KECERDASAN BUATAN

ARTIFICIAL INTELLIGENCE

SKS/JS: 3/3

DR. Eng. ANIK NUR HANDAYANI

Searching

Teknik pencarian, yaitu teknik penyelesaian masalah yang mempresentasikan masalah ke dalam ruang keadaan (state) dan secara sistematis melakukan pembangkitan dan pengujian state-state dari initial state sampai ditemukan suatu goal state.

 Searching: digunakan dalam pencarian rute optimum untuk memandu seseorang di perjalanan, misal di swedia setiap taksi dilengkapi dengan GPS (Global Positioning System)

- Reasoning: Teknik penalaran, yaitu teknik penyelesaian masalah yang merepresentasikan maslah kedalm logic (mathematics tools yang digunakan untuk merepresentasikan dan memanipulasi fakta dan aturan).
- Reasoning: software permainan catur HITECH adalah sistem AI pertama yg berhasil mengalahkan grandmaster dunia Arnold Danker

- **Planning:** Suatu metode penyelesaian masalah dengan cara memecah masalah dalam sub-sub masalah yang lebih kecil, menyelesaikan sub-sub masalah satu demi satu, kemudian menggabungkan solusi-solusi dari sub-sub masalah tersebut menjadi sebuah solusi lengkap dengan tetap mengingat dan menangani interaksi yang terdapat pada sub-sub masalah tersebut
- Planning: dalam dunia manufaktur dan robotik.
 Software Optimum AIV adalah suatu planner yang digunakan oleh European Space Agency untuk perakitan pesawat terbang.

- Learning: secara otomatis menemukan aturan yang diharapkan bisa berlaku umum untuk dat-data ang belum pernah kita ketahui.
- Learning: digunakan dalam bidang transportasi. Software ALVINN digunakan pada sebuah mobil tanpa dikemudikan manusia → dg menngunakan JST yg dilatih dengan berbagai gambar kondisi jalan ray yg ditangkap kamera pada mobil.

TUGAS 1

- Menurut Anda seberapa penting bid. Ilmu AI untuk kehidupan manusia? Jelaskan justifikasi anda.
- Untuk mempercepat perkembangan AI sehingga menghasilkan produk2 yag berguna bagi manusia, menurut Anda definisi AI seperti apa?
- Carilah contoh perkembangan AI dalam dunia pendidikan. Jelaskan contoh aplikasi tersebut.

INTELLIGENT AGENTS

An agent is anything that can be viewed as perceiving its **environment** through **sensors** and acting upon that environment through **actuators**. (Stuart, Norvig. 2003)

INTELLIGENT AGENTS

Example:

- Human agent
 - Sensors → eyes, ears
 - Actuators \rightarrow hands, legs, mouth
- Robotic agent
 - Sensors → cameras, infra red
 - Actuators → motors

PERFORMANCES MEASURES

A performances measure embodies the criterion for success of an agents behaviours. When an agent is plunked down in a environment, it generates a sequence of actions according to the percepts it receives. This sequence of actions causes the environment go to through a sequence of states.

PERFORMANCES MEASURES

Agent Type	Performance Measure	Environment	Actuators	Sensors
Taxi driver	Safe, fast, legal, comfortable trip, maximize profits	Roads, other traffic, pedestrians, customers	Steering, accelerator, brake, signal, horn, display	Cameras, sonar, speedometer, GPS, odometer, accelerometer, engine sensors, keyboard

Well-defined problems and solutions

A problem can be defined formally by four components:

- States
- Initial state
- Successor function
- Goal test
- Path cost

- Initial state: Any state can be designed as the initial state
- Successor function: This generates the legal states that result from trying the tree actions (Left, Right, Suck)
- Goal test: This checks whether all the squares clean
- Path cost: Each step cost 1, so the path cost is the number of steps in the path.

Example: **VACUUM WORLD**

States

The agent is one of two locations, each of which might or might not contain dirt.

Thus there are $2 \times 2^2 = 8$ possible world states

The state space for the vacuum world. Arcs denote actions: L = Left, R = Right, S = Suck.