Kurzfassung

Das Hauptziel dieser Arbeit ist, eine prägnante Einführung in das ursprüngliche McEliece-Verfahren von 1978 sowie in die Variante nach Niederreiter zu präsentieren. Das McEliece-Kryptosystem bietet nach heutigen Annahmen eine starke Sicherheit gegenüber bekannten Angriffen, insbesondere gegenüber Angriffen mit Quantencomputern. Zunächst werden die von Quantencomputern ausgehenden Risiken skizziert und das McEliece-Kryptosystem und seine Varianten innerhalb der Post-Quanten-Kryptografie eingeordnet. Zur Erklärung der Verfahren wird anschließend eine detaillierte Einführung in die verwendete Code-Klasse der Goppa Codes präsentiert. Im Anschluss daran werden Optimierungen und Schwächen sowohl des McEliece- als auch des Niederreiter-Systems aufgezeigt und jeweils ein Beispiel gegeben. Abschließend wird die aktuelle Classic McEliece-Variante des Systems vorgestellt.

Ergänzend zu diesem Buch steht im Github Repository 'GoppaCodes-and-McElieceKryptosystem' die Programmierung der Kryptosysteme als Jupyter Notebook zur Verfügung. Diese kann in cocalc ohne die Installation von Software ausprobiert werden.

Schlüsselwörter: Goppa Code, McEliece-Kryptosystem, asymmetrische Verschlüsselung, Fehlerkorrekturcodes, Post-Quanten-Kryptografie.

Abstract

The primary objective of this paper is to provide a concise introduction to the original McEliece scheme from 1978, as well as to the Niederreiter variant. The McEliece cryptosystem, under current assumptions, offers a high level of security against known attacks, particularly those involving quantum computers. Initially, the risks posed by quantum computers are outlined, and the McEliece cryptosystem and its variants are classified in the field of post-quantum cryptography. To explain the procedures, a detailed introduction to the class of codes used, known as Goppa codes, is presented.

Following that, optimizations and weaknesses of both the McEliece and Niederreiter systems are highlighted, with an example provided for each. Finally, the current Classic McEliece variant of the system is introduced.

In addition to this book, the Github repository 'GoppaCodes-and-McElieceKryptosystem' contains the programming of the crypto systems as a Jupyter notebook. This can be used in cocalc without the installation of software.

Keywords: Goppa code, McEliece cryptosystem, asymmetric encryption, error correction codes, post quantum cryptography.

Inhaltsverzeichnis

1.	Einleitung					
	1.1.	Motivation des McEliece-Kryptosystems	1			
	1.2.	Struktur der Arbeit	2			
	1.3.	Voraussetzungen	3			
	1.4.	Notationen	3			
2.	Quantencomputer und moderne Kryptografie					
	2.1.	Quantencomputer – Grundlagen und Algorithmen	7			
	2.2.	Post-Quanten-Kryptografie	12			
3.	Gop	oppa Codes				
	3.1.	Einleitung	17			
	3.2.					
		3.2.1. Kontrollmatrix (und Generatormatrix)	19			
		3.2.2. Dimension und Minimalabstand	22			
		3.2.3. Minimalabstand quadratfreier binärer Goppa Codes .	24			
	3.3.	Decodierung	28			
		3.3.1. Decodierung allgemeiner Goppa Codes	28			
		3.3.2. Decodierung irreduzibler binärer Goppa Codes $\ \ldots \ \ldots$	35			
4.	Das	McEliece-Kryptosystem und seine Varianten	40			
	4.1.	Das McEliece-Kryptosystem	41			
	4.2.	Das Niederreiter-Kryptosystem	46			
	4.3.	Vergleich des McEliece- und Niederreiter-Kryptosystems	48			
	4.4.	Beispiel				
		4.4.1. Beispiel zum McEliece-Kryptosystem	55			
		4.4.2. Beispiel zum Niederreiter-Kryptosystem	58			

	B.2. B.3. B.4.	Konve trollm Impler Demon	mentierung des McEliece- und Niederreiter-Kryptosystems rtierung der Kontrollmatrix hin zu einer binären Kon-	777 777 844 85 888 89		
в.	B.2. B.3.	Konve trollm Impler	nentierung des McEliece- und Niederreiter-Kryptosystems ertierung der Kontrollmatrix hin zu einer binären Konatrix	77 84 85		
в.	B.2.	Konve	nentierung des McEliece- und Niederreiter-Kryptosystems rtierung der Kontrollmatrix hin zu einer binären Konatrix	77 84		
в.		Konve	nentierung des McEliece- und Niederreiter-Kryptosystems rtierung der Kontrollmatrix hin zu einer binären Kon-	77		
В.		-	mentierung des McEliece- und Niederreiter-Kryptosystems			
В.	B.1.	Imple				
В.						
В.	Anhang: Implementierung in SageMath					
Α.	Anh	ang: Ü	bersicht über die Herleitungen	74		
5.	Zusammenfassung und Ausblick					
		4.6.3.	Vor- und Nachteile des Verfahrens	70		
		4.6.2.	Wahl der Parameter	69		
		4.6.1.	Besonderheiten des Systems	68		
	4.6.	Das C	lassic McEliece-Kryptosystem	67		
			McEliece-Kryptosystem	63		
		4.5.2.				
		4.5.1.	Grundlegende versionsunabhängige Angriffe	61		
				60		
	4.5.	Sicher	heitsanalyse			