Reconnaissance de la parole continue à grand vocabulaire

Modélisation acoustique et décodage

C. Barras éléments de cours de F. Yvon, A. Allauzen, H. Schwenk, M. Adda-Decker

LIMSI-CNRS & Université Paris-Sud

décembre 2017

Plan

- Vue d'ensemble
- Modélisation acoustique
 - La base : les HMMs
 - Apprentissage des modèles acoustiques
 - Transcrire la parole
 - Les ressources lexicales
 - Apprentissage acoustique, un bilan
 - Adaptation des modèles acoustiques
 - Réseaux de neurones pour la parole
- 3 Décoder la parole
 - Décodage par Viterbi
 - Le graphe de recherche
 - Algorithmes de recherche

Reconnaître la parole = transcrire les sons

- un cas d'école : la dictée
 ⇒ la parole comme interface de saisie
- l'écrit comme support : indexer des documents audio
 ⇒ l'écrit comme représentation alternative efficace
- traduction de la parole ⇒ l'écrit comme représentation intermédiaire
- interfaces et commandes vocales : pourquoi transcrire?

Reconnaissance de parole : le paradigme statistique

Le problème

Étant donné un signal $X = X_1...X_T$, trouver parmi tous les énoncés possibles celui qui s'accorde le mieux avec le signal.

Décision statistique

Trouver $w^* \in V^*$ tel que :

$$w^*$$
 = argmax $P(w_1^n \mid X_1^T)$
 = argmax $P(X_1^T \mid w_1^n)P(w_1^n)$

Trois soucis:

- modéliser $P(x_1^T \mid w_1^n)$: fourni par le modèle acoustique
- modéliser $P(w_1^n)$: fourni par le modèle linguistique
- calculer l'argmax : algorithmes de recherche

Reconnaître la parole "naturelle"

- Grand vocabulaire :
 - la modélisation acoustique de chaque mot est impossible (taille des modèles, manque de données, vocabulaire dynamique)
 - forte confusion acoustique (homophones et quasi-homophones) : $l\epsilon = \{les, lait, laid, lez, laits, laids, l'est, l'es...\}$
 - l'ensemble des énoncés possibles est infini
- Parole enchaînée (incertitude sur les frontières)
 - augmente la confusion acoustique : décodage, des codes âge, dé qu'ode à je...
 - modéliser la co-articulation et les ajustements phonologiques inter-mots (liaisons, élisions...)
- Parole "spontanée": lapsus, hésitations, faux départs, reprises, voix superposées, "bruits" (rires, cris, toux), etc

Difficultés de la reconnaissance vocale

Les solutions qui marchent

- Modélisation acoustique (HMM) d'unités courtes : phones, "triphones"
- Apprentissage statistique (HMM/GMM/DNN) sur des bases de données étiquetées
- Restriction à un vocabulaire de taille fini V
- Représentation phonétique des mots du vocabulaire
- Modélisation (déterministe ou probabiliste) de V^st
- ullet Recherche heuristique dans $H\subset V^*$

La parole? Un flux de paramètres

- analyse locale de fenêtres se recouvrant \Rightarrow vecteur de paramètres (cepstres, LPC...)
- modélisation de la dynamique : ajout des "dérivées" premières et seconde

 \Rightarrow flux discret de vecteurs acoustiques (trames) (\approx 100/s)

Plan

- Vue d'ensemble
- Modélisation acoustique
 - La base : les HMMs
 - Apprentissage des modèles acoustiques
 - Transcrire la parole
 - Les ressources lexicales
 - Apprentissage acoustique, un bilan
 - Adaptation des modèles acoustiques
 - Réseaux de neurones pour la parole
- Opécoder la parole
 - Décodage par Viterbi
 - Le graphe de recherche
 - Algorithmes de recherche

Plan

- Vue d'ensemble
- 2 Modélisation acoustique
 - La base : les HMMs
 - Apprentissage des modèles acoustiques
 - Transcrire la parole
 - Les ressources lexicales
 - Apprentissage acoustique, un bilan
 - Adaptation des modèles acoustiques
 - Réseaux de neurones pour la parole
- Opécoder la parole
 - Décodage par Viterbi
 - Le graphe de recherche
 - Algorithmes de recherche

Probabiliser des séquences : les HMM

- un HMM est une machine à états
- une matrice stochastique spécifie les changements d'états
- ullet à chaque état est associé un mécanisme de tirage aléatoire sur un ensemble ${\mathcal X}$

Générer des observations avec un HMM

- tirer un état initial q_O , $t = t_0$
- répéter :
 - 1 tirer l'observation x_t avec le mécanisme de tirage de q_t
 - 2 tirer le nouvel état q_{t+1}
- exemple : promenade de l'ivrogne

Modèles de Markov Cachés

Définition

Un modèle de Markov est défini par $(Q, \mathcal{X}, \pi, \mathbf{A}, \mathbf{B})$.

- Q est un ensemble (fini) d'états,
- π le vecteur des probabilités initiales : $\pi(i) = P(q_0 = s_i)$,
- A la matrice de transition : $a(i,j) = P(q_t = s_i | q_{t-1} = s_i) = P(s_i | s_i)$
- X est l'espace des observations,
- b(i,x) spécifie la loi des observations x pour s_i : $b(i,x) = P(x|q_t = s_i) = P(x|s_i)$

 θ note l'ensemble des paramètres : π , \mathbf{A} , \mathbf{B}

Des HMMs pour les sons

orientation temporelle : pas de retour (modèle de Bakis)

- ⇒ chaque état modélise un segment de la séquence sonore
- la loi des obervations $(\in \mathbb{R}^n)$:
 - un *mélange* de n_i gaussiennes $(\sum_k \lambda_k = 1)$

$$b(x,i) = \sum_{k=1}^{n_i} \lambda_k \frac{1}{(2\pi)^{n/2} |\Sigma_{i,k}|^{1/2}} \exp(-\frac{(\mathbf{x} - \mu_{i,k})^T \Sigma_{i,k}^{-1} (\mathbf{x} - \mu_{i,k})}{2})$$

