(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 23. August 2001 (23.08.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/61071 A2

(51) Internationale Patentklassifikation⁷: C23C 16/448, 16/46, 16/52

(21) Internationales Aktenzeichen: PCT/EP01/01698

(22) Internationales Anmeldedatum:

15. Februar 2001 (15.02.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

DE

(30) Angaben zur Priorität: 100 07 059.0 16. Februar 2000 (16.02.2000)

State of the state

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): AIXTRON AG [DE/DE]; Kackertstrasse 15-17, 52072 Aachen (DE). (72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): JÜRGENSEN, Holger [DE/DE]; Rathausstrasse 43d, 52072 Aachen (DE). KÄP-PELER, Johannes [DE/DE]; Zeisigweg 47, 52146 Würselen (DE). STRAUCH, Gert [DE/DE]; Schönauer Friede 80, 52072 Aachen (DE). SCHMITZ, Dietmar [DE/DE]; Lonweg 41, 52072 Aachen (DE).
- (74) Anwälte: GRUNDMANN, Dirk usw.; Rieder & Partner, Corneliusstrasse 45, 42329 Wuppertal (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

[Fortsetzung auf der nächsten Seite]

(54) Title: CONDENSATION COATING METHOD

(54) Bezeichnung: KONDENSATIONSBESCHICHTUNGSVERFAHREN

(57) Abstract: A method and device for the production of coated substrates, such as OLEDs is disclosed, whereby at least one layer is deposited on the at least one substrate, by means of a condensation method and a solid and/or fluid precursor and, in particular, at least one sublimate source is used for at least one part of the reaction gases. The invention is characterised in that, by means of a temperature control of the reaction gases between precursor source(s) and substrate, a condensation of the reaction gases before the substrate(s) is avoided.

[Fortsetzung auf der nächsten Seite]

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

⁽⁵⁷⁾ Zusammenfassung: Beschrieben wird ein Verfahren und eine Vorrichtung zur Herstellung von beschichteten Substraten, wie bspw. von "OLED's", bei dem wenigstens eine Schicht mittels eines Kondensationsverfahrens auf das wenigstens eine Substrat aufgebracht wird, und bei dem für wenigstens einen Teil der Reaktionsgase feste und/oder flüssige Vorläufer und insbesondere wenigstens eine Sublimationsquelle verwendet werden. Die Erfindung zeichnet sich durch eine Temperatursteuerung der Reaktionsgase zwischen Vorläufer-Quelle(n) und Substrat aus, durch die eine Kondensation der Reaktionsgase vor dem oder den Substraten vermieden wird.

00001	Kondensationsbeschichtungsverfahren
00002	
00003	Technisches Gebiet
00004	
00005	Die Erfindung bezieht sich auf ein Verfahren und eine
00006	Vorrichtung zur Herstellung von Schichtsystemen, wie
00007	z.B. für Dünnfilmbauelemente wie OLED's oder ähnliche
80000	Schichtstrukturen mittels Kondensationsbeschichtung.
00009	Diese Schichtsysteme bestehen insbesondere aus organi-
00010	schen Materialien, wie z.B. "small molecules" (z.B.
00011	Alq3) oder Polymeren (z.B. PPV).
00012	
00013	Stand der Technik
00014	
00015	Kondensationsbeschichtungsverfahren zur Herstellung von
00016	Bauelementen insbesondere aus organischen Materialien
00017	sind bekannt. Bei diesem Verfahren werden die Bestand-
00018	teile der herzustellenden Schicht mittels gasförmigen
00019	und/oder organischen Verbindungen (Salze) in die Be-
00020	schichtungskammern (im Folgenden als Reaktionskammer
00021	bezeichnet) transportiert.
00022	
00023	Die Beschichtung des Substrates (meist Glas, Folie oder
00024	Kunststoffe) erfolgt auf der Basis des Kondensationspro-
00025	zesses, wobei die Substrate auf einer Temperatur gehal-
00026	ten werden, die niedriger ist, als die Temperatur der
00027	sich in der Gasphase befindlichen Moleküle.
00028	
00029	VPD-Verfahren (Vapor Phase Deposition) werden zur Ab-
00030	scheidung unterschiedlicher Materialien aus der Gaspha-
00031	se verwendet. Auch im Bereich der Abscheidung von orga-
00032	nischen Schichten hat sich dieses Verfahren durchge-
00033	setzt. Das VPD-Verfahren wird mit unterschiedlichen
00034	Reaktorkonzepten kontrolliert, z.B.:
00035	

BESTÄTIGUNGSKOPIE

00036	Horizontale Rohrreaktoren, in denen die Gasströmung		
00037	horizontal und parallel zur Beschichtungsoberfläche		
88000	verläuft, (den klassischen VPE Reaktoren entlehnt). Zur		
00039	Vermeidung von Effizienz reduzierender Wandkondensation		
00040	werden die Reaktoren als Heißwandsystem ausgelegt.		
00041			
00042	Dieses Verfahren bzw. diese bekannte Vorrichtung wird		
00043	zur Beschichtung von meist flachen und nicht variablen		
00044	Substratgeometrien eingesetzt.		
00045			
00046	Die Nachteile liegen in		
00047	a) der verfahrenstechnischen und geometrischen Verkop-		
00048	pelung der Prekursor-Sublimation und deren Einlei-		
00049	tung,		
00050	b) der Verwendung von Reaktorgeometrien mit großer		
00051	Systemoberfläche im Verhältnis zur Beschichtungs-		
00052	oberfläche, d.h. hydrodynamisch geht eine große		
00053	Menge von Prekursoren der Beschichtung auf dem		
00054	Substrat verloren		
00055	c) aus b) folgend teuerer Heißwandtechnik.		
00056			
00057	In Aufdampfanlagen, deren Verfahrensprinzip der Konden-		
00058	sation entspricht, sind die Quellmaterialien im System		
00059	integriert, d.h. der Quellenstrom ist zeitlich nicht		
00060	kontrollierbar. Er kann nicht schlagartig an- oder		
00061	abgeschaltet werden. Die zeitliche Kontrolle geschieht		
00062	hier über die Steuerung der Verdampfungsenergie (E-Beam		
00063	oder Widerstandsheizung). Ferner sind die Systeme nicht		
00064	als Heißwandsysteme ausgebildet, so dass ein wesentli-		
00065	cher Anteil der Materialien an den Systemwänden und		
00066	Komponenten Effizienz mindernd kondensiert.		
00067			
00068	Die Nachteile dieser Technik liegen auch in der schlech-		
00069	ten Kontrollierbarkeit von Stöchiometrie oder von schar-		
00070	fen Übergängen für Mehrschichtanforderungen		

