

Data Collection and Preprocessing Phase

Date	15 March 2024
Team ID	SWTID1720437019
Project Title	Thyroid Classification
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Section	Description
Data Overview	For our thyroid classification project, we analyzed a dataset with 9,172 rows and 31 columns, including attributes like age, sex, thyroid medication details, and various thyroid test results. We started by checking for null values and performing a descriptive analysis to understand the data distribution. The dataset was split into features (X) and the target variable (Y). Data types were converted, categorical values were handled, and correlations were checked. We addressed data imbalance and standardized the features using StandardScaler. We built models using RandomForestClassifier,XGBClassifier, and SVC, applying hyperparameter tuning for optimization. Our evaluation through classification reports, confusion matrices, and accuracy scores revealed that XGBClassifier achieved the highest accuracy, making it the best performing model among the three.

	ww													
		100	sex on there	ite stery on there	rine on antithyroid	啮		part thyrold sur	gery [131_treat	nent query_hypothy	mid	TT4 T4) neas	nd William	sored FTI TOK neaso
	0	2										_ NaN	f NaN	f NeN
	1	2										_ 128.0	f NaN	f NaN
	1											_ NaN	f NaN	f NaN
	3	3										_ NaN	f NaN	f NaN
	4	1										_ NaN	f NaN	f NaN
														+ +
	916	i7 58	V										t 483	t 77.0
	916	8 Z	¥									_ 91.0	1 092	t 950
	916	9 8	¥										1 127	1 80
	917	0 4										_ 75.0	1 885	t 800
	917	1 3	¥									_ 661		t 650
	917	rows	31 columns											
	we performed univariate analysis to understand the													
	distribution and characteristics of individual features in													
	the dataset. This involved examining each feature's													
	summary statistics, such as mean, median, mode,													
Univariate Analysis	st	aı	ndaro	d devi	ation,	aı	nd	range	e, to	identi	ify	centi	ral	
	tendencies and variability. For categorical variables like													
	sex, on_thyroxine, and referral_source, we calculated													
	frequency distributions to observe the most common													
	ca	ate	egori	es. Fo	or con	tir	ıuc	us va	ariab	les su	ıch	ı as aş	ge, T	Г4,
	T	41	J, an	d FTI	l, we p	olo	otte	ed his	stogr	ams a	ınc	l box	plots	to
	V	isi	ıaliz	e thei	r distr	ib	uti	ons a	ind d	etect	an	y out	liers (or
	skewness. This analysis provided insights into the													
	underlying patterns and variability of each feature,													
	guiding further steps in data preprocessing and model													lel
	b	ui	lding	5 .										

Data Preprocessing Code Screenshots


```
[] import pickle
with open('xgb_model.pkl', 'wb') as file:
pickle.dump(best_model, file)

[] pickle.dump(RFclassifier,open('thyroid_1_model.pkl', 'wb'))
```