

Modul M1 – Allgemeine Psychologie Vorlesung

Prof. Dr. Florian Kattner
Professur für Allgemeine Psychologie
Health and Medical University
Olympischer Weg 1
14471 Potsdam

https://doi.org/10.3389/fpsyg.2018.00401

Plan der Vorlesung

Nr.	Datum	Thema		
1	12.10.2021 (Di)	Einführung: Was ist Allgemeine Psychologie?		
2	19.10.2021 (Di)	Psychophysik I: Schwellenmessung		
3	26.10.2021 (Di)	Psychophysik II: Skalierung, adaptive Verfahren und Signalentdeckungstheorie		
4	02.11.2021 (Di)	Visuelle Wahrnehmung I: Grundlagen des Sehens		
5	09.11.2021 (Di)	Visuelle Wahrnehmung II: Neuronale Verarbeitung (Retina)		
6	16.11.2021 (Di)	Visuelle Wahrnehmung III: Kortikale Organisation		
7	23.11.2021 (Di)	Visuelle Wahrnehmung IV: Farbwahrnehmung		
8	07.12.2021 (Di)	Visuelle Wahrnehmung V: Farb-, Tiefen- und Größenwahrnehmung		
9	07.12.2021 (Di)	Auditive Wahrnehmung I: Grundlagen des Hörens		
10	14.12.2021 (Di)	Auditive Wahrnehmung II: Richtungshören und auditive Szenenanalyse		
11	11.01.2022 (Di)	Aufmerksamkeit I		
12	18.01.2022 (Di)	Aufmerksamkeit II + Gedächtnis I: Gedächtnissysteme		
13	25.01.2022 (Di)	Gedächtnis II: Kurzzeit- und Arbeitsgedächtnis		
14	01.02.2022 (Di)	Gedächtnis III: Langzeitgedächtnis		
15	08.02.2022 (Di)	Wiederholung und Fragestunde		

Einteilung von Gedächtnissystemen

Nach Inhalten

- Deklarativ vs. prozedural
- Episodisch vs. semantisch
- Phonologisch vs. visuell-räumlich

Nach Kapazität und Dauer

- Sensorisches Register (hohe Kapazität, sehr kurze Dauer)
- Kurzzeitgedächtnis / Arbeitsgedächtnis (geringe Kapazität, kurze Dauer)
- Langzeitgedächtnis (hohe Kapazität, dauerhafte Speicherung)

Nach Prozessen

- Enkodierung, Speicherung, Abruf
- Automatisch vs. willkürlich
- Bewusst vs. unbewusst

Frühe Gedächtnismodelle

- Gedächtnismodell nach James (1890)
 - Primäres Gedächtnis: aktueller Bewusstseinsinhalt (Aufmerksamkeit, Introspektion)
 - Sekundäres Gedächtnis: langfristige Speicherung, bleibt unbewusst bis aktiv abgerufen wird
- Atkinson-Shiffrin-Modell (1968)
 - Sensorisches Gedächtnis: modalitätsspezifisch, unbegrenzte Kapazität, sehr kurze Dauer (<1s)
 - 2. **Kurzzeitgedächtnis:** modalitätsspezifisch, erfordert aktives Rehearsal, begrenzte Kapazität (4-7 Chunks), kurze Dauer (<1min)
 - Langzeitgedächtnis: multimodal/semantisch, unbewusst, unbegrenzte Kapazität, lange Dauer

Richard C. Atkinson (*1929)

Richard M. Shiffrin (*1942)

Sensorisches Gedächtnis

- Wieviel visuelle Information kann gleichzeitig aufgenommen werden?
- Welche Buchstaben haben Sie gesehen?

D H F G
V P S E
T R A U

Sensorisches Gedächtnis

- Probieren wir es nochmal: Nun hören Sie gleichzeitig einen hohen, mittleren oder tiefen Ton. Bitte geben Sie dann nur die obere, mittlere oder untere Zeile wieder!
- Welche Buchstaben haben Sie in der obersten Zeile gesehen?

Sensorisches Gedächtnis

Experimente von **Sperling (1960)**:

- 1. **Ganzbericht:** Kurze Präsentation einer Buchstabenmatrix
- → nur 4-5 Buchstaben werden erinnert (unabhängig von Anzahl der Buchstaben).
- 2. **Teilbericht:** Ton signalisiert Zeile, die erinnert werden soll
- → (fast) alle Buchstaben werden erinnert, wenn Ton ohne Verzögerung präsentiert wird!
- → Schlussfolgerung: Die gesamte Information wird im sensorischen Gedächtnis abgespeichert, aber nur ein kleiner Teil kann rechtzeitig in das Kurzzeitgedächtnis übertragen und wiedergegeben werden (erfordert Aufmerksamkeit!).

