Додатқові розділи теорії ймовірностей та математичної статистики II қурс, група 241(1) (2017-18 н.р., II семестр)

Тем: "Двовимірний статистичний розподіл вибірки та його числові характеристики. Парний статистичний розподіл. Поняття про парну регресію."

Ocrobici megrenirciai navoncerus

1. Abobisijusti enanuenieristi poznogie na tioro ruceobi xapaknepuenieku.

Перелік варіант $Y = y_i$, $X = x_j$ та відповідних їм частот n_{ij} спільної їх появи (тобто пара (x_j, y_i) з'являється у вибірці n_{ij} разів) утворюють **двовимірний статистичний розподіл вибірки**, що реалізована з генеральної сукупності. Елементам цієї вибірки притаманні кількісні ознаки X і Y. У табличній формі цей розподіл має такий вигляд:

Таблиця 1

$Y = y_i$	$X = x_j$							
$I - y_i$	x_1	x_2	•••	x_{j}	•••	\mathcal{X}_{m}	n_{y_i}	
\mathcal{Y}_1	n_{11}	n_{12}	•••	n_{1j}	•••	n_{1m}	n_{y_1}	
\mathcal{Y}_2	n_{21}	n_{22}	•••	n_{2j}	•••	n_{2m}	n_{y_2}	
•••	•••	•••	•••	•••	•••	•••	•••	
${\cal Y}_i$	n_{i1}	n_{i2}	•••	n_{ij}	•••	n_{im}	n_{y_i}	
•••	•••	•••	•••	•••	•••	•••	•••	
${\cal Y}_k$	n_{k1}	n_{k2}	•••	n_{kj}	•••	n_{km}	n_{y_k}	
n_{x_j}	n_{x_1}	n_{x_2}	•••	n_{x_j}	•••	n_{x_m}		

У цій таблиці

$$n_{x_j} = \sum_{i=1}^k n_{ij} = n_{1j} + n_{2j} + \dots + n_{kj},$$
 (1)

(кожне число у нижньому рядку таблиці 1 є сумою частот відповідного стовпця);

$$n_{y_i} = \sum_{i=1}^{m} n_{ij} = n_{i1} + n_{i2} + \dots + n_{im}$$
 (2)

(кожне число в останньому стовпці таблиці 1 є сумою частот відповідного рядка);

$$\sum_{i=1}^{m} n_{x_j} = \sum_{i=1}^{k} n_{y_i} = n ,$$
 (3)

де n - обсяг вибірки.

Для двовимірного статистичного розподілу використовують такі числові характеристики:

Відносно х	Відносно у
$\frac{1}{x} = \frac{\sum_{j=1}^{m} x_j n_{x_j}}{n} \tag{4}$	$\overline{y} = \frac{\sum_{i=1}^{k} y_i n_{y_i}}{n} \tag{5}$
$D_{x} = \frac{\sum_{j=1}^{m} x_{j}^{2} n_{x_{j}}}{n} - \left(\overline{x}\right)^{2} $ (6)	$D_{y} = \frac{\sum_{i=1}^{k} y_{i}^{2} n_{y_{i}}}{n} - (\overline{y})^{2} $ (7)
$\sigma_{x} = \sqrt{D_{x}} $ (8)	$\sigma_{y} = \sqrt{D_{y}} $ (9)

Формулами (4) та (5) даються середні значення, (6) та (7) — дисперсії, а (8) і (9) — середньоквадратичні відхилення x та y відповідно.

Для характеристики наявності та щільності лінійного зв'язку між ознаками двовимірного статистичного розподілу використовують наступні числові характеристики:

$$K_{xy}^* = \frac{\sum_{i=1}^K \sum_{j=1}^m y_i x_j n_{ij}}{n} - \overline{x} \cdot \overline{y}$$
 (10)

та

$$r_{B} = \frac{K_{xy}^{*}}{\sigma_{x}\sigma_{y}}.$$
 (11)

Числова характеристика K_{xy}^* називається **кореляційним моментом** і вказує на наявність ($K_{xy}^* \neq 0$) чи відсутність ($K_{xy}^* = 0$) кореляційного зв'язку між ознаками X та Y .

Числова характеристика r_{B} називається вибірковим коефіцієнтом кореляції. Вона вказує на щільність лінійного зв'язку між ознаками X та Y. Для r_{B} справджується нерівність

$$-1 \le r_B \le 1. \tag{12}$$

Якщо r_B =0, то між X та Y відсутній лінійний зв'язок (але може бути інша форма залежності (див рис.1)).

Рис. 1. Залежність коефіцієнта кореляції від форми зв'язку

Якщо $r_{B}>0$, то зв'язок ознаками X та Y прямий, тобто зі зростанням однієї ознаки збільшується й значення іншої ($x \uparrow \uparrow y$), а в разі $r_{B}<0$ лінійний зв'язок ознаками X та Y обернений (зворотній), тобто зі зростанням однієї ознаки значення іншої зменшується ($x \uparrow \downarrow y$). Сила (щільність) лінійного зв'язку встановлюється за шкалою Чеддока (табл. 2), що ранжує модуль r_{B} .

$ r_B $	Якісна оцінка сили зв'язку
0	Відсутній
0,1 - 0,3	Слабкий
0,3 - 0,5	Помірний
0,5 - 0,7	Помітний
0,7 - 0,9	Високий
0,9 - 0,99	Дуже високий (майже функціональний)
1	Функціональний

Умовним статистичним розподілом $Y/X=x_{j}$ ознаки Y при фіксованому значенні $X=x_{j}$ називається перелік варіант ознаки $Y=y_{i}$ та відповідних їм частот n_{ij} ($1 \le i \le k$), взятих при фіксованому значенні $X=x_{j}$.

