

Kaiseralle 23, 76133 Karlsruhe

Seite:

Projekt: Beispiele

Musterpositionen

Modell: Beispiel Modalanalyse

Datum: 2020-03-03

STATISCHE BERECHNUNG

BAUVORHABEN

Beispielgebäude

BAUHERR

ERSTELLER

Arne Rick

Kaiseralle 23, 76133 Karlsruhe

Seite: 2/

MODELL

 Projekt:
 Beispiele
 Modell:
 Beispiel Modalanalyse
 Datum:
 2020-03-03

 Musterpositionen

∮ Inhalt

	Modell-Basisangaben	2				
1	Modell					
1.1	Knoten	2				
1.7	Stäbe	2				
1.7.4	Stäbe - Steifigkeit	2				
1.8	Knotenlager	3				
2	Lastfälle und Kombinationen					
2.1	Lastfälle	3				
2.1.1	Lastfälle - Berechnungsparameter	3				
2.1.4	- Lastfälle - Parameter für CQC-Regel					
3	Lasten					
	LF1 - Massen - 3.1 Knotenlasten -	4				
	Komponentenweise - Koordinatensystem					
	LF2 - DLF 1, Eigenform 1, Richtung - X - 3.1	4				
	Knotenlasten - Komponentenweise					
4	Koordinatensystem					
	LF4 - DLF 2, Eigenform 1, Richtung - X - 3.1	4				
	Knotenlasten - Komponentenweise					
CERTIFICATION						

	Koordinatensystem	
	DYNAM Pro	
1.1	Globale Daten	5
1.2.1	Massenfälle - Allgemein	5
1.4.1	Eigenschwingungsfall - Allgemein	5
1.4.2	Eigenschwingungsfall - Berechnungsparameter	5
1.5.1	Antwortspektren - Allgemein	5
1.5.4	Antwortspektren - Benutzerdefiniert - Tabelle	5
1.5.4.1	Antwortspektren - Benutzerdefiniert - Graph	6
1.5.4.2	Antwortspektren - Benutzerdefiniert - Graph	6
1.8.1	Dynamische Lastfälle - Allgemein	6
1.8.5.1	Dynamische Lastfälle - Verfahren mit	6
	statischen Ersatzlasten	
1.8.5.2	Dynamische Lastfälle - Verfahren mit	7
	statischen Ersatzlasten - Zu generierende	
	Eigenformen	
5.1	Eigenfrequenzen	7
5.7	Effektive Modalmassenfaktoren	7

■ Modell-Basisangaben

Wiodoli Badibai	gabon		
Allgemein	Modellname	:	Beispiel Modalanalyse
All A	Projektname	:	Beispiele
	Projektbezeichnung	:	Musterpositionen
	Modelltyp	:	2D-XZ (ux/uz/φy)
	Positive Richtung der globalen Z-Achse	:	Nach unten
	Klassifizierung der Lastfälle und	:	Nach Norm: EN 1990
	Kombinationen		Nationaler Anhang: DIN - Deutschland
	Kombinationen automatisch erzeugen	:	Lastkombinationen
1			
Optionen	CQC-Regel anwenden		
	CAD/BIM-Modell ermöglichen		
	Erdbeschleunigung		
	g	:	10.00 m/s ²

■ 1.1 Knoten

i tai toolot	J
X	Z P (X,Y,Z)
* z	

			APRESIA.		
Knoten	Bezugs-	Koordinaten-	Knotenko	ordinaten	
Nr.	Knoten	System	X [m]	Z [m]	Kommentar
1	-	Kartesisch	0.000	0.000	
2	-	Kartesisch	0.000	-3.300	
3	-	Kartesisch	0.000	-6.600	
4	-	Kartesisch	0.000	-9.900	
5	-	Kartesisch	0.000	-13.200	
6	-	Kartesisch	0.000	-16.400	

■ 1.7 Stäbe

Stab		Kno	oten	Drehu	ing	Quers	chnitt	Geler	ık Nr.	Exz.	Teilung	Länge	
Nr.	Stabtyp	Anfang	Ende	Тур	β[°]	Anfang	Ende	Anfang _i	Ende	Nr.	Nr.	L [m]	
1	Steifigkeiten	1	2	Winkel	0.00	0	0	- 1	-	-	- 1	3.300	Z
2	Steifigkeiten	2	3	Winkel	0.00	0	0	-	-	-	-	3.300	Z
3	Steifigkeiten	4	3	Winkel	0.00	0	0	-	-	-	-	3.300	Z
4	Steifigkeiten	4	5	Winkel	0.00	0	0	-	-	-	-	3.300	Z
	Stoifigkoiton		6	Minkel	0.00	0	0					2 200	7

