Capítulo 4: Árvores

□ O TAD Árvore Binária

{ No contexto das Estruturas de Dados }

Uma Árvore Binária é um conjunto finito de Nós, tal que:

- ou é o conjunto vazio,
- ou é constituída por uma **raiz** e duas Árvores Binárias distintas (chamadas **sub-árvore esquerda** e **sub-árvore direita**).

• Operações:

Operadores e Axiomas:

criar: $\emptyset \to T$

vazia : $T \rightarrow \{ \text{ verdadeiro, falso } \}$

construir: $T \times e \times T \rightarrow T$

direita: $T \rightarrow T$ esquerda: $T \rightarrow T$ consultar: $T \rightarrow e$

```
vazia(criar) = verdadeiro
vazia(construir(R, e, S)) = falso
esquerda(criar) = "erro"
direita(criar) = "erro"
consultar(criar) = "erro"
esquerda(construir(R, e, S)) = R
direita(construir(R, e, S)) = S
consultar(construir(R, e, S)) = e
```

Representação:

O TAD Árvore Binária é facilmente representável por uma Estrutura duplamente ligada:

var raiz : ArvoreBinaria;

Exercício: Implemente as seis operações básicas.

 A definição duplamente recorrente de Árvore Binária conduz, naturalmente, à construção de algoritmos duplamente recorrentes para: cópia, igualdade, travessias, pesquisas, ...

 A combinação da Recorrência Dupla com a Abstracção das Operações permite a elaboração de algoritmos simples e "compactos".

Construir uma Cópia de uma Árvore Binária:

• Travessias de uma Árvore Binária:

Pré-Ordem: 1º raiz;

2º sub-árvore esquerda;3º sub-árvore direita.

{ABCDEFGHIJKLMN}

Em-Ordem: 1º sub-árvore esquerda;

2º raiz;

3º sub-árvore direita.

{ CBEDGFAIHLKMJN}

Pos-Ordem: 1º sub-árvore esquerda;

2º sub-árvore direita;

3º raiz.

{ CEGFDBILMKNJHA}

 Nas três Travessias Básicas a ordem das "folhas" permanece constante. Porque será?

Travessia por Níveis: { A B H C D I J E F K N G L M }

 Na sua forma duplamente recorrente, a implementação das três Travessias Básicas é muito simples. Por exemplo,

- Contudo, as correspondentes versões iterativas são bem mais complicadas. A versão iterativa da travessia em Pré-Ordem é obtida pela utilização (quase) directa de uma Pilha, assim como a versão iterativa da travessia Por Níveis é obtida pela utilização de uma Fila auxiliar.
- Analisemos o caso da travessia Em-Ordem:

 Uma estratégia para a construção de uma versão iterativa da travessia Em-Ordem consiste na utilização de uma Pilha para guardar (os ponteiros para) as sub-árvores ainda não visitadas.

```
procedure TravessiaEmOrdemIterativa (t : ArvoreBinaria);
                 p: ArvoreBinaria;
            var
                  S: PilhadeArvoresBinarias;
                 acabou: boolean:
            begin criar(S);
                   p := t;
                   { começar por guardar a raiz }
                   por(p, S);
                   acabou:= false;
                   while not acabou do
                         if not vazia(p)
                         then begin { descer para a esquerda e guardar }
                                      p:= esquerda(p);
                                      por(p, s)
                               end
                         else begin { subir a partir da sub-árvore vazia }
                                      tirar(S); { remover a sub-árvore vazia }
                                      { consultar a Pilha }
                                      if vazia(S)
                                      then { toda a árvore foi visitada }
                                            acabou:= true
                                      else begin { visitar o topo da Pilha }
                                                    p := topo(S);
                                                    writeln(consultar(p));
                                                    { e remover }
                                                    tirar(S);
                                                    { descer para a direita }
                                                    p:= direita(p);
                                                    { e guardar }
                                                    por(p, S)
                                            end
                               end
            end; { TravessiaEmOrdemIterativa }
```

Por exemplo,

 Exercício: A estratégia para a construção de uma versão iterativa para a travessia Pós-Ordem também utiliza uma Pilha auxiliar, mas é um pouco mais complicada ...

Е

F

G

vazia(S)

C

D

B

visita: A

Uma Aplicação das três Travessias Básicas:

Representação de Expressões Aritméticas.

