Correlated Multi-armed Bandits CS 6780 Advanced Machine Learning

Zhengdi Shen Bangrui Chen Saul Toscano Palmerin

April 23, 2015

Motivation

For a new user on Yelp, what restaurants should Yelp recommend at each time to maximize the expected average rating of the user?

- Each restaurant is represented with a r dimensional binary vector, corresponding to the categories it belongs to (e.g. Pizza, Sandwiches, Mexican, Chinese, Italian).
- Each user has an unknown preference vector θ .
- Multi-Armed Bandits. (At most 2^r arms!)
- Dependent arms.

Motivation

r=5	Pizza	Sandwiches	Mexican	Chinese	Italian
Restaurant 1	1	1	1	0	1
Restaurant 2	1	1	0	0	1
Restaurant 3	0	0	0	1	0
Restaurant 4	1	0	0	0	1
• • • •		• • •			

Problem Formulation

• The reward of choosing a restaurant with features $X \in \{0,1\}^r$ at time t is defined by

$$Y_t = X \cdot \theta + W_t$$

where $W_t \sim N(0, \sigma^2)$ is a measurement error.

• We place a Gaussian prior distribution on the preference vector: $\theta \sim N(\mu_0, \Sigma_0)$

Regret

Definition of Regret

For any policy, we define the T-period regret cumulative as

$$\mathsf{Regret}\left(\theta_{0},\,\mathcal{T}\right) = \sum_{t=1}^{\mathcal{T}} \mathbb{E}\left[\mathsf{max}_{X \in \{0,1\}^{r}} X \cdot \theta_{0} - X_{t} \cdot \theta_{0} \mid \theta = \theta_{0}\right]$$

where X_t is the feature vector of the restaurant selected at stage t.

Lower Bound for Regret

Lower Bound for Regret

For an arbitrary policy, the regret is at least $\Omega\left(r\sqrt{T}\right)$ under some regularity conditions, where the set of arms is compact in \mathbb{R}^r .

The Phased Exploration and Greedy Exploitation (PEGE) algorithm has regret $\Omega\left(r\sqrt{T}\right)$ under some regularity conditions.

PEGE [Linearly Parameterized Bandits, P. R., J. T., 2010

Find r arms X_{b_1}, \dots, X_{b_r} which form a maximal linearly independent system.

In each cycle c:

- ① Exploration (r periods): Play arm X_{b_k} , and observe the reward $Y^{X_{b_k}}(c)$. Compute the ordinary least squares estimate $\hat{\theta}(c)$.
- 2 Exploitation (c periods): Play the greedy arm $G(c) = \arg\max_X X \cdot \hat{\theta}(c)$ for c periods.

But it may have large constant in front of the order of its regret.

The Phased Exploration and Greedy Exploitation (PEGE) algorithm has regret $\Omega\left(r\sqrt{T}\right)$ under some regularity conditions.

PEGE [Linearly Parameterized Bandits, P. R., J. T., 2010]

Find r arms X_{b_1}, \dots, X_{b_r} which form a maximal linearly independent system.

In each cycle c:

- **1** Exploration (r periods): Play arm X_{b_k} , and observe the reward $Y^{X_{b_k}}(c)$. Compute the ordinary least squares estimate $\hat{\theta}(c)$.
- 2 Exploitation (c periods): Play the greedy arm $G(c) = \arg\max_X X \cdot \hat{\theta}(c)$ for c periods.

But it may have large constant in front of the order of its regret.

The Phased Exploration and Greedy Exploitation (PEGE) algorithm has regret $\Omega\left(r\sqrt{T}\right)$ under some regularity conditions.

PEGE [Linearly Parameterized Bandits, P. R., J. T., 2010]

Find r arms X_{b_1}, \dots, X_{b_r} which form a maximal linearly independent system.

In each cycle c:

- **1** Exploration (r periods): Play arm X_{b_k} , and observe the reward $Y^{X_{b_k}}(c)$. Compute the ordinary least squares estimate $\hat{\theta}(c)$.
- 2 Exploitation (c periods): Play the greedy arm $G(c) = \arg\max_X X \cdot \hat{\theta}(c)$ for c periods.

But it may have large constant in front of the order of its regret.

PHASED EXPLORATION AND GREEDY EXPLOITATION (PEGE)

Description: For each cycle $c \ge 1$, complete the following two phases.

Exploration (r periods): For k = 1, 2, ..., r, play arm b_k ∈ U_r given in Assumption (b), and observe the reward X^{b_k}(c). Compute the OLS estimate 2(c) ∈ R^r, given by

$$\widehat{\mathbf{Z}}(c) = \frac{1}{c} \left(\sum_{k=1}^{r} \mathbf{b}_{k} \mathbf{b}'_{k} \right)^{-1} \sum_{s=1}^{c} \sum_{k=1}^{r} \mathbf{b}_{k} X^{\mathbf{b}_{k}}(s) = \mathbf{Z} + \frac{1}{c} \left(\sum_{k=1}^{r} \mathbf{b}_{k} \mathbf{b}'_{k} \right)^{-1} \sum_{s=1}^{c} \sum_{k=1}^{r} \mathbf{b}_{k} W^{\mathbf{b}_{k}}(s) ,$$

where for any k, $X^{\mathbf{b}_k}(s)$ and $W^{\mathbf{b}_k}(s)$ denote the observed reward and the error random variable associated with playing arm \mathbf{b}_k in cycle s. Note that the last equality follows from Equation (I) defining our model.

2. Exploitation (c periods): Play the greedy arm $G(c) = \arg \max_{v \in \mathcal{U}_r} v' \widehat{\mathbf{Z}}(c)$ for c periods.

Exponentiated Gradient Algorithm (EGA)

EGA

- Initialize $w_1 = \left(\frac{1}{N}, ..., \frac{1}{N}\right), \gamma = \min \left\{1, \sqrt{\frac{N \log N}{(e-1)\Delta T}}\right\}$
- FOR t from 1 to T
 - Algorithm randomly picks i_t with probability $P_t(i_t) = (1 - \gamma)w_{t,i} + \gamma/N$
 - Arms incur losses $\Delta_{t,1} \dots \Delta_{t,N}$
 - Algorithm observes and incurs loss $\Delta_{t,i}$.
 - Algorithm updates w for bandit i_t as

$$w_{t+1,i_t} = w_{t,i_t} \exp\left(-\eta \Delta_{t,i_t}/P(i_t)\right)$$

n normalize w_{t+1} so that $\sum_i w_{t+1,i} = 1$

Then normalize w_{t+1} so that $\sum_{i} w_{t+1,i} = 1$.

Upper Confidence Bound (UCB)

UCB

Given $\theta \sim N(\mu_0, \Sigma_0)$, for t from 1 to T:

- ② Calculate μ_t and Σ_t based on reward Y_t , arm X_{i_t} , μ_{t-1} , and Σ_{t-1} .

$$\begin{split} P(w|y) &\propto P(y|w)P(w) \\ P(w|y) &\sim N(\mu, S) \\ S^{-1} &= S_0^{-1} + \frac{1}{\sigma^2}X^TX \\ \mu &= S\left(S_0^{-1}\mu_0 + \frac{1}{\sigma^2}X^Ty\right) \end{split}$$

Our Goal

- Evaluate the performance of the existing approaches.
- Develop hybrid methods for specific conditions.
- Find a way to map the user's rating to a compact set, say integers from 0 to 5.

Thanks!!
Any Questions?