

planetmath.org

Math for the people, by the people.

proof of Bolzano's theorem

Canonical name ProofOfBolzanosTheorem

Date of creation 2013-03-22 15:43:29
Last modified on 2013-03-22 15:43:29
Owner cvalente (11260)

Last modified by cvalente (11260)

Numerical id 7

Author cvalente (11260)

Entry type Proof

Classification msc 26A06

Consider the compact interval [a, b], a < b and a continuous real valued function f. If f(a).f(b) < 0 then there exists $c \in (a, b)$ such that f(c) = 0

WLOG consider f(a) < 0 and f(b) > 0. The other case can be proved using -f(x) which will also verify the theorem's conditions.

consider $a_1 = \frac{a+b}{2}$, three cases can occur:

- $f(a_1) = 0$, in this case the theorem is proved $c = a_1$
- $f(a_1) > 0$, in this case consider the interval $I_1 = (a, a_1)$
- $f(a_1) < 0$, in this case consider the interval $I_1 = (a_1, b)$

so starting with an open interval $I_0 = (a, b)$ we get another open interval $I_1 \subset I_0$ with length half of the original $|I_1| = \frac{|I_0|}{2}$.

Repeat the procedure to the interval I_n and get another interval I_{n+1} .

We can thus define a succession of open intervals I_n such that $I_{n+1} \subset I_n$, $|I_n| = 2^{-n}|I_0|$, such that $I_n = (a_n, b_n)$ and $f(a_n) < 0 < f(b_n)$.

The succession $c_{2n} = a_n, c_{2n+1} = b_n$ is Cauchy by construction since $m > n \implies |c_m - c_n| < 2^{-[n/2]} |I_0|$.

 c_n is therefore convergent $c_n \to c \in [a, b]$, and since a_n and b_n are subsuccessions, they converge to the same limit.

f is continuous in [a,b] so $x_n \to x \implies f(x_n) \to f(x)$

By construction

 $f(a_n) < 0$ and $f(b_n) > 0$ so in the limit $\lim_{n \to \infty} f(a_n) = f(\lim_{n \to \infty} a_n) = f(c) \le 0$ and $\lim_{n \to \infty} f(b_n) = f(c) \ge 0$.

So there exists $c \in [a, b]$ such that $0 \le f(c) \le 0 \implies f(c) = 0$.

But since f(a).f(b) < 0, neither f(a) = 0 nor f(b) = 0 and since f(c) = 0, $c \in (a,b)$