

Imitation Learning of Neural Network Control Systems

Internship defense

Ahmad FARES

Supervisor:

Professor Thao DANG

PID Controller

- Proportional Integral Derivative Controller
- Fundamental tools in industrial control systems
- provide solutions for maintaining desired levels of performance

PID Loop Diagram

Stabilizing a System

PID Applications

Water-tank Model

Flying Robot Model

PID Limitations

- Tied to their fixed operation domains and configurations → provide only limited performance.
- Expensive to deploy

Design a neural network controller capable of emulating the functionality of two distinct PID

Why Neural Networks?

Introduction

- Exceptional function approximation capabilities
- ❖ Possess the ability to accurately approximate complex functions → well-suited for emulating the behavior of complex systems
- ❖ Deliver superior control performance and can be implemented on cost-effective, energy-efficient embedded platforms [Varshney et al., 2019]
- → NN Present an alternative to traditional PID Controllers and similar systems.

DC Motor Speed Control with Deep Learning [Cheon et al., 2015]

- > Utilized Deep Belief Network (DBN) algorithms to learn from PID controller data.
- Achieved superior motor speed control, demonstrating significant improvements over traditional PID methods.

Enhanced Balance Control for Segways [Ahmed and Saleh Alshandoli, 2020]

- > Applied neural networks for managing the position and balance of Segways, traditionally controlled by PID systems.
- Neural networks provided more precise control of motion and balance, enhancing response accuracy.

Imitation Learning with Neural Networks for Flying Robots: [Dang et al., 2023]

- > Developed a framework using dataset aggregation and imitation learning for training neural network-based controllers.
- ➤ Utilized Signal Temporal Logic(STL) for strategic data collection and falsification tests to validate neural network behavior.
- Tested on a model predictive controller (MPC) for a flying robot using 2-D navigation.
- ➤ Enhanced overshoot control within two iterations, though stability near target points remained challenging.

Initial Concepts:

Signal Temporal Logic (STL):

- Extends Linear Temporal Logic for real-time and real-valued systems.
- Used to specify and verify complex temporal properties of signals in continuous and hybrid systems.

Parametric Signal Temporal Logic (PSTL):

• Evolution: Incorporates parameters within STL formulas to allow for dynamic condition adjustments based on system performance.

Breach Tool:

- A MATLAB/C++ toolbox crucial for simulation-based analysis of dynamical and hybrid systems.
- Supports the evaluation of STL formulas, performs sensitivity analysis, and assists in parameter synthesis.

STL-Imitation-Algorithm:

Introduction

Algorithm 1 Dataset aggregation-based training algorithm

```
1: \mathcal{N}_0 \leftarrow \emptyset, \mathcal{D}_0 \leftarrow \emptyset, k \leftarrow 1

2: repeat

3: (\mathcal{D}_k, \operatorname{Status}) \leftarrow \operatorname{getNewData}(\mathcal{N}_{k-1}, \mathcal{D}_{k-1})

4: if \mathcal{D}_k \neq \mathcal{D}_{k-1} then

5: \mathcal{N}_k \leftarrow \operatorname{Train}(\mathcal{D}_k)

6: k \leftarrow k+1

7: end if

8: until \mathcal{D}_k = \mathcal{D}_{k-1} or k > k_{\max}

9: return \mathcal{N}_k, Status
```

Algorithm 3 Augmenting the training data from bad traces

```
1: procedure FIXANDMERGE(\mathcal{D}, CexTraces)
         NeighSamples \leftarrow gridFilter(CexTraces) Cover(\mathcal{D})
        if NeighSamples = \emptyset then
 3:
             status ← "Counter-examples do not add new
 4:
    data."
        else
 5:
             FixedTraces \leftarrow simNominal(NeighSamples)
 6:
             \mathcal{D}_{new} \leftarrow gridFilter(\mathcal{D} \cup FixedTraces)
             status ← "New data available for training."
 8:
        end if
 9:
         return \mathcal{D}_{\text{new}}, status
11: end procedure
```

