

FCC PART 15.247 TEST REPORT

For

Baicells Technologies Co., Ltd.

3F, Hui Yuan Development Building, No.1 Shangdi, Information Industry Base, Haidian Dist. Beijing, China

FCC ID: 2AG32EG7035E

Report Type:
Original Report

LTE Outdoor CPE

Report Number: RSZ170227001-00B

Report Date: 2017-04-27

Oscar Ye

Reviewed By: Engineer

Prepared By: Bay Area Compliance Laboratories Corp. (Kunshan)

No.248 Chenghu Road, Kunshan, Jiangsu province,

Gscar. Ye

China

Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

Report No.: RSZ170227001-00B

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
Measurement Uncertainty Test Facility	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
EUT Exercise Software	
DUTY CYCLE	
SUPPORT EQUIPMENT LIST AND DETAILS EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	11
FCC§15.247 (i), §1.1307 (b) (1) & §2.1091 –Maximum Permissible exposure (MPE)	12
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	14
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	14
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	15
APPLICABLE STANDARD	15
EUT SETUP	
EMI TEST RECEIVER SETUP	
Test Procedure	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
Test Data	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST PROCEDURE	

Test Data41

Report No.: RSZ170227001-00B

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Baicells Technologies Co., Ltd.*'s product, model number: *EG7035E* (*FCC ID*: 2AG32EG7035E) in this report is a *LTE Outdoor CPE*, which was measured approximately: 24.8 cm (L) * 24.8 cm (W) * 8.0 cm (H), rated with input voltage: DC24.0V from POE.

Report No.: RSZ170227001-00B

* All measurement and test data in this report was gathered from production sample serial number: 1700289 (Assigned by BACL, Kunshan). The EUT supplied by the applicant was received on 2017-02-27.

Objective

This report is prepared on behalf of *Baicells Technologies Co., Ltd.* in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 90 TNB submissions with FCC ID: 2AG32EG7035E.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

	Item	Uncertainty
AC Power Line	s Conducted Emissions	±3.26 dB
RF conducte	d test with spectrum	±0.9dB
RF Output Po	wer with Power meter	±0.5dB
Dadistal amissism	30MHz~1GHz	±5.91dB
Radiated emission	Above 1G	±4.92dB
Occupi	ied Bandwidth	±0.5kHz
Temperature		±1.0℃
ŀ	Humidity	±6%

FCC Part 15.247 Page 4 of 47

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China

Report No.: RSZ170227001-00B

Test site at Bay Area Compliance Laboratories Corp. (Kunshan) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.10-2013.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 815570. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.247 Page 5 of 47

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 802.11b, 802.11g and 802.11n-HT20 mode, 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	/	/
6	2437	/	/
7	2442	/	/

Report No.: RSZ170227001-00B

For 802.11b, 802.11g, 802.11n-HT20 mode, EUT was tested with Channel 1, 6 and 11

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

The software "PUTTY" was used.

The device was tested, the worst case was performed as below:

MODE	RATE		Power level	
MODE	KAIL	low channel	middle channel	high channel
802.11b	1 Mbps	13	9	9
802.11g	6 Mbps	13	9	8
802.11n-HT20	MCS0	13	9	8

Pre-scan with all the date rates, the above date rate is the worst case for Wi-Fi test.

FCC Part 15.247 Page 6 of 47

Duty cycle

802.11b mode

Report No.: RSZ170227001-00B

802.11g mode

FCC Part 15.247 Page 7 of 47

802.11n-HT20 Mode

Report No.: RSZ170227001-00B

Band	Duty Cycle (%)	T(us)	1/T(kHz)	VBW Setting	10log(1/x)
802.11b	97	4389	0.23	1kHz	0.13
802.11g	88	1003	1.00	1kHz	0.56
802.11n-HT20	84	741	1.35	3kHz	0.76

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Lenovo	Notebook	T400	R8-LXAXE 09/12
DELL	Mouse	MOC5UO	G1900NKD
Lenovo	Adapter	92P1158	PA-1650-161
Kingston	U disk	4 GB	N/A

