上海地区粘性土有效内摩擦角与塑性指数关系

胡世华 王侠民

(上海岩土工程勘察设计研究院 200031 上海)

摘 要 从试验资料出发,对上海地区塑性指数在 12~ 21的粘性土,进行直剪慢剪 h值与塑性指数 I_P 相关试验,得相关公式: $h=48.3-1.1I_B$,相关系数 0.86,均方差 1.86,可供地基强度估算中应用。

关键词 内摩擦角 塑性指数 二次回归方程 直剪慢剪

0 前言

直剪排水慢剪适用于排水条件好,施工加荷速率缓慢的粘土地基,以及对地基的长期稳定性进行核算。 一般认为粘性土的有效内摩擦角有两个组成部分: $h = h + \Delta h$ 式中的 h + h和式中的 h + h和式中的 h + h和式中的 h + h和式中的 h + h和式中的基本内摩擦角,主要取决于土的矿物成份和粒度组成,h + h和土的附加内摩擦角,取决于土的含水量、密度、形成历史等许多因素,有效内摩擦角 h + h和大部分由基本内摩擦角组成

直剪排水慢剪的有效粘聚力 C一般很小接近于零,这是因为正常固结土在有效应力等于零时,土不具有抗剪强度,所以破坏包线大多数通过直角座标原点。

本文结合工程实践,对上海地区粘性土的直剪 慢剪 h角与塑性指数 I_P 的相关关系进行数理统计, 得出较好的相关关系

1 试验所用土样

试验土样取自上海浦东地区,众城公寓 竹园新村、外高桥商业楼 国际警察交流中心、上钢三厂五个工程地质勘察报告,共计 26只直剪排水慢剪试验资料,属于上海第 2~6层的粘性土,试样的物理性见表 1

五个工程地质报告进行直剪排水慢剪试验的目 的是对地基长期稳定性进行核算。

2 试验结果

2.1 试验方法

2.1.1 界限含水量试验

液限采用 76 g圆锥仪下沉深度 10 mm测得的

含水量,塑限用搓条法将土样搓成 3 mm产生裂纹时含水量。

2.1.2 直剪排水慢剪试验

采用 \bigcirc 61. & 20 mm环刀切取原状土样,每组 4块,密度差小于 0. 03 g /cm³, 试样从环刀推入剪力 盒进行排水固结,预压 12 h (上海地基基础规范规定 预压为 4. 5 h) 用南京自动化设备厂生产的 D JY—型四联直剪仪,按国标规定的 0. 02 mm /min 的剪切速率进行同步剪切,让试样在剪切过程中充分排水,每隔 0.1 mm剪切位移测记钢环测力计读数,按峰值强度作为破坏值,若无峰值按剪切位移 4 mm对应的强度作为破坏值

2.2 试验结果

上海地区属于软粘土,绝大部分按剪切位移 4 mm对应的强度作为破坏标准,26个土样的试验 结果见表 1

将各测量值 h, I_P 绘在 h— I_P 直角座标中,见附图 建立回归直线方程:

$$h = aI_P + b \tag{1}$$

式中: h—— 直剪排水慢剪有效内摩擦角; Ip—— 土的塑性指数:

1996-06-19收稿。 (C)1994-2020 China Academic Journal Electronic Publishing House. All fights reserved. http://www.cnki.net

