CSE440: Natural Language Processing II

Dr. Farig Sadeque
Associate Professor
Department of Computer Science and Engineering
BRAC University

Lecture 4: Word Representations

Outline

- Co-occurrence (SLP 6)
- TF-IDF (SLP 6)
- Embeddings (SLP 6 and lecture)

Intro

- Computers do not understand semantics
- Representation of text needs to include some sort of semantic information

Representation

- Sentence-level representation problems
- Co-occurrence
- TF-IDF
- Embeddings

Problems with BoW

- Too sparse
 - What's wrong with sparsity?
- Completely ignores word order
- Almost no semantic information preserved
- But, works pretty well!

More problem with sentence-level representation

- Dogs chew snacks
- Canines eat treats

More problem with sentence-level representation

- Dogs chew snacks
- Canines eat treats

Documents		F	eati	ıres		
	fcanines	f_{chew}	f_{dogs}	feat	fsnacks	freats
dogs chew snacks	0	1	1	0	1	0
canines eat treats	1	0	0	1	0	1

- No feature overlap whatsoever. If we try to calculate similarity, they are 100% dissimilar. But are they?
- Solution: instead of creating sentence level representations, let's go to smaller units i.e. words

A smarter sentence representation: TF-IDF

TF-IDF: Term Frequency - Inverse Document Frequency

Intuition: An informative term should:

- Occurs many times in some specific contexts (TF)
- Does not occur in every context (IDF)

Examples:

- high TF *vector* is informative; it's frequent in these slides
- high DF the is uninformative; it's frequent everywhere

TF-IDF

$$tf(w,d) = log(1 + f(w,d))$$
$$idf(w,D) = log(\frac{N}{f(w,D)})$$

w is a word, d is a document, D is the corpus, N = |D|

Intuitions:

- frequent in a single context is good
- avoid infinities
- appearing in every document is bad
- score of 100 (vs. 1) is not 100 times more relevant

Perfect word representations

- shared lemmas: mouse/mice, dormir/duermes, etc.
- different word senses: computer mouse vs. pet mouse, river bank vs. financial bank, etc.
- synonyms: couch/sofa, car/automobile, etc.
- antonyms: long/short, dark/light, etc.
- word similarity: dog/cat, doctor/nurse, etc.
- word relatedness: cup/coffee, scalpel/surgeon, etc.
- word valence: excited and relaxed are high valence, depressed and angry are low valence
- word arousal: excited and angry are high arousal, relaxed and depressed are low arousal

Neighboring words hint at semantics

Imagine you didn't know what ignite meant: . . . fusion fire does not ignite till temperatures plumes of flame ignite from the smokestacks over low heat. Ignite with a match ... But you had seen another word in similar contexts: . . . the way the fire is lit or the heat source flame couldn't have lit a cigarette kiln-dried logs that lit with a match ...

Intuition: if two words are semantically similar, they will appear in text with similar surrounding words

Term-term matrix

A term-term co-occurrence matrix X is a |V|x|V| matrix where:

- |V| is the number of words in the vocabulary
- each cell $X_{i,j}$ records how often word j occurred in the context of word i each row X_i is the vector representation for word i

Context may be defined in different ways:

- The same document
- The same sentence
- Within ±n words of each other

V is typically the 10,000 - 50,000 most frequent words)

Each word is represented by a large vector

Easy way to build a term-term matrix

- Build a binary BoW for the sentences
- Transpose it
- Multiply it with the original matrix
- Voila
- Try it: docs = ["any big cat", "big cat", "cat dog cat"]

Comparing word vectors

- How do you know the vectors you built make any sense?
- You need to compare these vectors
- What techniques do we have?

