Fundamental Mathematics (Engineering Mathematics)

Shinichi Nishizawa

Course schedule

- □ Guidance + Differential equations (#1,2)
- Differential equations and physics (#3)
- □ Array and vector (#4, 5)
- Vector analysis (#6, 7)
- □ Complex function theory (#8, 9)
- □ Fourier transform (#10, 11)
- □ Laplace transform (#12, 13)
- □ Final examination and explanation(#14)

□ Score: Exam (70%) + Report (20%) + Attendance (10%)

Motivation

- Many physics can be expressed by vectors
 - □ Good to explain in simple way (if we know vectors)
- Target: understand the meaning of Maxwell's equation
 - \square div $\boldsymbol{D} = \rho$
 - \square $\iint \mathbf{D} \cdot d\mathbf{S} = \iiint \rho dV$ (Gauss's eq of electric field)
 - \Box div $\mathbf{B} = 0$
 - \square $\iint \mathbf{B} \cdot d\mathbf{S} = \iiint \operatorname{div} \mathbf{B} dV$ (Gauss's eq of magnetic field)
 - □ rot $\mathbf{H} = i + \frac{\delta D}{\delta t}$: $\oint \mathbf{H} \cdot d\mathbf{r} = \iint \left(i + \frac{\delta \mathbf{D}}{\delta t}\right) \cdot d\mathbf{S}$ (Ampele's law)
 - \square div $\mathbf{E} = -\frac{\delta B}{\delta t}$: $\oint \mathbf{E} \cdot d\mathbf{r} = -\frac{\delta}{\delta t} \iint \mathbf{B} \cdot d\mathbf{S}$ Faraday's law)

Motivation (1)

- Many physics can be expressed by vectors
 - Good to explain in simple way (if we know vectors)
- Target: understand the meaning of Maxwell's equation
 - \square div $\boldsymbol{D} = \rho$
 - $\square \iint \mathbf{D} \cdot d\mathbf{S} = \iiint \rho dV \text{ (Gauss's eq of electric field)}$
 - **D**: electric flux density, S: area, ρ : charge density, V: volume
 - \Box div $\mathbf{B} = 0$
 - $\square \iint \mathbf{B} \cdot d\mathbf{S} = \iiint \operatorname{div} \mathbf{B} dV \text{ (Gauss's eq of magnetic field)}$
 - B: Magnetic flux density,

Motivation (2)

- □ rot $\mathbf{H} = i + \frac{\delta D}{\delta t}$: $\oint \mathbf{H} \cdot d\mathbf{r} = \iint \left(i + \frac{\delta \mathbf{D}}{\delta t}\right) \cdot d\mathbf{S}$ (Ampele's law)
 - \blacksquare *H*: magnetic field, *i*: current, *D*: electric flux density
- \square div $\mathbf{E} = -\frac{\delta B}{\delta t}$: $\oint \mathbf{E} \cdot d\mathbf{r} = -\frac{\delta}{\delta t} \iint \mathbf{B} \cdot d\mathbf{S}$ Faraday's law)
 - **E**: electromotive force, **B**: Magnetic flux density

Scalar and Vector

- Scalar: Value (only)
- Vector: Value (length) and its direction
 - \square Vector from point *P* to *Q* is: \overrightarrow{PQ}
 - □ P: start point, Q: end point
 - \blacksquare If $\overrightarrow{P'Q'}$ is equal to \overrightarrow{PQ} , \overrightarrow{PQ} and $\overrightarrow{P'Q'}$ is in the same class
 - \square If two points are the same, it is zero vector \overrightarrow{PP} , \overrightarrow{QQ}
- To show the vector, we use **bold**
 - □ Vector: $\boldsymbol{a} = \overrightarrow{PQ}$
 - \square Zero vector $\mathbf{0} = \overrightarrow{PP}$

Add, sub, extension

- Assume $a = \overrightarrow{OA}$, $b = \overrightarrow{OB}$, $c = \overrightarrow{OC}$, where O, A, B, C composes parallelogram
 - □ Define: $-a = -\overrightarrow{OA} = \overrightarrow{AO}$
 - □ Define: $\mathbf{a} + \mathbf{b} = \overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$
 - □ Define: $\mathbf{a} \mathbf{b} = \overrightarrow{OA} \overrightarrow{OB} = \overrightarrow{OC'}$
- \Box For real value λ , its product to the vector \boldsymbol{a} is
 - $\Box a\lambda = \lambda a$
- □ If the three points P, Q, R are on the same line: $\overrightarrow{PQ} = \lambda \overrightarrow{PR}$
- □ If the two vectors are in parallel: $a\lambda = b$
 - Geometric vector space
 - Vector space: more general and abstract

