

# CONTINUIDAD DE LA RED

IBARRA JIMÉNEZ JESÚS LAZCANO AGUILAR GILMAR ALDAIR RAMÍREZ GONZÁLEZ KARLA SOTO BLANCAS MARCO ANTONIO VENANCIO REA JESE ZURIEL



### CONCEPTO

LA CONTINUIDAD DE LA RED ES LA CAPACIDAD DE UNA ORGANIZACIÓN PARA MANTENER LA DISPONIBILIDAD DE SUS SERVICIOS DE RED, INCLUSO FRENTE A INTERRUPCIONES, DESASTRES, O FALLAS TÉCNICAS. ESTE CONCEPTO ES ESENCIAL PARA PREVENIR IMPACTOS NEGATIVOS EN LA PRODUCTIVIDAD, EL FLUJO DE INFORMACIÓN Y LA COMUNICACIÓN CON CLIENTES Y PROVEEDORES, ASEGURANDO QUE LOS PROCESOS CRÍTICOS SIGAN FUNCIONANDO.



#### IMPORTANCIA DE LA CONTINUIDAD DE LA RED

- ROL CENTRAL DE LA RED: LA RED CONECTA APLICACIONES, BASES DE DATOS, SERVICIOS EN LA NUBE Y EMPLEADOS. LA PÉRDIDA DE CONECTIVIDAD AFECTA EL RENDIMIENTO GENERAL Y LA OPERATIVIDAD DE LA ORGANIZACIÓN.
- IMPACTO FINANCIERO Y REPUTACIONAL: LAS INTERRUPCIONES DE LA RED PUEDEN RESULTAR EN PÉRDIDA DE INGRESOS, DAÑO A LA REPUTACIÓN Y DISMINUCIÓN DE LA CONFIANZA DE LOS CLIENTES. EJEMPLOS: EMPRESAS QUE DEPENDEN DEL COMERCIO ELECTRÓNICO O SERVICIOS EN LÍNEA PUEDEN VER PÉRDIDAS SIGNIFICATIVAS EN CUESTIÓN DE MINUTOS DE DESCONEXIÓN.

### PRINCIPALES AMENAZAS

FALLOS DE HARDWARE Y SOFTWARE:

PROBLEMAS CON ROUTERS, SWITCHES, FIREWALLS, O CONFIGURACIONES INCORRECTAS PUEDEN AFECTAR EL TRÁFICO DE DATOS. CIBERATAQUES:

LOS ATAQUES DE DENEGACIÓN DE SERVICIO (DDOS) SATURAN LA RED, IMPIDIENDO EL ACCESO LEGÍTIMO. OTROS ATAQUES PUEDEN **COMPROMETER LA** SEGURIDAD Y LA CONTINUIDAD DE LOS DATOS.

DESASTRES NATURALES:

INUNDACIONES, INCENDIOS, TERREMOTOS O TORMENTAS PUEDEN DAÑAR FÍSICAMENTE LA INFRAESTRUCTURA DE RED. **INCLUYENDO** CABLES Y SERVIDORES.

# PLAN DE CONTINUIDAD DE LA RED (PCN)



DEFINICIÓN.

UN PCN ES UN CONJUNTO DE POLÍTICAS, PROCEDIMIENTOS Y ACCIONES PLANIFICADAS PARA ASEGURAR QUE LA RED CONTINÚE FUNCIONANDO O SEA RECUPERABLE EN CASO DE INTERRUPCIÓN.

## COMPONENTES PRINCIPALES



- IDENTIFICACIÓN DE RIESGOS: DETECCIÓN DE AMENAZAS Y VULNERABILIDADES ESPECÍFICAS DE LA RED.
- PROCEDIMIENTOS DE RECUPERACIÓN: PASOS DETALLADOS PARA RESTAURAR SERVICIOS DE RED TRAS UNA FALLA.
- ROLES Y RESPONSABILIDADES: ASIGNACIÓN DE TAREAS ESPECÍFICAS A PERSONAL CAPACITADO PARA EJECUTAR EL PLAN EN CASO DE EMERGENCIA.
- PRUEBAS Y REVISIÓN PERIÓDICA: VALIDACIÓN Y ACTUALIZACIÓN DEL PCN PARA ASEGURAR SU EFECTIVIDAD.

## EVALUACIÓN DE RIESGOS

 ANÁLISIS DE RIESGOS: INVOLUCRA IDENTIFICAR AMENAZAS ESPECÍFICAS QUE PUEDEN AFECTAR LA RED, COMO CIBERATAQUES, CORTES DE ENERGÍA, Y FALLOS DE HARDWARE. ESTE ANÁLISIS INCLUYE TANTO LA PROBABILIDAD DE OCURRENCIA COMO EL POSIBLE IMPACTO.

- IDENTIFICACIÓN Y PRIORIZACIÓN:
  CLASIFICACIÓN DE RIESGOS POR SU NIVEL
  DE SEVERIDAD Y FRECUENCIA.
  EJEMPLO: LOS FALLOS DE HARDWARE
  CRÍTICOS, COMO EN LOS SERVIDORES
  PRINCIPALES, PUEDEN TENER PRIORIDAD
  DEBIDO A SU IMPACTO EN TODA LA RED.
  - MAPEO DE VULNERABILIDADES: DETECCIÓN DE PUNTOS DÉBILES EN LA RED Y SISTEMAS CRÍTICOS, COMO CONEXIONES SIN REDUNDANCIA.

