

TEKNOFEST 2020 ROKET YARIŞMASI KAYRA ROKET TAKIMI Atışa Hazırlık Raporu (AHR)

Takım Yapısı

Takım Yapısı

Takım Lideri: Halil ALAN (Atatürk Üniversitesi Makine Mühendisliği 3. sınıf öğrencisidir.)

Takımın kurucu üyesi olup, takımın gidişatını planlayıp kontrol eden, alınması gereken izinlerin, okul ve şirketler ile görüşmelerin ayarlanmasını sağlayan takım üyesidir.

Tasarım ve Analiz Ekibi: Halil ALAN (Atatürk Üniversitesi Makine Mühendisliği 3. sınıf öğrencisidir.)

Grubun diğer üyeleriyle birlikte senkronize bir şekilde çalışarak üretilecek olan roketin ön görülen program üzerinden tasarımı yapan ve çeşitli analiz programları yardımı ile analizlerini gerçekleştiren ekiptir.

Modelleme ve Kurtarma Ekibi: İbrahim ÇOŞKUN (Atatürk Üniversitesi Makine Mühendisliği 4. sınıf öğrencisidir.)

Fatih AKBAŞ (Atatürk Üniversitesi Makine Mühendisliği 2. sınıf öğrencisidir.)

M.Buğra UYĞUR(Atatürk Üniversitesi Makine Mühendisliği 4. sınıf öğrencisidir.)

Üretecek olduğumuz roketin kurtarma sistemi üzerinde çalışan bunun yanında üretilecek olan roketi katı modelleme programlarına aktarılarak üretim sürecine hazırlık yapan ekiptir.

Aviyonik Ekibi: Yücel BAŞER (Atatürk Üniversitesi Elektrik -Elektronik Mühendisliği 2. sınıf öğrencisidir.)

Roketin iç kısmında kalan aviyonik sisteminin belirlenmesi, montajı ve kendi üreteceğimiz uçuş bilgisayarının yazılımsal olarak kodlanmasından sorumlu ekiptir.

Benchmark Ekibi: Fatih AKBAŞ (Atatürk Üniversitesi Makine Mühendisliği 2. sınıf öğrencisidir.)

M.Buğra UYĞUR(Atatürk Üniversitesi Makine Mühendisliği 4. sınıf öğrencisidir.)

Takım için gerekli ön araştırmaları yapan, piyasada kullanılabilecek malzemelerin değerlendirmelerini ve uygun performans için fiyat/performans analizleri yapan ekiptir.

KTR'den Değişimler

Parça	KTR'den faklılığı	Nedeni	Testleri	Üretim yöntemi değiştimi	Sonucu
Bulkhead + m3 vida	Çapı arttı(0.5cm den 1 cm oldu) M3 vida yerine m6 vida kullanıldı	Güvenliği arttırmak için yapıldı önceki ölçülerde olası yük binmelerinde hasar alma durumu giderildi. roketin paraşüt açma anında aldığı şok darbelerine daha çok dayansın diye yapıldı m3 vida yerine m6 kullanıldı.	Test videolarında 0.5 cm alüminyum ve m3 vida ya testler uygulanmış ve başarı ile geçmişti 1 cm alüminyum ve m6 vida ise aldığımız değerlerin üzerinde olacaktır.	<u>D</u> eğişmedi	Stabilite 1.62 frn 1.63 olmuş statik marjin uçuş boyu 1.5- 3 arasında kalmıştır. Cp cg noktalarında rdeğişim yoktur.
Kurşun Ağırlık	5900 g dan 5000 g düşmüştür	Ağırlığımız bulkheatlerin ağırlığının artması sonucu dengelenmiştir.	-	Değişmedi	Roketin ağırlığı 26254 g dan 25963 g a düşmüştür. roketimiz 291g daha hafiftir.
Engine block (üzerinde bulunan bulkhead ve centerringler)	Üretim yöntemi yek pareden kaynağa geçildi.	Çok fazla talaş kaldırmak gerektiğinden ve üretiminin zor olmasından dolayı center ringler ler ve bulkhead engine block üzerine kaynak yapılacak.	-	Yekpare üretimden kaynağa geçildi.	Üretim kolaylaştı.

KTR'den Değişimler

Değişim

Yeni İçerik Detayı

Eski Hali Ktr'de sayfa 28

Yeni hali

Ana pc ve yedek pc arasında ki haberleşme optokuplör vasıtasıyla olmaktaydı ama yazılımlımız sayesinde iki bilgisayarda bulked kovanlarındaki rezistansa bağlı olup her bir sistem ateşleme telini tetikleyecektir . Buda bize kesin bir şekilde ayrılma sağlayacaktır.

Aradaki optokuplör kaldırılmış olup sistem birbirinden tamamen bağımsız ve birbiriyle uyumlu bir şekilde çalışmaktadır . Bu yeni bağlantısız sistemin testi yapılmış olup youtube linki yüklenmiş paylaşılmıştır.

