Álgebra Lineal para Computación: MA-2405 Resumen de estructuras

- 1. Sea \mathcal{G} un conjunto no vacío y * es una operación interna definida \mathcal{G} , se dice que $(\mathcal{G}, *)$ es un:
 - semigrupo si * es asociativa.
 - monoide si es un semigrupo con elemento neutro.
 - **grupo** si es un monoide que cumple la propiedad de los inversos, es decir, $(\mathcal{G}, *)$ es un grupo si * es cerrada, asociativa, posee elemento neutro y cada elemento tiene inverso.
 - grupo abeliano o grupo conmutativo si es un grupo y se cumple la conmutatividad.
- 2. Si $(\mathcal{G},*)$ es un grupo y $\mathcal{H} \subseteq \mathcal{G}$ con $\mathcal{H} \neq \emptyset$, \mathcal{H} se llamará **subgrupo** de \mathcal{G} , y se denota por $\mathcal{H} \leq \mathcal{G}$ si y solo si $(\mathcal{H},*)$ es un grupo. Es decir, un subgrupo de un grupo es un subconjunto no vacío del grupo que sea grupo con la operación restringida a sus elementos.
- 3. Si + y · son dos l.c.i sobre \mathcal{A} , se dice que $(\mathcal{A}, +, \cdot)$ es un **anillo** si se cumple:
 - (A, +) es grupo abeliano.
 - (\mathcal{A}, \cdot) es asociativa.
 - La distributividad de · respecto de +, es decir, $\forall x, y, z \in \mathcal{A}$ se cumple x(y+z) = xy + xz y además (y+z)x = yx + zx.
- 4. Se dice que el anillo $(A, +, \cdot)$ es:
 - Conmutativo si (A, \cdot) es conmutativo.
 - Unitario si (A, \cdot) tiene neutro.
 - Un dominio entero si y solo si es un anillo conmutativo sin divisores de cero. (Se dice que $a \in \mathcal{A}$, con $a \neq 0$ es divisor de cero si existe $b \in \mathcal{A}$, con $b \neq 0$, tal que $a \cdot b = 0$.)
- 5. Se dice que $(\mathcal{C}, +, \cdot)$ es un **campo** si se cumple:
 - (C, +) es grupo abeliano.
 - (\mathcal{C}^*, \cdot) es grupo abeliano.
 - La distributividad de · respecto de +, es decir, $x(y+z) = xy + xz, \forall x, y, z \in \mathcal{C}$
- 6. Se dice que $(\mathcal{V}, +, \cdot \mathbb{R})$ es un **espacio vectorial** si se cumple:
 - $(\mathcal{V}, +)$ es grupo abeliano.
 - $\forall \alpha, \beta \in \mathbb{R}, \forall v \in \mathcal{V} \text{ se cumple: } \alpha(\beta v) = (\alpha \beta)v \text{ y } 1v = v.$
 - La distributividad de + respecto a \mathbb{R} , es decir, $(\alpha + \beta)v = \alpha v + \beta v, \forall \alpha, \beta \in \mathbb{R}, \forall v \in \mathcal{V}$.
 - La distributividad de $\cdot \mathbb{R}$ respecto a +, es decir, $\alpha(v+w) = \alpha v + \alpha w, \forall \alpha \in \mathbb{R}, \forall v, w \in \mathcal{V}$.
- 7. Si $(\mathcal{V}, *, \cdot \mathbb{R})$ es un espacio vectorial y $\mathcal{W} \subseteq \mathcal{V}$ con $\mathcal{W} \neq \emptyset$, \mathcal{W} se llamará **subespacio vectorial** de \mathcal{V} , y se denota por $\mathcal{W} \preceq \mathcal{V}$ si y solo si $(\mathcal{W}, *, \cdot \mathbb{R})$ es un espacio vectorial. Es decir, un subespacio vectorial de un espacio vectorial es un subconjunto no vacío del espacio vectorial que sea espacio vectorial con las operaciones restringidas a sus elementos.