Dynamic integrative bargaining

Mehmet Eckmekci and Jack Fanning*

Boston College and Brown University

May 14, 2025

Original motivation: US congress fails to pass popular bills

- Popular measures often delayed if parties differ on intensity of support
 - e.g. Legal protection for "Dreamers": 84% Democrats and 69% Republicans support vs 8% and 24% opposed.
- ► Held up by low value party for leverage in some future "grand bargain"
 - ▶ Logrolling: Traded in exchange for support on other issues

Logrolling: form of integrative bargaining

- ▶ Static benefits from negotiating different issues together vs separately
 - Give both sides more of what they value: "I'll roll your log if you roll mine"
- ▶ 2 issues units of "pie" (or fruit) for which players have different values
- ▶ Issue A=Apple. Issue B=Banana (1 unit of each)
 - ▶ P1 get 3 utils/unit of Apple, 1 util/unit of Banana
 - P2 get 1 utils/unit of Apple, 3 util/unit of Banana
- Logrolling: all Apple for P1, all Banana for P2 ≻_i equal split by issue (1/2 unit of each fruit)

But incentives for delay?

- New issues arrive (stochastically) over time...
- ▶ P2 may refuse to divide available Apple until Banana arrives
 - ► Apple is useful leverage: o/w P1 might later demand 1/2 Banana
 - Can't commit to future divisions

Inefficiency even without delay

- An immediate division of the Apple must compensate players for giving up benefit of delay (leverage)
 - P2 must receive more than half because he values it less!
- ▶ If 1st issue to arrive equally likely to be A or B then P1+P2 may lose in expectation
 - Efficiency: player 1 gets all of any Apple whenever it arrives, while player 2 gets all of any Banana

Can we do better?

- Are alternative institutional arrangements limiting logrolling more efficient?
 - ▶ Independent committees: dissimilar issues negotiated separately
 - Stop searching: for new issues until reach agreement on current issue
 - Contrary to typical negotiation advice: always search for more surplus "grow the pie"
 - ▶ What if search is endogenous choice?

Contributions/results

- 1. Develop general model of integrative bargaining and search
- 2. Explain delay: hold up issues opponent cares about for future leverage
- 3. Highlight important source of inefficiency: get small shares on valuable issues
 - Expanding issues' utility sets or making new issues arrive faster can decrease everyone's payoff
- 4. Justification for independent committees (prevent logrolling): higher payoffs if new issues arrives slowly
- Stopping search during negotiations even better: can increase payoffs (even if new issues arrive fast): contrary to typical advice
- 6. Endogenous search: strong incentives for all to search even if bad equilibrium payoff effects

Literature:

- ► Partial agreements with delayed arrival: *Most related* Acharya and Ortner (2013)
- ▶ **Agenda setting:** Simultaneous, Separate, Sequential Busch and Horstmann (1997), Inderst (2000)
- ► Logrolling relaxes informational constraints: Jackson et al. (2024)
- ▶ **Vote trading and storage:** Casella (2005), Casella and Macé (2021)
- ▶ Other perspectives on integration: Fisher and Ury (1981), Raiffa (1982), Chang et al. (2024)

- ▶ Players i = 1, 2 interact in periods n = 0, 1, 2, ..., period length Δ
- Finite set of issue types Θ
 - Issue of type θ associated with compact, convex utility possibility set U^{θ}

- ▶ Players i = 1, 2 interact in periods n = 0, 1, 2, ..., period length Δ
- ightharpoonup Finite set of issue types Θ
 - Issue of type θ associated with compact, convex utility possibility set U^{θ}
- In *finite issue* game state $\omega \in \Omega$ records number of currently available issues of each type, and number of past issues
 - Game starts in ω_0 with no past or current issues

