$10_{139} \ (K10n_{27})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^3 - 3u^2 + b - 2u + 1, -u^3 - 2u^2 + 2a - 2u, u^4 + 4u^3 + 6u^2 + 2u - 2 \rangle$$

$$I_2^u = \langle b + 1, 2a - u + 2, u^2 - 2 \rangle$$

$$I_1^v = \langle a, b - 1, v + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 7 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^3 - 3u^2 + b - 2u + 1, \ -u^3 - 2u^2 + 2a - 2u, \ u^4 + 4u^3 + 6u^2 + 2u - 2 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{2}u^{3} + u^{2} + u \\ u^{3} + 3u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{3} - u^{2} + 1 \\ -2u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ 4u^{3} + 8u^{2} + 2u - 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{3}{2}u^{3} + 5u^{2} + 4u - 2 \\ -3u^{3} - 5u^{2} + u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{3}{2}u^{3} + 2u^{2} - 2u \\ 8u^{3} + 28u^{2} + 16u - 11 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -2u 16

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_{10}	$u^4 - 4u^3 + 6u^2 - 2u - 2$
c_2, c_3, c_4 c_7, c_8	$u^4 + 2u^3 + 4u^2 - 2u - 1$
<i>c</i> ₉	$u^4 - 4u^3 + 22u^2 + 12u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6 c_{10}	$y^4 - 4y^3 + 16y^2 - 28y + 4$
c_2, c_3, c_4 c_7, c_8	$y^4 + 4y^3 + 22y^2 - 12y + 1$
<i>C</i> 9	$y^4 + 28y^3 + 582y^2 - 100y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.47463		
a = -0.903408	-6.80412	-13.0510
b = -0.632293		
u = 0.395337		
a = 0.582522	-0.588647	-16.7910
b = 0.321336		
u = -1.46036 + 1.13932I		
a = 0.660443 + 0.716885I	4.51885 + 4.85117I	-13.07929 - 2.27864I
b = 1.15548 - 1.89385I		
u = -1.46036 - 1.13932I		
a = 0.660443 - 0.716885I	4.51885 - 4.85117I	-13.07929 + 2.27864I
b = 1.15548 + 1.89385I		

II.
$$I_2^u = \langle b+1, \ 2a-u+2, \ u^2-2 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{2}u - 1 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{3}{2}u - 1 \\ u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{2}u - 1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -20

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_{10}	u^2-2
c_{2}, c_{7}	$(u-1)^2$
c_3, c_4, c_8 c_9	$(u+1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6 c_{10}	$(y-2)^2$
c_2, c_3, c_4 c_7, c_8, c_9	$(y-1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.41421		
a = -0.292893	-8.22467	-20.0000
b = -1.00000		
u = -1.41421		
a = -1.70711	-8.22467	-20.0000
b = -1.00000		

III.
$$I_1^v = \langle a, \ b-1, \ v+1 \rangle$$

(i) Arc colorings

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_{10}	u
c_2, c_7, c_9	u+1
c_3, c_4, c_8	u-1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6 c_{10}	y
c_2, c_3, c_4 c_7, c_8, c_9	y-1

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-3.28987	-12.0000
b = 1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_{10}	$u(u^2 - 2)(u^4 - 4u^3 + 6u^2 - 2u - 2)$
c_{2}, c_{7}	$(u-1)^{2}(u+1)(u^{4}+2u^{3}+4u^{2}-2u-1)$
c_3, c_4, c_8	$(u-1)(u+1)^{2}(u^{4}+2u^{3}+4u^{2}-2u-1)$
<i>C</i> 9	$(u+1)^3(u^4-4u^3+22u^2+12u+1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6 c_{10}	$y(y-2)^2(y^4-4y^3+16y^2-28y+4)$
c_2, c_3, c_4 c_7, c_8	$(y-1)^3(y^4+4y^3+22y^2-12y+1)$
<i>C</i> 9	$(y-1)^3(y^4+28y^3+582y^2-100y+1)$