Two are Better than One: Joint Entity and Relation Extraction with Table-Sequence Encoders

Jue Wang¹ and Wei Lu²

¹College of Computer Science and Technology, Zhejiang University
²StatNLP Research Group, Singapore University of Technology and Design
zjuwangjue@zju.edu.cn, luwei@sutd.edu.sg

EMNLP 2020 (句子级 NER 和 RE 联合抽取模型)

本文的模型是 table filling 的方法,并且作者关于传统的 table filing 方法指出了两个缺陷。

- 1、仅仅用一个特征就解决 NER 和 RE 的问题,会造成 feature confusion 的问题
- 2、以前的方法并未充分利用 table 的结构信息

因此作者基于此两点,提出了两个 encoder 架构,一个用于编码句子,一个用于用于编码 table,并且两个 encoder 之间会有信息的交互,也就是计算 table 的特征会使用句子的特征,计算句子的特征会使用 table 的特征。如此交替更迭多层,得到最终的 table 和句子的特征,分别用于关系分类和实体识别

Text encoder:

1、每个词使用 word embeddings, character embeddings 以及 LSTM 的拼接表示, 并且经过一个线性变化

$$S_0 = \operatorname{Linear}([x^c; x^w; x^\ell]) \tag{1}$$

Table encoder:

1、将全部 token 两两组合,初始化一个表,并经过一个线性变换和激活函数

$$X_{l,i,j} = \text{ReLU}(\text{Linear}([S_{l-1,i}; S_{l-1,j}])) \quad (2)$$

2、将得到的初始化表格经过 MD-RNN 网络(GRU),得到表格每个单元格的最终表示

$$T_{l,i,j} = \text{GRU}(X_{l,i,j}, T_{l-1,i,j}, T_{l,i-1,j}, T_{l,i,j-1})$$
 (3)

上述中的 Ti-1,j, Ti,j-1 代表了与当前表格相邻的表格的特征(上下左右四个方向)

在后面的论述中,作者会引入 BERT 中的 attention 矩阵,因此会更新公式(2),其他不变

$$X_{l,i,j} = \text{ReLU}(\text{Linear}([S_{l-1,i}; S_{l-1,j}; T_{i,j}^{\ell}]))$$
 (11)

其中的 T 为 BERT 中的 attention 矩阵,也就是 BERT 中两个词之间的注意力得分,作者将其取出来,融入到 table encoder 中

下图为模型的图形化解释:

3、作者发现四个方向(图上的 a,b,c,d)汇聚来的信息不如两个方向(图上的 a,c)汇聚来的信息效果好,因此作者最终只取 a,c 方向,并将最后结果拼接在一起

$$T_{l,i,j}^{(a)} = GRU^{(a)}(X_{l,i,j}, T_{l-1,i,j}^{(a)}, T_{l,i-1,j}^{(a)}, T_{l,i,j-1}^{(a)})$$
(4)

$$T_{l,i,j}^{(c)} = GRU^{(c)}(X_{l,i,j}, T_{l-1,i,j}^{(c)}, T_{l,i+1,j}^{(c)}, T_{l,i,j+1}^{(c)})$$
(5)

$$T_{l,i,j} = [T_{l,i,j}^{(a)}; T_{l,i,j}^{(c)}]$$
(6)

Sequence encoder:

1、需要对每个句子进行 attention 计算,但是作者在这里对 self-attention 的计算式进行了一个变动,并未使用句子 X 句子来计算,而是直接使用 table encoder 的结果作为注意力矩阵

$$f(Q_i, K_j) = U \cdot T_{l,i,j} \tag{8}$$

2、然后将注意力矩阵与句子相乘得到融入了 table 信息的表示,接下来与 transformer 的 encoder 结构一样,进行 add 和 norm,再经过一个 FFN 后进行 add 和 norm,得到最终的句子表示

$$\tilde{\boldsymbol{S}}_{l} = \operatorname{LayerNorm}(\boldsymbol{S}_{l-1} + \operatorname{SelfAttn}(\boldsymbol{S}_{l-1}))$$
 (9)
 $\boldsymbol{S}_{l} = \operatorname{LayerNorm}(\tilde{\boldsymbol{S}}_{l} + \operatorname{FFNN}(\tilde{\boldsymbol{S}}_{l}))$ (10)

Figure 5: The generalized form of attention. The softmax function is used to normalize the weights of values V for each query Q_i .

