CLAIMS

1. A compound of formula (I):

$$R^{1}$$
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{4}
 R^{2}
 R^{4}
 R^{2}
 R^{4}
 R^{2}
 R^{4}
 R^{4

5 wherein:

15

25

30

A is absent or is $(CH_2)_2$;

 R^{1} is $C(O)NR^{10}R^{11}$, $C(O)_{2}R^{12}$, $NR^{13}C(O)R^{14}$, $NR^{15}C(O)NR^{16}R^{17}$, $NR^{18}C(O)_{2}R^{19}$, heterocyclyl, aryl or heteroaryl;

 R^{10} , R^{13} , R^{15} , R^{16} and R^{18} are hydrogen or C_{1-6} alkyl;

10 R¹¹, R¹², R¹⁴, R¹⁷ and R¹⁹ are C₁₋₈ alkyl (optionally substituted by halo, hydroxy, C₁₋₆ alkoxy, C₁₋₆ haloalkoxy, C₃₋₆ cycloalkyl (optionally substituted by halo), C₅₋₆ cycloalkenyl, S(C₁₋₄ alkyl), S(O)(C₁₋₄ alkyl), S(O)₂(C₁₋₄ alkyl), heteroaryl, aryl, heteroaryloxy or aryloxy), aryl, heteroaryl, C₃₋₇ cycloalkyl (optionally substituted by halo or C₁₋₄ alkyl), C₄₋₇ cycloalkyl fused to a phenyl ring, C₅₋₇ cycloalkenyl, or,

heterocyclyl (itself optionally substituted by oxo, $C(O)(C_{1-6} \text{ alkyl})$, $S(O)_k(C_{1-6} \text{ alkyl})$, halo or C_{1-4} alkyl); or R^{11} , R^{12} , R^{14} and R^{17} can also be hydrogen; or R^{10} and R^{11} , and/or R^{16} and R^{17} may join to form a 4-, 5- or 6-membered ring which optionally includes a nitrogen, oxygen or sulphur atom, said ring being optionally substituted by C_{1-6} alkyl, $S(O)_l(C_{1-6} \text{ alkyl})$ or $C(O)(C_{1-6} \text{ alkyl})$;

20 R² is phenyl, heteroaryl or C₃₋₇ cycloalkyl;

R³ is H or C₁₋₄ alkyl;

R4 is heterocyclyl;

n is 1, 2 or 3;

aryl, phenyl and heteroaryl moieties are independently optionally substituted by one or more of halo, cyano, nitro, hydroxy, $OC(O)NR^{20}R^{21}$, $NR^{22}R^{23}$, $NR^{24}C(O)R^{25}$, $NR^{26}C(O)NR^{27}R^{28}$, $S(O)_2NR^{29}R^{30}$, $NR^{31}S(O)_2R^{32}$, $C(O)NR^{33}R^{34}$, CO_2R^{36} , $NR^{37}CO_2R^{38}$, $S(O)_qR^{39}$, $OS(O)_2R^{49}$, C_{1-6} alkyl (optionally mono-substituted by $S(O)_2R^{50}$ or $C(O)NR^{51}R^{52}$), C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-10} cycloalkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy(C_{1-6})alkyl, C_{1-6} alkoxy, C_{1-6} haloalkoxy, phenyl, phenyl(C_{1-4})alkyl, phenoxy, phenylthio, phenylS(O), phenylS(O)₂, phenyl(C_{1-4})alkoxy, heteroaryl,

10

15

20

25

30

heteroaryl(C₁₋₄)alkyl, heteroaryloxy or heteroaryl(C₁₋₄)alkoxy; wherein any of the immediately foregoing phenyl and heteroaryl moieties are optionally substituted with halo, hydroxy, nitro, S(C₁₋₄ alkyl), S(O)(C₁₋₄ alkyl), S(O)₂(C₁₋₄ alkyl), S(O)₂NH₂, S(O)₂NH(C₁₋₄ alkyl), S(O)₂N(C₁₋₄ alkyl)₂, cyano, C₁₋₄ alkyl, C₁₋₄ alkoxy, C(O)NH₂, C(O)NH(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl)₂, CO₂H, CO₂(C₁₋₄ alkyl), NHC(O)(C₁₋₄ alkyl), NHS(O)₂(C₁₋₄ alkyl), CF₃ or OCF₃; unless otherwise stated heterocyclyl is optionally substituted by C₁₋₆ alkyl [optionally substituted by phenyl {which itself optionally substituted by halo, C₁₋₄ alkyl, C₁₋₄ alkyl, C₁₋₄ alkyl, C₁₋₄ alkyl), C(O)NH, S(O)₂NH₂, C₁₋₄ alkylthio,

