

# DECOMPOSITIONS OF CARTESIAN PRODUCTS OF CYCLES

Moriah Aberle, Sarah Gold, Rivkah Moshe

Denison University, Haverford College, Boston University Advisor: David Offner, Carnegie Mellon University suamilogo.png

### Graph Decompositions

**Definition 1 (Graph)** A graph G is a set of vertices V(G) along with a set of edges E(G) where each edge "connects" two vertices.

**Definition 2 (Cycle)** A cycle of length k, denoted  $C_k$  has k vertices, ordered cyclically, with edges between consecutive vertices.

**Example:** Two representations of  $C_6$ .

**Definition 3 (Cartesian product)** The Cartesian product of two graphs G and H, written  $G \square H$ , is the graph with vertex set  $V(G) \times V(H)$ , where an edge  $e = (u,v)(u',v') \in E(G \square H)$  if u = u' and  $vv' \in E(H)$ , or if v = v' and  $uu' \in E(G)$ .

**Definition 4 (Decomposition)** A decomposition of a graph is a partition of the edges of the graph into copies of a fixed subgraph.

**Example:**  $C_4 \square C_6$  decomposed into copies of  $C_4$  (left) and  $C_{24}$  (right).



**Example:**  $C_8 \square C_{18}$  decomposed into copies of  $C_{96}$ .



Motivating Theorem (Kotzig, 1973)  $C_{mn}$  decomposes  $C_m \square C_n$ .

#### Research Questions:

- Given m and n, what cycles  $C_k$  decompose  $C_m \square C_n$ ?
- Given a cycle length k, what Cartesian products  $C_m \square C_n$  does  $C_k$  decompose?

Theorem 5 (Divisibility Criterion) If  $C_k$  decomposes  $C_m \square C_n$ , then k divides the number of edges,  $2 \cdot m \cdot n$ .

Theorem 6  $C_4$  decomposes  $C_m \square C_n \iff 2 \mid m, n$ .

## Decomposing where $4 \mid m$ and $4 \mid n$

**Theorem 7** Let  $G = C_m \square C_n$  where  $4 \mid m$  and  $4 \mid n$ . If  $4 \mid k$  and  $k \mid mn$ , then  $C_k$  decomposes G.

**Proof:** Cycle combination operation:



From a decomposition of  $C_n \square C_m$  into copies of  $C_4$ , number selected locations where cycle combination operation can be applied, and perform operation. Demonstrated with a decomposition of  $C_{12} \square C_8$  into copies of  $C_{12}$ .



If  $gcd(m, n) \neq 2^i$ , for some cycle lengths it is necessary to perform a second phase of the cycle combination operation. Shown below: decomposition of  $C_{12} \square C_{24}$  into copies of  $C_{36}$ .



This method produces most of the possible decompositions of  $C_m \square C_n$  when m and n are multiples of 4.

## Decomposing into 3 Cycles

**Theorem 8** If  $3 \mid m$  or  $3 \mid n$ , then it is possible to decompose  $C_m \square C_n$  into three cycles of length  $\frac{2mn}{3}$ .

**Proof:** Without loss of generality, assume  $3 \mid n$ . If m is odd, Structure for arbitrary size:



If m is even,



Case 2: m = 42a) n is even



2b) n is odd



Case 3:  $m \ge 6$ 



• The  $C_8 \square C_{18}$  decomposition into 3 cycles in Column 1 demonstrates Case 3a for a larger n.

3b) n is odd



#### Decomposing into $C_6$

**Theorem 9** The graph  $C_m \square C_n$  can be decomposed into copies of  $C_6$  if and only if m = n = 3, or n = 6 and  $4 \mid m$ .

#### Example:

Left: The blue edges cannot be a part of  $C_6$ . Right:  $C_4 \square C_6$  decomposed into copies of  $C_6$ .



### "Wrapping" and Odd Cycles

**Theorem 10** If  $C_k$  decomposes the graph  $C_m \square C_n$ , then  $k = 2\ell + mp + nq$ 

for  $p, q \in \mathbb{N}$ .

For a given cycle, we interpret p to be the number of times the cycle "wraps around" the torus vertically and q the number of times the cycle wraps around the torus horizontally.

**Example**:  $C_4 \square C_6$  decomposed into copies of  $C_{16}$ .



**Theorem 11** If k is odd and m, n > k, then  $C_k$  does not decompose  $C_m \square C_n$ .

**Theorem 12** If n and m are odd and n < 2m, then  $C_n$  decomposes  $C_m \square C_n$ .

**Example:**  $C_9$  decomposing  $C_7 \square C_9$  (left) and  $C_{11}$  decomposing  $C_7 \square C_{11}$  (right).



# References & Acknowledgements

gibson\_offner kotzig