Clustering Repot

Variable importance was calculated from the combined dataset by Bayesian Adaptive Sampling for Bayesian Model Averaging and Variable Selection in Linear Models for indice & I1 & I2 after removing outliers which was based on Bayesian outlier detection. Calculation was based on the BIC parameter and we gave uniform weights for each 2^p models to find the important variables to explain dependent variables. After determining the variable importance for each variable outliers were added back to data set. Lastly base on these important variable we created a new dataset and did our calculations based on the new dataset we created. Where new data set is consist of 1353 obs. Of 36 variables where 12 of them non numeric.

Variable importance for Indice:

indiceCONTEGGIO_Contraenti indiceCONTEGGIO_Allarmi_kyc indiceCONTEGGIO_DOC_MANCANTE_TOT indiceCONTEGGIO_Ente_Religioso indiceCONTEGGIO_Onlus indiceCONTEGGIO_Polizze_500k_1000k indiceCONTEGGIO_Polizze_magg1000k indiceRISERVA_MATEMATICA_201711 indicePREMIO_ANTE_2017 indiceFLAG_RESCISSIONE_2017 indiceindex.oninvestment

Variable importance for I1:

I1CONTEGGIO Contraenti I1CONTEGGIO_Allarmi_kyc I1CONTEGGIO DOC MANCANTE TOT I1CONTEGGIO_No_Sav.1 I1CONTEGGIO_Riscatti_Tot **I1INDICE** I1CONTRATTI_ATTIVI_201711 I1RISERVA_MATEMATICA_201711 I1PREMIO ANTE 2017 I1IMP RECESSO 2017 **I1FLAG RESCISSIONE 2017** I1FLAG_RIS_TOTALE_2017 11FLAG RIS TOTALE ANTE2017 11FLAG PREMIO CC 11TCM NUM CONTR ATTIVI 201711 11TCM RIS MATEMATICA 201711 I1CC_PREMIO_2017

Variable importance for I2:

I2CONTEGGIO_Contraenti
I2CONTRATTI_ATTIVI_201711
I2FLAG_PREMIO_CC
I2TCM_NUM_CONTR_ATTIVI_201711
I2TCM_RIS_MATEMATICA_201711
I2CC_NUM_CLIENTI_ATTIVI_201711

Log Posterior Odds

Log Posterior Odds

```
> cor.test(bysn.combined.aml$index.on.prodection, bysn.combined.aml$index.oninvestment)
       Pearson's product-moment correlation
data: bysn.combined.aml$index.on.prodection and bysn.combined.aml$index.oninvestment
t = -1.7365, df = 1351, p-value = 0.0827
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.100232198 0.006116954
sample estimates:
-0.04719135
> cor.test(bysn.combined.aml$index.on.prodection, bysn.combined.aml$INDICE)
         Pearson's product-moment correlation
data: bysn.combined.aml$index.on.prodection and bysn.combined.aml$INDICE
t = 0.5494, df = 1351, p-value = 0.5828
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.03837779 0.06818432
sample estimates:
0.0149457
> cor.test(bysn.combined.aml$INDICE, bysn.combined.aml$index.oninvestment)
         Pearson's product-moment correlation
data: bysn.combined.aml$INDICE and bysn.combined.aml$index.oninvestment
t = 4.4276, df = 1351, p-value = 1.03e-05
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.06672768 0.17179329
sample estimates:
      cor
0.1195953
```

→The following comparison was graph based on the means,

Estimating I1 ->index.on.investment

RMSE Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ctree I2 0.04585467 0.05783657 0.06731025 0.06372817 0.06936552 0.07816629 0 0.02845453 0.03353768 0.03928597 0.04040607 0.04823362 0.05171032 rf I2 0 qbm I2 0.03286040 0.04060742 0.05009036 0.04766317 0.05414199 0.06005584 0 0.08370220 0.10723381 0.12545963 0.11882468 0.12840907 0.13814785 p1s_I2 Ø 0.03676346 0.04385694 0.04664393 0.06130615 0.08173271 0.10636585 Ø mars I2 0.07332708 0.08084510 0.09801012 0.10294320 0.11607041 0.15991970 0 nnet I2 0.02087343 0.02624006 0.04334785 0.04329685 0.05101579 0.08019352 0 cbst I2 Rsquared

Min. 1st Qu. Median Mean 3rd Qu. NA's Max. ctree_I2 0.7530929 0.7833580 0.8126783 0.8105757 0.8412591 0.8694705 0 rf I2 0.8526138 0.9154663 0.9364723 0.9248587 0.9446754 0.9630564 Ø 0.8440580 0.8686723 0.8949590 0.8955251 0.9162521 0.9477657 0 gbm_I2 0.2307107 0.2651897 0.3379017 0.3447531 0.3799344 0.5624962 0 p1s I2 0.6120466 0.7361073 0.8570340 0.8172974 0.9066151 0.9231193 0 mars I2 nnet I2 0.1997073 0.4266706 0.5053577 0.4989399 0.6162053 0.7062162 0 cbst I2 0.8315106 0.8518614 0.9359500 0.9127353 0.9613200 0.9771620 0

