ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук
Образовательная программа бакалавриата «Программная инженерия»
лк 004 8

1 1	авриата «программная инженерия»	
УДК 004.8		
СОГЛАСОВАНО	УТВЕРЖДАЮ	
профессор департамента анализа данных и	Академический руководитель	
искусственного интеллекта факультета	образовательной программы	
компьютерных наук НИУ ВШЭ, д-р физ	«Программная инженерия»	
мат. наук	профессор департамента программной	
В. А. Громов «» 2022 г.	инженерии, канд. техн. наук	
« <u> </u>	В. В. Шилов	
на тему: Прогнозирование хаотических вр прогнозирования с помо	ическая) ременных рядов: алгоритм self-healing для щью кластеризации 03.04 «Программная инженерия»	
Приложе	ения	
	Выполнила студентка образовательной программы 09.03.04 «Программная инженерия» группы БПИ182	
	А.Т. Антонова	
	// \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

Оглавление

Приложение А. Условные обозначения алгоритмов	3
Приложение Б. Дополнительные графики	4
Приложение В. Описание классов и функций библиотеки time_series_pr	rediction9
1. Модуль predictor	9
2. Модуль wishart	13
3. Модуль experiment	14
4. Модуль graph	15
5. Молуль non pred model	16

Приложение А. Условные обозначения алгоритмов

Tаблица I. Условные обозначения алгоритмов, в последнем столбце указан номер страницы подробного описания в основном отчете

Обозначение	Описание	Стр.
Тип алгоритма п	рогноизрования	
S	Поточенное прогнозирование	16
tp	Траекторное прогнозирование	16
sh	Алгоритм self-healing	20
Алгоритм класто	ризации обобщенных z-векторов	
cl_db	Мотивы — это центры кластеров, алгоритм кластеризации — DBSCAN с параметрами $\varepsilon=0.01$, min_samples = 5, если не указано иное.	15
cl_wi	Мотивы — это центры кластеров, алгоритм кластеризации — Wishart с параметрами significance = 0.01, min_samples = 5, если не указано иное.	15
Алгоритмы опре	деления непрогнозируемых точек	
fp	Вынужденное прогнозирование (forced prediction)	17
ls	Большой разброс (large spread)	17
rg	Быстрый рост разброса (rapid growth)	18
rd	Быстрый рост количества кластеров DBSCAN (rapid growth DBSCAN)	18
rw	Быстрый рост количества кластеров Wishart (rapid growth Wishart)	18
lcs	Ограничение на размер максимального кластера и на количество кластеров. Например, lcs_0.1_2 — доля точек в максимальном кластере должна быть хотя бы 0.1, всего кластеров не более 2 (без учета выбросов)	18
bl	Большой скачок (big leap)	23
blbi	Большой скачок между итерациями (big leap between iterations)	23
wp	Странные паттерны (weird patterns)	24
Алгоритмы выч	исления единого прогнозного значения	
db	Центр максимального кластера DBSCAN с параметрами $\varepsilon = 0.01$, min_samples = 5, если не указано иное.	19
wi	Центр максимального кластера Wishart с параметрами significance = 0.01, min_samples = 5, если не указано иное.	19
wa	Взвешенное среднее	22
dc	Двойная кластеризация	22
factor	Центр кластера DBSCAN, максимального с учетом весов по итерации	22-23
dist	Центр кластера DBSCAN, максимального с учетом весов по расстоянию до мотива	22-23
pl	Центр кластера DBSCAN, максимального с учетом весов по длине паттерна	22-23

Приложение Б. Дополнительные графики

Рисунки 1-13. Алгоритм self-healing. Кластеризация мотивов — db, 20%. Алгоритм вычисления единого прогнозного значения — db, db + factor = 0.9 для self-healing. Алгоритм определения непрогнозируемых точек — $lcs_0.1_20$, $lcs_0.1_20$ + wp для self-healing. Синим обозначен настоящий временной ряд, зеленые точки — возможные прогнозные значения, красные точки и линии — единые прогнозные значения, фиолетовые точки на прямой y=0 — непрогнозируемые точки. Порядок итераций: слева направо, сверху вниз.

