

Introduction	Representations	Prediction	Updating	Examples	Wrap-up
Lancia de la					
Introduc	tion				
a Δ fun	damental part of	mobile robot	ice		
	oroblems:	mobile robot	ics		
	Pose initialisation /	/ Kidnanned Ro	phot		
	 Initialising the 				
2 F	Pose Maintenance	-,	.,		
	 Updating pose 	as the robot mo	ves about		
			4 □ →	(0) + (2) + (2)	∌ •9∢∂
	(DIMACT)	I a saltanata		Falances E C	0000 4 / 60

Introduction	Representations	Prediction	Updating	Examples	Wrap-up
Approach					
Approach					
Updatir	inty in vehicle g the pose est ection of differen	imate	, ()	(Ø) + (2) + (2) + (3) + (4) +	≥ ⊅a (~ 8 / 62
H. I. Christensen	(KIMWGT)	Localization		repruary 5, 2008	0 / 02

Introduction	Representations	Prediction	Updating	Examples	Wrap-up
Prediction	n of vehicle	motion			
As par	er the process a t of the movement f the robot and	ent step there	e is a need to		
Predic	tion is based ent bot as discussed	tirely on odor	netric informa		
	ainty is modelle sensing	d by covarian	ce propagatio	on as discusse	d in
			←□→	(♂) (E) (E)	<u>হ</u> ৩৭৫

Introduction	Representations	Prediction	Updating	Examples	Wrap-up
Model for	differential	drive robot	t		
Y ₁	YR 0 XI	• A motion of by Δs_l and	$p = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$ of left and right Δs_r respective between the	ght wheel tively. the wheel	
ri. i. Christenser	(KIIVIEGT)	Localization		repruary 5, 2008	10 / 62

• Consequently:

$$\Delta s = \frac{\Delta s_l + \Delta s_r}{2}$$

$$\Delta \theta = \frac{\Delta s_r - \Delta s_l}{2l}$$

$$\Delta x = \Delta s \cos \left(\theta + \frac{\Delta \theta}{2}\right)$$

$$\Delta y = \Delta s \sin \left(\theta + \frac{\Delta \theta}{2}\right)$$

Pose prediction - Differential drive robot

• Or in condensed form:

$$p' = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} \Delta s \cos\left(\theta + \frac{\Delta \theta}{2}\right) \\ \Delta s \sin\left(\theta + \frac{\Delta \theta}{2}\right) \\ \frac{\Delta s_r - \Delta s_l}{2l} \end{bmatrix}$$

Pose Prediction – Uncertainty estimate

- ullet Need to provide an estimate of uncertainty in position $\Sigma_{p'}$
- ullet Assume the initial uncertainty is Σ_p
- Assume motion uncertainty is

$$\Sigma_{\Delta} = \left[egin{array}{cc} k_r | \Delta s_r | & 0 \ 0 & k_l | \Delta s_l | \end{array}
ight]$$

- Assumption of uncertainty, and proportional to distance travelled.
- \bullet k_i is determined by calibration

Pose prediction – Uncertainty estimate

• Update can be generate by covariance propagation, i.e.:

$$\Sigma_{p'} = \nabla_p f \Sigma_p \nabla_p f^T + \nabla_{\Delta_{rl}} f \Sigma_\Delta \nabla_{\Delta_{rl}} f^T$$

 \bullet Where $\nabla_p f$ and $\nabla_{\Delta_{rl}} f$ is the Jacobians for the pose and the motion, respectively.

Introduction	Representations	Prediction	Updating	Examples	Wrap-up
Outline					
1 Introdu	ction				
Represe	ntations				
Predicti	on				
GaussSumProbs	logical Pose Esti sian PDF of Gaussian PDF ability Grids e-Carlo Methods	=			
5 Example	es				
6 Wrap-u	р				
			4 □ →	1 3 > 12 > 12 >	≣ •9q.0•
H. I. Christens	en (RIM@GT)	Localization		February 5, 2008	24 / 62

The selection of an uncertainty model influences the updating methodology The uncertainty model is coupled to the environmental representation The model influences strongly the computational requirements

Uncertainty modelling - Markov Approach

- Markov assumption: all knowledge encoded in the pose/state estimate
- There is a probability model for motion updating
- ullet There is a model for p(z|s) i.e. a sensor model, as

$$p(s|z) = \frac{p(z|s)p(s)}{p(z)}$$

where p(s) is location model and p(z) is the sensor noise model

• These assumptions are relative weak

Topological modelling - dervish example

	Wall	Closed door	Open door	Open hallway	Foyer
Nothing detected	0.70	0.40	0.05	0.001	0.30
Closed door detected	0.30	0.60	0	0	0.05
Open door detected	0	0	0.90	0.10	0.15
Open hallway detected	0	0	0.001	0.90	0.50

