Projet Map : Simulation numérique d'un affaissement visqueux

Yassine Hamdi et Hugo Serres

12 février 2019

1 Formulations variationnelles

Hugo Serres a rédigé les questions $1,\,3,\,4,\,5$ et 6 et Yassine Hamdi les questions $2,\,7,\,8$ et 9.

Question 1 Soit V le sous-espace de $(H^1(\Omega))^d$ défini par :

$$V = \left\{ \overrightarrow{v} \in (H^1(\Omega))^d \mid \overrightarrow{v} = \overrightarrow{0} \ sur \ \Gamma_D \ et \ -div(\overrightarrow{v}) = 0 \ sur \ \Omega \right\}$$
 (1)

On considère une solution \overrightarrow{u} du problème (1) que l'on suppose être dans $(H^2(\Omega))^d$. On intègre la première équation de (1). On a donc, pour tout \overrightarrow{v} dans V:

$$\int_{\Omega} -(\Delta \overrightarrow{u}) \cdot \overrightarrow{v} \, dx + \int_{\Omega} \overrightarrow{\nabla} p \cdot \overrightarrow{v} \, dx = \int_{\Omega} \overrightarrow{f} \cdot \overrightarrow{v} \, dx$$
 (2)

Par formule de Green sur le terme $\int_{\Omega} -(\Delta \overrightarrow{u}) . \overrightarrow{v} dx$ on obtient:

$$\int_{\Omega} (\nabla \overrightarrow{u}) : (\nabla \overrightarrow{v}) dx - \int_{\partial \Omega} ((\nabla \overrightarrow{u}) \overrightarrow{n}) . \overrightarrow{v} dx + \int_{\Omega} \overrightarrow{\nabla} p . \overrightarrow{v} dx = \int_{\Omega} \overrightarrow{f} . \overrightarrow{v} dx$$
(3)

Puis sur le terme $-\int_{\Omega} \overrightarrow{\nabla} p.\overrightarrow{v} \, dx$:

$$\int_{\Omega} (\nabla \overrightarrow{u}) : (\nabla \overrightarrow{v}) dx - \int_{\partial \Omega} ((\nabla \overrightarrow{u}) \overrightarrow{n}) . \overrightarrow{v} dx - \int_{\Omega} p \operatorname{div}(\overrightarrow{v}) dx + \int_{\partial \Omega} p \overrightarrow{n} . \overrightarrow{v} dx = \int_{\Omega} \overrightarrow{f} . \overrightarrow{v} dx$$
(4)

Les conditions de Dirichlet $\overrightarrow{v}=\overrightarrow{0}$ sur Γ_D et la condition aux bords de Neumann où $\sigma=\sigma_1$: donnent:

$$\int_{\Omega} (\nabla \overrightarrow{u}) : (\nabla \overrightarrow{v}) dx = \int_{\Omega} \overrightarrow{f} . \overrightarrow{v} dx + \int_{\Omega} p \operatorname{div}(\overrightarrow{v}) dx$$
 (5)

On définit alors la forme bilinéaire symétrique :

$$\begin{array}{ccc} a_1 & : & V^2 & \to & \mathbf{R} \\ & \overrightarrow{u}, \overrightarrow{v} & \mapsto & \int_{\Omega} \left(\nabla \overrightarrow{u} \right) : \left(\nabla \overrightarrow{v} \right) \mathrm{d}x \end{array}$$
 (6)

et la forme linéaire :

$$\begin{array}{ccc} l_1 & : & V & \to & \mathbf{R} \\ & \overrightarrow{v} & \mapsto & \int_{\Omega} \overrightarrow{f} . \overrightarrow{v} \, \mathrm{d}x + \int_{\Omega} p \, div(\overrightarrow{v}) \, \mathrm{d}x \end{array} \tag{7}$$

 $pour\ obtenir\ la\ formulation\ variationnelle\ (FV0)$:

$$(FV0) \mid Trouver \overrightarrow{u} dans \ V \ tel \ que : \forall \overrightarrow{v} \in V \ a_1(\overrightarrow{u}, \overrightarrow{v}) = l_1(\overrightarrow{v})$$
(8)

Le problème peut ensuite être résolu en appliquant le théorème de Lax-Milgram.

