2. Sorozattal reprezentált típusok

Olyan típusok definiálása, majd osztály diagrammal történő leírása, ahol a reprezentációhoz elemek sorozatára van szükségünk.

1. Diagonális mátrix

Valósítsuk meg a diagonális mátrix típust (az ilyen mátrixoknak csak a főátlójukban lehetnek nullától eltérő elemek)! Ilyenkor elegendő csak a főátlóbeli elemeket tárolni egy sorozatban. Implementáljuk a mátrix i-edik sorának j-edik elemét lekérdező, illetve megváltoztató műveleteket, valamint két mátrix összegét és szorzatát kiszámoló műveleteket!

Típusdefiníció:

Diag(ℝ)	e := a[i,j]	(a:Diag($\mathbb R$), i,j:[1a.n], e: $\mathbb R$)		
	a[i,j] := e	(a:Diag($\mathbb R$), i,j:[1a.n], e: $\mathbb R$) // i=j		
// ha a:Diag(ℝ) mátrix mérete: dim(a)×dim(a) akkor dim(a)≥1	c := a + b	(a, b, c : $Diag(\mathbb{R})$)	// dim(a)=dim(b)=dim(c)	
	c := a · b	(a, b, c : $Diag(\mathbb{R})$)	// dim(a)=dim(b)=dim(c)	
$x{:}\mathbb{R}^*$	if i=j then e := a.x[i] else e := 0.0 endif			
	if i=j then a.x[i] := e else error endif			
// x ≥ 1	if a.x = b.x = c.x then			
	$\forall i \in [1 a.x]: c.x[i]:=a.x[i] + b.x[i]$			
	if $ a.x = b.x = c.x $ then			
	[1.kvíz]			

Osztály diagram:

A kódolásnál több konstruktort is be lehet vezetni, amelyekben a típusinvariánsról mindig gondoskodni kell.

2. Alsóháromszög mátrix

Valósítsuk meg az alsó háromszög mátrix típust (a mátrixok a főátlójuk felett csak nullát tartalmaznak)! Ilyenkor elegendő csak a főátló és az alatti elemeket reprezentálni egy sorozatban. Implementáljuk a mátrix *i*-edik sorának *j*-edik elemét *lekérdező, illetve megváltoztató* műveletet, valamint két mátrix összegét és szorzatát!

7×7-es alsóháromszög mátrix (a biztosan nulla elemeket nem jelöljük):

34						
-3	42					
6	3	8				
9	11	0	4			
5	23	-5	7	15		
53	22	72	36	0	34	
84	60	-7	0	57	48	89

A mátrix alsóháromszög részének elemeit (a biztosan nulla elemek nélkül) sorfolytonosan helyezzük el egy egydimenziós tömbben:

1.	34	(1,1
2.	-3	(2,1
3.	42	(2,2
4.	6	(3,1
5.	3	(3,2
27	48	(7,6
28	89	(7,7

Kell egy index függvény, amely egy mátrixbeli elem indexeihez hozzárendeli az elem tárolási helyének indexét az egydimenziós tömbben.

$$ind(i,j) = j + \sum_{k=1}^{i-1} k = j + \frac{i \cdot (i-1)}{2}, \text{ ha } 1 \le j \le i \le n$$
 [2.kvíz]

Típusdefiníció:

AHM(ℝ)	e:=a[i,j] (a:AHM(\mathbb{R}), i,j:[1n], e: \mathbb{R})			
	a[i,j] := e			
// ha a:AHM(\mathbb{R}) mátrix mérete: dim(a)×dim(a)	$c := a + b$ (a, b, c : AHM(\mathbb{R})) // dim(a)=dim(b)=dim(c)			
akkor dim(a)≥1	c := a · b (a, b, c : AHM(\mathbb{R})) // dim(a)=dim(b)=dim(c)			
$x{:}\mathbb{R}^*$	if i≥j then e := a.x[ind(i,j)] else e := 0.0			
n:N	if i≥j then a.x[ind(i,j)] := e else error			
// x =n·(n+1)/2 // n≥1	if a.n = b.n = c.n then			
	$\forall i \in [1 c.x]: c.x[i] := a.x[i] + b.x[i]$			
	if a.n = b.n = c.n then			
	∀i,j∈[1c.n]: [3.kvíz]			
	if $i \ge j$ then c.x[ind(i,j)]:= $\sum_{k=j}^{i} a.x[ind(i,k)] \cdot b.x[ind(k,j)]$			

