(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001 年2 月15 日 (15.02.2001)

PCT

(10) 国際公開番号 WO 01/10439 A1

(51) 国際特許分類?: A61K 31/40, 31/4025, 31/445, 31/4468, 31/4525, 31/4535, 31/454, 31/422, 31/404, 31/4155, 31/4245, 31/5377, 31/4545, 31/4709, 31/4184, 31/427, 31/506, 31/433, 31/423, 31/4192, 31/429, 31/53, A61P 37/08, 29/00, 31/18, 11/08, 43/00 // C07D 207/14, 211/56, 211/58, 211/26, 401/04, 401/06, 401/12, 401/14, 403/06, 403/12, 405/06, 405/12, 405/14, 409/12, 409/14, 413/06, 413/14, 417/06, 487/04, 495/06, 495/04, 513/04

(21) 国際出願番号:

PCT/JP00/05260

(22) 国際出願日:

2000年8月4日 (04.08.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願平11/220864 1999 年8 月4 日 (04.08.1999) JI

- (71) 出願人 (米国を除く全ての指定国について): 帝人株 式会社 (TEIJIN LIMITED) [JP/JP]; 〒541-0054 大阪府 大阪市中央区南本町1丁目6番7号 Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 塩田辰樹 (SH-IOTA, Tatsuki) [JP/JP]; 〒191-0065 東京都日野市地が丘4丁目3番2号 帝人株式会社 東京研究センター内 Tokyo (JP). 須藤正樹 (SUDOH, Masaki) [JP/JP]; 〒475-0837 愛知県半田市有楽町7丁目106-1 ユートピアタウン112D Aichi (JP). 横山朋典 (YOKOYAMA,

Tomonori) [JP/JP]. 室賀由美子 (MUROGA, Yumiko) [JP/JP]. 上村 孝 (KAMIMURA, Takashi) [JP/JP]. 中西顕伸 (NAKANISHI, Akinobu) [JP/JP]; 〒191-0065 東京都日野市旭が丘4丁目3番2号 帝人株式会社 東京研究センター内 Tokyo (JP).

- (74) 代理人: 前田純博(MAEDA, Sumihiro); 〒100-0011 東京都千代田区内幸町2丁目1番1号 帝人株式会社 知的財産センター内 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

- (54) Title: CYCLIC AMINE CCR3 ANTAGONISTS
- (54) 発明の名称: 環状アミンCCR3拮抗剤

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow R^{4} \longrightarrow (CH_{2})_{q} - G - R^{6} \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(I)

(57) Abstract: Drugs containing as the active ingredient cyclic amine derivatives represented by general formula (I), pharmaceutically acceptable acid addition salts thereof or pharmaceutically acceptable C₁₋₆ alkyl adducts thereof. These drugs are efficacious in preventing and treating diseases in which CCR3 participates such as asthma and allergic rhinitis.

(57) 要約:

下記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分として含有する医薬。喘息、アレルギー性鼻炎などのCCR3が関与する疾患を治療、予防する作用を有する。

明細書

環状アミンCCR3拮抗剤

5 技術分野

本発明は、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮 膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、潰瘍性大腸炎およびク ローン病などの炎症性腸疾患、好酸球増加症、好酸球性胃腸炎、好酸球増加性腸症 、好酸球性筋膜炎、好酸球性肉芽腫、好酸球性膿疱性毛包炎、好酸球性肺炎、およ び好酸球性白血病など、好酸球、好塩基球、活性化T細胞などの増加、組織への浸 潤が病気の進行、維持に主要な役割を演じている疾患、またはHIV(ヒト免疫不 全ウイルス)の感染に起因するエイズ(AIDS:後天性免疫不全症候群)に対す る治療薬および/または予防薬として効果が期待できるCCR3拮抗剤に関する。

15 背景技術

10

20

25

30

近年、気管支喘息などのアレルギー性疾患の本質的な病態は慢性炎症であるという概念が確立され、なかでも好酸球の炎症局所への集積がその大きな特徴の一つとしてとらえられている(例えば、Busse, W. W. J. Allergy Clin. Immunol., 1998, 102, S17-S22; 藤澤隆夫, 現代医療, 1999, 31, 1297など参照)。例えば、サルの喘息モデルにおいて抗接着分子(I C A M - 1)抗体を投与することにより、好酸球の集積が抑えられ、遅発型の喘息症状発現が抑制されることからもアレルギー性疾患における好酸球の重要性が強く示唆されている(Wegner, C. D. et al., Science, 1990, 247, 456)。

この好酸球の集積/遊走を引き起こす特異的走化因子としてエオタキシンが同定された (例えば、Jose, P. J., et al., J. Exp. Med., 1994、179, 881; Garcia-Zepda, E. A et al., Nature Mcd., 1996, 2, 449; Ponath, P. D. et al., J. Clin. Invest., 1996, 97, 604; Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725など参照)。 さらに、エオタキシンは好酸球上に発現しているCCR3レセプターに結合し作用を発現することが解明され、また、エオタキシン-2、RANTES (regulated upon activation normal T-cell expressed and secretedの略称)、MCP-2 (monocyte chemoattractant protein-2の略称)、MCP-3 (

monocyte chemoattractant protein—3の略称)、MCP—4 (monocyte chemoatt ractant protein—4の略称)などの走化性因子もエオタキシンよりも作用強度は弱いもののCCR3を介してエオタキシンと同様の作用を示し得ることが知られている (例えば、Kitaura、M. et al., J. Biol. Chem., 1996, 271, 7725; Daugherty、B. L. et al., J. Exp. Med., 1996, 183, 2349; Ponath, P. D. et al., J. Exp. Med., 1996, 183, 2349; Ponath, P. D. et al., J. Exp. Med., 1996, 183, 2437; Hiath, H. et al., J. Clin. Invest., 1997, 99, 178; Patel, V. P. et al., J. Exp. Med., 1997, 185, 1163; Forssmann, U. et al., J. Exp. Med. 185, 2171, 1997など参照)。

5

10

15

エオタキシンの好酸球への作用は、遊走惹起のみでなく、接着分子受容体(CD11b)の発現増強(例えば、Tenscher, K. et al., Blood, 1996, 88, 3195など参照)、活性酸素の産生促進(例えば、Elsner, J. et al., Eur. J. Immunol., 1996, 26, 1919など参照)、EDN (eosinophil-derived neurotoxineの略称)の放出促進(El-Shazly, et al., Int. Arch. Allergy Immunol., 1998, 117 (suppl. 1), 55参照)など、好酸球の活性化に関する作用も報告されている。また、エオタキシンは骨髄からの好酸球およびその前駆細胞の血中への遊離を促進する作用を有することも報告されている(例えば、Palframan, R. T. et al., Blood, 1998, 91, 2240など参照)。

エオタキシンおよびCCR3が気管支喘息などのアレルギー性疾患において重要 な役割を演じていることが、多くの報告により示されている。例えば、マウス喘息 モデルにおいて抗エオタキシン抗体により好酸球浸潤が抑制されること(Gonzalo, 20 J.-A. et al., J. Clin. Invest., 1996, 98, 2332参照)、マウス皮膚アレルギー モデルにおいて抗エオタキシン抗血清により好酸球浸潤が抑制されること(Teixeir a, M. M. et al., J. Clin. Invest., 1997, 100, 1657) 、マウスモデルにおいて 抗工オタキシン抗体が肺肉芽腫の形成を抑制すること(Ruth, J. H. et al., J. I mmunol. 1998. 161. 4276参照)、エオタキシン遺伝子欠損マウスを用いた喘息モ 25 デルおよび間質性角膜炎モデルにおいて好酸球の浸潤が抑制されること(Rothenber g, M. E. et al., J. Exp. Med., 1997, 185, 785参照)、喘息患者の気管支では健 常者に比べエオタキシンおよびCCR3の発現が、遺伝子レベル、蛋白レベルとも に亢進していること (Ying, S. et al., Eur. J. Immunol., 1997, 27, 3507参照) 、慢性副鼻腔炎患者の鼻上皮下組織ではエオタキシンの発現が亢進していること(A 30 m. J. Respir. Cell Mol. Biol., 1997, 17, 683参照)などが報告されている。

WO 01/10439 PCT/JP00/05260

また、炎症性大腸疾患である潰瘍性大腸炎およびクローン病の炎症部位において、エオタキシンが多く発現していることが報告されていることから(Garcia-Zepda, E. A. et al., Nature Med., 1996, 2, 449参照)、これらの疾患においてもエオタキシンが重要な役割を担っていることがわかる。

5 これらのデータから、エオタキシンは、CCR3を介して好酸球を病変部位に集積、活性化することにより、好酸球が病変の進展に深く関わっていると想定され得る疾患、例えば、気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、潰瘍性大腸炎およびクローン病などの炎症性腸疾患、好酸球増加症、好酸球性胃腸炎、好酸球増加性 間症、好酸球性筋膜炎、好酸球性肉芽腫、好酸球性膿疱性毛包炎、好酸球性肺炎、および好酸球性白血病などの発症、進展、維持に深く関与していることが強く示唆されている。

さらに、CCR3レセプターは好酸球のみならず好塩基球、Th2リンパ球上にも発現しており、エオタキシンによりこれらの細胞の細胞内カルシウムイオン濃度上昇および細胞遊走が惹起されることが報告されていることから、エオタキシンおよびCCR3は、これらの細胞を集積させ、活性化することによってもアレルギー性疾患など、これらの細胞が関与する疾患の発症、進展、維持に関わっていると考えられる(例えば、Sallusto, F. et al., Science, 1997, 277, 2005; Gerber, B. O. et al., Current Biol., 1997, 7, 836; Sallusto, F. et al., J. Exp. Med., 1998, 187, 875; Uguccioni, M. et al., J. Clin. Invest., 1997, 100, 1137; Yamada, H. et al., Biochem Biophys. Res. Commun., 1997, 231, 365など参照)。

15

20

25

30

したがって、エオタキシンのCCR3に対する結合を阻害する化合物、すなわち、CCR3拮抗剤は、エオタキシンに代表されるCCR3のリガンドの標的細胞への作用を阻害することにより、アレルギー性疾患、炎症性腸疾患などの疾患の治療薬および/または予防薬として有用であるといえるが、そのような作用を有する薬剤は現在知られてない。

また、HIV-1 (ヒト免疫不全ウイルス-1)が宿主細胞に感染する際にCCR3を利用することも報告されていることから、CCR3拮抗剤はHIVウイルス感染に起因するエイズ (AIDS:後天性免疫不全症候群)の治療薬もしくは予防薬としても有用であると考えられる(例えば、et al., Choe, H. et al., Cell, 19

WO 01/10439 PCT/JP00/05260

4

96. 85, 1135; Doranz, B. J. et al., Cell, 1996, 85, 1149参照)。

最近、キサンテン-9-カルボキサミド誘導体(W09804554参照)、ピペラジンまたはピペリジン誘導体(EP903349; W00029377; W00031033; W00035449; W00035451; W00035452; W00035453; W00035454; W00035876; W00035877参照)、ピロリジン誘導体(W00031032参照)、フェニルアラニン誘導体(W09955324; W099553300; W00004003; W00027800; W00027835; W00027843参照)、およびその他の低分子化合物(W09802151参照)が、CCR3レセプターに対する拮抗活性を有することが報告されている。しかしながら、これらの化合物は、本発明で用いる化合物とは異なる。また、本発明で用いる化合物は、W09925686に記載されている化合物と同一のものであるが、これらの化合物がCCR3レセプターに対する拮抗活性を有することは知られていない。

発明の開示

5

10

したがって、本発明の目的は、エオタキシンなどのCCR3のリガンドが標的細 15 胞上のCCR3に結合することを阻害する活性を有する低分子化合物を提供することである。

本発明のさらなる目的は、CCR3拮抗剤を用いて、エオタキシンなどのCCR3のリガンドが標的細胞上のCCR3に結合することが病因の一つであるような疾患の治療法および/または予防法を提供することである。

20 本発明者らは、鋭意研究を重ねた結果、アリールアルキル基を有する環状アミン 誘導体、その薬学的に許容し得る $C_1 \sim C_6$ アルキル付加体、または薬学的に許容さ れ得る酸付加体が、エオタキシンなどのCCR3のリガンドの標的細胞に対する結 合を阻害する活性を有することを発見し、さらにはそれらの化合物がCCR3が関 与すると考えられる疾患の治療薬もしくは予防薬となり得ることを知見して、さら に研究を進めた結果、本発明を完成した。

すなわち、本発明によれば、下記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3拮抗作用を有する薬剤が提供される。

WO 01/10439 PCT/JP00/05260

5

$$\begin{array}{c}
R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6} \\
R^{2} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{m} \longrightarrow (CH_{2})_{p} \longrightarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(1)

5

30

[式中、R¹はフェニル基、C₃-C₃シクロアルキル基、またはヘテロ原子として酸 素原子、硫黄原子、および/もしくは窒素原子を1~3個有する芳香族複素環基を 表し、 L記 R ¹におけるフェニル基または芳香族複素環基は、ベンゼン環、またはへ テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1~3個有する 10 芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R¹におけるフ エニル基、Co~Coシクロアルキル基、芳香族複素環基、または縮合環は、任意個 のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモ イル基、C,-C。アルキル基、C。-C。シクロアルキル基、C。-C。アルケニル基 、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_3 - C_5$ アルキレン基、 C_2 15 -C₄アルキレンオキシ基、C₁-C₃アルキレンジオキシ基、フェニル基、フェノキ シ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、C, -C,アルカノイル基、C,-C,アルコキカルボニル基、C2-C7アルカノイルオ キシ基、C,-C,アルカノイルアミノ基、C2-C7 N-アルキルカルバモイル基、 C₄-C₆N-シクロアルキルカルバモイル基、C₁-C₆アルキルスルホニル基、C 20 3-C。(アルコキシカルボニル) メチル基、N-フェニルカルバモイル基、ピペリ ジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカルボニル基、式 :-NH(C=O)O-で表される2価基、式:-NH(C=S)O-で表される 2価基、アミノ基、モノ(C,-C,アルキル)アミノ基、もしくは、ジ(C,-C, アルキル)アミノ基で置換されていてもよく、これらのフェニル基、C3-C8シク 25 ロアルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲ ン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、C,-C。アルキル基、 もしくはC,-C6アルコキシ基によって置換されていてもよい。

 R^2 は、水素原子、 $C_1 - C_6$ アルキル基、 $C_2 - C_7$ アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、 R^2 における $C_1 - C_6$ アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 $C_1 - C_6$ アルキル基、もしくは

 $C_1 - C_6$ アルコキシ基によって置換されていてもよい。ただし、j = 0 のときは R^2 はヒドロキシ基ではない。

j は 0 - 2 の整数を表す。

kは0-2の整数を表す。

5 mは2-4の整数を表す。

nは0または1を表す。

 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい C_1-10 C_6 アルキル基を表す。

R⁴およびR⁵は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、 またはC,-C。アルキル基を表し、R⁴およびR⁵におけるC₁-C₆アルキル基は、 任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カ ルバモイル基、メルカプト基、グアニジノ基、 $C_3 - C_8$ シクロアルキル基、 $C_1 - C$ $_6$ アルコキシ基、 C_1 - C_6 アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基 15 、C1-C6アルキル基、C1-C6アルコキシ基、もしくはベンジルオキシ基によっ て置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジ ルオキシカルボニル基、C₂-C₇アルカノイル基、C₂-C₇アルコキシカルボニル 基、 $C_2 - C_7$ アルカノイルオキシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_2 - C_7 N$ -アルキルカルバモイル基、C₁-C₅アルキルスルホニル基、アミノ基、モノ(C₁ -C₆アルキル) アミノ基、ジ(C₁-C₆アルキル) アミノ基、もしくは(ヘテロ原 子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族 複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換され ていてもよく、あるいは、R⁴およびR⁵は、いっしょになって3-6員環状炭化水 素を形成していてもよい。 25

pは0または1を表す。

q は 0 または 1 を表す。

Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-N$ 30 R^7- 、-NH-CO-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 と

いっしょになってC2-C5アルキレン基を形成していてもよい。

R⁶は、フェニル基、C₃-C₈シクロアルキル基、C₃-C₆シクロアルケニル基 、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒 素原子を1-3個有する芳香族複素環基を表し、上記R⁶におけるフェニル基、ベン ジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子 、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合し て縮合環を形成していてもよく、さらに上記R⁶におけるフェニル基、C₃-C₃シク ロアルキル基、C₃-C₆シクロアルケニル基、ベンジル基、芳香族複素環基、また は縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニ 10 トロ基、チオシアナト基、カルボキシル基、カルバモイル基、トリフルオロメチル 基、C,-C,アルキル基、C,-C,シクロアルキル基、C,-C,アルケニル基、C ,-C,アルコキシ基、C,-C,シクロアルキルオキシ基、C,-C,アルキルチオ基 、С₁-С₃アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基 、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、 15 3-フェニルウレイド基、C2-C7アルカノイル基、C2-C7アルコキシカルボニ ル基、C。-C,アルカノイルオキシ基、C。-C,アルカノイルアミノ基、C。-C, N-アルキルカルバモイル基、C₁-C₆アルキルスルホニル基、フェニルカルバモ イル基、N, N-ジ (C_1-C_6 アルキル)スルファモイル基、アミノ基、モノ (C_1 -C₆アルキル) アミノ基、ジ(C₁-C₆アルキル) アミノ基、ベンジルアミノ基、 $C_3 - C_3$ (アルコキシカルボニル) アミノ基、 $C_1 - C_6$ (アルキルスルホニル) ア 20 ミノ基、もしくはビス(C₁-C₆アルキルスルホニル)アミノ基により置換されて いてもよく、これらのフェニル基、C3-C8シクロアルキル基、C3-C8シクロア ルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任意 個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、 25 $C_1 - C_6$ アルキル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、モノ($C_1 - C_6$ $C_1 - C_6$ $C_1 - C_6$

 $C_1 = C_6$ アルキルを、 $C_1 = C_6$ アルコキンを、 $C_1 = C_6$ アルキル)アミノ基によって置換されていてもよい。]

さらに、本発明によれば、上記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3が関与する疾患の治療薬もしくは予防薬が提供される。

ここに、上記式(I)で表される化合物は、エオタキシンなどのCCR3レセプ

ターのリガンドが標的細胞に結合することを阻害する活性、およびエオタキシンなどのCCR3のリガンドの標的細胞への生理的作用を阻害する活性を有する。すなわち、上記式(I)で表される化合物はCCR3拮抗剤である。

5 発明を実施するための最良の形態

上記式(I)において、 R^1 はフェニル基、 $C_3 - C_8$ シクロアルキル基、またはへ テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する 芳香族複素環基を表し、上記R¹におけるフェニル基または芳香族複素環基は、ベン ゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子 を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに 10 上記R¹におけるフェニル基、C₃-C₈シクロアルキル基、芳香族複素環基、または 縮合環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキ シル基、カルバモイル基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 C_2 $-C_6$ アルケニル基、 C_1 $-C_6$ アルコキシ基、 C_1 $-C_6$ アルキルチオ基、 C_3 $-C_5$ アルキレン基、C₂-C₄アルキレンオキシ基、C₁-C₃アルキレンジオキシ基、フ 15 ェニル基、フェノキシ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベン ゾイルアミノ基、C2-C1アルカノイル基、C2-C1アルコキカルボニル基、C2 $-C_7$ アルカノイルオキシ基、 C_2 - C_7 アルカノイルアミノ基、 C_2 - C_7 N-アル キルカルバモイル基、 C_4-C_9 $N-シクロアルキルカルバモイル基、<math>C_1-C_6$ アル キルスルホニル基、C₃-C₈(アルコキシカルボニル)メチル基、N-フェニルカ 20 ルバモイル基、ピペリジノカルボニル基、モルホリノカルボニル基、1-ピロリジ ニルカルボニル基、式:-NH(C=O)O-で表される2価基、式:-NH(C =S) O-で表される2価基、アミノ基、モノ (C₁-C₅アルキル) アミノ基、も しくはジ (C1-C6アルキル) アミノ基で置換されていてもよい。

R 「における「 C_3-C_8 シクロアルキル基」とは、例えばシクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基などの環状のアルキル基を意味し、その好適な具体例としては、シクロプロピル基、シクロペンチル基、およびシクロヘキシル基などが挙げられる。

R¹における、「ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原 30 子を1-3個有する芳香族複素環基」とは、例えば、チエニル、フリル、ピロリル 、イミダゾリル、ピラゾリル、オキサゾリル、イソオキサゾリル、チアゾリル、イ

ソチアゾリル、ピリジル、ピリミジニル、トリアジニル、トリアゾリル、オキサジアゾリル (フラザニル)、チアジアゾリル基などの芳香族複素環基を意味し、その好適な具体例としては、チエニル、フリル、ピロリル、イソオキサゾリル、およびピリジル基などが挙げられる。

5 R¹における「縮合環」とは、上記フェニル基または芳香族複素環基が、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と可能な任意の位置で縮合して形成される2環式芳香族複素環基を意味し、その好適な具体例としては、ナフチル、インドリル、ベンゾフラニル、ベンゾチエニル、キノリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾトリアゾリル、ベンゾオキサジアゾリル(ベンソフラザニル)、およびベンゾチアジアゾリル基などが挙げられる。

なかでもR¹は、フェニル基、チエニル基、ピラゾリル基、イソオキサゾリル基、ベンゾフラニル基、またはインドリル基である場合が特に好ましい。

 R^{1} におけるフェニル基、 $C_{3}-C_{8}$ シクロアルキル基、芳香族複素環基、または縮 15 合環の置換基としての「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、 ョウ素原子などを意味する。

 R^1 の置換基としての「 C_1-C_6 アルキル基」とは、例えばメチル、エチル、n-プロピル、n-プチル、n-ペンチル、n-ペンチル、n-ペプチル、n-ペンチル、n-ペンチル、n-ペンチル、n-ペンチル、イソプロピル、イソプチル、n-ペンチル

 R^1 の置換基としての「 C_3-C_8 シクロアルキル基」とは、前記 R^1 における「 C_3-C_8 シクロアルキル基」の定義と同様であり、その好適な具体例も同じ基を挙げることができる。

 R^1 の置換基としての「 C_2-C_6 アルケニル基」とは、例えば、ビニル、アリル、1-プロペニル、2-プテニル、3-プテニル、2-メチル-1-プロペニル、4-ペンテニル、5-ヘキセニル、4-メチル-3-ペンテニル基などの C_2-C_6 の 直鎖または分枝状のアルケニル基を意味し、その好適な具体例としては、ビニル基 および2-メチル-1-プロペニル基などが挙げられる。

15

25

 R^1 の置換基としての「 C_1-C_6 アルコキシ基」とは、前記 C_1-C_6 アルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、メトキシ基、エトキシ基などが挙げられる。

 R^1 の置換基としての「 C_1-C_6 アルキルチオ基」とは、前記 C_1-C_6 アルキル 基とチオ基とからなる基を意味し、その好適な具体例としては、メチルチオ基、エチルチオ基などが挙げられる。

 R^1 の置換基としての「 C_3-C_5 アルキレン基」とは、例えば、トリメチレン、テトラメチレン、ペンタメチレン、および1-メチルトリメチレン基などの C_3-C_5 の2価のアルキレン基を意味し、その好適な具体例としては、トリメチレン基、テトラメチレン基などが挙げられる。

 R^1 の置換基としての「 C_2-C_4 アルキレンオキシ基」とは、例えば、エチレンオキシ($-CH_2CH_2O-$)、トリメチレンオキシ($-CH_2CH_2CH_2O-$)、テトラメチレンオキシ($-CH_2CH_2CH_2CH_2O-$)、1,1-ジメチルエチレンオキシ($-CH_2C$ (CH_3) $_2O-$)基などの、 C_2-C_4 の2価アルキレン基とオキシ基とからなる基を意味し、その好適な具体例としては、エチレンオキシ基、トリメチレンオキシ基などが挙げられる。

 R^1 の置換基としての「 C_1-C_3 アルキレンジオキシ基」とは、例えばメチレンジオキシ($-OCH_2O-$)、エチレンジオキシ($-OCH_2CH_2O-$)、トリメチレンジオキシ($-OCH_2CH_2CH_2O-$)、プロピレンジオキシ($-OCH_2CH$ (CH_3)O-)基などの C_1-C_3 の 2 価アルキレン基と 2 個のオキシ基とからなる基を意味し、その好適な具体例としては、メチレンジオキシ基、エチレンジオキシ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルカノイル基」とは、例えば、アセチル、プロパノイル、プタノイル、ペンタノイル、ヘキサノイル、ヘプタノイル、イソブチリル、3-メチルプタノイル、2-メチルプタノイル、ピバロイル、4-メチルペンタノイル、3, 3-ジメチルプタノイル、5-メチルヘキサノイル基などの C_2-C_7 の直鎖または分枝状のアルカノイル基を意味し、その好適な具体例としては、アセチル基などが挙げられる。

 R^1 の置換基としての「 C_2 - C_7 アルコキシカルボニル基」とは、前記 C_1 - C_6 30 アルコキシ基とカルボニル基とからなる基を意味し、その好適な具体例としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルカノイルオキシ基」とは、前記 C_2-C_7 アルカノイル基とオキシ基とからなる基を意味し、その好適な具体例としてはアセチルオキシキ基などが挙げられる。

 R^1 の置換基としての「 $C_2 - C_7$ アルカノイルアミノ基」とは、前記 $C_2 - C_7$ アルカノイル基とアミノ基とからなる基を意味し、その好適な具体例としては、アセチルアミノ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルキルカルバモイル基」とは、前記 C_1-C_6 アルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-メチルカルバモイル基、N-エチルカルバモイル基などが挙げられる。

 R^1 の置換基としての「 C_4-C_9 N-シクロアルキルカルバモイル基」とは、前記 C_3-C_8 シクロアルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-シクロペンチルカルバモイル基、N-シクロペキシルカルバモイル基などが挙げられる。

 R^1 の置換基としての「 $C_1 - C_6$ アルキルスルホニル基」とは、前記 $C_1 - C_6$ アルキル基とスルホニル基とからなる基を意味し、その好適な具体例としては、メチルスルホニル基などが挙げられる。

 R^1 の置換基としての「 C_3-C_8 (アルコキシカルボニル)メチル基」とは、前記 C_2-C_7 アルコキシカルボニル基とメチル基とからなる基を意味し、その好適な具 体例としては、メトキシカルボニルメチル基、エトキシカルボニルメチル基などが 挙げられる。

 R^1 の置換基としての「モノ(C_1 - C_6 アルキル)アミノ基」とは、前記 C_1 - C_6 アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、メチルアミノ基、エチルアミノ基などが挙げられる。

 R^1 の置換基としての「ジ(C_1 - C_6 アルキル)アミノ基」とは、同一または異なった2つの前記 C_1 - C_6 アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、ジメチルアミノ基、ジエチルアミノ基、N-エチル-N-メチルアミノ基などが挙げられる。

上記の中でも、 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素 環基、または縮合環の置換基としては、ハロゲン原子、ヒドロキシ基、 $C_1 - C_6$ ア ルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ 基、 $C_3 - C_5$ アルキレン基、 $C_2 - C_4$ アルキレンオキシ基、メチレンジオキシ基、

25

フェニル基、N-フェニルカルバモイル基、アミノ基、およびジ(C_1 - C_6 アルキル)アミノ基を特に好ましい具体例として挙げることができる。特に好ましくは、ハロゲン原子、ヒドロキシ基、 C_1 - C_6 アルキル基、 C_1 - C_6 アルキルチオ基、メチレンジオキシ基、およびN-フェニルカルバモイル基を挙げることができる。

さらに、 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい。ここで、ハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ基を好適な具体例として挙げることができる。

上記式(I)において、 R^2 は、水素原子、 C_1-C_6 アルキル基、 C_2-C_7 アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、 R^2 における C_1-C_6 アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい。ただし、j=0のときは、 R^2 はヒドロキシ基ではない。

 R^2 における $C_1 - C_6$ アルキル基および $C_2 - C_7$ アルコキシカルボニル基は、 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環 の置換基についてそれぞれ定義されたものと同様であり、それぞれ同じ例を好適な 具体例として挙げることができる。

 R^2 における C_1-C_6 アルキル基またはフェニル基の置換基としてのハロゲン原子、 C_1-C_6 アルキル基および C_1-C_6 アルコキシ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基または縮合環の置換基について定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

なかでもR²は、水素原子を表す場合が特に好ましい。

上記式(I) において、jは0-2の整数を表す。jは0である場合が特に好ましい。

30 上記式 (I) において、kは0-2の整数を表し、mは2-4の整数を表す。なかでもkが0でmが3である場合の2-置換ピロリジン、kが1でmが2である場

15

合の3-置換ピロリジン、kが1でmが3である場合の3-置換ピペリジン、kが2でmが2である場合の4-置換ピペリジン、またはkが1でmが4である場合の3-置換ヘキサヒドロアゼピンが好ましい。特に好ましくは、kが1でmが2である場合の3-置換ピロリジンおよびkが2でmが2である場合の4-置換ピペリジンを挙げることができる。

上記式(I)において、nは0または1を表す。

特に、kが1でmが2でnが0である場合の3-7ミドピロリジン、およびkが2でmが2でnが1である場合の4-(アミドメチル) ピペリジンを特に好ましい例として挙げることができる。

上記式(I)において、 R^3 は水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

 R^3 における C_1 - C_6 アルキル基は、前記 R^1 におけるフェニル基、 C_3 - C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、その好適な具体例としては、メチル基、エチル基、およびプロピル基が挙げられる。

 R^3 における $C_1 - C_6$ アルキル基の置換基としてのフェニル基の置換基としてのハロゲン原子、 $C_1 - C_6$ アルキル基、および $C_1 - C_6$ アルコキシ基は、それぞれ、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

なかでも、 R^3 は水素原子または無置換の $C_1 - C_6$ アルキル基である場合が特に好ましい。

上記式(I)において、 R^4 および R^5 は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、または C_1-C_6 アルキル基を表し、 R^4 および R^5 における C_1-C_6 アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、 C_3-C_8 シクロアルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、 C_1-C_6 アルキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、

ベンジルオキシ基、ベンジルオキシカルボニル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルカルバモイル基、 C_1-C_6 アルキルスルホニル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、または(ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換されていてもよく、あるいは、 R^4 および R^5 は、いっしょになって3-6員環状炭化水素を形成していてもよい。

 R^4 および R^5 における $C_1 - C_6$ アルキル基は、前記 R^1 におけるフェニル基、 C_3 10 $- C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における C_1-C_6 アルキル基の置換基としてのハロゲン原子、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイ

- 5 ルアミノ基、 C_2-C_7 N- アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、モノ(C_1-C_6 アルキル)アミノ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。
- R^4 および R^5 における C_1-C_6 アルキル基の置換基としての C_3-C_8 シクロアルキル基、および、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基は、前記 R^1 において定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における C_1-C_6 アルキル基の置換基としてのフェニル基の置換基 としてのハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、前 記 R^1 においてフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮 合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体 例として挙げることができる。

 R^4 、 R^5 およびその隣接炭素原子とからなる「3-6 員環状炭化水素」の好適な 30 具体例としては、シクロプロパン、シクロプタン、シクロペンタン、およびシクロ へキサンなどが挙げられる。なかでも、水素原子と C_1-C_6 アルキル基を、 R^4 と R^4 WO 01/10439

15

20

5の特に好ましい例として挙げることができる。

上記式(I)において、pは0または1を表し、qは0または1を表す。pとqがともに0である場合が特に好ましい。

上記式(1)において、Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-$ 5 CO-、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7 ^7-SO_2-$ 、 $-SO_2-NR^7-$ 、-NH-CO-O-、または-O-CO-NH- で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 といっしょになって C_2-C_5 アルキレン基を形成していてもよい。

10 ここで、-CO-はカルボニル基を、 $-SO_2-$ はスルホニル基を、-CS-はチオカルボニル基をそれぞれ意味する。Gの特に好ましい例としては、例えば $-NR^7$ -CO-および-NH-CO-NH-で表される基などが挙げられる。

 R^7 における $C_1 - C_6$ アルキル基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^5 と R^7 とからなる「 C_2 - C_5 アルキレン基」とは、例えば、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、1-メチルトリメチレン、ペンタメチレンなどの C_2 - C_5 の直鎖または分枝状アルキレン基を意味し、その好適な具体例としてはエチレン、トリメチレン、テトラメチレン基などが挙げられる。なかでも R^7 としては、水素原子を特に好ましい例として挙げることができる。

上記式(I)において、 R^6 はフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を表し、上記 R^6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、

30 トリフルオロメチル基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_3 - C_8$ シクロアルキルオキシ基、 C_1

 $-C_6$ アルキルチオ基、 C_1-C_3 アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、3-フェニルウレイド基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイル アミノ基、 C_2-C_7 アルカルバモイル基、 C_1-C_6 アルキルスルホニル基、フェニルカルバモイル基、 $N,\ N-$ ジ(C_1-C_6 アルキル)スルファモイル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、グンジルアミノ基、 C_2-C_7 (アルコキシカルボニル)アミノ基、 C_1-C_6 (アルキルスルホニル)アミノ基、もしくはビス(C_1-C_6 アルキルスルホニル)アミノ基、10 ノ基により置換されていてもよい。

 R^6 における C_3 - C_8 シクロアルキル基、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基、および、縮合環は、前記 R^1 に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^6 における「 C_3-C_8 シクロアルケニル基」とは、例えば、シクロブテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、およびシクロオクテニル 基など環状アルケニル基を意味し、その好適な具体例としては、1-シクロペンテニル基、1-シクロヘキセニル基などが挙げられる。なかでも、 R^6 としては、フェニル基、フリル基、チエニル基、インドリル基、ベンゾフラザニル基を特に好まし い例として挙げることができる。

 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としてのハロゲン原子、 C_1-C_6 アルキル基、 C_2-C_6 アルケニル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、 C_1-C_3 アルキレンジオキシ基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルカルバモイル基、 C_1-C_6 アルキルスルホールサース・イン・クローストル・カルバモイル基、 C_1-C_6 アルキルスルホールサース・イン・クローストル・カーストル

30 好適な具体例として挙げることができる。

25

 R^6 の置換基としての $C_3 - C_8$ シクロアルキル基は、前記 R^1 における $C_3 - C_8$ シ

15

20

クロアルキル基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

 R^6 の置換基としての「 $C_3 - C_8$ シクロアルキルオキシ基」とは、前記 $C_3 - C_8$ シクロアルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、

5 シクロプロピルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基など を挙げることができる。

 R^6 の置換基としての「 C_2-C_7 (アルコキシカルボニル)アミノ基」とは、前記 C_2-C_7 アルコキシカルボニル基とアミノ基とからなる基を意味し、その好適な具 体例としては、例えばメトキシカルボニルアミノ基、エトキシカルボニルアミノ基 などを挙げることができる。

 R^6 の置換基としての「 C_1-C_6 (アルキルスルホニル)アミノ基」とは、前記 C_1-C_6 アルキルスルホニル基とアミノ基とからなる基を意味し、その好適な具体例としては、(メチルスルホニル)アミノ基などを挙げることができる。

 R^6 の置換基としての「ビス(C_1-C_6 アルキルスルホニル)アミノ基」とは、同一または異なった2つの前記 C_1-C_6 アルキルスルホニル基によって置換されたアミノ基を意味し、その好適な具体例としては、ビス(メチルスルホニル)アミノ基などを挙げることができる。

なかでも、 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としては、

25 ハロゲン原子、メルカプト基、ニトロ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、フェニル基、ベンジルオキシ基、フェニルスルフィニル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルアミノ基、アミノ基などを好ましい例として挙げることができる。特に好ましくは、ハロゲン原子、ニトロ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、フェニルスルフィニル基、およびアミノ基を挙げることができる。

さらに、 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロ

15

20

アルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルキル基、 C_1-C_6 アルキルル)アミノ基、またはジ(C_1-C_6 アルキル)アミノ基によって置換されていてもよい。

 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基の置換基としてのハロゲン原子、 C_1-C_6 アルキル基、 C_1-C_6 アルキルチオ基、モノ(C_1-C_6 アルキル)アミノ基、およびジ(C_1-C_6 アルキル)アミノ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

上記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体は、その治療有効量を製薬学的に許容される担体および/または希釈剤とともに医薬組成物とすることによって、本発明のエオタキシンなどのCCR3のリガンドが標的細胞上のCCR3に結合することを阻害する医薬、あるいはエオタキシンなどのCCR3のリガンドの標的細胞への生理的作用を阻害する作用をもつ医薬、さらにはCCR3が関与すると考えられる疾患の治療薬もしくは予防薬とすることができる。すなわち上記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加塩体、またはその薬学的に許容される C_1-C_6 アルキル付加体は、経口的に、あるいは、静脈内、皮下、筋肉内、経皮、または直腸内など非経口的に投与することができる。

経口投与の剤形としては、例えば錠剤、丸剤、顆粒剤、散剤、液剤、懸濁剤、カ プセル剤などが挙げられる。

25 錠剤の形態にするには、例えば乳糖、デンプン、結晶セルロースなどの賦形剤; カルボキシメチルセルロース、メチルセルロース、ポリビニルピロリドンなどの結 合剤;アルギン酸ナトリウム、炭酸水素ナトリウム、ラウリル硫酸ナトリウムなど の崩壊剤などを用いて通常の方法により成形することができる。

丸剤、散剤、顆粒剤も同様に前記の賦形剤などを用いて通常の方法によって成形 することができる。液剤、懸濁剤は、例えばトリカプリリン、トリアセチンなどの グリセリンエステル類、エタノールなどのアルコール類などを用いて通常の方法に

よって成形される。カプセル剤は、顆粒剤、散剤、あるいは液剤などをゼラチンなどのカプセルに充填することによって成形される。

皮下、筋肉内、静脈内投与の剤型としては、水性あるいは非水性溶液剤などの形態にある注射剤がある。水性溶液剤は、例えば生理食塩水などが用いられる。非水性溶液剤は、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油、オレイン酸エチルなどが用いられ、これらに必要に応じて防腐剤、安定剤などが添加される。注射剤は、バクテリア保留フィルターを通す濾過、殺菌剤の配合の処置を適宜行うことによって無菌化される。

