

TARDIS

Fast modular supernova spectral synthesis

Wolfgang Kerzendorf on behalf of the TARDIS collaboration

TARDIS 1.0

- one dimensional
- time independent
- photospheric phase of transients (no energy deposition in envelope)
- a couple of different plasma/interaction physics
- NLTE level populations

How does TARDIS work?

TARDIS Model

TARDIS 1D Model

Each Shell
(in velocity space)
Density
Abundance
Temperature

outer boundary

inner boundary no energy creation in envelope!

TARDIS Simulation

TARDIS 1D Model

pick a time pick output luminosity

Montecarlo radiative transfer

OUTCOME

Estimato tempera dilutio

- 1. Exits through the outer boundary counts towards spectrum
- 2. Exits through the inner boundary reabsorbed discarded

frequency from black body (with given T) random direction

TARDIS 1D Model

pick a time pick output luminosity

TARDIS solves plasma states

Model is updated: too luminous - colder black body too faint - hotter black body

ecarlo starts

update of temperature/dilution factor

Spectrum
estimators:
rad. Temperature
radiation diluted

Lessons learned

No fear of dependencies

numpy>=1.4.0
scipy>=0.10
pandas>=0.12
pytables
h5py>=2.0
matplotlib>=1.1
astropy>=0.4
PyYAML>=3.0
numexpr>=2.0.0
Cython>=0.21

Anaconda is your friend

YAML input

```
supernova:
    luminosity_requested: 9.34 log_lsun
    time_explosion: 11.12 day
    distance: 1 Mpc
atom_data: ../atomic_data/kurucz_atom_chianti_many.h5
model:
    structure:
        type: file
        filetype: artis
        filename: artis_model.dat
        v_inner_boundary: 11000.0 km/s
        v_outer_boundary: 22000.0 km/s
    abundances:
        type: file
        filetype: artis
        filename: artis_abundances.dat
plasma:
    disable_electron_scattering: no
    type: nebular
    excitation: dilute-lte
    ionization: nebular
    radiative_rates_type: detailed
```

line interaction type: macroatom

l astropy.units

- No more confusion
- easy conversion
- ... but they are slow
- units go in -> cgs floats

PREMATURE OPTIMIZATION

Come on, do it! Do it now! It feels soooo good.

Structure

FREE!!! Web services

coverage 55%

Coverage remained the same at 55.04% when pulling de6b7ce on GAT007:GAT007-patch-1 into e444ffe on tardis-sn:master.

landscape-bot commented 8 days ago

health 85%

Repository health increased by 0.31% when pulling de6b7ce on GAT007:GAT007-patch-1 into e444ffe on targe-sn:master.

- 4 new problems were found (including 0 errors and 1 code smell).
- 5 problems were fixed (including 0 errors and 5 code smells).

✓ All is well — 2 successful checks

Show all checks

This pull request can be automatically merged.

You can also merge branches on the command line.

> Merge pull request

Document!

Radiationfield estimators

During the monte-carlo run we collect two estimators for the radiation field:

$$J_{
m estimator} = \sum_{\epsilon} \epsilon l$$

 $\bar{
u}_{
m estimator} = \sum_{\epsilon} \epsilon \nu l$,

where ϵ, ν are comoving energy and comoving frequency of a packet respectively.

To calculate the temperature and dilution factor we first calculate the mean intensity in each cell ($J=\frac{1}{4\pi \, \Delta t \, V} \, J_{\rm estimator}$)., [Lucy03].

The weighted mean frequency is used to obtain the radiation temperature. Specifically, the radiation temperature is chosen as the temperature of a black body that has the same weighted mean frequency as has been computed in the simulation. Accordingly,

$$\frac{h\bar{\nu}}{k_B T_R} = \frac{h}{k_B T_R} \frac{\bar{\nu}_{\text{estimator}}}{J_{\text{estimator}}} = 24\zeta(5) \frac{15}{\pi^4},$$

package-template

That's all folks

Here the links:

github.com/tardis-sn/tardis
tardis.readthedocs.org