

Indian Restaurant Data Analysis

This project aims to explore and analyze restaurant data from India to uncover patterns in consumer preferences, cuisine popularity, pricing, ratings, delivery services, and other key features.

By performing detailed exploratory data analysis (EDA), this notebook seeks to answer questions such as:

- Which cuisines are most popular across Indian cities?
- How do ratings and votes vary by price range and location?
- What is the relationship between online delivery, table booking, and overall restaurant performance?
- Which restaurants stand out in their respective cuisines and cities?

The analysis combines data wrangling, feature engineering, and advanced visualization to generate actionable business insights for restaurant owners, delivery platforms, investors, and other food industry stakeholders.

Key Techniques Used:

- Pandas for data cleaning and transformation
- Matplotlib and Seaborn for visualization
- Grouping and pivoting for summarization
- Feature engineering for currency standardization and cuisine splitting

The findings from this project can help businesses identify gaps in the market, optimize their services, and better cater to evolving customer demands.

```
In [168... #importing the libraries

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt

In [111... df = pd.read_csv("/content/zomato.csv", encoding="latin1")

In [112... df.head(5)
```

Out[112...

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Lc Ve
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Centu Pob Maka
1	6304287	lzakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little L \ Maka
2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri- La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri-La, Ortigas, Mandaluyong City	Shar C Manda City
3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	Meç C Manda Ma
4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City	Meç C Manda Ma

5 rows × 21 columns

In [113... df.shape

Out[113... (9551, 21)

In [114... df.columns

```
Out[114... Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
                 'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
                'Average Cost for two', 'Currency', 'Has Table booking',
                'Has Online delivery', 'Is delivering now', 'Switch to order menu',
                'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
                'Votes'],
               dtype='object')
In [115... df.nunique()
                                   0
Out[115...
                 Restaurant ID 9551
              Restaurant Name 7446
                 Country Code
                                  15
                          City
                                 141
                       Address 8918
                       Locality 1208
              Locality Verbose 1265
                    Longitude 8120
                      Latitude 8677
                      Cuisines 1825
          Average Cost for two
                                 140
                     Currency
                                  12
             Has Table booking
                                   2
            Has Online delivery
                                   2
              Is delivering now
                                   2
         Switch to order menu
                                   1
                   Price range
                                   4
              Aggregate rating
                                  33
                   Rating color
                                   6
                   Rating text
                                   6
```

dtype: int64

Votes 1012

In [116... df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9551 entries, 0 to 9550
Data columns (total 21 columns):

```
Column
                          Non-Null Count Dtype
- - -
    -----
                          -----
                                          ----
0
    Restaurant ID
                          9551 non-null
                                          int64
1
    Restaurant Name
                          9551 non-null
                                          object
2
    Country Code
                                          int64
                          9551 non-null
3
    City
                          9551 non-null
                                          object
4
    Address
                          9551 non-null
                                          object
5
    Locality
                          9551 non-null
                                          object
6
    Locality Verbose
                          9551 non-null
                                          object
7
    Longitude
                          9551 non-null
                                          float64
8
    Latitude
                          9551 non-null
                                          float64
9
    Cuisines
                          9542 non-null
                                          object
10 Average Cost for two
                          9551 non-null
                                          int64
11 Currency
                          9551 non-null
                                          object
12 Has Table booking
                          9551 non-null
                                          object
13 Has Online delivery
                          9551 non-null
                                          object
14 Is delivering now
                          9551 non-null
                                          object
15 Switch to order menu 9551 non-null
                                          object
16 Price range
                          9551 non-null
                                          int64
17 Aggregate rating
                          9551 non-null
                                          float64
18 Rating color
                          9551 non-null
                                          object
19 Rating text
                          9551 non-null
                                          object
20 Votes
                          9551 non-null
                                          int64
```

dtypes: float64(3), int64(5), object(13)

memory usage: 1.5+ MB

```
In [117... df.duplicated().sum()
Out[117... np.int64(0)
In [118... df.isnull().sum()
```

