Deep Learning, 1st semester, 2021

이미지 데이터를 이용한 딥러닝 기반의 이미지 증강 알고리즘 적용

Dept. of Data Science Seoul National University of Science and Technology 20510075 강지철 20510083 한재웅

Contents

- I. Introduction
- II. Methods
- III. Results
- IV. Conclusion
- V. References

Introduction

- 딥러닝 모델은 학습 과정에서 훈련 데이터에만 모델이 최적화되고 실제 데이터에는 잘 작동하지 않는 과적합(overfitting) 현상이 발생할 수 있다.
- 이를 방지하기 위해서는, 다양한 정규화(regularization) 방법을 적용할 수 있으며 충분한 수의 데이터를 확보하는 것도 중요하다.
- 의료 데이터는 개인 정보 문제 등으로 인해 다량의 데이터를 수집하기가 어렵다. 또한, 레이블을 만들기 위해 의료인의 노동이 필요하기 때문에 많은 비용이 든다는 어려움이 있다.
- 데이터 증강(data augmentation)은 이렇게 데이터를 구하기 어려운 경우 데이터의 다양성을 학습시켜 딥러닝의 성능을 높이고 싶을 때 사용하는 기법이다. 데이터의 본질을 변형시키지 않는 선상에서 노이즈를 이용해 데이터의 개수를 늘리는 방법이다.
- 데이터 증강 방법 중 하나로 영상의 복잡도를 고려하는 Superpixel 분할 방법을 통하여 새로운 형태의 데이터를 생성할 수 있다.
- 또한, 최근 활발히 이용되는 적대적 생성 신경망 모델(Generative Adversarial Networks, GAN)을 이용해 보다 새로운 형태의 데이터를 생성할 수도 있다.
- 이 보고서에서는, 2종류의 진단용 의료 데이터에 대해 Superpixel과 DCGAN 두 종류의 데이터 증강 기법을 적용해보고 성능 향상이 이루어지는지 확인한다. 또한, epoch 등을 바꾸어 보며 어떠한 조건에서 성능 향상이 더 잘 이루어지는지도 확인해보고자 한다.
- 또한, 두 종류의 기법을 함께 적용할 때에 추가적인 성능 향상이 있을지도 확인해본다.
- 질병 진단에 있어 중요한 지표인 recall 수치를 성능과 함께 살펴본다.

Superpixel Augmentation

- Superpixel 이란
 - ✓ 지각적으로 의미있는 픽셀들을 모아서 Grouping해주는 기법이다.
 - ✔ 유사한 특성을 가지는 픽셀들을 의 집합이기 때문에 보다 효율적으로 다양한 데이터를 증강시킬 수 있는 기법이다.
 - ✔ 종류: SEEDS Algorithm(color histogram과 Boundary term에 기반), SLIC(기울기 기반 5차원 특정 공간¹에서 지역적인 군 집을 활용)
 - ✓ SLIC 방법 적용
 - 흑백 이미지인 X-ray 데이터에는 color기반 위주로 나누는 SEEDS보다 SLIC가 타당하다고 생각되고 최신 기법으로 사용하기 적합하다고 판단한다.
 - SLIC를 통한 Pixel별 구분 후, grouping하여 다양한 기법을 적용하므로 계산 및 표면에 대한 효율성을 가진다.
 - SLIC를 통해 단일 pixel이 아닌 공통점을 공유하는 group pixel로 의미를 지니면서 segmentation을 할 수 있다.
 - SLIC를 통해 밝기, 색깔 뿐만 아닌 convolutional, dropout 기법으로 이미지를 변형해보면서 다양한 augmentation 이미지를 생성 가능하다.
 - 각 그림을 3개씩 증강한 이미지를 생성할 예정이다.
 - imgaug library를 통해 다양한 기법 적용²할 예정이다.

¹ 5차원 특정 공간*(RGB값, 공간휘도, 색상값, 픽셀좌표(x,y)) ² 참고링크: https://imgaug.readthedocs.io/en/latest/source/api.html

Superpixel Augmentation

- Superpixel 적용 방법
- 3가지 방향으로 Augmentation 기법 적용하여 train data 개수를 늘림 (각 기법에서 각그림을 3배로 증강하여 구현함)
 - ✓ 기본적인 augmentation 기법(Aug 1): 랜덤하게 뒤집기(Flip), 회전(Rotate), 크기(Scale), 자르기(Crop), 붙이기(Pad) 변형.
 - ✓ **Superpixel을 적용한 기법(Aug 2)**: 랜덤하게 흐리게(Blur), 합성곱(Convolutional), 희석(Dropout), 밝기(Brightness), 색 깔(Color) 변형.
 - ✓ 기본적인 augmentation + Superpixel 기법(Aug 3): 랜덤하게 모든 기법들을 적용하여 변형.