00071	Im CVD System sind die Quellen individuell zeitlich und
00072	in der Menge präzise kontrollierbar, jedoch ist der
00073	Transport aus einer Quelle nicht das Prinzip der Subli-
00074	mation, sondern das der Verdampfung. In diesen CVD-Sys-
00075	temen ist das Beschichtungsverfahren nicht Kondensati-
00076	on, sondern kinetisch oder diffusionslimitiertes Wachs-
00077	tum (chemische Reaktion). Diese Verfahren und Vorrich-
00078	tungen werden zur Beschichtung von meist flachen und
00079	nicht variablen Substratgeometrien eingesetzt.
08000	
00081	Alternative Verfahren sind Spin on oder OMBD.
00082	
00083	Die oben beschriebenen Verfahren und Vorrichtungen
00084	erfüllen in einer oder mehreren Eigenschaften nicht die
00085	Anforderung zur Herstellung der beispielhaft aufgeführ-
00086	ten Schichtsysteme im Hinblick auf präzise Kontrolle
00087	der Stöichiometrie und Mehrschichtanforderung sowie der
88000	Wirtschaftlichkeit.
00089	
00090	Der Erfindung liegt die Aufgabe zugrunde, das gattungs-
00091	gemäße Verfahren dahingehend zu verbessern, dass die
00092	Parameter individualisierter vorgebbar sind, dass die
00093	Effizienz erhöht ist, und die Qualität der auf dem Sub-
00094	strat kondensierten Schichten zu erhöhen.
00095	•
00096	Gelöst wird die Aufgabe durch die in den Ansprüchen
00097	angegebene Erfindung. Die Unteransprüche stellen vor-
00098	teilhafte Weiterbildungen der Erfindung dar.
00099	
00100	Die Verwendung einer Kombination von spezieller Prekur-
00101	sorsublimation, Verdampfung, Gaseinlassgeometrie und
00102	Reaktorgeometrie für das Beschichtungsverfahren verbes-
00103	sert die Kontrolle und Wirtschaftlichkeit des Verfah-
00104	rens zur Kondensationsbeschichtung ausgehend von fester
00105	Prekursoren. Dabei werden die Prekursoren individuell

00100	und außernalb der Reaktionskammer sublimiert bzw. ver-
00107	dampft. Diese Ausgangsstoffe können auf dem Substrat
00108	selektiv kondensieren. Mittels einer dem Substrat zuge-
00109	ordneten Maske kann eine Strukturierung erfolgen. Die
00110	Maske kann auf dem Substrat befestigt werden.
00111	
00112	Allen Reaktorkonzepten gemein ist, dass die Art der
00113	Prekursor-Sublimation nach deren Gaseinspeisung in das
00114	Reaktionsgefäß dabei maßgeblich die Gasphasenchemie der
00115	Elementsubstanzen als auch deren Transportverhalten
00116	bestimmt und damit die Eigenschaften der abgeschiedenen
00117	Schichten, d.h. die Art der Gaseinspeisung dominiert
00118	die Verfahrenskontrolle.
00119	
00120	Diese Eigenschaften sind z.B. (d.h. frei von Fremdato-
00121	men/Stoffen), Partikel und/oder Defektdichte, Zusammen-
00122	setzung im Mehrstoffsystem, optische und elektrische
00123	Eigenschaften der Schichten sowie Effizienz der Deposi-
00124	tion. Die nach Stand der Technik eingesetzten Gasein-
00125	lassgeometrien erfüllen entweder nur die hydrodynami-
00126	sche oder die thermodynamische Aufgabenstellung.
00127	
00128	Oft erfolgt eine ungewollte Deposition im Bereich der
00129	Einlassgeometrie. Diese entsteht dann, wenn im Ein-
00130	lassbereich entweder zu hohe (d.h. kinetisch limitierte
00131	Deposition) oder zu kalte Oberflächentemperaturen (d.h.
00132	Kondensation oder Thermophorese) sich einstellen, oder
00133	eine Durchmischung der Gase innerhalb der Zone der
00134	Einleitung oder innerhalb der Kammer durch Strömung
00135	und/oder Diffusion auftritt (Nukleation = homogene
00136	Gasphasenreaktion). Die parasitäre Belegung hat dann
00137	zur Folge, dass sich die Eigenschaften (thermisch
00138	und/oder chemisch) des Gaseinlasses im Laufe des Prozes
00139	ses ändern, so dass die Kontrolle über eine kontinuier-
00140	liche und gleichmäßige Abscheidung nicht gewährleistet

5

00141 ist. Die parasitären Ablagerungen führen zu einer Ver-00142 schleppung einzelner Komponenten in die nachfolgenden 00143 Schichten hinein. Ferner reduziert diese Belegung die 00144 Effizienz der Elemente, besonders wenn die Einlassgeo-00145 metrie eine im Vergleich zur Nutzfläche und große Ober-00146 fläche aufweist. 00147 00148 Weiterhin ist die Gaseinlasseinheit typisch so gestal-00149 tet, dass die effektive Trennung der Gase, die die 00150 thermisch unterschiedlichen Eigenschaften der Prekurso-00151 ren erfordert, nicht gewährleistet ist. Die Folge sind 00152 unerwünschte Reaktionen einiger Gase in der Gasphase 00153 miteinander (d.h. Nukleation), welche die Eigenschaft 00154 der abzuscheidenden Schicht negativ beeinflusst, z.B. 00155 Partikel oder Kontamination. Die Nukleation reduziert die Materialeffizienz und führt zur Kontamination der 00156 Schicht mit diesen Verbindungen. 00157 00158 00159 Um die oben aufgeführten Nachteile zu reduzieren, wer-00160 den heutige Gaseinlässe typischerweise prozesstechnisch 00161 weit von den zu beschichtenden Oberflächen entfernt 00162 angeordnet, d.h. entweder räumlich oder durch Wahl der 00163 Prozessparameter (z.B. sehr niedrigen Druck bzw. große 00164 Reynold Zahlen). Die derzeit bekannten Reaktoren zeich-00165 nen sich daher durch eine niedrige Effizienz (deutlich 00166 kleiner als 25%), d.h. nur ein geringer Anteil der 00167 eingeleiteten Elemente deponieren in der brauchbaren 00168 funktionalen Schicht. 00169 00170 Somit sind die Schichteigenschaften, hergestellt mit 00171 solchen Systemen, nicht optimal und auch die Wirtschaft-00172 lichkeit solcher Systeme ist nur gering. 00173 00174 Zur Sublimation der festen Prekursoren werden überlich-00175 erweise Verdampferquellen verwendet, die durch die Wahl

