MACHINE LEARNING INMERSION

ANDRÉ OMAR CHÁVEZ PANDURO

« Si el **Plan** no funciona , cambia el **Plan** pero **No Cambies** los **OBJETIVOS NI METAS**»

Agenda

- Segmentación de Clientes
- Modelos No Supervisados
- Análisis de Conglomerados : Objetivos
- Análisis de Conglomerados : Criterio de Inercia
- Tipos de Algoritmos de Segmentación.
- Cluster Jerárquicos.
- Cluster No Jerárquicos.
- Algortimo de K-Means: Objetivo, Método y Elección de k.
- Conclusiones

SEGMENTACIÓN DE CLIENTES

SEGMENTACIÓN DE CLIENTES

- Es el proceso de dividir **clientes** en grupos basados en características comunes para que las compañías puedan mercadear cada grupo efectiva y apropiadamente.
- Los grupos o segmentos deben ser homogéneos intragrupos y heterogéneos intergrupos.

Modelos No Supervisados

- > No hay una variable objetivo (Variable de Salida).
- > No hay variables que ayudan a predecir a la variable de salida.

- > Todas las variables tienen la misma importancia.
- Se busca la interdependencia de las variables.

Modelos no Supervisados

Métodos de agrupamiento o clustering

"Clustering": (Clasificación no supervisada, aprendizaje no supervizado): Es similar a la clasificación (discriminación), excepto que los grupos no son predefinidos. El objetivo es particionar o segmentar un conjunto de datos o individuos en grupos que pueden ser disjuntos o no. Los grupos se forman basados en la similaridad de los datos o individuos en ciertas variables. Como los grupos no son dados a priori el experto debe dar una interpretación de los grupos que se forman.

Métodos:

- Clasificación Jerárquica (grupos disjuntos).
- Nubes Dinámicas k-means (grupos disjuntos).
- Clasificación Piramidal (grupos NO disjuntos).

Análisis de Conglomerados: Objetivo

Objetivo:

Obtener clases lo más homogéneas posibles y tal que estén suficientemente separadas.

- Como se ha mencionado, se quiere obtener clases lo más homogéneas posibles y que estén suficientemente separadas. Este objetivo se puede concretar numéricamente a partir de la siguiente propiedad:
- Supóngase que se está en presencia de una partición $P=(C_1, C_2, C_3,..., C_k)$ de Ω , donde $g_1, g_2, g_3, g_4,..., g_k$ son los centros de gravedad de las clases:

$$g_{k=\frac{1}{|C_k|}} \sum_{i \in C_k} x_i$$

• g es el centro de gravedad total:

$$g_{=\frac{1}{n} \sum_{i=1}^{n} x_i}$$

Inercia total de la nube de puntos:

$$I = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_i - \mathbf{g}||^2$$

• Inercia inter-clases, es decir la inercia de los centros de gravedad respecto al centro de gravedad total:

$$B(P) = \sum_{k=1}^{K} \frac{|C_k|}{n} ||\mathbf{g}_k - \mathbf{g}||^2$$

INERCIA INTRA-CLASES, ES DECIR LA INERCIA AL INTERIOR DE CADA CLASE:

$$W(P) = \sum_{k=1}^{K} I(C_k) = \frac{1}{n} \sum_{k=1}^{K} \sum_{i \in C_k} \|\mathbf{x}_i - \mathbf{g}_k\|^2$$

Teorema: Igualdad de Fisher

Inercia total

= Inercia inter - clases

+

Inercia intra-clases

$$I = B(P) + W(P)$$

Objetivo: Se quiere que B(P) sea máxima y W(P) sea mínima.

- ✓ Como la inercia I(P) es fija, dada la nube de puntos, entonces al maximizar B(P) se minimiza automáticamente W(P).
- ✓ Por lo tanto, los dos objetivos (homogeneidad al interior de las clases y separación entre las clases) se alcanzan al mismo tiempo al querer minimizar W(P).

Tipos de Clustering

CLUSTER JERARQUICOS

En estos algoritmos se generan sucesiones ordenadas (jerarquias) de conglomerados. Puede ser juntando cluster pequeños en mas grande o dividiendo grandes clusters en otros mas pequeños. La estructura jerárquica es representada en forma de un árbol y es llamada **Dendograma**.

Se dividen en dostipos:

- > Algoritmos jerárquicos aglomerativos (bottom-up, inicialmente cadainstancia es un cluster). AGNES
- > Algoritmos jerárquicos divisivos (top-down, inicialmente todas las instancias estan en un solo cluster. DIANA.

Dendograma

Cluster Dendrogram

ALGORITMO DE K - MEANS

 Así, el objetivo en el método de K-means es encontrar <u>una partición P</u> de □ y representantes de las clases, tales que W(P) sea mínima.

Método de K - Means

- ✓ Existe un poco de confusión en la literatura acerca del método de las k-medias, ya que hay dos métodos distintos que son llamados con el mismo nombre.
- ✓ Originalmente, Forgy propuso en 1965 un primer método de reasignación-recentraje que consiste básicamente en la iteración sucesiva, hasta obtener convergencia, de las dos operaciones siguientes:

Método de K – Means : Proceso

- > Representar una clase por su centro de gravedad, esto es, por su vector de promedios.
- > Asignar los objetos a la clase del centro de gravedad más cercano.

Método de K - Means

Método de K - Means

Sub-optimal Clustering

¿ Cuántos clústeres?

Datos originales

6 clústeres

2 clústeres

4 clústeres

Elección de K: Problema Combinatorio

- Es necesario hacer notar que, cuando se quiere obtener una partición en K clases de un conjunto con n individuos, no tiene sentido examinar todas las posibles particiones del conjunto de individuos en K clases.
- En efecto, se está en presencia de un problema combinatorio muy complejo; sólo para efectos de ilustración, mencionemos que el número de particiones en 2 clases de un conjunto de 60 elementos es aproximadamente 10^{18} y para 100 elementos en 5 clases anda por 10^{68} .

Conclusiones

- ➤ Aunque la selección inicial en el algoritmo toma tiempo extra, kmeans converge muy rápidamente después de la selección de puntos iniciales.
- Los autores probaron su método con conjuntos de datos reales y sintéticos y obtuvieron mejoras de 2-veces en la velocidad, y para ciertos conjuntos de datos, cerca de 1000 veces mejoras en error.

A seguir estudiando......

- > Fuzzy C-Means Clustering es una versión difusa del K-means, donde cada punto tiene un grado difuso de pertenecía a cada grupo.
- > Modelos de Mezclas Gausianas entrenadas con el algoritmo de esperanza-maximización presentan una asignación probabilística a cada grupo, en vez de asignaciones deterministas.
- > El algoritmo **Spherical K-means** es bastante usado para datos direccionales.
- ➤ El algoritmo **Minkowski Metric Weighted K-means** trata el problema del ruido asignando pesos a las componentes de los vectores por grupos.
- > Algoritmos de Clustering basados en medianas en lugar de medias: PAM, CLARA, CLARANS.

