多元函数积分学

Didnelpsun

目录

1	二重	重积分														1									
	1.1	1 交换积分次序																1							
		1.1.1	直	Ĺ角	坐	标:	系																		1
		1.1.2	极	坐	标	系																			1
	1.2	极直互	化																						2
	1.3	二重积	分	计	算																				2
		1.3.1	交	泛换	积	分	欠月	亨																	2
		1.3.2	移	分	性	质																			2
		1.3.3	切	分	X	域																			3
	1.4	二重积	分	等	式																				3
	1.5	二重积	分	求	导																				4
	1.6	一重积	分	化	<u>_</u> _ <u>_</u> _ <u>_</u>	重和	只夕	子																	4
		1.6.1	乘	禄	化	不给	等	式												•					4
		162	瓡	红	箈	ルi	十个	音																	4

1 二重积分

1.1 交换积分次序

1.1.1 直角坐标系

例题:交换积分次序 $\int_0^1 \mathrm{d}x \int_0^{x^2} f(x,y) \, \mathrm{d}y + \int_1^3 \mathrm{d}x \int_0^{\frac{1}{2}(3-x)} f(x,y) \, \mathrm{d}y$ 。解:已知积分区域分为两个部分。将 X 型变为 Y 型。画出图形可以知道 $y \in (0,1)$,x 的上下限由 $y = x^2$ 和 $y = \frac{1}{2}(3-x)$ 转化为 \sqrt{y} 和 3-2y。所以转换为 $\int_0^1 \mathrm{d}y \int_{\sqrt{y}}^{3-2y} f(x,y) \, \mathrm{d}x$ 。

1.1.2 极坐标系

例题: 对 $\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr$ 交换积分次序。

解:对于极坐标的积分次序交换需要利用直角坐标系来画图了解,特别是对于r的上下限。

对
$$\theta = \frac{\pi}{2}$$
 变为 y 轴, $y = -\frac{\pi}{4}$ 变为 $y = -x$ 。

对 $r = 2\cos\theta$ 变为 xy 的表达式, $r^2 = 2\cos\theta$, 即 $x^2 + y^2 = 2x$, $(x-1)^2 + y^2 = 1$.

所以所得到的 σ 为一个圆割去一个扇形。

交换积分次序后就需要以一个长度以极点为圆心

做圆,切割 σ 。

由 σ 可知取长度 $\sqrt{2}$ 可以切分。

所以 σ 可以分为左边的 σ_1 和右边的 σ_2 。

$$\sigma_1$$
 的 $r \in [0, \sqrt{2}]$, σ_2 的 $r \in [\sqrt{2}, 2]$ 。

 σ_1 的 θ 下限是 y=-x 这条边,即 $\theta=-\frac{\pi}{4}$,上限是 $r=2\cos\theta$ 这个圆,则 $\theta=\arccos\frac{r}{2}$ 。

 σ_2 的 θ 界限都是是 $r=2\cos\theta$ 这个圆,此时 r>0 恒成立,但是上限是上半部分 $\theta>0$,而下限是下半部分 $\theta<0$,即上限 $\theta=\arccos\frac{r}{2}$,所以下限为 $\theta=-\arccos\frac{r}{2}$ 。

综上交换积分次序结果为:

$$\int_0^{\sqrt{2}} r \, dr \int_{-\frac{\pi}{4}}^{\arccos \frac{r}{2}} f(r\cos\theta, r\sin\theta) d\theta + \int_{\sqrt{2}}^2 r \, dr \int_{-\arccos \frac{r}{2}}^{\arccos \frac{r}{2}} f(r\cos\theta, r\sin\theta) d\theta.$$

1.2 极直互化

例题:将 $I = \int_0^{\frac{\sqrt{2}}{2}R} e^{-y^2} dy \int_0^y e^{-x^2} dx + \int_{\frac{\sqrt{2}}{2}R}^R e^{-y^2} dy \int_0^{\sqrt{R^2-y^2}} e^{-x^2} dx$ 转换为极坐标系并计算结果。

1.3 二重积分计算

 $\therefore I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{R} e^{-r^{2}} r dr_{\circ}$

二重积分若是累次积分形式出现,则计算可以使用上面两种方法简便运算。

1.3.1 交换积分次序

当按照当前的积分次序无法算出时需要更换积分次序。主要是看 f(x,y) 是对 x 先积分更简单还是对 y 先积分更简单。

例题: 求
$$\int_0^1 dy \int_{\arcsin y}^{\pi - \arcsin y} \cos^2 x dx$$
。

解: 首先直接对这个式子直接计算, $\cos^2 x=\frac{1}{2}(1+\cos 2x)$,原式 $=\frac{1}{2}\int_0^1(\pi-2y-\arcsin y)\mathrm{d}y$ 。根本无法解出。