Vector space

- ightharpoonup L is called vector space if element of L satisfy following definition and notation
 - \square Addition: result of a + b is unique $(a, b \in L)$
 - \square Scalar multiply: result of $a\lambda$ is unique $(a \in L, \lambda \in R)$
- Both satisfy following:
 - \square Association law: (a + b) + c = a + (b + c)
 - \square Exchange low: a + b = b + a
 - □ Identity element: a + o = a
 - \square inverse element: a + (-a) = 0

Component

- $lue{}$ Vector $m{a}$ is also defined by its components $[a_1, \cdots, a_n]$
 - \square n: its #dimension
- \blacksquare For the xyz-coordinate system, $\boldsymbol{a} = [a_x, a_y, a_z]$
 - This also satisfy the rules of vector space
- □ Or, using unit vector (基本ベクトル) *i, j, k*, for xyz-coord. system,
 - $\blacksquare \ a = a_1 i + a_2 j + a_3 k$, where $a_1 = |a_x|, a_2 = |a_y|, a_3 = |a_z|$
- Length: $|a| = \sqrt{a_x^2 + a_y^2 + a_z^2}$, unit vector u = a/|a|
- These definitions can be easily implemented as array of computer program
- $\Box \ln \text{C-language: } a[3] = [a_x, a_y, a_z]$

Inner product (内積)

- □ For two vectors $\mathbf{a} = \overrightarrow{OA}$, $\mathbf{b} = \overrightarrow{OB}$, $\mathbf{a} \cdot \mathbf{b} = \mathbf{c} = |\mathbf{a}| |\mathbf{b}| \cos\theta$ is called as inner product in scaler value $(\theta = \angle AOB)$
- Inner products has following characteristics

$$\Box a \cdot b = b \cdot a$$

$$\square a \cdot (b+c) = a \cdot b + a \cdot c$$

$$\square \lambda a \cdot b = a \cdot \lambda b = \lambda (a \cdot b)$$

 \Box For unit vector i, j, k,

$$\square i \cdot i = j \cdot j = k \cdot k = 1$$

$$\Box i \cdot j = j \cdot k = k \cdot i = 0$$

Outer product (外積)

- □ (Assume right-hand side coordinate system)
- \blacksquare For $\boldsymbol{a} = \overrightarrow{OA}$, $\boldsymbol{b} = \overrightarrow{OB}$, $\boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b}$: outer product
 - $\Box |c| = |a||b|\sin\theta$

- \square If \boldsymbol{a} and \boldsymbol{b} are in parallel ($\sin\theta=0$), \boldsymbol{a} or $\boldsymbol{b}=\boldsymbol{o}$, $c=\boldsymbol{o}$
- □ Theorem:

$$\square a \times a = o$$

$$\Box a \times b = -b \times a$$

$$\square \lambda a \times b = a \times \lambda b = \lambda (a \times b)$$

$$\square i \times i = j \cdot j = k \cdot k = 0$$

$$\square i \times j = k, j \cdot k = i, k \cdot i = j$$

Vector area(面積ベクトル)

- Vector area: vector combining an area quality w/ dimension
- Assume surface S on signed area in two dimension system
 - $lue{}$ Vector area $oldsymbol{S}$ can be expressed with its unit vector $oldsymbol{n}$
 - $\Box S = Sn$
 - \blacksquare Rotation of vector n express the sign
 - anticlockwise (right-hand screw): plus
 - □ clockwsise (left-hand screw): minus
 - \square If S is subset of S_i , the vector area S can be

$$\square S = \sum S_i n_i$$

Projection (射影)

- Area vector is used to calculate surface integral
 - Treat fluxs of a vector filed through a surface
- \blacksquare Projection area A on plane S can be calculated by dot product with target plane unit normal *m*
 - $\square A = S \cdot m$
- \blacksquare If the two surface has same xy and angle θ for z-coordinate,

$$\Box A = |S| \cos \theta$$

Volume(体積)

- Volume V can be calculated by area vector
 - □ Calculate volume *V* of tilted cylinder
 - Bottom plane: D
 - Area vector: S
 - Direction: A
 - \blacksquare Assume its angle: θ
 - □ Hight $h = |A| \cos \theta$
 - □ Volume $V = h|S| = |A||S| \cos \theta = A \cdot S$
- □ Volume $V = A \cdot S$ express the amount of flow A which punctulate the plane D

Fundamental Mathematics

- Derivation of vector-

Derivation for vector func.

