See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/263053100

## Design, synthesis and biological evaluation of type-II VEGFR-2 inhibitors based on quinoxaline scaffold

ARTICLE in BIOORGANIC CHEMISTRY · MAY 2014

Impact Factor: 2.15 · DOI: 10.1016/j.bioorg.2014.05.010 · Source: PubMed

CITATIONS

2

READS

54

#### 4 AUTHORS:



Mai Shahin

Ain Shams University

1 PUBLICATION 2 CITATIONS

SEE PROFILE



Nasser S.M. Ismail

Ain Shams University

37 PUBLICATIONS 213 CITATIONS

SEE PROFILE



Dalal abou el ella

Ain Shams University

38 PUBLICATIONS 200 CITATIONS

SEE PROFILE



**Khaled Abouzid** 

Ain Shams University

66 PUBLICATIONS 670 CITATIONS

SEE PROFILE

### Accepted Manuscript

Design, synthesis and biological evaluation of type-II VEGFR-2 inhibitors based on quinoxaline scaffold

Mai I. Shahin, Dalal A. Abou El Ella, Nasser S.M. Ismail, Khaled A.M. Abouzid

PII: S0045-2068(14)00041-8

DOI: http://dx.doi.org/10.1016/j.bioorg.2014.05.010

Reference: YBIOO 1728

To appear in: Bioorganic Chemistry

Received Date: 11 February 2014



Please cite this article as: M.I. Shahin, D.A. Abou El Ella, N.S.M. Ismail, K.A.M. Abouzid, Design, synthesis and biological evaluation of type-II VEGFR-2 inhibitors based on quinoxaline scaffold, *Bioorganic Chemistry* (2014), doi: http://dx.doi.org/10.1016/j.bioorg.2014.05.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

# Design, synthesis and biological evaluation of type-II VEGFR-2 inhibitors based on quinoxaline scaffold

Mai I. Shahin, Dalal A. Abou El Ella, Nasser S. M. Ismail, Khaled A. M. Abouzid\*.

Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia Cairo 11566, Egypt.

\*Corresponding author: Khaled.abouzid@pharma.asu.edu.eg, Tel: +201222165624, Fax: +20225080728

#### **Abstract:**

In an effort to develop ATP-competitive VEGFR-2 selective inhibitors, a series of new quinoxaline-based derivatives was designed and synthesized. The target compounds were biologically evaluated for their inhibitory activity against VEGFR-2. The design of the target compounds was accomplished after a profound study of the structure activity relationship (SAR) of type-II VEGFR-2 inhibitors. Among the synthesized compounds, 1-(2-((4-Methoxyphenyl)amino)-3-oxo-3,4 dihydroquinoxalin-6-yl)-3-phenylurea (VIIa) displayed the highest inhibitory activity against VEGFR-2. Molecular modeling study involving molecular docking and field alignment was implemented to interpret the variable inhibitory activity of the newly synthesized compounds.

#### **Keywords:**

VEGFR-2, Kinase, Type-II, Quinoxaline, Docking study.

#### 1. Introduction

Inhibition of receptor tyrosine kinase (RTK) signaling pathways is an important area for the development of novel anticancer agents. Vascular endothelial growth factor receptor-2 (VEGFR-2) is the principal mediator of tumor angiogenesis. Angiogenesis, which is the sprouting of new blood vessels from pre-existing ones, is one of the most critical hallmarks of a cancerous cell. Development of selective antiangiogenic agents required thorough study of signal transduction pathways that hold the promise of efficacy with minimal toxicity <sup>1</sup>. Tyrosine kinases

were identified as one of the efficient targets for evolving new anticancer agents having the desired selectivity on cancerous cells <sup>2</sup>. Numerous small molecule TK inhibitors were approved to treat many types of tumors of different origins <sup>3</sup>. Tyrosine kinase family comprises prominent members that can effectively induce important cell signaling pathways <sup>4</sup>. Angiogenic switch is a critical element in the growth of primary tumors and formation of metastatic sites <sup>5</sup>. Proliferation and migration of endothelial cells in angiogenesis are provoked by the imbalance between proangiogenic factors and anti-angiogenic factors. VEGF was settled to be the most important regulator of angiogenesis. This occurs by binding to the kinase insert domain (KDR) of the receptor tyrosine kinase VEGFR-2 <sup>6</sup>. Small molecule inhibitors targeting KDR proved successful suppression of tumor growth via blocking its signaling pathway <sup>7</sup>. Sutent®(sunitinib) <sup>8</sup> and Nexavar® (sorafenib tosylate) <sup>9</sup>, were approved by FDA for treating gastrointestinal stromal tumors and advanced renal cell carcinoma, respectively (**Figure 1**).

A literature survey revealed that different scaffolds have been reported as excellent inhibitors of VEGFR-2. Some classes are quinoline amides, <sup>10</sup> quinolinones, <sup>11</sup> anilinophthalazines, <sup>12</sup> and quinazolines 13. As being one of tyrosine kinases, VEGFR-2 has 2 different conformations; the active and the inactive conformation 14. This is determined by the movement of the DFG motif (activation loop). The DFG-in (active) conformation makes the active site accessible for ATP binding. Type-I inhibitors can target this active conformation and compete with ATP for binding 15. Shifting to the DFG-out (inactive) conformation occurs by movement of the DFG motif revealing an extra hydrophobic pocket adjacent to the binding site. Inhibiting the tyrosine kinase activity is achieved through stabilizing this inactive conformation using type-II inhibitors. Type-II inhibitors provide a superior kinetic advantage over type-I inhibitors by avoiding competition with ATP. Also they stabilize the kinase in the DFG-out inactive conformation <sup>16</sup>. In our current study, we synthesized novel quinoxaline derivatives as type II VEGFR-2 inhibitors based on the Structure-Activity Relationship (SAR) study of VEGFR-2 type-I and type-II inhibitors. The newly synthesized compounds were tested for their inhibitory activities on some kinases. The results showed good inhibition percentages of some compounds against VEGFR-2 compared with other tested kinases. The results were interpreted using investigational docking and field alignment studies.

Type-II tyrosine kinase inhibitors, though being highly diverse in structure, revealed common feature pharmacophores for binding. Two simple screening hits, phenylaminopyrimidine

in case of imatinib and biaryl urea in case of both BIRB796 and Sorafenib, were the first type II inhibitors developed by optimization of kinase enzyme activity <sup>17</sup>. As illustrated in (**Figure 2**), Gleevec<sup>®</sup>, Nexavar<sup>®</sup>, and BIRB796 were analyzed for their binding interactions as type-II inhibitors. A flat aromatic ring system of the main scaffold adopts the active site in the same manner as the ATP purine ring does. This occurs along with the essential hydrogen bonding of Cys 919 in the hinge region (presented as the left green side) <sup>18</sup>. Accordingly, we determined the features necessary for a type-I inhibitor which typically forms ~1–3 hydrogen bonds with the kinase hinge residues <sup>15</sup>. In case of type-II inhibitors, it would require an additional moiety to extend into the nearby allosteric site formed by the movement of the DFG motif in the inactive conformation of the enzyme forming two hydrogen bonds with the allosteric site residues: one hydrogen bond with the side chain of a conserved glutamic acid in the C-helix (Glu 883) and the other with the backbone amide of aspartic acid in the DFG motif (Asp 1044) (this is presented by the core group given a yellow color).

All type-II inhibitors also has a hydrophobic moiety that is located just after the hydrogen bond donor-acceptor pair forming van der Waals interactions with the allosteric site (the right pink side). <sup>19</sup>

Our design was based on targeting VEGFR-2 in its DFG-out conformation. Inspection of known type-II inhibitors, especially Sorafenib, revealed that the conserved hydrogen bonds between the ligand and the allosteric site residues were done using urea or amide moieties.

In this respect, we designed novel compounds based on quinoxaline core, with urea, amide and sulfonamide pharmacophoric linking moieties for allosteric site binding with extended alkyl or aryl groups.

#### 2. Results and discussion

#### 2.1. Chemistry

Quinoxaline scaffold in compounds I and XII was synthesized using the Hinsberg reaction  $^{20}$  (Scheme 1 and 2). Their nitration was performed using potassium nitrate in sulfuric acid  $^{21}$  to give 6-nitroquinoxaline derivatives II  $^{22}$  and XII  $^{23}$  respectively. Chlorination of II and XII was

carried out by refluxing with POCl<sub>3</sub> either alone in case of III <sup>24</sup> or combined with PCl<sub>5</sub> in case of XIII <sup>23</sup>. New intermediates IV and XIVa-b was obtained by reacting the chloroquinoxaline derivative with the appropriate aniline derivative in isopropanol <sup>25</sup> at room temperature giving IV. While compounds XIVa-b were synthesized using ethanol <sup>24</sup> under reflux with using anhydrous potassium carbonate. In case of compound IV, substitution of the chlorine atom at the 2-position of quinoxaline due to regioselectivity created by the electron withdrawing effect of 6-nitro group <sup>26</sup>. Caution was carefully taken by monitoring mild conditions to prevent dinucleophilic substitution of both chlorine atoms. Hydrolysis of the second chlorine atom was accomplished by heating IV with conc. HCl to provide V. Reduction of the nitro compounds to the corresponding amino derivatives was achieved using 10 % Pd-C in THF/MeOH due to their poor solubility in single solvent to give compounds VI and XVa-b. Moreover, urea and thiourea derivatives were synthesized by stirring the appropriate amine derivative with the cyclohexyl and aryl isocyanates and aryl isothiocyanate in THF <sup>27</sup> to yield **VIIa-e**. DCM <sup>28</sup> was used instead to provide **XVIa-e**. Refluxing the amine derivatives with the appropriate sulfonyl chloride in pyridine <sup>29</sup> gave the sulfonamide series VIIIa-b and XVIIa-c. Synthesis of different amide derivatives was accomplished by stirring phthalic anhydride or acetyl chloride with VI and XVa-b in glacial acetic acid to give IX and XVIII 30. Refluxing acetyl chloride with VI in THF gave the corresponding amide derivative X. Compounds XXIa-b (Scheme 3) were synthesized by refluxing XIII with 4aminophenyl urea derivatives in ethanol <sup>24</sup> and anhydrous potassium carbonate.