- **Bargaining Stage:** at start of period (of length Δ), each player selected as proposer w. prob 1/2 iid
 - Simple offer: subset C of currently available issues and feasible utilities u
 - Other player accepts or rejects
 - $u \in \sum_{c \in C} U^{\theta_c}$ where θ_c is type of issue c
 - ► No transferable utility or contingent contracts
 - Randomized offer: randomize over simple offers if accepted
 - ▶ If issue set S agreed then transition to new state $\underline{\omega} = T(\omega, S)$

- **Bargaining Stage:** at start of period (of length Δ), each player selected as proposer w. prob 1/2 iid
 - Simple offer: subset C of currently available issues and feasible utilities u
 - Other player accepts or rejects
 - ▶ $u \in \sum_{c \in C} U^{\theta_c}$ where θ_c is type of issue c
 - ► No transferable utility or contingent contracts
 - Randomized offer: randomize over simple offers if accepted
 - ▶ If issue set S agreed then transition to new state $\underline{\omega} = T(\omega, S)$
- ► Then **Arrivals Stage:** at most one new issue arrives stochastically:
 - State transitions from $\overline{\omega}$ to ω with prob. $q^{\underline{\omega},\overline{\omega}} = 1 e^{-\lambda^{\underline{\omega},\overline{\omega}}\Delta}$
 - With remaining prob. $q^{\underline{\omega},\underline{\omega}}$ remains in $\underline{\omega}$
 - Arrival rates independent of currently available issues

- ▶ Bargaining Stage: at start of period (of length Δ), each player selected as proposer w. prob 1/2 iid
 - Simple offer: subset C of currently available issues and feasible utilities u
 - Other player accepts or rejects
 - ▶ $u \in \sum_{c \in C} U^{\theta_c}$ where θ_c is type of issue c
 - ► No transferable utility or contingent contracts
 - Randomized offer: randomize over simple offers if accepted
 - ▶ If issue set S agreed then transition to new state $\underline{\omega} = T(\omega, S)$
- ▶ Then **Arrivals Stage:** at most one new issue arrives stochastically:
 - State transitions from $\overline{\omega}$ to ω with prob. $q^{\underline{\omega},\overline{\omega}} = 1 e^{-\lambda^{\underline{\omega},\overline{\omega}}\Delta}$
 - With remaining prob. $q^{\underline{\omega},\underline{\omega}}$ remains in $\underline{\omega}$
 - Arrival rates independent of currently available issues
- ▶ In finite issue game: new issues eventually stop arriving
 - $\lambda^{\underline{\omega},\overline{\omega}} = 0$ if $L < \infty$ previous issues
- Payoffs: $U_i = \sum_{n=1}^{\infty} \delta^{n-1} u_i^n$
 - $u_i^n = \text{period } n \text{ utility, } \delta = e^{-r\Delta}, \text{ can normalize } r = 1$
- Focus on frequent offers $\Delta \to 0$

Stationary equilibrium and disagreement payoffs

- Equilibrium=SPNE
- \blacktriangleright Equilibrium is Stationary if behavior depends only on current state ω
 - lacktriangle Cont payoffs in ω in bargaining stage V^ω
- Useful idea: discounting as prob $(1-\delta)$ game ends w. payoffs (0,0)
- ightharpoonup Disagreement payoffs d^{ω} conditional on an event (either game ends or new issue arrives), or equivalently from waiting for event

$$d^{\omega} = rac{\sum_{\overline{\omega}
eq \omega} \delta q^{\omega, \overline{\omega}} V^{\overline{\omega}}}{1 - \delta q^{\omega, \omega}}$$

Independent committees and stopping search

Independent committees

- ▶ Game G_{θ} identical to G except negative utility if agree $\theta' \neq \theta$ issues
 - \Rightarrow Payoffs: $V^{\omega,I} = \sum_{\theta} V^{\omega}_{G^{\theta}}$

Stopping search

- ▶ Game G_S identical to G except no new issues arrive if some available, $\lambda_{G_S}^{\omega,\overline{\omega}}=0$
 - \Rightarrow Payoffs: $V^{\omega,S}$
 - Maybe due to institutional restrictions (e.g. papal conclave)
 - ► Consider endogenous search later