00176	des Behälterdrucks und Temperatur das Quellenmaterial		
00177	aus der festen Phase direkt gasförmig zur Verfügung		
00178	stellen, d.h. sublimieren. Ist der Dampfdruck des Quel-		
00179	lenmaterials sehr niedrig, werden hohe Temperaturen		
00180	erforderlich. Nach heutigem Stand der Technik werden		
00181	daher einige Prekursoren in Booten in den Reaktor einge		
00182	führt. In den verwendeten Heißwandsystemen wird die		
00183	Temperatur der Reaktoren so über die Baulänge profi-		
00184	liert, dass die erforderliche Sublimationstemperatur je		
00185	Prekursor in je einer Zone eingestellt wird. Nachteil		
00186	dieses Aufbaus sind ungenaue Einstellung der optimalen		
00187	Sublimationstemperatur, große Volumina der Verdampfer-		
00188	Einrichtung, nicht getrennte Druckeinstellung je Prekur		
00189	sor verschieden und unabhängig vom Reaktor-Prozess-		
00190	druck, nicht flexible und individuelle Temperaturen-		
00191	einstellung je Prekursor. Gravierendster Nachteil je-		
00192	doch ist der zeitlich nicht gesteuerte Quellenstrom, da		
00193	diese Verdampferquellen offen zur Beschichtungszone		
00194	wirken.		
00195			
00196	Die hier vorgestellte technische Lehre soll alle oben		
00197	genannten Nachteile beheben und stellt je nach Anwen-		
00198	dungsanforderung die geeigneten Verfahren und Vorrich-		
00199	tungen zur Verfügung.		
00200			
00201	Die Sublimationsvorrichtung der Ausgangsstoffe (Prekur-		
00202	soren) ist geometrisch vom Reaktor getrennt und je		
00203	Prekursor einzeln ausgeführt. Damit kann flexible und		
00204	optimiert die Transportmenge je Prekursor kontrolliert		
00205	und gesteuert werden. Jeder Prekursor ist individuell,		
00206	zeitlich präzise steuerbar, und zudem unabhängig von		
00207	Reaktorparametern.		
00208			
00209	Die Einlassgeometrie sichert minimale Kammeroberfläche		
00210	im Verhältnis zur Beschichtungsoberfläche (nahe 1:1)		

00211	und damit maximierte Effizienz des Verfahrens. Die
00212	Ausgestaltung der Geometrie des Einlasses vermeidet im
00213	Grundsatz Reaktionen zwischen den Prekursoren als auch
00214	parasitäre Belegung an der Oberfläche des Einlasses
00215	selber.
00216	
00217	Die Ausgestaltung der Einlassgeometrie der Prekursoren
00218	in Verbindung mit der Reaktorgeometrie sichert homogene
00219	Verteilung aller Materialien mit zeitlich präziser
00220	Kontrolle.
00221	
00222	Die erzielten Beschichtungen zeichnen sich dabei durch
00223	eine Homogenität der Zusammensetzung, Sichtdicke und
00224	Dotierung im Bereich von 1% aus. Weiterhin können mit
00225	der Apparatur und dem Verfahren Übergänge im Material
00226	und Dotierstoffprofile präzise und reproduzierbar einge
00227	stellt werden. Die Bildung von Partikel ist durch die
00228	Erfindung vermieden.
00229	
00230	Der Ort der Sublimation der Ausgangsstoffe (Prekurso-
00231	ren) ist getrennt von der Reaktorkammer ausgeführt.
00232	Dabei ist die Anordnung so gewählt, dass der Ausgangs-
00233	stoff mit minimaler Transiente in den Gaseinlass ge-
00234	führt wird. Hierzu wird in einem Beschichtungssystem
00235	der Ausgangsstoff-Behälter in unmittelbarer Nähe z.B.
00236	auf den Reaktordeckel platziert. Ein kurzer Rohrweg
00237	leitet das Material unmittelbar in die Gaseinlassein-
00238	heit.
00239	
00240	Der Tank für die Ausgangsstoffe wird eigens und unabhän
00241	gig von der Reaktortemperatur geheizt. Dazu wird entwe-
00242	der eine Widerstandsheizung um den Tank genutzt, oder
00243	in einem Hohlmantel um den Tank thermostatisierte Flüs-
00244	sigkeit gepumpt.
00245	·

00246	Der Druck im Tank kann mit einem Regelventil an der
00247	Ausgangsseite des Tanks einzeln und unabhängig vom
00248	Reaktor geregelt werden. Das Regelventil ist beheizt
00249	und stellt im Verlauf des Materialweges einen positiven
00250	Temperaturgradienten zur Vermeidung von lokaler Konden-
00251	sation sicher.
00252	
00253	Der Transport des sublimierten Ausgangsstoffes zum Reak
00254	tor wird mittels eines Gasflusses unterstützt. Dieses
00255	Gas wird auch zur Einstellung einer Prekursorkonzentra-
00256	tion in der Zuleitung verwendet.
00257	
00258	Zur zeitlichen Kontrolle der Leitung der Ausgangsstoffe
00259	in den Reaktor wird das Druckventil und der Massenfluss
00260	regler geregelt, d.h. schließt das Drosselventil voll-
00261	ständig, wird der Massenfluss auf 0 gesetzt.
00262	
00263	Diese Anordnung kann auf dem Reaktor in vielfacher
00264	Weise wiederholt werden, so dass jedes Material unabhän
00265	gig voneinander geregelt wird.
00266	
00267	Der Gaseinlass wird gegenüber dem Substrat im Reaktor
00268	als eine Anordnung von vielen Düsen (im Folgenden Show-
00269	erhead) aus einer Fläche ausgeführt, im Folgenden Ple-
00270	num benannt. Die Düsen sind so dimensioniert, dass sie
00271	entsprechend der Prekursoreigenschaft, wie Viskosität,
00272	Masse und Konzentration eine turbulenzfreie Injektion
00273	in die Kammer gewährleisten.
00274	
00275	Der Abstand von Düse zu Düse ist im Verhältnis des
00276	Abstands zum Gaseinlass optimiert, d.h. die aus den
00277	Düsen austretende "Strahlen" (Jets) sind von der Sub-
00278	stratoberfläche abgeklungen und bilden im Gesamten eine
00279	homogene Strömungsebene.
00380	