5

15

経皮投与の剤型としては、例えば軟膏剤、クリーム剤などが挙げられ、軟膏剤は 10 、ヒマシ油、オリーブ油などの油脂類、またはワセリンなどを用いて、クリーム剤 は、脂肪油、またはジエチレングリコールやソルビタンモノ脂肪酸エステルなどの 乳化剤を用いて通常の方法によって成形される。

直腸内投与のためには、ゼラチンソフトカプセルなどの通常の座剤が用いられる。本発明の環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体の投与量は、疾患の種類、投与経路、患者の年齢や性別、および疾患の程度などによって異なるが、通常成人一人当たり1-500mg/日である。

上記式 (I) の環状アミン誘導体の好適な具体例として、以下のTable 1. 1-1. 221に示される各置換基を含有する化合物を挙げることができる。

20 Table1.1-1.221において、「chirality」は「絶対配置」、すなわち環状アミンの環上の不斉炭素の絶対配置を意味する。「R」は、環状アミンの環上の不斉炭素原子がRの絶対配置をもつこと、「S」は、不斉炭素原子がSの絶対配置をもつこと、「-」はラセミ体であるか、あるいはその化合物が環状アミン上において不斉炭素原子をもたないことを意味する。

Table 1.1

Compd. No.	R ¹ (CH ₂)	K	m	ñ	chirality	H3	-(CH ₂) p (CH ₂) q G-H [©]
1	CHCH2-	1	2	0	•	н	-CH ₂ -N-C-
2	CH-CH ₂ -	1	2	0	-	н	-CH ₂ -N-C-CH ₃
3	CHCH ₂ -	1	2	,o	-	н	- CH ₂ -N-C-
4	СНСН2-	. 1	_ 2	0	-	н .	- CH ₂ -N-C-CF ₃
5	с⊢—сн₂-	1	2	0	S	H	$-CH_2-N_1$ C $-$ C F_3 C F_3
6	С⊢-СН₂-	1	2	0 :	S	н	-CH ₂ -N-C
7	CH-2-	. 1	2	0	S	Н	-CH ₂ -N-C-
8	C ├ CH ₂	1	2	0	S	н	-CH₂-N-C-
9	C⊢-€CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
10	CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
11	C├ - CH ₂ -	1	2	0	S	н	-CH ₂ -N-C

Table 1.2

,							
Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
. 12	CI—CH ₂ -	1	2	0	S	н	-CH2-MC- OCH3
13	CH-{	1	2	0	S	н	-CH ₂ -N-Ö-CF ₃
14	CH-CH ₂ -	1	2	0	S	н .	- CH ₂ -N-C-CH ₃
	CH-CH ₂ -				·	н .	-CH ₂ -N-C
16	CH2-	1	2	O _.	S	H .	-CH ₂ -N-C- H-C- O-OCH ₃
17	CH2−	1	2	0	S	н	-CH2-N-C-CI
18	C⊢—CH₂-	1	2	0	S ·	. Н	- CH ₂ -N C-CN
	C├ - CH ₂ -					н	- CH ₂ -N-C
20	C├ - ⟨CH₂-	1	2	0	S .	н	- CH ₂ - N-C-CF ₃
21	CH ₂ -	1	2	0	S	н .	- CH ₂ -N-C-CF ₃
22	с⊢{	1	2	0	S	н	- CH ₂ -N-C-S

Table 1.3

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_p \frac{R^4}{R^5} (CH_2)_q G - R^6$
23	C├──────── CH₂-	1	2	0	S	н	-CH ₂ -N-C- F
24	С├─{_}-СН₂-	1	2	0	S	н	-CH ₂ -NC-OCF ₃
25	CH-CH2-	1	2	0	S	Н	-CH ₂ -N-CF
26	CH2-	1	2	0	S .	н	-CH ₂ -N-C
27	C├ - CH ₂ -	1	2	0	S .	. н	-CH ₂ -N-C
28	C⊢√CH ₂ -	. 1	2	0	S	Н	- CH ₂ - N C NO ₂
29	СН-СН2-	1	2	0	R	н	$-CH_2-N$ C $-CF_3$
30	CH-2-	1	2	0	R	н	$-CH_2-NC$ F_3C
31	CH ₂ -	1	2	0	R	н	- CH ₂ -N-C
32	СЊСН₂-	1	2	0	R	н	- CH ₂ - N- C-
33	С⊢-{	1	2	0	R	Н .	-CH ₂ -N-CI

Table 1.4

. 4510	•••						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	[.] R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
34	CH-2-	. 1	2	0	R	н	-CH ₂ -NC-
35	CH-CH ₂ -	1	2	0	R	н	- CH ₂ - Н С ОСН ³
36	C⊢√CH₂-	1	2	0	R _.	н	-CH2-N-C- O OCH3
37	C├ - CH₂-	1	2	0	, R	H	-CH ₂ -N-C-CF ₃
38	с⊢С сн₂-	1	2	0	R	н	-CH ₂ -N-C-CH ₃
39	CHCH ₂ -	1	2	0	R	. H	-CH ₂ -N-CI
40	СН-СН2-	1	2	0	R	н	-CH ₂ -№C
41	CH2-	1	2	0	R	н	- CH ₂ - N C CI
,	CH-2-					н	- CH ₂ -N-C-CN
43	CH-€	1	2	0	R	н	-CH ₂ -N-C
44	С⊢_СН₂-	1	2	0	R	н	-CH₂-N C-CF3

Table 1.5

Compd.	R (CH ₂);	ķ	m	n	chirality	· A¹	-(CH ₂) p (CH ₂) q G−H ⁰ R ⁵
45	CH-CH2-	1	2	0	R	Н	-CH ₂ -N-C
46	CH2-	1	2	0	R	Н	- CH ₂ -N-C-CF ₃
47	C⊢√ CH₂-	1	2	0	R	Н	-CH ₂ -N-C
48	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
49	CH-2-	1	2	0	R	Н	-CH ₂ -N-C
50	С⊢-{СН₂-		2	0	R	Н	- CH ₂ -N-C-CF ₃
51	CH ₂ -	1	2	0	R _.	н	- CH ₂ -N-C-Br
	CI—⟨CH₂-					н	-CH₂-NC-
53	СНСН2-	1	2	0	R	н	F -CH₂-N-C- CI
54	CH-(CH ₂ -	1 :	2	0	R		-CH ₂ -N-C
55 (CHCH2-	1 2	2	0	R	н	- CH ₂ -N-CI

Table 1.6

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
56	CI—CH₂-	1	2	0	R	н	- CH ₂ -N C-
57	C├ - CH₂-	1	2	0	R	н	-CH ⁵ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
- 58	C├ - CH ₂ -	1	2	0	R	н.	- CH ₂ - N C-
59	C├ - CH ₂ -	1	2	0	R	н	- CH ₂ - N- C
60	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N C-
61	CHCH ₂ -	1	2	0	R	н	O -CH ₂ -NC-CF ₃
62	CH-{	1	2	0	R .		- CH ₂ - N C - CH ₃
63	C├ ~ CH₂-	1	2	0	R	н	- CH ₂ - N C CH ₂ CH ₃
64	C├─ ─ CH ₂ -	1	2	0	R	н	-CH ₂ -NC-CN
65	CH-2-	1	2	0	R	н	-CH2-NCC-
66	CH-2-	1	2	0	R	н	-CH2-N C

Table 1.7

	n1						
No.	$\frac{1}{R^2} - (CH_2)_j -$	<u></u>	< m	i n	chirality	H3	ー(CH ₂) _p
67	CI—CH₂-	1	2	0	R	н	- CH ₂ -N-C + F
68	C├ - CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C
69	CH2-	1	2	0	R	н	-CH ₂ -N-C-F
70	CHCH ₂ -	1	2	0	R	н	-CH2-N-C
71	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
72	CHCH ₂ -	1	.2	0	R R	н	O -CH ₂ -N-C
73	C├ - CH ₂ -	1	2	0	R	H ′	- CH ₂ -N-C
74	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CO ₂ CH ₃
75	CH-2-	1	2	0	R	н	-CH ₂ -N-C
76	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -NC
77	C⊢CH₂-	1	2	0	R	Н	-CH ₂ -NC
	<u> </u>						

Table 1.8

:

			•				
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _P + G (CH ₂) _Q G-R ⁶
78	С⊢_СН₂-	1	2	0	R	н	-CH ₂ -N-C
79	CI-CH ₂ -	1	2	0	R	н	$-CH_2-NC- $ F_3C
80	С⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
81	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
82	CH-2-	1	2	0	-	—сн ₃	-CH ₂ -N-C-CF ₃
. 83	CH-2-	1	2	0	R	н	-CH ₂ -N-C-NO ₂
84	ССН2-	1	2	0	R	Н	-CH ₂ -N-CNO ₂
85	CH2-	1	2	0	-	н	-(CH ₂) ₂ -N-C-
86	C	1	2	0	-	н	-(CH ₂) ₂ -N-C-NO ₂
87	C├ - CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
88	C├────────────────────────────────────	1	2	0	s	н	$-(CH_2)_2 - N - C - CF_3$ $-(CH_2)_2 - N - C - CF_3$ $-(CH_2)_2 - N - C - CF_3$

Table 1.9

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	· R³	$-(CH_2)_p + (CH_2)_q G - R^6$
89	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-
90	CH-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-
91	СН ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI
92	с⊢СН₂-	1	2	0	S	H	-(CH ₂) ₂ -N-C
93	CH-CH2-	1	2	0	S	н	OCH ₃ -(CH ₂) ₂ -N-C
94	CH€ CH₂-	1	2	0	S .	Н	$-(CH_2)_2$ -N-C-OCH ₃ OCH ₃
95	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-CF ₃
96	CH2-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CH ₃
97	C├ - CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI
98	C├ - CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
99	C├ ─ CH ₂ -	1	2	0	S _.	н	-(CH ₂) ₂ -N-C-CI

Table 1.10

5.0							
Compd.	(CH ₂)-	k	m	n	chirality	R³	一(CH ₂) _{p 1} (CH ₂)q G-R ⁶
100	C ← CH₂-	1	2	0	S	Н	-(CH₂)₂- N- C-
101	CH-CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-O
102	CH-CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-CF ₃
103	CH-CH ₂ -	. 1	2	0	S	н	-(CH ₂) ₂ -N-CF ₃
104	CH-CH2-	1	2	0	S	н ,	-(CH ₂) ₂ -N-C-F ₃
105	C⊢————————————————————————————————————	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃
106	C ⊢ CH ₂ -	1	2	0	S	н .	-(CH ₂)₂-N-C-
	C⊢-CH₂-					н	-(CH ₂) ₂ -N-C-F
108	C	1	2	0	S	н	-(CH ₂) ₂ -N-C-
109	С⊢√ СН₂-	1	2	0	S	Н	-(CH ₂) ₂ -N-C-NO ₂
110	C├ - CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C

:

Table 1	1.11						
Compd. No.	R^2 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
111	C├- \ CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
112	CH-€	1	2	0	R	Н	-(CH ₂) ₂ -N-C
113	C├ - CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
114	с⊢√_сн₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-
115	C⊢√ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
116	C├ \ CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-OCH ₃
117	CH-2-	1	2	.0	R	н	-(CH ₂) ₂ -N-C
118	CH-€ CH ₂ -	1	2	0	R ·	н	-(CH ₂) ₂ -N-C-OCH ₃
119	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
120	C⊢√CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
121	C├ \ CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-

Table 1.12

Cor	npd. lo.	R ¹ (CH ₂);-	k	m	n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
12	22	CH_CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
12	23	C├ - CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
12	24	С⊢Сн₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CN
12	:5	С├──_СН₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C
12	6	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CF ₃
12	7	СН-СН ₂ -	1	2 .	. 0	R	н	-(CH ₂) ₂ -N-C- H
12	8	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-G-CF ₃
12	9	C⊢—CH₂-	1	2	Ö	R	н	-(CH ₂) ₂ -N-C-CF ₃
130	0	С⊢—СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCF ₃
13 ⁻		С⊢С СН₂-				•	н	-(CH ₂) ₂ -N-C
132	2	С⊢-{	1	2	0	R	н	~(CH ₂) ₂ -N-C-

Table 1.13

Compd. No.	R ² (CH ₂)	k	m	n	chirality	R³	─(CH ₂) p (CH ₂) q G [−] R ^{\$}
133	CI-CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
134	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-(-NO ₂
135	CI-CH ₂ -	1	2	0	R	H .	-(CH ₂) ₂ -N-C-
136	CH-2-	1	2	0	R	н.	-(CH ₂) ₂ -N-C-
137	C ⊢ CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
138	C├ \ CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
139	C⊢√CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
140	CI-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
141	CICH ₂ -	1	2	0	R	н	H ₃ CO О О Н ₂ О Н ₃ СО Н ₃ СО О Н ₃ СО О Н ₃ СО Н ₃ СО
142	CI—CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
143	CH-€	1	2	0	R	н	-(CH ₂) ₂ -N·C-Br

Table 1.14

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ė,	$-(CH_2)_p + (CH_2)_q G - R^6$
144	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
145	СН-СН2-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CF ₃
146	С⊢СН2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
147	CH-CH2-	1	2	0	.R	н	$-(CH_2)_2 - NC - CH_2CH_3$
148	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CN
149	CH-2-	1	2	. 0	R	н	-(CH ₂) ₂ -N-C-
150	С⊢—СН₂~	1	2	0	R	н	-(CH ₂) ₂ -N-C-
151	C├ - CH ₂ -	٠1	2	0	R	н	-(CH ₂) ₂ -N-C
152	CHCH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -NC
153	C⊢√ CH₂-	1.	2	0	R	н	-(CH ₂) ₂ -№C
154	CH-2-	. 1	2	0	R	н	-(CH ₂) ₂ -N-C-

Table 1.15

Compd: No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
155	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
156	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCF ₃
157	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
158	C├─────────── CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-√2CH ₃
159	CH-CH ₂ -	1	2	0	. Я	н	-(CH ₂) ₂ -N-C-F F ₃ C
160	СН-СН ₂ -	1	2	0	. R	н	-(CH ₂) ₂ -N-C
161	CH-CH ₂ -	1	2	ο.	R	н	-(CH ₂) ₂ -N-C-F
	СН-СН2-						-(CH ₂) ₂ -N-C
163	CH-2-	1	2	0	R	н	-(CH2)2-NC $+CF3$ $+F3C$
							-(CH ₂) ₂ -N C-CF ₃ F ₃ C
165	CH-2-	1	2	0	R		O CH ₃ . -(CH ₂) ₂ −N C CH ₃

Table 1.16

Compd.	R ¹ /(CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
166	CI-CH ₂ -	1	2	0	R	н .	(S) P CF ₃ -CH-N-C-CF ₃
167	CH-2-	1	2	0	R	н	(S) Pr -CH-N-C
168	CH-CH ₂ -	1	2	0	R	H .	(S) P CI -CH-N-C-
169	CH-CH2-	1	2	0	· R	н	(S) P CI
170	CH-2-	1	2	0	R .	Н	(S) Q CF ₃ -CH-N-C- F
171	CH-CH ₂ -	1	2	. 0	R	Н .	(S) P -C+N-C-C-CI CH ₃
172	CH-CH ₂ -	1	2	0	·R	Н .	(S) P -CH-N-C- CH ₃
173	C├ - CH ₂ -	1	2	0	R	н	(S) P NO2.
174	C├ - ⟨CH₂-	1	2	0	R	н	(F) PCF3 -CH-N-C-CF3 -CH3
175	C├ - CH₂-	1	2	0	R	н	(A) O CF3 -CH-N-C- CH3 (A) O CF3 (A) O CF3 (A) O CF3 (B) O CF3 (CF3 (CF
176	CH_CH2-	1	2	0	R	н	(A) P CI -CH-N-C-C
							-

Table 1.17

Compd.	R ¹ (CH ₂) _i -	k	m	n	chirality	Ŗ³	-(CH ₂)
177	CI—CH₂-	1	2	0	R	н	(A) P CI -CHN-C-CI -CH3
178	Ci—CH ₂ -	1	2	0	R	н	(<i>F</i>)
179	CH-CH ₂ -	1	2	0	R	н	(R) P -CHN-C-CI CH3
180	CH-2-	1	2	0	R	н	(F) Q -CHN-C-
181	CH2-	1	2	0	R	Н	(F) P NO ₂ -CHN-C- NO ₂ CH ₃
182	C⊢ CH₂-	1	2	· o	R	н	CH ₃ O CF ₃
183	С⊢СН₂-	1	2	0	R	н	CH3 O Br
184	CHCH ₂ -	1	2	0	R	н	CH ₃ O CI -CH № C CI
185	CI-CH ₂ -	1	2	0	R	н	CH³ O CI CH³ C CI
186	CH-2-	1	2	0	R	н	CH3 O CF3
187	C├────────────────────────────────────	1	2	0	R	н	СН3 0 -СН N С — СІ СН3

Table 1.18

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	-(CH ₂) p 5 (CH ₂) q G-R ⁶
188	C├───────────────────────────	1	2	0	R	н	СH ³ С СH ³ С СH ³ С
189	CI-CH ₂ -	1	2	0	R	Н	ÇH₃ Q -ÇH₁+C- CH₃
190	CH-2-	1	2	0	R	н	CH2 CH3
191	CH-2-	1	2	0	R	н	CH ₂ -S
192	CH-2-	1	2	0	R	н	(A) + C - C - C - C - C - C - C - C - C - C
193	CH	1	2	0	R	н	-CHN-C-CI CH2-S
194	CH√P-CH ₂ -	1	2	0	R	н	CH-NC-CF3
195	CH-CH₂-	1	2	0	R	н .	(F) P -CHN-C-CI CH2-S
196	CHCH ₂ -	1	2	0	R·	Н.	(A) P -CHN-C- CH2(S)
197	C	1	2	0	R	Н	CHNC-
198	СН2-	1	2	0	R	. н	(A) P P P P P P P P P P P P P P P P P P P

Table 1.19

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) , 1 (CH ₂) , G-H ³ R ⁵
199	CI-CH ₂ -	1	2	0	R	н	(S) P -CH-N-C-
200	CH ₂ -	1	2	0	R	н	(S) P C CH2-CS
201	CH-CH ₂ -	1	· 2	0	- R	Н	(5) P CI -CH-N-C- C CI CH ₂ -C
202	CH_CH2-	1	2	0	R	Н	(S) P CF3 -CH-N-C
203	CH_CH ₂ -	1	2	0	R	Н	(S) -CH-N-C
204	CH-CH2-	1	2	0	R	н	(S) P -C+N-C- CH ₂ -S
205	CH√CH₂-	1	2	0	R	Н.	(S) P: NO 2 -CH-N-C
206	CH2−	1	2	0	R	н	(O+2)2-3-CH2 (O+2)2-3-CH2 (O+2)2-3-CH3
207	C	1	2	0	R	н	(OH ₂) ₂ -\$ CH ₃
208	C├─ \ CH ₂ -	1	2	0	R	н	(S) P CH ₃ (OH ₂) ₂ -S CH ₃ (OH ₂) ₂ -S CH ₃ (OH ₂) ₂ -S CH ₃
209	C	1	2	0	R	н	(CH-5) ² -2-CH ² (CH-1)-C-CI (2) CI
	•						

Table 1.20

Compd. No.	R1 (CH2)-	k	mi	n	chirality	Ŕ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
210	СН-СН2-	1	2	0	R	Н	(C+2)2-\$-CH3 F
211	CHCH ₂ -	1	2	0	R	H.	(OH ₂) ₂ -S-CH ₃
212	CH-CH ₂ -	1	2	0	R	н	(S) P -CH-N-C- H O (CH ₂) ₂ -\$-CH ₃
213	CH-CH2-	1	2	0	R	н	(O+3/2-2-CH ²
214	CH-2-	1	2	0	- .	н	-(CH ₂) ₃ - C-
215	CHCH ₂ -	. 1	2	0		н	-(CH ₂) ₃ -C
216	CH2-	1	2	0	-	Н	-(CH ₂) ₃ -C-(S)
217	C⊢√CH₂-	1	2	0	-	н	-(CH ₂) ₂ -C
218	C⊢————————————————————————————————————	1	2	0	-	н	-(CH2)2-C-CH3 $H3C$
							-(CH ₂) ₂ -C-C-C-OCH ₃
220	CH-CH2-	1	2 .	0	-	н	-(CH ₂) ₂ -C-CH ₃

Table 1.21

Table 1	.21						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R ³	гд ⁴ —(СН ₂) р (СН ₂) р G−Н ⁶ R ⁵
221	CH-(CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -C-
222	СН-СН2-	1	2	0	-	н	-(CH ₂) ₂ -C-CI
223	CH-CH2-	1	2	0	-	н	-(CH ₂) ₂ -C
224	С├-{СН₂-	. 1	2	0	-	н	- CH ₂ -\$
225	C⊢√CH₂-	1	. 2	0	-	н	-(CH ₂) ₃ -C·NH
226	CH-CH2-	1	2	0	-	н	-(CH ₂) ₃ -C-N-OCH ₃
227	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C·NH
228	CH-CH ₂ -	1	2	0	-	Н	-(CH ₂) ₃ - C-N
229	С⊢—СН₂-	1	2	0	-	н	-CH ₂ -Ç-CH ₂ -C-N-CH ₃
230	С├-СН₂-	1	2	0	-	н	-CH ₂ -CH ₂ -C-N-F
231	CHCH ₂ -	1	2	0	-	н	-(CH ₂) ₃ - C-N- O-C-CH ₃

Table 1.22

· abic							
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
232	С⊢-{СН₂-	1	. 5	0	-	н	-(CH ₂) ₃ -C-N-()
233	CH-CH2-	1	2	0	-	н	O -(CH ₂) ₃ -C-N-CH ₂ -
234	CH-2-	1	2	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
235	CH-CH2-	1	2	0	-	н	-cH2-CH-CH2-C-H CH2-C)-CI
236	CI—CH₂-	1	2	0	~	H .	- CH ₂ -N-S-CH ₃
237	CH2-	1	2	0	-	н	- CH ₂ -N-C-O-CH ₂
238	CHCH2-	1.	2	0	-	H .	- cн о с н С у С С I
239	CH₂⁻ .	1	2	0	S	Н	-CH ₂ -N-C-C-CF ₃
240	CH₂-	1	2	0	S	н	-СH ₂ -N-С-СБ3
241	CI CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
242	CH₂	1	2	0	S	н	-CH ₂ -N-C-C-CF ₃

Table 1.23

Compd.	R ² (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{\overline{0}}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
243	CI CH₂− CH	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
244	CH₃ —CH₂-	1	2	0	S	.	-CH ₂ -N-C-CF ₃
245	F_CH₂-	1	2	0	S	Н .	-CH ₂ -N-C-CF ₃
246	CICH ₂ -	1	2	0	S·	н	-CH ₂ -N-C-CF ₃
247	CI CI—CH₂-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
248	H ₃ CQ —CH ₂ -	1	2	0	S _.	н	-CH ₂ -N-C-CF ₃
249	F ₃ C ————————————————————————————————————	1	2	0	S	н	-CH ₂ -N-C-CF ₃
250	H₃C —CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
251	F-CH ₂ -	1	. 2	0	S .	н	-CH ₂ -N-C-CF ₃
252	H₃CO-{	1	2	0	S	H 	-CH ₂ -N-C-CF ₃
253	H ₃ C-CH ₂ -	1	2	0	S	н	- CH ₂ -N-C-CF ₃ - CH ₂ -N-C-CF ₃
	•						

Table 1.24

	01						R ⁴
No.	R ¹ (CH ₂) _j -	k	m 	n	chirality	R ³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $-(CH_2)_{q}$ $+ (CH_2)_{q}$ $+ (CH_$
254 	NO₂ CH₂-	. 1	2	0	S	н	- CH ₂ -N-C-CF ₃
255	O ₂ N CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
256	O ₂ N-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
257	CF₃ —CH₂-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
258	CO ₂ CH ₂ CH ₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
259	СH ³	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
260	CI CH₂−	1	2	0	S	н	-CH ₂ -N-C-CF ₃
	F ₃ C-CH ₂ -					Н	-CH ₂ -N-C-CF ₃
262	Br CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
263	Br_CH ₂ -	1	2	0	S	.н	-CH ₂ -N-C-CF ₃
264	OH2-	1	2	0	S	н	-CH₂-N-C-CF3

Table 1.25

Table 1							
Compd. No.	R ¹ (CH ₂);	k.	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
265	8r-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
266	O	1	2	0	S	н	-CH ₂ -N-C-CF ₃
267	OCH₃ CH₂-	1	2	0	S	н	-CH ₂ -N-C-
268	4c-c-h-(2)-cH≥-	1	2 .	0	S	Н	-CH ₂ -N-C-CF ₃
269	H ₃ C-\$ - CH ₂ -	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
270	H ₃ CO ₂ C	1	2	0	S	н	-CH ₂ -N-C-CF ₃
271	CH ₂ -	1	2	0	S	, н	-CH ₂ -N-C- CF₃
272	HO—{}-CH₂-	1	2	0	S		-CH ₂ -N-C-CF ₃
273	CN CH ₂ -	· 1	2	0	S	Н .	-CH ₂ -N-C-CF ₃
274	NC CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
275	CN $CH_2^ NC$ $CH_2^ CH_2^-$	1	. 2	O	S	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.26

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R3	$-(CH_2)_p + (CH_2)_q - G-R^6$
276	F-CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
277	CH2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
278	н₃∞₂с-{_}Сн₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
279	F3CO-{	1	2	0	S	н	-CH2-N-C-⟨\$\circ\$CF3
280	F ₃ CQ .	1	2	0	S	н	-сн ₂ -№-с-СF ₃
281	HO₂C-{	1	2	0	S	н	-CH ₂ -N-C-C-CF ₃
282	(H ₃ C) ₃ C	1	2	0 .	S	н	-CH ₂ -N-C-CF ₃
	CH ₃ CH ₂ − CH ₃					н	-CH ₂ -N-C-CF ₃
284	CI—CI—	1	2	0	S	н	-CH ₂ -N-C-C-CF ₃
285	CH₂-	1	. 2	0	R	н	-CH ₂ -N-C-⟨ CF ₃
286	CH₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.27

	•						
Compd.	R ¹ (CH ₂);	ķ	m	n	chirality	Θ	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
287	CI CH ₂ -	1	2	0	· R	н	-CH ₂ -N-C-CF ₃
288	CI CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
289	CI CI	1	2	0	R.	Н	-CH₂-N-C-
290	CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
291	F	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
292	CICH ₂ -	1.	2	0	R	н	-CH ₂ -N-C-CF ₃
293	CI CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
294	H ₃ CQ CH ₂ -	1	2	0	R .	Н	-CH ₂ -N-C-CF ₃
295	F ₃ C ————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
296	F_3C $-CH_2$ $-CH_2$ $-CH_2$	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
297	F-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.28

labic	1.20						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
298	H₃CO-{CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
299	H ₃ C	1	2	0	R ,	н	-CH ₂ -N-C-CF ₃
300	NO₂ C⊢-€	1	2	0	R	H .	-CH ₂ -N-C-CF ₃
301	O ₂ N CH ₂ -	1	2	0	R.	н .	-CH ₂ -N-C-CF ₃
302	O ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
303	CF ₃ CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
304	CO ₂ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
305	СН ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	CI CH₂-					н	-CH ₂ -N-C-CF ₃
307	F ₃ C-CH ₂ -	1	2	Ó	R	н	-CH ₂ -N-C-CF ₃
308	. Br CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.29

Gompd. No.	R ¹ (CH ₂)-	۲.	m	n	chirality	P3	—(CH ₂) , G (CH ₂) , G G-R ⁶
309	B6CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
310	Q-Q-OH ₂ -	1	2 .	0	R	н,	-CH ₂ -N-C-CF ₃
311	Br—CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
312	O-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-CF ₃
313	OCH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
314	Н°С-С-Й—Су-СН²-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
315	H ₂ C-\$\frac{\text{Q}}{\text{Q}} \tag{CH}_2-	1	2	0	R .	Н	-CH ₂ -N-C-
316	H ₃ CO ₂ C ————————————————————————————————————	1	2	0	R	H	-CH ₂ -N-C-CF ₃
317	F-CH ₂ -	1	2	0	R		
318	. но-{Сн₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
319	CN CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.30

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
320	NC CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
321	NC	1	2	0	R	н	-CH ₂ -N-C-CF ₃
322	F-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
323	CH₂-	1	2	0	R	н	-CH ₂ -N-C-C-CF ₃
324	н₃∞₂с-{сн₂-	1	2	0	R	н	-СH ₂ -N-С-С Н
325	F ₃ CO-CH ₂ -	1	2	0	R	. н 	-CH ₂ -N-C-CF ₃
326	F ₃ CQ —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
327	HO ₂ C-CH ₂ -	1	2	0	R	н '	-CH ₂ -N-C-CF ₃
•	(H ₃ C) ₃ C-\(\bigc\)-CH ₂ -					н	-CH ₂ -N-C-CF ₃
•	CH ₃ CH ₂ - CH ₃					Н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$
330	CH-2-	0	3	1		н	- CH ₂ -N-C-

Table 1.31

Compd.	R ¹ (CH ₂);-	k		n	chirality	. D3	$-(CH_2)_{\mu} + CH_2)_{\mu} + CH_2)_{\mu} + CH_2$
No.	R ² ` ''						R ⁵
331	CI-CH ₂ -	0	3	1	-	н	-CH ₂ -N-C-CH ₃
332	CI—(CH₂-	0	.3	1	-	н	-CH ₂ -N-C- OCH ₃ OCH ₃
333	CH-CH ₂ -	0	3	- 1	-	н	- CH ₂ -N-C-
334	с⊢СР-сн₂-	0	3	1	-	н	-CH ₂ -N C-CH ₃
335	CH-2-	0	3	1	-	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
336	CH2−	0	3	1	-	н	-CH ₂ -N-C-
337	CH2-	0	3	1	-	н	- СН ₂ - № С- Н Н ₃ С
338	C├-{}CH₂-	0	3	1	-	н .	- CH ₂ - N- C- CH ₃
339	CH2−	0	3	1	R	н	-CH ₂ -N-C
340	C⊢√ CH₂-	0	3	1	S	н	-CH ₂ -N-C-
341	C⊢√CH₂-	0	3	1	-	н	-(CH ₂) ₂ -N-C-

Table 1.32

R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G-R^6$
C├ - CH₂-	0	3	1	-	н	CH N-C-
C├─ \ -CH ₂ -	0	3	1	-	н	- CH N- C- H CH(CH ₃) ₂
CH-CH2-	0	3	1		. H	O CH N- C- I H CH₂CH(CH₃)₂
C⊢√_CH₂-	0	3	1	-	н	-(CH ₂) ₃ -C-
CH2-	0	3	1	-	н	-(CH ₂) ₂ -C
С⊢(СН₂-	Ο ·	3	1	-	н	-(CH2)2-C- $H3C$ $CH3$
CH-2-	0	3	1		н	O -(CH ₂) ₂ -C-CH ₃
С⊢С СН₂-	0	3	1	-	н	- CH ₂ -\$-CH ₃
CH-€CH2-	0	3	1	- ·	н	-CH ₂ -N-S-CH ₃
. CH-CH2-	0	3	1	-	Н	-CH2-N-C-O-CH2-
C⊢-{	0	3	1		н	- ĊH O. C. N-(C)
	$C \vdash - C \vdash +_{2} \vdash$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CI—CH₂- 0 3 CI—CH₂- 0 3	CH→CH₂- 0 3 1 CH→CH₂- 0 3 1	CH→CH ₂ - 0 3 1 - CH→CH ₂ - 0 3 1 -	CH → CH₂ - 0 3 1 - H CH → CH₂ - 0 3 1 - H CH → CH₂ - 0 3 1 - H CH → CH₂ - 0 3 1 - H CH → CH₂ - 0 3 1 - H CH → CH₂ - 0 3 1 - H

Table 1.33

R ¹ (CH ₂):						D4
R ² /	k	m 	n	chirality	H³	-(CH ₂) _p + (CH ₂) _q G-R ⁵
CH-2-	1	2	1	-	.н	- CH ₂ - N- C-
CH-2-	1	3	0	-	н	-CH ₂ -N-C-
C├ \ CH ₂ -	1	3	0	-	н	- CH2-N-C-CH3
CH-2-	1	3	0.	-	н	-CH2-N-C-N
C 	1	3	0	-	н	$-CH_2-N-C$ H H_3C
СН ₂ -	1	3	0	-	н	-CH ₂ -N-C-CF ₃
CH2-	1	3	0	-	н	-(CH ₂) ₂ -N-C-
С├-{СН₂-	1	3	0	-	н	-(CH ₂) ₂ -N-C
CI—(. 1	3	.0		н	O -(CH ₂) ₃ - C-
C⊢CH₂-	1	3	0	-	н	-(CH ₂) ₃ -C
C⊢ ⟨ ¯⟩-CH ₂ -	1	3	0	-	н	-(CH ₂) ₃ - C-S
	$CH - CH_2$	$CH \longrightarrow CH_2 - 1$	$CH - CH_{2} - 1 2$ $CH - CH_{2} - 1 3$	$CH \longrightarrow CH_{2} - 1 2 1$ $CH \longrightarrow CH_{2} - 1 3 0$	$CH - CH_{2} - 1 2 1 -$ $CH - CH_{2} - 1 3 0 -$	$CH \longrightarrow CH_{2}^{-} 1 2 1 - H$ $CH \longrightarrow CH_{2}^{-} 1 3 0 - H$

Table 1.34

							·
Compd.	R ¹ (CH ₂)	k	m	n	chirality	[°] R³	-(CH ₂) p G G-R ⁶
364	C ⊢ CH₂-	1	3	0	-	Н	-(CH ₂) ₂ -C-C-CH ₃
365	CH-CH2-	1	3	0	-	н	-(CH2)2-CH3 $H3C$
366	CH-CH ₂ -	1	3	Ö	-	н	-(CH ₂) ₂ -C-C-FOCH ₃
367	C⊢√ CH₂-	1	3	0	-	н	-(CH ₂) ₂ -C-CH ₃
368	CH-2-	1	3	. 0	-	н	On -(CH ₂) ₂ -C-
369	C├ - CH ₂ -	1	3	0		н	-(CH ₂) ₂ -C-CI
370	CH-2-	1	3	0	-	н	-(CH ₂) ₂ -с-С-ССН ₂) ₃ СН ₃
371	CH-2-	1	3	0	-	н	-(CH ₂) ₂ -C
372	CH2-	. 1	3	0	-	н	СH ₂ - Ş СН ₃
373	C	1	3	0	-	н	-(CH ₂) ₃ -C·N-
374	CH-2-	1	3	0		н	-(CH ₂) ₃ -C-N-CCH ₃

1

Table 1.35

$375 C \vdash \bigcirc - CH_{2}^{-} 1 3 0 - H \qquad \qquad - \frac{0}{(CH_{2})_{3}^{-}} - \frac{0}{C} \cdot \frac{1}{H} - \frac{1}{C} = \frac{1}{2} - \frac{1}{2} $	-							
$376 C \vdash \bigcirc - CH_{2}^{-} 1 3 0 - H - (CH_{2})_{3}^{-} \stackrel{\circ}{C} \cdot \stackrel{\circ}{N} - \stackrel{\circ}{N} $	Compd.	R ¹ (CH ₂) _j -	k	m	ñ	chirality	H3	-(СН ₂) р (СН ₂) q G-R ⁶ R ⁵
377 $CH \longrightarrow CH_2^-$ 1 3 0 - H $-CH_2^ CH_2^-$ C H $-CH_2^ CH_2^-$ C H $-CH_2^ CH_2^-$ C H $-CH_2^-$ C H $-CH_2$	375	CH-CH2-	1	3	0	-	н	-(CH ₂) ₃ -C-N-Cl
378 $CH \longrightarrow CH_2 - 1 \ 3 \ 0 \ - H \longrightarrow CH_2 \longrightarrow CH_2 - C$	376	CH-CH ₂ -	1	3	0	-	Н	-(CH ₂) ₃ -C-N
379 $CH \longrightarrow CH_2^-$ 1 3 0 - H $-(CH_2)_3 - C - N \longrightarrow CH_2$ 380 $CH \longrightarrow CH_2^-$ 1 3 0 - H $-(CH_2)_3 - C - N \longrightarrow CH_2$ 381 $CH \longrightarrow CH_2^-$ 1 3 0 - H $-CH_2 - N \longrightarrow CH_2$ 382 $CH \longrightarrow CH_2^-$ 1 3 0 - H $-CH_2 - N \longrightarrow C \longrightarrow CH_2$ 383 $CH \longrightarrow CH_2^-$ 1 3 0 - H $-CH_2 - N \longrightarrow C \longrightarrow C \longrightarrow CH_2$	377	CH2-	1	3	0	-	н	- CH ₂ -Ç-CH ₂ -Ö-N-CI CH ₃
380 $CH \longrightarrow CH_2 - 1$ 3 0 - H $-(CH_2)_3 - C - N - CH_2 \longrightarrow CH_2 - CH_2 - 1$ 3 0 - H $-CH_2 - N - CH_2 \longrightarrow CH_2 - CH_2 - 1$ 3 0 - H $-CH_2 - N - C - CH_2 - CH_2 \longrightarrow CH_2 - CH_2 $	378	CH-CH ₂ -	1	3	0	-	Н .	-CH ₂ -CH ₂ -C-N-F
381 $CH - CH_2 - 1$ 3 0 - H $-CH_2 - N - CH_2 - N - CH_2 - N - CH_2 - N - CH_2 - N - C - C - N - C - $	379	C├─ ◯ CH ₂ -	1	3	0		н	-(CH ₂) ₃ -C-NH C-CH ₃
382 CH2- 1 3 0 - H -CH2-N-C-O-CH2- 383 CH2- 1 3 0 - H -CH0-C-N-C-N-CH3	380	C├ - CH ₂ -	1	3	0	-	н	-(CH ₂) ₃ -C-N-CH ₂ -
383 CH2- 1 3 0 - H -CH0-C-N-CH3	3.81	C⊢CH₂-	1	3	0	-	Н.	- CH ₂ -N-S-CH ₃
	382	CH2-	1	3	0	-	н	- CH ₂ -N-C-O-CH ₂
384 CH2-CH2- 2 2 0 - H -CH2-N-C-	383	C├ \ CH ₂ -	1	3	0	-	: H	-¢+0-C-N-€CI
385 CH2- 2 2 0 - H -CH2-N-C-	384	CHCH ₂ -	2	2	0	-	Н	-CH ₂ -N-C-CH ₃
H	385	CHZ-CH₂-	2	2	0	-	н	-CH ₂ -N-C-

