

mycology world

Dr. Mahmoud El-Hariri
Assistant Professor of Microbiology

MYCOLOGY

MYCO = FUNGUS

OLOGY = SCIENCE or STUDY

**Mycology is the study of fungi ..or it is a
branch of biological science dealing with
the study of fungi**

WHAT ARE THE FUNGI?

Fungi are not plants.

Fungi form a separate group of higher organisms, distinct from both plants and

animals

THE CREATURES

GENERAL CHARACTER OF FUNGI

Fungi:

Are Eukaryotic microorganisms have a nucleus, their organelles may or may not have a membrane, and they reproduce asexually or sexually.

FUNGI GENERAL CHARACTERISTIC

Fungi are **heterotrophic** ("other feeding" must feed on preformed organic material), not **autotrophic** ("self feeding", make their own food by **photosynthesis**) Relatively simple nutritional requirements

FUNGI GENERAL CHARACTERISTIC

Fungi obtain their nourishment by secreting enzymes for external digestion and by absorbing the nutrients that are released from the medium

FUNGI GENERAL CHARACTERISTIC

Fungi range in form and size from **unicellular yeasts** to large **multicellular mushrooms** and **puffballs**.

Non-motile eukaryotes lacking chlorophyll

Contain **nucleus**, **mitochondria**, **80S ribosomes**

FUNGI GENERAL CHARACTERISTIC

Cell wall is similar to plant cell wall but it composed of chitin and various glucans, mannans, and complex polysaccharides (plant cell wall cellulose)

FUNGI GENERAL CHARACTERISTIC

Most fungi store their food as **glycogen** (like animals); plants store food as **starch**

Fungal **cell membranes** have a **unique sterol**, **ergosterol**, which replaces **cholesterol** found in mammalian cell membranes

FUNGI GENERAL CHARACTERISTIC

UNICELLULAR

ROUND-OVAL

BUDDING

MULTICELLULAR

FILAMENTUS-TUBE

HYPHAE-MYCELIA

FUNGI MORPHOLOGICAL FORMS

Budding yeast

Pseudohyphae

FUNGI MORPHOLOGICAL FORMS

Aerial hyphae (Reproductive)

Rhizoidal hyphae (Vegetative)

Dr. Mahmoud ElHariri

Fungi reproductive classification

- Reproduce by means of spores (usually wind-disseminated)

Fungi reproductive classification

Anamorph= asexual stage

spore formed via asexual reproduction (mitosis), commonly called a conidium or sporangiospore

Teleomorph= sexual stage

spore formed via sexual reproduction (meiosis),

- type of spore varies by phylum

Nutritional Status of Fungi

■ **Saprophytes**

■ **Parasites**

■ **Mutualists (symbionts)**

Saprophytes

- Use non-living organic material.
- Along with bacteria, fungi are important in recycling carbon, nitrogen, and essential mineral nutrients.

Many fungi are saprobes.

Saprobe:

An organism that obtains carbon and energy from dead organic matter

1/12/2000 12:32pm

Decomposers

As saprotrophs, particularly as decomposers, fungi are essential components of the carbon cycle and are among the few organisms that can break down lignin

Parasites

- Use organic material from living organisms, harming them in some way
- Range of hosts: plants – animals – humans

Some fungi are parasites.

Parasite:

An organism that benefits from its close association with an organism of another species (the host); the benefit is at the expense of the host

Parasitic fungi cause plant diseases:

- Dutch elm disease
- Chestnut blight
- Various rusts, smuts, scabs, rots, and wilts

Parasitic fungi cause human diseases:

- Histoplasmosis
- *Pneumocystis pneumonia*
- Athlete's foot
- Ringworm

Mutualists (Symbionts)

- Fungi that have a beneficial relationship with other living organisms.
- Mycorrhizae: associations of fungi with plants' roots.
- Lichens: associations of fungi with algae or cyanobacteria

Many fungi are symbionts.

