Matrices - Introduction

Rohit Budhiraja, IITK

Applied Linear Algebra for Wireless Communications

Recap and agenda for today's class

- Discussed the following in the last lecture
 - length and dot products
 - concept of angle between two vectors
 - Cauchy Schwartz inequality
- Discuss the following today
 - matrices and linear equations,
 - Independence and dependence of vectors
- Reference for today's class Chap 1.3 of the book

Matrices (1)

- ullet Section starts with three vectors $oldsymbol{u}$, $oldsymbol{v}$, $oldsymbol{w}$ which we will combine using matrices
- Three vectors

$$\mathbf{u} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

• Linear combinations in three-dimensional space are $x_1\mathbf{u} + x_2\mathbf{v} + x_3\mathbf{w}$:

$$x_{1} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + x_{2} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} + x_{3} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x_{1} \\ x_{2} - x_{1} \\ x_{3} - x_{2} \end{bmatrix}$$
 (1)

Learn something important: rewrite this combination using a matrix

Matrices (2)

Vectors u, v, w form the columns of matrix A

$$A\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix}$$
 (2)

- Matrix A "multiplies" the vector **x** with components (x_1, x_2, x_3)
- Product $A\mathbf{x}$ is same as $x_1\mathbf{u} + x_2\mathbf{v} + x_3\mathbf{w}$ of three columns in (1)
- Rewriting brings a crucial first change in viewpoint
 - At first, the numbers x_1, x_2, x_3 were multiplying the vectors
 - Now the matrix is multiplying those numbers
- Matrix A acts on the vector \mathbf{x} : output $A\mathbf{x}$ is a combination of columns of A
- A is a "difference matrix" because **b** contains differences of input vector **x**
 - Top difference is $x_1 x_0 = x_1 0$

Matrices (3)

- You may already have learned about multiplying Ax, a matrix times a vector
- Usual way takes the dot product of each row with x:

$$A\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} (1,0,0).(x_1,x_2,x_3) \\ (-1,1,0).(x_1,x_2,x_3) \\ (0,-1,1).(x_1,x_2,x_3) \end{bmatrix}$$

- Dot products are same x_1 and $x_2 x_1$ and $x_3 x_2$ that we wrote in (2)
- New way is to work with Ax a column at a time
 - Ax is a linear combination of the columns of A

Linear Equations (1)

- Second change in viewpoint up to now, numbers x₁, x₂, x₃ were known
 Right hand side b was not known
- We found that vector of differences by multiplying A times x
- Now we think of b as known and we calculate x
- Old question: compute linear combination $x_1\mathbf{u} + x_2\mathbf{v} + x_3\mathbf{w}$ to find **b**
- New question: which combination of **u**, **v**, **w** produces a particular vector **b**?
 - ullet Inverse problem to calculate input $oldsymbol{x}$ that gives the desired output $oldsymbol{b} = Aoldsymbol{x}$
- We will now solve that system $A\mathbf{x} = \mathbf{b}$ to find x_1, x_2, x_3 :

$$A\mathbf{x} = \mathbf{b} \longrightarrow x_1 = b_1$$

$$-x_1 + x_2 = b_2$$

$$-x_2 + x_3 = b_3$$

Linear Equations (2)

Solution

$$\mathbf{x} = A^{-1}\mathbf{b} \longrightarrow x_1 = b_1$$

 $x_2 = b_1 + b_2$
 $x_3 = b_1 + b_2 + b_3$ (3)

- In this example, first equation decided $x_1 = b_1$, second one $x_2 = b_1 + b_2$ • Equations can be solved in order (top to bottom) as A is a triangular matrix
 - This matrix Λ is "invertible". From **b** we can recover **x**. We write **x** as Λ^{-1}
- This matrix A is "invertible". From \mathbf{b} we can recover \mathbf{x} . We write \mathbf{x} as $A^{-1}\mathbf{b}$
- Let us repeat the solution x in (3). A sum matrix will appear!

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_1 + b_2 \\ b_1 + b_2 + b_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
(4)

Linear Equations (3)

We have

$$A\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
$$A^{-1}\mathbf{b} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

- Above equation for solution $\mathbf{x} = (x_1, x_2, x_3)$ tells us two important facts:
 - For every **b** there is one solution to $A\mathbf{x} = \mathbf{b}$
 - The matrix A^{-1} produces $\mathbf{x} = A^{-1}\mathbf{b}$
- Next chapters ask about other equations $A\mathbf{x} = \mathbf{b}$
 - Is there a solution? How to find it?