考虑交换积分次序,首先求 σ , $y \in [0,1]$, $x \in [\arcsin y, \pi - \arcsin y]$, 则 $\sin x = y$, $y = \sin(\pi - x) = \sin x$ 即 $x \in [0, \sin x]$ 。

将积分区域换成 X 型: $x \in [0, \pi]$, $y \in [0, \sin x]$ 。

$$\int_0^{\pi} \cos^2 x \, dx \int_0^{\sin x} dy = \int_0^{\pi} \cos^2 x \sin x \, dx = -\int_0^{\pi} \cos^2 x \, d(\cos x) = -\frac{\cos^3 x}{3} \Big|_0^{\pi}$$
$$= \frac{2}{3}.$$

1.3.2 积分性质

若积分区域 σ 关于 $x=k_1$ 或 $y=k_2$ 对称,则当 f(x,y) 含有 $x-k_1$ 或 $y-k_2$ 因式时重积分值为 0。

例题: 设
$$D: x^2 + y^2 \leq 2x + 2y$$
,求 $\iint_D xy \, dx dy$ 。

解:本题目使用直角坐标系和极坐标系都不好做。所以需要利用积分性质,对 D进行平移等操作。

利用平移,由于 $D: (x-1)^2 + (y-1)^2 = 2$,令 $x = 1 + r\cos\theta$, $y = 1 + r\sin\theta$,则利用极坐标, $r \in [0, \sqrt{2}]$, $\theta \in [0, 2\pi]$, $= \int_0^{2\pi} \mathrm{d}\theta \int_0^{\sqrt{2}} ((1 + r\cos\theta)(1 + r\sin\theta)r) \mathrm{d}r = \int_0^{2\pi} \mathrm{d}\theta \int_0^{\sqrt{2}} (1 + r\sin\theta + r\cos\theta + r^2\sin\theta\cos\theta)r\,\mathrm{d}r$,又将 $\sin\theta$ 和 $\cos\theta$ 对 θ 在 $[0, 2\pi]$ 进行积分全部为 0,所以直接把后面的全消掉,变为 $\int_0^{2\pi} \mathrm{d}\theta \int_0^{\sqrt{2}} r\,\mathrm{d}r = 2\pi$ 。

1.3.3 切分区域

例题: 设
$$D=\{(x,y)|0\leqslant x\leqslant 1, 0\leqslant y\leqslant 1\}$$
,求 $\iint\limits_{D}\frac{\mathrm{d}x\mathrm{d}y}{\sqrt{x^2+y^2}}$ 。

解:由 $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$,知道可以使用极坐标系来表示,但是 D 是一个正方形,无法用圆来简单表示。

又
$$D$$
 可以从 $y=x$ 切割为两个部分,所以令下三角形为 D_1 , $\iint_D \frac{\mathrm{d}x\mathrm{d}y}{\sqrt{x^2+y^2}}=2\iint_D \frac{\mathrm{d}x\mathrm{d}y}{\sqrt{x^2+y^2}}$ 。

所以 $0 \le y$ 和 y = x 可以确定 $\theta \in \left[0, \frac{\pi}{4}\right]$, $0 \le x \le 1$ 可以确定 r 上界为 x = 1, 即 $r \cos \theta = 1$, 即 $r = \frac{1}{\cos \theta}$, 确定 $r \in \left[0, \frac{1}{\cos \theta}\right]$ 。

所以 $= 2 \int_0^{\frac{\pi}{4}} \mathrm{d}\theta \int_0^{\frac{1}{\cos \theta}} \mathrm{d}r = 2 \int_0^{\frac{\pi}{4}} \frac{\mathrm{d}\theta}{\cos \theta} = 2 \ln(\sec \theta + \tan \theta)|_0^{\frac{\pi}{4}} = 2 \ln(1 + \sqrt{2})$ 。
即对二重积分求导,需要将二重积分化为一重积分。

1.4 二重积分等式

例题: 设 f(x,y) 为连续函数,且 $f(x,y) = \frac{1}{\pi} \sqrt{x^2 + y^2} \iint_{x^2 + y^2 \leqslant 1} f(x,y) d\sigma + y^2$,求 f(x,y)。

解:
$$: f(x,y)$$
 为连续函数,所以其在区间上可积且是一个常数。 令 $\iint_{x^2+y^2\leqslant 1} f(x,y)\,\mathrm{d}\sigma = A$ 。 对 $f(x,y) = \frac{A}{\pi}\sqrt{x^2+y^2} + y^2$ 两边积分:
$$A = \frac{A}{\pi} \iint_{x^2+y^2\leqslant 1} \sqrt{x^2+y^2}\,\mathrm{d}\sigma + \iint_{x^2+y^2\leqslant 1} y^2\,\mathrm{d}\sigma, \ \ \diamondsuit \ x = r\cos\theta, \ \ y = r\sin\theta \text{:}$$

$$A = \frac{A}{\pi} \int_0^{2\pi} \mathrm{d}\theta \int_0^1 r^2\,\mathrm{d}r + \int_0^{2\pi} \sin^2\theta \mathrm{d}\theta \int_0^1 r^3\,\mathrm{d}r = \frac{2A}{3} + \frac{\pi}{4} \circ A = \frac{3}{4}\pi \circ$$
 则代入原式 $f(x,y) = \frac{3}{4}\sqrt{x^2+y^2} + y^2 \circ$

