Programa de Especialización en Econometría Aplicada Centro de Formación Continua -UNI Modelos Variable Dependiente Limitada Clase 2

Edinson Tolentino
MSc Economics
email: edinson.tolentino@gmail.com

Twitter: @edutoleraymondi

Universidad Nacional de Ingeneria

30 de noviembre de 2024

Contenido

- Introducción
- 2 Data
- Pregunta 1
- Pregunta 2
- Pregunta 3
- 6 Pregunta 4
- Pregunta 5

 Un problema a la hora de estimar la ecuación de salarios en las mujeres (por ejemplo, logaritmo de salarios) evidencia que la muestra en empleo puede no ser una extracción aleatoria de la población.

- Un problema a la hora de estimar la ecuación de salarios en las mujeres (por ejemplo, logaritmo de salarios) evidencia que la muestra en empleo puede no ser una extracción aleatoria de la población.
- En otras palabras, las mujeres observadas en el empleo pueden ser un grupo selectivo en términos de sus no observables (por ejemplo, capacidad, motivación).

- Un problema a la hora de estimar la ecuación de salarios en las mujeres (por ejemplo, logaritmo de salarios) evidencia que la muestra en empleo puede no ser una extracción aleatoria de la población.
- En otras palabras, las mujeres observadas en el empleo pueden ser un grupo selectivo en términos de sus no observables (por ejemplo, capacidad, motivación).
- La fuente del problema es que los **no observables** que determinan la participación en el empleo y los que determinan los logaritmos de los salarios están potencialmente correlacionados.

- Un problema a la hora de estimar la ecuación de salarios en las mujeres (por ejemplo, logaritmo de salarios) evidencia que la muestra en empleo puede no ser una extracción aleatoria de la población.
- En otras palabras, las mujeres observadas en el empleo pueden ser un grupo selectivo en términos de sus **no observables** (por ejemplo, capacidad, motivación).
- La fuente del problema es que los no observables que determinan la participación en el empleo y los que determinan los logaritmos de los salarios están potencialmente correlacionados.
- En tales circunstancias, la estimación convencional de ecuaciones de logaritmos salariales por MCO puede producir estimaciones de coeficientes sesgadas dada la presencia de sesgo de selección.

• **Heckman** (1976) propone una metodología el cual eventualmente proviene de un procedimiento estandar para la corrección de **sesgo selección**

- **Heckman** (1976) propone una metodología el cual eventualmente proviene de un procedimiento estandar para la corrección de **sesgo selección**
- Esto llega hacer conocido como el procedimiento de corrección Heckman

- **Heckman** (1976) propone una metodología el cual eventualmente proviene de un procedimiento estandar para la corrección de **sesgo selección**
- Esto llega hacer conocido como el procedimiento de corrección Heckman
- El método podría implementarse utilizando un enfoque en dos pasos o un enfoque de ecuaciones simultáneas utilizando la Máxima Verosimilitud de información completa (FIML).

Data

 Dada la información de la Encuesta Nacional de Hogares ENAHO, la cual contiene información de los jefes de hogar mujeres en Perú durante el 2021.

Cuadro: Descripción de variables

Variables	Descripción
rlfp;	== 1 , mujer que pertence a la fuerza laboral
rpareja;	== 1 , mujer con pareja
redad;	edad en años
redadsq;	edad en años cuadrado
reduca;	años de educación
lnr6prin	Logaritmo ingreso mensual (Soles)
rnh6;	Numero de hijos de 0 a 6 años
rnh12;	Numero de hijos de 7 a 12 años
rexper;	experiencia laboral (años)
rexpersq;	experiencia laboral cuadrado (años)