- ⇒ les composantes du mélange modélisent différentes classes de locuteurs
- la sortie d'un réseau de neurones

Générer des observations

- un HMM M à p états $s_1 \dots s_{|S|}$, paramétré par θ
- la probabilité de générer une séquence $x_{1,T} = x_1 \dots x_T \ (T > Q)$ le long du chemin $q_{1,T} = q_1 \dots q_T$?

$$P(x_{1,T}, q_{1,T}) = \pi(q_1)P(x_1|q_1)\prod_{t=2}^{T}P(q_t|q_{t-1})P(x_t|q_t)$$

$$= \pi(q_1)b(x_1, q_1)\prod_{t=2}^{T}a(q_{t-1}, q_t)b(x_t, q_t)$$

- deux problèmes voisins :
 - la probabilité que $x_{1,T}$ soit émise par M? \Rightarrow sommer sur toutes les séquences d'états de longueur T
 - la séquence d'états la plus probable sachant $x_{1,T}$? \Rightarrow maximiser sur toutes les séquences d'états.
- résolution par programmation dynamique

Décoder avec un HMM

Position du problème

Connaissant θ , observant $x_{1,T}$, quelle est la séquence d'états la plus probable?

$$q_{1,T}^* = \operatorname{argmax} q_{1,T} P(q_{1,T}|x_{1,T},\theta) = \operatorname{argmax} q_{1,T} P(q_{1,T},x_{1,T}|\theta)$$

Résolution par programmation dynamique

 $\delta_t(i)$ est la probabilité de la meilleure séquence émettant $x_{1,t}$ et arrivant en t dans l'état s_i :

$$\delta_t(i) = \max_{(q_1, \dots, q_{t-1})} P(q_1, \dots, q_{t-1}, q_t = s_i, x_1, \dots, x_t | \theta)$$

Algorithme de Viterbi

Calcul itératif de $\delta_t(i)$, en gardant la trace de la meilleure séquence dans $\psi_t(i)$:

- Initialisation :
 - $\delta_1(i) = \pi(i)b(q_1, x_1)$ et $\psi_1(i) = 0$ pour $1 \le i \le |S|$.
- **2 Récurrence** pour $t = 1 \dots T$:

$$\begin{array}{l} \delta_t(i) = \max_{1 \leq j \leq |S|} \delta_{t-1}(j) a(j,i)) b(s_i,x_t) \text{ pour } 1 \leq j \leq |S| \\ \psi_t(i) = \operatorname{argmax}_{1 < j < |S|} \delta_{t-1}(j) a(j,i)) b(s_i,x_t) \text{ pour } 1 \leq j \leq |S| \end{array}$$

- **6** Fin :
 - $P^* = \max_{1 \le i \le |S|} \delta_T(i)$, et $q_n^* = \operatorname{argmax}_{1 \le i \le |S|} \delta_T(i)$
- 4 Le meilleur chemin est obtenu par backtracking (retour arrière) : $q_{*}^{*} = \psi_{t+1}(q_{*+1}^{*})$

Complexité? $O(T * |S|^2)$

Aligner la parole : le problème

- Données :
 - un HMM (Gauche-Droit) à m états modélisant un mot
 - un enregistrement de ce mot $\{x_t, t = 1 \dots T\}$
- Imputation des trames aux états $|\mathcal{S}|^T$ possibilités?
 - q1q1q2q2q2q2q3....qTqT
 - q1q1q1q2q2q3q3....qt-1qT
 - q1q1q1q2q2q3q3....qTqT
 - ..
- Application : localiser début et fin des différentes parties du mot, apprendre les lois d'émission
- Formellement :

$$\operatorname{argmax} q_{1,T} P(q_{1,T} | x_{1,T}, \theta) = \operatorname{argmax} q_{1,T} P(q_{1,T}, x_{1,T} | \theta)$$

⇒ un problème pour Viterbi!

Aligner la parole avec Viterbi

alignement : $s_1/x_1, s_1/x_2, s_2/x_3, s_3/x_3...$

Reconnaître deux mots avec Viterbi

Le meilleur état (s_5 ou t_5) à t =T désigne le mot le plus probable x_4, t_4 $\delta_4(1)$ $\gamma_4(1)$ $\delta_4(2)$ $\gamma_4(2)$ $\delta_4(3)$ $\gamma_4(3)$ $\delta_4(4)$ $\gamma_4(4)$ $\delta_3(1) \quad \gamma_3(1) \quad \delta_3(2) \quad \gamma_3(2) \quad \delta_3(3) \quad \gamma_3(3)$ x_3, t_3 $x_2, t_2 \mid \delta_2(1) \quad \gamma_2(1) \quad \delta_2(2) \quad \gamma_2(2)$ $\delta_1(1) \quad \gamma_1(1)$ x_1, t_1 a(1,1)a(3,3)a(5,5)a(2,3)a(1,2)a(3,4)a(4,5)

$$\longrightarrow \begin{array}{c} t_1 \\ \hline \\ \end{array} \xrightarrow{a(1,2)} \begin{array}{c} t_2 \\ \hline \end{array} \xrightarrow{a(2,3)} \begin{array}{c} t_3 \\ \hline \end{array} \xrightarrow{a(3,4)} \begin{array}{c} t_4 \\ \hline \end{array} \xrightarrow{a(4,5)} \begin{array}{c} t_5 \\ \hline \end{array}$$

n mots en compétition

Plan

- Vue d'ensemble
- 2 Modélisation acoustique
 - La base : les HMMs
 - Apprentissage des modèles acoustiques
 - Transcrire la parole
 - Les ressources lexicales
 - Apprentissage acoustique, un bilan
 - Adaptation des modèles acoustiques
 - Réseaux de neurones pour la parole
- Opécoder la parole
 - Décodage par Viterbi
 - Le graphe de recherche
 - Algorithmes de recherche

Les unités acoustiques et leur représentation

- P(X|W) est calculée par un HMM.
 - un HMM pour chaque phrase? est-ce utile? faisable?
 - un HMM pour chaque mot?
 - demande de fixer la forme du modèle mot par mot
 - et des données d'apprentissage suffisantes...
 - possible en petit vocabulaire (chiffres, commandes), irréaliste pour des vocabulaires plus grands
 - un HMM par syllabe? par phonème? par diphone?
 - hypothèse simplificatrice : tous les modèles ont la même forme (gauche-droit, entre 3 à 5 états)
 - · modélisation de la co-articulation
 - ⇒ un HMM par phone en contexte (/x-y+z/) : "triphones", "quintiphones".

