Temporal Graph Sequential Recommender

accepted by 2021 CIKM

challenge & motivation.

challenge 1. it is hard to simultaneously encode collaborative signals and sequential patterns.

challenge 2. it is hard to express the temporal effects of collaborative signals. in other words , it remains unclear how to measure the impacts of those signals from a temporal perspective.

summarize; lacking the consider of between cross-signal

 \rightarrow notice the importance of **time span**

Figure 3: The framework of TGSRec. The query node is u_4 , whose final temporal embedding at time t_5 is $h_{u_4}^{(2)}(t_5)$. The TCT layer samples its neighbor nodes and edges. Timestamps on edges are encoded as vectors by using mapping function Φ . Node embeddings for the first TCT layer are long-term embeddings. Node embeddings for other TCT layers (e.g. layer 2) are propagated from the previous TCT layer, thus being temporal node embeddings.

2 novelty.

- 1. the Temporal Collaborative Transformer
 - explicitly model collaborative signals in sequences and express temporal correlations of items in sequences.
- 2. graph information propagation
 - preserve sequential patterns of neighbor items of users.

solution & model architecture

- 1. the Temporal Collaborative Transformer
- graph information propagation

☐ TCT layer adopts collaborative attention among user-item interactions, where the query input to the collaborative attention is from the target node (user/item), while the key and value inputs are from connected neighbors. solution & model architecture

- 1. the Temporal Collaborative Transformer
- 2. graph information propagation

To propagate the information each of 'user' or 'item' utilize the history information. assumption; e-commerce only

Bipartite Graph = {U,I}

where U, I are two disjoint node sets of users and items, respectively. Every edge e $\in L$ is denoted as a tuple e = (u, i,t), where u $\in L$ in I, and t $\in L$ as the edge attribute.

each triplet (u,i,t) denotes the interaction of a user u with item i at timestamp t.

Embedding Layer

- 1. Long-term User/Item Embeddings.
- \rightarrow such as node features and optimized to model the holistic structural information. Long-term embeddings for users and items are necessary for long-term collaborative signals representation.

parameterized by a vector e_u(e_i) from embedding table which is d \times |V| dimensions, V is the sum of count users and items.

- 2. Continuous-Time Embedding.
- → maps those scalar timestamps into vectors.

$$\psi(t_1 - t_2) = \mathcal{K}(t_1, t_2) = \Phi(t_1) \cdot \Phi(t_2),$$

- ** temporal effects; as a function of time span in continuous timespace for instance, given a pair of interactions (u,i,t_1), (u,j,t_2) of the same user the temporal effect is defined as a function which is expressed as **kernel value** of the time embeddings of t_1 and t_2 (above notation).
- ** why kernel value ?
- → temporal effects as a kernel is generalized to any timestamp as it models the time representations directly. Based on Bochner's Theorm(fourier transform).

$$\Phi(t) \mapsto \sqrt{\frac{1}{d_T}} \left[\cos(\omega_1 t), \sin(\omega_1 t), \dots, \cos(\omega_{d_T} t), \sin(\omega_{d_T} t) \right]^{\top}$$

Embedding Layer

```
class PosEncode(torch.nn.Module):
    def __init__(self, expand_dim, seq_len):
        super().__init__()

        self.pos_embeddings = nn.Embedding(num_embeddings=seq_len, embedding_dim=expand_dim)

def forward(self, ts):
    # ts: [N, L]
    order = ts.argsort()
    ts_emb = self.pos_embeddings(order)
    return ts_emb
```

```
class DisentangleTimeEncode(torch.nn.Module):
    def init (self, components, expand dim, factor=5):
        super(DisentangleTimeEncode, self).__init__()
        time_dim = expand_dim
        self.factor = factor
        self.components = components
        init_freq = np.zeros((self.components, time_dim))
        for i in range(self.components):
           span_range = 10 + i
           init_freq[i, :] = 1 / span_range ** np.linspace(0, (span_range - 1), time_dim)
        self.basis_freq = torch.nn.Parameter(torch.from_numpy(init_freq).float())
        self.phase = torch.nn.Parameter(torch.zeros(self.components, time_dim).float())
   def forward(self, ts):
        batch_size = ts.size(0)
        seq_len = ts.size(1)
        ts = ts.view(batch_size, seq_len, 1, 1) # [N, L, 1, 1]
        map_ts = ts * self.basis_freq.view(1, self.components, -1) #[N, L, components, time_dim]
        map ts += self.phase.view(1, self.components, -1)
        harmonic = torch.cos(map_ts)
        return harmonic
```

Temporal Collaborative Transformer

two strengths of TCT layer.

- constructing information from both user/item embeddings and temporal embedding, which explicitly characterizes temporal effects of the correlations.
- a collaborative attention module, which advances existing self-attention mechanism by modeling the importance of user-item interactions, which is thus able to explicitly recognize collaborative signals.

$$\mathbf{h}_{u}^{(l-1)}(t) = \mathbf{e}_{u}^{(l-1)}(t) \|\Phi(t),\tag{3}$$

where $l=1,2,\ldots,L$. $\boldsymbol{h}_u^{(l-1)}(t)\in\mathbb{R}^{d+d_T}$ is the information for u at $t,\boldsymbol{e}_u^{(l-1)}(t)\in\mathbb{R}^d$ is the temporal embedding of u, and $\Phi(t)\in\mathbb{R}^{d_T}$ denotes the time vector of t. \parallel denotes the concatenation operation.

$$\mathcal{N}_u(t) = \{(i, t_s) | (u, i, t_s)$$

objection; Gathering the information From user perspective.

(left notation) combination of long term node embeddings(e_u) and time embeddings(\psi(t)).

(right notation) randomly sample S different interactions of u before time t. the query node itself, to we also propagate temporal collaborative information from its neighbors.

$$e_{N_u}^{(l)}(t) = \sum_{(i,t_s) \in N_u(t)} \pi_t^u(i,t_s) W_v^{(l)} h_i^{(l-1)}(t_s),$$

objection; propagate the information of sampled neighbors $N_u(t)$ to infer the temporal embeddings.

- □ \pi^u_t(i,t_s)^1 denotes the importance of an interaction (u,i,t_s)
- W_v \ in R \in^d \times (d + d_T) is the linear transformation matrix.
- \pi^u_t(i,t_s) represents the impact of a historical interaction (u,i,t_s) to the temporal inference of u at time t, which is calculated by the temporal collaborative attention.

$$\pi_t^u(i, t_s) = \frac{1}{\sqrt{d + d_T}} \left(W_k^{(l)} h_i^{(l-1)}(t_s) \right)^\top W_q^{(l)} h_u^{(l-1)}(t)$$

objection; to measure the weights \pi^u_t(i,t_s), which considers both neighboring interactions and the temporal information on edges. Both factors contribute to the importance on edges.

- W k^(I) and W g^(I) are both linear transformation matrices
- \left(\frac{1}{\sqrt(d+d_T} \right) protects the dot-product from growing large with high dimensions.

$$e_u^{(l-1)}(t) \cdot e_i^{(l-1)}(t_s) + \Phi(t) \cdot \Phi(t_s)$$

dot-product attention reason; we ignore transformation matrices and the scalar factor. the first term denotes the user-item collaborative signal, and the second term models the temporal effect with more stacked layers.

$$\boldsymbol{e}_{u}^{(l)}(t) = \text{FFN}\left(\boldsymbol{e}_{\mathcal{N}_{u}}^{(l)}(t) || \boldsymbol{h}_{u}^{(l-1)}(t)\right)$$

objection; aggregate the query information and the neighbor information. so then concatenate and send them to a feed-forward neural network (FFN)

- e_u^(I)(t) is the temporal embedding of u at t on I-th layer.
- FFN consists of two linear transformation layers with a ReLU activation function.

** **Generalization to items**. Through we only present the TCT layer from the user query perspective, it is analogous to the query of user, (alternative to user \rightarrow item.)

output, model prediction and model optimization

$$\mathcal{L}_{bpr} = \sum_{(u,i,j,t) \in O_T} -\log \sigma \left(r(u,i,t) - r(u,j,t) \right) + \lambda ||\Theta||_2^2,$$
 output (positive) output (negative time embedding

\theta includes long-term embedding E, time embedding parameter w and all linear transformation matrices.

