Mancala

Viktor Kosin und Johanna Beier

04.09.2020

Structure

- Mancala rules
- Q-learning
- ► Backpropagation
- Network
- Training
- ► Troubleshooting
- Results

Mancala

ancient two player game

► as vector: [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 0, 0]

▶ **Goal:** catch more then half of the beans (37)

Mancala Rules

- collect all beans of a hole and drop one in each clockwise following hole
- ▶ catch all beans of the last hole, if it contains 6, 4 or 2 beans
- going backwards: collect beans from all following holes with 6, 4 or 2 beans, if there are no other holes in between
- game ends if either one player has no more beans or one player catches at least 37 beans
- ▶ total sum of beans: catched beans + beans on own side

MDP

- Mancala can be represented as a Marcov Decision Process (MDP)
- ightharpoonup set of states S, set of actions per state A, action $a \in A$
- finite but very large number of states
- ▶ How does the Mancala agent learns to choose the best action?

Reinforcement Learning

- ▶ Idea: reward or punish some action
- ► Goal of agent: maximize total reward
- here: Small reward for catching beans, bigger reward for winning the game
- use Q-Learning

Q-learning

- ► small state space: Q-table
- replace Q-table by Q-function

$$Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma \max_{a'} Q(s',a') - Q(s,a)] \quad (1)$$

- agents often need to learn actions that do not lead immediately to a reward
- allow a small amount of random actions (exploration rate)

Netz

bild netz, dass wir verwenden

Netz

- **activation function:** Sigmoidfunction
- ▶ learningrate for the update-weights-function

Backpropagtion

- 1. Step Generate training data: for a given input set an expected output (e.g. with Q-function)
- **2. Step** Calculate for the input $a^{x,1}$:
 - ▶ activation $a^{x,l}$ of layer l = 2, 3, ..., L by

$$a^{x,l} = \sigma(w^l a^{x,l-1} + b^l)$$

- Output error $\delta^{x,L}$
- **B** Backpropagate error to each layer: $\delta^{x,l}$
- 3. Step Use error of each layer to update weights and biases

play

Training

- let two agents play against each other and save pairs of actions and rewards
- update for each boardstate and action the underlying Q-function
- save each board state and dedicated Q-values as training data
- feedforward a boardstate to the net
- ▶ loss = output − Q-values

simple game

- $\blacktriangleright [1,1,5,1,1,1|1,1,5,1,1,1|0,0]$
- second player has advantage to play at least tied
- network ist startplayer
- after some trainingiterations the second player does not win at all
- ightharpoonup \rightarrow network is ok

simple board

- reduce the board size: [2,2|2,2|0,0]
- compare guessed Q-Values with choice of hole
- ightharpoonup Q-function decides for wrong side ightarrow solve this error
- net performs good, if it starts in the right direction
- use flexible exploration rate

simple board results

- ▶ 1 hidden layer with 10 neurons
- ▶ 1 Unit = 100 Trainingiterations

simple board results: jump

Mancala with 4 beans per hole

- **►** [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0]
- transfer findings to this game (flexible exploration rate, ...)
- learns something but oscillates
- learns better if starts in the right direction

Mancala with 4 beans per hole

improved Mancala with 4 beans per hole

- ► Idea: reduce learning rate if net performs good otherwise increase learning rate
- reward only winning not catching beans

improved Mancala with 4 beans per hole

Results