

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ ШКОЛА ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Теория групп

Автор: Проверили:

Госткин Евгений Михайлович

Оглавление

1	Понятие группы. Примеры. Циклические группы и их подгруппы.	2
2	Смежные классы по подгруппе, индекс подгруппы. Теорема Лагранжа.	5
3	Гомоморфизмы групп, ядро и образ гомоморфизма. Нормальные подгруппы, фак-	
	торгруппа. Теоремы о гомоморфизмах	6

1 Понятие группы. Примеры. Циклические группы и их подгруппы.

Определение 1.1. $\Gamma pynna$ - множество G с операцией · (умножения), обладающей следующими свойствами:

- 1. $\forall a, b, c \in G : (ab)c = a(bc)$ (ассоциативность);
- 2. $\exists e \in G \ \forall a \in G \ ae = ea = a$ (существование единицы);
- 3. $\forall a \in G \; \exists a^{-1} \in G : aa^{-1} = a^{-1}a = e \; (\text{существование обратного элемента}).$

Определение 1.2. Абелева группа (коммутативная) - $\forall a, b \in G \ ab = ba$.

Определение 1.3. Подгруппа $H \subset G$:

- 1. $\forall a, b \in H \ ab \in H$;
- $2. \ \forall a \in H \ a^{-1} \in H;$
- $3. e \in H$

Определение 1.4. *Группа преобразований* множества X - совокупность G его биективных преобразований, удовлетворяющая следующим условиям:

- 1. $\phi, \psi \in G \Rightarrow \phi \circ \psi \in G$:
- 2. $\phi \in G \Rightarrow \phi^{-1} \in G$;
- 3. $id \in G$ (тождественное).

Определение 1.5. Для любой группы G можно определить cmenehb элемента $g \in G$ с целым показателем:

$$g^{k} = \begin{cases} \underbrace{gg \dots g}, & k > 0 \\ e, & k = 0 \\ \underbrace{g^{-1}g^{-1} \dots g^{-1}}_{k}, & k < 0. \end{cases}$$

Утверждение 1.1. $\forall g \in G \ \forall k, l \in \mathbb{Z} \ g^k g^l = g^{k+l}$

- $1. \ k, l > 0$ очевидно
- 2. k > 0, l < 0, k + l > 0:

$$g^k g^l = \underbrace{gg \dots g}_k \underbrace{g^{-1}g^{-1} \dots g^{-1}}_l = \underbrace{gg \dots g}_{k+l} = g^{k+l}.$$

Остальные случаи рассматриваются аналогично.

Следствие 1.1. $(q^k)^{-1} = q^{-k}$.

Определение 1.6. $\langle g \rangle$ - $uu\kappa nuveckas$ подгруппа, порожденная элементом g - подгруппа степеней элемента $g \in G$ (является подгруппой из определения 1.5, утверждения 1.1 и следствия 1.1)

Определение 1.7. Минимальное $m \in \mathbb{N} : g^m = e$ - *порядок* элемента g, обозначается ord g, если $\nexists m : g^m = e$, то ord $g = \infty$.

Утверждение 1.2. Если ord g = n:

- 1. $g^m = e \Leftrightarrow n|m;$
- $2. \ g^k = g^l \Leftrightarrow k \equiv l \mod n.$

Доказательство. 1. m = qn + r, $0 \leqslant r < n \Rightarrow {}^1g^m = (g^n)^q \cdot g^r = g^r = e \Leftrightarrow r = 0$;

2.
$$q^k = q^l \Leftrightarrow q^{k-l} = e \Leftrightarrow n | (k-l) \Leftrightarrow k \equiv l \mod n$$
.

Следствие 1.2. Если ord g = n, то $|\langle g \rangle| = n$

Определение 1.8. Порядок конечной группы G - количество элементов в ней, т.е. ord G = |G|

Определение 1.9. Группа G называется $\mu u \kappa n u \cdot e c \kappa o u$, если $\exists g \in G : G = \langle g \rangle$. Всякий такой элемент - $nopo x c \partial a o u u u$.

Утверждение 1.3. ord $g = n \Rightarrow \operatorname{ord} g^k = \frac{n}{(n,k)}$

Доказательство. 1. $(n,k) = d, n = n_1 d, k = k_1 d : (n_1,k_1) = 1;$

2.
$$(g^k)^m = e \Leftrightarrow n|km \Leftrightarrow n_1|k_1m \Leftrightarrow n_1|m$$
, откуда ord $g^k = n_1$.

Следствие 1.3. $g^k \in G = \langle g \rangle$ - порождающий $\Leftrightarrow (n,k) = 1$.

