Tentamen - Vektorfält och klassisk fysik (FFM234)

Tid och plats: Lördagen den 24 oktober 2020 klockan 08.30-

12:30, på distans via zoom.

Hjälpmedel: Alla hjälpmedel tillåtna.

Lösningsskiss: Christian Forssén.

Detta är enbart en skiss av den fullständiga lösningen. Det kan innebära att vissa mellansteg i uträkningarna, som egentligen är nödvändiga för en komplett lösning, inte redovisas.

1. Betrakta en kubisk volym (sidlängd a) inuti vilken det finns en värmekälla $s = \alpha_s r^2$ (notera att $[s] = \mathrm{Wm}^{-3}$). Material är homogent med värmeledningsförmåga λ . Randvillkoren är sådana att de tillåter en stationärlösning att uppnås. Använd Gauss sats för att beräkna värmeflödet ut ur volymen när temperaturfältet är tidsoberoende. (10 poäng)

Lösning:_

- Vi vill beräkna $\oint_{\partial V} \vec{q} \cdot d\vec{S} = \int_{V} \vec{\nabla} \cdot \vec{q} dV$ enligt Gauss sats.
- Vi har att $\vec{\nabla} \cdot \vec{q} = -\lambda \Delta T$. Vid stationärlösningen gäller $\Delta T = -s/\lambda$.
- Återstår att beräkna

$$\int_{V} \alpha_s(x^2 + y^2 + z^2) dx dy dz = 3\alpha_s a^2 \left[\frac{x^3}{3} \right]_{-a/2}^{a/2} = \alpha_s \frac{a^5}{4},$$

där vi utnyttjar att vi får tre likvärdiga termer.

- Enheten stämmer eftersom $[\alpha_s] = \mathrm{Wm}^{-5}$ så att svaret får enheten W.
- 2. Använd indexnotation för att visa följande likheter

(a)
$$\vec{\nabla} \cdot \vec{r} = 3$$

(b)
$$\vec{\nabla} \times \vec{r} = 0$$

(c)
$$\vec{\nabla}r = \hat{r}$$

där \vec{r} är ortsvektorn och \hat{r} motsvarande enhetsvektor.

(3 poäng per korrekt besvarad deluppgift, 10 poäng för alla tre.) (bevis utan indexnotation kan också ge poäng, dock maximalt 4 poäng).

Lösning:

Notera att ortsvektorn \vec{r} har komponenterna x_i .

- (a) $\vec{\nabla} \cdot \vec{r} = \partial_i x_i = 3$.
- (b) $\vec{\nabla} \times \vec{r} = \epsilon_{ijk} \partial_j x_k = 0$, eftersom $\epsilon_{ijk} = 0$ om j = k medan $\partial_j x_k = 0$ om $j \neq k$.
- (c) $\vec{\nabla}r = \partial_i (x_j x_j)^{1/2} = \frac{1}{2} (x_k x_k)^{-1/2} \partial_i (x_j x_j)$. Enligt kedjeregeln är $\partial_i (x_j x_j) = 2x_j \partial_i x_j = 2x_j \delta_{ij} = 2x_i$. Slutligen får vi därför $\vec{\nabla}r = x_i (x_k x_k)^{-1/2}$ vilket vi identifierar med $\vec{r}/r = \hat{r}$.
- 3. Vad är värdet av integralen $\oint_S \vec{F} \cdot d\vec{S}$, där S är en sfär med radien a och mittpunkt i origo, och vektorfältet \vec{F} ges av

$$\vec{F} = q \frac{\vec{r} - \vec{r_0}}{|\vec{r} - \vec{r_0}|^3} + \sigma \frac{|z|}{a} \hat{\mathbf{z}},$$

där
$$\vec{r}_0 = \frac{a}{2}(\hat{x} - \hat{y} + \hat{z})$$
? (10 poäng)

Lösning:____

- Den första termen motsvarar en punktkälla med laddning $4\pi q$ i punkten $\vec{r_0}$ på avståndet $r_0 = \frac{a}{2}\sqrt{3} < a$. Den är alltså innanför sfären och kommer att ge bidraget $4\pi q$ till integralen.
- Den andra termen är symmetrisk runt z-axeln och har alltid en positiv z-komponent. Detta ger att dess flöde genom ytan är lika stort negativt på den undre halvsfären som positivt på den övre. Summan blir noll.
- Alternativt kan man använda Gauss sats på den andra termen och konstatera att

$$\vec{\nabla} \cdot (\sigma|z|/a) = \frac{\sigma}{a} \left\{ \begin{array}{ll} 1 & z \ge 0 \\ -1 & z \le 0, \end{array} \right.$$

vilket gör att volymsintegralen blir noll.

