*	
D1	T 7-:
Exercice 1	Voir correction —

Soit F le sous espace de \mathbb{R}^5 engendré par u=(1,2,3,-1,2) et v=(2,4,7,2,-1). Trouver une base de l'orthogonal F^{\perp} de F.

On considère l'espace vectoriel $E = \mathbb{R}^3$ ainsi que le vecteur $u = (-5, 3, 1) \in E$ et le sous-espace F = Vect(u). Soit p le projeté orthogonal sur F. Déterminer la matrice de p dans la base canonique.

Dans cet exercice on se place dans l'espace euclidien $E = \mathbb{R}^n$ muni du produit scalaire canonique qui à deux vecteurs $\mathbf{x} = (x_1, ..., x_n)$ et $\mathbf{y} = (y_1, ..., y_n)$ associe $\langle x, y \rangle = x_1 y_1 + \cdots + x_n y_n$. On note ||x|| la norme d'un vecteur x et on note $(e_1, ..., e_n)$ la base canonique (orthonormée) de \mathbb{R}^n .

1) Dans cette question, u désigne un endomorphisme de E. On cherche à démontrer qu'il existe un unique endomorphisme de E, noté u^* , vérifiant :

$$\forall (x,y) \in E^2, \quad \langle u(x), y \rangle = \langle x, u^*(y) \rangle$$

a) Montrer que si u^* existe, alors :

$$\forall y \in E, \quad u^*(y) = \sum_{i=1}^n \langle u(e_i), y \rangle e_i$$

- b) En déduire que si u^* existe alors u^* est unique.
- c) Vérifier que l'application définie à la question 1)a) est effectivement un endomorphisme de E et conclure.
- 2) On appelle endomorphisme **adjoint** de u l'endomorphisme u^* défini dans la question précédente. Dans cette question, on étudie les endomorphismes **normaux**, c'est à dire les endomorphismes qui vérifient :

$$u \circ u^* = u^* \circ u$$

a) Soit f un endomorphisme symétrique de E. Donner son adjoint et vérifier que f est normal.

Dans la suite u désigne un endomorphisme normal.

- b) Montrer que : $\forall x \in E, ||u(x)|| = ||u^*(x)||$
- c) En déduire que $Ker(u) = Ker(u^*)$.
- d) Montrer que si F est un sous-espace vectoriel de E stable par u, alors F^{\perp} est stable par u^* .
- e) On suppose que u possède une valeur propre λ et on note E_{λ} le sous-espace propre associé. Montrer que E_{λ} est stable par u^* .
- f) Établir que $(u^*)^* = u$ puis en déduire que E_{λ}^{\perp} est stable par u.

On munit $E = \mathbb{R}^3$ de son produit scalaire canonique et de sa norme associée. Soit (u_1, u_2) une famille libre de E. On note $H = \text{Vect}(u_1, u_2)$ et on définie $f : E \to E$ par

$$\forall u \in E, f(u) = \langle u, u_1 \rangle u_2 + \langle u, u_2 \rangle u_1$$

- 1) Montrer que $f \in \mathcal{L}(E)$.
- 2) Montrer que $\operatorname{Im} f = H$ et $\operatorname{Ker} f = H^{\perp}$
- 3) On pose $v_1 = ||u_1||u_2 ||u_2||u_1$, $v_2 = ||u_1||u_2 + ||u_2||u_1$ et on prend $v_3 \in H^{\perp}$ quelconque tel que $v_3 \neq 0$. Montrer que v_1, v_2, v_3 est une base orthogonale de E.
- 4) Donner la matrice de f dans cette base.
- 5) En déduire que f est diagonalisable avec une valeur propre strictement positive, une strictement négative, et une nulle.

Soit $(x_1, x_2, ..., x_n) \in (\mathbb{R}_+^*)^n$ tels que $x_1 + x_2 + \cdots + x_n = 1$. Démontrer que $\sum_{i=1}^n \frac{1}{x_i} \ge n^2$

Exercice 6 — Voir correction —

Soit $A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 2 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$. L'objectif de cet exercice est de trouver une matrice colonne X telle que ||AX - B|| soit minimal.

- 1) Vérifier que ImA est un plan et donner une équation cartésienne de ce plan.
- 2) Construire une base orthonormée de ce plan.
- 3) Calculer Y projection orthogonale de B sur ce plan, et conclure.

Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$ de rang p et $B \in \mathcal{M}_{n,1}(\mathbb{R})$. On cherche à minimiser ||AX - B|| où $X \in \mathcal{M}_{p,1}$.

- 1) Si n = p, résoudre le problème.
- 2) On revient au cas général. Montrer que $AX = 0 \Rightarrow X = 0$, et en déduire que $C = A^T A$ est inversible.
- 3) Soit $H = \{AX \mid X \in \mathcal{M}_{p,1}(\mathbb{R})\}$. Vérifier que H est un sous espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{R})$ et interpréter le problème posé en termes de distance et de projection orthogonale.
- 4) Soit $Y = AX_0$ le projeté orthogonal de B sur H. Montrer que

$$\forall X \in \mathcal{M}_{p,1}, \quad X^T A^T B - X^T A^T A X_0 = 0$$

- 5) En déduire que $Y = AC^{-1}A^TB$
- 6) Application avec $A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 2 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ pour retrouver le résultat de l'exercice précédent.

Exercice 8 — Voir correction —

(D'après oral INSEE 2019) On considère l'espace \mathbb{R}^n muni de son produit scalaire canonique et de la norme associée $||\cdot||$. Soit $\mathcal{B}=(e_1,e_2,...,e_n)$ la base canonique de \mathbb{R}^n et soit $A=(a_{i,j})_{1\leqslant i,j\leqslant n}$ une matrice symétrique réelle et f l'endomorphisme de \mathbb{R}^n associé.

