PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-152473

(43)Date of publication of application: 10.06.1997

(51)Int.CI.

G01R 33/02 B60R 16/02 G01C 17/32

(21)Application number: 08-131841

27.05.1996

(71)Applicant:

SONY CORP

(72)Inventor:

KURIHARA KAZUO AIZAWA MANABU

(30)Priority

(22)Date of filing:

Priority number: 07254254

Priority date: 29.09.1995

Priority country: JP

(54) MAGNETIC DETECTING APPARATUS

(57)Abstract:

PROBLEM TO BE SOLVED: To easily turn an apparatus compact and inexpensive and obtain a highly sensitive apparatus by providing a magnetic body and a magnetic sensor, detecting a change of a response waveform corresponding to an intensity of an external magnetic field, and detecting the external magnetic field.

SOLUTION: A rectangular wave oscillation voltage Vb is supplied to an integrator circuit from an oscillation voltage feed source 13, whereby an integral current runs to a magnetic sensor 11 and a resistor 12. A Schmitt trigger circuit 14 connected to wirings taken out from both ends of the resistor 12 detects an oscillation voltage Vr generated at the resistor 12 when the integral current runs, and outputs a rectangular wave oscillation voltage Vso as a signal based on a response waveform of the voltage. The voltage Vso output from the circuit 14 is supplied to a logic circuit 15. The circuit 15 compares the voltage Vso from the circuit 14 with the voltage Vb from the feed source 13, and outputs a pulse voltage signal Vp corresponding to a time of the voltage Vr generated at the resistor 12.

LEGAL STATUS

[Date of request for examination]

16.01.2003 01.02.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-152473

(43)公開日 平成9年(1997)6月10日

(51) Int.Cl. ⁸	識別記号	庁内整理番号	FΙ			į	技術表示箇所
G01R 33/02			C01R 3	3/02		Λ	
					${f B}$		
B 6 0 R 16/02	6 4 0		B60R 1	6/02	6 4 0 J		
G 0 1 C 17/32			G01C 1	7/32)
			客查請求	未請求	請求項の数1	15 OL	(全 16 頁)
(21)出顧番号	特願平8-131841		(71)出願人	0000021	85		
				ソニーを	株式会社		
(22)出顧日	平成8年(1996)5月27日			東京都品	副//区北品川(6	肇35号
			(72)発明者	栗原 -	一夫		
(31)優先権主張番号	特願平7-254254			東京都品	品川区北品川(6	全35号 ソニ
(32)優先日	平7 (1995) 9 月29日			一株式会	会社内		
(33)優先権主張国	日本(JP)		(72)発明者	相澤(ž		
				東京都品	品川区北品川(会社内	6	₩35号 ソニ
			(74)代理人	弁理士	小池 晃	(外2名)	•
							٧

(54) 【発明の名称】 磁気探知装置

(57)【要約】

【課題】 小型化や低価格化が容易で、高い感度が得られる磁気探知装置を提供する。

【解決手段】 本発明の磁気探知装置は、磁性体にコイルが巻かれてなる磁気センサ11を備えており、この磁気センサ11のコイルに発振電圧を供給する。そして、発振電圧を供給したときにコイルに流れる発振電流について、その応答波形を検出する。ここで、コイルに流れる発振電流の応答波形は、外部磁界強度に応じて変化するので、これによって外部磁界の探知ができることとなる。

【特許請求の範囲】

【請求項1】 磁性体にコイルが巻かれてなる磁気センサを備え、

上記磁気センサのコイルに発振電圧を供給したときに上記コイルに流れる発振電流について、その応答波形の外部磁界強度に応じた変化を検出し、上記検出された応答波形の変化によって外部磁界を探知することを特徴とする磁気探知装置。

【請求項2】 前記応答波形の外部磁界強度に応じた変化を検出する際に、応答波形の立ち上がり時間の変化と立ち下がり時間の変化の少なくとも一方を検出することを特徴とする請求項1記載の磁気探知装置。

【請求項3】 前記磁気センサと直列に接続された抵抗 を備えることを特徴とする請求項1記載の磁気探知装 置。

【請求項4】 前記抵抗に生じる発振電圧をシュミットトリガ回路に供給し、上記シュミットトリガ回路からの出力と、前記磁気センサのコイルに供給する発振電圧とを比較することにより、前記応答波形の変化を検出することを特徴とする請求項3記載の磁気探知装置。

【請求項5】 前記磁気センサのコイルに流れる発振電流の振幅が、磁気センサのインダクタンスが急峻な変化を示す範囲を包括するように設定されていることを特徴とする請求項1記載の磁気探知装置。

【請求項6】 前記磁気センサのコイルに流れる発振電流が、直流バイアス電流成分を含んでいることを特徴とする請求項1記載の磁気探知装置。

【請求項7】 前記磁気センサのコイルに流れる電流の 方向を反転させるバイラテラルスイッチを備えているこ とを特徴とする請求項1記載の磁気探知装置。

【請求項8】 前記磁気センサを複数備えていることを 特徴とする請求項1記載の磁気探知装置。

【請求項9】 前記磁気センサのコイルに供給される発振電圧が方形波であることを特徴とする請求項1記載の磁気探知装置。

【請求項10】 前記磁性体を、前記コイルに流れる発振電流により、長手方向に磁化し利用することを特徴とする請求項1記載の磁気探知装置。

【請求項11】 前記磁気センサを3つ備えていることを特徴とする請求項8記載の磁気探知装置。

【請求項12】 前記3つの各磁気センサによって検出された各磁界成分から、立体空間内における外部磁界の大きさを算出する演算装置を備えていることを特徴とする請求項11記載の磁気探知装置。

【請求項13】 前記3つの各磁気センサによって検出された各磁界成分から、立体空間内における外部磁界の方向を算出する演算装置を備えていることを特徴とする請求項11記載の磁気探知装置。

【請求項14】 前記3つの各磁気センサによって検出された各磁界成分から、立体空間内における回転角度を

算出する演算装置を備えていることを特徴とする請求項 11記載の磁気探知装置。

【請求項15】 車両に搭載されていることを特徴とする請求項11記載の磁気探知装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁性体にコイルが 巻かれてなる磁気センサを備えた磁気探知装置に関し、 特に簡単な構造で高感度化を図った新規な磁気探知装置 に関する。

[0002]

【従来の技術】外部磁界を探知する磁気探知装置は、磁場の検出器や測定器などの計測用から始まり、近年では、磁気式スイッチ、磁気式ロータリ・エンコーダ、地磁気センサなど民生用に広く使用されている。

【0003】このような磁気探知装置としては、ホール素子を用いた磁気探知装置、フラックスゲートセンサを用いた磁気探知装置、磁気抵抗効果素子を用いた磁気探知装置などがある。

【0004】ホール素子を用いた磁気探知装置は、図19に示すように、両端に電極101,102を設けたホール素子103のホール効果を応用して外部磁界を検出するものである。すなわち、ホール素子を用いた磁気探知装置では、外部磁界の変化によってホール素子103に発生するホール電圧Vhの変化に基づいて外部磁界を検出する。ここで、ホール素子103の厚さをdとし、ホール素子103を流れる電流をIとし、ホール素子103を通る磁束をBとすると、ホール電圧Vhは、下記式(1-1)のようになる。

[0005]

Vh=Rh・I・B/d・・・(1-1) しかし、このようなホール電圧Vhは非常に小さいため、ホール素子を用いた磁気探知装置では、例えば、約0.3ガウス程度の地磁気のような微弱な磁界を検出することは困難である。

