MATH 545 Notes

Jiantong Liu

Fall 2024

These notes were live-texed from a harmonic analysis class (MATH 545) taught by Professor X. Li in Fall 2024 at University of Illinois. Any mistakes and inaccuracies would be my own.

Contents

1	Marcinkiewicz Interpolation Theorem	2
2	Approximation to the Identity	4
3	Fourier Transforms	11
4	Fourier Transform on $L^p(\mathbb{R}^n)$ for $1\leqslant p\leqslant 2$	16
5	Singular Integrals	20
6	Hilbert Transform	26
7	Riesz Transform	31
8	Method of Rotation	34
9	Littlewood-Paley Theory	37
10	Multipliers	44
11	Fractional Integrals	48
12	Continuous Littlewood-Paley Theorem	52
13	T1 Theorem in a Simple Version	54
14	Bounded Mean Oscillation and Sharp Functions	63
15	Carleson Measures	69
16	T1 Theorem in Full Version	74
Bil	Bibliography	

1 Marcinkiewicz Interpolation Theorem

Definition 1.1. Let (X, \mathcal{A}, μ) be a measure space, and let $f: X \to \mathbb{C}$ be a function. For any $0 , there is an associated <math>L^p$ -norm

$$||f||_p = \left(\int\limits_X |f|^p d\mu\right)^{\frac{1}{p}}.$$

For $p = \infty$, we define the ∞ -norm by

$$\mathrm{esssup}_{x \in X} |f(x)| = \inf\{M \in \mathbb{R} : \mu(\{x \in X : |f(x)| > M\}) = 0\}.$$

The L^p -space of X is defined by

$$L^p(X) = \{f : ||f||_p < \infty\}$$

for $0 . A weak <math>L^p$ -norm is

$$||f||_{p,\infty} = \sup_{\lambda > 0} \left(\lambda^p \mu(\{x \in X : |f(x)| > \lambda\}) \right)^{\frac{1}{p}}$$

for $0 . For <math>p = \infty$, this coincides with the L^{∞} -norm. There is then a corresponding notion of weak L^p -space. Recall that the L^p -space $L^{p,\infty}(X)$ is contained in the weak L^p -space $L^p(X)$.

Theorem 1.2. For any $0 , <math>L^p(X) \subseteq L^{p,\infty}(X)$.

Definition 1.3. Let T be an operator from (X, \mathcal{A}, μ) to a space of measurable functions on (Y, \mathcal{B}, ν) .

- 1. If $T(f_1 + f_2) = T(f_1) + T(f_2)$ for all $f_1, f_2 \in L^p(X, \mathcal{A}, \mu)$, and $T(\lambda f) = \lambda T(f)$ for all $f \in L^p(X, \mathcal{A}, \mu)$, then T is called a linear operator.
- 2. If $|T(f_1 + f_2)| \le |T(f_1)| + |T(f_2)|$ for all f_1, f_2 , and $|T(\lambda f)| = |\lambda||T(f)|$ for all f and all $\lambda \in \mathbb{C}$, then T is called a sublinear operator.
- 3. If $||T(f)||_{L^q(Y,\mathcal{B},\nu)} \leq C||f||_{L^p(X,\mathcal{A},\mu)}$ for some constant C independent of f for all $f \in L^p(X,\mathcal{A},\mu)$, then T is called a (strong) (p,q) operator.

Remark 1.4. An equality of the form $||T(f)||_{L^q(Y,\mathcal{B},\nu)} \leq C||f||_{L^p(X,\mathcal{A},\mu)}$ is called a (p,q)-type inequality.

Remark 1.5. When p = q, we say the operator T is bounded.

4. If $||T(f)||_{L^{q,\infty}(Y,\mathcal{B},\nu)} \leqslant C_{p,q}||f||_{L^p(X,\mathcal{A},\mu)}$ for all $f \in L^p$, then T is called a weak (p,q) operator.

Theorem 1.6.

$$||f||_p^p = p \int_0^\infty \lambda^{p-1} \mu(\{x \in X : |f(x)| > \lambda\}) d\lambda.$$

Theorem 1.7 (Riesz-Thorin Interpolation Theorem). Suppose that (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are measure spaces and let $p_0, p_1, q_0, q_1 \in [1, \infty]$. In the case where $q_0 = q_1 = \infty$, we should assume in addition that ν is semi-finite. If T is a linear operator such that T is strong (p_0, q_0) and strong (p_1, q_1) , i.e., $||T(f)||_{q_0} \leq M_0||f|_{p_0}$ for all $f \in L^{p_0}$, and $||T(f)||_{q_1} \leq M_1||f||_{p_1}$ for all $f \in L^{p_1}$, then for any $0 < \theta < 1$,

$$||T(f)||_{q_{\theta}} \leq M_0^{1-\theta} M_1^{\theta} ||f||_{p_{\theta}}$$

for all $f \in L^{p_{\theta}}$, where p_{θ} and q_{θ} satisfy $\frac{1}{p_{\theta}} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$ and $\frac{1}{q_{\theta}} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}$.

Remark 1.8. To interpret this, let us say $(\frac{1}{a}, \frac{1}{b})$ is a good point if T is strong (a, b). The theorem then says that if (p_0, q_0) and (p_1, q_1) are good, then any point along the line connecting these two points is also good.

Problem 1. Prove Theorem 1.7.

A proof can be found in Theorem V.1.3 of [SW71].

Theorem 1.9 (Marcinkiewicz Interpolation Theorem). Suppose that (X,\mathcal{A},μ) and (Y,\mathcal{B},ν) are measure spaces, and let $p_0,p_1,q_0,q_1\in[1,\infty]$, such that $p_0\leqslant q_0,p_1\leqslant q_1$, and that $q_0\neq q_1$. Let $\frac{1}{p_\theta}=\frac{1-\theta}{p_0}+\frac{\theta}{p_1}$, and $\frac{1}{q_0}=\frac{1-\theta}{q_0}+\frac{\theta}{q_1}$, where $0<\theta<1$. If T is a sublinear operator and is weak (p_0,q_0) and weak (p_1,q_1) , then T is strong (p_θ,q_θ) .

Again, there is a geometric interpretation via interpolation, as in Remark 1.8.

Proof. We split the proof into cases.

Case 1: $p_0 = q_0$, $p_1 = q_1$, and $p_0 \neq p_1$. For simplicity, we assume the measure is σ -finite. Set $p = p_\theta$, then we want to construct a decomposition of f via level sets and then $||T(f)||_{L^p(Y)} \leqslant C_p||f||_{L^p(X)}$ for all $f \in L^p$. Let $\lambda > 0$, and C > 0 be a constant that we will choose later. We give a decomposition $f = f_0 + f_1$, where $f_0 = f\chi_{\{x \in X: |f(x)| > C\lambda\}}$ is associated to p_0 and $f_1 = f\chi_{\{x \in X: |f(x)| \leqslant C\lambda\}}$ is associated to p_1 . Since T is sublinear, then $|T(f)| \leqslant |T(f_0)| + |T(f_1)|$. Now

$$\nu(\{x: |Tf(x)| > \lambda\}) \leq \nu(\{x: |Tf_0(x)| > \frac{\lambda}{2}\}) + \nu(\{x: |Tf_1(x)| > \frac{\lambda}{2}\}).$$

Subcase 1: Assume $p_1=\infty$. Therefore, $||T(f)||_{p_0,\infty}\leqslant A_0||f||_{p_0}$ and $||T(f)||_{\infty}\leqslant A_1||f||_{\infty}$. In particular, $\lambda>0$, $\nu(\{x:|Tf(x)|>\lambda\})\leqslant \frac{A_0^{p_0}||f||_{p_0}^{p_0}}{\lambda^{p_0}}$. Moreover, we know that $||T(f_1)||_{\infty}\leqslant A_1||f_1||_{\infty}\leqslant CA_1\lambda$. Take $C=\frac{1}{2A_1}$, then $||T(f_1)||_{\infty}<\frac{\lambda}{2}$, therefore $\nu(\{x:|Tf_1(x)|>\frac{\lambda}{2}\})=0$, and by Theorem 1.6 and Fubini theorem we have

$$||T(f)||_{p}^{p} = p \int_{0}^{\infty} \lambda^{p-1} \nu(\{x : |Tf(x)| > \lambda\}) d\lambda$$

$$\leq p \int_{0}^{\infty} \lambda^{p-1} \nu(\{x : |Tf_{0}(x)| > \lambda\}) d\lambda$$

$$\leq p \int_{0}^{\infty} \lambda^{p-1} \frac{(2A_{0})^{p_{0}}||f_{0}||_{p_{0}}^{p_{0}}}{\lambda^{p_{0}}} d\lambda$$

$$\leq p (2A_{0})^{p_{0}} \int_{0}^{\infty} \lambda^{p-p_{0}-1} \int_{\{x : |f(x)| > C\lambda\}} |f(x)|^{p_{0}} d\mu d\lambda$$

$$= p (2A_{0})^{p_{0}} \int_{X} |f(x)|^{p_{0}} \int_{0}^{\frac{|f(x)|}{C}} \lambda^{p-p_{0}-1} d\lambda d\mu$$

$$= \frac{p}{n-p_{0}} (2A_{0})^{p_{0}} (2A_{1})^{p-p_{0}} ||f||_{p}^{p}.$$

Subcase 2: Assume $1 \le p_1 < \infty$. Using the very same idea, we can find

$$||T(f)||_p \leq 2p^{\frac{1}{p}} \left(\frac{1}{p - p_0} + \frac{1}{p_1 - p} \right)^{\frac{1}{p}} A_0^{1 - \theta} A_1^{\theta} ||f||_p.$$

Case 2: One can finish the proof using the same technical idea.

Problem 2. Finish the proof of Theorem 1.9.

Problem 3. Let $p_0, p_1, q_0, q_1 \in [1, \infty]$, and suppose $T: L^p(X) \to L^q(Y)$ is a sublinear operator. Suppose that $||T\chi_E||_{L^{q_0}} \leqslant C_0\mu(E)^{\frac{1}{p_0}}, 1$ and $||T\chi_E||_{L^{q_1}} \leqslant C_1\mu(E)^{\frac{1}{p_1}}$ for all measurable set $E \subseteq X$. Prove that there exists $C_{p,q} > 0$ such that for all $f \in L^p, ||T(f)||_q \leqslant C_{p,q}||f||_p$ where $\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$ and $\frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}$ for any $\theta \in (0,1)$.

¹This can be generalized as $||T(F)||_{L^{q_0}(\nu)} \leq C_0 ||f||_{L^{p_0}(\mu)}$ for all $f \in L^{p_0}$.

2 Approximation to the Identity

Definition 2.1. Let $\varphi \in L^1(\mathbb{R}^n)$ and $\int_{\mathbb{R}^n} \varphi dx = 1$ via the Lebesgue measure. For any $\varepsilon > 0$, let $\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi(\varepsilon^{-1} x)$ be the dilation of φ by ε .² The sequence $\{\varphi_{\varepsilon}\}_{\varepsilon>0}$ is called an approximation to the identity.

Example 2.2. Set $\varphi(x)=e^{-\pi|x|^2}$ where |x| is the Euclidean distance. One can show that $\int_{\mathbb{R}^n}\varphi(x)dx=1$ via polar coordinates. By definition, set $\varphi_{\varepsilon}(x)=\varepsilon^{-n}e^{-\frac{\pi}{\varepsilon^2}|x|^2}$ gives a sequence $\{\varphi_{\varepsilon}\}_{\varepsilon>0}$ as an approximation to the identity. The graph of this function is of bell-shaped such that as $\varepsilon\to 0$, the mass is concentrated at 0.

$$\varphi_{\varepsilon}(x) \to \begin{cases} \infty, & x = 0 \\ 0, & x \neq 0 \end{cases}$$

One can also say $\varphi_{\varepsilon} \to \delta$ as $\varepsilon \to 0$, converging to the dirac mass.

Definition 2.3. Let f and g both be integrable, then the function

$$(f * g)(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy$$

is called the convolution of f and g whenever the integral exists.

Example 2.4. Let f be a "nice" function, i.e., continuous with compact support, or of C^{∞} , then

$$\lim_{\varepsilon \to 0} (\varphi_{\varepsilon} * f)(x) = \int \delta(x - y) f(y) dy = f(x).$$

Definition 2.5. Let $f \in C^{\infty}(\mathbb{R}^n)$. If

$$M := \sup_{x \in \mathbb{R}^n} |x^{\alpha} D^{\beta} f(x)| < \infty,$$

for any $\alpha, \beta \in \mathbb{N}_0^n$, then we say f is a Schwartz-function. We call $\alpha \in \mathbb{N}_0^n$ the multi-index, and for any $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, we define $x^\alpha = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, and similarly $D^\beta = \partial_{x_1}^{\beta_1} \cdots \partial_{x_n}^{\beta_n}$. We also denote $\mathcal{S}(\mathbb{R}^n)$ to be the collections of Schwartz function.

Remark 2.6. For large enough x, $|D^{\beta}f(x)| \leq \frac{M}{|x|^{\alpha}}$ decays rapidly.

Example 2.7. The Gaussian kernel is a Schwartz function. In fact, $\mathcal{S}(\mathbb{R}^n)$ is dense in the L^p -space.

Lemma 2.8. If $f \in \mathcal{S}(\mathbb{R}^n)$, then $|D^{\beta}f(x)| \leq \frac{C_{N,\beta}}{(1+|x|)^N}$ for any β, N, x .

Proof. Let $C_{\alpha,\beta} = \sup_{x \in \mathbb{R}^n} |x^{\alpha}D^{\beta}f(x)|$, then set $C_{N,\beta} = \max\{C_{\alpha,\beta} : \alpha \in \mathbb{N}_0^n, |\alpha| = \alpha_1 + \dots + \alpha_n \leq N\}$.

Remark 2.9. Lemma 2.8 is equivalent to Definition 2.5.

Theorem 2.10. Let $\{\varphi_{\varepsilon}\}_{{\varepsilon}>0}$ be an approximation to the identity, then

$$\lim_{\varepsilon \to 0} (\varphi_{\varepsilon} * f)(x) = f(x)$$

for any $x \in \mathbb{R}^n$ and $f \in \mathcal{S}(\mathbb{R}^n)$.

Proof. To simplify the convolution a little bit, note that

$$(\varphi_{\varepsilon} * f)(x) = \int \varphi(y) f(x - \varepsilon y) dy$$

²By taking $\varepsilon^{-1}(x)$ we are able to normalize the function.

by a change of variables. Taking the limit, we get

$$\lim_{\varepsilon \to 0} (\varphi_{\varepsilon} * f)(x) = \lim_{\varepsilon \to 0} \int \varphi(y) f(x - \varepsilon y) dy.$$

To enlarge the integrand, we note that

$$|\varphi(y)f(x-\varepsilon y)| \le |\varphi(y)|||f||_{\infty} \in L^1(\mathbb{R}^n)$$

since $f \in \mathcal{S}(\mathbb{R}^n)$. By Dominant Convergence Theorem, we know

$$\lim_{\varepsilon \to 0} (\varphi_{\varepsilon} * f)(x) = \int \varphi(y) \lim_{\varepsilon \to 0} f(x - \varepsilon y) dy$$
$$= \int \varphi(y) f(\lim_{\varepsilon \to 0} x - \varepsilon y) dy$$
$$= \int \varphi(y) f(x) dy$$
$$= f(x) \int \varphi(y) dy$$
$$= f(x)$$

since f is continuous.

We now try to pass this conclusion to the L^p -space. Note that $\mathcal{S}(\mathbb{R}^n) \subseteq L^p(\mathbb{R}^n)$, and although the pointwise convergence may not hold, the L^p -convergence still holds.

Lemma 2.11 (Minkowski). For any $1 \le p \le \infty$, we have

$$\left(\int\limits_{\mathbb{R}^n}\left(\int\limits_{\mathbb{R}^n}|f(x,y)|dy\right)^pdx\right)^{\frac{1}{p}}\leqslant\int\limits_{\mathbb{R}^n}\left(\int\limits_{\mathbb{R}^n}|f(x,y)|^pdx\right)^{\frac{1}{p}}dy.$$

Remark 2.12. For any $1 \le p < \infty$, the Minkowski inequality $||f + g||_p \le ||f||_p + ||g||_p$ which is the triangle inequality in L^p -space. The Minkowski inequality above is a continuous analogue of the result we have seen before.

Proof. Recall that for any $1 \le p < \infty$, we have

$$||F||_p = \sup \left\{ \left| \int_{\mathbb{R}^n} Fg dx \right| : g \in L^{p'}(\mathbb{R}^n), ||g||_{p'} = 1 \right\}$$

where $\frac{1}{p} + \frac{1}{p'} = 1$. Now

$$\left(\int\limits_{\mathbb{R}^n}\left(\int\limits_{\mathbb{R}^n}|f(x,y)|dy\right)^pdx\right)^{\frac{1}{p}}=\sup\left\{\left|\int\limits_{\mathbb{R}^n}\int\limits_{\mathbb{R}^n}|f(x,y)|dyg(x)dx\right|:g\in L^{p'}(\mathbb{R}^n),||g||_{p'}=1\right\},$$

but

$$\left| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(x,y)| dy g(x) dx \right| \le \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(x,y)| dy |g(x)| dx$$
$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(x,y)| |g(x)| dx dy$$

$$\leq \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x,y)|^p dx \right)^{\frac{1}{p}} dy ||g(x)||_{p'}$$

$$= \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x,y)|^p dx \right)^{\frac{1}{p}} dy$$

by Fubini theorem and Hölder inequality.

Theorem 2.13. Let $1 \leq p < \infty$, and $\{\varphi_{\varepsilon}\}_{{\varepsilon}>0}$ be an approximation to the identity, then for any $f \in L^p(\mathbb{R}^n)$, we have

$$\lim_{\varepsilon \to 0} ||\varphi_{\varepsilon} * f - f||_p = 0,$$

or equivalently, $\lim_{\varepsilon \to 0} (\varphi_{\varepsilon} * f) =_{L^p} f$.

Remark 2.14. This conclusion does not hold for $p=\infty$. Over the supremum norm, we ignore the contribution of the null set, therefore $\varphi_{\varepsilon} * f \xrightarrow{L^{\infty}} f$ for $f \in L^{\infty}$ is a uniform convergence, which forces f to be continuous. However, L^{∞} -functions cannot be continuous, contradiction.

Proof of Theorem 2.13. First, we have the following conclusion.

Problem 4. Suppose $K \in L^1(\mathbb{R}^n)$, prove that $||K * f||_p \le ||K||_1 ||f||_p$ for any $f \in L^p$ and any $p \in [1, \infty]$. (Hint: use Minkowski or interpolation.)

By Problem 4, $\varphi_{\varepsilon} * f \in L^p$ since $\varphi_{\varepsilon} \in L^1$ and $f \in L^p$. We have

$$\begin{split} f * \varphi_{\varepsilon}(x) - f(x) &= \int f(x-y)\varphi_{\varepsilon}(y)dy - \int f(x)\varphi_{\varepsilon}(y)dy \text{ since } \int \varphi_{\varepsilon} = 1 \\ &= \int\limits_{\mathbb{R}^n} (f(x-y) - f(x))\varphi_{\varepsilon}(y)dy \text{ by setting } \varphi_{\varepsilon}(y) = \varepsilon^{-n}\varphi(\frac{y}{\varepsilon}) \\ &= \int\limits_{\mathbb{R}^n} (f(x-\varepsilon y) - f(x))\varphi(y)dy \text{ by taking } y \to \varepsilon y \end{split}$$

where $dy = d\mathbf{m}$. By Lemma 2.11, we have

$$||f * \varphi_{\varepsilon} - f||_{p} \le \int |\varphi(y)|||f(x - \varepsilon y) - f(x)||_{L^{p}(dx)} dy.$$

Problem 5. For any $y \in \mathbb{R}^n$, $||f(\cdot - \varepsilon y) - f(\cdot)||_{L^p(\mathbb{R}^n)} \to 0$ as $\varepsilon \to 0$. (Hint: use the fact that $C_c^{\infty}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$.)

We now know that

$$|\varphi(y)|||f(x-\varepsilon y)-f(x)||_{L^p(dx)} \le |\varphi(y)|(||f||_p+||f||_p) \in L^1(dy),$$

then taking the limit, we have

$$\begin{split} \lim_{\varepsilon \to 0} ||f * \varphi_{\varepsilon} - f||_{p} &\leqslant \lim_{\varepsilon \to 0} \int |\varphi(y)|||f * \varphi_{\varepsilon} - f||_{p} dy \\ &= \int |\varphi(y)| \lim_{\varepsilon \to 0} ||f(x - \varepsilon y) - f(x)||_{p} dy \\ &= 0 \end{split}$$

by Problem 5.

Corollary 2.15. $\mathcal{S}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$ if $1 \leq p < \infty$.

Proof. Note that the set $L^p_c = \{f \in L^p : f \text{ has compact support}\}$ is dense in L^p : for large enough value M, we know the ball B_M satisfies $f\chi_{B_M} \in L^p$. For any $g \in L^p_c$, we take $\varphi(x) = e^{-\pi|x|^2}$, then $\varphi_{\varepsilon} * g \xrightarrow{L^p} g$ as $\varepsilon \to 0$. But one can check that $\varphi_{\varepsilon} * g \in \mathcal{S}(\mathbb{R}^n)$, so this shows denseness. \square

Problem 6. Let $\varphi \in C_c^{\infty}(\mathbb{R}^n) \subseteq \mathcal{S}(\mathbb{R}^n)$ and $f \in L^1_{loc}(\mathbb{R}^n)$.

- a. Show that $\varphi * f \in C^{\infty}(\mathbb{R}^n)$ and $D^{\alpha}(\varphi * f) = (D^{\alpha}\varphi) * f$ for multi-index $\alpha \in \mathbb{N}_0^n$. (Hint: apply DCT.)
- b. If $f, g \in \mathcal{S}(\mathbb{R}^n)$, then $f * g \in \mathcal{S}(\mathbb{R}^n)$.

Theorem 2.16. Let $\varphi \in L^1$ such that $\int_{\mathbb{R}^n} \varphi = 1$. We define the least decreasing radial majorant of φ to be $\psi(x) = \sup_{|y| \geqslant |x|} |\varphi(y)|^3$ Suppose that $\psi \in L^1(\mathbb{R}^n)$ and $\int_{\mathbb{R}^n} \psi(x) dx = A$, then

- a. $\sup_{\varepsilon>0} |f * \varphi_{\varepsilon}(x)| \leq AMf(x)$ almost everywhere, where Mf(x) is the Hardy-Littlewood maximal function;
- b. for any $1 \leq p < \infty$, $\lim_{\varepsilon \to 0} f * \varphi_{\varepsilon}(x) = f(x)$ almost everywhere for all $f \in L^p(\mathbb{R}^n)$.

Remark 2.17.

- 1. The proof of statement a. requires applying the polar coordinate formula.
- 2. The proof of statement b. mimics the proof of Lebesgue differentiation theorem. It is also true even if $p=\infty$. However, since our proof uses the denseness of Schwartz functions in L^p space, this would not work in $p=\infty$.

Proof.

a. By the translation and dilation invariance, it suffices to prove that $|f*\varphi_1(0)| = |f*\varphi(0)| \leqslant AMf(0)$. It suffices to show that $f*\psi(0) \leqslant AMf(0)$ for all $f \in L^+(\cap L^1_{loc})$, then since $|\varphi(x)| \leqslant \psi(x)$, we have $|f*\varphi(0)| \leqslant AMf(0)$, and therefore gives the statement. Recall the polar coordinate formula

$$\int_{\mathbb{R}^n} f(x)dx = \int_{0}^{\infty} \int_{\mathbb{S}^{n-1}} f(rx')dx'r^{n-1}dr$$

where (r, x') is the polar coordinate of x, i.e., r = |x| and $x' = \frac{x}{|x|} \in S^{n-1}$.

Remark 2.18. For $E^* = E \cap S^{n-1}$ and $dx' = d\sigma(x')$ given by the surface measure σ induced by \mathfrak{m} , then $\sigma(E^*) = \mathfrak{m}(E)$. Indeed, for $\Sigma_r = B^n(0,r) \subseteq \mathbb{R}^n$, then

$$\int_{\mathbb{R}^n} = \int_{0}^{\infty} \int_{\Sigma_r} d\sigma_1$$

where $d\sigma_r = r^{n-1}d\sigma_1$. This can be interpreted as Fubini theorem.

We calculate

$$f * \psi(0) = \int_{\mathbb{R}^n} f(x)\psi(-x)dx$$
$$= \int_{\mathbb{R}^n} f(x)\psi(|x|)dx$$
$$= \int_0^\infty \int_{S^{n-1}} f(rx')\psi(r)dx'dr$$

³We say a function $f: \mathbb{R}^n \to \mathbb{C}$ is radial if for any $x \in \mathbb{R}^n$, f(x) = f(|x|), i.e., the value of f only depend on the direction of x, but not by the magnitude from the origin.

$$= \int_{0}^{\infty} \psi(r)r^{n-1} \int_{S^{n-1}} f(rx')dx'dr.$$

Set $F(r) = \int_{S^{n-1}} f(rx')dx'$, then

$$G(x) := \int_{B^n(0,r)} f(x)dx$$

$$= \int_{|x| \le r} f(x)dx$$

$$= \int_0^r t^{n-1} \int_{S^{n-1}} f(rx')dx'dt$$

$$= \int_0^r t^{n-1} F(t)dt.$$

By the fundamental theorem of calculus, $G'(r) = r^{n-1}F(r)$. On the other hand,

$$G(r) = \mathfrak{m}(B^n(0,r)) \cdot \frac{1}{\mathfrak{m}(B^n(0,r))} \int_{B^n(0,r)} f(x) dx$$

$$\leq \mathfrak{m}(B^n(0,r)) \cdot Mf(0)$$

$$\leq C_n \cdot r^n Mf(0)$$

by the Hardy-Littlewood maximal function.

Recall that

$$f * \psi(0) = \int_{0}^{\infty} r^{n-1} F(r) \psi(r) dr$$
$$= \int_{0}^{\infty} G'(r) \psi(r) dr$$
$$= \psi(r) G(r) |_{r=0}^{\infty} - \int_{0}^{\infty} G(r) d\psi(r)$$

by integration by parts, since $\psi'(r)dr=d\psi(r)$ is differentiable almost everywhere

$$=\lim_{r\to\infty}\psi(r)G(r)-\lim_{r\to0}\psi(r)G(r)-\int\limits_0^\infty G(r)d\psi(r) \text{ assuming the limits exist.}$$

Let us show that the limits exist.

Claim 2.19.

$$\lim_{r \to 0} \psi(r)G(r) = \lim_{r \to \infty} \psi(r)G(r) = 0.$$

Subproof. We have

$$|\psi(r)G(r)| \le \psi(r)|G(r)|$$

 $\le C_n r^n \psi(r) M f(0).$

It remains to show $r^n \psi(r) \to 0$ as $r \to 0$ or $r \to \infty$. We have

$$r^n \psi(r) = c_n \int\limits_{rac{r}{2} \leqslant |x| \leqslant r} dx \psi(r)$$

 $\leqslant c_n \int\limits_{rac{r}{2} \leqslant |x| \leqslant r} \psi(x) dx$ since ψ is decreasing $\to 0$

as $r \to 0$ or $r \to \infty$, since $\psi \in L^1$.

Now

$$f * \psi(0) = 0 \int_{0}^{\infty} G(r) d\psi(r)$$

$$= \int_{0}^{\infty} G(r) d(\psi(r))$$

$$\leq C_{n} M f(0) \int_{0}^{\infty} r^{n} d(-\psi(r))$$

$$= nC_{n} M f(0) \int_{0}^{\infty} \psi(r) r^{n-1} dr \text{ by integral by parts}$$

$$= M f(0) \int_{\mathbb{R}^{n}} \psi(x) dx$$

$$= A M f(0).$$

b.

Lemma 2.20. Let $\{T_{\varepsilon}\}_{{\varepsilon}>0}$ be a family of linear operators on $L^p(\mathbb{R}^n)$ for $1 \leqslant p \leqslant \infty$. Define $T^*f(x) = \sup_{{\varepsilon}>0} |T_{\varepsilon}f(x)|$ for all $x \in \mathbb{R}^n$. If T^* is of weak (p,p), then

$$\{f \in L^p(\mathbb{R}^n) : \lim_{\varepsilon \to 0} T_\varepsilon f(x) = f(x) \text{ almost everywhere}\}$$

is closed in $L^p(\mathbb{R}^n)$. That is, for any family $\{f_k\}$ in L^p with $||f_k - f||_p \to 0$ as $k \to \infty$, and $\lim_{\varepsilon \to 0} T_\varepsilon f_k(x) = f_k(x)$ almost everywhere, then $\lim_{\varepsilon \to 0} T_\varepsilon f(x) = f(x)$ almost everywhere.

Subproof. Consider the level set $\{x \in X : \lim_{\varepsilon \to 0} |T_{\varepsilon}f(x) - f(x)| > \lambda\}$. Now

$$\mu(\{x \in X: \limsup_{\varepsilon \to 0} |T_\varepsilon f(x) - f(x)| > \lambda\}) = \mu(\{x \in X: \limsup_{\varepsilon \to 0} |T_\varepsilon (f - f_k)(x) - (f - f_k)(x)| > \lambda\}),$$

but

$$|T_{\varepsilon}(f - f_k)(x) - (f - f_k)(x)| \leq T^*(f - f_k)(x) + |(f - f_k)(x)|$$

gives a uniform upper bound, then

$$\mu(\lbrace x \in X : \limsup_{\varepsilon \to 0} |T_{\varepsilon}f(x) - f(x)| > \lambda \rbrace) = \mu(\lbrace x \in X : \limsup_{\varepsilon \to 0} |T_{\varepsilon}(f - f_k)(x) - (f - f_k)(x)| > \lambda \rbrace)$$

$$\leq \mu(\lbrace x \in X : T^*(f - f_k)(x) > \frac{\lambda}{2} \rbrace)$$

$$+ \mu(\lbrace x \in X : |(f - f_k)(x)| > \frac{\lambda}{2}\rbrace)$$

$$\leq \frac{C_p||f - f_k||_p^p}{\lambda^p}$$

$$\to 0$$

as $k \to \infty$. Since $\mu(\{x \in X : \limsup_{x \to \infty} |T_{\varepsilon}f(x) - f(x)| > \lambda\})$ is independent from f_k , then this squeezes $\mu(\{x \in X : \limsup_{\varepsilon \to 0} |T_{\varepsilon}f(x) - f(x)| > \lambda\}) = 0 \text{ for all } \lambda > 0. \text{ By writing}$

$$\mu(\{x \in X : \limsup_{\varepsilon \to 0} |T_{\varepsilon}f(x) - f(x)| > 0\}) \leq \mu\left(\bigcup_{k=1}^{\infty} \left\{x \in X : \limsup_{\varepsilon \to 0} |T_{\varepsilon}f(x) - f(x)| > \frac{1}{k}\right\}\right)$$

$$\leq \sum_{k=1}^{\infty} \mu\left(\left\{x \in X : \limsup_{\varepsilon \to 0} |T_{\varepsilon}f(x) - f(x)| > \frac{1}{k}\right\}\right)$$

$$= 0$$

as the limit of partial sums. In particular, this forces

$$\mu(\lbrace x \in X : \limsup_{\varepsilon \to 0} |T_{\varepsilon}f(x) - f(x)| > 0\rbrace) = 0.$$

 $\mu(\{x\in X: \limsup_{\varepsilon\to 0}|T_\varepsilon f(x)-f(x)|>0\})=0.$ Therefore, $\limsup_{\varepsilon\to 0}|T_\varepsilon f(x)-f(x)|=0$ almost everywhere in x, and hence that means the limit $\lim_{\varepsilon\to 0}|T_\varepsilon f(x)-f(x)|=0$ |f(x)| = 0 exists. That is, $\lim_{\varepsilon \to 0} T_{\varepsilon} f(x) = f(x)$ almost everywhere.

