Deformation analysis

Leif Rune Hellevik

Department of Structural Engineering Norwegian University of Science and Technology Trondheim, Norway

September 4, 2017

Outline

- Strain
 - Used for local deformation in a material
 - i.e. deformation in the neighborhood of a particle
- Strain represents changes in
 - Material lines
 - Angles
 - Volume
- Strain concepts
 - Longitudinal strain (ε)
 - Shear strain (γ)
 - Volumetric strain (ε_{ν})
- Causes for strain
 - Mechanical stress
 - Temperature changes
 - Swelling and shrinking

Measures of strain

Longitudinal strain ε

$$\varepsilon = \lim_{s_0 \to 0} \frac{s - s_0}{s_0} = \frac{ds}{ds_0} - 1$$

in direction **e** for particle **r**₀

- Shear strain γ
 - ► Change in ∠ between ⊥ line elements
- Volumetric strain ε_{v}

$$\varepsilon_{V} = \lim_{\Delta V_0 \to 0} \frac{\Delta V - \Delta V_0}{\Delta V_0}$$

The Green strain tensor

- Objective
 - ► To use the displacement vector **u** to express the primary measures of strain
- Various tensors will be presented
 - Deformation gradient tensor F
 - Green's deformation tensor C
 - Displacement gradient tensor H
 - ► Green's strain tensor E

Length s of deformed line PQ

Coordinates of Q₀ and Q

$$Q_0: X_i + s_0 e_i$$
, with $\mathbf{e} = e_i \mathbf{e}_i$

 $x_i(X+s_0\mathbf{e})$ Q:

► Length s with s₀ as curve parameter

$$> s = \int_{0}^{s_0} \sqrt{\frac{\partial x_i}{\partial s_0} \frac{\partial x_i}{\partial s_0}} \ ds_0$$

• which yields
$$ds^2 = \left(\frac{\partial x_i}{\partial s_0} \frac{\partial x_i}{\partial s_0} \right) ds_0^2$$

Differential relations

Let ds_0 be the length of dr_0 in direction of **e** in K_0

$$d\mathbf{r}_0 = \mathbf{e} \ ds_0 = dX_k \mathbf{e_k} \Rightarrow |d\mathbf{r_0}| = ds_0, \ dX_k = e_k ds_0 \Leftrightarrow e_k = \frac{dX_k}{ds_0}$$

▶ Let dr be a line element from P in K

$$d\mathbf{r} = \frac{\partial \mathbf{r}}{\partial s_0} ds_0 \Leftrightarrow dx_i = \frac{\partial x_i}{\partial s_0} ds_0$$

▶ Thus $ds^2 = \left(\frac{\partial x_i}{\partial s_0} \frac{\partial x_i}{\partial s_0}\right) ds_0^2 \Rightarrow |d\mathbf{r}| = ds$

Deformation gradient

► The relation between dr and dr₀

$$d\mathbf{r} = \frac{\partial \mathbf{r}}{\partial \mathbf{r}_0} \cdot d\mathbf{r}_0 = \mathbf{F} \cdot d\mathbf{r}_0 \quad \Leftrightarrow \quad dx_i = \frac{\partial x_i}{\partial X_k} dX_k = F_{ik} dX_k$$

▶ The deformation gradient F

$$\mathbf{F} = \frac{\partial \mathbf{r}}{\partial \mathbf{r}_0} \quad \Leftrightarrow \quad F_{ik} = \frac{\partial x_i}{\partial X_k}$$

Green's deformation tensor

Directional derivative

$$\left. \frac{\partial x_i \left(X + s_0 \mathbf{e}, t \right)}{\partial s_0} \right|_{s_0 = 0} = \left. \frac{\partial x_i \left(X, t \right)}{\partial X_k} \frac{d \left(X_k + s_0 e_k, t \right)}{d s_0} \right|_{s_0 = 0}$$

ightharpoonup Which yields by use of the $ds_0 - e$ -relation

$$\frac{\partial x_i}{\partial s_0} = F_{ik} \frac{dX_k}{ds_0} = F_{ik} e_k$$

► Then by using the ds₀ - ds-relation

$$\left(\frac{ds}{ds_0}\right)^2 = \frac{\partial x_i}{\partial s_0} \frac{\partial x_i}{\partial s_0} = F_{ij} e_j F_{ik} e_k = \mathbf{e} \cdot \left(\mathbf{F}^T \mathbf{F}\right) \cdot \mathbf{e} = \mathbf{e} \cdot \mathbf{C} \cdot \mathbf{e}$$

- Symmetric
- ▶ 2. order

$$\mathbf{C} = \mathbf{F}^T \mathbf{F} \Leftrightarrow C_{ij} = F_{ki} F_{kj}$$

Displacement gradient tensor

$$\mathbf{r} \equiv \mathbf{r}(\mathbf{r_0}, t) = \mathbf{r_0} + \mathbf{u}(\mathbf{r_0}, t) \quad \Leftrightarrow \quad x_i(X, t) = X_i + u_i(X, t)$$

$$\frac{\partial x_i}{\partial X_k} = \delta_{ik} + \frac{\partial u_i}{\partial X_k}$$

Displacement gradient tensor

$$H_{ik} = \frac{\partial u_i}{\partial X_k} \quad \Leftrightarrow \quad \mathbf{H} = \frac{\partial \mathbf{u}}{\partial \mathbf{r}_0}$$