On admet que A est diagonalisable et on note $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$ ses valeurs propres. On admet aussi qu'il existe une base orthonormale $(\varepsilon_1, \ldots, \varepsilon_n)$ de \mathbb{R}^n , constitués de vecteurs propres de f tels que pour tout $i \in [1, n]$, $f(\varepsilon_i) = \lambda_i \varepsilon_i$. Le but de cet exercice est d'établir le résultat suivant :

$$\forall k \in [1, n], \quad \sum_{j=1}^{k} a_{j,j} \leqslant \sum_{j=1}^{k} \lambda_j$$

- 1) Étudier le cas k = n.
- 2) Soit maintenant $k \in [1, n]$. Établir que pour tout $j \in [1, n]$, on a

$$a_{j,j} \leqslant \sum_{i=1}^{k} \langle e_j, \varepsilon_i \rangle^2 \lambda_i + \lambda_k \sum_{i=k+1}^{n} \langle e_j, \varepsilon_i \rangle^2$$

(Indication: montrer que $a_{j,j} = \langle f(e_j), e_j \rangle$)

3) En déduire, pour tout $j \in [1, n]$, l'inégalité suivante :

$$a_{j,j} \leq \sum_{i=1}^{k} (\lambda_i - \lambda_k) \langle e_j, \varepsilon_i \rangle^2 + \lambda_k$$

(Indication : considérer la matrice $A' = A - \lambda_k I_n$)

4) Conclure

Soit p un projecteur orthogonal de $E = \mathbb{R}^n$ et soit A la matrice représentative de p dans la base canonique $(e_1, e_2, ..., e_n)$. Le but de cet exercice est de montrer que $\sum \operatorname{tr} \left({}^t A A \right) = \operatorname{rg}(A)$

- 1) Pour $i \in [1, n]$, exprimer $p(e_i)$ dans la base canonique.
- 2) Soit $p = \operatorname{rg}(A)$ et soit f_1, \dots, f_p une base orthonormée de ImA. Pour $i \in [1, n]$, exprimer $p(e_i)$ dans la base f_1, \dots, f_p
- 3) En déduire deux façons différentes d'exprimer $||p(e_i)||^2$.
- 4) Conclure

- a) On considère la matrice $A = \begin{pmatrix} 10 & 7 \\ 7 & 5 \end{pmatrix}$. Résoudre $AX = \begin{pmatrix} 32 \\ 23 \end{pmatrix}$ d'inconnue $X \in \mathcal{M}_{2,1}(\mathbb{R})$ b) Un calcul donne $A \begin{pmatrix} 0.2 \\ 4.3 \end{pmatrix} = \begin{pmatrix} 32.1 \\ 22.9 \end{pmatrix}$. En quoi cela peut-il paraître surprenant?
- 2) Soit maintenant $A \in \mathcal{M}_n(\mathbb{R})$ une matrice diagonale dont les coefficients diagonaux $\lambda_1, \lambda_2, ..., \lambda_n$ sont tous non nuls. Soient deux matrice colonnes $B \in \mathcal{M}_{n,1}(\mathbb{R})$ et $R \in \mathcal{M}_{n,1}(\mathbb{R})$. On note X et \tilde{X} les solutions de AX = B et

Pour une matrice colonne $Y = \begin{pmatrix} y_2 \\ \vdots \\ y_n \end{pmatrix}$ quelconque, on note $||Y|| = \sqrt{y_1^2 + \dots + y_n^2}$.

- a) Montrer que $\max_{1 \le k \le n} \frac{1}{|\lambda_k|} = \frac{1}{\min_{1 \le k \le n} |\lambda_k|}$.
- b) Montrer que $\frac{\|\tilde{X} X\| \|B\|}{\|R\| \|X\|} \le \frac{\max\limits_{1 \le k \le n} |\lambda_k|}{\min\limits_{1 \le k \le n} |\lambda_k|}$
- c) La matrice A étant fixée, construire explicitement B et R pour qu'il y ait égalité dans l'inégalité précédente.

Exercice 11 $\operatorname{ extbf{-}}$ Voir correction $\operatorname{ extbf{-}}$

Soit $n \ge 1$ un entier et A est une matrice carrée à coefficients réels d'ordre n symétrique : ${}^tA = A$. On note E l'espace vectoriel des matrices colonnes à n lignes à coefficients réels et on fixe un vecteur non nul $\omega = \begin{pmatrix} \omega_1 \\ \vdots \end{pmatrix}$ de E. Pour tout xde E, on pose :

 $q_A(x) = {}^t x A x$ et $c(x) = {}^t x \omega - 1$

et on suppose que pour tout vecteur x non nul de E, $q_A(x) > 0$. Enfin, on désigne par C l'ensemble $C = \{x \in E ; c(x) = 0\}$. Toute matrice carrée d'ordre 1 sera confondue avec le réel la constituant. Le but de cet exercice est d'étudier l'existence du minimum de q_A sur l'ensemble C.

- 1) Vérifier que si $x=\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}$, on a $q_A(x)=\sum_{i=1}^n\sum_{j=1}^n a_{i,j}x_ix_j$ et $c(x)=\sum_{i=1}^n\omega_ix_i-1$.
- 2) En résolvant l'équation Ax = 0 pour x inconnue de E, montrer que la matrice A est inversible.
- 3) Montrer que $A^{-1} = {}^{t}(A^{-1})$.
- 4) Montrer que pour tout vecteur x non nul de E, on a ${}^txA^{-1}x > 0$.
- 5) Montrer que pour tout vecteur x de E, il existe un réel λ unique et un vecteur h de E unique tels que $x = \lambda A^{-1}\omega + h$ et ${}^t\omega h=0$.
- 6) Montrer alors que si x vérifie c(x) = 0, on a $q_A(x) = \frac{1}{t_{\omega}A^{-1}\omega} + {}^thAh$.
- 7) En déduire que q_A admet un minimum sur C atteint uniquement en x_0 vérifiant $Ax_0 = \lambda_0 \omega$ avec $\lambda_0 = \frac{1}{t_{(i)}A^{-1}(i)}$

