Lecture 11: Orthogonality (Section 3.1 - 3.2)

Thang Huynh, UC San Diego 2/5/2018

- ▶ Definition. Let *W* be a subspace of \mathbb{R}^n , and ν in \mathbb{R}^n .
 - v is **orthogonal** to W, if $v \cdot w = 0$ for all w in W.

- ▶ Definition. Let *W* be a subspace of \mathbb{R}^n , and ν in \mathbb{R}^n .
 - v is **orthogonal** to W, if $v \cdot w = 0$ for all w in W.
 - Another subspace V is orthogonal to W, if every vector in V is orthogonal to W.

- ▶ Definition. Let *W* be a subspace of \mathbb{R}^n , and ν in \mathbb{R}^n .
 - v is **orthogonal** to W, if $v \cdot w = 0$ for all w in W.
 - Another subspace V is orthogonal to W, if every vector in V is orthogonal to W.
 - The **orthogonal complement** of W is the space W^{\perp} of all vectors in \mathbb{R}^n that are orthogonal to W.

- ▶ Definition. Let *W* be a subspace of \mathbb{R}^n , and ν in \mathbb{R}^n .
 - v is **orthogonal** to W, if $v \cdot w = 0$ for all w in W.
 - Another subspace V is orthogonal to W, if every vector in V is orthogonal to W.
 - The **orthogonal complement** of W is the space W^{\perp} of all vectors in \mathbb{R}^n that are orthogonal to W. (Is W^{\perp} a vector space?)

- ▶ Definition. Let *W* be a subspace of \mathbb{R}^n , and ν in \mathbb{R}^n .
 - v is **orthogonal** to W, if $v \cdot w = 0$ for all w in W.
 - Another subspace V is orthogonal to W, if every vector in V is orthogonal to W.
 - The **orthogonal complement** of W is the space W^{\perp} of all vectors in \mathbb{R}^n that are orthogonal to W. (Is W^{\perp} a vector space?)
- Example. Consider $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 0 \\ 3 & 6 & 0 \end{bmatrix}$, then $N(A) = \text{span} \left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \right\}$

and
$$C(A^T) = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$
 are orthogonal subspaces.

Theorem. (Fundamental Theorem of Linear Algebra, Part II)

- N(A) is orthogonal to $C(A^T)$. (The two spaces are orthogonal complements)
- $N(A^T)$ is orthogonal to C(A). (The two spaces are orthogonal complements)

▶ Proof.

Theorem. (Fundamental Theorem of Linear Algebra, Part I) Let A be an $m \times n$ matrix of rank r.

- $\dim C(A) = \dim C(A^T) = r$.
- $\dim N(A) = n r$
- $\dim N(A^T) = m r$.

Example. Find all vectors orthogonal to $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.

- Example. Find all vectors orthogonal to $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.
- ► Example. Let $V = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a + b = 2c \right\}$. Find a basis for the orthogonal complement of V.

A new perspective on Ax = b

Ax = b is solvable

 \iff **b** is in C(A)

 \iff **b** is orthogonal to $N(A^T)$

A new perspective on Ax = b

$$A\mathbf{x} = \mathbf{b}$$
 is solvable
 $\iff \mathbf{b}$ is in $C(A)$
 $\iff \mathbf{b}$ is orthogonal to $N(A^T)$

► Example. Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}$$
. For which \boldsymbol{b} does $A\boldsymbol{x} = \boldsymbol{b}$ have a solution?

solution?

▶ Recall that if $v_1, ..., v_n$ are nonzero and pairwise orthogonal, then $v_1, ..., v_n$ are linearly independent.

- ▶ Recall that if $v_1, ..., v_n$ are nonzero and pairwise orthogonal, then $v_1, ..., v_n$ are linearly independent.
- ▶ Definition. A basis $v_1, ..., v_n$ of a vector space V is an **orthogonal basis** if the vectors are pairwise orthogonal.

- ▶ Recall that if $v_1, ..., v_n$ are nonzero and pairwise orthogonal, then $v_1, ..., v_n$ are linearly independent.
- ▶ Definition. A basis $v_1, ..., v_n$ of a vector space V is an **orthogonal basis** if the vectors are pairwise orthogonal.
- ► Example. The standard basis $\left\{\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix}\right\}$ is an orthogonal basis for \mathbb{R}^3 . (Why?)

