1 / 61

Felipe Augusto Lima Reis felipe.reis@ifmg.edu.br

Sumário

- Introdução
- Terminologia
- Tipos de Funções
- Composição e Inversa
- Ordem Crescimento

Prof. Felipe Reis Matemática Discreta - Funções 11/2021 3/61

- O conceito de funções é extremamente importante em Matemática e Computação [Rosen, 2019]
 - São usadas em Cálculo e Álgebra, para expressar relações funcionais entre um valor x e o valor correspondente após a manipulação de x em uma equação [Gersting, 2014];

$$f(x) = x^3$$

- São usadas em Computação, para representação e cálculo numérico de funções matemáticas
 - Podem ser utilizadas para definição de funções recursivas¹;
 - Em uma abstração, são tratadas também como sinônimos de rotinas, do qual um bloco de código será executado para um conjunto de variáveis e produzirá zero ou mais saídas.

¹Funções recursivas correspondem a funções que são calculadas em termos de si mesmo.

- Em Matemática Discreta, funções podem representar estruturas discretas, como sequências e strings;
- São denominadas também mapeamentos ou transformações [Rosen, 2019].

TERMINOLOGIA

Prof. Felipe Reis Matemática Discreta - Funções 11/2021 6 / 61

Função

- Definição 1: Considerando A e B conjuntos não vazios, uma função f de A para B é uma determinação de exatamente um elemento de B para cada elemento de A [Rosen, 2019].
 - Escreve-se f(a) = b se b é um elemento único em Bdeterminado pela função f para o elemento $a \in A$;
 - Se f é uma função de A para B, utiliza-se a notação $f: A \rightarrow B$ [Rosen, 2019].

Função

- Definição 2: Se $f: A \to B$ é um subconjunto de $A \times B$ onde cada membro de A aparece exatamente como o primeiro componente de um par ordenado (a,b) [Gersting, 2014].
 - Pode ser definida como um tipo especial de relação binária um-para-um ou muitos-para-um;
 - Podem ser considerados subconjuntos que contém restrições especiais no produto cartesiano $A \times B$;
 - Cada membro de A deve ser usado sempre como primeiro elemento na tupla (a, b) [Gersting, 2014].

Função

- Funções podem ser representadas graficamente
 - Se f é uma função $f: X \to Y$, o gráfico de f é o conjunto de pares ordenados $\{(x,y) \mid x \in X \text{ e } y = f(x)\}.$

Prof. Felipe Reis

- Definição 1: Se f é uma função de A para B, dizemos que A é o domínio de f e B é o contradomínio de f [Rosen, 2019].
- Definição 2: Se f(a) = b, então b é denominada imagem de a e a é denominado imagem inversa ou pré-imagem de b
 - A imagem de f é o conjunto com todas as imagens dos elementos de A [Rosen, 2019] [da Silva, 2012];
 - Se $f: A \rightarrow B$, então f mapeia A em B.

Fonte: [da Silva, 2012]

Domínio, Contradomínio, Imagem e Pré-imagem

- Nota 1: O contradomínio de f : A → B é um conjunto de todos os valores possíveis da função f (todos elementos de B).
 - O intervalo de f(a), ∀a ∈ A é sempre um subconjunto do contradomínio [Rosen, 2019];
- Nota 2: Domínio e contradomínio estão relacionados aos conjuntos, enquanto imagem e pré-imagem estão relacionados aos elementos.
 - Uma função é uma relação entre conjuntos de domínio e contradomínio:
 - Para cada elemento do domínio, existirá um elemento no contradomínio, e esse elemento correspondente é definido como imagem.

- Exemplo 1: Inspirado em [Rosen, 2019]
 - Considere R a relação entre estudantes de uma disciplina do IFMG e suas idades, representado pelos pares ordenados (João, 30), (Maria, 20), (Pedro, 25), (Ana, 28), (Lucas, 27).
 - Defina uma função f que represente a relação. Indique o domínio, o contradomínio do conjunto

Domínio e Contradomínio

- Exemplo 1: Inspirado em [Rosen, 2019]
 - Considere R a relação entre estudantes de uma disciplina do IFMG e suas idades, representado pelos pares ordenados (João, 30), (Maria, 20), (Pedro, 25), (Ana, 28), (Lucas, 27).
 - Defina uma função f que represente a relação. Indique o domínio, o contradomínio do conjunto
 - Função f: f(x) é a idade de x, onde x é um estudante. f(João) = 30, f(Maria) = 20, ..., f(Lucas) = 27.
 - Domínio: $A = \{ João, Maria, Pedro, Ana, Lucas \};$
 - Contradomínio: $B = \{0, 1, ..., 99, 100\}$, correspondente às possíveis idades dos estudantes do IFMG.

O contradomínio escolhido não precisa corresponder exatamente ao conjunto de domínio atual (e essa situação não é recomendada). Novos valores de domínio não exigiriam de uma atualização no contradomínio.

11/2021

13 / 61

• Exemplo 2:

 Para uma função f abaixo, em uma linguagem de programação tipada, indique o domínio e contradomínio.

int
$$f(\text{float } x)\{...\}$$

- Domínio: float números em pontos flutuantes ("reais");
- Contradomínio: int números inteiros

A função f receberá como parâmetro um número "real" \times e retornará um valor inteiro.

Prof. Felipe Reis Matemática Discreta - Funcões

Tipos de Funções

Domínio e Contradomínio

Exemplo 2:

• Para uma função f abaixo, em uma linguagem de programação tipada, indique o domínio e contradomínio.

- Domínio: float números em pontos flutuantes ("reais");
- Contradomínio: int números inteiros.

A função f receberá como parâmetro um número "real" x e retornará um valor inteiro.

A função f poderá ser executada com o comando b = f(a) ou b = f(10), onde a e b são variáveis.

Igualdade de Funções

Introdução

 Definição: Duas funções são iguais se elas possuem o mesmo domínio, o mesmo contradomínio e podem mapear um mesmo elemento do domínio em um mesmo elemento do contradomínio [Gersting, 2014] [Rosen, 2019].

Composição e Inversa

TIPOS DE FUNÇÕES

Prof. Felipe Reis Matemática Discreta - Funções 11/2021 15/61

• Definição 1: Uma função f é injetora se, e somente se, f(a) = f(b) implicar que a = b para todo $a \in b$ pertencente ao domínio de f [Rosen, 2019].