We now want to show that $\lim_{\varepsilon \to 0} f * \varphi_{\varepsilon}(x) = f(x)$ almost everywhere on x for all $f \in L^p$ and $1 \leqslant p < \infty$. We know this is true if $f \in {\mathcal S}(\mathbb R^n)$, a dense collection in L^p -space. By Lemma 2.20, we just need to show that $\sup |f * \varphi_{\varepsilon}| = T^*f$ defines a weak (p,p) operator T^* . By part a., we know

$$\sup_{\epsilon \to 0} |f * \varphi_{\epsilon}(x)| \leqslant AMf(x)$$

for some finite number A, then T^* is weak (p, p) since M is of strong (p, p)

Example 2.21. Let $\varphi(x) = (4\pi)^{-\frac{n}{2}} e^{-\frac{|x|^2}{4}}$ for all $x \in \mathbb{R}^n$. Let $\varepsilon = \sqrt{t}$, then let

$$\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi(\varepsilon^{-1} x) = (4\pi t)^{-\frac{n}{2}} e^{-\frac{|x|^2}{4t}} =: W_t(x),$$

which is the Gauss-Weierstrass kernel. Consider the heat equation

$$\begin{cases} \Delta_x u = \frac{\partial u}{\partial t} \,\forall (x,t) \in \mathbb{R}^{n+1}_+ \\ u(x,0) := \lim_{t \to 0} u(x,t) = f(x) \in L^p(\mathbb{R}^n), \ 1 \leqslant p < \infty \end{cases}$$
(2.22)

with respect to the Laplacian $\Delta_x = \partial_{x_1}^2 + \dots + \partial_{x_n}^2$ for $x = (x_1, \dots, x_n) \in \mathbb{R}^n$. Here the complex-valued function u is defined in the upper half plane $\mathbb{R}^{n+1}_+ = \{(x,t) : x \in \mathbb{R}^n, t > 0\}$. By solving Equation (2.22), we obtain u(x,t) = 0 $W_t * f(x)$, where W_t is a fundamental solution to the heat equation.

Example 2.23. Consider a complex-valued function $u:\mathbb{R}^{n+1}_+\to\mathbb{C}$, and we have the Laplacian $\Delta_{x,t}=\Delta_x+\partial_t^2$ and a PDE

$$\begin{cases} \Delta_{x,t} u = 0 \ \forall (x,t) \in \mathbb{R}^{n+1}_+ \\ u(x,0) = f(x) \in L^p(\mathbb{R}^n), \ 1 \leqslant p < \infty \end{cases}$$
(2.24)

To solve this, we define $\varphi(x)=\frac{1}{(1+|x|^2)^{\frac{n+1}{2}}}$, and set $\varepsilon=t$, therefore we have the Poisson kernel

$$\varphi_t(x) = \frac{t}{(t^2 + |x|^2)^{\frac{n+1}{2}}} =: P_t(x).$$

By Theorem 2.16, we know $u(x,t) = P_t * f(x)$ solves Equation (2.24).

3 FOURIER TRANSFORMS

Definition 3.1. Let $f \in L^1(\mathbb{R}^n)$ be a function, then we define the Fourier transform to be the Lebesgue integral

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi i \xi \cdot x} dx$$

for all $\xi \in \mathbb{R}^n$, where $\xi \cdot x = x_1 \xi_1 + \dots + x_n \xi_n$ for $\xi \in \mathbb{R}^n$ and $x \in \mathbb{R}^n$. Therefore, \hat{f} is integrable.

Proposition 3.2. Let $f \in L^1(\mathbb{R}^n)$, then

- a. $||\hat{f}||_{\infty} \leq ||f||_{1}$;
- b. \hat{f} is uniformly continuous on \mathbb{R}^n ;
- c. $\lim_{|\xi| \to \infty} \hat{f}(\xi) = 0;$
- d. $\widehat{f * g} = \widehat{f}\widehat{g}$ for all $f, g \in L^1$.

Problem 7. Verify parts a., b., d.

Proof of part c. of Proposition 3.2. We know that

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi i\xi \cdot x} dx$$

$$= \int_{\mathbb{R}^n} f(x)e^{-2\pi i\xi \cdot x}e^{-2\pi i\xi \cdot \frac{\xi}{2|\xi|^2}}(-1)dx$$

$$= -\int_{\mathbb{R}^n} f(x)e^{-2\pi i\xi \cdot \left(x + \frac{\xi}{2|\xi|^2}\right)} dx$$

$$= -\int_{\mathbb{R}^n} f\left(y - \frac{\xi}{2|\xi|^2}\right)e^{-2\pi i\xi \cdot y} dy$$

by a change of variable $y=x+\frac{\xi}{2|\xi|^2}$. By comparing this with the definition, then we have

$$\left| \int\limits_{\mathbb{R}^n} f(x) e^{-2\pi i \xi \cdot x} dx - \int\limits_{\mathbb{R}^n} f\left(x - \frac{\xi}{2|\xi|^2}\right) e^{-2\pi i \xi \cdot x} dx \right| = \left| 2\hat{f}(\xi) \right|.$$

Note that the left-hand side is bounded above by $||f(\cdot) - f(\cdot - \frac{\xi}{2|\xi|^2})||_1 \to 0$ as $|\xi| \to \infty$, by the continuity condition. Therefore, $\lim_{|\xi| \to \infty} |2\hat{f}(\xi)| = 0$.

Problem 8. A sequence of functions $\{f_k\}_{k\in\mathbb{N}}\subseteq\mathcal{S}(\mathbb{R}^n)$ converges in $\mathcal{S}(\mathbb{R}^n)$ to $f\in\mathcal{S}(\mathbb{R}^n)$ if $\lim_{k\to\infty}||f_k-f||_{\alpha,\beta}=0$ for all $\alpha,\beta\in\mathbb{N}^n_0$. Here $||f||_{\alpha,\beta}=\sup_{x\in\mathbb{R}^n}|x^\alpha D^\beta f(x)|$. Prove that for all $f\in\mathcal{S}(\mathbb{R}^n)$, there exists a sequence $\{f_k\}_{k\in\mathbb{N}}\subseteq C_c^\infty(\mathbb{R}^n)$ such that $\{f_k\}_{k\geqslant 1}$ converges to f in $\mathcal{S}(\mathbb{R}^n)$. That is, $C_c^\infty(\mathbb{R}^n)$ is dense in $\mathcal{S}(\mathbb{R}^n)$.

Hint: take $\varphi: \mathbb{R}^n \to \mathbb{R}$ to be a C^{∞} -function satisfying

- 1. φ being radial,
- $0 \leqslant \varphi \leqslant 1$,
- 3. $\varphi(x) = 1$ whenever $|x| \le 1$ and $\varphi(x) = 0$ whenever $|x| \ge 2$.

Note that φ is a bump function. Now for any $k \in \mathbb{N}$, set $f_k(x) = f(x)\varphi\left(\frac{x}{k}\right)$, then $f_k \in C_c^\infty(\mathbb{R}^n)$. You can prove that $f_k \to f$ in $\mathcal{S}(\mathbb{R}^n)$ as $k \to \infty$. Use Lebniz's rule to show that

$$D^{\alpha}(fg) = \sum_{\substack{\beta \in \mathbb{N}_0^n \\ \beta \leqslant \alpha}} C_{\alpha,\beta} D^{\alpha-\beta} f D^{\beta} f$$

for $C_{\alpha,\beta} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$. Note that $\beta \leqslant \alpha$ if and only if $\beta_j \leqslant \alpha_j$ for all $1 \leqslant j \leqslant n$, once we write $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$. Now

$$D^{\alpha}(fg) = \sum_{\beta + \gamma = \alpha} C_{\beta\gamma} D^{\beta} f D^{\gamma} g.$$

Also note that $D^{\beta}\left(\varphi\left(\frac{x}{k}\right)\right) \leqslant \frac{C}{k}$ if $|\beta| > 0$ where $\beta \in \mathbb{N}_0^n$.

Proposition 3.3. Let $f \in L^1(\mathbb{R}^n)$. For $\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi i x \cdot \xi}$, we have

1.
$$\widehat{(f(\cdot - b))}(\xi) = e^{-2\pi i \xi \cdot b} \widehat{f}(\xi)$$
 for all $b \in \mathbb{R}^n$;

2.
$$(e^{2\pi ix \cdot h} f(x))(\xi) = \hat{f}(\xi - h)$$
 for all $h \in \mathbb{R}^n$;

3.
$$(t^{-n}f(\frac{\cdot}{t}))(\xi) = \hat{f}(t\xi)$$
 for all $t \in \mathbb{R}$;

- 4. let ρ be an orthogonal transform on \mathbb{R}^n , that is, $\rho: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transform preserving the inner product $\rho(x) \cdot \rho(y) = x \cdot y$ for all $x, y \in \mathbb{R}^n$, then $\widehat{(f \circ \rho)}(\xi) = \widehat{f} \circ \rho(\xi)$ for all $\xi \in \mathbb{R}^n$;
- 5. if f is radial, then \hat{f} is radial as well.

Problem 9. Prove Part 1-3 and 5.

Proof of Part 4. Set $y = \rho x$, and note that this is equivalent to having $x = \rho^{-1}y$, and in particular $\det(|A|) = 1$ of the corresponding matrix. Now

$$\widehat{(f \circ \rho)}(\xi) = \int_{\mathbb{R}^n} f(\rho(x))e^{-2\pi i x \cdot \xi} dx$$

$$= \int_{\mathbb{R}^n} f(y)e^{-2\pi i \rho^{-1}y \cdot \xi} |\det(A)| dy$$

$$= \int_{\mathbb{R}^n} f(y)e^{-2\pi i y \cdot \rho(\xi)} dy$$

$$= \widehat{f}(\rho \xi)$$

$$= \widehat{f} \circ \rho(\xi).$$

Theorem 3.4. Let $f \in L^1(\mathbb{R}^n)$, then

1. if $x_k f \in L^1(\mathbb{R}^n)$, then

$$\widehat{\frac{\partial \hat{f}(\xi)}{\partial \xi_k}} = \widehat{(-2\pi i x_k f)}(\xi)$$

for all $\xi \in \mathbb{R}^n$, where $\xi = (\xi_1, \dots, \xi_n)$ and $x = (x_1, \dots, x_n)$;

2. if
$$\frac{\partial f}{\partial x_k} \in L^1$$
, then $\left(\widehat{\frac{\partial f}{\partial x_k}}\right)(\xi) = 2\pi i \xi_k \hat{f}(\xi)$.

Remark 3.5. To get an intuition, note that for nice enough functions, we have

$$\partial \xi_k \hat{f} = \partial \xi_k \int f(x) e^{-2\pi i x \cdot \xi} dx$$

$$= \int \partial_{\xi_k} f(x) e^{-2\pi i x \cdot \xi} dx$$

$$= \int f(x) \partial_{\xi_k} e^{-2\pi i x \cdot \xi} dx$$

$$= \int f(x) \cdot (-2\pi i x_k) e^{-2\pi i x \cdot \xi} dx$$

$$= (-2\pi i x_k f)(\xi),$$

and similarly for the second formula.

Proof. Let us prove the first part. Set $h = (0, \dots, 0, h_k, 0, \dots, 0) \in \mathbb{R}^n$. Now

$$\hat{\sigma}_{\xi_k} \hat{f}(\xi) = \lim_{h_k \to 0} \frac{\hat{f}(\xi + h_k) - \hat{f}(\xi)}{h_k}$$

$$= \lim_{h_k \to 0} \int \frac{e^{-2\pi i x_k h_k} - 1}{h_k} f(x) e^{-2\pi i \xi \cdot x} dx$$

$$=: \lim_{h_k \to 0} \int I dx.$$

Now by Dominated Convergence Theorem, we know $I \leq C|x_kf(x)| \in L^1$, and by the inequality $|e^{i\theta}-1| \leq C|\theta|$, we have

$$\left| \frac{e^{-2\pi i x_k h_k} - 1}{h_k} \right| \leqslant C \frac{|x_k h_k|}{|h_k|}$$

$$= \int \lim_{h_k \to 0} I dx$$

$$= \int_{\mathbb{R}^n} (-2\pi i x_k \cdot f_k) \cdot e^{-2\pi i \xi \cdot x} dx.$$

Corollary 3.6. Let $P(x) = \sum_{\substack{\alpha \in \mathbb{N}_0^n \\ |\alpha| \leqslant d}} a_{\alpha} x^{\alpha}$, where $|\alpha| = \alpha_1 + \dots + \alpha_n$, and $a_{\alpha} \in \mathbb{C}$. Define the differential operator $P(D) = \alpha_1 + \dots + \alpha_n$

 $\sum_{\substack{\alpha \in \mathbb{N}_0^n \\ |\alpha| \leqslant d}} a_\alpha D^\alpha. \text{ (Recall that } D^\alpha = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n}.\text{) Then for any } f \in \mathcal{S}(\mathbb{R}^n), \text{ we have } P(D)\hat{f}(\xi) = \widehat{(P(-2\pi i \cdot)f(\cdot))}(\xi), \text{ and } f(x) = \widehat{(P(-2\pi i \cdot)f(\cdot))}(\xi)$

$$(P(D)\hat{f})(\xi) = P(2\pi i \xi)\hat{f}(\xi).$$

Definition 3.7. For any $g \in L^1(\mathbb{R}^n)$, we define the inverse Fourier transform of g to be $\check{g}(x) = \int g(\xi)e^{2\pi i\xi \cdot x}d\xi = \hat{g}(-x)$. **Lemma 3.8.** For any $f,g \in L^1$, we have $\int \hat{f}g = \int f\hat{g}$.

Proof. By Fubini theorem, we know

$$\int \hat{f}g = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(\xi)e^{-2\pi i \xi x} d\xi g(x) dx$$
$$= \int_{\mathbb{R}^n} f(\xi) \int_{\mathbb{R}^n} g(x)e^{-2\pi i \xi x} dx d\xi$$
$$= \int f \hat{g}.$$

Lemma 3.9. $(e^{-\pi |x|^2})(\xi) = e^{-\pi |\xi|^2}$ for $x, \xi \in \mathbb{R}^n$.

Proof. It suffices to the case where n = 1: in general, we have iterated integrals

$$\widehat{(e^{-\pi|\cdot|^2})} = \int_{\mathbb{R}^n} e^{-\pi(x_1^2 + \dots + x_n^2)} e^{-2\pi i (x_1 \xi_1 + \dots + x_n \xi_n)} dx_1 \cdots dx_n$$

$$= \prod_{j=1}^n \int_{\mathbb{R}} e^{-\pi x_j^2} e^{-2\pi i x_j \xi_j} dx_j$$

$$= \prod_{j=1}^n \widehat{(e^{-\pi x_j^2})} (\xi_j).$$

It remains to show that

$$(\widehat{e^{-\pi x^2}})(\xi) = e^{-\pi \xi^2}$$

for $\xi, x \in \mathbb{R}$.

Consider the following ODE problem

$$\begin{cases} u' + 2\pi x u = 0 \\ u(0) = 1 \end{cases}$$

for function $u: \mathbb{R} \to \mathbb{C}$. It is obvious that this ODE has a unique solution $u(x) = e^{-\pi x^2}$. It suffices to show that the Fourier transform \hat{u} satisfies the same ODE. We have $\hat{u'} + 2\pi x u = 0$, and therefore $2\pi i \xi \hat{u}(\xi) + i \hat{u'}(\xi) = 0$. This gives

$$\hat{u'} + 2\pi\xi\hat{u} = 0.$$

The corresponding boundary value is $\hat{u}(0) = \int u(x)e^{-\pi i\cdot 0\cdot x}dx = \int u(x)dx = \int e^{-\pi x^2}dx = 1$. Therefore, \hat{u} satisfies the same ODE, and so $\hat{u} = \hat{f} = e^{-\pi \xi^2}$, as desired.

The following conclusion now follows by dilating the result above.

Corollary 3.10. $\widehat{(e^{-4\pi^2|x|^2})}(\xi) = (4\pi)^{-\frac{n}{2}} e^{-\frac{|\xi|^2}{4}}$.

Definition 3.11. Let $g \in L^1(\mathbb{R}^n)$. The Gaussian mean of g is

$$G_{\varepsilon}(g) = \int_{\mathbb{R}^n} g(\xi) e^{-4\pi^2 \varepsilon^2 |\xi|^2} d\xi.$$

Remark 3.12. By Dominated Convergence Theorem, we have $\lim_{\varepsilon \to 0} G_{\varepsilon}(g) = ||g||_1$.

Lemma 3.13. Let $f \in L^1(\mathbb{R}^n)$, then

$$\lim_{\varepsilon \to 0} \left\| \int_{\mathbb{R}^n} \hat{f}(\xi) e^{2\pi i x \cdot \xi} e^{-4\pi^2 \varepsilon^2 |\xi|^2} d\xi - f(x) \right\|_{L^1(\mathbb{R}^n)} = 0.$$

Proof. Let $g=e^{2\pi ix\cdot\xi}e^{-4\pi^2\varepsilon^2|\xi|^2}$ be a function, then

$$\int_{\mathbb{R}^n} f(y) (\widehat{e^{2\pi i x \cdot \xi}} e^{-4\pi^2 \varepsilon^2 |\xi|^2})(y)) dy = \int_{\mathbb{R}^n} \hat{f}(\xi) e^{2\pi i x \cdot \xi} e^{-4\pi^2 \varepsilon^2 |\xi|^2} d\xi \text{ by Lemma 3.8}$$

$$= \int_{\mathbb{R}^n} f(y) \varepsilon^{-n} (\widehat{e^{-4\pi^2 |\cdot|^2}}) (\varepsilon^{-1} (x-y)) dy$$

$$= f * \varphi_{\varepsilon}, \text{ by Corollary 3.10}$$

which converges to f in the L^1 -sense. Here $\{\varphi_\varepsilon\}_{\varepsilon>0}$ is an approximation to the identity of $\varphi(x)=\widehat{(e^{-4\pi^2|\cdot|^2})}(x)=\widehat{(e^{-4\pi^2|\cdot|^2})}(x)$

$$(4\pi)^{-\frac{n}{2}}e^{-\frac{|x|^2}{4}}$$
, so $\varphi_{\varepsilon}(x)=\varepsilon^{-n}\varphi(\varepsilon^{-1}x)$.

Theorem 3.14 (Fourier Inversion Theorem). Suppose $f \in L^1$ and $\hat{f} \in L^1$, then $\check{\hat{f}} = f$.

Proof. By Lemma 3.13, there exists a sequence $\{\varepsilon_k\}_{k\in\mathbb{N}}$ such that

- $\lim_{k\to\infty} \varepsilon_k = 0$,
- $\lim_{k \to \infty} \int_{\mathbb{D}^n} \hat{f}(\xi) e^{-2\pi i x \cdot \xi} e^{-4\pi^2 \varepsilon_k^2 |\xi|^2} d\xi = f(x)$ almost everywhere for x.

By Dominant Convergence Theorem, we know

$$f = \lim_{k \to \infty} \int_{\mathbb{R}^n} \hat{f}(\xi) e^{2\pi i x \cdot \xi} e^{-4\pi^2 \varepsilon_k^2 |\xi|^2} d\xi$$

$$= \int_{\mathbb{R}^n} \hat{f}(\xi) e^{2\pi i x \cdot \xi} \lim_{k \to \infty} e^{-4\pi^2 \varepsilon_k^2 |\xi|^2} d\xi$$

$$= \int_{\mathbb{R}^n} \hat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi$$

$$= \check{f}.$$

4 Fourier Transform on $L^p(\mathbb{R}^n)$ for $1\leqslant p\leqslant 2$

Theorem 4.1. $f \in \mathcal{S}(\mathbb{R}^n)$ if and only if $\hat{f} \in \mathcal{S}(\mathbb{R}^n)$.

Proof. (\Rightarrow): we show that $\sup_{\xi \in \mathbb{R}^n} |(2\pi i \xi)^\alpha D^\beta \hat{f}(\xi)| < \infty$ for all $\alpha, \beta \in \mathbb{N}_0^n$. We know

$$(2\pi i\xi)^{\alpha} D^{\beta} \hat{f}(\xi) = (2\pi i\xi)^{\alpha} \overline{((-2\pi ix)^{\beta} f(x))}(\xi)$$
$$= \overline{(D^{\alpha}((2\pi ix)^{\beta} f(x)))}(\xi)$$
$$= \int D^{\alpha}((-2\pi ix)^{\beta} f(x))e^{-2\pi i\xi \cdot x} dx.$$

Since $f \in \mathcal{S}(\mathbb{R}^n)$, then $|D^{\alpha}((-2\pi ix)^{\beta}f(x))| \leq \frac{C_{N,\alpha,\beta}}{(1+|x|)^N} \in L^1$. This shows the statement.

(\Leftarrow): suppose $\hat{f} \in \mathcal{S}(\mathbb{R}^n) \subseteq L^1$, and we want to show that $f \in \mathcal{S}(\mathbb{R}^n)$. By a similar argument on \hat{f} , we know that $\check{f} \in \mathcal{S}(\mathbb{R}^n) \subseteq L^1(\mathbb{R}^n)$. By Theorem 3.14, $f = \check{f} \in L^1(\mathbb{R}^n)$.

Lemma 4.2. Let $f, g \in \mathcal{S}(\mathbb{R}^n)$, then $\langle f, g \rangle = \langle \hat{f}, \hat{g} \rangle$, where $\langle f, g \rangle = \int_{\mathbb{R}^n} f \bar{g} dx$. In particular, $||f||_2 = ||\hat{f}||_2$ for all $f \in \mathcal{S}(\mathbb{R}^n)$.

Proof. We have

$$\begin{split} \left\langle \widehat{f}, \widehat{g} \right\rangle &= \int\limits_{\mathbb{R}^n} \widehat{f}(x) \overline{\widehat{g}(x)} dx \\ &= \int\limits_{\mathbb{R}^n} \widehat{f(x)} \overline{\widehat{g(x)}} dx \\ &= \int\limits_{\mathbb{R}^n} f \overline{g} dx \\ &= \left\langle f, g \right\rangle \end{split}$$

by Lemma 3.8 and Theorem 3.14.

We now extend the theory to $L^2(\mathbb{R}^n)$. For any $f \in L^2(\mathbb{R}^n)$, there exists a sequence $\{f_k\}_{k \geq 1}$ in $\mathcal{S}(\mathbb{R}^n)$ such that $\lim_{k \to \infty} ||f_k - f||_2 = 0$, i.e., $\lim_{k \to 0} f_k = f$ in L^2 -sense. Therefore, we define \hat{f} of f in $L^2(\mathbb{R}^n)$ to be the limit $\lim_{k \to \infty} \hat{f}_k$.

Lemma 4.3. The limit $\lim_{k\to\infty} \hat{f}_k$ exists.

Proof. Since $L^2(\mathbb{R}^n)$ is complete, then $\{f_k\}_{k\geqslant 1}$ is Cauchy, thus $||f_k-f_j||_2\to 0$ as $k,j\to\infty$. Therefore, this is equivalent to the fact that for all $\varepsilon>0$, there exists some $N\in\mathbb{N}$ such that $||f_k-f_j||_2<\varepsilon$ for all $k,j\geqslant N$. By Lemma 4.2, we know

$$||f_k - f_j||_2 = ||\widehat{f_k - f_j}||_2$$

= $||\widehat{f_k} - \widehat{f_j}||_2$

which converges to) as $j,k\to\infty$. Therefore, $\{\hat{f}_k\}_{k\geqslant 1}$ is Cauchy in $L^2(\mathbb{R}^n)$. Now there exists $g\in L^2$ such that $\lim_{k\to\infty}||\hat{f}_k-g||_2=0$, that is, $g=\lim_{k\to\infty}\hat{f}_k$ in the L^2 -sense.

Therefore, the definition we want of \hat{f} of f in $L^2(\mathbb{R}^n)$ is $\hat{f}=g$ in the sense above. We just need to show that this is well-defined.

Lemma 4.4. The choice of g above is independent of the choice of $\{f_k\}_{k\geq 1}$.

Proof. Take another sequence \tilde{f}_k in $L^2(\mathbb{R}^n)$ such that $\lim_{k\to\infty}\tilde{f}_k=f$ in L^2 -sense, and that $\lim_{k\to\infty}\hat{f}_k=\tilde{g}$. It suffices to show that $\tilde{g}=g$. Consider a new sequence $\{h_k\}_{k\geqslant 1}$ where $h_k=f_n$ if k=2n-1, and $h_k=\tilde{f}_n$ if k=2n, i.e., $f_1,\tilde{f}_1,f_2,\tilde{f}_2,\ldots$ Therefore, $\lim_{k\to0}h_k=\lim_{k\to\infty}f_k=f$ in the L^2 -sense, so $\{\hat{h}_k\}_{k\geqslant 1}$ is Cauchy in L^2 , so there exists $h\in L^2$ such that $h=\lim_{k\to\infty}\hat{h}_k$ in L^2 -sense. Therefore, in sense of L^2 , we know

$$\tilde{g} = \lim_{k \to \infty} \hat{\tilde{f}}_k = \lim_{k \to \infty} \hat{h}_k = \lim_{k \to \infty} \hat{f}_k = g,$$

thus $\tilde{g} = g = h$.

Theorem 4.5 (Plancherel). Let $f \in L^2$, then $\hat{f} \in L^2$ and is an isometry, i.e., $||\hat{f}||_2 = ||f||_2$.

Proof. Let $f_k \in \mathcal{S}(\mathbb{R}^n)$ such that $f = L^2 \lim_{k \to \infty} f_k$. By definition, $\hat{f} = L^2 \lim_{k \to \infty} \hat{f}_k \in L^2$ by the completeness of L^2 . Therefore, $||f_k||_2 = ||\hat{f}_k||_2$ for all $k \in \mathbb{N}$, then taking the limit on both sides, we see that

$$||f||_2 = \lim_{k \to \infty} ||f_k||_2 = \lim_{k \to \infty} ||\hat{f}_k||_2 = ||\hat{f}||_2.$$

Definition 4.6. A unitary operator on a Hilbert space H is a linear operator that is an isometry and "onto".

Theorem 4.7. The Fourier transform on $L^2(\mathbb{R}^n)$ is a unitary operator on $L^2(\mathbb{R}^n)$.

Proof. It remains to show that the Fourier transform is "onto". That is, for any $g \in L^2$, there exists $f \in L^2$ such that $\hat{f} = g$. Since $\mathcal{S}(\mathbb{R}^n)$ is dense in L^2 , then there exists $g_k \in \mathcal{S}(\mathbb{R}^n)$ such that $g = L^2 \lim_{k \to \infty} g_k$. Let $f = L^2 \lim_{k \to \infty} \check{g}_k \in L^2$, so it suffices to show that $\hat{f} = g$. We know

$$\hat{f}_{L^2} = \lim_{k \to \infty} (\hat{g}_k) =_{L^2} \lim_{k \to \infty} g_k =_{L^2} = g.$$

Definition 4.8. For any $f \in L^2$, we define the inverse Fourier transform $\check{f} =_{L^2} \lim_{k \to \infty} \check{f}_k$ if $f_k \in \mathcal{S}(\mathbb{R}^n)$ and $f =_{L^2} \lim_{k \to \infty} f_k$.

Theorem 4.9 (Inverse Theorem on $L^2(\mathbb{R}^n)$). For any $f \in L^2$, we have $(\hat{f}) = f$.

Proof. Let U be defined by $Uf = \hat{f}$ for any $f \in L^2$. For unitary operator U on Hilbert space H, there exists operator U^* such that $\langle Ux,y\rangle = \langle x,U^*y\rangle$ for any $x,y\in H$. We say U^* is the adjoint operator, and we will show that is just the inverse Fourier transform.

Claim 4.10. The adjoint operator U^* satisfies $U^*f = \check{f}$ for any $f \in L^2(\mathbb{R}^n)$, i.e., U^* is the inverse Fourier transform.

Subproof. For any $f, g \in \mathcal{S}(\mathbb{R}^n)$, we have

$$\begin{split} \langle U^*f,g\rangle &= \langle f,Ug\rangle \\ &= \langle f,\hat{g}\rangle \\ &= \int f(x)\overline{g(x)}dx \\ &= \int f(x)\overline{\int g(\xi)e^{-2\pi ix\cdot\xi}d\xi}dx \\ &= \int f(x)\int \bar{g}(\xi)e^{-2\pi ix\cdot\xi}d\xi dx \end{split}$$

$$= \int \bar{g}(\xi) \int f(x)e^{-2\pi i x \cdot \xi} dx d\xi$$
$$= \langle \check{f}, g \rangle.$$

Therefore,

$$\langle U^*f - \check{f}, g \rangle = 0$$

for any $g \in \mathcal{S}(\mathbb{R}^n)$, hence $U^*f \equiv \check{f}$ almost everywhere.

In general, take any $f \in L^2(\mathbb{R}^n)$, then for every $k \ge 1$, there exists $f_k \in \mathcal{S}(\mathbb{R}^n)$ such that $f = L^2 \lim_{k \to \infty} f_k$. For any $g \in L^2(\mathbb{R}^n)$, we know

$$\langle U^*f, g \rangle = \langle f, \hat{g} \rangle$$

$$= \langle f - f_k, \hat{g} \rangle + \langle f_k, \hat{g} \rangle$$

$$= \langle f - f_k, \hat{g} \rangle + \langle U^*f_k, g \rangle.$$

Recall that $\langle U^*(f-f_k), g \rangle = \langle f-f_k, \hat{g} \rangle$, therefore

$$|\langle U^*(f - f_k), g \rangle| = |\langle f - f_k, \hat{g} \rangle| \le ||f - f_k||_2 ||\hat{g}||_2 \to 0$$

as $k \to \infty$. Therefore,

$$\lim_{k \to \infty} |\langle U^*(f - f_k), g \rangle| = 0$$

for any $g \in L^2(\mathbb{R}^n)$. Now

$$||U^*(f - f_k)||_2 = \sup_{g \in L^2} |\langle U^*(f - f_k), g\rangle|,$$

therefore

$$\lim_{k \to \infty} ||U^*(f - f_k)||_2 = 0.$$

Hence, in the L^2 -sense, we know

$$U^*f = \lim_{k \to \infty} U^*f_k$$
$$= \lim_{k \to \infty} \check{f}_k$$
$$= \check{f}.$$

Claim 4.11. If *U* is a unitary operator on a Hilbert space *H*, then $U^* = U^{-1}$.

Subproof. For any $x \in H$, we have

$$\langle U^*Ux, y \rangle = \langle Ux, Uy \rangle$$

= $\langle x, y \rangle$.

Therefore, $\langle U^*Ux - x, y \rangle = 0$ for any $x, y \in H$. Hence, $U^*U = I$ is the identity operator, so $U^* = U^{-1}$.

This shows that

$$\dot{\hat{f}} = U^* \hat{f}
= U^* (Uf)
= f.$$

Let $1 \leq p \leq 2$. For any $f \in L^p$, one can show that $f = f_1 + f_2$ where $f_1 \in L^1$ and $f_2 \in L^2$. For instance, let $f_1 = f \mathbbm{1}_{\{x:|f(x)| \geq 1\}}$ and $f_2 = f \mathbbm{1}_{\{x:|f(x)| \leq 1\}}$. Correspondingly, we have $\hat{f} := \hat{f}_1 + \hat{f}_2$. Alternatively, we can define $\hat{f} = L^p \lim_{k \to \infty} f_k$ where $f_k \xrightarrow{L^2} f$ as $k \to \infty$, and $f_k \in \mathcal{S}(\mathbb{R}^n)$.