Table 1.36

Table I	.34						
Compd. No.	R ¹ (CH ₂)j-	k	m	n d	chirality	R³	-(CH ₂) _p G-R ⁶ R ⁵ (CH ₂) _q G-R ⁶
386	CH₂-	2	2	0	-	H :	-CH ₂ -N-C-
387	CH₂-	2	2	0	-	Н	-CH ₂ -N-C-
388	————————————————————————————————————	2	2	0	-	н	-CH ₂ -N-C-
389		2	2	0	-	. н	-CH ₂ -N-C
390	CH₂-	2	2	0	-	н	-CH ₂ -N-C-CF ₃
391	CH₂-	2	2 .	0	-	н	-CH ₂ -N-C-√CF ₃
392	◯ }−CH ₂ −	2	.2	0	-	н	-CH ₂ -N-C-OCF ₃
393	—CH₂-					н	-CH ₂ -N-C-Br
394	CH₂-	2	2	0	-	н	-CH ₂ -N-C-CI
395	CH₂-	2	2	0	•	н	-CH ₂ -N-C
396	-CH ₂ -	2	2	0		H·	-CH ₂ -N-C

Table 1.37

Compd. No.	R ¹ (CH ₂) _j	ik	m	n	chirality	H ₃	-(CH ₂) _p + (CH ₂) _q G-H ²
397	(CH ₂ -	2	2	0	•	н	-CH ₂ -N-C- CI
398	CH ₂ -	2	2	0	-	н	-(CH ₂) ₂ -N-C-
399	()—CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
400	—CH₂-	2	2	0	· .	н	-(CH ₂) ₂ -N-C-
401	-CH ₂ -	2	2	0	-	н	-(CH ₂) ₂ -N-C
402	CH₂-	2	. 2	0	-	Н	-(CH ₂) ₂ -N-C
403	—CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C
404	—CH₂-	2	2	0	<u>-</u>	н	-(CH ₂) ₂ -N-C
405	CH₂-	2	2	0	-	н .	-(CH ₂) ₂ -N-C-
406	СН₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-
407	CH₂-	2	2	0	· •	H	-(CH ₂) ₂ -N-C-\Br

Table 1.38

laute !	1.50						
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	⁻ R³	-(CH ₂) p G (CH ₂)q G-R ⁶
408	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C- F
.409	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-CI
410	CH ₂ -	2	2	0	-	н	(S) P -CH-N-C- CH ₂ CH(CH ₃) ₂ :
411	. CH ₂ -	2	2	0	-	н	(5) -CH-N-C- H CH ₂ CH(CH ₃) ₂
412	◯ −CH ₂ −	2	2	0	-	н	CH ₂ CH(CH ₃) ₂
413	CH ₂ -	2.	2	0	-	н	(S) -CH-N-C
414	CH₂-	2	2	0	, -	н	(S) PCF3 -CH-N-C-C- H CH ₂ CH(CH ₃) ₂
415	CH₂-	2	2	0		н	(5) P CF ₃ -CH-N-C- CF ₃ CH ₂ CH(CH ₃) ₂ F
416	CH₂-	2	2	0	-	H	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂
417	CH₂-	2	2	0	-	Н	CH ⁵ CH(CH ³) ⁵ .
418	€ CH2-	2	2	0	•	н	(S) P CI - CH- N- C- CI CH ₂ CH(CH ₃) ₂

Table 1.39

Compd. No.	R ¹ (CH ₂);-	.k	m	n	chirality	<u>.</u> [L	Ѭ ⁴ -(СН ₂) _{р Т} (СН ₂) _q G−R ⁶ R ⁵
419.	СН₂-	2	2	0	-	н	(S) P -CH-N-C
420	€ СН2-	2	2	0	-	н .	(S) P -CH-N-C
421	CH ₂ -	2	2	0	-	н	(S) -CH-N-C-C-CI CH ₂ CH(CH ₃) ₂
422	CH₂-	2	2	0	-	H	(H)
423 ·	~ CH₂-	· 2	2	. 0	-	н	(F) (P) (P) (P) (P) (P) (P) (P) (P) (P) (P
424	CH₂-	2	2	0	-	н	(A) NO ₂ -CH-N-C-W H CH ₂ CH(CH ₃) ₂
425	CH₂-·	2	2	0	-	н	(<i>H</i>)
426	СН2-	2	2	0	-	н	(A) -CH-N-C- H CH₂CH(CH₃)₂
427	CH ₂ -	2	2	0	-	Н	(<i>F</i>) - CH- N- C - CF ₃ - CH ₂ CH(CH ₃) ₂ F
428	CH ₂ -	2	2	0.	-	Н	(F) -CH-N-C- CH ₂ CH(CH ₃) ₂
429	CH₂-	2	2	0	•	н	(A) CH-N-C- H CH ₂ CH(CH ₃) ₂

Table 1.40

Compd.	R ¹ (CH ₂),	k	m	n	chirality	'R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
430	()−CH ₂ −	2	2	. 0	-	н	(A) D CI -CH-N-C- CH EH CH ₂ CH(CH ₃) ₂ .
431	CH ₂ -	2	2	0 .	-	H	(A) P -CH-N-C-Br CH ₂ CH(CH ₃) ₂
432	CH₂-	2	2	0	-	н .	(F) P C F -CH-N-C F -CH ₂ CH(CH ₃) ₂
433	CH₂-	2	2	0	-	н	(A) CH ⁵ CH(CH ³) ⁵ CI
434	СН-СН2-	1	3	1	-	Н	-CH2-N-C-
435	C├ - CH ₂ -	1	3	1	-	н	-CH ₂ -N-C-
436	CH2-	1	3	1		н	-CH ₂ -N-C-\(\sigma\)
	CHCH ₂ -					н	-CH ₂ -N-C
438	C⊢—CH₂-	1	3	1	•	Н	-CH ₂ -N-C-CF ₃
439	CH-{_}CH₂-	1	3	1	-	Н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-F ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
440	C├ - CH ₂ -	1	3	1	-	Н	-сн ₂ -и-с-

Table 1.41

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R ³	(СН ₂) _р — (СН ₂) _q G-R ⁶ R ⁵
441	CH-CH ₂ -	1	3	1	-	н	-CH ₂ -N-C- Br
442	CH-CH ₂ -	1	3	1	-	Н	-CH ₂ -N-C-CI
443	CHCH ₂ -	1	3	1	-	H	-CH₂-N-C-≪Sr
444	CHCH2-	1	3	1	-	н	-CH ₂ -N-C
445	CH_CH ₂ -	1	3	1	-	н	-CH ₂ -N-C- CI
446	CHCH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C-
447	CHCH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C-
448	CH2-	1	3	1		н	-(CH ₂) ₂ -N-C-NO ₂
449	CH-CH2-	1	3	1		н	-(CH ₂) ₂ -N-C
450	C├ -	1	3	1	-	Н	-(CH ₂) ₂ -N-C-CF ₃
451	_CHCH ₂ -	1	3	1	•	н _.	-(CH ₂) ₂ -N-C-CF ₃ -(CH ₂) ₂ -N-C-CF ₃

Table 1.42

lable	1.42						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^- R^6$
452	с⊢(1	3	1	-	н	-(CH ₂) ₂ -N-C
453	CH-CH2-	1	3	1	-	н	-(CH ₂) ₂ -N-C-
454	C├ - CH ₂ -	1	3	1	-	н.	-(CH ₂) ₂ -N-C-C
455	C⊢√CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C
456	C⊢√_CH₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C-F
457	C├─ੑिCH₂-	1	3	1		Н	-(CH ₂) ₂ -N-C-C1
458 ·	C├ - CH ₂ -	2	2	1.	-	н	-CH ₂ -N-C-
459	CH-CH2-	2	2	1	-	н.	- CH ₂ - N- C- CH ₃
460	CHCH2-	2	2	1		н	- CH ₂ - № С - СН ₃
461	CH-€ CH₂-	2	2	1	-	н .	- CH ₂ -N-C-CF ₃
462	CCH2-	2	2	1	-	н ·	- CH ₂ -N-C

Table 1.43

Compd.	R ¹ -(CH ₂)-	k	m	n	chirality	. [']	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
463	с⊢С}-сн₂-	2	2	1	-	н	- CH ₂ - N- C-
464	CI—(CH₂-	2	2	1	-	Н	- CH₂-N-C-CH₃ OCH₃
465	СН ₂ -	. 2	2	1	-	н	-CH₂-N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
466	С├-{СН₂-	2	2	1	-	. Н	- CH ₂ -N-C-NO ₂
467	CH-2-	2	2 ·	1	-	н	-CH ₂ -N-C-
468	CH-(-)-CH ₂ -	2	2	. 1	-	н	-CH ₂ -N-C-N(CH ₃) ₂
469	C⊢————————————————————————————————————	2	2	1	-	н	- CH ₂ -N-C
470	C	2	2	1	-	н	-CH ₂ -N C-CN
471	C├─ੑੑੑ}─CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
472	CH-€	2	2	1	-	H	- CH ₂ -N C- O-C-
473	С⊢—СН₂-	2	2	1	-	н	- CH ₂ -N CС-СH ₃

Table 1.44

	• • •						
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	Ŗ³.	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
474	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
475	CH-CH2-	2	2	1	-	н	- CH ₂ - N- C- CH(CH ₃) ₂
476	CH2−	2	2	1	-	н	-CH ₂ -N-C-NO ₂
477	CH-CH ₂ -	2	2	1		н	- CH ² - H- C- OCH(CH ³) ⁵
478	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C-N H ₃ C
479	с⊢(сн₂-	2	2	1	-	н	- CH ₂ - N C
480	C├ -	2	2	1	-	H	-CH ₂ -N C Br
481	CH2-	2	2	1	-	н	-CH2-N-C-S
482	CH_CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-S
483 [.]	CH-CH ₂ -	2	. 2	1	-	['] H	-CH2-N-C(S) CH3
484	CH ₂ -	2	2	1		н	-CH ₂ -N-C-N-

Table 1.45

	-						
Compd.	H ₂ (CH ₂)	k	m	ñ	chirality	R³	-(CH ₂) _p + (CH ₂) _q G−H ^S
485	с⊢—СН₂-	2	2	1	-	н	~ CH ₂ -N-C-CF ₃
486	C├ - CH ₂ -	2	2	1	-	н	-CH2-NC-CN
487	с⊢{_}сн₂-	2	2	1		н	-CH ₂ -N-C-CI
488	C├ ─ CH ₂ -	2	2	1	-	H .	- CH ₂ -N-C-\(\sigma\)
489	CHCH2-	2	2	1	-	Н	- CH ₂ -N-C
490	CH-CH ₂ -	2	2	1	-	н	-CH2-N-C
491	CH2-	ż	2	1	-	Н	- CH ₂ -N-CF ₃
492	C├	2	. 2	1	-	н	- CH ₂ -N-C- C- CCF ₃
	C├ - CH ₂ -			•			- CH ₂ -N-C-CF ₃
494	CI—()— CH₂-	2	2	1	-	Н	- CH ₂ -N-C
495	C⊢ (CH₂-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃

Table 1.46

	• • •						
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G^{-R^6}$
496	С⊢-{СН₂-	2	2	1	-	н	-CH₂-N-C-CF3
497	с⊢—Сн₂-	2	2	1	-	н	- CH ₂ -N-C
498	с⊢(сн₂-	2	2	1	-	н .	CH2-N-C
499	CH_CH2-	2	2	1	٠.	н	- CH ₂ - N· C − N(CH ₃) ₂
500	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C
501	CI-CH ₂ -	2	2	1		н	-CH ₂ -N-C
502	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
503	CH-2-	2	2	1		Н	- CH ₂ - N- C- NO ₂
504	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-OCH ₃
505	CH-2-	2	2	1	-	н	-CH ₂ -N-C
506	C⊢————————————————————————————————————	2	2	1	-	н	- CH ₂ -N-C

Table 1.47

Compd. No.	R (CH ₂) _j -	ķ	tīi	[]	chirality	Ř³	ー(CH ₂) _{p 5} (CH ₂)q G R ⁶ R ⁵
507	CI—CH₂-	2	2	1	· -	н	- CH ₂ - N- C- O
508	CI-CH ₂ -	2	2	1	•	н .	-CH2-N-C- H C- S
509	CH-2-	2	2	1	-	н	-CH ₂ -N-C-S
510	CH-2-	2	2	1	-	Н	- CH ₂ - N- CH ₃
511	CH-€T-CH₂-	2	2	1	-	H	-CH ₂ -N-C-C(CH ₃) ₃
512	CH-{-}-CH ₂ -	2	2	1	-	н	ÇN CHCH₃ - CH₂-N-C-
513	CH-2-	2	2	1	-	н	- CH ₂ -N-C-CH ₃
514	CH-CH ₂ -	2	2	1	•	н	- CH ₂ - N- C- C(CH ₃) ₃
515	CH-2-	2	2	1,	-	н	-CH ₂ -N-C- H . CH ₂ OH
516	H ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
517	H ₂ N CH ₂ -	2	2	1		н	-CH ₂ -N-C-CF ₃

Table 1.48

518	
519	R ⁴ (CH ₂) _q G-R ⁶
520 CH₂- 2 2 1CH₃ -CH	PN-C-CF3
	P-N-C-CF3
	-N-C-CF3
521 CH₂- 2 2 1 - (CH₂)₂CHCH₂	-N-C-CF3
522 CH₂- 2 2 1 - CH₂CHCH₂	FN-C-CF3
523 CH₂- 2 2 1 - (CH₂)₂CHCI	H_N-C-
524 CH ₂ - 2 2 1 - CH ₂ CH -CH ₂ CH	H ₂ -N-C-
525 CH₂- 2 2 1 - H -CH₂-	-M-C-QO G-CH ³
526 CH₂- 2 2 1 - H -C	H ₂ -N-C-
527 CH₂- 2 2 1 - H -c	H ₂ -N-C-\S
527 CH₂- 2 2 1 - H -CH₂- 528 CH₂- 2 2 1 - H -CH₂-	P ₂ -N-C-CH ₃ F ₃ C

Table 1.49

					•		
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	Ь'n	-(CH ₂) _p + (CH ₂) _q C-N ⁶
529	CH-2-	2	2	1	-	Н	-CH ₂ -N-C-CONO ₂
530	СН-СН2-	2	2	1	-	Н	-CH ₂ -N-C
531	CI-CH ₂ -	2	2	1	-	н	-CH2-N-C-\S
532	C├ - CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C-V-CH_{3}$ $H_{3}C$
533	С⊢—СН₂-	2	2	1		Н	-CH ₂ -N-CO H ₃ C
534	С⊢С СН₂-	2	2	1	•	н	-CH ₂ -N-C-NO ₂
535	СН-СН2-	2	2	1	-	Н	-CH ₂ -N-C-\S H ₃ C-C
536	CH-2-	2	2	1	-	н	-CH ₂ -N-C-N ₂ -CH ₃ H ₃ C CH ₃
	CH2-					н	$-CH_2 - N - C + C + C + C + C + C + C + C + C + C$
538	CI—CH₂-	2	2	1	- ,	н	-CH ₂ -N-C-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O
539	CI—(2	2	1	-	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃ -CH ₂ -N-C-C-CH ₃

Table 1.50

Compd.	R ¹ (CH ₂);	k	m	n c	hirality	'R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
540	С⊢-{}-СН₂-	2	2	1 .	-	н	-CH ₂ -N-C-N
541	CH-CH ₂ -	2	2	1 .		н	-CH ₂ -N-C
542	CHCH ₂ -	2	2	1 .	-	н	-CH ₂ -N-C-CH ₂ CH ₃
543	CHCH ₂ -	2	2	1	.	Н	-CH ₂ -N-C- H-C- CH ₂ CH ₃
544	CH-CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-
545	CH-CH2-	2	2	1	<u>.</u> .	н .	-сн ₂ -N-с-
546	CH-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C-CI
547	C├ - CH₂-	2	2	1	-	. Н	-CH2-N-C-CI
548	C├ - CH₂-	2	2	1	-	អ	-CH2-N-C- CI
549	С⊢-{	2	2	1	· .	н	-CH ₂ -N-C
550	CH-2-	2	2 .	1	-	н	$-CH_2-N-C-$ O_2N CI

Table 1.51

. 45,0							
Compd. No.	R ² (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - G - R^6$
551	CH2-	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CH ₃
552	C	2	2	. 1	-	н	-CH ₂ -N-C-CH ₂
553	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CF ₃
554	С⊢(СН₂-	2	2	1	-	н	-CH ₂ -N-C-N-H
555	СН-СН ₂ -	2	2	1	-	Н	-CH ₂ -N-C-N-CI
556	CF-€CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-N-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
557	C├── \	2	2	1	-	н	-(CH ₂) ₂ -N-C-
558	CH-CH ₂ -	2	2	.1	-	Н	-CHN-C-
559	C ├── CH ₂ -	2	2	1	-	Н	-CHNC-CF ₃ -CH ₃ CF ₃
560	C⊢-CH₂-	2	2	1	-	н .	-CH N C CN
561	CI—CH₂-	2	2	1	<u>.</u>	н	-CH N-C

Table 1.52

	-						
Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	Ħ³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
562	с⊢()-сн₂-	2	2	1	-	н	-CHNC-CI
563	CH-2−	2	2	1	-	н	O CF ₃ -CHNC- I H CH ₃ F ₃ C
564	CH-CH ₂ -	2	2	1		Н	-CHNCH3
565	CH-CH ₂ -	2	2	1	-	н	-C+N-C-CF3
566	CH-CH2-	2	2	1	-	Н	-CHN C-CCF3
567 ·	CH-CH2-	2	2	. 1	-	н [.]	-CHNC- IH CH ₃ CF ₃
568	CHCH2-	2	2	1	-	н	-CH-N-C- I H CH ₃ CF ₃
569	CH2-	2	2	1	-	н	-CHNC-CF3
570	CH-CH ₂ -	2	2	1	-	н	-CHNC-F IH CH ₃
571	CI—CH ₂ -	2	2	1	. -	н	-CHNC
572	CH-CH ₂ -	2	2	1	-	н	-CHN CF3

Table 1.53

Compo	I. R^{1} (CH ₂)-	k	m	n	chirality	₽³	-(CH ₂) _p + (CH ₂) _q G-R [€]
573	CI—CH₂-	2	2	1	-	н	-CH N C S
574	СН ₂ -	2	2	1	•	. н	-CHNC-S Br
575	CH ₂ −	2	2.	1	• •	н	-CH N C- C(CH3)3
576	CI—CH ₂ -	2	2	1	-	н	-CHNC- IHOSCH3
577	CH-€-CH₂-	2	2	1	-	н	-CH & C-
578	CH-CH ₂ -	2	2	1	•	н	-CHNC-S
579	CH2−	2	2	1	-	Н	-CH N C N
580	CH₂-	2	2	1	-	н	-CHNC-S CH3
581	CH ₂ -	2	2	1	-	н	-CHNC-S
582	C⊢————————————————————————————————————	2 2	2	1	-	H	- CH N C S
583	СН2-	2 2	2 .	1	-	н	- CH N C N CH3

Table 1.54

Table	1.5 4			_			
Compd. No.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G$ $-R^6$
584	С-СН2-	2	2	1	-	н	-CH N C - C - C - C - C - C - C - C - C - C
585	CH-CH ₂ -	2	2	1	٠.	н	- CH N C
586	CH-€	2	2	1	-	н	- CH N C- CI
587	CI-CH ₂ -	2	2	1	-	н	-CHNC-CF3
588	CH-CH2-	2	2	1		H	O − C H N C −
589	CH-CH ₂ -	2	2	1	æ.	н	-CHN-C
590	CH-CH ₂ -	2	2	1		Н	- CH-N-C
591	CH-CH2-	2	2	1	-	н	-CHN C- N(CH ₃) ₂ CH ₃
592	CH-CH ₂ -	2	2	1	-	н	- СН Н С
593	C⊢-()- CH₂-	2	2	1	-	н .	- CH+ N C- CH2OH H CH3
594	С⊢ √ -СН₂-	. 2	2	1	•	н	-сн» с

Table 1.55

Compd. No.	R ¹ (CH ₂)	k	m	ñ	chirality	'R²	—(CH ₂) p (CH ₂) q G−R ⁶ R ⁵
595	CHCH ₂ -	2	2	1	-	н	-сн м с — со₂сн₃ сн₃
596	CH-CH ₂ -	2	2	1	-	н	- СН У С — О О О О О О О О О О О О О О О О О О
597	CHCH ₂ -	2	2	1		н	- CH- NC-CH3
598	CHCH ₂ -	2	2	1	-	Н	-CH N-C
599	CHCH ₂ -	2	2	1	<u>.</u> ·	н	-CH N C-() H N CH ₃ CH ₃
600	CHCH_2-	2	2	1		Н	-CHNC-OBr
601	СН2-	2	2	1		H .	-CHNC-CH3
602	CH2-	2	2	1	-	Н	-CH-N-C- H CH ₃
603	CHCH ₂ -	2	2	1		н	-CHNC-NH2
604	С⊢—СН₂-	2	2	1	-	н	-CH-N-C-
605	C├ - CH ₂ -	2	2	1	-	н	-CH-M-C-

Table 1.56

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ŕ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G$ $-R^6$
606	C⊢(CH ₂ -	2	2	1	-	н	-CH-M-C-CS
607	CH-€ CH ₂ -	2	2	1	-	н	- CHN-C- S
608	CH-CH ₂ -	2	2	·1	-	Н	-CHNC-CH3
609	CHCH ₂ -	2	2	1	-	н	-CH-N-C
610	CI—CH ₂ -	2	2	1	-	н	-CH-N-C-CH3
611	CH_CH ₂ -	2	2	1	.	н	-CHN-C-C(CH ₃) ₃ -CH ₃ H ₃ C
612	CH_CH ₂ -	2	2	1	-	н	-CH-W-C
613	CH2-	2	2	1	· -	н	-CH-N-C-CH ₃ CH ₃ F ₃ C
614	C⊢√ CH₂-	2	2	1	-	н	-CH-N-C-CH ₃ -CH ₃ F ₃ C CH ₃
615	C├ - CH₂-	2	2	1	-	н	-CH-N-C-NH
616	CH-CH ₂ -	2	2	1	-	н	-CH-N-CN-

Table 1.57

:

lable	1.57						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	⁻ R³	$-(CH_2)_p$ $+ \frac{R^4}{R^5}(CH_2)_q$ $-G-R^6$
617	C├ - CH₂-	. 2	2	1	-	н	-CHN-C-CF3
618	CH-CH ₂ -	2	2	1	-	н	-CHN C- H CH(CH ₃) ₂
619	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
620	CHCH ₂ -	2	2	1	-	Н	- CH N C - Br - H H - CH(CH ₃) ₂
621	CH-2-	2	2	1	-	H	-CH N C - CI -CH (CH ₃) ₂
622	CH2-	.2	2	1	-	н	$-CHNC- \bigcirc N(CH_3)_2$ $-CHNC- \bigcirc N(CH_3)_2$ $-CH(CH_3)_2$
623	CH2-	2	2	1	-	н	- СН N- С Н СН(СН ₃) ₂
624	C⊢√CH₂-	2	2	1	-	н	- CH N C - NO ₂ - CH (CH ₃) ₂
625	С⊢—СН₂-	2	2	1	· -	н	- CH-N-C
626	С⊢ СН₂-	2	2	1		Н	- CH N C - CF ₃ CH(CH ₃) ₂ CF ₃
627	С⊢С СН₂-	2	2 .	1	-	н	O OCH2CH3 -CH N C-(CH3)2

Table 1.58

lable 1	.58						
Compd.	R ¹ /(CH ₂)/-	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
628	СН-СН ₂ -	2	2	1	-	н	- CH V C CO ⁵ CH ³
629	C├ - ⟨}CH ₂ -	2	2	1	-	H	O F CF3 - CH N C - CF3 - CH(CH ₃) ₂
630	CH-CH ₂ -	. 2	2	1.	-	н	OCF ₃ -CH-N-C
631	CHCH ₂ -	2	2	1	-	н	- CH N C- H CH(CH ₃) ₂ CF ₃
632	· CH2-	2	2	1	-	, н	-CHNC- IH CH(CH ₃) ₂ CF ₃
633	С⊢—СН ₂ -	2	2	1	-	н	CF ₃ -CH № C -CH(CH ₃) ₂ F
634	CH2-	2	2	1	-	н	- CH N C CF3 - CH(CH3)2
635	.CH_CH ₂ -	2	2	1		Н	CH(CH ₃) ₂ O O CH(CH ₃) ₂ - CH N C CH(CH ₃) ₂
636 .	C!	2	2	1	-	Н	-CH N C- CH(CH ₃) ₂
637	с⊢(сн ₂ -	2	2	1	-	н	О - СН N С - СН (СН ₃) ₂ .
638	CH-2-	2	2	1	•	н	- CH N C - CN - CH(CH ₃) ₂

Table 1.59

	•						
Compd. No.	R ² (CH ₂)-	ķ	111	n	chirality	² H³	帰 ⁴ 一(CH ₂) p (CH ₂) q G−R [©] R ⁵
639	CH2-	2	2	1	•	н	-CH-N-C-_N(CH ₃) ₂ -CH(CH ₃) ₂
640	C├ - CH ₂ -	2	2	1	-	н	- СН Н С-
641	CICH ₂ -	2	2	1	-	н	-CHNC-CO ₂ CH ₃ -CH(CH ₃) ₂
642	С⊢ СН₂-	2	2	1	-	H	-CH-N-C
643	CHCH ₂ -	2	2	1	-	Н .	-СН- N С-
644	C├─ \ CH ₂ -	2	2	1	-	н	-CH-N-C
645	C├ - CH ₂ -	2	2	1	-	Н	$-CH N C - NH_2$ $-CH (CH_3)_2$
646	C ├────────────────────────────	2	2	1	-	н	- СН- № С——— СН ₂ ОН Н СН(СН ₃) ₂
647	CI-CH ₂ -	2	2	1	-	н	-CHN C- C-CH ₃
648	C├ - CH ₂ -	2	2	1	-	н	- CH N C - CH(CH ₃) ₂ I H CH(CH ₃) ₂
649	CH	2	2	1	-	н	- СН И С- СН(СН ₃) ₂
							•

Table 1.60

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
650	с⊢(Сн₂-	2	2	1	-	н	-CH-N-C
651	С├ - СН ₂ -	2	2	1	-	н	-CH-H-C-CHCH3
652	CH-CH2-	2	2	1	-	н	-CH-N-C-NO ₂ CH(CH ₃) ₂
653	CHCH ₂ -	2	2	1	-	H	-CH-N-C
654	CHCH ₂ -	2	2	1	-	н	- CH-N-C
655	CH-CH ₂ -	· 2	2	1	-	н	-CH-N-C- H CH(CH ₃) ₂
656	CHCH ₂ -	2	2	1	-	н .	-сн-ү-с- сн(сн _{з)2}
657	CHCH ₂ -	2	2	1	·	Н	-CH-N-C- CH(CH ₃) ₂
658	CHCH ₂ -	2	2	1	-	Ή·	- CH-N-C- NH CH(CH ₃) ₂
659	C⊢√CH₂-	2	2	1	-	н	-CH-N-C
660	CH-√ CH2-	2	2	1	<u>.</u>	н	-CH-N-C-N CH(CH ₃) ₂

Table 1.61

Compd. No.	R ¹ (CH ₂)	k	ñi	ñ	chirality	Ĥ³	-(UH ₂) p (CH ₂) q G−H ⁰ R ⁵
661	с⊢(Сн₂-	2	2	1		н	-CH-N-C- S H CH(CH ₃) ₂ OCH ₃
662	С⊢СН₂-	2	2	1	-	н	-CH'CH3)2 -CH'CH3)2 -CH3
663	с⊢(сн₂-	2	2	1	-	н	-CHN-C
664	С├-{	2	2	1	-	Н	-CH-N-C
665	СН ₂ -	2	2	1		Н	CH(CH ₃) ₂
666	CH-2-	2	2	1	- . ·. ·	н	CH(CH ₃) ₂ CH ₃ CH ₃ CH ₃
667	CHCH ₂ -	2	2	1	-	н	-CH-N-C-Q
668	CH-2-	2.	2	1	-	н	-CH-N-C-CH ₃ CH(CH ₃) ₂ CCH
669	CH2-	2	2	1	-	н	-CHN-C- CH(CH ₃) ₂ CH ₃
670	С⊢(СН₂-	2	2	1	-	н	-CH-N-C-OBr
671	с⊢Сн₂-	. 2	2	1	- ·	н	CH(CH3)2 NO2

Table 1.62

Table	1.02	•			•		
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
672	с⊢(Сн₂-	2	2	1		н	-CH-N-C-() H N CH(CH ₃) ₂ H
673	СН-СН ₂ -	2	2	1	-	н ,	-CH-N-C-S -C(CH ₃) ₂
674	C⊢√CH₂-	2	2	1	-	н	-CH-N-C-S
675 ·	.CH-CH ₂ -	2	2	. 1	-	н	-CH-N-C-S-CH ₃
676	CI—CH₂-	2	2	1	-	Н	CH(CH ₃) ₂ H
677	CH2 [−]	2	2	1	-	н	-CH-N-C-N-C-N-C-H(CH ₃) ₂ CH ₃
678	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
679	CH-CH ₂ -	2	2	1	-	Н	-CH-NC-STO
680	CI—CH₂-	2	2	1	-	н	-CHN-C-S Br
681	C ⊢ CH₂-	2	2	i	-	H 	-CH-N-C-CH ₃ -CH(CH ₃) ₂ -CH ₃
682	С⊢ССН₂-	2	2	1	•	н	-снис- сн(Сн ₃) ₂

Table 1.63

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	Ĥ³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
683	CHCH2-	2	2	1		н .	-CH-N-C-S H S SCH ₃
684	CH-2-	2	2	1	-	н	-CH-N-C- S CH(CH ₃) ₂
685	C ⊢ C H₂-	2	2	1	-	н	-СH-N-С \$ \$ СН3
686	с⊢{сн₂-	2	2	1	-	н	- CH N- C- H N- C- CH ₂ CH(CH ₃) ₂
687	CH-2-	2	2	1	-	н	-CHNC-
688	С⊢—СН₂-	2	2	1	-	н	-CHNC
689	C├ - CH ₂ -	2	2	1	-	Н	-CH N-C-
690	C├ - CH ₂ -	2	2	1	-	Н	-CHNC-Br
	Сі—СН²-						-CH N-C (NCH3)2
692	С⊢СН₂-	2	2	1	-	н	-CH M G OCH ³
693	CI—CH₂-	2	2	1	-	H .	-CHNC-CF3

Table 1.64

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\rho} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
694	CH-CH ₂ -	2	2	1	-	н .	-CH N-C- OCH2CH3
695	CH-CH2-	2	2	1	· -	н	-CH № C
696	С⊢ СН₂-	2	2	1	-	н	- CH N C OCF3
697	CI-CH ₂ -	2	2	1	-	н	сн-и с- о
698	C├ - CH₂-	2	2	1	-	н	-CH N C - N(CH ₃) ₂
699	CI————————————————————————————————————	2	2	1	-	н	-сн и-с- О
700	CH-√CH₂-	2	2	1	-	н	-CH N-C
701	C├ - CH ₂ -	2	2	1	-	Н	-CH N-CC-CH3
702	C├ - CH ₂ -	2	2	1	-	Н	-CHN-C-CF3
							-CHN-C-CH(CH ₃) ₂
704 [.]	CH-2-	2	2	1	-	Н	-CHN-C

Table 1.65

Comp No.	od. R ¹ (CH ₂)	k m n	chirality	H₃	R^4 $-(CH_2)_{p} + (CH_2)_{q} G - R^6$
705	С{-}-СН2-	2 2 1	•	н -	-CHN-C-S
706	С⊢ СН₂-	2 2 1	-	н	-CHN-C-STCH3
707	C├ ─ }─CH ₂ -	2 2 1	-	Н	-CHN-C
708	CI—CH₂-	2 2 1	-	H	-CHN-C-S Br
709	CH-{_}CH₂-	2 2 1	- .	Н	-CHNC-S SCH3
710	C⊢CH₂-	2 2 1	-	н .	-CH-N-C-S
711	C⊢—CH₂-	2 2 1	-	н	-CHN-C-(CH3
712	CH2-	2 2 1	-	Н	-chyc-st
713	CH2- 2	2 2 1	-	Н	-CH-N-C
714	C├ - CH₂- 2	2 1	-	н	-CH-N-CS
715	С⊢(2	2 1	-	н	-CHN-C-S

Table 1.66

Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q-1}^{-1}G^{-1}R^6$
716	CHCH ₂ -	2	2	1	-	н	-CHUC-NH
717	CH-CH2-	2	2	1	-	H.	-CHNC- NO2
718	CH-CH ₂ -	2	2	1		н	-c+n-c-N
719	CH-2-	2	2	1	-	н	-c+n-c-
720	CH-CH ₂ -	2	2	1		н	-CHN-C- Br
721	CH2-	2	2	1	-	н	-CHN-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
722	CH2-	2	2 .	1	-	н	-сни-с-{>-сн₂он
723	C⊢(¯¯) CH ₂	2	2	1	-	н	-CH-N-CNH2
724	C├ - CH ₂ -	2	2	.1	-	н	-CH-V-C-(CH3)3
725	С⊢—СН₂-	2	2	1	-	н	-c+n-c-(
726	C	2	2	1		н	-сни с-снэ

Table 1.67

					•	
Compd. No.	R ¹ (CH ₂),	k	m n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
727	CI-CH ₂ -	2	2 1	-	н	-CHMC-(>-CI
728	CI—(CH₂-	2	2 1	• •	н	-CH-N-C-NH2
729	с⊢√_сн₂-	2 2	21	-	Н	-CHN-C-NO2
730	CH-CH2-	2 2	2 1	-	Н	-c+n-c-
731	C├────── CH₂-	2 2	2 1	-	н	-сн-и-с-Сн-э
732	C├ - CH ₂ -	2 2	! 1	-	н	-CHNC-CF3
733	C├ \	2 2	1	-	н	-CH-N-C- HO CH(CH ₃) ₂
734	CH₂-	2 2	1	-	Н	-CHN-C
735	CH-2-	2 2	1	-	Н	-CHN-C-CF3
736	CH-CH ₂ -	2 2	1	-	H	-CH-N-C- H ₂ N CF ₃ -CH-N-C- F
737	CI-CH ₂ -	2 2	1	-	н	-CHN-C- C- CF3

Table 1.68

Table	1.00						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	Ŕ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
738	с⊢(сн₂-	2	2	1	-	н	-CH-N-C-C-CH ₃
739	. CH-CH2-	2	2	1	-	н	-CH-N-C-NH
740	CH-CH2-	2	2	1	-	н	-CHN-C
741	CH-CH ₂ -	. 2	2	1	-	н	-CHN-C-S NO2
742	CH_CH ₂ -	2	2	1	-	н .	-CHN-C-S
743	CH-CH ₂ -	2	2	1	-	н	-chyc-Co
744	CH-CH ₂ -	2	2	1	-	н	-CHN-C-CH3
745	CH-CH ₂ -	2	2	1	. •	н	-CHN-C-(CH3)3
746	C⊢CH ₂ -	2	2	1	-	н	-CH-N-C-NCH3
747	С⊢СН2-	2	2	1	-	н	-CHNC-CS
	C├ \ CH₂-						-chyc-Cs

Table 1.69

· abic	1.03						
Compd.	R^1 $(CH_2)^-$	k	m	n	chirality	'R³	$-(CH_2)_p + (CH_2)_q G - R^6$
749	CH-€ CH₂-	2	2	1	-	н	-CH-N-C
750	C├ - CH ₂ -	2	2	1	•	н .	-CH-N-C
751	CHCH ₂ -	2	2	1	-	н	-СH-N-С-СН3 СH2OH
752	CHCH ₂ -	. 2	2	1	[·]	Н	CF ₃ -CH-N-C H CH ₂ OH CF ₃
753	CH-CH ₂ -	. 2	2	1	-	Н	-CH-N-C- H CH₂OH
754	CHCH2-	2	2	1	-	. н	-CHN-C-CI H CH2OH
755	CH-2-	2	2	1	-	н	-сн-и-с сн₂он
756	C ├── CH ₂ -	2	2	1	-	н	-ÇH-N-C
757	CH-2-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C
758	C⊢CH₂-	2	2	1	-	Н	−CH-N-C H CH ₂ OH
759	C├ - CH ₂ -	2	2	1	-	н	OCF₃ -CH+N-C- H CH₂OH

Table 1.70

iable	1.70						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
760	CH-CH2-	2	. 2	1		н	CH2OH F
761 ,	CH-CH2-	2	2	1		н	CF₃ -CHN-C-F H CH₂OH
762	CH-CH ₂ -	2	2	1	-	н	CH ₂ OH
763	CH-2-	2	.2	1	-	н	-сн-и-с- сн₂он
764	CH-CH2-	2	2	1	-	. н	СН3 Р СН3 Р СН3 .
765	CH-CH2-	2	2	1	-	H _.	CH ₃ O CH ₃ -C-N-C-CH ₃
766 ·	CHCH ₂ -	2	2	·1	-	н	СН ₃ О СБ ₃
767	CI-CH ₂ -	2	2	1	-	н	CH3 Q CCH3
	CH-2-					н	CH ₃ O Br
769	CH-CH ₂ -	2	2	1	•	н	CH ₃ P OCF ₃ -C-N-C-
770	C ← C H ₂ -	. 2	2	1	•	Н	CH ₃ CCF ₃ CCF ₃ CCF ₃ CH ₃ CF ₃
							•

Table 1.71

Compd.	H → (CH ₂);	k m	n	chirality		(CH ₂) _p (CH ₂) _q G-R ⁶
771	CI—CH ₂ -	2 2	1	-	н	CH ₃ P CF ₃ -C-N-C-F CH ₃
772	C├ - CH ₂ -	2 2	1	-	н	CH ₃ P -C-N-C-C-CF ₃ CH ₃
773	С⊢СН₂-	2 2	1		Н	CH3 C(CH3)3
774	CH2-	2 2	1	· -	Н	CH ₃ O CH ₃ O SCH ₃
775	CH-CH ₂ -	2 2	1	-	н	C(CH ₃) ₃
776	CH-2-	2 2	1	-	н	CH3 O CH3 -C-N-C-O CH3
777	C	2 2	1	-	H	CH ₃ O CF ₃
778	С⊢—СН₂-	2 2	1	-	Н	CH ₃ O NO ₂ CH ₃ O CI
779	CI—CH ₂ -	2 2	1	-	н	-C-N-C-CI
780	CH-CH ₂ -	2 2	1	-		CH ₃ O NO ₂ -C-N-C-NO ₂ -CH ₃ O NO ₂
781	CH-CH2-	2 2	1	-	н	CH ₃ P -C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-

Table 1.72

lable 1	1.72					_	
Compd.	R ¹ (CH ₂)j-	k	m	n c	hirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
782	CHCH ₂ -	2	2	1'	•	н	-C-N-C
783	С├ - СН₂-	2	2	1	-	Н	CH ₃ OCH ₂ CH ₃
784	CH-CH2-	2	2	† ∙	-	н	CF ₃ -C-N-C-CH ₂ -CF ₃ -CH ₃
785	C├ - ⟨CH ₂ -	2	2	1	-	н	CH ₃ P OCH ₃ CH ₃ OCH ₃
786	CH-2-	ż	2	1	-	н	-C-N-C-
787	CI-CH ₂ -	2	2	1	- .	н .	-C-N-C-CH ₃
788	CH-CH2-	2	2	1		H .	-C-N-C-CF ₃
789	CH-2-	. 2	2	1	-	н	-C-N-C-CH3
790	CH-CH ₂ -	2	2	1	-	н	P C C C C C C C C C C C C C C C C C C C
791	CH-CH ₂ -	2	2	1	-	н	H ₂ C — CH ₂ OCF ₃ H ₃ C — CH ₂
792	CH-2-	2	2	1	-	н	-C-HC-C-CH ₂ .

