

Slika 1.19.

Stazu materijalne točke - Lissajousovu krima lju za A = 2 cm, u grafičkom prikazu (vi di sliku) prepoznajemo kao Bernoullieva lemniskatu unutar intervala $-2 \, \text{cm} \le x \le 2 \, \text{cm}$ $-2 \text{ cm} \le y \le 2 \text{ cm}$.

1.3. Zadaci

4.1. Obješena čelična žica duga 4 m, čiji je promjer 2 mm, na donjem je kraju opterećena utegom mase 20 kg. Youngov modul elastičnosti za čelik je 196 GN/m². Koliko je produljenje žice?

Rezultat: $\Delta l = 1.27 \text{ mm}$

1,2. Kolika je sila potrebna da za 1 mm rastegne bakrenu žicu dugu 2 m, ciji je promjer 1 mm? Youngov modul elastičnosti za bakar iznosi 117,6 GN/m^2 .

46, 1/ Rezultat: F = 18427

1.3. Kolika će biti relativna promjena volumena komada bakra koji je u eksplozionoj komori izložen tlaku 345 MPa? Volumni modul elastičnosti za bakar iznosi 138 GPa.

Rezultat: $\Delta V/V = -2.5 \cdot 10^{-3}$ ili 0,25%

1.4. Do koje dubine možemo vertikalno spustiti u more olovni kabel prije nego što dođe do njegovog pucanja zbog vlastite težine. Gustoća olova je 11 400 kg/m³, gustoća morske vode 1 040 kg/m³, a naprezanje pri kojem dolazi do pucanja kabla iznosi 2 · 107 Pa?

Rezultat: h = 196.8 m

1.5. Električni motor pokreće pumpu pomoću željezne osovine duge 20 cm. čiji je promjer 2 cm. Motor, pri kutnoj brzini osovine 200 rad/s daje osovini snagu 14,92 kW. Koliki je kut torzije osovine ako je modul torzije željeza 8 · 1010 Pa?

Rezultat: $\varphi = 0.68^{\circ}$

1.6. Izračunajte relativnu deformaciju gumene vrpce zbog tlačnog naprezanja. Polumjer kružnog presjeka vrpce iznosi r = 0.005 m. Sila koja djeluje iznosi 9,8 N. Youngov modul elastičnosti za gumu je $E=4,4\cdot 10^6$ Pa.

Rezultat: $\frac{\Delta l}{l} = -0.028$

1.7. Gumeno crijevo dugo $l_0=60,5$ cm učvršćeno je na gornjem kraju, a donji kraj opterećen je utezima (sl. 1.20) tako da zbog vlačnog naprezanja dolazi do deformacije dužine. Vanjski polumjer cijevi je $r_{\rm v}=6\cdot 10^{-3}$ m, a unutarnji $r_{\rm u}=4,5\cdot 10^{-3}$ m. Rezultati mjerenja prikazani su u tablici. Odredite Youngov modul elastičnosti.

m/kg	l/cm	$\Delta l/cm$
0	60,5	
1	64,0	3,5 7,1 10,6
2	67,6	
3	71,1	

Slika 1.20.

Rezultat: srednja vrijednost, $\overline{E} = 3.4 \cdot 10^6$ Pa

1.8. Pravokutna platforma je obješena na 4 žice koje su pričvršćene na uglovima. Promjer svake žice je 2 mm, a duljina 3 m. Youngov modul elastičnosti materijala od kojeg je žica napravljena jest $E=180\,000$ MPa. Za koliko će se milimetara platforma spustiti zbog produženja žica ako se teret mase 50 kg stavi na sredinu platforme?

Rezultat: $\Delta l = 0,65 \text{ mm}$

1.9. Na čeličnu žicu čiji je promjer 2 mm i duljine 1 m obješen je teret mase 60 kg. Ako je produljenje žice 0,94 cm, koliki je Youngov modul elastičnosti?

Rezultat: E = 20 GPa

1.10. Izračunajte kružnu frekvenciju titrajnih sustava na slikama 1.21.a) i b) ako su m=5 kg, $k_1=105$ N/m i $k_2=95$ N/m.