Algorithm 2 New data acquisition procedure

```
1: procedure GETNEWDATA(D, N)
         if D = \emptyset then
 3:
              InitSamples \leftarrow GETINITSAMPLES
              InitTraces \leftarrow SIMNOMINAL(InitSamples)
              D_{\text{new}} \leftarrow \text{GRIDFILTER}(\text{InitTraces})
              status ← "New data available for training."
 6:
 7:
         else
              CexTraces \leftarrow FALSIFY(N)
              if CexTraces \neq \emptyset then
                   (D_{\text{new}}, \text{status}) \leftarrow \text{FIXANDMERGE}(D, \text{CexTraces})
10:
11:
              else
12:
                  D_{\text{new}} \leftarrow D
                  status ← "No counter-example found."
13:
14:
              end if
         end if
15:
16:
         return (D_{\text{new}}, \text{status})
17: end procedure
```

Motivation

Where

Computation of Control Signal u:

The state vector y is defined as:

$$y = [H, H_p, H_{pp}, \text{ref}, \text{ref}_p, \text{ref}_{pp}, u_p]$$

• $y(2) = H_p$: First derivative of the height (velocity)

• y(1) = H: Current height of the water tank

• $y(3) = H_{pp}$: Second derivative of the height (accelera-

• y(4) = ref: Reference height

• $y(5) = \text{ref}_p$: First derivative of the reference height

• $y(6) = \text{ref}_{pp}$: Second derivative of the reference height

• $y(7) = u_p$: Previous control input

The errors are defined as:

$$e = y(1) - y(4)$$

$$ep = y(2) - y(5)$$

$$epp = y(3) - y(6)$$

The control signal u is then computed as:

$$u = y(7) + a \cdot e + b \cdot ep + c \cdot epp$$

where the coefficients a, b, and c are given by:

$$a = Kp + \frac{Ki \cdot Ts}{2} + \frac{Kd}{Ts}$$

$$b = -Kp + \frac{Ki \cdot Ts}{2} - \frac{2 \cdot Kd}{Ts}$$
$$c = \frac{Kd}{Ts}$$

Water-tank Model: Imitating behavior of 1 controller

Algorithm 4 Simulation of Breach Water Tank

- 1: **procedure** SIM_BREACH_WATERTANK(control_fn, t, p)
- 2: Initialize parameters and initial state
- 3: **for** each time step k **do**
- 4: Get current state
- 5: Compute control input using the provided function
- 6: Update plant state using ODE solver
- 7: Store new state values
- 8: end for
- 9: Finalize the last control input
- 10: end procedure

Evaluation Criteria:

- Monitoring the water level "H" in relation to a predefined step function as a reference signal.
- Controller is deemed effective if "H" aligns closely with the reference signal.

Results of simulation:

Reference Step Function

Slow Controller

Fast Controller

Proposed Approach:

Algorithm 4 Simulation of Breach Water Tank 1: procedure SIM_BREACH_WATERTANK(control_fn, t, p) 2: Initialize parameters and initial state 3: for each time step k do 4: Get current state 5: Compute control input using the provided function 6: Update plant state using ODE solver 7: Store new state values 8: end for 9: Finalize the last control input 10: end procedure

Algorithm 5 Simulation of Breach Water Tank with Dual Controllers

1:	procedure SIM_BREACH_WATERTANK(control_In1, con-
	$trol_fn2, t, p)$
2:	Initialize parameters and initial state
3:	for each time step k do
4:	Get current state
5:	Compute control inputs using both controllers
6:	for each controller 1 and 2 do
7:	Apply control input
8:	Update plant state using ODE solver
9:	Store new state values temporarily
10:	Evaluate performance
11:	if new state is better then
12:	Update best distance
13:	Update best state
14:	end if
15:	end for
16:	Update the state with the best result from this step
17:	end for
18:	The corresponding control input is stored in the data
	to be used for training.
19:	end procedure

Initial Experimentation:

Analysis:

- The combined controller exhibited behavior similar to the fast controller, effectively tracking the reference height with high precision.
- Combined controller operates correctly and meets expected performance criteria.

→ Further experimentation is in progress

Achievements:

 Successfully integrated two PID controllers into a single neural network-based system.

Implications:

• The study illustrates the potential of superior neural networks that enhance traditional control systems.

Future Work:

- Further experimentation to refine the neural network training process.
- Extending into more than two controllers.