Quiz 2

Problem 1 (10 points). Use the following three facts about determinants to compute the determinant of a matrix using row operations.

- a. If B is diagonal, then $det(B) = b_{11} \cdot b_{22} \cdots b_{nn}$.
- b. If B arises from A by a type I row operation, i.e., interchanging two rows, then det(B) = -det(A).
- c. If B arises from A by a type III row operation, i.e., $r_i + ar_j \to r_i$, that is, row i is replaced by row i plus a scalar multiple of row j, where $i \neq j$. Then $\det(A) = \det(B)$.

Compute det(A) by:

- 1. Reducing A to a triangular matrix B using only type I and III operations. (I would say echelon form, except for the issue with pivots being 1).
- 2. Keep track of how many row swaps were made.
- 3. Compute det(B) by multiplying the diagonal elements of B.

$$A = \begin{bmatrix} 2 & 6 & 3 & 2 \\ 4 & 2 & 3 & 2 \\ 2 & 2 & 2 & 1 \\ 4 & 2 & 1 & 5 \end{bmatrix}$$

Show the work for the above computation here.

On your own, don't include this in the quiz, try computing this determinant by expanding on a row or column.

Discuss which method, "expansion along a row or column" or "using elementary row operations" is, in general, a faster method of computing a determinant.

This page left blank

Problem 2 (5 points). Let A be as above, consider Ax = b where b = (-3, -3, -2, 1). Find x_1 using Cramer's rule. (You may use MATLAB/Octave to compute the determinants, but write out what you are computing.)

Problem 3 (10 points; 2 points each). Decide if each of the following are true or false and provide a small proof or counterexample in each case.
(a) ______ If A is an n × n matrix all of whose entries are integers and det(A) = ±1, then A⁻¹ also has only integer entries.
(b) _____ If A and B are similar, then det(A) = det(B).
Here two n × n matrices A and B are called similar iff A = SBS⁻¹ for some

(c) _____ Three vectors in \mathbb{R}^3 , \boldsymbol{v}_1 , \boldsymbol{v}_2 , and \boldsymbol{v}_3 are co-planar iff $\det(\boldsymbol{v}_1,\boldsymbol{v}_2,\boldsymbol{v}_3)=0$.

invertible S.

(d) _____ $\det(A^2 + B^2) \ge 0$ for all $n \times n$ matrices A and B with real entries that commute.

(e) _____ The determinant can be viewed as a multilinear function det : $(\mathbb{R}^n)^n \to \mathbb{R}$ with the properties that $\det(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n)=1$ and $\det(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n)=\det(\boldsymbol{v}'_1,\ldots,\boldsymbol{v}'_n)$, where $(\boldsymbol{v}'_1,\ldots,\boldsymbol{v}_n)'$ is the result of swapping two of the vectors in $(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n)$.

Problem 4 (10 points). Submit the completion certificate for the OnRamp tutorial from MATLAB in the MATLAB shared drive.