# Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Технологии машинного обучения»

Отчет по Рубежному контролю №1

Вариант №15

Выполнил:

студент группы ИУ5-63 Миронова Александра

Подпись и дата:

09.04.22

Проверил:

Юрий Евгеньевич Гапанюк

Подпись и дата:

## Задача №2.

Для заданного набора данных провести обработку пропусков в данных для одного категориального и одного количественного признака. Указать использованные способы обработки пропусков в данных для категориальных и количественных признаков? Указать, какие признаки лучше использовать для дальнейшего построения моделей машинного обучения и почему?

## Дополнительные требования по группам:

Для студентов групы ИУ5-63Б - для произвольной колонки данных построить график "Ящик с усами (boxplot)".

#### RK1.md

# Загрузка и первичный анализ данных

Для выполнения задания был выдан датасет с данными о ресторанах города Сан-Франциско

https://www.kaggle.com/datasets/san-francisco/sf-restaurant-scores-lives-standard

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
data = pd.read_csv('restaurant-scores-lives-standard.csv', sep=",")
data.shape
data.dtypes
business_id
                                int64
business name
                               object
business_address
                               object
business city
                               object
business state
                               object
business_postal_code
                               object
business_latitude
                              float64
business longitude
                              float64
business_location
                              object
business phone number
                              float64
inspection id
                               object
\verb"inspection_date"
                               object
inspection score
                              float64
inspection_type
                               object
violation_id
                               object
violation_description
                               object
                               object
risk_category
Neighborhoods (old)
                              float64
Police Districts
                              float64
Supervisor Districts
                              float64
Fire Prevention Districts
                              float64
Zip Codes
                              float64
Analysis Neighborhoods
                              float64
dtype: object
```

localhost:6419 1/10

```
data.head()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

   .dataframe tbody tr th {
      vertical-align: top;
   }

   .dataframe thead th {
      text-align: right;
   }
```

## </style>

|   | business_id | business_name            | business_address            | business_city    | business_s |  |
|---|-------------|--------------------------|-----------------------------|------------------|------------|--|
| 0 | 101192      | Cochinita #2             | 2 Marina Blvd<br>Fort Mason | San<br>Francisco | CA         |  |
| 1 | 97975       | BREADBELLY               | 1408 Clement St             | San<br>Francisco | CA         |  |
| 2 | 92982       | Great Gold<br>Restaurant | 3161 24th St.               | San<br>Francisco | CA         |  |
| 3 | 101389      | HOMAGE                   | 214 CALIFORNIA<br>ST        | San<br>Francisco | CA         |  |
| 4 | 85986       | Pronto Pizza             | 798 Eddy St                 | San<br>Francisco | CA         |  |
| 4 | +           |                          |                             |                  |            |  |

5 rows × 23 columns

```
data.shape
```

(53973, 23)

Проверим есть ли пропущенные значения

```
data.isnull().sum()
```

localhost:6419 2/10

| business_id                     | 0     |
|---------------------------------|-------|
| business_name                   | 0     |
| business_address                | 0     |
| business_city                   | 0     |
| business_state                  | 0     |
| <pre>business_postal_code</pre> | 1018  |
| business_latitude               | 19556 |
| business_longitude              | 19556 |
| business_location               | 19556 |
| business_phone_number           | 36938 |
| <pre>inspection_id</pre>        | 0     |
| inspection_date                 | 0     |
| inspection_score                | 13610 |
| inspection_type                 | 0     |
| violation_id                    | 12870 |
| violation_description           | 12870 |
| risk_category                   | 12870 |
| Neighborhoods (old)             | 19594 |
| Police Districts                | 19594 |
| Supervisor Districts            | 19594 |
| Fire Prevention Districts       | 19646 |
| Zip Codes                       | 19576 |
| Analysis Neighborhoods          | 19594 |
| dtype: int64                    |       |

# Обработка пропусков в данных

#### 1. Обработка категориальных значений

В качестве категориальных данных был выбран столбец risk\_category. Поскольку данный признак позволяет оценить предпринимателям уровень безопасности сострудничества с организацией, то имеет смысл попробовать заполнить пропуски с помощью встроенных средства импьютации библиотеки scikit-learn, чем просто удалить данный столбец из датасета. Тем более, что число пропущенных данных составляет всего 24% от общего числа строк.