【0006】また、フラックスゲートセンサを用いた磁気探知装置は、図20に示すように、外部磁界によってヒステリシス曲線がシフトする特殊な高透磁率材料からなる環状の磁気コア110に、励磁用コイル111及び検出用コイル112を巻回してなるものである。

【0007】この磁気探知装置で外部磁界を検出する際には、磁気コア110が過飽和状態にまで励磁されるような高周波電流を励磁用コイル111に流しておく。このとき、外部からの磁界が磁気コア110に作用していなければ、検出用コイル112の左右のコイル112。、112bからの出力は同じ出力波形となる。そして、検出用コイル112の左右のコイル112a、112bは逆相に接続されているので、検出用コイル112の左側のコイル112aからの出力と、検出用コイル112の右側のコイル112bからの出力とが互いに打ち

消し合って検出用コイル112全体からは何も出力され ないこととなる。

【0008】一方、例えば、励磁用コイル111によって右回りの磁束Bが磁気コア110内に発生しているときに、図20中のNからSに至る方向より外部磁界He xが加わると、外部磁界He xがバイアス磁界として作用して、磁気コア110の右側が早く飽和し、磁気コア110の左側が逆に遅れて飽和する。そして、検出用コイル112の左右のコイル112a, 112bは逆相に接続されているので、検出用コイル112の左側のコイル112aからの出力と、検出用コイル112の右側のコイル112bからの出力との差分が、外部磁界He xの大きさに対応して出力されることとなる。

【0009】しかし、このような磁気探知装置では、検出用コイル112によって磁気信号を電気信号に変換するため、感度を上げるには検出用コイル112の巻き数を多くしたり、外部磁界Hexの集束効果を高めるために磁気コア110の形状を大きくする必要がある。した

 $R=Rb+(Ra-Rb)\cdot cos^2\theta \cdot \cdot \cdot (1-2)$

また、上記式(1-2)を図にすると図22のようになる。ここで、縦軸は、磁気抵抗効果素子120の抵抗値 Rであり、横軸は、磁気抵抗効果素子120を流れる電流Iの方向と、外部磁界Hexによる磁気抵抗効果素子120の磁化Mの方向とのなす角度のである。

【0012】しかし、このような磁気抵抗効果素子120において、抵抗変化率の最大値は2~3%程度と非常に小さいため、適当な大きさのバイアス磁界を加えて感度の良いところを使用したとしても、地磁気のような微弱な磁界では0.05%程度しか抵抗変化が得られない。したがって、磁気抵抗効果素子120を用いた磁気探知装置も感度が不十分であり、地磁気のような微弱な磁界の検出には適してない。さらに、磁気抵抗効果素子120を用いた磁気係数を持っているため、磁気抵抗効果素子120を用いた磁気探知装置では、温度ドリフト等の問題もある。

[0013]

【発明が解決しようとする課題】上述のように、従来から知られている磁気探知装置では、感度が不十分であったり、小型化や低価格化が難しいという問題があった。 【0014】そこで本発明は、このような従来の実情に鑑みて提案されたものであり、小型化や低価格化が容易で、高い感度が得られる磁気探知装置を提供することを目的としている。

[0015]

【課題を解決するための手段】上述の目的を達成するために完成された本発明に係る磁気探知装置は、磁性体にコイルが巻かれてなる磁気センサを備え、上記磁気センサのコイルに発振電圧を供給したときに上記コイルに流れる発振電流について、その応答波形の外部磁界強度に応じた変化を検出し、上記検出された応答波形の変化に

がって、フラックスゲートセンサを用いた磁気探知装置 では、小型化や低価格化が非常に困難であった。

【0010】また、磁気抵抗効果素子を用いた磁界探知装置は、磁気抵抗効果素子の磁気抵抗効果を利用して外部磁界を検出するものである。ここで、磁気抵抗効果素子とは、Ni合金等からなる強磁性薄膜の磁気抵抗効果を応用した磁電変換素子であり、印加された磁界の強さに応じて、その抵抗値が変化する特性を持っている。そして、図21に示すように、磁気抵抗効果素子120を流れる電流Iの方向と、外部磁界Hexによる磁気抵抗効果素子120の磁化Mの方向とのなす角を θとし、電流Iの方向と磁化Mの方向とが同一のときの磁気抵抗効果素子120の抵抗値をRaとし、電流Iの方向と磁化Mの方向とのなす角をが90°のときの磁気抵抗効果素子120の抵抗値をRbとすると、磁気抵抗効果素子120の抵抗値をRbとすると、磁気抵抗効果素子120の抵抗値Rは、下記式(1-2)のようになる。【0011】

よって外部磁界を探知することを特徴とするものである。ここで、応答波形の外部磁界強度に応じた変化を検出する際には、例えば、応答波形の立ち上がり時間の変化と立ち下がり時間の変化の少なくとも一方を検出するようにすればよい。

【0016】この磁気探知装置では、外部磁化の変化をインダクタンスの変化として検出することとなる。すなわち、外部磁界が変化すると、磁気センサの磁性体の磁化量が変化し、その結果、磁気センサのインダクタンスが変化する。そして、このインダクタンスの変化は、コイルに流れる発振電流の応答波形の変化として現れるので、この応答波形の変化を検出することにより、外部磁界が探知されることとなる。

【0017】なお、上記磁気探知装置は、磁気センサと 直列に接続された抵抗を備えていてもよい。このよう に、磁気センサと直列に抵抗を接続したときには、磁気 センサのインダクタンスと、磁気センサと直列に接続さ れた抵抗との時定数により、応答波形の外部磁界強度に 応じた変化の大きさを定めることができる。

【0018】そして、磁気センサと直列に抵抗を接続したときには、この抵抗に生じる発振電圧をシュミットトリガ回路に供給して、シュミットトリガ回路からの出力と、磁気センサのコイルに供給する発振電圧とを比較することにより、応答波形の変化を検出するようにすることができる。このようにシュミットトリガ回路等を用いて応答波形の変化を検出する際には、応答波形の変化は、抵抗に生じる発振電圧が所定の値にまで立ち上がるまでの時間の変化や、抵抗に生じる発振電圧が所定の値にまで立ち下がるまでの時間の変化として検出されることとなる。

【0019】なお、上記磁気探知装置において、磁気セ

ンサのコイルに流れる発振電流の振幅は、磁気センサのインダクタンスが急峻な変化を示す範囲を包括するように設定されていることが好ましい。このように発振電流の振幅を設定することにより、外部磁界の変化によって磁気センサのインダクタンスが大きく変化するようになるため、磁気探知装置の感度を高めることができる。

【0020】また、上記磁気探知装置において、磁気センサのコイルに流れる発振電流は、直流バイアス電流成分を含んでいることが好ましい。このように発振電流に直流バイアス電流成分を含ませることにより、発振電流のレベルを磁気センサのインダクタンスの変化が大きい部分に設定することができる。したがって、発振電流に直流バイアス電流成分を含ませることにより、磁気探知装置の感度を高めることができる。

【0021】また、上記磁気探知装置は、磁気センサのコイルに流れる電流の方向を反転させるバイラテラルスイッチを備えていることが好ましい。このようにバイラテラルスイッチを設けて、磁気センサのコイルに流れる電流の方向を反転させたときには、応答波形の変化を検出する際にそれらの差動を取ることにより、電流方向が一定のときに比べて約2倍の出力が得られることとなる。

