Mode Counting in Acoustic Signals

Steven Bradley, Mateo Ibarguen, Nathan Philliber

The Agenda

- The Problem
- The Data
- Model Architectures
- Results
 - Comparing Model Performance
 - Effect of Channels on Performance
 - Channel Padding
- Future Work

The Problem

Measure the volume of fluid in a tank ... in space

Measuring Tank Volume: Zero Gravity

- Liquids behave differently in low-gravity environments
- Traditional sensors will not work

Spectral Mass Gauging in Unsettled Liquids

- Estimate the volume of unsettled liquids in low-gravity
- Acoustic resonances

Acoustic Resonances

Global vs local

Multiple channels

Shell modes vs liquid modes

The Data

The Data

- The original MATLAB script generates simulated Fourier-transformed data
- **Users manually estimate** where the modes are located by pressing 1
- The correct mode locations are later displayed with blue circles

The Task: Use the MATLAB code to easily generate a large amount of simulated data with specified parameters

Original MATLAB spectrum visualization

Dataset Parameters

NMax: Maximum number of resonances

NMaxS: Maximum number of shell modes in a spectral window

NC: Number of channels

Gamma: Damping of each resonance

dG: Variation of gamma

dGS: Variation of gamma for shell modes

Omega: Frequency of each mode

Scale: Width of a window

The Data

- Data is optionally sharded
- Data is saved as JSON format
- Stored on AWS server / S3 bucket
- Command line tool to generate new sets

```
(venv) (base) [Nathan DATA-Capstone (master *)]$ python datagen/run_gen.py
Spectra are stored in this directory. : test_set
Number of instances to create [10000]: 100
How many spectra to put in each shard (0 = \text{no shard}) [0]: 50
Number of channels to generate [10.0]: 10
Maximum number of modes [5.0]: 4
Maximum number of shell peaks [5.0]: 5
Scale or width of window [1.0]: 1
Omega Shift [10.0]: 5
Variation of Gamma [0.5]: .5
Gamma variation of shell modes [1.8]: 1.8
Creating generator...
Saving training data into 2 shards.
Generating 50 spectra for shard #1 (100 left)...
 Making SpectraLoader...
 Splitting data...
    42 Train, 8 Test
Generating 50 spectra for shard #2 (50 left)...
 Making SpectraLoader...
 Splitting data...
    42 Train. 8 Test
 Savina trainina data...
    Saved 50 spectra
 Saving training data...
    Saved 34 spectra
 Saving testing data...
    Saved 16 spectra
Saved 100 spectra to /Users/Nathan/Documents/Programming_Projects/DATA-Capst
Done.
```

Model Architecture

Model Development

Neural Networks

- Features extraction would be non-trivial
- Noise and shell modes filtering would be non-trivial
- Existing Research

Loss Function

- Categorical Cross Entropy
- Poisson Loss
- Macro Averaged Mean Absolute Error

Model Architectures

CNN

Bidirectional LSTM

Ensemble CNN

CNN + LSTM

Attention

Results

Results Overview

- **Evaluating Performance** of 3 Model Architectures
- Effect of Variable Channels
- Channel Padding

LSTM Model

- One of our initial models
- Bidirectional LSTM
- Attention Layer

LSTM Model

Training Accuracy Validation Accuracy

Training Loss Validation Loss

LSTM Model Results

1v2v3v4 Classifier	Predict 1	Predict 2	Predict 3	Predict 4
Actual 1	250	0	0	0
Actual 2	1	245	4	0
Actual 3	0	38	180	32
Actual 4	0	8	98	144

Evaluated with:

50 channels Omega Shift = 10

Delta Gamma = 0.5

Delta Gamma Shell = 0.5

Max Modes =

Max Shell Modes =

Test Accuracy: 81.1%

Test Loss: 0.401

Test MAE: 0.118

Test MSE: 0.064

LSTM Model Results

Precision / Recall by Class (number of modes)

1D CNN + LSTM Model

Additional two convolutional layers

• 1D Convolutions

1D CNN + LSTM Model

Training Accuracy Validation Accuracy

Training Loss Validation Loss

1D CNN + LSTM Model Results

Evaluated with: 50 channels

Omega Shift = 10 Delta Gamma = 0.5

Delta Gamma Shell = 0.5

Max Modes =

Max Shell Modes =

1v2v3v4 Classifier	Predict 1	Predict 2	Predict 3	Predict 4
Actual 1	250	0	0	0
Actual 2	1	241	8	0
Actual 3	0	21	169	60
Actual 4	0	3	79	168

Test Accuracy: 82.3%

Test Loss: 0.659

Test MAE: 0.092

Test MSE: 0.073

1D CNN + LSTM Model Results

Precision / Recall by Class (number of modes)

Three binary classifiers to classify

1-4 modes

Same architecture as 1D CNN + LSTM

Three binary classifiers to classify

1-4 modes

Same architecture as 1D CNN + LSTM

Training Accuracy Validation Accuracy

1|2 v 3|4 1|2 v 3|4

1|2 v 3|4 1|2 v 3|4

'All-in-One' Categorical vs Binary Ensemble Classifier

^{*} Scores are calculated independently of parent classifier

Model Evaluation Visualizations

Misclassified spectrum with 2 modes

Misclassified spectrum with 3 modes

Misclassified spectrum with 4 modes

Channel Experiments

- Big improvement for 1, 3, and 7 channels
- Little difference for 10+ channels

Channel Experiments

Max. Validation Accuracy

Min. Validation Loss

Channel Padding

- Want to be able to evaluate models with different numbers of channels
- If a sample has less than the number of channels a model was trained on, we pad this sample so that it fits in the model
- Padding strategies:
 - Reflect: Pads with the reflection of the vector mirrored on the first and last values of the vector along each axis.
 - **Symmetric:** Pads with the reflection of the vector mirrored along the edge of the array.
 - **Constant**: Pads with a constant float value, in this case "0".

Suppose we want to pad this sample so that it has 6 "channels"

Symmetric:

```
[[0, 1, 2],
[3, 4, 5],
[3, 4, 5],
[0, 1, 2],
[0, 1, 2],
[3, 4, 5]]
```

Reflect:

```
[[0, 1, 2],
[3, 4, 5],
[0, 1, 2],
[3, 4, 5],
[0, 1, 2],
[3, 4, 5]]
```

Constant:

```
[[0, 1, 2],
[3, 4, 5],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]
```

Channel Padding

Accuracy vs. Number of Original Channels

Future Work

- Mode counting vs object detection
- Global Problem
 - Regression based approach
 - Window Slicing
- Padding Strategy vs. Training a Specific Model

Questions?