

min 3x6+2x5+3x²+5x²+2

T'(x) = 18x5 + 10x¹ + 9x² + 10x = 0

f'(x) = 0

We need a general method.

A systematic providure to optimize a fr.

1. Start with
$$x_0 \in [R \text{ [arbitrary charco]}]$$

2. For $t = 1, T$:

update x
 $x_{t+1} = x_t + 4$

while is a good d'?

d' is a direction trast happing takes has closer to the minima of rue fr.

(x-5)²

How methor move in derution d'?

1. Shall with $x_0 \in [R \text{ [arbitrary charco]}]$

4. Systematic provider takes has closer to the minima of rue fr.

(x-5)²

How methor move in derution d'?

(x+1) = (x_t) + (x_t)

(x+1) = (x_t) + (x_t

end

L.R.

F(XX)

$$d : P = Probe + x value$$

$$d : P = Probe + x value + x va$$

$$\min - f(x)$$

$$\frac{d}{d} f(x_{1}) c_{1} c_{2}$$
 $\frac{d}{d} f(x_{2}) = 0$
 $\frac{d}{d} f(x_{2}) c_{2} c_{3}$

1 Traditional

$$\frac{1}{1} \frac{1}{1} \frac{1}{1} = \begin{bmatrix} x_0 \\ y_1 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} - 1$$

$$\begin{array}{c}
\sqrt{f} & \frac{3f}{3x} \\
\frac{3f}{3y}
\end{array}$$