2/2

3/3

2/2

Note: 20/20 (score total: 26/26)

+57/1/8+

IPS - S7A - Jean-Matthieu Bourgeot

QCM2

	I	PS
Quizz	du	13/11/2013

Nom et prénom :	
Riou Thibault	

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA

et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses. Ne pas faire de RATURES, cocher les cases à l'encre.
Question 1 • Classer ses différentes technologies de CAN par ordre de Temps de conversion (du plus rapide au plus lent) ?
flash - approximation successives - double rampe - simple rampe double rampe - flash - approximation successives - simple rampe
flash - approximation successives - simple rampe - double rampe approximation successives - flash - double rampe - simple rampe approximation successives - flash - simple rampe - double rampe
Question 2 • On considère une résistance thermométrique Pt100 de résistance $R_C(T) = R_0(1 + \alpha T)$ où T représente la température en °C, $R_0 = 1 \mathrm{k}\Omega$ la résistance à 0°C et $\alpha = 3,85.10^{-3}$ °C $^{-1}$ le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant
de température. Cette résistance est conditionnée par le montage potentiometrique suivant $V_G \cap P_{I} = R_G(26^{\circ}\text{C}) = 1,1\text{k}\Omega$ L'étendu de mesure est $[-25^{\circ}\text{C}; 60^{\circ}\text{C}]$. Fixer la valeur de V_G pour que le courant dans le capteur soit toujours inférieur à 5mA.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Question 3 • Quelle est la capacité d'un condensateur plan ? On note : • \(\epsilon : \) Permittivité du milieu entre les armatures. • \(S : \) Surface des armatures. • \(d : \) Distance entre les armatures.

Question 4 •

Le capteur sur la photo ci-contre permet de mesurer \dots

	Question 5 • Pourquoi faire du sur-echantillonnage :
2/2	Pour améliorer l'efficacité du filtre antirepliement. Pour supprimer les perturbations de mode commun.
	Pour réduire le bruit de quantification
	Question 6 • A quoi est reliée la résolution d'un potentiomètre linéaire à piste résistive ? La résistance maximale du potentiomètre
	La taille des grains de la poudre utilisée
1/1	Le pas de bobinage
	La course électrique.
	La longueur du potentiomètre
	Question 7 • Des jauges extensométriques permettent de mesurer
1/1	des grands déplacements des températures des déformations des flux lumineux des résistances des courants.
	Question 8 • Un capteur LVDT permet de mesurer :
1/1	des déplacements angulaires des flux lumineux des déplacement linéaire des températures des courants
	Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ?
	ILe gain est fixé par une seule résistance.
	Les voies sont symétriques.
3/3	De rejeter les perturbations de mode différentiel.
	Les impédances d'entrées sont élevés. Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé.
	Question 10 • Soit un CAN acceptant en entrée des signaux compris entre 0V et 10V, la quantification s'effectue sur 8bits, le temps de conversion est de $T_C = 1$ ms. Quel est le pas de quantification de ce CAN ?
1/1	78 mV 39 mV 80 mV.s ⁻¹ 1.25 V
	Question 11 •
	On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) =$
	$\frac{A_0}{1+\tau_C p}$, avec U_s la sortie de l'AOP et $\epsilon=u_+-u$. Pour le montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre E et U_s , Que dire de la stabilité du système bouclé?
6/6	