DEVOIR À LA MAISON Nº 11

EXERCICE 1.

Pour $n \in \mathbb{N}^*$, on note \mathbb{U}_n l'ensemble des racines $n^{\text{èmes}}$ de l'unité. Dans toute cette partie, m et n désignent des entiers strictement positifs.

- 1. Montrer que (\mathbb{U}_n, \times) est un groupe commutatif.
- **2. a.** Montrer que $\mathbb{U}_{\mathfrak{m}} \cap \mathbb{U}_{\mathfrak{n}} = \mathbb{U}_{\mathfrak{m} \wedge \mathfrak{n}}$.
 - **b.** On note $\mathbb{U}_m\mathbb{U}_n = \{z_1z_2 \mid z_1 \in \mathbb{U}_m, z_2 \in \mathbb{U}_n\}$. Montrer que $\mathbb{U}_m\mathbb{U}_n = \mathbb{U}_{m\vee n}$.
- **3.** Soient $\mathfrak{m}, \mathfrak{n} \in \mathbb{N}^*$. On pose pour $(z_1, z_2) \in \mathbb{U}_{\mathfrak{m}} \times \mathbb{U}_{\mathfrak{n}}$ et $(z'_1, z'_2) \in \mathbb{U}_{\mathfrak{m}} \times \mathbb{U}_{\mathfrak{n}}$:

$$(z_1, z_2) * (z'_1, z'_2) = (z_1 z'_1, z_2 z'_2)$$

- **a.** Vérifier que * est une loi interne associative sur $\mathbb{U}_m \times \mathbb{U}_n$.
- **b.** Montrer que $(\mathbb{U}_m \times \mathbb{U}_n, *)$ est un groupe commutatif dont on précisera l'élément neutre.
- **4.** On définit $f: \left\{ \begin{array}{ccc} \mathbb{U}_{mn} & \longrightarrow & \mathbb{U}_m \times \mathbb{U}_n \\ z & \longmapsto & (z^n, z^m) \end{array} \right.$
 - **a.** Vérifier que f est bien définie i.e. que pour tout $z \in \mathbb{U}_{mn}, (z^n, z^m) \in \mathbb{U}_m \times \mathbb{U}_n$.
 - **b.** Vérifier que f est un morphisme de groupes de $(\mathbb{U}_{mn}, \times)$ dans $(\mathbb{U}_m \times \mathbb{U}_n, *)$.
 - c. Quel est le noyau de f?
 - d. Démontrer que f est injectif si et seulement si m et n sont premiers entre eux.
 - e. En déduire que f est un isomorphisme si et seulement si m et n sont premiers entre eux.
- 5. On définit $g: \left\{ \begin{array}{ccc} \mathbb{U}_{\mathfrak{m}} \times \mathbb{U}_{\mathfrak{n}} & \longrightarrow & \mathbb{U}_{\mathfrak{m}\mathfrak{n}} \\ (z_1, z_2) & \longmapsto & z_1 z_2 \end{array} \right.$
 - **a.** Vérifier que g est bien définie i.e. que pour tout $(z_1, z_2) \in \mathbb{U}_m \times \mathbb{U}_n, z_1 z_2 \in \mathbb{U}_{mn}$.
 - $\mathbf{b.}\ \mathrm{V\acute{e}rifier}\ \mathrm{que}\ g\ \mathrm{est}\ \mathrm{un}\ \mathrm{morphisme}\ \mathrm{de}\ \mathrm{groupes}\ \mathrm{de}\ (\mathbb{U}_{\mathfrak{m}}\times\mathbb{U}_{\mathfrak{n}},*)\ \mathrm{dans}\ (\mathbb{U}_{\mathfrak{mn}},\times).$
 - ${\bf c.}$ Quelle est l'image de ${\bf g}$?
 - d. Démontrer que g est surjectif si et seulement si $\mathfrak m$ et $\mathfrak n$ sont premiers entre eux.
 - e. En déduire que g est un isomorphisme si et seulement si $\mathfrak m$ et $\mathfrak n$ sont premiers entre eux.

EXERCICE 2.

