Ορισμοί Ασυμπτωτικών Συμβολισμών

$$f(n) = \mathbf{O}(g(n))$$
 αν και μόνο αν $\exists n_o > 0, c > 0$: $0 \le f(n) \le c \cdot g(n)$ για κάθε $n \ge n_o$

$$f(n) = \Theta(g(n))$$
 αν και μόνο αν $\exists n_o > 0, c_1, c_2 > 0$: $\mathbf{0} \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ για κάθε $n \ge n_o$

$$f(n) = \Omega(g(n))$$
 αν και μόνο αν $\exists n_o > 0, c > 0$: $f(n) \ge c \cdot g(n) \ge 0$ για κάθε $n \ge n_o$

$$f(n) = \omega(g(n))$$
 αν και μόνο αν $\forall c>0$, $\exists n_o>0$: $f(n)>c\cdot g(n)\geq \mathbf{0}$ για κάθε $n\geq n_o$

Σύμβολο	Διαβάζουμε: «Η f έχει την g» «Η g είναι της f»	Ασυμπτωτικά
f = o(g)	γνήσιο άνω φράγμα	f < g
f = O(g)	άνω φράγμα	$f \leq g$
$f = \Theta(g)$	άνω και κάτω φράγμα	f = g
$f = \Omega(g)$	κάτω φράγμα	f≥g
$f = \omega(g)$	γνήσιο κάτω φράγμα	f>g

Παράδειγμα: Να αποδείξετε ότι: 2n=O(n³)

Έχουμε f(n)=2n, $g(n)=n^3$. Επιλέγουμε $n_0=1$, c=2.

$$f(n) \le cg(n) \Rightarrow$$
$$2n \le 2n^3 \Rightarrow$$

$$1 \le n^2$$

που ισχύει για κάθε η≥1 (η₀=1)

Παράδειγμα: Να αποδείξετε ότι: 2n=o(n²)

Έστω c>0:

$$f(n) < cg(n) \Rightarrow$$

$$2n < cn^2 \Rightarrow$$

$$2 < cn \Rightarrow$$

Άρα επιλέγουμε ως n_0 το $\lceil 2/c \rceil$

Ορισμός Ορίων για Απόδειξη Ασυμπτωτικών Συμβολισμών

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases} c \neq 0 & \text{τότε } f(n) = \Theta(g(n)) \\ 0 & \text{τότε } f(n) = o(g(n)) \\ +\infty & \text{τότε } f(n) = \omega(g(n)) \end{cases}$$

Και ισχύουν και τα ακόλουθα:

- Λήμμα 1: $f(n) = \Theta(g(n))$ αν και μόνο αν f(n) = O(g(n)) και $f(n) = \Omega(g(n))$
- Λήμμα 2: Av f(n) = o(g(n)) τότε f(n) = o(g(n))
- Λήμμα 3: Av $f(n) = \omega(g(n))$ τότε $f(n) = \Omega(g(n))$

..και ανάποδα:

$$f < g$$
 \longrightarrow $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ \longrightarrow $f = o(g)$ αλλά και $f = 0(g)$

$$f=g$$
 $\longrightarrow \lim_{n\to\infty} \frac{f(n)}{g(n)} = c(\neq 0)$ \longrightarrow $f=\Theta(g)$ αλλά και $f=\Omega(g)$ και $f=0(g)$

$$f > g$$
 $\longrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = +\infty$ $\longrightarrow f = \omega(g)$ αλλά και $f = \Omega(g)$

Παράδειγμα: Αποδείξτε ότι $2^n = O(3^n)$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{2^n}{3^n} = \lim_{n\to\infty} \left(\frac{2}{3}\right)^n = 0$$

Άρα: $2^n = o(3^n)$ άρα και $2^n = O(3^n)$