Minimum Spanning Tree

DPHPC

Th. Cambier R. Dang-Nhu Th. Dardinier C. Trassoudaine

ETH Zürich

December 2018

- Problem definition reminder
 - The MST Problem
 - Use cases
- Setup
 - Software
 - Hardware
- 3 Algorithms and parallel implementations
 - Base serial algorithms
 - Parallel improvements
- Results overview

Problem definition - reminder

The MST problem

A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted (un)directed graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight.

Input sets: G(n, p)

G(100, 0.02)

Input sets: PA(n, m)

PA(100, 1)

Input sets: 9th DIMACS challenge dataset

USA Roads

Name	Description	# nodes	# arcs	L
USA	Full USA	23,94	7,347 58,333,3	344 -
CTR	Central USA	14,08	34,292,4	96 [
w	Western USA	6,26	52,104 15,248,1	46 [
E	Eastern USA	3,59	8,778,1	14 [
LKS	Great Lakes	2,75	6,885,6	58 [
CAL	California and Nevada	1,89	0,815 4,657,7	42 [
NE	Northeast USA	1,52	4,453 3,897,6	36 [
NW	Northwest USA	1,20	7,945 2,840,2	208 [
FLA	Florida	1,07	70,376 2,712,7	98 [
COL	Colorado	43	5,666 1,057,0	066 [
BAY	San Francisco Bay Area	32	1,270 800,1	72 [
NY	New York City	26	64,346 733,8	846 [

oftware Hardware

Setup

Software

- OMP
- Intel Threading Building Blocks (TBB)
- Parallel Streaming Transformation Loader Service (PSTL)

EULER

- 1 node limitation (OMP)
- 2 sockets filled with 18 cores up to 3.7Ghz
- Inter-sockets bus speed: 10.4 GT/s

Algorithms and parallel implementations

Sollin

- For each connected component, find adjacent edge with minimum weight
- 2 Add edge to mst (each edge add at most twice)
- Merge connected components

Kruskal

```
1: A = \emptyset
 2. for all v \in G.V do
      MAKE-SET(v)
 3:
 4: end for
5: Sort (asc.) (weight(u, v))_{(u,v) \in G.E}
6: for all (u, v) in G.E ordered by weight do
      if FIND-SET(u) \neq FIND-SET(v) then
8:
       A = A \cup (u, v)
        UNION(u, v)
    end if
10.
11: end for
```

12: return A

Boost implementations

Boost-Kruskal used as a reference

Parallel sorting on Kruskal

- If $m \le threshold$ then solve with Kruskal
- 2 Find pivot for edges (weight)
- **3** Partition E into $E_{\leq}, E_{>}$

- **?** Return $merge(A_{\leq}, A_{>})$

- If $m \leq threshold$ then solve with Kruskal
- 2 Find pivot for edges (weight): O(1)
 - Concurrently sample 256 elements from the list (OpenMP)
 - Sort the list and return the median (TBB)
- 3 Partition E into $E_{<}, E_{>}$

- **?** Return $merge(A_{\leq}, A_{>})$

- **1** If $m \le threshold$ then solve with Kruskal
- ② Find pivot for edges (weight): O(1)
- **3** Partition E into $E_{\leq}, E_{>}$: $O\left(\frac{m}{p}\right)$
 - Partition function (Intel Parallel STL)

- **?** Return $merge(A_{\leq}, A_{>})$

- If $m \le threshold$ then solve with Kruskal
- 2 Find pivot for edges (weight): O(1)
- **3** Partition E into $E_{\leq}, E_{>}$: $O\left(\frac{m}{p}\right)$

- \bullet $A_{>} = filterKruskal(E_{>})$
- **?** Return $merge(A_{\leq}, A_{>})$

- If $m \le threshold$ then solve with Kruskal
- ② Find pivot for edges (weight): O(1)
- **3** Partition E into $E_{\leq}, E_{>}$: $O\left(\frac{m}{p}\right)$
- **4** $A_{\leq} = filterKruskal(E_{\leq}): T(\frac{m}{2})$
- - Partition function (Intel Parallel STL)
- **?** Return $merge(A_{\leq}, A_{>})$

