MA206 Reference Sheet

Getting Help in R

?mean

Get help for a particular function.

help(mean)

Search the help files for a word or phrase.

Working Directory

getwd()

Find the current working directory.

setwd('C://file/path') Change the current working directory.

Tools-GlobalOptions-C:\\yourRdirectory-Apply Make your folder the working directory every time you start R-Studio.

Reading File

- 1. Save file as .csv.
- 2. Input command:
 - a. data=read.csv("filename.csv", header=T) (or F if no header)
 - b. data=read.csv(file.choose(),header=T) (uses a dialog box to select the file)
- 3. The data is now read in as a data frame.
- 4. You can index into sections of the data frame using the \$ operator (e.g., data\$column1).

Statistics and Regression

Function Name	Arguments
t.test()	x, y(if needed), alternative, mu, paired, conf.level
lm()	y~x (simple) y~x1+x2+ (multiple)
summary()	object or model (This command summarizes the model or data set.)

Conditions	a == b	Are equal	a > b	Greater than	a >= b	Greater than or equal to	is.na(a)	Is missing	a & b	a and b
Conditions	a != b	Not equal	a < b	Less than	a <= b	Less than or equal to	is.null(a)	Is null	a b	a or b

Vectors Join elements c(2, 4, 6)246 into a vector An integer 2:6 23456 sequence A complex seq(2,3,bv=0.5)2.0 2.5 3.0 sequence 121212 rep(1:2, times=3) Repeat a vector Repeat elements rep(1:2, each=3) 111222 of a vector

Selecting Vector Elements

By Position

x[4]	The fourth element		
x[-4]	All but the fourth		
x[2:4]	2nd through 4th elements		
x[c(1, 5)]	1st and 5th element		

By Value

Elements equal to 10

x[x == 10]x[x < 0]

All elements less than zero

Plotting

Values of x in plot(x) order. Values of y plot(x, y) against x. Histogram of x hist(x)

Math Functions

log(x)	Natural Log	sum(x)	Sum
exp(x)	Exponential	mean(x)	Mean
max(x)	Largest Element	median(x)	Median
min(x)	Smallest Element	quantile(x)	Percentile or Quantile
round(x,n)	Round to n	var(x)	Variance
	Decimal Places	sd(x)	Standard Deviation
sig.fig(x, n)	Round to n Sig Figs	length(x)	# of Elements in Vector
cor(x, y)	Correlation	rank(x)	Rank of Elements

The Nine Characteristics of Discrete Distributions

Characteristic 1: The pmf must be greater than or equal to zero for all x.

Characteristic 2: The sum of probabilities of x, p(x), over all possible values of x must be one.

Characteristic 3: For a discrete random variable

X, the probability that X is equal to a specific value, c, is:

Characteristic 4: Given the pmf p(x) for random variable X, we define the cumulative distribution function (CDF) F(x) as follows:

Characteristic 5: Using the pmf:

Characteristic 7: The expected value of *X*:

Characteristic 8: The variance of *X*:

Characteristic 6: Using the CDF:

Characteristic 9: The (100p)th percentile of the

discrete random variable X is the minimum value of x such that:

$$p(x) \ge 0 \ \ \forall \, x$$

$$\sum_{x} p(x) = 1$$

$$P(X=c)=p(c)$$

$$F(x) = P(X \le x) = \sum_{y:y \le x} p(y)$$

$$P(a \le X \le b) = \sum_{x:a \le x \le b} p(x)$$

$$P(a \le X \le b) = F(b) - F(a^{-})$$

$$E(X) = \mu_X = \sum x \cdot p(x)$$

$$V(X) = E(X^2) - (E(X)^2)$$
 or

$$V(X) = \sigma_X^2 = E[(X - \mu_X)^2] = \sum (x - \mu_X)^2 p(x)$$

 $F(x) \ge p$

The Nine Characteristics of Continuous Distributions

Characteristic 1: The pdf must be greater than or equal to zero for all x.

Characteristic 2: The total area under f(x)must be equal one.

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

 $f(x) \ge 0 \ \forall x$

Characteristic 3: For a continuous random

variable X, the probability that X is equal to a specific value, c, is:

P(X=c)=0

Characteristic 4: Given the pdf f(x) for random

 $F(x) = P(X \le x) = \int_{-x}^{x} f(y)dy$ variable X, we define the cumulative distribution function (CDF) F(x) as follows:

Characteristic 5: Using the pdf: $P(a \le X \le b) = \int_a^b f(x) dx$

Characteristic 6: Using the CDF: **Characteristic 7:** The expected value of *X*: $P(a \le X \le b) = F(b) - F(a)$ $E(X) = \mu_X = \int_{-\infty}^{\infty} x \cdot f(x) dx$

Characteristic 8: The variance of *X*:

nce of
$$X$$
: $V(X) = E(X^2) - (E(X)^2)$ or $V(X) = \sigma_X^2 = E[(X - \mu_X)^2] = \int_{-\infty}^{\infty} (x - \mu_X)^2 \cdot f(x) dx$

Characteristic 9: The (100p)th percentile of the

 $x^* = F^{-1}(p)$ or $F(x^*) = p$

denotes the inverse CDF of X is:

continuous random variable X where F^{-1}

Named Probability Distributions

	Binomial	Uniform	Normal	t		
PDF	$p(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & x \in \{0,1,2,\dots,n\} \\ 0 & otherwise \end{cases}$	$f(x) = \begin{cases} \frac{1}{B-A} & A \le X \le B\\ 0 & otherwise \end{cases}$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-((x-\mu)^2)/2\sigma^2} \forall x$	$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\sqrt{\nu\pi}} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}} \forall x > 2$		
Parameters	n and p	A and B	μ and σ	ν (degrees of freedom)		
E[X]	np	$\frac{A+B}{2}$	μ	0		
V[X]	np(1-p)	$\frac{1}{12}(B-A)^2$	σ^2	$\frac{\nu}{\nu-2}$		
R Help						
PMF	dbinom(x,size,prob)					
CDF	pbinom(q,size,prob)	<pre>punif(q,min,max)</pre>	pnorm(q,mean,sd)	pt(q,df)		
Percentile	qbinom(p,size,prob)	qunif(p,min,max)	qnorm(p,mean,sd)	qt(p,df)		
Random Variate	rbinom(n,size,prob)	<pre>runif(n,min,max)</pre>	rnorm(n,mean,sd)	rt(n,df)		