- 1. A uniformly charged solid sphere of radius R carries a total charge Q, and is set spinning with angular velocity ω about the z axis.
 - (a) What is the magnetic dipole moment of the sphere?
 - (b) Find the magnetic field at a point (r, θ) inside the sphere.
 - (c) Using the results of (b) find the average magnetic field within the sphere. Hint: Average magnetic field is defined as

$$\vec{B}_{\rm avg} = \frac{1}{\frac{4}{3}\pi R^3} \int \vec{B} d\tau$$

Compare this result with the result of (a) and show that the average magnetic field is related to the magnetic dipole moment as

$$\vec{B}_{\text{avg}} = \frac{\mu_0}{4\pi} \frac{2\vec{m}}{R^3}$$

Solution:

The vector potential for a charged spinning spherical shell, as discussed in the class, is

$$\vec{A}(\vec{r}) = \begin{cases} \frac{\mu_0 R \sigma}{3} (\vec{\omega} \times \vec{r}) = \frac{\mu_0 R \omega \sigma}{3} r \sin \theta \hat{\phi} & \text{for } r \leq R \\ \frac{\mu_0 R^4 \sigma}{3r^3} (\vec{\omega} \times \vec{r}) = \frac{\mu_0 R^4 \omega \sigma}{3} \frac{\sin \theta}{r^2} \hat{\phi} & \text{for } r \geq R. \end{cases}$$

For $\vec{\omega}$ along the z-axis, the vector potential outside the sphere can be written as

$$\vec{A} = \frac{\mu_0 R^4 \omega \sigma}{3} \frac{\sin \theta}{r^2} \hat{\phi} = \frac{\mu_0}{4\pi} \frac{1}{r^2} \frac{4\pi R^4 \omega \sigma}{3} (-\sin \theta \hat{\theta} \times \hat{r}) \quad (r \ge R)$$

(a) Compering it with the dipole contribution to vector potential $\vec{A} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \hat{r}}{r^2}$, the dipole moment can be written as

$$\vec{m} = \frac{4\pi R^4 \omega \sigma}{3} \hat{z}$$

To find the dipole moment for a charged spinning solid sphere, we can first consider a shell at a distance r from the centre having a thickness dr. If ρ is the volume charge density of the sphere, then the shell of radius r and thickness dr has surface charge density $\sigma = \rho dr$. The total magnetic dipole moment of the solid sphere can then be found by integrating over all such shells from radius r = 0 to r = R. This is given by

$$\vec{m} = \frac{4\pi}{3}\omega\rho\hat{z}\int_{0}^{R}r^{4}dr = \frac{4\pi}{3}\omega\rho\frac{R^{5}}{5}\hat{z} = \frac{1}{5}Q\omega R^{2}\hat{z}$$

where, in the last step, we have used $\rho = \frac{Q}{(4/3)\pi R^3}$.

(b) To find the magnetic field at a point (r, θ) inside the sphere, we first find the vector potential \vec{A} . Consider a spherical shell of radius r' and thickness dr' inside the solid sphere of radius R. The surface charge density of this shell is $\sigma = \rho dr'$, where ρ is the volume charge density. The vector potential outside and inside this shell are given by the above expressions. To find the net potential at a radial distance r inside the sphere, we integrate over all possible such shells of infinitesimal thickness inside the radius r' < r and outside the radius r < r' < R. The infinitesimal vector potential is

$$d\vec{A}(r,\theta) = \frac{\mu_0(r')^4 \omega \sigma}{3} \frac{\sin \theta}{r^2} \hat{\phi} + \frac{\mu_0 r' \omega \sigma}{3} r \sin \theta \hat{\phi}$$

