

### **■ Percepción Humana**

- A través de la evolución, el hombre ha desarrollado sistemas sofisticado para captar el ambiente que lo rodea y tomar acciones según lo captado.
- Algunas sistemas de R.P. son:
  - Reconocimiento de rostros
  - Entendimiento del habla
  - Reconocimiento de gestos
  - Lectura de caracteres
  - Reconocimiento de formas
  - Identificación de alimentos en buen estado





### ■ Percepción Humana – Percepción de Máquina

- Los algoritmos de reconocimiento de patrones están fuertemente influenciados por el conocimiento sobre cómo los patrones son modelados y reconocidos en los sistemas naturales.
- La investigación sobre percepción de máquina también ayuda a comprender y apreciar los sistemas de reconocimiento de patrones en la naturaleza.
- Existen muchos técnicas totalmente numéricas que no tienen relación con los sistemas naturales.





#### Reconocimiento de Patrones

- Se centra en el estudio de como las máquinas pueden:
  - Percibir el ambiente
  - Aprender a diferenciar los patrones de interés
  - Tomar decisiones acertadas y razonables sobre las categorías de los patrones.







#### Reconocimiento de Patrones

- Qué es un Patrón?
  - abstracción Es de la una representación de un objeto físico, representado por un conjunto medidas.
- Qué tipos de patrones existen?
  - Tantos como objetos/detalles existan
  - Visuales, temporales, sonoros, lógicos, frecuenciales, ...













June Jandos Ano Paris



#### ■ Reconocimiento de Patrones

- Qué es una *Clase* de Patrones?
  - Conjunto de patrones que comparten atributos comunes.
  - Colección de objetos similares, no necesariamente idénticos.







#### ■ Reconocimiento de Patrones

- Qué es una *Clase* de Patrones? ...
  - Sirven para asignar un objeto dado a una clase preestablecida durante el proceso de reconocimiento.













#### **■ Reconocimiento de Patrones**

- **■** Técnicas de Procesamiento de Patrones
  - No existe una técnica unificadora debido a la gran variedad de problemas, formas de representar los patrones y métodos de reconocerlos.
  - Existen algunas técnicas estándar de amplia aplicación
    - R.P. Estadístico (incluido el fuzzy)
    - R.P. Sintáctico o structural
    - R.P. Basado en conocimiento





- Reconocimiento de Patrones
  - Etapas Básicas del Proceso de R.P.
    - Entrenamiento/Aprendizaje



Detección/Clasificación

Clasificación







### Ejemplo

- Una planta despachadora de pescado desea automatizar el proceso de ordenar los pescados que entran al empacador según la especie.
- El proyecto piloto desea separar róbalo y salmón con sensores ópticos



Sea bas - Róbalo







#### Desarrollo

■ Plataforma: banda transportadora.





### **■** Desarrollo

#### Sensor

 Mediante imágenes de muestra capturadas por una cámara se identifican diferencias entre el róbalo y salmón.

#### Características

- Rasgos de los tipos de pescados que pueden utilizarse para diferenciarlos y emplearse en el clasificador.
- Longitud, brillo, ancho, número y forma de aletas, posición de la boca, ...

#### ■ Ruido

 Variaciones de las imágenes por iluminación, posición de los pescados, estática del sistema electrónico, ..





#### Desarrollo

#### Modelo

Las diferencias entre la población de salmón y róbalo puede describirse en forma matemática mediante modelos.

#### Meta

 Establecer una hipótesis sobre la clase de modelos, procesar los datos obtenidos para eliminar ruido y escoger el modelo que corresponda mejor.





#### Desarrollo ...

- **Pre-procesamiento**: Las imágenes deben adecuarse previamente para simplificar las operaciones subsiguientes sin pérdida de información relevante.
  - Ej. Las imágenes pueden segmentarse para separar los pescados y eliminar el fondo.





#### ■ Desarrollo ...

- Extracción de Características: reducción de datos y medición de ciertas características o propiedades de cada pescado.
- Clasificador: evalúa la evidencia presentada (características) y toma una decisión sobre la especie.





#### ■ Desarrollo ...

- Muestras de Entrenamiento
  - Modelo tentativo 1: El róbalo tiene una longitud típica y es mayor que la del salmón
  - Característica: longitud *l*
  - Clasificador: si  $l > T_l$  la especie es róbalo
  - Umbral:  $T_l$  puede obtenerse de un conjunto de *muestras de* entrenamiento de las diferentes especies al medir la longitud y analizar los resultados.



#### Muestras de entrenamiento ...

- Las mediciones pueden analizarse a través de histogramas
- Una sola medición no permite encontrar un valor de  $l^*$  óptimo que separare las dos especies de pescado.