Tritzing

Roket Alt Sistemleri

ÜRETİLECEK MALZEME GRUPLARI	TEDARİK DURUMU	ÜRETİM SÜRECİ	TAMAMLANMA ORANLARI
BURUN KONİSİ	Tedarik edildi	Üretim tamamlandı	%100
GÖVDELER	Tedarik edildi	Üretim tamamlandı	%100
AYRILMA VE KURTARMA SİSTEMİ	Tedarik edildi	Üretim tamamlandı	%100

Sipariş edilen tüm parça ve malzemeler elimize geçmiş olup tüm roket parçalarının yalnız kalibrasyon ve son uyumları düzenlenmektedir

https://youtu.be/AACrtV2uIWM

Roket Alt Sistemleri	Üretim Durumu	Tedarik Durumu	Total Üretim Yüzdeleri
Aviyonik Sistem	Ana , yedek ve faydalı yük bilgisayarlarımız üretilmiş olup sensörlerimiz ve telemetri sistemlerimizin testleri tamamlanmıştır. Uçuş bilgisayarlarının ve sensör telemetri sistemlerinin fotoğrafları ve ayrıntılı bilgi arka sayfada mevcuttur . Uçuş bilgisayarlarımız için sipariş ettiğimiz pcb'ler elimize henüz ulaşmadığından kendimiz pcb üretmiş olup sipariş ettiğimiz pcb'lerinde takibini yapmaktayız. Üretim %80 tamamlanmıştır sadece elle ürettiğimiz pcblerin uçuş bilgisayarlarımıza montajı lehimi kalmıştır bunun yanında aviyonik kabımız da hazırdır ve yedek pcb devreler beklenmektedir. Detaylı bilgi sağ üstteki linkte paylaşılmıştır.	Aviyoniğin tüm parçaları elimizde mevcuttur sadece yedek batarya siparişimiz elimize henüz ulaşmamış bulunmakta Elle ürettiğimiz baskı devrelerin yedekleri ise firmadan alınan bilgiye göre en geç 08.10.2020 tarihinde elimize ulaşacaktır. %85	%80

Roket Alt Sistemleri

Ana aviyonik pc : Sipariş ettiğimiz pcb'ler zamanında gelmediği için kendimiz üretmek zorunda kaldığımız fotoğraftaki pcb'lere ana aviyonik sistem montajı (lehimlenmesi) kalmıştır.

Faydalı yük pc : Sipariş ettiğimiz pcb'ler zamanında gelmediği için kendimiz üretmek zorunda kaldığımız fotoğraftaki pcb'lere yedek aviyonik sistem montajı (lehimlenmesi) kalmıştır.

Yedek aviyonik pc : Sipariş ettiğimiz pcb'ler zamanında gelmediği için kendimiz üretmek zorunda kaldığımız fotoğraftaki pcb'lere yedek aviyonik sistem montajı (lehimlenmesi) kalmıştır.

OpenRocket / Roket Tasarımı Genel Görünüm

Roket Alt Sistemleri Mekanik Görünümleri ve Detayları

Burun ve Faydalı Yük Mekanik Görünüm

BURUN KONİSİ CAD GÖRÜNTÜSÜ

FAYDALI YÜK CAD GÖRÜNTÜSÜ

ÜRETİLMİŞ BURUN KONİSİ GÖRÜNTÜSÜ

ÜRETİLMİŞ FAYDALI YÜK GÖRÜNTÜSÜ

Burun – Detay

Burun konimiz 5 eksenli cnc freze makinesi ile ktr üzerinde belirtilen teknik resim ile üretilmiştir. Alüminyum 7075 T6 serisi olan silindir parçamızın işlenmesi tamamlanmış olup burun kısmında et kalınlığı arttırılarak diş açılmıştır. Bu dişli kısıma m12 mapa sabitlenecek ve elastik kort bağlanacaktır. Burun konisi içerisine konumlandırılacak faydalı yükümüzün üzerine bağlanacaktır. Burun konisi üzerinde faydalı yükümüzün üzerindeki elektronik sistemi aktive edecek anahtar deliği mevcuttur. Bu delik üzerinden roket rampaya yerleştirildikten hemen sonrasında aktive edilip hazır hale getirilecektir.

Faydalı Yük ve Faydalı Yük Bölümü – Detay

Faydalı yükümüz 4 kg ağırlıkta kurşun malzeme kullanılarak alçı kalıp kullanılarak üretilmiştir. Üzerinde bulunan delikler ile mapalar sabitlenir orta kısmında bulunan elektronik devreler uçuş boyunca ölçümlediği değerleri yere inene kadar kaydetmektedir. Faydalı yükümüz burun konisi ile birlikte iniş yapacaktır. Payloadın diğer yüzünde ise ikinci bir mapa ile paraşütler bağlanacak, kurtarma bu şekilde gerçekleşecektir.