Travessia Pré-Ordem: + * / a ^ b c d e { Notação prefix }

Travessia Em-Ordem: $a / b \wedge c * d + e$ { Notação *infix* }

Travessia Pos-Ordem: a b c $^/$ d * e + { Notação postfix }

□ Algumas Contagens em Árvores Binárias

Para uma dada árvore binária, sejam:

- **n** o número total de vértices (**tamanho**)
- e o número de vértices externos (folhas)
- i o número de vértices internos
- h a altura

$$h(t) = \begin{cases} 0 & \text{se vazia(t)} \\ 1 + \text{max(h(esquerda(t)), h(direita(t)))} \end{cases}$$

definição: Árvore binária perfeita (ou total):

uma árvore binária t de altura h = 0 é perfeita

uma árvore binária t de altura h > 0 é perfeita,
se esquerda(t) e direita(t) são perfeitas de altura h-1

teorema: Uma árvore binária perfeita de altura h tem 2^h-1 vértices **demonstração** (por Indução sobre h):

- uma árvore binária com h=0 (vazia) tem 0 vértices
- uma árvore binária perfeita de altura h+1 tem duas subárvores perfeitas de altura h, cada uma com 2^h-1 vértices. Portanto, $(2^h-1)+1+(2^h-1)=2^{h+1}-1$

corolário: A altura de uma árvore binária perfeita com n vértices é igual a $log_2(n+1)$

teorema: Uma árvore binária perfeita de altura h>0 tem 2^{h-1} folhas **demonstrar** (por Indução sobre h)

corolário: Numa árvore binária perfeita, cada nível k contém 2^{k-1} vértices.

corolário:
$$n = 2^0 + 2^1 + ... + 2^{h-1} = 2^h - 1$$

propriedade: Numa árvore binária perfeita, não vazia, e = i + 1

$$n = 2^{h} - 1$$

 $e = 2^{h-1}$
 $i = n - e = 2^{h} - 2^{h-1} - 1 = 2^{h-1} - 1$

propriedade: Numa árvore binária perfeita (h>1) mais de metade dos vértices são folhas.

$$\left. \begin{array}{l} n = 2^h - 1 \\ \\ e = 2^{h-1} \end{array} \right\} \Rightarrow e/n > \frac{1}{2}$$

propriedade: Numa árvore binária perfeita, suficientemente grande, o nível médio de um vértice é cerca de h-1.

$$\frac{\sum_{k=1}^{h} k \ 2^{k-1}}{2^h - 1} = \frac{2^h \ h - 2^h + 1}{2^h - 1}$$

$$= \frac{2^h \ h - (2^h - 1)}{2^h - 1}$$

$$= \frac{2^h \ h}{2^h - 1} - 1$$

$$= \frac{h}{1 - \frac{1}{2^h}} - 1$$

$$\approx h - 1$$

Mas nem todas as árvores binárias são perfeitas...

teorema: O **número de árvores binárias** com **n** vértices é igual ao Número de Catalan de ordem **n**,

$$C_n = \frac{(2n)!}{n! (n+1)!}$$

n	C_n
0	1
1	1
2	2
3	5
4	14
5	42
6	132
7	429
8	1,430
9	4,862
10	16,796
11	58,786
12	208,012
13	742,900
14	2,674,440
15	9,694,845
16	35,357,670
• • •	

por exemplo, para n = 3:

teorema: Em qualquer árvore binária não vazia de altura h, com n vértices, e folhas e i vértices internos:

- $h \le n \le 2^h 1$
- $1 \le e \le 2^{h-1}$
- $h-1 \le i \le 2^{h-1} -1$
- $\log_2 (n+1) \le h \le n$

teorema: Em qualquer árvore binária não vazia, com: n_2 o número de vértices com 2 sub-árvores não vazias, n_1 o número de vértices com 1 sub-árvore não vazia, n_0 o número de folhas, então, $n_0 = n_2 + 1$.

definição: Uma árvore binária de altura h chama-se **completa** quando:

- Cada nível k = 1 ... h-1 contém 2^{k-1} vértices.
- Todas as folhas no nível h estão chegadas à esquerda.

teorema: Numa árvore binária completa com n vértices e altura h,

- $2^{h-1} \le n \le 2^h 1$
- $\log_2 (n+1) \le h \le \log_2 n + 1$
- $h = \lfloor \log_2 n \rfloor + 1$

corolário: Numa árvore binária completa com n vértices, o comprimento máximo de um caminho desde a raiz até qualquer vértice é $O(log_2n)$.

propriedade: Uma árvore binária **completa** com **n** vértices é univocamente representável (por níveis) num vector de **n** elementos.