- Muestras de entrenamiento ...
  - Se requiere adicionar una nueva medida : iluminación *x*
  - El histograma muestra que las clases están mejor separadas.







- Costo: existe un costo asociado a la decisión de asignar un pescado a un especie incorrecta.
  - Costo igual: se asume que las consecuencias de las asignaciones tienen igual costo
    - Es simple
    - Generalmente no es conveniente.
  - Costo diferente: se asignan costos en función de la penalidad que pueda causar la decisión.
    - Empacar piezas de róbalo dentro de los paquetes de salmón tienen un impacto negativo en los consumidores, pues el salmón es más costoso que el róbalo.





#### ■ Teoría de la Decisión:

- Busca establecer una regla de decisión que minimice el costo de la asignación.
- Subcampo de alta importancia en la Clasificación de Patrones.
- Es posible que conociendo el umbral óptimo y el costo asociado no se tenga una solución satisfactoria.
  - Se puede desplazar la frontera de decisión ajustando el umbral x\* para reducir el número de róbalo clasificados como salmón.



- Teoría de la Decisión...
  - Solución no satisfactoria!:
    - Puede beneficiar al comprador pero no al vendedor.







#### ■ Teoría de la Decisión ..:

- Cuando el desempeño de la clasificación no es satisfactoria se puede recurrir a espacios de más de una dimensión.
  - De la observación: el róbalo es más ancho que el salmón.
  - Vector de características:  $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$   $x_1 \approx \text{brillo}, \ x_2 \approx \text{ancho}$







#### **■** Frontera de decisión

- Particionar el espacio de características en regiones.
  - Regla de decisión para el ejemplo de pescados
    - Región sobre la frontera : salmón
    - Región debajo de la frontera: salmón
    - Menor error de clasificación (con dos características)







#### **■** Frontera de decisión:

- No siempre es posible o conveniente aumentar el número de características.
  - Maldición de la dimensionalidad.
- Puede aumentarse la complejidad del modelo para dar origen a una frontera más compleja.







#### ■ Desarrollo ...

#### Generalización

- Una frontera de decisión compleja puede *aparentar* ser la solución perfecta para los datos iniciales.
- Puede presentar bajo desempeño con nuevos patrones: solución ajustada para los patrones existentes (mala generalización)
- Se buscan fronteras simples que clasifiquen bien nuevos patrones (buena generalización)







#### ■ Desarrollo ...

- Generalización ...
  - Aumentando el número muestras de entrenamiento se puede mejorar la estimación de las características y la frontera de decisión.
    - En muchas aplicaciones la cantidad de muestras es muy limitado.
    - Si se aumentan las muestra y persiste una frontera de decisión complicada, no se mejora la generalización.



#### **■** Generalización ...

- Buena generalización puede obtenerse con una frontera de decisión más simple:
  - con menor desempeño para las muestras de entrenamiento y mejor respuesta ante nuevos patrones.

Modelos complejos pueden conducir a clasificadores con baja

precisión.







#### **■** Generalización ...

- Problemas de Reconocimiento estadístico de patrones:
  - Cómo determinar automáticamente cuál de las fronteras de decisión es mejor (simple, compleja)?
  - Cómo predecir que tan bien generalizará ante nuevos patrones?











- Generalización ...
  - Para un mismo objeto (patrón) de entrada es posible tener diferentes funciones de costo o fronteras de decisión.
    - Ejemplo de los pescados:
      - Si se requiere venta de huevos de pescado:
        - Tarea: separar hembras y machos.
      - Si se requiere comida de gatos:
        - Tarea: separar pescados dañados y buenos.
  - Sistema Artificiales de RP de **propósito general** son muy difíciles de implementar.
    - Diferentes tareas de decisión requieren diferentes características y fronteras de decisión.





#### ■ Generalización ...

- El problema de clasificación puede entenderse como el proceso de recobrar el modelo que genera el patrón.
- **Se busca** un clasificador que :
  - Requiera bajo número de características
  - Presente fronteras de decisión simples
  - Requiera un entrenamiento fácil
  - Presente alto porcentaje de generalización
  - Sea rápido y fácil de implementar





#### Generalización ...

### Análisis por síntesis:

- Cuando se tiene *insuficientes* datos de entrenamiento debe incorporarse conocimiento sobre el dominio del problema.
- El *conocimiento ideal*: contar con el modelo que genera los patrones!!!
- Sistemas de R.P. deben incorporar *algún conocimiento* sobre el método de *producción de los patrones* o su *uso funcional* para asegurar una buena representación del problema.
  - Ejemplo: En un sistema OCR se conoce previamente:
    - Con trazos se construyen los caracteres.
    - Los trazos pueden recuperarse de una imagen digital
    - A partir de los trazos se puede identificar un caracter





### **■ Campos Relacionados**

### **■ Procesamiento de Señales e Imágenes**

- Manipulación matemática de una señal de una o varias dimensiones para extraer información, modificarla o mejorarla.
- Operaciones en el propio dominio o transformado discreto (tiempo, espacio frecuencia discreta, u otro dominio).









