

Desenvolvimento de um Sistema de Seguimento de Junta que Utiliza o Próprio Arco como Sensor (SEAM TRACKERS)

Mestrando: Afrânio R. Costa Filho

Orientador: Prof. Jair Carlos Dutra

- Ambiente de trabalho altamente agressivo;
- "Ciclo de trabalho" ou "tempo de arco aberto" reduzido;
- Aumentar o "tempo de arco aberto" sem influenciar na qualidade da solda;
- Uso de tecnologia apropriada na automação dos processos de soldagem.

- Dificuldades da Automação da Soldagem:
 - ✓ Ausência da sensibilidade do soldador;
 - √Garantia da repetitividade no posicionamento das peças;
 - ✓ Deformação sofrida pela peça durante a soldagem;
 - √Necessidade da utilização de sensores.

- Objetivo do trabalho:
- ✓ Desenvolvimento de Sistema de Seguimento de Junta que utiliza as próprias variáveis elétricas do arco voltaico como sensor de posição.
- √ Tais sistemas são capazes de detectar e corrigir possíveis erros no posicionamento da tocha durante a soldagem.

- Vantagens do sistema proposto:
- ✓ Aumento do "ciclo de trabalho" ou "tempo de arco aberto";
- **√Acessível às pequenas e microempresas** nacionais.

RESUMO DAS INFORMAÇÕES DA LITERATURA

- Classificação dos Métodos de Aplicação da Soldagem
- Dificuldade de Classificação Dutra (1989)
- Classificação proposta por Malin (1985)
 - Soldagem Mecanizada;
 - Soldagem Automatizada.

Estado da Arte dos SSJ

- "General Motors" início da década de 80 -**CULLISON E IRVING (1992);**
- Avanço dos computadores a partir da segunda metade da década de 80;
- Consciência por parte dos pesquisadores de que os equipamentos envolvidos deveriam ser imunes ao ambiente de soldagem;

- Estado da Arte dos SSJ
- O uso correto do termo "SEGUIMENTO DE **JUNTA"- Malin (1988)**
- Não deve ser atribuído a sistemas que utilizam trajetórias pré-estabelecidas e, tampouco, a sistemas que traçam o padrão da junta antes de iniciar a soldagem (sistemas de malha-aberta). Deve ser atribuído a sistemas que utilizam sensores (malha-fechada ou realimentados).

Sensores de Contato – LINDEN (1988):

√ Sistema esfera-mola

√ Sonda de Contato

Sensores de Não Contato – LINDEN (1988):

- Ultra-som;
- Magnéticos (corrente parasita);
- Indutivos (Corrente Induzida);
- > Sensores Óticos;
- Sensores de Arco.

LASER

- Princípio de Funcionamento do Sistema
- Variação do comprimento do eletrodo e da resistência total do sistema com a DBCP;

Variação da Corrente de Soldagem

(U=RI);

✓ Aquisição dos valores da corrente nas bordas do chanfro;

✓ Tratamento dos dados via software para ajuste de trajetória.

Junta em T

Tipos de Juntas

Junta Sobreposta

Junta de Canto

Junta de Topo

Modos	Planos de Movimentação da Tocha	Freqüência de Tecimento	Equacionamento
1	XY	Constante	Linear
2	XY	Constante	Quadrático
3	XYZ	Variável	Linear

- Fatores importantes para o desempenho do sistema Farkas (1991):
 - >Sensibilidade do sistema;
 - >Amplitude de tecimento;
 - >Frequência de tecimento;
 - Ângulo de chanfro;
 - >Velocidade de soldagem.

- Em um eixo :
- > SDP-600 e SDP-MP

- Em um eixo :
- Tartílope-V1

- Em dois eixo :
- Protótipo –Tartílope-V2

- Em dois eixo :
- Primeira versão –Tartílope-V2

Tartílope-V2 – Versão Final

BANCADA EXPERIMENTAL

- Bancada de Desenvolvimento
- Bancada de Avaliação
- Módulos comuns:
 - Fonte de Soldagem Inversal 300;
 - Sistema de Medição INTERDATA-TC-1.

