Cl2613: Algoritmos y Estructuras III

Blai Bonet

Universidad Simón Bolívar, Caracas, Venezuela

Enero-Marzo 2015

Búsqueda en amplitud (BFS)

Búsqueda en amplitud o *breadth-first search* explora el grafo G=(V,E) a partir de un vértice "fuente" s de **forma sistemática** para descubrir todos los vértices que son **alcanzables** desde s

Búsqueda en amplitud calcula:

- la **distancia** (mínimo número de aristas) desde s hasta todos los vértices alcanzables desde s
- produce un árbol T (llamado un **árbol breadth-first**) que contiene a todos los vértices alcanzables desde s (incluyendo s)

Para todo vértice v en el árbol T, el **único camino** que conecta s con v en T es un **camino más corto** de s a v en el grafo G = (V, E)

Búsqueda en amplitud (BFS)

© 2014 Blai Bonet CI2613

Búsqueda en amplitud (BFS)

BFS trabaja en grafos dirigidos y no dirigidos

Su nombre se debe a que todos los vértices a distancia k (desde s) son descubiertos antes que cualquier vértice a distancia k+1 (desde s)

BFS mantiene información de la búsqueda asignando **colores** (blanco, gris y negro) a los vértices

© 2014 Blai Bonet Cl2613 © 2014 Blai Bonet Cl2613

Búsqueda en amplitud (BFS)

Inicialmente, todos los vértices son blancos; luego pueden hacerse grises para después pasar a negros

Un vértice es **descubierto** la primera vez que se encuentra durante la búsqueda, en cuyo caso deja de ser blanco

Vértices grises y negros han sido descubiertos:

- Si u es negro y $(u,v) \in E$, entonces v es gris o negro; i.e. todos los vértices adyacentes a vértices negros no son blancos y por lo tanto han sido descubiertos
- Los vértices grises pueden tener vértices adyacentes blancos; ellos representan la frontera entre los vértices descubiertos y los no descubiertos

© 2014 Blai Bonet CI2613

Búsqueda en amplitud: Ejemplo

Q: —

Búsqueda en amplitud: Pseudocódigo

```
preadth-first-search(Vertice s):
        % inicialización
        foreach Vertice u
            color[u] = Blanco
4
            d[u] = \infty
                                   % distancia desde s a u
            \pi[u] = \mathbf{null}
                                   % padre de u en el árbol BF
        Queue g % cola FIFO
        color[s] = Gris
        d[s] = 0
10
        q.enqueue(s)
11
12
13
        % búsqueda iterativa
        while !g.empty()
14
            Vertice u = q.dequeue()
15
            foreach Vertice v in advacentes[u]
16
17
                if color[v] == Blanco
18
                     color[v] = Gris
                     d[v] = d[u] + 1
19
                     \pi[v] = u
20
21
                     q.enqueue(v)
            color[u] = Negro
22
                                                                           CI2613
© 2014 Blai Bonet
```

Búsqueda en amplitud: Pseudocódigo

```
void breadth-first-search(Vertice s):
        % inicialización
        foreach Vertice u
            color[u] = Blanco
            d[u] = \infty
                                   % distancia desde s a u
            \pi[u] = \mathbf{null}
                                   % padre de u en el árbol BF
        Queue g % cola FIFO
        color[s] = Gris
10
        d[s] = 0
        q.enqueue(s)
11
12
13
        % búsqueda iterativa
14
        while !g.empty()
            Vertice u = q.dequeue()
15
            foreach Vertice v in advacentes[u]
16
                if color[v] == Blanco
17
18
                     color[v] = Gris
                     d[v] = d[u] + 1
19
20
                     \pi[v] = u
21
                     q.enqueue(v)
            color[u] = Negro
22
© 2014 Blai Bonet
```

CI2613

© 2014 Blai Bonet CI2613

Búsqueda en amplitud: Análisis de tiempo

Entrada: grafo G=(V,E) representado con listas de adyacencia (Tamaño de la entrada es O(V+E))

Utilizamos la técnica de análisis agregado:

