

Berechnung von Molekül-Grundzustandsenergien mit Ab-Initio-Methoden

Fachbereich Informatik Bachelorarbeit Deniz Güven

> Betreuer: 6. Juli 2021

Inhaltsverzeichnis

1	Einleitung		2
	1.1	Chemischer Hintergrund	2
	1.2	Ziel dieser Bachelor-Arbeit	2
		Relevanz für die Chemie	
2	Theorie und Methoden		
	2.1	Allgemeine Theorie	3
	2.2	Hartree-Fock	
	2.3	DFT	3
3	Ergebnisse/ Numerische Experimente		4
	3.1	Erklärung der Experimente	4
	3.2	Experimente(HF, DFT, FULL-CI(exakt) über NWCHEM oder	
		Literatur)	4
	3.3	Vergleich der Methoden/Deutung der Ergebnisse (HF vs. DFT)	4
4	Diskussion/Ausblick		5
	4.1	Einordnung von HF und DFT in der Chemie	5
	4.2	Wie könnte man von diesem Punkt aus weitermachen?	5

Einleitung

1.1 Chemischer Hintergrund

Atome sind cool[1], weil man die essen kann.

(Grundlegende Dinge über Chemie) Entwicklung der Atom-Modelle bis zur quantenmechanischen Formulierungen

1.2 Ziel dieser Bachelor-Arbeit

1.3 Relevanz für die Chemie

(Reaktionsabläufe besser verstehen ...)

Theorie und Methoden

2.1 Allgemeine Theorie

(die für beide Methoden gilt): - Schrödinger-Gleichung(Zeitunabhängige) - Beschreibung/Lösung durch Eigenfunktionen/Eigenwerte - Verwendete Approximationen/Annahmen (Born-Oppenheimer-Näherung, ...)

2.2 Hartree-Fock

- Herleitung (Variations-Prinzip: Minimierung der Energie, Schrödingergleichung u Operatoren) - Lösungsweg über das SCF-Verfahren (Matrix-Darstellung, ...) - Verwendung von Basisfunktionen (Konstruktion der Wellenfunktion) - Implementierung (größten Probleme: Integral-Evaluierung und Matrix-Diagonalisierung)

2.3 DFT

- Herleitung (Nur die Idee/Ergebnisse, da wahrscheinlich über meinem Niveau) - Konkrete Umsetzung durch die Kohn-Sham-Gleichung (Terme in der Schrödinger-Glg. + XC-Funktionale) - Lösung durch FEM + PINVIT (+ LDA) - Implemtierung über UG4 LUA

Ergebnisse/ Numerische Experimente

3.1 Erklärung der Experimente

- Eigen-Energien als Benchmark + Moleküle zum Testen (Simple wie H2O, CH4, ... und Komplexe wie z.b. Benzol, das eine Elektronen-Delokalisation aufweist)

3.2 Experimente(HF, DFT, FULL-CI(exakt) über NWCHEM oder Literatur)

- Präsentation der Ergebnisse(Graphen, Tabellen, usw.) - Werden Effekte bei komplexen Molekülen korrekt erfasst?

3.3 Vergleich der Methoden/Deutung der Ergebnisse (HF vs. DFT)

- Genauigkeit, Kosten, Skalierbarkeit, \dots

Diskussion/Ausblick

4.1 Einordnung von HF und DFT in der Chemie

-> Andere Klassen von Methoden (zb. semiempirische Methoden) -> Verbesserung dieser Methoden (Post-Hartree-Fock-Methoden) -> Eingliederung dieser Methoden in der Praxis (Was kann man mit diesen Eigenenergien/Funktionen eigentlich machen?).

4.2 Wie könnte man von diesem Punkt aus weitermachen?

-> Code-Optimierung, Anspruchsvoller Methoden implementieren (aufbauend auf HF), Geometrie-Optimierung, ...

Literaturverzeichnis

[1] T. Helgaker, P. Jørgensen, and J. Olsen. Molecular Electronic-Structure Theory. Wiley, 2013.