Теорема 1.1. Любая бесконечная циклическая группа изоморфна группе \mathbb{Z} , любая конечная циклическая группа порядка n изоморфна \mathbb{Z}_n

Доказательство. 1. $G = \langle g \rangle$, ord $G = \infty \Rightarrow f : \mathbb{Z} \to G, k \mapsto g^k$ - изоморфизм;

2. $G = \langle g \rangle$, ord G = n. Рассмотрим отображение:

$$f: \mathbb{Z}_n \to G, [k] \mapsto g^k \quad k \in \mathbb{Z}$$
 (1)

$$[k] = [l] \Leftrightarrow k \equiv l \mod n \Leftrightarrow g^k = g^l \tag{2}$$

Из 2 следует, что f корректно определено и биективно, f(k+l) = f(k)f(l) получается из утверждения 1.1, откуда f - изоморфизм.

Теорема 1.2. 1. Любая подгруппа циклической группы - циклическая

- 2. В циклической группе порядка n порядок любой подгруппы делит n и $\forall q:q|n\exists !H$ подгруппа порядка q
- Доказательство. 1. $G = \langle g \rangle$ циклическая, H нетривиальная подгруппа G. Если для $m \in \mathbb{N} \exists g^{-m} \in H$, то $g^m \in H$. Пусть m минимальное натуральное число такое, что $g^m \in H$. Докажем, что $H = \langle g^m \rangle$. Пусть $g \in H, k = qm + r, 0 \leqslant r < m$, тогда $g^r = g^k(g^m)^{-q} \in H$, откуда по определению m получается, что r = 0, откуда $g^k = (g^m)^q$.

 $^{^{1}}$ По определению 1.7

²Тривиальная подгруппа, очевидно, циклическая

2. Если |G|=n, то предыдущее рассуждение при $k=n(g^k=e\in H)$ показывает, что n=qm. При этом

$$H = \{e, g^m, g^{2m}, \dots, g^{(q-1)m}\}$$
(3)

и H - единственная подгруппа порядка q в группе G. Обратно, если q|n,n=qm, то подмножество H, определенное уравнением (3) - подгруппа порядка q.

Следствие 1.4. В циклической группе простого порядка любая неединичная подгруппа совпадает со всей группой.

Пример 1.1. $(\mathbb{Z},+)$ - абелева группа по сложению

- $0 \in \mathbb{Z}$ нейтральный элемент, т.к. $\forall a \in \mathbb{Z}a + 0 = 0 + a = a$
- $\forall a \in \mathbb{Z} \ \exists a^{-1} = -a : a + (-a) = (-a) + a = 0$

Пример 1.2. $(\mathbb{Q}^{\times},\cdot)$ - абелева группа по умножению, где $\mathbb{Q}^{\times} = \mathbb{Q} \setminus \{0\}$

- ullet 1 $\in \mathbb{Q}^{ imes}$ нейтральный элемент, т.к. $\forall a \in \mathbb{Q}^{ imes}$ $a \cdot 1 = 1 \cdot a = a$
- $\forall a \in \mathbb{Q}^{\times} \exists a^{-1} = \frac{1}{a} : a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$

Пример 1.3. $GL_n(\mathbb{R})^1$ - группа невырожденных матриц по умножению 3 .

Пример 1.4. $SL_n[\mathbb{R}]^4 \subset GL_n[\mathbb{R}] := \forall A \in SL_n[\mathbb{R}] \det A = 1$

Пример 1.5. $(S_n, \circ)^5$ - группа перестановок элементов вида $\{1, \ldots, n\}$, рассматриваемых как функции $\{1, \ldots, n\} \to S_n$. \circ - операция композиции функций. Является группой, т.к. есть тождественная перестановка и у каждой перестановки есть обратная. Также следует заметить, что S_n подходит под определение 1.4, поэтому можно задать действие S_n на любом конечном множестве.

Пример 1.6. D_{2n} - группа Диэдра - группа симметрий правильного n-угольника A_1, \ldots, A_n , включающая поворот и отражение. Состоит из 2n элементов:

$$\{1, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\},$$

где r - поворот n-угольника на $\frac{2\pi}{n}$, а s - отражение относительно OA_1 , где O - центр фигуры. Таким образом, rs - повернуть и отразить (читаем слева направо, как композиция функций). В частности, $r^n=s^2=1$ и $r^ks=sr^{-k}$.

Пример 1.7. $\{1\}$ - тривиальная группа.

Пример 1.8. В группе \mathbb{Z} любая подгруппа имеет вид $n\mathbb{Z}$, где n>0

¹Название произошло от 'General linear group'.

²Для тех, кто не помнит: матрицы с ненулевым определителем.

 $^{^3}$ Из курса алгема: $\forall A: \det A \neq 0 \Rightarrow \exists A^{-1}: AA^{-1} = A^{-1}A = E$, где E - единичная, и $\det AB = \det A \cdot \det B$.

⁴Название от 'Special linear group', является подгруппой $GL_n(R)$.

⁵Название от 'Symmetric group'.

