MA1214 Sheet 7

- (1) Let G be a group acting on a set S. Show that the relation \sim on S given by $x \sim y \Leftrightarrow \exists_{g \in G} \, x = g \cdot y$ is an equivalence relation and that its equivalence classes are the orbits of G on S.
- (2) Let G be a group. An automorphism of G is an isomorphism from G to G.
 - (i) Show that the set Aut(G) of automorphisms of G endowed with composition is a group.
 - (ii) Show that for every $g \in G$ the map $\operatorname{inner}(g) = h \mapsto ghg^{-1} : G \to G$ is an automorphism of G. Such automorphisms of G are called *inner automorphisms*.
 - (iii) Show that $g \mapsto \operatorname{inner}(g) : G \to \operatorname{Aut}(G)$ is a homomorphism. Equivalently: Show that the rule $g \cdot h = ghg^{-1}$ defines an action of G on itself.
 - This action is called the *conjugation action* of G on itself and the orbits for this action are called the *conjugacy classes* of G. Furthermore $h_1, h_2 \in G$ are called are called *conjugate* if there exists a $g \in G$ such that $h_1 = gh_2g^{-1}$.
- (3)(i) Show that two cycles in S_n are conjugate if and only if they have the same length. Hint. Use that for a cycle $\sigma = (a_1 \dots a_k) \in S_n$, $k \ge 2$, and for $\pi \in S_n$ we have the identity $\pi(a_1 \dots a_k)\pi^{-1} = (\pi(a_1) \dots \pi(a_k))$.
 - (ii) A partition of n is a sequence of positive integers $\lambda = \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r > 0$ with $\sum_{i=1}^r \lambda_i = n$. A partition λ is often symbolically written as $1^{m_1} \cdots n^{m_n}$ or $n^{m_n} \cdots 1^{m_1}$, where m_i is the number of occurrences of i in λ and i^{m_i} is omitted if $m_i = 0$. Note that $\sum_{i=1}^n m_i i = n$. Example: $(55522111) = 5^32^21^3 = 1^32^25^3$ is a partition of 22.
 - The cycle structure of a permutation π is the partition $n^{m_n} \cdots 1^{m_1}$ of n, where m_i is the number of cycles of length i in the disjoint cycle form of π . Note that we do count 1-cycles $(m_1$ is the number of fixed points of π). So the cycle structure of $(15)(49)(237) \in S_9$ is 32^21^2 .
 - Prove the following generalisation of (i): Two permutations are conjugate if and only if they have the same cycle structure. So the conjugacy classes of S_n are labelled by the partitions of n.