数据库

张创琦组卷

关系的完整性、关系代数

1. 设有如下关系:

图书(书号,书名,作者,出版社);

读者(借书证号,读者名,读者地址);

借阅(读者名,书号,借书日期,归还日期)。

① 指出每个关系模式的候选码, 主码, 外码, 主属性。

- ② 试用关系代数表达式查询2010年12月31日以前已经还书和借书未还的读者姓名和图书书名。
- 2. 设关系 R、W 和 D 如下, 计算下列关系代数:

关系 R

P	Q	T	Y
2	b	c	d
9	a	e	f
2	b	e	f
9	a	d	e
7	g	e	f
7	g	С	d

关系 W

T	Y	В
c	d	m
С	d	n
d	f	n

关系 D

T	Y
с	d
e	f

- ① $R1 = \prod_{Y,T}(R)$
- ② $R2 = \sigma_{P>5 \wedge T=e}(R)$
- ③ R3=R ⋈W
- 4 R4= $\prod_{2,1,6} (\sigma_{3=5} (R \times D))$
- \bigcirc R5=R÷D

二 已知表格如下,回答下列问题。

表 2-1 关系数据库实例 Education 中的学生关系 Students

Sno	Sname	Gender	BirthDate	PID	Major
学号	姓名	性别	出生日期	身份证号	所属专业
S1	李红	女	1990-12-21	330602199012211234	信息管理
S2	张雷	男	1991-01-15	110103199101156789	计算机科学
S3	胡斌	男	1989-11-09	321001198911091234	电子商务
S4	陈龙	男	1991-04-12	360101199104123456	信息管理
S5	赵敏	女	1990-12-06	440605199012067891	计算机科学
S6	王涛	男	1990-10-17	330101199010178901	信息管理

表 2-2 关系数据库实例 Education 中的课程关系 Courses

Спо	Cname	Pcno	Туре	Credit
课程号	课程名	前修课程	类别	学分
C1	数据库	C2	自然科学	4
C2	C 程序设计		自然科学	3
C3	电子商务		经济管理	2
C4	数据结构	C2	自然科学	3
C5	编译原理	C4	自然科学	3
C6	操作系统	C5	自然科学	4
C7	Web 技术	C1	自然科学	3

表 2-3 关系数据库实例 Education 中的教师关系 Teachers

Tno	Tname	Gender	BirthDate	Title	Major
教师号	姓名	性别	出生日期	职称	所属专业
T1	赵宏民	男	1967-12-15	教授	信息管理
T2	钱敏霞	女	1976-04-16	副教授	电子商务
T3	孙一维	男	1980-10-23	讲师	计算机科学
T4	李晓明	男	1978-11-06	副教授	信息管理

表 2-4 关系数据库实例 Education 中的选课关系 StudCourses

Sno	Cno	Grade	Sno	Cno	Grade
学号	课程号	成绩	学号	课程号	成绩
S1	C1	90	S2	C5	82
S1	C2	86	S3	C1	65
S1	C3	75	S3	C3	50
S1	C4	70	S4	C1	69
S2	C1	82	S4	C6	55
S2	C4	88	S5	C7	76

表 2-7 关系数据库实例 Education 中的授课关系 Instructions

Тпо	Cno	Period	Tno	Cno	Period
教师号	课程号	开课学期	教师号	课程号	开课学期
T1	C1	2010-1	Т3	C5	2010-1

T1	C2	2010-1	Т3	C7	2010-1
T1	C1	2010-2	Т3	C5	2010-2
T2	C3	2010-1	Т3	C7	2010-2
T2	C1	2010-1	T4	C6	2010-1
T2	C3	2010-2	T4	C6	2010-2

用关系代数完成下列查询:

- 1 查询选修了 C2 课程的学生学号和姓名。
- 2 查询没有选修 C3 课程的学生学号。
- 3 查询既选修了 C1 又选修了 C3 课程的学生学号。
- 4 查询选修了 C1 或 C3 课程的学生姓名。
- 5 查询选修了课程名称为"数据库"的学生姓名。
- 6 查询至少选修 C1 和 C3 课程的学生号码。
- 7 查询哪些学生至少选修了学号为"S1"的这个学生所选修过的所有课程,并得到这些学生的学号和姓名。
- 8 查询至少选修了两门自然科学类课程的学生姓名。
- 9 查询哪些学生至少选修了一门学号为"S1"的这个学生所选修过的课程, 求这些学生的学号和姓名。