- \blacksquare Vector function F(t): vector F is a function of scalar t
 - □ If vector **F** is continuous to the *t*: **F** is continuous
- \square Assume vector $\mathbf{F}(t) = \overrightarrow{OP}$, where O is origin (fixed point)
 - □ Point P draw a curved line

15

Characteristics

- lacksquare A limit: if vector A satisfy $\lim_{n \to \infty} |A_n A| = 0$ for $A_0 \cdots A_n$
 - $\square \lim_{n \to \infty} A_n = A$, and A is a limit of $A_0 \cdots A_n$
- A limit: if vector func. F(t) has const. vector A, and it satisfy $\lim_{t\to t_0} |F(t) A| = 0$ for $t\to t_0$
 - $\square \lim_{t \to t_0} \mathbf{F}(t) = \mathbf{A}$, and \mathbf{A} is a limit of $\mathbf{F}(t)$ for $t \to t_0$
 - \Box For $F(t) = F_1(t)i + F_2(t)j + F_3(t)k$, $A = A_1i + A_2j + A_3k$
- □ Continuity: if vector func. F(t) satisfy $\lim_{t \to t_0} F(t) = F(t_0)$ for $t \to t_0$, F(t) is continuous

Characteristics

- Derivative(導関数): if $\lim_{\Delta t \to 0} \frac{\Delta F}{\Delta t} = \lim_{\Delta t \to 0} \frac{F(t_0 + \Delta t) F(t_0)}{\Delta t}$ is available, this is called as <u>differential coefficient</u> $F'(t_0)$
 - For each t, the vector function $\mathbf{F}'(t_0)$ or $\frac{d\mathbf{F}}{dt}$ is called as derivative or derivative vector
 - $lue{}$ Similarly, derivative can be taken as $m{F}'(t_0)$ and $m{F}^{(n)}(t_0)$
- Geometric meaning
 - □ Assume $\overrightarrow{OP} = \mathbf{F}(t)$, $\overrightarrow{OQ} = \mathbf{F}(t + \Delta t)$,

 - □ Take $\Delta t \rightarrow 0$ then ΔF becomes tangent

17

Theorems for derivation

■ Vector func. F(t) and G(t), scalar func f(t), satisfy followings

$$\square \text{ (sum)} : \frac{d}{dt}(\mathbf{F} + \mathbf{G}) = \frac{d}{dt}\mathbf{F} + \frac{d}{dt}\mathbf{G}$$

- \square (scalar prod.) : $\frac{d}{dt}(f\mathbf{F}) = \frac{df}{dt}\mathbf{F} + f\frac{d}{dt}\mathbf{F}$
- \square (inner prod.) : $\frac{d}{dt}(\mathbf{F} \cdot \mathbf{G}) = \frac{d\mathbf{F}}{dt} \cdot \mathbf{G} + \mathbf{F} \cdot \frac{d\mathbf{G}}{dt}$
- \square (outer prod.) : $\frac{d}{dt}(\mathbf{F} \times \mathbf{G}) = \frac{d\mathbf{F}}{dt} \times \mathbf{G} + \mathbf{F} \times \frac{d\mathbf{G}}{dt}$
- $\Box \text{ For } \boldsymbol{F} = F_1 \boldsymbol{i} + F_2 \boldsymbol{j} + F_3 \boldsymbol{k}, \ \frac{d\boldsymbol{F}}{dt} = \frac{dF_1}{dt} \boldsymbol{i} + \frac{dF_2}{dt} \boldsymbol{j} + \frac{dF_3}{dt} \boldsymbol{k}$
- lacksquare If ${\it F}$ is constant, $\frac{d{\it F}}{dt}$ is ${\it o}$, or perpendicular s.t. ${\it F}\cdot\frac{d{\it F}}{dt}=0$

