Name:	Kalahastri Likhith Sai Ganesh
Roll Number:	20IM10017

- 1. Aim of the experiment: Studies on small-signal CE amplifier
- **2.** <u>Tools used:</u> Resistors, Capacitors, NPN Transistor, Voltage Source.
- 3. Background knowledge (brief):

A transistor is a type of semiconductor device that can be used to both conduct and insulate electric current or voltage. A transistor acts as a switch and an amplifier. There are three terminals for a transistor. They are:

- Base
- Collector
- Emitter

P-N-P Transistor: It is a type of BJT where one n-type material is introduced or placed between two p-type materials

N-P-N Transistor: In this transistor, we will find one p-type material between two n-type materials.

In Common Emitter (CE) configuration, the emitter terminal is shared between the input and the output terminals.

Output Characteristics of a CE Amplifier

4. Circuit (hand drawn/image):

Measurement of DC conditions

Vb = 1.0627V , Vc = 12V , Ve = 420.955mV

Measurment of Oc conditions:

From 9 9 ph

Ve = 420.95 mV

$$V_{cc}$$
 V_{cc}
 R_{c}
 R_{c}
 R_{c}
 R_{c}
 R_{c}

$$I_0 = J_C + J_b$$

$$I_c = I_e - I_b = 0.637 P + 0.0066$$

= 0.6444mA

From Calculations,

Vbe = 0.641745V, Vce = 11.579V, Ic = 0.6444mA, Ie = 0.6378mA

Signal Handling Capacity

F = 4KHz

1)Without Load Resistance -

a)Vin = 0.1V

Vo = 1.8247V

Gain A = Vo/Vi = 18.247

b)Vin = 0.2V

Vo = 3.368V

Gain A = Vo/Vi = 16.84

c)Vin = 0.3V

Vo = 4.2541V

Gain A = Vo/Vi = 14.18

d)Vin = 0.45V

Vo = 4.368V

Gain A = Vo/Vi = 9.706

Vsm = 0.45V

2)With Load Resistance -

a)Vin = 0.1V

Vo = 225.136mV **Gain A = Vo/Vi** = 2.251

b)Vin = 0.2V

Vo = 423.234mV **Gain A = Vo/Vi** = 2.116

c)Vin = 0.3V

Vo = 536.032mV **Gain A = Vo/Vi** = 1.786

d)Vin = 0.35V

Vo = 547.834mV

Gain A = Vo/Vi = 1.565

Vsm = 0.35V

Vsm without RL is 0.45V and with RL is 0.35V. (CLose by)

Measurement of Frequency Response

(i)

Low Cutoff Frequency = 9.211Hz
High Cutoff Frequency = 67.621MHz

(ii) Load Disconnected

Low Cutoff Frequency = 8.755Hz

High Cutoff Frequency = 6.059MHz

From the above two(with and without load resistance), Low cutoff frequency is close by, but high cutoff frequency varies by 10x times.

(iii) Effect of Ce

(iv)Re1, Re2 fully biased

Low Cutoff Frequency = **6.974Hz**High Cutoff Frequency = **47.414MHz**Full Biasing of Ce leads high cutoff frequency to decrease drastically from 67.621MHz to 47.414MHz.

Output Resistance in the Mid-Frequency Range

RL = 1K, Vin = 150mV, F = 100KHz

Vout | RL = 0.328V

Vout | R(infinity) = 2.554V

Measurement of output resistance in mid-frequency range: Vout|Row = 2.554V Rout = RL Vout|Row - Vout|RL Vout|RL = 1000 (2.554 - 0.328) Raut = 6786.585 1