Cuadro: Estadisticas descriptivas

	Personas	Promedio	Mediana	Min.	Max.	Std
log-salarios (Ocup. princ)	7778	6.37	6.42	4.22	10.17	1
Ingreso laboral mensual (ocup. princ.)	7778	993.42	615.73	68.33	26,120.17	1,349
años educacion	10932	8.14	9.00	0.00	18.00	5
Edad	10932	52.93	52.00	18.00	98.00	16
Edad cuadrado	10932	3,069.14	2,704.00	324.00	9,604.00	1,813
Persona con pareja	10932	0.87	1.00	0.00	1.00	0
Numero de hijos	10932	1.29	1.00	0.00	9.00	1
Numero de hijos 6 años	10932	0.28	0.00	0.00	5.00	0
Numero de hijos 6-12 años	10932	0.32	0.00	0.00	5.00	0
Experiencia laboral	7778	33.76	33.00	1.00	84.00	15
Experiencia laboral cuadrado	7778	1,376.44	1,089.00	1.00	7,056.00	1,148
==1 pertenece a la PEA	10932	0.71	1.00	0.00	1.00	0

Fuente: ENAHO - 2021. Elaboracion: Autor

Cuadro: Estadisticas descriptivas

	Personas	Promedio	Mediana	Min.	Max.	Std
log-salarios (Ocup. princ)	7778	6.37	6.42	4.22	10.17	1
Ingreso laboral mensual (ocup. princ.)	7778	993.42	615.73	68.33	26,120.17	1,349
años educacion	10932	8.14	9.00	0.00	18.00	5
Edad	10932	52.93	52.00	18.00	98.00	16
Edad cuadrado	10932	3,069.14	2,704.00	324.00	9,604.00	1,813
Persona con pareja	10932	0.87	1.00	0.00	1.00	0
Numero de hijos	10932	1.29	1.00	0.00	9.00	1
Numero de hijos 6 años	10932	0.28	0.00	0.00	5.00	0
Numero de hijos 6-12 años	10932	0.32	0.00	0.00	5.00	0
Experiencia laboral	7778	33.76	33.00	1.00	84.00	15
Experiencia laboral cuadrado	7778	1,376.44	1,089.00	1.00	7,056.00	1,148
==1 pertenece a la PEA	10932	0.71	1.00	0.00	1.00	0

Fuente: ENAHO - 2021. Elaboracion: Autor

 Se posee un total de 10,932 observaciones a lo largo de las variables (demográficas y de capital humano) para las personas.

Cuadro: Estadisticas descriptivas

	Personas	Promedio	Mediana	Min.	Max.	Std
log-salarios (Ocup. princ)	7778	6.37	6.42	4.22	10.17	1
Ingreso laboral mensual (ocup. princ.)	7778	993.42	615.73	68.33	26,120.17	1,349
años educacion	10932	8.14	9.00	0.00	18.00	5
Edad	10932	52.93	52.00	18.00	98.00	16
Edad cuadrado	10932	3,069.14	2,704.00	324.00	9,604.00	1,813
Persona con pareja	10932	0.87	1.00	0.00	1.00	0
Numero de hijos	10932	1.29	1.00	0.00	9.00	1
Numero de hijos 6 años	10932	0.28	0.00	0.00	5.00	0
Numero de hijos 6-12 años	10932	0.32	0.00	0.00	5.00	0
Experiencia laboral	7778	33.76	33.00	1.00	84.00	15
Experiencia laboral cuadrado	7778	1,376.44	1,089.00	1.00	7,056.00	1,148
==1 pertenece a la PEA	10932	0.71	1.00	0.00	1.00	0

Fuente: ENAHO - 2021.

- Se posee un total de 10,932 observaciones a lo largo de las variables (demográficas y de capital humano) para las personas.
- Cuatro de las variables solo reportan observaciones para 7,778 mujeres quienes perciben un ingreso laboral

• La ecuacion de logaritmo de salarios puede ser estimado bajo un modelo de regresión **Censurado** o **Truncado**

Modelo de regresión censurada:

ightharpoonup Se posee observaciones para todos los valores de X pero no sobre la variable producto Y, cuando el evento no ocurre (por ejemplo, cuando y=0)

Modelo de regresión censurada:

Se posee observaciones para todos los valores de X pero no sobre la variable producto Y, cuando el evento no ocurre (por ejemplo, cuando y=0)

Modelo de regresión truncada:

No se posee observaciones para todos los valores de X o los valores de la variable producto Y, cuando el evento no ocurre (por ejemplo, cuando y=0)

- Modelo de regresión censurada:
 - Se posee observaciones para todos los valores de X pero no sobre la variable producto Y, cuando el evento no ocurre (por ejemplo, cuando y=0)
- Modelo de regresión truncada:
 - No se posee observaciones para todos los valores de X o los valores de la variable producto Y, cuando el evento no ocurre (por ejemplo, cuando y=0)
- Responda: modelo de regresión truncado

Estime el modelo probit para la fuerza laboral femenina (empleo de las mujeres)

$$prob\left[\mathit{Ifp}_i=1\right] = \Phi(\alpha_0 + \alpha_1 \mathit{educ}_i + \alpha_2 \mathit{edad}_i + \alpha_3 \mathit{edad}_i^2$$

$$+\alpha_4$$
 pareja_i $+\alpha_5$ rnh6_i $+\alpha_6$ rnh12_i)

- A que edad las mujeres maximizan su participación en el mercado laboral
- 2 Use el nivel de significancia de 0.05 para determinar si la información sobre la población de la fuerza laboral alcanza su máximo a los 34 años
- Interprete precisamente los efectos marginales para las variables rnh6 y rnh12


```
name: <unnamed>
```

log: C:396L2/Tablas/resultados_2.log

log type: text

opened on: 22 Jun 2024, 04:00:47

eststo: probit rflp \$Zs

Iteration 0: Log likelihood = -6568.0864 Iteration 1: Log likelihood = -5793.1131 Iteration 2: Log likelihood = -5792.0513 Iteration 3: Log likelihood = -5792.0513

Probit regression

Number of obs = 10,932 LR chi2(6) = 1552.07 Prob > chi2 = 0.0000 Pseudo R2 = 0.1182

 $Log \ likelihood = -5792.0513$

rflp	Coefficient	Std. err.	z	P> z	[95% conf. interval]
reduca rpareja redad redadsq rnh6	165457 .0527756 0007804 2420865	.0028709 .0435874 .0050695 .0000454 .0248881	-10.93 -3.80 10.41 -17.20 -9.73	0.000 0.000 0.000 0.000 0.000	03701920257656 25088660800273 .0428395 .0627116 00086930006914 29086611933068
rnh12 _cons	0610507 .6937773	.0248356 .1438517	-2.46 4.82	0.014	10972750123739 .4118332 .9757214

(est1 stored)

log close name: <unnamed>

log: C:396L2/Tablas/resultados_2.log

log type: text

closed on: 22 Jun 2024, 04:00:50

Cuadro: Modelo Probit (1)

==1 pertenece a la PEA		
años educacion	-0.03***	(0.00)
Persona con pareja	-0.17***	(0.04)
Edad	0.05***	(0.01)
Edad cuadrado	-0.00***	(0.00)
Numero de hijos 6 años	-0.24***	(0.02)
Numero de hijos 6-12 años	-0.06**	(0.02)
Constant	0.69***	(0.14)
Observaciones	10932	
Pseudo, R ²		
Pseudo. R ²	0.118	
Log-L	-5792.1	
Grados de Libertad (k)	7	

Fuente: ENAHO - 2021.

Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

Cuadro: Modelo Probit (1)

==1 pertenece a la PEA		
años educacion	-0.03***	(0.00)
Persona con pareja	-0.17***	(0.04)
Edad	0.05***	(0.01)
Edad cuadrado	-0.00***	(0.00)
Numero de hijos 6 años	-0.24***	(0.02)
Numero de hijos 6-12 años	-0.06**	(0.02)
Constant	0.69***	(0.14)
Observaciones	10932	
Pseudo. R ²	0.118	
Log-L	-5792.1	
Grados de Libertad (k)	7	

Fuente: ENAHO - 2021.

Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

 La edad a la cual las mujeres maximizan su edad en la participación del salarios sera:

$$z_i = \cdots + \widehat{\alpha}_2 e dad_i + \widehat{\alpha}_3 e dad_i^2 + \cdots$$

$$\frac{\partial z}{\partial e dad} = -\widehat{\alpha}_2 + 2\widehat{\alpha}_3 e dad_i$$

$$e dad_{ss} = -\frac{\widehat{\alpha}_2}{2\widehat{\alpha}_3}$$

 Reemplazando los datos de la estimación realizada

$$edad_{ss}=-rac{0.05277}{2(-0.0007804)}$$
 $edad_{ss}=\widehat{\triangle}=33.81$

• Entonces, las participación laboral en Peru alcanza su maximo a la edad de 34 años, ¿Será plausible dicho resultado?, que crees?

- Use el nivel de significancia de 0.05 para determinar si la información sobre la población de la fuerza laboral alcanza su máximo a los 34 años
- Entonces

$$H_0: \triangle = 34$$

$$H_a: \triangle \neq 34$$


```
name: <unnamed>
     log: C:396L2/Tablas/resultados 3.log
 log type: text
opened on: 22 Jun 2024, 04:00:50
        nlcom - b[redad]/(2* b[redadsq]) -34
      _nl_1: - _b[redad]/(2*_b[redadsq]) -34
      rflp | Coefficient Std. err. z P>|z| [95% conf. interval]
      gen pred_y=_b[redad]*redad + _b[redadsq]*redadsq
        scatter pred_y redad
        graph export "$Imagen/t1.png", replace
file C:396L2/Imagen/t1.png saved as PNG format
        log close
     name: <unnamed>
     log: C:396L2/Tablas/resultados_3.log
 log type: text
closed on: 22 Jun 2024, 04:00:51
```


Cuadro: Efectos Marginales probit

	Efectos Marginales			
años educacion	-0.009***	(0.00)		
Persona con pareja	-0.049***	(0.01)		
Edad	0.016***	(0.00)		
Edad cuadrado	-0.000***	(0.00)		
Numero de hijos 6 años	-0.072***	(0.01)		
Numero de hijos 6-12 años	-0.018**	(0.01)		
Observations	10932			

Errores estandar en parentesis.

Fuente: INEI -2021. Elaboracion: Autor

***, **, * denote statistical significance at the $1\,\%,\,5\,\%$ and $10\,\%$ levels respectively for zero.

Cuadro: Efectos Marginales probit

	Efectos Marginales			
años educacion	-0.009***	(0.00)		
Persona con pareja	-0.049***	(0.01)		
Edad	0.016***	(0.00)		
Edad cuadrado	-0.000***	(0.00)		
Numero de hijos 6 años	-0.072***	(0.01)		
Numero de hijos 6-12 años	-0.018**	(0.01)		
Observations	10932			

Errores estandar en parentesis.

Fuente: INEI -2021. Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

- Intretando los efectos marginales de manera precisa rnh6 y rnh12
- Un niño adicional menor o igual a 6 años de edad reduce la participación femenina en el mercado laboral en 7.2 puntos porcentuales, en promedio y cetiris paribus
- Un niño adicional menor de edad es 7-12 años de edad reduce la participación femenina en el mercado laboral en 1.8 puntos porcentuales, en promedio y cetiris paribus

name: <unnamed>

log: C:396L2/Tablas/resultados_4.log

log type: text

opened on: 22 Jun 2024, 04:00:51

quietly probit rflp \$Zs

. margins , dydx(*) post

Average marginal effects

Number of obs = 10,932

Model VCE: OIM

Expression: Pr(rflp), predict()

dy/dx wrt: reduca rpareja redad redadsq rnh6 rnh12

	dy/dx	Delta-method std. err.	l z	P> z	[95% conf.	interval]
reduca	0093765	.0008467	-11.07	0.000	0110359	007717
rpareja	0494196	.0129987	-3.80	0.000	0748965	0239428
redad	.0157633	.0014931	10.56	0.000	.0128368	.0186898
redadsq	0002331	.000013	-17.87	0.000	0002586	0002075
rnh6	0723078	.0073521	-9.83	0.000	0867176	057898
rnh12	018235	.007413	-2.46	0.014	0327642	0037058