- ▶ Recall that if $v_1, ..., v_n$ are nonzero and pairwise orthogonal, then $v_1, ..., v_n$ are linearly independent.
- ▶ Definition. A basis $v_1, ..., v_n$ of a vector space V is an **orthogonal basis** if the vectors are pairwise orthogonal.
- **Example.** The standard basis $\left\{\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix}\right\}$ is an

orthogonal basis for \mathbb{R}^3 . (Why?)

► Example. Are the vectors $\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ an orthogonal

basis for \mathbb{R}^3 ?

- ▶ Recall that if $v_1, ..., v_n$ are nonzero and pairwise orthogonal, then $v_1, ..., v_n$ are linearly independent.
- ▶ Definition. A basis $v_1, ..., v_n$ of a vector space V is an **orthogonal basis** if the vectors are pairwise orthogonal.
- **Example.** The standard basis $\left\{\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix}\right\}$ is an

orthogonal basis for \mathbb{R}^3 . (Why?)

► Example. Are the vectors $\left\{\begin{bmatrix}1\\-1\\0\end{bmatrix},\begin{bmatrix}1\\1\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix}\right\}$ an orthogonal

basis for \mathbb{R}^3 ? (Do we need to check that the three vectors are independent?)

▶ Example. Suppose $v_1, ..., v_n$ is an orthogonal basis of V, and w is in V. Find $c_1, ..., c_n$ such that

$$\boldsymbol{w} = c_1 \boldsymbol{v}_1 + \dots + c_n \boldsymbol{v}_n.$$

▶ Example. Suppose $v_1, ..., v_n$ is an orthogonal basis of V, and w is in V. Find $c_1, ..., c_n$ such that

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n.$$

▶ Solution. Take the dot product of v_1 with both sides

$$\begin{aligned} \mathbf{v}_1 \cdot \mathbf{w} &= \mathbf{v}_1 \cdot (c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n) \\ &= c_1 \mathbf{v}_1 \cdot \mathbf{v}_1 + c_2 \mathbf{v}_1 \cdot \mathbf{v}_2 + \dots + c_n \mathbf{v}_1 \cdot \mathbf{v}_n \\ &= c_1 \mathbf{v}_1 \cdot \mathbf{v}_1. \end{aligned}$$

Hence,
$$c_1 = \frac{\mathbf{v}_1 \cdot \mathbf{w}}{\mathbf{v}_1 \cdot \mathbf{v}_1}$$
.

▶ Example. Suppose $v_1, ..., v_n$ is an orthogonal basis of V, and w is in V. Find $c_1, ..., c_n$ such that

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n.$$

▶ Solution. Take the dot product of v_1 with both sides

$$\begin{aligned} \mathbf{v}_1 \cdot \mathbf{w} &= \mathbf{v}_1 \cdot (c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n) \\ &= c_1 \mathbf{v}_1 \cdot \mathbf{v}_1 + c_2 \mathbf{v}_1 \cdot \mathbf{v}_2 + \dots + c_n \mathbf{v}_1 \cdot \mathbf{v}_n \\ &= c_1 \mathbf{v}_1 \cdot \mathbf{v}_1. \end{aligned}$$

Hence, $c_1 = \frac{v_1 \cdot w}{v_1 \cdot v_1}$. In general, $c_j = \frac{v_j \cdot w}{v_j \cdot v_j}$.

► Example. Express
$$\begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix}$$
 in terms of the basis $\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$.

- ► Example. Express $\begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix}$ in terms of the basis $\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$.
- ▶ Definition. A basis $v_1, ..., v_n$ of a vector space V is an **orthonormal basis** if the vectors are orthogonal and have length 1.

- Example. Express $\begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix}$ in terms of the basis $\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$.
- ▶ Definition. A basis $v_1, ..., v_n$ of a vector space V is an orthonormal basis if the vectors are orthogonal and have length 1.
- **Example.** The standard basis $\left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$ is an

orthonormal basis for \mathbb{R}^3 .

If v_1, \dots, v_n is an orthonormal basis of V, and w is in V, then

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$
 with $c_j = \mathbf{v}_j \cdot \mathbf{w}$.

If $\mathbf{v}_1,\dots,\mathbf{v}_n$ is an orthonormal basis of V, and \mathbf{w} is in V, then

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$
 with $c_j = \mathbf{v}_j \cdot \mathbf{w}$.

Example. Is the basis $\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ orthonormal?

