Real Analysis

LIANG LIU¹

April 17, 2021

¹http://faculty.franklin.uga.edu/lliu/

Contents

1	Set	Theory	3			
	1.1	Sets	. 3			
	1.2	Basic operations on sets	. 3			
	1.3	Relations and Functions	. 4			
	1.4	Image and preimage	. 5			
	1.5	Cardinality	. 5			
2	The Real Number System 7					
	2.1	Ordered sets	. 7			
	2.2	Fields	. 8			
	2.3	The Real Field	. 8			
3	Topology 9					
	3.1	Euclidean spaces	. 9			
	3.2	Metric spaces	. 10			
	3.3	Compact sets	. 11			
	3.4	Connected sets	. 11			
4	Sequences and Series 13					
	4.1	Convergent sequences	. 13			
	4.2	Subsequences	. 14			
	4.3	Cauchy sequences	. 14			
	4.4	Upper and lower limits				
	4.5	Series	. 15			
5	Continuity 17					
	5.1	Limits of Functions	. 17			
	5.2	Continuous functions	. 17			
	5.3	Continuity and Compactness	. 18			
	5.4	Continuity and Connectness	. 18			
	5.5	Monotonic functions	. 19			
6	Diff	ferentiation	21			
	6.1	Derivative	. 21			

vi *CONTENTS*

7	Riemann Integral			
	7.1	Rectifiable curves	25	
8	Sequences of functions			
	8.1	Convergence	27	
	8.2	Uniform convergence and Integration		
	8.3	Uniform convergence and Differentiation	28	
9	Special functions			
	9.1	Power series	29	
		Fourier series	29	
10	Fun	ctions of several variables	31	
11	The	Lebesgue Theory	33	
	11.1	Set functions	33	
	11.2	Construction of the Lebesgue measure	33	
		Measurable spaces		
		Integration	35	

List of Figures

List of Tables

Preface

This lecture note is a collection of basic definitions and theorems in real analysis. This note is taken upon two excellent books: principle of mathematical analysis by Walter Rubin and introduction to real analysis by Lee Larson.

Acknowledgements

• A special word of thanks goes to my family.

Liang Liu
http://faculty.franklin.uga.edu/lliu/

1

Set Theory

"This is a quote and I don't know who said this."

- Pablo Picasso, Source of this quote

1.1 Sets

In naive set theory, any collection of numbers is a set. But this definition may lead to a serious problem. For example, suppose Ω is a set of all sets that are not members of themselves. Is Ω a member of itself? No matter what the answer is (yes or no), it contradicts with the definition of Ω . Thus, Ω is not a well defined set. This is so-called Russell's paradox. To avoid this paradox, Russell proposed to construct axiomatic set theory. How do we define a set? There isn't a simple answer to this question. Interested readers refer to the ZFC (Zermelo–Fraenkel set theory with the axiom of choice).

Definition 1.1. A set Ω is a well-defined collection of distinct objects.

- $x \in \Omega$ indicates that x is an element of Ω .
- $x \notin \Omega$ indicates that x is not an element of Ω .
- $A \subset \Omega$ indicates that A is a subset of Ω .
- The empty set \emptyset has no element.
- The power set $\wp(S)$ of a set S is the set of all subsets of S.
- Two sets A and B are equal if and only if $A \subseteq B$ and $B \subseteq A$

1.2 Basic operations on sets

• The **union** of two sets A and B is the set containing all the elements in either A or B, written as $A \cup B = \{x : x \in A \lor x \in B\}$.

4 1. SET THEORY

• The **intersection** of A and B is the set containing the elements contained in both A and B, written as $A \cap B = \{x : x \in A \land x \in B\}$.

- The **difference** of A and B is the set of elements in A and not in B, written as $A \setminus B = \{x : x \in A \land x \notin B\}$.
- The **complement** of a set $A \subset S$ is $A^c = S \setminus A$.
- The **symmetric difference** of A and B is the set of elements in one of the sets, but not the other, written as $A \triangle B = (A \cup B) \setminus (A \cap B)$.
- For sets A and B, the **Cartesian product** $A \times B$ is the set of all ordered pairs $A \times B = \{(a, b) : a \in A \land b \in B\}$.

Theorem 1.2. (DeMorgan's Laws) For a collection of sets $\{A_i, i = 1, 2, ...\}$, $(\cup A_i)^c = \cap A_i^c$ and $(\cap A_i)^c = \cup A_i^c$.

1.3 Relations and Functions

Definition 1.3. For the sets A and B, any subset $R \subset A \times B$ is a relation from A to B. If $(a, b) \in R$, we write aRb.

Definition 1.4. The domain of a relation $R \subset A \times B$ is $dom(R) = \{a : (a,b) \in R\}$, and the range of R is $ran(R) = \{b : (a,b) \in R\}$.

- R is symmetric, if $aRb \Leftrightarrow bRa$ or equivalently $(a,b) \in R \Leftrightarrow (b,a) \in R$.
- R is reflexive if aRa or $(a, a) \in R$.
- R is transitive, if $aRb \wedge bRc \Rightarrow aRc$.

Definition 1.5. R is an equivalence relation on A, i.e., $R \subset A \times A$, if it is symmetric, reflexive and transitive.

Definition 1.6. A relation < on X is called a partial order if it is transitive a < b and b < c imply a < c, but not reflexive and symmetric for all $x \in X$. The relation is called a total order if for all $x, y \in X$, we have either x < y or x = y or y > x.

For the real numbers, the order x < y is defined by x - y < 0.

Definition 1.7. A relation $R \subset A \times B$ is a function if $aRb_1 \wedge aRb_2 \Rightarrow b1 = b2$.

- For a function $f \subset A \times B$, we often write $f : A \to B$ to indicate the relation f(a) = b, where $a \in A$ and $b \in B$. The set A is the domain of f, but $ran(f) \subset B$.
- If $f: A \to B$ and $g: B \to C$, then the composition $g \circ f: A \to C$ is given by $g \circ f(a) = g(f(a))$.

- f is surjective, if r(f) = B.
- f is injective, if f(a) = f(b) implies a = b.
- f is bijective, if it is both surjective and injective.
- If $f: A \to B$ is bijective, the inverse of f is the function $f^{-1}: B \to A$.

