Esercizi linguaggi regolari

a.a. 2020-2021

Corso di Fondamenti di Informatica - 1 modulo Corso di Laurea in Informatica Università di Roma "Tor Vergata"

Prof. Giorgio Gambosi

1

(Esame 5-7-2017)

Definire un automa a stati finiti deterministico che riconosce il linguaggio $L \subset \{0,1\}^*$ composto da tutte le stringhe che non contengono la sequenza 111.

(Esame 5-7-2017)

Definire un automa a stati finiti deterministico che riconosce il linguaggio $L \subset \{0,1\}^*$ composto da tutte le stringhe che non contengono la sequenza 111.

(Esame 5-7-2017) Si consideri il linguaggio

$$L = \{a^i b^j c^k | i + j \ge 3, k \text{mod } 3 = 0\}$$

Il linguaggio è regolare o context free? Dimostrare quale delle due affermazioni è vera. Si definisca inoltre una grammatica (di tipo 3 o di tipo 2, rispettivamente) che generi tutte e sole le stringhe del linguaggio.

(Esame 5-7-2017) Si consideri il linguaggio

$$L = \{a^i b^j c^k | i + j \ge 3, k \text{mod } 3 = 0\}$$

Il linguaggio è regolare o context free? Dimostrare quale delle due affermazioni è vera. Si definisca inoltre una grammatica (di tipo 3 o di tipo 2, rispettivamente) che generi tutte e sole le stringhe del linguaggio.

Il linguaggio è regolare. Per dimostrare ciò, mostriamo un ASFD che lo riconosce.

La grammatica corrispondente sarà

(Esame 5-7-2017) Sia dato l'ASFD seguente

Si mostri come sia possibile ricavare una espressione regolare che descriva il linguaggio riconosciuto dall'automa.

(Esame 5-7-2017) Sia dato l'ASFD seguente

Si mostri come sia possibile ricavare una espressione regolare che descriva il linguaggio riconosciuto dall'automa.

(Esame 5-7-2017) Sia dato l'ASFD definito come $\mathcal{A} = \langle \Sigma, Q, \delta, q_0, F \rangle$, con

- 1. $\Sigma = \{a, b\}$
- 2. $Q = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- 3. $q_0 = 1$
- 4. $F = \{2, 4\}$

e funzione di transizione δ :

	a	b	
1	3	8	
2	3	1	
3	8	2	
4	5	6	
5	6	2	
6	7	8	
7	6	4	
8	5	8	

(Esame 5-7-2017) Sia dato l'ASFD definito come $\mathcal{A}=\langle \Sigma,Q,\delta,q_0,F\rangle$, con

1.
$$\Sigma = \{a, b\}$$

2.
$$Q = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

3.
$$q_0 = 1$$

4.
$$F = \{2, 4\}$$

e funzione di transizione δ :

	a	b
1	3	8
2	3	1
3	8	2
4	5	6
5	6	2
6	7	8
7	6	4
8	5	8

Applicando l'algoritmo di derivazione dell'automa minimo risulta $1 \equiv 6 \equiv 8, 2 \equiv 4$ e $3 \equiv 5 \equiv 7$.

Mantenendo gli stati 1,2,3 come rappresentanti delle classi di equivalenza, risulta l'automa minimo con stato finale 2 e funzione di transizione:

	a	b
1	3	1
2	3	1
3	1	2

Da cui la grammatica, con $S = A_1$,

$$\begin{array}{ccc} A_1 & \rightarrow & aA_3|bA_1 \\ A_2 & \rightarrow & aA_3|bA_1 \\ A_3 & \rightarrow & aA_1|bA_2|b \end{array}$$

5

(Esame 6-9-2018)

Data l'espressione regolare $E=a^*b^*+b^*a^*$, derivare un DFA minimo che riconosca il linguaggio definito da E.

(Esame 6-9-2018)

Data l'espressione regolare $E = a^*b^* + b^*a^*$, derivare un DFA minimo che riconosca il linguaggio definito da E.

6

(Esame 6-9-2018)

Si definisca un DFA che accetta il linguaggio su $\Sigma = \{0,1\}$ comprendente tutte e sole le stringhe che non contengono sottostringhe o^k con $k \geq 3$.

