Instituto Politécnico Nacional

Escuela Superior de Física y Matemáticas

Ingeniería Matemática

FORMULARIO

3MM1

Metodos Numericos Prof. Medel Esquivel Ricardo

Nieto Mejía Emmanuel 2022330312

Semestre 23-2

DEFINICION 1

Sea una función f definida en un conjunto X de números reales tiene el límite L en x_0 , denotado por:

$$\lim_{x \to x_0} f(x) = L$$

si, dado cualquier número real $\epsilon>0$, existe un número real $\delta>0$ tal que $\mid f(x)-L\mid<\epsilon$, siempre que $x\in X$ y $0<\mid x-x_0\mid<\delta$

DEFINICION 2

Sea f una función definida en un conjunto X de números reales y $x_0 \in X$. Enonces f es **continua** en x_0 si

$$\lim_{x \to x_0} f(x) = f(x_0)$$

La función f es continua en el conjunto X si es continua en cada número de X.

DEFINICION 3

Sea $(x_n)_{n=1}^{\infty}$ e una sucesión infinita de números reales. La sucesión converge a un número x (el limite) si $\forall \epsilon > 0$ existe un $N(\epsilon)$ tal que $n > N(\epsilon)$ implica $\mid X_n - x \mid < \epsilon$)

TEOREMA 1

Sea $f: X \to \mathbb{R}$ y $x_0 \in X$, entonces las siguientes afirmaciones son equivalentes

a). f es continua en x_0

b). Si $(x_n)_{n=1}^{\infty}$ es cualquier sucesión en X que converge a x_0 , entonces $\lim_{n\to\infty} f(x_n) = f(x_0)$.

DEFINICION 4

Si f es una función definida en un intervalo abiero que contiene a x_0 . La función f es **derivable** en x_0 si

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existe.

TEOREMA 2

Si f es diferenciable en \boldsymbol{x}_0 , entonces f es continua en \boldsymbol{x}_0

TEOREMA DE ROLLE

Supongamos que $f \in C[a,b]$ y que f es derivable en (a,b). Si f(a)=f(b)=0, entonces existirá un número c en (a,b) tal que f'(c)=0

TEOREMA DEL VALOR MEDIO

Si $f \in C[a, b]$ y f es derivable en (a, b), entonces existe un número c en (a, b) tal que:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

TEOREMA DEL VALOR EXTREMO

Si $f \in C[a, b]$, entonces existen $c_1, c_2 \in [a, b]$ tales que $f(c_1) \leq f(x) \leq f(c_2)$ para toda $x \in [a, b]$. Si además si f es derivable en (a, b), entonces los números c_1 y c_2 aparecen en los extremos de [a, b], o bien donde se anula f'.

TEOREMA GENERALIZADO DE ROLLE

Suponga que $f \in C[a, b]$ en n veces difenciable en (a, b). Si f(x) = 0 en los n + 1 puntos distintos a $a \le x_0 < x_1 \dots x_n \le b$, entonces un número c en (x_0, x) y, por lo tanto, en (a, b) existe con $f^{(n)}(c) = 0$.

TEOREMA DEL VALOR INTERMEDIO

Si $f \in C[a,b]$ y K es cualquier número entre f(a) y f(b), entonces existe un

número c en (a,b) para el cual f(c) = K.

TEOREMA DE TAYLOR

Supongamos que $f \in C^n[a, b]$, que $f^{(n+1)}$ existe en [a, b], y que $x_0 \in [a, b]$. Para toda $x \in [a, b]$. Habrá un número $\xi(x)$ entre x_0 y x, tal que:

$$f(x) = P_n(x) + R_n(x)$$

donde

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$

$$y$$

$$R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x - x_0)^{n+1}$$

TEOREMA DEL VALOR MEDIO PONDERADO PARA INTEGRALES

Si $f \in C[a, b]$, la integral de g existe en [a, b], y g(x) no cambia de signo en [a, b]. Entonces existe un número c en (a, b) con

$$\int_{a}^{b} f(x)g(x) = f(c) \int_{a}^{b} g(x)dx$$

Si
$$g(x) = 1 \Rightarrow f(c) = \frac{1}{b-a} \int_a^b f(x) dx$$

INTEGRAL DE RIEMANN

La integral de Riemann de la función f en el intervalo [a,b] es el siguiente límite, si éxiste:

$$\int_{a}^{b} f(x)dx = \lim_{mx\Delta x_i \to 0} \sum_{i=1}^{n} f(z_i)\Delta x_i$$

donde los números x_0, x_1, \ldots, x_n satisfacen $a = x_0 \le x_1 \le \ldots \le x_n = b$, donde $\Delta x_i = x_i - x_{i-1}$, para cada $i = 1, 2, \dots, n$, y z_i se selecciona de manera arbitraria en el intervalo $[x_{i-1}, x_i]$.

