UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Nejc Ševerkar, Matija Šteblaj Spojena kubična Bezierjeva krpa

RPGO

Kazalo

1	\mathbf{Inte}	erpolacija razsevnih podatkov v prostoru	3
	1.1	Aproksimacija parcialnih odvodov	ુ
	1.2	Postopek	4

1 Interpolacija razsevnih podatkov v prostoru

Prejšnjo metodo želimo uporabiti na problemu interpolacije točk $P = (p_i)_{i=1}^n$, kjer je $p_i = (x_i, y_i, z_i) \in \mathbb{R}^3$. Torej mislimo si, da te podatki ležijo na grafu neke zvezno odvedljive funkcije f, ki pa je seveda ne poznamo. Spomnimo se, da metoda Goodman-Said zahteva poleg vrednosti še parcialne odvode prvega reda v točkah $(x_i, y_i)_{i=1}^n$. Ker teh nimamo, jih moramo oceniti.

1.1 Aproksimacija parcialnih odvodov

Recimo, da ocenjujemo odvoda v testni točki $p_k \in P$ (natančneje je to odvod f v (x_k, y_k)). To bomo storili v treh korakih.

1. Za oceno odvoda v p_k bomo seveda potrebovali neke informacije o vrednostih f v točkah blizu (x_k, y_k) . Vse kar imamo na voljo so točke (x_i, y_i) , torej izmed njih izberemo tiste, ki so (x_k, y_k) dovolj blizu. To naredimo z izborom radija r_k in obravnavo točk $p_j \in P$, za katere velja

$$d((x_j, y_j), (x_k, y_k)) = d_j^k \in (0, r_k].$$

Označimo množico indeksov teh z J_k .

2. Ker tudi med izbranimi točkami prioritiziramo tiste, ki so naši testni točki bližje, jih ustrezno utežimo. Za $j \in J_k$ definiramo

$$w_j^k := \frac{r_k - d_j^k}{r_k \cdot d_j^k},$$

utež točke p_j glede na p_k .

3. Za p_k definirajmo interpolacijski polinom druge stopnje kot

$$p(x,y) := z_k + a(x - x_k)^2 + b(x - x_k) \cdot (y - y_k) + c(y - y_k)^2 + d(x - x_k) + e(y - y_k)$$

kjer so $a,b,c,d,e\in\mathbb{R}$ nedoločeni koeficienti in velja

$$p_x(x_k, y_k) = d$$
 in $p_y(x_k, y_k) = e$.

Ti vrednosti bosta oceni za parcialna odvoda v točki p_k . Da bo to smiselno, mora ta polinom v okolici (x_k, y_k) dobro aproksimirati funckijo f, torej (x_j, y_j) za $j \in J_k$. Če upoštevamo še uteži posamezne točke, so vrednosti doloćene z minimizacijskim problemom

$$\sum_{j \in J_k} (w_j^k \cdot (p(x_j, y_j) - z_j))^2 = \|W_k \cdot Au - W_k \cdot v\|^2,$$

kjer so za $J_k = \{j_1, j_2, \dots, j_{n_k}\}$

$$W_{k} = \begin{bmatrix} w_{j_{1}}^{k} & & & \\ & w_{j_{2}}^{k} & & \\ & & \ddots & \\ & & & w_{j_{n_{k}}}^{k} \end{bmatrix}, \quad v = \begin{bmatrix} z_{j_{1}} - z_{k} \\ z_{j_{2}} - z_{k} \\ \vdots \\ z_{j_{n_{k}}} - z_{k} \end{bmatrix}, \quad u = \begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix} \quad \text{in}$$

$$A = \begin{bmatrix} (x_{j_1} - x_k)^2 & (x_{j_1} - x_k) \cdot (y_{j_1} - y_k) & (y_{j_1} - y_k)^2 & (x_{j_1} - x_k) & (y_{j_1} - y_k) \\ (x_{j_2} - x_k)^2 & (x_{j_2} - x_k) \cdot (y_{j_2} - y_k) & (y_{j_2} - y_k)^2 & (x_{j_2} - x_k) & (y_{j_2} - y_k) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (x_{j_{n_k}} - x_k)^2 & (x_{j_{n_k}} - x_k) \cdot (y_{j_{n_k}} - y_k) & (y_{j_{n_k}} - y_k)^2 & (x_{j_{n_k}} - x_k) & (y_{j_{n_k}} - y_k) \end{bmatrix}$$

Seveda to rešujemo z metodo najmanjših kvadratov, kjer pa moramo predpostaviti, da je točk znotraj radija dovolj, torej $|J_k| \ge 5$.

1.2 Postopek

Sedaj lahko opišemo postopek interpolacije točk v P, ki poteka v treh korakih

- 1. V vsaki točki $p_k \in P$ ocenimo parcialne odvode.
- 2. Trianguliramo točke $(x_i,y_i)_{i=1}^n$ z neko triangulacijsko metodo.
- 3. Na vsakem trikotniku T konstruiramo lokalno shemo z metodo Goodman-Said in shranimo matriko koeficientov, definiranih v prvem poglavju

$$B_T = \begin{vmatrix} b_{300} & b_{210} & b_{120} & b_{030} \\ b_{201} & \square & b_{021} & \square \\ b_{102} & b_{012} & \square & b_{1112} \\ b_{003} & \square & b_{1113} & b_{1111} \end{vmatrix}$$

Seznam matrik B_T nad vsakem trikotniku triangulacije T,skupaj z njo definirajo naš zlepek.