物理实验五 风能电能转换研究

姓名	王博想	学号	2233316027	班级	2308	小组号	3
同组人员	薛宇恒 高玮泽	日期	2025.5.15	温度	$29.8^{\circ}C$	湿度	56%

1. 风机电压与风速及风能的关系研究

实验原理

风能大小与风速的立方成正比,电能到风能的转换效率可通过计算输入电功率和风洞风能功率得出。

使用仪器

稳压电源,风速仪,风洞实验台

实验步骤

- 1. 将风机正负极接至稳压电源正负极, 打开电源开关。
- 2. 调整电压,在风洞出口位置用风速仪测量不同电压时的风速。
- 3. 将风速值及稳压电源指示的电压电流值记录到表格中。

测量内容数据及处理

表1 风机电压与风速及风能的关系

输入电压 U(V)	10	12	14	16	18	20	22	24	26
输入电流 I(A)	0.065	0.081	0.099	0.117	0.137	0.156	0.177	0.200	0.220
风速 $V_1(\mathrm{m/s})$	2.795	3.582	4.286	4.648	5.133	6.056	6.587	7.180	7.803
输入电功率 $P_0(W)$	0.650	0.972	1.386	1.872	2.466	3.120	3.894	4.800	5.720
风洞风能功率 $P_1(W)$	0.110	0.231	0.395	0.504	0.679	1.114	1.434	1.857	2.384
转换效率 (%)	16.9	23.7	28.5	26.9	27.5	35.7	36.8	38.7	41.7

风洞直径 = $103.84 \, \text{mm}$

规律分析

1. 风能功率与风速的立方关系 实测 P_{wind} 随风速 V_1 增大而快速上升,且与 V_1^3 呈正比:

$$P_{
m wind} \propto V_{
m l}^3$$

- 2. 转换效率随输入功率的变化趋势
 - 当 $P_0 < 2$ W 时,效率 η 从约 17% 升高到 29%。
 - 当 $P_0 > 2$ W 之后,效率继续上升,但增幅趋缓,在最高约 42% 附近波动。
 - 整体看,随着风速(及输入功率)增加,叶片截获的风能更多,发电机效率逐步提升。
- 3. 线性与非线性特征
 - 输入功率 $P_0 = UI$ 与风速 V_1 近似线性关系。
 - 输出的风能功率 P_{wind} 与 V_1^3 强非线性,提高风速对功率增益更显著。

2.风力发电机输出特性实验

实验原理

风力发电机的输出功率与负载电阻有关,存在最佳负载使输出功率最大化。

使用仪器

稳压电源,风洞实验台,风力发电机,电阻箱,万用表

实验步骤

- 1. 在风洞出口安装风力发电机,测量电压为 16V 和 24V 时风力发电机输出关系。
- 2. 将风力发电机输出接至电阻箱,并接万用表测量电阻箱电压。
- 3. 打开电源开关, 调整风机电压至 16V 或 24V, 调整电阻箱负载电阻, 记录对应电压值。

测量内容数据及处理

表2 风力发电机输出功率与负载电阻的关系

负载电阻 $R(\Omega)$	400	600	800	1000	1200	1400	1600	1800	2000
电压 U ₁ (V)	2.40	3.20	3.85	4.10	4.42	4.67	4.88	5.02	5.25
输出功率 (16V) P ₁ (W)	0.0144	0.0171	0.0185	0.0168	0.0163	0.0156	0.0149	0.0140	0.0138
电压 U ₂ (V)	5.12	6.30	7.20	8.01	8.30	8.71	8.96	9.15	9.20
输出功率 (24V) P ₂ (W)	0.0655	0.0662	0.0648	0.0642	0.0574	0.0542	0.0502	0.0465	0.0423

规律分析

1. 存在最佳负载

- 在 16 V 条件下, P_1 在 $R=800~\Omega$ 附近达到峰值(约 0.0185 W)。
- 在 24 V 条件下, P_2 在 $R=600~\Omega$ 附近达到峰值(约 0.0662 W)。