FCC Part 15.247 Page 8 of 47

External I/O Cable

Cable Description	Length (m)	From/Port	То
Un-Shielding Detachable USB Cable	1.5	Notebook	U disk
Un-Shielding Detachable USB Cable	1.5	Notebook	Mouse
Un-shielding Detachable RJ45 Cable	1.0	EUT	POE
Un-shielding Detachable AC Cable	0.9	POE	LISN 1
Un-shielding detachable RJ45 Cable	1.0	POE	Notebook

Report No.: RSZ170227001-00B

Block Diagram of Test Setup

For conducted emission

FCC Part 15.247 Page 9 of 47

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (1)& §2.1091	Maximum Permissible Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum Conducted Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

Report No.: RSZ170227001-00B

FCC Part 15.247 Page 10 of 47

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
	AC Line Conducted test						
Rohde & Schwarz	EMI Test Receiver	ESCS30	834115/007	2016-11-25	2017-11-25		
Rohde & Schwarz	LISN	ESH3-Z5	862770/011	2016-10-10	2017-10-10		
Rohde & Schwarz	Pulse limiter	ESH3-Z2	879940/0058	2016-06-18	2017-06-17		
MICRO-COAX	Coaxial line	UFB-293B-1- 0480-50X50	97F0173	2016-09-08	2017-09-08		
Rohde & Schwarz	CE Test software	EMC 32	V 09.10.0	NCR	NCR		
	R	adiation test					
Sonoma Instrunent	Amplifier	330	171377	2016-12-12	2017-12-12		
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2016-11-25	2017-11-25		
Sunol Sciences	Broadband Antenna	JB3	A090314-2	2016-01-09	2019-01-08		
Narda	Pre-amplifier	AFS42- 00101800	2001270	2016-09-08	2017-09-08		
EMCO	Horn Antenna	3116	00084159	2016-10-18	2019-10-17		
Rohde & Schwarz	Signal Analyzer	FSIQ26	100048	2016-11-25	2017-11-25		
ETS	Horn Antenna	3115	6229	2016-01-11	2019-01-10		
R&S	Auto test Software	EMC32	V 09.10.0	NCR	NCR		
haojintech	Coaxial Cable	Cable-1	001	2016-12-12	2017-12-12		
haojintech	Coaxial Cable	Cable-2	002	2016-12-12	2017-12-12		
haojintech	Coaxial Cable	Cable-3	003	2016-12-12	2017-12-12		
MICRO-COAX	Coaxial Cable	Cable-4	004	2016-12-12	2017-12-12		
MICRO-COAX	Coaxial Cable	Cable-5	005	2016-12-12	2017-12-12		
	RF	Conducted test					
BACL	TS 8997 Cable-01	T-KS-EMC086	T-KS- EMC086	2016-12-09	2017-12-08		
BACL	RF cable	KS-LAB-012	KS-LAB-012	2016-12-15	2017-12-15		
WEINSCHEL	3dB Attenuator	5326	N/A	2016-06-18	2017-06-18		
Agilent	Power Meter	N1912A	MY5000492	2016-11-18	2017-11-17		
Agilent	Power Sensor	N1921A	MY54210024	2016-11-18	2017-11-17		
Rohde & Schwarz	Signal Analyzer	FSIQ26	836131/009	2016-09-21	2017-09-21		

Report No.: RSZ170227001-00B

FCC Part 15.247 Page 11 of 47

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) & §2.1091 –Maximum Permissible exposure (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 1.1307 (b)(1), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure

Report No.: RSZ170227001-00B

	Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Magnetic Field Strength Strength (V/m) (A/m)		Power Density (mW/cm²)	Averaging Time (Minutes)			
0.3-1.34	614	1.63	*(100)	30			
1.34-30	824/f	2.19/f	$*(180/f^2)$	30			
30-300	27.5	0.073	0.2	30			
300-1500	/	/	f/1500	30			
1500-100,000	/	/	1.0	30			

f = frequency in MHz

MPE Calculated:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

For simultaneously transmit system, the calculated power density should comly with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \leq 1$$