Apprendre des modèles acoustiques

Estimer:

Avec des enregistrements :

Apprentissage acoustique : traitement d'une phrase

Plan

- Vue d'ensemble
- 2 Modélisation acoustique
 - La base : les HMMs
 - Apprentissage des modèles acoustiques
 - Transcrire la parole
 - Les ressources lexicales
 - Apprentissage acoustique, un bilan
 - Adaptation des modèles acoustiques
 - Réseaux de neurones pour la parole
- Opécoder la parole
 - Décodage par Viterbi
 - Le graphe de recherche
 - Algorithmes de recherche

Deux ressources indispensables

- des transcriptions « fidèles » des données d'apprentissage
 - représentant la variété des locuteurs (hommes/femmes, accents, style, etc)
 - des conditions d'enregistrement (micros, bruits,...)
 - et des conditions d'élocution
- des dictionnaires
 - contenant les variantes de prononciation...
 - leurs probabilités...
 - et leur contexte d'apparition

Produire des transcriptions

- segmenter la parole : indices acoustiques ou indices linguistiques
 - les "phrases" orales
 - une approche purement acoustique : HMM à deux états (silence/parole)
- réécrire la parole :
 - normaliser l'écriture (notamment les extra lexicaux) et la segmentation en mots
 - noter les "disfluences" : pauses remplies, hésitations, faux-départs, etc
 - noter/modéliser les autres évènements acoustiques (inspirations, bruits de bouches...)?

Plan

- Vue d'ensemble
- 2 Modélisation acoustique
 - La base : les HMMs
 - Apprentissage des modèles acoustiques
 - Transcrire la parole
 - Les ressources lexicales
 - Apprentissage acoustique, un bilan
 - Adaptation des modèles acoustiques
 - Réseaux de neurones pour la parole
- Décoder la parole
 - Décodage par Viterbi
 - Le graphe de recherche
 - Algorithmes de recherche

Dictionnaires pour la reconnaissance

- Modélisation de la variabilité?
 - degré de finesse, nombre de variantes
 - probabilisation des variantes
 - modélisation des effets de coarticulation
 - phénomènes phonologiques intra-mots (liaisons, élisions...) et variantes contextuelles
- Production des transcriptions :
 - méthodes à base de règles
 - méthodes à base de données

La règle de récriture contextuelle

```
    ai → /ε/ / _ (maison, saine...)
    g → /ʒ/ / _ e (mangeais, vengeance...)
    a → /ε/ / _ i (maison, saine...)
    i → /ε/ / a _ (maison, saine...)
```

 $GS \rightarrow PC / CG _ RD$

Il y a toujours plus d'une façon de faire les choses!

⇒ Penser à la productivité / pertinence linguistique; maintenabilité (conflits/interactions entre règles)...

Gérer une collection de règles

Séquencement des règles

```
1. \operatorname{aill} \to /\operatorname{aj} / \operatorname{trav} = V (travailleur)

2. \operatorname{aill} \to /\operatorname{aj} / = V (caille)

3. \operatorname{ain} \to /\widetilde{\epsilon} / = C,# (vain)

4. \operatorname{ai} \to /\operatorname{e} / = S (faisan, faiseur)

5. \operatorname{ai} \to /\operatorname{e} / = S (aigle, faisceau)

6. \operatorname{a} \to \operatorname{a} / = S (la)
```

Ordre : du plus spécifique au plus général, la première règle applicable s'applique, pas de retour arrière.

Récriture complète d'une forme graphique

Forme graphique	Règles	Sortie
chasseur	$ch \rightarrow /\int /$ _	\1\
chas seur ↑	$a \rightarrow /a//$	/ʃa/
chasseur	ss \rightarrow /s/ / _	/ʃas/
chas seur	${ m eu} ightarrow / { m ce}/$ / _ [rlpbvfiy]	/∫asœ/
chas seur	$r o /r /$ _	\lascer\

Classes, Contextes et méta-contextes

```
an → /ã/ / _ [bcdfgjklmpqrstvwxz#] (manger, danser...)
an → /ã/ / _ C,# (manger, danser...)
où C = [bcdfgjklmpqrstvwxz] (mais que fait p dans cette liste?)
ill → /ij/ / C _ (bille, fillette...)
```

- ill \rightarrow /ij/ / C _ (bille, fillette...) où C = [bcdf(gu)jklmp(qu)rstvwxyz] (en fait, les consonnes phonétiques)
- e \rightarrow /e/ / _ ((C|CD)V)+[o]# (banderillo, azulejo...), où C représente les consonnes, CD les consonnes doubles, V les voyelles.
- ea \rightarrow /i/ / _ [L_{eng}] (stream, dealer...) où L_{eng} liste les lexies d'origine anglaise.
- gin \rightarrow /dzin/ / # _ # (gin)

Utiliser un ensemble de règles

- parcours linéaire
- indexation
- organisation arborescente
- compilation de la machine à états finis correspondante
- gestion du non-déterminisme (variantes)

Quelques leçons

- un mot n'est pas qu'une suite de lettres : analyse de la structure
- les caractéristiques linguistiques (origine, catégorie morpho-syntaxique) des mots influent leur prononciation :
 - ⇒ typage des mots (étiquetage morpho-syntaxique)
- toutes les graphies ne sont pas des mots linguistiques :
 - ⇒ traitement des extra-lexicaux
- le contexte (phonologique, syntaxique, sémantique, pragmatique) influence la prononciation
- écrire/maintenir des règles est difficile : mélange des connaissances de niveaux distincts (morphologie, phonologie, syntaxe?)

Des prononciation aux HMMs

Chaque mot du vocabulaire V est représenté par sa ou ses transcriptions phonétiques :

m'edecine
ightarrow medəsin, medsin, metsin, metsin...

