第四章 大数定律与中心极限定理

第一节

随机变量序列的两种收敛性

Overview

1 前言

② 依概率收敛

③ 按分布收敛、弱收敛

两种收敛性: 依概率收敛和按分布收敛.

两种收敛性: 依概率收敛和按分布收敛.

为什么要学这两种收敛性?

两种收敛性: 依概率收敛和按分布收敛.

为什么要学这两种收敛性?

实例: X_n : 第 n 次检查中不合格品数, $X_n \sim b(1,p)$, $n=1,2,\cdots$, 其中,p 为该产品的不合格率. 前 n 次检查中,不合格品数为 $S_n = X_1 + X_2 + \cdots + X_n$.

两种收敛性: 依概率收敛和按分布收敛.

为什么要学这两种收敛性?

实例: X_n : 第 n 次检查中不合格品数, $X_n \sim b(1, p)$, $n = 1, 2, \dots$, 其中,p 为该产品的不合格率. 前 n 次检查中,不合格品数为 $S_n = X_1 + X_2 + \dots + X_n$.

问题: (1) 当 p = 0.3, n = 10, 求最多有 3 个产品不合格的概率?

两种收敛性: 依概率收敛和按分布收敛.

为什么要学这两种收敛性?

实例: X_n : 第 n 次检查中不合格品数, $X_n \sim b(1,p)$, $n = 1, 2, \cdots$,其中,p 为该产品的不合格率. 前 n 次检查中,不合格品数为 $S_n = X_1 + X_2 + \cdots + X_n$.

问题: (1) 当 p = 0.3, n = 10, 求最多有 3 个产品不合格的概率?

(2) 当 p = 0.3, n = 1000 时, 求不合格品数在 $50 \sim 300$ 间的概率?

两种收敛性: 依概率收敛和按分布收敛.

为什么要学这两种收敛性?

实例: X_n : 第 n 次检查中不合格品数, $X_n \sim b(1, p)$, $n = 1, 2, \cdots$, 其中,p 为该产品的不合格率. 前 n 次检查中,不合格品数为 $S_n = X_1 + X_2 + \cdots + X_n$.

问题: (1) 当 p = 0.3, n = 10, 求最多有 3 个产品不合格的概率?

(2) 当 p = 0.3, n = 1000 时, 求不合格品数在 $50 \sim 300$ 间的概率?

随机变量 Y: $\{S_n\}$ 收敛于 Y

两种收敛性: 依概率收敛和按分布收敛.

为什么要学这两种收敛性?

实例: X_n : 第 n 次检查中不合格品数, $X_n \sim b(1,p)$, $n=1,2,\cdots$, 其中,p 为该产品的不合格率. 前 n 次检查中,不合格品数为 $S_n = X_1 + X_2 + \cdots + X_n$.

问题: (1) 当 p = 0.3, n = 10, 求最多有 3 个产品不合格的概率?

(2) 当 p = 0.3, n = 1000 时, 求不合格品数在 $50 \sim 300$ 间的概率?

随机变量 Y: $\{S_n\}$ 收敛于 Y或 S_n 的分布函数 $F_n(x)$ 收敛于 F(x)?

两种收敛性: 依概率收敛和按分布收敛.

为什么要学这两种收敛性?

实例: X_n : 第 n 次检查中不合格品数, $X_n \sim b(1,p)$, $n=1,2,\cdots$, 其中,p 为该产品的不合格率. 前 n 次检查中,不合格品数为 $S_n = X_1 + X_2 + \cdots + X_n$.

问题: (1) 当 p = 0.3, n = 10, 求最多有 3 个产品不合格的概率?

(2) 当 p = 0.3, n = 1000 时, 求不合格品数在 $50 \sim 300$ 间的概率?

随机变量 Y: $\{S_n\}$ 收敛于 Y或 S_n 的分布函数 $F_n(x)$ 收敛于 F(x)?

 $P(a \le S_n \le b)$ 近似等于 $P(a \le Y \le b)$

后续基础:

● 依概率收敛: 用于大数定律

后续基础:

- 依概率收敛: 用于大数定律
- ② 按分布收敛: 用于中心极限定理

定义 4.1.1 依概率收敛

若对任意的 $\epsilon > 0$,

定义 4.1.1 依概率收敛

若对任意的 $\epsilon > 0$, 有 $\lim_{n \to +\infty} P\{|Y_n - Y| < \epsilon\} = 1$,

定义 4.1.1 依概率收敛

若对任意的 $\epsilon > 0$, 有 $\lim_{n \to +\infty} P\{|Y_n - Y| < \epsilon\} = 1$, 则称随机变量序列 Y_n 依概率收敛于 Y,

定义 4.1.1 依概率收敛

若对任意的 $\epsilon > 0$, 有 $\lim_{n \to +\infty} P\{|Y_n - Y| < \epsilon\} = 1$, 则称随机变量序列 Y_n 依概率收敛于Y, 记为

$$Y_n \stackrel{P}{\to} Y$$

定义 4.1.1 依概率收敛

若对任意的 $\epsilon > 0$, 有 $\lim_{n \to +\infty} P\{|Y_n - Y| < \epsilon\} = 1$, 则称随机变量序列 Y_n 依概率收敛于 Y, 记为

$$Y_n \stackrel{P}{\to} Y$$

大数定律讨论的就是依概率收敛.