Baseline example: 2 independent linear issues, 2 types

- **Exactly 2 issues can arrive w. 2 types** $\Theta = \{A, B\}$, Apple/Banana
- ▶ Issue=unit of fruit: P1 gets z utils/unit of A, 1 util/unit of B

Focus: z = 3

$$U^A = \{u \in \mathbb{R}^2_+ : u_1 \le z(1 - u_2)\}, \ U^B = \{u \in \mathbb{R}^2_+ : u_2 \le z(1 - u_1)\}$$

Baseline example: 2 independent linear issues, 2 types

- **Exactly 2 issues can arrive w. 2 types** $\Theta = \{A, B\}$, Apple/Banana
- ▶ Issue=unit of fruit: P1 gets z utils/unit of A, 1 util/unit of B

Focus:
$$z = 3$$

$$U^A = \{u \in \mathbb{R}^2_+ : u_1 \le z(1 - u_2)\}, \quad U^B = \{u \in \mathbb{R}^2_+ : u_2 \le z(1 - u_1)\}$$

- ▶ Equal arrival rate of A and B as 1^{st} issue $\check{\lambda} \in (0, \infty)$
 - As $\Delta \to 0$ discounted prob of arrival $\to \check{p} = \check{\lambda}/(2\check{\lambda} + r) \in (0, 1/2)$
- Equal/independent arrival rate of A and B as 2^{nd} issue $\tilde{\lambda} \in (0, \infty)$
 - As $\Delta \to 0$ discounted prob of arrival $\to \tilde{p} = \tilde{\lambda}/(2\tilde{\lambda} + r) \in (0.1/2)$

What happens when 2^{nd} issue arrives?

As $\Delta \to 0$: agree on Nash solution for available utilites $\hat{V}^\omega = N(\hat{U}^\omega, \hat{d}^\omega)$, $\hat{d}^\omega = 0$

- \triangleright $\omega_{\theta,\theta'}$ has 2 issues arrived w. types θ,θ' , still available
- $lackbox{}\omega_{-\theta,\theta'}$ has 2 issues arrived w. types θ,θ' , only θ' available

$$\hat{V}^{\omega_{A,A}} = (3,1), \qquad \hat{V}^{\omega_{A,B}} = (3,3)$$

$$\hat{V}^{\omega_{-A,A}} = (3/2,1/2), \qquad \hat{V}^{\omega_{-A,B}} = (1/2,3/2)$$

Implied continuation payoffs if 1st issue is A

As $\Delta \to 0$: agree on Nash solution for available utilites $\hat{V}^\omega = N(\hat{U}^\omega, \hat{d}^\omega)$, $\hat{d}^\omega = 0$

- \triangleright $\omega_{\theta,\theta'}$ has 2 issues arrived w. types θ,θ' , still available
- \blacktriangleright $\omega_{-\theta,\theta'}$ has 2 issues arrived w. types θ,θ' , only θ' available
- $ightharpoonup \omega_{\theta}$ has 1 issue arrived w. type θ , still available
- $\omega_{-\theta}$ has 1 issue arrived w. type θ , no longer available

$$\hat{V}^{\omega_{A,A}} = (3,1), \quad \hat{V}^{\omega_{A,B}} = (3,3), \quad \Rightarrow \quad \hat{d}^{\omega_{A}} = \tilde{p}(6,4)$$

$$\hat{V}^{\omega_{-A,A}} = (3/2,1/2), \quad \hat{V}^{\omega_{-A,B}} = (1/2,3/2), \quad \Rightarrow \quad \hat{V}^{\omega_{-A}} = \tilde{p}(2,2)$$

lacktriangle Feasible agreement utilities $\hat{U}^{\omega_A} = U^A + \hat{V}^{\omega_{-A}}$ as $\Delta o 0$

$$\hat{V}^{\omega_{-A,A}} = (3/2, 1/2), \quad \hat{V}^{\omega_{-A,B}} = (1/2, 3/2), \quad \Rightarrow \quad \hat{V}^{\omega_{-A}} = \tilde{p}(2,2)$$

