Resolución TP5:

Ejercicio 4 - c

Tomando $F(x, y, z) = xyze^z \ln(z) - 3x + 3y = 0$ Determinar si la ecuación dada define una función implícita z = f(x, y) en el punto P = (1,1,1) y si es así calcular sus derivadas parciales.

Herramientas:

- Se deben cumplir las 3 condiciones del teorema para F(x, y, z) = 0 e z = f(x, y)
 - $\circ \quad P\epsilon F(x,y,z)=0$
 - $\circ\quad$ Las derivadas F_x , F_y y F_z son continuas en el entorno del punto.
 - \circ $F_z(P) \neq 0$
- Si se cumple TFI entonces existe z = f(x, y) en P y sus derivadas son:

$$f_x(x_0, y_0) = -\frac{F_x(p)}{F_x(p)}$$

$$f_y(x_0, y_0) = -\frac{F_y(P)}{F_z(P)}$$

Resolviendo:

•
$$\xi F(P) = 0$$
?

$$xyze^{z} \ln(z) - 3x + 3y = 0$$

$$1 \cdot 1 \cdot 1 \cdot e^{1} \ln(1) - 3 \cdot 1 + 3 \cdot 1 = 0$$

$$1 \cdot e \cdot 0 - 3 + 3 = 0$$

Se cumple el primer enunciado.

• ¿Son F_x , F_y y F_z continuas en E(P)?

$$F(x, y, z) = xyze^{z} \ln(z) - 3x + 3y$$

$$Dom(F) = \{(x, y, z) \in \mathbb{R}^{3} : z > 0\}$$

$$F_{x} = yze^{z} \ln(z) - 3$$

$$F_{y} = xze^{z} \ln(z) + 3$$

$$F_{z} = xy\left(e^{z} \ln(z) + z\left(e^{z} \ln(z) + \frac{e^{z}}{z}\right)\right)$$

 $Dom(F) = Dom(F_x) = Dom(F_y) = Dom(F_z) = \{(x, y, z) \in \mathbb{R}^3 : z > 0\}$ Son continuas en E(P) y se cumple el segundo enunciado. • $\xi F_z(P) \neq 0$?

$$F_{z} = xy \left(e^{z} \ln(z) + z \left(e^{z} \ln(z) + \frac{e^{z}}{z} \right) \right)$$

$$F_{z}(P) = 1 \cdot 1 \left(e^{1} \ln(1) + 1 \left(e^{1} \ln(1) + \frac{e^{1}}{1} \right) \right)$$

$$F_{z}(P) = \left(0 + (0 + e) \right)$$

$$F_{z}(P) = e$$

Al ser $F_Z(P) = e \neq 0$ se cumple el tercer enunciado.

Se cumple TFI por lo tanto existe z = f(x, y) y sus derivadas se calculan:

$$f_{x}(x_{0}, y_{0}) = -\frac{F_{x}(P)}{F_{z}(P)} e f_{y}(x_{0}, y_{0}) = -\frac{F_{y}(P)}{F_{z}(P)}$$

$$F_{x} = yze^{z} \ln(z) - 3$$

$$F_{y} = xze^{z} \ln(z) + 3$$

$$F_{x}(P) = 1 \cdot 1 \cdot e^{1} \ln(1) - 3 = -3$$

$$F_{y}(P) = 1 \cdot 1 \cdot e^{1} \ln(1) + 3 = +3$$

$$F_{z}(P) = e$$

$$f_{x}(1,1) = -\frac{F_{x}(P)}{F_{z}(P)}$$

$$f_{y}(1,1) = -\frac{F_{y}(P)}{F_{z}(P)}$$

$$f_{y}(1,1) = -\frac{+3}{e}$$

$$f_{y}(1,1) = -\frac{3}{e}$$

$$z=f(x,y)$$

f es diferenciable

$$\nabla f(x,y) = \left(f_x(x,y), f_y(x,y) \right)$$

$$\nabla f(P) = \left(f_x(P), f_y(P) \right)$$

$$\nabla f(P) = \left(-\frac{F_x(P)}{F_z(P)}, -\frac{F_y(P)}{F_z(P)} \right)$$

$$\nabla f(P) = \left(\frac{3}{e}, -\frac{3}{e} \right)$$