PCI/IBU3/02749

. 1 8, 06, 03

Europäisches Patentamt

European Patent Office

Office européen des brevets

REC'D 20 JUL 2003

WIPO POT

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein. The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet n°

02077721.5

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets

R C van Dijk

Europäisches Patentamt

European Patent Office

Office européen des brevets

Anmeldung Nr:

Application no.: 02077721.5

Demande no:

Anmeldetag:

Date of filing: 08.07.02

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Koninklijke Philips Electronics N.V. Groenewoudseweg 1 5621 BA Eindhoven PAYS-BAS

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

An electric lamp comprising a glass component

In Anspruch genommene Prioriāt(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

C03C3/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

10

15

20

1

EPO - DG 1

28.06,2002

An electric lamp comprising a glass component

-8. 07. 2002

The invention relates to an electric lamp comprising a glass component with a composition.

The invention also relates to a stem for an electric lamp having a glass portion, the glass portion manufactured from a glass having such a composition.

The invention also relates to a lamp envelope manufactured from a glass having such a composition.

In addition, the invention relates to a mercury vapor discharge lamp comprising a lamp envelope, the lamp envelope enclosing, in a gastight manner, a discharge space provided with a filling of mercury and a rare gas, the lamp envelope comprising discharge means for maintaining a discharge in the discharge space.

In mercury vapor discharge lamps, mercury constitutes the primary component for the (efficient) generation of ultraviolet (UV) light. A luminescent layer comprising a luminescent material (for example, a fluorescent powder) may be present on an inner wall of the lamp envelope, also known as the discharge vessel, to convert UV to other wavelengths, for example, to UV-B and UV-A for tanning purposes (sun panel lamps) or to visible radiation for general illumination purposes. Such discharge lamps are therefore also referred to as fluorescent lamps. Alternatively, the ultraviolet light generated may be used for manufacturing germicidal lamps (UV-C). The lamp envelope of low-pressure mercury vapor discharge lamps is usually tubular and circular in section and comprises both elongated and compact embodiments. Generally, the tubular lamp envelope of so-called compact fluorescent lamps comprises a collection of relatively short straight parts having a relatively small diameter, which straight parts are connected together by means of bridge parts or arc-shaped parts. Compact fluorescent lamps are usually provided with an (integrated) lamp cap.

The lamp envelope of mercury vapor discharge lamps, e.g. fluorescent lamps, is generally made of a cheap, so-called soda-lime type of glass. Compact fluorescent lamps are usually made of lead-free Ba-Sr-rich glass. Apart from straight or bent parts, the lamp envelope may also include (two) so-called glass stems or end portions where the lamp envelope is hermetically sealed, said end portions enabling passage of the current-supply conductors.

10

15

20

25

30

In United States Patent Specification US 5 925 582 a description is given of a glass having a low sodium content for use in fluorescent lamps. The known glass contains less than 0.1% by weight of Na₂O. However, the liquidus temperature (T_{liq}) is still relatively high making the processing of electric lamps with a lamp envelope made from this known glass relatively difficult.

It is an object of the invention to eliminate the above disadvantage wholly or partly. It must be possible to melt the glass in existing furnaces and the glass must be readily processable to form, inter alia, glass tubing and, subsequently, lamp envelopes. The glass must also be free of PbO and other volatile, toxic or corrosive components such as Sb₂O₃, As₂O₃ and F. Like the known glass, the glass in accordance with the invention is preferably free of B₂O₃ and ZrO₂. B₂O₃ is disadvantageous because it is expensive and aggressive relative to the refractory material of the glass furnace. ZrO₂ adversely affects the melting behavior of the glass. Another object of the invention is to provide a cheaper glass.

The invention also aims at providing a mercury-vapor discharge lamp comprising a lamp envelope, in particular a stem or a tubular lamp envelope, which is made of such a glass composition, the lamp having favorable and processing properties. The other physical properties should match those of the customarily used sodium-containing glasses.

According to the invention, the electric lamp comprises a glass component, wherein the composition of the glass component is substantially free of PbO and comprises, expressed as a percentage by weight (denoted by weight% or wt.%), the following constituents:

55-70 weight% SiO₂,

<0.1 weight% Al₂O₃,

0.5-4 weight% Li₂O,

0.5-3 weight% Na₂O,

10-15 weight.% K_2O ,

0-3 weight% MgO,

0-4 weight% CaO,

0.5-5 weight% SrO,

10

15

20

25

30

7-10 weight% BaO.

