AMENDMENTS TO THE CLAIMS

Please amend the claims as follows.

 (Currently Amended) A method of inhibiting human stearoyl-CoA desaturase (hSCD) activity comprising contacting a source of hSCD with a compound of formula (I):

wherein:

x and y are each independently 1,-2 or 3;

W is -O-, -N(R1)-, -C(O)-, -S(O)-; (where t is 0, 1 or 2), -N(R1)S(O)2-,

 $-S(O)_2N(R^1)$ -, $-OS(O)_2N(R^1)$ -, $-C(O)N(R^1)$ -, $-OC(O)N(R^1)$ -, $-C(S)N(R^1)$ -, $-OC(S)N(R^1)$ -, $-N(R^1)C(O)$ - or $-N(R^1)C(O)N(R^1)$ -;

V is -C(O)-, -C(S)-, $-C(O)N(R^1)$ -, -C(O)O-, $-S(O)_2$ -, $-S(O)_2N(R^1)$ - or $-C(R^{11})$ H-; each R^1 is independently selected from the group consisting of hydrogen,

C1-C12alkyl, C2-C12hydroxyalkyl, C4-C12cycloalkylalkyl and C7-C19aralkyl;

 R^2 is selected from the group consisting of $\mathsf{C}_1\text{-}\mathsf{C}_{12}$ alkyl, $\mathsf{C}_2\text{-}\mathsf{C}_{12}$ alkenyl,

C₂-C₁₂hydroxyalkyl, C₂-C₁₂hydroxyalkenyl, C₂-C₁₂alkoxyalkyl, C₃-C₁₂cycloalkyl,

 $C_4\text{--}C_{12}\text{cycloalkylalkyl}, \text{ aryl, } C_7\text{--}C_{19}\text{aralkyl, } C_3\text{--}C_{12}\text{heterocyclyl, } C_3\text{--}C_{12}\text{heterocyclylalkyl, } \\ C_7\text{--}C_7\text{-heteroaryl, } \text{ and } C_3\text{--}C_{12}\text{heteroarylalkyl; } \\$

or R² is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 $R^3 \ is \ selected from the group consisting of $C_1\text{-}C_12 \text{alkyl}$, $C_2\text{-}C_12 \text{alkenyl}$, $C_2\text{-}C_{12} \text{hydroxyalkyl}$, $C_2\text{-}C_{12} \text{hydroxyalkenyl}$, $C_2\text{-}C_{12} \text{alkoxyalkyl}$, $C_3\text{-}C_{12} \text{cycloalkyl}$, $C_4\text{-}C_{12} \text{cycloalkyl}$, aryl, $C_7\text{-}C_{19} \text{aralkyl}$, $C_3\text{-}C_{12} \text{heterocyclyl}$, $C_3\text{-}C_{12} \text{heterocyclylalkyl}$, $C_4\text{-}C_4\text{-}h \text{eteroaryl}$ and $C_3\text{-}C_4\text{-}h \text{eteroaryl}$ an$

or R³ is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 R^4 , R^5 and R^8 are each independently selected from hydrogen, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R^{13})₂;

 R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{9a} , R^{10} and R^{10a} are each independently selected from hydrogen or Cr-C₇alkyt,

or R^7 and R^{7a} together, or R^9 and R^{8a} together, or R^9 and R^{9a} together, or R^{40} and R^{10a} together are an exe-group, provided that when V is -C(O), R^7 and R^{7a} together or R^8 and R^{8a} together do not form an exe-group, while the remaining R^7 , R^{7a} , R^8 , R^{8a} , R^9 , $R^$

or one of R¹⁰-R^{10a}-R²-and R^{2a}-together with one of R⁸-R^{1a}-R⁹-and R^{6a}-form an alkylene-bridge, while the remaining R¹⁰-R¹⁰-R¹⁰-R²-R²-R³-R⁸-R⁸-R⁹-and R^{8a}-are each independently selected from hydrogen or C₂-C₃alkyl;

R11 is hydrogen or C1-C3alkyl; and

each R13 is independently selected from hydrogen or C1-C6alkyl;

a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

 (Currently Amended) A method of treating a disease or condition mediated by stearoyl-CoA desaturase (SCD) in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula (I):

wherein:

x and y are each independently 1, 2 or 3;

 $W \text{ is } -O_-, -N(R^1)_{-}, -C(O)_-, -S(O)_{-}; \text{ (where t is } 0, 1 \text{ or } 2), -N(R^1)_S(O)_{2^-}, \\ -S(O)_2N(R^1)_-, -C(O)N(R^1)_-, -OC(O)N(R^1)_-, -C(S)N(R^1)_-, -OC(S)N(R^1)_-, -N(R^1)_C(O)_- \text{ or } (-1)_{-}, -N(R^1)_{-}, -N(R^1$

-N(R1)C(O)N(R1)-;

V is -C(O)-, -C(S)-, -C(O)N(R¹)-, -C(O)O-, -S(O)_{Z*}, -S(O)_ZN(R¹)- or -C(R¹¹)H-; each R¹ is independently selected from the group consisting of hydrogen,

 $C_1\text{--}C_{12}\text{alkyl},\ C_2\text{--}C_{12}\text{hydroxyalkyl},\ C_4\text{--}C_{12}\text{cycloalkylalkyl}\ \text{and}\ C_7\text{--}C_{19}\text{aralkyl};$

 $R^2 \text{ is selected from the group consisting of } C_1\text{-}C_12\text{alkyl}, C_2\text{-}C_12\text{alkenyl}, \\ C_2\text{-}C_{12}\text{hydroxyalkyl}, C_2\text{-}C_{12}\text{hydroxyalkenyl}, C_2\text{-}C_{12}\text{alkoxyalkyl}, C_3\text{-}C_{12}\text{cycloalkyl}, \\ C_4\text{-}C_{12}\text{cycloalkylalkyl}, \text{aryl}, C_7\text{-}C_{19}\text{aralkyl}, C_3\text{-}C_{12}\text{heterocyclyl}, C_3\text{-}C_{12}\text{heterocyclylalkyl}, \\ C_1\text{-}C_{12}\text{heteroaryl}, \text{and } C_3\text{-}C_{12}\text{heteroarylalkyl}; \\ C_1\text{-}C_{12}\text{-}C_{12}\text{heteroaryl}, \\ C_2\text{-}C_{12}$

or R^2 is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 $R^3 \text{ is selected from the group consisting of $C_1\text{-}C_{12}$alkyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$alkenyl, $C_3\text{-}C_{12}$cycloalkyl, $C_3\text{-}C_{12}$cycloalkyl, anyl, $C_7\text{-}C_{19}$aralkyl, $C_3\text{-}C_{12}$heterocyclyl, $C_3\text{-}C_{12}$heterocyclylalkyl, $C_7\text{-}C_{12}$heteroanyl and $C_3\text{-}C_{12}$heteroanylalkyl;}$

or \mathbb{R}^3 is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 $R^4, R^5 \ \text{and} \ R^6 \ \text{are each independently selected from hydrogen, fluoro, chloro,} \\ methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R^{13})_2;$

 $R^7,\,R^{7a},\,R^8,\,R^{8a},\,R^9,\,R^{9a},\,R^{10}$ and R^{10a} are each independently selected from

hydrogen or C_1 - C_3 alkyl; $er R^7 - and R^{7a} - together, or R^8 - and R^{8a} - together, or R^9 - and R^{8a} - together, or R^9 - and R^{8a} - together, or R^9 - and R^{8a} - together - an exo-group, previded that when <math>V$ is -C(O), R^7 and R^{8a} - together or R^8 and R^{8a} - together do not form an exo-group, while the remaining R^7 , R^{7a} , R^8 , R^8 , R^8 , R^{8a} , R^9 , R^{8a} , R^{9a} , R^{9a

er one of \mathbb{R}^{10} , \mathbb{R}^{10a} , \mathbb{R}^7 , and \mathbb{R}^{7a} together with one of \mathbb{R}^8 , \mathbb{R}^{8a} , \mathbb{R}^8 and \mathbb{R}^{9a} -form an alkylene bridge, while the remaining \mathbb{R}^{10} , \mathbb{R}^7 , \mathbb{R}^{7a} , \mathbb{R}^8 , \mathbb{R}^8 , \mathbb{R}^9 , and \mathbb{R}^{9a} are each independently selected from hydrogen or \mathbb{C}_3 . \mathbb{C}_3 alkyli:

R11 is hydrogen or C₁-C₃alkyl; and

R¹⁰³-are each independently selected from hydrogen or C₄-C₂alkyl;

each R¹³ is independently selected from hydrogen or C₁-C₆alkyl;

a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

(Original) The method of Claim 2 wherein the mammal is a human.

