PATENT ATTORNEY DOCKET NO. 0075/004001

WITED: STATES PATENT AND TRADEMARK OFFICE

Applicant : Nils SEIFERT

Art Unit: 2614

Serial No.: 09/774,052

Examiner:

Filed Title

: January 31, 2001

: METHOD AND DEVICE FOR TRANSMITTING DATA UNITS OF

A DATA STREAM

Commissioner for Patents and Trademarks

Washington, D.C. 20231

SUBMISSION OF PRIORITY DOCUMENT

Sir:

Under the provisions of 35 USC 119, applicant hereby claims the benefit of the filing date of German Patent Application No. DE 100 04 829.3 filed on January 31, 2000.

In support of applicant's claim for priority, filed herewith is a certified copy of the priority document in German.

It is respectfully requested that the receipt of the certified copy attached hereto be acknowledged in this application.

If any fees are due in connection with this filing, please charge our Deposit Account No. 19-2586, ref. 0075/004001.

If there are any questions regarding this application, please telephone the undersigned at the telephone number listed below.

Respectfully submitted

Date: March 27, 2001

ndolph A. Reg. No. 32,548

SMITH PATENT OFFICE

1901 Pennsylvania Ave., N.W.

Suite 200

Washington, DC 20006-3433 Telephone: 202-530-5900 Facsimile: 202-530-5902

Seifert032701

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

(A)

100 04 829.3

CERTIFIED COPY OF PRIORITY DOCUMENT

Anmeldetag:

31. Januar 2000

Anmelder/Inhaber:

Tellique Kommunikationstechnik GmbH, Berlin/DE

Bezeichnung:

Verfahren und Vorrichtung zum Übertragen von

Dateneinheiten eines Datenstroms

IPC:

H 04 L 12/16

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 1. März 2001 Deutsches Patent- und Markenamt Der Präsident

m Auftrag

CERTIFIED COPY CORIORITY DOCUMEN,

Hiebirge?

ANWALTSSOZIETÄT

Boehmert & Boehmert • Meinekestraße 26 • D-10719 Berlin

Deutsches Patent- und Markenamt - Technisches Informationszentrum -

10958 Berlin

DR.-ING. KARL BOEHMERT, PA (1809-1973)
DIPL-ING, ALBERT BOEHMERT, PA (1902-1993)
WILHELM J. H. STAHLBERG, RA, Bremen
DR.-ING, WALTER HOORMANN, PA*, Bremen
DR.-ING, ROLAND LIESEGANG, PA*, München
DR.-ING, ROLAND LIESEGANG, PA*, München
WOLF-DIETER KUNTZE, RA, Bremen, Alicante
DIPL-PHYS. ROBERT MÜNZHUBER, PA (1933-1992)
DR. LUDWIG KOUKER, RA, Bremen
DR. (CHEM.) ANDREAS WINKLER, PA*, Bremen
MICHAELA HUTH-DIERIG, RA, München
DIPL-PHYS. DR. MARION TOMHARDT, PA*, Dusseldorf
DR. ANDREAS EBERT-WEIDENFELLER, RA, Bremen
DIPL.-ING, EVA LIESEGANG, PA*, München
DR. AXEL NORDEMANN, RA, Berlin
DIPL-PHYS. DR. DOROTHÈE WEBER-BRULS, PA*, Frunkfurt
DIPL-PHYS. DR. STEFAN SCHOHE, PA*, München
DR. ANDREAS EBERT-WEIDENFELLER, RA, Bremen
DIPL-PHYS. DR. STEFAN SCHOHE, PA*, München
DR.-ING, MATTHIAS PHILIPP, PA*, Biedefeld
DR.-ING. MATTHIAS PHILIPP, PA*, Biedefeld
DR. JAN BERND NORDEMANN, LLM., RA, Berlin

1;
PA — Highanwalt/Patent Attorney
RA — Redhismwalt/Attorney at Law
*- European Patent Attorney
Alt angelsoon my Vertreing over dem Europäischen Markenams, Alicante
Professional Representation at the Community Trademark Office, Alicante

PROF. DR. WILHELM NORDEMANN, RA, Brinsdenburg
DIPL.-PHYS. EDUARD BAUMANN, PA*, Hobenkirchen
DR.-ING, GERALD KLÓPSCH, PA*, Dosseddorf
DIPL.-ING, HANS W, GROENING, PA*, Monchen
DIPL.-ING, SIEGFRIED SCHIRMER, PA*, Bielefeld
DIPL.-PHYS. LORENZ HANEWINKEL, PA*, Paderborn
DIPL-ING, DR. JAN TÖNNIES, PA, RA, Kiel
DIPL.-PHYS. CHRISTIAN BIEHL, PA*, Kiel
MARTIN WIRTZ, RA, Dosselborf
DR. DETMAR SCHÁFER, RA, Brennen
DIPL.-PHYS. DR.-ING, UWE MANASSE, PA*, Bretin
DR. CARL-RICHARD HAARMANN, RA, München
DR. CARL-RICHARD HAARMANN, RA, München
DIPL.-PHYS. DR. THOMAS L. BITTNIER, PA*, München
DIPL.-PHYS, DR. THOMAS L. BITTNIER, PA*, Derlin
DR. VOLKER SCHMITZ, RA, München
DR. FRIEDRICH NICOLAUS HEISE, RA, Potsdam
DIPL.-PHYS, CHRISTIAN APPELT, PA, Mönchen
DR FRIEDRICH NICOLAUS HEISE, RA, Potsdam
DIPL-PHYS, CHRISTIAN APPELT, PA, Mönchen

In Zusammenarbeit mit/in cooperation with DIPL.-CHEM, DR, HANS ULRICH MAY, PA*, Müncher

Ihr Zeichen Your ref. Ihr Schreiben Your letter of Unser Zeichen Our ref. Berlin,

Neuanmeldung (Patent)

T55008

31. Januar 2000

Tellique Kommunikationstechnik GmbH Gustav-Meyer-Allee 25 13355 Berlin

Verfahren und Vorrichtung zum Übertragen von Dateneinheiten eines Datenstroms

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Übertragen von Dateneinheiten eines Datenstroms, insbesondere eines Multimediadatenstroms von mindestens einer Sendeeinrichtung an mindestens eine Empfangseinrichtung.

Die Übertragung von Echtzeit-Medien - hierzu zählt insbesondere die Übertragung im Zusammenhang mit Radio und Fernsehen - ist aus der heutigen Welt der Unterhaltung und Informationsverbreitung nicht wegzudenken. Der Verbraucher hat bei der Nutzung dieser Medien derzeit jedoch immer noch Einschränkungen in Kauf zu nehmen: Die Übertragungen beginnen zu festen Zeitpunkten und können vom Verbraucher, außer beim Einsatz von Videorecordern, auch nur zu diesen festen Zeitpunkten betrachtet bzw. " abgerufen" werden.

Meinekestraße 26 · D-10719 Berlin · Telephon +49-30-31505150 · Telefax +49-30-31505151

- 2 -

Vor einigen Jahren fanden deshalb Feldversuche, unter anderem mit Beteiligung der Deutschen Telekom AG statt, die den Einsatz moderner Kommunikationstechnik zur Realisierung von "Video-on-demand" vorsahen. Hierbei handelt es sich um einen Mediendienst, bei dem jeder Kunde individuell auswählt, wann er sich eine bestimmte Sendung (Spielfilm, Konzertübertragung, usw.) mit Hilfe seines Fernsehers ansehen möchte. "Video-on-demand" stellt sehr hohe Anforderungen an die hierbei genutzte technische Infrastruktur. Dieses betrifft beispielsweise die Videoserver, mit deren Hilfe die abrufbaren Medieninhalte zur Verfügung gestellt werden, und die bei der Übertragung der abrufbaren Medieninhalte an ein Empfangsgerät des Kunden notwendige Kommunikationsbandbreite. "Video-on-demand" ist deshalb im Massenmarkt bisher nicht eingesetzt worden.

5

Eine ("zeitunabhängige") individuelle Auswählbarkeit von Medieninhalten besteht heute (neben dem Verleih von Videokassetten) vorwiegend nur im Bereich des Internets. Über Internetseiten oder andere grafische Nutzerschnittstellen gesteuert, liefern Medienserver individuelle Medieninhalte an die Nutzer bzw. Kunden.

Die bisher im Medienbereich (zum Beispiel beim Fernsehen oder Radio) genutzten Verfahren zur Übertragung von Medieninhalten bzw. Multimediadatenströmen umfassen zunächst das oben genannte, übliche Verfahren, bei dem eine Sendung zu einem festen Sendezeitpunkt "live" an alle möglichen Empfänger übertragen wird.

Hiervon ist eine Übertragung auf Abruf, beispielsweise "Video-on-demand" zu unterscheiden. Bei diesem Verfahren ist es notwendig, daß für jeden Empfänger eine seperate Übertragung des Multimediadatenstroms, beispielsweise über ATM stattfindet, wobei die Übertragung auf Abruf, d.h. zu einem individuell bestimmbaren Zeitpunkt begonnen werden kann. Die Übertragung auf Abruf hat jedoch den Nachteil, daß potentiell für jeden Empfänger eine eigene Übertragung ausgeführt werden muß. Hierdurch steigt die notwendige Gesamtübertragungsbandbreite des Senders proportional zur Anzahl der gleichzeitig zu bedienenden Empfänger, so daß dieses Verfahren nicht oder nur mit hohen Aufwand für eine große Anzahl von Empfängern genutzt werden kann.

- 3 -

Bei einer Übertragung nahezu auf Abruf, die auch als "Near video-on-demand" bezeichnet wird, werden mehrere Empfänger zu einer Gruppe zusammengefaßt. Für diese Empfänger findet dann eine einzige gemeinsame Übertragung des Multimediadatenstroms statt. Bei diesem Verfahren werden Empfängergruppen, die den Multimediadatenstrom innerhalb eines vorgegebenen Zeitraums abrufen möchten, zusammengefaßt, und die Übertragung des Multimediadatenstroms beginnt für alle Empfänger gemeinsam nach Ablauf des vorgegebenen Zeitraums. Die Übertragung an Empfängergruppen hat jedoch den Nachteil, daß potentiell zumindestens einige Empfänger auf den Übertragungsbeginn sehr lange warten müssen (bei wenigen Übertragungen an eine große Anzahl von Empfängern) oder die Gesamtübertragungsbandbreite des Senders sehr groß ist, wenn viele Übertragungen an kleine Empfängergruppen vorgesehen sind.