【0022】また、磁気センサのコイルに流れる電流の 方向を反転させたときに、外部磁界が零ならば、それぞ れの電流方向における応答波形の変化は互いにキャンセ ルされる。したがって、バイラテラルスイッチを備えた 磁気探知装置では、外部磁界がない状態である0点を容 易に認識できることとなる。

【0023】さらに、コイルに流れる電流の方向を短時間に反転させたときには、磁気センサのインダクタンスに温度ドリフトや時間ドリフト等が生じても、これらの影響は互いにキャンセルされることとなる。したがって、バイラテラルスイッチを備えた磁気探知装置では、磁気センサのインダクタンスの温度ドリフトや時間ドリフト等の影響を受けることなく、高精度に外部磁界を探知することができる。

【0024】なお、このような磁気探知装置において、 1つの磁気センサによって検出されるのは、外部磁界の うち、磁気センサの磁性体の長手方向の成分だけであ る。したがって、この磁気探知装置は、複数の磁気セン サを備えていることが好ましい。そして、磁気探知装置 が複数の磁気センサを備えていれば、各磁気センサによ って探知される磁界の大きさに基づいて、外部磁界の方 向を探知することが可能となる。

[0025]

【発明の実施の形態】以下、本発明を適用した具体的な 実施の形態について、図面を参照しながら詳細に説明す る。なお、本発明は以下の例に限定されるものではな く、本発明の要旨を逸脱しない範囲で変更が可能である ことは言うまでもない。 【0026】まず、本発明を適用した磁気探知装置に用いられる磁気センサの一例について説明する。

【0027】この磁気センサは、図1に示すように、リボン状やワイヤー状に形成された細長いアモルファス等からなる磁性体1と、この磁性体1の長手方向に巻回された銅線等からなるコイル2とから構成される。ここで、磁性体1には、数ガウス程度の微弱な磁界で急峻な透磁率変化を示す角形特性に優れた磁性材料を用いる。そして、この磁気センサ3のコイル2からは、2つの端子4、5が導出される。

【0028】このような磁気センサ3について、図2に示すように、磁気センサ3の端子4,5に交流電流源6を接続して交流の励磁電流を供給すると共に、磁気センサ3の長手方向に外部磁界Hexを加えたときの特性について、図3に示す。この図3は、「磁気センサ3のインダクタンスL」及び「磁気センサ3のインピーダンスZ」と、「磁気センサ3に供給した励磁電流の周波数f」との関係を示している。

【0029】ここで、図3中の特性1は、外部磁界Hex=0のときのインダクタンスLの変化を示しており、図3中の特性2は、外部磁界HexがあるときのインダクタンスLの変化を示しており、図3中の特性3は、外部磁界Hex=0のときのインピーダンスZの変化を示しており、図3中の特性4は、外部磁界HexがあるときのインピーダンスZの変化を示している。

【0030】この図3の特性1及び特性2に示すように、磁気センサ3のインダクタンスしは、励磁電流周波数 f が高くなると小さくなり、また、外部磁界Hexが加わると小さくなる。そして、図3の特性3及び特性4に示すように、磁気センサ3のインピーダンス Z は、励磁電流周波数 f が高くなると大きくなり、また、外部磁界Hexが加わると小さくなる。

【0031】ここで、図3の特性1及び特性2に示したようなインダクタンスLの変化に着目し、外部磁界Hexを磁気センサ3の長手方向に加えたときにインダクタンスLの変化量△Lが大きい励磁電流周波数、すなわち図3中のfLで示すような励磁電流周波数で、この磁気センサ3を動作させる。このとき、インダクタンスLの外部磁界依存性は、図4に示すようになる。ここで、磁気センサ3の磁性体1には、数ガウス程度の微弱な磁界で急峻な透磁率変化を示す角形特性の優れた磁性材料を用いているため、図4に示すように、磁気センサ3のインダクタンスLの変化は急峻なものとなる。

【0032】つぎに、このような磁気センサ3を用いて外部磁界Hexを検出するときの原理について、図5を参照しながら説明する。この図5は、交流バイアス電流i1、又は交流バイアス電流i1を反転させた交流バイアス電流i2を、磁気センサ3に供給したときの状態について、磁気センサ3のインダクタンスしの変化と対応させて示したものである。

【0033】そして、磁気センサ3を用いて外部磁界Hexを検出する際は、コイル2に直流バイアス電流成分を含んだ交流バイアス電流i1を流すことにより、磁気センサ3を長手方向に磁化して、磁気センサ3の長手方向に直流バイアス磁界成分を含んだ交流バイアス磁界を発生させる。ここで、コイル2に供給する交流バイアス 電流i1は、外部磁界Hexが加わって交流バイアス 磁界がシフトしたとしても、交流バイアス 磁界が、磁気センサ3のインダクタンスしが急峻な変化を示す範囲を包括するように設定する。

$$t1 = \frac{1}{V} \int_{la}^{lb} Ldi \qquad (V = Const)$$

【0036】一方、このように交流バイアス電流i1を供給しているときに、外部磁界Hexが加わると、磁気センサ3に流れる電流は、外部磁界Hex分だけシフトして、例えば、Ia+IexからIb+Iexまで変化するようになる。このとき、交流バイアス電流i1は、Iexの分だけシフトすると共に、その応答波形に変化

$$\Delta t 1 = \frac{1}{V} \left(\int_{la+lex}^{lb+lex} L di - \int_{la}^{lb} L di \right)$$

$$= \frac{1}{V} \left(\int_{lb}^{lb+lex} L \min di - \int_{la}^{la+lex} L \max di \right) \qquad \cdots (2-2)$$

【0038】このように、交流バイアス電流i1の立ち上がり時間t1は、外部磁界Hexの変化に応じて変化する。したがって、この磁気センサ3では、交流バイアス電流i1の立ち上がり時間t1のシフト量を検出することにより、外部磁界Hexの変化を検出することができる。

【0039】なお、この磁気センサ3では、交流バイアス電流i1が、外部磁界Hex分だけ電流値がシフトしてもインダクタンスしが急峻な変化を示す範囲を包括するように設定されているため、上記式(2-2)から明らかなように、外部磁界Hexの変化に応じてシフト時間 Δt1がほぼ直線的に変化することとなる。すなわち、この磁気センサ3は、外部磁界検出時のリニアリティに優れており、磁界検出用のセンサとして非常に好適である。また、この磁気センサ3では、外部磁界Hexの検出にインダクタンスしの急峻な変化、すなわちしmaxからしminに至る大きな変化を常に利用すること

$$t2 = \frac{1}{V} \int_{-Ia}^{-Ib} L di = t1$$

【0043】一方、このように交流バイアス電流i2を供給しているときに、外部磁界Hexが加わると、磁気センサ3に流れる電流は、外部磁界Hex分だけシフトして、例えば、「Ia+Iexから「Ib+Iexまで変化するようになる。このとき、交流バイアス電流i2は、Iexの分だけシフトすると共に、その応答波形に

【0034】そして、図5に示すように、外部磁界Hex=0のときに、磁気センサ3のコイル2に流れる電流がIaからIbまで変化するように交流バイアス電流i1を供給すると、磁気センサ3のインダクタンスしはLmaxからLminに変化する。そして、磁気センサ3に印加される電圧Vの変化が一定であるならば、交流バイアス電流i1の立ち上がり時間t1は、ファラデーの法則によって下記式(2-1)のように表される。

