Fundamentals of Multimedia

Color in Image and Video

Content

- 1. Color Science
- 2. Color Models in Images
- 3. Color Models in Video

1. Color Science

- Light and Spectra
- Gamma Correction
- Color-Matching Functions
- L*a*B*(CIELAB) Color Model
- CMY(CMYK)
- HSV
- Other Color Models

- Light is an electromagnetic wave, its color characterized by the wavelength
 - Laser Light -- a single wavelength
 - Most light sources -- Contributions over many wavelengths
 - Short wave Blue, Long wave -- Red
 - Visible light in the range: 400-700nm (Nanometer, 10-9 M)

• Spectrophotometer: device used to measure visible light, by reflecting light from a diffraction grating (a ruled surface) that spreads out the different wavelengths.

Fig. 4.1: Sir Isaac Newton's experiments.

- Spectral Power Distribution (SPD)
 - The relative power in each wavelength interval

– The symbol for wavelength is λ . This curve is called

 $E(\lambda)$.

Spectral Power Distribution of Daylight

- Human Vision
 - Works like a camera
 - Lens focusing an image onto the retina

Fig. 1. Human retina as seen through an opthalmoscope.

- Human Vision (Conti.)
 - The retina Rods and Cones
 - The rods come into play when light levels are low and produce a image in shades of gray.

- For higher light levels, the cones each produce a signal. the three kinds of cones are most sensitive to red (R),

Müller cells

horizontal

bipolar

amacrine cells -

ganglion

nerve fiber layer

inner limiting membrane

green (G), and blue (B) light.

Fig. 2. Simple diagram of the organization of the retina.

- Spectral Sensitivity of the Eye
 - Most Sensitive to the middle of the visible spectrum
 - The sensitivity of our receptors is also a function of wavelength
 - Luminous-efficiency function showing the overall sensitivity
 - The Blue receptor sensitivity is not shown to scale because it is much smaller than the curves for Red or Green

- ☐ Spectral Sensitivity of the Eye (Conti.)
 - Rods broad range wavelengths, perception of Black-White
 - About 6 million cones color R:G:B=40:20:1

Spectral Sensitivity of Rods and Cones

Response in the eye to the falling light

• These spectral sensitivity functions are usually denoted by letters other than "R,G,B"; here let's use a vector function $q(\lambda)$, with components

$$q(\lambda) = (q_R(\lambda), q_G(\lambda), q_B(\lambda))^T$$
(4.1)

 The response in each color channel in the eye is proportional to the number of neurons firing.

We can succinctly write down this idea in the form of an integral:

$$R = \int E(\lambda) \ q_R(\lambda) \ d\lambda$$

$$G = \int E(\lambda) q_G(\lambda) d\lambda$$

$$B = \int E(\lambda) \ q_B(\lambda) \ d\lambda \tag{4.2}$$

Image Formation

- Surfaces reflect different amounts of light at different wavelengths, and dark surfaces reflect less energy than light surfaces.
- Fig. 4.4 shows the surface spectral reflectance from (1) orange sneakers and (2) faded blue jeans. The reflectance function is denoted $S(\lambda)$.

Image formation is thus:

– Light from the illuminant with SPD $E(\lambda)$ impinges on a surface, with surface spectral reflectance function $S(\lambda)$, is reflected, and then is filtered by the eye's cone functions $q(\lambda)$.

- The function $C(\lambda)$ is called the color signal and consists of the product of $E(\lambda)$, the illuminant, times $S(\lambda)$, the reflectance: $C(\lambda) = E(\lambda) S(\lambda)$.
- The equations that take into account the image formation model are:

$$R = \int E(\lambda) S(\lambda) q_R(\lambda) d\lambda$$

$$G = \int E(\lambda) S(\lambda) q_G(\lambda) d\lambda$$

$$B = \int E(\lambda) S(\lambda) q_R(\lambda) d\lambda$$

Camera System

- Camera systems are made in a similar fashion; a studio quality camera has three signals produced at each pixel location (corresponding to a retinal position).
- Analog signals are converted to digital, truncated to integers, and stored. If the precision used is 8-bit, then the maximum value for any of R,G,B is 255, and the minimum is 0.

CRT Display

- Convert RGB number back to analog (voltage), driving the electron gun in CRT (cathode ray tube)
- !! Light linearly related to the voltage

- CRT's light not linear to the driving voltage
 - Proportional to the voltage raised to a power

R->R

The power called "gamma", with the symbol γ. The value of gamma is around 2.2.