#### 2.2. Biological evaluation

Kinase inhibition assay was carried out to evaluate the effect of the synthesized compounds on VEGFR-2 and other selected kinases such as c-Met, EGFR, PDGFRβ and B-raf kinases. The evaluation was performed in KINEXUS Corporation where radiolabeled ATP determination method (<sup>33</sup>P-ATP) was used. The percent inhibition of the Kinase enzymatic activity of the tested compounds was evaluated against a reference kinase inhibitor at 10 μM. Compounds VIIa, IX, XVIc, XXIa-b showed relatively high inhibitory enzyme activity. Among these compounds, IX shows the highest percentage of inhibition (69%) on VEGFR-2 while these compounds displayed less significant inhibitory activities on the other tested kinases. The rest of compounds showed weak to moderate activity with exception of compounds VIId, XVIa, XVIb and XVId which

showed no significant effect (**Table 1**). The five compounds showing the highest percentage of enzyme inhibition were selected for determination of their IC<sub>50</sub> on VEGFR-2 (**Table 2**). Compound **VIIa** showed highest IC<sub>50</sub> value (10.3 $\mu$ M) (**Figure 3**).

#### 2.3. *Molecular modeling study:*

Molecular docking study was conducted using Gold 4.1 software in the interface of Accelry's Discovery Studio 2.5 (Accelrys Inc., San Diego, CA, USA). Field alignment study was done using Field Align 2.1 software.

#### 2.3.1. Docking study

A deep docking study was done to investigate the possible binding modes of the newly synthesized compounds inside the ATP binding site of VEGFR-2 using Gold 4.1 software <sup>31</sup>. The X-ray crystal structure of VEGFR-2 bound to naphthamide-based compound was obtained, which represents the protein in its inactive conformation, and prepared for docking by energy minimization. 500,000 iterations were applied to get reliable results by increasing the number of predictions. Docking of Sorafenib as a reference compound was carried out to compare its binding mode with those of the target compounds. Investigation of Sorafenib docking results revealed a hydrogen bond formed with Cys 919 in the hinge region. The urea moiety interacts with the protein through two hydrogen bonds; the NH forms a hydrogen bond with Glu 885 while the urea carbonyl functionality interacts with Asp 1046. The substituted phenyl ring pushes deep into the extended hydrophobic pocket that is formed by the movement of Phe 1047 of the 'DFG' motif to induce the 'DFG-out' conformation. On the other hand, the compounds showing highest inhibition of VEGFR-2 activity (VIIa, IX, XVIc, XXIa-b) fulfilled the key features as done by the lead compound in the ATP binding site (Cys 919, Glu 885 and Asp 1046). For IX, extra hydrogen bonding with Glu 917 in the hinge region was detected which may explain its high activity relative to other compounds. Also, XVIc fulfilled all the features important for being type-II inhibitors which explains its high activity. Compounds showing weak to moderate activity missed one interaction of the features essential to be acting as type-II inhibitors which is either interaction with

Glu 885 or Asp 1046 and even some lose the interaction with Cys 919 and rather interact with other amino acids in the hinge region instead as Glu 917 and Thr 916 (**Figure 4**).

#### 2.3.2. Field analysis

For understanding the unexpected results of compounds VIId, XVIa, XVIb and XVId showing no significant activity, a further study was conducted using field analysis. The field alignment study of compounds VIId, XVIa, XVIb and XVId in comparison to Sorafenib as a reference showed that negative field (Hydrogen bond acceptor) around the NH of Sorafenib is present in these compounds but in the totally opposite direction. This negative field represents the interaction to Cys 919 in the hinge region which is the most important key feature of interaction. Upon comparing active compounds VIIa and XVIc with the reference, the negative field was present in the same direction as Sorafenib. Compound XVIb showed no negative field around that of Sorafenib. This proved the importance of this interaction in the inhibitory activity. (Figure 5)

#### 2.3.3. *ADME study*

Theoretical kinetic study was performed using Discovery Studio software to predict the ADME of the newly synthesized compounds. All the compounds passed the Lipinski's rule of five except compound XVIa which had partition coefficient >5. Other descriptors as A logP 98 and PSA 2D were calculated to evaluate solubility level and absorption level. Also, CYP2D inhibition was predicted giving score 0 for non-inhibitors and 1 for inhibitors. Most of the compounds showed good absorption levels (score = 0) with relatively low solubility (score of solubility level=1-2). Our two most active candidates IX and VIIa showed moderate and good absorption respectively. Compound IX is expected to have good solubility, while VIIa will be with low solubility. Finally, All the compounds were predicted to be CYP2D non-inhibitors except XVIII. (Table 3)

#### 3. Conclusion:

Quinoxaline scaffold was explored for its activity against VEGFR-2. The compounds were designed as type-II inhibitors based on comprehensive SAR study. Biological evaluation revealed high inhibitory activity of compounds IX, VIIa, XVIc, XXIa, XXIb, with highest IC<sub>50</sub> of compound VIIa. The unexplained activity results of inactive compounds VIId, XVIa, XIVb and XIVd was adequately explored using field analysis. The results of this study revealed that

quinoxaline could be a promising scaffold to be greatly considered for evolving new effective VEGFR-2 inhibitors.

#### 4. Experimental:

#### 4.1. Chemistry and analysis

All chemicals either starting materials or reagents used were purchased from Aldrich (USA) or Alfa-Aesar Organics and used without further purification. Melting points were determined using Stuart Scientific apparatus and were uncorrected. The reactions were monitored using analytical thin layer chromatography (TLC) purchased from Merck (Merck, Darmstadt, Germany) and performed on 0.255 mm silica gel plates, with visualization under U.V. light (254 nm). FT-IR spectra were recorded on a PerkineElmer IR spectrophotometer.

1H spectra were run at 300 MHz spectrometer in  $\delta$  scale (ppm), J (Hz) using TMS as reference at Microanalytical Center at Cairo University. EI-MS spectra were recorded on Finnigan Mat SSQ 7000 (70 ev) mass spectrometer at Microanalytical Center at Cairo University. Elemental analysis was performed at Al-Azhar University. Compounds I, II, III, XI, XII, XIII, XIXa-b, XXa-b were synthesized according to the reported procedures  $^{22\ 23\ 32\ 33\ 34}$ .

### 4.1.1. 3-Chloro-N-(4-methoxyphenyl)-6-nitroquinoxalin-2-amine (IV)

A solution of **III** (2 g, 8.2 mmol) in isopropanol was stirred while adding the p-anisidine (1.01g, 8.2 mmol) portionwise then left with stirring at room temperature for 6 hours. Filtration of the resulted solid and stirring it again with absolute ethanol then filtration afforded orange powder of the required compound with a yield of 1.6g (59%); m.p. 174-176°C; <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  9.56 (s, 1H), 8.59 (s, 1H), 8.37 (d, J = 8.5 Hz, 1H), 8.33 (d, J = 8.6 Hz, 1H), 7.21 (d, J = 8.6 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 3.75 (s, 3H); FT-IR ( max, cm<sup>-1</sup>): 3320 (NH), 3032 (CH aromatic), 2947 (CH aliphatic), 1587, 1390 (NO<sub>2</sub>); MS: (Mwt.: 330): m/z, 332 [M+2, (2.46%)], 330 [M<sup>+</sup>, (9.66%)], 79 (100%); Anal. Calcd for C<sub>15</sub>H<sub>11</sub>ClN<sub>4</sub>O<sub>3</sub>: C, 54.47; H, 3.35; N, 16.94; Found: C, 54.08; H, 3.04; N, 16.84.

#### 4.1.2. 3-((4-Methoxyphenyl)amino)-7-nitroquinoxalin-2(1H)-one (V)

This compound was obtained with a yield of 2.1g (74%) by heating **IX** (3 g, 9.07 mmol) in conc. HCl (30 ml) at 50°C for 12hrs then filtration, washing the solid thoroughly with water and finally triturating it with diethyl ether to give orange powder of **V**; m.p. 282°C; <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  12.70 (s, 1H), 9.87 (s, 1H), 8.92 (s, 1H), 8.06(s,1H), 8.02 (d, J = 8.5 Hz, 1H), 7.97 (d, J = 8.6 Hz, 1H), 7.58 (d, J = 8.6 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 3.75 (s, 3H); FT-IR ( max, cm<sup>-1</sup>): 3363 (NH), 3032 (CH aromatic), 2910 (CH aliphatic), 1673 (C=O amide), 1580 , 1383 (NO<sub>2</sub>); MS: (Mwt.: 312): m/z, 313 [M+1, (16.5%)], 312 [M<sup>+</sup>, (100%)]; Anal. Calcd for  $C_{15}H_{12}N_4O_4$ : C, 57.69; H, 3.87; N, 17.94; Found: C, 57.69; H, 3.58; N, 17.63.

#### 4.1.3. 7-Amino-3-((4-methoxyphenyl)amino)quinoxalin-2(1H)-one (VI)

To a solution of **X** (1 g, 3.2 mmol ) in THF/MeOH (50 ml) was added 10% Pd-C wet (0.1g) and then the mixture was stirred at 40°C under H<sub>2</sub>. After removing the catalyst by filtration with celite, the filtrate was concentrated *in vacuo*, dried giving brownish powder of **VI** at 0.8g (88%) yield; m.p. > 300°C; <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  12.11 (s, 1H), 9.86 (s, 1H), 7.98 (s, 1H), 7.95 (s,2H), 7.21 (d, J = 8.5 Hz, 1H), 7.08 (d, J = 8.6 Hz, 1H), 6.89 (d, J = 8.6 Hz, 2H), 6.54 (d, J = 8.8 Hz, 2H), 3.75 (s, 3H); FT-IR ( max, cm<sup>-1</sup>): 3440 ( forked NH<sub>2</sub>), 3120 (CH aromatic), 2954 (CH aliphatic), 1620 (C=O amide); MS: (Mwt.: 282): m/z, 283 [M+1, (16.5%)], 282 [M<sup>+</sup>, (2.2%)], 154 (100%); Anal. Calcd for C<sub>15</sub>H<sub>14</sub>N<sub>4</sub>O<sub>2</sub>: C, 63.82; H, 5.00; N, 19.85; Found: C, 63.35; H, 4.98; N, 19.42.