Cyclic Differences (1)

• We now keep the same columns \mathbf{u} and \mathbf{v} but change \mathbf{w} to a new vector \mathbf{w}^* :

$$\mathbf{u} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \quad \mathbf{w}^* = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

• Now the linear combinations of $\mathbf{u} \mathbf{v}$ and \mathbf{w}^* leads to a cyclic difference matrix

$$\mathbf{Cx} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 - x_3 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix} = \mathbf{b}$$

• Matrix C is not triangular – not so simple to solve for \mathbf{x} when we are given \mathbf{b}

Cyclic Differences (2)

- Actually it is impossible to find the solution to Cx = b, because
 - Three equations either have infinitely many solutions (sometimes)
 - or else no solution (usually)

$$\begin{bmatrix} x_1 - x_3 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 is solved by all vectors
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} c \\ c \\ c \end{bmatrix}$$

- A constant vector like $\mathbf{x} = (3,3,3)$ has zero differences when we go cyclically
- More likely possibility for $C\mathbf{x} = \mathbf{b}$ is no solution \mathbf{x} at all:

$$\mathbf{Cx} = \mathbf{b} \quad \begin{bmatrix} x_1 - x_3 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$

Cyclic Differences (3)

- Look at this example geometrically and pictorially show crucial difference
 - between $\mathbf{u}, \mathbf{v}, \mathbf{w}$ (first example) and $\mathbf{u}, \mathbf{v}, \mathbf{w}^*$ (second example)

$$\mathbf{u} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$

- Figure shows those column vectors, first of the matrix A and then of C
- \bullet First two columns \mathbf{u} and \mathbf{v} are the same in both pictures
- Combinations of those two vectors give a two-dimensional plane

Independence and Dependence (1)

- Key question is whether the third vector is in that plane:
 - Independence: \mathbf{w} is not in the plane of \mathbf{u} and \mathbf{v}
 - Dependence: \mathbf{w}^* is in the plane of \mathbf{u} and \mathbf{v}
- Important point is that the new vector \mathbf{w}^* is a linear combination of \mathbf{u} and \mathbf{v} :

$$\mathbf{u} + \mathbf{v} + \mathbf{w}^* \quad \mathbf{w}^* = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = -\mathbf{u} - \mathbf{v}$$

- All three vectors u, v, w* have components adding to zero
- By including \mathbf{w}^* we get no new vectors because \mathbf{w}^* is already on that plane

Independence and Dependence (2)

- Combinations of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ fill the whole three-dimensional space
 - because $\mathbf{x} = A^{-1}\mathbf{b}$ in (3) gave the right combination to produce any \mathbf{b}
- Two matrices A and C, with third columns \mathbf{w} and \mathbf{w}^* , allowed us discuss
 - two key words of linear algebra: independence and dependence
- Independent \mathbf{u} , \mathbf{v} , \mathbf{w} : No combination except $0\mathbf{u} + 0\mathbf{v} + 0\mathbf{w} = \mathbf{0}$ gives $\mathbf{b} = 0$
- Dependent \mathbf{u} , \mathbf{v} , \mathbf{w}^* : Other combinations like $\mathbf{u} + \mathbf{v} + \mathbf{w}^*$ gives $\mathbf{b} = 0$
- Visualize in three dimensions: three vectors lie in a plane or they don't
- Independent columns: $A\mathbf{x} = 0$ has one solution. A is an invertible matrix
- Dependent columns: $C\mathbf{x} = 0$ has many solutions. C is a singular matrix

Review of important ideas

- Matrix times vector: $A\mathbf{x} = \text{combination of the columns of } A$.
- Solution to $A\mathbf{x} = \mathbf{b}$ is $\mathbf{x} = A^{-1}\mathbf{b}$, when A is an invertible matrix
- Cyclic matrix C has no inverse. Its three columns lie in the same plane
 - Those dependent columns add to the zero vector
 - Cx = 0 has many solutions
- End of Section 1.3 lots of problems at the end please solve them

