浙江大学 <u>2017~2018</u> 学年 <u>春夏</u>学期

《 计算机系统原理 》课程期中考试试卷(A)

任课 老师:

课程号:	21121290	,开课学院 :	计算机学院	<u>.</u>
------	----------	----------------	-------	----------

考试试卷: √A 卷、B 卷 (请在选定项上打√)

考试形式: 闭卷,允许带一页 A4 纸手写笔记入场,笔记署名,不得互借

交卷方式: _ 试卷名字朝外对折整齐,草稿纸、笔记与试卷一起上交。

考试日期: 2018 年 05 月 日(; ~ ;) ,考试时间: 随堂 分钟

诚信考试,沉着应考,杜绝违纪。

ŧ	6生姓名:	学号:				所属院系:		
	题序	—.30	二.15	三.10	四.25	五.30	总 分.100	
	ᇩᇧ							

得分 评卷人

Something may be needed:

OPcode: Beq:4, Bne:5, J:2, Lw:35, Sw:43

Function Code: Sub:34, Add:32

Register No. \$50:16, \$t0:8

Syscall:

print char: CallCode=11, Arguments: \$a0=char Result: --

read char: CallCode=12, Arguments: --Result:

\$a0=char

I.1, (2%x15) choose one best answer.

1, After the instructions excuted, then Register AX will be ().

MOV AX, 1FFH

INC AL

A: 2FFH

B: 0

C: 200H

D: 100H

2. There are two different conventions for ordering the bytes within a word, Little Endian and Big Endian.

In Little Endian, the byte order for data 0x12345678 in memory is (HEX):

A: 21,43,65,87

B: 12,34,56,78

C: 87,65,43,21

	D: 78,56,34,12
3,	() is a two's complement sign extension of the value 0x7FF0 from 16bits to 32bits? A: 0xFFFF_7FF0 B: 0x1111_7FF0 C: 0x0000_7FF0 D: 0x8000_7FF0
4,	() is the hexadecimal equivalent of 105 base 10. A: 151 B: 36 C: 69 D: 54
5、	Today's computers are built on 2 key principles: (). ①Make the common case fast. ②Instruction are represented as numbers. ③Every instruction can be conditionally executed. ④Programs can be stored in memory to be read or written just like numbers. A: ①② B: ③④ C: ①③ D: ②④
6,	After the instructions excuted, then Register AX will be (). MOV AX, 511 MOV CX, 511 IMUL CL A: -1 B: 1 C: 261121 D: 0FE01H
7,	There are 4 numbers, their sign-magnitude, 2'complement, biased notation, 1's complement are 0xFF000000, () is the maximum number? A: 1's complement B: biased notation(移码) C: sign-magnitude(原码) D: 2'complement
8,	2's complement in 8 bits for -128 is (). A: Overflow B: 0100_0000 C: 1000_0000 D: 0000_0000

```
9. After the instructions executed, then Register AX will be
   ( ).
   MOV AX, -1
   MOV CX, 302H
   MUL CL
   A: -1
   B: -2
   C: -302
   D: 510
10. Which represents the most negative value in 2's
   compliment?( )
   A: 1000 0000
   B: 0000 0000
   C: 0111 1111
   D: 1111 1111
11. ASCii code of 'A' is ( ).
   A: 61
   B: 41
   C: 65
   D: 97
12、0x8000 is a 16-bit biased notation(移码) representation. the
   data is (____).
   A: +1
   B: -32768
   C: -1
   D: 0
13、ASCii code of '1' is ( ).
   A: 41
   B: 0x49
   C: 31
   D: 0x31
14. for a 8-bit 2's compliment, -128 is ( ).
   A: 1111 1111
   B: Overflow
   C: 0000 0000
   D: 1000 0000
15. The five classic components of a computer are: ( ).
   ①input, ②output, ③memory, ④storage, ⑤control, ⑥datapath, ⑦
   CPU, 8BUS
   A: (1)(2)(4)(7)(8)
   B: (1)(2)(3)(7)(8)
   C: 12356
   D: (1)(2)(5)(6)(8)
```

II. (5x3%) The bits have no inherent meaning. Given the number: 0xAD94FF12

What does it represent, assuming that it is:

	<u> </u>
1) a two's complement integer?	
2) an unsigned integer?	
3) A single precision floating- point number?	
4) A MIPS instruction?	

${\tt III.}$ (5%x2) To give a MIPS assembly instruction for each addressing mode.

	Addressing mode	Instruction example
1)	Register addressing:	
2)	Base addressing:	
3)	Immediate addressing:	
4)	PC-relative addressing:	
5)	(pseudo)Direct	
	addressing:	

IV.1. (15%) Convert -1234_{ten} into :

-1234 _{ten}	16-bit(Hex)	32-bit(Hex)	
Sign and magnitude			
2'complement			
Biased notation			
-1234 _{ten}	IEEE754 Single Precision(Hex)	IEEE754 Double Precision(Hex)	
Floating-point			

IV.2. (10%) Suppose we have four 8-bit registers A, B, C and D. The signed 8-bit integer is stored in 2'complement format. Calculate C=A+B and mark if it is Overflow(OF=1) or CarryOut(CF).

\$A	\$В	\$C (Hex) \$C=\$A+\$B	CF	OF	\$D after Slt \$D,\$A,\$B	\$D after Sltu \$D,\$A,\$B
121	107	0x				

浙江大学计算机学院 2013~2014 学年春夏学期

98 -	-112	0x					
------	------	----	--	--	--	--	--

V(10%x3) X86 assembly language programming. 1、-1000/3 -> ax(商).....bx(余)

 $2 \cdot ax = 300 * 7$

 $3 \cdot ax = bx < 0 ? 1 : -1$