#### 4.1.4. General procedure for the preparation of compounds (VIIa-e)

To a solution of **VI** (0.1 g, 0.35 mmol) in THF was added the appropriate isocyanate or isothiocyanate (0.7 mmol; 2 eq.) (*viz*; 3-chlorophenyl isocyanate, phenyl isothiocyanate, 3-methyl phenyl isocyanate and cyclohexyl isocyanate) and stirred for 2-24 h. The mixture was added to hexane and stirred for several minutes. The resulting solid was filtered, washed with hexane, recrystallized from ethanol to afford the titled compounds (**VIIa-e**).

#### 4.1.4.1. 1-(2-((4-Methoxyphenyl)amino)-3-oxo-3,4 dihydroquinoxalin-6-yl)-3-phenylurea (VIIa)

The titled compound was separated as buff solid 0.1 g (70%); m.p 238°C;  $^{1}$ H NMR (300 MHz, DMSO-d6)  $\delta$  12.43 (s, 1H), 11.57 (s, 1H), 9.28 (s, 1H), 9.13 (s, 1H), 8.94 (s, 1H), 8.05 – 7.94 (m, 5H), 7.32 (d, J = 8.3 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H), 6.89 (d, J = 8.3 Hz, 2H), 6.62 (d, J = 8.1 Hz, 2H), 3.74 (s, 3H); FT-IR ( max, cm<sup>-1</sup>): 3363 (NH), 3032 (CH aromatic), 2910 (CH aliphatic), 1673 (C=O amide); MS : (Mwt. : 401) : m/z, 402 [M+1 , (19.80%)] , 401 [M<sup>+</sup>, (1.17%)] , 93 (100%); Anal. Calcd for  $C_{22}H_{19}N_5O_3$ : C, 65.83; H, 4.77; N, 17.45; Found: C, 65.97; H, 4.82; N, 17.58.

4.1.4.2. 1-(2-((4-Methoxyphenyl)amino)-3-oxo-3,4-dihydroquinoxalin-6-yl)-3-phenylthiourea (VIIb)

The titled compound was afforded as yellow solid 0.12 g (81%); m.p.  $168^{\circ}$ C; <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  12.59 (s, 1H), 10.70 (s, 1H), 9.71 (s, 1H), 9.21 (s, 1H), 8.00 (d, J = 8.9 Hz, 1H), 7.49 (d, J = 8.3 Hz, 1H), 7.45 – 7.30 (m, 5H), 7.28 (s, 1H), 7.13 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.6 Hz, 2H), 3.76 (s, 3H); FT-IR ( max, cm<sup>-1</sup>): 3395 (NH), 3084 (CH aromatic), 2984 (CH aliphatic), 1665 (C=O amide); MS: (Mwt.: 417): m/z, 418 [M+1, (27.23%)], 417 [M<sup>+</sup>, (1.98%)], 296 (100%); Anal. Calcd for  $C_{22}H_{19}N_5O_2S$ : C, 63.29; H, 4.59; N, 16.78; Found: C, 63.17; H, 4.65; N, 16.59.

4.1.4.3. 1-(3-Chlorophenyl)-3-(2-((4-methoxyphenyl)amino)-3-oxo-3,4-dihydroquinoxalin-6-yl)urea (**VIIc**)

The titled compound was afforded as buff solid 0.08 g (52%); m.p. 192°C; <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  12.30 (s, 1H), 9.13 (s, 1H), 8.92 (s, 1H), 8.87 (s, 1H), 8.03 (d, J = 8.5 Hz, 1H), 7.72 (d, J = 8.6 Hz, 1H), 7.56 (s, 1H), 7.40 – 7.35 (m, 3H), 7.28 (s, 1H), 7.18 (d, J = 8.6 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 3.75 (s, 3H); FT-IR ( max, cm<sup>-1</sup>): 3280 (NH), 3084 (CH aromatic), 2946 (CH aliphatic), 1662 (C=O amide); MS: (Mwt.: 435): m/z, 437 [M+2, (72.34%)], 417 [M<sup>+</sup>, (57.45%)], 361 (100%); Anal. Calcd for C<sub>22</sub>H<sub>18</sub>ClN<sub>5</sub>O<sub>3</sub>: C, 60.62; H, 4.16; N, 16.07; Found: C, 60.71; H, 4.23; N, 16.19.

*4.1.4.4.* 1-(2-((3-Methoxyphenyl)amino)-3-oxo-3,4-dihydroquinoxalin-6-yl)-3-(p-tolyl)urea (**VIId**)

The titled compound was obtained as buff powder 0.12 g (81%); m.p. 292°C; <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  12.29 (s, 1H), 9.11 (s, 1H), 8.80 (s, 1H), 8.53 (s, 1H), 8.03 (d, J = 8.6 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.37 (d, J = 8.6 Hz, 2H), 7.23 (s, 1H), 7.18 (d, J = 8.7 Hz, 2H), 7.12 (s, 1H), 6.96 – 6.87 (m, 3H), 3.75 (s, 3H), 2.27 (s, 3H); FT-IR ( max, cm<sup>-1</sup>): 3275 (NH), 3054 (CH aromatic), 2936 (CH aliphatic), 1685 (C=O amide); MS : (Mwt. : 415) : m/z, 416 [M<sup>+</sup>+1 , (1.8%)] , 415 [M<sup>+</sup>, (9.3%)] , 77 (100%); Anal. Calcd for C<sub>23</sub>H<sub>21</sub>N<sub>5</sub>O<sub>3</sub>: C, 66.49; H, 5.09; N, 16.86; Found: C, 60.63; H, 4.04; N, 16.03.

4.1.4.5. 1-Cyclohexyl-3-(2-((4-methoxyphenyl)amino)-3-oxo-3,4-dihydroquinoxalin-6-yl)urea (VIIe)

The titled compound was separated as yellow solid 0.12 g (81%); m.p. 237°C; <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  12.25 (s, 1H), 9.02 (s, 1H), 8.76 (s, 1H), 8.01 (d, J = 8.8 Hz, 1H), 7.49 (d, J = 8.6 Hz, 1H), 7.36 (s, 1H), 7.29 (s, 1H), 7.09 (d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 3.74 (s, 3H), 2.03 – 0.89 (m, 5H); FT-IR ( max, cm<sup>-1</sup>): 3328 (NH), 3035 (CH aromatic), 2929 (CH aliphatic), 1627 (C=O amide); MS : (Mwt. : 407) : m/z, 408 [M+1 , (24.2%)] , 407 [M<sup>+</sup>, (3.8%)] , 281 (100%); Anal. Calcd for C<sub>22</sub>H<sub>25</sub>N<sub>5</sub>O<sub>3</sub>: C, 64.85; H, 6.18; N, 17.19; Found: C, 64.97; H, 6.15; N, 17.32.

#### 4.1.5. General procedure for preparation of compounds (VIIIa-b)

To a solution of **VI** (0.1 g, 0.35 mmol) in dry pyridine (10 mL) was added the appropriate sulfonyl chloride (1.05 mmol; 3 eq.) (*viz*; benzenesulfonyl chloride and 4- methylbenzenesulfonyl chloride) and heated at reflux for 2 h. The mixture was added to cold water (30 mL) and stirred for several minutes. The resulted solid was filtered, washed with water, dried and recrystallized from ethanol to afford the titled compounds.

4.1.5.1. N-(2-((4-Methoxyphenyl)amino)-3-oxo-3,4-dihydroquinoxalin-6-yl)benzenesulfonamide (VIIIa)

The titled compound was separated as brown solid 0.06g (40%); m.p.  $122^{\circ}$ C; <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  12.29 (s, 1H), 10.35 (s, 1H), 9.27 (s, 1H), 7.94 (d, J = 8.6 Hz, 1H), 7.77 (d, J = 8.4

Hz, 1H), 7.61 – 7.50 (m, 5H), 7.29 (d, J = 8.6 Hz, 2H), 7.08 (s, 1H), 6.91 (d, J = 8.7 Hz, 2H), 3.73 (s, 3H); FT-IR (max, cm<sup>-1</sup>): 3442 (NH), 3075 (CH aromatic), 2930 (CH aliphatic), 1625 (C=O amide), 1335 & 1160 (SO2); MS : (Mwt. : 422) : m/z, 423 [M+1 , (3.16%)] , 422 [M<sup>+</sup>, (9.47%)] , 77 (100%); Anal. Calcd for  $C_{21}H_{18}N_4O_4S$ : C, 59.70; H, 4.29; N, 13.26; Found: C, 59.79; H, 4.33; N, 13.41.

4.1.5.2 N-(2-((4-Methoxyphenyl)amino)-3-oxo-3,4-dihydroquinoxalin-6-yl)-4-methylbenzene sulfonamide (**VIIIb**)

The titled compound was separated as brownish black solid 0.09g (58%); m.p.116°C; <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  12.27 (s, 1H), 10.26 (s, 1H), 9.21 (s, 1H), 7.97 (d, J = 8.6 Hz, 2H), 7.64 (d, J = 8.5 Hz, 2H), 7.56 (d, J = 8.6 Hz, 1H), 7.34 (d, J = 8.3 Hz, 2H), 7.07 (s, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.91 (d, J = 8.2 Hz, 2H), 3.73 (s, 3H), 2.50 (s, 3H); FT-IR ( max, cm<sup>-1</sup>): 3404 (NH), 3062 (CH aromatic), 2926 (CH aliphatic), 1658 (C=O amide), 1335 & 1160 (SO2); MS : (Mwt. : 436) : m/z, 437 [M<sup>+</sup>+1 , (13.96%)] , 436 [M<sup>+</sup>, (28.83%)] , 281 (100%); Anal. Calcd for C<sub>21</sub>H<sub>18</sub>N<sub>4</sub>O<sub>4</sub>S: C, 59.70; H, 4.29; N, 13.26; Found: C, 59.79; H, 4.33; N, 13.41.

