Problema 1

Exercício (CLRS 22-4.) Seja G=(V,E) um grafo orientado onde cada vértice $u\in V$ tem um rótulo associado $L(u)\in \mathbb{Z}_+$. Para cada $u\in V$ seja R(u) o conjunto dos vértices atingíveis por u. Seja

$$\min_L(u) = \min\{L(v) : v \in R(u)\}$$

i.e., $\min_{L}(u)$ é o menor rótulo de um vértice atingível por u.

Descreva um algoritmo de complexidade O(V+E) que dados G e L, calcula $\min_L(u)$ para todo $u \in V$.

Sugestão: como você resolveria o problema se G fosse acíclico?

Solução para G acíclico

Suponha primeiro que G = (V, E) é **acíclico**. Neste caso podemos resolver o problema usando Ordenação Topológica.

$$\min_L(v_1) = 2$$
, $\min_L(v_2) = 2$, $\min_L(v_3) = 1$, $\min_L(v_4) = 2$ e $\min_L(v_5) = 2$.

para cada $u \in V$ faça $\min_L[u] \leftarrow L[u]$
seja v_1, v_2, \ldots, v_n uma ordenação topológica de G
para $i \leftarrow n$ decrescendo até 1 faça
para cada $v \in \operatorname{Adj}[u]$ faça
se $L(v) < \min_L[u]$ então $\min_L(v_4) = 2$ e $\min_L(v_5) = 2$.

- Vimos em aula um algoritmo que determina as compontes fortes (ou fortemente conexas) de um grafo orientado G = (V, E). Digamos que C_1, C_2, \ldots, C_k sejam as componentes fortes de G devolvidas nesta ordem pelo algoritmo.
- O grafo G^{CFC} é o grafo obtido de G contraindo-se cada componente forte C_i a um vértice v_i . Sabemos que v_1, v_2, \ldots, v_k é uma ordenação topológica de G^{CFC} (vocês lembram, não é?).

Ideia da solução geral

- Rotule cada v_i com $L'[v_i] = \min\{L(v) : v \in C_i\}$
- ullet Resolva o problema para G^{CFC} e L'
- Copie o valor $\mathrm{MIN}'_L(v_i)$ para $\mathrm{MIN}_L[u]$ para todo $u \in C_i$

Uma (longa) pausa para meditação. . . Se vocês entenderam isto, resta apenas descrever como implementar esta ideia em tempo O(V+E).

Construindo GCFC

Podemos criar as listas de adjacências de G^{CFC} da seguinte forma:

- Criamos um vetor comp (indexado por V) tal que comp[u] = i se, e somente se, $u \in C_i$.
- Criamos um vetor $\mathrm{Adj}[v_1 \dots v_k]$ de listas ligadas inicialmente vazias.
- Para cada aresta $(u, v) \in E$ sejam i = comp[u] e j = comp[v]. Se $i \neq j$ então insira v_j na lista $\text{Adj}[v_i]$.

Pode haver repetições na listas, mas isto não afeta o algoritmo. É possível eliminar todas as repetições em tempo O(E) (Exercício).

Construindo GCFC

- Criamos um vetor comp (indexado por V) tal que comp[u] = i se, e somente se, $u \in C_i$.
- Criamos um vetor $\mathrm{Adj}[v_1 \dots v_k]$ de listas ligadas inicialmente vazias.
- Para cada aresta $(u, v) \in E$ sejam i = comp[u] e j = comp[v]. Se $i \neq j$ então insira v_j na lista $\text{Adj}[v_i]$.

Análise de complexidade:

- Linha 1 consome tempo O(V) já que o algoritmo que determina as componentes fortes já devolve os C_i na ordem que queremos.
- Linha 2 consome tempo O(k) = O(V).
- Linha 3 consome tempo O(E).

Complexidade total: O(V + E).