- Den totala ytintegralen blir alltså $\oint_S \vec{F} \cdot d\vec{S} = 4\pi q$.
- 4. Tvärsnittsfiguren nedan visar fältlinjerna för en vektorpotential \vec{A} .
 - (a) Vilken av följande vektorpotentialer skulle kunna motsvara fältlinjerna i figuren?

(i)
$$\vec{A} = x^2 \hat{\mathbf{x}} + z^2 \hat{\mathbf{v}} + y^2 \hat{\mathbf{z}}$$

(ii)
$$\vec{A} = y^2 \hat{\mathbf{x}} + x^2 \hat{\mathbf{v}} + z^2 \hat{\mathbf{z}}$$

(iii)
$$\vec{A} = z^2 \hat{\mathbf{x}} + y^2 \hat{\mathbf{y}} + z^2 \hat{\mathbf{z}}$$

- (b) Beräkna vektorfältet som erhålls från den vektorpotential som du har valt i deluppgift (a) och härled uttryck för dess fältlinjer.
- (c) Rita specifikt den fältlinje från uppgift (b) som startar i punkten $(x_0, y_0, z_0) = (0, 1, 2)$.

(10 poäng)

Lösning:_

- (a) Figuren motsvarar fält (i): $\vec{A} = x^2\hat{\mathbf{x}} + z^2\hat{\mathbf{y}} + y^2\hat{\mathbf{z}}$, vilket vi t.ex. ser genom det faktum att ingen av y- och z-komponenterna är konstant, att de alltid är positiva, att y-komponenten är noll längs z=0, samt att $A_y=A_z$ då y=z.
- (b) $\vec{F} = \vec{\nabla} \times \vec{A} = (2y-2z)\hat{\mathbf{x}}$. Fältlinjer $\vec{r}(\tau) = (x(\tau), y(\tau), z(\tau))$ fås från

$$\frac{dx}{d\tau} = y - z,$$

$$\frac{dy}{d\tau} = 0,$$

$$\frac{dz}{d\tau} = 0,$$

där de två sista direkt ger $y(\tau) = y_0$ och $z(\tau) = z_0$, vilket i sin tur ger $x(\tau) = (y_0 - z_0)\tau + x_0$.

(c) Det efterfrågade fältlinjen visas enklast i xy-planet vid $z=z_0=2(!)$. Den startar $(\tau=0)$ i punkten $(x_0,y_0)=(0,1)$ och går sedan rakt åt vänster i negativ x-led.

5. Potentialen från en punktdipol ges av

$$\phi(\vec{r}) = \frac{\vec{\mu} \cdot \vec{r}}{4\pi r^3}$$

Betrakta dipolen $\vec{\mu} = \mu \hat{x}$. Beräkna motsvarande kraftfält $\vec{F}(\vec{r})$ och beräkna de tre ytintegralerna

$$\int_{S_i} \vec{F} \cdot d\vec{S}$$

för ytorna $S_i \in \{S_x, S_y, S_z\}$ som motsvarar tre olika halvsfärer vilka definieras av S_i : $x^2 + y^2 + z^2 = R^2$ för x > 0 (för i = x), y > 0 (för i = y), z > 0 (för i = z).

