

INTRODUCTION

Credit: CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia Junqiang Lei, Junfeng Li, Xun Li, Xiaolong Qi

 Ground Glass Opacities that grows with severity

Data preprocessing

Gathered images from 6 sources, coming in a variety of file formats, views and image resolutions

Axial view .jpg/.png format

Frontal view .nii format

Supine view
*This is actually X-ray

Preprocessing Steps

Load Image

6 slices from each nii file

.jpg/.png

Process image

1. Median denoising

2. Histogram equalization

3. Thresholding

4. Remove background

5. Find Lung contours 6. Create bounding rectangle

Output image

- Crop original image using bounded region
- Zero pad and resize to (224, 280)

Data distribution

Data preparation

STEP 01 - Train-Test-Split

- There are multiple images from each patient.
- Will need to split on patientID to prevent data leakage

STEP 02 - Data augmentation

- Keras / ImageDataGenerator
- Randomization Parameters
 - Horizontal shift +/- 5%
 - Vertical shift +/- 5%
 - Horizontal flip
 - fill_mode='nearest',
 - Brightness variation +/-20%

MODELING

Initialize model structure

Conv2d (filters = 32, kernel size = 3, 'relu')

Conv2d (filters = 64, kernel size = 3, 'relu')

Max Pooling (size = (2,2))

Dropout (ratio=0.25)

Conv2d (filters = 32, kernel size = 3, 'relu')

Max Pooling (size = (2,2))

Global Average Pooling

Dense (filters=256, 'relu')

Dense (filters=128, 'relu')

Dropout (ratio=0.5)

Dense (filters=64, 'relu')

Dense (filters=1, 'sigmoid')

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	222, 278, 32)	320
conv2d_1 (Conv2D)	(None,	220, 276, 64)	18496
max_pooling2d (MaxPooling2D)	(None,	110, 138, 64)	0
dropout (Dropout)	(None,	110, 138, 64)	0
conv2d_2 (Conv2D)	(None,	108, 136, 32)	18464
max_pooling2d_1 (MaxPooling2	(None,	54, 68, 32)	0
global_average_pooling2d (G1	(None,	32)	0
dense (Dense)	(None,	256)	8448
dense_1 (Dense)	(None,	128)	32896
dropout_1 (Dropout)	(None,	128)	0
dense_2 (Dense)	(None,	64)	8256
dense_3 (Dense)	(None,	1)	65

Total params: 86,945 Trainable params: 86,945 Non-trainable params: 0

Hyperparameter tuning [Number of filters]

Initial model | model with half number of filters | model with twice number of filters

Hyperparameter tuning [Size of kernels]

Initial model (size:3) | model with kernel size: 5 | model with kernel size: 7

Hyperparameter tuning [Number of layers]

Initial model | model with 1 less conv layer and 1 less dense layer | model with 1 more conv layer and 1 more dense layer

Model evaluation

	model_name	true_negative	false_positive	false_negative	true_positive	accuracy	sensitivity	specificity
0	model1_1	1027	231	337	955	0.78	0.74	0.82
1	model1_2	866	392	74	1218	0.82	0.94	0.69
2	model1_3	947	311	105	1187	0.84	0.92	0.75
3	model2_1	896	395	63	1208	0.82	0.95	0.69
4	model2_2	853	438	32	1239	0.82	0.97	0.66
8	model2_3	917	404	50	1206	0.82	0.96	0.69
5	model3_1	920	321	135	1178	0.82	0.90	0.74
6	model3_2	941	300	173	1140	0.81	0.87	0.76
7	model3_3	1241	0	1313	0	0.49	0.00	1.00

Selected model structure

Conv2d (filters = 64, kernel size = 5, 'relu')

Conv2d (filters = 128, kernel size = 5, 'relu')

Max Pooling (size = (2,2))

Dropout (ratio=0.25)

Conv2d (filters = 64, kernel size = 5, 'relu')

Max Pooling (size = (2,2))

Global Average Pooling

Dense (filters=512, 'relu')

Dense (filters=256, 'relu')

Dropout (ratio=0.5)

Dense (filters=128, 'relu')

Dense (filters=1, 'sigmoid')

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	220, 276, 64)	1664
conv2d_1 (Conv2D)	(None,	216, 272, 128)	204928
max_pooling2d (MaxPooling2D)	(None,	108, 136, 128)	0
dropout (Dropout)	(None,	108, 136, 128)	0
conv2d_2 (Conv2D)	(None,	104, 132, 64)	204864
max_pooling2d_1 (MaxPooling2	(None,	52, 66, 64)	0
global_average_pooling2d (G1	(None,	64)	0
dense (Dense)	(None,	512)	33280
dense_1 (Dense)	(None,	256)	131328
dropout_1 (Dropout)	(None,	256)	0
dense_2 (Dense)	(None,	128)	32896
dense_3 (Dense)	(None,	1)	129

Total params: 609,089 Trainable params: 609,089 Non-trainable params: 0

Selected model performance

**	model_name	true_negative	false_positive	false_negative	true_positive	accuracy	sensitivity	specificity
0	model1_1	1027	231	337	955	0.78	0.74	0.82
1	model1_2	866	392	74	1218	0.82	0.94	0.69
2	model1_3	947	311	105	1187	0.84	0.92	0.75
3	model2_1	896	395	63	1208	0.82	0.95	0.69
4	model2_2	853	438	32	1239	0.82	0.97	0.66
8	model2_3	917	404	50	1206	0.82	0.96	0.69
5	model3_1	920	321	135	1178	0.82	0.90	0.74
6	model3_2	941	300	173	1140	0.81	0.87	0.76
7	model3_3	1241	0	1313	0	0.49	0.00	1.00
9	model_selected	947	374	61	1195	0.83	0.95	0.72

Conclusion and Recommendations

Conclusions

Conv2d (filters = 64, kernel size = 5, 'relu')

Conv2d (filters = 128, kernel size = 5, 'relu')

Max Pooling (size = (2,2))

Dropout (ratio=0.25)

Conv2d (filters = 64, kernel size = 5, 'relu')

Max Pooling (size = (2,2))

Global Average Pooling

Dense (filters=512, 'relu')

Dense (filters=256, 'relu')

Dropout (ratio=0.5)

Dense (filters=128, 'relu')

Dense (filters=1, 'sigmoid')

- The selected model was able to perform to our targeted values of minimum 80% for both accuracy and sensitivity.
- It has attained an ROC-AUC score of 0.86.

Recommendations

- To continue to build up the database
 (More quality data -> Better performance)
- To do Multi-Class classification to separate between Covid infection and other types of viral/bacterial infection
 - To try other methodologies, i.e. Transfer Learning, 3D CT Scan CNNs

https://www.linkedin.com/in/junyuanlin/

DID YOU KNOW?
CNN was inspired by research done on cat brains.

"Receptive Fields of Single Neurons in the Cat's Striate Cortex" conducted by Hubel and Wiesel

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

Please keep this slide for attribution