Table 1.73

	•						•
Compd.	R (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
793	CH-2-	2	2	1	-	н	H ₂ C-CH ₂ CF ₃
794	CI-CH ₂ -	2	2	1	-	Н .	H ₂ C-CH ₂ F
795	CICH ₂ -	2	2	1	-	н	-C - N - C - C - C - C - C - C - C - C -
796	CHCH ₂ -	2	2	1	-	н	H ₂ C-CH ₂
797	с⊢—СH ₂ -	2	2	1	-	н	O CH ₃ -C-N-C-C-C(CH ₃) ₃ H ₂ C-CH ₂
798	CHCH ₂ -	2	2	1	-	Н	-C-12
799	C├────────────────────────────────────	2	2	1	-	_. H	CH ₃ CH ₃
800	CH-CH ₂ -	2	2	1	-	н.	NO ₂ . NO ₂ . H ₂ C-CH ₂
801	CH-CH ₂ -				-	н	H ₂ C—CH ₂ · H
802	CH-€-CH₂-	2	2	1	-	Н	-C-N-C-OCH ₃
803	CHCH ₂ -	2	2	1	-	н	OCH ₃ H ₂ C-CH ₂ OCH ₂ CH ₃ OCH ₂ CH ₃

Table 1.74

rable	1.7 4						
Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p G CH ₂) q G-R ⁶
804	C├ - CH₂-	2	2	1	- ,	н	-C-N-C-CH ₂ CF ₃
805	CH-CH ₂	2	2	1	-	н	H_2C — CH_2 OCH_3
806	CH-(.)-CH ₂ -	2	2	1.	- -	н	H ₂ C—CH ₂
807	CH2-	2	2 .	1	-	н	(CH3) 2 C-1242
808	CH-CH ₂ -	2	2	1	-	H	(CH3) 2-C-NH2 -CH-N-C-CH3
809	CH-CH ₂ -	2	2	1	-	н	-CH-N-C- H CH ₂) ₂ C-NH ₂
810	CHCH ₂ -	2	2 .	1	· -	н.	-CH-NC-CH3 (CH2)2-G-NH2
811	C├ \ CH ₂ -	2	2	1	-	н	-CH-N-CNH ₂
812	C⊢————————————————————————————————————	2	2	1		н	-CH-N-C- H-SSCH ₃ (CH ₂) ₂ -C-NH ₂
813	C├ - CH ₂ -	2	2	1	-	н	-CH-W-C
814	C⊢—CH₂-	2	2	1	-	н	-CH-N-C

Table 1.75

lable	1.7 5						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
815	CH-2-	2	2	1	<u>.</u>	Н	· - CH+N-C - CF3
816	C├ - CH₂-	2	2	1	-	н	-CH-N-C
817	CHCH ₂ -	2	2	1	-	н	- CH-N-C
818	CHCH ₂ -	2	2	1	-	н	- CH-N-C
819	C	2	2	.1	-	Н	-CH-NC-CF3 (CH2)2-C-NH2 CF3
820	СН <u>_</u> -СH ₂ -	2	2	1	• •	н	-Ç++N-C
821	CHCH ₂ -	2	2	1	-	H	-CH-N-C
822	CH2-	2	2	1	-	Н	-СН-И-С- СН2ОСН3
823	CH-2-	2	2	1	-	н	-CH-N-C- CH2OCH3
824	C├	2	2	1	-	н	-CH-N-C
825	C⊢-(CH ₂ -	2	2	1	-	н	CH ⁵ OCH ³

Table 1.76

· abic							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
826	С⊢-{_}-СН₂-	2	2 .	1	-	н	-CH-N-C-CH3 CH2OCH3
827	CH-CH2-	2	2	1	-	н	-CH-N-C-NH CH2OCH3
828	CH-CH ₂ -	2	2 [.]	1	-	. Н	-CH-N-C- CH ₂ OCH ₃
829	CHCH ₂ -	Ż	2	1	-	н	-CH-N-C- H CH ₂ OCH ₃ .F
830	CH-CH ₂ -	2	2	1	-	н	-CH-N-CF CH ₂ OCH ₃
831	CHCH ₂ -	2	2	1 -	-	н	-CH-N-C
832 .	CH-CH ₂ -	2	2	1	-	н	-CH-N-C- CH²OCH3
833	CHCH ₂ -	2	2	1	-	н	CH2OCH3
834	CHCH ₂ -	2	2	1	-	н	-CH-N-C
835	CH-()-CH2-	2	2	1	-	н	-CH-N-C- CH²OCH3
836	CH-€ CH₂-					н	-CH-N-C-CH3
	•						

Table 1.77

							
Compd. No.	R ¹ (CH ₂);-	ķ	m 	n	chirality	P.3	$-(CH_2)_{p}^{R^4}(CH_2)_{q}^{-}G-R^6$
837	CH-2-	2	2	1	-	н	O CF ₃ -CH-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
838	CH-CH ₂ -	2	2	1	-	н	-CH-N-C
839	C├─ \ CH ₂ -	2	2	1		Н	O O O O O O O O O O
840	С⊢—СН₂-	2	2	1	-	н	-(CH ₂) ₃ -C-
841	CH-€-	2	2	1	<u>.</u> ,	н	-(CH ₂) ₂ - C-
842	C⊢————————————————————————————————————	2	2	1	-	Н	-(CH ₂) ₂ -C-C-CI
843	C├ - CH ₂ -	2	2	1	· -	н	-(CH ₂) ₂ -CH ₃
844	C├─ │ CH ₂ -	2	2	1	-	Н	-(CH ₂) ₂ -CH ₃
845	CH- (CH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C-C- O O O
							-(CH ₂) ₂ -C-\(\sigma\) O-\(\sigma\)
847	СҢ СН₂-	2	2	1	-	Н	-(CH ₂) ₂ -C-C-C-OCH ₃

Table 1.78

iable							
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)^{-}_{q}G^{-}R^6$
848	CH-CH2-	2	2	1	-	н	-(CH ₂) ₂ -CH ₃
849	C├ - CH ₂ -	2	2	1		н	-(CH ₂) ₂ -C-OCH ₃
850	CH-CH2-	2	.2	1	-	н	$-CH_2$ - S - CH_3
851	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C-N-CF ₃
852	CH-2-	2	2	1	-	. н	-CH ₂ -N-C-N-CF ₃
853	CH-CH2-	2	2	1	- · ·	н	- CH ₂ -N-C-N-
854	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H
855	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C-N-C-H ₃
856	C⊢(CH ₂ -	2	2	1	· -	н	- CH ² - W C- M C- CH ³
857	CH-CH ₂ -	2	2	1	-	н	-CH2-N-C-N-C-N-
858	CH-2-	2	2	1	•	н	-CH2-N-C-N-C-N-OCH3

Table 1.79

Compd. No.	R ¹ (CH ₂) _j .	k	m	n	chirality		R ⁴ -(CH ₂) _p + (CH ₂) _q G−R ⁶ R ⁵
859	C⊢ CH₂-	2	2	1	-	н	-CH2-N-C-N-
860	CHCH2-	2	2	1	-	Н	-CH2-N-C-N-CN
861	CH-CH₂-	2	2	1	-	. н	- CH ₂ -N-C N-
862	CHCH_2-	2	2	1	-	Н	-CH ₂ -N-C-N-CH ₃
863	CH2-	2	2	1	-	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
864	CH2-	2	2	· 1	-	·H	- CH ₂ -N-C-N
865	C ← CH ₂ -	2	2	1	-	н	-CH ₂ -N-S-CH ₃
866	CH-2−						H Ö
867	C├	2	2	1	-	Н	- CH ₂ -N-S-CF ₃
868 [.]	C	2	2	1	-	н	-CH ₂ -N-S-CH ₂ CH ₃
869	CH-2-	2	2	1	-	н	-CH ₂ -N-S-CH(CH ₃) ₂

Table 1.80

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p G G-R ⁶
870	CH₂-	2	2	1	-	н	- CH ₂ -N-S
871	CI—CH₂-	2	2	1	· -	н .	- CH ₂ -N-S-(CH ₂) ₃ CH ₃
872	C├ - CH ₂ -	2	2	1	-	н	- CH ₂ -N-S-
873	С⊢-{	2	2	1	-	н	- CH ₂ -N-C-O CH ₂
874	CH2−	2.	2	1	-	н	- CH O C N CI
875	()- CH₂-	2	2	1	•	н .	- CH ₂ -N-C.—CF ₃
876	Br-CH ₂ -	2	. 2	1	-	н	-CH ₂ -N-C-CF ₃
877	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
878	O ₂ N-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
879	O O ← CH₂-	2	2	1	-	н	- CH ₂ -N-C- CF ₃
880	O^O CH₂-	2	2	1	-	н	- CH2- N C CF3

Table 1.81

Compd.	R ¹ (CH ₂);	k	m	11	chirality	H³	ー(CH ₂) p 5 (CH ₂) q GーR ⁶ R ⁵
881	Br CH ₂ -	2	2	1	-	Н .	-CH ₂ -N C-CF ₃
882	OH2-	2	2	1	-	н	- CH ₂ - N- C-
883	CI CH ₂ -	2	2	1	•	н	- CH ₂ - N C - CF ₃
884	₩С. <u>с</u> - Н сн⁵-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
885	H ₃ C-\$ CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-
886	F-CH ₂ -	2	2	1	. .	н	-CH ₂ -N-C-CF ₃
887	F ₃ C-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
888	HOCH ₂ -	2	2	1	- '	н	- CH ₂ -N-C-CF ₃
·889	CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
	CH ₂ -						-CH ₂ -N-C-CF ₃
891	CH_CH ₂ -	. 2	2	1		н	- CH ₂ - № C-

Table 1.82

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $\frac{R^4}{R^5}$ $(CH_2)_q$ $G-R^6$
892	H₃CQ CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
893	O ₂ N CH ₂ -	2	2	1	-	н	- CH ₂ -N-CF ₃
894	HO CH ₃ CH ₂ - CH ₃	2	2	1	-	Н	-CH₂-N-C-CF3
895	(CH ₂) ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
896	CN CH₂-	2 ′	2	1	-	н	-CH ₂ -N-C-CF ₃
897	HO ₂ C CH ₂ -	2	2	1		н	-CH ₂ -N-C-CF ₃
898	HO ₂ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
899	OCH ₃	2	2	1	.	н	- CH ₂ -N-C-CF ₃
90 <u>0</u>	H ₃ ∞ ₂ C-√	2	2	1	- -	н	-CH ₂ -N-C-CF ₃
901	<u></u>	2	2	1	-	н	CH ₂ -N-C-C ₂
.902	O ₂ N CH ₂ -	2	2	1	-	H	- CH ₂ -N-C-CF ₃

Table 1.83

Compd. No.	R ² (CH ₂) _i	k	m	п	chirality	Ř³	-(CH ₂) p CH₂)q G-R⁶
903	H₃CO CH₂- OCH₃	2	2	1	-	H	- CH ₂ -N-C-
904	HO CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-
905	O ₂ N CH ₂ -	2	2	1	-	н	CH ₂ -N-C-CF ₃
906	(CH ₂) ₃ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
907	-CH(CH ₂) ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
908	N+ C ^O CH₂-	2	2	1	-	н	CH ₂ -N-C-CF ₃
909	OH2-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
910	CH ₂ -CH ₂ -	2	2	1	-	H	- CH ₂ -N-C-CF ₃
911	CICH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
912	Br CH ₂	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
913	H ₃ CO-CH ₂ -	2	2	. 1	-	н	O CF ₃

Table 1.84

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
914	OH2O-CH2-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
915	OH CHCH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
916	. NCH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
917	CH ₂ -	2	2	.1	· -	н	- CH ₂ -N-C-CF ₃
918	H ₃ CO ₂ C·OH ₂	2	2	1	-	н .	- CH ₂ -N-C-CF ₃
919	H ₃ C-€ CH ₂ -	2	. 2	1	-	н	- CH ₂ -N-C-CF ₃
920	OCF ₃	2	2	1	-	н	- CH ₂ -N-C-CF ₃
921	CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-
922) —сн₂-						- CH ₂ - N- C- CF ₃
923	CH-CH-	.2	2	1	-	Н	- CH ₂ -N-C-CF ₃
924	H ₂ N-C	2	2	1	-	н	-CH ₂ -N-C-CF ₃

Table 1.85

Idble	1.03						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	R ⁴ −(CH ₂) _p † (CH ₂) _q G−R ⁶ R ⁵
925	H ₂ N-C	2	2	1	-	. н	-CH ₂ -N-C-CF ₃
926	CH2-CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
927	F ₃ CQ —CH ₂ -	2	2	1	7	н	-CH ₂ -N-C-CF ₃
928	F ₃ CO-{CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
929	H ₃ CSCH ₂ -	2	2	1	-	н	-CH2-N-C-CF3
930	CH₃ —CH₂-	2	2	1	-	н	-CH2-N-C-CF3
931	NC CH ₂ -	2	2	1	-	н	-CH2-N-C-CF3
	NO ₂					н	-СH ₂ -N-С-СБ3
933	CH- CH-	2	2	1	-	Н	-CH ₂ -N-C-C-CF ₃
934	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
935	O ₂ N —CH ₂ —	2	2	1	-	Н	-CH ₂ -N-C-CF ₃

Table 1.86

lable	1.86						
Compd.	R ¹ (CH ₂) _i	k	m	n	chirality	[.] R³	-(CH ₂) _P + (CH ₂) _q G-R ⁶
936	NO ₂	2	2	1	•	н	-CH ₂ -N-C
937	(H ₃ C) ₂ N-\(\bigc\)-OH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
938	с⊢ СН₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
939	O ₂ N CH ₂ -	2	2	1	-	, Н .	-CH ₂ -N-C-CF ₃
940	OH CH₂-	2	2	1	-	. Н	-CH _{2-N} -C-CF ₃
941	F ₃ C CH ₂ -	2	2	1	-	H .	-CH ₂ -N-C-CF ₃
942	С├-{	2	2	1		Н	-CHNC-CF3 -CH(CH ₃) ₂ CF ₃
943	CH-CH ₂ -	1	4	0	- .	Н	-CH ₂ -N-C-CF ₃
944	CH2-	1÷	.4	0	-	н	-CH ₂ -N-C-CH ₃
	CI—(-CH ₂ -N-C-\(\sigma\)
946	CI—(1	4	0	-	н	-(CH ₂) ₂ -N-C-NO ₂

Table 1.87

Compd. No.	R ² (CH ₂);-	ķ	m	n	chirality	D3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
947	C├ - CH₂-	1	4	0	-	н	-(CH ₂) ₂ -N-C
948	CHCH ₂ -	1	4	0	-	Н	-(CH ₂) ₃ C-N
949	C├ - CH ₂ -	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₂ -
950	CHCH ₂ -	0	4	1	-	н	- CH ₂ -N-C-
951	CH_CH2-	1	2	0	R	н	-CH ₂ -N-C-С-СH ₃
952 ·	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
953	C ⊢ CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
954	C├ - CH ₂ -	1	2	0	R'	Н	-CH ₂ -N-C-VH
955	CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C- H H ₃ C-NH
956	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C- HO
957	C├	1	2	0	R	н	-CH2-N-C-OH

Table 1.88

						·	
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _{р 5} (CH ₂) _q G-R ⁶
958	с⊢—СН₂-	1	2 . ·	0	R	н	-(CH ₂) ₂ -N-C-
959	CH-2-	1	. 2	0	R	н	-CH ₂ -N-C-CH ₃
960	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
961	CH-CH2-	1	2	0	R	н	-CH2-N-C N-CH3
962	CH-CH2-	1	2	0	R	н	-(CH ₂) _Z -N-C-\ H CH ₃
963	CH-CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-С-Д-ОН
964	CH-2-	1	2	0	R	н	-CH ₂ -N-C- CO ₂ CH ₃
965	CH-CH ₂ -	1	2	0	Ŗ	н	-(CH ₂) ₂ -N-C- H
966	CH-CH ₂ -	1	2	0	R	Н	-сн₂-н-с-С-сн₃
967	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
968	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-√NH

Table 1.89

Compd.	R ¹ /(CH ₂) _i -	k	m	n	chirality	R³	–(CH ₂) , (CH ₂) , G−R ⁶
969	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
970	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
971	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-N(CH ₃) ₂
972	CH-(-)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NH ₂
973	CHCH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C
974	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\
975	CH-CH ₂ -	1	2	0	Ŗ	Н .	-(CH ₂) ₂ -N-C-\(\bigc\)-NH ₂
976	CH-CH ₂ -	1	2	. 0	R	H	-CH ₂ -N-C-NH
977	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-NH
978	C⊢√ CH₂-	1	2	0	R	Н	-CH ⁵ -N-C- N-C- N-V-N-C- N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
979	CI—CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-

Table 1.90

<u> </u>	ρţ	,					
No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
980	C⊢(CH ₂ -	1	2	0	R	·н	-CH2-N-C-←
981	CI—CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CH ₃
982	С⊢-{СН₂-	1	2	0	R	. н	-CH ₂ -N-C-
983	CH-CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C-
984	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
985·	CH-2-	1	2	0 .	R	н	-(CH ₂) ₂ -N-ССН ₂ ОН
986	CH-CH-	1	2	0	. R	н .	-CH ₂ -N-C-CF ₃
987	CH-CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
988	CHCH2-	1	4	0	-	н .	-CH ₂ -N-C-CF ₃
989	C├	1	4	0	-	н	-CH ₂ -N-C-O-CH ₂
990	C├ - CH₂-	1	4	0	-	н	-CH ₂ -N-C-

Table 1.91

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality ·	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
991	CH2-	1	4	0	-	Н	-(CH ₂) ₂ -C-
992	CH2-	1	4	0	-	н	OCH ₃ -(CH ₂) ₂ -C
993	CH-2-	1	. 4	0	-	Н	-(CH ₂) ₂ -CH ₃ H ₃ C
994	CH2-	1	4	0	-	н	-(CH ₂) ₃ -C-
995	CH-CH2-	1	4	0	-	н	-(CH ₂) ₃ -C-\OCH ₃
996	CH-CH2-	1	4	0	-	H +-*	-(CH ₂) ₃ -C-N-CH ₃
997	CH-CH2-	2	2	1	-	н	-CHN-C- H CH ₂ CH(CH ₃) ₂
998	CH-CH2-	2	2	1	-	н	CH ₂ CH(CH ₃) ₂
999	C├-(CH ₂ -	2	2	1	-	H	-CH-N-C
1000	CH-CH ₂ -	2	2	1	-	H .	-CHN-C- H CH2CH(CH3)2
1001	CH-CH2-	2	2	1	-	н	-CH-M-C- CH2CH(CH3)2

Table 1.92

Compd.	R ² (CH ₂)j	k	m	n	chirality	. R3	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1002	С├{СН₂-	2	2	1	-	н	-CH-N-C
1003	CH-CH ₂ -	. 2	2	1	-	· н	O CH ₂ CH ₃ -CH N-C-CH ₃ CH ₂ CH(CH ₃) ₂
1004	CH-CH ₂ -	2	2	1	-	н	- CH N-C - OCH3 - CH ₂ CH(CH ₃) ₂ OCH3
1005	C⊢√CH₂-	2	·2	1	-	н	-снъс- -снъс- сн ₂ сн(сн ₃) ₂ осн ₃
1006	CH-2-	2	2	1	- ′	н	ОСН ₂ СН ₃ - СН ₂ СН ₃ - СН ₂ СН ₃) ₂
1007	CH-CH ₂ -	2	2	1	-	H	ОСН ₂ СН ₃ - СН N-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С
1008	CHCH ₂ -	2	2	1	-	н	-CH-N-C-(CH ₂) ₂ -G-NH ₂
1009	CH-2-	2	2 ·	1	-	н .	(CH ₂) ₂ -C-NH ₂
1010	C├-{	2	2	1	-	н	- CH+ N+ C- OCH ₂ CH ₃
1011	CH-CH2-	2	2	1	-	н	CH ₂) ₂ -C ₂ -NH ₂ (CH ₂) ₂ -C ₂ -NH ₂ (CH ₂) ₂ -C ₂ -NH ₂
1012	C├ - CH ₂ -	2	2	1	-	н	- CHH C- CH ³

Table 1.93

-						•	
Compd No.	R ¹ /R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G^{-}R^6$
1013	с⊢С Сн₂-	2	2	1	· .	. н	CH ₂ -C-NH ₂ OCH ₃
1014	CI-CH ₂ -	2	2	1	-	н	(CH2)2-C-NH2 OCH3CH3
1015	C⊢(¯)−ĊH₂−	2	2	1	-	Н	OCH ₂ CH ₃ (CH ₂) ₂ -C-NH ₂ OCH ₂ CH ₃
1016	CH-CH2-	2	2	0	-	н .	-CH ₂ -N-C-CF ₃
1017	CH-CH ₂ -	2	2	0 ·	•	н	-CH ₂ -N-C-
1018	CH-CH₂-	2	2	1	-	Н	-CH ₂ -N-C
1019	. С⊢—С́н²-	2	2	1	-	н	-CH ₂ -N-C
1020	CH2-	2	2	1	-	H .	-CH2-N-C
1021	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- F ₃ CCH ₂ O
1022	CH-CH2-	2	2	1	-	н	CH ₃ OCH ₃
1023	СІ-{	2	2	1	-	н	(S) Q CH₂CH₃ -CHN-C- CH3 CH₃
	<u> </u>						

Table 1.94

Compd.	R ¹ (CH ₂) _j -	.k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $G-R^6$
1024	C├ - CH₂	2	2	1	-	н	(S) Q OCH ₃ -CH-N-C——OCH ₃
1025	CHCH ₂ -	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1026	СН-СН2-	2	2	1	-	н .	(S) OCH ₂ CH ₃ -CH-N-C
1027	C├────────────────────────────	2	2	1	-	H	(S) P OCH₂CH₃ -CH-N-C- OCH₃ -CH₃
1028	с⊢СН₂-	2	2	1	<u>-</u> ·	Н	(S) OCH ₂ CF ₃ -CH-N-C- H CH ₃ OCH ₂ CF ₃
1029	CH-CH ₂ -	2 ·	2	1	-	Н	(S) Q OCH ₂ CH ₃ -CH-N-C- CH ₃
1030	CH-CH ₂ -	2	2	1		н	(S) POCF ₃ -CH-N-C-CH ₃ CH ₃
1031	CH-CH2-	2	2	1	-	н	(S) OCH ₃ -CH-N-C
1032	CH-2-	2	2	1	-	н	(F) OCH ₃ -CH-N-C-OCH ₃ -CH ₃ OCH ₃
1033	CH2-	2	2	1	-	н	
1034	C	2	2 .	1	-	н	(R) OCH ₃ -CHN-C-OCH ₃ -CH ₃ -CH ₃ -CH ₃

114

Table 1.95

Compd.	R ² -(CH ₂);-	ķ	m	n	chirality	D'3	-(CH ₂) _p
1035	С⊢СН₂-	2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C
1036	C├ - CH ₂ -	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C-OCH ₂ CH ₃ -CH ₃ OCH ₂ CH ₃
1037	CHCH ₂ -	2	2	1	-	н	EH S
1038	CH-CH ₂ -	2	2	1	-	Н	(FI) OCH ₂ CF ₃ -CH-N-C- H CH ₃ OCH ₂ CF ₃
1039	CH-CH ₂ -	2	2	1.	-	н	(F) OCH ₂ CH ₃ -CH-N-C- H CH ₃
1040	CHCH2-	2	2	1	-	н	(F) OCF ₃ -CH-N-C-C
1041	CHCH2-	2	2	1	-	Н	(F) OCH3 -CHN-C-CHCH3 CH3
1042	CHCH2-					H	-CH ₂ -N-C
1043	CHCH2-	2	2	1	-	Н	$-CH_2-NC- \longrightarrow H_2N$
1044	CH-CH ₂ -	2	2	1	-	н	$-CH_{2}-NC$ $H_{2}N$ $-CH_{2}-NC$ $H_{2}N$ $-CH_{3}$ $H_{2}N$ OCH_{3}
1045	C⊢————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
				•			

Table 1.96

•							
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	K3	$-(CH_2)_{\overline{P}}^{4}$ $+(CH_2)_{\overline{q}}G^{-R^6}$
1046	C⊢CH₂-	2	2	1	. -	н.	-CH ₂ -N-C
1047	CH-2-	2	2	. 1		н	-CH ₂ -N-C-CH ₃
. 1048	CH-CH ₂	2	2	1	-	н _.	$-CH_2-N-C$
1049 .	СН ₂ -	2	. 2	1	-	Н	$-CH_2-N-C-$ H_2N Br
1050	CH√_CH₂-	2	2	1		н	(S) Q OCH ₃ . -CH-N-C-
1051	CH₂-	2	2	1	-	н .	(S) CH ₂ CH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1052	CH2-	2	2	1	; 	н	(S) OCH ₃ -CH-N-C-C-COCH ₃ -CH ₂ CH(CH ₃) ₂ OCH ₃
1053	CH ₂ -	2	2 .	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1054	C├ √ CH₂-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1055	C├ - CH ₂ -	2	2	. 1	-	н	(S) Q OCH ₂ CH ₃ -CH-N-C- OCH ₃ H CH ₂ CH(CH ₃) ₂
1056 .	CH-√CH₂-	2	2	1	•	н	(S) QCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃

Table 1.97

. 4510							
Compd. No.	R ¹ (CH ₂)	k	m	ត	chirality	·	-(CH ₂) _p (CH ₂) _q C-R ⁶
1057	С├ - СН ₂ -	2	. 2	1	-	.H	(F) Q OCH ₂ CH ₃ -CH-N-C- H H CH ₂ CH(CH ₃) ₂
1058	CH-CH2-	2	2	1	-	н	(S) OCH ₃ -CH-N-C
1059	CHCH ₂ -	2	2	1	-	H	(S) OCF ₃ -CH-N-C
1060	CH-CH ₂ -	2	2	1	-	Н	(<i>F</i>)
1061	CH-CH ₂ -	2	2	1	-	н	(F) OCH ₂ CF ₃ -CH-N-C
1062	CH-CH ₂ - ·	2	2	1	<u>-</u>	н	(S) OCH ₂ CH ₃ -CH-N-C
1063	CHCH_2-	2	2	1	-	н	(F) Q OCH ₃ -CH-N-C-
1064	CHCH2-	2	2	1	•	н	(F) OCF ₃ -CH-N-C- H H CH ₂ CH(CH ₃) ₂
1065	CH-CH ₂ -	2	2	1	-	н	(A) OCH3 -CH-N-C- H CH₂CH(CH3)₂ OCH3
1066	C⊢√CH₂-	2	2	1	-	н	(A) Q CH ₂ CH ₃ -CH-N-C-
1067	CH-CH₂-	2	. 2	1	-	н ·	(H) OCH3 -CH-M-C-OCH3 CH2CH(CH3)2 OCH3

Table 1.98

Table							
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	. R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1068	CH-€-	2	2	1	-	н	(<i>F</i>)
1069	CH-CH2-	2	2	1	<u>-</u>	H	(A) DOCH2CH3 −CH-N-C− OCH2CH3 CH2CH(CH3)2 OCH2CH3
1070	CH2−	2	2	1	-	н	-CH-N-C
1071	CH-€	2	2	1	-	н	-CH-NCCH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C
1072	CH-CH ₂ -	2	2	1	: -	н	O+20 CH2 (CH3)3
1073	CH-CH2-	2	2	1	-	н	-CH-N-CO
1074	CH-(-)-CH ₂ -	2	2	1	-	н	-CH-N-C-CF3
1075	CH-2-	. 2	2	1		н	OH-N-C
1076	CH-2-	2	2	1	-	н	OH ₂ O CH ₂
. 1077	C├ - CH₂-	2	2	1	-	Н	-CH-NC-CF3 CH2OCH2
1078	CH-CH ₂ -	2	2	1		н	-CH-N-C-

Table 1.99

Compd.	R ¹ (CH ₂);	ķ	iù	n	chirality	· Þ3	$-(CH_2)_{\overline{H}^5}^{\overline{H}^4}(CH_2)_{\overline{q}}^{\overline{G}}G^{-R^6}$
1079	CH2-	2	2	1	-	н	-CH-N-C-CH ₃
1080	CH-CH ₂ -	2	2	1	-	, н	-CH-N-C
1081	с⊢С сн₂-	2	2	1	-	н	OCH3 OH20 CH2
1082	CH-CH ₂ -	2	2	1	-	н	CH- N- C-
1083	CH-CH2-	2	2	1	-	Н	(F) P C-C
1084	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1085	СН-СН2-	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1086	CH-CH ₂ -	1	2	0	R	Н.	$-CH_2-N-C$ H_2N
							-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1088	C├ - CH₂-	1	2	0	R	н	-CH₂-N-C-
1089	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C-() -CH ₂ -N-C-() H

Table 1.100

, abic							
Compd.	R ² (CH ₂) ₁ -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1090	CH-(1	2	0	R	н	-CH ₂ -N-C
1091	CH-2-	1	2	0	R	н	-CH ₂ CH ₂ -N-C-
1092	C├ - CH ₂ -	1, ·	2	0	R	н	-CH ₂ CH ₂ -N-C-NO ₂
1093	CH-€-CH₂-	1	2	0	R	н	-CH ₂ CH ₂ -N-C
1094	CH	1	2	0	R	Н	-CH ₂ CH ₂ -N-C-NH
1095	CH-CH ₂ -	1	2	0	R _.	н	-сн₂сн₂-ү-с-СР
1096	CHCH2-	1	2	0	. · R	н	-CH ₂ CH ₂ -N-C-N-H-N-H-H-N-H-N-H-N-H-N-H-N-H-N-H-N
1097	C├ \ CH ₂ -	1	2	0	R	н	-CH2CH2-N-C-
109 <u>8</u>	CI—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1099	CHCH2-	1	2	0	R	н	$-CH_{2}-NC- \longrightarrow F$ $-CH_{2}-NC- \longrightarrow F$
1100	C├ \ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-⟨F

Table 1.101

. 45.0						•	
Compd. No.	R ¹ (CH ₂)-	×	m	n	chirality	La	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1101	C⊢√ CH₂-	. 1	2	0	R	н	-CH2-N-C
1102	C⊢√_CH₂-	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1103	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C
1104	H ₃ C-CH ₂ - /	1	2	0	R .	н	-CH ₂ -N-C
1105	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1106	H ₃ C-CH ₂ -	1	2	0	R R	н	$-CH_2-N-C$ CH_3
1107	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
	CH ₃ CH₂-						$-\text{CH}_2$ -N-C- \longrightarrow CH ₃
1109	CH_3 CH_2 CH_3	1	2	0	R	н	-CH ₂ -N-C
1110	CH ₃ CH₂−	. 1	2	0.	R	н	-CH ₂ -N-C
1111	CH ₃	1	2	0	R	н .	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{3}-N-C$

Table 1.102

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	K3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1112	CH₃ CH₂- CH₃	1	2	0	R	н .	-CH ₂ -N-CNO ₂
1113	CH_CH2-	2	2	1	-	н	-CH ₂ -N-C- CH ₃
1114	CH-CH ₂ -	2	2	1	-	អ	-CH ₂ -N-C
1115	C⊢√	2	2	1	-	н	-CH2-N-C
1116	CH2-	2	. 2	1	-	н	-CH ₂ -N-C-⟨-CH ₃
1117	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃ -NO ₂
1118		1	2	0	R	н	-СH ₂ -№С-СF ₃
	H₃CS-(CH₂-					н	-CH ₂ -N-C-
1120	H ₃ CQ CH ₂ - OCH ₃	1	2	0	R .	Н	-CH ₂ -N-C-CF ₃
1121	H ₃ C O ₂ N—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1122	H3G (H3C)2CH CH2 CH(CH3)2	1	2	0	R	Н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.103

Compd No.	· R1 (CH ₂)-	k	m	n	chirality	'R³	—(CH ₂) , (CH ₂) , G−R ⁶
1123	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1124	O ₂ NCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1125	с⊢СН₂-	2	2	1	-	H	- CH- N- C- CI
1126	СН-СН2-	2	2	1	~	н	-CH-N-C-Br
1127	CH_CH ₂ -	2	2	1	-	н	-CH-H-CNH
1128	С⊢-{Сн₂-	2	2	1	- ·. ·	H	-CH-N-C
1129	С⊢—СН₂-	.2	2	1	-	Н	-CH-N-C-CF3 -CH ₂ OCH ₂ -CF
1130	CH-€	2	2	1	-	н	OH2O CH2-
1131	C⊢√CH₂-	2	2	1	-	н .	-c+ N c-
1132	C├ ~ CH ₂ -	2	2	1	-	. Н	-CH-N-C
1133	H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
							•

Table 1.104

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G−R ⁶
1134	H₃CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1135	O-CH ₂ -NO ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1136	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1137	O CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1138	CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF₃
1139	(CH ₂) ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1140	O ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1141		1	2	0	R	H	-CH ₂ -N-C CF ₃
1142	CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
1143	OH20-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1144	ОН ₂ О ОН ₂ О Н ₃ СО Н ₃ СО	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.105

Table	1.105						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	·(CH ₂) _p + (CH ₂) _q -G-R ^b
1145	H ₃ CO CH ₂ -NO ₂	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1146	О-0420-О-сн2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	Hc-c-h				R	н	-CH ₂ -N-C-CF ₃
1148	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1149	CH ₃ CH ₂ - CH ₃	1	2	0	R .	H	-CH ₂ -N-C
1150	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₂ CH ₃
1151	CH₃ CH₂- CH₃	1	2	0	R.	н .	-CH ₂ -N-C-CH ₂ -CF ₃
1152	CH₃ N—CH₂- CH₃						-CH ₂ -N-C-N-H
1153	CH ₃ N − CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-H
1154	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃
1155	CH₃ CH₂-	1	2	0	R	н	$-CH_{2}-N\cdot C-N + CH_{3}$ $-CH_{2}-N\cdot C-N + CH_{3}$ $-CH_{2}-N\cdot C-N + CH_{3}$ $F_{3}C$

Table 1.106

Compd. No.	R ¹ (CH ₂)	k	m	п	chirality	. Ka	-(CH ₂) _p
1156	CH ₃ CH ₂ - CH ₃	1	2	0	R	н.	-CH ₂ -N-C-(CH ₃) ₃
1157	CH ₃ CH ₂ - CH ₃	1	2	Ó	R ·	н	-CH ₂ -N-C-S-SCH ₃
1158	CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-C
1159	CH ₃ CH ₂ -	1	2	0	R	н	$-CH_2-N-C \longrightarrow OCH_3$ $H_2N OCH_3$
1160	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	$-CH_{2}-N\cdot C$ $H_{2}N Br$
1161	OH H₃CO————————————————————————————————————	1	2	0.	. R	н	-CH ₂ -N-C-CF ₃
	H ₃ CO—CH ₂ —CH ₂ —					Н	-CH ₂ -N-C-CF ₃
	H ₃ CO—CH ₂ -						-CH ₂ -N-C-CF ₃
11.64	H ₃ C .	1	2	0	R	н	-CH ₂ -N-C
1165	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1166	H ₃ CO-CH ₂ -	1,	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.107

					•		
Compd.	R ² (CH ₂);-	k	m	n	chirality	.U ₃	-(C ₂) _p -R ⁴ (C ₂) _q -G-R ⁶
1167	CHCH_2-	2	2	1		н	-CH ₂ -N-C-
1168	CL N CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1169	H ₃ C- C- N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-⟨ CF ₃
1170	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1171	CI—CH₂-	1	2	0	R	н .	$-CH_2-N$ C Br
1172	C├ \ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-H
1173	C├ \ CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C-N-N-OCH ₃
1174	С⊢—СН₂-	1	2	0	R.	н	-CH ₂ -N-C
1175	H ₃ C-CH ₂ -	1	2	0	R	н	CH ₂ −N-C−− Br
117 <u>6</u>	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-H
							-CH ₂ -N-C-N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-

Table 1.108

Compd. No.	R \((CH ₂);-	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂)q G-R ⁶
1178	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1179	H₃C- \ CH₂-	1	2	0	R	н	-CH ₂ -N-C
1180	H₃C-⟨}-CH₂-	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1181	CH ₃ CH ₂ - CH ₃	. 1	2	0	R	Н	-CH ₂ -N-C-Br
1182	CH ₃ CH ₂ - CH ₃	1	2	0	. R	н	-CH ₂ -N-C-N-OH
1183	CH₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1184	CH₃ CH₂− CH₃				R	H ·	$-CH_2-N-C$ H_2N
1185	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
							-CH ₂ -N-C-NH
1187	C	2	2	1	-	н	OCH ₃ -CH ₂ -N-C-Br
1188	CH-CH2-	2	2	1		н	-CH ₂ -N-C-N-C-OH