V - 11	$X = x_j$							
$Y = y_i$	x_1	x_2		X_{j}		x_m	n_{y_i}	
y_1	n_{11}	n ₁₂		n_{1j}		n_{1m}	n_{y_1}	
y_2	n_{21}	n ₂₂		n_{2j}		n_{2m}	n_{y_2}	
y_i	n_{i1}	n_{i2}		n_{ij}		n_{im}	n_{y_i}	
\mathcal{Y}_k	n_{k1}	n_{k2}		n_{kj}		n_{kn}	n_{y_k}	
n_{x_j}	n_{x_1}	n_{x_2}		n_{x_j}		n_{x_m}		

Для табличного зображення умовного статистичного розподілу $Y/X=x_j$ ми маємо з таблиці 1 взяти 1-й та j-й стовпці (для зручності запишемо їх у такій формі, як записувався дискретний розподіл):

Таблиця 3.1

$Y = y_i$	\mathcal{Y}_1	\mathcal{Y}_2	•••	${\mathcal Y}_i$	•••	${\cal Y}_k$	\sum
n_{ij}	n_{1j}	n_{2j}	•••	n_{ij}	•••	n_{kj}	n_{x_j}

Умовним статистичним розподілом $X / Y = y_i$ ознаки X при фіксованому значенні $Y = y_i$ називається перелік варіант ознаки $X = x_j$ та відповідних їм частот n_{ij} $(1 \le j \le m)$, взятих при фіксованому значенні $Y = y_i$.

V - 11	$X = x_j$							
$Y = y_i$	x_1	x_2		X_{j}		x_m	n_{y_i}	
y_1	n ₁₁	n ₁₂		n_{1j}		n_{1m}	n_{y_1}	
y_2	n ₂₁	n ₂₂		n_{2j}		n_{2m}	n_{y_2}	
y_i	n_{i1}	n _{i2}		n_{ij}		n _{im}	n_{y_i}	
y_k	n_{k1}	n_{k2}		n_{kj}		n_{kn}	n_{y_k}	
n_{x_j}	n_{x_1}	n_{x_2}		n_{x_j}		n_{x_m}		

Табличний вигляд умовного статистичного розподілу $X/Y=y_i$ наведений нижче (табл. 3.2). Для його побудови з таблиці 1 взято рядок значень ознаки X (2-й рядок) та i-й рядок (що відповідає значенню $Y=y_i$):

Таблиця 3.2

$X = x_j$	x_1	x_2	•••	x_{j}	•••	\mathcal{X}_m	Σ
n_{ij}	n_{i1}	n_{i2}	•••	n_{ij}	•••	n_{im}	n_{y_i}

Числові характеристики умовних розподілів

	, , , , , , , , , , , , , , , , , , ,
$Y / X = x_j$	$X/Y = y_i$
$\frac{1}{y_{X=x_{j}}} = \frac{\sum_{i=1}^{k} y_{i} n_{ij}}{n_{x_{j}}} $ (13)	$\frac{1}{x_{Y=y_i}} = \frac{\sum_{j=1}^{m} x_j n_{ij}}{n_{y_i}} $ (14)
$D(Y / X = x_j) = \frac{\sum_{i=1}^{k} y_i^2 n_{ij}}{n_{x_j}} - (\overline{y}_{X=x_j})^2 $ (15)	$D(X/Y = y_i) = \frac{\sum_{j=1}^{m} x_j^2 n_{ij}}{n_{y_i}} - (\bar{x}_{Y=y_i})^2 $ (16)
$\sigma(Y/X = x_j) = \sqrt{D(Y/X = x_j)} (17)$	$\sigma(X / Y = y_i) = \sqrt{D(X / Y = y_i)}$ (18)

Відповідні середні, дисперсії та середньоквадратичні відхилення називаються умовними.

1. Faprica enancementaria poznogia na cioro recesoli xapakmepienici.

Якщо для частоти спільної появи ознак X і Y виконується рівність $n_{ij}=1$ для всіх варіант, то в цьому разі двовимірний статистичний розподіл (таблиця 1) набуває такого вигляду:

Таблиця 4

$X = x_j$	x_1	x_2	•••	x_{j}	•••	\mathcal{X}_n
$Y = y_i$	\mathcal{Y}_1	\mathcal{Y}_2	•••	${\cal Y}_j$	•••	${\mathcal Y}_n$

(або рядок Y пишеться над рядком X чи записуються дані у стовпчик). Його називають **парим станистичним розподілом вибірки.** Тут кожна пара значень ознак X і Y з'являється лише один раз. Обсяг вибірки в цьому разі дорівнює кількості пар, тобто n.

Числові характеристики парного розподілу отримуються з відповідних характеристик двовимірного розподілу:

Відносно х		Відносно у	
$\frac{1}{x} = \frac{\sum_{j=1}^{m} x_j}{n}$	(19)	$\frac{1}{y} = \frac{\sum_{i=1}^{k} y_i}{n}$	(20)
$D_{x} = \frac{\sum_{j=1}^{m} x_{j}^{2}}{n} - (\bar{x})^{2} = \bar{x}^{2} - (\bar{x})^{2}$	(21)	$D_{y} = \frac{\sum_{i=1}^{k} y_{i}^{2}}{n} - (\overline{y})^{2} = \overline{y^{2}} - (\overline{y})^{2}$	(22)
$\sigma_{x} = \sqrt{D_{x}}$	(23)	$\sigma_{y} = \sqrt{D_{y}}$	(24)

Аналогічно формула для кореляційного моменту парного розподілу набуває вигляду

$$K_{xy}^* = \frac{\sum_{i=1}^k \sum_{j=1}^m y_i x_j}{n} - \overline{x} \cdot \overline{y},$$
 (25)

а формула для вибіркового коефіцієнта кореляції залишається без змін.