Bekannt ist weiterhin ein periodisches Übertragungsverfahren. Bei einer großen Anzahl von Empfängern müßten die Übertragungsanforderungen einzeln bearbeitet werden. Um dieses zu vermeiden, kann es sinnvoll sein, den Multimediadatenstrom bzw. den Medieninhalt von vornherein periodisch zu übertragen. Ein Empfänger muß dann auf den Beginn der nächsten Übertragung des Multimediadatenstroms warten. Um für die Empfänger den Beginn eines Abrufs zu vorgegebenen Zeitpunkten zu ermöglichen, muß beginnend ab den möglichen Abrufzeitpunkten jeweils der komplette Multimediadatenstrom auf mehreren Kanälen ausgestrahlt werden. Die periodische Übertragung hat deshalb den Nachteil, daß die Gesamtübertragungsbandbreite des Senders sehr groß sein muß, insbesondere wenn eine ausreichende Anzahl von Anfangsabrufzeitpunkten zur Verfügung gestellt werden soll. Andernfalls müssen die Empfänger auf den Übertragungsbeginn sehr lange warten.

Ein weiteres bekanntes Verfahren sieht vor, daß der Multimediadatenstrom von dem Empfangsgerät des Verbrauchers zu einem Zeitpunkt empfangen und gespeichert wird, zu dem eine Wiedergabe nicht vorgesehen ist. Der automatisch gespeicherte Multimediadatenstrom kann später zu einem beliebigen Zeitpunkt wiedergegeben werden. Die Speicherung kann hierbei selektiv für einzelne Multimediadatenströme vorgenommen werden oder permanent

- 4 -

erfolgen. Das Verfahren der Wiedergabe einer gespeicherten Übertragung hat jedoch den Nachteil, daß der Empfänger den Empfang vorher auswählen muß und über eine ausreichende Speicherkapazität verfügen muß.

Aufgabe der vorliegenden Erfindung ist es, ein verbessertes Verfahren der eingangs genannten Art zu schaffen, bei dem die beschriebenen Nachteile wenigstens teilweise überwunden sind.

Die Aufgabe wird durch ein Verfahren gemäß Anspruch 1 und eine Vorrichtung gemäß Anspruch 12 gelöst.

Der wesentliche Vorteil, welcher mit der Erfindung gegenüber dem Stand der Technik erreicht ist, besteht darin, daß ein Verfahren geschaffen ist, mittels dessen ein Datenstrom, insbesondere ein Multimediadatenstrom, beliebiger Länge so übertragen wird, daß es einer beliebigen Anzahl von Verbrauchern ermöglicht ist, den Datenstrom mit Hilfe jeweiliger Empfänger zu verschiedenen Zeitpunkten unabhängig voneinander zu empfangen und zu konsumieren.

Des weiteren besteht ein wesentlicher Aspekt des erfindungsgemäßen Verfahrens darin, daß die Gesamtmenge der zwischen der Sendeeinrichtung und den Empfangseinrichtungen zu übertragenden Daten nicht proportional mit der Anzahl der Empfangseinrichtungen steigt. Hierdurch werden Übertragungskapazitäten eingespart, so daß die Kosten gesenkt werden, und "Video-on-demand" auch für den Massenmarkt nutzbar wird.

Anwendungsgebiete des Verfahrens umfassen alle Anwendungen, bei denen beliebige Audio-/Video- oder andere Datenströme (Fernsehen, Radio, Media-on-demand, und Business TV, aber auch Streamingdata wie Börsenticker u.s.w.) an Gruppen von Verbrauchern mit jeweiligen Empfangseinrichtungen über Satelliten, Kabelnetze oder dergleichen verteilt werden, und die Verbraucher die Möglichkeit haben sollen, zwischen Datenströmen wählen zu können.

- 5 -

Weiterhin bestehen im Zusammenhang mit dem neuen Verfahren zur Übertragung von Dateneinheiten die folgenden Vorteile:

- Der Einstieg in eine Übertragung eines Multimediadatenstroms ist zu einem (nahezu beliebigen) Zeitpunkt möglich, wobei die Granularität der Einstiegspunkte von einer Reihe von Parametern abhängig ist, die pro Mediendatenstrom, pro Kundengruppe usw. eingestellt werden können.
- Das Betrachten bzw. Konsumieren des beim Verbraucher ausgegebenen Multimediadatenstroms kann für einen beliebigen Zeitraum unterbrochen werden.
- Ein "Schnellvorlauf" und ein "Überspringen von Teilen" nach einer Unterbrechung sind möglich.
- Für die Verbraucher können verschiedene Varianten desselben Programms (etwa ein Spielfilm in zwei Ausführungen: ein "Happy End" und ein tragisches Ende) zur Verfügung gestellt werden.
- Es ist eine Übertragung mit unterschiedlich viel Werbung, mit kundenspezifischer Werbung usw. möglich.

Eine zweckmäßige Weiterbildung der Erfindung sieht vor, daß eine Eingabe eines Nutzers der mindestens einen Empfangseinrichtung E_j zur Festlegung des Zeitpunkts t_1 und/oder des Zeitpunkts t_k ($2 \le k \le n$) elektronisch erfaßt wird, wobei die Eingabe über einen zwischen der mindestens einen Sendeeinrichtung und der mindestens einen Empfangseinrichtung E_m ausgebildeten Rück-Datenkanal an die mindestens eine Sendeeinrichtung übertragen wird. Hierdurch kann der Beginn der Übertragung der Datenmengen von den Nutzern der Empfangseinrichtung individuell festgelegt werden.

Eine vorteilhafte Ausgestaltung der Erfindung sieht vor, daß zwischen den Zeitpunkten t_{k-1} und t_k ($2 \le k \le n$) jeweils ein im wesentlichen gleicher zeitlicher Abstand ausgebildet ist, welcher sendeseitig vorgegeben wird, wodurch bei genügend kurzen zeitlichen Abständen fortlaufend mit der Wiedergabe der übertragenen Dateneinheiten durch die Nutzer der Empfangseinrichtungen begonnen werden kann.

Weitere Fortbildungen der Erfindung sind in den weiteren Unteransprüchen offenbart.

Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen unter Bezugnahme auf eine Zeichnung näher erläutert. Hierbei zeigen:

- Figur 1 eine schematische Darstellung des zeitlichen Verlaufs einer Übetragung eines Datenstroms für eine Empfangseinrichtung;
- Figur 2 eine schematische Darstellung des zeitlichen Verlaufs einer Übetragung des Datenstroms für zwei Empfangseinrichtungen;
- Figur 3 eine schematische Darstellung des zeitlichen Verlaufs einer Übetragung des Datenstroms für eine bzw. zwei Empfangseinrichtungen, die jeweils über eine begrenzte Speicherkapazität verfügen;
- Figur 4 eine schematische Darstellung eines ersten Sendeplans für eine Sendeeinrichtung zur Übertragung des Datenstroms;
- Figur 5 eine schematische Darstellung eines zweiten Sendeplans für die Sendeeinrichtung zur Übertragung des Datenstroms;
- Figur 6 eine schematische Darstellung eines dritten Sendeplans für die Sendeeinrichtung zur Übertragung des Datenstroms; und
- Figur 7 eine schematische Darstellung des zeitlichen Verlaufs einer Übetragung des Datenstroms für eine bzw. zwei Empfangseinrichtungen, wobei die Übertragung für eine Zeitdauer t_U unterbrochen wird.

Ein Multimediadatenstrom, z.B. ein Spielfilm, soll an eine beliebige Anzahl von Empfangseinrichtungen bzw. Empfängern $E_0 \dots E_j$ ($j \ge 1$) übertragen werden. Nach dem Empfang wird der Spielfilm mit Hilfe von Wiedergabemitteln, beispielsweise mit Hilfe eines Fernsehers oder eines rechnerbasierten Monitors und einer zugehörigen Lautsprechereinrichtung, der jeweils von den Empfangseinrichtungen $E_0 \dots E_j$ umfaßt oder mit diesen so verbunden ist, daß der empfangene Spielfilm an den jeweiligen Fernseher weitergeleitet werden kann. Der

- 7 -

Multimediadatenstrom (Spielfilm) wird hierbei (potentiell) kontinuierlich, d.h. ohne Unterbrechung wiedergegeben.

Es wird beispielhaft angenommen, daß der den zu übertragenden Spielfilm beinhaltende Datenstrom in x Dateneinheiten D_x (x = 1, 2, ...) teilbar ist, wobei jede der x Dateneinheiten D_x mindestens ein Datenbit und vorzugsweise im wesentlichen die gleiche Menge von Daten umfaßt. Die Dateneinheiten D_x werden grundsätzlich zu einem Sendezeitpunkt t^S_x von der Sendeeinrichtung gesendet, zu einem Empfangszeitpunkt t^Ex von einem der Empfanger empfangen und zu einem Wiedergabezeitpunkt t^Wx mit Hilfe zugehöriger Wiedergabemittel wiedergegeben. Zur Vereinfachung der folgenden Darstellung des Verfahrens wird für eine Dateneinheit D_n ($1 \le n \le x$) die folgende Annahme gemacht: $t_n = t^S_n = t^E_n = t^W_n$. Tatsächlich liegt der Empfangszeitpunkt t^E_n der Dateneinheit D_n jedoch später als der Sendezeitpunkt t^S_n, wobei der zeitliche Abstand zwischen t^S_n und t^E_n von den Parametern der Übertragung zwischen der Sendeeinrichtung und der jeweiligen Empfangseinrichtung abhängt. Die Übertragungsverzögerung kann je nach gewähltem Übertragungsmedium konstant sein oder schwanken, wobei letzteres beispielsweise in IP-Netzen der Fall ist. Wenn die Übertragungsverzögerung schwankt, kann zur Vereinfachung eine feste Obergrenze der Übertragungsverzögerung angenommen werden, oder diese Obergrenze kann wiederholt dynamisch ermittelt werden. Auch der Wiedergabezeitpunkt t^W_n der Dateneinheit D_n liegt um eine endliche Zeit verschoben nach dem Empfangszeitpunkt t^En, da die Dateneinheit Dn nach dem Empfang an die Wiedergabemittel weitergeleitet und zum Zweck der Wiedergabe (mehrfach) umgewandelt werden muß.

