A Data Warehousing Primer

Roland Bouman (Strukton Rail) http://rpbouman.blogspot.com/

Starring Sakila

Topics

Starring Sakila

- Terminology
 - Business Intelligence
 - Data Warehouse
 - Dimensional Model
 - Star Schema
 - OLAP
 - Cube

Data Warehousing Terminology

- Business Intelligence (BI)
 - Skills, technologies, applications and practices to acquire a better understanding of the commercial context of your business.
- Data Warehouse
- Dimensional Model
- Star Schema
- OLAP
- Cube

What is Business Intelligence?

- Business Intelligence
- Data Warehouse
 - A database designed to support Business Intelligence
- Dimensional Model
- Star Schema
- OLAP
- Cube

What is a Data Warehouse?

- Business Intelligence
- Data Warehouse
- Dimensional Model
 - A logical data model that divides data in two kinds: Facts and Dimensions
- Star Schema
- OLAP
- Cube

What is the Dimensional Model?

- Business Intelligence
- Data Warehouse
- Dimensional Model
- Star Schema
 - Physical implementation of the Dimensional Model on a RDBMS which maps a dimension to a single table
- OLAP
- Cube

What is a Star Schema?

- Business Intelligence
- Data Warehouse
- Dimensional Model
- Star Schema
- OLAP
 - On-Line Analytical Processing: querying muli-dimensional data, cornerstone of most BI applications
- Cube

What is OLAP?

- Business Intelligence
- Data Warehouse
- Dimensional Model
- Star Schema
- OLAP
- Cube
 - Multi-dimensional data structure suitable for OLAP queries

What is a Cube

Business Intelligence

Understanding your Business

- Front end Applications:
 Back end, Infrastructure
 - Reports
 - Charts and Graphs
 - OLAP Pivot tables
 - Data Mining
 - Dashboards

- ETL
 - Extract
 - Transformation
 - Load
- Data Warehouse
- Data Mart
- Metadata
- ROLAP Cube

Business Intelligence

High Level BI Architecture

Data Warehouse

Business Intelligence Database

- Ultimately, it's just a Relational Database
 - Tables, Columns, Keys...
- ...But designed for BI applications
 - Ease of use
 - Performance
- Data from various source systems
 - Integration, Standardization, Data cleaning
 - Add and maintain history

Data Warehouse

OLTP

- Operational
- 'Always' on
- All kinds of users
- Many users
- Directly supports business process
- Keep a Record of Current status

OLAP

- Tactical, Strategic
- Periodically Available
- Managers, Directors
- Few(er) users
- Decision support,
 long-term planning
- Maintain history

OLTP vs OLAP: Application Characterization

OLTP

- Subject Oriented
- Add, Modify, Remove single rows
- Human data entry
- Queries for small sets of rows with all their details
- Standard queries

OLAP

- Aspect Oriented
- Bulk load, rarely modify, never remove
- Automated ETL jobs
- Scan large sets to return aggregates over arbitrary groups
- Ad-hoc queries

OLTP vs OLAP: data processing

OLTP

- Entity-Relationship model
- Entities, Attributes,Relationships
- Foreign key constraints
- Indexes to increase performance
- Normalized to 3NF or BCNF

OLAP

- Dimensional model
- Facts, Dimensions,
 Hierarchies
- Ref. integrity ensured in loading process
- Scans on Fact table obliterates indexes
- DenormalizedDimensions (<= 1NF)

OLTP vs OLAP: database schema organization

Dimensional Model

Organizing data to suit Business Intelligence

- Two kinds of data
 - Facts
 - Dimensions

The Dimensional Model

- Facts
 - Measures/Metrics of a Business Process
 - Typical Metrics
 - Cost, Units Sold, Profit

The Dimensional Model: Facts

- Dimensions
 - Describe aspects of Business Process
 - Dimensions typically not inter-dependent
 - Who? What? Where? When? Why?
 - Typical Dimensions:
 - Customer (who?), Product (what?),
 Date/Time (when?)

