第二章 应用题参考答案(2015年)

布置作业 第二章 5, 8, 12, 27, 28, 30

《操作系统教程(第五版)》, 高等教育出版社, 2014. 教材课后习题 第二章(应用题部分) 5, 8, 12, 27, 28, 30

5 若后备作业队列中等待运行的同时有三个作业 J1、J2、J3,已知它们各自的运行时间为 a、b、c,且满足 a<b<c,试证明采用短作业优先算法调度能获得最小平均作业周转时间。

答:采用短作业优先算法调度时,三个作业的总周转时间为:

T1=a+(a+b)+(a+b+c)=3a+2b+c

若不按短作业优先算法调度,不失一般性,设调度次序为: J2、J1、J3。则三个作业的总周转时间为:

T2=b+(b+a)+(b+a+c)=3b+2a+c

令②-①式得到:

T2-T1=b-a>0

可见,采用短作业优先算法调度才能获得最小平均作业周转时间。

8 在道数不受限制的多道程序系统中,有作业进入系统后备队列时立即进行作业调度。现有 4 个作业进入系统,有关信息列于下表,当作业调度和进程调度均采用高优先级算法时(规定数大则优先级高)。

(第一个答案是按照非抢占式优先级调度计算的,如果有同学按照抢占式优先级调度计算也算正确)

作业名	进入后备队列时间	执行时间	优先级
JOB1	8:00	60分	1
JOB2	8:30	50分	2
JOB3	8:40	30分	4
JOB4	8:50	10分	3

试填充下表。

_	1 -100						000E00E00E00-
Ī	作业名	进入后备	执行	开始执	结束执	周转	带权周转
		队列时间	时间	行时间	行时间	时间	时间
Ī							
Ī							
Ī					P'	\wedge	
Ī	平均周	转时间 T=	Y Y				
Ī	带权平均周	转时间 W=	15/8/3				
_							

解:

【按照非抢占式优先级调度】

作业名	进入后备	执行	开始执	结束执	周转	带权周转	
	队列时间	时间	行时间	行时间	时间	时间	
JOB1	8:00	60分	8:00	9:00	60	60/60	
JOB3	8:40	30 分	9:00	9:30	50	50/30	
JOB4	8:50	10分	9:30	9:40	50	50/10	
JOB2	8:30	50分	9:40	10:30	120	120/50	
平均周	转时间 T=	(60+50+50+	(60+50+50+120)/4=70				
带权平均周转时间 W= (1+5/3+5+12/5)/4=2.52							

【按照抢占式优先级调度】

8:00~8:30 执行 JOB1, 余 30 分钟

8:30~8:40 执行 JOB2, 余 40 分钟

8:40~9:10 执行 JOB3, 余 0 分钟

9:10~9:20 执行 JOB4, 余 0 分钟

9:20~10:00 执行 JOB2, 余 0 分钟

10:00~10:30 执行 JOB1, 余 0 分钟

作业名	进入后备	执行	开始执	结束执	周转	带权周转
	队列时间	时间	行时间	行时间	时间	时间
JOB1	8:00	60分	8:00	10:30	150	150 /60
JOB2	8:30	50分	8:30	10:00	90	90 /50
JOB3	8:40	30 分	8:40	9:10	30	30/30
JOB4	8:50	10分	9:10	9:20	30	30/10
平均周转时间 T=		(150+90+30+30)/4=75				
带权平均质	带权平均周转时间 W= (150 /60+ 90 /50+ 30/30+30/10)/4=2.075					

12. 有 5 个批处理作业 A~E 均已到达计算中心,其运行时间分别 10、6、2、4 和 8 分钟;各自的优先级分别被规定为 3、5、2、1 和 4,这里 5 为最高级。若不考虑系统切换开销,计算出平均作业周转时间。(1)FCFS(按 A、B、C、D、E);(2)优先级调度算法;(3)时间片轮转法(每个作业获得相同的 2 分钟长的时间片)。

答: (1)FCFS 调度算法

执行次序	执行时间	等待时间	周转时间	带权周转时间		
A	10	0	10	1		
В	6	10	16	2.66		
С	2	16	18	9		
D	4	18	22	5.5		
Е	8	22	30	3.75		
作业平均周	转时间	T=(10+1	19.2			
作业平均带	权周转时间	W=(1+2.66+9+5.5+3.75)/5=4.38				

(2)优先级调度算法

执行次序	执行时间	等待时间	周转时间	带权周转时间	
В	6	0	6		
Е	8	6	14	1.75	
A	10	14	24	2.4	
С	2	24	26	13	
D	4	26	30	7.5	
作业平均周转时间 T=(6+14+24+26+30)/5=20					
作业平均带权周转时间 W=(1+1.75+2.4+13+7.5)/5=5.13					