00281 Die Düsen können einzeln oder gesamt in beliebigem 00282 Winkel in der Gaseinlassoberfläche ausgeführt werden, 00283 um die Transportverteilung der Ausgangsstoffe homogen 00284 für die Form des Substrats zu kontrollieren. 00285 00286 Die Ebene in der die Düsen zur Injektion der Ausgangs-00287 stoffe eingebracht sind, kann plan sein für die Be-00288 schichtung von planen Substraten und auch Folien oder 00289 gewölbt für nicht ebene, d.h. vorgeformte Substrate. 00290 00291 Das gesamte Plenum wird aktiv mittels Kühlmittel in 00292 einem Hohlwandaufbau oder mittels einer elektrischen 00293 Heizung (Widerstandsheizung, Peltier), so thermisch 00294 kontrolliert, dass ein positiver Temperaturgradient gegenüber der Sublimationstemperatur eingestellt wird. 00295 00296 00297 In das Innenvolumen des Plenums wird der sublimierte 00298 Ausgangsstoff über eine sehr kurze temperierte Leitung 00299 injiziert. 00300 00301 Zur Einstellung der optimierten hydrodynamischen Bedin-00302 gungen an den Düsen wird zusätzlich zu den Ausgangsstof-00303 fen über eine weitere Zuleitung Trägergas eingestellt. 00304 Dieses Gas sichert ferner eine schnelle Spülung des 00305 Plenums zum zeitlich kontrollierten An- und Abschalten 00306 00307 des Prekursors in die Kammer. 00308 00309 Die beschriebene Anordnung wird für die Mehrstoffanwen-00310 dung konsequent je Prekursor ausgeführt. Dabei wird 00311 unter Nutzung der "closed coupled showerhead"-Technik 00312 die separate Injektion je Prekursor gesichert. Durch 00313 eine individuelle Heizung jedes Plenums wird jeder 00314 Ausgangsstoff entlang eines positiven Temperaturgradien-00315 ten zur Vermeidung von parasitärer Kondensation kompa-

00316	riert. Die Düsen sind so dimensioniert und zueinander				
00317	angeordnet, dass keine lokale Mischung der Prekursor an				
00318	den Düsen entsteht. Die Anordnung der Pleni in Ebenen				
00319	wird so gewählt, dass die längeren Düsen im thermischer				
00320	Kontakt mit den folgenden Pleni einen positiven Tempera				
00321	turgradienten zur Vermeidung der Kondensation dieses				
00322	Prekursors erhält.				
00323					
00324	Als Ausgangsstoffe kommen insbesondere solche Salze in				
00325	Betracht, die das US-Patent 5,554,220 beschreibt. Diese				
00326	Salze werden in Verdampfern sublimiert. Die Verdampfer				
00327	können dabei insbesondere eine Gestalt aufweisen, wie				
00328	sie die deutsche Patentanmeldung DE 100 48 759 be-				
00329	schreibt. Dort wird das Gas unterhalb einer Fritte, auf				
00330	der sich das Salz in Form einer Schüttung befindet, dem				
00331	Verdampfer zugeleitet. Oberhalb der Fritte bzw. der				
00332	Schüttung wird das mit dem gasförmigen Ausgangsstoff				
00333	gesättigte Gas abgeleitet. Durch eine entsprechend				
00334	höhere Temperatur der stromabwärts liegenden Rohre oder				
00335	durch Verdünnung wird der Partialdruck des Ausgangsstof				
00336	fes unterhalb seines Sättigungspartialdruckes gehalten,				
00337	so dass eine Kondensation vermieden ist.				
00338					
00339	Ausführungsbeispiele der Erfindung werden nachfolgend				
00340	anhand beigefügter Zeichnungen erläutert. Es zeigen:				
00341					
00342	Figur 1 in grobschematischer Darstellung eine Vorrich-				
00343	tung gemäß der Erfindung,				
00344					
00345	Figur 2 ebenfalls in grobschematischer Darstellung				
00346	eine Gaseinlasseinheit, welche in einer Vor-				
00347	richtung gemäß Figur 1 Verwendung finden kann,				
00348					
00349	Figur 3 einen Schnitt gemäß der Linie III-III durch				
00350	die Gaseinlasseinheit,				

00351	Figur 4 e	inen Schnitt gemäß der Linie IV-IV durch die	
00352	G	aseinlasseinheit,	
00353		·	
00354	Figur 5 e	in zweites Ausführungsbeispiel einer Vorrich-	
00355	tı	ung in einer grobschematischen Darstellung,	
00356			
00357	Figur 6 e	in zweites Ausführungsbeispiel der Gaseinlass-	
00358	e	inheit,	
00359			
00360	Figur 7 e	ine Erläuterungshilfe für die Prozessparame-	
00361	te	er, und	
00362		,	
00363	Figur 8 i	n schematischer Darstellung eine Quelle für	
00364	e:	inen Ausgangsstoff.	
00365			
00366	Die in den	Figuren 1 und 5 dargestellten Vorrichtungen	
00367	besitzen j	eweils zwei temperierte Behälter 5, 5'. Bei	
00368	der in Fig	ur 1 dargestellten Vorrichtung sind diese	
00369	Behälter u	nmittelbar auf dem Deckel 14 des Reaktors 10	
00370	angeordnet	. Bei dem in Figur 5 dargestellten Ausfüh-	
00371	rungsbeisp	iel sind die beiden Behälter 5, 5' etwas	
00372	entfernt v	om Reaktor 10 angeordnet. In den Behältern 5,	
00373	5' befinde	n sich Tanks 1, 3. Diese Tanks wirken als	
00374	Quelle für	die Ausgangsstoffe. In den Tanks 1, 3 befin-	
00375	den sich f	lüssige Ausgangsstoffe 2, 4. Die Ausgangsstof-	
00376	fe können	auch fest sein. Im Innern der temperierten	
00377	Behälter 5	, 5' herrscht eine derartige Temperatur, dass	
00378	die in den Tanks 1, 3 befindlichen Ausgangsstoffe 2, 4		
00379	verdampfen	. Die Verdampfungsrate lässt sich über die	
00380	Temperatur beeinflussen. In dem Behälter 5 sind im		
00381	Ausführung	sbeispiel drei Quellen und im Behälter 5'	
00382	sind ebenfalls drei Quellen angeordnet. Die beiden		
00383	Behälter 5	, 5' können auf unterschiedlichen Temperatu-	
00384	ren gehalt	en werden.	
00385			