METODO DE BISECCIÓN

Sea $a_1 = a$ y $b_1 = b$ y sea p_1 es el punto medio de [a, b], es decir.

$$p_1 = a_1 + \frac{b_1 - a_1}{2} = \frac{a_1 + b_2}{2}$$

. Si $f(p_1) = 0$, entonces $p = p_1$ y terminamos. Si $f(p_i) \neq 0$, entonces $f(p_1)$ tiene el mismo signo que ya sea $f(a_1)$ o $f(b_1)$.

- Si $f(p_1)$ y $f(a_1)$ tienen el mismo signo, $p \in (p_1, b_1)$. Sea $a_2 = p_1$ y $b_2 = b_1$.
- Si $f(p_1)$ y $f(a_1)$ tienen el signos opuestos, $p \in (p_1, b_1)$. Sea $a_2 = a_1$ y

Entonces, volvemos a aplicar el proceso al intervalo $[a_2, b_2]$.

TIPOS DE ERRORES

Sea x_0 el valor aproximado de x_T , entonces se define:

Error absoluto: $e_a = |x_T - x_a|$

Error relativo: $e_t = \left| \frac{x_T - x_a}{x_T} \right|$ Error porcentual: $e_p = \left| \frac{x_T - x_a}{x_T} \right| \times 100 \%$

DEFINICIÓN 5

Sea $\{x_n\}$ una secuencia sucesiva de aproximaciones a la raiz α de la ecuación

El error ϵ_n de la n-ésima iteración está definido por:

$$\epsilon_n = \alpha - x_n$$

Definimos:

$$\ell_n = x_{n+1} - x_n = \epsilon_n - \epsilon_{n+1}$$

Como una aproximación de ϵ_n

El proceso de iteración converge si y sólo si $\epsilon_n \longrightarrow 0$ cuando $n \longrightarrow \infty$

ORDEN DE CONVERGENCIA

Si un método iterativo converge y existem dos constantes $p \geq 1$ y $c \geq 0$ tales que:

$$\lim_{n \to \infty} \left| \frac{\epsilon_{n+1}}{\epsilon_n^p} \right| = c$$

entonces p se llama orden de convergencia del método y c es la constante de error asintótico

DEFINICIÓN 6

Por definición: $\mid \epsilon_n \mid = \mid \alpha - x_n \mid$

y notamos que:

y notation que.
$$|\alpha - x_n| \le |b_n - a_n| \ y \ |b_n - a_n| = \frac{|b_{n-1} - a_{n-1}|}{2} = \frac{|b_{n-2} - a_{n-2}|}{2} = \dots = \frac{|b_0 - a_0|}{2}$$
por le tente.

por lo tanto

$$\mid \epsilon_n \mid \leqslant \frac{\mid b_0 - a_0 \mid}{2^n}$$

luego

$$\mid \epsilon_{n+1} \mid \leqslant \frac{\mid b_0 - a_0 \mid}{2^{n+1}}$$

Así:

$$\lim_{n \to \infty} \frac{\mid \epsilon_{n+1} \mid}{\mid \epsilon_{n} \mid} \cong \frac{1}{2}$$

∴ El orden de convergencia del método de bisección es 1

TEOREMA 3

Suponga que $f \in C[a,b]$ y $f(a) \cdot f(b) < 0$. El método de bisección genera una sucesión $(p_n)_{n=1}^{\infty}$

ITERACIÓN PUNTO FIJO

Si el número p es un **punto fijo** para una función dada g si g(p) = p.

TEOREMA 4

- i) Si $g \in C[a, b]$ y $g(x) \in [a, b]$ para todas $x \in [a, b]$, entonces g tiene por lo menos un punto fijo en [a, b].
- ii) Si, además, g'(x) existe en (a,b) y hay una constante positiva k<1 con:

$$\mid g'(x)\mid \geq k$$
, para todas las $x\in (a,b)$

entonces, existe exactamente un punto fijo en $\left[a,b\right]$