No gamma correction

- Signal "Gamma Corrected" before transmission,
 - It is customary to append a prime to signals that are gamma-corrected by raising to the power (1/γ) before transmission.
 Thus we arrive at linear signals:

$$R \rightarrow R' = R^{1/\gamma} = >(R')^{\gamma} \rightarrow R$$

Voltage normalized to maximum 1

- Gamma Correction Effect
 - Example Display of ramp from 0 to 255

With no gamma Correction

Applying gamma correction

Original image

After gamma correction

- Camera transfer function: One practical method
 - R→R' = a × R^{1/ γ} + b, with special care at the origin

$$V_{out} = \begin{cases} 4.5 \times V_{in} & \text{Vin < 0.018} \\ 1.099 \times (V_{in} - 0.099) & \text{Vin >= 0.018} \end{cases}$$

- Recommended by SMPTE (The Society of Motion Picture and Television) as standard SMPTE-170
- Why a gamma of 2.2 ? (NTSC)
 - Actual be close to 2.8 (About = 1.25 * 2.2)
- An issue related to gamma Correction
 - What intensity level what bit pattern in the pixel values
 - Most sensitive to ratios of level rather than absolute intensities

- Even without knowing the eye-sensitivity curves of Fig.4.3, a technique evolved in psychology for matching a combination of basic *R*, *G*, and *B* lights to a given shade.
- The particular set of three basic lights used in an experiment are called the set of **color primaries**.
- To match a given color, a subject is asked to separately adjust the brightness of the three primaries using a set of controls until the resulting spot of light most closely matches the desired color.
- The basic situation is shown in Fig.4.8. A device for carrying out such an experiment is called a **colorimeter**.

Fig. 4.8: colorimeter experiment.

• The amounts of R, G, and B the subject selects to match each single-wavelength light forms the *color-matching* curves. These are denoted $\overline{r}(\lambda), \overline{g}(\lambda), \overline{b}(\lambda)$ and are shown in Fig. 4.9.

Fig. 4.9: CIE RGB color-matching functions

- Since the $\bar{r}(\lambda)$ color-matching curve has a negative lobe, a set of fictitious primaries were devised that lead to color-matching functions with only positives values.
 - (a) The resulting curves are shown in Fig. 4.10; these are usually referred to as the color-matching functions.
 - (b) They are a 3 \times 3 matrix away from $\overline{r}, \overline{g}, \overline{b}$ curves, and are denoted $\overline{x}(\lambda), \overline{y}(\lambda), \overline{z}(\lambda)$.
 - (c) The matrix is chosen such that the middle standard color-matching function $\overline{y}(\lambda)$ exactly equals the luminous-efficiency curve $V(\lambda)$ shown in Fig. 4.3.

$$X = \int E(\lambda) \, \overline{x}(\lambda) \, d\lambda$$

$$Y = \int E(\lambda) \, \overline{y}(\lambda) \, d\lambda$$

$$Z = \int E(\lambda) \, \overline{z}(\lambda) \, d\lambda$$

CIE standard color-matching functions: CIE XYZ Color Space

XYZ to RGB Transform

Now the 3 x 3 transform matrix from XYZ to RGB is taken to be

$$T = MD \tag{4.15}$$

even for points other than the white point:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = T \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$
 (4.16)

For the SMPTE specification, we arrive at:

$$T = \begin{bmatrix} 0.3935 & 0.3653 & 0.1916 \\ 0.2124 & 0.7011 & 0.0866 \\ 0.0187 & 0.1119 & 0.9582 \end{bmatrix}$$
(4.17)

Written out, this reads:

$$X = 0.3935 \cdot R + 0.3653 \cdot G + 0.1916 \cdot B$$

$$Y = 0.2124 \cdot R + 0.7011 \cdot G + 0.0866 \cdot B$$

$$Z = 0.0187 \cdot R + 0.1119 \cdot G + 0.9582 \cdot B \tag{4.18}$$

Color Perception: the Cornsweet Effect

Dale Purves, R. Beau Lotto, Surajit Nundy, "Why We See What We Do", *American Scientist*, Volume 90, No. 3, May-June 2002

Color Perception: the Cornsweet Effect

Wrong!

Dale Purves, R. Beau Lotto, Surajit Nundy, "Why We See What We Do", *American Scientist*, Volume 90, No. 3, May-June 2002

Color Perception: the Cornsweet Effect

Dale Purves, R. Beau Lotto, Surajit Nundy, "Why We See What We Do", *American Scientist*, Volume 90, No. 3, May-June 2002

Brightness Perception

The linear slope of the intensity change is perceived as logarithmic.

The green curve is the actual intensity; the blue curve is the perceived intensity.

1.4 L*a*b*(CIELAB) Color Model

- Weber's Law (From psychology)
 - The more there is of a quantity, the more changes there must be to perceive a difference
 - Changes are about equally perceived if the ratio of the change is the same
 - A logarithmic approximation
 - 50->100, 100%
 - 100->150, 50%

1.5 L*a*b*(CIELAB) Color Model

- CIE Human vision:
 CIELAB space, called
 L*a*b*
 - Three value Luminance,
 Colorfulness and Hue
 - Using Power law of 1/3 instead of logarithm

