PRIME LESSONS

By the Makers of EV3Lessons

מעקב אחרי קו באמצעות PID

ARVIND AND SANJAY SESHAN מאת

מטרות השיעור

- ללמוד על המגבלות של בקרה פרופורציונלית
 - ללמוד מה זה PID
 - ללמוד איך לתכנת PID ואיך לכייל אותו

מתי בקרה פרופורציונלית מתקשה?

כדי להציג אותן PowerPoint הערה: השקופיות הבאות מונפשות. השתמש במצב מצגת

מה בקרה פרופורציונלית

על הקו ← להמשיך ישר

על לבן \rightarrow לפנות שמאלה

חוצים את הקו \rightarrow להמשיך ישר

על לבן \rightarrow לפנות שמאלה

מתרחק עוד יותר מהקו \rightarrow לפנות שמאלה אותה כמות

?הייתה עושה

מה בן אדם היה עושה?

על הקו \rightarrow להמשיך ישר

על לבן \rightarrow לפנות שמאלה

חוצים את הקו \rightarrow לפנות ימינה

על לבן \rightarrow לפנות שמאלה

מתרחק עוד יותר מהקו \rightarrow לפנות עוד

יותר

50% 100%

קריאה מהחיישן

כיצד נוכל לתקן את הבקרה הפרופורציונלית?

?מה בן אדם היה עושה

פונה שמאלה/על הקו \rightarrow לפנות ימינה

מתרחק עוד יותר מהקו → לפנות עוד יותר

1. לחזות מה קריאת החיישן הבאה תהיה

פונה שמאלה/על הקו → להמשיך ישר!

מתרחק עוד יותר מהקו → לפנות מתרחק עוד יותר מהקות!

2. האם תיקוני סטייה בעבר עזרו להפחית את הטעות?

אינטגרלים ונגזרות

2. האם תיקוני סטייה בעבר עזרו להפחית את הטעות?

- כשהתיקונים עובדים כמו שצריך, איך נראית קריאת השגיאה?
 - +5, -6, +4, -8..כלומר, קופץ סביב 0
 - כשהתיקונים לא עובדים טוב, איך נראית קריאת השגיאה?
- +5, +5, +6, +5...כלומר, תמיד באותו צד של 0
 - כיצד נוכל לזהות זאת בקלות?
 - רמז: שימו לב לסכום כל השגיאות הקודמות
 - מה הערך האידיאלי לסכום הזה? מה זה אומר אם הסכום גדול?
 - אינטגרל ← סכום הערכים

1. לחזות מה קריאת החיישן הבאה תהיה

אם הקריאות הן 75, 65, 55 \rightarrow מה תהיה הקריאה הבאה?

מה אם הקריאות היו 57, 56, 55...

באיזה מידע השתמשתם בשביל לנחש?

דיפרנציאל (נגזרת) → קצב השינוי של ערך

Copyright © 2020 Prime Lessons (primelessons.org) CC-BY-NC-SA. (Last edit: 12/14/2020)

מה זה PID?

- רופורציונלי (שגיאה) → כמה גרוע המצב כרגע? [P]
- (ו] **א**ינטגרלי \rightarrow איך התיקונים הקודמים שלי עזרו לי לתקן דברים?
 - ?יפרנציאלי \rightarrow איך משתנה הסיטואציה [D]
- בקרת PID → שילוב ערכי השגיאה, האינטגרל והדיפרנציאל כדי להחליט לאן להפנות את הרובוט

שגיאה

- קו שלם מייצג את מה שכבר ראיתם, קו מקווקו זה העתיד
- בזמן 20, אתם רואים קריאת אור = 40 ושגיאה = מינוס 10 (איקס אדום)

אינטגרל

דיפרנציאל (נגזרת)

20

זמן (שניות)

- כמה מהר המיקום משתנה?
- חוזה איפה הרובוט יהיה בעתיד הקרוב
- אותו דבר כמו כמה מהר השגיאה משתנה
 - אפשר למדוד באמצעות המשיק לעקומה בנקודה מסוימת → נגזרת
 - אפשר לחשב בקירוב באמצעות שתי נקודות צמודות בגרף

פסאודו קוד

- לקרוא קריאה חדשה מהחיישן 📙
 - 2. לחשב את ה"שגיאה"
- 3. להתאים את קנה המידה כדי לקבוע את התרומה לעדכון הסטייה (בקרה פרופורציונלית)
 - להשתמש בשגיאה כדי לעדכן את האינטגרל (סכום כל השגיאות הקודמות)
 - 5. להתאים את קנה המידה כדי לקבוע את התרומה לעדכון הסטייה (בקרה אינטגרלית)
 - להשתמש בשגיאה כדי לעדכן את הנזגרת (השינוי מהשגיאה הקודמת)
 - להתאים את קנה המידה כדי לקבוע את התרומה לעדכון הסטייה (בקרה דיפרנציאלית) 🧘
 - 8. לשלב את פידבק מה-P, I, ו-D ולהגות את הרובוט

קוד - פרופורציונלי

החלק הזה זהה לקוד בקרה פרופורציונלית.