Chaque symbole phonétique correspond à un $HMM \Rightarrow$ construction d'un HMM de mot par composition formelle :

Avec des modèles contextuels (triphones)

Un modèle acoustique (HMM) différent pour *chaque phone en contexte* : triphone, pentaphone...

Triphone x[y]z: un modèle pour y précédé de x suivi de z. Pour médecine :

Plan

- Vue d'ensemble
- 2 Modélisation acoustique
 - La base : les HMMs
 - Apprentissage des modèles acoustiques
 - Transcrire la parole
 - Les ressources lexicales
 - Apprentissage acoustique, un bilan
 - Adaptation des modèles acoustiques
 - Réseaux de neurones pour la parole
- Décoder la parole
 - Décodage par Viterbi
 - Le graphe de recherche
 - Algorithmes de recherche

Apprentissage acoustique : vue d'ensemble (I)

- 1 Fixer un vocabulaire, un ensemble d'unités acoustique
- 2 Etant donné un corpus d'apprentissage (signal + transcriptions); pour chaque phrase w_1^n :
 - construire par concaténation des HMMs de mots un HMM pour w_1^n ;
 - attribution déterministe (Viterbi) ou probabiliste (forward/backward) des trames aux états:
- 3 Mise à jour des paramètres θ (composantes, moyennes, variances); mise à jour des modèles; retour en (2)

Apprentissage acoustique : vue d'ensemble (II)

```
input : S = \{x_1 : w_1 \dots x_n : w_n\} \in (\mathbb{R}^p)^* un ensemble d'échantillons transcrits
output : un ensemble de modèles
repeat
```

```
foreach x_1...x_T \in \mathcal{S} do
     M \leftarrow \texttt{ConstruireHMM}(\texttt{W}):
     ForwardBackward(M, x_1...x_T);
     foreach s, s' \in M, t = 1...T do
         p(s,t) = P(q_t = s | x_1...x_T);
         r(s, s', t) = P(q_t = s, q_{t+1} = s'|x_1...x_T):
         \mu_{s,k} \leftarrow \mu_{s,k} + p(s,t)x_{t,k};
         \Sigma_{s,k,k} \leftarrow \Sigma_{s,k,k} + p(s,t)x_{t,k}^2;
         a_{s,s'} \leftarrow a_{s,s'} + r(s,s',t);
(\mu, \Sigma, a) \leftarrow \text{UpdateParameters}()
```

until (Convergence des paramètres);

Quelques considérations pratiques

- 40 phones, 64000 (!) triphones, inégalement fréquents (eg. zzz)
- fusion (statistique ou linguistique) de contextes (eg. m[i]t, m[i]d, n[i]d...)
- 64000 (triphones) * 3 (états) * 16 (mixtures) * 2 (gaussiennes) * 39 (dimension) ≈ 240 millions (!!) de paramètres :
 ⇒ clustering de modèles, partage de paramètres
- robustesse & adaptation : au sexe, aux conditions (bande large vs étroite; bruit), au locuteur
- calcul des vraisemblances : évaluer 16 ou 32 gaussiennes par état 100 fois par seconde est coûteux ⇒ techniques de calcul rapide

Partage d'états : tying

Plan

- Vue d'ensemble
- 2 Modélisation acoustique
 - La base : les HMMs
 - Apprentissage des modèles acoustiques
 - Transcrire la parole
 - Les ressources lexicales
 - Apprentissage acoustique, un bilan
 - Adaptation des modèles acoustiques
 - Réseaux de neurones pour la parole
- Décoder la parole
 - Décodage par Viterbi
 - Le graphe de recherche
 - Algorithmes de recherche

Adaptation: Motivations

On ne sait pas (encore) construire des modèles acoustiques universels

- Performances en reconnaissance mono-locuteur aujourd'hui très bonnes
- Dégradation importante pour un autre locuteur, surtout du sexe opposé
 - les différentes réalisations d'un phonème sont trop dispersées dans l'espace acoustique et se superposent avec les réalisations d'autres phonèmes;
- Coût de la collecte des données pour chaque locuteur
- Reconnaissance de la parole continue indépendante du locuteur :
 - Grande base d'apprentissage (> 100h) avec beaucoup de locuteurs et des conditions acoustiques différentes pour les modèles acoustiques
 - Bonnes performances mais inférieures à un système mono-locuteur.
- ⇒ Une adaptation du système multi-locuteurs au locuteur ou aux conditions acoustiques est nécessaire

Adaptation : Différentes Catégories I

Suivant la disponibilité des transcriptions :

- Supervisé: on connaît la transcription des données utilisées pour l'adaptation (coûteux)
 - <u>exemple</u>: adaptation d'un système de dictée vocale *universelle* à un locuteur et aux conditions acoustiques particuliers.
- Non-supervisé : on ne connaît pas la transcription.
 - exemple : transcriptions des émissions radio- ou télévisées.
 On sait détecter les changements de locuteur et/ou conditions d'environnement :
- Faiblement supervisé : on connaît des transcriptions approximatives ;
 - <u>exemple</u>: transcriptions des émissions radio- ou télévisées
 - + closed captions / sous-titres

Adaptation : Différentes Catégories II

Valeurs adaptées :

- Les modèles : on adapte les paramètres des modèles en utilisant une quantité limitée de données – deux approches : MAP et MLLR
- L'espace de représentation : on essaie de diminuer la variabilité inter-locuteurs en transformant les données acoustiques approches : transformation linéaire (par morceau), réseaux de neurones

Quand l'adaptation est effectuée?

- Statique : off-line, en mode batch, lorsque un bloc entier de données est disponible.
- Incrémentale : en ligne, l'adaptation progresse au fur et à mesure que les données d'adaptation deviennent disponibles, par exemple après chaque phrase.

