# MACS 201: Hilbert spaces and probability

## 1 Hilbert spaces

**Def.** Let  $\mathcal{H}$  be a complex linear space. An **inner-product** on  $\mathcal{H}$  is a function  $\langle \cdot | \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbf{C}$  which satisfies the following properties :

- (i)  $\forall (x, y) \in \mathcal{H} \times \mathcal{H}, \langle x \mid y \rangle = \overline{\langle y \mid x \rangle},$
- (ii)  $\forall x, y, z \in \mathcal{H} \forall (\alpha, \beta) \in \mathbf{C} \times \mathbf{C}, \langle \alpha x + \beta y \mid z \rangle = \alpha \langle x \mid z \rangle + \beta \langle y \mid z \rangle$ ,
- (iii)  $\forall x \in \mathcal{H}, (\langle x \mid x \rangle = 0) \iff (x = 0)$

Then  $\|\cdot\|: x \mapsto \sqrt{\langle x \mid x \rangle} \ge 0$  defines a norm on  $\mathcal{H}$ . Both are continuous.

**Th.** For all  $x, y \in \mathcal{H}$ , we have :

- a) Cauchy-Schwarz inequality:  $|\langle x \mid y \rangle| \leq ||x|| \cdot ||y||$ ,
- b) triangular inequality :  $|||x|| ||y||| \le ||x y|| \le ||x|| + ||y||$ ,
- c) Parallelogram inequality:  $||x + y||^2 + ||x y||^2 = 2 ||x||^2 + 2 ||y||^2$ .

**Def.** An inner-product space  $\mathcal{H}$  is called an **Hilbert space** if it is complete.

**Prop.** For all measured space  $(\Omega, \mathcal{F}, \mu)$ , the space  $L^2(\Omega, \mathcal{F}, \mu)$  endowed with  $\langle f \mid g \rangle = \int f \bar{g} \, d\mu$  is a Hilbert space.

**Def.** Two vectors  $x, y \in \mathcal{H}$  are **orthogonal** if  $\langle x \mid y \rangle = 0$  which we denoted by  $x \perp y$ . If  $\mathcal{S}$  is a subspace of  $\mathcal{H}$ , we write  $x \perp \mathcal{S}$  if  $\forall s \in \mathcal{S}, x \perp s$ . Also we write  $\mathcal{S} \perp \mathcal{T}$  if all vectors in  $\mathcal{S}$  are orthogonal to  $\mathcal{T}$ .

*Not.* If  $\mathcal{H} = \mathcal{A} + \mathcal{B}$  and  $\mathcal{A} \perp \mathcal{B}$  we will denote  $\mathcal{H} = \mathcal{A} \stackrel{\perp}{\oplus} \mathcal{B}$ .

**Def.** Let  $\mathcal{E}$  be a subset of an Hilbert space  $\mathcal{H}$ . The orthogonal set of  $\mathcal{E}$  is  $\mathcal{E}^{\perp} = \{x \in \mathcal{H} \mid \forall y \in \mathcal{E}, \langle x \mid y \rangle = 0\}$ .

**Th.** If  $\mathcal{E}$  is a subset of an Hilbert space  $\mathcal{H}$ , then  $\mathcal{E}^{\perp}$  is closed.

### Orthogonal and orthonormal bases

**Def.** Let E be a subset of  $\mathcal{H}$ . It is an orthogonal set if for all  $(x,y) \in E \times E, x \neq y, x \perp y$ . If moreover  $\forall x \in E, \|x\| = 1$ , we say that E is orthonormal.

**Th.** Let  $(e_i)_{i\geqslant 1}$  be an orthonormal sequence of an Hilbert space  $\mathcal{H}$  and let  $(\alpha_i)_{i\geqslant 1}\in \mathbf{C^N}$ . The series  $\sum_{i=1}^{\infty}\alpha_i e_i$  converges in  $\mathcal{H}$  if and only if  $\sum_i |\alpha_i|^2 < \infty$ , in which case  $\|\sum_{i=1}^{\infty}\alpha_i e_i\|^2 = \sum_{i=1}^{\infty} |\alpha_i|^2$ .

