Interpretable Machine Learning

Linear Regression Model

Learning goals

- Interpretation of main effects in LM
- Inclusion of high-order and interaction effects
- Regularization via LASSO

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- $\bullet \ \epsilon \hbox{: remaining error / residual (e.g., due to noise)}$
- θ_j : weight of input feature x_j (with intercept θ_0) \rightarrow model consists of p+1 weights

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- \bullet ϵ : remaining error / residual (e.g., due to noise)
- θ_j: weight of input feature x_j (with intercept θ₀)
 → model consists of p + 1 weights

Properties and assumptions ► Faraway (2002), Ch. 7 ► Checking assumptions in R & Python

Linear relationship between features and target

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- v: target / output
- ϵ : remaining error / residual (e.g., due to noise)
- θ_i : weight of input feature x_i (with intercept θ_0) \rightsquigarrow model consists of p+1 weights

300 200 > 100

Properties and assumptions Faraway (2002), Ch. 7

► Checking assumptions in R & Python

400

- Linear relationship between features and target
- ϵ and $y|\mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic)

$$ightarrow \epsilon \sim \textit{N}(0, \sigma^2) \ \Rightarrow \ (\textit{y}|\textbf{x}) \sim \textit{N}(\textbf{x}^{\top}\theta, \sigma^2)$$

→ if violated, inference-based metrics (e.g., p-values) are invalid

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- y: target / output
- ϵ : remaining error / residual (e.g., due to noise)
- θ_j: weight of input feature x_j (with intercept θ₀)
 → model consists of p + 1 weights

Properties and assumptions Faraway (2002), Ch. 7 Checking assumptions in R & Python

- Linear relationship between features and target
- ϵ and $y|\mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic) $\rightarrow \epsilon \sim N(0, \sigma^2) \Rightarrow (y|\mathbf{x}) \sim N(\mathbf{x}^\top \theta, \sigma^2)$
 - → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- v: target / output
- ϵ : remaining error / residual (e.g., due to noise)
- θ_i : weight of input feature x_i (with intercept θ_0) \rightsquigarrow model consists of p+1 weights

Properties and assumptions Faraway (2002), Ch. 7 Checking assumptions in R & Python

- Linear relationship between features and target
- ϵ and $y|\mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic) $\sim \epsilon \sim N(0, \sigma^2) \Rightarrow (\mathbf{v}|\mathbf{x}) \sim N(\mathbf{x}^{\top}\theta, \sigma^2)$
 - → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)
- Independence of features x_i with error term ϵ

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \boldsymbol{\theta} + \epsilon$$

- v: target / output
- ϵ : remaining error / residual (e.g., due to noise)
- θ_i : weight of input feature x_i (with intercept θ_0) \rightsquigarrow model consists of p+1 weights

Properties and assumptions ► Faraway (2002), Ch. 7 ► Checking assumptions in R & Python

- Linear relationship between features and target
- ϵ and $y|\mathbf{x}$ are **normally** distributed with **constant variance** (homoscedastic) $\sim \epsilon \sim N(0, \sigma^2) \Rightarrow (\mathbf{v}|\mathbf{x}) \sim N(\mathbf{x}^{\top}\theta, \sigma^2)$
 - → if violated, inference-based metrics (e.g., p-values) are invalid
- Independence of observations (e.g., no repeated measurements)
- Independence of features x_i with error term ϵ
- No or little multicollinearity (i.e., no strong feature correlations)

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_\rho x_\rho + \epsilon = \mathbf{x}^\top \theta + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

• **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (c.p.) (*ceteris paribus* means "everything else held constant".)

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_\rho x_\rho + \epsilon = \mathbf{x}^\top \theta + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

- **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (c.p.) (*ceteris paribus* means "everything else held constant".)
- **Binary** x_j : Weight θ_j is active or not (multiplication with 1 or 0) where 0 is reference category

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_\rho x_\rho + \epsilon = \mathbf{x}^\top \theta + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

- **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (c.p.) (*ceteris paribus* means "everything else held constant".)
- **Binary** x_j : Weight θ_j is active or not (multiplication with 1 or 0) where 0 is reference category
- Categorical x_j with L categories: Create
 L − 1 one-hot-encoded features x_{j,1},..., x_{j,L−1}
 (each having its own weight), left out category
 is reference (ê dummy encoding)

 → Interpretation: Outcome changes by θ_{j,l} for
 category I compared to reference cat., c.p.