Kurzzeitgedächtnis

- Zentrale Annahmen:
 - kurze Dauer (<1min, abhängig von Modalität)
 - begrenzte Kapazität (4-7 Items/Chunks)
 - ohne aktives Rehearsal (z.B. inneres Vorsprechen) gehen die Inhalte sehr schnell verloren!
- Experiment von Peterson & Peterson (1959)
 - Präsentation von drei Konsonanten (z.B. CFK)
 - Versuchsperson zählt in Dreierschritten laut rückwärts → verhindert Rehearsal
 - Wiedergabe der Konsonantentriplets
 - → Je länger das Rehearsal blockiert wird, desto weniger kann wiedergegeben werden (Info im KZG verschwindet innerhalb weniger Sekunden).

Kurzzeitgedächtnis: Abruf

- Paralleler oder serieller Abruf?
- Experimente von Sternberg (1966)
 - Idee: von Antwortzeit auf kognitive Prozesse schließen
 - Antwortzeiten für 1-6 Items ("symbols") lagen zwischen 400 und 600 ms
 - Mit jedem weiteren Item stieg
 Antwortzeit um ca. 37.9 ms → solange
 benötigt man, um mental von einem
 Item zum nächsten zu springen!
 - Kein Unterschied zwischen JA- und NEIN-Antworten (→erschöpfende Suche)

Kurz- vs. Langzeitgedächtnis: Serielle Positionskurven

- Experiment von Murdock (1962)
 - Listen von 10, 15, 20, 30, oder 40
 Items (jedes Item 1 oder 2 s)
 - Anschließend freie Reproduktion
 - → Primacy-Effekt: Die ersten Items werden besser erinnert, da bereits im Langzeitgedächtnis.
 - → Recency-Effekt: Die letzten Items werden besser erinnert, da noch aktiv im Kurzzeitgedächtnis.

Kurz- vs. Langzeitgedächtnis: Serielle Positionskurven

 Baddeley & Warrington (1970) untersuchten serielle Positionskurven bei Patienten mit Korsakoff-Syndrom → retrograde + anterograde Amnesie (Langzeitgedächtnis)

- Im Alter von 27 Jahren: bilaterale Entfernung großer Teile des medialen Temporallappens (inkl. Hippocampus) zur Behandlung seiner Epilepsie
 - → Keine weiteren Anfälle, Intaktes Kurzzeitgedächtnis
 - → Anterograde Amnesie: Verlust der Fähigkeit, neue Ereignisse und Fakten langfristig zu behalten (werden innerhalb von 30 s vergessen)
 - → Retrograde Amnesie: Beeinträchtigte Erinnerung an Ereignisse vor der Operation (sehr alte Erinnerungen vorhanden)
 - → Keine Beeinträchtigung des prozeduralen Gedächtnisses: neue Fertigkeiten wie "Spiegelzeichnen" können erlernt und behalten werden (Milner, 1962)

Probieren Sie es gerne selbst:

https://projectneuron.illinois.edu/games/mirror-tracing-game?shape=star6

Probleme des Atkinson-Shiffrin-Modells

Neuropsychologische Befunde:

- Patienten mit beeinträchtigtem verbalen Kurzzeitgedächtnis bei intaktem visuellen und räumlichem Kurzzeitgedächtnis
- Patienten mit intaktem Langzeitgedächtnis (→Primacy-Effekt) aber beeinträchtigtem Kurzzeitgedächtnis (kein Recency-Effekt)

Experimentalpsychologische Befunde:

 Beanspruchung des Kurzzeitgedächtnisses durch eine Ziffernmerkaufgabe stört die Leistung in einer logisch-räumlichen Kurzzeitgedächtnisaufgabe kaum (Baddeley, 1986).

→ Aufrechterhaltung von Information im Kurzzeitgedächtnis (durch Rehearsal) ist nicht nötig für die Einspeicherung im Langzeitgedächtnis!

→ Unterschiedliche Gedächtnissysteme für verbales und visuelles Material!