**Prop.** Let  $x \in \mathcal{H}$  (Hilbert space) and  $E = \{e_1, \dots, e_n\}$  a finite orthonormal set of vectors. Then  $||x - \sum_{k=1}^n \langle x \mid e_k \rangle e_k||^2 = ||x||^2 - \sum_{k=1}^n |\langle x \mid e_k \rangle|^2 = \inf\{||x - y||^2, y \in \operatorname{Span}(e_1, \dots, e_n)\}.$ 

**Cor** (Bessel inequality). Let  $(e_i)_{i\geqslant 1}$  be an orthonormal sequence of a Hilbert space  $\mathcal{H}$ . Then  $\forall$ ,  $x \in \mathcal{H}$ ,  $\sum_{i=1}^{\infty} |\langle x \mid e_i \rangle|^2 \leq ||x||^2$ .

**Def.** A subset E of a Hilbert space  $\mathcal{H}$  is said **dense** if  $\overline{\mathrm{Span}}(E) = \mathcal{H}$ . An orthonormal dense sequence is called a Hilbert basis.

**Prop.** Consider the measured space  $(\Omega, \mathcal{F}, \mu)$  and the Hilbert space  $\mathcal{H} = L^2(\Omega, \mathcal{F}, \mu)$ ,  $\overline{\mathrm{Span}}(\mathbf{1}_A, A \in \mathcal{F}) = \mathcal{H}$ .

**Th.** Let  $(e_i)_{i\geqslant 1}$  be a Hilbert basis of the Hilbert space  $\mathcal{H}$ . Then  $\forall x\in\mathcal{H}, x=\sum_{i=1}^{\infty}\langle x\mid e_i\rangle\,e_i$ .

**Th.** Let  $(e_i)_{i\geqslant 1}$  be an orthonormal sequence of the Hilbert space  $\mathcal{H}$ . The following assertions are equivalent:

- (i)  $(e_i)_{i \ge 1}$  is a Hilbert basis,
- (ii) if some  $x \in \mathcal{H}$  satisfies  $\forall i \geq 1, \langle x \mid e_i \rangle = 0$  then x = 0,
- (iii)  $\forall x \in \mathcal{H}, ||x||^2 = \sum_{i=1}^{\infty} |\langle x \mid e_i \rangle|^2$ .

**Th.** A Hilbert space H if separable (i.e. contains a countable dense subset) if and only if it admits a Hilbert basis.

#### Fourier series

Let  $\psi_n \colon x \mapsto \frac{1}{\sqrt{2\pi}} e^{inx}, n \in \mathbf{Z}$ . Let  $L^1(\mathbf{T})$  denote the set of  $2\pi$ -periodic locally integrable functions. For  $f \in L^1(\mathbf{T})$ , set  $\forall n \in \mathbf{N}, f_n = \sum_{k=-n}^n \left( \int_{\mathbf{T}} f \bar{\phi}_k \right) \phi_k$ .

**Th.** Let f be a continuous  $2\pi$ -periodic function. Then the Cesaro sequence  $\frac{1}{n}\sum_{k=0}^{n-1}f_k$  converges uniformly to f.

Cor. Let  $\mu$  be a finite measure on the Borel sets of  $\mathbf{T} = \mathbf{R}/(2\pi\mathbf{Z})$ . The sequence  $(\phi_n)_{n \in \mathbf{Z}}$  is dense in the Hilbert space  $L^2(\mathbf{T}, \mathcal{B}(\mathbf{T}), \mu)$ .

Cor. The sequence  $(\phi_n)_{n\in\mathbf{Z}}$  is a Hilbert basis in  $L^2(\mathbf{T})$ . In particular,  $\forall f\in L^2(\mathbf{T}), f=\sum_{k=-\infty}^{\infty}\alpha_k\phi_k$  with  $\alpha_k=\frac{1}{\sqrt{2\pi}}\int_{\mathbf{T}}f(x)e^{-ikx}\,\mathrm{d}x$  when the infinite sum converges in  $L^2(\mathbf{T})$ . The Parseval identity then reads  $\int_{\mathbf{T}}|f(x)|^2\,\mathrm{d}x=\sum_{k=-\infty}^{\infty}|\alpha_k|^2$ .