High order derivatives, partial difference

High order derivatives can defined as similar to 1st order

$$\square \frac{d^2F}{dt^2}, \frac{d^3F}{dt^3}, \cdots, \frac{d^nF}{dt^n}$$

Partial difference also defined like derivation

$$\square A = A(u,v), \frac{\delta A}{\delta u}, \frac{\delta A}{\delta v}, \frac{\delta^2 A}{\delta v^2}, \frac{\delta^2 A}{\delta v \delta u}, \frac{\delta^2 A}{\delta u \delta v}, \frac{\delta^2 A}{\delta u^2}$$

 \square Total difference of A(u, v) can be defined as

$$\Box \delta A(u,v) = \frac{\delta A}{\delta v} du + \frac{\delta A}{\delta u} dv$$

 \blacksquare It approx. small delta of δA by small delta of du, $du \lor$

$$\Box$$
 For $\mathbf{A} = A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k}$, $\delta \mathbf{A} = \delta A_1 \mathbf{i} + \delta A_2 \mathbf{j} + \delta A_3 \mathbf{k}$,

Gradient of scalar

- □ Scalar function: f(x, y, z) can be defined in unique
 - \blacksquare This field is called scalar field f
 - Distribution of temperature, mass, voltage
- Vector function: F(x, y, z) can be defined in unique
 - □ This field is called vector field **F**
 - Electric field, magnetic field, gravity field
- □ Gradient of scalar: grad $f = \nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$
 - □ ∇: Hamilton operator

Equipotential surface

- □ If group of points P(x, y, z) satisfy f(x, y, z) = c (c: const), P is called equipotential surface
 - \square In the case of $f(x, y, z) = x^2 + y^2 + z^2$
 - Surface of sphere
- In electro-magnetics, electron (q) create divergence of electric lines (electric field: E), and electric line create equipotential voltage (V)

Divergence of vector

- For vector $\mathbf{F}(x, y, z) = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k}$, $\operatorname{div} \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} = \nabla \cdot \mathbf{F}$ is called as $\operatorname{\underline{divergence}}$
- \square Vector F, G, scalar f satisfy following conditions
 - $\square \operatorname{div} (\mathbf{F} + \mathbf{G}) = \operatorname{div} (\mathbf{F}) + \operatorname{div} (\mathbf{G})$
 - $\square \operatorname{div}(f\mathbf{G}) = \operatorname{grad}(f) \cdot \mathbf{G} + f \operatorname{div}\mathbf{G}$
- Physical meaning
 - \square divF > 0: something spout (flow out)
 - \square divF < 0: something swallowed (flow in)

Divergence of vector

- \blacksquare Assume flow F of small box dxdydz
 - Assume flow **F** of area $d\mathbf{S}_1 = (-dydz, 0,0)$ at $x \frac{dx}{2}$
 - Assume flow **F** of area $d\mathbf{S}_2 = (+dydz, 0,0)$ at $x + \frac{dx}{2}$

$$\Box \mathbf{F} \cdot d\mathbf{S} = \mathbf{F} \cdot d\mathbf{S}_2 - \mathbf{F} \cdot d\mathbf{S}_1$$

$$= F_1\left(x + \frac{dx}{2}, y, z\right) dydz +$$

$$F_1\left(x - \frac{dx}{2}, y, z\right) (-dydz)$$

$$\Box = \frac{\partial F_1}{\partial x} dx dy dz$$

□ Diff. flow in () and out ()

Rotation of vector

- For vector $\mathbf{F}(x,y,z) = F_1(x,y,z)\mathbf{i} + F_2(x,y,z)\mathbf{j} + F_3(x,y,z)\mathbf{k}$, rot $\mathbf{F} = \left(\frac{\partial F_3}{\partial y} \frac{\partial F_2}{\partial z}\right)\mathbf{i} + \left(\frac{\partial F_1}{\partial z} \frac{\partial F_3}{\partial x}\right)\mathbf{j} + \left(\frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y}\right)\mathbf{k} = \nabla \times \mathbf{F}$ is called as rotation
- $rot \mathbf{F} = (rot_1 \mathbf{F})\mathbf{i} + (rot_2 \mathbf{F})\mathbf{j} + (rot_3 \mathbf{F})\mathbf{k}$
- \square Vector F, G, scalar f satisfy following conditions
 - rot (F + G) = rot (F) + rot (G)
- Physical meaning
 - \square rot F > 0: right-hand side (screw) rotation (\otimes)
 - \square rotF < 0: left-hand side (screw) rotation (\odot)

