

NOVA IMS – Universidade Nova de Lisboa Computação em Estatística e Gestão de Informação 2^{0} Semestre 2015/16

Exame 1ª Época – Versão A – 11/07/2016

C	Curso: Número: Nome:		
L	Leia, por favor, com atenção:		
1.	1. Este enunciado corresponde à segunda parte do exame (\mathbf{R}) .		
2.	2. Cada parte está cotada para 10 valores e tem a nota mínima de $4,0$ valores.		
3.	3. Este exame deverá ser realizado no enunciado, sem acesso a um computador.		
4.	4. Poderá consultar o formulário dado em anexo ao exame.		
5.	5. É proibido o uso de qualquer outro material de apoio (livros, apontamentos, telemóve troca de qualquer informação com os colegas.	el), assim como a	
6.	6. A entrega do exame e a saída da sala só são possíveis no final do exame.		
7.	7. As respostas às questões deverão ser dadas, exclusivamente, na folha do enunciado, no para tal. Estas respostas deverão ser apenas código em ${f R}.$	espaço reservado	
8.	8. Não é necessário escrever o resultado do código, mas apenas o código em si.		
9.	9. O não cumprimento de alguma das regras conduzirá à anulação do exame.		
10.	10. A duração do exame, considerando ambas as partes, é de 2 horas .		
ϵ	. Usando estruturas cíclicas (iterativas), escreva o código que permite calcular o resulta expressões. (a) $\sum_{i=10}^{100} \left(i^2+4i^2\right)$	do das seguintes (1)	[0.5 val.]

	$\sum_{i=1}^{10} \frac{\sqrt{i}}{i+1} \tag{2}$)
2.	Sem usar estruturas cíclicas, escreva o código que permite chegar ao mesmo resultado das alíneas ante-	
	riores. (a) Equação 1.	[0.5 val.
	(b) Equação 2.	[0.5 val.
3.	O conjunto de dados (airquality) contém registos diários de qualidade do ar, na cidade de Nova Iorque, durante 153 dias, entre Maio e Setembro de 1973. Foram registadas as seguintes variáveis:	
	Ozono Concentração de O_3 (ppm – partes por milhão)	
	RadSolar Radiação solar (Ly – langley)	
	Vento Velocidade do vento (mph – milhas por hora)	
	Temp Temperatura do ar (°F – graus Farenheit)	
	ArcoIris Presença do arco-íris (valor booleano)	
	Mês Mês do ano (1-12)	
	Dia Dia do mês (1-31)	

[0.5 val.]

(b)

As seguintes instruções executadas em ${f R}$ mostram um resumo deste conjunto de dados.

> head(airquality)

```
Ozono RadSolar Vento Temp ArcoIris Mes Dia
             190
                   7.4
                         67
                                TRUE
                                           1
2
     36
             118
                   8.0
                         72
                                TRUE
                                       5
                                           2
3
     12
             149 12.6
                         74
                               FALSE
                                       5
4
     18
             313 11.5
                         62
                               FALSE
5
     NA
              NA 14.3
                         56
                               FALSE
                                       5
                                           5
6
     28
              NA 14.9
                               FALSE
                         66
> str(airquality)
'data.frame':
                    153 obs. of 7 variables:
         : int 41 36 12 18 NA 28 23 19 8 NA ...
$ Ozono
$ RadSolar: int 190 118 149 313 NA NA 299 99 19 194 ...
        : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
         : int 67 72 74 62 56 66 65 59 61 69 ...
$ ArcoIris: logi TRUE TRUE FALSE FALSE FALSE FALSE ...
         : int 5555555555...
         : int 1 2 3 4 5 6 7 8 9 10 ...
$ Dia
```

(a) Crie um data.frame contendo apenas os dias e valores de temperatura em que se registou uma [1.5 val.] temperatura superior ao respectivo terceiro quartil (percentil 75).

(b) Crie uma função que retorne o índice de conforto climatérico (I_{CC}), definido pela Equação 3. [0.5 val.]

$$I_{CC} = \frac{Temperatura + Vento}{Ozono \times 10}$$
 (3)

Figura 1

(d) Escreva o código necessário para criar um gráfico de barras com a contagem do número de dias [1.5 val.] em que o arco-íris apareceu e não apareceu, para os dias em que a temperatura foi maior que 90°F (Figura 2).

Figura 2

4. Considere que o data.frame CEGI contém a pauta com as notas dos alunos de CEGI. Atente às seguintes instruções executadas em R.

> head(CEGI)

R1aEpoca	R2aEpoca	SAS1aEpoca	SAS2aEpoca	
Ana	12.1	14.4	15.2	11.7
Pedro	8.2	6.6	12.3	9.9
Rui	13.3	13.3	13.3	13.3
Maria	17.2	15.1	8.2	12.2
Raquel	18.0	19.0	20.0	17.0
Duarte	10.1	7.1	12.0	8.9

> str(CEGI)

```
'data.frame': 131 obs. of 4 variables:
$ R1aEpoca : num 12.1 8.2 13.3 17.2 18 10.1 ...
$ R2aEpoca : num 14.4 6.6 13.3 15.1 19 7.1 ...
$ SAS1aEpoca: num 15.2 12.3 13.3 8.2 20 12 ...
$ SAS2aEpoca: num 11.7 9.9 13.3 12.2 17 8.9 ...
```

(a) Escreva o código necessário para guardar o conteúdo deste data.frame num ficheiro com nome à [0.5 val.] sua escolha. O ficheiro guardado deve ter um aspecto idêntico ao do seguinte excerto.

```
R1aEpoca|R2aEpoca|SAS1aEpoca|SAS2aEpoca
Ana|12,1|14,4|15,2|11,7
Pedro|8,2|6,6|12,3|9,9
Rui|13,3|13,3|13,3|13,3
Maria|17,2|15,1|8,2|12,2
```

(b) Crie uma função que permita calcular a nota final de cada aluno, sabendo que:

[1.5 val.]

- R1a Epoca e R2a Epoca são as notas dos exames de $1^{\underline{a}}$ e de $2^{\underline{a}}$ épocas de R.
- SAS1a Epoca e SAS2a Epoca são as notas dos exames de $1^{\underline{a}}$ e de $2^{\underline{o}}$ épocas de SAS.
- A nota final é dada pela melhor nota entre a $1^{\underline{a}}$ e a $2^{\underline{a}}$ época.
- A nota de cada época é dada pela média entre a nota de R e de SAS.
- Caso a nota do exame de R ou de SAS seja inferior a 8 valores o aluno reprova com 8 valores.

Depois de criar a sua função, use-a, para calcular a nota final de todos os alunos.

5. O vector precip contém a precipitação (chuva) média anual, em polegadas (in), de 70 cidades norte americanas. As seguintes instruções executadas em **R** fornecem uma noção sobre a estrutura deste objecto.

[2 val.]

```
> str(precip)
Named num [1:70] 67 54.7 7 48.5 14 17.2 20.7 13 43.4 40.2 ...
- attr(*, "names")= chr [1:70] "Mobile" "Juneau" "Phoenix" "Little Rock" ...
> head(precip)
Mobile    Juneau    Phoenix Little Rock Los Angeles    Sacramento
67.0    54.7    7.0    48.5    14.0    17.2
```

Explique, por palavras suas, o que se pretende encontrar com o seguinte bloco de código, e como isso é conseguido.

```
cidades = strsplit(names(precip), " ")
names(precip)[sapply(cidades, function(x) length(x) > 2)]
```

Pergunta	1	2	3	4	5	Total
Cotação	1	1	4	2	2	10
Cotação obtida						

(a preencher pelo docente)