Introduction to Computer Graphics

Modeling (1) –

April 14, 2016 Kenshi Takayama

Parametric curves

- X & Y coordinates definted by parameter t
 - Example: Cycloid

$$x(t) = t - \sin t$$

$$y(t) = 1 - \cos t$$

- Tangent (aka. derivative, gradient) vector: (x'(t), y'(t))
- Polynomial curve: $x(t) = \sum_i a_i t^i$

Cubic Hermite curves

 Cubic polynomial curve interpolating derivative constraints at both ends (Hermite interpolation)

- 4 constraints → 4 DoF needed → cubic
 - $x(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$
 - $x'(t) = a_1 + 2a_2t + 3a_3t^2$
- Coeffs determined by substituting constrained values & derivatives

$$x(0) = a_0$$
 = x_0
 $x(1) = a_0 + a_1 + a_2 + a_3 = x_1$
 $x'(0) = a_1$ = x'_0
 $x'(1) = a_1 + 2 a_2 + 3 a_3 = x'_1$

$$a_0 = x_0$$

$$a_1 = x'_0$$

$$a_2 = -3 x_0 + 3 x_1 - 2 x'_0 - x'_1$$

$$a_3 = 2 x_0 - 2 x_1 + x'_0 + x'_1$$

Bezier curves

- Input: 3 control points P_0, P_1, P_2
 - Coordinates of points in arbitrary domain (2D, 3D, ...)

• Output: Curve P(t) satisfying

$$P(0) = P_0$$

$$P(1) = P_2$$

while being "pulled" by P_1

Bezier curves

•
$$P_{01}(t) = (1-t)P_0 + t P_1$$

•
$$P_{12}(t) = (1-t)P_1 + t P_2$$

- $P_{01}(0) = P_0$
- $P_{12}(1) = P_2$

- Idea: "Interpolate the interpolation" As t changes $0 \to 1$, smoothly transition from P_{01} to P_{12}
- $P_{012}(t) = (1-t)P_{01}(t) + t P_{12}(t)$ $= (1-t)\{(1-t)P_0 + t P_1\} + t \{(1-t)P_1 + t P_2\}$ $= (1-t)^2 P_0 + 2t(1-t)P_1 + t^2 P_2$

Bezier curves

•
$$P_{01}(t) = (1-t)P_0 + t P_1$$

•
$$P_{12}(t) = (1-t)P_1 + t P_2$$

- $P_{01}(0) = P_0$
- $P_{12}(1) = P_2$

• Idea: "Interpolate the interpolation" As t changes $0 \to 1$, smoothly transition from P_{01} to P_{12}

•
$$P_{012}(t) = (1-t)P_{01}(t) + t P_{12}(t)$$

$$= (1-t)\{(1-t)P_0 + t P_1\} + t \{(1-t)P_1 + t P_2\}$$

$$= (1-t)^2 P_0 + 2t(1-t)P_1 + t^2 P_2$$
Quadratic Bezier curve

Cubic Bezier curve

- Exact same idea applied to 4 points P_0 , P_1 , P_2 P_3 :
 - As t changes $0 \rightarrow 1$, transition from P_{012} to P_{123}

•
$$P_{0123}(t) = (1-t)P_{012}(t) + t P_{123}(t)$$

$$= (1-t)\{(1-t)^2P_0 + 2t(1-t)P_1 + t^2P_2\} + t\{(1-t)^2P_1 + 2t(1-t)P_2 + t^2P_3\}$$

$$= (1-t)^3 P_0 + 3t(1-t)^2 P_1 + 3t^2(1-t)P_2 + t^3 P_3$$

Cubic Bezier curve

Cubic Bezier curve

- Exact same idea applied to 4 points P_0 , P_1 , P_2 P_3 :
 - As t changes $0 \rightarrow 1$, transition from P_{012} to P_{123}

•
$$P_{0123}(t) = (1-t)P_{012}(t) + t P_{123}(t)$$

= $(1-t)\{(1-t)^2P_0 + 2t(1-t)P_1 + t^2P_2\} + t \{(1-t)^2P_1 + 2t(1-t)P_2 + t^2P_3\}$

$$= (1-t)^3 P_0 + 3t(1-t)^2 P_1 + 3t^2(1-t)P_2 + t^3 P_3$$

Cubic Bezier curve

Can easily control tangent at endpoints → ubiquitously used in CG

n-th order Bezier curve

• Input: n+1 control points P_0, \dots, P_n

$$P(t) = \sum_{i=0}^{n} {n \choose i} t^{i} (1-t)^{n-i} P_{i}$$

$$b_{i}^{n}(t)$$

Bernstein basis function

$$(1-t)^{5}P_{0} + 5t(1-t)^{4}P_{1} + 10t^{2}(1-t)^{3}P_{2} + 10t^{3}(1-t)^{2}P_{3} + 5t^{4}(1-t)P_{4} + t^{5}P_{5}$$

Cubic Bezier curves & cubic Hermite curves

• Cubic Bezier curve & its derivative:

•
$$P(t) = (1-t)^3 P_0 + 3t(1-t)^2 P_1 + 3t^2(1-t)P_2 + t^3 P_3$$

•
$$P'(t) = -3(1-t)^2 P_0 + 3\{(1-t)^2 - 2t(1-t)\}P_1 + 3\{2t(1-t) - t^2\}P_2 + 3t^2 P_3$$

Derivatives at endpoints:

$$P'(0) = -3P_0 + 3P_1$$
 \rightarrow $P_1 = P_0 + \frac{1}{3}P'(0)$

•
$$P'(0) = -3P_0 + 3P_1$$
 \rightarrow $P_1 = P_0 + \frac{1}{3}P'(0)$
• $P'(1) = -3P_2 + 3P_3$ \rightarrow $P_2 = P_3 - \frac{1}{3}P'(1)$

Different ways of looking at cubic curves

Evaluating Bezier curves

- Method 1: Direct evaluation of polynomials
 - Simple & fast[©], could be numerically unstable[®]
- Method 2: de Casteljau's algorithm
 - Directly after the recursive definition of Bezier curves
 - More computation steps⊕, numerically stable⊕
 - Also useful for splitting Bezier curves

Drawing Bezier curves

- In the end, everything is drawn as polyline
 - Main question: How to sample paramter t?

