Question:

Note

Dynamic Programming: Good Sequence

There are N towers. The height of the ith tower is H_i. A sequence of towers is Good if there are not any two adjacent towers that have the same N) $H_{i-1} \neq H_i$ condition must hold.

You can increase the height of i^{th} tower but it will cost M_i , to increase the height by 1.

Find the minimum cost to make the sequence good.

You can increase the height of a tower any number of times you want. You have to just minimize the cost to make the sequence of towers Good

Function Description

In the provided code snippet, implement the minCost (...) method and print the minimum cost to make the sequence good. You can write code phrase "WRITE YOUR LOGIC HERE".

There will be multiple test cases running so the Input and Output should match exactly as provided.

The base Output variable result is set to a default value of -404 which can be modified. Additionally, you can add or remove these output variable

Input Format

The first line of input consists of an integer N.

The next N lines of input contain the description of towers. The ith line contains H_i and M_i - the height of ith tower and the cost to increase the h respectively.

Sample Input

3	denotes N.	
2 4	denotes two integers H_i and M_i	
2 1	denotes two integers H _i and M _i	
3.5	denotes two integers H : and M :	

Constraints

 $1 \le N \le 10^5$

 $1 \le H_i$, $M_i \le 10^9$

Output Format

The output contains a single integer denoting the minimum cost to make a sequence Good.

Sample Output

2

Explanation

In the sample input, you have to increase the height of the second tower by 2.

Cost =
$$M_2 + M_2 = 1 + 1 = 2$$
.

Hence, the minimum cost to make the sequence Good is 2.

5

2 3 7 9 10

Expected Output

5

2 3 4 6 9

Expected Output

- 7

4

1 2 4 6

Expected Output

Test Case Input		
1 1		
Expected Output		
1		

10

2 3 4 5 6 8 9 10 17 92

Expected Output

10

2 3 45 67 89 101 234 567 890 1234

Expected Output