Cálculo Numérico (521230)

Test 1 – Tema 3

Fecha: 3-Abr-02; 17:00-18:00. Duración: 45 minutos

Nombre y apellidos	
Matrícula	
Especialidad o carrera	

1. Sean

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & \cdots & 0 & 2 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 0 & \cdots & 0 & 2 \\ \hline 2 & 0 & \cdots & 0 & -1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 2 & 0 & \cdots & 0 & -1 \end{bmatrix} \in \mathbb{R}^{2n \times 2n} \quad \mathbf{y} \quad \mathbf{b} = \begin{bmatrix} 1 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 1 \end{bmatrix}$$

- (a) Hacer un programa MATLAB que:
 - i. genere la matriz anterior para n = 5;
 - ii. calcule la factorización $\mathbf{L}\mathbf{U}$ de una permutación \mathbf{P} de la matriz \mathbf{A} (con \mathbf{L} matriz triangular inferior y \mathbf{U} triangular superior) y entregue las normas infinito de \mathbf{L} y \mathbf{U} .
 - iii. calcule la factorización $\mathbf{L}_1\mathbf{U}_1$ de la matriz \mathbf{A} (con \mathbf{L}_1 matriz "psicológicamente" triangular inferior y \mathbf{U} triangular superior) y entregue las normas infinito de \mathbf{L}_1 y \mathbf{U}_1 ;
 - iv. utilice la factorización $\mathbf{L}_1\mathbf{U}_1$ anterior para resolver el sistema de ecuaciones $\mathbf{A}\mathbf{x}=\mathbf{b}$.

Indicar el nombre del archivo donde se ha guardado el programa en el diskette:

Archivo			
---------	--	--	--

(b) Indicar los valores obtenidos de las normas infinito de L, U, L_1 y U_1 :

$\ \mathbf{L}\ _{\infty}$	$\left\ \mathbf{L}_{1} ight\ _{\infty}$	
$\ \mathbf{U}\ _{\infty}$	$\left\ \mathbf{U}_{1} ight\ _{\infty}$	

(c) Indicar cuál de las siguientes es la razón por la que la norma infinito de ${\bf L}$ coincide con la de ${\bf L}_1$ y la de ${\bf U}$ coincide con la de ${\bf U}_1$:

$\boxed{\text{porque } \mathbf{L} = \mathbf{L}_1 \text{ y } \mathbf{U} = \mathbf{U}_1}$	
porque $\mathbf{L}\mathbf{U} = \mathbf{L}_1\mathbf{U}_1 = \mathbf{A}$	
porque $\mathbf{L} = \mathbf{PL}_1 \ \mathbf{y} \ \mathbf{U} = \mathbf{U}_1$	
porque $\mathbf{L} = \mathbf{L}_1 \ \mathrm{y} \ \mathbf{U} = \mathbf{P} \mathbf{U}_1$	

(d) Indicar la primera componente de la solución calculada ${\bf x}$:

\mathbf{x}_1

[20 PTS.]

2. Hacer un programa MATLAB que dibuje en un mismo gráfico las funciones

$$f(x) = \begin{cases} |x| & \text{si } |x| > 1, \\ 1 & \text{si } |x| \le 1, \end{cases}$$
$$g(x) = x^2.$$

Indicar el nombre de los archivos donde se han guardado los programas en el diskette:

- 4			
	Anabirroa		
	AICHIVOS		

[10 PTS.]

RAD/RRA/MSC