

DEPARTAMENTO DE ENGENHARIA ELETROTÉCNICA

RELATÓRIO DA UNIDADE CURRICULAR DE VISÃO COMPUTACIONAL DE MESTRADO EM ENGENHARIA ELETROTÉCNICA

Trabalho Prático

Autores: Marco Gameiro Nº: 2213276

Docente: Paulo Coelho

Índice

Li	sta de	e Figuras	vi
Li	sta de	e Tabelas	vii
1	Intr	odução	1
2	Desc	envolvimento	3
	2.1	Cálculo do mapa de profundidade, usando visão stéreo	3
	2.2	Cálculo do número de pessoas dentro do laboratório	3
	2.3	Calibração do sistema stéreo	5
	2.4	GUI desenvolvida	6
3	Con	clusão	13
Bi	bliogi	rafia	13

Lista de Figuras

2.1	Fluxograma para obtenção, em tempo real do mapa de profundidade paracada iteração,	
	e posterior comparação deste com o fornecido pela câmara, recorrendo ao algoritmo	
	de Welford	3
2.2	Mapas de profundidade: (a) - Mapa de profundidade fornecido pela câmara para um	
	determinado instante; (b) - Mapa de profundidade calculado a partir dos dados das	
	duas câmaras infravermelhos, para o mesmo instante	4
2.3	Fluxograma para obtenção, em tempo real, dos dados, num ficheiro CSV, a partir da	
	leitura de um ficheiro .bag	4
2.4	Algoritmo de pré-processamento para obter a imagem do tabuleiro de xadrez	6
2.5	Imagens exemplo: (a) - Da esquerda; (b) - Da direita (fonte: https://www.	
	${\tt kaggle.com/datasets/danielwe14/stereocamera-chessboard-pictures)}\ .$	6
2.6	Resultado do algoritmo de pré-processamento: (a) - Imagem da esquerda, de calibração	
	; (b) - Imagem da esquerda do tabuleiro de xadrez (após o aplicação do algoritmo	
	de pré-processamento)	7
2.7	Matriz da câmara, antes e após calibração, para a imagem exemplo da esquerda	7
2.8	Matriz da câmara, antes e após calibração, para a imagem exemplo da direita	7
2.9	Fluxograma para calibração da câmara a utilizar	8
2.10	Matriz da câmara, antes e após calibração, sem pré-processamento	8
2.11	Menu geral	8

2.12	Sequencia de janelas auxiliares da 1º tarefa: (a) - Especificação do nome do ficheiro	
	CSV e da distância entre as duas câmaras de infravermelhos; (b) - Especificação dos	
	ficheiros metadata, das câmaras da esquerda e da direita; (c) - Opção de streaming	
	para um determinado tempo específico; (d) - Especificação do tempo de streaming,	
	em segundos	9
2.13	Parte do ficheiro CSV correspondente à 1ª tarefa	10
2.14	Sequência de janelas auxiliares da 2ª tarefa: (a) - Especificação do nome do fi-	
	cheiro CSV e do número de pessoas inicial presente no laboratório; (b) - Opção de	
	streaming para um determinado tempo específico; (c) - Especificação do tempo de	
	streaming, em segundos	10
2.15	Controlo do número de pessoas dentro do laboratório	10
2.16	Parte do ficheiro CSV correspondente à 2ª tarefa	11
2.17	Sequência de janelas auxiliares da tarefa extra: (a) - Especificação da imagem, em	
	formato $.png$ que se pretende utilizar como ficheiro de calibração; (b) - Especificação	
	do ficheiro <i>metadata</i> , em formato .csv, onde se encontram detalhados os parâmetros	
	intrínsecos e extrínsecos da câmara a utilizar	11
2.18	Controlo dos parâmetros de calibração	11
2.19	Parte do ficheiro CSV correspondente à tarefa extra	12

Lista de Tabelas

lado pelo algoritmo, a cada entrada/saída, para um número inicial de 10 pessoas no	
laboratório.	5

1 Introdução

Pretende-se monitorizar o número de pessoas que entram e saem do laboratório, de modo a garantir que o número de pessoas que fica dentro do laboratório não é superior ao estipulado pelas medidas de combate contra o COVID19. Nesse sentido é utilizado um sensor Intel RealSense RGBD, modelo D435.

O trabalho desenvolvido está estruturado em três tarefas, sendo que a tarefa final constitui uma tarefa extra, relativa à calibração de câmaras. Na primeira tarefa o objetivo é o de calcular o mapa de profundidade, para cada iteração, a partir dos dados das duas câmaras infravermelhos e compará-lo com o fornecido pela câmara, utilizando o algoritmo de Welford. Já na segunda tarefa, pretende-se saber o número de pessoas que estão no laboratório, através da contagem do número de pessoas que entram e saem do mesmo. Para este trabalho, considerou-se um número inicial de pessoas dentro do laboratório diferente de 0.

