

TEMA 1 Introducción a la Interacción Persona-Ordenador

Diseño Centrado en el Humano y Experiencia de Usuario Curso 2024-2025

Máster Universitario en Ingeniería Informática Escuela Politécnica Superior Universidad Autónoma de Madrid

Contenido – Tema 1

- 1.1 Introducción
- 1.2 Retrospectiva Histórica
- 1.3 Usabilidad
- 1.4 Accesibilidad

Bibliografía y Referencias Específicas

Contenido – Tema 1

- 1.1 Introducción
- 1.2 Retrospectiva Histórica
- 1.3 Usabilidad
- 1.4 Accesibilidad

Bibliografía y Referencias Específicas

- Interacción Persona-Ordenador (IPO o HCI)
 - Disciplina relacionada con el diseño, implementación y evaluación de sistemas informáticos interactivos para su uso por seres humanos, y con el estudio de los fenómenos más importantes relacionados [ACM, 92]

Objetivos

- Desarrollar o mejorar la seguridad, utilidad, efectividad, eficiencia y usabilidad de sistemas que incluyan ordenadores
- Para construir sistemas usables es preciso:
 - Comprender los factores (psicológicos, ergonómicos, organizativos y sociales) que determinan cómo las personas trabajan y hacen uso de los ordenadores
 - Desarrollar herramientas y técnicas para ayudar a los diseñadores de sistemas interactivos
 - Conseguir una interacción eficiente, efectiva y segura
 - Los usuarios no han de cambiar radicalmente su manera de trabajar, sino que los sistemas deben ser diseñados para satisfacer los requisitos de los usuarios

- La IPO se considera una disciplina imprescindible hoy en día en el diseño curricular de los estudios de grado y máster
 - El Informe de ACM/IEEE-CS "Joint Curriculum Task Force Computing Curricula 1991" [ACM/IEEE, 91] establece nueve áreas temáticas para cubrir la materia de la disciplina de la informática. La Interacción Persona-Ordenador es una de ellas
 - En 1988 el Grupo de Interés Especial en Interacción Persona-Ordenador (ACM-SIGCHI) puso en marcha un comité con el objetivo de hacer un diseño curricular. Su tarea fue la de redactar una serie de recomendaciones sobre educación en IPO y en 1992 redactó el documento "Curricula for Human-Computer Interaction" [ACM, 92], con una serie de recomendaciones para la creación de cursos de IPO
 - Desde febrero de 2001 se dispone de una nueva versión del informe de ACM/IEEE para desarrollar guías curriculares de programas docentes de informática. El informe final apareció en verano de 2001. En dicho documento, "Ironman Report" [ACM/IEEE, 01], la IPO se encuentra ya como un área diferenciada entre las catorce que se definen

[ACM, 92 - p 6]

Disciplinas Informáticas

1.1 Introducción

Algunas disciplinas relacionas con la IPO

Psicología

- Ciencia que estudia el comportamiento y los estados de la conciencia de la persona humana, considerada individualmente o como miembro de un grupo social
 - Psicología cognitiva
 Trata de comprender el comportamiento humano y los procesos mentales que comporta
 - Psicología social
 Trata de estudiar el origen y las causas del comportamiento humano en un contexto social
- Contribución de conocimientos y teorías sobre el comportamiento de las personas y la forma en que procesan la información
- Contribución de Metodologías y herramientas para evaluar el grado de satisfacción de las personas con el diseño de la interfaz

- Ergonomía o Factores Humanos
 - Es el estudio de las características físicas de la interacción (por ejemplo, el entorno físico donde se produce)
 - Su propósito es definir y diseñar herramientas y artefactos para diferentes tipos de ambientes (trabajo, ocio, doméstico)
 - El objetivo es maximizar la seguridad, eficiencia y fiabilidad para simplificar las tareas e incrementar la sensación de confort y satisfacción
 - Ejemplos de aspectos considerados por la ergonomía:
 - Organización de los controles y pantallas (para permitir una acción rápida del usuario, que debe poder acceder a todos los controles y ver toda la información sin mover excesivamente el cuerpo)
 - · Información más importante situada a la altura de los ojos
 - Colocación espaciada de los controles
 - Prevención de los reflejos
 - Entorno físico de la interacción
 - Aspectos de salud: posición física, tiempo de permanencia ante el ordenador, temperatura, radiación de las pantallas
 - Uso del color