0 Out[118... Restaurant ID 0 **Restaurant Name** 0 **Country Code** 0 City 0 Address 0 Locality 0 **Locality Verbose** 0 Longitude 0 Latitude 0 Cuisines 9 **Average Cost for two** 0 Currency 0 **Has Table booking** 0 Has Online delivery 0 **Is delivering now** 0 Switch to order menu 0 **Price range** 0 **Aggregate rating** 0 Rating color 0 Rating text 0 Votes 0

```
In [119... country= pd.read_excel("/content/Country-Code.xlsx")
In [120... country.head(5)
```

Out[120	Country Cod	le	Country
(1	India
1	. 1	L4	Australia
2	: 3	30	Brazil
3	3	37	Canada
4	. 9	94	Indonesia

```
In [121... final_df=pd.merge(df,country,on='Country Code', how='left')
In [122... final_df.head()
```

Out[122...

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Lc Ve
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Centu Pob Maka
1	6304287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little L \ Maka
2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri- La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri-La, Ortigas, Mandaluyong City	Shar C Manda City
3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	Meç C Manda Ma
4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City	Meç C Manda Ma

5 rows × 22 columns

In [123... final_df['Country'].value_counts()

Out[123... count

Country	
India	8652
United States	434
United Kingdom	80
Brazil	60
South Africa	60
UAE	60
New Zealand	40
Turkey	34
Australia	24
Phillipines	22
Indonesia	21
Qatar	20
Singapore	20
Sri Lanka	20
Canada	4

```
In [129... final_df.columns
Out[129... Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
                  'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
                  'Average Cost for two', 'Currency', 'Has Table booking', 'Has Online delivery', 'Is delivering now', 'Switch to order menu',
                  'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
                  'Votes', 'Country'],
                 dtype='object')
In [130... import pandas as pd
          import numpy as np
          def standardize_cost_to_inr(df):
               # Define exchange rates to INR (
               currency_rates_to_inr = {
                   'Indian Rupees(Rs.)': 1.0,
                    'Dollar($)': 83.33,
                   'Pound(£)': 105.00,
                   'Brazilian Real(R$)': 14.29,
```

```
'Rand(R)': 4.58,
    'UAE Dirham(AED)': 22.67,
    'NewZealand($)': 50.00,
    'Turkish Lira(TL)': 2.38,
    'Botswana Pula(P)': 6.17,
    'Indonesian Rupiah(IDR)': 0.0054,
    'Qatari Rial(QR)': 22.86,
    'Sri Lankan Rupee(LKR)': 0.27,
    'Unknown': 1.0
}
df['Currency'] = df['Currency'].fillna('Unknown')
df['Average Cost for two'] = df.groupby('Price range')['Average Cost for t
    lambda x: x.fillna(x.median()) if x.notna().any() else 0
df['Standard_currency'] = df.apply(
    lambda x: x['Average Cost for two'] * currency_rates_to_inr.get(x['Cur
df['Standard currency'] = df.groupby('Price range')['Standard currency'].t
    lambda x: x.fillna(x.median()) if x.notna().any() else 0
return df
```

Standardize prices to INR for consistent and comparable analysis

```
In [131... df=standardize_cost_to_inr(final_df)
In [132... df['Cuisines'].value_counts().sort_values(ascending=False)
```

Out[132... count

Cuisines	
North Indian	936
North Indian, Chinese	511
Chinese	354
Fast Food	354
North Indian, Mughlai	334
Seafood, Asian, Filipino, Indian	1
French, Japanese, Desserts	1
Italian, World Cuisine	1
Restaurant Cafe, Turkish, Desserts	1
Desserts, Bí_rek	1

