AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1. (original): A process for preparating an oligoglycosaminoglycan or a intermediate thereof,

wherein the process comprises:

a step (A) of subjecting (A-1) a sugar donor having a glucuronic acid or

iduronic acid derivative at the reducing end in which a leaving group is added to the reducing

end hydroxyl group to be glycosylated and the other hydroxyl groups and the carboxyl groups

are protected to the glycosylation reaction with (A-2) a sugar acceptor having a N-

acylgalactosamine derivative at the non-reducing end in which the non-reducing end hydroxyl

group to be glycosylated is free and the other hydroxyl groups are protected in the presence of

(A-3) a Lewis acid as a promoter which is an activator for the leaving group of the sugar donor.

2. (original): The process according to claim 1, wherein the intermediate is represented by the

following general formula (4'):

6

Appln. No.: National Stage of PCT/JP2005/006439

wherein R' is selected from the group consisting of an alkyl group, an alkenyl group, an aralkyl group and an aryl group;

P³ is selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group and a silyl group optinally substituted with an alkyl group or an alkoxy group;

P⁴ is selected from the group consisting of an alkyl group, an alkenyl group and an aralkyl group;

P¹¹ and P^{11'} are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a silyl group optimally substituted with an alkyl group or an alkoxy group and an alkylidene group and include one in which the two thereof are cross-linked; and

G1 is selected from the group consisting of a hydrogen atom, an alkyl group, an aralkyl

group, an alkenyl group, an aryl group and a compound represented by the following general formula (4-1):

wherein m is an integer of 0 to 4;

R⁶ and R⁷ are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an acyl group and a phthaloyl group;

P⁸ and P⁹ are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group, an acyl group and a silyl group optinally substituted with an alkyl group or an alkoxy group;

P¹⁰ is selected from the group consisting of an alkyl group, an alkenyl group and an aralkyl group;

P¹¹ and P¹¹ are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a silyl group optinally substituted with an alkyl group or an alkoxy group and an alkylidene group and include one in which the two thereof are cross-linked; and

G¹ is selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group and a compound represented by the following general formula (4-1'):

wherein P⁷ is selected from the group consisting of an alkyl group, an aralkyl group, an alkenyl group and an aryl group;

P⁸ and P⁹ are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group, an acyl group and a silyl group optinally substituted with an alkyl group or an alkoxy group; and

 P^{10} is selected the group consisting of an alkyl group, an alkenyl group and an aralkyl group; and

G² is selected from the group consisting of a hydrogen atom, an alkenyl group, an acyl group, an aralkyl group, a silyl group optimally substituted with an alkyl group or an alkoxy group and a compound represented by the following general formula (4-2):

Appln. No.: National Stage of PCT/JP2005/006439

$$G_{2}$$
, Q_{2} , Q

wherein λ is an integer of 0 to 4;

R⁴ and R⁵ are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an acyl group and a phthaloyl group;

P² and P³ are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group and a silyl group optinally substituted with an alkyl group or an alkoxy group;

P⁴ is selected from the group consisting of an alkyl group, an alkenyl group and an aralkyl group;

P⁶ and P⁶ are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a silyl group optinally substituted with an alkyl group or an alkoxy group and an alkylidene group; and

G2' is selected from the group consisting of a hydrogen atom, an alkenyl group, an acyl group, an aralkyl group, a silyl group optinally substituted with an alkyl group or an alkoxy group and a compound represented by the following general formula (4-2'):

wherein R⁴ and R⁵ are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an acyl group and a phthaloyl group;

P⁵ is selected from the group consisting of an alkenyl group, an acyl group, an aralkyl group and a silyl group optinally substituted with an alkyl group or an alkoxy group; and

P⁶ and P⁶ are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a silyl group optinally substituted with an alkyl group or an alkoxy group and an alkylidene group.

3. (currently amended): The process according to claim 1-or 2, wherein the promoter is a compound represented by the following general formula (1):

Appln. No.: National Stage of PCT/JP2005/006439

$$R^{1}$$
 - $Si_{R^{3}}$ - O - Tf (1)

wherein R¹, R² and R³ the same or independently represent a linear or branched alkyl group or an aromatic group unsubstituted or of which at least one of the hydrogen atoms are substituted, and Tf represents a trifluoromethanesulfonyl group.

4. (currently amended): he process according to claim 1 any one of claims 1 to 3, wherein:

the sugar donor is a glucuronic acid or iduronic acid derivative in which a leaving group is added to the reducing end hydroxyl group to be glycosylated and the other hydroxyl groups and the carboxyl groups are protected, or an oligosaccharide derivative having as a basic constituent unit a basic disaccharide unit composed of a N-acylgalactosamine derivative and a glucuronic acid or iduronic acid derivative in which a leaving group is added to the reducing end hydroxyl group to be glycosylated and the other hydroxyl groups and the carboxyl groups are protected; and

the sugar acceptor is a glucuronic acid or iduronic acid derivative in which the non-reducing end hydroxyl group to be glycosylated is free and the other hydroxyl groups and the carboxyl groups are protected, or an oligosaccharide derivative having as a basic constituent unit a N-acylgalactosamine derivative and a glucuronic acid or iduronic acid derivative in which the reducing end hydroxyl group to be glycosylated is free and the other hydroxyl groups and the carboxyl groups are protected.

