Numer indeksu:	
Logika	dla informatyków
Egzamin kor	ńcowy (część licencjacka)
31	stycznia 2012
Zadanie 1 (1 punkt). Jeśli formuła (p \ to w prostokąt poniżej wpisz słowo "TAU wartościowanie niespełniające tej formuły.	$(q \lor r) \Rightarrow (((p \lor q) \land \neg r) \lor (r \land p \land q))$ jest tautologią TOLOGIA". W przeciwnym przypadku wpisz dowolne
	$(r) \Rightarrow r) \land p \land \neg r$ jest sprzeczna, to w prostokąt poniżej wpisz e wpisz dowolne wartościowanie spełniające tę formułę.
Zadanie 3 (1 punkt). W prostokąt ponie dysjunkcyjną postać normalną.	żej wpisz formułę równoważną formule $p \Leftrightarrow \neg q$ i mającą
· · · · · · · · · · · · · · · · · · ·	nła zbudowana ze zmiennych zdaniowych, spójników \Rightarrow i , to w prostokąt poniżej wpisz dowolną taką formułę. W
Zadanie 5 (1 punkt). W prostokąt ponie postaci $\forall x \varphi$ lub $\exists x \varphi$, gdzie φ nie zawiera	żej wpisz równoważną z $(\forall x\ (p(x)\vee q(x)))\Rightarrow \bot$ formułę kwantyfikatorów.

Zadanie 6 (1 punkt). Niech φ i ψ oznaczają formuły rachunku kwantyfikatorów, być może zawierające wolne wystąpienia zmiennej x . Jeśli formuła $(\exists x\varphi) \Rightarrow \Big((\exists x(\varphi \Rightarrow \psi)) \Rightarrow (\exists x\psi)\Big)$ jest prawem rachunku kwantyfikatorów, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym razie wpisz odpowiedni kontrprzykład.
Zadanie 7 (1 punkt). Jeśli inkluzja $A \cap (B \setminus C) \cap D \subseteq B \cap (A \setminus C) \cap D$ zachodzi dla dowolnych zbiorów A, B, C i D , to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.
Zadanie 8 (1 punkt). Jeśli istnieją takie zbiory A, B i C , że $A \cup B \cup C \neq \emptyset$ oraz $A \setminus (B - C) = (A \setminus B) = (A \setminus C)$, to w prostokąt poniżej wpisz przykład takich trzech zbiorów. W przeciwnym wypadku wpisz słowo "NIE".
Zadanie 9 (1 punkt). Jeśli równość $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D)$ zachodzi dla dowolnych zbiorów A, B, C i D , to wpisz w prostokąt poniżej słowo "TAK". W przeciwnym razie wpisz odpowiedni kontrprzykład.
Zadanie 10 (1 punkt). Niech $R = \{\langle 2n, n \rangle \mid n \in \mathbb{N}\}$. W prostokąt poniżej wpisz taką formułę φ , że $\{\langle n, m \rangle \mid \varphi\}$ jest złożeniem relacji RR .

Nume	r indeksu:				
Zadanie 11 (1 punkt). Niedwartość zbioru $\bigcup_{m=5}^{\infty} \bigcap_{n \leq m} A_n$, tzn $\cap, \cup, \forall, \exists$.					wpisz wyliczoną rierające symboli
Zadanie 12 (2 punkty). W w zbiorze $\mathbb{N} \times \mathbb{N}$. W kolumnie , porządku. W kolumnie "równo	"porządek?"	wpisz słowo "	TAK" obok	tych relacji, k	tóre są relacjami
równoważności. W pozostałe po	ola wpisz sło	owo "NIE".			
	I	oorządek?		równoważ	ność?
$\{\langle x, x+1\rangle \mid x \in \mathbb{N}\}$					
$\{\langle x,y\rangle\mid \exists k\in\mathbb{N}\ y=x\cdot k\}$					
Zadanie 13 (1 punkt). Jeśli wpisz wyrażenie definiujące dov		•			
Zadanie 14 (1 punkt). Jeśli $f: A \to B$ i dowolnych zbiorów przypadku wpisz odpowiedni ko	$X, X' \subseteq A, \mathfrak{t}$	to w prostokąt			
Zadanie 15 (1 punkt). W po $(\mathbb{R} \times \mathbb{Z})^{\mathbb{N}}$.	oniższy pros	tokąt wpisz de	efinicję jakiej	kolwiek funkcj	$\text{ii } f: \mathbb{R}^{\mathbb{N}} \times \mathbb{Z}^{\mathbb{N}} \to$

Zadanie 16 (1 punkt).	Roz	ważmy	fun	kcje
---------------------	----	-----	-------	-----	------

$$f : A^{B \times C} \to (A \times B)^C,$$

$$g : C \to A \times B,$$

$$h : B \times C \to A$$

oraz elementy $a \in A$, $b \in B$ i $c \in C$. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne. W pozostałe prostokąty wpisz słowo "NIE".

(f(h))(c)	(f(g))(b,c)	
f(h(b,c),b)	g(f(h))	

Zadanie 17 (1 punkt). Rozważmy funkcję $f: \mathbb{N} \to \mathbb{Z}$ zdefiniowaną wzorem

$$f(n) = \begin{cases} n/2, & \text{jeśli } n \text{ jest parzyste,} \\ -(n+1)/2, & \text{w przeciwnym przypadku.} \end{cases}$$

Jeśli istnieje funkcja odwrotna do f, to w prostokąt poniżej wpisz wyrażenie definiujące tę funkcję. W przeciwnym przypadku wpisz słowo "NIE".