表 1 试验土样物理力学性指标									
 试样	密度	含水量	液限	塑限	塑性指数	粘聚力	实测内摩擦角	计算内摩擦角	误差
编号	$\mathrm{d}/\mathrm{gcm}^{-3}$	W /(%)	$W_{\rm L}/(\%)$	$W_{\rm P}/(\%)$	$I_{\rm P}$ / (%)	$C/\mathrm{k}\mathrm{Pa}$	h_s /($^{\circ}$)	h /(°)	$h_s - h/(^\circ)$
1	1. 89	35. 0	41.6	23. 0	18. 6	5	28. 5	27. 8	0. 7
2	1. 80	41. 2	34. 5	20. 2	14. 3	0	33. 5	32. 6	0. 9
3	1. 93	31. 2	33.0	18.9	14. 1	0	32. 5	32. 8	- 0. 3
4	1. 83	39. 6	31.0	17. 3	13. 7	0	36. 0	33. 2	2. 8
5	1. 89	34. 0	38.8	20.6	18. 2	0	30. 5	28. 3	2. 2
6	1. 73	47. 0	35. 7	20.0	15. 7	0	30. 0	31.0	- 1. 0
7	1. 77	41. 6	37. 6	20. 3	17. 3	0	26. 0	29. 3	- 3. 3
8	1. 83	35. 8	34. 9	22.0	12, 9	0	36. 5	34. 1	2. 4
9	1. 74	42. 9	43.4	25.4	18. 0	0	25. 5	28. 5	- 3. 0
10	1. 69	53. 3	44. 7	23.8	20. 9	10	22. 0	25. 3	- 3. 3
11	1. 77	44. 5	41.9	22. 6	19. 3	0	28. 5	27. 1	1. 4
12	1. 79	45. 6	39. 1	19. 2	19. 9	0	25. 0	26. 4	- 1. 4
13	1. 81	38. 5	39. 2	21.4	17. 8	0	27. 0	28. 7	- 1. 7
14	1. 75	48. 8	39. 8	20.6	19. 2	2	26. 0	27. 2	- 1. 2
15	2. 00	25. 9	37. 6	20. 3	17. 3	4	32.0	29. 3	2. 7
16	2. 00	23. 7	32. 8	20.0	12, 8	0	33. 0	34. 2	- 1. 2
17	1. 82	35. 8	32. 5	20.0	12. 5	0	32.0	34. 6	- 2. 4
18	1. 96	27. 7	37. 9	21. 1	16. 8	0	28. 5	29. 8	- 1. 3
19	1. 68	52. 6	43.9	23.0	20. 9	0	26. 0	25. 3	0. 7
20	1. 90	34. 7	35. 4	20.6	14. 8	0	30. 0	32. 0	- 2. 0
21	1. 78	41. 9	42.0	22.7	19. 3	4	27. 5	27. 1	0. 4
22	1. 81	39. 6	46. 5	23. 1	23. 4	10	23. 0	22. 6	0. 4
23	1. 68	56. 0	45. 6	24. 1	21. 5	0	24. 0	24. 7	- 0. 7
24	1. 83	35. 6	40.0	22. 1	17. 9	6	27. 0	28. 6	- 1. 6
25	1. 83	34. 1	41.3	22. 8	18. 5	9	27. 0	28. 0	- 1. 0
26	1. 80	43. 1	36. 8	20. 6	16. 2	0	27. 0	30. 5	- 3. 5

进岭土松物田力学州也是

系数 α b的确定方法是各测量值同直线方程的 偏差平方和最小,偏差平方和:

$$Q = \sum_{1}^{n} [h - (aIp + b)]^{2}$$

要偏差平方和最小,可令其偏导数等于零、得:

$$\frac{\partial Q}{\partial a} = 0, \Sigma h - b\Sigma I_{P} - na = 0$$

$$\frac{\partial Q}{\partial b} = 0, \Sigma h I_{P} - b\Sigma I_{P}^{2} - a\Sigma I_{P} = 0$$

联立求解得:

$$a = \frac{n \sum h_{I_p} - \sum \sum I_p}{n \sum I_p^2 - (\sum I_p)^2}$$

$$b = \frac{\sum I_p^2 \sum h - \sum I_p \sum I_p h}{n \sum I_p^2 - (\sum I_p)^2}$$
(2)

各计算值见表 2

表 2 式(2) 式(3)中各项计算值

$$a = \frac{26\% \ 12\ 700.\ 9 - \ 744.\ 5\% \ 451.\ 8}{2\% \ 8\ 060.\ 04 - \ 451.\ 8^2} = -1.\ 1$$

$$b=\frac{8\ 060.\ 0\%\ 744.\ 5-\ 451.\ 8\%\ 12\ 700.\ 9}{26\%\ 8\ 060.\ 04-\ 451.\ 8^2}=\ 48.\ 3$$
将系数 a b 值代入方程 (1)得回归直线: $h=\ 48.\ 3-\ 1.\ 1I_P$

回归方程的相关系数可按下式进行计算:

$$r = \frac{\sum I_{\rm p} h_{-} \frac{\sum |\Sigma| I_{\rm p}}{n}}{\left[\sum I_{\rm p}^{2} - \frac{(\sum I_{\rm p})^{2}}{n}\right] \left[\sum |\Omega| - \frac{(\sum h_{\rm p})^{2}}{n}\right]} = 0.86$$

