## AMATH 301 Homework 3: Autumn 2021

## DUE: Midnight on Monday, October 25

Download the file from the website link (the DATA link near the CODES link): **yalefaces.mat**. This file has a total of 39 different faces with about 65 lighting scenes for each face (2414 faces in all). The individual images are columns of the matrix  $\mathbf{X}$ , where each image has been downsampled to  $32 \times 32$  pixels and converted into gray scale with values between 0 and 1. So the matrix is size  $1024 \times 2414$ . To important the file in MATLAB, use

load yalefaces.mat

For Python, use the following

import numpy as np
from scipy.io import loadmat
results=loadmat('yalefaces.mat')
X=results['X']

(a) Compute a  $100 \times 100$  correlation matrix **C** where you will compute the dot product (correlation) between the first 100 images in the matrix **X**. Thus each element is given by  $c_{jk} = \mathbf{x}_j^T \mathbf{x}_k$  where  $\mathbf{x}_j$  is the *j*th column of the matrix.

ANSWERS: Save the matrix C as A1

(b) From the correlation matrix for part (a), which two images are most highly correlated? (This will be A2). Which are most uncorrelated? (This should be A3).

**ANSWERS**: The row vector A2 should list two numbers: the first image number (j) and the second image number (k).

**ANSWERS**: The row vector A3 should list two numbers: the first image number (j) and the second image number (k).

(c) Repeat part (a) but now compute the  $10 \times 10$  correlation matrix between images [1,313,512,5,2400,113,1024,87,314,2005]. (Just for clarification, the first image is labeled as one, not zero like python might do)

**ANSWERS**: Save the matrix as A4

- (d) Create the matrix  $\mathbf{Y} = \mathbf{X}\mathbf{X}^T$  and find the first six eigenvectors with the largest magnitude eigenvalue. **ANSWERS**: Save the absolute value of the first six eigenvectors (6 columns and 1024 rows) as A5
- (e) SVD the matrix **X** and find the first six principal component directions. **ANSWERS**: Save the first six SVD modes (6 columns and 1024 rows) as A6
- (f) Compare the first eigenvector  $\mathbf{v}_1$  from (d) with the first SVD mode  $\mathbf{u}_1$  from (e) and compute the norm of their difference.

**ANSWERS**: Save the norm difference  $||\mathbf{v}_1| - |\mathbf{u}_1||$  as A7

(g) Compute the percentage of variance captured by each of the first 6 SVD modes.

**ANSWERS**: Save the results as a row vector with six components in A8