Support Vector Machines

Angélica Veloza Suan Juan Carlos Galeano

Departamento de Ingeniería de Sistemas e Industrial Universidad Nacional de Colombia

Aprendizaje de Máquina Maestría en Ingeniería - Ingeniería de Sistemas y Computación 2007

Agenda

Support Vector Machines

Resultados del Ejercicio

Discriminante Lineal

$$W \cdot x - b = 0$$

Máxima Separación

$$W \cdot x - b = 1 \rightarrow W \cdot x_i - b \ge 1$$

 $W \cdot x - b = -1 \rightarrow W \cdot x_i - b \le -1$
 $c_i (W \cdot x_i - b) \ge 1$

Problema de Optimización

- **Primal** minimizar $\frac{1}{2} \|W\|^2$ sujeta a $c_i (W \cdot x_i b) \ge 1$
- Dual

maximizar
$$\sum_{i=1}^{n} \alpha_i - \sum_{i,j} \alpha_i \alpha_j c_i c_j x_i^T x_j$$
 sujeta a $\alpha_i \ge 0$ donde $w = \sum_i \alpha_i c_i x_i$

Ejecución Predeterminada

0 vectores de soporte

setosa	versicolor	virginica	
50	0	0	setosa
0	49	1	versicolor
0	5	45	virginica

Kernel Polinomial Cuadrático

18 vectores de soporte (setosa, versicolor)6 vectores de soporte (setosa, virginica)36 vectores de soporte (versicolor, virginica)

	virginica	versicolor	setosa
setosa	0	0	50
versicolor	3	47	0
virginica	47	3	0

Referencias

E. Alpaydin.

Introduction to Machine Learning.

The MIT Press, 2004.

Wikipedia.

Support Vector Machine.

http://en.wikipedia.org/wiki/Support vector machine.