- lacktriangle Feasible agreement utilities $\hat{U}^{\omega_A}=U^A+\hat{V}^{\omega_{-A}}$ as $\Delta o 0$
- Compare to disagreement payoffs...

$$\hat{V}^{\omega_{A,A}} = (3,1), \quad \hat{V}^{\omega_{A,B}} = (3,3), \quad \Rightarrow \quad \hat{d}^{\omega_{A}} = \tilde{p}(6,4)$$

$$\hat{V}^{\omega_{-A,A}} = (3/2,1/2), \quad \hat{V}^{\omega_{-A,B}} = (1/2,3/2), \quad \Rightarrow \quad \hat{V}^{\omega_{-A}} = \tilde{p}(2,2)$$

Delay if 2^{nd} issue arrives quickly, $\tilde{p} > \overline{p}^L \in (0, 1/2)$

- ▶ Not worth giving up A as leverage if B might then arrive, expanding pie
 - $\overline{p}^L = 3/10$ given z = 3

- Give up $\hat{d}^{\omega_A} \hat{V}^{\omega_{-A}}$ in continuation utility if reach agreement
- If frequent arrivals $(\tilde{\lambda} \to \infty, \tilde{p} \to 1/2)$ compensating for this loss requires giving each player more than half Apple

$$\hat{d}^{\omega_A}-\hat{V}^{\omega_{-A}}= ilde{p}(6,4)- ilde{p}(2,2)= ilde{p}(4,2)
ightarrow \left(2,1
ight)>\left(rac{3}{2},rac{1}{2}
ight)$$

Implication: Need for leverage in future negotiations can explain delay

⇒ Delayed Dream Act

If 2^{nd} issue arrives slowly, low value P2 gets > 1/2 of Apple

- ▶ No delay if $\tilde{p} < \overline{p}^L$, Nash solution given feasible payoffs $N(\hat{U}^{\omega_A}, \hat{d}^{\omega_A})$
 - \Rightarrow Divide residual Apple equally after compensating players for forgone utility from delay $\hat{d}_i^{\omega_A} \hat{V}_i^{\omega_{-A}} = \tilde{p}(4,2)$

$$\hat{V}_2^{\omega_A} - \hat{V}_2^{\omega_{-A}} = \frac{1}{2} \left(1 + (\hat{d}_2^{\omega_{-A}} - \hat{V}_2^{\omega_{-A}}) - \frac{\hat{d}_1^{\omega_A} - \hat{V}_1^{\omega_{-A}}}{z} \right) = \frac{1}{2} + \frac{\tilde{p}}{3} > \frac{1}{2}$$

More surprising: Expanding utility frontier can decrease everyone's payoff!

- ▶ Initial payoffs can decrease in \tilde{p} and in z for large z (=P1 value of A)
- Such expected payoffs weight for likelihood 1st issue is A or B

Why does P2 get > 1/2 of Apple?

Intuition: Share of Apple must compensate P2 for giving up logrolling leverage. Must get lots because Apple is not valuable for him

- ▶ Divide residual Apple equally after compensating players for forgone utility from delay $\hat{d}^{\omega_A} \hat{V}^{\omega_{-A}} = \tilde{p}(4,2)$
- ▶ P1 forgone utility ×2 as much as P2

