Therefore D=E and so $\blacksquare \setminus (B \setminus B) \cup (\blacksquare \cap B)$.

2

(i)

 xP_{\blacksquare} for all x, $\blacksquare \in \mathbb{R}$ when $\blacksquare =$

Reflexive?

x x is true if and only if $x^3 = x^3 - x + x$.

$$x^3 = x^3$$

Therefore, is reT

Con lusion

is a not a partial orαer since it is not anti-symmetric. It is not an equivalence relation however, since it is reflexive, symmetric anα transitive.

(i)
$$f: [-1,1] \to [-2,2] \text{ for } f(x) = x^3 + x, \ x \in [-1,1].$$

$$f'(x) = 3x^2 + 1 = 0$$

Therefore f(