Sociología - Etnografía

- Es la ciencia que estudia las costumbres y las tradiciones de los pueblos
 - En los últimos años, algunas de las mayores compañías americanas están reclutando antropólogos para comprender mejor a sus clientes y sus trabajadores y para diseñar productos que reflejen mejor las tendencias culturales emergentes
 - Las herramientas de investigación etnográfica pueden responder a cuestiones sobre organizaciones y mercados que otros métodos no pueden

Diseño

- Es la actividad encaminada a conseguir la producción en serie de objetos útiles y visualmente agradables
- Es muy importante para conseguir software usable

- Electrónica
 - Área relacionada principalmente con la componente HW
 - Diseño de dispositivos de interacción
 - Ratón
 - Dispositivos hápticos
 - Periféricos
 - Etc.
 - Áreas industriales
 - Robótica
 - Realidad virtual y aumentada

- Programación
 - Enfoques y paradigmas de programación de aplicaciones software
- Inteligencia Artificial
 - Trata de diseñar sistemas que simulen aspectos del comportamiento humano inteligente
 - Ejemplos de uso en IPO:
 - Diseño de tutores y sistemas expertos
 - Diseño de interfaces en lenguaje natural, mediante voz
 - Interacción Persona-Robot
 - Desarrollo por el Usuario Final [Macías, 05]
 - Interfaces de usuario inteligentes
 - Diseño de agentes inteligentes para simplificar la realización de tareas frecuentes
 - Programación por Demostración
- Ingeniería del Software
 - Actividades y técnicas de desarrollo de software
 - Sólo con el uso de procedimientos y técnicas de ingeniería se consigue un software de calidad [Schramme and Macías, 19]
 - Es condición necesaria, aunque no suficiente, tener en cuenta aspectos de la ingeniería del software en el **desarrollo de un sistema interactivo**

Definiciones

- Usuario
 - Persona que interactúa con un sistema informático
- Interacción
 - Todos los intercambios que suceden entre la persona y el ordenador
- Interfaz
 - Superficie de contacto entre dos entidades
 - En la IPO, las dos entidades son la persona y el ordenador
- Interfaz de Usuario (IU)
 - Los aspectos del sistema con los que el usuario entra en contacto [Moran, 81]
 - Una interfaz es una superficie de contacto y refleja las propiedades físicas de los que interactúan, se tienen que intuir las funciones a realizar y nos da un balance de poder y control [Laurel, 92]
 - Donde los bits y las personas se encuentran [Negroponte, 94]
 - Un lenguaje de entrada para el usuario, un lenguaje de salida para el ordenador y un protocolo para la interacción

 El concepto de IU ha cambiado en los últimos años debido a la variedad de dispositivos y artefactos sobre los que el usuario interactúa [Macías et al., 09]

 No obstante, los principios reflejados en la IPO son válidos para cualquier tipo de interacción entre el usuario y la IU de la aplicación

- En definitiva, la IU:
 - Son las partes del sistema con las que el usuario entra en contacto física y cognitivamente
 - Interacción física (teclado, ratón, pantalla...)
 - Interacción cognitiva (lo que se presenta al usuario debe ser comprensible para él)
 - · Las IU han de ser usables
- · La IU es una parte muy importante del éxito o fracaso de una aplicación

- Evidencias tempranas:
 - La interfaz constituye entre el 47% y el 60% de las líneas de código [McIntyre et al., 90]
 - Un 48% del código de la aplicación está dedicado al desarrollo de la interfaz [Myers, 92]
 - Cada vez más, los ordenadores son utilizados por personas con menos conocimientos técnicos en informática
 - Actualmente, más del 70% del esfuerzo de desarrollo de las aplicaciones interactivas está dedicado a la interfaz de usuario [Gartnet Group, 94]

- Muchas veces, el diseño de la IU no es suficiente para garantizar la usabilidad y accesibilidad de los sistemas interactivos desarrollados
 - La usabilidad y la accesibilidad se ven afectados no sólo por la parte no funcional de la aplicación, sino también por la parte funcional
- Para garantizar la calidad final de los sistemas interactivos se necesita un enfoque metodológico integral cercano al desarrollo de software [Macías et al., 09]
- Diseño Centrado en el Humano y Experiencia de Usuario (DCHyEU)
 - Comprende el proceso de analizar, diseñar, implementar y evaluar sistemas interactivos, o con alguna característica interactiva, garantizando en todo momento cierto grado de usabilidad y accesibilidad en la solución desarrollada
 - Uso de actividades, técnicas y herramientas de la IPO, combinadas con algunas de las tradicionales de la Ingeniería del Software
 - Experiencia de usuario