上图为计算 self-attention 的一般步骤,只不过作者将 Q 与 K 相乘的结果直接由 table 的表示替换掉,不仅节省了时间,而且与实现了句子特征与 table 特征的交互,因为本身 table 就是一个方阵,里面的每一个表格可以代表为 token 之间的相关性

解码器:

1、对 table 的特征进行关系分类,对 sequence 的特征进行实体识别

$$P_{\theta}(\mathbf{Y}^{\text{NER}}) = \operatorname{softmax}(\operatorname{Linear}(\mathbf{S}_L))$$
 (12)

$$P_{\theta}(\mathbf{Y}^{\text{RE}}) = \operatorname{softmax}(\operatorname{Linear}(\mathbf{T}_L))$$
 (13)

模型结构:

Figure 3: A layer in the table-sequence encoders.

Add & Norm

Add & Norm

 S_{l-1}

表格示例:

Figure 1: An example of table filling for NER and RE.

其中对角线上不表示关系,仅表示实体(B-I-O),其余正交符表示两个 token 无关系作者在训练时会先识别实体,然后再对表格中的元素进行关系分类,最后在表格中找出已识别实体的各种关系

实验结果:

Data	Model	NER	RE	RE+
ACE04	Li and Ji (2014) ⊽	79.7	48.3	45.3
	Katiyar and Cardie (2017)	79.6	49.3	45.7
	Bekoulis et al. (2018b)	81.2	-	47.1
	Bekoulis et al. (2018a)	81.6	-	47.5
	Miwa and Bansal (2016)	81.8	-	48.4
	Li et al. (2019)	83.6	-	49.4
	Luan et al. (2019)	87.4	59.7	-
	Ours <i>∀</i>	88.6	63.3	59.6
ACE05	Li and Ji (2014) ⊽	80.8	52.1	49.5
	Miwa and Bansal (2016)	83.4	-	55.6
	Katiyar and Cardie (2017)	82.6	55.9	53.6
	Zhang et al. (2017) ⊽	83.6	-	57.5
	Sun et al. (2018)	83.6	-	59.6
	Li et al. (2019)	84.8	-	60.2
	Dixit and A1 (2019)	86.0	62.8	-
	Luan et al. (2019)	88.4	63.2	-
	Wadden et al. (2019)	88.6	63.4	-
	Ours ▽	89.5	67.6	64.3
CoNLL04	Miwa and Sasaki (2014)⊽	80.7	-	61.0
	Bekoulis et al. (2018a)▲	83.6	-	62.0
	Bekoulis et al. (2018b)▲	83.9	-	62.0
	Tran and Kavuluru (2019)▲	84.2	-	62.3
	Nguyen and Verspoor (2019)▲	86.2	-	64.4
	Zhang et al. (2017)⊽	85.6	-	67.8
	Li et al. (2019)⊽	87.8	-	68.9
	Eberts and Ulges (2019)	88.9	-	71.5
	Eberts and Ulges (2019)▲	86.3	-	72.9
	Ours⊽	90.1	73.8	73.6
	Ours▲	86.9	75.8	75.4
ADE	Li et al. (2016) ▲	79.5	-	63.4
	Li et al. (2017) ▲	84.6	-	71.4
	Bekoulis et al. (2018b) ▲	86.4	-	74.6
	Bekoulis et al. (2018a) ▲	86.7	-	75.5
	Tran and Kavuluru (2019) ▲	87.1	-	77.3
	Eberts and Ulges (2019) ▲	89.3	-	79.2
	Ours 🛦	89.7	80.1	80.1

因为中间使用了 table 的特征来代替注意力矩阵,所以作者想要验证 table 的有效性,特意将其与 ALBERT 的 attention 矩阵进行了可视化对比,并说明了 table-attention 的有效性

Figure 6: Comparison between ground truth and selected heads of ALBERT and table-guided attention. The sentence is randomly selected from the development set of ACE05.

作者发现,在 low-level 和 high-level 的情况下,table-attention 更能正确的捕获重要信息,将两个有关系的 token 联系的更紧密

总而言之,作者提出的双 encoder 架构是在前任 table filling 方法的基础上进行改进,利用了 sequence 的信息也利用了 table 的信息,并且通过将两者交互融合,得到了不错的结果,有比较好的借鉴意义,因为联合抽取模型是将两个任务联合在一起解决,变化为一个任务,因此 encoder 的特征好坏对于模型表现有很大影响,而以前的做法都是用一个 embedding 去进行 NER 和 RE,直觉来说实体的 embedding 与关系的 embedding 确实应该不同,但是又应该有交互,不然又变为 pipeline 的做法,忽略了实体和关系的联系。