Statistical Machine Learning

Assignment Project Exam

Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National

Introduction Linear Algebra Probability I near Regression

Overview

https://eduassistpro.github

College of Engineering and Computer Science
The Australian National University

Add WeChat edu_assi

Semester One, 2020.

Kernel Methods Sparse Kernel Methods xture Models and EM 1 xture Models and EM 2

ural Networks I s al - Etworks 2 sip | Componen A sencoders

aphical Models 1 Graphical Models 2 Graphical Models 3 Sampling

Sequential Data 1
Sequential Data 2

(Many figures from C. M. Bishop, "Pattern Recognition and Machine Learning")

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Assignment Project Exam

- Us
- https://eduassistpro.github.
- Design and analysis of algorithms
- Numerical algorithms in python
- Understand the come her destined U_assist methods

Assignment Project Exam I

Probability Theory

Definitio

A computation of the computation

Add WeChat edu_assist_pr

Polynomial Curve Fitting

Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National

some artificial data created from the function

Assignment Project Exam ps://eduassistpro.github. ldd WeChat edu_assist 0

x

Assignment Project Exam F

https://eduassistpro.github.

Add WeChat edu_assist_pr

Assignment Project Exam I

N

thttps://eduassistpro.github.

 $x_i \in \mathbb{R}$ $i = 1, \ldots, N$

^{t_i} ∈ R dd WeChat edu_assist_pr

Statistical Machine Learning

One & Walder & Webers Data61 | CSIRO The Australian National

Assignment Project Exam I

https://eduassistpro.github.

nonlinear function of x

 $y(x, \mathbf{w}) =$

- linear/function of the inknown model parameters w = EGU_assist_

Learning is Improving Performance

Assignment Project Exam He

https://eduassistpro.github.

Add WeChat edu_assist_pr

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam Help Proposition Theory Productive Theory

• Performance measure : Error between target prediction of the training ato u_assist_pr

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2$$

• unique minimum of $E(\mathbf{w})$ for argument \mathbf{w}^* under certain conditions (what are they?)

Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam I

ook skilies Doosieis

https://eduassistpro.github.

Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam I

one believe Described

https://eduassistpro.github. Add WeChat edu_assist_pr

Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam H

Polynomial Cury Fitting

Trobubility Theory

https://eduassistpro.github. Add WeChat edu_assist_pr

Statistical Machine Learning © 2020

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam I

Polynomial Cury Fitting

-

• ove https://eduassistpro.github.

Add WeChat edu_assist_pro

- Statistical Machine Learning
- Ong & Walder & Webers The Australian National

- Train the model and get w*

Salganment Seroject Exam

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Table: Coefficients \mathbf{w}^* for polynomials of various order.

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam I https://eduassistpro.github. Add WeChat edu_assist_pr

• N = 100

- Statistical Machine Learning
- Ong & Walder & Webers The Australian National

heuristics: have no less than 5 to 10 times as many data

points than parameters

but romber of parameters is not necessarily the mos

appropriate measure of model complexity! late

As sewer prismiciting troy in grothe coefficients w? am • Add a regularisation term to the error function

Probability Densities

https://eduassistpro.github.

Squared norm of the parameter vector

Add WeChat edu_assist_pı

• unique minimum of $E(\mathbf{w})$ for argument conditions (what are they for $\lambda = 0$? for $\lambda > 0$?)

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam I https://eduassistpro.github. Add WeChat edu_assist_pr

Assignment Project Exam I https://eduassistpro.github. Add WeChat edu_assist_pr

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam H

https://eduassistpro.github.

Add WeChat edu_assist_pro.github.

Ong & Walder & Webers Data61 | CSIRO The Australian National

Definition (Mitchell, 1998) respect to some class of tasks T and performance measure P, if its perfor with expe

https://eduassistpro.github.

- Ta
- Experience: x input examples, t output I
- Performancisque or hat edu_assist Model choice
- Regularisation
- do not train on the test set!

Statistical Machine Learning

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam He

https://eduassistpro.github.

Probability Theory

Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Probability Dansitia

https://eduassistpro.github. Add WeCharedu_assist_p

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National

	Y vs. X	a	b	c	d	e	f	g	h	i	sum	
Ass	sign sum	13	6	111	. 1 8)	$\frac{5}{0}$	8	6	7	$\mathbf{X}_{\mathbf{A}}^{26}$	m
	sum	3	6	8	9	9	8	9	6	2	60	

p(https://eduassistpro.github.

Add WeChat edu_assist_properties $P(X = d) = \sum_{y} p(X = d)$

$$p(X) = \sum_{Y} p(X, Y)$$

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

phttps://eduassistpro.github.

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Help Polynomial Cur Pittin

Probability Theory

Conditional Probability

Calculat https://eduassistpro.github.

$$\underbrace{ A dd}_{p(X=d,Y=1)}^{p(Y=1)} \underbrace{ WeChat}_{p(X=d\mid Y=e} edu_assist_pressure and the pressure and the press$$

 $p(X, Y) = p(X \mid Y) p(Y)$

Another intuitive view is renormalisation of relative frequencies:

$$p(X \mid Y) = \frac{p(X, Y)}{p(Y)}$$

Sum and Product Rules

Ong & Walder & Webers Data61 | CSIRO The Australian National

"https://eduassistpro.github.

Add WeChat edu_assi<mark>st</mark>

Assignment Project Exam He

Prohttps://eduassistpro.github.