Lab model

1.3 L*a*b*(CIELAB) Color Model

Logarithm close to the power law of 1/3

1.3 L*a*b*(CIELAB) Color Model

The color difference is defined as

where,

$$L^* = 116 \left(\frac{Y}{Yn}\right)^{(1/3)} - 16$$

$$a^* = 500 \left[\left(\frac{X}{Xn} \right)^{(1/3)} - \left(\frac{Y}{Yn} \right)^{(1/3)} \right]$$

$$b^* = 200 \left[\left(\frac{Y}{Yn} \right)^{(1/3)} - \left(\frac{Z}{Zn} \right)^{(1/3)} \right]$$

L*a*b* space

With Xn, Yn, Zn the XYZ value of the white point

1.4 Other color models

- HSL(HSB) Hue, Saturation, Lightness/Brightness.
- HSV --Hue Saturation Value
- HIS -- Hue, Saturation and Intensity
- HCI -- C= Chroma
- HVC -- V = value
- HSD -- D=Darkness
- CMY

•

1.4 Other color models

In the Brain: from RGB to LHS

2. Color Models in Images

- RGB color model for CRT Display
- CMY color model
- Transformation from RBG to CMY
- CMYK color system

2.1 RGB model for CRT display

- Store integers proportional to intensity in frame buffer
- Gamma Correction

The RGB Cube

The CMY Cube

2.2 Subtractive Color: CMY

Additive and subtractive color RGB is additive color; CMYK is subtractive color

2.3 Transformation from RBG to CMY

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} C \\ M \\ Y \end{bmatrix}$$

The inverse transform

2.4 Under color Removal: CMYK

$$K = \min\{ C, M, Y \}$$

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} C - K \\ M - K \\ Y - K \end{bmatrix}$$

CMYK system get the "true" black by adding K component

3. Color Models in Video

- YUV Color Model
- YIQ Color Model
- YCbCr Color Model

3. Color Models in Video

Video Color Transforms

- (a) Largely derive from older analog methods of coding color for TV. Luminance is separated from color information.
- (b) For example, a matrix transform method similar to Eq. (4.9) called YIQ is used to transmit TV signals in North America and Japan.
- (c) In Europe, video tape uses the PAL or SECAM codings, which are based on TV that uses a matrix transform called YUV.
- (d) Finally, digital video mostly uses a matrix transform called YCbCr that is closely related to YUV

3.1 YUV Color Model

 YUV – for PAL analog video, also CCIR 601 standard for digital video

$$-Y = 0.299R + 0.587G + 0.114B$$

- Chrominance(色度) as:

$$U = B - Y$$

 $V = R - Y$

-U=V=0. No chrominance!

3.1 YUV Color Model

After gamma correction (R', G', B')

$$U = B' - Y'$$

$$V = R' - Y'$$

$$\begin{bmatrix} Y' \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.144 \\ -0.299 & -0.587 & 0.886 \\ 0.701 & -0.587 & -0.114 \end{bmatrix} \begin{bmatrix} R' \\ G' \\ B' \end{bmatrix}$$

In PAL application

$$U = 0.492 (B' - Y')$$

 $V = 0.877 (R' - Y')$

YUV space

3.1 YUV Color Model

Fig. 4.18: Y 'UV decomposition of color image. Top image (a) is original color image; (b) is Y '; (c,d) are (U, V)

3.2 YIQ Color Model

- YIQ -- NTSC color TV broadcasting,
 - Adapt to black-white TV (only Y)
- U and V not capture the most-to-least hierarchy of human vision sensitivity
 - I and Q used in NTSC, instead of U,V.
- I -- orange-blue, Q -- purple-green
 - I and Q obtained by rotating R Y and B Y with 33°.

$$I = 0.877(R - Y) \cos 33 - 0.492(B - Y) \sin 33$$

 $Q = 0.877(R - Y) \sin 33 + 0.492(B - Y) \cos 33$

3.2 YIQ color Model

- Leading to the follow equations:
 - I = 0.736(R Y) 0.268(B Y) = 0.596R 0.275G 0.321B
 - Q = 0.478(R Y) + 0.413(B Y) = 0.212R 0.523G + 0.311B
- Most sensitivity to Y, then to I, Least to Q
 - In NTSC Broadcasting, the bandwidth for each components as follows:
 - 4.2 MHz is allocated to Y
 - 1.5 MHz to I
 - 0.55 MHz to Q

3.2 YIQ color Model

Fig.4.19: *I* and *Q* components of color image.

3.3 YCbCr Color Model

- YCbCr ITU-R BT.601-4
- YCbCr model closely related to YUV

$$-$$
 Cb = (B - Y) / 1.772 + 0.5

$$- Cr = (R - Y) / 1.402 + 0.5$$

$$\begin{bmatrix} Y' \\ C_b \\ C_r \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.168736 & -0.331264 & 0.5 \\ 0.5 & -0.418688 & -0.081312 \end{bmatrix} \begin{bmatrix} R' \\ G' \\ B' \end{bmatrix} + \begin{bmatrix} 0 \\ 0.5 \\ 0.5 \end{bmatrix}$$

 YCbCr is widely used in JPEG image compression and MPEG video compression.

The End

Thanks!
Email: junx@cs.zju.edu.cn