Рисунок 14. Графики зависимости RMSE, MAPE и количества непрогнозируемых точек от горизонта прогнозирования. Горизонт прогнозирования h=100. Тестовая выборка 250. Кластеризация мотивов — db, 20%. Алгоритм вычисления единого прогнозного значения — db. Алгоритмы определения непрогнозируемых точек: lcs 0.1 5 (синий), lcs 0.1 10 (оранжевый).

Рисунок 15. Графики зависимости RMSE, MAPE и количества непрогнозируемых точек от горизонта прогнозирования. Горизонт прогнозирования h=100. Тестовая выборка 250. Кластеризация мотивов — db, 20%. Алгоритм вычисления единого прогнозного значения — db. Алгоритмы определения непрогнозируемых точек: lcs 0.1 2 (синий), lcs 0.1 5 (оранжевый).

Рисунок 16. Графики зависимости RMSE, MAPE и количества непрогнозируемых точек от горизонта прогнозирования. Горизонт прогнозирования h=100. Тестовая выборка 250. Кластеризация мотивов — db, 20%. Алгоритм вычисления единого прогнозного значения — db. Алгоритмы определения непрогнозируемых точек: $lcs_0.05_2$ (синий), $lcs_0.1_2$ (оранжевый), $lcs_0.2_2$ (зеленый).

Рисунок 17. Графики зависимости RMSE, MAPE и количества непрогнозируемых точек от горизонта прогнозирования. Горизонт прогнозирования h=100. Тестовая выборка 250. Кластеризация мотивов — db, 20%. Алгоритм вычисления единого прогнозного значения — db. Алгоритмы определения непрогнозируемых точек: lcs_0.7_1 (синий).

Рисунки 18-20. Иллюстрация к исследованию конкретных отрезков настоящего временного ряда, которые составляют кластеры, центры которых близки к наблюдаемому ряду, для точки 24. На рисунках представлено по одному мотиву из каждого кластера множества возможных прогнозных значений, не являющегося выбросами. В исследовании были проанализированы все мотивы. Синим обозначен настоящий временной ряд, зеленые вертикальные линии — паттерн, по которому взят близкий мотив, фиолетовым — отрезки ряда, отвечающие кластеру обобщенных z-векторов, красным — центр кластера множества возможных прогнозных значений.

Приложение В. Описание классов и функций библиотеки time series prediction

В ходе работы была использована среда Jupyter Notebook, а также реализована библиотека *time_series_prediction*. Она содержит код алгоритма прогнозирования, в том числе алгоритма self-healing, код вычислительных экспериментов и код для постарения графиков, некоторые из которых представлены в отчете.

1. Модуль predictor

Модуль *predictor* содержит класс *TimeSeriesPredictor*, который реализует базовый алгоритм прогнозирования хаотических временных рядов с помощью кластеризации и алгоритм self-healing.

Таблица 2. Атрибуты и методы класса TimeSeriesPredictor

Класс TimeSeriesPredictor				
Атрибуты				
Имя	Тип	Описание	Описание	
clustered_motifs	list of size (n_patterns)	Список кортежей кластеризованных Кластеры (clusters) имеют формат: Inp.array of shape (n_clusters, pattern_	ist of length (n_patterns) of	
non_pred_model	NonPredModel	Модель для определение непрогнози	ируемых точек	
k_max	int, default=10	Максимальное расстояние внутри паттерна		
pattern_length	int, default=3	Длина паттерна		
Методы				
Имя	Возвращаемое значение	Параметры	Описание	
init		clustered_motifs: list of size (n_patterns) — список кортежей кластеризованных мотивов non_pred_model: NonPredModel — модель для определение непрогнозируемых точек k_max: int — максимальное расстояние внутри паттерна pattern_length: int — длина паттерна	Конструктор	

