

4L16

1.
$$(44 - x) \div 4$$

2. 34 - 5x

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$6x + 6y$$

2. $(56 - y) \div (4 + x)$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(75 + x) \div (2 \times (4 + y))$$

2. $(848 + x) \div (5 \times (9 + y))$

4L16

1.
$$x \times (9-7) = x \times 2 = 2x$$

2. $14 - 32 \div x$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(6+x) \times (10-y)$$

2. $(7-x) \times (13-y)$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(12-y) \times (5+8x)$$

2. $(178 + x) \div (9 \times (2 + y))$

4L16

1.
$$112 \div (x+9)$$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$45 \div x - 9 \div y$$

2.
$$(86 + x) \div (3 + y)$$

EX₃

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(8-y) \times (3+10x)$$

2.
$$(9-y) \times (4+9x)$$

Test 4L16

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(33 - x) \div 3$$

2. $45 \div (x+3)$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(6-x) \times (8-y)$$

2. $(x+8) \times (3+y)$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(150 + x) \div (2 \times (4 + y))$$

2. $(815 + x) \div (7 \times (4 + y))$

4L16

1.
$$7 + 5x$$

2. $10 \times (9 + x)$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$378 \div x - 63 \div y$$

2. $40 \div x - 6 \div y$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(10 - y) \times (7 + 3x)$$

2. $3x + 8y \div 8$

4L16

1.
$$40 \div (x+6)$$

2. $8 + 14 \div x$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$8x - 3y$$

2. 9x + 6y

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$6x + 3y \div 9$$

2. $(10 - y) \times (2 + 5x)$

4L16

1.
$$(49 - x) \div 9$$

2. $5 + 15 \div x$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$14x - 7y$$

2. $(89 - y) \div (6 + x)$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(16 - y) \times (5 + 3x)$$

2. $2x + 2y \div 3$

4L16

1.
$$(44 - x) \div 7$$

2. 58 - 10x

Dá

4L16

1.
$$(6+x) \times (14-y)$$

2. $(20+x) \div (12-y)$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$5x + 50y \div 10$$

2. $9x + 3y \div 9$

4L16

1.
$$2 + 30 \div x$$

2. $8 + 9 \div x$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$10x - 18 \div y$$

2.
$$9y + 8 \div x$$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(226 + x) \div (3 \times (5 + y))$$

2.
$$(11 - y) \times (4 + 9x)$$

4L16

1.
$$(11-x) \div 4$$

2. 13 - 2x

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(13 - y) \times (x + 10)$$

2. 10x - 4y

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$7x + 80y \div 8$$

2. $(524 + x) \div (8 \times (4 + y))$

4L16

1.
$$(18+16) \div x$$

2. $18 - 20 \div x$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$7x - 18 \div y$$

2. $(86 + x) \div (7 + y)$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(8-y) \times (10+8x)$$

2. $(765 + x) \div (10 \times (2 + y))$

4L16

1.
$$13 - 12 \div x$$

2. $11 - 28 \div x$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$10 \div x - 7 \div y$$

2.
$$(x+2) \times (4+y)$$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$6x + 9y \div 8$$

2.
$$8x + 6y \div 9$$

4L16

1.
$$(34 - x) \div 8$$

2. $x \times (16 - 8) = x \times 8 = 8x$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(43+x) \div (2+y)$$

2. 3x + 6y

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(12 - y) \times (5 + 4x)$$

2. $(222 + x) \div (4 \times (5 + y))$

4L16

1.
$$9 + 10x$$

2. $36 \div (x+2)$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(10-x) \times (16-y)$$

2. $(67 - y) \div (8 + x)$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(745 + x) \div (5 \times (9 + y))$$

2. $(10 - y) \times (9 + 10x)$

4L16

1.
$$10 - 16 \div x$$

2. 18 - 2x

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(15+x) \div (9-y)$$

2. $432 \div x - 54 \div y$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(211 + x) \div (2 \times (6 + y))$$

2. $7x + 36y \div 9$

4L16

1.
$$(6+12) \div x$$

2. $11 - 24 \div x$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(15 - y) \times (x + 4)$$

2. 8x - 3y

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(814 + x) \div (9 \times (7 + y))$$

2. $(9-y) \times (3+8x)$

4L16

1.
$$28 - 10x$$

2. $112 \div (x+10)$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$336 \div x - 42 \div y$$

2. $16 \div y + 30 \div x$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$8x + 14y \div 7$$

2. $(11 - y) \times (3 + 8x)$

4L16

1.
$$x \times (10 - 8) = x \times 2 = 2x$$

2. $8 \times (4 + x)$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$7x - 36 \div y$$

2. $(7-x) \times (11-y)$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$7x + 3y \div 9$$

2. $(238 + x) \div (5 \times (2 + y))$

4L16

1.
$$24 - 4x$$

2. $15 - 10 \div x$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$10x + 4y$$

2. $(x+9) \times (9+y)$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(10 - y) \times (4 + 7x)$$

2. $(403 + x) \div (9 \times (7 + y))$

4L16

1.
$$8 - 12 \div x$$

2. $2 \times (9 + x)$

EX I

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

Déterminer si ces expressions sont des sommes, des différences, des produits ou des

4L16

1.
$$63 \div y + 20 \div x$$

2.
$$(8-x) \times (14-y)$$

quotients.