2 Desenvolvimento

2.1 Cálculo do mapa de profundidade, usando visão stéreo

Está representado na figura 2.1 o fluxograma relativo ao cálculo do mapa de profundidade para cada iteração, e posterior comparação deste com o fornecido pela câmara, recorrendo ao algoritmo de Welford.

Figura 2.1: Fluxograma para obtenção, em tempo real do mapa de profundidade paracada iteração, e posterior comparação deste com o fornecido pela câmara, recorrendo ao algoritmo de Welford.

Na figura 2.2 estão representados, respetivamente, o mapa de profundidade obtido pela câmara e o mapa de profundidade estimado.

Verificou-se que o tempo médio do cálculo do mapa de profundidade para cada iteração (tendo por base 15 iterações), é de 2,24 segundos.

2.2 Cálculo do número de pessoas dentro do laboratório

Está representado na figura 2.3 o fluxograma relativo ao cálculo de pessoas dentro do laboratório, desde a leitura do ficheiro do tipo .*bag*, até à escrita, em tempo real, para um ficheiro CSV.

Figura 2.2: Mapas de profundidade: **(a) -** Mapa de profundidade fornecido pela câmara para um determinado instante; **(b) -** Mapa de profundidade calculado a partir dos dados das duas câmaras infravermelhos, para o mesmo instante.

Figura 2.3: Fluxograma para obtenção, em tempo real, dos dados, num ficheiro CSV, a partir da leitura de um ficheiro .bag

Com base na tabela, pode-se aferir que a máxima precisão alcançada pelo algoritmo desenvolvido, relativamente à natureza do movimento de uma pessoa (entrada ou saída) é de 62.50 %, tendo-se obtido uma precisão média de 48.13 %.

Tabela 2.1: Comparação entre o número real de pessoas que ficaram no laboratório e o calculado pelo algoritmo, a cada entrada/saída, para um número inicial de 10 pessoas no laboratório.

Nº de entrada/saída	Nº pessoas real	Nº pessoas calculado
1	11	11
2	12	12
3	13	13
4	12	12
5	11	13
6	12	14
7	13	15
8	12	14
9	13	15
10	12	16
11	11	17
12	10	18
13	11	19
14	12	20
15	11	21
16	10	22

Verificou-se que o tempo médio de execução do algoritmo, sempre que é detetada uma entrada/saída, é de 1,894 segundos.

2.3 Calibração do sistema stéreo

Está representado na figura 2.9 o fluxograma relativo à calibração da câmara a utilizar. Na figura 2.10 estão representadas as matrizes de calibração da câmara, para a imagem da esquerda, sem qualquer tipo de pré-processamento.

Verificou-se que a aplicação do mesmo algoritmo para a imagem da direita não é possível. Nesse sentido, desenvolveu-se um algoritmo de pré-processamento, descrito na figura 2.4 com o objetivo de fazer a segmentação da zona da imagem onde está o tabuleiro de xadrez. No entanto, não foi possível

mesmo assim tornar o algoritmo global mais flexível. Aplicando o algorimo de pré-processamento à imagem da esquerda, obtém-se a imagem representada na figura 2.6

Testou-se o algoritmo, sem a etapa de pré-processamento, com as imagens exemplo da figura 2.5, tendo-se obtido as matrizes de calibração presentes nas figuras 2.7 e 2.8.

Figura 2.4: Algoritmo de pré-processamento para obter a imagem do tabuleiro de xadrez

Figura 2.5: Imagens exemplo: (a) - Da esquerda; (b) - Da direita (fonte: https://www.kaggle.com/datasets/danielwe14/stereocamera-chessboard-pictures)

Verificou-se que o tempo médio de execução do algoritmo de calibração da câmara é de 6.05 segundos (sem a parte de pré-processamento).

2.4 GUI desenvolvida

Esta representado na figura 2.11 o menu geral, sendo que cada opção deste corresponde a uma tarefa em específico.

Se se escolher a primeira opção:

Figura 2.6: Resultado do algoritmo de pré-processamento: (a) - Imagem da esquerda, de calibração ; (b) - Imagem da esquerda do tabuleiro de xadrez (após o aplicação do algoritmo de pré-processamento)

$$\begin{bmatrix} 425.79 & 0 & 426.80 \\ 0 & 425.79 & 234.03 \\ 0 & 0 & 1 \end{bmatrix}$$

$$((a))$$

$$\begin{bmatrix} 1786.78 & 0 & 559.38 \\ 0 & 1821.75 & 330.59 \\ 0 & 0 & 1 \end{bmatrix}$$

$$((b))$$

Figura 2.7: Matriz da câmara, antes e após calibração, para a imagem exemplo da esquerda

$$\begin{bmatrix} 425.79 & 0 & 426.80 \\ 0 & 425.79 & 234.03 \\ 0 & 0 & 1 \end{bmatrix}$$
((a))
$$\begin{bmatrix} 2498.71 & 0 & 506.83 \\ 0 & 2455.64 & 273.44 \\ 0 & 0 & 1 \end{bmatrix}$$
((b))

