14.7 Experimental Task Inducing the Verbalization of an Action

There are some simple techniques to induce the verbalization of an action. When people are placed in unusual conditions to carry out a task, they have a tendency to talk to themselves while achieving the successive steps of their task. A computer can be the appropriate tool for creating these particular conditions, and here I give an example related to the construction of tableaux of seeds used in divination.

As we have seen, the divination procedure begins with the placing of a tableau of seeds on the ground. The first part of the tableau, called the mother-*sikidy*, consists of four rows and four columns, the elements of which are single or double dots chosen randomly by taking piles of seeds and reducing their content two at a time, as we have described earlier. Then a second part is computed consisting of eight additional columns of four elements each called the 'daughters', placed below the previous ones. They are obtained as the addition of figures according to the rule that adding their one- or two-seed elements gives two when they are identical and one when they are different.

Successive generations of daughters are thus computed, the first ones deriving from the rows and columns of the mother-sikidy and the following ones deduced from the preceding. We will denote the eight daughters P_9 to P_{16} according to the position where they are placed in the lower part of the tableau. Fig. 14.6 shows the first three steps of the process. Daughter P_{15} (named safary) is computed as the addition of mother-sikidy columns P_1 and P_2 . Then daughter P_{13} (named asorita) is computed as the addition of mother-sikidy columns P_3 and P_4 . The third step is the computation of second-generation daughter P_{14} (named saily), which derives from the two previous ones and is placed between them. In this example, the second-generation daughter P_{14} saily contains the figure one, one, two, two resulting from the two neighbouring first-generation daughters P_{13} asorita with figure one, one, one, two, and P_{15} safary with figure two, two, one, two.

Ph. 337 The whole process involves much more than the computation of first- and second-generation daughters P_{15} , P_{13} , P_{14} derived from the mother-sikidy columns. On the left part of the tableau, three more daughters P_{11} , P_{9} , P_{10} are derived from the mother-sikidy rows, which are read from right to left. Daughter P_{11} is derived from the first two rows, followed by P_{9} derived from the last two rows, and P_{10} between them results from the addition of both. Then a new-generation daughter P_{12} is placed at the middle (third generation) by adding P_{10} and P_{14} . At last, a fourth-generation one P_{16} is placed at the rightmost position by adding P_{12} and P_{13} .

Figure 14.6.

First three steps of the computation of daughters denoted P_9 to P_{16} according to their position. Daughters P_{15} (safary) and P_{13} (asorità) are first computed as the addition of mother-sikidy columns, then P_{14} (saily) is computed as the addition of its two neighbours.