MONTHLY NOTICES

OF THE

ROYAL ASTRONOMICAL SOCIETY.

VOL. XLIX.

SUPPLEMENTARY NUMBER.

No. 9

Discussion of the Observations of the Sun made with the Washington Transit-Circle during the years 1875-1883 inclusive. By A. M. W. Downing, M.A.

The comparatively large discordances in existing determinations of the position of the equinox make it a matter of importance that the meridian observations of the Sun, made at the principal Observatories, should from time to time be discussed, and a determination of this element deduced from them. It is with this object in view that the discussion of the Washington Transit-Circle observations of the Sun made during the years 1875–1883 inclusive has been undertaken, and I have now the honour of communicating the results to the Society.

During the years mentioned the same reduction-elements have been used throughout, both for the observations of right ascension and of north polar distance. The adopted equinox is that of Newcomb's "Fundamental Equatorial Stars," used in the American *Ephemeris* since 1881. The observations of 1883 are

the latest published.

The observations, as given in the several volumes of Washington Observations, have been combined by months, and the following table gives the mean day, the mean correction to the *Ephemeris* in R.A. and N.P.D. respectively, and the number of observations in each element on which the means depend. Those results only have been used which have been deduced from observations of both limbs of the Sun. The places of the Sun, with which the Washington observations were compared during these years, were taken from Hansen's and Olufsen's Solar Tables.

M M

No.	Mean Date.	Correction to R.A.	Ephemeris. N.P.D.	Num Observ R.A.	ber of ations. N.P.D.
I	1875 Jan. 15	+0.063	+ 0.65	4	4
2	Feb. 15	+0.07	+0.60	7	7
3	Mar. 17	+0.039	+0.72	9	9
4	Apr. 17	-0.002	+ 1.14	6	6
5	May 20	-0.036	+ 1.29	11	11
6	June 18	-0.030	+ 1.68	8	8
7	July 14	+0.030	+0.80	2	2
8	Aug. 17	+0.062	+0.89	9	9
9	Sept. 12	+0.039	+ 2.04	7	7
10	Oct. 17	+0.110	+0.49	13	13.
11	Nov. 14	+0.022	+0.62	10	9
12	Dec. 17	-0.089	+1.05	7	6
13	1876 Jan. 23	-0.020	+ 1.66	4	5
14	Feb. 16	+0.009	+0.22	9	11
15	Mar. 12	-0.023	+0.68	7	8
16	Apr. 13	+0.010	-o.18	II	10
17	May 15	-0.011	+ I .10	7	9
18	June 17	-0.003	+1.01	7	7
19	July 16	-0.023	+ 0.98	13	13.
20	Aug. 26	+0.084	+0.06	6	5.
2 I	Sept. 16	+0.047	+ 0.22	6	6
22	Oct. 12	-0.019	-0.39	9	10
23	Nov. 10	+0.011	-0.10	8	9
24	Dec. 15	-0.028	-0.43	6	6
25	1877 Jan. 28	+0.063	+ 0.36	6	5
26	Feb. 13	+0.008	+ 1.44	10	10
27	Mar. 13	+0.020	+0.93	4	4
28	Apr. 11	+0.050	+ 0.68	4	5
29	May 14	-0.064	+ 1.97	5	6
30	June 16	-0.028	+ 1.80	5	6
3 1	July 18	-0.013	+2.02	5	5
3 2	Aug. 10	+0.120	+ 5.40	1	I
33	Oct. 9	+0.022	+0.45	2	2
34	Nov. 12	+0.064	-0.38	7	6
35	Dec. 13	+0.020	-o·85	3	4
36	1878 Feb. 15	-0.055	-0.52	6	6
3 7	Mar. 14	-0.014	0'70	3	3
38	Apr. 14	-0.030	-1.3 0	8	8

