磁信息材料

一、磁性材料在信息技术中的应用

- 随着信息时代的到来,多种磁性材料在信息高新技术中获得广泛而重要的应用
- 磁记录:主要有存储装置和写入、读出设备。存储 装置是用永磁材料制成的设备,包括磁头和磁记录 介质
 - ■磁记录介质:内存、外存、磁盘和磁带等
 - ■写入过程中:磁头将电信号——磁场
 - ■读出过程中:将磁记录介质的磁场——转变为电信号

磁记录材料: 非金属磁性材料——矩磁材料:

铁氧体,是由三氧化二铁和其它二价的金 属氧化物的粉末混合烧结而成,常称为磁 性瓷。如锰镁铁氧体、锂锰铁氧体等

特点: $B_r = B_S$, H_c 不大,磁滞回线是矩形。

当矩磁材料在不同方向的外磁场磁化后,总是处于 $+B_s$ 和 $-B_s$ 两种剩磁状态,可作电子计算机的"记忆"元件。

磁头介质: 磁电阻材料

磁场可以使许多金属的电阻发生改变,这种现象称为磁电阻效应,相应的材料为磁电阻材料(MR)

磁电阻材料(MR): $\Delta R/R \sim 2\% - 6\%$ 巨磁电阻效应(简称GMR) $\Delta R/R$ 达到 -50% 超巨磁电阻材料 $\Delta R/R \sim 10^3 \sim 10^6$

在小型化的微型化高密度磁记录读出磁头、随机存储器和微型传感器中获得重要应用

硬盘结构图----其中用到的读写磁头和存储磁盘等磁性部件。

Disk Drive

Thin Film Medium

软盘

· 苹果当年成为了 首家在台式电脑 产品中弃用5.2英 寸1.2M软盘的公 司,转而建立3.5 英寸1.44M软盘 的标准。

IBM Microdrive 1999 6 Gbits/in² 1-inch diameter disk

每平方英寸的存储信息量

2007年诺贝尔物理奖获得者

艾伯特·费特(Albert Fert)

彼得·格鲁伯格(Peter Grünberg)

巨磁阻现象发现之后,很快的变成为硬盘系统中的标准技术,进而大幅提升硬盘的储存性能。1994年,IBM公司研制成功巨磁电阻效应的读出磁头,将磁盘记录密度一下子提高了17倍,达5Gbit / In2.

课下思考: U盘的存储原理

摩尔定律

"The number of transistors incorporated in a chip will approximately double every 24 months."

磁性材料的尺寸

磁性材料	限度极限	磁性行为
大块磁晶体	100 μm	自旋波
磁性薄膜	1 μ m-10nm	磁泡,磁畴运动
STM磁样品	20nm	超顺磁性
生物磁颗粒	7nm	宏观量子效应
磁大分子团簇	1nm	宏观量子效应
基本粒子磁性	$< 10^{-5} \text{ nm}$	量子效应

量子计算机时代?