12

In jeden der beiden Behälter 5, 5' führt eine Trägergas-00386 leitung, um ein Trägergas 35 zu leiten. In die Träger-00387 00388 gasleitung münden je Quelle eine Ableitung für die aus den Tanks 1, 3 heraustretenden gasförmigen Ausgangsstof-00389 00390 fe. Die Tanks 1, 3 sind mittels hitzebeständiger Venti-00391 le, insbesondere Regelventile 34, die auch selbst be-00392 heizt sein können, verschließbar und öffenbar. Die 00393 Leitungen 6, 7, durch welche das Trägergas und die vom 00394 Trägergas transportierten Reaktionsgase strömen, münden 00395 beim Ausführungsbeispiel der Figur 1 direkt in den Reaktor. Beim Ausführungsbeispiel gemäß der Figur 5 00396 verlaufen die beiden Leitungen 6, 7 über eine freie 00397 00398 Strecke, wo sie mittels temperierter Mäntel 8, 9 auf 00399 einer Temperatur gehalten werden, die gleich oder grö-00400 ßer ist, als die Temperatur in den Behältern 5, 5'. Die Leitungen 6, 7 münden in den Reaktor. Die Dosierung der 00401 00402 Reaktionsgase erfolgt über die Temperatur der Behälter 00403 5, 5' bzw. die Regelventile 34. 00404 Im Bereich der Mündung der Leitungen 6, 7 besitzt der 00405 Reaktordeckel 14 eine Temperatur, die größer ist, als 00406 00407 die Temperatur in den temperierten Behältern 5, 5'. Die Leitungen 6, 7 münden nicht unmittelbar in die Reakti-00408 onskammer 11, sondern zunächst in eine in der Reaktions-00409 00410 kammer, um einen Spalt 29 vom Reaktordeckel 14 beabstan-00411 dete Gaseinlasseinheit 15. Eine typisch gestaltete 00412 Gaseinlasseinheit zeigen die Figur 2 und 6. 00413 00414 Die Gaseinlasseinheit 15 befindet sich unmittelbar oberhalb des Substrates 12. Zwischen dem Substrat 12 00415 00416 und der Bodenplatte 17 der Gaseinlasseinheit 15 befin-00417 det sich die Reaktionskammer. Das Substrat 12 liegt auf 00418 einem Suszeptor 13, welcher gekühlt ist. Die Temperatur des Suszeptors wird geregelt. Hierzu kann der Suszeptor 00419 mit Pelletierelementen versehen sein. Es ist aber auch 00420

13

möglich, wie in Figur 1 dargestellt, dass der Suszeptor

leitungen 40 mit einer Kühlflüssigkeit gespült wird, so

13 innen eine Hohlkammer 41 besitzt, die mittels Spül-

00421

00422

00423

BNSDOCID: <WO

00424 dass damit die Temperatur des Suszeptors 13 auf einer 00425 Temperatur gehalten werden kann, die geringer ist, als 00426 die Temperatur der Gaseinlasseinheit 15. 00427 00428 Diese Temperatur ist auch geringer, als die Temperatur 00429 der Reaktorwände 37. Die Temperatur der Gaseinlassein-00430 heit 15 liegt oberhalb der Kondensationstemperatur der 00431 gasförmig in die Gaseinlasseinheit 15 gebrachten Aus-00432 gangsstoffe 2, 4. Da auch die Temperatur der Reaktorwän-00433 de 37 höher ist, als die Kondensationstemperatur, kon-00434 densieren die aus der Gaseinlasseinheit 15 austretenden 00435 Moleküle ausschließlich auf dem auf dem Suszeptor 13 00436 aufliegenden Substrat 12. 00437 00438 Bei den in den Figuren 2 bzw. 6 dargestellten Gaseinlas-00439 seinheiten 15 handelt es sich jeweils um einen sogenann-00440 ten, an sich bekannten "Showerhead". Das Ausführungsbei-00441 spiel der Figur 2 zeigt einen Showerhead mit insgesamt 00442 zwei voneinander getrennten Volumen 22, 23. Die Volumen sind mittels einer Zwischenplatte 18 gegeneinander und 00443 00444 mittels einer Deckplatte 16 bzw. einer Bodenplatte 17 00445 gegenüber der Reaktionskammer 11 abgegrenzt. Der "Show-00446 erhead" gemäß Figur 6 besitzt dagegen nur eine Kammer. 00447 Dieses Volumen 22 wird begrenzt von der Bodenplatte 17, 00448 einem Ring 33 und der Deckplatte 16. In die Deckplatte 00449 16 münden die bereits erwähnten Rohrleitungen 6, 7 für 00450 die beiden Ausgangsstoffe. Beim Ausführungsbeispiel 00451 gemäß Figur 6 ist nur eine Rohrleitung 6 erforderlich. 00452 Die Rohrleitungen 6 bzw. 7 münden in sternförmig radial 00453 verlaufende Kanäle 21 bzw. 20, die in der Deckplatte 16 00454 angeordnet sind. Nach einer Umleitung im Randbereich 00455 des im Wesentlichen zylinderförmigen Körpers der Gasein00456 lasseinheit 15 münden die Kanäle 20 bzw. 21 in radial außen liegende Mündungstrichter 27 bzw. 28, die sich an 00457 00458 der äußeren Peripherie der zylinderförmigen Volumina 22, 23 befinden. Die aus den Mündungstrichtern 27, 28 00459 00460 austretenden Gase verteilen sich in den Volumina 22, 23 00461 gleichmäßig. 00462 00463 Die in einem Mehrkammer-Showerhead vorgesehene Zwischen-00464 platte 18 besitzt Öffnungen, von welchen Röhrchen 24 00465 ausgehen, die das Volumen 23 durchragen und mit der 00466 Bodenplatte 17 derart verbunden sind, dass das im Volu-00467 men 22 befindliche Gas nicht in Kontakt tritt, mit dem 00468 im Volumen 23 befindlichen Gas. In der Bodenplatte 17 00469 befinden sich abwechselnd zu den Öffnungen 26 der Röhr-00470 chen 24 Öffnungen 25, aus welchen das in dem Volumen 23 00471 befindliche Gas austreten kann. 00472 00473 Die in den Volumen 22, 23 befindlichen Gase treten 00474 durch die düsenartig ausgebildeten Öffnungen 25, 26 in 00475 einem homogenen Strömungsfeld aus. 00476 00477 Aus den Öffnungen 25, 26 treten die Gase turbulent aus. 00478 Sie formen jeweils einen Strahl, so dass sich die aus 00479 nebeneinander liegenden Öffnungen 25, 26 austretenden 00480 Gasströme erst unmittelbar oberhalb des Substrates 12 00481 innerhalb der in der Figur 6 mit d bezeichneten Grenz-00482 schicht mischen. Oberhalb der Grenzschicht d verlaufen 00483 die Strahlen 36 im Wesentlichen parallel zueinander, 00484 ohne dass zwischen ihnen eine nennenswerte Durchmischung stattfindet. Im Abstand d ist eine nahezu homogene 00485 00486 Gasfront ausgebildet. 00487 00488 Bei dem in Figur 2 dargestellten Ausführungsbeispiel 00489 sind die beiden Volumina 22, 23 unabhängig voneinander thermostatierbar. Bei dem in Figur 6 dargestellten 00490