Topological modelling – dervish example

- Here the probability updating is used for direct lookup of p(s|z), where s is any of the nodes in the topological map
- As robot moved through environment the graph is updated with new information
- The probability table is small and efficient to handle
- The localisation is coarse (location oriented)

Pose estimation with Gaussian Model

• The pose is approximated by a single Gaussian function

$$p(s) = \frac{1}{\sqrt{2\pi\Sigma_s}} \exp\left(\frac{1}{2}(s-\bar{s})\Sigma_s^{-1}(s-\bar{s})^T\right)^2$$

- ullet s is here a continuous function and Σ_s is the associated uncertainty
- Updating is normally performed using a Kalman filter model

Kalman filter – State space model $s_t = Fs_{t-1} + Gu_t + w_t$ $z_t = Hs_t + v_t$ ullet where F is the system model, G is the deterministic input, H is a prediction of where features are in the world, w is the system noise, and v is the measurement noise Detour - Probability Updating ullet Assume two measurement \emph{x}_1 and \emph{x}_2 with associated uncertainties σ_1 and σ_2 . How does one generate an optimal estimate \hat{x} ? • Doing a weighted least square $S = \sum_{i=1,2} w_i (\hat{x} - x_i)^2$ what are the optimal weights w_i ? • From $\frac{\partial S}{\partial \hat{x}} = 0$ we get . . . Detour - Probability Updating with $w_i = \frac{1}{\sigma_i^2}$ we get $\hat{x} = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2} x_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} x_2$ and $\sigma_{\hat{x}} = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}$ Detour - Probability Updating • The update can be rewritten to $\hat{x} = x_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (x_2 - x_1)$ ullet l.e. the updating = the value + a correction term

Kalman Prediction $s_{t t-1} = Fs_{t-1 t-1} + Gu_t$ $\Sigma_{t t-1} = F\Sigma_{t-1 t-1}F^T + Q_t$ where Q is the uncertainty of the kinematic motion (odometric uncertainty)	Introduction	Representations	Prediction	Updating	Examples	Wrap-up
$s_{t t-1} = Fs_{t-1 t-1} + Gu_t$ $\Sigma_{t t-1} = F\Sigma_{t-1 t-1}F^T + Q_t$ where Q is the uncertainty of the kinematic motion (odometric uncertainty)	Kalman	Dradiction				
$\Sigma_{t t-1} \ = \ F \Sigma_{t-1 t-1} F^T + Q_t$ where Q is the uncertainty of the kinematic motion (odometric uncertainty)	Naiillaii	riediction				
$\Sigma_{t t-1} \ = \ F \Sigma_{t-1 t-1} F^T + Q_t$ where Q is the uncertainty of the kinematic motion (odometric uncertainty)						
$\Sigma_{t t-1} \ = \ F \Sigma_{t-1 t-1} F^T + Q_t$ where Q is the uncertainty of the kinematic motion (odometric uncertainty)						
$\Sigma_{t t-1} \ = \ F \Sigma_{t-1 t-1} F^T + Q_t$ where Q is the uncertainty of the kinematic motion (odometric uncertainty)						
$\Sigma_{t t-1} \ = \ F \Sigma_{t-1 t-1} F^T + Q_t$ where Q is the uncertainty of the kinematic motion (odometric uncertainty)						
$\Sigma_{t t-1} \ = \ F \Sigma_{t-1 t-1} F^T + Q_t$ where Q is the uncertainty of the kinematic motion (odometric uncertainty)						
$\Sigma_{t t-1} \ = \ F \Sigma_{t-1 t-1} F^T + Q_t$ where Q is the uncertainty of the kinematic motion (odometric uncertainty)						
where Q is the uncertainty of the kinematic motion (odometric uncertainty)		$s_{t t-1}$	$_{L} = Fs_{t-1 t}$	$_{-1}+\mathit{Gu}_{t}$		
where Q is the uncertainty of the kinematic motion (odometric uncertainty)		$\sum_{t t=1}$	$= F\Sigma_{t-1}$	$_{t-1}F^T + Q_t$		
uncertainty)		.,.				
uncertainty)						
uncertainty)	where Q is	the uncertainty	of the kinema	atic motion (odometric	
(D) (B) (E) (E) E OQO			0. 1	(0400	
	ancortaint)	,				
H. I. Clinistensen (Kilwistor) Localization February 5, 2008 38 / 02	H. I. Christen	(DIMACT)	Lastination			
	H. I. Christens	en (KiwwGT)	Localization		rebruary 5, 2008	30 / 02

