ASSIGNMENT – 4

Ultrasonic sensor simulation in Wokwi

Name	Soumya.R
Team ID	PNT2022TMID42660
Project Name	Real-Time River Water Quality Monitoring and Control System.

QUESTIONS:

Write code and connections in wokwi for the ultrasonic sensor. Whenever the distance is less than 100 cms send an "alert" to the IBM cloud and display in the device recent events

CODE:

```
#include <WiFi.h>
#include
<PubSubClient.h>
void callback(char* subscribetopic, byte* payload,
unsigned int payloadLength);
//----credentials of IBM Accounts-----
#define ORG "kotoq5"//IBM ORGANITION ID
#define DEVICE TYPE "ESP32"//Device type mentioned in ibm watson
IOT Platform
#define DEVICE ID "12345"//Device ID mentioned in ibm watson IOT
Platform #define TOKEN "12345678" //Token
String data3; char
server[] = ORG
".messaging.internetofthings.ibmcloud.com"; char
publishTopic[] = "iot-2/evt/Data/fmt/json"; char
subscribetopic[] =
"iot-2/cmd/test/fmt/String"; char authMethod[]
```

```
= "use-token-auth";
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;
WiFiClient wifiClient;
PubSubClient client(server, 1883, callback
,wifiClient); const int trigPin = 5; const int
echoPin = 18;
#define SOUND_SPEED
0.034 long duration;
float
distance;
void
setup()
Serial.be
gin(11520
(0);
pinMode(
trigPin,
OUTPUT
);
pinMode(
echoPin,
INPUT);
wificonne
ct();
mqttconn
ect();
} void loop() {
digitalWrite(trigPin, LOW);
delayMicroseconds(2);
digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin, LOW);
duration = pulseIn(echoPin,
HIGH);
distance = duration *
SOUND_SPEED/2;
Serial.print("Distance (cm): ");
Serial.println(distance);
```

```
if(distance<100)
Serial.println("ALERT
!!"); delay(1000);
PublishData(distance);
delay(1000);
if
(!client.loop())
mqttconnect();
} } delay(1000); }
void PublishData(float
dist) { mqttconnect();
String payload =
"{\"Distance\":"; payload +=
dist; payload += ",\"ALERT!!\":""\"Distance
less than
100cms\""; payload += "}";
Serial.print("Sending payload: ");
Serial.println(payload);
if (client.publish(publishTopic, (char*) payload.c_str())) {
Serial.println("Publish ok");
} else {
Serial.println("Publish failed");
} } void mqttconnect()
{ if
(!client.connected())
Serial.print("Reconnecting client to ");
Serial.println(server);
while (!!!client.connect(clientId, authMethod, token)) {
Serial.print(
".");
delay(500);
initManagedDevice();
Serial.println();
```

```
} } void
wificonnect() {
Serial.println();
Serial.print("Connecting to ");
WiFi.begin("Wokwi-GUEST",
"", 6);
while (WiFi.status() !=
WL_CONNECTED) { delay(500);
Serial.print(".");
Serial.println("");
Serial.println("WiFi
connected");
Serial.println("IP address: ");
Serial.println(WiFi.localIP())
} void initManagedDevice() { if
(client.subscribe(subscribetopic)) {
Serial.println((subscribetopic));
Serial.println("subscribe to cmd OK");
} else {
Serial.println("subscribe to cmd FAILED");
} } void callback(char* subscribetopic, byte* payload, unsigned int
payloadLength)
Serial.print("callback invoked for topic: ");
Serial.println(subscribetopic); for (int i =
0; i < payloadLength; i++) {
//Serial.print((char)payload[
i]); data3 +=
(char)payload[i];
Serial.println("data: "+
data3); data3="";
```

.json CODE:

CIRCUIT DIAGRAM:

Wokwi simulation link:

https://wokwi.com/projects/347020612138435155 WOKWI OUTPUT:

```
Connecting to ....
WiFi connected
IP address:
10.10.0.2
Reconnecting client to ytluse.messaging.internetofthings.ibmcloud.com
iot-2/cmd/test/fmt/String
subscribe to cmd OK

Distance (cm): 399.92
Distance (cm): 399.96
Distance (cm): 399.94
Distance (cm): 399.98
Distance (cm): 399.94
Distance (cm): 399.94
Distance (cm): 399.92
Distance (cm): 399.94
```

IBM CLOUD OUTPUT:

