EXAMEN FINAL

9 de febrero de 2021

1	2	3	4	5	Total

El código python utilizado en la resolución de los ejercicios escritos en azul se deberán subir a moodle en un archivo con las siguientes características

- Enviar un solo archivo, que deberá llamarse apellido_nombre.py
- Este archivo deberá contener las funciones necesarias para ejecutar los ejercicios considerados (ejercicio1(), ejercicio2(), etc.), y al ejecutar el archivo deberán mostrarse las salidas pedidas.
- Está permitido usar los códigos desarrollados en los prácticos. Puede utilizar implementaciones de densidades y probabilidades de masa de scipy.

Ejercicio 1.

- a) Sean X_N , X_V y X_A tres variables aleatorias exponenciales, independientes, con medias $\frac{1}{\lambda_N}$, $\frac{1}{\lambda_V}$ y $\frac{1}{\lambda_A}$, respectivamente. Indicar cuál es la distribución de la variable aleatoria $X = \min\{X_N, X_V X_A\}$
- b) Una estación de subtes tiene tres líneas de trenes: Naranja, Verde y Amarilla. Los tiempos de arribo de cada una de ellas a la estación tienen distribución exponencial de media 10, 15 y 20 minutos, respectivamente.
- c) Implementar un algoritmo que permita estimar, con 10000 simulaciones:
 - I) La probabilidad de que el primer tren que llegue a la estación sea el verde.
 - II) El tiempo promedio que transcurre hasta que llega alguno de los subtes.
 - III) La probabilidad de que el primer tren verde llegue antes que el primer tren naranja.
- d) Calcular de manera exacta los items II) y III).

Ejercicio 2.

Explicar cómo se obtiene mediante el método de Monte Carlo una estimación del valor de la siguiente suma, utilizando 500 números aleatorios:

$$\sum_{n=0}^{9999999} \frac{4 \cdot (-1)^n}{2n+1},$$

Ejercicio 3. Una muestra aleatoria de 100 ratas es puesta en un laberinto a fin de estudiar el número de intentos hasta encontrar el camino correcto de salida. Se registra el número de intentos de cada rata y se obtienen los siguientes datos:

Número de intentos	1	2	3	4	5	6	≥ 7
Cantidad de ratas	56	27	13	3	0	1	0

Analizar si existe evidencia estadística que el número de intentos realizados por las ratas hasta lograr la salida tiene una distribución geométrica.

UNC

Responder esta pregunta por medio de las siguientes consignas.

- a) Plantear la hipótesis nula y la alternativa, y estimar los parámetros necesarios.
- b) Realizar el cálculo en papel del estadístico y decir cuál es su distribución de probabilidad bajo la hipótesis nula. Utilizar agrupamientos que contengan al menos 4 observaciones.
- c) Dar el p-valor de la prueba y el resultado que este arroja con un nivel de confianza del 95 %.
- d) Estimar el *p*-valor de la prueba mediante 1000 simulaciones y dar el resultado que este arroja con un nivel de confianza del 95%.

Ejercicio 4. Desea determinarse mediante Monte Carlo el valor de la integral

$$I = \int_0^{\pi/4} x.sen(3x) dx.$$

- a) Explicar y justificar cómo se obtiene mediante simulación el valor de la integral.
- b) Explicar y justificar cómo se determina un intervalo de confianza de nivel $(1-\alpha) \cdot 100\%$ para el valor de la integral.
- c) Obtener mediante simulación en computadora un intervalo de confianza del 95 % para el valor de la integral para el número de simulaciones indicado en la tabla. Completar la tabla con 6 decimales. Entregar la implementación en Python de este item.

d) Dar un intervalo de confianza del 95% deteniendo la simulación cuando la amplitud del intervalo sea menor 0.01. Indicar cuál es el número de simulaciones N_s necesarias para lograr la condición pedida y el valor de la integral para N_s simulaciones. Entregar la implementación en Python de este item.

Ejercicio 5. Sean X_1, \ldots, X_n variables aleatorias independientes e idénticamente distribuídas con varianza σ^2 desconocida. Para a y b constantes dadas, a < b, nos interesa estimar

$$p = P\left(a < S^2 - \sigma^2 < b\right).$$

donde
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
 y $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$.

- a) Explicar cómo se utiliza el método "bootstrap" para estimar p. Detallar qué valor se usa para σ^2 en este método.
- b) Estimar p con 1000 simulaciones, asumiendo que para n = 11, los valores de las variables X_i resultan 142, 33, 54, 67, 122, 9, 44, 78, 86, 133 y 22 considerando a = -50 y b = 50.