Table 1.109

able	1.103						-
Compd. No.	R ¹ (CH ₂),	ķ	ńīι	û	chirality	H²	—(СН ₂) _{р Т} (СН ₂) _q G−R ⁴
1189	CI(CH ₂ -	2	2	. 1	-	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1190	CH-{	2	2	1	-	Н	-CH ₂ -N-C
1191	CH ₃ CH ₂ − CH ₃	1	2	.0	R	H	-CH₂-N-C- F
1192	CH₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ −N-C−CF ₃
1193	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-C
1194	CH₃ N CH₂- CH₃	1	2	0	. R	н	$-CH_{2}-N-C-$ $F_{3}C$
1195	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-Br
	CH ₃ CH₂- CH₃					. н	-CH ₂ -N-C-NO ₂
	CH ₃ CH ₂ − CH ₃					н	-CH ₂ -N-C-√CF ₃
1198	CH ₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1199	CH ₃ CH₂- CH₃	1	2	0	R	н	-сн ₂ -м-с-СН ₃
					•		·

Table 1.110

Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+\frac{R^4}{R^5}$ $(CH_2)_{\overline{q}}$ $G-R^6$
	CH₃ CH₂- CH₃	•				н	-CH2-N-CCI
1201	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-F
1202	CH ₃ CH ₂ - CH ₃	1	2	Ó	R	н	-CH ₂ -N-C-CF ₃
1203	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-COCF₃
	H ₃ C-CH ₂ -					н ·	$-CH_{2}-NC-$ $F_{3}C$
1205	H ₃ C-CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-
1206	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\).
1207	H ₃ C-CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-CF ₃
1208	H ₃ C-\CH ₂ -	1	2	0	R	Н	-CH2-N-C-
1209	H ₃ C-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CH ₃
1210	H ₃ C-CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-CI

Table 1.111

Compd. No.	R ² (CH ₂)-	k	m	n	chirality	R¹	-(CH ₂) _p R ⁴ / _R 5 (CH ₂) _q -C-N ⁶
1211	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1212	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1213	C├ - CH₂-	2	2	1	· -	н	$-CH_2-N-C-$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$
1214	CH-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
1215	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C-CI
1216	CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1217	CH-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1218	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S
1219	С⊢—СН ₂ -	1	2	0	R .	н	-CH ₂ -N-C-CI
1220	CH2-	1	2	0	R ·	н	$-CH_2-N+C$ H_2N
1221	CH-CH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_2 H_2 H_2 H_2 H_2

Table 1.112

	.,,,						
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
1222	CH-CH2-	1	· 2	0	R	н	-CH ₂ -N-C-N H
1223	CH-CH ₂ -	1	2	0	R .	Н	-CH ₂ -N-C-
1224	с⊢{сн₂-	1	2	0	R	н	-CH ₂ -N-C
1225	H ₃ C—CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
1226	H ₃ C-CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C- F CH ₃
1227	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C CI
1228	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_2N
	H ₃ C-CH ₂ -						-CH ₂ -N-C-F
1230	H ₃ C-CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-(N-H)
1231	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1232	H ₃ C-{	1	2	0	R	н	-CH ₂ -N-C

Table 1.113

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	Ŕĵ	$-(CH_2)_{p}$ $\frac{R^4}{R^5}(CH_2)_q$ $G-R^6$
1233	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1234	CH ₃ CH ₂ -	1	2	0	R .·	H	-CH ₂ -N-C- H C F
1235	CH₃ CH₃	1	2	0	R	н	-CH ₂ -N-C-CI
1236	CH₃ CH₃				R	н	$-CH_2-NC-$ H_2N
1237	CH₃ N CH₂- CH₃					H	-CH ₂ -N-C
1238	CH ₃ CH ₂ CH ₃					н	-CH ₂ -N-C-N-CH ₃
1239	CH ₃ N—CH ₂ - CH ₃					Н	-CH2-N-C-
1240	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C
1241	C	2	2	1	-	н	-CH ₂ -N-C- H CI
1242	C⊢√CH₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1243	C⊢ (CH₂-	2	2	1	•	Н	-CH ₂ -N-C- CI

Table 1.114

10010							
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1244	с⊢С СН₂-	2	2	1	-	н	-CH ₂ -N-C
1245	с⊢{_}СН₂-	2	2	1	-	н	-CH ₂ -N-C-F
1246	с⊢{	2	2	1		н	-CH ₂ -N-C-√N H
1247	C⊢ (2	2	1	-	н	-CH ₂ -N-C-S-
1248	CH-{	2	2	1		н	-CH ₂ -N-C-NO ₂
1249	C⊢ √ -CH₂-	1	2	0	R	н	-CH ₂ -N-C
1250	H ₃ Ç − ⟨ C H ₂ −	1	2	0	R	н	-CH ₂ -N-C
1251	CH ₃ CH ₂ − CH ₃	1	2	0	Ř	н	-CH ₂ -N-C-NO ₂
					•		-CH ₂ -N-C-(CH ₃) ₂
1253	H ₃ C-\(\)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-{ CH(CH₃)₂
1254	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-⟨CH(CH ₃) ₂

Table 1.115

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + \frac{R^4}{H^5} (CH_2)_{\overline{q}} - G - R^6$
1255	С⊢СН₂-	1	2	0	R	н	-CH ₂ -N-C
1256	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1257	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-Br
1258	H₃C-⟨CH₂-	1	2	0	R	н	$-CH_2-N-C$ H_2N
1259	CH ₃ CH₂− CH₃	1	2	0	R	Н	-CH ₂ -N-C-
1260	H₃C-⟨	1	2.	0	R	Н	-CH ₂ -N-C-CH ₂ CH ₃
1261	CH2−	1	2	0	R	H	-CH ₂ -N-C-C(CH ₃) ₃
1262	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-NC$ $+CH_3C$ $+C(CH_3)_3$ $+CH_3C$
1263	CH₃ N—CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C-C(CH ₃) ₃
.1264	CH-CH2-	1	2	0	R	н	-CH ₂ -N-C
1265	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-C-CO H ₂ C H ₂ C H ₃ C H ₃ C

Table 1.116

	R ¹ (CH ₂);-						-(CH ₂) _p + (CH ₂) _q G-R ⁶
1266	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-HC-CO
1267	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H-OCF ₃
1268	C-CH ₂ -	· 1	2	0	R	н	-CH ₂ -N-C
1269	СН-СН2-	1	2	0	R	н	-CH ₂ -N-C- HO HO
1270	C⊢√CH₂−	1	2	ó	R	н	-CH₂-N-C-
1271	CH-CH2-	1	2	0	R	н	-CH2-N-C-F
1272	H ₃ C-CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-N-N-H-OCF ₃
	H ₃ CCH ₂ -		•			н	-CH ₂ -N-C-
1274	H ₃ C-CH ₂ -	1	2	0	R _.	Н	-CH ₂ -N-C Br
1275	H ₃ CCH ₂ -	1	2	0	· R	. н	-CH ₂ -N-C-
1276	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
							•

Table 1.117

Compd.	R ¹ (CH ₂);-	. k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
1277	CH₃ N CH₂- CH₃	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1278	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
1279	CH_3 CH_2 CH_3	1	2	0	R	н	-CH ₂ -N-C- HO
1280	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C- HO
1281	CH ₃ N—CH ₂ - CH ₃	1		0	R	Н	-CH ₂ -N-C-F
1282	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-N-H
1283	CH2-	2	2	1	-	н	-CH ₂ -N-C
1284	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1285	C├ ~ CH ₂ -	2	2	1		н	-CH ₂ -N-C-
1286	H ₃ ¢	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1287	O ₂ N————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.118

Compd.	R ² (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1288	HQ H₃CO————————————————————————————————————	1	2	0	R	н ·	-CH ₂ -N-C-CF ₃
1289	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-OCH ₃
1290	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	$-CH_2-N-C-$ H_2N CH_3 CH_3
1291	H ₃ C-СН ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-H-CH ₃
1292	H ₃ C-CH ₂ -	1	2	0	R	·н	$-CH_2-N-C H_2N$ Br
1293	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-√S F
1294	H ₃ CСН ₂ -	1	2	. 0	R	н	-СH ₂ -N-С-С-F
1295	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
-1296	H ₃ C(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S-SCH ₃
1297	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-CH ₃ F ₃ C
1298	H ₃ CO CH ₂ -	1	2.	0	R	Н	-CH ₂ -N-C-O F ₃ C -CH ₂ -N-C-O

Table 1.119

Compd.	R ² (CH ₂)-	k	m	n	chirality	П ³	$-(CH_2)_{p}^{\frac{R^4}{15}}(CH_2)_{q}^{\frac{1}{3}}G^{-\frac{1}{15}}$
1299	H ₃ CO — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1300	OCH ₃ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1301	OCH ₃ H ₃ CO CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1302	H ₃ CO CH ₃ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1303	H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1304	H-CQ -CH2 .	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1305	H ₃ CO-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1306	H₃CCH₂Q H₃CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1307	H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1308 ⁻	O CH₂-	1	2	Ó	R	н	-CH ₂ -N-C-CF ₃
1309	H ₃ CQ H ₃ CO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-

Table 1.120

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1310	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	-CH2-N-C-€
1311	O_O -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1312	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1313	Br CH ₂ -	1	2	0	R	- н	-CH ₂ -N-C-CF ₃
1314	O ₂ N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1315	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1316	F ₃ C C⊢ CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1317	O ₂ 'N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1318	C⊢	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1319	Б С⊢СH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1320	Br-CH ₂ -	1	2	0	R	н _.	-CH ₂ -N-C-CF ₃

Table 1.121

	1.121						
Compd.	R ¹ (CH ₂) _[- k	m	n	chirality	R³	-(СН ₂) р
1321	С⊢СР−СН2	- 1	2	. 0	R .	Н	-CH ₂ -N-C
1322	СН-СН2	- 1	2	0	R	н	-CH2-N-C-CH3
1323	с⊢С∕-сн₂	- 1	2	0	R	н	-CH ₂ -N-C-C1
1324	CH-CH ₂ -	- 1	2	0	R	Н	-CH ₂ -N-C- HO CH ₃
1325	CH2-	- 1	2	0	R	н	-CH ₂ -N-C
1326	CH-()-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C
1327	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1328	H₃C-⟨}-CH₂	- 1	2	0	R	н	-CH ₂ -N-C
1329	н₃с-{_}сн₂-	- 1	2	0	R	н	-CH ₂ -N-C-CH ₃
1330	H₃C-{}-CH₂-	- 1	2	0	R	Н.	-CH ₂ -N-C-CI
1331	H ₃ C-(- 1	2	0	R	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-H ₁ -CH ₂ -N-C-H ₁

Table 1.122

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1332	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C
1333	H₃C-⟨	1	2	. 0			-CH2-N-C-
1334	H ₃ C-CH ₂ -	1	2	0	· R	н ·	-CH ₂ -N-C
1335	CH ₃ CH ₂ − CH ₃	1	2	0	R .	н	CH ₂ -N-C
1336	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1337	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
1338	CH ₃ CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C
1339	CH ₃ CH ₂ -	1	2 ·	0	R	Н	-CH ₂ -N-C
1340	CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1341	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1342	CI—CH₂-	2	2	1	-		-CH₂-N-C-S-CI
					•		

Table 1.123

. 45.0					·		
Compd. No.	R ¹ -(CH ₂);-	k	ű	ñ	chirality	La	$-(CH_2)_{p=1}^{R^4}(CH_2)_q G-R^6$
1343	CH-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CH ₃
1344	CH_CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1345	CH-CH ₂ -	2	2	1	-	H .	-CH ₂ -N-C
1346	CHCH ₂ -	2	2	1	-	н	-CH2-N-C-
1347	CH2-	1	2	0	R	н	-CH ₂ -N-C-S .
1348	H₃C⟨}-CH₂-	1	2	0	R .	н	-CH₂-N-C-S CH₃
1349	CH ₃ N→CH ₂ - CH ₃	1	2	0	R .	Н	-CH ₂ -N-C-SCH ₃
	CH ₂ -					Н	-CH ₂ -N-C-SCH ₃
1351	CHCH ₂ -	1	2	0	R	Н	-0+2-12-C-0+2
1352	H ₃ C-CH ₂ -	1	2	. 0	R ·	н	-042-HC
1353	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-042-12-043 -042-12-043

Table 1.124

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1354	C├ - CH ₂ -	2	2	1	-	н	сн ³ - ^Д с-сн ³
1355	C├ - CH ₂ -	1	2	0	R	н	$-CH_2-NC-$ H_2N
1356	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1357	CH₃ N CH₂- CH₃	1	2	0	R	н	$-CH_2-NC \longrightarrow H_2N$
1358	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CN
1359	CH ₃ NP −CH ₂ − CH ₃	. 1	2	0	R	Н	-сн ₂ -N-с-
1360	CH ₃ N—CH ₂ - CH ₃	1	2	0	R	Н	$-CH_{2}-N\cdot C$ CH_{3} CH_{3} CH_{3}
1361	H ₃ C-CH ₂ -	1	2	0	R :	н.	-CH ₂ -N-C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\
1362	CH ₃ CH ₂ -	1	2	0	R	· H	-CH ₂ -N-C-CH ₃
1363	CH ₃ CH ₂ -	1	,2	0	R	H ,	-CH ₂ -N-C-CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃
1364	Н₃С-{СН₂-	1	2	0	R	н	-CH2-N-C-(CH3

Table 1.125

	• • • • • • • • • • • • • • • • • • • •			-			
Compd.	R ¹ (CH ₂)	ķ	m	n	chirality	D3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1365	CH ₃ CH₂- CH₃	1	2	0	R	н	$-CH_2-N C - $ H_3C
1366	CH₃ CH₃	1	2	0	R	H	$-CH_2-N$ C $-CH_3$
1367	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1368	CI—(1	2	0	R	н	-CH ₂ -N-C
1369	CH-{	1	2	0	R	н	-CH ₂ -N-C
1370	CH2-	1	2	0	R	н	-CH ₂ -N-C-S Br
1371	С├-{}СН₂-	1	2	0	R	н	-CH ₂ -N-C-
1372	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
	H ₃ C-\CH ₂ -						-CH ₂ -N-C
1374	H₃C-{}CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1375	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SBr

Table 1.126

Compd. No.	R ² (CH ₂) _i	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1376	H₃C-{_}-CH₂-	1	2	0	R	Н	-CH ₂ -N-C-
1377	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-HC-
1378	CH ₃ CH ₂ - CH ₃	1	2	0		н	-CH ₂ -N-C-CI
1379	CH₃ CH₂-	1	2	0	R	Н	-CH ₂ -N-C- H F ₃ CCH ₂ O
1380	CH ₃ CH ₂ − CH ₃	1	2	0	R ·	н	-CH ₂ -N-C-SBr
1381	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1382	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH2-HC-
1383	CH-CH ₂ -					н	-CH ₂ -N-C-CI
1384	CHCH2-	2	2	1	-	Н	-CH2-N-C-SBr
1385	C⊢————————————————————————————————————	2	2	1.	-	H	-CH ₂ -N-C-S -CH ₂ -N-C-S -CH ₂ -N-C-S
1386	CH-CH2-	2	2	1	•	н	-OH2-NC-

Table 1.127

Compd No.	· R ¹ (CH ₂) _i -	k	m	n	chirality	R3	-(СН ₂); Н ⁴ (СН ₂), G-R ⁶
1387	CH³ CH³	1	2	0	R	н	-CH2-N-C
1388	CH₃ N—CH₂- CH₃	1	2	0	R	н.	-CH ₂ -N-C-(CH ₃) ₃ -CH ₃ -N-C-(CH ₃) ₃
	CH ₃ CH ₂ - CH ₃					н	-CH ² -H-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1390	H ₃ C CH ₃ H ₃ C CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1391	H ₃ C — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C CF ₃
1392	CI H ₃ C-CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
1393	н₃ссн₂{СН₂-	1	2	0	R .	н	-CH ₂ -N-C
1394	O ₂ N	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1395	H ₂ C=CH-\(\bigcirc\)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1396	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1397	Br—CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.128

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{L^5}$ $(CH_2)_q$ $- R^6$
	CH CH					н	-CH ₂ -N-C-CF ₃
1399	CH-CH-CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1400	C⊢(CH-	1	2	0	R	н	-CH ₂ -N-C- CF ₃
1401	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-CI
1402	H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_{2}-N \cdot C \longrightarrow OCH_{3}$ $-CH_{2}-N \cdot C \longrightarrow OCH_{3}$ $+ CH_{2}N \cdot OCH_{3}$
1403	H ₃ C-CH ₂ -	1	2	0	R	н	-CH₂-N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1404	H ₃ C-CH ₂ -	1	2	0	R	н	-сн ₂ -N-с-
1405	H₃C- \ _CH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_3CS
1406	H ₃ C-\(\)-CH ₂ -	1	2	0	R	н	-сн ₂ -N-С-√СН ₃
1407	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-N H3-CCH2S
1408	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH₂-N-C-

Table 1.129

Compd.	R ¹ (CH ₂)-	ķ	m	n	chirality	H3	-(CH ₂) ,
1409	H ₃ C-\CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-CH ₃
1410	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1411	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S-NH H ₃ C-C-NH
1412	H ₃ C-CH ₂ -	1	2	0	R	н	H ² C-C-NH -CH ² -N-C-
1413	CH3 CH3	· 1	2	0	R	н	-CH ₂ -N-C-C-NH
1414	C⊢—CH₂−	2	2	1	-	Н	-CH ₂ -N-C
1415	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCN
1416	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCN
1417	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C SCN
1418	С⊢—СН₂-	2	2	1		н	-CH ₂ -N-C-SCN H ₂ N
1419	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SH

Table 1.130

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p - (CH ₂) _q G-R ⁶
1420	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SH H ₂ N
1421	CH ₃ CH ₂ − CH ₃	1	2	0	R	н .	-CH ₂ -N-C-SH
1422	с⊢{	2	2	1	-	н	-CH ₂ -N-C-SH
1423	C├────────────────	1	2	0	R	н	-CH2-N-C-
1424	H ₃ C-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-
1425	CH₃ CH₂−	1	2	0	R	н	-CH ₂ -N-C-
1426	CHCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
1427	CH	2	2	1	-	н	-CH ₂ -N-C-S H H ₃ C-NH
1428	С⊢√_СН₂-	2	2	ï	-	н	-CH ₂ -N-C
1429	ңсан₂о-()—аң₂-	2	2	1	-	н	-CH ₂ -N-C
1430	O————————————————————————————————————	2	2	i	-	н	-CH ₂ -N-C

Table 1.131

Compd No.	· R1 (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{G}} + (CH_2)_{\overline{G}} - G - R^6$
1431	H ₂ CCH ₂ O	2	2	1	•	Н	-CH ₂ -N-C
1432	O—CH₂-	2	2	1	-	н	-CH ₂ -N-C-Br
1433	ңссн ₂о-{_} сн₂-	2	2	1	-	н	-CH2-NC-CH2CH
1434	H3CCH 2O-CH2-	2	2	1	-	н	-CHZ-NC
1435	н ₃ ссн ₂ —Сн ₂ -	. 2	2	1	-	н	-CH ₂ -N-C
1436	(H ₃ C) ₂ CH	2	2	1	-	Н	-CH ₂ -N-C
1437	н ₅ С(СН ₂) ₂ О—————Он ₂ -	2	2	1	-	H,	$-CH_2-N-C-$ H_2N
1438	н ₃ ссн ₂ —Сн ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
1439	(HgC)2CH-{\bigce}-CH2-	2	2	1	-	н	$-CH_2-N-C-$ H_2N H_2N Br
1440	H ₃ C(CH ₂) ₂ O-(2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
1441	H ₃ CS—CH₂−	2	2	1	-	н	-CH ₂ -N-C

Table 1.132

Compd No.	· R ² (CH ₂) _j -	k	m	n	chirality	₽3	$-(CH_2)_{\overline{P}_1^{5}}^{4}(CH_2)_{\overline{q}}G-R^6$
1442	н₃ссн ₂ ———————сн ₂ -	2	2	1	-	н	-CH2-N-C
1443	(HC)2CH-(-)-CH ?-	2	2	1	-	н	-CH2-N-C
1444	ңс(сн ₂) ₂ о-(2	2	1	-	н	-CH ₂ -N-C
1445	н₃ссн ₂ —{	2	2	1	-	. н	-CH2-NC-
1446 ·	(H ₀ C) ₂ ·CH−CH ₂ −	2	2	1.		н	-CH2-NC
1447	ң ₅ С(СН ₂) ₂ О(СН ₂ -	2	2	i	-	H 	-012-N-C
1448	H₃ÇS-€	2	2	1		н ·	-CH ₂ -N°C- HN CH ₂ -SCH ₆
1449	H ₃ CCH ₂	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1450	(Hc)₂CH-{	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1451	(H3CCH2)2N-CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1452	HQ H₃CO————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-CF ₃

Table 1.133

Compd	R ¹ (CH ₂)	k	m	n	chirality	B3	$-(CH_2)_{p=\frac{1}{1-5}}^{4}(CH_2)_{q}G-R^6$
No.	Н2 .						H ⁵
1453	H ² C(CH ²) ² O-{	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1454	н ₆ ссн₂О-{_}_сн₂-	2	2	. 1	-	н	$-CH_2-N-C-$
1455	H3-CQ H0-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1456	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1457	(CH ₃) ₂ N-⟨□}-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1458	H ₃ CQ CH ₂ -	2	2	1	-	Н	$-CH_2-NC- $ H_2N
1459	(H ₃ C) ₂ N-\(\bigcirc\) CH ₂ -	2	2	1	<u>.</u> .	H	$-CH_2-NC-$ H_2N H_2N
1460	H ₃ CQ HO−CH ₂ −	2	2	1	-	н	$-CH_2-N-C-$ H_2N H_2N
1461	H ₃ CQ HO-CH ₂ -	2	2	1	-	Н	-CH2-NC
1462	H ₃ CQ HO- C H ₂ -	2	2	1 .	-	н .	-CHZ-NC-HN CHZ-OCH
1463	С├────────────	2	1	1	-	Н	-CH ⁵ -H-C-⟨C _E ³

Table 1.134

Compd. No.	R ² (CH ₂);	k	m	n	chirality	R³	−(CH ₂) , G (CH ₂) G−R ⁶
1464	с⊢Сту−сн₂−	2	1	1	•	н	-CH ₂ -N-C-C-C-C-S
1465	CH-CH ₂ -	2	1	1	-	н	-CH ₂ -N-C
1466	CH-CH ₂ -	2	1	1	-	н	-CH ₂ -N-C-
1467	CH2-	2	1	1	-	н	-CH ₂ -N-C-
1468	CCH2-	2	1	-1	-	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1469	C├ - CH ₂ -	2	1	1		н	-CH ₂ -N-C-CF ₃
1.470	C├ - CH ₂ -	2	1	1		н	-CH ₂ -N-C-CI
1471	C├ \ CH ₂ ÷				-	н	-CH2-N-C
1472	CH ₃ CH₂−	1	2	0	R .	н	-сн ₂ -N-с-С _Б
1473	Br S CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1474	CH₂-	1	2	0	R	н	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{3}-N+C$ $-CH_{3}-N+C$

Table 1.135

Compd. No.	R ² –(CH ₂) _j –	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶
1475	Ch CH2	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1476	Br S CH ₂ -	1	2	0	. _. R	н .	-CH ₂ -N-C-CF ₃
1477	Br Q CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1478	B C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1,479	H ₃ C-CH ₃ CH ₃	1	2	0	R _.	н	-CH ₂ -N-C-CF ₃
1480	CH ₃	1	2	0	R	. н	-CH ₂ -N-C
1481	H ₃ C CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1482	Br. CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1483	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1484 c	- STS-CH2-	1	2	0	R	н	-CH ₂ -N-C-
1485	H₃CCH₂-	1	2	0	R	н	-CH ₂ -N-C-S

Table 1.136

. 45.0							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+ (CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_2)_{q}$ $-(CH_2)_{q}$
1486	H ₃ C-{	1	2	0	R ·	н	-CH ₂ -N-C
1487	H ₃ C-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CI
1488	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1489	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1490	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1491	H ₃ C-CH ₂ -	1.	2	0	R	н	-CH ₂ -N-C✓
1492	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-\ N-\ N-\ N-\ N-\ N-\ N-\ N-\ N-\ N-\ N
	CH ₃ CH ₂ - CH ₃					н	-045-Hc-20
1494	CH ₃ CH ₃ CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1495	CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-C-N H H ₃ C
1496	CH₃ N—CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-CH ₃ -CH ₃ -N-CH ₃ -N-CH ₃ -CH ₃ -N-CH ₃ -N-CH ₃ -CH ₃ -N-CH ₃ -N-CH ₃ -N-CH ₃ -CH ₃ -N-CH ₃

Table 1.137

Compd No.	R1 -(CI l2)i	k	m	ก	chirality	Fi ³	—(СН ₂) , (СН ₂), G-H ^c R ⁵
1497	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
	CH ₃ CH ₂ CH ₃					н	-CH ₂ -N-C
	CH_3 CH_2 CH_3					H	-CH²-N-C ○ CH³
1500	CH₃ N CH₂- CH₃						-CH ₂ -N-C CH ₃
1501	CH3 CH3	1	2	0	R .	н	-сн ₂ -м-с
	CH₃ CH₃						-CH ₂ -N-C-CF ₃
1503	CH₃ CH₃	1	2.	0	R	н	-CH ₂ -N-C-
	H ₂ N-CH ₂ -						-CH ₂ -N-C-CF ₃
1505	CH ₂ Q -CH ₂ O -CH ₂ - -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1506	CH-€-CH₂-	2	1	1	-	н	-CH ₂ -N-C
1507	C├ ─ _CH ₂ -	2	1	1	-	н	$-CH_{2}-N\cdot C$ $H_{2}N$ $-CH_{2}-N\cdot C$ $H_{2}N$ $H_{2}N$

Table 1.138

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- GR^6$
1508	с⊢СН₂−	2	1	1		н	-CH ₂ -N-C-F
1509	CH-CH ₂ -	2	1	1	-	н	-c+ ⁵ -H _C -
1510	C├ - CH ₂ -	2	1	1	-	н	-CH ₂ -N-C
1511	CHCH ₂ -	2	. 1	1	- ·	н	-CH ₂ -N-C-SBr
1512	с⊢{_}СН₂-	2	1	1	-	н	-CH ₂ -N-C-
1513	C├ - CH ₂ -	2	1	1	- ·	н	-CH ₂ -N-C-S-
1514	(H3CCH2)2N-{-}-CH2-	2	2	1	-	н	-CH ₂ -N-C
1515	HQ H₃CO-CH₂-	2	2	1	-	н	-CH ₂ -N-C
1516	(H3CCH2)2N-CH2-	2	2	1	-	н	-CH ₂ -N-C
1517	HQ. H ₃ CO-CH ₂ -	2	2	1	-	н	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1518	HQ H ₃ CO—CH ₂ -	2	2	1	-	н	-chz-Ng-ch

Table 1.139

_							
Compd.	R (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\rho}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
1519	HQ H₃CO————————————————————————————————————	2	2	1	•	н	-CH2-N-CSOCH
1520	Br—⟨CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1521	H ₃ CO-{}-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-Br
1522	CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1523	H ₃ CQ H ₃ CO————————————————————————————————————	1	2 ·	0	R	н	-CH ₂ -N-C-
1524	H ₃ CQ HO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1525	Br—CH₂-	1	2	0	R	H .	-CH ₂ -N-C
1526	H₃CO-{}CH₂-	1	2	0	R	н	-CH ₂ -N-C
1527	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-C-C-C-S
1528 _}	H ₃ CO CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-OCF ₃ -CH ₂ -N-C-OCF ₃ -CH ₂ -N-C-OCF ₃
1529 .	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-

Table 1.140

Compd.	R (CH ₂) _j -	k	m	n	chirality	· R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1530	Br—⟨CH₂−	1	2	0	R	н	-CH ₂ -N-C
1531	н₃со-€сн ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1532	CH2−	1	2	0	R	н`	-CH ₂ -N-C-CF ₃
1533	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH₂-N-C- CF3
1534	H ₃ CQ HO—CH ₂ -	1	2	O	R	н	-CH₂-N-C- CF3
1535	Br—CH₂-	1	2	0	R	Н	-CH ₂ -N-CF
1536	н₃со-{_}-сн₂-	1	2	0	R	н	-CH ₂ -N-C-F
	CH ₂ -					н .	-CH ₂ -N-C
1538	H ₃ CO — CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF
1539	H ₃ CQ HO-CH ₂ -	1	2	0	R	н	$-CH_{2}-N+C-$ $-CH_$
1540	BrCH ₂ -	1	2	0	R	н	-CH ₂ -N-CF
	-						

Table 1.141

Compd.	R ² (CH ₂);	ķ	m	n	chirality	Ui	П ⁴ (СН ₂) _р (СН ₂) _q G-R [€] R ⁵
1541	H ₃ CO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1542	СH ₂ -	1	2	0	R	н	CF ₃ -CH ₂ -N-C-F
1543	H ₃ CO C C C H ₂	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1544	H ₃ CQ	1	2	0	R	н	−CH ₂ −N-C−√F F
1545	CL_S CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1546	H ₃ CO F CH ₂ -	. 1	2	0	R	H.	-сн ₂ -м-с-СF ₃
1547	H ₃ CO-Br	1	2	0	R	н	-CH ₂ −N-C−CF ₃
1548	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_{2}-N \cdot C - CH_{3}$ $+ H_{3} \cdot C \cdot CH_{3}$
1549 ·	H ₃ C-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1550	H ₃ C-CH ₂ -	1	2	0	R	н	-042-H-C-H-C-H-CH3
1551	H₃C − ⟨¯) −CH₂−	1	2	0	R	н	-CH2-17 C-

Table 1.142

. 45.0							
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G-R^6$
1552	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-
1553	H ₃ C-CH ₂ -	1	2	0	R	н	-013-Hc-16
1554	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1555	H ₃ C-CH ₂ -	1	2	0	R	н	-СH ₂ -N-С
1556	H ₃ C-\CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C- \bigcirc N$ $H_{3}C$
1557	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-N H H ₃ C
1558	H ₃ C-\CH ₂ -	1	2	0	R .	·H	-CH ₂ -N-C-√N=N H ₃ C N CH ₃
1559	H ₃ C-CH ₂ -	· 1	2	0	R	Н	$-CH_{2}$ $+N$ $+N$ $+N$ $+N$
1560	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-O
1561	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
	H ₃ C-CH ₂ -					н	-CH ₂ -N-C

Table 1.143

	Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
	1563	H₃C-⟨CH ₂ -	1	2	0	R	. н	-cH ₁ -N ₂ M ₂
	1564	H₃C-{_}-CH₂-	1	2	Ó	R	н	-cH5-HC
	1565	CH ₃ CH ₂ -					Н	-CH ₂ -N-C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\
	1566	CH₃ CH₂− CH₃					н	-CH ₂ -N-C
•	1567	CH ₃ CH ₂ − CH ₃					н	-CH,-NC
	1568	CH₃ CH₂- CH₃	1	2	0	R	н	-OH2-11-C
	1569	CH ₃ CH₂-	1	2	0	R	н	-сн _z -ү- С - N :
	1570	н₃сѕ-{}-сн₂-	2	2	1	-	н	-CH ₂ -N-C
	1571	H₃CS—(2	2	1	-	н	-CH ₂ -N-C
	1572	CHC-CH2-CH2	2 .	2	1	-	н	-CH ₂ -N-C-CF ₃
	1573	w,co- ⟨ ⟩-¦g ^c -⟨⟩-ov,r	2	2	1	-	н	-сн ₂ -N-С-С-

Table 1.144

. 45.0							
Compd.	R ¹ (CH ₂);	k	m	n	chirality	. R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1574	#°	2 -	. 2	1	-	н	-CH ₂ -N-C-CF ₃
1575	CH-Q-N-G-Q-CH;-	2	2	1.	-	н	-CH ₂ -N-C-CF ₃
1576	N-C-€ -CH₂-	2	2	1	•	н	-CH ₂ -N-C-CF ₃
1577	но(сн ³ - ^Н с{} сн ² -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1578	H ₂ C P _H C-CH ₂ -	2	2	1		н	-CH₂-N-C-CF₃
1579	H.c O-15-	2	2	1	• •.*	н	-CH ₂ -N-C-CF ₃
1580	O-N-C	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1581	CHCH ₂ -	2	2	1		н	-CH ₂ -N-C
1582	CHCH2-	2	2	1	-	н .	-CH-NC-SN
1583	с⊢СН₂−	1	2	0	R	н	$-CH_2-N$ CF_3 H_2N
1584	CH-2-	1	2	0	R	н	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $+_{2}N$ $+_{2}N$

Table 1.145

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) ₅ + (CH ₂) ₅ G−R ⁶
1585	с⊢—СН₂-	1	2	0	. R	н	-CH ₂ -N-C-⟨SN
1586	C├ - CH ₂ -	·1	2	0	R	н	-CH2-N-C-
1587	CH-€-CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1588	CH-CH ₂ -	1	2	0	R	н	-CH ⁵ -N-C-
1589	H ₃ C-CH ₂ -	1	2	0	R	Н	CH ₂ -N-C-CF ₃
1590	H ₃ C-CH ₂ -	1	2	0	R	Н.	$-CH_2-N-C$ H_2N OCF_3 H_2N
1591	H ₃ C-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$
	H ₃ C-CH ₂ -					H .	-CH ₂ -N-C-N-CI
1593	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1594	CH ₃ N −CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C- H H ₂ N
1595	CH₃ CH₂- ·	1	2	0	R _.	н	-CH ₂ -N-C

Table 1.146

Compd.	R ² (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1596	CH ³	1	2	0	R	н	-CH ₂ -N-C
1597	CH ₃ CH ₃	1	2	0	R	н .	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	CH ₃ CH ₃					н	-CH ₂ -N-C-
1599	CH₃ N CH₂- CH₃	1	2	0	·R	н	-CH ₂ -N-C-CH ₃
1600	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-3
1601	C⊢√CH₂−	2	2	1	-	н .	-CH ₂ -N-C
1602	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-CN
•	CH-CH ₂ -				-	н .	-сн ₂ -N-с-
1604	C├ - CH ₂ -	2	2	1	-	. н	-CH ₂ -N-C-
1605	C├ - ⟨ > -CH₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-SCF ₃ -CH ₂ -N-C-SCF ₃
1606	CH-CH2-	1	2	0	R	н .	-CH ₂ -N-C-SCF ₃

Table 1.147

. 45.5	•••						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	. H ³	一(CH ₂) _p
1607	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1608	CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1609	СН2-	2	2	1	-	н .	-CH ₂ -N-C-SCF ₃
1610	СБ3 Р N С—СН3-	2	2	1	-	. н	-CH ₂ -N-C-CF ₃
1611	CF PHC CH1-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1612	H2CO(CH3)2-HCC	2	2	1	-	H	CH ₂ -N-C-CF ₃
1613	H, C-C-1, P-C-C-1-	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1614	F ₃ CS-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1615	F₃CS—CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1616	F3CS-CH2-	2	2	1	-	· н	-CH ₂ -N-C-
1617	F3CS	2	2	1	-	· н	$-CH_2-N-C$ H_2N H_2N

Table 1.148

		-					
Compd. No.	R ¹ (CH ₂)j-	k	m	ภ	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1618	. HQ H ₃ CO—CH ₂ -	1	2	0	R	н	-CH₂-N-C-SBr
1619	HQ H ₃ CO—CH ₂ -	1	2	0	R	Н	-CH2-N-C-OCF3
1620	HQ H ₃ CO-CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C
1621	HQ H ₃ CO-CH ₂ -	1	2	0	Ŗ	Н	-CH ₂ -N-C-CF ₃
1622	HQ H ₃ CO—CH ₂ -	1	2	0	R	Ĥ	-CH ₂ -N-C-⟨ CF ₃ - F
1623	HO-CH ₂ -	1	.5	0	R	н	-CH ₂ -N-C-
1624	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1625	HO-CH ₂ -	1	2	0	R	н ·	-CH ₂ -N-C
	HO-(-CH ₂ -N-C
1627	HOCH ₂ -	1	2	0	R	н	-CH2-N-C- H-C- F
1628	H ₃ CSCH ₂ -	1	2	0	R .	н	-CH ₂ -N-C
							•

Table 1.149

Compd.	R ¹ (CH ₂);	k	m	ñ	chirality	Ft ²	ー(CH ₂) _p (CH ₂) _q G-R ⁶ R ⁵
1629	H₃CS-()—CH₂-	. 1	2	0	R	н	-CH ₂ -N-C
1630	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1631	H ₂ NCH ₂ -CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C-CF ₃
1632	CF ₃ —CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1633	H ₃ CS NC	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1634	(H ₂ C) ₂ CH	1	.2	0	R	Н	-CH2-N-C-CF3
1635	H ₃ C	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1636	H ₃ C-CH ₂ -	1	2	0	R	н	H ₃ C CH ₃
1637	CH₃ CH₃	1	2	0	R	. н	-CH ₂ -N-C-(CH ₂) ₄ CH ₃
1638	CH₃ CH₂-	1	2	0	R	н.	-CH2-N-C
1639	CH ₃ CH ₂ CH ₃	1	2	0	R	. н	-сн ⁵ -Ц с-осн ⁵ сн ³

Table 1.150

					·		·
Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
1640	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₂) ₃ CH ₃
1641	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1642	CH₃ N—CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-N O ₂ N-
1643	CH ₃ N—CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-
	CH ₃ N—CH ₂ - CH ₃						•
1645	CI CH₂−	1	2		R	н .	-CH₂-N-C-
1646	Br CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF3
1647	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1648	H ₃ C(CH ₂) ₃ ———————————————————————————————————	1	2	0	R	н	-CH₂-N-C
1649	H ₃ C(CH ₂) ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1650	H ₃ C(CH ₂) ₂ —CH ₂ -	.1	2	0	R	н	-CH₂-N-C-CF3

Table 1.151

Compd.	R ¹ (CH ₂);-	k	m	n	chirality		-(CH ₂) p G CH ₂) q G - R ⁶
1651	H ₃ C(CH ₂) ₃ -\(\bigce\)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-H ₂ -(CH ₂) ₃ C H ₃
1652	H ₃ C(CH ₂) ₃	2	2	1	-	н	-CH ₂ -N-C
1653	н ₃ с(СН ₂) ₂ -СН ₂ -	2	2	1	-	H	-CH2-HCH2-(CH2)2CH6
1654	н ₃ С(СН ₂) ₂ (СН ₂ -	2	2	1	-	н	-CH ₂ -N-C-SBr
1655	H ₃ C(CH ₂) ₃	2	2	1	-	н	-CH2-N-C-1
1656	H ₃ C(CH ₂) ₃ —CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
1657	н ₃ С(СН ₂) ₂ —⟨	2	2	1	-	н	-CH ₂ -N°C- HN CH ₂ -(CH ₂) ₂ C H ₀
1658	н ₃ с(сн ₂) ₂ —————————————————————————————————	2	2	1	<u>.</u>	н	$-CH_2-NC- $ H_2N
1659	C⊢√CH₂-	2	2	1	-	н	$-CH_2-N$ $+I_2N$ $+I_2N$ $+I_2N$ $+I_2N$ $+I_2N$
1660	Br—CH₂-	1	2	0	R	н	$-CH_2-NC- \longrightarrow H_2N$
1661	Br—€ CH₂-	1	2	0	R	Н	$-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $+L_{2}N$ $-CH_{2}-N-C-$ $+L_{2}N$

Table 1.152

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	-(CH ₂) _p +5 (CH ₂) _q -G-R ⁶
1662	Вг{СН ₂ -	1	2	0	R	н	-CH ₂ -N-C
1663	BrCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1664	H ₃ CS	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1665	H ₃ CS-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1666	H₃CS	2	2	1	<u>.</u> ·	Ĥ	-CH ₂ -N-CF H H ₂ N
1667	н₃ссн₂—(Ё)—сн₂—	2	2	1	- -	н	-CH ₂ -N-C-OBr
1668	н₃ссн₂—Сн₂-	2	2	1	-	.н	-CH ₂ -N-C
1669	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1670	H ₃ CCH ₂ —CH ₂ -	2	2	1		H	$-CH_2-N-C$ H_2N
1671	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	Н	$-CH_2-N$ C OCF_3 H_2N
1672	ң ₅ ССН₂-⟨СН₂-	2	. 2	1	-	н	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $+CH_{2}-N\cdot C$ $+CH_{2}-N\cdot C$ $+CH_{2}-N\cdot C$

Table 1.153

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}$ $-G^-R^6$
1673	н ₃ ССН ₂ —⟨	2	2	1		н	-CH ₂ -N-C-Br
1674	F—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-Br
1675	FCH ₂ -	2	2	1	-	н	-CH ₂ -N-CF
1676	FCH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1677	FCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
1678	F(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1679	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1680	F—CH ₂ -	2	2	1	- ·	н	$-CH_2-N-C-$ H_2N
1681	_ FCH ₂ -	2	2	1	-	н	$-CH_2-N-C-V$ H_2N
1682	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1683	O-N-CH₂-	2	2	1	-	н	-CH ₂ -N-C- Br

Table 1.154

Compd.	R (CH ₂)-	k	m	n	chirality	· R³	-(CH ₂) _p G-R ⁶
1684		2	2	1	•	н	-CH ₂ -N-C-F-F
1685	₩ C	2	2	1	-	Н	-CH ₂ -N-C
1686	₩c-<>-c+²-	2	2	1 .	-	н	-CH ₂ -N-C
1687	₩ c- C+²-	2	2	1	-	н	-CH2-N-C
1688	H C-CH2-	2	2	1	-	н	-CH ₂ -N-C-
1689	H c CH ² -	2.	2	1	- -	H	$-CH_2-N-C$ H_2N CCF_3
1690	PH C-CH³-	2	2	1		.́н	-CH ₂ -N-C- H H ₂ N
1691	— Н. с.—Сс.н²-	2	2	1	-	н .	-CH ₂ -N-C- H
	CH ₃					н	-CH ₂ -N-C- Br
1693	CH ₃ CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-F-F
1694	H ₃ C-СН ₃	1	2	0	R	н	-CH ₂ -N-C

Table 1.155

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} \frac{R^4}{l^5} (CH_2)_{q} G^- R^6$
1695	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1696	- CH ₃	1	2	0	R	н	$-CH_2-NC-$ H_2N
1697	CH ₃	1	2	0	R	н	-CH ₂ -N-C-\(\)
1698	CH ₃	1	2	0	R	н.	$-CH_2-N-C-$ H_2N H_2N
1699	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1700	CH ₃	1	2	.0	R	Н	-CH ₂ -N-CBr
1701	H ₂ C ₌ CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1702	H ₃ CO-{}-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	CH ₂ -					н	-CH ₂ -N-C
1704	HO-CH ₂ -	1	2	0	R	н	$-CH_2-N_1$ C H_2N C CF_3
1705	CI→CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
					· .		