Slika 1.21.

Rezultat: a) $\omega = 6.3 \text{ s}^{-1}$, b) $\omega = 3.2 \text{ s}^{-1}$

1/11. Klip motora automobila ima hod 55,5 mm i masu 360 g. Uz pretpostavku da gibanje klipa u cilindru motora možemo aproksimirati jednostavnim harmoničkim titranjem, kolika je maksimalna brzina i akceleracija klipa pri vrtnji motora s 3 000 okretaja u minuti? Kolika je pritom maksi Rezultat: $v_{\rm m} = 8.7~{\rm ms}^{-1}$, $a_{\rm m} = 2.74~{\rm km~s}^{-2}$, $F_{\rm m} = 986~{\rm km}$ malna sila na klip?

1.12. Tijelo mase m obješeno o spiralnu oprugu uzrokuje produljenje opruge 4 cm. Koliko titraja napravi to tijelo u 1 min kada ga se pobudi na vertikalno harmoničko titranje?

Rezultat: n = 150 titraia

1.

ha a)

1.13. Nerastegnuta opruga duljine L pričvršćena je u horizontalnom položaju na oba kraja, a zatim prerezana na $\frac{1}{4}$ L. Na tom je mjestu pričvršćeno tijelo (za oba kraja opruge), pomaknuto iz položaja ravnoteže i ostavljeno da titra po horizontalnoj podlozi bez trenja. Potrebno je izračunati omjer perioda titranja tog sustava i iste (neprerezane) opruge opterećene istim tijelom, ali u vertikalnom smjeru.

Rezultat: $T:T_v=0,433$

1/14. Jedna opruga opterećena utegom produlji se 4 cm, a druga, opterećena istim utegom, produlji se 5 cm. Koliki je period titranja serijski spojenih opruga opterećenih istim utegom?

Rezultat: T = 0,602 s

1.15. Uteg mase srednje vrijednosti 8,000 kg obješen je na donjem kraju elastične opruge. Mjerenjem pomoću zaporne ure određeno je da 10 uzastopnih titraja traju 10,41 s (srednja vrijednost). Odredite konstantu k opruge i relativnu i apsolutnu pogrešku mjerenja. Dokažite da za relativnu pogrešku vrijedi izraz:

$$\left(\frac{\Delta k}{k}\right)^{\!2}\!=\left(\frac{\Delta m}{m}\right)^{\!2}\!+\left(2\,\frac{\Delta T}{T}\right)^{\!2}\!,$$

gdje je m masa utega, a T period. U mjerenju maksimalna apsolutna pogreška $\Delta m = 0.001$ kg, a $\Delta T = 0.02$ s.

> Rezultat: $k = (291 \pm 11) \text{ kg s}^{-2}$ (Točnost mjerenja vremena bitno utječe na pogrešku.)

1.16. U času t=0 jednostavni harmonički oscilator udaljen je na osi xod svog ravnotežnog položaja za +6 cm i giba se brzinom $v_{\rm x}=5~{
m \pi\,cm/s}$ Odredite početnu fazu titranja i amplitudu ako je period njegova titranja 2 s.

Rezultat: $\varphi = 50.19^{\circ}$, A = 7.81 cm

1,47. Posuda s utezima visi na opruzi i titra periodom 0,5 s. Dodavanjem utega u posudu period titranja se promijeni na 0,6 s. Koliko se produljila opruga dodavanjem utega?

Rezultat: $\Delta l = 2.7 \cdot 10^{-3}$ m

TIKE

ksi-

36 N

uge lno

raja

aju elo tra

da

ali

133

na

ih

2 8

ju

p-

i

u

1.18. Odredite omjer potencijalne i kinetičke energije materijalne točke koja harmonički titra kao funkciju vremena:

a) u općenitom slučaju, b) uz početne uvjete $t_0=0$ s, $\varphi_0=0$, c) uz početne

uvjete $t_0=0$ s, $\varphi_0=\pm\frac{\pi}{2}$.

Rezultat: a) $\frac{E_p}{E_k}=\tan^2(\omega t+\varphi_0)$, b) $\frac{E_p}{E_k}=\tan^2\omega t$, c) $\frac{E_p}{E_k}=\cot^2\omega t$.