3. Foresnous npo naprey perpeció.

Нагадаємо, що *статистичною* називають залежність, коли зі зміною однієї випадкової величини змінюється закон розподілу ймовірностей іншої, тобто певному значенню $X=x_i$ відповідає не одне значення змінної Y, а певний статистичний розподіл цієї змінної. Зокрема, статистична залежність виявляється в тому, що зі зміною однієї величини змінюється середнє значення іншої. Така залежність називається *кореляційною*. Отже, кореляційною залежністю ознаки Y по X називається функціональна залежність середнього значення ознаки Y від X:

$$\overline{y} = \alpha(x)$$
.

Залежність середнього значення від іншої випадкової величини зображується за допомогою умовного математичного сподівання (умовного середнього). Таку залежність можна виразити співвідношенням

$$M(Y/X) = f(X) \tag{26}$$

де M(Y/X) — умовне математичне сподівання (умовне середнє).

Функція f(x) називається функцією регресії Y на X. При цьому X називається незалежною (пояснюючою) змінною (регресором, фактором), Y — залежною (пояснюваною) змінною (регресантом, показником).

Термін "регресія" (рух назад, повернення до попереднього стану) увів Френсіс Галтон наприкінці XIX ст., проаналізувавши залежність між зростом батьків і зростом дітей. Він помітив, що зріст дітей у дуже високих батьків у середньому менший, ніж середній зріст батьків

У дуже низьких батьків, навпаки, середній зріст дітей вищий. В обох випадках середній зріст дітей прямує (повертається) до середнього зросту людей у даному регіоні. Звідси й вибір терміна, що відбиває таку залежність.

Отже, під терміном «регресія» розуміється функціональна залежність між умовним математичним сподіванням (умовним середнім) випадкової величини Y від значень пояснювальної змінної X.

Проте реальні значення залежної змінної не завжди збігаються з її умовним математичним сподіванням (умовним середнім) і при одному і тому ж значенні пояснювальної змінної значення залежної змінної Y можуть бути різними внаслідок впливу випадкових факторів. Тому аналітична залежність (у вигляді функції Y = f(X)) має бути доповнена випадковою складовою ε , що відображає вплив на результативний показник всіх неврахованих факторів. Тоді з їх врахуванням залежність (26) необхідно записати так:

$$Y = M(Y/X) + \varepsilon = f(X) + \varepsilon \,. \tag{27}$$

Співвідношення (27) називають *регресійною моделлю*. Випадкову величину ε назвемо *збуренням* (залишком, відхиленням). Її значення можуть змінюватися від одного спостереження до іншого. Наприклад, при вивченні залежності національного доходу від капітальних вкладень збурююча змінна включала би в себе вплив на національний дохід таких факторів, як число працюючих у сфері виробництва, продуктивність праці, використання основних фондів і т. д., а також інші випадкові чинники.

Розглянемо найпростіший випадок, коли $f(X) = \beta_0 + \beta_1 X$ - лінійна функція. Тоді (27) набуде вигляду

$$Y = M(Y / X) = \beta_0 + \beta_1 X + \varepsilon$$
 (28)

Співвідношення (28) називають *теоретичною лінійною регресійною моделлю*, а β_0 , β_1 – *теоретичними параметрами (коефіцієнтими)* регресії. Щоб визначити значення теоретичних коефіцієнтів регресії, необхідно знати й використовувати всі значення змінних X і Y генеральної сукупності, що практично неможливо. Отже, постає задача, щоб за наявності статистичних даних (x_i, y_i) , $i = \overline{1, n}$,

одержаних шляхом реалізації вибірки обсягом $n \ll N$ із генеральної сукупності, визначити найкращі статистичні оцінки β_0^*, β_1^* для невідомих теоретичних параметрів (коефіцієнтів) β_0 , β_1 . Отже, нам необхідно побудувати так зване *емпіричне рівняння* на базі інформації, одержаної із вибірки.

Емпіричне рівняння регресії має вигляд

$$\hat{Y} = \beta_0^* + \beta_1^* X + e_i$$
 (29)

де β_0^* , β_1^* — оцінки невідомих параметрів β_0 , β_1 , e_i — статистична оцінка ε_i . Для спрощення сприйняття доданок у e_i емпіричному рівнянні регресії зазвичай не записують.

Через розбіжність статистичної бази для генеральної сукупності та вибірки оцінки β_0^* , β_1^* практично завжди відрізняються від дійсних значень коефіцієнтів β_0 , β_1 , що призводить до розбіжності емпіричної та теоретичної ліній регресії.

Побудова регресії — це найпростіший метод отримати математичну модель, прослідкувати за тенденцією та зробити прогноз для різних економічних та соціальних процесів.

Оцінки β_0^* , β_1^* моделі (29) знаходяться **методом найменших квадратів** (мінімізуються квадрати відхилень $\sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 \to \min$), який дає наступні формули для їх обчислення:

$$\beta_1^* = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - (\overline{x})^2} = \frac{K_{xy}^*}{D_x}$$
(30)

$$\beta_0^* = \overline{y} - \beta_1^* \overline{x} \tag{31}$$

Лінія регресії проходить через точку $(\overline{X}, \overline{Y})$. Коефіцієнт β_1^* є кутовим коефіцієнтом лінії регресії. Він показує, на скільки одиниць в середньому змінюєтся показник Y при збільшенні фактора X на одну одиницю.

Стала β_0^* дає прогнозне значення залежної змінної при x=0. Але вона не завжди має конкретний зміст, оскільки "прогнозування назад" не завжди спрацьовує.