Table 1.156

Compo No.	$H = \frac{R^1}{R^2} - (CH_2)_{i}$	k	m	п	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1706	_ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1707	н₃сѕ-{}Сн₂-	1	2	0	R .	H·	-CH ₂ -N-C
1708	н₃ссн₂—СН₂-	1	2	0	R ,	н	$-CH_2-N-C$ H H_2N
	(нс)₂сн-{}-анг				R	н	$-CH_2-N-C \longrightarrow H_{H_2N}$
1710	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1711	CH₃ CH₂-	1	2	0	R	н	-CH₂-N-C-CF₃
1712	H ₃ CCH ₂ Q HO;—CH₂-	1	2	0	R	· н	-CH ₂ -N-C-CF ₃
1713	H ₃ C CH ₂ -				R	Н	-CH ₂ -N-C-CF ₃
1714	H ₃ CO————————————————————————————————————	1	2	0	Ř	н	-CH ₂ -N-C-CF ₃
1715	N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1716	CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.157

Compo	$H \xrightarrow{R^2} (CH_2)_{j}$	k	m	n	chirality	R³	—(CH ₂) p 1 (CH ₂) q G−R ⁶
1717	H ₃ CO-(N-) OCH ₃ H ₂ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
·1718	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1719	5 N - CH3-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1720	H3C-CH2- CH3-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1721	н ₃ ССН ₂ —СН ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1722	O-CH ₂ -	1	2	0 .	R	н	-CH ₂ -N-C-CF ₃
1723	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	CH ₃ — CH ₂ -					н	-CH ₂ -N-C-CF ₃
1725	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1726	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1727	O—CH₂-	1	2	0	R	н	-CH ₂ -N-C

Table 1.158

Compo	J. R ¹ (CH ₂);	k	m	, n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
1728	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1729	CH ₃ − CH ₂ −	1	2	0	R	н	-CH ₂ -N-C
1730	H ₂ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1731	H ₂ CO N OH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1732	HOCH ₂ ————————————————————————————————————	1	2	0	R		-CH ₂ -N-C-CF ₃
1733	-CH ₂ -	1	2	0	R	н	-CH₂-N-C-←F
1734	н₃СЅ - СН₂-	1	2 _.	0	R	н `	-CH₂-N-C-CF₃
1735	- Н ₃ ССН ₂ СН ₂	1	2	0	R	н	-CH₂-N-C- H
	CH ₂ -					н .	-CH ₂ -N-C-CF ₃
1737	CH ₃ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-⟨ CF ₃ -CH ₂ -N-C- F
1738	H ₃ C- CH ₂ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

Table 1.	. 1	5	ษ
----------	-----	---	---

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{C}$ $+ \frac{1}{2}$
1739	(Hc)2CH-(-)-CH2-	1	2	0	R	н	-CH ₂ -N-C- ← F
1740		1	2	0	R	н	-CH ₂ -N-C-
1741	H ₃ CS-(.)-CH ₂ -	1.	2	0	R	н	-CH₂-N-C-
1742	H ₂ CCH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1743	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1744	CH ₃	1	2	0	R	н 	-CH ₂ -N-C-
1745	H_3C CH_3 CH_2 CH_2	1	2	0	R	н	-CH ₂ -N-C-
1746	(H ₂ C) ₂ CH CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1747	CH₂-	1	2	0	R	អ	$-CH_2-N-C- \longrightarrow_{H_2N}^{O} Br$
1748	н₃ссн₂-√Сн₂-	1	2	0	R	н	-CH ₂ -N-C
1749	CH₃ ⁻ H₃C-⟨ CH₂-	1	2	0	R	н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$ Br $-CH_{2}-N-C$ $H_{2}N$

Table 1.160

Compo	d. R ¹ /(CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p
1750	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1751	H₃CS—(1	2	0	·R	н	-CH ₂ -N-C-OCF ₃
1752	н _э ссн ₂ ————сн ₂ -	1	2	0	R .	н .	$-CH_2-N-C-$ OCF $_3$
1 753	O—CH₂-	1	2	0	R	· н	-CH2-N-C
1754	H3C-\CH2-					H.	-CH₂-N-C
1755	H ₃ C — CH ₂ -	1 .	2	0	R	н	-CH ₂ -N-C-OCF ₃
1756	(H6C)2CH-(-)-CH2-	1 ·	2	0-	R	н	-CH ₂ -N-C
1757	Br Br Br				R	н	-CH ₂ -N-C-CF ₃
1758	H ₃ CO CH ₂ -	1	2 _.	0	R	н	-CH ₂ -N-C-CF ₃
	H ₃ C-CH ₂ -					н .	-on-the-
1760	H ₃ C-CH ₂ -	1	2	0	R	н	CF ₂ CHCIF

T	-	h	le	4	-1	6	1
	a	u	10	•		v	

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	· R³	$-(CH_2)_{p}$ $+$ $\frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
1761	H ₃ C-{	1	2	0	R	н	-CH ² -H _C
1762	CH ³	1	2	0	·R	н	-CH ₂ -N-C-N-CI
1763	€ CH2-	2	2	0	-	Н	-CH ₂ -N-C-OCH ₂ CH ₃
1764	—CH₂-	2	2	0	-	Н	-C H ₂ CH ₂ -N-C
1765	—CH₂-	2	2	0	-,	н	(S) Q -CH-N-C- .H CH₂CH(CH₃)₂
1766	CH ₂	· 2	2	0	-	Н	(<i>F</i>) OCH ₂ CH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1767	C	1	3	1	-	H .	-CH ₂ -N-C
1768	CHCH ₂ -	1	3	1	-	Н	-CH ₂ CH ₂ -N-C
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N°C
1770	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	HNC-N-CI
1771	CH ₃ CH ₂ - CH ₃	1	2	.0	R	Н	(H ₂ C) ₃ C-C++ N-C H ₃ C

Table 1.162

Compd. No.	R ¹ / _P -(CH ₂) _i -	k	m	n	chirality	. Ła	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1772	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	HIC H
1773	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	H ₃ C H C O
1774	CH ₃ N CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1775	HO-CH ₂ -CH ₂ -	1	2	0	R	Н	$-CH_2-N-C \longrightarrow H_2N$
1776	H ₃ CO—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C
1777	CH ₂ —CH ₂ —	2	2	1		н	$-CH_2-N C - CF_3$ H_2N
1778	H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_2-N-C \longrightarrow H_2N$
1779	CH ₂ -	2	2	1	-	н.	-CH ₂ -N-C
1780	Br—CH ₂ -		2	1	·-	н	-CH ₂ -N-CF ₃
1781	HO-()-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1782	H ₂ C=CH-\(\bigc\)-CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $+CH_{2}-N-C$

Ta	ы	le	1	.1	6	3

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	·R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1783	NC-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
1784	CH₂-	2	2	1		н	-CH ₂ -N-C-CF ₃
1785	CH ₃ (CH ₂) ₂ -CH ₂ -	2	2	1	-	н	$-CH_2-N -C - \longrightarrow CF_3$ $H_2 N$
1786	-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-4$ H_2N CF_3
1787	CH ₃ (CH ₂) ₂	· 1	. 2	0	R	н	-CH ₂ -N-C
1788	CH ₃ C-CH ₂ -	2	2	1		H	-CH ₂ -N-C
1789	H ₃ CO-CH ₂ -	2	2	1 ·	-	н	$-CH_2-N-C \xrightarrow{CF_3}$ H_2N
17 <u>9</u> 0	C├─────────────────	1	2	0	S	н	-CH ₂ -N-C
1791	CI——CH₂−	1	2	0	S	н	-CH ₂ -N-C
1792	CH ₃ C+CH ₂ -	2	2	. 1	-	н .	-CH ₂ -N-C-F H ₂ N
1793	CI—CH₂-	2	2	1	•	н	$-CH_{2}-N-C$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$ $+L_{2}N$

Table 1.164

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	⁻ R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
1794	H ₃ C-{\bigce}-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C F
1795	CH₂-	2	2	1	-	н	-CH ₂ -N-C -F
1796	Br-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1797	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
1798	H ₃ CO-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-F
1799	H ₂ C=CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1800	NC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1801	CH₂-				-	н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
1802	HO-CH ₂ -CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
1803	HO-CH ₂ -	1	2	0	R .	н	$-CH_2-N-C \longrightarrow CF_3$ H_2N
1804	H ₃ C(CH ₂) ₂	2	2	1		н	-CH ₂ -N-C

Ta	b	le	1	.1	6	5

Compd.	R ¹ (CH ₂) _i -	k	m	n	chirality	₽³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
1805	Br—CH₂-	1	. 2	0	R	н	-CH ₂ -N-C-SCF ₃
1806	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1807	HO-CH ₂ -	1	2	, 0	R	н	-CH ₂ -N-C-SCF ₃
1808	H ₃ CO-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1809	HO-{	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1810	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1811	CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1812	H₃CS-{\rightarrow}-CH2-	1	2	0	R	н	-CH ₂ -N-C-
1813	H ₂ CCH ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1814	O-CH₂-	1	2	0	R	н	-CH2-HC-SCF3
1815	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃

Compd.	R ¹ /(CH ₂),-	k	m	n	chirality	[.] R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1816	(CH ₃) ₂ CH	1	2	0	R	н.	-CH ₂ -N-C-SCF ₃
1817	(CH ₃) ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1818	Br(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1819	H ₃ CO-(T)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1820	H ₃ CQ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1821	HQ . H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C
1822	HO-(1	2	0	R	н	-CH ₂ -N-C-C
1823	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1824	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCHF ₂
1825	H ₃ CS-CH ₂ -	1	2	0	R	н	OCHF ₂ -CH ₂ -N-C-OCHF ₂ -CH ₂ -N-C-OCHF ₂
1826	H₃CCH₂——————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C

Table 1.167

186

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{\rho+5}}(CH_2)^{-G-R^6}$
1827	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1828	CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1829	H_3C CH_3 CH_2 CH_2	1	2	0	R	н	-CH ₂ -N-C
1830	(CH ₃) ₂ CH————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-OCHF ₂
1831	ВСН₂-	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1832	H₃CO-{}-CH₂-	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1833	H ₃ CQ HO-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1834	HQ H ₃ CO-CH ₂ -	1	2	0	R	H :	-CH ₂ -N-C-C(CH ₃) ₃
1835	но-{}Сн₂-	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1836	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
1837	CH₂-	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂) q G-R ⁶
1838	н₃cs-{	1	2	0	Ŕ	н	-CH ₂ -N-C-(C(CH ₃) ₃
1839	H ₃ CCH ₂ CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-(CH ₃) ₃
1840	O—CH₂-	1	2	0	R ·	н	-CH ₂ -N-C-(CH ₃) ₃
	H ₃ C-CH ₂ -					н	-CH ₂ -N-C-(CH ₃) ₃
1842	H_3 C CH_3 CH_2 -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1843	(CH ₃) ₂ C H————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
1844	(CH ₃) ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH2-H-C-(CH3)3
1845	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	Н	-CH2-N-CH2CH3
1846	H_3C CH_3 CH_2 CH_2	1	2	0	R .	н	-CH ₂ -N-C-SCF ₃
1847	(CH ₃₎₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-COCHF ₂
1848	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH2-HC-

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G-R^6$
1849	-CH ₂ -	1	2	0	R	Н	-CH2-N-C-
1850	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	н	-CH2-N-C
1851	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1852	CH ₂ -	1	2	0	R	н	- CH ₂ -N-C-
1853	H3CQ H0	1 .	2	0	R	Н	-CH ₂ -N-C-
1854	CH₂-	1	2	0	R .	Н	-CH ₂ -N-C-
1855	H₃ССН ₂ —{	1	2	0	R	н	-CH ₂ -N-C-
1856	H_3 C- CH_2 -	1	2	0	R	н	-CH ₂ -N-C-
1857	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1858	Br-CH ₂ -	1	2	0	R	н	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $H_{2}N$ Br $H_{2}N$ Br
1859	H₃CO-{CH₂-	.1	2	0	R	н	-CH ₂ -N-C-Br

Table 1.170

Compd.	R ¹ /(CH ₂) _j -	k	m	л	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
1860	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1861	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1862	НОСН ₂	1	2	0	R	н	-CH ₂ -N-C
1863	CH₂-	1	2	0	R	н	-CH ₂ -N-C
1864	H ₃ CS-CH ₂ -	1	2	0	R .	H	-CH ₂ -N-C
1865	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-Br
1866	H ₃ C CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1867	(CH ₃) ₂ C H-CH ₂ -		2	0	. R	н	-CH ₂ -N-C-Br
1868	(CH ₃) ₂ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1869	Br—⟨¯¯)—CH₂−	1	2	0	R	н	$-CH_{2}-N \cdot C \longrightarrow Br$ $-CH_{2}-N \cdot C \longrightarrow H_{2}N$ $-CH_{2}-N \cdot C \longrightarrow H_{2}N$
1870	H₃CO-€ CH₂-	1	2	0	R	н	$-CH_2-N$ H_2 H_2 N

Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1871	H ₂ CQ HO—CH ₂ -	1	2	0	R	Н	-CH2-N-C-
1872	HQ H ₃ CO-CH ₂ -	1	2	0	R	·H	-CH ₂ -N-C
1873	HO————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1874	CH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C-
1875	CH ₂ −	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1876	H ₃ CS-()-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N
1877	н ₃ ссн ₂ ————————————————————————————————————	1	2	0	R	Н	CH ₂ -N-C
1878			2	0	R	Н	$-CH_2-N-C \longrightarrow I$ H_2N
1879	H_3C CH_3 CH_2 CH_2	1	2	0	R	Н	-CH ₂ -N-C-
	(CH ₃) ₂ C H-CH ₂ -						H ₂ N
1881	(CH ₃) ₃ C-\(\bigcirc\) CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-

Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	. Ka	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
1882	B ← CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-\ H ₂ N
1883	н₃со-{}Сн₂-	1	2	0	R	н	-CH ₂ -N-C
1884	H ₃ CQ HO————————————————————————————————————	1	2	0	R	Н	$-CH_2-N-C \longrightarrow NO_2$ H_2N
1885	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1886	HO-{}-CH ₂ -	1	2	0	Ŗ	н	$-CH_2-N-C$ H_2N NO_2
1887	CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
1888		1	2	0	R	н	-CH ₂ -N-C
1889	H₃CS-{\rightarrow}-CH2-	1	2	0	R	н	$-CH_2-N-C$ H_2N H_2N
1890	н ₃ ссн ₂ ————————————————————————————————————	1	2	0	Ŕ	н	-CH ₂ -N-C
1891	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1892	CH ₂ -	.1	2	0	R .	н	$-CH_2 - NCC \longrightarrow NO_2$ H_2N

	R ¹ /(CH ₂)j-					R³	$-(CH_2)_{p} + G^4 + (CH_2)_{q} - G^-R^6$
1893	H ₃ C — CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1894	(CH ₃) ₂ C H-√)−CH ₂ −	1	2	0	R	н	-CH ₂ -N-C
1895	(CH ₃) ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-NO ₂
1896	HQ H ₃ CO—CH ₂ —	1	2	0	R	н	$-CH_2-N-C \longrightarrow OCF_3$ H_2N
1897	H ₃ CS-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1898	н ₃ ссн ₂ ————сн ₂ -	1	2	0	R	н	-CH ₂ -N-C
1899	(CH ₃) ₂ CH-\	1	2	0	R	н	-CH ₂ -N-C
1900	H ₃ CQ HO—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C
1901	н,с(сн,),	1	2	0	R	н	-CH ₂ -N-C
1902	0-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N O OCF_3
1903	(CH ₃) ₂ CH-\CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-√OCF ₃ H ₂ N

١

Table 1.174

Compd. No.	R ¹ /(CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1904	н ₃ С(СН ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1905	CI—CH₂-	1	2	0	R	н	-CH ₂ -N-C
1906	CH ₂	1	2	0	R	н	-CH ₂ -N-C
1907	HO(CH ₂	1	2	0	R	н	-CH ₂ -N-C
1908	H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_2-N$ C H_2 H_2 N
1909	H ₂ C=CH-\(\bigc\)-CH ₂ -	1	2	0	R	Н	$-CH_2-NC \longrightarrow OCF_3$ H_2N
1910	Br—⟨CH₂−	2	2	1	-	н	$-CH_2-NC \longrightarrow OCF_3$ H_2N
1911	CI—CH ₂ —	2	2	1	-	н	$-CH_2-N$ H_2N O
1912	HOCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1913	CH ₃	2	2	1	-	н	$-CH_2-N$ C H_2 N C
1914	H ₃ C-\CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $+CH_{3}-N-C$ $+$

Table 1.175

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1915	HO-CH ₂ O	1	2	0	R	н	-CH ₂ -N-C
1916	H ₃ C HO—CH ₂ —	1	2	0	R	н	$-CH_2-NC$ H_2N OCF_3
1917	H ₃ CCH ₂ Q HO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N OCF_3
1918	H ₃ C HO—CH₂-	2	2	1		Н	$-CH_2-N$ H_2N OCF_3 H_2N
1919	NH ₂ C⊢√CH ₂ −	2	2	1		н	$-CH_2-N-C- $ $+ CF_3$ $+ C_2$
1920	CH-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1921	NH ₂ CH ₂ −	1	2	0	R	н	$-CH_2-NCC\longrightarrow OCF_3$ H_2N
1922	CH_CH ₂ -	2	. 2	1	-	н	$-CH_2-N-C$ H_2N OCF_3 H_2N
1923	Br—CH₂−	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1924	H ₃ CO-CH ₂ -	2	2	1	-	`н -	-CH₂-N-C-
1925	F(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃

Table	1.	1	7	6
-------	----	---	---	---

Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	Ŕ³	-(CH ₂) p 1 (CH ₂)q G-R ⁶
1926	F-CH ₂ -	2	2	1		. н	-CH2-N-C-SCF3
1927	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
1928	CH2-	2	2	1	-	н	-CH₂-N-C-
1929	CH ₂ -	. 2	2	1	-	· н	-CH ₂ -N-C-
1930	H ₃ CS-CH ₂ -	2	2	1		Н	-CH ₂ -N-C-SCF ₃
1931	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1932	O CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-
1933	CH ₃ .				-	. н	-CH ₂ -N-C-SCF ₃
1934	CH ₃ -CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
	O ₂ N-{-}CH ₂ -						-CH2-N-C-
1936	H₃C-√CH₂-	2	· 2	1		Н	-CH₂-N-C-SCF3

Ta	h	ما	1	1	7	7
ıa	~	-			•	•

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1937	(CH ₃) ₂ CH−√CH ₂ −	2	2	1	-	Н	-CH ₂ -N-C-
1938	Br—√_CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1939	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1940	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1941	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1942	HO€	2	2	1	-	Н	$-CH_2-N$ C CH_3
1943	CH₂-	2	2	1	-	н	-CH ₂ -N-C
1944	CH ₂ -	2	2	1	- .	Н	-CH ₂ -N-C
1945	н₃cs-{}Сн ₂ -	2	2	1	-	н	-CH2-N-C
1946	н₃ссн₂-√сн₂-	2	2	1	-	н	-CH ₂ -N-C
1947	CH ₂ -	2	2	1	•	н	-CH ₂ -N-C-√S-CH ₃

Compd.	R ¹ (CH ₂) _j -	k [.]	m	n	chirality	R³	$-(CH_2)_p$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1948	CH ₃ -CH ₂ -	2	2	1	<u>.</u> .	н	-сн ₂ -м-с-
1949	H ₃ C — CH ₂ — CH ₂ —	2	2	1		н	-CH ⁵ -M-C
1950	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1951	H ₃ C	2	2	1	·	н	-CH ₂ -N-C- H CH ₃ -CH ₃
1952	Br—CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
1953	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C Br
1954	F—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SF
1955	F-CH ₂ -	2	2	1	-	н	-CH₂-N-C-Br
1956	HO-CH ₂ -	2	2	1	-	Н	-CH2-N-C- H
1957	CH₂-	2	2	1	-	н	-CH ₂ -N-C- Br
1958	-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table	1	.1	7	9
-------	---	----	---	---

Compd. No.	R ² (CH ₂) _i	k	m	'n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1959	H₃CS-{	2	2	1	-	н	-CH ₂ -N-C
1960	н₃ссн₂—√У—сн₂-	2	2	1	-	н	-CH ₂ -N-C
1961	O-CH2-	2	2	. 1	-	Н	−CH ₂ −N-C−−−F
1962	CH ₃ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1963	H ₃ C − CH ₂ − H ₃ C	2	2	1	· •	. н	-CH ₂ -N-C
1964	O ₂ N-(CH ₂ -	2	. 2	1	-	н	-CH ₂ -N-C
1965	H ₃ C-\(\)CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C
1966	(CH ₃) ₂ CH−€ CH ₂ −	2	2	1	-	н	-CH ₂ -N-C
1967	Br—⟨CH₂-	2	2	1	-	н	-CH ₂ -N-C
1968	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1969	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.180

Compd.	R 1 (CH ₂) _j —	k	m	n	chirality	H³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1970	CH²-	2	2	1		н	-CH ₂ -N-C
1971	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1972	H₃CS-CH₂-	2	2	1		н	$-CH_2-\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}$
1973	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
1974	CH ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1975	O ₂ N-CH ₂ -	2	2	1		Н	-CH ₂ -N-C
1976	H ₃ C-CH ₂ -	2	2	·1		н	-CH ₂ -N-C
1977	NC-€ CH ₂ -	. 2	2	1		н	-CH ₂ -N-C
	(CH ₃) ₂ C H- СН ₂ -					н	-CH ₂ -N-C
1979	CH ₂ -	2	2	1		Н	-CH ₂ -N-C F H H ₂ N
1980	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table 1.18	abie 1.18	
-------------------	-----------	--

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	˳	$-(CH_2)_{p}$ $+\int_{R^5}^{4}(CH_2)_{q}G-R^6$
1981	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1982	NC-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
1983	(CH ₃) ₂ CH-CH ₂ -	2	2	1	- -	н	$-CH_2-N-C$ H_2N
1984	Br—CH₂-	2	2	1	-	н	-CH ₂ -N-C-
1985	H₃CO-€	2	2	1	-	н	$-CH_2-N-C \longrightarrow H_2N$
1986	HO—CH₂-	2	2	1	-	н	$-CH_2-NCC \longrightarrow H_2N$
1987	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1988	CH ₂ -	2	. 2	1	-	н	-CH ₂ -N-C-
1989	H ₃ CS-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1990	н₃ссн ₂ ————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-
1991	CH ₂ -	2	_. 2	1	-	н	$-CH_2-N-C-$ H_2N

201 .

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
1993 $O_2N \longrightarrow CH_2-$ 2 2 1 - H $-CH_2-N \stackrel{\circ}{C} \longrightarrow H_2N$ 1994 $H_3C \longrightarrow CH_2-$ 2 2 1 - H $-CH_2-N \stackrel{\circ}{C} \longrightarrow H_2N$ 1995 $NC \longrightarrow CH_2-$ 2 2 1 - H $-CH_2-N \stackrel{\circ}{C} \longrightarrow H_2N$ 1996 $(CH_3)_3CH \longrightarrow CH_2-$ 2 2 1 - H $-CH_2-N \stackrel{\circ}{C} \longrightarrow H_2N$ 1997 $H_3C \longrightarrow CH_2-$ 2 2 1 - H $-CH_2-N \stackrel{\circ}{C} \longrightarrow H_2N$ 1998 $B \longrightarrow CH_2-$ 2 2 1 - H $-CH_2-N \stackrel{\circ}{C} \longrightarrow CH_2-$ 1999 $H_3CO \longrightarrow CH_2-$ 2 2 1 - H $-CH_2-N \stackrel{\circ}{C} \longrightarrow CH_2-$ 2000 $F \longrightarrow CH_2-$ 2 2 1 - H $-CH_2-N \stackrel{\circ}{C} \longrightarrow CH_2-$	Compd.	R ¹ / _P -(CH ₂) _i -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1994 $H_3C - CH_2 - CH_2 - 2 = 2 = 1 = - $	1992	CH ₃	2	2	1	-	н	ы ⁵ и
1995 NC—CH ₂ — 2 2 1 - H —CH ₂ —N C—H 1996 (CH ₃) ₂ CH—CH ₂ — 2 2 1 - H —CH ₂ —N C—H 1997 H ₃ C—CH ₂ — 2 2 1 - H —CH ₂ —N C—H 1998 B—C—CH ₂ — 2 2 1 - H —CH ₂ —N C—CH 1999 H ₃ CO—CH ₂ — 2 2 1 - H —CH ₂ —N C—CH 2000 F—C—CH ₂ — 2 2 1 - H —CH ₂ —N C—CH 1997 H ₃ CO—CH ₂ — 2 2 1 - H —CH ₂ —N C—CH 1998 H ₃ CO—CH ₂ — 2 2 1 - H —CH ₂ —N C—CH 1999 H ₃ CO—CH ₂ — 2 2 1 - H —CH ₂ —N C—CH 2000 F—C—CH ₂ — 2 2 1 - H —CH ₂ —N C—CH 2000 F—C—CH ₂ — 2 2 1 - H —CH ₂ —N C—CH 2000 F—C—CH ₂ — 2 2 1 - CH 2000 F—C—CH ₂ — 2 2 1 - CH 2000 F—C—CH ₂ — 2 2 1 - CH 2000 F—C—CH ₂ — 2 2 1 - CH 2000 F—C—CH ₂ — 2 2 2 1 - CH 2000 F—C—CH ₂ —N C—CH 2000 F—C—CH ₂ — 2 2 2 1 - CH 2000 F—C—CH ₂ —N C—CH 2000 F—C—CH 2000 F	1993	O ₂ N-{CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1996 (CH ₃) ₂ CH CH ₂ -CH ₂ - 2 2 1 - H - CH ₂ -N-C-H ₂ N-CH ₂ - 1997 H ₃ C CH ₂ - CH ₂ - 2 2 1 - H - CH ₂ -N-C-H ₂ N-C-H ₂	1994	H ₃ CCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1997 $H_3C \longrightarrow CH_2^-$ 2 2 1 - H $-CH_2^- \stackrel{?}{H_2N} \stackrel{C}{C}$ 1998 $B \longrightarrow CH_2^-$ 2 2 1 - H $-CH_2^- \stackrel{?}{H_2N} \stackrel{C}{C}$ 1999 $H_3CO \longrightarrow -CH_2^-$ 2 2 1 - H $-CH_2^- \stackrel{?}{H_2N} \stackrel{C}{C}$ 2000 $F \longrightarrow -CH_2^-$ 2 2 1 - H $-CH_2^- \stackrel{?}{H_2N} \stackrel{C}{C}$	1995	NC-CH ₂ -	· 2	2	1	-	н .	$-CH_2-N-C$ H_2 H_2 N
1998 BF CH ₂ - 2 2 1 - H $-CH_2$ - CH ₂ - 2 2 1 - H $-CH_2$ -N-C- CI $-CH_2$ - N-C- CI $-CH_2$ - CI $-CH_2$ - N-C- CI $-CH_2$ - N-	1996	(CH ₃) ₂ CH-√CH ₂	2	2	1	-	Н	$-CH_2-NC - $ $H_2 N$
1999 $H_3CO - CH_2 - 2 2 1 - H - CH_2 - N C - CI - CH_2 - N C - CH_2 - N C - CI - CH_2 - N C - CI - CH_2 - N C - CI - CH_2 - N C - CH_2 - N C - CI - CH_2 - N C $	1997	H_3C CH_2 CH_2	2	2	1	-	н	$-CH_2-N-C-$ H_2N
2000 F—CH ₂ — 2 2 1 - H —CH ₂ —N-C—CI	1998	BCH ₂ -	2	2	1	-	н .	-CH ₂ -N-C-
	1999	н₃со-{_}-сн₂-	2	2	1	-	н	-CH ₂ -N-C-CI
2001 HO—CH ₂ — 2 2 1 - H —CH ₂ —N-C—CI 2002 —CH ₂ — 2 2 1 - H —CH ₂ —N-C—CI	2000		2	2	1	•	н	-CH ₂ -N-C-
2002 CH ₂ - 2 2 1 - H -CH ₂ -N-C-C	2001	HO-CH ₂ -	2	2 .	1	-	н	-CH ₂ -N-C-C
· ·	2002	CH₂-	2	2	1	-	н	-CH ₂ -N-C-

Table 1.183

202

Compd. No.	H ¹ /(CH ₂) _i -	k	m	n	chirality	R³	−(CH ₂) p 1 (CH ₂) q G−R ⁶
2003	CH ₂ -	2	2	1	-	н	-CH2-N-C-
2004	H ₃ CS-CH ₂ -	2	2	1	-	. н	-CH ₂ -N-C-C
2005	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	н	-CH2-N-C-
2006	H ₃ C-CH ₂ -	2	2	1	-	н	-сн ₂ -N-С-С
2007	O ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CI
2008	. H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI
2009	NC-CH ₂ -	2	2	1	-	Н	- CH ₂ -N-C-
2010	(CH ₃) ₂ CH-CH ₂ -	2 .	2	1	<u>.</u> ·	H	-CH ₂ -N-C-C
2011	CH ₃ H ₃ C CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-C
2012	Br—CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
2013	н₃со-{_}сн₂-	2	2	1	-	н	-CH ₂ -N-C- Br

Table	1.	.1	8	4
-------	----	----	---	---

Compd.	R ¹ (CH ₂) _i -	k	m	n	chirality	R°	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2014	HO-{CH₂-	2	2	1	·	н .	-CH ₂ -N-C-S-CI
2015	O—CH₂-	2	2	1	-	н	-CH ₂ -N-C- Br H
2016	CH₂-	2	2	1	-	н	-CH2-N-C- H C- Br CI
2017	H₃CS-{}-CH₂-	2	2	1	-	Н	-CH ₂ -N-C- H
2018	н₃ССҢ ₂ —СН ₂ -	2	2	1	-	н	-CH ₂ -N-C- H
2019	O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2020	CH ₃	2	2	1	-	н	-CH ₂ -N-C- H C- H C- CI
2021	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2022	H ₃ C-\CH ₂ -	2	2	1	-	н .	-CH ₂ -N-C
2023	NC-CH2-	2	2	1	-	н.	-CH ₂ -N-C-⟨Sr H
2024	(CH ₃) ₂ CH-⟨CH ₂ -	2.	2	1	-	н	-CH2-N-C

Table 1.185

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + G^4 + (CH_2)_{q} - G - R^6$
2025	H ₃ C CH ₃ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- Br
2026	F—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
20 <u>2</u> 7	Br-CH ₂ -	2	2	1	-	н .	$-CH_2-NC H_2N$ Br
2028	H₃CO-€	2	2	1	-	н	$-CH_2-NC$ H_2N Br
2029	HO-CH ₂ -	2	2	1	•	н	$-CH_2-NC$ H_2N Br
2030	CH₂-	2	2	1	-	н ,	-CH ₂ -N-C
2031	CH₂-	2	2	. •	-	н	CH ₂ -N-C
2032	CH₂-	2	2	1	±	н	$-CH_2-N-C$ H_2N Br
2033	CH ₃	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
2034	O ₂ N-CH ₂ -	2	2	1	-	н	$-CH_2-N-C \longrightarrow Br$ H_2N
2035	H₃C-{	2	2	1	-	Н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ Br $H_{2}N$

Ta	-	1_	-4	4	0	_
ıa	D	ıe.		. 1	O	0

Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
2036	NC-CH2-	2	2	1	•	н	-CH ₂ -N-C
2037	H ₃ C — CH ₂ -	2	2	1		н	-CH ₂ -N-C
2038	F CH ₂ -	2	2	1		н '	-CH ₂ -N-C
2039	H ₃ C-CH ₂ -	2	2	1	-		-CH ₂ -N-C-CN
2040	H ₃ C-CH ₂ -	1	2	0	R	н	-сн ₂ -м-с-сн- Н
2041	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH
2042	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2043	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₂ -CH ₃
2044	CH ₃	1	2	0	R	н	-CH2-N-C
2045	CH ₃ N − ĊH ₂ − CH ₃	1	2	0	R	н	-CH2-N-C-M-CI
2046	CH ₃ CH ₂ - CH ₃	1	2	0	R	н .	-CH ₂ -N-C-H HN OC-H -CH ₂ -N-C-H HN OC-N-CH CH ₃ HN OC-N-CH

Table 1.187

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} G - R^6$
2047	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-ch-h-c
2048	CH ₃ CH ₂ - CH ₃	1	2	0	. R	н	-CH ₂ -N-C
2049	CH ₃ CH ₂ - CH ₃	1	2	0	R	• н	-CH ₂ -N-CH ₃
2050	H ₃ C S CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2051	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2052	CH ₂ -OCH ₂ CH ₃	2	2	1	-	н	$-CH_{2}-N-CF$ $H_{2}N$
2053	ньсо Сн ₂ О-Сн ₂ -Сн ₂ -	2	2	1	-	, н	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
	H₃CO-CH ₂ -					Н	$-CH_{2}-N-C-\sqrt{\sum_{H_{2}N-C}F}$
2055	H ₃ CQ CH ₂ - OH	2	2	1	-	. н	$-CH_{2}-N-C-\sqrt{\sum_{H_{2}N}F}$
2056	Br CH ₂ -	2	2	1	-	н	$-CH_{2}-N-CF$ $H_{2}N$
	Br H₃CO————————————————————————————————————						-CH ₂ -N-C

Table 1.188

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-}R^6$
2058	H ₃ CQ OCH ₃	2	2	1	-	Н	-CH ₂ -N-C
2059	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2060	H ₃ CO CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2061	F_CH ₃	2	2	1	-	Н	-CH ₂ -N-C
2062 -	H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_{2}-N-C$ $H_{2}N$
2063	H ₃ CO CH ₂ -	2	2	1	-	H	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
2064	Br CH ₂ -	2	2	1	-	н	$-CH_2-N$ C H_2 H_2 H_2 H_2
2065	H ₃ CCH ₂ Q H ₃ CCH ₂ O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2066	OCH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2067	(H ₃ C) ₂ CHCH ₂ —CH ₂ —CH ₂ —	2	2	1	-	н	-CH ₂ -N-C
2068	CI F—CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C-$ $+I_{2}N$ $-CH_{2}-N-C-$ $+I_{2}N$ $+I_{2}N$ $+I_{2}N$

