

- 3h lecture (Arik Shamir)
- 2h recitation (Anna Shtengel)
- 6 Exercises (50%)
- Use Java + OpenGL
- Course site: moodle!
- Find PDF of lectures & recitations, exercises etc.
- Questions about exercises using forum
- Exam (50%, must pass!)

Some Books

- Computer Graphics
 Hearn and Baker
 Second Edition, Prentice Hall, 1994.
- Computer Graphics Principles and Practice, Foley, Van Dam, Feiner, and Hughes Second Edition, Addison Wesley, 1996.
- Computer Graphics Using Open GL Francis S. Hill, Jr. Prentice Hall
- OpenGL- a primer E. Angel Addison Wesley
- OpenGL SuperBible R. Wright, B. Lipchak

© Ariel Shamir IDC

Why Graphics?

- 1. Math in Action
- 2. Abundant and almost ubiquitous
- 3. Cool!

Movies Examples

- Luxo movie
- Toy Story
- Final Fantasy
- Avatar

© Ariel Shamir IDC

Other Subjects...

- 4. Color
- 5. Image processing
- 6. GUI & Event driven programming

© Ariel Shamir IDC

Today: Seam Carving (Image Processing)

- What is an image?
- Resizing problem & approaches
- Seam Carving:
 - Backward energy
 - Forward energy
- Exercise: Seam Carving with Forward Energy.

Step1: Example for Modeling

- What is an image?
- How is it represented?
- What is color?
- How is it represented?
- How to convert colors to grayscale?
- How do we model noise?

© Ariel Shamir IDC

Step2: Example for Math

- How can we apply math operators on images?
- Images as functions
- What is an image derivative?
- Some signal processing

Common to use one byte per value: 0 = black, 255 = white

© Ariel Shamir IDC

Images As Samples (Raster Graphics)

- They are mostly defined on planar regular grids
- We assume some blending function to reconstruct the function on the whole space.

Image Derivatives?

- Derivative of an image is the derivative of the function of the image
- But: derivatives are defined on smooth functions.
- Defined using discrete differences

Pixel Differences

$$dx(x,y) = I(x,y) - I(x-1,y)$$

 $dy(x,y) = I(x,y) - I(x,y-1)$

- $I(x,y) \in [0,255] \rightarrow d(x,y) \in [-255,255]$
- How can we visualize these differences?
- We map it back to [0,255] by adding 255 and dividing by 2.
 - Negative values are dark
 - Positive values are light
 - Zero is gray!

Solution:

Use Neighborhood Information

 Instead of using just one value or a small number of values we combine information from the neighborhood of the sample to get the sample value

© Ariel Shamir IDC

Linear interpolation

- Given two sample values at x₁ and x₂: v₁= f(x₁) and v₂= f(x₂)
- How would you define the values at a position x where x₁ < x < x₂?
- Define the ratio based on how far x is from x₁ and x₂:

$$t = \frac{x_2 - x}{x_2 - x_1} \Longrightarrow 1 - t = \frac{x - x_1}{x_2 - x_1}$$

 Use this ratio to interpolate the values v₁ and v₂:

$$v = f(x) = (1-t)\cdot v_1 + t v_2$$

Bilinear Interpolation

- Bi-linearly interpolation uses four values v₁₁, v₂₁, v₁₂, v₂₂ of closest pixels.
- v_1 = linear interpolation of values at v_{11} and v_{21} : v_1 = (1-t)· v_{11} + t v_{21}
- v₂ = linear interpolation of values at v₁₂ and v₂₂: v₂ = (1-t)·v₁₂ + t v₂₂
- Value at v = linear interpolation of v₁ and v₂: v = (1-s)·v₁ + s v₂

V₂
V₁₂
V₂₂
V
V₁₁
V₁
V₂₁

Note that we use two parameters - (t,s)

