Example 1

If (x+1,y-2)=(3,1), find the values of x and y.

Solution: Since the ordered pairs are equal, the corresponding elements are equal.

Therefore, x+1=3 and y-2=1.

Solving these equations, we get x=2 and y=3.

Example 2

If P={a,b,c} and Q={r}, form the sets P×Q and Q×P. Are these two products equal?

Solution: By the definition of the Cartesian product:

$$P\times Q=\{(a,r),(b,r),(c,r)\}$$

$$Q \times P = \{(r,a),(r,b),(r,c)\}$$

Since, by the definition of equality of ordered pairs, the pair (a,r) is not equal to the pair (r,a), we conclude that $P\times Q=Q\times P$.

However, the number of elements in each set will be the same.

Example 3

Let A={1,2,3}, B={3,4} and C={4,5,6}. Find:

- (i) A×(B∩C)
- (ii) (A×B)∩(A×C)
- (iii) A×(B∪C)
- (iv) $(A \times B) \cup (A \times C)$

Solution:

(i) By the definition of the intersection of two sets, $(B \cap C) = \{4\}$.

Therefore, $A \times (B \cap C) = \{(1,4), (2,4), (3,4)\}.$

(ii) Now
$$(A \times B) = \{(1,3), (1,4), (2,3), (2,4), (3,3), (3,4)\}$$

And
$$(A \times C) = \{(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)\}$$

Therefore, $(A \times B) \cap (A \times C) = \{(1,4),(2,4),(3,4)\}.$

(iii) Since, $(B \cup C) = \{3,4,5,6\}$, we have

$$A \times (B \cup C) = \{(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6)\}.$$

(iv) Using the sets A×B and A×C from part (ii) above, we obtain

$$(A \times B) \cup (A \times C) = \{(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6)\}.$$

Example 4

If $P=\{1,2\}$, form the set $P\times P\times P$.

Solution: We have, $P \times P = \{(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2)\}.$

Example 5

If R is the set of all real numbers, what do the Cartesian products R×R and R×R×R represent?

Solution: The Cartesian product R×R represents the set R×R= $\{(x,y):x,y \in R\}$, which represents the coordinates of all the points in two-dimensional space.

The Cartesian product R×R×R represents the set R×R×R= $\{(x,y,z):x,y,z\in R\}$, which represents the coordinates of all the points in three-dimensional space.

Example 6

If $A \times B = \{(p,q),(p,r),(m,q),(m,r)\}$, find A and B.

Solution:

 $A = set of first elements = \{p, m\}$

 $B = set of second elements = \{q,r\}.$

Example 7

Let $A = \{1,2,3,4,5,6\}$. Define a relation R from A to A by $R = \{(x,y): y = x+1\}$.

- (i) Depict this relation using an arrow diagram.
- (ii) Write down the domain, codomain and range of R.

Solution:

- (i) By the definition of the relation, $R=\{(1,2),(2,3),(3,4),(4,5),(5,6)\}$.
- (ii) The domain is $\{1,2,3,4,5\}$.

The range is $\{2,3,4,5,6\}$.

The codomain is {1,2,3,4,5,6}.

Example 8

The Fig 2.6 shows a relation between the sets P and Q. Write this relation (i) in set-builder form, (ii) in roster form. What is its domain and range?

Solution: The relation R is "x is the square of y".

- (i) In set-builder form, $R=\{(x,y): x \text{ is the square of } y, x \in P, y \in Q\}.$
- (ii) In roster form, $R=\{(9,3),(9,-3),(4,2),(4,-2),(25,5),(25,-5)\}.$

The domain of this relation is {4,9,25}.

The range of this relation is $\{-5, -3, -2, 2, 3, 5\}$.

The set Q is the codomain of this relation.

Example 9

Let $A=\{1,2\}$ and $B=\{3,4\}$. Find the number of relations from A to B.

Solution: We have, $A \times B = \{(1,3), (1,4), (2,3), (2,4)\}.$

Since $n(A \times B) = 4$, the number of subsets of $A \times B$ is 24.

Therefore, the number of relations from A into B will be 24.

Example 10

Let N be the set of natural numbers and the relation R be defined on N such that $R=\{(x,y):y=2x,x,y\in N\}$. What is the domain, codomain and range of R? Is this relation a function?

Solution: The domain of R is the set of natural numbers N. The codomain is also N.

The range is the set of even natural numbers.

Since every natural number n has one and only one image, this relation is a function.

Example 11

Examine each of the following relations given below and state in each case, giving reasons whether it is a function or not?

(i)
$$R = \{(2,1),(3,1),(4,2)\}$$

(ii)
$$R=\{(2,2),(2,4),(3,3),(4,4)\}$$

(iii)
$$R=\{(1,2),(2,3),(3,4),(4,5),(5,6),(6,7)\}$$

Solution:

- (i) Since 2, 3, 4 are the elements of the domain of R having their unique images, this relation R is a function.
- (ii) Since the same first element 2 corresponds to two different images 2 and 4, this relation is not a function.
- (iii) Since every element has one and only one image, this relation is a function.

Example 12

Let N be the set of natural numbers. Define a real valued function $f:N \rightarrow N$ by f(x)=2x+1. Using this definition, complete the table given below.

X	1	2	3	4	5	6	7
у	f(1)=	f(2)=	f(3)=	f(4)=	f(5)=	f(6)=	f(7)=

Solution: The completed table is given by:

X	1	2	3	4	5	6	7
у	f(1)=3	f(2)=5	f(3)=7	f(4)=9	f(5)=11	f(6)=13	f(7)=15

Example 13

Define the function $f:R \to R$ by $y=f(x)=x2, x \in R$. Complete the Table given below by using this definition. What is the domain and range of this function? Draw the graph of f.

