- f: $I \rightarrow \mathbb{R}, x_0 \in I$
 - lokale Extremstelle
 - * x_0 lokales Maxiumum
 - ♦ $\exists \delta > 0$: $f(x) \le f(x0) \forall x \in (x0 \delta, x0 + \delta) <==> x0$ ist größtes Element in der Umgebung +/-δ
 - * x_0 lokales Maxiumum
 - ♦ $\exists \delta > 0$: $f(x) \ge f(x0) \ \forall x \in (x0 \delta, x0 + \delta) <==> x0$ ist kleinstes Element in der Umgebung +/-δ
 - globale Extremstelle
 - * x_0 globales Maxiumum
 - \bullet f(x) \leq f(x0) \forall x \in I <==> x0 ist größtes Element in I
 - * x_0 globales Maxiumum
 - $f(x) \ge f(x0) \ \forall x \in I <==> x0$ ist kleinstes Element in I
 - x0 ist lokale Extremstelle ==> f'(x0)=0
 - * f'(x0) = 0 = Steigung ==> Hochpunkt/Tiefpunkt
 - * Umkehrschluss gilt nicht
 - * Gegenbeispiel: $f(x) = x^3$

Satz von Rolle

- f: $[a,b]->\mathbb{R}$ differenzierbar
- $f(a)=f(b) ==> \exists x 0 \in (a, b): f'(x 0) = 0$
- $\bullet\,$ Im Intervall muss mindestens ein lokales Maximum/Minimum existieren
- Wenn $f'(x) = 0 \ \forall x[a,b] ==> f \text{ ist konstant}$

${\bf Mittelwerts atz\ der\ Differential rechnung\ -\ MWS}$

- Verallgemeinerung von Satz von Rolle
- f: [a,b] $->\mathbb{R}$ differenzierbar
- $\exists x 0 \in (a, b)$: $f'(x 0) = \frac{f(b) f(a)}{b a}$
- \bullet $\frac{f(b)-f(a)}{b-a}$ entspricht der Steigung einer Gerade zwischen a und b
 - es existiert mindestens eine Tangente, welche parallel zu dieser Gerade ist.

Verallgemeinerung MWS

- f,g: $[a,b] -> \mathbb{R}$ differenzierbar
- $\forall x \in (a, b)$: $g'(x) \neq 0$
 - $= > \exists x 0 \in (a, b): \frac{f(b) f(a)}{g(b) g(a)} = \frac{f'(x_0)}{g'(x_0)}$

[[Differentialrechnung]]