Grâce à l'hypothèse $\Gamma_{\mathbf{D}}$ non vide et Ω connexe, nous disposons de l'inégalité de Poincaré pour la norme $\|.\|_V$. Ainsi, la norme associée à l'espace $H^1_0(\Omega) = \{h \in H^1(\Omega) \mid h = 0 \text{ sur } \Gamma_D\}$, définie comme étant la norme L^2 du gradient : $h \mapsto \|\overrightarrow{\nabla} h\|_{L^2(\Omega)}$ est bien une norme sur Ω . On définit ainsi la norme $\|.\|_V$ sur V par :

$$\forall \overrightarrow{u} \in V, \|\overrightarrow{u}\|_{V}^{2} = \sum_{i=1}^{d} \|u_{i}\|_{H_{0}^{1}(\Omega)}^{2} = \sum_{i=1}^{d} \|\overrightarrow{\nabla}u_{i}\|_{L^{2}(\Omega)}^{2}$$
(9)

Vérifions les hypothèses du théorème Lax-Milgram. :

- $(V, ||.||_V)$ est bien un espace de Hilbert car c'est un fermé dans l'espace $((H_0^1(\Omega))^d, ||.||_V)$ qui lui est hilbertien.
- a_1 est continue sur V^2 pour $||.||_V$.
- a_1 est coercive sur V^2 pour $||.||_V$ par un calcul direct.
- l_1 est continue sur V pour $\|.\|_V$ par continuité de l'application trace sur $H^1(\Omega)$ vers $L^2(\partial\Omega)$.

Question 2 On se donne un maillage T_h de $\overline{\Omega}$. Nous pouvons prendre comme espace d'approximation V_h le sous-espace des fonctions de V qui soient $\mathbb{P}1$ sur chaque élément de T_h . Néanmoins les fonctions de la base de Lagrange usuelle ne vérifient pas nécessairement la condition $\operatorname{div}(\phi) = 0$ sur Ω . Il semble difficile d'exprimer les fonctions d'une base de V_h . S'il est facile d'exprimer l'ensemble des fonctions polynômes de degré 1 qui soient de divergence nulle (ce sont les

 $\phi(x,y)=(ax+by+c,ex-gy+l),\ il$ est plus difficile d'en construire qui soient nulles au bord d'une réunion d'un petit nombre d'éléments contigus du maillage. Peut-être cela serait-il plus simple si on conidérait des polynômes de degré plus élevé qui seraient multiples de polynômes de degré 1 nuls sur les différents segments d'un tel bord.

Question 3 L'inconnue devient le couple (\overrightarrow{u},p) . L'espace associé W devient alors :

$$W = \left\{ (\overrightarrow{v}, q) \in \left(H^1(\Omega) \right)^{d+1} \mid \overrightarrow{v} = \overrightarrow{0} \ sur \ \Gamma_D \right\}$$
 (10)

Soit donc (\overrightarrow{v},q) dans W. En partant de (1) on obtient sur Ω :

$$-\Delta \overrightarrow{u}.\overrightarrow{v} + \overrightarrow{\nabla} p.\overrightarrow{v} = \overrightarrow{f}.\overrightarrow{v}$$
 (11)

$$-q \operatorname{div}(\overrightarrow{u}) = 0 \tag{12}$$

Puis, en intégrant la somme de ces deux équations :

$$\int_{\Omega} \left(-\Delta \overrightarrow{u} . \overrightarrow{v} + \overrightarrow{\nabla} p. \overrightarrow{v} - q \operatorname{div}(\overrightarrow{u}) \right) dx = \int_{\Omega} \overrightarrow{f} . \overrightarrow{v} dx \tag{13}$$

D'après la question 1 :

$$\int_{\Omega} (\nabla \overrightarrow{u}) : (\nabla \overrightarrow{v}) dx - \int_{\Omega} p \operatorname{div} \overrightarrow{v} dx - \int_{\Omega} q \operatorname{div} \overrightarrow{u} dx = \int_{\Omega} \overrightarrow{f} . \overrightarrow{v} dx$$
 (14)

On définit alors la forme bilinéaire symétrique:

$$a_{2} : W^{2} \rightarrow \mathbf{R}$$

$$(\overrightarrow{u}, p), (\overrightarrow{v}, q) \mapsto \int_{\Omega} (\nabla \overrightarrow{u}) : (\nabla \overrightarrow{v}) dx - \int_{\Omega} p \operatorname{div} \overrightarrow{v} dx - \int_{\Omega} q \operatorname{div} \overrightarrow{u} dx$$

$$(15)$$

et la forme linéaire (indépendante de la pression) :

$$\begin{array}{cccc} l & : & W & \to & \mathbf{R} \\ & (\overrightarrow{v}, q) & \mapsto & \int_{\Omega} \overrightarrow{f} . \overrightarrow{v} \, \mathrm{d}x \end{array} \tag{16}$$

pour obtenir la formulation variationnelle (FV1) :

$$(FV1) \mid Trouver(\overrightarrow{u}, p) \ dans \ W \ tels \ que : \\ \forall (\overrightarrow{v}, q) \in W \ a_2((\overrightarrow{u}, p), (\overrightarrow{v}, q)) = l((\overrightarrow{v}, q))$$
 (17)

Afin de définir complètement l'espace de Hilbert de (FV1) il faut le munir d'une norme :

$$\|(\overrightarrow{u},p)\|_{V}^{2} = \|p\|_{L^{2}(\Omega)}^{2} + \sum_{i=1}^{d} \|u_{i}\|_{H_{0}^{1}(\Omega)}^{2} = \|p\|_{L^{2}(\Omega)}^{2} + \sum_{i=1}^{d} \|\overrightarrow{\nabla}u_{i}\|_{L^{2}(\Omega)}^{2}$$
 (18)

La forme bilinéaire a₂ est symétrique. Ainsi le problème de l'affaissement visqueux pour des contraintes du type $\sigma = \sigma_1$ admet une interprétation énergétique : il revient au problème de minimisation de l'énergie

$$E_{2}: (\overrightarrow{u}, p) \in W \mapsto \frac{1}{2} \int_{\Omega} (\nabla \overrightarrow{u}) : (\nabla \overrightarrow{u}) dx - \int_{\Omega} p \operatorname{div} \overrightarrow{u} dx - \int_{\Omega} \overrightarrow{f} . \overrightarrow{u} dx$$
(19)

Question 4 Soit \overrightarrow{u} dans $C^2(\Omega, \mathbf{R}^d)$ un champ de vecteurs à divergence nulle, p dans $C^1(\Omega, \mathbf{R})$ et i dans $[\![1,d]\!]$. Au vu de la régularité de \overrightarrow{u} et p, la quantité $-\sum_{j=1}^d \frac{\partial}{\partial x_i} \sigma_{2,ij}$ existe et vaut :

$$-\sum_{i=1}^{d} \frac{\partial}{\partial x_{j}} \sigma_{2,ij} = \sum_{i=1}^{d} \frac{\partial}{\partial x_{j}} \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} - p \, \delta_{ij} \right)$$
(20)

$$-\sum_{j=1}^{d} \frac{\partial}{\partial x_{j}} \sigma_{2,ij} = \frac{\partial p}{\partial x_{i}} - \sum_{j=1}^{d} \frac{\partial^{2} u_{i}}{\partial x_{j}^{2}} - \sum_{j=1}^{d} \frac{\partial}{\partial x_{j}} \frac{\partial u_{j}}{\partial x_{i}}$$
(21)

Or, par théorème de Schwarz, \overrightarrow{u} étant de classe C^2 , on $a: \forall j \in [1,d]$ $\frac{\partial}{\partial x_j} \frac{\partial u_j}{\partial x_i} =$ $\begin{array}{c} \frac{\partial}{\partial x_i} \frac{\partial u_j}{\partial x_j} \cdot \\ Ainsi : \end{array}$

$$-\sum_{i=1}^{d} \frac{\partial}{\partial x_{j}} \sigma_{2,ij} = \frac{\partial p}{\partial x_{i}} - \Delta u_{i} - \frac{\partial}{\partial x_{i}} div(\overrightarrow{u})$$
 (22)

Et donc:

$$-\sum_{i=1}^{d} \frac{\partial}{\partial x_{j}} \sigma_{2,ij} = \frac{\partial p}{\partial x_{i}} - \Delta u_{i}$$
 (23)

Question 5 Soit u,p des solutions suffisamment régulières du problème.

$$\int_{\Omega} f.v \, dx = \int_{\Omega} -\Delta \overrightarrow{u}. \overrightarrow{v} \, dx + \int_{\Omega} \frac{\partial p}{\partial x} \overrightarrow{v} \, dx = \int_{\Omega} (\nabla \sigma_2) \overrightarrow{n}. \overrightarrow{v} \, dx \qquad (24)$$

$$\int_{\Omega} f.v \, dx = \int_{\Omega} \sigma_2 : \nabla \overrightarrow{v} \, dx - \int_{\partial \Omega} \left(\sigma_2 \overrightarrow{n} \right) . \overrightarrow{v} \, dx$$
 (25)

 $v = \theta \ sur \ \Gamma_D \ et \ \sigma_2 \ .n = \theta \ sur \ \Gamma_N \ :$

$$\int_{\Omega} f.v \, dx = \int_{\Omega} \sigma_2 : \nabla \overrightarrow{v} \, dx - \int_{\Omega} q div(\overrightarrow{u}) \, dx$$
 (26)

La forme linéaire est inchangée. Toutefois, la forme bilinéaire devient :

$$a_{3}^{*} : W^{2} \rightarrow \mathbf{R}$$

$$(\overrightarrow{u}, p), (\overrightarrow{v}, q) \mapsto \int_{\Omega} (\nabla \overrightarrow{u} + \nabla^{T} \overrightarrow{u}) : (\nabla \overrightarrow{v}) dx - \int_{\Omega} p \operatorname{div} \overrightarrow{v} dx - \int_{\Omega} q \operatorname{div} \overrightarrow{u} dx$$

$$(27)$$

Ce qui donne la formulation variationnelle intermédiaire $(FV2^*)$:

$$(FV2*) \mid Trouver(\overrightarrow{u}, p) dans W tels que: \forall (\overrightarrow{v}, q) \in W a_3^*((\overrightarrow{u}, p), (\overrightarrow{v}, q)) = l((\overrightarrow{v}, q))$$
 (28)

La forme bilinéaire a_3^* ne semble pas être symétrique en apparence. Il n'y donc a priori pas d'interprétation énergétique associée à la contrainte $\sigma = \sigma_2$. Par ailleurs, $\mathbf{a_3^*}$ n'est pas coercive. En effet il est possible d'annuler la quantité $a_3^*((\overrightarrow{u},p),(\overrightarrow{u},p))$ en choisissant convenablement la pression p tout en ayant fixé la vitesse \overrightarrow{u} de divergence non nulle. On aurait alors $\|(\overrightarrow{u},p)\|_V$ non nulle. Il n'est donc pas possible d'appliquer directement le théorème de Lax-Milgram.

Question 6 Soient A et B, deux matrices carrées $d \times d$ respectivement symétrique et antisymétrique. On a alors :

$$2\sum_{i,j=1}^{d} A_{ij}B_{ij} = \sum_{i=1}^{d} \sum_{j=1}^{d} A_{ij}B_{ij} + \sum_{i=1}^{d} \sum_{j=1}^{d} A_{ji}B_{ji}$$
 (29)

$$2\sum_{i,j=1}^{d} A_{ij}B_{ij} = \sum_{i=1}^{d} \sum_{j=1}^{d} A_{ij}B_{ij} - \sum_{i=1}^{d} \sum_{j=1}^{d} A_{ij}B_{ij} = 0$$
 (30)

d'où

$$A: B = \sum_{i,j=1}^{d} A_{ij} B_{ij} = 0$$
(31)

Ainsi, pour tout \overrightarrow{u} et \overrightarrow{v} dans $H^1(\Omega)^d$ on a:

$$\left(\nabla \overrightarrow{u} + \nabla^T \overrightarrow{u}\right) : \nabla \overrightarrow{v} = \left(\nabla \overrightarrow{u} + \nabla^T \overrightarrow{u}\right) : \left(\frac{1}{2} \left(\nabla \overrightarrow{v} + \nabla^T \overrightarrow{v}\right) + \frac{1}{2} \left(\nabla \overrightarrow{v} - \nabla^T \overrightarrow{v}\right)\right) \tag{32}$$

$$\left(\nabla \overrightarrow{u} + \nabla^T \overrightarrow{u}\right) : \nabla \overrightarrow{v} = \frac{1}{2} \left(\nabla \overrightarrow{u} + \nabla^T \overrightarrow{u}\right) : \left(\nabla \overrightarrow{v} + \nabla^T \overrightarrow{v}\right) + \frac{1}{2} \left(\nabla \overrightarrow{u} + \nabla^T \overrightarrow{u}\right) : \left(\nabla \overrightarrow{v} - \nabla^T \overrightarrow{v}\right)$$
(33)

