

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Отчет по выполнению практического задания № 2

Тема:

«ЭМПИРИЧЕСКИЙ АНАЛИЗ СЛОЖНОСТИ ПРОСТЫХ АЛГОРИТМОВ СОРТИРОВКИ»

Дисциплина: «Структуры и алгоритмы обработки данных»

Выполнил студент: Боргачев Т.М.

Группа: ИНБО-10-23

СОДЕРЖАНИЕ

СОДЕР	РЖАНИЕ	.2
1 ФОРМ	МУЛИРОВКА ЗАДАЧИ	.3
1.1	Цель	.3
1.2	Задание 1	.3
1.3 3	адание 2	.3
1.4 3	адание 3	.4
2 ПРО	DEКТИРОВАНИЕ И РЕАЛИЗАЦИЯ	.5
2.1	Задание 1	.5
2.1	.1 Реализация алгоритма в виде функции	.5
2.1	.3 Вычислительная сложность алгоритма	.6
2.1	.4 Ёмкостная сложность алгоритма	.7
2.2	Задание 2	.8
2.2	2.1 Оценка вычислительной сложности алгоритма просто	ьй
сортирон	вки в наихудшем и наилучшем случаях	.8
2.3	Задание 31	0
2.3	3.1 Разработка алгоритма1	0
2.3	3.2 Определение функции роста алгоритма1	0
2.3	3.3 Ёмкостная сложность алгоритма1	1
2.3	3.4 Эмпирическое исследование второго алгоритма1	. 1
2.3	3.5 Графики функции роста T(n) двух алгоритмов сортировки 1	2
3 ВЫВ	ОДЫ1	3
4 ИНФ	ОРМАЦИОННЫЕ ИСТОЧНИКИ1	4

1 ФОРМУЛИРОВКА ЗАДАЧИ

1.1 Цель

Актуализация знаний и приобретение практических умений по эмпирическому определению вычислительной сложности алгоритмов.

1.2 Задание 1

Оценить эмпирически вычислительную сложность алгоритма простой сортировки на массиве, заполненном случайными числами (средний случай).

- 1. Составить функцию простой сортировки одномерного целочисленного массива A[n], используя алгоритм согласно варианту индивидуального задания (2): 1, 2 задание алгоритм простого обмена («пузырек», Exchange sort); 3 задание алгоритм простой вставки (Insertion Sort). Провести тестирование программы на исходном массиве n=10.
 - 2. Используя теоретический подход, определить для алгоритма:
 - а. Что будет ситуациями лучшего, среднего и худшего случаев.
 - b. Функции роста времени работы алгоритма от объёма входа для лучшего и худшего случаев.
- 3. Провести контрольные прогоны программы массивов случайных чисел при $n=100,\,1000,\,10000,\,100000$ и 1000000 элементов с вычислением времени выполнения T(n) (в миллисекундах/секундах).
- 4. Провести эмпирическую оценку вычислительной сложности алгоритма, для чего предусмотреть в программе подсчет фактического количества критических операций T_{Π} как сумму сравнений C_{Π} и перемещений M_{Π} .
- 5. Построить график функции роста T_{π} этого алгоритма от размера массива n.
 - 6. Определить ёмкостную сложность алгоритма.
- 7. Сделать вывод об эмпирической вычислительной сложности алгоритма на основе скорости роста функции роста.

1.3 Задание 2

Оценить вычислительную сложность алгоритма простой сортировки в

наихудшем и наилучшем случаях.

- 1. Провести дополнительные прогоны программы на массивах при n = 100, 1000, 10000, 100000 и 1000000 элементов, отсортированных:
 - а. строго в убывающем порядке значений.
 - b. строго в возрастающем порядке значений.
- 2. Сделать вывод о зависимости (или независимости) алгоритма сортировки от исходной упорядоченности массива.

