Register Access Controller for Amazilia Design Review

Hanssel Morales

Integrated Systems Research Group – OnChip Universidad Industrial de Santander, Bucaramanga - Colombia

Outline

- Introduction to the architecture
- SPI controller review
- Access controller review
- Register bank review
- Synthesis results

Implemented Architecture

Amazilia Implementation

Serial Interface Controller

Full Duplex SPI Mode 0 Controller

SPI MODES

Serial Interface Controller RX

Clock sync

Tomado de : https://commons.wikimedia.org/wiki/File:Metastability_D-Flipflops.svg#/media/File:Metastability_D-Flipflops.svg

Write Transaction Wave Form

Example of a write transaction over address 0:

Frequency limitation for write transactions its Fsck < (Fclk / 2)
In Amazilia Fsck< 156 MHz

Serial Interface Controller TX

Single Read Transaction Wave Form

Example of a read transaction over address 0:

Frequency Limitation for Read Transactions

Frequency Limitation for Read Transactions

Number latency between sck negedge and MISO:

Serial Interface Controller TX

Frequency Limitation for Read Transactions

Frequency limitation for read transactions its Fsck < (Fclk / 6)
In Amazilia Fsck< 52 MHz

Access Controller

Single Read Transactions Single Write Transactions Burst Write Transactions

Write Transaction Wave Form

Example of a write transaction over address 0:

Single Read Transaction Wave Form

Example of a read transaction over address 0:

Access Controller

Burst Write Transaction

Burst transaction compared with multiple write transactions:

Burst Write Transaction

Registers Bank and Data Router

W/R Reg Read Only Reg

Write Functionality

Read Functionality

W/R Reg

Synthesis Constraints

Period	3.2 ns
Rise and fall times	200 ps
Maximum hold and setup uncertainty	70 ps
Maximum delay from input or output	80 ps
Output load	500 fF

Elaboration Warnings

```
Info
       : Elaborating Design. [ELAB-1]
        * Elaborating top-level block 'drac' from file ' /verilog/drac.v'
Warning : Using default parameter value for module elaboration, [CDFG-818]
        : Elaborating block 'drac' with default parameters value.
       : Elaborating Subdesign. [ELAB-2]
Info
Info
       : Elaborating Subdesign. [ELAB-2]
        : Elaborating block 'access controler nrequr41 nreqr6' from file '.../verilog/access_controler.v'.
Warning : Using default parameter value for module elaboration. [CDFG-818]
        : Elaborating block 'access controler' with default parameters value.
  thecking the design.
         Check Design Report
  Unresolved References & Empty Modules
No unresolved references in design 'drac'
No empty modules in design 'drac'
  Done Checking the design.
```

Synthesis Report

Metric	generic	mapnoinc	incrementa	al mapped	
Slack (ps):	1172.4	190,5	5,5	5,5	
R2R (ps):	1172.4	190.5	5.5	5.5	
I2R (ps):	2772.9	2532.1	2534.4	2534.4	
R20 (ps):	2401.1	1150.3	1150.9	1150.9	
I2O (ps):	no_value	no_value	no_value	no_value	
CG (ps):	no_value	no_value	no_value	no_value	
TNS (ps):	0	0	0	0	
R2R (ps):	0	0	0	0	
I2R (ps):	0	0	0	0	
R20 (ps):	0	0	0	0	
I2O (ps):	no_value	no_value	no_value	no_value	
CG (ps):	no_value	no_value	no_value	no_value	
Failing Paths:	0	0	0	0	
Area:	27304	21757	21039	21039	
Instances:	756	911	846	846	•
Utilization (%):	0.00	0.00	0.00	0.00	
Tot. Net Length (um):	no_value	no_value	no_value	no_value	
Avg. Net Length (um):	no_value	no_value	no_value	no_value	
Total Overflow H:	0	0	0	0	
Total Overflow V:	0	0	0	0	
Route Overflow H (%):	no_value	no_value	no_value	no_value	
Route Overflow V (%):	no_value	no_value	no_value	no_value	
CPU Runtime (m:s):	00:12	00:22	00:03	00:00	
Real Runtime (m:s):	00:28	01:07	00:02	00:01	
CPU Elapsed (m:s):	00:15	00:37	00:40	00:40	
Real Elapsed (m:s):	00:28	01:35	01:37	01:38	
Memory (MB):	159.64	194.53	194.53	194.53	

