Specifications for Exponentiation x' over the Extended Reals X:

W. Kahan

	ENTIATION	xy with	y = integer j	
	j < 0	j = 0	j > 0	
x in X	(1/x)-,	-, ! - ! 1	x,	 - -
x is NaN	x	-, <u>1</u>	x	
				Γ

EXPONENTIATION x^y with y ≠ integer

	$y = -\infty$	-cc < y < 0 0 < y	$< +\infty$ $y = +\infty$	
x < -1	+0		+100	
x = -1		NaN *		
-1 < x < 0		· 		
x = 0	+00	+0 *	+0	
0 < x < 1	 	,,		
x = 1	NaN *	exp(y*ln(x))	NaN *	
1 < x < +00				
x = +00	+0		+∞	
x is NaN		×		

All entries in this table except $(x<0)^{\pm \infty}$, $0^{(\gamma>0)}$ and $0^{-\infty}$ are produced automatically, including the signals where marked by an *, by the expression $\exp(y*\ln(x))$ provided it is evaluated in a way analogous to the specifications of the IEEE standards, and then the expression $\exp(NaN*\ln(x))$ quietly produces NaN for x^{NaN} too. In the previous table 1/0 signals DIVBZ.