4L16

1.
$$(592 + x) \div (6 \times (3 + y))$$

2.
$$(14 - y) \times (4 + 10x)$$

4L16

1.
$$4 \times (6 + x)$$

2. $18 \div (7 - x)$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(10-x) \div (10-y)$$

2. $(7+x) \div (11-y)$

quotients.

Déterminer si ces expressions sont des sommes, des différences, des produits ou des

4L16

1.
$$10x + 9y \div 8$$

2. $(1117 + x) \div (8 \times (6 + y))$

4L16

1.
$$x \times (10 - 4) = x \times 6 = 6x$$

2. $36 \div (9 - x)$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(12+x) \div (14-y)$$

2. $20 \div x - 14 \div y$

EX 3 Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(178 + x) \div (4 \times (6 + y))$$

2. $(573 + x) \div (4 \times (10 + y))$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des

4L16

1.
$$3 + 2x$$

2. $10 + 24 \div x$

1.
$$2x + 7y$$

2. $(x+3) \times (5+y)$

quotients.

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$8x + 48y \div 6$$

2. $9x + 80y \div 10$

4L16

1.
$$8 + 2x$$

2. 8 + 9x

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(116 - y) \div (7 + x)$$

2. $9y + 10 \div x$

Déterminer si ces expressions sont des sommes, des différences, des produits ou des quotients.

4L16

1.
$$(1150 + x) \div (8 \times (9 + y))$$

2. $(8-y) \times (2+3x)$

Corrections

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=7. Le calcul serait le suivant : $(44-x) \div 4 = (44-4) \div 4 = 40 \div 4 = 10$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(44-x) \div 4$ est une division.
 - Cette expression est donc un quotient.
- 2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=8. Le calcul serait le suivant : $34-5x=34-5\times 5=34-25=9$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans 34 5x est une soustraction.
 - Cette expression est donc une différence.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=9. Le calcul serait le suivant : $6x+6y=6\times 3+6\times 9=18+54=72$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans 6x + 6y est une addition.
 - Cette expression est donc une somme.
- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $(56-y) \div (4+x) = (56-8) \div (4+2) = 48 \div 6 = 8$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(56 y) \div (4 + x)$ est une division.
 - Cette expression est donc un quotient.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=9. Le calcul serait le suivant : $(75+x) \div (2 \times (4+y)) = (75+3) \div (2 \times (4+9)) = 78 \div (2 \times 13) = 78 \div 26 = 3$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(75 + x) \div (2 \times (4 + y))$ est une division. Cette expression est donc un quotient.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $(848+x) \div (5 \times (9+y)) = (848+2) \div (5 \times (9+8)) = 850 \div (5 \times 17) = 850 \div 85 = 10$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(848 + x) \div (5 \times (9 + y))$ est une division. Cette expression est donc un quotient.

Corrections -

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=9. Le calcul serait le suivant : $x \times (9-7) = 4 \times (9-7) = 4 \times 2 = 8$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes,
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $x \times (9-7) = x \times 2 = 2x$ est une multiplication. Cette expression est donc un produit.
- 2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=6. Le calcul serait le suivant : $14-32 \div x=14-32 \div 4=14-8=6$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $14-32 \div x$ est une soustraction. Cette expression est donc une différence.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 5 et y = 8. Le calcul serait le suivant : $(6 + x) \times (10 y) = (6 + 5) \times (10 8) = 11 \times 2 = 22$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(6+x) \times (10-y)$ est une multiplication. Cette expression est donc un produit.
- 2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=7. Le calcul serait le suivant : $(7-x)\times(13-y)=(7-5)\times(13-7)=2\times6=12$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(7-x)\times(13-y)$ est une multiplication. Cette expression est donc un produit.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 4 et y = 8. Le calcul serait le suivant : $(12-y)\times(5+8x) = (12-8)\times(5+8\times4) = 4(5+32) = 4\times37 = 148$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(12 - y) \times (5 + 8x)$ est une multiplication. Cette expression est donc un produit.

- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $(178+x) \div (9 \times (2+y)) = (178+2) \div (9 \times (2+8)) = 180 \div (9 \times 10) = 180 \div 90 = 2$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(178 + x) \div (9 \times (2 + y))$ est une division. Cette expression est donc un quotient.

