ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, ULQ2004A HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAY

The ULN2001A is obsolete and is no longer supplied.

SLRS027F - DECEMBER 1976 - REVISED FEBRUARY 2003

ULN2001A...D OR N PACKAGE

- 500-mA-Rated Collector Current (Single Output)
- High-Voltage Outputs . . . 50 V
- Output Clamp Diodes
- Inputs Compatible With Various Types of Logic
- Relay-Driver Applications
- Designed to Be Interchangeable With Sprague ULN2001A Series

description/ordering information

The ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, and ULQ2004A are

high-voltage, high-current Darlington transistor arrays. Each consists of seven npn Darlington pairs that feature high-voltage outputs with common-cathode clamp diodes for switching inductive loads. The collector-current rating of a single Darlington pair is 500 mA. The Darlington pairs can be paralleled for higher current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers. For 100-V (otherwise interchangeable) versions of the ULN2003A and ULN2004A, see the SN75468 and SN75469, respectively.

ULN2002A...N PACKAGE ULN2003A, ULN2004A . . . D, N, OR NS PACKAGE ULQ2003A, ULQ2004A . . . D OR N PACKAGE (TOP VIEW) 16**∏** 1C 1B [2B [15 T 2C 2 3B **∏** 3 14**∏** 3C 13**∏** 4C 4В П 5B ∏ 5 12**∏** 5C 6B **∏** 6 11 **∏** 6C 10 7C 7B 🛮 7 ЕΠ 8 9П сом

ORDERING INFORMATION

TA	PACKAGE† PDIP (N) Tube of 25 Tube of 40 Reel of 2500 Tube of 40 Reel of 2500		ORDERABLE PART NUMBER	TOP-SIDE MARKING
			ULN2002AN	ULN2002AN
−20°C to 70°C	PDIP (N)	Tube of 25	ULN2003AN	ULN2003AN
			ULN2004AN	ULN2004AN
		Tube of 40	ULN2003AD	ULN2003A
	SOIC (D)	Reel of 2500	ULN2003ADR	ULINZ003A
	SOIC (D)	Tube of 40	ULN2004AD	ULN2004A
		Reel of 2500	ULN2004ADR	ULINZ004A
	SOD (NS)	Reel of 2000	ULN2003ANSR	ULN2003A
	SOP (NS)	Reel of 2000	ULN2004ANSR	ULN2004A
	PDIP (N) Tube of 25		ULQ2003AN	ULQ2003A
			ULQ2004AN	ULQ2004AN
40°C to 95°C		Tube of 40	ULQ2003AD	ULQ2003A
–40°C to 85°C	SOIC (D)	Reel of 2500	ULQ2003ADR	ULQ2003A
	SOIC (D)	Tube of 40	ULQ2004AD	ULQ2004A
		Reel of 2500	ULQ2004ADR	ULQ2004A

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, ULQ2004A HIGH-VOLTAGE HIGH-CURRENT DARLINGTON

TRANSISTOR ARRAY SLRS027F - DECEMBER 1976 - REVISED FEBRUARY 2003

The ULN2001A is obsolete and is no longer supplied.

description/ordering information (continued)

The ULN2001A is a general-purpose array and can be used with TTL and CMOS technologies. The ULN2002A is designed specifically for use with 14-V to 25-V PMOS devices. Each input of this device has a Zener diode and resistor in series to control the input current to a safe limit. The ULN2003A and ULQ2003A have a 2.7-k Ω series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS devices. The ULN2004A and ULQ2004A have a 10.5-kΩ series base resistor to allow operation directly from CMOS devices that use supply voltages of 6 V to 15 V. The required input current of the ULN/ULQ2004A is below that of the ULN/ULQ2003A, and the required voltage is less than that required by the ULN2002A.

logic diagram

SLRS027F - DECEMBER 1976 - REVISED FEBRUARY 2003

schematics (each Darlington pair)

All resistor values shown are nominal.

ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, ULQ2004A HIGH-VOLTAGE HIGH-CURRENT DARLINGTON

TRANSISTOR ARRAY SLRS027F – DECEMBER 1976 – REVISED FEBRUARY 2003 The ULN2001A is obsolete and is no longer supplied.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)†

Collector-emitter voltage		50 V
Clamp diode reverse voltage (see Note 1)		
Input voltage, V _I (see Note 1)		30 V
Peak collector current (see Figures 14 and 15)		500 mA
Output clamp current, IOK		500 mA
Total emitter-terminal current		
Operating free-air temperature range, TA, ULN200xA .		–20°C to 70°C
ULQ200xA		–40°C to 85°C
ULQ200xAT		–40°C to 105°C
Package thermal impedance, θ_{JA} (see Notes 2 and 3):	D package	73°C/W
•	N package	67°C/W
	NS package	64°C/W
Package thermal impedance, θ_{JC} (see Notes 4 and 5):	D package	36°C/W
	N package	54°C/W
Operating virtual junction temperature, T _J		150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10	seconds	260°C
Storage temperature range, T _{stq}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.
 - 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.
 - 4. Maximum power dissipation is a function of $T_J(max)$, θ_{JC} , and T_C . The maximum allowable power dissipation at any allowable case temperature is $P_D = (T_J(max) T_C)/\theta_{JC}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 5. The package thermal impedance is calculated in accordance with MIL-STD-883.