Theorem 4.12 (Hausdorff-Young). Let $f \in L^p(\mathbb{R}^n)$ with $1 \leq p \leq 2$. Then $\hat{f} \in L^{p'}(\mathbb{R}^n)$ and $||\hat{f}||_{p'} \leq ||f||_p$ where $\frac{1}{p} + \frac{1}{p'} = 1$.

Proof. When p = 1, then $||\hat{f}||_{\infty} \le ||f||_1$ by the usual properties. When p = 2, then $||\hat{f}||_2 = ||f||_2 \le ||f||_2$. By Theorem 1.7, $||\hat{f}||_{p'} \le ||f||_p$.

Theorem 4.13 (Young's Inequality). We have

$$||f * g||_r \le ||f||_p ||g||_q$$

for all $f \in L^p, g \in L^q$, where $\frac{1}{r} + 1 = \frac{1}{p} + \frac{1}{q}$.

Proof. Fix $f \in L^p$ and consider $T_f g = f * g$ as an operator. Now $||f * g||_p \le ||f||_p ||g||_1$ and $||f * g||_\infty \le ||f||_p ||g||_{p'}$ by Minkowski inequality and Holder inequality for $g \in L^1$ and $g \in L^{p'}$, respectively. By Theorem 1.7, $||f * g||_r \le ||f||_p ||g||_q$ for $1 + \frac{1}{r} = \frac{1}{r} + \frac{1}{q}$.

Problem 10. Show that $\int \hat{f}g = \int f\hat{g}$ for all $f, g \in L^2$.

Problem 11. Let $f \in L^1$ and $g \in L^p$ for $1 \le p \le 2$. Prove that $\widehat{f * g} = \widehat{f}\widehat{g}$ almost everywhere.

Recall that for any $f \in \mathcal{S}(\mathbb{R}^n)$, we have $||f||_{\alpha,\beta} = \sup_{x \in \mathbb{R}^n} |x^{\alpha}D^{\beta}f(x)|$ for any $\alpha, \beta \in \mathbb{N}_0^n$. Recall that we define the convergence of functions as $f_k \to f$ in $\mathcal{S}(\mathbb{R}^n)$ if $\lim_{k \to \infty} ||f_k - f||_{\alpha,\beta} = 0$ for any α, β .

Definition 4.14. Let $L: \mathcal{S}(\mathbb{R}^n) \to \mathbb{C}$ be a linear functional. We say L is continuous if $\lim_{k \to \infty} L(f_k) = 0$ as $f_k \to 0$ in $\mathcal{S}(\mathbb{R}^n)$. We denote $\mathcal{S}'(\mathbb{R}^n)$ to be the set of all continuous linear functionals $L: \mathcal{S}(\mathbb{R}^n) \to \mathbb{C}$, which is called the space of tempered distributions.

Definition 4.15. Let $f \in \mathcal{S}'(\mathbb{R}^n)$. Define $\hat{L}(\varphi) = L(\hat{\varphi})$ for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$.

Definition 4.16. A function $f: \mathbb{R}^n \to \mathbb{C}$ is called a tempered function if there exists $N \geqslant 1$ such that $\int_{\mathbb{R}^n} (1+|x|)^{-N} |f(x)| dx$ is finite.

Remark 4.17. Let $\mathcal{F} = \{f : \mathbb{R}^n \to \mathbb{C} : f \text{ tempered}\}$, then $L^p \subseteq \mathcal{F}$ for $p \geqslant 1$.

Definition 4.18. Let $f \in \mathcal{F}$. If there exists a function $g : \mathbb{R}^n \to \mathbb{C}$ such that

$$\int_{\mathbb{R}^n} f\varphi dx = \int_{\mathbb{R}^n} g\hat{\varphi} dx$$

for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$, then we may define $\hat{f} = g$ to be the Fourier transform for tempered functions.

Example 4.19. Let μ be a finite Borel measure on \mathbb{R}^n , then

$$\hat{\mu}(\xi) = \int_{\mathbb{R}^n} e^{-2\pi i \xi \cdot x} d\mu.$$

Let δ be the dirac function

$$\delta(E) = \begin{cases} 1, & 0 \in E \\ 0, & o \notin E \end{cases}$$

for any $E \in \mathcal{B}(\mathbb{R}^n)$. Its Fourier transform is

$$\hat{\delta}(\xi) = \int_{\mathbb{R}^n} e^{-2\pi i \xi \cdot x} d\delta$$

$$= \int_{\mathbb{R}^n \setminus \{0\}} e^{-2\pi i i \xi \cdot x} d\delta + \int_{\{0\}} e^{-2\pi i \xi \cdot x} d\delta$$

$$= 0 + \delta(\{0\})$$

$$= 1.$$

5 Singular Integrals

Let $f \in \mathcal{S}(\mathbb{R}^n)$, then we want to understand the integral $Tf(x) = \int_{\mathbb{R}^n} K(x,y)f(y)dy$ for some kernel function K, which should be understood as a distribution.

Definition 5.1 (Calderón-Zygmund Kernel). We say $K \in \mathcal{S}'(\mathbb{R}^n \times \mathcal{R}^n)$ is a Calderón-Zygmund kernel if K is a complex-valued function on $(\mathbb{R}^n \times \mathbb{R}^n) \setminus \{(x,y) \in \mathbb{R}^n \times \mathbb{R}^n : x = y\}$ such that it satisfies

- 1. size condition: $|K(x,y)| \leq \frac{C}{|x-y|^n}$ if $x \neq y$;
- 2. smoothness condition: there exists $\varepsilon_1 > 0$ such that $|K(x,y) K(x,y')| \leqslant \frac{C_n|y-y'|^{\varepsilon_1}}{|x-y|^{n+\varepsilon_1}}$ whenever |x-y| > 2|y-y'|;
- 3. smoothness condition: there exists $\varepsilon_2 > 0$ such that $|K(x,y) K(x',y)| \leqslant \frac{C|x-x'|_2^{\varepsilon}}{|x-y|^{n+\varepsilon_2}}$ whenever |x-y| > 2|x-x'|.

Definition 5.2 (Singular Integral Operator). Let $T: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$ be continuous in \mathcal{S} , that is, $\lim_{k \to \infty} T\varphi_k(\psi) = T\varphi(\psi)$ for all $\psi \in \mathcal{S}(\mathbb{R}^n)$ as $\varphi_k \to \varphi$ in $\mathcal{S}(\mathbb{R}^n)$. We say T is a singular integral operator associated to a kernel K if

$$\int_{\mathbb{R}^n} K(x,y)\varphi(x)\psi(y)dxdy = \int_{\mathbb{R}^n} T\varphi(x)\psi(x)dx.$$

If K is a Calderón-Zygmund kernel, then we say T is a Calderón-Zygmund singular integral operator.

Remark 5.3. We may understand the integral in the definition above as follows,

$$\langle K, \psi \otimes \varphi \rangle = \langle T\varphi, \psi \rangle \in S'(\mathbb{R}^n),$$

where $(\psi \otimes \varphi)(x,y) = \psi(x)\varphi(y) \in \mathcal{S}(\mathbb{R}^n \times \mathcal{R}^n)$.

Remark 5.4. Suppose $T \in L^p(\mathbb{R}^n)$. For any $\varphi \in \mathcal{S}(\mathbb{R}^n)$, we know that $||T\varphi||_p \leqslant C_p||\varphi||_p$ for any 1 .

Theorem 5.5 (Calderón-Zygmund). Let T be a Calderón-Zygmund singular integral operator. If $||T\varphi||_2 \le C||\varphi||_2$ for any $\varphi \in \mathcal{S}(\mathbb{R}^n)$, then we may extend T to a bounded operator on $L^p(\mathbb{R}^n)$ for any 1 .

To prove this theorem, we need to show that a Calderón-Zygmund operator can be extended to a bounded operator in L^2 .

Definition 5.6. The Hilbert transform of a function $f \in C^1_c(\mathbb{R}^n)$ is

$$Hf(x) = \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{|x-y| > \varepsilon} \frac{1}{x-y} f(y) dy,$$

where $K(x,y)=\frac{1}{x-y}$ is given in terms of its principal value, and is fact a Calderón-Zygmund kernel.

Example 5.7. Let $f \in C_c^{\infty}$, then we may bound

$$\int\limits_{\{y:|x-y|>\varepsilon\}}K(x,y)f(y)dy=\int\limits_{\{y:1>|x-y|>\varepsilon\}}K(x,y)f(y)dy+\int\limits_{\{y:|x-y|\geqslant 1\}}K(x,y)f(y)dy=:I_\varepsilon+J$$

We bound $J \leqslant \int_{\mathbb{R}} |f(y)| dy < \infty$. Notice that

$$\int\limits_{\{y:1>|x-y|>\varepsilon\}}K(x,y)dy=\int\limits_{\{y:1>|x-y|>\varepsilon\}}\frac{1}{y}dy=0.$$

Therefore

$$|I_{\varepsilon}| = \left| \int_{\{y:1>|x-y|>\varepsilon\}} K(x,y)f(y)dy \right|$$

$$= \left| \int_{\{y:1>|x-y|>\varepsilon\}} K(x,y)(f(y) - f(x))dy \right|$$

$$\leq \int_{\{y:1>|x-y|>\varepsilon\}} \frac{|f(y) - f(x)|}{|y-x|}dy$$

$$\leq \int_{\{y:1>|x-y|>\varepsilon\}} ||f'||_{\infty} \frac{|y-x|}{|y-x|}dy$$

$$\leq ||f'||_{\infty}.$$

By dominant convergence theorem, we know $\lim_{\varepsilon \to 0} I_{\varepsilon}$ exists.

Example 5.8. Consider the Riesz transform in \mathbb{R}^n for $n \ge 2$. For any $1 \le j \le n$ for $x \in \mathbb{R}^n$, we define it to be

$$R_j f(x) = C_n \lim_{\varepsilon \to 0} \int_{\{y \in \mathbb{R}^n : |x-y| > \varepsilon\}} \frac{x_j - y_j}{|x - y|^{n+1}} f(y) dy.$$

Set $K_j(x,y) = \frac{x_j - y_j}{|x-y|^{n+1}}$ given in terms of the principal values, then they are the Calderón-Zygmund kernels. With this, we can write

$$R_j f(x) = \int_{\{y \in \mathbb{R}^n : |x-y| > \varepsilon\}} k_j(x, y) f(y) dy.$$

Example 5.9. Suppose $\Omega : \mathbb{R}^n \to \mathbb{C}$ satisfies

- $\Omega(\lambda x) = \Omega(x)$ for all $\lambda > 0$ and $x \in \mathbb{R}^n$;
- $\Omega \in L^1(S^{n-1})$;
- $\int_{S^{n-1}} \Omega(x) d\sigma = 0,$

then $T_n f(x) = \int\limits_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^n} f(y) dy$ given in terms of its principal values gives a Hilbert transform as well.

Example 5.10. Let us consider the Cauchy integral along Lipschitz curves. Let γ be a Lipschitz curve in the complex plane \mathbb{C} , i.e., γ is the graph

$$\{(x, A(x)) \in \mathbb{C}\}\$$

such that A is Lipschitz with $||A'||_{\infty} < \infty$ for $A : \mathbb{R} \to \mathbb{R}$, then we write down the Calderón-Zygmund singular integral operator C_{γ} as

$$C_{\gamma}f(z) = \int_{\gamma} \frac{1}{z - \xi} f(\xi) d\xi$$

where $\xi = \xi_1 + i\xi - 2$ then $ds = d\xi_1 + id\xi_2$. Therefore the shifting gives $z \to x + iA(x)$, $\xi \to y + iA(y)$, and $d\xi \to (1 + iA'(y))dy$. Using this, we can write

$$C\tilde{f}(x) = \int_{\mathbb{R}} \frac{\tilde{f}(y)}{x - y + i(A(x) - A(y))} dy$$

where $\tilde{f}(y) = f(y + iA(y))(1 + iA'(y))$.

Theorem 5.11 (Calderón-Zygmund). Let T be a Calderón-Zygmund singular integral operator, and suppose T is L^2 -bounded, then it is L^p -bounded for any 1 .

Claim 5.12. It suffices to show that T being L^2 -bounded implies T is of the weak (1,1) type, then by Theorem 1.9, we know T is of (p,p) type for any 1 . In particular, by duality, since <math>T is of (p,p) for any $1 , then <math>T^*$ is of type (q,q) for any 1 < q < 2.

Let us start by proving that

Lemma 5.13 (Calderón-Zygmund Decomposition). Let $f \in L^1(\mathbb{R}^n)$. For any given $\lambda > 0$, there exists a collection of non-overlapping cubes $\{Q_j\}_{j \ge 1}$ with $|Q| = \mathfrak{m}(Q)$, such that

•
$$\lambda < \frac{1}{|Q_j|} \int_{Q_j} |f| \leqslant 2^n \lambda;$$

• $|f(x)| \leq \lambda$ almost everywhere for $x \in \mathbb{R}^n \setminus \bigcup_{j \geq 1} Q_j$;

$$\cdot \left| \bigcup_{j \geqslant 1} Q_j \right| = \sum_{j \geqslant 1} |Q_j| \leqslant \frac{||f||_1}{\lambda}.$$

Proof. We divide \mathbb{R}^n into a union of non-overlapping cubes Q's of the same size, such that $\frac{1}{Q}\int\limits_Q |f|\leqslant \lambda$. Now let \mathcal{D} be all cubes Q that satisfy the said inequality. If Q satisfy such inequality, then we divide it into 2^n smaller cubes Q' of the same size, with side length $\ell(Q')=\frac{1}{\ell}(Q)$. If Q' is such that $\frac{1}{|Q'|}\int\limits_{Q'}|f|>\lambda$, then it satisfies

$$\lambda < \frac{1}{|Q'|} \int\limits_{Q'} |f| \leqslant \frac{2^n}{|Q|} \int\limits_{Q} |f|,$$

so we include Q' into the family; if Q' is such that $\frac{1}{|Q'|}\int_{Q'}|f| \leq \lambda$, then we divide Q' into smaller cubes in the same fashion, and we repeat this procedure. Eventually, we obtain a sequence $\{Q_i\}_{i=1}^N$ that satisfies the first condition

fashion, and we repeat this procedure. Eventually, we obtain a sequence $\{Q_j\}_{j\in\mathbb{N}}$ that satisfies the first condition. For any $x\notin\bigcup_{j\geqslant 1}Q_j$, there exists a subsequence $\{Q_k\}_{k\geqslant 1}$ such that $\lim_{k\to\infty}|Q_k|=0, x\in Q_k$ for all $k\in\mathbb{N}$, and that $\frac{1}{|Q_k|}\int\limits_{\Omega}|f|\leqslant \lambda$. By Lebesgue differentiation theorem,

$$\lambda \geqslant \lim_{k \to \infty} \frac{1}{|Q_k|} \int_{Q_k} |f| d\mathfrak{m} = f(x)$$

for almost all $x \notin \bigcup_{j \ge 1} Q_j$, hence $|f(x)| \le \lambda$ for almost all $x \in \mathbb{R}^n \setminus \bigcup_{j \ge 1} Q_j$, hence we have the second condition.

To verify the last condition, we note that

$$\sum_{j} |Q_{j}| \leq \sum_{j} \frac{1}{\lambda} \int_{Q_{j}} |f|$$
$$= \frac{||f||_{1}}{\lambda}.$$

Lemma 5.14. Let $f \in L^1(\mathbb{R}^n)$ and $\lambda > 0$, then f = g + b such that

- $g \in L^2(\mathbb{R}^n)$ and $||g||_2^2 \leqslant C\lambda||f||_1$;
- $b(x) = \sum_{j \ge 1} b_j(x)$, where each b_j is supported in a cube Q_j , such that Q_j 's are non-overlapping;

•
$$\sum_{j\geqslant 1}|Q_j|\leqslant \frac{||f||_1}{\lambda}, \int_{Q_j}b_j=0, \text{ and } \sum_{j\geqslant 1}||b_j||_1\leqslant 2||f||_1.$$

Proof. Let $\{Q_j\}_{j\geq 1}$ be the collection of cubes in Lemma 5.13. For any $j\in\mathbb{N}$, we know

$$b_j(x) = \left(f(x) - \frac{1}{|Q_j|} \int_{Q_j} f\right) \chi_{Q_j}(x),$$

then $\int b_j = 0$. Define $b(x) = \sum_{j \ge 1} b_j(x)$ and g(x) = f(x) - b(x). The only non-trivial thing we need to verify is the first condition. Note that

$$g(x) = f(x)\chi_{\left(\bigcup_{j\geqslant 1}Q_j\right)^c}(x) + \sum_{j\geqslant 1}\left(\frac{1}{|Q_j|}\int_{Q_j}f\right)\chi_{Q_j}(x),$$

therefore

$$||g||_{\infty} \leq ||f||_{L^{\infty}\left(\mathbb{R}^{n} \setminus \bigcup_{j \geq 1} Q_{j}\right)} + \sup_{j \geq 1} \frac{1}{|Q_{j}|} \int_{Q_{j}} |f|$$
$$< \lambda + 2^{n} \lambda$$
$$= C_{n} \lambda$$

for some constant C_n depending on n. On the other hand, we have

$$\begin{split} ||g||_1 &= ||f - b||_1 \\ &\leqslant ||f||_1 + ||b||_1 \\ &\leqslant ||f||_1 + \sum_{j\geqslant 1} ||b_j||_{L^1(Q_j)} \\ &\leqslant ||f||_1 + 2\sum_{j\geqslant 1} \int\limits_{Q_j} |f| \\ &\leqslant 3||f||_1. \end{split}$$

By Hölder inequality (or interpolation theorem), we have

$$||g||_2 \le (3||f||_1)^{\frac{1}{2}} (C_n \lambda)^{\frac{1}{2}}$$

 $\le \tilde{C}_n \lambda^{\frac{1}{2}} ||f||_1^{\frac{1}{2}},$

as desired.

Proof of Theorem 5.11. Recall from Claim 5.12 that it suffices to show T satisfies the weak (1,1) estimate, that is, for any $\lambda > 0$,

$$|\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\}| \leqslant \frac{C}{\lambda}||f||_1$$

for any $f \in L^1(\mathbb{R}^n)$. By Lemma 5.14, let us write f = g + b where $g \in L^2$ and $b \in L^1$, then

$$\left|\left\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\right\}\right| \le \left|\left\{x \in \mathbb{R}^n : |Tg(x)| > \frac{\lambda}{2}\right\}\right| + \left|\left\{x \in \mathbb{R}^n : |Tb(x)| > \frac{\lambda}{2}\right\}\right|$$
$$=: I_g + I_b.$$

We can bound

$$I_g \leqslant \frac{C}{\lambda^2} ||g||_2^2$$

$$\leq \frac{C'}{\lambda^2} \lambda ||f||_1$$

$$= \frac{C'}{\lambda} ||f||_1$$

since T is of strong (2,2) type. It remains to show that $I_b \leqslant \frac{C||f||_1}{\lambda}$. Let us write

$$I_b = \left| \left\{ x \in \mathbb{R}^n \setminus \bigcup_{j \ge 1} 5Q_j : |Tb(x)| > \frac{\lambda}{2} \right\} \right| + \left| \left\{ x \in \bigcup_{j \ge 1} Q_j : |Tb(x)| > \frac{\lambda}{2} \right\} \right|$$

where $5Q_j$ is the dilation of Q_j by 5 times, then

$$\left| \left\{ x \in \bigcup_{j \geqslant 1} Q_j : |Tb(x)| > \frac{\lambda}{2} \right\} \right| \leqslant \left| \bigcup_{j \geqslant 1} 5Q_j \right|$$
$$\leqslant \sum_{j \geqslant 1} |5Q_j|$$
$$\leqslant \frac{C}{\lambda} ||f||_1.$$

It then suffices to bound the first term. Since the support of b_j is contained in Q_j , then whenever $x \notin 5Q_j$ with $y \in Q_j$, we may have K(x,y) treated by the usual complex-valued function dominated by $\frac{1}{x-y}$. Let y_j be the center of Q_j , then since $\int b_j = 0$, we know that $\int K(x,y_j) = 0$ as well. Therefore, by Chebyshev inequality,

$$\left| \left\{ x \in \mathbb{R}^n \middle\setminus \bigcup_{j \geqslant 1} 5Q_j : |Tb(x)| > \frac{\lambda}{2} \right\} \right| \leqslant \frac{2}{\lambda} \int_{\left(\bigcup_{j \geqslant 1} 5Q_j\right)^c} |Tb(x)| dx$$

$$\leqslant \frac{2}{\lambda} \sum_{j \geqslant 1} \int_{\left(\bigcup_{j \geqslant 1} 5Q_j\right)^c} |Tb_j(x)| dx$$

$$\leqslant \frac{2}{\lambda} \sum_{j \geqslant 1} \int_{\left(5Q_j\right)^c} \left| \int_{\left(K(x,y)b_j(y)dy\right)} dx \right|$$

$$= \frac{2}{\lambda} \sum_{j \geqslant 1} \int_{\left(5Q_j\right)^c} \left| \int_{\left(K(x,y)b_j(y)dy\right)} K(x,y)b_j(y) dy - \int_{\left(K(x,y)b_j(y)dy\right)} K(x,y)b_j(y) dy \right| dx$$

$$= \frac{2}{\lambda} \sum_{j \geqslant 1} \int_{\left(5Q_j\right)^c} \left| \int_{\left(K(x,y)b_j(y)dy\right)} K(x,y)b_j(y) dy \right| dx.$$

Recall that $|K(x,y)-K(x,y_j)| \leqslant C \frac{|y-y_j|^{\varepsilon}}{|x-y|^{n+\varepsilon}}$ for some constant C whenever $|x-y|>2|y-y_j|$. Since x is outside of $5Q_j$ while y and y_j are inside Q_j , then x and y satisfy the bound indeed. By Fubini theorem,

$$\left| \left\{ x \in \mathbb{R}^n \setminus \bigcup_{j \geqslant 1} 5Q_j : |Tb(x)| > \frac{\lambda}{2} \right\} \right| \leqslant \frac{C}{\lambda} \sum_{j \geqslant 1} \int_{(5Q_j)^c} \int_{Q_j} \frac{|y - y_j|^{\varepsilon}}{|x - y|^{n + \varepsilon}} |b_j(y)| dy dx$$

$$\leqslant \frac{C}{\lambda} \sum_{j \geqslant 1} \int_{Q_j} |b_j(y)| \int_{\{x \in \mathbb{R}^n : |x - y| \geqslant 2|y - y_j|\}} \frac{|y - y_j|^{\varepsilon}}{|x - y|^{n + \varepsilon}} dx dy$$

for some other constant C. Let $I=\int\limits_{\{x\in\mathbb{R}^n:|x-y|\geqslant 2|y-y_j|\}}\frac{|y-y_j|^\varepsilon}{|x-y|^{n+\varepsilon}}dx$, then

$$I = \int\limits_{\{x \in \mathbb{R}^n: |x-y| \geqslant 2|y-y_j|\}} \frac{|y-y_j|^\varepsilon}{|x-y|^{n+\varepsilon}} dx$$

$$= |y - y_j|^{\varepsilon} \int_{|x| \ge 2|y - y_j|} \frac{1}{|x|^{n + \varepsilon}} dx$$

$$\le C_{\varepsilon, n}$$

using polar coordinates, where $C_{\varepsilon,n}$ is independent of x,y, and y_j . Thus,

$$\begin{split} \left| \left\{ x \in \mathbb{R}^n \backslash \bigcup_{j \geqslant 1} 5Q_j : |Tb(x)| > \frac{\lambda}{2} \right\} \right| &\leqslant \frac{C}{\lambda} \sum_{j \geqslant 1} \int_{Q_j} |b_j(y)| \int\limits_{\{x \in \mathbb{R}^n : |x-y| \geqslant 2|y-y_j|\}} \frac{|y-y_j|^\varepsilon}{|x-y|^{n+\varepsilon}} dx dy \\ &\leqslant \frac{C}{\lambda} \sum_{j \geqslant 1} \int\limits_{Q_j} |b_j(y)| C_{\varepsilon,n} dy \\ &=: \frac{\tilde{C}}{\lambda} \sum_{j \geqslant 1} \int\limits_{Q_j} |b_j(y)| dy \\ &\leqslant \frac{\tilde{C}}{\lambda} ||f||_1. \end{split}$$

Problem 12. Show that Theorem 5.11 still holds if the second condition of the Calderón-Zygmund kernel K is replaced by the Hörmander condition

$$\int_{|x-y|>2|y-y'|} |K(x,y) - K(x,y')| dx \leqslant C.$$

6 Hilbert Transform

Recall that the Hilbert transform is defined by

$$Hf(x) = \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{|y| > \varepsilon} \frac{f(x-y)}{y} dy = K * f(x),$$

which is well-defined for any integrable function. One may replace the kernel K(x) to be the principal values of $\frac{1}{x}$.

Definition 6.1. Let $x, t \in \mathbb{R}$ for t > 0. The Poisson kernel is defined by

$$P + t(x) = \frac{1}{\pi} \frac{t}{t^2 + x^2}.$$

Let us define $u(x,t)=P_t*f(x)=\int\limits_{\mathbb{R}}P_t(x-y)f(y)dy$, then u is a solution to

$$\begin{cases} \Delta u(x,t) = 0 \ \forall (x,t) \in \mathbb{R}^2_+ \\ u(x,0) = \lim_{t \to 0^+} u(x,t) = f(x) \in L^p \end{cases}$$

for $1 \leq p < \infty$ for almost all x, on the upper half plane $\mathbb{R}^2_+ = \{(x,t) \in \mathbb{R}^2 : t > 0\}$. Instead of the real space, let us consider it as a complex plane for $z \in \mathbb{C}$ such that z = Re(z) + i im(z) where im(z) > 0. Therefore, z corresponds to a pair $(\text{Re}(z), \text{im}(z)) \in \mathbb{R}^2_+$. For simplicity, let $f \in L^1$ (while the following statements still hold for general L^p functions). Define

$$F(z) = 2 \int_{0}^{\infty} \hat{f}(\xi) e^{2\pi i \xi z} d\xi,$$

then this is well-defined since \hat{f} is bounded. If we write

$$e^{2\pi i\xi z} = e^{2\pi i\xi \operatorname{Re}(z)} \cdot e^{-2\pi\xi \operatorname{Im}(z)}$$

we see that the function decays fast enough, thus F(z) is analytic in \mathbb{R}^2_+ . Let us assume that f is real-valued by considering its real part and imaginary part, then we may write

$$F(z) = \left(\int_{0}^{\infty} \hat{f}(\xi)e^{2\pi i\xi z}d\xi + \int_{-\infty}^{0} \hat{f}(\xi)e^{2\pi i\xi \bar{z}}d\xi\right) + \left(\int_{0}^{\infty} \hat{f}(\xi)e^{2\pi i\xi z}d\xi - \int_{-\infty}^{0} \hat{f}(\xi)e^{2\pi i\xi \bar{z}}d\xi\right)$$

to give us the real and imaginary part of F. Since f is of real-valued, then the first term is a real-valued function; note that the second term is complex-valued, so it is i multiplied by some real-valued function. Therefore, let us write F(z) = u + iv. In fact, both u and v are related to the Hilbert transform. To see this, note that $\Delta u = \Delta v = 0$ if $(x,t) \in \mathbb{R}^2_+$, so the boundary values are given by

$$\lim_{t \to 0^+} u(x,t) = \int_0^\infty \hat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi + \int_{-\infty}^0 \hat{f}(\xi) e^{2\pi i x \xi} d\xi$$
$$= \int_{\mathbb{R}} \hat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi$$
$$= f(x).$$

by dominant convergence theorem and the inversion formula. Therefore, u should satisfy

$$\begin{cases} \Delta u(x,t) = 0, x, t \in \mathbb{R}_+^2 \\ u(x,0) = f(x) \end{cases}$$

which gives $u(x,t) = P_t * f(x)$. Also, we have

$$v(z) = \int_{-\infty}^{\infty} -i\operatorname{sgn}(\xi)e^{-2\pi\operatorname{Im}(z)|\xi|} \hat{f}(\xi)e^{2\pi i\operatorname{Re}(z)\xi}d\xi$$

where

$$\operatorname{sgn}(\xi) = \begin{cases} 1, & \xi \geqslant 0 \\ -1, & \xi < 0 \end{cases}$$

is the signal function. Set z = x + it, then we represent

$$v(x+it) = \int_{-\infty}^{\infty} -i\operatorname{sgn}(\xi)e^{-2\pi t|\xi|}\hat{f}(\xi)e^{2\pi ix\xi}d\xi.$$

Let $Q_t(x)=rac{1}{\pi}rac{x}{t^2+x^2}$ and recall $P_t(x)=rac{1}{\pi}rac{t}{t^2+x^2}$, then

$$P_t + iQ_t = \frac{1}{\pi} \frac{t + ix}{t + x^2} = \frac{1}{\pi} \cdot \frac{i}{z}$$

is analytic on \mathbb{R}^2_+ where z=x+it.

Claim 6.2. $v(x,t) = v(x+it) = Q_t * f(x)$ for integrable real-valued function f.

Proof. It suffices to show that

$$F(z) = P_t * f(x) + iQ_t * f(x)$$

where $z = x + it \in \mathbb{R}^2_+$. To show this, we have

$$F(z) = 2 \int_{0}^{\infty} \hat{f}(\xi) e^{2\pi i \xi z} d\xi$$

$$= 2 \int_{0}^{\infty} \left(\int_{\mathbb{R}} f(y) e^{-2\pi i \xi y} dy \right) e^{2\pi i \xi z} d\xi$$

$$= 2 \int_{\mathbb{R}} f(y) \left(\int_{0}^{\infty} e^{-2\pi i \xi (z-y)} d\xi \right) dy$$

$$= \int_{\mathbb{R}} f(y) \frac{i}{\pi (x-y+it)} dy$$

$$= (P_t + iQ_t) * f(x).$$

Theorem 6.3. Let $f \in \mathcal{S}(\mathbb{R})$ or $C_c^{\infty}(\mathbb{R})$, then

$$\lim_{t \to 0} Q_t * f(x) = \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{\substack{|y| > \varepsilon}} \frac{f(x-y)}{y} dy = Hf(x)$$

almost everywhere.

Remark 6.4. This is true for $f \in L^p(\mathbb{R}^1)$ for $1 \leq p < \infty$.

Proof. Let $\psi_t(x) = \frac{1}{\pi x} \chi_{\{|x| > t\}}$, then the Hilbert transform $Hf(x) = \lim_{\varepsilon \to 0} \psi_\varepsilon * f(x)$. By dominant convergence theorem,

$$\lim_{\varepsilon \to 0} ((Q_{\varepsilon} - \psi_{\varepsilon}) * f) = \lim_{\varepsilon \to 0} (Q_{\varepsilon} - \psi_{\varepsilon}) * f$$
$$= 0$$

Remark 6.5. Note that $\sup_{\varepsilon>0} |(Q_{\varepsilon}-\psi_{\varepsilon})*f| \leqslant CMf(x)$ since $|(Q_{\varepsilon}-\psi_{\varepsilon})(y)| \leqslant \frac{1}{\varepsilon} \frac{1}{(1+\left(\frac{y}{\varepsilon}\right)^2}$.

Let us now verify the boundedness of Hilbert transform on L^2 space.

Theorem 6.6. $\widehat{Hf}(\xi) = -i\operatorname{sgn}(\xi)\widehat{f}(\xi)$ for $f \in \mathcal{S}(\mathbb{R}^n)$.

Proof. We know

$$\widehat{Hf}(\xi) = \int Hf(x)e^{-2\pi ix\xi}dx$$

$$= \int \lim_{t \to 0} Q_t * f(x)e^{-2\pi ix\xi}dx$$

$$= \lim_{t \to 0} \int Q_t * f(X)e^{-2\pi ix\xi}dx$$

$$= \lim_{t \to 0} \widehat{Q_t * f}(\xi).$$

By the inversion formula for Fourier transform, we know

$$\begin{split} v(x,t) &= Q_t * f(x) \\ &= \int\limits_{-\infty}^{\infty} -i \operatorname{sgn}(\xi) e^{-2\pi t |\xi|} \hat{f}(\xi) e^{2\pi i x \xi} d\xi, \end{split}$$

therefore

$$\widehat{Q_t * f} = -i\operatorname{sgn}(\xi)e^{-2\pi t|\xi|}.$$

Hence,

$$\widehat{Hf}(\xi) = \lim_{t \to 0} \widehat{Q_t * f}(\xi)$$

$$= \lim_{t \to 0} -i \operatorname{sgn}(\xi) e^{-2\pi t |\xi|}$$

$$= -i \operatorname{sgn}(\xi).$$

Corollary 6.7. $\widehat{Hf}(\xi) = -i\operatorname{sgn}(\xi)\widehat{f}(\xi)$ for $f \in L^2$.

Proof. For $f_k \in \mathcal{S}$ such that $f_k \xrightarrow{L^2} f$, we know

$$\widehat{Hf}(\xi) =_{L^2} \lim_{k \to \infty} \widehat{Hf_k}(\xi)$$

$$= \lim_{k \to \infty} (-i\operatorname{sgn}(\xi))\widehat{f_k}(\xi)$$

$$=_{L^2} (-i\operatorname{sgn}(\xi))\widehat{f}(\xi),$$

therefore

$$\widehat{Hf}(\xi) = (-i\operatorname{sgn}(\xi))\widehat{f}(\xi)$$

almost everywhere.

Corollary 6.8. $||Hf||_2 = ||f||_2$ for all $f \in L^2$.

Proof. We have

$$||Hf||_{2} = ||\widehat{Hf}||_{2}$$

$$= ||-i\operatorname{sgn}(\xi)\widehat{f}(\xi)||_{2}$$

$$= ||\widehat{f}||_{2}$$

$$= ||f||_{2}.$$

Corollary 6.9. For any $f \in L^p$ with $1 , we have <math>||Hf||_p \le C_p ||f||_p$. Therefore, the Hilbert transform is of type weak (1,1).

Theorem 6.10. Let $H^*f(x) = \sup_{\varepsilon > 0} \left| \frac{1}{\pi} \int_{|y| > \varepsilon} f(x-y) \frac{1}{y} dy \right|$, then $||H^*f||_p \leqslant C_p ||f||_p$ for any $f \in L^p$ where 1 .

Proof.

Lemma 6.11. $H^*f(x) \leq M(Hf)(x) + CMf(x)$ almost everywhere for $x \in \mathbb{R}$.

Subproof. Let $\psi_{\varepsilon}(x) = \frac{1}{\pi x} \chi_{\{|x| > \varepsilon\}}$, then

$$\frac{1}{\pi} \int_{|y| > \varepsilon} f(x - y) \frac{1}{y} dy = \psi_{\varepsilon} * f(x).$$

Let $\varphi \in \mathcal{S}(\mathbb{R})$ be a non-negative even and decreasing function on $(0, \infty)$, supported on $[-\frac{1}{2}, \frac{1}{2}]$ and $\int \varphi = 1$. Now set $\varphi_{\varepsilon}(x) = \varepsilon^{-1} \varphi(\frac{x}{\varepsilon})$, then

$$\psi_{\varepsilon} * f(x) = [\psi_{\varepsilon} * f(x) - \varphi_{\varepsilon} * (Hf)(x)] + \varphi_{\varepsilon} * (Hf)(x),$$

so

$$|\varphi_{\varepsilon} * (Hf)(x)| \leq M(Hf)(x),$$

since $|\varphi_{\varepsilon}(x)| = \varepsilon^{-1} |\varphi\left(\frac{x}{\varepsilon}\right)| \leqslant \varepsilon^{-1} \frac{C_N}{(1+|\frac{x}{\varepsilon}|)^N}$ for any N. In particular, if N=2, then we have

$$|\varphi_{\varepsilon}(x)| \le \frac{C\varepsilon^{-1}}{(1+\frac{|x|}{\varepsilon})^2} = \frac{C\varepsilon}{(\varepsilon+|x|)^2} < \frac{C\varepsilon}{\varepsilon^2+|x|^2}.$$

Now Lemma 6.11 follows from the following two claims.

Claim 6.12. We have

$$\int\limits_{\mathbb{T}} \frac{\varepsilon}{|\varepsilon|^2 + |y|^2} |f(x - y)| dy \leqslant CMf(x)$$

almost everywhere on x. Here C is independent of ε and x.

Subproof. We should start by decomposing

$$\mathbb{R} = (-\varepsilon, \varepsilon) \cup \left(\bigcup_{j \geqslant 1} (2^{j}\varepsilon, 2^{j+1}\varepsilon) \cup (-2^{j+1}\varepsilon, -2^{j}\varepsilon) \right).$$

And the claim easily follows.

Claim 6.13. We have

$$\int\limits_{\mathbb{R}} \frac{\varepsilon}{|\varepsilon|^2 + |y|^2} |f(x - y)| dy = |\psi_{\varepsilon} * f(x) - \varphi_{\varepsilon} * (Hf)(x)| \leq CMf(x).$$

Subproof. We have

$$\int\limits_{\mathbb{R}} \frac{\varepsilon}{|\varepsilon|^2 + |y|^2} |f(x-y)| dy = |\int [\psi_{\varepsilon}(y) - \frac{1}{\pi} \operatorname{p.v.} \int \varphi_{\varepsilon}(z) \frac{1}{y-z} dz] f(x-y) dy|,$$

but

$$\left| \psi_{\varepsilon}(y) - \frac{1}{\pi} \operatorname{p.v.} \int \varphi_{\varepsilon}(z) \frac{1}{y - z} \right| \leqslant \frac{C\varepsilon}{\varepsilon^2 + y^2}.$$
 (6.14)

By Claim 6.12, we may prove the claim.

Problem 13. Prove Claim 6.12.

Problem 14. Prove Equation (6.14).

Conjecture 6.15. Let $f \in L^2$, is

$$\lim_{R \to \infty} \int_{\{\xi \in \mathbb{R}^2, |\xi| < R\}} \hat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi = f(x)$$

almost everywhere? Note that one can define

$$C^*f(x) = \sup_{R>0} \left| \int_{\{\xi \in \mathbb{R}^2 : |\xi| < R\}} \hat{f}(\xi)e^{2\pi ix \cdot \xi} d\xi \right|,$$

so we should ask, is C^* of type weak (2,2)?

7 Riesz Transform

Definition 7.1. Let us define $R_jf(x)=C_n\lim_{\varepsilon\to 0}\int\limits_{\{y:|x-y|>\varepsilon\}}\frac{x_j-y_j}{|x-y|^{n+1}}f(y)dy$, where x_j and y_j are given by the jth coordinate of $x=(x_1,\ldots,x_n)$ and $y=(y_1,\ldots,y_n)$. Now set $K_j(x,y)=\mathrm{p.\,v.}\,\frac{x_j-y_j}{|x-y|^{n+1}}$ to be the principal values as a Calderón-Zygmund kernel, and let $\tilde{K}_j(x)=\mathrm{p.\,v.}\,\frac{x_j}{|x|^{n+1}}$, then $R_jf=\tilde{K}_j*f$.

Remark 7.2. Recall that Hf(x) = K * f(x) where $K = \frac{1}{\pi} \text{ p. v. } \frac{1}{x}$, then $\widehat{Hf} = \hat{K}\hat{f}$, where $\hat{K}(\xi) = \widehat{\frac{1}{\pi} \text{ p. v. } \frac{1}{x}}(\xi) = -i \operatorname{sgn}(\xi)$, therefore

$$||\hat{H}f||_2 = ||\hat{K}\hat{f}||_2 \le ||\hat{K}||_{\infty}||\hat{f}||_2.$$

Definition 7.3. We define $T_{\Omega}f(x) = \text{p. v.} \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^n} f(y) dy$, where Ω is a function that satisfies

- 1. $\Omega(\lambda x) = \Omega(x)$ for all $\lambda > 0$,
- 2. $\Omega \in L^1(S^{n-1})$.
- 3. $\int\limits_{S^{n-1}}\Omega d\sigma=0$. (This allows the limit in principal values to exist.)

Problem 15. Let $\Omega \in L^1(S^{n-1})$ and $\Omega(\lambda x) = \Omega(x)$ for all $\lambda > 0$. Suppose

$$\lim_{\varepsilon \to 0} \int_{|x-y| > \varepsilon} \frac{\Omega(x-y)}{|x-y|^n} f(y) dy$$

exists in $\mathbb R$ almost everywhere for all $f \in C_c^\infty(\mathbb R^n)$. Show that $\int_{S^{n-1}} \Omega d\sigma = 0$.

Example 7.4. Set $\Omega(x) = \frac{x_j}{x}$ for all $x = (x_1, \dots, x_n) \in \mathbb{R}^n$.

Theorem 7.5. We have

$$\hat{K}_{\Omega}(\xi) = \int_{\Omega = 1} \Omega(y') \left(\log \frac{1}{|y' \cdot \xi'|} - \frac{i\pi}{2} \operatorname{sgn}(y' \cdot \xi') \right) d\sigma(y')$$

where $\xi' = \frac{\xi}{|\xi|} \in S^{n-1}$, in the sense of distributions.

Proof. For any $\varepsilon > 0$, let $K_{\varepsilon}(x) = \frac{\Omega(x)}{|x|^n} \cdot \chi_{\{\varepsilon < |x| < \frac{1}{\varepsilon}\}} \in L^1$, then define $\hat{K}_{\Omega}(\xi) = \lim_{\varepsilon \to 0} \hat{K}_{\varepsilon}(\xi)$. Then

$$\begin{split} \hat{K}_{\varepsilon}(\xi) &= \int\limits_{\mathbb{R}^n} K_{\varepsilon}(x) e^{-2\pi i x \cdot \xi} dx \\ &= \int\limits_{\{\varepsilon < |x| < \frac{1}{\varepsilon}\}} \frac{\Omega(x')}{|x|^n} e^{-2\pi i x \cdot \xi} dx \\ &= \int\limits_{S^{n-1}} \int\limits_{\varepsilon}^{\frac{1}{\varepsilon}} \frac{\Omega(y')}{r^n} e^{-2\pi i r |\xi| (y' \cdot \xi')} r^{n-1} dr d\sigma(y') \\ &= \int\limits_{S^{n-1}} \Omega(y') \left(\int\limits_{\varepsilon}^{\frac{1}{\varepsilon}} e^{-2\pi i r |\xi| (y' \cdot \xi')} \frac{dr}{r} \right) d\sigma(y') \\ &= \int\limits_{S^{n-1}} \Omega(y') \left(\int\limits_{\varepsilon}^{1} e^{-2\pi i r |\xi| (y' \cdot \xi')} \frac{dr}{r} + \int\limits_{1}^{\frac{1}{\varepsilon}} e^{-2\pi i r |\xi| (y' \cdot \xi')} \frac{dr}{r} \right) d\sigma(y') \end{split}$$

$$\begin{split} &= \int\limits_{S^{n-1}} \Omega(y') \left(\int\limits_{\varepsilon}^{1} \left(e^{-2\pi i r |\xi|(y' \cdot \xi')} - 1 \right) \frac{dr}{r} \right) d\sigma(y') + \int\limits_{S^{n-1}} \Omega(y') \left(\int\limits_{1}^{\frac{1}{\varepsilon}} e^{-2\pi i r |\xi|(y' \cdot \xi')} \frac{dr}{r} \right) d\sigma(y') \right) \\ &= \int\limits_{S^{n-1}} \Omega(y') \left(\int\limits_{\varepsilon}^{1} \left(\cos(2\pi r |\xi| y' \xi') - 1 \right) \frac{dr}{r} \right) d\sigma(y') + \int\limits_{S^{n-1}} \Omega(y') \left(\int\limits_{1}^{\frac{1}{\varepsilon}} \cos(2\pi r |\xi| y' \xi') \frac{dr}{r} \right) d\sigma(y') \right) \\ &- i \int\limits_{S^{n-1}} \Omega(y') \int\limits_{\varepsilon}^{\frac{1}{\varepsilon}} \sin(2\pi r |\xi| y' \xi') \frac{dr}{r} d\sigma(y') \\ &=: I_1 + i I_2. \end{split}$$

Set $S = 2\pi r |\xi| \cdot M' \cdot |y'\xi'|$, then

$$I_{2} = \int\limits_{S^{n-1}} \left(\int\limits_{2\pi|\xi||y'\cdot\xi'|\varepsilon}^{2\pi|\xi||y'\cdot\xi'|\frac{1}{\varepsilon}} (\sin(S)) \operatorname{sgn}(y'\cdot\xi') \frac{dS}{S} \right) d\sigma(y'),$$

then for $\varepsilon \to 0$, we have

$$I_{2} \to \int_{S^{n-1}} \Omega(y') \operatorname{sgn}(y' \cdot \xi') \int_{0}^{\infty} \frac{\sin(S)}{S} dS d\sigma(y')$$
$$= \frac{\pi}{2} \int_{S^{n-1}} \Omega(y') \operatorname{sgn}(y' \cdot \xi') d\sigma(y').$$

Similarly, we have

$$I_1 = \int\limits_{S^{n-1}} \Omega(y') \int\limits_{2\pi|\xi||y'\cdot\xi'|\cdot\varepsilon}^{2\pi|\xi||y'\cdot\xi'|} \frac{\cos(S)-1}{S} dS d\sigma(y') + \int\limits_{S^{n-1}} \Omega(y') \int\limits_{2\pi|\xi|\cdot|y'\cdot\xi'|}^{2\pi|\xi|\cdot|y'\cdot\xi'|} \frac{\cos(S)}{S} dS d\sigma(y').$$

For $\varepsilon \to 0$, this time

$$I_1 \to \int\limits_{S^{n-1}} \Omega(y') \int\limits_0^{2\pi |\xi| \cdot |y' \cdot \xi'|} \frac{\cos(S) - 1}{S} dS d\sigma(y') + \int\limits_{S^{n-1}} \Omega(y') \int\limits_{2\pi |\xi| \cdot |y' \cdot \xi'|}^{\infty} \frac{\cos(S)}{S} dS d\sigma(y'),$$

therefore

$$\lim_{\varepsilon \to 0} I_1 = \int_{S^{n-1}} \Omega(y) \int_0^{2\pi|\xi|} \frac{\cos(S) - 1}{S} dS + \int_{2\pi|\xi|}^{\infty} \frac{\cos(S)}{S} dS + \int_{2\pi|\xi| \cdot |\xi' \cdot y'|}^{2\pi|\xi|} \frac{dS}{S} d\sigma$$

$$= \int_{S^{n-1}} \Omega(y') \int_{2\pi|\xi| \cdot |y' \cdot \xi'|}^{2\pi|\xi|} \frac{dS}{S} d\sigma(y')$$

$$= \int_{S^{n-1}} \Omega(y') \log \frac{1}{|y' \cdot \xi'|} d\sigma(y').$$

Remark 7.6. If Ω is odd, then $\hat{K}_{\Omega}(\xi) = -\int\limits_{S^{n-1}} \Omega(y') \frac{i\pi}{2} \operatorname{sgn}(y' \cdot \xi') d\sigma(y')$ which is bounded above by $||\Omega||_{L^{1}(S^{n-1})}$.

Corollary 7.7. Since $\widehat{\mathbf{p.v.}(\frac{x_j}{|x|^{n+1}})}$ is bounded, then k_j is bounded on L^2 .

Remark 7.8. If Ω is even, then $\hat{K}_{\Omega}(\xi) = \int_{S^{n-1}} \Omega(y') \log \frac{1}{|y' \cdot \xi'|} d\sigma(y')$.

Definition 7.9. Let us define
$$\Omega_e(y') = \frac{1}{2}(\Omega(y') + \Omega(-y'))$$
, and $\Omega_o(y') = \frac{1}{2}(\Omega(y') - \Omega(-y'))$, then $\Omega = \Omega_e + \Omega_0$, Moreover, define $L \log L(S^{n-1}) = \{\Omega : \int_{S^{n-1}} |\Omega(y')| \log^+ |\Omega(y')| d\sigma(y') < \infty\}$, where $\log^+(t) = \max\{0, \log(t)\}$.

Proposition 7.10. $L \log L(S^{n-1}) \supseteq L^q(S^{n-1})$ for all q > 1.

Theorem 7.11. Suppose Ω satisfies property 1 and 3 in Definition 7.3, and suppose $\Omega_0 \in L^1(S^{n-1})$ and $\Omega_e(L \log L(S^{n-1}), \frac{\Omega(x)}{|x|^n})$ is a bounded function.

This can be done by setting $2^{-k-1} \le |y'\xi'| \le 2^{-k}$ for all k > 0.

Remark 7.12.

- 1. Note that $K(x-y)={
 m p.\,v.}\,\frac{\Omega(x-y)}{(x-y)^n}$ is not a standard Calderón-Zygmund kernel, unless Ω is smooth enough.
- 2. If $\Omega \in L \log L(S^{n-1})$, then T_{Ω} is of type weak (1, 1).
- 3. Here is an open problem: let $\Omega \in L^1(S^{n-1})$ and suppose Ω satisfies property 1 and 3 in Definition 7.3, and is an odd function. Does $T_{\Omega}f(x) = \text{p. v. } \int \frac{\Omega(x-y)}{|x-y|^n} f(y) dy$ define a weak (1,1) type operator?

Problem 16. Show that

$$L^{q}(S^{n-1}) \subseteq L \log L(S^{n-1}) \subseteq L^{1}(S^{n-1})$$

for any $1 < q < \infty$.

8 METHOD OF ROTATION

Recall that in Definition 7.3 we defined $T_{\Omega}f(x)=\mathrm{p.\,v.}$ $\frac{\Omega(x-y)}{|x-y|^n}f(y)dy$, where $f\in C_c^{\infty}(\mathbb{R}^n)$, where Ω satisfies

- 1. $\Omega(\lambda x) = \Omega(x)$ for all $\lambda > 0$ and all $x \in \mathbb{R}^n$,
- 2. $\Omega \in L^1(S^{n-1})$, and
- 3. $\int_{S^{n-1}} \Omega d\sigma = 0.$

When Ω is odd, we know the Fourier transform $\left|\widehat{\mathbf{p}}.\widehat{\mathbf{v}}.\frac{\Omega(\cdot)}{|\cdot|^n}\right| \leqslant C||\Omega||_{L^1(S^{n-1})}$ is bounded. This suggests the following corollary.

Corollary 8.1. T_{Ω} can be extended to an operator bounded on $L^{2}(\mathbb{R}^{n})$.

Note that we cannot apply Calder'on-Zygmund theorem directly which gives a bounded operator in any L^p -space, but we may still prove the following result.

Theorem 8.2. If Ω is odd and satisfies the three properties above, then $||T_{\Omega}f||_p \leqslant C_p||f||_p$ for any $f \in C_c^{\infty}(\mathbb{R}^n)$ and any 1 .

To apply the method of rotation, we decompose \mathbb{R}^n into $W \times W^{\perp}$ where $W \cong \mathbb{R}^1$. On W, we treat the operator as a Hilbert transform, which allows the estimate in L^p -sense.

Proof. Let $f \in C_c^{\infty}(\mathbb{R}^n)$, then

$$Tf(x) = \lim_{\varepsilon \to 0} \int\limits_{\{y \in \mathbb{R}^n : |y| > \varepsilon\}} \frac{\Omega(y)}{|y|^n} f(x - y) dy \text{ by definition}$$

$$= \lim_{\varepsilon \to 0} \int\limits_{S^{n-1}} \Omega(y') \int\limits_{\varepsilon}^{\infty} f(x - ry') \frac{dr}{r} d\sigma(y') \text{ by polar coordinate formula}$$

$$= \frac{1}{2} \lim_{\varepsilon \to 0} \int\limits_{S^{n-1}} \Omega(y') \int\limits_{\{r \in \mathbb{R} : |r| > \varepsilon\}} f(x - ry') \frac{dr}{r} d\sigma(y') \text{ since } \Omega \text{ is odd}$$

$$= \frac{1}{2} \lim_{\varepsilon \to 0} \int\limits_{S^{n-1}} \Omega(y') \left(\int\limits_{\varepsilon < |r| < 1} f(x - ry') \frac{dr}{r} - \int\limits_{\varepsilon < |r| < 1} f(x) \frac{dr}{r} \right) d\sigma(y')$$

$$+ \frac{1}{2} \int\limits_{S^{n-1}} \Omega(y') \int\limits_{|r| > 1} f(x - ry') \frac{dr}{r} d\sigma(y') \text{ as } \int\limits_{S^{n-1}} \Omega = 0$$

$$= \frac{1}{2} \int\limits_{S^{n-1}} \Omega(y') \int\limits_{|r| > 1} f(x - ry') \frac{dr}{r} d\sigma(y')$$

$$+ \frac{1}{2} \int\limits_{S^{n-1}} \Omega(y') \lim_{\varepsilon \to 0} \left(\int\limits_{\varepsilon < |r| < 1} f(x - ry') \frac{dr}{r} d\sigma(y') \right)$$

$$= \frac{1}{2} \int\limits_{S^{n-1}} \Omega(y') \lim_{\varepsilon \to 0} \left(\int\limits_{\varepsilon < |r| < 1} f(x - ry') \frac{dr}{r} d\sigma(y') \right)$$

$$+ \frac{1}{2} \int\limits_{S^{n-1}} \Omega(y') \int\limits_{|r| > 1} f(x - ry') \frac{dr}{r} d\sigma(y')$$

$$+ \frac{1}{2} \int\limits_{S^{n-1}} \Omega(y') \int\limits_{|r| > 1} f(x - ry') \frac{dr}{r} d\sigma(y')$$

$$\begin{split} &= \frac{1}{2} \int\limits_{S^{n-1}} \Omega(y') \lim_{\varepsilon \to 0} \left(\int\limits_{\varepsilon < |r| < 1} f(x - ry') \frac{dr}{r} \right) d\sigma(y') \\ &+ \frac{1}{2} \int\limits_{S^{n-1}} \Omega(y') \int\limits_{|r| > 1} f(x - ry') \frac{dr}{r} d\sigma(y') \\ &= \frac{1}{2} \int\limits_{S^{n-1}} \Omega(y') \lim_{\varepsilon \to 0} \int\limits_{|r| > \varepsilon} f(x - ry') \frac{dr}{r} d\sigma(y'). \end{split}$$

Now for any $y' \in S^{n-1}$, we have $H_{y'}f(x) = \lim_{\varepsilon \to 0} \int_{|r| > \varepsilon} f(x - ry') \frac{dr}{r}$.

Problem 17. Prove that

$$||H_{y'}f||_p \leqslant C_p||f||_p$$

for any $f \in C_c^{\infty}(\mathbb{R}^n)$ or $L^p(\mathcal{S}^{\mathbb{R}^n})$ and any 1 .

Now
$$T_n f(x) = \frac{1}{2} \int_{S^{n-1}} \Omega(y') H_{y'} f(x) d\sigma(y')$$
, hence

$$||T_n f||_p \leqslant \int_{S^{n-1}} |\Omega(y')|||H_{y'} f||_p d\sigma(y').$$

Problem 17 concludes the proof.

Recall that the Riesz transform is given by

$$R_j f(x) = C_n \text{ p. v.} \int \frac{y_j}{|y|^{n+1}} f(x-y) dy.$$

Lemma 8.3. We have p. v. $C_n \frac{y_j}{|y|^{n+1}} = -i \frac{\xi_j}{|\xi|}$.

Proof. Observe that $\frac{1}{1-n}\frac{\partial}{\partial x_j}\left(\frac{1}{|x|^{n-1}}\right) = \frac{x_j}{|x|^{n+1}}$ for n>1. Therefore,

$$\widehat{\mathbf{p. v. } C_n \frac{y_j}{|y|^{n+1}}} = \frac{1}{1-n} \widehat{\frac{\partial}{\partial x_j}} \frac{1}{|x|^{n-1}} (\xi)
= \frac{1}{1-n} 2\pi i \xi_j \widehat{\frac{1}{|x|^{n-1}}} (\xi).$$

Claim 8.4.

$$\widehat{\frac{1}{|x|^{n-1}}}(\xi) = C(n)\frac{1}{|\xi|}$$

where C(n) depends on the volume of the unit ball.

Subproof. Note that $\frac{1}{|x|^{n-1}}$ is regular, so its Fourier transform $\widehat{\frac{1}{|x|^{n-1}}}$ is radial. Moreover, it is homogeneous of degree -1: when we dilate by $\lambda > 0$, we get $\widehat{\frac{1}{|x|^{n-1}}}(\lambda \xi) = \lambda^{-n} \widehat{\frac{1}{|x|^{n-1}}}(\xi) = \lambda^{-1} \widehat{\frac{1}{|x|^{n-1}}}(\xi)$. Therefore,

$$\widehat{\frac{1}{|x|^{n-1}}}(\xi) = C(n)\frac{1}{|\xi|}$$

for some constant C(n).

Now

$$\widehat{\mathbf{p.v.}} C_n \frac{y_j}{|y|^{n+1}} = \frac{1}{1-n} 2\pi i C(n) \frac{\xi_j}{|\xi|},$$

and make a choice of C(n) in terms of C_n .

Corollary 8.5.
$$\widehat{R_jf(\xi)} = \widehat{\mathrm{p.v.}C_n\frac{x_j}{|x|^{n+1}}}(\xi)\widehat{f}(\xi) = -i\frac{\xi_j}{|\xi|}\widehat{f}(\xi).$$

Corollary 8.6.
$$\sum_{j=1}^n R_j^2 = I$$
, that is, $\sum_{j=1}^n R_j^2 f = f$ for all $f \in \mathcal{S}(\mathbb{R}^n)$ where $R_j^2 = R_j \circ R_j$.

Theorem 8.7. For $1 \le j, k \le n$ and any 1 ,

$$\left\| \frac{\partial^2}{\partial x_k \partial x_j} u \right\|_p \leqslant C_p ||\Delta u||_p$$

where Δ is the Laplacian operator.

Proof.

Claim 8.8.
$$\frac{\partial^2 u}{\partial x_k \partial x_j} = -R_j R_k \Delta u$$
.

Subproof. We may prove that $\widehat{\frac{\partial^2 u}{\partial x_k \partial x_j}} = \widehat{-R_j R_k \Delta u}$. Indeed,

$$\widehat{\frac{\partial^2 u}{\partial x_k \partial x_j}}(\xi) = (2\pi i \xi_k) (2\pi i \xi_j) \hat{u}(\xi)$$

$$= -4\pi^2 \xi_k \xi_j \hat{u}(\xi)$$

$$= (-\frac{i \xi_j}{|\xi|}) (-\frac{i \xi_k}{|\xi|}) 4\pi^2 |\xi|^2 \hat{u}(\xi)$$

$$= \widehat{-R_j R_k \Delta u}.$$

Therefore,

$$\left\| \frac{\partial^2}{\partial x_k \partial x_j} u \right\|_p \leqslant ||R_j R_k \Delta u||_p \leqslant C_p ||\Delta u||_p.$$

9 Littlewood-Paley Theory

Let $\Delta_j = \{x \in \mathbb{R} : 2^j |x| < 2^{j+1}\}$ for $j \in \mathbb{Z}$. We define $\hat{S_j}f(\xi) = \chi_{\Delta_j}(\xi)\hat{f}(\xi)$ for $f \in L^2$, then $S_jf(\xi) = \hat{S_j}f(\xi)$. Now let $Sf(x) = \left(\sum_{j \in \mathbb{Z}} |\delta_j f(x)|^2\right)^{\frac{1}{2}}$, then

$$||Sf||_{2} = \left\| \left(\sum_{j \in \mathbb{Z}} |S_{j}f(x)|^{2} \right)^{\frac{1}{2}} \right\|_{2}$$

$$= \left(\sum_{j \in \mathbb{Z}} \int |S_{j}f(x)|^{2} \right)^{\frac{1}{2}}$$

$$= \left(\sum_{j \in \mathbb{Z}} ||S_{j}f||_{2}^{2} \right)^{\frac{1}{2}}$$

$$= \left(\sum_{j \in \mathbb{Z}} ||\chi_{\Delta_{j}}\hat{f}||_{2}^{2} \right)^{\frac{1}{2}}$$

$$= \left(\sum_{j \in \mathbb{Z}} ||\chi_{\Delta_{j}}\hat{f}||_{2}^{2} \right)^{\frac{1}{2}}$$

$$= \left(\sum_{j \in \mathbb{Z}} \int_{\Delta_{j}} |\hat{f}||^{2} \right)^{\frac{1}{2}}$$

$$= ||\hat{f}||_{2}$$

$$= ||f||_{2}.$$

We now partition $\mathbb{R} = \bigcup_{j \in \mathbb{Z}} \Delta_j$ into a union of disjoint subsets, with $||Sf||_2 = ||f||_2$ for all $f \in L^2$.

Theorem 9.1 (Littlewood-Paley). Let $1 , then there exists <math>C_1, C_2 \in \mathbb{R}$ such that for all $f \in L^p(\mathbb{R})$, we have

$$C_2||f||_p \le ||Sf||_p \le C_1||f||_p.$$

Let $\psi \in \mathcal{S}(\mathbb{R})$ be a non-negative bump function such that

- supp $(\psi) \subseteq \{\frac{1}{2} \leqslant |x| \leqslant 4\}$, and
- $\psi(x) = 1 \text{ if } 1 \le |x| \le 2$,

then let $\psi_j(\xi) = \psi(2^{-j}\xi)$. In this new language, define $\widehat{S_j^*f}(\xi) = \psi_j(\xi)\widehat{f}(\xi)$, then $S_j^*f(x) = \check{\psi}_j * f(x)$, and define $S^*f(x) = \left(\sum_j |S_j^*f(\xi)|^2\right)^{\frac{1}{2}}$, and $K_j = \check{\psi}_j \in L^1$.

Theorem 9.2. For any $f \in L^p$,

$$C_1||f||_p \le ||S^*f||_p \le C_2||f||_p.$$

Proof. Note that $\{S_j^*f\} = \{S_1^*f, S_{-1}^*f, S_2^*f, S_{-2}^*f, \cdots\}$, then set $\vec{T}f(x) = \{S_jf(x)\}_{j\in\mathbb{Z}}$. Now for a sequence $\{a_j\}_{j\in\mathbb{Z}}$ we define $||\{a_j\}_{j\in\mathbb{Z}}||_{L^2} = \left(\sum_j |a_j|^2\right)^{\frac{1}{2}}$, then

$$\vec{T}f(x) = \{S_i^* f(x)\}_{j \in \mathbb{Z}} = \{K_j * f(x)\}_{j \in \mathbb{Z}}$$

and define $\vec{K} = \{K_j\}_{j \in \mathbb{Z}}$ with $\vec{K} * f = \{K_j * f\}_{j \in \mathbb{Z}}$. Therefore

$$||\vec{T}f(x)||_{L^2} = \left(\sum_j |S_j^*f(x)|^2\right)^{\frac{1}{2}} = S^*f(x)$$

and

$$||S^*f||_p = ||||\vec{T}f||_{L^2}||_p = ||\vec{T}f||_{L^p(\ell^2)}.$$

When p = 2, this can be done by using

Theorem 9.3 (Calderón-Zygmund). Let $\vec{T}f(x) = \vec{K} * f(x)$ such that for some $\varepsilon > 0$, we have

$$||\vec{K}(x-y) - \vec{K}(x-y')||_{L^2} \leqslant C \frac{|y-y'|^{\varepsilon}}{|x-y|^{1+\varepsilon}}$$

whenever |x-y| > 2|y-y'|. If $||\vec{K}*f||_{L^2(\ell^2)} \le C||f||_2$ for all $f \in L^2$, then $||\vec{K}*f||_{L^p(\ell^2)} \le C_p||f||_p$ for all $f \in L^p$ where 1 .

