Computer Architecture - Assignment 2

Part 1

1.

Hex: 130F204B3C Decimal: 81.858.153.276

```
32154AAAA
                      DA+2=10+2=12=C
                      2) A+9=10+9=19=13
  FEDCBA092
                      3) 1+A+0=11=B
                      4) A+A = 10+10 = 20 = 14
 130F2Q4B3C
                      s) 1+4+B=1+4+11=16=10
                      6) 1+5+ (=1+5+12=18=12
                      7) 1+1+D=1+1+13=15=F
                      8) 2+E = 2+14=16=10
x C=12 × 160 = 12
                      g) 1+3+F= 1+3+15=19=13
 3 = 3 x 16' = 48
B=11x162 = 2816
4=4×163 = 16,384
0=0×164 = = 0
2=2×165 = 2,097,152
                                  Mex = 130F204B3C
                               Decimal = 81858153,276
F=15x166 = 251,658,240
0 = 0 x (6 = 0
3=3×168 = 12884901888
1=1x163=68719476,736
```

2.

Use division by 16 repeatedly and note down the remainders 4048891811/16, quotient 253055738, remainder 3. 253055738/16, quotient 15815983, remainder 10 = A. 15815983/16, quotient 988498, remainder is 15 = F. 988498/16, quotient 61781, remainder is 2. 61781/16, quotient 3861, remainder is 5. 3861/16, quotient 241, remainder is 5. 241/16, quotient 15, remainder is 1. 15 = F

Hex: F1552FA3

4.

Binary	Octal	Decimal	Hexadecimal
000	0	0	0
001	1	1	1
010	2	2	2
011	3	3	3
100	4	4	4
101	5	5	5
110	6	6	6
111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	А
1011	13	11	В
1100	14	12	С
1101	15	13	D
1110	16	14	E
1111	17	15	F
10000	20	16	10

11/2 = 5,1	12/2=6,0	13/2=6,1	14/2=7,0
5/2 = 2,1	6/2=3,0	6/2 = 3,0	7/2 = 3,1
2/2 = 1,0	3/2=1,1	3/2 = 1,1	3/2=1,1
1=1	151	1=1	1=1
11 = 10	12=1100	13=1101	14=1110
		11/2 12	12/8 11.
15/2=7,1	16/2=8,0		12/8 = 1,4
7/2=3,1 3/2=1,1	8/2 = 4,0	1=1	1 = 1
1=1	2/2 = 1,0	11 = 13	12 = 14
15=1111	121		
	16 = 10000	13/8= 1,5	14/8=1,6
		1=1	1:1
		13 = 15	14:16
		15/8=1,7	16/8:2,0
		1:1	2:2
		15=17	16=20

Part 2

NAND Gate:

Boolean Expression: $X = \sim (A \& B)$

Truth Table:

Α	В	X
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate:

Boolean Expression: $X = \sim (A \mid B)$

Truth Table:

Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	0

XOR Gate:

Boolean Expression: X = A ⊕ B (XOR is represented by ⊕ symbol)

Truth Table:

Α	В	Χ
0	0	0
0	1	1
1	0	1
1	1	0

NOT Gate:

Boolean Expression: $X = \sim A$

Truth Table:

A X 0 1 1 0

3-input AND Gate:

Boolean Expression: X = A & B & C

Truth Table:

Α	В	С	Χ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Part 3. The Significance of Studying Fixed-Point Number Manipulation

The study of manipulating fixed-point numbers holds substantial importance in the fields of computer science and engineering. Fixed-point arithmetic enables precise numerical computations in systems with limited resources or lacking floating-point hardware support. This article explores the significance of studying fixed-point number manipulation and provides examples of real-world systems where fixed-point arithmetic plays a vital role.

One key reason to study fixed-point number manipulation is its ability to enhance efficiency and optimization in resource-constrained environments. By utilizing fixed-point representation, complex floating-point operations can be simplified, leading to faster execution and reduced memory requirements. For instance, digital signal processing algorithms extensively utilize fixed-point arithmetic to improve performance. In audio and video processing, telecommunications, and real-time control systems, fixed-point arithmetic offers more efficient computations compared to floating-point alternatives.

Another important domain where the study of fixed-point manipulation is crucial is in embedded systems and low-power devices. These systems often operate under strict limitations of processing power, memory, and energy consumption. By implementing fixed-point arithmetic, efficient mathematical operations can be executed, resulting in cost-effective and energy-efficient solutions. Consider the example of microcontrollers, smartphones, and IoT devices. These devices rely on fixed-point arithmetic to perform calculations within the constraints of limited resources. By optimizing energy usage through fixed-point manipulation, battery-powered devices can operate for extended periods in remote or inaccessible locations.

Fixed-point arithmetic is essential for real-time systems and control applications that require precise and deterministic calculations. In these systems, fixed-point arithmetic offers predictable behavior, enabling timely responses and stability. Take the example of autonomous vehicles, industrial automation, and aerospace systems. Fixed-point arithmetic ensures accurate computations for safe and reliable operations. In control systems, where stability and

performance are paramount, fixed-point manipulation plays a critical role. Research has shown that fixed-point arithmetic achieves high performance and stability in control applications, enabling precise control of complex systems.

The study of fixed-point number manipulation is vital for simulating and designing hardware systems. By accurately representing the behavior of digital systems using fixed-point arithmetic, designers can analyze and optimize system performance. This allows for identifying design flaws and enhancing system robustness before fabrication. Fixed-point modeling provides a closer approximation to the behavior of actual hardware systems, enabling efficient simulation and evaluation. For instance, in the design of integrated circuits, fixed-point arithmetic is used to evaluate system performance and ensure reliable operation.

In summery, the study of fixed-point number manipulation is essential due to its ability to enhance efficiency, optimize computations, and enable precise calculations in various real-world systems. From embedded systems to control applications, digital signal processing, and hardware design, fixed-point arithmetic plays a vital role, driving advancements and innovation across diverse domains of computing.