00491 Ausführungsbeispiel ist das einzige Volumen 22 thermostatierbar. Um die Volumina 22, 23 auf eine voreinge-00492 00493 stellte Temperatur zu regeln, die größer ist, als die 00494 Temperatur der Behälter 5, 5' und erheblich größer, als 00495 die Temperatur des Suszeptors 13, sind Heizwendel 30, 00496 32 vorgesehen. Anstelle der Heizwendel 30, 32 ist es 00497 aber auch denkbar, Kanäle in die Platten 17, 18, 16 00498 einzubringen, und diese von einer temperierten Flüssig-00499 keit durchströmen zu lassen. 00500 Der Ring 33 kann in einer ähnlichen Weise beheizt wer-00501 00502 den. Dem Ring können in geeigneter Weise Heizwendel 00503 angeordnet sein. Er kann aber auch mit entsprechend 00504 temperierten Flüssigkeiten auf Temperatur gehalten 00505 werden. 00506 Beim Ausführungsbeispiel befindet sich unterhalb der 00507 00508 Deckplatte 16 eine Heizplatte 31. Der Figur 3 ist zu 00509 entnehmen, dass in der Heizplatte 31 mäanderförmig eine 00510 Heizwendel 33 eingebracht ist. Auch die Deckplatte der Gaseinlasseinheit 15 der Figur 6 kann beheizt sein. 00511 00512 00513 Auch in die Bodenplatte 17 ist eine Heizwendel 33 mäan-00514 derförmig eingebracht. (vgl. Fig. 4) 00515 00516 Als Ausgangsstoffe für die Beschichtung können solche 00517 Salze verwendet werden, wie das US-Patent 5,554,220 00518 beschreibt. Diese Salze werden in Tanks sublimiert. 00519 indem den Tanks ein Trägergas zugeleitet wird, welches 00520 durch eine Schüttung der Salze strömt. Ein derartiger 00521 Verdampfer wird in der DE 100 48 759.9 beschrieben. 00522 00523 Die Figur 8 zeigt ferner exemplarisch einen Verdampfer 00524 für eine Flüssigkeit. Ein Trägergas 42 wird durch ein 00525 Dreiwegeventil über eine Zuleitung in den flüssigen

16

00526 oder festen Ausgangsstoff 2 eingeleitet. Es durchströmt 00527 dann den Ausgangsstoff 2, um durch die Austrittsleitung 00528 und das geheizte Ventil 34 den Tank 1 zu verlassen. 00529 Über eine Rohrleitung 6 wird es mittels des Trägergases 35 der Gaseinlasseinheit 15 zugeführt. Die Spülung des 00530 00531 Tanks mit dem Trägergas 42 kann mittels des Dreiwegeventiles an- und abgeschaltet werden. Im abgeschalteten 00532 00533 Zustand strömt das Trägergas 42 durch eine Bypassleitung 44 direkt in die Ableitung bzw. die Rohrleitung 6. 00534 Der Gasfluss 42 und der Gasfluss 35 sind massenflussge-00535 regelt. Um den Massenfluss 42 beim Umschalten des Drei-00536 wegeventiles 43 nicht zu beeinflussen, kann die Bypass-00537 leitung 44 den selben Strömungswiderstand besitzen, wie 00538 00539 der gesamte Tank 1. 00540 Jeder der in den Figuren 1 bzw. 5 angedeutete Tank 1, 3 00541 00542 kann eine Gestaltung und eine Beschaltung haben, wie sie in Figur 8 dargestellt ist oder wie sie in der 00543 DE 100 48 759.9 beschrieben wird. 00544 00545 Zufolge der Verdünnung die durch das Trägergas 35 er-00546 zielt ist. sinkt der Partialdruck des Ausgangsstoffes 2 00547 00548 bzw. des Ausgangsstoffes 3 innerhalb des den Tanks 1, 3 folgenden Rohrleitungssystems bzw. der Gaseinlassein-00549 heit 15. Diese Verdünnung hat zur Folge, dass die Tempe-00550 ratur in diesen nachfolgenden Rohrabschnitten 6, 7 bzw. 00551 in der Gaseinlasseinheit 15 geringer sein kann, als die 00552 Temperatur in den Behältern 5, 5', ohne dass eine Kon-00553 densation eintritt, da die Temperatur immer noch so 00554 00555 hoch ist, dass der Partialdruck der einzelnen Ausgangsstoffe unterhalb ihres Sättiqungsdampfdruckes liegt. 00556 00557 Mittels eines oder mehrerer Sensoren 38; die insbesonde-00558 00559 re außerhalb der Reaktorwand angeordnet sind und die

17

00560	über einen Kanal 39 mit der Reaktionskammer 11 verbun-
00561	den sind, kann die Substrattemperatur gemessen werden.
00562	
00563	Das in dem Spalt 29 eingeleitete Gas kann durch Wahl
00564	einer geeigneten Zusammensetzung in seiner Wärmeleitfä-
00565	higkeit variiert werden. Durch die Wahl der Gaszusammen
00566	setzung kann demnach der Wärmetransport von oder zur
00567	Gaseinlasseinheit 15 eingestellt werden. Auch auf diese
00568	Weise lässt sich die Temperatur beeinflussen.
00569	
00570	Alle offenbarten Merkmale sind (für sich) erfindungswe-
00571	sentlich. In die Offenbarung der Anmeldung wird hiermit
00572	auch der Offenbarungsinhalt der zugehörigen/beigefügten
00573	Prioritätsunterlagen (Abschrift der Voranmeldung) voll-
00574	inhaltlich mit einbezogen, auch zu dem Zweck, Merkmale
00575	dieser Unterlagen in Ansprüche vorliegender Anmeldung
00576	mit aufzunehmen.

