The Labyrinth of Multiple Testing: How to avoid the pitfall of false positives

Introduction to Hypothesis testing

12th SISMEC National Congress 2023

Livio Finos and Angela Andreella

- Full professor in statistics at the University of Padova
- E-mail: livio.finos@unipd.it

- Researcher in social statistics at the University Ca' Foscari Venezia
- E-mail: angela.andreella@unive.it

Outline

1. Introduction

- 2. Hypothesis testing
- 2.1 Individual hypothesis testing
- 2.2 Multiple hypothesis testing

American Statistical Association's Ethical Guidelines for Statistical Practice

Recognize that any frequentist statistical test has a random chance of indicating **significance** when it is **not really present**.

Selecting the one "significant" result from a multiplicity of parallel tests poses a grave risk of an **incorrect conclusion**.

Failure to disclose the full extent of tests and their results in such a case would be highly misleading.

American Statistical Association's Ethical Guidelines for Statistical Practice

Recognize that any frequentist statistical test has a random chance of indicating **significance** when it is **not really present**.

Selecting the one "significant" result from a multiplicity of parallel tests poses a grave risk of an **incorrect conclusion**.

Failure to disclose the full extent of tests and their results in such a case would be highly misleading.

e.g. VaxGen's AIDSVAX trial . . .

VaxGen's AIDSVAX trial

VaxGen announced the results of the **first-ever efficacy trial** of an AIDS vaccine on 24 February 2003:

The vaccine prevent HIV infection?

	Total	Infected		
All subjects	1679	96	5.8%	PLACEBO
	3330	191	5.7%	VACCINE

"We saw absolutely no difference between the vaccine and placebo groups. Everyone was pretty depressed."

but the next day...

VaxGen's AIDSVAX trial

...by **broking the data down into racial groups** – which they say was part of the original design – the vaccine appeared to have worked in blacks:

	Total	Infected		Fisher's exact test	
White	1508	81	5.4%	$p_W = 0.898$	
	3003	179	6.0%	$p_W = 0.090$	
Black	111	9	8.1%	$p_B = 0.015$	
	203	4	2.2%		
Λ =: = :=	20	2	10.0%	n. — 0.301	
Asian	53	4	3.8%	$p_A = 0.301$	
Other	40	6	15.0%	$p_O = 0.345$	
	71	6	8.5%	$\rho_0 = 0.343$	

"The numbers were small, which concerned us, but the result was highly statistically significant. They were pretty incredible results."

Criticisms

1. Failure to account for multiplicity

"The p-values were not adjusted."

2. Selective reporting (data snooping)

"It's all murky because it's all post hoc analysis. They might as well do a subgroup analysis based on signs of the zodiac."

If you torture your data long enough, they will confess to you whatever you want to hear!

Revived interest in multiple testing

```
"-omics"
```

e.g., genomics experiments with microarray data: which genes are differentially expressed? model selection

e.g., multiple regression: which coefficients matter?

..

Clinical trials

sources of multiplicity

- multiple endpoints
- several treatments
- multiple time points
- subgroup analysis
- interim analysis

regulatory guidelines

- statistical principles for clinical trials (ICH E9)
- points to consider on multiplicity issues in clinical trials (EMEA)
- **.**.

Outline

1. Introduction

2. Hypothesis testing

- 2.1 Individual hypothesis testing
- 2.2 Multiple hypothesis testing

Hypothesis Testing: One Single Test

Two Hypotheses under comparison

- H_0 : two groups are **Equal**, no relationship between X and Y.
- H_1 : two groups are **Different**, there is a relationship between X and Y.

Each test produces a p-value p:

if
$$\rho \leq .05$$
 ($\alpha = .05$), we **reject** H_0 (and lean towards H_1).

Errors

		Null hypothesis		
		False True		
		(two groups are different)	(two groups are equal)	
Test	Rejected Not rejected	True discovery Type II error	Type I error True negative	

- **Type I** (false positive): **Reject** H_0 when it is **True** $\mathbb{P}(\mathsf{Type I Error}) = \mathbb{P}(p \leq .05 | H_0) = .05$
- **Type II** (false negative): **Fail** to reject H_0 when it is **False** $\mathbb{P}(\mathsf{Type\ II\ Error}) = \mathbb{P}(p > .05|H_1)$

Power: $\mathbb{P}(p \le .05 | H_1) = 1 - \mathbb{P}(p > .05 | H_1) = 1 - \mathbb{P}(\mathsf{Type\ II\ Error})$

Asymmetric Importance of Errors

Control $\mathbb{P}(\mathsf{Type\ I\ Error})\ (e.g., \leq 0.05)$ and find the test with the maximum **Power** (minimum Type II Error)

It's important to remember that:

- A significant p-value $(p \le \alpha)$ allows us to think that H_1 is true, while
- A non-significant p-value $(p > \alpha)$ does NOT allow us to think that H_0 is true; we simply don't have enough evidence to reject it.

Type I Error

Suppose $H_0: \mu_1-\mu_2=0$ and $H_1: \mu_1-\mu_2<0$ test statistic $T=\frac{\bar{x}_1-\bar{x}_2}{\hat{\sigma}}$ ($\hat{\sigma}$ estimate of the std dev of $\bar{x}_1-\bar{x}_2$) under $H_0: T\sim t_{n_1+n_2-2}$, then

$$\mathbb{P}(T \le t_{\alpha}|H_0) = \alpha \ \forall \alpha$$

$$\mathbb{P}(F(T) \le F(t_{\alpha})|H_0) = \alpha \ \forall \alpha$$

$$\mathbb{P}(P \le \alpha|H_0) = \alpha \ \forall \alpha$$

consequently, $P \sim U(0,1)$

Type I Error

Under H_0 , the p-value is a uniform random variable U(0,1)

Se vera H0

Type I Error

Type I Error: $\mathbb{P}(p \le .05 | H_0) = .05$

Se vera H0

Power

Under H_1 , the p-value is stochastically smaller than a uniform random variable U(0,1) (No test distortion)

Se vera H1 (esempio)

Power

Under H_1 : $\mathbb{P}(p \le .05 | H_1) > .05$, in our case = .74

Se vera H1 (esempio)

Hypothesis testing: Multiple Tests

The goal is to test $m \ge 2$ hypotheses simultaneously from the same data.

Each test carries the risk of making a Type I error \rightarrow the risk of having AT LEAST one may become unmanageable.

Two Tests (Independent) Case

EXAMPLE: independent tests

Probability of AT LEAST one (false) rejection?

$$\mathbb{P}(p_1 \le .05 \cup p_2 \le .05 | H_0) = .05 + .05 - (.05 \cdot .05) = 1 - (1 - .05)^2$$
$$= .0975 = 1 - (1 - \alpha)^2 > \alpha$$

Multiple Tests

Multiple Tests

Multiple Tests

Error control

		Null hypothesis		
		False	True	Tot
Test	Rejected	5	V (false discoveries)	R
	Rejected Not rejected	T	U	m-R
	Tot	m_1	m_0	m

Probability of AT LEAST one false rejection (independent tests):

$$\mathbb{P}(V > 0) = 1 - (1 - \alpha)^m$$

This quickly becomes a problem if m becomes large ...

Error control

Type I error

- How to **define** the Type I error when there are many hypotheses?
- Which procedures **control** this error?