

EGZAMIN MATURALNY W ROKU SZKOLNYM 2015/2016

MATEMATYKA POZIOM PODSTAWOWY

FORMUŁA OD 2015 ("NOWA MATURA") i FORMUŁA DO 2014 ("STARA MATURA")

ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P1

SIERPIEŃ 2016

Klucz punktowania zadań zamkniętych

Nr zad.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Odp.	A	В	D	В	В	A	A	В	A	D	C	D	В	С	C	D	A	D	С	С	D	C	A	D	В

Schemat oceniania zadań otwartych

Zadanie 26. (0-2)

Rozwiąż nierówność $3x^2 - 6x \ge (x-2)(x-8)$.

Rozwiazanie

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

Pierwszy etap to wyznaczenie pierwiastków trójmianu kwadratowego $2x^2 + 4x - 16$ lub $x^2 + 2x - 8$.

Drugi etap to zapisanie zbioru rozwiązań nierówności kwadratowej.

Pierwszy etap rozwiązania może zostać zrealizowany następująco:

- zapisujemy nierówność w postaci $x^2 + 2x 8 \ge 0$ i obliczamy pierwiastki trójmianu kwadratowego $x^2 + 2x 8$
 - o obliczamy wyróżnik tego trójmianu:

$$\Delta = 4 + 32 = 36$$
 i stąd $x_1 = \frac{-2+6}{2} = 2$ oraz $x_2 = \frac{-2-6}{2} = -4$

albo

o stosujemy wzory Viète'a:

$$x_1 \cdot x_2 = -8$$
 oraz $x_1 + x_2 = -2$, stąd $x_1 = 2$ oraz $x_2 = -4$

albo

• przekształcamy nierówność do postaci $(x-2)(2x+8) \ge 0$, skąd bezpośrednio odczytujemy pierwiastki: $x_1 = 2$, $x_2 = -4$,

albo

• przekształcamy nierówność do postaci równoważnej $|x+1| \ge 3$, korzystając z własności wartości bezwzględnej, i odczytujemy te wartości x, dla których |x+1| = 3: x = -4, x = 2.

Drugi etap rozwiązania:

Podajemy zbiór rozwiązań nierówności: $(-\infty, -4) \cup (2, +\infty)$ lub $x \in (-\infty, -4) \cup (2, +\infty)$.

Schemat oceniania

• zrealizuje pierwszy etap rozwiązania i na tym poprzestanie lub błędnie zapisze zbiór rozwiązań nierówności

albo

- realizując pierwszy etap rozwiązania zadania popełni błąd (ale otrzyma dwa różne pierwiastki) i konsekwentnie do tego zapisze zbiór rozwiązań nierówności, np.
 - o popełni błąd rachunkowy przy obliczaniu wyróżnika lub pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu zapisze zbiór rozwiązań nierówności,
 - o błędnie zapisze równania wynikające ze wzorów Viète'a, np.: $x_1 + x_2 = 1$ i konsekwentnie do popełnionego błędu zapisze zbiór rozwiązań nierówności,
 - o błędnie zapisze nierówność z wartością bezwzględną, np. $|x-1| \ge 3$ i konsekwentnie do popełnionego błędu zapisze zbiór rozwiązań nierówności.

• poda zbiór rozwiązań nierówności: $(-\infty, -4) \cup (2, +\infty)$ lub $x \in (-\infty, -4) \cup (2, +\infty)$ lub $(x \le -4 \text{ lub } x \ge 2)$

albo

• sporządzi ilustrację geometryczną (oś liczbowa, wykres) i zapisze zbiór rozwiązań nierówności w postaci: $x \le -4$, $x \ge 2$,

albo

• poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów.

Uwagi

- 1. Akceptujemy zapisanie odpowiedzi w postaci: $x \le -4$ i $x \ge 2$, $x \le -4$ oraz $x \ge 2$ itp.
- 2. Jeżeli zdający dzieli obie strony nierówności przez x-2 bez stosownego założenia, to otrzymuje **0 punktów**.
- 3. Jeżeli zdający dzieli obie strony nierówności przez x-2, rozważając dwa przypadki x-2>0 oraz x-2<0, rozwiąże nierówność w każdym z tych przypadków, ale nie rozważy przypadku x-2=0, to otrzymuje **1 punkt**.
- 4. Jeżeli zdający poprawnie obliczy pierwiastki trójmianu $x_1 = 2$, $x_2 = -4$ i błędnie zapisze odpowiedź, np. $(-\infty, -2) \cup (2, +\infty)$, popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to otrzymuje **2 punkty**.

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki Akceptujemy zapis przedziału nieuwzględniający porządku liczb na osi liczbowej, np. $\left(-\infty,2\right)\cup\left\langle -4,+\infty\right\rangle$, $\left\langle -4,-\infty\right\rangle\cup\left\langle +\infty,2\right\rangle$.

Zadania 27. (0-2)

Jeżeli do licznika pewnego nieskracalnego ułamka dodamy 32, a mianownik pozostawimy niezmieniony, to otrzymamy liczbę 2. Jeżeli natomiast od licznika i od mianownika tego ułamka odejmiemy 6, to otrzymamy liczbę $\frac{8}{17}$. Wyznacz ten ułamek.

