

Model Optimization and Tuning Phase Template

Date	16th October 2024
Team ID	LTVIP2024TMID24968
Project Title	TrafficTelligence Advanced Traffic Volume Estimation with Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Linear Regression	<pre>linear_reg = LinearRegression() linear_reg.fit(x_train, y_train) v</pre>	print("Linear Regression Test set MSE:", mse_linear) print("R2 score after tunning: " , r2_linear) <pre></pre>
Decision Tree Regressor	An explanation of the control of the	SELEN - RESPONDENCE PROPERTY SERVICES PLET - MITIGARY SERVICES, ALTERNATIVE SERVICES POINT THE ARTER AS A SERVICES OF THE SERVICES AS A SERVICES OF THE SERV

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric
Linear Regression	#linear regression regression_report(y_test,y_pred_linear) <pre></pre>

#desicion tree regression_report(y_test,y_pred_dt) √ 0.0s **Decision Tree** Regression Report: Mean Absolute Error: 603.994188573295 Regressor Mean Squared Error: 834649.5839893497 Root Mean Squared Error: 913.5915848941198 R² Score: 0.7888840972678335 Explained Variance Score: 0.7889080572908945 #random forest regression regression_report(y_test,y_pred_rf) √ 0.0s Random Forest Regression Report: Mean Absolute Error: 494.55865435812325 Regressor Mean Squared Error: 611318.5661813644 Root Mean Squared Error: 781.8686374202282 R2 Score: 0.8453733477713454 Explained Variance Score: 0.8454733422423539 regression_report(y_test,y_pred_svr) ✓ 0.0s Regression Report: **SVR** Mean Absolute Error: 982.2159131619221 Mean Squared Error: 1581673.1045859398 Root Mean Squared Error: 1257.64585817548 R2 Score: 0.5999322928960928 Explained Variance Score: 0.604402149108233

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Extreme Gradient Boosting	XGBoost was chosen as the final optimized model due to its high predictive accuracy and efficiency. Its built-in regularization helped prevent overfitting, while its ability to handle missing values simplified preprocessing. Additionally, XGBoost provides valuable insights into feature importance, enhancing interpretability and model refinement to align with project objectives. justifying it as a final model