(Esame 6-9-2018)

Si definisca un DFA che accetta il linguaggio su $\Sigma = \{0, 1\}$ comprendente tutte e sole le stringhe che non contengono sottostringhe o^k con $k \ge 3$.

7

(Esame 6-9-2018) Si considerino i linguaggi $L_1 = \{b^n a^{3m} | n, m \ge 0\}$ e $L_2 = \{a^n b^{3n} | n \ge 0\}$. Per ognuno dei due, mostrare se il linguaggio è regolare o strettamente context-free.

(Esame 6-9-2018) Si considerino i linguaggi $L_1 = \{b^n a^{3m} | n, m \ge 0\}$ e $L_2 = \{a^n b^{3n} | n \ge 0\}$. Per ognuno dei due, mostrare se il linguaggio è regolare o strettamente context-free. (Esame 9-2-2018)

Sia *L* il linguaggio riconosciuto dal seguente ASFD,

derivare una espressione regolare che descriva ${\cal L}.$

(Esame 9-2-2018)

Sia *L* il linguaggio riconosciuto dal seguente ASFD,

derivare una espressione regolare che descriva L.

Una possibile soluzione prevede la derivazione della grammatica regolare equivalente

$$\begin{array}{ccc} A_0 & \rightarrow & 0A_0|1A_1 \\ A_1 & \rightarrow & 0A_1|1A_2|1 \\ A_2 & \rightarrow & 0A_0|1A_1 \end{array}$$

E da questa, manipolando il sistema di espressioni corrispondente, l'espressione regolare cercata.

$$\begin{cases} A_0 = 0A_0 + 1A_1 \\ A_1 = 0A_1 + 1A_2 + 1 \\ A_2 = 0A_0 + 1A_1 \end{cases}$$
$$\begin{cases} A_0 = 0A_0 + 1A_1 \\ A_1 = 0A_1 + 1A_0 + 1 \\ A_2 = A_0 \end{cases}$$

$$\begin{cases} A_0 = 0^* 1 A_1 \\ A_1 = 0 A_1 + 10^* 1 A_1 + 1 \\ A_2 = A_0 \end{cases}$$

$$\begin{cases} A_0 = 0^* 1 A_1 \\ A_1 = (0 + 10^* 1) A_1 + 1 \\ A_2 = A_0 \end{cases}$$

$$\begin{cases} A_0 = 0^* 1 A_1 \\ A_1 = (0 + 10^* 1)^* 1 \\ A_2 = A_0 \end{cases}$$

$$\begin{cases} A_0 = 0^* 1 (0 + 10^* 1)^* 1 \\ A_1 = (0 + 10^* 1)^* 1 \\ A_2 = A_0 \end{cases}$$

L è descritto dall'espressione associata all'assioma, e quindi da o $^*1(0+10^*1)^*1$.

9

(Esame 6-9-2018) Si consideri il linguaggio $L=\{a^*b^nc^*a^nb^*|n\geq 4\}.$ L è regolare? Motivare la risposta.

```
(Esame 6-9-2018)
 Si consideri il linguaggio L=\{a^*b^nc^*a^nb^*|n\geq 4\}. L è regolare?
 Motivare la risposta.
```

(Esame 9-2-2018)

Si consideri l'espressione regolare $r = a(bb^* + a)^*ab$. Derivare un ASFD che riconosce L(r).

(Esame 9-2-2018)

Si consideri l'espressione regolare $r = a(bb^* + a)^*ab$. Derivare un ASFD che riconosce L(r).

