I Sujet 0 CCP MPI

Rappelons les règles de déduction naturelle suivantes, où A et B sont des formules logiques et Γ un ensemble de formules logiques quelconques :

- 1. Montrer que le séquent $\vdash \neg A \to (A \to \bot)$ est dérivable, en explicitant un arbre de preuve.
- 2. Montrer que le séquent $\vdash (A \to \bot) \to \neg A$ est dérivable, en explicitant un arbre de preuve.
- 3. Donner une règle correspondant à l'introduction du symbole \wedge ainsi que deux règles correspondant à l'élimination du symbole \wedge . Montrer que le séquent $\vdash (\neg A \to (A \to \bot)) \wedge ((A \to \bot) \to \neg A)$ est dérivable.
- 4. On considère la formule $P = ((A \to B) \to A) \to A$ appelée loi de Peirce. Montrer que $\models P$, c'est-à-dire que P est une tautologie.
- 5. Pour montrer que le séquent $\vdash P$ est dérivable, il est nécessaire d'utiliser la règle d'absurdité classique \perp_c (ou une règle équivalente), ce que l'on fait ci-dessous (il n'y aura pas besoin de réutiliser cette règle). Terminer la dérivation du séquent $\vdash P$, dans laquelle on pose $\Gamma = \{(A \to B) \to A, \neg A\}$:

$$\frac{?}{\Gamma \vdash A} ? \frac{}{\Gamma \vdash \neg A}^{AX}$$

$$\frac{\Gamma = (A \to B) \to A, \neg A \vdash \bot}{(A \to B) \to A) \vdash A}^{\neg_i}$$

$$\frac{(A \to B) \to A) \vdash A}{\vdash ((A \to B) \to A) \to A}^{\rightarrow_i}$$

II Typage OCaml

On souhaite formaliser le typage OCaml. On notera $\Gamma \vdash e : \tau$ si l'expression OCaml e est typée par le type τ , où Γ est un **environnement de typage**, c'est-à-dire une fonction donnant un type à chaque variable.

$$\begin{array}{ll} \hline \Gamma \vdash \mathtt{false:bool} & \hline \Gamma \vdash \mathtt{true:bool} & \frac{n \in \mathbb{N}}{\Gamma \vdash n : \mathtt{int}} \\ \\ \frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} & \frac{\Gamma, x : \sigma \vdash e : \tau}{\Gamma \vdash \mathtt{fun} \; x \to e : \sigma \to \tau} & \frac{\Gamma \vdash f : \sigma \to \tau \quad \Gamma \vdash e : \sigma}{\Gamma \vdash f \; e : \tau} \\ \hline \end{array}$$

- 1. Soit $\Gamma = \{ \texttt{f} : \texttt{a} \rightarrow (\texttt{b} \rightarrow \texttt{a}), \texttt{g} : \texttt{b} \rightarrow \texttt{a} \}$. Montrer que $\texttt{fun} \times \rightarrow \texttt{f} (\texttt{g} \times) \times \texttt{est}$ bien typé.
- 2. Quelles analogies peut-on faire entre le typage OCaml et la déduction naturelle ?
- 3. Montrer que (fun f \rightarrow f 1 2) (fun x \rightarrow 3) n'est pas typable.

On ajoute maintenant les tuples :

$$\frac{\Gamma \vdash e_1 : \tau_1 \qquad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 * \tau_2}$$

On veut aussi ajouter des fonctions polymorphes.

- 4. En utilisant des quantificateurs, proposer des types pour fst et snd, et une règle d'élimination.
- 5. Montrer alors que fst (42, true) est bien typé.

III Mines-Pont 2010

On appelle **variable booléenne** une variable qui ne peut prendre que les valeurs 0 (synonyme de faux) ou 1 (synonyme de vrai). Si x est une variable booléenne, on note \overline{x} le complémenté (ou négation) de x: x vaut 1 si x vaut 0 et x vaut 1. On appelle **littéral** une variable booléenne ou son complémenté.