- 1 Después de inicialización, BFS no "pinta" ningún vértice de blanco
- 2 Por lo tanto, las líneas 17 y 18 implican que todo vértice es encolado (y por lo tanto decolado) a lo sumo 1 vez
- 3 Las operaciones de encolar/decolar toman tiempo O(1); por lo tanto, el tiempo total (agregado) de estas operaciones es O(V)
- 4 Cada lista de adyacencia es recorrida a lo suma 1 vez (al decolar). Como el total de elementos en las listas es O(E), el tiempo total invertido en recorrer las listas de adyacencia es O(E)
- **5** El tiempo para la inicialización es O(V)

El tiempo total de BFS es O(V + E) (i.e. **tiempo lineal**)

© 2014 Blai Bonet CI2613

Caminos más cortos: Propiedades

Lema

Sea G=(V,E) un grafo (dirigido o no dirigido), y sea s un vértice de G. Para toda arista $(u,v)\in E$, $\delta(s,v)\leq \delta(s,u)+1$

Prueba:

Si u no es alcanzable desde s, $\delta(s,u)=\infty$ y la desigualdad es cierta

Si u es alcanzable desde s, también lo es v. En este caso, un camino más corto de s a v no puede ser más largo que la longitud del camino más corto de s a u concatenado con la arista (u,v); i.e. $\delta(s,v) \leq \delta(s,u) + 1$

Caminos más cortos

Considere un grafo G = (V, E) (dirigido o no dirigido)

La distancia de camino más corto $\delta(s,v)$ de s a v es el mínimo número de aristas en un camino de s a v (si no existe dicho camino, definimos $\delta(s,v)=\infty$)

Un camino de s a v cuya longitud sea $\delta(s,v)$ es un **camino más corto**. (Nota: pueden existir múltiples caminos más cortos de s a v)

© 2014 Blai Bonet CI2613

Búsqueda en amplitud: Pseudocódigo

```
breadth-first-search(Vertice s):
        % inicialización
        foreach Vertice u
            color[u] = Blanco
4
            d[u] = \infty
                                  % distancia desde s a u
5
            \pi[u] = \mathbf{null}
                                   % padre de u en el árbol BF
        Queue q % cola FIFO
        color[s] = Gris
10
        d[s] = 0
11
        q.enqueue(s)
12
        % búsqueda iterativa
13
        while !q.empty()
14
15
            Vertice u = q.dequeue()
            foreach Vertice v in advacentes[u]
16
                if color[v] == Blanco
17
18
                     color[v] = Gris
19
                     d[v] = d[u] + 1
                     \pi[v] = u
20
21
                     q.enqueue(v)
            color[u] = Negro
22
© 2014 Blai Bonet
```

CI2613

© 2014 Blai Bonet CI2613

Veremos que al finalizar BFS, $\delta(s,v)=d[v]$ para todo $v\in V$

Lema

Sea G=(V,E) un grafo (dirigido o no), y suponga que BFS se corre desde $s\in V$. Al terminar BFS, $d[v]\geq \delta(s,v)$ para todo $v\in V$

Prueba: Por inducción en el número de encolamientos

Tesis: $d[v] \ge \delta(s, v)$ para todo $v \in V$

Caso base: después del primer encolamiento, $d[s] = \delta(s,s) = 0$ y

 $d[v] = \infty \ge \delta(s, v)$ para $v \ne s$. La tesis se cumple

© 2014 Blai Bonet CI2613

Búsqueda en amplitud: Correctitud

La cola contiene vértices con a lo sumo dos valores distintos para \boldsymbol{d}

Lema

Suponga que durante la ejecución de BFS sobre un grafo G=(V,E), la cola contiene $\langle v_1,v_2,\ldots,v_r\rangle$ donde v_1 y v_r son el primero y último de la cola. Entonces, (i) $d[v_r] \leq d[v_1] + 1$ y (ii) $d[v_i] \leq d[v_{i+1}]$ para $i=1,\ldots,r-1$

Prueba: Por inducción en el número de encolamientos/decolamientos

Tesis: la condición se verifica después de cada operación

Caso base: después del primer encolamiento, la cola sólo contiene a s y la tesis es válida trivialmente

Búsqueda en amplitud: Correctitud

Veremos que al finalizar BFS, $\delta(s,v)=d[v]$ para todo $v\in V$

Lema

Sea G=(V,E) un grafo (dirigido o no), y suponga que BFS se corre desde $s\in V$. Al terminar BFS, $d[v]\geq \delta(s,v)$ para todo $v\in V$