三 给定一个有关学生选课数据库 Education,它包含学生、课程、教师、选课和授课等 5 个关系模式,分别用 Students, Courses, Teachers, StudCourses, Instructions 表示。各个关系模式表示如下:

Students(Sno, Sname, Gender, Major)=学生(学号,姓名,性别,所属专业)Courses(Cno, Cname, Pno, Credit)=课程(课程编号,课程名称,前修课程,学分)Teachers(Tno, Tname, Title, Major)=教师(教师编号,姓名,职称,所属专业)StudCourses(Cno, Cno, Period, Grade)=选课(学号,课程编号,选课学期,成绩)Instructions(Tno, Cno, Period)=授课(教师编号,课程编号,授课学期)用关系代数完成下列查询:

- 1 查询选修过"数据库"和"数据结构"这两门课程的学生姓名。
- 2 查询姓名为"李平"这个学生所选修的全部课程的名称。
- 3 查询没有选修过"数据库"这门课程的学生姓名。
- 4 查询选修过"数据库"但没有选修其先行课的学生学号。
- 5 查询所有课程成绩全部及格的学生姓名。
- 6 查询选修过教师"达尔文"所授的全部课程的学生姓名。
- 7 查询哪些学生选修的课程中其前修课程还没有选修过。
- 8 查询哪些学生与学号为"S1"的学生选修了完全相同的课程。
- 9 查询哪些学生没有选修过教师"达尔文"所授的任何一门课程。
- 10 查询哪些学生至少选修了教师"达尔文"所授的两门不同的课程。

SQL 基础语句练习(用 SQL 语句写出下列要求)

练习 1:

Manager(管理员表):

mid 编号 int (主键)

mname 名字 varchar(20)

age 年龄 int

sex 性别 char(2)

password 密码 varchar(20)

address 地址 varchar(20)

phone 电话 varchar(20)

数据:

- 1 王子 18 男 123 北京 110
- 2 公主 20 女 456 上海 220
- 3 太子 23 男 789 南京 330
- (1)查询公主的所有信息
- (2)查询年龄在18-30之间的管理员姓名
- (3)查询表中所有的用户名和电话
- (4)查询性别是男,名字是王子的个人信息
- (5)查询出地址在北京和上海的员工信息

练习 2:

scores

stuid int 学生 id

java int java 成绩

mysql int mysql 成绩

stuname varchar(20) 学生姓名

数据:

limit (pageindex-1)*pagesize,pagesize; 1 67 78 张三

28755 李四

3 66 90 王五

49878 赵六

58088 田七

需求:

(1)对 java 成绩进行降序排序

- (2)得到 mysql 成绩前三名
- (3)得到 java 学生中最后一名的学生信息
- (4)查询出两门成绩都优秀(>=80)的学生姓名
- (5)查询出成绩在90分以上(>=90)的学生信息
- (6)查询出每名学员的 java,mysql,总成绩
- (7)显示出每名学生的总分以及姓名

练习3:

测试数据:

郭敬明 1371234567 北京 java S1101 89 1979-04-05 张三丰 1372839201 上海 数据库 S1102 67 1967-09-07 赵敏 1387839201 山东 mysql S1103 99 1987-09-07

Student2

stuname 姓名 varchar(20)

telphone 电话 varchar(20)

address 住址 varchar(20)

subject 科目 varchar(20)

stuNo 学号 varchar(20)

score 成绩 int

birthday 出生日期 date

//1.要查询列 2.条件

- a.查询住址为"山东"的学生姓名、电话、住址
- b.查询名称中含有"数据库"字样科目信息
- c.查询电话中以"1387"开头的学生信息
- d.查询姓姜的,三个字的学生信息

欢迎加入 QQ 群数据库试卷探讨: 790586125 试题由张创琦拼凑而成,很多题目没有答案,欢迎加群探讨

e.查询学号为 S1101 的指定 java, mysql 科目考试成绩

f.查询出80后学员信息

g.查询出家庭住址在北上广的学生名字 h.显示成绩在第 5-10 名的学生名字和电话

i.查询分数在80-90之间并且在北京的学生

练习 4:聚合函数练习

表: scores2

年级 grade varchar(10)