Payload iniş yaparken gerekli konum verilerini yer istasyonuna gönderecektir.

Kurtarma Sistemi Mekanik Görünüm

AYRILMA SİSTEİMİ CAD GÖRÜNTÜSÜ

ÜRETİLMİŞ AYRILMA SİSTEMİ GÖRÜNTÜSÜ

PARAŞÜTLER CAD GÖRÜNÜMÜ

Main paraşütü

Drag paraşütü

Payload paraşütü

ÜRETİLMİŞ PARAŞÜTLERİN GÖRÜNTÜSÜ

Ayrılma Sistemi – Detay

Ayrılma sistemimizde görsellerde görünen barut kovanları ile burun konisi – üst gövde, üst ve alt gövde arasındaki hacimleri basınçlandırarak ayrılmayı gerçekleştirmekteyiz. Roketimizin shoulderlarında ara geçme şekilde üretilmiş olup yüzeyden pinler ile sabitlenmektedir. Pinlerimiz karşılıklı 2 adet kullanılacaktır. Bu sayede roketin montajlanmış şekilde rijitliğini korunması planlanmaktadır.

Barut kovanları içerisinde 3 gr kara barut kullanılacaktır. Barutlarımız kapsül şeklinde hazırlanıp roket motoru takılmadan hemen önce kovanlara yerleştirilecek hemen ardından aviyonik ile bağlantısı kurulacaktır.

Paraşütler – Detay

Paraşütlerimiz 3 adet olup boyutları 120 cm, 145 cm ve 200 cm olarak belirlenmiştir. Payload ve burun konisi taşıyacak olan paraşütümüz kırmızı renkte 145 cm çapta elastik cord ile Payload üzerine bağlanacaktır. Payloadın düşüş hızı 8.93 m/s olarak hesaplanmıştır. Gövdelerimizin kurtarılmasında kullanılacak drag paraşütümüz turuncu renkte olup 120 cm çaptadır. Sürüklenme hızımız ise 17.46 m/s olarak hesaplanmıştır. Main paraşütümüz ise kırmızı renkte ve 200 cm çapta üst ve alt gövdeler arasında konumlandırılmıştır. İniş hızı ise main paraşüt açıldıktan sonra 8.97 m/s olarak hesaplanmıştır.

Kurtarma sistemimizde kara barut kullanıldığından dolayı paraşütlerimizi yanmaz kumaştan üretilen küçük paraşüt çantaları içerisinde muhafaza edilecektir. Bu çantalar paraşütlerin açılmasında hiçbir engel oluşturmamaktadır.

Tüm paraşütlerimiz ripstop nylon malzemeden üretilmiş olup cordlar ile bağlı kalacak kısımları 14 adet olacak şekilde dikilmiştir.

Aviyonik Sistem Mekanik Görünüm

Üretilmiş Aviyonik Sistem Görüntüsü

Üretilmiş Devre Görüntüsü

Aviyonik Sistem – Detay

Ana Bilgisayar : Ana bilgisayarımızın bütün testleri başarılı bir şekilde gerçekleştirilmiştir ve yapılan testlerden istenilen sonuçları da almış bulunmaktayız. Ana bilgisayarımızın tüm sensör ve sistemleri halihazırda elimizde mevcut olup ana sistem şuan da hazırdır sadece oluşturulan pcb'lere lehimlenme işi kalmıştır. Üretim Oranı %80

Yedek Bilgisayar : Yedek bilgisayarımızda bütün testleri başarılı bir şekilde geçmiş bulunmaktadır ve istenilen verilerde almış bulunmaktayız. Yedek bilgisayarımızın tüm sensör ve sistemleri halihazırda elimizde mevcut olup sistem şuan da hazırdır sadece oluşturulan pcb'lere lehimlenme işi kalmıştır . Üretim Oranı %80

Faydalı Yük Bilgisayar : Bu sisteminde testlerini gerçekleştirmiş olup istenilen verileri almış bulunmaktayız. Sistem hali hazırda elimizde mevcut ve hazır halde bulunmaktadır sadece oluşturulan pcb'lere lehimlenme işi kalmıştır. Üretim

Oranı %80

Aviyonikte tüm sistemler hazır olup aviyonik kabına yerleştirilmiştir . Sadece Aviyonik kabında ufak çapta iyileştirme yapılacaktır . Bu iyileştirme ise 05.08.2020'de bitmiş olacaktır . Üretim Oranı İyileştirme ile %80

Kanatçıklar Mekanik Görünüm

KANATÇIK CAD GÖRÜNTÜSÜ

Kanatçıklar – Detay

Kanatçıklarımız 2 mm alüminyum 7075 t6 seri'den lazer kesim ile kesilmiştir. Alt gövde üzerine sabitlenmesi gereken fin tabsları ise kaynak kullanarak birleştirilmiştir. Bu sayede kanatçıkların roket alt gövdesine vidalanması ve sabit bir şekilde üzerine gelecek olan kuvvetlere dayanması planlanmaktadır.