Theorem 1.8. A function $f: X \to Y$ is bijective iff there is a function $g: Y \to X$ such that f(g(y)) = y for all $y \in Y$ and g(f(x)) = x for all $x \in X$.

Corollary 1.8.1. If f and g are bijective, then $g \circ f$ is bijective.

Theorem 1.9. (Schroder-Bernstein) If there are injective functions $f: A \to B$ and $g: B \to A$, then there is a bijective function $h: A \to B$.

Corollary 1.9.1. There is a bijective function $h: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$.

1.4 Image and preimage

Definition 1.10. Let $f: X \to Y$ and $A \subset X$, $B \subset Y$. The image of A under f is the set $f(A) = \{f(x) : x \in A\}$ and the preimage of B under f is the set $f^{-1}(B) = \{x \in X : f(x) \in B\}$.

Note that f does not have to be invertible for the preimage to be defined, and $f^{-1}(B)$ is a set while f^{-1} is a relation.

Theorem 1.11. Let $A, B \subset X$ and $E, F \subset Y$ and a function $f : X \to Y$. Then, $f(A \cup B) = f(A) \cup f(B)$, $f(A \cap B) \subset f(A) \cap f(B)$, $f^{-1}(E \cup F) = f^{-1}(E) \cup f^{-1}(F)$ $f^{-1}(E \cap F) = f^{-1}(E) \cap f^{-1}(F)$.

1.5 Cardinality

Definition 1.12. The cardinality of a set E is $n \in \mathbb{N}$, i.e., card(E) = n, if there is a bijection $f: E \to \{1, ..., n\}$.

Definition 1.13. A set E is finite if there is an $n \in N$ and a surjection $f: \{1, ..., n\} \to E$

Definition 1.14. We say $card(A) \leq card(B)$, if there is an injective function $f: A \to B$.

- If $card(A) \leq card(B)$ and $card(B) \leq card(A)$, then card(A) = card(B), because there is a bijective function $f: A \to B$.
- $card(\mathbb{N}) = card(\mathbb{N} \times \mathbb{N}) = card(\mathbb{N} \times \mathbb{N} \times \mathbb{N}).$

6 1. SET THEORY

• If S is a set, $card(S) < card(\wp(S))$.

Definition 1.15. A set S is countable, if $card(S) \leq card(\mathbb{N})$

- If two sets A and B are countable, then $A \times B$ and $A \cup B$ are countable.
- \bullet Every infinite subset of a countable set A is countable.
- The countable union of countable sets is countable.
- The set of all rational numbers is countable.

Theorem 1.16. Let A be the set of all sequences whose elements are the digits 0 and 1. This set is uncountable.

The Real Number System

"Sometimes the questions are complicated and the answers are simple."

– Dr. Seuss, Source of this quote

2.1 Ordered sets

Definition 2.1. An order on a set S is a relation, denoted by <, with the following two properties: (1) If $x, y \in S$, then one and only one of the statements x < y, x = y, x > y is true, (2) if $x, y, z \in S$ and if x < y and y < z, then x < z.

Definition 2.2. An ordered set is a set in which an order is defined.

Definition 2.3. S is an ordered set and $E \subset S$. If there exists a $\mu \in S$ such that $x \leq \mu$ for every $x \in E$, then μ is an upper bound of E.

Definition 2.4. An upper bound μ is the <u>least upper bound</u>, if $\alpha < \mu$ indicates that α is not an upper bound. We write $\mu = \sup E$.

Definition 2.5. S is an ordered set and $E \subset S$. If there exists a $\mu \in S$ such that $x \geq \mu$ for every $x \in E$, then μ is a <u>lower bound</u> of E.

Definition 2.6. A lower bound μ is the greatest lower bound, if $\alpha < \mu$ indicates that α is not a lower bound. We write $\mu = \inf E$.

Definition 2.7. A set S has the <u>least-upper-bound property</u> if and only if every non-empty subset $E \subset S$ with an upper bound has a least upper bound in S.

Theorem 2.8. An ordered set S has the least-upper-bound property if and only if it has the greatest-lower-bound property.

2.2 Fields

Definition 2.9. A field is a set F with two operations, addition and multiplication, which satisfies the following axioms.

- Associative laws
- Commutative laws
- Distributive laws
- Existence of Identity
- Existence of additive inverse
- Existence of multiplicative inverse

Definition 2.10. A field F is an ordered field if F is an ordered set such that (1) x + y < x + z if $x, y, z \in F$ and y < z, (2) xy > 0 if $x, y \in F$ and x, y > 0.

2.3 The Real Field

Theorem 2.11. There exists an ordered field with the least-upper-bound property, which contains rational numbers as a subfield.

Theorem 2.12. (Archimedean Principle) If $x, y \in R$ and x > 0, there is a positive integer n such that nx > y.

Theorem 2.13. If $x, y \in R$ and x < y, there is a rational number r such that x < r < y.

Definition 2.14. An ordered field F is complete if for all $S \in F$ whenever S has an upper bound it also has a least upper .

The real numbers R are the complete ordered field. That is, if F is a complete ordered field then there is an isomorphism $\phi: F \to R$ (an isomorphism preserves all the properties of the field including the arithmetic and order properties.

Theorem 2.15. For every real x > 0 and every integer n > 0, there is one and only one positive real y such that $y^n = x$.

Definition 2.16. The extended real number system consists of the real field R and two symbols, $-\infty$ and $+\infty$, such that $-\infty < x < +\infty$ for every $x \in R$.

Topology

3.1 Euclidean spaces

For each positive integer k, R^k is the set of all ordered k-tuples $\mathbf{x} = (x_1, ..., x_k)$, where $x_1, ..., x_k$ are real numbers. The elements of R^k are called vectors. For two vectors \mathbf{x} and \mathbf{y} , we define

- addition: $\mathbf{x} + \mathbf{y} = (x_1 + y_1, ..., x_k + y_k).$
- scalar multiplication: $a\mathbf{x} = (ax_1, ..., ax_k)$.
- inner product: $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{k} x_i y_i$.
- norm: $|\mathbf{x}| = (\mathbf{x} \cdot \mathbf{x})^{1/2}$.

Definition 3.1. The vector space R^k equipped with the inner product and norm is called Euclidean k-space.

Theorem 3.2. Suppose $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^k$ and a is real. Then

- $|\mathbf{x}| \ge 0$
- $|\mathbf{x}| = 0$ if and only if $\mathbf{x} = 0$
- $|a\mathbf{x}| = |a|||\mathbf{x}|$
- $|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}||\mathbf{y}|$
- $|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|$
- $|\mathbf{x} \mathbf{z}| \le |\mathbf{x} \mathbf{y}| + |\mathbf{y} \mathbf{z}|$

10 3. TOPOLOGY

3.2 Metric spaces

Definition 3.3. A set Ω is said to be a metric space if with any two elements $x, y \in \Omega$ there is associated a real number d(x, y), called the distance from x to y, such that (1) d(x, y) > 0 for $x \neq y$ and d(x, x) = 0, (2) d(x, y) = d(y, x), (3) $d(x, z) \leq d(x, y) + d(y, z)$ for any $z \in \Omega$.

Definition 3.4. A set $E \subset R^k$ is convex if $\lambda x + (1 - \lambda)y \in E$, whenever $x, y \in E$ and $0 < \lambda < 1$.

- A neighborhood of a point p is a set $N_r(p)$ consisting of all points q such that d(p,q) < r for some r > 0. The number r is called the radius of $N_r(p)$.
- A point p is a limit point of the set E if every neighborhood of p contains a point $q \neq p$ such that $q \in E$.
- If $p \in E$ is not a limit point of E, then p is called an isolated point of E.
- A set E is closed if every limit point of E is a point of E.
- A point p is an interior point of E, if there is a neighborhood N of p such that $N \subset E$.
- E is open if every point of E is an interior point of E.
- A set E is perfect if E is closed and every point of E is a limit point of E.
- E is bounded if there is a real number M and a point p such that d(p,q) < M for all $q \in E$.
- E is dense in X if every point of X is a limit point of E or a point of E.

Theorem 3.5. Every neighborhood is an open set.

Theorem 3.6. Every neighborhood of a limit point of E contains infinitely many points of E.

Theorem 3.7. A set E is open if and only if its complement is closed.

- The union of any collection of open sets is open.
- The intersection of any finite collection of open sets is open.
- The intersection of any collection of closed sets is closed.
- The union of any finite collection of closed sets is closed.

Theorem 3.8. Suppose $Y \subset X$. A subset E is open relative to Y if and only if $E = Y \cap G$ for some open subset G of X.

3.3 Compact sets

Definition 3.9. An open cover of a set E in a metric space Ω is a collection of open subsets $\{G_{\alpha}\}$ of Ω such that $E \subset \bigcup_{\alpha} G_{\alpha}$

Definition 3.10. A subset X of a metric space Ω is compact if every open cover of X contains a finite subcover.

- Suppose $E \subset Y \subset Z$. Then E is compact relative to Y if and only if E is compact relative to Z.
- Compact subsets of metric spaces are closed.
- Closed subsets of compact sets are compact.

Theorem 3.11. If a set E in R^k has one of the following three properties, then it has the other two, (1) E is closed and bounded, (2) E is compact, (3) Every infinite subset of E has a limit point in E.

Theorem 3.12. (Weierstrass) Every bounded infinite subset of R^k has a limit point in R^k .

Theorem 3.13. If E is a non-empty perfect set in \mathbb{R}^k , then it is uncountable.

The cantor set is a non-empty perfect set. Thus, it is uncountable, but its measure is 0.

3.4 Connected sets

Definition 3.14. Two subsets A and B of a metric space X are said to be separated if both $A \cap \overline{B}$ and $\overline{A} \cap B$ are empty.

Definition 3.15. A set E is said to be connected if E is not a union of two nonempty separated sets.

Theorem 3.16. A subset E of the real line is connected if and only if it has the following property: if $x, y \in E$ and x < z < y, then $z \in E$.

12 3. TOPOLOGY

Sequences and Series

"Good friends, good books, and a sleepy conscience: this is the ideal life."

- Mark Twain, Source of this quote

4.1 Convergent sequences

Definition 4.1. A sequence p_n in a metric space X is said to converge if there is a point $p \in X$ with the following property: for every $\epsilon > 0$, there is an integer N such that $n \geq N$ implies $d(p_n, p) < \epsilon$. We write $\lim_{n \to \infty} p_n = p$.

- $\{p_n\}$ converges to $p \in X$ if and only if every neighborhood of p contains p_n for all but finitely many n.
- If $p \in X$, $p' \in X$, and if $\{p_n\}$ converges to $p \in X$ and to $p' \in X$, then p = p'.
- If $\{p_n\}$ converges, then $\{p_n\}$ is bounded.
- If $E \subset X$ and if p is a limit point of E, then there is a sequence $\{p_n\}$ in E such that $p = \lim_{n \to \infty} p_n$.

Theorem 4.2. A sequence of vectors $X_n = (x_{1,n}, ..., x_{k,n})$ in \mathbb{R}^k converges to a vector $X = (x_1, ..., x_k)$ in \mathbb{R}^k if and only if $\lim_{n \to \infty} x_{j,n} = x_j$ for $1 \le j \le k$.

Theorem 4.3. X_n and Y_n are two sequences of vectors in \mathbb{R}^k and a_n is a sequence of real numbers. Suppose $X_n \to X$, $Y_n \to Y$, and $a_n \to a$, then $X_n + Y_n \to X + Y$, $X_n \cdot Y_n \to X \cdot Y$, $a_n X_n \to a X$.

4.2 Subsequences

Definition 4.4. Given a sequence $\{p_n\}$, consider a sequence $\{n_k\}$ of positive integers such that $n_1 < n_2 < n_3...$ Then the sequence $\{p_{n_i}\}$ is called a subsequence of $\{p_n\}$. If $\{p_{n_i}\}$ converges, its limit is called a subsequential limit of $\{p_n\}$.

- $\{p_n\}$ converges p if and only if every subsequence of $\{p_n\}$ converges to p.
- If $\{p_n\}$ is a sequence in a compact metric space X, then some subsequence of $\{p_n\}$ converges to a point of X.
- Every bounded sequence in \mathbb{R}^k contains a convergent subsequence.

Theorem 4.5. The subsequential limits of $\{p_n\}$ in a metric space X form a closed subset of X.

4.3 Cauchy sequences

Definition 4.6. A sequence $\{p_n\}$ in a metric space X is said to be a Cauchy sequence if for every $\epsilon > 0$ there is an integer N such that $d(p_n, p_m) < \epsilon$ if $n \geq N$ and $m \geq N$.

Definition 4.7. E is a subset of a metric space X. Let S be the set of d(p,q) with $p,q \in E$. The sup S is called diameter of E.

Theorem 4.8. If k_n is a sequence of compact sets in a metric space X such that $k_{n+1} \subset k_n$ and if $\lim_{n\to\infty} d(k_n) = 0$, where $d(k_n)$ is the diameter of set k_n , then $\bigcap_{n=1}^{\infty} k_n$ consists of exactly one point.

- In any metric space X, every convergent sequence is a Cauchy sequence.
- ullet If X is a compact metric space, then every Cauchy sequence is a convergent sequence.
- In \mathbb{R}^k , every Cauchy sequence converges.

Definition 4.9. A metric space in which every Cauchy sequence converges is said to be complete.

Theorem 4.10. Suppose p_n is monotonic. Then p_n converges if and only if it is bounded.

15

4.4 Upper and lower limits

Definition 4.11. The limit inferior and superior of a sequence x_n is defined by $\liminf_{x\to\infty} x_n = \lim_{n\to\infty} \left(\inf_{m>n} x_m\right)$ and $\limsup_{x\to\infty} x_n = \lim_{n\to\infty} \left(\sup_{m>n} x_m\right)$.

Definition 4.12. A real number η is a subsequential limit of a sequence (x_n) if there exists a strictly increasing sequence of natural numbers (n_k) such that $\eta = \lim_{k \to \infty} x_{n_k}$.

If $E \subset \overline{\mathbb{R}}$ is the set of all subsequential limits of (x_n) , then $\limsup_{n \to \infty} x_n = \sup E$ and $\liminf_{n \to \infty} x_n = \inf E$.

- If the sequence (x_n) are real numbers, then $\limsup_{n\to\infty} x_n$ and $\liminf_{n\to\infty} x_n$ always exist, because real numbers are complete.
- The limit superior of x_n is the smallest real number b such that, for any positive real number ε , there exists a natural number N such that $x_n < b + \varepsilon$ for all n > N. In other words, any number larger than the limit superior is an eventual upper bound for the sequence. Only a finite number of elements of the sequence are greater than $b + \varepsilon$.
- The limit inferior of x_n is the largest real number b such that, for any positive real number ε , there exists a natural number N such that $x_n > b \varepsilon$ for all n > N. In other words, any number below the limit inferior is an eventual lower bound for the sequence. Only a finite number of elements of the sequence are less than $b \varepsilon$.

4.5 Series

Definition 4.13. Given a sequence $\{a_n\}$, we associate a sequence of partial sums $s_n = \sum_{k=0}^n a_k$. Then the symbol $\sum_{k=0}^{\infty} a_k$ is called a series.

Theorem 4.14. (Cauchy) $\sum_{k=0}^{\infty} a_k$ converges if and only if for every $\epsilon > 0$ there is an integer N such that $|\sum_{k=n}^{m} a_k| \le \epsilon$ if $m \ge n \ge N$.

- If $\sum_{k=0}^{\infty} a_k$ converges, then $\lim_{n\to\infty} a_n = 0$.
- A series of non negative terms converges if and only if the series is bounded.
- If $|a_n| \le c_n$ for $n \ge N_0$ where N_0 is some fixed integer, and if $\sum_{n=0}^{\infty} c_n$ converges, then $\sum_{n=0}^{\infty} a_n$ converges.
- root test: Given $\sum_{n=0}^{\infty} a_n$, let $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$. Then, $\sum_{n=0}^{\infty} a_n$ converges if $\alpha < 1$.

- ratio test: $\sum_{n=0}^{\infty} a_n$ converges if $\limsup_{n \to \infty} |a_{n+1}/a_n| < 1$.
- If $\sum_{n=0}^{\infty} a_n = A$ and $\sum_{n=0}^{\infty} b_n = B$, then $\sum_{n=0}^{\infty} (a_n + b_n) = A + B$ and $\sum_{n=0}^{\infty} (ca_n) = cA$.

Definition 4.15. The series $\sum_{n=0}^{\infty} c_n z^n$, where $\{c_n\}$ and $\{z_n\}$ are complex numbers, is called a power series.

- The series $\sum_{n=0}^{\infty} c_n z^n$ converges if $|z| < \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|c_n|}}$.
- The partial sums A_n of $\sum_{n=0}^{\infty} a_n$ is a bounded sequence and $b_0 \ge b_1 \ge ...$ with $b_n \to 0$. Then $\sum b_n a_n$ converges.

Definition 4.16. A series $\sum_{n=0}^{\infty} a_n$ is said to converge absolutely if the series $\sum_{n=0}^{\infty} |a_n|$ converges.

Theorem 4.17. The series $\sum_{n=0}^{\infty} a_n$ converges absolutely to A and the series $\sum_{n=0}^{\infty} b_n$ converges to B. Then the series $\sum_{n=0}^{\infty} c_n$ converges to AB, in which $c_n = \sum_{k=0}^{n} a_k b_{n-k}$.

Theorem 4.18. If $\sum_{n=0}^{\infty} a_n$ is a series of complex numbers which converges absolutely, then every rearrangement of $\sum_{n=0}^{\infty} a_n$ converges to the same sum.

Continuity

"There are only two ways to live your life. One is as though nothing is a miracle. The other is as though everything is a miracle."

— Albert Einstein, Source of this quote

5.1 Limits of Functions

Definition 5.1. Let X and Y be metric spaces. Suppose $E \subset X$, f maps E into Y and p is a limit point of E, we write $\lim_{x\to p} f(x) = q$ if there is a point q such that for every $\epsilon > 0$ there exists a $\delta > 0$ such that $d_Y(f(x), q) < \epsilon$ for all points $x \in E$ for which $0 < d_X(x, p) < \delta$.

- $\lim_{x\to p} f(x) = q$ if and only if $f(x_n) \to q$ for every sequence $\{x_n\}$ which converges to p.
- If f has a limit, then the limit is unique.
- If $\lim_{x \to p} f(x) = A$ and $\lim_{x \to p} g(x) = B$, then $\lim_{n \to p} (f(x) + g(x)) = A + B$, $\lim_{n \to p} (f(x)g(x)) = AB$, $\lim_{n \to p} (f(x)/g(x)) = A/B$ if $B \neq 0$.

5.2 Continuous functions

Definition 5.2. Let X and Y be metric spaces. Suppose $E \subset X$, f maps E into Y and p is a point of E. Then f is continuous at p if for every $\epsilon > 0$ there exists a $\delta > 0$ such that $d_Y(f(x), f(p)) < \epsilon$ for all points $x \in E$ for which $0 < d_X(x, p) < \delta$.

- If f is continuous at every point of E, then f is said to be continuous on E.
- If f and g are continuous functions, then $g \circ f$ is continuous.

18 5. CONTINUITY

• A mapping f of a metric space X into a metric space Y is continuous if and only if $f^{-1}(v)$ is open for every open set v in Y.

Theorem 5.3. Let $f_1(x), ..., f_k(x)$ be real functions on a metric space X. $f = (f_1(x), ..., f_k(x))$ is a mapping of X into R^k . Then f is continuous if and only if each of the functions $f_1(x), ..., f_k(x)$ is continuous. If f and g are continuous mapping of X into R^k , then f + g and $f \cdot g$ are continuous on X.

5.3 Continuity and Compactness

Definition 5.4. A mapping f of a set E into R^k is said to be bounded if there is a real number M such that $|f(x)| \leq M$ for all $x \in E$.

- A continuous mapping of a compact set is compact.
- If f is a continuous mapping of a compact metric space X, then f(X) is closed and bounded.
- f is a continuous real function on a compact metric space X. Let $M = \sup_{p \in X} f(p)$ and $m = \inf_{p \in X} f(p)$. Then there exist points $p, q \in X$ such that f(p) = M and f(q) = m.
- f is a continuous 1-1 mapping of a compact metric space X onto a metric space Y. Then the inverse mapping $f^{-1}(f(x)) = x$ is a continuous mapping.

Definition 5.5. f is a continuous mapping of a metric space X into a metric space Y. f is said to be uniformly continuous on X if for every $\epsilon > 0$ there is a $\delta > 0$ such that $d_Y(f(p) - f(q)) < \epsilon$ for all $p, q \in X$ for which $d_X(p, q) < \delta$.

• If f is a continuous mapping of a compact metric space X into a metric space Y, then f is uniformly continuous on X.

5.4 Continuity and Connectness

Theorem 5.6. f is a continuous mapping of a metric space X into a metric space Y. If E is a connected subset of X, then f(E) is connected.

Theorem 5.7. f is a continuous real function on an interval [a, b]. If f(a) < f(b) and if f(a) < c < f(b) is a connected subset of X, then there exists a point $x \in (a, b)$ such that f(x) = c.

5.5 Monotonic functions

Definition 5.8. f is a real function on (a, b). f is said to be monotonically increasing if a < x < y < b implies $f(x) \le f(y)$.

Theorem 5.9. If f is monotonically increasing on (a,b), then f(x+) and f(x-) exist at every point of $x \in (a,b)$, and $\sup_{a < t < x} f(t) = f(x-) \le f(x) \le f(x+) = \inf_{x < t < b} f(t)$

Theorem 5.10. If f is monotonic on (a, b), then the set of points of (a, b) at which f is discontinuous is at most countable.

20 5. CONTINUITY

Differentiation

"You only live once, but if you do it right, once is enough."

- Mae West, Source of this quote

6.1 Derivative

Definition 6.1. A real-valued function f is defined on [a,b]. Define

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$$

for any $x \in [a, b]$ and a < t < b and $t \neq x$. We say that f is differentiable at x if the limit exists.

- If f is differentiable at x, then f is continuous at x.
- If f and g are differentiable, then f + g, fg, and f/g are differentiable.
- If f is differentiable at x and g is differentiable at f(x), then $g \circ f$ is differentiable at x.

Theorem 6.2. (mean value theorem) If f is a continuous real function on [a,b] and f is differentiable in (a,b), then there is a point $x \in (a,b)$ such that f(b) - f(a) = f'(x)(b-a)

Theorem 6.3. (generalized mean value theorem) If f and g are continuous real functions on [a, b] and are differentiable in (a, b), then there is a point $x \in (a, b)$ such that [f(b) - f(a)]g'(x) = [g(b) - g(a)]f'(x)

Theorem 6.4. (generalized mean value theorem) If f is a real differentiable function on [a, b] and f'(a) < c < f'(b), then there exists a $x \in (a, b)$ such that f'(x) = c.

Theorem 6.5. (L'Hospital's rule) f and g are differentiable in (a,b) and $g'(x) \neq 0$ for all $x \in (a,b)$. If $f(x) \to 0$ and $g(x) \to 0$ as $x \to a$ or $g(x) \to \infty$ as $x \to a$, then $\lim_{x \to a} f(x)/g(x) = \lim_{x \to a} f'(x)/g'(x)$.

Theorem 6.6. (Taylor theorem) f is a real function on [a, b], n is a positive integer, f^{n-1} is continuous on [a, b], f^n exists on [a, b]. Then, there exists a point β between x and α such that

$$f(x) = \sum_{k=0}^{n-1} \frac{f^k(a)}{k!} (x-a)^k + \frac{f^n(\beta)}{n!} (x-a)^n$$

Definition 6.7. (vector-valued functions) $\mathbf{f} = (f_1, ..., f_k)$ is a mapping of [a, b] into R^k . $\mathbf{f}'(x)$ is the derivative at x if there exists a point $\mathbf{f}'(x)$ in R^k such that

$$\lim_{t \to x} \left| \frac{\mathbf{f}(t) - \mathbf{f}(x)}{t - x} - \mathbf{f}'(x) \right| = 0$$

Theorem 6.8. \mathbf{f} is a continuous mapping of [a, b] into R^k and \mathbf{f} is differentiable in (a, b). Then there exists $x \in (a, b)$ such that

$$|\mathbf{f}(b) - \mathbf{f}(a)| = |\mathbf{f}'(x)|(b-a)$$

Riemann Integral

"It does not do to dwell on dreams and forget to live."

– J.K. Rowling, Harry Potter and the Sorcerer's Stone

Definition 7.1. $x_1, ..., x_n$ are points in the interval [a, b] such that $a = x_0 \le x_1 \le x_2 ... \le x_n = b$. Let $\Delta x_i = x_i - x_{i-1}$. Suppose f is a bounded real function on [a, b]. We define $M_i = \sup_{x_{i-1} \le x \le x_i} f(x)$, $m_i = \inf_{x_{i-1} \le x \le x_i} f(x)$,

$$U = \sum_{i=1}^{n} \left(M_i \Delta x_i \right), L = \sum_{i=1}^{n} \left(m_i \Delta x_i \right), \text{ and finally}$$

$$\overline{\int_a^b} f dx = \inf U(P, f)$$

and

$$\int_{a}^{b} f dx = \sup L(P, f)$$

The inf and sup are taken over all partitions. If the upper and lower integrals are equal, we say that f is Riemann integrable on [a, b] and write $\int_a^b f dx$.

Definition 7.2. (Riemann-Stieltjes integral) Let α be a monotonically increasing function on [a,b]. Corresponding each partition P of [a,b], we write $\Delta \alpha_i = \alpha_i - \alpha_{i-1}$. For any function f which is bounded on [a,b], define $U(P,f,\alpha) = \sum_{i=1}^n M_i \Delta \alpha_i$ and $L(P,f,\alpha) = \sum_{i=1}^n m_i \Delta \alpha_i$. Finally, we define

$$\overline{\int_a^b} f d\alpha = \inf U(P, f, \alpha)$$

and

$$\int_{a}^{b} f d\alpha = \sup L(P, f, \alpha)$$

The inf and sup are taken over all partitions. If $\inf = \sup$, we say that f is integrable with respect to α and write $f(x) \in R(\alpha)$.

Since f is bounded, $L(P, f, \alpha)$ and $U(P, f, \alpha)$ are bounded for every partition P. Thus, the lower integral $\sup L(P, f, \alpha)$ and the upper integral $\inf U(P, f, \alpha)$ are defined for every bounded function f. The key question is their equality. Observe that the refinement of partitions P will decrease $U(P, f, \alpha)$, increase $L(P, f, \alpha)$, decrease $M_i - m_i$. Thus, we have $L(P_1, f, \alpha) \leq \sup L(P, f, \alpha) \leq \inf U(P, f, \alpha)$.

- $f(x) \in R(\alpha)$ on [a, b] if and only if for every $\epsilon > 0$ there exists a partition such that $U(p, f, \alpha) L(p, f, \alpha) < \epsilon$.
- If f is continuous on [a, b], then f is integrable on [a, b].
- If f is monotonic on [a, b] and if α is continuous on [a, b], then f is integrable.
- If f has only finitely many points of discontinuity on [a, b] and α is continuous at every point at which f is discontinuous, then f is integrable.
- Suppose f is integrable on [a, b] and $m \le f \le M$. If g is a continuous function on [m, M], then $g \circ f$ is integrable on [a, b].
- If f and g are integrable on [a, b], then fg integrable on [a, b].
- If f is integrable [a, b], then |f| is integrable [a, b].

Theorem 7.3. (integration and differentiation) f is integrable on [a, b]. For $a \le x \le b$, define $F(x) = \int_a^x f(t)dt$. Then, F(x) is continuous on [a, b]. If f is continuous at a point $x_0 \in [a, b]$, then F is differentiable at x_0 and $F'(x_0) = f(x_0)$.

Theorem 7.4. (the fundamental theorem of calculus) If f is integrable on [a, b] and there is a differentiable function F on [a, b] such that F' = f, then $\int_a^b f(x) dx = F(b) - F(a)$.

Integration by parts: $\int_a^b f(x)G(x)dx + \int_a^b F(x)g(x)dx = F(b)G(b) - F(a)G(a)$

Definition 7.5. Integration of vector-valued functions: Let $f_1, ..., f_k$ be real functions on [a, b]. $\mathbf{f} = (f_1, ..., f_k)$ is the mapping of [a, b] into R^k . If α increases monotonically on [a, b]. \mathbf{f} is integrable if and only if $f_1, ..., f_k$ are integrable on [a, b]. If so, then we define

$$\int_{a}^{b} \mathbf{f} d\alpha = \left(\int_{a}^{b} f_{1} d\alpha, ..., \int_{a}^{b} f_{k} d\alpha \right).$$

- $\int_a^b \mathbf{f} d\alpha = \mathbf{F}(b) \mathbf{F}(a)$.
- If **f** is integrable, then |**f**| is integrable, and $|\int_a^b \mathbf{f} d\alpha| \leq \int_a^b |\mathbf{f}| d\alpha$.

25

7.1 Rectifiable curves

Definition 7.6. A continuous mapping γ of [a,b] into R^k is called a curve in R^k . If γ is 1-1, it is called an arc. If $\gamma(a) = \gamma(b)$, it is called a closed curve. Let P be a partition of [a,b]. We define

$$\Phi(P,\gamma) = \sum_{i=1}^{n} |\gamma(x_i) - \gamma(x_{i-1})|$$

 $\Phi(P,\gamma)$ is the length of a polygonal path defined by the partition P. We define the length of γ by

$$\Phi(\gamma) = \sup \Phi(P, \gamma)$$

We say that γ is rectifiable if $\Phi(\gamma) < \infty$.

Theorem 7.7. If the derivative γ' of the curve γ is continuous, then γ is rectifiable, and $\Phi(\gamma) = \int_a^b |\gamma'(t)| dt$.

Sequences of functions

"Never doubt that a small group of thoughtful, committed, citizens can change the world. Indeed, it is the only thing that ever has."

- Margaret Mead, Source of this quote

8.1 Convergence

Definition 8.1. (pointwise convergence) $\{f_n\}$ is a sequence of functions defined on a set E. If $\{f_n(x)\}$ converges for every $x \in E$, then we define a function f by $f(x) = \lim_{n \to \infty} f_n(x)$ for $x \in E$.

Definition 8.2. (uniform convergence) $\{f_n\}$ is a sequence of functions defined on a set E. $\{f_n(x)\}$ is said to converge uniformly on E to a function f if for every $\epsilon > 0$ there is an integer N such that $n \geq N$ implies $|f_n(x) - f(x)| \leq \epsilon$ for all $x \in E$.

