B.Tech II Year I Semester

DIGITAL ELECTRONICS LAB

Course Code: 21EC307PC L/T/P/T: 0/0/3/1.5

Course Objectives:

- To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To understand common forms of number representation in digital electronic circuits and to be able to convert between different representations.
- To implement simple logical operations using combinational logic circuits
- To design combinational logic circuits, sequential logic circuits.
- To impart to student the concepts of sequential circuits, enabling them to analyze sequential systems in terms of state machines.
- To implement synchronous state machines using flip-flops.
- Design of various circuits with the help of VERILOG Coding techniques

Course Outcomes: At the end of this course, students will demonstrate the ability to

- Understand working of logic families and logic gates.
- Design and implement Combinational and Sequential logic circuits.
- Understand the process of Analog to Digital conversion and Digital to Analog conversion.
- Be able to use PLDs to implement the given logical problem.
- Design of various circuits with the help of VERILOG Coding techniques.

List of Experiments:

Note: Minimum 12 Experiments should be completed both Hardware and Software (Xilinx).

- 1. Realization of Boolean Expressions using Gates
- 2. Design and realization logic gates using universal gates
- 3. Generation of clock using NAND / NOR gates
- 4. Design a 4 bit Adder / Subtractor
- 5. Design and realization a 4 bit gray to Binary and Binary to Gray Converter
- 6. Design and realization of a 4-bit pseudo random sequence generator using logic gates.
- 7. Design and realization of an 8-bit parallel load and serial out shift register using flip-flops.
- 8. Design and realization a Synchronous and Asynchronous counters using flip-flops
- 9. Design and realization of Asynchronous counters using flip-flops
- 10. Design and realization 8x1 using 2x1 mux
- 11. Design and realization 2-bit comparator
- 12. Verification of truth tables and excitation tables
- 13. Realization of logic gates using DTL, TTL, ECL, etc.,
- 14. State machines

TEXT BOOKS:

- 1. R. P. Jain, "Modern Digital Electronics", McGraw Hill Education, 2009.
- 2. M. M. Mano, "Digital logic and Computer design", Pearson Education India, 2016.

REFERENCE BOOK:

1. A. Kumar, "Fundamentals of Digital Circuits", Prentice Hall India, 2016.