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^\top \theta + \epsilon$$

Interpretation of weights (**feature effects**) depend on type of feature:

- **Numerical** x_j : Increasing x_j by one unit changes outcome by θ_j , ceteris paribus (c.p.) (*ceteris paribus* means "everything else held constant".)
- **Binary** x_j : Weight θ_j is active or not (multiplication with 1 or 0) where 0 is reference category
- Intercept θ_0 : Expected outcome if all feature values are set to 0

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon = \mathbf{x}^{\top} \theta + \epsilon$$

Feature importance:

• Absolute **t-statistic** value: $\hat{\theta}_j$ scaled with its standard error $(SE(\hat{\theta}_j) \triangleq \text{reliability of the estimate})$

$$|t_{\hat{ heta}_j}| = \left|rac{\hat{ heta}_j}{ extsf{SE}(\hat{ heta}_j)}
ight|$$

- High values indicate important (i.e. significant) features
- p-value: probability of obtaining a test statistic that is more extreme (values that speak against H₀) as the test statistic computed from the sample, assuming H₀ is correct.
- The smaller the p-value, the less likely it is to obtain a more extreme test statistic.

Bike data: predict number of rented bikes using 4 numeric and 1 categorical feature (season)

$\hat{y} = \hat{ heta}_0 + \hat{ heta}_1 \mathbb{1}_{x_{season} = SPRING} + \hat{ heta}_2 \mathbb{1}_{x_{season} = SUMMER}$
$\hat{ heta}_3\mathbb{1}_{ extit{X}_{season}= extit{FALL}}+\hat{ heta}_4 extit{X}_{temp}+\hat{ heta}_5 extit{X}_{hum}+$
$\hat{ heta}_6 extit{x}_{ extit{windspeed}} + \hat{ heta}_7 extit{x}_{ extit{days_since_2011}}$

		Weights	SE	t-stat.	p-val.
	(Intercept)	3229.3	220.6	14.6	0.00
-	seasonSPRING	862.0	129.0	6.7	0.00
	seasonSUMMER	41.6	170.2	0.2	0.81
	seasonFALL	390.1	116.6	3.3	0.00
	temp	120.5	7.3	16.5	0.00
	hum	-31.1	2.6	-12.1	0.00
	windspeed	-56.9	7.1	-8.0	0.00
	days_since_2011	4.9	0.2	26.9	0.00

Bike data: predict number of rented bikes using 4 numeric and 1 categorical feature (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \hat{\theta}_5 x_{hum} + \\ & \hat{\theta}_6 x_{windspeed} + \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00
	seasonSPRING seasonSUMMER seasonFALL temp hum windspeed	(Intercept) 3229.3 seasonSPRING 862.0 seasonSUMMER 41.6 seasonFALL 390.1 temp 120.5 hum -31.1 windspeed -56.9	(Intercept) 3229.3 220.6 seasonSPRING 862.0 129.0 seasonSUMMER 41.6 170.2 seasonFALL 390.1 116.6 temp 120.5 7.3 hum -31.1 2.6 windspeed -56.9 7.1	(Intercept) 3229.3 220.6 14.6 seasonSPRING 862.0 129.0 6.7 seasonSUMMER 41.6 170.2 0.2 seasonFALL 390.1 116.6 3.3 temp 120.5 7.3 16.5 hum -31.1 2.6 -12.1 windspeed -56.9 7.1 -8.0

• Interpretation intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$

Bike data: predict number of rented bikes using 4 numeric and 1 categorical feature (season)

$$\begin{split} \hat{y} = & \hat{\theta}_0 + \hat{\theta}_1 \mathbb{1}_{x_{season} = SPRING} + \hat{\theta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ & \hat{\theta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{\theta}_4 x_{temp} + \hat{\theta}_5 x_{hum} + \\ & \hat{\theta}_6 x_{windspeed} + \hat{\theta}_7 x_{days_since_2011} \end{split}$$

	Weights	SE	t-stat.	p-val.
(Intercept)	3229.3	220.6	14.6	0.00
seasonSPRING	862.0	129.0	6.7	0.00
seasonSUMMER	41.6	170.2	0.2	0.81
seasonFALL	390.1	116.6	3.3	0.00
temp	120.5	7.3	16.5	0.00
hum	-31.1	2.6	-12.1	0.00
windspeed	-56.9	7.1	-8.0	0.00
days_since_2011	4.9	0.2	26.9	0.00

- Interpretation intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$
- Interpretation categorical: Rentals in SPRING are by $\hat{\theta}_1=$ 862 higher than in WINTER, c.p.