alkoxy, cyano, nitro, CF₃, OCF₃, (C₁₋₄ alkyl)C(O)NH, S(O)₂NH₂, C₁₋₄ alkylthio, S(O)(C₁₋₄ alkyl) or S(O)₂(C₁₋₄ alkyl)} or heteroaryl {which itself optionally substituted by halo, C₁₋₄ alkyl, C₁₋₄ alkoxy, cyano, nitro, CF₃, (C₁₋₄ alkyl)C(O)NH, S(O)₂NH₂, C₁₋₄ alkylthio, S(O)(C₁₋₄ alkyl) or S(O)₂(C₁₋₄ alkyl)}], phenyl {optionally substituted by halo, C₁₋₄ alkyl, C₁₋₄ alkoxy, cyano, nitro, CF₃, OCF₃, (C₁₋₄ alkyl)C(O)NH, S(O)₂NH₂, C₁₋₄ alkylthio, S(O)(C₁₋₄ alkyl) or S(O)₂(C₁₋₄ alkyl)}, heteroaryl {optionally substituted by halo, C₁₋₄ alkyl, C₁₋₄ alkoxy, cyano, nitro, CF₃, (C₁₋₄ alkyl)C(O)NH, S(O)₂NH₂, C₁₋₄ alkylthio, S(O)(C₁₋₄ alkyl) or S(O)₂(C₁₋₄ alkyl)}, S(O)₂NR⁴⁰R⁴¹, C(O)R⁴², C(O)₂(C₁₋₆ alkyl) (such as tert-butoxycarbonyl), C(O)₂(phenyl(C₁₋₂ alkyl)) (such as benzyloxycarbonyl), C(O)NHR⁴³, S(O)₂R⁴⁴, NHS(O)₂NHR⁴⁵, NHC(O)R⁴⁶, NHC(O)NHR⁴⁷ or NHS(O)₂R⁴⁸, provided none of these last four substituents is linked to a ring nitrogen;

k, l and q are, independently, 0, 1 or 2; $R^{20}, R^{22}, R^{24}, R^{26}, R^{27}, R^{29}, R^{31}, R^{33}, R^{37}, R^{40} \text{ and } R^{51} \text{ are, independently, hydrogen or } C_{1-6} \text{ alkyl};$

R²¹, R²³, R²⁵, R²⁸, R³⁰, R³², R³⁴, R³⁶, R³⁸, R³⁹, R⁴¹, R⁴², R⁴³, R⁴⁴, R⁴⁵, R⁴⁶, R⁴⁷, R⁴⁸, R⁴⁹, R⁵⁰ and R⁵² are, independently, C₁₋₆ alkyl (optionally substituted by halo, hydroxy, C₁₋₆ alkoxy, C₁₋₆ haloalkoxy, C₃₋₆ cycloalkyl, C₅₋₆ cycloalkenyl, S(C₁₋₄ alkyl), S(O)(C₁₋₄ alkyl), S(O)₂(C₁₋₄ alkyl), heteroaryl, phenyl, heteroaryloxy or phenyloxy), C₃₋₇ cycloalkyl, phenyl or heteroaryl; wherein any of the immediately foregoing phenyl and heteroaryl moieties are optionally substituted with halo, hydroxy, nitro, S(C₁₋₄ alkyl), S(O)₂(C₁₋₄ alkyl), S(O)₂NH₂, S(O)₂NH(C₁₋₄ alkyl), S(O)₂N(C₁₋₄ alkyl), S(O)₂NH₂, Cyano, C₁₋₄ alkyl, C₁₋₄ alkoxy, C(O)NH₂, C(O)NH(C₁₋₄ alkyl), C(O)N(C₁₋₄ alkyl), CO₂H, CO₂(C₁₋₄ alkyl), NHC(O)(C₁₋₄ alkyl), NHS(O)₂(C₁₋₄ alkyl), C(O)(C₁₋₄ alkyl), C(O)(C₁₋

30

 R^{21} , R^{23} , R^{25} , R^{28} , R^{30} , R^{34} , R^{35} , R^{36} , R^{41} , R^{42} , R^{43} , R^{45} , R^{46} , R^{47} and R^{52} may additionally be hydrogen; or a pharmaceutically acceptable salt thereof or a solvate thereof.

