

深度学习框架 MegEngine CUDA Int4 推理详解

王彪 | wangbiao@megvii.com

Contents

- 1 背景&动机
- 2 如何尽量提高量化精度
- 3 如何优化 Int4 推理性能
- 4 总结&展望

01

背景&动机

I MegEngine 介绍

训练推理一体、多平台高效推理、高效训练

▮int4 量化模型落地的现状

MEGVII 旷视

▮更低 bit 量化模型落地是趋势

NVIDIA GPU 架构演进

┃业务需求的多样性

MEGVII 旷视

▮速度/内存敏感型业务

MEGVII 旷视

|存占用

高计算量

高精度

模型量化

损失精度

▋精度敏感型业务

MEGVII 旷视

模型 量化

速度S

速度S

精度 P

精度 0.9P

精度 1.3P

模型开发人员

- 不知道 Int4 量化有什么需要注意的地方,精度够不够
- 模型 Int4 量化之后在真实硬件 下到底会不会快

工程优化人员

- 市面上少有 Int4 推理的可参考 的例子,担心有坑
- Int4 在工程实现上具有一定难度,是否值得投入大量人力

模型开发人员

- MegEngine CUDA Int4 量化实践经验参考
- 利用 MegEngine 实测自己的模型 Int4 量化之后的性能表现

工程优化人员

- MegEngine CUDA Int4 模型推理流程经验参考
- MegEngine 源码开源 CUDA Int4 实现,供大家 参考
- 获得更优的模型推理速度或精度,提升产品效果

02

如何尽量提高量化精度

77

▮速度和精度之间的平衡艺术

MEGVII 旷视

量化方法选择

核心算子的 量化方案

整个模型的 量化方案

软硬结合经验

| 量化方法的选择

对称量化

Quantize : uint = round(float / S)
De-quantize : float' = S * uint

非对称量化

Quantize : int = round(float / S) + Z De-quantize : float' = S * (int - Z)

| 核心算子的量化方案

- ① 由于 relu 的影响, feature map 往往是非对称的,所以采用非对称量化比较合适
- ② 由于激活函数也会被融合进卷积中,同时为了提高精度, bias 使用全精度表示比较合适

▮核心算子的量化方案

Weight 取非对称量化会增加计算量

| 核心算子的量化方案

▮整个模型的量化方案

MEGVII 旷视

Int4 量化 = 整个模型计算占比大的算子都需要被量化为 Int4?

- 图像分类模型
 - 输入类型一般是 uint8/int8
 - 图像数据
 - 输出类型一般是 float
 - 目标分数
 - 中间部分一般为 Int4/Int8
 - 寻找精度和速度的平衡

▮软硬结合经验

MEGVII 旷视

Int4 数据类型对应 NCHW64 的存储格式要求数据通道被 64 整除框架内部会将通道补齐 64 的倍数

通道数最好是 64 的倍数,而且将通道补齐到 64 的倍数,速度不变,精度可能更好。

03

如何优化 Int4 推理性能

| 如何优化 Int4 推理性能

算子融合

MEGVII 旷视

减少1次读1次写

算子融合

▮张量存储格式

MegEngine 中的张量存储格式

- 通常张量是用 NCHW 格式存储的
- 硬件特征如 SIMD 和 TensorCore 决定了对齐的格式往往更容易充分利用硬件资源。如 cudnn int8 TensorCore 要求输入数据是 NCHW32(int8) 格式

Implicit Gemm 计算 Convolution

$$y(oc, oh, ow) = \sum_{ic=0}^{IC} \sum_{fh=0}^{FH} \sum_{fw=0}^{FW} x(ic, ih, iw) * w(oc, ic, fh, fw)$$

```
0: GEMM M = OC
1: GEMM_N = OH * OW
2: GEMM K = IC * FH * FW
3: for i in range(GEMM_M):
4: oc = i
    for j in range(GEMM_N):
       accumulator = 0
      oh = j / OW
       ow = j \% OW
9:
       for k in range(GEMM_K):
10:
          ic = k / (FH * FW)
11:
          k_res = k % (FH * FW)
12:
          fh = k res / FW
13:
          fw = k res % FW
          ih = oh * stride_h - pad_h + fh
14:
15:
          iw = ow * stride_w - pad_w + fw
16:
          accumulator = accumulator + x(ic, ih, iw) * w(oc,
ic, fh, fw)
17:
        y(oc, oh, ow) = accumulator
```


适用于 int4 数据类型的 TensorCore PTX 指令

mma.m8n8k32 所要求的数据排布

Fragment A: s4/u4 Fragment B: s4/u4 Fragment C: s32

Row \ Col	0	1	2		7
0	(b0) b1	(b0) b1	1		(b0) (b1)
	T0:{ }	T4: { }			728: { }
7	b6 b7	b6 b7			b6 b7
8	(b0) b1	(b0) b1			(b0) b1
	T1:	T5:{ }			T29: { }
15	b6 b7	b6 b7			b6 b7
16	(b0) b1	(b0) b1			(b0) b1
	T2:{ }	T6: \ \		/	T30: { }
23	b6 b7	b6 b7			b6 b7
24	(b0) b1	(b0) b1			(b0) b1
	T3:	T7: \ \	+ /		T31: { }
31	b6 b7	b6 b7			b6 b7

Fragment B

Row\Col	0		7	8		15	16		23	24		31
0	T0:{a0	o, a1,	, a7}	T1:{a	0, a1, .	, a7}	T2:{a	0, a1, .	, a7}	T3:{a	D, a1, .	, a7}
1	T4:{a0	O, a1,	, a7}	T5:{a	0, a1, .	, a7}	T6:{a	0, a1, .	, a7}	T7:{a	D, a1, .	, a7}
2		-								-	•	
••			+								-	
7	T28:{a	0, a1,	, a7}	T29:{	a0, a1,	, a7}	T30:{a	a0, a1,	, a7}	T31:{a	0, a1,	, a7}

Fragment A

Row\Col	0 1	2 3	4 5	6 7	
0	T0: {c0, c1}	T1: {c0, c1}	T2: {c0, c1}	T3: {c0, c1}	
1	T4: {c0, c1}	T5: {c0, c1}	T6: {c0, c1}	T7: {c0, c1}	
2					
7	T28: {c0, c1}	T29: {c0, c1}	T30: {c0, c1}	T31: {c0, c1}	

Fragment C

global memory 访存经验准则

- 相同 warp 中的连续线程访问连续地址,会触发访存合并
- 一个 memory transaction 为 128 位,相同数据量情况下访存位宽越高,所需的访存指令越少

对 TensorCore 矩阵乘指令的特殊处理

MEGVII 旷视

2次 Idmatrix, 16次 mma

□ 线程持有的结果数据并不连续,写 回之前需要将多个线程持有的结果 合并,造成冗余计算和访存

Fragment A

T0	T1	T2	Т3
T4	T5	T6	T7
T8	T9	T10	T11
T12	T13	T14	T15
T16	T17	T18	T19
T20	T21	T22	T23
T24	T25	T26	T27
T28	T29	T30	T31

T0	T1	T2	Т3
T4	T5	T6	T7
T8	T9	T10	T11
T12	T13	T14	T15
T16	T17	T18	T19
T20	T21	T22	T23
T24	T25	T26	T27
T28	T29	T30	T31

T0	T1	T2	Т3
T4	T5	Т6	T7
T8	Т9	T10	T11
T12	T13	T14	T15
T16	T17	T18	T19
T20	T21	T22	T23
T24	T25	T26	T27
T28	T29	T30	T31

T0	T1	T2	T3
T4	T5	Т6	T7
T8	Т9	T10	T11
T12	T13	T14	T15
T16	T17	T18	T19
T20	T21	T22	T23
T24	T25	T26	T27
T28	T29	T30	T31

MEGVII 旷视

2次Idmatrix, 16次mma

- ✓ 线程持有的结果数据是连续的
- ✓ 相邻线程之间写回的地址是连 续的,触发合并访存
- □ 只计算了 32 个连续的 oc
- □ 每个线程 32 位写回

	Fragment A	T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T47 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27	T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27	T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T48 T19 T20 T21 T22 T23 T24 T25 T26 T27	T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27
	Fragment B	T28 T29 T30 T31			
-	T0 T4 T8 T12 T16 T20 T24 T28 T1 T5 T9 T13 T17 T21 T25 T29 T2 T6 T10 T14 T18 T22 T26 T30 T3 T7 T11 T15 T19 T23 T27 T31	0 1	2 3	4 5	6 7
-	T0 T4 T8 T12 T16 T20 T24 T28 T1 T5 T9 T13 T17 T21 T25 T29 T2 T6 T10 T14 T18 T22 T26 T30 T3 T7 T11 T15 T19 T23 T27 T31				
-	T0 T4 T8 T12 T16 T20 T24 T28 T1 T5 T9 T13 T17 T21 T25 T29 T2 T6 T10 T14 T18 T22 T26 T30 T3 T7 T11 T15 T19 T23 T27 T31				
	T0 T4 T8 T12 T16 T20 T24 T28 T1 T5 T9 T13 T17 T21 T25 T29 T2 T6 T10 T14 T18 T22 T26 T30 T3 T7 T11 T15 T10 T32 T32 T31				

4次Idmatrix, 64次mma

- ✓ 线程持有的结果数据是连续的
- ✓ 相邻线程之间写回的地址是连续的, 触发合并访存
- ✓ 计算了所有的 64 个连续的 oc, 算存比更高
- ✓ 每个线程 64 位写回,所需指令更少

04

总结&展望

▮总结&展望

MegEngine int4 vs TRT7 @ imagenet @ resnet50

100

90

80

76.034

75.72

70

40

30

20

10

top1

TRT int8

MegEngine int4

MegEngine int4

速度,TRT int8 性能被标准化为 1

精度

▮总结&展望

MegEngine 对低 bit 量化做了微小的贡献

- 1. 我们接触的模型有限,更多的业界模型在 int4 量化下的表现还有待发掘
- 2. 只做了 CUDA Int4 的实现,其他计算设备的 int4 适配还没有做
- 3.

▮团队招人中

如果你对高性能计算,深度学习框架,AI 编译器感兴趣… 欢迎加入 MegEngine 团队 wangbiao@megvii.com 投递简历

欢迎关注 MegEngine

项目源码: https://github.com/MegEngine/MegEngine

• 示例模型: https://github.com/MegEngine/examples

官 网: https://www.megengine.org.cn/

Q & A