 $1825 \text{ rows} \times 1 \text{ columns}$

```
In [133... cuisines_series = df['Cuisines'].dropna()

# split by comma and strip spaces
    cuisines_lists = cuisines_series.apply(lambda x: [c.strip() for c in x.split('
    # flatten to a single list
    all_cuisines = [cuisine for sublist in cuisines_lists for cuisine in sublist]

In [134... from collections import Counter

In [135... Top_15_cuisines=Counter(all_cuisines).most_common(15)

In [136... # Create a new column with the cleaned list of cuisines for each restaurant df['Cuisine_List'] = df['Cuisines'].dropna().apply(lambda x: [c.strip() for c # Extract only the cuisine names from the Top_15_cuisines list of tuples top_15_cuisine_names = [cuisine[0] for cuisine in Top_15_cuisines]

# Handle any NaN values in 'Cuisine_List' by filling with an empty list df['Cuisine_List'] = df['Cuisine_List'].fillna(value=pd.Series([[]] * len(df),

# Filter rows where at least one cuisine is in the top 15 cuisine names df_filtered = df[df['Cuisine_List'].apply(lambda x: any(cuisine in top_15_cuis)
```

```
In [137... | # Remove rows with missing aggregate rating (if any)
         df filtered = df filtered[df filtered['Aggregate rating'].notna()]
         # Sort and select top 10
         top 10 restaurants = df filtered.sort values(by='Aggregate rating', ascending=
         # Optional: Select only relevant columns
         top 10 restaurants = top 10 restaurants[['Restaurant Name', 'Cuisines', 'Aggre
         print(top 10 restaurants)
         print("*"*100)
         print(top 15 cuisine names)
                           Restaurant Name
                                                                        Cuisines \
       9538
                                 Starbucks
                                                                            Cafe
       1381
                               Caterspoint
                                                  Mexican, American, Healthy Food
       124
                        Rae's Coastal Cafe
                                                     American, Caribbean, Seafood
       2289
                           Barbeque Nation
                                                                     North Indian
       9404
                                    Solita
                                                          American, Burger, Grill
       9424
                 Mainland China Restaurant
                                                                         Chinese
       2536
                           Barbeque Nation North Indian, European, Mediterranean
       2350 Zolocrust - Hotel Clarks Amer
                                                     Italian, Bakery, Continental
                           Barbeque Nation
                                                            North Indian, Chinese
       2409
       9262
                           Barbeque Nation North Indian, Chinese, Mediterranean
             Aggregate rating
       9538
       1381
                          4.9
       124
                          4.9
       2289
                          4.9
       9404
                          4.9
       9424
                          4.9
       2536
                          4.9
       2350
                          4.9
       2409
                          4.9
       9262
                          4.9
       ***********************************
        ********
        ['North Indian', 'Chinese', 'Fast Food', 'Mughlai', 'Italian', 'Bakery', 'Conti
       nental', 'Cafe', 'Desserts', 'South Indian', 'Street Food', 'American', 'Pizz
       a', 'Mithai', 'Burger']
In [138... | import matplotlib.pyplot as plt
         import seaborn as sns
         # barplot for top 5 cuisines
         cuisine counts = Counter(all cuisines)
         top5_cuisine_counts = cuisine_counts.most_common(5)
         cuisines, counts = zip(*top5 cuisine counts)
         plt.figure(figsize=(8,5))
         sns.barplot(x=counts, y=cuisines, palette="viridis")
         plt.title("Top 5 Most Common Cuisines")
         plt.xlabel("Number of Restaurants Offering")
```

```
plt.ylabel("Cuisine")
plt.show()
```

/tmp/ipython-input-138-4109624201.py:11: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same e ffect.