Adaptation VTLN

Normalisation acoustique par la longueur du conduit vocal (Vocal Track Length Normalisation, VTLN)

Principe : appliquer un coefficient de dilatation sur l'échelle des fréquences

Coefficient estimé par locuteur à l'aide d'un transcription approximative

Probabilité maximale a-posteriori (MAP) I

Principe:

- L'incertitude sur les paramètres des modèles Θ est reflétée par une densité de probabilité au lieu d'une valeur fixe;
- Au début on définit une distribution de probabilité a priori $p(\Theta)$ qui est en général très large (on ne sait rien sur Θ);
- Après l'observation des données, on calcule la distribution de probabilité a posteriori $p(\Theta|\mathbf{O})$ à l'aide du théorème de Bayes.

Probabilité maximale a-posteriori (MAP) II

Application à l'adaptation :

• Règle de Bayes :

$$\hat{\Theta} = \arg \max_{\Theta} P(\Theta|O)
= \arg \max_{\Theta} \frac{P(O|\Theta)p(\Theta)}{p(O)}
= \arg \max_{\Theta} P(O|\Theta)p(\Theta)$$

On retombe sur l'estimateur de vraisemblance maximale si $p(\Theta)$ a une distribution uniforme:

- La suite de la théorie est plutôt compliquée ...
- En pratique MLLR est plus rapide, mais MAP possède de meilleures performances asymptotiques.

Probabilité maximale a-posteriori (MAP) III

Mise en œuvre : cas de l'adaptation de la moyenne d'une gaussienne

$$\hat{\mu}_i = \frac{\gamma_i \mu_i^{\text{new}} + \tau \mu_i^{\text{prior}}}{\gamma_i + \tau}$$

avec γ_i "masse" des trames sur la gaussienne

Nécessite donc un modèle de départ (prior) et les données d'adaptation segmentées

Nécessite une quantité importante de données, sinon peu d'effet (note : lorsque l'on utilise autant de données que pour générer les modèles, l'estimation est équivalente à l'estimation standard MLE)

Adaptation MAP en Pratique

- Utilisé pour adapter des modèles générique aux locuteurs masculins et féminins.
- Surtout important pour la reconnaissance d'émissions radio- ou télévisées puisqu'il y a peu de locuteurs féminins
- Meilleurs résultats et plus rapide par rapport à l'apprentissage séparé sur les données masculines et féminine

Adaptation MLLR: Introduction

MLLR = Maximum Likelihood Linear Regression = régression linéaire de vraisemblance maximale

<u>ldée:</u>

- Déplacer les moyennes des mélanges de Gaussiennes des probabilités d'observation des HMMs de façon à ce que chaque état représente mieux les données d'adaptation
- Estimer un ensemble de transformations des vecteur de moyennes
- Remarque : on peut aussi transformer les matrices de covariance, mais pour des questions de faisabilité mathématique il faut se limiter aux matrices de covariance diagonale;

Adaptation MLLR: Transformation des Moyennes

$$\hat{\mu} = \mathbf{W}\mu + \mathbf{b}$$
 où $\mu = \text{vecteur de moyennes original}$ $\hat{\mu} = \text{vecteur de moyennes transformé}$ $\mathbf{W} = \text{matrice de transformation de dimension } d \times d$ $\mathbf{b} = \text{vecteur de biais de dimension } d$

Notation plus compacte:

$$\hat{\mu} = \tilde{\mathbf{W}} \tilde{\mu}$$
 où $\tilde{\mathbf{W}} = [\mathbf{bW}]$ $\tilde{\mu} = [1\mu_1 \dots \mu_d]$

 \Rightarrow il faut donc estimer d(d+1) paramètres pour chaque transformations

Adaptation MLLR: Transformation des Moyennes

Rappel: codage de la parole

$$\mu = \left[\begin{array}{c} \mu_s \\ \mu_\Delta \\ \mu_{\Delta^2} \end{array} \right] \qquad \text{où} \qquad \begin{array}{c} \mu_s = \text{moyennes des } 12 \text{ coefficients MFCC} \\ \mu_\Delta = \text{moyennes des } 13 \text{ coefficients delta} \\ \mu_{\Delta^2} = \text{moyennes des } 13 \text{ coefficients delta-delta} \end{array}$$

- On suppose qu'il n'y a pas de corrélation entre ces trois parties en ce qui concerne la transformation
 - → utilisation d'une matrice bloc diagonale
- ⇒ le nombre de paramètres des transformations à estimer est réduit
- ⇒ moins de données d'apprentissage sont nécessaires
 - exemple : $12^2 + 2 \times 13^2 = 482 \ll 38^2 = 1444$

Adaptation MLLR: Transformation des Matrices de Covariance

On se limite en général à des matrices de covariance diagonales :

$$\mathring{} = \left[egin{array}{cccc} \sigma_1 & & & 0 \ 0 & \sigma_2 & & 0 \ 0 & & \ddots & 0 \ 0 & & & \sigma_d \end{array}
ight]$$

Transformation de la matrice de covariance :

$$\Rightarrow \hat{\sigma} = \mathbf{V}\sigma$$
 où $\mathbf{V} = \begin{bmatrix} v_1 & 0 \\ 0 & v_2 & 0 \\ 0 & \ddots & 0 \\ 0 & & v_d \end{bmatrix}$

 \Rightarrow il faut donc estimer d paramètres pour chaque transformation

Adaptation MLLR contrainte

Même principe que MLLR mais la même matrice est utilisée pour transformer les moyennes et les variances

$$\hat{\mu} = W\mu$$

$$\hat{\Sigma} = W\Sigma W^T$$

Équivalent à une transformation des données

 $\hat{o} = Wo$ avec o = une observation

 $W = \text{matrice de transformation de dimension } d \times d$

ô = l'observation transformée

Classes de transformation : de 1 par état à 1 transformation globale Permet l'apprentissage adaptatif (*Speaker Adaptatif Training*, SAT)

Adaptation MLLR : Arbre de Regression I

Le nombre de transformations dépend de la quantité de données :

- Peu de données : on utilise une transformation globale la même transformation est appliquée à toutes les Gaussiennes
- Plus de données sont disponibles :
 plus de transformations sont possibles donnant une meilleure adaptation.
 Chaque transformation est plus spécifique et elle n'est appliquée
 qu'à un regroupement de plusieurs Gaussiennes.
- Cas limite : on utilise une transformation séparée pour chaque Gaussienne
 - nécessite énormément de données
 - les états non-utilisés ne sont pas adaptés
 - → le regroupement doit inclure tous les états
- Regroupements possibles : voyelles, nasales, plosives, ...