- A compound as claimed in claim 1 wherein R¹ is NR¹³C(O)R¹⁴, wherein R¹³ and R¹⁴ are as defined in claim 1.
- 3. A compound as claimed in claim 1 or 2 wherein R¹ is optionally substituted aryl or optionally substituted heteroaryl, wherein the optional substituents are as recited in claim 1.
 - A compound as claimed in claim 1, 2 or 3 wherein R¹ is optionally substituted heterocyclyl.
- 15 5. A compound as claimed in any one of the preceding claims wherein R² is phenyl optionally substituted by halo or CF₃.
 - 6. A compound as claimed in any one of the preceding claims wherein R³ is hydrogen.
- 7. A compound as claimed in any one of the preceding claims wherein R⁴ is heterocyclyl optionally substituted by oxo, halogen, cyano, hydroxy, C₁₋₆ alkyl (itself optionally substituted by halogen, hydroxy, cyano or C₁₋₄ alkoxy), C₂₋₄ alkenyl, CO₂(C₁₋₄ alkyl), S(O)₂(C₁₋₄ alkyl), CH(O), S(O)₂(C₁₋₄ haloalkyl), C(O)(C₁₋₄ alkyl), C(O)(C₃₋₆ cycloalkyl), N(C₁₋₄ alkyl)₂, C(O)NH₂, C(O)N(C₁₋₄ alkyl)₂ or NHC(O)(C₁₋₄ alkyl).
 - 8. A compound as claimed in any one of the preceding claims wherein heterocyclyl is piperidinyl, homopiperazinyl, thiomorpholinyl, pyrrolidinyl, piperazinyl, 1,2,3,6-tetrahydropyridinyl, morpholinyl, 2,5-dihydropyrrolyl, azetidinyl, 1,4-oxepanyl, 3-azabicyclo[3.2.1]octan-3-yl, 8-azaspiro[4.5]decanyl or 3-azabicyclo[3.1.0]hex-3-yl.
 - 9. A compound as claimed in any one of the preceding claims wherein A is absent.
 - 10. A compound as claimed in any one of the preceding claims wherein n is 2.

- 11. A process for preparing a compound as claimed in claim 1, the process comprising:
 - i. when R¹ is an N-linked optionally substituted heterocycle, reacting a compound of formula (II):

$$R^2$$
 N
 A
 $(CH_2)_n$
 $-S(O)_2$
 $-R^4$ (II)

wherein R^2 , R^3 , R^4 , n, A and X are as defined in claim 1, with a compound R^1H (wherein the H is on a heterocycle ring nitrogen atom) wherein R^1 is as defined in claim 1, in the presence of a suitable base and in a suitable solvent;

ii. when R³ is hydrogen, coupling a compound of formula (III):

$$HN \stackrel{\uparrow}{\longrightarrow} (CH_2)_n - S(O)_2 - R^4$$
 (III)

10

wherein R⁴, n, A and X are as defined in claim 1, with a compound of formula (IV):

$$R^1$$
 H (IV)

15

wherein R¹ and R² are as defined in claim 1, in the presence of NaBH(OAc)₃ (wherein Ac is C(O)CH₃) in a suitable solvent at room temperature; or, iii. when R³ is hydrogen, coupling a compound of formula (III):

$$HN \xrightarrow{A} (CH_2)_n - S(O)_2 - R^4$$
 (III)

wherein R^4 , n, A and X are as defined in claim 1, with a compound of formula (V):

$$\mathbb{R}^{1}$$
 \mathbb{L} \mathbb{C}^{V}

20

wherein R¹ and R² are as defined in claim 1 and L is an activated leaving group, in the presence of a base, in a suitable solvent at a temperature from 60°C up to the boiling point of the solvent.

WO 2005/007629 PCT/SE2004/001135

63

12. A pharmaceutical composition which comprises a compound as claimed in claim 1, or a pharmaceutically acceptable salt thereof or solvate thereof, and a pharmaceutically acceptable adjuvant, diluent or carrier.

5

13. A compound as claimed in claim 1, or a pharmaceutically acceptable salt thereof or solvate thereof, for use as a medicament.

10

14. A compound as claimed in claim 1, or a pharmaceutically acceptable salt thereof or solvate thereof, in the manufacture of a medicament for use in therapy.

15. A method of treating a CCR5 mediated disease state comprising administering to a patient in need of such treatment an effective amount of a compound as claimed in claim 1, or a pharmaceutically acceptable salt thereof or solvate thereof.

15