Composição e Inversa

- Definição 2: Uma função $f: A \rightarrow B$ é injetora se nenhum membro de B for uma imagem para dois elementos distintos de A [Gersting, 2014].
- Definição Formal: $\forall x_i \forall x_i (f(x_i) = f(x_i) \rightarrow x_i = x_i)$.

- Definição Informal: Em uma função f : A → B cada elemento do domínio estará associado a um elemento diferente no contradomínio.
 - Um elemento no contradomínio estará associado zero ou um elementos do domínio;
 - A função pode ser associada a uma relação um-para-um.

Fonte: [Rosen, 2019]

Tipos de Funções

Introdução

• Exemplo 1:

- Uma função f(x) = x + 1 em um conjunto dos números inteiros, mapeada em si mesmo, é uma função injetora?

• Exemplo 1:

- Uma função f(x) = x + 1 em um conjunto dos números inteiros, mapeada em si mesmo, é uma função injetora?
 - Sim, pois para $x, y \in \mathbb{Z}$, temos que f(x) = f(y) somente se x = y.

Exemplo 2

- Uma função $f(x) = x^2$ em um conjunto dos números inteiros, mapeada em si mesmo, é uma função injetora?
 - Não. Podemos utilizar a prova por contra-exemplo
 - Supondo x = 1 e y = -1, temos que f(x) = f(y), o que contraria a definicão de funcões injetoras.

• Exemplo 1:

- Uma função f(x) = x + 1 em um conjunto dos números inteiros, mapeada em si mesmo, é uma função injetora?
 - Sim, pois para $x, y \in \mathbb{Z}$, temos que f(x) = f(y) somente se x = y.

• Exemplo 2:

- Uma função $f(x) = x^2$ em um conjunto dos números inteiros, mapeada em si mesmo, é uma função injetora?
 - Não. Podemos utilizar a prova por contra-exemplo.
 - Supondo x = 1 e y = -1, temos que f(x) = f(y), o que contraria a definicão de funcões injetoras.

• Exemplo 1:

- Uma função f(x) = x + 1 em um conjunto dos números inteiros, mapeada em si mesmo, é uma função injetora?
 - Sim, pois para $x, y \in \mathbb{Z}$, temos que f(x) = f(y) somente se x = y.

• Exemplo 2:

- Uma função $f(x) = x^2$ em um conjunto dos números inteiros, mapeada em si mesmo, é uma função injetora?
 - Não. Podemos utilizar a prova por contra-exemplo.
 - Supondo x = 1 e y = -1, temos que f(x) = f(y), o que contraria a definição de funções injetoras.

Introdução

• Definição 1: Uma função $f: A \to B$ é sobrejetora se, e somente se, para cada elemento de $b \in B$ existir um elemento $a \in A \text{ com } f(a) = b \text{ [Rosen, 2019]}.$

Composição e Inversa

- Definição 2: Uma função $f: A \to B$ é sobrejetora se o intervalo de f é igual ao contradomínio de f [Gersting, 2014].
- Definição Formal: $\forall y \exists x (f(x) = y)$.

20 / 61

- Definição Informal: Em uma função $f:A\to B$, cada elemento $b\in B$ deve ter um elemento correspondente $a\in A$, mapeado pela função f.
 - Se houver um elemento no contradomínio que <u>não</u> possui um elemento correspondente no domínio, então a função <u>não</u> será sobrejetora.
 - A função pode ser associada à relação muitos-para-um (mas não um-para-muitos!).

Prof. Felipe Reis Matemática Discreta - Funções 11/2021

• Exemplo 1:

- Uma função f(x) = x + 1 em um conjunto dos números inteiros, mapeada em si mesmo, é uma função sobrejetora?
 - Sim, pois para $x, y \in \mathbb{Z}$, temos um valor x tal que f(x) = y.
- Exemplo 2
 - Uma função f(x) = x + 1 em um conjunto dos números inteiros positivos, mapeada em si mesmo, é sobrejetora?
 - Não. Pois para y = 1, não existe nenhum inteiro positivo ta que f(x) = v.

• Exemplo 1:

- Uma função f(x) = x + 1 em um conjunto dos números inteiros, mapeada em si mesmo, é uma função sobrejetora?
 - Sim, pois para $x, y \in \mathbb{Z}$, temos um valor x tal que f(x) = y.

Função Sobrejetora

• Exemplo 1:

- Uma função f(x) = x + 1 em um conjunto dos números inteiros, mapeada em si mesmo, é uma função sobrejetora?
 - Sim, pois para $x, y \in \mathbb{Z}$, temos um valor x tal que f(x) = y.

• Exemplo 2:

- Uma função f(x) = x + 1 em um conjunto dos números inteiros positivos, mapeada em si mesmo, é sobrejetora?

• Exemplo 1:

- Uma função f(x) = x + 1 em um conjunto dos números inteiros, mapeada em si mesmo, é uma função sobrejetora?
 - Sim, pois para $x, y \in \mathbb{Z}$, temos um valor x tal que f(x) = y.

• Exemplo 2:

- Uma função f(x) = x + 1 em um conjunto dos números inteiros positivos, mapeada em si mesmo, é sobrejetora?
 - Não. Pois para y = 1, não existe nenhum inteiro positivo tal que f(x) = y.

- Exemplo 3: [Rosen, 2019]
 - Uma função $f(x) = x^2$ em um conjunto dos números inteiros, mapeada em si mesmo, é uma função sobrejetora?
 - Não, pois não existe nenhum número inteiro negativo x tal que x² < 0;
 - (alternativa) Não, pois alguns números não possuem raiz quadrada inteira exata.

- Exemplo 3: [Rosen, 2019]
 - Uma função $f(x) = x^2$ em um conjunto dos números inteiros, mapeada em si mesmo, é uma função sobrejetora?
 - Não, pois não existe nenhum número inteiro negativo x tal que x² < 0;
 - (alternativa) Não, pois alguns números não possuem raiz quadrada inteira exata.

- Exemplo 3: [Rosen, 2019]
 - Uma função $f(x) = x^2$ em um conjunto dos números inteiros, mapeada em si mesmo, é uma função sobrejetora?
 - Não, pois não existe nenhum número inteiro negativo x tal que $x^2 < 0$:
 - (alternativa) Não, pois alguns números não possuem raiz quadrada inteira exata.

- Exemplo 4: [Gersting, 2014]
 - Uma função $f(x) = x^3$ em um conjunto dos números reais, mapeada em si mesmo, é uma função sobrejetora?
 - Sim. Para prova, considere que f(x) é sobrejetora e r corresponde a um valor real arbitrário.
 - Considere $x = \sqrt[3]{r}$, onde x pertence ao domínio de f.
 - Temos então, $f(x) = (\sqrt[3]{r})^3 = r$.
 - Logo, qualquer membro do contradomínio é uma imagem sob um função f de um membro do domínio.