ı		

Zadanie 18 (1 punkt). Wpisz w puste pola poniższej tabelki odpowiednio $\mathbb N$ (jeśli dany zbiór jest równoliczny ze zbiorem liczb naturalnych), $\mathbb R$ (jeśli dany zbiór jest równoliczny ze zbiorem liczb rzeczywistych), lub słowo "NIE" (jeśli dany zbiór nie jest równoliczny ani z $\mathbb R$).

	$\mathbb{N}\times\{0,1,2\}$	$\{a,b\} \times \mathbb{Q}$	$\mathcal{P}(\mathbb{N}\times\{0,1\})$	$\{a,b,c,d,e\}^{\mathbb{N}}$	$\mathbb{R}\setminus\mathbb{Q}$	$\mathcal{P}(\{0,1\})$
Į						

Zadanie 19 (1 punkt). W rodzinie $\mathcal{P}(\mathbb{N})$ wszystkich podzbiorów zbioru \mathbb{N} definiujemy porządek \preceq wzorem $X \preceq Y \iff X = Y \lor (\min(X \dot{-} Y) \in Y)$, gdzie $\dot{-}$ oznacza różnicę symetryczną zbiorów, a $\min(A)$ jest najmniejszą w sensie naturalnego porządku liczbą w zbiorze A. W prostokąt poniżej wpisz zbiory $\emptyset, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}$ w kolejności od najmniejszego do największego w porządku \preceq .

Numer indeksu:	
Oddane zadania:	

Logika dla informatyków

Egzamin końcowy (część zasadnicza)

31 stycznia 2012

Każde z poniższych zadań będzie oceniane w skali od -2 do 27 punktów. Osoba, która nie rozpoczęła rozwiązywać zadania otrzymuje za to zadanie 0 punktów.

Zadanie 20 (27 punktów). Niech V będzie dowolnym zbiorem zmiennych zdaniowych i niech dla dowolnego wartościowania $\sigma: V \to \{\mathsf{T},\mathsf{F}\}$, zmiennej zdaniowej $p \in V$ i wartości logicznej $b \in \{\mathsf{T},\mathsf{F}\}$ napis $\sigma[p \mapsto b]$ oznacza wartościowanie $V \to \{\mathsf{T},\mathsf{F}\}$ dane wzorem

$$\sigma[p\mapsto b](v) = \left\{ \begin{array}{ll} b, & \text{jeśli } v=p, \\ \sigma(v), & \text{w przeciwnym przypadku}. \end{array} \right.$$

Niech \mathcal{F} będzie zbiorem wszystkich formuł rachunku zdań zbudowanych ze zmiennych zdaniowych ze zbioru V i spójników \neg, \land, \lor (oraz nawiasów). Udowodnij, że jeśli w formule $\varphi \in \mathcal{F}$ nie występuje zmienna p, to dla wszystkich wartościowań $\sigma: V \to \{\mathsf{T}, \mathsf{F}\}$ zachodzi równość

$$\hat{\sigma}(\varphi) = \hat{\sigma}[p \mapsto \mathsf{T}](\varphi) = \hat{\sigma}[p \mapsto \mathsf{F}](\varphi).$$

Zadanie 21 (27 punktów). Niech A będzie dowolnym zbiorem. Dla dowolnej relacji binarnej $S \subseteq A \times A$ definiujemy $S^0 = I_A$ (gdzie I_A oznacza relację identyczności na zbiorze A) oraz $S^{n+1} = S^n S$ dla wszystkich $n \ge 0$. Rozważmy dowolną relację binarną $R \subseteq A \times A$. Udowodnij, że relacja

$$\bigcup_{i=0}^{\infty} (R \cup R^{-1})^i$$

jest zawarta w każdej relacji równoważności określonej na zbiorze A zawierającej relację R.

Zadanie 22 (27 punktów). Udowodnij następujący lemat:

Lemat. Niech

$$\mathcal{F} = \{ p \lor \varphi_1, \dots, p \lor \varphi_k, \neg p \lor \psi_1, \dots, \neg p \lor \psi_l, \rho_1, \dots, \rho_m \}$$

będzie takim zbiorem klauzul, że zmienna p nie występuje w klauzulach $\varphi_1, \ldots, \varphi_k$, ψ_1, \ldots, ψ_l , ρ_1, \ldots, ρ_m . Niech \mathcal{F}_R będzie zbiorem wszystkich rezolwent klauzul z \mathcal{F} względem zmiennej p, czyli

$$\mathcal{F}_R = \{ \varphi_i \vee \psi_j \mid i \in \{1, \dots, k\}, j \in \{1, \dots, l\} \}.$$

Jeśli zbiór \mathcal{F} jest sprzeczny, to zbiór $\mathcal{F}_R \cup \{\rho_1, \dots \rho_m\}$ też jest sprzeczny.

Wskaz'owka: W dowodzie nie wprost przyjmij że σ spełnia $\mathcal{F}_R \cup \{\rho_1, \dots \rho_m\}$ i rozważ wartościowania $\sigma[p \mapsto \mathsf{T}]$ i $\sigma[p \mapsto \mathsf{F}]$. Możesz skorzystać z zadania 20, nawet jeśli go nie rozwiązałeś. ¹

 $^{^1}$ Dla ułatwienia przypominamy tu podstawowe definicje: zbiór formuł \mathcal{F} jest sprzeczny, jeśli nie istnieje wartościowanie spełniające wszystkie formuły z \mathcal{F} . Klauzule to alternatywy literałów, literał to zmienna zdaniowa lub zanegowana zmienna zdaniowa.