Function Theory

Renaming

$$\langle n: nat \rightarrow n+1 \rangle = \langle m: nat \rightarrow m+1 \rangle$$

Domain

□
$$f$$
 "domain of f "

□ $\langle n: nat \rightarrow n+1 \rangle = nat$

Assignment Project Exam Help

Application

https://powcoder.com

$$fx$$
Add WeChat powcoder

 $f(x)$
 $f($

two variables

```
max = \langle x: xrat \rightarrow \langle y: xrat \rightarrow \mathbf{if} \ x \geq y \ \mathbf{then} \ x \ \mathbf{else} \ y \ \mathbf{fi} \rangle \rangle
max \ 3 = \langle y: xrat \rightarrow \mathbf{if} \ 3 \geq y \ \mathbf{then} \ 3 \ \mathbf{else} \ y \ \mathbf{fi} \rangle
max \ 3 \ 5 = \mathbf{if} \ 3 \geq 5 \ \mathbf{then} \ 3 \ \mathbf{else} \ 5 \ \mathbf{fi} = 5
max(3,5) = max \ 3, max \ 5
```

predicate

Assignment Project Exam Help function with binary result

even = $\langle i: int \rightarrow i/2 \text{hittps://powcoder.com} \rangle$

Add WeChat powcoder

relation

function with predicate result

$$divides = \langle n: nat+1 \rightarrow \langle i: int \rightarrow i/n: int \rangle \rangle$$

 $even = divides 2$

selective union

$$f \mid g$$

"
$$f$$
 otherwise g "

$$\Box(f \mid g) = \Box f, \Box g$$

$$(f \mid g) x = \mathbf{if} x: \Box f \mathbf{then} f x \mathbf{else} g x \mathbf{fi}$$

Assignment Project Exam Help abbreviated function notations

https://powcoder.com

 $\langle x: xrat \rightarrow \langle y: xrat \rightarrow \text{if } x \ge y \text{ then } x \text{ else } y \text{ fi} \rangle = \langle x, y: xrat \rightarrow \text{if } x \ge y \text{ then } x \text{ else } y \text{ fi} \rangle$ Add WeChat powcoder

$$\langle n: nat \rightarrow n+1 \rangle = \langle n \rightarrow n+1 \rangle$$

$$\langle n: 2 \rightarrow 3 \rangle = 2 \rightarrow 3$$

 $\langle n: 2 \rightarrow 3 \rangle = 2 \rightarrow 3$ scope brackets go with variable

$$\langle x: int \rightarrow \langle y: int \rightarrow x+3 \rangle \rangle = x+3$$
? but we can't apply it

Scope and Substitution

local

bound, hidden, private

introduction is inside the expression (formal)

nonlocal

global free visible, public Assignment Project Exam Help introduction is outside the expression (formal or informal)

https://powcoder.com

 $\langle x \rightarrow x \rangle$ Add WeChał powcoder

Scope and Substitution

local bound, hidden, private introduction is inside the expression (formal)

nonlocal

global free visible, public Assignment Project Exam Help introduction is outside the expression (formal or informal)

https://powcoder.com

$$\langle x \rightarrow x \quad \langle x \rightarrow \text{Add WeChat} \rangle \text{ powcoder}$$

$$= (3 \quad \langle x \rightarrow x \rangle 3)$$

Scope and Substitution

local

bound, hidden, private

introduction is inside the expression (formal)

nonlocal

global free visible, public Assignment Project Exam Help introduction is outside the expression (formal or informal)

https://powcoder.com

Quantifiers

A quantifier is an operator that applies to a function.