定理 4.3.1 依概率收敛的性质

若两个随机变量序列 X_n , Y_n , a, b 两个常数

$$X_n \xrightarrow{P} a, \ Y_n \xrightarrow{P} b$$

则: $X_n \pm Y_n \stackrel{P}{\rightarrow}$

定理 4.3.1 依概率收敛的性质

若两个随机变量序列 X_n , Y_n , a, b 两个常数

$$X_n \stackrel{P}{\to} a, \ Y_n \stackrel{P}{\to} b$$

则: $X_n \pm Y_n \stackrel{P}{\rightarrow} a \pm b$

定理 4.3.1 依概率收敛的性质

$$X_n \xrightarrow{P} a, \ Y_n \xrightarrow{P} b$$

则:
$$X_n \pm Y_n \stackrel{P}{\rightarrow} a \pm b$$

 $X_n \times Y_n \stackrel{P}{\rightarrow}$

定理 4.3.1 依概率收敛的性质

$$X_n \xrightarrow{P} a, \ Y_n \xrightarrow{P} b$$

则:
$$X_n \pm Y_n \stackrel{P}{\rightarrow} a \pm b$$

 $X_n \times Y_n \stackrel{P}{\rightarrow} a \times b$

定理 4.3.1 依概率收敛的性质

$$X_n \xrightarrow{P} a, \ Y_n \xrightarrow{P} b$$

则:
$$X_n \pm Y_n \stackrel{P}{\rightarrow} a \pm b$$

 $X_n \times Y_n \stackrel{P}{\rightarrow} a \times b$
 $X_n \div Y_n \stackrel{P}{\rightarrow}$

定理 4.3.1 依概率收敛的性质

$$X_n \xrightarrow{P} a, \ Y_n \xrightarrow{P} b$$

则:
$$X_n \pm Y_n \xrightarrow{P} a \pm b$$

 $X_n \times Y_n \xrightarrow{P} a \times b$
 $X_n \div Y_n \xrightarrow{P} a \div b$

定理 4.3.1 依概率收敛的性质

$$X_n \xrightarrow{P} a, \ Y_n \xrightarrow{P} b$$

则:
$$X_n \pm Y_n \xrightarrow{P} a \pm b$$

 $X_n \times Y_n \xrightarrow{P} a \times b$
 $X_n \div Y_n \xrightarrow{P} a \div b(b \neq 0)$

定理 4.3.1 依概率收敛的性质

若两个随机变量序列 X_n , Y_n , a, b 两个常数

$$X_n \xrightarrow{P} a, Y_n \xrightarrow{P} b$$

则:
$$X_n \pm Y_n \xrightarrow{P} a \pm b$$

 $X_n \times Y_n \xrightarrow{P} a \times b$
 $X_n \div Y_n \xrightarrow{P} a \div b(b \neq 0)$

概括成一句话: $\{X_n\}$ 与 $\{Y_n\}$ 的加、减、乘、除,依概率收敛到 a 与 b 的加、减、乘、除.

前面讲到:分布函数序列 $F_n(x)$ 收敛到一个极限分布函数 F(x) 具有重要的意义。

前面讲到:分布函数序列 $F_n(x)$ 收敛到一个极限分布函数 F(x) 具有重要的意义。

例 4.1.1. (书 P211)

对分布函数列 $\{F_n(x)\}$ 而言,点点收敛要求太高.

定义 4.1.2

若在 F(x) 的连续点上都有

$$\lim_{n\to+\infty} F_n(x) = F(x)$$

则称 $\{F_n(x)\}$ 弱收敛于F(x),

定义 4.1.2

若在 F(x) 的连续点上都有

$$\lim_{n\to+\infty} F_n(x) = F(x)$$

则称 $\{F_n(x)\}$ 弱收敛于F(x), 记为

$$F_n(x) \stackrel{W}{\to} F(x)$$

定义 4.1.2

若在 F(x) 的连续点上都有

$$\lim_{n\to+\infty} F_n(x) = F(x)$$

则称 $\{F_n(x)\}$ 弱收敛于F(x), 记为

$$F_n(x) \stackrel{W}{\to} F(x)$$

也称 $\{X_n\}$ 按分布收敛于 X,

定义 4.1.2

若在 F(x) 的连续点上都有

$$\lim_{n\to+\infty} F_n(x) = F(x)$$

则称 $\{F_n(x)\}$ 弱收敛于F(x), 记为

$$F_n(x) \stackrel{W}{\to} F(x)$$

也称 $\{X_n\}$ 按分布收敛于 X, 记作: $X_n \stackrel{L}{\to} X$

依概率收敛与按分布收敛的关系

依概率收敛与按分布收敛的关系

• 定理 $4.1.2 X_n \stackrel{P}{\rightarrow} X \Rightarrow X_n \stackrel{L}{\rightarrow} X$

依概率收敛与按分布收敛的关系

- 定理 4.1.2 $X_n \stackrel{P}{\to} X \Rightarrow X_n \stackrel{L}{\to} X$
- 定理 4.1.3 $X_n \stackrel{P}{\rightarrow} a \Leftrightarrow X_n \stackrel{L}{\rightarrow} a$

作业

课本 P213: 2,4,6