INTERVALOS DE CONFIANZA (Una Población)				
M	MEDIA DE UNA DISTRIBUCIÓN NORMAL μ			
Tamaño Muestral	Tamaño Muestral Varianza σ² Intervalo			
Cualquiera	σ^2 conocida	$\left[\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$		
Grande n > 30	σ^2 desconocida	$\left[\frac{-}{x} \pm z_{\alpha/2} \frac{S}{\sqrt{n}} \right]$		
Pequeña n≤30	σ^2 desconocida	$\left[\bar{x} \pm t_{n-1, \alpha/2} \frac{S}{\sqrt{n}} \right]$		
VAI	RIANZA DE UNA DISTRIBUCIÓN NORM	AL σ^2		
Tamaño Muestral	Varianza σ²	Intervalo		
Cualquiera	σ^2 desconocida	$\left[\frac{(n-1)S^2}{\chi^2_{n-1,\alpha/2}},\frac{(n-1)S^2}{\chi^2_{n-1,1-\alpha/2}}\right]$		
PARÁI	METRO p DE UNA DISTRIBUCIÓN BINO	MIAL p		
Tamaño Muestral	Proporción p	Intervalo		
Grande n > 30	p desconocida	$\left[\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$		

INT	INTERVALOS DE CONFIANZA (Dos Poblaciones)				
COCIENTE D	COCIENTE DE VARIANZAS DE DOS DISTRIBUCIONES NORMALES $\frac{\sigma_1^2}{\sigma_2^2}$				
Tamaños Muestrales	Varianzas σ_1^2 y σ_2^2	Intervalo			
Cualesquiera	σ_1^2 y σ_2^2 desconocidas	$\begin{bmatrix} S_1^2 / & S_1^2 / \\ \frac{/S_2^2}{F_{n_1-1, n_2-1, \frac{\alpha}{2}}}, & \frac{/S_2^2}{F_{n_1-1, n_2-1, 1-\frac{\alpha}{2}}} \end{bmatrix}$			
DIFERENCIA DE MEDI	AS DE DOS DISTRIBUCIONES NORMALE	S INDEPENDIENTES $\mu_1 - \mu_2$			
Tamaños Muestrales	Varianzas σ_1^2 y σ_2^2	Intervalo			
Cualesquiera	σ_1^2 y σ_2^2 conocidas	$\left[\frac{1}{x_1} - \frac{1}{x_2} \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right]$			
Grandes $n_1 + n_2 > 30$, $n_1 \approx n_2$	σ_1^2 y σ_2^2 desconocidas	$\left[\frac{1}{x_1} - \frac{1}{x_2} \pm z_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} \right]$			
Pequeñas $n_1 + n_2 < 30$	σ_1^2 y σ_2^2 desconocidas pero $\sigma_1^2 = \sigma_2^2$	$\begin{bmatrix} \overline{x}_1 - \overline{x}_2 \pm t_{n_1 + n_2 - 2, \frac{\alpha}{2}} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \end{bmatrix}$ $S_p^2 = \frac{(n_1 - 1) S_1^2 + (n_2 - 1) S_2^2}{n_1 + n_2 - 2}$			