学号 stuno varchar(20)

考试时间 examDate date

科目 subject varchar(20)

成绩 score int

学期 xueqi int

数据:

S1 S1101 2015-02-03 C 89 1

S2 S1103 2015-03-03 JAVA 90 2

S3 S1102 2015-07-03 C 100 1

1.查询学生总人数

2.学号为 S1101 的学生第一学期考试总成绩,平均分

3.查询 2013 年 3 月 22 日科目"C"的最高分、最低分、平均分

4.查询 2013 年 3 月 22 日科目"C"及格学生的平均分

5.查询所有参加"C"科目考试的平均分

6.查看考 java 的人数

练习 5:分组练习

表名: student

年级(grade) varchar(10)

学生姓名(name) varchar(10)

学时(xueshi) int --每人单个学时

参加考试(isexam) char(1) 是/否、

课程(subject) varchar(10)

分数(score) int

数据:

- 1 张三 10 是 java 99
- 1 李四 10 否 java 0
- 2 王五 20 是 mysql 88
- 2 赵六 20 是 mysql 77 2 王五 20 是 java 99
- 2 赵六 20 否 java 0
- 1 张三 10 是 mysql 88

练习:

a:查询每个年级的总学时数,并按照升序排列

b:查询每个参加考试的学员的平均分

c:查询每门课程的平均分, 并按照降序排列

练习 6:综合练习

Student

科目名称 subjectName varchar(20)

学生姓名 stuname varchar(20)

学生地址 address varchar(20)

学生性别 sex char(2)

电子邮件 email varchar(30)

年级 grade varchar(10)

出生日期 birthday date

考试日期 examDate date

成绩 scores int

数据:

JAVA 张三 北京 男 123@qq.com S1 1990-03-04 2013-5-6 89

html 李四 上海 男 S2 1993-08-04 2014-5-6 87

html 王五 北京 男 123@qq.com S2 1990-03-04 2015-4-6 90

1.查询 S2 的科目名称

2.查询 S2 男同学的姓名和住址

- 3.查询无电子邮件的学生姓名和年级信息
- 4.查询出生日期在 1993 年之后的 S2 的学生姓名和年级信息
- 5.查询参加了日期为 2013 年 2 月 15 日的"HTML"科目考试的成绩信息

练习 7:综合练习

某网上商城数据库如下图所示

```
⊞ category 🏻 🖾
                            ■ products 🛛 🔀
鳴場場底▼
                            雪 ₩ 曜 医▼
                                                                                        ⊞ orders
                                                                                                   23
e cid
                            pid 🦺
                                                                                        雪陽唱臣▼

    ■ orderitem 

                               name
  cname
                                                                                         ₱ oid
                                                           雪陽喝雨▼
                               price
                                                                                          totalprice
                                                            oid
                                                                         *
+
                               category_id
                                                            biq <sup>6</sup>
```

```
#一对多的实现
#创建分类表
create table category(
cid varchar(32) PRIMARY KEY,# 分类 id
cname varchar(100) #分类名称
);
# 商品表
CREATE TABLE 'products' (
'pid' varchar(32) PRIMARY KEY, #商品 id
'name' VARCHAR(40), #商品名称
`price` DOUBLE,# 价格
category id varchar(32) # 分类 id,外键列
);
#多对多的实现
#用户表
create table users(
userid int,
username varchar(20),
upass varchar(20)
)
#订单表
create table 'orders'(
'oid' varchar(32) PRIMARY KEY, #订单 id
`totalprice` double, #总计
uid int # 用户 id
);
```

```
# 订单项表
create table orderitem(
oid varchar(50), #订单 id
pid varchar(50) #商品 id
);
#初始化数据
#给分类表初始化数据
insert into category values('c001','电器');
insert into category values('c002','服饰');
insert into category values('c003','化妆品');
insert into category values('c004','书籍');
#给商品表初始化数据
insert into products(pid,name,price,category_id) values('p001','联
想',5000,'c001');
insert into products(pid,name,price,category id) values('p002','海
尔',3000,'c001');
insert into products(pid,name,price,category id) values('p003','雷
神',5000,'c001');
insert into products(pid,name,price,category id) values('p004','JACK
JONES',800,'c002');
insert into products(pid,name,price,category id) values('p005','真维
斯',200,'c002');
insert into products(pid,name,price,category id) values('p006','花花公
子',440,'c002');
insert into products(pid,name,price,category id) values('p007','劲
霸',2000,'c002');
insert into products(pid,name,price,category id) values('p008','香奈
儿',800,'c003');
insert into products(pid,name,price,category id) values('p009','相宜本
草',200,'c003');
insert into products(pid,name,price,category id) values('p010','梅明
```

