Number Systems

Digital Design and Computer Architecture Mohammad Sadrosadati Frank K. Gürkaynak

http://safari.ethz.ch/ddca

What will we learn?

- How to represent fractions?
- Fixed point
- Floating point
- Briefly:
 - Adding floating point numbers
 - Life is a bit more complicated

Number Systems

- For what kind of numbers do you know binary representations?
 - Positive integersUnsigned binary
 - Negative integers
 Sign/magnitude numbers
 Two's complement
- What about fractions?

Fractions: Two Representations

- Fixed-point: binary point is fixed 1101101.0001001
- Floating-point: binary point floats to the right of the most significant 1 and an exponent is used
 - 1.1011010001001 x 26

Fixed-Point Numbers

■ Fixed-point representation using 4 integer bits and 3 fraction bits:

Fixed-Point Numbers

■ Fixed-point representation using 4 integer bits and 3 fraction bits:

interpreted as
$$0110110$$

= $2^2 + 2^1 + 2^{-1} + 2^{-2} = 6.75$

- The binary point is not a part of the representation but is implied
- The number of integer and fraction bits must be agreed upon by those generating and those reading the number

Signed Fixed-Point Numbers

- Negative fractional numbers can be represented two ways:
 - Sign/magnitude notation
 - Two's complement notation
- Represent -7.5₁₀ using an 8-bit binary representation with 4 integer bits and 4 fraction bits in Two's complement:

+7.5: 01111000

• Invert bits: 10000111

Add 1 to lsb:
10001000

Floating-Point Numbers

- The binary point floats to the right of the most significant digit
- Similar to decimal scientific notation:
 - For example, 273₁₀ in scientific notation is

$$273 = 2.73 \times 10^{2}$$

In general, a number is written in scientific notation as:

$$\pm M \times B^{E}$$

Where:

- M = mantissa
- B = base
- E = exponent
- In the example, M = 2.73, B = 10, and E = 2

Floating-Point Numbers

- Example: represent the value 228₁₀ using a 32-bit floating point representation
- We show three versions; the final version is used in the IEEE754 floating-point standard

Floating-Point Representation 1

Convert the decimal number to binary:

$$228_{10} = 11100100_2 = 1.11001 \times 2^7$$

- Fill in each field of the 32-bit number:
 - The sign bit is positive (0)
 - The 8 exponent bits represent the value 7
 - The remaining 23 bits are the mantissa

Sian	Exponent	Mantissa
0	00000111	11 1001 0000 0000 0000 0000
1 bit	8 bits	23 bits

Floating-Point Representation 2

First bit of the mantissa is always 1:

$$228_{10} = 11100100_2 = 1.11001 \times 2^7$$

- Thus, storing the most significant 1, also called the implicit leading 1, is redundant information
- Instead, store just the fraction bits in the 23-bit field The leading 1 is implied

Sign	Exponent	Fraction
0	00000111	110 0100 0000 0000 0000 0000
1 bit	8 bits	23 bits

Floating-Point Representation 3 (IEEE)

- Bias for 8 bits = 127_{10} = 01111111_2
- Biased exponent = bias + exponent
 - Exponent of 7 is stored as:

$$127 + 7 = 134 = 10000110_2$$

■ The IEEE 754 32-bit floating-point representation of 228₁₀

	Exponent	
Sign	Biased	Fraction
0	10000110	110 0100 0000 0000 0000 0000
1 bit	8 bits	23 bits

Floating-Point Example

Write the value -58.25₁₀ using IEEE 754 32-bit floating-point standard

First, convert the decimal number to binary:

$$58.25_{10} =$$

- Next, fill in each field in the 32-bit number:
 - Sign bit:
 - 8 exponent bits:
 - 23 fraction bits:

Floating-Point Example

Write the value -58.25₁₀ using IEEE 754 32-bit floating-point standard

First, convert the decimal number to binary:

$$58.25_{10} = 111010.01_2 = 1.1101001 \times 2^5$$

- Next, fill in each field in the 32-bit number:
 - Sign bit: 1 (negative)
 - 8 exponent bits: $(127 + 5) = 132_{10} = 10000100_2$
 - 23 fraction bits: 110 1001 0000 0000 0000 0000₂

1 bit	8 bits	23 bits
1	100 0010 0	110 1001 0000 0000 0000 0000

Sign Exponent

Fraction

In hexadecimal: 0xC2690000

Floating-Point Numbers: Special Cases

The IEEE 754 standard includes special cases for numbers that are difficult to represent, such as 0 because it lacks an implicit leading 1

Number	Sign	Exponent	Fraction
0	X	00000000	000000000000000000000000000000000000000
∞	0	11111111	000000000000000000000000000000000000000
- ∞	1	11111111	000000000000000000000000000000000000000
NaN	X	11111111	non-zero

 NaN (= Not a Number) is used for numbers that don't exist, such as sqrt(-1) or log(-5)

Floating-Point Number Precision

■ Single-Precision:

- 32-bit notation
- 1 sign bit, 8 exponent bits, 23 fraction bits
- bias = 127

Double-Precision:

- 64-bit notation
- 1 sign bit, 11 exponent bits, 52 fraction bits
- bias = 1023

Floating-Point Numbers: Rounding

Problems:

- Overflow: number is too large to be represented
- Underflow: number is too small to be represented

Rounding modes:

- Down
- Up
- Toward zero
- To nearest

Floating-Point Numbers: Rounding Example

- Round 1.100101 (1.578125) so that it uses only 3 fractional bits
 - Down:
 - Up:
 - Toward zero:
 - To nearest:

Floating-Point Numbers: Rounding Example

Round 1.100101 (1.578125) so that it uses only 3 fractional bits

Down: 1.100

Up: 1.101

■ Toward zero: **1.100**

To nearest: 1.101 (1.625 is closer to 1.578125 than 1.5 is)

Floating-Point Addition

Steps for floating point addition:

- Extract exponent and fraction bits
- 2. Prepend leading 1 to form mantissa
- 3. Compare exponents
- 4. Shift smaller mantissa if necessary
- 5. Add mantissas
- 6. Normalize mantissa and adjust exponent if necessary
- Round result
- 8. Assemble exponent and fraction back into floating-point format

Not so easy as binary addition!

Add the following floating-point numbers:

0x3FC000000x40500000

1. Extract exponent and fraction bits

Sign	Exponent	Fraction
0	10000000	101 0000 0000 0000 0000 0000
1 bit	8 bits	23 bits
Sign	Exponent	Fraction
0	01111111	100 0000 0000 0000 0000 0000
1 bit	8 bits	23 bits

- For first number (N1):
 S = 0, E = 127, F = .1
- For second number (N2): S = 0, E = 128, F = .101

2. Prepend leading 1 to form mantissa

- N1: **1.1**
- N2: 1.101

3. Compare exponents

$$127 - 128 = -1$$
 so shift N1 right by 1 bit

4. Shift smaller mantissa if necessary

shift N1's mantissa: 1.1 >> 1 = 0.11 (× 2^1)

5. Add mantissas

$$0.11 \times 2^{1}$$
+ 1.101×2^{1}
 10.011×2^{1}

6. Normalize mantissa and adjust exponent if necessary

$$10.011 \times 2^1 = 1.0011 \times 2^2$$

7. Round result

No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point format

$$S = 0$$
, $E = 2 + 127 = 129 = 10000001_2$, $F = 001100...$

<u></u>		
0	10000001	001 1000 0000 0000 0000 0000
<u> 1 bit</u>	8 bits	23 bits

Sign Exponent Fraction

Written in hexadecimal: 0x40980000

Floating-Point Unit of ARM

What did we learn

- How to express real numbers in binary
 - Fixed point
 - Floating point
- IEEE Standard to express floating point numbers
 - Sign
 - Exponent (biased)
 - Mantissa
- Briefly
 - Adding floating point numbers