IN THE CLAIMS

10/036,813

Please amend the claims as indicated:

1	1.	(prev	iously presented) A computer implemented method which models failure of	
2		a borehole in a subsurface formation, the method comprising:;		
3		(a)	defining a subsurface model in the computer, the model including a	
4			plurality of regions, said plurality of regions including the borehole and at	
5			least one additional region selected from (i) a liner in the borehole, (ii) a	
6	·		casing in the borehole, and (iii) at least one earth formation, each of said	
7			plurality of regions comprising a plurality of nodes interconnected by a	
8			plurality of linkages,	
9		(b)	defining material properties associated with said nodes and said linkages	
10			of said subsurface model, said material properties having a statistical	
11			variation;	
12		(c)	specifying an initial deformation pattern of the model; and	
13		(d)	using a dynamic range relaxation algorithm (DRRA) implemented on the	
14			computer to find a force equilibrium solution for said subsurface model	
15			and said initial deformation pattern giving a resulting deformed model	
16			including fracturing.	
17				
1	2.	(origi	inal) The method of claim 1, wherein said nodes are arranged in a grid that is	
2		one o	of (i) a triangular grid, and, (ii) a random grid.	
3				
1	3.	(curr	ently amended) The method of claim 1 wherein said linkages are selected	

2

2		from the group consisting of (A) springs, (B) beams, and. (C) rods and (C) rods.
3		
1	4.	(original) The method of claim 1 wherein said linkages comprise springs, the
2		method further comprising defining a normal force associated with each spring.
3		
1	5.	(original) The method of claim 1 wherein said linkages comprise beams, the
2		method further comprising defining at least one of (A) a normal force, and (B) a
3		shear force associated with each beam.
4		
1	6.	(original) The method of claim 1 wherein said linkages comprise rods, the method
2		further comprising defining at least one of (A) a normal force and (B) a force
3		associated with an angle between pairs of said adjacent ones of the plurality of
4		rods.
5		
1	7.	(original) The method of claim 1, wherein using the dynamic range relaxation
2		algorithm further comprises applying said initial deformation model in a plurality
3		of steps, each step comprising applying a specified fraction of the initial
4		deformation and determining if any linkages between the nodes have been
5		deformed beyond a breaking point and identifying a subset of the linkages that
6		have been so deformed.
7		
1	8.	(original) The method of claim 7, wherein applying the dynamic range relaxation
2	10/03	algorithm further comprises iteratively breaking the one linkage of the subset of 6,813

3		linkages that has been deformed the most and applying a relaxation algorithm to
1		the remaining unbroken linkages.
5		
l	9.	(currently amended) The method of elaim 9 claim 1 wherein the at least one earth
2		formation further comprise a near earth formation including a gravel pack and a
3		far earth formation.
1		
l	10.	(original) The method of claim 1 wherein the plurality of regions comprises a
2		liner in the borehole, an earth formation including a near earth formation and a far
3		earth formation, and a gravel pack disposed between the liner and the near earth
1		formation.
5		
İ	11.	(original) The method of claim 1 wherein said linkages connect at least one
2		selected node of said plurality of nodes with (i) a plurality of nearest neighbors of
3		the at least one selected node, and (ii) a plurality of next nearest neighbors of the
1		at least one selected node.
5		
l	12.	(original) The method of claim 1 wherein said earth formations include a fluid,
2		said fluid flowing into the borehole, and said deformation pattern is determined in
3		part by a decrease in formation fluid pressure resulting from flow of said fluid
1		into the borehole.
5		
5	13.	(original) The method of claim 12 wherein using the DRRA further comprises 6,813

7		determining an additional force at each node related to a difference in said fluid
8		pressure on opposite sides of at least a subset of the plurality of nodes.
9		
1	14.	(original) The method of claim 13 wherein determining said additional force
2		further comprises performing a simulation selected from (i) a finite difference
3		simulation, and, (ii) a finite element simulation, of said fluid flow.
4		
1	15.	(original) The method of claim 14 wherein performing said simulation further
2		comprises changing at least one of (A) a permeability, and, (B) a porosity used in
3		said simulation responsive to said deformation.
4		
1	16.	(original) The method of claim 1 wherein said borehole includes a substantially
2		vertical section wherein said initial deformation pattern is substantially
3		azimuthally symmetric about an axis of the borehole in said section.
4		
1	17.	(original) The method of claim 16 wherein said borehole includes a deviated
2		section wherein said initial deformation pattern is asymmetrical about an axis of
3		the borehole.
4		
1	18.	(currently amended) A computer implemented method which models
2		failure of a borehole in a subsurface formation, the method comprising:
3		(a) defining a subsurface model in the computer, the model having a plurality
4		of nodes and including a plurality of regions, said plurality of regions
	10/036	5,813

