Homework 4: IERG 6300

Due date: October 28, 2019.

Some useful definitions

Definition 1. Mutual independence of events: We say events $A_1, ..., A_n$ to be mutually independent if for all $1 \le i_1 < \cdots i_k \le n$ we have $\prod_{l=1}^m P(A_{i_l}) = P(\cap_l A_{i_l})$.

Exercises

- 1. Construct an example of three events such that $P(A \cap B \cap C) = P(A)P(B)P(C)$, but the events are not mutually independent.
- 2. Let $\{X_i\}$ be an *uniformly-integrable* zero-mean sequence of independent random variables. Define $S_n := X_1 + \cdots + X_n$. Show that

$$\phi_{\frac{S_n}{n}}(t) \to 1 \quad \forall t,$$

and, using Levy's continutity theorem about weak convergence, deduce that $\frac{S_n}{n}$ converges in measure to 0, the constant random variable.

- 3. Let X be a random variable that takes countable infinite many values with positive probability, i.e. $P(X=i)=p_i>0 \quad \forall i\in\mathbb{N}$. Let X_1,\ldots,X_n,\ldots be independent random variables distributed identically to X. Let D_n be the number of distinct elements seen in the first n observations X_1,\ldots,X_n . Show that
 - (a) $D_n \to \infty$ a.s.
 - (b) $\frac{1}{n}E(D_n) \to 0$, and hence deduce that $\frac{D_n}{n} \to 0$ in measure.
- 4. Let $X_1, ..., X_n, ...$ be a sequence of mutually independent and identically distributed U[0,1] random variables (i.e. uniformly distributed on [0,1]). Let $B_1 = 1$ and for $i \geq 2$ let $B_i = 1_{X_i > \max\{X_1,...,X_{i-1}\}}$. Further let $R_n = \sum_{i=1}^n B_i$, it denotes the number of times the previous highest was beaten.

- (a) Argue that B_i 's are mutually independent Bernoulli random variables with ${\rm P}(B_i=1)=\frac{1}{i}.$
- (b) Show that $\frac{b_n}{\log n} \to 1$ where $b_n = \text{var}(R_n)$.
- (c) Show that Lindeberg's CLT applies to $X_{n,k}:=\frac{1}{\sqrt{\log n}}(B_k-\frac{1}{k}), n\geq 2, 1\leq k\leq n.$
- (d) Argue that $\frac{E(R_n)-\log n}{\sqrt{\log n}} \to G$, where G is the standard Gaussian.