[0035]

【数1】

$$\cdots (2-1)$$

が生じる。そして、交流バイアス電流 i 1 の応答波形が変化し、例えば、交流バイアス電流 i 1 の立ち上がり時間 t 1 が、下記式(2 - 2)で表されるシフト時間 Δ t 1 だけ変化することとなる。

[0037]

【数2】

となるので、非常に高い感度が得られる。

【0040】つぎに、交流バイアス電流i1を反転させた交流バイアス電流i2を磁気センサ3に供給したときの動作について説明する。

【0041】ここでは、図5に示すように、磁気センサ3に流れる電流を反転させて、外部磁界Hex=0のときに磁気センサ3に流れる電流が-Iaから-Ibまで変化するように、磁気センサ3に交流バイアス電流i2を供給する。このときも、磁気センサ3のインダクタンスしは、しmaxからしminへ変化する。そして、磁気センサ3に印加される電圧Vの変化が一定であるならば、交流バイアス電流i2の立ち上がり時間t2は、ファラデーの法則によって下記式(2-3)のように表され、上述の立ち上がり時間t1と同じとなる。

[0042]

【数3】

変化が生じる。そして、交流バイアス電流 i 2の応答波形が変化して、例えば、交流バイアス電流 i 2の立ち上がり時間 t 2が、下記式 (2-4) で表されるシフト時間 Δt 2だけ変化することとなる。

[0044]

【数4】

$$\Delta t 2 = \frac{1}{V} \left(\int_{-Ia+lex}^{-Ib+lex} L di - \int_{-Ia}^{-Ib} L di \right)$$

$$= \frac{1}{V} \left(\int_{-Ia}^{-Ia+lex} L \max di - \int_{-Ib}^{-Ib+lex} L \min di \right)$$

$$= -\Delta t \cdots (2-4)$$

【0045】このように、交流バイアス電流 i1を反転させた交流バイアス電流 i2を流したときも、交流バイアス電流 i2の立ち上がり時間 t2は、外部磁界Hexの変化に応じて変化する。そして、このシフト時間 $\Delta t2$ は、上述のシフト時間 $\Delta t1$ と符号が逆で同じ大きさとなっている。すなわち、シフト時間 $\Delta t1$ とシフト時間 $\Delta t2$ とは、差動の関係にある。

【0046】そこで、順方向に電流を流したときの立ち上がり時間 $t1+\Delta t1$ と、逆方向に電流を流したときの立ち上がり時間 $t2+\Delta t2$ とを測定し、これらの差動を取ることにより、外部磁界Hexの変化に応じた信号を、一定の方向にだけ電流を流したときに比べて約2倍の出力として取り出すことができる。

【0047】また、順方向に電流を流したときの立ち上がり時間 $t1+\Delta t1$ と、逆方向に電流を流したときの立ち上がり時間 $t2+\Delta t2$ との差動を取ることにより、外部磁界Hex=0のときには、交流バイアス電流の立ち上がり時間が互いにキャンセルされるので、外部磁界Hexがない状態である0点を容易に認識することができる。

【0048】さらに、磁気センサ3は温度等によってインダクタンスLの大きさが変化して交流バイアス電流の立ち上がり時間に変化が生じるが、交流バイアス電流の方向を短時間で反転させることにより、このような温度ドリフトや時間ドリフト等の影響を互いにキャンセルすることができる。したがって、この磁気センサでは、温度ドリフトや時間ドリフト等の影響を受けることなく、高精度に外部磁界Hexを検出することができる。

【0049】つぎに、以上のような磁気センサを用いた 磁気探知装置の一構成例について説明する。

【0050】この磁気探知装置は、図6に示すように、バイラテラルスイッチ10内に配された磁気センサ11と、磁気センサ11に印加している外部磁界の大きさを電気信号に変換して出力する磁電変換回路とから構成される。そして、磁電変換回路は、バイラテラルスイッチ10に接続された抵抗12と、方形波発振電圧Vbを供給する発振電圧供給源13と、抵抗12の両端から導出された配線に接続されたシュミットトリガ回路14と、シュミットトリガ回路14からの出力と発振電圧供給源13からの発振電圧とを比較するロジック回路15とから構成される。

【0051】ここで、磁気センサ11は、上述したように、リボン状やワイヤー状に形成された細長いアモルファス等からなる磁性体と、この磁性体の長手方向に巻回

された銅線等からなるコイルとから構成される。そして、この磁気センサ11は、スイッチSW1、スイッチSW2、スイッチSW3及びスイッチSW4を備えたバイラテラルスイッチ10内に配されており、磁気センサ11に流れる電流方向は、このバイラテラルスイッチ10によって反転させることができるようになっている。そして、バイラテラルスイッチ10に接続された抵抗12は、磁気センサ11に対して直列となるように接続されており、この抵抗12と磁気センサ11とによって積分回路が構成される。

【0052】この積分回路の両端は、発振電圧供給源13に接続されており、この発振電圧供給源13から積分回路に方形波発振電圧Vbが供給され、これにより、磁気センサ11及び抵抗12に積分電流が流れる。なお、発振電圧供給源13から供給される発振電圧は、方形波に限られるものではなく、例えば、三角波等であってもよい

【0053】一方、抵抗12の両端から導出された配線に接続されたシュミットトリガ回路14は、上述のような積分電流が流れたときに抵抗12に生じる発振電圧Vrを検出し、後述するように、この発振電圧Vrの応答波形に基づいた信号として、方形波発振電圧Vsoを出力する。

【0054】そして、このシュミットトリガ回路14から出力される方形波発振電圧Vsoは、ロジック回路15に供給される。また、ロジック回路15には、発振電圧供給源13からの方形波発振電圧Vbも供給される。そして、ロジック回路15は、シュミットトリガ回路14からの方形波発振電圧Vsoと、発振電圧供給源13からの方形波発振電圧Vbとを比較して、後述するように、積分電流が流れたときに抵抗12に生じる発振電圧Vrの立ち上がり時間又は立ち下がり時間に対応したパルス電圧信号Vpを出力する。

【0055】このような磁気探知装置の動作について、バイラテラルスイッチ10によって一定の方向にだけ磁気センサ11に電流が流れるようにしたときの各部の電圧波形のタイムチャートである図7を参照しながら説明する。

【0056】まず、発振電圧供給源13から、図7 (1)に示すように、方形波発振電圧Vbが磁気センサ11に供給され、これにより、磁気センサ11と抵抗12とからなる積分回路に積分電流が流れる。このとき、抵抗12に生じる発振電圧Vr、すなわちシュミットトリガ回路14に供給される発振電圧Vrの波形は、図7(2)に示すように、図7(1)に示した方形波発振電圧Vbに対して、立ち上がり及び立ち下がり時に遅延が生じた波形となる。この発振電圧Vrの波形は、磁気センサ11に流れる電流の応答波形に対応するものであり、したがって、この発振電圧Vrの立ち上がり及び立ち下がり時の遅延は、磁気センサ11に加わる外部磁界

Hexの大きさに応じて変化する。

【0057】そして、シュミットトリガ回路14は、図7(2)に示した発振電圧Vrを、立ち上がり時にシュミット電圧VsHでコンパレートすると共に、立ち下がり時にシュミット電圧VsLでコンパレートし、図7(3)に示すように波形整形された方形波発振電圧Vsoを出力する。ここで、シュミット電圧VsL,VsHは、磁気センサ11に流れる電流の立ち上がり時及び立ち下がり時における磁気センサ11のインダクタンスしのLmaxからLminへの変化を包括するように設定しておく。