Patient K.F. (Shallice & Warrington, 1970)

- Läsion des linken perisylvischen Kortex nach Motorradunfall
 - Stark beeinträchtigtes
 Kurzzeitgedächtnis für verbale
 Information: Spanne nur 1-2 Wörter, kein
 Recency-Effekt
 - Intaktes visuell-räumliches Kurzzeitgedächtnis
 - →unterschiedliche Gedächtnissysteme für verbale und visuelle Information?
 - Intaktes Langzeitgedächtnis (Abruf nach 25 Wiederholungen)
 - →KZG kann nicht der alleinige Zugang zum LZG sein!

(A) Patient K.F.: Impaired working memory versus preserved declarative memory

Patient H.M. zeigte das umgekehrte Muster: Arbeitsgedächtnis intakt, Deklaratives Gedächtnis beeinträchtigt

Verbales und visuelles Kurzzeitgedächtnis

Experiment von Brooks (1968)

- Verbale Aufgabe (Sentences): Wörter eines Satzes kategorisieren (Nomen → "ja", kein Nomen → "nein")
- Visuelle Aufgabe (Diagrams): Konturen von Buchstabens in der Vorstellung durchlaufen (äußere Ecke → "ja", innere Ecke → "nein")
- Antworten wurden entweder verbal oder durch Fingerbewegungen (tapping, pointing) abgegeben → Antwortzeit wird gemessen

Mean Output Time in Seconds, Between-Subjects Standard Deviation in Parentheses

	Output			
Referent	Pointing	Tapping	Vocal	
Sentences Diagrams	9.8 (2.6) 28.2 (12.1)	7.8 (2.1) 14.1 (5.4)	13.8 (3.0) 11.3 (3.5)	

nein ja nein ja ja ja ja ja

Sprechen verlangsamt verbale Aufgabe!

Modales Arbeitsgedächtnismodell (Baddeley & Hitch, 1974)

→Unabhängige Systeme für Speicherung und Manipulation von ("Arbeit mit") Information:

- Slave Systems: Speicherung und Aufrechterhaltung (maintenance) von Information in jeweiliger Modalität
 - Phonologische Schleife (verbale/sprachliche Information)
 - Visuell-räumlicher Notizblock (visuellräumliche Vorstellung)
 - Episodischer Buffer (semantisch/multimodal)
- b) Zentrale Exekutive: Kontrolle, Koordination und Manipulation von Informationen im Arbeitsgedächtnis → Denkprozesse
 - → Eng verbunden mit Aufmerksamkeit (top-down)

Baddeley (2003)

Phonologische Schleife (verbales Arbeitsgedächtnis)

- Phonologischer Speicher (short-term store): akustische Sprachinformation wird automatisch aufgenommen
 - → ohne aktives Rehearsal zerfällt die Information innerhalb von ca. 2 s
- 2. **Artikulatorischer Kontrollprozess:** Inhalt des phonologischen Speichers kann hier (durch inneres Sprechen) aufrechterhalten werden
 - verbunden mit phonologischer Output-Buffer (dient der Sprachproduktion)
 - → kann auch genutzt werden, um visuelle Sprachinformation (Text) in phonologischen Code umzuwandeln (orthographischphonologische Umkodierung)

- Phonologischer Ähnlichkeitseffekt (Salamé & Baddeley, 1986)
 - Ähnlich klingendes Material wird schlechter erinnert als phonologisch unähnliches Material

→ Semantische Ähnlichkeit spielt keine Rolle (Baddeley, 1966)

- Wortlängeneffekt (Baddeley, Thomson, & Buchanan, 1975)
 - o Je größer die Silbenanzahl einzelner Worte, desto geringer die Gedächtnisspanne

Number of syllables							
1	2	3	4	5			
Stoat	Puma	Gorilla	Rhinoceros	Hippopotamus			
Mumps	Measles	Leprosy	Diphtheria	Tuberculosis			
School	College	Nursery	Academy	University			
Greece	Peru	Mexico	Australia	Yugoslavia			
Crewe	Blackpool	Exeter	Wolverhampton	Weston-Super-Mar			
Switch	Kettle	Radio	Television	Refrigerator			
Maths	Physics	Botany	Biology	Physiology			
Maine	Utah	Wyoming	Alabama	Louisiana			
Scroll	Essay	Bulletin	Dictionary	Periodical			
Zinc	Carbon	Calcium	Uranium	Aluminium			

- → Behalten durch artikulatorischen Kontrollprozess
- → Gedächtnis abhängig von Sprechgeschwindigkeit: Je schneller gelesen wird, desto mehr Items werden erinnert!