2 Смежные классы по подгруппе, индекс подгруппы. Теорема Лагранжа.

Определение 2.1. G - группа, $H \subseteq G$ - подгруппа, тогда g_1 и g_2 сравнимы по модулю H, если $g_1 \equiv g_2 \mod G \Leftrightarrow g_1^{-1}g_2 \in H \Leftrightarrow \exists h \in H: g_2 = g_1h$.

Утверждение 2.1. Отношение из определения 2.1 - отношение эквивалентности.

Доказательство. 1. $g \equiv g \mod H : g^{-1}g = e \in H$;

- 2. $g_1 \equiv g_2 \mod H \Rightarrow g_2 \equiv g_1 \mod H : g_2^{-1}g_1 = (g_1^{-1}g_2)^{-1} \in H;$
- 3. $g_1 \equiv g_2 \mod H \land g_2 \equiv g_3 \mod H \Rightarrow g_1 \equiv g_3 \mod H : g_1^{-1}g_2 \in H, g_2^{-1}g_3 \in H : g_1^{-1}g_3 = g_1^{-1}g_2g_2^{-1}g_3 = (g_1^{-1}g_2)(g_2^{-1}g_3) \in H.$

Определение 2.2. Классы эквивалентности $gH = \{gh|h \in H\}$ из определения 2.1 называются левыми смежными классами по подгруппе $H, Hg = \{hg|h \in H\}$ - правыми смежными классами.

Замечание 2.1. $g \mapsto g^{-1}$ - биекция между левыми и правыми смежными классами.

Доказательство.

$$(gH)^{-1} = Hg^{-1}.$$

Утверждение 2.2. $H \subseteq G, \forall a, b \in G \ aH \cap bH \neq \emptyset \Rightarrow b \in aH$.

Доказательство. $\forall a,b \in G \ aH \cap bH \neq \emptyset \Leftrightarrow b^{-1}a \in H \Leftrightarrow aH = bH \Leftrightarrow b \in aH.$

Определение 2.3. Индексом подгруппы H группы G называется число смежных классов G по H, обозначается |G:H|.

Теорема 2.1. (Лагранжа) G - конечная группа, $H \subseteq G \Rightarrow |G| = |G:H|H|$.

- Доказательство. 1. $\forall X = gH \Rightarrow |X| = |H|$ (очевидно, так как в H все элементы различны, gH, полученный умножением всех $h \in H$ на g, имеет ту же мощность, если бы это было не так, получилось бы, что мощность H меньше, чем была).
 - 2. Смежные классы образуют разбиение G на классы эквивалентности, поэтому |G| есть произведение размерности каждого класса эквивалентности (у всех |H|), на их число, т.е. индекс G по H.

Следствие 2.1. Порядок любой подгруппы конечной группы делит порядок группы.

Следствие 2.2. Порядок любого элемента подгруппы конечной группы делит порядок группы.

Доказательство. Вытекает из следствия 2.1 и того, что порядок элемента равен порядку порождаемой им циклической подгруппы.

Следствие 2.3. Всякая конечная группа простого порядка является циклической.

Доказательство. Следствие 2.1 ⇒ такая группа совпадает с циклической подгруппой, порожденной любым элементом, не равным e.

3 Гомоморфизмы групп, ядро и образ гомоморфизма. Нормальные подгруппы, факторгруппа. Теоремы о гомоморфизмах.

Определение 3.1. *Гомоморфизмом* групп (G, \circ) и (H, \cdot) называется такое отображение $\phi: G \to H$, что:

$$\forall a,b \in G \ \phi(a \circ b) = \phi(a) \cdot \phi(b)$$

Определение 3.2. Образом гомоморфизма ϕ называется множество ${\rm Im}\,\phi=\{h\in H|\exists a\in G: \phi(a)=h\}.$

Определение 3.3. Ядром гомоморфизма ϕ называется множество $\operatorname{Ker} \phi = \{g \in G | \phi(g) = e\}.$

Определение 3.4. Подгруппа H группы G называется нормальной, если $\forall g \in G \ gH = Hg$.

Утверждение 3.1. $H \subseteq G, |G:H| = 2 \Rightarrow H \triangleleft G$

Доказательство. G разбивается на левые смежные классы eH=H и $G\setminus H$, и аналогично на правые He=H и $G\setminus H$, соответственно:

1.
$$g \in H \Rightarrow gH = Hg = H$$

2.
$$g \in G \setminus H \Rightarrow gH = G \setminus H = Hg$$

Утверждение 3.2. $H_1 \triangleleft G \land H_2 \triangleleft G \Rightarrow H_1 \cap H_2 \triangleleft G$

Доказательство. 1. $H_1 \cap H_2$, очевидно, подгруппа G;

2. Докажем, что $\forall g \in Gg^{-1}(H_1 \cap H_2)g = H_1 \cap H_2$: kek