

Master Thesis

Topic:

Unsupervised learning in decision making

Author: Domagoj Fizulic

Felix Gutmann

Student number: 125604

Program: M.S. Data Science

E-Mail: domagoj.fizulic@barcelonagse.eu

felix.gutmann@barcelonagse.eu

I Table of Contents

Ι	Table of Contents	Ι
II	List of Figures	II
II	I List of Tables	III
IV	List of Listings	IV
\mathbf{V}	List of mathematical symbols	\mathbf{V}
\mathbf{V}	I List of abbreviations	VI
1	Introduction and conceptual approach	1
2	Simmulation 2.1 Data	
3	List of Literature	2
${f A}_{f I}$	ppendix	\mathbf{A}

II List of Figures

III List of Tables

IV List of Listings

V List of mathematical symbols

Symbol	Meaning
a_t	Action at time t
$Q(a)_t$	Value function at time t
ϵ	Probability of exploration in epsilon greedy
α	Learning rate
au	Softmax parameter

VI List of abbreviations

A 1 1 · ·	
Abbreviations	

Description

1 Introduction and conceptual approach

2 Simmulation

2.1 Data generation

Challange: Categorical data with time series attributes. Apply transformation choice probabilities () Define similarity measures on categories

2.2 Reinforcement Learning backround

$$Q_t(a) = \frac{R_1 + R_2 + \dots + R_{K_\alpha}}{K_\alpha}$$

$$Q_{k+1} = Q_k + \alpha \left[R_k - Q_k \right]$$

Let $Q_t(a)$ be the value function of action a. "Epsilon Greedy"

Choose next action a as $a_{t+1} = \arg \max Q_t(a)$. Let p_e be the probability of exploration. $p = \epsilon$

Soft Max Selection

$$P(a_t|X) = \frac{e^{\frac{Q_t(a)}{\tau}}}{\sum_i^K e^{\frac{Q_t(i)}{\tau}}}$$

2.3 Unsupervised Learning

2.4 Simmulation results

Chapter 3 List of Literature

3 List of Literature

Appendix