CLAIMS

What is claimed is:

_	-		
1	1	A composite particle, con	mmeina
		A composite particle, con	iuiisine.
-			-F

- 2 an absorbent material formed into a particle; and
- at least one performance-enhancing active added to the absorbent material.
- 1 2. A composite particle as recited in claim 1, wherein the absorbent material is a
- 2 liquid-absorbing material and is selected from a group consisting of: a mineral, fly
- 3 ash, absorbing pelletized material, perlite, silica, organic materials, and mixtures
- 4 thereof.
- 1 3. A composite particle as recited in claim 2, wherein the absorbent material is a
- 2 mineral selected from a group consisting of: bentonite, zeolite, montmorillonite,
- diatomaceous earth, opaline silica, Georgia White clay, sepiolite, calcite,
- dolomite, slate, pumice, tobermite, marls, attapulgite, kaolinite, halloysite,
- 5 smectite, vermiculite, hectorite, Fuller's earth, fossilized plant materials,
- 6 expanded perlite, gypsum, and mixtures thereof.
- 1 4. A composite particle as recited in claim 1, wherein the absorbent material
- 2 comprises sodium bentonite granules having a mean particle diameter of about
- 3 5000 microns or less.
- 1 5. A composite particle as recited in claim 4, wherein the absorbent material
- 2 comprises sodium bentonite granules having a mean particle diameter of about
- 3 3000 microns or less.

1	6.	A composite particle as recited in claim 4, wherein the absorbent material
2		comprises sodium bentonite granules having a mean particle diameter in the range
3		ofabout 25 to about 150 microns

- 7. A composite particle as recited in claim 1, wherein the added performanceenhancing active includes at least one of an antimicrobial, an odor reducing
 material, a binder, a fragrance, a health indicating material, a color altering agent,
 a dust reducing agent, a nonstick release agent, a superabsorbent material,
 cyclodextrin, zeolite, activated carbon, a pH altering agent, a salt forming
 material, a ricinoleate and mixtures thereof.
- 1 8. A composite particle as recited in claim 1, wherein a performance-enhancing additive is sprayed onto the particles.
- 1 9. A composite particle as recited in claim 1, wherein granules of a performanceenhancing additive are dry-blended with the particles.
- 1 10. A composite particle as recited in claim 1, wherein the performance-enhancing active comprises a boron-containing compound.
- 1 11. A composite particle as recited in claim 10, wherein the boron containing
 2 compound is present in an antimicrobially effective amount, wherein the boron
 3 containing compound is selected from a group consisting of borax pentahydrate,
 4 borax decahydrate, boric acid, polyborate, tetraboric acid, sodium metaborate,
 5 anhydrous, boron components of polymers, and mixtures thereof.
- 1 12. A composite particle as recited in claim 1, wherein the performance-enhancing
 2 active inhibits the formation of odor, the active comprising a water soluble metal
 3 salt selected from a group consisting of: silver, copper, zinc, iron, and aluminum
 4 salts and mixtures thereof.

1	13.	A composite particle as recited in claim 1, wherein the performance-enhancing
2		active is present in an effective amount.

- 1 14. A composite particle as recited in claim 1, wherein the performance-enhancing active is activated carbon.
- 1 15. A composite particle as recited in claim 14, wherein the activated carbon is 2 present in about 5 weight percent or less based on a weight of the composite 3 particle.
- 1 16. A composite particle as recited in claim 14, wherein the activated carbon is 2 present in about 1 weight percent or less based on a weight of the composite 3 particle.
- 1 17. A composite particle as recited in claim 14, wherein the activated carbon has a mean particle diameter of about 5000 microns or less.
- 1 18. A composite particle as recited in claim 14, wherein the activated carbon has a mean particle diameter of about 1500 microns or less.
- 1 19. A composite particle as recited in claim 14, wherein the activated carbon has a mean particle diameter of about 50 microns or less.
- 1 20. A composite particle as recited in claim 1, wherein the at least one performance-2 enhancing active is substantially homogeneously dispersed throughout at least a 3 portion of the absorbent material.
- 1 21. A composite particle as recited in claim 1, wherein the at least one performanceenhancing active is physically dispersed in at least one layer.