log close

log: C:396L2/Tablas/resultados_4.log

log type: text

closed on: 22 Jun 2024, 04:00:51


```
name: <unnamed>
log: 0:39\( \text{SL2/Tablas/resultados_5.log} \)
log type: text
opened on: 22 Jun 2024, 04:00:51
quietly probit rflp \$Zs
```

mfx

Marginal effects after probit y = Pr(rflp) (predict) = .72730172

variable	J .	Std. err.	z	P> z	[95	% C.I.]	Х
reduca rpareja*	0104313 0528448 .0175367 0002593 0804424 0202864	.00095 .01333 .00169 .00002 .00825	-10.93 -3.96 10.36 -17.04 -9.75 -2.46	0.000 0.000 0.000	01230 07896 .01421 00028 09661 03646	9026 7 .020 9000 506	721 856 229 427	8.1352 .870655 52.9257 3069.14 .282473 .318057

(*) dy/dx is for discrete change of dummy variable from 0 to 1

log close

name: <unnamed>

log: C:396L2/Tablas/resultados_5.log

log type: text

closed on: 22 Jun 2024, 04:00:52

- Use los coeficientes de la ecuación del probit (1) para calcular los seudo-residuos del modelo probit y resuma los valores obtenidos
- Cuánto es la inversa del Ratio de Mills relacionada a estos seudo residuos?
- Por qué el termino provee es util ara la aplicación?
- La inversa del Ratio de Mills se mide como:

$$=\frac{\phi(z_i)}{\Phi(z_i)}$$


```
name: <unnamed>
     log: C:396L2/Tablas/resultados_6_1.log
log type: text
opened on: 22 Jun 2024, 04:00:57
         /*
        probit rflp reduca rpareja redad redadsq rnh6 rnh12
        predict phat
                                  /* prediccion de la regresion probit*/
        gen z=invnorm(phat)
                                  /*valores del indice probit estandarizado*/
        ////The Inverse Mills
        gen den z=normalden(z)
                                    /*valor de densidad de probabilidad */
        gen sct=den_z/phat
                                    /*Inversa de ratio de Mills*/
        */
        log close
    name: <unnamed>
     log: C:396L2/Tablas/resultados_6_1.log
 log type: text
closed on: 22 Jun 2024, 04:00:57
```


Los seudo residuos estan dados por:

$$\widehat{\mu} = \frac{y_i - \Phi(\widehat{\theta}_i)}{\Phi(\widehat{\theta}_i) \left[1 - \Phi(\widehat{\theta}_i) \right]} \phi(\widehat{\theta}_i)$$

Si $y_i = 1$, entonces:

$$\widehat{\mu} = \frac{\phi(\widehat{\theta}_i)}{\Phi(\widehat{\theta}_i)}$$

La inversa del ratio de Mills

Si $y_i = 0$, entonces:

$$\widehat{\mu} = -rac{\phi(\widehat{ heta}_i)}{1 - \Phi(\widehat{ heta}_i)}$$

El complemento de la inversa del ratio de Mills


```
name: <unnamed>
     log: C:396L2/Tablas/resultados_6_2.log
log type: text
opened on: 22 Jun 2024, 04:00:57
        /*
        quietly probit rflp reduca rpareja redad redadsq rnh6 rnh12
                                              /* prediccion de la regresion probit*/
        predict phat
        gen resids=((lfp-phat)/(phat*(1-phat)))*normalden(z)
        sum resids
        sum resids if rflp==1
        log close
    name: <unnamed>
     log: C:396L2/Tablas/resultados_6_2.log
log type: text
closed on: 22 Jun 2024, 04:00:57
```


El resumen estadistico para los speudo-residuos son reportados

```
name: <unnamed>
log: C:396L2/Tablas/resultados_7.log
log type: text
opened on: 22 Jun 2024, 04:00:58

*Resumen residuos
su resids

Variable | Obs Mean Std. dev. Min Max

resids | 10,932 2.20e-10 .714811 -1.943027 2.247264

log close
name: <unnamed>
log: C:396L2/Tablas/resultados_7.log
log type: text
closed on: 22 Jun 2024, 04:00:58
```

