磁光效应实验报告

王启骅 PB20020580

2023年4月3日

1 实验数据与处理

注:本次实验由于激光光源功率过大(已使用最小光阑),这里采用 $\delta=0.5^\circ$

表 1: 下降过程电压-电流关系

I/A	3.0	2.8	2.6	2.4	2.2	2.0	1.8	1.6	1.4	1.2	1.0
U/V	0.417	0.427	0.436	0.448	0.465	0.478	0.494	0.506	0.520	0.534	0.549
I/A	0.8	0.6	0.4	0.2	0.0	-0.2	-0.4	-0.6	-0.8	-1.0	-1.2
U/V	0.561	0.575	0.587	0.600	0.614	0.625	0.629	0.652	0.666	0.683	0.696
I/A	-1.4	-1.6	-1.8	-2.0	-2.2	-2.4	-2.6	-2.8	-3.0		
U/V	0.713	0.727	0.744	0.765	0.784	0.812	0.838	0.865	0.884		

表 2: 上升过程电压-电流关系

I/A	-3.0	-2.8	-2.6	-2.4	-2.2	-2.0	-1.8	-1.6	-1.4	-1.2	-1.0
U/V	0.884	0.873	0.865	0.840	0.819	0.798	0.777	0.754	0.736	0.719	0.704
I/A	-0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1.0	1.2
U/V	0.688	0.671	0.658	0.643	0.632	0.618	0.606	0.595	0.578	0.571	0.556
I/A	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0		
U/V	0.544	0.529	0.511	0.501	0.482	0.468	0.447	0.429	0.418		

表 3: 磁场-电流关系

-I/A	3.0	2.8	2.6	2.4	2.2	2.0	1.8	1.6	1.4	1.2	1.0
B/mT	100	94	88	82	75	69	62	56	49	42	35
-I/A	0.8	0.6	0.4	0.2	0.0	-0.2	-0.4	-0.6	-0.8	-1.0	-1.2
B/mT	29	22	15	9	2	-5	-11	-18	-25	-31	-38
-I/A	-1.4	-1.6	-1.8	-2.0	-2.2	-2.4	-2.6	-2.8	-3.0		
B/mT	-45	-52	-58	-65	-71	-78	-84	-90	-96		

2 数据处理

$$\theta_k^+ = \frac{0.5^{\circ}}{2} \frac{I - I_0}{I_0} = \frac{0.5^{\circ}}{2} \frac{0.884 - 0.614}{0.614} = 0.110^{\circ}$$
 (1)

图 1: 磁滞回线结果

$$\theta_k^- = \frac{0.5^{\circ}}{2} \frac{I - I_0}{I_0} = \frac{0.5^{\circ}}{2} \frac{0.417 - 0.614}{0.614} = -0.080^{\circ}$$
 (2)

极向克尔旋转角

$$\theta_k = \frac{1}{2}(\theta_k^+ - \theta_k^-) = 0.095^{\circ} \tag{3}$$

3 思考题

1. 磁光克尔效应测量实验中, δ 的大小该如何选取? 如果过大或过小分别会对测量有什么样的影响?

按照原理近似的要求,需要 $\delta << 1(rad)$,这样才可以对 $\sin \delta \sim \delta$, $\cos \delta \sim 1 - \delta^2$ 近似成立。同时 $\theta_k << \delta$,才可以 使近似 $I \simeq I_0(1+2\frac{\theta_k}{\delta})$ 成立,因此需要适中选取。过大会导致 $\sin \delta < \delta$,计算结果偏大。过小时舍去 θ_k^2 项不合理,也 会导致结果偏大。

- 2. 克尔效应测量实验中,加上一定的外加磁场后,反射光束是否还是线偏振光?如何通过我们的实验设备来判断?是。可以转动检偏器偏振片,看到可以完全消光则仍是线偏振。
- 3. 实验中如何判断克尔转角和法拉第旋转角的旋转方向? 写出具体的判断过程。

加磁场前先调节为消光状态,加磁场后,有一定的转角,会导致有光信号,向两边细调检偏器,在某一方向会重新消光,则该旋转方向为转角的方向。

4. 法拉第效应测量实验中, 起偏格兰棱镜的偏振方向是否需要精细调节, 为什么?

不需要,由于垂直入射,整个实验过程与起偏镜的绝对角度无关,实验中只与起偏和检偏的相对夹角有关,则只精细调节检偏镜即可。