【0058】そして、ロジック回路15は、図7(1)に示したような発振電圧供給源13から供給される方形 波発振電圧Vbと、図7(3)に示したようなシュミットトリガ回路14から供給される方形波発振電圧Vsoとの位相差 Δ tsを比較し、図7(4)に示すようなパルス電圧信号Vpを出力する。ここで、パルス電圧信号Vpのパルス幅は、磁気センサ11と抵抗12とからなる積分回路に積分電流が流れたときに抵抗12に生じる発振電圧Vrの立ち上がり時間又は立ち下がり時間を示している。

【0059】そして、上述したように発振電圧Vrの波形は磁気センサ11に流れる電流の応答波形に対応しているので、ロジック回路15から出力されるパルス電圧信号Vpのパルス幅は、磁気センサ11に流れる電流の立ち上がり時間又は立ち下がり時間を示している。そして、上述したように磁気センサ11に流れる電流の立ち上がり時間又は立ち下がり時間は外部磁界Hexの大きさに依存しているので、このロジック回路15から出力されるパルス電圧信号Vpに基づいて、磁気センサ11に加わっている外部磁界Hexの大きさを検出することができる。

【0060】このように、この磁気探知装置では、磁気センサ11に加わった外部磁界Hexの変化が、発振電圧供給源13から供給される方形波発振電圧Vbと、シュミットトリガ回路14から出力される方形波発振電圧Vsoとの位相差Δtsの変化として現れ、この位相差Δtsをパルス電圧信号Vpとして取り出すことにより、外部磁界Hexを検出する。

【0061】ところで、本実施の形態に係る磁気探知装置では、バイラテラルスイッチ10によって磁気センサ11に流れる電流方向を反転させることができる。すなわち、図6において、スイッチSW1及びスイッチSW4がオンで、スイッチSW2及びスイッチSW3がオフのとき、図10の矢印Aの向きに電流が流れ、また、スイッチSW1及びスイッチSW4がオフで、スイッチSW2及びスイッチSW3がONのとき、図10の矢印Bの向きに電流が流れる。そして、バイラテラルスイッチ10によって磁気センサ11に流れる電流方向を反転させて外部磁界Hexを検出することにより、上述したよ

うに、一定の方向にだけ電流を流したときに比べて約2倍の出力が得られ、また、外部磁界Hexがない状態である0点を容易に認識することができ、さらには、温度ドリフトや時間ドリフト等の影響を取り除くことができる。

【0062】つぎに、磁気センサ11に加わった外部磁界Hexの変化が、発振電圧供給源13から供給される方形波発振電圧Vbと、シュミットトリガ回路14から出力される方形波発振電圧Vsoとの位相差Δtsの変化として現れる原理について、さらに詳細に説明する。【0063】磁気センサと抵抗が直列に接続された積分回路に電流が立ち上がるときの状態をモデル化した回路図を図8に示す。このような回路において、スイッチ22をオフからオンにすると、磁気センサ20と抵抗21からなる積分回路に直流電源23から直流電圧が印加さ

2をオフからオンにすると、磁気センサ20と抵抗21からなる積分回路に直流電源23から直流電圧が印加され、磁気センサ20に電流iが流れ出す。ここで、磁気センサ20に流れる電流iは、積分回路に印加される直流電圧の値をE、磁気センサ20のインダクタンスをし、抵抗21の抵抗値をR、電流iの立ち上がり時間をtとすると、下記式(2-5)で表される。

[0064]

【数5】

$$L\frac{di}{dt} + Ri = E$$

$$i = \frac{E}{R} \left(1 - e^{-\frac{R}{L}t} \right)$$

$$t = \frac{L}{R} \ln \frac{E}{E - Ri}$$

$$(2 - 5)$$

【0065】上記式(2-5)から分かるように、電流 iの立ち上がり時間 t は、積分回路の時定数 L / R に比 例している。したがって、このような積分回路では、抵 抗21の抵抗値Rの大きさを変えることにより、電流 i の立ち上がり時間 t を任意に設定することができる。

【0066】ところで、上述したように、磁気センサ2 0のインダクタンスしは、電流iが立ち上がっている間 に、LmaxからLminへ変化する。ここで、上述の シュミット電圧VsL, VsHは、インダクタンスしの LmaxからLminへの変化を包括するように設定し ておく。

【0067】そして、磁気センサ20のインダクタンス LがLmaxからLminへと変化するため、積分回路 に流れる電流iは、図9に示すように、初めはインダク タンスLがLmaxの状態で立ち上がり、やがて、イン ダクタンスLがLminの状態で立ち上がることとな る。したがって、積分回路に流れる電流iがシュミット 電圧VsHに対応するレベルに達するまで時間Tsは、 インダクタンスLがLmaxの状態での立ち上がり時間 T1と、インダクタンスLがLminの状態での立ち上 がり時間T2との合計になる。

【0068】そして、磁気センサ20に加わる外部磁界Hexが変化すると、この変化分だけ、インダクタンスLがLmaxからLminに変化する変化点Pがシフトするので、外部磁界Hexに応じて、積分電流iがシュミット電圧VsHに対応するレベルに達するまで時間Tsが変化することとなる。したがって、上述の図6及び図7に示したように、磁気センサ11に加わった外部磁界Hexの変化が、発振電圧供給源13から供給される方形波発振電圧Vbと、シュミットトリガ回路14から出力される方形波発振電圧Vsoとの位相差Δtsの変化として現れることとなる。

【0069】また、図10に、磁気センサ30と抵抗31が直列に接続された積分回路に流れていた電流iが立ち下がるときの状態をモデル化した回路図を示す。このような回路において、スイッチ32をオフからオンにすると、直流電源33からの直流電圧が積分回路に加わらなくなり、磁気センサ30に流れていた電流に立ち下がりが生じる。ここで、磁気センサ30に流れる電流iは、積分回路に印加されていた直流電圧の値をE、磁気センサ30のインダクタンスをL、抵抗31の抵抗値をR、電流の立ち下がり時間をもとすると、下記式(2-6)で表される。

[0070]

【数6】

$$i = \frac{E}{R}e^{-\frac{R}{L}t}$$

$$i = \frac{L}{R}\ln(E - Ri)$$

$$\cdots (2 - 6)$$

【0071】そして、このときも、上述の電流の立ち上がり時と同様に、磁気センサ30に加わる外部磁界He xが変化すると、この変化分だけ、インダクタンスしが LmaxからLminに変化する変化点がシフトするので、外部磁界He xに応じて、積分電流iがシュミット電圧VsLに対応するレベルに達するまで時間が変化することとなる。したがって、電流の立ち下がり時においても、上述の図6及び図7に示したように、磁気センサ11に加わった外部磁界He xの変化が、発振電圧供給源13から供給される方形波発振電圧Vbと、シュミットトリガ回路15から出力される方形波発振電圧Vsoとの位相差Δtsの変化として現れることとなる。

【0072】ところで、図6に示したような磁気探知装置において、発振電圧供給源13から供給される方形波発振電圧V b と、シュミットトリガ回路14から出力される方形波発振電圧V s o との位相差 Δ t s は、外部磁界H e x と、磁気センサ11の磁性体の長手方向に生じる磁界とが成す角度 θ に依存している。すなわち、外部磁界H e x が一定のとき、位相差 Δ t s は、図11に示