Or, les matrices $(\nabla \overrightarrow{u} + \nabla^T \overrightarrow{u})$ et $(\nabla \overrightarrow{v} - \nabla^T \overrightarrow{v})$ sont respectivement symétrique et anti-symétrique. En appliquant le résultat précédent on obtient :

$$\left(\nabla \overrightarrow{u} + \nabla^T \overrightarrow{u}\right) : \nabla \overrightarrow{v} = \frac{1}{2} \left(\nabla \overrightarrow{u} + \nabla^T \overrightarrow{u}\right) : \left(\nabla \overrightarrow{v} + \nabla^T \overrightarrow{v}\right) \tag{34}$$

D'où la formulation variationelle :

$$\frac{1}{2} \int_{\Omega} \left(\nabla \overrightarrow{u} + \nabla^T \overrightarrow{u} \right) : \left(\nabla \overrightarrow{v} + \nabla^T \overrightarrow{v} \right) dx - \int_{\Omega} p \operatorname{div} \overrightarrow{v} dx - \int_{\Omega} q \operatorname{div} \overrightarrow{u} dx = \int_{\Omega} \overrightarrow{f} . \overrightarrow{v} dx$$
(35)

Et donc la forme bilinéaire a_3^* est symétrique:

$$a_{3} : W^{2} \rightarrow \mathbb{R}$$

$$(\overrightarrow{u}, p), (\overrightarrow{v}, q) \mapsto \frac{1}{2} \int_{\Omega} (\nabla \overrightarrow{u} + \nabla^{T} \overrightarrow{u}) : (\nabla \overrightarrow{v} + \nabla^{T} \overrightarrow{v}) dx - \int_{\Omega} p \operatorname{div} \overrightarrow{v} dx - \int_{\Omega} q \operatorname{div} \overrightarrow{u} dx$$

$$(36)$$

Ce qui donne la formulation variationnelle (FV2) :

$$(FV2) \mid Trouver(\overrightarrow{u}, p) dans W tels que: \\ \forall (\overrightarrow{v}, q) \in W \ a_3((\overrightarrow{u}, p), (\overrightarrow{v}, q)) = l((\overrightarrow{v}, q))$$
(37)

La forme a_3 n'est toujours pas coercive, d'après le raisonnement effectué en question 5. Elle est cependant symétrique, ce qui nous permet d'interpréter le problème en terme de minimisation énergétique sur W:

$$E_{3}: (\overrightarrow{u}, p) \in W \mapsto \frac{1}{4} \int_{\Omega} \left(\nabla \overrightarrow{u} + \nabla^{T} \overrightarrow{u} \right) : \left(\nabla \overrightarrow{u} + \nabla^{T} \overrightarrow{u} \right) dx - \int_{\Omega} p \operatorname{div} \overrightarrow{u} dx - \int_{\Omega} \overrightarrow{f} . \overrightarrow{u} dx$$

$$(38)$$

Question 7 Soit $v \in (H_0^1(\Omega))^d$ et i dans [1,d]. Alors, si on note L_i la i-ème ligne de $\nabla^T \overrightarrow{u}$, on a d'après la formule de Green :

$$\int_{\Omega} \nabla^{T} \overrightarrow{u} : \nabla \overrightarrow{v} \, dx = \sum_{i=1}^{d} \int_{\Omega} L_{i} \cdot \nabla v_{i} \, dx$$

$$= \sum_{i=1}^{d} \int_{\Omega} -div(L_{i})v_{i}.$$
(39)