Contenido – Tema 1

- 1.1 Introducción
- 1.2 Retrospectiva Histórica
- 1.3 Usabilidad
- 1.4 Accesibilidad

Bibliografía y Referencias Específicas

- La IPO es una disciplina joven que surge dentro de un contexto social y organizacional, a raíz del reciente desarrollo de aplicaciones y sistemas operativos gráficos y su uso por parte de usuarios no informáticos
- Cronología Resumida [Macías, 16]
 - Años 70-80
 - Los psicológicos comienzan a interesarse en los aspectos de procesamiento de la información
 - Comienzan a aparecer áreas de estudio como el diseño de menús
 - Años 80-90
 - Los ordenadores monousuarios comienzan a proliferar ante la llegada del PC
 - Surgen aplicaciones y sistemas operativos con capacidades gráficas
 - Años 90-00
 - El número de usuarios de ordenadores crece exponencialmente
 - Aparece internet y la interconexión de sistemas es una realidad
 - Años 00-Actualidad
 - · La capacidad interactiva del software crece
 - Junto con internet, se populariza el éxito de los ordenadores y otros dispositivos electrónicos similares, surgiendo a su vez nuevos paradigmas sociales y de negocio

- Similitudes Históricas
 - Crisis del Software (finales de los 60)
 - Crisis de la Interfaz de Usuario (principios-mediados de los 90)

- No había estándares ni metodologías precisas que permitieran formalizar el desarrollo de sistemas interactivos
- Los recientes modelos de proceso tradicionales de la Ingeniería del Software no se adecuaban a los nuevos requisitos sobre interacción
- Comienza a surgir una necesidad de formalizar la IPO (Interacción Persona-Ordenador) en base a los datos empíricos obtenidos de proyectos reales

- Cambio paulatino en el enfoque tradicional
 - Las metodologías de producción de software deben adaptarse para contemplar el aspecto interactivo de las aplicaciones, y pasar de un enfoque centrado en el proceso y el experto a un enfoque centrado en la persona, sus tareas y su entorno [Macías, 05]

Computación Centrada en la máquina/proceso

Computación Centrada en el usuario

- La IPO surgió como un campo entrecruzado de disciplinas:
 - Gráficos por ordenador
 - Sistemas operativos
 - Factores humanos
 - Ingeniería industrial
 - Psicología cognitiva
 - Ingeniería informática
- Entidades y empresas precursoras
 - MIT
 - Universidad de Stanford SRI (Stanford Research Institute)
 - Apple
 - Microsoft
 - Xerox
- Aplicaciones precursoras
 - Programas de dibujo, manipulación de objetos y WYSIWYG (años 70-80)
 - Sistemas Operativos y sistemas WIMP (años 80)
 - Ofimática gráfica (años 80-90)
 - Interface Builders (años 90)

Contenido – Tema 1

- 1.1 Introducción
- 1.2 Retrospectiva Histórica
- 1.3 Usabilidad
- 1.4 Accesibilidad

Bibliografía y Referencias Específicas

- Para que un sistema interactivo cumpla sus objetivos tiene que ser usable y accesible a la mayor parte de la población humana
- Sin embargo, es una práctica habitual concebir que un software es usable por natura, bajo criterio de los propios desarrolladores. Muchas veces, se tiende a pensar que:
 - Los usuarios no necesitan mejores interfaces, sino un entrenamiento mejor
 - La usabilidad es subjetiva —no se puede medir
 - El diseño de la interfaz de usuario está implícito en el diseño del software
 - No se tiene que planificar expresamente y valorar su coste
 - Si el diseñador está familiarizado con guías de estilo y principios de diseño, se harán buenas interfaces
 - El diseño de la interfaz de usuario no es necesario hasta el diseño detallado
 - La usabilidad aumenta los costes de desarrollo y el tamaño del ciclo de desarrollo
- ... lo cual es un error, y muchas veces conlleva a problemas de uso con las aplicaciones finales diseñadas