5. (currently amended): The process according to <u>claim 1 any one of claims 1 to 4</u>, further comprising the steps of:

- (B) eliminating one protecting group of the non-reducing end of the oligosaccharide derivative obtained in the above step (A), and
- (C) subjecting the oligosaccharide derivative from which the one protecting group is eliminated to the glycosylation reaction with the sugar acceptor in the presence of the promoter; and

after the step (A), repeating these steps in an intended number of times within 1 to 8.

6. (currently amended): The process according to <u>claim 1 any one of claims 1 to 5</u>, wherein: the sugar donor is a chondroitin derivative represented by the following general formula (2):

$$P^{5}O$$
 $P^{2}O$
 $P^{2}O$
 $P^{3}O$
 $P^{5}O$
 P

wherein R⁴ and R⁵ are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an acyl group and a phthaloyl group;

Im is an imidoyl optionally substituted with a halogen;

P² and P³ are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group and a silyl group optinally substituted with an alkyl group or an alkoxy group;

P⁴ is selected from the group consisting of an alkyl group, an alkenyl group and an aralkyl group;

P⁵ is selected from the group consisting of an alkenyl group, an acyl group, an aralkyl group and a silyl group optinally substituted with an alkyl group or an alkoxy group; and

P⁶ and P^{6'} are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a silyl group optimally substituted with an alkyl group or an alkoxy group and an alkylidene group; and

the sugar acceptor is a reducing end glucuronic acid type chondroitin derivative represented by the following general formula (3):

wherein R^6 and R^7 are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an acyl group and phthaloyl group;

P⁷ is selected from the group consisting of an alkyl group, an aralkyl group, an alkenyl group and an aryl group;

P⁸ and P⁹ are the same or independently selected from the group consisting of a

hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group, an acyl group and a silyl group optinally substituted with an alkyl group or an alkoxy group and an acyl group;

 P^{10} is selected from the group consisting of an alkyl group, an alkenyl group and an aralkyl group; and

P¹¹ and P¹¹ are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a silyl group optimally substituted with an alkyl group or an alkoxy group and an alkylidene group and include one in which the two thereof are cross-linked.

7. (currently amended): The process according to <u>claim 1 any one of claims 1 to 5</u>, wherein: the sugar donor is a chondroitin derivative represented by the following general formula (2'):

wherein Im is an imidoyl group optionally substituted with a halogen;

P² and P³ are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group and a silyl group optinally substituted with an alkyl group or an alkoxy group;

P⁴ is selected from the group consisting of an alkyl group, an alkenyl group and an aralkyl group; and

P^{5'} is selected from the group consisting of an alkenyl group, an acyl group, an aralkyl group and a silyl group optinally substituted with an alkyl group or an alkoxy group; and the sugar acceptor used is a reducing end glucuronic acid type chondroitin derivative

Appln. No.: National Stage of PCT/JP2005/006439

represented by the following general formula (3):

wherein R⁶ and R⁷ are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an acyl group and a phthaloyl group;

 P^7 is selected from the group consisting of an alkyl group, an aralkyl group, an alkenyl group and an aryl group;

P⁸ and P⁹ are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group, an acyl group and a silyl group optinally substituted with an alkyl group or an alkoxy group and an acyl group;

P¹⁰ is selected from the group consisting of an alkyl group, an alkenyl group and an aralkyl group; and

P¹¹ and P^{11'} are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a silyl group optimally substituted with an alkyl group or an alkoxy group and an alkylidene group and include

Appln. No.: National Stage of PCT/JP2005/006439

one in which the two thereof are cross-linked.

8. (currently amended): The process according to claim 1 any one of claims 1 to 7, wherein the

substituent at the 2nd position of the glucuronic acid or iduronic acid derivative in the sugar

donor is protected by an acyl group which stabilizes an ortho ester.

9. (currently amended): The process according to claim 3 any one of claims 3 to 8, wherein R¹, R²

and R³ are independently a hydrogen atom, or a linear or branched alkyl group.

10. (currently amended): The process according to claim 1 any one of claims 1 to 9, wherein the

promoter is trimethylsilyl trifluoromethanesulfonate (TMSOTf).

11. (currently amended): The process according to claim 1 any one of claims 1 to 10, wherein the

steps (B) and (C) are repeated in one to five times.