Corrections -

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 5 et y = 9. Le calcul serait le suivant : $112 \div (x+9) = 112 \div (5+9) = 112 \div 14 = 8$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $112 \div (x+9)$ est une division. Cette expression est donc un quotient.
- 2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=7. Le calcul serait le suivant : $35 \div (x+5) = 35 \div (2+5) = 35 \div 7 = 5$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires. La dernière opération dans $35 \div (x+5)$ est une division. Cette expression est donc un quotient.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 5 et y = 9. Le calcul serait le suivant : $45 \div x 9 \div y = 45 \div 5 9 \div 9 = 9 1 = 8$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires. La dernière opération dans $45 \div x 9 \div y$ est une soustraction. Cette expression est donc une différence.
- 2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 2 et y = 8. Le calcul serait le suivant : $(86 + x) \div (3 + y) = (86 + 2) \div (3 + 8) = 88 \div 11 = 8$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires. La dernière opération dans $(86 + x) \div (3 + y)$ est une division. Cette expression est donc un quotient.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=7. Le calcul serait le suivant : $(8-y)\times(3+10x)=(8-7)\times(3+10\times4)=1(3+40)=1\times43=43$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(8-y) \times (3+10x)$ est une multiplication. Cette expression est donc un produit.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=6. Le calcul serait le suivant : $(9-y)\times(4+9x)=(9-6)\times(4+9\times3)=3(4+27)=3\times31=93$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(9-y)\times(4+9x)$ est une multiplication. Cette expression est donc un produit.

Corrections

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=8. Le calcul serait le suivant : $(33-x) \div 3 = (33-3) \div 3 = 30 \div 3 = 10$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(33-x) \div 3$ est une division.
 - Cette expression est donc un quotient.
- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=7. Le calcul serait le suivant : $45 \div (x+3) = 45 \div (2+3) = 45 \div 5 = 9$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $45 \div (x+3)$ est une division.
 - Cette expression est donc un quotient.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=6. Le calcul serait le suivant : $(6-x) \times (8-y) = (6-2) \times (8-6) = 4 \times 2 = 8$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(6-x)\times(8-y)$ est une multiplication.
 - Cette expression est donc un produit.
- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=8. Le calcul serait le suivant : $(x+8) \times (3+y) = (5+8) \times (3+8) = 13 \times 11 = 143$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(x+8) \times (3+y)$ est une multiplication.
 - Cette expression est donc un produit.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=7. Le calcul serait le suivant : $(150+x) \div (2 \times (4+y)) = (150+4) \div (2 \times (4+7)) = 154 \div (2 \times 11) = 154 \div 22 = 7$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(150+x) \div (2 \times (4+y))$ est une division. Cette expression est donc un quotient.

- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=9. Le calcul serait le suivant : $(815+x) \div (7 \times (4+y)) = (815+4) \div (7 \times (4+9)) = 819 \div (7 \times 13) = 819 \div 91 = 9$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(815 + x) \div (7 \times (4 + y))$ est une division. Cette expression est donc un quotient.

Corrections -

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=8. Le calcul serait le suivant : $7+5x=7+5\times 5=7+25=32$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans 7 + 5x est une addition. Cette expression est donc une somme.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=6. Le calcul serait le suivant : $10 \times (9+x) = 10 \times (9+3) = 10 \times 12 = 120$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $10 \times (9+x)$ est une multiplication. Cette expression est donc un produit.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=7. Le calcul serait le suivant : $378 \div x - 63 \div y = 378 \div 3 - 63 \div 7 = 126 - 9 = 117$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $378 \div x - 63 \div y$ est une soustraction. Cette expression est donc une différence.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 5 et y = 6. Le calcul serait le suivant : $40 \div x - 6 \div y = 40 \div 5 - 6 \div 6 = 8 - 1 = 7$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $40 \div x - 6 \div y$ est une soustraction. Cette expression est donc une différence.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=6. Le calcul serait le suivant : $(10-y)\times(7+3x)=(10-6)\times(7+3\times3)=4(7+9)=4\times16=64$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(10 - y) \times (7 + 3x)$ est une multiplication. Cette expression est donc un produit.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=8. Le calcul serait le suivant : $3x+8y \div 8=3\times 3+8\times 8 \div 8=9+64 \div 8=9+8=17$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $3x + 8y \div 8$ est une addition. Cette expression est donc une somme.

Corrections -

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=7. Le calcul serait le suivant : $40 \div (x+6) = 40 \div (2+6) = 40 \div 8 = 5$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $40 \div (x+6)$ est une division. Cette expression est donc un quotient.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=9. Le calcul serait le suivant : $8+14 \div x=8+14 \div 2=8+7=15$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $8+14 \div x$ est une addition. Cette expression est donc une somme.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=9. Le calcul serait le suivant : $8x-3y=8\times 4-3\times 9=32-27=5$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans 8x - 3y est une soustraction.

Cette expression est donc une différence.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=7. Le calcul serait le suivant : $9x+6y=9\times 5+6\times 7=45+42=87$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans 9x + 6y est une addition.

