IT5008: Tutorial 5 — Relational Algebra

Pratik Karmakar

School of Computing, National University of Singapore

AY25/26 S1

Scenario

Students at the National University of Ngendipura (NUN) buy, lend, and borrow books.

NUNStA commissions *Apasaja Private Limited* to implement an online book exchange system that records:

- Students: name, faculty, department, email, join year.
- Books: title, authors, publisher, edition, ISBN10, ISBN13.
- Loans: borrowed date, returned date (NULL if active).

Auditing preserves records of graduated students and copies with loans. This tutorial uses the schema/data from "SQL: Creating and Populating Tables."

Questions

Setup

- Relational Algebra
 - (a) Find the different departments in School of Computing.
 - (b) Find emails of students who borrowed/lent a book before joining the University.
 - (c) Find emails of students who borrowed but did not lend a book *on* joining day.
- 2 Universal Quantification
 - (a) Find emails and names of students who borrowed *all* books authored by Adam Smith.

Relational Algebra:

```
\pi_{d.department}(\sigma_{d.faculty='School\ of\ Computing'}(\rho(department,d)))
```

SQL Equivalent:

```
SELECT d.department
FROM department d
WHERE d.faculty = 'School of Computing';
```

1(b). Borrowed or lent before joining

Relational Algebra:

```
\pi_{s.email}(\sigma_{(s.email=1.borrower\lor s.email=1.owner})\land (l.borrowed < s.year)(\rho(student, s) \times \rho(loan, l)))
```

SQL Equivalent:

```
SELECT s.email
FROM student s, loan l
WHERE (s.email = l.borrower OR s.email = l.owner)
AND l.borrowed < s.year;</pre>
```

5 / 12

Using INNER JOIN:

```
SELECT s.email
FROM student s
INNER JOIN loan 1
ON (s.email = 1.borrower OR s.email = 1.owner)
AND 1.borrowed < s.year;
```

Relational Algebra

0000

Using UNION:

```
SELECT s1.email
FROM loan 11, student s1
WHERE s1.email = 11.borrower
 AND 11.borrowed < s1.year
UNTON
SELECT s2.email
FROM loan 12, student s2
WHERE s2.email = 12.owner
 AND 12.borrowed < s2.year;
```

Relational Algebra:

```
\pi_{s1.email}(\sigma_{s1.email}=11.borrower \land 11.borrowed=s1.vear}(\rho(student, s1) \times 1)
\rho(loan, l1))) -
\pi_{s2.email}(\sigma_{s2.email}=12.owner \land 12.borrowed=s2.year(\rho(student, s2) \times 12.borrowed=s2.year(\rho(student, s2)))
\rho(loan, 12))
```

Relational Algebra

SQL Equivalent:

```
SELECT sl.email
FROM loan 11, student s1
WHERE sl.email = ll.borrower
 AND 11.borrowed = s1.year
EXCEPT
SELECT s2.email
FROM loan 12, student s2
WHERE s2.email = 12.owner
 AND 12.borrowed = s2.year;
```

SQL Nested Query:

```
SELECT s.email, s.name
FROM student s
WHERE NOT EXISTS (
SELECT *
FROM book b
WHERE authors = 'Adam Smith'
AND NOT EXISTS (
SELECT *
FROM loan 1
WHERE 1.book = b.ISBN13
AND 1.borrower = s.email));
```

Break into subproblems:

- Q1: ISBN13 of all Adam Smith books.
- 2 Q2: All combinations of students \times Q1.
- 3 Q3: Students who borrowed Adam Smith books.
- 4 Q4: Students in Q2 Q3.
- **5** Q5: All students Q4 (final answer).


```
SELECT s3.email, s3.name
    FROM student s3
    EXCEPT
    SELECT tmp.email, tmp.name
    FROM (
      SELECT s1.email, s1.name, b1.ISBN13
      FROM student s1, book b1
      WHERE bl.authors = 'Adam Smith'
      EXCEPT
      SELECT s2.email, s2.name, b2.ISBN13
      FROM student s2, book b2, loan 12
      WHERE b2.authors = 'Adam Smith'
13
        AND s2.email = 12.borrower
14
        AND b2. TSBN13 = 12. book
      AS tmp;
```

10 / 12

Guidelines & Remarks

Setup

- Use relational algebra to reason about SQL queries.
- Remember: EXCEPT in SQL corresponds to set difference () in algebra.
- Joins in SQL correspond to natural/-joins in algebra.
- Break universal quantification into difference-based subqueries.
- Keep queries readable: aliases, indentation, uppercase SQL keywords.

Questions? Drop a mail at: pratik.karmakar@u.nus.edu