Lecture 3

Most modern optimization methods are iterative: they generate a sequence of points x_0, x_1, \ldots in \mathbb{R}^d in the hope that this sequences will converge to a local or global minimizer x^* of a function f(x). A typical rule for generating such a sequence would be to start with a vector x_0 , chosen by an educated guess, and then for $k \ge 0$, move from step k to k+1 by

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k,$$

in a way that ensures that $f(x_{k+1}) \le f(x_k)$. The parameter α_k is called the *step length*, while p_k is the *search direction*. In this lecture we discuss one such method, the method of Gradient descent, or steepest descent.

3.1 Gradient descent

In the method of gradient descent, the search direction is chosen as

$$\boldsymbol{p}_k = -\nabla f(\boldsymbol{x}_k). \tag{3.1}$$

To see why this makes sense, let p be a direction with $||p||_2 = 1$ and consider the Taylor expansion

$$f(\mathbf{x}_k + \alpha \mathbf{p}) = f(\mathbf{x}_k) + \alpha \langle \mathbf{p}, \nabla f(\mathbf{x}_k) \rangle + O(\alpha^2).$$

Considering this as a function of α , the rate of change in direction \boldsymbol{p} at \boldsymbol{x}_k is the derivative of this function at $\alpha = 0$,

$$\frac{df(\boldsymbol{x}_k + \alpha \boldsymbol{p})}{d\alpha}|_{\alpha=0} = \langle \boldsymbol{p}, \nabla f(\boldsymbol{x}_k) \rangle,$$

also known as the *directional derivative* of f in the direction p. This formula indicates that the rate of change is *negative*, and we have a *descent direction*, if $\langle p, \nabla f(x_k) \rangle < 0$. The Cauchy-Schwarz inequality gives the bounds

$$-\|p\|_2\|\nabla f(x_k)\|_2 \le \langle p, \nabla f(x_k)\rangle \le \|p\|_2\|\nabla f(x_k)\|_2.$$

We see that the rate of change is the smallest when the first inequality is an equality, which happens if

 $\boldsymbol{p} = -\frac{\nabla f(\boldsymbol{x}_k)}{\|\nabla f(\boldsymbol{x}_k)\|_2}.$

In making a step $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$, the part of \mathbf{p}_k that is of interest is only the direction, not the size: the latter can be adjusted using the step length parameter α_k . We can therefore choose \mathbf{p}_k as in (3.1) as the direction of steepest descent.

Step length selection

The step length can then be chosen as the minimizer of the function

$$\alpha \mapsto \varphi(\alpha) := f(\mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k)).$$

In practice minimizing this function is not always the most efficient (or even possible) thing to do. One would rather choose a step length that satisfies some criteria that ensure that the sequence x_k converges to a minimizer x^* under suitable conditions on a function f. One such set of conditions are the Armijo-Goldstein conditions, which state that a step length α should satisfy

$$\varphi(0) + (1 - c) \cdot \alpha \cdot \varphi'(0) \le \varphi(\alpha) \le \varphi(0) + c \cdot \alpha \cdot \varphi'(0). \tag{3.2}$$

for a constant $c \in (0, 1/2)$ (typically of order 10^{-4}). Note that

$$\varphi(0) = f(\mathbf{x}_k), \quad \varphi(\alpha) = f(\mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k)), \quad \varphi'(0) = -\|\nabla f(\mathbf{x}_k)\|_2^2,$$

so that the inequalities (3.2) can be written equivalently (after some rearranging) as

$$c\alpha\|\nabla f(\boldsymbol{x}_k)\|_2^2 \leq f(\boldsymbol{x}_k) - f(\boldsymbol{x}_k - \alpha\nabla f(\boldsymbol{x}_k)) \leq (1-c)\alpha\|\nabla f(\boldsymbol{x}_k)\|_2^2$$

We explain these inequalities.

