UNIVERSITY OF NEW SOUTH WALES. SCHOOL OF MATHEMATICS AND STATISTICS MATH5535 TOPICS IN NUMBER THEORY

5. THE RIEMANN ZETA FUNCTION:

- **1** a. Show that for $\Re(s) > 1$, $\sum_{n=1}^{\infty} \frac{(\tau(n))^2}{n^s} = \frac{\zeta^4(s)}{\zeta(2s)}$.
 - **b.** Recall the definition of $\omega(n)$ from question 2 of Sheet 3. Show that for $\Re(s) > 1$, $\sum_{n=1}^{\infty} \frac{2^{\omega(n)}}{n^s} = \frac{\zeta^2(s)}{\zeta(2s)}$.
- **2** Prove that the integral $\int_0^\infty x^{s-1}e^{-x}\,dx$, which defines the Gamma function, converges for Re(s)>0.
- **3** Prove that **a.** $\Gamma(s+1) = s\Gamma(s)$ **b.** $\Gamma(n+1) = n!$ **c.** $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.
- 4 Show that $\frac{1}{e^t-1}-\frac{1}{t}$ can be written as $-\frac{1}{2}+\sum_{n=1}^{\infty}a_nt^n$ with $a_{2n}=0$.
- 5 Prove that $\Gamma(s)$ has simple poles only for $s=0,-1,-2,\ldots$ and show that the residue at the pole s=-k is $\frac{(-1)^k}{k!}$, where k is a non-negative integer.
- **6** Evaluate **a.** $\zeta(0)$, **b.** $\zeta(-1)$, **c.** $\zeta(-2)$, **d.** $\zeta(-3)$ and show that $\zeta(-2n) = 0$ for $n = 1, 2, 3, \cdots$.
- 7 Given the well-known infinite product $\sin x = x \prod_{n=1}^{\infty} \left(1 \frac{x^2}{n^2 \pi^2}\right)$, use logarithmic differentiation to show that

$$\cot x = \frac{1}{x} - 2\sum_{n=1}^{\infty} \frac{x}{n^2 \pi^2 - x^2}.$$

- *8 Prove that $\int_0^\infty \frac{u^s}{u^2 + 1} du = \frac{\pi}{2} \sec\left(\frac{s\pi}{2}\right) \quad \text{for } -1 < s < 1.$
- *9 Suppose $\Re(s) > 1$.
 - **a.** Use the Euler product to show that $\log \zeta(s) = -\lim_{k \to \infty} \sum_{n=2}^{k} [\pi(n) \pi(n-1)] \log(1 \frac{1}{n^s}).$
 - **b.** Deduce that $\log \zeta(s) = s \int_2^\infty \frac{\pi(x)}{x(x^s 1)} dx$.
- 10 You may assume the (well-known) result $\int_0^\infty \frac{x^{p-1}}{1+x} dx = \frac{\pi}{\sin(p\pi)}$, for 0 , from Complex Analysis.
 - **a.** Show that $\Gamma(m) = 2 \int_0^\infty x^{2m-1} e^{-x^2} dx$.
 - **b.** Use the formula in (a) to show that for 0 < m < 1,

$$\Gamma(m)\Gamma(1-m) = 2\int_0^{\frac{\pi}{2}} \tan^{1-2m}\theta \ d\theta.$$

(Hint: Express the product as the limit of a double integral over a quarter circle in the first quadrant.)

c. By putting $x = \tan^2 \theta$ and p = 1 - m, deduce that

$$\Gamma(m)\Gamma(1-m) = \frac{\pi}{\sin(m\pi)}.$$

- 11 You may assume that $2^{2z-1}\Gamma(z)\Gamma(z+\frac{1}{2})=\sqrt{\pi}\Gamma(2z)$ (this is the Legendre duplication formula).
 - **a.** Put $z = \frac{1-s}{2}$ to obtain

$$\Gamma(1-s)\sin\frac{\pi s}{2} = \frac{2^{-s}\pi^{\frac{1}{2}}\Gamma\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}.$$

b. Use the Functional Equation for $\zeta(s)$ to show that

$$\pi^{\frac{-s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \pi^{-\frac{(1-s)}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s).$$

c. Now let $\Phi(s)$ denote the left hand side of the formula in (b) above.

Show that $\Phi(s) = \Phi(1-s)$ and that Φ has simple poles at s=0 and s=1.

- **d.** Define $\xi(s) = \frac{1}{2}s(s-1)\Phi(s)$. Explain why $\xi(s)$ is an entire function, with functional equation $\xi(s) = \xi(1-s)$.
- *12 Let ξ be the function defined in the previous question.
 - **a.** Explain why $\xi(s)$ satisfies the equation $\overline{\xi(s)} = \xi(\overline{s})$.
 - **b.** Prove that $\xi(s)$ is real on the lines t=0 and $\sigma=\frac{1}{2}$ and that $\xi(0)=\xi(1)=\frac{1}{2}$.
 - **c.** Prove that the zeros of $\xi(s)$ (if any exist) are all situated in the strip $0 < \sigma < 1$ and lie symmetrically about the lines t = 0 and $\sigma = \frac{1}{2}$.
- 13 Let $f(s) = \frac{1}{\zeta(s)}$, for $s \neq 1$ and define f(1) = 0.
 - **a.** Show that the power series for f(s) about s = 1 is

$$f(s) = (s-1) - \gamma(s-1)^2 + \dots$$

where γ is Euler's constant.