0

- Players benefit equally from delay if issue B arises (logrolling)
- ▶ No benefit to delay if 2nd issue is also A (split both equally)
- ▶ But Apple is worth $\times 3$ as much to P1 as P2 \Rightarrow P2 must get more of it
 - ▶ P2 gives up more utility when normalized by value of Apple

$$\hat{d}_{2}^{\omega_{A}} - \hat{V}_{2}^{\omega_{-A}} > \frac{\hat{d}_{1}^{\omega_{A}} - \hat{V}_{1}^{\omega_{-A}}}{z}$$

$$\Rightarrow \hat{V}_{2}^{\omega_{A}} - \hat{V}_{2}^{\omega_{-A}} = \frac{1}{2} \left(1 + (d_{2}^{\omega_{-A}} - \hat{V}_{2}^{\omega_{-A}}) - \frac{\hat{d}_{1}^{\omega_{A}} - \hat{V}_{1}^{\omega_{-A}}}{z} \right) > \frac{1}{2}$$

Independent committees G_A if 1^{st} issue is A

Players get 1/2 of each fruit

- Intuitive! Will equally split any additional Apples, so split Apple now
 - ► No benefit from delay/logrolling

$$\hat{V}_{2,\textit{G}_{A}}^{\omega_{A}} - \hat{V}_{2,\textit{G}_{A}}^{\omega_{-A}} = \frac{1}{2} \left(1 + (\hat{d}_{2,\textit{G}_{A}}^{\omega_{-A}} - \hat{V}_{2,\textit{G}_{A}}^{\omega_{-A}}) - \frac{\hat{d}_{1,\textit{G}_{A}}^{\omega_{A}} - \hat{V}_{1,\textit{G}_{A}}^{\omega_{-A}}}{z} \right) = \frac{1}{2}$$

 $\hat{d}_{G_A}^{\omega_A} = \tilde{p}(z,1), \ \hat{V}_{G_A}^{\omega_{-A}} = \tilde{p}(z,1)/2$

New justification for independent committees

- ▶ Higher payoffs if (and only if) issues arrive infrequently: 1/2 of favorite fruit better than less than 1/2
- Prevents opponent holding it up for leverage in future negotiations
- Payoff difference can be large: $V_i^{\omega_0}/V_i^{\omega_0,l}\approx 0$

Stopping search if 1^{st} issue is A

Low value P2 gets < 1/2 of Apple

 $\hat{d}_i^{\omega_A,S}=0$ and $\hat{V}^{\omega_{-A},S}= ilde{p}(2,2)\Rightarrow$ No delay. Nash solution:

$$\hat{V}_{2}^{\omega_{A},S} = \left\{ \frac{1}{2} \left(1 + \hat{V}_{2}^{\omega_{-A}} + \frac{\hat{V}_{1}^{\omega_{-A}}}{z} \right) = \frac{1}{2} + \hat{V}_{2}^{\omega_{-A}} - \tilde{\rho}_{3}^{2} \right\}$$

$$2\hat{V}_{2}^{\omega_{A},S}$$

$$1/2 + \hat{V}_{2}^{\omega_{-A}}$$

$$\hat{V}^{\omega_{A},S}$$

$$2\hat{V}_{1}^{\omega_{A},S}$$

$$1/2 + \hat{V}_{1}^{\omega_{-A}}$$

$$1/2 + \hat{V}_{1}^{\omega_{-A}}$$

$$1/2 + \hat{V}_{1}^{\omega_{-A}}$$

$$1/2 + \hat{V}_{1}^{\omega_{-A}}$$

- P2 gets **no Apple** if $z > 2 + \sqrt{5}$ and 2^{nd} issue arrives quickly (efficient!)
 - ► Half orange surplus would be outside purple set (can't get ¡0 Apple)
- Always more efficient than independent committees
- ▶ More efficient than logrolling if issues arrive slowly or $z>2+\sqrt{5}$

Implication: Contradicts typical negotiation advice to always search for ways to grow pie

Why does low value P2 get < 1/2 of Apple?

