Operations Management

Session 6: Formulating a Linear Program

Where Are We?

Module 3: Optimal Resource Allocation

Session 6: Formulating a LP

Today

Session 7: Solving a LP using Excel
 Jan. 28

Session 8: Applying LP to real-estate – Jan. 30

Session 9: Guest Lecture

– Feb. 4

Session 10: Midterm Review

- Feb. 6

Midterm

- Friday, February 14

Problem 1: Office Supplies Inc.

\$125 profit per desk

Problem 1: Office Supplies Inc.

How many chairs and how many desks should Office Supplies Inc. make in order to maximize their profit?

How to Formulate a LP

- 1. Identify decision variables.
- 2. Write out objective function.
- 3. Write out constraints.
- 4. Write the LP.

Step 1: Identify Decision Variables

- Decision variables represent what has to be decided.
- Example:
 - How many products to produce/buy/consume?
- Each decision variable is written as an unknown, usually x_1, x_2, \ldots, x_n .
- Find the decision variables by looking at the problem.

Step 2: Write Out Objective Function

- What should be optimized in the linear program?
- Do we want to **maximize or minimize**?
- Examples:
 - Minimize costs, Maximize profit, Maximize revenue, etc.
- Data:
 - Objective function coefficient: contribution of each variable to the objective function.
- The objective function is of the type:

$$Min z = c_1 x_1 + \ldots + c_n x_n$$

or

$$\text{Max } z = c_1 x_1 + \ldots + c_n x_n$$

where c_1, \ldots, c_n are real numbers.

Step 3: Write Out Constraints

- What is restricting the objective?
- Examples:
 - A resource can only be used for a certain number of hours.
- Constraints are of the type:

$$a_1 x_1 + \ldots + a_n x_n \ge b$$

or

$$a_1 x_1 + \ldots + a_n x_n \leq b$$

where $a_1, ..., a_n$ and b are real numbers.

Step 4: Write the LP

Minimization Problem

Min $z = c_1 x_1 + ... + c_n x_n$ s.t. $a_{11} x_1 + ... + a_{1n} x_n \le b_1$ $a_{21} x_1 + ... + a_{2n} x_n \le b_2$... $x_1 \ge 0$... $x_n \ge 0$

Objective Function

Constraints

Non-negativity
Constraints
(almost always)

Maximization Problem

Max	$z = c_1 x_1 + \dots + c_n x_n$
s.t.	$a_{11} x_1 + \dots + a_{1n} x_n \le b_1$
	$a_{21} x_1 + \ldots + a_{2n} x_n \le b_2$
	•••
	$x_1 \ge 0$
	•••
	$x_n \ge 0$

Terminology

- A set of values for $x_1, ..., x_n$ is called:
 - A feasible solution if it satisfies all the constraints (including non-negativity).
 - An optimal solution if it satisfies all the constraints (including non-negativity) AND gives the best value of the objective function.
- The best value of the objective function is called the optimal objective function value.
- There could be more than one optimal solution and sometimes there is no optimal solution.

Problem 1: Decision Variables

• The decision variables for Office Supplies Inc. are how many chairs and how many desks to produce in this production period.

• Let

- $-x_1$ be the number of chairs produced in this production period.
- $-x_2$ be the number of desks produced in this production period.

Problem 1: Objective Function

- The objective of Office Supplies Inc. is to maximize profit.
- Contribution of each decision variable to the profit:
 - \$100 per chair.
 - \$125 per desk.
- Objective function:

Max
$$z = 100 x_1 + 125 x_2$$

Problem 1: Constraints

- Limited resources:
 - 264 hours in Dept I.
 - 330 hours in Dept II.
- Utilization of resources for each variable:
 - Dept I: 2 hours per chair, 3 hours per desk.
 - Dept II: 5 hours per chair, 2 hours per desk.
- Constraints:

$$2 x_1 + 3 x_2 \le 264$$
 Dept I $5 x_1 + 2 x_2 \le 330$ Dept II

Problem 1: Write the LP

Max
$$z = 100 x_1 + 125 x_2$$

s.t. $2 x_1 + 3 x_2 \le 264$
 $5 x_1 + 2 x_2 \le 330$
 $x_1 \ge 0$
 $x_2 \ge 0$

Problem 1: Office Supplies Inc.

• Could Office Supplies Inc. produce 55 chairs and 33 desks? In other words, is $x_1 = 55$ and $x_2 = 33$ a **feasible solution** to the LP?

No, because it does not satisfy the Dept. II constraint:

$$5 \times 55 + 2 \times 33 = 341 > 330.$$

• Is $x_1 = 33$ and $x_2 = 66$ a **feasible solution** to the LP?

Yes, because it satisfies all the constraints:

$$2 \times 33 + 3 \times 66 = 264 \le 264$$

$$5 \times 33 + 2 \times 66 = 297 \le 330$$

$$33 \ge 0$$

$$66 \ge 0$$

Problem 1: Office Supplies Inc.

• What is the profit if Office Supplies Inc. produces 33 chairs and 66 desks?

$$z = $100 \times 33 + $125 \times 66 = $11,550.$$

What can you say about the optimal objective function value?

The optimal objective function value is greater than or equal to \$11,550 as we found a feasible solution that attains this value.

We say that \$11,550 is a **lower bound** on the optimal objective function value of the LP.

A 16-ounce bottle of Protein Milk must contain protein, carbohydrates, and fats in at least the following amounts:

Protein	Carbs	Fat
3 oz.	5 oz.	4 oz.

Four mixes may be blended together in various proportions to produce a bottle. The contents and prices of each mix are as follows.

	Contents and price per ounce of mix				
Mix	Protein Content (oz)	Carbohydrate Content (oz)	Fat Content (oz)	Price (\$)	
1	3/16	7/16	5/16	4/16	
2	5/16	4/16	6/16	6/16	
3	2/16	2/16	6/16	3/16	
4	3/16	8/16	2/16	2/16	

How much of each mix should be added to a 16 oz. bottle of Protein Milk in order to minimize the cost?

Problem 2: Decision Variables

Problem 2: Write the LP

• Find a feasible solution:

• The objective function value associated with this solution is:

Summary

- Formulating a **Linear Program** (LP):
 - Decision variables.
 - Objective function.
 - Constraints.
- Feasible solutions versus optimal solutions.
- Very useful tool to guide decision making:
 - Large scale problems.
 - Very large number of applications.

Next Class

- Bring your laptops to class.
- Install Solver in Excel (see instructions on myCourses).
- Download the Excel file from myCourses before the class (LP_Spreadsheet.xls).