- 4. (Currently Amended) The method of Claim 3 wherein the disease or condition is selected from the group consisting of Type II diabetes, impaired glucose tolerance, insulin resistance, obesity, fatty liver, non-alcoholic steatohepatitis, dyslipidemia, acne, and metabolic syndrome and any combination of these.
- (Original) The method of Claim 4 wherein the disease or condition is Type II diabetes.
 - 6. (Original) The method of Claim 4 wherein the disease or condition is obesity.
- (Original) The method of Claim 4 wherein the disease or condition is metabolic syndrome.
 - 8. (Original) The method of Claim 4 wherein the disease or condition is fatty liver.
- (Original) The method of Claim 4 wherein the disease or condition is non-alcoholic steatohepatitis.
 - (Currently Amended) A compound of formula (IIa):

$$R^{2} = \begin{pmatrix} R^{4} & R^{5}_{R^{10}} & R^{10} & R^{7}_{R^{7a}} \\ N & N & N & N & N & N & N \\ R^{6}_{R^{9}} & R^{9}_{R^{9}} & R^{8a} & R^{3} & N & N & N & N \\ R^{6}_{R^{9}} & R^{9}_{R^{9}} & R^{8a} & R^{3}_{R^{8a}} & R^{3}_{R^{8a}} & N & N & N & N & N \\ R^{6}_{R^{9}} & R^{9}_{R^{9}} & R^{8a}_{R^{8a}} & R^{8a}_{R^{8a}} & R^{8a}_{R^{8a}} & N & N & N & N & N \\ R^{6}_{R^{9}} & R^{9}_{R^{9}} & R^{8a}_{R^{9}} & R^{8a}_{$$

wherein:

x and v are each independently 1, 2 or 3;

R¹ is selected from the group consisting of hydrogen, C₁-C₁₂alkyl, C₂-C₁₂hydroxyalkyl, C₄-C₁₂cycloalkylalkyl and C₇-C₁₉aralkyl;

Docket No.: 17243/002001

Application No.: 10/566,857

 R^2 is selected from the group consisting of $C_7 - C_{12}$ alkyl, $C_3 - C_{12}$ alkenyl, $C_7 - C_{12}$ hydroxyalkyl, $C_1 - C_{12}$ alkoxy, $C_2 - C_{12}$ alkoxyalkyl, $C_3 - C_{12}$ hydroxyalkenyl, $C_3 - C_{12}$ cycloalkylalkyl, $C_{13} - C_{19}$ aralkyl, $C_1 - C_{12}$ cycloalkylalkyl, $C_{13} - C_{19}$ aralkyl, $C_1 - C_{12}$ cheteroarylalkyl, provided that R^2 is not pyrazinyl, pyridinonyl, pyrrolidinone or imidazolyl;

or R² is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl, where some or all of the rings may be fused to each other;

 $R^3 \ is \ selected from the group consisting of $C_3-C_{12} alkyl, $C_3-C_{12} alkenyl, $C_3-C_{12} alkenyl, $C_3-C_{12} \ hydroxyalkyl, $C_3-C_{12} \ hydroxyalkenyl, $C_3-C_{12} alkoxy, $C_3-C_{12} alkoxyalkyl, $C_3-C_{12} \ cycloalkyl, $C_3-C_{12} \ hydroxyalkyl, $C_3-C_{12} \ heterocyclyl, $C_3-C_{12} \ heterocyclylalkyl, $C_1-C_{12} \ heteroxyl and $C_3-C_{12} \ heteroxyl and $C_3-C_{12} \ heteroxyl alkyl, $C_3-C_{12} \ heteroxyl and $C_3-C_{12} \ heteroxyl alkyl, $C_3-C_{12} \ heteroxyl and $C_3-C_{12} \ heteroxyl alkyl, $C_3-C_{12} \ heteroxyl alkyl, $C_3-C_{12} \ heteroxyl and $C_3-C_{12} \ heteroxyl alkyl, $C_3-C_{12} \ heteroxyl al$

R⁴, R⁵ and R⁶ are each independently selected from hydrogen, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R¹³)₂;

 R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{9a} , R^{10} , and R^{10a} are each independently selected from hydrogen or C_1 - C_2 alkyl;

or R^9 and R^{9a} -together, or R^{10} and R^{10a} -together form an exe group, while the remaining R^7 , R^{7a} , R^8 , R^{9a} , R^{9a} , R^{10} , and R^{10a} are each independently-selected from hydrogen or C_2 . C_3 alkyli

or one of R^7 , R^{7a} , R^{1a} and R^{10a} , together with one of R^8 , R^8 , R^9 and R^{9a} , form an alkylene bridge, while the remaining R^{10} , R^{1a} , R^7 , R^7 , R^8 , R^8 , R^9 , and R^{9a} are each independently selected from hydrogen or C_3 - C_3 alkyl; and

each R^{13} is independently selected from hydrogen or C_1 - C_0 alkyl; a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

11. (Original) The compound of Claim 10 wherein:

x and v are each 1:

R¹ is hydrogen or C₁-C₆alkyl;

 R^2 is selected from the group consisting of C_7 – C_{12} alkyl, C_3 – C_{12} alkenyl, C_7 – C_{12} hydroxyalkyl, C_2 – C_{12} alkoxyalkyl, C_3 – C_{12} hydroxyalkenyl, C_3 – C_{12} cycloalkyl, C_4 – C_{12} cycloalkylalkyl, C_1 3– C_1 9aralkyl, C_3 – C_1 2heterocyclylalkyl, and C_3 – C_1 2heteroarylalkyl; R^3 is selected from the group consisting of C_3 – C_{12} alkyl, C_3 – C_1 2alkenyl,

C₃-C₁₂hydroxyalkyl, C₃-C₁₂hydroxyalkenyl, C₃-C₁₂alkoxy, C₃-C₁₂alkoxyalkyl, C₃-C₁₂cycloalkyl,

 $C_{4}-C_{12}\\ cycloalkylalkyl, \ aryl, \ C_{7}-C_{19}\\ aralkyl, \ C_{3}-C_{12}\\ heterocyclyl, \ C_{3}-C_{12}\\ heterocyclylalkyl, \ C_{1}-C_{12}\\ heteroaryl \ and \ C_{3}-C_{12}\\ heteroarylalkyl;$

R⁴, R⁵ and R⁶ are each hydrogen; and R⁷, R^{7a}, R⁸, R^{8a}, R⁹, R^{9a}, R¹⁰, and R^{10a} are each hydrogen.

- 12. (Original) A method of treating a disease or condition mediated by stearoyl-CoA desaturase (SCD) in a mammal, wherein the method comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of Claim 10.
- (Original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of Claim 10.
 - 14. (Currently Amended) A compound of formula (IIb):

$$\mathbb{R}^{1} = \mathbb{R}^{4} + \mathbb{R}^{5} \mathbb{R}^{10a} \mathbb{R}^{70} \mathbb{R}^{7a}$$

$$\mathbb{R}^{1} + \mathbb{R}^{7a} \mathbb{R}^{7a}$$

$$\mathbb{R}^{2} + \mathbb{R}^{3a} \mathbb{R}^{3a} \mathbb{R}^{3a}$$

$$\mathbb{R}^{3} + \mathbb{R}^{3a} \mathbb{R}^{3a}$$

$$\mathbb{R}^{3} + \mathbb{R}^{3a} \mathbb{R}^{3a}$$

$$\mathbb{R}^{3} + \mathbb{R}^{3a} \mathbb{R}^{3a} \mathbb{R}^{3a}$$

wherein:

x and y are each independently 1-2 or 3;

R1 is selected from the group consisting of hydrogen, C1-C12alkyl,

C2-C12hydroxyalkyl, C4-C12cycloalkylalkyl and C7-C19aralkyl;

