Class 3

Matrix
Matrix operations
Determinant

Quiz time!

Pick column and give definitions

Linear independence Matrix multiplication

Determinant

Span

Subspace

Linear combination

Q&A

Let
$$A = \begin{bmatrix} 3 & 1 \\ 5 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} -2 & 1 \\ 3 & 4 \end{bmatrix}$:

- 1. Find A + B;
- 2. Find 2A 3B + I;
- 3. Find AB and BA (make sure that, in general, $AB \neq BA$ for matrices);
- 4. Find AI and IA

What is a 1?

How to multiply 2 matrices?

Let
$$A = \begin{bmatrix} 2 & -1 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 \\ -1 \\ 3 \end{bmatrix}$:

- 1. Find AB and BA if they exist;
- 2. Find A^TB and BA^T if they exist.

What is A^T ?

If solution exists, what the dimension of the result matrix. There are several matrices: A, B, C, D, D, E, K. 3×3 2×3 3×2 3×5 3×5 1×2 3×1

- 1. *ABC*;
- 2. AB^TC^T ;
- 3. *EBAE*;
- 4. $K^T \times K^T CE^T$.

Kahoot time!

Find the determinants of the following matrices:

1.
$$A = \begin{bmatrix} 5 & -2 \\ 1 & 6 \end{bmatrix}$$
;
2. $B = \begin{bmatrix} 1 & -3 & -1 \\ -2 & 7 & 2 \\ 3 & 2 & -4 \end{bmatrix}$.

What is a determinant?

A triangle is constructed on vectors
$$\mathbf{a} = \begin{bmatrix} 2 \\ 4 \\ -1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$.

- 1. Find the area of this triangle.
- 2. Find the altitudes of this triangle.

Find the matrix product
$$AB$$
 if $A = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 7 & x \end{bmatrix}$, $B = \begin{bmatrix} 5 & -1 \\ x & 2 \\ -3 & -1 \end{bmatrix}$.

Then find the largest possible value of det(AB).

Find the scalar triple product of
$$a = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$
, $b = \begin{bmatrix} 7 \\ 3 \\ -5 \end{bmatrix}$, $c = \begin{bmatrix} 3 \\ 4 \\ -3 \end{bmatrix}$.

What is a scalar triple product?

Quiz task

- Is there exists AB? If so, find it.
- Is there exists BA? If so, find it.
- What is A^T and B^T ?
- Is there exists |A|, |B|, |AB| and |BA|? Find all which is possible to find.

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}.$$