In der folgenden Beschreibung wird in der Regel davon ausgegangen, daß zum Zeitpunkt t_n die Übertragung für eine Empfangseinrichtung beginnt. Es ist jedoch auch möglich, daß die zum Zeitpunkt t_n beginnende Übertragung für mehrere Empfangseinrichtung parallel stattfindet, d.h. mehrere Empfangseinrichtungen werden zum Zeitpunkt t_n "zugeschaltet". Die Sendeeinrichtung sendet in diesem Fall Dateneinheiten aus, die von einer beliebigen Anzahl von Empfangseinrichtungen empfangen werden. Hierbei kann vorgesehen sein, daß die Dateneinheiten von mehreren Sendeeinrichtungen gesendet werden. Beipielsweise ist vorgesehen,

- 8 -

daß die einzelnen Sendeeinrichtungen in diesem Fall jeweils nur eine bestimmte Teilmenge der Dateneinheiten des Datenstroms einmalig oder wiederholt sendet.

Gemäß Figur 1 wird für die Wiedergabe des Spielfilms, d.h. aller x Dateneinheiten D_x mittels des Fernsehers, insgesamt eine Zeitdauer Δt benötigt. Hierbei wird die Dateneinheit D_n zu einem Zeitpunkt t_n nach Beginn der Übertragung (Senden, Empfangen, Wiedergeben) übertragen. Das bedeutet, daß zum Zeitpunkt t_n nach dem Beginn der Wiedergabe (des Empfangs) des Spielfilms die Dateneinheit D_n gesendet/empfangen sein und zur Wiedergabe zur Verfügung stehen muß.

Die Übertragung an eine Empfangseinrichtung E_k kann zu einem Zeitpunkt t^0_k (k = 0, 1, ...) beginnen. Nach der obigen Annahme ($t_n = t^S_n = t^E_n = t^W_n$) beginnen zum Zeitpunkt t^0_k das Senden, der Empfang und die Wiedergabe. Ab diesem Zeitpunkt empfängt der Empfänger E_k (potentiell) alle zum Spielfilm gehörenden Dateneinheiten D_x . Dieses wird in Figur 1 mittels einer Einstiegslinie 1 veranschaulicht.

Um die Dateneinheiten D_n in der dem Verlauf des Spielfilms entsprechenden Weise wiedergeben zu können, ist es notwendig, daß spätestens zum Zeitpunkt ($t^0_k + t_n$) nach dem Beginn der Übertragung des Spielfilms die Dateneinheit D_n übertragen sein muß. Bei ununterbrochener Wiedergabe des Spielfilms ergibt sich aus den spätesten Übertragungszeitpunkten t_n der Dateneinheiten für den Empfänger E_k eine Wiedergabelinie 2, die bei (t^0_k , 0) beginnt und bei ($t^0_k + \Delta t$, Δt) endet (vgl. Figur 1).

Die Wiedergabelinie 2 und die Einstiegslinie 1 bilden zusammen (mit einer Linie $t = \Delta t$) ein Dreieck, einen sogenannten Empfangstrichter 3 des Empfängers E_k . Alle Dateneinheiten D_x des Spielfilms müssen innerhalb dieses Empfangstrichters 3 an den Empfänger E_k übertragen werden, damit der Empfänger E_k bzw. dessen zugehörige Wiedergabemittel den Spielfilm vollständig und kontinuierlich darstellen kann.

- 9 -

Wird der Spielfilm, d.h. die Dateneinheiten D_x von der Sendeeinrichtung für zwei Empfänger E_1 und E_2 (vgl. Figur 2) übertragen, wobei der Empfänger E_2 den Empfang zu einem Einstiegszeitpunkt t^0_2 beginnt, bevor die zum Einstiegszeitpunkt t^0_1 begonnene Übertragung des Spielfilms für den bereits aktiven Empfänger E_1 abgeschlossen ist, so überlappen sich die Empfängstrichter 4, 5 der zwei Empfänger E_1 und E_2 . Wird die Dateneinheit D_n des Spielfilms zu einem Zeitpunkt innerhalb eines Überlappungsbereichs 6 gesendet, so muß diese Dateneinheit D_n nur einmal übertragen werden, wenn beide Empfänger E_1 und E_2 in der Lage sind, die Dateneinheit D_n bis zu deren jeweiligem Übertragungszeitpunkt ($t^0_1 + t_n$ bzw. $t^0_2 + t_n$) - nach der obigen Annahme ist dies der Sende-, Empfangs- und Wiedergabezeitpunkt - in jeweiligen Speichermitteln zwischenzuspeichern. Hierdurch wird die sonst zur individuellen Übertragung an die beiden Empfänger E_1 und E_2 benötigte Bandbreite eingespart. Hierbei erfolgt eine Zwischenspeicherung der Dateneinheit D_n grundsätzlich nur dann, wenn die Dateneinheit D_n vor dem Zeitpunkt übertragen wird, zu der die Dateneinheit D_n im Ablauf des Spielfilms wiederzugeben ist.

Aus der beschriebenen beispielhaften Vorgehensweise ergibt sich, daß eine erste Datenmenge M_1 , die zum Zweck der Übertragung des Spielfilms an den Empfänger E_1 oder eine beliebige Anzahl anderer Empfänger, die sich ebenfalls zum Zeitpunkt t^0_1 zuschalten, übertragen wird, alle Dateneinheiten D_x des Datenstroms bzw. des Spielfilms umfaßt. Eine zweite Datenmenge M_2 , die beginnend ab dem Zeitpunkt t^0_2 für den Empfänger E_2 oder eine beliebige Anzahl weiterer Empfänger, die sich auch zum Zeitpunkt t^0_2 zuschalten, übertragen wird, umfaßt jedoch nur einen Teil der Dateneinheiten D_x , da der Empfänger E_2 ab dem Zeitpunkt t^0_2 neben der für diesen Empfänger E_2 bestimmten Datenmenge M_2 auch die Dateneinheiten der Datenmenge M_1 empfängt, die nach dem Zeitpunkt t^0_2 übertragen werden.

Ausgehend von der Darstellung des Verfahrens für zwei Empfängern E_1 und E_2 läßt sich das beschriebene Verfahren auf eine Vielzahl von Empfängern $E_0 \dots E_j$ ($j \ge 1$) erweitern. Hierbei sind zwei grundsätzliche Varianten möglich, die auch miteinander kombinierbar sind:

1. Nutzung eines Rückkanals

- 10 -

Jeder der Empfänger $E_0 E_j$ ($j \ge 1$) teilt über einen (interaktiven) Rückkanal der Sendeeinrichtung mit, welches Programm (Medieninhalt) er ab welchem Zeitpunkt empfangen möchte. Im oben beschriebenen Beispiel bedeutet dies, daß die Empfänger mitteilen, ab wann der Spielfilm für den jeweiligen Empfänger übertragen werden soll. Jeder Empfänger E_k legt auf diese Weise einen zugehörigen Zeitpunkt t^0_k für den Beginn der Übertragung fest. Die Sendeeinrichtung errechnet aus den eingehenden Anfragen der Empfänger $E_0 E_j$ einen Sendeplan, der beschreibt, in welcher Reihenfolge die Dateneinheiten D_x zu senden sind, um jeweils in einer möglichst großen Anzahl von Empfangstrichtern der Empfänger übertragen zu werden.

2. Senden ohne Rückkanal

Steht zwischen der Sendeeinrichtung und den Empfängern $E_0...E_j$ kein Rückkanal zur Verfügung, oder wird die Anzahl der Empfänger zu groß, um eine individuelle Ausstrahlung zu ermöglichen, kann die Sendeeinrichtung statt der von den Empfängern angefragten Zeitpunkte $t^0_0...t^0_j$ für den jeweiligen Beginn der Übertragung ein vorgegebenes Raster von Zeitpunkten für den Beginn festlegen, beispielsweise Zeitpunkte im Abstand von zehn Sekunden, einer Minute usw. Ein Empfänger wartet dann bis zum nächsten vorgegeben Einstiegszeitpunkt, der dem übertragenen Datenstrom zu entnehmen ist, und beginnt erst dann mit der Wiedergabe, so daß in diesem Fall die von der Sendeeinrichtung vorgegebenen Rasterzeitpunkte den Zeitpunkt $t^0_0...t^0_j$ ($j \ge 1$) bilden bzw. festlegen.

In beiden Fällen kann die Sendeeinrichtung festlegen, bis zu welchem Zeitpunkt der Datenstrom (Spielfilm) maximal abgerufen werden kann, d.h. wann die letzte Übertragungsanforderung von den Empfängern eingehen darf, die noch erfüllt wird.

Unabhängig von der Verfügbarkeit eines oder mehrerer Rückkanäle, der Anzahl der Empfänger, der Regelmäßigkeit der Einstiegszeitpunkte $t^0_0...t^0_j$, der Länge des Datenstroms (Spielfilms) muß die Sendeeinrichtung bei der Erstellung und/oder dynamischen Anpassung des Sendeplans für die Dateneinheiten D_x folgende Anforderungen erfüllen. Im Zusammenhang mit dem Empfänger E_k mit dem Einstiegszeitpunkt t^0_k , der einer der mehreren Empfänger

- 11 -

 $E_0...E_j$ mit unterschiedlichen Einstiegszeitpunkten $t^0_0...t^0_j$ ist, gilt grundsätzlich das Folgende:

- (a) Alle Dateneinheiten, die aufgrund eines anderen Empfängers $(E_0 \dots E_{k-1}, E_{k+1} \dots E_j)$ innerhalb des Empfangstrichters von E_k übertragen werden, müssen nicht noch einmal für E_k übertragen werden. Eine Übertragung innerhalb des Empfangstrichters von E_k bedeutet hierbei, daß eine Dateneinheit D_n in einem Intervall $[t^0_k; t^0_k + t_n]$ übertragen wird.
- (b) Eine gemäß (a) nicht übertragene Dateneinheit D_m muß spätestens zum Zeitpunkt ($t^0_k + t_m$) für E_k übertragen werden, um der zeitliche Äbfolge des Spielfilms entsprechend wiedergegeben werden zu können.

