विशेष अध्याय Special Lesson

INSIDE

- A, B, C यौगिकों की पहचान
- वैज्ञानिकों के नाम पर अभिक्रियायें

प्रमुख यौगिक 2.

A, B, C यौगिकों की पहचान (IDENTIFY A. B. C. COMPOUNDS)

- यह प्रश्न महत्वपूर्ण है, इसमें हमें क्रियाफल पदार्थ देकर क्रियाकारक पदार्थ पूछता है।
- $A \xrightarrow{PCl_5} RCI$ यहाँ क्रियाफल पदार्थ में एक ही क्लोरीन है, अतः इसे OH द्वारा 1. प्रतिस्थापित करने पर यौगिक A प्राप्त होता है। अत: यौगिक $A \rightarrow R - OH$ है।

उदाहरण:
$$4 \xrightarrow{PCl_5} CH_3Cl$$

उत्तर:

$$A \rightarrow CH_3OH$$

$$A \xrightarrow{PCl_5} CH_3 - CH - CH_3$$

$$A \rightarrow CH_3 - CH - CH_3$$

2. $A \xrightarrow{PCl_5} 2R - Cl$ यहाँ क्रियाफल पदार्थ में दो क्लोरीन परमाणु है अत: यहाँ दो क्लोरीन परमाणुओं को हटाकर, बचे समूहों को जाँक्सीजन में जोड़ेंगे। 2RCI बनते हैं इन्हें हम लिखेंगे, दोनों क्लोरीन को हटाते हैं जो बचते हैं, उन्हें हम ऑक्सीजन से जोडेंगे।

R - CI + CI + R

अत: यौगिक A → R – O – R होगा।

$$A \xrightarrow{PCl_5} 2CH_3CH_2CI$$

$$A \rightarrow CH_3CH_2 - O - CH_2CH_3$$

 $A \xrightarrow{PCl_5} RCI + R'CI$ 3. यहाँ क्रियाफल पदार्थ में दो क्लोरीन परमाणु है अत: इन्हें ऑक्सीजन परमाणु से प्रतिस्थापित कर देंगे। अत: यौगिक $A \rightarrow R - O - R'$ (Ether) होगा।

$$A \xrightarrow{PCl_5} CH_2 = CH - CI + CH_3CI$$

$$A \rightarrow CH_2 = CH - O - CH_3$$

 $A \xrightarrow{PCl_5} RCOCI$ 4. यहां क्रियाफल पदार्थ में एक ही -Cl परमाणु है अत: -Cl को -OH द्वारा प्रतिस्थापित करेंगे। अत: यौगिक A → R - COOH होगा।

 $A \xrightarrow{PCl_5} CII_3 - CH_2 - CH_2COCI$ उदाहरण $A \rightarrow CH_3 - CH_2 - CH_2 - COOH$

5. $A \xrightarrow{PCl_5} 2RCOCI$

अत: यौगिक

उदाहरण: $A \xrightarrow{PCl_5} 2CH_3CH_2COCl$

 $A \xrightarrow{PCl_5} RCOCI + R'COCI$ 6. A o RCO > O अम्ल एनहाइंड्राइंड है। अत: यौगिक

उदाहरण: $4 \xrightarrow{PCl_5} CH_3COCI + CH_3CH_2COCI$

Acetic, propionic anhydride है।

 $A \xrightarrow{PCl_5} RCOCI + RCI$ 7.

अतः यौगिक $A \rightarrow RCOOR(Ester)$ होगा।

उदाहरण: $A \xrightarrow{PCl_5} CH_3COCI + CH_3CH_2CI$

अतः यौगिक $A \rightarrow CH_3COOCH_2CH_3$ है।

Ethyl acetate

8. $A \xrightarrow{PCl_5} RCOCI + R'CI$ अत: यौगिक $A \to RCOOR'$ (Ester) होगा।

 $A \xrightarrow{PCl_5} CH_3COCI + CH_2 = CH - CI$

अतः यौगिक $A \rightarrow CH_3COOCH = CH_2$ है।

Vinvl acetate

 $A \xrightarrow{PCl_5} > C$

अत: यौगिक $A \rightarrow > C = O$ है। (कार्बोनिल यौगिक) उदाहरण:

$$A \xrightarrow{PCl_5} CH_3CH < Cl$$

अतः यौगिक $A \rightarrow CH_3 - CH = O$ है।

$$A \xrightarrow{PCl_5} CH_3 - CCl_2CH_3$$

अत: यौगिक $A \rightarrow CH_3COCH_3$ होगा। (कीटोन)

नोट- अतः उपरोक्त 1 से 9 अभिक्रियाओं में आप देख रहे है कि सभी क्रियाफल पदार्थों में -Cl उपस्थित है। कुछ में एक क्लोरीन है, तो कुछ में दो क्लोरीन है।

- $A \xrightarrow{HNO_2} R OH$ 10. अतः यौगिक $A \rightarrow R - NH_2$ है। यहाँ -OH समूहं -NH, समूह से प्राप्त होता है। उदाहरण $A \xrightarrow{HNO_2} CH_3CH_2CH_2OH$ अतः यौगिक $A \rightarrow CH_3CH_2CH_2NH_2$ है।
- $A \xrightarrow{HNO_2} R COOH$ 11. अतः यौगिक $A \rightarrow R - CONH_2$ होगा। $A \xrightarrow{HNO_2} CH_3CH_2COOH$ A → CH₃CH₂CONH₂ होगा।
- $A \xrightarrow{4H/LiAlH_4} R CH_2NH_2$ यहाँ यौगिक A अपचयन से प्राथिमिक ऐमीन में बदल रहा है। अत: प्राप्त यौगिक में 4H हटा ले तो यौगिक A प्राप्त हो जायेगा। अत: यौगिक $A \rightarrow R - CN$ (ऐल्किल सायनॉइड) है। उदाहरण: $A \xrightarrow{4H+LiAlH_4} CH_3CH_2CH_2NH_2$ अतः यौगिक $A \rightarrow CH_3CH_2CN$ (ऐथिल सायनॉइंड) है।
- $A \xrightarrow{4H/LiAlH_4} R NHCH_3$ 13. यहाँ यौगिक A अपचयन से द्वितीयक ऐमीन बनाता है। अत: प्राप्त यौगिक में से 4H हटा ले तो यौगिक A प्राप्त हो जायेगा। अत: यौगिक $A \rightarrow R - NC$ (*एल्किल आइसोसायनॉइड*) है। उदाहरण: $A \xrightarrow{4H/LiAlH_4} CH_3CH_2NHCH_3$ अत: यौगिक A ightarrow CH $_3$ CH $_2$ NC (\bar{v} /थिल आइसोसायनॉइड) है।
- $A \xrightarrow{2H_2O/\operatorname{adj}HCl} RCOOH + NH_3$ 14. यहाँ यौगिक A जल अपघटन से अम्ल व अमोनिया बनाता है। अत: प्राप्त यौगिक में से 4H व दो ऑक्सीजन हटा ले, तो यौगिक A प्राप्त होगा।