Or pour tout $i \in [1, d]$, on a d'après le théorème de Schwarz :

$$div(L_i) = \sum_{j=1}^d \frac{\partial}{\partial x_j} \left(\frac{\partial u_j}{\partial x_i} \right)$$

$$= \frac{\partial}{\partial x_i} \left(\sum_{j=1}^d \frac{\partial u_j}{\partial x_j} \right)$$

$$= \frac{\partial}{\partial x_i} (div(\overrightarrow{u}))$$

$$= 0$$
(40)

Ainsi afin que les forulations (FV1) et (FV2) donnassent la même vitesse, il faudrait que l'on trouve 0 même si v n'est pas nulle sur Γ_N , donc que le terme additionnel venant de la formule de Green soit nul :

 $\int_{\Gamma_N} (L_i \cdot \overrightarrow{n}) v_i \, \mathrm{d}x = 0 \text{ (pour tout i puisque } \overrightarrow{v} \text{ peut n'avoir qu'une seule composante non nulle)}$

donc comme l'image de la trace contient toutes les fonctions de $C_c^{\infty}(\Gamma_N)$, qui est dense dans $L^2(\Gamma_N)$,

En particulier, pour $\Gamma_N = \emptyset$, les formulations variationnelles (FV1) et (FV2) sont équivalentes.

2 Implémentation numérique

```
Question 8 //Constante de discrétisation
   int N = 10:
   // Le maillage
   int \ dirichlet = 1;
   int \ neumann = 0;
   int/int/ labs = [dirichlet, dirichlet, neumann, neumann];
   mesh\ Ch = square(N, N, [x, y], label = labs);
   // Espaces d'approximation et fonctions
   fespace\ Vh(Ch,\ P1);
   Vh uh1, uh2, vh1, vh2, ph, qh;
   func f1 = 1;
   func f2 = 2;
   macro\ Grad(u)\ [dx(u),\ dy(u)]\ //EOM
   problem FV1(uh1, uh2, ph, vh1, vh2, qh)
   = int2d(Ch)(Grad(uh1)'*Grad(vh1) \ + \ Grad(uh2)'*Grad(vh2))
   -int2d(Ch)(ph*(dx(vh1)+dy(vh2))+qh*(dx(uh1)+dy(uh2)))
   - int2d(Ch)(f1*vh1 + f2*vh2)
   + on(dirichlet, uh1=0) + on(dirichlet, uh2=0);
   FV1:
   plot([uh1, uh2], wait = 1, fill = 1, dim = 3, value = 10);
   problem FV2(uh1, uh2, ph, vh1, vh2, qh)
   = int2d(Ch)(Grad(uh1))*Grad(vh1) + Grad(uh2))*Grad(vh2))
   + int2d(Ch)(dx(uh1)*dx(vh1) + dx(uh2)*dy(vh1) + dy(uh1)*dx(vh2) +
dy(uh2)*dy(vh2))
```

```
- int2d(Ch)(ph*(dx(vh1)+dy(vh2)) + qh*(dx(uh1)+dy(uh2))) \\ - int2d(Ch)(f1*vh1 + f2*vh2) \\ + on(dirichlet, uh1=0) + on(dirichlet, uh2 = 0); \\ FV2; \\ plot([uh1, uh2], wait = 1, fill = 1, dim = 3, value = 10); \\
```

Question 9 Nous avons choisi comme cas-test:

```
\begin{split} \Omega = & ]0,1[^2 \\ u(x,y) = & (\cos(2\pi x + \pi/2)\sin(2\pi y),\cos(2\pi x + \pi/2)\sin(2\pi y)) \\ p(x,y) = & \sin(x+2y) \\ f1(x,y) = & \cos(x+2y) + 8\pi^2\cos(2\pi x + \pi/2)\sin(2\pi y) \\ f2(x,y) = & 2\cos(x+2y) + 8\pi^2\cos(2\pi x + \pi/2)\sin(2\pi y) \end{split}
```

u s'annule bien sur le bord de Ω et sa divergence est nulle puisque ses composantes sont identiques et qu'un signe moins apparaît dans la dérivée par rapport à x.

Malheureusement on ne constate pas de convergence vers la solution exacte, comme on peut le voir dans les graphiques ci-dessous. Nous ne comprenons pas où est notre erreur. Avec la meilleure approximation, l'erreur est le champ de vecteurs ci-dessous :