- **b.** Write down the values of f'(1) and f''(1).
- Show the function $f(t) = \frac{t}{e^t 1} + \frac{t}{2}$ is even, thereby confirming that $B_{2n+1} = 0$. Use the formula relating Bernoulli numbers and the zeta function to show that the non-zero Bernoulli numbers alternate in sign.
- **15** a. Starting from the functional equation for $\zeta(s)$, show that

$$\zeta(s) = \frac{(2\pi)^s}{2} \frac{\zeta(1-s)}{2\Gamma(s)\cos(\pi s/2)}.$$

b. Deduce that for $n \geq 1$,

$$\zeta(1-2n) = -\frac{B_{2n}}{2n}.$$

- **c.** Find the value of $\zeta(-3), \zeta(-5), \zeta(-7)$.
- 16 Use the Bernoulli numbers to find a formula for $\sum_{x=1}^{k-1} x^4$ and $\sum_{x=1}^{k-1} x^5$.
- 17 Prove that $\sum_{\substack{m=1 \ (m,n)=1}}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m^2 n^2} = \frac{\zeta^2(2)}{\zeta(4)} = \frac{5}{2}$.

BRIEF SOLUTIONS

- **1** a. Easy. You need the power series for $1/(1-x)^3$ and the sum of two consecutive triangular numbers is a square. b. Easy
- 3 Easy!
- 4 Let $f(t) = \frac{1}{e^t 1} \frac{1}{t}$. Show that $f(t) \to -\frac{1}{2}$ as $t \to 0$ and $g(t) = f(t) + \frac{1}{2}$ is odd.
- $\begin{aligned} \mathbf{5} \quad & \text{For } s < 0, \, \Gamma(s) = \frac{1}{\Gamma(1-s)} \frac{\pi}{\sin(\pi s)}. \, \text{Now } \Gamma(1-s) \neq 0 \, \text{for } s < 0, \, \text{hence we have singularities at } s = 0, -1, -2, \cdots. \\ & \text{and } \lim_{s \to -k} (s+k) \frac{1}{\Gamma(1-s)} \frac{\pi}{\sin(\pi s)} = \frac{1}{\Gamma(1+k)} \frac{1}{\cos(\pi k)} = \frac{(-1)^k}{k!}. \end{aligned}$
- **6** a. $\frac{-1}{2}$ b. $\frac{-1}{12}$ c. 0 d. $\frac{1}{12}$.
- 8 Use the standard keyhole contour (C shape) with branch cut along the positive real axis. See hand written solutions.
- **9** See Rose p. 227.
- **10 a.** Put $t = x^2$ in $\Gamma(m) = \int_0^\infty t^{m-1} e^{-t} dt$. **b.** From (a), $\Gamma(m)\Gamma(1-m) = 4 \int \int_\Omega x^{2m-1} y^{1-2m} e^{x^2+y^2} dxdy$ where Ω is a first quadrant. Pass to polar co-ordinates and the result follows. **c.** Put $x = \tan^2 \theta$ and p = 1 m and use the integral given in the question.
- 11 a. Straightforward. You will need to use the result of the previous question as well. b. etc are easy.
- **12 a.** Since ξ is real on the real line, $\xi(s) \overline{\xi(s)}$ is an analytic function vanishing on the real line and so must be identically zero in the complex plane by analytic continuation. **b.** $\overline{\xi(\sigma+it)} = \xi(\sigma-it) = \xi(1-\sigma+it)$. The latter will equal $\xi(\sigma+it)$ precisely when t=0 or $1-\sigma=\sigma$, i.e. $\sigma=\frac{1}{2}$. **c.** Neither of the functions $(s-1)\zeta(s)$ and $\Gamma(\frac{s}{2})$ vanish in the half plane $\Re(s) \geq 1$, so $\xi(s)$ is non-zero in this half plane. The functional equation for $\xi(s)$ implies that $\xi(s) \neq 0$ for $\Re(s) \leq 0$. Hence all the zeros lie in the critical strip. If $\xi(\beta+i\gamma)=0$ then $\xi(\beta-i\gamma)=0$ which implies that $\xi(1-\beta\pm i\gamma)=0$. The zeros (if they exist) are symmetrically located about the line $\beta=\frac{1}{2}$.
- **13** a. Since $\zeta(s) = g(s)/(s-1)$, where g(s) is differentiable and non-zero at s=1. Hence f(s)=(s-1)/g(s) is well-defined and differentiable at 1, so has a power series about s=1. Write $f(s)=a_0+a_1(s-1)+a_2(s-1)^2+O((s-1)^3)$. Using $\zeta(s)f(s)=1$, expanding and comparing co-efficients, we have $a_0=1,a_1=1$ and $a_2=-\gamma$. b. $f'(1)=1,f''(1)=-2\gamma$.
- 14 Both parts very easy.
- **15** a. Get rid of $\Gamma(1-s)$ and use $\sin 2\theta$. b. Get rid of $\zeta(2n)$ in terms of B_{2n} .
- **16** $\frac{k}{30}k(k-1)(2k-1)(3k^2-3k-1), \frac{1}{12}k^2(k-1)^2(2k^2-2k-1).$
- For each pair of positive integers p,q, take r=(p,q) then $m=\frac{p}{r}, n=\frac{q}{r}$. Then $\sum_{r=1}^{\infty}\frac{1}{p^2}\sum_{q=1}^{\infty}\frac{1}{q^2}=\frac{1}{r^2}$

$$\left(\sum_{\substack{m=1\\(m,n)=1}}^{\infty}\sum_{n=1}^{\infty}\frac{1}{m^2n^2}\right)\left(\sum_{r=1}^{\infty}\frac{1}{r^4}\right).$$
 The result follows.