Для оцінки якості регресії використовується коефіцієнт детермінації R^2 . Для спрощення сприйняття ми не вдаватимемось у його глибинну суть і не даватимемо його строгого означення, а лише скористаємось його зв'язком з коефіцієнтом вибіркової кореляції

$$R^2 = r_B^2 \tag{32}$$

Коефіцієнт детермінації задовольняє нерівність

$$0 < R^2 < 1$$

і, помножений на 100, *показує*, *на скільки відсотків зміна показника Y пояснюється зміною фактора X*. Зрозуміло, що регресія вважається тим кращою, чим ближчий R^2 до 1. Якщо $R^2 < 0.75$, то модель вважається непридатною для прогнозування і слід шукати або іншу форму залежності, або включати в модель інші фактории.

Задаса 1. Двовимірний статистичний закон розподілу задано таблицею (де k - порядковий номер студента у списку академгрупи $(1 \le k \le 16)$):

Таблиця 5

$Y = y_i$	$X = x_j$					
- 71	k+1	k+2	k+4	n_{y_i}		
<i>k</i>	0	0	k+5			
k+5	0	18- k	2			
k+10	k+1	0	16-k			
k+15	4	2	2			
n_{x_j}						

3algareres:

- **1)** Записати двовимірний статистичний закон розподілу, що відповідає Вашому варіанту (тобто записати таблицю 5, підставивши конкретне значення k і заповнити останній рядок n_{x_i} та останній стовпець n_{y_i}).
- **L)** Знайти числові характеристики отриманого двовимірного розподілу:

$$\overline{x}$$
, D_x , σ_x , \overline{y} , D_y , σ_y , K_{xy}^* , r_B .

3) Скласти та записати умовні закони розподілу

$$Y/X = k + 4$$
 Ta $X/Y = k + 10$

і знайти їхні числові характеристики:

$$\overline{y}_{X=k+4}$$
, $D(Y/X=k+4)$, $\sigma(Y/X=k+4)$, $\overline{x}_{Y=k+10}$, $D(X/Y=k+10)$, $\sigma(X/Y=k+10)$.

${\color{red} {\it Pogb sgavered}}$ Розв'яжемо дане завдання при ${\color{blue} {\it k}=0}$.

1) Запишемо двовимірний статистичний закон розподілу, що відповідає значенню k=0, тобто запишемо таблицю 5, підставивши k=0 і заповнимо останній рядок n_{x_i} та останній стовпець n_{y_i} :

Таблиця 6

$Y = y_i$	$X = x_j$					
\mathcal{L}_{i}	1	2	4	n_{y_i}		
0	0	0	5	5		
5	0	18	2	20		
10	1	0	16	17		
15	4	2	2	8		
n_{x_j}	5	20	25	50		

Для заповнення останнього рядка n_{x_i} додаємо усі елементи відповідного стовпця:

$$n_{x_1} = 0 + 0 + 1 + 4 = 5,$$

$$n_{x_2} = 0 + 18 + 0 + 2 = 20,$$

$$n_{x_3} = 5 + 2 + 16 + 2 = 25,$$

$$n_{x_1} + n_{x_2} + n_{x_3} = 5 + 20 + 25 = 50$$

Аналогічно, для заповнення останнього стовпця n_{y_i} додаємо усі елементи відповідного рядка

$$n_{y_1} = 0 + 0 + 5 = 5,$$

$$n_{y_2} = 0 + 18 + 2 = 20,$$

$$n_{y_3} = 1 + 0 + 16 = 17,$$

$$n_{y_4} = 4 + 2 + 2 = 8,$$

$$n_{y_1} + n_{y_2} + n_{y_3} + n_{y_4} = 5 + 20 + 17 + 8 = 50.$$

Таким чином,

$$n_{x_1} + n_{x_2} + n_{x_3} = n_{y_1} + n_{y_2} + n_{y_3} + n_{y_4} = 50 = n$$
,

тобто обсяг вибірки n = 50

L) Знайдемо числові характеристики отриманого двовимірного розподілу (табл. 6):

$$\overline{x}$$
, D_x , σ_x , \overline{y} , D_y , σ_y .

Для зручності знаходження \bar{x} випишемо окрему таблицю

$Y = y_i$	$X = x_j$					
- J _i	1	2	4	n_{y_i}		
0	0	0	5	5		
5	0	18	2	20		
10	1	0	16	17		
15	4	2	2	8		
n_{x_j}	5	20	25	50		

(другий та останній рядки таблиці 6):

Таблиця 6.1

$X = x_j$	1	2	4
n_{x_j}	5	20	25

Середнє x знаходимо за формулою (4). Це буде сума добутків відповідних елементів таблиці 6.1, поділена на обсяг вибірки n=50:

$$\overline{x} = \frac{\sum_{j=1}^{m} x_j n_{x_j}}{n} = \frac{1 \cdot 5 + 2 \cdot 20 + 4 \cdot 25}{50} = \frac{145}{50} = 2,9.$$

Дисперсію D_x знаходимо за формулою (6):

$$D_{x} = \frac{\sum_{j=1}^{m} x_{j}^{2} n_{x_{j}}}{n} - (\bar{x})^{2} = \frac{1^{2} \cdot 5 + 2^{2} \cdot 20 + 4^{2} \cdot 25}{50} - (2,9)^{2} = \frac{485}{50} - (\frac{29}{10})^{2} = \frac{97}{10} - \frac{841}{100} = \frac{970 - 841}{100} = 1,29.$$

За формулою (8) знаходимо середньоквадратичне відхилення σ_x :

$$\sigma_x = \sqrt{D_x} = \sqrt{1,29} \approx 1,14.$$

Далі знаходимо відповідні числові характеристики по змінній у. Запишемо таблицю

$Y = y_i$		$X = x_j$							
- 71	1	2	4	n_{y_i}					
0	0	0	5	5					
5	0	18	2	20					
10	1	0	16	17					
15	4	2	2	8					
n_{x_i}	5	20	25	50					

(перший та останній стовпець таблиці 6, розміщені рядками):

Таблиця 6.2

$Y = y_i$	0	5	10	15
n_{y_i}	5	20	17	8

Середне y знаходимо за формулою (5):

$$\overline{y} = \frac{\sum_{i=1}^{k} y_i n_{y_i}}{n} = \frac{0.5 + 5.20 + 10.17 + 15.8}{50} = \frac{390}{50} = 7.8$$

Дисперсію $D_{\scriptscriptstyle \it V}$ знаходимо за формулою (7):

$$D_{y} = \frac{\sum_{i=1}^{k} y_{i}^{2} n_{y_{i}}}{n} - (\overline{y})^{2} = \frac{0^{2} \cdot 5 + 5^{2} \cdot 20 + 10^{2} \cdot 17 + 15^{2} \cdot 8}{50} - (7,8)^{2} = \frac{4000}{50} - (7,8)^{2} = 80 - 60,84 = 19,16$$

і середньоквадратичне відхилення σ_{v} знаходимо за формулою (9):

$$\sigma_y = \sqrt{D_y} = \sqrt{19,16} \approx 4,38.$$

Знайдемо кореляційний момент K_{xy}^{*} за формулою (10)

$$K_{xy}^* = \frac{\sum_{i=1}^{k} \sum_{j=1}^{m} y_i x_j n_{ij}}{n} - \overline{x} \cdot \overline{y} =$$

$$= \frac{0 \cdot 1 \cdot 0 + 0 \cdot 2 \cdot 0 + 0 \cdot 4 \cdot 5 + 5 \cdot 1 \cdot 0 + 5 \cdot 2 \cdot 18 + 5 \cdot 4 \cdot 2 + 10 \cdot 1 \cdot 1 + 10 \cdot 2 \cdot 0 + 10 \cdot 4 \cdot 16 + 15 \cdot 1 \cdot 4 + 15 \cdot 2 \cdot 2 + 15 \cdot 4 \cdot 2}{50} - 22,62 = 22,2 - 22,62 = -0,42 \neq 0$$

Оскільки $K_{xy}^* \neq 0$, то між ознаками X та Y наявний лінійний зв'язок. Щоб охарактеризувати щільність (тісноту) цього зв'язку, обчислимо вибірковий коефіцієнт кореляції r_B за формулою (11), врахувавши, що $K_{xy}^* = -0,42$, $\sigma_x \approx 1,14$, $\sigma_y \approx 4,38$ (обчислені вище):

$$r_B = \frac{K_{xy}^*}{\sigma_x \sigma_y} = \frac{-0.42}{1.14 \cdot 4.38} = -\frac{0.42}{4.9932} \approx -0.08.$$

<u>Інтерпретація результату:</u> оскільки $r_{B} < 0$, то між X та Y зв'язок зворотній, тобто при збільшенні кількісного значення ознаки X, значення Y зменшується. Крім того, $|r_{B}| = |-0.08| = 0.08 < 0.1$,

отже, згідно зі шкалою Чеддока (табл. 2) лінійний зв'язок майже відсутній (дуже слабкий).

3) Скласти та записати умовні закони розподілу

$$Y/X = k + 4 \text{ ma } X/Y = k + 10$$

і знайти їхні числові характеристики:

$$\overline{y}_{X=k+4}$$
, $D(Y/X=k+4)$, $\sigma(Y/X=k+4)$, $\overline{x}_{Y=k+10}$, $D(X/Y=k+10)$, $\sigma(X/Y=k+10)$.

При k = 0 маємо умовні розподіли:

$$Y/X = k + 4 \stackrel{k=0}{\Rightarrow} Y/X = 4$$

i

$$X/Y = k + 10 \implies X/Y = 10.$$

Випишемо розподіл Y/X=4 у табличному вигляді та знайдемо його числові характеристики. Для цього

Y = v.	$Y = y_i $ $X = x_j$						
- 71	1	2	4	n_{y_i}			
0	0	0	5	5			
5	0	18	2	20			
10	1	0	16	17			
15	4	2	2	8			
n_{x_j}	5	20	25	50			

з таблиці 6 вибираємо перший стовпець (значень Y) та останній стовпець частот, що відповідають значенню X=4. Для зручності запишемо отриману таблицю рядками

Таблиця 6.3

$Y = y_i$	0	5	10	15	n_{x_3}
$n_{i3} (j=3)$	5	2	16	2	25

Далі обчислюємо числові характеристики умовного розподілу Y/X=4, заданого таблицею 6.3, як це робиться звичайно. Умовне середнє $y_{X=4}$ обчисляємо за формулою (13). При цьому X=4 при j=3 і $n_{x_2}=25$. Маємо:

$$\overline{y}_{X=4} = \frac{\sum_{i=1}^{k} y_i n_{i3}}{n_{x_3}} = \frac{0.5 + 5.2 + 10.16 + 15.2}{25} = \frac{200}{25} = 8$$

Умовну дисперсію D(Y / X = 4) знайдемо за формулою (15)

$$D(Y \mid X = 4) = \frac{\sum_{i=1}^{k} y_i^2 n_{i3}}{n_{x_3}} - (\overline{y}_{X=4})^2 = \frac{0^2 \cdot 5 + 5^2 \cdot 2 + 10^2 \cdot 16 + 15^2 \cdot 2}{25} - 8^2 = \frac{2100}{25} - 64 = 84 - 64 = 20$$

і умовне середньоквадратичне відхилення $\sigma(Y \, / \, X = 4)$ - за формулою (17)

$$\sigma(Y/X=4) = \sqrt{D(Y/X=4)} = \sqrt{20} \approx 4,47$$

Випишемо розподіл X/Y = 10 у табличному вигляді та знайдемо його числові характеристики. Для цього

$Y = y_i$		$X = x_j$						
- J _i	1	2	4	n_{y_i}				
0	0	0	5	5				
5	0	18	2	20				
10	1	0	16	17				
15	4	2	2	8				
n_{x_i}	5	20	25	50				