- Unabhängigkeit der Effekte von phonologischer Ähnlichkeit und Wortlänge (Longoni et al., 1993)
 - Kurze italienische Wörter:
 - o Ähnlich: porte, corvi, morsa, borgo, forni, lordo
 - Unähnlich: astri, pozzo, danza, penne, vespe, giallo
 - Lange italienische Wörter:
 - Ähnlich: minerale, generato, onerate, funerali, cinerama, venerare
 - Unähnlich: elefante, navigare, preferenza, sigaretta, demolito, lampadina

→ Unabhängige Mechanismen für Enkodierung im phonologischen Speicher (Ähnlichkeit) und aktives artikulatorisches Rehearsal (Wortlänge)

Artikulatorische Suppression

(Baddeley, Lewis, & Vallar; 1984)

- Ähnlich (can, cad, cat, cap, mad, man, mat, map) oder unähnlich klingende Wörter (cow, day, bar, few, hot, pen, sup, pit)
- Lange und kurze Wörter
- Versuchsperson soll während des Behaltens kontinuierlich sprechen ("1 2 3 4 1 2 3 4 ...")
- → Phonologischer Ähnlichkeitseffekt bleibt erhalten (beruht auf phonologischer Enkodierung)
- → Wortlängeneffekt verschwindet durch artikulatorische Suppression (beruht auf artikulatorischem Kontrollprozess)

Prozent Fehler:	Similar	Dissimilar
Control	15.2	2.6
Suppression	19.8	8.5
(at input and recall)		

- Irrelevant Speech Effect (Colle & Welsh, 1976; Salamé & Baddeley, 1982)
 - o Auch nur gehörte Hintergrundsprache verringert die Gedächtnisspanne für verbales Material!
 - Irrelevante Sprache wird automatisch im phonologischen Speicher enkodiert und interferiert dort mit dem artikulatorischen Rehearsal!

Kein Irrelevant Speech Effect bei erhöhter auditiver Aufmerksamkeit?

Sehende Personen:

Unabhängige Effekte von irrelevanter
 Sprache und Wortlänge
 unterschiedliche Komponenten der phonologischen Schleife

Blinde Personen:

- Kein Irrelevant Speech Effect →Sprache wird nicht automatisch enkodiert (verbesserte auditive Aufmerksamkeit)
- Wortlängeneffekt →artikulatorischer Kontrollprozess zur Aufrechterhaltung verbaler Information

Kattner & Ellermeier (2014)

Verbales vs. visuell-räumliches Arbeitsgedächtnis

- Wenn es unterschiedliche Gedächtnissysteme für verbale und visuell-räumliche Information gibt, dann sollte artikulatorische Zweitaufgaben nur das verbale, nicht aber das visuell-räumliche Gedächtnis stören (Meiser & Klauer, 1999).
- Verbale Aufgabe: Konsonanten merken
 - → Artikulatorische Suppression (a-b-c-d-e-f-...) stört mehr als Tippbewegungen auf Tastatur!

- Visuell-räumliche Aufgabe: "Corsi Blöcke" merken
 - → Tippen stört mehr als artikulatorische Suppression!

Corsi-Blocks Task

Verschlechterung in der Aufgabe:

Verbal Memory Task

Visuell-räumlicher Notizblock

Zwei Subsysteme:

- Visuelles Gedächtnis: speichert visuelle Information (Form, Farbe) für kurze Zeit
 - Z.B. Schachbrettaufgabe (Proband muss gefärbte Felder angeben)
 - → Visuelle Ähnlichkeitseffekte
 - → Aufrechterhaltung durch visuelle Vorstellung ("imagery")
- 2. Räumliches Gedächtnis: "Innerer Schreiber", kann auch genutzt werden um visuelle Information aufrechtzuerhalten
 - Z.B. Corsi-Block-Aufgabe (Proband muss r\u00e4umliche Sequenz reproduzieren)
 - → Gleichzeitige "tapping"-Bewegungen stören (analog zu artikulatorischer Suppression)

Visuell-räumlicher Notizblock

Doppelte Dissoziation

- Zwei Aufgaben:
 - 1. Corsi-Blöcke: räumliches Gedächtnis
 - Schachbrett-Aufgabe: visuelles Gedächtnis
- Zwei Distraktoren
 - a) Irrelevante Bilder
 - b) Irrelevantes Tapping (Fingertippen)
- → Irrelevante Bilder stören die visuelle Schachbrett-Aufgabe, aber nicht die räumliche Corsi-Block-Aufgabe.
- → Irrelevantes Tapping stört die räumliche Aufgabe, nicht aber die visuelle Aufgabe.

Vielen Dank für die Aufmerksamkeit!