Physical meaning of rotation

- Link physical notation to the rotation of vector
- \blacksquare Focus 3rd term (\mathbf{k}) of rotation

$$\square \frac{\partial F_2}{\partial x} = \lim_{\Delta x \to 0} \frac{F_2(x + \Delta x) - F_2(x)}{\Delta x}$$

$$\square \frac{\partial F_1}{\partial y} = \lim_{\Delta y \to 0} \frac{F_1(y + \Delta y) - F_1(y)}{\Delta y}$$

- \square If $\frac{\partial F_2}{\partial x} > 0$, it generates right-hand side rotation
- \square If $-\frac{\partial F_1}{\partial v} > 0$, it generates right-hand side rotation
- $\Box \left(\frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y}\right) k > 0$ means right-hand side rotation is

25

Examples

- \Box For $\boldsymbol{r} = x\boldsymbol{i} + y\boldsymbol{j} + z\boldsymbol{k}$,
 - □ (Q1) Calculate div *r*

$$\Box \text{ (A1) div } \mathbf{r} = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} = 3$$

- (Volume is positive for all xyz)
- □ (Q2) Calculate rot *r*

(No rotating vector here)

Examples

- - \square (Q1) Calculate div \boldsymbol{v}

$$\square$$
 (A1) div $\boldsymbol{v} = \frac{\partial (-y)}{\partial x} + \frac{\partial x}{\partial y} = 0$

- No flow in/out, rotation
- \square (Q2) Calculate rot \boldsymbol{v}

Exercise

■ Assume a, b is constant vector, |r(t)| = r(t), calculate its derivation

$$\square rr + (a \cdot r)b$$

$$\Box \frac{r}{r^2}$$

Calculate gradient for following functions

$$\Box f = xz^3 - x^2y$$
, calculate ∇f at point $P(1, -2, 2)$

$$\Box f = x^2y^2 - 2xz^3$$
, calculate ∇f at point $P(1, -2, 1)$

Calculate divergence of following functions

$$\Box x^2 y i - 2y^2 z^2 j + 3z^3 x^3 k$$

Calculate rotation of following functions

$$\square x^2 i - 2xz j + y^2 z k$$

sample solution

Math (a)
$$(1)$$

$$(r)r + (a \cdot r)b)' = r'r + r'r + (a \cdot r')b$$

$$(\frac{1}{r^2})' = \frac{1}{r^2} - \frac{2r'}{r^3}r$$

$$(2) \nabla f = \frac{0}{0} i i + \frac{0}{0} i j + \frac{0}{0} i k$$

$$= (z^3 - 2x i)i i + (-x^2)i j + (3x z^2)k$$

$$= (+6 + 4)i + (-1)i j + 12k$$

$$= (2i - j + 12k)$$

$$\Delta f = (2x J^{2} - 2z^{3})i(+(2x^{2}J)i) + (-6xz^{2})k$$

$$= (8-2)i(+(-4)i) + (-6)k$$

$$= +6i(-4i) - 6k$$

(5)
$$f = \chi^{2} i (-2\chi z) + J^{2} z k$$

 $rot f = \left(\frac{\partial f_{3}}{\partial z} - \frac{\partial f_{2}}{\partial z}\right) i (+ \left(\frac{\partial f_{1}}{\partial z} - \frac{\partial f_{3}}{\partial x}\right) j + \left(\frac{\partial f_{2}}{\partial x} - \frac{\partial f_{1}}{\partial z}\right) i k$
 $= \left(2J^{2} - (-2\chi)\right) i (+ \left(0 - 0\right) j + \left((-2z) - 0\right) k$
 $= 2(J^{2} + \chi) i (-2z) k$

Conclusion

- Learn derivation of vectors
 - Definition of derivation
 - **□** Gradient
 - Divergence
 - Rotation

□ nishizawa@aoni.waseda.jp

30