Analyse numérique

Danny Willems

 $1^{\rm er}$ décembre 2015

Table des matières

1	\mathbf{Equ}	ations différentielles ordinaires	2
	1.1	Définitions	2
	1.2	Fonctions lipschitziennes	5
	1.3	Tonneaux de sécurité	6
	1.4	Existence et unicité locales de solutions	6
	1.5	Existence et unicité globale d'une solution	8

Chapitre 1

Equations différentielles ordinaires

1.1 Définitions

Définition 1.1 (Equation différentielle ordinaire). Soit Ω un ouvert de $\mathbb{R} \times E$.

Soit $f: \Omega \to E$ une application.

On appelle **équation différentielle ordinaire d'ordre 1** une équation du type

$$\frac{dx}{dt} = f(t, x) \tag{1.1}$$

noté plus souvent

$$\dot{x} = f(t, x) \tag{1.2}$$

Définition 1.2 (Solution d'une équation différentielle ordinaire d'ordre 1). Soit Ω un ouvert de $\mathbb{R} \times E$.

Soit $f: \Omega \to E$ une application et

$$\frac{dx}{dt} = f(t, x) \tag{1.3}$$

une équation différentielle ordinaire d'ordre 1.

On appelle solution de l'équation 1.3 toute fonction

$$x: I \to E \tag{1.4}$$

où I est un intervalle non vide de \mathbb{R} tel que pour tout $t \in I$,

$$(t, x(t)) \in \Omega \tag{1.5}$$

 $e\,t$

$$\dot{x}(t) = f(t, x(t)) \tag{1.6}$$

où

$$\dot{x}(t) = \frac{\mathrm{d}x}{\mathrm{d}t} \tag{1.7}$$

L'ensemble

$$\{(t, x(t)) \mid t \in I\} \tag{1.8}$$

est appelé trajectoire de la solution x de l'équation 1.3 ou espace de mouvement.

L'ensemble

$$\{x(t) \mid t \in I\} \tag{1.9}$$

est appelé orbite de la solution x de l'équation 1.3 ou espace de phase.

Remarquons que l'intervalle d'une solution peut être quelconque topologiquement parlant. Il peut être ouvert, fermé, ou aucun des deux.

Définition 1.3 (Problème de Cauchy). Soit Ω un ouvert de $\mathbb{R} \times E$. Soient $f: \Omega \to E$ une application,

$$\frac{dx}{dt} = f(t, x) \tag{1.10}$$

une équation différentielle ordinaire d'ordre 1 et (t_0, x_0) un point de Ω .

On appelle problème de Cauchy de l'équation 1.10 relativement aux conditions initiales (t_0, x_0) la recherche des solutions

$$x: I \to E \tag{1.11}$$

de l'équation 1.10 tel que

1. $t_0 \in I$

2.
$$\dot{x}(t_0) = f(t_0, x_0)$$

Nous allons donner la définition d'une équation différentielle ordinaire d'orde n. La définition d'équation différentielle d'ordre 1 que nous avons donnée actuellement ne fait intervenir que la dérivée première d'une fonction x et une dépendance par rapport à cette même fonction x dans la fonction f.

La dérivée de la fonction x est alors donnée par la fonction f.

Il est naturel de généraliser cette définition pour la n-ième dérivée.

Définition 1.4 (Equation différentielle ordinaire d'ordre n). Soit $n \in \mathbb{N}^{>0}$ et soit Ω un ouvert de $\mathbb{R} \times E$.

Soit $f: \Omega \to \mathbb{R}$.

On appelle équation différentielle ordinaire d'ordre n ou équation différentielle ordinaire à dérivée n-ième explicitée une équation du type

$$y^{(n)} = f(t, y^{(n-1)}, y^{(n-2)}, \dots, y^{(1)}, y^{(0)})$$
(1.12)

où

$$y^{(0)} = y (1.13)$$

et

$$y^{(k)} = \frac{\mathrm{d}^k y}{\mathrm{d}t^k} \tag{1.14}$$

Remarquons que la définition d'une équation différentielle ordinaire d'ordre n est définie par une fonction f qui va de Ω dans \mathbb{R} , et non dans E comme dans le cas d'une équation différentielle ordinaire d'ordre 1.

De la même manière que l'on a défini une solution d'une équation différentielle ordinaire d'ordre 1, on définit la solution d'une équation différentielle ordinaire d'ordre n de la façon suivante :

Définition 1.5 (Solution d'une équation différentielle ordinaire d'ordre n). Soit $n \in \mathbb{N}^{>0}$ et soit Ω un ouvert de $\mathbb{R} \times \mathbb{R}^n$.

Soit $f: \Omega \to \mathbb{R}^n$ une application et

$$y^{(n)} = f(t, y^{(n-1)}, y^{(n-2)}, \dots, y^{(1)}, y^{(0)})$$
(1.15)

une équation différentielle ordinaire d'ordre n.

On appelle solution de l'équation 1.15 toute fonction

$$y: I \to \mathbb{R} \tag{1.16}$$

n fois dérivable où I est un intervalle non vide de \mathbb{R} tel que pour tout $t \in I$,

1.
$$(t, y^{(n-1)}(t), y^{(n-2)}(t), \dots, y^{(1)}(t), y^{(0)}(t)) \in \Omega$$

2.
$$y^{(n)}(t) = f(t, y^{(n-1)}(t), y^{(n-2)}(t), \dots, y^{(1)}(t), y^{(0)}(t))$$

Remarquons que l'intervalle d'une solution peut être quelconque topologiquement parlant. Il peut être ouvert, fermé, ou aucun des deux. De plus, cette fois-ci, la définition d'une solution est une fonction allant de I dans \mathbb{R} , non plus dans E

L'étude des équations différentielles ordinaire d'ordre n peut sembler difficile à première vue car nous devons vérifier que les dérivées successives d'une solution y vérifient bien l'égalité 2.

Nous allons montrer une première proposition qui nous montre que l'étude des solutions d'une équation différentielle ordinaire d'ordre n peut revenir à l'étude d'un système d'équations différentielles ordinaires d'ordre 1.

Proposition 1.6. Soient Ω un ouvert de $\mathbb{R} \times \mathbb{R}^n$, $f: \Omega \to \mathbb{R}$ et

$$y^{(n)} = f(t, y^{(n-1)}, y^{(n-2)}, \dots, y^{(1)}, y^{(0)})$$
 (1.17)

une équation différentielle ordinaire d'ordre n. Alors il existe un système d'équation différentielle d'ordre 1 dont l'ensemble de solutions est de même cardinal que l'ensemble de solution de l'équation 1.17.

 $D\'{e}monstration.$

1.2 Fonctions lipschitziennes

Définition 1.7 (Lipschitzienne). Soit Ω un ouvert de $\mathbb{R} \times E$.

Soit $f: \Omega \to E$ une application. On dit que f est lipschitzienne par rapport à la deuxième variable s'il existe $k \geq 0$ tel que

$$\forall (t, x_1) \in \Omega, \ \forall (t, x_2) \in \Omega, \ \|f(t, x_1) - f(t, x_2)\| \le k \|x_1 - x_2\| \tag{1.18}$$

Définition 1.8. Soit Ω un ouvert de $\mathbb{R} \times E$.

Soit $f: \Omega \to E$ une application.

On dit que f est localement lipschitzienne par rapport à la deuxième variable s'il existe $k \geq 0$ tel qu'en tout point (t, x) de Ω , il existe un voisinage de (t, x) sur lequel f est k-lipschitzienne.

Montrons quelques propriétés que les fonctions lipschitziennes et localement lipschitziennes entretiennent avec les fonctions continues.

Proposition 1.9. Soit Ω un ouvert de $\mathbb{R} \times E$ et soit $f : \Omega \to E$ une application.

Si f est lipschitzienne par rapport à la deuxième variable, alors f est uniformément continue par rapport à la deuxième variable.

$$D\acute{e}monstration.$$

Remarque. Si une fonction $f:\Omega\to E$ est lipschitzienne par rapport à la deuxième variable, cela n'implique pas nécéssairement qu'elle soit continue par rapport à la première variable et, par conséquence, uniformément continue par rapport à la première variable.

Proposition 1.10. Soit Ω un ouvert de $\mathbb{R} \times E$ et $f: \Omega \to E$ une application tel que les dérivées partielles $\frac{\partial f}{\partial x}$ par rapport à x existe et sont continues. Alors, f est localement lipschitzienne dans Ω .

Démonstration. Soit $(t_0, x_0) \in \Omega$. Comme Ω est ouvert, il existe une boule fermée $B[(t_0, x_0), r]$ de rayon r et de centre (t_0, x_0) contenue dans Ω .

Par hypothèse, les dérivées premières $\frac{\partial f}{\partial x}$ sont continues. Donc $\frac{\partial f}{\partial x}$ sont bornées sur cette boule $B[(t_0, x_0), r]$.

Proposition 1.11. Soit Ω un ouvert convexe de $\mathbb{R} \times E$ et soit

$$f: \Omega \to E: (t, x) \to f(t, x)$$
 (1.19)

une application tel que les dérivées partielles $\frac{\partial f}{\partial x}$ sont continues par rapport à x. LASSE.

- 1. f est lipschitzienne.
- 2. Les dérivées partielles $\frac{\partial f}{\partial x}$ sont bornées.

 $D\acute{e}monstration.$

1.3 Tonneaux de sécurité

Définition 1.12. Un tonneau de centre (t_0, x_0) est un ensemble $I \times B \subseteq \mathbb{R} \times E$ où

$$I = \{ t \in \mathbb{R} \, | \, |t - t_0| < l \} \tag{1.20}$$

et

$$B = \{ x \in E \mid ||x - x_0|| < M \} \tag{1.21}$$

La valeur 2l est appelée longueur du tonneau et r le rayon du tonneau.

Définition 1.13. Soit Ω un ouvert de $\mathbb{R} \times E$ et soit $f : \Omega \to E$ une application.

Soient (t_0, x_0) un point de Ω et T un tonneau de centre (t_0, x_0) .

T est un tonneau de sécurité de centre (t_0, x_0) relativement à f si T est contenu dans Ω et si r = Ml où M est une borne supérieure de $||f(t,x)||_E$ où (t,x) parcourt T.

T est un tonneau lipschitzien relativement à f si f est lipschitzienne sur T.

Proposition 1.14. Soit Ω un ouvert de $\mathbb{R} \times E$ et soit $f: \Omega \to E$ une application continue et localement lipschitizienne en la deuxième variable.

Soient (t_0, x_0) un point de Ω et T un tonneau de centre (t_0, x_0) contenue dans Ω .

Alors T est contenu dans un tonneau de sécurité de centre (t_0, x_0) .

$$D\acute{e}monstration.$$

Proposition 1.15. Soit Ω un ouvert de $\mathbb{R} \times E$ et soit $f : \Omega \to E$ une application continue et localement lipschitzienne.

Soit (t_0, x_0) un point de Ω .

Alors il existe un tonneau de sécurité lipschitzien de centre (t_0, x_0) relativement à f.

$$D\acute{e}monstration.$$

1.4 Existence et unicité locales de solutions

Posons Ω un ouvert de $\mathbb{R} \times E$ et $f: \Omega \to E$ une application localement lipschitzienne en x et continue.

Soit

$$\dot{x} = f(t, x) \tag{1.22}$$

l'équation différentielle ordinaire d'ordre un régie par f.

Nous allons montrer le théorème suivant :

Théorème 1.16. $Soit (t_0, x_0) \in \Omega$.

Alors il existe un intervalle $I \subseteq \mathbb{R}$ et une solution $x: I \to E$ de 1.22 tel que $x(t_0) = x_0$.

De plus, pour tout autre intervalle $J \subseteq I \subseteq \mathbb{R}$ avec $t_0 \in J$ et pour toute autre solution $y: J \to E$ tel que $y(t_0) = x_0$, on a

$$\forall t \in J, x(t) = y(t) \tag{1.23}$$

Cependant, avant de montrer ce dernier, nous allons démontrer des propositions qui nous permettront de conclure sur ce théorème.

Proposition 1.17. Soit $(t_0, x_0) \in \Omega$ et soit I un intervalle de \mathbb{R} tel que $t_0 \in I$.

Soit $x: I \to E$ une fonction tel que son graphe est Ω .

Les assertions suivantes sont équivalentes :

- 1. x est solution de l'équation 1.22 et $x(t_0) = x_0$
- 2. x est continue et pour tout $t \in I$,

$$x(t) = x_0 + \int_{t_0}^{t} f(\tau, x(\tau)) d\tau$$
 (1.24)

 $D\'{e}monstration.$

Proposition 1.18. Soient I un intervalle de \mathbb{R} et $T = I \times B$ un tonneau de sécurité de lipschitzien de f.

Soit C(I) l'ensemble des fonctions $x: I \to E$ continue et dont le graphe est dans T.

Alors C(I) est un espace métrique complet pour la métrique de la convergence uniforme.

$$D\'{e}monstration.$$

Proposition 1.19. Soit C(I) l'ensemble défini précédemment.

Alors la fonction

$$\phi: C(I) \to C(I) \tag{1.25}$$

tel que pour tout $x \in C(I)$ et pour tout $t \in I$,

$$\phi(x)(t) = x_0 + \int_{t_0}^t f(\tau, x(\tau))d\tau$$
 (1.26)

est bien définie et est contractante.

$$D\'{e}monstration.$$

Corollaire 1.20. Il existe une unique fonction $y \in C(I)$ tel que

$$\forall t \in I, \ y(t) = x_0 + \int_{t_0}^t f(\tau, y(\tau)) d\tau$$
 (1.27)

 $D\'{e}monstration.$

On obtient alors le théorème d'existence locale d'une solution

Théorème d'existence locale d'une solution. On a montré qu'il existe une unique fonction $y:I\to E$ tel que y est contenue, dont le graphe est contenue dans T et

$$\forall t \in I, \ y(t) = x_0 + \int_{t_0}^t f(\tau, y(\tau)) d\tau$$
 (1.28)

Ce qui est équivalent à dire que y est solution de l'équation 1.22. \square

1.5 Existence et unicité globale d'une solution

Nous allons montrer qu'il existe une unique solution maximale répondant au problème de Cauchy.