# Machine Learning Homework 1 Report

學號:R06922117 系級: 資工碩一 姓名:李岳庭

請實做以下兩種不同 feature 的模型,回答第 (1)~(3) 題:

- (1) 抽全部 9 小時內的污染源 feature 的一次項(加 bias)
- (2) 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias)

#### 備註:

- a. NR 請皆設為 0, 其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的

### 1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數),討論兩種 feature 的影響

|         | public  | private | total      |
|---------|---------|---------|------------|
| Model 1 | 7.44992 | 5.28679 | 6.45954551 |
| Model 2 | 7.33508 | 5.79906 | 6.61182635 |

抽取全部的 feature 在 public 表現比較差,但 private 表現比較好,相加之後比較,抽取全部 feature 的表現較佳,可見挑 feature 是這次作業的關鍵。

# 2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

|         | public  | private | total      |
|---------|---------|---------|------------|
| Model 1 | 7.63920 | 5.34941 | 6.59445085 |
| Model 2 | 7.44395 | 5.91309 | 6.72224014 |

相較於9小時的結果,只取5小時的表現較差。

# 3. (1%)Regularization on all the weight with $\lambda\text{=}0.1 \cdot 0.001 \cdot 0.0001$ ,並作圖

(1) 抽全部 9 小時內的污染源 feature 的一次項(加 bias)



## (2)抽全部 9 小時內的污染源 feature 的一次項(加 bias)



- 4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量  $\mathbf{x}^n$ ,其標註(label)為一存量  $\mathbf{y}^n$ ,模型參數為一向量  $\mathbf{w}$  (此處忽略偏權值  $\mathbf{b}$ ),則線性回歸的損失函數(loss function)為  $\sum_{n=1}^{N} (y^n x^n \cdot w)^2$ 。若將所有訓練資料的特徵值以矩陣  $\mathbf{X} = [\mathbf{x}^1 \mathbf{x}^2 \dots \mathbf{x}^N]^\mathsf{T}$  表示,所有訓練資料的標註以向量  $\mathbf{y} = [\mathbf{y}^1 \mathbf{y}^2 \dots \mathbf{y}^N]^\mathsf{T}$  表示,請問如何以  $\mathbf{X}$  和  $\mathbf{y}$  表示可以最小化損失函數的向量  $\mathbf{w}$  ?請寫下算式並選出正確答案。(其中  $\mathbf{X}^\mathsf{T}\mathbf{X}$  為 invertible)
  - (a)  $(X^TX)X^Ty$
  - (b)  $(X^{T}X)^{-0}X^{T}y$
  - (c)  $(X^{T}X)^{-1}X^{T}y$
  - (d)  $(X^{T}X)^{-2}X^{T}y$

$$E = loss function = || Xw - y||^{2}$$

$$= (wTX^{T}Xw - 2w^{T}X^{T}y + y^{T}y)$$

ANS: (c)