Superpixel Augmentation

- Hyper-Parameter → imgaug에서 sometimes 함수 및 random_order 함수를 통해 random하게 hyper-parameter 적용하였다.
 - ✓ Superpixel segment (100~200)
 - ✓ Flip(좌우대칭 or 상하대칭)
 - ✓ Rotate(-45degree ~ 45degree)
 - ✓ Shear (-16degree ~ 16degree)
 - ✓ Crop or Pad (-10% ~ 10%)
 - ✔ Blur (Gaussian, Average, Median, BilateralBulr, MotionBlur) (커널 조정)
 - ✓ Convolutional (Sharpen, Emboss, EdgeDetect, DirectedEdgeDetect) (커널 조정)
 - ✔ Dropout (Dropout, CoarseDropout, TotalDropout) (random하게 10%의 픽셀 제거)
 - ✔ Color (UniformColorQuantization) random하게 color 변형

Deep Convolutional Generative Adversarial Networks(DCGAN)

- lan Goodfellow에 의해 2014년 제안된 알고리즘.
- DCGAN은 생성기(generator)에서 normal distribution을 가지는 random noise vector로부터 project와 reshape를 통해 tensor를 형성하고, transposed(or fractionally-strided) convolution을 통해 이미지를 생성한다.
- 생성기의 이미지가 원본 이미지와 유사하도록(구분하기 어렵도록) 분류기(discriminator)를 통해 학습된다.

Deep Convolutional Generative Adversarial Networks(DCGAN)

- D(G(z))는 분류기(D)가 생성기(G)의 output을 실제 이미지로 예측할 확률로, 생성기는 자신이 생성한 이미지를 분류기가 거짓 이미지로 분류할 확률 $(\log(1 D(G(z)))$ 을 최소화 하는 방향으로 학습을 진행한다.
- 분류기는 log D(x)를 최대화하는, 즉,분류기가 실제 이미지, 거짓 이미지를 잘 분류하는 방향으로 학습을 진행한다. 따라서, 전체 학습은 분류기와 생성기의 minmax 게임 형태로 이루어진다.

$$\min_{G} \sum_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)} \big[log D(x) \big] + \mathbb{E}_{z \sim p_z(z)} \big[log (1 - D(G(z))) \big]$$

Datasets

- Covid-19 Image 데이터셋
- 데이터 출처: https://www.kaggle.com/pranavraikokte/covid19-image-dataset
- Datasets Table

기존 Train image+ 3쌍의 augmentation image

Label	기존 Train	Aug 1 Train	Aug 2 Train	Aug 3 Train	Test
Covid-19	111	444	444	444	26
Normal	70	280	280	280	20
Viral Pneumonia	70	280	280	280	20
Total	251	1004	1004	1004	66

Datasets

- Skin cancer(피부암) 데이터셋
- 데이터셋 출처: https://www.kaggle.com/fanconic/skin-cancer-malignant-vs-benign
- 총 3297개의 피부 조직 이미지 데이터로 이루어져 있으며, benign(양성 종양)과 malignant(악성 종양)으로 구분된다. Train set과 test set의 비율은 약 8:2 이다.
- 224 ×224 크기의 RGB 이미지이다.
- Malignant를 positive로 설정하고 실험을 진행한다.

	Train	Test	Total
Benign	1440	360	1800
Malignant	1197	300	1497
Total	2637	660	3297

양성 종양(왼쪽)과 악성 종양(오른쪽)의 샘플 이미지.

Experimental setting (Superpixel Augmentation)

- Image Classification Method: ResNet50 Model 적용
 - ✓ pixel 값 조정 rescale (1/255)
 - √ target size = (224,224)
 - ✓ GAP(Global Average Pooling)를 통해 layer층 생성
 - ✓ batch size=8/ epoch=50 / SGD optimizer(learning rate = 0.001, momentum=0.9, decay=0.01)
- 각 방법에 따른 성능 비교
 - ✔ epoch에 따른 validation loss 및 validation accuracy 변동 확인 (maximum epoch = 50)
 - ✓ confusion matrix 생성 후 recall 확인.