1.4 Задание 3

Сравнить эффективность алгоритмов простых сортировок

- 1. Выполнить разработку и программную реализацию второго алгоритма согласно индивидуальному варианту (2).
- 2. Аналогично заданиям 1 и 2 сформировать таблицы с результатами эмпирического исследования второго алгоритма в среднем, лучшем и худшем случаях (на тех же массивах, что и в заданиях 1 и 2).
 - 3. Определить ёмкостную сложность алгоритма от п.
- 4. На одном сравнительном графике отобразить функции $T_{\Pi}(n)$ двух алгоритмов сортировки в худшем случае.
- 5. Аналогично на другом общем графике отобразить функции $T_n(n)$ двух алгоритмов сортировки для лучшего случая.
- 6. Выполнить сравнительный анализ полученных результатов для двух алгоритмов.

2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ

2.1 Задание 1

2.1.1 Реализация алгоритма в виде функции

Напишем отдельно функции для заполнения массива случайными значениями рис. 1 и вывода массива на экран рис. 2.

```
int* RandChisla(int n) {
    srand(time(NULL));
    int* x = new int[n];
    for (int i = 0; i < n; i++) {
        x[i] = rand() % 100;
    }
    return(x);
}</pre>
```

Рисунок 1 – Функция заполнения массива случайными значениями

```
void Output(int* y, int n) {
    for (int i = 0; i < n; i++) {
        cout << y[i] << " ";
    }
    cout << endl;
}</pre>
```

Рисунок 2 – Функция вывода массива на экран

Функция, реализующая сортировку пузырьком представлена на рис. 3.

```
void bubble(int* x, int n)
{
    for (int i = 0; i < n - 1; i++)
        for (int j = 0; j < n - i - 1; j++)
        if (x[j] > x[j + 1])
        swap(x[j], x[j + 1]);
}
```

Рисунок 3 – Реализация алгоритма в виде функции

Результаты тестирования алгоритма на массиве со случайными элементами размера 10 представлены на рис. 4.

```
Введите количество элементов n:
10
Первоначальный массив:
46 81 85 88 97 50 7 78 95 50
Отсортированный массив:
7 46 50 50 78 81 85 88 95 97
```

Рисунок 4 – Результаты тестирования алгоритма

Алгоритм работает корректно.

2.1.2 Определение функции роста алгоритма

Лучший случай для алгоритма: в массиве только один элемент. Средний случай для алгоритма: массив заполнен случайно. Худший случай: элементы массива расположены по убыванию. Посчитаем количество операций для лучшего и худшего случаев с помощью табл. 1.

Таблица 1 – Подсчет количества операций

Оператор	Кол-во выполнений оператора в строке	
	в лучшем случае	в худшем случае
for (int i=0; i <n-1; i++)="" td="" {<=""><td>1</td><td>n</td></n-1;>	1	n
for (int j=0; j <n-i-1; j++)="" td="" {<=""><td>0</td><td>$(\sum_{j=0}^{n-1} t_j) + 1$</td></n-i-1;>	0	$(\sum_{j=0}^{n-1} t_j) + 1$
if $(x[j]>x[j+1])$ {	0	$(\sum_{j=0}^{n-1} t_j)$
$swap(x[j], x[j+1]) \}$	0	$(\sum_{j=0}^{n-1} t_j)$
}		
}		

Таким образом, функция роста алгоритма T(n) в лучшем случае будет равна 1, а в худшем случае $T(n) = n + 1 + (3\sum_{j=0}^{n-1} t_j) = n + 1 + (3*n*(n-1)/2) = n + 1 + 1.5n^2 - 1.5n = 1.5n^2 - 0.5n + 1.$

2.1.3 Вычислительная сложность алгоритма

Для проведения эмпирической оценкой вычислительной сложности алгоритма заполним и будем использовать табл. 2.

Таблица 2 – Время выполнения алгоритма и количество операций

n	Т(n), мс	$T_{\Pi} = \boldsymbol{C}_{\Pi} + \boldsymbol{M}_{\Pi}$
100	1	9373
1000	2	1012653
10000	216	99673661
100000	28571	1380270839
1000000	2984380	15302708390

График зависимости функции роста T(n) от значений n представлен на рис. 5.