1,19. Koliki je omjer perioda vertikalnih titranja tijela vezanog na dvije jednake opruge ako se serijski spoj opruga zamijeni paralelnim?

1.20. Na tankoj niti visi uteg pod čijom se težinom nit produljila za $\Delta x_0 =$ = 0,1 m. Odredite period malih vertikalnih titranja toga utega ako je sila niti na uteg dana izrazom:

$$F_{\rm N} = -c_1 \Delta x - c_2 (\Delta x)^3 \,,$$

gdje je Δx promjena duljine niti, a $c_1 = 294 \text{ Nm}^{-1}$, $c_2 = 9800 \text{ Nm}^{-3}$.

Rezultat: T = 0.52 s

1.21. Kuglica mase 2·10⁻² kg, pričvršćena na oprugu konstante elestičnosti 8 Nm⁻¹, harmonički titra amplitudom A. Na udaljenosti A/2 od položaja ravnoteže postavi se masivna pregrada, od koje se kuglica savršeno elastično odbija. Odredite period titranja kuglice.

Rezultat: 0,21 s

1.22. Zamislite da je uzduž jednog promjera Zemlje probijen tunel kroz cijelu Zemljinu kuglu. Ne računate li s otporom, odredite koliki bi bio period titranja nekog tijela proizvoljne mase m ispuštenog u taj tunel. Pretpostavite konstantnu vrijednost gustoće Zemlje.

Rezultat: T = 84 min

1,23. Knjiga leži na horizontalnoj podlozi koja jednostavno harmonički titra u horizontalnom smjeru i pritom ima amplitudu 1 m. Kolika je maksimalna frekvencija tog gibanja pri kojoj još neće doći do klizanja knjige po podlozi? Faktor trenja je 0,5.

Rezultat: $f_{\text{maks}} = 0.35 \text{ Hz}$

1,24. Nađite period njihanja Galileijeva njihala prikazanog na slici 1.22.

Rezultat: T = 2.3 s

1.25. Istodobno su zanjihana dva matematička njihala, za čije duljine vrijedi $l_1-l_2=22~\mathrm{cm}.$ Nakon nekog vremena jedno je njihalo načinilo $N_1=30,$ a drugo $N_2 = 36$ njihaja. Odredite njihove duljine.

Rezultat: $l_1 = 72$ cm, $l_2 = 50$ cm

Slika 1.22.

1.26. Matematičko se njihalo dugo 60 cm njiše u zrakoplovu koji se uspinje pod kutom 30° prema horizontalnoj ravnini, s ubrzanjem od 4 m s⁻². Odredite period njihanja matematičkog njihala. Rezultat: T = 1,39 s

b) kroz 1 c) Kada

71,30. 1 njem k kuglice štapa,

1.31.

okom biti t

1,32

je ve

kojii

1.33 srec buc

113 'ljir ka

J.

1,27. Kolika je napetost niti matematičkog njihala mase m=10 g i duljine $\hat{l}=1$ m ako je u t=0 maksimalna elongacija $\vartheta_0=6^\circ$? Rezultat: F = 0,098 N

Slika 1.23.

1.28. Na slici 1.23. je njihalo metronoma. Sastoji se od dva tijela masa m_1 i m_2 , od kojih se tijelo mase m_2 može pomicati po štapu. Tijela su učvršćena na štap zanemarive mase. Težište T njihala smješteno je ispod osi 0 vrtnje. na štap zanemarive mase. Težiste T njihala sinjesteno je upisnite rezultat. Izvedite izraz za period titranja njihala metronoma i objasnite rezultat. Rezultat: $T = 2\pi \sqrt{\frac{m_1 r_1^2 + m_2 r_2^2}{g(m_1 r_1 - m_2 r_2)}}$

Rezultat:
$$T = 2\pi \sqrt{\frac{m_1 r_1^2 + m_2 r_2^2}{g(m_1 r_1 - m_2 r_2)}}$$

(Udaljavanjem tijela mase m_2 od osi vrtaje povećava se period titranja jer se time povećava i moment inercije, a smanjuje se udaljenost težišta od osi.)