R² is selected from the group consisting of C₁-C₁₂alkyl, C₂-C₁₂alkenyl,

 $C_2\text{-}C_{12}\text{hydroxyalkyl},\ C_2\text{-}C_{12}\text{hydroxyalkenyl},\ C_4\text{-}C_6\text{alkoxy},\ C_3\text{-}C_{12}\text{alkoxyalkyl},\ C_3\text{-}C_{12}\text{cycloalkyl},\ C_4\text{-}C_6\text{alkoxy},\ C_7\text{-}C_9\text{alkoxyalkyl},\ C_9\text{-}C_{12}\text{-}C_9\text{-$

C₄-C₁₂cycloalkylalkyl, C₇-C₁₉aralkyl, C₃-C₁₂ heterocyclyl, C₃-C₁₂heterocyclylalkyl,

C1-C12heteroaryl and C3-C12heteroarylalkyl;

or R^2 is phenyl optionally substituted with one or more substituents selected from halo and C_1 - C_n trihaloalkyl;

or R^2 is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl, where some or all of the rings may be fused to each other;

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, $C_1\text{-}C_6\text{ellkyl},\,C_1\text{-}C_6\text{trihaloalky},\,C_1\text{-}C_6\text{trihaloalky},\,C_1\text{-}C_6\text{lkyl},\,c_1\text{-}C(0)R^{12},\,-C(0)R^{12},\,-C(0)R^{12},\,-S(0)_2N(R^{12})_2,\,\text{cycloalkyl},\,\text{heterocyclyl},\,\text{heteroaryl}\,\text{and}\,\text{heteroarylcycloalkyl},\,\text{provided}\,\text{that}\,\,R^3\,\text{is not phenyl substituted}\,\text{with optionally}\,\text{substituted}\,\text{thienyl};$

 R^4 , R^5 and R^5 are each independently selected from hydrogen, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R^{15})₂;

 R^7 , R^7 e, R^8 , R^{9} e, R^9 , R^{9} e, R^{10} , and R^{10a} are each independently selected from hydrogen or Cr-Calkvl:

or R^9 and R^{9a} -together, or R^{10} -and R^{10a} -together form an oxo-group, while the remaining R^7 , R^{7a} , R^9 , R^{9a} , R^9 , R^{10} , and R^{10a} are each independently-selected from hydrogen or C_4 , C_3 alkyli,

er one of R^2 , R^{2a} , R^{4a} and R^{4aa} , together with one of R^8 , R^{8a} , R^9 and R^{6a} , form an alkylene bridge, while the remaining R^{4a} , R^{4aa} , R^{2a} , R^{2a} , R^8 , R^9 , and R^{6a} are each independently-selected from hydrogen or G_4 - G_5 alkyl; and

each R^{12} is independently selected from hydrogen, C_1 - C_8 alkyl, C_3 - C_8 cycloalkyl, aryl or aralkyl; and

each R13 is independently selected from hydrogen or C1-Csalkyl;

a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

15. (Original) The compound of Claim 14 wherein:

x and y are each 1;

R¹ is hydrogen or C₁-C₆alkyl;

 $R^2 is selected from the group consisting of C_1-C_{12}alkyl, C_2-C_{12}alkenyl, \\ C_2-C_{12}hydroxyalkyl, C_2-C_{12}hydroxyalkenyl, C_1-C_6alkoxy, C_3-C_{12}alkoxyalkyl, C_3-C_{12}cycloalkyl, \\ C_4-C_{12}cycloalkylalkyl, C_7-C_{19}aralkyl, C_3-C_{12} heterocyclyl, C_3-C_{12}heterocyclylalkyl, \\ C_1-C_{12}heteroaryl and C_3-C_{12}heteroarylalkyl; \\ C_1-C_{12}heteroaryl and C_3-C_{12}heteroarylalkyl; \\ C_1-C_{12}heteroarylalkyl; \\ C_2-C_{12}heteroarylalkyl; \\ C_3-C_{12}heteroarylalkyl; \\ C_3-C_{12}heter$

or R^2 is phenyl optionally substituted with one or more substituents selected from halo and C_1 - C_6 trihaloalkyl;

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, C_1 - C_0 alkyl, C_1 - C_0 trihaloalkyl, C_1 - C_0 trihalo

 R^4 , R^5 and R^6 are each hydrogen; R^7 , R^{7a} , R^8 , R^8 , R^8 , R^9 , R^{10} , and R^{10a} are each hydrogen; and each R^{12} is independently selected from hydrogen, C_1 - C_6 alkyl, C_3 - C_5 cycloalkyl, aryl or aralkyl.

16. (Original) The compound of Claim 15 wherein:

 $R^2 \text{ is } C_7\text{-}C_{12} \text{aralkyl optionally substituted by one or more substituents selected} \\ \text{from the group consisting of halo, } C_1\text{-}C_3 \text{elkyl and } C_1\text{-}C_9 \text{trihaloalkyl'; and} \\$

 $R^3 \ \text{is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, C_1-C_6lkyl, C_1-C_6trihaloalkyl and C_1-C_6trihaloalkoxy.}$

- (Original) The compound of Claim 16 selected from the group consisting of the following:
- 3-(4-Fluoro-phenyl)-N-{5-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridin-2-yl}propionamide;
- 4-Phenyl-N-{5-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridin-2-yl}-butyramide;
- 4-(4-Fluoro-phenyl)-N-{5-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridin-2-yl}-butyramide; and
- 3-Phenyl-N-{5-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridin-2-yl}-propionamide.
 - (Original) The compound of Claim 15 wherein:

R2 is C1-C12alkyl or C2-C12alkenyl; and

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkyv.

 (Original) The compound of Claim 18 selected from the group consisting of the following:

Hexanoic acid {5-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridin-2-yl]-amide; Heptanoic acid {5-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridin-2-yl]-amide; and 5-Methylpentanoic acid {5-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridin-2-yl]-amide.

(Original) The compound of Claim 15 wherein:
 R² is C₃-C₁-heteroarylalkyl optionally substituted by one or more substituents

selected from the group consisting of halo, C₁-C₃alkyl and C₁-C₅trihaloalkyl; and

 $R^3 \ is \ phenyl \ optionally \ substituted \ by \ one \ or \ more \ substituents \ selected \ from \ the \ group \ consisting \ of \ halo, \ C_1-C_6 lt/l, \ C_1-C_6 lt/l, \ land \ C_1-C_6 lt/l, \ land \ C_1-C_6 lt/l, \ land \ lan$

- 21. (Original) The compound of Claim 20, namely, 3-Pyridin-3-yl-N-(5-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridin-2-yl]-propionamide.
 - 22. (Original) The compound of Claim 15 wherein:

R² is phenyl optionally substituted with one or more substituents selected from halo and C₁-C₄-trihaloalkvI: and

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkoxy.

- (Original) The compound of Claim 22, namely, 4-Fluoro-N-{5-[4-(2-trifluoromethylbenzoyl)piperazin-1-yl]pyridin-2-yl}benzamide.
- 24. (Original) A method of treating a disease or condition mediated by stearoyl-CoA desaturase (SCD) in a mammal, wherein the method comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of Claim 14.
- (Original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of Claim 14.
 - 26. (Currently Amended) A compound of formula (III):

wherein:

x and y are each independently 1, 2 or 3;

 $V_{a} \text{ is -C(O)-, -C(S)-, -C(O)N(R^1)-, -C(O)O-, -S(O)_{2^{-}} \text{ or -S(O)}_{2}N(R^1)-;}$ each R^1 is independently selected from the group consisting of hydrogen, $C_{1^{-}C_{12}}\text{alkyl}, \ C_{2^{-}C_{12}}\text{hydroxyalkyl}, \ C_{4^{-}C_{12}}\text{oycloalkylakyl} \ \text{and} \ C_{7^{-}C_{19}}\text{aralkyl};}$

