Homework 4 Solutions

Laplacian in Polar Coordinates

Suppose that we have a C^2 function $u: \mathbb{R}^2 \to \mathbb{R}$, and we define a new function $v: [0, \infty) \times [0, 2\pi) \to \mathbb{R}$ by $v(r, \theta) = u(r\cos\theta, r\sin\theta)$. The question is then asking us to prove the identity

$$\underbrace{ \underset{\text{To prove this, we compute using the chain rule:}}{(u_{xx} + u_{yy})(r\cos\theta, r\sin\theta)} = v_{rr}(r,\theta) + \frac{1}{r}v_{r}(r,\theta) + \frac{1}{r^{2}}v_{\theta\theta}(r,\theta) + \frac{1}{r^{2}}v_{\theta\theta}(r,\theta$$

$$v_r(r,\theta) = u_x(r\cos\theta,r\sin\theta)\cos\theta + u_y(r\cos\theta,r\sin\theta)\sin\theta,$$

$$v_\theta(1) + \sum_x (r\cos\theta, \cos\theta, \cos\theta)\cos\theta + u_y(r\cos\theta, \cos\theta)\cos\theta$$

$$v_r(r,\theta) = u_x(r\cos\theta, r\sin\theta)\cos\theta + u_y(r\cos\theta, r\sin\theta)\sin\theta,$$

$$v_\theta(1) + \sum_x (r\cos\theta, \cos\theta, \cos\theta)\cos\theta + u_y(r\cos\theta, \cos\theta)\cos\theta$$

Differentiating again using the chain rule, we find:

$$v_{rr}(\mathbf{A}) = v_{rr}(\mathbf{A}) + v_{r$$

$$v_{\theta\theta}(r,\theta) = u_{xx}(r\sin\theta, r\sin\theta)r^2\sin^2\theta - u_x(r\cos\theta, r\sin\theta)r\cos\theta$$
$$-2u_{xy}(r\cos\theta, r\sin\theta)r^2\sin\theta\cos\theta$$
$$+u_{yy}(r\cos\theta, r\sin\theta)r^2\cos^2\theta - u_y(r\cos\theta, r\sin\theta)r\sin\theta.$$

Now just add the expressions for v_{rr} , $\frac{1}{r}v_r$, and $\frac{1}{r^2}v_{\theta\theta}$ and check that it equals $(u_{xx}+u_{yy})(r\cos\theta,r\sin\theta)$. The identity $\sin^2\theta+\cos^2\theta=1$ will be useful.

This proves the formula for the laplacian in polar coordinates. The separation of variables is done quite explicitly on page 22 of the book.

Chapter 2, Exercise 19

Separation of variables leads to the solutions u(x,y) = f(x)g(y), where $f(x) = c_1 \sin(ax) + c_2 \cos(ax)$ and $g(y) = d_1 e^{ay} + d_2 e^{-ay}$ (the other solution where f has an exponential form and g has a sinusoidal form is not possible unless f = 0 due to the boundary conditions). The boundary conditions say f(0) = f(1) = 0 which force $c_2 = f(0) = 0$ and hence $a \in \pi \mathbb{Z}$. Assuming without loss of generality that a > 0, we throw out the unbounded ("unreasonable") part of the solution for g, corresponding to $d_1 e^{ay}$. So we have showed that any bounded solution u(x,y) = f(x)g(y) has the form $ce^{-n\pi y}\sin(n\pi x)$.

Then the general solution is given by superposition:

$$u(x,y) = \sum_{n=1}^{\infty} a_n e^{-n\pi y} \sin(n\pi x).$$

Assignment Project Exam Help $P_{y(x)} = \sum_{e^{-|n|\pi y}e^{i\pi x}} P_{x}(x) = \sum_{e^{-|n|\pi y}e^{i\pi x}} P_{x}(x) = P_{x}(x)$

then we claim that $\frac{1}{n}$ that

where f is Africal [-Wedd fatten book a somic pefficients

$$\hat{f}(n) = \frac{1}{2} \int_{-1}^{1} f(x)e^{-i\pi x} dx = -i\operatorname{sign}(n)a_{|n|}/2,$$

while P_y has Fourier coefficients

$$\hat{P}_y(n) = \frac{1}{2} \int_{-1}^1 P_y(x) e^{-i\pi x} dx = e^{-|n|\pi y},$$

and therefore $f*P_y$ has Fourier coefficients which are the product of those of the individual functions, namely $-i\operatorname{sign}(n)a_{|n|}e^{-|n|\pi y}/2$, which agree with those of $u(\cdot,y)$.