Assim, os vértices da árvore podem ser numerados:

☐ Amontoados Binários (heaps)

definição: Os elementos do vector x[1..n] dizem-se **amontoados** (formam um *heap*) quando,

$$\forall k \in [2 .. n] \Longrightarrow x[k \text{ div } 2] \ge x[k]$$

por exemplo,

Representação sequencial de uma árvore binária completa.

Onde:

- \forall $k \in [1 .. n \text{ div } 2] \implies x[k] \ge x[2k]$ $x[k] \ge x[2k + 1]$
- x[k] é pai de x[2k] e de x[2k + 1]
- x[1] é o maior elemento do vector
- Tratando-se de uma árvore binária completa, as operações são $O(h) = O(log_2 n)$.

Promoção

- Existe um único vértice k : x[k] > x[k div 2].
- Ir trocando com o pai, enquanto for preciso.
- Algoritmo:

enquanto x[k] > x[k div 2] e k > 1

$$x[k] \leftrightarrow x[k \ \text{div} \ 2] \\ k \leftarrow k \ \text{div} \ 2$$

Inserção

- Inserir um novo valor em x[1..n].
- Juntar no fim e promover
- Algoritmo:

$$n \leftarrow n + 1$$

 $x[n] \leftarrow novo$

promover(n)

Despromoção

- Um único vértice k: x[k] < x[2k] ou x[k] < x[2k + 1].
- Ir trocando com o maior filho.
- Algoritmo:

```
enquanto 2k \le n j \leftarrow \text{indice do max} \{ x[2k], x[2k+1] \} \text{se } x[k] \ge x[j] \text{ parar (!)} x[k] \leftrightarrow x[j] k \leftarrow j
```


Remoção do Máximo

- Remover o elemento x[1].
- Trocar com o último e despromover.

• Algoritmo:

$$x[1] \leftrightarrow x[n]$$

 $n \leftarrow n - 1$

despromover(1)

Outras Operações / exercícios :

- Remover um elemento arbitrário.
- Alterar o valor de um elemento.
- Juntar dois heaps.
- Considerámos o caso do heap máximo, onde o maior elemento do vector é o primeiro. Defina e analise o caso do heap mínimo, onde o primeiro elemento é o menor.

→ Construção de um *heap*

· Amontoar os elementos de um dado vector.

Algoritmo:

para cada pai k desde n **div** 2 até 1 amontoar sub-árvore [k .. n]

amontoar sub-árvore [a .. b]


```
procedure AmontoarSubArvore ( a, b : indice );
var i, j: indice;
    aux : elemento;
    achou: boolean;
aux := x[i]; { guarda valor do pai }
       achou := false;
       while not achou and (j <= b) do
              begin if j < b
                     then if x[i] < x[i+1]
                           then j := j+1; { o maior filho }
                     if aux >= x[j]
                     then achou:= true
                           { encontrada localização do pai }
                     else begin { ainda não }
                                  x[i] := x[i];
                                  { filho maior promovido a pai }
                                  i := i; { novo pai }
                                  j := 2 * i { e seu primeiro filho }
                           end
              end:
       x[i] := aux
                     { recolocado pai da sub-árvore }
end; { AmontoarSubArvore }
```

- O procedimento AmontoarSubArvore consiste numa descida ao longo de uma árvore binária completa, cuja altura máxima é O(log₂n).
- Note que, no pior dos casos: (j := 1) (j := 2 * i) até (j = n).

• O processo completo da construção do heap, será então:

• Portanto, a complexidade da operação completa da construção do $heap \in O(n \log_2 n)$.

Complexidades:

vector	inserção	remoção do máximo	pesquisa do máximo			
não ordenado	O(1)	O(n)	O(n)			
ordenado	O(n)	O(1)	O(1)			
heap binário	O(log n)	O(log n)	O(1)			

Aplicações dos heaps binários:

- Um dos melhores métodos de ordenamento.
- Filas de Prioridade.
- ...