Adaptation MLLR: Arbre de Regression II

Meilleure approche:

- Le degré de partage des transformations dépend de la quantité de données
- Regroupement de toutes les distributions du modèle indépendant du locuteur
 → création d'un arbre de régression
- Lorsque les données d'adaptation sont disponibles, on parcourt l'arbre et on compte le nombre de distributions associées à chaque noeud terminal
- Si ce nombre dépasse un seuil une matrice de transformation est estimée pour toutes ces distributions
- Si ce nombre ne dépasse pas le seuil, les distributions sont regroupées un niveau plus haut dans l'arbre

Adaptation MLLR : Algorithme Supervisé

- Construire un système de reconnaissance indépendant du locuteur (en utilisant une grande base d'apprentissage avec une grande variété de locuteurs et de conditions acoustiques);
- Fixer le nombre de regroupements et construire l'arbre de régression
- Adapter le système à un nouveau locuteur :
 - obtenir un (court) signal du locuteur et sa transcription
 - faire une ou plusieurs itérations d'adaptation :
 - calculer les matrices de transformations en regroupant les états selon l'arbre de régression
 - calculer les nouveaux paramètres en appliquant les transformations
- On dispose maintenant d'un système adapté au nouveau locuteur

Adaptation MLLR: Algorithme Non-Supervisé

Le cas le plus souvent rencontré en pratique

Deux problèmes à résoudre :

- Il faut déterminer les changements de locuteur et/ou des conditions d'environnement
- → Pendant la phase de segmentation on regroupe des parties de parole avec des propriétés acoustiques proches (p.ex. même locuteur et/ou même conditions d'environnement).
 - Pendant la reconnaissance les modèles sont adaptés séparément à chaque bloc
- 2 On ne connaît pas les transcriptions
- → Utiliser la phrase reconnue par le système pour adapter les modèles En pratique les performances ne sont que légèrement inférieures à celles obtenues par une adaptation supervisée

Adaptation MLLR en Pratique

- Utilisé pour adapter des modèles génériques aux locuteurs et aux conditions acoustiques en utilisant la réponse actuel du système comme hypothèse
- Telephone Speech: adaptation au locuteur pour chaque conversation (il y a deux locuteurs). Gains de 3% absolue environ (13% relatif)
- Broadcast News : adaptation sur des regroupements qui sont déterminés automatiquement (locuteurs et/ou conditions acoustiques homogènes).

Plan

- Vue d'ensemble
- 2 Modélisation acoustique
 - La base : les HMMs
 - Apprentissage des modèles acoustiques
 - Transcrire la parole
 - Les ressources lexicales
 - Apprentissage acoustique, un bilan
 - Adaptation des modèles acoustiques
 - Réseaux de neurones pour la parole
- Opécoder la parole
 - Décodage par Viterbi
 - Le graphe de recherche
 - Algorithmes de recherche

Systèmes neuronaux en reconnaissance de parole

- nombreuses recherches publiées depuis 1990 avec des perceptrons multi-couches (MLP) et des réseaux récurrents.
 - · Bourlard, Robinson, Bengio, Gallinari, Waibel...
- pendant une dizaine d'années, pas de gain significatif par rapport aux systèmes probabilistes "classiques" (GMM/HMM)
- intégration aux systèmes "état de l'art" pour les modèles linguistiques (depuis 2002) et acoustiques (depuis 2006)
- le décodage reste effectué par programmation dynamique (Viterbi ou équivalent) - on assiste à une progression de la CTC (connectionist temporal classification) proposée par Graves en 2006.

Systèmes neuronaux en reconnaissance de parole

- Modèles linguistiques neuronaux
 - proposés par Y. Bengio en 2001
 - intégré dans les systèmes de reconnaissance du LIMSI depuis 2002 (en combinaison avec un modèle n-gram)
 - apport significatif (gain relatif de 5% en performance)
- Modèles acoustiques neuronaux
 - Systèmes hybrides MLP/HMM
 - les paramètres acoustiques sont traités par un MLP qui estime les probabilités a posteriori des phonèmes ou états phonétiques
 - la sortie du MLP remplace le GMM de l'état d'un HMM
 - une variante : des paramètres extraits du MLP précédent sont combinés aux paramètres acoustiques standards (MFCC)
 - le reste du système est généralement un HMM standard

Exemple de système acoustique hybride

- TRAP-DCT (Grezl & Fousek, 2008)
- Entrée : 19 bandes x 25 coefficients
- 3e couche (bottleneck) : 39 coefficients + PCA (décorrélation)
- 4e couche (sortie) : probabilités des états phonétiques (46 x 3)

Réseaux de neurones pour la parole

Montée en puissance des approches neuronales avec les réseaux profonds (DNN)

- réseaux convolutifs (CNN) appliqués à la sortie d'un banc de filtre
- réseaux récurrents (Bi-LSTM = bi-directionnal long-short-term memory networks) pour le traitement du flux audio
- application en transcription automatique (assistants vocaux Siri d'Apple, Google Now...), détection de mots-clefs, reconnaissance du locuteur (modèles discriminants), synthèse de parole
- disponibilité de librairies logicielles performantes spécialisées DNN (TensorFlow, Keras, PyTorch...) ou dédiées à la parole (Kaldi).

Deux exemples :

- https://machinelearning.apple.com/2017/10/01/hey-siri.html
- https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Plan

- Vue d'ensemble
- 2 Modélisation acoustique
 - La base : les HMMs
 - Apprentissage des modèles acoustiques
 - Transcrire la parole
 - Les ressources lexicales
 - Apprentissage acoustique, un bilan
 - Adaptation des modèles acoustiques
 - Réseaux de neurones pour la parole
- 3 Décoder la parole
 - Décodage par Viterbi
 - Le graphe de recherche
 - Algorithmes de recherche

Plan

- Vue d'ensemble
- 2 Modélisation acoustique
 - La base : les HMMs
 - Apprentissage des modèles acoustiques
 - Transcrire la parole
 - Les ressources lexicales
 - Apprentissage acoustique, un bilan
 - Adaptation des modèles acoustiques
 - Réseaux de neurones pour la parole
- 3 Décoder la parole
 - Décodage par Viterbi
 - Le graphe de recherche
 - Algorithmes de recherche

Viterbi : un algorithme de recherche

- le graphe de recherche :
 - un nœud = un état d'un HMM à un instant donné (q, t)
 - chaque nœud possède un score et un père (sur le meilleur chemin)
 - (q', t') suit (q, t) ssi $a(q, q') \neq 0$ et t' = t + 1
- Viterbi = recherche en largeur d'abord :
 - 1 initialiser les nœuds actifs à t = 0
 - 2 répéter pour t=1...T:
 - pour tous les nœuds (q, t), calculer le score des successeurs score(n) = max_{m∈pere(n)}score(m) * a(m, n) * b(n, x_t)
 - incrémenter t

Décodage de parole, une formulation du problème

- Les données :
 - un ensemble de mots V et leur(s) prononciation(s)
 - un ensemble d'unités acoustiques et leurs HMMs
 - \bullet un modèle de langage sur les mots de V
- Décodage de x_1^T :
 - en théorie : $\operatorname{argmax}_{w_1^n \in V^*} P(X_1^T | w_1^n) P(w_1^n)$
 - en pratique : $\operatorname{argmin}_{w_1^n \in V^*} \log(P(X_1^T | w_1^n)) \eta \log(P(w_1^n)) n\xi$
- Les paramètres du décodeur :
 - $oldsymbol{\eta}$ compense la différence d'échelle entre les vraisemblances acoustiques et les probabilités linguistiques
 - ullet compense les différences de longueur entre phrases
 - η et ξ sont optimisés sur des données de développement

Décoder est un problème de recherche

Plan

- Vue d'ensemble
- 2 Modélisation acoustique
 - La base : les HMMs
 - Apprentissage des modèles acoustiques
 - Transcrire la parole
 - Les ressources lexicales
 - Apprentissage acoustique, un bilan
 - Adaptation des modèles acoustiques
 - Réseaux de neurones pour la parole
- 3 Décoder la parole
 - Décodage par Viterbi
 - Le graphe de recherche
 - Algorithmes de recherche

Plus court chemin dans un graphe d'états

- un ensemble d'états
- un état initial, un état final
- arcs pondérés e o e', c(e,e')
- coût d'un chemin $s(e_0...e_i) = \sum_i c(e_i, e_{i+1})$
- pointeur arrière
- programmation dynamique : coûts positifs (Dijkstra), pas de cycle (Bellman)

Les alternatives du décodeur

Le graphe du décodage

Le graphe de recherche : une composition formelle

Le graphe de recherche de la reconnaissance vocale

- État : e = [instant courant (t), mot courant (w_i), (tri)phone courant(=HMM) $(u_{i,p})$, état courant dans le HMM $(q_{i,p,k})$, meilleur état précédent (bp)
- État initial : $e_i = [t = 0, \text{ état initial d'un silence initial}]$
- État final : $e_f = [t = T, \text{ état final d'un silence final}]$
- Successeurs de e :
 - **1** dans tous les cas : $\{[t+1, w_i, u_{i,p}, q_{i,p,k'}], \forall q_{p,k'} \in q_{p,k}.next()\}$ $c(e, e') = -\log(a(q_{p,k}, q_{p,k'})) - \log(P(x_t|q_{p,k'}))$
 - 2 de plus, pour un état final de HMM interne : $\{[t+1, w_i, u_{i,p'}, q_{i,p',0}], \forall u_{i,p'} \in u_{i,p}.next()\},\$ $c(e, e') = \log(P(x_t|a_{n',0}))$
 - 3 de plus, pour un état final de phone final : $\{[t+1, w_i, u_{i,p'}, q_{i,p',0}], \forall w_i \in V\}$, $c(e, e') = \log(P(w_i|w_i)) + \xi + \log(P(x_t|a_{p',0}))$

Espace de recherche : un bilan

 V* l'ensemble des phrases sur V est un graphe valué, organisé hiérarchiquement (mots, phones, HMMs)

- Décodage = recherche du meilleur chemin dans V^*
- Une hypothèse est un chemin partiel, identifiée par l'état courant

Plan

- Vue d'ensemble
- 2 Modélisation acoustique
 - La base : les HMMs
 - Apprentissage des modèles acoustiques
 - Transcrire la parole
 - Les ressources lexicales
 - Apprentissage acoustique, un bilan
 - Adaptation des modèles acoustiques
 - Réseaux de neurones pour la parole
- 3 Décoder la parole
 - Décodage par Viterbi
 - Le graphe de recherche
 - Algorithmes de recherche

Algorithmes de recherche, quelques généralités

```
S = \{[e_0, 0]\};

repeat /* Passe avant

[e, s] \leftarrow Pop(S);

foreach (e' \in Successor(e)) do

Add(S, [e', s + c(e, e')])

until (e = e_f);

e = e_f;

repeat /* Passe arrière

e = e.bp;

until (e = e_0);
```

- S est une pile : profondeur d'abord
- S est une file : largeur d'abord
- S ordonné par score : meilleur d'abord

L'exhaustivité est impossible ⇒ recherche heuristique

Entre deux mots

Add, quand e existe déjà : fusion d'hypothèses

Add(S,e) ajoute ou met à jour (score, pointeurs arrière) l'hypothèse e.