- Exemplo 4: [Gersting, 2014]
 - Uma função $f(x) = x^3$ em um conjunto dos números reais, mapeada em si mesmo, é uma função sobrejetora?
 - Sim. Para prova, considere que f(x) é sobrejetora e rcorresponde a um valor real arbitrário.
 - Considere $x = \sqrt[3]{r}$, onde x pertence ao domínio de f.
 - Temos então, $f(x) = (\sqrt[3]{r})^3 = r$.
 - Logo, qualquer membro do contradomínio é uma imagem sob um função f de um membro do domínio.

Comparação Função Injetora e Sobrejetora

 Podemos estabelecer a seguinte comparação entre funções injetoras e sobrejetoras:

Fonte: [Gersting, 2014]

Função Bijetora

 Definição: Uma função é denominada bijetora se for injetora e sobrejetora [Gersting, 2014] [Rosen, 2019].

Função Bijetora

• Exemplo 1:

- Uma função f(x) = x + 1 em um conjunto dos números inteiros, mapeada em si mesmo, é uma função bijetora?
 - Injetora: Sim, pois para $x, y \in \mathbb{Z}$, temos que f(x) = f(y) somente se x = y.
 - Sobrejetora: Sim, pois para $x,y\in\mathbb{Z}$, temos um valor x ta que f(x)=y.

Exemplo 2

- Uma função f(x) = x + 1 em um conjunto dos números inteiros positivos, mapeada em si mesmo, é bijetora?
 - Injetora: Sim, pois para $x, y \in \mathbb{Z}^+$, temos que f(x) = f(y) somente se x = y
 - Sobrejetora: Não. Pois para y = 1, não existe nenhum inteiro positivo tal que f(x) = y.

Função Bijetora

Introdução

• Exemplo 1:

- Uma função f(x) = x + 1 em um conjunto dos números inteiros, mapeada em si mesmo, é uma função bijetora?
 - Injetora: Sim, pois para $x, y \in \mathbb{Z}$, temos que f(x) = f(y)somente se x = y.
 - Sobrejetora: Sim, pois para $x, y \in \mathbb{Z}$, temos um valor x tal que f(x) = y.

Função Bijetora

Introdução

• Exemplo 1:

- Uma função f(x) = x + 1 em um conjunto dos números inteiros, mapeada em si mesmo, é uma função bijetora?
 - Injetora: Sim, pois para $x, y \in \mathbb{Z}$, temos que f(x) = f(y)somente se x = y.
 - Sobrejetora: Sim, pois para $x, y \in \mathbb{Z}$, temos um valor x tal que f(x) = y.

• Exemplo 2:

- Uma função f(x) = x + 1 em um conjunto dos números inteiros positivos, mapeada em si mesmo, é bijetora?

Exemplo 1:

- Uma função f(x) = x + 1 em um conjunto dos números inteiros, mapeada em si mesmo, é uma função bijetora?
 - Injetora: Sim, pois para $x, y \in \mathbb{Z}$, temos que f(x) = f(y) somente se x = y.
 - Sobrejetora: Sim, pois para $x, y \in \mathbb{Z}$, temos um valor x tal que f(x) = y.

• Exemplo 2:

- Uma função f(x) = x + 1 em um conjunto dos números inteiros positivos, mapeada em si mesmo, é bijetora?
 - Injetora: Sim, pois para $x, y \in \mathbb{Z}^+$, temos que f(x) = f(y) somente se x = y.
 - Sobrejetora: Não. Pois para y = 1, não existe nenhum inteiro positivo tal que f(x) = y.

Função Identidade

Introdução

- Definição: Uma função é denominada identidade de A se $\iota_A:A\to A$, onde $\iota(a)=a$ para todo $a\in A$ [Rosen, 2019].
 - A função identidade ι_A é aquela que mapeia cada elemento em si mesmo.

A função identidade é representada pela letra grega ι ("iota" minúsculo).

Funções Monótonas

- Definição: Uma função $f: A \rightarrow B$ para conjuntos ordenados é denominada monótona se preserva ou inverte a relação de ordem entre os elementos.
 - Uma função monótona é chamada de monótona crescente quando preserva a ordem dos elementos.
 - Uma função monótona é chamada de monótona decrescente quando inverte a ordem dos elementos.

Fonte: [Justo et al., 2020]

Função Monótona Crescente

- Definição: Uma função $f:A\to B$ é denominada crescente se $f(a_1) \le f(a_2)$, e estritamente crescente se $f(a_1) < f(a_2)$, onde $a_1 < a_2$ e $a_1, a_2 \in A$ [da Silva, 2012].
- Definição Formal:
 - Função crescente: $\forall a_1 \forall a_2 (a_1 < a_2 \rightarrow f(a_1) \leq f(a_2))$
 - Função estrit. crescente: $\forall a_1 \forall a_2 (a_1 < a_2 \rightarrow f(a_1) < f(a_2))$

Fonte: [da Silva, 2012]

Prof. Felipe Reis

Ordem Crescimento

Função Monótona Decrescente

- Definição: Uma função $f:A\to B$ é denominada decrescente se $f(a_1) \ge f(a_2)$, e estritamente decrescente se $f(a_1) > f(a_2)$, onde $a_1 < a_2$ e $a_1, a_2 \in A$ [da Silva, 2012].
- Definição Formal:
 - Função decrescente: $\forall a_1 \forall a_2 (a_1 < a_2 \rightarrow f(a_1) \geq f(a_2))$
 - Função estrit. decrescente: $\forall a_1 \forall a_2 (a_1 < a_2 \rightarrow f(a_1) > f(a_2))$

Matemática Discreta - Funções

Composição e Inversa de Funções

Composição de Funções

• Definição: Sejam duas funções, $f: A \rightarrow B$ e $g: B \rightarrow C$. A composição das funções $g \circ f$ corresponde à função de Apara C, definida como $(g \circ f)(a) = g(f(a))$, para todo elemento $a \in A$ [Gersting, 2014] [Rosen, 2019].

Fonte: [Gersting, 2014]

- Nota 1: As funções $f \circ g$ e $g \circ f$ são diferentes.
- Nota 2: Se a composição $f \circ g$ existir, não é obrigatório que exista $g \circ f$ (e vice-versa).
- Nota 3: Notações para composição de funções podem ser vistas na figura abaixo².