4 adet üretilmiş olup üzerindeki vida delikleri m4 olarak seçilmiştir. Gövde üzerine m4 vida ve somunlar yardımıyla sabitlenecektir.

Roket Genel Montaji

Roketimizin montajı sırası ile şu şekilde yapılacaktır;

- 1. Kanatçıkların alt gövdeye monte edilmesi,
- 2. Sabitleme disklerinin monte edilmesi,
- 3. Engine block ve ağırlığın alt gövdeye monte edilmesi,
- 4. Payloadın burun konisine bağlanıp yerleştirilmesi,
- 5. Üst gövdeye bukheadın montajlanması (burun konisine yakın olan),
- 6. Payloadın üst gövdeye yerleştirilmesi,
- 7. Diğer bulkheadın montajlanması,
- 8. Elastik cordların mapalara bağlanması,
- 9. Paraşütlerin katlanıp yanmaz bez içerisinde yerlerine konulması,
- 10. Gövdelerin ve burun konisinin shoulder kısımlarının birleştirilmesi,
- 11. Pinlerin takılması,
- 12. Barutların üst gövdedeki kapakçıktan kovanlara yerleştirilip aviyoniklere bağlanması,
- 13. Kapakçığın montajlanması,
- 14. Motorun engine block içerisine sürülüp kelepçenin sıkılması ile Roketimizin montajı tamamen yapılmış olacaktır.

Roket Genel Montaji

Bir önceki sayfada bulunan liste ile roketin tüm montaj videosu altta verilmiştir.

https://www.youtube.com/watch?v=gmf64P0dDww

Kara barut montaj videosu altta verilmiştir.

https://www.youtube.com/watch?v=KZgJh0A7dPI

Roket Motoru Montajı

Roket motorumuz alt gövde içerisinde sabitlenmiş olan engine block üzerinde roketin motorunun gireceği tarafta silindir alüminyum boru kesikli şekilde bulunmaktadır. Engine block üzerinde katı yakıtlı roket motorumuzun gireceği kısımdan çentik atılmıştır. Bu kısımlar roket motoru yerleştirildikten hemen sonra üzerinde bulunan kelepçe sıkılarak motorumuz sabitlenmiş olacaktır. Bahsettiğimiz engine block ve yanmış motor ile engine block montaj videosu altta verilmiştir.

https://youtu.be/rqdERisNg8o

Atış Hazırlık Videosu

Roketimiz yarışmanın 2. gününde üst gövdedeki kapakçık açılarak altimeter Two yerleştirilip aviyonik sistem aktive edilecektir. Payload ise üzerinde bulunan buton ile aktifleştirilecektir. Bahsedilen tüm işlemler 10 dakikadan kısa süre içerisinde gerçekleşecek ana bilgisayar ve yer istasyonu bu süre zarfında bağlantıları hazır hale gelecektir. Video linkimiz aşağıda verilmiştir.