Рисунок 5 – График зависимости функции роста от п

2.1.4 Ёмкостная сложность алгоритма

Так как не требуется дополнительного массива для решения задачи, то требуется только один массив длиной n (ёмкостная сложность n).

2.2 Задание 2

2.2.1 Оценка вычислительной сложности алгоритма простой сортировки в наихудшем и наилучшем случаях

Результаты тестирования алгоритма в наихудшем и наилучшем случаях представлены соответственно в табл. 3 и 4.

Таблица 3 – Тестирование алгоритма в наихудшем случае

n	T(n), Mc	$T_{\Pi} = \boldsymbol{C}_{\Pi} + \boldsymbol{M}_{\Pi}$
100	1	14861
1000	3	1489457
10000	300	148997699
100000	34609	2015051561
1000000	3434910	2999992000005

Таблица 4 – Тестирование алгоритма в наилучшем случае

n	Т(n), мс	$T_{\Pi} = \boldsymbol{C}_{\Pi} + \boldsymbol{M}_{\Pi}$
100	1	5049
1000	2	500499
10000	72	50004999
100000	7201	705082703
1000000	766918	1784293663

Код, реализующий сортировку отсортированных массивов представлен на рис. 6.

```
int n = 10:
cout << "n = " << n << endl;
int* x = RandChisla(n);
sort(x, x + n);
cout << "Отсортированный изначальный массив: \n";
Output(x, n);
time_t begin = clock();
bubble1(x, n);
time_t end = clock();
double TIME = (double)(end - begin) / CLOCKS_PER_SEC;
cout << "Затраченное время: " << TIME * 1000 << endl;
cout << "n = " << n << endl;
int* y = RandChisla(n);
cout << "Отсортированный конечный массив: \n";
Output(y, n);
sort(y, y + n, comp());
time_t begin1 = clock();
bubble1(y, n);
time_t end1 = clock();
cout << "Отсортированный конечный массив: \n";
Output(y, n);
double TIME1 = (double)(end1 - begin1) / CLOCKS_PER_SEC;
cout << "Затраченное время: " << TIME1 * 1000 << endl;
```

Рисунок 6 – Код сортировки лучшего и худшего случаев

Результат работы кода представлен на рис. 7.

```
n = 10
Отсортированный изначальный массив:
16 17 28 33 33 63 66 82 93 95
Количество сравнений и перестановок: 54
Отсортированный конечный массив:
16 17 28 33 33 63 66 82 93 95
Затраченное время: 1
n = 10
Отсортированный изначальный массив:
95 93 82 66 63 33 33 28 17 16
Количество сравнений и перестановок: 142
Отсортированный конечный массив:
16 17 28 33 33 63 66 82 93 95
```

Рисунок 7 – Результат работы алгоритма в лучшем и худшем случаях

Таким образом, можно утверждать, что время работы алгоритма линейно зависит от исходной упорядоченности массива.

2.3 Задание 3

2.3.1 Разработка алгоритма

Код на языке программирования C++, реализующей алгоритм сортировки простой вставки представлен на рис. 8.

Рисунок 8 – Алгоритм простой вставки

Результат тестирования алгоритма при n=10 представлены на рис.9.

```
n=10
Первоначальный массив:
2354 432 3241 532 1235 674 253 324 134 7543
Отсортированный массив:
134 253 324 432 532 674 1235 2354 3241 7543
```

Рисунок 9 – Тест алгоритма

Можно сделать вывод о корректной работе алгоритма.

2.3.2 Определение функции роста алгоритма

Рассчитаем функцию роста алгоритма, определив количество выполняемых операций с помощью табл. 5.