4.1.6. 2-((2-((4-Methoxyphenyl)amino)-3-oxo-3,4-dihydroquinoxalin-6-yl)carbamoyl)benzoic acid (IX)

A mixture of compound **VI** (0.1 g, 0.35 mmol) and phthalic anhydride (0.1g, 0.7 mmol) in gl. acetic acid was stirred for 48 hours at room temperature. The formed precipitate was filtered, washed with gl. acetic acid then water thoroughly. The solid separated was black powder with a yield of 0.1 g (65%); m.p. > 300;  $^{1}$ H NMR (300 MHz, DMSO-d6)  $\delta$  12.35 (s, 1H), 10.44 (s, 1H), 9.40 (s, 1H), 9.17 (s, 1H), 8.08 – 7.94 (m, 4H), 7.87 (s, 1H), 7.65 (d, J = 7.4 Hz, 1H), 7.56 (d, J = 7.5 Hz, 1H), 7.38 (d, J = 8.5 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 3.75 (s, 3H); FT-IR ( max, cm<sup>-1</sup>): 3390 (NH), 3400-2900 (OH carboxylic), 1685 (C=O acid), 1665 (C=O amide), 3032 (CH aromatic), 2929 (CH aliphatic); MS: (Mwt.: 430): m/z, 431 [M+1, (75.53%)], 430 [M<sup>+</sup>, (55.32%)], 243 (100%); Anal. Calcd for  $C_{23}H_{18}N_4O_5$  C, 64.18; H, 4.22; N, 13.02; Found: C, 64.03; H, 4.13; N, 12.95.

#### 4.1.7. N-(2-((4-Methoxyphenyl)amino)-3-oxo-3,4-dihydroquinoxalin-6-yl)acetamide (X)

The titled compound was afforded by refluxing **VI** (0.1 g, 0.35 mmol) with acetyl chloride (0.083 g, 1.06 mmol) in THF for 24h. It was filtered, washed with water, dried. 0.08g (70%) of black solid was obtained; m.p.  $176^{\circ}$ C; H NMR (300 MHz, DMSO-d6)  $\delta$  12.68 (s, 1H), 10.23 (s, 1H), 9.65 (s, 1H), 7.95 (d, J = 8.7 Hz, 1H), 7.82 (d, J = 8.6 Hz, 1H), 7.41 (d, J = 8.7 Hz, 2H), 7.31 (s, 1H), 6.95 (d, J = 8.7 Hz, 2H), 3.76 (s, 3H), 2.06 (s, 3H); FT-IR ( max, cm<sup>-1</sup>): 3447 (NH), 3035 (CH aromatic), 2984 (CH aliphatic), 1642 (C=O amide); MS: (Mwt.: 324): m/z, 325 [M+1, (18.7%)], 324 [M<sup>+</sup>, (53.45%)], 281 (100%); Anal. Calcd for C<sub>17</sub>H<sub>16</sub>N<sub>4</sub>O<sub>3</sub>: C, 62.95; H, 4.97; N, 17.27; Found: C, 63.04; H, 4.99; N, 17.34.

#### 4.1.8. General procedure for preparation of compounds (XIVa-b)

(2g, 9.54 mmol) of **XIII** were refluxed in ethanol (30 ml) with the appropriate amine (19.08mol; 2 eq.) (*viz:* p-anisidine, p- chloroaniline) for 5h, allowed to cool then finally filtered. The crude products **XIVa-b** were purified by recrystallization from ethanol.

#### 4.1.8.1. N-(4-Methoxyphenyl)-6-nitroquinoxalin-2-amine (XIVa)

The titled compound was obtained as red powder 1.8g (63%); m.p. 218°C; <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  10.31 (s, 1H), 8.61 (s, 1H), 8.56 (d, J = 2.6 Hz, 1H), 8.33 (dd, J = 9.1, 2.7 Hz, 1H), 7.87 (d, J = 9.0 Hz, 1H), 7.74 (d, J = 9.1 Hz, 2H), 6.99 (d, J = 9.0 Hz, 2H), 3.77 (s, 3H); FT-IR (max, cm<sup>-1</sup>): 3447 (NH), 3035 (CH aromatic), 2984 (CH aliphatic), 1587, 1390 (NO<sub>2</sub>); MS: (Mwt. 296) : m/z, 297 [M+1, (17.7%)], 296 [M<sup>+</sup>, (84.64%)], 137 (100%); Anal. Calcd for C<sub>15</sub>H<sub>12</sub>N<sub>4</sub>O<sub>3</sub>; C, 60.81; H, 4.08; N, 18.91; Found C, 60.63; H, 3.96; N, 18.71.

#### 4.1.8.2. N-(4-Chlorophenyl)-6-nitroquinoxalin-2-amine (XIVb)

The titled compound was obtained as yellow powder 1.5g (52%); m.p.  $142^{\circ}$ C; <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  10.27 (s, 1H), 8.56 (s, 1H), 8.32 (d, J = 2.6 Hz, 1H), 8.12 (dd, J = 8.6, 2.7 Hz, 1H), 7.76 (d, J = 8.5 Hz, 1H), 7.64 (d, J = 9.1 Hz, 2H), 6.84 (d, J = 8.9 Hz, 2H); FT-IR ( max, cm<sup>-1</sup>): 3390 (NH), 3015 (CH aromatic), 1583, 1380 (NO<sub>2</sub>); MS: (Mwt.: 300): m/z, 302 [M+2,

(32.2%)], 300 [M<sup>+</sup>, (4.3%)], 141 (100%); Anal. Calcd for  $C_{14}H_9ClN_4O_2$ : C, 55.92; H, 3.02; N, 18.63; Found C, 55.75; H, 2.96; N, 18.23.

#### 4.1.9. General procedure for preparation of compounds (XVa-b)

Reduction of **XIVa-b** (1g, 3.33 mmol) was carried out by adding (0.1g) 10% Pd-C wet to 50 ml of their solutions in THF/MeOH then stirring under  $H_2$  at room temperature for 8h. After removing the catalyst by filtration with celite and evaporation of the filtrate under reduced pressure, we afforded the titled compounds **XVa-b**.

### 4.1.9.1. N2-(4-Methoxyphenyl)quinoxaline-2,6-diamine (XVa)

The titled compound was obtained as brown solid 0.6g (67%); m.p. 247°C; <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  10.27 (s, 1H), 8.56 (s, 1H), 8.32 (d, J = 2.6 Hz, 1H), 8.12 (dd, J = 7.5, 2.7 Hz, 1H), 7.76 (d, J = 8.5 Hz, 1H), 7.64 (d, J = 9.1 Hz, 2H), 6.84 (d, J = 7.6 Hz, 2H), 5.37 (s, 2H), 3.80 (s, 3H); FT-IR ( max, cm<sup>-1</sup>): 3420 ( forked NH<sub>2</sub>), 3115 (CH aromatic), 2932 (CH aliphatic); MS : (Mwt. : 266) : m/z, 267 [M+1 , (16.4%)] , 266 [M<sup>+</sup>, (1.7%)] , 145 (100%); Anal. Calcd for  $C_{15}H_{14}N_4O$ : C, 67.65; H, 5.30; N, 21.04; Found: C, 67.36; H, 5.12; N, 20.93.

#### 4.1.9.2. N2-(4-Chlorophenyl)quinoxaline-2,6-diamine (XVb)

The titled compound was separated as brown solid 0.75g (83%); m.p.159°C; <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  10.13 (s, 1H), 8.23 (s, 1H), 8.06 (d, J = 2.6 Hz, 1H), 7.89 (dd, J = 7.5, 2.7 Hz, 1H), 7.67 (d, J = 8.5 Hz, 1H), 7.52 (d, J = 9.1 Hz, 2H), 6.54 (d, J = 7.6 Hz, 2H), 4.96 (s, 2H); FT-IR (max, cm<sup>-1</sup>): 3420 (forked NH<sub>2</sub>), 3115 (CH aromatic); MS : (Mwt. : 270) : m/z , 272 [M+2 , (15.3%)] , 270 [M<sup>+</sup>, (32%)] , 141 (100%); Anal. Calcd for C<sub>14</sub>H<sub>11</sub>ClN<sub>4</sub>: C, 62.11; H, 4.10; N, 20.70; Found: C, 62.01; H, 4.00; N, 20.52.

#### 4.1.10. General Procedure for preparation of compounds (XVIa-e)

To a solution of **XVa-b** (0.1 g, 0.37 mmol) in methylene chloride was added the appropriate isocyanate or isothiocyanate (0.7 mmol; 2 eq.) (*viz*; phenyl isothiocyanate, phenyl isocyanate, 3-methyl phenyl isocyanate, and cyclohexyl isocyanate) and stirred overnight. The resulted solid was filtered, triturated with diethyl ether and recrystallized from ethanol to afford the titled compounds. (**XVIa-e**)

#### 4.1.10.1. 1-(2-((4-Methoxyphenyl)amino)quinoxalin-6-yl)-3-phenylthiourea (XVIa)

The titled compound was separated as yellow solid; m.p. 249°C; <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  10.01 (s, 1H), 9.92 (s, 1H), 9.72 (s, 1H), 8.48 (s, 1H), 7.98 (d, J = 2.4 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.73 (dd, J = 8.9, 2.4 Hz, 1H), 7.61 (d, J = 8.9 Hz, 2H), 7.54 – 7.45 (m, 2H), 7.38 – 7.29 (m, 1H), 7.15 (d, J = 8.6 Hz, 2H), 6.97 (d, J = 9.1 Hz, 2H), 3.76 (s, 3H); FT-IR ( max, cm<sup>-1</sup>): 3383 (NH), 3054 (CH aromatic), 2952 (CH aliphatic), 1660 (C=O amide),; MS: (Mwt.: 401): m/z, 402 [M<sup>+</sup>+1, (26.4%)], 401 [M<sup>+</sup>, (5.2%)], 166 (100%); Anal. Calcd for C<sub>22</sub>H<sub>19</sub>N<sub>5</sub>OS: C, 65.81; H, 4.77; N, 17.44; Found: C, 65.63; H, 4.54; N, 17.21.

#### 4.1.10.2. 1-(2-((4-Chlorophenyl)amino)quinoxalin-6-yl)-3-phenylurea (XVIb)

The titled compound was obtained as yellow powder; m.p.  $134^{\circ}\text{C}$ ; <sup>1</sup>H NMR (300 MHz, DMSOd6)  $\delta$  8.63 (s, 1H), 8.59 (s, 1H), 8.52 (s, 1H), 8.37 (s, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 2.4 Hz, 1H), 7.27 (dd, J = 8.6, 2.3 Hz, 1H), 7.06 – 6.88 (m, 5H), 6.56 (d, J = 8.6 Hz, 2H), 6.48 (d, J = 8.3 Hz, 2H); FT-IR ( max, cm<sup>-1</sup>): 3383 (NH), 3054 (CH aromatic), 1660 (C=O amide),; MS: (Mwt. : 389) : m/z, 391 [M+2, (32.4%)], 389 [M<sup>+</sup>, (22.9%)], 269 (100%); Anal. Calcd for  $C_{21}H_{16}ClN_5O$ : C, 64.70; H, 4.14; N, 17.96; Found: C, 64.52; H, 4.03; N, 17.64.

#### 4.1.10.3. 1-(2-((4-Methoxyphenyl)amino)quinoxalin-6-yl)-3-(m-tolyl)urea (XVIc)

The titled compound was separated as buff solid; m.p.216°C; 1H NMR (300 MHz, DMSO-d6)  $\delta$  9.61 (s, 1H), 8.89 (s, 1H), 8.66 (s, 1H), 8.46 (s, 1H), 7.85 (d, J = 8.6 Hz, 1H), 7.62 (s, 1H), 7.33 (s, 1H), 7.27 (d, J = 8.1 Hz, 1H), 7.22 – 7.12 (m, 3H), 6.95 (d, J = 8.6 Hz, 2H), 6.80 (d, J = 7.4 Hz, 2H), 3.75 (s, 3H), 2.29 (s, 3H); FT-IR ( max, cm<sup>-1</sup>): 3383 (NH), 3054 (CH aromatic), 2935 (CH

aliphatic), 1685 (C=O amide); MS : (Mwt. : 399) : m/z , 400 [M+1 , (26.8%)] , 399 [M<sup>+</sup>, (2.3%)] , 164 (100%); Anal. Calcd for C<sub>23</sub>H<sub>21</sub>N<sub>5</sub>O<sub>2</sub>: C, 69.16; H, 5.30; N, 17.53; Found: C, 69.28; H, 5.28; N, 17.69.

#### 4.1.10.4. 1-Cyclohexyl-3-(2-((4-methoxyphenyl)amino)quinoxalin-6-yl)urea (XVId)

The titled compound was separated as yellowish solid; m.p.  $258^{\circ}$ C; <sup>1</sup>H NMR (300 MHz, DMSOd6)  $\delta$  9.55 (s, 1H), 8.51 (d, J = 8.8 Hz 1H), 8.43 (s, 1H), 7.96 (s, 1H), 7.83 (d, J = 8.8 Hz, 1H), 7.54 (s, 1H), 6.94 (d, J = 8.8 Hz, 2H), 6.12 (d, J = 7.8 Hz, 2H), 3.81 (s, 1H), 3.75 (s, 3H), 1.95 – 1.05 (m, 5H); FT-IR (max, cm<sup>-1</sup>): 3380 (NH), 3020 (CH aromatic), 2926 (CH aliphatic), 1680 (C=O amide); MS: (Mwt.: 391): m/z, 392 [M+1, (25.6%)], 391 [M<sup>+</sup>, (3.2%)], 265 (100%); Anal. Calcd for  $C_{22}H_{25}N_5O_2$ : C, 67.50; H, 6.44; N, 17.89; Found: C, 67.61; H, 6.48; N, 18.02

#### 4.1.10.5. 1-(2-((4-Chlorophenyl)amino)quinoxalin-6-yl)-3-cyclohexylurea (XVIe)

The titled compound was separated as yellow solid; m.p.  $194^{\circ}$ C; 1H NMR (300 MHz, DMSO-d6)  $\delta$  9.55 (s,1H), 8.51 (s,1H), 8.40 (s, 1H), 7.40 (d, J = 8.5 Hz, 1H), 7.38(d, J = 8.6 Hz, 1H), 7.36 (s, 1H), 7.24 (d, J = 8.9 Hz, 2H), 6.07 (d, J = 7.8 Hz, 2H), 5.75 (s, 1H), 1.91 –1.00 (m, 5H); FT-IR (max, cm<sup>-1</sup>): 3430 (NH), 3016 (CH aromatic), 2920 (CH aliphatic), 1670 (C=O amide); MS : (Mwt. : 395) : m/z, 397 [M+2, (32.4%)], 395 [M<sup>+</sup>, (1.6%)], 269 (100%); Anal. Calcd for C<sub>21</sub>H<sub>22</sub>ClN<sub>5</sub>O: C, 63.71; H, 5.60; N, 17.69; Found : C, 63.61; H, 5.48; N, 17.52.

#### 4.1.11. General procedure for preparation of compunds (XVIIa-c)

To a solution of the appropriate amine **XVa-b** (0.1 g, 0.37 mmol) in dry pyridine (10 mL) the appropriate sulfonyl chloride was added (1.05 mmol; 3 eq.) (*viz*; benzenesulfonyl chloride and 4-methylbenzenesulfonyl chloride) and heated at reflux for 2 hrs. The mixture was added to cold water (30 mL) and stirred for several minutes. The resulted solid was filtered, washed with water, dried and recrystallized from ethanol to afford the titled compounds.

#### 4.1.11.1. N-(2-((4-Methoxyphenyl)amino)quinoxalin-6-yl)benzenesulfonamide (XVIIa)

The titled compound was separated as black solid; m.p.  $218^{\circ}$ C;  ${}^{1}$ H NMR (300 MHz, DMSO-d6)  $\delta$  10.58 (s, 1H), 8.94 (d, J = 3.4 Hz, 1H), 8.63 (s, 1H), 8.53 (s, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.60 – 7.46 (m, 5H), 7.41 (dd, J = 8.7, 2.5 Hz, 1H), 7.31 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.5 Hz, 2H), 3.74 (s, 3H); FT-IR ( max, cm<sup>-1</sup>): 3390 (NH), 3045 (CH aromatic), 2926 (CH aliphatic),1330 & 1150 (SO2); MS : (Mwt. : 406) : m/z, 407 [M+1 , (25.1%)] , 406 [M<sup>+</sup>, (5.7%)] , 251 (100%); Anal. Calcd for  $C_{21}H_{18}N_4O_3S$ : C, 62.05; H, 4.46; N, 13.78; Found: C, 62.13; H, 4.49; N, 13.86.

#### 4.1.11.2. N-(2-((4-Methoxyphenyl)amino)quinoxalin-6-yl)-4-methylbenzenesulfonamide (**XVIIb**)

The titled compound was obtained as brownish solid; m.p.  $166^{\circ}$ C;  $^{1}$ H NMR (300 MHz, DMSOd6)  $\delta$  10.40 (s, 1H), 9.74 (s, 1H), 8.75 (d, J = 3.2 Hz, 1H), 8.44 (s, 1H), 7.81 (d, J = 8.9 Hz, 2H), 7.66 (d, J = 8.1 Hz, 1H), 7.53 (d, J = 8.8 Hz, 2H), 7.38 (dd, J = 8.9, 2.5 Hz, 1H), 7.33 (d, J = 8.6 Hz, 2H), 6.93 (d, J = 9.0 Hz, 2H), 3.74 (s, 3H), 2.30 (s, 3H); FT-IR ( max, cm<sup>-1</sup>): 3350 (NH), 3092 (CH aromatic), 2910 (CH aliphatic),1350 & 1165 (SO2); MS : (Mwt. : 420) : m/z, 421 [M+1 , (24.1%)] , 420 [M<sup>+</sup>, (4.5%)] , 185 (100%); Anal. Calcd for  $C_{22}H_{20}N_4O_3S$ : C, 62.84; H, 4.79; N, 13.32; Found: C, 62.97; H, 4.84; N, 13.39.

#### 4.1.11.3. N-(2-((4-Chlorophenyl)amino)quinoxalin-6-yl)-4-methylbenzenesulfonamide (**XVIIc**)

The product was separated as brownish black solid; m.p.  $268^{\circ}$ C; <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  10.52 (s, 1H), 10.23 (s, 1H), 8.55 (s, 1H), 7.98 (d, J = 2.3 Hz, 1H), 7.95 (d, J = 8.3 Hz, 1H), 7.68 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 8.6 Hz, 2H), 7.43 (dd, J = 8.9, 2.6 Hz, 1H), 7.36 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.3 Hz, 2H), 2.29 (s, 3H); FT-IR ( max, cm<sup>-1</sup>): 3420 (NH), 3055 (CH aromatic), 2905 (CH aliphatic),1400 & 1160 (SO2); MS: (Mwt.: 424): m/z, 426 [M+2, (36.5%)], 424 [M<sup>+</sup>, (23.8%)], 127 (100%); Anal. Calcd for C<sub>21</sub>H<sub>17</sub>ClN<sub>4</sub>O<sub>2</sub>S: C, 59.36; H, 4.03; N, 13.19; Found: C, 59.25; H, 4.01; N, 13.08.

#### 4.1.12. N-(2-((4-Chlorophenyl)amino)quinoxalin-6-yl)acetamide (XVIII)

The titled compound was afforded by stirring **XVb** (0.1 g, 0.37 mmol) with acetyl chloride (0.083 g, 1.06 mmol) in glacial acetic acid (10 ml) overnight. It was filtered, washed with water

thoroughly and dried, giving brownish black solid with a yield of 0.06 g (52%); m.p. 176°C;  ${}^{1}H$  NMR (300 MHz, DMSO-d6)  $\delta$  10.17 (s, 1H), 9.95 (s, 1H), 8.51 (s, 1H), 8.24 (d, J = 2.3 Hz, 1H), 7.98 (d, J = 8.9 Hz, 1H), 7.77 (dd, J = 8.9, 2.4 Hz, 1H), 7.68 (d, J = 8.9 Hz, 2H), 7.40 (d, J = 8.9 Hz, 2H), 2.10 (s, 3H); FT-IR ( max, cm $^{-1}$ ): 3380 (NH), 3032 (CH aromatic), 2932 (CH aliphatic), 1665 (C=O amide); MS: (Mwt.: 312): m/z, 314 [M $^{+}$ +2, (17.5%)], 312 [M $^{+}$ , (5.6%)], 255 (100%); Anal. Calcd for C<sub>16</sub>H<sub>13</sub>ClN<sub>4</sub>O: C, 61.44; H, 4.19; N, 17.91; Found: C, 61.36; H, 4.02; N, 17.85.