- Uniform convergence implies pointwise convergence, but pointwise convergence does not imply uniform convergence.
- $\{f_n(x)\}$ is uniformly convergent if and only if for every $\epsilon > 0$ there is an integer N such that $m, n \geq N$ and $x \in E$ implies $|f_n(x) f_m(x)| \leq \epsilon$ for all $x \in E$.
- Suppose $|f_n| \leq M_n$. If $\sum M_n$ converges, then $\sum f_n$ uniformly converges.
- If f_n uniformly converges to f, then $\lim_{n\to\infty}\lim_{x\to a}f_n(x)=\lim_{x\to a}\lim_{n\to\infty}f_n(x)$
- f_n is a sequence of continuous functions. Suppose f_n converges uniformly to f, then f is continuous.

Theorem 8.3. $\{f_n\}$ is a sequence of continuous functions on a compact set E, which converges pointwise to a continuous function f. If $f_n(x) \geq f_{n+1}(x)$ for all $x \in E$, n = 1, 2, 3... Then $f_n \to f$ uniformly.

8.2 Uniform convergence and Integration

Theorem 8.4. $\{f_n\}$ is a sequence of integrable functions on [a,b]. If f_n converges uniformly to f on [a,b], then $\lim_{n\to\infty}\int_a^b f_n d\alpha = \int_a^b f d\alpha$.

8.3 Uniform convergence and Differentiation

Theorem 8.5. $\{f_n\}$ is a sequence of functions differentiable on [a,b]. If $\{f'_n\}$ converges uniformly on [a,b], then $\{f_n\}$ converges uniformly to a function f and $f'(x) = \lim_{n \to \infty} f'_n(x)$.

Theorem 8.6. (STONE-WEIERSTRASS theorem) If f is a continuous complex function on [a,b], there is a sequence of polynomials P_n such that $\lim_{n\to\infty} P_n(x) = f(x)$ uniformly on [a,b]. If f is real, then P_n may be taken real.

Special functions

"Life is a book and there are a thousand pages I have not yet read."

- Cassandra Clare, Clockwork Princess

9.1 Power series

Definition 9.1. f is said to be a power series function if it has the form $f(x) = \sum_{n=0}^{\infty} c_n x^n$

Theorem 9.2. Suppose the series $\sum_{n=0}^{\infty} c_n x^n$ converges for |x| < R, and define $f(x) = \sum_{n=0}^{\infty} c_n x^n$. Then $\sum_{n=0}^{\infty} c_n x^n$ converges uniformly on $[-R + \epsilon, R - \epsilon]$. The function f is continuous and differentiable on (-R, R) and $f'(x) = \sum_{n=0}^{\infty} n c_n x^{n-1}$.

Theorem 9.3. Suppose the series $\sum c_n$ converges and define $f(x) = \sum_{n=0}^{\infty} c_n x^n$ for -1 < x < 1. Then, $\lim_{x \to 1} \sum_{n=0}^{\infty} c_n x^n = \sum c_n$

Theorem 9.4. Suppose $\sum_j |a_{ij}| = b_i$ and $\sum b_i$ converges. Then, $\sum_i \sum_j a_{ij} = \sum_j \sum_i a_{ij}$.

9.2 Fourier series

Definition 9.5. A function of the form $p(x) = \sum_{k=0}^{n} \alpha_k \cos kx + \beta_k \sin kx$ is called a trigonometric polynomial.

- p(x) is 2π periodic and closed under addition and multiplication by real numbers.
- $\int_{-\pi}^{\pi} \sin nx \cos mx dx = 0$, $\int_{-\pi}^{\pi} \sin nx \sin mx dx = 0$ or π , $\int_{-\pi}^{\pi} \cos nx \cos mx dx = 0$ or π , or 2π .
- $\alpha_n = \frac{1}{\pi} \int_{-\pi}^{\pi} p(x) \cos nx dx$ and $\beta_n = \frac{1}{\pi} \int_{-\pi}^{\pi} p(x) \sin nx dx$

Definition 9.6. Let f be a 2π -periodic function which is integrable on $[-\pi, \pi]$. The Fourier series of f is

$$\alpha_0/2 + \sum_{n=1}^{\infty} \alpha_n \cos nx + \beta_n \sin nx$$

where the Fourier coefficients are given by $\alpha_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$ and $\beta_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$.

Theorem 9.7. Under certain conditions, the Fourier series of f converges to f.

Definition 9.8. The Fourier transform of an integrable function $\hat{f}: \mathbb{R} \to \mathbb{C}$ is defined as

 $\hat{f}(\eta) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i \eta x} dx$

for any real number η , where x often represents time and η is frequency.

Under certain conditions, f(x) is determined by $\hat{f}(\eta)$ via the inverse transform:

 $f(x) = \int_{-\infty}^{\infty} \hat{f}(\eta) e^{2\pi i \eta x} d\eta$

10

Functions of several variables

Definition 10.1. A set $X \subset R^n$ is a vector space if $x + y \in X$ and $cx \in X$ for all $x, y \in X$ and for all scalars c. If $x_1, ..., x_k \in X$ and $c_1, ..., c_k$ are scalars, the vector $c_1x_1 + ... + c_kx_k$ is called a linear combination of $x_1, ..., x_k \in X$. If $S \subset R^n$ and E is the set of all linear combinations of elements of S, we say that S spans E or that E is the span of S. Every span is a vector space.

Definition 10.2. The vectors $\{x_1,...,x_k\}$ are said to be independent if $c_1x_1 + c_2x_2 + ... + c_kx_k = 0$ implies $c_1 = c_2... = c_k = 0$.

Definition 10.3. An independent subset of a vector space X which spans X is called a basis of X.

Definition 10.4. A mapping A of a vector space X into a vector space Y is said to be linear transformation if $A(x_1 + x_2) = A(x_1) + A(x_2)$ and A(cx) = cA(x) for all $x, x_1, x_2 \in X$ and all scalars c.

Definition 10.5. Linear transformation of X into X is called linear operators on X. If A is a linear operator on X which is 1-1 and onto X, we say that A is invertible.