Таблица 5 - Кол	ичество операций	алгоритма
-----------------	------------------	-----------

Оператор	Кол-во выполнений оператора в строке	
	в лучшем случае	в худшем случае
int key, j;	2	2
for (int $i = 1$; $i < n$; $i++$) {	1	n
key = x[i];	0	n - 1

Оператор	Кол-во выполнений оператора в строке	
	в лучшем случае	в худшем случае
j = i - 1;	0	n - 1
while $(j \ge 0 \&\& x[j] \ge key)$ {	0	$(\sum_0^{n-2} t_j)$
x[j+1] = x[j];	0	$(\sum_0^{n-2} t_j)$
j}	0	$(\sum_0^{n-2} t_j)$
x[j+1] = key;	0	n-1

Таким образом, функция роста в худшем случае $T(n) = 4n-1 + (n-2)*(n-1)/2 = 4n-1 + 0.5n^2 - 1.5n + 1 = 0.5n^2 + 2.5n$, а в лучшем случае T(n) = 3.

2.3.3 Ёмкостная сложность алгоритма

Так как не требуется дополнительного массива для решения задачи, то требуется только один массив длиной n (ёмкостная сложность n).

2.3.4 Эмпирическое исследование второго алгоритма

Результаты тестирования алгоритма в среднем, наилучшем и наихудшем случаях представлены соответственно в табл. 5, 6 и 7.

Таблица 5 – Тестирование алгоритма в среднем случае

n	Т(n), мс	$T_{\Pi} = C_{\Pi} + M_{\Pi}$
100	1	5366
1000	1	499076
10000	43	49605128
100000	4198	648864620
1000000	428095	1228144492

Таблица 6 – Тестирование алгоритма в наилучшем случае

n	T(n), Mc	$T_{\Pi} = \boldsymbol{C}_{\Pi} + \boldsymbol{M}_{\Pi}$
100	1	396
1000	1	3996
10000	1	39996
100000	1	399996

n	T(n), Mc	$T_{\Pi} = \boldsymbol{C}_{\Pi} + \boldsymbol{M}_{\Pi}$
1000000	3	3999996

Таблица 7 – Тестирование алгоритма в наихудшем случае

n	T(n), Mc	$T_{\Pi} = \boldsymbol{C}_{\Pi} + \boldsymbol{M}_{\Pi}$
100	1	10202
1000	1	993240
10000	80	99030152
100000	8425	1310373614
1000000	856645	250002500000

2.3.5 Графики функции роста T(n) двух алгоритмов сортировки График функций роста алгоритмов в худшем случае представлен на рис. 10.

Рисунок 10 – Графики функций роста алгоритмов в худшем случае График функций роста алгоритмов в лучшем случае представлен на рис. 11.

Рисунок 11 - Графики функций роста алгоритмов в лучшем случае

3 ВЫВОДЫ

На основе скорости роста функции роста первого и второго алгоритма, можно сделать вывод о том, что их эмпирическая вычислительная сложность квадратичная.

Время работы обоих алгоритмов также линейно зависит от того, насколько отсортирован первоначальный массив.

На основе графиков функций роста двух алгоритмов, можно сделать вывод о том, что алгоритм пузырьковой сортировки как в лучшем, так и в худшем случае требует все большей вычислительной мощности с ростом значения n, нежели алгоритм простой вставки.

Таким образом, алгоритм сортировки простой вставки эффективнее алгоритма пузырьковой сортировки.

4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ

- 2. Рысин М.Л., Сартаков М.В., Туманова М.Б., Введение в структуры и алгоритмы обработки данных. Ч. 1 учебное пособие, 2022, МИРЭА Российский технологический университет. 2022, 109с. URL: file:///C:/Users/borga/Downloads/Рысин%20М.Л.%20и%20др.%20Введение%20в %20структуры%20и%20алгоритмы%20обработки%20данных.%20Ч.%201%20-%20учебное%20пособие,%202022.pdf (дата обращения: 15.02.2024). Режим доступа: Электронно-облачная система Cloud MIREA РТУ МИРЭА. Текст: электронный.