3.1 综合练习-【多表查询】

子',200,null);

1>查询用户的订单,没有订单的用户不显示

2>查询所有用户的订单详情

3>查询所有订单的用户详情

3.2 综合练习 2-【子查询】

1>查看用户为张三的订单详情

2>查询出订单的价格大于300的所有用户信息。

3>查询订单价格大于300的订单信息及相关用户的信息。

3.2 综合练习 3-【分页查询】

1>查询所有订单信息,每页显示5条数据

综合练习

判断数据库 myGrade 是否存在,如果不存在,则创建之。打开该数据库,创建学生、课程、教师、选课和授课等 5 个数据表,各表及其列名含义如下(主键已用下画线标记):

学生(学号,姓名,性别,出生日期,班级)

课程(课程编号,课程名称,前修课程,课程性质,学分)

教师(教师编号,姓名,性别,出生日期,职称)

选课(学号,课程编号,选课学期,成绩)

授课(教师编号,课程编号,授课学期)

试创建上述 5 个表,要求使用非中文的表名和列名,并在各表中插入模拟数据。在建表时必须定义各表的主键、外键、CHECK 等约束条件。具体要求如下:

- 1) 学生表和教师表中的性别取值"M"或"F"分别表示"男"或"女"; 学号长度为 8 位,第一位以字母开头,最后一位为性别(即 F 或 M).其他 6 位为数字。
- 2)课程表中的前修课程为外键,它参照自己所在表中的主键列(即"课程编码");课程性质分为"必修课"和"选修课"两类;学分取值 0.5~10 之间。
- 3)选课学期和授课学期都为11位字符串,例如"2010-2011-1"。其中前9位表示学年(年份之间用横杆分隔),最后一位表示某个学年中的学期序号,取值1或2。
 - 4) 其他列的类型、长度、外键及 CHECK 等约束条件根据选课数据库语义自行定义。
 - 5) 在插入模拟数据之后,为各个外键中的每一列创建非聚簇索引(二级索引)。

SQL 语句综合练习

试为 A 工厂的生产制造系统设计一个数据库。该数据库包含车间、员工、原材料、供应商等对象,用于生产不同的产品。假设该数据库的语义如下:

1)每个车间包含车间编号和车间名称等属性;每个车间每天生产一定数量的产品,每个产品包含产品编码、名称、规格型号和计量单位等属性。2)每个车间设有一个车间主任,车间与员工定期签订劳动合同;每个员工包含编号、姓名、性别、出生日期、身份证号和家庭住址等属性;一个员工只能担任一个车间的主任。3)每个产品在生产制造中消耗多种原材料,每个原材料包含编码、名称、规格型号、计量单位、成本单价等属性;工厂每个月需要统计每个产品耗用原材料的数量和金额。4)每个供应商包含编码、名称、地址等属性,每个原材料只有一个供应商提供。

试创建满足该数据库需求的各个数据表,并用 INSERT 语句插入模拟数据。

规范化及 E-R 图

1 设系、学生、教师3个实体之间存在约束:一个系可以有多名教师,一名教师只属于一个系,一个系可以有多名学生,一名学生只属于一个系。下列E-R图中能准确表达以上约束的是()。

2. 已知某教务管理系统的各个关系模式如下(带下画线的属性是主码):

系(系号,系名)

学生(学号,姓名,性别,入学日期,正常毕业日期,所在系号)

课程(课程号,课程名,学分,开课系号,教师号)

选课(学号,课程号,成绩)

教师(教师号,姓名,职称,所在系号)

