## **Title**

Simply supported beam subjected to a traveling dynamic load

# **Description**

A simply supported beam is subjected to a dynamic force traveling along the span at a constant velocity.

Perform a time history analysis and determine the displacements, velocities and accelerations at the mid-span of the beam with a time history.



(a) Simply supported beam subjected to a travelling dynamic load



Structural geometry and analysis model

## Model

## Analysis Type

2-D time history analysis (X-Z plane)

#### Unit System

in, lbf

#### Dimension

Length L = 480 inAnalysis time t = 0.8 secTime step  $\Delta t = 0.001 \text{ sec}$ Gravitational acceleration  $g = 1.0 \text{ in/sec}^2$ 

#### Element

Beam Element

#### Material

Modulus of elasticity  $E = 2.4 \times 10^{11} \text{ psi}$ Weight density  $\gamma = 0.1 \text{ lbf/in}^3$ 

## Section Property

Area  $A = 1.0 \text{ in}^2$ Moment of inertia  $I_{yy} = 0.083333 \text{ in}^4$ 

## **Boundary Condition**

Node 1 ; Constrain Dx and Dz. (Hinge support)

Node 21; Constrain Dz. (Roller support)

#### Analysis Case

A concentrated load which varies with time travels at a 600 in/sec velocity and acts in the -Z direction.

That is, it takes 0.04 sec for a load to move between two adjacent nodes.

| Time (sec) | Unit load (lbf) |  |
|------------|-----------------|--|
| 0.00       | 0               |  |
| 0.04       | 1.0             |  |
| 0.08       | 0               |  |

Force applied to a node = Multiplier for the time history data  $\times$  Unit load Now, the multiplier for the time history data is defined as the load under which the maximum deflection becomes a unit displacement when a concentrated load is applied to the mid-span of the beam.

Thus,the maximum deflection,  $\delta_{max}$ =PL³/(48EI)=1 occurs with the load 8680.6 lbf.

# Results

## Time History Analysis Results



Z- displacements at the node 11



Z-velocities at the node 11



Z-accelerations at the node 11

# **Comparison of Results**

Unit: in

| Time                     | Z-displacement at the node 11 ( $\delta_z$ ) |         |             |
|--------------------------|----------------------------------------------|---------|-------------|
|                          | Theoretical                                  | ADINA   | MIDAS/Civil |
| $t_1 = 0.04 \text{ sec}$ | -0.0152                                      | -0.0160 | -0.0147     |
| $t_2 = 0.08 \text{ sec}$ | -0.1080                                      | -0.1071 | -0.1091     |
| $t_3 = 0.12 \text{ sec}$ | -0.3103                                      | -0.3053 | -0.3152     |

# References

Biggs, J. M., "Introduction to Structural Dynamics", McGraw-Hill, New York, 1964, pp.  $315 \sim 318$ .

"ADINA, Verification Manual - Linear Problems", Version 6.1, ADINA R&D, Inc., 1992, Example A. 58.

## Time History Loading Data