Rozwiązanie (I sposób)

Niech *x* i *y* oznaczają odpowiednio licznik i mianownik szukanego ułamka nieskracalnego. Z treści zadania otrzymujemy układ równań

$$\frac{x+32}{y} = 2 \text{ oraz } \frac{x-6}{y-6} = \frac{8}{17},$$

$$2y = x+32 \text{ oraz } 17(x-6) = 8(y-6),$$

$$2y = x+32 \text{ oraz } 17x-102 = 8y-48.$$

Stad

$$17x - 54 = 4x + 128$$
,
 $13x = 182$,
 $x = 14$,

więc 2y = 14 + 32 = 46. Zatem y = 23.

Szukany ułamek to $\frac{14}{23}$. Jest to ułamek nieskracalny.

Schemat oceniania I sposobu rozwiązania

Zdający otrzymuje1 p.

gdy zapisze układ równań z dwiema niewiadomymi, np.:

$$\frac{x+32}{y} = 2$$
 i $\frac{x-6}{y-6} = \frac{8}{17}$

i na tym zakończy lub dalej popełni błędy.

Uwaga

Jeżeli zdający obliczy licznik x = 14 i mianownik y = 23 szukanego ułamka, ale nie zapisze tego ułamka, to otrzymuje **2 punkty**.

Rozwiązanie (II sposób)

Dodając do licznika i do mianownika ułamka $\frac{8}{17}$ liczbę 6, otrzymujemy ułamek $\frac{14}{23}$. Jest to ułamek nieskracalny, a gdy do jego licznika dodamy liczbę 32, to otrzymujemy $\frac{14+32}{23} = \frac{46}{23} = 2$. Zatem szukany ułamek to $\frac{14}{23}$.

Schemat oceniania II sposobu rozwiązania

Zdający otrzymuje1 p.

gdy doda do licznika i do mianownika ułamka $\frac{8}{17}$ liczbę 6, zapisze, że szukanym ułamkiem jest $\frac{14}{23}$ i nie zapisze, że $\frac{14+32}{23} = \frac{46}{23} = 2$, a więc, że spełnia on drugi z warunków podanych w treści zadania.

Zadanie 28. (0-2)

Wykaż, że jeżeli liczby rzeczywiste a, b, c spełniają warunek abc = 1, to $a^{-1} + b^{-1} + c^{-1} = ab + ac + bc$.

Rozwiązanie

Zauważmy, że

$$a^{-1} + b^{-1} + c^{-1} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{bc + ac + ab}{abc}$$
.

Wykorzystujemy warunek abc = 1 i otrzymujemy zależność

$$\frac{bc+ac+ab}{abc} = \frac{bc+ac+ab}{1} = bc+ac+ab,$$

co kończy dowód.

Uwaga

Tezę możemy też uzasadnić w inny sposób:

1) Korzystamy z równości abc = 1

$$a^{-1} + b^{-1} + c^{-1} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{abc}{a} + \frac{abc}{b} + \frac{abc}{c} = bc + ac + ab$$
.

2) Z równości abc = 1 otrzymujemy: $bc = \frac{1}{a}$, $ac = \frac{1}{b}$, $ab = \frac{1}{c}$. Zatem

$$bc + ac + ab = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = a^{-1} + b^{-1} + c^{-1}$$
.

Schemat oceniania

• wykorzysta definicję potęgi o wykładniku –1 i zapisze lewą stronę podanej równości w postaci $a^{-1} + b^{-1} + c^{-1} = \frac{bc + ac + ab}{abc}$ lub $a^{-1} + b^{-1} + c^{-1} = \frac{abc}{a} + \frac{abc}{b} + \frac{abc}{c}$

albo

 wykorzysta definicję potęgi o wykładniku -1, pomnoży obie strony podanej równości przez iloczyn abc i zapisze równość w postaci równoważnej

$$\frac{1}{a} \cdot abc + \frac{1}{b} \cdot abc + \frac{1}{c} \cdot abc = ab \cdot abc + ac \cdot abc + bc \cdot abc,$$

albo

• wykorzysta założenie abc=1, wyznaczając stąd iloczyny: $ab=\frac{1}{c}$, $ac=\frac{1}{b}$, $bc=\frac{1}{a}$ oraz zapisze prawą stronę podanej równości w postaci $ab+ac+bc=\frac{1}{c}+\frac{1}{b}+\frac{1}{a}$ i na tym zakończy lub dalej popełni błędy.

Uwaga

Jeżeli zdający sprawdza prawdziwość wzoru jedynie w wybranych przypadkach, to otrzymuje **0 punktów**.

Zadanie 29. (0–2)

Funkcja kwadratowa jest określona wzorem $f(x) = x^2 - 11x$. Oblicz najmniejszą wartość funkcji f w przedziale $\langle -6, 6 \rangle$.

Rozwiązanie

Wykresem funkcji f jest parabola o wierzchołku w punkcie, którego pierwsza współrzędna jest równa $x_w = -\frac{b}{2a} = \frac{11}{2}$. Ponieważ argument $x_w = \frac{11}{2} = 5\frac{1}{2}$ należy do przedziału $\langle -6, 6 \rangle$, więc najmniejszą wartością funkcji f w przedziałe $\langle -6, 6 \rangle$ jest $f(\frac{11}{2}) = -\frac{121}{4} = -30\frac{1}{4}$.