### Projection and orthogonality principle

**Th** (Projection theorem). Let  $\mathcal{E}$  be a closed convex subset of a Hilbert space  $\mathcal{H}$  and  $x \in \mathcal{H}$ . Then the following holds:

- (i) There exists a unique vector  $\operatorname{proj}(x \mid \mathcal{E}) \in \mathcal{E}$  such that  $||x \operatorname{proj}(x \mid \mathcal{E})|| = \inf_{w \in \mathcal{E}} ||x w||$ .
- (ii) If moreover  $\mathcal{E}$  is a linear subspace,  $\operatorname{proj}(x \mid \mathcal{E})$  is the unique  $\hat{x} \in \mathcal{E}$  such that  $x \hat{x} \in \mathcal{E}^{\perp}$ . It is called the orthogonal projection of x onto  $\mathcal{E}$ .

**Prop.** Let  $\mathcal{H}$  be a Hilbert space and  $\mathcal{E}, \mathcal{E}_1, \mathcal{E}_2$  closed subspaces of  $\mathcal{H}$ . Then the following assertions hold.

- (i) Suppose that  $\mathcal{E} = \overline{\operatorname{Span}}\left((e_k)_{k \in \mathbb{N}}\right)$  with  $(e_k)$  being an orthonormal sequence. Then  $\operatorname{proj}(h \mid \mathcal{E}) = \sum_{k=0}^{\infty} \langle h \mid e_k \rangle e_k$ .
- (ii) The function  $\operatorname{proj}(\cdot \mid \mathcal{H}) \colon x \mapsto \operatorname{proj}(x \mid \mathcal{E})$  is linear and continuous on  $\mathcal{H}$ .
- (iii)  $||x||^2 = ||\operatorname{proj}(x \mid \mathcal{E})||^2 + ||x \operatorname{proj}(x \mid \mathcal{E})||^2$
- (iv)  $(x \in \mathcal{E} \iff \operatorname{proj}(x \mid \mathcal{E}) = x)$  and  $(x \in \mathcal{E}^{\perp} \iff \operatorname{proj}(x \mid \mathcal{E}) = 0)$
- (v) If  $\mathcal{E}_1 \subset \mathcal{E}_2$  then  $\forall x \in \mathcal{H}$ ,  $\operatorname{proj}(\operatorname{proj}(x \mid \mathcal{E}_{\in} \mid \mathcal{E}_1) = \operatorname{proj}(x \mid \mathcal{E}_1)$

(vi) If 
$$\mathcal{E}_1 \perp \mathcal{E}_2$$
 then  $\forall x \in \mathcal{H}$ ,  $\operatorname{proj}\left(x \mid \mathcal{E}_1 \overset{\perp}{\oplus} \mathcal{E}_2\right) = \operatorname{proj}(x \mid \mathcal{E}_1) + \operatorname{proj}(x \mid \mathcal{E}_2)$ 

**Th.** Let  $(M_n)_{n \in \mathbb{Z}}$  be an increasing sequence of closed subspaces of an Hilbert space  $\mathcal{H}$ .

- 1. Denote  $M_{-\infty} = \bigcap_n M_n$ . Then  $\forall h \in \mathcal{H}$ ,  $\operatorname{proj}(h \mid M_{-\infty}) = \lim_{n \to -\infty} \operatorname{proj}(h \mid M_n)$ .
- 2. Denote  $M_{\infty} = \overline{\bigcup_n M_n}$ . Then  $\forall h \in \mathcal{H}$ ,  $\operatorname{proj}(h \mid M_{\infty}) = \lim_{n \to \infty} \operatorname{proj}(h \mid M_n)$ .

**Prop.** Let  $\mathcal{E}$  and  $\mathcal{F}$  be two subspaces of a Hilbert space  $\mathcal{H}$ . If  $\mathcal{E} \stackrel{\perp}{\oplus} \mathcal{F} = \mathcal{H}$ , then  $\mathcal{F} = \mathcal{E}^{\perp}$ .

