CUDA Programming - Execution Model

by **Dr. Nileshchandra Pikle**Assistant Professor

"A certified CUDA instructor by NVIDIA"

A typical C program

- 1. Include libraries
- 2. Declare variables
- 3. Allocate memory to the variables
- 4. Initialize variables
- 5. Perform computations
- 6. Store results
- 7. Free varables

GPU is a coprocessor/ accelerator

Only computationally intensive jobs are diverted towards GPU

GPU is a coprocessor/ accelerator

Only computationally intensive jobs are diverted towards GPU

1. Declare CPU variables

- 1. Declare CPU variables
- 2. Allocate memory to CPU variables

- 1. Declare CPU variables
- Allocate memory to CPU variables
 Declare GPU variables

- 1. Declare CPU variables
- Allocate memory to CPU variables
 Declare GPU variables
- 4. Allocate memory to GPU variables

- 1. Declare CPU variables
- Allocate memory to CPU variables
 Declare GPU variables
- 4. Allocate memory to GPU variables 5. Initialize data in CPU memory

- 1. Declare CPU variables
- 2. Allocate memory to CPU variables3. Declare GPU variables

- 4. Allocate memory to GPU variables5. Initialize data in CPU memory6. Copy data from CPU memory to **GPU** memory

- 1. Declare CPU variables
- Allocate memory to CPU variables
 Declare GPU variables

- 4. Allocate memory to GPU variables5. Initialize data in CPU memory6. Copy data from CPU memory to **GPU** memory
- 7. CPU instruct to GPU for parallel Execution

- 1. Declare CPU variables
- Allocate memory to CPU variables
 Declare GPU variables

- 4. Allocate memory to GPU variables5. Initialize data in CPU memory6. Copy data from CPU memory to **GPU** memory
- 7. CPU instruct to GPU for parallel Execution
- 8. Copy results back from GPU Memory to CPU memory

- 1. Declare CPU variables
- Allocate memory to CPU variables
 Declare GPU variables

- 4. Allocate memory to GPU variables5. Initialize data in CPU memory6. Copy data from CPU memory to **GPU** memory
- 7. CPU instruct to GPU for parallel Execution
- 8. Copy results back from GPU Memory to CPU memory

Summary

- Bypass the computationally intensive tasks to the GPU
- GPU acts as a co-processor / accelerator
- Hybrid programming model CPU + GPU