Decision Trees

Review

- We introduced three styles of algorithms for linear classifiers:
 - 1) Perceptron learn classifier direction
 - 2) Logistic Regression learn P(Y | X)
 - 3) Linear Discriminant Analysis learn P(X,Y)
- Linear separability
 - A data set is linearly separable if there exists a linear hyperplane that separates positive examples from negative examples

Not linearly separable data

- Some data sets are not linearly separable!
- Option 1
 - Use non-linear features, e.g., polynomial basis functions
 - Learn linear classifiers in the non-linear feature space
 - Will discuss more later
- Option 2
 - Use non-linear classifiers (decision trees, neural networks, nearest neighbors etc.)

Decision Tree for Playing Tennis

Prediction is done by sending the example down the tree till a class assignment is reached

Definitions

Internal nodes

- Each test a feature
- Branch according to feature values
- Discrete features branching is naturally defined
- Continuous features branching by comparing to a threshold

Leaf nodes

Each assign a classification

Decision Tree Decision Boundaries

 Decision Trees divide the feature space into axis-parallel rectangles and label each rectangle with one of the K classes

Hypothesis Space of Decision Trees

- Decision trees provide a very popular and efficient hypothesis space
 - Deal with both Discrete and Continuous features
 - Variable size: as the # of nodes (or depth) of tree increases, the hypothesis space grows
 - Depth 1 ("decision stump") can represent any Boolean function of one feature
 - Depth 2: Any Boolean function of two features and some Boolean functions involving three features:
 - In general, can represent any Boolean functions

Decision Trees Can Represent Any Boolean Function

- If a target Boolean function has *n* inputs, there always exists a decision tree representing that target function.
- However, in the worst case, exponentially many nodes will be needed (why?)
 - 2ⁿ possible inputs to the function
 - In the worst case, we need to use one leaf node to represent each possible input

Learning Decision Trees

- Goal: Find a decision tree h that achieves minimum misclassification errors on the training data
- A trivial solution: just create a decision tree with one path from root to leaf for each training example
 - Bug: Such a tree would just memorize the training data. It would not generalize to new data points
- Solution 2: Find the <u>smallest</u> tree h that minimizes error
 - Bug: This is NP-Hard

Top-down Induction of Decision Trees

There are different ways to construct trees from data. We will focus on the top-down, greedy search approach:

Basic idea:

- 1. Choose the **best** feature a* for the root of the tree.
- 2. Separate training set **S** into subsets $\{S_1, S_2, ..., S_k\}$ where each subset S_i contains examples having the same value for a^* .
- 3. Recursively apply the algorithm on each new subset until all examples have the same class label.

Choosing Feature Based on Classification Error

Perform 1-step look-ahead search and choose the attribute that gives the lowest error rate on the training data

	i	I
x_2	x_3	y
0	0	1
0	1	0
1	0	1
1	1	1
0	0	0
0	1	1
1	0	0
	0 0 1 1 0	0 0 0 1 1 0 1 1 0 0 0 1

Training examples

Unfortunately, this measure does not always work well, because it does not detect cases where we are making "progress" toward a good tree

Entropy

Let X be a random variable with the following probability distribution

P(X=0)	P(X = 1)	
0.2	0.8	

The <u>entropy</u> of X, denoted H(X), is defined as

$$H(X) = -\sum_{x} P_X(x) \log_2 P_X(x)$$

- Entropy measures the uncertainty of a random variable
- The larger the entropy, the more uncertain we are about the value of X
- If P(X=0)=0 (or 1), there is no uncertainty about the value of X, entropy = 0
- If P(X=0)=P(X=1)=0.5, the uncertainty is maximized, entropy = 1