- El valor promedio para las 10,932 observaciones es de cero (-0.0000000000220)
- El rango de los seudo-residuo es -1.9 hacia 2.24

• Los **speudo-residuos** para el modelo probit cuando el evento de interes ocurre (participación femenina, $lfp_i = 1$ son definidos como:

$$\frac{\phi(z_i)}{\Phi(z_i)}$$

- Donde z_ies el indice estandarizado probit para la participación deempleo de la i-esima mujer
- Especificamente, el indice estandarizado probit en este caso sera:

$$z_i = \alpha_0 + \alpha_1 edad_i + \alpha_3 edad_i^2 + \alpha_4 rpareja_i + \alpha_5 rnh6_i + \alpha_6 rnh12_i$$

 La Inversa del ratio de Mills (o seudo-residuos) una medida empirica de los no observables en la ecuación de determinación en el empleo (participacion de empleo).

- La Inversa del ratio de Mills (o seudo-residuos) una medida empirica de los no observables en la ecuación de determinación en el empleo (participacion de empleo).
- Ello es diseñado para corregir la ecuación de logaritmo de salarios dada cualquier sesgo de seleccion (bias selection) dentro del empleo.

- La Inversa del ratio de Mills (o seudo-residuos) una medida empirica de los no observables en la ecuación de determinación en el empleo (participacion de empleo).
- Ello es diseñado para corregir la ecuación de logaritmo de salarios dada cualquier sesgo de seleccion (bias selection) dentro del empleo.
- Este enfoque trata el efecto de selección (truncamiento) como un problema de variable omitida donde la variable omitida es la Inversa del ratio de Mills

- La Inversa del ratio de Mills (o seudo-residuos) una medida empirica de los no observables en la ecuación de determinación en el empleo (participacion de empleo).
- Ello es diseñado para corregir la ecuación de logaritmo de salarios dada cualquier sesgo de seleccion (bias selection) dentro del empleo.
- Este enfoque trata el efecto de selección (truncamiento) como un problema de variable omitida donde la variable omitida es la Inversa del ratio de Mills
- Por construcción, los seudo-residuos toman valores positivos cuanndo el evento ocurre

- La Inversa del ratio de Mills (o seudo-residuos) una medida empirica de los no observables en la ecuación de determinación en el empleo (participacion de empleo).
- Ello es diseñado para corregir la ecuación de logaritmo de salarios dada cualquier sesgo de seleccion (bias selection) dentro del empleo.
- Este enfoque trata el efecto de selección (truncamiento) como un problema de variable omitida donde la variable omitida es la Inversa del ratio de Mills
- Por construcción, los seudo-residuos toman valores positivos cuanndo el evento ocurre
- Por otro lado, los seudo-residuos toman valores negativos cuanndo el evento no ocurre

• Estime la regresión de MCO:

$$Inr6prin_i = \beta_0 + \beta_1 educ_i + \beta_2 rpareja_i + \beta_3 exper_i + \beta_4 exper_i^2 + v_i$$

• Donde: $i=1,\cdots$, 5, 877, dado el tertmino $v_i \sim \textit{N}(0,\sigma^2)$

name: <unnamed>

log: C:396L2/Tablas/resultados_8.log

log type: text

opened on: 22 Jun 2024, 04:00:58

reg lnr6prin \$Vs sct if rflp==1 ,r

Linear regression

lnr6prin	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
reduca	.0833971	.0032629	25.56	0.000	.0770009	.0897933
rexper	.0318502	.0033979	9.37	0.000	.0251893	.038511
rexpersq	0005541	.0000637	-8.70	0.000	0006789	0004293
rpareja	0202588	.0330277	-0.61	0.540	085002	.0444843
sct	.2604463	.1308616	1.99	0.047	.0039224	.5169703
_cons	5.266789	.0628651	83.78	0.000	5.143557	5.390022