- Usabilidad Definiciones
 - Un sistema es usable si es fácil de usar y fácil de aprender
 - [Preece et al., 02]
 - Aceptabilidad de un sistema o producto para una clase particular de usuarios que llevan a cabo tareas específicas en un entorno específico
 - [Bevan, 91]
- El establecimiento de unos principios de diseño en ingeniería basados en la usabilidad ha tenido como consecuencia probada:
 - una reducción de errores
 - una reducción de los costes de producción
 - una reducción de los costes de mantenimiento y apoyo
 - una reducción de los costes de formación y uso
 - una mejora en la calidad del producto
 - un incremento en la productividad

Usabilidad [ISO 9241] -> Medida en la que un producto puede ser usado por determinados usuarios para conseguir objetivos específicos con eficacia, eficiencia y satisfacción en un **contexto de uso** especificado

- Términos Asociados a la Usabilidad
 - Facilidad de Aprendizaje
 - Eficiencia
 - Recuerdo en el Tiempo
 - Tasa de Errores
 - Satisfacción

- La usabilidad de un sistema no sólo tiene que ver con la interfaz gráfica de usuario. Está ligada principalmente a la interacción, al modo en que se realizan las operaciones con el sistema
- Se ocupa también de lo que es el entorno del sistema software propiamente dicho. Por ejemplo, se ocupa del sistema de ayuda, de la documentación de usuario y del procedimiento de instalación

 La Usabilidad es una de las características de calidad del software [ISO/IEC 25010]

- En general, la usabilidad no es una característica inherente al software
 - No puede especificarse independientemente del contexto de uso y de los usuarios concretos que vayan a utilizar el sistema
- Por otro lado, la usabilidad no es una característica simple, pues implicará aspectos distintos dependiendo del tipo de sistema a construir
- A nivel empírico, la usabilidad es una medida relativa, ya que depende de las metas planteadas o de la comparación de los resultados con los obtenidos para sistemas similares

Ingeniería de la Usabilidad

 Conjunto de disciplinas y tecnologías que integra métodos y técnicas con un enfoque centrado en el usuario, que nos permiten definir y manejar con un grado de precisión adecuado los niveles de usabilidad deseados para un sistema software a desarrollar

- Aseguramiento de la usabilidad en el desarrollo de aplicaciones
 - El DCU o Diseño Centrado en el Usuario, mejora la usabilidad y se centra en las características y necesidades del usuario
- Principales características que debería tener un sistema usable:
 - Fácil de Aprender y Usar
 - El tiempo requerido desde el no conocimiento de una aplicación hasta su uso productivo debe ser mínimo
 - Debe proporcionarse ayuda a usuarios intermedios para que alcancen un nivel de conocimiento y uso del sistema máximos
 - Para que un sistema sea fácil de aprender debe ser:
 - Sintetizable
 - El usuario debe poder evaluar el efecto de operaciones anteriores en el estado actual
 - Familiar
 - Debe existir una correlación entre los conocimientos que posee el usuario (interacción con el mundo real y con otros sistemas) y los conocimientos requeridos para la interacción en un sistema nuevo

Flexible

- Flexibilidad: multiplicidad de maneras en que el usuario y el sistema pueden intercambiar información
- Parámetros que miden la flexibilidad:
 - Control del usuario
 - El usuario es quien conduce la interacción
 - Migración de tareas
 - Posibilidad de transferir el control de las tareas entre el usuario y el sistema (ej: corrector ortográfico)
 - Capacidad de sustitución
 - Permitir que valores equivalentes puedan ser sustituidos unos por otros (ej: margen de una carta)
 - Adaptabilidad
 - Adecuación automática de la interfaz al usuario (ej: detección de la repetición de secuencias de tareas)

Robusto

El sistema debe permitir al usuario conseguir sus objetivos sin problemas

Predictivo

El sistema debe ser fácil de predecir por los usuarios ante situaciones similares

Consistente

- Es un concepto clave en la usabilidad
- Un sistema es consistente si todos los mecanismos que se utilizan son siempre usados de la misma manera, siempre que se utilicen y sea cual sea el momento en que se haga
- Consejos para diseñar sistemas consistentes:
 - Seguir guías de estilo siempre que sea posible
 - Diseñar con un 'look & feel' común
 - No hacer modificaciones si no es necesario hacerlas
 - Añadir nuevas funcionalidades al conjunto preexistente en vez de cambiar las ya conocidas

Buena Recuperabilidad

 El sistema debe permitir al usuario corregir una acción una vez que ésta ha sido reconocida como errónea

Buen Tiempo de Respuesta

- Tiempo de respuesta: tiempo que necesita el sistema para expresar los cambios de estado al usuario
- Los tiempos de respuesta deben ser soportables para el usuario

Adecuación a las Tareas

 El sistema debe permitir todas las tareas que el usuario quiere hacer y en la forma en que éste las quiere hacer

Baja Carga Cognitiva

- Debe favorecerse en los usuarios el reconocimiento sobre el recuerdo
- Los usuarios no deben tener que recordar abreviaturas y códigos complicados

Problemas de usabilidad

Contenido – Tema 1

- 1.1 Introducción
- 1.2 Retrospectiva Histórica
- 1.3 Usabilidad
- 1.4 Accesibilidad

Bibliografía y Referencias Específicas

1.4 Accesibilidad

- La accesibilidad es el grado en el que todas las personas pueden utilizar un objeto, visitar un lugar o acceder a un servicio, independientemente de sus capacidades técnicas o físicas
- Existe una diversidad implícita en cada usuario, respecto a su capacidad física, visual, motora y cognitiva, que de alguna forma marca el grado de interacción deseado [Egan, 88]

1.4 Accesibilidad

- Los seres humanos son diferentes entre sí
 - El software desarrollado debería acomodarse a esas diferencias para que cualquier persona sea capaz de usarlo sin problemas
- El objetivo es lograr la usabilidad universal, de tal modo que nadie se vea limitado en el uso por causa de esas diferencias
- Es necesario evitar diseñar **solamente** atendiendo a características de grupos de población específicos, imponiendo barreras innecesarias que podrían ser evitadas prestando suficiente atención a estas cuestiones

- Existen otros factores por los cuales debemos considerar la usabilidad universal a medio-largo plazo
 - La edad media de la población aumenta con el tiempo
 - El tiempo de vida activo de la población aumenta
 - Aumenta el acceso a los ordenadores por parte de usuarios discapacitados
 - Tanto a nivel laboral como de ocio

Definición de Discapacidad

- Una discapacidad es una diferencia individual que supera un límite más o menos arbitrario
- Muchas de estas discapacidades están presentes en grado diferente (menor o mayor) entre muchos sujetos considerados normales, por lo que tener en cuenta las recomendaciones pertinentes no sólo es importante para aquellos con limitaciones mayores

Definición de Diseño Universal.

- El diseño universal es el proceso de diseñar productos que sean usables por el rango más amplio de personas posible, funcionando en el rango más amplio de situaciones y que sean comercialmente practicables
- En general, el diseño de los productos y de entornos ha de ser usable para la mayor parte de la población, sin necesidad de adaptación o de llevar a cabo diseños especializados, idealmente

Principios del Diseño Universal

1. Uso equitativo

 El diseño ha de ser usable y de un precio razonable para personas con diferentes habilidades

2. Uso flexible

 El diseño se ha de acomodar a un rango amplio de personas con distintos gustos y habilidades

3. Uso simple e intuitivo

El uso del diseño ha de ser fácil de entender, independientemente de la experiencia del usuario, conocimiento, habilidades del lenguaje y nivel de concentración

4. Información perceptible

 El diseño debe comunicar la información necesaria efectivamente al usuario, independientemente de las condiciones ambientales para las habilidades sensoriales del usuario

5. Tolerancia para el error

 El diseño ha de minimizar posibles incidentes por azar y las consecuencias adversas de acciones no previstas

6. Esfuerzo físico mínimo

El diseño se ha de poder usar eficiente y confortablemente con un mínimo de fatiga

7. Tamaño y espacio para el acceso y uso

 El diseño ha de tener un tamaño y espacio apropiados para el acceso, alcance, manipulación y uso, atendiendo al tamaño del cuerpo, la postura o la movilidad del usuario

- Principales Discapacidades a Considerar:
 - Discapacidades Visuales
 - Color
 - Visión Reducida
 - Ceguera
 - Auditivas
 - Física o de Movimiento
 - Cognitivas