It is defined from a two-operand symmetric associative operator.

```
\forall p is defined from \land
Assignment Project Exam Help
\exists p is defined from \lor
\exists (n: nat \rightarrow n=0)

\Sigma f is defined from \lor

https://powcedenatom = 1/2^n \gt

\Box f is defined from \lor

Add WeChat powceden = 1/2^n \gt
```

abbreviations

```
\forall r: rat \cdot r < 0 \lor r = 0 \lor r > 0
\sum n: nat + 1 \cdot 1/2^{n}
\forall x, y: rat \cdot x = y + 1 \implies x > y = \forall x: rat \cdot \forall y: rat \cdot x = y + 1 \implies x > y
\sum n, m: 0,...10 \cdot n \times m = \sum n: 0,...10 \cdot \sum m: 0,...10 \cdot n \times m
```

$$\forall v: null \cdot b = \top$$

$$\forall v: x \cdot b = \langle v: x \rightarrow b \rangle x$$

$$\forall v: A,B \cdot b = (\forall v: A \cdot b) \land (\forall v: B \cdot b)$$

$$\exists v: null \cdot b = \bot$$

$$\exists v: x \cdot b = \langle v: x \to b \rangle x$$

 $\exists v: A,B \cdot b = (\exists v: A \cdot b) \lor (\exists v: B \cdot b)$ Project Exam Help

https://powcoder.com

$$\Sigma v$$
: $null \cdot n = 0$

Add WeChat powcoder

$$\Sigma v: x \cdot n = \langle v: x \rightarrow n \rangle x$$

$$(\Sigma v: A, B \cdot n) + (\Sigma v: A \cdot B \cdot n) = (\Sigma v: A \cdot n) + (\Sigma v: B \cdot n)$$

 $\Pi v: null \cdot n = 1$

$$\Pi v: x \cdot n = \langle v: x \to n \rangle x$$

$$(\Pi v: A, B \cdot n) \times (\Pi v: A \cdot B \cdot n) = (\Pi v: A \cdot n) \times (\Pi v: B \cdot n)$$

build your own

$$MAX x: rat \cdot 4 \times x - x^2 = 4$$

$$MAX v: null \cdot n = -\infty$$

$$MAX \ v : x \cdot n = \langle v : x \rightarrow n \rangle x$$

 $MAX \ v: A,B \cdot n = \underset{max}{Assignment} \ \underset{(MAX \ v: A \cdot n)}{Project} \ \underset{(MAX \ v: B \cdot n)}{Exam} \ Help$

https://powcoder.com

$$x \wedge \top = x$$

Add WeChat powcoder

$$x \lor \bot = x$$

$$x + 0 = x$$

$$x \times 1 = x$$

$$max \ x \ (-\infty) = x$$

Solution Quantifier

```
\S{p} is the (bunch of) solutions of predicate p

\S{v}: null \cdot b = null

\S{v}: x \cdot b = \mathbf{if} \langle v : x \rightarrow b \rangle x \mathbf{then} x \mathbf{else} null \mathbf{fi}

Assignment Project Exam Help

\S{v}: A, B \cdot b = (\S{v}: A \cdot b), (\S{v}: B \cdot b)

https://powcoder.com

\{\S{i}: int \cdot i^2 = 4\} = \{-2, 2\}
\{\S{n}: nat \cdot n < 3\} = \{0, ...3\}
```

An expression talks about its nonlocal variables.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

"x is an even natural"

Function Fine Points

partial: sometimes no result

total: always at least one result

deterministic: always at most one result

nondeterministic: sometimes more than one result Assignment Project Exam Help

 $\langle n: nat \cdot n, n+1 \rangle$ https://powcoderncomdeterministic

Add WeChat powcoder

 $\langle n: nat \cdot n, n+1 \rangle 3 = 3, 4$

distribution

$$(f,g) x = fx, gx$$
 $f(x,y) = fx, fy$
 $double = \langle n: nat \rightarrow n+n \rangle$
 $double 2 = Assignment Project Exam Help$
 $double (2,3) = double (2,3) = double (2,3) + (2,3) + (2,3) = 4,5,6$
 $Add We Chat powcoder$
 $tiny = \langle S: fnat \rightarrow $S < 3 \rangle$
 $tiny \{null\} = \top$
 $tiny \{0,1,2,3\} = \bot$
 $tiny null = null$

function inclusion

$$f: g = \Box g: \Box f \land \forall x: \Box g \cdot fx: gx$$

$$A \rightarrow B = \langle a: A \rightarrow B \rangle$$

 $A \rightarrow B$ is a function whose domain is A and whose result is B.

$$f: A \rightarrow B = A: \Box f \land \forall a: A \cdot fa: B$$

Assignment Project Exam Help

 $A \rightarrow B$ is all those functions whateploon a provention is at most B.