FCC Part 15.247 Page 12 of 47

^{* =} Plane-wave equivalent power density

MPE Results

Tune-Up Power Including Tolerance:

Frequency	Ante	nna Gain	Max Tun	e-up Power	Evaluation	Power	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	Density (mW/cm ²)	(mW/cm ²)
3650-3700	19.5	89.13	17	50.12	30	0.395	1.0
2412-2462	2	1.58	15.0	31.62	30	0.004	1.0

Report No.: RSZ170227001-00B

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} = 0.395 + 0.004 = 0.399 < 1.0$$

Note: To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 30cm from nearby persons.

Result: Compliance

FCC Part 15.247 Page 13 of 47

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RSZ170227001-00B

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has an internal antenna arrangement, which was permanently attached and the antenna gain is 2.0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC Part 15.247 Page 14 of 47

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

Report No.: RSZ170227001-00B

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.247 Page 15 of 47

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Report No.: RSZ170227001-00B

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Layne Li on 2017-04-10.

FCC Part 15.247 Page 16 of 47

EUT operation mode: Transmitting

AC 120V/60 Hz, Line

Report No.: RSZ170227001-00B

Frequency (MHz)	QuasiPeak (dBµV)	Average (dB µ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.170000		12.67	9.000	L1	10.0	42.29	54.96	Compliance
0.170000	32.15		9.000	L1	10.0	32.81	64.96	Compliance
0.470000		19.62	9.000	L1	10.1	26.89	46.51	Compliance
0.470000	40.41		9.000	L1	10.1	16.10	56.51	Compliance
0.630000		14.05	9.000	L1	10.0	31.95	46.00	Compliance
0.630000	28.06		9.000	L1	10.0	27.94	56.00	Compliance
1.250000		14.48	9.000	L1	9.9	31.52	46.00	Compliance
1.250000	28.64		9.000	L1	9.9	27.36	56.00	Compliance
1.370000		13.15	9.000	L1	9.9	32.85	46.00	Compliance
1.370000	27.47		9.000	L1	9.9	28.53	56.00	Compliance
1.990000		12.91	9.000	L1	9.9	33.09	46.00	Compliance
1.990000	27.86		9.000	L1	9.9	28.14	56.00	Compliance

FCC Part 15.247 Page 17 of 47

AC 120V/60 Hz, Neutral

Report No.: RSZ170227001-00B

Frequency (MHz)	QuasiPeak (dBµV)	Average (dB \mu V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.470000		19.22	9.000	N	10.1	27.29	46.51	Compliance
0.470000	40.11		9.000	N	10.1	16.40	56.51	Compliance
0.610000		13.50	9.000	N	10.0	32.50	46.00	Compliance
0.610000	27.55		9.000	N	10.0	28.45	56.00	Compliance
1.190000		13.45	9.000	N	9.9	32.55	46.00	Compliance
1.190000	28.08		9.000	N	9.9	27.92	56.00	Compliance
1.310000		13.00	9.000	N	9.9	33.00	46.00	Compliance
1.310000	27.33		9.000	N	9.9	28.67	56.00	Compliance
2.010000		12.96	9.000	N	9.9	33.04	46.00	Compliance
2.010000	27.29		9.000	N	9.9	28.71	56.00	Compliance
2.770000		12.77	9.000	N	9.9	33.23	46.00	Compliance
2.770000	27.01		9.000	N	9.9	28.99	56.00	Compliance

Note:

Corrected Amplitude = Reading + Correction Factor
 Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation
 Margin = Limit - Corrected Amplitude

FCC Part 15.247 Page 18 of 47

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Report No.: RSZ170227001-00B

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

FCC Part 15.247 Page 19 of 47

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Report No.: RSZ170227001-00B

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1MHz	3 MHz	/	PK
Above 1 GHz	1MHz	10 Hz Note 1	/	Ave.
	1MHz	>1/T Note 2	/	Ave.