1	22.	A composite particle as recited in claim 1, wherein the performance-enhancing
2		active is physically dispersed in pockets in the particle.

- A composite particle as recited in claim 1, wherein the performance-enhancing active is physically dispersed in at least one position selected from along surfaces of the particle and contained within pores of the particle.
- 1 24. A composite particle as recited in claim 1, further comprising an absorbent core, 2 the absorbent material being coupled to the core.
- 1 25. A composite particle as recited in claim 1, further comprising a non-absorbent core, the absorbent material being coupled to the core.
- 1 26. A composite particle as recited in claim 1, further comprising a hollow core, the absorbent material being coupled to the core.
- 1 27. A composite particle as recited in claim 1, further comprising a core, the
 2 absorbent material at least partially surrounding the core in the form of a shell,
 3 wherein an average thickness of the shell is at least about four times an average
 4 diameter of the core.
- A composite particle as recited in claim 1, further comprising a core, the
 absorbent material at least partially surrounding the core in the form of a shell,
 wherein an average thickness of the shell is between about 1 and about 4 times an
 average diameter of the core.
- 1 29. A composite particle as recited in claim 1, further comprising a core, the
 2 absorbent material at least partially surrounding the core in the form of a shell,
 3 wherein an average thickness of the shell is less than an average diameter of the
 4 core.

1	30.	A composite particle as recited in claim 1, further comprising a core, the
2		absorbent material at least partially surrounding the core in the form of a shell,
3		wherein an average thickness of the shell is less than about one-half an average

- 4 diameter of the core.
- 1 31. A composite particle as recited in claim 1, further comprising a heavy core 2 comprised of a material having a density higher than a density of the absorbent 3 material, the absorbent material being coupled to the core.
- 1 32. A composite particle as recited in claim 1, further comprising a lightweight core 2 comprised of a material having a density lower than a density of the absorbent 3 material, the absorbent material being coupled to the core.
- 1 33. A composite particle as recited in claim 1, further comprising a core comprised of a pH-altering material, the absorbent material being coupled to the core.
- 1 34. A composite particle as recited in claim 1, wherein the particle has a bulk density 2 of less than about 90% of a bulk density of a generally solid particle containing 3 the absorbent material alone.
- 1 35. A composite particle as recited in claim 1, wherein the particle has a bulk density 2 of less than about 70% of a bulk density of a generally solid particle containing 3 the absorbent material alone.
- 1 36. A composite particle as recited in claim 1, wherein the particle has a bulk density 2 of less than about 50% of a bulk density of a generally solid particle containing 3 the absorbent material alone.
- 1 37. A composite particle as recited in claim 1, further comprising multiple cores, the absorbent material being coupled to the cores.

1	38.	A composite particle as recited in claim 1, wherein the composite particle has a
2		hydraulic conductivity value of about 0.25 cm/s or less.

- A composite particle as recited in claim 1, wherein the composite particle exhibits reduced sticking to a container in which the composite particle rests when the particle is wetted relative to a generally solid particle under substantially similar conditions.
- 1 40. A composite particle as recited in claim 1, wherein the composite particle has a
 2 moisture content of less than about 25% by weight based on a weight of the
 3 composite particle.
- 1 41. A composite particle as recited in claim 1, wherein the composite particle has a
 2 moisture content of less than about 15% by weight based on a weight of the
 3 composite particle.
- 1 42. A composite particle as recited in claim 1, wherein the composite particle has a
 2 moisture content of less than about 10% by weight based on a weight of the
 3 composite particle.
- 1 43. A composite particle as recited in claim 1, wherein the composite particle is 2 capable of absorbing a weight of water equaling at least about 90 percent of a 3 weight of the composite particle.
- 1 44. A composite particle as recited in claim 1, wherein the composite particle is 2 capable of absorbing a weight of water equaling at least about 75 percent of a 3 weight of the composite particle.

