



### Index



- Introduction and Course Index
- 2. Pseudonymisation vs. Anonymisation
  - a. Definition
  - b. Basic Principles
  - c. Main Risks
  - d. Anonymisation techniques
  - e. Pseudonymisation techniques
- 3. Clinical Data and Relevance of De-Identification
  - a. Medical Information Systems
  - b. MIDS
  - c. Types of anonymisable clinical data
- 4. GDPR on Clinical Data
  - a. GDPR
  - b. Data ownership
  - c. Clinical Data and GDPR
- 5. BIMCV







### Introduction



- How all the methodology associated with anonymisation methods and their implementation have been developed.
- Provide guidelines and best practices for the medical imaging community





### **Course Index**



- 1. Hackathon presentation
- 2. De-identification of Radiological reports
- 3. De-identification of DICOM metadata
- 4. De-identification of Biomedical Images
- 5. Workshops







### **Definitions**



**De-identification** is the process used to prevent someone's personal identity from being revealed.

The **anonymisation** of data is an irreversible process. Anonymised data cannot be linked to the original subject it identifies.

**Pseudonymisation** limits the traceability between the data and the original subject it identifies. It can be reversed.





# **Basic principles**



- Proactive
- Privacy by default
- Objective
- **Functional**
- Integral
- Information
- Atomic



https://datos.gob.es/en/blog/importance-anonymization-and-data-privacy





### **Main risks**



- **Singling out**: risk of extracting attributes that allow an individual to be identified.
- Linkability: risk of linking at least two attributes to the same individual or group, in one or more data sets.
- **Inference**: risk of deducing the value of a critical attribute from other attributes.





# **Anonymisation**



Methods

- Randomisation
  - noise addition
  - permutation
  - differential privacy
- Generalisation
  - aggregation and anonymity "k"
  - diversity "I" / proximity "t"
- Encoding
  - Hash algorithms with secret key and key erasure
  - homomorphic encryption
  - time stamp





# **Pseudonymisation**



Methods

The processing of personal data such that it can no longer be attributed to a specific data subject without using additional information.

- Hash algorithms
- Secret key encryption
- Token decomposition







# **Medical Information Systems**



HIPAA

The Health Insurance Portability and Accountability Act (**HIPAA**) proposes a set of good practices to protect:

- confidentiality
- integrity
- availability

of information in the health sector.





# **Medical Information Systems**



**Standards** 

Standards for the development and management of hospital information:

- HL7 (Health Level Seven Inc.) → standardise the exchange of medical information among applications
- DICOM (Digital Imaging and Communications in Medicine) → ensure the interoperability among heterogeneous medical imaging equipment and systems





### **MIDS**



Medical Imaging Data Structure (**MIDS**) is the methodology proposed by FISABIO to standardise the organization and management of medical imaging data.

```
▼ COVID19
Study
               Subject
                                   Session
                                                     Modality
                                                                                         ▼ derivatives
                                                                                            ▼ roi_path
                                                                                                ▼ sub-S03044
                                                                                                  ▼ mses-E06138
                                                                                                     ₩ mod-rx
                                                                                                            sub-S03044_ses-E06138_run-1_bp-chest_vp-ap_mod-cr_roi.xml
                                  Sessions
                                                                          Image
             Participants
                                                                        Metadata
                                                                                                  ▶ ses-E06790
                                     ▶ sub-S03045
                                                                                               ▶ sub-S03046

▶ sub-S03047

                                                                                          ▶ sub-S03044
                                                                                          ▶ sub-S03045
             Derivatives
                                                                                          ▼ sub-S03046
                                                                                             ▼ ses-E06217
                                                                                               ▼ mod-rx
                                                                                                    M sub-S03046_ses-E06217_acq-1_run-1_bp-chest_vp-ap_cr.png
                                                                                                       sub-S03046_ses-E06217_acq-2_run-1_bp-chest_vp-ap_cr.json
                                                                                                    M sub-S03046_ses-E06217_acq-2_run-1_bp-chest_vp-ap_cr.png
                                                                                                    sub-S03046 ses-E06217 scans.tsv
Data/
                                                                                            ▼ ses-E06569
     -sub-<participant_label>[/ses-<sesion-label>]
                                                                                               ₩ mod-rx
          — [/mod-<modality_medical_image_label>][/<Type_of_image>]
                                                                                                       sub-S03046 ses-E06569 run-1 bp-chest vp-ap ct.json
           sub-<participant_label>[/ses-<sesion-label>]
                                                                                                    M sub-S03046 ses-E06569 run-1 bp-chest vp-ap ct.nii.gz
                                                [_acg-<label>][_ac-<label>]
                                                                                                    sub-S03046_ses-E06569_scans.tsv
                                                [_rec-<label>][_run-<index>]
                                                                                            ▶ ses-E06791
                                                [_bp-<BodyPartExamined_label>]
                                                                                                 sub-S03046 sessions.tsv
                                                [_vp-<viewPosition_label>]
                                                                                         ▶ sub-S03047
                                                _<modality_dicom>.nii[.gz]
```



# Types of anonymisable clinical data



### Radiological reports

- Traditionally de-identified through pattern matching and regular expressions
- Natural Language Processing (NLP) de-identification as an alternative

#### **DICOM** meta information

- Data De-identification Guidelines and Protocol
- Smart-Upload: FISABIO's open-source DICOM de-identification software tool

#### Pixel data and graphic information

- Facial information
- Text annotations superimposed to the image







### **GDPR**



#### **General Data Protection Regulation**

- It is applied to the processing of personal data
- It is applied in the form of national laws.
- Possibility of varying interpretations and legal implementations

Personal data must be collected, processed and shared under a lawful basis of the GDPR:

- Informed consent
- Public interest
- Legitimate interest





## Data ownership



- The GDPR does not explicitly define or assign data ownership
- The subject has to give consent for:
  - collection
  - processing
  - sharing

of their data

This consent can be revoked at any time





### **Clinical Data and GDPR**



# What constitutes anonymous data when it comes to clinical data?

#### e.g., Brain MRI

- Are they anonymous?
  - → Facial features could be reconstructed
- How can they be anonymised?
  - → Defacing







# BIMCV life cycle





#### **Data Recruitment**

- Data Sharing agreement form (CEIm)
- Imaging Data with relevant clinical information retrieved according to provided criteria



#### Deidentification

- Option includes toolkit (CTP)
- Other methods (following guidance with local institutional policies)



#### Data Transfer

- Secure transfer of deidentified data to BIMCV
- Three option available with backup support and guidance



#### **Data Curation**

- Radiologist led by specialists for annotation and segmentation
- Additional curation to ensure distribution across sites/regions



#### User Access

- User data use agreement and registration
- Data download available for research and education purposes









### Index



1.

Rocher, L., et al. Estimating the success of re-identifications in incomplete datasets using generative models. Nat. Commun.10, 1–9 (2019).

Yeh, F.-C. et al. Quantifying differences and similarities in whole-brain white matter architecture using local connectome fingerprints. PLoS Comput. Biol. 12, e1005203 (2016).





