Глава 3. Геометрические преобразования

Пусть дана прямоугольная система координат *Оху* на плоскости или *Оху* в пространстве. В теории геометрических преобразований рассматриваются две основные задачи, которые мы назовём задачами А и Б. Сформулируем эти задачи для случая плоскости, для пространства они формулируются аналогично.

Задача А. Пусть система координат изменилась (например, претерпела сдвиг или поворот на некоторый угол) и O'x'y' — новая система координат. Каждая точка M имеет определённые координаты (x, y) в старой (исходной) системе координат и какието координаты (x', y') в новой системе координат O'x'y'. Требуется найти связь между новыми и старыми координатами точки.

Задача Б. Пусть система координат *Оху* неизменна, а сама плоскость преобразуется, т.е. точка M = (x, y) переходит в точку M' = (x', y'). Требуется установить связь между координатами x', y' и x, y.

В каждом случае надо чётко представлять себе, о какой задаче идёт речь. В задаче А надо найти связь между координатами x, y и x', y' одной и той же точки в разных системах координат, а в задаче S — связь между координатами x, y произвольной точки и координатами x', y' её образа при данном преобразовании. В обеих задачах целью является получение формул, выражающих x', y' через x, y, а также обратных формул — x, y через x', y'. Позже средствами линейной алгебры эти задачи будут разбираться в более общей ситуации — для n-мерного пространства.

Параллельный перенос системы координат Oxyz — преобразование, при котором начало координат переходит в точку (a,b,c), а направления координатных осей сохраняются. Связь между старыми и новыми координатами произвольной точки (решение задачи A) даётся формулами

$$\begin{cases} x' = x - a, \\ y' = y - b, \\ z' = z - c. \end{cases}$$
 (1)

Аналогичные формулы справедливы для плоскости (см. рис. 1):

$$\begin{cases} x' = x - a, \\ y' = y - b. \end{cases}$$
 (2)

Puc.1.

Повором осей координам вокруг начала координат на угол φ (решение задачи A) даётся формулами:

$$\begin{cases} x' = x\cos\varphi + y\sin\varphi, \\ y' = -x\sin\varphi + y\cos\varphi \end{cases}$$
 (3)

(см. рис. 2).

Обратные формулы получаются заменой φ на $-\varphi$:

$$\begin{cases} x = x' \cos \varphi - y' \sin \varphi, \\ y = x' \sin \varphi + y' \cos \varphi. \end{cases}$$

Приведём теперь формулы для задачи Б.

Параллельный перенос пространства на вектор $\vec{p}=(a,b,c)$ задаётся формулами

$$\begin{cases} x' = x + a, \\ y' = y + b, \\ z' = z + c. \end{cases}$$

$$(4)$$

Параллельный перенос плоскости (см. рис. 3) – формулами

$$\begin{cases} x' = x + a, \\ y' = y + b. \end{cases}$$
 (5)

Puc.3

Повором плоскости на угол φ вокруг начала координат — преобразование плоскости, при котором каждая точка M переходит в такую точку M', что угол между векторами \overrightarrow{OM} и $\overrightarrow{OM'}$ равен φ (см. рис. 4).

Формулы поворота:

$$\begin{cases} x' = x\cos\varphi - y\sin\varphi, \\ y' = x\sin\varphi + y\cos\varphi. \end{cases}$$
 (6)

Примечание: здесь речь идёт о *направленном угле*, т.е. об угле от \overrightarrow{OM} к \overrightarrow{OM}' .

Поворот плоскости на угол φ вокруг точки (x_0, y_0) :

$$\begin{cases} x' = (x - x_0)\cos\varphi - (y - y_0)\sin\varphi + x_0, \\ y' = (x - x_0)\sin\varphi + (y - y_0)\cos\varphi + y_0. \end{cases}$$
 (7)

 ${\it Cимметрии}$ плоскости (или пространства) — это такие преобразования плоскости (пространства), при которых каждая точка ${\it M}$ переходит в точку ${\it M}'$, симметричную точке ${\it M}$ относительно точки, прямой или плоскости. Разумеется, это является задачей Б. Переход от системы координат к симметричной системе (задача A) встречается весьма редко и здесь рассматриваться не будет.