Note 1: when duty cycle is no less than 98%

Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C</u>, section 15.205, 15.209 and 15.247.

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + U_{\rm (Lm)} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

FCC Part 15.247 Page 20 of 47

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Layne Li on 2017-04-10.

EUT operation mode: Transmitting

30 MHz-25 GHz:

For Wi-Fi:

802.11b Mode:

Frequency	Re	eceiver	Turntable	Rx An	tenna		Corrected		C Part /205/209			
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)			
	Low Channel (2412 MHz)											
265.7	44.42	QP	240	1.1	Н	-11.97	32.45	46	13.55			
2412.00	99.77	PK	164	2.3	Н	-6.19	93.58	/	/			
2412.00	93.15	Ave.	164	2.3	Н	-6.19	86.96	/	/			
2412.00	100.32	PK	59	1.9	V	-6.19	94.13	/	/			
2412.00	94.42	Ave.	59	1.9	V	-6.19	88.23	/	/			
2341.58	67.4	PK	34	1.6	V	-6.42	60.98	74	13.02			
2341.58	51.5	Ave.	34	1.6	V	-6.42	45.08	54	8.92			
2359.69	67.75	PK	113	1.4	V	-6.19	61.56	74	12.44			
2359.69	51.38	Ave.	113	1.4	V	-6.19	45.19	54	8.81			
2488.32	66.26	PK	26	1.6	V	-5.97	60.29	74	13.71			
2488.32	51.66	Ave.	26	1.6	V	-5.97	45.69	54	8.31			
4824.00	50.22	PK	202	2.4	V	1.6	51.82	74	22.18			
4824.00	35.21	Ave.	202	2.4	V	1.6	36.81	54	17.19			

Report No.: RSZ170227001-00B

FCC Part 15.247 Page 21 of 47

Frequency	Re	eceiver	Turntable	Rx Aı	ntenna		Corrected		C Part //205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Middle C	hannel	(2437 N	MHz)			
265.7	44.34	QP	162	1.0	Н	-11.97	32.37	46	13.63
2437.00	98.08	PK	148	2.0	Н	-6.19	91.89	/	/
2437.00	92.87	Ave.	148	2.0	Н	-6.19	86.68	/	/
2437.00	102.1	PK	248	1.0	V	-6.19	95.91	/	/
2437.00	96.8	Ave.	248	1.0	V	-6.19	90.61	/	/
2342.54	67.39	PK	26	1.4	V	-6.42	60.97	74	13.03
2342.54	51.5	Ave.	26	1.4	V	-6.42	45.08	54	8.92
2357.13	67.51	PK	131	1.1	V	-6.19	61.32	74	12.68
2357.13	51.38	Ave.	131	1.1	V	-6.19	45.19	54	8.81
2485.68	66.53	PK	181	1.9	V	-5.97	60.56	74	13.44
2485.68	51.66	Ave.	181	1.9	V	-5.97	45.69	54	8.31
4874	50.61	PK	347	2.0	V	1.83	52.44	74	21.56
4874	35.68	Ave.	347	2.0	V	1.83	37.51	54	16.49
			High Ch	annel (2462 M	Hz)			
265.7	44.28	QP	71	1.2	Н	-11.97	32.31	46	13.69
2462.00	101.34	PK	358	1.8	Н	-5.97	95.37	/	/
2462.00	95.41	Ave.	358	1.8	Н	-5.97	89.44	/	/
2462.00	104.23	PK	302	1.6	V	-5.97	98.26	/	/
2462.00	98.77	Ave.	302	1.6	V	-5.97	92.80	/	/
2335.65	67.12	PK	149	1.5	V	-6.42	60.70	74	13.30
2335.65	51.5	Ave.	149	1.5	V	-6.42	45.08	54	8.92
2484.06	69.5	PK	171	2.0	V	-5.97	63.53	74	10.47
2484.06	57.73	Ave.	171	2.0	V	-5.97	51.76	54	2.24
2488.52	69.84	PK	94	2.3	V	-5.97	63.87	74	10.13
2488.52	56.09	Ave.	94	2.3	V	-5.97	50.12	54	3.88
4924	50.88	PK	172	2.1	V	1.83	52.71	74	21.29
4924	35.97	Ave.	172	2.1	V	1.83	37.80	54	16.20