https://youtu.be/zPIIKxPwRB0

Yapısal/Mekanik mukavemet testleri

Testler	Test yöntemi	Test düzenekleri	Testlerden elde edilen sonuçlar	Test videoları ve saniyeleri
1. KARBON FIBER BURULMA TESTİ	Numune düzenek üzerinde ağırlıklar ile burulmaya maruz bırakıldı	Mengene üzerine sabitlenen numuneye anahtar bağlanıp ağırlık arttırma	Karbon fiber malzememiz üzerine uygulanan 15 kg lık burulma kuvvetine karşı dayanıklıdır.	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 00:08
2. ALÜMİNYUM BURULMA TESTİ	Numune düzenek üzerinde ağırlıklar ile burulmaya maruz bırakıldı	Mengene üzerine sabitlenen numuneye anahtar bağlanıp ağırlık arttırma	Alüminyum numunemiz 15 kg'lık burulma kuvvetinde burulma gerçekleştirmiştir.	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 01:59
3. ALÜMİNYUM EĞİLME TESTİ	Numune düzenek üzerinde ağırlıklar ile eğilmeye maruz bırakıldı	Mengene üzerine sabitlenen numune üzerinde ağırlık yükleme	Alüminyum 7075 t6 numunemiz 15 kg ağırlığa kadar eğilmeye dayanmaktadır.	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 04:57
4. BULKHEAD EĞİLME TESTİ	Bulkhead mengene ile sıkıştırılıp üzerine ağırlık eklenerek eğilmeye maruz bırakıldı	Mengeneye bağlı bulkhead üzerindeki anahtara ağırlık yükleme	Alüminyum 7075 t6 malzemeden olan bulkhead 59 kg ağırlığa kadar dayandı Bulkhead üzerinde hiçbir deformasyon gözlenmedi. Test videolarında kullanılan bulkhead et kalınlığı 5 mm iken gerçek roket üzerinde kullanılacak bulkhead 10 mm olarak revize edilmiştir.	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 06:00
5. M3 HAVŞA BAŞLI VİDA EĞİLME TESTİ	Bulkhead'a monte edilmiş m3 havşa başlı vida üzerine ağırlık bırakıldı	Bulkhead üzerindeki vidanın uç kısmından ağırlık arttırma işlemi	M3 havşa başlı vidamız 20 kg ağırlığa dayanmaktadır. Bulkhead üzerinde kullanılması planlanan vidalarımızın boyutu m6 olarak revize edilmiştir. Paraşütlerin açılması ile bulkhead'ların mapaların ve özellikle vidalar üzerine gelecek yüklere tamamen dayanması planlanmaktadır.	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 08:37
6. SHOCK CORD DAYANIM TESTI	Yüksek bir yere bağlanan shock cord diğer ucundan takım üyelerimizin kendi ağırlıkları kullanıldı	Shock cord binanın merdivenine bağlanıp aşağıya sarkıtıldı üzerine farklı ağırlıktaki kişiler çıkarıldı	Roketimizin bağlantı elemanı olan shock cord üzerinde oluşacak gerilmelere dayanmaktadır. Deneyimiz sırası ile 39 kg , 76 kg, 86 kg ve 102,7 kg ağırlığa dayanmaktadır. Roketin ağırlığının 4 katına kadar dayanıklıdır.	https://www.youtube.com/watch?v=qLSrodgsz-Q sure = 10:26

Yapısal/Mekanik mukavemet testleri

Testler	Test yöntemi	Test düzenekleri	Testlerden elde edilen sonuçlar	Test videosu ve süresi
7. KARBON FİBER EĞİLME TESTİ	Numune üzerine ağrılıklar ile eğilmeye maruz bırakıldı	Mengene üzerine sıkıştırılan numune üzerinde ağırlık arttırma	Karbon fiber malzememiz 20 kg ağırlığa deformasyon olmadan dayanmaktadır.	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 13:07
8. PLA PİM DAYANIM TESTİ	Hazırlanan düzenek üzerinde kesme kuvveti oluşturuldu	İki birbirinden ayrı ahşap üzerine pin'in geçeceği deliğe sabitleyip alt parçaya ağırlık yüklemek	Pinlerimiz 12,5 – 15 kg aralığında kesilmiştir. Roketimizin tüm parçalarını bir arada tutabilecek güçte , barutun patlamasından hemen sonra kesilecek kadar gevrek olarak hazırlanmıştır. Testi başarı ile geçmiştir.	<pre>https://www.youtube.com/watch?v=qLSrodgsz-Q süre =14:20</pre>
9. BURUN KONİSİ DÜŞÜRME TESTİ	5 metreden serbest düşüş	5 metreden bırakıldı	Parça herhangi bir deformasyona uğramamıştır	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 16:21
10. KANATÇIK DÜŞÜRME TESTİ	5 metreden serbest düşüş	5 metreden bırakıldı	Parça herhangi bir deformasyona uğramamıştır	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 16.44
11. ÜST GÖVDE DÜŞÜRME TESTİ	5 metreden serbest düşüş	5 metreden bırakıldı	Parça herhangi bir deformasyona uğramamıştır	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 17:08
12. ENGİNE BLOCK DÜŞÜRME TESTİ	5 metreden serbest düşüş	5 metreden bırakıldı	Parça herhangi bir deformasyona uğramamıştır	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 17:31
13. ALT GÖVDE DÜŞÜRME TESTİ	5 metreden serbest düşüş	5 metreden bırakıldı	Parça herhangi bir deformasyona uğramamıştır	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 17:57