- Discapacidades Visuales
 - El ojo humano contiene bastones y conos sensibles a la luz
 - Los conos están especializados en el color
 - Sin ellos veríamos en blanco y negro
 - Hay conos para los colores rojo, verde y azul, y, a partir de su combinación, se obtienen el resto de los colores
 - De la combinación de los tres tipos de conos obtendríamos los diferentes colores
 - Los defectos en visualización del color provienen de una falta en alguno de los tres tipos de conos

 Importancia de evitar el diseño de controles u otros mecanismos importantes dependientes del color

Verde = Avanzar Amarillo = AyudaRojo = Salir

- Discapacidades visuales relativas al color
 - Protanopia
 - Ausencia de color rojo
 - Deuteranopia
 - Ausencia de color verde
 - Tritanopia
 - Ausencia de color azul
- Recomendaciones
 - No codificar ninguna conducta importante únicamente mediante colores
 - Utilizar colores perfectamente distinguibles
 - Comprobar visualización en distintas condiciones
 - Cálculo de colores dicromáticos
 - Chequeo cromático de páginas web
 - http://www.vischeck.com

Visión Reducida

- Las discapacidades visuales van desde una falta de agudeza visual hasta la completa falta de visión
- Una gran cantidad de elementos de la interfaz se apoyan habitualmente en elementos gráficos
- Resulta lógico ofrecer a los usuarios con visión reducida la opción de utilizar esos elementos hasta el límite donde sea posible
- Recomendaciones
 - Una posibilidad para hacer frente a este problema es el uso de ampliaciones de fuentes, ventanas que permitan salvar los distintos grados de reducción en la visión humana
 - Mecanismos de lupas, zoom y ampliaciones de fuentes y ventanas

- Cuando la reducción de la visión llega al límite máximo, estaríamos ante un caso de ceguera
- En ese caso habría que cambiar el canal de comunicación de la Interfaz con el Usuario
- El teclado, en este caso, toma una gran importancia para usuarios invidentes
 - El ratón, por otro lado, llega a ser poco útil en estos casos
- Recomendaciones
 - Sistemas de voz
 - Ayudas y tips sonoros, especialmente en gráficos
 - Tablas y teclados Braille
 - Se trata, por tanto, de cambiar los Inputs y Outputs de la Interfaz a elementos como el teclado y los altavoces

Discapacidad Auditiva

- Menos problemáticas, ya que los usuarios pueden responder a representaciones visuales
- Problemas, en este caso, con alertas y señales en forma de sonidos que no pueden ser percibidos por este tipo de usuarios
- Conversión necesaria de información auditiva a información textual
- Lenguaje de Signos
 - Muchas personas sordas utilizan el lenguaje de signos desde su infancia
 - Estas personas pueden tener ciertos problemas en comprender algunas palabras, por falta o reducción de vocabulario con respecto al lenguaje de signos

Recomendaciones

- Evitar interacción dependiente exclusivamente del sonido
- Tener especial sensibilidad en el vocabulario empleado para la representación de la información en la interfaz de usuario

Discapacidad Física o Motora

- Algunos usuarios tienen problemas para manejar periféricos tales como el ratón o incluso algunos modelos de teclado
 - Algunos usuarios tienen discapacidades tales que nos les permiten pulsar dos teclas a la vez o mantener, por ejemplo, pulsada una misma tecla
- Es conveniente idear mecanismos que no hagan dependiente la manipulación de la interfaz a partir de periféricos de puntuación, como el ratón

Recomendaciones

- Una buena solución al respecto es utilizar la voz, vinculando acciones habladas del usuario a comandos sobre widgets o controles de la propia interfaz
- Otros periféricos, también apropiados para este caso, son los que permiten al usuario prescindir del ratón y de algunas opciones vinculadas exclusivamente al teclado, usando en su lugar joysticks manejados con la cabeza, boca, etc.

- Discapacidad Cognitiva o Cognoscitiva
 - Tradicionalmente, el uso de ordenadores siempre se ha pensado para individuos con ciertas capacidades intelectuales
 - Aspectos que hacen poco sostenible esa teoría actualmente:
 - Envejecimiento de la población
 - Aumento de las enfermedades degenerativas
 - Existe, en este caso, un grave problema de limitación por parte de estos individuos frente a operaciones básicas que deberían poder llevar a cabo, dada su condición o discapacidad
 - Gestiones electrónicas desde casa, socialización, etc.