sns.barplot(x=counts, y=cuisines, palette="viridis")


```
# find top 15 cities with most restaurants
top cities = (
   filtered['City']
    .value counts()
    .head(15)
   .index
# keep only those cities
filtered_top_cities = filtered[filtered['City'].isin(top_cities)]
# build pivot table
pivot = pd.crosstab(filtered top cities['Cuisines'], filtered top cities['City
# convert counts to percentages within each city
pivot percent = pivot.div(pivot.sum(axis=0), axis=1) * 100
# plot
plt.figure(figsize=(18,8))
sns.heatmap(
    pivot percent,
    cmap="YlGnBu",
    annot=True,
   fmt=".1f",
   linewidths=0.5,
   cbar_kws={'label': 'Percentage share of cuisine'}
plt.title("Percentage Share of Top 5 Cuisines by Top 15 Indian Cities", fontsi
plt.xlabel("City", fontsize=14)
plt.ylabel("Cuisine", fontsize=14)
plt.xticks(rotation=45, ha="right")
plt.yticks(rotation=0)
plt.tight layout()
plt.show()
```



```
In [140... best_restaurants = []

for cuisine in cuisines:
    # filter rows where the restaurant serves this cuisine
    filtered = df[df['Cuisines'].str.contains(cuisine, na=False, case=False)]
    # sort by Votes first, then Aggregate rating, descending
    top_row = filtered.sort_values(by=['Votes', 'Aggregate rating'], ascending
    if not top_row.empty:
        best_restaurants.append(top_row)

# combine
best_restaurants_df = pd.concat(best_restaurants)
```

In [141... # Top5 restaurants per city based upon the top 5 most Popular cuisine and thei
aggregate rating and no of votes.
best_restaurants_df[['Restaurant Name','City',"Cuisine_List"]]

Out[141		Restaurant Name	City	Cuisine_List
	3994	Hauz Khas Social	New Delhi	[Continental, American, Asian, North Indian]
	2414	Barbeque Nation	Kolkata	[North Indian, Chinese]
	7863	Big Yellow Door	New Delhi	[Cafe, Italian, Fast Food]
	4178	Karim's	New Delhi	[Mughlai, North Indian]
	728	Toit	Bangalore	[Italian, American, Pizza]

```
india_df = df[
    (df['Country'] == 'India') &
    (df['Has Online delivery'] == "Yes") &
    (df['Rating color'].isin(["Green","Dark Green"]))]
```

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality
646	18396250	Huber & Holly	1	Ahmedabad	7 B, Circle B, Opposite Rajpath Club, Sarkhej	Bodakdev
648	113433	Fozzie's Pizzaiolo	1	Ahmedabad	Ground Floor, Maruti Crystal, Opposite Rajpath	Bodakdev
649	18438909	La Pino'z Pizza	1	Ahmedabad	Shop 10, Circle B, Nyay Marg, Bodakdev, Ahmed	Bodakdev
650	18143128	Mocha	1	Ahmedabad	6-9, Ground Floor, Devashish Business Park, Op	Bodakdev
657	113537	Puffizza	1	Ahmedabad	103, Kairos, Opposite Mahatma Gandhi Labour In	Gurukul
9163	6508117	Sautí©ed Stories	1	Pune	Plot 5, Between Lane 5/6, North Main Road, Opp	Koregaon Park
9166	11371	Chili's	1	Pune	UG 49, Phoenix Market City, Nagar Road, Viman	Phoenix Market City, Viman Nagar
9168	18292672	Blue Water	1	Pune	Punawale, Near Basket Bridge,Off Aundh-Ravet B	Ravet
9170	6507967	Tales & Spirits	1	Pune	Plot 64, Shivaji Housing Society, Senapati Bap	Senapati Bapat Road

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	
9194	96814	Saffron Mantra	1	Secunderabad	The Purple Leaf Hotel, Karkhana, Secunderahad	Karkhana	S

295 rows \times 24 columns

```
In [144...
best_india = (
    india_df
    .sort_values(by=['Votes','Aggregate rating'], ascending=[False, False])
    .groupby('City')
    .head(1)
)
```

In [145... #Top 5 best restaurants in india according to votes and Aggregate Rating
best_india[:5]