On représente la disjonction (« ou » logique) par le symbole \vee et la conjonction (« et » logique) par le symbole \wedge .

On appelle clause une disjonction de littéraux. De plus, il ne doit pas y avoir deux fois la même variable dans une clause.

On appelle formule logique sous forme normale conjonctive une conjonction de clauses.

On appelle **valuation** des variables d'une formule logique une application de l'ensemble de ces variables dans l'ensemble $\{0,1\}$. Une clause vaut 1 si au moins un de ses littéraux vaut 1 et 0 sinon. Une clause est dite **satisfaite** par une valuation des variables si elle vaut 1 pour cette valuation. Une formule logique sous forme normale conjonctive vaut 1 si toutes ses clauses valent 1 et 0 sinon. Une formule logique est dite **satisfaite** par une valuation des variables si elle vaut 1 pour cette valuation. Une formule logique est dite **satisfaite** par une valuation de ses variables qui la satisfait.

Étant donnée une formule logique f sous forme normale conjonctive, on note dans ce problème $\max(f)$ le nombre maximum de clauses de f pouvant être satisfaites par une même valuation.

En notant m le nombre de clauses de f, on remarque que f est satisfiable si et seulement si $\max(f) = m$.

On considère la formule f_1 (sous forme normale conjonctive) dépendant des variables x, y, z:

$$f_1 = (x \vee y \vee z) \wedge (\overline{x} \vee \overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{y}) \wedge (\overline{x} \vee \overline{z}) \wedge (x \vee \overline{y} \vee z)$$

1. Indiquer si f_1 est satisfiable ou non et, si elle est satisfiable, donner l'ensemble des solutions de f_1 .

Une instance de 3-SAT est une formule logique sous forme normale conjonctive dont toutes les clauses contiennent 3 littéraux.

2. Déterminer une instance f_2 de 3-SAT non satisfiable et possédant exactement 8 clauses; indiquer $\max(f_2)$ en justifiant la réponse.

On considère une instance f de 3-SAT définie sur n variables. On note V l'ensemble des 2^n valuations des variables de f. Soit val une valuation des n variables. Si C est une clause, on note $\varphi(C, val)$ la valeur de C pour la valuation val et on note $\psi(f, val)$ le nombre de clauses de f qui valent 1 pour la valuation val.

$$\psi(f, val)$$
 le nombre de clauses de f qui valent 1 pour la valuation val . On a : $\psi(f, val) = \sum_{C \text{ clause de } f} \varphi(C, val)$ et $\max(f) = \max_{val \in V} \psi(f, val)$.

- 3. Soit C une clause de f. Donner une expression simple de $\sum_{val \in V} \varphi(C, val)$, en fonction de n.
- 4. Soit m le nombre de clauses dont f est la conjonction. En considérant la somme $\sum_{C \text{ clause de } f} \sum_{val \in V} \varphi(C, val)$, donner en fonction de m un minorant de $\max(f)$.
- 5. Donner le nombre minimum de clauses d'une instance de 3-SAT non satisfiable.

IV Système complet

On définit les opérateurs NAND, NOR, XOR par leurs tables de vérité :

x	y	x NAND y	x NOR y	x XOR y
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	0

On dit qu'un ensemble S d'opérateurs logiques est **complet** si toute formule logique est équivalente à une formule qui n'utilise que des opérateurs dans S.

- 1. Exprimer NAND, NOR, XOR, à l'aide de \vee , \wedge , \neg .
- 2. Montrer que $\{\land, \neg\}$ est complet.
- 3. Montrer que $\{NAND\}$ est complet. (c'est pour cette raison que le NAND est très utilisé en électronique)
- 4. Montrer que $\{NOR\}$ est complet.
- 5. Montrer que $\{XOR\}$ n'est pas complet.