

General EM (cont'd)

STATS 303 Statistical Machine Learning

Spring 2022

Lecture 10

complete dataset with latent variables

• Suppose X is the data matrix, and Z the corresponding latent variables (assumed to be discrete). Then

$$\ln p(\mathbf{X}|\boldsymbol{\theta}) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\}$$

- {X, Z} is called the complete data set; X is incomplete
- In practice, we are not given the complete data set; the only way we estimate Z is by the posterior

$$p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})$$

complete dataset with latent variables


```
(E-step): expectation
```

- 1. for fixed parameters, find $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$
- 2. calculate the <u>expectation</u> $Q(\theta, \theta^{\text{old}}) = \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{X}, \theta^{\text{old}}) \ln p(\mathbf{X}, \mathbf{z}|\theta)$

(M-step): maximization solve for
$$\theta^{\text{new}} = \argmax_{\theta} \mathcal{Q}(\theta, \theta^{\text{old}})$$

$$\mathbb{E}_{p(z|X,\theta^{old})} f(X,Z|\theta)$$

GMM revisited

The likelihood of the complete data set is

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_{k}^{z_{nk}} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})^{z_{nk}}$$
 $\uparrow (\boldsymbol{\lambda} | \boldsymbol{\lambda}) \uparrow (\boldsymbol{\lambda} | \boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\xi})$

Taking logarithm yields

$$P(t_n = e_k | x_n, \mu, \Sigma, z) \propto \pi_k N(x_n | \mu_k, \varepsilon_k)$$

GMM revisited

- By Bayes' theorem, $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \propto \prod_{n=1}^N \prod_{k=1}^N \left[\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\right]^{z_{nk}}$
- What does this imply for each z_n ? $\uparrow(\xi_n|\chi_n,\mu,\xi,\tau) \propto \prod_{k\in I} \pi_k \ \mathcal{N}(\chi_n|\mu_k,\xi_k)$
- Under the posterior distribution, the conditional expectation of the indicator z_{nk} is given by

$$\mathbb{E}[z_{nk}] = 1 \cdot \Pr(\mathbf{z}_{nk} = 1 \mid \mathbf{x}_{n}, \mathbf{\Lambda}, \mathbf{\Sigma}, \mathbf{X}) = \frac{\pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \mathbf{\Sigma}_{k})}{K} = \gamma(z_{nk})$$

$$= \sum_{j=1}^{K} \pi_{j} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{j}, \mathbf{\Sigma}_{j})$$

GMM revisited

The expectation of the complete log likelihood is thus

$$\mathbb{E}_{\mathbf{Z}}[\ln p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left\{ \ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

• Maximizing the above yields the same parameters Σ_k as before.

general EM (the general view)

- The expectation-maximization algorithm, or EM algorithm, is a general technique for finding maximum likelihood solutions for probabilistic models having latent variables.
- Consider

$$p(\mathbf{X}|\boldsymbol{\theta}) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

- Assuming **Z** is discrete and dealing with $p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})$ is easier than $p(\mathbf{X} | \boldsymbol{\theta})$.
- Introduce a distribution $q(\mathbf{Z})$ over the latent variables.

KL divergence from 9 to p

Claim

$$\ln p(\mathbf{X}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + \mathrm{KL}(q||\underline{p})$$

$$\Rightarrow p(\boldsymbol{\xi}|\mathbf{X},\boldsymbol{\theta})$$

where

$$\mathcal{L}(q, \boldsymbol{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})}{q(\mathbf{Z})} \right\}$$

$$KL(q || p) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z} | \mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})} \right\}$$

$$= \underbrace{\mathbb{E}_{q(\boldsymbol{\xi})}} \ln \left\{ \frac{q(\boldsymbol{\xi})}{q(\boldsymbol{\xi})} \right\}$$

$$\ln p(\mathbf{X}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + \mathrm{KL}(q||p)$$