Cette expression est donc une somme.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=6. Le calcul serait le suivant : $6x+3y\div 9=6\times 3+3\times 6\div 9=18+18\div 9=18+2=20$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $6x + 3y \div 9$ est une addition. Cette expression est donc une somme.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=7. Le calcul serait le suivant : $(10-y)\times(2+5x)=(10-7)\times(2+5\times3)=3(2+15)=3\times17=51$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(10-y) \times (2+5x)$ est une multiplication. Cette expression est donc un produit.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=8. Le calcul serait le suivant : $(49-x) \div 9 = (49-4) \div 9 = 45 \div 9 = 5$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(49-x) \div 9$ est une division.
 - Cette expression est donc un quotient.
- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=7. Le calcul serait le suivant : $5+15 \div x=5+15 \div 5=5+3=8$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $5+15 \div x$ est une addition.
 - Cette expression est donc une somme.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=7. Le calcul serait le suivant : $14x-7y=14\times 4-7\times 7=56-49=7$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans 14x 7y est une soustraction.
 - Cette expression est donc une différence.
- 2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 3 et y = 8. Le calcul serait le suivant : $(89 - y) \div (6 + x) = (89 - 8) \div (6 + 3) = 81 \div 9 = 9$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(89 y) \div (6 + x)$ est une division.
 - Cette expression est donc un quotient.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=9. Le calcul serait le suivant : $(16-y)\times(5+3x)=(16-9)\times(5+3\times3)=7(5+9)=7\times14=98$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(16-y) \times (5+3x)$ est une multiplication. Cette expression est donc un produit.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=6. Le calcul serait le suivant : $2x+2y \div 3=2\times 3+2\times 6\div 3=6+12\div 3=6+4=10$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $2x + 2y \div 3$ est une addition. Cette expression est donc une somme.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=6. Le calcul serait le suivant : $(44-x) \div 7 = (44-2) \div 7 = 42 \div 7 = 6$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(44-x) \div 7$ est une division. Cette expression est donc un quotient.
- 2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=9. Le calcul serait le suivant : $58-10x=58-10\times 5=58-50=8$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans 58-10x est une soustraction. Cette expression est donc une différence.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 5 et y = 7. Le calcul serait le suivant : $(6+x) \times (14-y) = (6+5) \times (14-7) = 11 \times 7 = 77$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(6+x) \times (14-y)$ est une multiplication. Cette expression est donc un produit.
- 2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=6. Le calcul serait le suivant : $(20+x) \div (12-y) = (20+4) \div (12-6) = 24 \div 6 = 4$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(20+x) \div (12-y)$ est une division. Cette expression est donc un quotient.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=7. Le calcul serait le suivant : $5x+50y\div 10=5\times 5+50\times 7\div 10=25+350\div 10=25+35=60$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $5x + 50y \div 10$ est une addition. Cette expression est donc une somme.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=9. Le calcul serait le suivant : $9x+3y\div 9=9\times 5+3\times 9\div 9=45+27\div 9=45+3=48$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $9x + 3y \div 9$ est une addition. Cette expression est donc une somme.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=9. Le calcul serait le suivant : $2+30 \div x = 2+30 \div 5 = 2+6=8$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $2+30 \div x$ est une addition. Cette expression est donc une somme.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=9. Le calcul serait le suivant : $8+9 \div x = 8+9 \div 3 = 8+3 = 11$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, les respectent les priorités opératoires.

La dernière opération dans $8+9 \div x$ est une addition. Cette expression est donc une somme.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=6. Le calcul serait le suivant : $10x-18 \div y = 10 \times 4 - 18 \div 6 = 40 - 3 = 37$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $10x - 18 \div y$ est une soustraction. Cette expression est donc une différence.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=6. Le calcul serait le suivant : $9y+8 \div x=9 \times 6+8 \div 4=54+2=56$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $9y + 8 \div x$ est une addition.