з таблиці 6 вибираємо рядок значень X та рядок частот, що відповідають значенню Y=10:

Таблиця 6.4

$X = x_j$	1	2	4	n_{y_3}
$n_{3j} (i=3)$	1	0	16	17

Умовне середнє $\overline{X}_{Y=10}$ обчисляємо за формулою (14). При цьому Y=10 при i=3 і $n_{_{Y_2}}=17$. Маємо:

$$\overline{x}_{Y=10} = \frac{\sum_{j=1}^{m} x_j n_{3j}}{n_{y_0}} = \frac{1 \cdot 1 + 2 \cdot 0 + 4 \cdot 16}{17} = \frac{65}{17} \approx 3,82$$

Умовну дисперсію D(X/Y=10) - за формулою (16), враховуючи, що $\overline{X}_{Y=10}=\frac{65}{17}$:

$$D(X/Y=10) = \frac{\sum_{j=1}^{m} x_j^2 n_{3j}}{n_{y_3}} - (\bar{x}_{Y=10})^2 = \frac{1^2 \cdot 1 + 2^2 \cdot 0 + 4^2 \cdot 16}{17} - (\frac{65}{17})^2 = \frac{257}{17} - \frac{4225}{17^2} = \frac{4369 - 4225}{289} = \frac{144}{289} \approx 0,498$$

і умовне середньоквадратичне відхилення $\sigma(X/Y=10)$ - за формулою (18)

$$\sigma(X/Y=10) = \sqrt{D(X/Y=10)} = \sqrt{\frac{144}{289}} = \frac{12}{17} \approx 0.71. \blacksquare$$

Задаха L Результати проведеного аналізу залежності кількості проданих пар чоловічого взуття y_i від його розміру x_i наведено у таблиці:

Таблиця 7

\mathcal{Y}_i	25	38	65	95	120	140	152	160	165	175	180	185	190	200
\mathcal{X}_{i}	45	43	42	41	40	39	38,5	38	37,5	37	36,5	36	35,5	35

- **1)** Знайти оцінки параметрів β_0^* , β_1^* емпіричної моделі парної лінійної регресії $\hat{v} = \beta_0^* + \beta_1^* x$.
- **L)** Оцінити наявність та тісноту (щільність) лінійного зв'язку з допомогою вибіркового коефіцієнта кореляції.
- **3)** Оцінити якість регресії з допомогою коефіцієнта детермінації \mathbb{R}^2 .

- 4) Зобразити кореляційне поле (систему координат xOy із зображеній у ній спостережуваними точками (x_i, y_i) , $1 \le i \le n$) та пряму регресії $\hat{y} = \beta_0^* + \beta_1^* x$.
- **5)** 3 допомогою побудованої регресії зробити точковий прогноз для $x_{\text{max}} + 0.5$. Інтерпретувати отримані результати.

Pogl szarves.

1) Знайдемо оцінки параметрів eta_0^* , eta_1^* емпіричної моделі парної лінійної регресії $\hat{y} = eta_0^* + eta_1^* x$.

Аналізуючи формули (30) та (31)

$$\beta_{1}^{*} = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^{2}} - (\overline{x})^{2}} = \frac{K_{xy}^{*}}{D_{x}}, \ \beta_{0}^{*} = \overline{y} - \beta_{1}^{*} \overline{x}$$

для знаходження $\boldsymbol{\beta}_0^*$, $\boldsymbol{\beta}_1^*$, бачимо, що для спрощення обчислень зручно заповнити наступну таблицю,

Таблиця 8

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	298598 1328,43	1255 18,214		1890 135	544 38.85714	Сума Середнє
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40000	225	7000	200	35	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36100	60,25	6745 1	190	35,5	13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34225	296	6660	185	36	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32400	32,25	6570 1	180	36,5	11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30625	369	6475	175	37	10
$egin{array}{cccccccccccccccccccccccccccccccccccc$	27225	06,25	6187,5	165	37,5	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25600	444	6080	160	38	8
$egin{array}{cccccccccccccccccccccccccccccccccccc$	23104	82,25	5852 1	152	38,5	7
$egin{array}{cccccccccccccccccccccccccccccccccccc$	19600	521	5460	140	39	6
$egin{array}{cccccccccccccccccccccccccccccccccccc$	14400	600	4800	120	40	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9025	681	3895	95	41	4
x_i y_i $x_i \cdot y_i$ x_i 1 45 25 1125 2025	4225	764	2730	65	42	3
X_i Y_i $X_i \cdot Y_i$ X_i	1444	849	1634	38	43	2
$x_i \qquad y_i \qquad x_i \cdot y_i \qquad x_i^2$	625	2025	1125	25	45	1
2.0	y_i^2	x_i^2	$x_i \cdot y_i$	\mathcal{Y}_{i}	\mathcal{X}_{i}	№

де у першому стовпці нумеруються спостереження (отже, останній номер співпадає з обсягом вибірки, тобто n=14), другий та третій стовпці — це вхідні дані, четвертий стовпець — добутки відповідних значень x_i та y_i , п'ятий — квадрати значень ознаки X, а останній - квадрати значень ознаки Y. У передостанньому рядку «Сума» просумовані усі елементи відповідних стовпців, а у останньому рядку — елементи рядка «Сума» поділені на n=14. Тоді вже готові значення складових для обчислення β_1^* у формулу (30) підставляються з останнього рядка таблиці 8:

$$\beta_1^* = \frac{K_{xy}^*}{D_x} = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - (\overline{x})^2} = \frac{5086,679 - 38,857 \cdot 135}{1518,214 - (38,857)^2} = \frac{-159,036}{8,337} \approx -19,08.$$

