

Objectifs:

- Démontrer théoriquement et expérimentalement l'efficience du camouflage paraxial.
- Réaliser une simulation informatique du camouflage d'un satellite en orbite autour de la Terre par ce même dispositif.

Plan

I. La Cape de Rochester

- 1. Théorie du Camouflage Paraxial
- 2. Expérience et résultats

II. Application au camouflage d'un satellite

- 1. Modélisation et Quantification du problème
- 2. Simulation et résultats

1. Théorie du camouflage paraxial

Définition d'un camouflage paraxial parfait

Fig: Camouflage parfait en optique géométrique

Topo sur l'optique matricielle[5]

Approximation Paraxiale

Linéarité des relations

Description matricielle

Matrice Translation

1 0 -1/f 1

Matrice d'une lentille mince

Quantification

$$\begin{pmatrix}
A & B \\
C & D
\end{pmatrix} = \begin{pmatrix}
1 & L/n \\
0 & 1
\end{pmatrix}$$
Camouflage parfait

Equation (1) vérifiée

Présence d'une région camouflée

1

Camouflage Paraxial parfait

Ainsi:

$$\begin{cases}
A=1 \text{ ou } D=1 \text{ car det } [ABCD]=1 \\
B=L/n \\
C=0
\end{cases}$$

Recherche des solutions

Pour un système d'une lentille

Si C=0 alors
$$f = \pm \infty$$

Géométrie plane : Pouvoir optique nul

Pas de champ camouflé

Nous chercherons comme solution un système de lentilles minces:

- > Présentant une symétrie rotationnelle
- ➤ Dans I 'air n=1

Pour un système de 2 lentilles

$$\begin{pmatrix} 1 & 0 \\ & & \\ -1/f_1 & 1 \end{pmatrix} \begin{pmatrix} 1 & t \\ & & \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ & & \\ -1/f_2 & 1 \end{pmatrix} =$$

$$1 - t / f_1$$
 t $- (f_1 + f_2 - t) / f_1 \cdot f_2$ $1 - t / f_2$

(1) vérifiée ssi $f_1 = f_2 = \pm \infty$

Aucun effet optique

Pas de champ camouflé

$$\begin{bmatrix} 1 & 0 \\ -1/f_3 & 1 \end{bmatrix}$$
 $\begin{bmatrix} 1 & t2 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ -1/f_2 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & t1 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ -1/f_1 & 1 \end{bmatrix}$ $\begin{bmatrix} (2) \\ (2) \\ (2) \end{bmatrix}$

Exprimons f_2 si C=0

$$f_2 = -(f_1-t1)(f_3-t2)/(f_1+f_3-t1-t2)$$
 (3)

(2) devient alors

Or on devrait avoir B=t1+t2

Pour cela il faut
$$t1.t2(f_1+f_3-t1-t2)/(f_1-t1)(f_3-t2)=0$$
 (5)

Vrai
$$si t1=0 ou t2=0$$
 système a 2 lentilles

si
$$(f_1+f_3-t1-t2)=0 \longrightarrow f_2 \rightarrow \infty$$

$$f_2 \rightarrow \infty$$

$$\frac{f_3(f_1-t1)}{f_1(f_3-t2)} \qquad t1+t2+\frac{t1.t2(f_1+f_3-t1-t2)}{(f_1-t1)(f_3-t2)}$$

0
$$f_1 (f_3-t2)/f_3 (f_1-t1)$$

(4)

Approche asymptotique

Considérons un système a 2 moitié symétrique

$$f_1 = f_3$$
 et t1=t2

- (3) devient $f_2 = (t1-f_1)/2$ (6)
- (5) devient $2t1^2/(f_1-t1) = 0$ (7)

Pour $f_1 >> t1$ (6) et (7) tendent à être satisfaites

Pour un système de 4 lentilles

Fixons la 1^{ère} de notre système, sachant que l'ensemble doit se comporter comme s'il n'avait pas été là, la 2^{ème} moitié doit défaire tout les changements de la 1ère

Considérons alors un système au **2 moitiés symétrique**

ainsi
$$f_1 = f_4$$
, $f_2 = f_3$ et t1=t3

A=1 et C=0
$$\longrightarrow$$
 t1= f_1+f_2 (8)

La matrice du système s'écrit alors:

1
$$f_1 \left(-2t1^2 + f_1 \left(2t1+t2\right)\right) / (f_1 - t1)^2$$

•

0

(9)

Pour B=2t1+t2 on obtient

$$t2 = 2f_2 (f_1 + f_2)/(f_1 - f_2)$$
 (10)

(9) et (10) nous donne donc une solution exacte à (1)

ainsi L =
$$2t1+t2=2f_1(f_1+f_2)/(f_1-f_2)$$

0 1

Conclusion

Théoriquement système de 4 lentilles peut donc constituer un camouflage parfait

2. Expérience et résultats

Simulation: Modèle simplifié

Nous supposerons les lentilles infiniment mince

Pupille d'entrée: **40mm** Champ visuel: **±0,5 degré**

Exécution du code

L1=Dioptre(0.04,1,0)

L2=Dioptre(0.04,0.2,1.2)

L3=Dioptre(0.0924,0.2,1.8)