_			•		.00
No.	Mean Date.	Correction to R.A.	Ephemeris. N.P.D.	Numb Observat R.A.	
39	1878 May 15	s 0°022	+ 0 + 0	. 6	6
40	June 15	-0.020	+ 1.04	8	8
4 I	Sept. 20	-0 .048	-0.61.	6	7
42	Oct. 18	+0.020	+0.30	5	7
43	Nov. 12	+0.023	- 1.17	9	9
44	Dec. 10	+0.030	+ 1.00	6	7
45	1879 Jan. 30*	+0.050	+ 2.30	I	I
46	Feb. 16	+0.082	+ 1.13	5	4
47	Mar. 6	+0.130	+ 0.02	4	4
48	Apr. 13	+0.010	+0.02	6	6
49	May 14	+0.023	+1.13	7	7
50	June 15	-0.009	+ 2.71	10	9
51	July 13	+0.019	+ 1.45	10	10
52	Aug. 13	0.000	+ 1.80	2	ı
53	Sept. 17	+0.081	+ 1.48	7	8
54	Oct. 13	+0.199	+0.01	9	9
55	Nov. 17	+0.500	+ 1.72	5	5
56	Dec. 17	-0.010	+0 [.] 64	5	5
57	1880 Jan. 18	+0.040	+ 1.14	4	5
58	Feb. 14	-0.053	+0.42	6	5
59	Mar. 24	-0.023	+0.87	3	3
60	Apr. 19	-0.030	+ 1.50	4	4
61	May 16	-0.012	+ 2.06	10	8
62	$_{ m June~18}$	+0.001	+ 1.40	3	1
63	July 20	+0.002	+ 2.85	4	4
64	Aug. 16	-0.033	+ 2.85	3	2
65	Sept. 16	-0.022	+ 2-50	8	5
66	Oct. 15	+0.035	+0.92	10	9
67	Nov. 15	+ 0.100	+2.27	3	3
68	Dec. II	-0.053	+ 1.90	4	4
69	1881 Jan. 24	+ 0.092	-0.12	4	4
70	Feb. 16	+0.098	+1.29	9	9
71	Mar. 17	+0.010	+1.34	7	7
72	Apr. 22	-0.040	+0.48	5	6
73	May 24	-0.022	+ 1.63	6	6
74	June 20	-0.034	+ 1.87	7	7
75	July 15	-0.030	+ 1.87	11	12

^{*} No. 45. An observation taken on 1879 Jan. 31, has been rejected.

No.	Mean Date.	Correction to R.A.	Ephemeris. N.P.D.	Numb Observa R.A.	
76	1881 Aug. 17	-o [.] o37	+2.03	6	8
77	Sept. 24	+0.100	-0.50	I	I
78	Oct. 18	+ 0.003	+ 0.24	9	10
79	Nov. 17	+0.036	+ 1.26	7	7
80	Dec. 15	-0.012	+ 1.12	6	6
8 1	1882 Jan. 27	-0.030	+0.12	3	,2
82	Feb. 13	+0.011	+0.46	II	11
83	Mar. 13	+0.013	+ 1.12	4	4
84	Apr. 20	-o [.] 073	+0.13	8	8
85	May 19	-0.032	+ 0.64	10	9
86	June 15	-0.002	+0.41	12	12
87	July 16	+ 0.047	+ 0.08	6	6.
88	Aug. 16	+0.050	- 1·65	4	2
89	Sept. 21	-0.018	-0.56	5	5
90	Oct. 9	+0.010	+0.14	3	3
91	Nov. 19	+0.043	+0.52	6	5
92	Dec. 10	+0.023	-0.30	4	3
93	1883 Feb. 22	-0.020	+ 2.65	6	6
94	Mar. 11	+0.018	+2.44	5	5
95	Apr. 13	-0.013	+ 2.35	3	4
96	May 14	-0.014	+ 1'55	9	11
97	$\mathbf{June} \ 14$	-0.022	+ 1.86	6	5
98	July 11	- 0 004	+ 1.93	8	8
99	Aug. 12	-0.088	+ 1.24	6	5
100	Sept. 6	-0.190	+ 0.40	I	I
101	Oct. 19	+0.023	+ 1.40	6	6
102	Nov. 14	+0.029	+1.53	10	11
103	Dec. 13	-0.114	+ 1.19	7	8

The next step has been to compute the corrections to tabular Ecliptic North Polar Distance from the corrections to tabular R.A. and N.P.D. These form the absolute terms in the following equations of condition.

The weights have been computed in the following way. Let R and S be the factors by which the corrections to tabular R.A. and N.P.D. must respectively be multiplied to give correction to tabular E.N.P.D., so that

$$\delta E.N.P.D. = R \delta R.A. + S \delta N.P.D.$$

Now let n be the number of observations of R.A. in a group, e the probable error of a single observation of R.A., n_1 the

number of observations of N.P.D. in a group, e_1 the probable error of a single observation of N.P.D., then the weight of each correction to tabular Ecliptic North Polar Distance has been computed from the formula

Weight =
$$\frac{nn_1}{\text{IO}(n_1\text{R}^2e^2 + n\text{S}^2e_1^2)}$$
, or (if $n = n_1$),
Weight = $\frac{n}{\text{IO}(\text{R}^2e^2 + \text{S}^2e_1^2)}$.

For convenience the latter formula has been used, and where n and n_1 are not equal their mean has been taken as the value of n. The values of e and e_1 have been found for each month throughout the series of years by taking the difference between the mean correction to tabular R.A. or N.P.D., as the case may be, for the month in each year, and each individual correction. The following values for the probable errors for each month have been thus obtained, and the "adopted" values, not differing much from them, have been used in the subsequent computations.

Month.	Probable Error in R.A. Computed. Adopted.		Number of Observations.	Probable Error in N.P.D. Computed. Adopted.		Number of Observations.
January	s ±0.041	s ± 0.040	25	± 0.63	± 0.85	25
\mathbf{F} ebruary	•067	·0 7 0	69	' 94	·8 ₅	68
March	. 042	.045	46	•76	·8 ₅	47
April	·04 2	.042	55	·88	.85	55
May	.043	.045	69	·65	.65	73
June	.049	.045	68	•64	·65	62
\mathbf{J} uly	·054	.042	62	. 63	.65	60
August	.043	.045	36	. 79	•65	31
September	.042	. 045	40	·6 2	.65	39
$\mathbf{October}$	° 04 7	. 045	70	.68	.65	70
${\bf November}$.068	.070	62	. 94	.85	58
${\bf December}$	•063	.040	49	•96	.85	43

In the formation of the following equations of condition it has been assumed that the error of tabular Ecliptic North Polar Distance may be represented by

 $x \times \cos \text{Sun's longitude} + y \times \sin \text{Sun's longitude} + z$.

No.	To. Equations of Condition.						Residuals.
I	+ •4260x	°9047 <i>y</i>	+z	+ 0.800	=0	4.0	+ 0.330
2	+ .8355x	-·5495 <i>y</i>	+ 2	+ 0.948	=0	3.8	+0.565
3	+ .9984x	−·0573 <i>y</i>	+z	+0.893	=0	6.9	-0.022
4	+ . 8889 <i>x</i>	+ .45814	+2	+ 1.037	=0	5·1	-0.198
5	+ '5115x	+.85939	+z	+1.149	=0	19.7	-0'211
6	+ .0523x	+ •9986 <i>y</i>	+ 2	+ 1.671	=0	20.0	+0.584
. 7	3711x	+ ·9286y	+z	+0.724	=0	4.1	-o·588

436	6 Mr. Downing, Discussion of the						
No.		Equations of	Condi	tion.		Weights.	Residuals.
8	-·8124 <i>x</i>	+ • 58314	+z	+0.524	=0	10.0	-°.574
9	-·9833 <i>x</i>	+1822y	+z	+ 1.649	= o	6.8	+0.768
10	- ·9141x	-·4054 <i>y</i>	+ 2	-0.146	=0	13.9	-0.740
II	6163x	-·7875y	+z	+0.322	=0	7.2	-0.109
12	-·0799x	- ∙9968 <i>y</i>	+ 2	+ 1.093	=0	9.3	+0.418
13	+ . 5461x	- ⋅8377 <i>y</i>	+z	+ 1.450	=0	3.8	+0.935
14	+.8428x	-·5383 <i>y</i>	+z	+0 [.] 561	=0	5·0	-0.132
15	+·9914x	-·130 5 y	+ 2	+0.489	=0	5.8	-0'42 2
16	+ .9128x	+ '4083y	+z	-0.063	=0	8.8	- 1.536
17	+:5714x	+.82079	+ 2	+ 1.029	= O	13.5	-0.318
18	+·0561 <i>x</i>	+ .99847	+3	+1.009	=0	17.5	- o ·3 78
19	 41 36 <i>x</i>	+ .9104 <i>y</i>	+ 2	+1.031	=0	26.0	-0.278
20	- ⋅8967 <i>x</i>	+ '44254	+ 2	-0 .409	=0	6.1	-1.428
21	- ·9948 <i>x</i>	+ ·1022y	+z	-0.049	=0	5.8	-0.789
22	-·9414x	-:3374 <i>y</i>	+ 2	-0°27I	=0	9.8	-0.8 96
23	- ⋅6602 <i>x</i>	7511y	+ 2	-0.139	=0	6.0	-0.284
24	-·1019x	 ∙9948 <i>y</i>	+z	-0.426	=0	8.3	-0.801
25	+·6289 <i>x</i>	-·7775y	+z	+0.584	=0	4.0	+0.031
26	+ .8209x	-·5712y	+ 2	+1.395	=0	5.2	+0.721
27	+ .9931x	 1175 <i>y</i>	+ 2	+ 1.120	=0	3.1	+0.233
28	+ ·9278x	+:37304	+ z	+0.41	=0	3.7	-0.412
29	+.5885x	+·8085 <i>y</i>	+ 2	+ 1.681	=0	8.9	+0.339
30	+ .0770x	+ '9970y	+ 2	+ 1.785	= 0	12.2	+ 0 397
31	- '4399x	+·8980y	+2	+ 2.012	=0	9.6	+0.725
32	7443x	+·6678y	+ 2	+ 4.469	=0	1.8	+ 3.323
33	- ⋅9588 <i>x</i>	·2840y	+z	+0.100	=0	2.0	-0.220
34	6365x	- ·7713y	+2	-0.609	=0	4'7	- 1·046
35	1415x	9899 <i>y</i>	+ 2	-0.890	=0	4.8	- 1.564
36	+ ·8380x	5456y	+z	-0.299	=0	3.5	-1.288
37	+ ·9946x	-·1042 <i>y</i>	+z	-0.744	=0	2.3	– 1. 668
38	+ '9092x	+ ·4163 <i>y</i>	+z	-1.373	=0	6 ·7	-2.249
39	+ .5781x	+·8160 <i>y</i>	+ 2	+0.486	= 0	9.8	-o·859
40	+ '0976x	+ '9952y	+ 2	+ 1.010	=0	17.0	-0·379
41	0991x	+ '0422y	+2	-0°2 72	=0	6.2	- 1.082
42	- ·9048x	4258 <i>y</i>	+ 2	+0.008	=0	6·5	-0.226
43	6399 <i>x</i>	7685 <i>y</i>	+ 2	-1.330	=0	6·5	- 1·768
44	- 1982x	- ·9802 <i>y</i>	+2	+0.961	=0	8•4	+0.587
45	+ ·6490x	7608 <i>y</i>	+ 2	+ 2.291	=0	0.4	+ 1.728
46	+ .8449x	-·5348 <i>y</i>	+ 2	+ 1.474	=0	2.4	+0.779
47	+ ·9692 <i>x</i>	·2462 <i>y</i>	+z	+ 0.494	=0	3.3	- 0.024

Sup. 1889. W	ashington	Observations	of	the	Sun.
--------------	-----------	--------------	----	-----	------

437

No.	:	Equations of	Condit	ion.		Weights.	Residuals.
48	+ 9181x	+·3963 <i>y</i>	+z	+ 0.120	=0	2.1	– 1 "047
49	+ ·5955x	+ .8033 <i>y</i>	+z	+ 1.283	=0	11.1	-0.057
50	+'1022x	+ '9948y	+z	+ 2.701	=0	23.2	+1.312
51	3557x	+ • 9346 <i>y</i>	+ z	+1.394	=0	20.8	+0.078
52	7711x	+·6368 <i>y</i>	+ z	+ 1.406	=0	1.9	+ o·578
53	-·99 5 2x	+.09827	+z	+ 1.155	=0	7.2	+0.312
54	-•9400 <i>x</i>	-·3412 <i>y</i>	+ 2	-0.091	=0	9.3	-0.714
55	5738x	- ·8190 <i>y</i>	+z	+0.980	=0	4.0	+0.261
56	-·0799x	·9968 <i>y</i>	+ z	+ 0.644	=0	7.0	+0.267
57	+ · 4697 <i>x</i>	- ⋅8828 <i>y</i>	+ z	+ 1.229	=0	4.5	+0.744
.58	+.8231x	-·5678y	+ 2	+0.132	=0	3.0	-0.241
5 9	+ .9970x	+ .07703	+ 2	+0.484	=0	2.3	-0.231
[,] 60	+·8663 <i>x</i>	+ '49954	+ 2	+0.968	=0	3.3	-0.246
6 1	+ .5575x	+ .8302 <i>y</i>	+ 2	+ 1.952	=0	15.0	+0.602
62	+ .0398x	+ '9992y	+ 2	+1.702	=0	4.9	+0.319
63	- . 4731 <i>x</i>	+ ·8810 <i>y</i>	+ 2	+ 2.779	= 0	7.4	+1.201
64	-·8100 <i>x</i>	+:5864y	+z	+ 2.850	=0	3.0	+ 1.751
65	-·9948x	+1022y	+ 2	+ 2.447	=0	6.3	+ 1.607
66	9227x	·3856y	+z	+0.678	≕ 0	10.0	+0.062
67	5915x	- ⋅8063 <i>y</i>	+z	+2.134	=0	2.3	+ 1.710
68	-1722x	-·9851 <i>y</i>	+z	+0.997	=0	5.4	+0.623
69	+:5721x	-·8202 <i>y</i>	+z	+0.149	=0	3.5	-0.347
70	+.8499x	-·5270 <i>y</i>	+z	+ 1.988	=0	4.7	+ 1.589
71	+ · 9988 <i>x</i>	-•o483 <i>y</i>	+z	+ 1.589	=0	5.4	+0.337
72	+.8420x	+ •53954	+z	+0.379	=0	4.2	-0.852
73	+.4452x	+ .89554	+z	+ 1.232	=0	11.2	+0.190
7 4	+ .0102x	+ •99994	+z	+ 1.868	=0	17.5	+0.485
75	3945x	+ . 9189 <i>h</i>	+z	+ 1.915	=0	23.0	+0.910
76	8175x	+ ·57 60y	+z	+ 2.095	=0	8.4	+ 1.001
77	9995x	- ·0302 <i>y</i>	+z	- o·78o	=0	1.0	⊸1.223
7 8	9031x	- ·4295 <i>y</i>	+z	+0.212	=0	10.3	-o.098
79	- ⋅5664 <i>x</i>	- ·8241 <i>y</i>	+ 2	+ 1.100	=0	5.7	+0.683
.80	- ·1063x	-·9943 <i>y</i>	+2	+ 1.128	=0	8.3	+0.783
81	+ ·6115x	7912 <i>y</i>	+z	+0.036	=0	1.0	-0.208
82	+.8183x	-·5748 <i>y</i>	+z	+0.487	=0	6.0	-0.182
83	+ ·9926x	- ·1216y	+2	+1.132	=0	3.1	+0.220
84	+ .8619x	+ ·5070y	+2	+0.842	=0	7 [.] 0	-0·375
8 5	+ '5220x	+ .85294	+ 2	+0.212	= 0	16.4	-0.843
86 **	+ .0976x	+ '9952y	+ 2	+0.408	=0	25.5	-0.681
87	·4062 <i>x</i>	+ .9138y	+ 2	- 0 .032	=0	11.8	- 1.336

438	Mr. 1	Downing,	Discu	ssion of	Obser	vations etc.	XLIX. 9,
No.		Equations o	of Cond	ition.		Weights.	Residuals.
88	-·8052x	+:59304	+ z	- 1.655	=0	3.7	-2 ["] 758
89	- •9997 <i>x</i>	+.02534	+z	-0.131	=0	4.8	-0.932
90	 '9 600 <i>x</i>	- ·2 801 <i>y</i>	+z	+0.100	=0	3.0	-0.552
91	- ·5405x	-·8414 <i>y</i>	+ 2	+0.075	=0	4.7	-o·336
92	-·1982x	-•9802y	+z	-0.326	=0	4.6	-0.700
93	+ .8966x	- '4428 <i>y</i>	+z	+2.365	=0	8·o	+ 1.620
94	+ · 9870 <i>x</i>	-·1607 <i>y</i>	+ z	+ 2.351	=0	3.9	+ 1.466
95	+ . 9181 <i>x</i>	+ '3963y	+z	+2.110	=0	2.9	+0.943
96	+:5955x	+.80339	+z	+ 1.450	=0	16.2	+0.110
97	+ 1184x	+ '9930y	+ 2	+ 1.840	== O	13.2	+0.450
98	-:3242 <i>x</i>	+ ·9460 <i>y</i>	+z	+ 1.921	=0	17.4	+0.596
99	- .7606 <i>x</i>	+ .6492 <i>y</i>	+z	+ 1.861	=0	7·1	+0.726
100	−·9596 <i>x</i>	+:2812y	+z	+1.582	=0	I.O	+0.354
101	-·8994 <i>x</i>	-:43 71 <i>y</i>	+z	+ 1.461	=0	6.2	+0.882
102	-·6166 <i>x</i>	·7873 <i>y</i>	+z	+1.080	=0	8·1	+0.649
103	- ·1507x	- ∙9886 <i>y</i>	+z	+ 1.262	=0	10.1	+0.888

Proceeding to solve these by the method of least squares, I find the normal equations:

$$+313.0289x + 43.8237y - 23.1768z + 30.924 = 0$$

 $+43.8237x + 495.4996y + 237.5829z + 461.675 = 0$
 $-23.1768x + 237.5829y + 809.0z + 830.524 = 0$
whence

$$x = -0.0941$$
 with weight 306.3438
 $y = -0.5003$, 417.5209
 $z = -0.8824$, 688.7679

These values of x, y, and z have been substituted in the equations of condition, and the residuals (given in the last column above) formed. From them I find that the probable error of a determination of correction to tabular Ecliptic North Polar Distance of weight unity (on the assumption made in the formation of the equations of condition) is $\pm x'' \cdot 5512$, and therefore

Probable error of
$$x = \pm 0.0866$$

, $y = \pm 0.0759$
, $z = \pm 0.0591$

The above value of x indicates that, at the first point of Aries, the assumed ecliptic is north of the Sun's true path by 0".0941, and therefore that the correction to the assumed (Newcomb's) system of right ascensions is

$$\frac{-0^{s} \cdot 0941}{15 \sin 23^{\circ} 27'} = -0^{s} \cdot 0158 \pm 0^{s} \cdot 0148.$$

Sup. 1889. Melbourne Observatory, Spectroscopic Survey etc. 439

The value of y indicates that the obliquity assumed in Hansen's and Olufsen's Tables ought to be diminished by 0''.5003.

The value of z shows that the mean of the observed distances from the pole to the ecliptic is too great by o''.8824.

The corrections to the principal systems of right ascensions resulting from this discussion of Washington observations of the Sun are as follows:—

```
Washington (1875–1883) – American Ephemeris (Newcomb) = -0.016

-Berliner Jahrbuch (Auwers) = 0.000

-Greenwich (1880) = +0.026

-Pulkowa (1845) = +0.003

-Pulkowa (1865) = -0.052

-Conn. des Temps (1883) = +0.029
```

Blackheath: July 1889.

Preliminary Spectroscopic Survey of Southern Stars, made at the Melbourne Observatory with a Maclean direct-vision Spectroscope on the 8-inch Equatorial.

(Communicated by R. L. J. Ellery.)

This survey is a rough reconnaissance preliminary to a more thorough examination of the spectra of southern stars it is intended to make by aid of the 4-foot reflector, and higher power spectroscopes. The list contains a hundred stars examined to the present time. The star-places are brought up to the epoch 1890, and the descriptions are copied from the actual notes taken at the time by Mr. P. Baracchi, assistant, who made the observations.

The "Maclean Spectroscope" while transmitting a maximum of light has low power, and, except in the case of red stars, is insufficient for stars below the 5th magnitude. For this reason, in the spectra of many stars of the 4th and 5th magnitude of Class II. (a) (Vogel Classification) no dark lines could be seen with certainty, and these are entered as having a continuous spectrum, while there can be little doubt fine dark lines will be seen with higher spectroscopic power. The Fraunhofer lines are freely made use of in the description, more for the sake of brevity than any pretension to accurate location of the features seen in the spectrum.

It is, however, hoped that even in this preliminary form the survey, when completed, will be of great use in mapping out theoretical outlines concerning the spectra of the southern stars, also in facilitating the spectroscopic work to be done with the great telescope, and, probably the most important of all, the detection of red stars.