Für zwei Empfänger E_1 und E_2 (vgl. Figur 2) wird die Übertragungsbandbreite optimal genutzt, wenn möglichst viele der Dateneinheiten innerhalb beider Übertragungstrichter 4, 5 gesendet werden, also in diesem Fall möglichst "nah an bzw. entlang" der Wiedergabelinie von E_1 , da alle diese Dateneinheiten nur einmal übertragen werden müssen.

Auf der Empfängerseite geht ein Empfänger E_k ab dem Beginn des Empfangs des Datenstroms, d.h. der Dateneinheiten, wie folgt vor: Zu einem beliebigen Zeitpunkt t_x wird die Dateneinheit D_n übertragen (gesendet, empfangen), die im Rahmen der Übertragung des Datenstroms zum Zeitpunkt t_n zu übertragen ist, und

i) an die zugehörige Wiedergabeeinrichtung übergeben, falls $t_x = t_n$ ist;

- ii) in Speichermitteln des Empfängers E_k gespeichert, falls $t_x < t_n$ ist, d.h. die Dateneinheit D_n zu einem späteren Zeitpunkt zur Wiedergabe benötigt wird und die Dateneinheit D_n noch nicht in den Speichermitteln vorliegt;
- iii) verworfen, falls $t_x > t_n$ ist, d.h. die die Dateneinheit D_n zum Zeitpunkt t_x für die Wiedergabe nicht mehr von Bedeutung ist, oder bereits in den Speichermitteln vorliegt.

Außerdem wird zum Zeitpunkt t_s die Dateneinheit D_n aus den Speichermitteln genommen und an die Wiedergabeeinrichtung übergeben, wenn $t_s = t_n$ und die Dateneinheit D_n gemäß ii) gespeichert wurde. In den Empfängern $E_0 \dots E_i$ wird also Speicherplatz (potentiell in Form einer

- 12 -

Festplatte) benötigt, auf dem die empfangenen und noch nicht benötigten Dateneinheiten temporär abgelegt werden, bis der Zeitpunkt zur Wiedergabe gekommen ist.

Die Empfänger $E_0...E_j$ verfügen i.d.R. nur über eine endliche Speicherkapazität. Ist das zu einem Zeitpunkt vorübergehend zu speichernde Volumen der Dateneinheiten D_x größer als als die verfügbare Speicherkapazität - können etwa immer nur maximal 10 Minuten des Spielfilms gespeichert werden - so ergeben sich veränderte Anforderungen an die Sendeeinrichtung und die Empfänger $E_0...E_j$. Eine Speichergrenzlinie 7 schränkt den Empfangstrichter 3 ein (vgl. Figur 3). Dateneinheiten, deren Wiedergabezeitpunkt bei einer frühen Übertragung zu weit in der Zukunft liegt, werden beim Empfang noch nicht gespeichert. Statt dessen wird auf eine erneute Übertragung zu einem späteren Zeitpunkt gewartet.

Für einen Empfänger E_k mit dem Einstiegszeitpunkt t^0_k , der einer von $E_0 \dots E_j$ Empfängern mit unterschiedlichen Einstiegszeitpunkten $t^0_0 \dots t^0_n$ ist, ergibt sich bei einer Speicherbegrenzung auf eine Zeitdauer t_{Mem} :

(a) Alle Dateneinheiten, die aufgrund eines anderen Empfängers $(E_0 \dots E_{k-1}, E_{k+1} \dots E_n)$ innerhalb des modifizierten Empfangstrichters von E_k übertragen werden, müssen nicht noch einmal für E_k übertragen werden. Eine Übertragung innerhalb des Empfangstrichters von E_k bedeutet, daß eine Dateneinheit D_n im Intervall frühestens zum Zeitpunkt t_k^0 und im Intervall $[t_k^0 + t_n - t_{Mem}; t_k^0 + t_n]$ gesendet wird.

(b) Eine gemäß (a) nicht übertragene Dateneinheit D_m muß spätestens zum Zeitpunkt ($t_k^0 + t_m$) versendet werden, jedoch nicht vor t_k^0 und nicht vor ($t_k^0 + t_n - t_{Mem}$).

Auf der Empfängerseite verändert sich das Verfahren bei Berücksichtigung des Parameters t_{Mem} . Mit dem Beginn des Empfangs eines Datenstroms, geht die Empfangseinrichtung eines Empfängers E_k wie folgt vor: Zu einem beliebigen Zeitpunkt t_x wird die Dateneinheit D_n übertragen (gesendet, empfangen), die im Rahmen der Übertragung des Datenstroms zum Zeitpunkt t_n zu übertragen ist, und

i) an die zugehörige Wiedergabeeinrichtung übergeben, falls $t_x = t_n$ ist;

- 13 -

- ii) in Speichermitteln des Empfängers E_k gespeichert, falls $t_x < t_n$ und $t_x > t_n t_{Mem}$ ist, d.h. die Dateneinheit D_n zu einem späteren Zeitpunkt zur Wiedergabe benötigt wird, der aber noch im Bereich der "Reichweite" (Speicherkapazität) der Speichermittel liegt, und die Dateneinheit D_n noch nicht in den Speichermitteln vorliegt;
- iii) verworfen, falls $t_x > t_n$ ist, d.h. die die Dateneinheit D_n zum Zeitpunkt t_x für die Wiedergabe nicht mehr von Bedeutung ist, oder bereits in den Speichermitteln vorliegt oder (t_x < $t_n - t_{Mem}$).

Gemäß Figur 3 vermindert sich der Überlappungsbereich 6 der Empfangstrichter 3 der Empfänger E₁ und E₂ im Fall der mittels t_{Mem} charakterisierten, begrenzten Speicherkapazität der Empfänger E₁ und E₂ auf eine verminderten Überlappungsbereich 8.

Die Sende- und Empfangsregeln, die hier für diese Verfahrensabwandlung angegeben sind, stellen nur ein mögliches Beispiel dar. Es hängt vom konkreten Sendeplan ab, ob zu einem Zeitpunkt auch weiter in der Zukunft als t_{Mem} gelegene Dateneinheiten zwischengespeichert werden können. Insgesamt ist von Sender und Empfänger lediglich gemeinsam Sorge zu tragen, daß die Dateneinheit D_n zum Zeitpunkt t_n beim Empfänger vorliegt.

Während sich aus den oben beschriebenen Verfahren für die Empfangsseite jeweils direkt ein Algorithmus zur Realisierung ableitet, können für die Sendeseite eine Reihe von Regeln angegeben werden, die bei der Erstellung eines Sendeplans für das Senden der Dateneinheiten D_x mittels der Sendeeinrichtung zu erfüllen sind.

Im folgenden wird zunächst ein mögliches Übertragungsverfahren beispielhaft beschrieben, das den obigen Regeln genügt und einfach zu implementieren ist. Im Anschluß werden exemplarisch drei Vorgehensweisen zur Erstellung eines Sendeplans für die Dateneinheiten be-

- 14 -

schrieben. Für das Übertragungsverfahren wie auch zur Sendeplanerstellung sind auch andere Formen der Realisierung denkbar.

Bei der beispielhaften Erstellung eines Übetragungs-/Sendeplans für den von der Sendeeinrichtung an die Empfänger zu übertragenden Datenstrom werden die folgenden Regeln berücksichtigt:

- Der Datenstrom wird dadurch in einen übertragbaren Datenstrom transformiert, daß der Datenstrom in vorzugsweise gleich große voneinander abgrenzbare Dateneinheiten D_x (x = 1,2,...) aufgeteilt wird. Die Dateneinheiten D_x können beliebig klein sein, im Extremfall auch nur einzelne Bytes oder Bits umfassen. Diese gegeneinander abgrenzbaren Dateneinheiten D_x werden auch als "Slots" bezeichnet.
- Die Dateneinheiten D_x werden jeweils möglichst spät gesendet, d.h. möglichst nah an der Wiedergabelinie der Empfänger E₀...E_j, so daß die Dateneinheiten D_x in einer möglichst großen Anzahl der Empfangstrichter der Empfänger E₀...E_j liegen, um die für die Übertragung aufgewendete Bandbreite zu minimieren.
- 3) Um eine möglichst gleichmäßige Auslastung des Übertragungsmediums zu erzielen bzw. eine temporäre Überlastung zu vermeiden, können Dateneinheiten bereits zu einem früheren Zeitpunkt gesendet werden. Auf diese Weise lassen sich Lastspitzen ausgleichen, jedoch muß die verfrüht gesendete Dateneinheit ggf. noch einmal gesendet werden, da sie bei der verfrühten Übertragung im Empfangstrichter von weniger Empfängern liegen könnte, als dies der Fall wäre, wenn die Dateneinheit nicht verfrüht gesendet worden wäre. Der Vermeidung von Lastspitzen steht dann im Gegensatz zur Minimierung des insgesamt übertragenen Datenvolumens.

Im folgenden sind drei Beispiele für die Verteilung der Dateneinheiten D_x (Sendeplan) zur Übertragung angegeben. Es wird angenommen, daß alle Dateneinheiten D_x Informationen gleicher Dauer umfassen, d.h., im Fall des Spielfilms, einen Spielfilmabschnitt gleicher Zeitdauer. Die Dauer einer Dateneinheit definiert gleichzeitig die Granularität der Einstiegszeitpunkte t^0_j ($j \ge 0$) für die Empfänger E_j ($j \ge 0$). Bei einer Dauer einer Dateneinheit von zehn Sekunden, wird bei diesem Verfahren ohne Rückkanal alle zehn Sekunden ein neuer (virtuel-

- 15 -

ler) Empfänger angenommen, d.h. Betrachter können alle zehn Sekunden neu hinzukommen, um den Spielfilm von Anfang an zu betrachten. In der folgenden Darstellung werden die Dateneinheiten D_x (x = 1, 2...) durchnumeriert.