cluster_motifs	• clustered_motifs: list of size (n_patterns) — список кортежей кластеризованны х мотивов	Y1: list or 1d пр.пdarray — обучающая часть временного ряда beta: float from 0 to 1, default=0.1 — процент использованных паттернов mc_method: {'wi', 'db'}, default='db' — Метод кластеризации мотивов: 'wi' - Wishart, 'db' - DBSCAN k_max: int, default=10 — максимальное расстояние внутри паттерна pattern_length: int, default=3 — длина паттерна **kwargs: dict eps: float from 0 to 1, default=0.01 — максимальное расстояние в одном кластере для кластеризации DBSCAN и Wishart min_samples: int > 1 or float from 0 to 1, default=5 — минимальное число объектов в одном кластере для кластеризации DBSCAN и Wishart Wishart Wishart	Кластеризация мотивов, результат также сохраняется в атрибуты класса
set_motifs	_	clustered_motifs: list of size (n_patterns) — список кортежей кластеризованных мотивов k_max: int — максимальное pacстояние внутри паттерна pattern_length: int — длина паттерна	Установка кластеризованных мотивов в атрибуты класса
set_non_pred_model	_	• non_pred_model : NonPredModel — модель для определение непрогнозируемых точек	Установка модели определения непрогнозируемых точек в атрибуты класса
predict	• Y_pred: пр.пdагтау — прогнозные значения, 'N' для непрогнозируемы х точек • possible_predictio ns_list: list — список множеств возможных прогнозных значений • trajectories: list — прогнозные траектории для alg_type='tp'	Y_preceding: list or 1D пр.аггау— сегмент временного ряда, который предшествует прогнозируемуму сегменту h: int — горизонт прогнозирования up_method: str from {'a', 'wi', 'db', 'op'} — алгоритм вычисления единого прогнозного значения alg_type: str from {'s', 'tp'} — тип алгоритма: 's' - поточенное, 'tp' - траекторное match_thershold: float, default=0.01 — порог для близкого мотива **kwargs n_trajectories: int, default=20 — кол-во траекторий для alg_type='tp'	Базовый алгоритм прогнозирования на h шагов вперед

predict_one_step	• possible_predictio ns: np.ndarray — множество возможных прогнозных значений • distances: np.ndarray — расстояния до мотива, используются в некоторых алгоритмах вычисления единых прогнозных значений	Y_preceding: list or 1D пр.array — сегмент временного ряда, который предшествует прогнозируемуму сегменту Y_pred: list or 1D пр.ndarray — спрогнозированные на предыдущих шагах значения match_thershold: float, default=0.01 — порог для близкого мотива	Один шаг базового алгоритма прогнозирования
unified_prediction	• avg : float or 'N' — единое прогнозное значение, 'N' для непрогнозируемы х точек	• possible_predictions : np.ndarray — множество возможных прогнозных значений • up_method : str from {'a', 'wi', 'db', 'op'} — алгоритм вычисления единого прогнозного значения (см. Приложение A)	Алгоритм вычисления единого прогнозного значения
unified_prediction_wei ghted	• avg : float or 'N' — единое прогнозное значение, 'N' для непрогнозируемы х точек	possible_predictions: np.ndarray — множество возможных прогнозных значений sep_indices: list — список индексов, которые разделяют итерации в списке возможных прогнозных значений up_method: str from {'a', 'wi', 'db', 'op'} — алгоритм вычисления единого прогнозного значения (см. Приложение A) weight_method: str from {'double_clustering', 'weighred_average', 'factor', 'pattern_length, 'pattern_length, 'dist', 'dist_factor'} — метод вычисления единого прогнозного значения с использованием весов (см. Приложение A)	Алгоритм вычисления единого прогнозного значения с использованием весов

