

Graph and Social Data Management Spreading Phenomena

Benoît Groz (slides and content are mostly from Silviu Maniu)

December 1st, 2023

M2 Data Science

Table of contents

Modeling Spreading Phenomena

Network-free Models

Epidemics on Networks

Network Immunization

SARS and Super-spreaders

Bubonic Plague

Smartphone Viruses

Network Epidemics

Network epidemics – a framework allowing quantitative analysis and forecasting of infectious phenomena, in which *infections* spread through *networks* facilitated by *agents*

Occurs in diverse domains:

- biology: pathogens (influenza, SARS, Covid, tuberculosis, ...)
- · digital: computer viruses and worms
- social: information cascades (innovation, products, memes)

Networks and Agents

phenomenon	agent	network
rumour spreading	information, memes	communication
innovation diffusion	ideas	communication
computer virus	malware	Internet
diseases	pathogen	human-human network
bedbugs	insects	hotel-guest network

Epidemic Modeling

The network epidemic modeling rests on two main hypotheses:

- 1. compartmentalization
- 2. homogeneous mixing

Compartmentalization

Classify each individual (node) depending of the state (or compartment) of infection:

- susceptible (S): healthy individuals
- infectious (I): contagious individuals having contracted the pathogen
- recovered (R): individuals having been infected before, but have recovered

Homogeneous Mixing

Anyone (infectious) can infect anyone, with the same probability.

Table of contents

Modeling Spreading Phenomena

Network-free Models

Epidemics on Networks

Network Immunization

Assumptions and notation:

- consider **N** individuals, each having $\langle \mathbf{k} \rangle$ contacts
- infections occur in time increments
- · S(t) number of susceptible individuals at time t
- \cdot I(t) number of infected individuals at time t
- S(o) = N (and by default I(o) = o)
- likelihood of infection is a parameter β

Assuming I(0) = 1, how many will be infected at a later time t?

SI Model: an individual can be in two states, *healthy* (S) or *sick* (I), becoming infected at a rate β

I(t) changes at the rate

$$\frac{\partial I(t)}{\partial t} = \beta \langle k \rangle \frac{\mathsf{S}(t) I(t)}{\mathsf{N}}$$

Solving for i(t) = I(t)/N (fraction of individuals infected):

$$i(t) = \frac{i(0)e^{\beta\langle k\rangle t}}{1 - i(0) + i(0)e^{\beta\langle k\rangle t}},$$
(1)

 $\beta\langle \mathbf{k}\rangle$ is called **transmission rate**

Characteristic time – time to reach a $1/e \approx 0.36$ fraction of infected individuals

$$\tau = \frac{1}{\beta \langle \mathbf{k} \rangle}$$

Susceptible-Infected-Susceptible (SIS) Model

Same as SI, but nodes can **recover**, at a rate μ

$$\frac{\partial \mathbf{i}}{\partial \mathbf{t}} = \beta \langle \mathbf{k} \rangle \mathbf{i} (\mathbf{1} - \mathbf{i}) - \mu \mathbf{i}$$

and

$$\mathbf{i} = \left(1 - \frac{\mu}{\beta \langle \mathbf{k} \rangle}\right) \frac{C e^{(\beta \langle \mathbf{k} \rangle - \mu)t}}{1 + C e^{(\beta \langle \mathbf{k} \rangle - \mu)t}}$$

with $\textit{C} = \emph{i}_{\text{O}}/(\textit{1}-\emph{i}_{\text{O}}-\mu/(\beta\langle \emph{k}\rangle)$

Susceptible-Infected-Susceptible (SIS) Model

Two possible outcomes:

- endemic state, $\mu < \beta \langle \mathbf{k} \rangle$, not everyone is infected, but \mathbf{i} reaches a plateau
- disease-free state, $\mu>\beta\langle \mathbf{k}\rangle$, i decreases with time, so the disease dies out

SIS Model: basic reproductive number

Characteristic time

$$\tau = \frac{1}{\mu(R_{\mathsf{O}} - 1)}$$

depends on the basic reproductive number

$$R_{o} = \frac{\beta \langle k \rangle}{\mu}$$

Depending on Ro:

- \cdot $\it R_{\rm O}$ > 1, τ > 0, epidemic is in endemic state,
- otherwise disease free.