Yapısal/Mekanik mukavemet testleri

Testler	Test yöntemi	Test düzenekleri	Testlerden elde edilen sonuçlar	Test videosu ve süresi
14. BURUN KONİSİ SHOULDER DAYANIM BASMA TESTİ	Burun konisi üzerine takım arkadaşlarımızın birinin basması	Burun konisinin sabitlenmesi için ahşap bir malzeme kullanılması	Burun konisi shoulder kısmına 78 kg ağırlığına dayanmaktadır. Şekil değişikliği veya deformasyon görülmemektedir.	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 18:24
15. ÜST GÖVDE SHOULDER DAYANIM- BASMA TESTİ	Üst gövde shoulder Kısımına takım arkadaşımızın basması	Üst gövde shoulder'in kuvvetin tamamını alacağı düz yüzeyde tutmak	Üst gövde shoulder kısmı 78 kg ağırlığa dayanmış herhangi bir deformasyon veya şekil değişikliği görülmemektedir.	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 19:04
16. ENGİNE BLOCK DAYANIM-BASMA TESTİ	Engine block üzerine takım arkadaşımızın basması	Engine block üzerine basılacak kısmın altının yükseltilmesi	Engine block üzerinde 78 kg ağırlığa dayanmış olup herhangi bir deformasyon veya şekil değişikliği görülmemektedir.	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 19:48
17. FİN TAPS DAYANIM TESTİ	Fin taps kısmından sabitlenecek kanatçıkların ağırlık ile gerinmesinin ölçülmesi	Sabitlenen fin taps üzerine ağırlık eklenmesi	Kanatçıklar üretiminde kullanılan alüminyum 7075 t6 seri ansys analizlerinde gördüğümüz değerlerin 4 katına kadar dayanmaktadır.	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 20:52
18. ISIL KARAKTERİZASYON TESTİ	Aluminyum ve karbon fiber numunelerin su içerisinde kaynatılması ve yüzeyinin incelenmesi	Küçük bir tencerede 10 dk kayanatılan su içerisindeki numunelerin soğuk suya bırakılarak yüzeylerinin incelenmesi	Alüminyum ve karbon fiber üzerinde gözle görülür boyutta şekil değişikliğine rastlanmadı. Atış alanında malzemelerimiz etkilenmeyecekti .	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 24:03
19. KARBON FİBER DARBE TESTİ	Sivri uçlu çelik ucun 90 derecede sabitlenip ardından ağırlık bırakılması	Ahşap malzeme üzerine sabitlenen numunenin üzerine sivri uç yerleştirilmiş ağırlık ile darbe oluşturma	Darbelerin oluştuğu noktanın arka tarafında roketin iç aksamlarına zarar vermeyecek derecede deformasyon gerçekleşmiştir. Bu durum roket uçuşuna herhangi bir zarar vermeyecektir.	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 24:40

Yapısal/Mekanik mukavemet testleri

Testler	Test yöntemi	Test düzenekleri	Testlerden elde edilen sonuçlar	Test videosu ve süresi
20. ALÜMİNYUM DARBE TESTİ	Sivri uçlu çelik ucun 90 derecede sabitlenip ardından ağırlık bırakılması	Ahşap malzeme üzerine sabitlenen numunenin üzerine sivri uç yerleştirilmiş ağırlık ile darbe oluşturma	Alüminyum darbe aldığı kısım haricinde deformasyon görülmemektedir. Burun konimiz engine block ve kanatçıklarımız bu durumda kurtarma esnasında darbelere karşı dayanım gösterecektir.	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 25:09
21. KARBON FİBER ÇEKME TESTİ	Çekme testi makinası kullanılmıştır	Numune makinanın çenesine yerleştirilerek sıkıştırılır ve çekilir	Ansys verilerine göre üzerine düşecek kuvvetin 4 katından fazlasına dayanmaktadır.	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 25:37
22. ALÜMİNYUM ÇEKME TESTİ	Çekme testi makinası kullanılmıştır	Numune makinanın çenesine yerleştirilerek sıkıştırılır ve çekilir	Ansys verilerine göre üzerine düşecek kuvvetin 4 katından fazlasına dayanmaktadır.	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 26:05
23. KARBON FİBER BASMA TESTİ	Basma testi makinası kullanılmıştır	Numune makinanın çenesine yerleştirilerek basılır	Ansys verilerine göre üzerine düşecek kuvvetin 4 katından fazlasına dayanmaktadır.	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 26:29
24. ALÜMİNYUM BASMA TESTİ	Basma testi makinası kullanılmıştır	Numune makinanın çenesine yerleştirilerek basılır	Ansys verilerine göre üzerine düşecek kuvvetin 4 katından fazlasına dayanmaktadır.	https://www.youtube.com/watch?v=qLSrodgsz-Q süre = 26:40

Yapılan tüm yapısal testler ışığında seçilen malzemeler gerekli yükler altında yüksek performans göstermekte gerekli görevleri yapabilir niteliktedir.