Pequeñas $n_1 + n_2 < 30$	σ_1^2 y σ_2^2 desconocidas pero $\sigma_1^2 \neq \sigma_2^2$	$ \begin{bmatrix} \overline{x}_1 - \overline{x}_2 \pm t_{f, \frac{\alpha}{2}} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} \\ f = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2} - 2 $ $ \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{n_1 + 1} + \frac{\left(\frac{S_2^2}{n_2}\right)^2}{n_2 + 1} $		
DIFER	ENCIA DE MEDIAS DE DATOS APAREAD	$POS \mu_1 - \mu_2$		
Tamaños Muestrales	Diferencias de Datos	Intervalo		
Grande n > 30	$d_{i} = x_{i} - y_{i}, i = 1, 2,, n donde$ $\frac{\sum_{i=1}^{n} d_{i}}{d} = \frac{\sum_{i=1}^{n} (d_{i} - \overline{d})^{2}}{n - 1}$ $d_{i} = x_{i} - y_{i}, i = 1, 2,, n donde$	$\left[\overline{d} \pm z_{\alpha \! / 2} \frac{S_d}{\sqrt{n}} \right]$		
Pequeña n≤30	$d_{i} = x_{i} - y_{i}, i = 1, 2,, n \text{ donde}$ $\frac{\sum_{i=1}^{n} d_{i}}{n} y S_{d}^{2} = \frac{\sum_{i=1}^{n} (d_{i} - \overline{d})^{2}}{n - 1}$	$\left[\bar{d} \pm t_{n-1,\alpha/2} \frac{S_d}{\sqrt{n}}\right]$		
DIFERENCIA DE PAR	DIFERENCIA DE PARÁMETROS p_1 Y p_2 DE DOS DISTRIBUCIONES BINOMIALES p_1 - p_2			
Tamaños Muestrales	Proporciones p ₁ y p ₂	Intervalo		
Grandes $n_1 y n_2 > 30$	p ₁ y p ₂ desconocidas	$\left[\hat{p}_{1} - \hat{p}_{2} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_{1}(1-\hat{p}_{1})}{n} + \frac{\hat{p}_{2}(1-\hat{p}_{2})}{n}}\right]$		

	CONTRASTES DE HIPÓTESIS (Una Población)				
	MEDIA DE UNA DISTRIBUCIÓN NORMAL μ				
Características	Estadístico	Hipótesis	Región Crítica		
Varianza σ ² conocida	$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$	$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	$ z > z_{\alpha/2}$		
Varianza σ ² conocida	$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$	$H_0: \mu \le \mu_0$ $H_1: \mu > \mu_0$	$z > z_{\alpha}$		
Varianza σ ² conocida	$z = \frac{x - \mu_0}{\sigma / \sqrt{n}}$	$H_0: \mu \ge \mu_0$ $H_1: \mu < \mu_0$	$z < z_{1-\alpha}$		
Varianza σ^2 desconocida Muestra grande $n > 30$	$z = \frac{\overline{x} - \mu_0}{S/\sqrt{n}}$	$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	$ z > z_{\alpha/2}$		
Varianza σ^2 desconocida Muestra grande $n > 30$	$z = \frac{\overline{x} - \mu_0}{S/\sqrt{n}}$	$H_0: \mu \le \mu_0$ $H_1: \mu > \mu_0$	$z > z_{\alpha}$		
Varianza σ^2 desconocida Muestra grande $n > 30$	$z = \frac{\overline{x} - \mu_0}{S/\sqrt{n}}$	$H_0: \mu \ge \mu_0$ $H_1: \mu < \mu_0$	$z < z_{1-\alpha}$		
Varianza σ^2 desconocida Muestra pequeña $n \le 30$	$t = \frac{\bar{x} - \mu_0}{S/\sqrt{n}}, g.l. = n - 1$	$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	$ t > t_{n-1,\frac{\alpha}{2}}$		
Varianza σ^2 desconocida Muestra pequeña $n \le 30$	$t = \frac{\overline{x} - \mu_0}{S/\sqrt{n}}, g.l. = n - 1$	$H_0: \mu \le \mu_0$ $H_1: \mu > \mu_0$	$t > t_{n-1,\alpha}$		
Varianza σ^2 desconocida Muestra pequeña $n \le 30$	$t = \frac{\overline{x} - \mu_0}{S/\sqrt{n}}, g.l. = n - 1$	$H_0: \mu \ge \mu_0$ $H_1: \mu < \mu_0$	$t < t_{n-1, 1-\alpha}$		

CONTRASTES DE HIPÓTESIS (Una Población)