अत: यौगिक $A \rightarrow R - CN$ (ऐल्किल सायनॉइड) है।

 $A \xrightarrow{2H_2O \cap \operatorname{arg}HCI} CH_3CH_2COOH + NH_3$ अतः यौगिक A ightarrow CH $_3$ CH $_2$ CN (एेशिल सायनॉइंड) है।

नोट- अत: सायनाइडस जल अपघर्टन से हमेशा अम्ल व NH3 देते हैं।

 $A \xrightarrow{2H_2O/\operatorname{frg}HCl} RNH_2 + HCOOH$ यहाँ यौगिक A जल अपघटन से प्राथमिक ऐमीन एवं फार्मिक अम्ल बनाता है। अतः यौगिक $A \rightarrow R - NC ($ ऐल्किल आइसोसायनाइङ) है। उदाहरण $A \xrightarrow{2H_2O/$ बन् $HCl} \rightarrow CH_3CH_2NH_2 + HCOOH$ अतः यौगिक $A \rightarrow CH_3CH_2NC$ होगा।

 $A \xrightarrow{\text{जलीय } KOH} R - OH$ 16.

यहाँ यौगिक A जलीय KOH के साथ क्रिया कर ऐल्कोहॉल बनाता है। अत: यौगिक A में एक हैलोजन है अर्थात् प्राप्त यौगिक के -OH समूह को -CI में प्रतिस्थापित करेंगे।

अत: यौगिक A → R – Cl होगा।

उदाहरण: $A \xrightarrow{\neg m \cap a \ KOH} (CH_3)_3 C - OH$

अत: यौगिक $A \rightarrow (CH_3)_3C - CI$ (tert. ब्यूटिल क्लोराइङ) होगा।

 $A \xrightarrow{\neg \text{eff} \mid a} KOH \to > C = O$ (कार्बोनिल समूह) क्रियाफल पदार्थ में स्थित = O को दो –Cl में प्रतिस्थापित करें। 17.

अतः यौगिक $A \rightarrow > C < \frac{Cl}{Cl}$ होगा।

उदाहरण: $A \xrightarrow{\neg \text{eellu } KOH} CH_3 - CH = O$ अतः यौगिक A → CH3CHCl3 होगा।

 $A \xrightarrow{\overline{\text{sefflut } KOH}} R - COOH$ 18. यहाँ क्रियाफल पदार्थ में –COOH समूह बनता है। अत: इसे –

CCI3 से प्रतिस्थापित करने पर यौगिक A प्राप्त होगा। अत: यौगिक A → R – CCl₃ होगा।

 $A \xrightarrow{\text{जलीय } KOH} CH_3CH_2COOH$ अतः यौगिक $A \rightarrow CH_3CH_5CCl_3$ होगा।

 $A \xrightarrow{\text{एल्कोहॉलिक}KOH} > C = C <$ 19. उपरोक्त अभिक्रिया में क्रियाफल पदार्थ एल्कीन है। अत: यौगिक A को ज्ञात करने के लिए हम एक अणु HCl को जोड़े। अत: यौगिक $A \rightarrow> CH - C <$ (मोनोहैलाइड) होगा।

> उदाहरण: A \longrightarrow $CH_3 - CH = CH_2$ अतः यौगिक $A \rightarrow CH_3 - CH_2 - CH_2 - CI$ या CH3-CH-CH3 है।

 $A \longrightarrow C \equiv C -$ 20. उपरोक्त अभिक्रिया में क्रियाफल पदार्थ एल्कॉइन है। अत: यौगिक A को ज्ञात करने के लिए हम दो अणु HCI के जोड़े। अत: यौगिक $A \rightarrow -CH \longrightarrow CH - ($ डाईहैलाइड) होगा। $CI \longrightarrow CI$

उदाहरण : $A \xrightarrow{\text{एकोहॉलिक}KOH} CH_3 - C \equiv C - CH_2 - CH_3$ अतः यौगिक $A \to CH_3 - CH - CH - CH_2 - CH_3$ होगा। CI

21. $A \xrightarrow{KCN} R - CN$ यौगिक A मोनोहैलाइड होगा, – CN को –Cl से प्रतिस्थापित करें। अत: यौगिक $A \rightarrow R - Cl \ \hat{e}$ ।

उदाहरण: $A \xrightarrow{KCN} CH_3CN$

अतः यौगिक $A \rightarrow CH_3CI$ है।

 $A \xrightarrow{AgCN} R - NC$ 22. यौगिक A मोनोहैलाइड है। -NC को -Cl से प्रतिस्थापित करें। उदाहरण

$$A \xrightarrow{AgCN} CH_3CH_2NC$$

अतः यौगिक $A \rightarrow CH_3CH_2CI$ है।

 $A \xrightarrow{[O]} R - CHO$ 23.

> यहाँ यौगिक A प्राथिमक एल्कोहॉल है क्योंकि प्राथिमक एल्कोहॉल ऑक्सीकरण से एल्डिहाइड देता है।

अत: यौगिक $A \rightarrow R - CH_2OH$ है।

उदाहरण:

$$A \xrightarrow{[O]} CH_3CHO$$

अतः यौगिक $A \rightarrow CH_3CH_2OH$ होगा।

 $A \xrightarrow{[O]} R - COOH$ 24.

ऐल्डिहाइड हमेशा ऑक्सीकरण से अम्ल देते हैं।

अत: यौगिक A → R-CHO है।

उदाहरण $A \xrightarrow{[O]} CH_3CH_2COOH$

अतः ऑक्सीकरण $A \rightarrow CH_3CH_2CHO$ होगा।

 $A \xrightarrow{[O]} R - CO - R$ 25.

