# DEPI GRADUTION PROJECT

customer churn prediction







#### our team



#### supervised by:

Eng. Hussein Zayed

# Agenda

- 1. introduction
- 2.EDA
- 3. Data visualization
- 4. Data preprocessing
- 5. Machine learning
- 6. Deployment



#### Introduction

• the competitive telecom industry, retaining customers is more cost-effective than acquiring new ones. Customer churn—when customers leave a service provider for a competitor—poses a significant threat to revenue and market share. Identifying at-risk customers before they churn is crucial for implementing effective retention strategies. heading

• In this data science project, we focus on building a predictive model that can accurately identify customers who are likely to churn. Using Customer account information and Services that customer has signed up for





## EDA

Exploratory Data Analysis.

01

Data collection

02

Data cleaning

03

Feature relationships and correlation

#### Data collection

Dataset Overview

This dataset contains 7,043 rows and 21 columns, detailing customer information for a telecom company

| 1  | customerl gender | SeniorCitiz Partner | Dependen tenu | re PhoneSen | MultipleLi | InternetSe   | OnlineSeco | OnlineBac  | DevicePro  | TechSuppo  | Streaming  | Streaming  | Contract  | Paperless8 |
|----|------------------|---------------------|---------------|-------------|------------|--------------|------------|------------|------------|------------|------------|------------|-----------|------------|
| 2  | 7590-VHVI Female | 0 Yes               | No            | 1 No        | No phone   | DSL          | No         | Yes        | No         | No         | No         | No         | Month-to- | Yes        |
| 3  | 5575-GNV Male    | 0 No                | No            | 34 Yes      | No         | DSL          | Yes        | No         | Yes        | No         | No         | No         | One year  | No         |
| 4  | 3668-QPYI Male   | 0 No                | No            | 2 Yes       | No         | DSL          | Yes        | Yes        | No         | No         | No         | No         | Month-to- | Yes        |
| 5  | 7795-CFO(Male    | 0 No                | No            | 45 No       | No phone   | DSL          | Yes        | No         | Yes        | Yes        | No         | No         | One year  | No         |
| 6  | 9237-HQIT Female | 0 No                | No            | 2 Yes       | No         | Fiber option | No         | No         | No         | No         | No         | No         | Month-to- | Yes        |
| 7  | 9305-CDSk Female | 0 No                | No            | 8 Yes       | Yes        | Fiber option | No         | No         | Yes        | No         | Yes        | Yes        | Month-to- | Yes        |
| 8  | 1452-KIOV Male   | 0 No                | Yes           | 22 Yes      | Yes        | Fiber option | No         | Yes        | No         | No         | Yes        | No         | Month-to- | Yes        |
| 9  | 6713-OKO Female  | 0 No                | No            | 10 No       | No phone   | DSL          | Yes        | No         | No         | No         | No         | No         | Month-to- | No         |
| 10 | 7892-POO Female  | 0 Yes               | No            | 28 Yes      | Yes        | Fiber option | No         | No         | Yes        | Yes        | Yes        | Yes        | Month-to- | Yes        |
| 11 | 6388-TAB( Male   | 0 No                | Yes           | 62 Yes      | No         | DSL          | Yes        | Yes        | No         | No         | No         | No         | One year  | No         |
| 12 | 9763-GRSk Male   | 0 Yes               | Yes           | 13 Yes      | No         | DSL          | Yes        | No         | No         | No         | No         | No         | Month-to- | Yes        |
| 13 | 7469-LKBC Male   | 0 No                | No            | 16 Yes      | No         | No           | No interne | Two year  | No         |
| 14 | 8091-TTV/ Male   | 0 Yes               | No            | 58 Yes      | Yes        | Fiber option | No         | No         | Yes        | No         | Yes        | Yes        | One year  | No         |
| 15 | 0280-XJGE Male   | 0 No                | No            | 49 Yes      | Yes        | Fiber option | No         | Yes        | Yes        | No         | Yes        | Yes        | Month-to- | Yes        |
| 16 | 5129-JLPIS Male  | 0 No                | No            | 25 Yes      | No         | Fiber option | Yes        | No         | Yes        | Yes        | Yes        | Yes        | Month-to- | Yes        |
| 17 | 3655-SNQ' Female | 0 Yes               | Yes           | 69 Yes      | Yes        | Fiber option | Yes        | Yes        | Yes        | Yes        | Yes        | Yes        | Two year  | No         |
| 10 | 0101 VMC Famala  | O No                | No            | E2 Voc      | No         | No           | No interne | Onewar    | No         |



#### Data collection

#### The data set includes information about:

- Customers who left within the last month the column is called Churn
- Services that each customer has signed up for phone, multiple lines, internet, online security, online backup, device protection, tech support, and streaming TV and movies
- Customer account information how long they've been a customer, contract, payment method, paperless billing, monthly charges, and total charges
- Demographic info about customers gender, age range, and if they have partners and dependents

#### Data collection

• • • • •

#### Read and check data set information:



# Data cleaning

#### 1. Handle missing values



#### 2.Fix structural errors



#### Feature correlation

1. Correlation matrix: Calculate and visualize correlations between numerical features to understand their relationships





# Data visualization

is the process of representing data graphically, allowing insights and patterns to be easily understood and communicated





# Data visualization





# Data preprocessing

# 2. Data Splitting

Split the dataset into training and test sets to evaluate the performance of the model on unseen data

```
[48] X = df.drop(columns = ['Churn'])
y = df['Churn'].values

from sklearn.model_selection import train_test_split,GridSearchCV
{ train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.30, random_state = 40, stratify=y)
```

