Definition 1. Linear Code

An (n,k) linear code over a finite field F is a k-dimensional subspace V of the vector space

$$F^n = \underbrace{F \oplus F \oplus \cdots \oplus F}_{n \text{ copies}}$$

over F. The members of V are called the *code words*. The ratio k/n is called the *information rate* of the code. When F is \mathbb{Z}_2 , the code is called binary.

Example 1. The Hamming (7,4) Code

Assuming that our message consists of all possible 4-tuples of 0's and 1's (i.e., we wish to send a sequence of 0's and 1's of length 4). Encoding will be done by viewing these messages as four-dimensional vectors over the field \mathbb{Z}_2 and multiplying each of the 16 possible messages on the right by the matrix

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

The resulting seven-dimensional vectors are called *code words*. See Table 1.

Message	Encoder G	Code Word
0000	\rightarrow	0000000
0001	\rightarrow	0001111
0010	\rightarrow	0010110
0100	\rightarrow	0100101
1000	\rightarrow	1000011
1100	\rightarrow	1100110
1010	\rightarrow	1010101
1001	\rightarrow	1001100
0110	\rightarrow	0110011
0101	\rightarrow	0101010
0011	\rightarrow	0011001
1110	\rightarrow	1110000
1101	\rightarrow	1101001
1011	\rightarrow	1011010
0111	\rightarrow	0111100
1111	\rightarrow	1111111

Table 1

Definition 2. Hamming Distance, Hamming Weight

The *Hamming distance* between two vectors of a vector space is the number of components in which they differ. The *Hamming weight* of a vector is the number of nonzero components of the vector.

We will use d(u, v) to denote the Hamming distance between the vectors u and v and wt(u) for the Hamming weight of the vector u.

Definition 3. Nearest-Neighbor Decoding

For any received vector v, the corresponding code word sent is a code word v' such that the Hamming distance d(v, v') is a minimum. If there is more than one such v', we decide arbitrarily.

Theorem 1. Properties of Hamming Distance and Hamming Weight

For any vectors u, v and w of a linear code, $d(u, v) \le d(u, w) + d(w, v)$ and d(u, v) = wt(u - v).

Theorem 2. Correcting Capability of a Linear Code

If the Hamming weight of every nonzero code word in a linear code is at least 2t+1, then the code can correct for any t or fewer errors. Furthermore, the same code can detect any 2t or fewer errors.

Proof. Using the nearest-neighbor decoding, suppose a transmitted code word u is received as the vector v and at most t errors were made in transmission. Then, by definition, $d(v, u) \leq t$. If w is any code word other than u, then w - u is a nonzero code word. Thus, by assumption,

$$2t + 1 \le \operatorname{wt}(w - u) = d(w, u) \le d(w, v) + d(v, u) \le d(w, v) + t$$

and it follows that $t + 1 \le d(w, v)$. So the code word closest to the received vector v is u and, therefore v is correctly decoded as u.

To show that the code can detect 2t errors, we suppose a transmitted code word u is received as the vector v and at least one error, but no more than 2t errors, was made in transmission. Because only code words are transmitted, an error will be detected whenever a received word is not a code word. But, u cannot be a code word, since $d(v, u) \leq 2t$, while we know that the minimum distance between distinct code words is at least 2t + 1.

Theorem 3. Singleton Bound

Let C be a code of length n over and alphabet of size q with minimum Hamming distance d. Then $\log_q(|C|) \le n - d + 1$.

Definition 4. Maximum Distance Separable code

A code of length n over an alphabet of size q with $|C| = q^k$ and minimum Hamming distance d satisfying k = n - d + 1 is said to be a Maximal Distance Separable (MDS) code.

Theorem 4. Sphere Packing Bound

Let C be a code of length n over alphabet of size q with minimum Hamming distance 2t + 1. Then

$$|C|\left(\sum_{s=0}^{t} \binom{n}{s} (q-1)^s\right) \le q^n$$

Definition 5. Perfect Code

A perfect code is a code C of length n where every vector in \mathbb{F}_q^n is contained in precisely one sphere of radius t centered about a codeword.

Example 2. Perfect Codes

The following are all prefect codes:

- the codes $C = \mathbb{F}_q^n$
- the codes consisting fo exactly one codeword (the zero vector in the case of linear codes)
- the binary repetition codes of odd length (i.e., $\mathbf{1} = 11111$, length n = 5)
- the binary codes of odd length consisting of a vector c and the complementary vector \bar{c} with 0's and 1's interchanged.

Theorem 5. If C is a linear code over a ring R, the th minimum Hamming distance and the minimum Hamming weight are equal.

Definition 6. Generator Matrix

A Generator Matrix is any $k \times n$ matrix G whose rows form basis for C.

Definition 7. Parity-check Matrix

A parity-check matrix H is a $(n-k) \times n$ matrix, for a (n,k) code C, defined by

$$C = \Big\{ x \in \mathbb{F}_q^n \, | \, Hx^T = 0 \Big\}.$$

Note that C is the kernel of the linear transformation H, because a linear code is a subspace of a vector space.

Theorem 6. If $G = [I_k | A]$ is a generator matrix for the (n,k) code C in standard form, then $H = [-A^T | I_{n-k}]$ is a parity check matrix for C.

Definition 8. Let R be a finite ring. A linear code C over the alphabet R of length n is a submodule of R^n .

Note: If R is a field then the linear codes are vector spaces and we have the full force of linear algebra at our disposal!