TMUA Practice - Coordinate Geometry

- The line y = mx + 4 where m > 0 is the normal to the curve $y = 6 x^2$ at the point (p,q). 1) What is the value of p?

- A $\frac{\sqrt{2}}{6}$ B $-\frac{\sqrt{2}}{6}$ C $\sqrt{\frac{3}{2}}$ D $\pm \sqrt{\frac{3}{2}}$ E $\sqrt{\frac{5}{2}}$

- Find the shortest distance between the line y = 2x 1 and the curve $y = x^2 + 5$ 2)
- A 2 B $\sqrt{5}$ C $\sqrt{\frac{5}{2}}$ D 3 E 5

A line is drawn normal to the curve $y = \frac{2}{x}$ at the point where x = 1. 3)

This line cuts the x-axis at P and y-axis at Q. Find the length of PQ.

- A $\frac{3}{2}$ B $\frac{3}{2}\sqrt{5}$ C $\sqrt{\frac{15}{2}}$ D $2\sqrt{5}$ E 3

The line y = mx + 2 passes through the points $(5, log_3p)$ and $(log_3p, 2)$ 4)

What is the difference between the possible values of p?

- A 8
- B 3 $C \frac{2}{5}$ D 2
- E 10

5) The line segment joining the points (2,2) and (6,8) is a diameter of a circle.

This circle is translated by 3 units in the positive x-direction, then reflected in the x-axis, and then enlarged by a scale factor of 2 about the centre of the resulting circle.

Find the equation of the final circle.

A
$$(x-7)^2 + (y-5)^2 = 26$$
 B $(x-7)^2 + (y+5)^2 = 26$

B
$$(x-7)^2 + (y+5)^2 = 26$$

C
$$(x-1)^2 + (y-5)^2 = 52$$
 D $(x-1)^2 + (y+5)^2 = 52$

D
$$(x-1)^2 + (y+5)^2 = 52$$

E
$$(x-7)^2 + (y+5)^2 = 52$$
 F $(x-1)^2 + (y-5)^2 = 26$

$$F (x-1)^2 + (y-5)^2 = 26$$

A point *P* lies on the curve with equation $x^2 + y^2 - 6x + 8y = 24$ 6)

What is the difference between the greatest and least possible values of the length *OP*, where *O* is the origin.

- A 2
- B 7
- C 10
- D 12
- E 14

The diagram shows a circle with equation $x^2 + (y - 4)^2 = 12$ and lines l_1 and l_2 which are 7) tangents to the circle at A and B.

Find the area of the shaded region enclosed by the circle and the lines l_1 and l_2 .

- B $2\sqrt{3} \pi$ C $\frac{3\pi}{2}$ D $4\sqrt{3} 2\pi$ E $2\sqrt{3} + \pi$

The diagram shows a square PQRS with vertices at the points P (1,1), Q (3,5), R (7,3) S (5,-1). 8) The square is circumscribed by the circle C₁ and inscribed by the circle C₂ Find the area of the annulus between these two circles.

- A $(\sqrt{10} \sqrt{5})\pi$ B 2π C 5π D $\frac{5\pi}{2}$ E $\sqrt{5}\pi$

- Find the area bounded by the graphs $y = \sqrt{2 x^2}$ and $x + (\sqrt{2} 1)y = \sqrt{2}$ 9)

 - (a) $\frac{\pi}{4} \frac{1}{\sqrt{2}}$ (b) $\frac{\sin\sqrt{2}}{\sqrt{2}}$ (c) $\frac{\pi}{2\sqrt{2}}$ (d) $\frac{\pi^2}{6}$

10) The lines given by the following equations are perpendicular.

$$(1+\sqrt{3})y = px + 5$$
 $y = (2-\sqrt{3})x + 8$

$$y = (2 - \sqrt{3})x + 8$$

What is the value of p?

A
$$-5 - 3\sqrt{3}$$

B
$$-5 + 3\sqrt{3}$$

C
$$5 - 3\sqrt{3}$$

D
$$5 + 3\sqrt{3}$$

Let a and b be positive real numbers such that $a \le b$ 11) Given that $x^2 + y^2 \le 1$ then the largest value that ax + by can equal is:

A
$$a+b$$

B
$$b$$

$$C \qquad \sqrt{a^2 + b^2}$$

$$D a^2 + ab + b^2$$

$$E \qquad \frac{1}{a} + \frac{1}{b}$$