Mycorrhiza:

The symbiotic association of the root of a plant with the mycelium of a fungus

Symbiont:

An organism that lives in a symbiotic relationship with another organism

Symbiosis:

The living together of two dissimilar organisms in close association

Importance of Fungi

Fungal Species

>250,000 species, most are saprophytic

~500 species, pathogens of humans/animals (0.5%)

~8,000 species, plant pathogens (8%)

Over 65% of plant diseases are caused by fungi

Fungi .. Harmful to Human Interests

Can cause human disease, either directly or through their toxins.

- Can cause diseases of plants and animals that humans are interested in (*e.g. Crops .. etc.*).
- Cause rot and contamination of foods.
- Can destroy almost every kind of manufactured good – with the exception of plastics and some pesticides.

Fungi .. Useful to Human Interests

- Yeasts: baking and brewing

- Antibiotics (penicillin and cephalosporin)

- Other drugs (cyclosporin)

- Many organic acids are commercially produced with fungi; Citric acid in Coke is produced by an Aspergillus.

- Steroids and hormones (the pill).

- "Stinky" cheeses (Roquefort and Camembert).

Fungi Morphological Classification

Yeast

Filamentous
fungi (molds)

Dimorphic

Fungi Morphological Classification

Yeast

Filamentous
fungi (molds)

Dimorphic

The basic element of the unicellular fungi.

It is **round** to **oval** and 3 –10 μm diameter.

Single cells, reproduce by budding

separate : *Cryptococcus neoformans*

attached : *Candida albicans*

C. albicans
white colonies
on SDA.

Geotrichum
white wrinkled
colonies on SDA.

Attached
budding yeast

Separated
budding yeast

Fungi Morphological Classification

Yeast

Filamentous
fungi (molds)

Dimorphic

Grow as threads (hyphae) Interlace to form mycelium

Septated non colored hyphae :

Aspergillus spp, Dermatophytes, Penicillium spp, Fusarium spp

Colored hyphae (Dematiaceous fungi):

Alternaria, Phialophora

Fungi Morphological Classification

Morphology terms:

Hypha:

is the basic element of filamentous fungi with a branched, tubular structure, 2–10 µm in width.

Mycelium:

is the web or matlike structure of hyphae. **Substrate mycelia** (specialized for nutrition) penetrate into the nutrient substrate, whereas

- **aerial mycelia** (for asexual propagation) develop above the nutrient medium.

Septated
Hyphae

Aseptated
Hyphae
(coenocytic)

Branched
hyphae web
(Mycelium)

**Aspergillus
fumigatus**

**Air sacs of a hen
during epidemic
aspergillosis**

Courtesy of
The Geraldine Kaminski Medical Mycology Library
Produced by: David Ellis and Roland Hermanis
Copyright © 2003 Doctorfungus Corporation

Penicillium species

Fungi Morphological Classification

Yeast

Filamentous
fungi (molds)

Dimorphic

Single cells, reproduce by budding exist in two forms

(*Histoplasma capsulatum* , *Blastomyces dermatitidis*)

Yeast (at 37 °C)

Or

Mold (at 27 °C)

Fungi Morphological Classification

Morphology terms:

Dimorphism:

some fungal species can develop either the **yeast** or the **mycelium** form depending on the environmental conditions, a property called dimorphism.

Dimorphic pathogenic fungi take the form of **yeast** cells in the **parasitic stage** and appear as **mycelia** in the **saprophytic stage**.

**Hyphael phase
(Saprophytic)**

**Yeast phase
(Parasitic)**

THERMAL DIMORPHISM

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Hyphal colonies
© Kathy Park Talaro

Fungi reproductive classification

**Sexually
(rare)**

**Asexually
(mostly)**

**Sexually
(BY Zygospores)**

**Sexually
(BY Ascospores)**

**Sexually
(BY Basidiospores)**

ASEXUAL REPRODUCTION (ANAMORPH)

Asexual spores are:

conidia

Blasto...

Phialo..

Chlamydo..

Arthro...

