

.......

➤ Project Name: Smart Printing System(SPS)

➤ Team Name: AITP

Team Leader 1:

Name: Zeyad Rabea Abd El Hamid

Id: 2320241

Tel: 01273393615

Team Leader 2:

Name: Maryam Eid Abdelsalam

Id: 2320603

Tel: 01011090354

Team Members

No	Name	Id
1	Zeyad Rabea Abd El-Hamid	2320241
2	Maryam Eid Abdelsalam	2320603
3	Abdulrahman Khamis Abdo	2320326
4	Hager Ragab El-Said Madian	2320707
5	Malk Saif Alden Attia	2320630
6	Mariam Mohamed Mubarak	2320604
7	Seif Eldeen Ehab Mohamed	2320269
8	Mariam Medhat Omar Gewely	2320605
9	Hager Taha Hassan Mohamed	2320712
10	Nada Mohammed Ragab	2320677
11	Wafaa Abdul Raouf Mohammed	2320728
12	Osama El-Sayed Ali	2320091
13	Manar Ashraf Mohamed	2320633
14	Mohammed Hamada Mohaseb	2320499
15	Abdulrahman Ahmed Attia	2023312
16	Mohmed Hossam Abdelfatah	2320498
17	Mohamed Abdelhamed El- Sayed	2320523
18	Manar Mahmoud El-Sayed	2320636
19	Abdelrahman Mohamed Said	2320337
20	Huda Hamdy Ibrahim	2320721

21	Karim Ahmed Mohamed	2320450
22	Abd El-Hamid Mohammed Abd El-Hamid	2320310
23	Rahma Saleh Ramadan	2320222
24	Shrouk Hesham Mohamed	2320280
25	Mariam Ibrahim Mohamed	2320598
26	Rahma El-Shahat Nour	2320220
27	Aya Mokhtar Eid	2320155
28	Mahmoud Arafa Abdel Halim	2320583
29	Basma Abd al Rasoul	2320160
30	Abdulrahman Muhammad Salim Khalil	2320338
31	Abdulrahman Awad Daif Allah Awad	2320334
32	Abdulrahman Muhammad Yusuf Abdul Mawjoud	2320344
33	Shahd Muhammad Rajab Turki	2320296
34	Shihab al-Din Muhammad Ahmad Hashim	2320286
35	Hanin Mohammed Murad Mohammed	2320210

Introduction

Traditional printing services face several challenges, including long wait times, reliance on manual operations, and lack of digital payment solutions. Smart Printing System solves these issues by implementing a fully automated, self-service printing system.

Executive Summary

SPS is a smart printing system designed to automate printing processes in educational institutions and businesses. The system allows users to upload their documents via an online platform, make payments electronically, and print automatically by scanning a QR Code at the printer.

Project advantages:

- 1-Saving time and effort for students.
- 2-Reducing crowding in front of traditional printers, especially during exams.
- 3-Supporting digital transformation within the university through electronic payment and smart printing management.
- 4-Completely self-operating, which reduces the need for employees to manage printing. (If the payment and confirmation processes are completed or provided in full by paying with Vodafone Cash wallet or any wallet)

Problem Analysis and Proposed Solution

1-Current Issues:

- Need for a staff member to manually manage printing.
- Long waiting times during peak periods.
- Lack of an electronic payment system, forcing students to use cash.
- Absence of a system for monitoring and managing printing and costs.

2-Smart Solution:

- 24-hour self-service printing station.
- A prepaid electronic payment system, allowing students to top up their printing balance via the website.
- Fully automated printing without human intervention.
- A touch screen to display QR code on it.
- Remote monitoring and maintenance (software)of the printer.

System Operation Mechanism

1-Uploading Files via the Website:

- The student logs into the smart printer's website.
- Uploads the file and selects the number of copies, paper type, and size.

2-Electronic Payment:

- The student can top up the printing balance electronically.
- Printing costs are automatically calculated and deducted from the balance.

3-Sending the Print Request:

- The student receives a unique printing code.
- The request is sent to Raspberry Pi, which converts the file into a printable format.

4-Printing Execution:

- Upon arrival, the student enters the code or scans the QR Code.
- The printer starts printing automatically, and the printing status is updated.

5-Student Notifications:

- A notification is sent to the student upon print completion.
- Alerts are sent if an issue occurs (e.g., paper or ink runs out).

Hardware and Equipment

- 1-Printer with Wi-Fi or Ethernet support.
- 2-Raspberry Pi 4 for managing the connection between the printer and the website.
- 3-Small touchscreen for the printer interface.
- 5-USB storage unit for temporary file storage.
- 6-Internt to ensure a stable connection.

Software Components and Technologies Used

Front-End (User Interface):

- HTML, CSS, JavaScript.
- Bootstrap or (Tailwind CSS) for improved design.

Website-to-Printer Communication:

- RESTful API for sending print commands.
- Web Socket for real-time printing status updates.

Back-End (Server & Database):

- Python (Django or Flask) for website and server management.
- CUPS (Common UNIX Printing System) for managing printing via Raspberry Pi.
- MySQL to store user and request data.

Electronic Payment System:

- Internal wallet that can be topped up manually or via electronic payment.
- Stripe API or PayPal API for secure online transactions.

Project Implementation Steps

1-Phase One: Analysis & Planning.

- Define requirements and possible scenarios.
- Design the website interface and printing system.

2-Phase Two: Setting Up the Environment & Connecting the Printer:

- Install Raspberry Pi OS.
- Connect the printer to Raspberry Pi via USB or Wi-Fi.
- Install and configure CUPS to control printing.

3-Phase Three: Website Development:

- Create a database to store user data.
- Develop login and balance top-up systems.
- Build file upload and print settings pages.

4-Phase Four: Payment System & Balance Management:

- Implement a system for electronic and manual balance top-ups.
- Develop an automatic balance deduction system upon printing.

Create a special currency for the site to use in paying for printing operations within the site, such as game currencies. The student transfers money with a maximum of (10 pounds) to the wallet number found in the payment methods on the site, then this money is added as currency on the site to the student's account so that he can use it to pay for his printing operations.

5-Phase Five: Testing & Modifications:

- Test printing with different file sizes.
- Optimize performance and fix software bugs.

6-Phase Six: Deployment & Real-World Testing:

- Install the printer in its final location.
- Conduct trial runs with a limited number of students.
- Monitor performance and apply necessary improvements.

Feasibility study

Main components of the project:

components	Description	price
Raspberry Pi 5 (8GB RAM)	Central control unit for system management.	6000
Printer Xerox C 405	Laser printer connected to Wi-Fi network to print paper	13750
Power supply to Rpi	The source that supplies power to the Raspberry Pi	1500
Rpi cooler	To cool the Raspberry Pi	500
Cables and connectors (USB, HDMI,Adapter, Ethernet cable)	Cables for connecting devices.	600
SD Card (32GB)	To store operating system and data.	160
Protection box	To protect the printer	7000