

Fast Tracking Emerging Technology Development for Space Exploration

A Carbon Nanotube Example

Emilie J. Siochi
Advanced Materials & Processing Branch
NASA Langley Research Center

MArch Graduate Studio
Massachusetts Institute of Technology
March 29, 2022

Motivation

Motivation

Summary of the Problem

- Cost increases in proportion to the mass ratio.
- Mass ratio increases linearly with the dry mass and exponentially with Δv .
- Reducing structural mass reduces mission cost at constant payload or increases mission capability at constant cost.

	Mass Ratio*	Cost per pound*
Low Earth Orbit	20	\$4,000
Earth to Moon	200	\$40,000
To Moon, Return to Earth	500	\$100,000
Earth to Mars	500	\$100,000
To Mars, Return to Earth	5000	\$1,000,000

Motivation

Reusable Launch Vehicle
Systems Analysis Model

Technology Development Approaches

- Technology Push
- Technology Pull
- Technology Pull Guided Technology Push

Technology Push

- New/Different
- Immature
- Hyped
- Potentially disruptive
- Can spur significant basic research investments

Carbon Nanotube (CNT) Gartner Hype Cycle

Outcomes

Lessons Learned

- Analogous to very short chopped fiber composites
- Limited by material supply and quality
- Very low volume fraction (<5%)
- Limited improvement over matrix mechanical properties
- Payoffs noted in electrical/multifunctional properties
- Output: Papers, presentations, patents
- Structural applications envisioned did not materialize

Technology Development Approaches

- Technology Push
- **Technology Pull**
- Technology Pull Guided Technology Push

Technology Pull

- Performance needs identified
- Schedule driven
- Solution space defined by what is ready for insertion
- Typically risk averse

Carbon Nanotubes on Juno Spacecraft

Composites and carbon nanotubes were implemented in four components on the Juno spacecraft: the rocket engine tubes, the engine cover and the outside and inside face sheets.

Lessons Learned

- Emerging technology can be implemented if it meets a performance requirement for which there is no other existing solution.
- Technology must be evaluated for the required function.
- Technology must be ready to insert on schedule.
- Structural performance objective still not realized, but technology was flown due to other performance benefits.

Technology Development Approaches

- Technology Push
- Technology Pull
- **Technology Pull Guided Technology Push**

Technology Pull Guided Technology Push

- Use-driven fundamental research
- Considers systems level benefits
- From lab to demonstration

Setting Goals using Systems Analysis

- A 2-3x improvement in specific mechanical properties will permit substantial mass reduction in structural and non-structural components.

State-of-the-Art Lightweight Structural Material

Nano to Macro Challenge

Rapid Prototyping of CNT Composite Fabrication

Aluminum Ring

Tabletop Filament Winder for Rapid
Prototyping of Composite Processing

CNT Composite Overwrapped
Pressure Vessel

Prototyping to Support Materials Development

CNT Composite Overwrapped Ring

Composite Process Prototyping

High Strength CNT Yarn

Commercial Scale CNT Composite Winding

Sounding Rocket Flight Test

CNT Composite Overwrapped Pressure
Vessel Cold Gas Thruster

Sounding Rocket Integration 19

Computationally Guided Use Driven Materials Research

October 2013 – September 2015

October 2016

May 2017

Outcomes

Specific Modulus (GPa/[g/cm³])

Measurable Advancements

- Improvement in mechanical properties
 - Systems level guided, goal focused research.
 - Project objective provided basis for objective decisions.
- Increase in Manufacturing Readiness Level
 - Volume – material available in spool lengths of hundreds of meters.
 - Consistency – materials met A-basis allowable of at least 20 N breaking force.

Technology Transition Ecosystem

- Displacement of state-of-the-art technologies
 - Performance
 - Scale
 - Schedule
 - Risk
 - Cost
- Decision making for prioritization
 - Systems benefits analysis
 - Clear, quantified metrics for goals

From Publications to Economic Payoff

Systems Benefits Guided Technology Maturation

~2001

2010

2021

Lessons Learned

- High order systems benefits analysis
 - Useful for advocacy
 - Provides clear performance metrics to evaluate progress
- Higher fidelity systems models
 - Development necessary to provide more detailed guidance on specific component applications
 - Models need to include parameters offered by new technology

Rapid Prototyping for Manufacturing Feedback

Use Driven Technology Maturation

Systems Defined Goal Provides Common Objective

NASA Centers

- LaRC
- MSFC

Public/Private Partnerships

- Northrup Grumman
- University of Dayton Research Institute/State of Ohio

OGA Leveraging

- AFOSR
- AFRL – ManTech Program
- DoD
- DoE - ARPA-E
- DoE – Idaho National Lab
- DoE – Oak Ridge National Lab

Small Business

- Textum, Inc.

SBIR/STTR

- Nanocomp
- Cornerstone Research Group
- Minnesota Wire & Cable
- Applied Composites

NSTRI

• Florida State U	• Michigan Tech
• MIT	• U of Utah
• VCU	• U of Colorado
• Ga Tech	• Johns Hopkins
• Penn State U	• U of Minnesota
• FL A&M U	• Nanocomp

Incentivize multidisciplinary partnerships to accelerate maturation of an emerging material ecosystem.

Evolution of NASA's Role in the Nanotechnology Landscape

- Early
 - Basic research
 - From structural materials to multifunctional materials
- Current – Technology Transition
 - Evaluating payoff from investments
 - Metrics from systems level benefits
 - Define structural applications
 - Acknowledge realities of technology insertion
 - Integration of new tools – computational materials, 3D printing, machine learning
 - Bridging academia and industry
 - Publications are not a sufficient measure of payoff.
- Lessons learned and steps forward
 - Challenges of collaborations between academia and industry for national benefit
 - Collaboration and coordination efforts across funding agencies would benefit from opportunities for technology transition pull, including from major industry users.
 - Technology insertion is based on performance and value.

Provide technology pull as a means of demonstrating measurable technology maturation

Technology pull can guide accelerated maturation of emerging technologies.