para tanto, o uso do conceito de componentes conectáveis é utilizado e reforçado no código fonte, sendo necessário somente a substituição de um único componente para que o sistema funcione com esta nova estratégia de sincronização.

3 CONCLUSÕES

No decorrer do estágio, foram desenvolvidas diversas tarefas que contribuíram para o avanço das competências técnicas e práticas necessárias para a utilização eficaz do dispositivo *StormDetector V2*. As atividades realizadas abrangeram uma ampla gama de processos, desde levantamento de requisitos para locais destinados à instalação de detectores *StormDetector V2*, a precificação da tecnologia utilizada na construção do protótipo do detector,a atualização dos algoritmos da rede SDN, além de um breve estudo de possíveis melhorias relativas ao dispositivo.

A instalação do dispositivos em locais adequados requer uma análise cuidadosa das condições geográficas, tais como: localização elevada, o mais distante possível de interferências, obstáculos e estruturas metálicas, com acesso a um aterramento adequado. Estas condições levantadas são mandatórias para o bom funcionamento do dispositivo. O projeto do sistema de fixação da antena e dispositivo, levando em consideração estas recomendações, deve ser uma estrutura fixa para a antena de detecção e GPS, a pelo menos 1 metro de distância uma da outra, além de ter pelo menos 3 metros de altura, em local plano e longe de interferências.

A atualização dos algoritmos da rede *SDN* envolveu a mudança do sistema de localização de raios, de modo a adaptar-se ao novo dispositivo detector, além de atualizações de interface e linguagens de programação. O algoritmo de agrupamento *DESA* foi substituído por um algoritmo de agrupamento evolutivo - *MKM* - para a solução de separação e posição do raio, e incrementos na interface *TrackingStorm* com as informações do novo dispositivo foram disponibilizados.

A precificação da tecnologia utilizada na implementação do dispositivo *Storm-Detector V2*, bem como o sistema de rede de detecção e visualização de informações e *hardware*, envolveu listagem de horas gastas em sua implementação. A precificação de serviços executados em *software* envolve dois fatores: a complexidade da implementação do componente/subsistema, impactando no custo por hora; e as horas gastas para implementação dos algoritmos/sistema. A multiplicação de horas gastas pelo custo por hora, para cada componente, resulta no custo total de produção individual, que somados resulta no custo total da tecnologia empregada no dispositivo. O custo total de *software* é de **R\$ 173.000,00**, sendo o custo unitário de *hardware* do dispositivo estimado em **R\$ 6.964,68**.

A execução dos projetos propostos enfrenta desafios em diversos aspectos, tais como escolha de locais, análise de custos, gestão de fornecedores e prazos. Cada um desses aspectos requer planejamento e a capacidade de adaptar-se às condições

variáveis do ambiente e do mercado, garantindo a confiabilidade e a viabilidade financeira do dispositivo detector e dos demais sistemas envolvidos. Portanto, a experiência adquirida durante este estágio foi enriquecedora, pois permitiu o desenvolvimento de uma gama abrangente de habilidades, desde a pesquisa e planejamento até a execução técnica e a gestão de custos.

Augusto Mathias Adams Prof. Dr. Mateus Duarte Te

Augusto Mathias Adams Estagiário Prof. Dr. Mateus Duarte Teixeira Supervisor