שגיאה = מרחק מהמטרה = קריאה פחות מטרה

$$0.3 = (K_p)$$
 השגיאה כפול קבוע פרופורציולי = (P_fix) תיקון

קוד - אינטגרלי

- החלק הזה מחשב את האינטגרל. הוא מוסיף את השגיאה הנוכחית למשתנה שמכיל את סכום כל השגיאות הקודמות.
 - הקבוע הפרופורציונלי בדרך כלל מאוד קטן כי האינטגרל יכול להיות מאוד גדול.

אינטגרל = סכום כל השגיאות = השגיאות הקודמות + השגיאה הנוכחית

 $0.001 = (K_i)$ אינטגרל כפול קבוע פרופורציולני = (I_fix) תיקון

קוד - דיפרנציאלי

החלק הזה מחשב את הדיפרצניאל. הוא מחסר את השגיאה הנוכחית מהשגיאה הקודמת כדי למצא את השינוי בשגיאה.

דיפרצניאל = קצב שינוי השגיאה = השגיאה הנוכחית פחות השגיאה הקודמת

 $1.0 = (K_d)$ דיפרנציאל כפול קבוע פרופורציונלי = (D_fix) תיקון

משלבים את הכל ביחד

- קנה המידה של כל המרכיבים כבר תוקן. בנקודה הזאת אפשר פשוט לסכום אותם.
 - לסכום את שלושת התיקונים ל-P, I ו-D. זה יחשב את התיקון הסופי.
- בספייק פריים, נשתמש ב-"% power" כדי שכוח המנועים לא יושפע ממקורות אחרים.

הקוד השלם

```
reflected light
                                                   50
                         0.3
                           0.001
                               lastError
              Derivative
start moving at
```

- זה מה שמקבלים כשמחברים את כל החלקים האלו
- אנו מקווים שאתם מבינים איך PID עובד קצת יותר טוב עכשיו

הקוד השלם

הגדירו את המשתנים בשביל השגיאה הקודמת והאינטגרל לפני הלולאה ואתחלו אותם ל-0 כי קוראים מהם לפני שכותבים אליהם. בנוסף תגדירו את מנועי התזוזה.

```
set movement motors to A+E ▼
Integral ▼ to 0
lastError ▼ to 0
               B ▼ reflected light
 Error ▼ to
                     0.3
 Integral <
 I-fix ▼ to
                       0.001
                         (1
 D-fix ▼ to
                  P-fix +
                         I-fix
                                   D-fix
  start moving at
                 40
                                    40
                                                      % power
```

שלב מפתח: כיול קבועי הPID

- היא ניסוי וטעיה PID הדרך הפשוטה ביותר לכיול
 - זה יכול לקחת זמן. הנה מספר טיפים:
- השביתו הכל חוץ מהחלק הפרופורציונלי (קבעו את הקבועים האחרים ל0). תשנו רק את הקבוע הפרופורציונלי עד שהרובוט עוקב אחרי הקו.
 - אז, כווננו את האינטגרל עד שהוא עושה ביטועים טובים על קווים שונים.
 - ובסופו של דבר, כווננו את הדיפרנציאל עד שאתם מרוצים מהמעקב.
 - כשאתם מפעילים כל חלק, הנה כמה מספרים טובים להתחיל איתם
 - כוננו ב- 0.5בהתחלה ו- 0.1 בשביל כוונונים עדינים P: 1.0
 - ו כוננו ב- 0.01±בהתחלה ו- 0.00±בשביל כוונונים עדינים l: 0.05
 - כוננו ב- 0.5בהתחלה ו- 0.1בשביל כוונונים עדינים D: 1.0

השוואה של שתי השיטות

פרופורציונלי

- משתמש ב"P" של PID
- עושה פניות פרופורציונליות
- עובד טוב גם על קווים ישרים וגם על קווים מעוקלים
 - טוב לצוותים בינוניים או מתקדמים → מצריך לדעת איך להשתמש בבלוקי מתמטיקה

PID

- יותר טוב מבקרה פרופורציונלית על קו מאוד מעוקל, בגלל שהרובוט מתאים את עצמו לעיקול.
- שבו רוב הקוים ישרים, FLL, שבו רוב הקוים ישרים, בקרה פרופורציונלית יכולה להספיק

קרדיטים

.Prime Lessons עבור Arvind and Sanjay Seshan המצגת נוצרה על ידי

'של עירוני ד FRC D-Bug #3316 של עירוני ד FLL-המצגת תורגמה לעברית ע"י

תל-אביב D++ #285 ו-D5ITAL #1331

ניתן למצוא שיעורים נוספים באתר www.primelessons.org

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</u>.