Далі знаходимо β_0^* за формулою (31), підставляючи у неї \overline{x} та \overline{y} з останнього рядка таблиці 8, а $\beta_1^* = -19,08$:

$$\beta_0^* = \overline{y} - \beta_1^* \overline{x} = 135 - (-19,08) \cdot 38,857 \approx 876,26$$

$$\hat{y} = 876, 26 - 19, 08x \tag{33}$$

Інтерпретація результату: оскільки $\beta_1^* < 0$, то між фактором X та показником Y зв'язок зворотній $(x \uparrow \downarrow y)$, тобто при збільшенні X значення Y зменшується і навпаки. Крім того, значення коефіцієнта регресії

$$\beta_1^* = -19,08 < 0$$

дає змогу стверджувати, що при збільшенні фактору X на 1 одиницю свого виміру показник Y зменшиться в середньому на 19,08 одиниць свого виміру, тобто у даному прикладі при збільшенні розміру чоловічого взуття на 1 кількість проданих пар в середньому зменшиться на $19,08 \approx 19$.

L) Оцінимо наявність та тісноту (щільність) лінійного зв'язку з допомогою вибіркового коефіцієнта кореляції.

Оскільки при обчисленні β_1^* вже знайдено $K_{xy}^* = -159,036$ та $D_x = 8,337$, а $\sigma_x = \sqrt{D_x}$, то для знаходження r_B залишається знайти ще σ_y . Обчислимо

$$\sigma_y = \sqrt{D_y} = \sqrt{\overline{y^2} - (\overline{y})^2} = \sqrt{21328, 43 - 135^2} = \sqrt{3103} \approx 55,71.$$

Тоді за формулою (11) маємо:

$$r_B = \frac{K_{xy}^*}{\sigma_x \sigma_y} = \frac{-159,036}{\sqrt{8,337 \cdot 55,71}} \approx -0,989.$$

<u>Інтерпретація результату:</u> оскільки $r_{B} < 0$, то між X та Y зв'язок зворотній, тобто при збільшенні кількісного значення ознаки X, значення Y зменшується. Крім того, $|r_{B}| = |-0.989| = 0.989 \approx 0.99$,

отже, згідно зі шкалою Чеддока (табл. 2) лінійний зв'язок дуже високий (майже функціональний).

3) Оцінимо якість регресії з допомогою коефіцієнта детермінації \mathbb{R}^2 .

Обчислимо коефіцієнт детермінації R^2 , скориставшись формулою (32), що виражає залежність між R^2 та вибірковим коефіцієнтом кореляції

$$R^2 = r_B^2 = 0.989^2 \approx 0.978$$
.

<u>Інтерпретація результату:</u> $R^2 \cdot 100\% \approx 97,8\%$, отже, зміна показника Y на 97,8% пояснюється зміною показника X, тобто зміна кількості проданих пар (y_i) чоловічого взуття на 97,8% пояснюється зміною його розміру (x_i) і лише на 2,2% - іншими факторами та випадковими чинниками.

4) Зобразимо кореляційне поле та пряму регресії $\hat{y} = 876, 26 - 19, 08x$.

Для цього в системі координат xOy зобразимо спостережувані точки (x_i, y_i) , $1 \le i \le 14$: (45;25), (43;38), (42;65), (41;95), (40;120), (39;140), (38,5;152), (38;160), (37,5;165), (37;175), (36,5;180), (36;185), (35,5;190), (35;200).

Ці точки в системі координат і утворюють *кореляційне поле*. Аналіз вигляду кореляційного поля дає перше уявлення про форму залежності між X та Y.

Як видно з рисунку, регресійна пряма досить добре наближає експериментальні (спостережувані) дані.

5) 3 допомогою побудованої регресії зробимо точковий прогноз для $x_{\max} + 0,5$.

Для цього треба підставити значення $x_{\max}+0.5$ у рівняння регресії. У нашому прикладі $x_{\max}=45$, отже, $x_{\max}+0.5=45.5$. Тоді

$$\hat{y}_{nporh} = \hat{y}(45,5) = 876, 26 - 19, 08 \cdot 45, 5 = 876, 26 - 868, 14 = 8, 12 \approx 8.$$

Таким чином, можна очікувати, що буде продано в середньому 8 пар чоловічого взуття 45,5 розміру. ■

3algarves que carrocniverso postezarves

339212 1. Двовимірний статистичний закон розподілу задано таблицею (де k - порядковий номер студента у списку академгрупи $(1 \le k \le 16)$):

Таблиця 5

$Y = y_i$	$X = x_j$					
71	k+1	k+2	k+4	n_{y_i}		
<i>k</i>	0	0	k+5			
k+5	0	18- k	2			
k+10	k+1	0	16-k			
k+15	4	2	2			
n_{x_i}						

3algareres:

- 1) Записати двовимірний статистичний закон розподілу, що відповідає Вашому варіанту (тобто записати таблицю 5, підставивши конкретне значення k і заповнити останній рядок n_{x_i} та останній стовпець n_{y_i}).
- **L)** Знайти числові характеристики отриманого двовимірного розподілу:

$$\overline{x}$$
, D_x , σ_x , \overline{y} , D_y , σ_y , K_{xy}^* , r_B .