Add WeChat powcoder $A \rightarrow B$ is antimonotonic in A and monotonic in B.

function inclusion $suc: nat \rightarrow nat$

 $nat: \Box suc \land \forall n: nat \cdot suc n: nat$ definition of suc

 $nat: nat \land \forall n: nat \cdot n+1: nat$ reflexivity and definition of *nat*

Т

function inclusion

```
f: g = \Box g: \Box f \land \forall x: \Box g \cdot fx: gx
  suc: nat \rightarrow nat
  even: int→bin
  max: xrat -- x
                                                                                                                                             https://powcoder.com
A: B \land f: B \rightarrow C \land C: D \Rightarrow f: A \rightarrow D
Add WeChat powcoder
  (0,..10): nat \land suc: nat\rightarrownat \land nat: int \Rightarrow suc: (0,..10) \rightarrowint
  \langle f: (0,..10) \rightarrow int \forall n: 0,..10 \text{ even } (f n) \rangle \text{ suc}
  \forall n: 0,...10 \cdot even (suc n)
```

function equality

$$f = g = \Box f = \Box g \land \forall x: \Box f \cdot fx = gx$$

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

function composition

If
$$\neg f$$
: $\Box g$ then
$$\Box(g f) = \S x : \Box f \cdot f x : \Box g$$
$$(g f) x = g (f x)$$

Assignment Project Exam Help

- = $\$x: \square suc \cdot suc x: https://powcoder.com$
- = $\S{x: nat: x+1: int}$ Add WeChat powcoder
- = nat

$$(even suc) 3 = even (suc 3) = even 4 = \top$$

$$(-suc) 3 = -(suc 3) = -4$$

 $(\neg even) 3 = \neg (even 3) = \neg \bot = \top$

function composition

```
Suppose x, y: int
        f, g: int \rightarrow int
        h: int \rightarrow int \rightarrow int
Then
            hfxgy Assignment Project Exam Help
        = (((hf)x)g)y https://powcoder.com
            ((h(fx))g)y
                         Add WeChat powcoder
           (h(fx))(gy)
           h(fx)(gy)
```

list as function

```
If m: 0,..\#L then \langle n: 0,..\#L \to Ln \rangle m = Lm function \approx list application \approx indexing Assignment Project Exam Help
```

function composition the pist composition der.com

$$1 \rightarrow 21 \mid [10; 11; 12] = [10; 21; 12]$$

$$\Sigma L = \Sigma n: 0, ... \#L \cdot Ln$$

limit

```
f: nat \rightarrow rat
f0; f1; f2; \dots is a sequence of rationals
(MAX \ m \cdot MIN \ n \cdot f(m+n)) \le (LIM \ f) \le (MIN \ m \cdot MAX \ n \cdot f(m+n))
              Assignment Project Exam Help
LIM n \cdot 1/(n+1) = https://powcoder.com
-1 \le (LIM \, n \cdot (-1)^n) \le 1
Add WeChat powcoder
(MIN f) \le (LIM f) \le (MAX f)
xreal = LIM(nat \rightarrow rat)
```

limit

```
p: nat \rightarrow bin
p0; p1; p2; ... is a sequence of binary values
\exists m \cdot \forall n \cdot p(m+n) \implies LIM p \implies \forall m \cdot \exists n \cdot p(m+n)
Assignment Project Exam Help
\exists m \cdot \forall i \cdot i \geq m \Rightarrow pi \quad \exists t \not b \not b \not b \not b p 
\exists m \cdot \forall i \cdot i \geq m \Rightarrow pi \quad \exists t \not b \not b \not b \not b p 
Add WeChat powcoder
LIM n \cdot 1/(n+1) = 0 = \bot
```