log close

name: <unnamed>

log: C:396L2/Tablas/resultados_8.log

log type: text

closed on: 22 Jun 2024, 04:00:58

Resultados del modelo MCO

Cuadro: Modelo seleccion

	OLS		(1)		(2)	
años educacion	0.08779***	(0.00)	0.08340***	(0.00)	0.08340***	(0.00)
Experiencia laboral	0.02716***	(0.00)	0.03185***	(0.00)	0.03185***	(0.00)
Experiencia laboral cuadrado	-0.00045***	(0.00)	-0.00055***	(0.00)	-0.00055***	(0.00)
Persona con pareja	0.00744	(0.03)	-0.02026	(0.03)	-0.02026	(0.03)
sct			0.26045**	(0.13)		
resids					0.26045**	(0.13)
Constant	5.32388***	(0.06)	5.26679***	(0.06)	5.26679***	(0.06)
Observations	7778		7778		7778	

Errores estandar en parentesis.

Fuente: EnAHO 2021. Elaboracion: Autor

Los retornos por un año mas de experiencia, incrementan los ingresos del jefe de hogar mujer en $2.7\,\%$ en promedio y manteniendo todo lo demas constante.

¿Cuál es el problema de dicha estimación MCO?

Respuesta: La submuestra de trabajadoras (jefe de hogar) puede representar un grupo selectivo en términos de sus no observables y por lo tanto, las estimaciones de la ecuación del logarítmico de salario pueden estar sujetas a un sesgo de selectividad y OLS produce coeficientes sesgados.

^{***, **, *} denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

Cuadro: Modelo de MCO solo participacion laboral

	OLS	
años educacion	0.08340***	(0.00)
Experiencia laboral	0.03185***	(0.00)
Experiencia laboral cuadrado	-0.00055***	(0.00)
Persona con pareja	-0.02026	(0.03)
sct	0.26045**	(0.13)
Constant	5.26679***	(0.06)
Observations	7778	

Errores estandar en parentesis.

Fuente: ENAHO 2021.

Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

El parametro $\rho\sigma_{v}$ Este parametro es el producto de la correlación entre el coeficiente y el error estandar del logaritmo del salario

$$E[Inwage|Ifp = 1, X] = X_i\beta + \rho\sigma_v \frac{\phi(w_i\gamma)}{\Phi(w_i\gamma)}$$

Asimismo la inversa del ratio de Mills esta representado por el coeficiente sct

- (□) (圖) (E) (E) (E) (O)

28 / 35

- El **sct** es la variable $\frac{\phi(z_i)}{\Phi(z_i)}$
- El valor estimado para la inversa del ratio de Mills es de 0.26044, indicando una correlación positiva entre el componente no observable que determina la participación del empleo y el log de salarios.
- Esta relación positiva es considerada como una buena percepción para las mujeres en el mercado laboral (mas motivadas)
- La mayor motivación de las mujeres se debe a los altos salarios que pueden percebir al entrar al mercado laboral versus las mujeres que no ingresan al mismo.
- Una mujer que elige pertenecer al mercado laboral (tener un empleo), en promedio, gana un mayor retribucion salarial que una mujer con el mismo conjunto de caracteristicas observables y dada una asignación aletoria en la población.

 Dado la ecuación del logaritmo de salarios, se puede calcular el efecto seleccion:

$$E[Inwage|Ifp = 1, X] = 4.66813 + \cdots + 0.26 \frac{\phi(w_i\gamma)}{\Phi(w_i\gamma)}$$

efecto de seleccion:

$$0.26 \frac{\phi(w_i \gamma)}{\Phi(w_i \gamma)}$$

```
name: <unnamed>
log: C:396L2/Tablas/resultados_9.log
log type: text
opened on: 22 Jun 2024, 04:00:58
```

. sum sct if rflp==1

Variable | Obs Mean Std. dev. Min Max

sct | 7,778 .4195113 .210578 .1204085 2.247264

log close
name: <unnamed>
log: C:396L2/Tablas/resultados_9.log
log type: text
closed on: 22 Jun 2024, 04:00:58

• Se puede calcular el promedio del efecto de seleccion, como se observa posee un valor de