Формулы симметрии плоскости: а) симметрия относительно начала координат, б) относительно оси Ox, в) относительно точки (a,b), г) относительно прямой x=a:

a)
$$\begin{cases} x' = -x, \\ y' = -y; \end{cases}$$
 6) $\begin{cases} x' = x, \\ y' = -y; \end{cases}$ B) $\begin{cases} x' = 2a - x, \\ y' = 2b - y; \end{cases}$ $\begin{cases} x' = 2a - x, \\ y' = y; \end{cases}$

формулы симметрии пространства: а) относительно начала координат, б) относительно оси Ox, в) относительно плоскости Oxy, г) относительно плоскости y = h:

a)
$$\begin{cases} x' = -x, \\ y' = -y, \end{cases}$$
 $\begin{cases} x' = x, \\ y' = -y, \end{cases}$ B) $\begin{cases} x' = x, \\ y' = y, \end{cases}$ $\begin{cases} x' = x, \\ y' = 2h - y, \end{cases}$ $\begin{cases} z' = -z, \end{cases}$

Для симметрий относительно других осей координат (координатных плоскостей) и параллельных им прямых (соотв.,

плоскостей) формулы пишутся аналогичным образом. Приведём ещё формулу поворота пространства на угол φ вокруг оси Oz:

$$\begin{cases} x' = x \cos \varphi - y \sin \varphi, \\ y' = x \sin \varphi + y \cos \varphi, \\ z' = z. \end{cases}$$

Симметрия относительно прямой l (или осевая симметрия) — преобразование плоскости, при котором каждая точка M переходит в точку M', расположенную симметрично M относительно l, т.е. M и M' лежат по разные стороны от l на одинаковом расстоянии от l на одном перпендикуляре к l.

Центральная симметрия (симметрия относительно точки P): если $M \to M'$, то $\overline{PM} = -\overline{PM'}$. Симметрия относительно точки P — это поворот плоскости на угол 180° вокруг точки P.

Решим две задачи на преобразование координат.

Задача 1. Кривая задана уравнением F(x,y) = 0. Написать уравнение этой кривой в системе координат: (а) параллельно перенесённой на 2 единицы вправо и на 3 единицы вниз; (б) повёрнутой относительно начала координат на угол φ .

Решение. (а) Используя формулы (2), получим: x' = x - 2, y' = y + 3. Напишем обратные формулы: x = x' + 2, y = y' - 3. Подставим в уравнение кривой: F(x' + 2, y' - 3) = 0. Это и будет уравнением кривой в новой системе координат.

Задача 2. Написать уравнение параболы $y = x^2$ в системе координат, повёрнутой на 45° вокруг начала координат.

Решение. Взяв в формулах (3') $\varphi = 45^{\circ}$, получим: $x = \frac{x' - y'}{\sqrt{2}}$,

$$y = \frac{x' + y'}{\sqrt{2}}$$
. Подставим в уравнение $y = x^2$: $\frac{x' + y'}{\sqrt{2}} = \left(\frac{x' - y'}{\sqrt{2}}\right)^2$. Отсюда

получаем, что уравнение параболы $y = x^2$ в новой системе координат таково:

$$x'^{2} - 2x'y' + y'^{2} - \sqrt{2} x' - \sqrt{2} y' = 0.$$

Теперь решим несколько задач на преобразование плоскости или пространства.

Задача 3. Кривую $y = \sqrt{x+2}$ сдвинули на 4 единицы вправо, а затем на 4 единицы вверх. Написать уравнение новой кривой.

Решение. По формулам (5) получаем: x' = x + 3, y' = y + 4. Отсюда получаем: $y' - 4 = \sqrt{x' - 3 + 2}$, или $y' = \sqrt{x' - 1} + 4$. Таким образом, новая кривая имеет уравнение $y = \sqrt{x - 1} + 4$.

Задача 4. Найти образ точки (1; 2) при повороте плоскости на угол 30° вокруг начала координат.

Pешение. Пусть M' — образ точки M = (1; 2). Запишем формулы поворота (6) для угла φ = 30°:

$$\begin{cases} x' = \frac{\sqrt{3}}{2}x - \frac{1}{2}y, \\ y' = \frac{1}{2}x + \frac{\sqrt{3}}{2}y. \end{cases}$$

Подставим в эти формулы x = 1, y = 2. Получим: $x' = \frac{\sqrt{3}}{2} - 1$, $y' = \frac{1}{2} + \sqrt{3}$.

Следовательно,
$$M' = \left(\frac{\sqrt{3}}{2} - 1; \sqrt{3} + \frac{1}{2}\right)$$
.

Задача 5. Дана прямая l: Ax + By + C = 0. Составить уравнение прямой, симметричной прямой l: a) относительно начала координат; б) относительно оси Ox; в) относительно прямой $y = y_0$; г) относительно прямой y = x.

