Friederike Niepmann (2013) "Banking across Borders with Heterogeneous Banks"

Econ86100 Presentation

Thomas Hauner & Paloma Lopez de Mesa

Introduction

- Differences in extensive and intensive margins of heterogeneous banks explained by general equilibrium model of bilateral trade
- Heterogeneity of banks based on Ricardian technology differences (i.e. banking efficiency)
- ► Factor endowment differences, as in Hecksher-Ohlin
- Banks face fixed and variable ("iceberg") costs to operate abroad, similar to Melitz
- Unlike Melitz, banks provide homogeneous services across borders, not heterogeneous goods
- ► Paper contributes to service trade literature in addition to general trade and investment literature on heterogeneous firms
- ► Unlike literature, banking across borders driven by Ricardian and Hecksher-Ohlin differences, not portfolio theory

Setup

- Continuum of capitalists K (bankers or depositors) and laborers L
- Capitalists endowed with 1 unit of capital, laborers provide inelastic labor supply (l = 1)
- ▶ Continuum of entrepreneurs N run perfectively competitive firms, producing single consumption good with production function F(l, z), where z fixed and normalized to 1 in equilibrium
- Assume two periods:
 - 1. In the first, capitalists draw banking efficiency type γ from continuous distribution $g(\gamma)$ and investments are made
 - 2. In the second, firms produce and capitalists and laborers consume

Autarky

- ► $R = (1 + F_z(l, z)) = (1 + F_K(1, \frac{K}{L}))$, where $F_K(1, \frac{K}{L}) = MPK$
- ► Capitalists randomly draw type $\gamma \in [\underline{\gamma}, \overline{\gamma}]$ and choose to become Banker or Depositor (efficiency decreasing in γ)
- ightharpoonup Depositors invest endowment with Bankers, earn R^D
- Bankers:
 - (a) Allocate capital from Depositors to firms
 - (b) Monitor firms at cost γ and earn R. Monitoring induces firms to exert effort and succeed with Pr. λ , instead of shirking and succeeding with Pr. λ_L where $\lambda_L R < 1 < \lambda R$
- ▶ Banker type γ observed by Depositors, and Banker must invest equity v in firms it lends to and must therefore monitor

Autarky

Cont...

► Banker Monitoring Participation Constraint:

$$\lambda Rz - \lambda R^{D}(z - v) - \gamma z \ge \lambda_{L} Rz - \lambda_{L} R^{D}(z - v) \tag{1}$$

Assume: a) free entry into Banking and b) market for financial intermediation clears

Marginal capitalist indifferent between Banking and Depositing:

$$\pi(\gamma^*) = \frac{1}{1 - \frac{R}{R^D} + \frac{\gamma^*}{(\lambda - \lambda_L)R^D}} \frac{\gamma^* \lambda_L}{\lambda - \lambda_L} = \lambda R^D$$
 (6)

Market clearing condition:

$$K \int_{\gamma}^{\gamma^*} n(\gamma)g(\gamma)d\gamma = K \tag{7}$$

Autarky Equilibrium

▶ We solve the system of two equations, (6) & (7), for two unknowns $\{R^D, \gamma^*\}$

$$R^{D} = R - \frac{\gamma^*}{\lambda} = (1 + F_K(1, \frac{K}{L})) - \frac{\gamma^*}{\lambda}$$
 (8)

$$1 = \int_{\underline{\gamma}}^{\gamma^*} \frac{(R - \frac{\gamma^*}{\lambda})(\lambda - \lambda_L)}{\gamma - (\lambda - \lambda_L)\frac{\gamma^*}{\lambda}} g(\gamma) d\gamma \tag{9}$$

- $ightharpoonup \gamma^*$ represents aggregate banking sector efficiency
- As γ^* decreases, fewer banks are needed to intermediate capital
- Ceteris paribus, the banking cutoff, γ^* , increases in γ