Prueba: Por inducción en el número de encolamientos

Tesis: $d[v] \ge \delta(s, v)$ para todo $v \in V$

Paso inductivo: considere el encolamiento de v (descubierto al recorrer la lista de adyancencia de u). Justo antes del encolamiento en la línea 21:

$$d[v] = d[u] + 1 \ge \delta(s, u) + 1 \ge \delta(s, v)$$

El vértice v es entonces encolado, y más nunca será encolado de nuevo porque se pinta de gris. Las líneas 18-21 sólo se ejecutan para vértices blancos, por lo tanto d[v] no vuelve a cambiar

© 2014 Blai Bonet CI2613

Búsqueda en amplitud: Correctitud

La cola contiene vértices con a lo sumo dos valores distintos para $\it d$

Lema

Suponga que durante la ejecución de BFS sobre un grafo G=(V,E), la cola contiene $\langle v_1,v_2,\ldots,v_r\rangle$ donde v_1 y v_r son el primero y último de la cola. Entonces, (i) $d[v_r] \leq d[v_1] + 1$ y (ii) $d[v_i] \leq d[v_{i+1}]$ para $i=1,\ldots,r-1$

Prueba: Por inducción en el número de encolamientos/decolamientos

Tesis: la condición se verifica después de cada operación

Paso inductivo: debemos verificar que la condición se cumple después de encolar o decolar vértices

© 2014 Blai Bonet Cl2613 © 2014 Blai Bonet Cl2613

La cola contiene vértices con a lo sumo dos valores distintos para d

Lema

Suponga que durante la ejecución de BFS sobre un grafo G=(V,E), la cola contiene $\langle v_1,v_2,\ldots,v_r\rangle$ donde v_1 y v_r son el primero y último de la cola. Entonces, (i) $d[v_r] \leq d[v_1] + 1$ y (ii) $d[v_i] \leq d[v_{i+1}]$ para $i=1,\ldots,r-1$

Prueba: Por inducción en el número de encolamientos/decolamientos

Tesis: la condición se verifica después de cada operación

1 Decolar: considere la cola $\langle v_1, v_2, \ldots, v_r \rangle$ antes de decolar v_1 , y la cola $\langle v_2, \ldots, v_r \rangle$ después de decolarlo.

Para (i), antes de decolar v_1 , la condición se verifica (por hipótesis), luego $d[v_r] \leq d[v_1] + 1 \leq d[v_2] + 1$.

Para (ii), por hipótesis, $d[v_i] \leq d[v_{i+1}]$ para $i = 2, \ldots, r-1$

© 2014 Blai Bonet CI2613

Búsqueda en amplitud: Correctitud

Corolario

Suponga que los vértices v_i and v_j son encolados durante la ejecución de BFS, y que v_i es encolado antes que v_j (los vértices se encolan a lo sumo 1 vez). Entonces, $d[v_i] < d[v_i]$ al momento de encolar v_i

Prueba: sea v_1, v_2, \ldots todos los vértices encolados (en orden). Para $i \geq 1$,

Si v_i y v_{i+1} aparecen alguna vez simultaneamente en la cola, el Lema implica $d[v_i] \leq d[v_{i+1}]$ al momento de encolar v_{i+1}

Si no aparecen simultaneamente en la cola, v_{i+1} fue descubierto al explorar v_i . Por lo tanto, $d[v_{i+1}] = d[v_i] + 1 > d[v_i]$ al momento de encolar v_{i+1} \square

Búsqueda en amplitud: Correctitud

La cola contiene vértices con a lo sumo dos valores distintos para d

Lema

Suponga que durante la ejecución de BFS sobre un grafo G=(V,E), la cola contiene $\langle v_1,v_2,\ldots,v_r\rangle$ donde v_1 y v_r son el primero y último de la cola. Entonces, (i) $d[v_r] \leq d[v_1] + 1$ y (ii) $d[v_i] \leq d[v_{i+1}]$ para $i=1,\ldots,r-1$

Prueba: Por inducción en el número de encolamientos/decolamientos

Tesis: la condición se verifica después de cada operación

2 Encolar: después de encolar v (línea 21), la cola queda $\langle v_1, v_2, \ldots, v_{r+1} \rangle$ donde $v_{r+1} = v$. En ese momento, v es adyacente a u que ha sido removido de la cola (línea 15). Antes de decolar u la cola es $\langle u, v_1, \ldots, v_j \rangle$ con $0 \leq j \leq r$. Si j = 0, v_1 fue descubierto explorando u y $d[u] < d[v_1]$. Si j > 0, por hipótesis, $d[u] \leq d[v_1]$