SIS Model: basic reproductive number

Disease	Transmission	R_{o}
Measles	Airborne	12-18
Smallpox	Social contact	5-7
HIV	Sexual contact	2-5
SARS	Airborne droplet	2-5
Influenza 1918	Airborne droplet	2-3

Susceptible-Infected-Recovered (SIR) Model

Nodes can be **recovered**, governed by a **recovery rate** *r*

No closed form solution for i – it depends on the rate of s(t) and r(t)

Susceptible-Infected-Recovered (SIR) Model

$$\begin{split} \frac{\partial \mathbf{s}}{\partial \mathbf{t}} &= -\beta \langle \mathbf{k} \rangle (\mathbf{1} - \mathbf{r} - \mathbf{i}) \\ \frac{\partial \mathbf{i}}{\partial \mathbf{t}} &= -\mu \mathbf{i} + \beta \langle \mathbf{k} \rangle (\mathbf{1} - \mathbf{r} - \mathbf{i}) \\ \frac{\partial \mathbf{r}}{\partial \mathbf{t}} &= \mu \mathbf{i} \end{split}$$

Model Overview

Table of contents

Modeling Spreading Phenomena

Network-free Models

Epidemics on Networks

Network Immunization

Taking Network into Account

Previous models do not use the actual network, and capture only behaviour on aggregate

They take into account $\langle \mathbf{k} \rangle$ which is not always a good approximation for e.g., scale-free networks

We should study these models on some approximation of real networks – **degree-block approximation**

Degree-Block Approximation

SI Model on Networks

Assumes that nodes with the same degree are statistically equivalent

So *i* depends on *k* also:

$$\begin{split} \frac{\partial i_k}{\partial t} &= \beta (1 - i_k) k \Theta_k, \\ i_k &= \frac{I_k}{N_k} = i_0 \left(1 + \frac{k \langle k \rangle - 1}{\langle k^2 \rangle - \langle k \rangle} (e^{t/\tau^{SI}} - 1) \right), \end{split}$$

where the **characteristic time** depends on the variance of the degree also at the beginning:

$$egin{aligned} rac{\partial i_k}{\partial t} &pprox eta k \Theta_k pprox eta k i_0 rac{\langle k
angle - 1}{\langle k
angle} e^{t/ au^{
m SI}} & ext{with } au^{
m SI} = rac{\langle k
angle}{eta (\langle k^2
angle - \langle k
angle)} \ i &= \int_0^{k_{
m max}} i_k p_k dk = i_0 (1 + rac{\langle k
angle^2 - \langle k
angle}{\langle k^2
angle - \langle k
angle} (e^{t/ au^{
m SI}} - 1) \end{aligned}$$

SI Model on Networks

SI Model on Networks

Depending on the type of network, we have different results:

- Random networks, where $\langle k^2 \rangle = \langle k \rangle (\langle k \rangle + 1)$ we are in the same case as homogeneous networks (so the classic SI model)
- Scale-free networks, $\gamma \geqslant$ 3, $\langle \pmb{k} \rangle$ and $\langle \pmb{k^2} \rangle$ are finite, so $\tau^{\rm SI}$ is also finite, so similar to random networks
- Scale-free networks, $\gamma <$ 3, $\langle k^2 \rangle$ diverges, which means that $\tau^{\rm SI} \rightarrow$ 0 spread in scale-free networks is instantaneous (vanishing characteristic time) Why?