Said glass has a liquidus temperature (T_{liq}) which is at least 100°C less than the known glass. Such a glass has favorable fusion and processing properties. The glass composition is very suitable for drawing glass tubing and for use as a lamp envelope in a fluorescent lamp, in particular a tubular lamp envelope for a compact fluorescent lamp (CFL), in which the wall load is higher than in a "TL" lamp (normal straight tubular fluorescent lamp) owing to the smaller diameter of the lamp envelope. The glass can also suitably be used to manufacture bulb-shaped lamp envelopes for fluorescent lamps, such as the so-called electrodeless or "QL" mercury vapor discharge lamps. The glass can also suitably be used to manufacture other parts of the lamp envelope, such as stems.

This glass composition does not comprise the above-mentioned detrimental components PbO, F, As₂O₃ and Sb₂O₃.

The SiO₂ content of the glass in accordance with the invention is limited to 55-70 wt.%. In combination with the other constituents, said SiO₂ content leads to a readily fusible glass. As is known in the art, SiO₂ serves as a network former. If the SiO₂ content is below 55 wt.%, the cohesion of the glass and the chemical resistance are reduced. An SiO₂ content above 70 wt.% hampers the vitrification process, causes the viscosity to become too high and increases the risk of surface crystallization.

The mere absence of Al_2O_3 has the following advantages. The liquidus temperature (T_{liq}) is reduced by at least 100° C due to favorable crystallization properties. The absence of Al_2O_3 in the glass composition according to the invention, as compared to that of the known glass composition, does not have a detrimental influence on the chemical resistance nor on the resistance against weathering of the glass. In addition, the glass according to the invention exhibits a low crystallization tendency as well as a viscosity and softening temperature (T_{soft}) enabling a good processing of the glass.

The alkali metal oxides Li₂O, Na₂O and K₂O are used as a melting agent and lead to a reduction of the tile viscosity of the glass. If both alkali metal oxides are used in the above composition, then the so-called mixed-alkali effect causes the electrical resistance to be increased and T_{liq} to be reduced. In addition, predominantly the alkali metal oxides determine the expansion coefficient α of the glass. This is important because it must be possible to seal the glass to the stem glass and/or the current supply conductors, for example, of copper-plated iron/nickel wire in such a way that the glass is free from stress. If the alkalimetal-oxide content is below the indicated limits, the glass will have a too low α -value (coefficient of linear expansion) and T_{soft} (softening point) will be too high. Above the

10

15

20

25

30

indicated limits, the α -value will be too high. Li₂O causes a greater reduction of T_{soft} than K_2O , which is desirable to obtain a wide so-called "Working Range" (= T_{work} - T_{soft}). Too high an Li₂O content leads to an excessive increase of T_{liq} . In addition, Li₂O is an expensive component, so that, also from an economical point of view, the Li₂O content is limited.

BaO has the favorable property that it causes the electrical resistance of the glass to increase and T_{soft} to decrease. Below 7 wt.%, the melting temperature (T_{melt}), T_{soft} and the working temperature (T_{work}) increase too much. Above 10 wt.%, the liquidus temperature (T_{liq}) and hence the crystallization tendency increase too much.

The alkaline earth metal oxides SrO, MgO and CaO have the favorable property that they lead to a reduction of T_{melt} .

Preferably, the composition of the glass comprises: 65–70 wt.% SiO_2 , 1.4–2.2 wt.% Li_2O , 1.5–2.5 wt.% Na_2O , 11–12.3 wt.% K_2O , 1.8–2.6 wt.% MgO, 2.5–5 wt.% CaO, 2–3.5 wt.% SrO, 8–9.5 wt.% CaO, CaO,

Said glass has favorable fusion and processing properties. The linear expansion coefficient can be tuned to match the glass with other glasses. In addition, the other physical parameters can be chosen to approximately equal to those of the known glass (see also Table II below). The glass composition according to the preferred embodiment of the invention is very suitable for drawing glass tubing and for use as a lamp envelope or stem in a fluorescent lamp.

Preferably, the sum of the concentrations of Li₂O, Na₂O and K₂O is in the range from 14–16 wt.%. Preferably, the sum of the concentrations of SrO and BaO is in the range from 10–12.5 wt.%. By keeping the concentrations in the preferred ranges, the coefficient of linear expansion of the preferred glass composition has favourable properties.

The glass composition in accordance with the invention can be refined by means of Na₂SO₄, so that the glass may contain up to 0.2 wt.% SO₃. The glass may additionally contain an impurity in the form of approximately 0.5 weight% Fe₂O₃, preferably less than 0.2 weight% Fe₂O₃, which originates from the raw materials used. If necessary, up

to 0.5 wt.% CeO₂, preferably less than 0.2 wt.% CeO₂, is added to the glass to absorb undesirable UV radiation.

In order to attain a satisfactory maintenance of the lamp and a suppressed mercury consumption, it is known in the art to provide the inner surface of the lamp envelope with a protective coating, for example, of Y₂O₃. Other drawbacks of such protective coatings, for instance loss in light transmission, are obviated as well. In the case of a glass composition in accordance with the invention, such a coating and hence an additional process step, are no longer necessary, leading to a cost reduction in the lamp manufacturing.

10

20

25

5

These and other aspects of the invention are apparent from and will be elucidated with reference to the embodiments described hereinafter.

In the drawings:

Figure 1 is a cross-sectional view of a low-pressure mercury-vapor discharge lamp with a lamp envelope made from a glass with a composition in accordance with the invention;

Figure 2 is a side view of compact fluorescent lamp with a lamp envelope made from a glass with a composition in accordance with the invention;

Figure 3 is a perspective side view of a stem for en electric lamp made from a glass with a composition in accordance with the invention, and

Figure 4 shows the maintenance as a function of the fluorescent powder weight of a low-pressure mercury-vapor discharge lamp with a lamp envelope made from a glass with a composition in accordance with the invention as compared to a lamp envelope made from the known glass.

The Figures are purely diagrammatic and not drawn to scale. Notably, some dimensions are shown in a strongly exaggerated form for the sake of clarity. Similar components in the Figures are denoted as much as possible by the same reference numerals.

30

Figure 1 shows very schematically a sectional view of a low-pressure mercury-vapor discharge lamp with a tubular lamp envelope 10 which circular in section and which is made of a glass having a composition in accordance with the invention. Current-supply conductors 12 which are connected to electrodes 13 are provided so as to pass through the walls of the lamp envelope 10. Each of the electrodes 13 in Figure 1 comprises a winding

10

15

20

25

30

of tungsten coated with an electron-emissive material, here a mixture of barium oxide, calcium oxide and strontium oxide. A layer of a fluorescent material (phosphors) 14 is provided on the inner surface of the lamp envelope 10. Metallic mercury 15, which evaporates after ignition of the lamp, is present within the lamp envelope 10. Before such a lamp is sealed off, it is filled with argon having a pressure of approximately 700 Pa. In an alternative embodiment of the low-pressure mercury vapor discharge lamp, the lamp envelope is provided with an amalgam.

The light output of the lamp (in lumen) after 4000 burning hours has decreased by only 2% relative to the light output at the beginning of the operating period (reference point = 100 hours). The maintenance of the lamp is similar to that of a lamp made from a glass with the known composition provided with an internal protective Y_2O_3 coating.

Figure 2 shows a schematic side view of compact fluorescent lamp. The lamp is composed of four thin parallel lamp envelopes 1 (only two of which are shown in the drawing) which are made of a glass having a composition in accordance with the invention. The lamp envelopes are connected to each other by a bridge 4. The lamp also comprises a lamp base 2 for accommodating electronic circuitry and a threaded lamp holding means 3 which is to be installed in a luminaire and through which the mains voltage is supplied. Due to the substantial wall load, the use of a glass according to the invention to the invention is particularly advantageous.

A glass of a composition according to a particularly favorable embodiment was prepared, comprising 68 wt.% SiO₂, 1.6 wt.% Li₂O, 1.9 wt.% Na₂O, 11 wt.% K₂O, 2.4 wt.% MgO, 4.5 wt.% CaO, 2.1 wt.% SrO, 8.3 wt.% BaO (see Table I). The glass composition also comprises approximately 0.05 weight% Fe₂O₃, approximately 0.06 weight% SO₃ and approximately 0.05 wt% CeO₂. The sum of the concentrations of Li₂O, Na₂O and K₂O in this embodiment of the glass composition is approximately 14.5 wt.%, and the sum of the concentrations of SrO and BaO is approximately 10.4 wt.%, giving the glass a relatively low cost price. The melting operation is carried out in a platinum crucible in a gas-fired furnace at 1450°C. For the starting materials use is made of quartz sand, dolomite (CaCO₃·MgCO₃) and the carbonates of Li, Na, K, Sr and Ba. For the refining agent use is made of Na₂SO₄. During melting and further processing no particular problems occur. For comparison, Table I shows an example of a glass having a low sodium content in accordance with United States Patent Specification US 4 925 582.

Table I Glass composition according to a particularly favorable embodiment of the invention

constituents	composition in wt.%	
	glass in accordance	glass in accordance
	with the invention	with US 4 925 582
SiO ₂	68	62.8
Al ₂ O ₃	<0.1	4.0
Li ₂ O	1.6	2.8
Na ₂ O	1.9	0.05
K ₂ O	11	12.7
MgO	2.4	1.4
CaO	4.5	2.0
SrO	2.1	5.0
BaO	8.3	9.0
SO ₃	0.06	0.15
Fe ₂ O ₃	0.05	0.03
CeO ₂	0.05	0.1

Table II gives the physical properties of the glass composition according to the invention as compared to the known glass composition.

Table II Physical properties of the glass compositions according to Table I

properties	composition in wt.%	
	glass in accordance	glass in accordance
	with the invention	with US 4 925 582
CV ₂₅₋₃₀₀	9.2	9.2
T _{strain} (°C)	480	487
T _{ann} (°C)	515	518
T _{soft} (°C)	700	692
T _{work} (°C)	1015	1008
T _{melt} (°C)	1445	1446
Т _{к100} (°С)	375	368
T _{rho} (°C)	480	471
log(rho) ₂₅₀	10.6	10.4
log(rho) ₃₅₀	8.4	8.3
T _{liq} (°C)	775	920
s.m. (kg/dm ³)	2.62	2.62
W.R. (°C)	315	316

The symbols in Table II have the following meaning:

 $\alpha_{25-300}..(10^{-6})^{\circ}$ C): average coefficient of linear expansion between 25°C and 300°C.

5 T_{strain} (°C) : temperature at which η (viscosity)=10^{14.5}dPa.s, termed strain point.

 T_{ann} (°C) : temperature at which $\eta=10^{13.0}$ dPa.s, termed annealing point.

 T_{soft} (°C) : temperature at which $\eta=10^{7.6}$ dPa.s, termed softening point.

 T_{work} (°C) : temperature at which $\eta=10^{4.0}$ dPa.s, termed working temperature.

 T_{melt} (°C) : temperature at which $\eta=10^{2.0}$ dPa.s, termed melting point.

10 rho (ohm.cm) : specific resistance.

 $T_{\kappa 100}$ (°C) : temperature at which rho=10⁸ ohm.cm.

 T_{rho} (°C) : temperature at which rho=10^{6.52} ohm.cm.

log(rho)₂₅₀ : logarithm to the base 10 of rho at 250°C.

log(rho)₃₅₀ : logarithm to the base 10 of rho at 350°C.

10

15

20

25

30

T_{liq} (°C) : temperature above which the glass no longer crystallizes.

s.m. (kg/dm³) : specific mass.

W.R. (°C) : Working Range = $T_{work} - T_{soft}$

The striking result of the comparison of glass compositions in Table II is that all physical properties are approximately the same for the glass composition in accordance with the invention and for the known glass composition, except for the liquidus temperature which is approximately 140° C lower than that of the known glass composition. Said low T_{liq} enables the glass to be drawn into tubes which are free of crystals. The wide Working Range and the low T_{soft} have a favorable effect on the shaping process, for example the Danner or Vello process.

Surprisingly, the mercury consumption of mercury vapor discharge lamps made from the glass with a composition according to the invention is approximately the same as that for mercury vapor discharge lamp made from the known glass. The use of the glass according to the invention leads to a comparable mercury consumption in the lamp. The use of the glass according to the invention causes an internal protective coating, for example, of e.g. Y_2O_3 , to be redundant. An additional advantage of the glass is that it has a relatively wide Working Range, a relatively low T_{soft} and a favorable T_{liq} , so that the glass can be drawn into glass tubing without any problems.

Figure 3 shows schematically a perspective side view of a stem for en electric lamp made from a glass with a composition in accordance with the invention. Said stem comprises a flare 23, current supply conductors 22 of copper-clad wire, an exhaust tube 27 and an electrode 23. The flare 23 and the exhaust tube 27 consist of a glass having a glass composition according to the invention. When the lamp envelop (not shown in Figure 3) is provided, the edge or aperture of the lamp envelope and the edge of the flare 23 are sealed together. The lamp envelope is vacuum exhausted via the exhaust tube 27 and, next, inert gas is introduced into the lamp envelope. The exhaust tube is heated and sealed up at the location of reference numeral 28 thereby forming a vacuum-tight pinch.