Die im folgenden beschriebenen Ausführungsformen sind lediglich Beispiele. Darüber hinaus gestattet das Verfahren:

- daß die Größe/Dauer der Dateneinheiten nicht gleich ist,
- daß die Einstiegszeitpunkte t_j^0 ($j \ge 0$) mit und ohne Rückkanal beliebig verteilt sein können.

Figur 4 zeigt ein Beispiel für einen harmonischer Sendeplan, wobei der zu übertragende Datenstrom in sieben Dateneinheiten D_1 ... D_7 unterteilt ist. Die Zeitachse wird in Intervalle gleicher Länge unterteilt, wobei die Intervalle der Dauer der sieben Dateneinheiten D_x entsprechen. Zur Übertragung werden die Dateneinheiten D_1 ... D_7 nach einer einfachen Regel für die Übertragung auf die Zeitintervalle verteilt: Die Dateneinheit D_n mit der Laufnummer n wird in jedem n-ten Intervall übertragen, d.h. die erste Dateneinheit D_1 in jedem Intervall, die zweite Dateneinheit D_2 in den Intervallen 2, 4, 6, ..., die dritte Dateneinheit D_3 in den Intervallen 3, 6, 9, ... usw. Die jeweiligen Anfangszeitpunkte der Intervalle bilden die möglichen Einstiegszeitpunkte t^0_j ($j \ge 0$) für die Empfänger E_j ($j \ge 0$) (vgl. Figur 4).

Für einen ersten Empfänger E_0 wird gemäß Figur 4 eine Datenmenge M_0 übertragen, die alle sieben Dateneinheiten D_1 ... D_7 umfaßt. Die für den ersten Empfänger übertragenen Dateneinheiten sind mit den Bezugszeichen 1a bis 1g bezeichnet. Wenn zum Zeitpunkt t^0_1 ein zweiter Empfänger E_1 zugeschaltet wird, für den der Datenstrom, beginnend ab t^0_1 , übertragen werden soll, so umfaßt eine für den zweiten Empfänger E_1 übertragenen Datenmenge M_1 lediglich die Dateneinheit D_1 , die in Figur 4 mit 2a bezeichnet ist. Die übrigen Dateneinheiten D_2 ... D_7 , die zur Wiedergabe des Datenstroms für den Nutzer des zweiten Empfängers E_1 ebenfalls an den zweiten Empfänger E_1 übertragen werden müssen, "entnimmt" der zweite

- 16 -

Empfänger E_1 , beginnend ab t^0_1 der Datenmenge M_0 . Für den zweiten Empfänger E_1 muß deshalb eine wesentlich geringere Anzahl der Dateneinheiten gesendet werden, so daß Übertragungsbandbreite eingespart wird.

Wenn zum Zeitpunkt t_2^0 ein dritter Empfänger E_2 zugeschaltet wird, für den der Datenstrom beginnend ab t_2^0 übertragen werden soll, so umfaßt eine für den dritten Empfänger E_2 übertragenen Datenmenge M_2 die Dateneinheiten D_1 und D_2 , die in Figur 4 mit 3a bzw. 3b bezeichnet sind. Die übrigen Dateneinheiten D_3 ... D_7 , die zur Wiedergabe des Datenstroms für den Nutzer des dritten Empfängers E_2 ebenfalls übertragen werden müssen, "entnimmt" der dritte Empfänger E_2 , beginnend ab t_2^0 der Datenmenge M_0 , nämlich D_3 ... D_7 (1c bis 1g in Figur 4).

Wenn zum Zeitpunkt t^0_3 ein vierter Empfänger E_3 zugeschaltet wird, für den der Datenstrom beginnend ab t^0_3 übertragen werden soll, so umfaßt eine für den vierten Empfänger E_3 übertragene Datenmenge M_3 die Dateneinheiten D_1 und D_3 , die in Figur 4 mit 4a bzw. 4b bezeichnet sind. Die übrigen Dateneinheiten D_2 , D_4 ... D_7 , die zur Wiedergabe des Datenstroms für den Nutzer des dritten Empfängers E_2 ebenfalls übertragen werden müssen, "entnimmt" der vierte Empfänger E_3 , beginnend ab t^0_3 der Datenmenge M_0 , nämlich die Dateneinheiten D_4 ... D_7 (1d bis 1g), und der Datenmenge M_2 , nämlich die Dateneinheit D_2 (3b ind Figur 4).

Sowohl bei dem im Zusammenhang mit Figur 4 beschriebenen Ausführungsbeispiel als auch bei den im Folgenden erläuterten Ausführungsbeispielen können eine oder mehrere der gesendeten Dateneinheiten jeweils von einer oder mehreren der Datenmengen M_j ($j \ge 0$) umfaßt sein.

Der unter Bezugnahme auf Figur 4 beschriebene harmonische Sendeplan hat den Nachteil, daß die in einem Zeitintervall zu sendende Anzahl von Dateneinheiten D_x stark variiert. So wird im Zeitintervall 1 nur eine Dateneinheit (die erste Dateneinheit D_1) gesendet, in den Intervallen 2, 3 und 5 zwei, im Intervall 4 drei und im Intervall 6 vier (wird für spätere Intervalle entsprechend fortgesetzt). Das führt zu Lastspitzen, und zwar mit der Konsequenz, daß die Übertragungskapazität vom Sender zu den Empfängern $E_0...E_j$ an der größten Lastspitze

- 17 -

ausgerichtet werden muß, die Übertragungskapazität für einen Großteil der übrigen Übertragungszeit jedoch nicht ausgenutzt wird.

Wenn es aufgrund des technischen Übertragungsverfahrens und/oder der Anzahl der Dateneinheiten D_x nicht möglich ist, die Übertragung der m-ten Dateneinheit D_m (gleichmäßig) auf m Zeitintervalle zu verteilen, läßt sich ein vergleichbarer Effekt, wenn auch bei leicht höherem Übertragungsvolumen, wie folgt erzielen (vgl. Figur 6):

- Falls $m=2^z$ ist mit $z \ge 0$ (also m eine Zweierpotenz ist), wird die m-te Dateneinheit D_m in jedem m-ten Intervall übertragen (vgl. Figur 6).
- Andernfalls werden alle m-ten Dateneinheiten D_m , für die $2^z < m < 2^{z+1}$ mit $j \ge 0$ gilt, genau einmal zwischen den Zeitintervallen 2^z und 2^{z+1} übertragen, und zwar in beliebiger (aber gleichbleibender) Reihenfolge.

Das heißt, die Dateneinheiten D_1 , D_2 , D_4 , ... werden in jedem, jedem zweiten, jedem vierten usw. Zeitintervall gesendet. Die Dateneinheit D_3 wird jeweils in den Pausen zwischen den

- 18 -

Dateneinheiten D_2 , also in den Zeitintervallen 1, 3, 5, 7 usw. gesendet. Die Dateneinheiten D_5 bis D_7 mit den Laufnummern 5 bis 7 werden nacheinander jeweils einmal in der Folge von Zeitintervallen gesendet, in denen die Dateneinheit D_4 nicht gesendet wird, also in den Zeitintervallen 1, 2 und 3; 5, 6 und 7; 9, 10 und 11 usw.

Figur 7 zeigt einen veränderten Verlauf der Empfangstrichter im Fall der Übertragung des Datenstroms an einen bzw. an zwei Empfänger, wenn die Wiedergabe des Spielfilms für eine Zeit t_U unterbrochen und danach wieder fortgesetzt wird. Hierbei kann zwischen zwei Formen von Empfängern unterschieden werden. Bei einer Form von Empfängern werden die Dateneinheiten während der Unterbrechung im Hintergrund weiterhin empfangen und gespeichert. Dies führt dann zu einem erweiterten Empfangstrichter. Bei einer anderen Form von Empfängern werden die Dateneinheiten während der Unterbrechung nicht empfangen, was zu einem verschobenen Empfangstrichter führt. In beiden Fällen dürfen die Empfänger die bereits gespeicherten Dateneinheiten während der Wiedergabeunterbrechung nicht verwerfen.

In der bisherigen Darstellung wird davon ausgegangen, daß alle Dateneinheiten D_x eines Spielfilms immer von allen Empfängern (die begonnen haben, den Spielfilm zu betrachten) empfangen werden, und daß die Empfänger die Dateneinheiten, die sie nicht benötigen, verwerfen. Insbesondere werden hierbei alle Empfänger als gleich angesehen, vor allem bezüglich

- der von ihnen geforderten Empfangsbandbreite und
- der Zahl der ihnen angebotenen Einstiegspunkte t⁰_k (falls kein Rückkanal verfügbar ist).

D.h. alle Dateneinheiten D_x eines Spielfilms werden in demselben Übertragungskanal gesendet und erreichen in diesem einen Übertragungskanal alle Empfänger. Unterschiedliche Spielfilme werden jedoch potentiell auf verschiedenen Übertragungskanälen gesendet. Dieses Vorgehen ist analog zu Radio und Fernsehen, wo ebenfalls unterschiedliche Sender unterschiedliche Übertragungskanäle (hier Sendefrequenzen) nutzen.

Eine Unterscheidung verschiedener Kanäle für unterschiedliche Spielfilme / Programme kann hierbei alle denkbaren Formen annehmen: Sendefrequenzen, Zeitscheiben in Frequenzen,

- 19 -

Frequenzbereiche, Bit- und/oder Bytepositionen in kontinuierlichen Datenströmen wie auch in Datenpaketen, Netzwerk- und/oder Transportadressen (für ATM-, IP- und beliebige andere Netze) usw. Diese Möglichkeiten der Realisierung der Unterscheidung verschiedener Kanäle gilt gleichermaßen für die im Folgenden vorgestellten Subkanäle.

Unterteilung in Haupt- und Subkanäle

KY

Um die Anforderungen an die Empfänger heterogener gestalten zu können, und ggf. in Zusammenhang hiermit oder als Ergänzung unterschiedliche Leistungen anbieten zu können, ist in Ergänzung zur Übertragung eines Spielfilms / Programms in einem Kanal eine weitergehende Unterstrukturierung dieses Kanals in Subkanäle pro Spielfilm / Programm denkbar.

