

Unit 0. Course Overview, Syllabus, Guidelines, and Homework on

<u>课程</u> > <u>Prerequisites</u>

<u>Homework 0: Probability and Linear</u> 9. Eigenvalues, Eigenvectors and > <u>algebra Review</u>

> Determinants(Optional)

9. Eigenvalues, Eigenvectors and Determinants(Optional)

Eigenvalues and Eigenvectors of a matrix (Optional)

0 points possible (ungraded)

Let
$${f A}=egin{pmatrix} 3 & 0 \ rac{1}{2} & 2 \end{pmatrix}$$
 , ${f v}=egin{pmatrix} 2 \ 1 \end{pmatrix}$ and ${f w}=egin{pmatrix} 0 \ 1 \end{pmatrix}$.

 $\mathbf{A}\mathbf{v} = \lambda_1\mathbf{v}$, where $\lambda_1 =$

✓ Answer: 3 . 3

 $\mathbf{A}\mathbf{w} = \lambda_2 \mathbf{w}$, where $\lambda_2 =$

Answer: 2. 2

Therefore, ${\bf v}$ is an eigenvector of ${\bf A}$ with eigenvalue λ_1 , and ${\bf w}$ is an eigenvector of ${\bf A}$ with eigenvalue λ_2 .

Solution:

$$\mathbf{Av} = \left(egin{array}{cc} 3 & 0 \ rac{1}{2} & 2 \end{array}
ight) \left(egin{array}{cc} 2 \ 1 \end{array}
ight) = \left(egin{array}{cc} 6 \ 3 \end{array}
ight) \implies \lambda_1 = 3$$

$$\mathbf{Aw} = egin{pmatrix} 3 & 0 \ rac{1}{2} & 2 \end{pmatrix} egin{pmatrix} 0 \ 1 \end{pmatrix} = egin{pmatrix} 0 \ 2 \end{pmatrix} \implies \lambda_2 = 2$$

提交

你已经尝试了1次(总共可以尝试3次)

Answers are displayed within the problem

Geometric Interpretation of Eigenvalues and Eigenvectors (Optional)

0 points possible (ungraded)

Let
$$\mathbf{A} = \begin{pmatrix} 3 & 0 \\ \frac{1}{2} & 2 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Recall from the previous exercise that \mathbf{v} and \mathbf{w} are eigenvectors of \mathbf{A} .

Suppose
$$\mathbf{x}=\mathbf{v}+2\mathbf{w}=inom{2}{3}.$$
 Then $\mathbf{A}\mathbf{x}=s\mathbf{v}+t\mathbf{w}$, where:

$$s = 3$$
 Answer: 3

and

$$t = \boxed{4}$$
 Answer: 4.

In particular, s describes the amount that \mathbf{A} stretches \mathbf{x} in the direction of \mathbf{v} , and $\frac{t}{2}$ (note the "2" in front of \mathbf{w} in \mathbf{x}) describes the amount that \mathbf{A} stretches \mathbf{x} in the direction of \mathbf{w} .

Solution:

We have

$$\mathbf{Ax} = \mathbf{A} (\mathbf{v} + 2\mathbf{w})$$

= $\mathbf{Av} + 2\mathbf{Aw}$
= $(3\mathbf{v}) + 2 (2\mathbf{w})$
= $3\mathbf{v} + 4\mathbf{w}$.

From this, we get s=3, t=4.

提交

你已经尝试了1次(总共可以尝试3次)

Answers are displayed within the problem

Determinant and Eigenvalues (optional)

0 points possible (ungraded)

Recall that the **determinant** of a matrix indicates whether it is singular. For 2×2 matrices, it has the formula

$$\det egin{pmatrix} a & b \ c & d \end{pmatrix} = ad - bc$$

but for larger matrices, the formula is more complicated.

What is the determinant of the matrix ${f A}=\begin{pmatrix} 3 & 0 \\ \frac{1}{2} & 2 \end{pmatrix}$?

6

✓ Answer: 6

On the other hand, what is the product of the eigenvalues λ_1, λ_2 of ${f A}$? (We already computed this in the previous exercises.)

6

✓ Answer: 6

Solution:

Plugging into the formula directly gives $3 \cdot 2 - 0 \cdot \frac{1}{2} = 6$. On the other hand, the eigenvalues are $\lambda_1 = 3$, $\lambda_2 = 2$, so the product is 6. This is not a coincidence; for general $n \times n$ matrices, the **product of the eigenvalues is always equal to the determinant**.

提交

你已经尝试了1次(总共可以尝试3次)

Answers are displayed within the problem

Trace and Eigenvalues

0 points possible (ungraded)

Recall that the **trace** of a matrix is the sum of the diagonal entries.

What is the trace of the matrix $\mathbf{A} = \begin{pmatrix} 3 & 0 \\ \frac{1}{2} & 2 \end{pmatrix}$?

5

✓ Answer: 5

On the other hand, what is the sum of the eigenvalues λ_1,λ_2 of ${f A}$? (We already computed this in the previous exercises.)

5

✓ Answer: 5

Solution:

The diagonal sum is 3+2=5. On the other hand, the eigenvalues are $\lambda_1=3$, $\lambda_2=2$, so the sum is 5. Just like the determinant, this is also not a coincidence. For general $n\times n$ matrices, the **sum of the eigenvalues is always equal to the trace of the matrix**.

提交

你已经尝试了1次(总共可以尝试3次)

Answers are displayed within the problem

Nullspace (Optional)

0 points possible (ungraded)

If a (nonzero) vector is in the nullspace of a square matrix \mathbf{A} , is it an eigenvector of \mathbf{A} ?

yes **▼**

✓ Answer: yes

Which of the following are equivalent to the statement that $\mathbf{0}$ is an eigenvalue for a given square matrix \mathbf{A} ? (Choose all that apply.)

- $extbf{det}(\mathbf{A}) = 0 \checkmark$
- $ightharpoonup NS(\mathbf{A}) = \mathbf{0}$
- □ $NS(A) \neq 0$ ✓

X

Solution:

- If a vector \mathbf{v} is in the nullspace of \mathbf{A} , then $\mathbf{A}\mathbf{v} = \mathbf{0} = (0)\mathbf{v}$. So it is an eigenvector of \mathbf{A} associated to the eigenvalue $\mathbf{0}$.
- If $\mathbf{0}$ is an eigenvalue for a matrix \mathbf{A} , then by definition, there exists a nonzero solution to $\mathbf{A}\mathbf{v} = \mathbf{0}$; that is, $\mathbf{NS}(\mathbf{A}) \neq \mathbf{0}$, and this only happens if and only if $\det(\mathbf{A}) = \mathbf{0}$.

提交

你已经尝试了3次(总共可以尝试3次)

1 Answers are displayed within the problem

讨论

显示讨论

主题: Unit 0. Course Overview, Syllabus, Guidelines, and Homework on Prerequisites:Homework 0: Probability and Linear algebra Review / 9. Eigenvalues, Eigenvectors and Determinants(Optional)

认证证书是什么?

© 保留所有权利