Capítulo 14: Proteção

Capítulo 14: Proteção

- Objetivos da proteção
- Princípios da proteção
- Domínio de proteção
- Matriz de acesso
- Implementação da matriz de acesso
- Controle de acesso
- Revogação de direitos de acesso
- Sistemas baseados em capacidade
- Proteção baseada em linguagem

Objetivos

- Discutir os objetivos e princípios de proteção em um sistema computadorizado moderno
- Explicar como os domínios de proteção, combinados com uma matriz de acesso, são usados para especificar os recursos que um processo pode acessar
- Examinar sistemas de proteção baseados em capacidade e linguagem

Objetivos da proteção

- O sistema operacional consiste em uma coleção de objetos, hardware ou software
- Cada objeto tem um nome exclusivo e pode ser acessado por um conjunto bem definido de operações
- Problema da proteção garantir que cada objeto seja acessado corretamente e somente por aqueles processos que têm permissão para tal

Princípios de proteção

- Princípio orientador princípio do menor privilégio
 - Programas, usuários e sistemas devem receber apenas privilégios suficientes para realizar suas tarefas

Estrutura de domínio

- Direito de acesso = <nome-objeto, conjunto-direitos> onde conjunto-direitos é um subconjunto de todas as operações válidas que podem ser realizadas sobre o objeto.
- Domínio = conjunto de direitos de acesso

Matriz de acesso

- Veja a proteção como uma matriz (matriz de acesso)
- Linhas representam domínios
- Colunas representam objetos
- Access(i, j) é o conjunto de operações que um processo executando no Domínio, pode invocar em Objeto,

Matriz de acesso

object domain	F ₁	F ₂	F ₃	printer
D_1	read		read	
D_2				print
D_3		read	execute	
D_4	read write		read write	

Uso de uma matriz de acesso

- Se um processo no Domínio D_i tenta realizar "op" sobre o objeto O_j, então "op" deve estar na matriz de acesso
- Pode ser alterada dinamicamente
 - Operações para incluir e excluir direitos de acesso
 - Direitos de acesso especiais:
 - □ owner de O_i
 - □ copy op de O_i para O_j
 - □ control − D_i pode modificar direitos de acesso de D_j
 - □ transfer troca do domínio D, para D,

Uso da matriz de acesso (cont.)

- Projeto de matriz de acesso separa mecanismo da política.
 - Mecanismo
 - Sistema operacional oferece matriz de acesso + regras.
 - Garante que a matriz de acesso só é manipulada por agentes autorizados e que as regras são impostas estritamente.
 - Política
 - Usuário dita a política.
 - Quem pode acessar que objeto e em que modo.

Implementação da matriz de acesso

- Tabela Global conjunto de triplas ordenadas <domínio, objeto, direitos>
- Lista de permissões (por objeto) cada coluna é uma lista: <Domínio 1, Read, Write>;< Domínio 2, Read>; <Domínio 3, Read>
- Lista de capacidades (por domínio) cada linha é uma lista: <Objeto 1, Read>, <Objeto 4, Read, Write, Execute>,
 <Objeto 5, Read, Write, Delete, Copy>
- Lock-key meio termo entre as duas últimas: cada objeto possui uma lista de padrões de bits (locks – fechaduras) e cada domínio possui uma lista de padrões de bits (keys - chaves)

Matriz de acesso com domínios como objetos

object domain	F ₁	F_2	F_3	laser printer	D_1	D_2	D_3	D_4
D_1	read		read			switch		
D_2				print			switch	switch
D_3		read	execute					
D_4	read write		read write		switch			

Matriz de acesso com direitos Copy (*)

object domain	F ₁	F_2	F ₃		
D_1	execute		write*		
D_2	execute	read*	execute		
D_3	execute				
(a)					
object domain	F ₁	F_2	F_3		
D			- 4		
D_1	execute		write*		
D_1 D_2	execute	read*	execute		
		read*			

Um processo executando em D2 pode copiar a permissão read para qualquer entrada associada a F2 (fig. (a) para (b))

Matriz de acesso com direitos Owner

object domain	F ₁	F ₂	F ₃
D_1	owner execute		write
D_2		read* owner	read* owner write
D_3	execute		

(a)

object domain	F ₁	F ₂	F ₃
D_1	owner execute		write
D_2		owner read* write*	read* owner write
D_3		write	write

A direito de proprietário ("owner") permite que o processo crie ou exclua novos direitos para o objeto (fig. (a) para (b))

Matriz de acesso com direito control

object domain	F ₁	<i>F</i> ₂	F_3	laser printer	<i>D</i> ₁	D_2	D_3	D_4
<i>D</i> ₁	read		read			switch		
D ₂				print			switch	switch control
<i>D</i> ₃		read	execute					
D_4	write		write		switch			

Um processo executando em D2 pode alterar as permissões de D4

Controle de acesso

- Utiliza a mesma forma de controle de acesso a arquivos (owner, can read, can write, etc...)
- Solaris 10 oferece controle de acesso baseado em role para implementar menor privilégio
 - Privilégio é direito de executar chamada do sistema ou usar uma opção dentro de uma chamada do sistema
 - Pode ser atribuído a processos
 - Roles atribuídos a usuários concedendo acesso a privilégios e programas

Controle de acesso baseado em role no Solaris 10

Revogação de direitos de acesso

- Imediata ou adiada revogação é feita imediatamente? Se não, é possível saber quando será feita?
- □ Seletiva ou geral quando um direito de acesso a um objeto é revogado, afeta todos os usuários ou é possível especificar um grupo de usuários?
- Parcial ou total Um subconjunto dos direitos associados a um objeto pode ser revogado ou temos que revogar todos os direitos?
- □ Temporária ou permanente uma vez revogado, não pode mais ser concedido?

Proteção baseada em linguagem (exemplo: Java)

- Proteção é tratada pela Java Virtual Machine (JVM)
- Uma classe recebe um domínio de proteção quando é carregada pela JVM.
- O domínio de proteção indica quais operações a classe pode executar.
- Se um método de biblioteca for invocado e realizar uma operação privilegiada, a pilha é inspecionada para garantir que a operação pode ser realizada pela biblioteca.

Final do Capítulo 14