 $R^2 \ is \ selected from the group consisting of \ C_1-C_{12} alkyl, \ C_2-C_{12} alkenyl, \\ C_2-C_{12} \ hydroxyalkyl, \ C_2-C_{12} \ hydroxyalkenyl, \ C_1-C_5 alkoxy, \ C_5-C_{12} \ hydroxyalkyl, \ C_3-C_{12} \ cycloalkyl, \\ C_3-C_{12} \ cycloalkyl, \ c_3-C_{12} \ hydroxyalkyl, \ C_3-C_{12} \ heterocyclyl, \ C_3-C_{12} \ heterocyclylalkyl, \\ C_1-C_{12} \ heteroaryl \ and \ C_3-C_{12} \ heteroaryl \ alkyl, \\ C_1-C_{12} \ heteroaryl \ and \ C_3-C_{12} \ heteroaryl \ alkyl, \\ C_1-C_{12} \ heteroaryl \ and \ C_3-C_{12} \ heteroaryl \ alkyl, \\ C_1-C_{12} \ heteroaryl \ and \ C_3-C_{12} \ heteroaryl \ alkyl, \\ C_1-C_{12} \ heteroaryl \ and \ C_3-C_{12} \ heteroaryl \ alkyl, \\ C_1-C_{12} \ heteroaryl \ and \ C_3-C_{12} \ heteroaryl \ alkyl, \\ C_1-C_{12} \ heteroaryl \ and \ C_3-C_{12} \ heteroaryl \ alkyl, \\ C_1-C_{12} \ heteroaryl \ alkyl, \\ C_1-$

or R^2 is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl, where some or all of the rings may be fused to each other;

 $R^3 \text{ is selected from the group consisting of $C_1\text{-}C_{12}$alkyl, $C_2\text{-}C_{12}$alkeyl, $C_2\text{-}C_{12}$alkeyl, $C_2\text{-}C_{12}$alkeyl, $C_2\text{-}C_{12}$alkeyl, $C_2\text{-}C_{12}$alkeyl, $C_3\text{-}C_{12}$cycloalkyl, $C_3\text{-}C_{12}$cycloalkyl, $A_2\text{-}C_{12}$cycloalkyl, $A_2\text{-}C_{12}$cycloalk$

or R^3 is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 R^4 , R^5 and R^8 are each independently selected from hydrogen, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R^{13})₂;

 R^7 , R^{7a} , R^8 , R^{9a} , R^9 , R^{9a} , R^{10} , and R^{10a} are each independently selected from hydrogen or C_1 - C_3 alkyl;

or \mathbb{R}^7 and \mathbb{R}^{7a} together, or \mathbb{R}^8 and \mathbb{R}^{8a} together, or \mathbb{R}^9 and \mathbb{R}^{9a} together, or \mathbb{R}^{10} and \mathbb{R}^{10a} together are an exe group, provided that when V_a is C(O), \mathbb{R}^7 and \mathbb{R}^{7a} together or \mathbb{R}^8 and \mathbb{R}^{8a} together do not form an exe group, while the remaining \mathbb{R}^7 , \mathbb{R}^{7a} , \mathbb{R}^8 , \mathbb{R}^{8a} , \mathbb{R}^9 , \mathbb{R}^{8a} ,

or one of R^{10} , R^{10} , R^{2} , and R^{2} together with one of R^{9} , R^{9} , R^{9} and R^{29} form an alkylene bridge, while the remaining R^{10} , R^{10} , R^{7} , R^{7} , R^{9} , R^{9} , R^{9} , and R^{99} are each independently selected from hydrogen or C_{2} - C_{3} alkyl $_{1}$; and

each R13 is independently selected from hydrogen or C1-C6alkyl;

a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

27. (Original) The compound of Claim 26 wherein:

x and y are each 1;

V_o is -C(O)-:

R1 is hydrogen or C1-C6alkyl;

 $R^2 is selected from the group consisting of C_1-C_{12}alkyl, C_2-C_{12}alkenyl, \\ C_2-C_{12}hydroxyalkyl, C_2-C_{12}hydroxyalkenyl, C_1-C_6alkoxy, C_3-C_{12}alkoxyalkyl, C_3-C_{12}cycloalkyl, \\ C_4-C_{12}cycloalkylalkyl, aryl, C_7-C_{16}aralkyl, C_3-C_{12} heterocyclyl, C_3-C_{12}heterocyclylalkyl, \\ C_1-C_{12}heteroaryl and C_3-C_{12}heteroarylalkyl; \\$

 $R^3 \ \text{is selected from the group consisting of $C_1\text{-}C_{12}$alkyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$bydroxyalkyl, $C_2\text{-}C_{12}$bydroxyalkenyl, $C_2\text{-}C_{12}$alkexyalkyl, $C_3\text{-}C_{12}$cycloalkyl, $C_4\text{-}C_{12}$cycloalkylalkyl, aryl, $C_7\text{-}C_{19}$aralkyl, $C_3\text{-}C_{12}$heterocyclyl, $C_3\text{-}C_{12}$heterocyclylalkyl, $C_1\text{-}C_{12}$heteroaryl and $C_3\text{-}C_{12}$heteroarylalkyl;}$

R4, R5 and R6 are each hydrogen; and

 R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{9a} , R^{10} , and R^{10a} are each hydrogen.

28. (Original) The compound of Claim 27 wherein:

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, $C_1\text{-}C_0\text{ellkyl}$, $C_1\text{-}C_0\text{trihaloalkyy}$, $C_1\text{-}C_0\text{ellkylisulfonyl}$, $\text{-N(R}^{12})_2$, -OC(O)R^{12} , -C(O)OR^{12} , $\text{-S(O)}_2\text{N(R}^{12})_2$, cycloalkyl, heterocyclyl, heteroaryl and heteroarylcycloalkyl; and

each R^{12} is independently selected from hydrogen, C_1 - C_0 alkyl, C_3 - C_6 cycloalkyl, anyl or aralkyl.

29. (Original) The compound of Claim 28 wherein:

R2 is C1-C12alkyl or C2-C12alkenyl; and

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkyr.

30. (Original) The compound of Claim 29 selected from the group consisting of the following:

Pentane-1-sulfonic acid (5-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridin-2-yl]-amide; and Hexane-1-sulfonic acid (5-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridin-2-yl]-amide.

31. (Original) The compound of Claim 28 wherein:

 $R^2 is \ C_7 - C_{12} aralkyl \ optionally \ substituted \ by \ one \ or \ more \ substituents \ selected$ from the group consisting of halo, C_1 - C_3 alkyl and C_1 - C_6 trihaloalkyl; and

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkyz.

- 32. (Original) The compound of Claim 31, namely, 3-Phenyl-propane-1-sulfonic acid (5-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridin-2-yl}-amide.
- (Original) A method of treating a disease or condition mediated by stearoyl-CoA
 desaturase (SCD) in a mammal, wherein the method comprises administering to a mammal in
 need thereof a therapeutically effective amount of a compound of Claim 26.
- 34. (Original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of Claim 26.
 - 35. (Currently Amended) A compound of formula (IV):

wherein:

x and y are each independently 1, 2 or 3;

 V_a is -C(O)-, -C(S)-, -C(O)N(R¹)-, -C(O)O-, -S(O)₂- or -S(O)₂N(R¹)-; each R¹ is independently selected from the group consisting of hydrogen,

C₁-C₁₂alkyl, C₂-C₁₂hydroxyalkyl, C₄-C₁₂cycloalkylalkyl and C₇-C₁₉aralkyl;

 $R^2 \text{ is selected from the group consisting of } C_{1^*}C_{12} \text{alkyl}, C_2^* - C_{12} \text{alkenyl}, \\ C_{2^*}C_{12} \text{hydroxyalkyl}, C_{2^*}C_{12} \text{hydroxyalkenyl}, C_{3^*}C_{12} \text{alkoxyalkyl}, C_{3^*}C_{12} \text{cycloalkyl}, \\ C_{4^*}C_{12} \text{cycloalkylalkyl}, \text{aryl}, C_{7^*}C_{19} \text{aralkyl}, C_{3^*}C_{12} \text{ heterocyclyl}, C_{3^*}C_{12} \text{heterocyclylalkyl}, \\ C_{4^*}C_{12} \text{cycloalkylalkyl}, \text{aryl}, C_{7^*}C_{19} \text{heteroarylalkyl}; \\ C_{1^*}C_{12} \text{heteroaryl}, \text{and } C_{3^*}C_{12} \text{heteroarylalkyl}; \\ C_{1^*}C_{12} \text{heteroarylalkyl}, \\ C_{1^*}C_$

Docket No.: 17243/002001

Application No.: 10/566,857

or R^2 is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, anyl and heteroaryl, where some or all of the rings may be fused to each other;