Bike data: predict number of rented bikes using 4 numeric and 1 categorical feature (season)

$\hat{y} = \hat{ heta}_0 + \hat{ heta}_1 \mathbb{1}_{x_{season} = SPRING} + \hat{ heta}_2 \mathbb{1}_{x_{season} = SUMMER} + \\ \hat{ heta}_3 \mathbb{1}_{x_{season} = FALL} + \hat{ heta}_4 x_{temp} + \hat{ heta}_5 x_{hum} +$	(Interce seasonSPRII seasonSUMM seasonFA
$\hat{ heta}_{ extsf{6}} extsf{x}_{ extsf{windspeed}}+\hat{ heta}_{ extsf{7}} extsf{x}_{ extsf{days_since_2011}}$	te
64winaspeed 674days_since_2011	h
	windspe
	_days_since_20

		Weights	SE	t-stat.	p-val.
	(Intercept)	3229.3	220.6	14.6	0.00
-	seasonSPRING	862.0	129.0	6.7	0.00
	seasonSUMMER	41.6	170.2	0.2	0.81
	seasonFALL	390.1	116.6	3.3	0.00
	temp	120.5	7.3	16.5	0.00
	hum	-31.1	2.6	-12.1	0.00
	windspeed	-56.9	7.1	-8.0	0.00
	days_since_2011	4.9	0.2	26.9	0.00

- Interpretation intercept: If all feature values are 0 (and season is WINTER $\hat{=}$ reference cat.), the expected number of bike rentals is $\hat{\theta}_0 = 3229.3$
- Interpretation categorical: Rentals in SPRING are by $\hat{\theta}_1 = 862$ higher than in WINTER, c.p.
- Interpretation numerical: Rentals increase by $\hat{\theta}_4 = 120.5$ if temp increases by 1 °C, c.p.

LINEAR REGRESSION - INTERACTION AND HIGH-ORDER EFFECTS

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon$$

Equation above can be extended (polynomial regression) by including

- high-order effects which have their own weights \sim e.g., quadratic effect: $\theta_{x_i^2} \cdot x_j^2$
- interaction effects as the product of multiple feat.

		•	
 2-way	interaction:	θ_{x_i,x_i}	$\cdot x_i \cdot x_j$

Bike Data				
Method	R^2	adj. <i>R</i> ²		
Simple LM	0.85	0.84		
Higher-order	0.87	0.87		
Interaction	0.96	0.93		

LINEAR REGRESSION - INTERACTION AND HIGH-ORDER EFFECTS

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_p x_p + \epsilon$$

Equation above can be extended (polynomial regression) by including

- high-order effects which have their own weights
 - \rightsquigarrow e.g., quadratic effect: $\theta_{x_j^2} \cdot x_j^2$
- interaction effects as the product of multiple feat.

$$\rightarrow$$
 e.g., 2-way interaction: $\theta_{x_i,x_i} \cdot x_i \cdot x_i$

Implications	of including	high-order	and interaction	effects:
mphoations	or morading	ingii olaci	and intoraction	CHOOLO.

- Both make the model more flexible but also less interpretable
 More weights to interpret
- Both need to be specified manually (inconvenient and sometimes infeasible)
 Other ML models learn them often automatically
- Marginal effect of a feature cannot be interpreted by single weights anymore
 → Feature x_i occurs multiple times (with different weights) in equation

Example: Interaction between temp and season will affect marginal effect of temp

	Weights
(Intercept)	3453.9
seasonSPRING	1317.0
seasonSUMMER	4894.1
seasonFALL	-114.2
temp	160.5
hum	-37.6
windspeed	-61.9
days_since_2011	4.9
seasonSPRING:temp	-50.7
seasonSUMMER:temp	-222.0
seasonFALL:temp	27.2

Example: Interaction between temp and season will affect marginal effect of temp

		Weights
	(Intercept)	3453.9
	seasonSPRING	1317.0
	seasonSUMMER	4894.1
	seasonFALL	-114.2
₹	temp	160.5
	hum	-37.6
	windspeed	-61.9
	days_since_2011	4.9
	seasonSPRING:temp	-50.7
	seasonSUMMER:temp	-222.0
	seasonFALL:temp	27.2

Interpretation: If temp increases by 1 °C, bike rentals

• increase by 160.5 in WINTER (reference)

Example: Interaction between temp and season will affect marginal effect of temp

		Weights
	(Intercept)	3453.9
	seasonSPRING	1317.0
	seasonSUMMER	4894.1
	seasonFALL	-114.2
2	temp	160.5
	hum	-37.6
	windspeed	-61.9
	days_since_2011	4.9
	seasonSPRING:temp	-50.7
	seasonSUMMER:temp	-222.0
	seasonFALL:temp	27.2