Report No.: RSZ170227001-00B

FCC Part 15.247 Page 22 of 47

802.11g Mode:

Frequency	Re	eceiver	Turntable	Rx Ar	itenna		Corrected		C Part /205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Low Ch	annel (2	2412 M	Hz)			
265.7	44.44	QP	174	1.1	Н	-11.97	32.47	46	13.53
2412.00	102	PK	122	2.3	Н	-6.19	95.81	/	/
2412.00	85.88	Ave.	122	2.3	Н	-6.19	79.69	/	/
2412.00	100.51	PK	241	2.3	V	-6.19	94.32	/	/
2412.00	84.35	Ave.	241	2.3	V	-6.19	78.16	/	/
2340.14	68.13	PK	145	1.1	Н	-6.42	61.71	74	12.29
2340.14	51.5	Ave.	145	1.1	Н	-6.42	45.08	54	8.92
2373.16	68.1	PK	181	1.7	Н	-6.19	61.91	74	12.09
2373.16	51.38	Ave.	181	1.7	Н	-6.19	45.19	54	8.81
2499.04	66.98	PK	309	1.1	Н	-5.97	61.01	74	12.99
2499.04	51.66	Ave.	309	1.1	Н	-5.97	45.69	54	8.31
4824.00	50.83	PK	279	1.9	Н	1.6	52.43	74	21.57
4824.00	35.44	Ave.	279	1.9	Н	1.6	37.04	54	16.96
			Middle C	hannel	(2437 N	/IHz)			
265.7	44.36	QP	30	1.2	Н	-11.97	32.39	46	13.61
2437.00	98.6	PK	147	1.7	Н	-6.19	92.41	/	/
2437.00	82.42	Ave.	147	1.7	Н	-6.19	76.23	/	/
2437.00	101.53	PK	57	2.0	V	-6.19	95.34	/	/
2437.00	85.59	Ave.	57	2.0	V	-6.19	79.40	/	/
2331.80	66.78	PK	163	2.4	Н	-6.42	60.36	74	13.64
2331.80	51.5	Ave.	163	2.4	Н	-6.42	45.08	54	8.92
2370.76	67.76	PK	20	1.3	Н	-6.19	61.57	74	12.43
2370.76	51.38	Ave.	20	1.3	Н	-6.19	45.19	54	8.81
2488.57	67.54	PK	247	1.1	Н	-5.97	61.57	74	12.43
2488.57	51.66	Ave.	247	1.1	Н	-5.97	45.69	54	8.31
4874.00	50.59	PK	208	2.5	V	1.83	52.42	74	21.58
4874.00	36.01	Ave.	208	2.5	V	1.83	37.84	54	16.16

Report No.: RSZ170227001-00B

FCC Part 15.247 Page 23 of 47

Frequency	Re	Turntable Fa			Corrected Corrected		C Part 7/205/209				
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	_	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
High Channel (2462 MHz)											
265.7	44.32	QP	196	1.2	Н	-11.97	32.35	46	13.65		
2462.00	91.26	PK	263	1.5	Н	-5.97	85.29	/	/		
2462.00	74.16	Ave.	263	1.5	Н	-5.97	68.19	/	/		
2462.00	95.89	PK	60	1.6	V	-5.97	89.92	/	/		
2462.00	79.62	Ave.	60	1.6	V	-5.97	73.65	/	/		
2345.75	67.7	PK	359	1.8	V	-6.42	61.28	74	12.72		
2345.75	54.41	Ave.	359	1.8	V	-6.42	47.99	54	6.01		
2495.73	67.47	PK	10	2.1	V	-5.97	61.50	74	12.50		
2495.73	54.01	Ave.	10	2.1	V	-5.97	48.04	54	5.96		
2488.52	67.82	PK	255	2.0	V	-5.97	61.85	74	12.15		
2488.52	53.99	Ave.	255	2.0	V	-5.97	48.02	54	5.98		
4924.00	50.13	PK	305	1.7	V	1.83	51.96	74	22.04		
4924.00	35	Ave.	305	1.7	V	1.83	36.83	54	17.17		

