

# OPC UA, Sicherung des kuka-roboters

Prof. Dr. Elmar Wings

Yahya Fakhet:7012464

Faissal Hammouda:7012301

#### Inhalt

- \* Kommunikationsprotokoll : OPC UA
- ❖ Backup-Manager
- \* KUKA / OPC UA
- \* Quellen



- Der aktuelle Standard der OPC Spezifikation ist OPC UA
- OPC UA: Open Platform Communications Unified Architecture
- Eines der wichtigsten Kommunikationsprotokolle für Industrie 4.0 und IoT
- Datenaustauschstandard für die industrielle Kommunikation (Maschine-zu-Maschine oder PC-zu-Maschine-Kommunikation)
- Plattformunabhängigkeit durch Umstellung auf TCP / IP-Kommunikation
- OPC UA unterstützt eine semantische Beschreibung von Daten





#### > OPC UA Client

• OPC UA Client Architektur modelliert den Client-Endpunkt von Client/Server Interaktionen



**Abbildung 2: OPC UA Client Architektur** 

- Client Applikation ist der Code, der die Funktion des Clients implementiert
- Sie verwendet die OPC-UA-Client-API zum Senden und Empfangen von OPC-UA-Dienstanforderungen und -Antworten an den OPC-UA-Server



- OPC UA Client API ist eine interne Schnittstelle, die den Client-Applikationscode von einem OPC UA Communication Stack isoliert
- OPC-UA-Kommunikationsstack wandelt OPC-UA-Client-API-Aufrufe in Nachrichten um und sendet sie auf Anforderung der Client-Applikation durch die zugrundeliegende Kommunikationseinheit an den Server
  - OPC-UA-Kommunikationsstack empfängt auch Antwort- und Benachrichtigungsnachrichten von der zugrundeliegenden Kommunikationseinheit und stellt sie der Client-Applikation über die OPC-UA-Client-API zur Verfügung



#### > OPC UA Server

OPC UA Server-Architektur modelliert den Server-Endpunkt von Client/Server Interaktioner





**Abbildung 3: OPC UA Server Architektur** 

- Reale Objekte sind physikalische oder Software-Objekte, auf die die OPC-UA-Server-Applikation zugreifen kann oder die sie intern verwaltet
- OPC UA Server Applikation ist der Code, der die Funktion des Servers implementiert
- Er verwendet die OPC-UA-Server-API zum Senden und Empfangen von OPC-UA-Nachrichten von OPC-UA-Clients
- OPC UA Server API ist eine interne Schnittstelle, die den Server-Applikationscode von einem OPC UA Communication Stack isoliert





**Abbildung 4: Sicherer Kanal und Sitzungsdienste** 

#### Organisation der Spezifikation

Diese Spezifikation ist als mehrteilige Spezifikation aufgebaut

**OPC UA Multi-Part Specification** 





**Abbildung 5: Organisation der OPC UA Spezifikation** 



- Die ersten sieben Teile spezifizieren die Kernfähigkeiten von OPC UA. Diese Kernfähigkeiten definieren die Struktur des OPC-Adressraums und der darauf operierenden Dienste
- Die Teile 8 bis 11 wenden diese Kernfunktionen auf bestimmte Zugriffsarten an, wie z. B.
  Data Access (DA), Alarms and Events (A&E) und Historical Data Access (HDA)
- Teil 12 beschreibt Discovery-Mechanismen für OPC UA und Teil 13 beschreibt Möglichkeiten zur Aggregation von Daten



- Der Backup Manager ermöglicht das Sichern und Wiederherstellen von Projekten,
  Optionspaketen und RDC-Daten
- Backup-Manager konfigurieren
- ✓ Voraussetzung: Benutzergruppe Experte / Betriebsart T1 oder T2
- ✓ Vorgehensweise: Im Hauptmenü Datei > Backup-Manager > Backup-Konfiguration wählen
- Backup-Konfiguration enthält die allgemeinen Einstellungen. Außerdem kann hier bei Bedarf die automatische Sicherung konfiguriert werden







**Abbildung 6: Registerkarte Backup-Konfiguration** 

• Unter Signalschnittstelle kann bei Bedarf die E/A-Ansteuerung konfiguriert werden





Abbildung 7: Registerkarte Signalschnittstelle

#### > Sicherungsmethode

- ✓ Erforderliche Schritte zur Durchführung eines Backups bei einem Kuka-Roboter mit der Steuerung Kr C4
- USB in den Controller einstecken
- unter Hauptmenü > Konfiguration > Benutzergruppe > Experte wählen
- Unter Hauptmenü > Datei > Archiv>USB(Kabine)>alle/Applikation/Systemdaten/Protokolldaten wählen
- Wiederherstellungsmethode
- USB-Stick mit den Sicherungsdateien in den Schaltschrank einstecken
- unter Menü>Datei>Wiederherstellen>USB ( Steuerung)>Alle/Anwendung/Systemdaten wählen



## KUKA / OPC UA

 Grundlage für die Kommunikation ist, dass die KUKA Robotersteuerung KR C4 als Server und der Rechner als Client funktioniert. Dies ist in Übereinstimmung mit dem OPC UA

#### KUKAVARPROXY

 Der KUKAVARPROXY ist ein Server, der auf der KUKA Robotersteuerung ausgeführt werden muss und mit dem internen System kommuniziert

#### OpenShowVar

- OpenShowVar ist ein Client, der extern ausgeführt werden kann, um mit dem KUKAVARPROXY über eine TCP/IP-Verbindung zu kommunizieren
- OpenShowVar ist eine für die Plattformkompatibilität entwickelte Open-Source-Kommunikationsschnittstelle für die KUKA KR C4-Robotersteuerungen
- KUKAVARPROXY ist der TCP/IP-Server, der auf dem Roboter läuft, während OpenShowVar der Client ist, der sich mit dem Server verbindet



## KUKA / OPC UA



**Abbildung 8: Client-Server-Architektur** 

- OpenShowVar und KVP funktionieren als *Middleware* zwischen dem Anwenderprogramm und dem KRL
- sie eröffnen die Möglichkeit einer alternativen Implementierung einer OPC-UA-Kommunikation auf der KR C4-Steuerung
- OpenShowVar bietet die Möglichkeit, globale Variablen von einem Rechner aus in die Robotersteuerung zu lesen und zu schreiben



**Abbildung 9: Kommunikationsarchitektur** 



## KUKA / OPC UA

- Open-Source-Lizenz von KUKAVARPROXY und OpenShowVar sind in Github.com verfügbar
  - **✓** <u>KUKAVARPROXY</u>
  - ✓ OpenShowVar



## Quellen

• OPC Unified Architecture Specification ,Part 1: Overview and Concepts





## Vielen Dank für Ihre Aufmerksamkeit