To prove the above claim, first note that

• To prove the above claim, first note that
$$\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) = \ln p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}) + \ln p(\mathbf{X}|\boldsymbol{\theta}) \leftarrow \text{Since} \\ p(\mathbf{X}, \boldsymbol{\xi}|\boldsymbol{\theta}) = p(\boldsymbol{\xi}|\mathbf{X}, \boldsymbol{\theta}).$$
• Then
$$\mathcal{L}(q, \boldsymbol{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} \right\} = ?$$

$$= \sum_{\mathbf{Z}} p(\mathbf{Z}) \left(\ln p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}) + \ln p(\mathbf{X}|\boldsymbol{\theta}) - \ln q(\mathbf{Z}) \right)$$

$$= \sum_{\mathbf{Z}} p(\mathbf{Z}) \ln \frac{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})} + \left(\sum_{\mathbf{Z}} q(\mathbf{Z})\right) \ln p(\mathbf{X}|\boldsymbol{\theta})$$

$$= - \text{KL}(\mathbf{Y}|\mathbf{Y}) + \ln p(\mathbf{X}|\boldsymbol{\theta})$$

- Now we have proved that $\ln p(\mathbf{X}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + \mathrm{KL}(q||p)$
- Fact: $KL(q \parallel p) \ge 0$
- Therefore, $\mathcal{L}(q, \boldsymbol{\theta})$ is a lower bound of $\ln p(\mathbf{X}|\boldsymbol{\theta})$


```
(E-step): expectation maximize \mathcal{L}(q, \boldsymbol{\theta}^{\text{old}}) with respect to q
```

This q will be pushed to $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \theta^{\text{old}})$!!!

Illustration of the E step of $\mathrm{KL}(q||p)=0$ the EM algorithm. The q distribution is set equal to the posterior distribution for the current parameter values θ^{old} , causing the lower bound to move up to the same value as the log likelihood function, with the KL divergence vanishing.


```
(E-step): expectation maximize \mathcal{L}(q, \boldsymbol{\theta}^{\mathrm{old}}) with respect to q (M-step): maximization fix q and maximize \mathcal{L}(q, \boldsymbol{\theta}) with respect to \boldsymbol{\theta}
```

$$\mathcal{L}(q, \theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z}|\theta)}{q(\mathbf{Z})} \right\}$$

• After the E Step, $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$, and therefore the lower bound takes the form

$$\mathcal{L}(q, \theta) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) - \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \ln p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$$

$$= \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) + \text{const}$$

$$= p(\boldsymbol{\xi}|\mathbf{X}, \boldsymbol{\theta}^{\text{ou}}) \int_{\mathbf{N}} p(\mathbf{X}, \boldsymbol{\xi}|\boldsymbol{\theta}) d\mathbf{x} d\mathbf{$$

Illustration of the M step of the EM algorithm. The distribution $q(\mathbf{Z})$ is held fixed and the lower bound $\mathcal{L}(q, \theta)$ is maximized with respect to the parameter vector θ to give a revised value θ^{new} . Because the KL divergence is nonnegative, this causes the log likelihood $\ln p(\mathbf{X}|\theta)$ to increase by at least as much as the lower bound does.

The EM algorithm involves alternately computing a lower bound on the log likelihood for the current parameter values and then maximizing this bound to obtain the new parameter values. See the text for a full discussion.

spectral clustering

no need to have exact locations

- For both K-means and EM, we use the location of the data instances $\{x_n\}_{n=1}^N$
- However, in a distance-based method, we make decision only based on the relative locations
- Goal of this section: we want to get low dimensional features disregarding the original locations

guide for projection

- Given $x_n \in \mathbb{R}^d$, $n = 1, \dots, N$.
- Suppose we want to look at low-dimension projection $z_n \in \mathbb{R}^k$, $n = 1, \dots, N$.
- Suppose further that we are given a similarity score for each pair of instances
 - $w_{nm} = w_{mn}$ is the similarity between x_n and x_m (assume Wnn = 0)
- The goal is to minimize $\frac{1}{2}\sum_{n=1}^{N}\sum_{m=1}^{N}\parallel z_n-z_m\parallel^2 w_{nm}$

case k = 1: $z_n \in \mathbb{R}$

$$\frac{1}{2}\sum_{n=1}^{N}\sum_{m=1}^{N}|z_{n}-z_{m}|^{2}w_{nm}=? \quad \text{(Let } d_{n}:=\sum_{m=1}^{N}W_{nm}=\sum_{m=1}^{N}W_{nm})$$

$$=\frac{1}{2}\sum_{n=1}^{N}\sum_{m=1}^{N}Z_{n} \quad Z_{n}^{2}W_{nm}+Z_{m}^{2}W_{nm}-2Z_{n}Z_{m}W_{nm}$$

