第六章 时序逻辑电路

概述

时序逻辑电路的分析时序逻辑电路的设计

常用时序逻辑电路

- ●寄存器
- •移位寄存器
- •计数器
- •序列信号发生器

时序逻辑电路 第六章

- 概述 6.1
- 6.2 时序逻辑电路的分析
- 时序逻辑电路的设计 6.4
- 6.3 常用时序逻辑电路

 - •序列信号发生器

●寄存器 (74HC175)
 ●移位寄存器 (74LS194A)
 ●计数器
 应用2:构成分种移位寄存器

6.3. 常用时序电路简介

• 寄存器

由多位触发器构成,用来寄存多位二进制信息,各触发器由统一的时钟指

表 5.2.1 74LS374 的功能表

ŌC	CLK	D	Q
0	↑	0	0
O	↑	1	1
0	0	\boldsymbol{x}	Q^n
1	\boldsymbol{x}	\boldsymbol{x}	<i>Q</i> " 高阻

表 5.2.2 74LS373 的功能表

	_		
\overline{OC}	CLK	D	Q
0	1	0	0
0	1	1	1
0	0	×	Q^n
1	×	×	高阻

寄存器

锁存器

6.3.1 寄存器

4位寄存器

4位寄存器74HC175

CLK 上升沿时, D0~D3被存入 有异步置0功能

后储

6.3 常用时序电路简介

• 移位寄存器

由触发器构成的另—类常用时序电路。移位寄存器具有移位和寄存两重功能。

四位右移寄存器

6.3.2 移位寄存器

例1. 用D触发器构成的移位寄存器

CLK	D_1	Q_0	Q_1	Q_2	Q_3
0	1	0	0	0	0
1 1	0	1	0	0	0
2 1	1	0	1	0	0
3 1	1	1	0	1	0
4 ↑	X	1	1	0	1

例2. 用JK触发器构成的移位寄存器

DFF:
$$Q^* = D$$

= $D(Q'+Q)$
= $DQ'+DQ$

JKFF:
$$Q^* = UQ' + K'Q$$

例3. 用 SR 触发器构成的移位寄存器

DFF:
$$Q^* = D$$

= $D(Q'+Q)$
= $DQ'+DQ$

SRFF: $Q^* = S + R'Q$ =SQ' + R'Q

第六章 时序逻辑电路

- 6.1 概述
- 6.2 时序逻辑电路的分析
- 6.3 时序逻辑电路的设计
- 6.4 常用时序逻辑电路
 - •计数器
 - •寄存器 (74HC175)
 - •移位寄存器 (74LS194A)
 - •序列信号发生器

例4 分析下面逻辑电路的功能

例4 分析下面逻辑电路的功能

2)状态转换表

S1	S0	Q_0^*	Q_1^*	Q_2^*	Q_3^*	
0	0	Q_0	Q_1	Q_2	Q_3	保持
0	1	→D _R	Q_0	Q_1	Q_2	右移
1	0	Q_1	Q_2	Q_3	DL	左移
1	1	D_0	D_1	D_2	D_3	置数

3)功能分析

 4比特可控双向移位寄存器 s1s0 为控制信号

s1s0 =00时, **Q**₃~**Q**₀保持原值 s1s0 =01时, 右移,**D**_R串行输入

s1s0 =10时, 左移, **D**L 串行输入

s1s0 =11时, 置数

例4 分析下面逻辑电路的功能

2)状态转换表

S 1	S0	Q_0^*	Q_1^*	Q_2^*	Q_3^*	
0	0	Q_0	Q_1	Q_2	Q_3	保持
0	1	$\rightarrow D_R$	Q_0	Q_1	Q_2	右移
1	0	Q_1	Q_2	Q_3	D L←	左移
1	1	D_0	D_1	D_2	D_3	置数

4比特可控双向移位寄存器

集成移位寄存器74LS194A

6.3.3 集成移位寄存器74LS194A

74LS194A是4位通用移存器,具有左/右移,并行输入,保持,异步置零等功能。

 Q_1

 Q_{2}

 Q_0

 $D_{
m IR}$

CLK-

74LS194A 4位双向移位寄存器

	并行数据输	出	
控 制 — S1 S0	$Q_0 \ Q_1 \ Q_2$ 74LS194A	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<u>c</u> lk
端	D_0 D_1 D_2	D_3	R'D 异步置0
右移串入 DR		لٰ لٰ	左移串入
	并行数据统	渝入	

R'_{D}	clk	S_1	S_0	Q0~Q3
0	X	X	X	0000
1	↑	0	0	保持
1	↑	0	1	右移
1	↑	1	0	左移
1	↑	1	1	并行输入

时序逻辑电路 第六章

- 概述 6.1
- 6.2 时序逻辑电路的分析
- 时序逻辑电路的设计 6.4
- 6.3 常用时序逻辑电路

 - •序列信号发生器

●寄存器 (74HC175)
 ●移位寄存器 (74LS194A)
 ●计数器
 应用2:构成分种移位寄存器

扩展应用(四位扩展到八位)

