國立臺灣大學資訊管理學系研究所 資料探勘 小組作業二

基於MLP、CNN、AlexNet神經網路 之CIFAR-10圖像辨識準確度比較

第二組

蘇達立、蕭溥辰、王辰豪

中華民國 109 年 05 月 05 日

目錄

目錄		1
壹、	作業概述	2
煮、	研究動機與目的	2
參、	資料集	2
肆、	實驗方法	3
伍、	實驗結果與分析	5
陸、	結論	8
迮.	粉 鑫	q

壹、作業概述

在本次作業中我們採用三種分類方法,分別是MLP(一般Neural Network)、CNN、AlexNet,對CIFAR-10 datasets做圖像辨識,比較在相同datasets下,套用三種神經網路後的Accuracy、Precision、Recall和F1-score。

貳、研究動機與目的

基於課堂上Neural Network分類圖像的理論所學,我們想針對該理論進行程式碼的實作,了解如何將圖像datasets放入Neural Network model進行訓練和測試,最後根據實作結果知道各種Neural Network model的分類準確率之優劣。因為CIFAR-10在分類問題上,是相當知名的問題,且具有充足和乾淨的資料集,因此,在本次作業中,我們以CIFAR-10圖像辨識來當作我們本次作業的題目。

參、資料集

在本次研究中,我們是採用CIFAR-10 dataset作為實驗的資料集,如圖一所示,其包含60000筆32x32x3的RGB照片,總共有10個class,每個class都有6000筆照片,我們將資料集其中40000筆照片來做training,10000筆來做validation,10000筆來做testing。

(圖一) CIFAR-10 Datasets

肆、實驗方法

我們在將datasets放入model訓練前,採用兩個preprocessing方式,第一 是進行one-hot encoding,我們將每筆資料的label轉換成長度為10的List來表示 . 以1、0表示原始label值. 讓程式可以更好的去理解及運算。第二是調整圖片的 位元值,將每張圖片的位元數除以255,讓原本介於0到255的位元數,調整至介 於0到1之間,方便model進行training和testing。

當資料preprocessing完後,我們先將40000筆data放入三種不同的 model(MLP、CNN、AlexNet)進行training,三種model的神經網路架構如圖二到 圖四所示. 並用10000筆data進行驗證. 最後再用10000筆data測試三種model的 辨識準確率。

Model: "sequential 3"

Layer (type)	Output Shape	Param #
flatten_3 (Flatten)	(None, 3072)	0
dense_7 (Dense)	(None, 1024)	3146752
dense_8 (Dense)	(None, 10)	10250

Total params: 3,157,002 Trainable params: 3,157,002 Non-trainable params: 0

(圖二) MLP 神經網路架構

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	32, 32, 32)	896
dropout_1 (Dropout)	(None,	32, 32, 32)	0
max_pooling2d_1 (MaxPooling2	(None,	16, 16, 32)	0
conv2d_2 (Conv2D)	(None,	16, 16, 64)	18496
dropout_2 (Dropout)	(None,	16, 16, 64)	0
max_pooling2d_2 (MaxPooling2	(None,	8, 8, 64)	0
flatten_1 (Flatten)	(None,	4096)	0
dropout_3 (Dropout)	(None,	4096)	0
dense_1 (Dense)	(None,	1024)	4195328
dropout_4 (Dropout)	(None,	1024)	0
dense_2 (Dense)	(None,	10)	10250

Total params: 4,224,970
Trainable params: 4,224,970
Non-trainable params: 0

(圖三) CNN 神經網路架構

Layer (type)	Output	Shape	Param #
input_1 (InputLayer)	(None,	32, 32, 3)	0
conv2d_1 (Conv2D)	(None,	8, 8, 96)	34944
max_pooling2d_1 (MaxPooling2	(None,	4, 4, 96)	0
conv2d_2 (Conv2D)	(None,	4, 4, 256)	614656
max_pooling2d_2 (MaxPooling2	(None,	2, 2, 256)	0
conv2d_3 (Conv2D)	(None,	2, 2, 384)	885120
conv2d_4 (Conv2D)	(None,	2, 2, 384)	1327488
conv2d_5 (Conv2D)	(None,	2, 2, 256)	884992
max_pooling2d_3 (MaxPooling2	(None,	1, 1, 256)	0
flatten_1 (Flatten)	(None,	256)	0
dense_1 (Dense)	(None,	4096)	1052672
dropout_1 (Dropout)	(None,	4096)	0
dense_2 (Dense)	(None,	4096)	16781312
dropout_2 (Dropout)	(None,	4096)	0
dense 3 (Dense)	(None,	10)	40970

Total params: 21,622,154
Trainable params: 21,622,154
Non-trainable params: 0

(圖四) AlexNet 神經網路架構

伍、實驗結果與分析

(1) MLP:

MLP model在training時,如圖五所示,其accuracy隨著訓練的次數增加而穩定上升,最後達到約0.5,loss則是隨著訓練的次數增加而穩定下降,最後達到約1.485;而在validation時,其accuracy則是隨著訓練的次數增加而穩定上升,最後達到約0.45,loss則是隨著訓練的次數增加而下降,最後達到約1.48。根據Confusion matrix的結果,如圖六所示,MLP預測的結果在class 8的表現最佳,正確率為620/1000。