In diesem Fall werden nicht alle Dateneinheiten D_x (Slots) auf demselben Kanal (dem Hauptkanal) gesendet, sondern entsprechend der Zielsetzung auf mehrere Subkanäle verteilt. Unter anderem sind folgende Anwendungsszenarien auf diese Weise realisierbar:

a) Kundenspezifische Werbung

Auf die Spieldauer eines Spielfilms verteilt werden mehrere Werbeblöcke W_1 bis W_n eingestreut. Ein solcher Werbeblock W_k benötigt zu seiner Übertragung die Dateneinheiten $D_{k,l}$ bis $D_{k,m}$. Wird nur eine Art Werbung für das gesamte Publikum gesendet, so werden die Werbeblöcke als Bestandteil des einen Übertragungskanals gesendet. Sollen verschiedene Arten von Werbung (pro Werbeblock) unterschieden werden, werden die jeweiligen Dateneinheiten auf unterschiedlichen Unterkanälen versandt. Jeder Empfänger wählt zusätzlich zum Hauptkanal einen oder mehrere Zusatzkanal:

Kanal	Dateneinheiten (Slots)
Hauptkanal	Inhalt des Spielfilms

- 20 -

Subkanal I	Werbung "Sport"	
Subkanal 2	Werbung "Spirituosen"	
Subkanal w	Werbung "Haushalt"	

Werbung ist hier nur ein Beispiel. Einschübe anderer Informationsarten (etwa Kurznachrichten, (regionale) Verkehrsinformationen, unterschiedliche Teile eines Spielfilms (etwa zensiert/unzensiert usw.) sind mit demselben Mechanismus realisierbar.

b) Unterschiedliche Versionen eines Spielfilms (Happy End vs. tragisches Ende)

N

Ab einem bestimmten Zeitpunkt t_E im Film (alle Dateneinheiten D_x mit x > E) werden unterschiedliche Inhalte auf unterschiedlichen Kanälen ausgesendet. Jeder Empfänger entscheidet individuell, welchen dieser Kanäle er sehen möchte.

Kanal	Dateneinheiten (Slots)
Hauptkanal	Inhalt des Spielfilms bis D _E
Subkanal I	Dateneinheiten D_x mit $x > E$ für "Happy End"
Subkanal II	Dateneinheiten D_x mit $x > E$ für "Tragisches Ende"
Subkanal III	Dateneinheiten D_x mit $x > E$ für "Überraschendes Ende"

Hier ist insbesondere zu beachten, daß eine Kombination der Ausstrahlung verschiedener Enden mit der Erfindung dazu führt, daß nur ein überproportional geringerer Teil zusätzlicher Informationen gesendet werden muß. Gemäß den exemplarisch vorgestellten Sendeplänen werden Dateneinheiten mit Inhalten, die am Ende eines Spielfilms liegen, deutlich seltener gesendet, als solche mit Inhalten vom Anfang des Spielfilms.

c) Einfache Spielfilmübertragung vs. gemäß der Erfindung erweiterte

Die Übertragung der Dateninhalte läßt sich so gestalten, daß einerseits einfache (d.h. nicht gemäß der Erfindung erweiterte) Empfänger den Spielfilm empfangen und wiedergeben können, jedoch nur zu dem vorgegebenen Anfangszeitpunkt der ersten Übertragung t⁰0, anderer-

seits erfindungsgemäße Empfänger zu verschiedenen Zeitpunkten mit der Betrachtung des Spielfilms beginnen können.

Hierzu wird z.B. auf dem Hauptkanal nur die initiale Übertragung des Spielfilms vorgenommen und sukzessive jede Dateneinheit genau einmal übertragen. Auf einem anderen Kanal (hier als Subkanal I bezeichnet) werden gemäß der Erfindung die ergänzenden Informationen übertragen. Einfache Empfänger empfangen nur den Hauptkanal, erweiterte Empfänger hingegen auch den Ergänzungskanal.

Es ist denkbar, den Spielfilm auf dem Hauptkanal wiederholt vollständig zu übertragen (etwa im 2-Stunden-Takt).

Kanal	Dateneinheiten (Slots)
Hauptkanal	Inhalt des Spielfilms einmalig übertragen wie normaler Rundfunk / normales Fernsehen (die Dateneinheiten 1a, 1b,, 1g aus Figur 4, wenn Übertragung gemäß des in Figur 4 dargestellten Verfahrens)
Subkanal I	Ergänzende Informationen, die zur Realisierung der Erfindung notwendig sind (alle anderen Dateneinheiten aus Figur 4)

Dieses Verfahren läßt sich nicht zur Unterstützung konventioneller Empfänger einsetzen; es ist z.B. auch eine Kombination mit Datenverschlüsselung denkbar. So kann etwa der Hauptkanal unverschlüsselt und damit jedem zugänglich übertragen werden, der Subkanal hingegen verschlüsselt. Ein Empfänger ohne Kenntnis des Schlüssels kann den Spielfilm dann nur zum ersten Einstiegspunkt betrachten, ein Empfänger mit Kenntnis des Schlüssels hingegen zu einem beliebigen Zeitpunkt einsteigen und den Spielfilm trotzdem von Anfang an betrachten. So lassen sich einfach unterschiedliche Tarifmodelle für verschiedene Kundengruppen schaffen (siehe auch nächster Abschnitt).

d) Unterschiedliche Granularität von Einstiegszeitpunkten

In Erweiterung zu Abschnitt c) läßt sich auch die Granularität der Einstiegspunkte durch Nutzung verschiedener Übertragungskanäle einstellen. Auf einem Hauptkanal kann beispielswei-

se, wie im Abschnitt c) beschrieben, der Spielfilm nur einmalig übertragen werden, auf Subkanal I die notwendigen Zusatzinformationen, um alle 10 Minuten in den Spielfilm einsteigen zu können, auf Subkanal II die Zusatzinformationen, um jede Minute mit der Betrachtung beginnen zu können usw. Selbstverständlich sind hier auch beliebige andere Kombinationen denkbar.

Kanal	Dateneinheiten (Slots)
Hauptkanal	Inhalt des Spielfilms einmalig übertragen wie normaler Rundfunk / normales Fernsehen (die Dateneinheiten 1a, 1b,, 1g aus Figur 4, wenn Übertragung gemäß des in Figur 4 dargestellten Verfahrens)
Subkanal I	Ergänzende Informationen für Einstiegspunkte alle 10 Minuten
Subkanal II	Ergänzende Informationen für Einstiegspunkte jede Minute

e) Unterschiedliche Qualität des Videos ("Layered Coding")

Schließlich ist eine Technik bekannt, die den Inhalt eines Multimediadatenstroms auf verschiedene Unterströme aufteilt: ein Basisdatenstrom liefert die Grundlage für die Betrachtung, ergänzende Datenströme liefern zusätzliche Qualität. Derartige Verfahren werden als "Layered Coding" bezeichnet und sind in verschiedenen Formen bekannt, insbesondere aus der Videodatenkompression. Hier können z.B. unterschiedliche (zeitliche und räumliche) Auflösungen eines Videofilms angeboten werden, etwa Basiskanal 15 fps (Frames per Second), 352x288, erster Zusatzkanal 30fps bei einer Auflösung von 352x288 Bildpunkten, zweiter Zusatzkanal 30fps bei einer Auflösung von 704x576 Bildpunkten usw.

Sie lassen sich ergänzend zu der Erfindung einsetzen und in beliebiger Kombination mit den oben genannten Aufteilungen in Subkanäle verwenden.

Im folgenden Beispiel wird im Hauptkanal nur ein Mono-Audio-Signal übertragen und ein Schwarz-weiß-Bild, Subkanal I liefert Stereoton und Farbe, Subkanal 2 HDTV-Qualität und Surround Sound. Eine solche Anwendung kann z.B. bei Pay-TV-Programmen sinnvoll sein, um unterschiedliche qualitative Abstufungen eines Film anzubieten.

- 23 -

Kanal	Dateneinheiten (Slots)
Hauptkanal	Schwarzweiß-Bild, Mono-Audio
Subkanal I	Farbbild, Stereoton
Subkanal II	HDTV-Qualität, Surround Sound

Es sei noch angemerkt, daß sich alle obigen Szenarien prinzipiell auch ohne Unterteilung in verschiedene Kanäle und Subkanäle realisieren lassen, indem die übertragenen Dateneinheiten entsprechend ihres jeweiligen Inhalts gekennzeichnet werden und die Empfänger dann nur die vom Verbraucher gewünschten Inhalte auswerten bzw. diejenigen, die sie auswerten können. Das Konzept der Kanäle bringt hier jedoch zusätzlich eine höhere Effizienz und gestattet die eingangs motivierte Heterogenität der Empfänger bezüglich ihrer Empfangsbandbreite.

Fehlertolerante Übertragung

In paketvermittelten Netzen treten potentiell Paketverluste auf. Diese sind primär abhängig von der Dimensionierung des Netzes (Bandbreite der Verbindungen) und der Leistungsfähigkeit der eingesetzten Router. Während heute im Internet Paketverlustraten von 10% – 20% oder mehr auftreten, was die Übertragung von qualitativ hochwertigen Medienströmen quasi nicht realistisch erscheinen läßt, bieten in sich geschlossene und wohladministrierte Netze (wie etwa Satellitenverbindungen, Kabelnetze, Intranetze usw.) eine Umgebung mit nahezu verlustfreier Datenübertragung.

Auch hier kann jedoch der gelegentliche Verlust einer oder mehrerer Dateneinheiten nicht vollständig ausgeschlossen werden. Daher sind Mechanismen vorzusehen, die bei ihrer eigentlichen Übertragung verlorene Dateneinheiten bei dem/den Empfänger(n) rechtzeitig wiederherstellen, bevor sie wiedergegeben werden müssen.