Relation between F and H

$$F_{ik} = \delta_{ik} + H_{ik} \Leftrightarrow \mathbf{F} = \mathbf{1} + \mathbf{H}$$

► Relation between **C** and **H**

$$\mathbf{C} = \mathbf{F}^T \mathbf{F} = (\mathbf{1} + \mathbf{H}^T) (\mathbf{1} + \mathbf{H}) = \mathbf{1} + \mathbf{H} + \mathbf{H}^T + \mathbf{H}^T \mathbf{H}$$

Green's strain tensor

Defined by

$$\mathbf{E} = \frac{1}{2} \left(\mathbf{H} + \mathbf{H}^T + \mathbf{H}^T \mathbf{H} \right)$$

- Such that C = 1 + 2E
- By substitution into previous expression

$$\left(\frac{ds}{ds_0}\right)^2 = 1 + 2 \mathbf{e} \cdot \mathbf{E} \cdot \mathbf{e}$$

• Longitudinal strain ε

$$\varepsilon = \frac{ds}{ds_0} - 1 = \sqrt{1 + 2 \mathbf{e} \cdot \mathbf{E} \cdot \mathbf{e}} - 1$$

Shear strain and volumetric strain

▶ The shear strain γ may be expressed by the Green strain tensor

$$\sin \gamma = \frac{2\bar{\mathbf{e}} \cdot \mathbf{E} \cdot \mathbf{e}}{\sqrt{\left(1 + 2\bar{\mathbf{e}} \cdot \mathbf{E} \cdot \bar{\mathbf{e}}\right) \left(1 + 2\mathbf{e} \cdot \mathbf{E} \cdot \mathbf{e}\right)}} = \frac{2\bar{\mathbf{e}} \cdot \mathbf{E} \cdot \mathbf{e}}{\left(1 + \bar{\varepsilon}\right) \left(1 + \varepsilon\right)}$$

where $\bar{\bf e} \perp {\bf e}$ and $\bar{\varepsilon}$ is the corresponding longitudinal strain

▶ The volumetric strain ε_V may also be expressed by the Green strain tensor

$$\varepsilon_{v} = \frac{dV - dV_{0}}{dV_{0}} = \det \mathbf{F} - \mathbf{1} = \det (\mathbf{1} + \mathbf{H}) - \mathbf{1} = \sqrt{\det (\mathbf{1} + \mathbf{2E})} - \mathbf{1}$$

Relevance of the Green strain tensor

- All strain measures may be expressed by the Green strain tensor
 - Longitudinal strain (ε)
 - Shear strain (γ)
 - Volumetric strain ε_{ν}
- Green strain tensor is related with
 - Deformation gradient tensor F
 - Displacement gradient tensor H

Small strains

From the general expression:

$$\varepsilon = \frac{ds}{ds_0} - 1 = \sqrt{1 + 2 \mathbf{e} \cdot \mathbf{E} \cdot \mathbf{e}} - 1$$

- By rearrangement $(1+\varepsilon)^2 = 1 + 2\varepsilon + \varepsilon^2 = 1 + 2 \mathbf{e} \cdot \mathbf{E} \cdot \mathbf{e}$
- Longitudinal strain for small strains

$$\varepsilon = \mathbf{e} \cdot \mathbf{E} \cdot \mathbf{e} = e_i E_{ii} e_i$$

Shear strain for small strains

$$\gamma = 2 \, \bar{\mathbf{e}} \cdot \mathbf{E} \cdot \mathbf{e} = 2 \, \bar{e}_i E_{ii} e_i$$

Volumetric strain for small strains

$$1 + 2\varepsilon_{v} + \varepsilon_{v}^{2} = \det(\mathbf{1} + 2\mathbf{E})$$

$$\Rightarrow \quad \varepsilon_{v} = tr(\mathbf{E})$$

Small deformations

Small deformations

$$\Leftrightarrow |H_{ij}| = \left| \frac{\partial u_i}{\partial X_i} \right| \ll 1 \Leftrightarrow norm(\mathbf{H}) \ll 1$$

- Small deformations imply
 - Small strains
 - Small rotations
- For an arbitrary field

$$\frac{\partial f}{\partial X_j} = \frac{\partial f}{\partial x_k} \frac{\partial x_k}{\partial X_j} = \frac{\partial f}{\partial x_k} \left(\delta_{ki} + \frac{\partial u_k}{\partial X_i} \right) \approx f_{,i}$$

► The Green strain tensor

$$\mathbf{E} = \frac{1}{2} \left(\mathbf{H} + \mathbf{H}^T \right) \quad \Leftrightarrow \quad E_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right)$$

▶ Volumetric strain $\varepsilon = tr(\mathbf{E})$

Compatibility criteria for the Green strain tensor

- Necessary and sufficient conditions for E to correspond to a unique and continuous u(x,t)
- ► For small deformations/strains

$$\mathbf{E} = \frac{1}{2} \left(\mathbf{H} + \mathbf{H}^T \right) \quad \Leftrightarrow \quad E_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right)$$

Compatibility equations

$$E_{ij,kl} + E_{kl,ij} - E_{il,jk} - E_{jk,il} = 0$$

Symmetry of **E** reduce the number of independent equations from $3^4 = 81$ to 6