Kurtarma sistemi testleri

Testler	Test yöntemi	Test düzenekleri	Testlerden elde edilen sonuçlar	Test videosu ve süresi
1.BURUN KONİSİ-ÜST GÖVDE AYRILMA	Üst gövde ile burun konisi arasındaki hacmin basınçlandırılması	Ahşap sabitlenmiş V şekline ipler ile bağlanmış olan burun ve alt gövdeler arasında patlamanın gözlemlenmesi	Ayrılma sorunsuz olarak gerçekleştirilmiştir.	https://www.youtube.com/watch?v=MBJylQxsmgl Süre = 00:08
2.ÜST VE ALT GÖVDE AYRILMA	Üst ve alt gövdeler arasındaki hacmin basınçlandırılması	Ahşap sabitlenmiş V şekline ipler ile bağlanmış olan üst ve alt gövdeler arasında patlamanın gözlemlenmesi	Ayrılma sonrasında barut ayarlamaları yapılmıştır.	https://www.youtube.com/watch?v=MBJylQxsmgl Süre = 01:15
3. PATLAYICI MEKANİK KISMIN HASAR TESPİTİ	Bulkhead üzerinde oluşacak patlamayı basınçsız ortamda gerçekleştirmek	Patlama halinde ön kısmında bir engel konularak patlamanın gözlemlenmesi	Patlama sonrasında bulkheadlar üzerinde hiçbir deformasyon görülmemiştir.	https://www.youtube.com/watch?v=MBJylQxsmgl Süre = 01:26
4. PARAŞÜT AÇILMA TESTLERİ	Yüksekten bırakılarak ve araç ile çekilerek açılma süreleri gözlemlemek	Yüksekten bırakılarak ve araç ile çekildikten sonra çekilen video üzerinden açılma sürelerinin tayin edilmesi	Paraşütlerimiz yüksekten bırakılırken sırası ile 1,572 sn ve 1,140 sn açılma sürelerine sahiptir. Araç ile çekilirken ise 1,676 sn ve 1,966 sn açılma sürelerine sahiptir. Hedeflenen 4 sn'li açılma süresinden kısa süreler görülmüştür.	https://www.youtube.com/watch?v=17BdN9SPBc0

Testler	Test yöntemi	Test düzenekleri	Testlerden elde edilen sonuçlar	Test videosu ve süresi
Aviyonik Sistem Yazılım	Proteus programından yazlımın çalıştığının kontrolünün sağlanması	Bilgisayar üzerinden test edilmiştir.	Bu test sonucunda yazılımımızın sistemimiz üzerindeki sensörlerden istenilen verileri aldığını doğrulayıp yazılımımızın çalıştığını teyit etmiş bulunmaktayız.	https://www.youtube.com/watch? v=RurFXZ6eZ7k
Aviyonik Sistem Donanım Bmp-280 basınç sensörü testi	Bmp-280 basınç sensörümüzün basınç kabında teste tabi tutulması . Basınç kabımıza yerleştirilen sensörümüzü vakuma tabi tutarak uygun irtifa, basınç ve sıcaklık değerlerinin kontrolü sağlanmıştır .	1-)Vakum kabı 2-) Elektrik süpürgesi 3-)Bilgisayar	Bu test sonucunda sensörümüzün basınç sıcaklık ve irtifa değerlerini doğru bir şekilde aktardığını teyit etmiş bulunmaktayız .	https://www.youtube.com/watch? v=Is90Re53rcs Süre= 00:08
Aviyonik Sistem Donanım Gyro ve Eğim sensörü testi	Bilgisayara bağladığımız gyro ve eğim sensörümüzün açısal konumunu elimizle değiştirerek bilgisayar ekranımızdan sensörümüzün bu değişiklikleri algılayıp doğru bir şekilde aktarıp aktarmadığı test edilmiştir.	1-)Bilgisayar	Testimizde gyro ve eğim sensörümüzün doğru eksen bilgilerini istenilen zaman aralığında algılayıp bize iletmiştir.	https://www.youtube.com/watch? v=Is90Re53rcs Süre = 02:06
Aviyonik Sistem Donanım Buzzer Batarya testi	Kurulan devremize bağladığımız devre elemanlarını kontrolü .	Devre elemanlarının bağlanması	Bu testimizde kurduğumuz devreye bağlı buzzerımızın istenilen düzey ve aralıklarda ses verdiğini ve devremizi besleyen bataryamızında yeterli güçte olduğunu tüm devre elemanlarını çalıştırabildiği test edilmiş ve onaylanmıştır.	https://www.youtube.com/watch? v=Is90Re53rcs Süre = 04:00