Interpretation: If temp increases by 1 °C, bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING

Example: Interaction between temp and season will affect marginal effect of temp

	ě .	•
		Weights
	(Intercept)	3453.9
	seasonSPRING	1317.0
	seasonSUMMER	4894.1
	seasonFALL	-114.2
3	temp	160.5
	hum	-37.6
	windspeed	-61.9
	days_since_2011	4.9
	seasonSPRING:temp	-50.7
	seasonSUMMER:temp	-222.0
	seasonFALL:temp	27.2

Interpretation: If temp increases by 1 °C, bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING
- decrease by -61.5 (= 160.5 222) in SUMMER

Example: Interaction between temp and season will affect marginal effect of temp

	Weights
(Intercept)	3453.9
seasonSPRING	1317.0
seasonSUMMER	4894.1
seasonFALL	-114.2
temp	160.5
hum	-37.6
windspeed	-61.9
days_since_2011	4.9
seasonSPRING:temp	-50.7
seasonSUMMER:temp	-222.0
seasonFALL:temp	27.2

Interpretation: If temp increases by 1 °C, bike rentals

- increase by 160.5 in WINTER (reference)
- increase by 109.8 (= 160.5 50.7) in SPRING
- decrease by -61.5 (= 160.5 222) in SUMMER
- increase by 187.7 (= 160.5 + 27.2) in FALL

EXAMPLE: LINEAR REGRESSION - QUADRATIC EFFECT

Example: Adding quadratic effect for temp

 \leadsto temp depends on two weights:

 $280.2 \cdot x_{temp} - 5.6 \cdot x_{temp}^2$

	Weights
(Intercept)	3094.1
seasonSPRING	619.2
seasonSUMMER	284.6
seasonFALL	123.1
hum	-36.4
windspeed	-65.7
days_since_2011	4.7
temp	280.2
temp ²	-5.6

EXAMPLE: LINEAR REGRESSION - QUADRATIC EFFECT

Example: Adding quadratic effect for temp (left) and an interaction with season (right)

Interpretat	ion : Not	linear	anymore!	
-------------	------------------	--------	----------	--

→ temp depends on multiple weights due to season:

→ WINTER: $39.1 \cdot x_{temp} + 8.6 \cdot x_{temp}^2$ → SPRING: $(39.1+407.4) \cdot x_{temp} + (8.6-18.7) \cdot x_{temp}^2$ → SUMMER: $(39.1+801.1) \cdot x_{temp} + (8.6-27.2) \cdot x_{temp}^2$

 \rightarrow FALL: (39.1+217.4) $\cdot x_{temp} + (8.6-11.3) \cdot x_{temp}^2$

	Weights
(Intercept)	3802.1
seasonSPRING	-1345.1
seasonSUMMER	-6006.3
seasonFALL	-681.4
hum	-38.9
windspeed	-64.1
days_since_2011	4.8
temp	39.1
temp ²	8.6
seasonSPRING:temp	407.4
seasonSPRING:temp ²	-18.7
seasonSUMMER:temp	801.1
seasonSUMMER:temp ²	-27.2
seasonFALL:temp	217.4
seasonFALL:temp ²	-11.3

REGULARIZATION VIA LASSO Tibshirani (1996)

- LASSO adds an L₁-norm penalization term $(\lambda ||\theta||_1)$
 - → Shrinks some feature weights to zero (feature selection)
 - → Sparser models (fewer features): more interpretable
- Penalization parameter λ must be chosen (e.g., by CV)

$$\min_{\theta} \left(\underbrace{\frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \mathbf{x}^{(i)^{\top}} \theta)^{2}}_{\text{Least square estimate for LM}} + \lambda ||\theta||_{1} \right)$$

REGULARIZATION VIA LASSO • Tibshirani (1996)

Example (interpretation of weights analogous to LM):

- LASSO with main effects and interaction temp with season
- λ is chosen such that 6 features are selected (not zero)
- For categorical features, LASSO shrinks weights of single categories separately (due to dummy encoding)
 - No feature selection of whole categorical features
 - → Solution: group LASSO Yuan and Lin (2006)

	vveignts
(Intercept)	3135.2
seasonSPRING	767.4
seasonSUMMER	0.0
seasonFALL	0.0
temp	116.7
hum	-28.9
windspeed	-50.5
days_since_2011	4.8
seasonSPRING:temp	0.0
seasonSUMMER:temp	0.0
seasonFALL:temp	30.2

Mojahta

