Transistor Digital Circuits

TRANSISTORS

- > active semiconductor devices (with three terminals)
- ➤ Operating **principle**: using a **voltage** between two terminals (command) **to control the current** through the third terminal.
- > Transistors: *voltage-controlled current sources*
- transistors: essential components of every electronic circuit
- Pentium 4 microprocessors : ~ 43,5 milion field effect tranzistors
- for the next Intel microprocessors a billion of transistors are anticipated

Transistor types

Operating principle and regions

Transistor – controlled current source

DC model – ideal voltage controlled current source

Using T_n transistor

Why is R necessary? Output quantities: I_O , V_O transfer characteristics:

 $I_O(V_{CT}), V_O(V_{CT})$

Transfer Characteristics

- $V_{CT} < V_{Thn}$, T_n off, $I_O = I_T = 0$
- $V_{CT} > V_{Thn}$, T_n on, $I_O = I_T > 0$

$$V_{PS} = RI_O + V_O; \quad V_O = V_{PS} - RI_O$$

$$V_{CT} \uparrow, \quad I_O \uparrow, \quad V_O \downarrow$$

$$V_{O,min} = 0 \qquad I_{Oex} = \frac{V_{PS}}{R}$$

- Two extreme regions, passive regions:
- **cutoff** (*off*) $I_T = 0$; $V_O > 0$; ideal switch in off state
- **extreme conduction** (*exc*) $I_T = I_{Oex}$, $V_O = 0$; ideal switch in the on state

If $V_{CT} < V_{Thn}$ or $V_{CT} > V_{CTex}$ switching transistor

An intermediary region, active forward region a_F

 $V_{CT} \in (V_{Thn'}, V_{CTex})$, - permanent conduction (amplifier)

Symbols of the transistors

n-type

n-channel enhancementtype MOSFET

npn BJT

p-type

G - gate or grid

D - drain

S - source

p-channel enhancementtype MOSFET

pnp BJT

B− base

C – collector

E – emitter

The Controlled Switch Model for Transistors

$$\begin{aligned} v_{CT} > V_{Thn} \; ; \; T - (exc) \; ; \; i_{OT} > 0 \; ; \; v_{OT} \approx 0 & v_{CT} > V_{Thp} \; ; \; T - (off) \; ; \quad i_{OT} = 0 \\ v_{CT} < V_{Thn} \; ; \; T - (off) \; ; \quad i_{OT} = 0 & v_{CT} < V_{Thp} \; ; \; T - (exc) \; ; \; i_{OT} > 0 \; ; \; v_{OT} \approx 0 \end{aligned}$$

The controlled switches are complementary.

MOSFET DIGITAL CIRCUITS

- > Ideal controlled switch model
- > Implementation with MOSFET

Logic inverter

Critical analysis of the inverter with a T_n controlled switch and R

Diminishing the disadvantage:

R as small as possible, ideal $R\rightarrow 0$; R as large as possible, ideal $R\rightarrow \infty$

Solution: replacement of R with a controlled switch

Two solutions:

complementary switches

complementary control

A	T_1	T_2	Y
0	(off)	(on)	1
1	(on)	(off)	0

good bye! output voltage division power dissipation

CMOS

TTL

Logic function NAND, NOR

V_{PS}	A	В	T_{n1}	T_{n2}	$Y=\overline{A\cdot B}$
$\prod_{i=1}^{R} X_i$	0	0	(off)	(off)	1
$A \circ T_{n1}^{\circ}$	0	1	(off)	(on)	1
$B \circ \subset T_{n2}$	1	0	(on)	(off)	1
$1^{I_{n2}}$	1	1	(on)	(on)	0

How can we eliminate the disadvantages due to the presence of *R*?

14 /22

A B	$ T_{n1} $	T_{n2}	$Y=\overline{A+B}$
0 0	(off)	(off)	1
0 1	(off)	(on)	0
1 0	(on)	(off)	0
1 1	(on)	(on)	0
		0 0 (off) 0 1 (off)	$egin{array}{ c c c c c c c c c c c c c c c c c c c$

CMOS Logic Gates

CMOS inverter

v_I	$oldsymbol{v}_{GSn}$	$oldsymbol{v}_{GSp}$	T_n	T_p	v _O
0V	$0 \mathrm{V} \!\!<\! V_{Thn}$	- V_{DD} $<$ V_{Thp}	(off)	(on)	$pprox V_{DD}$
V_{DD}	$V_{DD}\!>\!V_{Thn}$	$0{>}V_{Thp}$	(on)	(off)	≈0V

15 /22

NAND

A B	T_{n1}	T_{n2}	T_{P1}	T_{P2}	$Y = \overline{A \cdot B}$
0 0	(off)	(off)	(on)	(on)	1
0 1	(off)	(on)	(on)	(off)	1
1 0	(on)	(off)	(off)	(on)	1
1 1	(on)	(on)	(off)	(off)	0

NOR

AND

Bipolar Digital Circuits

RTL Technology

v_I	T_n	v_{O}
0V	(off)	V_{CC}
V_{CC}	(on)	0.2V

A	В	T_1	T_2	$Y = \overline{A + B}$
0	0	(off)	(off)	1
0	1	(off)	(on)	0
1	0	(on)	(off)	0
1	1	(on)	(on)	0

TTL: Transistor-Transistor Logic

- Logic Inverter
- from technological reasons in TTL integrated circuits the use of only npn type transistors is preferred
- identical transistors but complementary control

Standard TTL gate

Noise margins

$$NM_{H} = V_{OH min} - V_{IH min}$$
 $NM_{L} = V_{IL max} - V_{OL max}$

Voltage levels and noise margins for CMOS family operated with 5V

$$NM_L = 1.5V - 0.5V = 1V$$

 $NM_H = 4.5V - 3.5V = 1V$

The voltage levels and noise margins for TTL family

