Straight-line Regression Analysis

Yi Zhou

November 24, 2015

1 STRAIGHT-LINE MODEL

- 1. Association vs Causality
- 2. Statistical model vs Deterministic model
- 3. Assumptions
 - Existence
 - Independence
 - Linearity
 - Homoscedasticity ($\sigma_{Y|X_i}^2 = \sigma_{Y|X_i}^2$)
 - Normal Distribution

1.1 MATHEMATICAL MODEL

Firstly, in the mathematical context, given that x and y are mathematical vectors, we have equation

$$y = \beta_0 + \beta_1 x \tag{1.1}$$

where β_0 is called *y-intercept*, β_1 is called *slope*.

1.2 STATISTICAL MODEL

In the statistical context, considering *X* the only one independent variable (predictor) and *Y* the only one dependent variable (response),

- $\bullet \quad Y = \beta_0 + \beta_1 X + E$
- $\mu_{Y|X} = \beta_0 + \beta_1 X$
- $\bullet \quad \hat{Y} = \hat{\beta}_0 + \hat{\beta_1} X$
- $E = Y (\beta_0 + \beta_1 X)$
- $E = Y \mu_{Y|X}$
- Residual: $\hat{E} = Y \hat{Y} = Y (\hat{\beta}_0 + \hat{\beta}_1 X)$
- $SSE = \sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$

Parameters to be estimated: β_0 , β_1 , specific values

Methods: Least-square method

Variables of interest:

- *X*: fixed and observable
- Y: random and observable
- *E*: random but unobservable, $E \sim N(0, \sigma^2)$

Then, another parameter of interest: σ^2 .

1.3 STATISTICAL INFERENCES

- 1. Estimation
- 2. Statistical hypotheses

1.3.1
$$\sigma^2$$

The estimate of σ^2 : $S_{Y|X}^2 =$ The definition of SSE

Another convenient computational formula concerning S_X^2 , S_Y^2 , $\hat{\beta}^2$ is $S_{Y|X}^2$ =

where $S_X^2 =$

1.3.2
$$\beta_0, \beta_1$$

Least-square method:
$$\hat{\beta_0} = \frac{\partial SSE}{\partial \beta_0}$$
, $\hat{\beta_1} = \frac{\partial SSE}{\partial \beta_1}$

Centralized transformation: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 (X - \bar{X})$

•
$$\beta_1$$

- $\mu_{\hat{\beta}_1}, \sigma^2_{\hat{\beta}_1}$,

- $H_0: \beta_1 = \beta_1^{(0)}$

- $T_1 \sim t_{n-2}$

- CI

- Interpretation of the test

•
$$\beta_0$$

- $\mu_{\hat{\beta_0}}, \sigma^2_{\hat{\beta_0}},$

- $H_0: \beta_0 = \beta_0^{(0)}$

- $T_0 \sim t_{n-2}$

- CI

- Interpretation of the test

1.3.3
$$\mu_{Y|X} = \beta_0 + \beta_1 X$$

Given
$$X_0$$
,
 $H_0: \mu_{Y|X_0} = \mu_{Y|X_0}^{(0)}$
 $T \sim t_{(n-2)}$

Confidence band, prediction band

2 CORRELATION COEFFICIENT

- Population correlation coefficient: ρ
- Sample correlation coefficient: $r = \frac{S_X}{S_V} \hat{\beta}_1$

•
$$r^2 = \frac{SSY - SSE}{SSY}$$

Mathematical properties Interpretation and measurement of r

2.1 Test Hypotheses

- 1. $H_0: \rho = 0(\beta_1 = 0)$
 - $T \sim t_{n-2}$
- 2. $H_0: \rho = \rho_0, \rho_0 \neq 0$
 - Fisher's Z transformation
 - $Z \sim N(0,1)$
 - CI
- 3. $H_0: \rho_1 = \rho_2$

 - $Z \sim N(0, 1)$
 - CI
- 4. $H_0: \rho_{12} = \rho_{13}$, not independent
 - $Z \sim N(0,1)$