Open Economy

- ► Two countries $j \in \{1, 2\}$ differ by:
 - (a) Factor endowments
 - (b) γ^* , banking sector efficiency
 - (c) Note: R, R^D may vary across as well
- ► Assume: depositors, workers, entrepreneurs are immobile
- Bankers choose between raising deposits (lending) at home and/or abroad
- ► **Fixed costs** of operating in foreign country:
 - (a) $f_{ij}^F > f_{ij}^B > f_{ij}^L > 0$ (from j to i), where F is FDI, B is borrowing, L is lending.
- ► Variable costs of operating in foreign country ("iceberg" costs):
 - (a) τR_i where $\tau < 1$
 - (b) ϕR_i^D where $\phi > 1$
- ▶ Banks who open affiliate abroad (FDI) have $\tau = \phi = 1$

Open Economy

Bank Profits

► Cross-Border Lending Bank j, gets deposits from j, lends in i:

$$\pi_{ij}^{X,j}(\gamma_j) = n(\gamma_j, \tau R_i, R_j^D) \frac{\gamma_j \lambda_L}{\lambda - \lambda_L} - f_{ij}^L = \frac{1}{1 + \frac{1}{R_i^D} (\frac{\gamma_j}{\lambda - \lambda_L} - \tau R_i)} (\frac{\gamma_j \lambda_L}{\lambda - \lambda_L}) - f_{ij}^L$$

Cross-Border Borrowing Bank j, gets deposits from i, lends in j:

$$\pi_{ji}^{X,j}(\gamma_j) = n(\gamma_j, R_j, \phi R_i^D) \frac{\gamma_j \lambda_L}{\lambda - \lambda_L} - f_{ij}^B = \frac{1}{1 + \frac{1}{\phi R_i^D} (\frac{\gamma_j \lambda_L}{\lambda - \lambda_L} - R_j)} (\frac{\gamma_j \lambda_L}{\lambda - \lambda_L}) - f_{ij}^B$$

- ► Local Intermediation Bank *j*, gets deposits and lends abroad (in *i*)
- Note: $n(\gamma)$ is number of firms Bank monitors (or total amount of intermediated capital)

Open Economy

► There exist 7 possible Bank operations:

$$\{\pi_{jj}^{j}, \pi_{ij}^{X,j}, \pi_{ii}^{X,j}, \pi_{ji}^{X,j}, \pi_{ij}^{F,j}, \pi_{ii}^{F,j}, \pi_{ji}^{F,j}\}$$

► If Banks operate abroad, **capital flows** across border are:

$$K_{ij} = K^i_{ij} + K^j_{ij}$$

- ► Therefore R_i changes to $R_i = 1 + F_K(1, \frac{K_i + K_{ij}}{L_i})$
- **Bank Sorting**: by type γ_j
 - (a) $\gamma_j < \gamma_i^F < \gamma_i^B < \gamma_i^L < \gamma_i^*$ (cutoffs between operations)
 - (b) As γ_j decreases, extensive and intensive margins increase because Banks more willing to pay f_{ij}

Open Economy Equilibrium

Defined by $\{\gamma_j^*, \gamma_j^L, \gamma_j^B, \gamma_j^F, R_j^D, R_j\} \forall i \in \{1, 2\}, j \in \{1, 2\}$, with optimality and market clearing conditions holding.

- ▶ Paper examines one equilibrium case in which Banks in *j* invest domestic capital abroad (*i*), and Banks in *i* raise capital from abroad (*j*) for investment at home
- Assume: factor endowments such that $\gamma_i^* < \gamma_j^*$ given $\underline{\gamma_i} < \underline{\gamma_j}$ (therefore $R_i^D > R_j^D$)

► Equilibrium sorting:

	country j	country i
Domestic Banks	$\gamma_j^L < \gamma_j \le \gamma_j^*$	$\gamma_i^B < \gamma_i \le \gamma_i^*$
Cross-Border	$\gamma_j^F < \gamma_j \le \gamma_j^L$	$\gamma_i^F < \gamma_i \le \gamma_i^B$
FDI	$\underline{\gamma_j} < \gamma_j \le \gamma_j^F$	$\underline{\gamma_i} < \gamma_i \le \gamma_i^F$

Open Economy Equilibrium

Cont...