Schemat oceniania

Zdający otrzymuje1 p.

• gdy obliczy pierwszą współrzędną wierzchołka paraboli $x_w = 5\frac{1}{2}$, zapisze, że $x_w \in \langle -6, 6 \rangle$ i na tym zakończy lub dalej popełni błędy

albo

• popełni błąd rachunkowy przy obliczaniu pierwszej współrzędnej wierzchołka tej paraboli i konsekwentnie do popełnionego błędu obliczy najmniejszą wartość funkcji f w przedziale $\langle -6, 6 \rangle$.

Uwagi

- 1. Jeżeli zdający zapisze <u>jedynie</u> trzy wartości funkcji: f(-6)=102, $f(\frac{11}{2})=-30\frac{1}{4}$ i f(6)=-30 oraz sformułuje poprawną odpowiedź, to za takie rozwiązanie otrzymuje **2 punkty**.
- 2. Jeżeli zdający zapisze <u>tylko</u> obliczenie jednej wartości $f(\frac{11}{2}) = -30\frac{1}{4}$ oraz sformułuje poprawną odpowiedź, to za takie rozwiązanie otrzymuje **2 punkty**.

Zadanie 30. (0-2)

W trapezie ABCD o podstawach AB i CD przekątne AC oraz BD przecinają się w punkcie S. Wykaż, że jeżeli $|AS| = \frac{5}{6}|AC|$, to pole trójkąta ABS jest 25 razy większe od pola trójkąta DCS.

Rozwiązanie (I sposób)

Przyjmijmy oznaczenia jak na rysunku.

Trójkąty *ABS* i *DCS* są podobne, gdyż kąty *ASB* i *CSD* są równe, jako kąty wierzchołkowe, natomiast naprzemianległe kąty *SAB* i *SCD* są równe, bo proste *AB* i *CD* są równoległe, podobnie kąty *ABS* i *SDC* są równe.

Stąd, że $|AS| = \frac{5}{6}|AC|$, wynika równość $|CS| = \frac{1}{6}|AC|$. Skala podobieństwa trójkąta ABS do trójkąta CDS jest równa

$$k = \frac{|AS|}{|CS|} = \frac{\frac{5}{6}|AC|}{\frac{1}{6}|AC|} = 5$$
.

Stosunek pól figur podobnych jest równy kwadratowi skali podobieństwa, więc

$$\frac{P_{ABS}}{P_{CDS}} = k^2$$
, zatem $P_{ABS} = 25 \cdot P_{CDS}$.

To należało wykazać.

Rozwiązanie (II sposób)

Przyjmijmy oznaczenia jak na rysunku.

Katy ASB i CSD to katy wierzchołkowe, więc są równe.

Ponieważ $|AS| = \frac{5}{6}|AC|$, więc $|CS| = \frac{1}{6}|AC|$.

Proste AB i CD są równoległe, więc z twierdzenia Talesa otrzymujemy proporcję

$$\frac{|AS|}{|CS|} = \frac{|BS|}{|DS|}$$

Stąd i ze wzoru na "pole trójkąta z sinusem", otrzymujemy

$$\frac{P_{ABS}}{P_{CDS}} = \frac{\frac{1}{2} \cdot |AS| \cdot |BS| \cdot \sin \varphi}{\frac{1}{2} \cdot |CS| \cdot |DS| \cdot \sin \varphi} = \frac{|AS| \cdot |BS|}{|CS| \cdot |DS|} = \left(\frac{|AS|}{|CS|}\right)^2 = \left(\frac{\frac{5}{6}|AC|}{\frac{1}{6}|AC|}\right)^2 = 25,$$

czyli $P_{ABS} = 25 \cdot P_{CDS}$, co należało wykazać.

Schemat oceniania I i II sposobu rozwiązania

• zapisze, że trójkąty ABS i CDS są podobne oraz wyznaczy skalę ich podobieństwa: k = 5

albo

• wyznaczy pola trójkątów *ABS* i *CDS* w zależności od sinusa tego samego kąta i zapisze proporcję wynikającą z twierdzenia Talesa: $P_{ABS} = \frac{1}{2} \cdot |AS| \cdot |BS| \cdot \sin \varphi$,

$$P_{CDS} = \frac{1}{2} \cdot |CS| \cdot |DS| \cdot \sin \varphi$$
, $\frac{|AS|}{|CS|} = \frac{|BS|}{|DS|}$

i na tym zakończy lub dalej popełni błędy.

Uwaga

Jeżeli zdający przyjmie konkretne długości odcinków, np. |AC| = 6 i |AS| = 5, to otrzymuje **0 punktów.**

Zadanie 31. (0-4)

Ciąg arytmetyczny (a_n) określony jest wzorem $a_n = 2016 - 3n$, dla $n \ge 1$. Oblicz sumę wszystkich dodatnich wyrazów tego ciągu.

Rozwiazanie

Pierwszy wyraz ciągu (a_n) jest równy $a_1 = 2013$, a każdy inny wyraz tego ciągu jest o 3 mniejszy od wyrazu bezpośrednio go poprzedzającego.

Mamy do czynienia z ciągiem arytmetycznym o różnicy r = -3.