RMSE

```
Min.
                             1st Qu.
                                         Median
                                                      Mean
                                                               3rd Qu.
                                                                             Max. NA's
ctree_I1_test 0.01186228 0.01498069 0.01772579 0.01908971 0.02155228 0.03316876
                                                                                     0
              0.01226679 0.01496519 0.01749706 0.01783970 0.02075557 0.02527725
rf I1 test
                                                                                     0
qbm I1 test
              0.01150516 0.01461999 0.01661548 0.01751595 0.01892843 0.02786480
                                                                                     0
pls_I1_test
              0.01423982 0.01501247 0.01754712 0.01900199 0.02208771 0.02883784
                                                                                     0
mars_I1_test
              0.01343995 0.01575383 0.01830090 0.01914568 0.02348802 0.02601192
                                                                                     0
nnet I1 test
              0.01381960 0.01568037 0.01704357 0.01818624 0.01813087 0.02763419
                                                                                     0
cbst I1 test
              0.01324759 0.01425276 0.01512506 0.01735688 0.01931261 0.02937716
                                                                                     0
```

Rsquared

•	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	NA's
ctree_I1_test	0.01101860	0.2854048	0.3895197	0.3528524	0.4659670	0.6100093	9
rf_I1_test	0.18307675	0.3206591	0.3828809	0.3933717	0.4398956	0.7207495	9
gbm_I1_test	0.15766924	0.2313889	0.4521077	0.4074834	0.5553492	0.6500910	9
pls_I1_test	0.07407383	0.3013056	0.3508209	0.3296193	0.4059688	0.5187042	9
mars_I1_test	0.05529647	0.2386155	0.2792297	0.3261955	0.4683707	0.5372340	0
nnet_I1_test	0.17028488	0.2921902	0.3457919	0.3475166	0.3943688	0.5402541	0
cbst I1 test	0.25495345	0.3194055	0.3772459	0.4214019	0.5044294	0.6912741	0

After modelling indice & I1 & I2, we found rf, gbm and cubist are the best models which can be used for the prediction. In this study we group indice & I1 & I2 and clustered them with using KNN, PAM, Clara and Hierarchical clustering method with the same distance method ("euclidean") and we model again the clustered columns one by one and found clustering method can be explain better by rf and gbm (note that cubist is only for the regression models.)

Furthermore, we select KNN clustering method and found the means for each cluster;

Row Labels	Average of INDICE	Average of index.oninvestment	Average of index.on.prodection
1	179.8181818	0.037727273	0.249545455
<mark>2</mark>	116.1	0.03075	0.24275
<mark>3</mark>	103.6631579	0.027368421	0.281578947
<mark>4</mark>	153.5245902	0.032786885	0.230327869
<mark>5</mark>	133.7307692	0.027211538	0.220384615
6	53.6090535	0.025226337	0.233045267
7	65.05820106	0.02978836	0.22994709
8	37.51769912	0.02199115	0.230530973
9	77.44805195	0.03025974	0.254805195
10	91.91366906	0.030071942	0.223381295
Grand Total	80.94161123	0.027730968	0.237117517

The table above shows;

- → Mean Indice = 80.94
- → Mean I1 = 0.02773 (index.on.investment)
- → Mean I2 =0.2371 (index.on.prodection)

Since cluster 1 is exceeding our calculations, we can conclude that cluster 1 is consisted of the most dangerous branches and Cluster 2,3,4,5 also may be investigated in the near future.

Note that: Variable selection should be calculated also with AIC, MCMC methods and one most compare how test and train datasets are close to each other for the most accurate data selection. (train and test sets are based on the stratified sampling) For the clustering analysis further studying may indicate the use of more complicated unsupervised technics.

The location of each cluster

Count of c_knn_l1l2Indice	Column Labels										
											Grand
Row Labels	1	2	3	4	5	6	7	8	9	10	Total
Abruzzo		1	2	4	1	3	5	8	3	1	28
Basilicata			1	1	1		4	1		1	9
Calabria	5		1	3	1	1	2	1	2	4	20
Campania	8	15	16	15	20	15	18	11	16	13	147
Lazio	1	28	30	10	29	70	49	61	47	36	361
Marche		6	2	3	4	13	7	9	5	9	58
Molise		1	1	1	2	4	1	5	1	1	17
Puglia		9	4	2	13	20	18	17	23	13	119
Sardegna		2	3		3	10	6	14	1	3	42
Sicilia	8	50	25	14	23	46	38	24	37	38	303
Toscana		1	4	5	4	34	16	30	9	8	111
Trentino-Alto Adige		1	1	2		3	2	16	3	3	31
Umbria		5	3	1	3	16	14	13	5	7	67
Veneto		1	2			8	9	16	2	2	40
Grand Total	22	120	95	61	104	243	189	226	154	139	1353

