6.2.3 几类可降阶的高阶微分方程

——降阶法

$$1. \quad y^{(n)} = f(x)$$

$$2. \quad y''=f(x,y')$$

3.
$$y'' = f(y, y')$$

1.
$$y^{(n)} = f(x)$$
 型

例1. 求解 $y''' = e^{2x} - \cos x$.

解:
$$y'' = \int (e^{2x} - \cos x) dx$$

$$= \frac{1}{2}e^{2x} - \sin x + C_1'$$

$$y' = \frac{1}{4}e^{2x} + \cos x + C_1'x + C_2$$

$$y = \frac{1}{8}e^{2x} + \sin x + C_1x^2 + C_2x + C_3$$
(此处 $C_1 = \frac{1}{2}C_1'$)

1. $y^{(n)} = f(x)$ 型的解法

两端积分得 n-1阶方程

$$y^{(n-1)} = \int f(x) dx + C_1$$
同理可得
$$y^{(n-2)} = \int \left[\int f(x) dx + C_1 \right] dx + C_2$$

$$= \int \left[\int f(x) dx \right] dx + C_1 x + C_2$$

n 次积分后, 可得含 n 个任意常数的通解.

2.
$$y'' = f(x, y')$$
 型 缺少 y

设
$$y' = p(x)$$
,则 $y'' = p'$,原方程化为一阶方程
$$\frac{dp}{dx} = p' = f(x, p)$$

若能解出
$$p = \varphi(x, C_1)$$

即

$$y' = \varphi(x, C_1)$$

再一次积分, 得原方程的通解

$$y = \int \varphi(x, C_1) \, \mathrm{d}x + C_2$$

求解
$$(1+x^2)y'' = 2xy' \Rightarrow (1+x^2)(y')' = 2xy'$$

例3. 求解
$$\begin{cases} (1+x^2)y'' = 2xy' \\ y|_{x=0} = 1, y'|_{x=0} = 3 \end{cases}$$

解:
$$y' = p(x)$$
, 则 $y'' = p'$, 代入方程得
$$(1+x^2)p' = 2xp \xrightarrow{\beta \otimes \mathbb{Z}} \frac{dp}{p} = \frac{2xdx}{(1+x^2)}$$

积分得
$$\ln |p| = \ln(1+x^2) + \ln |C_1|$$
, 即 $p = C_1(1+x^2)$

利用
$$y'|_{x=0}=3$$
, 得 $C_1=3$, 于是有 $y'=3(1+x^2)$

两端再积分得
$$y = x^3 + 3x + C_2$$

利用
$$y|_{x=0}=1$$
, 得 $C_2=1$, 因此所求特解为

$$y = x^3 + 3x + 1$$

3.
$$y'' = f(y, y')$$
 型 缺少 x

$$\Rightarrow y' = p(y)$$
, 则 $y'' = \frac{dy'}{dx} = \frac{dp}{dx} = \frac{dp}{dy} \cdot \frac{dy}{dx} = p\frac{dp}{dy}$

令 y' = p(y), 则 $y'' = \frac{dy'}{dx} = \frac{dp}{dx} = \frac{dp}{dy} \cdot \frac{dy}{dx} = p\frac{dp}{dy}$ 故方程化为 $p\frac{dp}{dy} = f(y,p)$ 设其通解为 $p = \varphi(y,C_1)$,

即
$$y' = \varphi(y, C_1)$$
 分离变量 $\frac{dy}{\varphi(y, C_1)} = dx$,

得原方程的通解
$$\int \frac{\mathrm{d}y}{\varphi(y,C_1)} = x + C_2$$

如: 求解 $yy'' - y'^2 = 0$

y'是关于x的函数,但为了求解, 先把它看成关于 y的函数. 在 y' = p(y)中, y是中间变量

例4. 求解 $yy'' - y'^2 = 0$.

解: 设
$$y' = p(y)$$
, 则 $y'' = \frac{dp}{dx} = \frac{dp}{dy} \frac{dy}{dx} = p \frac{dp}{dy}$

代入方程得 $y \cdot p \frac{\mathrm{d} p}{\mathrm{d} y} - p^2 = 0$,

设
$$p \neq 0$$
 (丢失解 $y = C$) 则 $\frac{dp}{p} = \frac{dy}{y}$

两端积分得 $\ln |p| = \ln |y| + \ln |C_1|$, 即 $p = C_1 y$,

$$\therefore y' = C_1 y \quad (可分离变量方程)$$

故所求通解为 $y = C_2 e^{C_1 x}$

取 $C_1 = 0$,则得 $y = C_2$,找回丢失的解

例5. 解初值问题
$$\begin{cases} y'' - e^{2y} = 0 \\ y|_{x=0} = 0, y'|_{x=0} = 1 \end{cases}$$

解:令
$$y' = p(y)$$
, 则 $y'' = p \frac{dp}{dy}$, 代入方程得
$$p dp = e^{2y} dy$$

积分得
$$\frac{1}{2}p^2 = \frac{1}{2}e^{2y} + C_1$$

利用初始条件,得
$$C_1 = 0$$
,所以 $p^2 = e^{2y} \Rightarrow p = \pm \sqrt{e^{2y}}$

根据
$$p|_{y=0} = y'|_{x=0} = 1 > 0$$
,得 $\frac{dy}{dx} = p = e^y$

积分得
$$-e^{-y} = x + C_2$$
, 再由 $y|_{x=0} = 0$, 得 $C_2 = -1$

故所求特解为

$$1 - e^{-y} = x$$

可降阶的高阶微分方程的解法

——降阶法

$$1. \quad y^{(n)} = f(x) \quad 逐次积分$$

2.
$$y'' = f(x, y')$$
 缺少 y 令 $y' = p(x)$,则 $y'' = \frac{dp}{dx}$

4.
$$y'' = f(y')$$
 既缺少 x ,又缺少 y 令 $y' = p(x)$ 或 $y' = p(y)$