(Notera att det finns ett tryckfel i föreläsningsanteckningarna och i kursboken när det gäller uttrycket för vektorfältet från en dipol.) $(10\ po\ddot{a}nq)$

Lösning:__

- Vi gör koordinatbytet $x \to z', y \to x', z \to y'$ så att vi kan skriva $\phi = \frac{\mu \cos \theta'}{4\pi r'^2}$. Låt oss i det följande låta bli att skriva med prim på koordinaterna $r'\theta'\varphi'$.
- Kraftfältet blir

$$\vec{F} = -\vec{\nabla}\rho = -\frac{\mu}{4\pi} \left[\frac{(-2\cos\theta)}{r^3} \hat{\mathbf{e}}_r + \frac{(-\sin\theta)}{r^3} \hat{\mathbf{e}}_\theta \right]$$
$$= \frac{\mu}{4\pi r^3} \left[2\cos\theta \hat{\mathbf{e}}_r + \sin\theta \hat{\mathbf{e}}_\theta \right]$$

• Vi börjar med integralen över $S_x = S_{z'}$. Ytelementet är $d\vec{S} = \hat{\mathbf{e}}_r R^2 \sin\theta d\theta d\varphi$. Vi kan direkt utföra integralen $\int d\varphi = 2\pi$ och vi får

$$\int_{S_x} \vec{F} \cdot d\vec{S} = \frac{\mu}{R} \int_0^{\pi/2} \cos\theta \sin\theta d\theta = \frac{\mu}{R} \left[-\frac{\cos 2\theta}{4} \right]_0^{\pi/2} = \frac{\mu}{2R}$$

• Notera att fältet är antisymmetriskt runt y' = 0 och x' = 0 planen $(\cos(\pi/2 - \alpha) = -\cos(\pi/2 + \alpha))$. Detta gör att både

$$\int_{S_y} \vec{F} \cdot d\vec{S} = \int_{S_z} \vec{F} \cdot d\vec{S} = 0.$$

6. Betrakta Laplaces ekvation för potentialen ϕ inuti en volym V. Volymens inre begränsningsyta är en oändligt lång cylinder med radie a_0 och dess yttre begränsningsyta är en annan oändligt lång cylinder med radie a_1 . De två cylindrarna har samma symmetriaxel. Vi har två Dirichlet-randvillkor: $\phi(\rho = a_0) = \phi_0$ samt $\phi(\rho = a_1) = \phi_1 \cos(2\varphi)$. Finn lösningen $\phi(\vec{r})$. (10 poäng)

Lösning:

• Gör ansatsen $\phi = f(\rho) + g(\rho) \cos(2\varphi)$ då vi noterar att det inte kan finnas något z-beroende och att båda termernas vinkelberoende är egenfunktioner till Laplacianens vinkeldel.

- Denna separabla ansats uppfyller randvillkoren om $f(a_0) = \phi_0$ (i), $f(a_1) = 0$ (ii), $g(a_0) = 0$ (iii), $g(a_1) = \phi_1$ (iv).
- Laplace ekvation för den första termen ger lösningen

$$f(\rho) = C \ln(\rho/a_1) + D,$$

där vi har omdefinierat integrationskonstanten D så att vi får nämnaren a_1 i logaritmen (blir enklare uttryck). Randvillkor (ii) ger då att D = 0 medan villkor (i) ger att $C = \frac{\phi_0}{\ln(a_0/a_1)}$.

• Laplaces ekvation på den andra termen, med ansatsen $g(\rho) = A\rho^p$ ger den karakteristiska ekvationen $p^2-4=0$ och därmed lösningen

$$g(\rho) = A\rho^2 + B\rho^{-2}.$$

Notera gärna att $\rho=0$ inte är med i volymen. Randvillkor (iii) ger $A=-B/a_0^4$ och därmed ger (iv) att $\phi_1=-\frac{B}{a_1^2}\left(\frac{a_1^4}{a_0^4}-1\right)$.

• Sammantaget, och med lite omskrivningar, blir

$$\phi(\vec{r}) = \phi_0 \frac{\ln \rho - \ln a_1}{\ln a_0 - \ln a_1} + \phi_1 \frac{a_1^2}{a_1^4 - a_0^4} \left(\rho^2 - \frac{a_0^4}{\rho^2} \right) \cos(2\varphi).$$

Vi kan notera att termerna har dimensionerna $[\phi_0]$ respektive $[\phi_1]$ vilket lär stämma.