Solução do caso geral


```
1 para i \leftarrow 1 até k faça calcule \min\{L(v) : v \in C_i\}

2 para i \leftarrow 1 até k faça L'[v_i] = \min\{L(v) : v \in C_i\}

3 \text{MIN}'_L \leftarrow \text{CASOACÍCLICO}(G^{\text{CFC}}, L')

4 para cada C_i faça

5 para cada u \in C_i faça

6 \text{MIN}_L[u] \leftarrow \text{MIN}_{L'}[v_i]
```

Solução do caso geral

```
1 para i \leftarrow 1 até k faça calcule \min\{L(v) : v \in C_i\}
2 para i \leftarrow 1 até k faça L'[v_i] = \min\{L(v) : v \in C_i\}
3 \operatorname{MIN}'_L \leftarrow \operatorname{CASOAcícLico}(G^{\operatorname{CFC}}, L')
4 para cada C_i faça
5 para cada u \in C_i faça
6 \operatorname{MIN}_L[u] \leftarrow \operatorname{MIN}_{L'}[v_i]
```

Análise de complexidade:

- Linha 1 consome tempo $O(|C_i|)$ para cada $i=1,2,\ldots,k$. No total $O(|C_1|+\cdots+|C_k|)=O(V)$.
- Linha 2 consome tempo O(k) = O(V).
- Linha 3 consome tempo O(V+E) pois $|V[G^{CFC}]|=k=O(V)$ e $|E[G^{CFC}]|=O(E)$.
- As linhas 4–6 consomem tempo O(V + E).

Problema 2

Exercício (CLRS 23.2-5 parcial). Seja (G,ω) uma instância do problema da Árvore Geradora Mínima (AGM). Suponha que todos os pesos das arestas sejam inteiros dentro do intervalo de 1 a W onde W é uma constante. Como podemos acelerar o algoritmo de Prim?

Sugestão. A complexidade do algoritmo de Prim depende da implementação da fila de prioridades. Mostre como implementar a fila de prioridade de modo que cada operação da fila tenha custo O(1)!

Observação. Na questão original também se pergunta o que fazer no caso em os pesos das arestas sejam inteiros dentro do intervalo de 1 a |V|. Neste caso, o algoritmo de Prim pode ser acelerado usando uma estrutura de dados chamada van Emde Boas Tree que não vimos em aula. Veja o CLRS para maiores detalhes desta ED.

- Lembre que no algoritmo de Prim, a chave d[v] de um vértice v fora da (sub-)árvore encontrada até então é o peso da menor aresta que liga v a algum vértice da árvore.
- Logo, as chaves pertendem a $\{1,\ldots,W\}\cup\infty$.
- Temos um vetor L[1...W+1] (W+1 representa $+\infty$). Na posição L[k] temos uma lista duplamente ligada onde estão armazenados os vértices cuja chave é igual a k.
- INSERT consome tempo O(1) pois simplesmente inserimos o vértice com chave k em L[k].

- EXTRACT-MIN consome tempo O(1) pois simplesmente percorremos O(W) = O(1) posições em L até encontrarmos uma lista não-vazia.
- DECREASE-KEY consome tempo O(1). Para reduzir a chave k para um valor k' de um vértice v, remova v de L[k] e o insira em L[k']. Note que é necessário ter para cada vértice um apontador para seu nó correspondente. Como cada lista é duplamente ligada, podemos remover um nó em tempo O(1).

Tempo total: (visto em aula) O(V) INSERT + O(V) EXTRACT-MIN + O(E) DECREASE-KEY = O(V + V + E) = O(E)

Problema 3

Exercício (CLRS 23.2-4). Seja (G, ω) uma instância do problema da Árvore Geradora Mínima (AGM).

- Suponha que todos os pesos das arestas sejam inteiros dentro do intervalo de 1 a |V|. Como podemos acelerar o algoritmo de Kruskal?
- E se todos os pesos das arestas fossem inteiros dentro do intervalo de 1 a W onde W é uma constante.

Sugestão. Qual é o passo mais custoso no algoritmo de Kruskal?

Túnel do tempo. O algoritmo COUNTING-SORT ordena um vetor A[1...n] em que cada A[i] é um inteiro em [0...k] em tempo O(n+k).

(a) Suponha que todos os pesos das arestas sejam inteiros dentro do intervalo de 1 a |V|. Assim, podemos ordenar as arestas em ordem crescente de peso em tempo O(E+V)=O(E).

Os demais passos do algoritmo Kruskal consomem tempo $O(E\alpha(V))$ (usando *disjoint sets forest*).

Logo, o tempo total é $O(E + E\alpha(V)) = O(E\alpha(V))$.

(b) Suponha que todos os pesos das arestas sejam inteiros dentro do intervalo de 1 a W onde W é uma constante.

Novamente podemos usar o COUNTING-SORT para ordenar as arestas em ordem crescente de peso em tempo O(E+W)=O(E). Mesmo W sendo uma constante, não é possível fazer melhor (a cota inferior é $\Omega(E)$).

Assim, o tempo total é $O(E + E\alpha(V)) = O(E\alpha(V))$.