Chapter 3, Exercise 3

Let us enumerate a sequence of intervals $\{I_k\}_{k=1}^{\infty}$ as

$$I_1=[0,1/2],\quad I_2=[1/2,1],$$

$$I_3=[0,1/3],\quad I_4=[1/3,2/3],\quad I_5=[2/3,1],$$

$$I_6=[0,1/4],\quad I_7=[1/4,1/2],\quad I_8=[1/2,3/4],\quad I_9=[3/4,1],\ldots.$$

Then let f_k denote the indicator function of the interval I_k , i.e., $f_k(x) = 1$ if $x \in I_k$ and $f_k(x) = 0$ otherwise.

It is clear that any point x lies in I_k infinitely often, but x also lies in the complement of I_k infinitely often. Hence $f_k(x)$ alternates between 0 and 1 infinitely often, for any x.

An the other hand, the length of the intervals \mathbb{R} are clearly tending to 0 and \mathbb{R} and \mathbb{R} are clearly tending to 0 $|I_k| \to 0$.

Correction: Our example was constructed on the interval [0,1]. The book actually asks to consider $f_k(\frac{x}{2\pi})$).

Add WeChat powcoder

Chapter 3, Exercise 5

One may solve the problem by using the hint to find an explicit antiderivative for $(\log x)^2$. However, we use a different approach.

We claim that for any $\alpha > 0$, there exists some constant $C = C(\alpha)$ such that $|\log(1/x)| \leq Cx^{-\alpha}$ for every $x \in (0, 2\pi]$. Indeed, L'Hopital's rule shows that

$$\lim_{x \to 0+} \frac{\log(x)}{x^{-\alpha}} = \lim_{x \to 0+} \frac{1/x}{-\alpha x^{-\alpha-1}} = -\alpha^{-1} \lim_{x \to 0+} x^{\alpha} = 0.$$

Using this bound, we get that $|\log(1/x)|^2 \le C^2 x^{-2\alpha} = C' x^{-2\alpha}$. Letting $\alpha = 1/4$ gives $|\log(1/x)|^2 < C'x^{-1/2}$. Consequently, if 0 < a < b then

$$\int_a^b |\log(1/x)|^2 dx \le C' \int_a^b x^{-1/2} dx \le 2C' b^{1/2} = C'' b^{1/2}.$$

Assignment Project Exam Help

$$\int_{0}^{2\pi} (f_n(x) - f_m(x))^2 dx = \int_{1/n}^{1/m} |\log(1/x)|^2 dx \le C'' m^{-1/2},$$
 which can clearly be made smaller than some predefined ϵ in m is large enough.

Nevertheless, f_n does not converge in \mathcal{R} because the limit would be f which is unbounded herde abt in R. Indeed, any unbounded function has infinite upper Darboux sums, hence is not kienann listegrade.

Chapter 3, Exercise 8

Recall Parseval's identity which says

$$\sum_{n \in \mathbb{Z}} |\hat{f}(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx.$$

Part a: Using Part b of Exercise 6 of Chapter 2, we see that $\hat{f}(0) = \pi/2$, $\hat{f}(n) = -\frac{2}{\pi n^2}$ for n odd, and $\hat{f}(n) = 0$ otherwise. Consequently, Parseval gives

$$\frac{\pi^2}{4} + \frac{4}{\pi^2} \sum_{\substack{n \in \mathbb{Z} \text{ add}}} n^{-4} = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{1}{3}\pi^2.$$

In particular,

Assignment Project Exam Help

Hence $\sum_{0}^{\infty} (2n+1)^{-4} = \pi^{4}/96$. Letting $S = \sum_{1}^{\infty} n^{-4}$, we see that

$$S = \underbrace{\text{https://powcoder.com}^4}_{n>1, even} \underbrace{\text{powcoder.com}^4}_{n>1, odd} = \frac{\pi^4}{90}.$$

Part b: Using the Chapter Ath Provide Chapter $\hat{f}(n) = \frac{4}{i\pi n^3} \operatorname{sign}(n)$, if n is odd and 0 otherwise. Then applying Parseval,

$$\frac{32}{\pi^2} \sum_{n=0}^{\infty} (2n+1)^{-6} = \frac{16}{\pi^2} \sum_{n \in \mathbb{Z}, \ odd} n^{-6} = \frac{1}{\pi} \int_0^{\pi} x^2 (\pi - x)^2 dx = \frac{1}{30} \pi^4.$$

This gives the desired identity $\sum_{n=0}^{\infty} (2n+1)^{-6} = \pi^6/960$, from which the other identity may be derived using the same odd-even decomposition as in part a (after noting that $960 \cdot \frac{63}{64} = 945$).