☐ HeapSort

 A partir de um vector amontoado, como colocar os seus elementos por ordem não decrescente?

• O primeiro elemento é o maior: $x[1] \leftrightarrow x[10]$ AmontoarSubArvore(1, 9)

x[1] ↔ x[9]; AmontoarSubArvore(1, 8)

X	59	48	26	15	19	11	1	5	61	77
	1	2	3	4	5	6	7	8	9	10

x[1] ↔ x[8]; AmontoarSubArvore(1, 7)

										10
X	48	19	26	15	5	11	1	59	61	77

- ...
- $x[1] \leftrightarrow x[2]$; AmontoarSubArvore(1, 1)

```
1
            2
                  3
                        4
                              5
                                    6
                                          7
                                               8
                                                           10
                                                     9
       1
            5
                 11
                       15
                             19
                                   26
                                        48
                                              59
                                                    61
                                                          77
\mathsf{X}
```

```
procedure HeapSort ( var x : vector; n : indice );
var k: indice:
      aux : elemento;
begin for k := n \operatorname{div} 2 \operatorname{downto} 1 \operatorname{do}
               AmontoarSubArvore(k, n);
        { x[1 .. n] amontoado \land x[] ordenado }
         for k := n-1 downto 1 do
               begin \{x[1..k+1] \text{ amontoado } \land x[k+2..n] \text{ ordenado } \}
                        aux := x[1];
                        x[1] := x[k+1];
                        x[k+1] := aux;
                        { x[k+1 .. n] ordenado }
                        AmontoarSubArvore(1, k)
                        { x[1 .. k] amontoado \land x[k+1 .. n] ordenado }
               end:
         \{x[1] \text{ amontoado } \land x[2 .. n] \text{ ordenado } \}
        { x[1 .. n] ordenado }
end; { HeapSort }
```

- O primeiro ciclo, da construção inicial do *heap*, é $O(n \log_2 n)$.
- O segundo ciclo é sequencial ao primeiro e tem complexidade análoga.
- Portanto o algoritmo **HeapSort** é $O(n log_2 n)$, o limite mínimo para os métodos de ordenamento baseados em trocas.
- Note-se que não existe um Pior Caso $O(n^2)$, como acontece no **QuickSort**.

☐ Filas de Prioridade

 Muitas vezes é necessária uma estrutura de dados, semelhante à Fila, mas com um sistema de prioridades associado aos seus elementos.

- O "primeiro" elemento é aquele cuja prioridade é máxima e, em caso de igualdade, deverá funcionar como uma Fila.
- De forma eficiente, é necessário conhecer o "primeiro" elemento, removê-lo e reorganizar a estrutura.

Aplicações das Filas de Prioridade:

- Simulação Controlada pelos Eventos.
- Computação Numérica.
- Compressão de Dados. {Códigos de Huffman}
- Pesquisa em Grafos. {Algoritmos de Dijkstra e de Prim}
- Algoritmos em Teoria dos Números.
- Inteligência Artificial.
- Estatística.
- Sistemas Operativos.
- Optimização Discreta.
- Filtros de spam.
- ...

Operações Básicas no TAD Fila de Prioridade:

```
nula(FP) { verificar se a FP está vazia }
construir(n, FP) { construir uma FP a partir de n elementos }
maximo(FP) { o elemento de valor máximo }
remmaximo(FP) { remover o máximo e reordenar }
comprimento(FP) { o número de elementos }
inserir(e, FP) { inserir um novo elemento e reordenar }
```

Como implementar uma Fila de Prioridade?

▶ Possíveis Implementações de uma Fila de Prioridade:

	inserção	remoção do máximo	pesquisa do máximo
vector não ordenado	O(1)	O(n)	O(n)
vector ordenado	O(n)	O(1)	O(1)
lista não ordenada	O(1)	O(n)	O(n)
lista ordenada	O(n)	O(1)	O(1)
árvore equilibrada	O(log n)	O(log n)	O(log n)
heap binário	O(log n)	O(log n)	O(1)

 O heap binário é portanto uma estrutura adequada à implementação das Filas de Prioridade, permitindo operações de complexidade sub-linear, sem utilização explícita de ponteiros.