#### 4.1.13. General Procedure for preparation of compounds (**XXIa-b**)

The final compounds **XXIa-b** were synthesized by refluxing **XIII** (0.5 g, 2.39 mmol) with the 4-aminophenyl urea derivatives **XXa-b** (1 g, 4.4mmol) in ethanol (20 ml) and in presence of anhydrous  $K_2CO_3$  (0.6 g, 4.4 mmol) for 6 hrs. The reaction mixture is allowed to cool, filtered and the resulted solid product is washed thoroughly with water, left to dry.

#### 4.1.13.1. 1-(4-((6-Nitroquinoxalin-2-yl)amino)phenyl)-3-phenylurea (XXIa)

The titled compound was obtained as red powder, 0.8 g (83.7%); m.p. 258°C; <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  8.97 (s, 1H), 8.61 (s, 1H), 8.57 (s, 1H), 8.33 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 8.3 Hz, 2H),7.52 (s,1H), 7.49 (d, J = 8.1 Hz, 2H), 7.40 – 7.18 (m, 5H), 6.95 (s, 1H); FT-IR ( max, cm<sup>-1</sup>): 3410 (NH), 3015 (CH aromatic), 1660 (C=O amide), 1540 , 1350 (NO<sub>2</sub>); MS: (Mwt.: 400): m/z, 401 [M+1, (25.2%)], 400 [M<sup>+</sup>, (2.5%)], 226 (100%); Anal. Calcd for C<sub>21</sub>H<sub>16</sub>N<sub>6</sub>O<sub>3</sub>: C, 62.99; H, 4.03; N, 20.99; Found: C, 63.10; H, 4.07; N, 21.13.

### 4.1.13.2. 1-(3-Chlorophenyl)-3-(4-((6-nitroquinoxalin-2-yl)amino)phenyl)urea (XXIb)

Compound **XXIb** was obtained as red-orange powder in 0.75g (72%); m.p. 280°C; <sup>1</sup>H NMR (300 MHz, DMSO-d6)  $\delta$  9.85 (s,1H), 8.68 (s, 1H), 8.3 (s,1H,8.19 (s, 1H), 7.69 (s, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.34 – 7.18 (m, 3H), 7.06 (d, J = 8.3 Hz, 1H), 6.97 (d, J = 8.3 Hz, 2H), 6.51 (d, J = 8.2 Hz, 2H), 4.77 (s, 1H); FT-IR ( max, cm<sup>-1</sup>): 3400 (NH), 3010 (CH aromatic), 1650 (C=O amide), 1530 , 1320 (NO<sub>2</sub>); MS : (Mwt. : 434) : m/z , 436 [M+2 , (33.1%)] , 434 [M<sup>+</sup>, (25%)] , 175

(100%); Anal. Calcd for  $C_{21}H_{15}ClN_6O_3$ : C, 58.00; H, 3.48; N, 19.33; Found C, 58.09; H, 3.46; N, 19.51.

#### 4.2. In-vitro enzyme inhibition assay

In-vitro kinase inhibition assay of the twenty final compounds was performed by KINEXUS Corporation, Vancouver, British Columbia, Canada. In a designated radioactive working area, a radioactive assay format for profiling evaluation of protein kinase targets is performed. Assays are performed for 15 minutes duration, at 30° C, with 50 μM of <sup>33</sup>P-ATP in a final volume of 25 μl. The assays are terminated by spotting 20 μl of the reaction mixture onto a phosphocellulose P81 plate. The P81 plate was washed 3 times for approximately 15 min each in a 1% phosphoric acid solution to remove excess unreacted <sup>33</sup>P-ATP. The radioactivity on the <sup>33</sup>P-labeled peptide/ protein in the P81 plate was counted in the presence of scintillation fluid in a Trilux scintillation counter. Blank control was set up for each protein kinase target which included all the assay components except the addition of appropriate substrate in which we replace with equal volume of kinase assay buffer. The corrected activity for the target was determined by removing the blank control value.

#### 4.3. Molecular docking

The X-ray crystal structure of VEGFR-2 kinase was obtained from Protein Data Bank (accession code is 3B8Q). The protein structure was prepared according to the standard protein preparation procedure integrated in Accelry's discovery studio 2.5. This was accomplished by adding hydrogen atoms, completing the missing loops and applying force field parameters by using CHARMm force field. Water molecules were preserved because of their importance in ligand interaction to VEGFR-2 enzyme. The protein structure was minimized using steepest descent minimization algorithm. The integrated naphthyl-based compound was removed from the binding site. Our ligands were prepared using Accelry's discovery studio prepare ligands protocol. This adds hydrogen atoms and minimizes them. Docking was accomplished using GOLD 4.1 software in the interface of Accelry's discovery studio 2.5. The default values of GOLD were used but with enabling early termination and allowing generating diverse solutions to get more possible docking solutions. Also the number of docking iterations was raised to 500,000 ones so high number of

predictions was obtained. 10 Different docking solutions were generated and were inspected thoroughly for getting the best binding mode.

#### Acknowledgment:

The authors are grateful for the Science and Technology Development Fund (STDF) for funding the center for drug discovery and development research at the Faculty of Pharmacy Ain Shams University (project No. 5251) and for financial support of this study.

#### References

- 1. Levitzki, A.; Klein, S., Signal transduction therapy of cancer. *Mol Aspects Med.* 2010, *31* (4), 287-329.
- 2. Bennasroune, A.; Gardin, A.; Aunis, D.; Cremel, G.; Hubert, P., Tyrosine kinase receptors as attractive targets of cancer therapy. *Crit Rev Oncol Hematol.* 2004, *50* (1), 23-38.
- 3. Madhusudan, S.; Ganesan, T. S., Tyrosine kinase inhibitors in cancer therapy. *Clin Biochem.* 2004, 37 (7), 618-35.
- 4. Mikalsen, T.; Gerits, N.; Moens, U., Inhibitors of signal transduction protein kinases as targets for cancer therapy. *Biotechnol Annu Rev.* 2006, *12*, 153-223.
- 5. Bergers, G.; Benjamin, L. E., Tumorigenesis and the angiogenic switch. *Nat Rev Cancer.* 2003, *3* (6), 401-10.
- 6. Guo, S.; Colbert, L. S.; Fuller, M.; Zhang, Y.; Gonzalez-Perez, R. R., Vascular endothelial growth factor receptor-2 in breast cancer. *Biochim Biophys Acta*. 2010, *1806* (1), 108-21.
- 7. Tugues, S.; Koch, S.; Gualandi, L.; Li, X.; Claesson-Welsh, L., Vascular endothelial growth factors and receptors: anti-angiogenic therapy in the treatment of cancer. *Mol Aspects Med.* 2011, 32 (2), 88-111.
- 8. Sakamoto, K. M., Su-11248 Sugen. Curr Opin Investig Drugs. 2004, 5 (12), 1329-39.
- 9. Ahmad, T.; Eisen, T., Kinase inhibition with BAY 43-9006 in renal cell carcinoma. *Clin Cancer Res.* 2004, *10* (18 Pt 2), 6388S-92S.
- 10. Yang, Y.; Shi, L.; Zhou, Y.; Li, H. Q.; Zhu, Z. W.; Zhu, H. L., Design, synthesis and biological evaluation of quinoline amide derivatives as novel VEGFR-2 inhibitors. *Bioorg Med Chem Lett.* 2010, 20 (22), 6653-6.
- 11. Fraley, M. E.; Arrington, K. L.; Buser, C. A.; Ciecko, P. A.; Coll, K. E.; Fernandes, C.; Hartman, G. D.; Hoffman, W. F.; Lynch, J. J.; McFall, R. C.; Rickert, K.; Singh, R.; Smith, S.; Thomas, K. A.; Wong, B. K., Optimization of the indolyl quinolinone class of KDR (VEGFR-2) kinase inhibitors: effects of 5-amido- and 5-sulphonamido-indolyl groups on pharmacokinetics and hERG binding. *Bioorg Med Chem Lett.* 2004, *14* (2), 351-5.
- 12. Bold, G.; Altmann, K. H.; Frei, J.; Lang, M.; Manley, P. W.; Traxler, P.; Wietfeld, B.; Bruggen, J.; Buchdunger, E.; Cozens, R.; Ferrari, S.; Furet, P.; Hofmann, F.; Martiny-Baron, G.; Mestan, J.; Rosel, J.; Sills, M.; Stover, D.; Acemoglu, F.; Boss, E.; Emmenegger, R.; Lasser, L.; Masso, E.; Roth, R.; Schlachter, C.; Vetterli, W., New anilinophthalazines as potent and orally well absorbed inhibitors of the VEGF receptor tyrosine kinases useful as antagonists of tumor-driven angiogenesis. *J Med Chem.* 2000, *43* (12), 2310-23.
- 13. Hennequin, L. F.; Stokes, E. S.; Thomas, A. P.; Johnstone, C.; Ple, P. A.; Ogilvie, D. J.; Dukes, M.; Wedge, S. R.; Kendrew, J.; Curwen, J. O., Novel 4-anilinoquinazolines with C-7 basic side chains: design