例5: 用两片74LS194A接成8位双向移位寄存器

回顾: 计数器分析

1) 驱动方程:

$$\begin{cases} J_{1} = (Q_{2}Q_{3})', & K_{1} = 1 \\ J_{2} = Q_{1}, & K_{2} = (Q'_{1}Q'_{3})' \\ J_{3} = Q_{1}Q_{2}, & K_{3} = Q_{2} \end{cases} \begin{cases} Q_{3}^{*} = Q_{1}Q_{2}Q_{3}' + Q_{2}'Q_{3} \\ Q_{2}^{*} = Q_{1}Q_{2}' + Q_{1}'Q_{2}Q_{3}' \\ Q_{1}^{*} = (Q_{2}Q_{3})' \cdot Q_{1}' \end{cases}$$

2.状态方程

$$\begin{cases}
Q_3^* = Q_1 Q_2 Q_3' + Q_2' Q_3 \\
Q_2^* = Q_1 Q_2' + Q_1' Q_2 Q_3' \\
Q_1^* = (Q_2 Q_3)' \cdot Q_1'
\end{cases}$$

3.状态转换表

Q_3	Q_2	Q_1	Q * ₃	Q * ₂	Q * ₁	Υ
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	1	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	1	0	0	0	1

4.状态图 (000) /0 (010) /0 (010) /0 (011)	$Q_3Q_2Q_1$
(111) $/1$ (110) (101) (100) $/0$	/Y

回顾:移位寄存器

比较: 计数器

6.3.4 移位型同步计数器

移位寄存器+反馈电路构成计数器,FF输入端简单,只需设计D0

FF输入端复杂, 需巧妙设计

例6 分析移位型计数器是几进制,能否自启动。

1)驱动方程 状态方程

D3=

 $Q^*_3 =$

D2=

 $Q^*_2 =$

D1=

 $Q^*_1 =$

$\overline{Q_3}$	Q_2	\overline{Q}_1	Q ₃ *	Q ₂ *	Q_1^*
0	0	0			
0	0	1			
0	+	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	—			

例6 分析移位型计数器 是几进制,能否自启动。

1)驱动方程 状态方程

D3=Q2

 $Q^*_3 = Q_2$

D2=Q1

 $Q^*_2 = Q1$

D1=Q3'

 $Q_{1}^{*}=Q_{3}'$

2)状态转换表

Q_3	Q_2	Q ₁	Q_3^*	Q_2^*	Q_1^*
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	1	0	0
1	1	1	1	1	0

扭环计数器

3)状态转换图

4)功能分析

六进制计数器 不能自启动

例7 分析移位型计数器 是几进制,能否自启动。

驱动方程

D3=Q2

D2=Q1

D1=Q3

状态转换表

Q_3	Q_2	Q_1	Q ₃ *	Q_2^*	Q ₁ *
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

环形计数器

缺点: FF用量大,无效状态多,容易产生不能自启动

练习2 74LS194A连接如下, 成为一个移位型计数器。 问,是几进制计数器, 能否自启动。

双向移存器74LS194功能表

R'_{D}	S_1	S_0	工作状态	
0	X	X	置零	
1	0	0	保持	
1	0	1	右移	
1	1	0	左移	
1	1	1	并行输入	

1)驱动方程 状态方程

 $D_3=Q_2$ $Q^*_3=Q_2$

 $D_2=Q_1$ $Q^*_2=Q_1$

 $D_1=Q_0$ $Q^*_1=Q_0$

 $D_0=(Q_2Q_1)'$ $Q^*_0=D_0$

1)驱动方程 状态方程

$D_3=Q_2$	$Q^*_3=Q_2$	
$D_2=Q_1$	$Q^*_2 = Q_1$	

$$D_1=Q_0$$
 $Q^*_1=Q_0$ $Q_0^*_1=Q_0$

 $D_0=(Q_2Q_1)'$ $Q^*_0=D_0$

1)驱动方程	状态方程
,	

 $D_3=Q_2$ $Q^*_3=Q_2$ $D_2=Q_1$ $Q^*_2=Q_4$

 $D_2=Q_1$ $Q^*_2=Q_1$ $Q_1=Q_0$ $Q_2=Q_1$

 $D_1=Q_0$ $Q^*_1=Q_0$ $Q^*_0=D_0$

作业

- 6.9 4个74LS194组成16比特双向移位寄存器
- 6.10 已知电路(8个DFF+全加器),分析电路功能
- 6.26 3个DFF+逻辑门,移位型计数器分析是几进制计数器,能否自启动
- 6.27 4个DFF+逻辑门,移位型计数器 分析是几进制计数器,能否自启动

6.10

1)真值表

AB <i>Ci</i>	S	Co
000	0	0
001	1	0
010	1	0
011	0	1
100	1	0
101	0	1
110	0	1
111	1	1