Table 1.189

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R ³	−(CH ₂) , 1 R ⁵ (CH ₂) _q G−R ⁶
2069	H ₃ C H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2070	Br CH ₂ -OCH ₃	2	2	1	-	н	-CH ₂ -N-C
	H ₃ CO-CH ₂ -OCH ₃				-	н	$-CH_2-N-CF$ H_2N
2072	(H ₃ C) ₂ CHO - √}-СH ₂ -	2	2	1	-	н	$-CH_2-N-CF$ H_2N
2073	CH ₂ Q -CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
2074	H ₃ CO- CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2075	H ₃ CQ CH ₂ -	2	2	1	-	н	$-CH_2-N-C- + F$ H_2N
2076	F-CH ₂ -					н	-CH ₂ -N-C
2077	CICH ₂ OH	2	2	1	•	н ,	$-CH_2-N-C$ H_2N H_2N
2078	H ₃ CCH ₂ O OH CH ₂ -	2	2	1	-	H	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
2079	CH ₂ Q H ₃ CO-CH ₂ -	2	2	1	-	Н	$-CH_{2}-N-C$ $+CH_{2}-N-C$ $-CH_{2}-N-C$ $+CH_{2}-N-C$ $+CH_{2}-N$

Table 1.190

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}$ $-G-R^6$
2080	H ₃ CO- CH ₂ -	2	2	1	-		-CH ₂ -N-C
2081	CI HO—CH₂-	2	2	1	· .	н	$-CH_2-N-C$ H_2N
2082	OH H ₃ CO-CH ₂ -	2	2	1	<u>.</u>	н	-CH ₂ -N-C-F H ₂ N
2083	H ₃ CQ HO————————————————————————————————————	1	2	. 0	R	н	-CH ₂ -N-C- H ₂ N
2084	H ₃ CO HO———————————————————————————————————	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
2085	H ₃ CO− C H ₂ −	1	2	0	R	н .	-CH ₂ -N-C
2086	HO-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
2087	(H ₃ C) ₂ N-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2088	(H ₃ CCH ₂) ₂ N-\-\-\-\	1	2	0	R	H	-CH ₂ -N-C-CF ₃
	F—CH ₂ -						-CH ₂ -N-C- H H ₂ N
2090	○ - O- ○ -CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$

Table 1.191

Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2091	CI-(2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C- H CH ₂ R
2092	СН-СН2-	2	2	1	-	н	-CH-NC-NH CH2-NH CH2-NH
2093	CH-2-	2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C- H H CH ₂ CH ₂ SCH ₃
2094	C	2	2	1		н	CH-NC-CH ₂ CH ₃
2095	C├ - CH₂-	2	2	1	-	. н	(H) OCH ₂ CH ₃ -CH N-C OCH ₂ CH ₃ - (H) OCH ₂ CH ₃
2096	CH-2-	2	2	1	-	Н	(A O OCH ₂ CH ₃ -CH-N-C- CH ₂ CH ₃ CH ₂ - CH ₂ - CH ₃
2097	CHCH ₂ -	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH-N-C- H H CH ₂ CH ₂ CH ₃
2098	CI—{	2	2	1	-	н	(H Q OCH ₂ CH ₃ -CH+N C-CI
2099	CH2 [−]	2	2	1	-	н	() OCH2CH3
2100	CI—CH₂-	2	2	1	-	н	CH2 OCH2CH3
2101	С├─{_}СН₂-	2	2	1	-	н	(R OCH ₂ CH ₃ -CH-N-C OCH ₃ (R OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃

Table 1.192

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2102	CH ₂ -	2	2	1	- -	н	-CH-N-C-OCH2-CH3
2103	CH-2-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C-
2104	CH2-	2	2	1	-	н	()
2105	H ₃ CO OH	2	2	1	-	н	$-CH_2-N-C$ H_2N
2106	H ₃ C OH CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2107	Br CH ₂ -	2	2	1		. н	-CH ₂ -N-C
2108	CH ₃ -CH ₂ -	2	2	. 1	-	н	$-CH_2-N-C$ H_2N
2109	Br O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2110	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2111	F CH2−	2	2	1	-	н	-CH ₂ -N-C
2112	Br H₃CO————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N

Table 1.193

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+$ $\frac{R^4}{R^5}(CH_2)_{\overline{q}}G-R^6$
2113	H ₂ N H ₃ CO-CH ₂ -	2	2	. 1	-	н	-CH ₂ -N-C-F H
2114	H ₂ N H ₃ C CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C-$ $H_{2}N$
2115	CI—CH₂-	2	2	. 1	-	н .	(R) OCH ₂ CH ₃ -CH N-C
2116	CI—CH ₂ -	2	2	1,	-	н	(F) OCH ₂ CH ₃ -CH-N-C- H CH(CH ₃)CH ₂ CH ₃
2117	CHCH2-	2	2	1	-	н	CH ₂ −CH ₃ CH ₂ −NH
2118	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2119	OH HO€	1	2	0	R	H	-CH ₂ -N-C
2120	Br—CH₂−	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2121	OCH ₃ HO-{CH₂-	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2122	CH2−	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2123	CH ₂ - CH ₂ - NO ₂	1	2	0	,R·	н	$-CH_{2}-N-C$ $+l_{2}N$ $-CH_{2}-N-C$ $+l_{2}N$ $-CH_{2}-N-C$ $+l_{2}N$ $-CH_{2}-N-C$ $+l_{2}N$ $-CH_{2}-N-C$ $+l_{2}N$

Table 1.194

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2124	O ₂ N . Ci—CH ₂ -	1	2	0	R	н	-CH _{Z-N-C} CF ₃
2125	O ₂ N H ₃ CO—CH ₂ —	1	2	0	R	н	$-CH_2-N-C \longrightarrow H_2N$
2126	O ₂ N H ₃ C-CH ₂ -	1	2	0	R	н	-CH _{Z-N-C} -CF ₃
2127	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2128	H ₂ N CH ₂ -	1	. 2	0	R	Н	$-CH_2-N-C$ H_2N
2129	H ₂ N H ₃ C-CH ₂ -	1	2	0	· R	н	$-CH_{2}-N-C- \longrightarrow_{H_{2}N}^{O}$
2130	0- V CH ² -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2131	CH₃ CH₂- CH₃	2	2	1	-	.	-CH ₂ -N-C-F H ₂ N
2132	H ₂ N C⊢CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
2133	(H ₃ C) ₂ N CI—CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H ₂ N CF ₃ -CH ₂ -N-C- H ₃ N CF ₃
2134	CH ₂ - N(CH ₃) ₂	1	2	0	R	Н	-CH ₂ -N-C- H ₂ N-C- H ₂ N

Table 1.195

						_	
Compd.	R ¹ >-(CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2135	(H ₃ C) ₂ N H ₃ CO-CH ₂ -	1	2	0	R	Н	CH ₂ -N-C- CF ₃
2136	(H ₃ C) ₂ N H ₃ C — CH ₂ -	1	2	0	R	н	$-CH_2-N-C- \longrightarrow CF_3$ $+L_2N$
2137	CH ₂ -CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C-$ $H_{2}N$ CF_{3} $H_{2}N$
2138	CH ₃ CH ₂ -	1	2	0	R	н	$-CH_2-N-C-4$ H_2N
2139	H ₃ C, CI . CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2140	CH ₂ -	2	2	1	-	Н	$-CH_2-N-CF$ H_2N
2141	H ₂ N HO—CH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2 H_2
2142	H ₂ N CH-CH ₂ -				-	Н	-CH ₂ -N-C
2143	HMC-CH3	2	2	1	-	н	$-CH_2-N-C$ H_2N
2144	H ₂ N H ₃ CO-CH ₂ -	2	2	1		н	$-CH_{2}-N-C$ $+CH_{2}-N-C$
2145	H ₂ N HO-CH ₂ -	2	2	1	•	н	$-CH_2-N-C$ H_2N CF_3

Table 1.196

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _P + (CH ₂) _q G-R ⁶
2146	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2147	Q H ₃ C·C−NH H ₃ CO ← CH ₂ −	2	2	1	-	н	-CH ₂ -N-CF-F
2148	H ₃ C-C-NH HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
2149	O ₂ N HO	1	2	0	R	н.	-CH ₂ -N-C
2150	H ₃ C-C-NH CII—CH ₂ -	1	2	0	R ·	н	CH ₂ -N-C
2151	HMC-CH3	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
2152	H ₃ C-C-NH H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2153	H ₃ C-C-NH H ₃ C-CH ₂ -	1	2	0	R	н	$-CH_2-N-C \longrightarrow H_2N$
2154	H ₃ C-C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C \longrightarrow H_2N$
2155	Q H₃C-C-NH HO-CH₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N CF_3
2156	HNC-CH3	2	2	1	-	н	$-CH_{2}-N\cdot C \longrightarrow H_{2}N$ $-CH_{2}-N\cdot C \longrightarrow H_{2}N$ $-CH_{2}-N\cdot C \longrightarrow H_{2}N$

Table 1.197

Compd.	R (CH ₂)-	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^-R^6$
2157	CH ₃	1	2	0	R	н .	$-CH_2-N-C-$ H_2N
2158	H ₃ C-NH HO—CH ₂ -	1	2	0	R	н	$-CH_{2}-NC \longrightarrow CF_{3}$ $H_{2}N$
2159	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C \longrightarrow F$ $H_{2}N$
2160	H ₃ C-NH HO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
2161	H ₃ C-NH CH-2-	2	2	1	-	н	-CH ₂ -N-C
2162	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N+C- \longrightarrow H_2N$
2163	HO-CH ₂ -	2	2	1	-	Н	$-CH_2-NC- CF_3$ $+H_2N$
2164	ÇH₃ CH₂-	1	2	0	R	. н	$-CH_2-NC- CF_3$ $+H_2N$
2165	H N - CH ₂ -	1	2	0		н .	-CH ₂ -N-C
2166	(°) CH₂-	1	2	0	R	н	$-CH_2-N+C$ H_2N
2167	H N CH ₂ -	1	2	0	R	H	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $+L_{2}N\cdot C$ $-CH_{2}-N\cdot C$ $+L_{2}N\cdot C$ $+L_{2}N\cdot C$ $+L_{2}N\cdot C$ $+L_{2}N\cdot C$ $+L_{2}N\cdot C$ $+L_{2}N\cdot C$

Table 1.198

Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R ³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
2168	Q-OCH ₃ H ₃ C CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
2169	H ₃ C-CH ₃ -CH-CH ₃	1	2	0	R ·	H	-CH ₂ -N-C- H H ₂ N
2170	С ¹ С ³ -сн ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H ₂ N
2171	H ₃ C N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2172	F ₃ C CH ₂ CH ₂ .	1	2	0	R	Н	$-CH_2-N-C H_2N$ CF_3
2173	S—CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C- CF ₃
2174	H ₃ C CH ₃	1	2	0	R	н	$-CH_2-NC$ H_2N CF_3
2175	OC H ₃ N= CH ₂ - N- N- CH ₂ -					. н	$-CH_{2}-NC - CF_{3}$ $H_{2}N$
2176	H ₃ C CH ₂ -	1	. 2	0	R	н .	$-CH_2-NC- \bigcirc CF_3$ H_2N
2177	H ₃ C OH }=(1	2	0	R	н	-CH ₂ -N-C
2178	CH ₂ OH H ₃ CO-C HN CH ₂ OH	1	2	0	R	н	$-CH_{2}-NC-$ $H_{2}N$ $-CH_{2}-NC-$ $H_{2}N$ $-CH_{2}-NC-$ $H_{2}N$ $-CH_{2}-NC-$ $H_{2}N$ $-CH_{2}-NC-$ $H_{2}N$ $-CH_{2}-NC-$ $H_{2}N$

Table 1.199

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $\stackrel{R^4}{\underset{p,5}{\longleftarrow}} (CH_2)_{q} G^-R^6$
2179	H ₃ C-Ç-N — CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2180	C-(CH ₂) ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
2181	H ₃ CO N CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C-$ $H_{2}N$ $H_{2}N$
2182	H ₃ C N CH ₂ -	1	2	0	R	н	$-CH_2-N-C-V$ H_2N
2183	\$-N N= CH ₂ -	1	2	0	R	· H	-CH ₂ -N-C-CF ₃
2184	\$-N N=CH ₂ -	2	2	1		Н	$-CH_2-N-C$ H_2N
2185	\$-N CH ₂ -	2	2	1		Н	$-CH_2-N-C H_2N$
2186	H N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2187	H ₂ N HO-CH ₂ -	1	2	0	R	н	$-CH_2 - N - CF_3$ $+ C - N - C - N - CF_3$ $+ C - N - CF_3$
2188	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2189	CH ₂ -	1	2	0	R	Н	$-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$

Table 1.200

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-R^6}$
2190	H CH₂-	2	2	1	•	н	-CH ₂ -N-C
2191	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
2192	S-N O-CH ₂ -	2	2	1	-	н	$-CH_2-N-C - O CF_3$ H_2N
2193	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2194	H ₂ N H ₃ C-CH ₂ -	2	2	1	-	н	CH ₂ -N-C
2195	H ₂ N CH ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H ₂ N.
2196	H ₃ C-NH H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2197	H ₃ C-NH H ₃ CO-CH ₂ -	1	2	0	. R	н	-CH ₂ -N-C- H ₂ N-C- H ₂ N
2198	H ₃ C-NH CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N
2199	H ₃ C−NH H ₃ C−CH ₂ −				-	н .	-CH ₂ -N-C- H ₂ N CF ₃
2200	H ₃ C-NH CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-

Table 1.201

Compd. No.	R (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{1}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
2201	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2202	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2203	CH2−	2	2	1	-	н	$-CH_2-N-C$ H_2N
2204	CH ₂ -CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N
2205	CH₃ CH₂-	2	2	1	-	Н	$-CH_2-N-C-$ H H_2N
2206	HO—CH ₃	2	2	1	-	Н	$-CH_2-N-C$ H_2 H_2 H_2 H_3
2207	HO—CH ₂ —	2	2	1		Н	$-CH_2-N-C$
2208	CH-CH ₂ -CH ₂ -					Н	$-CH_2-N-C-$ H_2N
2209	HN-CH ₃ C⊢√ -CH ₂ -					Н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
2210	CH _Z -	1	2	0	R	н	$-CH_2-N$ H_2N CF_3
2211	CH ₂ -					н	$\begin{array}{c} H_2N\\ \\ -CH_2-N-C- \\ H_2N\\ \end{array}$ $-CH_2-N-C- \\ H_2N\\ -CH_2-N-C- \\ H_2N\\ \end{array}$

Table 1.202

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2212	CH ₂ −CH ₂ −	2	2	1	-	н	-CH ₂ -N-C
2213	H ₂ N CH2-CH ₂ -	2	2	1	-	. н	$-CH_2-N-C- \\ H_2N$
2214	H ₂ N H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2215	H ₃ C-HN CH-2-	1	2	0	R .	Н	$-CH_2-N-C$ H_2N
2216	H ₃ CCH ₂ N H	1	2	0	. R	н	-CH ₂ -N-C
2217	H ₃ CO-C H ₃ C-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	2	. 0	R	H	$-CH_2-N$ C H_2 H_2 N
2218	C├ - CH ₂ -	1 .	2	0	R	H	-CH2-H C HN C-N-CF3
2219	CI—€CH ₂ -	1	2	0	R	Н	-CH2-N-C-N-CF3
2220	C├ - ⟨ > -CH ₂ -	1	2	0		н	-CH ₂ -N-C-N-CH(CH ₃) ₂
	CHCH ₂ -				R	н .	-CH2-HC-HQ-CH3
2222	H ₃ C CO ₂ CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-CF ₃

Table 1.203

Table 1	1.203						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G^-R^6$
2223	CH_CH2-	1	2	0	R	Н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
2224	CHZ−CH _Z −	1	2	0	R	н	-CH2-N-C-N
2225	CHCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-V _{K-N}
2226	H ₃ C, CI N CH ₂ - CH ₃	1	2	0	R ·	Н	$-CH_2-N-CF_3$ H_2N
2227	CHCH ₂ -	1	2	0	R	н	-CH2-N-C
2228	CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N C-N C-F ₃
2229	CH₂-	1	2	0	R	н	-CH ₂ -N-C
	CH ₃					н	-CH ₂ -N-C
2231	CH ₃	1	2	0	R	н	-CH ₂ -N-C-OCF ₃ H ₂ N OCF ₃
2232	H ₃ CO-CH ₂ -					н	-CH ₂ -N-C
2233	CH ₂	1	2	0	R	н	-CH ₂ -N-C- H ₂ N CF ₃ -CH ₂ -N-C- H ₂ N

Table 1.204

labie	1.204						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
2234	CH ₂ - CH ₃	1	2	0	R	Н	CH ₂ -N-C
2235	CH ₂ -	1	2	0	R	н	$-CH_2-N$ H_2 N C
2236	F CH ₂ -	1	2	0	R	н	$-CH_2-NC H_2N$ OCF_3
2237	CI CH ₂ -					н	$-CH_2-N$ C H_2N C H_2N
2238	H ₃ CO CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
2239	CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
2240	CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-NC- \longrightarrow H_2N$
2241	H ₃ C N	1	2	0	R	H	-CH ₂ -N-C
2242	CH ₃	1	2	0	R	н	-CH ₂ -N-C
2243	(H ₃ Ç) ₂ N-⟨⟩−CH ₂ −	1	2	0	R	н	$-CH_2-N-C- \longrightarrow OCF_3$ H_2N
2244	(H ₃ Ç) ₂ N-⟨ → CH ₂ - CH ₂ -	1	2	0	R	н	$-CH_{2}-N+C$ $+2N$ $-CH_{2}-N+C$ $+2N$ $-CH_{2}-N+C$ $+2N$ $-CH_{2}-N+C$ $+2N$ $-CH_{2}-N+C$ $+2N$ $+2N$ $-CH_{2}-N+C$ $+2N$ $+2N$

Table 1.205

Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{\overline{h}^4}{R^5} (CH_2)_{q} - G^-R^6$
2245	H ₃ C N CH ₂ -	1	2	0	R	Н	$-CH_2-NC-4$ H_2N
2246	H3CCH2-N-CH2-	1	2	0	R	Н	-CH ₂ -N-C
2247	(H¢C)2CH N N CH	1	2	0	R	Н	$-CH_2-NC- CF_3$ H_2N
2248	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2249	H ₂ N ————————————————————————————————————	1	2	0	R	H	$-CH_{2}-N$ $H_{2}N$ OCF_{3}
2250	H ₂ N HO-CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $H_{2}N$ $H_{2}N$
2251	H_2N H_3C —CH ₂ -					н	$-CH_{2}-N$ $H_{2}N$ OCF_{3} $H_{2}N$
2252	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2253	F CH ₂ -	2	2	1	-	н	CH ₂ -N-C
2254	H ₃ CO CH ₂ -	2	2	1	-	н	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $+I_{2}N$ $-CH_{2}-N\cdot C$ $+I_{2}N$
2255	H ₃ C NH	2	2	1	-	Н	-CH ₂ -N-C- H H ₂ N

Table 1.206

labic	1.200						
Compd.	• 1	k	m	n	chirality	R³	$-(CH_2)_p + R^4 (CH_2)_q - G^-R^6$
	CH ₂ -					Н	-CH ₂ -N-C- H ₂ N-C- H ₂ N
2257	H ₃ CQ C N H	2	2	1	-	н	-CH ₂ -N-C
2258	CHCH ₂ -	1	2	0	R	Н	(S) O CI -CH ₃ CH ₃
2259	H₃CS-()-CH₂-	1	2	0	R	Н	(S) O CI
2260	CI—CH₂-	1	2	0	R	Н	(S) P -CH-N-C-N- CH ₃
2261	CH ₂ -	1	2	0	R	н	(S) P -CH-N-C-N- CH ₃
2262	H ₃ CS-CH ₂ -	1	2	0	Ŗ	н	(S) P -CH-N-C-N- CH ₃
2263	CI—CH₂-	1	2	0	S	. н	(S) P CI -CH-N-C-CI
2264	CI—⟨CH₂-	1	. 2	0	S	н	(S) P CI -CH-N-C
2265	H₃CS-()-CH₂-	1	2	0	S .	н	(S) P CI -CH-N-C-C-CI
2266	CI—CH ₂ -	1	2	0	S	н	(S) P -CH-N-C-N-

Table 1.207

· ubic i	.20,						
Compd. No.	R ⁱ R ² (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{1}{R^5} (CH_2)_{q} - G - R^6$
2267	CLCH ₂ -	2	2	1	-	н .	(S) CI -CH-N-C CI CH ₃
2268	C├─ ॔ CH₂-	2	2	1	•	н	(S) CI -CH-N-C-CI CH ₃
2269	H₃CS-{\bigce}-CH2-	2	2	1	-	н	(S) CI -CH-N-C CI CH ₃
2270	CICH ₂ -	2	2	1	-	Н	(S) P -CH-N-C-N-CH CH ₃
2271	CH-CH ₂ -	2	2	1	-	· н	(S) P -CH-N-C-N-C-N- CH ₃
2272	H₃CS-{}-CH₂-	2	2	1		н	(S) P -CH-N-C-N-C-N-CH ₃
2273	CI CI—CH₂-	2	2	1	-	н	(S) (CI -CH-N-C-CI CH(CH ₃) ₂ (CI
2274	H₃CS-()-CH ₂ -	2	2	1	-	н	(S) Q -CH-N-C-C-CI H CH(CH ₃) ₂
2275	CICH ₂ -	2	2	1	-	н	(S) 0 -CH-N-C-N- -CH(CH ₃) ₂
2276	CI—CH ₂ -	2	. 2	1	-	н	(S) P -CH-N-C-N- CH(CH ₃) ₂
2277	H₃CS-CH₂-	2	2	1	-	н	(S) P -CH-N-C-N- H H H CH(CH ₃) ₂

Table 1.208

Compd.	R ¹ R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2278	CICH ₂	1	2	0	R	н	(S) P CF ₃ -CH ₁ H ₂ N
2279	CHCH2-	1	2	0	R	н	(S) P CF ₃ -CH _N -C H CH ₃ H ₂ N
2280	CICH ₂ -	1	2	0	S	н	(S) O CF ₃ -CH-N-C- CF ₃ CH ₃ H ₂ N
2281	H ₃ CS-CH ₂ -	1	2	0	S	Н	(S) O CF ₃ -CH-N-C CF ₃ CH ₃ H ₂ N
2282	CICH ₂ -	2	2	1	-	н	(S) O CF ₃ -CH-N-C- H CH ₃ H ₂ N
2283	н₃сs- С Н₂-	2	2	. 1	-	· Н	(S) Q -CH-N-C- H CH ₃ H ₂ N
2284	CICH ₂ -	2	2	1	-	н .	(S) NH ₂ -CHN-C- NH ₂ -CH(CH ₃) ₂ CF ₃
2285	CHCH_2-	2	2	1	-	. Н	$(S) \qquad \bigcap_{\substack{C \\ C \\ H \\ CH(CH_3)_2}} NH_2$
2286	H₃CS—CH₂-	2	2	1	<u>-</u>	н	$(S) \qquad P \qquad $
2287	CI	2	2	1		н	(S) S CH(CH ₃) ₂
2288	H₃CS—CH₂-	2	2	1	•	н	(S) P CI -CH-N-C-CI . (CH ₂) ₂ CONH ₂

Table 1.209

Compd. No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{\overline{n}^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
2289	CI_CH ₂ -CH ₂ -	2	2	1	-	н	(S) 0 -CH-N-C-N- H H (CH ₂) ₂ CONH ₂
2290	CL CH2-CH2-	2	2	1	-	Н	(S) P −CH+N-C− H CH ₂ OH
2291	CH2-CH2-	2	2	1	-	Н	(S) Q −CH+N-C− H CH ₂ OH
2292	H₃CS-CH ₂ -	2	2	1		Н	(S) P −CH+N-C− H CH₂OH
2293	CI_CH _Z -	2	2	1	-	Н	(S)
2294		2	2	1	-	н	(S) P -CH-N-C-N- CH ₂ OH
2295	H₃CS{	2	2	1	-	н	(S)
2296	CICH ₂	1	2	0	R	н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2297	H₃CS-{\rightarrow}-CH2-	1	2	.0	R	. н	(S) Q CI -CH-N-C-C-CI (CH ₂) ₂ SO ₂ CH ₃
2298	CI CI—CH₂∸	1	2	0	R	н	(S) 0 -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2299	H3CS-{}CH2-	1	2	0	R	н	(S) 0 -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃

Table 1.210

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2300	CH-€	1	2	0	S	н	(S) CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2301	CI_CH ₂ -	1	2	0	S	н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2302	CI_CH2-	1	2	0	R	Н	(S) NH ₂ -CH-N-C (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2303	CH_CH2-	1	2	0	R .	н	(S) O NH ₂ -CH-N-C (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2304	H ₃ CS—СН ₂ -	1	2	0	R	н	(S) PH2 -CH-N-C (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2305	CI CI—CH₂-	1	2	0	S	н	(S) NH ₂ -CHN-C- (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2306	: H ₃ CS-CH ₂ -	1	2	0	S	н	(S) O NH ₂ - C H N- C - C - C H N- C H
2307	CH2-	1	2	0	R	н	(S) S - CH-N-C-N-(CH ₂) ₂ SO ₂ CH ₃
2308	H₃CS-CH₂-	1	2	0	R	н .	(S) -CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
2309	CICH ₂ _	1	2	0	S	н	(S) } -CH-N-C-N-
2310	O-CH2-	1	2	0	S	H	(S) S -CH-N-C-N-(C) CH ₂) ₂ SO ₂ CH ₃

Table 1.211

Table	1.211						
Compd No.	R^{2} $(CH_{2})_{j}$	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
2311	H₃CS(CH₂-	1	2	0	S	н	(S) S -CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2312	H ₃ CS-CH ₂ -	1	2	0	R	н	(S) 0 CF ₃ -CHN-C-CH ₃ H ₂ N
2313	CICH ₂ -	1	2	0	R	н	(S) P CI -CH-N-C-CI CH ₃
2314	H₃CS-CH₂-	1	2	0	S	н	(S) 0 -CH-N-C-N-C-N-C-N-CH ₃
2315	CH2-	2	2	1	-	H	(S) CI -CH-N-C-CI CH(CH ₃) ₂
2316	CH2−	1	2	0	S	н	(S) O NH ₂ -CH N-C CH ₂ (CH ₂) ₂ SO ₂ CH ₃ CF ₃
2317	CICH ₂ -	2	2	1	-	Н	(S) NH ₂ -CH-N-C- H CH ₂ OH CF ₃
2318	CICH ₂ -	1	2	0	R	н	(S) S C C C C C C C C C
2319	CICH ₂ -	2	2	1	-	н	(S) S CH-N-C-N-CH-N-CH-N-CH-N-CH-N-CH-N-CH-N-
2320	C	2	2	1	- -	н	(S) S -CH-N-C-N- H H H CH(CH ₃) ₂
2321	H₃CS-CH₂-	2	2	1	-	н	(S) S -CH-N-C-N- H H H CH(CH ₃) ₂

Table 1.212

lable	1.212						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
2322	CICH2-	2	2	1	-	Н	(S)
2323	H₃CS-{CH₂-	2	2	1	-	н	(S) S C C C C C C C C C
2324	CICH ₂ -	2	2	1	-	н	$ \begin{array}{ccc} (S) & & & \\ -C & & & \\ C & & & \\ \end{array} $ $ \begin{array}{cccc} CF_3 \\ C & & \\ \end{array} $
2325	CICH _Z -	1	2	0	R	Н	(S) S N C N C N C N C N C N C N C N C N C N
2326	C	1	2	0	R	н	(S) S CH ₃ S CH ₃
2327	H ₃ CS-CH ₂ -	1	2	0	R	н	(S) S CH ₃ CH ₃
2328	CICH ₂ -	1	2	0	S	н	(S) S CH N C - N - CH CH S
2329	C├ ─ _CH ₂ -	1	2	0	S	н	(S) S CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N
2330	H ₃ CS-CH ₂ -	1	2	0	S	Н	(S) S CH N + C +
2331	CI—CH ₂ -	1	2	0	S	н	(S) O CF ₃ -CH-N-C-CF ₃ -CH ₃ H ₂ N
2332	CI()-CH ₂ -					н	(S) Q CI -CH-N-C-CI (CH ₂) ₂ SO ₂ CH ₃
						_	

Table 1.213

Compd. No.	R^1 (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - G - R^6$
2333	C⊢-CH₂-	1	2	0	R	Н	(S)
2334	H ₃ CS—CH ₂ —	1	2	0	S	Н	(S) P CI -CH-N-CCI H (CH ₂) ₂ SO ₂ CH ₃
2335	CICH ₂ -	1	2	0	S	Н	(S)
2336	CI—CH ₂ -	1	2	0	s ·	Н	(S)
2337	H₃CS—CH ₂ —	1	2	0	S	Н	(S)
2338	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N- H H H (CH ₂) ₂ CONH ₂
, 2339	CI-CH ₂ -	2	2	1	-	Н	(S) P NH ₂ -CHN-C- H (CH ₂) ₂ CONH ₂ CF ₃
2340	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) P NH ₂ -CHN-C- H (CH ₂) ₂ CONH ₂ CF ₃
2341	C	2	2	1	-	н	(S) P NH2 -CHN-C- H CF3
2342	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) P NH2 -CHN-C- H CH ₂ OH CF ₃
2343	CICH _Z -	2	2	1	-	н	$(S) \qquad CI$ $-CH N - C \longrightarrow CI$ $(CH_2)_2 C ONH_2$

Table 1.214

- able	1.214						
Compd. No.	R ¹ (CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q - G-R^6$
2344	CHCH ₂ -	2	2	1	-	Н	(S) P CI -CH-N-C C CI (CH ₂) ₂ CONH ₂
2345	CH-CH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N-C-N- (CH ₂) ₂ CONH ₂
2346	CICH ₂ -	2	2	1	-	н	(S) P NH ₂ -CHN-C- CHN-C- CF ₃
2347	CI_CH2-	1	2	0	S	Н	(S) P -CH-N-C-N-C CH ₃
2348	CICH ₂ _	1	2	0	R	Н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
2349	FCH ₂ -	1	2	0	R	Н	(S) P CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
2350	F—CH ₂ -	1	2	0	R	Н	(S) O CI -CH-N-C-CI H H (CH ₂) ₂ SO ₂ CH ₃
2351	CH ₂ -	1	2	0	R	н .	(S) O CI -CH-N-C-CH-CI (CH ₂) ₂ SO ₂ CH ₃
2352	CICH ₂ -	2	2	1	-	н	(S) O -CH-N-C-N-(C)-CI CH ₃
2353	CI CI→CH ₂ -	2	2	1	-	н	(S) O CH3
2354	C(1	2	0	R	н	(S) C -CH N-CCI (CH ₂) ₂ SO ₂ CH ₃

Table 1.215

·abic							
Compd.	R^{1} (CH_{2})	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2355	CICH ₂ -	1	2	0	R	н	(S) PCI CI -CH-N-C (CH ₂) ₂ SO ₂ CH ₃
2356	CH_CH ₂ -	1	2	0	R	н	(S) PCI -CH-N-C- HH (CH ₂) ₂ SO ₂ CH ₃ CI
2357	CH ₂ -	1	2	0	R	н	(S) P -CH-N-C-S CI (CH ₂) ₂ SO ₂ CH ₃
2358	CI CH₂-	· 1	2	0	R	н	(S) O -CH-N-C-C-CH ₃ (CH ₂) ₂ SO ₂ CH ₃
2359	CI—CH₂-	1	2	0	R	, Н	(S) P -CH-N-C-S (CH ₂) ₂ SO ₂ CH ₃
2360	CH ₂ -	1	2	0	R	Н	(S) 0 - CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2361	CICH ₂ -	1	2	0	R	н	(S) P -CHN-C-N
2362	CICH ₂ -	1	2	0	R	Н	(S) P -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
	CICH ₂ -						CH ₃
2364	$\begin{array}{c} C \\ C $	2	2	1	-	н	(S) PCL CI -CHN-C-CH3
2365	CI CI—CH₂-	2	2	1	-	н	

Table 1.216

Compd.	R ¹ /(CH ₂)j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2366	CICH ₂ -	2	2	1	-	Н	(S) 0 -CH N-C CH ₃
2367	CI_CH2-	2	2	1	-	н	(S) 0 -CHN-C-(S) CH3
2368	CI_CH2-	2	2	1	-	H	CH3
2369	CI_CH ₂ -	2	2	1	-	Н	(S) P -CH-N-C-N-C-N-OCH ₃ CH ₃
2370	CH ₂ -	2	2	1	-	н	(S) P CI -CHN-C-CI CH ₃
2371	CICH ₂ -	2	2	1	-	н	(S) P CI CH ₃ .
	. CI					H ,	(S) P C CI
2373	F—CH ₂ -	2	2	1	-	н	(S) P CI -CH3 CH3
2374	CH ₂ -	2	2	1	-	н	CH ₃
2375	F-CH ₂ -	2 _.	2	1	-	Н	(S) CH
2376	F_CH ₂ -	2	2	1	-	Н	CH ₃ (S) CH CH CH CH CH CH CH CH CH C

Table 1.217

Compa. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p$ $+\frac{11^4}{R^5}$ $(CH_2)_q$ $-GR^6$
2377	F-CH ₂	2	2	1	-	н	(S) P CI -CH-N-C CI CH ₃
2378	CH ₂ -	2	2	1	-	Н	(S) CI CH ₃ CI CH ₃
2379	CICH ₂ -	2	2	1	-	Н	(S) P Br -CHN-C
2380	CL CH2-	2	2	1	-	Н	(S) P -CH-N-C- CH ₃ H ₂ N
2381	CICH ₂ -	2	2	1	-	Н	(S) P -CH-N-C- CH ₃ HO
2382	CI CH₂−	. 2	2	1	-	н	(S) P -CH-N-C-OH CH ₃
2383	CI CH2−	2	2	1		н	(S) S - C ++ N- C - N- C ++ 2- (S) S - C ++ 3 S ++ C ++ 2- (S) S ++ 2- (S)
	CI_CI CH ₂ -					н	(S) O CI -CH-N-C C CI (CH ₂) ₂ SO ₂ CH ₃
2385	ĆH ^S -CH ^S -	1	2	0	R	Н	(S) O CI -CH-N-C-CH-CI (CH ₂) ₂ SO ₂ CH ₃
2386	CI CH₂−	1	2	0	R	. H	(S) Q CI -CH-N-C-CI H H (CH ₂) ₂ SO ₂ CH ₃
2387	F-CH ₂ -	1	2	0	R	н	(S) P CI -CH-N-C-CI (CH ₂) ₂ SO ₂ CH ₃

Table 1.218

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ G^-R^6
2388	F—CH ₂ -	1	2	0	R	Н	(S) CI -CH-N-C CI (CH ₂) ₂ SO ₂ CH ₃
	CH ₂ -					н	(S) Q CI -CH-N-C-CI H H (CH ₂) ₂ SO ₂ CH ₃
2390	CI CH2-	1	2	0	R	Н	(S) O NH2 - CHN C CH2)2SO2CH3 Br
2391	CICH ₂ -	1	2	0	R	. н	(S) PH2 -CHN-C-(CH ₂) ₂ SO ₂ CH ₃ CI
2392	CI—CH ₂ —	1	2	0	R	н	(S) P NH ₂ -CH-N-C- (CH ₂) ₂ SO ₂ CH ₃
2393	CICH ₂ -	1 ·	2	0	R	н	(S)
2394	CI—CH ₂ —	2	2	1	-	н	. (S)
	CI—CH₂-					н	(S) P CI -CH-N-C-C-CA CH ₂ OCH ₂ Ph
2396	CICH ₂ -	2	2	1	-	н	(S) P CI -CH-N-C-CI (CH ₂) ₄ NH ₂
2397	CI CH2−	2	2	1	-	Н	H
2398	CICH ₂ -	2	2	1	-	H ₁	(S) CC(CH ₃) ₃

Table 1.219

Compd No.	$ \begin{array}{c c} R^1 \\ \hline R^2 \\ \hline (CH_2)_j \\ \hline \end{array} $	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}(CH_2)_{q}G^-R^6$
2399	CL CH ₂ -CH ₂ -	2	2	1	-	Н	(S) P CI -CH-N-C-CI H ₂ C OCH ₂ Ph
2400	CI CH₂-	2	2	1	-	н	(S) Q CI -CH N-C CI H ₂ C CI
2401	CI	2	2	1	-	Н	(S) OCI -C)+ N-D-CI H ₂ C -CI
2402	CI—CH ₂ —	2	2	1	-	н	(S) P CI CH-N-C CI CH ₂ OH
2403	F—CH ₂ -	2	2	1	-	н	(S) P CI -CH-N-C-CI CH ₂ OH
2404	F CH ₂ -	2	2	1	-	н	(S) CI -CH-N-C-CI CH ₂ OH
2405	F—CH₂-	2	2	1	-	Н	(S) Q CI -CH-N-C CI CH₂OH
2406	FCH₂-	2	2	1	-	Н	(S) −CH N C CI CH2OH
2407	CH ₂ -	2	2	1	-	Н	(S) Q -CH-N-C- CI H CH₂OH
2408	H₃CSO ₂ —{}	2	2	1	-	н	(S) PCI -CH-N-C-CI CH₂OH
2409	H ₃ CO ₂ C{\bigce}-CH ₂ -	2	2	1	-	н	(S) PCI CH+N+C-CH2OH