Para (i), $d[v_{r+1}] = d[v] = d[u] + 1 \le d[v_1] + 1$

Para (ii), por hipótesis, $d[v_r] \leq d[u] + 1 = d[v] = d[v_{r+1}]$

© 2014 Blai Bonet CI2613

Búsqueda en amplitud: Pseudocódigo

CI2613

```
breadth-first-search(Vertice s):
        % inicialización
        foreach Vertice u
            color[u] = Blanco
            d[u] = \infty
                                  % distancia desde s a u
            \pi[u] = \mathbf{null}
                                   % padre de u en el árbol BF
        Queue g % cola FIFO
        color[s] = Gris
10
        d[s] = 0
11
        q.enqueue(s)
12
        % búsqueda iterativa
13
14
        while !q.empty()
15
            Vertice u = q.dequeue()
            foreach Vertice v in advacentes[u]
16
                if color[v] == Blanco
17
                     color[v] = Gris
18
19
                     d[v] = d[u] + 1
20
                     \pi[v] = u
21
                     q.enqueue(v)
            color[u] = Negro
22
© 2014 Blai Bonet
```

© 2014 Blai Bonet Cl2613

Teorema

Sea G=(V,E) un grafo (dirigido o no), y suponga que BFS se ejecuta desde el vértice $s\in V$. Entonces, BFS descrubre cada vértice v que es alcanzable desde s, y al terminar:

- (i) $d[v] = \delta(s, v)$ para todo $v \in V$
- (ii) para cada $v \in V$ con $v \neq s$, existe un camino más corto de s a v, que contiene la arista $(\pi[v], v)$

Prueba: primero mostramos (i) por **contradicción**. Suponga que para algún vértice v, $d[v] \neq \delta(s,v)$. Sea v un tal vértice con valor $\delta(s,v)$ mínimo

Claramente, $v \neq s$ y $d[v] \geq \delta(s,v)$ (por Lema). Por lo tanto, $d[v] > \delta(s,v)$

Mas aún, v es alcanzable desde s (sino $\delta(s, v) = \infty \ge d[v]$).

Sea u un vértice que precede inmediatamente a v en un camino más corto de s a v (u existe porque $v \neq s$): $s \leadsto u \to v$

© 2014 Blai Bonet CI2613

Búsqueda en amplitud: Correctitud

Demostrando: (i) $d[v] = \delta(s, v)$ para todo $v \in V$

Sea u un vértice que precede inmediatamente a v en un camino más corto de s a v (u existe porque $v \neq s$): $s \leadsto u \to v$

Por elección de v, $\delta(s, u) = d[u]$

Por elección de u, $\delta(s,v) = \delta(s,u) + 1$

$$d[v] > \delta(s, v) = \delta(s, u) + 1 = d[u] + 1$$

Consideremos el color de v cuando u es decolado (línea 15):

2 v es NEGRO:

v fue decolado anteriormente y por lo tanto encolado antes que u

Por el Corolario, $d[v] \leq d[u]$ (contradicción)

Búsqueda en amplitud: Correctitud

Demostrando: (i) $d[v] = \delta(s, v)$ para todo $v \in V$

Sea u un vértice que precede inmediatamente a v en un camino más corto de s a v (u existe porque $v \neq s$): $s \leadsto u \to v$

Por elección de v, $\delta(s,u)=d[u]$

Por elección de u, $\delta(s,v) = \delta(s,u) + 1$

$$d[v] > \delta(s, v) = \delta(s, u) + 1 = d[u] + 1$$

Consideremos el color de v cuando u es decolado (línea 15):

 $\mathbf{1}$ v es BLANCO:

La línea 19 coloca d[v] = d[u] + 1 (contradicción)

© 2014 Blai Bonet CI2613

Búsqueda en amplitud: Correctitud

Demostrando: (i) $d[v] = \delta(s, v)$ para todo $v \in V$

Sea u un vértice que precede inmediatamente a v en un camino más corto de s a v (u existe porque $v \neq s$): $s \rightsquigarrow u \rightarrow v$

