University of Central Florida School of Computer Science COT 4210 Fall 2004

Prof. Rene Peralta

Test 2 Solutions (by TA Robert Lee)

1. Design a DFA to recognize the language consisting of strings over $\{a, b\}$ that do not contain the substring abb.

Solution See page 3 for state diagram.

2. Let $|w|_x$ denote the number of occurrences of the symbol x in the string w. Let L be the language consisting of strings over $\{a,b\}$ for which either $|w|_a = 3|w|_b$ or $|w|_b > |w|_a$. Prove or disprove that L is regular.

Solution

Proof by contradiction. Assume L is a regular language. By the Pumping Lemma, there is a constant n associated with L.

- (a) Choose the string $s = a^{3n}b^n$. Note that $s \in L$ because $|w|_a = 3|w|_b$, and $|s| = 4n \ge n$.
- (b) Choose the partition s=xyz such that $x=\epsilon,\,y=a^n,\,z=a^{2n}b^n.$ Note that $|y|=n\geq n.$
- (c) In any possible division y = uvw, we must have $v = a^m$, where $0 < m \le n$.
- (d) Choose i=2. Then $xuv^iwz=xuv^2wz=a^{3n+m}b^n$. Because $|xuv^2wz|_a=3n+m>3n=3|xuv^2wz|_b$ and $|xuv^2wz|_b=n<3n+m=|xuv^2wz|_a$, we have $|xuv^2wz|_a\neq 3|xuv^2wz|_b$ and $|xuv^2wz|_b<|xuv^2wz|_a$. Thus $xuv^2wz\not\in L$. This is a contradiction. Therefore L is not a regular language.
- 3. Construct an NFA that recognizes the language $(ab \cup (aa)^*bb)^*$. **Solution** See page 3 for state diagram.
- DFA to regular expression conversion.
 Solution 10*1(00*1 ∪ 1(0 ∪ 10*1))*. See page 4 for diagrams of the conversion procedure.

5. NFA to DFA construction.

Solution See page 3 for state diagrams.

The NFA is $(\{A, B, C, D\}, \{0, 1\}, \delta_{NFA}, D, \{C\})$, where δ_{NFA} is given by

δ_{NFA}	0	1	ϵ
A	$\{A\}$	$\{D\}$	Ø
В	$\{C\}$	<i>{B}</i>	$\{A\}$
С	{ <i>B</i> }	Ø	Ø
D	Ø	$\{A,C\}$	Ø

Using the construction in Theorem 1.19, the constructed DFA is

$$(\mathcal{P}(\{A, B, C, D\}), \{0, 1\}, \delta_{DFA}, \{D\}, \{S \subseteq \{A, B, C, D\} \mid C \in S\}),$$

where δ_{DFA} is given by

δ_{DFA}	0	1
{D}	Ø	$\{A,C\}$
$\{A,C\}$	$\{A,B\}$	$\{D\}$
$\{A,B\}$	$\{A,C\}$	$\{A,B,D\}$
$\{A,B,D\}$	$\{A,C\}$	$\{A,B,C,D\}$
A, B, C, D	$\{A,B,C\}$	$\{A,B,C,D\}$
$\{A,B,C\}$	$\{A,B,C\}$	$\{A,B,D\}$

(Note that, for the sake of brevity, unreachable states and sink states are left out of this table and the corresponding state diagram.)

1. The strings over {a,b} that do not contain the substring abb.

3. NFA that recognizes the language (ab U (aa)*(bb))*.

5. NFA to DFA construction.

4. DFA to regular expression conversion.