(3)时间片轮转法

按次序ABCDEABDEABEAEA轮转执行。

执行次序	执行时间	等待时间	周转时间	带权周转时间
A	10	20	30	3
В	6	16	22	3.66
C	2	4	6	3
D	4	12	16	4
E	8	20	28	3.5
作业平均周:	转时间	T=(30+22+6+16+28)/5=20.4		
作业平均带权周转时间 W=(3+3.66+3+4+3.5)/5=3.43				.43

27 某多道程序系统供用户使用的主存为 100K, 磁带机 2 台, 打印机 1 台。采用可变分区主存管理,采用静态方式分配外围设备,忽略用户作业 I/O 时间。现有作业序列如下:

作业号	进入输入井时间	运行时间	主存需求量	磁带需求	打印机需求
1	8:00	25 分钟	15K	1	1
2	8:20	10 分钟	30K	0	1
3	8:20	20 分钟	60K	1	0
4	8:30	20 分钟	20K	1	0
5	8:35	15 分钟	10K	1	1

作业调度采用 FCFS 策略, 优先分配主存低地址区且不准移动已在主存的作业, 在主存中的各作业平分 CPU时间。现求:(1)作业被调度的先后次序?(2)全部作业运行结束的时间?(3)作业平均周转时间为多少?(4)最大作业周转时间为多少?

- 答: (1)作业调度选择的作业次序为: 作业 1、作业 3、作业 4、作业 2 和作业 5。
 - (2)全部作业运行结束的时间 9:30。
 - (3)周转时间:作业 1为30分钟、作业2为55分钟、作业3为40分钟、作业4为40分钟和作业5为55分钟。
 - (4) 平均作业周转时间=44 分钟。
 - (5) 最大作业周转时间为55分钟。
- 分析: 本题综合测试了作业调度、进程调度、及对外设的竞争、主存的竞争。
- 8:00 作业1到达,占有资源并调入主存运行。
- 8:20 作业 2 和 3 同时到达,但作业 2 因分不到打印机,只能在后备队列等待。作业 3 资源满足,可进主存运行,并与作业 1 平分 CPU 时间。
- 8:30 作业 1 在 8:30 结束,释放磁带与打印机。但作业 2 仍不能执行,因不能移动而没有 30KB 的空闲区,继续等待。作业 4 在 8:30 到达,并进入主存执行,与作业 3 平分 CPU 时间。
- 8:35 作业 5 到达,因分不到磁带机/打印机,只能在后备队列等待。
- 9:00 作业 3 运行结束,释放磁带机。此时作业 2 的主存及打印机均可满足,投入运行。作业 5 到达时间晚,只能等待。
- 9:10 作业 4 运行结束,作业 5 因分不到打印机,只能在后备队列继续等待。
- 9:15 作业 2 运行结束,作业 5 投入运行。
- 9:30 作业全部执行结束。

28 某多道程序设计系统采用可变分区主存管理,供用户使用的主存为 200K,磁带机 5 台。采用静态方式分配外围设备,且不能移动在主存中的作业,进程调度采用 FCFS,忽略用户作业 I/O 时间。现有作业序列如下:

作业号	进入输入井时间	运行时间	主存需求量	磁带需求
A	8:30	40 分钟	30K	3
В	8:50	25 分钟	120K	1
С	9:00	35 分钟	100K	2
D	9:05	20 分钟	20K	3
Е	9:10	10 分钟	60K	1

现求: (1)FIFO 算法选中作业执行的次序及作业平均周转时间 。(2)SJF 算法选中作业执行的 次序及作业平均周转时间。

答:

- (1) FIFO 算法选中作业执行的次序为: A、B、D、C和E。作业平均周转时间为 63 分钟。
- (2) SJF 算法选中作业执行的次序为: A、B、D、E和C。作业平均周转时间为 58 分钟。详细说明:

【1】先来先服务算法。说明:

- (1) 8:30 作业 A 到达并投入运行。注意它所占用的资源。
- (2) 8:50 作业 B 到达,资源满足进主存就绪队列等 CPU。
- (3) 9:00 作业 C 到达, 主存和磁带机均不够, 进后备作业队列等待。
- (4) 9:05 作业 D 到达,磁带机不够,进后备作业队列等待。后备作业队列有 C、D。
- (5) 9:10 作业 A 运行结束,归还资源磁带,但注意主存不能移动(即不能紧缩)。作业 B 投入运行。作业 C 仍因主存不够而等在后备队列。这时作业 E 也到达了,也由于主存不够进入后备作业队列。此时作业 D 因资源满足(主存/磁带均满足),进主存就绪队列等待。后备作业队列还有 C、E。
- (6)9:35 作业 B 运行结束,作业 D 投入运行。这时作业 C 因资源满足而调入主存进就绪队列等 CPU。而作业 E 因磁带机不够继续在后备作业队列等待。
- (7)9:55 作业 D 运行结束,作业 C 投入运行。这时作业 E 因资源满足而调入主存进就绪队列等 CPU。
 - (8)10:30 作业 C 运行结束,作业 E 投入运行。
 - (9)10:40 作业 E 运行结束。