### **■ Campos Relacionados...**

#### **■** Memoria Asociativa

- Almacenamiento y recuperación de información a partir del conocimiento parcial de su contenido, por asociación con otras informaciones sin saber su localización de almacenamiento.
- En actos de memoria asociativa, el sistema toma un patrón y emite otro patrón que es representativo de un grupo general de patrones.
- La información del patrón de salida es menor que la de entrada.





### Campos Relacionados...

### Regresión

- Proceso para encontrar una descripción funcional de los datos, con la finalidad de predecir valores para nuevas entradas.
- Ampliamente utilizado para la predicción y previsión.







### Campos Relacionados...

### Interpolación

 Encontrar una función para determinar los valores intermedios a partir del conocimiento de un conjunto de datos en un rango de

la señal.







### Campos Relacionados...

#### Estimación de la densidad

 Obtención de una función que asigna a cada suceso definido sobre la variable aleatoria, la probabilidad de que dicho suceso

ocurra.







- Sistema de Reconocimiento de Patrones
  - Sensado
  - Segmentación y Agrupamiento
  - Extracción de características
  - Clasificación
  - Post- Procesamiento







#### ■ Sensado

 Con frecuencia la entrada de un sistema de Reconocimiento de Patrones es un transductor o los datos generados por éste. (Eje. Cámara, micrófono, electrodos, etc.)



■ La dificultad del problema está asociada con las características y limitaciones del transductor (ancho de banda, resolución, sensibilidad, distorsión, SNR, latencia, etc.)





### ■ Segmentación y Agrupamiento

### Segmentación

 Establecer las fronteras que delimitan un objeto de interés

### Agrupamiento

 Reconocer como un todo las diversas partes que componen un objeto.









#### Extracción de características

- Caracterizar un objeto mediante medidas:
  - Muy similares para objetos de la misma categoría.
  - Muy diferentes para objetos de distintas categorías.



(a)





#### Características Invariantes

- Traslación
- Rotación
- Escala
- Oclusión
- Distorsión proyectiva
- Tasa de ocurrencia
- Deformación













#### Selección de características

- Escoger las características más relevantes o discriminantes a partir de un conjunto.
- Combinar o transformar características.





#### Clasificación

- Tiene como función asignar una categoría a un objeto a partir de las características.
- Frecuentemente no se obtiene un resultado de clasificación perfecto.

#### ■ Dificultad:

- Variabilidad de las características en una misma categoría respecto a la diferencia entre diferentes clases.
- Características perdidas (por oclusión, deformación, etc.)



| EEG     | Frequency (cps) | Typical States of       |
|---------|-----------------|-------------------------|
| Pattern |                 | Consciousness           |
| Beta    | 13 - 24         | Normal walking thought, |
|         |                 | alert problem solving   |
| Alpha   | 8 - 12          | Deep relaxation, blank  |
|         |                 | mind, meditation        |
| Theta   | 4 - 7           | Light sleep             |
| Delta   | Less than 4     | Deep sleep              |





#### **■** Post-Procesamiento

- Los clasificadores se utilizan para recomendar un acción posteriormente.
- Cada acción posterior tiene un costo asociado.
- El post-procesador utiliza la salida del clasificador para decidir la acción que finalmente se realizará.









#### **■** Post-Procesamiento

#### ■ Tasa de error

- Porcentaje de nuevos patrones que son asignados a clases erradas.
- Medida simple para determinar el desempeño del clasificador

### Riesgo

Mínimo costo total esperado







#### **■** Post-Procesamiento

#### **■** Contexto

- Información dependiente del problema diferente al patrón mismo.
  - Ejemplo: frecuencia de vocales en reconocimiento de palabras.
- Sirve para mejorar el desempeño del clasificador.







#### **■** Post-Procesamiento

### Clasificadores Múltiples

- Uso de diversos clasificadores para mejorar el desempeño global de la clasificación.
- Los clasificadores se especializan en diferentes aspectos del patrón de entrada.
- Se requiere analizar el conjunto de salidas para tomar la mejor decisión.







### **■** Ciclo de Diseño

- Recolección de datos
- Selección de características
- Selección del modelo
- Entrenamiento
- Evaluación
  - Sobre-entrenamiento (Overfitting)
- Complejidad computacional





Escuela de Ingeniería Eléctrica y Electrónica



#### Ciclo de Diseño

#### Recolección de datos

- Puede requerir gran parte del costo del desarrollo del sistema de reconocimiento de patrones.
- Puede realizarse un estudio de viabilidad preliminar con un pequeño data-set.
- Un buen desempeño del sistema se obtiene con data sets grandes.
- Cómo establecer si el tamaño del data set es adecuado y representativo?





Escuela de Ingeniería Eléctrica y Electrónica



### Ciclo de Diseño

#### ■ Selección de características

- Escoger rasgos diferenciadores es esencial y depende del dominio del problema.
- El conocimiento *a priori* es fundamental en la selección, pero requiere mayor experiencia.
- Las características deben ser samples ces de extraer, invariantes a transformaciones irrelevantes al problema, insensibles a ruido, y discriminantes entre categorías.
- Cómo combinar información a priori y datos empíricos para encontrar características relevantes y efectivas?







#### ■ Ciclo de Diseño

#### ■ Selección del modelo

- Cómo determinar cuánto difiere el modelo seleccionado del modelo subyacente generador de los patrones?
  prior knowledge
- Cuándo es necesario un nuevo modelo ? variances)
- Cuánto puede mejorar el desempeño?
- Puede desecharse una clase del modelo e introducir otra?





Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica



#### **■** Ciclo de Diseño

#### **■**Entrenamiento

- Proceso de ajustar los parámetros del clasificador a partir de los datos.
- No existe un método universal r kn de dge entrenamiento.
- Existen muchos procedimientos de entrenamiento de clasificadores y y selección del modelo.
- Los métodos más efectivos involucran aprendizaje a partir de patrones ejemplo.





Escuela de Ingeniería Eléctrica y Electrónica



#### **■** Ciclo de Diseño

#### Evaluación

- Necesario para medir el desempeño del sistema e identificar la necesidad de mejoras en sus componentes.
- Excesiva complejidad en el sistema puede conducir a una perfecta clasficación de las muestras de entrenamiento (Overfitting)
- Cómo encontrar la mejor complejidad de un clasificador?







- Aprendizaje
  - Tipos de aprendizaje
    - Supervisado
    - No-supervisado
    - Con reforzamiento

## Types of Machine Learning







- Cómo una máquina aprende el modelo a partir de los datos?
  - Mediante procedimientos de adaptación de un modelo a partir de datos.
  - Utilización de información a partir de muestras de entrenamiento para diseñar un clasificador.
  - Algoritmo para ajustar los parámetros de un modelo para reducir una medida de error a partir de un conjunto de datos de entrenamiento.







### ■ Aprendizaje Supervisado

- Se cuenta con información sobre la membresía (etiqueta) o costo de cada patrón del conjunto de entrenamiento.
- El data-set de entrenamiento contiene información sobre la clase a la cual pertenece cada patrón.
- Los algoritmos de aprendizaje utilizan el error entre la salida estimada y la salida real para ajustar los parámetros del modelo.



http://www.ebtic.org/source/ebtics\_view\_ml\_big\_data/image001.jpg





### Aprendizaje Supervisado







### ■ Aprendizaje NO Supervisado

- El data-set de entrenamiento NO contiene información sobre la clase a la cual pertenece cada patrón.
- Los algoritmos de aprendizaje forman grupos *naturales* (clusters) a partir de los datos de entrenamiento basados en criterios de similitud.







### ■ Aprendizaje NO Supervisado

- La información de los clusters se utilizan para ajustar los parámetros del modelo.
- ■No requiere de una "enseñanza"
- Diferentes métodos conducen a diferentes grupos .

#### UNSUPERVISED LEARNING







### ■ Aprendizaje NO Supervisado







### Aprendizaje por Reforzamiento

- No se cuenta con información de la clase de pertenencia de los patrones de entrenamiento (estados).
- Se cuenta con una evaluación (recompensa) sobre si la decision (acción) es correcta o incorrecta.
- Busca maximizar las recompensas al asociar los estados con las acciones.



http://generation-ai.com/tags/artificial-intelligence/





### Aprendizaje Por Reforzamiento

- Se consideran agentes software autónomos en un ambiente, que deben tomar decisiones en función de su estado actual.
- El ambiente otorga recompensas (positiva o negativa) al agente en función de su decisión.
- Se busca maximizar las recompensas positivas.
- No se da información sobre la clase ni de la magnitud del error obtenido.

















Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica