SPACE SYSTEMS ENGINEERING Orbital Position as a Function of Time

The Kepler Problem:

Given \mathbf{r}_0 and \mathbf{v}_0 , find the state vectors \mathbf{r} and \mathbf{v} at a time Δt later.

Mean and Eccentric Anomaly

Quantity	Circle	Ellipse	Parabola	Hyperbola
Defining Parameters	a = semimajor axis = radius	a = semimajor axis b = semiminor axis	p = semi-latus rectum q = perifocal distance	a = semi-transverse axis (a < 0) b = semi-conjugate axis
Parametric Equation	$x^2 + y^2 = a^2$	$x^2/a^2 + y^2/b^2 = 1$	$x^2 = 4qy$	$x^2/a^2 - y^2/b^2 = 1$
Eccentricity, e	e = 0	$e = \sqrt{a^2 - b^2}/a 0 < e < 1$	e=1	$e = \sqrt{a^2 - b^2} / a e > 1$
Perifocal Distance, q	q = a	q = a(1 - e)	q = p/2	q = a(1 - e)
Velocity, V, at Distance, r, from Focus	V ² = μ/r	$V^2 = \mu (2/r - 1/a)$	V ² = 2μ <i>lr</i>	V ² = μ(2/ <i>r</i> - 1/a)
Total Energy Per Unit Mass, ε	ε = -μ/2a < 0	$\varepsilon = -\mu/2a < 0$	ε = 0	$\varepsilon = -\mu/2a > 0$
Mean Angular Motion, n	$n = \sqrt{\mu/a^3}$	$n = \sqrt{\mu/a^3}$	$n=2\sqrt{\mu/p^3}$	$n = \sqrt{\mu/(-a)^3}$
Period, P	$P = 2\pi / n$	$P=2\pi/n$	P = ∞	P = ∞
Anomaly	v = M = E	Eccentric anomaly, E	Parabolic anomaly, D	Hyperbolic anomaly, F
		$\tan \frac{\nu}{2} = \left(\frac{1+e}{1-e}\right)^{1/2} \tan \left(\frac{E}{2}\right)$	$\tan\frac{\nu}{2} = D/\sqrt{2q}$	$\tan \frac{v}{2} = \left(\frac{1+e}{1-e}\right)^{1/2} \tanh \left(\frac{F}{2}\right)$
Mean Anomaly, M	$M = M_0 + nt$	$M = E - e \sin E$	$M = qD + (D^3/6)$	$M = (e \sinh F) - F$
Distance from Focus, $r = q (1 + e) / (1 + e \cos v)$	r = a	r = a (1 - e cos E)	$r = q + (D^2/2)$	r = a (1 – e cosh F)
$\dot{r} dr/dt = r\dot{r}$	0	<i>rr</i> = e√aμ sìn <i>E</i>	$r\dot{r} = \sqrt{\mu} D$	$r\dot{r} = e\sqrt{(-a)\mu} \sinh F$
Areal Velocity, $\frac{dA}{dt} = \frac{1}{2}r^2 \frac{dv}{dt}$	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{1}{2}\sqrt{a\mu}$	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{1}{2}\sqrt{a\mu(1-e^2)}$	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{1}{2}\sqrt{\frac{\mu q}{2}}$	$\frac{dA}{dt} = \frac{1}{2} \sqrt{a\mu \left(1 - e^2\right)}$ © 2011 Microcosm, Inc.

Note: $\mu = GM$ is the gravitational constant of the central body; ν is the true anomaly, and M = n(t-T) is the mean anomaly, where t is the time of observation, T is the time of perifocal passage, and n is the mean angular motion. See App. C for additional formulas and a discussion and listing of terminology and notation.

SPACE SYSTEMS ENGINEERING Orbital Position as a Function of Time

The Kepler Problem: Universal Variables

$$\mathbf{r} = f \mathbf{r}_0 + g \mathbf{v}_0$$

$$\mathbf{v} = \mathbf{\dot{f}} \mathbf{r}_{o} + \mathbf{\dot{g}} \mathbf{v}_{o}$$

The universal Kepler's equation:

$$\sqrt{\mu}\Delta t = \frac{r_0 v_{r_0}}{\sqrt{\mu}} \chi^2 C(\alpha \chi^2) + (1 - \alpha r_0) \chi^3 S(\alpha \chi^2) + r_0 \chi$$

Where $\alpha = 1/a = 2/r_o - v_o^2/\mu$ and the universal Lagrange equations are:

$$f = 1 - \frac{\chi^2}{r_0} C(\alpha \chi^2)$$

$$g = \Delta t - \frac{1}{\sqrt{\mu}} \chi^3 S(\alpha \chi^2)$$

$$\dot{f} = \frac{\sqrt{\mu}}{r r_0} \left[\alpha \chi^3 S(\alpha \chi^2) - \chi \right]$$

$$\dot{g} = 1 - \frac{\chi^2}{r} C(\alpha \chi^2)$$

And the Stumpff equations are given by:

$$C(z) = \frac{\cosh\sqrt{-z}-1}{-z}$$
 $(z<0)$ $(z=\alpha\chi^2)$

$$S(z) = \frac{\sinh\sqrt{-z} - \sqrt{-z}}{\left(\sqrt{-z}\right)^3} \quad (z < 0) \quad \left(z = \alpha \chi^2\right)$$