Insgesamt lassen sich zwei Verfahren unterscheiden, die beide mit der Erfindung kombiniert werden können:

Falls ein Rückkanal zur Verfügung steht, können die Empfänger fehlende Dateneinheiten nochmals vom Sender anfordern, der diese dann wiederholt sendet. Um das Fehlen von Dateneinheiten festzustellen, sind die Dateneinheiten z.B. gemäß ihrer Übertragungsreihenfolge im Sendeplan zu numerieren oder anderweitig so zu kennzeichnen, daß ein Empfänger potentiell unabhängig von dem zu einem Zeitpunkt vom Sender genutzten Sendeplan in der Lage ist,

- das Fehlen einer Dateneinheit zu erkennen (auch wenn diese erst in ferner Zukunft wiedergegeben werden soll),
- ggf. zu ermitteln, ob die fehlende Dateneinheit nicht ohnehin vor dem Wiedergabezeitpunkt noch mindestens einmal vom Sender übertragen wird (so daß es keiner weiteren Aktion seitens des Empfängers bedarf) und,
- falls erforderlich, das wiederholte Senden der fehlenden Dateneinheit beim Sender anzufordern.

Hier ist anzumerken, daß bei dieser Variante der Fehlerbehebung Sende-, Empfangs- und Wiedergabezeitpunkt einer Dateneinheit auseinanderfallen. Insbesondere kann eine zusätzliche (künstliche) Verzögerung zwischen Empfang und Wiedergabe eingefügt werden, um sicherzustellen, daß auch Dateneinheiten, deren Übertragung zeitnah an ihrem (ohne diese zusätzliche Verzögerung geltenden) Wiedergabezeitpunkt erfolgt ist, auch dann noch rechtzeitig für die Wiedergabe zur Verfügung stehen, wenn ihre Übertragung wiederholt werden muß.

Unabhängig davon, ob ein Rückkanal zur Verfügung steht oder nicht, können die übertragenen Dateneinheiten um redundante Zusatzinformationen angereichert werden. Wird dann bei der Übertragung eine Dateneinheit verloren, läßt sie sich mit einer vom Verfahren und/oder der genutzten Menge an Redundanzinformationen abhängigen Wahrscheinlichkeit aus den restlichen Dateneinheiten und/oder den Redundanzinformationen rekonstruieren. Derartige Verfahren bezeichnet man als Vorwärts-Fehlerkorrektur (Forward Error Correction, FEC). Im einfachsten Fall wird jede Dateneinheit mehrfach gesendet. Komplexere Verfahren senden für k Datenheiten (n–k) Redundanzeinheiten, die so generiert werden, daß aus n übertragenen Informationseinheiten k verloren gehen können und der Inhalt sich trotzdem vollstän-

- 25 -

dig rekonstruieren läßt. Verschiedene weitere Verfahren und Kombinationen unterschiedlicher Verfahren sind ebenfalls denkbar.

Hier ist ebenfalls anzumerken, daß Empfangs- und Wiedergabezeitpunkt auseinanderfallen können, falls beim Empfänger ggf. noch auf das Eintreffen der (potentiell später gesendeten) Redundanzeinheiten gewartet werden muß, bevor der Medieninhalt wiedergegeben werden kann.

Auch dies kann ggf. unter Nutzung von Kanälen und Subkanälen geschehen: so können etwa die Sendewiederholungen auf einem eigenen Subkanal übertragen werden; ebenso lassen sich unterschiedliche (sich vorzugsweise ergänzende) Mengen von FEC-Daten auf verschiedenen Subkanälen senden.

Die in der vorstehenden Beschreibung, der Zeichnung und den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen von Bedeutung sein.

ANWALTSSOZIETÄT

Boehmert & Boehmert • Meinekestraße 26 • D-10719 Berlin

Deutsches Patent- und Markenamt
- Technisches Informationszentrum –

10958 Berlin

DR.-ING, KARL BOEHMERT, PA (1899-1973)
DIPL-ING, ALBERT BOEHMERT, PA (1902-1993)
WILHELM J. H. STAHLBERG, RA, Bremen
DR.-ING, WALTER HOORMANN, PA*, Bremen
DIPL-PHYS. DR. HEINZ GODDAR, PA*, Mûnchen
DR.-ING, ROLAND LIESEGANG, PA*, Mûnchen
WOLF-DIETER KUNTZE, RA, Bremen, Alicante
DIPL-PHYS. ROBERT MÜNZHUBER, PA*, Bremen
DR. (CHEM.) ANDRÉAS WINKLER, PA*, Bremen
DR. (CHEM.) ANDRÉAS WINKLER, PA*, Bremen
MICHAELA HUTH-DIERIG, RA, Mûnchen
DIPL-PHYS. DR. MARION TÖNHARDT, PA*, Düsseldorf
DR. ANDREAS EBERT-WEIDENFELLER, RA, Bremen
DIPL-ING, EVA LIFSEGANG, PA*, Mûnchen
DR.-ANEL NORDEMANN, RA, Berlin
DIPL-PHYS. DR. STEFAN SCHOHE, PA*, Mûnchen
DR.-HNS, DR. DROOTHÉE WEBER-BRULS, PA*, Frankfurt
DIPL-PHYS. DR. STEFAN SCHOHE, PA*, Mûnchen
DR.-INO, MATTHIAS PHILIPP, PA*, Bickefeld
DR.-IND, MATTHIAS PHILIPP, PA*, Bickefeld

PA – Putentanwalt/Faten; Attorney RA – Rechtsanwalt/Attorney at Law *- Européan Patent Attorney Alfe zugelassen zur Vertretung vor dem Europhischen Markenamt, Alicante Purfessional Reverentation at the Compunity Trademark Office, Alicante PROF. DR. WILHELM NORDEMANN, RA, Brandenburg
DIPL.-PHYS. EDUARD BAUMANN, PA*, Hobenskirchen
DR.-ING, GERALD KLÖPSCH, Pa*, Doeseddorf
DIPL.-ING, HANS W. GROENING, Pa*, Monchen
DIPL.-ING, SIEGFRIED SCHIRMER, Pa*, Biedefeld
DIPL.-PHYS. LORENZ HANEWINKEL, Pa*, Paderborn
DIPL.-ING. DR. JAN TÖNNIES, Pa, RA, Kiel
DIPL.-PHYS. CHRISTIAN BIEHL, Pa*, Kiel
MARTIN WIRTZ, RA, Dasseddorf
DR. DETMAR SCHÄFER RA, Bromen
DIPL.-PHYS. DR.-ING, UWE MANASSE, PA*, Bretin
DR. CARL-RICHARD HAARMANN, RA, München
DIPL.-BIOL. DR. ARMIN K. BOHMANN, PA, München
DIPL.-PHYS, DR. THOMAS I. BITTNER, PA*, Bertin
DR. VOLKER SCHMITZ, RA, München
DR. FRIEDRICH NICOLAUS HEISE, RA, Potskum
DR. VOLKER SCHMITZ, RA, München
DR. FRIEDRICH NICOLAUS HEISE, RA, Potskum
DIPL.-PHYS. CHRISTIAN APPELT, PA, München
DR. PHYS. CHRISTIAN APPELT, PA, München

In Zusammenarbeit mit/in cooperation with DIPL.-CHEM. DR. HANS ULRICH MAY, PA*, München

Ihr Zeichen Your ref. Ihr Schreiben Your letter of Unser Zeichen Our ref. Berlin,

Neuanmeldung (Patent)

T55008

31. Januar 2000

Tellique Kommunikationstechnik GmbH Gustav-Meyer-Allee 25 13355 Berlin

Verfahren und Vorrichtung zum Übertragen von Dateneinheiten eines Datenstroms

Patentansprüche

- 1. Verfahren zum Übetragen von Dateneinheiten eines Datenstroms, insbesondere eines Multimediadatenstroms, von mindestens einer Sendeeinrichtung an mindestens eine Empfangseinrichtung E_j ($j \ge 1$), wobei:
 - mit Hilfe der mindestens einen Sendeeinrichtung n Datenmengen (n ≥ 2) gesendet werden,
 - das Senden einer ersten Datenmenge M₁ der n Datenmengen zu einem Zeitpunkt t₁ beginnt,

- 35.80 -

Meinekestraße 26 · D-10719 Berlin · Telephon +49-30-31505150 · Telefax +49-30-31505151

- 2 -

BOEHMERT & BOEHMERT

- die erste Datenmenge M₁ alle Dateneinheiten des Datenstroms umfaßt,
- das Senden wenigstens einer weiteren Datenmenge M_k ($2 \le k \le n$) der n Datenmengen zu einem Zeitpunkt t_k ($2 \le k \le n$) beginnt, wobei ,
- die wenigstens eine weitere Datenmenge M_k mindestens einen Teil der Dateneinheiten des Datenstroms umfaßt, und
- die n Datenmengen so gesendet werden, daß in der wenigstens einen Empfangseinrichtung E_j eine Wiedergabe der Dateneinheiten des Datenstroms als vorgegebene zeitliche Abfolge von Informationen, insbesondere Bild- und/ oder Toninformationen zu einem Anfangszeitpunkt $t_k^A = t_k + 9 \ (9 > 0)$ begonnen und zu einem Endzeitpunkt $t_k^E = t_k^A + \Delta t$ beendet werden kann, wobei 9 eine für die Übertragung einzelner Dateneinheiten des Datenstroms von der mindestens einen Sendeeinrichtung an die mindestens eine Empfangseinrichtung E_j und/oder eine Verarbeitung einzelner Dateneinheiten des Datenstroms charakteristische Zeitdauer und Δt eine für die Wiedergabe aller Dateneinheiten des Datenstroms als die vorgegebene zeitliche Abfolge von Informationen charakteristische Zeitdauer sind,

dadurch g e k e n n z e i c h n e t, daß die wenigstens eine weitere Datenmenge M_k ($2 \le k \le n$) von ausgewählten Dateneinheiten des Datenstroms gebildet wird, für die ein früheres Senden in einem Zeitintervall zwischen einem Zeitpunkt t_{k-1} und dem Zeitpunkt t_k ($2 \le k \le n$) von der mindestens einen Sendeeinrichtung zumindest einmal begonnen wird, wobei für wenigstens zwei von aufeinanderfolgenden Zeitpunkten t_k und t_{k+1} ($1 \le k \le n$) ein zeitlicher Abstand ($t_{k+1} - t_k$) kleiner als Δt ist.

