Fundamentals of Information & Network Security ECE 471/571

Lecture #34,35: IP security Issues and IPSec Instructor: Ming Li

Dept of Electrical and Computer Engineering
University of Arizona

TCP/IP Review

Security Problems of the Internet Protocol

- When an entity receives an IP packet, it has no assurance of:
 - Data origin authentication / data integrity:
 - The packet has actually been send by the entity which is referenced by the source address of the packet
 - The packet contains the original content the sender placed into it, so that it has not been modified during transport
 - The receiving entity is in fact the entity to which the sender wanted to send the packet
 - Confidentiality:
 - The original data was not inspected by a third party while the packet was sent from the sender to the receiver

IP Security Issues

- Eavesdropping
- Modification of packets in transit
- Identity spoofing (forged source IP addresses)
- Denial of service
- Many solutions are application-specific
 - TLS for Web, S/MIME for email, SSH for remote login
- IPsec aims to provide a framework of open standards for secure communications over IP
 - Protect <u>every</u> protocol running on top of IPv4 and IPv6

IPsec

- IETF standard for real-time communication security
- Implemented at IP layer, all traffic can be secured, no matter what application.
- Transparent to applications, no changes on upper-layer software.
- Transparent to end users, no need to train users on security mechanisms, issuing keying material on a peruser basis, or revoking keying material when users leave.

(a) Tunnel-mode format

(b) Example configuration

Figure 20.1 An IPSec VPN Scenario

IPsec: Network Layer Security

AH and ESP rely on an existing security association

 Idea: parties must share a set of secret keys and agree on each other's IP addresses and crypto algorithms

Internet Key Exchange (IKE)

- Goal: establish security association for AH and ESP
- If IKE is broken, AH and ESP provide no protection!

Two Modes

- Transport mode
 - Add the IPsec info between the IP header and the IP payload.
- Tunnel mode
 - Keep the original IP packet intact and add a new IP header and IPsec info outside.

Transport Mode

Transport Mode

- Protect primarily upper-layer protocols (IP payload)
- Add IPsec between IP header and IP payload
- AH authenticates IP payload and selected portions of IP header
- ESP encrypts IP payload, authenticates IP payload, but not IP header

Tunnel Mode

- Common use: one end is security gateway
- Protect entire IP packet
- Add New IP header
- AH authenticates entire inner IP packet plus selected portions of outer IP header
- ESP encrypts entire inner IP packet, authenticates entire inner IP packet

(b) A virtual private network via tunnel mode

Tunnel Mode

Tunnel Mode

Figure 17-2. IPsec, tunnel mode, between firewalls

Figure 17-3. Multiply encrypted IP packet

IPv4 Header

- Protocol/Next header:
 - IP (4), TCP (6), UDP (17), AH (51), ESP (50)

version						
header length (in 4-octet units)						
type of service						
length of header plus data in this fragment						
packet identification						
flags (don't fragment, and last fragment)						
fragment offset						
hops remaining, known as TTL (time to live)						
protocol						
header checksum						
source address						
destination address						
options						

50=ESP, 51=AH

AH (Authentication Header)

- Integrity protection
 - Data integrity: modification of packet content
 - Authentication of IP packets: address spoofing, replay attack

# octets						
1	next header					
1	payload length					
2	unused					
4	SPI (Security Parameter Index)					
4	sequence number					
variable	authentication data	·				

Authentication Data Field

- Integrity check value (ICV)
- HMAC-MD5-96
 HMAC-SHA-1-96
- The MAC is calculated over
 - Immutable or predictable IP header fields
 - AH header other than the Authentication data field
 - Entire upper-layer protocol data

IP Header: Mutable, Immutable

Mutable: TTL, Type of Service, Flags, Fragment Offset, Header Checksum

Immutable: Source Address

Mutable but Predictable: Destination Address

size							
4 bits	version						
4 bits	header length (in 4-octet units)						
1 octet	type of service						
2 octets	length of header plus data in this fragment						
2 octets	packet identification						
3 bits	flags (don't fragment, and last fragment)						
13 bits	fragment offset						
1 octet	hops remaining, known as TTL (time to live)						
1 octet	protocol						
2 octets	header checksum						
4 octets	source address						
4 octets	destination address						
variable	options						

50=ESP, 51=AH

Transport Mode AH

Tunnel Mode AH

ESP (Encapsulating Security Payload)

Encryption and/or Integrity protection

SPI (Security Parameters Index)
sequence number
IV (initialization vector)
data
padding
padding length (in units of octets)
next header/protocol type
authentication data

Transport Mode ESP

Tunnel Mode ESP

(b) Tunnel mode

IPv6

AH and ESP

- AH does only integrity protection.
- ESP allows
 - encryption only
 - integrity only
 - encryption+integrity
- ESP can replace AH except that
 - AH also protect the immutable fields in the IP header (source and destination IP addresses), while ESP works only on the payload.

SA: Security Association

- A cryptographically protected connection
- Unidirectional: a bidirectional conversation consists of two SAs, one in each direction
- Information associated with each end of a SA:
 - identity of the other end
 - sequence number currently being used
 - cryptographic services being used: integrity or encryption+integrity, algorithms, keys, IVs, life time, etc...
 - IPsec protocol mode: tunnel, transport,

— ...

SA identifier

- A system need to know which SA a packet belongs to. The SA of any packet is uniquely determined by
 - Security Parameter Index (SPI): a field in AH or ESP headers, assigned during IKE negotiation.
 - Destination IP address
 - Security Protocol Identifier: AH or ESP

Q: Why destination address is needed?

SA defined by: <SPI, destination address, flag for whether it's AH or ESP>

Security Association Database

- Given a packet, the sender looks up in the database for an appropriate SA, which tells it how to process the packet.
- The receiver looks up in the database for a corresponding SA, which tells it how to reverse the processing and recover the packet.

Security Policy Database

- An IPsec-enabled system has a security policy database (SPD), describing how to treat the outbound packets. Each policy matches certain traffic streams and specifies the action: drop, forward, IPsec, etc. If the action is IPsec, it also provides all needed parameters.
- When a packet matches an IPsec policy, the computer first looks up if there is an existing SA. If so, process the packet. Otherwise, invoke IKE to negotiate one first.

Host SPD Example

Protocol	Local IP	Port	Remote IP	Port	Action	Comment
UDP	1.2.3.101	500	*	500	BYPASS	IKE
ICMP	1.2.3.101	*	*	*	BYPASS	Error messages
*	1.2.3.101	*	1.2.3.0/24	*	PROTECT: ESP intransport-mode	Encrypt intranet traffic
TCP	1.2.3.101	*	1.2.4.10	80	PROTECT: ESP intransport-mode	Encrypt to server
TCP	1.2.3.101	*	1.2.4.10	443	BYPASS	TLS: avoid double encryption
*	1.2.3.101	*	1.2.4.0/24	*	DISCARD	Others in DMZ
*	1.2.3.101	*	*	*	BYPASS	Internet

IPsec doesn't work well with

- NAT (Network Address Translation)
 - Source address is encrypted in ESP tunnel mode
 - Source address is in the checksum in ESP transport mode
 - Source address affects the crypto-checksum in AH
- Firewalls
 - IPsec encrypts information (TCP ports etc.) that firewall wants to inspect.