BNSDOCID: <WO___

00577 ANSPRÜCHE

00578

- 00579 1. Verfahren zum Beschichten von Substraten, bei dem
- 00580 wenigstens eine Schicht mittels eines Kondensationsver-
- 00581 fahrens auf das wenigstens eine Substrat aufgebracht
- 00582 wird, und bei dem für wenigstens einen Teil der Reakti-
- 00583 onsgase feste und/oder flüssige Ausgangsstoffe und
- 00584 insbesondere wenigstens eine Sublimationsquelle verwen-
- 00585 det werden, gekennzeichnet durch eine Konzentrations-/
- 00586 und/oder Temperatursteuerung der Reaktionsgase zwischen
- 00587 der Quelle (1, 3) und dem Substrat (12), durch die eine
- 00588 Kondensation der Reaktionsgase vor dem oder den Substra-
- 00589 ten vermieden wird.

00590

- 00591 2. Verfahren nach Anspruch 1 oder insbesondere danach,
- 00592 dadurch gekennzeichnet, dass eine Gaseinlasseinheit
- 00593 (15) mit einer Einlassgeometrie verwendet wird, die für
- 00594 eine Trennung der Gase zur Unterdrückung einer paras-
- 00595 itären Gasphasenreaktion sorgt.

00596

- 00597 3. Verfahren nach einem oder mehreren der vorhergehen-
- 00598 den Ansprüche oder insbesondere danach, dadurch gekenn-
- 00599 zeichnet, dass die Quellen (1, 3) auf unterschiedlichen
- 00600 Temperaturen gehalten werden.

00601

- 00602 4. Verfahren nach einem oder mehreren der vorhergehen-
- 00603 den Ansprüche oder insbesondere danach, gekennzeichnet
- 00604 durch die Verwendung mehrerer Injektionsanordnungen
- 00605 (25, 26).

- 00607 5. Verfahren nach einem oder mehreren der vorhergehen-
- 00608 den Ansprüche oder insbesondere danach, dadurch gekenn-
- 00609 zeichnet, dass zur Minimierung der parasitären Deposi-
- 00610 tion und damit der Verluste aus der Gasphase die einzel-

- 00611 nen Reaktionsgase ohne Strömungsüberlappung injiziert
- 00612 werden.

- 00614 6. Verfahren nach einem oder mehreren der vorhergehen-
- 00615 den Ansprüche oder insbesondere danach, dadurch gekenn-
- 00616 zeichnet, dass die Austrittsgeschwindigkeit der Gase
- 00617 aus den einzelnen Injektionsdüsen sowie Injektionsberei-
- 00618 chen so gewählt sind, dass lokale Bernoulli-Effekte
- 00619 vermieden werden.

00620

- 00621 7. Verfahren nach einem oder mehreren der vorhergehen-
- 00622 den Ansprüche oder insbesondere danach, dadurch gekenn-
- 00623 zeichnet, dass der Druck in dem oder den Tanks (1, 3)
- 00624 der Ausgangsstoffe jeweils mittels Inertgasspülung (35)
- 00625 und Regelventil (34) unabhängig vom Druck in der Reak-
- 00626 torkammer (11) geregelt wird.

00627

- 00628 8. Vorrichtung zur Kondensationsbeschichtung mit
- 00629 einer Reaktionskammer (11),
- 00630 wenigstens einem Suszeptor (13) und
- 00631 einem Gaszuführungssystem (5, 5') mit wenigstens
- 00632 einer Quelle (1, 3) für die Ausgangsstoffe,
- 00633 dadurch gekennzeichnet, dass die Quellen (1, 3) Reser-
- 00634 voire, der oder die Suszeptoren (13), die Reaktorwände
- 00635 und die Gaseinlasseinheit separat derart thermostati-
- 00636 sierbar sind, dass die Reaktorwände (37) die Gaseinlass-
- 00637 einheit (15) und die Prekursorreservoire (1, 3) auf
- 00638 jeweils höhere Temperaturen als ein Substrat (12) auf
- 00639 dem Suszeptor (13) regelbar sind.

- 00641 9. Vorrichtung nach einem oder mehreren der vorhergehen-
- 00642 den Ansprüche oder insbesondere danach, dadurch gekenn-
- 00643 zeichnet, dass die Quellen (1, 3) getrennt thermostati-
- 00644 sierbar sind, so dass ein positiver Temperaturgradient
- 00645 zu allen Kammer-, und Einlass-Oberflächen einstellbar

20

- ist, und dass über Druck und Temperatur die Transport-00646 00647 menge der gasförmigen Ausgangsstoffe kontrollierbar ist. 00648 00649 10. Vorrichtung nach einem oder mehreren der vorherge-00650 henden Ansprüche oder insbesondere danach, dadurch 00651 gekennzeichnet, dass die Thermostatisierung eines oder aller Reservoire (1, 3) mittels einer Flüssigkeit oder 00652 00653 elektrisch aktiven Komponenten ausgeführt ist. 00654 00655 11. Vorrichtung nach einem oder mehreren der vorherge-00656 henden Ansprüche oder insbesondere danach, dadurch 00657 gekennzeichnet, dass die Heizung derart ausgelegt ist, 00658 dass eine Reinigung eines Reservoirs durch gegenüber Prozesstemperatur erhöhte Temperatur möglich ist. 00659 00660 00661 12. Vorrichtung nach einem oder mehreren der vorherge-00662 henden Ansprüche oder insbesondere danach, dadurch 00663 gekennzeichnet, dass die Gaseinlasseinheit (15) als Ein- oder Mehrkammer-Showerhead mit einem oder mehreren 00664 separaten Pleni (Volumen 22, 23) ausgebildet ist. 00665 00666 00667 13. Vorrichtung nach einem oder mehreren der vorherge-00668 henden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass als Trägergas Ar, H2, N2, He ein-00669 zeln oder gemischt eingesetzt wird. 00670 00671 14. Vorrichtung nach einem oder mehreren der vorherge-00672
- 14. Vorrichtung nach einem oder mehreren der vorherge00673 henden Ansprüche oder insbesondere danach, dadurch
 00674 gekennzeichnet, dass ein gasförmiger Ausgangsstoff je
 00675 Plenum (22, 23) separat über Düsen (25, 26) in die
 00676 Reaktorkammer (11) einleitbar ist, so dass sich die
 00677 Quellmaterialien erst nach Austritt aus dem Gaseinlass
 00678 insbesondere kurz vor dem Substrat (12) vermischen
 00679 können.

