Autor: José Romualdo Villalobos Pérez

ID: 000294087

El problema:

Un banco alemán desea establecer políticas de mercadeo según el tipo de cliente. Para esto se desean identificar tipos de clientes de una base de datos de 1000 registros con 20 atributos cada uno.

Preparando los datos

Al observar los datos, se consideró que estos se encuentran desbalanceados, por lo tanto se procedió a balancearlos aplicando un SMOTE.

El SMOTE agregó 300 nuevas instancias al dataset dándonos un total de 1300 instancias en total.

Como se puede evidenciar el dataset quedo significativamente más balanceado.

Luego, se reviso el dataset en busca de valores atípicos, pero no se identificó ninguno.

Definiendo el número de clusters a detectar

Determinar el parámetro K es uno de los problemas de las técnicas no supervisadas, existen diversos métodos para hallar un valor optimo, como por ejemplo maximizar el Bayesian Information Criterion, sin embargo para nuestro caso se utilizó una técnica de prueba — error para determinar dicho parámetro, teniendo como criterio de selección el primer valor de K para el cual la cantidad de centroides que pertenezcan al grupo de buenos clientes sea mayor al numero de centroides que pertenezcan al grupo de malos clientes al aplicar el algoritmo de clustering kmeans.

Cluster#				
0	1	2	3	4
(106.0)	(291.0)	(256.0)	(358.0)	(289.0)
<0	no checking	<0	<0	no checking
20.6829	22.3849	19.8834	26.4828	17.0726
existing paid	existing paid	existing paid	existing paid	existing paid
used car	radio/tv	new car	new car	radio/tv
3691.6142	3685.5808	2382.773	4797.7338	2282.6939
<100	no known savings	<100	<100	<100
1<=X<4	>=7	<1	1<=X<4	1<=X<4
2.4327	3.2371	3.2691	2.8778	2.834
female div/dep/mar	male single	female div/dep/mar	male single	female div/dep/mar
none	none	none	none	none
3.6315	3.1856	2.8296	2.83	2.2905
car	car	real estate	car	real estate
31.8896	39.4227	32.0713	35.3599	34.1934
none	none	none	none	none
rent	own	own	own	own
1.2642	1.5258	1.3132	1.4131	1.3807
skilled	skilled	skilled	skilled	skilled
1.0283	1.1924	1.1109	1.2312	1.0923
none	yes	none	none	none
yes	yes	yes	yes	yes
good	good	bad	bad	good

Se usó este criterio porque se consideró más importante segmentar a los buenos clientes que segmentar a los malos, esto con el objetivo de intentar brindarles una experiencia más personalizada.

Luego de varias pruebas el primer valor de K que satisfizo este criterio fue K=5

A continuación, vamos a probar varios algoritmos no supervisados de clustering.

K-Means

Se obtuvieron los siguientes centroides para los 5 clusters:

Cluster#				
0	1	2	3	4
(106.0)	(291.0)	(256.0)	(358.0)	(289.0)
<0	no checking	<0	<0	no checking
20.6829	22.3849	19.8834	26.4828	17.0726
existing paid	existing paid	existing paid	existing paid	existing paid
used car	radio/tv	new car	new car	radio/tv
3691.6142	3685.5808	2382.773	4797.7338	2282.6939
<100	no known savings	<100	<100	<100
1<=X<4	>=7	<1	1<=X<4	1<=X<4
2.4327	3.2371	3.2691	2.8778	2.834
female div/dep/mar	male single	female div/dep/mar	male single	female div/dep/mar
none	none	none	none	none
3.6315	3.1856	2.8296	2.83	2.2905
car	car	real estate	car	real estate
31.8896	39.4227	32.0713	35.3599	34.1934
none	none	none	none	none
rent	own	own	own	own
1.2642	1.5258	1.3132	1.4131	1.3807
skilled	skilled	skilled	skilled	skilled
1.0283	1.1924	1.1109	1.2312	1.0923
none	yes	none	none	none
yes	yes	yes	yes	yes
good	good	bad	bad	good

Lamentablemente este método de clustering no separó los clientes buenos de los malos.

Ahora, vamos a nombrar los clusters:

Cluster 0:

Nombre: Independiente

Descripción Persona: Mujer responsable y dedicada a su carrera, no le da miedo ir a otros países a trabajar, estas mujeres le huyen a los gastos grandes, prefiere tener un auto usado que uno nuevo, prefiere rentar su vivienda que comprar una no le preocupa lo que pueda pasar en el futuro.

Cluster 1:

Nombre: Libertad

Descripción Persona: Dedicado a su carrera, valora mucho los espacios de ocio, por eso tiene un TV gigante, vive en su propia casa y no tiene pareja.

Cluster 2:

Nombre: Imperial

Descripción Persona: Tiene su propia casa, no le gusta endeudarse a largo plazo, pero a veces no calcula bien sus verdaderas capacidades, le gusta movilizarse en automóvil y prefiere sentir que es la dueña.

Cluster 3:

Nombre: Orgullo personal

Descripción Persona: No tiene pareja, le gusta lucir su automóvil, dedicado a su carrera, se siente cómodo en proyectos de mediano plazo, a veces no calcula bien sus verdaderas capacidades.

Cluster 4:

Nombre: Vive la vida

Descripción Persona: Dedicada a su carrera, valora su comodidad y los momentos de ocio, tiene su propia casa, despreocupada de lo que pueda pasar en el futuro.

Probando el modelo con 5 usuarios nuevos:

Para predecir a que cluster pertenecen 5 usuarios nuevos, vamos a aplicar el clasificador Support Vector Machine donde la clase de cada instancia es el cluster al que pertenece, para este caso entrenamos una SVM con un kernel lineal.

80.3167 %

19.6833 %

```
=== Summary ===
Correctly Classified Instances
                                          355
Incorrectly Classified Instances
                                          87
Kappa statistic
                                            0.7459
Mean absolute error
                                            0.0787
Root mean squared error
                                            0.2806
Relative absolute error
                                           25.2636 %
Root relative squared error
                                           71.1517 %
Total Number of Instances
                                          442
=== Evaluation on test set ===
Clustered Instances
    3 (60%)
    1 ( 20%)
2
```

Cobweb

1 (20%)

El valor de cutoff es 0.23 para evitar que el árbol crezca mucho, el resultado obtenido se muestra a continuación:

Afortunadamente para el banco, este método de clustering agrupo a los clientes buenos y a los clientes malos en clusters diferentes.

Expectation Maximization

Cuando numClusters = -1 el algoritmo selecciona un valor automáticamente para K basado en la cross validation.

No separó a los clientes buenos de los clientes malos.

Self-Organizing Maps

Debigo a que Weka no tiene una clase para aplicar este algoritmo, se implementara en Python y en R únicamente.

"Self-organizing map is not in weka catalogue the only neural networks do not compress features to viewable 2d map only regular nn's named multilayerperceptron and rbfnetwork which have different (opposite) activation functions"

- Harry M.T. Saarikoski, Weka mail list

Association, A priori

Car = true porque las instancias tienen un atributo clase, y **classIndex=-1** porque la clase se encuentra en la última columna.

Debido a que el método apriori solo funciona con variables categóricas, vamos a proceder discretizando los atributos numéricos.

Como resultado, ahora todos los atributos son de tipo nominal, ahora si podemos aplicar las reglas de asociación.

Best rules found:

1. checking status=no checking other parties=none other payment plans=none job=skilled 218 ==> clas

Podemos concluir que este algoritmo brinda al banco información muy valiosa, que podrá permitir sacar mas valor de sus clientes.