1.29. Koliki je period fizičkog njihala u obliku homogenog štapa duljine l = 2 m ako se njiše oko osi koja prolazi:

a) jednim njegovim krajem,

1.38. Tijelo na opruzi titra gotovo neprigušeno periodom $T_0 = 0.6$ s. Ako paralelno opruzi spojimo amortizer, period titranja povećava se na T = 0.68 s. a) Koliki je faktor prigušenja amortizera? b) Koliko bi puta amortizer morao imati veće trenje da nastupi kritično prigušenje?

Rezultat: a)
$$\delta = 4.9 \text{ s}^{-1}$$
, b) $\delta_{kr} = 10.5 \text{ s}^{-1}$; 2.1 puta

1.39. Materijalna točka izvodi istodobno dva međusobno okomita harmonijska titranja opisana jednadžbama:

$$x = 1 \operatorname{cm} \cos \pi \operatorname{s}^{-1} t$$
 i $y = 2 \operatorname{cm} \cos \frac{\pi}{2} \operatorname{s}^{-1} t$.

Odredite stazu materijalne točke.

Rezultat:
$$y^2 = (2 \text{ cm})x + 2 \text{ cm}^2 \text{ uz } -1 \text{ cm} \leq x \leq 1 \text{ cm}$$

b) kroz točku udaljenu od sredine štapa za d=1/6.

c) Kada je period najmanji, a kada najveći?

Rezultat: a) T=2,3 s, b) T=2,3 s c) period je najmanji za d=0.58 m, a maksimalan (beskonačan) je za d=0.

1,30. Njihalo se sastoji od štapa mase 0,5 kg, duljine 1 m, na čijem je donjem kraju pričvršćena kuglica polumjera 0,05 m. Kolika mora biti gustoća kuglice da bi period oko okomite osi na štap koja prolazi gornjim krajem

Rezultat: $\varrho = 2610 \text{ kg/m}^3$

1.31. Puni homogeni disk polumjera R njiše se oko horizontalne osi koja je okomita na osnovicu diska i od njezina središta udaljena za r. Kolika mora biti ta udaljenost r da bi period malih titraja bio minimalan.

Rezultat: $r = R/\sqrt{2}$

1.32. Na nit dugu 3 m obješena je kuglica čiji je polumjer 3 cm. Za koliko je veći period titranja tog fizičkog njihala od perioda matematičkog njihala kojim se ono može aproksimirati?

Rezultat: $\Delta T = 6.95 \cdot 10^{-5} \text{ s}$

1.33. Kugla polumjera 10 cm njiše se oko horizontalne osi udaljene 5 cm od središta C. Gdje treba biti os druge jednake kugle da omjer perioda titranja

Rezultat: 0,78 cm

7 1.34. Dva homogena štapa duljine l spojeni su tako da je dobiven štap duljine 21. Ako je omjer masa štapova 2 : 1, koliki je omjer perioda titranja kad je os na jednom, odnosno drugom kraju štapa?

Rezultat: $T_1/T_2 = 0.9165$

1.35. Tanki homogeni štap njiše se oko horizontalne osi koja prolazi kroz jedan njegov kraj. Koliki je odnos perioda titranja toga štapa duljine l i njemu jednakog štapa, dvostruke duljine 21?

Rezultat: $T_l/T_{2l} = 0,707$

1.36. Vanjska periodička sila maksimalnog iznosa 10 N djeluje na tijelo na opruzi koje, zbog djelovanja te sile, titra amplitudom 1 cm. Na početku titranja tijelo je udaljeno pola amplitude od središnjeg položaja. Valja izračunati rad što ga izvrši sila u vrijeme jednog perioda ako je u t=0 sila maksimalna.

Rezultat: W = 0.2721 J

1.37. Tijelo obješeno o oprugu titra amplitudom 10 cm. U jednom trenutku počinje djelovati sila koja prigušuje titranje. Ako je omjer amplituda u prvoj i sedmoj sekundi prigušenja jednak 10, za koje vrijeme će se amplituda smanjiti na 1 cm?

Rezultat: t = 6 s