Wyznaczmy liczbę wszystkich dodatnich wyrazów ciągu (a_n) :

$$a_n > 0$$
,
 $2016 - 3n > 0$,
 $n < \frac{2016}{3}$, a stad $n < 672$.

Zatem a_1 , a_2 , a_3 , ..., a_{671} to wszystkie dodatnie wyrazy tego ciągu. Obliczmy ich sumę:

$$S_{671} = \frac{a_1 + a_{671}}{2} \cdot 671 \text{ i } a_{671} = 2016 - 3 \cdot 671 = 3,$$

$$S_{671} = \frac{2013 + 3}{2} \cdot 671 = 676368.$$

Uwaga

Możemy obliczyć sumę wszystkich dodatnich wyrazów tego ciągu, korzystając ze wzoru:

$$S_{671} = \frac{2a_1 + 670r}{2} \cdot 671 .$$

$$S_{671} = \frac{2 \cdot 2013 + 670 \cdot (-3)}{2} \cdot 671 = \frac{4026 - 2010}{2} \cdot 671 = 1008 \cdot 671 = 676368 .$$

Roz rozv	emat oceniania związanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego wiązania
Zaa	• obliczy pierwszy wyraz ciągu (a_n) : $a_1 = 2013$
albo	
	• zapisze różnicę ciągu arytmetycznego (a_n) : $r = -3$,
albo	
	• zapisze warunek pozwalający obliczyć liczbę wszystkich dodatnich wyrazów ciągu (a_n) : np. $2016-3n>0$
i na	tym zakończy lub dalej popełni błędy.
	związanie, w którym jest istotny postęp2 p. jący
	• obliczy pierwszy wyraz i ciągu (a_n) oraz zapisze jego różnicę: $a_1 = 2013$ i $r = -3$
albo	
	• zapisze warunek pozwalający obliczyć liczbę wszystkich dodatnich wyrazów ciągu (a_n) : np. $2016-3n>0$ i zapisze różnicę ciągu arytmetycznego (a_n) : $r=-3$,
albo	
	• zapisze warunek pozwalający obliczyć liczbę wszystkich dodatnich wyrazów ciągu (a_n) : np. $2016-3n>0$ i obliczy pierwszy wyraz ciągu (a_n) : $a_1=2013$
i na	tym zakończy lub dalej popełni błędy.
	sonanie zasadniczych trudności zadania3 p. jący
Zau	• obliczy pierwszy wyraz ciągu (a_n) i obliczy liczbę wszystkich dodatnich wyrazów
	ciągu (a_n) : $a_1 = 2013$, $n = 671$
albo	
	• obliczy pierwszy wyraz ciągu (a_n) : $a_1 = 2013$ oraz wyznaczy najmniejszy dodatni wyraz tego ciągu: 3,
albo	
	• obliczy pierwszy wyraz ciągu (a_n) : $a_1 = 2013$ oraz wyznaczy numer wyrazu
ina	równego 0: $n = 672$ tym zakończy lub dalej popełni błędy.
	związanie pełne4 p. jący obliczy sumę wszystkich dodatnich wyrazów ciągu (a_n) : $S_{671} = 676368$.
Zua ₂	
	Jeżeli zdający zauważy, że wyraz $a_{672} = 0$ i obliczy sumę $S_{672} = 676368$, to może
	otrzymać maksymalną liczbę punktów, o ile nie popełni błędu w przedstawionym rozwiązaniu.
2.	Jeżeli zdający obliczy pierwszy wyraz ciągu (a_n) , wyznaczy najmniejszy dodatni wyraz
-	ciągu, ale błędnie ustali jego numer i konsekwentnie obliczy sumę $\frac{2013+3}{2} \cdot 672 = 677\ 376$
	to otrzymuje 3 punkty.

Zadanie 32. (0-4)

Na rysunku przedstawione są dwa wierzchołki trójkąta prostokątnego ABC: A = (-3, -3) i C = (2, 7) oraz prosta o równaniu $y = \frac{3}{4}x - \frac{3}{4}$, zawierająca przeciwprostokątną AB tego trójkąta.

Oblicz współrzędne wierzchołka B tego trójkąta i długość odcinka AB.

Rozwiązanie (I sposób)

Współrzędne punktu *B* możemy obliczyć na kilka sposobów.

Sposób a)

Współczynnik kierunkowy prostej AC, a więc prostej przechodzącej przez punkty A = (-3, -3) i C = (2, 7), jest równy

$$a_{AC} = \frac{7+3}{2+3} = 2$$
.

Prosta CB jest prostopadła do prostej AC i przechodzi przez punkt C = (2,7), więc ma równanie postaci

$$y = -\frac{1}{2}(x-2) + 7$$
, czyli $y = -\frac{1}{2}x + 8$.

Współrzędne punktu B obliczymy rozwiązując układ równań $y = \frac{3}{4}x - \frac{3}{4}$ i $y = -\frac{1}{2}x + 8$. Stąd otrzymujemy

$$\frac{3}{4}x - \frac{3}{4} = -\frac{1}{2}x + 8,$$

$$3x - 3 = -2x + 32,$$

$$5x = 35$$

$$x = 7 \text{ oraz } y = -\frac{1}{2} \cdot 7 + 8 = 4\frac{1}{2}.$$

Zatem $B = \left(7, 4\frac{1}{2}\right)$.