回归方程均方差:

$$S = \frac{\sum |\Sigma|^2 - \frac{(\Sigma \ln^2 1)}{n}| - b \left[\frac{\sum \mathbb{E} I_p}{n} - \frac{\sum |\Sigma| I_p}{n} \right]}{n} = 1.86^\circ$$

3 讨论

3.1 试验资料表明: 直剪排水慢剪 4.值与塑性指 数 19 有良好的相关关系,相关系数为 0.86(一般认 为相关系数大于 0.80属良好相关),均方差 S= 1.86, 用回归方程计算值与实测值相比 (见表 1), 在 26只试验资料中, 误差在 3° ~ 3. 5° 有 $3只, 误差 2^{\circ} - 3^{\circ} + 6只, 误差 1^{\circ} - 2^{\circ} + 8只, 误差$

也议《粉砂土的渗透系数的测定》

胡二中 (中南工业大学 410083 长沙)

《大坝观测与土工测试》1996年第 4期展梅英 俞宁《粉砂土的渗透系数的测定》中有:"测记水位 水位'下降历时'时,……双手各持秒表,眼睛紧 盯正在下降的水位, 当水位降至 h_1 时, 开动 1号秒 表,水位继续下降至 h_2 时,双手同时揿秒表, ……"。笔者认为,这种"倒置法"是可取的,但是 测记水位 水位下降历时的方法却要商榷 试想,如 土样渗透量较大,或者只有一个人在做试验,此法 便不能采用;且两手同时揿秒表,水头差为 10 cm, 将可能产生较大的误差。根据笔者多年土工测试经 验,介绍一种简便且一人即可做的方法: 仪器仍是 南 55型渗透仪,按照变水头渗透试验规程进行操 作,当仪器出水口开始有水溢出,为便于记忆和计 算,可从水位降至整刻度时开始计时,并记下此时 水位 H_1 , 经过几分钟后, 记下终止水位 H_2 及历时 t, 如此记录一组试验数据, 然后再将变水头管内加 满水.

1996- 03- 21收稿。

重复上述测试过程 5~ 6次。根据渗透量的不同,采用不同的水头差,使水位下降历时比较长,能从容测记 H_2 (终止水位)。试验完毕后,测量量杯中水的温度,按以下公式计算渗透系数:

$$k_{\rm T} = 2.3 \frac{al}{At} \log \frac{H_1}{H_2}$$

a:变水头管断面积;

2.3: ln和 log换算系数;

t:水位下降历时;

1:试样高度;

A: 试样面积;

H2:开始时水位;

H2:终止时水位

标准温度下的渗透系数按下式计算:

$$k_{20} = k_{\rm T} \frac{Z_{\rm T}}{Z_{20}}$$

 Z_{α} 分别为 20° 时水的动力粘滞系数。

小于19只

- 3.2 直剪慢剪试验 h 值用于地基长期稳定性核算,尤其是贮油罐的地基强度计算,为节省试验费用和缩短工期,可以通过土的塑性指数利用相关公式求得 h.值,在估计中应用。
- 3.3 对于正常固结的饱和粘性土,直剪慢剪试验结果与三轴 CU试验有效应力法所得的结果在数值上相当接近,但三轴 CU试验比较复杂,试验成功率低,得不出与塑性指数相关关系,主要是土性不均匀,要切取 4个 8 cm高,土性一致的三轴土样比较困难,直剪慢剪试验简单,成功率高,切取 4个 2 cm

高土性一致的土样比较容易,与塑性指数有较好的相关关系,用直剪慢剪代替三轴 CU 试验的有效应力法试验是可行的

4 参考文献

- 1 户肇钧,杨伟.软土内摩擦角与塑性指数的关系.第一届 全国土力学与基础工程学术会议论文选集,北京:建筑工 业出版社,1962
- 2 华南工学院,南京工学院,浙江大学,湖南大学合编.地基及基础.北京:建筑工业出版社,1985
- 3 中华人民共和国国家标准土工试验方法标准.GBJ123-88.北京:中国计划出版社,1990

THE RELATION SHIP BETWEEN ANGLE OF INTERNAL FRICTION AND PLASTIC IN DEX OF CLAY SOIL IN SHANGHAI

Hu Shihua, Wang Xiamin