1	45.	A composite particle as recited in claim 1, wherein the composite particle is
2		capable of absorbing a weight of water equaling at least about 50 percent of a
3		weight of the composite particle.

- A composite particle as recited in claim 1, wherein the composite particle has a dusting attrition value of at most about 15% as measured by ASTM method E-728 Standard Test Method for Resistance to Attrition of Granular Carriers and Granular Pesticides.
- 1 47. A composite particle as recited in claim 1, wherein the composite particle has a malodor rating below about 15 as determined by a Malodor Sensory Method.
- A composite particle as recited in claim 1, wherein the composite particle exhibits noticeably less odor after four days from contamination with animal waste as compared to a generally solid particle of the absorbent material alone under substantially similar conditions.
 - 49. A composite particle as recited in claim 1, wherein the composite particle has been formed by an agglomeration process.
- 1 50. A composite particle as recited in claim49, wherein the agglomeration process is a pan agglomeration process.
- 1 51. A composite particle as recited in claim49, wherein the agglomeration process is 2 at least one of a high shear agglomeration process, a low shear agglomeration 3 process, a high pressure agglomeration process, a low pressure agglomeration 4 process, a rotary drum agglomeration process, a fluid bed agglomeration process, 5 a mix muller process, a roll press compaction process, a pin mixer process, a

7		process.
1 2	52.	A composite particle as recited in claim 1, wherein the composite particle has a bulk density of about 1.5 grams per cubic centimeter or less.
1 2	53.	A composite particle as recited in claim 1, wherein the composite particle has a bulk density of 0.85 grams per cubic centimeter or less
1 2	54.	A composite particle as recited in claim 53, wherein the composite particle has a bulk density of between about 0.25 and 0.85 grams per cubic centimeter .
1 2 3	55.	A composite particle as recited in claim 1, wherein the particle has a liquid absorbing capability of from about 0.6 to about 2.5 liters of water per kilogram of particles.
1 2 3 4 5	56.	A composite particle as recited in claim 1, wherein the particle is used in at least one of an animal litter product, a laundry product, a home care product, a water filtration product, an air filtration product, a fertilizer product, an iron ore pelletizing product, a pharmaceutical product, an agricultural product, a waste and landfill remediation product, a bioremediation product, and an insecticide product
1 2	57.	Multiple composite particles as recited in claim 1, wherein substantially each particle includes the active.
1 2	58.	Multiple composite particles as recited in claim 1, wherein substantially each particle includes multiple actives.

		- 37 -
1	59.	Multiple composite particles as recited in claim 1, wherein some of the particles include a first active, and other particles contain a second active, the second active
3		being different than the first active.
1	60.	Multiple composite particles as recited in claim 1, wherein at least about 80% of
2		the particles are retained in a clump upon addition of an aqueous solution.
1	61.	Multiple composite particles as recited in claim 1, wherein at least about 90% of
2		the particles are retained in a clump upon addition of an aqueous solution.
1	62.	Multiple composite particles as recited in claim 1, wherein at least about 95% of
2		the particles are retained in a clump after 6 hours upon addition of 10 ml of cat urine.
1		
1	63.	Composite particles having improved clumping characteristics, comprising:
2		granules of an absorbent material formed into particles, each particle having areas
3 4		of more-water-soluble absorbent material and less-water-soluble absorbent material relative to each other, the areas of more-water-soluble absorbent
5		material being capable of dislodging from the associated particle when
6 7		wetted and becoming entrained between adjacent particles, the entrained absorbent material forming a bond between the adjacent particles.
1	64.	Composite particles as recited in claim 63, wherein the absorbent material is
2		sodium bentonite having a mean particle diameter of about 1000 microns or less.

