Please note, all Griffiths problems come from our class text, the second edition.

1. Griffiths 2.17

•Problem 2.17 In this problem we explore some of the more useful theorems (stated without proof) involving Hermite polynomials.

(a) The Rodrigues formula says that

$$H_n(\xi) = (-1)^n e^{\xi^2} \left(\frac{d}{d\xi}\right)^n e^{-\xi^2}.$$
 [2.86]

Use it to derive H_3 and H_4 .

(b) The following recursion relation gives you H_{n+1} in terms of the two preceding Hermite polynomials:

$$H_{n+1}(\xi) = 2\xi H_n(\xi) - 2n H_{n-1}(\xi).$$
 [2.87]

Use it, together with your answer in (a), to obtain H_5 and H_6 .

2. The Harmonic Oscillator

In this problem, we will consider a particle in the simple harmonic oscillator potential, which is the potential for a mass on a spring:

$$V(x) = \frac{1}{2}m\omega^2.$$

Later, you will learn how to obtain the energy eigenfunctions and energy eigenvalues. But for now, we will give them to you. The (normalized) energy eigenfunctions are

$$\psi_n(x) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) \exp\left(-\frac{m\omega x^2}{2\hbar}\right), \quad n = 0, 1, 2...$$

where $H_n(z)$ are the Hermite polynomials, which are defined in general by

$$H_n(z) = (-1)^n e^{z^2} \frac{d^n}{dz^n} (e^{-z^2}),$$

where $z=\sqrt{\frac{m\omega}{\hbar}}x$ in our case. For your convenience, the first few Hermite polynomials are

$$H_0(z) = 1$$

$$H_1(z) = 2z$$

$$H_2(z) = 4z^2 - 2$$

$$H_3(z) = 8z^3 - 12z$$

$$H_4(z) = 16z^4 - 48z^2 + 12.$$

(a) Write down $\psi_0(x)$, $\psi_1(x)$, and $\psi_2(x)$, and show that they are solutions to the time-independent Schödinger equation with energies $E_0 = \frac{1}{2}\hbar\omega$, $E_1 = \frac{3}{2}\hbar\omega$, and $E_2 = \frac{5}{2}\hbar\omega$, respectively.

(b) A particle begins at t = 0 with the (normalized) wavefunction

$$\Psi(x,t=0) = \frac{2}{\sqrt{3}\pi^{1/4}} \left(\frac{m\omega}{\hbar}\right)^{5/4} x^2 \exp\left(-\frac{m\omega x^2}{2\hbar}\right)$$

. Write this state in terms of the energy eigenfunctions $\psi_n(x)$.

- (c) What is the wavefunction of the particle at a later time t? Keep your answer in terms of the energy eigenfunctions $\psi_n(x)$.
- (d) What is the expectation value of energy of the state $\Psi(x,t)$ as a function of time? [Hint: How does the Hamiltonian operator appear in the time-independent Schrödinger equation? There is no need to write out the explicit form of $\psi_n(x)$.]

3. Griffiths 2.42

Problem 2.42 Find the allowed energies of the half harmonic oscillator

$$V(x) = \begin{cases} (1/2)m\omega^2 x^2, & \text{for } x > 0, \\ \infty, & \text{for } x < 0. \end{cases}$$

(This represents, for example, a spring that can be stretched, but not compressed.) *Hint:* This requires some careful thought, but very little actual computation.

4. Griffiths 3.15

Problem 3.15 Show that two noncommuting operators cannot have a complete set of common eigenfunctions. *Hint:* Show that if \hat{P} and \hat{Q} have a complete set of common eigenfunctions, then $[\hat{P}, \hat{Q}]f = 0$ for any function in Hilbert space.

5. Griffiths 3.22

Problem 3.22 Consider a three-dimensional vector space spanned by an orthonormal basis $|1\rangle$, $|2\rangle$, $|3\rangle$. Kets $|\alpha\rangle$ and $|\beta\rangle$ are given by

$$|\alpha\rangle = i|1\rangle - 2|2\rangle - i|3\rangle, \quad |\beta\rangle = i|1\rangle + 2|3\rangle.$$

- (a) Construct $\langle \alpha |$ and $\langle \beta |$ (in terms of the dual basis $\langle 1 |$, $\langle 2 |$, $\langle 3 |$).
- (b) Find $\langle \alpha | \beta \rangle$ and $\langle \beta | \alpha \rangle$, and confirm that $\langle \beta | \alpha \rangle = \langle \alpha | \beta \rangle^*$.
- (c) Find all nine matrix elements of the operator $\hat{A} \equiv |\alpha\rangle\langle\beta|$, in this basis, and construct the matrix **A**. Is it hermitian?