Definition 10.6. The norm ||A|| of a linear transformation A is defined as the sup of all numbers |Ax|, where x ranges over all vectors in \mathbb{R}^n with $|x| \leq 1$.

- $|Ax| \leq ||A|||x||$
- $||A|| < \infty$ and A is a uniformly continuous mapping of \mathbb{R}^n into \mathbb{R}^m .
- If A and B are linear transformations and c is a scalar, then $||A+B|| \le ||A|| + ||B||$, ||cA|| = |c|||A||. With the distance between A and ||B|| defined as ||A-B||, $L(R^n, R^m)$ is a metric space.
- $||AB|| \le ||A||||B||$.

11

The Lebesgue Theory

11.1 Set functions

Definition 11.1. A family Ω of sets is called a ring (or field) if $A \in \Omega$ and $B \in \Omega$ implies $A \cup B \in \Omega$ and $A - B \in \Omega$. In addition, a ring Ω is called a σ -ring if $\bigcup_{n=1}^{\infty} A_n \in \Omega$ whenever $A_n \in \Omega$ (n = 1, 2, ...).

Definition 11.2. We say that ψ is a set function defined on Ω if ψ assigns to each $A \in \Omega$ a number of the extended real system. The set function ψ is additive if $\psi(A+B) = \psi(A) + \psi(B)$ for $A \cap B = 0$ and ψ is countably additive if $\psi(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \psi(A_n)$ for $A_j \cap A_i = 0$ $(i \neq j)$.

11.2 Construction of the Lebesgue measure

Definition 11.3. An interval in R^p is defined as the set of points $x = (x_1, ..., x_p)$ such that $a_i \leq x_i \leq b_i$. If A is the union of a finite number of intervals, A is said to be an elementary set. If an interval is denoted by I, then $A = \bigcup_{i=1}^n I_i$. We define a set function $m(I) = \prod_{i=1}^n (b_i - a_i)$. If I_i are disjoint intervals, then $m(A) = \sum_{i=1}^n m(I_i)$.

- The collection Ω of all elementary subsets of \mathbb{R}^p is a ring. The set function m is additive on Ω .
- If $A \in \Omega$, A is the union of a finite number of disjoint intervals.

Definition 11.4. A non-negative additive set function ψ on Ω is said to be regular if for every $\epsilon > 0$ and every $A \in \Omega$ there exist sets $F, G \in \Omega$ such that F is closed, G is open, $F \subset A \subset G$, and $\psi(F) + \epsilon \geq \psi(A) \geq \psi(G) - \epsilon$.

• m is regular

Every regular set function can be extended to a countably additive set function on a σ -ring which contains Ω .

Definition 11.5. Let μ be a non-negative, additive, finite, regular on Ω and A_n is a countable open cover of a set $E \in R^p$ such that $E \subset \bigcup_{n=1}^{\infty} A_n$. Define $\mu^*(E) = \inf \sum_{n=1}^{\infty} \mu(A_n)$. $\mu^*(E)$ is called the outer measure of E.

Theorem 11.6. For every $A \in \Omega$, $\mu^*(A) = \mu(A)$. If $E = \bigcup_{n=1}^{\infty} E_n$, then $\mu^*(E) \leq \sum_{n=1}^{\infty} \mu^*(E_n)$.

- If a sequence A_n of elementary sets such that $A_n \to A$, we say A is finitely μ -measurable and write $A \in R_F(\mu)$
- If E is the union of a countable collection of finitely μ -measurable sets, we say that E is μ -measurable and write $E \in R(\mu)$.
- $R(\mu)$ is σ -ring and μ^* is countable additive on $R(\mu)$.

Thus, μ , originally an additive set function defined on a ring Ω , is extended to a countably additive set function on the σ -ring $R(\mu)$. If $\mu = m$, it is called Lebesgue measure.

11.3 Measurable spaces

Definition 11.7. A set X is said to be a measure space if there exists a σ -ring R of subsets of X and a non-negative countably additive set function μ on R.

Definition 11.8. A function f defined on a measurable space X is said to be a measurable function if the set $\{x: f(x) > a\}$ is measurable for every real a.

- If f is measurable, then |f| is measurable.
- If f_n is a sequence of measurable functions, then $g = \sup f_n(x)$ and $h = \lim_{n \to \infty} \sup f_n(x)$ are measurable functions.
- If f and g are measurable, then f+g, fg, max(f,g) and min(f,g) are measurable
- If f is measurable, then $f^+ = max(f,0)$ and $f^- = -min(f,0)$ are measurable
- The limit of a convergent sequence of measurable functions is measurable.

Definition 11.9. A simple function s is a finite linear combination of indicator functions $s(x) = \sum_{i=1}^{n} C_i I_{(x \in E_i)}$.

Theorem 11.10. f is a real function on X. There exists a sequence of simple functions such that $s_n(x) \to f(x)$ as $n \to \infty$, for every $x \in X$. If f is measurable, $\{s_n(x)\}$ can be chosen to be a sequence of measurable functions. If $f \ge 0$, $\{s_n(x)\}$ can be chosen to be a sequence of monotonically increasing measurable functions.

11.4 Integration

Definition 11.11. If f is a measurable and non-negative, we define $\int_E f d\mu = \sup I_E(s)$, where \sup is taken over all simple measurable functions s such that $0 \le s \le f$.

Definition 11.12. If f is measurable, then $\int_E f d\mu = \int_E f^+ d\mu - \int_E f^- d\mu$. If both integrals on the right side of the equation are finite, we say that f is integrable on E in the Lebesgue sense with respect to μ .

Theorem 11.13. (Lebesgue monotone convergence theorme) $\{f_n\}$ is a sequence of monotonically increasing non-negative measurable functions $0 \le f_1 \le f_2 \le \dots$ and $f_n \to f$, then $\int_E f_n d\mu \to \int_E f d\mu$.

Theorem 11.14. (Fatou's theorem) If f_n is a sequence of non-negative measurable functions. If $f = \liminf_{n \to \infty} f_n$, then $\int_E f d\mu \leq \liminf_{n \to \infty} \int_E f_n d\mu$.

Theorem 11.15. (Lebesgue dominated convergence theorem) f_n is a sequence of measurable functions such that $f_n \to f$. If there exists an integrable function g such that $|f_n| \leq g$, then $\int_E f_n d\mu \to \int_E f d\mu$.