

AULA 8 – ÁLGEBRA RELACIONAL

PROFA. DRA. LEILA BERGAMASCO

CC5232 – Banco de Dados

NA AULA DE HOJE

- Álgebra relacional Operações fundamentais (União e Renomear)
- Álgebra relacional Operações adicionais
- Exercícios

OPERAÇÃO RENOMEAR

 Pode haver ambiguidade quando a mesma relação aparece mais de uma vez em uma consulta. Nesse caso deve-se renomear a relação

$$\Pi_{rua,cidade}(\sigma_{nome="Tais"}(Conta))$$

nome	numero-cliente	cidade	rua
Taís	45	Marília	ABC
Flávia	34	Marília	DEF
Caio	786	Marília	ABC

$$\Pi_{rua,cidade}(\sigma_{nome="Tais"}(\rho_{clienteTais}(Conta)))$$

Para encontrar outros clientes que moram na mesma rua e cidade que Taís:

OPERAÇÃO RENOMEAR

Para encontrar outros clientes que moram na mesma rua e cidade que Taís:

$$\Pi_{conta.nome}(\sigma_{clienteTais.rua=conta.rua^{clienteTais.cidade=conta.cidade}) \\ \left(Conta~X \left(\Pi_{rua,cidade}(\sigma_{nome="Tais"}(\rho_{clienteTais}(Conta))) \right) \right)$$

Conta				cliente	Tais

nome	numero-ciiente cida	ade rua	cidade	II ua
Taís	45 Ma	rília ABC	Marília	
Flávia	34 Ma	rilia DEF	Marília	ABC
Caio	786 Ma	rília ABC	Marília	ABC

Conta

nome	numero-cliente	cidade	rua
Taís	45	Marília	ABC
Flávia	34	Marília	DEF
Caio	786	Marília	ABC

<mark>nome</mark> Taís

Caio

COMPATIBILIDADE ENTRE RELAÇÕES

- Duas relações A(a1, a2, .. an) e B(b1, b2, ..bn) são ditas compatíveis em domínio se ambas têm o mesmo grau n e se:
 - Dom (ai) = Dom (bi), I <= i <= n.</p>

Exemplo:

Aluno (nome, idade, curso)
Professor (nome, idade, depto)
Funcionario (nome, depto, idade)

Dom(nome) = char(30)

Dom(idade) = int

Dom(curso) = char(5)

Dom(depto) = char(5)

Aluno é compatível com Professor, mas não é com Funcionário.

COMPATIBILIDADE ENTRE RELAÇÕES

- A semântica de uma relação não é importante, mas sim sua estrutura.
- No caso, a ordem dos atributos vale mais do que o fato dos objetivo dos atributos serem distintos.

Exemplo:

Aluno (nome, idade, curso)
Professor (nome, idade, depto)
Funcionario (nome, depto, idade)

Dom(nome) = char(30)

Dom(idade) = int

Dom(curso) = char(5)

Dom(depto) = char(5)

Aluno é compatível com Professor, mas não é com Funcionário.

OPERAÇÃO UNIÃO

- Reúne resultados de duas ou mais consultas
- São eliminadas tuplas duplicadas
- As relações devem ser compatíveis:
 - As relações devem ter o mesmo grau (número de atributos)
 - Os domínios do i-ésimo atributo da relação r1 e do i-ésimo atributo da relação r2 devem ser os mesmos.

 $r_1 \cup r_2 \cup ...r_n$

Conta

nome	numero-cliente	cidade	Nome-agencia
Taís	45	Marília	Centro
Flávia	34	Marília	Jardins
Caio	786	Marília	Casanova

numero-emp	numero-cliente	nome-agencia
1	45	Centro
2	12	Centro
3	65	Casanova

nu	m	01	-		-Ii	OF	40
				_	чи	CI	

45

12

OPERAÇÃO UNIÃO

Obter todos os números de clientes da agência "Centro"

Obter todos os números de clientes que tem conta na agência "Centro"

$$\Pi_{numero-cliente}(\sigma_{nome-agencia="Centro"}(Conta))$$

Obter todos os números de clientes que tem empréstimo na agência "Centro"

$$\Pi_{numero-cliente}(\sigma_{nome-agencia="Centro"}(Emprestimo))$$

União das duas consultas

Conta

nome	numero-cliente	cidade	nome-agencia
Taís	 45	Marília	Centro
Flávia	34	Marília	Jardins
Caio	786	Marília	Casanova