すように、外部磁界Hexと、磁気センサ11の磁性体の長手方向に生じる磁界とが成す角度 θ に依存して変化する。なお、図11では、外部磁界Hexの向きと、磁気センサ11の磁性体の長手方向に生じる磁界の向きとが同じときを方位0°としている。

【0073】図11から分かるように、位相差Δtsは外部磁界Hexの方位情報を含んでいる。これは、磁気センサ11の磁性体の磁化量が、磁気センサ11に流れる電流iによる磁化量と、外部磁界Hexによる磁化量との合計であり、外部磁界Hexによる磁化量が、外部磁界Hexと、磁気センサ11の磁性体の長手方向に生じる磁界とが成す角度θに依存して変化するからである。

【0074】すなわち、図12に示すように、磁気センサ11のコイル11bに流れる電流iによる磁界Hbは一定であるが、外部磁界Hexによって磁気センサ11の磁性体11aに生じる磁界は、外部磁界Hexの方向に依存している。したがって、磁気センサ11で検出される磁界Hは、下記式(2-7)で示すように、外部磁界Hexのうち、磁性体11aの長手方向成分のみとなる。

[0075]

 $H=Hex \cdot cos \theta \cdot \cdot \cdot (2-7)$

なお、上記式(2-7)に示すように、磁気センサ11 で検出される磁界Hは、外部磁界Hexの方位情報を含 んでいるので、複数の地磁気センサを用いることによ り、外部磁界Hexの方向を知ることができる。

【0076】具体的には、例えば、図13に示すように、磁気探知装置に2つの磁気センサ11x,11yを組み込む。なお、この磁気探知装置は、磁気センサを2つ組み込んだ以外は、図6に示した磁気探知装置と同様の回路構成である。ここで、図14に示すように、磁気センサ11xは、X軸方向に配置し、磁気センサ11yは、X軸方向に対して直交するY軸方向に配置する。すなわち、磁気センサ11x及び磁気センサ11yは、互いに直交するように配置する。このとき、図14に示すように、外部磁界Hexの方向と、X軸方向検出用の磁気センサ11xの磁性体の長手方向とが成す角度をθとすると、X軸方向検出用の磁気センサ11xによって検出される磁界Hxは、下記式(2-8)で表され、Y軸方向検出用の磁気センサ11yによって検出される磁界Hyは、下記式(2-9)で表される。

[0077]

 $H\dot{x} = Hex \cdot cos\theta \cdot \cdot \cdot (2-8)$

 $Hy = Hex \cdot sin\theta \cdot \cdot \cdot (2-9)$

ここで、X軸方向検出用の磁気センサ11xによって検出される磁界Hxと、Y軸方向検出用の磁気センサ11 yによって検出される磁界Hyとの比をとると、下記式 (2-10)となる。

[0078]

 $Hy/Hx = \sin\theta/\cos\theta = \tan\theta \cdot \cdot \cdot (2-10)$

したがって、外部磁界Hexの方向と、X軸方向検出用 の磁気センサ11xの磁性体の長手方向とが成す角度 θ は、下記式(2-11)で表される。ただし、下記式 (2-11) において、Hy≥0のときは、180°≥ $\theta \ge 0$ ° vab, $0 > Hy obstained 360° > \theta > 1$ 80°である。

[0079]

 $\cdot \cdot \cdot (2-11)$ $\theta = \tan^{-1}(H\dot{y}/Hx)$ このように磁気探知装置に2つの磁気センサを設けるこ とにより、外部磁界Hexの2次元での方向を知ること

【0080】また、外部磁界の3次元での方向や大き さ、すなわち立体空間内での外部磁界の方向や大きさま で知りたいときには、互いに直交する3つの磁気センサ を用いればよい。そこで、以下、3つの磁気センサを備 え、外部磁界の立体空間内での方向や大きさを検出する ことができる磁気探知装置について説明する。

【0081】この磁気探知装置は、図15に示すよう に、互いに直交する3つの磁気センサ41x,41y, 41zを備えている。そして、これらの磁気センサ41 x, 41y, 41zは、上述したような磁電変換回路4 2に接続されている。また、この磁電変換回路42の出 力端子は、コンピュータ43の入力端子に接続されてお り、磁電変換回路42からの出力に基づいて、コンピュ ータ43で演算処理が行われるようになっている。

【0082】ここで、各磁気センサ41x,41y,4 1zは、互いに直交するX軸、Y軸及びZ軸に対して、 それぞれ平行に配置される。すなわち、第1の磁気セン サ41xはX軸方向に配置され、第2の磁気センサ41 yはY軸方向に配置され、第3の磁気センサ41zはZ 軸方向に配置される。このとき、第1の磁気センサ41 xは、外部磁界HexのX軸方向の磁界成分を検出し、 第2の磁気センサ41yは、外部磁界HexのY軸方向 の磁界成分を検出し、第3の磁気センサ41 zは、外部

 $H e x = (H x^2 + H y^2 + H z^2)^{1/2}$

また、図16において、角度 θ yは、X軸と、外部磁界 HexをZ軸に対して平行にX軸とY軸で形成される平 面に投射したときに得られるベクトルとが成す角度を示 しており、角度θiは、外部磁界Hexと、外部磁界H exをZ軸に対して平行にX軸とY軸で形成される平面 に投射したときに得られるベクトルとが成す角度を示し ている。

> $Hx = Hex \cdot cos \theta i \cdot cos \theta y$ $\cdot \cdot \cdot (3-2)$

> $Hy = Hex \cdot cos\theta i \cdot sin\theta y$ $\cdot \cdot \cdot (3-3)$ $\cdot \cdot \cdot (3-4)$

 $Hz=Hex \cdot sin\theta i$

ここで、第1の磁気センサ41xによって検出される磁 界成分Hxと、第2の磁気センサ41yによって検出さ れる磁界成分Hyとの比をとると、下記式(3-5)と

磁界HexのZ軸方向の磁界成分を検出することとな

【0083】そして、各磁気センサ41x,41y,4 1 z によって検出される各磁界成分は、上述したように 磁電変換回路42で電気信号に変換され、当該電気信号 がコンピュータ43に入力される。そして、コンピュー タ43は、このように検出された外部磁界HexのX軸 方向の磁界成分と、外部磁界HexのY軸方向の磁界成 分と、外部磁界HexのZ軸方向の磁界成分とに基づい て演算処理を行い、立体空間内での外部磁界Hexの方 向や大きさを算出する。

【0084】このように、外部磁界HexのX軸方向の 成分と、外部磁界HexのY軸方向の成分と、外部磁界 HexのZ軸方向の成分とに基づいて、立体空間内での 外部磁界Hexの方向や、外部磁界Hexの大きさを求 める方法について、以下により詳細に説明する。

【0085】上述のような3つ磁気センサ41x、41 y, 41zを備えた磁気探知装置によって検出される磁 界の方向と大きさをベクトルで表すと、図16のように なる。ここで、Hexは外部磁界、Hxは第1の磁気セ ンサ41xによって検出される磁界成分、Hyは第2の 磁気センサ41yによって検出される磁界成分、Hzは 第3の磁気センサ41 zによって検出される磁界成分を 示している。

【0086】このとき、立体空間内における外部磁界H exの大きさは、第1の磁気センサ41xによって検出 される磁界成分Hxと、第2の磁気センサ41yによっ て検出される磁界成分 Hyと、第3の磁気センサ41z によって検出される磁界成分Hzとの2乗平均をとるこ とによって算出することができる。すなわち、立体空間 内における外部磁界Hexの大きさは、下記式(3-1)で表される。