- Method 1: Uniform sampling
 - Simple
 - Potentially insufficient sampling density

- Method 2: Adaptive sampling
 - If control points deviate too much from straight line, split by de Casteljau's algorithm

Further control: Rational Bezier curve

 $\forall t$

- Another view on Bezier curve:
 "Weighted average" of control points
 - $P_{012}(t) = (1-t)^2 P_0 + 2t(1-t)P_1 + t^2 P_2$ = $\lambda_0(t) P_0 + \lambda_1(t) P_1 + \lambda_2(t)P_2$
 - Important property: $\lambda_0(t) + \lambda_1(t) + \lambda_2(t) = 1$
- Multiply each $\lambda_i(t)$ by arbitrary coeff w_i : $\xi_i(t) = w_i \lambda_i(t)$
- Normalize to obtain new weights:

$$\lambda_i'(t) = \frac{\xi_i(t)}{\sum_j \xi_j(t)}$$

 $w_0 = w_2 = 1$ $w_1 = 2.0$ $w_1 = 1.0$ $w_1 = 0.5$ $w_1 = -0.5$ $W_1 = 0.0$

Non-polynomial curve → can represent arcs etc.

Cubic splines

- Series of connected cubic curves
 - Piecewise-polynomial
 - Share value & derivative at every transition of intervals (C¹ continuity)

- Assumption: $t_k < t_{k+1}$
- Given values as only input, we want to automatically set derivatives

Cubic Catmull-Rom spline

• Cubic function $x_k(t)$ for range $t_k \le t \le t_{k+1}$ is defined by adjacent constrained values $x_{k-1}, x_k, x_{k+1}, x_{k+2}$

Cubic Catmull-Rom spline: Step 1

• As $t_k \to t_{k+1}$, interpolate such that $x_k \to x_{k+1} \twoheadrightarrow$ Line

$$l_k(t) = \left(1 - \frac{t - t_k}{t_{k+1} - t_k}\right) x_k + \frac{t - t_k}{t_{k+1} - t_k} x_{k+1}$$

Cubic Catmull-Rom spline: Step 2

• As $t_{k-1} \to t_{k+1}$, interpolate such that $l_{k-1} \to l_k \implies$ Quadratic curve

$$q_k(t) = \left(1 - \frac{t - t_{k-1}}{t_{k+1} - t_{k-1}}\right) l_{k-1}(t) + \frac{t - t_{k-1}}{t_{k+1} - t_{k-1}} l_k(t)$$

• Passes through 3 points $(t_{k-1}, x_{k-1}), (t_k, x_k), (t_{k+1}, x_{k+1})$

Cubic Catmull-Rom spline: Step 3

• As $t_k \to t_{k+1}$, interpolate such that $q_k \to q_{k+1}$ \longrightarrow Cubic curve

$$x_k(t) = \left(1 - \frac{t - t_k}{t_{k+1} - t_k}\right) q_k(t) + \frac{t - t_k}{t_{k+1} - t_k} q_{k+1}(t)$$

Evaluating cubic Catmull-Rom spline

Ways of setting parameter values t_k (aka. knot sequence)

•
$$t_0 = 0$$

Uniform

$$t_k = t_{k-1} + 1$$

• Chordal $t_k = t_{k-1} + |P_{k-1} - P_k|$

Centripetal

$$t_k = t_{k-1} + \sqrt{|P_{k-1} - P_k|}$$

Application of cubic Catmull-Rom spline: Hair modeling

B-spline & NURBS

- B (**B**asis) Spline:
 - Another way of defining polynomial spline
 - Represent curve as sum of basis functions
 - Cubic basis is mostly used in practice
- Non-Uniform Rational B-Spline
 - Non-uniform spacing of knots (t_k)
 - Rational: arbitrary weights for CPs
- Deeply related to subdivision surfaces
 Next lecture
- Cool Flash demo:

http://geometrie.foretnik.net/files/NURBS-en.swf

Parametric surfaces

- One parameter \rightarrow Curve P(t)
- Two parameters \rightarrow Surface P(s,t)
- Cubic Bezier surface:
 - Input: $4\times4=16$ control points P_{ij}

$$P(s,t) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i^3(s) b_j^3(t) P_{ij}$$

Bernstein basis functions

$$b_0^3(t) = (1-t)^3$$

$$b_1^3(t) = 3t(1-t)^2$$

$$b_2^3(t) = 3t^2(1-t)$$

$$b_3^3(t) = t^3$$

3D modeling using parametric surface patches

- Pros
 - Can compactly represent smooth surfaces
 - Can accurately represent spheres, cones, etc
- Cons
 - Hard to design nice layout of patches
 - Hard to maintain continuity across patches

 Often used for designing man-made objects consisting of simple parts

Pointers

- http://en.wikipedia.org/wiki/Bezier_curve
- http://antigrain.com/research/adaptive_bezier/
- https://groups.google.com/forum/#!topic/comp.graphics.algorithms/2 FypAv29dG4
- http://en.wikipedia.org/wiki/Cubic_Hermite_spline
- http://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline
 e