Linear Analysis II Set 8

- **1.** Find the vector in the span of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ that is closest to $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Draw a clearly labeled picture in \mathbb{R}^2 depicting the situation.
- **2.** Let L be the line in \mathbb{R}^3 containing the origin and parallel to the vector $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$. Find the point on L closest to the point (x,y,z).
- **3.** By inspection (not using our next topic, the Gram-Schmidt procedure), find vectors \mathbf{v}_1 and \mathbf{v}_2 such that
 - 1. \mathbf{v}_1 and \mathbf{v}_2 are orthogonal, and
 - 2. the span of \mathbf{v}_1 and \mathbf{v}_2 is the same as the span of the vectors $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ and $\begin{bmatrix} 2\\1\\2 \end{bmatrix}$.

Then use \mathbf{v}_1 and \mathbf{v}_2 to find the vector in this span that is closest to $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$.

- **4.** Use orthogonal projections to find the distance from the point (2,3,4) to the plane 2x + y + z = 0.
- **5.** Show that if $\mathbf{u}_1, \dots, \mathbf{u}_k$ are pairwise orthogonal vectors such that $\|\mathbf{u}_i\| = 1$ for all i, then

$$||c_1\mathbf{u}_1 + \cdots + c_k\mathbf{u}_k||^2 = c_1^2 + \cdots + c_k^2.$$

for constants c_1, \ldots, c_k .

- **6.** Recall that the transpose of the $m \times n$ matrix A, denoted A^{\top} , is the $n \times m$ matrix found by interchanging the rows and columns of A. A column vector \mathbf{x} in \mathbb{R}^n is an $n \times 1$ matrix, and so \mathbf{x}^{\top} is a $1 \times n$ matrix.
 - a. Let $\mathbf{x} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} -1 \\ 1 \\ 4 \end{bmatrix}$. Find these four matrix products: $\mathbf{x}^{\top}\mathbf{y}, \mathbf{y}\mathbf{x}^{\top}, \mathbf{y}^{\top}\mathbf{x}\mathbf{y}$ and $\mathbf{y}\mathbf{y}^{\top}\mathbf{x}$.
 - b. Show that $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^{\top} \mathbf{y}$ holds for any vectors \mathbf{x} , \mathbf{y} in \mathbb{R}^n .
 - c. Let ${\bf v}$ be a vector in \mathbb{R}^n and let

$$P = \frac{1}{\mathbf{v}^{\top} \mathbf{v}} \mathbf{v} \mathbf{v}^{\top}.$$

Show that the vector in the span of \mathbf{v} that is closest to \mathbf{x} is equal to $P\mathbf{x}$.