Osztály diagram:

```
if i∉[1..n] or j ∉[1..n] then error endif
                                             if i≥j then return x[Ind(i,j)]
               AHM
                                                  else return 0.0
- x : real[]
                                            endif
- n : int
                                            if i∉[1..n] or j ∉[1..n] then error endif
+ AHM(n:int)
                                            if i \ge j then x[Ind(i,j)] := e endif
+ Get(i:int, j:int) : real { query } o
                                            if a.n≠b.n then error endif
+ Set(i:int, j:int, e:real)
                                             c = new AHM(a.n)
+ Add(a:AHM, b:AHM) : AHM o-
                                             for i=1..|c.x| loop c.x[i]:=a.x[i] + b.x[i] endloop
+ Mul(a:AHM, b:AHM) : AHM o
                                             return c
- Ind(i:int, j:int) : int {query} •
                                            if a.n≠b.n then error endif
                                            c = new AHM(a.n)
                                            for i=1.. c.n loop
                 return j + i · (i-1)/2
                                               for j=1.. i loop
                                                 c.x[Ind(i,j)] := 0.0
                                                 \textbf{for } k = j \dots i \ \textbf{loop } c.x[Ind(i,j)] := c.x[Ind(i,j)] + a.x[Ind(i,k)] \cdot b.x[Ind(k,j)] \ \textbf{endloop}
                                               endloop
                                             endloop
                                             return c
```

3. Zsák típus

Valósítsuk meg egy adott halmaz (E) elemeit tartalmazó zsák típusát úgy, hogy nincs felső korlát a zsákba bekerülő elemek számára. A szokásos (üres-e, betesz, kivesz, hányszor van benn egy szám) műveletek mellett szükségünk lesz a leggyakoribb elemet lekérdező műveletre is.

Érdemes külön figyelmet fordítani arra, amikor az E elemei sorba rendezhetők (például E a természetes számok halmaza).

Elem szerinti keresés [átkerülhet a következő gyakorlat elejére]

```
\label{eq:seq:pair*,e:E,I:L,ind:N} \begin{split} &\text{Ef} = (\text{seq} = \text{seq}_0 \ \land \ e = e_0 \ \land \ \forall i \in [1 \ .. \ | \text{seq} | -1] : \text{seq}[i].\text{data} < \text{seq}[i+1].\text{data} \,) \\ &\text{Uf} = (\text{Ef} \ \land \ | = \ \exists i \in [1 \ .. \ | \text{seq} |] : \text{seq}[i].\text{data} = e \ \land \\ & \quad ( \ \ | \ \rightarrow \ | \text{ind} \in [1 \ .. \ | \text{seq} |] \ \land \ \text{seq}[ind].\text{data} = e \,) \ \land \\ & \quad ( \ \neg | \ \rightarrow \ \forall i \in [1.. \text{ind} - 1] : \text{seq}[i].\text{data} < e \ \land \ \forall i \in [\text{ind} .. \ | \text{seq} |] : \text{seq}[i].\text{data} > e \,) \, \,) \end{split}
```

I, ind := logSearch (seq, e)

Osztály:

```
l, ind := LogSearch(e)
              if I then return seq[ind].count
              else return 0
              endif
                                         if |seq|>0 then return seq[maxind].data endif
                 Bag
- seq : Element[]
                                         I, ind := LogSearch(e)
                    return |seq|=0
                                         if | then
- maxind : int
                                           ++seq[ind].count
+ SetEmpty() o seq := <>
                                           if seq[ind].count > seq[maxind].count then maxind := ind endif
+ Empty() : bool {query}
+ Multipl(e : E) : int {query}
                                            seq := seq[1..ind-1] \oplus <(e,1)> \oplus seq[ind+1..|seq|]
+ Max(): E {query}
                                     oʻ
                                           if |seq|=1 then maxind := 1
+ Insert(e: E)
                                            elsif maxind>ind then ++maxind
+ Remove(e: E)
                                            elseif skip
- LogSearch(e:E) : (bool,int) {query} o
                                            endif | I, ind := LogSearch(e)
                                         endif
                                                  if | then
                                                     if seq[ind].count > 1 then
I, ah, fh := false, 1, |seq|
                                                       - - seq[ind].count
while not I and ah \le fh loop
                                                     elsif seq[ind].count = 1 then
  ind := |(ah + fh)/2|
                                                       seq := seq[1..ind-1] \oplus seq[ind+1..|seq|]
       seq[ind].data > e then fh := ind-1
  if |seq|>0 then max, maxind := MAX_{i=1..|seq|} (seq[i].count) endif
  elsif seq[ind].data < e then ah := ind+1
                                                   endif
endloop
if not I then ind := ah endif
return (I, ind)
```