## ESTRATEGIAS DE RESPALDO

BACKUPS DE RED: CONFIGURAR COPIAS DE SEGURIDAD DE CONFIGURACIONES DE RED, BASES DE DATOS Y ARCHIVOS CRÍTICOS DE FORMA PROGRAMADA. ESTO PERMITE RESTAURAR CONFIGURACIONES Y SERVICIOS TRAS UN FALLO.

DISASTER RECOVERY PLAN (DRP):
ESTRATEGIAS PARA LA RECUPERACIÓN
DE OPERACIONES TRAS EVENTOS DE
INTERRUPCIÓN. UN DRP INCLUYE
MANTENER UNA RÉPLICA DE LA RED EN
UN CENTRO DE DATOS ALTERNATIVO,
USO DE TECNOLOGÍAS DE
VIRTUALIZACIÓN Y RESPALDO EN LA
NUBE PARA RESTAURAR LOS
SERVICIOS.

TESTING DE **RECUPERACIÓN:** REALIZAR **PRUEBAS** PERIÓDICAS PARA ASEGURAR QUE LOS BACKUPS Y EL PLAN DE RECUPERACIÓN **FUNCIONEN** CORRECTAMENTE Y SEAN ACTUALES.







REDUNDANCIA DE RUTAS
Y CONEXIONES:
CONFIGURACIÓN DE
RUTAS ALTERNATIVAS
PARA QUE EL TRÁFICO DE
RED TENGA OPCIONES EN
CASO DE FALLOS EN LA
CONEXIÓN PRINCIPAL.
POR EJEMPLO, TENER
MÚLTIPLES ENLACES A
PROVEEDORES DE
INTERNET.



BALANCEO DE CARGA:
USO DE TECNOLOGÍAS
DE BALANCEO PARA
DISTRIBUIR EL TRÁFICO
DE RED ENTRE VARIOS
SERVIDORES,
REDUCIENDO LA CARGA
EN UN SOLO EQUIPO Y
MEJORANDO LA
DISPONIBILIDAD.

#### REDUNDANCIA DE LA INFRAESTRUCTURA

### MONITOREO Y DETECCIÓN DE PROBLEMAS

HERRAMIENTAS DE
MONITOREO EN TIEMPO
REAL: USO DE SOLUCIONES
COMO NAGIOS, ZABBIX, O
SOLARWINDS PARA
SUPERVISAR LA RED
CONTINUAMENTE Y
ALERTAR DE POSIBLES
PROBLEMAS ANTES DE QUE
CAUSEN INTERRUPCIONES.

ALERTAS Y RESPUESTAS
AUTOMÁTICAS:
CONFIGURACIÓN DE
ALERTAS QUE SE ACTIVEN
CON CONDICIONES
PREDEFINIDAS, COMO UN
USO INUSUAL DE ANCHO DE
BANDA, PARA TOMAR
ACCIÓN RÁPIDA Y REDUCIR
EL TIEMPO DE INACTIVIDAD.

ANÁLISIS DE RENDIMIENTO Y CAPACIDAD: MONITOREO CONTINUO DEL DESEMPEÑO DE LA RED PARA PREVER PROBLEMAS POR SATURACIÓN O CONGESTIÓN.

#### ENTRENAMIENTO Y SIMULACIÓN

CAPACITACIÓN DEL EQUIPO:

FORMACIÓN DE LOS EQUIPOS DE TI Y DE RED EN LOS PROCEDIMIENTOS Y HERRAMIENTAS DEL PCN. ESTO ASEGURA **QUE EL PERSONAL CLAVE PUEDA** RESPONDER EFICAZMENTE A CUALQUIER INCIDENTE.

SIMULACROS Y EJERCICIOS DE PRUEBA:

REALIZACIÓN DE SIMULACROS DE INTERRUPCIÓN PARA PROBAR EL TIEMPO DE RESPUESTA Y EFECTIVIDAD DEL PCN, ASÍ COMO LA COORDINACIÓN DEL EQUIPO DURANTE UN INCIDENTE.

EVALUACIÓN DE RESULTADOS Y MEJORAS:

TRAS CADA SIMULACRO, **REALIZAR UNA** REVISIÓN DETALLADA DE LOS RESULTADOS Y AJUSTAR EL PLAN SEGÚN LOS **APRENDIZAJES** OBTENIDOS.

### MEJORA CONTINUA

EVALUACIÓN Y ACTUALIZACIÓN:
REVISAR Y ACTUALIZAR
PERIÓDICAMENTE EL PCN PARA
ADAPTARSE A CAMBIOS
TECNOLÓGICOS, NUEVOS
RIESGOS Y LECCIONES
APRENDIDAS DE INCIDENTES
PASADOS.

LECCIONES APRENDIDAS: ANALIZAR CADA INTERRUPCIÓN Y EVALUAR LA EFECTIVIDAD DE LAS RESPUESTAS PARA MEJORAR LA RESILIENCIA DE LA RED Y REDUCIR EL IMPACTO DE FUTUROS PROBLEMAS.

INNOVACIÓN Y **ADAPTACIÓN:** INTEGRAR NUEVAS TECNOLOGÍAS Y PRÁCTICAS, COMO INTELIGENCIA **ARTIFICIAL PARA** DETECCIÓN PROACTIVA DE AMENAZAS, A FIN DE FORTALECER LA CONTINUIDAD DE LA RED.