```
risk_cat_data = data[['risk_category']]
risk_cat_data

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
   .dataframe tbody tr th {
      vertical-align: top;
   }
   .dataframe thead th {
```

localhost:6419 3/10

```
text-align: right;
}
```

### </style>

| \/3tyle> | risk_category |  |
|----------|---------------|--|
| 0        | NaN           |  |
| 1        | Moderate Risk |  |
| 2        | NaN           |  |
| 3 NaN    |               |  |
| 4        | High Risk     |  |
| •••      |               |  |
| 53968    | Moderate Risk |  |
| 53969    | NaN           |  |
| 53970    | Moderate Risk |  |
| 53971    | Moderate Risk |  |
| 53972    | Low Risk      |  |

53973 rows × 1 columns

```
risk_cat_data['risk_category'].unique()
array([nan, 'Moderate Risk', 'High Risk', 'Low Risk'], dtype=object)
```

В данном случае, считаю, что наиболее грамотно было бы заполнить пропущенные значения константами "Moderate Risk". Так пользователи обратят внимание на возможность риска.

```
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
# Импьютация константой
imputer1 = SimpleImputer(missing_values=np.nan, strategy='constant', fill_value='Modefull_risk_data = imputer1.fit_transform(risk_cat_data)
full_risk_data
```

localhost:6419 4/10

```
array([['Moderate Risk'],
         ['Moderate Risk'],
         ['Moderate Risk'],
         ['Moderate Risk'],
         ['Moderate Risk'],
         ['Low Risk']], dtype=object)
  full_risk_data.shape
  (53973, 1)
Убедимся, что пустые значения отсутствуют
  np.unique(full_risk_data)
  array(['High Risk', 'Low Risk', 'Moderate Risk'], dtype=object)
Теперь заменим в data столбец risk_category новым стольбцом без пропусков. Для
этого удалим старый столбец и вставим новый.
  data.drop(['risk_category'], axis = 1)
  data.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
```

## </style>

}

}

.dataframe tbody tr th {
 vertical-align: top;

.dataframe thead th {
 text-align: right;

|   | business_id | business_name | business_address            | business_city    | business_s <sup>-</sup> |
|---|-------------|---------------|-----------------------------|------------------|-------------------------|
| 0 | 101192      | Cochinita #2  | 2 Marina Blvd<br>Fort Mason | San<br>Francisco | CA                      |

localhost:6419 5/10

|   | business_id | business_name            | business_address     | business_city    | business_s <sup>-</sup> |  |
|---|-------------|--------------------------|----------------------|------------------|-------------------------|--|
| 1 | 97975       | BREADBELLY               | 1408 Clement St      | San<br>Francisco | CA                      |  |
| 2 | 92982       | Great Gold<br>Restaurant | 3161 24th St.        | San<br>Francisco | CA                      |  |
| 3 | 101389      | HOMAGE                   | 214 CALIFORNIA<br>ST | San<br>Francisco | CA                      |  |
| 4 | 85986       | Pronto Pizza             | 798 Eddy St          | San<br>Francisco | CA                      |  |
| 4 | +           |                          |                      |                  |                         |  |

5 rows × 23 columns

```
data['risk_category'] = full_risk_data.reshape(-1)
data.head()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

## </style>

|   | business_id | business_name            | business_address            | business_city    | business_s |
|---|-------------|--------------------------|-----------------------------|------------------|------------|
| 0 | 101192      | Cochinita #2             | 2 Marina Blvd<br>Fort Mason | San<br>Francisco | CA         |
| 1 | 97975       | BREADBELLY               | 1408 Clement St             | San<br>Francisco | CA         |
| 2 | 92982       | Great Gold<br>Restaurant | 3161 24th St.               | San<br>Francisco | CA         |

localhost:6419 6/10

|   | business_id | business_name | business_address     | business_city    | business_s <sup>,</sup> |
|---|-------------|---------------|----------------------|------------------|-------------------------|
| 3 | 101389      | HOMAGE        | 214 CALIFORNIA<br>ST | San<br>Francisco | CA                      |
| 4 | 85986       | Pronto Pizza  | 798 Eddy St          | San<br>Francisco | CA                      |
| 4 | <b>→</b>    |               |                      |                  |                         |

