

KSIT Bangalore

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ASSIGNMENT QUESTIONS

Academic Year	2020-2021			
Batch	2018-2022			
Year/Semester/	2020/V A & B			
Subject Code-Title	18CS54 - AUTOMATA THEORY			
Subject code Title	& COMPUTABILITY			
Name of the	Mr. K Venkata	Dep	CSE	
Instructor	Rao	t	CSE	

Assignment No: 1 Total marks: 10

Date of Issue:01-10-2020

Date of Submission:06-10-2020

Sl. No	Assignment Questions	K Level	co	Mark s
1.	Define the following terms: a)Alphabet b) Power of an alphabet c) Language d) strings	Applying (K3)	CO 1	1
2.	Draw a DFA to accept strings of a's and b's having odd no. of a's and even no. of b's.	Applying (K3)	CO 1	1
3.	Obtain an NFA to accept strings of a's and b's ending with 'ab' or ba'. From this NFA Obtain an Equivalent DFA.	Applying (K3)	CO 1	1
4.	Obtain DFA for the following ε - NFA. $ \begin{array}{c} $	Applying (K3)	CO 1	1
5.	Write differences between DFA, NFA and ε-NFA.	Applying (K3)	CO 1	1
6.	Make use of minDFSM to minimize M.Let M be the following DFSM. a q ₂ a q ₃ b b b a q ₆	Applying (K3)	CO	1

	(OR) Construct minimum state equivalent automata for the following DFA.			
	F G E G F G			
	H G D			
7.	Obtain regular expressions for the following languages on Σ = {a, b, c}. a. all strings containing exactly one a b. all strings containing no more than three a's c. all strings that contain at least one occurrence of each symbol in Σ	Applying (K3)	CO 2	1
8.	Obtain a Regular expression for the language. i) $L=\{a^nb^m \mid n+m \text{ is even}\}\$ ii) $L=\{a^nb^m \mid m\geq 1, \ n\geq 1 \text{ and } nm\geq 3 \}$	Applying (K3)	CO 2	1
9.	Define a regular expression. Find regular expression for the following languages on { a, b }: i) $L=\{a^{2n}b^{2m} \mid n \ge 0 \text{ and } m \ge 0\}$ ii) $L=\{w: w \mod 3=0\}, w \in \{a, b\}^*$	Applying (K3)	CO 2	1
10.	 Obtain a Regular expression for the following languages i) To accept strings of a's & b's such that every block of four consecutive symbols contains at least two a's. ii) To accept strings of a's & b's whose length is either even or multiples of 3 or both. 	(K3)	CO 2	1