Emprestimo

numero-emp	numero-cliente	nome-agencia
1	45	Centro
2		Centro
3	65	Casanova

$$\Pi_{numero-cliente}(\sigma_{nome-agencia="Centro"}(Conta)) \cup \Pi_{numero-cliente}(\sigma_{nome-agencia="Centro"}(Emprestimo))$$

OPERAÇÃO DIFERENÇA DE CONJUNTO

$$r_1 - r_2$$

Obter os números de clientes da agência "Centro" que tenham um empréstimo, mas não tenham uma conta

$$\Pi_{numero-cliente}(\sigma_{nome-agencia="Centro"}(Emprestimo)) - \Pi_{numero-cliente}(\sigma_{nome-agencia="Centro"}(Conta))$$

Permite encontrar tuplas que estão em uma relação e não estão em outra.

Conta

nome	numero-cliente	cidade	Nome-agencia
Taís	45	Marília	Centro
Flávia	34	Marília	Jardins
Caio	786	Marília	Casanova

numero-emp	numero-cliente	nome-agencia
1	45	Centro
2	12	Centro
3	65	Casanova

OPERAÇÕES ADICIONAIS

OPERAÇÕES ADICIONAIS

- Operações fundamentais são suficientes para expressar qualquer consulta
 - Problema: consultas muito longas
 - Solução: definição de operações adicionais

OPERAÇÃO INTERSECÇÃO DE CONJUNTOS

$$r_1 \cap r_2$$

Obter os números de clientes da agência "Centro" que tenham um empréstimo e uma conta

Conjunto de tuplas que pertencem a duas relações

Conta (<u>número-conta</u>, número-cliente, cidade, nome-agência) Empréstimo (<u>número-empréstimo</u>, número-cliente, nome- agência)

Conta

nome	numero-cliente	cidade	Nome-agencia
Taís	45	Marília	Centro
Flávia	34	Marília	Jardins
Caio	786	Marília	Casanova

numero-emp	numero-cliente	nome-agencia
1	45	Centro
2	12	Centro
3	65	Casanova

OPERAÇÃO INTERSECÇÃO DE CONJUNTOS

$$r_1 \cap r_2 \longrightarrow r_1 - (r_1 - r_2)$$

 $\Pi_{numero-cliente}(\sigma_{nome-agencia="Centro"}(Emprestimo)) - (\Pi_{numero-cliente}(\sigma_{nome-agencia="Centro"}(Emprestimo)) - (\Pi_{numero-cliente}(\sigma_{nome-agencia="Centro"}(Emprestimo)) - (\Pi_{numero-cliente}(\sigma_{nome-agencia="Centro"}(Emprestimo)))$

Como fazer com o que vimos até agora?

Conta (<u>número-conta</u>, número-cliente, cidade, nome-agência) Empréstimo (<u>número-empréstimo</u>, número-cliente, nome- agência)

Conta

nome	numero-clie	nte	cidade	Nome-agencia
Taís		\	Marília	
Flávia		34	Marília	Jardins
Caio		786	Marília	Casanova

numero-emp	numero-cliente	nome-agencia
1	45	Centro
2	12	Centro
3	65	Casanova

OPERAÇÃO INTERSECÇÃO DE CONJUNTOS

$$r_1 \cap r_2 \longrightarrow r_1 - (r_1 - r_2)$$

 $\Pi_{numero-cliente}(\sigma_{nome-agencia="Centro"}(Emprestimo)) - (\Pi_{numero-cliente}(\sigma_{nome-agencia="Centro"}(Emprestimo)) - (\Pi_{numero-cliente}(\sigma_{nome-agencia="Centro"}(Emprestimo)) - (\Pi_{numero-cliente}(\sigma_{nome-agencia="Centro"}(Emprestimo)))$

$$\Pi_{numero-cliente}(\sigma_{nome-agencia="Centro"}(Emprestimo)) \cap \Pi_{numero-cliente}(\sigma_{nome-agencia="Centro"}(Conta))$$

Como fazer com o que vimos até agora?

Conta (<u>número-conta</u>, número-cliente, cidade, nome-agência) Empréstimo (<u>número-empréstimo</u>, número-cliente, nome- agência)

Conta

nome	numero-cliente	cidade	Nome-agencia
Taís	45	Marília	Centro
Flávia	34	Marília	Jardins
Caio	786	Marília	Casanova

numero-emp	numero-cliente	nome-agencia
1	45	Centro
2	12	Centro
3	65	Casanova

- Geralmente uma consulta que envolve um produto cartesiano inclui uma operação de seleção no resultado desse produto.
 - Função da Junção Natural: simplificar certas consultas que envolvem produto cartesiano

$$r_1 |X| r_2$$

$$r_1 X r_2$$

Obter todos os números de clientes que têm um empréstimo e as cidades onde moram.