Cosine similarity

Most common similarity measure

$$cosine(\mathbf{v}, \mathbf{w}) = \frac{\mathbf{v}^{\top} \mathbf{w}}{|\mathbf{v}||\mathbf{w}|} = \frac{\sum_{i}^{i} v_{i} w_{i}}{\sqrt{\sum_{i}^{i} v_{i}^{2}}} \sqrt{\sum_{i}^{i} w_{i}^{2}} \frac{\sqrt{\sum_{i}^{i} w_{i}^{2}}}{\sqrt{\sum_{i}^{i} w_{i}^{2}}}$$

$$length of \mathbf{v} length of \mathbf{w}$$

Cosine similarity: Why?

- Range is between 1 and -1 Why not Euclidean distance? $\sqrt{\sum_{i=1}^{n} (v_i w_i)^2}$

$$\sqrt{\sum_{i=1}^{n}(v_i-w_i)^2}$$

Let's try this for this three vectors: u = [0, 1, 0, 1] v = [1, 0, 1, 0] w = [3, 0, 3, 0]

What is the cosine similarity? What is the Euclidean distance? Which one makes more sense?

What's wrong with term term matrix?

- Sparse. Very sparse.
- Does not carry any contextual information
- Does not represent how important a word is in a sentence

Using word vectors

For word tasks:

- finding synonyms via cosine
- as classifier features when the input is one word

For sentence/document tasks:

- First, combine all word vectors
- You can combine yourself (using centroid technique): usually needed for classical ML models; or
- You can let an RNN handle things
- These vectors can then be used for classification

Sparse vs. dense vectors

Vectors we studied are very sparse

Advantages of small, dense word vectors:

- fewer feature weights to learn in machine learning
- fewer features can reduce overfitting
- forces sharing; there are not enough dimensions for
- each word to be completely independent

Word embeddings

- Rather than count co-occurrence, let's try to predict it
- We can do it in two ways
 - Predict the target word given the neighboring words: CBOW

- Predict the neighboring words given the target word: Skip-gram

- CBOW is easy, but...
- We will focus on Skip-gram

Skip-gram embeddings

- Input: a word, taken from some text
- Output: the 5 preceding and 5 following words
- Try it!
- Input: hippopotamus
- Output: [?, ?, ?, ?, hippopotamus, ?, ?, ?, ?, ?]

Skip-gram embeddings

- Input: a word, taken from some text
- Output: the 5 preceding and 5 following words
- Try it!
- Input: hippopotamus
- Output: [?, ?, ?, ?, hippopotamus, ?, ?, ?, ?, ?]
- This task is impossible! But that's okay because
 - Creating training data is easy
 - We'll only use word vectors learned as part of training

Creating Training Data is Easy

thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	
thou	shalt	not	make	а	machine	in	the	

input word	target word	
not	thou	
not	shalt	
not	make	
not	a	
make	shalt	
make	not	
make	a	
make	machine	
а	not	
a	make	
а	machine	
a	in	
machine	make	
machine	a	
machine	in	
machine	the	
in	a	
in	machine	
in	the	
in	likeness	

Training an embedding model

Training an embedding model

Problem with this model

- Step 3 is very expensive as we have to project the output into the entire vocabulary space
 - Especially, we have to do it for every single step

Let's switch the task: Mikolov's entry

This converts a complex neural learning task into a simple log-linear binary classification task

Converting the data for this task

input word	target word
not	thou
not	shalt
not	make
not	а
make	shalt
make	not
make	а
make	machine

input word	output word	target
not	thou	1
not	shalt	1
not	make	1
not	а	1
make	ake shalt	
make	make not	
make a		1
make	machine	1

Converting the data for this task

input word	target word		
not	thou		
not	shalt		
not	make		
not	а		
make	shalt		
make	not		
make	а		
make	machine		

All one's is no good for learning

input word	output word	target		t
not	thou		1	
not	shalt		1	
not	make		1	
not	а		1	
make	shalt		1	
make	not		1	
make	а		1	
make	make machine		1	
		_		J

Negative sampling

Skipgram

Negative Sampling

input word	output word	target
make	shalt	1
make aaron		0
make	taco	0

Word2vec Training

- we determine the size of our vocabulary
- create two matrices an Embedding matrix and a Context matrix
- Initialize these matrices with random values

Word2vec Training

input word	output word	target
not	thou	1
not	aaron	0
not	taco	0
not	shalt	1
not	mango	0
not	finglonger	0
not	make	1
not	plumbus	0
***	***	

Word2vec Training

input word	output word	target	input • output	sigmoid()	Error
not	thou	1	0.2	0.55	0.45
not	aaron	0	-1.11	0.25	-0.25
not	taco	0	0.74	0.68	-0.68

Using embeddings

It's rarely necessary to train skip-gram or GloVe directly.

Download pre-trained word embeddings:

- Skip-gram https://code.google.com/archive/p/word2vec/
- GloVe https://nlp.stanford.edu/projects/glove/

Many models provide pre-trained embeddings: https://github.com/Hironsan/awesome-embedding-models

Which one should I choose? Try a few and see what works!

Semantic properties of embeddings

- Different types of similarity or association
 - Based on the context window, word association changes
 - smaller window sizes (2-15) lead to embeddings where high similarity scores between two embeddings indicates that the words are interchangeable
 - Larger window sizes (15-50, or even more) lead to embeddings where similarity is more indicative of relatedness of the words
- Analogy/relational similarity
 - Parallelogram model: Apple is to Tree as Grape is to _____
- Historical context

Historical semantic context

Inspecting embeddings

How do I know if my word embeddings make sense?

- Check by hands
- Project the words to a visible dimension
- Use linear algebra

Visualizing embeddings

We usually have very high-dimensional vectors for each words. t-SNE can project down to 2.

Algebra

```
>>> cosine(vector("queen"), vector("king"))
0.7252606
>>> cosine(vector("queen"),
    vector("king")-vector("man")+vector("woman"))
0.7880841
>>> cosine(vector("Paris"), vector("Rome"))
0.58241177
>>> cosine(vector("Paris"),
... vector("Rome")-vector("Italy")+vector("France"))
0.71733016
```

Other standard evaluations

Correlation with human judgments of similarity

- WordSim-353 noun similarity, e.g., (plane, car, 5.77)
- SimLex-999 adjective, noun, and verb similarities
- SCWS word similarity given sentential context
- STS sentence-level similarity

Accuracy at similarity-based task

- **TOEFL** e.g., Levied is closest in meaning to: imposed, believed, requested, correlated
- analogies e.g., Athens is to Greece as Oslo is to _____

Bias in embeddings

Embeddings reflect the language they were trained on

```
>>> cosine(vector("attractive"), vector("man"))
0.3085765
>>> cosine(vector("attractive"), vector("woman"))
0.41110972
>>> cosine(vector("dumb"), vector("American"))
0.41180187
>>> cosine(vector("dumb"), vector("European"))
0.26587355
```

Contextual word embeddings

Traditional word vectors ignore context

The river bank: [0.3, -0.1, -0.2] [0.1, -0.3, -0.2] [-0.6, 0.3, -0.1]

A bank deposit: [0.0, 0.0, -0.2] [-0.6, 0.3, -0.1] [-0.3, -0.3, 0.0]

Should these two banks really have the same vectors?

Contextual word embeddings

Word embeddings
Input 1 word

Output 1 embedding

Contextual word embeddings

Input *n* words

Output *n* embeddings

Learning contextual word embeddings

We need to make up a prediction task that

- takes n words as input
- produces n vectors as output
- requires only unlabeled data

ELMo's task: language modeling

What is a language model?

- Given a sequence of words, what is the next most probable word?
- Unsupervised, great for learning representations

ELMo combines a forward language model and a backward language model.

Transformers use the same idea, but in a much larger canvas.

ELMo's task: language modeling

How to use contextual word embeddings?

Contextual word embeddings are trained on unlabeled data. How do we use them on the task we care about?

- Extract word vectors, use as features
- Fine-tune contextual embedding model, i.e., continue training the model, but now on our labeled data instead of the unlabeled data