Bancada de Desenvolvimento:

Bancada de Avaliação:

Robô Motoman-UP6

MATERIAIS E MÉTODOS

- Determinação do Algoritmo de Controle
- Algoritmo geral:

Variantes testadas:

Ensaio	Funções Implementação/Modificação
I (A,B)	Limitação dos Valores de Correção (Li = 0,2 mm e Ls = 2,0 mm), Correções a Cada Extremidade do Movimento de Tecimento.
П (А,В)	Verificação do Lado da Correção, Diminuição do Limite Superior (Ls = 1,0 mm), Correções a Cada Extremidade do Movimento de Tecimento.
Ш (А,В)	Mudança no Cálculo da Correção (Média), Correções a Cada Duas Extremidades do Movimento de Tecimento.

Dois ensaios para cada algoritmo.

Parâmetros de soldagem utilizados:

Tensão de Soldagem (V)	22,0
Velocidade de Alimentação de Arame (mm/s)	83,3(1)
(AWS ER70S-6 de Ø 1,0 mm)	
Velocidade de Soldagem (mm/s)	2,5(2)
Vazão de Gás (x10 ⁻³ m³/s)	0,21 ⁽³⁾
(85% Ar + 15% CO ₂)	
Freqüência de Tecimento (Hz)	1,5
Amplitude de Tecimento (mm)	å
Distância Bico-de-Contato Peça (mm)	25

(1) Va = 5.0 m/min; (2) Vs = 15 cm/min; (3) Vg = 12.5 l/min

- Corpos-de-prova:
 - Perfis em "L" de aço ABNT-1020 com dimensões de 200 mm de comprimento, 25,4 mm de abas e 6,35 mm de espessura.

- Ensaios de comprovação da eficiência do algoritmo de controle escolhido
- ✓ Verificar se o sistema é capaz de identificar quando ocorrem ou não desvios durante a operação de soldagem.
- √ Três corpos-de-provas foram ensaiados.

 Determinação da Faixa de Operação do Sistema e Estudo do Efeito dos Principais Parâmetros de Soldagem no Seu **Funcionamento**

- Parâmetros Estudados:
- √ Velocidade de Soldagem
- ✓ Freqüência de Tecimento
- ✓ Amplitude de Tecimento

- ✓ Corrente Média **Empregada**
- ✓ Ângulo de Desvio da Junta

Parâmetros de soldagem utilizados:

	Modo de Transferência Metálica	
Parâmetros de Soldagem	Curto-Circuito	Goticular Axial
Tensão de Soldagem (V)	22,0	32,0
Velocidade de Alimentação de Arame (mm/s). (AWS ER70S-6 de Ø 1,0 mm)	83,3(1)	175,0 ⁽²⁾
Vazão de Gás (x10 ⁻³ m³/s) (85% Ar + 15% CO ₂)	0,21 ⁽³⁾	0,21 ⁽³⁾
Distância Bico-de-Contato Peça (mm)	25	25
(1) Va = 5,0 m/min ; (2) Va = 10,5 m/min ; (3) Vg = 12,5 1/min		

Projeto dos Experimentos

✓ Curto-circuito

Ensaio	Vs (mm/s)	f (Hz)	A (mm)	θ (graus)
V33C	3,3	1,5	8	10,0
V25C F15C A80C D100C	2,5	1,5	8.	10,0
V17C	1,7	1,5	8	10,0
F10C	2,5	1,0	8	10,0
F20C	2,5	2,0	8	10,0
A60C	2,5	1,5	Ó.	10,0
A40C	2,5	1,5	4.	10,0
D00C	2,5	1,5	8.	Q
D25C	2,5	1,5	8	2,5
D50C	2,5	1,5	&	5,0
D150C	2,5	1,5	8	15,0

√ Goticular axial

Ensaio	Vs (mm/s)	f (Hz)	A (mm)	θ (graus)
V50G	5,0	1,5	6,0	10,0
V42G F15G A60G D100G	4,2	1,5	6,0	10,0
V33G	3,3	1,5	6,0	10,0
F10G	4,2	1,0	6,0	10,0
F20G	4,2	2,0	6,0	10,0
A40G	4,2	1,5	4,0	10,0
A20G	4,2	1,5	2,0	10,0
DOOG	4,2	1,5	6,0	0
D25G	4,2	1,5	6,0	2,5
D50G	4,2	1,5	6,0	5,0
D150G	4,2	1,5	6,0	15,0

 Comparação entre o Sistema de Seguimento de Junta Desenvolvido e um Sistema Comercial

✓ Curto-circuito

Ensaio	Vs (mm/s)	f (Hz)	Ângulo (graus)
COMP1	2,5	3,0	2,5
COMP2	2,5	3,0	5
COMP3	2,5	3,0	10
COMP4	2,5	3,0	15
COMP5	1,7	3,0	15

✓ Goticular axial

Ensaio	Vs (mm/s)	F (Hz)	Ângulo (graus)
COMP6	6,7	2,0	2,5
COMP7	6,7	2,0	5
COMP8	6,7	2,0	10
COMP9	5,0	2,0	10
COMP10	3,3	2,0	10
COMP11	3,3	2,0	15

- \checkmark Arame de \varnothing 1,0 mm;
- ✓ Arame de Ø 1,2 mm.

 Aplicação do Sistema de Seguimento de Junta na Soldagem de Juntas Chanfradas

Posição Inicial

✓ Posição Final (θ=5°)

Parâmetros de soldagem utilizados (arame de \emptyset 1,2 mm):

Tensão de Soldagem (V)	24,0	
Velocidade de Alimentação de Arame (mm/s). (AWS ER70S-6 de Ø 1,2 mm)	100,0 ⁽¹⁾	
Velocidade de Soldagem (mm/s)	3,3(2)	
Vazão de Gás (x10 ⁻³ m ³ /s) (85% Ar + 15% CO ₂)	0,21 ⁽³⁾	
Freqüência de Tecimento (Hz)	1,5	
Amplitude de Tecimento (mm)	6,0	
Distância Bico-de-Contato Peça (mm)	25	
(1) $N_2 = 6.0$ m/min : (2) $N_2 = 20$ cm/min : (3) $N_3 = 12.5$ 1/min		

 $^{^{(1)}}$ Va = 0,0 m/min; $^{(2)}$ Vs = 20 cm/min; $^{(3)}$ Vg = 12,5 l/min

RESULTADOS E DISCUSSÕES

- Determinação do Algoritmo de Controle
 - Ensaio IA:

Cordão de solda (ensaio IA):

U = 22.0 V; Va = 83.3 mm/s; Vs = 2.5 mm/s; f = 1.5 Hz; A = 8.0 mm; K = 0.05 mm/A

Ensaio IB:

✓ Defeito no cordão.

U = 22.0 V; Va = 83.3 mm/s; Vs = 2.5 mm/s; f = 1.5 Hz; A = 8.0 mm; K = 0.05 mm/A

Oscilograma mostrando instabilidades no processo:

- Resultados parciais:
 - ✓ Manter os valores de correção baixos;
 - ✓ Evitar que o sistema efetue correções para o lado contrário.

- Ensaio IIA:
- ✓ Novos limites de correção (Ls = 1,0 mm).

Cordão de solda (ensaio IIA):

- Ensaio IIIA:
- √ Valores médios.

✓ Cordão de solda descentralizado.

U = 22.0 V; Va = 83.3 mm/s; Vs = 2.5 mm/s; f = 1.5 Hz; A = 8.0 mm; K = 0.05 mm/A

✓ Algoritmo final:

- Ensaios de comprovação do algoritmo:
- √ Garantia da repetitividade e da qualidade das soldas.

- Determinação da Faixa de Operação Sistema e Estudo do Efeito dos Principais Parâmetros de Soldagem Seu no **Funcionamento**
- Ensaio de referência para o modo de transferência por curto-circuito (V25C,F15C,A80C e D100C).

Ensaio de referência para o modo de transferência goticular axial (V42G,F15G,A60G e D100G)

- Efeito da velocidade de soldagem:
- Velocidades baixas:
- ✓ V17C Ocorrência de instabilidades na trajetória da tocha devido ao arco sofrer significativa influência da poça metálica (diminuição da sensibilidade do sistema);
- √ V33G Apesar da ocorrência de instabilidades, não se verificou nenhuma alteração no cordão devido à alta taxa de deposição do modo goticular axial.

- Velocidades altas:
- √ V33C e V50G Ocorrência de mordeduras devido ao excesso de velocidade de soldagem:

U = 22.0 V; Va = 83.3 mm/s; Vs = 3.3 mm/s; f = 1.5 Hz; A = 8.0 mm; K = 0.05 mm/A

- Efeito da freqüência de tecimento:
- Freqüências baixas:
- √ F10C Ocorrência de mordeduras;
- ✓ F10G O número de correções efetuadas pelo sistema, para um mesmo comprimento da junta, diminui com a freqüência de tecimento. Assim, o sistema não foi capaz de manter a tocha alinhada.

✓ Ensaio F10G:

Cordão de Solda Resultante

U = 32.0 V; Va = 175.0 mm/s; Vs = 4.2 mm/s; f = 1.0 Hz; A = 6.0 mm; K = 0.05 mm/A

Freqüências altas:

✓ F20C e F20G – Apesar do sistema ter seguido a junta a contento, observou-se certas instabilidades na trajetória da tocha devido à ocorrência de vibração excessiva do sistema de deslocamento (limite da faixa de operação do equipamento).

- Efeito da amplitude de tecimento:
- Amplitudes menores:
- ✓ A60C e A40G Ambos os ensaios apresentaram resultados satisfatórios.
- ✓ A40C –O cordão não ficou devidamente centralizado na junta. Devido à menor variação do comprimento do eletrodo, o sistema não foi capaz de perceber o erro de alinhamento da junta satisfatoriamente.

- ✓ Devido à possível aplicação prática da configuração A = 4 mm para o modo de transferência por curto-circuito, tentou-se aumentar a sensibilidade do sistema através do incremento do fator de conversão "K".
- ✓ Entretanto, não se obteve sucesso:

- Efeito do ângulo de desvio da junta:
- Todos os ensaios apresentaram resultados satisfatórios, demonstrando a capacidade do sistema em reconhecer diferentes ângulos de desvio:
- ✓ D00C, D25C, D50C, D150C;
- ✓ D00G, D25G, D50G, D150G;

	Уs	f	A	θ	Resultado
Ensaio	(mm/s)	(Hz)	(mm)	(graus)	
₹33C	3,3	1,5	8	10,0	Velocidade Alta. Mordeduras.
V25C F15C A80C D100C	2,5	1,5	8	100	Sucesso
V17C	1,7	1,5	8	10,0	Velocidade Baixa. Instabilidade no Cordão.
F10C	2,5	1,0	8	10,0	Freqüência Baixa. Mordeduras.
F20C	2,5	2,0	8	10,0	Sucesso Limite do Sistema
A60C	2,5	1,5	6	10,0	Sucesso
A40C	2,5	1,5	4	100	Não Seguiu
D00C	2,5	1,5	8	0	Sucesso
D25C	2,5	1,5	8	2,5	Sucesso
D50C	2,5	1,5	8	5,0	Sucesso
D150C	2,5	1,5	8	15,0	Sucesso

	Ys.	f	A	θ	Resultado
Ensaio	(mm/s)	(Hz)	(mm)	(graus)	
¥50G	5,0	1,5	6,0	10,0	Velocidade Alta Mordedura
V42G F15G A60G D100G	4,2	1,5	0,6	100	Sucesso
₹33G	3,3	1,5	6,0	10,0	Sucesso Obs.:instabilidades na trajetória
F10G	4,2	1,0	6,0	10,0	Não Seguiu
F20G	4,2	2,0	6,0	10,0	Sucesso Limite do Sistema
A40G	4,2	1,5	4,0	10,0	Sucesso
A20G	4,2	1,5	2,0	100	Não Seguiu
D00G	4,2	1,5	6,0	0	Sucesso
D25G	4,2	1,5	6,0	2,5	Sucesso
D50G	4,2	1,5	6,0	5,0	Sucesso
D150G	4,2	1,5	6,0	150	Sucesso

- ✓ Para que o sistema funcionasse satisfatoriamente, para as mesmas condições empregadas nos ensaios com o sistema proposto (curto-circuito), foi necessário aumentar a frequência de tecimento para 3 Hz;
- ✓ Para o ensaio θ =15°, foi necessário diminuir a Vs de 2,5 mm/s (15cm/min) para 1,7 mm/s (10cm/min);

- Comparação entre o Sistema de Seguimento de Junta Desenvolvido e um Sistema Comercial
- ✓ Para o modo de transferência goticular axial, o máximo ângulo que desvio que o robô conseguiu corrigir satisfatoriamente foi de 5°.
- ✓ Entretanto, tais resultados contradizem o que vem no manual do robô, pois neste se diz claramente que o sistema não funciona no modo de transferência goticular axial.

 Aplicação do Sistema de Seguimento de Junta na Soldagem de Juntas Chanfradas

- ✓ O sistema de seguimento de junta desenvolvido apresentou excelentes resultados, cumprindo satisfatoriamente a performance pretendida para essa dissertação;
- ✓ O sistema foi capaz de reconhecer e corrigir ângulos de desvios da junta compreendidos entre 0° e 15°, tanto no modo de transferência por curto-circuito, como no modo de transferência axial;

- ✓ O sistema proposto apresentou boa repetitividade e qualidade nas soldas depositadas;
- ✓ Quanto menor for o valor da velocidade de soldagem, maior será a influência da poça metálica no comportamento do arco voltaico, resultando na diminuição da sensibilidade do sistema;

- ✓ O número total de correções efetuadas ao longo da junta dependerá diretamente da velocidade de soldagem e da freqüência de tecimento;
- ✓ Tanto para velocidades de soldagem altas, como para freqüências de tecimento baixas, foram observadas mordeduras nas laterais dos cordões;

- ✓ Quanto menor for a amplitude de tecimento, maior será a dificuldade do sistema em reconhecer o desvio da junta;
- ✓ Como a taxa de deposição é maior no modo de transferência goticular axial, o cordão de solda se torna menos sensível às instabilidades ocorridas na trajetória da tocha de soldagem;

PROPOSTA PARA NOVOS TRABALHOS

- ✓ O sistema comercial testado apresentou difícil implementação e utilização;
- ✓ O desvio máximo que o sistema comercial conseguiu corrigir de forma satisfatória foi de 10° para o modo de transferência por curto-circuito e de 5° para o modo de transferência goticular axial.

PROPOSTA PARA NOVOS TRABALHOS

- ✓ Analisar a influência do ângulo de chanfro e espessura da chapa no funcionamento do sistema;
- ✓ Realizar ensaios com corrente pulsada e suas variações;
- ✓ Implementar melhoramentos no algoritmo de controle desenvolvido e testar novos algoritmos de controle;

PROPOSTA PARA NOVOS TRABALHOS

- ✓ Analisar o comportamento do sistema com outros materiais de adição e de base;
- ✓ Realizar ensaios em outras posições de soldagem;
- ✓ Adaptar o sistema para a soldagem de tubos, onde a deformação sofrida pelas peças é acentuada.

AGRADECIMENTOS

PROGRAMA DE RECURSOS HUMANOS DA ANP PARA O SETOR PETRÓLEO E GÁS - PRH-ANP/MME/MCT