兔肝匀浆液的制备及谷胱甘肽转硫酶(GST)酶活力测定 刘沛雨 2100012289

1. 实验内容

1.1. 兔肝匀浆液的制备

1.2. 谷胱甘肽转硫酶 (GST) 酶活力的测定

- 1.2.1. 使用三种匀浆方法制备 GST 样品
- 1.2.2. 测定三种制备方法得到的样品的酶活力
- 1.2.3. 选一种样品测定不同 pH 下的酶活力

2. 实验结果及数据处理

2.1. 原始数据记录

实验过程中记录到的数据如表 1 和表 2 所示。表 1 记录了三种制备方法得到的 GST 样品在 pH=6.5 的条件下催化底物(60 mmol/L GSH 溶液以及 CDNB 的乙醇溶液)进行反应的过程中溶液 吸光度的变化情况。玻璃匀浆器法、电动匀浆器法以及生物样品均质器法使用的兔肝质量分别为 0.7g, 0.7g, 0.4g。表 2 记录了使用电动匀浆器制备得到的样品在不同 pH 条件下催化底物进行反应的过程 中溶液吸光度的变化情况。数据均通过双光束紫外-可见分光光度计测定得到(波长 340 nm;测定时间 4 min;测定间隔 0.5 min),测定前进行了校零,采用"抛弃零点法"进行测定。

表 1 pH=6.5 时反应过程中溶液吸光度的变化情况

	玻璃匀浆器,pH=6.5			电动匀浆器,pH=6.5			生物样品均质器,pH=6.5		
	T(min)	ABS	ΔABS	T(min)	ABS	ΔABS	T(min)	ABS	ΔABS
1	0	-0.562	0	0	-0.509	0	0	-0.543	0
2	0.5	0.172	0.734	0.5	0.178	0.687	0.5	0.156	0.699
3	1.0	0.305	0.133	1.0	0.316	0.138	1.0	0.282	0.126
4	1.5	0.420	0.115	1.5	0.433	0.117	1.5	0.391	0.109
5	2.0	0.522	0.102	2.0	0.539	0.105	2.0	0.491	0.100
6	2.5	0.615	0.093	2.5	0.633	0.095	2.5	0.583	0.091
7	3.0	0.700	0.085	3.0	0.722	0.088	3.0	0.667	0.084
8	3.5	0.777	0.077	3.5	0.803	0.081	3.5	0.745	0.078
9	4.0	0.849	0.072	4.0	0.882	0.079	4.0	0.817	0.072

表 2 不同 pH 下反应过程中溶液吸光度的变化情况

	电动匀浆器,pH=6.0			电动匀浆器,pH=7.0			电动匀浆器,pH=7.5		
	T(min)	ABS	ΔABS	T(min)	ABS	ΔABS	T(min)	ABS	ΔABS
1	0	-0.570	0	0	-0.611	0	0	-0.783	0
2	0.5	0.140	0.710	0.5	0.182	0.793	0.5	0.204	0.987
3	1.0	0.246	0.106	1.0	0.341	0.159	1.0	0.376	0.172
4	1.5	0.337	0.091	1.5	0.483	0.141	1.5	0.534	0.158
5	2.0	0.415	0.078	2.0	0.608	0.125	2.0	0.676	0.142
6	2.5	0.486	0.070	2.5	0.723	0.115	2.5	0.807	0.131
7	3.0	0.550	0.064	3.0	0.833	0.110	3.0	0.929	0.122
8	3.5	0.617	0.067	3.5	0.938	0.105	3.5	1.039	0.110
9	4.0	0.674	0.057	4.0	1.033	0.096	4.0	1.157	0.118

2.2. 数据处理作图及计算结果

2.2.1. 数据处理与可视化

由于在实验过程中采用"抛弃零点法"测定反应过程中溶液吸光度的变化情况,因此各组实验中第一个时间点($T=0\,min$)的吸光度 ABS 均为负值(此时测定比色皿被取出,向其中添加 $3\,\mu L\,GST$ 样品以起始反应)。故数据处理过程中需要将该时刻吸光度修正为 $0\,$ 并且修正 $T=0.5\,min$ 时的 ΔABS 。处理得到的数据如图 $1\,$ 和图 $2\,$ 所示。下图还显示了修正后的数据在 $T=0\,min$ 处的切线(均使用使用 $6\,$ 次多项式拟合曲线计算得到切线方程)及其斜率,表征酶促反应的初速度。

图 1 pH = 6.5 时不同方法制备得到的 GST 样品催化反应的时间一吸光度关系曲线

图 2 不同 pH 下使用电动匀浆器制备得到的 GST 样品催化反应的时间一吸光度关系曲线

2.2.2. 结果计算

使用以下公式计算 GST 酶的酶活力 (µmol/min):

$$\frac{\Delta A \cdot v}{\epsilon \cdot L}$$

其中 ΔA 为反应开始 1 min 后溶液吸光值的变化值,即上图中切线的斜率(酶促反应速度应以反应的初速度为准); ν 为酶促反应体积(3 mL,每组实验加入的 3 μ L GST 样品可忽略不计); ϵ 为产物的消光系数(9.6 L/(mmol·cm)); L为比色杯的光程(1 cm)。计算得到的结果如表 3 所示:

实验组别	实验条件	酶活力(μmol/min)		
	玻璃匀浆器	0.1261		
pH = 6.5,不同制备方法	电动匀浆器	0.1303		
	生物样品均质器	0.1120		
	pH = 6.0	0.1073		
电动匀浆器制备,不同 pH	pH = 7.0	0.1216		
	pH = 7.5	0.1399		

表 3 各实验组测定得到的酶活力

图 3 为使用电动匀浆器制备得到的 GST 样品的酶活力关于 pH 的变化曲线:

图 3 GST 样品的酶活力关于 pH 的变化曲线

3. 实验结果讨论

3.1. 三种匀浆方法的效果

电动匀浆器效果最好,玻璃匀浆器匀浆效果略差于电动匀浆器,而生物样品均质器效果最差。 生物样品均质器制备得到的样品中仍有部分兔肝组织残块,导致 GST 酶提取不充分。

3.2. 不同 pH 对 GST 酶活力的影响

如图 3 所示,实验条件下兔肝 GST 酶的最适 pH 可能在 7.5 或以上,当 pH 下降到 6 时,GST

酶活力显著下降,这表明酸性条件下兔肝 GST 酶可能会部分失活。

3.3. 误差分析

实验测定的 GST 酶的最适 pH 为 7.5 或以上,该数据(可能)略高于理论值,主要原因可能为实验过程中使用的 pH = 7.5 的磷酸缓冲液与真实值相比 pH 偏高。通过数据拟合得到的切线斜率也存在一定误差,这可能是 pH = 7 时计算得到的酶活力与 pH = 6 时相比稍有下降的原因之一。