Correction des exercice

Correction de l'exercice 1 : Puisque $F \oplus F^{\perp} = \mathbb{R}^5$ on doit avoir $\dim(F^{\perp}) = 3$. Soit $w = (x_1, x_2, x_3, x_4, x_5)$. $w \in F^{\perp} \iff \langle u, w \rangle = \langle v, w \rangle = 0$. On a donc :

$$w \in F^{\perp} \iff \begin{cases} x_1 + 2x_2 + 3x_3 - x_4 + 2x_5 &= 0 \\ 2x_1 + 4x_2 + 7x_3 + 2x_4 - x_5 &= 0 \end{cases}$$

$$\iff \begin{cases} x_1 + 2x_2 + 3x_3 - x_4 + 2x_5 &= 0 \\ x_3 + 4x_4 - 5x_5 &= 0 \end{cases}$$

$$\iff \begin{cases} x_1 = -2x_2 - 3(-4x_4 + 5x_5) + x_4 - 2x_5 \\ x_3 = -4x_4 + 5x_5 \end{cases}$$

$$\iff \begin{cases} x_1 = -2x_2 + 13x_4 - 17x_5 \\ x_3 = -4x_4 + 5x_5 \end{cases}$$

$$\iff w = (-2x_2 + 13x_4 - 17x_5, x_2, -4x_4 + 5x_5, x_4, x_5)$$

$$\iff w = x_2 \cdot (-2, 1, 0, 0, 0) + x_4 \cdot (13, 0, -4, 1, 0) + x_5 \cdot (-17, 0, 5, 0, 1)$$

donc $F^{\perp} = \text{Vect}((-2, 1, 0, 0, 0), (13, 0, -4, 1, 0), (-17, 0, 5, 0, 1)).$ Correction de l'exercice 2: $||u|| = \sqrt{5^2 + 3^2 + 1^2} = \sqrt{35}$. Le vecteur $u' = \frac{u}{||u||}$ est une base orthonormée de F. Calculons $p(e_1), p(e_2)$ et $p(e_3)$:

$$p(e_1) = \frac{\langle e_1, u \rangle}{\|u\|^2} u = \frac{-5}{35} u = \begin{pmatrix} 5/7 \\ -3/7 \\ -1/7 \end{pmatrix}$$

$$p(e_2) = \frac{\langle e_1, u \rangle}{\|u\|^2} u = \frac{3}{35} u = \begin{pmatrix} -3/7\\ 9/35\\ 3/35 \end{pmatrix}$$

$$p(e_2) = \frac{\langle e_1, u \rangle}{\|u\|^2} u = \frac{1}{35} u = \begin{pmatrix} -1/7\\ 3/35\\ 1/35 \end{pmatrix}$$

donc finalement

$$\operatorname{Mat}_{\mathcal{B}}(p) = \frac{1}{35} \begin{pmatrix} 25 & -15 & -5\\ -15 & 9 & 3\\ -5 & 3 & 1 \end{pmatrix}$$

Correction de l'exercice 3:

1) a) Supposons que u^* existe et soit $y \in E$ un vecteur quelconque. Il existe $\lambda_1, ..., \lambda_n$ tels que dans la base $(e_i)_{1 \le i \le n}$, $u^*(y)$ s'écrit :

$$u^*(y) = \sum_{i=1}^n \lambda_i e_i$$

Pour tout $i \in [1, n]$ on a:

$$\lambda_i = \langle e_i, u^*(y) \rangle = \langle u(e_i), y \rangle$$

d'où:

$$u^*(y) = \sum_{i=1}^n \langle u(e_i), y \rangle e_i$$

b) Pour tout $y \in E$, $\sum_{i=1}^{n} \langle u(e_i), y \rangle e_i$ est entièrement déterminé par y, donc si u^* existe il est unique.

c) Réciproquement posons $u^*(x) = \sum_{i=1}^n \langle u(e_i), x \rangle e_i$ pour tout $x \in E$. Alors, pour tout $(x, y) \in E^2$, pour tout $(\lambda, \mu) \in \mathbb{R}^2$:

$$\begin{split} u^*(\lambda x + \mu y) &= \sum_{i=1}^n \langle u(e_i), \lambda x + \mu y \rangle e_i \\ &= \lambda \sum_{i=1}^n \langle u(e_i), x \rangle e_i + \mu \sum_{i=1}^n \langle u(e_i), y \rangle e_i \quad \text{par linéarité à droite du produit scalaire et linéarité de la somme} \\ &= \lambda u^*(x) + \mu u^*(y) \end{split}$$

ainsi définie, u^* est bien un endomorphisme de E.

2) a) Si f est symétrique, alors pour tout $(x,y) \in E^2$, $\langle f(x),y \rangle = \langle x,f(y) \rangle$. On a donc $f^* = f$ par unicité de l'endomorphisme adjoint.

Comme f commute avec lui-même on a bien $f \circ f^* = f \circ f = f^* \circ f$ donc f est normal.

b) Soit $x \in E$.

$$||u(x)|| = \sqrt{\langle u(x), u(x) \rangle}$$

$$= \sqrt{\langle x, u^*(u(x)) \rangle}$$

$$= \sqrt{\langle x, u(u^*(x)) \rangle}$$

$$= \sqrt{\langle u^*(x), u^*(x) \rangle}$$

$$= ||u^*(x)||$$
car u est normal

- c) Pour tout vecteur $x \in E$, $u(x) = 0 \iff ||u(x)|| = 0 \iff ||u^*(x)|| = 0 \iff u^*(x) = 0$, donc $\operatorname{Ker}(u) = \operatorname{Ker}(u^*)$.
- d) Soit F un sous-espace vectoriel de E stable par u. Montrons que F^{\perp} est stable par u^* : soit $x \in F^{\perp}$, alors pour tout $y \in F$ on a:

$$\langle u^*(x), y \rangle = \langle x, u(y) \rangle = 0$$

 $\operatorname{car} u(y) \in F$ comme F est stable par u, et $x \in F^{\perp}$ par hypothèse. Ainsi $u^*(x) \in F^{\perp}$ donc F^{\perp} est stable par u^* .

- e) Soit $x \in E_{\lambda}$. On a $u(u^*(x)) = u^*(u(x)) = u^*(\lambda x) = \lambda u^*(x)$ donc on a bien $u^*(x) \in E_{\lambda}$. On a montré que E_{λ} est stable par u^* .
- f) Pour tout $(x,y) \in E^2$, $\langle u^*(x), y \rangle = \langle x, u(y) \rangle$ par symétrie du produit scalaire, donc u est l'endomorphisme adjoint de u^* comme celui-ci est unique, c'est à dire $(u^*)^* = u$. Comme E_{λ} est stable par u^* on en déduit d'après la question 2)d) que E_{λ}^{\perp} est stable par $(u^*)^*$ donc par u.

