

食品增味剂(鲜味剂,风味增强剂)

(Flavor enhancers)

内容

- ■增味剂定义、种类和分类
- ■增味剂的特点
- ■增味剂各论
- 增味剂应用实例

鲜 = 鱼 + 羊

在我国古代,人们已 经知道鱼肉和畜肉具有鲜 美的味道。 日常生活利用鱼、 肉以及蘑菇、海藻、 各种蔬菜等制成味道 鲜美的汤类,用于增 强食品的风味。

鱼和肉等物质中含有丰富的各种游离氨基酸和核苷酸等鲜味物质。

一、增味剂的定义、种类和分类

◆ 定义: 又称风味增强剂,是指能补充或增强食品原有风味的物质,我国历来称为鲜味剂。

♦ 分类:

- -按来源:天然(动物、植物、微生物)、化学合成
- -按发展阶段:第一代、第二代、新型
- -按成分(结构)分: 氨基酸、核苷酸、有机酸、复合型

* 氨基酸类(第一代):

- L-谷氨酸钠(L-monosodium glutamate,MSG), L-丙氨酸(L-alanine)。
- *有机酸类(第二代): 琥珀酸二钠(disodium succinate)。
- *核苷酸类(第二代):
- 5'-肌苷酸二钠(disodium 5'-inosinate,IMP)
- 5'-鸟苷酸二钠(disodium 5'-guanylate,GMP)
- 5'-呈味核苷酸二钠(sodium 5'-ribonucleotide):
 以IMP、GMP为主,还含有其它5'-核甘酸二钠,如5'-尿甘酸二钠、5'-胞甘酸二钠。

*新型鲜味剂

- 水解动物蛋白(Hydrolyzed Animal Proteins, HAP)
- -主要以鸡肉、猪肉、牛肉等动物蛋白为原料,通过酸或酶水解将蛋白质分解成各种氨基酸及短肽。

- 水解植物蛋白(Hydrolyzed Vegetable Proteins, HVP)
- -主要以豆粕粉、玉米蛋白、面筋、花生饼及棉籽等植物蛋白为原料,通过酸或酶水解将蛋白质分解成各种氨基酸和短肽。

• 酵母抽提物(Yeast Extract)

-以酵母为原料,通过自溶法、酶解法、酸热加工法等制得,含多肽、氨基酸及核苷酸。

上述三种新型鲜味剂的特点:

- -风味独特,富含营养功能成分,发展很快。
- -主要应用是与其它增味剂、物质复合生产高级调味 料、食品营养的强化,并作为功能性食品的基料。

- * 不同增味剂, 其呈现的鲜味有所不同。
 - IMP呈鲜鱼味,MSG呈肉味鲜味,GMP呈香菇鲜味,琥珀酸有特异贝类鲜味。
 - -氨基酸类所呈的是复合味。

表1. 氨基酸的复合味

	鲜	咸	酸	甜	岩
味精(MSG)	71.4	13.5	3.4	9.8	1.7
组氨酸	53.4			8.8	2.1
天冬氨酸	53.4		6.8		Q

- -食品鲜味是由于其所含的鲜味成分所致。
 - √酱油,竹笋:天冬酰氨
 - √贝类,酒: 琥珀酸
 - √鸡, 鱼肉: 5'-肌苷酸(IMP)
 - √香菇: 5'-鸟苷酸(GMP)
 - √海带: 谷氨酸钠

* 不同增味剂, 其呈现鲜味的阈值不同

-鲜味阈值:是指增味剂能呈现出鲜味的最低浓度

表2. 增味剂的阈值

增味剂	阈值/%
L-谷氨酸	0.030
L-谷氨酸钠	0.012
L-天冬氨酸	0.160
琥珀酸二钠	0.030
IMP	0.025
GMP	0.0125
IMP和GMP混合物 (1: 1)	0.0063

*各种增味剂鲜味强度各不相同

表3. 各种增味剂的强度

氨基酸类鲜味剂	相对鲜味		
谷氨酸钠	1.0		
天冬氨酸钠	0.31		
天冬氨酸	0.08		
肌苷酸钠(与MSG合用)	40		
鸟苷酸钠(与MSG合用)	160		

*不同鲜味剂之间呈在协同作用

表4. 鲜味剂之间的协同效应

MSG量	IMP量	GMP量	相当于MSG量
99	1		290
98	2		350
97	3		430
96	4		520
95	5		600
95	2.5	2.5	800

举例增味剂

1、谷氨酸及其钠盐(MSG)

◆来源及结构: 由发酵所得L-谷氨酸经碳酸钠或碳 酸氢钠中和、精制而成。

D-型,无鲜味

→特性

A. 稳定性

- 耐酸碱性: 耐酸、碱性较弱,应在pH6-7使用。
 - -其鲜味与其电离程度有关, pH6-7几乎全部电离, 鲜味最高;
 - -pH>7,形成二钠盐,无鲜味;
 - -pH<7,形成谷氨酸,鲜味减弱**。

- B. 本品与食盐使用,鲜味可增强。
- C. 本品与IMP或GMP合用,可显著增强其鲜味,可生产强力味精。

-几种强力味精的配方:

