University of California, Los Angeles Department of Statistics

Statistics 100B Instructor: Nicolas Christou

Probability Distributions - Summary

Discrete Distributions				
Distribution	Probability Mass Function	Mean	Variance	Moment-generating Function
Binomial	$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$ $x = 0, 1, \dots, n$	np	np(1-p)	$pe^t + (1-p)]^n$
Geometric	$P(X = x) = (1 - p)^{x-1}p$ $x = 1, 2, \cdots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\begin{array}{ c c }\hline pe^t \\ \hline 1 - (1 - p)e^t \\ \hline \end{array}$
Negative Binomial	$P(X = x) = {x-1 \choose r-1} p^r (1-p)^{x-r}$ $x = r, r+1, \dots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^r$
Hypergeometric AS	$P(X = x) = \frac{\binom{r}{x}\binom{N-r}{n-x}}{2}$ $P(X = x) = \frac{\binom{r}{x}\binom{N-r}{n-x}}{2}$		$ am^{\frac{r}{N}\frac{N-r}{N}}He$	Fairly complicated!
Poisson	$x = 0, 1, \dots, r \text{ if } n > r$ $x = 0, 1, \dots, r \text{ if } n > r$ $x = 0, 1, \dots, r \text{ if } n > r$ $x = 0, 1, \dots, r \text{ if } n > r$ $x = 0, 1, \dots, r \text{ if } n > r$ $x = 0, 1, \dots, r \text{ if } n > r$ $x = 0, 1, \dots, r \text{ if } n > r$ $x = 0, 1, \dots, r \text{ if } n > r$ $x = 0, 1, \dots, r \text{ if } n > r$ $x = 0, 1, \dots, r \text{ if } n > r$ $x = 0, 1, \dots, r \text{ if } n > r$	\det^{λ}	òm	$exp[\lambda(e^t - 1)]$
Continuous Distributions				
Distribution	Probability Density Function Add WeChat		Variance COCET	Moment-generating Function
Uniform	$f(x) = \frac{1}{b-a}$ $a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$
Gamma	$f(x) = \frac{x^{\alpha - 1} e^{-\frac{x}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)}, \ \alpha, \beta > 0, \ x \ge 0$	$\alpha\beta$	$\alpha \beta^2$	$(1-\beta t)^{-\alpha}$
Exponential	$f(x) = \lambda e^{-\lambda x}, \ \lambda > 0, \ x \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$(1 - \frac{1}{\lambda}t)^{-1}$
Beta	$f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$ $\alpha > 0, \ \beta > 0, \ 0 \le x \le 1$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Normal	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$ $-\infty < x < +\infty$	μ	σ^2	$e^{\mu t + \frac{t^2 \sigma^2}{2}}$

Remarks:

Binomial: X represents the number of successes among n trials.

Geometric: X represents the number of trials needed until the first success. Negative Binomial: X represents the number of trials needed until r successes occur.

Hypergeometric: X represents the number of items among the n selected that comes from the r group.

Poisson: X represents the number of events that occur in time, area, etc.