electrical characteristics, T_A = 25°C (unless otherwise noted)

PARAMETER		TEST	TEST FIGURE TEST CONDITIONS		ULN2001A			ULN2002A			UNIT							
		FIGURE			MIN	TYP	MAX	MIN	TYP	MAX	UNII							
V _{I(on)}	On-state input voltage	6	$V_{CE} = 2 V$,	$I_C = 300 \text{ mA}$						13	V							
			Ι _Ι = 250 μΑ,	I _C = 100 mA		0.9	1.1		0.9	1.1								
VCE(00t)	Collector-emitter saturation voltage	5	Ι _Ι = 350 μΑ,	I _C = 200 mA		1	1.3		1	1.3	V							
	Saturation voltage		$I_I = 500 \mu A$,	I _C = 350 mA		1.2	1.6		1.2	1.6								
٧F	Clamp forward voltage	8	I _F = 350 mA			1.7	2		1.7	2	V							
ICEX	Collector cutoff current	1	V _{CE} = 50 V,	I _I = 0			50			50								
		2	V _{CE} = 50 V,	I _I = 0			100			100	μΑ							
			2			2	2	2		۷	T _A = 70°C	V _I = 6 V						500
I(off)	Off-state input current	3	V _{CE} = 50 V, T _A = 70°C	$I_C = 500 \mu A$,	50	65		50	65		μΑ							
I _I	Input current	4	V _I = 17 V						0.82	1.25	mA							
1_	Olama marrana arrana	_	$V_R = 50 V$,	T _A = 70°C			100			100								
^I R	Clamp reverse current	amp reverse current 7					50			50	μΑ							
h _{FE}	Static forward-current transfer ratio	5	V _{CE} = 2 V,	I _C = 350 mA	1000													
Ci	Input capacitance		$V_{I} = 0$,	f = 1 MHz		15	25		15	25	pF							

ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, ULQ2004A HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAY

The ULN2001A is obsolete and is no longer supplied.

SLRS027F - DECEMBER 1976 - REVISED FEBRUARY 2003

electrical characteristics, $T_A = 25^{\circ}C$ (unless otherwise noted) (continued)

PARAMETER		TEST	I TEST CONDITIONS L		ULN2003A			ULN2004A			
		FIGURE			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
				$I_C = 125 \text{ mA}$						5	
V _{I(on)}				I _C = 200 mA			2.4			6	
	On state formation to set		.,	I _C = 250 mA			2.7	,			
	On-state input voltage	6	V _{CE} = 2 V	I _C = 275 mA						7	V
				I _C = 300 mA			3				
				I _C = 350 mA						8	
\/CF(aat)			I _I = 250 μA,	I _C = 100 mA		0.9	1.1		0.9	1.1	V
	Collector-emitter saturation voltage	5	Ι _Ι = 350 μΑ,	I _C = 200 mA		1	1.3		1	1.3	
	Saturation voltage		I _I = 500 μA,	$I_{C} = 350 \text{ mA}$		1.2	1.6		1.2	1.6	
	Collector cutoff current	1	V _{CE} = 50 V,	I _I = 0			50			50	
ICEX		2	V _{CE} = 50 V, T _A = 70°C	I _I = 0			100			100 μ	μΑ
				V _I = 1 V						500	5
٧F	Clamp forward voltage	8	I _F = 350 mA			1.7	2		1.7	2	V
I _{I(off)}	Off-state input current	3	V _{CE} = 50 V, T _A = 70°C	I _C = 500 μA,	50	65		50	65		μΑ
			V _I = 3.85 V			0.93	1.35				
l _l	Input current	4	V _I = 5 V						0.35	0.5	mA
			V _I = 12 V					-	1	1.45	
1-	Clamp reverse ever	7	V _R = 50 V				50			50	^
IR	Clamp reverse current	′	V _R = 50 V,	T _A = 70°C			100			100	μΑ
Ci	Input capacitance		V _I = 0,	f = 1 MHz		15	25		15	25	pF

ULN2001A, ULN2002A, ULN2003A, ULN2004A, ULQ2003A, ULQ2004A HIGH-VOLTAGE HIGH-CURRENT DARLINGTON

TRANSISTOR ARRAY

The ULN2001A is obsolete and is no longer supplied.