MSG	IMP	GMP
99%	0.5%	0.5%
98%	1%	1%
95%	2.5%	2.5%

三、增味剂各论

D. 本品与琥珀酸钠、甘氨酸、丙氨酸、柠檬酸 (钠)、苹果酸、富马酸、及HAP、HVP等进行不 同的配合,可制成具有不同特点的复合鲜味剂。

-例子:复合鲜味剂配方:

- 味精88%、呈味核甘酸4%、柠檬酸4%。
- 味精41%、呈味核甘酸2%、HAP56%、琥珀酸二钠1%

- 味精在69年和71年都曾经过大讨论,经再三论证,证明味精在正常使用量范围内安全性是无可置疑的,87年JECFA再次对其评价后,除取消原数字ADI外,还删除了不宜用于12周龄婴儿的限制。
- LD₅₀: 17 kg/kg; GRAS; ADI: 不需规定

◆ 使用标准

可在各类食品生产中按需要适量使用。

2、核苷酸类(第二代鲜味剂):

- ◆ 来源与结构:
 - -由酵母所得核酸(RNA)分解、分离而得;
 - -发酵制取;

5[,]-肌苷酸二钠,IMP

5[,] -鸟苷酸二钠,GMP

◆ 特性

A. 鲜味

- -GMP的鲜味是IMP的2.3倍;
- -GMP与IMP有很强的协同作用;
- -与味精相比,单独存在时鲜味无多大优势,但与味精合用 鲜味有相乘效果;

例如1:

市售产品I+G即是IMP和GMP按1:1比例共结晶而形成的, 其鲜味是MSG的50-100倍,因此用量低;

<u>-</u>

食品	用量		
	MSG/%	I+G (1:1) / %	
汤罐头	0.12-0.18	0.002-0.003	
蟹肉罐头	0.07-0.10	0.001-0.002	
鱼肉罐头	0.10-0.30	0.003-0.006	
香肠、火腿罐头	0.10-0.20	0.006-0.010	
调味料	0.30-0.40	0.010-0.150	
蔬菜汁	0.30-0.50	0.002-0.014	
酱油	0.30-0.60	0.030-0.050	

例如2: I+G和MSG复合,具有相乘效果。

(I+G与 MSC 星味力的相乘效果表)

		相当日	相当于 100KgMSG		
MSC (%)	1+C (%)	相对 鲜度	重量		价格
100	ប	1.0	100	О	100
99	1	2.8	35. 3 <i>5</i>	0. 357	42
98	2	3.5	27. 97	0. 517	39
97	3	4. 2	23. 10	0.714	37
96	4	4. 9	19. 59	0. 81 6	36
95	5	5.7	16. 67	0. 877	34
94	6	6. 3	14. 92	0. 952	34
93	7	6. 7	13. 88	1. 04	35
92	8	7. 1	1 2. 96	I. 13	36
91	9	7.5	12. 13	1. 20	36
90	10	7. 8	11, 54	1. 28	37
89	11	8. 1	10. 99	1.36	38
88	12	8. 4	10. 48	l. 43	39

(单独使用 MSG 时价格为 100, I+G 与 MSG 价格比为 20:1)

B.稳定性:

性质比较稳定,在常规焙烤、烹饪加工中都不易被破坏;但易受磷酸一酯酶分解。

- ◆安全性:安全性高。
- LD₅₀: GMP 10g/kg, IMP 14.4g/kg, 呈味核苷酸 10mg/kg。
- ADI无需规定。
- ◆ 应用及使用标准:
- -应用: 很少单用,常以I+G与味精合用的形式应用;
- -使用标准:按标准可在各类食品中按需添加。

- 3、琥珀酸二钠(丁二酸钠,干贝素,第二代鲜味剂)
- ◆ 来源与结构:由琥珀酸与NaOH反应制成。

COONa COONa

- ♦ 特性:
- -具有特异的贝类鲜味;
- -耐热性好;
- -很少单独使用,常与味精及呈味核苷酸混合使用。

- - ◆ 安全性:安全性高,LD₅₀ 10g/kg以上。
 - ◆ 使用标准:按标准,可用于调味料,最大用量为 20g/kg。

实际例子:

- -常用于酒类调味料,用量0.01-0.09%。
- -作为酱油、清凉饮料、糕点的调味料,用量0.02-0.09%。

复合增味剂

是由两种或多种增味剂复合而成。大多数是由天然的动物、植物、微生物组织细胞或其细胞内生物大分子物质经过水解而制成。

各种肉类抽提物

水解动物蛋白

水解微生物蛋白

各种植物抽提物

酵母抽提物

世界调味品加工工业发展趋势

生产工业化、味型复合化、使用方便化、品牌多样化

液态膏状油状

速溶粉

使用方便,利用率高

科学卫生,效益好

减少产品的重量和体积

向营养、保健型发展

萃取物的生产方法

萃取物的生产一般采用水为萃取剂,然后浓缩至一定浓度。工业上大多数利用罐头或干制品的预 煮汁经脱脂等工序加工而成。

肉类抽提物 水产品抽提物 植物和食用菌抽提物

肉类抽提物

肉类抽提物广泛用于各种加工食品、烹饪和汤料。用量一般在0.5%以下。