RAC WC Synthesis Area Report 180nm

Registers Bank (181 registers)	16960 (μm)^2
Total RAC	21039 (μm)^2 eq 145 μm x 145 μm
Overhead	19.3 %

WC Synthesis Report 180nm

Registers Bank (181 registers)	16960 (μm)^2
Total RAC	21039 (μm)^2 eq 145 μm x 145 μm
Chip Percentage (1.6mm x 1.6mm)	0.82 %

FPGA Prototype

Command Line Use

Single Read and Single Write Transactions been used:

Command Line Use

Burst transaction been used:

Command Line Use

Multiple read software implemented transaction :

```
askartos@askartos-Lenovo-Y520-15IKBN:~$ sudo ./ftdiControl.py ra 0x0 0x15
addr: 0x0
                data: 0x2
addr: 0x1
                data: 0x3
addr: 0x2
                data: 0xfa
addr: 0x3
                data: 0x2
addr: 0x4
                data: 0x0
addr: 0x5
                data: 0x2
addr: 0x6
                data: 0x2
addr: 0x7
                data: 0x2
addr: 0x8
                data: 0x7
addr: 0x9
                data: 0x2
addr: 0xa
                data: 0x2
addr: 0xb
                data: 0x2
addr: 0xc
                data: 0x0
addr: 0xd
                data: 0x0
addr: 0xe
                data: 0x2
addr: 0xf
                data: 0x2
addr: 0x10
                data: 0x0
addr: 0x11
                data: 0x0
addr: 0x12
                data: 0x2
addr: 0x13
                data: 0x2
addr: 0x14
                data: 0x0
addr: 0x15
                data: 0x7
Its working
askartos@askartos-Lenovo-Y520-15IKBN:~$
```

Scripting Capabilities

```
1 #!/usr/bin/python3
2 import amazilia
6 print(amazilia.read(0)) #READS ADDRESS 0
8 amazilia.write(0,243) #WRITES ADDRESS 0
10 print(amazilia.read(0)) #READS ADDRESS 0
11
12
13 print("old data")
14 amazilia.multiread(0,31) #READS COMPLETE MEMORY MAP
15
17
18 amazilia.burst(data)
                        #WRITE COMPLETE MEMORY MAP
19
20 print("new data")
21 amazilia.multiread(0,31) #READS COMPLETE MEMORY MAP
```

Amazilia Config Flow

Thanks! Questions?

hanssel.morales@correo.uis.edu.co onchip@uis.edu.co

@onchipUIS

WC Synthesis Report

RAC Synthesis Results Expected WC

Frequency Target	312,5 MHz
Number of Flops	164

16(from Shift registers) + 107(from Regmap) + 8(from Data_router) + 9 (synq) + 13(from Access Controller) + 5 (burst counter) + 6 (FSMs)

RAC Incremental Synthesis Results WC

Frequency Target	333 MHz
Number of Flops	180 (why ?)
Area	108.5 μm x 108.5 μm

Registers Bank Synthesis Results Expected

Frequency Target	312,5 MHz	
Number of Flops	115	
		107(from Regmap) + 8(from output Data_router)

Registers Bank Generic Synthesis Obtained WC

Frequency Target	333 MHz
Number of Flops	115
Area	-

Incremental Synthesis Results Obtained WC

Frequency Target	333 MHz
Number of Flops	144 (guilty)
Area	103.8 μm x 103.8 μm

W/R Reg

W/R Reg

W/R Reg