5		including the borehole and at least one additional region selected from (i)
6		a liner in the borehole, (ii) a casing in the borehole, and (iii) at least one
7		earth formation, each of said plurality of regions comprising a plurality
8		of nodes interconnected by a plurality of linkages,
9	(b)	defining material properties associated with said nodes and said linkages
10		of said subsurface model, said material properties having a statistical
11		variation;
12	(c)	specifying a force distribution applied to the model at boundary nodes of
13		said plurality of nodes; and
14	(d)	using a dynamic range relaxation algorithm (DRRA) implemented on the
15		computer to find a force equilibrium solution for said subsurface model
16		and said force distribution giving a resulting deformed model including
17		fracturing.
18		
1	19. (orig	inal) The method of claim 18 wherein the subsurface formation has been
2	subje	cted to large scale geologic deformation and wherein specifying said force
3	distri	bution further comprises:
4	(i)	simulating the large scale geologic deformation to determine a stress
5		distribution in the subsurface formation in the absence of the borehole,
6	(ii)	defining a trajectory for the borehole therein, and
7	(iii)	identifying locations along said trajectory that are likely to fail.
8		
1	20. (orig 10/036,813	inal) The method of claim 18 wherein the forces can vary between the

2		boundary nodes.
3		
1	21.	(original) The method of claim 19 wherein identifying said trajectories further
2		comprises removing a plurality of nodes along said trajectory.
3		
1	22.	(original) The method of claim 18, wherein said nodes are arranged in a grid that
2		is one of (i) a triangular grid, and, (ii) a random grid.
3		
1	23.	(currently amended) The method of claim 18 wherein said linkages are selected
2		from the group consisting of (A) springs, (B) beams, and. (C) rods and (C) rods.
3		
1	24.	(original) The method of claim 18 wherein said linkages comprise springs, the
2		method further comprising defining a normal force associated with each spring.
3		
1	25.	(original) The method of claim 18 wherein said linkages comprise beams, the
2		method further comprising defining at least one of (A) a normal force, and (B) a
3		shear force associated with each beam.
4		
1	26.	(original) The method of claim 18 wherein said linkages comprise rods, the
2		method further comprising defining at least one of (A) a normal force and (B) a
3		force associated with an angle between pairs of said adjacent ones of the plurality
4		of rods.
5		

1	27.	(origi	nal) The method of claim 18, wherein using the dynamic range relaxation
2		algori	thm further comprises applying said force distribution in a plurality of steps,
3		each s	step comprising applying a specified fraction of the initial force and
4		deterr	nining if any linkages between the nodes have been deformed beyond a
5		break	ing point and identifying a subset of the linkages that have been so
6		defor	med.
7			•
1	28.	(origi	nal) The method of claim 27, wherein applying the dynamic range
2		relaxa	ation algorithm further comprises iteratively breaking the one linkage of the
3		subse	t of linkages that has been deformed the most and applying a relaxation
4		algori	thm to the remaining unbroken linkages.
5			
1	29.	(curre	ently amended) A computer implemented method which models faulting and
2		fractu	ring in a subsurface volume of the earth comprising:
3		(a)	defining a subsurface model in the computer, the model including
4			a plurality of interconnected nodes and material rock properties within the
5			subsurface volume;
6		(b)	specifying a stress distribution at a subset of said plurality of nodes, said
7			subset comprising boundary nodes; and
8		(c)	using a dynamic range relaxation algorithm implemented on the computer
9			to find a force equilibrium solution for said subsurface model and said
10			stress distribution giving a resulting deformed model including fracturing.

- 1 30. (original) The method of claim 29, wherein defining a subsurface model, and
 2 specifying said stress distribution further comprises using a graphical user
 3 interface.
- 1 31. (original) The method of claim 29, wherein said nodes are arranged in a grid that
- is one of (i) a triangular grid, and, (ii) a random grid.
- 1 32. (original) The method of claim 29, wherein said nodes are interconnected by
- linkages selected from (i) springs, (ii) beams, and, (iii) rods.

3