Correction de l'exercice 4:

1) f est bien à valeurs dans E, et pour tout $(u,v) \in E^2$ et tout $(\lambda,\mu) \in \mathbb{R}^2$ on a

$$\begin{split} f(\lambda u + \mu v) &= \langle \lambda u + \mu v u_1 \rangle u_2 + \langle \lambda u + \mu v, u_2 \rangle u_1 \\ &= \lambda \langle u, u_1 \rangle u_2 + \mu \langle v, u_1 \rangle u_2 + \lambda \langle u, u_2 \rangle u_1 + \mu \langle v, u_2 \rangle u_1 \qquad \text{par bilin\'earit\'e du produit scalaire} \\ &= \lambda f(u) + \mu f(v) \end{split}$$

donc $f \in \mathcal{L}(E)$.

2) Soit $x \in \text{Ker} f$, alors $f(x) = 0 = \langle x, u_1 \rangle u_2 + \langle x, u_2 \rangle u_1$.

Or, (u_1, u_2) est une famille libre, donc $\langle x, u_1 \rangle = \langle x, u_2 \rangle = 0$. On en conclut que $x \in H^{\perp}$.

Réciproquement, si $x \in H^{\perp}$, on a bien f(x) = 0, donc $\operatorname{Ker} f = H^{\perp}$.

Comme dim H=2, dim $H^{\perp}=1$. D'après le théorème du rang, on a donc rg f=2.

Il est évident que $\text{Im} f \subset H$, donc par égalité des dimension a finalement Im f = H.

3) Comme v_1 et v_2 sont des combinaisons linéaires de u_1 et u_2 , il est évident que v_3 est orthogonal à v_1 et v_2 . Montrons que v_1 et v_2 sont orthogonaux entre eux :

$$\begin{array}{rcl} \langle v_1, v_2 \rangle & = & \langle ||u_1||u_2 - ||u_2||u_1, ||u_1||u_2 + ||u_2||u_1 \rangle \\ & = & ||u_1||^2 \times \langle u_2, u_2 \rangle + ||u_1|| \times ||u_2|| \times \langle u_2, u_1 \rangle - ||u_2|| \times ||u_1|| \times \langle u_1, u_2 \rangle - ||u_2||^2 \times \langle u_1, u_1 \rangle \\ & = & ||u_1||^2 ||u_2||^2 - ||u_2||^2 ||u_1||^2 \\ & = & 0 \end{array}$$

 $\operatorname{car} \langle u_2, u_1 \rangle = \langle u_1, u_2 \rangle.$

Finalement, v_1, v_2 et v_3 sont deux à deux orthogonaux. C'est donc une famille libre de \mathbb{R}^3 , donc une base de \mathbb{R}^3 .

4) Posons $\mathcal{B} = (v_1, v_2, v_3)$ et calculons $f(v_1)$, $f(v_2)$ et $f(v_3)$. On remarque que $v_1 + v_2 = 2||u_1||u_2|$ et $v_2 - v_1 = 2||u_2||u_1||u_2|$

$$f(v_1) = \langle v_1, u_1 \rangle u_2 + \langle v_1, u_2 \rangle u_1$$

$$= (||u_1|| \langle u_2, u_1 \rangle - ||u_2|| \langle u_1, u_1 \rangle) u_2 + (||u_1|| \langle u_2, u_2 \rangle - ||u_2|| \langle u_1, u_2 \rangle) u_1$$

$$= \langle u_1, u_2 \rangle (||u_1|| u_2 - ||u_2|| u_1) - ||u_2|| \times ||u_1||^2 \times u_2 + ||u_1|| \times ||u_2||^2 \times u_1$$

$$= (\langle u_1, u_2 \rangle - ||u_2|| ||u_1||) v_1$$

.

$$\begin{split} f(v_2) &= \langle v_1, u_1 \rangle u_2 + \langle v_1, u_2 \rangle u_1 \\ &= (||u_1|| \langle u_2, u_1 \rangle + ||u_2|| \langle u_1, u_1 \rangle) u_2 + (||u_1|| \langle u_2, u_2 \rangle + ||u_2|| \langle u_1, u_2 \rangle) u_1 \\ &= \langle u_1, u_2 \rangle (||u_1|| u_2 + ||u_2|| u_1) + ||u_2|| \times ||u_1||^2 \times u_2 + ||u_1|| \times ||u_2||^2 \times u_1 \\ &= (||u_2|| ||u_1|| - \langle u_1, u_2 \rangle) v_2 \end{split}$$

et $f(v_3) = 0$ car $v_3 \in H^{\perp}$ et $v_1, v_2 \in H$.

Finalement, la matrice de f dans la base \mathcal{B} est

$$\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} \langle u_1, u_2 \rangle - ||u_2|| ||u_1|| & 0 & 0 \\ 0 & ||u_2|| ||u_1|| - \langle u_1, u_2 \rangle & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

5) $\operatorname{Mat}_{\mathcal{B}}(f)$ est diagonale et ses valeurs propres sont 0, $\langle u_1, u_2 \rangle - \|u_2\| \|u_1\|$ et $\|u_2\| \|u_1\| - \langle u_1, u_2 \rangle$. On a $\|u_2\| \|u_1\| - \langle u_1, u_2 \rangle \ge 0$ d'après l'inégalité de Cauchy-Schwarz, et même $\|u_2\| \|u_1\| - \langle u_1, u_2 \rangle > 0$ car u_1 et u_2 ne sont pas liés. Ainsi, une valeur propre de f est nulle, une est strictement positive, et la troisième strictement négative.

Correction de l'exercice 5 : Considérons les vecteurs $u=(\sqrt{x_1},...,\sqrt{x_n})$ et $v=\left(\frac{1}{\sqrt{x_1}},...,\frac{1}{\sqrt{x_n}}\right)$. On a $\langle u,v\rangle=\sum_{k=1}^n 1=n,$ et par hypothèse $\|u\|^2=\sum_{i=1}^n x_i=1.$ Ainsi, d'après l'inégalité de Cauchy-Schwarz :

$$\langle u, v \rangle \le ||u|| ||v||$$

$$n \le 1 \times \sqrt{\sum_{i=1}^{n} \frac{1}{x_i}}$$

d'où

$$n^2 \le \sum_{i=1}^n \frac{1}{x_i}$$

Correction de l'exercice 6 :

1) A est de rang 2 donc dim(Im(A)) = 2, Im(A) est donc un plan de \mathbb{R}^3 .