► Capital Market clearing in *j*:

$$K_{j}-K_{ij}^{i} = K_{j}\underbrace{\int_{\gamma_{j}}^{\gamma_{j}^{F}} n(\gamma_{j}, R_{i}, R_{j}^{D}) g_{j}(\gamma_{j}) d\gamma_{j}}_{\text{FDI Banks in } j} + K_{j}\underbrace{\int_{\gamma_{j}^{F}}^{\gamma_{j}^{L}} n(\gamma_{j}, \tau R_{i}, R_{j}^{D}) g_{j}(\gamma_{j}) d\gamma_{j}}_{\text{X-lending only Banks in } j}$$

$$+K_{j}\underbrace{\int_{\gamma_{j}^{L}}^{\gamma_{j}^{*}} n(\gamma_{j}, R_{j}, R_{j}^{D}) g_{j}(\gamma_{j}) d\gamma_{j}}_{\text{Domestic Banks in } j}$$

$$(21)$$

Open Economy Equilibrium

Profits by Type Cutoff

- Free entry: $\pi_{kk}^k(\gamma_k^*) = \lambda R_k^D \quad \forall k \in \{1, 2\}$ (22)
- Lending cutoff j: $\pi_{ij}^{L,j}(\gamma_j^L) = \pi_{jj}^j(\gamma_j^L) \text{ if } \gamma_j^L > \underline{\gamma_j}$ (23)
- ► Borrowing cutoff *i*: $\pi_{ij}^{B,i}(\gamma_i^B) = \pi_{ii}^i(\gamma_i^B)$ if $\gamma_i^B > \underline{\gamma_i}$ (24)
- FDI cutoff j: $\pi_{ij}^{F,j}(\gamma_j^F) = \pi_{jj}^{L,j}(\gamma_j^F) \text{ if } \gamma_j^F > \underline{\gamma_j}$ (25)
- FDI cutoff i: $\pi_{ij}^{F,i}(\gamma_i^F) = \pi_{ii}^{B,i}(\gamma_i^F) \text{ if } \gamma_i^F > \underline{\gamma_i}$ (26)
- ► Equilibrium solves system of 12 equations for 12 unknowns $\{\gamma_i^*, \gamma_i^L, \gamma_i^B, \gamma_i^F, R_i^D, R_j\}$ (for both countries)

Open Economy vs. Autarky

Simulation

Solution		
Endogeneous parameters	Autarky value	Equilibrium value
Entry cutoff γ_i^*	0.054175	0.052671
Cross-border lending cutoff γ_i^L	-	0.04009
FDI cutoff γ_i^F	-	0.040038
Entry cutoff γ_i^*	0.051288	0.052543
Cross-border borrowing cutoff γ_i^B	-	0.038877
FDI cutoff γ_i^F	-	0.0380189
Capital flow through banks in $j K_{ij}^{j}$	0	0.2050368
Capital flow through banks in $i K_{ij}^{i}$	0	2.099895
Gross return to capital R_i	1.0795	1.0866183
Gross return to capital R_i	1.09724	1.0900913
Deposit rate R_i^D	1.0245	1.033145
Deposit rate R_i^D	1.04517	1.036748

Under trade liberalization:

- $ightharpoonup \gamma_j^*$ decreases, and γ_i^* increases
- ▶ R_i^D decreases since γ_i^* increased, therefore most efficient Banks grow in size
- $K_{ij}^i \gg K_{ij}^j$ and thus distribution of banks more unequal

Open Economy vs. Autarky: Fig.1

Comparative Statics:

Effect of Host Country (i) Characteristics on Cross-Border Lending Cutoff γ_j^L

- increasing in γ_i
- decreasing in capital abundance of host country $i(\frac{K_i}{L_i}\uparrow)$
- increasing in transport costs (τ)
- ▶ decreasing in fixed costs of cross-border lending (f_{ij}^L) and increasing in fixed costs of FDI (f_{ii}^F)

Comparative Statics

Effect of Host Country (j) Characteristics on Cross-Border Borrowing Cutoff γ_i^B

- increasing in γ_j
- ▶ increasing in capital abundance of host country $j(\frac{K_j}{L_i}\uparrow)$
- decreasing in transport costs (ϕ)
- decreasing in fixed costs of cross-border borrowing (f_{ji}^B) and increasing in fixed costs of FDI (f_{ji}^F)