Решение. Симметрия относительно начала координат задаётся формулами x' = -x, y' = -y (формулы (8a)). Подставим в уравнение прямой -x' вместо x и -y' вместо y. Получим: -Ax' - By' + C = 0. Отсюда следует, что Ax' + By' - C = 0. Значит, уравнение симметричной прямой таково: Ax + By - C = 0. б) Применяя формулы (8б), получим: Ax - By + C = 0. в) Симметрия относительно прямой $y = y_0$ задаётся формулами x' = x, $y' = 2y_0 - y$. Поэтому следует подставить в уравнение прямой x' вместо x и $2y_0 - y'$ вместо y. Мы получим: $Ax' + B(2y_0 - y') + C = 0$. Окончательно получаем: $Ax - By + 2By_0 + C = 0$. г) Симметрия относительно прямой y = x определяется формулами x' = y, y' = x. Отсюда нетрудно получить уравнение симметричной прямой: Bx + Ay + C = 0.

Задача 6. Найти образ прямой 3x+2y-4=0: а) при повороте плоскости на угол 60° вокруг точки (1;-2); б) при симметрии плоскости относительно точки (-1;4); в) при симметрии плоскости относительно прямой x=2.

Решение. а) Применяя формулы, обратные формулам (7), получим: $x = (x'-1) \cdot \frac{1}{2} + (y'+2) \cdot \frac{\sqrt{3}}{2} + 1$, $y = (x'-1) \cdot \frac{\sqrt{3}}{2} - (y'+2) \cdot \frac{1}{2} - 2$. Подставим в уравнение прямой:

$$3\left((x'-1)\cdot\frac{1}{2}+(y'+2)\cdot\frac{\sqrt{3}}{2}+1\right)+2\left((x'-1)\cdot\frac{\sqrt{3}}{2}-(y'+2)\cdot\frac{1}{2}-2\right)-4=0.$$

Приводя подобные члены и убирая штрихи, получим окончательно:

$$\left(\frac{3}{2} + \sqrt{3}\right)x' + \left(\frac{3\sqrt{3}}{2} - 1\right)y' + 2\sqrt{3} - \frac{17}{2} = 0.$$

б) Используя формулы (8в), получим: x' = -2 - x, y' = 8 - y. Подставим в уравнение прямой: 3(-2-x')+2(8-y')-4=0, т.е. 3x'+2y'-6=0. Убирая штрихи, получим окончательно: 3x+2y-6=0. в) Заменим x на 4-x', y на y', получим: 3(4-x')+2y'-4=0. После приведения подобных членов и удаления штрихов получим: 3x-2y-8=0.

Задача 7. Написать формулы симметрии плоскости относительно прямой y = 2x.

Решение. Пусть M=(x,y) – произвольная точка плоскости, M'=(x',y') – её образ при симметрии относительно прямой y=2x. Тогда $\overline{MM'}=(x'-x,y'-y)$. Очевидно, $\vec{q}=(1,2)$ – направляющий вектор этой прямой. Точку (x',y') можно найти из следующих условий: 1) точка с координатами $\left(\frac{x+x'}{2},\frac{y+y'}{2}\right)$ (середина отрезка MM')

принадлежит прямой y = 2x; 2) $MM' \perp \vec{q}$. Запишем эти условия в виде системы уравнений:

$$\begin{cases} \frac{y+y'}{2} = 2 \cdot \frac{x+x'}{2}, \\ (x'-x) \cdot 1 + (y'-y) \cdot 2 = 0. \end{cases}$$

Решив эту систему, получим: $x' = -\frac{3}{5}x + \frac{4}{5}y$, $y' = \frac{4}{5}x + \frac{3}{5}y$. Это и есть формулы симметрии.

Задача 8. Дан центр квадрата: F = (3; -1) и уравнение одной его стороны: 2x - 5y + 4 = 0. Составить уравнения других сторон квадрата.

Решение. Две стороны (смежные) получаются поворотом плоскости вокруг точки F на 90° и -90° , а третья сторона (противоположная) — поворотом на 180° , или, что то же самое, — симметрией относительно точки F. Найдём сначала уравнения смежных сторон. Запишем формулы поворота:

$$\begin{cases} x'-3 = (x-3)\cos 90^{\circ} \pm (y+1)\sin 90^{\circ}, \\ y'+1 = \mp (x-3)\sin 90^{\circ} + (y+1)\cos 90^{\circ}. \end{cases}$$

Отсюда получаем: $x' = 3 \pm (y+1)$, $y' = -1 \mp (x-3)$, т.е.

$$\begin{cases} x' = y+4, \\ y' = -x+2 \end{cases}$$
 или
$$\begin{cases} x' = -y+2, \\ y' = x-4. \end{cases}$$

Подставим оба варианта в уравнение прямой: а) 2(2-y')-5(x'-4)+4=0, б) 2(y'+4)-5(2-x')+4=0. Упростив и удалив штрихи, получим: а) 5x+2y-28=0, б) 5x+2y+2=0.