Location of Cluster1

NOMESE CO	D_CAB_GE: DES_REGION	DES_PROVINCIA_ABI_C	FILIALE_ABI_GEST	INDIRIZZO	COD_ABI_GEREGIONE	AREA_COMM	AREA_COMM.1	c_knn_l1l2lndice
201706	40023 Campania	Napoli	FIL. DI NOLA	VIA ROMA, 30	2008 6 - SUD	AREA RETAIL NAPOLI PR	AREA RETAIL NAPOLI PR	
201706	81491 Calabria	Reggio Calabria	FIL. DI PALMI	VIA ROMA, 23	2008 6 - SUD	AREA RETAIL CALABRIA	AREA RETAIL CALABRIA	
201706	83330 Sicilia	Caltanissetta	FIL. DI GELA	CORSO VITTORIO EMAN	2008 7 - SICILIA	AREA RETAIL CALTANISS	AREA RETAIL CALTANISS	
201706	39892 Campania	Napoli	FIL. DI FRATTAMAGGIOF	CORSO DURANTE, 201 A	2008 6 - SUD	AREA RETAIL NAPOLI PR	AREA RETAIL NAPOLI PR	
201706	16530 Sicilia	Messina	FIL. DI MESSINA	PIAZZA CAIROLI, 46	2008 7 - SICILIA	AREA RETAIL MESSINA	AREA RETAIL MESSINA	
201706	42830 Calabria	Vibo-Valentia	FIL. DI VIBO VALENTIA	VIA ENRICO GAGLIARDI,	2008 6 - SUD	AREA RETAIL CALABRIA	AREA RETAIL CALABRIA	
201706	25904 Sicilia	Trapani	FIL. DI MARSALA	VIA XI MAGGIO,91	2008 7 - SICILIA	AREA RETAIL TRAPANI	AREA RETAIL TRAPANI	
201706	16511 Sicilia	Messina	FIL. DI MESSINA	VIA GARIBALDI 102 - CO	2008 7 - SICILIA	AREA RETAIL MESSINA	AREA RETAIL MESSINA	
201706	16303 Calabria	Reggio Calabria	FIL. DI REGGIO CALABRIA	CORSO GARIBALDI 331	2008 6 - SUD	AREA RETAIL CALABRIA	AREA RETAIL CALABRIA	
201706	16918 Sicilia	Catania	FIL. DI CATANIA	CORSO SICILIA, 8	2008 7 - SICILIA	AREA RETAIL CATANIA	AREA RETAIL CATANIA	
201706	4404 Calabria	Catanzaro	FIL. DI CATANZARO	PIAZZA BASILICA DELL'IN	2008 6 - SUD	AREA RETAIL CALABRIA	AREA RETAIL CALABRIA	
201706	3443 Campania	Napoli	FIL. DI NAPOLI	VIA VERDI, 18,D	2008 6 - SUD	AREA RETAIL NAPOLI CE	AREA RETAIL NAPOLI CE	
201706	4615 Sicilia	Palermo	FIL. DI PALERMO	VIA TERRASANTA, 8	2008 7 - SICILIA	AREA RETAIL PALERMO	AREA RETAIL PALERMO	
201706	5340 Lazio	Roma	FIL. DI ROMA	VIALE G. CESARE, 54-C	2008 5 - CENTRO	AREA RETAIL ROMA PRA	AREA RETAIL ROMA PRA	
201706	14906 Campania	Caserta	FIL. DI CASERTA	CORSO TRIESTE ANG. P	2008 6 - SUD	AREA RETAIL CASERTA	AREA RETAIL CASERTA	
201706	16600 Sicilia	Agrigento	FIL. DI AGRIGENTO	PIAZZALE ALDO MORO,1	2008 7 - SICILIA	AREA RETAIL AGRIGENT	AREA RETAIL AGRIGENT	
201706	75042 Campania	Caserta	FIL. DI SANTA MARIA CA	CORSO ALDO MORO, 75	2008 6 - SUD	AREA RETAIL CASERTA	AREA RETAIL CASERTA	
201706	16304 Calabria	Reggio Calabria	FIL. DI REGGIO CALABRIA	VIA DEGLI ARCONTI, 6	2008 6 - SUD	AREA RETAIL CALABRIA	AREA RETAIL CALABRIA	
201706	40132 Campania	Napoli	FIL. DI QUARTO	VIA CUCCARO, 1	2008 6 - SUD	AREA RETAIL NAPOLI CE	AREA RETAIL NAPOLI CE	
201706	43440 Sicilia	Palermo	FIL. DI MISILMERI	PIAZZA COMITATO 1860	2008 7 - SICILIA	AREA RETAIL PALERMO I	AREA RETAIL PALERMO I	
201706	14903 Campania	Caserta	FIL. DI CASERTA	PIAZZA VANVITELLI, 25	2008 6 - SUD	AREA RETAIL CASERTA	AREA RETAIL CASERTA	
201706	89800 Campania	Caserta	FIL. DI CAPODRISE	S.S. SANNITICA 87 - KM.	2008 6 - SUD	AREA RETAIL CASERTA	AREA RETAIL CASERTA	