. The net vector potential can be found by substituting $\sigma = \rho dr'$ and integrating over r':

$$\vec{A}(r,\theta) = \frac{\mu_0 \omega \rho}{3} \frac{\sin \theta}{r^2} \hat{\phi} \int_0^r (r')^4 dr' + \frac{\mu_0 \omega \rho}{3} r \sin \theta \hat{\phi} \int_r^R r' dr'$$

$$\implies \vec{A}(r,\theta) = \frac{\mu_0 \omega \rho}{3} \sin \theta \left[\frac{1}{r^2} \frac{r^5}{5} + \frac{r}{2} (R^2 - r^2) \right] \hat{\phi} = \frac{\mu_0 \omega \rho}{2} r \sin \theta \left(\frac{R^2}{3} - \frac{r^2}{5} \right) \hat{\phi}$$

. Now the magnetic field can be found by taking the curl of \vec{A} :

$$\vec{B} = \vec{\nabla} \times \vec{A} = \frac{\mu_0 \omega \rho}{2} \frac{1}{r^2 \sin \theta} \left[\hat{r} \frac{\partial}{\partial \theta} \left(r \sin \theta r \sin \theta \left(\frac{R^2}{3} - \frac{r^2}{5} \right) \right) - r \hat{\theta} \frac{\partial}{\partial r} \left(r \sin \theta r \sin \theta \left(\frac{R^2}{3} - \frac{r^2}{5} \right) \right) \right]$$

$$\implies \vec{B} = \frac{\mu_0 \omega \rho}{2} \left[\hat{r} 2 \cos \theta \left(\frac{R^2}{3} - \frac{r^2}{5} \right) - \hat{\theta} \sin \theta 2 \left(\frac{R^2}{3} - \frac{2r^2}{5} \right) \right]$$

$$\implies \vec{B} = \mu_0 \omega \rho \left[\left(\frac{R^2}{3} - \frac{r^2}{5} \right) \cos \theta \hat{r} - \left(\frac{R^2}{3} - \frac{2r^2}{5} \right) \sin \theta \hat{\theta} \right]$$

Using $\rho = \frac{Q}{(4/3)\pi R^3}$,

$$\vec{B} = \frac{\mu_0 \omega Q}{4\pi R} \left[\left(1 - \frac{3r^2}{5R^2} \right) \cos \theta \hat{r} - \left(1 - \frac{6r^2}{5R^2} \right) \sin \theta \hat{\theta} \right]$$

(c) Due to the symmetry of the problem, the average magnetic field will be in the z direction. Therefore, we can take out only the z components of the magnetic field found in part (b). Writing $\hat{r}, \hat{\theta}$ in terms of $\hat{x}, \hat{y}, \hat{z}$ that is $\hat{r} = \sin \theta \cos \phi \hat{x} + \sin \theta \sin \phi \hat{y} + \cos \theta \hat{z}, \hat{\theta} = \cos \theta \cos \phi \hat{x} + \cos \theta \sin \phi \hat{y} - \sin \theta \hat{z}$ and considering only the z-component (that is, take the z component of $\hat{r}(\cos \theta)$ and $\hat{\theta}(-\sin \theta)$, we can write down the average magnetic field as

$$B_{\text{avg}} = \frac{1}{\frac{4}{3}\pi R^3} \int B_z d\tau$$

$$\implies B_{\text{avg}} = \frac{\mu_0 \omega Q}{4\pi R} \frac{1}{\frac{4}{3}\pi R^3} \int \left[\left(1 - \frac{3r^2}{5R^2} \right) \cos^2 \theta + \left(1 - \frac{6r^2}{5R^2} \right) \sin^2 \theta \right] r^2 \sin \theta dr d\theta d\phi$$

$$\implies B_{\text{avg}} = \frac{3\mu_0 \omega Q}{(4\pi R^2)^2} 2\pi \int_0^{\pi} \left[\left(\frac{R^3}{3} - \frac{3}{5} \frac{R^5}{5R^2} \right) \cos^2 \theta + \left(\frac{R^3}{3} - \frac{6}{5} \frac{R^5}{5R^2} \right) \sin^2 \theta \right] \sin \theta d\theta$$

