Circuito lógico:

Circuito lógico

Tabela de transição de estados

Equações de excitação:

$$J0=(y + Q1)x$$
 $K0= w Q1$

J1=Q0 K1=
$$y Q0' + x' Q0 w$$

Equação de próximo estado ->

Equação característica do JK

$$Q_{N+1} = J Q_N' + K'Q_N$$

Circuito lógico

Equações de próximo estado

$$Q0 = J0q0' + K0'q0$$

$$Q0 = (xy + xq1')q0' + (wq1)'q0$$

$$Q0=(y+q1)xq0' + (w'+q1')q0$$

$$Q1=q0q1' + (yq0' + x'q0 w)'q1$$

Equações de saída

$$LOW=q1 + q0'$$

Circuito lógico:

Equações de próximo estado:

Q1=q0q1' +
$$(yq0' + x'q0 w)'q1$$

Q0= $(y+q1)xq0' + (w'+q1')q0$

Equações de saída

Tabela de transição de estados:

XY	W=0		W=1					Saídas			
$Q_1 Q_0$	00	01	11	10	00	01	¹ 11	10	Z	Р	LOW
0 0	00	00	01	01	00	00	01	01	0	0	1
0 1	11	11	11	11	11	11	11	11	0	0	0
11	11	11	11	11	10	10	00	00	0	1	1
1 0	10	00	01	10	10	00	01	10	1	1	1

Prof. Duarte L. Oliveira - Divisão de Engenharia Eletrônica do ITA