SIS Model on Networks

More realistic model: some nodes revert to initial state (S)

Straightforward extension from SI, by taking into account μ :

$$\frac{\partial i_k}{\partial t} = \beta (1 - i_k) k \Theta_k - \mu i_k,$$

Characteristic time changes to:

$$\tau^{\rm SIS} = \frac{\langle \mathbf{k} \rangle}{\beta \langle \mathbf{k^2} \rangle - \mu \langle \mathbf{k} \rangle}$$

SIS Model on Networks

In SIS, the spread depends both on β and μ and the difference between the two values

Spreading rate:

$$\lambda = \frac{\beta}{\mu}$$

We have to check how this relates to an **epidemic threshold** λ_{c}

Epidemic Threshold in SIS

Random Networks – infection persist after $\lambda_c = \frac{1}{\langle k \rangle + 1}$; if $\lambda < \lambda_c$ the network is disease free

Scale-Free Networks – epidemic threshold is $\lambda_{\mathbf{c}} = \frac{\langle k \rangle}{\langle k^2 \rangle} \rightarrow \mathbf{o}$; the disease spreads even for very low λ values (vanishing epidemic threshold)

Epidemics in Scale-Free Networks

Main takeaways:

- characteristic time $\tau={\bf 0}$, viruses can reach most nodes instantaneously
- epidemic threshold $\lambda_{\rm c}={
 m o}$, viruses with small spreading rate can persist

Result from the fact that **hubs** can propagate to many neighbours

Effect of Degree Correlations

- degree correlations alter the threshold λ_c (assortativity decreases it)
- in scale free networks, the threshold still vanishes no matter its correlations
- since hubs are the first affected, assortativity accelerates the spread

Effect of Communities in Information Spread

Inside communities, ties between nodes are closer (**strong ties**), and between communities ties are **weak**

Direct influence over information spread:

- information spreads fast inside communities due to the strong ties
- information is trapped in a community due to the weak ties, it is less likely to "escape" a community

Types of Information Spread

Simple contagion: studied until now, i.e., simple contact suffices for infection

Complex contagion: information needs *reinforcement*, i.e., multiple sources of infection or information

Types of Information Spread

Table of contents

Modeling Spreading Phenomena

Network-free Models

Epidemics on Networks

Network Immunization

Immunization

How do we stop an infection in a network?

Objective: immunize a fraction g_c of nodes so that λ goes under λ_c ; immunized nodes are "invisible"

Strategies:

- random
- selective

Random Immunization in Random Networks

Fraction g_c chosen randomly

We want that:

$$\frac{(\mathbf{1}-\mathbf{g}_{c})\beta}{\mu}=\frac{\mathbf{1}}{\langle\mathbf{k}\rangle+\mathbf{1}},$$

S0:

$$g_c = 1 - \frac{\mu}{\beta(\langle k \rangle + 1)}$$

The more nodes are immunized the better, but still less that the total number of nodes

Random Immunization in Heterogeneous Networks

Heterogeneous networks – high $\langle k^2 \rangle$

We want that:

$$(1-g_c)\frac{\beta}{\mu}=\frac{\langle k\rangle}{\langle k^2\rangle},$$

SO:

$$g_{
m c}=$$
 1 $-rac{\mu\langle k
angle}{eta\langle k^2
angle}$

We need to immunize a large fraction of nodes in the networks

For scale-free networks, $g_c \rightarrow 1$

Selective Immunization in Scale-Free Networks

We should select **hubs** first, so that the network becomes disconnected – but the actual network is not always known

Strategy for selective immunization based on **friendship paradox**: your friends are more popular than you

- 1. choose **randomly** a fraction **p** of nodes *Group o*
- 2. for each node in *Group o*, select a link randomly put resulting nodes in *Group 1*
- 3. **immunize** Group 1

Why does it work? – nodes in Group 1 have higher average degree than those in Group 0

Selective Immunization in Scale-Free Networks

Acknowledgments

Figures in slides 3, 4, 12, 14, 16, 18, 19, 20, 23, 25, 29, 33, 34, and 40 taken from the book "Network Science" by A.-L. Barabási. The contents is partly inspired by the flow of Chapter 10 of the same book.

http://barabasi.com/networksciencebook/

References i

- Castellano, C. and Pastor-Satorras, R. (2010).

 Thresholds for epidemic spreading in networks.

 Phys. Rev. L., 105 21.
- Pastor-Satorras, R. and Vespignani, A. (2001). **Epidemic spreading in scale-free networks.** *Phys. Rev. L.*, 86.