**Th.** If  $\mathcal{E}$  is a closed subspace of a Hilbert space  $\mathcal{H}$  then  $\mathcal{E} \stackrel{\perp}{\oplus} \mathcal{E}^{\perp} = \mathcal{H}$ . Moreover  $(E^{\perp})^{\perp} = \mathcal{E}$ .

**Th** (Riesz representation theorem). *Let*  $\mathcal{H}$  *be a Hilbert space. Then*  $F : \mathcal{H} \to \mathbf{C}$  *is a non-zero continuous linear form if and only if*  $\exists x \in \mathcal{H} \setminus \{0\}, \forall y \in \mathcal{H}, F(y) = \langle y \mid x \rangle$ .

#### **Unitary Operator**

**Def.** Let  $\mathcal{H}$  and  $\mathcal{I}$  be two Hilbert spaces. An **isometric** operator  $S \colon \mathcal{H} \to \mathcal{I}$  is a linear application such that  $\forall (v,w) \in \mathcal{H}^2, \langle Sv \mid Sw \rangle_{\mathcal{I}} = \langle v \mid w \rangle_{\mathcal{H}}$ . If it is moreover bijective, it is a **unitary** operator. In this case we also says that  $\mathcal{H}$  and  $\mathcal{I}$  are isomorphic.

**Th.** *Let*  $\mathcal{H}$  *be a separable Hilbert space.* 

- (i) If  $\mathcal{H}$  has infinite dimension, it is isomorphic to  $l^2$ .
- (ii) If  $\mathcal{H}$  has dimension n, it is isomorphic to  $\mathbb{C}^n$ .

**Th.** Let  $\mathcal{H}$  and  $\mathcal{I}$  be two Hilbert spaces and  $\mathcal{G}$  a subspace of  $\mathcal{H}$ .

- (i) Let  $S: \mathcal{G} \to \mathcal{I}$  be isometric on  $\mathcal{G}$ . Then S admits a unique isometric extension  $\bar{S}: \bar{\mathcal{G}} \to \mathcal{I}$  and  $\bar{S}(\bar{\mathcal{G}})$  is the closure of  $S(\mathcal{G})$  in  $\mathcal{I}$ .
- (ii) Let  $(v_t)_{t\in T}$  and  $(w_t)_{t\in T}$  be two set of vectors in  $\mathcal{H}$  and  $\mathcal{I}$  indexed by an arbitrary index set T. Suppose  $\forall (s,t) \in T^2, \langle v_t \mid v_s \rangle_{\mathcal{H}} = \langle w_t \mid w_s \rangle_{\mathcal{I}}$ . Then, there exists a unique isometric operator  $S \colon \overline{\operatorname{Span}}((v_t)_{t\in T}) \to \overline{\operatorname{Span}}((w_t)_{t\in T})$  such that  $\forall t \in T, Sv_t = w_t$ . Moreover,  $S(\overline{\operatorname{Span}}((v_t)_{t\in T})) = \overline{\operatorname{Span}}((w_t)_{t\in T})$ .

# 2 Probability

Let  $(\Omega, \mathcal{F}, \mathbf{P})$  be a probability space.

**Th** ( $\pi$  -  $\lambda$  theorem). *If*  $A \subset C$  *with* A *a*  $\pi$ -system and C *a*  $\lambda$ -system, then  $\sigma(A) = C$ .

**Th** (Characterization of probability measures). Let  $\mathcal{C}$  be a  $\pi$ -system on  $\Omega$  and  $\mathcal{F} = \sigma(\mathcal{C})$  the smallest  $\sigma$ -field containing  $\mathcal{C}$ . Then a probability measure  $\mu$  on  $(\Omega, \mathcal{F})$  is uniquely characterized by  $\mu(A)$  on  $A \in \mathcal{C}$ .

*Not.* For p > 0, we denote by  $\mathcal{L}^p(\Omega, \mathcal{F}, \mathbf{P})$  the space of random variables X such that  $\mathbf{E}(|X|^p) < \infty$  and by  $L^p(\Omega, \mathcal{F}, \mathbf{P})$  the one identifying random variables that are equal **P**-a.s.

