

The Role of In-Context Examples in Regression with

Large Language Models

Learning vs Retrieval

Aliakbar Nafar¹, Kristen Brent Venable^{2,3}, Parisa Kordjamshidi¹

¹Michigan State University

²Florida Institute for Human and Machine Cognition ³University of West Florida

HUMANE LAB, 김건수

NAACL 2025 Outstanding

2025.06.24

Introduction: What Drives In-Context Learning?

- In-Context Learning: LLMs can perform tasks by observing examples directly in the prompt no parameter updates needed.
- Two Dominant Views on How ICL Works
 - Meta-Learning: The model learns new patterns from in-context examples and generalizes.
 - "Learning from data shown in the prompt."
 - Knowledge Retrieval: The model uses in-context examples as cues to retrieve relevant pre-trained knowledge.

"Recalling what it already knows."

 Key question of this paper: "When do LLMs learn from in-context examples, and when do they simply recall?"

Experimental Setup

- Task Type: Regression
 - Predict Continuous numerical outputs from structured inputs
 - More complex than classification
- LLMs Used
 - GPT-3.5(OpenAl, 2020)
 - GPT-4(OPenAI, 2023)
 - LLaMA 3 70B(Meta, 2024)
- Why Regression?
 - Tests LLMs' ability to handle continuous outputs without classification shortcuts.

Datasets

Admission Chance

- Predict graduate admission probability(India-based data)
- Low prior exposure in LLM pretraining

2. Insurance Cost

- Predict annual health insurance costs(USA)
- Demographic + lifestyle features(e.g., smokre status)

3. Used Car Prices

- Predict prices of used Toyota/Maserati cars in 2019
- Real-world market features(mileage, fuel economy)

Prompt Configurations

1. Named Features

- Shows real feature names(e.g., "Mileage", "Smoker Status")
- Enables both learning from examples retrieving prioir knowledge

2. Anonymized Features

- Replaces names with "Feature #1", "Feature #2", etc.
- Removes domain-specific cues -> encourages pure learning

Prompt Configurations

3. Randomized Groud Truth

- Feature names intact, but labels replaced with random numbers
- Tests whether LLMs rely on outputs or just memorize format

4. Direct QA(Zero-shot Baseline)

- No in-context examples
- Asks for a direct numerical prediction
- Given mean and standard deviation of dataseet for celibration

Result1: Knowledge Retrieval Baseline

- Direct QA(Zero-shot)
 - LLMs predict output without seeing any in-context examples.
- Key Obsebations
 - Better than random: LLMs outperform mean-only baselines in many cases
 - Dataset-dependent:
 - Best on familiar datasets(e.g., U.S. Insurance)
 - Worst on low-exposure data(e.g., Admission Chance Indian students)
- Interpretation
 - LLMs already "know" quite a bit even without examples.
 - But Performances varies with prior knowledge embedded during pretraining

Result2: Learning VS Retrieval

Result2: Learning VS Retrieval

- Key Insight
 - Models do learn from outputs
 - Performace decreases with random outputs -> Output labels matter
- More Examples -> More Learning
 - Performance drop is larger with 100 randomized examples
 - Suggets LLMs increasingly rely on example outputs as m increases

Results3: The Role of In-context Example Quantity

Results3: The Role of In-context Example Quantity

Observation

- More in-context examples -> More learning
- But: Too many bad examples (e.g., randomized) degrade performance

Conclusion

- Example quantity strengthens learning, but quality still matters.
- In informative prompts, fewer examples, can be more effective

Result4: The Role of Feature Quantity(F1/F2/F3)

Result4: The Role of Feature Quantity(F1/F2/F3)

Key Findings

- Named: More features -> more knowledge retrieval
- Anonymized: More features -> better learning from examples
- Randomized: More features don't help(no signal to learn)

Conclusion

- More features enhance both learning and retrieval
- But only when outputs are meaningful

Quantifying Knowledge Use: Knowledge Effect Ratio(KER)

- What is KER?
 - KER measures how much adding feature names improves prediction accuracy.

• KER
$$= rac{|Y_{AF} - Y_{GT}| - |Y_{NF} - Y_{GT}|}{|Y_{AF} - Y_{GT}|} imes 100$$

- What does it tell us?
 - KER ↑ = More benefit from knowledge retrieval
 - Higher KER with fewer in-context examples
 - KER ≈ 0 for Admission dataset -> little prior knowledge

Conclusion

• Named features significantly help LLMs – especially in low-data settings.

Discussion & Takeaways

Key Takeaways

- 1. ICL is not binary It's spectrum
- 2. Prompt design controls that balance
- 3. LLMs are data-efficient
- 4. Bad examples hurt performance

• Practical Implications

- Use feature names wisely in prompt-based tasks
- Avoid long, misleading examples
- In low-data regimes, retrieval can replace extra examples