CS543: COMPUTER	VISION	6
INDEX	paris .	
1. Camera Lens	(10.) I mage Alignment	2
2. Interpolation [upsample]	T T ing 2	6
3. Image Transformations	Solve for T, given ing1, ing2	<u></u>
- Affine	Logic 1. Extract features -> SIFT	
L Projective L Inverse Warping	2. Purstive matches $\rightarrow (1,1),(2,2)$	E
43	3. Solve for T w/ _ PANSAC.	6
4. Image Filtering	Polit Pariz (a)	8
L ATHERS - POHERN detectors Loonvolution	(II) Comero, light & Shading	Carrier Control
-goversian Filter (1000 Bas Filter)	L Pinhole comera	-
LEAGE FILES (highlass Filler)	L lamberts law, albedo effect	•
5. Fourier Analysis	- Horizons, Vanishing Point (VP)	e
Space = sinosolas	L'Camera Matrix world	-
	image coord	4
6. Eage Detection Corner Detection	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} as & k & c_{x} \\ o & s & c_{y} \\ o & o & Vf \end{bmatrix} \begin{bmatrix} c_{p} & c_{y} \\ c_{p} & c_{y} \\ c_{y} & c_{y} \end{bmatrix} \begin{bmatrix} c_{p} & c_{y} \\ c_{y} & c_{y} \\ c_{y} & c_{y} \end{bmatrix} \begin{bmatrix} c_{p} & c_{y} \\ c_{y} & c_{y} \\ c_{y} & c_{y} \end{bmatrix}$	-
Ly Partial derivatives of images	y = 0 3 cg [I 0] [T]	
via convolution.		6
- Canny Edge Defector	image camera & canonical comera 30 world Projection Extressics Pt.	-
1	coordinals intrinsics [RIE]	
Harris Corner Detector	L Derived Projection Coords P(Pt	
T. Blobs interest Points	p! Sfx fY f o	
Lowell defined, nich in scene	$P_{x,y}^{1}\left(\frac{f\times}{z},\frac{f\times}{z}\right)$	
invariant to scale, rotate, light	y' a 1/2 pri(mage)	-
. No : gaussian Files → smoothers	Point)	6
$\nabla(n_{\Gamma})$: der. of $n_{\Gamma} \rightarrow get$ edges	(2) Single View Modelling	
. $\nabla^2(n_{\perp}): 2^{nd} \text{ der offr} \rightarrow \text{ set exter}.$	· solve ()	
. V ((F) == 3.00	(B) [RIE]	0
LISIFT Detector.	L vars : (+, cz, cy) (R,t)	
	· 3 orthogonal VPs (>=2) VP	0
8. Filling	· Vi = K[RIE](ei)	6
) represent features [eage, blob]	K: VIKE-IV; = 0	6
w/ a parametric model.	R: To = KTV;	
+ Algos:	(3) Epipolar Greometry p(xxz)	6
-> Robust Least Squated	A pt(P1) in one img of evene	6
- PANSAC.	will line on Epipolar line Epipolar	6
In an Image	on another img of scene, pl plane of scene, pl	-
9. Hough Transform	M1) Essential Mairix 0	011
ing Param M,C Space O, P	2. E. z = 0 L, call b unaon Base Epipolar	
point I'ne rep.	M2) Fundamental Matrix	C
, one	Healib unteneuver.	

(4) Structure For Motion[SFM] L Griven, multiple imgs of scene, w/ known/ solve: CHELDUNG CAMELS © world geometry →

(Find world coords.)

Structure (B) (1) carners locations -> Motion (M) (Sparse-gemorty) Modern Incremental SFM Algo: 1 Detect features in imgs. -> SIFT Feature Matching → superfille (3) Grenerate 2D Tracks ____ from matches (4) SFM model from - Smatrx M matrix 6 SEM model refinement w/ new views, bundle adjust. (15) Multi View Stereo . Generate dense 3D scene rept. using multiple images. A190 % 010 1. Compute correspondences (SFM (12)) 2. Plane sweep stereo Ly Est. depth of each Pixel. cost fine similarity measures LINCC 3. Fuse depth maps → single (3D repN Pointcrows (16) NeRF Use MLP to parameterize Radiance Freld Function (fo) -> quantify Tadiance (intensity, color) of light from a World Pt. coming to camers. fo: RL× RL0 → [0,1] × [0, N] Y(2), Y(d) → (c), √) A: Viewing direction (Color, Volume) O : Model Wts. · Positional encosing

by Volume Rendering [30 rep^N]

o Differentiably render out novel rieus using radiance function.

" Pixel color of (r) computed using alpha composting.

$$c_{O}(\tau) = \int_{T(t)}^{t} c_{O}(\tau(t)) c_{O}(\tau(t), a)$$

e transmittance - Prob. of ray travelling to the woo histing a posticle.