Fonte: [Rosen, 2019]

²Observar que, no exemplo, a função inicial é g, seguida por uma função f.

- Exemplo 1: [Rosen, 2019]
 - Seja g uma função do conjunto $\{a, b, c\}$, mapeada em si mesmo, tal que g(a) = b, g(b) = c e g(c) = a.
 - Seja f a função que mapeia o conjunto $\{a, b, c\}$ no conjunto $\{1, 2, 3\}$, tal que f(a) = 3, f(b) = 2 e f(c) = 1.
 - Indique a composição de f e g e a composição de g e f.

• Composição de
$$f$$
 e g : $f \circ g = f(g(..))$
 $f(g(a)) = 2$, $f(g(b)) = 1$, $f(g(c)) = 3$

Composição de Funções

- Exemplo 1: [Rosen, 2019]
 - Seja g uma função do conjunto $\{a,b,c\}$, mapeada em si mesmo, tal que g(a)=b, g(b)=c e g(c)=a.
 - Seja f a função que mapeia o conjunto $\{a,b,c\}$ no conjunto $\{1,2,3\}$, tal que f(a)=3, f(b)=2 e f(c)=1.
 - Indique a composição de f e g e a composição de g e f.

• Composição de
$$f \in g$$
: $f \circ g = f(g(..))$
 $f(g(a)) = 2$, $f(g(b)) = 1$, $f(g(c)) = 3$

• Composição de g e f: $g \circ f = g(f(..))$ A composição $g \circ f$ não é possíve

Composição de Funções

- Exemplo 1: [Rosen, 2019]
 - Seja g uma função do conjunto $\{a, b, c\}$, mapeada em si mesmo, tal que g(a) = b, g(b) = c e g(c) = a.
 - Seja f a função que mapeia o conjunto $\{a,b,c\}$ no conjunto $\{1,2,3\}$, tal que f(a)=3, f(b)=2 e f(c)=1.
 - Indique a composição de f e g e a composição de g e f.

• Composição de
$$f$$
 e g : $f \circ g = f(g(..))$
 $f(g(a)) = 2$, $f(g(b)) = 1$, $f(g(c)) = 3$

• Composição de g e f: $g \circ f = g(f(..))$ A composição $g \circ f$ não é possível.

- Exemplo 2: [Gersting, 2014]
 - Seja $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = x^2$.
 - Seja $g: \mathbb{R} \to \mathbb{R}$, definida por g(x) = |x|.

•
$$(g \circ f)(2.3) = g(f(2.3)) = \lfloor (2.3)^2 \rfloor = \lfloor 5.7 \rfloor = 5.$$

•
$$(f \circ g)(2.3) = f(g(2.3)) = \lfloor 2.3 \rfloor^2 = 2^2 = 4$$

Função Piso: Denotada por |x|, atribui a cada número real x o maior inteiro que é menor ou igual a x.

Função Teto: Denotada por $\lceil x \rceil$, atribui a cada número real x o menor inteiro que é major ou igual a x.

Composição de Funções

35 / 61

- Exemplo 2: [Gersting, 2014]
 - Seja $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = x^2$.
 - Seja $g: \mathbb{R} \to \mathbb{R}$, definida por $g(x) = \lfloor x \rfloor$.
 - Qual o valor de $(g \circ f)(2.3)$?

•
$$(g \circ f)(2.3) = g(f(2.3)) = \lfloor (2.3)^2 \rfloor = \lfloor 5.7 \rfloor = 5$$

• Qual o valor de $(f \circ g)(2.3)$?

•
$$(f \circ g)(2.3) = f(g(2.3)) = \lfloor 2.3 \rfloor^2 = 2^2 = 4$$

Função Piso: Denotada por $\lfloor x \rfloor$, atribui a cada número real x o maior inteiro que é menor ou igual a x.

Função Teto: Denotada por $\lceil x \rceil$, atribui a cada número real x o menor inteiro que é maior ou igual a x.

Prof. Felipe Reis Matemática Discreta - Funções 11/2021

Composição de Funções

- Exemplo 2: [Gersting, 2014]
 - Seja $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = x^2$.
 - Seja $g: \mathbb{R} \to \mathbb{R}$, definida por g(x) = |x|.
 - Qual o valor de $(g \circ f)(2.3)$?
 - $(g \circ f)(2.3) = g(f(2.3)) = |(2.3)^2| = |5.7| = 5.$

•
$$(f \circ g)(2.3) = f(g(2.3)) = \lfloor 2.3 \rfloor^2 = 2^2 = 4$$

Função Piso: Denotada por |x|, atribui a cada número real x o maior inteiro que é menor ou igual a x.

Função Teto: Denotada por $\lceil x \rceil$, atribui a cada número real x o menor inteiro que é major ou igual a x.

0000000000

Composição de Funções

- Exemplo 2: [Gersting, 2014]
 - Seja $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = x^2$.
 - Seja $g: \mathbb{R} \to \mathbb{R}$, definida por g(x) = |x|.
 - Qual o valor de $(g \circ f)(2.3)$?
 - $(g \circ f)(2.3) = g(f(2.3)) = |(2.3)^2| = |5.7| = 5.$
 - Qual o valor de $(f \circ g)(2.3)$?

•
$$(f \circ g)(2.3) = f(g(2.3)) = \lfloor 2.3 \rfloor^2 = 2^2 = 4$$

Função Piso: Denotada por |x|, atribui a cada número real x o maior inteiro que é menor ou igual a x.

Função Teto: Denotada por $\lceil x \rceil$, atribui a cada número real x o menor inteiro que é major ou igual a x.

11/2021

35 / 61

Prof. Felipe Reis

- Exemplo 2: [Gersting, 2014]
 - Seja $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = x^2$.
 - Seja $g: \mathbb{R} \to \mathbb{R}$, definida por $g(x) = \lfloor x \rfloor$.
 - Qual o valor de $(g \circ f)(2.3)$?
 - $(g \circ f)(2.3) = g(f(2.3)) = \lfloor (2.3)^2 \rfloor = \lfloor 5.7 \rfloor = 5.$
 - Qual o valor de $(f \circ g)(2.3)$?
 - $(f \circ g)(2.3) = f(g(2.3)) = |2.3|^2 = 2^2 = 4.$

Matemática Discreta - Funções

Função Piso: Denotada por $\lfloor x \rfloor$, atribui a cada número real x o maior inteiro que é menor ou igual a x.