	Clase Clonighon	The state of the s	All h			
Stab						
Nr.		Parameter				
1	Torsions- und Biegesteifigkeiten:		Torsionsteifigkeit	Gl _t =	0.000	kNm ²
		4	Biegesteifigkeit	El _v =	39638104.0	kNm ²
		A.		,	00	
			Biegesteifigkeit	$EI_z =$	0.000	kNm ²
	Axiale Steifigkeit und Schubsteifigkeit:		Axiale Stefigkeit	EA =	0.000	kN
		4	Schubsteifigkeit	$GA_y =$	0.000	kN
			Schubsteifigkeit	GA _z =	0.000	kN
	Parameter für Eigengewicht:		Spezifisches Gewicht	γ =	0.00	kN/m ³
			Querschnittsfläche	A =	0.00	cm ²
	Wärmedehnzahl		Wärmedehnung	α =	0.000	1/°C
			Breiten	b =	0.000	mm
			Höhe	h =	0.000	mm
2	Torsions- und Biegesteifigkeiten:		Torsionsteifigkeit	Gl _t =	0.000	kNm ²
			Biegesteifigkeit	El _y =	39638104.0	kNm ²
			B: 1:51		00	
	A		Biegesteifigkeit	El _z =	0.000	kNm ²
	Axiale Steifigkeit und Schubsteifigkeit:		Axiale Stefigkeit	EA =	0.000	kN
			Schubsteifigkeit	GA _y =	0.000	kN
	5		Schubsteifigkeit	GA _z =	0.000	kN
	Parameter für Eigengewicht:		Spezifisches Gewicht	γ =	0.00	≽kN/m³
			Querschnittsfläche	A =	0.00	cm ²
	Wärmedehnzahl		Wärmedehnung	α = b =	0.000	1/°C
			Breiten Höhe	~ (0100)	0.000	mm
3	Torsions- und Biegesteifigkeiten:		Torsionsteifigkeit	h = Gl _t =	0.000	mm kNm²
3	101310113- unu Diegesteiligkeiten.		Biegesteifigkeit	El _v =	39638104.00	kNm ²
			Diegestelligkeit	∟l _y −	39030104.00	KINITI

Kaiseralle 23, 76133 Karlsruhe

Seite: Blatt:

 Projekt:
 Beispiele
 Modell:
 Beispiel Modalanalyse
 Datum:
 2020-03-03

 Musterpositionen

■ 1.7.4 Stäbe - Steifigkeit

1.7.4	Stabe - Stelligkeit				
Stab					
Nr.		Parameter			
				00	
		Biegesteifigkeit	$El_z =$	0.000	kNm ²
1	Axiale Steifigkeit und Schubsteifigkeit:	Axiale Stefigkeit	EA =	0.000	kN
		Schubsteifigkeit	$GA_y =$	0.000	kN
		Schubsteifigkeit	$GA_z =$	0.000	kN
	Parameter für Eigengewicht:	Spezifisches Gewicht	γ =	0.00	kN/m ³
		Querschnittsfläche	A =	0.00	cm ²
	Wärmedehnzahl	Wärmedehnung	α =	0.000	1/°C
		Breiten	b =	0.000	mm
		Höhe	h =	0.000	mm
4	Torsions- und Biegesteifigkeiten:	Torsionsteifigkeit	Gl _t =	0.000	kNm ²
A		Biegesteifigkeit	El _y =	39638104.0 00	kNm ²
4		Biegesteifigkeit	El ₂ =	0.000	kNm ²
	Axiale Steifigkeit und Schubsteifigkeit:	Axiale Stefigkeit	EA =	0.000	kN
		Schubsteifigkeit	GA _v =	0.000	kN
-		Schubsteifigkeit	GA, =	0.000	kN
	Parameter für Eigengewicht:	Spezifisches Gewicht	γ =	0.00	kN/m ³
		Querschnittsfläche	À =	0.00	cm ²
W	Wärmedehnzahl	Wärmedehnung	α =	0.000	1/°C
A		Breiten	b =	0.000	mm
		Höhe	h =	0.000	mm
5	Torsions- und Biegesteifigkeiten:	Torsionsteifigkeit	$Gl_t =$	0.000	kNm ²
		Biegesteifigkeit	$El_y =$	39638104.0	kNm ²
				00	
	L W	Biegesteifigkeit	El _z =	0.000	kNm ²
	Axiale Steifigkeit und Schubsteifigkeit:	Axiale Stefigkeit	EA =	0.000	kN
		Schubsteifigkeit	GA _y =	0.000	kN
		Schubsteifigkeit	$GA_z =$	0.000	kN
	Parameter für Eigengewicht:	Spezifisches Gewicht	γ =	0.00	kN/m³
		Querschnittsfläche	A =	0.00	cm ²
	Wärmedehnzahl	Wärmedehnung	α =	0.000	1/°C
		Breiten	b =	0.000	mm
		Höhe	h =	0.000	mm

