SRN						

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE20MA151

MAY 2022: END SEMESTER ASSESSMENT (ESA) B TECH _II_ SEMESTER **UE20MA151 - ENGINEERING MATHEMATICS - II**

Time: 3 Hrs Answer All Questions Max Marks: 100

	1	I									
1	a)	Evaluate $\int_0^1 \int_0^{\sqrt{1+x^2}} \frac{dy dx}{(1+x^2+y^2)}$. Draw the region of integration.									
	b)	Evaluate by polar form the double integral $\int \int_R e^{x^2} dx dy$ where R is the triangular region bounded by the lines = 0, $x = 2$ and $x = 2y$.									
	c)	Evaluate $\iint_V x y z (x^2 + y^2 + z^2)^{\frac{n}{2}} dx dy dz$ where V is the volume bounded by the positive octant of the sphere $x^2 + y^2 + z^2 = b^2$ given that $(n+2) > 0$.									
2	a)	Evaluate $\int_C \vec{F} \cdot \overrightarrow{dr}$ given that $\vec{F} = z\hat{\imath} + x\hat{\jmath} + y\hat{k}$ and C is the arc of the curve $\vec{r} = \cos(t)\hat{\imath} + \sin(t)\hat{\jmath} + t\hat{k}$ from $t = 0$ to $= 2\pi$.									
	b)	Let D by the region bounded by the closed cylinder $x^2 + y^2 = 16$, $z = 0$ and $z = 4$. If									
		$\vec{F} = 3x^2\hat{\imath} + 6y^2\hat{\jmath} + z\hat{k}$, then evaluate $\int \int_S \vec{F} \cdot \hat{n} dS$ using Gauss-Divergence theorem.									
	c)	Use Green's theorem to find the area enclosed by the parabolas $x^2 = 4y$ and $y^2 = 4x$.									
	()	Obe Green's t		tile area ene	losed by the p	arabolas x	Ty and y	170.	7		
3	a)	Find the Laplace transform of $\frac{\cos 2t - \cos 3t}{t}$									
	b)	Find the Laplace transform of the periodic function $f(t) = \begin{bmatrix} \sin \omega t & 0 < t \le \frac{\pi}{\omega} \\ 0 & \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{bmatrix}$ with period $\frac{2\pi}{\omega}$.									
	c)	Evaluate $L[t^3 \cos t]$									
	ı		(<u>1</u>								
4	a)	Find $L^{-1}\left[\ln\left(\frac{s+1}{s-1}\right)\right]$									
	b)	Find $L^{-1} \begin{bmatrix} \frac{1}{s^2(s^2+a^2)} \end{bmatrix}$ using Convolution theorem.									
	c)	Solve the equation for the response $i(t)$ given that, $\frac{di}{dt} + 2i + 5 \int_0^t i dt = u(t)$ and $(0) = 0$.									
	1				<u> </u>	- 0			l .		
5	a)	Obtain the constant term and the coefficients of the first harmonic in the Fourier expansion of y as given in the following table:									
		х	0	1	2	3	4	5			
		у	9	18	24	28	26	20	7		
	b)	Obtain the half range cosine series for the function $(x) = x^2$ in $(0, \pi)$.									
	c)	Find the complex form of the Fourier series $f(x) = e^{-x}$ in $-1 \le x \le 1$.									
	l -/										