Remark 9.4. For any $\lambda > 0$ and any $f \in L^1$, we have

$$|\{x: ||\vec{K} * f(x)||_{\ell^2} > \lambda\}| \le \frac{C||f||_1}{\lambda}.$$

It then remains to show that the kernel $\vec{K} = \{\check{\psi}_j\}_{j\in\mathbb{Z}}$ is Calderón-Zygmund. Most importantly, we verify that there exists some $\varepsilon > 0$ such that

$$||\vec{K}(x-y) - \vec{K}(x-y')||_{\ell^2} \le C \cdot \frac{|y-y'|^{\varepsilon}}{|x-y|^{1+\varepsilon}}$$

whenever |x - y| > 2|y - y'|. By definition, it suffices to show that

$$||\vec{K}(x-y) - \vec{K}(x-y')||_{\ell^2} \le \left(\sum_{j=-\infty}^{\infty} |\check{\psi}_j(x-y) - \check{\psi}_j(x-y')|^2\right)^{\frac{1}{2}}.$$

By Mean Value Theorem, there exists some η between x-y and x-y' such that

$$|\check{\psi}_{j}(x-y) - \check{\psi}_{j}(x-y')| = |(\check{\psi}_{j})'(\eta)||y-y'|.$$

Therefore,

$$\check{\psi}_j(x) = \int \psi_j(\xi) e^{2\pi i \xi \cdot x} d\xi$$

$$= \int \psi(2^{-j}\xi) e^{2\pi i \xi \cdot x} d\xi$$

$$= 2^j \int \psi(\xi) e^{2\pi i \xi \cdot (2^j x)} d\xi$$

$$= 2^j \check{\psi}(2^j x)$$

by a change of variables, and so

$$\left| \left(\check{\psi}_j \right)'(x) \right| = \left| 2^j \cdot 2^j \left(\check{\psi} \right)'(2^j x) \right|$$

$$\leq \frac{C_N 2^{2j}}{(1 + 2^j |x|)^N}$$

for all $N \geqslant 2$. Let us write

$$|\eta| = |\theta(x - y) + (1 - \theta)(x - y')|$$

$$= |(x - y') - \theta(y - y')|$$

$$= |(x - y) + (1 - \theta)(y - y')|$$

$$\ge |x - y| - (1 - \theta)|y - y'|$$

$$\ge \frac{1}{2}|x - y|$$

for some $\theta \in [0, 1]$ and using our assumption on the distance. Therefore, by substitution,

$$\begin{split} |\check{\psi}_{j}(x-y) - \check{\psi}_{j}(x-y')| &\leq \frac{C_{N}2^{2j}}{(1+2^{j}|\eta|)^{N}}|y-y'| \\ &\leq C_{N} \left(\sum_{j \in \mathbb{Z}} \frac{2^{4j}|y-y'|^{2}}{(1+2^{j}|x-y|)^{2N}} \right)^{\frac{1}{2}} \\ &= C_{N}|y-y'| \left(\sum_{j \in \mathbb{Z}} \frac{2^{4j}}{(1+2^{j}|x-y|)^{2N}} \right)^{\frac{1}{2}} \\ &= C_{N}|y-y'| \left(\sum_{1 \geqslant 2^{j}|x-y|} \frac{2^{4j}}{(1+2^{j}|x-y|)^{2N}} + \sum_{1 < 2^{j}|x-y|} \frac{2^{4j}}{(1+2^{j}|x-y|)^{2N}} \right)^{\frac{1}{2}} \\ &\leq C_{N}|y-y'| \left(\sum_{1 \geqslant 2^{j}|x-y|} 2^{4j} + \sum_{1 < 2^{j}|x-y|} \frac{2^{4j}}{(2^{j}|x-y|)^{2N}} \right)^{\frac{1}{2}} \\ &\leq C_{N}|y-y'| \left(\sum_{1 \geqslant 2^{j}|x-y|} 2^{2j} + \sum_{1 < 2^{j}|x-y|} \frac{2^{2j}}{(2^{j}|x-y|)^{N}} \right). \end{split}$$

For N large enough, we can bound both terms, for instance the second term is bounded above by $|x-y|^{-2}$.

Lemma 9.5 (Khinchin's Inequality). Let $\{\omega_n\}_{n=1}^N$ be independent random variables taking values in $\{\pm 1\}$ with equal probabilities, then $\mathbb{E}(|\sum_{n=1}^N a_n \omega_n|^p) \sim \left(\sum_{n=1}^N |a_n|^2\right)^{\frac{p}{2}}$ for any $0 . Here we use the notation that <math>A \sim B$ if and only if there exists $C_1, C_2 \in \mathbb{R}$ such that $C_1B \leqslant A \leqslant C_2B$.

Proof. Let us prove the case where $1 . We know that <math>\frac{1}{2}(e^x + e^{-x}) \le e^{\frac{x^2}{2}}$ for all $x \in \mathbb{R}$. Assume $a_n \in \mathbb{R}$ for all $n \in \{1, \dots, N\}$, and let $\mu > 0$, then

$$\int_{\Omega} e^{\mu \sum_{n} a_{n} \omega_{n}} dP = \mathbb{E} \left(e^{\mu \sum_{n=1}^{N} a_{n} \omega_{n}} \right)$$

$$= \mathbb{E} \left(\prod_{n=1}^{N} e^{\mu a_{n} \omega_{n}} \right)$$

$$= \prod_{n=1}^{N} \mathbb{E} \left(e^{\mu a_{n} \omega_{n}} \right)$$

$$= \prod_{n=1}^{N} \frac{1}{2} \left(e^{\mu a_{n}} + e^{-\mu a_{n}} \right)$$

$$\leqslant \prod_{n=1}^{N} e^{\mu^{2} a_{n}^{2}}$$

For any $\lambda > 0$ and $\mu > 0$, we know

$$P(\{\sum_{n} a_n \omega_n \geqslant \lambda\}) = \prod_{n=1}^{N} e^{\frac{\mu^2 a_n^2}{2}} e^{-\mu\lambda}.$$

In particular, take $\mu = \frac{\lambda}{\sum a_n^2}$, then

$$P(\{\sum_{n} a_n \omega_n \geqslant \lambda\}) \leqslant e^{-\frac{\lambda^2}{2\sum_{n} a_n^2}}.$$

Similarly, we have that

$$P(\{\sum_{n} a_n \omega_n \leqslant -\lambda\}) \leqslant e^{-\frac{\lambda^2}{2\sum_{n} a_n^2}}.$$

Therefore,

$$P(\{|\sum_{n} a_n \omega_n| \leqslant \lambda\}) \leqslant 2e^{-\frac{\lambda^2}{2\sum_{n} a_n^2}}.$$

This gives

$$\mathbb{E}[|\sum_{n} a_{n} \omega_{n}|^{p}] = \int_{\Omega} |\sum_{n} a_{n} \omega_{n}|^{p} dP$$

$$= p \int_{0}^{\infty} \lambda^{p-1} P(\{|\sum_{n} a_{n} \omega_{n}| > \lambda\}) d\lambda$$

$$\leq 2p \int_{0}^{\infty} \lambda^{p-1} e^{-\frac{\lambda^{2}}{2\sum_{n} a_{n}^{2}}} d\lambda$$

$$\xrightarrow{\lambda \to (\sum_{n} a_{n}^{2})^{\frac{1}{2}\lambda}} 2p(\sum_{n} a_{n}^{2})^{\frac{p}{2}} \int_{0}^{\infty} \lambda^{p-1} e^{-\frac{\lambda^{2}}{2}} d\lambda$$

$$= 2pC_{p}(\sum_{n} a_{n}^{2})^{\frac{p}{2}}.$$

by Fubini theorem. Conversely,

$$\begin{split} \sum_{n} |a_n|^2 &= \mathbb{E}[|\sum_{n} a_n \omega_n|^2] \\ &= \int_{\Omega} |\sum_{n} a_n \omega_n| |\sum_{n} a_n \omega_n| dP \\ &\leqslant \mathbb{E}[|\sum_{n} a_n \omega_n|^p]^{\frac{1}{p}} \mathbb{E}[|\sum_{n} a_n \omega_n|^{p'}]^{\frac{1}{p'}} \\ &\leqslant C_p \mathbb{E}[|\sum_{n} a_n \omega_n|^p]^{\frac{1}{p}} (\sum_{n} |a_n|^2)^{\frac{1}{2}} \end{split}$$

by Hölder inequality. In particular,

$$\left(\sum_{n} |a_n|^2\right)^{\frac{1}{2}} \leqslant C_p \mathbb{E}\left[\left|\sum_{n} a_n \omega_n\right|^p\right]^{\frac{1}{p}}$$

and therefore

$$\left(\sum_{n} |a_n|^2\right)^{\frac{p}{2}} \leqslant C_p \mathbb{E}[|\sum_{n} a_n \omega_n|^p].$$

Theorem 9.6. Let T be a linear operator such that $||Tf||_p \leqslant C_p||f||_p$ for any $f \in L^p$ and $1 , then <math>||(\sum_{j \in \mathbb{Z}} |Tf_j|^2)^{\frac{1}{2}}||_p \leqslant \tilde{C}_p||(\sum_{j \in \mathbb{Z}} |f_j|^2)^{\frac{1}{2}}||_p$.

Proof. We may assume the sum is finite, and later taking a limit to prove the general case. By Lemma 9.5, we have

$$(\sum_{j} |Tf_{j}|^{2})^{\frac{p}{2}} \sim \mathbb{E}(|\sum_{j} Tf_{j}\omega_{j}|^{p})$$
$$= \int_{\Omega} |T(\sum_{j} f_{j}\omega_{j})|^{p} dP.$$

Therefore, by Fubini theorem,

$$\begin{aligned} ||(\sum_{j\in\mathbb{Z}} |Tf_j|^2)^{\frac{1}{2}}||_p &\leqslant \int\limits_X \int\limits_\Omega |T(\sum_j f_j \omega_j)|^p dP dx \\ &= \int\limits_\Omega \int\limits_X |T(\sum_j f_j \omega_j)|^p dx dP \\ &\leqslant C_p^p \int\limits_\Omega |\sum_j f_j \omega_j|^p dx dP \\ &= C_p^p \int\limits_X \mathbb{E}[|\sum_j f_j \omega_j|^p] dx \\ &\leqslant \tilde{C}_p ||(\sum_j |f_j|^2)^{\frac{1}{2}}||_p^p. \end{aligned}$$

Lemma 9.7. Let $\widehat{S_{[a,b)}f}(\xi)=\chi_{[a,b)}(\xi)\widehat{f}(\xi),$ then

$$S_{[a,b)} = \frac{i}{2}(M_a H M_{-a} - M_b H M_{-b}),$$

where H represents the Hilbert transform, and M_a is defined by $M_a f(x) = e^{2\pi i a x} f(x)$.

Proof. This is because
$$\hat{S}_{[a,b)} = \frac{i}{2} [M_a H M_{-a} - M_b H M_{-b}].$$

Proof of Theorem 9.1. Note that $\widehat{S_jf}(\xi)=\chi_{\Delta_j}(\xi)\widehat{f}(\xi)$ and $\widehat{S_j^*f}(\xi)=\psi_j(\xi)\widehat{f}(\xi)$. We know that

$$||(\sum_{j} |S_{j}^{*}f|^{2})^{\frac{1}{2}}||_{p} \leq C_{p}||f||_{p}$$

for any 1 and any function <math>f. Since $S_j S_j^* f = S_j f$, then

$$||(\sum_{j} |S_{j}f|^{2})^{\frac{1}{2}}||_{p} = ||(\sum_{j} |S_{j}S_{j}^{*}f|^{2})^{\frac{1}{2}}||_{p}.$$

By Lemma 9.7,

$$\begin{split} S_j &= \frac{i}{2} \big[M_{2^j} H M_{-2^j} - M_{2^{j+1}} H M_{-2^{j+1}} \big] + \frac{i}{2} \big[M_{-2^{j+1}} H M_{2^{j+1}} - M_{-2^j} H M_{2^j} \big] \\ &= \frac{i}{2} M_{a_j} H M_{-a_j}. \end{split}$$

Claim 9.8. We have

$$||(\sum_{j} |M_{a_{j}}HM_{-a_{j}}S_{j}^{*}f|^{2})^{\frac{1}{2}}||_{p} \leqslant C_{p}||f||_{p}.$$

Subproof.

$$\begin{split} ||(\sum_{j} |M_{a_{j}}HM_{-a_{j}}S_{j}^{*}f|^{2})^{\frac{1}{2}}||_{p} &\leq ||(\sum_{j} |H(M_{-a_{j}}S_{j}^{*}f)|^{2})^{\frac{1}{2}}||_{p} \\ &\leq ||(\sum_{j} |M_{-a_{j}}S_{j}^{*}f|^{2})^{\frac{1}{2}}||_{p} \\ &= ||(\sum_{j} |S_{j}^{*}f|^{2})^{\frac{1}{2}}||_{p} \\ &\leq C_{p}||f||_{p} \end{split}$$

by Theorem 9.6.

In particular, this shows that

$$\left\| \left(\sum_{j} |S_j f|^2 \right)^{\frac{1}{2}} \right\|_p \leqslant C_p ||f||_p,$$

so

$$\int_{\mathbb{R}} \sum_{j} S_{j} f \overline{S_{j}g} = \sum_{j} \langle S_{j} f, S_{j} g \rangle$$

$$= \sum_{j} \langle \widehat{S_{j}f}, \widehat{S_{j}g} \rangle$$

$$= \sum_{j} \langle \chi_{\Delta_{j}} \hat{f}, \chi_{\Delta_{j}} \hat{g} \rangle$$

$$= \sum_{j} \int_{\Delta_{j}} \hat{f} \overline{\hat{g}}$$

$$= \int_{\mathbb{R}} \hat{f} \overline{\hat{g}}$$

$$= \langle \hat{f}, \hat{g} \rangle$$

$$= \langle f, g \rangle.$$

For any 1 , let <math>p' be the conjugate of p, then

$$||f||_{p} = \sup_{\substack{g \in L^{p'} \\ ||g||_{p'} = 1}} |\langle f, g \rangle|$$

$$= \sup_{\substack{g \in L^{p'} \\ ||g||_{p'} = 1}} \int_{\mathbb{R}} \sum_{j} S_{j} f \overline{S_{j}g}$$

$$\leq \int (\sum_{j} |S_{j}f|^{2})^{\frac{1}{2}} (\sum_{j} |S_{j}g|^{2})^{\frac{1}{2}}$$

$$\leq \left\| \left(\sum_{j} |S_{j}f|^{2} \right)^{\frac{1}{2}} \right\|_{p} C_{p} \left\| \left(\sum_{j} |S_{j}g|^{2} \right)^{\frac{1}{2}} \right\|_{p'}$$

$$\leq \left\| \left(\sum_{j} |S_j f|^2 \right)^{\frac{1}{2}} \right\|_p C_p ||g||_{p'}$$

$$= C_p \left\| \left(\sum_{j} |S_j f|^2 \right)^{\frac{1}{2}} \right\|_p.$$

Problem 18. Prove Theorem 9.9.

Theorem 9.9. Let $\psi \in \mathcal{S}(\mathbb{R}^n)$ with $\psi(0) = 0$. For each $j \in \mathbb{Z}$, let S_j be given by $(\widehat{S_jf})(\xi) = \psi(2^{-j}\xi)\widehat{f}(\xi)$, then for any 1 ,

$$\left\| \left(\sum_{j} |S_j f|^2 \right)^{\frac{1}{2}} \right\|_p \leqslant C_p ||f||_p.$$

However, if $\sum_{j} |\psi(2^{-j}\xi)|^2$ is a constant for every $\xi \neq 0$, then

$$||f||_p \leqslant C_p \left\| \left(\sum_j |S_j f|^2 \right)^{\frac{1}{2}} \right\|_p.$$

10 Multipliers

For any $f \in L^2 \cap L^p$, let $\widehat{Tf(\xi)} = m(\xi)\widehat{f}(\xi)$, where $\xi \in \mathbb{R}^n$ and m is a measurable function.

Definition 10.1. Suppose T is such that for some $p \in [1, \infty]$, $||Tf||_p \leqslant C_p||f||_p$ for any $f \in L^p$, then we say m is an L^p -multiplier.

If m is an L^p -multiplier, then T can be extended to an operator which bounded on L^p .

Now define $T=T^{\rm ext}$ to be the extension. For any $f\in L^p$ where $1\leqslant p<\infty$, there exists a sequence $\{f_k\}_{k\geqslant 1}\subseteq \mathcal{S}(\mathbb{R}^n)f$ such that $f_k\stackrel{L^p}{\longrightarrow} f$, where $\{Tf_k\}_{k\geqslant 1}$ is Cauchy in L^p . Therefore, there exists $g\in L^p$ such that $g=_{L^p}\lim_{k\to\infty}Tf_k$, or equivalently, $||Tf_k-g||_p\to 0$ as $k\to\infty$. We define $Tf=T^{\rm ext}f=g$.

Let $D = \{ \xi \in \mathbb{R}^2 : |\xi| \leq 1 \}$, then we may define

$$\widehat{T_D f}(\xi) = \chi_D(\xi) \widehat{f}(\xi)$$

for $f \in \mathcal{S}(\mathbb{R}^2)$, therefore

$$||T_d f||_2 \leqslant ||f||_2$$

for all $f \in \mathcal{S}(\mathbb{R}^2)$. However, it is not true that $||T_D f||_p \leq ||f||_p$ for all $f \in \mathcal{S}(\mathbb{R}^2)$ if $p \neq 2$.

Theorem 10.2. m is an L^2 -multiplier if and only if $m \in L^{\infty}$.

Proof. Note that for any $f \in L^2$, we have

$$||Tf||_2 = ||\widehat{Tf}||_2$$

 $= ||m\widehat{f}||_2$
 $\leq ||m||_{\infty}||\widehat{f}||_2$
 $= ||m||_{\infty}||f||_2$
 $\leq C||f||_2.$

Conversely, suppose T is an L^2 -multiplier, then we define $||T|| = ||T||_{L^2 \to L^2}$ via $\sup_{0 \neq f \in L^2} \frac{||Tf||_2}{||f||_2} < \infty$. Assume $||T|| \neq 0$, otherwise we have $||Tf||_2 = 0$ for all $f \in L^2$, thus $m \equiv 0$ almost everywhere, which means $m \in L^\infty$.

Claim 10.3. $|m(\xi)| \leq 2||T||$ for almost every $\xi \in \mathbb{R}^n$. Equivalently, $m(\{\xi : |m(\xi)| \geq 2||T||\}) = 0$.

Subproof. Let $E_k = \{\xi \in \mathbb{R}^n : 2^k \leqslant |\xi| \leqslant 2^{k+1}\}$, then $\{\xi : |m(\xi)| > 2||T||\} = \bigcup_{k \in \mathbb{Z}} E_k$. We will show that $|E_k| = 0$ for all $k \in \mathbb{Z}$ for Lebesgue measure $|\cdot|$. Suppose not, then there exists $k \in \mathbb{Z}$ such that $|E_k| > 0$, then let $\hat{g} = \chi_{E_n}$, then

$$4||T||^{2}|E_{k}| \leq \int_{E_{k}} |m|^{2}$$

$$= \int |m|^{2}|\hat{g}(\xi)|^{2}$$

$$= ||m\hat{g}||_{2}^{2}$$

$$= ||Tg||_{2}^{2}$$

$$\leq ||T||^{2}||\hat{g}||_{2}^{2}$$

$$= ||T||^{2}|E_{k}|,$$

therefore $4||T||^2 \le ||T||^2$, which means ||T|| = 0, contradiction.

Problem 19. Prove that if m is a L^2 -multiplier, then $||m||_{\infty} = ||T||$.

Definition 10.4. We define the Sobolev space $L^2_{\alpha}(\mathbb{R}^n) = \{f : (1+|\xi|^2)^{\frac{\alpha}{2}} \hat{f}(\xi) \in L^2\} \subseteq L^2(\mathbb{R}^n)$. The Sobolev norm is defined by

$$||f||_{L^2_{\alpha}} = \left(\int_{\mathbb{R}^n} (1+|\xi|^2)^{\alpha} |\hat{f}(\xi)|^2 d\xi\right)^{\frac{1}{2}}.$$

We may also defined general Sobolev space as $L^p_{\alpha}(\mathbb{R}^n) = \{f : (1+|\xi|^2)^{\frac{\alpha}{2}} \hat{f}(\xi) \in L^p\}.$

Lemma 10.5. If $\alpha > \frac{n}{2}$ and $f \in L^2_{\alpha}(\mathbb{R}^n)$, then $\hat{f} \in L^1(\mathbb{R}^n)$. In particular, f is continuous and bounded.

Proof. Note that

$$\int_{\mathbb{R}^{n}} |\hat{f}(\xi)| d\xi = \int_{\mathbb{R}^{n}} \frac{1}{(1+|\xi|^{2})^{\frac{\alpha}{2}}} (1+|\xi|^{2})^{\frac{\alpha}{2}} |\hat{f}(\xi)| d\xi$$

$$\leq \left(\int_{\mathbb{R}^{n}} \frac{1}{(1+|\xi|^{2})^{\alpha}} d\xi \right) ||f||_{L_{\alpha}^{2}}$$

by Cauchy-Schwartz. When $\alpha > \frac{n}{2}$, the integral is bounded since $\frac{1}{(1+|\xi|^2)^{\alpha}} \sim \frac{1}{|\xi|^{2\alpha}} \in L^1(\mathbb{R}^n \backslash B(1))$ whenever $|\xi| > 1$. This gives

$$\int_{\mathbb{R}^n} |\hat{f}(\xi)| d\xi = C_{n,\alpha} ||f||_{L^2_{\alpha}}.$$

Theorem 10.6. Let $m \in L^2_\alpha$ with $\alpha > \frac{n}{2}$, then m is an L^p -multiplier for any $1 \le p \le \infty$.

Proof. Recall that $\widehat{Tf} = m\widehat{f}$, then by Lemma 10.5, $\check{m} \in L^1(\mathbb{R}^n)$, therefore $Tf = \check{m} * f$, where $\check{m}(x) = \int m(\xi)e^{2\pi i\xi \cdot x}d\xi$. Therefore,

$$||Tf||_1 = ||\check{m} * f||_1$$

 $\leq ||\check{m}||_1 ||f||_1$
 $\leq C||f||_1$

for any $f \in L^1 \cap L^2$. Moreover,

$$||Tf||_2 \leqslant ||f||_{\infty} ||\check{m}||_1$$

$$\leqslant C||f||_{\infty}.$$

By the interpolation theorem, $||Tf||_p \leq C_p ||f||_p$ for any $f \in L^p \cap L^2$.

Lemma 10.7. Let $m \in L^2_\alpha(\mathbb{R}^n)$ with $\alpha > \frac{n}{2}$. For any $\lambda > 0$, we define T_λ by $\widehat{T_\lambda f}(\xi) = m(\lambda \xi) = \widehat{f}(\xi)$ for any $f \in L^2 \cap L^p$. Then

$$\int_{\mathbb{R}^n} |T_{\lambda}f(x)|^2 u(x) dx \leqslant C \int_{\mathbb{R}^n} |f(x)|^2 M u(x) dx,$$

where M is the Hardy-Littlewood maximal function, $u \ge 0$ is a measurable function, and C is a constant independent of u, f, and λ . Here we may define a new measure $d\mu = u(x)dx$.

Proof. Let $K = \check{m}$, i.e., $\hat{K} = m$. Since $m \in L^2_{\alpha}$, then $(1 + |\xi|^2)^{\frac{\alpha}{2}} \hat{m}(\xi) \in L^2$, that is, $(1 + |\xi|^2)^{\frac{\alpha}{2}} \check{m}(\xi) \in L^2$. Now $\check{m}(\xi) = \hat{m}(-\xi)$, so $||m||_{L^2_{\alpha}} = ||(1 + |\xi|^2)^{\frac{\alpha}{2}} K(\xi)||_{L^2}$. Now $T_{\lambda} f(x) = K_{\lambda} * f(x)$, where $K_{\lambda}(x) = \lambda^{-n} K(\lambda^{-1} x)$. Now

$$\int_{\mathbb{R}^n} |T_{\lambda}f(x)|^2 u(x) dx \le \int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} \lambda^{-n} K(\lambda^{-1}(x-y)) f(y) dy \right|^2 u dx$$

$$\leq \int_{\mathbb{R}^{n}} \left| \int_{\mathbb{R}^{n}} \lambda^{-n} K(\lambda^{-1}(x-y)) \frac{1+|\lambda^{-1}(x-y)|^{2}]^{\frac{\alpha}{2}}}{1+|\lambda^{-1}(x-y)|^{2}]^{\frac{\alpha}{2}}} f(y) dy \right|^{2} u dx$$

$$\leq \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} |K(\lambda^{-1}(x-y))[1+|\lambda^{-1}(x-y)|^{2}]^{\frac{\alpha}{2}}|^{2} dy \right) \int_{\mathbb{R}^{n}} \frac{\lambda^{-2n} |f(y)|^{2}}{[1+|\lambda^{-1}(x-y)|^{2}]^{\alpha}} dy u(x) dx$$

$$\leq ||m||_{L_{\alpha}^{2}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{\lambda^{-n} |f(y)|^{2}}{[1+\lambda^{-1}(x-y)|]^{\alpha}} dy u(x) dx$$

$$= C_{\alpha} \int_{\mathbb{R}^{n}} |f(y)|^{2} \left(\int_{\mathbb{R}^{n}} \frac{\lambda^{-n}}{(1+|\lambda^{-1}(x-y)|^{2})^{\alpha}} dx \right) dy$$

$$\leq C_{\alpha} \int_{\mathbb{R}^{n}} |f(y)|^{2} Mu(y) dy$$

by Cauchy-Schwartz.

Problem 20. Let $m \in \mathcal{S}(\mathbb{R}^n)$. Prove that m is an L^p -multiplier for any $1 \leq p \leq \infty$.

Problem 21. Let $1 \le p \le \infty$. Prove that m is an L^p -multiplier if and only if m is an $L^{p'}$ -multiplier.

Problem 22. Prove that $L^2_{\alpha}(\mathbb{R}^n) \subseteq L^2_{\beta}(\mathbb{R}^n)$ if $\alpha \geqslant \beta$.

Theorem 10.8 (Hörmender Multiplier Theorem). Let $\psi \in C^{\infty}$ be a radial function supported on $\{\xi: \frac{1}{2} \leqslant |\xi| \leqslant 2\}$ such that $\sum\limits_{j \in \mathbb{Z}} |\psi(2^{-j}\xi)|^2 = 1$ for any $\xi \neq 0$. Let $\widehat{Tf}(\xi) = m(\xi)\widehat{f}(\xi)$ such that $\sup\limits_{j \in \mathbb{Z}} (||m(2^j \cdot)\psi(\cdot)||_{L^2_{\alpha}} < \infty$ for some $\alpha > \frac{n}{2}$. Then M is an L^p -multiplier for any $1 . That is, <math>||Tf||_p \leqslant C_p||f||_p$ for any $f \in L^2 \cap L^p$.

Proof. We have $\widehat{S_jf}(\xi)=\psi(2^{-j}\xi)\widehat{f}(\xi)$ for all $j\in\mathbb{Z}$, and $||\left(L\sum_j|S_jf|^2\right)^{\frac{1}{2}}||_p\sim||f||_p$ for all $1< p<\infty$. Define $\psi'(\xi)=1$ if $\frac{1}{2}\leqslant|\xi|\leqslant2$, with $\mathrm{supp}(\psi')\subseteq\{\frac{1}{2}\leqslant|\xi|\leqslant4\}$. We have set $\widehat{S_j'f}(\xi)=\psi'(2^{-j}\xi)\widehat{f}(\xi)$ and that $\psi(2^{-j}\xi)\psi'(2^{-j}\xi)=\psi(2^{-j}\xi)$. Therefore, $S_jT_jS_j'=S_jT$, which is equivalent to saying that $\widehat{S_jT_jS_j}(f)=\widehat{S_jT}(f)$. By Theorem 9.1,

$$||Tf||_p \le C_p ||\sum_j (|S_j T_j S_j' f|^2)^{\frac{1}{2}}||_p.$$

Let $g_j = S_j'f$, then $S_jT_jS_j'f = S_jTg_j$, and $\widehat{S_jTf}(\xi) = \psi(2^{-j}\xi)m(\xi)\hat{f}(\xi)$. By Lemma 10.7,

$$\int_{\mathbb{D}^n} |S_j T f(x)|^2 u(x) dx \leqslant C \int_{\mathbb{D}^n} |f|^2 M u(x) dx.$$

We may assume that p > 2, since the case where 1 follows easily. By Hölder inequality, we have

$$\begin{aligned} ||(\sum_{j\in\mathbb{Z}} |S_j T_j g_j|^2)^{\frac{1}{2}}||_p &= \left(\int_{\mathbb{R}^n} (\sum_j |S_j T g_j|^2)^{\frac{p}{2}}\right)^{\frac{1}{p}} \\ &= \sup_{||h||_{(\frac{p}{2})'} = 1} \left(\int_{\mathbb{R}^n} \sum_j |S_j T_j g_j|^2 h(x) dx\right)^{\frac{1}{2}} \\ &\leqslant C \sup_{||h||_{(\frac{p}{2})'} = 1} \left(\sum_j |g_j(x)|^2 M h(x) dx\right)^{\frac{1}{2}} \end{aligned}$$

$$\leq C \sup_{||h||_{(\frac{p}{2})'}=1} \left\| \left(\sum_{j} |g_{j}(x)|^{2} \right)^{\frac{1}{2}} \right\|_{p} ||Mh||_{(\frac{p}{2})'}.$$

Here notice that $||Mh||_{\left(\frac{p}{2}\right)'} \leqslant C_p ||h||_{\left(\frac{p}{2}\right)'}$, therefore we have

$$||(\sum_{j \in \mathbb{Z}} |S_j T_j g_j|^2)^{\frac{1}{2}}||_p \leqslant C \sup_{||h||_{(\frac{p}{2})'} = 1} \left\| \left(\sum_j |g_j(x)|^2 \right)^{\frac{1}{2}} \right\|_p ||Mh||_{(\frac{p}{2})'}$$

$$\leqslant C_p \left\| \left(\sum_j |g_j(x)|^2 \right)^{\frac{1}{2}} \right\|_p$$

$$= C_p \left\| \left(\sum_j |S_j' f|^2 \right)^{\frac{1}{2}} \right\|_p .$$

Corollary 10.9. Let $\widehat{Tf}(\xi) = m(\xi)\widehat{f}(\xi)$. Let $m \in \mathbb{C}^k$ be away from the origin for $k = \left[\frac{n}{2}\right] + 1$. If for any $\beta \in \mathbb{N}_0^n$ with $|\beta| \leq k$, we have

$$\sup_{R>0} R^{|\beta|} \left(\frac{1}{k^n} \int_{R<|\xi|<2R} |D^{\beta} m(\xi)|^2 d\xi \right)^{\frac{1}{2}} < \infty,$$

then $||Tf||_p \le C_p ||f||_p$ for all $f \in L^2 \cap L^p$ for all $1 . In particular, if <math>|D^{\beta} m(\xi)| \le C_{\beta,n} |\xi|^{-|\beta|}$ for all $|\beta| \le k$ any all $\xi \ne 0$, then m is an L^p -multiplier.

Proof. We perform a change of variables from ξ to $R\xi$. Now the given condition

$$\sup_{R>0} R^{|\beta|} \left(\frac{1}{k^n} \int_{R<|\xi|<2R} |D^{\beta} m(\xi)|^2 d\xi \right)^{\frac{1}{2}} < \infty$$

becomes

$$\sup_{R>0} \left(\int_{1<|\xi|<2} |D^{\beta} m(R\cdot)(\xi)|^2 d\xi \right)^{\frac{1}{2}} < \infty$$

with $D^{\beta}m(R\cdot)=D^{\beta}m_R$ where $m_R(x)=m(Rx)$. Let ψ be the function in Theorem 10.8, then it suffices to show that $\sup_{j\in\mathbb{Z}}||m(2^j\cdot)\psi(\cdot)||_{L^2_R}<\infty.$

Indeed, $||m(2^j\cdot)\psi(\cdot)||_{L^2_R}\leqslant \sum\limits_{|\beta|\leqslant R}||D^\beta(m(2^j\cdot)\psi(\cdot))||_2$, so

$$D^{\beta}(m(2^{j}\cdot)\psi(\cdot)) = \sum_{|\gamma| \leq |\beta|} C_{\gamma,\beta} D^{\gamma} m(2^{j}\cdot)(\xi) D^{\beta-\gamma} \psi(\xi)$$

for $|\beta| \leq R$. Therefore,

$$\sum_{|\beta|\leqslant R}||D^{\beta}(m(2^{j}\cdot)\psi(\cdot))||_{2}\leqslant \sum_{|\beta|\leqslant R}\sum_{|\gamma|\leqslant |\beta|}|C_{\gamma,\beta}|\left(\int|D^{\gamma}m(2^{j}\cdot)(\xi)|^{2}d\xi\right)^{\frac{1}{2}}< C_{k}<\infty,$$

which completes the proof.

11 Fractional Integrals

Let Δ be the Laplacian, and recall that

$$\widehat{(-\Delta f)}(\xi) = 4\pi^2 |\xi|^2 \hat{f}(\xi)$$

for any function $f \in \mathcal{S}(\mathbb{R}^n)$. Let $\alpha \in \mathbb{R}$ and define $(-\Delta)^{\frac{\alpha}{2}}$ to be the operator

$$\left(\widehat{(-\Delta)^{\frac{\alpha}{2}}f}\right)(\xi) = (2\pi|\xi|)^{\alpha}\hat{f}(\xi).$$

Remark 11.1. If $\alpha > 0$, then $(-\Delta)^{\frac{\alpha}{2}} \sim D^{\alpha}$. If $\alpha = 0$, the operator is identity.

Remark 11.2. Let $-n < \alpha < 0$, then we denote $I_{-\alpha} = (-\Delta)^{\frac{\alpha}{2}}$, as an integration operator of order α .

Definition 11.3. Let $0 < \alpha < n$, then we define I_{α} to be the fractional integral operator, characterized by the fact that the Fourier transform $\widehat{I_{\alpha}f}(\xi) = (2\pi|\xi|)^{-\alpha}\widehat{f}(\xi)$ for all $f \in \mathcal{S}(\mathbb{R}^n)$. Then $I_{\alpha}f = K * f$ for $K(x) = C|x|^{\alpha-n}$.

Proposition 11.4. Let $0 < \alpha < n$, then $(|\widehat{x}|^{\alpha-n})(\xi) = C_0|\xi|^{-\alpha}$ in the sense that

$$\int_{\mathbb{R}^n} |x|^{\alpha - n} \hat{\varphi}(x) dx = C_0 \int_{\mathbb{R}^n} |\xi|^{-\alpha} \varphi(\xi) d\xi$$

for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$. Here $C_0 = \pi^{\frac{n}{2} - \alpha} \frac{\Gamma(\frac{\alpha}{2})}{\Gamma(\frac{n-\alpha}{2})}$ where

$$\Gamma(z) = \int_{0}^{\infty} x^{z-1} e^{-x} dx$$

for $z \in \mathbb{C}$.

Proof. Consider the standard Gauss kernel

$$\int_{\mathbb{R}^n} e^{-\pi\delta|x|^2} \hat{\varphi}(x) dx = \int_{\mathbb{R}^n} \widehat{e^{-\pi\delta|x|^2}}(\xi) \varphi(\xi) d\xi$$
$$= \delta^{-\frac{n}{2}} \int_{\mathbb{R}^n} e^{-\frac{\pi}{\delta}|\xi|^2} \varphi(\xi) d\xi.$$

Multiplying both sides by $\delta^{\beta-1}$ with $\beta=\frac{n-\alpha}{2}$, and taking the integral in terms of δ , then

$$\begin{split} \int\limits_0^\infty \delta^{\beta-1-\frac{n}{2}} \int\limits_{\mathbb{R}^n} e^{-\frac{\pi}{\delta}|\xi|^2} \varphi(\xi) d\xi d\delta &= \int\limits_0^\infty \delta^{\beta-1} \int\limits_{\mathbb{R}^n} e^{-\pi\delta|x|^2} \hat{\varphi}(x) dx d\delta \\ &= \int\limits_{\mathbb{R}^n} \hat{\varphi}(x) \int\limits_0^\infty \delta^{\beta-1} e^{-\pi\delta|x|^2} d\delta dx \\ &\xrightarrow{\frac{\delta \to \frac{\delta}{\pi|x|^2}}{2}} \pi^{-\beta} \int\limits_{\mathbb{R}^n} \hat{\varphi}(x) |x|^{-2\beta} \Gamma(\beta) dx \\ &= \pi^{-\frac{n-\alpha}{2}} \Gamma(\frac{n-\alpha}{2}) \int\limits_{\mathbb{R}^n} |x|^{\alpha-n} \hat{\varphi}(x) dx. \end{split}$$

Similarly,

$$C_0 \int_{\mathbb{R}^n} |\xi|^{-\alpha} \varphi(\xi) d\xi = \Gamma(\frac{\alpha}{2}) \pi^{-\frac{\alpha}{2}} \int_{\mathbb{R}^n} \varphi(\xi) |\xi|^{-\alpha} d\xi.$$

Therefore,

$$\int_{\mathbb{R}^n} |x|^{\alpha - n} \hat{\varphi}(x) dx = \pi^{\frac{n}{2} - \alpha} \frac{\Gamma(\frac{\alpha}{2})}{\Gamma(\frac{n - \alpha}{2})} \int_{\mathbb{R}^n} |\xi|^{-\alpha} \varphi(\xi) d\xi.$$

For any $f \in \mathcal{S}(\mathbb{R}^n)$ and $0 < \alpha < n$, we have

$$I_{\alpha}f(x) = C_{\alpha,n} \int_{\mathbb{D}^n} \frac{f(y)}{|x-y|^{n-\alpha}} dy.$$

Remark 11.5. For any $f \in L^p(\mathbb{R}^n)$ with 1 , then

$$C_{\alpha,n} \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\alpha}} dy$$

converges absolutely, i.e.,

$$\left| \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\alpha}} dy \right| < \infty$$

almost everywhere for x.

Let
$$K(x) = \frac{1}{|x|^{n-\alpha}}$$
, then $K = K_0 + K_{\infty}$ where

$$K_0 = K\chi_{\{|x| \le 1\}}$$
 $K_\infty = K\chi_{\{|x| > 1\}}$

then

$$|K * f| \le |K_0 * f| + |K_\infty * f|.$$

Notice that $K_0 \in L^1$ since $0 < \alpha < n$, therefore

$$||K_0 * f||_p \le ||K_0||_1 ||f||_p < \infty,$$

and we also have

$$||K_{\infty} * f|| \leq ||K_{\infty}||_{p'}||f||_{p} < \infty$$

since $K_{\infty} \in L^{p'}$ because $(n-\alpha)p' > n$.

Proposition 11.6.

- i. $I_{\alpha}I_{\beta} = I_{\alpha+\beta}$ where $0 < \alpha, \beta < n$ and $\alpha + \beta < n$;
- ii. $\Delta I_{\alpha} = I_{\alpha-2}$ for $2 < \alpha < n$;
- iii. $(-\Delta)^{\frac{\beta}{2}}I_{\alpha} = I_{\alpha-\beta}$, where $n > \alpha > \beta > 0$;
- iv. $-I_2f$ is the solution of $\Delta u = f$, that is, I_2 is the Fourier solution of $(-\Delta)$.

Problem 23. Verify Proposition 11.6.

Problem 24. Let μ be a probability measure on a compact subset $E \subseteq \mathbb{R}^n$, and suppose $0 < \alpha < n$. Prove that

$$\int_{E} \int_{E} |x - y|^{-\alpha} d\mu(x) d\mu(y) = C_{\alpha} \int |\hat{\mu}(\xi)|^{2} |\xi|^{-(n-\alpha)} d\xi$$

where $\hat{\mu}(\xi) = \int_{E} e^{-2\pi i \xi \cdot x} d\mu(x)$.

Hint: first verify that this identity for μ with smooth density, i.e., $d\mu(x) = \varphi(x)dx$ for $\varphi \in \mathcal{S}(\mathbb{R}^n)$.

Hint: let $\varphi(x) = e^{\pi |x|^2} \varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi(\varepsilon^{-1} x)$, then $\varphi_{\varepsilon} * \mu = \int_{E} \varphi_{\varepsilon} d\mu(y) \in \mathcal{S}(\mathbb{R}^n)$. Now apply the previous hint to

 μ^{ε} defined by $d\mu^{\varepsilon} = \varphi_{\varepsilon} * \mu dx$. If both parts converge to real numbers, then apply dominant convergence theorem; if at least one part converges to ∞ , then apply Fatou's lemma. Also, one may refer to Wolff's lecture notes.

Remark 11.7 (Falconer Conjecture). Let $E \subseteq \mathbb{R}^n$ with Hausdorff dimension $\dim_H(E) > \frac{d}{2}$. Set $\Delta(E) = \{|x - y| : x \in E, y \in E\}$, is $|\Delta(E)| > 0$?

Theorem 11.8 (Hardy-Littlewood-Sobolev). Let $0 < \alpha < n$ and $1 \le p < q < \infty$ where $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$.

i. If p > 1, then $||I_{\alpha}f||_q \leqslant C_{p,q}||f||_p$ for any $f \in \mathcal{S}(\mathbb{R}^n)$ or $L^p(\mathbb{R}^n)$.

ii. If
$$p=1, |\{x\in\mathbb{R}^n: |I_{\alpha}f(x)|>\lambda\}|\leqslant \left(\frac{C||f||_1}{\lambda}\right)^q$$
.

Proof. We have $||I_{\alpha}f||_q \leqslant C_{p,q}||f||_p$ where p>1 and $\frac{1}{q}=\frac{1}{p}-\frac{\alpha}{n}$, then

$$I_{\alpha}f(x) = C_{\alpha,n} \int_{\mathbb{R}^n} |x - y|^{\alpha - n} f(y) dy$$

$$= C_{\alpha,n} \int_{|x - y| \le R} |x - y|^{\alpha - n} f(y) dy + C_{\alpha,n} \int_{|x - y| > R} |x - y|^{\alpha - n} f(y) dy$$

$$=: I_{(1)} + I_{(2)}.$$

We use the annuli to approximate the center x via

$$I_{(1)} \leqslant \sum_{k=0}^{\infty} \int_{2^{-k-1}R < |x-y| \leqslant 2^{-k}R} \frac{C_{\alpha,n}}{(2^{-k}R)^{n-\alpha}} |f(y)| dy$$

$$\leqslant C_{\alpha,n} R^{-(n-\alpha)} \sum_{k=0}^{\infty} 2^{k(n-\alpha)} \int_{|x-y| \leqslant 2^{-k}R} |f(y)| dy$$

$$= C_{\alpha,n} R^{\alpha} \sum_{k=0}^{\infty} 2^{-\alpha k} \frac{1}{|B(x, 2^{-k}R)|} \int_{B(x, 2^{-k}R)} |f(y)| dy$$

$$\leqslant C_{\alpha,n} R^{\alpha} M f(x) \sum_{k=0}^{\infty} 2^{-\alpha k}$$

$$\leqslant \tilde{C}_{\alpha,n} R^{\alpha} M f(x)$$

since $C_{\alpha} := \sum_{k=0}^{\infty} 2^{-\alpha k}$ defines on α . Moreover,

$$I_{(2)} \leq C_{\alpha,n} \left(\int_{|x-y|>R} |x-y|^{(\alpha-n)p'} \right)^{\frac{1}{p'}} ||f||_{p}$$

$$= C_{\alpha,n} \left(\int_{|y|>R} |y|^{(\alpha-n)p'} dy \right)^{\frac{1}{p'}} ||f||_{p}$$

$$= C_{\alpha,n} \left(\int_{R}^{\infty} \frac{r^{n-1}}{r^{p'(n-\alpha)}} \right)^{\frac{1}{p'}} ||f||_{p}$$

$$= \tilde{C}_{\alpha,n} R^{-\frac{n}{q}} ||f||_{p}.$$

Let us denote $A \lesssim_{\alpha,n} B$ if and only if there exists $C_{\alpha,n} \in \mathbb{R}$ such that $A \leqslant C_{\alpha,n}B$, then

$$I_{(1)} + I_{(2)} \lesssim_{\alpha,n} R^{\alpha} M f(x) + R^{-\frac{n}{q}} ||f||_{p}$$

for all R>0. Let us choose $R^{-\frac{n}{p}}=\frac{Mf(x)}{||f||_p}$, then $R^{\alpha}Mf(x)=R^{-\frac{n}{q}}||f||_p$, hence

$$|I_{\alpha}f(x)| \leq |I_{(1)} + I_{(2)}|$$

$$\lesssim_{\alpha,n} ||f||_{p}^{\frac{\alpha-p}{n}} Mf(x)^{\frac{p}{q}}.$$

• Suppose p > 1, then

$$||I_{\alpha}||_{q} \lesssim_{\alpha,n} ||f||_{p}^{\frac{\alpha_{p}}{n}} ||(Mf)^{\frac{p}{q}}||_{q}$$

$$\lesssim_{\alpha,n} ||f||_{p}^{\frac{\alpha_{p}}{n}} \left(\int |Mf|^{p}\right)^{\frac{1}{q}}$$

$$\lesssim_{\alpha,n} ||f||_{p}^{\frac{\alpha_{p}}{n}} ||f||_{p}^{\frac{p}{q}}$$

$$\lesssim_{\alpha,n} ||f||_{p}.$$

• Suppose p = 1, then

$$\begin{split} |\{x:|I_{\alpha}f(x)|>\lambda\}| &\leqslant |\{x:Mf(x)\geqslant C_{\alpha,n}||f||_{p}^{-\frac{\alpha q}{n}}\lambda^{\frac{q}{p}}\}|\\ &\lesssim_{\alpha,n}\frac{||f||_{1}}{||f||_{1}^{-\frac{\alpha q}{n}}\lambda^{q}}\\ &=\frac{||f||_{1}^{q}}{\lambda^{p}}. \end{split}$$

Problem 25. Let $0<\alpha< n$ and ε be a small positive number. Let $f:\mathbb{R}^n\to\mathbb{R}$ be given by

$$f(x) = \begin{cases} |x|^{-\alpha} \left(\log \frac{1}{|x|}\right)^{-\frac{\alpha}{n}(1+\varepsilon)}, & |x| \leqslant \frac{1}{2} \\ 0, & |x| > \frac{1}{2} \end{cases}$$

then f is measurable. Prove that $f \in L^{\frac{n}{\alpha}}(\mathbb{R}^n)$, but $I_{\alpha}f \notin L^{\infty}$ as long as $\frac{\alpha}{n}(1+\varepsilon) \leqslant 1$. Therefore, $||I_{\alpha}f||_{\infty} \lesssim_{\alpha,n} ||f||_{\frac{n}{\alpha}}$.

12 Continuous Littlewood-Paley Theorem

Let $\psi \in \mathcal{S}(\mathbb{R}^n)$ be radial and $\int_{\mathbb{R}^n} \psi(x) dx = 0$, or equivalently $\hat{\psi}(0) = 0$.

Remark 12.1. In practice, we take ψ to be a real-valued function. If ψ is radial and real-valued, then $\hat{\psi}$ must be real-valued as well.

Definition 12.2. For any t > 0, we denote $\psi_t(x) = t^{-n}\psi(t^{-1}x)$. Define $Q_t f(x) = \psi_t * f(x)$.

Claim 12.3.
$$\int\limits_{0}^{\infty}|\hat{\psi}(t)|^{2}\frac{dt}{t}<\infty.$$

Proof. We have

$$\int_{0}^{\infty} |\hat{\psi}(t)|^{2} \frac{dt}{t} = \int_{0}^{1} |\hat{\psi}(t)|^{2} \frac{dt}{t} + \int_{1}^{\infty} |\hat{\psi}(t)|^{2} \frac{dt}{t}$$
$$=: I_{1} + I_{2},$$

where

$$I_2 \lesssim_N \int_{1}^{\infty} \frac{1}{(1+t)^N} \frac{dt}{t}$$

since $\hat{\psi} \in \mathcal{S}(\mathbb{R}^n)$ which has polynomial decay as well. Moreover,

$$I_{1} = \int_{0}^{1} |\hat{\psi}(t) - \hat{\psi}(0)|^{2} \frac{dt}{t}$$

$$\leq \int_{0}^{1} |\nabla \hat{\psi}(\eta)|^{2} t^{2} \frac{dt}{t}$$

$$= ||\nabla \hat{\psi}||_{L^{\infty}([0,1])}$$

$$< \infty$$

for some η between 0 and t, by the Mean Value Theorem.

Denote $C:=\int\limits_0^\infty |\hat{\psi}(t)|^2 \frac{dt}{t}$, then we may normalize ψ so that we may assume

$$\int_{0}^{\infty} |\hat{\psi}(t)|^2 \frac{dt}{t} = 1.$$

Theorem 12.4 (Calderón Reproducing Formula). For any $f \in L^2(\mathbb{R}^n)$, we may write $f(x) = \int\limits_0^\infty Q_t^2 f(x) \frac{dt}{t} = \int\limits_0^\infty \psi_t * f(x) \frac{dt}{t}$ in L^2 sense. That is, $||\int\limits_\varepsilon^R Q_t^2 f(x) \frac{dt}{t} - f||_2 \to 0$ as $\varepsilon \to 0$ and $R \to \infty$.

$$\left|\left|\int\limits_{\varepsilon}^{R} Q_{t}^{2} f(x) \frac{dt}{t} - f\right|\right|_{2} = \left|\left|\int\limits_{\varepsilon}^{R} Q_{t}^{2} f(x) \frac{dt}{t} - f\right|\right|_{2}$$

$$= \| \int_{\varepsilon}^{R} \widehat{Q_t f} \frac{dt}{t} - \hat{f} \|_2$$

$$= \| \int_{\varepsilon}^{R} (\hat{\psi}(t|\xi|))^2 \hat{f}(\xi) \frac{dt}{t} - \hat{f}(\xi) \|_2$$

$$= \| \hat{f}(\cdot) [\int_{\varepsilon}^{R} (\hat{\psi}(t|\xi|))^2 \frac{dt}{t} - 1] \|_2$$

$$\to 0$$

by dominated convergence theorem, where $\varepsilon \to 0$ and $R \to \infty$.

Definition 12.5. We define the Littlewood-Paley g-function to be

$$g(f)(x) = \left(\int_{0}^{\infty} |Q_t f(x)| \frac{dt}{t}\right)^{\frac{1}{2}}.$$

Theorem 12.6. For any $f \in L^2$, we have $||g(f)||_2 = ||f||_2$.

Proof. We have

$$||g(f)||_{2}^{2} = \int_{\mathbb{R}^{n}} \int_{0}^{\infty} |Q_{t}f(x)|^{2} \frac{dt}{t} dx$$

$$= \int_{\mathbb{R}^{n}} \int_{0}^{\infty} |\hat{\psi}(t|\xi|) \hat{f}(\xi)|^{2} \frac{dt}{t} d\xi$$

$$= ||\hat{f}||_{2}^{2}$$

$$= ||f||_{2}^{2}.$$

Theorem 12.7. Denote $A \sim B$ if there exists C such that $A \leqslant CB$ and $CA \leqslant B$. Then $||g(f)||_p \sim ||f||_p$ for any $1 and <math>f \in L^p$.

Remark 12.8. Set $p(x) = \frac{C_n}{(1+|x|^2)^{\frac{n+1}{2}}}$ for all $x \in \mathbb{R}^n$, and let $p_t(x) = t^{-n}p(t^{-1}x)$, then

$$g(f)(x) = \left(\int_{0}^{\infty} |t\frac{\partial}{\partial t}p_{t}) * f(x)|^{2} dt\right)^{\frac{1}{2}}$$

where $||g(f)||_p \sim ||f||_p$.

 \Box

13 T1 Theorem in a Simple Version

For any $f \in \mathcal{S}(\mathbb{R}^n)$ and $x \notin \operatorname{supp}(f)$, we have $Tf(x) = \int_{\mathbb{R}^n} K(x,y)f(y)dy$. Let $T : \mathcal{S} \to \mathcal{S}'$ be continuous and linear such that $\langle T\varphi, \psi \rangle = \langle K, \varphi \otimes \psi \rangle$, where K is a Calderón-Zygmund kernel.

Definition 13.1 (Weak-boundedness Property). We say T satisfies the weak-boundeness property (WBP) if $|\langle T\varphi,\psi\rangle| \lesssim R^n(||\varphi||_{\infty} + R||\nabla\varphi||_{\infty}) \cdot (||\psi||_{\infty} + R||\nabla\psi||_{\infty})$ for any $\varphi, \psi \in \mathcal{S}(\mathbb{R}^n)$ supported in a ball of radius R > 0.

Lemma 13.2. If T can be extended to a bounded operator on L^2 , then T satisfies the WBP.

Proof. Let $\varphi, \psi \in \mathcal{S}(\mathbb{R}^n)$ be supported in B_R , then

$$\begin{split} | \left< T \varphi, \psi \right> | & \leq ||T \varphi||_2 ||\psi||_2 \\ & \lesssim ||\varphi||_2 ||\psi||_2 \\ & \lesssim R^n ||\varphi||_\infty ||\psi||_\infty. \end{split}$$

Definition 13.3. For an operator T, we define its adjoint operator T^* via

$$\langle \psi, T^* \varphi \rangle = \int_{\mathbb{R}^n} T^* \varphi(x) \psi(x) dx = \int_{\mathbb{R}^n \times \mathbb{R}^n} \overline{K(y, x)} \varphi(x) \psi(y) dx dy = \langle T \psi, \varphi \rangle$$

for all $\varphi, \psi \in \mathcal{S}(\mathbb{R}^n)$.

Definition 13.4. Let $S_0(\mathbb{R}^n) = \{ \varphi \in C_c^{\infty}(\mathbb{R}^n) : \int \varphi = 0 \}$. Let $\varphi \in S_0(\mathbb{R}^n)$, then there exists a ball B in \mathbb{R}^n such that $\varphi(x) = 0$ for all $x \in B^c$. One can then define a function η in $C_c^{\infty}(\mathbb{R}^n)$, taking value 1 on 3B.

We can now define a T1 operator to be such that, for any $\varphi \in \mathcal{S}_0(\mathbb{R}^n)$, $\langle T_1, \varphi \rangle = \langle T\eta, \varphi \rangle + \langle 1-\eta, T^*\varphi \rangle$.

Remark 13.5. The term $\langle 1 - \eta, T^* \varphi \rangle$ converges, i.e., it is finite.

Assuming φ is a real-valued function, we have

$$\langle 1 - \eta, T^* \varphi \rangle = \int (1 - \eta)(x) \left(\int \overline{K^*(x, y)\varphi(y)} dy \right) dx$$

for $K^*(x,y) = \overline{K(x,y)}$. Therefore,

$$|x - y| \ge |x - x_0| - |x_0 - y| \ge 5r(B) - r(B) = 4r(B) \ge 2|y - x_0|.$$

We thereby obtain a bound of

$$|K(y,x) - K(x_0,x)| \lesssim \frac{|x - x_0|^{\varepsilon}}{|x - y|^{n+\varepsilon}},$$

so

$$\begin{split} \int \overline{K^*(x,y)\varphi(y)} dy &= \int K(x,y)\varphi(y) dy \\ &= \int [K(y,x) - K(x_0,x)]\varphi(y) dy \\ &\lesssim \int_{B} \frac{|y-x_0|^{\varepsilon}}{|x-y|^{n+\varepsilon}} ||\varphi||_{\infty} dy. \end{split}$$

Therefore,

$$|\langle 1 - \eta, T^* \varphi \rangle| \leq ||\varphi_{\infty} \int_{(5B)^c} \int_{B} \frac{|y - x_0|^{\varepsilon}}{|x - y|^{n + \varepsilon}} dy dx \lesssim ||\varphi||_B \cdot r(B)^n < \infty.$$

Problem 26. Show that

$$\int_{(5B)^c} \int_B \frac{|y-x_0|^{\varepsilon}}{|x-y|^{n+\varepsilon}} dy dx \leqslant C \cdot r(B)^n.$$

As an extra exercise, one should show that the definition of $\langle T, \varphi \rangle$ is independent of choice of η .

Theorem 13.6. Let T be a singular integral operator associated with a Calderón-Zygmund kernel. Suppose that T satisfies the WBP, T(1) = 0, and $T^*(1) = 0$, then T extends to a bounded operator on L^2 .

Proof. Let $\varphi \in C_c^\infty(\mathbb{R}^b)$ such that $\int \varphi = 1$ and φ is radial, then in particular φ is even. Moreover, we know $\nabla \hat{\varphi}(0) = 0$: this is because $\partial_j \hat{\varphi}(\xi) = -2\pi i \int \varphi(x) x_j e^{-2\pi x \cdot \xi} dx$, so $\partial_j \hat{\varphi}(0) = -2\pi i \int \varphi(x) x_j dx = 0$. Now define P_t by $P_t f(x) = \varphi_t * f(x)$ where $\varphi_t(x) = t^{-n} \varphi(t^{-1}x)$, so $P_t(P_t f) = P_t^2 f$, with $P_t^* = P^t$. One can then verify that $T = \lim_{t \to 0} P_t^2 T P_t^2$.

Lemma 13.7. Suppose that T satisfies the WBP, then for any $\varphi, \psi \in C_c^{\infty}(\mathbb{R}^n)$, we have

$$\langle T\varphi, \psi \rangle = \lim_{t \to 0} \langle P_t^2 T P_t^2 \varphi, \psi \rangle.$$

Subproof. Assume that φ and ψ are supported in a ball B_R of radius R>0. Assume t is very small, so that $P_t^2\varphi$ and $P_t^2\psi$ are supported in B_R as well. Let $||f||=||f||_{\infty}+R||\nabla f||_{\infty}$ if $\operatorname{supp}(f)\subseteq B_R$. We want to show that

$$\lim_{t \to 0} |\langle P_t^2 T P_t^2 \varphi, \psi \rangle - \langle T \varphi, \psi \rangle| = 0.$$

We now have

$$\begin{split} |\left\langle TP_t^2\varphi,P_t^2\psi\right\rangle - \left\langle T\varphi,\psi\right\rangle| &\leqslant |\left\langle T(P_t^2\varphi-\varphi),P_t^2\psi\right\rangle| + |\left\langle T\varphi,P_t^2\psi-\psi\right\rangle| \\ &\lesssim R^n(||P_t^2\varphi-\varphi||\cdot||P_t^2\psi||+||\varphi||\cdot||P_t^2\psi-\psi||) \end{split}$$

by WBP. Since $\int \varphi = 1$, then $||P_t^2 f|| \le ||f||$. On the other hand, since for $f \in \mathcal{S}(\mathbb{R}^n)$, we know $||\hat{f}||_{\infty} ||f||_{1}$ by definition. Therefore, $||f||_{\infty} \le ||\hat{f}||_{1}$, hence

$$||P_t^2\varphi - \varphi|| \le ||\widehat{P_t^2\varphi - \varphi}||_1 + R \sum_{j=1}^n ||\xi_j \left(\widehat{P_t^2\varphi - \varphi}\right)(\xi)||_1,$$

and thus we conclude

$$P_t^2 \varphi - \varphi(\xi) = ((\hat{\varphi}(t\xi))^2 - 1)\hat{\varphi}(\xi),$$

and thus

$$\lim_{t \to 0} ||\widehat{P_t^2 \varphi - \varphi}||_1 = \int \lim_{t \to 0} |\widehat{\varphi}(t\xi)|^2 - 1| \cdot |\widehat{\varphi}(\xi)| d\xi = 0.$$

Similarly,

$$\lim_{t \to 0} \sum_{j=1}^{n} ||\xi_{j}(\widehat{P_{t}^{2}\varphi - \varphi})(\xi)||_{1} = 0.$$

Finally, taking $t \to 0$, we conclude that

$$||P_t^2 \varphi - \varphi|| \cdot ||P_t^2 \psi|| + ||\varphi|| \cdot ||P_t^2 \psi - \psi|| \le ||P_t^2 \varphi - \varphi|| \cdot ||\psi|| + ||\varphi|| \cdot ||P_t^2 \psi - \psi||$$

$$\to 0.$$

Lemma 13.8. Let T satisfy the WBP, then

$$\lim_{t \to \infty} \left\langle P_t^2 T P_t^2 \varphi, \psi \right\rangle = 0$$

for all $\varphi, \psi \in C_c^{\infty}(\mathbb{R}^n)$.

Problem 27. Verify Lemma 13.8.

By Lemma 13.7 and Lemma 13.8, for any $\varphi, \psi \in C_c^{\infty}(\mathbb{R}^n)$, we have

$$\langle T\varphi, \psi \rangle = \lim_{\varepsilon \to 0} \left\langle P_{\varepsilon}^2 T P_{\varepsilon}^2 \varphi - P_{\frac{1}{\varepsilon}}^2 T P_{\frac{1}{\varepsilon}}^2 \varphi, \psi \right\rangle.$$

To prove that T extends to a bounded operator on L^2 , we need to show that

$$\lim_{\varepsilon \to 0} ||P_\varepsilon^2 T P_\varepsilon^2 \varphi - P_{\frac{1}{\varepsilon}}^2 T P_{\frac{1}{\varepsilon}}^2 \varphi||_2 \lesssim ||\varphi||_2$$

for all $\varphi \in C_c^{\infty}$. By the fundamental theorem of calculus, we have

$$(P_{\varepsilon}^2 T P_{\varepsilon}^2 - P_{\frac{1}{\varepsilon}}^2 T P_{\frac{1}{\varepsilon}}^2) \varphi = -\int_{\varepsilon}^{\frac{1}{\varepsilon}} \partial_t (P_t^2 T P_t^2 \varphi) dt.$$

By product rule, we get

$$\partial_t (P_t^2 T P_t^2 \varphi) = (\partial_t P_t^2) T P_t^2 \varphi + P_t^2 \partial_t (T P_t^2) \varphi.$$

Note that we can express $\partial_t P_t^2 f(x) = \partial_t (\phi_t * \phi_t) * f(x)$ since P_t^2 is a convolution-type operator, and the second term is similar to the first one by taking the adjoint operator. To see this, we note that

$$P_t^2 \partial_t (TP_t^2) = P_t^2 T(\partial_t P_t^2)$$

whose adjoint operator is

$$(\partial_t P_t^2) T^* P_t^2$$

as P_t^2 and $\partial_t P_t^2$ are self-adjoint. Therefore, it suffices to estimate the first term, then the estimation for the second term follows similarly. That is, it remains to show that

$$\lim_{\varepsilon \to 0} \left\| \int_{\varepsilon}^{\frac{1}{\varepsilon}} (\partial_t P_t^2) T P_t^2 \varphi dt \right\|_2 \lesssim ||\varphi||_2, \tag{13.9}$$

and we may estimate the second term by

$$\lim_{\varepsilon \to 0} \left\| \int_{\varepsilon}^{\frac{1}{\varepsilon}} P_t^2 \hat{o}_t(TP_t^2) dt \right\|_2 \lesssim ||\varphi||_2,$$

in a similar fashion.