Função Teto: Denotada por $\lceil x \rceil$, atribui a cada número real x o menor inteiro que é maior ou igual a x.

- Definição 1: Seja $f: A \to B$ uma função bijetora. A função inversa de f, denotada por f^{-1} é uma função que atribui um elemento $b \in B$ a um único elemento A tal que f(a) = b.
 - Logo, $f^{-1}(b) = a$ se f(a) = b.
 - Uma função bijetora é chamada inversível, pois admite uma inversa. Uma função é não inversível se não for uma bijeção [Rosen, 2019].

Fonte: [Rosen, 2019]

Introdução

• Definição 2: Seja $f: A \rightarrow B$. Se existir uma função $g: B \to A$, tal que $g \circ f = \iota_A$ (função identidade de A) e $f \circ g = \iota_B$, então g é denominada função inversa de f e denotada por f^{-1} [Gersting, 2014].

Fonte: [Gersting, 2014]

Introdução

- Exemplo 1: [Rosen, 2019]
 - Seja $f: A \to B$ a função que mapeia o conjunto $A = \{a, b, c\}$ no conjunto $B = \{1, 2, 3\}$, tal que f(a) = 2, f(b) = 3 e f(c) = 1.

$$f^{-1}(1) = c$$
, $f^{-1}(2) = a$, $f^{-1}(3) = l$

Prof. Felipe Reis

- Exemplo 1: [Rosen, 2019]
 - Seja $f: A \to B$ a função que mapeia o conjunto $A = \{a, b, c\}$ no conjunto $B = \{1, 2, 3\}$, tal que f(a) = 2, f(b) = 3 e f(c) = 1.
 - Indique se f é inversível.
 - Injetora: Sim, pois f(a) = f(b) = f(c) somente se a = b = c
 - Sobrejetora: Sim, pois cada elemento de B possui um correspondente em A.
 - Bijetora: Sim, pois é injetora e sobrejetora.
 - Qual a sua inversa?
 - Inversa: $f^{-1}: B \to A$

$$f^{-1}(1) = c$$
, $f^{-1}(2) = a$, $f^{-1}(3) = b$

Prof. Felipe Reis

- Exemplo 1: [Rosen, 2019]
 - Seja $f:A\to B$ a função que mapeia o conjunto $A=\{a,b,c\}$ no conjunto $B=\{1,2,3\}$, tal que f(a)=2, f(b)=3 e f(c)=1.
 - Indique se f é inversível.
 - Injetora: Sim, pois f(a) = f(b) = f(c) somente se a = b = c;
 - Sobrejetora: Sim, pois cada elemento de B possui um correspondente em A.
 - Bijetora: Sim, pois é injetora e sobrejetora.
 - Qual a sua inversa?
 - Inversa: $f^{-1}: B \rightarrow A$

$$f^{-1}(1) = c$$
, $f^{-1}(2) = a$, $f^{-1}(3) = b$

- Exemplo 1: [Rosen, 2019]
 - Seja $f: A \rightarrow B$ a função que mapeia o conjunto $A = \{a, b, c\}$ no conjunto $B = \{1, 2, 3\}$, tal que f(a) = 2, f(b) = 3 e f(c) = 1.
 - Indique se f é inversível.
 - Injetora: Sim, pois f(a) = f(b) = f(c) somente se a = b = c;
 - Sobrejetora: Sim, pois cada elemento de B possui um correspondente em A.
 - Bijetora: Sim, pois é injetora e sobrejetora.
 - Qual a sua inversa?
 - Inversa: $f^{-1}: B \to A$ $f^{-1}(1) = c, \quad f^{-1}(2) = a, \quad f^{-1}(3) = b$

- Exemplo 1: [Rosen, 2019]
 - Seja $f: A \rightarrow B$ a função que mapeia o conjunto $A = \{a, b, c\}$ no conjunto $B = \{1, 2, 3\}$, tal que f(a) = 2, f(b) = 3 e f(c) = 1.
 - Indique se f é inversível.
 - Injetora: Sim, pois f(a) = f(b) = f(c) somente se a = b = c;
 - Sobrejetora: Sim, pois cada elemento de B possui um correspondente em A.
 - Bijetora: Sim, pois é injetora e sobrejetora.
 - Qual a sua inversa?
 - Inversa: $f^{-1}: B \to A$ $f^{-1}(1) = c, \quad f^{-1}(2) = a, \quad f^{-1}(3) = b$

- Exemplo 2: [Rosen, 2019]
 - Seja $f: \mathbb{Z} \to \mathbb{Z}$, tal que f(x) = x + 1.
 - Indique se f é inversível e qual a sua inversa.

- Exemplo 2: [Rosen, 2019]
 - Seja $f: \mathbb{Z} \to \mathbb{Z}$, tal que f(x) = x + 1.
 - Indique se f é inversível e qual a sua inversa.
 - Inversível?: Sim, pois f é bijetora (ver exemplos anteriores).
 - Inversa: Se y = x + 1, então x = y 1. Logo, a inversa é $f^{-1}(v) = v - 1.$

- Exemplo 2: [Rosen, 2019]
 - Seja $f: \mathbb{Z} \to \mathbb{Z}$, tal que f(x) = x + 1.
 - Indique se f é inversível e qual a sua inversa.
 - Inversível?: Sim, pois f é bijetora (ver exemplos anteriores).
 - Inversa: Se y = x + 1, então x = y 1. Logo, a inversa é $f^{-1}(v) = v - 1$.
 - Exemplo 3:
 - Seja $f: \mathbb{Z}^+ \to \mathbb{Z}^+$, tal que f(x) = x + 1.
 - Indique se f é inversível e qual a sua inversa.

- Exemplo 2: [Rosen, 2019]
 - Seja $f: \mathbb{Z} \to \mathbb{Z}$, tal que f(x) = x + 1.
 - Indique se f é inversível e qual a sua inversa.
 - Inversível?: Sim, pois f é bijetora (ver exemplos anteriores).
 - Inversa: Se y = x + 1, então x = y 1. Logo, a inversa é $f^{-1}(v) = v - 1$.
- Exemplo 3:
 - Seja $f: \mathbb{Z}^+ \to \mathbb{Z}^+$, tal que f(x) = x + 1.
 - Indique se f é inversível e qual a sua inversa.
 - Inversível?: Não, pois a função não é sobrejetora.
 - Inversa: Como a função não é bijetora, não possui inversa.