12. (currently amended): The process according to claim 1 any one of claims 1 to 11, further

comprising a step (D-1) in which all the protecting groups of the oligosaccharide derivative

obtained in the step (A) or (C) are eliminated.

13. (currently amended): The process according to claim 1 any one of claims 1 to 11, further

comprising a step (D-2) in which all the protecting groups of the oligosaccharide derivative

obtained in the step (A) or (C) are eliminated, and each N-acylgalactosamine are selectively

sulfated at the 4th and 6th positions thereof.

17

Appln. No.: National Stage of PCT/JP2005/006439

14. (currently amended): The process according to claim 1 claims 1 to 11 and 13, wherein the sugar donor is a compound represented by the general formula (2) or (2') and the sugar acceptor is the reducing end glucuronic acid type chondroitin derivative represented by the general formula (3);

wherein, if the oligosaccharide derivative obtained in the step (A) or (C) has an N-acylgalactosamine derivative at the non-reducing end, the hydroxyl groups at a position other than the 4th and 6th positions of the N-acylgalactosamine derivative are protected with a pivaloyl group;

the groups protecting the 4th and 6th positions of each N-acylgalactosamine derivative are eliminated; and

the deprotected oligosaccharide is sulfated to selectively sulfate the 4th and 6th positions of each N-acylgalactosamine.

15. (original): The process according to claim 14, the protecting group is benzylidene, alkoxybenzylidene or cyclohexylidene.

16. (original): An oligoglycosaminoglycan intermediate compound represented by the general formula (4'):

Appln. No.: National Stage of PCT/JP2005/006439

$$P^{4}OOC$$
 OP^{3}
 R'
 A'

wherein R', P^3 , P^4 , P^{11} , P^{11} , G^1 and G^2 are the same as those defined in claim 2.

17. (original): A reducing end glucuronic acid type oligochondroitin or a reducing end glucuronic acid type oligochondroitin sulfate, or a salt or derivative thereof represented by the following general formula (4):

wherein n is an integer of 2 to 10;

R⁸ represents a hydrogen atom or a protecting group;

 R^9 to R^{11} are the same or independently represent a hydrogen atom or a protecting group;

R¹² and R¹³ are the same or independently selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, an acyl group and a phthaloyl group;

R¹⁴ and R¹⁵ the same or independently represent a hydrogen atom, or a sulfate or phosphate group optionally substituted with any one selected from the group consisting of sodium, potassium, copper, calcium, iron, manganese, zinc, ammonium, barium and lithium; and;

R¹⁶ represents a hydrogen atom, or a glucronic acid or iduronic acid derivative represented by the following general formula (5):

wherein R¹⁷, R¹⁸ and R¹⁹ represent the same or independently a hydrogen atom or a protecting group, or sodium, potassium, copper, calcium, iron, manganese, zinc, ammonium, barium or lithium; and

R²⁰ represents a hydrogen atom or a protecting group.

Appln. No.: National Stage of PCT/JP2005/006439

18. (original): The reducing end glucuronic acid type oligochondroitin sulfate, or the salt or derivative thereof according to claim 17, wherein R¹⁴ and R¹⁵ are a sulfate group optionally substituted with one selected from the group consisting of sodium, potassium, copper, calcium, iron, manganese, zinc, ammonium, barium and lithium.

19. (currently amended): The reducing end glucuronic acid type oligochondroitin or a reducing end glucuronic acid type oligochondroitin sulfate, or the salt or derivative thereof according to claim 17-or-18, wherein n is 3 to 6.

20. (currently amended): A pharmaceutical composition comprising at least one selected from the group consisting of a reducing end glucuronic acid type oligochondroitin and a reducing end glucuronic acid type oligochondioitin sulfate, and the salt and derivative thereof according to claim 17any one of claims 17 to 19 together with a pharmacologically acceptable carrier.

- 21. (original): The pharmaceutical composition according to claim 20 for improving, treating or preventing a condition or diseases induced by a CD44 molecule.
- 22. (original): The pharmaceutical composition according to claim 21 for treating an autoimmune disease, arthritis, an allergic disease or a cancer, or for modulating immu-nity or for inducing cell differentiation or cell apotosis.
- 23. (currently amended): Use of a reducing end glucuronic acid type oligochondroitin or a reducing end glucuronic acid type oligochondroitin sulfate, or a salt or derivative thereof according to claim 17any one of claims 17 to 19 for the preparation of a pharmaceutical

Appln. No.: National Stage of PCT/JP2005/006439

composition for improving, treating or preventing a condition or diseases induced by a CD44

molecule.

24. (currently amended): A method for improving, treating or preventing a condition or diseases

induced by a CD44 molecule which comprise administering a reducing end glucuronic acid type

oligochondroitin or a reducing end glucuronic acid type oligochondroitin sulfate, or a salt or

derivative thereof according to claim 17 any one of claims 17 to 19.

22