#### 3.Encoding Categorical Data

```
| def object_to_int(dataframe_series):
| if dataframe_series dtype=='object':
| dataframe_series = LabelEncoder().fit_transform(dataframe_series)
| return dataframe_series = LabelEncoder |
| def object_to_int(dataframe_series) |
| dataframe_series = LabelEncoder |
| dataframe_series = LabelEncoder |
| def object_to_int(x) |
| dataframe_series = LabelEncoder |
| def object_to_int(dataframe_series) |
| dataframe_series = LabelEncoder |
| def object_to_int(dataframe_series) |
| dataframe_series = LabelEncoder |
| def object_to_int(dataframe_series) |
| dataframe_series = LabelEncoder |
| def object_to_int(dataframe_series) |
| dataframe_series = LabelEncoder |
| def object_to_int(dataframe_series) |
| def object_to_int(dataframe_series) |
| dataframe_series = LabelEncoder |
| def object_to_int(dataframe_series) |
| dataframe_series = LabelEncoder |
| def object_to_int(dataframe_series) |
| def object_to_int(dataframe_series) |
| dataframe_series = LabelEncoder |
| def object_to_int(dataframe_series) |
| def object_to_int(dataframe_se
```

# Data preprocessing

is a key step in preparing raw data for analysis or machine learning models

# 1. Feature Scaling







#### We use Logistic Regression, SVC, Gradient, DecisionTree

```
# Import necessary classifiers from scikit-learn
from sklearn.linear model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
# Define classifiers
clf1 = LogisticRegression()
                                     # Logistic Regression
clf2 = SVC()
                                      # Support Vector Classifier (SVC)
clf3 = GradientBoostingClassifier()
                                      # Gradient Boosting Classifier
clf4 = RandomForestClassifier()
                                      # Random Forest Classifier
clf5 = DecisionTreeClassifier()
                                      # Decision Tree Classifier
clf6 = KNeighborsClassifier()
                                      # K-Nearest Neighbors Classifier
```

```
‡ Logistic Regression

parami['classifier'] = [clf1] # Logistic Regression
param1['classifier_C'] = [1.0, 10, 100] # Regularization parameter
param2['classifier'] = [clf2] # SUC
param2['classifier_C'] = [1.0, 10, 100] # Regularization parameter
param2['classifier_kernel'] = ['linear', 'rbf'] # Kernel function
# Gradient Boosting Classifier
param3 = {}
param3['classifier'] = [clf3] # Gradient Boosting Classifier
param3['classifier_max_depth'] = [3, 5] # Maximum depth of each tree
param3['classifier_n_estimators'] = [10, 100, 1000] # Number of boosting stages
param3['classifier_learning_rate'] = [0.1, 0.01, 0.001] # Learning rate

★ RandomForest Classifier

param4 = {}
param4['classifier'] = [clf4] # RandomForestClassifier
param4['classifier_n_estimators'] = [10, 100, 1000] # Humber of trees in the forest
param4['classifier_max_depth'] = [3, 5] # Maximum depth of each tree

₱ Decision Tree Classifier

param5 = {}
param5['classifier'] = [clf5] # DecisionTreeClassifier
param5['classifier_max_depth'] = [3, 5, None] # Maximum depth of the tree
# K-Wearest Weighbors (KWW) Classifier
param6['classifier'] = [clf6] # KWeighborsClassifier
param6['classifier_n_neighbors'] = [3, 5, 7] # Mumber of neighbors
param6['classifier_weights'] = ['uniform', 'distance'] # Height function for neighbors
```

# Machine learing

# Best result in Logistic Regression

```
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import mean_squared_error, r2_score, f1_score,accuracy_score
# Initialize the classifier with the best parameters
best_model = GradientBoostingClassifier(
    learning_rate=0.01,
    max_depth=3,
    n estimators=1000
# Fit the best model on the training data
best_model.fit(X_train, y_train)
# Make predictions on the test set
y_pred_best = best_model.predict(X_test)
# Evaluate the model
mse_best = mean_squared_error(y_test, y_pred_best)
r2_best = r2_score(y_test, y_pred_best)
fscore_best = f1_score(y_test, y_pred_best)
accuracy_score_best = accuracy_score(y_test, y_pred_best)
print(f"Mean Squared Error with Best Model: {mse_best}")
print(f"R^2 Score with Best Model: {r2_best}")
print (f"R"2 Score with Best Model: {fscore_best}")
print (f"Accuracy Score with Best Model: {accuracy_score_best}")
Mean Squared Error with Best Model: 0.1895734597156398
R^2 Score with Best Model: 0.028756405432059595
R^2 Score with Best Model: 0.6078431372549019
Accuracy Score with Best Model: 0.8104265402843602
```

# Dash board

## using power BI



# Deployment using streamlit

#### Home page content:

- 1. Why is this important?
- 2. Why is this important?
- 3. What will this app take from you?



# Deployment

# • • • • •

# **Customer Churn Insights**



# Deployment



## **Churn Prediction**

| streamlit app | Internet Service  |
|---------------|-------------------|
| homepage      | DSL               |
| insights      | Online Security   |
| predictions   | Yes               |
|               |                   |
|               | Online Backup     |
|               | Yes               |
|               | Device Protection |
|               | Yes               |
|               | Tech Support      |
|               | Yes               |
|               | Streaming TV      |
|               | Yes               |
|               | Streaming Movies  |
|               | Yes               |
|               | Predict Churn     |

# THANK YOU