Figura 2.8: Matriz da câmara, antes e após calibração, para a imagem exemplo da direita

1. É apresentada a sequência de janelas auxiliares presente na figura 2.12

O ficheiro CSV cujo nome é especificado na figura 2.12(a) conterá, para cada iteração:

Figura 2.9: Fluxograma para calibração da câmara a utilizar

Figura 2.10: Matriz da câmara, antes e após calibração, sem pré-processamento

Figura 2.11: Menu geral

- Valor médio dos píxeis da imagem do canal B correspondente à imagem diferença entre o mapa de profundidade calculado e o fornecido pela câmara.
- Desvio padrão dos píxeis da imagem do canal B correspondente à imagem diferença entre o mapa de profundidade calculado e o fornecido pela câmara.
- Valor médio dos píxeis da imagem do canal G correspondente à imagem diferença entre

Figura 2.12: Sequência de janelas auxiliares da 1ª tarefa: (a) - Especificação do nome do ficheiro CSV e da distância entre as duas câmaras de infravermelhos; (b) - Especificação dos ficheiros *metadata*, das câmaras da esquerda e da direita; (c) - Opção de *streaming* para um determinado tempo específico; (d) - Especificação do tempo de *streaming*, em segundos.

o mapa de profundidade calculado e o fornecido pela câmara.

- Desvio padrão dos píxeis da imagem do canal G correspondente à imagem diferença entre o mapa de profundidade calculado e o fornecido pela câmara.
- Valor médio dos píxeis da imagem do canal R correspondente à imagem diferença entre o mapa de profundidade calculado e o fornecido pela câmara.
- Desvio padrão dos píxeis da imagem do canal R correspondente à imagem diferença entre o mapa de profundidade calculado e o fornecido pela câmara.
- Tempo de processamento para obtenção do respetivo mapa de profundidade.

Na figura 2.13 está representado parte do ficheiro CSV correspondente à 1ª tarefa.

Se se escolher a segunda opção:

- 1. É apresentada a sequência de janelas auxiliares presente na figura 2.14.
- 2. É apresentada, periodicamente, uma janela com a seguinte informação (figura 2.15):
 - Número de pessoas que entraram.

Figura 2.13: Parte do ficheiro CSV correspondente à 1ª tarefa

Figura 2.14: Sequência de janelas auxiliares da 2ª tarefa: (a) - Especificação do nome do ficheiro CSV e do número de pessoas inicial presente no laboratório; (b) - Opção de *streaming* para um determinado tempo específico; (c) - Especificação do tempo de *streaming*, em segundos.

- Número de pessoas que se encontram dentro do laboratório.
- Número de pessoas que sairam.

Figura 2.15: Controlo do número de pessoas dentro do laboratório

Na figura 2.16 está representado parte do ficheiro CSV correspondente à 2ª tarefa.

Se se escolher a 3ª opção, que corresponde â tarefa extra:

# Group 1, 2213276, Ma	rco Gameiro
13:27:27, none, 10	
13:27:35, in, 10	
13:28:04, in, 11	
13:28:11, in, 12	
13:28:25, in, 13	
13:28:31, out, 12	
13:28:38, out, 11	
13:28:48, in, 12	
13:29:03, in, 13	
13:29:27, in, 14	
13:29:56, in, 15	
13:30:03, in, 16	
13:30:21, in, 17	
13:30:29, in, 18	
13:30:39, out, 17	
13:30:52, in, 18	
13:31:06, in, 19	

Figura 2.16: Parte do ficheiro CSV correspondente à 2ª tarefa

1. É apresentada a sequência de janelas auxiliares presente na figura 2.17.

Figura 2.17: Sequência de janelas auxiliares da tarefa extra: (a) - Especificação da imagem, em formato .png que se pretende utilizar como ficheiro de calibração; (b) - Especificação do ficheiro *metadata*, em formato .csv, onde se encontram detalhados os parâmetros intrínsecos e extrínsecos da câmara a utilizar.

2. No final é apresentada a janela de resultados presente na figura 2.18.

Figura 2.18: Controlo dos parâmetros de calibração

Na figura 2.19 está representado parte do ficheiro CSV correspondente à tarefa extra

Type, Infr	ared 1			
Format, Y	3			
Frame Nu	mber, 169	0		
Timestam	p (ms), 16	0450674831	10.08	
Resolution x, 848				
Resolution y, 480				
Bytes per	pixel, 1			
Intrinsic:,				
Fx, 1786.7	794189453	125		
Fy, 1821.7	476806640	625		
PPx, 559.3	762747563	316		
PPy, 330.5	581696442	2514		
Distorsion	, Brown C	onrady		

Figura 2.19: Parte do ficheiro CSV correspondente à tarefa extra

3 Conclusão

Para mais informação sobre como executar cada um dos *scripts*, consultar ficheiro README em anexo.

A realização deste trabalho permitiu consolidar o conhecimento apreendido durante as aulas, através da aplicação de técnicas de visão computacional num contexto real.