- 1. The right bound in (3.2) is a *sufficient decrease condition*: it ensures that $f(x_{k+1})$ not only decreases, but decreases enough to converge to a local minimum. To see why this condition is necessary, consider the function $f(x) = x^2 1$ and the sequence $x_k = \sqrt{1 + 1/k}$ for $k \ge 1$. Clearly, the sequence $f(x_k) = 1/k$ decreases, but fails to converge to the minimizer f(0) = -1.
- 2. As the right bound can always be satisfied when α is small enough, the left-hand side is there to ensure that the step-length is not too short. A popular alternative is to replace the left-hand side by the *curvature condition* $\varphi'(\alpha) \ge \tilde{c}\varphi'(0)$ for some $\tilde{c} \in (c,1)$, leading to what is know as the Wolfe conditions, but we will not discuss these at this point.

Example 3.1. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(\mathbf{x}) = x_1^2 + x_2^2$. The gradient is $\nabla f(\mathbf{x}) = 2\mathbf{x}$, and the φ function at $\mathbf{x}_k = (1,1)^\mathsf{T}$

$$\varphi(\alpha) = f(\mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k)) = 2(1 - 2\alpha)^2, \quad \varphi'(\alpha) = -8(1 - 2\alpha).$$

3

The Armijo-Goldstein conditions (3.2) then state that we can choose α such that

$$2(1-4(1-c)\alpha) \le 2(1-2\alpha)^2 \le 2(1-4c\alpha).$$

For the choice c = 1/4, the valid interval is part of the *x*-axis delimited by the vertical lines in Figure 3.1. The optimal step length in this case would be $\alpha = 0.5$.

Figure 3.1: Choosing a step length.

Linear least squares

An important special case is when the function has the form

$$f(\mathbf{x}) = \frac{1}{2} \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_2^2.$$

Recall from Problem (1.5) that the Hessian is symmetric and positive semidefinite, with the gradient given by

$$\nabla f(\boldsymbol{x}) = \boldsymbol{A}^{\mathsf{T}} (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}).$$

The method of gradient descent proceeds as

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \boldsymbol{\alpha}_k \boldsymbol{A}^{\top} (\boldsymbol{A} \boldsymbol{x}_k - \boldsymbol{b}).$$

To find the best α_k , we compute the minimum of the function

$$\alpha \mapsto f(\boldsymbol{x} + \alpha \boldsymbol{A}^{\mathsf{T}}(\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x})).$$
 (3.3)

If we set $r := A^{T}(b - Ax)$ and compute the minimum of (3.3) by differentiating, we get the step length

$$\alpha = \frac{r^{\mathsf{T}}r}{r^{\mathsf{T}}A^{\mathsf{T}}Ar}.$$

The gradient descent algorithm for the linear least squares problem proceeds by first computing $\mathbf{r}_0 = \mathbf{A}^{T}(\mathbf{b} - \mathbf{A}\mathbf{x}_0)$, and then at each step

$$\alpha_k = \frac{\mathbf{r}_k^{\mathsf{T}} \mathbf{r}_k}{\mathbf{r}_k^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{r}_k}$$
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{r}_k$$
$$\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{r}_k.$$

Does this work? How do we know when to stop? It is worth noting that the residual satisfies r=0 if and only if x is a stationary point, in our case, a minimizer. One criteria for stopping could then be to check whether $\|r_k\|_2 \le \varepsilon$ for some given tolerance $\varepsilon > 0$.

Example 3.2. We test this method with the linear regression problem from Lecture 1, where we determinded the relationship $Y = \beta_0 + \beta_1 X$ of adult mass to basal metabolic rate in mammals. In this example, the matrix A is the 2×573 matrix

$$A = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_{573} \end{pmatrix},$$

where the x_i represent the mass of mammal i, and the vector \mathbf{b} consists of the metabolic rate parameters. The 2-vector \mathbf{x} represents the two values β_0 and β_1 . A naive MATLAB code for gradient descent looks as follows.

```
function xout = graddesc(A,b,x,tol)
    r = A'*(b-A*x);
    while norm(r,2) > tol
        Ar = A*r;
        alpha = r'*r/(Ar'*Ar);
        x = x+alpha*r;
        r = r-alpha*A'*Ar;
    end
    xout = x;
end
```

The result is the same as when using the MATLAB solver or CVX, $\beta_0 = 1.36$, $\beta_1 = 0.70$.

In the next lecture we will introduce the concept of rate of convergence and analyse the rate of convergence of gradient descent.