VARIANZA DE UNA DISTRIBUCIÓN NORMAL σ^2

Características	Estadístico	Hipótesis	Región Crítica
Varianza σ² desconocida Muestra de Cualquier tamaño	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}, \text{ g.l.} = n-1$	$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 \neq \sigma_0^2$	$\chi^2 < \chi^2_{n-1,1-\alpha/2}$ ó $\chi^2 > \chi^2_{n-1,\alpha/2}$
Varianza σ² desconocida Muestra de Cualquier tamaño	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}, \text{ g.l.} = n-1$	$H_0: \sigma^2 \le \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2$	$\chi^2 > \chi^2_{n-1,\alpha}$
Varianza σ² desconocida Muestra de Cualquier tamaño	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}, \text{ g.l.} = n-1$	$H_0: \sigma^2 \ge \sigma_0^2$ $H_1: \sigma^2 < \sigma_0^2$	$\chi^2 < \chi^2_{\text{n-1,1-}\alpha}$

PARÁMETRO p DE UNA DISTRIBUCIÓN BINOMIAL p

Características	Estadístico	Hipótesis	Región Crítica
Muestra Grande n > 30	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$H_0: p = p_0$ $H_1: p \neq p_0$	$ z > z_{\alpha/2}$
Muestra Grande n > 30	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$H_0: p \le p_0$ $H_1: p > p_0$	$z > z_{\alpha}$
Muestra Grande n > 30	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$H_0: p \ge p_0$ $H_1: p < p_0$	$z < z_{1-\alpha}$

CONTRASTES DE HIPÓTESIS (Dos Poblaciones)

VARIANZAS DE DOS DISTRIBUCIÓN NORMALES INDEPENDIENTES σ_1^2 y σ_2^2

Características	Estadístico	Hipótesis	Región Crítica
Ninguna	$F = \frac{S_1^2}{S_2^2}$	$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 \neq \sigma_2^2$	$F < F_{n_1-1, n_2-1, 1-\frac{\alpha}{2}}$ ó $F > F_{n_1-1, n_2-1, \frac{\alpha}{2}}$
Tvinguna	S_2^2	$H_1: \sigma_1^2 \neq \sigma_2^2$	n ₁ -1, n ₂ -1, 1-\(\frac{1}{2}\) n ₁ -1, n ₂ -1, \(\frac{1}{2}\)
Ninguna	$F = \frac{S_1^2}{S_2^2}$	$H_0: \sigma_1^2 \le \sigma_2^2$	F > F
Ninguna	S_2^2	$H_1: \sigma_1^2 > \sigma_2^2$	$F > F_{n_1-1, n_2-1, \alpha}$
Ninguna	$-S_1^2$	$H_0: \sigma_1^2 \ge \sigma_2^2$ $H_1: \sigma_1^2 < \sigma_2^2$	E / E
Ninguna	$F = \frac{S_1^2}{S_2^2}$	$H_1: \sigma_1^2 < \sigma_2^2$	$F < F_{n_1-1, n_2-1, 1-\alpha}$

MEDIAS DE DOS DISTRIBUCIONES NORMALES INDEPENDIENTES μ_1 y μ_2

Características	Estadístico	Hipótesis	Región Crítica
Varianzas σ_1^2 y σ_2^2 conocidas	$z = \frac{\overline{x_1 - x_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$	$ z > z_{\alpha/2}$
Varianzas σ_1^2 y σ_2^2 conocidas	$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$H_0: \mu_1 \le \mu_2$ $H_1: \mu_1 > \mu_2$	$z > z_{\alpha}$
Varianzas σ_1^2 y σ_2^2 conocidas	$z = \frac{\frac{-}{x_1 - x_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$H_0: \mu_1 \ge \mu_2$ $H_1: \mu_1 < \mu_2$	$z < z_{1-\alpha}$