> द्वितीयक एल्कोहॉल ऑक्सीकरण से हमेशा कीटोन बनाते हैं। अत: यौगिक $A \rightarrow R - CH - R$ (sec. alcohol) है।

उदाहरण:

$$A \xrightarrow{[O]} CH_3COCH_3$$

अतः यौगिक $A \rightarrow CH_3 - CH - CH_3$ (प्रोपेनॉल-2) होगा।

26. $A \xrightarrow{Cl_2} R - CI$ ऐल्केन Cl_2 से क्रिया करने पर हमेशा मोनोहैलाइड बनाते हैं। अत: क्रियाफल पदार्थ का –Cl हटाकर –H जोड़े।

अत: यौगिक A → R – H है।

उदाहरण: $A \xrightarrow{Cl_2} CH_3CH_2CI$

अतः यौगिक $A \rightarrow CH_3 - CH_3$ होगा।

 $A \xrightarrow{Cl_2} CH_2Cl$ CH_2Cl 27.

> ऐल्किन, क्लोरीन से क्रिया कर हमेशा vicinal halide बनाते हैं। अत: यौगिक $A \rightarrow CH_2 = CH_2$ होगा।

उदाहरण:

अतः यौगिक A ightarrow CH $_3$ – CH = CH $_2$ है।

28.

यौगिक $A \rightarrow RCOOH$ व यौगिक $B \rightarrow R - H$ होगा। इस अभिक्रिया में -COOH → -H में बदलता है। उदाहरण:

$$A \xrightarrow{\text{सोंखा लाइम}} CH_3 - CH_2 - CH_3$$

अत: दिये गये एल्केन के H को -COOH में प्रतिस्थापित करने पर यौगिक A प्राप्त होगा।

अतः यौगिक $A \rightarrow CH_3-CH_2-CH_2-COOH$

$$CH_3$$
 $-CH$ $-CH_3$ $COOH$

 CH_3 – $COOH \xrightarrow{\text{this i enigh}} A$

यौगिक A → CH₁ होगा।

 $A \xrightarrow{NH_3/\Delta} B$ 29.

यौगिक A ightarrow R-COOH व यौगिक B ightarrow R - CONH $_2$ होगा। अत: इस अभिक्रिया में $-\text{COOH} \rightarrow -\text{CONH}_2$ में बदलता है। उदाहरण:

 $A \xrightarrow{NH_3/\Lambda} CH_3CH_2CONH_2$

यौगिक A→CH3CH2COOH होगा।

 $A \xrightarrow{\text{$\hat{a}$ (ल्शयम लवण का} \ } B$ 30.

यौगिक $A \rightarrow R - COOH$ व यौगिक $B \rightarrow R - C - R$ होगा।

अतः इस अभिक्रिया में- $-COOH \rightarrow -C-$ में बदलता है। O

कैंक्लियम लवण का CH_3 -CH -C -CH $-CH_3$ H_3 CH_3 CH_3

यौगिक $A \rightarrow CH_3 - CH - COOH$ होगा।

31.

यौगिक A → R - COOH व यौगिक B → R - R होगा। अत: इस अभिक्रिया में __ R - COOH → R - R में बदलता है। उदाहरण:

 $A \xrightarrow{\frac{1}{2}} \frac{1}{2}$ तिश्वत अपभ्रदन $\rightarrow CH_3 - CH_2 - CH_2 - CH_3$

यौगिक A → CH3CH2COOH होगा।

रजत लवण को Br_2 के साथ $\to B$ गर्म करने पर CCI_4 को उपस्थित 32.

यौगिक $A \rightarrow R-COOH$ व यौगिक $B \rightarrow R-Br$ होगा। अत: इस अभिक्रिया में- –COOH → – Br में बदलता है। उदाहरण:

$$A \xrightarrow{\qquad \text{ रजत लवण को } Br_2}$$
 के साथ $A \xrightarrow{\qquad \text{ rif करने पर } CCI_4}$ को उपस्थिति $A \xrightarrow{\qquad \text{ CH}_3} CH - CH_2 - Br$

यौगिक $A \rightarrow CH_3 - CH - CH_2 - COOH$ होगा।

33.
$$A \xrightarrow{H_2 / Pd} BaSO_A \rightarrow B$$

अत: यौंगिक $A \rightarrow ROC1$ व यौंगिक $B \rightarrow R-CHO$ है। अत: इस अभिक्रिया में – $-COCI \rightarrow -CHO$ में बदलता है। उदाहरण:

$$A \xrightarrow{H_2/Pd} CH_3CHO$$

अतः यौगिक A → CH₃COCI होगा।

 $A \xrightarrow{Br_2/KOH} B$ 34. अत: यौगिक $A \rightarrow R - CONH_2$ व यौगिक $B \rightarrow R - NH_2$ है। अत: इस अभिक्रिया में- $-\text{CONH}_2 \xrightarrow{\epsilon} -\text{NH}_2$ में बदलता है $\hat{\textbf{I}}$ उदाहरण:

$$A \xrightarrow{Br_2/KOH} CH_3 - CH_2NH_2$$

अतः यौगिक $A \to CH_3CH_2CONH_2$ होगा ।

35. $A \xrightarrow{Na/Ether} B$ अत: यौगिक $A \rightarrow R - X$ व यौगिक $B \rightarrow R - R$ एल्केन है। अतः इस अभिक्रिया में $R-X \rightarrow R-R$ में बदलता है। उदाहरण:

$$\begin{array}{c} A \xrightarrow{Na/E ther} CH_3 - CH - CH - CH_3 \\ CH_3 - CH_3 \end{array}$$

अतः यौगिक $A o CH_3 - CH - X$ होगा। CH_3

36. यौगिक A ightarrow $C_6H_5NH_2$ व यौगिक B ightarrow $C_6H_5N_2Cl$ है।

 $A = \frac{Ag \text{ uisst}}{A}B$ 37. यौगिक A. CHI3 व यौगिक B. CH ≡ CH है।

 $A\frac{Hg^{2+}/H_2O}{H_2SO_4}B$ 38.

