COMPILANDO CONOCIMIENTO

Análisis Númerico

MATEMÁTICAS

Oscar Andrés Rosas Hernandez

Noviembre 2018

Índice general

Ι	Raíces de Funciones	2
1.	Tolerancias	3
	1.1. Ideas	4
2.	Bisección	5
	2.1. Algoritmo	6
3.	Punto Fijo	7
	3.1. Ideas	8
	3.1.1. Propiedades	8
	3.2. Algoritmo	9
II	Interpolantes	10
4.	Interpolante de Lagrange	11
	4.1 Definición	19

Parte I Raíces de Funciones

Tolerancias

1.1. Ideas

Lo que estamos haciendo es aproximar una raíz, no encontrarla, así que habrá que decidir cuando nuestra estimación ξ se parece suficiente a la raíz.

Tendremos 3 opciones:

- $f(\xi_k) < \epsilon$: Estamos muy cerca de que la función valga cero
- \blacksquare El número de iteraciones k es mayor del que el número de iteraciones máximas.

Bisección

2.1. Algoritmo

Suponte que tienes una linda función f(x) = 0 y tienes dos números a, b tal que f(a) sea de un signo diferente al f(b) entonces estamos seguros de que existe una raíz ξ por ahí en medio.

Entonces, puedes tomar el punto intermedio de ambos c = a + (b-a)/2. Ahora pueden pasar 3 cosas:

- ullet Si c es la raíz entonces ya estas
- Si [a, c] tienen signos diferentes entonces la raíz anda por ahí
- ullet Si [c,b] tienen signos diferentes entonces la raíz anda por ahí

En general, basta con suponer que el signo de a es igual que el signo de c, de ser así, entonces c cumple el trabajo de a entonces el intervalo es [c, b]. De no ser así entonces tiene que hacer el trabajo de b y entonces el intervalo es [a, c].

Punto Fijo

3.1. Ideas

Sea una función g(x) entonces decimos que ξ es un punto fijo si es que $f(\xi) = \xi$.

Suponte que podemos escribir a f(x) = 0 como f(x) = g(x) - x = 0.

Entonces cualquier punto fijo ξ será una raíz de f(x).

La idea es entonces bastante intuitiva, toma un elemento inicial x_n entonces $x_{n+1} = g(x_n)$ será una mejor aproximación a la raíz.

3.1.1. Propiedades

- Sea f(x) = 0 escrita de forma f(x) = g(x) x = 0, es decir g(x) = x. Entonces si $\forall x \in [a, b]$ se cumple que:
 - $g(x) \in [a,b]$
 - g(x) toma todos los valores entre a y b
 - g(x)' existe en (a,b) y existe una constante 0 < r < 1 tal que $||g'(x)|| \le r$

Va a pasar que:

- Existe un único punto fijo $x = \xi$ de g(x) entre [a, b]
- La sequencia $x_{k+1} = g(x_k)$ converge siempre a ξ

3.2. Algoritmo

Suponte que tienes una linda función f(x) = 0 y tienes dos números a, b tal que f(a) sea de un signo diferente al f(b) entonces estamos seguros de que existe una raíz ξ por ahí en medio.

Entonces, puedes tomar el punto intermedio de ambos c = a + (b-a)/2. Ahora pueden pasar 3 cosas:

- \blacksquare Si c es la raíz entonces ya estas
- Si [a, c] tienen signos diferentes entonces la raíz anda por ahí
- Si [c, b] tienen signos diferentes entonces la raíz anda por ahí

En general, basta con suponer que el signo de a es igual que el signo de c, de ser así, entonces c cumple el trabajo de a entonces el intervalo es [c,b]. De no ser así entonces tiene que hacer el trabajo de b y entonces el intervalo es [a,c].

Parte II Interpolantes

Interpolante de Lagrange

4.1. Definición