#### **Conditional calculus**

**Lem.** Let  $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$  and  $\mathcal{G}$  a sub- $\sigma$ -field of  $\mathcal{F}$ . Then there exists  $Y \in \mathcal{L}^1(\Omega, \mathcal{G}, \mathbf{P})$  such that

$$\forall A \in \mathcal{G}, \mathbf{E}(X \mathbf{1}_A) = \mathbf{E}(Y \mathbf{1}_A) \tag{1}$$

Moreover the following assertions hold.

- (i) If  $Y' \in \mathcal{L}^1(\Omega, \mathcal{G}, \mathbf{P})$  also satisfies (1) then Y' = Y **P**-a.s.
- (ii) If  $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbf{P})$ , then  $Y = \text{proj}(X \mid L^2(\Omega, \mathcal{G}, \mathbf{P}))$ .
- (iii) (1) continues to hold extended as  $\mathbf{E}(XZ) = \mathbf{E}(YZ)$  for all  $\mathcal{G}$ -measurable r.v. Z such that  $\mathbf{E}(|XZ|) < \infty$ .

**Def.** Let  $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$  and  $\mathcal{G}$  a sub- $\sigma$ -field of  $\mathcal{F}$ . The unique  $Y \in L^1(\Omega, \mathcal{G}, \mathbf{P})$  defined by (1) is called the **conditional expectation** of X given  $\mathcal{G}$ , and denoted by  $Y = \mathbf{E}(x \mid \mathcal{G})$ .

**Prop.** Suppose that  $X, Y, Z, (X_n)_{n \ge 1} \in L^1(\Omega, \mathcal{F}, \mathbf{P})$ . The following hold **P**-a.s.