यौगिक A → CH = CH तो B → CH₃CHO यौगिक $A \rightarrow CH_3 - C \equiv CH$ तो $B \rightarrow CH_3COCH_3$

39. $A \xrightarrow{\text{elice qt affects}} B$ यौगिक $A \rightarrow CH \equiv CH$ तो $B \rightarrow C_6H_6$ यौगिक B → $CH_3 - C \equiv CH$ तो B → Mesitylene

40. $A \xrightarrow{10\% KOH} B$ यौगिक A → CH, CHO यौगिक B \rightarrow CH_3 – CH – CH_2 CHO (ऐल्डोल) ÒΗ

 $A \xrightarrow{CHCl_3/alc.KOH} B$ 41. यौगिक A → RNH₂ यौगिक B → RNC यौगिक $A \rightarrow -NH_2$ यौगिक B → –NC

 $A \xrightarrow{I_2/OH} B$ 42. यौगिक B हमेशा CHI, आयडोफॉर्म होगा। यौगिक A निम्न में से कोई भी एक यौगिक होगा-

प्राथिमक ऐल्कोहॉल में ightarrow सिर्फ $\mathrm{CH_3CH_2OH}$ (a)

द्वितीयक ऐल्कोहॉल में \rightarrow सभी ऐल्कोहॉल -2(b) जैसे— Propanol-2, Butanol-2, Pentanol – 2

ऐल्डिहाइड → सिर्फ CH₃CHO (c)

कीटोन → सभी ऐल्केनॉन-2 (d) जैसे-Propanone, Butanone-2, Pentanone-2

43.
$$A \xrightarrow{O_3/H_2O} CH_2 = O$$

44.
$$A \xrightarrow{O_3/H_2O} CH_3 - CH = O$$

45.
$$A \xrightarrow{O_3/H_2O} CH_3 - CH_2 - CH = O$$

46.
$$A \xrightarrow{O_3/H_2O} CH_3COCH_3$$

47.
$$A \xrightarrow{O_3/H_2O} CH_3COCH_2CH_3$$

48.
$$A \xrightarrow{O_3 / H_2 O} CH_2 = O + CH_3 CH = O$$

49.
$$A \xrightarrow{O_3/H_2O} CH_2 = O + CH_3CH_2 - CH = O$$

50.
$$A \xrightarrow{O_3 \land H_2O} CH_2 = O + CH_3COCH_3$$

51.
$$A \xrightarrow{O_3/H_2O} CH_3 - CH = O + CH_3 - CH_2 - CH = O$$

52.
$$A \xrightarrow{O_3/H_2O} CH_3CH = O + CH_3COCH_3$$

53.
$$A \xrightarrow{O_3/H_2O} CH_3 - CH_2 - CH = O + CH_3COCH_3$$

54.
$$A \xrightarrow{O_3/H_2O} CH_3CH_2 - CH = O + CH_3COCH_2CH_3$$

55.
$$A \xrightarrow{O_3/H_2O} CH_3COCH_3 + CH_3COCH_2CH_3$$

57.
$$A \xrightarrow{O_3/H_2O} CH_2 = O + CO_2$$

58.
$$A \xrightarrow{O_3/H_2O} CH_3 - CH = O + CO_2$$

नोट- उपरोक्त 43 से 58 तक की अभिक्रियायें ओजोनी अपघटन से सम्बन्धित है।

अतः यौगिक A-Alkene या Alkadiene होगा।

Alkene ओजोनी अपघटन से हमेशा दो अणु कार्बोनिल यौगिकों के बनाते हैं, जो समान या असमान हो सकते हैं।

यदि हमें एक ही कार्बोनिल यौगिक दे रखा हो तो हम उसी के दो अणु मान लेंगे।

43.
$$A \xrightarrow{O_3/H_2O} CH_2 = O$$

यहाँ $\mathrm{CH}_2 = \mathrm{O}$ के दो अणु बनेंगे, एक अणु को सीधा लिखे व दूसरे अणु को उल्य लिखे। Oxygen परमाणुओं को हटाकर (=) द्विबन्ध जोडे।

$$CH_2 = O + O = CH_2$$

 $A \rightarrow CH_2 = CH_2$ उत्तर

44.
$$A \xrightarrow{O_3/H_2O} CH_3 - CH = O$$
यहाँ $CH_3CH = O$ के दो अणु बन रहे हैं।
$$CH_3 - CH = O - CH = CH - CH_3$$

$$A \rightarrow CH_3 - CH = CH = CH_3$$
उत्तर

45.
$$A \xrightarrow{O_3/H_2O} CH_3 - CH_2 - CH = O$$

यहाँ $CH_3 - CH_2 - CH = O$ के दो अणु बन रहे हैं।
 $CH_3 - CH_2 - CH = \overline{O+O} = CH - CH_2 - CH_3$
 $A \to CH_3 - CH_2 - CH = CH - CH_2 - CH_3$ उत्त

46.
$$A \xrightarrow{O_3/H_2O} CH_3COCH_3$$
 यहाँ CH_3COCH_3 के दो अणु बन रहे हैं।

$$CH_3$$
 $C = O + O = C$ CH_3 CH_3

$$A \to \frac{CH_3}{CH_3} = C < \frac{CH_3}{CH_3}$$

उत्तर

उत्तर

47. $A \xrightarrow{O_3/H_2O} CH_3COCH_2CH_3$ यहाँ $CH_3COCH_2CH_3$ के दो अणु बन रहे हैं।

$$CH_3 - CH_2 - C = \boxed{O} = C - CH_2 - CH_3$$
 $CH_3 \qquad CH_3$

48.
$$A \xrightarrow{O_3/H_2O} CH_2 = O + CH_3CH = O$$

यहाँ दो अणु अलग-अलग है। $CH_2 = \overline{O+O} = CH - CH_3$

$$A \rightarrow CH_2 = CH - CH_3$$
 3त्तर

$$A \xrightarrow{O_3/H_2O} CH_2 = O + CH_3CH_2 - CH = O$$
 $CH_2 = O + O = CH - CH_2 - CH_3$
 $A \rightarrow CH_2 = CH - CH_2 - CH_3$ उत्तर

50.
$$A \xrightarrow{O_3/H_2O} CH_2 = O + CH_3COCH_3$$

49.