Report No.: RSZ170227001-00B

FCC Part 15.247 Page 24 of 47

802.11n-HT20 Mode:

Frequency	Re	eceiver	Turntable	Rx An	itenna		Corrected	15 247	C Part //205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Low Ch	annel (2	2412 M	Hz)			
265.7	44.38	QP	47	1.1	Н	-11.97	32.41	46	13.59
2412.00	100.46	PK	186	2.3	Н	-6.19	94.27	/	/
2412.00	84.69	Ave.	186	2.3	Н	-6.19	78.50	/	/
2412.00	99.69	PK	145	2.1	V	-6.19	93.50	/	/
2412.00	80.92	Ave.	145	2.1	V	-6.19	74.73	/	/
2348.47	67.11	PK	277	1.1	Н	-6.42	60.69	74	13.31
2348.47	51.5	Ave.	277	1.1	Н	-6.42	45.08	54	8.92
2380.06	67.81	PK	277	1.2	Н	-6.19	61.62	74	12.38
2380.06	51.38	Ave.	277	1.2	Н	-6.19	45.19	54	8.81
2491.60	66.24	PK	151	1.9	Н	-5.97	60.27	74	13.73
2491.60	51.66	Ave.	151	1.9	Н	-5.97	45.69	54	8.31
4824.00	49.88	PK	154	1.0	Н	1.6	51.48	74	22.52
4824.00	35.84	Ave.	154	1.0	Н	1.6	37.44	54	16.56
			Middle C	Channel	(2437N	ИН z)			
265.7	44.24	QP	120	1.3	Н	-11.97	32.27	46	13.73
2437.00	98.87	PK	142	2.2	Н	-6.19	92.68	/	/
2437.00	81.93	Ave.	142	2.2	Н	-6.19	75.74	/	/
2437.00	103.52	PK	50	2.1	V	-6.19	97.33	/	/
2437.00	88.15	Ave.	50	2.1	V	-6.19	81.96	/	/
2368.03	67.45	PK	19	2.3	Н	-6.19	61.26	74	12.74
2368.03	51.38	Ave.	19	2.3	Н	-6.19	45.19	54	8.81
2388.65	66.79	PK	28	1.5	Н	-6.19	60.60	74	13.40
2388.65	51.38	Ave.	28	1.5	Н	-6.19	45.19	54	8.81
2492.65	66.38	PK	91	1.8	Н	-5.97	60.41	74	13.59
2492.65	51.66	Ave.	91	1.8	Н	-5.97	45.69	54	8.31
4874.00	50.21	PK	30	1.4	V	1.83	52.04	74	21.96
4874.00	35.97	Ave.	30	1.4	V	1.83	37.80	54	16.20

Report No.: RSZ170227001-00B

FCC Part 15.247 Page 25 of 47

Frequency	Re	eceiver	Turntable	Rx An	tenna		Corrected		C Part /205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)		Height (m)	Polar (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
			High Ch	nannel (2	2462 M	Hz)			
265.7	44.3	QP	201	1.2	Н	-11.97	32.33	46	13.67
2462.00	92.96	PK	183	2.3	Н	-5.97	86.99	/	/
2462.00	75.18	Ave.	183	2.3	Н	-5.97	69.21	/	/
2462.00	98.51	PK	94	2.0	V	-5.97	92.54	/	/
2462.00	80.18	Ave.	94	2.0	V	-5.97	74.21	/	/
2327.63	67.6	PK	242	1.5	V	-6.42	61.18	74	12.82
2327.63	54.39	Ave.	242	1.5	V	-6.42	47.97	54	6.03
2495.43	67.6	PK	299	2.4	V	-5.97	61.63	74	12.37
2495.43	53.99	Ave.	299	2.4	V	-5.97	48.02	54	5.98
2496.42	67.8	PK	207	1.7	V	-5.97	61.83	74	12.17
2496.42	54.02	Ave.	207	1.7	V	-5.97	48.05	54	5.95
4924.00	50.23	PK	46	2.2	V	1.83	52.06	74	21.94
4924.00	35.6	Ave.	46	2.2	V	1.83	37.43	54	16.57