作业执行次序	进输入井时间	装入主存时间	开始执行时间	执行结束时间	周转时间
作业 A	8:30	8:30	8:30	9:10	40(分)
作业 B	8:50	8:50	9:10	9:35	45
作业 D	9:05	9:10	9:35	9:55	50
作业C	9:00	9:35	9:55	10:30	90
作业E	9:10	9:55	10:30	10:40	90
作业平均周转时间			(40+45+50+90+90)/5=63 分钟		

【2】短作业优先算法。说明:

- (1) 8:30 作业 A 到达并投入运行。注意它所占用的资源。
- (2) 8:50 作业 B 到达,资源满足进主存就绪队列等 CPU。
- (3) 9:00 作业 C 到达, 主存和磁带机均不够, 进后备作业队列等待。
- (4) 9:05 作业 D 到达,磁带机不够,进后备作业队列等待。后备作业队列有 C、D。
- (5) 9:10 作业 A 运行结束, 归还资源磁带, 但注意主存不能移动(即不能紧缩)。作业 B 投入运行。作业 C 仍因主存不够而等在后备队列。这时作业 E 也到达了, 虽然该作业最短, 也由于主存不够进入后备作业队列。此时作业 D 因资源满足(主存/磁带均满足), 进主存就绪队列等待。后备作业队列还有 C、E。
- (6)9:35 作业 B 运行结束,作业 D 投入运行。这时作业 C 和 E 资源均满足,但按 SJF 应把作业 E 调入主存进就绪队列等 CPU。而作业 C 因**磁带机不够**继续在后备作业队列等待。
 - (7)9:55 作业 D 运行结束,作业 C 调入主存进就绪队列等 CPU。
 - (8)10:05 作业 E 运行结束,作业 C 投入运行。
 - (9)10:40 作业 C 运行结束。

作业执行次序	进输入井时间	装入主存时间	开始执行时间	执行结束时间	周转时间
作业 A	8:30	8:30	8:30	9:10	40(分)
作业 B	8:50	8:50	9:10	9:35	45
作业 D	9:05	9:10	9:35	9:55	50
作业E	9:10	9:35	9:55	10:05	55
作业C	9:00	9:55	10:05	10:40	100
作业平均周转时间			(40+45+50+55+100)/5=58 分钟		

因而得到作业选中次序为A、B、D、E、C。

30 多道批处理系统中配有一台处理器和两台外设(I_1 和 I_2),用户存储空间为 100MB。已知系统的<u>作业调度及进程调度采用可抢占的高优先数调度算法</u>,<u>主存采用不允许移动的可变分区分配策略</u>,设备分配按照动态分配原则。今有 4 个作业同时提交给系统,如下表所示。试求作业平均周转时间。

作业名	优先数	运行时间与顺序(分钟)	主存需求
A	7	CPU: 1 分, I ₁ :2 分, I ₂ : 2 分	50MB
В	3	CPU: 3 分,I ₁ : 1 分	10MB
С	9	CPU: 2 分,I ₁ : 3 分,CPU: 2 分	60MB
D	4	CPU: 4 分,I ₁ : 1 分	20MB

答:本题是综合性题目,考核要点是作业调度、主存分配及作业周转时间等。当4个作业进入系统后:

- (1) 按照高优先级调度算法,系统先调度作业 C。主存被 C 占有 60MB,还有 40MB 可用空间。 系统再装入 D 和 B。
- (2) 同样按照高优先级算法,让 C 先运行。两分钟后 C 让出 CPU,并占用 I_l 。作业 D 开始在 CPU 上执行。
- (3) 又过去 3 分钟,作业 C 使用 I₁完毕,被唤醒后立即抢占 CPU,使作业 D 回到就绪队列等待。
- (4) 2 分钟后,作业 C 运行完。系统将 C 卸出主存,继而装入作业 A。因 A 的优先数较高,故立即得到运行。
- (5) 作业 A 运行 1 分钟后,转而使用 I,进行 I/O。空出的 CPU 运行作业 D。
- (6) 1 分钟过后,作业 D 放弃 CPU,请求 I_1 因不能满足而等待。作业 B 开始运行。又过去 3 分钟,B 运行完。

CPU 的使用情况如下 (其中一个格代表 1 分钟):

С	С	D	D	D,	C	C	A	D	В	В	В	
II 的使用情况如下(其中一个格代表 1 分钟):												
		C	C	C				A	A	D		В
12 的使用情况如下(其中一个格代表 1 分钟):												
		1/	12-							A	A	

主存使用情况: 🗾

7 13 113 94					
C (60MB)	C (60MB)	空	A (50MB)		
W X			空 (10MB)		
	D (20MB)	D (20MB)	D (20MB)		
空 (40MB)	B (10MB)	B (10MB)	B (10MB)		
	空 (10MB)	空 (10MB)	空 (10MB)		
¥+) C	14) D D	frault o	44・7・4		

装入C 装入D、B 卸出C 装入A

作业周转时间: A=12, B=13, C=7, D=11

平均作业周转时间=(12+13+7+11)/4=43/4=10.75(分钟)