ASTC: The Future of Texture Compression

Tom Olson

Director, Graphics Research - ARM, Ltd

Chair, OpenGL® ES™ Working Group - Khronos

Outline

Why texture compression matters

Texture compression today

Introducing ASTC

- Features
- Quality
- Access

Graphics: It's all about the textures

But there's a problem...

- Memory footprint and bandwidth
- Performance and power

We need texture compression!

What kind of compression system do we need?

Textures are used for many different things:

Reflectance

Gloss, Height, etc

Normals

Illuminance

Lighting environment

3D Properties

Each use has its own requirements

- Number of color components
- Dynamic range (LDR vs HDR)
- Dimensionality (2D vs 3D)
- Quality (≈ bit rate)

Microsoft® DirectX®

Imagination Technologies® PVRTC™

OpenGL® ES™ 3.0

Putting them all together

Compression Today: Observations

What a mess!

- Horribly fragmented
- Many formats are proprietary
- Must recondition / requalify assets for every format

Where's my use case?

- Only one low-bit-rate format (PVRTC RGB/RGBA, 2bpp)
- Only one HDR format (RGB, 8bpp)
- Poor support for I and 2 channel images
- Very coarse quality / size tradeoff

Introducing ASTC

Adaptive Scalable Texture Compression

- Created by ARM in response to a Khronos competition
- ...with a valuable technical contribution from AMD

Functionality

- Scalable bit rate: 8bpp down to <1bpp in fine steps</p>
- Orthogonal choice of base format (L, LA, RGB, RGBA)
- Both LDR and HDR pixel formats
- Both 2D and 3D textures
- Very high quality

ASTC Compression 8bpp 3.56bpp

2bpp

ASTC Bit Rates

Block-based paradigm generalized to 3D

Fixed block size of 128 bits

Bit rate determined by block size

2D Bit Rates				3D Bit Rates			
4x4	8.00 bpp	10×5	2.56 bpp	3x3x3	4.74 bpp	5x5x4	1.28 bpp
5×4	6.40 bpp	10×6	2.13 bpp	4x3x3	3.56 bpp	5×5×5	1.02 bpp
5×5	5.12 bpp	8×8	2.00 bpp	4x4x3	2.67 bpp	6x5x5	0.85 bpp
6×5	4.27 bpp	10×8	1.60 bpp	4x4x4	2.00 bpp	6x6x5	0.71 bpp
6×6	3.56 bpp	10×10	1.28 bpp	5x4x4	1.60 bpp	6x6x6	0.59 bpp
8×5	3.20 bpp	12×10	1.07 bpp				
8x6	2.67 bpp	12×12	0.89 bpp				

Putting it all together

All current 2D LDR formats

Compression Today (HDR)

All current HDR formats

Compression Today (HDR)

Compression Today (3D)

NVIDIA VTC

Compression Today (3D LDR)

Quality Comparison – RGB LDR 2bpp

24 natural images

ASTC vs PVRTC at 2bpp

Quality Comparison – RGB LDR medium bit rate

24 natural images

ASTC 3.56 bpp vs S3TC (DXTI) at 4bpp

Quality Comparison – RGB LDR medium bit rate

24 natural images

ASTC vs BC7 at 8bpp

Quality Comparison – RGB HDR high bit rate

Selected OpenEXR example images

ASTC vs BC6H at 8bpp

Quality Comparison – Images

DIFFUSE MAP

NORMAL MAP

Assets from ARM Trueforce demo

Quality Comparison – diffuse map, low bit rate

ASTC at 2.0 bpp vs PVRTC at 2 bpp

4.3 dB PSNR advantage

Quality Comparison – diffuse map, medium bit rate

ASTC at 3.56 bpp vs S3TC at 4 bpp

2.8 dB PSNR advantage

Quality Comparison – normal map

ASTC at 3.56 bpp vs S3TC at 4 bpp

3-component normals

Quality Comparison – normal map

ASTC at 3.56 bpp vs PVRTC at 4 bpp

3-component vs 2-component normals

Support – Documentation and Tools

How and why it works

Nystad et al, Adaptive Scalable Texture Compression, Proc. HPG 2012

Evaluation codec (source)

http://www.malideveloper.com/ and navigate to "tools"

Now supported across the Mali development tool chain

- Mali Texture Compression Tool
- Mali OpenGL ES 3.0 Emulator

Support - Standards

ASTC 2D-LDR subset defined to promote fast adoption

- No 3D, no HDR
- Pure subset fully compatible with a full ASTC decoder

ASTC LDR extension approved by The Khronos Group

- KHR texture compression astc Idr
- Defined for both OpenGL® and OpenGL ES™

Support - Hardware

ASTC will be supported in all upcoming ARM GPUs

Currently available in

- ARM Mali-T624 and Mali-T628
- ARM Mali-T678

Partner silicon is on the way!

Questions

How texture compression works

Image is divided into blocks

E.g. 4x4 pixels

Encode blocks as bit strings

- Fixed length, e.g. 64 bits / block
- Fixed rate, lossy encoding
- Bpp = bits per block / pix per block
- Constant-time random access

Everybody does this

DXTn, RGTC, BC7, PVRTC (sort of)...

A universal tool

Reflectance

Gloss, Height, etc

Normals

Everything else

Lighting environment

Graphics: It's all about the textures