2. Verfahren nach Anspruch 1, dadurch g e k e n n z e i c h n e t, daß eine Eingabe eines Nutzers der mindestens einen Empfangseinrichtung E_j zur Festlegung des Zeitpunkts t_1 und/oder des Zeitpunkts t_k ($2 \le k \le n$) elektronisch erfaßt wird, wobei die Eingabe über einen zwischen der mindestens einen Sendeeinrichtung und der mindestens einen Empfangseinrichtung E_m ausgebildeten Rück-Datenkanal an die mindestens eine Sendeeinrichtung übertragen wird.

- 3. Verfahren nach Anspruch 1, dadurch gekennzeich net, daß der Zeitpunkt t_1 und/oder die Zeitpunkte t_k ($2 \le k \le n$) sendeseitig vorgegeben werden.
- 4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeich net, daß zwischen den Zeitpunkten t_{k-1} und t_k ($2 \le k \le n$) jeweils ein im wesentlichen gleicher zeitlicher Abstand ausgebildet ist.
- 5. Verfahren nach einem der vorangehenden Ansprüche, dadurch g e k e n n z e i c h n e t, daß der Datenstrom x Dateneinheiten D_x (x=1,2,...) umfaßt, das Übertragen zwischen der mindestens einen Sendeeinrichtung und der mindestens einen Empfangseinrichtung E_j ($j \ge 1$) über eine vorgegebene Zeitdauer ausgeführt wird, die in Zeitintervalle Δt_y (y=1,2,...) geteilt wird, wobei eine m-te Dateneinheit D_m ($1 < m \le x$) innerhalb jedes m-ten Zeitintervalls Δt_m ($1 < m \le y$) übertragen wird.
- 6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch g e k e n n z e i c h n e t, daß der Datenstrom x Dateneinheiten D_x (x=1,2,...) umfaßt, das Übertragen zwischen der mindestens einen Sendeeinrichtung und der mindestens einen Empfangseinrichtung E_j ($j \ge 1$) über eine vorgegebene Zeitdauer ausgeführt wird, die in Zeitintervalle Δt_y (y=1,2,...) geteilt wird, wobei das Senden einer m-ten Dateneinheit D_m ($1 \le m \le x$) innerhalb jedes ($1+p\cdot m$)-ten Zeitintervalls Δt_{1+pm} ($p \ge 0$) begonnen wird und sich über m Zeitintervalle $\Delta t_1 + ... + \Delta t_m$ ($1 \le m \le y$) erstreckt.
- 7. Verfahren nach einem der Ansprüche 1 bis 4, dadurch g e k e n n z e i c h n e t, daß der Datenstrom x Dateneinheiten D_x (x = 1, 2, ...) umfaßt, das Übertragen zwischen der mindestens einen Sendeeinrichtung und der mindestens einen Empfangseinrichtung E_j ($j \ge 1$) über eine vorgegebene Zeitdauer ausgeführt wird, die in Zeitintervalle Δt_y (y = 1, 2, ...) geteilt wird, wobei alle m-ten Dateneinheiten D_m ($1 < m \le x$) in jedem m-ten Zeitintervall Δt_m gesendeten wird, wenn $m = 2^p$ (p = 0, 1, 2, 3, ...), und alle h-ten Dateneinheiten D_h ($1 < m \le x$)

< h \le x), für welche 2^z < h < 2^{z+1} ($z \ge 0$) gilt, genau einmal zwischen dem 2^z -ten Zeitintervall und dem 2^{z+1} -ten Zeitintervall.

- 8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeich net, daß eine von der mindestens einen Empfangseinrichtung E_j empfangene Dateneinheit D^E_x (x = 1, 2, ...) des Datenstroms zu einem Wiedergabezeitpunkt t^W_x (x = 1, 2, ...) innerhalb der vorgegebenen zeitlichen Abfolge von Informationen mit Hilfe von Wiedergabemitteln wiedergegeben wird, wobei eine m-te Dateneinheit D_m des Datenstroms so gesendet wird, daß eine die gesendete m-te Dateneinheit D_m umfassende, m-te empfangene Dateneinheit D^E_m (1 < m ≤ x) in zetlicher Nähe zu einem Wiedergabezeitpunkt t^W_m von der mindestens einen Empfängereinrichtung E_i empfangen wird.
- 9. Verfahren nach einem der vorangehenden Ansprüche, dadurch geken nzeich net, daß eine von der mindestens einen Empfangseinrichtung E_j empfangene Dateneinheit D^E_x (x=1,2,...) des Datenstroms zu einem Wiedergabezeitpunkt t^W_x (x=1,2,...) innerhalb der vorgegebenen zeitlichen Abfolge von Informationen mit Hilfe von Wiedergabemitteln wiedergegeben wird, wobei eine zu einem Empfangszeitpunkt $t_{Empfang}$ m-te empfangene Dateneinheit D^E_m $(1 < m \le x)$
 - a) an die Wiedergabemittel übergegeben wird, wenn $t_{Empfang} = t^w_m$ ϵ (ϵ > 0), wobei ϵ eine charakteristische Zeit für die Übergabe der m-ten empfangenen Dateneinheit D^E_m an die Wiedergabemittel und/oder eine Umwandlung der m-ten empfangenen Dateneinheit D^E_m zur Wiedergabe ist; oder
 - b) in Speichermitteln der wenigstens einen Empfangseinrichtung E_j gespeichert wird, wenn $t_{Empfang} < t^w_m$ ϵ und die m-te empfangene Dateneinheit D^E_m noch nicht in den Speichermitteln gespeichert ist; oder
 - c) verworfen wird, wenn $t_{Empfang} > t_m^w \varepsilon$ oder die m-te empfangene Dateneinheit D_m^E in den Speichermitteln bereits gespeichert ist.

- 10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeich net, daß eine von der mindestens einen Empfangseinrichtung E_j empfangene Dateneinheit D^E_x (x=1,2,...) des Datenstroms zu einem Wiedergabezeitpunkt t^W_x (x=1,2,...) innerhalb der vorgegebenen zeitlichen Abfolge von Informationen mit Hilfe von Wiedergabemitteln wiedergegeben wird, wobei eine zu einem Empfangszeitpunkt $t_{Empfang}$ m-te empfangene Dateneinheit D^E_m ($1 < m \le x$)
 - a) an die Wiedergabemittel übergegeben wird, wenn $t_{Empfang} = tw_m \epsilon$ ($\epsilon > 0$), wobei ϵ eine charakteristische Zeit für die Übergabe der m-ten empfangenen Dateneinheit D^E_m an die Wiedergabemittel und/oder eine Umwandlung der m-ten empfangenen Dateneinheit D^E_m zur Wiedergabe ist; oder
 - b) in Speichermitteln der wenigstens einen Empfangseinrichtung E_j gespeichert wird, wenn $[t_{Empfang} < (t^w_m \epsilon) < (t_{Empfang} + \Delta t_{Mem})]$ und die m-te empfangene Dateneinheit D^E_m noch nicht in den Speichermitteln gespeichert ist, wobei Δt_{Mem} eine für die Wiedergabe eines Teils der empfangenenen Dateneinheiten D^E_x charakterisierende Zeitdauer ist, und die Speicherkapazität der Speichermittel auf den Teil der empfangenen Dateneinheiten begrenzt ist; oder
 - c) verworfen wird, wenn $t_{Empfang} > t_m^w \varepsilon$ oder die m-te empfangene Dateneinheit D_m^E in den Speichermitteln bereits gespeichert ist.
- 11. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeich net, daß der Datenstrom wenigstens teilweise als verschlüsselter Datenstrom übertragen wird.
- 12. Verfahren nach Anspruch 11, dadurch g e k e n n z e i c h n e t, daß die erste Datenmenge M_l und die wenigstens eine weitere Datenmenge M_k ($2 \le k \le n$) der n Datenmengen so übertragen werden, daß bei der Wiedergabe der Dateneinheiten in der mindestens einen Empfangseinrichtung E_j für einen vorgegebenen Anfangszeitraum nach dem Anfangszeitpunkt $t_k{}^A = t_k + \vartheta$ ($\vartheta > 0$) Dateneinheiten wiedergegeben werden, die unverschlüsselt übertragen werden.

- 6 -

- 13. Sendevorrichtung zum Übetragen von Dateneinheiten eines Datenstroms, insbesondere eines Multimediadatenstroms an mindestens eine Empfangseinrichtung E_j ($j \ge 1$) mit Sendemitteln zum Senden der Dateneinheiten und Steuermitteln zum Steuern der Sendemittel, derart, daß die Dateneiheiten des Datenstroms nach einem der Ansprüche 1 bis 11 übertragbar ist.
- 14. Vorrichtung nach Anspruch 13, dadurch gekennzeich net, daß die Sendemittel wenigstens zwei Sender zum Senden der Dateneinheiten umfassen, wobei die zwei Sender mit Hilfe der Steuereinrichtung so steuerbar sind, daß ein Teil des Datenstroms über einen der wenigstens zwei Sender und ein anderer Teil des Datenstroms über einen anderen der wenigstens zwei Sender gesendet werden kann.
- 15. Vorrichtung nach Anspruch 14, dadurch gekennzeich net, daß der eine Teil des Datenstroms von den x Dateneinheiten D_x (x = 2, 3, ...) mindestens eine Dateneinheiten D_b ($b \le x$) und der andere Teil des Datenstroms von den x Dateneinheiten D_x Dateneinheiten $D_1, ..., D_{b-1}, D_{b+1}, ..., D_x$ umfaßt.

Spielzeit des Spielfilms · 6 \mathcal{W}

Figur 2

···· / to

٠

•

•

Figur 3

7 6 S ယ 2 Spielzeit des Spielfilms ል <u>م</u> to 2 Ž **-36** 20 တ 46 ∞ 9 10 2

Figur 4

6 S 4 ယ Spielzeit des Spielfilms 3

Figur 5

σ 2 ပာ Spielzeit des Spielfilms to₂ ယ ∞ 9 5 4.15. 2

Figur 6

 $t_0^0 + t_1^0 + t_1^0$ (^{to}2

Spielzeit des Spielfilms

Figur 7