Introduction to Machine Learning

Clustering

Mingchen Gao

Outline

Contents

1	l Clustering		1
	1.1	Clustering Definition	2
	1.2	K-Means Clustering	3
	1.3	Instantations and Variants of K-Means	3
	1.4	Choosing Parameters	4
	1.5	Initialization Issues	4
	1.6	K-Means Limitations	4

1 Clustering

Publishing a Magazine

- Imagine your are a magazine editor
- Need to produce the next issue
- What do you do?
 - Call your four assistant editors
 - 1. Politics
 - 2. Health
 - 3. Technology
 - 4. Sports
 - Ask each to send in k articles
 - Join all to create an issue

Treating a Magazine Issue as a Data Set

- Each article is a data point consisting of words, etc.
- Each article has a (hidden) *type* sports, health, politics, and technology

Now imagine your are the reader

- Can you assign the type to each article?
- Simpler problem: Can you group articles by type?
- Clustering

1.1 Clustering Definition

- Grouping similar things together
- A notion of a similarity or distance metric
- A type of unsupervised learning
 - Learning without any labels or target

Expected Outcome of Clustering

1.2 K-Means Clustering

- Objective: Group a set of N points $(\in \Re^D)$ into K clusters.
- 1. Start with k randomly initialized points in D dimensional space
 - Denoted as $\{\mathbf{c}_k\}_{k=1}^K$
 - Also called *cluster centers*
- 2. **Assign** each input point \mathbf{x}_n ($\forall n \in [1, N]$) to cluster k, such that:

$$\min_{k} \operatorname{dist}(\mathbf{x}_n, \mathbf{c}_k)$$

- 3. Revise each cluster center \mathbf{c}_k using all points assigned to cluster k
- 4. Repeat 2

1.3 Instantations and Variants of K-Means

- Finding distance
 - Euclidean distance is popular
- Finding cluster centers
 - Mean for K-Means
 - Median for k-medoids

1.4 Choosing Parameters

- 1. Similarity/distance metric
 - Can use non-linear transformations
 - K-Means with Euclidean distance produces "circular" clusters
- 2. How to set k?
 - Trial and error
 - How to evaluate clustering?
 - K-Means objective function

$$J(\mathbf{c}, \mathbf{R}) = \sum_{n=1}^{N} \sum_{k=1}^{K} R_{nk} \|\mathbf{x}_n - \mathbf{c}_k\|^2$$

ullet R is the cluster assignment matrix

$$R_{nk} = \begin{cases} 1 & \text{If } \mathbf{x}_n \in \text{ cluster } k \\ 0 & \text{Otherwise} \end{cases}$$

1.5 Initialization Issues

- Can lead to wrong clustering
- Better strategies
 - 1. Choose first centroid randomly, choose second farthest away from first, third farthest away from first and second, and so on.
 - 2. Make multiple runs and choose the best

1.6 K-Means Limitations

Strengths

- Simple
- Can be extended to other types of data
- Easy to parallelize

Weaknesses

- Circular clusters (not with kernelized versions)
- \bullet Choosing K is always an issue
- Not guaranteed to be optimal
- Works well if natural clusters are round and of equal densities
- Hard Clustering

Issues with K-Means

- "Hard clustering"
- Assign every data point to exactly one cluster
- Probabilistic Clustering
 - Each data point can belong to multiple clusters with varying probabilities
 - In general

$$P(\mathbf{x}_i \in C_i) > 0 \quad \forall j = 1 \dots K$$

 For hard clustering probability will be 1 for one cluster and 0 for all others

References

Murphy book Chapter 21.3

References