Cette expression est donc une somme.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=6. Le calcul serait le suivant : $(226+x) \div (3 \times (5+y)) = (226+5) \div (3 \times (5+6)) = 231 \div (3 \times 11) = 231 \div 33 = 7$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(226 + x) \div (3 \times (5 + y))$ est une division. Cette expression est donc un quotient.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=9. Le calcul serait le suivant : $(11-y)\times(4+9x)=(11-9)\times(4+9\times3)=2(4+27)=2\times31=62$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(11-y) \times (4+9x)$ est une multiplication. Cette expression est donc un produit.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=9. Le calcul serait le suivant : $(11-x) \div 4 = (11-3) \div 4 = 8 \div 4 = 2$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(11-x) \div 4$ est une division. Cette expression est donc un quotient.
- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=6. Le calcul serait le suivant : $13-2x=13-2\times 5=13-10=3$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans 13 2x est une soustraction. Cette expression est donc une différence.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=7. Le calcul serait le suivant : $(13-y)\times(x+10)=(13-7)\times(2+10)=6\times12=72$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(13-y)\times(x+10)$ est une multiplication. Cette expression est donc un produit.
- 2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=8. Le calcul serait le suivant : $10x-4y=10\times 4-4\times 8=40-32=8$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans 10x 4y est une soustraction. Cette expression est donc une différence.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=7. Le calcul serait le suivant : $7x+80y \div 8 = 7 \times 2 + 80 \times 7 \div 8 = 14 + 560 \div 8 = 14 + 70 = 84$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $7x + 80y \div 8$ est une addition. Cette expression est donc une somme.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=7. Le calcul serait le suivant : $(524+x) \div (8 \times (4+y)) = (524+4) \div (8 \times (4+7)) = 528 \div (8 \times 11) = 528 \div 88 = 6$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(524+x) \div (8 \times (4+y))$ est une division. Cette expression est donc un quotient.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=6. Le calcul serait le suivant : $(18+16) \div x = (18+16) \div 2 = 34 \div 2 = 17$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(18+16) \div x$ est une division. Cette expression est donc un quotient.
- 2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=6. Le calcul serait le suivant : $18-20 \div x=18-20 \div 2=18-10=8$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $18-20 \div x$ est une soustraction. Cette expression est donc une différence.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=6. Le calcul serait le suivant : $7x-18 \div y = 7 \times 4 18 \div 6 = 28 3 = 25$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $7x 18 \div y$ est une soustraction.
 - Cette expression est donc une différence.
- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 5 et y = 6. Le calcul serait le suivant : $(86 + x) \div (7 + y) = (86 + 5) \div (7 + 6) = 91 \div 13 = 7$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes,
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(86 + x) \div (7 + y)$ est une division.
 - Cette expression est donc un quotient.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=6. Le calcul serait le suivant : $(8-y)\times(10+8x)=(8-6)\times(10+8\times4)=2(10+32)=2\times42=84$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(8-y) \times (10+8x)$ est une multiplication. Cette expression est donc un produit.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=9. Le calcul serait le suivant : $(765+x) \div (10 \times (2+y)) = (765+5) \div (10 \times (2+9)) = 770 \div (10 \times 11) = 770 \div 110 = 7$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(765 + x) \div (10 \times (2 + y))$ est une division. Cette expression est donc un quotient.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=6. Le calcul serait le suivant : $13-12 \div x=13-12 \div 2=13-6=7$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $13-12 \div x$ est une soustraction. Cette expression est donc une différence.
- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=7. Le calcul serait le suivant : $11-28 \div x = 11-28 \div 4 = 11-7=4$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $11-28 \div x$ est une soustraction. Cette expression est donc une différence.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=7. Le calcul serait le suivant : $10 \div x 7 \div y = 10 \div 5 7 \div 7 = 2 1 = 1$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $10 \div x 7 \div y$ est une soustraction. Cette expression est donc une différence.
- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $(x+2) \times (4+y) = (2+2) \times (4+8) = 4 \times 12 = 48$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(x+2) \times (4+y)$ est une multiplication. Cette expression est donc un produit.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $6x+9y \div 8=6\times 2+9\times 8 \div 8=12+72 \div 8=12+9=21$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $6x + 9y \div 8$ est une addition. Cette expression est donc une somme.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=6. Le calcul serait le suivant : $8x+6y \div 9=8\times 2+6\times 6 \div 9=16+36\div 9=16+4=20$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $8x + 6y \div 9$ est une addition. Cette expression est donc une somme.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=6. Le calcul serait le suivant : $(34-x) \div 8 = (34-2) \div 8 = 32 \div 8 = 4$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(34-x) \div 8$ est une division.
- Cette expression est donc un quotient.
- 2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 3 et y = 8. Le calcul serait le suivant : $x \times (16 8) = 3 \times (16 8) = 3 \times 8 = 24$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $x \times (16-8) = x \times 8 = 8x$ est une multiplication. Cette expression est donc un produit.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=6. Le calcul serait le suivant : $(43+x) \div (2+y) = (43+5) \div (2+6) = 48 \div 8 = 6$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes,
 - elles respectent les priorités opératoires. La dernière opération dans $(43+x) \div (2+y)$ est une division. Cette expression est donc un quotient.
- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=8. Le calcul serait le suivant : $3x+6y=3\times 4+6\times 8=12+48=60$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans 3x + 6y est une addition.
 - Cette expression est donc une somme.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=6. Le calcul serait le suivant : $(12-y)\times(5+4x)=(12-6)\times(5+4\times4)=6(5+16)=6\times21=126$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(12 - y) \times (5 + 4x)$ est une multiplication. Cette expression est donc un produit.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=9. Le calcul serait le suivant : $(222+x) \div (4 \times (5+y)) = (222+2) \div (4 \times (5+9)) = 224 \div (4 \times 14) = 224 \div 56 = 4$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(222 + x) \div (4 \times (5 + y))$ est une division. Cette expression est donc un quotient.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=8. Le calcul serait le suivant : $9+10x=9+10\times 4=9+40=49$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans 9 + 10x est une addition.