If $\mathbf{v}_1,\dots,\mathbf{v}_n$ is an orthonormal basis of V, and \mathbf{w} is in V, then

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$
 with $c_j = \mathbf{v}_j \cdot \mathbf{w}$.

► Example. Is the basis $\left\{\begin{bmatrix} 1\\-1\\0\end{bmatrix},\begin{bmatrix} 1\\1\\0\end{bmatrix},\begin{bmatrix} 0\\0\\1\end{bmatrix}\right\}$ orthonormal? If not, normalize the vectors to produce an orthonormal basis.

9

If $\mathbf{v}_1,\dots,\mathbf{v}_n$ is an orthonormal basis of V, and \mathbf{w} is in V, then

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$
 with $c_j = \mathbf{v}_j \cdot \mathbf{w}$.

- ► Example. Is the basis $\left\{\begin{bmatrix}1\\-1\\0\end{bmatrix},\begin{bmatrix}1\\1\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix}\right\}$ orthonormal? If not, normalize the vectors to produce an orthonormal basis.
- **Example.** Express $\begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix}$ in terms of the basis

$$\left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}.$$

ightharpoonup Definition. The **orthogonal projection** of vector x onto vector y is

$$\hat{x} = \frac{x \cdot y}{y \cdot y} y.$$

 \blacktriangleright Definition. The **orthogonal projection** of vector x onto vector y is

$$\hat{x} = \frac{x \cdot y}{y \cdot y} y.$$

(Geometric meaning?)

ightharpoonup Definition. The **orthogonal projection** of vector x onto vector y is

$$\hat{x} = \frac{x \cdot y}{y \cdot y} y.$$

(Geometric meaning?)

• The vector \hat{x} is the closest vector x, which is in span $\{y\}$.

ightharpoonup Definition. The **orthogonal projection** of vector x onto vector y is

$$\hat{x} = \frac{x \cdot y}{y \cdot y} y.$$

(Geometric meaning?)

- The vector \hat{x} is the closest vector x, which is in span $\{y\}$.
- Characterized by the error x[⊥] = x x̂ is orthogonal to span{y}.

 \blacktriangleright Definition. The **orthogonal projection** of vector x onto vector y is

$$\hat{x} = \frac{x \cdot y}{y \cdot y} y.$$

(Geometric meaning?)

- The vector \hat{x} is the closest vector x, which is in span $\{y\}$.
- Characterized by the error x[⊥] = x x̂ is orthogonal to span{y}.
- To find the formula for \hat{x} , start with $\hat{x} = cy$. Find c such that

 \blacktriangleright Definition. The **orthogonal projection** of vector x onto vector y is

$$\hat{x} = \frac{x \cdot y}{y \cdot y} y.$$

(Geometric meaning?)

- The vector x is the closest vector x, which is in span(y).
- Characterized by the error x[⊥] = x x̂ is orthogonal to span{y}.
- To find the formula for \hat{x} , start with $\hat{x} = cy$. Find c such that

$$(\mathbf{x} - \hat{\mathbf{x}}) \cdot \mathbf{y} = (\mathbf{x} - c\mathbf{y}) \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{y} - c\mathbf{y} \cdot \mathbf{y} = 0.$$

It follows that $c = \frac{x \cdot y}{y \cdot y}$.

 \blacktriangleright Definition. The **orthogonal projection** of vector x onto vector y is

$$\hat{x} = \frac{x \cdot y}{y \cdot y} y.$$

(Geometric meaning?)

- The vector x is the closest vector x, which is in span(y).
- Characterized by the error x[⊥] = x x̂ is orthogonal to span{y}.
- To find the formula for \hat{x} , start with $\hat{x} = cy$. Find c such that

$$(\mathbf{x} - \hat{\mathbf{x}}) \cdot \mathbf{y} = (\mathbf{x} - c\mathbf{y}) \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{y} - c\mathbf{y} \cdot \mathbf{y} = 0.$$

It follows that $c = \frac{x \cdot y}{y \cdot y}$.

• x^{\perp} is also called the component of x orthogonal to y.

Example. What is the orthogonal projection of $x = \begin{bmatrix} -8 \\ 4 \end{bmatrix}$ onto

$$\mathbf{y} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
?

Example. What is the orthogonal projection of $x = \begin{bmatrix} -8 \\ 4 \end{bmatrix}$ onto

$$\mathbf{y} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
?

Example. What is the orthogonal projection of $\begin{bmatrix} 2\\1\\1 \end{bmatrix}$ onto each

of the vectors
$$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$?