Stat 346 Homework 3

Nathan Jarus

Feb. 20, 2014

1 Problem 1

1.1 Part a

The residuals are not normally distributed, indicating a nonlinear relationship. Possible fixes include non-linear regression or a transformation on X.

1.2 Part b

These residuals seem to be normally distributed with constant variance. This indicates that the model is a good fit.

1.3 Part c

The errors are not normally distributed. This might be fixed with a transformation on Y.

1.4 Part d

The variance on the residuals is not constant. This might be fixed with a transformation on Y.

2 Problem 2

2.1 Part a

Plots 2.1 and 2.1. The residuals seem normally distributed and support a linear trend.

2.2 Part b

```
s\{b_1\} = 2.125 \times 10^{-2}

t(1 - 0.05/2, 16 - 2) = t(0.975, 14) = 2.145

b_1 = 0.47833 \pm 2.145 * 2.125 \times 10^{-2}

(0.43275, 0.52392)
```

00:27 Thursday, February 20, 2014 1

Plastic Hardness Residuals vs. time

2 Problem 2 3

Plastic Hardness Normal Probability

00:27 Thursday, February 20, 2014 1

3 Problem 3 4

2.3 Part c

$$\begin{split} &\hat{Y} = 37.7759 \\ &s\{\hat{Y}\} = 0.5851 \\ &\hat{Y} \pm t(1-0.05/2, 16-2)s\{\hat{Y}\} = 2.145*0.5851 \\ &(36.5209, 39.0309) \end{split}$$

2.4 Part d

$$R^2 = 1 - \frac{SSE}{SSTO} = 1 - \frac{34.342802}{1280} = 0.9731$$

2.5 Part e

- 1. General Linear Test
- 2. ANOVA
- 3. T-test

3 Problem 3

3.1 Part a

	ORIGINAL REGRESSION	REGRESSION WITH OUTLIER
Fitted Regression Equation	$\hat{Y} = 2.11405 + 0.03883X$	$\hat{Y} = 3.04977 + 0.00090502X$
R-Square	0.0726	0.0011
MSE	0.38829	0.41822
$SE\{b_1\}$	0.01277	0.00250
P-Value	0.0029	0.7178

3.2 Part b

Plots 3.2 and 3.2 for the original dataset. Plots 3.2 and 3.2 for the edited dataset. The residuals plot is much more extreme.

3.3 Part c

Yes, you could construct a sequence diagram over the dates, or perhaps school years, at which the GPA and ACT scores were collected.

4 Problem 4

4.1 Part a

As shown in Plot 4.1, the relationship is not linear.

4 Problem 4 5

01:31 Thursday, February 20, 2014 1

GPA and ACT Residuals vs. time

01:31 Thursday, February 20, 2014 1

GPA and ACT with typo Residuals vs. time

GPA and ACT Normal Probability

01:31 Thursday, February 20, 2014 1

GPA and ACT with typo Normal Probability

01:31 Thursday, February 20, 2014 1

13:09 Thursday, February 20, 2014 1

Solution Concentration Scatterplot Concentration vs. Time

4 Problem 4 10

4.2 Part b

In the plots in 4.2 and 4.2, we see a large skew towards smaller times. The boxplot especially shows a very nonlinear relationship.

4.3 Part c

The regression equation is

$$\hat{Y} = 2.57533 + 0.324X \tag{1}$$

The p value is < 0.0001, indicating a significant linear relationship if the SLR assumptions hold. The correlation is 0.8116, which is pretty good.

Solution Concentration

Regression

The REG Procedure

Model: MODEL1

Dependent Variable: concentration

Number of Observations Read	15
Number of Observations Used	15

Analysis of Variance							
Source DF Sum of Squares Mean Square F Value Pr							
Model	1	12.59712	12.59712	55.99	<.0001		
Error	13 2.92465		0.22497				
Corrected Total	14	15.52177					

Root MSE	0.47431	R-Square	0.8116
Dependent Mean	0.95533	Adj R-Sq	0.7971
Coeff Var	49.64901		

	Parameter Estimates								
Variable	riable DF Parameter Estimate Standard Error t Value Pr > t 95% Confide					idence Limits			
Intercept	1	2.57533	0.24873	10.35	<.0001	2.03798	3.11269		
time	1	-0.32400	0.04330	-7.48	<.0001	-0.41754	-0.23046		

13:09 Thursday, February 20, 2014 1

Solution Concentration Histogram

13:09 Thursday, February 20, 2014 1

Solution Concentration Box Plot

4.4 Part d

Both the normal probability plot and the residuals plot shown in plot 4.4 and 4.4 indicate that our errors are not normally distributed. This could be rectified by a transformation on Y.

