PseudoCode & Worked Example

Software Engineering 1

Dr Swen E. Gaudl

University of Plymouth 2022

0 M P

1

0

0

Mobile.Plymouth.ac.uk

Please Sign in using Code:

COMP1000 Agenda This Week:

Structure your thinking:

FlowCharts & Mindmaps -> PseudoCode

Intro to computational thinking

Create a program

Starting Your First Dotnet Example Project

Computational Thinking/ Algorithmic Thinking

What is an Algorithm?

- Finite process (has ending condition)
- Set of instructions (step-by-step)
- Should solve a specific instance of a problem

Computational Thinking/ Algorithmic Thinking

- Is not about being able to follow an algorithm
- Is about translating a real-world problem into a computational problem
- Constructing a good computational solution
- If no good solution exists:
 - You need to be able to spec. why
 - Potentially come up with an approx. solution
- Involves abstracting the problem

Computational Thinking/ Algorithmic Thinking

Abstraction:

- Looking at different levels/layers of the problem
- extracting smaller essential pieces
- Ignore pieces of problem that are not crucial
- Solving the pieces
- Integrate them and repeat

» Creates model of the actual problem

Tools for looking at problems

Flow Chart Diagrams

Name	Symbol	Usage
Start or Stop	Start/Stop	The beginning and end points in the sequence.
Process	Process	An instruction or a command.
Decision	Decision	A decision, either yes or no.
Input or Output	Input/Output	An input is data received by a computer. An output is a signal or data sent from a computer.
Connector		A jump from one point in the sequence to another.
Direction of flow		Connects the symbols. The arrow shows the direction of flow of instructions.

Flow Chart Diagrams

- Making a coffee!
- Making a coffee! (lower abstraction level)

FlowChart

- Small set of symbols
- Take a given process
- Cut it into small pieces
- See where you have choices or want interactions
- Do elements repeat?
- Start simple
- Iterate

FlowChart

- Not just used for programming
- Helpful tool to structure all kinds of processes

Softwa

Input/Output

Start/Stop

Process

Decision

FlowChart

Mahmoud Rushdi: Modeling of Dynamic Power Management in Energy Harvesting Systems

Exercise

Play for 10 min: https://arcadespot.com/game/geometrica/

Flow ChartExercise

- Based on what you played so far:
 - Design A Program Flow Diagram on How to Play the game

PseudoCode

- Expressing processes
- without visual representation
- Elements:
 - Input
 - Output
 - White
 - For
 - Repeat-until
 - If-then-else
 - Specific instructions
- ordered top to bottom

PseudoCode

- Take the flowchart from Geometrica
- Translate the process for jumping into pseudocode
- Discuss in your teams the outcome

Some Exercises:

- Identify a process and create a flowchart for it
- Take the flowchart and create a pseudocode program for it
- Exchange the pseudocode with a class mate and test if you can create a valid flowchart from it -> check if your class mate thinks it is correct