$$CH_2 = O + O = C < CH_3$$
 CH_3

$$A \to CH_2 = C - CH_3$$

$$CH_3$$

उत्तर

51.
$$A \xrightarrow{O_3/H_2O} CH_3 - CH = O + CH_3 - CH_2 - CH = O$$

$$CH_3 - CH = O + O = CH - CH_2 - CH_3$$

$$A \rightarrow CH_3 - CH = CH - CH_2 - CH_3$$
3777

52.
$$A \xrightarrow{O_3/H_2O} CH_3CH = O + CH_3COCH_3$$

$$CH_3 - CH = O + O = C < \frac{CH_3}{CH_3}$$

$$A \rightarrow CH_3 - CH = C - CH_3$$

$$CH_3$$

उत्तर

53.
$$A \xrightarrow{O_3/H_2O} CH_3 - CH_2 - CH = O + CH_3COCH_3$$

$$CH_3 - CH_2 - CH = O + O = C < \frac{CH_3}{CH_3}$$

$$A \rightarrow CH_3 - CH_2 - CH = C - CH_3$$

$$CH_3$$
 उत्तर

54.
$$A \xrightarrow{O_3/H_2O} CH_3 - CH_2 - CH = O + CH_3COCH_2CH_3$$

$$CH_3 - CH_2 - CH = O + O + CH_3COCH_2CH_3$$

$$CH_3 - CH_2 - CH = O + O + CH_3COCH_2CH_3$$

$$CH_3$$

$$A \rightarrow CH_3 - CH_2 - CH = C - CH_2 - CH_3$$
 उत्तर

55.
$$A \xrightarrow{O_3/H_2O} CH_3COCH_3 + CH_3COCH_2CH_3$$

$$CH_3 - C = O + O = C - CH_2 - CH_3$$

$$CH_2 \qquad CH_2$$

$$A \rightarrow CH_3 - C = C - CH_2 - CH_3$$

$$CH_3 CH_3$$

उत्तर

56.
$$A \xrightarrow{O_3/H_2O} CH_2 = O + CH = O$$

$$CH = O$$

$$CH = O$$

उपरोक्त अभिक्रिया में दिये गये उत्पादों में कुल Oxygen की संख्या 3 है अत: चार करने के लिये $\mathrm{CH}_2=\mathrm{O}$ के दो अणु मानेंगे।

$$CH_2 = \overline{O+O} = CH - CH = \overline{O+O} = CH_2$$

$$A \rightarrow CH_2 = CH - CH = CH_2$$
उत्तर

57.
$$A \xrightarrow{O_3/H_2O} CH_2 = O + CO_2$$

 $CH_2 = \boxed{O + O} = C = \boxed{O + O} = CH_2$
 $A \rightarrow CH_2 = C = CH_2$

उत्तर

58.
$$A \xrightarrow{O_3/H_2O} CH_3 - CH = O + CO_2$$

$$CH_3 - CH = O + O = C = O + O = CH - CH_3$$

$$A \to CH_3 - CH = C = CH - CH_3$$

A, B व C यौगकों को पहचानय-

T.1.
$$A \xrightarrow{Br_2} B \xrightarrow{Na} C_2H_6$$

उत्तर- हमें अन्त में C_2H_6 दे रखा है अत: यौगिक $B \to CH_3Br$ व यौगिक $A \to CH_4$ यौगिक $A \to CH_4$ एवं $B \to CH_3Br$

T.2.
$$CH \equiv C - Na + CH_3I \rightarrow A \xrightarrow{H_2SO_4} B$$

उत्तर- यौगिक $A \rightarrow CH \equiv C - CH_3$ प्रोपॉइन यौगिक $B \rightarrow CH_3COCH_3$ ऐसीटॉन

VI.3. $CH_3COCl + H_2 \xrightarrow{Pd.BaSO_4} A + B$

उत्तर- यौगिक A \rightarrow CH₃CHO यौगिक B \rightarrow HCl

 $V.4. \quad C_6H_5NO_2 \xrightarrow{Sn/HCl} A \xrightarrow{CHCl_3/KOH} B$

उत्तर- यौगिक $A \to C_6 H_5 NH_2$ (ऐनिलीन) यौगिक $B \to C_6 H_5 NC$ (फेनिल आइसो सायनाइड)

प्र.5. $(CH_3CO)_2O + C_6H_6 \xrightarrow{\text{fraidel}AICl}_3 A + CH_3COOH$

उत्तर- यौगिक $A \rightarrow CH_3COC_6H_5$ (ऐसीटोफिनॉन)

Ψ.6. $X \xrightarrow{B_2H_6/0°C} Y \xrightarrow{\text{kilfled } H_2O_2} CH_3CH_2CH_2OH$

उत्तर- यौगिक A ightarrow CH $_3$ - CH = CH $_2$ यौगिक B ightarrow (CH $_3$ CH $_2$ CH $_2$) $_3$ B (ट्राईप्रोपिल बोरेन)

y.7. $CH_3COCI + C_6H_6 \xrightarrow{\text{fraise AlCl}_3} A + B$

उत्तर- यौगिक A ightarrow CH $_3$ COC $_6$ H $_5$ (*ऐसीटोफिनॉन*) यौगिक B ightarrow HCl

प्र.8.
$$CH_2 < COOH \xrightarrow{\text{पमं करने पर}} A + B$$

उत्तर- यौगिक A \rightarrow CH₃COOH यौगिक B \rightarrow CO₂

 $\mathbf{y.9.} \quad \mathbf{R} - \mathbf{X} \xrightarrow{\mathbf{AgCN}} \mathbf{A} \xrightarrow{\mathbf{4H}} \mathbf{B}$

उत्तर- यौगिक A \rightarrow R-NC यौगिक B \rightarrow R-NHCH₃ $V.10. CH_3 - CH = CH_2 + Cl_2 \xrightarrow{500-600} A$

उत्तर- यौगिक $A \rightarrow Cl - CH_2 - CH = CH_2$ (ऐलिल क्लोराइड)

$$\begin{array}{c} Cl \\ T.11. \quad A + PCl_5 \rightarrow R - C - H + POCl_3 \\ Cl \end{array}$$