L4=Dioptre(0.706,1,3)

systeme_4_lentilles(L1,L2,L3,L4,m.pi/360,L1.aperture)

On prends f1=f4=1000 mm, f2=f3=200 mm d1=d2=d3=d4=40 mm

Ainsi t1=1200 mm et t2= 600 mm

Système optique avec modulation des diamètres

Pupille d'entrée: **5mm**

Champ visuel: ±0,005 degré

systeme_4_lentilles(L12,L22,L32,L42,m.pi/36000,0.005)

Voir les listings pour plus de détails

Remarques

systeme_4_lentilles(L13,L23,L33,L43,m.pi/36000,0.01)

Le champ double avec les caractéristiques

systeme_4_lentilles(L13,L23,L33,L43,m.pi/(180*10**)5,0.01)

Le modèle théorique tend à être validé pour des incidence très faibles

Réalisation pratique

Système optique d'un camouflage paraxial

On rappel:

f1=f4=1000 mm, f2=f3=200 mm

d1=d2=d3=d4=40 mm

t1=1200 mm et t2= 600 mm

Une main dans le champ d'invisibilité du système

Observations

- Grossissement >1 pour l'image
- Aberrations chromatiques en lumière blanche
- Le champs d'invisibilité est non conforme au modèle simplifié

Interprétation

Les erreurs d'alignement et la non prise en compte de épaisseur des lentilles dans mon expérience pourrait expliquer le grossissement diffèrent de 1 vu la sensibilité du système.[1]

A cela s'ajoute les aberrations notamment sphériques et l'astigmatisme qui expliquerait la différence vis-à-vis du modèle simplifié

Conclusion

Le système présente bien une capacité à camoufler Une expérimentation plus précise validerai mieux les critères analytiques dans les limites des caractères propre au lentilles

Résultat obtenu par Joseph Choi et John Howell

II. Application au camouflage d'un satellite

1. Modélisation et quantification du problème

Hypothèses

L'agrandissement de la zone camouflage étant aisé le camouflage peut être mis en concordance avec les dimension du satellite

D'autre part nous supposerons:

- ✓ Toutes les solutions technologiques pour la mise en œuvre du camouflage paraxial sur le satellite effectives
- ✓ Que le satellite est un point matériel
- ✓ Le champs angulaire de vision de ± 1 degré
- ✓ La Terre de forme sphérique parfaite

Modélisation

Modélisation du problème

 α : angle associé au champ visuel

 β : angle de travail

 γ : angle intermédiaire

Une modélisation plane est possible car le système optique présente une symétrie rotationnelle et tout plan contenant O est plan de symétrie pour la Terre

Quantification

Exprimons la surface interceptée

Vue 3D

$$dS = R^{2}. d\theta. d\varphi. \sin \theta$$

$$S = R^{2}. \int_{-\beta}^{\beta} d\varphi. \int_{-\beta}^{\beta} \sin \theta. d\theta$$

$$S = R^{2}. 2\beta \left[-\cos \theta\right]_{\frac{\pi}{2} + \beta}^{\frac{\pi}{2} - \beta}$$

$$S = 2\beta R^{2} \left(-\cos \left(\frac{\pi}{2} - \beta\right) + \cos \left(\frac{\pi}{2} + \beta\right)\right)$$

$$S = 2\beta R^{2} (2\sin \beta) \quad (11)$$

La projection de cette calotte sur un plan donne:

$$S_{plane} = \pi R^2 (\sin \beta)^2$$
 (12)

Déterminons β

On a
$$\gamma = \pi - \alpha - \beta$$

$$\frac{\frac{R+h}{\sin \gamma} = \frac{R}{\sin \alpha}}{\Rightarrow \frac{R+h}{R} \sin \alpha = \sin \gamma}$$

$$\Rightarrow \sin(\pi - \alpha - \beta) = \sin(\alpha + \beta) = \sin\frac{R+h}{R}$$
 Physiquement $0 < \beta < \frac{\pi}{2}$
$$\Rightarrow \beta = \arcsin\left(\frac{R+h}{R}\sin\alpha\right) - \alpha$$
 (13)

Courbe de variation de β en fonction de h

Finalement

$$S = 4(\arcsin\left(\frac{R+h}{R}\sin\alpha\right) - \alpha)R^2\sin(\arcsin\left(\frac{R+h}{R}\sin\alpha\right) - \alpha) \quad \text{(13)}$$

$$S_{plane} = \pi R^2 (\sin(\arcsin(\frac{R+h}{R}\sin\alpha) - \alpha))^2$$
 (14)

Evolution de la surface en fonction de l'altitude

Le camouflage révèle son intérêt pour de grandes altitudes

2. Simulation et résultats

Orbite géostationnaire $h=35~784~km^2$

 $S=1\,843\,816\,km^2$ près de **2,86 fois** la superficie de la France

On définit le taux de couverture

$$t = \frac{S}{Sterre}$$

On a **t=1,44%**

Orbite équatoriale elliptique à grande apogée

$$\begin{array}{l} apog\acute{e}e = 35\ 000\ km^2 \\ p\acute{e}rig\acute{e}e = 1\ 000\ km^2 \end{array}$$

Ainsi 8982 $km^2 < S < 1769700 km^2$

0,07%< t < 1,387%