Sposób b)

Wektory \overrightarrow{CA} i \overrightarrow{CB} są prostopadłe. Współrzędne wektora \overrightarrow{CA} są równe

$$\overrightarrow{CA} = [-3-2, -3-7] = [-5, -10].$$

Punkt B leży na prostej AB, więc jego współrzędne możemy zapisać w postaci $B = \left(x, \frac{3}{4}x - \frac{3}{4}\right)$. Zatem współrzędne wektora \overrightarrow{CB} są równe $\overrightarrow{CB} = \left\lceil x - 2, \frac{3}{4}x - \frac{31}{4} \right\rceil$.

Z warunku prostopadłości wektorów \overrightarrow{CA} i \overrightarrow{CB} otrzymujemy

$$\overline{CA} \circ \overline{CB} = 0,
[-5, -10] \circ \left[x - 2, \frac{3}{4}x - \frac{31}{4} \right] = 0,
-5(x-2) - 10\left(\frac{3}{4}x - \frac{31}{4}\right) = 0,
(x-2) + 2\left(\frac{3}{4}x - \frac{31}{4}\right) = 0,
\frac{5}{2}x - \frac{35}{2} = 0,
5x = 35,
x = 7.$$

Zatem $B = (7, 4\frac{1}{2})$.

Sposób c)

Punkt *B* leży na prostej *AB*, więc jego współrzędne możemy zapisać w postaci $B = \left(x, \frac{3}{4}x - \frac{3}{4}\right)$. Z twierdzenia Pitagorasa dla trójkąta *ABC* otrzymujemy

$$|AB|^{2} = |AC|^{2} + |BC|^{2},$$

$$\left(\sqrt{(x+3)^{2} + \left(\frac{3}{4}x - \frac{3}{4} + 3\right)^{2}}\right)^{2} = \left(\sqrt{(2+3)^{2} + (7+3)^{2}}\right)^{2} + \left(\sqrt{(x-2)^{2} + \left(\frac{3}{4}x - \frac{3}{4} - 7\right)^{2}}\right)^{2},$$

$$(x+3)^{2} + \left(\frac{3}{4}x + \frac{9}{4}\right)^{2} = 5^{2} + 10^{2} + (x-2)^{2} + \left(\frac{3}{4}x - \frac{31}{4}\right)^{2},$$

$$x^{2} + 6x + 9 + \frac{9}{16}x^{2} + \frac{54}{16}x + \frac{81}{16} = 125 + x^{2} - 4x + 4 + \frac{9}{16}x^{2} - \frac{186}{16}x + \frac{961}{16},$$

$$x = 7.$$

Zatem $B = (7, \frac{3}{4} \cdot 7 - \frac{3}{4}) = (7, 4\frac{1}{2})$.

Długość odcinka AB jest równa

$$|AB| = \sqrt{(7+3)^2 + (4\frac{1}{2}+3)^2} = \sqrt{100 + (7\frac{1}{2})^2} = \sqrt{\frac{400+225}{4}} = \sqrt{\frac{625}{4}} = \frac{25}{2} = 12\frac{1}{2}.$$

Schemat oceniania I sposobu rozwiązania

• wyznaczy współczynnik kierunkowy prostej AC: $a_{AC} = 2$

albo

• wyznaczy współrzędne wektora $\overrightarrow{CA} = \begin{bmatrix} -5, -10 \end{bmatrix}$,

albo

• wyznaczy współrzędne wektora \overrightarrow{CB} w zależności od jednej zmiennej,

np:
$$\overrightarrow{CB} = \left[x - 2, \frac{3}{4}x - \frac{31}{4} \right]$$
,

albo

• zastosuje twierdzenie Pitagorasa i zapisze $|AB|^2 = |AC|^2 + |BC|^2$ oraz uzależni współrzędne punktu *B* od tej samej zmiennej: np.: $B = \left(x, \frac{3}{4}x - \frac{3}{4}\right)$

i na tym zakończy lub dalej popełni błędy.

• równanie prostej *BC*: $y = -\frac{1}{2}x + 8$

albo

• równanie z jedną niewiadomą wynikające z warunku prostopadłości wektorów pozwalające obliczyć współrzędne punktu *B*: np. $[-5,-10] \circ \left[x-2,\frac{3}{4}x-\frac{31}{4}\right]=0$ (lub układ równań $[-5,-10] \circ \left[x-2,y-7\right]=0$ i $y=\frac{3}{4}x-\frac{3}{4}$),

albo

• równanie z jedną niewiadomą wynikające z twierdzenia Pitagorasa dla trójkąta ABC:

$$\left(\sqrt{(x+3)^2 + \left(\frac{3}{4}x - \frac{3}{4} + 3\right)^2}\right)^2 = \left(\sqrt{(2+3)^2 + (7+3)^2}\right)^2 + \left(\sqrt{(x-2)^2 + \left(\frac{3}{4}x - \frac{3}{4} - 7\right)^2}\right)^2$$

lub układ równań z dwiema niewiadomymi

$$\begin{cases} \left(\sqrt{(x+3)^2 + (y+3)^2}\right)^2 = \left(\sqrt{(2+3)^2 + (7+3)^2}\right)^2 + \left(\sqrt{(x-2)^2 + (y-7)^2}\right)^2 \\ y = \frac{3}{4}x - \frac{3}{4} \end{cases}$$

i na tym zakończy lub dalej popełni błędy.

