

Binomial Expansion - Rational n

A-level Maths Topic Summaries - Series

Subject & topics: Maths | Algebra | Series Stage & difficulty: A Level P3

Fill in the blanks below to complete the notes on binomial expansion for rational powers of n.

Brackets of the form $(1+x)^n$, where n is any $\ $ number, can be expanded using the expression $(1+x)^n=1+\ $ $x+rac{n(n-1)}{2!}$ $\ $ $+rac{n(n-1)(n-2)}{3!}$ $\ $ $+\dots$
$(1+x) = 1 + \underbrace{} x + \underbrace{} 2! + \underbrace{} 3!$
The right hand side is a sum of positive integer powers of x , plus a constant. Sums of this form are called
The right hand side has an infinite number of terms. The right hand side converges to the left hand side as long as
If $ x $ is small, we can approximate $(1+x)^n$ using the $oxed{}$ terms of the series. The $oxed{}$ terms
we use, the better our approximation will be.
Items:

Created for isaacphysics.org by Jonathan Waugh

Binomial: All Rational n 2ii

Subject & topics: Maths Stage & difficulty: A Level P2

Part A **Expansion**

Expand $(1+4x)^{\frac{1}{2}}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients.

The following symbols may be useful: x

Part B

Values of x

State the set of values of x for which the expansion is valid. You may use the symbols <>=x and |x| which can be entered as abs(x).

The following symbols may be useful: <, >, abs(), x

D -	4	
ra	rт	ι.
		$\overline{}$

Value of k

In the expansion of

$$(1+kx)(1+4x)^{\frac{1}{2}}\,,$$

the coefficient of x is 7. Find the value of the constant k and hence the coefficient of x^2 .

$$k = \bigcirc$$

coefficient of
$$x^2=$$

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

Binomial: All Rational n 4ii

Subject & topics: Maths Stage & difficulty: A Level P2

Part A

Expansion

Expand $(2+x)^{-2}$ in ascending powers of x up to and including the term in x^3 .

The following symbols may be useful: x

Part B

Set of Values

State the set of values of x for which the expression is valid. You may use the symbols <>=x and |x| which can be entered as abs(x).

The following symbols may be useful: \langle , \rangle , abs(), x

Part C

Coefficient

Hence find the coefficient of x^3 in the expansion of $\frac{1+x^2}{(2+x)^2}$.

The following symbols may be useful: x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

Binomial: All Rational n 1i

Subject & topics: Maths Stage & difficulty: A Level P2

Part A

Partial Fractions

Given that
$$\dfrac{3x+4}{(1+x)(2+x)^2}\equiv\dfrac{A}{1+x}+\dfrac{B}{2+x}+\dfrac{C}{(2+x)^2}$$
 , find A,B , and $C.$

If a value is not a whole number, enter the value as a decimal.

$$A = \bigcap$$

$$B = \bigcap$$

$$C = \bigcap$$

Part B

Expand

Hence or otherwise expand $\frac{3x+4}{(1+x)(2+x)^2}$ in ascending powers of x, up to and including the term in x^2 .

The following symbols may be useful: x

Part C Values of xState the set of values of \boldsymbol{x} for which the expansion in the above part is valid. Construct your answer from the items below. Items: $\left[\geq x \quad ext{ or } \quad x \geq ight]$ $\leq x \leq$ > x or x >

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

Binomial: All Rational n 3i

Subject & topics: Maths Stage & difficulty: A Level P2

Find the coefficient of \boldsymbol{x}^2 in the expansion in ascending powers of \boldsymbol{x} of

$$\sqrt{rac{1+ax}{4-x}}$$

giving your answer in terms of a.

The following symbols may be useful: a

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

Binomial Expansion 5

Pre-Uni Maths for Sciences C2.7

Subject & topics: Maths | Algebra | Series Stage & difficulty: A Level P3

Rewrite each of the following expressions in the form $a(1+b)^n$, where a is an integer and b is a fraction such that |b| < 1. Hence, using the appropriate binomial expansion, find the value of each of them correct to 4 dp.

Part A $\sqrt{36.1}$

Rewrite $\sqrt{36.1}$ in the form $a(1+b)^n$, where a is an integer, b is a fraction such that |b|<1, and $n=\frac{1}{2}$.

Hence, using the appropriate binomial expansion, find the value of $\sqrt{36.1}$ correct to 4 dp.

$$\sqrt{36.1} = \bigcirc$$

Part B $\sqrt[3]{1.09}$

Rewrite $\sqrt[3]{1.09}$ in the form $a(1+b)^n$, where a is an integer, b is a fraction such that |b|<1 and $n=\frac{1}{3}$.

Hence, using the appropriate binomial expansion, find the value of $\sqrt[3]{1.09}$ correct to 4 dp.

$$\sqrt[3]{1.09} =$$

Part C $\frac{1}{\sqrt{1.04}}$

Rewrite $\frac{1}{\sqrt{1.04}}$ in the form $a(1+b)^n$, where a is an integer, b is a fraction such that |b|<1 and $n=-\frac{1}{2}$.

Hence, using the appropriate binomial expansion, find the value of $\frac{1}{\sqrt{1.04}}$ correct to 4 dp.

$$\frac{1}{\sqrt{1.04}} =$$

Part D $\sqrt[3]{125.4}$

Rewrite $\sqrt[3]{125.4}$ in the form $a(1+b)^n$, where a is an integer, b is a fraction such that |b|<1 and $n=\frac{1}{3}$.

Hence, using the appropriate binomial expansion, find the value of $\sqrt[3]{125.4}$ correct to 4 dp.

$$\sqrt[3]{125.4}=$$

Created for isaacphysics.org by Julia Riley.

Question deck:

Maclaurin Series - Potential due to Dipole

Pre-Uni Maths for Sciences C3.9

Subject & topics: Maths | Algebra | Series Stage & difficulty: Further A C3, University C1

Part A

Potential on the axis

An electric dipole consists of two charges +q and -q separated in the z direction by a very small distance a. The electric potential V(z) a distance z away from the centre of the dipole in a direction along the line joining the two charges is given by

$$V(z)=rac{q}{4\pi\epsilon_0}\left(rac{1}{z-rac{a}{2}}-rac{1}{z+rac{a}{2}}
ight).$$

Find an approximate expression for V(z) (assume that $z\gg a$ and obtain the first non-zero term in the Maclaurin (or binomial) expansion of V(z)).

The following symbols may be useful: a, epsilon_0, pi, q, z

Part B

Potential in any direction

An electric dipole consists of two charges +q and -q separated by a distance a. The electric potential V a distance r from the centre of the dipole in a direction making an angle θ to the line joining the two charges is given approximately by

$$Vpprox rac{q}{4\pi\epsilon_0}\left(rac{1}{\sqrt{r^2-ar\cos heta}}-rac{1}{\sqrt{r^2+ar\cos heta}}
ight).$$

Assuming that $r\gg a$ show that $Vpprox rac{A\cos heta}{r^2}$ and find an expression for A.

The following symbols may be useful: a, epsilon_0, pi, q, r

Created for isaacphysics.org by Julia Riley