We set $Q_t f(x) = t(\partial_t P_t^2) f(x)$, so

$$\int_{\varepsilon}^{\frac{1}{\varepsilon}} (\partial_t P_t^2) T P_t^2 \varphi dt = \int_{\varepsilon}^{\frac{1}{\varepsilon}} Q_t T P_t^2 \varphi \frac{dt}{t}.$$

To construct the G-functions, we take the Fourier transform. We have

$$\widehat{Q_t f}(\xi) = t \partial_t \left(\widehat{P_t^2 f}(\xi) \right)$$

$$= t \partial_t \left(\widehat{\phi}^2(t\xi) \right) \widehat{f}(\xi)$$

$$= 2t \widehat{\phi}(t\xi) \xi \cdot (\nabla \widehat{\phi})(t\xi) \widehat{f}(\xi).$$

Let $\psi_t^{(1)}(x) = \frac{i}{\pi} t^{-n} (\nabla \phi)(t^{-1}x)$ and $\psi_t^{(2)}(x) = -2\pi i t^{-n} \phi(\frac{x}{t}) \frac{x}{t}$ for t > 0 and $x \in \mathbb{R}^n$. To see why this is useful, suppose $F = (f_1, \dots, f_n)$ is a complex-valued function, where each f_j is a function on \mathbb{R}^n that is real-valued or complex-valued, then we define its Fourier transform to be

$$\hat{F} = (\hat{f}_1, \dots, \hat{f}_n).$$

Using this definition, we have

$$\widehat{\psi_t^{(1)}}(\xi) = 2t\widehat{\phi}(t\xi)\xi$$

for all $\xi \in \mathbb{R}^n$, and

$$\widehat{\psi_t^{(2)}}(\xi) = (\nabla \hat{\phi})(t\xi).$$

By these estimates, we have

$$\widehat{Q_t f}(\xi) = 2t\widehat{\phi}(t\xi)\xi \cdot (\nabla\widehat{\phi})(t\xi)\widehat{f}(\xi)$$
$$= \widehat{\psi_t^{(1)}}(\xi)\widehat{\psi_t^{(2)}}(\xi)\widehat{f}(\xi).$$

For $F=(f_1,\ldots,f_n)$, we set $F*g=(f_1*g,\ldots,f_n*g)$. Define vector-valued functions $\vec{Q}_t^{(1)}f(x)=\psi_t^{(1)}*f(x)$ and $\vec{Q}_t^{(2)}f(x)=\psi_t^{(2)}*f(x)$. For $F=(f_1,\ldots,f_n)f$ and $G=(g_1,\ldots,g_n)$, we define their inner product to be $\langle F,G\rangle=\sum\limits_{j=1}^n\langle f_j,g_j\rangle$. For any $f,g\in L^2$, or $\mathcal{S}(\mathbb{R}^n)$, or C_c^∞ , we may represent

$$\langle Q_t f, g \rangle = \left\langle \vec{Q}_t^{(2)} f, \vec{Q}_t^{(1)} g \right\rangle$$

because we may take Fourier transform on every term and use the fact that $\widehat{Q_tf} = \widehat{\psi_t^{(1)}} \cdot \widehat{\psi_t^{(2)}} \widehat{f}$. One can show that

$$\left\| \left(\int_{0}^{\infty} |\vec{Q}_{t}^{(j)} f|^{2} \frac{dt}{t} \right)^{\frac{1}{2}} \right\|_{2} \lesssim ||f||_{2}$$

which is independent of f. Therefore,

$$\begin{split} \left| \left\langle \int_{\varepsilon}^{\frac{1}{\varepsilon}} Q_t T P_t^2 \varphi \frac{dt}{t}, \psi \right\rangle \right| &= \left| \int_{\varepsilon}^{\frac{1}{\varepsilon}} \left\langle Q_t T P_t^2 \varphi, \psi \right\rangle \frac{dt}{t} \right| \\ &= \left| \int_{\varepsilon}^{\frac{1}{\varepsilon}} \left\langle \vec{Q}_t^{(2)} T P_t^2 \varphi, Q_t^{(1)} \psi \right\rangle \frac{dt}{t} \right| \\ &\lesssim \left\| \left(\int_{\varepsilon}^{\frac{1}{\varepsilon}} |\vec{Q}_t^{(2)} T P_t^2 \varphi|^2 \frac{dt}{t} \right)^{\frac{1}{2}} \right\| \cdot \left\| \left(\int_{\varepsilon}^{\frac{1}{\varepsilon}} |\vec{Q}_t^{(1)} \psi|^2 \frac{dt}{t} \right)^{\frac{1}{2}} \right\| \\ &\leqslant \left\| \left(\int_{\varepsilon}^{\frac{1}{\varepsilon}} |\vec{Q}_t^{(2)} T P_t^2 \varphi|^2 \frac{dt}{t} \right)^{\frac{1}{2}} \right\| \cdot \left\| \psi \right\|^2 \end{split}$$

by Cauchy-Schwartz. It then suffices to show

Proposition 13.10. There exists some constant C independent of ε such that

$$\int\limits_{\mathbb{R}^n}\int\limits_{\varepsilon}^{\frac{1}{\varepsilon}}|\vec{Q}_t^{(2)}TP_t^2\varphi|^2\frac{dt}{t}dx\leqslant C||\varphi||_2^2$$

for all $\varphi \in C_c^{\infty}(\mathbb{R}^n)$.

Proof of Proposition 13.10. Define $\vec{\mathcal{L}}_t = \vec{Q}_t^{(2)}TP_t$ to be a vector-valued singular integral operator associated to a vector-valued kernel L_t . For $F = (f_1, \ldots, f_n)$ and a function g defined on \mathbb{R}^n with values in \mathbb{R} or \mathbb{C} , we denote $\langle F, g \rangle = (\langle f_1, g \rangle, \ldots, \langle f_n, g \rangle)$, then

$$\left\langle \vec{\mathcal{L}}_t \varphi, \psi \right\rangle = \int_{\mathbb{R}^n \times \mathbb{R}^n} L_t(x, y) \varphi(y) \psi(x) dx dy.$$

On the other hand, we have

$$\langle \vec{\mathcal{L}}_t \varphi, t \rangle = \langle \vec{Q}_t^{(2)} T P_t \varphi, \psi \rangle$$

$$= \langle T P_t \varphi, \vec{Q}_t^{(2)} \psi \rangle$$

$$= \int_{\mathbb{R}^n \times \mathbb{R}^n} K(x, y) P_t \varphi(y) \vec{Q}_t^{(2)} \psi(x) dx dy.$$

Problem 28. We have

$$\int_{\mathbb{R}^n \times \mathbb{R}^n} K(x, y) P_t \varphi(y) \vec{Q}_t^{(2)} \psi(x) dx dy = \int_{\mathbb{R}^n \times \mathbb{R}^n} \left\langle T, \phi_t^y, \psi_t^{(2)}, \psi_t^{(2)}, \psi_t^{(2)} \right\rangle \varphi(y) \psi(x) dx dy$$

where $\phi_t^y(z) = \phi_t(z-y)$ for all z, and $\psi_t^{(2),x}(z) = \psi_t^{(2)}(z-x)$. Hint: by weak boundedness of the operator, we may interchange the integral and arrive at this identity.

Therefore, the kernel in the sense of this distribution is

$$L_t(x,y) = \left\langle T\varphi_t^y, \psi_t^{(2),x} \right\rangle.$$

Lemma 13.11. There exists $\sigma \in (0,1]$ such that for any $x,y \in \mathbb{R}^n$,

$$|L_t(x,y)| \le \frac{Ct^{\sigma}}{(t+|x-y|)^{n+\sigma}}.$$

Proof of Lemma 13.11.

• Suppose |x - y| < 10t. Now

$$|L_{t}(x,y)| = |\langle T\phi_{t}^{y}, \Psi_{t}^{(2),x} \rangle|$$

$$\leq t^{n}(||\Psi_{t}^{(2),x}||_{\infty} + t||\nabla \Psi_{t}^{(2),x}||_{\infty})(||\phi_{t}^{y}||_{\infty} + t||\nabla \phi_{t}^{y}||_{\infty})$$

$$= t^{n}(||\Psi_{t}^{(2)}||_{\infty} + t||\nabla \Psi_{t}^{(2)}||_{\infty})(||\psi_{t}||_{\infty} + t||\nabla \phi_{t}||_{\infty}),$$

but since $\max\{||\Psi_t^{(2)}||_{\infty}, ||\phi_t||_{\infty}\} \lesssim t^{-n}$, we note $\max\{||\nabla \Psi_t^{(2)}||_{\infty}, ||\nabla \phi_t||_{\infty}\} \lesssim t^{-n-1}$, so combining them altogether, we get

$$|L_t(x,y)| \lesssim t^{-n} \lesssim \frac{t^{\sigma}}{(t+|x-y|)^{n+\sigma}}$$

• Suppose $|x - y| \ge 10t$. In this case, we have

$$L_t(x,y) = \left\langle T\phi_t^y, \Psi_t^{(2),x} \right\rangle$$
$$= \int_{\mathbb{R}^n \times \mathbb{R}^n} K(u,v)\phi_t(v-y)\Psi_t^{(2)}(u-x)dudv.$$

If u = v, then K(u, v) is a distribution. From the support condition for ϕ_t and $\Psi_t^{(2)}$, we get $|v - y| \le t$ and $|u - x| \le t$, but since we need these conditions to be true to not evaluate as zero, we must have $u \ne v$:

$$|u - v| = |(u - x) + (x - y) + (y - v)|$$

 $\ge |x - y| - |u - x| - |y - v|$
 $\ge |x - y| - 2t$
 $\ge 8t$,

so $|u-v| \ge 8t \ge 8|u-x|$. By Fubini theorem, we have

$$|L_{t}(x,y)| = \left| \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} K(u,v) \Psi_{t}^{(2)}(u-x) du \right) \phi_{t}(v-y) dv \right|$$

$$= \left| \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} (K(u,v) - K(x,v)) \Psi_{t}^{(2)}(u-x) du \phi_{t}(v-y) dv \right|$$

$$\lesssim \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u-x|^{\sigma}}{|u-v|^{n+\sigma}} |\Psi_{t}^{(2)}(u-x)| du |\phi_{t}(v-y)| dv$$

$$\lesssim \int_{B_{t}(y)} \int_{B_{t}(x)} \frac{|u-x|^{\sigma}}{|u-v|^{n+\sigma}} \frac{1}{t^{n}} \frac{|u-x|}{t} \frac{1}{\left(1 + \frac{|u-x|}{t}\right)^{N}} \frac{1}{t} \frac{1}{\left(1 + \frac{|v-y|}{t}\right)^{N}} du dv.$$

Since

$$\frac{1}{|u-v|^{n+\sigma}} = \frac{1}{t^{n+\sigma}} \frac{1}{\left|\frac{u-v}{t}\right|^{n+\sigma}} \sim \frac{1}{t^{n+\sigma}} \frac{1}{\left(1 + \frac{|u-v|}{t}\right)^{n+\sigma}},$$

and

$$\frac{1}{1+|a|}\frac{1}{1+|b|} \leqslant \frac{1}{1+|a-b|},$$

then

$$|L_t(x,y)| \lesssim \frac{1}{t^n \left(1 + \frac{|x-y|}{t}\right)^{n+\sigma}}.$$

By Lemma 13.11, we know $\int_{\mathbb{R}^n} L_t(x,y) dy$ converges absolutely. Since this is an integrable function, we may represent the kernel as an integrable one. In particular, for any $f \in C_c^{\infty}(\mathbb{R}^n)$, we have

$$\vec{\mathcal{L}}_t f(x) = \int_{\mathbb{D}_n} L_t(x, y) f'(y) dy.$$

Note that the right-hand side is well-defined when f = 1, so in particular we get

$$\vec{\mathcal{L}}_t = \int_{\mathbb{R}^n} L_t(x, y) dy.$$

Claim 13.12. If T1 = 0, then $\vec{\mathcal{L}}_t 1 = 0$.

Proof of Claim 13.12. For any $\varphi \in C_c^{\infty}(\mathbb{R}^n)$, we have

$$\left\langle \vec{\mathcal{L}}_t 1, \varphi \right\rangle = \left\langle Q_t^{(2)} T P_t 1, \varphi \right\rangle$$

= $\left\langle T 1, Q_t^{(2)} \varphi \right\rangle$.

By definition, we have

$$\begin{split} \int\limits_{\mathbb{R}^n} Q_t^{(2)} \varphi(x) dx &= \int \psi_t^{(2)} * \varphi(x) dx \\ &= \left(\int \varphi \right) \left(\int \psi_t^{(2)} \right) \\ &= 0. \end{split}$$

Since $Q_t^{(2)} \varphi \in \mathcal{S}_0(\mathbb{R}^n)$, then this shows that

$$\left\langle \vec{\mathcal{L}}_t 1, \varphi \right\rangle = \left\langle T 1, Q_t^{(2)} \varphi \right\rangle = 0.$$

Therefore, we know $\int\limits_{\mathbb{R}^n} \vec{\mathcal{L}}_t(x,y) dy = 0$. It remains to show that

$$\int\limits_{\mathbb{R}^n}\int\limits_{\varepsilon}^{\frac{1}{\varepsilon}}|\vec{\mathcal{L}}_t(P_t,\varphi)|^2\frac{dt}{t}\lesssim ||\varphi||_2^{\sigma}$$

for all $\varphi \in C_c^{\infty}(\mathbb{R}^n)$. Note that

$$\int_{\mathbb{R}^n} \int_{\varepsilon}^{\frac{1}{\varepsilon}} |\vec{\mathcal{L}}_t(P_t, \varphi)|^2 \frac{dt}{t} = \int_{\mathbb{R}^n} \int_{\varepsilon}^{\frac{1}{\varepsilon}} |\vec{\mathcal{L}}_t(P_t \varphi(y) - P_t \varphi(x)) dy|^2 \frac{dt}{t} dx$$

$$\lesssim \int_{\mathbb{R}^n} \int_{\varepsilon}^{\frac{1}{\varepsilon}} \left(\int \frac{t^{\sigma}}{(t + |x - y|)^{n + \sigma}} |P_t \varphi(y) - P_t \varphi(x)| dy \right)^2 \frac{dt}{t} dx$$

where $\int \frac{t^{\sigma}}{(t+|x-y|)^{n+\sigma}} |P_t \varphi(y) - P_t \varphi(x)| = \left(\frac{t^{\sigma}}{(t+|x-y|)^{n+\sigma}}\right)^{\frac{1}{2}} \left(\frac{t^{\sigma}}{(t+|x-y|)^{n+\sigma}}\right)^{\frac{1}{2}} |P_t \varphi(y) - P_t \varphi(x)|$. Therefore, by Cauchy-Schwartz, we know

$$\int_{\mathbb{R}^{n}} \int_{\varepsilon}^{\frac{1}{\varepsilon}} |\vec{\mathcal{L}}_{t}(P_{t},\varphi)|^{2} \frac{dt}{t} \lesssim \int_{\mathbb{R}^{n}} \int_{\varepsilon}^{\frac{1}{\varepsilon}} \left(\int \frac{t^{\sigma}}{(t+|x-y|)^{n+\sigma}} |P_{t}\varphi(y) - P_{t}\varphi(x)| dy \right)^{2} \frac{dt}{t} dx$$

$$\lesssim \int_{\mathbb{R}^{n}} \int_{0}^{\infty} \left(\int \frac{t^{\sigma}}{(t+|x-y|)^{n+\sigma}} dy \right) \left(\int \frac{t^{\sigma}}{(t+|x-y|)^{n+\sigma}} |P_{t}\varphi(y) - P_{t}\varphi(x)|^{2} dy \right) \frac{dt}{t} dx.$$

Since $\int \frac{t^{\sigma}}{(t+|x-y|)^{n+\sigma}} dy = C_{n,\sigma}$ by a change of variables, we know that

$$\int_{\mathbb{R}^{n}} \int_{\varepsilon}^{\frac{1}{\varepsilon}} |\vec{\mathcal{L}}_{t}(P_{t},\varphi)|^{2} \frac{dt}{t} \lesssim \int_{\mathbb{R}^{n}} \int_{0}^{\infty} \left(\int \frac{t^{\sigma}}{(t+|x-y|)^{n+\sigma}} dy \right) \left(\int \frac{t^{\sigma}}{(t+|x-y|)^{n+\sigma}} |P_{t}\varphi(y) - P_{t}\varphi(x)|^{2} dy \right) \frac{dt}{t} dx$$

$$\lesssim_{n,\sigma} \int_{\mathbb{R}^{n}} \int_{0}^{\infty} \int \frac{t^{\sigma}}{(t+|x-y|)^{n+\sigma}} |P_{t}\varphi(y) - P_{t}\varphi(x)|^{2} dx \frac{dt}{t} dy$$

$$\lesssim_{n,\sigma} \int_{\mathbb{R}^{n}} \int_{0}^{\infty} \int \frac{t^{\sigma}}{(t+|x-y|)^{n+\sigma}} |P_{t}\varphi(y) - P_{t}\varphi(u+y)|^{2} du \frac{dt}{t} dy$$

$$= \int\limits_{\mathbb{R}^n} \int\limits_0^\infty \frac{t^{\sigma}}{(t+|u|)^{n+\sigma}} \left(\int\limits_{\mathbb{R}^n} |P_t \varphi(y) - P_t \varphi(u+y)|^2 dy \right) \frac{dt}{t} du.$$

By Theorem 4.5, we know that

$$\int_{\mathbb{R}^n} |P_t \varphi(y) - P_t \varphi(u+y)|^2 dy = \int_{\mathbb{R}^n} |e^{2\pi i u \cdot \xi} - 1|^2 |\hat{\varphi}(t\xi)|^2 |\hat{\varphi}(\xi)|^2 d\xi,$$

therefore

$$\int_{\mathbb{R}^n} \int_0^\infty \frac{t^{\sigma}}{(t+|u|)^{n+\sigma}} \left(\int_{\mathbb{R}^n} |P_t \varphi(y) - P_t \varphi(u+y)|^2 dy \right) \frac{dt}{t} du$$

$$= \int_{\mathbb{R}^n} |\hat{\varphi}(\xi)| \left(\int_{\mathbb{R}^n} \int_0^\infty |e^{2\pi i u \cdot \xi} - 1| \cdot |\hat{\varphi}(t\xi)| \frac{t^{\sigma}}{(t+|u|)^{n+\sigma}} \frac{dt}{t} du \right) d\xi.$$

Finally, it suffices to show that

Lemma 13.13. There exists some constant C independent of ξ such that

$$\int_{\mathbb{R}^n} \int_{0}^{\infty} |e^{2\pi i u \cdot \xi} - 1| \cdot |\hat{\varphi}(t\xi)| \frac{t^{\sigma}}{(t+|u|)^{n+\sigma}} \frac{dt}{t} du \leqslant C.$$

Subproof. Without loss of generality, assume that $\xi \neq 0$. Now take $\delta = \frac{\sigma}{2} > 0$ and $\varepsilon = \frac{\delta}{2}$, then we have

$$\int_{\mathbb{R}^{n}} \int_{0}^{\infty} |e^{2\pi i u \cdot \xi} - 1| \cdot |\hat{\varphi}(t\xi)| \frac{t^{\sigma}}{(t+|u|)^{n+\sigma}} \frac{dt}{t} du \lesssim \int_{\mathbb{R}^{n}} \int_{0}^{\infty} |u \cdot \xi|^{\delta} |\hat{\varphi}(t\xi)|^{2} \frac{t^{\sigma}}{(t+|u|)^{n+\sigma}} \frac{dt}{t} du$$

$$= \int_{\mathbb{R}^{n}} \int_{0}^{\infty} |u \cdot \xi|^{\delta} |\hat{\varphi}(t|\xi|)|^{2} \frac{t^{\sigma}}{(t+|u|)^{n+\sigma}} \frac{dt}{t} du$$
by a change of variable $u \mapsto tu$,

$$= \int_{\mathbb{R}^{n}} \int_{0}^{\infty} t^{\delta} |u|^{\delta} |\xi|^{\sigma} |\hat{\varphi}(t\xi)|^{2} \frac{t^{\sigma}}{(t+|tu|)^{n+\sigma}} \frac{dt}{t} \cdot t^{n} du$$

$$= \left(\int_{\mathbb{R}^{n}} \frac{|u|^{\delta}}{(1+|u|)^{n+\sigma}} du \right) \left(\int_{0}^{\infty} (t|\xi|)^{\delta} |\hat{\varphi}(t|\xi|)^{2} \frac{dt}{t} \right)$$

$$\leq \left(\int_{\mathbb{R}^{n}} \frac{(1+|u|)^{\delta}}{(1+|u|)^{n+\delta+\delta}} du \right) \left(\int_{0}^{\infty} (t|\xi|)^{\delta} |\hat{\varphi}(t|\xi|)^{2} \frac{dt}{t} \right)$$

$$\lesssim n, \sigma \int_{0}^{\infty} |t|^{\delta} |\hat{\varphi}(t)|^{2} \frac{dt}{t}$$

$$\lesssim n, \sigma C.$$

Problem 29. Let K be a Calderón-Zygmund kernel that is anti-symmetric, i.e., K(x,y) = -K(y,x). Let T be the singular integral operator associated with K. Prove that T satisfies the WBP condition.

Problem 30. Prove that

i. for any
$$\delta>0,$$
 $\int\limits_{\mathbb{R}^n}e^{-\pi\delta|\xi|^2}e^{-2\pi ix\cdot\xi}d\xi=\delta^{-\frac{n}{2}}e^{-\pi|x|^2/\delta};$

ii. for any
$$\gamma > 0$$
, $e^{-\gamma} = \frac{1}{\sqrt{\pi}} \int\limits_0^\infty \frac{e^{-u}}{\sqrt{u}} e^{-\frac{\gamma^2}{4u}} du$. Hint: note that $e^{-\gamma} = \frac{1}{\pi} \int\limits_{-\infty}^\infty \frac{e^{i\gamma z}}{1+x^2} dx$ and $\frac{1}{1+x^2} = \int\limits_0^\infty e^{-(1+x^2)u} du$;

iii.
$$\widehat{e^{-2\pi t|\cdot|}}(x) = \frac{C_n t}{(|x|^2 + t^2)^{\frac{n+1}{2}}}.$$

14 BOUNDED MEAN OSCILLATION AND SHARP FUNCTIONS

Definition 14.1. Let f be a locally integrable function on \mathbb{R}^n , and let Q be a cube in \mathbb{R}^n , then we define $f_Q = \frac{1}{|Q|} \int_Q f(x) dx$, and the bounded mean oscillation (BMO) of f is defined by

$$||f||_{\operatorname{BMO}} = \sup_{\operatorname{cube} Q \text{ in } \mathbb{R}^n} \frac{1}{|Q|} \int\limits_Q |f(x) - f_Q(x)| dx.$$

Moreover, we define the collection of functions with bounded mean oscillation on \mathbb{R}^n to be BMO(\mathbb{R}^n) = $\{f \in L^1_{loc}(\mathbb{R}^n) : ||f||_{BMO} < \infty\}$.

Remark 14.2.

- $L^{\infty}(\mathbb{R}^n) \subseteq BMO(\mathbb{R}^n)$;
- if f is a constant function, then $||f||_{BMO} = 0$;
- suppose f and g are functions such that f-g is a constant function, then $||f||_{\text{BMO}} = ||g||_{\text{BMO}}$. In particular, in the function space $\text{BMO}(\mathbb{R}^n)$, this implies f=g in $\text{BMO}(\mathbb{R}^n)$.

Lemma 14.3.
$$||f||_{\mathrm{BMO}} \sim \sup_{\mathrm{cube}\ Q\ \mathrm{in}\ \mathbb{R}^n} \inf_{c\in\mathbb{C}} \frac{1}{|Q|} \int\limits_Q |f(x)-c| dx.$$

Problem 31. Prove Lemma 14.3.

Theorem 14.4 (John-Nirenberg). There exists $C_1, C_2 > 0$ such that for any $f \in BMO(\mathbb{R}^n)$ and any cube $Q \subseteq \mathbb{R}^n$ and any $\lambda > 0$, we have

$$|\{x \in Q : f(x) - f_Q > \lambda\}| \le e^{-\frac{c_2 \lambda}{||f||_{\text{BMO}}}} |Q|.$$

To prove the theorem, we need a few lemmas.

Lemma 14.5. Let $Q \subseteq \mathbb{R}^n$ be a cube and $\lambda > 0$. Suppose $f \in L^1(Q)$ and $\frac{1}{|Q|} \int_Q |f(x)| dx < \lambda$, then there exists a sequence $\{Q_j\}_{j\geqslant 1}$ of pairwise disjoint⁴ sub-cubes of Q, such that

1.
$$|f(x)| \leq \lambda$$
 almost everywhere for $Q \setminus \bigcup_{j} Q_{j}$, and

2.
$$\lambda \leqslant \frac{1}{|Q_j|} \int_{Q_j} |f| < 2^n \lambda$$
.

Problem 32. Prove Lemma 14.5.

Hint: use a stopping time argument.

Lemma 14.6. Let $f \in BMO(\mathbb{R}^n)$ with $||f||_{BMO} = 1$, and let $Q \subseteq \mathbb{R}^n$ be a cube, then there exists a sequence $\{Q_j\}_{j\geqslant 1}$ of pairwise disjoint sub-cubes of Q such that

1.
$$|f(x) - f_Q| \leqslant \frac{3}{2}$$
 almost everywhere for $x \in Q \backslash \bigcup_i Q_j$,

2.
$$\sum_{j} |Q_j| \leqslant \frac{2}{3} |Q|$$
, and

3.
$$\frac{1}{|Q_j|} \int_{Q_j} |f(x) - f_Q| < 3 \cdot 2^{n-1}$$
.

⁴By pairwise disjoint, we mean the borders may touch.

Proof. Apply Lemma 14.5 to the function $f - f_Q$ with $\lambda = \frac{3}{2}$, which can be done since

$$\frac{1}{|Q|} \int\limits_{Q} |(f-f_Q)(x)| dx \leqslant ||f||_{\mathrm{BMO}}$$

$$\leqslant 1$$

$$< \frac{3}{2},$$

so there exists a sequence $\{Q_j\}_{j\geqslant 1}$ of pairwise disjoint sub-cubes of Q, such that

1. $|(f-f_Q)(x)| \leqslant \frac{3}{2}$ almost everywhere for $Q \setminus \bigcup_j Q_j$, and

2.
$$\frac{3}{2} \le \frac{1}{|Q_j|} \int_{Q_j} |f - f_Q| < 3 \cdot 2^{n-1}$$
.

It suffices to show that $\sum\limits_{j}|Q_{j}|\leqslant \frac{2}{3}|Q|$. Since $\frac{3}{2}\leqslant \frac{1}{|Q_{j}|}\int\limits_{Q_{j}}|f-f_{Q}|<3\cdot 2^{n-1}$, then $|Q_{j}|\leqslant \frac{2}{3}\int\limits_{Q_{j}}|f-f_{Q}|$, therefore

$$\sum_{j} |Q_{j}| \leqslant \frac{2}{3} \sum_{j} \int_{Q_{j}} |f - f_{Q}|$$

$$\leqslant \frac{2}{3} \int_{Q} |f - f_{Q}|$$

$$\leqslant \frac{2}{3} |Q| \cdot ||f||_{\text{BMO}}.$$

Proof of Theorem 14.4. Without loss of generality, we may assume that $||f||_{BMO} = 1$, since we can apply a dilation argument for the general case. We will show that the level set

$$|\{x \in Q : |f(x) - f_Q| > \lambda\}| \le C_1 e^{-C_2 \lambda} |Q|$$

by applying Lemma 14.6 repeatedly. Let us first apply Lemma 14.6 for the given cube Q and function f, then we get a sequence $\{Q_j^{(1)}\}_{j\geqslant 1}$ of disjoint sub-cubes $Q_j^{(1)}\subseteq Q$ such that

- $|f(x)-f_Q|\leqslant \frac{3}{2}$ almost everywhere for $x\in Q\backslash \bigcup_j Q_j^{(1)},$
- $\sum\limits_{j}|Q_{j}^{(1)}|\leqslant rac{2}{3}|Q|$, and
- $\frac{1}{|Q_j^{(1)}|} \int_{Q_j^{(1)}} |f(x) f_Q| < 3 \cdot 2^{n-1}$.

Define $J^{(1)} = \{Q_j^{(1)} : j \in \mathbb{N}\}$ to be the set of all such cubes. For each cube $Q^{(1)}$ in $J^{(1)}$, we apply Lemma 14.6 again, then we get a sequence $\{Q_j^{(2)}\}_{j\geqslant 1}$ of sub-cubes of $Q^{(1)}$ such that

- $|f(x) f_{Q^{(1)}}| \leq \frac{3}{2}$ almost everywhere for $x \in Q^{(1)} \setminus \bigcup_{i} Q_{j}^{(2)}$,
- $\cdot \sum_{j} |Q_{j}^{(2)}| \leqslant \frac{2}{3} |Q^{(1)}|,$ and
- $\frac{1}{|Q_j^{(2)}|} \int_{Q_j^{(2)}} |f(x) f_{Q^{(1)}}| < 3 \cdot 2^{n-1}$.

Define $J^{(2)}=\{Q_j^{(2)}:j\in\mathbb{N}\}$ to be the set of all such cubes. We have

$$\bigcup_{j \in \mathbb{N}} Q_j^{(2)} = \bigcup_{Q^{(1)} \subseteq J^{(1)}} \bigcup_{j \in J^{(1)}(Q^{(1)})} Q_j^{(2)},$$

therefore

$$\sum_{j} |Q_{j}^{(2)}| \leq \frac{2}{3} \sum_{Q^{(1)}} |Q^{(1)}|$$
$$\leq \left(\frac{2}{3}\right)^{2} |Q|.$$

Moreover, we claim that $|f(x) - f_Q| \le \frac{3}{2} + 3 \cdot 2^{2-1}$ almost everywhere for $x \in Q \setminus \bigcup_{j \in \mathbb{N}} Q_j^{(2)}$. This can be done by considering two cases:

- if x does not belong to any cube of the form $Q^{(1)}$, then $|f(x) f_Q| \leq \frac{3}{2}$;
- if $x \in Q^{(1)}$ for some cube $Q^{(1)} \in J^{(1)}$, then

$$\begin{split} |f(x) - f_Q| &\leqslant |f(x) - f_{Q^{(1)}}| + |f_{Q^{(1)}} - f_Q| \\ &\leqslant |f(x) - f_{Q^{(1)}}| + \frac{1}{|Q^{(1)}|} \int\limits_{Q^{(1)}} |f - f_Q| \end{split}$$

by triangle inequality.

By applying this argument repeatedly, at the Nth step we obtain a sequence $\{Q_j^{(N)}\}_{j\geqslant 1}$ of disjoint sub-cubes of Q such that

•
$$|f(x)-f_Q| \leqslant \frac{3}{2} + 3(N-1)2^{n-1} \leqslant 3N2^{n-1}$$
 almost everywhere for $x \in Q \setminus \bigcup_j Q_j^{(N)}$, and

•
$$\sum_{j} |Q_j^{(N)}| \leqslant \left(\frac{2}{3}\right)^N |Q|$$
.