Report No.: RSZ170227001-00B

Note:

 $\label{eq:corrected_factor} \begin{aligned} & \text{Corrected Factor} = \text{Antenna factor} \ (RX) + \text{Cable Loss} - \text{Amplifier Factor} \\ & \text{Corrected Amplitude} = \text{Corrected Factor} + \text{Reading} \end{aligned}$

Margin = Limit - Corrected. Amplitude

The other spurious emission which is 20dB to the limit was not recorded.

FCC Part 15.247 Page 26 of 47

Test Mode: Transmitting(WIFI 802.11b middle channel LTE 5MHz QPSK middle transmit simultaneously):

Report No.: RSZ170227001-00B

Frequency	Re	ceiver	Turntable	Rx Ar	itenna	Corrected	Corrected	Limit	Margin	
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)		Height (m)	Polar (H / V)	Factor (dB)	Amplitude (dBµV/m)	(dDuV/m)	(dB)	
38.05	41.53	QP	55	1.3	V	-9.14	32.39	40	7.61	
48.88	49.51	QP	63	1.2	V	-15.25	34.26	40	5.74	
46.19	44.29	QP	178	1.4	V	-13.32	30.97	40	9.03	
106.63	47.11	QP	206	1.4	V	-16.66	30.45	43.5	13.05	
135.61	43.89	QP	259	1.5	V	-13.34	30.55	43.5	12.95	
536.11	43.64	QP	304	1.1	V	-5.36	38.28	46	7.72	
1149.7	74.54	PK	142	1.2	Н	-11.85	62.69	74	11.31	
1149.7	60.63	Ave.	142	1.2	Н	-11.85	48.78	54	5.22	
1260.5	72.92	PK	224	1.0	Н	-10.66	62.26	74	11.74	
1260.5	59.20	Ave.	224	1.0	Н	-10.66	48.54	54	5.46	

Note:

- Corrected Amplitude = Meter Reading + Correction Factor
 Correction Factor = Antenna Factor + Cable Loss Amplifier Gain
- 3) Margin = Limit Corrected Amplitude

FCC Part 15.247 Page 27 of 47

FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RSZ170227001-00B

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	22~24 °C	
Relative Humidity:	45~50 %	
ATM Pressure:	100.0~101.0 kPa	

The testing was performed by Nefertari Xu on 2017-03-07 and 2017-04-07.

Test Result: Compliance.

EUT operation mode: Transmitting

FCC Part 15.247 Page 28 of 47

Please refer to following table and plots.

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (kHz)	
	802.11b mode			
Low	2412	9.92	≥500	
Middle	2437	9.92	≥500	
High	2462	9.08	≥500	
	802.11g mode			
Low	2412	16.41	≥500	
Middle	2437	16.41	≥500	
High	2462	16.59	≥500	
802.11n-HT20 mode				
Low	2412	17.49	≥500	
Middle	2437	17.47	≥500	
High	2462	17.80	≥500	

Report No.: RSZ170227001-00B

FCC Part 15.247 Page 29 of 47

802.11b Low Channel

Report No.: RSZ170227001-00B

802.11b Middle Channel

FCC Part 15.247 Page 30 of 47

802.11b High Channel

Report No.: RSZ170227001-00B

802.11g Low Channel

FCC Part 15.247 Page 31 of 47

802.11g Middle Channel

Report No.: RSZ170227001-00B

802.11g High Channel

FCC Part 15.247 Page 32 of 47

802.11n-HT20 Low Channel

Report No.: RSZ170227001-00B

802.11n-HT20 Middle Channel

FCC Part 15.247 Page 33 of 47

802.11n-HT20 High Channel

Report No.: RSZ170227001-00B

FCC Part 15.247 Page 34 of 47

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RSZ170227001-00B

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	24 ℃	
Relative Humidity:	52 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Nefertari Xu on 2017-04-07.

