Congratulations! You passed!

Grade Latest Submission received 100% Grade 100%

To pass 70% or higher

Go to next item

1. In the training set below, what is $x_4^{(3)}$? Please type in the number below (this is an integer such as 123, no decimal 1/1 point

	Size in feet ²	Number of bedrooms	Number of floors	Age of home in years	Price (\$) in \$1000's
	X1	X ₂	Хз	Хų	
Ī	2104	5	1	45	460
	1416	3	2	40	232
	1534	3	2	30	315
	852	2	1	36	178

 \bigcirc Correct Yesl $x_4^{(3)}$ is the 4th feature (4th column in the table) of the 3rd training example (3rd row in the table).

1/1 point O It makes your code run faster O It can make your code shorter $\begin{tabular}{l} \hline \end{tabular} It allows your code to run more easily on parallel compute hardware \\ \hline \end{tabular}$ All of the above correct
Correct! All of these are benefits of vectorization!

 $\begin{tabular}{ll} {\bf 3.} & {\it True/False7} {\it To make gradient descent converge about twice as fast, a technique that almost always works is to double the learning rate $alpha$. \\ \end{tabular}$

O True

False

Correct Doubling the learning rate may result in a learning rate that is too large, and cause gradient descent to fail to find the optimal values for the parameters ur and b.