उत्तर- यौगिक A → R - CH = O

T.12. $R - MgBr + A \rightarrow R - CH = CH_2 + MgBr_2$

उत्तर- यौगिक A → Cl – CH = CH_2

प्र.13.
$$CH_4 \xrightarrow{Cl_2} A \xrightarrow{Na/$ \text{$^{\frac{1}{2}}$}} B \xrightarrow{Cl_2} C_2H_5Cl$$

$$\uparrow \text{ sodalime} \qquad \qquad \downarrow \text{जलीय KOH}$$

 $\text{CH}_{3}\text{COONa} \xleftarrow{\quad \text{NaOH} \quad } \text{CH}_{3}\text{COOH} \xleftarrow{\quad \text{O} \quad } \text{D} \xleftarrow{\quad \text{O} \quad } \text{C}$

उत्तर- यौगिक $A \rightarrow CH_3CI$; $B \rightarrow CH_3 - CH_3$ $C \rightarrow CH_3CH_2OH$; $D \rightarrow CH_3CHO$

Y.14. $CH_3 - CH_2 - CH_2 - OH \xrightarrow{PCI_5} A \xrightarrow{alc. KOH} B$

उत्तर- यौगिक A ightarrow CH $_3$ CH $_2$ CH $_2$ CI यौगिक B ightarrow CH $_3$ - CH = CH $_2$

 $\forall J.15. R-X+AgCN \rightarrow A$

उत्तर- यौगिक A → RNC

$$\mathbf{V.16.} \quad \begin{array}{c} NH_2 \\ +3 H_2 & Ni \\ \end{array} \rightarrow A$$

उत्तर- यौगिक A \rightarrow C₆H₁₁ NH₂ (cyclohexylamine)

y.17. $NH_2 - CN + H_2O \xrightarrow{\overline{q}} H_2SO_4 \to A$

उत्तर- यौगिक A → urea (NH_2CONH_2)

 $\begin{array}{ccc}
\mathbf{V}.18. & \mathbf{HCHO} & \xrightarrow{(i)CH_3MgI} & \mathbf{A} & \xrightarrow{O} & \mathbf{B} & \xrightarrow{(i)CH_3MgI} & \mathbf{C} & \xrightarrow{O} & \mathbf{D}
\end{array}$

उत्तर- यौगिक
$$A \rightarrow CH_3CH_2OH$$
; $B \rightarrow CH_3CHO$ $C \rightarrow CH_3CH-CH_3$ $D \rightarrow CH_3COCH_3$ OH

प्र.19. विसिनल डाइहैलाइड
$$(X)$$
 \xrightarrow{KCN} Y $\xrightarrow{H_2O}$ $\xrightarrow{CH_2COOH}$ $\xrightarrow{CH_2COOH}$

उत्तर- यौगिक
$$X \to CH_2Cl$$
 $Y \to CH_2CN$ CH_2Cl CH_2CN

4.20. $CH_3Br \xrightarrow{KCN} X \xrightarrow{4H} CH_3CH_2NH_2$

उत्तर- यौगिक $X \rightarrow CH_3CN$

T.21. $CH_3MgI + CH_2 - CH_2 \rightarrow A \xrightarrow{H_2O} B$

उत्तर- यौगिक $A \rightarrow CH_3 - CH_2 CH_2 O MgI$ यौगिक B → CH₃CH₂CH₂OH

V.22. HCOOH $\xrightarrow{\text{CH}_2\text{N}_2}$ A + N₂

उत्तर- यौगिक A → HCOOCH₃

W.23. $CH_2 = CH_2 + CO + H_2O - \frac{II_3PO_4}{400^{\circ}C} \rightarrow A$

उत्तर- यौगिक $A \rightarrow CH_3 - CH_2COOH$

y.24. $CH_3COOH \xrightarrow{P_2O_5} A$

उत्तर- यौगिक $A \rightarrow (CH_3CO)_2O$

 $V.25. C_6H_6 + CH_2O + HCl \xrightarrow{ZnCl_2} A$

उत्तर- यौगिक $A \rightarrow C_6H_5CH_2CI$

 $V.26. CH_3OH \xrightarrow{PCl_5} A \xrightarrow{KCN} CH_3CN \xrightarrow{4H} B \xrightarrow{NaNO_2} CH_3CN \xrightarrow{4H} B \xrightarrow{NaNO_2} CH_3CN \xrightarrow{4H} B \xrightarrow{NaNO_2} CH_3CN \xrightarrow{4H} B \xrightarrow{NaNO_2} CH_3CN \xrightarrow{4H} CH_3CN CH_$

उत्तर- यौगिक $A \rightarrow CH_3CI; B \rightarrow CH_3CH_2NH_2; C \rightarrow CH_3CH_2OH$

 $\mathbf{V.27. X + 2HF} \xrightarrow{SbCl_5} \mathbf{Freon 112}$

उत्तर- यौगिक $X \to CCl_3CCl_3$

 $y.28. RCOOH + X \xrightarrow{\overline{e_3} H_2SO_4} RNH_2 + CO_2 + N_2$

उत्तर- यौगिक $X \rightarrow N_3H$ (हाईड्रेजोइक अम्ल)

 $\mathbf{y.29.} \ \ X + HCN \xrightarrow{\mathbf{H_3O^+}} \ \ \, \mathbf{CH_2 - COOH}$

उत्तर- यौगिक $X \rightarrow CH_2 = O$

प्र.30. $CH_3CBr_2CH_3 \xrightarrow{\neg mell \ ACH} X$ (अस्थाई) $\rightarrow Y$

उत्तर- यौगिक $A \rightarrow CH_3C(OH)_2CH_3$ यौगिक B \rightarrow CH₃COCH₃

 $\forall J.31. CH_3 - CH_2NH_2 + H_2PtCl_6 \rightarrow X$

उत्तर- यौगिक $X \rightarrow (CH_3CH_2NH_2)_2 \cdot H_2PtCl_6$

T.32. $CH_3(CH_2)_4CH_3 \xrightarrow{Al_2O_3} X + 4H_2$

उत्तर- यौगिक $X \rightarrow C_6H_6$

J.33. $C_6H_5NO_2 \xrightarrow{Sn/HCl} A \xrightarrow{NaNO_2} B \xrightarrow{C_2H_5OH} C$

उत्तर- यौगिक A ightarrow $C_6H_6NH_2; B
ightarrow$ $C_6H_5N_2CI; C
ightarrow$ C_6H_6

V.34. $C_6H_5SO_3H \xrightarrow{H_3O^+} A \xrightarrow{HNO_3+H_2SO_4} A$

$$B \xrightarrow{Zn + NH_4C1} C$$

उत्तर- यौगिक $A \rightarrow C_6H_6; B \rightarrow C_6H_5NO_2; C \rightarrow C_6H_6NHOH$

T.35. $CH_3CH_2OH \xrightarrow{PCl_5} A \xrightarrow{KCN} B \xrightarrow{H_2O} CH_3CH_2COOH$

NH₃

 $D \xleftarrow{Br_2/KOH} C \xleftarrow{\Delta} CH_3CH_2COONH_4$

उत्तर- यौगिक $A \rightarrow CH_3CH_2CI$; $B \rightarrow CH_3CH_2CN$ $C \rightarrow CH_3CH_2CONH_3;$ $D \rightarrow CH_3CH_2NH_2$

1. A $\xrightarrow{PCl_5}$ B $\xrightarrow{\text{alc. KOH}}$ C $\xrightarrow{O_3/H_2O}$ CH₂ = O

2. A $\xrightarrow{PCl_5}$ B $\xrightarrow{H_2}$ C $\xrightarrow{10\%KOH}$ aldol

3. A $\xrightarrow{Br_2/KOH}$ B $\xrightarrow{HNO_2}$ C $\xrightarrow{PCl_5}$ CH₃CH₂Cl

4. $A \xrightarrow{alc.KOH} B \xrightarrow{S_2Cl_2} Mustard gas$

5. $A \xrightarrow{HNO_2} B \xrightarrow{dry distillation} CH_3CH_2COCH_2CH_3$

6. $A \xrightarrow{KCN} B \xrightarrow{dry \ distillation} C \xrightarrow{CHCl_3} Chloretone$

7. $A \xrightarrow{alc.KOH} B \xrightarrow{Cu_2Cl_2/NH_4Cl} C \xrightarrow{HCl} Chloroprene$

8. A $\xrightarrow{\text{Malonic ester}}$ B, A $\xrightarrow{\Delta}$ Bjuret

9. A red hot tube B $CH_3COCI \rightarrow C$

10. A $\xrightarrow{\text{NaNO}_2/\text{HCl}/0^{\circ}\text{C}}$ B $\xrightarrow{\text{boil with}}$ C $\xrightarrow{\text{CH}_3\text{I}}$ Anisole

11. $A \xrightarrow{aq. KOH} B \xrightarrow{NH_3} Urotropin$

12. $A \xrightarrow{KCN/H_2O} B \xrightarrow{dry \ distillation} C \xrightarrow{H_2SO_4/\Delta}$

Mesitylene

13. A $\xrightarrow{\text{alc. KOH}}$ B $\xrightarrow{\text{red hot hube}}$ Mesitylene

14. A $\xrightarrow{\text{alc. KOH}}$ B $\xrightarrow{\text{NH}_3/\Delta}$ C $\xrightarrow{\text{Br}_2}$ CH₃CH₂NH₂

15. A $\xrightarrow{\text{CuCl}_2/\text{NH}_4\text{Cl}}$ B $\xrightarrow{\text{HCl}}$ C Polymerisation

Neoprene rubber

18.8

16.
$$A \xrightarrow{HCN} B \xrightarrow{\Delta} Lactide$$

17. A
$$\xrightarrow{\text{PCl}_5}$$
 CH₃COCl+CH₃-CH-Cl CH₃

18. A
$$\xrightarrow{\text{red hot tude}}$$
 B $\xrightarrow{\text{red not iron pipe}}$ C

19.
$$A + B \xrightarrow{Na / Ether} CH_3 - CH_3 + CH_3 - CH_2 - CH_2 - CH_3 + C$$

20.
$$A \xrightarrow{Hg^{+2}} B \xrightarrow{10\% \text{ KOH}} Aldol$$

21. A
$$\xrightarrow{\text{alc. KOH}}$$
 B $\xrightarrow{O_3/H_2O}$ C $\xrightarrow{\text{Ca(OH)}_2}$ Glucose

22. A
$$\xrightarrow{\text{Silver salt}}$$
 B $\xrightarrow{\text{Na/Ether}}$ CH₃ -CH -CH - CH₃ $\xrightarrow{\text{CH}_3}$ CH₃ CH₃

23.
$$A \xrightarrow{2H_2O} B \xrightarrow{Pot. salt} [CH_3CH_2-CH(CH_3)]_2$$

24. A
$$\xrightarrow{\text{CHCl}_3/\text{alc. KOH}}$$
 B $\xrightarrow{\text{2H}_2\text{O}}$ A + C

25.
$$A \xrightarrow{NaNO_2/HCl} B \xrightarrow{Boil with} C \xrightarrow{phthalic} phenol-phthalein$$

26.
$$A \xrightarrow{PCl_5} B \xrightarrow{\text{alc. KOH}} CH_3 - C \equiv CH$$

27. A
$$\xrightarrow{\text{Silver}/\Delta}$$
 B $\xrightarrow{\text{red hot tube}}$ C

28.
$$A \xrightarrow{CO_2 / AlCl_3} B \xrightarrow{dry distillation} C_6H_5COC_6H_5$$

29.
$$A \xrightarrow{aq. KOH} B \xrightarrow{NH_3}$$
 Diacetone amine

30.
$$A \xrightarrow{\text{alc. KOH}} B \xrightarrow{\text{CO+H}_2O} CH_2 = CH - COOH$$

31. A
$$\xrightarrow{\text{NaNO}_2}$$
 B $\xrightarrow{\text{HOH}}$ C $\xrightarrow{\text{CH}_3\text{I}}$ Anisole

32. A
$$\xrightarrow{\text{NaNO}_2}$$
 B $\xrightarrow{\text{boil with H}_2\text{O}}$ C $\xrightarrow{\text{B}}$ D

33.
$$A \xrightarrow{HNO_2} B \xrightarrow{I_2/OH^-} C \xrightarrow{Ag} CH \equiv CH$$

34.
$$A \xrightarrow{PCl_5} B + C \xrightarrow{Na/Ether} CH_3 - CH_3 + CH_3CH_2CH_3 + D$$