ı	• 1.8 K	notenlager						
	Lager		4	Lagerdrehung [Lagerung	bzw. Feder [kN/m]	[kNm/rad]	
	Nr.	Knoten Nr.	4	um Y	u _{X'}	u _{Z'}	φΥ'	Kommentar
	1	1		0.00		×	×	
	2	2-6	-	0.00	VISIA.	× ×		

■ 2.1 Lastfälle

Last-	LF-Bezeichnung	EN 1990 DIN	Eigengewicht - Faktor in Richtung			ung
fall		Einwirkungskategorie	Aktiv	, X	Y	Z
LF1	Massen	Ständig				
LF2	DLF 1, Eigenform 1, Richtung - X	Erdbeben				
LF3	DLF 1, Eigenform 2, Richtung - X	Erdbeben				
LF4	DLF 2, Eigenform 1, Richtung - X	Erdbeben				
LF5	DLF 2, Eigenform 2, Richtung - X	Erdbeben				

	Edotiano Doroomiange	paramotor						
Last-	LF-Bezeichnung							
fall		Berechn	ungsparameter					
LF1	Massen	Berechnungstheorie : 0	Theorie I. Ordnung (linear)					
		Steifigkeitsbeiwerte aktivieren für: :	Querschnitte (Faktor für J, I _y , I _z , A, A _y , A _z)					
		:	Stäbe (Faktor für GJ, El _y , El _z , EA, GA _y , GA _z)					
LF2	DLF 1, Eigenform 1, Richtung -	Berechnungstheorie :	Theorie I. Ordnung (linear)					
LF3	DLF 1, Eigenform 2, Richtung - X	Berechnungstheorie	Theorie I. Ordnung (linear)					
LF4	DLF 2, Eigenform 1, Richtung -	Berechnungstheorie :	Theorie I. Ordnung (linear)					
LF5	DLF 2, Eigenform 2, Richtung -	Berechnungstheorie :	Theorie I. Ordnung (linear)					

■ 2.1.4 - Lastfälle - Parameter für CQC-Regel

Last-	LF-Bezeichnung	AP	A	
fall		Kreisfrequenz [rad/s]	Lehrsche Dämpfur	ng [-]
LF2	DLF 1, Eigenform 1, Richtung - X	5.62		0.049
LF3	DLF 1, Eigenform 2, Richtung - X	35.72		0.051
LF4	DLF 2, Eigenform 1, Richtung - X	5.62		0.049
LF5	DLF 2, Eigenform 2, Richtung - X	35.72		0.051

Massen

Arne Rick

Kaiseralle 23, 76133 Karlsruhe

Seite: Blatt: **LASTEN**

Projekt: Beispiele Modell: Beispiel Modalanalyse Datum: 2020-03-03 Musterpositionen

3.1 Knotenlasten - Komponentenweise

- Koordinatensystem

LF1: Massen

à.		An Knoten	Koordinaten-		Kraft [kN]		
	Nr.	Nr.	system	P _X / P _U	P_Z/P_W	M _Y / M _V [kNm]	
	1 1	2	0 Globales XYZ	0.000	5052.000	0.000	
	2	6	0 Globales XYZ	0.000	4660.000	0.000	
46	3	5	0 Globales XYZ	0.000	5052.000	0.000	
	4	4	0 Globales XYZ	0.000	5052.000	0.000	
100	5	3	0 Globales XYZ	0.000	5052.000	0.000	

3.1 Knotenlasten

- Komponentenweise

LF2DLF 1, Eigenform 1, Richtung - X

LF2: DLF 1.	Eigenform 1,	Richtung - X
	Ligoinoini i,	r tionitaring 7

Koo	rdinatensys	stem		LF2: D	LF 1, Eiger	nform 1, R	ichtung - X
		An Knoten		Koordinaten-	Kraft [kN]		Moment
Nr.		Nr.		system	P _X /P _U	P_z/P_W	M _Y / M _V [kNm]
1		1	0	Globales XYZ	0.000	0.000	0.000
2		2	0	Globales XYZ	272.157	0.000	0.000
3		3	0	Globales XYZ	986.816	0.000	0.000
4	AD A.	4	0	Globales XYZ	1998.160	0.000	0.000
5		5	0	Globales XYZ	3175.360	0.000	0.000
6	d	6	0	Globales XYZ	4039.210	0.000	0.000