1	65.	Composite particles as recited in claim 64, wherein the sodium bentonite has a
2		mean particle diameter in the range of about 25 to about 150 microns.
1	66.	Composite particles as recited in claim 63, further comprising a performance-
2	enhan	cing active, wherein the performance-enhancing active includes at least one of an
3	antim	icrobial, an odor reducing material, a binder, a fragrance, a health indicating
4	mater	ial, a color altering agent, a dust reducing agent, a nonstick release agent, a
5	supera	absorbent material, cyclodextrin, zeolite, activated carbon, a pH altering agent, a
6	salt fo	rming material, a ricinoleate and mixtures thereof.
1	67.	Composite particles as recited in claim 63, wherein a performance-enhancing
2		additive is sprayed onto the particles.
1	68.	Composite particles as recited in claim 63, wherein granules of a performance-
2	00.	enhancing additive is dry-blended with the particles, with or without addition of a
3		binder.
5		onder.
1	69.	Composite particles having improved odor reducing characteristics, comprising:
2	0,7	granules of an absorbent material; and
3		granules of an odor reducing active added to the absorbent material;
4		wherein pores are formed between the granules of the absorbent material such that
5		at least some of the granules of the odor reducing active positioned
6		towards a center of the particle are in fluid or gaseous communication with
7		an outer atmosphere surrounding the particle.
-	٠	····· ································
1	70.	A composite particle as recited in claim 69, wherein the odor reducing active is
2		activated carbon.

1	71.	A composite particle as recited in claim 70, wherein the activated carbon is
2		present in about 5 weight percent or less based on a weight of the composite
3		particle.
1	72.	A composite particle as recited in claim 70, wherein the activated carbon is
2		present in about 1 weight percent or less based on a weight of the composite
3		particle.
1	73.	A composite particle as recited in claim 70, wherein the activated carbon has a
2		mean particle diameter of about 500 microns or less.
1	74	A composite particle as recited in claim 70, wherein the activated carbon has a
2		mean particle diameter in the range of about 25 to 150 microns.
1	75.	A composite particle as recited in claim 69, wherein the odor reducing active
2		comprising a water soluble metal salt selected from a group consisting of: silver,
3		copper, zinc, iron, and aluminum salts and mixtures thereof.
1	76.	A method for forming composite particles, comprising:
2		adding granules of an absorbent mineral to an agglomerator, the granules of
3		absorbent material having a particle size smaller than about 1000 microns;
4		adding granules of a performance-enhancing active to the agglomerator;
5		adding water to the agglomerator; and
6		agglomerating the mixture for forming particles of absorbent material and
7		performance-enhancing active.

1	<i>7</i> 7.	A method as recited in claim 76, further comprising adding granules of a core
2		material to the agglomerator, the absorbent material and at least one performance-
3		enhancing active surrounding the granules of the core material.

- 1 78. A method as recited in claim 76, wherein the performance-enhancing active
 2 includes at least one of an antimicrobial, an odor reducing material, a binder, a
 3 fragrance, a health indicating material, a color altering agent, a dust reducing
 4 agent, a nonstick release agent, a superabsorbent material, cyclodextrin, zeolite,
 5 activated carbon, a pH altering agent, a salt forming material, a ricinoleate and
 6 mixtures thereof.
- A method as recited in claim 76, further comprising drying the particles to a
 desired state, wherein the particles have a bulk density of from about 0.15 to
 about 1.5 grams per cubic centimeter and a liquid absorbing capability of from
 about 0.6 to about 2.5 liters of water per kilogram of particles.
- 1 80. An animal litter, comprising:
- 2 an absorbent material formed into a particle;
- activated carbon added to the absorbent material; and
- optionally at least one other performance-enhancing active added to the absorbent material.
- 1 81. The animal litter as recited in claim 80, wherein the activated carbon is present in 2 about 1 weight percent or less based on a weight of the animal litter.
- 1 82. A method for preparing a litter box for use by animals, comprising:

2		selecting a receptacle with a closed bottom, a plurality of interconnected generally
3		upright side walls forming an open top and defining an inside surface; and
4		adding a litter material of absorbent composite particle form to the box.
1	83.	A method as recited in claim 82, wherein the litter material further includes a
2		performance-enhancing active mixed with the particles.
1		
1		
1		