Prof. Dr. Ir. Joost-Pieter Katoen

Christian Dehnert, Sebastian Junges

Exercise 1 (Realizability & Fairness):

(2 points)

Consider the transition system TS on the right (where atomic propositions are omitted). Decide which of the following fairness assumptions \mathcal{F}_i are realizable for TS. Justify your answers!

- 1. $\mathcal{F}_1 = (\{\{\alpha\}\}, \{\{\delta\}\}, \{\{\alpha, \beta\}\})$
- 2. $\mathcal{F}_2 = (\{\{\alpha, \delta\}\}, \{\{\alpha, \beta\}\}, \{\{\delta\}\})$
- 3. $\mathcal{F}_3 = (\{\{\alpha, \delta\}, \{\beta\}\}, \{\{\alpha, \beta\}\}, \{\{\delta\}\}))$

Exercise 2 (Model Checking Regular Safety Properties):

(3 points)

Consider the following transition system TS

and the regular safety property

$$P_{\text{safe}} =$$
 "always if a is valid and $b \land \neg c$ was valid somewhere before, then neither a nor b holds thereafter at least until c holds"

As an example, it holds:

- a) Define an NFA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = MinBadPref(P_{safe})$.
- **b)** Decide whether $TS \models P_{\text{safe}}$ using the $TS \otimes \mathcal{A}$ construction. Provide a counterexample if $TS \not\models P_{\text{safe}}$.

Exercise 3 (Quantitative Fairness):

(3 points)

Let us introduce the notion of *quantitative fairness* $\exists_p X$, where X is a subset of some atomic propositions $AP \neq \emptyset$ and p is a real number. We are not only interested in something occurring (say event a, that is $X = \{a\}$) infinitely often, but also the ratio of the occurrence, say p.

For a finite word π , let $Freq_X$ be the number of times some Y with $X \subseteq Y$ occurs at some position i < n. For example, let $\pi = \{a\}\{b,c\}\{a,c\}\{c\}\{b,c\}\{c\}\{a\}\{c\}$, then $Freq_{\{a\}}(\pi) = 3$ and $Freq_{\{b,c\}}(\pi) = 2$.

For an infinite word π , let π_n be the finite prefix of length n, i.e., $\pi = \pi_n \cdot \pi'$, where $|\pi_n| = n$ and $\pi' \in \Sigma^{\omega}$. The semantics of quantitative fairness is as follows:

$$\pi \models \exists_p X \quad \text{iff} \quad \lim_{n \to \infty} \inf \left(\frac{1}{n} Freq_X(\pi_n) \right) = p$$

For example, the word $\pi = a^{\omega}$ satisfies $\exists_p \{a\}$ with p = 1.

- a) Give a formal definition for $Freq_X$.
- **b)** Show that for any word π and letter a, $\lim_{n\to\infty}\inf\frac{1}{n}Freq_a(\pi_n)\leq 1$.
- c) Show that $\exists_p\{a\}$ with p=0 is not same as $\neg\exists^\infty a$. That is, find a word π such that $\pi\models\exists_p\{a\}$ and $\pi\models\exists^\infty a$.

Exercise 4 (NBA): (2 points)

a) Give the language for the following three NBA:

- b) Give an NBA for:
 - "initially a occurs, and at some point b occurs" with $\Sigma = \{a, b, c\}$.
 - "if a occurs somewhere, then afterwards (b occurs infinitely often iff c occurs infinitely often).