Segunda Prueba Electromagnetismo Intermedio

LFIS 331

24-25 de Noviembre de 2020

Problema 1

Simetria esférica

Dos esferas concéntricas tienen radios a, b (b > a) y cada una está dividida en dos hemisferios por el mismo plano horizontal. El hemisferio superior de la esfera interior y el hemisferio inferior de la esfera exterior se mantienen a potencial cero. Los otros hemisferios se mantienen a potencial V_0 . Determine el potencial en la región a < r < b como una serie de polinomios de Legendre. Incluya términos al menos hasta orden l = 4. Compruebe su solución respecto a resultados conocidos en los casos límites $b \to \infty$ y $a \to 0$.

Problema 2

Expansión multipolar

Dos esferas concéntricas de radios interno y externos a y b respectivamente llevan cargas $\pm Q$. El espacio vacío entre las esferas esta medio llena por una cáscara dieléctrica hemisférica (con permitividad ϵ) como se muestra en la figura.

- 1. Encuentre el campo eléctrico en todo el espacio entre ambas esferas.
- 2. Calcule la distribución de carga superficial sobre la esfera interna
- 3. Calcule la densidad de carga de polarización sobre la superficie del dieléctrico en r=a

Problema 3

Campo magnético

Considere el campo magnético $\vec{B} = axy\hat{i} + by^2\hat{j}$.

- 1. ¿Qué relación DEBE conectar las constantes a y b?
- 2. ¿Qué densidad de corriente \vec{J} produce este campo? Describa la distribución de corriente en palabras y en un dibujo.
- 3. ¿Que potencial vectorial corresponde a este campo?