3) Скласти та записати умовні закони розподілу

$$Y / X = k + 4$$
 та $X / Y = k + 10$

і знайти їхні числові характеристики:

$$\overline{y}_{X=k+4}, D(Y/X=k+4), \sigma(Y/X=k+4), \\ \overline{x}_{Y=k+10}, D(X/Y=k+10), \sigma(X/Y=k+10).$$

Задаса <u>L</u> За вхідними даними Вашого варіанту (заданим парним статистичним розподілом):

- **1)** Знайти оцінки параметрів β_0^* , β_1^* емпіричної моделі парної лінійної регресії $\hat{y} = \beta_0^* + \beta_1^* x$.
- **L)** Оцінити наявність та тісноту (щільність) лінійного зв'язку з допомогою вибіркового коефіцієнта кореляції.
- 3) Оцінити якість регресії з допомогою коефіцієнта детермінації \mathbb{R}^2 .
- 4) Зобразити кореляційне поле (систему координат xOy із зображеній у ній спостережуваними точками (x_i, y_i) , $1 \le i \le n$) та пряму регресії $\hat{y} = \beta_0^* + \beta_1^* x$.
- 5) 3 допомогою побудованої регресії зробити точковий прогноз, збільшивши максимальне значення фактора на 10% ($x_{\rm max} + 10\% = x_{\rm max} + 0, 1x_{\rm max} = 1, 1x_{\rm max}$).

Інтерпретувати отримані результати.

Brigni gari que zagari L.

Вахант 1 (Байрамов Алі)

Залежність кров'яного тиску Y людини (в умовних одиницях) від довжини руки X наведена в таблині:

y_i	115	117	120	122	124	125	127	129
X_i , cm	62,1	61,0	59,0	58,0	56,5	56	55	54,5

Варіант 1 (Беленчуқ Олексій)

Залежність між продуктивністю праці Y та фондозабезпеченістю X на підприємствах однієї галузі наведено в таблиці:

y_i , тис.грн.	14,85	11,94	8,03	7,11	9,50	11,60	8,14	7,34
X_i , тис.грн.	60	48	39	28	45	58	27	38

Варіант 3 (Березний Ігор)

Залежність урожайності цукрових буряків Y від кількості внесених у грунт поживних речовин X наведена в таблиці:

<i>у_i</i> , ц/га	369	380	370	395	420	412	436	420
x_i , кг/га	83	92	112	132	144	154	162	189

Валіант 4 (Бужақ Андірй)

Залежність маси монети Y від часу її обігу в роках X наведена в таблиці:

	, ,	,	<i>J</i> 1		, ,		,		
y_i , мг									
x_i , років	5,5	6,8	8,5	12,0	15,9	28,5	36,8	40,0	50,0

Варіанем 5 (Бурле Павло)

Залежність між собівартістю Y та кількістю виготовлених виробів X наведена в таблиці:

y_i , тис.грн.	2,2	3,5	3,7	3,8	4,5	5,7
X_i , тис.шт.	1,5	1,4	1,2	1,1	0,9	0,8

Варганем в (Василевич Павло)

Залежність величини зносу різця Y від тривалості роботи X показана в таблиці:

y_i , mm	26,8	26,5	26,3	26,1	25,7	25,3	24,3	24,1	24,0
X_i , год	15	16	17	18	19	20	21	22	23

варіант ў (Волощук Назарій)

Залежність денного споживання масла Y певної особи від розміру її заробітної плати за добу X наведена в таблиці:

y_i , Γ	12,5	15,8	17,8	19,5	20,4	21,5	22,2	24,3	26,5
X_i , грн	70	75	82	89	95	100	105	110	120

Валіант в (Георгіян Євген)

Залежність числа гризунів Y, які загинули від наявності отрути в їжі при концентрації X, наведена в таблиці:

y_i	32	38	46	49	59	68	73	81	92
$x_i, \%$	3	4	5	6	7	8	9	10	11

Валіант 9 (Гончаров Олександр)

Залежність кількості проданих пар чоловічого взуття Y від його розміру X наведена в таблиці:

<i>у_i</i> , шт	10	25	68	136	152	162	170	180
x_i	44	43	42	41	40	39	38	37

варанем 10 (Григорчук В'ячеслав)

Залежність між собівартістю Y та кількістю виготовлених виробів X наведена в таблиці:

y_i , тис.грн.	4,2	5,5	5,7	5,9	6,5	7,8
X_i , тис.шт.	2,5	2,4	2,2	2,1	1,9	1,8

Banarem 11 (Denuc Denuc)

Залежність урожайності пшениці Y від глибини зволоження грунту X наведена в таблиці:

<i>у_i</i> , ц/га	10	14	20	26	30	36	40	44	48
x_i , cm	0	8	14	20	24	30	34	38	42

Bariarem 12 (Dicap IBaH)

Залежність пружності Y сталевих болтів від вмісту в них нікелю X наведена в таблиці:

٧.									· · · · · · · · · · · · · · · · · · ·
			40,5						
	$x_i, \%$	2,95	2,99	3,00	3,11	3,21	3,29	3,34	3,50

варіант 13 (Дручук Роман)

3і старшого класу навмання обраної середньої школи було відібрано групу учнів. Дані про їх середньорічні оцінки з математики Y та середню оцінку решти дисциплін X в балах наведені в таблиці:

y_i	45	48	54	59	72	76	82	85	90
x_{i}	30	31	41	50	60	65	78	71	80

Варіант 14 (Дубець Василь)

Конденсатор було заряджено до повної напруги в певний момент часу, після чого він почав розряджатися. Залежність напруги Y від часу розрядження X наведена в таблиці:

y_i	100	85	70	60	45	35	25	22	20
X_i	0	1	2	4	7	9	11	12	13

Варіант 15 (Дуплава Олександр)

Залежність урожайності озимої пшениці Y від кількості внесених добрів X наведена в таблиці:

<i>у_i</i> , ц/га	16	19	22	25	26	27	32	33	34
<i>х_i</i> , кг/га	60	70	80	90	100	110	120	130	140

Валіант 16 (Жупник Евеліна)

Показники товарообігу Y та суми витрат X, які досліджувалися в 10 магазинах, наведені в таблиті:

цт.											
y_i , грн.	4800	5100	5300	5550	5700	5850	5960	6050	6250	6400	
X_i , грн.	300	250	310	280	400	540	600	640	780	830	