Problem set 4 Spectral Theory

Bruno Seefeld

May 2024

1

(1)

Take v in the ideal I, by polar decomposition we have v=u|v|, with |v| positive, we can write $|v|=u^*v$, this implies $|v|=|v|^*\in I$, therefore $v^*=|v|^*u^*\in I$.

(2)

Let $I = \{fz | f \in C(\mathbb{Z})\}$ where z is the identity on \mathbb{D} . We prove that z^* that does $\mapsto \overline{z}$ is not in I. Suppose there is $f \in I$ with $fz = z^*$, for $x \in \mathbb{R}$ we have f(x)x = x therefore f(x) = 1, and f(ix)(ix) = -ix and f(ix) = -1, taking $x \to 0$ we see that f is not continuous at 0, a contradiction. Therefore the ideal is not self adjoint.

 $\mathbf{2}$

5

Suppose p, q are Murray-von Neumann equivalent, with $p = vv^*$, $q = v^*v$. Let v = u|v| be the polar decomposition of v, with u unitary and |v| self adjoint. We have $p = p^2 = u|v|^2u^*$ and $q = |v|u * u|v| = |v|^2$ clearly $p = uqu^*$.

Now suppose p, q, 1-p, 1-q are unitarlly equivalent. Say $1-p=u(1-q)u^*=uu^*-uqu^*$, we have $p=uqu^*$ so we can suppose these pairs are conjugated by the same unitary transformation. Let's calculate $p=p^2=(uqu^*)(uqu^*)=(uq)(qu^*)=(uq)(uq)^*$, take v=uq. we have $p=vv^*$ and $v^*v=qu^*uq=q$, therefore they are Murray-von Neumann equivalent.

6

Suppose p, q are Murray-von Neumann equivalent, we have $p = uqu^*$ for u unitary. Take $x \in \text{Range}(p)$, then px = x, we have $u^*(x) = qu^*(x)$ so $u^*(x) \in \text{Range}(q)$, now take $y \in \text{Range}(q)$ uy = uqy = puy having $y = u^*(puy)$, with

all this we get Range $(q) = u^*$ Rangep. By reversing the roles of q and p and u and u^* we have Rangep = uRangeq. By using that $(1-p) = u(1-q)u^*$ we also have that Null(p) = qNull(q) and Null $(q) = u^*$ Null(p).

Now suppose Range(p) = uRange(q) and Range(q) = u*Range(p) and Null(p) = uNull(q), Null(q) = u*Nullp. Take $x \in H$, we know from the above that $u^*px = qy$ for some y. We also know $qu^*(1-p)x = 0$, then $qu^*x = qu^*px = qqy = qy$ therefore $u^*px = qu^*x$ and they are Murray-von Neumann equivalent.

So we have the following characterization of Murray-von Neumann equivalence: p, q are Murray-von Neumann equivalent if and only if $\operatorname{Range}(p) = u\operatorname{Range}(q)$ and $\operatorname{Range}(q) = u^*\operatorname{Range}(p)$ and $\operatorname{Null}(p) = u\operatorname{Null}(q)$, $\operatorname{Null}(q) = u^*\operatorname{Null}(p)$.