These rules for the law of Cayesian machine as sist_

Statistical Machine Learning

Ong & Walder & Webers Data61 | CSIRO The Australian National

Use product rule

Assignment Project Exam He

Bayes Theorem

Probability Theory

p(Y) https://eduassistpro.github.

and

pAddp(WeChat edu_assist_pr

$$= \sum_{Y} p(X \mid Y) p(Y)$$

(product rule)

Probability Densities

Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

• Real valued variable $x \in \mathbb{R}$ Solution of the interval $\mathcal{L}(x)$ is even by p(x) for infinitesimal small δx .

obdoniny Theory

https://eduassistpro.github.

Add WeChat edu_assist_p

Constraints on p(x)

Statistical Machine Learning

One & Walder & Webers Data61 | CSIRO The Australian National

Assignment Project Exam He

Normalisation

https://eduassistpro.github. Chat edu_assi<mark>st_p</mark>r

Cumulative distribution function P(x)

Statistical Machine Learning

One & Walder & Webers The Australian National

Assignment-Project Exam He or

https://eduassistpro.github.

⊄hat edu_assi<mark>st_p</mark>r

Statistical Machine Learning

One & Walder & Webers The Australian National

Assignment Project Exam Help

- No
- https://eduassistpro.github.

This Add We Chat edu_assist_pr

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p(\mathbf{x}) \, dx_1 \ldots \, dx_D = 1.$$

Statistical Machine Learning

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam Hel

Su

https://eduassistpro.github.

Pro

Add WeChat edu_assist_pr

© 2020

Ong & Walder & Webers

Data61 | CSIRO

The Australian National

University

Assignment Project Exam He

 Weighted average of a function f(x) under the probability dist

Probability Theory

Probability Densities

https://eduassistpro.github.

 $\overset{\mathbb{E}[f]}{\text{Add}} \overset{f(x)}{\text{WeChat}} \overset{\text{dx}}{\text{edu}} \underset{\text{assist_proba}}{\text{proba}}$

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam

Given a finite number N of points J_n drawn from the probability distribution p(x).

https://eduassistpro.github.

 $\stackrel{\sim}{N}_{n-1}$

How Aday points to the proposite de total _assist_plants to the last of t

Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam Hel

• arbitrary function f(x, y)

Polynomial Curl Fitting
Probability Theory

*https://eduassistpro.github.

 $\mathbb{E}_x \left[f(x,y) \right] = p(x) f(x,y) \, \mathrm{d} x$ probability density p(x)

• Note And dx, We extinat edu_assist_pr

One & Walder & Webers The Australian National

• arbitrary function f(x)

$p(x \mid y) f(x) dx$ probability density p(x)

ps://eduassistpro.gi<mark>thub</mark>

• This must mean $\mathbb{E}_{v}\left[\mathbb{E}_{x}\left[f(x)\mid y\right]\right]$. (Why?)

 $=\mathbb{E}_{x}\left[f(x)\right]$

$$\mathbb{E}_{y} \left[\mathbf{x} \times \mathbf{d} \mathbf{d} \right] = \underbrace{\mathbf{y}}_{p} \mathbf{e} \mathbf{c} \mathbf{h} \mathbf{at} \mathbf{edu}_{\mathbf{x}} \mathbf{sist}_{\mathbf{y}}$$

$$= \sum_{x,y} f(x) p(x,y) = \sum_{x} f(x) p(x)$$

106of 825

Assignment Project Exam Help

• arbitrary function f(x)

https://eduassistpro.github.

Add WeChat edu_assist_pr

© 2020
Ong & Walder & Webers
Data61 | CSIRO
The Australian National

• Two random variables $x \in \mathbb{R}$ and $y \in \mathbb{R}$

Assignment Project Exam He

Wit

https://eduassistpro.github. = x,y[] - x,y[] - x,y[] + x,y[]

 $Add \overset{\mathbb{E}_{x,y}[xy] - b}{W} \overset{\mathbb{E}_{x,y}[x] - a}{e} \overset{\mathbb{E}}{\text{edu_assist_p}} \\ = \mathbb{E}_{x,y}[xy] - ab - ab + ab \qquad x,y$

 $= \mathbb{E}_{x,y} [x y] - ab - ab +$ $= \mathbb{E}_{x,y} [x y] - \mathbb{E} [x] \mathbb{E} [y]$

 Expresses how strongly x and y vary together. If x and y are independent, their covariance vanishes.

Covariance for Vector Valued Variables

Statistical Machine Learning

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment Project Exam Hel

Polynomial Curve Fitting

• Tw

https://eduassistpro.github. $= \mathbb{E}_{x,y} xy - \mathbb{E}[x] \mathbb{E} y$

Add WeChat edu_assist_pr

The Gaussian Distribution

Statistical Machine Learning © 2020

Ong & Walder & Webers
Data61 | CSIRO
The Australian National
University

Assignment in Project is Exam He

Probability Theory
Probability Densities

https://eduassistpro.github.

Add WeChat edu_assist_pr

Statistical Machine Learning

One & Walder & Webers Data61 | CSIRO The Australian National

Assignment Project Exam Helphanic Expediation over x

https://eduassistpro.github.

Add We@hat edu_assist_pr

Variance of x

$$\operatorname{var}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2$$

One & Walder & Webers Data61 | CSIRO The Australian National

Assignment Project Exam Here

Giv

https://eduassistpro.github.

- Calculate the optimal parameter (w)
- Model uncertainty using the Bayesian appro
- Interpretant Compute (the algorithm in PUU_assist_

112of 825