1.5 二重积分求导

1.6 一重积分化二重积分

对于一重积分的计算或证明可能比较有难度,如两个关于 x 的函数的一重积分乘积计算,可以将其中一个 x 当作 y,从而将一重积分的乘积变为二重积分。

1.6.1 乘积化不等式

例题: f(x) 为恒大于 0 的连续函数,证明 $\int_a^b f(x) \, \mathrm{d}x \cdot \int_a^b \frac{1}{f(x)} \, \mathrm{d}x \ge (b-a)^2$ 。解:首先观察这个式子,右边是积分上下限的差的乘积,左边是两个积分的乘积,看上去貌似没什么关系,而且积分式子给出的是一个未定式 f(x),所以不能直接求左边值再比较大小,他们之间一定存在着某种关系。

式子左边的两个函数互为倒数,所以应该要尝试将这两个式子乘在一起来 利用基本不等式计算,即将一重积分乘积变为二重积分。

对于一重积分而言只是一个自变量,对于二重积分而言就变成了两个自变量,需要令其中一个 f(x) 变为 y,所以 xy 的积分区域都是一样的 [a,b],所以 设 $D = \{(x,y)|a \le x \le b, a \le y \le b\}$ 。

$$\stackrel{\text{id}}{\boxtimes} D = \{(x,y) | a \leqslant x \leqslant b, a \leqslant y \leqslant b\}_{\circ}$$

$$I = \int_a^b f(x) \, \mathrm{d}x \cdot \int_a^b \frac{1}{f(x)} \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x \cdot \int_a^b \frac{1}{f(y)} \, \mathrm{d}y = \iint_D \frac{f(x)}{f(y)} \, \mathrm{d}x \, \mathrm{d}y_{\circ}$$

$$I = \int_a^b f(x) \, \mathrm{d}x \cdot \int_a^b \frac{1}{f(x)} \, \mathrm{d}x = \int_a^b f(y) \, \mathrm{d}y \cdot \int_a^b \frac{1}{f(x)} \, \mathrm{d}x = \iint_D \frac{f(y)}{f(x)} \, \mathrm{d}x \, \mathrm{d}y_{\circ}$$

$$\therefore I = \frac{1}{2} \left[\iint_D \left[\frac{f(x)}{f(y)} + \frac{f(y)}{f(x)} \right] \, \mathrm{d}x \, \mathrm{d}y \right] \geqslant \frac{1}{2} \iint_D 2 \sqrt{\frac{f(x)}{f(y)} \cdot \frac{f(y)}{f(x)}} \, \mathrm{d}x \, \mathrm{d}y =$$

$$\frac{1}{2} \iint_D 2 \, \mathrm{d}x \, \mathrm{d}y = (b-a)^2 \, \circ$$

1.6.2 乘积简化计算

例题: 求 $\int_0^{+\infty} e^{-x^2} dx$ 。

解: 对于这个一重积分首先看到 e^{x^2} ,肯定会想到将其幂次降低。使用分部积分法对 e^{e^2} 求导这个幂次不会降低,使用换元法 $x=\sqrt{t}$ 会得到 $\frac{1}{\sqrt{t}}$ 从而无法处理,所以这些都不能计算,那么该怎么办?

看到 x^2 就能想到 $x^2 + y^2$ 的形式,这样就是一个极坐标系的二重积分,所以尝试将一重积分变成二重积分,即再乘一个以 y 为自变量的原式。

设
$$I = \int_0^{+\infty} e^{-x^2} \, dx$$
,显然 $I > 0$,将 x 换成 y :
$$I^2 = \int_0^{+\infty} e^{-x^2} \, dx \cdot \int_0^{+\infty} e^{-x^2} \, dx = \int_0^{+\infty} e^{-x^2} \, dx \cdot \int_0^{+\infty} e^{-y^2} \, dy$$

$$= \iint_{\substack{0 \le x \le +\infty \\ 0 \le y \le +\infty}} e^{-(x^2 + y^2)} \, dx dy, \, \, \diamondsuit \, x = r \cos \theta, \, \, y = r \sin \theta;$$

$$= \int_0^{\frac{\pi}{2}} \, d\theta \int_0^{+\infty} e^{-r^2} r \, dr = \frac{\pi}{2} \left(-\frac{1}{2} \right) \int_0^{+\infty} e^{-r^2} \, d(-r^2) = -\frac{\pi}{4} e^{-r^2} \Big|_0^{+\infty} = \frac{\pi}{4}.$$

$$\therefore I = \frac{\sqrt{\pi}}{2}.$$