$$\implies B_{\text{avg}} = \frac{3\mu_0 \omega Q}{8\pi R^4} R^3 \int_0^{\pi} \left(\frac{16}{75} \cos^2 \theta + \frac{7}{75} \sin^2 \theta \right) \sin \theta d\theta = \frac{3\mu_0 \omega Q}{8\pi R} \frac{1}{75} \int_0^{\pi} (7 + 9 \cos^2 \theta) \sin \theta d\theta$$

$$\implies B_{\text{avg}} = \frac{\mu_0 \omega Q}{200\pi R} (-7 \cos \theta - 3 \cos^3 \theta)|_0^{\pi} = \frac{\mu_0 \omega Q}{200\pi R} (20) = \frac{\mu_0 \omega Q}{10\pi R}$$

Using the expression for magnetic dipole moment obtained in part (a) that is, $\vec{m} = \frac{1}{5}Q\omega R^2\hat{z}$ it is straightforward to show that

$$\frac{\mu_0}{4\pi} \frac{2\vec{m}}{R^3} = \frac{\mu_0 \omega Q}{10\pi R} \hat{z} = \vec{B}_{\text{avg}}$$

Therefore, the average magnetic field, over a sphere of radius R, due to steady current within the sphere, is

$$\vec{B}_{\text{avg}} = \frac{\mu_0}{4\pi} \frac{2\vec{m}}{R^3}$$

.

- 2. Suppose the field inside a large piece of magnetic material is $\vec{B_0}$, so that $\vec{H_0} = \vec{B_0}/\mu_0 \vec{M}$.
 - (a) Now a small spherical cavity is hollowed out of the material (as shown in figure 1). Find the field at the centre of the cavity, in terms of $\vec{B_0}$, \vec{M} . Also find \vec{H} at the centre of the cavity in terms of $\vec{H_0}$, \vec{M} .
 - (b) Do the same for a long needle-shaped cavity running parallel to \vec{M} .
 - (c) Do the same for a thin wafer-shaped cavity perpendicular to \vec{M} .

Figure 1: Figure for problem 2.

Solution:

(a) D. J. Griffiths, Example 6.1, the field inside a magnetized sphere is $(2/3) \, \mu_{\theta} \mathbf{M}$. The field after the removal of the sphere is $\mathbf{B} = \mathbf{B}_{\theta} - (2/3) \, \mu_{\theta} \mathbf{M}$.

Thus in the cavity
$$\mathbf{H} = \mathbf{B}/\mu_0 = [\mathbf{B}_0 - (2/3) \mu_0 \mathbf{M}]/\mu_0 = \mathbf{H}_0 + \mathbf{M} - (2/3) \mathbf{M} = \mathbf{H}_0 + 1/3 \mathbf{M}.$$

- (b) The field inside a long solenoid is $\mu_0 K = \mu_0 M$. Thus the field of the bound charge on the inside surface of the needle shaped cavity is $\mu_0 M$, but *pointing down*. Thus, $\mathbf{B} = \mathbf{B}_0 \mu_0 \mathbf{M}$ and $\mathbf{H} = \mathbf{B}/\mu_0 = [\mathbf{B}_0 \mu_0 \mathbf{M}]/\mu_0 = \mathbf{H}_0 + \mathbf{M} \mathbf{M} = \mathbf{H}_0$.
- (c) For the thin wafer, the bound currents are very small and also far away from the center. Hence, ${\bf B}={\bf B}_\theta$ and the ${\bf H}={\bf B}$ / μ_θ

$$= \mathbf{B}_0 / \mu_0 = \mathbf{H_0} + \mathbf{M}.$$

3. A short circular cylinder of radius a and length L carries a "frozen-in" uniform magnetisation \vec{M} parallel to its axis. Find the bound current and sketch the magnetic field of the cylinder: one for $L\gg a$, one for $L\ll a$ and one for $L\approx a$.

Solution: The magnetization being uniform, the volume current, $\mathbf{J}_b = \mathbf{\nabla} \times \mathbf{M} = \mathbf{0},$ The surface current, $\mathbf{K}_b = \mathbf{M} \times \mathbf{\hat{n}} = M \, \hat{\boldsymbol{\phi}}.$

Here, \mathbf{M} is in the z direction and surface vector \mathbf{n} is in the radial direction.

L >> a, This situation is similar to a long solenoid with the surface current flowing in the azimuth direction and uniform field inside.

 $L \le a$, This situation is similar to a physical dipole.

 $L \approx a$, This is the intermediate case of the above two.

4. (a) Find the magnetic dipole moment of a spherical shell, of radius R, carrying a uniform surface charge σ which is set to spin at angular velocity $\vec{\omega}$. (b) Consider a

charge of 3pC being distributed over a sphere of radius 1cm and having a uniform surface charge density σ . If this sphere is rotated about its diameter with angular velocity $\omega = 10^6$ radians per second, find the magnetic dipole moment of the sphere.

Solution:

(a) Consider the elemental ring of radius $R \sin \theta$, thickness $Rd\theta$ so that the charge on its surface is $dq = \sigma(2\pi R \sin \theta)Rd\theta$. Time period of the spinning sphere is $dt = 2\pi/\omega$. Therefore, the current in the ring is $I = dq/dt = \sigma \omega R^2 \sin \theta d\theta$. The area of the ring is $\pi(R \sin \theta)^2$. The magnetic dipole moment of the ring is therefore, $dm = Ia = (\sigma \omega R^2 \sin \theta d\theta)\pi(R \sin \theta)^2$.

The total magnetic dipole moment of the shell can be found by integrating over θ :

$$m = \sigma \omega \pi R^4 \int_0^{\pi} \sin^3 \theta d\theta = (4/3)\sigma \omega \pi R^4$$

$$\implies \vec{m} = \frac{4\pi}{3}\sigma \omega R^4 \hat{z}.$$

Figure 2: Solution to problem 4.

(b) For charge Q spread uniformly over the sphere, we can replace $\sigma = \frac{Q}{4\pi R^2}$. Using it in the expression for dipole moment found in part (a), we get

$$\vec{m} = \frac{Q\omega R^2}{3}\hat{z} = \frac{3 \times 10^{-12} \times 10^6 \times 10^{-4}}{3}\hat{z} \text{ Am}^2 = 10^{-10}\hat{z} \text{ Am}^2. \quad (+1)$$

- 5. Given that $\vec{H_1} = -2\hat{i} + 6\hat{j} + 4\hat{k}$ A/m in the region $y x 2 \le 0$, where $\mu_1 = 5\mu_0$. Calculate (a) $\vec{M_1}$ and $\vec{B_1}$.
 - (b) $\vec{M_2}$ and $\vec{B_2}$ in the region $y x 2 \ge 0$, where $\mu_2 = 2\mu_0$.

Solution:
$$\hat{\mathbf{n}} = (\hat{\mathbf{j}} - \hat{\mathbf{i}})/\sqrt{2}$$

(a)
$$\mathbf{M}_1 = \chi_m \mathbf{H}_1 = (\mu_{r1} - 1) \mathbf{H}_1 = 4 \mathbf{H}_1 \text{ and } \mathbf{B}_1 = \mu_1 \mathbf{H}_1 = 5 \mu_0 \mathbf{H}_1$$

(b)
$$\mathbf{H}_{1n} = (\mathbf{H}_{1} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}} = 4 (-\hat{\mathbf{i}} + \hat{\mathbf{j}}), \mathbf{H}_{1t} = \mathbf{H}_{1} - \mathbf{H}_{1n} = 2 (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}).$$

Using the boundary conditions, $\mathbf{B}_{2n} = \mathbf{B}_{1n}$ and $\mu_2 \mathbf{H}_{2n} = \mu_1 \mathbf{H}_{1n} \Rightarrow 2 \mu_\theta \mathbf{H}_{2n} = 5 \mu_\theta \mathbf{H}_{1n}$

Thus,
$$\mathbf{H}_{2n} = 10$$
 (- $\hat{\mathbf{i}} + \hat{\mathbf{j}}$) and $\mathbf{H}_{2t} = \mathbf{H}_{1t} = 2(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$, $\mathbf{H}_{2} = \mathbf{H}_{2n} + \mathbf{H}_{2t} = -8\hat{\mathbf{i}} + 12\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ and $\mathbf{B}_{2} = \mu_{2}\mathbf{H}_{2}$

6. A circular loop of radius a is at a distance D above a tiny magnetic dipole of infinitesimal area dS carrying a current I_1 , as shown in figure 3. Assume current through the circular loop $I_2 = 0$, for the time being. Also, the distance D and loop radius a are related as $D = \sqrt{3}a$. Write your final answers only in terms of I_1 , dS, a and fundamental constants.

Figure 3: Figure for problem 6

- (i) What is the vector potential due to the dipole at all points on the circular loop.
- (ii) Consider the loop to be carrying a current $I_2 \neq 0$. The relation between D and a remains same as before $D = \sqrt{3}a$. What is the magnetic field due to I_2 at the position of the tiny dipole? What is the force on the magnetic dipole? What is the torque on the magnetic dipole?

Solution:

(i) Vector potential due to a magnetic dipole is given as

$$\vec{A} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \hat{r}}{r^2}$$

$$\implies \vec{A} = \frac{\mu_0}{4\pi} \frac{I_1 dS \sin \theta}{r^2} \hat{\phi}$$

Here, $r^2 = a^2 + D^2$, $\sin \theta = \frac{a}{r} = \frac{a}{(a^2 + D^2)^{1/2}}$. Also, using $D = \sqrt{3}a$, one can find

$$\vec{A} = \frac{\mu_0}{4\pi} \frac{I_1 dSa}{8a^3} \hat{\phi} = \frac{\mu_0}{32\pi} \frac{I_1 dS}{a^2} \hat{\phi}$$

(ii) Magnetic field at the axis of a current carrying loop of radius a and current I is

$$\vec{B} = \frac{\mu_0 I}{2} \frac{a^2}{(a^2 + z^2)^{3/2}} \hat{z}$$

Here, $I = I_2, z = D = \sqrt{3}a$. Therefore,

$$\vec{B} = \frac{\mu_0 I_2 a^2}{2(a^2 + D^2)^{3/2}} \hat{z} = \frac{\mu_0 I_2}{16a} \hat{z}$$

Force on the (infinitesimal) magnetic dipole $\vec{F} = \vec{\nabla}(\vec{m} \cdot \vec{B})$. Here $\vec{m} = I_1 dS \hat{z}, \vec{B} = \frac{\mu_0 I_2 a^2}{2(a^2 + z^2)^{3/2}} \hat{z}$. Therefore,

$$\vec{m} \cdot \vec{B} = \frac{\mu_0 I_1 I_2 dS a^2}{2(a^2 + z^2)^{3/2}}$$

$$\implies \vec{\nabla}(\vec{m} \cdot \vec{B}) = \frac{\mu_0 I_1 I_2 dS a^2}{2} (-\frac{3}{2}) \frac{2z}{(a^2 + z^2)^{5/2}} \hat{z}$$

At z = -D, the force is, therefore

$$\vec{F} = \frac{3\mu_0}{2} I_1 I_2 dS a^2 \frac{D}{(a^2 + D^2)^{5/2}} \hat{z}$$

Using $D = \sqrt{3}a$,

$$\vec{F} = \frac{3\mu_0}{2} I_1 I_2 dS a^2 \frac{\sqrt{3}a}{32a^5} \hat{z} = \frac{3\sqrt{3}\mu_0}{64} I_1 I_2 \frac{dS}{a^2} \hat{z}$$

Torque on the dipole is $\vec{\tau} = \vec{m} \times \vec{B} = 0$.