X	-4	-3	-2	-1	0	1	2	3	4
y=f(x)=x2									

Solution: The completed Table is given below:

Х	-4	-3	-2	-1	0	1	2	3	4
y=f(x)=x2	16	9	4	1	0	1	4	9	16

Domain of $f=\{x:x\in R\}$.

Range of $f=\{x2:x\in R\}$.

Example 14

Draw the graph of the function f:R \rightarrow R defined by f(x)=x3,x \in R.

Solution: We have f(0)=0, f(1)=1, f(-1)=-1, f(2)=8, f(-2)=-8, f(3)=27, f(-3)=-27, etc.

Therefore, $f=\{(x,x3):x \in R\}$. The graph of f is given in Fig 2.11.

Example 15

Define the real valued function $f:R-\{0\}\to R$ defined by $f(x)=x1,x\in R-\{0\}$. Complete the Table given below using this definition. What is the domain and range of this function?

х	-2	-1.5	-1	-0.5	0.25	0.5	1	1.5	2
y=x1									

Solution: The completed Table is given by:

х	-2	-1.5	-1	-0.5	0.25	0.5	1	1.5	2

y=x1	-0.5	-0.67	-1	-2	4	2	1	0.67	0.5

The domain is all real numbers except 0 and its range is also all real numbers except 0.

Example 16

Let f(x)=x2 and g(x)=2x+1 be two real functions. Find (f+g)(x),(f-g)(x),(fg)(x).

Solution:

$$(f+g)(x)=x2+2x+1$$

$$(f-g)(x)=x2-2x-1$$

$$(fg)(x)=x2(2x+1)=2x3+x2$$

$$(gf)(x)=2x+1x2, x=-21.$$

Example 17

Let f(x)=x and g(x)=x be two functions defined over the set of non-negative real numbers. Find (f+g)(x),(f-g)(x),(fg)(x) and (gf)(x).

Solution:

$$(f+g)(x)=x+x$$

$$(f-g)(x)=x-x$$

$$(fg)(x)=x(x)=x23$$

$$(gf)(x)=xx=x-21, x=0.$$

Example 18

Let R be the set of real numbers. Define the real function $f:R \to R$ by f(x)=x+10 and sketch the graph of this function[cite:1 333, 334].

Solution: Here f(0)=10, f(1)=11, f(2)=12, ..., f(10)=20, etc., and f(-1)=9, f(-2)=8, ..., f(-10)=0 and so on. The shape of the graph of the given function assumes the form as shown in Fig 2.16.

Example 19

Let R be a relation from Q to Q defined by R={ $(a,b):a,b \in Q$ and $a-b \in Z$ }. Show that:

(i) $(a,a) \in R$ for all $a \in Q$

(ii) (a,b)∈R implies that (b,a)∈R

(iii) $(a,b) \in R$ and $(b,c) \in R$ implies that $(a,c) \in R$

Solution:

(i) Since $a-a=0 \in \mathbb{Z}$, it follows that $(a,a) \in \mathbb{R}$.

(ii) $(a,b) \in \mathbb{R}$ implies that $a-b \in \mathbb{Z}$. So, $b-a=-(a-b) \in \mathbb{Z}$. Therefore, $(b,a) \in \mathbb{R}$.

(iii) $(a,b) \in R$ and $(b,c) \in R$ implies that $a-b \in Z$ and $b-c \in Z$.

So, $a-c=(a-b)+(b-c)\in \mathbb{Z}$. Therefore, $(a,c)\in \mathbb{R}$.

Example 20

Let $f = \{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a linear function from Z into Z. Find f(x).

Solution: Since f is a linear function, f(x)=mx+c.

Also, since $(1,1) \in f$ and $(0,-1) \in f$, we have:

 $f(1)=m(1)+c=1 \Rightarrow m+c=1 \text{ (Equation 1)}$

 $f(0)=m(0)+c=-1 \Longrightarrow c=-1$ (Equation 2)

Substitute c=-1 into Equation 1:

 $m+(-1)=1 \Longrightarrow m=2$.

So, f(x)=2x-1.

Let's verify this with the other points:

For (2,3):f(2)=2(2)-1=4-1=3. This matches.

For (-1,-3):f(-1)=2(-1)-1=-2-1=-3. This matches.

Thus, f(x)=2x-1.

Example 21

Find the domain of the function

$$f(x)=x2+3x+5x2-5x+4f(x) = \frac{x^2 + 3x + 5}{x^2 - 5x + 4}$$

Solution:

We are given:

$$f(x)=x2+3x+5x2-5x+4f(x) = \frac{x^2 + 3x + 5}{x^2 - 5x + 4}$$

To find the domain, we must exclude values of xx that make the denominator zero.

Factor the denominator:

$$x2-5x+4=(x-4)(x-1)x^2 - 5x + 4 = (x - 4)(x - 1)$$

So, the function is **undefined at** x=1x = 1 and x=4x = 4. Hence, the **domain** is:

 $R_{1,4}\$ \setminus \{1, 4\}}

Example 22

The function f is defined by

Draw the graph of f(x).

Solution:

Break down the function:

- For x<0x < 0: f(x)=1-xf(x) = 1 xExamples: f(-4)=5, f(-3)=4, f(-2)=3, f(-1)=2f(-4) = 5, f(-3) = 4, f(-2) = 3, f(-1) = 2
- For x=0x = 0: f(0)=0f(0) = 0
- For x>0x > 0: f(x)=x+1f(x) = x + 1Examples: f(1)=2, f(2)=3, f(3)=4, f(4)=5f(1)=2, f(2)=3, f(3)=4, f(4)=5

This is a piecewise function forming a **V-shaped graph**, symmetric about the origin, with a "corner" at (0,0)(0,0).