Entropy

Entropy is a concave function downward

More About Entropy

Joint Entropy

$$H(X,Y) = -\sum_{x} \sum_{y} P(X = x, Y = y) \log P(X = x, Y = y)$$

Conditional Entropy is defined as

$$H(Y | X) = \sum_{x} P(X = x)H(Y | X = x)$$

= $-\sum_{x} P(X = x)\sum_{y} P(Y = y | X = x) \log P(Y = y | X = x)$

- The average surprise of Y when we know the value of X
- Entropy is additive

$$H(X,Y) = H(X) + H(Y \mid X)$$

Mutual Information

The <u>mutual information</u> between two random variables X and Y is defined as:

$$I(X,Y) = H(Y) - H(Y \mid X)$$

- the amount of information we learn about Y by knowing the value of X (and vice versa – it is symmetric).
- Consider the class Y of each training example and the value of feature X₁ to be random variables. The mutual information quantifies how much X₁ tells us about Y.

Choosing the Best Feature

 Choose the feature X_j that has the highest mutual information with Y - often referred to as the information gain criterion

$$\underset{j}{\operatorname{arg\,max}} I(X_{j}; Y) = \underset{j}{\operatorname{arg\,max}} H(Y) - H(Y \mid X_{j})$$
$$= \underset{j}{\operatorname{arg\,min}} H(Y \mid X_{j})$$

• Define $\widetilde{J}(j)$ to be the expected remaining uncertainty about y after testing x_i

$$\widetilde{J}(j) = H(Y | X_j) = \sum_{x} P(X_j = x) H(Y | X_j = x)$$

Choosing the Best Feature: A General View

Benefit of split =
$$U(S) - [P_L^*U(S_L) + P_R^*U(S_R)]$$

Expected Remaining Uncertainty (Impurity)

Measures of Uncertainty		
Error	$min\{p, 1-p\}$	
Entropy	$-p\log p - (1-p)\log 1 - p$	
Gini Index	2p(1-p)	

Multi-nomial Features

- Multiple discrete values
 - Method 1: Construct multi-way split
 - Information Gain will tend to prefer multi-way split
 - To avoid this bias, we rescale the information gain:

Correction: the correct objective should be argmax
$$I(X_j, Y)/H(X_j)$$
 arg min
$$\frac{H(Y|X_j)}{H(X_j)} = \arg\min_{j} \frac{\sum_{x} P(X_j = x) H(Y|X_j = x)}{-\sum_{x} P(X_j = x) \log P(X_j = x)}$$

- Method 2: Test for one value versus all of the others
- Method 3: Group the values into two disjoint sets and test one set against the other

Continuous Features

- Test against a threshold
- How to compute the best threshold θ_j for X_j ?
 - Sort the examples according to X_i.
 - Move the threshold θ from the smallest to the largest value
 - Select θ that gives the best information gain
 - Only need to compute information gain when class label changes

Continuous Features

• Information gain for θ = 1.2 is 0.2294

 Information gain only needs to be computer when class label changes

Top-down Induction of Decision Trees

There are different ways to construct trees from data. We will focus on the top-down, greedy search approach:

Basic idea:

- 1. Choose the **best** feature a* for the root of the tree.
- 2. Separate training set **S** into subsets $\{S_1, S_2, ..., S_k\}$ where each subset S_i contains examples having the same value for a^* .
- 3. Recursively apply the algorithm on each new subset until all examples have the same class label.

Over-fitting

- Decision tree has a very flexible hypothesis space
- As the nodes increase, we can represent arbitrarily complex decision boundaries – training set error is always zero
- This can lead to over-fitting

Over-fitting

Avoid Overfitting

- Early stop
 - Stop growing the tree when data split does not differ significantly different from random split
- Post pruning
 - Separate training data into training set and validating set
 - Evaluate impact on validation set when pruning each possible node
 - Greedily remove the one that most improve the validation set performance

Effect of Pruning

Decision Tree Summary

- DT one of the most popular machine learning tools
 - Easy to understand
 - Easy to implement
 - Easy to use
 - Computationally cheap
- Information gain to select features (ID3, C4.5 ...)
- DT over-fits
 - Training error can always reach zero
- To avoid overfitting:
 - Early stopping
 - Pruning