Practice questions

- 1. A factory has 200 old widgets, and 500 new widgets in stock. We know that 15% of the old widgets are defective, and 5% of the new ones are defective as well. Alice randomly chooses a widget in the factory. Given that the widget turn out to be defective, what is the probability that it is an old widget?
- 2. Alice usually takes a bus to her company. In summer, it is rainy with probability $\frac{1}{3}$. Given that it is rainy, there will be heavy traffic with probability $\frac{1}{2}$, and given that it is not rainy, there will be heavy traffic with probability $\frac{1}{5}$. If it's rainy and there is heavy traffic, Alice arrive late for work with probability $\frac{1}{2}$. On the other hand, the probability of being late is reduced to $\frac{1}{10}$ if it is not rainy and there is no heavy traffic. In other situations (rainy and no traffic, not rainy and traffic) the probability of being late is $\frac{1}{5}$. In a random day in summer:
 - (a) What is the probability that it's not raining and there is heavy traffic and Alice is not late?
 - (b) What is the probability that Alice is late?
 - (c) Given that Alice arrived late at work, what is the probability that it rained that day?
- 3. Computers A and B are linked through routers R_1 to R_4 as in the picture. Each router fails independently with probability 10%.
 - (a) What is the probability there is a connection between A and B?
 - (b) Are the events "there is a connection between A and B" and "exactly two routers fail" independent? Justify your answer.
- 4. In a certain business school, the ratio of the number of full-time students to part-time students is 15:10. At the end of their studies, all the school's 850 students took a professional examination and 550 passed. It is known that percentage of the full-time students passing the examination was twice that of the part-time students. A student chosen at random is found to have failed the examination. What is the probability that he was a part-time student?

Additional ESTR 2018 questions

- 5. Can there be four events E_1, E_2, E_3, E_4 so that every pair E_i, E_j is independent but every triple E_i, E_j, E_k is not (i, j, k are distinct indices)?
 - More generally, suppose you are given a set \mathcal{I} consisting of *subsets* of $\{1, \ldots, n\}$. Under which conditions on \mathcal{I} can there exist a sample space Ω and events E_1, \ldots, E_n such that for every set of indices I, the events E_i : $i \in I$ are independent when $I \in \mathcal{I}$ and not independent otherwise?