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	
735	51040	Truffles	1	Bangalore	28, 4th 'B' Cross, Koramangala 5th Block, Bang	Koramangala 5th Block	Ko
3994	308322	Hauz Khas Social	1	New Delhi	9-A & 12, Hauz Khas Village, New Delhi	Hauz Khas Village	Vi
2412	20404	Peter Cat	1	Kolkata	18A, Park Street, Park Street Area, Kolkata	Park Street Area	I
2300	90744	Exotica	1	Hyderabad	Opposite Audi Showroom, 5th Floor, 12th Square	12th Square Building, Banjara Hills	17 Ba
2490	49003	SpiceKlub	1	Mumbai	8A, Janta Industrial Estate, Opposite Phoenix	Lower Parel	Lι

 $5 \text{ rows} \times 24 \text{ columns}$

```
In [148... Value_for_money_india = (
    india_df
    .sort_values(by=['Average Cost for two','Votes','Aggregate rating'], ascer
    .groupby('City')
    .head(1)
)
Value_for_money_india_rest_top5 = Value_for_money_india
In [149... Value_for_money_india_rest_top5[['Restaurant Name',"City",'Average Cost for two.', 'Votes', 'Aggregate rating'], ascer
    .groupby('City')
    .head(1)
)
```

Restaurant Name		City	Average Cost for two	Votes	Aggregate rating
0	Jung Bahadur Kachori Wala	New Delhi	50	405	4.1
1	Huber & Holly	Ahmedabad	300	217	4.5
2	CakeBee	Coimbatore	350	200	4.9
3	Eat Street	Bangalore	400	753	4.3
4	Slice of Spice	Kochi	400	246	4.0
5	Crudo Juicery	Gurgaon	400	154	4.3
6	Super Donuts	Chandigarh	450 450	265	4.0
7	Mad Over Donuts	Noida		235 191	4.2
8	Writer's Cafe	Chennai	450		4.2
9	Eat Street Express	Nagpur	500	103	4.0
10	The Shooters Cafe	Mohali	550	99	4.3
11	Mutual's	Jaipur	650	198	4.2
12	Cafí© Bogchi	Faridabad	650	153	4.1
13	Pine & Dine	Hyderabad	700	700 682 800 2662	4.0
14	Joey's Pizza	Mumbai	800		4.5
15	India Restaurant	Kolkata	800	1219	4.6
16	Tales & Spirits	Pune	800	997	4.1
17	Saffron Mantra	Secunderabad	850	494	4.4

```
In [150... chain_counts = df['Restaurant Name'].value_counts().head(10)
    sns.barplot(x=chain_counts.values, y=chain_counts.index, palette='plasma')
    plt.title("Top 10 Restaurant Chains by Number of Outlets")
    plt.xlabel("Number of Outlets")
    plt.show()
```

```
/tmp/ipython-input-150-4293785341.py:2: FutureWarning:
```

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same e ffect.

```
sns.barplot(x=chain counts.values, y=chain counts.index, palette='plasma')
```

Top 10 Restaurant Chains by Number of Outlets


```
In [169... df['Rating color'].value_counts()
```

Out[169...

count

Rating color		
Orange	3737	
White	2148	
Yellow	2100	
Green	1079	
Dark Green	301	
Red	186	

```
In [170...
color_counts = {
    'Orange': 3737,
    'White': 2148,
    'Yellow': 2100,
    'Green': 1079,
    'Dark Green': 301,
    'Red': 186
}
```

```
# data
labels = list(color counts.keys())
sizes = list(color counts.values())
# color mapping
colors = {
    'Orange': '#ff7f0e', # average
'White': '#c7c7c7', # unrated
'Yellow': '#ffbf00', # fair
'Green': '#2ca02c', # good
    'Dark Green': '#006400', # excellent
'Red': '#d62728' # poor
    'Red': '#d62728'
}
# assign colors in order
color list = [colors[label] for label in labels]
# plot
plt.figure(figsize=(10,8))
wedges, texts, autotexts = plt.pie(
    sizes,
    labels=labels,
    autopct='%1.1f%%',
    startangle=140,
    colors=color list,
    textprops={'fontsize': 12}
# legend with value ranges
legend labels = [
    "Orange (3.0 - 3.4)",
    "White (Unrated)",
    "Yellow (3.5 - 3.9)",
    "Green (4.0 - 4.4)",
    "Dark Green (4.5 - 5.0)",
    "Red (below 2.5)"
1
plt.legend(wedges, legend_labels, title="Rating Color Scale", loc="center left
plt.title("Distribution of Restaurant Ratings by Color", fontsize=14)
plt.tight layout()
plt.show()
```