Vocabulaire et notations

- ▶ Pour un réel t, on notera [t] la partie entière de t.
- \blacktriangleright La notation $[\![0,9]\!]$ désigne l'ensemble $\{0,1,2,3,4,5,6,7,8,9\}.$
- ▶ On dit qu'une suite (u_n) est périodique à partir d'un certain rang s'il existe $N \in \mathbb{N}$ et $T \in \mathbb{N}^*$ tel que $u_{n+T} = u_n$ pour tout $n \ge N$. On dit alors que (u_n) est T-périodique à partir du rang N.

Soit x un nombre réel. On définit deux suites (d_n) et (ϵ_n) de la manière suivante :

- $\blacktriangleright \ \mathrm{On \ pose} \ d_0 = \lfloor x \rfloor \ \mathrm{et} \ \epsilon_0 = x \lfloor x \rfloor.$
- $\blacktriangleright \ \, \mathrm{Pour} \,\, \mathrm{tout} \,\, n \in \mathbb{N}, \, \mathrm{on} \,\, \mathrm{pose} \,\, d_{n+1} = \lfloor 10\epsilon_n \rfloor \,\, \mathrm{et} \,\, \epsilon_{n+1} = 10\epsilon_n \lfloor 10\epsilon_n \rfloor.$
- 1. Dans cette question uniquement, on suppose x=123,456. Calculer d_0,d_1,d_2,d_3 et $\epsilon_0,\epsilon_1,\epsilon_2,\epsilon_3$. Que valent d_n et ϵ_n pour $n\geqslant 4$?

- 2. On revient au cas général.
 - **a.** Montrer que pour tout $n \in \mathbb{N}$, $\varepsilon_n \in [0, 1[$.
 - **b.** En déduire que pour tout $n \in \mathbb{N}^*$, $d_n \in [0, 9]$.
 - $\mathbf{c.} \ \ \mathrm{On \ pose} \ S_n = \sum_{k=0}^n \frac{d_k}{10^k} \ \mathrm{pour \ tout} \ n \in \mathbb{N}. \ \mathrm{Montrer \ que} \ x = S_n + \frac{\epsilon_n}{10^n} \ \mathrm{pour \ tout} \ n \in \mathbb{N}.$
 - **d.** En déduire que (S_n) converge vers x.
- 3. Soient $T \in \mathbb{N}^*$ et $N \in \mathbb{N}$. On suppose que la suite (d_n) est T-périodique à partir du rang N.
 - a. Pour $n \in \mathbb{N}$, on pose $u_n = 10^{N+T} S_{n+N+T} 10^N S_{n+N}$. Montrer que la suite (u_n) est constante.
 - **b.** En déduire qu'il existe $p \in \mathbb{Z}$ tel que pour tout $n \in \mathbb{N}$

$$10^{N+T}S_{n+N+T} - 10^{N}S_{n+N} = p$$

- c. En déduire que x est rationnel.
- 4. Soit α le nombre dont l'écriture décimale est 0, 123 456 456 456 456 Montrer que α est rationnel et l'écrire sous la forme d'une fraction de deux entiers.
- 5. On suppose que x est rationnel. Il existe donc $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$ tel que $x = \frac{a}{b}$. On définit deux suites (q_n) et (r_n) de la manière suivante.
 - ightharpoonup q₀ et r₀ sont respectivement le quotient et le reste de la division euclidienne de a par b.
 - ▶ Pour tout $n \in \mathbb{N}, q_{n+1}$ et r_{n+1} sont respectivement le quotient et le reste de la division euclidienne de $10r_n$ par b.
 - a. Justifier qu'il existe deux entiers naturels N et M distincts tels que $r_N = r_M$.
 - **b.** En déduire que (r_n) est périodique à partir d'un certain rang.
 - c. En déduire que (q_n) est également périodique à partir d'un certain rang.
 - **d.** Montrer que pour tout $n \in \mathbb{N}$, $r_n = b\epsilon_n$ et $q_n = d_n$. On a donc prouvé que la suite (d_n) était périodique à partir d'un certain rang.
- 6. On suppose que $x = \frac{13}{35}$. Déterminer $N \in \mathbb{N}$ et $T \in \mathbb{N}^*$ tels que la suite (d_n) soit T-périodique à partir du rang N.