Ordem de Crescimento de Funções

Ordem de Crescimento

- Na área de Computação, um tópico importante de estudo é referente ao crescimento de funções;
 - Funções podem representar o crescimento de algoritmos em termos de tempo e espaço;
- Para resolução de problemas, são criados algoritmos que executam sequências de operações;
 - Definição: Algoritmo é uma sequência finita de instruções precisas para realização de um cálculo ou para solução de um problema [Rosen, 2019].

Ordem de Crescimento

42 / 61

- É possível estimar a complexidade (custo de execução) de um algoritmo utilizando funções matemáticas
 - O estudo dessas funções possibilita a identificação dos algoritmos que solucionam problemas com menor esforço computacional;
 - É importante salientar que algoritmos diferentes para solução de um mesmo problema podem ter custo de execução muito diferentes;
 - Dependendo da quantidade de operações, o custo de execução de um algoritmo pode ser muito alto ou até mesmo inviável
 - Com isso, algoritmos devem ser escritos usando técnicas que reduzam o esforco computacional;

Ordem de Crescimento

- Esta disciplina buscará estudar, de forma genérica, o comportamento de funções matemáticas que representam a ordem de grandeza da complexidade de algoritmos
 - Esta seção somente demonstrará o comportamento de funções;

Composição e Inversa

- Não faz parte do escopo:
 - Ensino de técnicas para estimar os custos computacionais;
 - Ensino dos melhores algoritmos para solução de diferentes problemas:
- O estudo aprofundado de algoritmos será feito em disciplinas pertinentes.

Ordem de Crescimento - Exemplo

- Exemplo 1: Adaptado de [da Silva, 2012]
 - Suponha dois algoritmos, α e β , com complexidades $f(x) = x^2$ e g(x) = 100x, respectivamente, para ordenação de conjuntos.
 - Suponha um conjunto A, de cardinalidade |A|=10. Qual o número de operações para ordenação desse conjunto?
 - $f(x) = 10^2 = 100$ operações
 - $g(x) = 100 \times 10 = 1000$ operações
 - Suponha um conjunto B, de cardinalidade $|B| = 10^6$. Qual o número de operações para ordenação desse conjunto?
 - $f(x) = (10^6)^2 = 10^{12}$ operações
 - $g(x) = 100 \times 10^6 = 10^2 \times 10^6 = 10^8$ operações

Ordem de Crescimento - Exemplo

- Exemplo 1: Adaptado de [da Silva, 2012]
 - Suponha dois algoritmos, α e β , com complexidades $f(x) = x^2$ e g(x) = 100x, respectivamente, para ordenação de conjuntos.
 - Suponha um conjunto A, de cardinalidade |A| = 10. Qual o número de operações para ordenação desse conjunto?
 - $f(x) = 10^2 = 100$ operações.
 - $g(x) = 100 \times 10 = 1000$ operações.

- Exemplo 1: Adaptado de [da Silva, 2012]
 - Suponha dois algoritmos, α e β , com complexidades $f(x) = x^2$ e g(x) = 100x, respectivamente, para ordenação de conjuntos.
 - Suponha um conjunto A, de cardinalidade |A|=10. Qual o número de operações para ordenação desse conjunto?
 - $f(x) = 10^2 = 100$ operações.
 - $g(x) = 100 \times 10 = 1000$ operações.
 - Suponha um conjunto B, de cardinalidade $|B|=10^6$. Qual o número de operações para ordenação desse conjunto?
 - $f(x) = (10^6)^2 = 10^{12}$ operações

- Exemplo 1: Adaptado de [da Silva, 2012]
 - Suponha dois algoritmos, α e β , com complexidades $f(x) = x^2$ e g(x) = 100x, respectivamente, para ordenação de conjuntos.
 - Suponha um conjunto A, de cardinalidade |A| = 10. Qual o número de operações para ordenação desse conjunto?
 - $f(x) = 10^2 = 100$ operações.
 - $g(x) = 100 \times 10 = 1000$ operações.
 - Suponha um conjunto B, de cardinalidade $|B| = 10^6$. Qual o número de operações para ordenação desse conjunto?
 - $f(x) = (10^6)^2 = 10^{12}$ operações.
 - $g(x) = 100 \times 10^6 = 10^2 \times 10^6 = 10^8$ operacões.

- Exemplo 1: Adaptado de [da Silva, 2012]
 - Suponha que a execução de cada operação leve 0,001 segundos para ser executada. Qual o tempo para ordenação do conjunto B?

Composição e Inversa

- Exemplo 1: Adaptado de [da Silva, 2012]
 - Suponha que a execução de cada operação leve 0,001 segundos para ser executada. Qual o tempo para ordenação do conjunto B?
 - $f(x) = 10^{12} \times 10^{-3} = 10^{9}$ segundos $\approx 31, 7$ anos.
 - $g(x) = 10^8 \times 10^{-3} = 10^5$ segundos ≈ 1.15 dias.

46 / 61

- Exemplo 1: Adaptado de [da Silva, 2012]
 - Suponha que a execução de cada operação leve 0,001 segundos para ser executada. Qual o tempo para ordenação do conjunto B?
 - $f(x) = 10^{12} \times 10^{-3} = 10^{9}$ segundos $\approx 31, 7$ anos.
 - $g(x) = 10^8 \times 10^{-3} = 10^5 \text{ segundos } \approx 1,15 \text{ dias.}$

Fonte: Adaptado de [da Silva, 2012]

Introdução

Ordem de Crescimento

- O tempo de execução de um algoritmo é sujeito à influência do hardware³
 - Quanto mais rápido o hardware, mais rápido o algoritmo será executado:
- A mudança de pequenas condições na avaliação de desempenho de algoritmos podem causar incorreções nos resultados
 - Para que a comparação possa ser feita de forma justa, é recomendada a utilização de um padrão capaz de avaliar o desempenho de algoritmos em um mesmo cenário;
 - Com isso, é comum transformar a complexidade de algoritmos em funções e avaliar a ordem de grandeza das mesmas.

Prof. Felipe Reis Matemática Discreta - Funções 11/2021 47 / 61

³Outras variáveis também influenciam no desempenho de um software, porém no contexto, serão ignoradas.

Ordem de Grandeza

- Definição: Sejam funções $f: \mathbb{R}^+ \to \mathbb{R}^+$ e $g: \mathbb{R}^+ \to \mathbb{R}^+$. A função f possui a mesma ordem de grandeza de g, definida por $f = \Theta(g)$, se existirem constantes positivas x_0 , c_1 e c_2 tal que $x > x_0$ e $c_1 \cdot g(x) < f(x) < c_2 \cdot g(x)$ [Gersting, 2014]
 - Essa definição indica que a função f(x) é dominada assintoticamente pelas funções $c_1 \cdot g(x)$ e $c_2 \cdot g(x)$.