[0087]

$\cdot \cdot \cdot (3-1)$

【0088】このとき、第1の磁気センサ41xによっ て検出される磁界成分 Hxは、下記式(3-2)で表さ れる。また、第2の磁気センサ41yによって検出され る磁界成分Hyは、下記式(3-3)で表される。ま た、第3の磁気センサ412によって検出される磁界成 分Hzは、下記式(3-4)で表される。

[0089]

なる。

[0090]

 $Hy/Hx = \sin\theta y/\cos\theta y = \tan\theta y$ $\cdot \cdot \cdot (3-5)$ したがって、角度 θ yは、下記式(3-6)で表される。ただし、下記式(3-6)において、H y \geq 0 のときは、 $180^\circ \geq \theta$ y \geq 0 ° であり、0>H y θ ときは、 $360^\circ > \theta$ y \geq 180° である。

[0091]

 θ y = tan⁻¹ (Hy/Hx) · · · (3-6) また、上記式 (3-4) から、角度 θ i は、下記式 (3-7) で表される。

[0092]

 θ i = s i n⁻¹ (Hz/Hex) ··· (3-7) そして、上記式 (3-1) に示した演算をコンピュータ で行うことにより、外部磁界Hexの立体空間内における大きさを算出することができ、上記式 (3-6) 及び上記式 (3-7) に示した演算をコンピュータで行うことにより、外部磁界Hexの立体空間内における方向を 算出することができる。

【0093】以上のように、磁気探知装置に互いに直交する3つの磁気センサ41x,41y,41zを設けることにより、立体空間内での外部磁界Hexの方向や大きさを探知することができる。

【0094】なお、従来の磁気探知装置でも、互いに直 交する3つの磁気センサを設ければ、立体空間内での外 部磁界の方向や大きさを探知することができる。しかし ながら、従来の磁気探知装置において、立体空間内での 外部磁界の方向や大きさを探知するために、磁気センサ を互いに直交するように配置することは、非常に困難で あった。

【0095】例えば、フラックスゲートセンサを用いた磁気探知装置で、立体空間内での外部磁界の方向や大きさを探知するためには、3つのフラックスゲートセンサの各検出コイルを互いに直交するように、配置しなければならない。しかし、フラックスゲートセンサは、一つでも構成が比較的に複雑であるのに、更に3つのフラックスゲートセンサを、各検出コイルが互いに直交するように配置することは、非常に困難である。そのため、従来の磁気探知装置で、立体空間内での外部磁界の方向や大きさを探知できるようにした場合、製造コストが非常に高くなってしまい、低価格化を図ることができなかった。

【0096】これに対して、本発明を係る磁気探知装置に使用される磁気センサは、非常に簡単な構成であるので、それぞれを互いに直交するように配置することは容易である。したがって、本発明を適用することにより、立体空間内での外部磁界の方向や大きさを探知することができる磁気探知装置を、低価格で提供することが可能となる。

【0097】ところで、上述のような互いに直交する3つの磁気センサ41x, 41y, 41zを用いた磁気探知装置を、車両等の移動体に搭載して地磁気を検出するようにすれば、磁気探知装置による検出結果から、地磁

気を基準として移動体の状態を知ることができる。

【0098】ここで、磁気探知装置を移動体に搭載する際は、例えば、X軸方向に配置された第1の磁気センサ41xと、Y軸方向に配置された第2の磁気センサ41yとを、移動体に対して水平となるように配置し、Z軸方向に配置された第3の磁気センサ41zを、移動体に対して垂直となるように配置する。

【0099】このとき、上記角度 θ yは、移動体が向いている方位を表すこととなる。すなわち、3つの磁気センサ41x、41y、41zによる検出結果に基づいて、上述のように角度 θ yを算出することによって、移動体の向いている方位を知ることができる。

【0100】また、上記角度 θ iは、移動体を基準としたときの地磁気の伏角を表すこととなる。そして、この角度 θ iは、移動体の状態によって常時変化するが、この変化の程度は移動体の状態に依存している。したがって、3つの磁気センサ41x, 41y, 41zによる検出結果に基づいて、上述のように角度 θ iを算出し、その値の変化の程度を検出することによって、移動体の状態を知ることができる。

【0101】具体的には、車両に磁気探知装置を搭載したとき、この角度 θ iは、車両が走行しているときには車両の揺れにより、5°程度の範囲で常時変化するが、車両が停止しているときには、1°程度の範囲でしか変化しない。したがって、角度 θ iの変化の程度を検出することによって、車両が走行しているか、或いは停止しているかを知ることができる。

【0102】このように、互いに直交する3つの磁気センサ41x,41y,41zを用いた磁気探知装置を、車両等の移動体に搭載して、当該磁気探知装置により地磁気を検出することにより、移動体の方位や、移動体が走行中であるか否かなどについて知ることができる。なお、このように磁気探知装置によって移動体の状態を探知する方法は、例えば、搭乗者に地図情報や位置情報等を知らせるカーナビゲーションシステム等に利用することができる。

【0103】ところで、互いに直交する3つの磁気センサを備えた磁気探知装置は、立体空間における回転角度を探知することもできる。そこで、以下、3つの磁気センサを備え、立体空間における回転角度を探知することができる磁気探知装置について説明する。

【0104】この磁気探知装置は、図17に示すように、互いに直交する3つの磁気センサ51x,51y,51zを備えている。そして、これらの磁気センサ51x,51y,51zは、上述したような磁電変換回路52に接続されている。また、この磁電変換回路52の出力端子は、コンピュータ53の入力端子に接続されており、磁電変換回路52からの出力に基づいて、コンピュータ53で演算処理が行われるようになっている。

【0105】ここで、各磁気センサ51x,51y,5

1 zは、互いに直交するX軸、Y軸及びZ軸に対して、それぞれ平行に配置される。すなわち、第1の磁気センサ51xはX軸方向に配置され、第2の磁気センサ51yはY軸方向に配置され、第3の磁気センサ51zはZ軸方向に配置される。このとき、第1の磁気センサ51xは、外部磁界HexのX軸方向の磁界成分を検出し、第2の磁気センサ51yは、外部磁界HexのY軸方向の磁界成分を検出し、第3の磁気センサ51zは、外部磁界HexのZ軸方向の磁界成分を検出することとなる。

【0106】そして、各磁気センサ51×、51y、51zに印加している各磁界成分は、上述したように磁電変換回路52で電気信号に変換され、当該電気信号がコンピュータ53に入力される。そして、コンピュータ53は、このように検出された外部磁界HexのX軸方向の磁界成分と、外部磁界HexのZ軸方向の磁界成分とに基づいて演算処理を行い、立体空間内での回転角度を算出する。【0107】このように、X軸磁界方向の成分と、Y軸方向の磁界成分とに基づいて、立体空間内での回転角度を求める方法について、以下により詳細に説明する。

【0108】上述のような3つ磁気センサ51x,51 y,51zを備えた磁気探知装置によって検出される磁界の方向と大きさをベクトルで表すと、図18のようになる。ここで、Hexは外部磁界の大きさ、Hxは第1の磁気センサ51xによって検出される磁界成分、Hyは第2の磁気センサ51yによって検出される磁界成分、Hzは第3の磁気センサ51zによって検出される磁界成分、Hzは第3の磁気センサ51zによって検出される磁界成分を示している。

