Homework 9 (2023) — SOLUTIONS

JAIST — School of Information Science — I232 Information Theory

1. Packing spheres

- (a) In two dimensions, consider packing circles of radius N=1 inside a large circle of radius S=10. Find an upper bound on M, the number of circles, by dividing the area of the large circle, by the area of small circle.
- (b) Now consider n-dimensional spheres. The volume of a sphere with radius r in n dimensions is Vol(n,r):

$$Vol(n,r) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}r^n,$$

where Γ is the gamma function. Let the radius of the large sphere be $\sqrt{P+N}$, and let the radius of the small sphere be \sqrt{N} . As before, find an upper bound on the number of spheres M

(c) Now let $R = \frac{1}{n} \log M$. Using your answer to part (b), what is an upper bound on R?

Solution:

(a)

$$\begin{split} M &\leq \frac{\text{Area of large circle}}{\text{Area of small circle}} \\ &= \frac{\pi S^2}{\pi N^2} = \frac{100}{1} = 100 \end{split}$$

(b) With $C_n = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}$:

$$\operatorname{Vol}_{\operatorname{big}} = C_n(\sqrt{n(P+N)})^n$$

 $\operatorname{Vol}_{\operatorname{small}} = C_n(\sqrt{n(N)})^n$

Maximum number of messages M is the maximum number of non-intersecting spheres:

$$M \le \frac{\text{Vol}_{\text{big}}}{\text{Vol}_{\text{small}}} = \frac{C_n(\sqrt{n(P+N)})^n}{C_n(\sqrt{n(N)})^n}$$

$$M \le \left(1 + \frac{P}{N}\right)^{n/2}$$

(c)

$$\begin{split} R &= \frac{1}{n} \log M &\leq \frac{1}{n} \log \left(1 + \frac{P}{N} \right)^{n/2} \\ R &\leq \frac{1}{2} \log \left(1 + \frac{P}{N} \right) \end{split}$$

2. Triangular probability distribution Consider two uniformly distributed random variables X and Y:

$$p_{\mathsf{X}}(x) = \begin{cases} \frac{1}{2} & -1 \le x \le 1\\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad p_{\mathsf{Y}}(y) = \begin{cases} \frac{1}{2} & -1 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

(a) Find the probability distribution of X + Y, using convolution.

Solution: Let Z = X + Y.

$$p_{\mathsf{Z}}(z) = \int_{-\infty}^{\infty} p_{\mathsf{X}}(z - w) p_{\mathsf{Y}}(w) dw \qquad -1 \le z - w \le 1, -1 \le w \le 1$$

$$= \int_{\max(z - 1, -1)}^{\min(z + 1, 1)} \frac{1}{2} \frac{1}{2} dw \qquad z - 1 \le w \le z + 1$$

$$= \frac{1}{4} \left(\min(z + 1, 1) - \max(z - 1, -1) \right)$$

$$= \begin{cases} \frac{1}{2} + \frac{1}{4}z & -2 \le z \le 0 \\ \frac{1}{2} - \frac{1}{4}z & 0 < z \le 2 \\ 0 & \text{otherwise} \end{cases}$$

(b) Let Z be distributed as a triangular distribution:

$$p_{\mathsf{Z}}(z) = \begin{cases} c + c^2 z & -\frac{1}{c} \le z \le 0\\ c - c^2 z & 0 < z \le \frac{1}{c}\\ 0 & \text{otherwise} \end{cases}$$

for c > 0. Find differential entropy of Z in nats, using natural log ln.

Solution:

$$\begin{split} H(\mathsf{Z}) &= -\int p_{\mathsf{Z}}(z) \ln p_{\mathsf{Z}}(z) dz \\ &= -\int_{-1/c}^{0} (c+c^2z) \ln(c+c^2z) dz - \int_{0}^{1/c} (c-c^2z) \ln(c-c^2z) dz \end{split}$$

The two integrals are equal by symmetry. The first integral is:

$$-\int_{-1/c}^{0} (c+c^2z) \ln(c+c^2z) dz = \frac{1}{4} + \frac{1}{2} \ln \frac{1}{c}$$

One technique to evaluate the integral is to use Wolfram Alpha or Mathematica:

Integrate[c(1+cz) Log[c (1+c z)],{z,-1/c,0}, Assumptions
$$\rightarrow$$
 c > 0]

So the differential entropy is twice that:

$$H(\mathsf{Z}) = \frac{1}{2} + \ln \frac{1}{c}$$

(c) What is the differential entropy of X + Y, in nats?

Solution: Since X + Y has a triangular distribution with c = 1/2, the differential entropy is $\frac{1}{2} + \ln 2$.

3. Capacity of the binary-input AWGN channel The binary-input AWGN channel achieves capacity with $p_X^*(x) = [\frac{1}{2}, \frac{1}{2}]$. The signal-to-noise ratio SNR in decibels (dB) is:

SNR in
$$dB = 10 \log_{10} \frac{1}{\sigma^2}$$
.

(a) Make a plot of capacity C versus SNR dB for the binary-input AWGN channel. (b) On the same graph, plot the capacity of the AWGN channel with Gaussian input distribution. (c) What happens to achievable rates as SNR \rightarrow 0? What happens to achievable rates as SNR \rightarrow ∞ ? What can you conclude from this?

Solution: (a), (b) The figure below shows the plot of capacity of the binary-input AWGN channel and the Gaussian-input AWGN channel, and below that is the source code used to generate them.

(c) Note that SNR $\to 0$ means SNR dB $\to -\infty$. As SNR $\to 0$, the capacity goes to 0. As SNR $\to \infty$, the capacity of the binary-input goes to 1, since the input is binary, but the capacity of the Gaussian-input AWGN channel goes to infinity. From these two, we can conclude that as SNR $\to 0$, it is sufficient to use binary inputs, i.e. there is no benefit to using Gaussian-input signaling. But as SNR $\to \infty$, Gaussian inputs are needed to achieve higher capacities.


```
clear all
   close all
   SNRdb = linspace(-15,15);
   SNR
         = 10.^{(SNRdb/10)};
         = 1 ./ SNR;
   IXY = zeros(size(var));
9
   for ii = 1:length(var)
        IXY(ii) = biawqnCapacity(var(ii));
11
   end
12
   plot(SNRdb,IXY,'b-');
   hold on
   C = 0.5 * log2(1 + SNR);
16
   plot(SNRdb,C,'r-');
   xlabel('SNR (dB)');
18
  ylabel('Capacity C');
19
  legend('Binary Input AWGN capacity','Gaussian Input AWGN Capacity','Location','
       Northwest');
```

```
grid on

function IXY = biawgnCapacity(var)

fun = @(y) (1/sqrt(2*pi*var)) .* exp( - (y-1).^2 / (2*var)) .* log2( 2 ./ (1 + exp( - 2*y / var)) );

IXY = integral(fun,-10,10);

>> var = 0.9578;
>> fun = @(y) (1/sqrt(2*pi*var)) .* exp( - (y-1).^2 / (2*var)) .* log2( 2 ./ (1 + exp( - 2*y / var)) );
>> IXY = integral(fun,-10,10)

IXY =

0.5000
```