Largeur d'abord + élagage : principe

Élaguer = compromis précision / vitesse :

- éliminer les hypothèses << la meilleure (beam-search)
- limiter a priori le nombre maximum d'hypothèses actives

Largeur d'abord + élagage : formulation

```
S_0 = \{e_0\};

foreach t = 1...T do /* Passe avant

foreach [e, s] \in S_{t-1} do

foreach (e' \in \operatorname{Successor}(e)) do

Add(S_t, [e', s + c(e, e')])

S_t \leftarrow \operatorname{Prune}(S_t);

e = e_f;

repeat /* Passe arrière

*/

e = e.bp;

until (e = e_0);
```

Largeur d'abord : spécifications

• Pour un modèle de langage bi-gramme, l'espace de recherche (avec un lexique "plat") est schématisé par (|V| = 3) :

Programme :

$$\begin{array}{lcl} w^{*} & = & argmax_{w_{1}^{n} \in V^{*}} P(w_{1}^{n}) \sum_{\{q\}} P(q_{1}^{T}, x_{1}^{T} \mid w_{1}^{n}) \\ \\ & \approx & argmax_{w_{1}^{n} \in V^{*}} P(w_{1}^{n}) \max_{\{q\}} P(q_{1}^{T}, x_{1}^{T} \mid w_{1}^{n}) \end{array}$$

Largeur d'abord : quelques détails

- En transcription, seule importe la séquence de mots
 - distinguer états initiaux et non-initiaux des mots
 - les pointeurs arrière sont au niveau mot
- Équations de récurrence (bigramme) :
 - le score du meilleur chemin atteignant l'état initial de w :

$$s_w(w, t) = max_{\{v\}} \{s_q(f(v), t) + \log P(w \mid v)\}, (f(v) = \text{ fin de } v)$$

(+ pointeur arrière)

• le score du meilleur chemin atteignant (q, w) à t:

$$s_q(t, i(w), w) = s_w(w, t - 1), (i(w) = début de w)$$

 $s_q(t, q, w) = max_{\{q'\}} \{c(q', q) + s_q(t, q', w)\}$ sinon

• Début de w pour le meilleur chemin atteignant (q, w) à t:

$$B(t, O(w), w) = t$$

 $B(t, q, w) = B(t - 1, \sigma_{max}, w) \text{ pour } q \neq O(w)$

Largeur d'abord avec arbre des préfixes

- La majorité des hypothèses actives sont en début de mot
- Factorisation des préfixes ⇒ arbre lexical

→ abre des préfixes

- + : compression du graphe ⇒ moins d'hypothèses
- : retarde l'identification du mot courant, application du LM
- - : le contexte phonétique droit n'est plus connu

L'arbre des préfixes

Décodage avec arbre lexical : détail

De l'élagage

- Élaguer = éviter l'examen de mauvaises solutions...
- Sans attendre de connaître toute la phrase
- Méthode heuristique ⇒ erreurs de recherche
- Mise en œuvre :
 - conserver e ssi $s(best) s(e) < \theta$ (beam pruning)
 - conserver un nombre fixe d'hypothèses (histogram pruning)
- Élaguer a un coût

Les compromis de l'élagage

- θ ou n trop petit ⇒ le meilleur chemin le plus probable risque d'être perdu avant la fin de l'observation.
- θ ou $n \Rightarrow$ saturation de la mémoire, augmentation du temps de calcul
- Élaguer est un compromis entre le temps de calcul et le taux d'erreur Courbe typique :

temps de calcul

Profondeur d'abord : principe

OPTIMALITE: DE LA RECHERCHE: S* SURESTIME S

Stratégie best-first aka stack decoding

```
/* S est une liste de priorité
S = \{[e_0, 0]\};
repeat /* Passe avant
   [e,s] \leftarrow \text{Pop}(S);
   foreach (e' \in Successor(e)) do
    | Add(S, [e', s + c(e, e') + h(e')])
until (e = e_f \land \forall [e, s] \in S, s + h(e) < [e_f, s_f]):
e = e_f:
repeat /* Passe arrière
e = e.bp;
until (e = e_0);
```

- h(e) estime le coût du meilleur chemin $\rightarrow e_f$
- + élagage des plus mauvais successeurs

Stack decoding: compléments

- Prop : si h() est admissible $(h(e_f) = 0, h \text{ surestime } s)$, la recherche est sans erreur.
 - si arrêt en [e', s'] non optimal, $s' < s^*$, alors $\exists [e, s] \in S$ sur le chemin optimal s^* , donc s + h(e) > s* > s': la recherche continue
- construction de bonnes heuristiques (regard avant, modèles simplifiés...)
- stratégies "multi-stack" (une pile par unité de temps)
- gestion pratique de l'asynchronisme

Compléments et finesses

- Les algorithmes précédents se généralisent :
 - à des modèles linguistiques d'ordre supérieur (tri-grammes...)
 - à la production de listes "N-bests" et de graphes de mots (⇒ stratégies multi-passes)
- Optimisation (off-line) du graphe ⇒ réduction du non-déterminisme.
- Calcul rapide des scores acoustiques, look-ahead linguistique et/ou phonétique ⇒ décodage (infra) temps réel

Décoder à petit pas

- L'espace de recherche initial est gigantesque
- Décoder par réduction successives de l'espace de recherche

- Des bénéfices clairs :
 - mettre en jeu des modèles de complexité croissante
 - donner plus d'information (qui parle? de quoi?) au décodeur

Une interface simple : lister les *n*-meilleurs

- conserver les *n*-meilleurs solutions
- = conserver les *n*-meilleurs chemins (ou presque)
- =? conserver n pointeurs arrières par hypothèse?
- faible diversité des hypothèses, améliorations limitées

Une interface plus riche : les graphes de mots

- formellement : automate acyclique valué = ensemble fini d'hypothèses G
 ⇒ écrémage drastique de l'espace de recherche
- possibilité de ré-évaluation (acoustique et/ou linguistique) :
 - avec des modèles lus riches
 - · avec des modèles plus adaptés
- une ré-évalution est une nouvelle recherche : $\operatorname{argmax}_{w_1^n \in G}$

Construire des treillis : problèmes pratiques

- modification de la recherche : en début de mot conserver plusieurs pointeurs arrière
- les treillis réels contiennent des millions d'hypothèses, certaines très ressemblantes, certaines très improbables
 - ⇒ élagage du treillis
- la première passe détermine la "richesse" du treillis : retarder les décisions difficiles
 - utiliser des modèles frustres

Une interface effective : les réseaux de consensus

- formellement : automate valué, localisation des ambiguïtés
- simplification heuristique du graphe de mots
- possibilité de ré-évaluation
- interface pour les traitements ultérieurs (par ex. indexation, traduction, etc)