Experimental setting(DCGAN)

- Pytorch DCGAN tutorial 코드를 활용하고, generator와 discriminator의 설정은 이를 따르도록 한다.
- 채널 수 × 100 shape의 noise 벡터로부터 input과 같은 크기(64 × 64 × 3)의 이미지를 생성하고, 원본 이미지와의 분류기 학습을 통해 생성기가 input과 유사한 이미지를 생성하도록 한다.
- batch size = 16 / epochs = 200 / Adam optimizer(learning rate = 0.0002, beta1 = 0.5)
- Loss calculation by binary cross entropy.
- Batch normalization 적용.

Experimental setting(DCGAN)

- DCGAN의 성능을 평가하기 위해 simple CNN 분류기를 사용.
- Hand-sign classifier(cs230.stanford.edu/blog/handsigns) 로부터 convolution 세팅을 채택한다.
- 64 × 64 × 3 크기의 이미지를 input으로 받는다.
- Epoch =30, Adam optimizer(learning rate = 0.001, batch size = 64).
- Validation set은 training set의 15%를 활용한다.
- 실험으로부터 accuracy, recall을 각각 계산해 비교한다.
- 각 실험은 해당 세팅에서 3회 반복한 후 평균과 편차를 계산해 표기한다.

Superpixel Augmentation

■ ResNet50를 통한 image classification: epoch에 따른 loss 및 accuracy.

Accuracy (%)	Train	Aug 1	Aug 2	Aug 3
epoch = 10	39.09	98.48	95.45	100
epoch = 30	67.07	98.48	98.48	100
epoch = 50	96.97	98.48	98.48	100

- ❖ 기본적인 augmentation + Superpixel 기법인 Aug3에서의 accuracy가 가장 뛰어남
- ❖ augmentation을 활용한 방법들은 epoch 10만 주어도 높은 정확성을 나타냄

Superpixel Augmentation

■ ResNet50를 통한 image classification: confusion matrix (epoch=50)

	precision	recall	f1-score
Covid	1.00	1.00	1.00
Normal	1.00	0.90	0.95
Viral Pneumonia	0.91	1.00	0.95
accuracy			0.97
macro avg	0.97	0.97	0.97
weighted avg	0.97	0.97	0.97

	precision	recall	f1-score
Covid	1.00	1.00	1.00
Normal	1.00	0.96	0.98
Viral Pneumonia	0.96	1.00	0.98
accuracy			0.99
macro avg	0.99	0.99	0.99
weighted avg	0.99	0.99	0.99
merbireed dvb	0.55	0.55	0.55

epoch=50	Train	Aug 1	Aug 2	Aug 3
Recall (%)	97	99	98	100

기존 Train

Aug Z

	precision	recall	f1-score
Covid Normal Viral Pneumonia	1.00 1.00 0.95	1.00 0.94 1.00	1.00 0.97 0.97
accuracy macro avg weighted avg	0.98 0.98	0.98 0.98	0.98 0.98 0.98

	precision	recall	f1-score
Covid Normal	1.00 1.00	1.00 1.00	1.00 1.00
Viral Pneumonia	1.00	1.00	1.00
accuracy			1.00
macro avg	1.00	1.00	1.00
weighted avg	1.00	1.00	1.00

Aug 1 Aug 3

- ❖ 기본적인 augmentation + Superpixel 기법인 Aug3에서 Recall이 또한 가장 뛰어났다.
- ❖ Covid-19에 대한 검증은 모든 방법에서 정확하게 나타났다.
- ❖ Normal 부분에서의 recall 정확도가 방법에 따라 약간의 차이점이 나타났다.
- ❖ Aug3를 통해 모두 정확하게 분리하는 모습을 확인하였다. (test 66개 label 모두 바르게 분별)
- ❖ X-ray 데이터에서는 Superpixel을 적용하여 다양한 기법들을 랜덤하게 적용한 것이 성능을 높이는데 주효한 것으로 파악된다.
- ❖ 가장 정확성이 높은 Aug만3을 이용하여 보다 많은 데이터가 있는 Skin Cancer Dataset에서 도 적용할 예정이다.

DCGAN on Covid-19 X-ray dataset

■ Output의 shape를 큰 크기로 바꾸기 어렵고, 따라서 해상도가 지나치게 감소해 실제 분류에 활용이 어렵다.