If $\lambda < 3 \cdot 2^{n-1}$, the conclusion is trivial. For any $\lambda \geqslant 3 \cdot 2^{n-1}$, there exists some $N \in \mathbb{N}$ such that $3N2^{n-1} \leqslant \lambda < 3(N+1)2^{n-1}$, then

$$|\{x \in Q : |f(x) - f_Q| > \lambda\}| = |\{x \in \bigcup_j Q_j^{(N)} : |f(x) - f_Q| > \lambda\}|$$

$$\leq \sum_j |Q_j^{(N)}|$$

$$\leq \left(\frac{2}{3}\right)^N |Q|$$

$$< e^{-c_2\lambda}|Q|$$

where $c_2 = \frac{\log(\frac{3}{2})}{3 \cdot 2^{n-1}}$.

Definition 14.7. For $1 \leq p < \infty$, we define $||f||_{\text{BMO},p} = \sup_{\text{cube } Q \text{ in } \mathbb{R}^n} \left(\frac{1}{|Q|} \int_Q |f(x) - f_Q|^p dx \right)^{\frac{1}{p}}$. Under this notation, $||f||_{\text{BMO}} = ||f||_{\text{BMO},1}$.

Corollary 14.8. For any $1 \leq p < \infty$, $||f||_{\text{BMO},p} \sim ||f||_{\text{BMO}}$.

Proof. We need to show that $||f||_{\text{BMO},p} \lesssim_p ||f||_{\text{BMO}}$. To calculate the L^p -norm of the difference, we have

$$\frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}|^{p} dx = \frac{p}{|Q|} \int_{0}^{\infty} \lambda^{p-1} |\{x \in Q : |f(x) - f_{Q}| > \lambda\}| d\lambda$$

$$\lesssim_{p} \int_{0}^{\infty} \lambda^{p-1} e^{-\frac{c\lambda}{||f||_{\text{BMO}}}} d\lambda \text{ by Theorem 14.4}$$

$$= ||f||_{\text{BMO}}^{p} \int_{0}^{\infty} \lambda^{p-1} e^{-\lambda} d\lambda \text{ by changing } \lambda \to \frac{||f||_{\text{BMO}}}{c} \lambda.$$

Definition 14.9. Given a function f, we define the sharp function of f to be $f^{\#}(x) = \sup_{\text{cube } x \in Q \text{ in } \mathbb{R}^n} \frac{1}{|Q|} \int\limits_{Q} |f(x) - f_Q| dx$.

Remark 14.10. Since $f^{\#}(x) \lesssim Mf(x)$, then $||f^{\#}||_{\infty} \lesssim ||Mf||_{\infty} \lesssim ||f||_{\infty}$. Based on the same observation, we have we have $||f^{\#}||_{p} \lesssim ||f||_{p}$ for any 1 . For the rest of the section, we will show that the reverse inequality still holds.

Definition 14.11. Let $k \in \mathbb{Z}$. We define a dyadic cube to be $\mathscr{D}_k = \left\{ \prod_{j=1}^n \left[2^{-k} n_j, 2^{-k} (n_j + 1) \right) : n_j \in \mathbb{Z} \right\}$. The collection of dyadic cubes is defined by $\mathscr{D} = \bigcup_{k \in \mathbb{Z}} \mathscr{D}_k$.

The dyadic cubes define a grid structure: for any $Q_1, Q_2 \in \mathcal{D}$, either $Q_1 \cap Q_2 = \emptyset$, or $Q_1 \subseteq Q_2$ or $Q_2 \subseteq Q_1$. Let us define

$$M_d f(x) = \sup_{x \in Q \in \mathscr{D}} \frac{1}{|Q|} \int_{Q} |f(y)| dy.$$

Obviously $M_d f(x) \leq M f(x)$, and conversely $M_d f(x) \gtrsim M f(x)$.

Remark 14.12. It is not true that $M_d f(x) \lesssim f^{\#}(x)$.

However, even though we don't have a pointwise estimate, we may estimate it in the sense of distributions.

Theorem 14.13 (Good- λ Inequality). For any $\gamma > 0$ and any $\lambda > 0$, we have the following level set estimate:

$$|\{x \in \mathbb{R}^n : M_d f(x) > 2\lambda, f^{\#}(x) < \gamma\lambda\}| \le 2^n \gamma |\{x \in \mathbb{R}^n : M_d f(x) > \lambda\}|.$$

Proof. By Lemma 14.5, we may write $\{x \in \mathbb{R}^n : M_d f(x) > \lambda\} = \left(\bigsqcup_Q Q\right) \cup N$ as a disjoint union of cubes along with a null set N. Therefore, it remains to show that for any maximal⁵ dyadic cube Q in $\{x \in \mathbb{R}^n : M_d f(x) > \lambda\}$, we have

$$|\{x \in Q : M_d f(x) > 2\lambda, f^{\#}(x) < \gamma\lambda\}| \le 2^n \gamma |Q|.$$
 (14.14)

Problem 33. For any maximal dyadic cube Q in $\{x: M_d f(x) > \lambda\}$, if $x \in Q$ and $M_d f(x) > 2\lambda$, then

$$M_d(f\chi_Q)(x) > 2\lambda.$$

Given a dyadic cube Q, suppose Q^* is its unique parent Q. By maximality of Q, then $Q^* \nsubseteq \{x : M_d f(x) > \lambda\}$, therefore

$$\frac{1}{|Q^*|} \int_{Q^*} |f(x)| dx \leqslant \lambda.$$

⁵Here Q is called a maximal cube in E if $Q \subseteq E$ but $2Q \nsubseteq E$.

For $f_{Q*} = \frac{1}{|Q^*|} \int_{Q^*} f$, we have

$$M_d(f_{Q*}\chi_Q)(x) = |M_d(f_{Q*}\chi_Q)(x)|$$

$$\leq |f_{Q*}|M_d(\chi_Q)(x)$$

$$\leq \lambda ||\chi_Q||_{\infty}$$

$$\leq \lambda.$$

Using this estimate, we bound

$$\begin{split} M_d((f-f_{Q*})\chi_Q) &\geqslant M_d(f\chi_Q) - M_d(f_{Q*}\chi_Q) \\ &\geqslant M_d(f\chi_Q) - \lambda \\ &> 2\lambda - \lambda \text{ by Problem 33 as } x \in Q \text{ and } M_df(x) > 2\lambda \\ &= \lambda. \end{split}$$

Therefore,

$$\{x \in Q : M_d f(x) > 2\lambda, f^{\#}(x) < \gamma\lambda\} \subseteq \{x \in Q : M_d((f - f_{Q^*})\chi_Q)(x) > \lambda\}.$$

By the fact that M_d is of type weak (1,1), we note that

$$|\{x \in Q : M_d((f - f_{Q^*})\chi_Q)(x) > \lambda\}| \leqslant \frac{\int\limits_Q |f - f_{Q^*}|}{\lambda}$$

$$\leqslant \frac{2^n |Q|}{\lambda} \frac{1}{|Q^*|} \int\limits_{Q^*} |f - f_{Q^*}|$$

$$\leqslant \frac{2^n |Q|}{\lambda} \inf_{x \in Q^*} f^{\#}(x)$$

$$\leqslant \frac{2^n |Q|}{\lambda} \inf_{x \in Q} f^{\#}(x).$$

If $\{x \in Q: f^\#(x) < 2\lambda\} = \varnothing$, then the statement is true trivially, so suppose $\{x \in Q: f^\#(x) < 2\lambda\} \neq \varnothing$, then

$$|\{x \in Q : M_d((f - f_{Q^*})\chi_Q)(x) > \lambda\}| \leqslant \frac{2^n |Q|}{\lambda} \inf_{x \in Q} f^{\#}(x)$$
$$\leqslant \frac{2^n |Q|}{\lambda} \gamma \lambda$$
$$= 2^n \gamma |Q|,$$

as desired.

Theorem 14.15. Let $p \in [1, \infty)$. Suppose that $f \in L^{p_0}$ for some $p_0 \in [1, p]$, then there exists a constant $C_{p,n}$ such that

$$(||f||_p \lesssim)||M_d f||_p \leqslant C_{p,n}||f^{\#}||_p.$$

Proof. We have

$$\begin{split} ||M_d f||_p^p &= p \int\limits_0^\infty \lambda^{p-1} |\{x \in \mathbb{R}^n : M_d f(x) > \lambda\}| d\lambda \text{ which converges under assumption} \\ &= p 2^p \int\limits_0^\infty \lambda^{p-1} |\{x \in \mathbb{R}^n : M_d f(x) > 2\lambda\}| d\lambda \text{ by a change of variables } \lambda \to 2\lambda \\ &\lesssim_p \int\limits_0^\infty \lambda^{p-1} |\{x \in \mathbb{R}^n : M_d f(x) > 2\lambda, f^\#(x) < \gamma\lambda\}| d\lambda + \int\limits_0^\infty \lambda^{p-1} |\{x \in \mathbb{R}^n : f^\#(x) > \gamma\lambda\}| d\lambda \end{split}$$

$$\lesssim \gamma \int_{0}^{\infty} \lambda^{p-1} |\{x \in \mathbb{R}^{n} : M_{d}f(x) > \lambda\}| d\lambda + \frac{1}{\gamma^{p}} ||f^{\#}||_{p}^{p}$$
$$\lesssim \gamma ||M_{d}f||_{p}^{p} + \frac{1}{\gamma^{p}} ||f^{\#}||_{p}^{p}$$

for any $\gamma > 0$. Let us choose γ small enough such that γ multiplied by the hidden coefficients is still less than $\frac{1}{2}$, then this gives $||M_d f||_p^p \lesssim ||f^\#||_p^p$.

Theorem 14.16. Let $p_0 \in (1, \infty)$, and let T be a linear operator satisfying

$$||Tf||_{p_0} \lesssim ||f||_{p_0}$$

for all $f \in L^{p_0}$. Suppose $||Tf||_{\text{BMO}} \lesssim ||f||_{\infty}$ for any $f \in L^{\infty}$, then $||Tf||_p \lesssim ||f||_p$ for any $f \in L^p$ and $p_0 .$

Remark 14.17. This is a weaker interpolation result since we replaced $||Tf||_{\infty}$ by $||Tf||_{BMO}$.

Proof. Define $T^{\#}f(x) = (Tf)^{\#}(x)$, then $T^{\#}$ is a sublinear operator. We have

$$||T^{\#}f||_{p_0} = ||(Tf)^{\#}||_{p_0} \lesssim ||Tf||_{p_0} \lesssim ||f||_{p_0}.$$

But by definition we have $||T^\# f||_{\infty} = ||Tf||_{\text{BMO}} \lesssim ||f||_{\infty}$, then $||Tf||_p \lesssim ||T^\# f||_p \lesssim ||f||_p$ for any $p \in (p_0, \infty)$ for all $f \in L^p$.

15 Carleson Measures

Let us denote \mathbb{R}^{n+1}_+ to be the upper half plane $\{(x,t) \in \mathbb{R}^n \times \mathbb{R} : t > 0\}$.

Definition 15.1. Let Q be a cube in \mathbb{R}^n with side length $\ell(Q)$, then we define a Carleson box \hat{Q} by

$$\hat{Q} = \{(x, t) \in \mathbb{R}^{n+1}_+ : x \in Q, 0 \le t < \ell(Q)\}.$$

A Borel measure μ of domain $\mathcal{B}_{\mathbb{R}^{n+1}_+}$ is called a Carleson measure if $\mu(\hat{Q}) \leqslant C|Q|$ for all cube $Q \subseteq \mathbb{R}^n$. The norm of μ is defined by

$$||\mu|| = \sup_{Q} \frac{\mu(\hat{Q})}{|Q|}.$$

Let f be a measurable function on \mathbb{R}^{n+1}_+ , then we define the non-tangential maximal function $\mathcal{N}^+f(x)=\sup_{(y,t)\in\Gamma(x)}|f(y,t)|$, where $\Gamma(x)$ is a cone generated by $x\in\mathbb{R}^n$, to be

$$\Gamma(x) = \{ (y, t) \in \mathbb{R}_+^{n+1} : |y - x| < t \}.$$

Theorem 15.2. Let f be a continuous function on \mathbb{R}^{n+1}_+ and μ be a Carleson measure, then

$$\int_{\mathbb{R}^{n+1}} |f(x,t)|^p d\mu \lesssim ||\mu|| \int_{\mathbb{R}^n} |\mathcal{N}^* f(x)|^p dx$$

for any 0 . Alternatively, we may write this inequality as follows:

$$||f||_{L^p(\mathbb{R}^{n+1}_+,d\mu)} \lesssim ||\mu||^{\frac{1}{p}}||\mathcal{N}^*f||_{L^p(\mathbb{R}^n)}.$$

Theorem 15.3 (Whitney Decomposition). Let Ω be an open set in \mathbb{R}^n and $\Omega^c \neq \emptyset$, then there is a collection of non-overlapping cubes $\{Q_j\}_{j\in\mathbb{N}}$ such that

i.
$$\Omega = \bigcup_j Q_j$$
, and

ii. there exists constants $c_1(\Omega), c_2(\Omega)$ independent of Q such that

$$c_1\ell(Q) \leqslant \operatorname{dist}(Q, \Omega^c) \leqslant c_2\ell(Q)$$
.

Proof of Theorem 15.3. Recall that for any $k \in \mathbb{Z}$, we defined the dyadic cube to be

$$\mathscr{D}_k = \left\{ \prod_{j=1}^n \left[2^{-k} n_j, 2^{-k} (n_j + 1) \right) : n_j \in \mathbb{Z} \right\}.$$

For any $k \in \mathbb{Z}$, we define

$$\Omega_k = \left\{ x \in \Omega : 3\sqrt{n} \cdot 2^{-k} < \operatorname{dist}(x, \Omega^c) \leqslant 3\sqrt{n} \cdot 2^{1-k} \right\}.$$

Therefore, these are the points $x \in \Omega$ such that $\operatorname{dist}(x,\Omega^c)$ is comparable to 2^{-k} . In particular, we have a partition $\Omega = \bigcup_{k \in \mathbb{Z}} \Omega_k$. Let us now define

$$\mathcal{J}_k = \{ Q \in \mathcal{D}_k : Q \cap \Omega_k \neq \emptyset \},\,$$

and define $\mathcal{J}=\bigcup_{k\in\mathbb{Z}}\mathcal{J}_k$. To finish the proof, it suffices to prove the following statement.

Problem 34. Prove that $\Omega = \bigcup_{Q \in \mathcal{J}} Q$.

Proof of Theorem 15.2. Let us define the level sets

$$E_{\lambda} = \{(x,t) \in \mathbb{R}^{n+1}_+ : |f(x,t)| > \lambda\} \qquad \text{and} \qquad E_{\lambda}^* = \{x \in \mathbb{R}^n : \mathcal{N}^* f(x) > \lambda\}.$$

It now suffices to show that

Claim 15.4. $\mu(E_{\lambda}) \lesssim ||\mu|||E_{\lambda}^*|$.

Indeed, recall that

$$\int_{\mathbb{R}^{n+1}_+} |f(x,t)|^P d\mu = p \int_0^\infty \lambda^{p-1} \mu(E_\lambda) d\lambda$$

$$\lesssim_p ||\mu|| \int_0^\infty \lambda^{p-1} |E_\lambda^*| d\lambda$$

$$\lesssim_p ||\mu|| \int_{\mathbb{R}^n} |\mathcal{N}^* f|^p dx$$

To prove Claim 15.4, one can assume that $|E_{\lambda}^*| < \infty$, so that its complement $(E_{\lambda}^*)^c \neq \emptyset$. By Theorem 15.3, we may represent $E_{\lambda}^* = \bigcup_j Q_j$ and

$$c_1\ell(Q_j) \leq \operatorname{dist}(Q_j, (E_\lambda^*)^c) \leq c_2\ell(Q_j).$$

Lemma 15.5. There is an absolute constant α such that

$$E_{\lambda} \subseteq \bigcup_{j} \widehat{\alpha Q_{j}},$$

where αQ_j is the dilation of Q_j by α , with the center fixed.

Let us show that Lemma 15.5 implies Claim 15.4. By Lemma 15.5, we have

$$\mu(E_{\lambda}) \leqslant \mu\left(\bigcup_{j} \widehat{\alpha Q_{j}}\right)$$

$$\leqslant \sum_{j} \mu\left(\widehat{\alpha Q_{j}}\right)$$

$$\lesssim_{\alpha} ||\mu|| \sum_{j} |Q_{j}|$$

$$\lesssim ||\mu|| \cdot |E_{\lambda}^{*}|.$$

Therefore, to finish the proof of Theorem 15.2, it suffices to show Lemma 15.5.

Subproof of Lemma 15.5. For any ball or cube B in \mathbb{R}^n , a tent based on B is given by

$$T(B) = \{(y, t) \in \mathbb{R}^{n+1}_+ : B(y, t) \subseteq B\}.$$

Claim 15.6. For any $(y,t) \in E_{\lambda}$, then $B(y,t) \subseteq E_{\lambda}^*$.

Subproof of Claim 15.6. Note that $x \in B(y,t)$ if and only if $(y,t) \in \Gamma(x)$. Now

$$\mathcal{N}^* f(x) = \sup_{(y',t) \in \Gamma(x)} |f(y',t)|$$

$$\geq |f(y,t)|$$

$$> \lambda$$

since $(y, t) \in E_{\lambda}$.

Now set $\alpha = 100c_2$.

Claim 15.7. We have $E_{\lambda} \subseteq \bigcup_{j} T(\alpha Q_{j})$.

Subproof of Claim 15.7. For any $(y,t) \in E_{\lambda}$, we know $B(y,t) \subseteq E_{\lambda}^* = \bigcup_j Q_j$ by Claim 15.6. We have two possible cases:

- Case 1: every Q_j such that $Q_j \cap B(y,t) \neq \emptyset$ satisfies $\ell(Q_j) \leqslant \frac{4t}{\alpha}$. We claim that this would never happens suppose it happens, then there exists some cube Q_{j_0} such that $y \in Q_{j_0}$. Therefore, we have $\ell(Q_{j_0}) \leqslant \frac{4t}{\alpha}$, so $8c_2Q_{j_0} \subseteq B(y,t)$. We also know that $\mathrm{dist}(Q_{j_0},(E_\lambda^*)^c) \leqslant C_2\ell(Q_j)$, thus we know that $B(y,t) \cap (E_\lambda^*)^c \neq \emptyset$. This implies $E_\lambda^* \cap (E_\lambda^*)^c \neq \emptyset$, which is a contradiction.
- Case 2: at least one of Q_j such that $Q_j \cap B(y,t) \neq \emptyset$ satisfies $\ell(Q_j) > \frac{4t}{\alpha}$. Let us pick such Q_j , then $B(y,t) \subseteq \alpha Q_j$, but having one base covering the other implies one tent covers the other: $T(B(y,t)) \subseteq T(\alpha Q_j)$. In particular, the vertex (y,t) of T(B(y,t)) is contained in $T(\alpha Q_j)$. Since $(y,t) \in E_\lambda$ is arbitrary, this implies that $E_\lambda \subseteq \bigcup_j T(\alpha Q_j)$.

This proves Lemma 15.5, as desired.

Problem 35. Suppose that φ is a function on \mathbb{R}^n satisfying

 $|\varphi(x)| \le \frac{c_1}{(1+|x|)^{n+\varepsilon}}$

where $\varepsilon \in (0,1]$ and c_1 is a constant independent of x. Prove that

$$\sup_{(y,t)\in\Gamma(x)}|\varphi_t*f(y)|\lesssim Mf(x)$$

where M is independent of f, t, and x. Moreover, prove that for any $p \in (1, \infty)$,

$$\left(\int\limits_{\mathbb{R}^{n+1}_+} |\varphi_t * f(x)|^p d\mu\right)^{\frac{1}{p}} \lesssim ||\mu||^{\frac{1}{p}} ||f||_{L^p(\mathbb{R}^n)}$$

if μ is a Carleson measure.

Definition 15.8. Let $b \in BMO(\mathbb{R}^n)$ and $Q_tb(x) = \psi_t * b(x)$, where $\psi_t = t^{-n}\psi(\frac{x}{t})$ and ψ is radial such that $\int_{\mathbb{R}^n} \psi = 0$

and

$$|\psi(x)| + |\nabla \psi(x)| \le \frac{C}{(1+|x|)^{n+\varepsilon}}.$$
(15.9)

For any Borel set $E \subseteq \mathbb{R}^{n+1}_+$, we define

$$\mu(E) = \int_{E} |\psi_t * b(x)|^2 \frac{dxdt}{t}.$$

Theorem 15.10. $\mu(E)$ defined above gives a Carleson measure, and $||\mu|| \lesssim ||b||_{\text{BMO}}^2$.

Proof. Let $Q \subseteq \mathbb{R}^n$, then it suffices to show that $\mu(\hat{Q}) \lesssim ||b||_{\text{BMO}}^2 |Q|$. We may write

$$b = b_1 + b_2 + b_3$$

where $b_1 := (b - b_{2Q})\chi_{2Q}$, $b_2 := (b - b_{2Q})\chi_{(2Q)^c}$, and $b_3 := b_{2Q}$. Notice that $\psi_t * b_3(x) = b_{2Q} \int \psi_t = b_{2Q} \int \psi = 0$. By triangle inequality, we have that

$$\mu(\hat{Q}) \lesssim \int\limits_{\hat{Q}} |\psi_t * b_1|^2 \frac{dxdt}{t} + \int\limits_{\hat{Q}} |\psi_t * b_2|^2 \frac{dxdt}{t}.$$

We denote $I_1 = \int\limits_{\hat{Q}} |\psi_t * b_1|^2 \frac{dxdt}{t}$ and $I_2 = \int\limits_{\hat{Q}} |\psi_t * b_2|^2 \frac{dxdt}{t}$.

Problem 36. Suppose ψ is radial, $\int_{\mathbb{R}^n} \psi = 0$, and satisfies Equation (15.9). We may prove that

$$\int\limits_{\mathbb{R}^{n+1}} |\psi_t * f|^2 \frac{dxdt}{t} \lesssim ||f||_2^2$$

for any $f \in L^2(\mathbb{R}^n)$.

Hint: note that $|e^{i\theta}-1| \lesssim |\theta|^{\delta}$ for any $0 < \delta$, and apply Theorem 4.5.

By Problem 36, we have

$$I_{1} \leqslant \int_{\mathbb{R}^{n+1}_{+}} |\psi_{t} * b_{1}|^{2} \frac{dxdt}{t}$$

$$\lesssim \int_{\mathbb{R}^{n}} |b_{1}|^{2}$$

$$\lesssim \int_{2Q} |b - b_{2Q}|^{2}$$

$$\lesssim ||b||_{\text{BMO}}^{2} |Q|.$$

For I_2 , we have

$$|\psi_t * b_2(x)| \leqslant \frac{1}{t^n} \int |\psi\left(\frac{x-y}{t}\right)| |b_2(y)| dy$$

$$\lesssim \frac{1}{t^n} \int_{(2Q)^c} \frac{|b(y) - b_{2Q}|}{(1+t^{-1}|x-y|)^{n+\varepsilon}} dy$$

$$\lesssim \int_{(2Q)^c} \frac{t^{\varepsilon} |b(y) - b_{2Q}|}{(t+|x-y|)^{n+\varepsilon}} dy.$$

When $(x,t) \in \hat{Q}$ and $y \notin 2Q$, we have that

$$|x - y| \geqslant |y - c(Q)| - |x - c(Q)|$$
$$\geqslant \frac{1}{2}|y - c(Q)|,$$

therefore

$$|\psi_t * b_2(x)| \lesssim \int_{(2Q)^c} \frac{t^{\varepsilon} |b(y) - b_{2Q}|}{(t + |x - y|)^{n + \varepsilon}} dy$$
$$\lesssim t^{\varepsilon} \int_{(2Q)^c} \frac{|b(y) - b_{2Q}|}{|y - c(Q)|^{n + \varepsilon}} dy.$$

Problem 37. Prove that

$$\int\limits_{(2Q)^c} \frac{|b(y) - b_{2Q}|}{|y - c(Q)|^{n+\varepsilon}} \lesssim \frac{||b||_{\text{BMO}}}{\ell(Q)^{\varepsilon}}$$

whenever $b \in BMO(\mathbb{R}^n)$.

By Problem 37, we note that

$$\begin{aligned} |\psi_t * b_2(x)| &\lesssim t^{\varepsilon} \int\limits_{(2Q)^c} \frac{|b(y) - b_{2Q}|}{|y - c(Q)|^{n+\varepsilon}} dy \\ &\lesssim \frac{t^{\varepsilon}}{\ell(Q)^{\varepsilon}} ||b||_{\text{BMO}}. \end{aligned}$$

Therefore, we may bound

$$\begin{split} I_2 &\lesssim ||b||_{\mathrm{BMO}}^2 \int\limits_{Q} \int\limits_{0}^{\ell(Q)} \frac{t^{2\varepsilon-1}}{\ell(Q)^{2\varepsilon}} dt dx \\ &\lesssim ||b||_{\mathrm{BMO}}^2 |Q|, \end{split}$$

and this finishes the proof.

Problem 38. Let φ be a bounded integrable function and $\varphi > 0$. Suppose that

$$\left(\int\limits_{\mathbb{R}^{n+1}_+} |\varphi_t * f(x)|^p d\mu\right)^{\frac{1}{p}} \lesssim ||f||_{L^p(\mathbb{R}^n)}$$

for any $f \in L^p$ and some $p \in [1, \infty)$, then show that μ is a Carleson measure.

16 T1 THEOREM IN FULL VERSION

Theorem 16.1 (David and Journé). Suppose that T is a singular integral operator associated to a Calderón-Zygmund kernel, then T extends to a bounded operator on $L^2(\mathbb{R}^n)$ if and only if

- T satisfies the WBP, and
- $T1 \in BMO$ and $T*1 \in BMO$.

Remark 16.2. Recall that $S_0(\mathbb{R}^n) = \{ \psi \in C_c^{\infty}(\mathbb{R}^n) : \int \psi = 0 \}$. Using this notation, we note that $T1 \in BMO$ if and only if there exists $b \in BMO$ such that $\langle T1, \psi \rangle = \langle b, \psi \rangle = \int_{\mathbb{R}^n} b \bar{\psi} dx$.

Let us first verify the only-if part of Theorem 16.1.

Lemma 16.3. Let T be a Calderón-Zygmund singular integral operator which is L^2 -extendable, i.e., can be extended to a bounded operator on L^2 . Let f be any bounded function with compact support, then $||Tf||_{\text{BMO}} \lesssim ||f||_{\infty}$, up to an independent constant.

Proof. Let Q be any cube in \mathbb{R}^n , then define a_Q to be the integral

$$a_Q = \int_{\mathbb{P}_n} K(c(Q), y) f(y) \chi_{(5Q)^c}(y) dy = T(f \chi_{(5Q)^c})(c(Q)),$$

where c(Q) is the center of the cube, and K is the standard Calderón-Zygmund kernel. We find that

$$\frac{1}{|Q|} \int_{Q} |Tf - a_Q| dx \leq \frac{1}{|Q|} \int_{Q} |T(f\chi_{5Q})| dx + \frac{1}{|Q|} \int_{Q} |T(f\chi_{(5Q)^c})(x) - a_Q| dx$$

By Cauchy-Schwartz Theorem,

$$\begin{split} \frac{1}{|Q|} \int\limits_{Q} |T(f\chi_{5Q})| dx &\lesssim \left(\frac{1}{|Q|} \int\limits_{Q} |T(f\chi_{5Q})|^2 dx\right)^{\frac{1}{2}} \\ &\lesssim \left(\frac{1}{|Q|} \int\limits_{5Q} |f(x)^2| dx\right)^{\frac{1}{2}} \text{ since } T \text{ is bounded on } L^2 \\ &\lesssim ||f||_{\infty}. \end{split}$$

By the smoothness condition on K, we have

$$\frac{1}{|Q|} \int_{Q} |T(f\chi_{(5Q)^{c}})(x) - a_{Q}| dx \lesssim \frac{1}{|Q|} \int_{Q} \int_{(5Q)^{c}} |K(x,y) - K(c(Q),y)|$$

$$\lesssim \frac{1}{|Q|} \int_{Q} \int_{(5Q)^{c}} \frac{|x - c(Q)|^{n}}{|x - y|^{n + \varepsilon}} |f(y)| dy dx$$

$$\lesssim \frac{||f||_{\infty}}{|Q|} \int_{Q} \int_{(5Q)^{c}} \frac{|x - c(Q)|^{n}}{|x - y|^{n + \varepsilon}} dy dx$$

$$\lesssim ||f||_{\infty}$$

by Problem 37.

Theorem 16.4. Let T be an L^2 -extendable Calderón-Zygmund singular integral operator, then T extends to a bounded operator from L^{∞} to BMO.

Proof. For any $j \in \mathbb{Z}$, let $B_j = B(0,2^j)$. For any $f \in L^{\infty}$, any B_j with $j \geqslant 0$, and any $x \in B_j$, we define $T_{B_j}f(x) = T(f\chi_{5B_j})(x) + \int_{\mathbb{R}^n} (K(x,y) - K(0,y))f(y)\chi_{(5B_j)^c}(y)dy$ which is well-defined: the first term is well-defined according to Lemma 16.3, and the BMO norm of the second term is bounded above by $||f||_{\infty}$. We now show that $||Tf||_{\text{BMO}} \lesssim ||f||_{\infty}$. We know $||T(f\chi_{5B_j})||_{\text{BMO}} \lesssim ||f||_{\infty}$ by Lemma 16.3, and that

Claim 16.5.

$$\left| \int_{\mathbb{R}^n} (K(x,y) - K(0,y)) f(y) \chi_{(5B_j)^c}(y) dy \right| \lesssim ||f||_{\infty}.$$

Subproof. We note that

$$\left| \int_{\mathbb{R}^n} (K(x,y) - K(0,y)) f(y) \chi_{(5B_j)^c}(y) dy \right| \lesssim \int_{(5B_j)^c} |K(x,y) - K(0,y)| dy ||f||_{\infty}$$

$$\leq C||f||_{\infty}.$$

To verify the only-if part of Theorem 16.1, we may assume T is an L^2 -extendable Calderón-Zygmund singular integral operator, then we want to find $b \in BMO$ such that for any $\psi \in \mathcal{S}_0(\mathbb{R}^n)$, $\langle T1, \psi \rangle = \langle b, \psi \rangle$ for any $x \in B_j$. Let us define

$$b(x) = T(\chi_{5B_j})(x) + g(x)$$

where

$$g(x) = \int_{\mathbb{R}^n} (K(x, y) - K(0, y)) \chi_{(5B_j)^c}(y) dy.$$

By Theorem 16.4, we know that $b(x) \in BMO$. For any $\psi \in \mathcal{S}_0(\mathbb{R}^n)$ supported in B_J for some large $J \in \mathbb{Z}$, then

$$\langle T1, \psi \rangle = \langle T(\chi_{5B_J}), \psi \rangle + \langle \chi_{(5B_j)^c}, T^*\psi \rangle.$$

It remains to verify that $\langle \chi_{(5B_j)^c}, T^*\psi \rangle = \langle g, \psi \rangle$. We recall that

$$\begin{split} \left\langle \chi_{(5B_j)^c}, T^*\psi \right\rangle &= \int \chi_{(5B_j)^c}(x) \int (K(y,x) - K(0,x)) \overline{\psi(y)} dy dx \text{ since } \int \psi = 0 \\ &= \left\langle g, \psi \right\rangle \text{ by Fubini Theorem.} \end{split}$$

Therefore, $T1 \in BMO$. Similarly, one can show that $T^1 \in BMO$ as well.

References

- [Duo24] Javier Duoandikoetxea. Fourier analysis, volume 29. American Mathematical Society, 2024.
- [Gra09] Loukas Grafakos. Modern fourier analysis, volume 250. Springer, 2009.
- [SW71] EM Stein and Guido Weiss. Introduction to fourier analysis on euclidean spaces. *Princeton Mathematical Series*, 32, 1971.