Introduction Representations Prediction Updating Examples Wrap-up Kalman Updating

$$\begin{array}{rcl} s_{t|t} & = & s_{t|t-1} + K_t(z_t - Hs_{t|t-1}) \\ K_t & = & \Sigma_{t|t-1}H^TS_t^{-1} \\ S_t & = & H\Sigma_{t|t-1}H^T + R_t \\ \Sigma_{t|t} & = & (I - K_tH)\Sigma_{t|t-1} \end{array}$$

Introduction	Representations	Prediction	Updating	Examples	Wrap-up
Kalman i	nterpretation				
r (dilitidii 1	incorprectation				
 F is th 	ne kinematic upda	ite			
 H is th 	he measurement p	prediction $p($	z s) ie a pred	iction of where	:
feature	es in the world are	e in the sens	ory frame		
Σ is th	ne uncertainty in t	the pose/sta	te estimate <i>s</i>	t t·	
 S_t is t 	he uncertainty in	the sensory	measurement	S	
R₄ is t	he sensor noise	•			
	and senser mease				
H I Christones	on (PIMOCT)	Localization	4 D >	(d) > (∃ > (∃ > Echruppy 5, 2009)	₹ •9 q (~

Introduction	Representations	Prediction	Updating	Examples	Wrap-up
Kalman -	- Discussion				
rtaiman	Discussion				
Makes	an assumption	of a single po	ose estimate		
Bv far	the most freque	ently used mo	odel		
_*	o compute.	,			
	·	d can be diffi	cul+ Eor non	linear system	- +ha+
	ation of F and F cobians and mus			•	s tilat
are Ja	CODIAIIS AIIU IIIUS	st be comput	ed for each st	ep.	
			4 🗆 >	(41) (3) (3)	₹ 900°
H. I. Christens	en (RIM@GT)	Localizatio		February 5, 20	

Sometimes there might be multiple interpretations of the feature matches
Each interpretation generates a hypothesis for the robot pose
Multiple Distributions are generated and a number of them are used in "different" Kalman updates.
When a model receives no matches or the uncertainty grows too large, i.e. trace(Σ) > δ then the model is terminated.
Can be computationally challenging

Monte-Ca	Representations arlo Discussio	Prediction On	Updating	Examples	Wrap-up
 Efficier 	nt to approximat	te any distribut	ion of the p	oose	
• The nu	umber of particle used both for s	es can be adopt	ted to a par	ticular platfo	rm
Can be	. used both for s	imple and mur	11 10001 1001	ansation	
	(0.1.10.07)		4 D >	(0) (2) (2)	₹ •0৭°
H. I. Christense	n (RIMQGT)	Localization		February 5, 20	008 58 / 62

III COULCTION	Representations	i rediction	Opuating	Examples	vviap-up
Outline					
1 Introduc	ction				
2 Represe	ntations				
Operation of the second of	on				
GaussSumProba	g ogical Pose Estin sian PDF of Gaussian PDF ability Grids e-Carlo Methods				
5 Example	es				
6 Wrap-u					
H. I. Christens	en (RIM@GT)	Localization	←□→	(∅) (€) (€) February 5, 200	₹ •9 q (~ 18 59 / 62

ocalisation / Mapping Example	
Now mapping and localisation is also integrated to allow for autonomous operation in general environments	
• The mapping and localisation can be integrated to generate – Simultaneous Localisation and Mapping (SLAM)	
 Indoor example VIDEO 	
Outdoor example VIDEO	
	_

Introduction	Representations	Prediction	Updating	Examples	Wrap-up
Wrap-Up					
 Localis 	ation is a funda	mental comp	etence in mo	bile robotics	
Involve	s two major ste	eps			
	ediction of motion		nodelling)		
	ethod used dep			del for handl	ing of
 Brief in 	troduction to t	he main meth	nods for estim	nation	
A few i	llustrative exan	nples			
H. I. Christenser	(RIMØGT)	Localization		+ ⊕ → ← ≥ → ← ≥ → February 5, 2	008 62 / 62