

Done by: Mariya Rashid Al-Hashmi

Table of Contents

1.	Flat File Systems vs. Relational Databases		
2.	DBMS Advantages		
3.	Roles in a Database System	5	
4.	Types of Databases	5	
-	Relational databases	5	
-	Non-relational databases	5	
-	Centralized databases	5	
-	Distributed databases	6	
-	Cloud databases	6	
5.	Cloud Storage and Databases	6	
-	Cloud storage	6	
_	Cloud storage	6	

1. Flat File Systems vs. Relational Databases

Criteria	Flat File Systems	Relational Databases
STRUCTURE	Simple text files, no schema	Tables with defined schema
DATA REDUNDANCY	High duplication, hard to maintain consistency	Low redundancy, normalization used
RELATIONSHIPS	No built-in relationship support	Supports complex relationships via keys
EXAMPLE USAGE	Small apps, logs, configs, spreadsheets	ERP, banking, e-commerce, large systems
DRAWBACKS	Hard to scale/manage, low accuracy	Complex setup, requires DBMS, higher cost

2. DBMS Advantages

3. Roles in a Database System

ROLES IN A DATABASE SYSTEM

Role	Main Responsibilities
System Analyst	Collects business needs, analyzes systems, defines requirements, and communicates between business and IT.
Database Designer	Plans database structure, defines tables & relationships, ensures data integrity and scalability
Database Developer	Builds and modifies database objects, writes SQL, optimizes queries, and supports development teams.
Database Administrator (DBA)	Manages database systems, handles security, backups, performance, and disaster recovery.
Application Developer	Creates software that connects to the database, manages data flow, and ensures application functionality.
BI (Business Intelligence) Developer	Builds reports, dashboards, and analytics; handles data extraction, transformation, and loading (ETL).

4. Types of Databases

- **Relational databases** store data in structured tables with SQL support and relationships between tables for example: (MySQL, Oracle, PostgreSQL, SQL Server). They are ideal for systems like banking, ERP, CRM, inventory, and financial applications.
- **Non-relational databases** store data in flexible, often schema-less formats like documents or columns for example: (MongoDB, Cassandra). They are used in IoT, big data, real-time analytics, content management, and social media platforms.
- **Centralized databases** store all data in one location, making management simple but creating a single point of failure. They are used in small organizations for HR or accounting.

- **Distributed databases** store data across multiple locations, improving availability and performance. They fit large enterprises, global apps, and telecom systems (e.g. Google Spanner, Cassandra).
- **Cloud databases** are hosted online, offering scalability, flexibility, and easy access. Common for SaaS, e-commerce, startups, and scalable business apps (e.g. Amazon RDS, Azure SQL, Google BigQuery).

5. Cloud Storage and Databases

- **Cloud storage** is an online service that stores data on remote servers, accessible via the internet. It allows organizations to store files, backups, and large datasets without managing physical hardware.
- **Cloud storage** handles unstructured data (files, objects), cloud databases manage structured data with advanced features like querying, indexing, and relationships.

How Cloud Storage Supports Databases:

- Provides scalable and reliable storage for database backups and data files.
- Ensures high availability and disaster recovery.
- Supports data replication across multiple regions.
- Allows integration with cloud-based databases for seamless data management.

Proc and cons of cloud-based databases:

Advantages of Cloud-Based Databases

- SCALABILITY: EASILY SCALE UP OR DOWN BASED ON DEMAND.
- HIGH AVAILABILITY: BUILT-IN REDUNDANCY AND FAILOVER OPTIONS.
- COST EFFICIENCY: PAY-AS-YOU-GO PRICING REDUCES UPFRONT COSTS
- AUTOMATIC MAINTENANCE: PROVIDERS HANDLE UPDATES, PATCHES, AND BACKUPS.
- GLOBAL ACCESS: ACCESSIBLE FROM ANYWHERE WITH INTERNET CONNECTIVITY.
- DISASTER RECOVERY: BUILT-IN BACKUP AND RECOVERY OPTIONS.

D

Disadvantages of Cloud-Based Databases

- SECURITY CONCERNS: SENSITIVE DATA HOSTED OFF-PREMISES REQUIRES STRONG SECURITY MEASURES.
- LATENCY: NETWORK DELAYS MAY AFFECT PERFORMANCE IN SOME REGIONS.
- COMPLIANCE: MUST MEET LEGAL AND REGULATORY DATA PROTECTION STANDARDS.
- LIMITED CONTROL: LESS DIRECT CONTROL OVER HARDWARE AND CONFIGURATIONS.
- VENDOR LOCK-IN: DEPENDENCY ON ONE PROVIDER MAY COMPLICATE MIGRATION LATER.