Distribution of Restaurant Ratings by Color


```
In [157... sns.boxplot(x='Has Online delivery', y='Aggregate rating', data=df)
  plt.title("Ratings for Online Delivery vs Non-Delivery")
  plt.show()
```



```
In [165... plt.figure(figsize=(10,6))
    sns.boxplot(x='Price range', y='Aggregate rating', data=df)
    plt.title("Aggregate Rating by Price Range")
    plt.xlabel("Price Range")
    plt.ylabel("Aggregate Rating")
    plt.show()
```

Aggregate Rating by Price Range


```
In [166... plt.figure(figsize=(10,6))
    sns.scatterplot(x='Aggregate rating', y='Votes', data=df, alpha=0.6)
    plt.title("Votes vs. Aggregate Rating")
    plt.xlabel("Aggregate Rating")
    plt.ylabel("Votes")
    plt.show()
```

Votes vs. Aggregate Rating


```
In [167...
online_cities = df[df['Has Online delivery']=='Yes']['City'].value_counts().he

plt.figure(figsize=(12,6))
sns.barplot(x=online_cities.values, y=online_cities.index, palette='crest')
plt.xlabel("Number of Restaurants with Online Delivery")
plt.title("Top Cities for Online Delivery")
plt.show()
```

/tmp/ipython-input-167-1686994086.py:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same e ffect.

sns.barplot(x=online cities.values, y=online cities.index, palette='crest')

Final Insights

1 Cuisine Preferences

North Indian, Chinese, Fast Food, Mughlai, and Italian remain the most sought-after cuisines in India's restaurant sector, reflecting familiar and consistent tastes among urban diners.

2 Ratings Distribution

A large proportion of restaurants fall in the orange and yellow rating ranges (roughly 3.0 to 3.9), indicating moderate customer satisfaction. Very few achieve top-tier dark green (4.5+) ratings, showing clear room to improve quality.

3♦ Votes and Popularity

Restaurants with higher ratings also tend to accumulate more votes, suggesting that customers reward quality with engagement. Encouraging reviews and feedback could help newer restaurants build trust and reputation.

4 Delivery and Booking

Major Indian cities have embraced online delivery and table booking services. However, there is significant potential to expand these offerings in mid-tier cities, providing a growth opportunity for platforms and partners.

5 Pricing and Perceived Quality

Higher price-range restaurants slightly correlate with better ratings, indicating that customers often associate premium pricing with superior quality. Nevertheless, affordable restaurants continue to attract high engagement, showing strong

demand in price-sensitive segments.

6♦ Top Performers

Identifying the best restaurants by cuisine and city helps establish performance benchmarks. These top performers can serve as role models for others looking to replicate excellence in quality, service, and innovation.

Recommendations

- **Restaurant Owners**: Invest in quality improvements to move from average to excellent ratings.
- **Delivery Platforms**: Expand table booking and delivery features into emerging markets and mid-tier cities.
- **Investors**: Consider investing in cities with a high number of restaurants but lower cuisine diversity, as they show market gaps.
- Policy Makers: Support initiatives that encourage more diverse cuisine offerings, especially in smaller cities, to drive growth and variety in the food industry.

In []: