Overheads: - Outline

Recap Friday: Reactions of Carbonyl Compounds With Poor LG's

Nitrile Hydrolysis: 3 extra steps (need to add second H₂O)

Other Reactions of Carbonyl Compounds:

- Amides:
 - remove H₂O to make nitriles (reverse of first 5 steps of nitrile hydrolysis)

 P_2O_5 reacts with water :: drives eqm \longrightarrow

$$P_2O_5 + 3 H_2O$$
 2 H_3PO_4

- 2) Carboxylic Acids
 - Seen that we can use acyl halides to make all others... but how do we make acyl halides??

$$\begin{array}{c}
O \\
R-C-OH \\
\uparrow
\end{array} \qquad \begin{array}{c}
O \\
R-C-C
\end{array}$$

cheapest, easiest to get (naturally occurring, or by nitrile hydrolysis, oxidation etc)

Q: How do we turn OH into C1?

need to turn into better LG

HCl? - Cl- better LG than H₂O, so equilibrium goes wrong way SOCl₂

To make anhydride:

1) From acyl halide

limited availability (must make)

2) From carboxylic acid (better way)

To shift eq'm:

- 1) heat to distill off H₂O (doesn't always work)
- 2) Add something to react with $H_2O \longrightarrow P_2O_5!$

e.g.
$$2 \text{ CH}_3$$
—C—OH $\xrightarrow{P_2O_5}$ $\xrightarrow{\Delta}$ \xrightarrow{C} —O—C—CH $_3$ (+ H $_2$ O)

P $_2$ O $_5$ + 3 H $_2$ O \longrightarrow 3 H $_3$ PO $_4$

OH OH OH

Phthalic acid $\xrightarrow{A^{**}}$ \xrightarrow{C} \xrightarrow{C}

Next Up: Carbonyls with NO LG (Ch. 17 or 18 in 6th ed)

ketone:
$$R - C - R'$$
 $(R, R' \neq H)$

aldehyde: R-C-H

Naming Aldehydes:

- choose longest C chain that includes C of C=O (= C#1)
- replace –e with –al

- replace -e with -al

$$H_3C$$
 - C - C

Common Names:

Naming Ketones:

- choose longest C chain that includes C of C=O (NOT C#1!!)
- replace -e with -one
- locate position of C=O, counting from closest end

Common Names:

Reactions of Ketones and Aldehydes

Ketones vs Aldehydes: Which react faster?