① 请根据给出的关系模式,画出该关系的 E-R 图,图中忽略实体集的属性,但如果实体集之间的联系有属性则需要给出联系的属性。

② 假设该系统的业务需求发生变化,需要满足下列要求:为课程增加先修课程信息(一门课程可有多门先修课程);一门课程可由多名教师讲授,一名教师可以讲授多门课程。试根据上述需求修改关系模式,仅列出有改动的关系模式,并使每个关系模式满足 3NF。

3 某旅游公司向游客提供一系列旅游服务项目,游客以项目(即团队)的形式参加旅游活动。已知相关实体及其属性如下: 1) 旅游项目/团队: 项目编码、名称、起止日期、简介等; 2) 游客: 游客姓名、性别、出生日期、联系电话、身份证号; 3) 导游: 导游编码、姓名、性别、出生日期、联系电话、简介; 4) 酒店: 酒店编码、名称、地址、联系电话; 5) 景点: 景点编码、名称、地址、简介。

假设数据库的语义如下: 1)一个旅游项目只有一个导游,一个导游可以负责多个旅游项目; 2)一个游客可以参加多个旅游项目,但同一个游客在同一时间内只能参加一个旅游项目,同一旅游项目对不同游客的收费可能不同; 3)内容相同但时间不同的旅游项目按不同项目处理,例如 2018 年 3 月 1 日~5 日与 2018 年 5 月 1 日~5 日的"丽江 5 日游"按两个不同的旅游项目处理; 4)一个旅游项目包含多个游览景点及居住旅馆等信息,不同时期同一旅游项目的酒店或景点的收费标准(价格)可能不同。试根据上述实体属性与语义完成下列各项数据库设计任务:

1)设计满足上述语义要求的 E-R 图。

2)根据上述 E-R 图,导出该数据库的各个关系模式,列出各个关系模式中的主码和外码及其参照的属性对象。

3) 使用关系代数,检索游客"赵敏"2018年游览过哪些景点。

74 Yra 4 10 1			试题由张创琦拼凑而成,		コレ バロ キロ コメ カジ ノコ
V	()() #: 40/#:	/9/1586175	17 别 田 张 知 治 从 泰 田 60 .	很多别日份有今季。	XX 1N1 1111 # F Y X 121

4)使用关系代数,	检索哪些游客参加过该公司的两个或两个以上的旅游项目,	要求列
出游客的姓名和身份证	号。	

5) 使用 CREATE 语句将"旅游项目"关系模式转成 MySQL 数据表(列名以英文表示用中文标注),要求注明主键、外键和其他约束条件,其中旅游项目编码规则为: 前 10 位为日期,后 3 位为字母,最后一位为序号(例如 2018-05-01LJY1)。

6) MySQL 中如何实现"同一个游客在同一时间内只能参加一个旅游项目"这个约束条件。 (可以不编程描述方法,也可以编程实现)

并发控制

1 设 T_1 , T_2 , T_3 是如下的三个事务, 设 A 的初始值为 0.

 $T_1: A:=A+2;$

 $T_2: A:=A*2;$

T₃: A:=A**2; (即 A←A²)

(1) 若这三个事务允许并发执行,则有多少种可能的正确结果?请一一列举出来;

- (2) 请给出一个可串行化的调度,并给出执行结果;
- (3) 请给出一个非串行化的调度,并给出执行结果;
- (4) 若这三个事务都遵守两段锁协议,请给出一个不产生死锁的可串行化调度;
- (5) 若这三个事务都遵守两段锁协议,请给出一个产生死锁的调度。
- 2 今有三个事务的一个调度 $r_3(B)r_1(A)w_3(B)r_2(B)r_2(A)w_2(B)r_1(B)w_1(A)$,该调度是冲突可串行化的调度吗?为什么?
- 3考虑 T₁和 T₂两个事务。

 T_1 : R(A);R(B);B=A+B;W(B) T_2 : R(B);R(A);A=A+B;W(A)

- (1) 改写 T_1 和 T_2 ,增加加锁操作和解锁操作,并要求遵循两段封锁协议;
- (2) 说明 T₁和 T₂的执行是否会引起死锁,给出 T₁和 T₂的一个调度并说明之。