Recomendaciones

- La solución para este caso no es tan sencilla, debido sin duda a la diversidad de pérdidas de habilidades cognitivas. Sólo pueden darse soluciones en términos generales:
 - Sencillez de uso
 - Diseños centrados en el usuario que fomenten el prototipado y la evaluación con personas "objetivo"

Contenido – Tema 1

- 1.1 Introducción
- 1.2 Retrospectiva Histórica
- 1.3 Usabilidad
- 1.4 Accesibilidad

Bibliografía y Referencias Específicas

Bibliografía y Referencias Específicas – Tema 1

- ACM/IEEE-CS Computing Curricula 1991. Report of the ACM/IEEE-CS Joint Curriculum Task Force. ACM Press and IEEE Computer Society Press, 1991
- ACM/IEEE Computing Curricula, 2001.
- ACM SIGCHI, Curricula for Human-Computer Interaction. ACM Press, 1992
- Abascal, J., Aedo, I., Cañas, J., Gea, M., Gil, A. B., Lorés, J., Martínez, A. B., Ortega, M., Valero, P. Vélez, M. La Interacción Persona-Ordenador. Asociación Interacción Persona Ordenador (AIPO), 2001.
- Bevan, Nigel. What is Usability? Proceedings of the 4th Inter- national Conference on HCI, Stuttgart, September 1991.
- Egan D.E. Individual Differences in Human Computer Interaction. Handbook of Human Computer Interaction. Elsevier, North Holland, 1988
- Engelbart D. y English W. A research center for augmenting human intellect. Reimpreso en ACM SIGGRAPH Video Review, 1994, pág. 106, 1968
- Gartner Group. Annual Symposium of the future of technology, information systems, Cannes, November 1994.
- ISO/IEC FDIS 9126-1: Software Engineering Product quality Quality model, 2000.
- ISO 9241-11. Ergonomic requirements for office work with visual display terminals (VDTs) -- Part 11: Guidance on usability, 1998.
- ISO 9241-210. Ergonomics of human-system interaction Part 210: Human-centred design for interactive systems. International Organization for Standardization, 2010
- Laurel B. The art of human-computer interface design. Addison-Wesley, Reading, MA, 1992.
- Macías, J.A.. Aspectos Pragmáticos en el Desarrollo por el Usuario Final. Revista Novática, Nº 175, año XXXI, pp. 45-47, mayo-junio de 2005.
- Macías, J.A., Granollers, T., Latorre, P. New Trends on Human-Computer Interaction: Research, Development, New Tools and Methods. Springer, 2009.
- Macías, J.A.. Un Estado del Arte sobre Interacción Persona-Ordenador. Revista Novática, Nº 235, año XLI, pp. 12-16, enero-marzo de 2016.

Bibliografía y Referencias Específicas – Tema 1

- Mayhew, D. The Usability Engineering Lifecyle: A Practitioner's Handbook for User Interface Design. Academic Press, 1999.
- Moran T. P. The command language grammar: a representation for the user interface of interactive systems. En International Journal of manmachine studies, núm. 15, 1981.
- Myers K. L.Attachment methods for integration. En Proceedings of the AAAI 1991 Fall Symposium on Principles of Hybrid Reasoning (KR91), 1992
- Myers B. A. y Rosson M. B. Survey on user interface programming. En CHI'92 Conference Proceedings on Human Factors in Computing Systems (BAUERSFELD P., BENNETT J. y LYNCH G., eds.), pág. 195-202. ACM Press, Nueva York, NY, 1992.
- Negroponte N. Being Digital. Vintage books, Nueva York, NY, 1994.
- Nielsen, J. Usability Engineering. Academic Press, 1993.
- Norman D. The design of everyday things. Doubleday, Nueva York, NY, 1990.
- Norman D. The invisible computer. The MIT Press, 1999.
- Preece J., Rogers Y., Sharp H. Interaction Design beyond Human-Computer Interaction.
 Wiley, 2002.
- Schramme, M. Macías, J.A. "Analysis and Measurement of Internal Usability Metrics through Code Annotations". Software Quality Journal, 2019.
- Withrow, J., Brinck, T., Speredelozzi, A. Comparative Usability Evaluation for an e-government portal. Diamond Bullet Design Report no. U1-00-2. Whitepaper. Ann Arbor, MI, USA, December, 2000.