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \operatorname{Im}(A) \iff \exists (a,b) \in \mathbb{R}^2, \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = a+2b \\ y = -a+b \\ z = 2a+b \end{cases}$$
$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = a+2b \\ x+y = 3b \\ z = 2a+b \end{cases}$$

$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = a + \frac{2}{3}(x+y) \\ b = \frac{1}{3}(x+y) \\ z = 2a+b \end{cases}$$

$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} a = \frac{1}{3}x - \frac{2}{3}y \\ b = \frac{1}{3}x + \frac{1}{3}y \\ z = x-y \end{cases}$$

donc l'équation x - y - z = 0 est une équation cartésienne de Im(A).

2) On a déjà une base de Im(A) donnée par les deux colonnes de A: posons $X_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ et $X_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$. On a $\|X_1\| = \sqrt{1^2 + (-1)^2 + 2^2} = \sqrt{6}$, et $\|X_2\| = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{6}$. Posons $X_1' = \frac{X_1}{\|X_1\|}$ et $X_2' = \frac{X_2 - t}{\|X_2 - t X_2 X_1' \cdot X_1'\|}$. Alors $\|X_1'\| = 1$ et $t X_2' X_1' = \frac{1}{\|X_2 - t X_2 X_1' \cdot X_1'\|}$ $t X_2' X_1' = \frac{1}{\|X_2 - t X_2 X_1' \cdot X_1'\|}$ $t X_2' X_1' = \frac{1}{\|X_2 - t X_2 X_1' \cdot X_1'\|}$ $t X_2' X_1' = \frac{1}{\|X_2 - t X_2 X_1' \cdot X_1'\|}$ $t X_2' X_1' = \frac{1}{\|X_2 - t X_2 X_1' \cdot X_1'\|}$ on construction. Ainsi, $t X_1' X_2' X_2' = 0$ est une base orthonormée de $t X_1' X_2' = 0$. On calcule

$$X_1' = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\ -1\\ 2 \end{pmatrix}$$

et

$$X_{2} - {}^{t} X_{2} X_{1}' \cdot X_{1}' = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} - \frac{3}{\sqrt{6}} \times \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} 3/2 \\ 3/2 \\ 0 \end{pmatrix}$$

et $||X_2 - {}^t X_2 X_1'|| = \sqrt{(3/2)^2 + (3/2)^2} = \frac{3\sqrt{2}}{2}$ donc finalement :

$$X_2' = \frac{2}{3\sqrt{2}} \begin{pmatrix} 3/2\\3/2\\0 \end{pmatrix} = \begin{pmatrix} \sqrt{2}/2\\\sqrt{2}/2\\0 \end{pmatrix}$$

La projection orthogonale de B sur Im(A) est ${}^tBX_1'X_1' + {}^tBX_2'X_2'$.

$${}^{t}BX_{1}'X_{1}' = \frac{1}{\sqrt{6}} \times (1 \times 1 + 1 \times (-1) + (-1) \times 2) \times \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1/3 \\ 1/3 \\ -2/3 \end{pmatrix}$$

et

$${}^tBX_2'X_2' = \left(\frac{\sqrt{2}}{2} \times 1 + \frac{\sqrt{2}}{2} \times 1\right) \times \begin{pmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

donc finalement, la projection orthogonale de B sur $\operatorname{Im}(A)$ est $\begin{pmatrix} -1/3 \\ 1/3 \\ -2/3 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2/3 \\ 4/3 \\ -2/3 \end{pmatrix}$

On trouve $X = \begin{pmatrix} x \\ y \end{pmatrix}$ en résolvant AX = Y c'est à dire $\begin{cases} x + 2y = 2/3 \\ -x + y = 4/3 \\ 2x + y = -2/3 \end{cases}$. On trouve que $X = \begin{pmatrix} -2/3 \\ 2/3 \end{pmatrix}$ est solution.

Correction de l'exercice 7:

1) Si n = p, alors $\operatorname{rg}(A) = n$ et $A \in \mathcal{M}_n(\mathbb{R})$ donc A est inversible. On en déduit qu'il existe $Y \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que AY = B donc ||AY - B|| = 0 et Y minimise donc ||AX - B||.

2) A est de rang p donc d'après le théorème du rang Ker(A) = p - rg(A) = 0. Ainsi A est injective, autrement dit $AX = 0 \Rightarrow X = 0$.

La matrice A^TA est une matrice carrée de taille p, et pour tout $X \in \mathcal{M}_p(\mathbb{R})$ on a

$$A^{T}AX = 0 \Longrightarrow X^{T}A^{T}AX = 0$$

$$\Longrightarrow (AX)^{T}(AX) = 0$$

$$\Longrightarrow ||AX||^{2} = 0$$

$$\Longrightarrow AX = 0$$

$$\Longrightarrow X = 0$$

d'après ce qu'on vient de dire. Ainsi, A^TA est injective donc inversible car elle est carrée.

- 3) H = Im(A) est un sous-espace vectoriel de $\mathcal{M}_{p,1}(\mathbb{R})$ (cours). Ainsi, le vecteur X qui minimise ||AX B|| minimise la distance entre B et H, autrement dit X répond au problème posé si et seulement si AX est le projeté orthogonal de B sur H.
- 4) Pour tout $X \in \mathcal{M}_{p,1}(\mathbb{R})$,

$$X^{T}A^{T}B - X^{T}A^{T}AX_{0} = (AX)^{T}(B - AX_{0})$$

or $AX \in H$ et AX_0 est le projeté orthogonal de B sur H donc $B - AX_0 \in H^{\perp}$, d'où $(AX)^T(B - AX_0) = 0$.