Introdução

Ordem de Grandeza

 Para a equação abaixo, com constantes positivas c₁ e c₂, podemos estabelecer as seguintes conclusões:

$$c_1 \cdot g(x) \leq f(x) \leq c_2 \cdot g(x)$$

- A função f(x) irá se manter sempre dentro de um "envelope" das demais;
- A expressão $c_1 \cdot g(x)$ será um limite inferior, enquanto a expressão $c_2 \cdot g(x)$ será um limite superior de f(x);
- A alteração do valor das constantes altera a largura do envelope, porém não altera sua forma;
- Se f está contida, a partir de n₀, em um envelope definido por g, então f e g tem a mesma ordem de grandeza [da Silva, 2012].

Ordem de Grandeza

50 / 61

- A figura abaixo exibe o comportamento de uma função h(x), dominada assintoticamente por $c_1 \cdot g(x)$ e $c_2 \cdot g(x)$.
 - Utilizam-se como limite, em geral, funções já conhecidas, para que seja possível inferir um comportamento da função avaliada.

Fonte: Adaptado de [Gersting, 2014]

Prof. Felipe Reis Matemática Discreta - Funções 11/2021

Introdução

51 / 61

 Algumas funções genéricas com comportamento conhecido na literatura podem ser vistas na figura abaixo.

As funções são utilizadas como estimativa de comportamento. Gráfico em escala logarítmica.

Notações Big-O, Big- Ω e Big- Θ

- A notação Big-O é utilizada como uma estimativa teórica do limite superior de execução de um algoritmo
 - Está associada à execução do algoritmo no pior caso, ou seja, ao tempo máximo (ou tamanho máximo em memória) para finalização da execução do algoritmo;
 - A notação é criada com base no crescimento de funções;
- Além da notação Big-O, mais utilizada, também existem as notações Big- Ω e Big- Θ
 - Big-Ω: expressa o limite inferior do algoritmo associada ao melhor caso em complexidade de tempo ou espaço;
 - Big-Θ: expressa limites inferiores e superiores do algoritmo.

Notações Big-O, Big- Ω e Big- Θ

• O comportamento das notações Big-O, Big- Ω e Big- Θ pode ser visto na figura abaixo.

Fonte: Adaptado de [Point, 2021]

Notação Big-O

Prof. Felipe Reis Matemática Discreta - Funções 11/2021 54 / 61

Tipos de Funções

Notação Big-*O*

Introdução

- Definicão 1: Sejam funcões $f: \mathbb{R}^+ \to \mathbb{R}^+$ e $g: \mathbb{R}^+ \to \mathbb{R}^+$. A função f(x) é O(g(x)) se existirem constantes positivas x_0 e c tal que $x > x_0$ e $f(x) < c \cdot g(x)$ [Gersting, 2014].
 - Lê-se a notação como: f(x) é "O" de g(x);
 - As constantes x_0 e c são chamadas de parâmetros da relação;
 - A definição indica que f(x) cresce de forma mais devagar que uma função g(x) multiplicada por uma constante fixa.
- Definição 2: Sejam funções $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$. A função f(x) é O(g(x)) se existirem constantes c e x_0 tal que $|f(x)| \le c|g(x)|$ sempre que $x > x_0$ [Rosen, 2019].

A notação f(x) = O(g(x)) é válida, porém não indica igualdade. A notação $f(x) \in O(g(x))$ também é aceita.

Notação Big-*O*

- Para indicar que f(x) é O(g(x)) devemos encontrar um par de parâmetros para a relação
 - Deve-se mostrar que $|f(x)| \le c|g(x)|$ sempre que $x > x_0$;
 - Nesta relação existem infinitos pares de valores de c e x₀ possíveis:
 - Uma técnica é definir um valor de x_0 para o qual o tamanho de f(x) possa ser rapidamente estimado quando $x > x_0$ e indicar um valor de c que respeite as condições [Rosen, 2019].

Composição e Inversa

- Exemplo 1: [Rosen, 2019]
 - Mostre que a função $f(x) = x^2 + 2x + 1$ é $O(x^2)$.

- Exemplo 1: [Rosen, 2019]
 - Mostre que a função $f(x) = x^2 + 2x + 1$ é $O(x^2)$.
 - Podemos demonstrar usando o artifício a seguir...
 - Consideramos que $x \le x^2$ e $1 \le x^2$ para x > 1 ($x_0 = 1$);
 - Fazemos, $|x^2 + 2x + 1| \le |x^2 + 2x^2 + x^2|$;
 - Logo, $|x^2 + 2x + 1| \le 4|x^2|$;
 - Podemos considerar $x_0 = 1$ e c = 4.
 - Podemos, ainda, utilizar outros valores de x₀ e c e mostrar que a relação é válida;
 - Com isso, podemos concluir que a função f(x) é $O(x^2)$;
 - (Opcional⁴)
 - De forma semelhante, temos ainda que x^2 é $(O(x^2 + 2x + 1))$;
 - Logo, temos $1x^2 \le x^2 + 2x + 1 \le 4x^2$;

⁴A notação descrita busca estabelecer limites inferiores e superiores.

- Exemplo 1: [Rosen, 2019]
 - Mostre que a função $f(x) = x^2 + 2x + 1$ é $O(x^2)$.
 - Podemos demonstrar usando o artifício a seguir...
 - Consideramos que $x \le x^2$ e $1 \le x^2$ para x > 1 ($x_0 = 1$);
 - Fazemos. $|x^2 + 2x + 1| < |x^2 + 2x^2 + x^2|$:
 - Logo, $|x^2 + 2x + 1| < 4|x^2|$:
 - Podemos considerar $x_0 = 1$ e c = 4.
 - Podemos, ainda, utilizar outros valores de x_0 e c e mostrar que a relação é válida;
 - Com isso, podemos concluir que a função f(x) é $O(x^2)$;
 - (Opcional⁴)
 - De forma semelhante, temos ainda que x^2 é ($O(x^2 + 2x + 1)$);
 - Logo, temos $1x^2 < x^2 + 2x + 1 < 4x^2$;

⁴A notação descrita busca estabelecer limites inferiores e superiores.

