Congratulations! You passed!

Grade L received 100% G

Latest Submission Grade 100% **To pass** 80% or higher

Go to next item

1.	Which of these best describes unsupervised learning?	1/1 point
	A form of machine learning that finds patterns using unlabeled data (x).	
	A form of machine learning that finds patterns using labeled data (x, y)	
	A form of machine learning that finds patterns without using a cost function.	
	$\bigcirc \ \ A \ form \ of \ machine \ learning \ that \ finds \ patterns \ in \ data \ using \ only \ labels \ (y) \ but \ without \ any \ inputs \ (x) \ .$	
	Correct Unsupervised learning uses unlabeled data. The training examples do not have targets or labels "y". Recall the T-shirt example. The data was height and weight but no target size.	
2.	 Which of these statements are true about K-means? Check all that apply. ✓ If each example x is a vector of 5 numbers, then each cluster centroid μ_k is also going to be a vector of 5 numbers. ✓ Correct The dimension of μ_k matches the dimension of the examples. 	1/1 point
	The number of eluctor control of the is equal to the number of everynles	
	The number of cluster centroids μ_k is equal to the number of examples.	
	If you are running K-means with $K=3$ clusters, then each $c^{(i)}$ should be 1, 2, or 3.	
	\odot correct $c^{(i)}$ describes which centroid example(i) is assigned to. If $K=3$, then $c^{(i)}$ would be one of 1,2 or 3 assuming counting starts at 1.	
	$lacksquare$ The number of cluster assignment variables $c^{(i)}$ is equal to the number of training examples.	
	\bigcirc Correct $c^{(i)}$ describes which centroid example (i) is assigned to.	
3.		1/1 point
	You run K-means 100 times with different initializations. How should you pick from the 100 resulting solutions?	
	Pick randomly that was the point of random initialization.	
	Average all 100 solutions together.	
	lacktriangle Pick the one with the lowest cost J	
	Pick the last one (i.e., the 100th random initialization) because K-means always improves over time	
	 Correct K-means can arrive at different solutions depending on initialization. After running repeated trials, choose the solution with the lowest cost. 	
4.	You run K-means and compute the value of the cost function $J(c^{(1)},\dots,c^{(m)},\mu_1,\dots,\mu_K)$ after each iteration. Which of these statements should be true?	1/1 point
	O Because K-means tries to maximize cost, the cost is always greater than or equal to the cost in the previous iteration.	
	The cost will either decrease or stay the same after each iteration	
	There is no cost function for the K-means algorithm.	
	The cost can be greater or smaller than the cost in the previous iteration, but it decreases in the long run.	
	✓ Correct	

·.	In K-means, the elbow method is a method to
	Choose the best random initialization
	O Choose the best number of samples in the dataset
	Choose the number of clusters K
	O Choose the maximum number of examples for each cluster
	Correct The elbow method plots a graph between the number of clusters K and the cost function. The 'bend' in the cost curve can suggest a natural value for K. Note that this feature may not exist or be significant in some data sets.

1/1 point