- and structure activity relationship of a series of potent, orally active, VEGF receptor tyrosine kinase inhibitors. *J Med Chem.* 2002, 45 (6), 1300-12.
- 14. McTigue, M.; Murray, B. W.; Chen, J. H.; Deng, Y. L.; Solowiej, J.; Kania, R. S., Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. *Proc Natl Acad Sci U S A.* 2012, *109* (45), 18281-9.
- 15. Traxler, P.; Furet, P., Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. *Pharmacol Ther.* 1999, 82 (2-3), 195-206.
- 16. Kroe, R. R.; Regan, J.; Proto, A.; Peet, G. W.; Roy, T.; Landro, L. D.; Fuschetto, N. G.; Pargellis, C. A.; Ingraham, R. H., Thermal denaturation: a method to rank slow binding, high-affinity P38alpha MAP kinase inhibitors. *J Med Chem.* 2003, *46* (22), 4669-75.
- 17. (a) Manley, P. W.; Cowan-Jacob, S. W.; Buchdunger, E.; Fabbro, D.; Fendrich, G.; Furet, P.; Meyer, T.; Zimmermann, J., Imatinib: a selective tyrosine kinase inhibitor. *Eur J Cancer.* 2002, *38* (Suppl 5), S19-27; (b) Lowinger, T. B.; Riedl, B.; Dumas, J.; Smith, R. A., Design and discovery of small molecules targeting raf-1 kinase. *Curr Pharm Des.* 2002, *8* (25), 2269-78.
- 18. Dietrich, J.; Hulme, C.; Hurley, L. H., The design, synthesis, and evaluation of 8 hybrid DFG-out allosteric kinase inhibitors: a structural analysis of the binding interactions of Gleevec, Nexavar, and BIRB-796. *Bioorg Med Chem.* 2010, 18 (15), 5738-48.
- 19. Liu, Y.; Gray, N. S., Rational design of inhibitors that bind to inactive kinase conformations. *Nat Chem Biol.* 2006, *2* (7), 358-64.
- 20. Abasolo, M. I.; Gaozza, C. H.; Fernández, B. M., Kinetic study on the anelation of heterocycles. 1. Quinoxalinone derivatives synthesized by hinsberg reaction. *Journal of Heterocyclic Chemistry* 1987, 24 (6), 1771-1775.
- 21. Cheeseman, G., 223. Quinoxalines and related compounds. Part VI. Substitution of 2, 3-dihydroxyquinoxaline and its 1, 4-dimethyl derivative. *Journal of the Chemical Society (Resumed)* 1962, 1170-1176.
- 22. Romer, D. R., Synthesis of 2,3-dichloroquinoxalines via Vilsmeier reagent chlorination. *Journal of Heterocyclic Chemistry* 2009, *46* (2), 317-319.
- 23. Deng, J.; Feng, E.; Ma, S.; Zhang, Y.; Liu, X.; Li, H.; Huang, H.; Zhu, J.; Zhu, W.; Shen, X.; Miao, L.; Liu, H.; Jiang, H.; Li, J., Design and synthesis of small molecule RhoA inhibitors: a new promising therapy for cardiovascular diseases? *J Med Chem.* 2011, *54* (13), 4508-22.
- 24. Galal, S. A.; Abdelsamie, A. S.; Tokuda, H.; Suzuki, N.; Lida, A.; Elhefnawi, M. M.; Ramadan, R. A.; Atta, M. H.; El Diwani, H. I., Part I: Synthesis, cancer chemopreventive activity and molecular docking study of novel quinoxaline derivatives. *Eur J Med Chem.* 2011, 46 (1), 327-40.
- 25. Corona, P.; Loriga, M.; Costi, M. P.; Ferrari, S.; Paglietti, G., Synthesis of N-(5,7-diamino-3-phenyl-quinoxalin-2-yl)-3,4,5-substituted anilines and N-[4[(5,7-diamino-3-phenylquinoxalin-2-yl)amino]benzoyl]-l-glutamic acid diethyl ester: evaluation of in vitro anti-cancer and anti-folate activities. *Eur J Med Chem.* 2008, 43 (1), 189-203.
- 26. Ford, E.; Brewster, A.; Jones, G.; Bailey, J.; Sumner, N., Regioselective substitution of 2, 3-dichloro-6-amino-quinoxaline. *Tetrahedron Letters* 2000, *41* (17), 3197-3198.
- Aoki, K.; Obata, T.; Yamazaki, Y.; Mori, Y.; Hirokawa, H.; Koseki, J.; Hattori, T.; Niitsu, K.; Takeda, S.; Aburada, M.; Miyamoto, K., Potent platelet-derived growth factor-beta receptor (PDGF-betaR) inhibitors: Synthesis and structure-activity relationships of 7-[3-(cyclohexylmethyl)ureido]-3-{1-methyl-1H-pyrrolo[2,3-b]pyridin-3-yl}quinoxal in-2(1H)-one derivatives. *Chem Pharm Bull (Tokyo)*. 2007, 55 (2), 255-67.
- 28. Kettschau, G.; Briem, H.; Hartung, I.; Luecking, U.; Schaefer, M.; Thierauch, K.-H.; Schwede, W.; Husemann, M., Sulfonamido-macrocycles as Tie2 inhibitors and the salts thereof, a pharmaceutical composition comprising these compounds, the method of preparing and the use thereof. Google Patents: 2005.

- 29. Gonzalez-Alvarez, M.; Alzuet, G.; Borras, J.; del Castillo Agudo, L.; Garcia-Granda, S.; Montejo Bernardo, J. M., Strong protective action of Copper(II) N-substituted sulfonamide complexes against reactive oxygen species. *J Inorg Biochem.* 2004, *98* (2), 189-98.
- 30. Valeur, E.; Bradley, M., Amide bond formation: beyond the myth of coupling reagents. *Chem Soc Rev.* 2009, *38* (2), 606-31.
- 31. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R., Development and validation of a genetic algorithm for flexible docking. *J Mol Biol.* 1997, 267 (3), 727-48.
- 32. Houben, J.; Weyl, T.; Müller, E., Methoden der organischen Chemie (houben-weyl). 1952.
- 33. Sah, P., p-Nitrobenzazide and p-nitrophenyl isocyanate as reagents for the identification of amines. *Recueil des Travaux Chimiques des Pays-Bas* 1940, *59* (3), 231-237.
- 34. Rodriguez, F.; Rozas, I.; Kaiser, M.; Brun, R.; Nguyen, B.; Wilson, W. D.; Garcia, R. N.; Dardonville, C., New bis(2-aminoimidazoline) and bisguanidine DNA minor groove binders with potent in vivo antitrypanosomal and antiplasmodial activity. *J Med Chem.* 2008, *51* (4), 909-23.

#### **Tables, Figures and Schemes captions**

- Table 1: VEGFR-2 and other kinases % inhibition achieved by the twenty targeted compounds at  $10~\mu M$
- Table 2: IC<sub>50</sub> values for compounds VIIa, IX, XVIc, XXIa and XXIb
- **Table 3:** Computer aided ADME study of the targeted compounds
- **Figure 1**: Sutent<sup>®</sup>(Sunitinib) and Nexavar<sup>®</sup> (Sorafenib)
- **Figure 2**: (a) A diagram illustrating the common features between Gleevec<sup>®</sup>, Nexavar<sup>®</sup> and BIRB-769 as type-II inhibitors <sup>18</sup> (b) Fitness of these essential features on our designed compounds revealing the green left side that presents the main scaffold adopting the active site. Also, the urea, amide or sulfonamide core was presented in yellow color and finally the extra moiety occupying the allosteric site was given in pink color.
- **Figure 3:** Graph of log compounds **VIIa, IX and XVIc** concentrations against % VEGFR-2 activity inhibition.
- **Figure 4**: (a) Sorafenib docking pose showing the same key interactions as reported in the literature (b) The pose adopted by compound **IX** showing excellent binding with VEGFR-2 binding site in its inactive conformation. (c) and (d) compounds **XVIc** and **VIIa** in their docked poses respectively revealing that all the essential features of type-II inhibitors are fulfilled.

**Figure 5:** (a) and (b) showing the matching of the negative field (hydrogen bond acceptor) with Sorafenib in both compounds **XVIc**, **VIIa**. (c) Compound **VIId** shows the negative field in the totally opposite directions (d). Compound **XVIb** shows no negative field around that of Sorafenib.

#### Scheme 1: 3-((4-Methoxyphenyl)amino)-7-(substituted amino)quinoxalin-2(1H)-ones

**Reagents and conditions: a)** Aq. HCl, reflux, 2h, 98% **b)** KNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, rt, 96% **c)** POCl<sub>3</sub>, reflux, 6h, 95% **d)** p-anisidine, isopropanol, rt, 3 h, 90% **e)** Conc. HCl, 50° c, 8 h, 86% **f)** Pd-C, THF/MeOH, 40° c, 24 h, 95% **g)** Aryl and cyclohexyl isocyanates & aryl isothiocyanate, THF, 2-24 h, rt, 80-85% **h)** P-substituted benzenesulfonyl chloride, pyridine, reflux, 3 h, 40-58% **i)** Phthalic anhydride, AcOH, rt, 82% **j)** Acetyl chloride, THF, reflux, 24 h, 73%

### Scheme 2: N6-Substituted-N2-(4-substituted phenyl)quinoxaline-2,6-diamines

**Reagents and conditions: a)** EtOH, rt, 2h, 98% **b)** KNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, rt, 96% **c)** POCl<sub>3</sub>, PCl<sub>5</sub>, reflux, 10h, 86% **d)** P-anisidine, p-chloroaniline, EtOH, reflux, 5h, 92% **e)** Pd-C, THF/MeOH, 40 ° c, 24 h, **f)** Aryl and cyclohexyl isocyanates & aryl isothiocyanate, DCM, rt, 2-24 h **g)** P-substituted benzenesulfonyl chloride, pyridine, reflux, 3 h **h)** Acetyl chloride, gl. Acetic acid, rt, 24 h

#### Scheme 3: 1-(4-((6-Nitroquinoxalin-2-yl)amino)phenyl)-3-(3-substituted phenyl)ureas

**Reagents and conditions:** a) Aryl isocyanate derivatives, THF, 24h, r.t.75.8-85.3%, b) SnCl<sub>2</sub>, EtOH, reflux, 16h, 50-51.8%. c) XIII, EtOH, anhydrous K<sub>2</sub>CO<sub>3</sub>, reflux, 6h. 72-83.7%