Cette expression est donc une somme.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=6. Le calcul serait le suivant : $36 \div (x+2) = 36 \div (4+2) = 36 \div 6 = 6$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $36 \div (x+2)$ est une division.

Cette expression est donc un quotient.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=8. Le calcul serait le suivant : $(10-x)\times(16-y)=(10-5)\times(16-8)=5\times8=40$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(10-x)\times(16-y)$ est une multiplication. Cette expression est donc un produit.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=7. Le calcul serait le suivant : $(67-y) \div (8+x) = (67-7) \div (8+4) = 60 \div 12 = 5$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(67 - y) \div (8 + x)$ est une division. Cette expression est donc un quotient.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=6. Le calcul serait le suivant : $(745+x) \div (5 \times (9+y)) = (745+5) \div (5 \times (9+6)) = 750 \div (5 \times 15) = 750 \div 75 = 10$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(745 + x) \div (5 \times (9 + y))$ est une division. Cette expression est donc un quotient.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $(10-y)\times(9+10x)=(10-8)\times(9+10\times2)=2(9+20)=2\times29=58$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(10-y)\times(9+10x)$ est une multiplication. Cette expression est donc un produit.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $10-16 \div x=10-16 \div 2=10-8=2$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $10-16 \div x$ est une soustraction. Cette expression est donc une différence.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=9. Le calcul serait le suivant : $18-2x=18-2\times 4=18-8=10$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans 18-2x est une soustraction. Cette expression est donc une différence.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=7. Le calcul serait le suivant : $(15+x) \div (9-y) = (15+5) \div (9-7) = 20 \div 2 = 10$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(15+x) \div (9-y)$ est une division. Cette expression est donc un quotient.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=9. Le calcul serait le suivant : $432 \div x - 54 \div y = 432 \div 4 - 54 \div 9 = 108 - 6 = 102$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $432 \div x - 54 \div y$ est une soustraction. Cette expression est donc une différence.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=6. Le calcul serait le suivant : $(211+x) \div (2 \times (6+y)) = (211+5) \div (2 \times (6+6)) = 216 \div (2 \times 12) = 216 \div 24 = 9$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(211+x) \div (2 \times (6+y))$ est une division. Cette expression est donc un quotient.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=6. Le calcul serait le suivant : $7x+36y \div 9 = 7 \times 4 + 36 \times 6 \div 9 = 28 + 216 \div 9 = 28 + 24 = 52$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $7x + 36y \div 9$ est une addition. Cette expression est donc une somme.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=6. Le calcul serait le suivant : $(6+12) \div x = (6+12) \div 3 = 18 \div 3 = 6$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(6+12) \div x$ est une division.
 - Cette expression est donc un quotient.
- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=8. Le calcul serait le suivant : $11-24 \div x=11-24 \div 3=11-8=3$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $11 24 \div x$ est une soustraction.
 - Cette expression est donc une différence.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=8. Le calcul serait le suivant : $(15-y) \times (x+4) = (15-8) \times (3+4) = 7 \times 7 = 49$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(15-y) \times (x+4)$ est une multiplication.
 - Cette expression est donc un produit.
- 2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=8. Le calcul serait le suivant : $8x-3y=8\times 4-3\times 8=32-24=8$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans 8x 3y est une soustraction.
 - Cette expression est donc une différence.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=6. Le calcul serait le suivant : $(814+x) \div (9 \times (7+y)) = (814+5) \div (9 \times (7+6)) = 819 \div (9 \times 13) = 819 \div 117 = 7$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(814 + x) \div (9 \times (7 + y))$ est une division. Cette expression est donc un quotient.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=8. Le calcul serait le suivant : $(9-y)\times(3+8x)=(9-8)\times(3+8\times3)=1(3+24)=1\times27=27$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(9-y)\times(3+8x)$ est une multiplication. Cette expression est donc un produit.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $28-10x=28-10\times 2=28-20=8$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans 28-10x est une soustraction. Cette expression est donc une différence.
- 2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=7. Le calcul serait le suivant : $112 \div (x+10) = 112 \div (4+10) = 112 \div 14 = 8$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $112 \div (x+10)$ est une division. Cette expression est donc un quotient.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=7. Le calcul serait le suivant : $336 \div x 42 \div y = 336 \div 2 42 \div 7 = 168 6 = 162$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $336 \div x 42 \div y$ est une soustraction. Cette expression est donc une différence.
- 2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=8. Le calcul serait le suivant : $16 \div y + 30 \div x = 16 \div 8 + 30 \div 5 = 2 + 6 = 8$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $16 \div y + 30 \div x$ est une undefined. Cette expression est donc undefined.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=9. Le calcul serait le suivant : $8x+14y\div 7=8\times 5+14\times 9\div 7=40+126\div 7=40+18=58$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $8x + 14y \div 7$ est une addition. Cette expression est donc une somme.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $(11-y)\times(3+8x)=(11-8)\times(3+8\times2)=3(3+16)=3\times19=57$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(11-y) \times (3+8x)$ est une multiplication. Cette expression est donc un produit.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=7. Le calcul serait le suivant : $x \times (10-8) = 4 \times (10-8) = 4 \times 2 = 8$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $x \times (10-8) = x \times 2 = 2x$ est une multiplication. Cette expression est donc un produit.
- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $8 \times (4+x) = 8 \times (4+2) = 8 \times 6 = 48$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $8 \times (4+x)$ est une multiplication. Cette expression est donc un produit.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=9. Le calcul serait le suivant : $7x-36 \div y = 7 \times 3 36 \div 9 = 21 4 = 17$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $7x 36 \div y$ est une soustraction.
 - Cette expression est donc une différence.
- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=7. Le calcul serait le suivant : $(7-x)\times(11-y)=(7-5)\times(11-7)=2\times 4=8$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(7-x) \times (11-y)$ est une multiplication. Cette expression est donc un produit.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=6. Le calcul serait le suivant : $7x+3y \div 9 = 7 \times 4 + 3 \times 6 \div 9 = 28 + 18 \div 9 = 28 + 2 = 30$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $7x + 3y \div 9$ est une addition. Cette expression est donc une somme.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=6. Le calcul serait le suivant : $(238+x) \div (5 \times (2+y)) = (238+2) \div (5 \times (2+6)) = 240 \div (5 \times 8) = 240 \div 40 = 6$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(238 + x) \div (5 \times (2 + y))$ est une division. Cette expression est donc un quotient.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=7. Le calcul serait le suivant : $24-4x=24-4\times 4=24-16=8$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans 24-4x est une soustraction. Cette expression est donc une différence.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=7. Le calcul serait le suivant : $15-10 \div x=15-10 \div 2=15-5=10$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $15-10 \div x$ est une soustraction. Cette expression est donc une différence.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=9. Le calcul serait le suivant : $10x + 4y = 10 \times 2 + 4 \times 9 = 20 + 36 = 56$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans 10x + 4y est une addition. Cette expression est donc une somme.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $(x+9)\times(9+y)=(2+9)\times(9+8)=11\times17=187$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(x+9) \times (9+y)$ est une multiplication. Cette expression est donc un produit.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 4 et y = 8. Le calcul serait le suivant : $(10-y)\times(4+7x) = (10-8)\times(4+7\times4) = 2(4+28) = 2\times32 = 64$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(10-y) \times (4+7x)$ est une multiplication. Cette expression est donc un produit.

- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $(403+x) \div (9 \times (7+y)) = (403+2) \div (9 \times (7+8)) = 405 \div (9 \times 15) = 405 \div 135 = 3$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(403+x)\div(9\times(7+y))$ est une division. Cette expression est donc un quotient.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=9. Le calcul serait le suivant : $8-12 \div x = 8-12 \div 4 = 8-3 = 5$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $8-12 \div x$ est une soustraction. Cette expression est donc une différence.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=6. Le calcul serait le suivant : $2 \times (9+x) = 2 \times (9+5) = 2 \times 14 = 28$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $2 \times (9+x)$ est une multiplication. Cette expression est donc un produit.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=7. Le calcul serait le suivant : $63 \div y + 20 \div x = 63 \div 7 + 20 \div 4 = 9 + 5 = 14$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $63 \div y + 20 \div x$ est une undefined. Cette expression est donc undefined.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=9. Le calcul serait le suivant : $(8-x)\times(14-y)=(8-5)\times(14-9)=3\times5=15$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(8-x) \times (14-y)$ est une multiplication. Cette expression est donc un produit.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $(592+x) \div (6 \times (3+y)) = (592+2) \div (6 \times (3+8)) = 594 \div (6 \times 11) = 594 \div 66 = 9$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(592 + x) \div (6 \times (3 + y))$ est une division. Cette expression est donc un quotient.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=7. Le calcul serait le suivant : $(14-y)\times(4+10x)=(14-7)\times(4+10\times2)=7(4+20)=7\times24=168$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(14-y)\times(4+10x)$ est une multiplication. Cette expression est donc un produit.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=9. Le calcul serait le suivant : $4 \times (6+x) = 4 \times (6+2) = 4 \times 8 = 32$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $4 \times (6+x)$ est une multiplication. Cette expression est donc un produit.
- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=7. Le calcul serait le suivant : $18 \div (7-x) = 18 \div (7-4) = 18 \div 3 = 6$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $18 \div (7-x)$ est une division. Cette expression est donc un quotient.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=6. Le calcul serait le suivant : $(10-x) \div (10-y) = (10-2) \div (10-6) = 8 \div 4 = 2$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(10-x) \div (10-y)$ est une division. Cette expression est donc un quotient.
- 2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=6. Le calcul serait le suivant : $(7+x) \div (11-y) = (7+3) \div (11-6) = 10 \div 5 = 2$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(7+x) \div (11-y)$ est une division. Cette expression est donc un quotient.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=8. Le calcul serait le suivant : $10x+9y \div 8=10\times 3+9\times 8 \div 8=30+72 \div 8=30+9=39$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $10x + 9y \div 8$ est une addition. Cette expression est donc une somme.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=8. Le calcul serait le suivant : $(1\,117+x) \div (8\times (6+y)) = (1\,117+3) \div (8\times (6+8)) = 1\,120 \div (8\times 14) = 1\,120 \div 112 = 10$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(1\,117+x)\div(8\times(6+y))$ est une division. Cette expression est donc un quotient.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=8. Le calcul serait le suivant : $x \times (10-4) = 3 \times (10-4) = 3 \times 6 = 18$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $x \times (10-4) = x \times 6 = 6x$ est une multiplication. Cette expression est donc un produit.
- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=7. Le calcul serait le suivant : $36 \div (9-x) = 36 \div (9-5) = 36 \div 4 = 9$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $36 \div (9-x)$ est une division. Cette expression est donc un quotient.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=7. Le calcul serait le suivant : $(12+x) \div (14-y) = (12+2) \div (14-7) = 14 \div 7 = 2$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(12+x) \div (14-y)$ est une division. Cette expression est donc un quotient.
- 2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=7. Le calcul serait le suivant : $20 \div x 14 \div y = 20 \div 4 14 \div 7 = 5 2 = 3$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $20 \div x 14 \div y$ est une soustraction. Cette expression est donc une différence.