Test Result: Compliance.

EUT operation mode: Transmitting

FCC Part 15.247 Page 35 of 47

Please refer to following table and plots.

Wi-Fi mode

Report No.: RSZ170227001-00B

Channel	Frequency (MHz)	Max Conducted Peak Output Power (dBm)	Limit (dBm)	
	802.11b			
Low	2412	13.20	30	
Middle	2437	14.17	30	
High	2462	14.49	30	
802.11g				
Low	2412	14.01	30	
Middle	2437	14.61	30	
High	2462	11.73	30	
802.11n HT20				
Low	2412	14.03	30	
Middle	2437	14.68	30	
High	2462	12.09	30	

FCC Part 15.247 Page 36 of 47

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RSZ170227001-00B

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	22~24 °C	
Relative Humidity:	45~50 %	
ATM Pressure:	100.0~101.0 kPa	

The testing was performed by Nefertari Xu on 2017-03-07 and 2017-04-07.

Test Result: Compliance.

EUT operation mode: Transmitting

FCC Part 15.247 Page 37 of 47

Please refer to the following plots

802.11b: Band Edge, Left Side

Report No.: RSZ170227001-00B

802.11b: Band Edge, Right Side

FCC Part 15.247 Page 38 of 47

802.11g: Band Edge, Left Side

Report No.: RSZ170227001-00B

802.11g: Band Edge, Right Side

FCC Part 15.247 Page 39 of 47

802.11n-HT20: Band Edge, Left Side

Report No.: RSZ170227001-00B

802.11n-HT20: Band Edge, Right Side

FCC Part 15.247 Page 40 of 47

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RSZ170227001-00B

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \le RBW \le 100 \text{ kHz}$.
- 3. Set the VBW $> 3 \times RBW$.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

Temperature:	22~24 °C	
Relative Humidity:	45~50 %	
ATM Pressure:	100.0~101.0 kPa	

The testing was performed by Nefertari Xu on 2017-03-07 and 2017-04-13.

Test Result: Compliance.

EUT operation mode: Transmitting

FCC Part 15.247 Page 41 of 47

Please refer to following table and plots.

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	
	802.11b mode			
Low	2412	-9.57	≤8	
Middle	2437	-8.55	≤8	
High	2462	-9.29	≤8	
802.11g mode				
Low	2412	-14.55	≤8	
Middle	2437	-13.89	≤8	
High	2462	-16.31	≤8	
802.11n-HT20 mode				
Low	2412	-13.26	≤8	
Middle	2437	-13.61	≤8	
High	2462	-16.56	≤8	

Report No.: RSZ170227001-00B

FCC Part 15.247 Page 42 of 47

Power Spectral Density, 802.11b Low Channel

Report No.: RSZ170227001-00B

Power Spectral Density, 802.11b Middle Channel

FCC Part 15.247 Page 43 of 47

Power Spectral Density, 802.11b High Channel

Report No.: RSZ170227001-00B

Power Spectral Density, 802.11g Low Channel

FCC Part 15.247 Page 44 of 47

Power Spectral Density, 802.11g Middle Channel

Report No.: RSZ170227001-00B

Power Spectral Density, 802.11g High Channel

FCC Part 15.247 Page 45 of 47

Power Spectral Density, 802.11n-HT20 Low Channel

Report No.: RSZ170227001-00B

Power Spectral Density, 802.11n-HT20 Middle Channel

FCC Part 15.247 Page 46 of 47

Power Spectral Density, 802.11n-HT20 High Channel

Report No.: RSZ170227001-00B

***** END OF REPORT *****

FCC Part 15.247 Page 47 of 47