	T		
self_healing_one_iterat ion	new_up: np.ndarray — cписок новых прогнозных значений possible_predictio ns: list of np.ndarrays — cпиок множеств возможных прогнозных значений sep_indices: list — список индексов, которые разделяют итерации в списке возможных прогнозных значений	• Y_preceding: list or 1D пр.аггау— сегмент временного ряда, который предшествует прогнозируемуму сегменту • sep_indices: list — список индексов, которые разделяют итерации в списке возможных прогнозных значений • unified_predictions: list or 1D пр.пdаггау of length h — список единых прогнозных значений с предыдущей итерации • possible_predictions: list of h пр.пdаггауs — спиок множеств возможных прогнозных значений с предыдущей итераций • up_method: str from {'a', 'wi', 'db', 'op'} — алгоритм вычисления единого прогнозного значения (см. Приложение A) • fixed_points_idx: list — спиок точек, которые не изменяют статус прогнозируемых • weight_method: str from {'double_clustering', 'weighred_average', 'factor', 'pattern_length_dist', 'dist', 'dist_factor'} — метод вычисления единого прогнозного значения с использованием весов (см. Приложение A)	Одна итерация алгоритма self-healing
self_healing	 unified_prediction s: list or 1D np.ndarray of length h — список единых прогнозных значений possible_prediction ns: list of np.ndarrays — спиок множеств возможных прогнозных значений 	Y_preceding: list or 1D пр.аггау— сегмент временного ряда, который предшествует прогнозируемуму сегменту h: int — горизонт прогнозирования unified_predictions: list or 1D пр.пdаггау of length h — список единых прогнозных значений из базового алгоритма possible_predictions: list of h пр.пdаггауs — спиок множеств возможных прогнозных значений из базового алгоритма healing_up_method: str from {'a', 'wi', 'db', 'op'} — алгоритм вычисления единого прогнозного значения (см. Приложение A) fixed_points_idx: list — спиок точек, которые не изменяют статус прогнозируемых weight_method: str from {'double_clustering', 'weighred_average', 'factor', 'pattern_length, 'pattern_length, dist', 'dist_factor'} — метод вычисления единого прогнозного значения с использованием весов (см. Приложение A)	Алгоритм self-healing

2. Модуль wishart

Класс Wishart содержит реализации алгоритма кластеризации Wishart

Таблица 3. Атрибуты и методы класса Wishart

Класс TimeSeriesPredictor			
Атрибуты			
Имя	Тип	Описание	
wishart_neighbors	int	Минимальное число объектов в одно	м кластере
significance_level	int	Максимальный уровень значимости	кластера
Методы	Методы		
Имя	Возвращаемое значение	Параметры	Описание
init	_	 wishart_neighbors : int — минимальное число объектов в одном кластере significance_level : int — максимальный уровень значимости кластера 	Конструктор
fit	• result : list — список меток кластеров	• X : list — список объектов для кластеризации	Алгоритм кластеризации Wishart

3. Модуль experiment

Таблица 4. Функции модуля experiment

Модуль experiment.py			
Функции	Функции		
Имя	Возвращаемое значение	Параметры	Описание
experiment_no_pm		Y2: list or 1D пр.пdаггау — тестовая часть ряда h_max: int — максимальный горизонт прогнозирования n_iterations: int — размер тестовой выборки эксперимента iterations_range: tuple — ограничения тестовой выборки motif_clustering_params: dict — параметры кластеризации мотивов prediction_params: dict — параметры базового алгоритма healing_params: dict — параментры алгоритма self-healing non_pred_model_prediction: NonPredModel — модель определения непрогнозируемых точек для базового алгоритма non_pred_model_healing: NonPredModel — модель определения непрогнозируемых точек для алгоритма self-healing	Эксперимент оценки качества прогнозирования, не использует матрицу прогнозов, запись результатов в файл. Есть возможность параллельного выполнения задач.
experiment		Te жe, что и в функции experiment_no_pm	Эксперимент оценки качества прогнозирования, использует матрицу прогнозов
thrown_points_experiment		Y1: list or 1D пр.пdаггау — обучающая часть ряда Y2: list or 1D пр.пdаггау — тестовая часть ряда h_max: int — максимальный горизонт прогнозирования healing_params: dict — параментры алгоритма selfhealing logs_filepath: str — путь к файлу записи результатов step: int — шаг	Эксперимент для ряда с выкинутыми точками

4. Модуль *graph*

В таблице перечислены основные функции для постарения графиков для анализа результатов исследования. Остальные функции модуля являются служебными.