2. 负载匹配原理

发电机内阻与外接负载匹配时,可实现最大功率传输。最佳 R_{opt} 随输出电压改变而变化,高电压时 R_{opt} 更小。

3. 功率-电阻曲线特征

输出功率曲线呈"山峰"型:

$$P(R) = rac{U^2}{R}$$

随 R 增大, 分母增长使得 P 先增后减。

3.不同风速下的风力发电机输出特性实验

实验原理

输出功率受风速影响,存在最大功率点,风能到电能的转换效率可衡量性能。

使用仪器

稳压电源,风洞实验台,万用表,风力发电机,电阻箱

实验步骤

- 1. 测量不同风机电压下,负载电压和输出功率。
- 2. 记录不同风机电压对应的风速。
- 3. 计算通过叶片风能功率和发电机转换效率。

测量内容数据及处理

表3 风速与风力发电机输出功率间关系(负载电荷1000 欧)

风机电压 (V)	10	12	14	16	18	20	22	24	26
负载电压 (V)	1.50	2.61	3.56	4.15	5.20	6.12	7.05	7.51	8.72
输出功率 (W)	0.002	0.007	0.013	0.017	0.027	0.037	0.050	0.056	0.076
风速 $V_1(\mathrm{m/s})$	2.795	3.582	4.286	4.648	5.133	6.056	6.587	7.180	7.803
通过叶片风能功率 (W)	0.075	0.159	0.272	0.347	0.468	0.768	0.988	1.280	1.643
发电机转换效率 (%)	2.98	4.29	4.66	4.96	5.78	4.88	5.03	4.41	4.63

叶片直径 = $86.20\,\mathrm{mm}$

规律分析

1. 输出功率与风速关系

 P_{out} 随风速 V_1 单调增加,且近似满足

$$P_{
m out} \propto V_1^3$$

但因负载、电机内阻及机械损耗等,实际指数略小于3。

- 2. 效率随风速的变化
 - 在低风速 $(V_1 < 5 \text{ m/s})$ 时, η 随风速增大而提升,最大约 5.78%。
 - 当风速继续增大,效率逐渐下降至约 4.4%-4.6%,表明高风速下损耗增加。
- 3. 最优工作点

存在最优风速(约 $5.1\,\mathrm{m/s}$)使得转换效率最高,超出后因机械阻力、电气损耗占比加重,效率反而下降。

总体误差分析及改进方案

主要误差来源

- 1. 仪器精度
 - 风速仪和万用表存在读数误差(±1%-±2%)。
 - 风洞直径、叶片尺寸测量误差会影响 A 的计算。
- 2. 环境因素
 - 温度、湿度、气压变化导致空气密度 ρ 波动。
 - 风洞出口湍流不均匀,局部风速偏差。
- 3. 系统损耗
 - 轴承摩擦、齿轮啮合损失、电机堵转损耗未计入。
 - 接线电阻及接触不良导致额外功率损耗。

改进方案与建议

1. 提高测量精度

- 使用精度更高的数字风速计和功率分析仪。
- 对风速仪、万用表定期校准,将读数不确定度降至 ±0.5%。

2. 改进风洞条件

- 在风洞出口加装整流网或格栅,降低湍流度,保证风速场均匀。
- 控制实验室温度与气压, 或实时测量并修正空气密度 ρ 。

3. 减少系统损耗

- 选用低摩擦轴承、精密齿轮箱,减少机械损耗。
- 优化接线,使用粗芯导线和金属接头,降低电阻。

4. 重复测量与数据处理

- 每个测点多次测量并取平均,减少偶然误差。
- 。 考虑回归拟合(如 $P \sim V^n$),更准确地确定指数 n。

5. 拓展实验条件

- 更换不同叶型、不同攻角的叶片,研究气动性能对转换效率的影响。
- 增加更多负载电阻取点,以更精细地定位最佳匹配阻抗。