Table 1.220

Compd.	R ² (CH ₂) _j -	, k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2410	CICH ₂ -	2	2	1		Н	(S) O ^C -CH+N-C CI CH ₂ OH
2411	CI—CH ₂ —	2	2	1	-	н	(S) OCL CI -CH-N-C C
2412	CI—CH ₂ —	.2	2	1	-	. Н	(S) P -CH-N-C-(S) CH ₂ OH
2413	CICH ₂ -	2	2	1	-	Н	(S) P -CH-N-C-N
2414	CICH ₂ -	2	2	1	-	Н	(S) S -CH-N-C-(S) -CH ₂ OH
- 2415	CI—CH ₂ —	2	2 _.	1	. <i>*</i> -	Н	(S) S OC H ₃
2416	CICH ₂ -	2	2	1	-	н	(S) S OCH ₃
2417	CICH ₂ -	2	2	İ	-	н	CH ₃ CH ₃ CH ₃ CH ₃
	CI CI—CH₂−						(S) S - CH ₃ CH ₃
2419	CI CH2−	2	2	1		• н	(S) S CI -CHN-C-N-CI CH3
2420	CI CH₂-	2	2	1	-	н	(S) CH ₃ CH ₃

Table 1.221

Compd.	R^2 (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p \frac{\widehat{m}^4}{R^5} (CH_2)_q G^- R^6$
2421	CH ₂ -	2	2	1	-	н	(S)
2422	CI—CH ₂ —	1	2	0	R	Н	(S) S OCH ₃ -CH-N-C-N-S (CH ₂) ₂ SO ₂ CH ₃
2423	CI————————————————————————————————————	1	2	0	R	н	$(S) \qquad S$ $-CH+N-C-N-C-M$ $+ H \qquad H$ $(CH_2)_2SO_2CH_3$
2424	CI—CH ₂ —	1	2	0	R	н	(S) \$ CH ₃ -CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
2425	CI CI—CH₂-	1	2	0	R	н	(S) S -CH-N-C-N-CH ₃ -CH ₂) ₂ SO ₂ CH ₃
2426	CL CH ₂ -CH ₂ -	1	2	0	R	н	(S) S CI -CHN-C-N-C-N-(CH ₂) ₂ SO ₂ CH ₃
2427	CI↓ CI←CH ₂ −	1	2	0	R	н	(S) S -CH-N-C-N-C-CH H H H (CH ₂) ₂ SO ₂ CH ₃
2428	CI CI—CH₂−	1	2	0	R	н	(S) S - C + N - C - N - F H H H (CH ₂) ₂ SO ₂ CH ₃

本発明においては、環状アミン化合物の酸付加体も用いられる。かかる酸として、例えば塩酸、臭化水素酸、硫酸、リン酸、炭酸などの鉱酸;マレイン酸、クエン酸、リンゴ酸、酒石酸、フマル酸、メタンスルホン酸、トリフルオロ酢酸、蟻酸などの有機酸が挙げられる。

本発明においては、上記式(I)で表される化合物のラセミ体、および可能なすべての光学活性体も用いることができる。

上記式(I)で表される化合物は、国際公開WO9925686号パンフレット に記載されているように、下記に示すいずれかの一般的な製造法を用いることによ り合成可能である。

(製造法1)

20

下記式(II)

25
$$R^{1} \longrightarrow (CH_{2})_{j} - N \longrightarrow (CH_{2})_{m} - NH \longrightarrow R^{2} (CH_{2})_{m} - NH \longrightarrow R^{3}$$
 (II)

[式中、 R^1 、 R^2 、 R^3 、j、k、m、およびnは、上記式(I)におけるそれぞれ の定義と同じである。]

で表される化合物1当量と、下記式(III)

242

$$HO-\ddot{C}-(CH_2)_p \xrightarrow{R^4} (CH_2)_q - G-R^6$$
 (III)

5

10

[式中、 R^4 、 R^5 、 R^6 、G、p、およびqは、上記式 (I) におけるそれぞれの定義と同じである。]

で表されるカルボン酸、またはその反応性誘導体の0.1-10当量を無溶媒下、 または溶媒存在下に反応させることによる製造方法。

上記式(III)で表されるカルボン酸の「反応性誘導体」とは、例えば酸ハロゲン 化物、酸無水物、混合酸無水物などの合成有機化学分野において通常使用される反 応性の高いカルボン酸誘導体を意味する。

かかる反応は、適当量のモレキュラーシーブなどの脱水剤;ジシクロヘキシルカ 15 ルボジイミド(DCC)、N-エチル-N'-(3-ジメチルアミノプロピル)カ ルボジイミド(EDCIまたはWSC)、カルボニルジイミダゾール(CDI)、 N-ヒドロキシサクシンイミド(HOSu)、N-ヒドロキシベンゾトリアゾール (HOBt)、ベンゾトリアゾール-1-イルオキシトリス (ピロリジノール) ホ スホニウム ヘキサフルオロホスフェート (PyBOP), 2-(1H-ベンゾトリアゾール-1-1イル)-1,1,3,3-テトラメチルウロニウム ヘキサフ 20 ルオロホスフェート (HBTU)、2-(1H-ベンゾトリアゾール-1-イル) -1, 1, 3, 3-テトラメチルウロニウム テトラフルオロボレート (TBTU)、2-(5-)ルボルネン-2, 3-ジカルボキシイミド) -1, 1, 3, 3-テトラメチルウロニウム テトラフルオロボレート (TNTU) 、O-(N- サク 25 シニミジル) -1, 1, 3, 3-テトラメチルウロニウム テトラフルオロボレー ト(TSTU)、プロモトリス(ピロリジノ)ホスホニウム ヘキサフルオロホス フェート (PyBroP) などの縮合剤;炭酸カリウム、炭酸カルシウム、炭酸水 素ナトリウムなどの無機塩基、トリエチルアミン、ジイソプロピルエチルアミン、 ピリジンなどのアミン類、(ピペリジノメチル)ポリスチレン、(モルホリノメチ ル) ポリスチレン、(ジメチルアミノメチル)ポリスチレン、ポリ(4 - ビニルピ 30 リジン)などの高分子支持塩基などの塩基を適宜用いることにより、より円滑に進

行させることができる。

(製造法2)

下記式 (IV)

5

$$\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j} -X
\end{array}$$
(IV)

で表されるアルキル化試薬1当量と、下記式(V)

15

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

20 [式中、R³、R⁴、R⁵、R⁶、G、k、m、n、p、およびqは、上記式 (I) に おけるそれぞれの定義と同じである。]

で表される化合物 0.1-10 当量を無溶媒下、または溶媒存在下に反応させることによる製造方法。

かかる反応は、上記製造法 1 と同様の塩基を適宜用いることにより、より円滑に 25 に進行させることができる。さらに、本製造方法において、ヨウ化カリウム、ヨウ 化ナトリウムなどのヨウ化物を共存させることにより、反応を促進できる場合があ る。

上記式(IV)において、Xはハロゲン原子、アルキルスルホニルオキシ基、アリールスルホニルオキシ基を表す。かかるハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子が好ましく挙げられる。アルキルスルホニルオキシ基の好適な具体例としては、メチルスルホニルオキシ基、トリフルオロメチルスルホニルオキシ基

244

などが挙げられる。アリールスルホニルオキシ基の好適な具体例としては、トシル オキシ基を挙げることができる。

(製造法3)

下記式 (VI)

5

$$R^1$$
 \rightarrow (CH₂)_{j-1}-CHO (VI)

10

. 25

[式中、 R^1 および R^2 は、上記式 (I) におけるそれぞれの定義と同じであり、 j は 1 または 2 を表す。]

または、下記式 (VII)

15
$$R^{1}$$
 – CHO (VII)

[式中、 R^1 は、上記式(I)における R^1 の定義と同じであり、jは0を表す場合に相当する。]

で表されるアルデヒド1当量と、上記式 (V) で表される化合物 0. 1-10 当量 20 を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

かかる反応は、一般に還元的アミノ化反応と呼ばれ、還元条件としては、パラジウム、白金、ニッケル、ロジウムなど金属を含む触媒を用いる接触水素添加反応、水素化リチウムアルミニウム、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウムなどの複合水素化物およびボランを用いる水素化反応、または電解還元反応などを用いることができる。

2 4 5

(製造法4)

下記式 (VIII)

[式中、R¹、R²、R³、R⁴、R⁵、R¹、j、k、m、n、p、およびqは、上記 10 式(I)におけるそれぞれの定義と同じである。]

で表される化合物1当量と、下記式(IX)

$$HO-\dot{A}-R^6$$
 (IX)

15 [式中、R⁶は、上記式(I)におけるR⁶の定義と同じであり、Aはカルボニル基またはスルホニル基を表す。]

で表されるカルボン酸またはスルホン酸、またはそれらの反応性誘導体 0. 1-1 0 当量を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

上記式 (IX) で表されるカルボン酸またはスルホン酸の反応性誘導体とは、例え 20 ば酸ハロゲン化物、酸無水物、混合酸無水物などの、合成有機化学分野で一般に使 用される反応性の高いカルボン酸またはスルホン酸誘導体を意味する。

かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いる ことにより、より円滑に進行させることができる。

(製造法5)

25 上記式 (VIII) で表される化合物 1 当量と、下記式 (X)

$$Z = C = N - R^{6} \tag{X}$$

[式中、 R^6 は上記式(I)における R^6 の定義と同じであり、Zは酸素原子または 30 硫黄原子を表す。]

で表されるイソシアネートまたはイソチオシアネート0.1-10当量を、無溶媒

25

30

下または溶媒存在下に反応させることによる製造方法。

(製造法6)

下記式 (XI)

10 [式中、R¹、R²、R³、R⁴、R⁵、j、k、m、n、p、およびqは、上記式(I) におけるそれぞれの定義と同じであり、Aはカルボニル基またはスルホニル基を表す。]

で表される化合物1当量と、下記式 (XII)

$$R^6 - NH_2 \qquad (XII)$$

[式中、 R^6 は、上記式(I)における R^6 の定義と同じである。]

で表されるアミン0.1-10当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

20 かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いることにより、より円滑に進行させることができる。

上記製造法1-6において、各反応に供する基質が、一般に有機合成化学において各反応条件において反応するか、あるいは反応に悪影響を及ぼすことが考えられる置換基を有する場合には、その官能基を既知の適当な保護基で保護して反応に供した後、従来既知の方法を用いて脱保護することにより、目的の化合物を得ることができる。

さらに、本発明で用いられる化合物は、例えばアルキル化反応、アシル化反応、 還元反応などの、一般に有機合成化学において使用される既知の反応を用いて、上 記製造法6により製造される化合物の(単数または複数の)置換基をさらに変換す ることによっても得ることができる。

上記各製造法において、反応溶媒としてはジクロロメタン、クロロホルムなどの

247

ハロゲン化炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、ジエチルエーテル、テトラヒドロフランなどのエーテル類、酢酸エチルなどのエステル類、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどの非プロトン性極性溶媒、メタノール、エタノール、イソプロピルアルコールなどのアルコール類などが反応に応じて適宜用いられる。

いずれの製造方法においても、反応温度は-7.8℃から+1.5.0℃、好ましくは0℃から1.0.0℃の範囲である。反応完了後、通常の単離、精製操作、すなわち濃縮、濾過、抽出、固相抽出、再結晶、クロマトグラフィーなどを行うことにより、目的とする上記式(I)で表される環状アミン化合物を単離することができる。また、それらは通常の方法により、薬学的に許容される酸付加体または C_1-C_6 アルキル付加体に変換することができる。

実施例

5

10

本発明を以下、実施例に基づいて説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。以下の実施例において各化合物に付された化合物番号は、Table1.1-1.221において好適な具体例として挙げた化合物に付された化合物番号(Compd.No.)と対応している。

[参考例1] (R) -1-(4-クロロベンジル) -3-[(N-(3, 4-ジフ ルオロベンゾイル) グリシル) アミノ] ピロリジン(化合物番号69) の合成 本発明の化合物はWO9925686号パンフレット記載の製造法により合成したが、例えば化合物番号69の(R) -1-(4-クロロベンジル) -3-[{N

- (3,4-ジフルオロベンゾイル)グリシル}アミノ]ピロリジンは以下のよう

に合成した。

25

30

1) 3-アミノー1-(4-クロロベンジル)ピロリジン・二塩酸塩

4- D = 4 -

25

30

 $^{1}H-NMR$ (CDC13, 300MHz) δ

1.37 (s, 9 H), 1.5-1.7 (br, 1 H), 2.1-2.4 (m, 2 H), 2.5-2.7 (m, 2 H), 2.83
5 (br, 1 H), 3.57 (s, 2 H), 4.1-4.3 (br, 1 H), 4.9-5.1 (br, 1 H), 7.15-7.35 (br, 4 H); 純度はRPLC/MSで求めた(9 8%); ESI/MS m/e 3 1 1.0 (M++H、C15H24ClN2O2)

 $3-\{(tert-プトキシカルボニル) アミノ\}-1-(4-クロロベンジル) ピロリジン(6.38g、20.5mmol)の<math>CH_3OH(80mL)$ 溶液に1

M HCl-Et₂O (100mL) を加え、25℃で15時間攪拌した。溶媒を減圧下に除去し、固体を得、再結晶 (CH₃OH/CH₃CN=1:2、130mL)で精製することにより、3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩 (4.939g、85%)を白色粉末として得た:

 $^{1}H-NMR$ ($d_{6}-DMSO$, 300MHz) δ

15 3.15 (br, 1 H), 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H), 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H), 8.45 (br, 1 H), 8.60 (br, 1 H); 純度はRPLC/MSで求めた(> 9 9%); ESI/MS m/e 2 1 1.0 (M+H、C₁₁H₁₆ClN₂)

(R) -3-Tミノ-1-(4-Dロロベンジル)ピロリジン・二塩酸塩(4.54g、16.0mmol)、2M NaOH溶液(80mL)、および酢酸エチル(80mL)の混合物を攪拌し、有機層を分離し、水層を酢酸エチル(80mL×2)で抽出した。有機層を合わせて無水硫酸ナトリウムで乾燥、濾過、濃縮することにより遊離の(R) -3-Tミノ-1-(4-Dロロベンジル)ピロリジン(3.35g、99%)を得た。

- (R) -3-アミノー1-(4-クロロベンジル)ピロリジン(3.35g、16mmol)のCH₂Cl₂(80mL)溶液に、Et₃N(2.5mL、17.6mmol)、N-tert-プトキシカルボニルグリシン(2.79g、16.0mmol)、EDCI(3.07g、16.0mmol)およびHOBt(12.16g、16mmol)を加えた。反応混合物を25℃で16時間攪拌した後、2MNaOH溶液(80mL)を加えた。有機層を分離し、水層をジクロロメタンで抽出した(100mL×3)。有機層を合わせて水(100mL×2)と食塩水(100mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO₂、酢酸エチル)により、目的とする(R) -3-{N-(10tert-プトキシカルボニル)グリシル}アミノー1-(4-クロロベンジル)ピロリジン(5.40g、92%)を得た。
 - 3) (R) -1- (4-クロロベンジル) -3- (グリシルアミノ) ピロリジンの 合成
- 15 (4-クロロベンジル) ピロリジン (5.39g、14.7mmol) のメタノー ル (60mL) 溶液に、4M HClジオキサン (38mL) 溶液を加えた。この 溶液を室温で2時間攪拌した。反応混合物を濃縮し、2M NaOH溶液(80m L)を加えた。混合液をジクロロメタン(80mL×3)で抽出し、抽出液を合わ 20 せて無水硫酸ナトリウムで乾燥、濃縮した。カラムクロマトグラフィー(SiO。、 AcOEt/EtOH/Et₃N=90/5/5) により、(R) -3-(719)アミノ)-1-(4-クロロベンジル)ピロリジン(3.374g、86%)を得 $t: ^{1}H-NMR (CDC1_3, 270MHz) δ$ 1.77 (dd, J = 1.3および6.9 Hz, 1 H), 2.20-3.39 (m, 2 H), 2.53 (dd, J = 3.3 25 および9.6 Hz, 1 H), 2.62 (dd, J = 6.6および9.6 Hz, 1 H), 2.78-2.87 (m, 1 H) , 3. 31 (s, 2 H), 3. 57 (s, 2 H), 4. 38-4. 53 (br, 1 H), 7. 18-7. 32 (m, 4 H), 7. 3 9 (br. s. 1 H)
- 4) (R) -1-(4-クロロベンジル) -3-[{N-(3, 4-ジフルオロベ 30 ンゾイル) グリシル} アミノ] ピロリジン(化合物番号69)
 - 3, 4-ジフルオロベンゾイルクロリド(0.060mmol)のクロロホルム

[実施例1] <u>エオタキシンにより惹起されるCCR3発現細胞の細胞内カルシウム</u> 濃度上昇に対する被験化合物の阻害能の測定

15 CCR3レセプターを安定して発現するK562細胞を用いて、細胞内カルシウム濃度上昇に対する本発明による化合物の阻害能を次の方法にて測定した。

CCR3発現K562細胞を $10\,\text{mM}$ HEPES含有HBSS溶液に懸濁した ものに $1\,\text{mM}$ Fura $2\,\text{アセトキシメチルエステル}$ (同仁化学社製)を加え、 $3\,\text{7}$ ℃にて $3\,0\,\text{分間インキュベートした}$ 。これを $3\,4\,0\,\text{nm}$ と $3\,8\,0\,\text{nm}$ で励起し、

20 340/380比をモニターすることにより、細胞内カルシウム濃度を測定した。 アゴニストとしてヒトエオタキシン(0.5 μ g/ml)を用い、被験化合物の阻 害能はエオタキシンで刺激する5分前にCCR3発現K562細胞を被験化合物で 処理したときの細胞内カルシウム濃度を測定し、下記の式により抑制率(%)を算出した。

25

30

5

10

抑制率 (%) = $\{1 - (A - B) / (C - B)\} \times 100$

(A:被験化合物で処理した後エオタキシンで刺激したときの細胞内カルシウム濃度、B:無刺激のときの細胞内カルシウム濃度、C:被験化合物で処理せずにエオタキシンで刺激したときの細胞内カルシウム濃度)

本発明で用いる環状アミン誘導体の阻害能を測定したところ、例えば、下記の化

WO 01/10439 PCT/JP00/05260

251

合物は、 $10 \mu M$ の濃度おいて、それぞれ20-50%、50%-80%、および、>80%の阻害能を示した。

 $10 \mu M$ の濃度において 20 % - 50 %の阻害能を示した化合物:

化合物番号11、156、234、330、392、424、481、523、5 25, 533, 558, 567, 582, 602, 613, 630, 646, 64 5 9, 701, 738, 741, 754, 767, 814, 816, 833, 839 . 873, 902, 909, 945, 1002, 1159, 1170, 1258, 1315, 1352, 1357, 1407, 1417, 1448, 1472, 15 04, 1508, 1531, 1558, 1562, 1569, 1661, 1670 10 . 1686, 1719, 1751, 1756, 1769, 1775, 1783, 1 797, 1802, 1803, 1815, 1834, 1841, 1846, 188 3, 1887, 1889, 1892, 1913, 1924, 1928, 1960, 2006, 2013, 2035, 2052, 2083, 2113, 2127, 21 36, 2189, 2320, 2321, 2323, 2327, 2330, 2334 . 2336, 2338, 2345, 2394, 2394, 2398, 2398, 2 15 400, 2400, 2406, 2406, 2407, 2407, 2409, 240 $9\,,\;2\,4\,2\,0\,,\;2\,4\,2\,0\,,\;2\,4\,2\,1\,,\;2\,4\,2\,1$

 $10 \mu M$ の濃度において 50 % - 80 %の阻害能を示した化合物:

化合物番号 8 3 、 1 1 5 、 1 4 6 、 1 5 0 、 2 1 6 、 2 9 4 、 2 9 7 、 3 2 2 、 4 20 05, 440, 459, 461, 466, 482, 484, 487, 490, 49 2, 503, 526, 528, 550, 562, 570, 578, 620, 623 . 659, 685, 687, 703, 716, 730, 733, 755, 770, 850, 856, 867, 876, 998, 1015, 1024, 1223, 12 59, 1267, 1295, 1377, 1402, 1412, 1420, 1485 25 , 1519, 1550, 1560, 1595, 1601, 1650, 1701, 1 725, 1754, 1836, 1856, 1870, 1912, 1923, 192 9, 2095, 2120, 2138, 2179, 2258, 2260, 2261, 2267, 2268, 2270, 2275, 2276, 2278, 2287, 22 90, 2291, 2294, 2297, 2300, 2301, 2302, 2307 30 . 2309, 2313, 2317, 2322, 2324, 2326, 2328, 2 329, 2333, 2335, 2343, 2344, 2346, 2347, 234

329, 2333, 2335, 2343, 2344, 2346, 2347, 234 8, 2350, 2351, 2353, 2358, 2360, 2361, 2364, 2365, 2368, 2369, 2377, 2379, 2381, 2402, 24 03, 2404, 2405, 2408, 2410, 2411, 2416, 2417, 2418

10μMの濃度において>80%の阻害能を示した化合物:

5

化合物番号7、32、68、169、173、203、209、215、520、544、547、851、852、855、874、910、1003、1012、1032、1038、1042、1043、1046、1114、1190、1

244、1247、1384、1441、1513、1527、1545、1582、1673、1687、1689、1705、1850、1869、1871、1876、1877、1899、2027、2289、2293、2296、2298、2315、2318、2319、2325、2332、2349、2352、2354、2355、2356、2357、2359、2362、2363、2356、2376、2378、2371、2372、2373、2374、2375、2376、2378、2382、2383、2390、2393、2396、2412、2413、2414、2415、2422、2423、2424、2425、2426、2427、2428

- [実施例2] <u>CCR3発現細胞膜画分へのエオタキシンの結合に対する阻害能の測定</u> ヒトCCR3発現K562細胞より調製した細胞膜画分を0.5mg/mLになるようにアッセイバッファー(25mM HEPES、pH7.6、1mM Ca Cl₂、5mM MgCl₂、0.5%BSA) に懸濁し膜画分懸濁液とした。被験化合物をアッセイバッファーで希釈した溶液を被験化合物溶液とした。[125 I] 標準 11 によるようにアッセイバッファーで希釈した溶液を被験化合物溶液とした。[125 I] 標準 12 によるようにアッセイバッファーで希釈した溶液を標識リガンド溶液とした。0.5%BSAで被覆した96ウェルマイクロプレートに、1ウェルあたり被験化合物溶液25μL、標識リガンド溶液25μL、膜面分懸濁液50μLの順番に分注し撹拌後(反応溶液100μL)、25℃で90分インキュベートした。
- 30 反応終了後、あらかじめ0.5%ポリエチレンイミン溶液にフィルターを浸漬した96ウェルフィルタープレート(ミリポア社製)で反応液をフィルター濾過し、フィ

253

PCT/JP00/05260

ルターを冷洗浄バッファー(アッセイバッファー+0.5M NaCl) 150μL で4回洗浄した(冷洗浄バッファー150μLを加えた後、濾過)。フィルターを風乾後、液体シンチレーターを1ウェルあたり25μLずつ加え、フィルター上の膜画分が保持する放射能をトップカウント(パッカード社製)にて測定した。

5 被験化合物の代わりに非標識ヒトエオタキシン100ngを添加したときのカウントを非特異的吸着として差し引き、被験化合物を何も添加しないときのカウントを100%として、ヒトエオタキシンのCCR3膜画分への結合に対する被験化合物の阻害能を算出した。

10 阻害率 (%) = $\{1-(A-B) / (C-B)\} \times 100$

(A:被験化合物添加時のカウント、B:非標識ヒトエオタキシン100ng添加時のカウント、C: [125 I] 標識ヒトエオタキシンのみ添加したときのカウント) 本発明で用いる環状アミン誘導体の阻害能を測定したところ、本実施例における代表的な化合物の阻害能は、実施例1で認められた阻害能とほぼ同等であった。

.産業上の利用可能性

15

20

25

本発明の環状アミン化合物、その薬学的に許容される酸付加体、またはその薬学的に許容されるC₁-C₆アルキル付加体を有効成分とする薬剤、もしくはCCR3が関与する疾患の治療薬もしくは予防薬は、CCR3拮抗剤として、エオタキシンなどのCCR3のリガンドの標的細胞に対する作用を抑制する作用を有する。したがって、これらは気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮膚炎、およびアレルギー性結膜炎などのアレルギー性疾患、ならびに潰瘍性大腸炎およびクローン病などの炎症性腸疾患など、好酸球、好塩基球、活性化T細胞などの組織への浸潤が病気の進行、維持に主要な役割を演じている疾患に対する治療薬および/または予防薬として有用である。また、CCR3拮抗作用に基づくHIV-1の感染を阻害する作用により、エイズの治療薬および/または治療薬としても有用である。

請求の範囲

1. 下記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3拮抗 作用を有する薬剤。

$$\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j} - N \\
 \downarrow (CH_{2})_{m} \\
 \longrightarrow (CH_{2})_{n} - N - C - (CH_{2})_{p} - H^{4} \\
 \downarrow (CH_{2})_{q} - G - R^{6}
\end{array}$$
(1)

[式中、 R^1 はフェニル基、 $C_3 - C_8$ シクロアルキル基、またはヘテロ原子として酸 素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を 表し、上記R¹におけるフェニル基または芳香族複素環基は、ベンゼン環、またはへ 15 テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する 芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R1におけるフ ェニル基、C₃-C₈シクロアルキル基、芳香族複素環基、または縮合環は、任意個 のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモ イル基、C₁-C₆アルキル基、C₃-C₈シクロアルキル基、C₂-C₆アルケニル基 20 、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_3 - C_5$ アルキレン基、 C_2 $-C_4$ アルキレンオキシ基、 C_1-C_3 アルキレンジオキシ基、フェニル基、フェノキ シ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、C。 -C₁アルカノイル基、C₂-C₁アルコキカルボニル基、C₂-C₁アルカノイルオ キシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_2 - C_7$ N-アルキルカルバモイル基、 25 $C_4 - C_9 N$ -シクロアルキルカルバモイル基、 $C_1 - C_6$ アルキルスルホニル基、C3-C₈(アルコキシカルボニル)メチル基、N-フェニルカルバモイル基、ピペリ ジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカルボニル基、式 :-NH(C=O)O-で表される2価基、式:-NH(C=S)O-で表される 2価基、アミノ基、モノ($C_1 - C_6$ アルキル)アミノ基、もしくはジ($C_1 - C_6$ ア 30 ルキル)アミノ基で置換されていてもよく、これらのフェニル基、C3-C8シクロ

アルキル基、芳香族複素環基、または総合環の置換基は、さらに任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 $C_1 - C_6$ アルキル基、もしくは $C_1 - C_6$ アルコキシ基によって置換されていてもよい。

 R^2 は、水素原子、 C_1-C_6 アルキル基、 C_2-C_7 アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、 R^2 における C_1-C_6 アルキル基またはフェニル基は、任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい。ただし、j=0 のときは R^2 はヒドロキシ基ではない。

jは0-2の整数を表す。

10 kは0-2の整数を表す。

mは2-4の整数を表す。

nは0または1を表す。

素を形成していてもよい。

 R^3 は、水素原子、または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい 1 または 2 個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

R⁴およびR⁵は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、 またはC₁-C₆アルキル基を表し、R⁴およびR⁵におけるC₁-C₆アルキル基は、 任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カ 20 ルバモイル基、メルカプト基、グアニジノ基、C₃-C₈シクロアルキル基、C₁-C $_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基 、C1-C6アルキル基、C1-C6アルコキシ基、もしくはベンジルオキシ基によっ て置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジ ルオキシカルポニル基、CューCュアルカノイル基、CューCュアルコキシカルポニル 基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 N -アルキルカルバモイル基、C₁-C₆アルキルスルホニル基、アミノ基、モノ(C₁ -C₆アルキル)アミノ基、ジ(C₁-C₆アルキル)アミノ基、もしくは(ヘテロ原 子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族 複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換され ていてもよく、あるいは、R⁴およびR⁵は、いっしょになって3-6員環状炭化水 30

WO 01/10439 PCT/JP00/05260

pは0または1を表す。

qは0または1を表す。

Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-N$ R^7- 、-NH-CO-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は、水素原子または C_1-C_6 アルキル基を表すか、あるいは、 R^7 は R^5 といっしょになって C_2-C_5 アルキレン基を形成していてもよい。

 R^6 は、フェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_6$ シクロアルケニル基 、ベンジル基、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒 10 素原子を1-3個有する芳香族複素環基を表し、上記R⁶におけるフェニル基、ベン ジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子 、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合し て縮合環を形成していてもよく、さらに上記R⁶におけるフェニル基、C₃-C₃シク ロアルキル基、C₃-C₆シクロアルケニル基、ベンジル基、芳香族複素環基、また は縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニ 15 トロ基、チオシアナト基、カルボキシル基、カルバモイル基、トリフルオロメチル 基、C1-C6アルキル基、C3-C8シクロアルキル基、C2-C6アルケニル基、C $_1$ -C₆アルコキシ基、C₃-C₈シクロアルキルオキシ基、C₁-C₆アルキルチオ基 、C₁-C₃アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基 、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、 20 3-フェニルウレイド基、C2-C7アルカノイル基、C2-C7アルコキシカルボニ ル基、C2-C7アルカノイルオキシ基、C2-C7アルカノイルアミノ基、C2-C7 N-アルキルカルバモイル基、C₁-C₆アルキルスルホニル基、フェニルカルバモ イル基、N, N-ジ (C_1-C_6 アルキル) スルファモイル基、アミノ基、モノ (C_1 25 $-C_6$ アルキル)アミノ基、ジ(C_1 - C_6 アルキル)アミノ基、ベンジルアミノ基、 $C_2 - C_7$ (アルコキシカルボニル) アミノ基、 $C_1 - C_6$ (アルキルスルホニル) ア ミノ基、もしくは、ビス($C_1 - C_6$ アルキルスルホニル)アミノ基により置換され ていてもよく、これらのフェニル基、C3-C8シクロアルキル基、C3-C8シクロ アルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、さらに任 30 意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基 、 $C_1 - C_6$ アルキル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、モノ(

 $C_1 - C_6$ アルキル)アミノ基、もしくはジ($C_1 - C_6$ アルキル)アミノ基によって 置換されていてもよい。]

- 2. 上記式(I) においてk=1かつm=2である、請求項1記載のCCR3拮5. 抗作用を有する薬剤。
 - 3. 上記式(I) においてk=0かつm=3である、請求項1記載のCCR3拮抗作用を有する薬剤。
- 4. 上記式(I) においてk=1かつm=3である、請求項1記載のCCR3拮 抗作用を有する薬剤。
 - 5. 上記式(I)においてk=2かつm=2である、請求項1記載のCCR3拮抗作用を有する薬剤。

15

- 6. 上記式 (I) において k=1 かつm=4 である、請求項1 記載のC C R 3 拮 抗作用を有する薬剤。
- 7. 上記式 (I) で表される化合物、その薬学的に許容される酸付加体、または 20 その薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする、CCR3が関与する疾患の治療薬もしくは予防薬。

٠.٠

- 8. 疾患がアレルギー性疾患である請求項7記載の治療薬もしくは予防薬。
- 25 9. 疾患が気管支喘息、アレルギー性鼻炎、アトピー性皮膚炎、蕁麻疹、接触皮 膚炎、またはアレルギー性結膜炎である請求項8記載の治療薬もしくは予防薬。
 - 10. 疾患が炎症性腸疾患である請求項7記載の治療薬もしくは予防薬。
- 30 11. 疾患がエイズである請求項7記載の治療薬もしくは予防薬。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/05260

		ļ	PCT/J	P00/05260
1nt 1701 C071	SIFICATION OF SUBJECT MATTER .C1	19, 53, A61P37/08,	29/00, 31/10	A 44/AA 44/AA
B. FIELT	OS SEARCHED	national classification and	irc	
Minimum (Int. 4709 C070 413/	documentation searched (classification system follows	525, 4535, 454, 42; 9, 53, A61P37/08, 12, 14, 403/06, 1;	2, 404, 4155, 29/00, 31/18 2, 405/06, 12	3, 11/08, 43/00 2, 14, 409/12, 1
Electronic o	data base consulted during the international search (na ISTRY (STN), CA (STN), CAOLD (STN), C	ime of data base and, when APLUS (STN)	re practicable, sear	rch terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where	appropriate, of the relevan	it passages	Relevant to claim No
X A	WO, 99/25686, A1 (TEIJIN LIMIT 27 May, 1999 (27.05.99) & EP, 1030840, A1 & AU, 991 & NO, 2000002486, A	red),		1-10 11
X A	EP, 217286, A1 (OKAMOTO SHOSUK 08 April, 1987 (08.04.87), Compound No.42 & JP, 63-022061, A & US, 4895 & AU, 8663051, A & CA, 1297	5842. A		1,5,7-10 2-4,6,11
X A	WO, 98/50534, A1 (SMITHKLINE B 12 November, 1998 (12.11.98) & EP, 991753, A1 & AU, 9872 & BR, 9808502, A & ZA, 9803	2885. A	TION),	1,2,5 3,4,6-11
X A	GB, 2106108, A (JOHN WYETH AND 07 April, 1983 (07.04.83) & US, 4443461, A	BROTHER LIMITE	SD),	1,5 2-4,6-11
X A	WO, 97/40051, A1 (TAKEDA CHEMI 30 October, 1997 (30.10.97)	CAL INDUSTRIES,	LTD.),	1,5 2-4,6-11
Further	documents are listed in the continuation of Box C.	See patent family	annex.	·
A" documer consider earlier d date documer cited to special r documer means documer than the	Special categories of cited documents: 'document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date of comment which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date and not in conflict with the application but cited understand the principle or theory underlying the invention document of particular relevance; the claimed invention cann considered novel or cannot be considered to involve an invention cannomized to particular relevance; the claimed invention cannomized to involve an invention cannomized to particular relevance; the claimed invention cannomized to priority date and not in conflict with the application but cited understand the principle or theory underlying the invention cannomized to priority date and not in conflict with the application but cited understand the principle or theory underlying the invention cannomized to priority date and not in conflict with the application but cited understand the principle or theory underlying the invention cannomized to priority date and not in conflict with the application but cited understand the principle or theory underlying the invention cannomized to priority date and not in conflict with the application but cited understand the principle or theory underlying the invention cannomized to occurrent to particular relevance; the claimed invention cannomized to occurrent is taken alone to priority date and not in			application but cited to lying the invention imed invention cannot be d to involve an inventive imed invention cannot be when the document is culled in the art
ate of the ac	etual completion of the international search etober, 2000 (31.10.00)	Date of mailing of the international search report 07 November, 2000 (07.11.00)		
	iling address of the ISA/	Authorized affice		
ame and ma Japan	nese Patent Office	Authorized officer		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/05260

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	& JP, 10-226669, A & EP, 915888, A1 & CA, 2251625, A & AU, 9724048, A & ZA, 9703493, A & CN, 1223659, A	
X A	KHALID, M. et al., "N,N'-disubstituted L-isoglutamines as novel cancer chemotherapeutic agents", Drugs Exp. Clin. Res. (1987), Vol.13, Suppl. 1, p.57-60	1,5 2-4,6-11
PX PA	WO, 00/31032, A1 (F.HOFFMANN-LA ROCHE AG), 02 June, 2000 (02.06.00) & DE, 19955794, A & GB, 2343893, A & FR, 2786185, A	1,2,7-11 3-6
	·	

国際出願番号 PCT/JP00/05260

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl ⁷ A61K31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 404, 4155, 4245, 5377, 4545, 4709, 4184, 427, 506, 433, 423, 4192, 429, 53/A61P37/08, 29/00, 31/18, 11/08, 43/00 //, CU/D2U7/14, 211/56, 58, 26, 401/04, 06, 12, 14, 403/06, 12, 405/06, 12, 14, 409/12, 14, 413/06, 14, 417/06, 487/04, 495/06, 04, 513/04						
B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl ⁷ A61K31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 404, 4155, 4245, 5377, 4545, 4709, 4184, 427, 506, 433, 423, 4192. 429, 53, A61P37/08, 29/00, 31/18, 11/08, 43/00 // C07D207/14, 211/56, 58, 26, 401/04, 06, 12, 14, 403/06, 12, 405/06, 12, 14, 409/12, 14, 413/06, 14, 417/06, 487/04, 495/06, 04, 513/04						
	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	:				
国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) REGISTRY (STN), CA (STN), CAOLD (STN), CAPLUS (STN)						
C. 関連する	ると認められる文献	·	<u> </u>			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	きは、その関連する箇所の表示	関連する 請求の範囲の番号			
X A	WO, 99/25686, A1 (TEIJIN LIMITED) 2 &EP, 1030840, A1 &AU, 9913741, A &NO		1-10 11			
X A	EP, 217286, A1 (OKAMOTO SHOSUKE) 8.4月.1987(08.04.87) 化合物No.42参照 &JP, 63-022061, A &US, 4895842, A &AU, 8663051, A &CA, 1297633, A		1, 5, 7-10 2-4, 6, 11			
X A	WO, 98/50534, A1 (SMITHKLINE BEECHAM CORPORATION) 12.11月.1998(12.11.98) &EP, 991753, A1 &AU, 9872885, A &BR, 9808502, A &ZA, 9803843, A		1, 2, 5 3, 4, 6–11			
▼ C欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。						
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願		の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの 「&」同一パテントファミリー文献				
国際調査を完善	了した日 31.10.00	国際調査報告の発送日 07.11	.00			
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区段が関三丁目4番3号		特許庁審査官(権限のある職員) 榎本 佳予子 (月 電話番号 03-3581-1101	内線 3492			

国際調查報告

国際出願番号 PCT/JP00/05260

C(続き).	関連すると認められる文献	
引用文献の	·	関連する
カテゴリー* X A	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 GB, 2106108, A (JOHN WYETH AND BROTHER LIMITED) 7.4月.1983(07.04.83) &US, 4443461, A	請求の範囲の番号 1,5 2-4,6-11 ·
X A	WO, 97/40051, A1 (TAKEDA CHEMICAL INDUSTRIES, LTD.) 30. 10月. 1997 (30. 10. 97) & JP, 10-226689, A & EP, 915888, A1 & CA, 2251625, A & AU, 9724048, A & ZA, 9703493, A & CN, 1223659, A	1, 5 2-4, 6-11
X A	KHALID, M. et al., "N, N'-disubstituted L-isoglutamines as novel cancer chemotherapeutic agents", Drugs Exp. Clin. Res. (1987), Vol. 13, Suppl. 1, p. 57-60	1, 5 . 2-4, 6-11
PX [·] PA	WO, 00/31032, A1 (F. HOFFMANN-LA ROCHE AG) 2.6月.2000(02.06.00) &DE, 19955794, A &GB, 2343893, A &FR, 2786185, A	1, 2, 7-11 3-6