SLRS027F - DECEMBER 1976 - REVISED FEBRUARY 2003

electrical characteristics over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST	I TEST CONDITIONS L		UL	Q2003	4	ULQ2004A				
		FIGURE			MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
V _{I(on)}				I _C = 125 mA						5		
				I _C = 200 mA			2.7			6		
	On atota langut walkana		.,	I _C = 250 mA	-		2.9	-				
	On-state input voltage	6	V _{CE} = 2 V	I _C = 275 mA						7	V	
				I _C = 300 mA			3					
				I _C = 350 mA						8		
V _{CE(sat)}	Collector-emitter saturation voltage	5	$I_{\parallel} = 250 \mu A$,	I _C = 100 mA		0.9	1.2		0.9	1.1	V	
			Ι _Ι = 350 μΑ,	I _C = 200 mA		1	1.4		1	1.3		
			Ι _Ι = 500 μΑ,	IC = 350 mA		1.2	1.7		1.2	1.6		
	Collector cutoff current	1	V _{CE} = 50 V,	I _I = 0			100			50		
ICEX		2	V _{CE} = 50 V	I _I = 0						100 μΑ	μΑ	
				V _I = 1 V						500		
٧F	Clamp forward voltage	8	$I_F = 350 \text{ mA}$			1.7	2.3		1.7	2	V	
II(off)	Off-state input current	3	V _{CE} = 50 V,	IC = 500 μA		65		50	65		μΑ	
			V _I = 3.85 V			0.93	1.35					
II	Input current	4	V _I = 5 V						0.35	0.5	mA	
			V _I = 12 V						1	1.45		
15	Clamp roverse ourrest	7	$V_R = 50 V$,	T _A = 25°C			100			50		
^I R	Clamp reverse current		V _R = 50 V				100			100	μΑ	
Ci	Input capacitance		$V_{I} = 0,$	f = 1 MHz	•	15	25		15	25	pF	

switching characteristics, $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	ULN2001/ ULN2003/	UNIT		
			MIN	TYP	MAX	
tPLH	Propagation delay time, low- to high-level output	See Figure 9		0.25	1	μs
tPHL	Propagation delay time, high- to low-level output	See Figure 9		0.25	1	μs
Vон	High-level output voltage after switching	$V_S = 50 \text{ V}, \qquad I_O \approx 300 \text{ mA},$ See Figure 10	V _S -20			mV

switching characteristics over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	ULQ2003	UNIT		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low- to high-level output	See Figure 9		1	10	μs
tPHL	Propagation delay time, high- to low-level output	See Figure 9		1	10	μs
VOH	High-level output voltage after switching	$V_S = 50 \text{ V}, \qquad I_O \approx 300 \text{ mA},$ See Figure 10	V _S -500		·	mV

PARAMETER MEASUREMENT INFORMATION

Figure 1. I_{CEX} Test Circuit

Figure 3. I_{I(off)} Test Circuit

NOTE: I_I is fixed for measuring $V_{\text{CE(sat)}}$, variable for measuring h_{FE}.

Figure 5. h_{FE} , $V_{CE(sat)}$ Test Circuit

Figure 7. IR Test Circuit

Figure 2. I_{CEX} Test Circuit

Figure 4. I_I Test Circuit

Figure 6. V_{I(on)} Test Circuit

Figure 8. V_F Test Circuit

PARAMETER MEASUREMENT INFORMATION

Figure 9. Propagation Delay-Time Waveforms

NOTES: A. The pulse generator has the following characteristics: PRR = 12.5 kHz, $Z_O = 50 \Omega$.

- B. C_L includes probe and jig capacitance.
- C. For testing the ULN2001A, the ULN2003A, and the ULQ2003A, V_{IH} = 3 V; for the ULN2002A, V_{IH} = 13 V; for the ULN2004A and the ULQ2004A, V_{IH} = 8 V.

Figure 10. Latch-Up Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

COLLECTOR-EMITTER
SATURATION VOLTAGE
vs
COLLECTOR CURRENT
(ONE DARLINGTON)

COLLECTOR-EMITTER
SATURATION VOLTAGE
vs
TOTAL COLLECTOR CURRENT
(TWO DARLINGTONS IN PARALLEL)

Figure 12

COLLECTOR CURRENT

INPUT CURRENT 500 $R_L = 10 \Omega$ 450 T_A = 25°C 400 Collector Current - mA V_S = 10 V 350 V_S = 8 V 300 250 200 150 100 50 25 50 75 100 125 150 0 175 200 I_I - Input Current - μA

Figure 13

SLRS027F - DECEMBER 1976 - REVISED FEBRUARY 2003

THERMAL INFORMATION

Figure 14

Figure 15

APPLICATION INFORMATION

Figure 16. P-MOS to Load

Figure 17. TTL to Load

Figure 18. Buffer for Higher Current Loads

Figure 19. Use of Pullup Resistors to Increase Drive Current

14 LEADS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A).

The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated