```
Machine Learning in Dropshipping:
The Revolutionary Approach
of Drop Master
```

```
Sumário {
```

Introdução - Problema?

Dropshipping é um modelo de negócios amplamente adotado no e-commerce, que permite aos vendedores operar sem manter estoque, pois os fornecedores enviam diretamente os produtos aos compradores.

Embora eficiente em muitos aspectos, essa abordagem apresenta desafios significativos. Um dos principais é a dificuldade em prever a demanda e a quantidade de estoque recomendada para um determinado produto em um mês.

Pode resultar em:

- Atrasos na entrega; 🐢
- Insatisfação do cliente; 😡
- 🕨 Perder espaço para a concorrência. 👋

Introdução - Solução?

Nosso trabalho tem como objetivo aliviar esse problema recorrente no dropshipping. Propomos uma metodologia inovadora que ajuda a prever a demanda do produto e a determinar a quantidade ideal de estoque que um fornecedor deve ter para um determinado produto.

Dessa forma, os vendedores podem:

- Otimizar sua operação; 🤑 💝
- Estocar ou combinar previamente produtos com o fornecedor;
- Minimizar a demora no envio; 🖋
- 🔸 Melhorar a satisfação do cliente. 😍🥰

API do Mercado Livre? X

Dataset Russo no Kaggle? \(\text{(thx Germano)} \)

Companhia de software russa - 1C Company.

Os dados foram combinados em um único DataFrame → combined_sales.csv

- sales_train.csv o conjunto de treinamento. Dados históricos diários de janeiro de 2013 a outubro de 2015.
- items.csv informações complementares sobre os itens/produtos.
- item_categories.csv informações complementares sobre as categorias dos itens.
- shops.csv informações complementares sobre as lojas.

- ID um ID que representa uma tupla (Loja, Item) dentro do conjunto de teste
- shop_id identificador único de uma loja
- item_id identificador único de um produto
- item_category_id identificador único da categoria do item
- item_cnt_day número de produtos vendidos.
- item_price preço atual de um item
- date data no formato dd/mm/yyyy
- date_block_num um número de mês consecutivo, usado para conveniência. Janeiro de 2013 é 0, fevereiro de 2013 é 1,..., outubro de 2015 é 33
- item_name nome do item
- shop_name nome da loja
- item_category_name nome da categoria do item

- date_block_num
- shop_id
- item_id
- item_price
- item_cnt_day
- item_name
- item_category_id
- item_category_name
- shop_name
- year
- month

- year
- month
- item_id
- item_category_id

- item_price
- item_cnt_day

Target (variáveis dependentes)

- Remoção de Duplicatas: < 5% das linhas eram duplicadas; 🗑
- Conversão de Datas: Conversão o formato de data correto, permitindo a extração das colunas year e month.
- Filtragem de Itens: Somente aqueles itens que têm registros em todos os três anos foram mantidos no dataset. Isso ajuda a garantir que haja dados suficientes para cada item para fazer previsões precisas.
- Agregação de Dados: Os dados foram agregados em médias mensais e totais, para o preço do item e a quantidade de item, respectivamente. Isso permite que as previsões sejam feitas em uma base mensal.
- Codificação de Variáveis Categóricas: A variável item_category_id foi transformada por LabelEncoder.

```
Metodologia - Treinamento
1.622.434 registros distribuídos em:
         Treinamento
          80%
           Teste
          20%
```

```
2013 (48,5%)
2014 (37,7%)
2015 (13,8%)

Balanceamento? ×
Divisão temporal?
```

Metodologia - Random Forest

• Capacidade em lidar com outliers e variáveis irrelevantes.

Construção do pipeline: normaliza os dados usando StandardScaler → aplica o modelo Random Forest Regressor.

```
# Construindo o pipeline
pipeline = Pipeline([
    ('scaler', StandardScaler()),
    ('regressor', RandomForestRegressor(n_estimators=100, random_state=42))
])

**Semente aleatória**
```

Validação cruzada: Foi realizada a validação cruzada com 10 folds para avaliar a eficácia do modelo. Avaliando com R² Score:

- Scores: [0.90 0.89 0.82 0.74 0.92 0.93 0.82 0.87 0.91 0.94]
- Média: 0.87
- Desvio padrão: 0.060

1 2 3

3

5

6

7

/

8

 \cap

9

10

1 1

1 0

1 2

1 Д

Metodologia - Métricas

Enquanto o MAE e o RMSE nos fornecem uma medida da magnitude do erro do modelo, o R² Score nos dá uma ideia de quão bem as variáveis independentes do modelo são capazes de explicar a variação nos dados de saída.

Resultados - Random Forest

As previsões do modelo, em média, desviam por cerca de 33.11 unidades do valor real.

As previsões do modelo desviam em média e em termos quadráticos por cerca de 104.50 unidades do valor real.

O R² Score de 92,50% nos diz que a variação nos dados de saída pode ser explicada pelas variáveis independentes no modelo. Indica um bom desempenho do modelo, independentemente da magnitude das saídas.

Resultados - Baselines

Métrica	Valor	
RMSE	154.369	
MAE	76.5619	
R ² Score	0.902	

#2 XGBoost

Métrica	Valor	
RMSE	104.496	
MAE	33.105	
R ² Score	0.925	

#1 Random Forest

Métrica	Valor	
RMSE	122.947	
MAE	29.902	
R ² Score	0.895	

#3 Decision Tree

Resultados - Divisão Temporal

Métrica	Valor		
RMSE	211.711		
MAE	83.482		
R ² Score	0.638		

Métrica	Valor	
RMSE	239.827	
MAE	92.539	
R ² Score	0.459	

2013	(treino)
2014	(teste)

Métrica	Valor	
RMSE	215.356	
MAE	84.383	
R ² Score	0.611	

2014 (treino) 2015 (teste)

	Ano	Mês	ID do Produto	ID da Categoria do Produto	Quantidade recomendada	Preço Recomendado	Receita Estimada
0	2016	7	20949	71	3446.58	4.975298	17147.763313
1	2016	7	1905	30	60.59	242.377016	14685.623400
2	2016	7	7071	19	37.75	999.601497	37734.956496
3	2016	7	11921	40	66.60	575.847855	38351.467123
4	2016	7	13881	55	34.74	596.117210	20709.111880

Figura 2. Previsões de produtos das 5 melhores categorias em termos de volume de vendas

Figura 3. Previsões de quantidade recomendada por preço recomendado de diferentes produtos no mês de Julho.

Figura 4. Produtos com as maiores receitas percentuais previstas.

	Ano	Mês	ID do Produto	ID da Categoria do Produto	Quantidade recomendada	200 10 10 10	
0	2016	1	6674	12	204.42	25725.032619	5.258711e+06
1	2016	2	6674	12	173.22	25557.052354	4.426993e+06
2	2016	3	6674	12	134.52	26554.467180	3.572107e+06
3	2016	4	6674	12	92.44	27590.369256	2.550454e+06
4	2016	5	6674	12	136.93	26748.784602	3.662711e+06
5	2016	6	6674	12	154.24	25931.775230	3.999717e+06
6	2016	7	6674	12	36.79	27134.832322	9.982905e+05
7	2016	8	6674	12	19.91	27069.412745	5.389520e+05
8	2016	9	6674	12	14.61	25290.347381	3.694920e+05
9	2016	10	6674	12	14.61	25146.847381	3.673954e+05
10	2016	11	6674	12	28.88	25128.230130	7.257033e+05
11	2016	12	6674	12	27.82	25163.330913	7.000439e+05

Figura 5. Previsão anual do produto PlayStation 4.

Figura 5. Previsões de quantidade recomendada Vs preço recomendado para o PlayStation 4 em 12 meses.

¹ Conclusão

Neste estudo, desenvolvemos uma plataforma de previsão de séries temporais para auxiliar vendedores no mercado de dropshipping.

- R² de 92.5% para Random Forest
- Previsões consistentes e confiáveis
- Se destaca por utilizar duas variáveis alvo (multi-target)

Trabalhos Futuros

• Comparação com outras baselines e abordagens

• Conjunto de dados recente e mais robusto

• Aplicação do modelo em um conjunto de dados de produção real

Implantação do modelo em prod.

Problema devido ao tamanho do model.plk (1.5 GB)

https://dropmasterportalfinal.azurewebsites.net/ (erro 504.0 GatewayTimeout)

- Ngrok (túnel seguro para o localhost)
 - 1. Inicie seu aplicativo Flask em seu ambiente de desenvolvimento local. Por padrão, o Flask inicia no localhost:5000.
 - 2. Comando: ngrok http 5000

Acessar: https://fd0c-45-178-248-51.ngrok-free.app

Implantação do modelo em prod.

Referências

- [1] V. N. MULLER, "E-commerce: vendas pela internet," Fundac¸ao Ed- a ucacional do Municipio de Assis, 2013.
- [2] R. Cui, D. J. Zhang, and A. Bassamboo, "Learning from inventory availability information: Evidence from field experiments on amazon," Management Science, vol. 65, no. 3, pp. 1216–1235, 2019.
- [3] S. Burt and L. Sparks, "E-commerce and the retail process: a review," Journal of Retailing and Consumer services, vol. 10, no. 5, pp. 275–286, 2003.
- [4] M. Zhang, Y. K. Tse, B. Doherty, S. Li, and P. Akhtar, "Sustainable supply chain management: Confirmation of a higher-order model," Resources, Conservation and Recycling, vol. 128, pp. 206–221, 2018.
- [5] S. Cetinkaya and C.-Y. Lee, "Stock replenishment and shipment scheduling for vendor-managed inventory systems," Management Science, vol. 46, no. 2, pp. 217–232, 2000.

- [6] L. Breiman, "Random forests," Machine learning, vol. 45, pp. 5–32, 2001.
- [7] R. Genuer, J. Poggi, and C. Tuleau-Malot, "Variable selection using random forests pattern recognition letters, 31, 2225 10.1016," J. PATREC, vol. 14, 2010.
- [8] i. M. T. u. K. Alexander Guschin, Dmitry Ulyanov, "Predict future sales," 2018. [Online].

Available:

https://kaggle.com/competitions/competitive-data-sciencepredict-future-sales

[9] M. Freitas, "FreeMarket: A GitHub Repository," https://github.com/mtsfreitas/FreeMarket, 2023

Obrigado!!!

