ساختمانهای گسسته

گراف

Dr. Aref Karimiafshar A.karimiafshar@ec.iut.ac.ir

گراف فاصله

گراف زمان

گراف هزینه

گرافهای وزندار

- گراف وزن دار ←گرافی که به هر یال آن یک عدد نسبت داده شود!
 - به منظور مدل کردن سیستمها و روابط آنها
 - شبکههای کامپیوتری
 - هزينه ارتباط
 - زمان پاسخ
 - فاصله

یافتن کوتاهترین مسیر

- طول مسیر در گراف وزندار ← مجموع وزن یالها در یک مسیر!!!
 - کوتاهترین مسیر ← کوچکترین طول مسیر!

- پیدا کردن کوتاهترین مسیر
 - الگوریتمهای حریصانه
- الگوریتمهای جست و جوی فراگیر

الگوريتم Dijkstra

procedure *Dijkstra*(*G*: weighted connected simple graph, with all weights positive)

{*G* has vertices $a = v_0, v_1, \dots, v_n = z$ and lengths $w(v_i, v_j)$ where $w(v_i, v_j) = \infty$ if $\{v_i, v_j\}$ is not an edge in *G*}

for
$$i := 1$$
 to n
 $L(v_i) := \infty$

$$L(a) := 0$$

$$S := \emptyset$$

{the labels are now initialized so that the label of a is 0 and all other labels are ∞ , and S is the empty set}

u := a vertex not in S with L(u) minimal

$$S := S \cup \{u\}$$

for all vertices *v* not in *S*

if
$$L(u) + w(u, v) < L(v)$$
 then $L(v) := L(u) + w(u, v)$

{this adds a vertex to S with minimal label and updates the labels of vertices not in S}

return L(z) {L(z) = length of a shortest path from a to z}

الگوریتم Dijkstra

• مثال:

کوتاهترین مسیر در گراف زیر را با استفاده از الگوریتم Dijkstra بیابید.

برچسب گذاری اولیه

(a)

a, c, b, d, e, z

مسئله اتصال (آب، برق و گاز) به سه خانه

• آیا امکان دارد که آب، برق و گاز به این سه خانه متصل شود بدون اینکه خطوط آنها همدیگر را قطع کنند؟

مسئله اتصال (آب، برق و گاز) به سه خانه

- آیا امکان دارد که آب، برق و گاز به این سه خانه متصل شود بدون اینکه خطوط آنها همدیگر را قطع کنند؟
- مشابه سازی مسئله: آیا امکان دارد گراف دوبخشی کامل K_{3,3} را به نحوی در صفحه رسم کنیم که یالها به جزء در رئوس یکدیگر را قطع نکنند؟!

مثالهای مشابه

 K_4

Q

گرافهای مسطح

• گراف مسطح

 گرافی که بتوان آن را به نحوی در صفحه رسم کرد که یالهای آن همدیگر را قطع نکنند مگر در رئوس!

• نمایش مسطح

- به نمایشی از گراف که در آن یالها همدیگر را قطع نکنند نمایش مسطح
 گراف گویند.
- با توجه به اینکه یک گراف می تواند نمایشهای مختلفی داشته باشد (مسطح و غیرمسطح) حتی اگر در نمایشی یالها همدیگر را قطع کنند باز این امکان وجود دارد که آن گراف مسطح باشد

مسئله اتصال (آب، برق و گاز) به سه خانه

فرمول اويلر

- اگر G یک گراف ساده مسطح همبند باشد
 - e با تعداد رئوس ∨ و تعداد یالهای −
- چنانچه r تعداد نواحی موجود در نمایش مسطح G باشد
 داریم:

$$r = e - v + 2$$

• مثال:

یک گراف ساده مسطح همبند با 20 راس را در نظر بگیرید که هر راس آن از درجه 3 باشد. نمایش مسطح این گراف، صفحه را به چند ناحیه تقسیم می کند؟

$$3v = 3 \cdot 20 = 60$$
 \longrightarrow $2e = 60$ \longrightarrow $e = 30$
 $r = e - v + 2 = 30 - 20 + 2 = 12$

چند نکته

- دریک گراف مسطح همبند هریال دریک یا دو وجه (ناحیه) قرار دارد.
 - هریال برشی دقیقا دریک وجه قرار دارد.
 - هریال غیربرشی دقیقا در دو وجه قرار دارد.

نتایج فرمول اویلر

- اگر G یک گراف ساده مسطح همبند باشد
 - e با تعداد رئوس ۷ و تعداد یالهای −

$$v \geq 3$$

داریم:

$$e \leq 3v - 6$$

اثبات:

$$2e = \sum_{\text{all regions } R} \deg(R) \ge 3r \qquad \longrightarrow (2/3)e \ge r = e - v + 2$$

$$e - v + 2 \le (2/3)e \longrightarrow e/3 \le v - 2 \longrightarrow e < 3v - 6$$

نتایج فرمول اویلر

- اگر G یک گراف ساده مسطح همبند باشد
 - e با تعداد رئوس ∨ و تعداد يالهاي
 - $v \geq 3$
 - هیچ مداری با طول سه نداشته باشیم
 - داریم:

$$e \leq 2v - 4$$

نتایج فرمول اویلر

• اگر G یک گراف سادہ مسطح همبند باشد آنگاہ G دارای راسی است که درجه آن از پنچ بیشتر نیست.

اثبات:

$$e \leq 3v - 6$$

$$\longrightarrow$$

$$2e \le 6v - 12$$

$$2e = \sum_{v \in V} \deg(v)$$
 \longrightarrow $2e \ge 6v$

$$\longrightarrow$$

$$2e \ge 6v$$

• نشان دهید که گراف K5 مسطح نیست.

$$e \le 3v - 6 \qquad \longrightarrow \qquad 3v - 6 = 9$$
$$e = 10$$

• نشان دهید که گراف K_{3,3} مسطح نیست.

$$e = 9 \le 12 = 3 \cdot 6 - 6$$

$$e \le 2v - 4 \qquad \longrightarrow \qquad e = 9$$

$$2v - 4 = 8$$

قضیه Kuratowski

- تعریف
- زیر تقسیم مقدماتی:

فافه کردن
$$\{u, v\}$$
 مذف $\{u, w\}$ and $\{w, v\}$

- دو گراف homeomorphic هستند اگر بتوان با دنباله ای از زیر تقسیمهای مقدماتی از یکی به دیگری رسید.

قضیه Kuratowski

یک گراف مسطح است اگر و فقط اگر هیچ زیرگرافی homeomorphic با گراف $K_{3,3}$ یا $K_{3,3}$ نداشته باشد.

• مثال:

قضیه Kuratowski

• مثال:

• رنگ آمیزی شهرها بر روی نقشه

رنگ آمیزی شهرها بر روی نقشه و گراف دوگان
 به هیچ دو راس مجاوری رنگ یکسانی نسبت داده نشود

- برای هر گرافی می توان رنگ آمیزی پیدا کرد که تعداد رنگهای مورد نیاز از تعداد رئوس کمتر باشد!؟
 - تعریف:
 - عدد رنگی گراف (chromatic number):
 - کمترین تعداد رنگی که میتوان برای رنگ آمیزی یک گراف استفاده کرد
 - $\chi(G)$.
 - قضیه:

عدد رنگی یک گراف مسطح بیشتر از چهار نخواهد بود!

• عدد رنگی گرافهای زیر را بدست آورید.

• عدد رنگی گرافهای زیر را بدست آورید.

. عدد رنگی گرافهای K_n و $K_{3,4}$ را بدست آورید. •

$$\chi(K_n) = n$$

$$\chi(K_{m,n}) = 2$$

. عدد رنگی گراف C_n , where $n \geq 3$ ورید. •

$$\chi(C_n) = 2$$

$$\chi(C_n) = 3$$

عدد رنگی گراف و ترتیب پیمایش راسها

پایان

موفق و پیروز باشید