Pokonanie zasadniczych trudności zadania 3 p. Zdający obliczy współrzędne wierzchołka B: $B = \left(7, 4\frac{1}{2}\right)$ i na tym zakończy lub dalej popełni błędy.

Rozwiązanie (II sposób)

Trójkąt ABC jest prostokątny, więc środek S okręgu opisanego na tym trójkącie jest środkiem przeciwprostokątnej AB. Jednocześnie leży on na symetralnej boku AC. Wyznaczamy najpierw równanie symetralnej boku AC. Jest to prosta prostopadła do prostej AC i przechodzi przez środek M odcinka AC. Ponieważ A = (-3, -3) i C = (2, 7), więc punkt M ma współrzędne:

$$M = \left(\frac{-3+2}{2}, \frac{-3+7}{2}\right) = \left(\frac{-1}{2}, 2\right),$$

a współczynnik kierunkowy prostej AC jest równy $a_{AC} = \frac{7+3}{2+3} = 2$, więc prosta AC ma równanie postaci

$$y = 2(x+3)-3$$
, czyli $y = 2x+3$.

Współczynnik kierunkowy symetralnej MS boku AC jest zatem równy $a_{MS}=-\frac{1}{2}$, a symetralna MS ma równanie postaci

$$y = -\frac{1}{2}(x + \frac{1}{2}) + 2,$$
$$y = -\frac{1}{2}x + \frac{7}{4}.$$

Współrzędne środka S okręgu opisanego trójkącie ABC obliczymy, rozwiązując układ równań

$$y = \frac{3}{4}x - \frac{3}{4}$$
 i $y = -\frac{1}{2}x + \frac{7}{4}$.

Stad

$$\frac{3}{4}x - \frac{3}{4} = -\frac{1}{2}x + \frac{7}{4},$$

$$3x - 3 = -2x + 7,$$

$$5x = 10$$

$$x = 2 \text{ oraz } y = -\frac{1}{2} \cdot 2 + \frac{7}{4} = \frac{3}{4}.$$

Zatem $S = \left(2, \frac{3}{4}\right)$.

Ponieważ S jest środkiem boku AB, to

$$S = \left(\frac{-3+x_B}{2}, \frac{-3+y_B}{2}\right) = \left(2, \frac{3}{4}\right).$$

Stad

$$\frac{-3+x_B}{2} = 2 i \frac{-3+y_B}{2} = \frac{3}{4}$$

$$-3+x_B = 4 i -3+y_B = \frac{3}{2}$$

$$x_B = 7 i y_B = 4\frac{1}{2}.$$

Zatem $B = (7, 4\frac{1}{2})$.

Długość odcinka AB jest równa

$$|AB| = \sqrt{(7+3)^2 + \left(4\frac{1}{2} + 3\right)^2} = \sqrt{100 + \left(7\frac{1}{2}\right)^2} = \sqrt{\frac{400 + 225}{4}} = \sqrt{\frac{625}{4}} = \frac{25}{2} = 12\frac{1}{2}.$$

Schemat oceniania II sposobu rozwiązania

- współczynnik kierunkowy prostej AC: $a_{AC} = 2$
- albo
 - wyznaczy współrzędne środka M odcinka AC: $M = \left(-\frac{1}{2}, 2\right)$ i zapisze, że środek okręgu opisanego na trójkącie ABC to punkt przecięcia symetralnej boku AC i prostej AB.

i na tym zakończy lub dalej popełni błędy.

- obliczy współrzędne wierzchołka B i nie obliczy długości boku AB: $B = (7, 4\frac{1}{2})$ albo
 - obliczy długość boku AB i nie obliczy współrzędnych wierzchołka B:

$$|AB| = 2 \cdot |AS| = 2 \cdot 6 \frac{1}{4} = 12 \frac{1}{2}$$

i na tym zakończy lub dalej popełni błędy.

Rozwiązanie pełne4 p.

Zdający obliczy współrzędne wierzchołka B oraz długość odcinka AB: $B = \left(7, 4\frac{1}{2}\right)$, $|AB| = \frac{25}{2} = 12\frac{1}{2}$.

Uwaga

Jeżeli zdający błędnie zinterpretuje treść zadania, przyjmując, że wierzchołkiem kąta prostego trójkąta *ABC* jest *B*, to otrzymuje **0 punktów**.

Zadanie 33. (0–5)

Trójkąt równoboczny ABC jest podstawą ostrosłupa prawidłowego ABCS, w którym ściana boczna jest nachylona do płaszczyzny podstawy pod kątem 60° , a krawędź boczna ma długość 7 (zobacz rysunek). Oblicz objętość tego ostrosłupa.

Rozwiązanie I sposób

Przyjmijmy oznaczenia jak na rysunku.

Podstawa ostrosłupa jest trójkątem równobocznym o boku długości a, ostrosłup jest prawidłowy, więc spodek O wysokości SO tego ostrosłupa jest środkiem okręgu wpisanego i opisanego na podstawie ostrosłupa.

