					1,1		
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^-\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	$\frac{6 k^2 (2 r_3 + r_5) + t_1}{2 (k + 2 k^3)^2 (2 r_3 + r_5) t_1}$	0	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{lphaeta}$		$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\tau_1^{\#1} + \alpha \beta \qquad \frac{i \sqrt{2} k}{t_1 + k^2 t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha^{\beta}$	$\tau_1^{\#1} + ^{\alpha \beta}$	$\sigma_{1^{-}}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

Source constraints				
SO(3) irreps				
$\tau_{0^{+}}^{\#2} == 0$				
$\tau_{0+}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + \bar{\imath}k\sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{i}k\sigma_{2+}^{\#1\alpha\beta} == 0$	5			
Total #:	16			

$\sigma_{2^{ ext{-}}}^{\#1} _{lphaeta\chi}$	0	0	$\frac{2}{t_1}$	
$\tau_{2}^{\#1}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$	

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 - t_1}$
$\tau_0^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	0	0	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{6 k^2 r_3}$	0	0	0
	$\sigma_{0}^{\#1}\dagger$	$\tau_0^{\#1}$ \dagger	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$

 $\omega_{2}^{#1}_{+}$ $\beta_{2}^{#1}_{+}$ $\alpha_{2}^{#1}_{-}$ $\alpha_{\beta\chi}$

0

 $\frac{i\,k\,t_1}{\sqrt{2}}$

<u>t</u>1

<u>t</u>1 2

0

 $\omega_{0^{\text{-}}}^{\#1}$

0

0

 $6k^2r_3$

0

0

0

0

Unitarity conditions $r_2 < 0 \&\& r_5 < -2 r_3 \&\& t_1 < 0$

Lagrangian density