- 1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=9. Le calcul serait le suivant : $(178+x) \div (4 \times (6+y)) = (178+2) \div (4 \times (6+9)) = 180 \div (4 \times 15) = 180 \div 60 = 3$.
 - Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(178 + x) \div (4 \times (6 + y))$ est une division. Cette expression est donc un quotient.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=8. Le calcul serait le suivant : $(573+x) \div (4 \times (10+y)) = (573+3) \div (4 \times (10+8)) = 576 \div (4 \times 18) = 576 \div 72 = 8$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(573+x) \div (4 \times (10+y))$ est une division. Cette expression est donc un quotient.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=8. Le calcul serait le suivant : $3+2x=3+2\times 2=3+4=7$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans 3 + 2x est une addition. Cette expression est donc une somme.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=7. Le calcul serait le suivant : $10+24 \div x=10+24 \div 4=10+6=16$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $10 + 24 \div x$ est une addition. Cette expression est donc une somme.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=7. Le calcul serait le suivant : $2x+7y=2\times 4+7\times 7=8+49=57$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans 2x + 7y est une addition. Cette expression est donc une somme.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=6. Le calcul serait le suivant : $(x+3) \times (5+y) = (4+3) \times (5+6) = 7 \times 11 = 77$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes,

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(x+3) \times (5+y)$ est une multiplication. Cette expression est donc un produit.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=8. Le calcul serait le suivant : $8x+48y \div 6=8\times 3+48\times 8 \div 6=24+384 \div 6=24+64=88$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $8x + 48y \div 6$ est une addition. Cette expression est donc une somme.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x = 5 et y = 6. Le calcul serait le suivant : $9x + 80y \div 10 = 9 \times 5 + 80 \times 6 \div 10 = 45 + 480 \div 10 = 45 + 48 = 93$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $9x + 80y \div 10$ est une addition. Cette expression est donc une somme.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=9. Le calcul serait le suivant : $8+2x=8+2\times 5=8+10=18$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans 8 + 2x est une addition. Cette expression est donc une somme.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=3 et y=7. Le calcul serait le suivant : $8+9x=8+9\times 3=8+27=35$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans 8+9x est une addition. Cette expression est donc une somme.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=4 et y=6. Le calcul serait le suivant : $(116-y) \div (7+x) = (116-6) \div (7+4) = 110 \div 11 = 10$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(116-y)\div(7+x)$ est une division. Cette expression est donc un quotient.

2. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=5 et y=6. Le calcul serait le suivant : $9y+10 \div x=9 \times 6+10 \div 5=54+2=56$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $9y + 10 \div x$ est une addition.

Cette expression est donc une somme.

1. Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=7. Le calcul serait le suivant : $(1\,150+x) \div (8\times (9+y)) = (1\,150+2) \div (8\times (9+7)) = 1\,152 \div (8\times 16) = 1\,152 \div 128 = 9$.

Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.

La dernière opération dans $(1150 + x) \div (8 \times (9 + y))$ est une division. Cette expression est donc un quotient.

- **2.** Pour fixer les idées, choissions des valeurs pour x et y, par exemple x=2 et y=6. Le calcul serait le suivant : $(8-y) \times (2+3x) = (8-6) \times (2+3\times 2) = 2(2+6) = 2\times 8 = 16$. Pour n'importe quelles valeurs de x et de y choisies, les étapes sont les mêmes, elles respectent les priorités opératoires.
 - La dernière opération dans $(8-y) \times (2+3x)$ est une multiplication. Cette expression est donc un produit.