PyTorch CHEAT SHEET =

2 Define model

3 Train model

Evaluate model

General

PyTorch is a open source machine learning framework. It uses torch. Tensor – multi-dimensional matrices – to process. A core feature of neural networks in PyTorch is the autograd package, which provides automatic derivative calculations for all operations on tensors.

import torch import torch.nn as nn from torchvision import datasets, models, transforms import torch.nn.functional as F

Root package Neural networks Popular image datasets, architectures & transforms Collection of layers,

activations & more

torch.randn(*size) torch.Tensor(L) tnsr.view(a,b, ...) size (a, b, ...) requires_grad=True

Create random tensor Create tensor from list Reshape tensor to

> tracks computation history for derivative calculations

Lavers

nn.Linear(m, n): Fully Connected layer (or dense layer) from m to n neurons

nn.ConvXd(m. n. s): X-dimensional convolutional layer from m to n channels with kernel size s; $X \in \{1, 2, 3\}$

nn.MaxPoolXd(s): X-dimensional pooling layer with kernel size s; $X \in \{1, 2, 3\}$

nn.BatchNormXd(n): Normalizes a X-dimensional input batch with n features; $X \in \{1, 2, 3\}$

nn.RNN/LSTM/GRU: Recurrent networks connect neurons of one layer with neurons of the same or a previous layer

torch.nn offers a bunch of other building blocks. A list of state-of-the-art architectures can be found at https://paperswithcode.com/sota.

Load data

A dataset is represented by a class that inherits from Dataset (resembles a list of tuples of the form (features, label)).

DataLoader allows to load a dataset without caring about its structure.

Usually the dataset is split into training (e.g. 80%) and test data (e.g. 20%).

Activation functions

Common activation functions include ReLU, Sigmoid and Tanh, but there are other activation functions as well.

nn.ReLU() creates a nn.Module for example to be used in Seguential models. F.relu() ist just a call of the ReLU function e.g. to be used in the forward method.

nn.ReLU() or F.relu() Output between 0 and ∞ , most frequently used activation function

nn.Sigmoid() or F.sigmoid() Output between 0 and 1, often used for predicting probabilities

nn.Tanh() or F.tanh() Output between -1 and 1, often used for classification with two classes

Define model

There are several ways to define a neural network in PyTorch, e.g. with nn.Sequential (a), as a class (b) or using a combination of both.


```
class Net(nn.Module):
 def __init__():
    super(Net, self).__init__()
     self.conv
        = nn.Conv2D( , , , )
     self.pool
        = nn.MaxPool2D( )
     self.fc = nn.Linear( , )
  def forward(self, x):
     x = self.pool(
           F.relu(self.conv(x))
     x = x.view(-1, \blacksquare)
     x = self.fc(x)
    return x
model = Net()
```

Save/Load model

model = torch.load('PATH') Load model torch.save(model, 'PATH') Save model

It is common practice to save only the model parameters, not the whole model using model.state_dict()

```
torch.save(model.state dict(), 'params.ckpt')
model.load state dict(
                 torch.load('params.ckpt'))
```

GPU Training

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

If a GPU with CUDA support is available, computations are sent to

Train model

LOSS FUNCTIONS

nn.BCELoss

PyTorch already offers a bunch of different loss fuctions, e.g.:

Mean absolute error nn.L1Loss

nn.MSELoss Mean squared error (L2Loss) nn.CrossEntropyLoss Cross entropy, e.g. for single-label classification or unbalanced training set

> Binary cross entropy, e.g. for multi-label classification or autoencoders

OPTIMIZATION (torch.optim)

Optimization algorithms are used to update weights and dynamically adapt the learning rate with gradient descent, e.g.:

optim.SGD Stochastic gradient descent optim.Adam Adaptive moment estimation

optim.Adagrad Adaptive gradient optim.RMSProp Root mean square prop

```
correct = 0 # correctly classified
total = 0 # classified in total
model.eval()
    h torch.no grad():
   for data in test loader:
     inputs, labels = data
    outputs = model(inputs)
     , predicted = torch.max(outputs.data, 1
    total += labels.size(0) # batch size
    correct += (predicted==labels)
                         .sum().item()
4 print('Accuracy: %s' % (correct/total))
```

the GPU with ID 0 using model.to(device) or inputs, labels = data[0].to(device), data[1].to(device).

```
import torch.optim as optim
 # Define loss function
loss fn = nn.CrossEntropyLoss()
 # Choose optimization method
optimizer = optim.SGD(model.parameters(),
                   lr=0.001, momentum=0.9)
0# Loop over dataset multiple times (epochs)
for epoch in range(2):
    model.train() # activate training mode
     for i, data in enumerate(train loader, 0):
         # data is a batch of [inputs, labels]
         inputs, labels = data
         # zero gradients
        optimizer.zero grad()
         # calculate outputs
        outputs = model(inputs)
         # calculate loss & backpropagate error
         loss = loss fn(outputs, labels)
         loss.backward()
         # update weights & learning rate
        optimizer.step()
```

Evaluate model

The evaluation examines whether the model provides satisfactory results on previously withheld data. Depending on the objective, different metrics are used, such as acurracy, precision, recall, F1, or BLEU.

Activates evaluation mode, some layers model.eval() behave differently

torch.no_grad()

Prevents tracking history, reduces memory usage, speeds up calculations