ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Кафедра общей физики

Лабораторная работа 5.2.2/5.2.3

Изучение спектров атомов водорода и молекулы йода

Преподаватель: к.ф.-м.н. Юрьев Ю.В.

Обучающийся: Глотов А.А

1 Введение

1.1 Аннотация

Говорят, что атом водорода находится в возбуждённом состоянии, если его электрон находится не на основной орбитали. При смене своего энергетического уровня электрон поглощает/испускает энергия в виде фотона. Уровни энергий дискретны, поэтому и длины волн имеют строго определённые значения. Молекулы являются более сложными структурами, чем атомы. Помимо переходов электронов на более высокие орбиты в них может также происходить возбуждение колебательных и вращательных степеней свободы.

Цель: Исследовать спектральные закономерности в оптическом спектре водорода. По результатам измерений вычислить постоянную Ридберга. Исследовать спектр поглощения паров йода в видимой области; по результатам измерения вычислить энергию колебательного кванта молекулы йода и энергию ее диссоциации в основном и возбужденном состояниях.

1.2 Теоретические сведения

Атом водорода является простейшей атомной системой; для него уравнение Шредингера можно решить точно. Решение примет вид:

$$E_n = -\frac{2\pi^2 m_e e^4 Z^2}{h^2} \frac{1}{n^2} \tag{1}$$

А из формулы (4) мы легко можем определить частоты излучения.

Из рис.1 видно, что линии в спектре водорода можно расположить по сериям; для всех линий n постоянно, а m меняется от n+1 до ∞ .

В данной работе мы изучаем серию Бальмера, линии которой лежат в видимой области.

Для серии Бальмера n=2, а m=3,4,5,6. Эти линии обозначаются $H_{\alpha},H_{\beta},H_{\gamma},H_{\delta}$. Соответственные длины волн равны 656.3, 486.1, 434.1, 410.2 нм соответственно.

Рассмотрим структуру электронно-колебательного спектра поглощения молекулы йода. В зависимости от того, с какого колебательного уровня осуществляется переход можно выделить серии, начиная с нулевой. При этом из распределения Больцмана можно получить, что число молекул для этих серий можно соотносятся как:

$$N_0: N_1: N_2 = 30: 10: 1$$

Исходя из этого соотношения будем пренебрегать всеми сериями, кроме нулевой и первой.

Обозначим энергию перехода с подуровня n_1 первого состояния на подуровень n_2 второго состояния как $h\nu_{n_1,n_2}$.

Имеем следующее соотношение:

$$h\nu_{n_1,n_2} = h\nu_{9\pi} + h\nu_2(n_2 + 1/2) - h\nu_1(n_1 + 1/2)$$

2 Результаты измерений и обработка данных

Откалибруем монохроматор по известным спектральным линиям сначала неона, а потом ртути. По полученным данным построим график:

$\phi,^{\circ}$	2536	2506	2442	2430	2400	2380	2370	2332	2326	2308	2296	2280	
λ , HM	703,2	692,9	671,7	667,8	659,9	653,3	650,7	640,2	638,3	633,4	630,5	626,7	
$\phi,^{\circ}$	2260	2238	2230	2208	2198	2178	2150	2138	2106	2092	1830	1792	1780
λ , HM	621,7	616,4	614,3	609,6	607,4	603,0	597,6	594,5	588,2	585,2	540,1	534,1	533,1

	ϕ , $^{\circ}$	2550	2332	2120	2108	1930	1510	850	304
λ	НМ	690,7	623,4	579,1	577,0	546,1	491,6	435,8	404,1

Рис. 1: Калибровочный график

По калибровочному графику (с помощью аппроксимационной кривой) определим значения длин вол серии Бальмера

	$\phi,^{\circ}$	λ , hm	$\lambda_{ ext{reop}}$, hm
H_{α}	2446 ± 2	656 ± 6	656.3
H_{β}	1454 ± 2	485 ± 4	486.1
H_{γ}	816 ± 2	438 ± 3	434.1
H_{δ}	404 ± 2	410 ± 3	410.2

Для определения постоянной Ридберга построим график зависимости $\frac{1}{\lambda}=f(\frac{1}{n^2}-\frac{1}{m^2})$

Рис. 2: Зависимость длины волны от номера перехода

По МНК определим угловой коэффициент:

$$R = (0.011 \pm 0.001) \text{ HM}^{-1}$$

Визуально определим положение первой отчетливой линии поглощения (необходимости высматривать истинную первую линию нет необходимости - достаточное число линий в начале находятся на примерно одинаковом расстоянии). Затем визуально оценим границу сплошного поглощения

	$h\nu_{1.0}$	$h\nu_{1.5}$	$h u_{ m rp}$
$\phi,^{\circ}$	2248 ± 2	2148 ± 2	1650 ± 2
λ , HM	606 ± 2	584 ± 2	505 ± 2

$$h\nu_{\rm rp} = \frac{hc}{\lambda_{\rm rp}} = 2.45 \pm 0.01 \text{ } {
m 9B}$$

$$h\nu_2 = \frac{h\nu_{1.5} - h\nu_{1.0}}{5} = \frac{hc}{5} \cdot (\frac{1}{\lambda_{1.5}} - \frac{1}{\lambda_{1.0}}) = (0.015 \pm 0.001) \text{ 9B}$$

Энергия колебательного кванта возбуждённого состояния атома йода: $h\nu_2 = \frac{h\nu_{1.5} - h\nu_{1.0}}{5} = \frac{hc}{5} \cdot \left(\frac{1}{\lambda_{1.5}} - \frac{1}{\lambda_{1.0}} = (0.015 \pm 0.001) \text{ эВ} \right.$ Энергия колебательного кванта в основном состоянии равна $h\nu_1 = 0.027$ эВ, энергия возбуждения атома $_{A}=0.94$ эВ. Определим энергия диссоциации молекулы в основном и возбуждённом состояниях, а также энергию электронного перехода:

$$D_1 = (1,51 \pm 0,02) \text{ эВ}$$

 $h\nu_{\text{эл}} = (2,08 \pm 0,04) \text{ эВ}$
 $D_2 = (0,40 \pm 0,03) \text{ эВ}$

3 Обсуждение результатов и выводы

В ходе работы мы исследовали серию Бальмера в атоме водорода, определили постоянную Ридберга. Результат близок к теоретическому:

$$R = (0.108 \pm 0.009) \cdot 10^{-1} \text{HM}^{-1}$$

 $R_{\text{Teor}} = 0.110 \cdot 10^{-1} \text{HM}^{-1}$

Также мы определили энергии энергию электронного перехода между состояниями и энергии диссоциации молекулы D_1 в основном уровне и D_2 в возбуждённом состояниях.

$$D_1 = (1,51 \pm 0,02) \text{ эВ}$$

 $h\nu_{\text{эл}} = (2,08 \pm 0,04) \text{ эВ}$
 $D_2 = (0,40 \pm 0,03) \text{ эВ}$