The Dimensional Model: Dimensions

- Dimension Attributes organized in Hierarchies
 - Date dimension examples:
 - Year, Quarter, Month, Day
 - Year, Week, Day
- Metrics typically numeric and additive
- Navigate fact data
 - Choose particular values for dimension
 - Aggregate fact data at chosen level of hierarchy

The Dimensional Model: Navigating Facts with Dimensions

Date Dimension 2008 Q4					
Location Dimension		All Months	October	November	December
All locations		\$ 3850	\$ 1000	\$ 1350	\$ 1500
America	All America	\$ 2050	\$500	\$ 750	\$ 800
	North	\$ 1275	\$ 300	\$ 500	\$ 475
	South	\$ 775	\$ 200	\$ 250	\$ 325
Europe	All Europe	\$ 1800	\$ 500	\$ 600	\$ 700
	East	\$ 800	\$ 250	\$ 250	\$ 300
	West	\$ 1000	\$ 250	\$ 350	\$ 400

Dimensional Example: Crosstab

Star Schema

Dimensional Model Implementation

- Central Fact Table
 - Columns for storing Metrics
 - 'Foreign Key' columns point to Dimension
 - Typically normalized and not pre-aggregated
- Dimension maps to a Dimension table
 - Surrogate key
 - Descriptive attributes organized in hierarchies
 - No Foreign Keys to other tables
 - Typically heavily denormalized

Stars Schema Characteristics

Star Schema example: Sakila Rentals

- Star schema is 'just' an implementation
 - Optimized for simplicity
 - Optimized for performance (?)
 - Heavily denormalized dimensions
- Snowflake: Star Schema Alternative
 - Still a dimensional model
 - Still a central fact table
 - Normalized dimensions
 - Easier maintenance of dimensions

Stars Schema Characteristics

Snow Flake example: Sakila Rentals

Desinging Star Schemas

- Select Business Process
 - Sales, Purchase, Storage, Transport, ...
- Define Facts and Key Metrics
 - Facts: Key Event in Business Process
 - Metrics (Fact Attributes): Count or Amount
- Choose Dimensions and Hierarchies
 - What? When? Where?
 - Who? Why?

Dimensional Design

- MySQL Sample Database
 - http://dev.mysql.com/doc/sakila/en/sakila.html
- DVD rental business
 - Overly simplified database schema
- Typical OLTP database

Dimensional Model example

- Rental Business Process
 - Customer visits store, picks DVD
 - DVD taken out of store inventory by staff member
 - Customer returns home and enjoys DVD
 - Customer returns to store with DVD
 - DVD returned to staff member
 - Staff member collects payment made by customer

Dimensional Model example

3NF Source schema: Sakila Rentals

- Select Business Process
 - Rentals
- Identify Facts
 - Count (number of rentals)
 - Rental Duration
- Choose Dimensions
 - What: Films
 - When: Rental, Return
- Who: Customer, Staff
- Where: Store

Example Business Process: Rentals

Target Star Schema

Rental Star Schema

A star is born: Rentals 3NF

A star is born: Rentals 3NF

A star is born

A star is born: Rental Snowflake

A star is born: Rental Star Schema

- Something is missing....
 - Who ? (Customer, Staff)
 - What ? (Film)
 - Where ? (Store)
 - **-** ?

Dimensional Design

A star is born: Rental Date and Time

Role Playing: Date/Time for both Rentals and Returns

Denormalization through Joins

Denormalization through Flattening (Repeating Group)

Loading a Data Warehouse

ETL with Pentaho Data Integration

- Pentaho Data Integration
 - sourceforge.net/projects/pentaho/
- ETL and much more
- Transformations:
 - Extract, Load and Transform
- Jobs:
 - Organize multiple transformations to a complete ETL process
- > 30 RDBMS-es, > 130 Transformation Steps

Dimensional Design

- First load dimensions, finally load fact
- Mail notification in case of success / failure

- First load dimensions, finally load fact
- Mail notification in case of success / failure

- Get store, lookup address (subtransformation) and manager
- Load store dimension table

- Get store, lookup address (subtransformation) and manager
- Load store dimension table

- Get address, lookup city and country
- Concatenate address if necessary

- This was just a simple example
- More complex example: importing XML

```
<?xml version="1.0" encoding="UTF-8"?>
<result>
 <actors>
    <actor id="00000015">Anderson, Jeff</actor>
    <actor id="00000015">Anderson, Jeff</actor>
 </actors>
 <videos>
    <video>
      <title>The Fugitive</title>
      <genre>action</genre>
    </video>
  </videos>
</result>
```

- This was just a simple example
- More complex example: importing XML

OLAP

OLAP Pivot Table with Pentaho Analysis Services

- Pentaho Analysis Services
 - Part of Pentaho BI Server
 - sourceforge.net/projects/pentaho/
 - Based on Mondrian ROLAP server
 - sourceforge.net/projects/mondrian/

Dimensional Design

- Pentaho Schema Workbench
 - Map data warehouse tables to a logical Cube

Pentaho Analysis View:

- Pentaho Solutions
 - Wiley
 - ISBN 978-0-470-48432-6
 - September 2009
 - 630+ page paperback
 - Amazon pre-order \$31.50
 - Regular: \$50.00

Upcoming Book: Pentaho Solutions