【0109】ここで、X軸を中心とした回転をロール方向の回転と定義し、その回転角度を θ rとする。また、Y軸を中心とした回転をピッチ方向の回転と定義し、その回転角度を θ pとする。また、Z軸を中心とした回転をヨー方向の回転と定義し、その回転角度を θ yとする。

【0110】このとき、ロール方向の回転角度 θ rは、Y軸と、外部磁界HexeX軸に対して平行にY軸とZ軸で形成される平面に投射したときに得られるベクトルとが成す角度となる。また、ピッチ方向の回転角度 θ pは、Z軸と、外部磁界HexeY軸に対して平行にZ軸とX軸で形成される平面に投射したときに得られるベクトルとが成す角度となる。また、ヨー方向の回転角度 θ yは、X軸と、外部磁界HexeZ軸に対して平行にX軸と Y軸で形成される平面に投射したときに得られるベクトルとが成す角度となる。

【0111】このとき、ロール方向の回転角度 θ rは、下記式(4-1)で表される。

[0112]

 $tan\theta r = Hz/Hy$ \cdots (4-1)

したがって、ロール方向の回転角度 θ rは、下記式(4-2)で表される。ただし、下記式(4-2)において、 $Hz \ge 0$ のときは、 $180^\circ \ge \theta$ r $\ge 0^\circ$ であり、0>Hzのときは、 $360^\circ > \theta$ r $> 180^\circ$ である。【0113】

 θ r=tan $^{-1}$ (Hz/Hy) · · · (4-2) また、ピッチ方向の回転角度 θ pは、下記式(4-3) で表される。

[0114]

an heta p = Hx/Hz · · · (4-3) したがって、ピッチ方向の回転角度heta pは、下記式 (4-4)で表される。ただし、下記式 (4-4) において、 $heta \ge 0$ のときは、 $180^\circ \ge \theta$ p $\ge 0^\circ$ であり、0>Hxのときは、 $360^\circ > \theta$ p $> 180^\circ$ である。【0115】

 θ p=tan $^{-1}$ (Hx/Hz) \cdots (4-4)また、3一方向の回転角度 θ yは、下記式(4-5)で表される。

[0116]

an heta y = H y / H x · · · (4-5) したがって、ヨー方向の回転角度heta yは、下記式(4-6)で表される。ただし、下記式(4-6)において、 $H y \ge 0$ のときは、 $180^\circ \ge \theta y \ge 0^\circ$ であり、0> $H y の ときは、<math>360^\circ > \theta y > 180^\circ$ である。 【0117】

 θ y = tan⁻¹ (Hy/Hx) ··· (4-6) そして、上記式 (4-2) に示した演算をコンピュータ 53で行う。これにより、ロール方向の回転角度 θ rが分かることとなる。同様に、上記式 (4-4) に示した演算をコンピュータ 53で行う。これにより、ピッチ方向の回転角度 θ p が分かることとなる。同様に、上記式 (4-6) に示した演算をコンピュータ 53で行う。これにより、ヨー方向の回転角度 θ y が分かることとなる

【0118】以上のように、磁気探知装置に3つの磁気センサ51x,51y,51zを設けることにより、立体空間内におけるロール方向、ピッチ方向及びヨー方向の回転角度を探知することができる。

【0119】なお、従来の磁気探知装置でも、互いに直 交する3つの磁気センサを設ければ、立体空間内での回 転角度を探知することはできる。しかしながら、従来の 磁気探知装置では、上述したように、磁気センサを互い に直交するように配置することは難しかった。

【0120】これに対して、本発明を係る磁気探知装置に使用される磁気センサは、非常に簡単な構成であるので、それぞれを互いに直交するように配置することは容易である。したがって、本発明を適用することにより、立体空間内での回転角度を探知することができる磁気探知装置を、低価格で提供することが可能となる。

[0121]

【発明の効果】以上の説明から明らかなように、本発明に係る磁気探知装置では、外部磁界の検出に、外部磁界の変化に伴って急峻な変化を示すインダクタンスの変化を用いているので、非常に高い感度で外部磁界を検出することができる。また、本発明に係る磁気探知装置は、非常に簡単な構成であるので、容易に小型化や低価格化を図ることができる。

【0122】したがって、本発明によれば、小型化や低価格化が容易で、高い感度が得られる磁気探知装置を提供することができる。

【図面の簡単な説明】

【図1】本発明を適用した磁気探知装置に用いられる磁 気センサの一例を示す模式図である。

【図2】図1に示した磁気センサに励磁電流を供給する 様子を示す模式図である。

【図3】図1に示した磁気センサのインダクタンスL及びインピーダンスZと、励磁電流周波数fとの関係を示す特性図である。

【図4】図1に示した磁気センサのインダクタンスし と、外部磁界の大きさHとの関係を示す特性図である。

【図5】図1に示した磁気センサによる外部磁界検出の原理を説明するための図である。

【図6】本発明を適用した磁気探知装置の一構成例を示す回路図である。

【図7】図6に示した磁気探知装置の各部における電圧 波形のタイムチャートを示す図である。

【図8】磁気センサと抵抗からなる積分回路に電流が立ち上がるときの状態をモデル化した回路図である。

【図9】図8に示した積分回路に流れる電流の立ち上が り時の様子を示す図である。

【図10】磁気センサと抵抗からなる積分回路に流れて

いた電流が立ち下がるときの状態をモデル化した回路図である。

【図11】方形波発振電圧Vbと方形波発振電圧Vsoとの位相差△tsと、外部磁界Hexの方向との関係を示す特性図である。

【図12】磁気センサの磁性体の磁化の様子を示す模式 図である。

【図13】本発明を適用した磁気探知装置の他の構成例を示す回路図である。

【図14】図13に示した磁気探知装置の磁気センサの配置の様子を示す模式図である。

【図15】3つの磁気センサを備えた磁気探知装置の一構成例を示すブロック図である。

【図16】3つの磁気センサで検出される磁界を示す図である。

【図17】3つの磁気センサを備えた磁気探知装置の他の構成例を示すブロック図である。

【図18】3つの磁気センサで検出される磁界を示す図である。

【図19】ホール素子を用いた磁気探知装置の一例を示す模式図である。

【図20】フラックスゲートセンサを用いた磁気探知装置の一例を示す模式図である。

【図21】磁気抵抗効果素子の一例を示す模式図である。

【図22】磁気抵抗効果素子の磁気抵抗効果特性を示す図である。

【符号の説明】

10 バイラテラルスイッチ、 11 磁気センサ、

12 抵抗、 13発振電圧供給源、 14 シュミッ

トトリガ回路、 15 ロジック回路

【図1】

【図2】

磁気センサの一例を示す模式図

磁気センサに励磁電流を供給する様子を示す模式図

【図8】

磁気センサのインダクタンスL及びインピーダンス 2 と **-ル素チを用いた磁気探知装置の一例を示す模式図 励磁電流 周 波数 f との関係を示す特性図

図13に示した磁気探知装置に用いられる 磁気センサの配置の様子を示す模式図

磁気センサによる外部磁界検出の原理を説明するための図

図8に示した積分回路に流れる電流の立ち上がり時の様子を示す図

方形波発振電圧V b と方形波発振電圧V s o との位相差 Δ l s と、 外部磁界 H e x の方向との関係を示す特性図

磁気抵抗効果累子の磁気抵抗効果特性を示す図