Найдём теперь уравнение противоположной стороны. Запишем формулы симметрии плоскости относительно точки F: x' = 6 - x, y' = -2 - y. Подставим эти формулы в уравнение прямой: 2(6-x)-5(-2-y)+4=0. Упростив и удалив штрихи, получим: 2x-5y-26=0.

Задача 9. Найти образ точки (1; 2; 3) при повороте пространства на угол 45° вокруг оси ординат.

Peшение. Формулы поворота пространства вокруг оси Oy на плоскости Oxz совпадают с формулами поворота этой плоскости вокруг начала координат, т.е. мы имеем:

$$\begin{cases} x' = x \cos \varphi - z \sin \varphi, \\ z' = x \sin \varphi + z \cos \varphi. \end{cases}$$

Добавив уравнение y' = y и подставив $\varphi = 45^{\circ}$, получим:

$$\begin{cases} x' = \frac{x - z}{\sqrt{2}}, \\ y' = y, \\ z' = \frac{x + z}{\sqrt{2}}. \end{cases}$$

Взяв x=1, y=2, z=3, вычислим x',y',z': $x'=-\sqrt{2}, y'=2, z'=2\sqrt{2}$. Следовательно, точка $M'=\left(-\sqrt{2};2;2\sqrt{2}\right)$ — образ точки M=(1;2;3) при повороте.

Задача 10. Поверхность задана уравнением xyz = 1. Составить уравнение поверхности, симметричной данной относительно плоскости z = 3.

Решение. Симметрия относительно плоскости z = 3 задаётся формулами x' = x, y' = y, z' = 6 - z. Подставим в уравнение поверхности: x'y'(6-z')=1. Убрав штрихи, получим искомое уравнение: 6xy - xyz = 1.

Задачи для самостоятельного решения

- 1. Точка M имеет координаты (2;3) в одной системе координат и (-3;5) в другой, получающейся из первоначальной параллельным переносом. Написать формулы, выражающие новые координаты произвольной точки через старые. Ответ: $x' = x 5, \ y' = y + 2.$
- 2. Система координат повернулась на угол $\varphi = \arctan \frac{3}{4}$ вокруг начала координат. Написать формулы поворота и уравнение прямой

- y = 2x + 1 в новой системе координат. Ответ: x' = 0.8x + 0.6y, y' = -0.6y + 0.8y; x' 2y' + 1 = 0.
- 3. Плоскость повернулась на 45° вокруг точки (1; –5). Написать формулы поворота. Ответ: $x' = \frac{x-y}{\sqrt{2}} 3\sqrt{2} + 1$, $y' = \frac{x+y}{\sqrt{2}} + 2\sqrt{2} 5$.
- 4. Написать формулы параллельного переноса пространства, при котором точка (1; 3; -2) переходит в точку (2; 1; 5). Ответ: x' = x + 1, y' = y 2, z' = z + 7.
- 5. Написать уравнение кривой, полученной из кривой $y = \sqrt{2x+1}$: а) параллельным переносом на 2 вправо и на 3 вниз; б) симметрией относительно точки (3;1); в) симметрией относительно прямой x = 3; г) симметрией относительно прямой y = 2. Ответ: а) $y = \sqrt{2x-3} 3$; б) $y = 2 \sqrt{13-2x}$; в) $y = \sqrt{13-2x}$; г) $y = 4 \sqrt{2x+1}$.
- 6. Поверхность задана уравнением F(x, y, z) = 0. Написать уравнение поверхности, полученной из данной: а) симметрией относительно оси Ox; б)симметрией относительно плоскости Oxz; в) симметрией относительно точки (a;b;c). Ответ: а) F(x,-y,-z) = 0; б) F(x,-y,z) = 0; в) F(2a-x,2b-y,2c-z) = 0.
- 7. Преобразование плоскости задано формулами x'=3-y, y'=x+2. Доказать, что это поворот; найти центр и угол поворота. Ответ: центр: (0,5;2,5), угол: 90° .
- 8. Дан центр правильного треугольника: F = (-1; 3) и уравнение одной его стороны: 3x 2y + 1 = 0. Составить уравнения двух других сторон. Ответ: $(3 \pm 2\sqrt{3})x + (-2 \pm 3\sqrt{3})y \mp 7\sqrt{3} + 25 = 0$.
- 9. Написать формулы симметрии плоскости относительно прямой 8x-12y=13. Ответ: $x'=\frac{5}{13}x+\frac{12}{13}y+1$, $y'=\frac{12}{13}x-\frac{5}{13}y-\frac{3}{2}$.
- 10. Какое преобразование плоскости получится, если сначала сделать поворот на 90° вокруг начала координат, а затем на –90° вокруг точки (1; 2)? Ответ: параллельный перенос на вектор (–1; 3).