Comparative Statics

Effect of Host Country Characteristics on FDI Cutoff γ_i^F (γ_i^F)

- increasing in $\underline{\gamma_i}$ ($\underline{\gamma_j}$)
- ▶ ambiguous in relative factor endowment changes because both lending and borrowing are operations of FDI (thus R and R^D are both affected)
- decreasing in transport costs τ (increasing in ϕ)
- increasing in fixed costs of cross-border lending f_{ij}^L (cross-border borrowing f_{ii}^B)
- ▶ increasing in fixed costs of FDI f_{ij}^F (f_{ji}^F)

Empirical Evidence from German Banks

Correlations of three proxy variables for Bank efficiency

	$log(overhead costs_k)$	$log(size_k)$	$log(labor productivity_k)$
$log(overhead costs_k)$	1.0000		
$log(size_k)$	-0.5476	1.0000	
$\log(\text{labor productivity}_k)$	-0.9264	0.5344	1.0000

► Effect of size and efficiency on extensive and intensive margins

	Extensive Margin: Logit Model		Intensive Margin: OLS				
	cr. assets (1)	cr. liabilities (2)	FDI (3)	cr. assets (4)	local assets (5)	cr. liabilities (6)	local liabilities (7)
$\log(\text{size}_k)$	1.023***	1.147***	1.277***	0.794***	0.443***	0.869***	0.877***
	(0.0275)	(0.0315)	(0.130)	(0.0395)	(0.136)	(0.0331)	(0.195)
Observations (Pseudo) \mathbb{R}^2	$\begin{array}{c} 342,\!130 \\ 0.570 \end{array}$	$344,074 \\ 0.494$	112,056 0.667	36598 0.447	258 0.603	60623 0.392	248 0.568
$\log(\text{overhead costs}_k)$	-0.807***	-0.850***	-0.922***	-1.682***	-0.386	-1.347***	0.00515
	(0.135)	(0.126)	(0.253)	(0.232)	(0.390)	(0.232)	(0.889)
Observations	$337,705 \\ 0.483$	339,624	110,606	35758	251	59259	241
(Pseudo) R^2		0.375	0.458	0.408	0.571	0.271	0.476

Clustered standard errors in parentheses. Regressions include country-fixed effects and dummies for bank type.

^{***} p<0.01, ** p<0.05, * p<0.1.

Empirical Evidence from German Banks

Effects of host country characteristics on cross-border lending cutoff

	log(max overhead)	log(min size)	log(min lab. prod.)	log(# banks
	(1)	(2)	(3)	(4)
log(return to capital _i)	0.0154	0.239	0.0501	-0.236
	(0.120)	(0.161)	(0.105)	(0.143)
$log(overhead costs_i)$	0.190**	-0.484***	-0.319***	0.325***
	(0.0846)	(0.116)	(0.0819)	(0.101)
$log(distance_{ij})$	-0.262***	0.285***	0.248***	-0.376***
8((0.0749)	(0.0907)	(0.0813)	(0.0678)
financial freedom $_i$	0.00625**	-0.00450	-0.00758***	0.00788**
manciai irecdomi	(0.00296)	(0.00420)	(0.00264)	(0.00305)
bureaucratic quality,	0.150**	-0.470***	-0.168***	0.377***
1	(0.0686)	(0.118)	(0.0592)	(0.0839)
$log(GDP_i)$	0.208***	-0.244***	-0.181***	0.412***
	(0.0444)	(0.0617)	(0.0435)	(0.0437)
$log(GDP per capita_i)$	-0.0465	0.135	0.0287	-0.130
0(1 1 -/	(0.0950)	(0.149)	(0.0824)	(0.122)
Constant	1.924	15.62***	9.810***	-3.604***
	(1.222)	(1.621)	(1.201)	(1.167)
Observations	86	86	86	86
R^2	0.651	0.724	0.695	0.869

Robust standard errors in parentheses.

^{***} p<0.01, ** p<0.05, * p<0.1.