Atty. Docket No. 42P16330X Examiner MURPHY, Rhonda L. TC/A.U. 2416

Application No. 10/788,657 Amendment dated November 16, 2009 Response to Office Action of August 19, 2009

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

1-29. (Canceled)

(Previously Presented) A method comprising:

receiving content for transmission from a plurality of more than two transmit antennae, wherein the received content is a vector of input symbols (s) of size $Nc \times 1$, wherein Nc is the number of subcarriers of the multicarrier wireless communication channel; and

generating a rate-one, space-frequency code matrix from the received content for transmission via the plurality of more than two transmit antennae by dividing the vector of input symbols into a number G of groups to generate subgroups and multiplying at least a subset of the subgroups by a constellation rotation precoder to produce a number G of pre-coded vectors $(\mathbf{v_g})$, wherein successive symbols from the same group transmitted from the same antenna are at a frequency distance that is multiples of NG subcarrier spacings.

 (Previously Presented) A method according to claim 30, further comprising:

dividing each of the pre-coded vectors into a number of LM x 1 subvectors; and

creating an $M \times M$ diagonal matrix $D_{\mathbf{s}_{g},k} = diag\{\Theta^T_{M \times (k-1)+1}\mathbf{s}_g, \cdots, \Theta^T_{M \times k}\mathbf{s}_g\}$, where k=1...L from the subvectors.

(Previously Presented) A method according to claim 31, further comprising:

interleaving the L submatrices from the G groups to generate an $M \times Nc$ space-frequency matrix.

- 33. (Previously Presented) A method according to claim 32, wherein the space-frequency matrix provides MNL channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M, receive antenna(s) N and channel tap(s) L.
- 34. (Previously Presented) A method according to claim 30, wherein the space-frequency matrix provides MNL channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M, receive antenna(s) N and channel tap(s) L.
 - 35. (Previously Presented) An apparatus comprising:

a diversity agent to receive content for transmission via a multicarrier wireless communication channel, wherein the received content is a vector of input symbols (s) of size $Nc \times 1$, wherein Nc is the number of subcarriers of the multicarrier wireless communication channel, and to generate a rate-one, space-frequency code matrix from the received content for transmission on the multicarrier wireless communication channel

Response to Office Action of August 19, 2009 TC/A.U. 2416

from a plurality of more than two transmit antennae by dividing the vector of input symbols into a number G of groups to generate subgroups and multiplying at least a subset of the subgroups by a constellation rotation precoder to produce a number G of pre-coded vectors (v_g) , wherein successive symbols from the same group transmitted from the same antenna are at a frequency distance that is multiples of NG subcarrier spacings.

36. (Previously Presented) An apparatus according to claim 35, the diversity agent further comprising:

a space-frequency encoding element, responsive to the pre-coder element, to divide each of the pre-coded vectors into a number of $LM \times I$ subvectors, and to create an $M \times M$ diagonal matrix $D_{\mathbf{s}_k,k} = diag\{\Theta_{M \times (k-1)+1}^T \mathbf{s}_g, \cdots, \Theta_{M \times k}^T \mathbf{s}_g\}$, where k=1...L from the subvectors.

- 37. (Previously Presented) An apparatus according to claim 36, wherein the space-frequency encoding element interleaves the L submatrices from the G groups to generate an $M \times Nc$ space-frequency matrix.
- 38. (Previously Presented) An apparatus according to claim 37, wherein the space-frequency matrix provides MNL channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M, receive antenna(s) N and channel tap(s) L.

39. (Previously Presented) An apparatus according to claim 35, wherein the space-frequency matrix provides MNL channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M, receive antenna(s) N and channel tap(s) L.

40. (Currently Amended) A system comprising:

a number M of <u>omnidirectional</u> <u>omnidirectional</u> antennas, wherein M comprises more than two <u>omnidirectional</u> <u>omnidirectional</u> antennas; and

a diversity agent, to receive content for transmission via a multicarrier wireless communication channel, wherein the received content is a vector of input symbols (8) of size $Nc \times 1$, wherein Nc is the number of subcarriers of the multicarrier wireless communication channel, and to generate a rate-one, space-frequency code matrix from the received content for transmission on the multicarrier wireless communication channel from at least a subset of the M omnidirectional antennas by dividing the vector of input symbols into a number G of groups to generate subgroups and multiplying at least a subset of the subgroups by a constellation rotation precoder to produce a number G of pre-coded vectors (v_8) , wherein successive symbols from the same group transmitted from the same antenna are at a frequency distance that is multiples of NG subcarrier spacings.

- (Previously Presented) A system according to claim 40, the diversity agent further comprising:
- a space-frequency encoding element, responsive to the pre-coder element, to divide each of the pre-coded vectors into a number of $LM \times I$ subvectors, and to create an

 $M \times M$ diagonal matrix $D_{\mathbf{s}_z,k} = diag\{\Theta_{M \times (k-1)+1}^T \mathbf{s}_g, \cdots, \Theta_{M \times k}^T \mathbf{s}_g\}$, where k=1...L from the subvectors.

- 42. (Previously Presented) A system according to claim 41, wherein the space-frequency encoding element interleaves the L submatrices from the G groups to generate an $M \times Nc$ space-frequency matrix.
- 43. (Previously Presented) A system according to claim 42, wherein the space-frequency matrix provides MNL channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M, receive antenna(s) N and channel tap(s) L.
- 44. (Previously Presented) A system according to claim 40, wherein the space-frequency matrix provides MNL channel diversity, while preserving a code rate of 1 for any number of transmit antenna(s) M, receive antenna(s) N and channel tap(s) L.