Comparison

Close up of scaling to 50%

Bilinear as Weighted Average

$$\begin{split} v &= (1-s)v_1 + sv_2 = \\ (1-s)\big[(1-t)v_{11} + tv_{12}\big] + s\big[(1-t)v_{21} + tv_{22}\big] = \\ (1-s)(1-t)v_{11} + (1-s)tv_{12} + s(1-t)v_{21} + stv_{22} = \\ w_{11}v_{11} + w_{12}v_{12} + w_{21}v_{21} + w_{22}v_{22} = \sum_{1 \le i, j \le 2} w_{ij}v_{ij} \end{split}$$

© Ariel Shamir IDC

Key Idea:

Use Neighborhood Information

 Instead of using just one value or a small number of values we combine information from the neighborhood of the sample to get the sample value

$$\sum_{i,j \in \text{Neighborhood}} w_{ij} V_{ij}$$

of od

The output is a weighted sum of values of pixels in neighborhood

Kernels

- k() is a function of d (the distance) and w (the range)
- Uniform: K(d) = 1/N where N is the number of neighbors – creates a simple averaging
- More complex averaging gives a weight to each value (weighted average) for example based on the distance from the center:

Content Aware Retargeting

- Changing the aspect ratio while preserving details
- Given the original media in size mxn resize it to size m'xn'

where $m' \neq m$ or $n' \neq n$ or both.

© Ariel Shamir IDC

Simple Approaches?

How can we reduce the size of the image in a non-uniform manner?

Simple approaches

- Scaling creates artifacts
- Cropping looses information at the edges, and cannot support enlarging an image:

Key Idea: Content Aware

- Remove (or Insert) "less important" parts and preserve more important ones
- In effect this means we are creating ...
 <u>content aware</u> resizing
- Key questions: what is important?
 - Edges are important

© Ariel Shamir IDC

What Is Important?

Edges Carry most information in the scene:

Finding Edges

- Large difference in color values in an image constitutes an edge
- Examining two neighboring pixels:

 Simple approach: assume we have a gray scale image, then measure horizontal and vertical pixel differences

@ Ariel Shamir IDC

Gradient

- For each pixel we have dx,dy values.
- Together they define a vector (dx,dy) that is called the gradient whose direction is the maximum change and magnitude is the amount of change.

Gradient Magnitude

 A simple way to find edges in the image is to measure the magnitude of the gradient for each pixel (always positive)

$$\|\nabla I(x, y)\|_{2} = \sqrt{dx^{2} + dy^{2}}$$

 $\|\nabla I(x, y)\|_{1} = |dx| + |dy|$

© Ariel Shamir IDC

The Optimal Seam

$$E(\mathbf{I}) = |dx\mathbf{I}| + |dy\mathbf{I}| \implies s^* = \arg\min E(s)$$

© Ariel Shamir IDC

S

Naïve Approach

- Loop over all seams and check their energy E(s). Choose the one with smallest energy.
- How many seams?
- Exponential (~3^h for wxh image)

However... Pixel Attributes → Dynamic Programming

5	8	12	3
9	2	3	9
7	3	4	2
6	5	7	8

Dynamic Programming

M(i, j) = e(i, j) + min(M(i-1, j-1), M(i-1, j), M(i-1, j+1))

5	8	12	3
9	2+5	3	9
7	3	4	2
6	5	7	8

Dynamic Programming

5	8	12	3
9	7	3+3	9
7	3	4	2
6	5	7	8

Dynamic Programming

M(i, j) = e(i, j) + min(M(i-1, j-1), M(i-1, j), M(i-1, j+1))

5	8	12	3
9	7	6	12
14	9	10	8
15	14	15	8+8

Searching for Minimum

5	8	12	3
9	7	6	12
14	9	10	8
15	14	15	16
<u> </u>			

Backtracking the Seam

M(i, j) = e(i, j) + min(M(i-1, j-1), M(i-1, j), M(i-1, j+1))

5	8	12	3
9	7	6	12
14	9	10	8
15	14	15	16

Backtracking the Seam

5	8	12	3
9	7	6	12
14	9 /	10	8
15	14	15	16

"Backward" Energy Function

$$M(i,j) = E(i,j) + \min \begin{cases} M(i-1,j-1) \\ M(i-1,j) \\ M(i-1,j+1) \end{cases}$$