Zatem

$$|AO| = \frac{a\sqrt{3}}{3}$$
 oraz $|OD| = \frac{a\sqrt{3}}{6}$.

Ściana boczna jest nachylona do płaszczyzny podstawy pod kątem 60°, stąd otrzymujemy

$$\frac{H}{|OD|} = \text{tg}60^{\circ},$$

$$\frac{H}{a\sqrt{3}} = \sqrt{3},$$

$$H = \frac{a\sqrt{3}}{6} \cdot \sqrt{3},$$

$$H = \frac{a}{2}.$$

Z twierdzenia Pitagorasa w trójkącie AOS, otrzymujemy

$$|AO|^{2} + |OS|^{2} = |AS|^{2},$$

$$\left(\frac{a\sqrt{3}}{3}\right)^{2} + \left(\frac{a}{2}\right)^{2} = 7^{2},$$

$$\frac{a^{2}}{3} + \frac{a^{2}}{4} = 49,$$

$$7a^{2} = 49 \cdot 12,$$

$$a^{2} = 7 \cdot 12,$$

$$a = 2\sqrt{21}.$$

Zatem $H = \sqrt{21}$.

Objętość ostrosłupa jest więc równa

$$V = \frac{1}{3} \cdot \frac{a^2 \sqrt{3}}{4} \cdot H = \frac{\left(2\sqrt{21}\right)^2 \sqrt{3}}{12} \cdot \sqrt{21} = \frac{4 \cdot 21\sqrt{3}}{12} \cdot \sqrt{21} = 21\sqrt{7}.$$

Schemat oceniania I sposobu rozwiązania

- zaznaczy kąt nachylenia ściany bocznej do płaszczyzny podstawy ostrosłupa albo
 - zapisze, że długość odcinka AO: $|AO| = \frac{a\sqrt{3}}{3}$, gdzie a oznacza długość krawędzi podstawy ostrosłupa,

albo

• zapisze, że długość odcinka OD: $|OD| = \frac{a\sqrt{3}}{6}$, gdzie a oznacza długość krawędzi podstawy ostrosłupa

i na tym zakończy lub dalej popełni błędy.

Rozwiązanie, w którym jest istotny postęp2 p.

Zdający wyznaczy w zależności od jednej zmiennej, np. a – długości krawędzi podstawy

• zaznaczy kąt nachylenia ściany bocznej do płaszczyzny podstawy ostrosłupa oraz długość odcinka AO: $|AO| = \frac{a\sqrt{3}}{3}$

albo

• zaznaczy kąt nachylenia ściany bocznej do płaszczyzny podstawy ostrosłupa oraz długość odcinka OD: $|OD| = \frac{a\sqrt{3}}{6}$

i na tym zakończy lub dalej popełni błędy.

Uwaga

Zdający nie musi zaznaczać kąta nachylenia ściany bocznej do płaszczyzny podstawy, o ile z rozwiązania wynika, że poprawnie interpretuje ten kąt.

Rozwiązanie II sposób

Przyjmijmy oznaczenia jak na rysunku.

Trójkąt DOS jest prostokątny, w którym jeden kąt ostry ma miarę 60° . Wysokość SD ściany bocznej oznaczmy przez 2x. Zatem

$$H = |SO| = x\sqrt{3} \text{ oraz } |OD| = x$$
.

Podstawa ostrosłupa jest trójkątem równobocznym o boku długości *a*, ostrosłup jest prawidłowy, więc spodek *O* wysokości *SO* tego ostrosłupa jest środkiem okręgu wpisanego i opisanego na podstawie ostrosłupa. Zatem

$$|AO| = 2x$$
 oraz $a = 2x\sqrt{3}$.

Dla trójkąta *AOS* zapisujemy twierdzenie Pitagorasa i obliczamy *x*:

$$|AO|^{2} + |OS|^{2} = |AS|^{2},$$

$$(2x)^{2} + (x\sqrt{3})^{2} = 7^{2},$$

$$4x^{2} + 3x^{2} = 49,$$

$$7x^{2} = 49,$$

$$x = \sqrt{7}.$$

Zatem $H = \sqrt{7} \cdot \sqrt{3} = \sqrt{21}$ oraz $a = 2x\sqrt{3} = 2\sqrt{21}$.

Objętość ostrosłupa jest więc równa

$$V = \frac{1}{3} \cdot \frac{a^2 \sqrt{3}}{4} \cdot H = \frac{\left(2\sqrt{21}\right)^2 \sqrt{3}}{12} \cdot \sqrt{21} = \frac{4 \cdot 21\sqrt{3}}{12} \cdot \sqrt{21} = 21\sqrt{7}.$$

Uwaga

Zdający może podać wynik w postaci $V \approx 55,56$.

- zaznaczy kąt nachylenia ściany bocznej do płaszczyzny podstawy ostrosłupa albo
- zapisze zależność między długościami odcinków OA i OD, np. |OD| = x, |OA| = 2x, gdzie x pół wysokości ściany bocznej, i na tym zakończy lub dalej popełni błędy.

