

Formal Methods and Functional Programming

Tutorial 1: Haskell, Derivations and Proofs

Submission deadline: no submission required

Haskell Introduction

- installation following the instructions at:
 - http://www.haskell.org/platform/
 - for additional detail see exercise sheet 1
- pick text editor of choice, some examples:
 - emacs
 - vim
 - notepad++
- workflow:
 - 1. write/modify haskell source in text file
 - 2. load in ghci
 - 3. test your function definitions
 - 4. repeat from 1
- debugging: typecheck + runtime
 - see mistakes.hs and mistakes-fixed.hs on course webpage

Message Derivations:

Let a set ${\bf A}$ of atomic messages be given. ${\cal L}_{\rm M}$, the language of messages, is the smallest set where:

- $M \in \mathcal{L}_{\mathrm{M}}$ if $M \in \mathbf{A}$
- $\langle A,B\rangle\in\mathcal{L}_{\mathrm{M}}$ if $A,B\in\mathcal{L}_{\mathrm{M}}$ (pairing)
- $\{M\}_K \in \mathcal{L}_M$ if $M, K \in \mathcal{L}_M$ (encryption)

For a sequence of messages M_1, \ldots, M_k , we call $M_1, \ldots, M_k \vdash M$ a sequent. Informally, this corresponds to the assertion: M can be derived from the messages M_1, \ldots, M_k .

We now define the set of rules that define which sequents can be derived.

$$\frac{}{\Gamma, M \vdash M}$$
 Ax

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash \langle A, B \rangle} \text{ Pair-I} \qquad \frac{\Gamma \vdash \langle A, B \rangle}{\Gamma \vdash A} \text{ Pair-EL} \qquad \frac{\Gamma \vdash \langle A, B \rangle}{\Gamma \vdash B} \text{ Pair-ER}$$

$$\frac{\Gamma \vdash M \qquad \Gamma \vdash K}{\Gamma \vdash \{M\}_K} \text{ Enc-I} \qquad \frac{\Gamma \vdash \{M\}_K \qquad \Gamma \vdash K}{\Gamma \vdash M} \text{ Enc-E}$$

A derivation is a tree. Consider the sequence of messages $\Gamma = \langle k_1, k_2 \rangle, \{\{s\}_{k_1}\}_{k_2}$, then the following tree is a derivation of the sequent $\Gamma \vdash s$.

$$\frac{\frac{\Gamma \vdash \{\{s\}_{k_1}\}_{k_2}}{\Gamma \vdash \{s\}_{k_1}} \text{ Ax} \qquad \frac{\overline{\Gamma \vdash \langle k_1, k_2 \rangle}}{\Gamma \vdash k_2} \text{ PAIR-ER}}{\Gamma \vdash s} \xrightarrow{\text{ENC-E}} \qquad \frac{\overline{\Gamma \vdash \langle k_1, k_2 \rangle}}{\Gamma \vdash k_1} \text{ PAIR-EL}}{\Gamma \vdash k_1} \text{ ENC-E}$$

Exercises:

- Derive the sequent $k_1, \{k_2\}_{k_1}, \{s\}_{k_1} \vdash \{s\}_{k_2}$.
- Derive the sequent $\langle a, \langle b, c \rangle \rangle, \{s\}_{\langle \langle a, b \rangle, c \rangle} \vdash s$.

Knowledge proofs:

We now define the language of knowledge formulas \mathcal{L}_{F} as the smallest set where:

- $M \ known \in \mathcal{L}_{\mathrm{F}}$ if $M \in \mathcal{L}_{\mathrm{M}}$ (knowledge facts)
- $A \to B \in \mathcal{L}_F$ if $A, B \in \mathcal{L}_F$ (implication)

We can now write formulas such as $\langle a, b \rangle$ $known \rightarrow \{a\}_b$ known. We define the following set of rules that includes the previously defined rules lifted to knowledge facts.

$$\frac{\Gamma \vdash A \; known \quad \Gamma \vdash B \; known}{\Gamma \vdash \langle A, B \rangle \; known} \; \text{Pair-I} \qquad \frac{\Gamma \vdash \langle A, B \rangle \; known}{\Gamma \vdash A \; known} \; \text{Pair-EL}$$

$$\frac{\Gamma \vdash \langle A, B \rangle \; known}{\Gamma \vdash B \; known} \; \text{Pair-ER}$$

$$\frac{\Gamma \vdash M \; known}{\Gamma \vdash \{M\}_K \; known} \; \text{Enc-I} \qquad \frac{\Gamma \vdash \{M\}_K \; known}{\Gamma \vdash M \; known} \; \text{Enc-E}$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \to \text{-I} \qquad \frac{\Gamma \vdash A \to B}{\Gamma \vdash B} \to \text{-E}$$

A proof of a formula F is a derivation of the sequent $\vdash F$. For example, the following is a proof of $\langle a,b\rangle$ $known \to \{a\}_b$ known.

$$\frac{\overline{\langle a,b\rangle\;known\vdash\langle a,b\rangle\;known}}{\langle a,b\rangle\;known\vdash a\;known} \xrightarrow{\text{PAIR-EL}} \frac{\overline{\langle a,b\rangle\;known\vdash\langle a,b\rangle\;known}}{\langle a,b\rangle\;known\vdash b\;known} \xrightarrow{\text{PAIR-ER}} \xrightarrow{\text{PAIR-ER}} \overline{\langle a,b\rangle\;known\vdash \{a\}_b\;known} \xrightarrow{\text{ENC-I}} \overline{\langle a,b\rangle\;known} \xrightarrow{\text{PAIR-ER}} \xrightarrow{\text{PAIR-ER}} \overline{\langle a,b\rangle\;known} \xrightarrow{\text{PAIR-ER}} \overline{\langle a,b$$

Exercises:

- Prove the formula $a \ known \rightarrow \langle \{b\}_a, \{s\}_{\{a\}_b} \rangle \ known \rightarrow s \ known.$
- Prove the formula $d \ known \rightarrow (\{s\}_b \ known \rightarrow b \ known) \rightarrow \{\langle \{\{s\}_b\}_c, c\rangle\}_d \ known \rightarrow s \ known.$