MSJ Math Club

Polynomial Tricks I (Standard Methods)

10 September 2015

1 Topic Guide

This handout will mostly concern itself with solving polynomials. Let's start with something simple.

1.1 The Linear Equation

Consider the scenario where you are met with a linear equation ax + b = 0. How do you solve it?

1.2 The Quadratic

Now consider the quadratic $ax^2+bx+c=0$. You probably know of something called "completing the square" as follows: $ax^2+bx+c=a(x^2+\frac{b}{a}x)+c=a(x^2+\frac{b}{a}x+\frac{b^2}{4a^2})-\frac{b^2}{4a}+c=a(x+\frac{b}{2a})^2-\frac{b^2}{4a}+c=0$. We can then rearrange the terms to get $a(x+\frac{b}{2a})^2=\frac{b^2}{4a}-c=\frac{b^2-4ac}{4a}$. Dividing by a and taking the square root gives us $x+\frac{b}{2a}=\frac{\pm\sqrt{b^2-4ac}}{2a}$, and so our two solutions are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1.3 Monic Depressed Polynomial

What about a cubic? Let's define some terms first. A monic polynomial is a polynomial P(x) of degree n such that the leading coefficient is 1. You can make a polynomial monic by dividing the entire polynomial by the coefficient of x^n .

A depressed polynomial is a polynomial P(x) of degree n such that the coefficient of x^{n-1} is 0. For a monic cubic $P(x) = x^3 + bx^2 + cx + d = 0$, you can make it depressed by considering $P(x - \frac{b}{3}) = x^3 + ex + f$ for some values of e and f. Notice the x^2 term is gone.

For example, the polynomial $P(x) = x^3 + 3x^2 + 4x + 5$ becomes $(x+1)^3 + (x+1) + 3$, which is a depressed monic cubic in terms of x+1 because there is no $(x+1)^2$ term (this is also called "completing the cube"). So if we set y = x+1, then if we find a solution of the equation $y^3 + y + 3 = 0$, then we know that y-1 is a solution to the original equation.

1.4 Cardano's Method

An extremely useful identity to remember is the following (which you can verify by expanding):

$$x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx)$$

Now consider a monic depressed cubic polynomial $P(x) = x^3 - px + q$.

To solve this, we let $q = y^3 + z^3$ and p = 3yz for some real numbers y and z. Then $y^3z^3 = \frac{p^3}{27}$ by the second equation.

Then $P(x)=x^3-px+q=x^3-(3yz)x+(y^3+z^3)=x^3+y^3+z^3-3xyz$. By the identity, this equals 0 when x+y+z=0! If we solve the previous equations for $a=y^3$ and $b=z^3$, then we get a+b=q and $\frac{p}{27}=ab$. Now we have two variables (a and b) and 2 equations, we can solve this very easily (they are actually roots of $x^2-qx+\frac{p}{27}$). Therefore we can find a and b. Then $y=\sqrt[3]{a}$ and $z=\sqrt[3]{b}$.

Finally, since x + y + z = 0, we get that one of the roots is $x = -\sqrt[3]{a} - \sqrt[3]{b}$.

Putting everything together, for the cubic polynomial $ax^3 + bx^2 + cx + d = 0$, we have our cubic formula:

$$x = \sqrt[3]{\left(\frac{-b^3}{27a^3} + \frac{bc}{6a^2} - \frac{d}{2a}\right) + \sqrt{\left(\frac{-b^3}{27a^3} + \frac{bc}{6a^2} - \frac{d}{2a}\right)^2 + \left(\frac{c}{3a} - \frac{b^2}{9a^2}\right)^3}} + \sqrt[3]{\left(\frac{-b^3}{27a^3} + \frac{bc}{6a^2} - \frac{d}{2a}\right) - \sqrt{\left(\frac{-b^3}{27a^3} + \frac{bc}{6a^2} - \frac{d}{2a}\right)^2 + \left(\frac{c}{3a} - \frac{b^2}{9a^2}\right)^3} - \frac{b}{3a}}$$

2 Tips and Tricks

 \blacksquare We *highly* recommend not memorizing the above formula. Read through how we derived the formula, and try to understand *why* it works.

3 Examples

1. (2013 AIME I) The real root of the equation $8x^3 - 3x^2 - 3x - 1 = 0$ can be written in the form $\frac{\sqrt[3]{a} + \sqrt[3]{b} + 1}{c}$, where a, b, and c are positive integers. Find a + b + c.

4 Practice Problems

- 1. Find all real roots of the polynomial $x^3 + 3x^2 + 3x + 9$.
- 2. (Rice/Harvard/MIT/Stanford/John Hopkins Math Tournament 2000) Evaluate $2000^3 1999 \cdot 2000^2 1999^2 \cdot 2000 + 1999^3$.
- 3. Show that $\sqrt[3]{2+\sqrt{5}} + \sqrt[3]{2-\sqrt{5}} = 1$.
- 4. (Turkey MC-2005) What is the largest real number x satisfying $x^3 x^2 x \frac{1}{3} = 0$?
- 5. Puzzle of the Week: You have an $m \times n$ piece of chocolate. On one break you may choose one piece of chocolate greater than 1×1 and break that piece along a grid line. What is the smallest number of breaks you must make in order to end up with all 1×1 blocks?
- 6. Extra: If you are interested in coding, check out www.easyctf.com (a high school hacking competition)!