 $\Pi_{Cliente.numero-cliente,cidade}(\sigma_{cliente.numero-cliente=Emprestimo.numero-cliente}$ (ContaXEmprestimo))

Antes da junção natural...

numero-cliente cidade 45 Marília

Empréstimo (<u>número-empréstimo</u>, <u>número-cliente</u>, valor, agência) Cliente (<u>número-cliente</u>, nome-cliente, rua, cidade)

Cliente

•			
numero-cliente	nome	cidade	Nome- agencia
45		Marília	
34	Flávia	Marília	Jardins
786	Caio	Marília	Casanova

numero-emp	numero-cliente	nome-agencia
1	45	Centro
2	12	Centro
3	65	Casanova

Vantagens:

- forma um produto cartesiano de seus dois argumentos
- força uma igualdade sobre os atributos que aparecem em ambos os esquemas
- remove colunas duplicadas

No exemplo:

- Empréstimo (número-empréstimo, número-cliente, nome-agência)
- Cliente (número-cliente, nome-cliente, cidade, nome-agencia)
- Apenas número-cliente é comum nas duas relações
- A junção natural considera apenas tuplas que têm o mesmo valor para este atributo

Logo....

Obter todos os números de clientes que têm um empréstimo e as cidades onde moram.

$$r_1 |X| r_2$$

 $\Pi_{Cliente.numero-cliente,cidade}(\sigma_{cliente.numero-cliente=Emprestimo.numero-cliente})$

(ContaXClienteGerente))

(Conta | X | Emprestimo)

 $\Pi_{Cliente.numero-cliente,cidade}(Conta | X | Emprestimo)$

Cliente

Emprestimo

numero-cliente cidade 45 Marília

			Nome-	
numero-cliente	nome	cidade	agencia	numero-emp
45	Taís	Marília	Centro	2

Empréstimo (número-empréstimo, número-cliente, valor, agência)

Cliente (<u>número-cliente</u>,nome-cliente,rua,cidade)

Cliente

numero-cliente	nome	cidade	Nome- agencia
45	Taís	Marília	Centro
34	Flávia	Marília	Jardins
786	Caio	Marília	Casanova

numero-emp	numero-cliente	nome-agencia
1	45	Centro
2	12	Centro
3	65	Casanova

OPERAÇÃO DE DIVISÃO

- Usada em consultas que usam frases do tipo "para todos" na formação da condição.
- Estratégia resto 0. Só retorna tuplas que satisfazem toda a condição.

$$r_1 \div r_2$$

Obter todos os clientes que têm uma conta em todas as agências da cidade de Fortaleza

Agência (número-agência, nome-agência, cidade-agência)
Conta (número-conta, número-cliente, saldo, número-agência)

Conta

Numero-conta	Numero-cliente	Saldo	Numero agencia
101	45	1000	1
102	45	500	2
103	27	200	2
333	204	100	3

Numero-agencia	Nome-agencia	cidade-agencia
1	Centro	Fortaleza
2	Centro	Fortaleza
3	Casanova	Paraíva

Obter todos os clientes que têm uma conta em todas as agências da cidade de Fortaleza

OPERAÇÃO DE DIVISÃO

I. Obter todas as agencias de Fortaleza

$$r_1 \div r_2$$

$$\Pi_{numero-agencia}$$
 ($\sigma_{cidade-agencia="Fortaleza"}(Agencia)$)

2. Encontrar todos os pares número-cliente e número-agência para todos os clientes que possuem alguma conta em alguma das agências

$$\Pi_{numero-cliente,numero-agencia}(Conta)$$

Agência (número-agência, nome-agência, cidade-agência)

Conta (número-conta, número-cliente, saldo, número-agência)

Conta

Numero-conta	Numero-cliente	Saldo	Numero agencia
101	45	1000	1
102	45	500	2
103	27	200	2
333	204	100	3

Numero-agencia	Nome-agencia	cidade-agencia
1	Centro	Fortaleza
2	Centro	Fortaleza
3	Casanova	Paraíva