4.5 Part e

Solution Concentration Lack-Of-Fit

The RSREG Procedure

Response Surface for Variable concentration					
Response Mean 0.955333					
Root MSE	0.474314				
R-Square 0.					
Coefficient of Variation 49.649					

Regression	DF	Type I Sum of Squares	R-Square	F Value	Pr > F
Covariates 1		12.597120	0.8116	55.99	<.0001
Linear	0	0.0000			
Quadratic 0		0	0.0000		
Crossproduct	0	0	0.0000		
Total Model	1	12.597120	0.8116	55.99	<.0001

Residual	DF	DF Sum of Squares Mean Squar		F Value	Pr > F
Lack of Fit	3	2.767253	0.922418	58.60	<.0001
Pure Error	10	0.157400	0.015740		
Total Error	13	2.924653	0.224973		

Parameter	DF	Estimate	Standard Error	t Value	Pr > t	Parameter Estimate from Coded Data
Intercept	1	2.575333	0.248732	10.35	<.0001	2.575333
time	1	-0.324000	0.043299	-7.48	<.0001	-0.324000

With a lack of fit test, our hypothesis are

$$H_0: E(Y) = 2.57533 + 0.324X$$
 (2)

13:09 Thursday, February 20, 2014 1

Solution Concentration Residuals vs. time

13:09 Thursday, February 20, 2014 1

Solution Concentration Normal Probability

4 Problem 4 16

$$H_a: E(Y) \neq 2.57533 + 0.324X$$
 (3)

To prove a linear relationship, we want to fail to reject H_0 . Unfortunately, our p-value for this test are < 0.0001, indicating that we do reject H_0 . Thus, we can conclude that the data is not accurately modeled by a linear relationship.

4.6 Part f

Running Box-Cox on the data, we get the following results:

Solution Concentration Box-Cox Analysis

The TRANSREG Procedure

	Box-Cox Transformation Information for time						
Lambda		R-Square	Log Like				
-3.00		0.88	-37.2367				
-2.75		0.88	-32.9674				
-2.50		0.89	-28.6758				
-2.25		0.90	-24.3345				
-2.00		0.91	-19.9035				
-1.75		0.92	-15.3228				
-1.50		0.94	-10.5023				
-1.25		0.95	-5.3101				
-1.00		0.97	0.4221				
-0.75		0.98	6.7164				
-0.50	+	0.99	12.2568	*			
-0.25		0.99	12.8678	<			
0.00		0.97	9.1486				
0.25		0.95	5.0555				
0.50		0.91	1.5428				
0.75		0.86	-1.4700				
1.00		0.81	-4.1511				
1.25		0.76	-6.6264				
1.50		0.71	-8.9803				
1.75		0.66	-11.2682				
2.00		0.61	-13.5262				

4 Problem 4 17

	Box-Cox Transformation Information for time					
Lambda		R-Square	Log Like			
2.25		0.57	-15.7777			
2.50		0.54	-18.0375			
2.75		0.51	-20.3149			
3.00		0.48	-22.6154			
< - Best L	< - Best Lambda * - 95% Confidence Interval + - Convenient Lambda					

From this, we chose to transform the data with the following equation:

$$Y' = Y^{-0.25} (4)$$

The resulting scatterplot of the transformed data, plot4.6, indicates a much stronger linear relationship.

4.7 Part g

The transformed regression equation is

$$\hat{Y}' = 0.56720 + 0.1398X \tag{5}$$

The p-value for the slope is < 0.0001, also indicating a strong linear relationship assuming the SLR assumptions hold. The correlation value is 0.9725, much better than the non-transformed correlation.

4.8 Part h

The residual and normal probability plots in 4.8 and 4.8 indicate a much more normal distribution of error terms. The residual plot is not quite perfectly independently distributed, but it is much less erratic than the non-transformed plot.

4.9 Part i

Solution Concentration ** -0.25 Lack-Of-Fit Test

The RSREG Procedure

Response Surface for Variable transconcentration					
Response Mean 1.266211					
Root MSE	0.071415				
R-Square	0.9725				
Coefficient of Variation	5.6401				

13:09 Thursday, February 20, 2014 1

Solution Concentration ** -0.25 Scatterplot Concentration vs. Time

13:09 Thursday, February 20, 2014 1

Solution Concentration ** -0.25 Residuals vs. time

13:09 Thursday, February 20, 2014 1

Solution Concentration ** -0.25 Normal Probability

Regression D		Type I Sum of Squares	R-Square	F Value	Pr > F
Covariates		2.345379	0.9725	459.87	<.0001
Linear	0	0	0.0000		
Quadratic	0	0	0.0000		
Crossproduct	0	0	0.0000		
Total Model	1	2.345379	0.9725	459.87	<.0001

Residual DF		Sum of Squares	Mean Square	F Value	Pr > F
Lack of Fit	3	0.050971	0.016990	11.08	0.0016
Pure Error	10	0.015330	0.001533		
Total Error	13	0.066301	0.005100		

Parameter	DF	Estimate	Standard Error	t Value	Pr > t	Parameter Estimate from Coded Data
Intercept	1	0.567197	0.037450	15.15	<.0001	0.567197
time	1	0.139803	0.006519	21.44	<.0001	0.139803

To perform a lack-of-fit test on the transformed data, we start with the following hypotheses:

$$H_0: E(Y) = 0.56720 + 0.1398X (6)$$

$$H_a: E(Y) \neq 0.56720 + 0.1398X$$
 (7)

The resulting p-value is 0.0016, indicating that we fail to reject H_0 . Thus, we can conclude that our transformed data can be modeled accurately by linear regression.

5 Problem 5, KNN #3.23

Full Model:

$$Y_{ij} = \mu_j + \epsilon_{ij} \tag{8}$$

Degrees of freedom: n-c

Reduced Model:

$$Y_{ij} = \beta_1 X_j + \epsilon_{ij} \tag{9}$$

Degrees of freedom: n-2