■ 3.1 Knotenlasten

- Komponentenweise

Koordinatensystem

LF4: DLF 2, Eigenform 1, Richtung - X

	An Knoten	Koordinaten-	Kran	[KN]	Moment
Nr.	Nr.	system	P _X / P _U	P_Z/P_W	M _Y / M _V [kNm]
1		0 Globales XYZ	0.000	0.000	0.000
2	2	0 Globales XYZ	202.610	0.000	0.000
3	3	0 Globales XYZ	734.646	0.000	0.000
4	4	0 Globales XYZ	1487.560	0.000	0.000
5	5	0 Globales XYZ	2363.930	0.000	0.000
6	6	0 Globales XYZ	3007.040	0.000	0.000

Kaiseralle 23, 76133 Karlsruhe

Seite: 5/7 Blatt:

DYNAM Pro

Projekt: Beispiele Musterpositionen

Modell: Beispiel Modalanalyse

Datum: 2020-03-03

1.1 Globale Daten

Einstellung

Modalanalyse (Eigenformen)
Massenkombinationen
Erzwungene Schwingungen
Antwortspektren Akzelerogramme
 Zeitdiagramme
 Verfahren mit statischen Ersatzlasten

Fallbeschleunigung

: 10.00 m/s²

1.2.1 Massenfälle - Allgemein

No.	Massenfall-			
	bezeichnung		Parameters	
MF1	Massen	Massenfalltyp	: Ständig	
		Massen	: Aus Kraftkomponenten von Lastfall LF1-Massen	

1.4.1 Eigenschwingungsfall - Allgemein

ESF	Eigenschwingungsfall-	
Fall	bezeichnung	Parameter
ESF1	ESF1	Anzahl der kleinsten Eigenwerte : 2 Einwirkende Massen : MF1 - Massen
		Wirkung der Massen in : X-Richtung

1.4.2 Eigenschwingungsfall - Berechnungsparameter

ESF		Eigenschwingungsfall-			
Fall		bezeichnung		Berechnungs	sparameter
ESF1	ESF1		Typ der Massenmatrix	:	Diagonalmatrix
			Eigenformen der	:	$Max \{u_j\} = 1$
			Skalierungsschwingungen		
			Lösungsverfahren für Eigenwerte	:	Unterraum-Iteration

AS		Antwortspektren-		
Fall		bezeichnung	Definitionsart	Kommentar
RS1	Transmissibilität		Benutzerdefiniert	
RS2	Vereinfacht		Benutzerdefiniert	

1.5.4 Antwortspektren - Benutzerdefiniert - Tabelle

Nr.	bezeichnung	Nr.	T[s]	a [m/s²]	
RS1	Transmissibilität	1	0.010	5.607	
		2	0.200	5.635	
		3	0.400	5.713	
		4	0.600	5.830 5.973	
		5 6 7	0.800	5.973	
		6	1.000	6.124	
		7	1.200	6.256	
		8	1.400	6.343	
		9	1.600	6.358	
		10	1.800	6.282 6.108 5.847 5.519 5.148	
		11	2.000 2.200	6.108	
		12	2.200	5.847	
		13	2.400	5.519	
		14	2.600	5.148	
		15	2.800	4.759	
		16	3.000	4.372	
		17	3.200	4.000 3.653 3.333	
		18 19	3.400 3.600	3.003	**
		20	3.800	3.043	
		21	4.000	2.781	
RS2	Vereinfacht	1	0.010	5 124	
	1	2	0.200	5.083 5.010 4.945 4.839	
		2 3	0.400	5.010	
		4	0.600	4.945	
		5	0.800	4.839	
		5 6 7	1.000	4.714	
		7	1.200	4.550	
		8 9	1.400	4.396	
		9	1.600	4.200 3.972 3.761	
		10	1.800	3.972	
		11	2.000	3.761	
		12	2.200	3.475	
		13	2.400	3.216	
		14	2.600	2.894	
		15	2.800	2.550	
		16	3.000	2.280 2.110	
		17	3.200	2.110	
		18	3.400 3.600	1.892 1.701	
		19 20	3.800	1.701	
		20	3.600	1.457	

Kaiseralle 23, 76133 Karlsruhe

Seite:

DYNAM Pro

Projekt: Beispiele Musterpositionen Modell: Beispiel Modalanalyse

Datum: 2020-03-03

1		Antwortspektrum-		Zeit	Beschleunigung	
Л	Nr.	bezeichnung	Nr.	T[s]	a [m/s²]	
₽	RS2	Vereinfacht	21	4.000	1.301	

1.5.4.1 Antwortspektren - Benutzerdefiniert - Graph

RS1

1.5.4.2 Antwortspektren - Benutzerdefiniert - Graph

RS2

DLF	Dynamische Lastfälle		
Fall	Bezeichnung		Parameter
DLF1	Transmissibilität	Verfahrenstyp .	Verfahren mit statischen Ersatzlasten
			(Antwortspektrum erforderlich)
		Eigenschwingung zuweisen :	Eigenschwingungsfall:
			ESF1
DLF2	Vereinfacht	Verfahrenstyp	Verfahren mit statischen Ersatzlasten
			(Antwortspektrum erforderlich)
		Eigenschwingung zuweisen :	Eigenschwingungsfall:
		, , , , , , , , , , , , , , , , , , ,	ESF1

■ 1.8.5.1 Dynamische Lastfälle - Verfahren mit statischen Ersatzlasten

DLF	Dynamische Lastfälle	
Fall	Bezeichnung	Parameter
DLF1	Transmissibilität	Antwortspektrum zuordnen:
		Antwortspektrum in Richtung ■ x: AS1 - Transmissibilität Multiplikativer Faktor 1.000
		$a_X \ a_Y \ um \ Z$ -Achse rotieren: $\alpha = 0.00 \ [^\circ]$
		Einstellungen:
		■ Zufällige Torsionswirkungen berücksichtigen:
		Zu generieren:
		■ Lastfälle mit E _{X,i} / E _{Z,i} aus allen Eigenformen Nummer des ersten generierten Lastfalls:
DLF2	Vereinfacht	Antwortspektrum zuordnen:
		Antwortspektrum in Richtung Multiplikativer Faktor
L		

Kaiseralle 23, 76133 Karlsruhe

Seite: Blatt:

DYNAM Pro

Projekt: Beispiele Musterpositionen Modell: Beispiel Modalanalyse

Datum: 2020-03-03

1.8.5.1 Dynamische Lastfälle - Verfahren mit statischen Ersatzlasten

	<u> </u>	i Dynamioono Laotiano	Verialiten mit statisenen Ersatziasten	
	DLF	Dynamische Lastfälle		
	Fall	Bezeichnung	Parameter	
-			x: AS2 - Vereinfacht	1.000
	A		a _X a _Y um Z-Achse rotieren:	α = 0.00 [°]
di.			Einstellungen:	
		A	■ Zufällige Torsionswirkungen berücksichtigen: Zu generieren:	
			■ Lastfälle mit E _{X,i} / E _{Z,i} aus allen Eigenformen Nummer des ersten generierten Lastfalls:	1

1.8.5.2 Dynamische Lastfälle - Verfahren mit statischen Ersatzlasten - Zu generierende Eigenformen

-90.								
DLF	Dynamische Lastfälle	Form	Zu generier	Freq	Frequenz		Beschleunigun	
Fall	Bezeichnung	Nr.		ω [rad/s]	f [Hz]	T [s]	S _a [m/s ²]	
DLF1	Transmissibilität	1	×	5.620	0.894	1.118	6.202	
4		2	X	35.725	5.686	0.176	5.631	
DLF2	Vereinfacht	1	X	5.620	0.894	1.118	4.617	
		2	X	35.725	5.686	0.176	5.088	

ESF1 ESF1 ESF1

Form	Eigenwert	Kreisfrequenz	Eigenfrequenz	Eigenperiode	
Nr.	λ [1/s²]	ω [rad/s]	f [Hz]	T [s]	
1	31.584	5.620	0.894	1.118	
2	1276.255	35.725	5.686	0.176	

ESF1 ESF1 ■ 5.7 Effektive Modalmassenfaktoren

ESF1

Form	Modale Mas	Modale Mas Effektive Modalmasse Effektiver M					r Modalmassenfaktor			
Nr.	M _i [kg]	m _{eX} [kg]	m _{eY} [kg]	m _{eZ} [kg]	$m_{\phi X}[kg.m^2]$	m _{φY} [kg.m²]	m _{φZ} [kg.m²]	f _{meX} [-]	f _{meY} [-]	f _{meZ} [-]
1	864443.50	1688408.31	0.00	0.00	0.00	16733556.36	0.00	0.679	0.000	0.000
2	1532375.10	513824.92	0.00	0.00	0.00	18881611.92	0.00	0.207	0.000	0.000
Summe	2396818.60	2202233.23	0.00	0.00	0.00	35615168.28	0.00	0.886	0.000	0.000