- Exemplo 1: [Rosen, 2019] [cont..]
 - Mostre que a função $f(x) = x^2 + 2x + 1$ é $O(x^2)$.
 - O gráfico das curvas pode ser visto na figura abaixo.

Prof. Felipe Reis Matemática Discreta - Funções 11/2021 58 / 61

Exemplo 2:

- Mostre que a função $f(x) = x^2 2x + 1$ é $O(x^2)$.

• Exemplo 2:

- Mostre que a função $f(x) = x^2 2x + 1$ é $O(x^2)$.
 - Condição inicial: $\exists c \geq 0, x_0 \geq 0 \mid f(x) \leq c \cdot g(x), \forall x \geq x_0 \mid f(x) \leq c \cdot g(x), \forall x \leq x_0 \mid f(x)$
 - Temos então, que: $f(x) < c \cdot g(x^2)$
 - Consideramos que $-x \le x^2$ e $1 \le x^2$ para x > 1;
 - Fazemos. $|x^2 2x + 1| < x^2 + 2x^2 + x^2$:
 - Logo, $|x^2 2x + 1| < 4|x^2|$:
 - Podemos considerar $x_0 = 1$ e c = 4.
 - Com isso, podemos concluir que a função f(x) é $O(x^2)$;

• Exemplo 3:

- Verifique se a função $f(x) = x^2$ é O(x).
 - Condição inicial: $\exists c \geq 0, x_0 \geq 0 \mid f(x) \leq c \cdot g(x), \forall x \geq x_0$;
 - Temos então, que: $f(x) \le c \cdot g(x) \rightarrow |x^2| \le c \cdot x$
 - Podemos perceber que $\underline{n}\underline{\tilde{a}o}$ existe qualquer $c \in \mathbb{R}$ no qual $c \cdot x \geq x^2$, onde $x > x_0$.

• Exemplo 4

- Verifique se a função $f(x) = 5x^2$ é $O(x^3)$.
 - Condição inicial: $\exists c \geq 0, x_0 \geq 0 \mid f(x) \leq c \cdot g(x), \forall x \geq x_0$
 - Temos então, que: $f(x) \le c \cdot g(x^3) \rightarrow 5x^2 \le c \cdot x^3$
 - Podemos observar, que se c = 1, temos $5x^2 < x^3$
 - Com isso, $f(x) = 5x^2$ é $O(g(x^3))$, apesar de existir uma ordem de grandeza inferior que atenda à relação.

• Exemplo 3:

- Verifique se a função $f(x) = x^2$ é O(x).
 - Condição inicial: $\exists c \geq 0, x_0 \geq 0 \mid f(x) \leq c \cdot g(x), \forall x \geq x_0$;
 - Temos então, que: $f(x) \le c \cdot g(x) \rightarrow |x^2| \le c \cdot x$
 - Podemos perceber que <u>não</u> existe qualquer $c \in \mathbb{R}$ no qual $c \cdot x \geq x^2$, onde $x > x_0$.

Exemplo 4

- Verifique se a função $f(x) = 5x^2$ é $O(x^3)$.
 - Condição inicial: $\exists c \geq 0, x_0 \geq 0 \mid f(x) \leq c \cdot g(x), \forall x \geq x_0$
 - Temos então, que: $f(x) \le c \cdot g(x^3) \rightarrow 5x^2 \le c \cdot x^3$
 - Podemos observar, que se c = 1, temos $5x^2 < x^3$;
 - Com isso, $f(x) = 5x^2$ é $O(g(x^3))$, apesar de existir uma ordem de grandeza inferior que atenda à relação.

Exemplo 3:

- Verifique se a função $f(x) = x^2$ é O(x).
 - Condição inicial: $\exists c \geq 0, x_0 \geq 0 \mid f(x) \leq c \cdot g(x), \forall x \geq x_0 \mid$
 - Temos então, que: $f(x) \le c \cdot g(x) \rightarrow |x^2| \le c \cdot x$
 - Podemos perceber que não existe qualquer $c \in \mathbb{R}$ no qual $c \cdot x > x^2$, onde $x > x_0$.

Exemplo 4:

- Verifique se a função $f(x) = 5x^2 \notin O(x^3)$.

Introdução

Notação Big-O - Exemplo

• Exemplo 3:

- Verifique se a função $f(x) = x^2 \notin O(x)$.
 - Condição inicial: $\exists c \geq 0, x_0 \geq 0 \mid f(x) \leq c \cdot g(x), \forall x \geq x_0 \mid f(x) \leq c \cdot g(x), \forall x \leq x_0 \mid f(x)$
 - Temos então, que: $f(x) \le c \cdot g(x) \rightarrow |x^2| \le c \cdot x$
 - Podemos perceber que <u>não</u> existe qualquer $c \in \mathbb{R}$ no qual $c \cdot x \geq x^2$, onde $x > x_0$.

• Exemplo 4:

- Verifique se a função $f(x) = 5x^2$ é $O(x^3)$.
 - Condição inicial: $\exists c \geq 0, x_0 \geq 0 \mid f(x) \leq c \cdot g(x), \forall x \geq x_0$
 - Temos então, que: $f(x) \le c \cdot g(x^3) \rightarrow 5x^2 \le c \cdot x^3$
 - Podemos observar, que se c = 1, temos $5x^2 \le x^3$;
 - Com isso, $f(x) = 5x^2 \in O(g(x^3))$, apesar de existir uma ordem de grandeza inferior que atenda à relação.

Composição e Inversa

Referências I

Introdução

da Silva, D. M. (2012).

Slides de aula

Gersting, J. L. (2014).

Mathematical Structures for Computer Science. W. H. Freeman and Company, 7 edition.

Justo, D., Sauter, E., Azevedo, F., Guidi, L., and Konzen, P. H. (2020).

Cálculo Numérico, Um Livro Colaborativo - Versão Python.

UFRGS - Universidade Federal do Rio Grande do Sul.

https://www.ufrgs.br/reamat/CalculoNumerico/livro-py/livro-py.pdf.

Levin, O. (2019).

Discrete Mathematics - An Open Introduction.

University of Northern Colorado, 7 edition.

[Online] Disponível em http://discrete.openmathbooks.org/dmoi3.html.

Point, T. (2021).

Data structures - asymptotic analysis.

[Online]; acessado em 17 de Marco de 2021. Disponível em:

https://www.tutorialspoint.com/data_structures_algorithms/asymptotic_analysis.htm.

Rosen, K. H. (2019).

Discrete Mathematics and Its Applications.

McGraw-Hill, 8 edition.