 R^3 is selected from the group consisting of C_1 - C_1 2alkyl, C_2 - C_1 2alkenyl, C_2 - C_1 2bydroxyalkyl, C_2 - C_1 2beterocyclylalkyl, C_2 - C_1 2beterocyclylalkyl, C_2 - C_1 2beterocyclylalkyl, C_2 - C_1 2beterocyclylalkyl, C_2 - C_2 2beteroxylalkyl, C_3 - C_1 2beteroxylalkyl, C_3 - C_1 2beteroxylalkyl, C_2 - C_2 2beteroxylalkyl, C_3 - C_3 2beteroxylalkyl, C_3 - C_4 2beteroxylalkyl, C_4 - C_4 2beteroxylalk

or R^s is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

R⁴, R⁵ and R⁶ are each independently selected from hydrogen, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R¹³):

 R^7 , R^{9} , R^{8} , R^{9} , R^{9} , R^{9} , R^{10} , and R^{10a} are each independently selected from hydrogen or C_1 - C_3 alkyl;

or \mathbb{R}^7 and \mathbb{R}^{7a} together, or \mathbb{R}^8 and \mathbb{R}^{8a} together, or \mathbb{R}^9 and \mathbb{R}^{9a} together, or \mathbb{R}^{9a} and \mathbb{R}^{10a} together are an exercise provided that when V_a is $-\mathbb{C}(O)$, \mathbb{R}^7 and \mathbb{R}^{7a} together or \mathbb{R}^8 and \mathbb{R}^{8a} together do not form an exe group, while the remaining \mathbb{R}^7 , \mathbb{R}^7 , \mathbb{R}^8 , \mathbb{R}^8 , \mathbb{R}^8 , \mathbb{R}^9 , \mathbb{R}^{10} , and \mathbb{R}^{10a} are each independently selected from hydrogen or \mathbb{C}_4 - \mathbb{C}_3 alkyl;

or one of R^{10} , R^{10} , R^{2} , and R^{2a} together with one of R^{9} , R^{10} , R^{9} and R^{9a} form an alkylene bridge, while the remaining R^{10} , R^{10} , R^{2} , R^{2} , R^{2} , R^{9} , R^{9} , and R^{9a} are each independently selected from hydrogen or G_{2} . G_{2} alkyl $_{1}$ and

each R¹⁸ is independently selected from hydrogen or C₁-C₈alkyl;
a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable
salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

36. (Original) The compound of Claim 35 wherein: x and y are each 1;

V_a is -C(O)-:

each R1 is independently hydrogen or C1-C6alkyl;

 $R^3 \ is \ selected \ from \ the \ group \ consisting \ of \ C_1-C_{12} alkyl, \ C_2-C_{12} alkenyl, \\ C_2-C_{12} hydroxyalkyl, \ C_2-C_{12} hydroxyalkenyl, \ C_2-C_{12} alkoxyalkyl, \ C_3-C_{12} cycloalkyl, \\ C_4-C_{12} cycloalkylalkyl, \ aryl, \ C_7-C_{19} aralkyl, \ C_3-C_{12} heterocyclyl, \ C_3-C_{12} heterocyclylalkyl, \\ C_1-C_{12} heteroaryl \ and \ C_3-C_{12} heteroarylalkyl;$

R⁴, R⁵ and R⁶ are each hydrogen; and R⁷, R^{7a}, R⁸, R^{8a}, R^{9a}, R¹⁰, and R^{10a} are each hydrogen.

37. (Original) The compound of Claim 36 wherein:

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl, C_1 - C_6 trihaloalkyl, C_1 - C_6 alkylsulfonyl, -N(R^{12})₂, -OC(O) R^{12} , -C(O)O R^{12} , -S(O)₂N(R^{12})₂, cycloalkyl, heterocyclyl, heterocyclyl, and heterocycloalkyl; and

each R^{12} is independently selected from hydrogen, C_1 - C_0 alkyl, C_3 - C_0 cycloalkyl, aryl or aralkyl.

38. (Original) The compound of Claim 37 wherein:

R2 is C1-C12alkyl or C2-C12alkenyl; and

 $R^{3} \ \text{is phenyl optionally substituted by one or more substituents selected from the} \\ \text{group consisting of halo, C_{1}-C_{6}trihaloalkyl and C_{1}-C_{6}trihaloalkyy.}$

 (Original) The compound of Claim 38 selected from the group consisting of the following:

1-(3-Methyl-butyl)-3-{5-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridin-2-yl]-urea; 1-Pentyl-3-{5-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridin-2-yl]-urea; and 1-Butyl-3-{5-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridin-2-yl]-urea.

40. (Original) The compound of Claim 37 wherein:

 $R^2 is \ C_{7^*} C_{12} aralkyl \ optionally \ substituted \ by \ one \ or \ more \ substituents \ selected from the group \ consisting \ of \ halo, \ C_1^* C_3 alkyl \ and \ C_1^* C_6 trihaloalkyl; \ and$

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkyxy.

41. (Original) The compound of Claim 40 selected from the group consisting of the

following:

1-[3-(4-Fluoro-phenyl)-propyl]-3-{5-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridin-2-yl}-urea:

1-Phenethyl-3-{5-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridin-2-yl}-urea; and 1-Benzyl-3-{5-[4-(2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridin-2-yl}-urea.

- 42. (Original) A method of treating a disease or condition mediated by stearoyl-CoA desaturase (SCD) in a mammal, wherein the method comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of Claim 35.
- 43. (Original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of Claim 35.

44. (Currently Amended) A compound of formula (V):

$$R^{2}-W_{a} = \begin{pmatrix} R^{4} & R^{5} & R^{10a} & R^{10} & R^{7} & R^{7a} & R^{2} &$$

wherein:

x and y are each independently 1, 2 or 3;

Wa is -O-. -N(R1)- or -S(O)- (where t is 0, 1 or 2);

 V_a is -C(O)-, -C(S)-, -C(O)N(R¹)-, -C(O)O-, -S(O)₂- or -S(O)₂N(R¹)-;

x and v are each independently 1, 2 or 3;

each R1 is independently selected from the group consisting of hydrogen,

C1-C12alkyl, C2-C12hydroxyalkyl, C4-C12cycloalkylalkyl and C7-C19aralkyl;

R2 is selected from the group consisting of C1-C12alkyl, C2-C12alkenyl,

C₂-C₁₂hydroxyalkyl, C₂-C₁₂hydroxyalkenyl, C₃-C₁₂alkoxyalkyl, C₃-C₁₂cycloalkyl,

C₄-C₁₂cycloalkylalkyl, aryl, C₇-C₁₉aralkyl, C₃-C₁₂ heterocyclyl, C₃-C₁₂heterocyclylalkyl, C₄-C₄₀heteroaryl and C₃-C₄₀heteroarylalkyl;

or R2 is a multi-ring structure having 2 to 4 rings wherein the rings are

independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl, where some or all of the rings may be fused to each other;

 $R^3 \ is \ selected \ from \ the \ group \ consisting \ of \ C_1-C_{12} alkyl, \ C_2-C_{12} alkenyl, \\ C_2-C_{12} hydroxyalkyl, \ C_2-C_{12} hydroxyalkenyl, \ C_2-C_{12} alkoxyalkyl, \ C_3-C_{12} cycloalkyl, \\ C_4-C_{12} cycloalkylalkyl, \ aryl, \ C_7-C_{19} aralkyl, \ C_3-C_{12} heterocyclylalkyl, \\ C_3-C_{12} het$

or R³ is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 $R^4, R^5 \ \text{and} \ R^6 \ \text{are each independently selected from hydrogen, fluoro, chloro,} \\ methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R^{13})_2;$

 R^7 , R^{7a} , R^6 , R^{8a} , R^9 , R^{9a} , R^{10} , and R^{10a} are each independently selected from hydrogen or $C_{1^*}O_3$ alkyl;

or R⁷-and-R^{7a} together, or R⁸ and R^{8a}-together, or R⁹ and R^{8a}-together, or R^{4a}-and R^{4a}-together, or R^{4a}-and R^{4a}-together are an oxo-group, provided that when V_a-is - C(O) , R⁷ and R^{7a}-together or R⁸ and R^{8a}-together do not form an oxo-group, while the remaining R⁷, R^{7a}, R⁸, R^{8a}, R⁹, R^{8a}, R¹⁰, and R^{4a}-are-each independently-selected from hydrogen or C₄-C₃alkyl;

or one of R^{10} , R^{10a} , R^7 , and R^{7a} together with one of R^8 , R^{8a} , R^9 and R^{6a} -form an alkylene bridge, while the remaining R^{10} , R^{10a} , R^7 , R^7 , R^8 , R^9 , and R^{8a} are each independently selected from hydrogen or C_3 - C_3 alkyl; and

each R13 is independently selected from hydrogen or C₁-C₀alkyl;

a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

45. (Original) The compound of Claim 44 wherein:

x and v are each 1:

Wa is -O-;

V_a is -C(0)-:

R¹ is hydrogen or C₁-C₆alkyl;

 $R^2 \ is \ selected from the group consisting of \ C_1-C_{12} alklyl, \ C_2-C_{12} alkenyl, \\ C_2-C_{12} hydroxyalkyl, \ C_2-C_{12} hydroxyalkenyl, \ C_3-C_{12} alkoxyalkyl, \ C_3-C_{12} cycloalkyl, \\ C_4-C_{12} cycloalkylalkyl, \ aryl, \ C_7-C_{19} aralkyl, \ C_3-C_{12} \ heterocyclyl, \ C_3-C_{12} heterocyclylalkyl, \\ C_1-C_1-2 heteroaryl \ and \ C_3-C_{12} heteroarylalkyl; \\ C_1-C_2-2 heteroarylalkyl, \ aryl, \ C_1-C_2-2 heteroarylalkyl; \\ C_1-C_2-2 heteroarylalkyl, \ aryl, \ C_3-C_1-2 heteroarylalkyl; \\ C_1-C_2-2 heteroarylalkyl, \ aryl, \ C_3-C_1-2 heteroarylalkyl; \\ C_3-C_1-2 heteroarylalkyl, \ aryl, \ C_3-C_1-2 heteroarylalkyl, \ aryl, \ a$

 $R^3 \ is \ selected \ from \ the \ group \ consisting \ of \ C_1-C_{12} alkyl, \ C_2-C_{12} alkenyl, \\ C_2-C_{12} hydroxyalkyl, \ C_2-C_{12} hydroxyalkenyl, \ C_2-C_{12} alkoxyalkyl, \ C_3-C_{12} cycloalkyl, \\ C_4-C_{12} cycloalkylalkyl, \ aryl, \ C_7-C_{19} aralkyl, \ C_3-C_{12} heterocyclyl, \ C_3-C_{12} heterocyclylalkyl, \\ C_1-C_{12} heteroaryl \ and \ C_3-C_{12} heteroarylalkyl; \\ C_1-C_{12} heteroaryl \ and \ C_3-C_{12} heteroarylalkyl; \\ C_1-C_{12} heteroarylalkyl, \ C_1-C_{12} heteroarylalkyl; \\ C_2-C_{12} heteroarylalkyl, \ C_3-C_{12} heteroarylalkyl; \\ C_3-C_{12} heteroarylalkyl, \ C_3-C_{12} heteroarylalkyl; \\ C_3-C_{12} heteroarylalkyl, \ C_3-C_{12} heteroarylalkyl; \\ C_3-C_{12} heteroarylalkyl, \ C_3-C$

 R^4 , R^5 and R^6 are each hydrogen; and R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{9a} , R^{10} , and R^{10a} are each hydrogen.

46. (Original) The compound of Claim 45 wherein:

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, $C_1\text{-}C_0\text{elkyl},\,C_1\text{-}C_0\text{trihaloalky},\,C_1\text{-}C_0\text{trihaloalky},\,C_1\text{-}C_0\text{elkyl},\,N(R^{12})_2,\,-OC(O)R^{12},\,-C(O)OR^{12},\,-S(O)_2N(R^{12})_2,\,\text{cycloalkyl},\,\text{heterocyclyl},\,\text{heteroaryl and heteroarylcycloalkyl};\,\text{and}$

each R^{12} is independently selected from hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, aryl or aralkyl.

47. (Original) The compound of Claim 44 wherein:

x and y are each 1;

W₀ is -N(R¹)-:

V_a is -C(O)-:

R1 is hydrogen or C1-Cealkyl;

R2 is selected from the group consisting of C1-C12alkyl, C2-C12alkenyl,

$$\begin{split} &C_2\text{--}C_{12}\text{hydroxyalkyl}, \ C_2\text{--}C_{12}\text{hydroxyalkenyl}, \ C_3\text{--}C_{12}\text{alkoxyalkyl}, \ C_3\text{--}C_{12}\text{cycloalkyl}, \\ &C_4\text{--}C_{12}\text{cycloalkylalkyl}, \ \text{aryl}, \ C_7\text{--}C_{19}\text{aralkyl}, \ C_3\text{--}C_{12} \ \text{heterocyclyl}, \ C_3\text{--}C_{12}\text{heterocyclylalkyl}, \\ &C_1\text{--}C_{12}\text{heteroaryl} \ \text{and} \ \ C_3\text{--}C_{12}\text{heteroarylalkyl}; \end{split}$$

 $R^3 \text{ is selected from the group consisting of } C_1\text{-}C_{12}\text{alkyl}, C_2\text{-}C_{12}\text{alkenyl}, \\ C_2\text{-}C_{12}\text{hydroxyalkyl}, C_2\text{-}C_{12}\text{hydroxyalkenyl}, C_2\text{-}C_{12}\text{alkoxyalkyl}, C_3\text{-}C_{12}\text{cycloalkyl}, \\ C_4\text{-}C_{12}\text{cycloalkylalkyl}, \text{aryl}, C_7\text{-}C_{19}\text{aralkyl}, C_3\text{-}C_{12}\text{heterocyclyl}, C_3\text{-}C_{12}\text{heterocyclylalkyl}, \\ C_1\text{-}C_{12}\text{heteroaryl} \text{ and } C_3\text{-}C_{12}\text{heteroarylalkyl}; \\ \end{aligned}$

 R^4 , R^5 and R^6 are each hydrogen; and R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{8a} , R^9 , R^{10} , and R^{10a} are each hydrogen.

48. (Original) The compound of Claim 47 wherein:
R³ is phenyl optionally substituted by one or more substituents selected from the

group consisting of halo, cyano, nitro, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl, C_1 - C_6 trihaloalkyl, C_1 - C_6 alkylsulfonyl, -N(R¹²)₂, -OC(O)R¹², -C(O)OR¹², -S(O)₂N(R¹²)₂, cycloalkyl, heterocyclyl, heteroaryl and heteroarylcycloalkyl, and

each R^{12} is independently selected from hydrogen, C_1 - C_0 alkyl, C_3 - C_0 cycloalkyl, aryl or aralkyl.

49. (Original) The compound of Claim 44 wherein:

x and v are each 1:

W_a is -S(O)_r- (where t is 0, 1 or 2);

V_a is -C(O)-:

 R^2 is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} hydroxyalkyl, C_3 - C_{12} hydroxyalkenyl, C_3 - C_{12} alkoxyalkyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkylalkyl, aryl, C_7 - C_{19} aralkyl, C_3 - C_{12} heterocyclyl, C_3 - C_{12} heterocyclylalkyl, C_1 - C_1 - C_1 -heteroaryl and C_3 - C_1 -heteroarylalkyl;

 $R^3 \text{ is selected from the group consisting of $C_1\text{-}C_{12}$alkyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$bydroxyalkyl, $C_2\text{-}C_{12}$bydroxyalkyl, $C_2\text{-}C_{12}$cycloalkyl, $C_3\text{-}C_{12}$cycloalkyl, aryl, $C_7\text{-}C_{19}$aralkyl, $C_3\text{-}C_{12}$heterocyclyl, $C_3\text{-}C_{12}$heterocyclylalkyl, $C_3\text{-}C_{12}$heteroaryl and $C_3\text{-}C_{12}$heteroarylalkyl;}$

 R^4 , R^5 and R^6 are each hydrogen; and R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{9a} , R^{10} , and R^{10a} are each hydrogen.