- 21 15. Vorrichtung nach einem oder mehreren der vorherge-. 00681 00682 henden Ansprüche oder insbesondere danach, dadurch 00683 gekennzeichnet, dass zwei oder mehr gasförmige Ausgangs-00684 stoffe je Plenum (22, 23) separat über Düsen (25, 26) 00685 in die Reaktionskammer eingeleitet werden. 00686 00687 16. Vorrichtung nach einem oder mehreren der vorherge-00688 henden Ansprüche oder insbesondere danach, dadurch 00689 gekennzeichnet, dass die Düsen (25, 26) je Plenum gegen-00690 über dem Substrat (12) in einem beliebigen Winkel ange-00691 ordnet sind. 00692 00693 17. Vorrichtung nach einem oder mehreren der vorherge-00694 henden Ansprüche oder insbesondere danach, dadurch ge-00695 kennzeichnet, dass die Düsen (25, 26) je Plenum (22, 23) 00696 gleichen oder unterschiedlichen Durchmessern ausgeführt 00697 sind, so dass gleich oder unterschiedlich viskose Mas-00698 senflüsse der Ausgangsstoffe eine homogene Injektions-00699 verteilung sicherstellen. 00700 00701 18. Vorrichtung nach einem oder mehreren der vorherge-00702 henden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Düsen (25, 26) je Plenum in 00703 00704 gleichem oder unterschiedlichem Abstand zueinander in
- 00705 einer Verteilung so ausgeführt sind, dass sich eine 00706 homogene geschlossene Injektionsverteilung ergibt.

00707 00708 19. Vorrichtung nach einem oder mehreren der vorherge-00709 henden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass jedes Plenum 22, 23 separat thermos-00710 00711 tatisierbar ist, so dass stark unterschiedliche subli-00712 mierende Ausgangsstoffe eingesetzt werden können.

00714 20. Vorrichtung nach einem oder mehreren der vorherge-00715 henden Ansprüche oder insbesondere danach, dadurch

- 00716 gekennzeichnet, dass die Thermostatisierung eines oder
- 00717 aller Pleni (22, 23) mittels Flüssigkeit oder elek-
- 00718 trisch aktiven Komponenten (30, 32) erfolgt, und dass
- 00719 die Kondensation der Ausgangsstoffe in jedem Plenum
- 00720 (22, 23) vermieden wird.

- 00722 21. Vorrichtung nach einem oder mehreren der vorherge-
- 00723 henden Ansprüche oder insbesondere danach, dadurch
- 00724 gekennzeichnet, dass Sensoren (38) und zugehörige Kanä-
- 00725 le (39) in der Reaktorwandung vorgesehen sind, die
- 00726 Bemessung von Eigenschaften der Schichten und/oder auf
- 00727 der Oberfläche der Substrate (12) erlauben.

00728

- 00729 22. Vorrichtung nach einem oder mehreren der vorherge-
- 00730 henden Ansprüche oder insbesondere danach, dadurch
- 00731 gekennzeichnet, dass der oder die Suszeptoren (13) zur
- 00732 Aufnahme von Substraten (12) mit runder, eckiger, fla-
- 00733 cher, gewölbter Form oder von Folien ausgebildet sind.

00734

- 00735 23. Vorrichtung nach einem oder mehreren der vorherge-
- 00736 henden Ansprüche oder insbesondere danach, dadurch ge-
- 00737 kennzeichnet, dass der Suszeptor mittels einer Flüssig-
- 00738 keit in einem Hohlmantel (41) oder elektrisch aktiven
- 00739 Komponenten (Peltier/Widerstandsheizung) thermisch so
- 00740 steuerbar ist, dass zwischen der die Suszeptoroberfläche
- 00741 und allen anderen Wänden (37) sowie der Gasphase einen
- 00742 negativen Temperaturgradienten besteht, so dass die
- 00743 Beschichtung des Substrats über Kondensation kontrol-
- 00744 lierbar werden kann.

- 00746 24. Vorrichtung nach einem oder mehreren der vorherge-
- 00747 henden Ansprüche oder insbesondere danach, dadurch
- 00748 gekennzeichnet, dass eine Heizung für den Suszeptor
- 00749 (13) derart ausgelegt ist, dass eine Reinigung des
- 00750 Suszeptors (13) und der Reaktionskammer. (11) durch

- 00751 gegenüber der Prozesstemperatur erhöhte Temperatur
- 00752 durchgeführt werden kann.

00753

- 00754 25. Vorrichtung nach einem oder mehreren der vorherge-
- 00755 henden Ansprüche oder insbesondere danach, dadurch
- 00756 gekennzeichnet, dass durch Verdünnung des aus den Tanks
- 00757 (1, 3) austretenden Gas mit einem Trägergas (35) die
- 00758 Konzentration des Ausgangsstoffes in der Rohrleitung
- 00759 (6) bzw. der Gaseinlasseinheit (15) derartig herabge-
- 00760 setzt wird, dass die Kondensationstemperatur unterhalb
- 00761 der Quellentemperatur liegt.

00762

- 00763 26. Vorrichtung nach einem oder mehreren der vorherge-
- 00764 henden Ansprüche oder insbesondere danach, dadurch
- 00765 gekennzeichnet, dass das Substrat während des Beschich-
- 00766 tungsvorganges maskiert ist, bspw. mit einer Schatten-
- 00767 maske versehen ist.

- 00769 27. Vorrichtung nach einem oder mehreren der vorherge-
- 00770 henden Ansprüche oder insbesondere danach, dadurch
- 00771 gekennzeichnet, dass zur Vermeidung abrupter Massen-
- 00772 stromveränderung die geregelten Massenflüsse zu den
- 00773 Tanks in eine Bypassleitung (44) umgelenkt werden kön-
- 00774 nen.

1/7

Fig. 1

Copied from 11525207 on 10/16/2007

Fig: 8