Testler	Test yöntemi	Test düzenekleri	Testlerden elde edilen sonuçlar	Test videoları
Aviyonik Sistem Donanım (Yeni Test video linki eklenmiştir) Ana ve yedek uçuş bilgisayarlarının birlikte uyumlu bir şekilde çalışabilirlik testi	Vakum kabı içerisine yerleştirilen ana ve yedek uçuş bilgisayarlarının eş zamanlı olarak çalıştırılıp her uçuş bilgisayarında 1. ve 2. ayrılmayı temsil eden ledler kullanılarak ana bilgisayarın irtifa bilgisine, yedek bilgisayarımızında 1. ayırmayı eğim 2. ayrımayıda içine gömülü barometreye verilerine göre gerçekleştirmesi gereken vakum kabı testine tabi tutulmuştur.	1-)Ana ve yedek uçuş bilgisayarları2-)Bilgisayar3-) Vakum kabı	Bu test sonucunda ise vakum kabına yerleştirilen ana ve yedek uçuş bilgisayarları birlikte uyumlu bir şekilde çalışmış olup 2 ayırmayı da doğru ve eş zamanlı olarak başarıyla gerçekleştirmişlerdir.	https://www.youtube.com/watch?v=q s2WIA8MpO0
Telekominikasyon Testleri Gps	Açık alanda test ettiğimiz GPS'imizin aldığı konum verilerini bilgisayarımıza aktararak kontrol edilmesi.	1-) Bilgisayar	Bu test sonucunda GPS'simiz +-5 metre hatayla konum verilerimizi aktarmış olup testi başarıyla geçmiştir.	https://www.youtube.com/watch?v=aj 7AZWkgL0c
Telekominikasyon Testleri Lora SX 1278 Haberleşme Modülü	+3.5 km mesafeyle yerleştirdiğimiz alıcı verici modülümüzden gps verilerini gönderip vericiden alınması .	1-) 2 Bilgisayar 2-) Alıcı ve verici modülleri + anten	Bu testimizde ise haberleşme modüllerimizin gps verilerini doğru bir şekilde 3,5 km mesafeden alıcımıza iletmiş olup veri iletim testini başarıyla gerçekleştirmiştir.	https://www.youtube.com/watch?v=aj 7AZWkgL0c

Yarışma Alanı Planlaması

Fırlatma süreci	Elektronik devrelerin aktifleştirilmesi Motorun yüklenmesi ve ateşlenmesi	Roketin rampaya taşınması	Fırlatma Sonrası Süreç ve Kurtarma
İbrahim Çoşkun	Yücel Başer	M.Buğra Uyğur	Halil Alan
Fatih Akbaş	Halil Alan	Fatih Akbaş	Yücel Başer

Süreçler	Ne Yapacaklar
Fırlatma süreci	İlgili takım üyeleri roketin son halini hazır hale getirmekle sorumludurlar
Roketin rampaya taşınması	Roketi rampaya taşır ve roketi alıp rampaya yerleştirirler.
Elektronik devrelerin aktifleştirilmesi Motorun yüklenmesi ve ateşlenmesi	Motoru engine block içerisine yerleştirip engine bloğun uç kısmında bulunan çelik kelepçe ile sabitlerler. Ana bilgisayar yedek bilgisayar ve faydalı yük devrelerini roketin üzerinde bulunan açma kapama anahtarlarıyla aktifleştiriler ve roket atışa hazır hale gelir.
Fırlatma Sonrası Süreç ve Kurtarma	kurtarma ekibimizin roketten alacağı konum verileri ile roketin konumunu saptayıp roketi almak için harekete geçerler.

Yarışma Alanı Planlaması

Risk Analizi

Riskler	Nasıl giderilecek?
Gövde ve burun konimiz üzerinde bulunan delikler açılmamıştır.	CNC torna tezgahında açılması gereken delikler bütün tezgahların dolu olmasından ötürü (ücreti ödendi) 07.08.2020 gövdelerimiz üzerine delikler açılmış elimize ulaşmış olacaktır.
Pcb çizimini yapıp siparişini verdik Henüz ulaşmadı.	Uçuş bilgisayarlarımız için sipariş ettiğimiz pcb'ler elimize henüz ulaşmadığından kendimiz pcb üretmiş olup sipariş ettiğimiz pcb'lerinde takibini yapmaktayız.
Yedek bataryalar sipariş edildi	Elimizde zaten bataryalar mevcut bir problem olmaması adına sipariş ettiğimiz bataryalar gelmediği varsayılsa bile herhangi bir problemle karşılaşmayacağız. 07.08.2020 tarihine kadar elimize ulaşmış olur.

Bunlar hariç Bütün sistemimiz parçalarımız üretilmiş ve elimize ulaşmıştır...

Yarışma Alanı Planlaması

Acil durum eylem planı

Süreçler	Olması gerekenler	Acil durum eylem planı
Engine block motor montaji	Motor sorunsuz şekilde engine block üzerine sabitlenmelidir.	Aksi durumda yedek engine block kullanılacaktır.
Barut montajı	Barut yeterli miktarda kullanılacak ve montajlanması yapılacaktır.	Aksi durumda montajda oluşabilecek problemlerde yedek barut kapsülleri kullanılacaktır
Kanatçık montajı	Kanatçıklar sorunsuz bir şekilde simetrik olarak montajlanacaktır.	İnce et kalınlığına sahip kanatçıklarımız eğilme bükülme gibi darbe alması sonucu ekseninde değişikliğe neden olacak durumlarda yedek kanatçıklar kullanılacaktır.
Aviyonik pil durumu	Aviyonik üzerinde bulunan pillerin uçuş ve kurtarma sürecinde ana ve yedek bilgisayarı beslemesi beklenmektedir.	Pil durumu zayıf olan bataryalar şarj edilecek atış alanında böyle bir sorunla karşılaşılırsa aviyonik sorumlusu yedek pilleri aviyonik kabı içerisine montajlayacaktır.