- 5) On en déduit que pour tout $X \in \mathcal{M}_{p,1}(\mathbb{R})$, $X^T(A^TX_0) = X^T(A^TB)$ donc $A^TAX_0 = A^TB$ c'est à dire $CX_0 = A^TB$. Puisque C est inversible on en déduit que $X_0 = C^{-1}A^TB$ donc finalement $Y = AX_0 = AC^{-1}A^TB$.
- 6) Pour ces valeurs de A et B on a $C = A^T A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 3 \\ 3 & 6 \end{pmatrix}$. On cherche C^{-1} :

$$\begin{pmatrix} 6 & 3 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \xrightarrow{L_2 \leftarrow 2L_2 - L_1} \begin{pmatrix} 6 & 3 \\ 0 & 9 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$$

$$\xrightarrow{L_2 \leftarrow \frac{1}{3}L_2} \begin{pmatrix} 6 & 3 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

$$\xrightarrow{L_1 \leftarrow L_1 - L_2} \begin{pmatrix} 6 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} \frac{4}{3} & -\frac{2}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

$$\xrightarrow{L_1 \leftarrow \frac{1}{6}L_1} \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} \frac{2}{9} & -\frac{1}{9} \\ -\frac{1}{9} & \frac{2}{9} \end{pmatrix}$$

donc
$$C^{-1} = \begin{pmatrix} \frac{2}{9} & -\frac{1}{9} \\ -\frac{1}{9} & \frac{2}{9} \end{pmatrix}$$
, et on a $Y = \begin{pmatrix} 1 & 2 \\ -1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} \frac{2}{9} & -\frac{1}{9} \\ -\frac{1}{9} & \frac{2}{9} \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2/3 \\ 4/3 \\ -2/3 \end{pmatrix}$. On retrouve la solution

de l'exercice précédent.

Correction de l'exercice 8 :

- 1) Pour $k=n, \sum_{j=1}^n a_{j,j}=\operatorname{tr}(A)=\operatorname{tr}(f)=\sum_{j=1}^n \lambda_j$ car la trace ne dépend pas de la base choisie. L'égalité est donc vraie dans ce cas.
- 2) Pour tout $j \in [1, n]$, $\langle f(e_j), e_j \rangle = \langle \sum_{i=1}^n a_{i,j} e_i, e_j \rangle = \sum_{i=1}^n a_{i,j} \langle e_i, e_j \rangle = a_{j,j}$ En décomposant e_j dans la base $(\varepsilon_1, ..., \varepsilon_n)$ on a $e_j = \sum_{i=1}^n \langle e_j, \varepsilon_i \rangle \varepsilon_i$ donc $f(e_j) = \sum_{i=1}^n \langle e_j, \varepsilon_i \rangle f(\varepsilon_i) = \sum_{i=1}^n \langle e_j, \varepsilon_i \rangle \lambda_i \varepsilon_i$. On a ainsi:

$$\begin{split} a_{j,j} &= \langle f(e_j), e_j \rangle \\ &= \left\langle \sum_{i=1}^n \langle e_j, \varepsilon_i \rangle \lambda_i \varepsilon_i, e_j \right\rangle \\ &= \sum_{i=1}^n \langle e_j, \varepsilon_i \rangle \lambda_i \langle \varepsilon_i, e_j \rangle \end{split}$$

$$=\sum_{i=1}^{n}\langle e_j,\varepsilon_i\rangle^2\lambda_i$$

Or pour $k \in [1, n]$ fixé, on a $\lambda_k \ge \lambda_{k+1} \le \cdots \le \lambda_n$ donc $\sum_{i=k+1}^n \langle e_j, \varepsilon_i \rangle^2 \lambda_i \le \lambda_k \sum_{i=k+1}^n \langle e_j, \varepsilon_i \rangle^2$, d'où finalement :

$$a_{j,j} \le \sum_{i=1}^{k} \langle e_j, \varepsilon_i \rangle^2 \lambda_i + \lambda_k \sum_{i=k+1} \langle e_j, \varepsilon_i \rangle^2$$

3) Considérons la matrice $A' = A - \lambda_k I_n$ et l'application g associée dans la base canonique. La matrice A' est diagonalisable et la base $(\varepsilon_1, ..., \varepsilon_n)$ est encore une base de vecteurs propres, avec $\forall i \in [\![1, n]\!], \ g(\varepsilon_i) = \lambda_i' = (\lambda_i - \lambda_k)\varepsilon_i$ tels que

$$\lambda_1 - \lambda_k \ge \lambda_2 - \lambda_k \ge \cdots \ge \lambda_{k-1} - \lambda_k \ge 0 \ge \lambda_{k+1} - \lambda_k \ge \cdots \ge \lambda_n - \lambda_k$$

donc

$$\lambda_1' \geq \lambda_2' \geq \cdots \geq \lambda_n'$$

et $\lambda'_k = 0$.

D'après la question précédente appliquée à g on a donc :

$$a'_{j,j} \le \sum_{i=1}^k \langle e_j, \varepsilon_i \rangle^2 \lambda'_i + \underbrace{\lambda'_k}_{=0} \sum_{i=k+1}^n \langle e_j, \varepsilon_i \rangle^2$$

donc

$$a_{j,j} - \lambda_k \le \sum_{i=1}^k \langle e_j, \varepsilon_i \rangle^2 (\lambda_i - \lambda_k)$$

d'où le résultat :

$$a_{j,j} \le \sum_{i=1}^{k} (\lambda_i - \lambda_k) \langle e_j, \varepsilon_i \rangle^2 + \lambda_k$$

4) En sommant l'inégalité obtenue à la question précédente pour j allant de 1 à k on obtient :

$$\sum_{j=1}^{k} a_{j,j} \le \sum_{j=1}^{k} \left(\sum_{i=1}^{k} (\lambda_i - \lambda_k) \langle e_j, \varepsilon_i \rangle^2 + \lambda_k \right)$$
$$\le k\lambda_k + \sum_{i=1}^{k} (\lambda_i - \lambda_k) \sum_{i=1}^{k} \langle e_j, \varepsilon_i \rangle^2$$

