METODY NUMERYCZNE – LABORATORIUM

Zadanie 4 – metody całkowania numerycznego

Opis rozwiązania

złożona kwadratura Newtona-Cotes'a (metoda Simpsona):

- 1. Podział przedziału całkowania (a,b) na n-1 podprzedziałów (n liczba nieparzysta)
- 2. Obliczenie połowy długości każdego z podprzedziałów:

$$h = \frac{b-a}{n-1}$$

gdzie:

a - wartość początku przedziału

b – wartość końcowa przedziału

n-liczba podprzedziałów +1

3. Obliczenie pola każdego z podprzedziałów ze wzoru:

$$I_{n} = \frac{h*(f(a)+4*f(\frac{a+b}{2})+f(b))}{3}$$

4. Zsumowanie tak uzyskanych pól podprzedziałów

Kwadratura Gaussa-Laguerre'a:

- 1. Wartości węzłów (x_i) oraz wagi kwadratur (A_i) odczytano z odpowiedniej tabeli dla wielomianów Laguerre'a dla poszczególnych wartości n (n-liczba węzłów <2,5>)
- 2. Obliczenie kwadratury Gaussa, która jest przybliżoną wartością całki funkcji w postaci wielomianu Laguerre'a w granicach [0, + ∞]:

$$\int_{0}^{\infty} e^{-x} f(x) dx \approx \sum_{i=0}^{n} A_{i} f(x_{i})$$

Wyniki

Wszystkie wyniki uzyskano dla dokładności obliczania kwadratur Newtona-Cotes'a 0,0001:

Liczba węzłów	Gauss-Laugerre wynik	Newton-Cotes wynik	Błąd (%) Gauss- Laugerre	
$f(x) = e^{-x} * (x^4 - x^3 - x^2 - x + 1)$				
2	12.00003	15.99999	25.0	
3	15.99967		0	
4	12.30415		23.1	
5	16.2019		1.26	
$f(x) = e^{-x} * (x-5)$				
2	4.0	4.01346	0.34	
3	4.0268		0.33	
4	4.00377		0.24	
5	4.01549		0.05	

$f(x)=e^{-x}*(2^x)$				
2	2.84227	3.25865	12.78	
3	3.12766		4.03	
4	2.85834		12.29	
5	3.30185		1.32	
$f(x) = e^{-x} * \sin(x)$				
2	0.43246	0.50002	13.51	
3	0.49603		0.79	
4	0.50523		1.05	
5	0.4989		0.22	
$f(x) = e^{-x} * (\cos(x) - x^3)$				
2	-5.42981	-5.49994 1.28 0.43 8.04 0.31	1.28	
3	-5.52342		0.43	
4	-5.05755		8.04	
5	-5.51695		0.31	

Wnioski

- 1. Kwadratury Newtona-Cotes'a (metoda Simpsona) oparte są na przybliżeniu funkcji podcałkowej wielomianami stopnia stopnia drugiego
- 2. Kwadratury Gaussa polegają na wykorzystaniu wielomianów ortogonalnych i takim wyborze punktów xi oraz współczynników A_i , aby kwadratura była dokładna dla wszystkich wielomianów możliwie najwyższego stopnia
- 3. Współczynniki kwadratury A_i oraz węzły x_i są niezależne od funkcji podcałkowej f(x).
- 4. Węzły kwadratury Gaussa są pierwiastkami odpowiedniego wielomianu ortogonalnego
- 5. Kwadratury Gaussa przy niskiej złożoności obliczeniowej osiągają bardzo dobrą dokładność
- 6. Kwadratury Gaussa są dokładniejsze od kwadratur Newtona-Cotesa przy uwzględnieniu tej samej liczby węzłów
- 7. Kwadratura Gaussa oparta na n+1 punktach jest dokładna dla wielomianów: 1, x, x2, ..., x²ⁿ⁺¹
- 8. Im wyższa liczba węzłów tym kwadratura Gaussa jest zazwyczaj dokładniejsza