PRESSURE/VOLUME ISSUE:

BSI: pressure control + limitation for tidal volume ✓

Volume=flow× time & pressure=flow× resistance

PCV advantages:

- cheap and accurate
- Increased mean airway pressure \longrightarrow improved oxygenation

ARDS PATIENTS:

- Plateau pressure < 35 cmH₂O
- Peak pressure< plateau pressure+2 cmH2O
- PEEP: 5-16 cmH2O
- I:E ratio: 1:1-1:4
- Respiratory rate: 10-30 bpm
- Volume: 205-530 ml

MONITORING:

- Airway pressure
- Achieved tidal volume
- PEEP
- FiO₂

SENSORS:

pressure sensor: strain gauge

flow sensor

FiO2

ALARMS:

- Power supply
- Air/oxygen source
- Pressure achievement
- Tidal volume limits

VALVES:

AS we want to keep it as simple as possible we have decided to use a valve system similar to the system used in ambu-bags.

MOTOR: • Stepper motor Ability to generate a torque of 50 N.cm Ability to rotate 100 times per minute

DIMENSIONS:

- Rack = 20 cm (length)
- Pinion = 1cm (radius)
- Ambu bag = 1475 ml (standard size for adults)

ELECTRICAL CIRCUIT:

• Arduino : UNO

Microcontroller	ATmega328
Input Voltage	7-12V
Operating Voltage	5V
No. of Digital I/O Pins	14
No. PWM output Pins	6
No. of Analogue Input Pins	6
DC Current per I/O Pin	50 mA
Flash Memory	32 KB
SRAM and EEPROM	2KB and 1KB