Or, $\sum_{j=1}^{n} \langle e_j, \varepsilon_i \rangle^2 = \|\varepsilon_i\|$ en décomposant ε_i dans la base orthonormée $(e_1, ..., e_n)$. Ainsi, $\sum_{j=1}^{n} \langle e_j, \varepsilon_i \rangle^2 = 1$ et donc $\sum_{j=1}^{k} \langle e_j, \varepsilon_i \rangle^2 \leq \sum_{j=1}^{n} \langle e_j, \varepsilon_i \rangle^2 \leq 1$. Comme $\forall i \in [1, k]$, $\lambda_i - \lambda_k \geq 0$ on obtient finalement :

$$\sum_{j=1}^{k} a_{j,j} \le k\lambda_k + \sum_{i=1}^{k} (\lambda_i - \lambda_k)$$

$$\le k\lambda_k - k\lambda_k + \sum_{i=1}^{k} \lambda_i$$

$$\le \sum_{i=1}^{k} \lambda_i$$

Correction de l'exercice 9 :

- 1) $p(e_i) = \sum_{j=1}^n a_{j,i} e_j$ par définition d'une matrice représentative.
- 2) $p(e_i) = \sum_{k=1}^{p} \langle e_i, f_k \rangle f_k$ car p est la projection orthogonale sur Im(p) dont $(f_1, ..., f_p)$ est une base.
- 3) La base canonique étant une base orthonormée, on a d'après la question $1 : ||p(e_i)||^2 = \sum_{j=1}^n a_{j,i}^2$. La base $f_1, f_2, ..., f_p$ étant orthonormée, on a également $||p(e_i)||^2 = \sum_{k=1}^p \langle e_i, f_k \rangle^2$.

4) Notons que $\operatorname{tr}(^tAA) = \sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2$ (exercice classique sur la trace). Or d'après la question précédente on a :

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}^{2} = \sum_{i=1}^{n} ||p(e_{i})||^{2}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{p} \langle e_{i}, f_{k} \rangle^{2}$$

$$= \sum_{k=1}^{p} \sum_{i=1}^{n} \langle e_{i}, f_{k} \rangle^{2}$$

Or pour tout $k \in [1, p]$, en décomposant f_k dans la base orthonormée $(e_1, ..., e_n)$ on a $1 = ||f_k||^2 = \sum_{i=1}^n \langle f_k, e_i \rangle^2 = \sum_{i=1}^n \langle e_i, f_k \rangle^2$ donc finalement :

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}^{2} = \sum_{k=1}^{p} 1 = p$$

d'où le résultat.

Correction de l'exercice 10:

1) a) On pose $X = \begin{pmatrix} x \\ y \end{pmatrix}$, alors

$$AX = \begin{pmatrix} 32 \\ 23 \end{pmatrix} \iff \begin{cases} 10x + 7y & = & 32 \\ 7x + 5y & = & 23 \end{cases}$$

$$\iff \begin{cases} 70x + 49y & = & 224 \\ 70x + 50y & = & 230 \end{cases}$$

$$\iff \begin{cases} 70x + 49y & = & 224 \\ y & = & 6 \end{cases}$$

$$\iff \begin{cases} x & = & 1 \\ y & = & 6 \end{cases}$$

$$\operatorname{donc} AX = \begin{pmatrix} 32\\23 \end{pmatrix} \Longleftrightarrow X = \begin{pmatrix} 1\\6 \end{pmatrix}$$

b) La solution de $AX = \begin{pmatrix} 32.1 \\ 22.9 \end{pmatrix}$ semble assez éloignée de la solution de $AX = \begin{pmatrix} 32 \\ 23 \end{pmatrix}$ alors que $\begin{pmatrix} 32.1 \\ 22.9 \end{pmatrix}$ est proche de $\begin{pmatrix} 32 \\ 23 \end{pmatrix}$.

Plus précisément,

$$\left\| \begin{pmatrix} 32.1 \\ 22.9 \end{pmatrix} - \begin{pmatrix} 32 \\ 23 \end{pmatrix} \right\| = \sqrt{0.1^2 + 0.1^2} = \sqrt{0.02}$$

tandis que

$$\left\| \begin{pmatrix} 1 \\ 6 \end{pmatrix} - \begin{pmatrix} 0.2 \\ 4.3 \end{pmatrix} \right\| = \sqrt{0.8^2 + 1.7^2} = \sqrt{3.53}$$

2) a) Soit $k_0 \in [1,]$ tel que $|\lambda_{k_0}| = \min_{1 \le k \le n} |\lambda_k|$. Alors $\forall k \in [1,n]$, $|\lambda_k| \ge |\lambda_{k_0}| > 0$ (car les λ_k sont tous non nuls), donc en passant à l'inverse on obtient :

$$\forall k \in [\![1,n]\!], \frac{1}{|\lambda_k|} \leq \frac{1}{|\lambda_{k_0}|}$$
 avec égalité pour $k=k_0$. Ainsi, $\max_{1 \leq k \leq n} \frac{1}{|\lambda_k|} = \frac{1}{|\lambda_{k_0}|} = \frac{1}{\min\limits_{1 \leq k \leq n} |\lambda_k|}$.

b) Pour tout vecteur
$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
, on a $||AY|| = \sqrt{\sum_{i=1}^n (\lambda_i y_i)^2} = \sqrt{\sum_{i=1}^n \lambda_i^2 y_i^2}$.

Soient k_0 et k_1 tels que $|\lambda_{k_0}| = \min_{1 \le k \le n} |\lambda_k|$ et $|\lambda_{k_1}| = \max_{1 \le k \le n} |\lambda_k|$, alors :

$$\forall i \in [1, n], |\lambda_{k_0}| \le |\lambda_i| \le |\lambda_{k_1}|$$

donc

$$\forall i \in [1, n], \ \lambda_{k_0}^2 \le \lambda_i^2 \le \lambda_{k_1}^2$$

donc par somme d'inégalités :

$$\sqrt{\lambda_{k_0}^2\sum_{i=1}^n y_i^2} \leq \|AY\| \leq \sqrt{\lambda_{k_1}^2\sum_{i=1}^n y_i^2}$$

d'où

$$|\lambda_{k_0}|||Y||| \le ||AY|| \le |\lambda_{k_1}|||Y||$$

donc si $||Y|| \neq 0$ on a

$$|\lambda_{k_0}| \le \frac{\|AY\|}{\|Y\|} \le |\lambda_{k_1}|$$

Remarquons que $\|B\| = \|AX\|$, et $\|R\| = \|AX - A\tilde{X}\| = \|A(\tilde{X} - X)\|$

