Job No.: 459-788777 **Address:** 284 Hakarimata Road, Ngāruawāhia 3793, **Date:** 18/12/2024

New Zealand

Latitude: -37.640673 **Longitude:** 175.149118 **Elevation:** 17 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	2	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	4.6 m
Wind Region	NZ1	Terrain Category	2.77	Design Wind Speed	35.65 m/s
Wind Pressure	0.76 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	Medium	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 3.00 m Cpe = -1.0973 pe = -1.23 KPa pnet = -1.23 KPa

For roof CP,e from m To m Cpe = pe = KPa pnet = KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 3 m Cpe = 0.7 pe = 0.79 KPa pnet = 1.16 KPa

For side wall CP,e from 0 m To 2.50 m Cpe = pe = -0.73 KPa pnet = -0.73 KPa

Maximum Upward pressure used in roof member Design = 1.23 KPa

Maximum Downward pressure used in roof member Design = 0.59 KPa

Maximum Wall pressure used in Design = 1.16 KPa

Maximum Racking pressure used in Design = 1.13 KPa

Design Summary

Intermediate Design Front and Back

Intermediate Spacing = 3000 mm Intermediate Span = 3649 mm Try Intermediate 2x200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

Second page

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 11.27 S1 Upward = 0.72

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 5.79 Kn-m Capacity 7.46 Kn-m Passing Percentage 128.84 % V_{0.9D-WnUp} 6.35 Kn Capacity -32.16 Kn Passing Percentage 506.46 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 22.32 mm Limit by Woolcock et al, 1999 Span/100 = 36.49 mm

Reactions

Maximum = 6.35 kn

Intermediate Design Sides

Intermediate Spacing = 2500 mm Intermediate Span = 4050 mm Try Intermediate 2x200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 11.27 S1 Upward = 0.76

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 2.97 Kn-m Capacity 7.46 Kn-m Passing Percentage 251.18 % V_{0.9D-WnUp} 2.94 Kn Capacity 32.16 Kn Passing Percentage 1093.88 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 28.21 mm Limit by Woolcock et al, 1999 Span/100 = 40.50 mm

Reactions

Maximum = 2.94 kn

Girt Design Front and Back

Girt's Spacing = 1200 mm Girt's Span = 3000 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.79 S1 Downward =9.63 S1 Upward =17.59

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+snow 1.57 Kn-m Capacity 1.65 Kn-m Passing Percentage 105.10 % V_{0.9D-WnUp} 2.09 Kn Capacity 12.06 Kn Passing Percentage 577.03 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 15.58 mm Limit by Woolcock et al, 1999 Span/100 = 30.00 mm Sag during installation = 4.91 mm

Reactions

Maximum = 2.09 kn

Girt Design Sides

Girt's Spacing = 1200 mm Girt's Span = 2500 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.86 S1 Downward =9.63 S1 Upward =16.05

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 1.09 Kn-m Capacity 1.80 Kn-m Passing Percentage 165.14 %

V_{0.9D-WnUp} 1.74 Kn Capacity 12.06 Kn Passing Percentage **693.10 %**

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 7.51 mm Limit by Woolcock et al. 1999 Span/100 = 25.00 mm Sag during installation = 2.37 mm

Reactions

Maximum = 1.74 kn

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1900) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1900)

Skin Friction = 29.16 Kn

Weight of Pile + Pile Skin Friction = 34.09 Kn

Uplift on one Pile = 30.15 Kn

Uplift is ok