南京邮电大学通达学院 2017/2018 学年第 一 学期

《概率统计和随机过程》期末试卷(A)

院(州)		<u></u>	- 小李	নাঃ	5条		姓名	
动口	ı	11	Ш	国	田	オ	c+	京 分
得分				7				- 1
得分	一、填空题	题 (共	(共42分,	每空3分)				
	1. 设 A,B,	,C 为三个	事件,则3	巨少有一个	1. 设 A,B,C 为三个事件,则至少有一个发生可以表示为	表示为_		
2. 设 A,	设 A,B 是两个事件, 且 P(A)=0.4, P(B)=0.5, P(A B)=0.3, 则 P(A-B)=	∮件 ,且 P(A)=0.4, P((B)=0.5, P((A B)=0.3,	\mathbb{M} $P(A-B)$		۰
3. 己知	某学期某任	丘选课共常	上6次调	1, 任课老	师点了 27	次名,某等	生共旷课	己知某学期某任选课共需上 6 次课, 任课老师点了 2 次名, 某学生共旷课 3 次, 试求
该任	该任课老师恰好记录该学生旷课两次的概率为	好记录该单	学生旷课团	5次的概率	为			
4. 己知	已知随机变量 $X \sim B(2,p)$, $0.5 且 P(X=1)=0.18,$	$X \sim B(2,p)$, 0.5 <p<< td=""><td>1 ∄ <i>P(X</i>=</td><td>1)=0.18,</td><td>则参数 p=</td><td> "</td><td>0</td></p<<>	1 ∄ <i>P(X</i> =	1)=0.18,	则参数 p=	"	0
5. 设X	设 X 的 概率 密度 为 $f(x) = \begin{cases} 2e^{-2x}, & x > 0, \\ 0, & x \le 0. \end{cases}$	隻为 f(x):	$=\begin{cases} 2e^{-2x}, \\ 0, \end{cases}$		Y=2X 的	,则 $Y=2X$ 的概率密度为 $f(y)=$	9 f(y) = {−	0 其他
6. 设义,	Y是两个相	日至独立的]随机变量	, 它们的	分布函数	分别为 Fx	设 X,Y 是两个相互独立的随机变量,它们的分布函数分别为 $F_X(x)$ 和 $F_Y(y)$,则随机	,则随机
变量 mii	变量 $\min(X,Y)$ 的分布函数 $F_{\min}(z)$ =	布函数石	$\min(z) =$					
7. 设随	设随机变量 X~B(200,0.2),则 P(X≤40)≈	- B(200,0	.2),则 P(X ≤ 40)≈				
8. 已知	已知随机变量 X~U(2,4),	<i>X</i> ~ <i>U</i> (2,4)	,用切比	雪夫不等	式估计概率	用切比雪夫不等式估计概率 $P(X-3 \ge \frac{2}{3}) \le$	3)\\	
9. 己知	已知随机变量 $T \sim \iota(n)$,则	$f \sim t(n)$,	但 T ² ~_					
10. 已久	已知随机变量 $X \sim N(0,1)$, 则 $P(-z_{0.2} < X < z_{01}) =$	$X \sim N(0, 1)$),则P(702 < X < 2	(1.10)			
11. 设总	体 X-N(u,	σ²), μ和σ	未知,则	样本容量	为n的总	体方差 ♂	设总体 $X ext{-}N(\mu,\sigma)$, μ 和 σ 未知,则样本容量为 n 的总体方差 σ 的置信水平为 $1 ext{-}a$	(平为1-a
的双侧置	的双侧置信区间为							
12. 设{#	设 $\{W(0), -\infty < r + \infty\}$ 是参数为 σ 的维纳过程,则它的自相关函数 $R_{W}(s,t)=$	-8}是参数	为矿的维	纳过程,则	它的自相	关函数 Ri	V (S,t)=	°
13. 投{X	设 $\{X(t), t \geq 0\}$ 是参数为3的泊松过程,则 $P(X(1)=1,X(3)=4)=$	参数为31	的泊松过程	呈,则P(X(1)=1,X(3)=	4)=	$C_X(s,t)=$)=

\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	13. 区
ļı	≥ r'(ı)X} ¾
(8分)	
分(名	0}是参数为3
天同	为3日
城的朋友	的泊松过利
5约好上午10	呈,则/
141	(X(1)
10 占要来家里4	=1,X(3
冰	3)=4)=
甲仙场	
本	ĺ
II.	$C_X(s,t)$
他自己五大士	

(2)结果他迟到了,试问在此条件下,他坐出租车来的概率是多少?

三、 (12 分) 设随机变量(X,Y)的概率密度函数为 $f(x,y) = \begin{cases} ce^{-(x+y)}, x>0,y>0. \\ (1) 求常数 c \end{cases}$ (2) 求边缘概率密度函数 $f_X(x)$ 和 $f_Y(y)$

得分

(3)判断 X和 Y是否独立。(4)求相关系数pxr。

《概率统计和随机过程》期末试卷 第 1 页 共 4 页

得分

四、(10分)设总体 X 具有分布律

 $\begin{array}{c|ccccc} X & 2 & 3 & 4 \\ \hline P & \theta^2 & 2\theta(1-\theta) & (1-\theta)^2 \end{array}$

其中 $\theta(0<\theta<1)$ 为未知参数,已知取得了样本值 $x_1=2,\ x_2=2,\ x_3=2,\ x_4=4,$ 试求参数 θ 的矩估计值和最大似然估计值。

五、(8分)设两批器件的电阻只总体分别服从正态分布 $N(\mu_1,\sigma_1^2)$ 和 $N(\mu_2,\sigma_2^2)$ 为, μ_1,σ_1^2 , μ_2,σ_2^2 均未知,且两样本相互独立。今测得两批器件容量为 $n_1=n_2=6$ 的样本方差分别为 $s_1^2=0.86\times 10^5$ 欧, $s_2^2=0.59\times 10^5$ 欧,试在显著性水平 $\alpha=0.05$ 下检验假设 H_0 : $\sigma_1^2=\sigma_2^2$, $H_1:\sigma_1^2+\sigma_2^2$ 。

 $(F_{0.025}(6,6)=5.82, F_{0.05}(6,6)=4.28, F_{0.025}(5,5)=7.15, F_{0.05}(5,5)=5.05)$

《概率统计和随机过程》期末试卷 第 3 页 共 4 页

 $P(0) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), - 步转移概率矩阵为 <math>P(1) = 2\begin{pmatrix} 0 & K & K \\ 0 & K & K \\ 3 & K & 0 & K \\ 0 & K & 0 \end{pmatrix}$ 。求

(1)两步转移概率矩阵 P(2); (2)求 P(X₂=2); (3)证明此链具有遍历性,并求极限分布π=(π, π₂, π₃)。

七、(8分) 设随机过程 X()=asin(ood+θ), 其中 a, oo 为常数, θ~U(0,2π)。
(1)证用 YYAL基础计程。(2)证用 YYAL信目左々キー区域 (2) までがよる。

得分

(1)证明 X(t)是平稳过程; (2)证明 X(t)均值具有各态历经性; (3)求 X(t)的功率 谐密度。