Intuition: P2 more desperate for agreement o.w. no Banana can arrive

- P2 can't use A as leverage in future logrolling, $\hat{d}^{\omega_A,S} = (0,0)$
- P1 get ×3 more payoff than P2 in Nash solution.
 - Impossible if each got 1/2 Apple $\Rightarrow 3/2 + \hat{V}_2^{\omega-A} < 3(1/2 + \hat{V}_2^{\omega-A})$ since players get same post agreement cont. payoff $\hat{V}^{\omega-A} = \tilde{p}(2,2)$:
- ▶ P2's post agreement cont. payoff>P1's when normalized by Apple's value

Findings extend

Stationary eq. payoffs: Stopping search>Independent Committees>Logrolling if

Symmetric, 2 types but many issues, arbitrarily positive utility sets $U^{\theta} \cap \mathbb{R}^2_{++} \neq \emptyset$, arbitrary correlation and *infrequent arrivals*

- ▶ $\lambda^{\omega_{\theta',\theta},\omega_{\theta}} \approx 0$: small arrival rate of type $\theta' \in \{A,B\}$ as 2^{nd} issue when 1st issue was type θ
- ▶ $\lambda^{\omega_{\theta'',\theta',\theta},\omega_{\theta',\theta}} \approx 0$: small arrival rate of type $\theta'' \in \{A,B\}$ as 3^{rd} issue when first two issues were types θ and θ'

Findings extend

Stationary eq payoffs: Stopping search> max{Independent Committees,Logrolling} if

Symmetric, many types (all pie divisions), many issues and infrequent arrivals

- ▶ 1^{st} issue arrival rate of type k and -k equally likely
- ▶ 2^{nd} issue arrival rate small and equally likely type k and -k likely if first issue type $k' \notin \{k, -k\}$
- ▶ 3rd issue arrival rate small

Findings extend

Stationary eq payoffs: Stopping search is efficient $> \max\{Indep. Committees, Logrolling\}$

- Symmetric, many types (all pie divisions), infinite issues and frequent arrivals independent of state
 - Player with higher value of pie gets all of it (as lower normalized cost of delay)
 - Although also folk theorem with infinite issues and non-stationary eq

Endogenous search

- ► General finding that restricting (stopping) search during bargaining can be valuable:
 - Stops player extracting surplus on issues which her opponent values more, by threatening delay
 - ► Makes her more desperate for agreemnt (so can move onto finding issues he values)
- ► So will players choose to restrict their search?

Endogenous search

Adapted Arrivals stage

- ▶ Players simultaneously choose search efforts $e_i \in [0,1]$ at cost $c_i e_i \Delta \geq 0$
- **E**fforts $e=(e_1,e_2)$ rescale new issue arrival probability by $K(e)\in[0,1]$
 - State $\overline{\omega} \neq \omega$ arrives with probability $q^{\omega,\overline{\omega}}K(e)$
 - K(e) =production function, where K(1,1)=1, $\partial K(e)/\partial e_i>0$, $\partial K(e)/\partial e_i\leq 0$
 - $q^{\omega,\overline{\omega}} = 1 e^{-\lambda^{\omega,\overline{\omega}}\Delta}$ as previously
- Stationary eq: Player i exerts effort e_i^{ω}

Endogenous search

- ▶ Effort $e \Rightarrow$ Disagreement payoffs $d^{\omega,e}$ (U^{ω} independent of e) \Rightarrow Bargaining payoffs $V^{\omega,e}$
- \triangleright Cont. payoff at arrivals stage if deviate to \tilde{e}_i for one period:

$$\underline{V}_{i}^{\omega,e}(\tilde{e}_{i}) = -\Delta c_{i}\tilde{e}_{i} + \delta \Big(V_{i}^{\omega,e} + K(\tilde{e}_{i},e_{j}) \sum_{\overline{\omega} \neq \omega} q^{\omega,\overline{\omega}} (V_{i}^{\overline{\omega}} - V_{i}^{\omega,e})\Big)$$

