GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- 1st / 2nd EXAMINATION (NEW SYLLABUS) - SUMMER 2018

Subject Code: 2110014 Date: 21-05-2018

Subject Name: Calculus Time: 02:30 pm to 05:30 pm

Total Marks: 70

Instructions:

- 1. Question No. 1 is compulsory. Attempt any four out of remaining Six questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 Objective Question (MCQ) Mark

(a)

07

- The sequence $\left\{\frac{\cos 2n}{n}\right\}$ converges to

 (a) 1 (b) 0 (c) 2 1.

- (d) -1
- Sum of the series $\sum_{n=0}^{\infty} \frac{4}{2^n}$ is

- (c) 8 (d) 16
- The coefficient of x^4 in the expansion of $\cos x$ is 3.

 - (a) $\frac{1}{4!}$ (b) $-\frac{\hat{1}}{4!}$ (c) $\frac{1}{4}$ (d) $-\frac{1}{4}$

- $\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \underline{\hspace{1cm}}$
 - (a) 0
- (b) 1 (d) e (d) ∞
- The curve $x^3 + y^3 = 3xy$ is symmetric about
 (a) x-axis
 (b) y-axis
 (c) line y = x (d) origin 5.

- Asymptote parallel to x-axis of the curve $3x^3 + xy^2 + xy = 0$ is 6.

- (a) v=3 (b) v=1 (c) v=0 (d) not possible
- The curve $r^2 = a^2 cos 2\theta$ is not symmetric about 7.

 - (a) initial line (b) line $\theta = \frac{\pi}{4}$ (c) line $\theta = \frac{\pi}{2}$ (d) pole

07 (b)

- If $u = y tan^{-1}(x/y) + x cot^{-1}(y/x)$, then $x u_x + y u_y =$ _____ 1.

- For an implicit function f(x,y) = c, the value of $\frac{dy}{dx}$ is

 (a) $\frac{f_x}{f_y}$ (b) $\frac{f_y}{f_x}$ (c) $-\frac{f_x}{f_y}$ (d) $-\frac{f_y}{f_x}$ 2.

- $\lim_{(x,y)\to(0,1)} \frac{y^2 tan^{-1}x}{x} =$ (a) 0 (b) 1 (c) -1 (d) ∞

	6.	The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent when (a) $p=1$ (b) $p<1$ (c) $p>1$ (d) $p=0$	
	7.	The series $\sum_{n=1}^{\infty} \frac{n-1}{n+1}$ is	
Q.2	(a)	Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n+1}{n^3-3n+2}$	03
	(b)	Test the convergence of the series $\sum_{n=1}^{\infty} \frac{4^n + 1}{5^n}$	04
	(c)	Evaluate (i) $\lim_{x\to 0} \frac{2x - x\cos x - \sin x}{2x^3}$; (ii) $\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x}\right)$.	07
Q.3	(a)	If $u = \log(x^2 + y^2)$, verify that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$.	03
	(b)	If $u = r^m$, prove that $u_{xx} + u_{yy} + u_{zz} = m(m+1)r^{m-2}$, where	04
	(c)	$r^2 = x^2 + y^2 + z^2$. Find the maxima and minima of the function $f(x,y) = x^2y - xy^2 + 4xy - 4x^2 - 4y^2$.	07
Q.4	(a)	If $u = f\left(\frac{y-x}{ry}, \frac{z-x}{rz}\right)$, show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$.	03
		Evaluate $\iint (6x^2 + 2y) dxdy$ over the region R bounded between	04
	(c)	$y = x^2$ and $y = 4$. Change the order of integration and evaluate $\int_0^4 \int_{x^2/4}^{2\sqrt{x}} dy dx$.	07
Q.5	(a)	If $z = xy^2 + x^2y$, $x = at^2$, $y = 2at$, find $\frac{dz}{dt}$.	03
		If $u = e^{x^2 + y^2 - xy}$, then prove that	04
		(i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u \ln u;$	
	(c)	(ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 2u \ln u (2 \ln u + 1).$ (i) Check the absolute and conditional convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[3]{n}}.$	07
		(ii) Find the radius and interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(-5)^n x^n}{n!}.$	
Q.6	(a)	Evaluate $\iint x dA$, over the region R bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.	03
	(b)	Expand $\cos\left(\frac{\pi}{4} + x\right)$ in powers of x by Taylor series. Hence find the	04
		value of cos 46°.	
	(c)	Evaluate $\int_0^4 \int_{y/2}^{(y/2)+1} \frac{2x-y}{2} dx dy$ by applying the transformations $u = \frac{2x-y}{2}$, $v = \frac{y}{2}$.	07
Q.7	(a)	Evaluate the improper integral $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$.	03
	(b)	Find the volume of the solid generated by revolving the region	04
	(c)	bounded by $y = \sqrt{x}$ and the lines $y = 2$, $x = 0$ about the line $y = 2$. Trace the curve $y^2(a - x) = x^3$, $a > 0$.	07