$$=\frac{1}{2}\left(\sum_{n=1}^{N}Z_{n}^{2}\sum_{m=1}^{N}W_{nm}+\sum_{n=1}^{N}Z_{n}^{2}\sum_{m=1}^{N}W_{nm}-2\sum_{n=1}^{N}\sum_{m=1}^{N}Z_{n}Z_{n}^{2}Z_{n}Z_{n}W_{nm}\right)$$

$$=\sum_{n=1}^{N}Z_{n}d_{n}Z_{n}-\sum_{n=1}^{N}\sum_{m=1}^{N}W_{nm}Z_{m}$$

$$=\sum_{n=1}^{N}Z_{n}d_{n}Z_{n}-\sum_{n=1}^{N}\sum_{m=1}^{N}Z_{n}W_{nm}Z_{m}$$

$$=Z_{n}^{2}D_{n}Z_{n}-Z_{n}^{2}W_{n}Z_{n}^{2}W_{n}Z_{n}$$

$$=Z_{n}^{2}D_{n}Z_{n}-Z_{n}^{2}W_{n}Z_{n}^{2}W_{n}Z_{n}$$

$$=Z_{n}^{2}D_{n}Z_{n}-Z_{n}^{2}W_{n}Z_$$

case k = 1: $z_n \in \mathbb{R}$

• Now that
$$\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} |z_n - z_m|^2 w_{nm} = z^T (D - W)z$$
 where

- W is the symmetric matrix whose (n, m)-th entry is w_{nm} (let's define $w_{nn} = 0$ for each n)
- **D** is the diagonal matrix with $D_{nn} = \sum_{m \neq n} w_{nm}$
- Let L = D W, we call L the graph Laplacian of the similarity graph of our data. (just a remark)

eigenvector of Laplacian

- Now we need to minimize $z^T L z$.
- $z = (z_1, \dots, z_N)^T$ should be an eigenvector of L.

 - Note that there is a trivial eigenvector $c = \frac{1}{\sqrt{N}}(1,1,\cdots,1)^{T}$ Lc = Dc Wc, whose n-th entry is $\frac{1}{\sqrt{N}} \left[D_{nn} \sum_{m \neq n} w_{nm} \right] = 0$ but this is not interesting because this means z_n is the same for different data point x_n .
 - We should have some z that is orthogonal to the above trivial choice.
 - Therefore, we take z to be the eigenvector corresponding to the second smallest eigenvalue.

Laplacian eigenmap

- The map that maps $\{x_n\}_{n=1}^N$ to $\{z_n\}_{n=1}^N$ is called the Laplacian eigenmap where $\mathbf{z}=(z_1,\cdots,z_N)^T$ is the eigenvector corresponding to the second smallest eigenvalue of L.
- In case k > 1 (more than one feature in z), we need to take the next features in z to be the eigenvectors corresponding to the next smallest eigenvalues.
- Specifically, we will get a feature matrix Z, whose size is N-by-k, and whose k columns are given by the eigenvectors corresponding to the 2^{nd} to the (k+1)-th smallest eigenvalues of L.

spectral clustering

• Once we have the features $\{z_n\}_{n=1}^N$, we can do clustering on the features instead of on the original data points $\{x_n\}_{n=1}^N$.

• For instance, we can apply K-means on $\{z_n\}_{n=1}^N$.

normalized Laplacian

- In practice, instead of working with the Laplacian L = D W, we may want to work with a normalized version of Laplacian, e.g.
 - $L_{\text{rw}} = I D^{-1}W$
 - $L_{\text{Sym}} = I D^{-1/2}WD^{-1/2}$

choice of similarity score

- We only consider similarities locally (in a neighborhood):
 - either set $w_{nm} = 0$ for $||x_n x_m|| > \epsilon$ for some preset threshold ϵ ;
 - or using k-NN: $w_{nm} \neq 0$ if only if x_m is among the k nearest neighbors of x_m or vice versa.

• For $w_{nm} \neq 0$, one possible similarity score is to set

$$w_{nm} = \exp\left(-\frac{\parallel \boldsymbol{x}_n - \boldsymbol{x}_m \parallel^2}{2\sigma^2}\right)$$

example: three concentric clusters

Questions?

Reference

- *K-means*:
 - [Al] Ch.7.3
 - [HaTF] Ch.13.2.1
 - [Bi] Ch.9.1
- *EM*:
 - [Al] Ch.7.2, 7.4
 - [HaTF] Ch.13.2.3
 - [Bi] Ch.9.2-9.4
- Spectral clustering:
 - [Al] Ch.6.12 7.7
 - [HaTF] Ch.14.5.3