Examen la Logica Page 1 of 1

Bilet numărul 16

1. Algebre booleene

- a) Fie funcțiile $f,g \in FB^{(3)}$, date respectiv prin $f(x,y,z) = \overline{x} \cdot \overline{z} + y$ și $g(x,y,z) = (\overline{x} + y) \cdot (y + \overline{z}) + x \cdot y \cdot z$. Să se arate că f = g. (1 punct)
- b) Să se demonstreze că orice funcție $f \in FB$ admite o descompunere în produs de factori (sume de variabile). (2 puncte)

2. LP

- a) Definiți Res(F), $Res^{(n)}(F)$ $(n \in \Box)$, $Res^*(F)$ și Resc(F), $F \in LP$. Ce legătură există între $Res^*(F)$ și Resc(F)? Dar între apartenența la $Res^*(F)$ și existența unei demonstrații prin rezoluție pornind cu "clauzele care reprezintă F"? (1.5 puncte)
- b) Găsiţi valoarea de adevăr a afirmaţiei: "Dacă există petrol în Patagonia, atunci fie experţii au dreptate, fie guvernul minte. Nu există petrol în Patagonia sau experţii greşesc, aşadar guvernul nu minte.". (1.5 puncte)

3. LP1

- a) Găsiți o structură S_1 astfel încât S_1 să fie model F și o structură S_2 care să **nu** fie model pentru F, unde $F = (\forall x) (P(x)) \rightarrow (\forall y) (Q(x,y))$. (2 puncte)
- b) Definiţi constructiv extensia S_s a unei structuri $S = \langle U_s, I_s \rangle$, doar în cazul formulelor (se presupune deja cunoscută S_s pentru mulţimea T_s a termilor şi A_t a formulelor atomice). (1 punct)