Overview

Content

- Cochlear Implant(CI)
- Audio signal processing(ACE)
- Theoretical principles(entropy, Markov source, etc.)
- Lossless coding(Huffman code,PPM,RNN)
- Future work and Timeline

Cochlear Implant(CI)

Cochlear Implant(CI)

- Surgically implanted neuroprosthetic device
- Microphones, sound processor and electronics (outside)
- Coil to receive signals, electronics and electrodes which stimulate the cochlear nerve(inside)

Cochlear Implant(CI)

Problem

- Monaural implant, not enough in some noisy environment
- Binaural for improvement
- · Coding and transmission time as low as possible

Audio signal processing

Advanced combinational encoder(ACE)

- NofM-type strategy
- Largest amplitude envelopes are picked
- 22 electrodes(channels)

Audio signal processing

Advanced combinational encoder(ACE)

- 1 sentence which last 3 seconds
- ACE generated current amplitude
- 22 channels, around 3000 to 8000 stimulations

	5250	5251	5252	5253	5254	
1	112	116	121	125	129	
2	125	123	120	109	106	
3	113	109	108	111	114	
4	0	0	0	0	C	
5	0	0	0	NaN	NaN	
6	NaN	0	NaN	NaN	NaN	
7	0	0	0	NaN	NaN	
8	NaN	NaN	NaN	NaN	NaN	
9	NaN	NaN	NaN	NaN	NaN	
10	NaN	NaN	NaN	0	C	
11	0	0	0	0	C	
12	0	0	0	0	C	
13	0	NaN	NaN	0	0	
14	0	0	0	0	85	
15	NaN	NaN	0	0	C	
16	NaN	0	0	0	88	
17	0	0	0	0	C	
18	0	NaN	NaN	NaN	NaN	
19	NaN	NaN	NaN	NaN	NaN	
20	NaN	NaN	NaN	NaN	NaN	
21	NaN	NaN	NaN	NaN	NaN	
22	NaN	NaN	NaN	NaN	NaN	

Theoretical principles

Entropy

- Lower bound of average codeword length
- Conditional entropy for Markov source (source with memory)

•
$$H(X|Y) = \sum_{x \in X} P(Y = y) \bullet H(X|Y = y)$$

	5250	5251	5252	5253	5254	
1	112	116	121	125	129	
2	125	123	120	109	106	
3	113	109	108	111	11-	
4	0	0	0	0	C	
5	0	0	0	NaN	NaN	
6	NaN	0	NaN	NaN	NaN	
7	0	0	0	NaN	NaN	
8	NaN	NaN	NaN	NaN	NaN	
9	NaN	NaN	NaN	NaN	NaN	
10	NaN	NaN	NaN	0	C	
11	0	0	0	0	0	
12	0	0	0	0	0	
13	0	NaN	NaN	0	0	
14	0	0	0	0	85	
15	NaN	NaN	0	0	C	
16	NaN	0	0	0	88	
17	0	0	0	0	0	
18	0	NaN	NaN	NaN	NaN	
19	NaN	NaN	NaN	NaN	NaN	
20	NaN	NaN	NaN	NaN	NaN	
21	NaN	NaN	NaN	NaN	NaN	
22	NaN	NaN	NaN	NaN	NaN	

Theoretical principles

Conditional entropy

- Random selected 10 files are assembled together
- Unneeded zeros are deleted for clear trend

Theoretical principles

Conditional entropy

- Random selected 10, 20, 50 and 100 files
- channel 1 to 6

Huffman code

- Optimal prefix code for lossless coding
- $\frac{H(U_N|U_1,...,U_{N-1})}{log_2D} \le \overline{n} < \frac{H(U_N|U_1,...,U_{N-1})}{log_2D} + 1$
- A Markov source of n order has up to $J = K^{n-1}$ different states, means J different prefix codes required
- For our ACE generated source, $K \approx 72$. The order 6 Huffman code requires 1.9349×10^9 different prefix codes
- Impracticable because of high computational effort

- Very high compression rates
- Use a set of previous symbols in the uncompressed symbol stream to predict the next symbol
- Particularly suitable for our Markov source data

- Use Markov Modelling with Partial String Matching to estimate probability
- Estimates escape probabilities for 'zero frequency problem'
- Probability table is fed to arithmetic coder in order to encode data

- Probability of symbol φ : $p(\varphi) = \frac{c(\varphi)}{1+C}$, $c(\varphi) > 0$
- Escape probability 1 $-\sum_{\varphi\in\mathcal{K},c(\varphi)>0}p(\varphi)=rac{1}{1+C}$
- $p(133) = \frac{1}{12} \times \frac{1}{4} \times \frac{1}{27} \times \frac{32}{105}$
- If current symbol is novel even to the zero order context, final escape, encoded as an 8 bit code

order	context	symbol occurrence counts						total	
		0	81	85	110	112	121	133	
3	(112,116,121)	9	2						11
2	(112,116)	10	2	3					15
1	(116)	15	6	18	25	1			65
0	empty	30	15	41	68	24	72	32	282

- Individual encoding for every channel
- Pack all 22 channels for transmission

Lossless Compression using Recurrent Neural Networks

- RNN(LSTM/GRU) based models are good at capturing long term dependencies
- RNN(LSTM/GRU) can predict the next symbol very well
- RNN(LSTM/GRU) is highly potential for lossless compression (according to existing research, DeepZip)

Lossless Compression using Recurrent Neural Networks

- Similar structure to PPM
- Both consist of probability estimator and arithmetic encoder
- DeepZip estimates conditional entropy distribution through RNN

RNN-Arithmetic Encoder Framework

Future work and Timeline

Timeline

- In 3 weeks test PPM for our project
- In 6 weeks test DeepZip for our project
- Compare 2 different coding methods
- Computational effort(code and decode time)
- Storage memory demands
- etc.