**Table 1:** VEGFR-2 and other kinases % inhibition achieved by the twenty targeted compounds at  $10 \, \mu M$ 

| Compound ID | VEGFR-2    | c-Met | PDGFRβ | B-raf | EGFR |
|-------------|------------|-------|--------|-------|------|
| VIIa        | <u>-62</u> | -43   | NT     | 0     | NT   |
| VIIb        | -23        | -47   | -8     | NT    | NT   |

| VIIc  | -17        | 2   | -10 | NT | -17 |
|-------|------------|-----|-----|----|-----|
| VIId  | 3          | -15 | -2  | NT | NT  |
| VIIe  | -52        | 1   | -1  | NT | NT  |
| VIIIa | -10        | -58 | NT  | NT | NT  |
| VIIIb | -29        | -16 | NT  | NT | NT  |
| IX    | <u>-69</u> | -14 | NT  | NT | NT  |
| X     | -23        | -18 | NT  | NT | NT  |
| XVIa  | 4          | -15 | NT  | NT | NT  |
| XVIb  | 3          | -1  | NT  | NT | NT  |
| XVIc  | <u>-66</u> | -6  | NT  | NT | NT  |
| XVId  | 6          | -33 | NT  | NT | NT  |
| XVIe  | -11        | -5  | NT  | NT | NT  |
| XVIIa | -18        | -13 | NT  | NT | NT  |
| XVIIb | -29        | -26 | NT  | NT | NT  |
| XVIIc | -27        | -27 | NT  | NT | NT  |
| XVIII | -5         | 0   | NT  | NT | NT  |
| XXIa  | <u>-65</u> | -34 | NT  | NT | NT  |
| XXIb  | <u>-61</u> | 3   | NT  | NT | NT  |

NT: means Not Tested

Table 2: IC<sub>50</sub> values for compounds VIIa, IX, XVIc, XXIa and XXIb

| Compound ID | IC <sub>50</sub> values | R <sup>2</sup> values |
|-------------|-------------------------|-----------------------|
| VIIa        | <u>10.3</u>             | 0.9977                |
| IX          | 61.8                    | 0.9821                |
| XVIc        | 210.4                   | 0.9887                |
| XXIa        | 268.2                   | 0.9664                |
| XXIb        | 85.4                    | 0.9921                |

Table 3: Computer aided ADME study of the targeted compounds

|       |                         |                     | Absorption         |                         | Solublility        | CYP              | CYP 2D6                  |
|-------|-------------------------|---------------------|--------------------|-------------------------|--------------------|------------------|--------------------------|
|       | A log P 98 <sup>a</sup> | PSA 2D <sup>b</sup> | level <sup>c</sup> | Solubility <sup>d</sup> | level <sup>e</sup> | 2D6 <sup>f</sup> | probability <sup>g</sup> |
| VIIa  | 2.564                   | 106.095             | 0                  | -4.009                  | 2                  | 0                | 0.277                    |
| VIIb  | 3.463                   | 88.794              | 0                  | -4.794                  | 2                  | 0                | 0.237                    |
| VIIc  | 3.229                   | 106.095             | 0                  | -4.921                  | 2                  | 0                | 0.178                    |
| VIId  | 3.05                    | 106.095             | 0                  | -4.428                  | 2                  | 0                | 0.178                    |
| VIIe  | 2.846                   | 106.095             | 0                  | -4.255                  | 2                  | 0                | 0.485                    |
| VIIIa | 2.359                   | 110.586             | 0                  | -4.217                  | 2                  | 0                | 0.465                    |
| VIIIb | 2.845                   | 110.586             | 0                  | -4.635                  | 2                  | 0                | 0.386                    |
| IX    | 2.286                   | 131.401             | 1                  | -3.977                  | 3                  | 0                | 0.336                    |
| X     | 0.992                   | 93.285              | 0                  | -2.698                  | 3                  | 0                | 0.475                    |
| XVIa  | 4.959                   | 69.882              | 0                  | -6.132                  | 1                  | 0                | 0.435                    |
| XVIb  | 4.74                    | 78.253              | 0                  | -6.066                  | 1                  | 0                | 0.247                    |
| XVIc  | 4.546                   | 87.183              | 0                  | -5.752                  | 2                  | 0                | 0.415                    |
| XVId  | 4.341                   | 87.183              | 0                  | -5.582                  | 2                  | 1                | 0.643                    |
| XVIe  | 5.022                   | 78.253              | 0                  | -6.32                   | 1                  | 0                | 0.475                    |
| XVIIa | 3.854                   | 91.674              | 0                  | -5.426                  | 2                  | 0                | 0.485                    |
| XVIIb | 4.34                    | 91.674              | 0                  | -5.85                   | 2                  | 0                | 0.396                    |
| XVIIc | 5.021                   | 82.744              | 0                  | -6.595                  | 1                  | 0                | 0.356                    |
| XVIII | 3.168                   | 65.443              | 0                  | -4.68                   | 2                  | 1                | 0.514                    |
| XXIa  | 3.97                    | 121.076             | 1                  | -5.519                  | 2                  | 0                | 0.267                    |
| XXIb  | 4.635                   | 121.076             | 2                  | -6.338                  | 1                  | 0                | 0.158                    |

<sup>&</sup>lt;sup>a</sup> Lipophilicity descriptor

Sutent®(Sunitinib)

Nexavar® (Sorafenib)

b Polar surface area
c Absorption level (0= good, 1= moderate, 2 = low, 3= very low)
d Solubility parameter
e Solubility level (0= extremely low, 1= very low but soluble, 2 = low, 3= good, 4= optimal)
f CYP2D inhibition (0= non inhibitor, 1= likely to inhibit)

<sup>&</sup>lt;sup>g</sup> CYP2D inhibition probability

Figure 1. Sutent®(Sunitinib) and Nexavar® (Sorafenib)



**Figure 2**: (a) A diagram illustrating the common features between Gleevec<sup>®</sup>, Nexavar<sup>®</sup> and BIRB-769 as type-II inhibitors <sup>18</sup> (b) Fitness of these essential features on our designed compounds revealing the green left side that presents the main scaffold adopting the active site. Also, the urea, amide or sulfonamide core was presented in yellow color and finally the extra moiety occupying the allosteric site was given in pink color.



**Figure 3**: Graph of log Compounds **VIIa, IX and XVIc** concentrations against % VEGFR-2 activity inhibition. R<sup>2</sup> values for the graph range from 0.9664 to 0.9977





**Figure 4**: (a) Sorafenib docking pose showing the same key interactions as reported in the literature (b) The pose adopted by compound **IX** showing excellent binding with VEGFR-2 binding site in its inactive conformation. (c) and (d) Compounds **XVIc** and **VIIa** in their docked poses respectively revealing that all the essential features of type-II inhibitors are fulfilled.



**Figure 5:** (a) and (b) showing the matching of the negative field (hydrogen bond acceptor) with Sorafenib in both compounds **XVIc** ,**VIIa**. (c) Compound **VIId** shows the negative field in the totally opposite directions (d) Compound **XVIb** showing no negative field around that of Sorafenib.

### Scheme 1: 3-((4-Methoxyphenyl)amino)-7-(substituted amino)quinoxalin-2(1H)-ones

**Reagents and conditions:** a) Aq. HCl, reflux, 2h, 98% b) KNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, rt, 96% c) POCl<sub>3</sub>, reflux, 6h, 95% **d**) P-anisidine, isopropanol, rt, 3 h, 90% **e**) Conc. HCl, 50° c, 8 h, 86% **f**) Pd-C, THF/MeOH, 40 ° c, 24 h, 95% g) Aryl and cyclohexyl isocyanates & aryl isothiocyanate, THF, 2-24 h, rt, 80-85% h) P-substituted benzenesulfonyl chloride, pyridine, reflux, 3 h, 40-58% i) Phthalic anhydride, AcOH, rt, 82% j) Acetyl chloride, THF, reflux, 24 h, 73%

#### Scheme 2: N6-substituted-N2-(4-substituted phenyl)quinoxaline-2,6-diamines



**XVIc**:  $R_1$ = -OCH<sub>3</sub>,  $R_2$ = 3-methylphenyl, X= O

XVId: R<sub>1</sub>= -OCH<sub>3</sub>, R<sub>2</sub>= -cyclohexyl, X=O

XVIe: R<sub>1</sub>= -CI, R<sub>2</sub>= -cyclohexyl, X=O

**XVIIb**:  $R_1$ = -OCH<sub>3</sub>,  $R_2$ = -CH<sub>3</sub>

**XVIIc**:  $R_1$ = -CI,  $R_2$ = -CH<sub>3</sub>

**Reagents and conditions: a)** EtOH, rt, 2h, 98% **b)** KNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, rt, 96% **c)** POCl<sub>3</sub>, PCl<sub>5</sub>, reflux, 10h, 86% **d)** P-anisidine, p-chloroaniline, EtOH, reflux, 5h, 92% **e)** Pd-C, THF/MeOH, 40 ° c, 24 h, **f)** Aryl and cyclohexyl isocyanates & aryl isothiocyanate, DCM, rt, 2-24 h **g)** P-substituted benzenesulfonyl chloride, pyridine, reflux, 3 h **h)** Acetyl chloride, gl. Acetic acid, rt, 24 h

### Scheme 3: 1-(4-((6-Nitroquinoxalin-2-yl)amino)phenyl)-3-(3-substituted phenyl)ureas

$$\begin{array}{c} NH_2 \\ \\ NO_2 \end{array}$$

$$XIII, c \\ \hline XXIa=H \\ XXIb=CI$$

**Reagents and conditions: a)** Aryl isocyanate derivatives, THF, 24h, rt,75.8-85.3%, **b)** SnCl<sub>2</sub>, EtOH, reflux, 16h, 50-51.8%. **c)** XIII, EtOH, anhydrous K<sub>2</sub>CO<sub>3</sub>, reflux, 6h. 72-83.7%

### Graphical abstract





Compound VIIa in the VEGFR-2 binding site.



#### **Research highlights:**

Quinoxaline based compounds were synthesized as VEGFR-2 inhibitors. Molecular modeling study was conducted for the target compounds on VEGFR-2. Compound **IX** displayed the best inhibition percent againstVEGFR-2 which is 69% Compound **VIIa** displayed the best IC50 value of 10.27  $\mu$ M.