Таблица 5. Функции модуля graph.py

Паолица 5. Функции мооуля grapn.py Модуль graph.py			
Функции			
Имя	Возвращаемое значение	Параметры	Описание
plot_stats	_	stats_ds: pd.DataFrame, columns: points_left, n_iterations, non_predictable, rmse, mape — таблица статистики по исследованию либо stats_filename: str — путь к файлу с таблицей	Графики зависимости RMSE, MAPE и количества непрогнозируемых точек от горизонта прогнозирования из готового файла со статистикой
plot_unified_and_possi ble_preds		up: list or 1D пр.пdатгау — список единых прогнзных значений pp: list of lists or list of пр.пdатгауs — список множеств возможных прогнозных значений Y2: list or 1D пр.пdатгау — настоящие значения временного ряда	График единых прогнозных значений и множеств возможных прогнозных значений, а также настоящие значения временного ряда
plot_healing_animatio n		working_path : str — путь к файлу с логами по алгоритму self-healing Y2: list or 1D пр.ndarray — настоящие значения временного ряда	Анимация алгоритма self-healing
plot_experiment_result s		working_directory: str — путь к директории с матрицами прогнозов exp_short_names: list — список коротких наименований алгоритмов, матрицы прогнозов которых используются в исследовании h_max: int — максимальный горизонт прогнозирования n_iterations: int — размер тестовой выборки	Графики зависимости RMSE, MAPE и количества непрогнозируемых точек от горизонта прогнозирования из матриц прогнозов
plot_thrown_points_ex p_results		working_directory: str — путь к директории с логами алгоритма self-healing exp_short_names: list — список коротких наименований алгоритмов, логи которых используются в исследовании h_max: int — максимальный горизонт прогнозирования n_iterations: int — размер тестовой выборки	Графики зависимости количества итераций, количества непрогнозируемых точек, RMSE и MAPE от количества выкинутых точек

5. Модуль non_pred_model

Таблица 6. Методы корневого класса NonPredModel, наследниками которого являются все классы моделей определения непрогнозируемых точек

Класс NonPredModel			
Методы			
Имя	Возвращаемое значение	Параметры	Описание
is_predictable	is_predictable: boolean — прогнозируемая ли точка	possible_predictions: list — множество возможных прогнозных значений **kwargs — другие параметры, необходимые в классах-наследниках	Функция, которая определяет прогнозируемая ли точка по множеству возможных прогнозных значений
reset	_	_	Сброс атрибутов класса
is_predictable_by_up	is_predictable : boolean — прогнозируемая ли точка	unified_predictions: list — единые прогнозные значения **kwargs — другие параметры, необходимые в классах- наследниках	Функция, которая определяет прогнозируемая ли точка по списку единых прогнозных значений
is_predictable_by_up_l og	is_pred : list of boolean — прогнозируемы ли точки	up_log: list — лог единых прогнозных значений **kwargs — другие параметры, необходимые в классах-наследниках	Функция, которая определяет прогнозируемая ли точка по логу единых прогнозных значений

Таблица 7. Классы моделей определения непрогнозируемых точек

Модуль non_pred_model.py		
Классы		
Имя	Алгоритм, который реализуется в классе	
ForcedPredictionNPM	Принудительное прогнозирование (fp)	
LargeSpreadNPM	Большой разброс (ls)	
RapidGrowthNPM	Быстрый рост разброса (rg)	
RapidGrowthDBSCANNPM	Быстрый рост разброса кластеров DBSCAN (rd)	
RapidGrowthWishartNPM	Быстрый рост разброса кластеров Wishart (rw)	
LimitClusterSizeNPM	Ограничение на размер максимального кластера и на количество кластеров (lcs)	
BigLeapNPM	Большой скачок (big leap)	
BigLeapBtwIterationsNPM	Большой скачок между итерациями (big leap between iterations)	
WeirdPatternsNPM	Странные паттерны (weird patterns)	