50. (Original) The compound of Claim 49 wherein:

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, $C_1\text{-}C_0\text{elikyl},\ C_1\text{-}C_0\text{trihaloalkoxy},\ C_1\text{-}C_0\text{elikyl},\ -N(R^{12})_2,\ -OC(O)R^{12},\ -C(O)OR^{12},\ -S(O)_2N(R^{12})_2,\ \text{cycloalkyl},\ \text{heteroaryleycloalkyl};\ \text{and}$

 $each\ R^{12}\ is\ independently\ selected\ from\ hydrogen,\ C_{1}\text{-}C_{6}alkyl,\ C_{3}\text{-}C_{6}cycloalkyl,}$ aryl or aralkyl.

51. (Original) A method of treating a disease or condition mediated by stearoyl-CoA desaturase (SCD) in a mammal, wherein the method comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of Claim 44.

 (Original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of Claim 44.

53. (Currently Amended) A compound of formula (VIa):

wherein:

x and v are each independently 1, 2 or 3;

 R^1 is selected from the group consisting of hydrogen, $\mathsf{C}_1\text{-}\mathsf{C}_{12}$ alkyl,

C2-C12hydroxyalkyl, C4-C12cycloalkylalkyl and C7-C19aralkyl;

 R^2 is selected from the group consisting of C_7 - C_{12} alkyl, C_3 - C_{12} alkenyl,

 $C_7-C_{12} hydroxyalkyl, \ C_2-C_{12} alkoxyalkyl, \ C_3-C_{12} hydroxyalkenyl, \ C_3-C_{12} cycloalkyl,$

 $C_4-C_{12} cycloalkylalkyl,\ C_{13}-C_{19} aralkyl,\ C_3-C_{12} heterocyclylalkyl,\ and\ C_3-C_{12} heteroarylalkyl;$

or R² is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl, where some or all of the rings may be fused to each other;

 $R^3 is selected from the group consisting of C_3-C_{12}alkyl, C_3-C_{12}alkenyl, \\ C_3-C_{12}hydroxyalkyl, C_3-C_{12}hydroxyalkenyl, C_3-C_{12}alkoxy, C_3-C_{12}alkoxyalkyl, C_3-C_{12}cycloalkyl, \\ C_4-C_{12}cycloalkylalkyl, aryl, C_7-C_{19}aralkyl, C_3-C_{12}heterocyclyl, C_3-C_{12}heterocyclylalkyl, C_5-C_{12}heteroaryl and C_3-C_{12}heteroarylalkyl; \\$

or R³ is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

R⁴, R⁵ and R⁸ are each independently selected from hydrogen, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R¹³)₂;

 R^7 , R^{7a} , R^8 , R^{9a} , R^9 , R^{9a} , R^{10} , and R^{10a} are each independently selected from hydrogen or C_1 - C_3 alkyl;

or R7 and R7a together, or R8 and R8a together, or R9 and R9a together, or R10 and

R^{40a} together are an exo group, provided that when V_a is −C(O) , R^{7a} and R^{7a} together or R⁸ and R^{8a} together do not form an exo-group, while the remaining R⁷, R^{7a}, R⁸, R^{8a}, R⁹, R^{8a}, R⁹, R^{9a}, R¹⁰, and R^{40a} are each independently selected from hydrogen or C₄-C₃alkyl;

or one of R¹⁰-R^{10a}-R⁷, and R^{7a} together with one of R⁸-R^{1a}-R⁹ and R^{9a}-form an alkylene bridge, while the remaining R¹⁰-R^{10a}-R²-R^{2a}-R²-R⁸-R⁸-R⁹, and R^{9a}-are each independently selected from hydrogen or C₂-C₃alkyl; and

each R¹³ is independently selected from hydrogen or C₁-C₈alkyl; including a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

54. (Original) The compound of Claim 53 wherein:

x and v are each 1;

R1 is hydrogen or C1-C6alkyl;

R² is selected from the group consisting of C₇-C₁₂alkyl, C₃-C₁₂alkenyl, C₇-C₁₂hydroxyalkyl, C₂-C₁₂alkoxyalkyl, C₃-C₁₂bydroxyalkenyl, C₃-C₁₂cycloalkyl, C₃-C₁₂bydroxyalkenyl, C₃-C₁₂cycloalkyl, C₁₃-C₁₂beterocyclylalkyl, and C₃-C₁₂heteroarylalkyl;

 R^3 is selected from the group consisting of $C_3\text{-}C_{12}$ alkyl, $C_3\text{-}C_{12}$ alkenyl, $C_3\text{-}C_{12}\text{-}hydroxyalkyl, C_3\text{-}C_{12}\text{-}hydroxyalkenyl, }C_3\text{-}C_{12}\text{-}alkoxy, C_3\text{-}C_{12}\text{-}alkoxyalkyl, }C_3\text{-}C_{12}\text{-}closelkyl, \\ C_4\text{-}C_{12}\text{-}cycloalkylalkyl, aryl, }C_7\text{-}C_{19}\text{-}aralkyl, }C_3\text{-}C_{12}\text{-}heterocyclyl, }C_3\text{-}C_{12}\text{-}heterocyclylalkyl, }C_5\text{-}C_{12}\text{-}heteroxyl and }C_3\text{-}C_3\text{-}heteroxylalkyl;}$

R⁴, R⁵ and R⁶ are each hydrogen; and R⁷, R^{7a}, R⁸, R^{8a}, R^{9a}, R¹⁰, and R^{10a} are each hydrogen.

- 55. (Original) A method of treating a disease or condition mediated by stearoyl-CoA desaturase (SCD) in a mammal, wherein the method comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of Claim 53.
- (Original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of Claim 53.

57. (Currently Amended) A compound of formula (VIb):

$$R^{2} = N$$

$$R^{1} = N$$

$$R^{10} = R^{10} = R^{7} = 0$$

$$R^{10} = R^{10} = R^{7} = 0$$

$$R^{10} = R^{10} = R^{10} = R^{10} = 0$$

$$R^{10} = R^{10} = R^{10} = R^{10} = 0$$

$$R^{10} = R^{10} = R^{10} = R^{10} = 0$$

$$R^{10} = R^{10} = R^{10} = R^{10} = 0$$

$$R^{10} = R^{10} = R^{10} = R^{10} = 0$$

$$R^{10} = R^{10} = R^{10} = R^{10} = R^{10} = 0$$

$$R^{10} = R^{10} =$$

wherein:

x and y are each independently 1, 2 or 3;

each R¹ is independently selected from the group consisting of hydrogen,

C1-C12alkyl, C2-C12hydroxyalkyl, C4-C12cycloalkylalkyl and C7-C19aralkyl;

 $R^2 \text{ is selected from the group consisting of } C_1\text{-}C_{12} \text{alkyl}, C_2\text{-}C_{12} \text{alkenyl}, \\ C_2\text{-}C_{12} \text{hydroxyalkyl}, C_2\text{-}C_{12} \text{hydroxyalkenyl}, C_3\text{-}C_{12} \text{alkoxyalkyl}, C_3\text{-}C_{12} \text{cycloalkyl}, \\ C_4\text{-}C_{12} \text{cycloalkylalkyl}, \text{ aryl}, C_7\text{-}C_{19} \text{aralkyl}, C_3\text{-}C_{12} \text{ heterocyclyl}, C_3\text{-}C_{12} \text{heterocyclylalkyl}, \\ C_1\text{-}C_1\text{-}\text{heteroaryl} \text{ and } C_3\text{-}C_{12} \text{heteroarylalkyl}; \\ \end{aligned}$

or R^2 is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl, where some or all of the rings may be fused to each other;

 R^3 is naphthyl or phenyl, each optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl, C_1 - C_6 trihaloalkyl, C_1 - C_6 trihaloalkyl, C_1 - C_6 trihaloalkyl, C_1 - C_6 trihaloalkyl, heterocyclyl, heterocyclyl and heterocyclycloalkyl, provided that R^3 is not phenyl substituted with optionally substituted thienyl, and provided that when R^3 is naphthyl, R^2 can not be C_1 - C_6 alkyl, C_2 - C_6 hydroxyalkyl or phenyl substituted by amino;

 R^4 , R^5 and R^6 are each independently selected from hydrogen, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R^{13})₂;