- If $m \leq threshold$ then solve with Kruskal
- 2 Find pivot for edges (weight): O(1)
- 3 Partition E into $E_{\leq}, E_{>}$: $O\left(\frac{m}{p}\right)$

- $A_{>} = filterKruskal(E_{>}): O(T(\frac{m}{2}))$
 - In practice way less than $\frac{m}{2}$
- **7** Return $merge(A_{\leq}, A_{>})$

- If $m \le threshold$ then solve with Kruskal
- 2 Find pivot for edges (weight): O(1)
- **3** Partition E into $E_{\leq}, E_{>}$: $O\left(\frac{m}{p}\right)$

- **Q** Return $merge(A_{\leq}, A_{>})$: O(1)

- Worst case: $T(m) \le O\left(\frac{m}{p}\right) + 2T\left(\frac{m}{2}\right)$
- Best case: $T(m) \le O\left(\frac{m}{p}\right) + T\left(\frac{m}{2}\right)$

- Worst case: $T(m) \le O\left(\frac{m}{p}\right) + 2T\left(\frac{m}{2}\right)$ $T(m) = O\left(\frac{m\ln(m)}{p} + m\right)$
- Best case: $T(m) \le O\left(\frac{m}{p}\right) + T\left(\frac{m}{2}\right)$

- Worst case: $T(m) \le O\left(\frac{m}{p}\right) + 2T\left(\frac{m}{2}\right)$ $T(m) = O\left(\frac{m\ln(m)}{p} + m\right)$
- Best case: $T(m) \le O\left(\frac{m}{p}\right) + T\left(\frac{m}{2}\right)$ $T(m) = O\left(\frac{m}{p} + m\right) = O(m)$

- Worst case: $T(m) \le O\left(\frac{m}{p}\right) + 2T\left(\frac{m}{2}\right)$ $T(m) = O\left(\frac{m\ln(m)}{p} + m\right)$
- Best case: $T(m) \le O\left(\frac{m}{p}\right) + T\left(\frac{m}{2}\right)$ $T(m) = O\left(\frac{m}{p} + m\right) = O(m)$
- $O(m) \leq T(m) \leq O\left(\frac{m \ln(m)}{p} + m\right)$

Amdahl's law

 S_p is the speedup with p cores, f is the part of the program that is sequential.

$$S_p = \frac{1}{\frac{1-f}{p} + f}$$

$$\frac{p}{S} - 1$$

$$f = \frac{\frac{p}{S_p} - 1}{p - 1}$$

Amdahl's law: Kruskal

Graph: Erdos-Renyi (100,000 nodes, p = 0.0005)

Cores	Median speed-up	Standard deviation	f
1	1	0.0129805395	-
2	1.1881513396	0.0400305172	0.6832872491
4	1.3340592415	0.0130798641	0.6661225318
8	1.3134515984	0.01048841	0.7272602975
16	1.4399618642	0.0088220116	0.6740936918
32	1.3877640643	0.0442081933	0.7115701488

Amdahl's law: Filter Kruskal

Graph: Preferential attachment (10,000 nodes, 1,000 edges per vertex)

Cores	Median speed-up	Standard deviation	f
1	1	0.174182691	-
2	1.6268639022	0.2472258016	0.2293591353
4	2.669168898	0.5213238241	0.1661979381
8	5.3584384444	0.9757941767	0.0704246098
16	5.7447285937	1.108109986	0.1190108026
32	5.6322979489	1.497976882	0.1510166972

Kruskal vs Sollin

- Same complexity, but Sollin computing steps are more fine-grained
- Sollin is entirely paralelizable
- Filter Kruskal can be adapted to Filter Sollin

Problem definition - reminder Setup Algorithms and parallel implementations Results overview

Results overview

Runtimes

Runtime per graph

Speedups

Speedup per graph compared to serial implementation

Problem definition - reminder Setup Algorithms and parallel implementations Results overview

