Assignment - 1

Feature Names	Decisio n Tree	Rando m Forest	XGBoos t	Logistic Regression	Linear Regressio n	Artificial Neural Network	Support Vector Machine	Extra Trees Classifier	Gradient Boosting Classifier
'VWTI', 'SWTI', 'CWTI', 'EI'	0.9818 181818 181818	0.9954 545454 545455	0.99545 4545454 5455	0.9863636 363636363	0.86983450 95658888	1.0	0.995454 54545454 55	0.9954545 454545455	0.990909 09090909
'VWTI', 'SWTI', 'CWTI'	0.9772 727272 727273	0.99545 4545454 5455	0.99545 4545454 5455	0.9818181 818181818	0.8697654 431550244	1.0	0.98181 8181818 1818	0.990909 09090909	0.990909 09090909
'VWTI', 'CWTI', 'EI'	0.9590 909090 909091	0.9681 818181 818181	0.97727 2727272 7273	0.8681818 181818182	0.6017966 852050953	0.97727 2727272 7273	0.96363 6363636 3636	0.968181 81818181 81	0.968181 81818181 81
'SWTI', 'CWTI'	0.8590 909090 909091	0.8909 090909 090909	0.89545 4545454 5455	0.7590909 09090909	0.3011873 837615809 4	0.84090 9090909 0909	0.80454 5454545 4546	0.909090 90909090 91	0.868181 81818181 82
'VWTI', 'EI'	0.8909 090909 090909	0.9136 363636 363637	0.9	0.8954545 454545455	0.5643929 432114736	0.89545 4545454 5455	0.89090 9090909 0909	0.904545 45454545 45	0.909090 90909090 91
'VWTI',	0.8954 545454 545455	0.9409 090909 090909	0.92272 7272727 2727	0.9045454 545454545	0.5535738 816946818	0.93181 8181818 1818	0.92727 2727272 7272	0.922727 27272727 27	0.945454 54545454 54
'EI'	0.5636 363636 363636	0.5681 818181 818182	0.56363 6363636 3636	0.5227272 727272727	0.0009354 564051183 845	0.52272 7272727 2727	0.53181 8181818 1819	0.559090 90909090 91	0.509090 90909090 9
'SWTI'	0.7181 818181 818181	0.7227 272727 272728	0.73636 3636363 6363	0.6272727 272727273	0.2003524 978005594 1	0.74545 4545454 5455	0.75	0.722727 27272727 28	0.75
'CWTI'	0.6363 636363 636364	0.6409 090909 090909	0.61818 1818181 8182	0.6045454 545454545	0.0277828 824488166 6	0.59545 4545454 5455	0.57272 7272727 2728	0.645454 54545454 55	0.663636 36363636 37
'VWTI'	0.8636 363636 363636	0.8681 818181 818182	0.85	0.8681818 181818182	0.5378664 272892191	0.87727 2727272 7273	0.87727 2727272 7273	0.863636 36363636 36	0.872727 27272727 27
Total Score	8.3454545 45	8.504545 455	8.4545454 55	8.018181818	4.527488111	8.3863636 36	8.2954545 45		8.46818181 8

From the table given above we can infer that, when all of the features are included most model prediction scores are closer to 1 or 100%. When randomly some of the features are dropped their prediction score also drops. Having said that, the single most feature from the table that seems to be the most reliable predictor of higher score is the 'VWTI', because when using only this all models give higher scores compared to any other instances where only a single feature is used.

When looking at the sum of all the predictions made by each model for their given feature set we can definitely say that the highest score is achieved by Random-Forest-Classifier model followed closely by the Extra-Trees-Classifier model and when using all the features we can see that Artificial-Neural-Network gives us the most accurate prediction as the score is 1.0.

In conclusion, if we were to use all the features given in the task we should use the ANN model and if we were to drop some of the features we might get better results from using the Random-Forest model.