Posons
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 et $Y = \tilde{X} - X = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$. Alors

$$\begin{split} \frac{\|\tilde{X} - X\| \|B\|}{\|R\| \|X\|} &= \frac{\|\tilde{X} - X\| \|AX\|}{\|A(\tilde{X} - X)\| \|X\|} \\ &= \frac{\|Y\|}{\|AY\|} \times \frac{\|AX\|}{\|X\|} \end{split}$$

Or d'après l'inégalité précédemment obtenue, $|\lambda_{k_0}| \leq \frac{\|AX\|}{\|X\|} \leq |\lambda_{k_1}|$ et $\frac{1}{|\lambda_{k_1}|} \leq \frac{\|Y\|}{\|AY\|} \leq \frac{1}{|\lambda_{k_0}|}$. d'où par produit d'inégalités :

$$\frac{|\lambda_{k_0}|}{|\lambda_{k_1}|} \le \frac{\|\tilde{X} - X\| \|B\|}{\|R\| \|X\|} \le \frac{|\lambda_{k_1}|}{|\lambda_{k_0}|}$$

qui est le résultat souhaité.

c) Il y a égalité dans l'inégalité précédente si toutes les égalités obtenues dans la question précédente sont des égalités, c'est à dire si $||AX|| = |\lambda_{k_1}|||X||$ et $||AY|| = |\lambda_{k_0}|||Y||$

C'est le cas lorsque X a tous ses coefficients nuls sauf celui de la k_1 -ème ligne, et que $Y = \tilde{X} - X$ a tous ses coefficients nuls sauf celui de la k_0 -ème ligne. Il suffit donc de définir la matrice B comme étant la k_1 -ème colonne de A, et R comme étant la k_0 -ème colonne de A, avec k_0 et k_1 définis comme dans la question précédente. On peut poser par exemple :

$$B = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow k_1\text{-\`eme ligne} \quad \text{ et } \quad R = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow k_0\text{-\`eme ligne}$$

Correction de l'exercice 11:

1) On a
$$Ax = \begin{pmatrix} \sum_{j=1}^{n} a_{1,j} x_{j} \\ \vdots \\ \sum_{j=1}^{n} a_{n,j} x_{j} \end{pmatrix}$$
 donc ${}^{t}xAx = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} \sum_{j=1}^{n} a_{i,j} x_{j} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} x_{i} x_{j}.$
De plus, $c(x) = {}^{t}x\omega - 1 = x_{1}\omega_{1} + \dots + x_{n}\omega_{n} - 1 = \sum_{i=1}^{n} \omega_{i} x_{i} - 1.$

2) Soit $x_0 \in E$ tel que $Ax_0 = 0$. Alors ${}^tx_0Ax_0 = 0$ donc $q_A(x_0) = 0$. Or pour tout x non nul $q_A(x) > 0$ donc $x_0 = 0$. On en déduit que $Ker(A) = \{0\}$ donc A est inversible.

- 3) Comme $AA^{-1} = I$ et que ${}^tI = I$ on a ${}^t(AA^{-1}) = I$ donc ${}^t(A^{-1}){}^tA = I$ donc ${}^t(A^{-1})A = I$ car A est symétrique. Ainsi on a bien $A^{-1} = {}^t(A^{-1})$.
- 4) Soit x un vecteur non nul de E. Posons $y = A^{-1}x$, y est non nul donc $q_A(y) > 0$. Or $q_A(y) = {}^t y A y = {}^t x^t (A^{-1}) A A^{-1} x = {}^t x A^{-1} A A^{-1} x = {}^t x A^{-1} x$. On a donc montré que ${}^t x A^{-1} x > 0$.
- 5) Soit $F = \text{Vect}(A^{-1}\omega)$ et $G = \text{Vect}(\omega)^{\perp}$. Il suffit de montrer que $F \oplus G = E$. ω est un vecteur non nul donc ${}^t\omega A^1\omega > 0$. On en déduit que $A^{-1}\omega$ n'est pas orthogonal à ω donc que $F \cap G = \{0\}$. De plus, $\dim(F) = 1$ et $\dim(G) = n - 1$ donc $\dim(F \oplus G) = 1 + n - 1 = n$, donc on en conclut que $F \oplus G = E$ d'où le résultat.
- 6) Soit x un vecteur (nécessairement non nul) vérifiant c(x) = 0. Alors il existe $\lambda \in \mathbb{R}$ et $h \in E$ tel que ${}^t\omega h = 0$ et tels que $x = \lambda A^{-1}\omega + h$ (d'après la question précédente). On a donc :

$$\begin{split} q_A(x) &= {}^t (\lambda A^{-1}\omega + h) A(\lambda A^{-1}\omega + h) \\ &= \lambda^2 ({}^t \omega A^{-1} A A^{-1}\omega) + \lambda ({}^t h A A^{-1}\omega) + \lambda ({}^t \omega A^{-1} A h) + {}^t h A h \\ &= \lambda^2 ({}^t \omega A^{-1}\omega) + \lambda \underbrace{({}^t h \omega)}_{=0} + \lambda \underbrace{({}^t \omega h)}_{=0} + {}^t h A h \\ &= \lambda^2 ({}^t \omega A^{-1}\omega) + {}^t h A h \end{split}$$

Il suffit de montrer que $\lambda=\frac{1}{{}^t\omega A^{-1}\omega}$ pour avoir le résultat souhaité. Or, en partant de l'égalité $x=\lambda A^{-1}\omega+h$ on obtient ${}^t\omega x=\lambda({}^t\omega A^{-1}\Omega+{}^t\omega h.$ Or ${}^t\omega x=1$ car c(x)=0 par hypothèse, et ${}^t\omega h=0$, d'où finalement $\lambda=\frac{1}{{}^t\omega A^{-1}\omega}$.

7) D'après la question précédente, si $x \in C$ on a $q_A(x) = \frac{1}{t\omega A^{-1}\omega} + {}^thAh$, avec ${}^thAh = q_A(h) \ge 0$, donc $q_A(x) \ge \frac{1}{t\omega A^{-1}\omega}$ avec égalité si et seulement si $q_A(h) = 0$, si et seulement si h = 0, si et seulement si h = 0,

