Logic and Computer Design Fundamentals

Chapter 3 – Combinational Logic Design

Part 2 – Programmable Implementation Technologies

Charles Kime & Thomas Kaminski

© 2004 Pearson Education, Inc.

Terms of Use

(Hyperlinks are active in View Show mode)

Overview

- Part 1 Implementation Technology and Logic Design
 - Design Concepts and Automation
 - Fundamental concepts of design and computer-aided design techniques
 - The Design Space
 - Technology parameters for gates, positive and negative logic and design tradeoffs
 - Design Procedure
 - The major design steps: specification, formulation, optimization, technology mapping, and verification
 - Technology Mapping
 - Mapping from AND, OR, and NOT to other gate types
 - Verification
 - Does the designed circuit meet the specifications?
- Part 2 Programmable Implementation Technologies
 - Read-Only Memories, Programmable Logic Arrays, Programmable Array Logic
 - Technology mapping to programmable logic devices

Overview

- Why programmable logic?
- Programmable logic technologies
- Read-Only Memory (ROM)
- Programmable Logic Array (PLA)
- Programmable Array Logic (PAL)
- VLSI Programmable Logic Devices covered in VLSI Programmable Logic Devices reading supplement

Why Programmable Logic?

Facts:

- It is most economical to produce an IC in large volumes
- Many designs required only small volumes of ICs
- Need an IC that can be:
 - Produced in large volumes
 - Handle many designs required in small volumes
- A programmable logic part can be:
 - made in large volumes
 - programmed to implement large numbers of different low-volume designs

Programmable Logic - Additional Advantages

- Many programmable logic devices are fieldprogrammable, i. e., can be programmed outside of the manufacturing environment
- Most programmable logic devices are erasable and reprogrammable.
 - Allows "updating" a device or correction of errors
 - Allows reuse the device for a different design the ultimate in re-usability!
 - Ideal for course laboratories
- Programmable logic devices can be used to prototype design that will be implemented for sale in regular ICs.
 - Complete Intel Pentium designs were actually prototype with specialized systems based on large numbers of VLSI programmable devices!

Programming Technologies

- Programming technologies are used to:
 - Control connections
 - Build lookup tables
 - Control transistor switching
- The technologies
 - Control connections
 - Mask programming
 - Fuse
 - Antifuse
 - Single-bit storage element

Programming Technologies

- The technologies (continued)
 - Build lookup tables
 - Storage elements (as in a memory)
 - Transistor Switching Control
 - Stored charge on a floating transistor gate
 - Erasable
 - Electrically erasable
 - Flash (as in Flash Memory)
 - Storage elements (as in a memory)

Technology Characteristics

- Permanent Cannot be erased and reprogrammed
 - Mask programming
 - Fuse
 - Antifuse
- Reprogrammable
 - Volatile Programming lost if chip power lost
 - Single-bit storage element
 - Non-Volatile
 - Erasable
 - Electrically erasable
 - Flash (as in Flash Memory)

Programmable Configurations

- Read Only Memory (ROM) a fixed array of AND gates and a programmable array of OR gates
- Programmable Array Logic (PAL)® a programmable array of AND gates feeding a fixed array of OR gates.
- Programmable Logic Array (PLA) a programmable array of AND gates feeding a programmable array of OR gates.
- Complex Programmable Logic Device (CPLD) /Field- Programmable Gate Array (FPGA) complex enough to be called "architectures" - See VLSI Programmable Logic Devices reading supplement

ROM, PAL and PLA Configurations

(a) Programmable read-only memory (PROM)

(b) Programmable array logic (PAL) device

(c) Programmable logic array (PLA) device

Read Only Memory

- Read Only Memories (ROM) or Programmable Read Only Memories (PROM) have:
 - N input lines,
 - M output lines, and
 - 2^N decoded minterms.
- Fixed AND array with 2^N outputs implementing all N-literal minterms.
- Programmable OR Array with M outputs lines to form up to M sum of minterm expressions.
- A program for a ROM or PROM is simply a multiple-output truth table
 - If a 1 entry, a connection is made to the corresponding minterm for the corresponding output
 - If a 0, no connection is made
- Can be viewed as a *memory* with the inputs as *addresses* of *data* (output values), hence ROM or PROM names!

Read Only Memory Example

Example: A 8 X 4 ROM (N = 3 input lines, M = 4 output lines)

D7 D6

D5

D4 D3

D2

- The fixed "AND" array is a "decoder" with 3 inputs and 8 outputs implementing minterms.
- The programmable "OR" array uses a single line to represent all inputs to an OR gate. An "X" in the
- Read Example: For input (A_2,A_1,A_0) = 011, output is (F_3,F_2,F_1,F_0) = 0011.
- What are functions F_3 , F_2 , F_1 and F_0 in terms of (A_2, A_1, A_0) ?

Programmable Array Logic (PAL)

- The PAL is the opposite of the ROM, having a programmable set of ANDs combined with <u>fixed</u> ORs.
- Disadvantage
 - ROM guaranteed to implement any M functions of N inputs. PAL may have too few inputs to the OR gates.
- Advantages
 - For given internal complexity, a PAL can have larger N and M
 - Some PALs have outputs that can be complemented, adding POS functions
 - No multilevel circuit implementations in ROM (without external connections from output to input). PAL has outputs from OR terms as internal inputs to all AND terms, making implementation of multi-level circuits easier.

Programmable Array Logic Example

- 4-input, 3-output PAL with fixed, 3-input OR terms
- What are the equations for F1 through F4?

$$F1 = \overline{A} \overline{B} + \overline{C}$$

$$F2 = \overline{A}B\overline{C} + AC + AB$$

$$F3 =$$

$$F4 =$$

Programmable Logic Array (PLA)

 Compared to a ROM and a PAL, a PLA is the most flexible having a <u>programmable</u> set of ANDs combined with a <u>programmable</u> set of ORs.

Advantages

- A PLA can have large N and M permitting implementation of equations that are impractical for a ROM (because of the number of inputs, N, required
- A PLA has all of its product terms connectable to all outputs, overcoming the problem of the limited inputs to the PAL Ors
- Some PLAs have outputs that can be complemented, adding POS functions

Disadvantage

• Often, the product term count limits the application of a PLA. Two-level multiple-output optimization reduces the number of product terms in an implementation, helping to fit it into a PLA.

Programmable Logic Array Example

2004 Pearson Education, Inc.

Terms of Use

- © 2004 by Pearson Education, Inc. All rights reserved.
- The following terms of use apply in addition to the standard Pearson Education Legal Notice.
- Permission is given to incorporate these materials into classroom presentations and handouts only to instructors adopting Logic and Computer Design Fundamentals as the course text.
- Permission is granted to the instructors adopting the book to post these materials on a protected website or protected ftp site in original or modified form. All other website or ftp postings, including those offering the materials for a fee, are prohibited.
- You may not remove or in any way alter this Terms of Use notice or any trademark, copyright, or other proprietary notice, including the copyright watermark on each slide.
- Return to Title Page