X-ray 영상의 실제 이미지(왼쪽)과 생성 이미지(오른쪽).

DCGAN on skin cancer dataset

피부암 데이터셋의 실제 이미지(왼쪽)과 GAN 생성 이미지(중앙), Superpixel 증강 이미지(오른쪽).

DCGAN learning curve

DCGAN Results

(%)	Original	Original + 10% GAN	Original + 20% GAN	Original + 10% Superpixel	Original + 20% Superpixel	Original + 20% Superpixel + 10% GAN
Accuracy	84.60 ± 0.43	84.34 ± 1.69	83.49 ± 2.03	83.64 ± 0.25	84.80 ± 0.58	82.78 ± 1.51
Recall	79.56 ± 4.34	85.78 ± 0.42	80.33 ± 4.74	82.89 ± 3.13	84.22 ± 0.16	80.22 ± 6.26

Conclusion

- Covid-19 X-ray 데이터셋에서는 Superpixel에서 random 변형 기법(Aug 3) 세팅을 적용했을 때에 성능과 recall 향상율이 가장 높았다.
- 하지만, DCGAN을 사용할 경우 이미지의 해상도가 크게 감소하기 때문에 DCGAN은 고해상도 이미지에 활용하기 어려울 것으로 보인다.
- 피부암 조직 데이터셋에서는, 모든 세팅에서 정확도 향상은 큰 폭으로 이루어지지 않았지만 recall 값의 변화는 10%의 GAN 데이터를 사용했을 때와, 20%의 Superpixel 증강 데이터를 활용했을 때에 상당한 향상이 있었다.
- 두 기법을 함께 활용한다고 해서 큰 성능의 향상이 이루어지지는 않았다.
- DCGAN의 경우 특정 input 형태에 대해 hard-coded되어 있어, 파라미터 조정이나 이미지 shape 조정이 어려운 한계가 있다.
- 실험의 결과값이 다소 편차가 있어, 10회 이상의 추가적인 반복실험이 이루어진다면 보다 객관적인 결과 비교가 가능할 것으로 보인다.
- 고해상도 이미지를 다룰 수 있는 보다 최신 기법의 GAN(BigGAN 등)을 사용한다면, X-ray 데이터와 같은 고해상도 데이터에도 GAN을 적용할 수 있을 것이다.

References

- 김민규, 배현진. (2020) 딥러닝 기반 의료영상 분석을 위한 데이터 증강 기법. J Korean Soc Radiol 2020;81(6):1290-1304.
- Achanta et al. (2012) SLIC superpixels compared to state-of-the-art superpixel methods, IEEE transactions on pattern analysis and machine intelligence, 34(11), 2274-2282.
- Ian et al. (2014) Generative Adversarial Nets. Adv Neural Inf Process Syst. pp2672-2680.
- Park, S. (2018) Superpixel Segmentation Scheme Using Image Complexity, The Journal of Korean Institute of Information Technology, 16(12), 85-92.
- Guerra et al. (2018) Weather Classification: A new Multi-class dataset, data augmentation approach and comprehensive evaluations of Convolutional Neural Network, AHS, 305-310, doi: 10.1109/AHS,2018.8541482.
- He et al. (2016) Identity Mappings in Deep Residual Networks, Computer Vision and Pattern Recognition, arXiv:1603.05027
- He et al. (2015) Deep Residual Learning for Image Recognition, Computer Vision and Pattern Recognition, arXiv:1512.03385v1
- Li et al. (2020) SAR Image Classification Using CNN Embeddings and Metric Learning, IEEE, doi: 10.1109/LGRS.2020.3022435.
- Shine et al. (2019) Change Detection of Building Demolition Area Using UAV, Korean Journal of Remote Sensing, 35(5), 819-829, doi: 10.7780/kjrs.2019.35.5.2.6
- Radford et al. (2016) Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ICLR 2016. arXiv:1511.06434 [cs.LG]
- Venu et al. (2021) Evaluation of Deep Convolutional Generative Adversarial Networks for Data Augmentation of Chest X-ray Images Future Internet 13, no. 1: 8.
- https://imgaug.readthedocs.io/en/latest/source/api.html
- http://jaejunyoo.blogspot.com/2017/02/deep-convolutional-gan-dcgan-1.html
- https://blog.naver.com/PostView.nhn?blogId=laonple&logNo=221201915691