Computer Science G11 at The Dragon Academy Assignment 4

November 5, 2018

Assume in all questions that the *relative phase* of any state is 0, i.e., we can treat the components of the state vectors as numbers. All questions weigh the same.

- 1. (KtiCa) A qubit is in the state given by $|s\rangle$ in figure 1a.
 - (a) Determine the expression of $|s\rangle$ in terms of the fundamental states $|0\rangle$, $|1\rangle$, that is, write $|s\rangle$ in the form $a|0\rangle + b|1\rangle$.
 - (b) What is the probability to find the qubit in state $|0\rangle$?
 - (c) What is the probability to find the qubit in state $|1\rangle$?
- 2. (KtiCa) Repeat exercise 1 for figures 1b and 1c.

- 3. (kTICa) What is the expression of the qubit in figure 1d?
- 4. (kticA) If $\alpha = 45^{\circ}$, what is the expression of the qubit in figure 1d?
- 5. (KtiCa) What is the *action* of the gate **Z** on the states $|+\rangle$ and $|-\rangle$?
- 6. (KtiCa) Let's name by $|+\rangle$ the combination $(|0\rangle + |1\rangle)/\sqrt(2)$. What is the action of the gate **X** on the state $|+\rangle$?
- 7. (KtiCa) Let's name by $|-\rangle$ the combination $(|0\rangle |1\rangle)/\sqrt(2)$. What is the *action* of the gate **X** on the state $|-\rangle$?

- 8. (kticA) Consider the Hadamard gate H
 - (a) Evaluate $\mathbf{H}|0\rangle$
 - (b) Evaluate $\mathbf{H} | 1 \rangle$
 - (c) Evaluate $\mathbf{H} \ket{+}$
 - (d) Evaluate $\mathbf{H} | \rangle$
- 9. (kTIca) From your answers to exercise 8, what is the inverse of the gate H? See figure 2a.
- 10. (KticA) Determine the output state $|s\rangle$ from the circuit of figure 2b.

(a) What's the gate that undoes what **H** does so that the output is the same as the input $|w\rangle$?

- (b) What's the output $|s\rangle$? Write it in terms of the fundamental states $|o\rangle$, $|1\rangle$
- 11. (KticA) Consider the quantum circuit of figure 3 that operates on 2-qubits.
 - (a) Determine the state $|w_0\rangle$ in terms of the fundamental states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$.
 - (b) Determine the state $|w_1\rangle$ in terms of the fundamental states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$.
 - (c) Determine the state $|w_2\rangle$ in terms of the fundamental states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$.
 - (d) Determine the state $|w_3\rangle$ in terms of the fundamental states $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$.

Figure 3: 2-qubits Quantum circuit

- 12. (KTIca) At the end of the previous circuit (see Fig.3), what is the probability of the system of 2-qubits to be in the states
 - a) $|00\rangle$

b) |01\

c) |10\

- d) |11\
- 13. (KTIca) Are the two qubits entangled at any of the following four states?
 - a) $|w_0\rangle$

b) $|w_1\rangle$

c) $|w_2\rangle$

d) $|w_3\rangle$