Campus Network Design and Implementation Computer Network-1 Course Project

Theodoros

Contributors:

May 9, 2025

Contents

- ▶ 1. Network Design
- ▶ 2. Network Configuration
- 3. Static/Dynamic Routing
- 4. DHCP Configuration
- ▶ 5. VLAN Configuration
- ▶ 6. Network Testing

Network Diagram

Network Configuration

- MikroTik RouterOS is used for routers.
- Each router uses a unique identity and interface addressing.
- ▶ PCs have static IP addresses and default gateways.
- ► Subnetting: 10.1.x.x for Building A, 10.2.x.x for Building B.

Router Configuration: University Router (R1)

```
system identity set name="university"
ip address add address=10.1.1.1/30 interface=ether1
ip address add address=10.2.1.1/30 interface=ether2
```

- ► Connects to Building A and B routers.
- /30 subnets for point-to-point links.

Router Configuration: Building A Router (R2)

```
system identity set name="Building_A"
ip address add address=10.1.1.2/30 interface=ether1
ip address add address=10.1.2.1/24 interface=ether2
ip address add address=10.1.3.1/24 interface=ether3
```

- ether1: Uplink to University Router
- ether2: First LAN subnet for PC1
- ether3: Second LAN subnet for PC2

Router Configuration: Building B Router (R3)

```
system identity set name="Building_B"
ip address add address=10.2.1.2/30 interface=ether1
ip address add address=10.2.2.1/24 interface=ether2
ip address add address=10.2.3.1/24 interface=ether3
```

- ether1: Uplink to University Router
- ether2: First LAN subnet for PC3
- ether3: Second LAN subnet for PC4

PC Configuration: Building A

```
# PC1
2 PC1> ip 10.1.2.2/24 10.1.2.1
3 # PC2
4 PC2> ip 10.1.3.2/24 10.1.3.1
```

- Each PC has a static IP and gateway.
- ► Test: ping 10.1.2.1 or ping 10.1.3.1

PC Configuration: Building B

```
1 # PC3

2 PC3> ip 10.2.2.2/24 10.2.2.1

3 # PC4

4 PC4> ip 10.2.3.2/24 10.2.3.1
```

- ► Each PC has a static IP and gateway.
- ► Test: ping 10.2.2.1 or ping 10.2.3.1

RIP Configuration: University Router

```
# Enable RIP on relevant interfaces
2 routing rip interface add interface=ether1 send=v2 receive
      =v2
3 routing rip interface add interface=ether2 send=v2 receive
      =v2
4 # Tell RIP about directly connected subnets
5 routing rip network add network=10.1.1.0/30
6 routing rip network add network=10.2.1.0/30
7 # Set RIP settings
8 routing rip set redistribute-connected=yes
9 routing rip set update-timer=15s
10 routing rip set timeout-timer=30s
11 routing rip set garbage-timer=30s
```

RIP Configuration: Building A Router

```
| routing rip interface add interface=ether1 send=v2 receive
      =v2
2 routing rip interface add interface=ether2 send=v2 receive
      =v2
3 routing rip interface add interface=ether3 send=v2 receive
      =v7
4 routing rip network add network=10.1.1.0/30
5 routing rip network add network=10.1.2.0/24
6 routing rip network add network=10.1.3.0/24
7 routing rip set redistribute-connected=yes
8 routing rip set update-timer=15s
9 routing rip set timeout-timer=30s
10 routing rip set garbage-timer=30s
```

RIP Configuration: Building B Router

```
| routing rip interface add interface=ether1 send=v2 receive
      =v2
2 routing rip interface add interface=ether2 send=v2 receive
      =v2
3 routing rip interface add interface=ether3 send=v2 receive
      =v7
4 routing rip network add network=10.2.1.0/30
5 routing rip network add network=10.2.2.0/24
6 routing rip network add network=10.2.3.0/24
7 routing rip set redistribute-connected=yes
8 routing rip set update-timer=15s
9 routing rip set timeout-timer=30s
10 routing rip set garbage-timer=30s
```

RIP Command Explanations

- routing rip interface add interface=etherX send=v2 receive=v2: Enables RIP version 2 on the router's interface. Only interfaces used to connect other routers should run RIP.
- routing rip network add network=10.X.X.0/YY: Informs RIP which directly-connected networks to advertise to neighbors.
- routing rip set redistribute-connected=yes: Ensures directly-connected networks are included in RIP updates.
- ▶ routing rip set update-timer=15s: How often RIP sends updates (default = 30s; lower for lab/small network).
- ▶ routing rip set timeout-timer=30s: If no update is received in 30s, the route is considered invalid.
- routing rip set garbage-timer=30s: A route is removed 30s after being marked invalid.

Verification: End-to-End Connectivity with RIP

Ping from PC3 to PC2 (Building B to Building A):

```
PC3> ping 10.1.3.2

84 bytes from 10.1.3.2 icmp_seq=1 ttl=61 time=1.491 ms
4 bytes from 10.1.3.2 icmp_seq=2 ttl=61 time=1.291 ms
5 84 bytes from 10.1.3.2 icmp_seq=3 ttl=61 time=2.439 ms
```

Ping from PC1 to PC4 (Building A to Building B):

```
PC1> ping 10.2.3.2

84 bytes from 10.2.3.2 icmp_seq=1 ttl=61 time=1.831 ms
4 bytes from 10.2.3.2 icmp_seq=2 ttl=61 time=1.235 ms
84 bytes from 10.2.3.2 icmp_seq=3 ttl=61 time=2.860 ms
```

Successful replies indicate full network reachability via dynamic routing.

DHCP Configuration

This section will be added later.

VLAN Configuration

This section will be added later.

Network Testing

This section will be added later.

Conclusion

Current Progress:

- Network design completed
- Basic configuration implemented
- Local and routed connectivity established

Next Steps:

- Add DHCP configuration
- Add VLAN configuration
- Document and test full connectivity