Figure 4 shows the maintenance M (in %) as a function of the fluorescent powder weight w_{fp} (is the amount of fluorescent powder per surface area present on the inner wall of the discharge vessel) of a low-pressure mercury-vapor discharge lamp with a lamp envelope made from a glass with a composition in accordance with the invention (squares in Figure 4) as compared to a lamp envelope made from the known glass (triangles in Figure 4). The low-pressure mercury vapor discharge lamps (both PL-C lamps) have been burning for

10

approximately 3000 hours in a so-called 165/15 cycle, known in the art. Taking into account error margins of approximately 3%, the maintenance results for the glass composition according to the invention are slightly better than that of the known glass.

It will be evident that many variations within the scope of the invention can be conceived by those skilled in the art.

The scope of the invention is not limited to the embodiments. The invention resides in each new characteristic feature and each combination of novel characteristic features. Any reference signs do not limit the scope of the claims. The word "comprising" does not exclude the presence of other elements or steps than those listed in a claim. Use of the word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements.

- 8. 07. ²⁰⁰²

28.06.2002

CLAIMS:

5

10

20

51)

1. An electric lamp comprising a glass component, the composition of the glass component being substantially free of PbO and comprising, expressed as a percentage by weight, the following constituents:

55-70 weight% SiO₂,

<0.1 weight% Al₂O₃,

0.5-4 weight% Li₂O,

0.5-3 weight% Na₂O,

10-15 weight% K_2O ,

0-3 weight% MgO,

0-4 weight% CaO,

0.5-5 weight% SrO,

7-10 weight% BaO.

2. The electric lamp as claimed in claim 1, characterized in that the composition of the glass component comprises:

65-70 weight% SiO₂,

1.4-2.2 weight% Li₂O,

1.5-2.5 weight% Na₂O,

11-12.3 weight% K_2O ,

1.8-2.6 weight% MgO,

2.5-5 weight% CaO,

2-3.5 weight% SrO,

8-9.5 weight% BaO.

25 3. The electric lamp as claimed in claim 1 or 2, characterized in that the composition of the glass component in addition comprises: 0.01-0.2 weight% Fe₂O₃ or 0.01-0.2 weight% CeO₂.

- 4. The electric lamp as claimed in claim 1 or 2, characterized in that the composition of the glass component in addition comprises: 0.01-0.2 weight% SO₃.
- 5. The electric lamp as claimed in claim 1 or 2, characterized in that the sum of the concentrations of Li₂O, Na₂O and K₂O is in the range from 14-16 weight%.
 - 6. The electric lamp as claimed in claim 1 or 2, characterized in that the sum of the concentrations of SrO and BaO is in the range from 10-12.5 weight%.
- 10 7. A stem for an electric lamp having a glass portion, the glass portion having a composition as claimed in claim 1 or 2.
 - 8. A lamp envelope which is manufactured from a glass having a composition as claimed in claim 1 or 2.
 - 9. The lamp envelope as claimed in Claim 8, characterized in that the lamp envelope is tubular.
- 10. A mercury vapor discharge lamp comprising a lamp envelope, the lamp
 20 envelope enclosing, in a gastight manner, a discharge space provided with a filling of
 mercury and a rare gas, the lamp envelope comprising discharge means for maintaining a
 discharge in the discharge space, characterized in that the lamp envelope is made from a glass
 having a composition as claimed in claim 1 or 2.
- 25 11. A glass for use in glass components of electric lamps, the glass having a composition as claimed in claim 1 or 2.

28.06.2002

ABSTRACT:

EPO - DG 1

-8. 07. 2002

(51)

The electric lamp has a glass component with a composition which according to the invention is substantially free of PbO and has the following constituents: 55-70 wt.% SiO_2 , <0.1 weight% Al_2O_3 , 0.5–4 weight% Li_2O , 0.5–3 weight% Na_2O , 10–15 wt.% K_2O , 0–3 wt.% MgO, 0–4 wt.% CaO, 0.5–5 wt.% SrO, 7–10 wt.% BaO. Preferably, the composition of the glass comprises: 65-70 wt.% SiO_2 , 1.4–2.2 wt.% Li_2O , 1.5–2.5 wt.% Na_2O , 11–12.3 wt.% K_2O , 1.8–2.6 wt.% MgO, 2.5–5 wt.% CaO, 2–3.5 wt.% SrO, 8–9.5 wt.% CaO, 2–3.5 wt.% CaO, 2–3

10

5

Figure 2

1/3

- 8. 07. 2002

FIG. 2

FIG. 3