Experiments

: Static

: Temporal

: Transformer-based SR(Sequential Recommendation)

: Others SR(Sequential Recommendation)

Dataset	Toys	Baby	Tools	Music	ML100K	
#Users	17,946	17,739	15,920	4,652	943	
#Items	11,639	6,876	10,043	3,051	1,682	
#Edges	154,793	146,775	127,784	54,932	48,569	
#Train	134,632	128,833	107,684	51,765	80,003	
#Valid	11,283	10,191	10,847	2,183	1,516	
#Test	8,878	7,751	9,253	984	1,344	
Density	0.07%	0.12%	0.08%	0.38%	6.30%	
Avg. Int.	85 days	61 days	123 days	104 days	4.8 hours	

"Av. Int." denotes average time interval. $\,$

Datasets	Metric	BPR	LightGCN	SR-GNN	GRU4Rec	Caser	SSE-PT	BERT4Rec	SASRec	TiSASRec	CDTNE	TGSRec	Improv
	Recall@10	0.0021	0.0016	0.0020	0.0274	0.0138	0.1213	0.1273	0.1452	0.1361	0.0016	0.3650	0.2198
Toys	Recall@20	0.0036	0.0026	0.0033	0.0288	0.0238	0.1719	0.1865	0.2044	0.1931	0.0045	0.3714	0.1670
	MRR	0.0024	0.0018	0.0018	0.0277	0.0082	0.0595	0.0643	0.0732	0.0671	0.0025	0.3661	0.2929
	Recall@10	0.0028	0.0036	0.0030	0.0036	0.0077	0.0911	0.0884	0.0975	0.1040	0.0218	0.2235	0.1195
Baby	Recall@20	0.0039	0.0045	0.0062	0.0048	0.0193	0.1418	0.1634	0.1610	0.1662	0.0292	0.2295	0.0663
- Colonia Es	MRR	0.0019	0.0024	0.0024	0.0028	0.0071	0.0434	0.0511	0.0455	0.0521	0.0157	0.2147	0.1626
	Recall@10	0.0023	0.0021	0.0051	0.0048	0.0077	0.0775	0.1296	0.0913	0.0946	0.0186	0.2457	0.1161
Tools	Recall@20	0.0036	0.0035	0.0092	0.0059	0.0161	0.1155	0.1784	0.1337	0.1356	0.0271	0.2559	0.0775
	MRR	0.0026	0.0023	0.0028	0.0051	0.0068	0.0419	0.0628	0.0460	0.0480	0.0203	0.2468	0.1840
101	Recall@10	0.0122	0.0142	0.0051	0.0549	0.0183	0.0915	0.1352	0.1372	0.1372	0.0071	0.5935	0.4563
Music	Recall@20	0.0152	0.0183	0.0092	0.0589	0.0346	0.1494	0.2093	0.2094	0.1951	0.0163	0.5986	0.3892
	MRR	0.0057	0.0064	0.0028	0.0540	0.0106	0.0423	0.0824	0.0768	0.0681	0.0037	0.3820	0.2996
ML100k	Recall@10	0.0461	0.0565	0.0045	0.0996	0.0246	0.1079	0.1116	0.09450	0.1332	0.0350	0.3118	0.1786
	Recall@20	0.0766	0.0960	0.0060	0.1168	0.0417	0.1801	0.1786	0.1808	0.2232	0.0536	0.3252	0.1020
	MRR	0.0213	0.0252	0.0012	0.0938	0.0147	0.0519	0.0600	0.0448	0.0605	0.0162	0.2416	0.1478

Non-reproducible the results * 22/03/20

Experiments Ablation study

Architecture	Toys	Baby	Tools	Music	ML100K	
(0) Default	0.3649	0.2235	0.3623	0.5935	0.3118	
(1) Mean	0.0027↓	0.0210↓	0.0055↓	0.0051↓	0.0647↓	Temporal collaborative
(2) LSTM	0.0991↓	0.1237	0.1266↓	0.3740	0.3088	attention.
(3) Fixed ω	0.0854↓	0.0944↓	0.0910↓	0.3679	0.2789	
(4) Position	0.03801	0.0243	0.02091	0.0742	0.0878	Continuous-time embedding.
(5) Empty	0.0139↓	0.0240↓	0.0018↓	0.0346↓	0.0603↓	
(6) BCELoss	0.2200	0.1916	0.1763	0.4624	0.3542	loss function.

$$\mathcal{L}_{bpr} = \sum_{(u,i,j,t) \in O_T} -\log \sigma \left(r(u,i,t) - r(u,j,t) \right) + \lambda ||\Theta||_2^2,$$

$$\mathcal{L}_{bce} = \sum_{(u,i,j,t) \in O_T} \log \sigma \left(r(u,i,t) \right) + \log \sigma \left(1 - r(u,j,t) \right) + \lambda ||\Theta||_2^2,$$