 $\frac{\Phi(W_i,\gamma)}{\Phi(W_i,\gamma)} = 0.41951$

 Entonces el efecto de seleccion sobre el logaritmo de salarios sera $+0.26044 \times 0.419511 = +0.1092$

- Entonces el efecto de seleccion sobre el logaritmo de salarios sera $+0.26044 \times 0.419511 = +0.1092$
- El salario de una mujer seleccionada dentro del mercado laboral, en promedio y
 manteniendo todos los demas factores constantes, es de 10.92 % mas comparada
 con otra misma mujer pero no seleccionada de forma aletoria de la población dada el
 mismo conjunto de caracteristicas observables.

- Entonces el efecto de seleccion sobre el logaritmo de salarios sera $+0.26044 \times 0.419511 = +0.1092$
- El salario de una mujer seleccionada dentro del mercado laboral, en promedio y
 manteniendo todos los demas factores constantes, es de 10.92 % mas comparada
 con otra misma mujer pero no seleccionada de forma aletoria de la población dada el
 mismo conjunto de caracteristicas observables.
- Asimismo, debemos determinar si el coeficiente es estadisticamente significativo y diferente de cero (hipotesis significancia individual)
- Podemos observar que el t-test es calculado como 1.19, dado la corrección de la presencia de heterocedasticidad bajo la MVC robustas
- Dado los valores criticos al 95 %, 1.96, la hipotesis nula de no sesgo de selección sobre la muestra no es rechazada, sin embargo, al 90 % se confirma la presencia de sesgo de seleccion en la aplicación

- Cual es el rol de las variables rnh6 y rnh12 en la aplicación?
- ¿Que es lo que usted puede observar en la regresión MCO al implementarlos?

- Cual es el rol de las variables rnh6 y rnh12 en la aplicación?
- Dado estas dos variables son incluidas en la participación laboral y no en la ecuación de log-salarios, dado que ellos son designados como unos instrumentos
- Estos instrumentos identificaran los parametros en la ecuación de logaritmo de salarios (modelo de selección)

Cuadro: Modelo de MCO

	OL:	S
años educacion	0.02***	(0.00)
Persona con pareja	0.06*	(0.03)
Experiencia laboral	-0.10***	(0.01)
Experiencia laboral cuadrado	-0.00***	(0.00)
Edad	0.11***	(0.02)
Edad cuadrado	0.00*	(0.00)
Numero de hijos 6 años	-0.01	(0.02)
Numero de hijos 6-12 años	-0.02	(0.02)
Constant	4.02***	(0.29)
Observations	7778	

Errores estandar en parentesis.

Fuente: ENAHO 2021.

Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

- Entonces, se puede observar que la variable rnh6 no es estadistica significativa, la cual indicaría ser un buen instrumento de identificación en el modelo de seleccion
- Asimismo, la variable rnh12 no es un buen instrumento al ser significativa.

Cuadro: Modelo Heckman

	Heckman		
log-salarios (Ocup. princ) años educacion Experiencia laboral Experiencia laboral cuadrado Persona con pareja Constant	0.08*** 0.03*** -0.00*** -0.02 5.27***	(0.00) (0.00) (0.00) (0.03) (0.07)	
select años educacion Persona con pareja Edad Edad cuadrado Numero de hijos 6 años Numero de hijos 6-12 años Constant	-0.03*** -0.17*** 0.05*** -0.00*** -0.24*** -0.06**	(0.00) (0.04) (0.01) (0.00) (0.02) (0.02) (0.14)	
/mills lambda	0.26*	(0.14)	
Observaciones Pseudo. R^2 λ σ ρ	0.26 0.90 0.29		

Fuente: ENAHO - 2021.

Elaboracion: Autor

***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively for zero.

• Se puede observar

$$lambda = \rho.\sigma$$

- Donde:
 - ρ: el coeficiente de correlacion entre las no observables en el empleo y el lopgaritmo de salario (0.28904)
 - σ : el error estandar del logaritmo del salario es (0.90106)
- Por tanto,

$$lambda = (0.28904)x(0.90106) = +0.26004$$

35 / 35