Deriviamo da r un ASFND con ε -transizioni che riconosca L(r). Possiamo osservare che la sotto-espressione regolare $(bb^* + a)^*$ è accettata per costruzione dall'ASFND con ε -transizioni

Eliminando le ε -transizioni, si ottiene l'ASFND

Da cui immediatamente l'ASFND per L(r)

e da questo l'ASFD

In alternativa, si potrebbe osservare che $(bb^* + a)^*$ comprende tutte le stringhe sull'alfabeto $\{a,b\}$, che sono riconosciute da

Da cui l'ASFND per L(r)

e da questo l'ASFD

11

(Esame 6-9-2018) Definire una grammatica CF che generi il linguaggio $L=\{w\in\{a,b\}|w \text{ contiene almeno }4b\}$

(Esame 6-9-2018) Definire una grammatica CF che generi il linguaggio $L=\{w\in\{a,b\}|w \text{ contiene almeno }4b\}$

Osserviamo che possiamo risolvere il problema derivando una grammatica regolare che generi L. A tal fine, definiamo un ASFD che riconosca L.

con $F = \{q_4\}.$

La grammatica deriva immediatamente come

$$\begin{array}{lll} A_{0} & \to & aA_{0} \mid bA_{1} \\ A_{1} & \to & aA_{1} \mid bA_{2} \\ A_{2} & \to & aA_{2} \mid bA_{3} \\ A_{3} & \to & aA_{3} \mid bA_{4} \mid b \\ A_{4} & \to & aA_{4} \mid bA_{4} \mid a \mid b \end{array}$$

(Esame 20-9-2018)

Definire un DFA sull'alfabeto $\Sigma = \{0,1\}$ che accetti il linguaggio L di tutte le stringhe che contengono due o a distanza tre tra loro (con tre caratteri tra i due). Ad esempio, 1101010 $\in L$, 0001000 $\in L$, 0110110 $\notin L$, 10001 $\notin L$.

(Esame 20-9-2018)

Definire un DFA sull'alfabeto $\Sigma = \{0,1\}$ che accetti il linguaggio L di tutte le stringhe che contengono due o a distanza tre tra loro (con tre caratteri tra i due). Ad esempio, 1101010 $\in L$, 0001000 $\in L$, 0110110 $\notin L$, 10001 $\notin L$.

(Esame 21-1-2019)

Si consideri il linguaggio $L \subseteq \{a,b\}^*$ definito come l'insieme delle stringhe σ tali $|\sigma| \ge 4$, i primi due caratteri di σ sono diversi tra loro e anche gli ultimi due caratteri sono diversi tra loro. Ad esempio: $abaabbab \in L$, $ababa \in L$, $babbabab \in L$.

Si definiscano:

- una espressione regolare che descriva L
- un DFA che lo riconosca

(Esame 21-1-2019)

Si consideri il linguaggio $L \subseteq \{a,b\}^*$ definito come l'insieme delle stringhe σ tali $|\sigma| \ge 4$, i primi due caratteri di σ sono diversi tra loro e anche gli ultimi due caratteri sono diversi tra loro. Ad esempio: $abaabbab \in L$, $ababa \in L$, $babbabab \in L$.

Si definiscano:

- una espressione regolare che descriva L
- un DFA che lo riconosca

 $(ab + ba)(a + b)^*(ab + ba)$


```
(Esame 21-1-2019)
Sia dato il linguaggio L=\{(ab)^kc^j(ab)^{2k}|j,k>0\}. L è regolare? Dimostrare la risposta data.
```

```
(Esame 21-1-2019)
Sia dato il linguaggio L=\{(ab)^kc^j(ab)^{2k}|j,k>0\}. L è regolare?
Dimostrare la risposta data.
```

Il linguaggio non è regolare. Si può dimostrare ciò utilizzando il pumping lemma.

Bob: sceglie *n*

Alice: sceglie la stringa $\sigma = (ab)^n c(ab)^{2n}$

Bob: sceglie uv, prefisso di σ di lunghezza al più n.

Necessariamente, quindi, uv è sottostringa di $(ab)^n$. Due casi sono possibili:

- 1. |v| è dispari, per cui inizia e termina per lo stesso carattere, ad es. v = bzb
- 2. |v| è pari, per cui inizia e termina con caratteri diversi, ad es. v = azb

Alice: pone i = 2 e:

- se |v| è dispari, ottiene una stringa in cui compaiono, nella prima parte, due caratteri successivi uguali, ad es. uvvw = ubzbbzbw ∉ L,
- 2. se |v| è pari, ottiene una stringa $(ab)^{n+|v|/2}c(ab)^{2n} \notin L$