In equilibrium such deviations shouldn't be profitable

Strong effort incentives for small costs

- ▶ If $e_i < 1$ optimal given $c_i = 0$ then i's payoff decreases when new issue arrives!
 - Demanding condition as new issues expand feasible utilities

$$\frac{\partial \underline{V}_{i}^{\omega,e}(e)}{\partial \tilde{e}_{i}} > 0 \quad \text{iff} \quad \frac{\sum_{\overline{\omega} \neq \omega} q^{\omega,\overline{\omega}} V_{i}^{\overline{\omega}}}{\sum_{\overline{\omega} \neq \omega} q^{\omega,\overline{\omega}}} > V_{i}^{\omega,e}$$

▶ Cont. payoff at arrivals stage if deviate to \tilde{e}_i for one period:

$$\underline{V}_{i}^{\omega,e}(\tilde{e}_{i}) = -\Delta c_{i}\tilde{e}_{i} + \delta \left(V_{i}^{\omega,e} + K(\tilde{e}_{i},e_{j}) \sum_{\overline{\omega} \neq \omega} q^{\omega,\overline{\omega}} (V_{i}^{\overline{\omega}} - V_{i}^{\omega,e}) \right)$$

► Similar logic if $c_i \approx 0$

Back to baseline example: 2 issues, 2 types

- Same setup as before, but now endogenous effort:
 - **Key finding:** for most parameters unique equilibrium. Maximal effort e = (1, 1), payoffs match exogenous search with logrolling

Back to baseline example: 2 issues, 2 types

- Same setup as before, but now endogenous effort:
 - **Key finding:** for most parameters unique equilibrium. Maximal effort e = (1, 1), payoffs match exogenous search with logrolling

Result: For all sufficiently small c_i , in all stationary eq as $\Delta \to 0$:

- **b** Both players must exert maximal effort $e_i = 1$ if no available issues
- ▶ If 1st issue is Apple
 - Low value P2 must exert maximal effort $e_2 = 1$
 - **Eq** exists where P1 exerts maximal effort $e_1 = 1$
 - **E**q is unique if $K(0,1) \ge 1/2$ or arrival rates are slow or fast
 - ▶ If $K(0,1) \approx 0$ and intermediate arrival rates, Eq exists with $e_1 = 0$ and payoffs \approx stopping search
 - Efficiency lower than $e_1 = 1$ if z < 2.41, higher if z > 4.23
 - Coordination on inefficiently high or low P1 effort
 - ▶ If K(0,1) < 1/2 then for some $(z, \tilde{\lambda})$ Eq exists where $e_1 = 0$

Multiple eq. with endogenous effort if 1st issue Apple

- ightharpoonup z=3, intermediate arrival rate, $\tilde{p}=9/20$, small K(0,1)=1/81
- If $e=(1,1)\Rightarrow$ large $\hat{d}^{\omega_A,e}$, new issue arrival benefits both players
- If $e=(0,1)\Rightarrow$ small $\hat{d}^{\omega_A,e}$, new issue arrival harms P1

Higher payoffs with larger search costs

- Linear search production $K(e) = \tilde{K}(e_1 + e_2) + (1 2\tilde{K})e_1e_2$
- ightharpoonup Cost of effort $c_i = \sqrt{\tilde{K}} > 0$
- **Observation:** If $\tilde{K} \approx 0$ then exists eq. with stopping search behavior (effort iff no issues currently available)
 - ▶ Positive search costs + strong complementarities in search
 - ⇒ Larger search costs can increase payoffs
- ▶ But terrible Eq. also exist with no search in any state
- ▶ If -i doesn't search then nor will i

$$\underline{V}_{i}^{\omega,e}(\tilde{e}_{i}) = -\Delta c_{i}\tilde{e}_{i} + \delta \left(V_{i}^{\omega,e} + K(\tilde{e}_{i},e_{j}) \sum_{\overline{\omega} \neq \omega} q^{\omega,\overline{\omega}} (V_{i}^{\overline{\omega}} - V_{i}^{\omega,e})\right)$$

Conclusion

Please order lots of Apples on your Bananaphone, then eat them!