Varianzas σ_1^2 y σ_2^2 desconocidas Muestras grandes, $n_1 + n_2 > 30, \ n_1 \approx n_2$	$z = \frac{\overline{x_1 - x_2}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$	$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$	$ \mathbf{z} > \mathbf{z}_{\alpha/2}$
Varianzas σ_1^2 y σ_2^2 desconocidas Muestras grandes, $n_1 + n_2 > 30, n_1 \approx n_2$	$z = \frac{\overline{x_1 - x_2}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$	$H_0: \mu_1 \le \mu_2$ $H_1: \mu_1 > \mu_2$	$z > z_{\alpha}$
Varianzas σ_1^2 y σ_2^2 desconocidas Muestras grandes, $n_1 + n_2 > 30, n_1 \approx n_2$	$z = \frac{\overline{x_1 - x_2}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$	$H_0: \mu_1 \ge \mu_2$ $H_1: \mu_1 < \mu_2$	$z < z_{1-\alpha}$
Varianzas σ_1^2 y σ_2^2 desconocidas pero iguales $\sigma_1^2 = \sigma_2^2$ Muestras pequeñas, $n_1 + n_2 \le 30$	$t = \frac{\overline{x_1 - x_2}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$ $g.l. = n_1 + n_2 - 2$	$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$	$ \mathbf{t} > \mathbf{t}_{n_1 + n_2 - 2, \frac{\alpha}{2}}$
Varianzas σ_1^2 y σ_2^2 desconocidas pero iguales $\sigma_1^2 = \sigma_2^2$ Muestras pequeñas, $n_1 + n_2 \leq 30$	$t = \frac{\overline{x_1 - x_2}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$ $g.l. = n_1 + n_2 - 2$	$H_0: \mu_1 \le \mu_2$ $H_1: \mu_1 > \mu_2$	$t > t_{n_1+n_2-2,\alpha}$

Varianzas σ_1^2 y σ_2^2 desconocidas pero iguales $\sigma_1^2 = \sigma_2^2$ Muestras pequeñas, $n_1 + n_2 \leq 30$	$t = \frac{\overline{x_1 - x_2}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$ $g.l. = n_1 + n_2 - 2$	$H_0: \mu_1 \ge \mu_2$ $H_1: \mu_1 < \mu_2$	$t < t_{n_1 + n_2 - 2, 1 - \alpha}$
Varianzas σ_1^2 y σ_2^2 desconocidas y distintas $\sigma_1^2 \neq \sigma_2^2$ Muestras pequeñas, $n_1 + n_2 \leq 30$	$t_{f} = \frac{\frac{-}{x_{1} - x_{2}}}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}}$ $g.l. = f = \frac{\left(\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\left(\frac{S_{1}^{2}}{n_{1}}\right)^{2} + \left(\frac{S_{2}^{2}}{n_{2}}\right)^{2}} - 2$	$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$	$ t > t_{f, \frac{\alpha}{2}}$

Varianzas σ_1^2 y σ_2^2 desconocidas y distintas $\sigma_1^2 \neq \sigma_2^2$ Muestras pequeñas, $n_1 + n_2 \leq 30$	$t_{f} = \frac{\overline{x_{1} - \overline{x}_{2}}}{\sqrt{\frac{S_{1}^{2} + S_{2}^{2}}{n_{1}}}}$ $g.l. = f = \frac{\left(\frac{S_{1}^{2} + S_{2}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\left(\frac{S_{1}^{2}}{n_{1}}\right)^{2} + \left(\frac{S_{2}^{2}}{n_{2}}\right)^{2}} - 2$	$H_0: \mu_1 \le \mu_2$ $H_1: \mu_1 > \mu_2$	$t > t_{f, \alpha}$
Varianzas σ_1^2 y σ_2^2 desconocidas y distintas $\sigma_1^2 \neq \sigma_2^2$ Muestras pequeñas, $n_1 + n_2 \leq 30$	$t_{f} = \frac{\frac{-}{x_{1} - x_{2}}}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}}$ $g.l. = f = \frac{\left(\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\left(\frac{S_{1}^{2}}{n_{1}}\right)^{2} + \left(\frac{S_{2}^{2}}{n_{2}}\right)^{2}} - 2$ $\frac{\left(\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}\right)^{2}}{n_{1} + 1} + \frac{\left(\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{n_{2} + 1}$	$H_0: \mu_1 \ge \mu_2$ $H_1: \mu_1 < \mu_2$	$t < t_{f, 1-\alpha}$

