PadhAl: Deep Neural Networks

One Fourth Labs

Understanding the Computations in a Deep Neural Network

Let's look at the computations inside a DNN

1. Consider the same DNN drawn in the previous section

2. The preactivation outputs for the first layer a_{11} , a_{12} a_{13} , are calculated using simple Matrix-vector multiplication

PadhAl: Deep Neural Networks

One Fourth Labs

- 3. Here, the preactivation values are as follows
 - a. $a_{11} = w_{111} * x_1 + w_{112} * x_2 + w_{113} * x_3 + b_{11}$
 - b. $a_{12} = w_{121} * x_1 + w_{122} * x_2 + w_{123} * x_3 + b_{12}$
 - c. $a_{13} = w_{131} * x_1 + w_{132} * x_2 + w_{133} * x_3 + b_{13}$
 - d. These values are just the individual rows of the dot-product between $W_{\scriptscriptstyle 1}$ and X plus the bias vector
 - e. Thus $W_1X = a_1$ is given by

$$a_{11}$$
 a_{12}
 a_{13}

- f. Here, $W_1 \in \mathbb{R}^{3\times3}$, $X \in \mathbb{R}^{3\times1}$, and $W_1 X \in \mathbb{R}^{3\times1}$
- g. $a_i = W_i$
- 4. The activation values are as follows
 - a. $h_i = g(a_i)$
 - b. They are simply the result on applying the activation function (in this case: sigmoid) on the preactivated values
 - c. $h_{11} = \frac{1}{1 + e^{-(a_{11})}}$
 - d. $h_{12} = \frac{1}{1 + e^{-(a_{12})}}$
 - e. $h_{13} = \frac{1}{1 + e^{-(a_{13})}}$