Quantum Information Theory - 67749 Exercise 2, May 20, 2025

1 Submission Guidelines.

- Due date May 31, 2025.
- Make sure your submission is clear. Unreadable assignments will get zero score.
- Using any Generative AI tool is forbidden but not enforced. Yet, please keep in mind that we might call you for an interview about your assignment.

2 AEP.

Recall the converse part of the classical AEP lemma¹:

Lemma 2.1. Let P_X be a pmf on \mathcal{X} and let $\mathcal{B}^{(n)}$ be a set in \mathcal{X}^n of size at most $2^{n\alpha}$. Then for any $\varepsilon > 0$ and n large enough.

$$\Pr\left[X^n \in \mathcal{B}^{(n)}\right] = P_X^{\otimes n}\left(\mathcal{B}^{(n)}\right) \le \varepsilon + 2^{n(\alpha + \varepsilon - H(X))}$$

1. Rewrite the classical AEP using the density matrix notation, namely point out each entity defined in the above statement and link it to its analogy in the QAEP lemma. [Hint²]

3 Entropy.

3.1 Enteropy Upper Bound.

- 1. Show that enteropy is bounded from above by log alphabet size .
- 2.

$$\begin{split} 0 &\leq S\left(\rho^A \middle| \frac{I}{d}\right) = -S(\rho^A) - tr\left(\rho^A \log \frac{I}{d}\right) \\ &= -S(\rho^A) - \log \frac{1}{d} \cdot tr(\rho^A) - tr(\rho^A \underbrace{\log I}_{=0}) = -S(\rho^A) + \log d\,, \end{split}$$

where in the last equality we used the fact that $tr(\rho^A) = 1$ for any density matrix

3.2 Computing Entropy.

Compute the entropy of the following densitivy matrices.

- 1. The super position over linear subspace. (purestate).
- 2. The uniform distribution over linear subspace.
- 3. Consider the fully entanglment state $|\Omega\rangle = \sum_{x} |x, x\rangle$ over the system $\mathcal{H}_A \otimes \mathcal{H}_B$. Compute the conditional enteropy S(A|B).

¹Taken from Prof. Ordentlich

²A good answer would be a single paragraph long.

4 Fidelity.

Compute the fidelity between ρ and σ in the following cases:

- 1. When ρ and σ commute.
- 2. When ρ is mixed and σ is pure.
- 3. When $\rho = \frac{1}{2}(I + X)$ and $\sigma = \alpha I + \beta Z$.
- 4. Use the construction presented in the proof of Uhlman's to calculate the fidelity between: $\rho = p |0\rangle \langle 0| + (1-p) |+\rangle \langle +|$ and $\sigma = (1-p) |0\rangle \langle 0| + p |+\rangle \langle +|$.

5 Coding Theorem.

Let ρ be the density matrix: $p |\beta_{00}\rangle \langle \beta_{00}| + \frac{1}{3}(1-p) \sum_{i\neq 00} |\beta_{ij}\rangle \langle \beta_{ij}|$.

6 Quantum Teleportation.

Give a quantum circus that compute the single qubit gate $\begin{bmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{8}} \end{bmatrix}$ up to global phase using only pauli, clifford, and measurements.