 $r_1 \div r_2$

OPERAÇÃO DE DIVISÃO

3. Obter clientes que estão em r2 com cada número de agência em r1 : operação divisão.

$$\Pi_{numero-agencia}$$
 $(\sigma_{cidade-agencia="Fortaleza"}(Agencia))$

 $+ \Pi_{numero-cliente,numero-agencia}(Conta)$

Numero-cliente 45

Numero-cliente	Numero agencia
45	1
45	2
27	2
204	3

Conta

Numero-conta	Numero-cliente	Saldo	Numero agencia
101	45	1000	1
102	45	500	2
103	27	200	2
333	204	100	3

Numero-agencia	Nome-agencia	cidade-agencia
1	Centro	Fortaleza
2	Centro	Fortaleza
3	Casanova	Paraíva

OPERAÇÃO DE ATRIBUIÇÃO

- Usada para armazenar o resultado de uma consulta em uma variável temporária.
 - Finalidade: usar a variável temporária em operações subsequentes.
 - O resultado é somente armazenado, não sendo mostrado ao usuário.

$$temp \leftarrow < consulta >$$

Obter todos os clientes que têm uma conta em todas as agências da cidade de Fortaleza

Agência (número-agência, nome-agência, cidade-agência)
Conta (número-conta, número-cliente, saldo, número-agência)

Conta

Numero-conta	Numero-cliente	Saldo	Numero agencia
101	45	1000	1
102	45	500	2
103	27	200	2
333	204	100	3

Numero-agencia	Nome-agencia	cidade-agencia
1	Centro	Fortaleza
2	Centro	Fortaleza
3	Casanova	Paraíva

Obter todos os clientes que têm uma conta em todas as agências da cidade de Fortaleza

 $r_1 \div r_2$

ODED A CÃO DE ATDIRI II CÃO

1. Obter todas as agencias de Fortaleza

$$Agencia - Fortaleza \leftarrow \Pi_{numero-agencia} (\sigma_{cidade-agencia="Fortaleza"}(Agencia))$$

2. Encontrar todos os pares número-cliente e número-agência para todos os clientes que possuem alguma conta em alguma das agências

$$Cliente - Agencia \leftarrow \Pi_{numero-cliente,numero-agencia}(Conta)$$

Agência (número-agência, nome-agência, cidade-agência)

Conta (número-conta, número-cliente, saldo, número-agência)

Conta

Numero-conta	Numero-cliente	Saldo	Numero agencia
101	45	1000	1
102	45	500	2
103	27	200	2
333	204	100	3

Numero-agencia	Nome-agencia	cidade-agencia
1	Centro	Fortaleza
2	Centro	Fortaleza
3	Casanova	Paraíva

Obter todos os clientes que têm uma conta em todas as agências da cidade de Fortaleza

 $r_1 \div r_2$

ODED A CÃO DE ATDIRI II CÃO

3. Obter clientes que estão em r2 com cada número de agência em r1 : operação divisão.

$Agencia - Fortaleza \div Cliente - Agencia$

Numero-cliente 45

Numero-cliente	Numero agencia
45	1
45	2
27	2
204	3

Numero-agencia	
	1
	2
	2

Conta

Numero-conta	Numero-cliente	Saldo	Numero agencia
101	45	1000	1
102	45	500	2
103	27	200	2
333	204	100	3

Numero-agencia	Nome-agencia	cidade-agencia
1	Centro	Fortaleza
2	Centro	Fortaleza
3	Casanova	Paraíva

EXERCÍCIOS

Considere os seguintes esquemas de relação:

- Professor (<u>prof-numero</u>, prof-nome, prof-rua, prof-cidade, prof-telefone)
- Aluno (<u>alu-numero</u>, alu-nome, alu-rua, alu-cidade)
- Disciplina (<u>disc-codigo</u>, disc-nome, disc-quant-aulas-semana)
- Matricula(alu-numero, disc-codigo, ano, semestre, nota, frequencia)
- Professor Disciplina (prof-numero, disc-codigo)
- Usando os conceitos de Álgebra Relacional (renomear), escreva expressões para encontrar:
- Os nomes de todos os professores que moram na mesma cidade que a professora Rita.
- Os nomes de todos os alunos que moram na mesma cidade que a professora Rita.
- Os nomes de todas as disciplinas que têm a quantidade de aulas maior que a quantidade de aulas da disciplina "Banco de Dados".
 - Os nomes de todos os alunos que tiraram nota maior que o aluno "Bruno Meira" na disciplina 986.
- → Os nomes de todos os alunos que tiraram nota maior que a aluna "Maria Martins" na disciplina "Sistemas Operacionais".

OBRIGADO E ATÉ A PRÓXIMA AULA!