Статистический анализ кредитов российских компаний с учетом факторов транспарентности

Грачева Полина Валерьевна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Н.П. Алексеева Рецензент: А.И. Коробейников

Санкт-Петербург 2008г.

Исходные данные

- Анализируются два вида кредитов:
 - Еврооблигационный кредит (EO) долгосрочный кредит (5-15 лет), при получении которого заемщиком выпускаются ценные бумаги, долговые обязательства (еврооблигации). Размер выборки N=62.
 - Синдицированный кредит (СК) среднесрочный кредит (2-5 лет), предоставленный международным синдикатом банков. Размер выборки N=86.
- Признаки, характеризующие

кредиты	компании	
• сумма	• уровень раскрытия информации о:	
• процент	— собственности и правах акционеров	
• дата	— финансовых показателях деятельности	
• срок	— составе и работе Совета Директоров	
	• кредитный рейтинг	
	• активы	

Эконометрическая задача— проверка значимости высоких стандартов корпоративного управления для развития инвестиционной привлекательности российских ТЭК.

Методы исследования

- Анализ динамики параметров кредитов с точки зрения случайных процессов при помощи
 - метода «Гусеница»,
 - модели авторегрессии.
- Исследование взаимосвязи между параметрами кредитов и характеристиками компаний методами многомерной статистики.
 - Факторный анализ.
 - Канонические корреляции.
 - Дискриминантный анализ.
 - Множественная регрессия.
- Сравнение ЕО и СК при помощи адекватной статистической модели.
 - Проверка независимости двух выборок.
 - Степенное и экспоненциальное гамма распределения, лог-нормальное.
 - Оценки максимального правдоподобия (ОМП).
 - Доверительные интервалы для ОМП.
 - Вычисление допустимых объемов выборок.

Анализ динамики объемов кредита как процесса

Исследовались суммы и средние объемы кредитов по полугодиям.

Метод «Гусеница»:

- возрастающий тренд,
- период 2-2.5 года,
- $500 < \sigma < 1500$

Рис.: Метод «Гусеница»

Модель авторегрессии:

- возрастающий тренд,
 - авторегрессия четвертого порядка,
- $500 < \sigma < 1000$

Рис.: Авторегрессия

Многомерный статистический анализ кредитов

Рис.: Факторный анализ

Рис.: Канонический анализ

Значимые различия согласно пошаговому дискриминантному анализу между ТЭК и Газпромом по:

- активам
- сумме
- процентам

Статистический анализ кредитов

Сравнение синдицированных и еврооблигационных кредитов на основе модели $G(b,\lambda,k)$

0.9

0.8

0.6

0.4

0.2

log normal

0 02 04 08 08 1 12 14 18 18

Рис.: Еврооблигационные кредиты

Рис.: Синдицированные кредиты

Log Normal

p = 0.6

Powered Gamma:

p = 0.86

Если $\xi\sim G(b,\lambda)$, то $\xi^{\frac{1}{k}}\sim G(b,\lambda,k).$ Степенное гамма распределение имеет плотность распределения:

$$p(x) = \frac{kb^{-\lambda}}{\Gamma(\lambda)} x^{k\lambda - 1} e^{-\frac{x^k}{b}}, x > 0.$$

Имеет место проблема адекватности модели

Проблема адеватности разных моделей

• Смешанной дифференциальной энтропией называется:

$$H_{ij} = -\int_{-\infty}^{\infty} \log f_j(x|\theta) \cdot f_i(x|\theta) dx.$$

- Распределения с плотностями $f_1(x|\theta)$ и $f_2(x|\theta)$ называются синонимичными с уровнем синонимии δ , если $H_{12}-H_{11}<\delta$
- Параметры синонимичных распределений определяются из условия минимальности смешанной энтропии, обычно решается система уравнений:

$$\frac{\partial (H_{12} - H_{11})}{\partial \theta} = 0 \Leftrightarrow \frac{\partial H_{12}}{\partial \theta} = 0$$

где $\theta = (\theta_1 \dots \theta_s)$ — параметры распределения с плотностью $f_2(x|\theta)$.

Синонимия распределений $N(\mu,\sigma)$ и $\gamma_e(\alpha,\lambda, au)$

Если $\xi\sim G(\alpha,\lambda)$, то $-\frac{1}{k}\log\xi\sim\gamma_e(\alpha,\lambda,k)$. Плотность экспоненциального гамма распределения:

$$f_e(x|\alpha,\lambda,k) = \frac{k\alpha^{\lambda}}{\Gamma(\lambda)}e^{-kx\lambda}e^{-\alpha e^{-kx}}$$

Утверждение

① Соотношения для параметров экспоненциального гамма распределения синонимичного $N(\mu,\sigma)$:

$$k^2 = \frac{1}{\lambda \sigma^2}$$
 $\alpha = \frac{1}{\lambda} e^{\frac{1}{2\lambda} - \frac{\mu}{\sqrt{\lambda}\sigma}}$

 $oldsymbol{2}$ В частности для $\mu=0$ и $\sigma=1$:

$$k^2 = \frac{1}{\lambda}$$
 $\alpha = \frac{1}{\lambda}e^{\frac{1}{2\lambda}}$

и плотность синонимичного экспоненциального гамма распределения может быть представлена в виде:

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp^{-\frac{1}{2}(x+\frac{k}{2})^2 - \frac{k^2}{12} + O(k^{2(1-\varepsilon)})}$$

- С экономической точки зрения, СК отличаются большей волатильностью, т.к. условия кредита заключаются на основании личной договоренности.
- Со статистической точки зрения, волатильность часто ассоциируется с более общим понятием дисперсии, хотя увеличение дисперсии может объясняться и неоднородностью данных.
- В биосистемах синонимом волатильности можно считать изменчивость, связанную с жизнеспособностью (антипод патологии). В модели степенного гамма распределения с ней соотносят масштабный и обратный степенной параметры, а с параметром формы связывают эволюционные изменения [Алексеева и др. 2005, 2007].

Дифференциация параметров волатильности еврооблигационных и

синдицированных кредитов на основе модели степенного гамма распределения

- Построены оценки ОМП при фиксированном степенном параметре.
- Построены доверительные интервалы для параметра двумя методами: классическим и методом профилей правдоподобия.

Рис.: Трехмерная диаграмма ОМП адекватных моделей

- для синдицированных кредитов $k \in (0, 1.21]$
- ullet для еврооблигационных кредитов $k \in [2.61, \infty)$

Дискриминанты		
	евро.	синд.
λ	-11.33	-58.64
1/k	25.38	133.38
b	0.18	0.39

- При сопоставлении результатов, полученных методом «Гусеница» и при помощи модели авторегрессии получены идентичные результаты.
- Установлена инвариантность канонических корреляций при переходе к логарифмам и остаткам линейной регрессии по дате.
- Вычислены доверительные интервалы ОМП и МП степенного гамма распределения.
- Изучены причины адекватности моделей степенного гамма распределения и лог-нормального распределения.
- Исследована структура проявления волатильности синдицированных кредитов на основе модели степенного гамма распределения.