- (i) (linearity)  $\forall a, b \in \mathbf{R}, \mathbf{E}(aX + bY \mid \mathcal{G}) = a\mathbf{E}(X \mid \mathcal{G}) + b\mathbf{E}(Y \mid \mathcal{G})$
- (ii) If X is G-measurable,  $\mathbf{E}(X \mid \mathcal{G}) = X$
- (iii) If  $G = \{\emptyset, \Omega\}$  is the trivial  $\sigma$ -field, then  $\mathbf{E}(X \mid G) = \mathbf{E}(X)$
- (iv) If X is independent of G then  $\mathbf{E}(X \mid \mathcal{G}) = \mathbf{E}(X)$
- (v) (positivity) If  $X \leqslant Y$  then  $\mathbf{E}(X \mid \mathcal{G}) \leqslant \mathbf{E}(Y \mid \mathcal{G})$
- (vi)  $\mathbf{E}(X \mid \mathcal{G}) \vee \mathbf{E}(Y \mid \mathcal{G}) \leqslant \mathbf{E}(X \vee Y \mid \mathcal{G}), \mathbf{E}(X \mid \mathcal{G})_{+} \leqslant \mathbf{E}(X_{+} \mid \mathcal{G}) \text{ and } |\mathbf{E}(X \mid \mathcal{G})| \leqslant \mathbf{E}(|X| \mid \mathcal{G})$
- (vii) (tower property) If  $\mathcal{H}$  is a sub- $\sigma$ -field of  $\mathcal{F}$  such that  $\mathcal{G} \subset \mathcal{H}$  then  $\mathbf{E}(\mathbf{E}(X \mid \mathcal{H}) \mid \mathcal{G}) = \mathbf{E}(X \mid \mathcal{G})$
- (viii) The expectation is not modified by conditional expectation :  $\mathbf{E}(\mathbf{E}(X \mid \mathcal{G})) = \mathbf{E}(X)$
- (ix) If X is G-measurable and  $XY \in L^1(\Omega, \mathcal{F}, \mathbf{P})$ , then  $\mathbf{E}(XY \mid \mathcal{G}) = X \cdot \mathbf{E}(Y \mid \mathcal{G})$
- **Def.** Let Y be a r.v. and  $\sigma(X)$  the sub- $\sigma$ -field generated by a r.v. X. If  $\mathbf{E}(Y \mid \sigma(X))$  is well-defined, it is written as  $\mathbf{E}(Y \mid X)$  and is called the **conditional expectation** of Y given X.
- **Def.** Let  $\mathcal{G}$  be a sub- $\sigma$ -field of  $\mathcal{F}$ . For any event  $A \in \mathcal{F}$ , we denote  $\mathbf{P}(A \mid \mathcal{G}) = \mathbf{E}(\mathbf{1}_A \mid \mathcal{G})$ . The mapping  $A \mapsto \mathbf{P}(A \mid \mathcal{G})$  is called a **version of the conditional probability** of A given  $\mathcal{G}$ .
- **Def.** Let  $\mathcal{G}$  be a sub- $\sigma$ -field of  $\mathcal{F}$ . A **regular version** of the conditional probability of  $\mathbf{P}$  given  $\mathcal{G}$  is a function  $\mathbf{P}^{\mathcal{G}}: \Omega \times \mathcal{F} \to [0\,;1]$  such that
  - (i) For all  $A \in \mathcal{F}$ ,  $\mathbf{P}^{\mathcal{G}}(A) \colon \omega \mapsto \mathbf{P}^{\mathcal{G}}(\omega, A)$  is  $\mathcal{G}$ -measurable and is a version of the conditional probability of A given  $\mathcal{G}$ ,  $\mathbf{P}^{\mathcal{G}}(A) = \mathbf{P}(A \mid \mathcal{G})$ .
- (ii) For all  $\omega \in \Omega$ , the mapping  $A \mapsto \mathbf{P}^{\mathcal{G}}(\omega, A)$  is a probability on  $\mathcal{F}$ .
- **Lem.** Let  $\mathbf{P}^{\mathcal{G}}$  be a regular version of the conditional probability of  $\mathbf{P}$  given  $\mathcal{G}$  and let  $Y \in L^1(\Omega, \mathcal{F}, \mathbf{P})$ . Then  $\mathbf{E}(Y \mid \mathcal{G}) = \mathbf{E}^{\mathcal{G}}(Y) \mathbf{P}$ -a.s., with  $\mathbf{E}^{\mathcal{G}}(Y) : \omega \mapsto \int Y(\omega') \mathbf{P}^{\mathcal{G}}(\omega, d\omega')$ .
- **Def.** Let  $\mathcal{G}$  be a sub- $\sigma$ -field of  $\mathcal{F}$ . Let  $(Y, \mathcal{Y})$  be a measurable space and let Y be an Y-valued random variable. A regular version of the conditional distribution of Y given  $\mathcal{G}$  is a function  $\mathbf{P}^{Y|\mathcal{G}}: \Omega \times \mathcal{Y} \to [0;1]$  such that
  - (i) For all  $A \in \mathcal{Y}$ ,  $\omega \mapsto \mathbf{P}^{Y|\mathcal{G}}(\omega, A)$  is  $\mathcal{G}$  measurable and is a version of conditional distribution of Y given  $\mathcal{G}$ ,  $\mathbf{P}^{Y|\mathcal{G}}(\cdot, A) = \mathbf{P}(Y \in A \mid \mathcal{G})$  **P-**a.s.
- (ii) For every  $\omega$ ,  $A \mapsto \mathbf{P}^{Y|\mathcal{G}}(\omega, A)$  is a probability on  $\mathcal{Y}$ .

### 3 Mathematical statistics

#### Statistical modeling

**Def.** Let  $(\Omega, \mathcal{F})$  be a measurable space and  $\mathcal{P}$  a collection of probabilities on this space. Let X be a measurable function from  $(\Omega, \mathcal{F})$  to the observation space  $(X, \mathcal{X})$ . We say that  $\mathcal{P}$  is a **statistical model** for the observation variable X and denote  $\mathcal{P}^X = (\mathcal{P}^X)_{\mathcal{P} \in \mathcal{P}}$  the corresponding collection of probability distributions.

It is usual in statistics to consider  $\Omega = X$ ,  $\mathcal{F} = \mathcal{X}$  and  $X(\omega) = \omega$ , in which case  $\forall P \in \mathcal{P}, P = P^X$ .

