

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE ESTADÍSTICA

Primer semestre de 2019

Ayudante: Hernán Robledo (harobledo@uc.cl)

Inferencia Estadística / Métodos Estadísticos - EYP2114/EYP2405 Ayudantía 1

- 1. Determine el Modelo Estadístico para cada ejemplo, determine si corresponde a la clase Paramétrica o No-Paramétrica, y finalmente concluya determinando si el modelo es Identificado o no.
 - a) Se obtienen 10 muestras del peso de una población de hombres. Asumamos que el peso de cada persona distribuye $Normal(\mu, \sigma)$ y las muestras son independientes entre sí.
 - b) Se desea investigar si realmente existe una diferencia significativa entre el los costos entregados por los medidores de luz antiguos versus los medidores 'inteligentes'. Se toma una muestra aleatoria de n casas y se recogen datos correspondientes a la diferencia de consumo entre ambos períodos. Asumamos que esta diferencia de consumo distribuye t-student(η).
 - c) Se tiene una muestra aleatoria $(x_1, x_2, ..., x_n)$, en que cada x_i una distribuye Q, donde Q es una distribución de probabilidad.
 - d) Se realiza un experimento en el cual se toma una muestra aleatoria $(x_1, x_2, ..., x_n)$, donde cada Variable distribuye independientemente Normal $(\alpha + \beta, 0)$, con α y β números reales positivos.

2. Reducción de Datos

- a) Sean $X_1, X_2, ..., X_n$ una muestra proveniente de una distribución Normal (μ, σ^2) , con σ^2 conocido. Defina $T(X) = \frac{\sum_{i=1}^n X_i}{n}$. Determine por definición si T(X) es un estadístico suficiente para μ .
- b) Sean $X_1, X_2, ..., X_n$ una muestra proveniente de una distribución $\exp(\lambda)$, y sea $T(X) = \sum_{i=1}^{n} X_i$. Determine por definición si T(X) es un estadístico suficiente para λ .
- c) Sean $X_1, X_2, ..., X_n$ una muestra proveniente de una distribución $\exp(\theta)$. Determine si $T(X) = \min_i(X_1, X_2, ... X_n)$ es un estadístico suficiente para θ .
- d) Sean $X_1, X_2, ..., X_n$ una muestra proveniente de una distribución Poisson (λ) . Determine vía definición y mediante el Teorema de Factorización si $T(X) = \sum_{i=1}^{n} X_i$ es un estadístico suficiente.
- e) Sea $X_1, X_2, ..., X_n$ una muestra proveniente de una distribución Uniforme $(0, \theta)$. Encuentre un estadístico suficiente para θ .

f) Sea $X_1, X_2, ..., X_n$ una muestra de una población con densidad $f(x|\theta)$ dada por:

$$f(x|\theta) = \frac{1}{\sigma} \exp\left\{-\left(\frac{x-\mu}{\sigma}\right)\right\}$$

donde $x \geqslant \mu, \mu \in \mathbb{R}, \sigma > 0$.

- Muestre que $T(X) = \min_i(X_1, X_2, ..., X_n)$ es suficiente para μ cuando σ es conocido.
- Encuentre un estadístico suficiente para σ cuando μ es conocido.
- Determine un estadístico de dos dimensiones para $\theta = (\mu, \sigma)$
- g) Sea $X_1, X_2, ..., X_n$ una muestra de una población que distribuye Gamma (k, ν) . Determine un estadístico de dos dimensiones para $\theta = (k, \nu)$