

spectral permanence theorem

Canonical name SpectralPermanenceTheorem

Date of creation 2013-03-22 17:29:50 Last modified on 2013-03-22 17:29:50 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 5

Author asteroid (17536)

Entry type Theorem Classification msc 46H10 Classification msc 46H05 Let \mathcal{A} be a unital complex Banach algebra and $\mathcal{B} \subseteq \mathcal{A}$ a Banach subalgebra that contains the identity of \mathcal{A} .

For every element $x \in \mathcal{B}$ it makes sense to speak of the spectrum $\sigma_{\mathcal{B}}(x)$ of x relative to \mathcal{B} as well as the spectrum $\sigma_{\mathcal{A}}(x)$ of x relative to \mathcal{A} .

We provide here three results of increasing sophistication which relate both these spectrums, $\sigma_{\mathcal{B}}(x)$ and $\sigma_{\mathcal{A}}(x)$. Any of the last two is usually referred to as the **spectral permanence theorem**.

- Let $\mathcal{B} \subseteq \mathcal{A}$ be as above. For every element $x \in \mathcal{B}$ we have

$$\sigma_{\mathcal{A}}(x) \subseteq \sigma_{\mathcal{B}}(x).$$

This first result is purely . It is a straightforward consequence of the fact that invertible elements in \mathcal{B} are also invertible in \mathcal{A} .

The other inclusion, $\sigma_{\mathcal{B}}(x) \subseteq \sigma_{\mathcal{A}}(x)$, is not necessarily true. It is true, however, if one considers the boundary $\partial \sigma_{\mathcal{B}}(x)$ instead.

Theorem - Let $\mathcal{B} \subseteq \mathcal{A}$ be as above. For every element $x \in \mathcal{B}$ we have

$$\partial \sigma_{\mathcal{B}}(x) \subseteq \sigma_{\mathcal{A}}(x).$$

Since the spectrum is a non-empty compact set in \mathbb{C} , one can decompose $\mathbb{C}-\sigma_{\mathcal{A}}(x)$ into its connected components, obtaining an unbounded component Ω_{∞} together with a sequence of bounded components $\Omega_1, \Omega_2, \ldots$,

$$\mathbb{C} - \sigma_{\mathcal{A}}(x) = \Omega_{\infty} \cup \Omega_1 \cup \Omega_2 \cup \cdots$$

Of course there may be only a finite number of bounded components or none.

Theorem - Let $x \in \mathcal{B} \subseteq \mathcal{A}$ be as above. Then $\sigma_{\mathcal{B}}(x)$ is obtained from $\sigma_{\mathcal{A}}(x)$ by adjoining to it some (possibly none) bounded components of $\mathbb{C} - \sigma_{\mathcal{A}}(x)$.

As an example, if $\sigma_{\mathcal{A}}(x)$ is the unit circle, then $\sigma_{\mathcal{B}}(x)$ can only possibly be the unit circle or the closed unit disk.