**Def.** Let  $\nu \in \mathbf{M}_+(\mathsf{X},\mathcal{X})$  and  $\mathcal{P}$  be a statistical model for X. We say that  $\mathcal{P}$  is a  $\nu$ -dominated model for X, or that  $\mathcal{P}^X$  is  $\nu$ -dominated, if  $\forall P \in \mathcal{P}, P^X \ll \nu$ .

**Lem.** Let  $\nu \in \mathbf{M}_+(\mathsf{X},\mathcal{X})$ . Consider a  $\nu$ -dominated model  $\mathcal{P}$  for the variable X. Then there exists a countable collection  $(P_n)_{n\geqslant 1}$  in  $\mathcal{P}$  such that  $\mathcal{P}^X$  is also dominated by  $\mu=\sum_{n\geqslant 1}2^{-n}P_n^X$ .

**Def.** Let  $\mathcal{P}$  be a statistical model for the observation variable X. We say that  $\mathcal{P}$  is a **parametric model** for X if there exists a finite dimensional set  $\Theta$  such that  $\mathcal{P} = (P_{\theta})_{\theta \in \Theta}$ .

**Def.** Let  $\mathcal{P}$  be a statistical model for X. Any finite dimensional quantity  $t(P^X)$  only depending on  $P^X$  as  $P \in \mathcal{P}$  is called an **identifiable parameter**.

**Def.** Let  $\mathcal{P}$  be a statistical model for X. A **statistic** in this context is any random variable T valued in  $(\mathbf{R}^d, \mathcal{B}(\mathbf{R}^d))$  with  $d \ge 1$ , defined by T = g(X) where g is a Borel function not depending on  $P \in \mathcal{P}$ .

If a statistic is used as a guess for a parameter  $t(P) \in \mathbf{R}^d$ , it is called an **estimator** of t(P). In this case, the **bias** of T for estimating t(P) is defined as  $\operatorname{Bias}(T,P) = \int T \, \mathrm{d}P - t(P)$  whenever  $\int |T| \, \mathrm{d}P < \infty$ . We say that T is an *unbiased* estimator of t(P) if  $\forall P \in \mathcal{P}, \int T \, \mathrm{d}P = t(P)$ . The **quadratic risk** or **mean squared error** (in the case d=1) is defined by  $\operatorname{MSE}(T,P) = \int (T-t(P))^2 \, \mathrm{d}P = \operatorname{Var}(T) + \operatorname{Bias}(T,P)^2$ .

**Def.** Let T be a statistic valued in  $(\mathbf{R}^d, \mathbf{R}^{\mathcal{D}})$  with  $d \geqslant 1$ . We say that T is a **sufficient statistic** for the model  $\mathcal{P}$  if, for all  $P \in \mathcal{P}$ , the conditional distribution of X given T does not depend on P, that is, there exists a probability kernel  $Q \subset \mathbf{R}^d \times \mathcal{X}$  such that, for all  $P \in \mathcal{P}$ , Q is a regular version of  $P^{X|T}$ .

**Lem.** Let S be a sufficient statistic associated to the Markov kernel Q and let T=g(X) be an unbiased estimator of the parameter t(P) (both real valued). Define  $T^R=\int g(x)Q(S,\mathrm{d}x)$ . Then  $T^R$  is an unbiased estimator of the parameter t and its variance is smaller than that of T. As a consequence we have,  $\forall P\in\mathcal{P},\mathrm{MSE}\,(T^R,P)\leqslant\mathrm{MSE}(T,P)$ .

**Th** (Fisher Factorization theorem). Let  $\nu \in \mathbf{M}_+(\mathsf{X},\mathcal{X})$ . Consider a  $\nu$ -dominated model  $\mathcal{P}$  for X and let S = g(X) be a d-dimensional statistic. Then S is a sufficient statistic for the model  $\mathcal{P}$  if and only if there exists a non-negative Borel function h on  $\mathsf{X}$  such that  $\forall P \in \mathcal{P}$ , there exists a Borel function  $f_P \colon \mathbf{R}^d \to \mathbf{R}_+$  such that  $\frac{\mathrm{d} P^X}{\mathrm{d} \nu} = h \cdot f_P \circ g$ .

