Theory of Computing Notes

Chapter 1: Introduction

Fraser Watt

2022-09-02

Chapter Notes

Sets and Notation

With set notation being represented with curly braces, an empty set would be {}, whilst a collection which only holds that empty set would be {{}}. Other important set notation:

- In / not in: \in , \notin .
- x as a subset of y: $x \subset y$.
- Natural numbers (positive integers): N.

Set logic might read something like this:

$$\{2n|n\in N\}$$

The above would be read as "2n, given n is an element within the set of all natural numbers."

Fraser's Q: Why does $N - \{0\}$ denote the set of all positive numbers, and not something like $N \neq 0$?

- They're equivalent. Whilst $N \{0\}$ means the set of all natural numbers except a set only containing $0, N \neq 0$ is just all natural numbers which do not equal 0.
- You might prefer the first format as it's more flexible you can just add more numbers to exclude. E.g. $N-\{0,1,2\}$

Joining Sets

- Intersection: Take elements common to both sets, written as $A \cap B$. This is like a SQL JOIN
- Union: New set includes all unique / distinct values of component sets, written as $A \cup B$. This is like a SQL FULL JOIN
- Cartesian Product: Takes elements from both sets and returns every possible combination from them, written as $A \times B$. This is like a SQL CROSS JOIN

Relations

Throughout the book, there's a focus on using strings. Strings (words) are a collection of symbols where the symbols are all taken from a fixed alphabet. The alphabet can be thought of as a set!

- Length of word w would be represented as |w|.
- Reverse of word w would be represented as w^R (palendrome).

The complement of a set is everything that isn't in a given set. So if A was a set of all natural numbers, $A' = \{n | n \notin N\}$. This is sort of like writing ! (yourLogicalStatement) in Javascript, but ! in mathematical notation is factoral multiplication so wouldn't make sense here.

Transitive, Reflexive, and Symmetric relations.

- Transitive: Modular arithmetic (% in Python) useful to deconstruct this: if $4 \mod 3 = 10 \mod 3$ and $10 \mod 3 = 13 \mod 3$, then there is a transitive relation which says that $4 \mod 3 = 13 \mod 3$.
- Symmetric: If you have equivalence from a → b and another arrow from b → a, then this is symmetric.
 Again, all or nothing it is symmetric if for every arrow drawing equivalence, there is an equal and opposing relation backwards.
- Reflexive: If we are also going to use modular arithmetic here too, then we would be looking more like \$10 mod 3 = 10 mod 3 \$.
 - If you add more arrows going to other items, it doesn't matter still reflexive! On the other hand, if you have two sets $\{a, b, c, d\}$, and you have arrows going from both a's, b's, & c's but no equivalence between d_1 and d_2 this is not reflexive. It's all or nothing!
- Equivalence: If it has a Transitive, Symmetric and Reflexive relation, then we can say it has an equivalence relation. I.e. A = B

Exercises

Exercise 1.1: Give the notation for a set that contains only the page number of this exercise (page 9).

$$R = \{9\}$$

Exercise 1.2: True or False

- a) $\{2, 4, 5\} \subset \{2n \mid n \in N\}$ False
- b) $\{e, i, t, c\} \subset \{a, ..., z\}$ True
- c) $\{2n \mid \bar{n} \in N\} = \{2n+1 \mid n \in N\}$ True
- d) $\{1, 2, 3, 4, 5\} = \{1, ..., 5\}$ True

Exercise 1.3: Give a representation for the odd natural numbers.

$$\{n|\frac{n}{2}\notin N\}$$

Exercise 1.4: For each of the strings w below, exhibit both |w| and w^R :

- a) doo GyreV: $|a|=8,\ a^R=$ VeryGood b) kaerBAekaT: $|b|=10,\ b^R=$ TakeAB reak
- c) kcanSAevaH: |c| = 10, $c^R = \text{HaveASnack}$
- d) ysaEooTsIsihT: |d| = 13, $d^R = ThisIsTooEasy$

Exercise 1.5: Let $A = \{1, 2, ..., 100\}$ and $B = \{a, b, c, d\}$. How large is $A \times B$?

N = 400

Exercise 1.6: Let $R = \{a, b, c, d\}$ and $S = \{0, 1\}$. What is $R \times S$?

$$\{(a,0),(b,0),(c,0),(d,0),(a,1),(b,1),(c,1),(d,1)\}$$

Exercise 1.7: Define a relation R on $N \times N$ by

$$R = \{(x, y) \mid x \in N, y \in N \text{ and } y \text{ is even}\}\$$

Prove or disprove: R is an equivalence relation:

- R can be understood to mean "given (x,y), R is the set of all number pairs where x and y are both natural numbers (N), and the sum of x + y is even."

- R_(1,3): x and y are both natural numbers. 1 + 3 = 4 and ½ = 2, therefore (1,3) is in R.
 R_(4,6): x and y are both natural numbers. 4 + 6 = 10 and ½ = 5, therefore (4,6) is also in R.
 2 ≠ 5, therefore R_(4,6) ≠ R_(1,3). If these two items are not reflexive, then this set does not have a reflexive property.
- If the set does not have a reflexive relation, it cannot have an equivalence relation.