*Sporangio
spores*

BLASTO

PHIALO

CHLAMYDO

ARTHRO

**Asexual
Conidia**

BLASTOCONJDJA:

Asexual reproduction by budding as in yeasts

- Offspring grows out of parent
- Fast, somewhat simple
- Same DNA

Replicating Yeasts: Fission vs. Budding

yeasts undergoing fission
Schizosaccharomyces spp.

budding yeasts
Saccharomyces spp.

BLASTOCONJDJA:

BLASTOSPORE (BUDDING)

Asexual
Conidia

PHIALEOCONDIA:

By formation of flask shaped extension
(phialids) as in *Aspergillus*, *Penicillium*

Chain of conidia

PHIALOSPORE

Asexual
Conidia

CHLAMYDOSPOONJDJA:

By formation of hyphal cell with thick wall which
may terminal, lateral as *Candida albicans*

ARTHRODIOCONJDJA:

By formation of fragmentation of septated hypha into the individual cell as *Geotrichum candidum*

ARTHROSPORE

Asexual
Conidia

SPORANGIOSPORES:

may be delimited within a sac-like structure, a sporangium (plural: sporangia), in which case they are called **sporangiospores**, borne on a **sporangiophore** only

In aseptated fungi

(Mucor)

Dr. Mahmoud E/Hariri

Figure 31.03
Black bread mold, *Rhizopus stolonifer*.

Fungi reproductive classification

**Sexually
(rare)**

**Asexually
(mostly)**

**Sexually
(BY Zygospores)**

**Sexually
(BY Ascospores)**

**Sexually
(BY Basidiospores)**

WE HAVE THREE TYPES OF SEXUAL SPORES

Ascospores

Zygospore

Basidiospores

Sexual Reproduction (Teleomorph)

- Sexual reproduction involves the union of two haploid mating type (plus) "+" and (minus) "-".
- Hyphae of opposite mating types meet and fuse, bringing "+" and "-" nuclei together in one diploid cell .

Ascospores

- Sexual spores borne internally in a sac called ascus
- Asexual spores are borne externally as conidia

This phylum includes cup fungi, morels and most of the yeasts. Most crop plant pathogens belong in this phylum. When an asexual state is formed by these fungi they are usually externally borne spores called conidia.

Fungi Kingdom

Phylum Ascomycota

Phylum Basidiomycota

Phylum Zygomycota

Basidiospores

- Sexual spores borne externally on a club-shaped structure called basidium
- Usually no asexual spores

This phylum includes familiar mushrooms, puffballs, and shelf fungi, along with the less familiar rusts and smuts. The basidia usually line up next to one another and form a hymenium.

Basidiospores: produced on basidium (mushrooms)

Figure 30 Basidia and basidiospore

Fungi Kingdom

Phylum Ascomycota

Phylum Basidiomycota

Phylum Zygomycota

Fungi Kingdom

Phylum Ascomycota

Phylum Basidiomycota

Phylum Zygomycota

Zygosporangia

- Sexual spores are thick walled resting spores called zygosporangia
- Asexual spores are borne internally in a sporangium

These are commonly called the bread molds. Most are saprophytic, but there are many that can act as plant and human pathogens.

Fungi Kingdom

Phylum Ascomycota

Phylum Basidiomycota

Phylum Zygomycota

Growth of Fungi

I) Growth Requirements:

Fungi need for their growth:

- A source of Carbon (*eg. CHO*)
- A source of nitrogen (*eg. Peptone*)
- Inorganic compounds (*eg. Ammonium nitrate*)
- Inorganic Nutrients (*eg. K, Ph, Mn*)
- Water (*absolute requirement for fungi*)

Growth of Fungi

- II) Temperature**
- III) pH**
- IV) O₂ Requirement**
- V) Light**

Fungal Metabolites (Products)

- 1) Mycotoxins
- 2) Phytoxins
- 3) Antibiotics
- 4) Pigments
- 5) Enzymes
- 6) Plant growth factors

Thank You

Thank You