Zdający wyznaczy w zależności od jednej zmiennej, np. x – pół wysokości ściany bocznej,

• wysokość ostrosłupa SO: $|SO| = H = x\sqrt{3}$

albo

• zaznaczy kąt nachylenia ściany bocznej do płaszczyzny podstawy ostrosłupa oraz zapisze zależność między długościami odcinków OA i OD, np. |OD| = x, |OA| = 2x

i na tym zakończy lub dalej popełni błędy.

Uwaga

Zdający nie musi zaznaczać kąta nachylenia ściany bocznej do płaszczyzny podstawy, o ile z rozwiązania wynika, że poprawnie interpretuje ten kat.

Zadanie 34. (0–2)

Ze zbioru siedmiu liczb naturalnych {1, 2, 3, 4, 5, 6, 7} losujemy dwie różne liczby. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że większą z wylosowanych liczb będzie liczba 5.

Rozwiązanie (I sposób)

Niech zdarzeniami elementarnymi będą uporządkowane pary (a,b) liczb z podanego zbioru, takie że $a \neq b$. Jest to model klasyczny. Liczba wszystkich zdarzeń elementarnych jest równa $|\Omega| = 7 \cdot 6 = 42$.

Niech A oznacza zdarzenie polegające na wylosowaniu dwóch liczb, z których większą jest liczba 5.

Zdarzeniu A sprzyja osiem zdarzeń elementarnych

$$A = \{(1, 5), (2, 5), (3, 5), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4)\}.$$

Prawdopodobieństwo zdarzenia A jest równe

$$P(A) = \frac{8}{42} = \frac{4}{21}$$
.

Rozwiązanie (II sposób)

Niech zdarzeniami elementarnymi będą dwuelementowe podzbiory $\{a,b\}$ liczb z podanego zbioru. Jest to model klasyczny. Liczba wszystkich zdarzeń elementarnych jest równa

$$|\Omega| = {7 \choose 2} = 21$$
.

Niech A oznacza zdarzenie polegające na wylosowaniu dwóch liczb, z których większą jest liczba 5.

Zdarzenia A sprzyjają cztery zdarzenia elementarne

$$A = \{\{1, 5\}, \{2, 5\}, \{3, 5\}, \{4, 5\}\}.$$

Prawdopodobieństwo zdarzenia A jest równe:

$$P(A) = \frac{4}{21}$$
.

Uwaga

Zbiór wszystkich zdarzeń elementarnych oraz zdarzenia elementarne sprzyjające zdarzeniu *A* możemy też zapisać w tabeli.

	1	2	3	4	5	6	7
1					0		
2					0		
3					0		
4					0		
5	0	0	0	0			
6							
7							

Symbol © użyty w tabeli oznacza zdarzenie elementarne sprzyjające zdarzeniu A.

Wówczas $|\Omega| = 7^2 - 7 = 42$ i |A| = 8. Zatem $P(A) = \frac{8}{42} = \frac{4}{21}$.

Schemat oceniania I i II sposobu rozwiązania

• obliczy liczbę wszystkich zdarzeń elementarnych: $|\Omega| = 7 \cdot 6 = 42$ (lub $|\Omega| = \binom{7}{2} = 21$)

albo

• obliczy (zaznaczy poprawnie w tabeli) liczbę zdarzeń elementarnych sprzyjających zdarzenia A: |A| = 8 (lub |A| = 4).

i na tym zakończy lub dalej popełni błędy.

Uwagi

- 1. Jeśli zdający rozwiąże zadanie do końca i otrzyma P(A) > 1 lub P(A) < 0, to za całe rozwiązanie otrzymuje **0 punktów**.
- 2. Jeżeli zdający popełni błąd przy zliczaniu w tabeli par, spełniających warunki zadania i konsekwentnie do popełnionego błędu obliczy prawdopodobieństwo, to otrzymuje **1 punkt**.
- 3. Jeżeli zdający zapisze **tylko** $P(A) = \frac{8}{42}$, to otrzymuje **1 punkt**.

Rozwiązanie (III sposób)

Niech A oznacza zdarzenie – większa z wylosowanych liczb jest równa 5. Narysujmy drzewo zawierające tylko istotne gałęzie

Prawdopodobieństwo zajścia zdarzenia jest równe

$$P(A) = \frac{1}{7} \cdot \frac{1}{6} + 4 \cdot \frac{1}{7} \cdot \frac{1}{6} = \frac{8}{42} = \frac{4}{21}.$$

Schemat oceniania III sposobu rozwiązania

Uwagi

1. Jeśli zdający rozwiąże zadanie do końca i otrzyma P(A) > 1 lub P(A) < 0, to za całe rozwiązanie otrzymuje **0 punktów**.

- 2. Jeśli zdający dodaje prawdopodobieństwa na gałęziach drzewa, to za całe rozwiązanie otrzymuje **1 punkt** (pod warunkiem, że prawdopodobieństwa na gałęziach drzewa są zapisane prawidłowo).
- 3. Jeżeli zdający popełni błąd:
 - przy przepisywaniu prawdopodobieństw z gałęzi drzewa

lub

• w zapisaniu prawdopodobieństwa na jednej gałęzi drzewa,

lub

nie zaznaczy jednej istotnej gałęzi drzewa

i konsekwentnie do popełnionego błędu obliczy prawdopodobieństwo, to otrzymuje **1 punkt**.