CONTRASTES DE HIPÓTESIS (Dos Poblaciones)

MEDIAS DE DATOS APAREADOS, CUYA DIFERECIA SIGUE UNA DISTRIBUCIÓN NORMAL μ_1 y μ_2

Características	Estadístico	Hipótesis	Región Crítica
Muestras grandes e iguales, $n_1 = n_2$	$z = \frac{\overline{d}}{S_d / \sqrt{n}}$	$H_0: \mu_1 = \mu_2 \text{ ó } H_0: \mu_d = 0$ $H_1: \mu_1 \neq \mu_2 H_1: \mu_d \neq 0$	$ z > z_{\alpha/2}$
Muestras grandes e iguales, $n_1 = n_2$	$z = \frac{\overline{d}}{S_d / \sqrt{n}}$	$H_0: \mu_1 \le \mu_2 \text{ ó } H_0: \mu_d \le 0$ $H_1: \mu_1 > \mu_2 \qquad H_1: \mu_d > 0$	$z > z_{\alpha}$
Muestras grandes e iguales, $n_1 = n_2$	$z = \frac{\bar{d}}{S_d / \sqrt{n}}$	$H_0: \mu_1 \ge \mu_2 \text{ ó } H_0: \mu_d \ge 0$ $H_1: \mu_1 < \mu_2 \qquad H_1: \mu_d < 0$	$z < z_{1-\alpha}$
Muestras pequeñas e iguales, $n_1 = n_2$	$t_{n-1} = \frac{\overline{d}}{S_d / \sqrt{n}}, g.l. = n-1$	$H_0: \mu_1 = \mu_2 \text{ ó } H_0: \mu_d = 0$ $H_1: \mu_1 \neq \mu_2 H_1: \mu_d \neq 0$	$ t > t_{n-1, \frac{\alpha}{2}}$
Muestras pequeñas e iguales, $n_1 = n_2$	$t_{n-1} = \frac{\overline{d}}{S_d}, g.l. = n-1$	$H_0: \mu_1 \le \mu_2 \text{ ó } H_0: \mu_d \le 0$ $H_1: \mu_1 > \mu_2 \qquad H_1: \mu_d > 0$	$t > t_{n-1,\alpha}$
Muestras pequeñas e iguales, $n_1 = n_2$	$t_{n-1} = \frac{\bar{d}}{S_d / \sqrt{n}}, g.l. = n-1$	$H_0: \mu_1 \ge \mu_2 \text{ ó } H_0: \mu_d \ge 0$ $H_1: \mu_1 < \mu_2 \qquad H_1: \mu_d < 0$	$t < t_{n-1, 1-\alpha}$

CONTRASTES DE HIPÓTESIS (Dos Poblaciones)

PARÁMETROS p_1 Y p_2 DE DOS DISTRIBUCIONES BINOMIALES p_1 y p_2

Características	Estadístico	Hipótesis	Región Crítica
Muestras grandes, $n_1 + n_2 > 30, n_1 \approx n_2$	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$ $\hat{p} = \frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2}$	$H_0: p_1 = p_2$ $H_1: p_1 \neq p_2$	$ z > z_{\alpha/2}$
Muestras grandes, $n_1 + n_2 > 30, n_1 \approx n_2$	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$ $\hat{p} = \frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2}$	$H_0: p_1 \le p_2$ $H_1: p_1 > p_2$	$z > z_{\alpha}$
Muestras grandes, $n_1 + n_2 > 30, n_1 \approx n_2$	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$ $\hat{p} = \frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2}$	$H_0: p_1 \ge p_2$ $H_1: p_1 < p_2$	$z < z_{1-\alpha}$