MLP model的testing結果,如表一所示,Accuracy平均為0.51, Precision平均為0.52,Recall平均為0.52,F1平均為0.51。

	Accuracy	Precision	Recall	F1
Average	0.51	0.52	0.52	0.51

(表一) MLP testing result

(圖五) MLP training result

predict	0	1	2	3	4	5	6	7	8	9
label										
0	577	35	36	26	24	23	26	35	149	69
1	45	577	11	30	14	32	26	26	72	167
2	115	32	315	104	100	89	130	51	32	32
3	43	33	73	376	34	183	108	41	33	76
4	81	26	135	75	337	67	146	78	29	26
5	33	26	76	238	49	349	88	68	37	36
6	16	22	67	124	80	65	546	30	22	28
7	52	36	50	90	72	82	45	464	22	87
8	120	76	9	35	15	21	11	10	620	83
9	52	166	7	42	11	23	30	34	68	567

(圖六) MLP Confusion matrix

(2) CNN:

CNN model在training時,如圖七所示,其accuracy隨著訓練的次數增加而穩定上升,最後達到約0.95,loss則是隨著訓練的次數增加而穩定下降,最後達到約0.12;而在validation時,其accuracy在epoch 8以後達到0.73並趨於穩定,loss也是在epoch 8以後,便沒有顯著下降,穩定在0.78到0.85之間。根據Confusion matrix的結果,如圖八所示,CNN預測的結果在class 1的表現最佳,正確率為845/1000。

CNN model的testing結果,如表二所示,Accuracy平均為0.7350, Precision平均為0.74,Recall平均為0.74,F1平均為0.74。

	Accuracy	Precision	Recall	F1
Average	0.7350	0.74	0.74	0.74

(表二) CNN testing result

(圖七) CNN training result

predict label	0	1	2	3	4	5	6	7	8	9
0	786	14	52	18	22	8	4	17	48	31
1	19	845	6	12	3	5	5	4	21	80
2	57	3	664	51	97	46	39	31	4	8
3	28	6	78	565	55	158	58	38	4	10
4	21	3	69	65	697	38	31	68	7	1
5	11	2	55	197	48	602	21	56	4	4
6	5	6	58	67	42	25	782	11	1	3
7	11	3	24	42	57	42	3	812	1	5
8	59	35	19	19	12	8	11	6	806	25
9	32	79	14	14	3	7	8	30	22	791

(圖八) CNN Confusion matrix

(3) AlexNet:

AlexNet model在training時,如圖九所示,其accuracy隨著訓練的次數增加而穩定上升,最後達到約0.99,loss則是隨著訓練的次數增加而穩定下降,最後達到約0.01;而在validation時,其accuracy在epoch 32達到0.7並趨於穩定,loss則是隨著訓練的次數增加先逐漸下降,在epoch 40以後逐漸上升,最後達到約2.03。根據Confusion matrix的結果,如圖十所示,AlexNet預測的結果在class 8的表現最佳,正確率為821/1000。

AlexNet model的testing結果,如表三所示,Accuracy平均為0.7006, Precision平均為0.7,Recall平均為0.7,F1平均為0.7。

	Accuracy	Precision	Recall	F1-score
Average	0.7006	0.7	0.7	0.7

(表三) AlexNet testing result

(圖九) AlexNet training result

predict label	0	1	2	3	4	5	6	7	8	9
0	814	18	36	7	14	6	10	15	54	26
1	32	775	10	8	2	8	8	5	26	126
2	81	9	592	71	66	54	69	35	12	11
3	29	19	52	500	47	187	78	48	17	23
4	40	5	92	66	567	47	74	87	9	13
5	19	5	50	185	49	561	39	70	12	10
6	9	8	41	56	30	34	799	8	7	8
7	23	1	16	41	40	58	8	793	5	15
8	75	25	9	12	9	13	2	3	821	31
9	51	69	10	16	7	8	11	17	27	784

(圖十) AlexNet Confusion matrix

陸、結論

根據CIFAR-10 datasets套用MLP、CNN、AlexNet這三種神經網路模型進行訓練和測試後的數據結果我們發現,如圖十一所示,根據比較三者的Accuracy、

Precision、Recall和F1-score後,其中Accuracy是以CNN的表現最佳,Precision是以CNN的表現最佳,Recall是以CNN的表現最佳,F1-score是以CNN的表現最佳。

因此綜合這四項指標後我們的結論是,CIFAR-10 datasets採用CNN的神經網路模型會有最佳的辨識表現。

(圖十一) Testing Result BarChart

柒、附錄

- The CIFAR-10 dataset
 https://www.cs.toronto.edu/~kriz/cifar.html?fbclid=lwAR0K2U1dW8NB_Txvng
 ThEy6qTsxQMFHcmHv1YmPMj1qwu2cTALqB5r0KPLq
- 2. MLP_MODEL "tensorflow+keras深度學習人工智慧實務應用"
- 3. CNN model參考資料 http://yhhuang1966.blogspot.com/2018/04/keras-cnn-cifar-10.html
- 4. AlexNet model參考資料 https://blog.csdn.net/bryant_meng/article/details/86527282
- 5. CNN、AlexNet程式碼實作 https://github.com/ionathanaa/data_mining_ntu/tree/master/hw2