#### 5 rows × 23 columns

#### 2. Обработка количественных значений

В качестве количественных данных был выбран столбец inspection\_score. Этот столбец не стоит удалять из датасета, поскольку он информирует пользователей о том, на сколько соответствует ресторан требованиям проведенной проверки. Пропущенные данные в этом столбце буду заполнять значениями медианы, тк неизвестное оценочное числовое значение можно взять в середине диапазона известных значений.

```
inspection_score_data = data[['inspection_score']]
inspection_score_data

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

#### </style>

| <u> </u> |                  |
|----------|------------------|
|          | inspection_score |
| 0        | NaN              |
| 1        | 96.0             |
| 2        | NaN              |
| 3        | NaN              |
| 4        | NaN              |
|          |                  |

localhost:6419 7/10

|       | inspection_score |  |  |
|-------|------------------|--|--|
| •••   |                  |  |  |
| 53968 | 80.0             |  |  |
| 53969 | NaN              |  |  |
| 53970 | 92.0             |  |  |
| 53971 | 76.0             |  |  |
| 53972 | 80.0             |  |  |

#### 53973 rows × 1 columns

```
np.unique(inspection_score_data)
```

```
array([ 45., 46., 48., 51., 54., 55., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 96., 98., 100., nan])
```

```
# Импьютация медианой
```

```
imputer2 = SimpleImputer(missing_values=np.nan, strategy='median')
full_inspection_score = imputer2.fit_transform(inspection_score_data)
full_inspection_score
```

```
array([[87.],
[96.],
[87.],
...,
[92.],
[76.],
[80.]])
```

Убедимся, что пустые значения отсутствуют

```
np.unique(full_inspection_score)
```

```
array([ 45., 46., 48., 51., 54., 55., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83.,
```

localhost:6419 8/10

```
84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 96., 98., 100.])

full_inspection_score.shape

(53973, 1)
```

Теперь заменим в data столбец inspection\_score новым стольбцом без пропусков. Для этого удалим старый столбец и вставим новый.

```
data.drop(['inspection_score'], axis = 1)
data.head()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

## </style>

| -/ 3 L y |             |                          |                             |                  |            |  |
|----------|-------------|--------------------------|-----------------------------|------------------|------------|--|
|          | business_id | business_name            | business_address            | business_city    | business_s |  |
| 0        | 101192      | Cochinita #2             | 2 Marina Blvd<br>Fort Mason | San<br>Francisco | CA         |  |
| 1        | 97975       | BREADBELLY               | 1408 Clement St             | San<br>Francisco | CA         |  |
| 2        | 92982       | Great Gold<br>Restaurant | 3161 24th St.               | San<br>Francisco | CA         |  |
| 3        | 101389      | HOMAGE                   | 214 CALIFORNIA<br>ST        | San<br>Francisco | CA         |  |
| 4        | 85986       | Pronto Pizza             | 798 Eddy St                 | San<br>Francisco | CA         |  |
| 4        | <b>→</b>    |                          |                             |                  |            |  |

localhost:6419 9/10

```
5 rows × 23 columns

data['inspection_score'] = full_inspection_score.reshape(-1)
data['inspection_score'].head()

0 87.0
1 96.0
2 87.0
3 87.0
4 87.0
Name: inspection_score, dtype: float64
```

## Дополнительное задание

Построю график "Ящик с усами (boxplot)" для оценок проверки по категориям риска.

```
sns.boxplot( x=data["inspection_score"], y=data["risk_category"])
```

<AxesSubplot:xlabel='inspection\_score', ylabel='risk\_category'>



localhost:6419 10/10