Por elección de v, $\delta(s,u)=d[u]$

Por elección de u, $\delta(s,v) = \delta(s,u) + 1$

$$d[v] > \delta(s, v) = \delta(s, u) + 1 = d[u] + 1$$

Consideremos el color de v cuando u es decolado (línea 15):

v fue pintado GRIS al decolar otro vértice w (decolado antes que u)

Por el Corolario, $d[w] \leq d[u]$ y entonces $d[v] = d[w] + 1 \leq d[u] + 1$ (contradicción)

Demostrando: (i) $d[v] = \delta(s, v)$ para todo $v \in V$

Sea u un vértice que precede inmediatamente a v en un camino más corto de s a v (u existe porque $v \neq s$): $s \leadsto u \to v$

Por elección de v, $\delta(s,u)=d[u]$

Por elección de u, $\delta(s,v) = \delta(s,u) + 1$

$$d[v] > \delta(s, v) = \delta(s, u) + 1 = d[u] + 1$$

Consideremos el color de v cuando u es decolado (línea 15):

En los tres casos alcanzamos una contradiccón. Entonces, no existe vértice v con $d[v] \neq \delta(s,v)$

© 2014 Blai Bonet CI2613

Búsqueda en amplitud: Árbol breadth-first

Al terminar BFS, definimos el **árbol de predecesores** $G_{\pi} = (V_{\pi}, E_{\pi})$:

$$-V_{\pi} = \{v \in V : \pi[v] \neq \mathsf{null}\} \cup \{s\}$$

$$-E_{\pi} = \{(\pi[v], v) : v \in V_{\pi} \setminus \{s\}\}$$

 V_{π} es $\{s\}$ unido a todos los vértices descubiertos por BFS

 E_{π} son todos las aristas $(\pi[v], v)$ para $\pi[v] \neq \text{null}$

Búsqueda en amplitud: Correctitud

(ii) para cada $v \in V$ con $v \neq s$, existe un camino más corto de s a v, que contiene la arista $(\pi[v], v)$

Si
$$\pi[v] = u$$
, entonces $\delta(s, v) = d[v] = d[u] + 1 = \delta(s, u) + 1$

Por el lema de caminos más cortos, un camino más corto de s a u **extendido** con la arista $(\pi[v], v) = (u, v)$ es un camino más corto de s a v

© 2014 Blai Bonet Cl2613

Búsqueda en amplitud: Árbol breadth-first

$$V_{\pi} = \{ v \in V : \pi[v] \neq \mathsf{null} \} \cup \{ s \} \quad ; \quad E_{\pi} = \{ (\pi[v], v) : v \in V_{\pi} \setminus \{ s \} \}$$

Lema

El grafo $G_{\pi}=(V_{\pi},E_{\pi})$ construido por BFS es un árbol breadth-first

Prueba: tenemos que probar dos cosas:

- G_{π} es un árbol
- el único camino de s a $v \in V_{\pi}$ es un camino más corto en G
- **1** G_{π} es un árbol: claramente $|E_{\pi}| = |V_{\pi}| 1$. Por otro lado, G_{π} es conectado ya que todo vértice en V_{π} es alcanzable desde s

Por lo tanto, G_{π} es un árbol

Búsqueda en amplitud: Árbol breadth-first

$$V_{\pi} = \{ v \in V : \pi[v] \neq \mathsf{null} \} \cup \{ s \} \quad ; \quad E_{\pi} = \{ (\pi[v], v) : v \in V_{\pi} \setminus \{ s \} \}$$

Lema

El grafo $G_{\pi}=(V_{\pi},E_{\pi})$ construido por BFS es un árbol breadth-first

Prueba: tenemos que probar dos cosas:

- G_{π} es un árbol
- el único camino de s a $v \in V_\pi$ es un camino más corto en G
- **2** el único camino de s a $v \in V_{\pi}$ es un camino más corto en G:

Sea $(s, v_1, v_2, \ldots, v_n)$ un camino en G_{π} . Utilizando el Teorema de Correctitud repetidamente, se muestra por inducción que el camino (s, v_1, \ldots, v_i) es un camino más corto en G, para $i = 1, \ldots, n$ (ejercicio) \square

© 2014 Blai Bonet Cl2613