 R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{9a} , R^{10} , and R^{10a} are each independently selected from hydrogen or C_7 - C_3 alkyl;

or \mathbb{R}^7 and \mathbb{R}^{7a} together, or \mathbb{R}^8 and \mathbb{R}^{8a} together, or \mathbb{R}^9 and \mathbb{R}^{8a} together, or \mathbb{R}^{10a} together are an oxo group, provided that when V_a is $-\mathbb{C}(O)$, \mathbb{R}^7 and \mathbb{R}^{7a} together or \mathbb{R}^8 and \mathbb{R}^{8a} together do not form an oxo group, while the remaining \mathbb{R}^7 , \mathbb{R}^{7a} , \mathbb{R}^8 , \mathbb{R}^{8a} , \mathbb{R}^9 , \mathbb{R}^{8a} , \mathbb{R}^{10} , and \mathbb{R}^{10a} are each independently selected from hydrogen or \mathbb{C}_* \mathbb{C}_* 3alkyl;

or one of R^{10} , R^{100} , R^7 , and R^{70} together with one of R^8 , R^{80} , R^9 and R^{80} -form an alkylene bridge, while the remaining R^{10} , R^{100} , R^7 , R^{70} , R^8 , R^{80} , R^9 , and R^{90} are each independently selected from hydrogen or C_3 - C_3 alkyl;

each R^{12} is independently selected from hydrogen, C_1 - C_8 alkyl, C_2 - C_6 cycloalkyl, aryl or aralkyl; and

each R13 is independently selected from hydrogen or C1-Calkyl:

a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

58. (Original) The compound of Claim 57 wherein:

x and y are each 1;

R1 is hydrogen or C1-C6alkyl:

 $R^2 is selected from the group consisting of C_1-C_{12}alkyl, C_2-C_{12}alkenyl, \\ C_2-C_{12}hydroxyalkyl, C_2-C_{12}hydroxyalkenyl, C_3-C_{12}alkoxyalkyl, C_3-C_{12}cycloalkyl, \\ C_4-C_{12}cycloalkylalkyl, aryl, C_7-C_{19}aralkyl, C_3-C_{12} heterocyclyl, C_3-C_{12}heterocyclylalkyl, \\ C_4-C_4-heteroaryl and C_3-C_4-heteroarylalkyl; \\ C_4-C_4-heteroaryl and C_3-C_4-heteroarylalkyl; \\ C_4-C_4-heteroaryl and C_3-C_4-heteroarylalkyl; \\ C_4-C_5-heteroarylalkyl, \\ C_5-C_6-heteroarylalkyl, \\ C_7-C_8-heteroarylalkyl, \\ C_8-C_8-heteroarylalkyl, \\ C_8-C_8-heter$

 $R^3 \ \text{is naphthyl or phenyl, each optionally substituted by one or more substituents} \\ \text{selected from the group consisting of halo, cyano, nitro, hydroxy, C_1-C_ealkyl, C_1-C_etrihaloalkyl, C_1-C_etrihaloalkoxy, C_1-C_ealkylsulfonyl, $-N(R^{12})_2$, $-OC(O)R^{12}$, $-C(O)OR^{12}$ or $-S(O)_2N(R^{12})_2$;} \\ \text{The substitution of the substitution of t$

R4. R5 and R6 are each hydrogen:

R7 R7a R8 R8a, R9, R9a, R10, and R10a are each hydrogen; and

 $each\ R^{12}\ is\ independently\ selected\ from\ hydrogen,\ C_{1}\text{-}C_{6}alkyl,\ C_{3}\text{-}C_{c}cycloalkyl,}$ aryl or aralkyl.

59. (Original) The compound of Claim 58 wherein:

 R^2 is C_7 - C_{12} aralkyl optionally substituted by one or more substituents selected from the group consisting of halo, C_1 - C_3 alkyl and C_1 - C_4 trihaloalkyl; and

 $R^3 \text{ is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, C_1-C_6trihaloalkyl and C_1-C_6trihaloalkyl.}$

60. (Original) The compound of Claim 59 selected from the group consisting of the following:

5-[4-(2-Trifluoromethyl-benzoyl)-piperazin-1-yll-pyridine-2-carboxylic acid (3-phenyl-propyl)-

amide:

5-[4-(2-Trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridine-2-carboxylic acid phenethyl-amide;

- 5-[4-(2-Trifluoromethylbenzoyl)piperazin-1-yl]pyridine-2-carboxylic acid [2-(4-fluorophenyl)ethyl]amide;
- 5-[4-(2-Trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridine-2-carboxylic acid [3-(4-fluoro-phenyl)-propyl]-amide;
- 5-[4-(2-Trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridine-2-carboxylic acid 4-trifluoromethylbenzylamide;
- 5-[4-(2-Trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridine-2-carboxylic acid [3-(4-trifluoromethyl-phenyl)-propyl]-amide; and
- 5-[4-(2-Trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridine-2-carboxylic acid [2-(4-trifluoromethyl-phenyl)-ethyll-amide.
 - 61. (Original) The compound of Claim 58 wherein:

R2 is C1-C12alkyl or C2-C12alkenyl; and

 $R^{s} \text{ is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, <math>C_{1}$ - C_{6} likyl, C_{1} - C_{6} trihaloalkyl and C_{1} - C_{6} trihaloalkoxy.

- 62. (Original) The compound of Claim 61 selected from the group consisting of the following:
- 5-[4-(2-Trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridine-2-carboxylic acid (3-methyl-butyl)amide;
- 5-[4-(2-Trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridine-2-carboxylic acid hexylamide;
- $\hbox{\bf 5-[4-(2-Trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridine-2-carboxylic acid pentylamide;}\\$
- 5-[4-(4-Fluoro-2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridine-2-carboxylic acid (3-methyl-butyl)-amide; and
- 5-[4-(5-Fluoro-2-trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridine-2-carboxylic acid (3-methyl-butyl)-amide.
 - 63. (Original) The compound of Claim 58 wherein:

R2 is C3-C12cycloalkyl or C4-C12cycloalkylalkyl, and

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkoxy.

64. (Original) The compound of Claim 63 selected from the group consisting of the following:

- 5-[4-(2-Trifluoromethylbenzoyl)piperazin-1-yl]pyridine-2-carboxylic acid (3-cyclohexyl-propyl)amide;
- 5-[4-(6-Trifluoromethyl-cyclohexa-1,3-dienecarbonyl)-piperazin-1-yl]-pyridine-2-carboxylic acid (2-cyclohexyl-ethyl)-amide; and
- 5-[4-(2-Trifluoromethyl-benzoyl)-piperazin-1-yl]-pyridine-2-carboxylic acid cyclohexylmethylamide
 - 65. (Original) The compound of Claim 58 wherein:

 $R^2 is \ C_3 - C_{12} heterocyclylalkyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, <math>C_1$ - C_6 alkyl, C_1 - C_6 trihaloalkyl, C_1 - C_6 trihaloalkoxy, C_1 - C_6 trihaloalkox

 $R^3 \ \text{is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, C_1-C_8 drihaloalky, C_1-C_8 trihaloalky, and C_1-C_8 trihaloalky; and C_1-C_8 trihaloalky.}$

each R^{12} is independently selected from hydrogen, C_1 - C_0 alkyl, C_2 - C_0 cycloalkyl, aryl or aralkyl.

- 66. (Original) The compound of Claim 65 wherein R^2 is 2-piperazinylethyl optionally substituted by -C(O)OR¹².
- (Original) The compound of Claim 66, namely, 4-[2-({5-[4-(2-Trifluoromethylbenzoyl)-piperazin-1-yl]-pyridine-2-carbonyl]-amino)-ethyl]-piperazine-1-carboxylic acid tertbutyl ester.
 - 68. (Original) The compound of Claim 58 wherein:

R² is C₇-C₁₂aralkyl optionally substituted by one or more substituents selected from the group consisting of halo, C₁-C₃alkyl and C₁-C₆trihaloalkyl; and

 R^3 is naphthyl optionally substituted by one or more substituents selected from the group consisting of halo, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkoxy.

69. (Original) The compound of Claim 68 selected from the group consisting of the

following:

5-[4-(Naphthalene-1-carbonyl)-piperazin-1-yl]-pyridine-2-carboxylic acid (3-phenyl-propyl)amide; and

5-[4-(Naphthalene-1-carbonyl)piperazin-1-yl]pyridine-2-carboxylic acid phenethylamide.

- 70. (Original) A method of treating a disease or condition mediated by stearoyl-CoA desaturase (SCD) in a mammal, wherein the method comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of Claim 57.
- (Original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of Claim 57.

334285

26