35.
$$A \xrightarrow{H_2/Pd} B \xrightarrow{dry HCl gas} C$$

36. A
$$\xrightarrow{\text{aq. KOH}}$$
 B $\xrightarrow{\text{H}_2\text{SO}_4}$ Mesitylene

37.
$$A \xrightarrow{PCl_5} B \xrightarrow{H_2/Pd} C$$

38. A
$$\xrightarrow{\text{aq.KOH}}$$
 B $\xrightarrow{\text{dry distillation}}$ (CH₃CH₂)₂CO

39. A
$$\xrightarrow{KOH}$$
 B $\xrightarrow{HCN\&H_2O}$ Lactic acid

40.
$$A \xrightarrow{PCl_5} B \xrightarrow{C_6H_5H/AlCl_3} Acetophenone$$

41. CH₃CHO
$$\xrightarrow{10\%$$
 KOH \rightarrow A $\xrightarrow{\Delta}$ B

42. A red hot tube
$$\rightarrow$$
 B red hot iron pipe \rightarrow Diphenyl

43.
$$A \xrightarrow{NaNO_2/HCI/0°C} B \xrightarrow{Cl_2} Gemhexane$$

44.
$$A \xrightarrow{PCl_5} CH_3COCl + CH_3 - CH - COCl$$

$$CH_3$$

45.
$$CH_3 - CH - CH_2 \xrightarrow{\text{alc. KOH}} A \xrightarrow{\text{red hot tube}} B$$

$$Cl \qquad Cl$$

46. A its silver salt / Br₂ /
$$\Delta$$
 / CCl₄ B $\xrightarrow{C_6H_5H}$ C₆H₅CH₃

47.
$$A \xrightarrow{HNO_2} B(V.D. = 23) \xrightarrow{I_2 OH^-} C \xrightarrow{6Ag} D$$

48. A
$$\xrightarrow{\text{alc. KOH}}$$
 B $\xrightarrow{\text{O}_3/\text{H}_2\text{O}}$ CH₃ CHO & (CH₃)₂CO

49. A
$$\xrightarrow{\text{alc. KOH}}$$
 B $\xrightarrow{O_3/H_2O}$ C $\xrightarrow{\text{dry HCl gas}}$ Mesityloxide

50. A
$$\xrightarrow{\text{Hg}^{+2}/\text{H}_2\text{O}}$$
 \Rightarrow B $\xrightarrow{\text{CHCl}_3}$ Chloretone

51. A
$$\xrightarrow{\text{alc. KOH}}$$
 B $\xrightarrow{\text{S}_2\text{Cl}_2}$ C

52. A boil with water
$$\rightarrow$$
 B $\xrightarrow{C_2H_5I}$ Phenetole

53. A
$$\xrightarrow{\text{red hot tube}}$$
 B $\xrightarrow{\text{Fu min g Nitric acid } 100^{\circ}\text{C}}$ T.N.B.

54.
$$A \xrightarrow{aq \text{ KOH}} B \xrightarrow{\text{NH}_3 / \Delta} C \xrightarrow{\text{Br}_2} CH_3CH_2NH_2$$

55.
$$A + B \xrightarrow{Na / Ether} CH_3 - CH_3 + CH_3 - CH_2 - CH_2CH_3 + C$$

56. A
$$\xrightarrow{\text{alc.KOH}}$$
 B $\xrightarrow{\text{Cu}_2\text{Cl}_2}$ $\xrightarrow{\text{NH}_4\text{Cl}}$ C $\xrightarrow{\text{HCl}}$ Chloroprene

57. A
$$\xrightarrow{\text{Silversalt}}$$
 B $\xrightarrow{\text{Na}}$ CH₃ - CH - CH - CH₃

CH₃ CH₃ CH₃

58.
$$A \xrightarrow{2H_2O} B \xrightarrow{Pot. salt} [CH_3CH_2 - CH(CH_3)]_2$$

1. $A \rightarrow CH_3CH_2OH$

$$B \rightarrow CH_3CH_2CI$$

$$C \rightarrow CH_2 = CH_2$$

2.
$$A \rightarrow CH_3COOH$$

$$B \rightarrow CH_3COC1$$

$$C \rightarrow CH_3CHO$$

3.
$$A \rightarrow CH_3CH_2CONH_2$$

$$B \rightarrow CH_3CH_2NH_2$$

$$C \rightarrow CH_3CH_2OH$$

4.
$$A \rightarrow CH_3CH_2Br$$

$$B \rightarrow CH_2 = CH_2$$

The same of the sa	and the second s
5. $A \rightarrow CH_3CH_2CONH_2$	B → CH_3CH_2COOH
6. $A \rightarrow CH_3CI$	$B \rightarrow CH_3COOH$
$C \rightarrow CH_3COCH_3$	313,00011
7. $A \rightarrow CH_2CICH_2CI$	$B \rightarrow CH \equiv CH$
$C \rightarrow CH_2 = CH - C \equiv CH$	
8. $A \rightarrow NH_2CONH_2$	B → Barbituric acid
9. A → CH = CH	$B \rightarrow C_6 H_6$
$C \rightarrow C_6H_5COCH_3$	
10. $A \rightarrow C_6H_5NH_2$	$B \rightarrow C_6 H_5 N_2 CI$
$C \rightarrow C_6H_5OH$	5 J L
11. $A \rightarrow CH_2Cl_2$	$B \rightarrow CH_2 = O$
12. A \rightarrow CH ₃ Cl	$B \rightarrow CH_3COOH$
$C \rightarrow CH_3COCH_3$	2
13. $A \rightarrow CH_3 - CHCICH_2CI$	$B \to CH_3 - C \equiv CH$
14 A \rightarrow CH ₃ CH ₂ CCl ₃	$B \rightarrow CH_3CH_2COOH$
$C \rightarrow CH_3CH_2CONH_2$	
15. $A \rightarrow CH \equiv CH$	B → Vinyl acetylene
$C \rightarrow Chloroprene$	
16. A → CH ₃ CHO	D OH
	$B \rightarrow CH_3 - CH < COOH$
17. A \rightarrow CH ₃ COOCH - CH ₃	
CH ₃	·
18. $A \rightarrow CH \equiv CH$	$B \rightarrow C_6 H_6$
$C \rightarrow C_6H_5 - C_6H_5$ 19. A \rightarrow CH_3Cl	P CH CH C
$C \rightarrow CH_3 - C_2H_5$	$B \rightarrow CH_3CH_2Cl$
20. $A \rightarrow CH \equiv CH$	$B \rightarrow CH_3CHO$
21. $A \rightarrow CH_3CH_2CI$	$B \rightarrow CH_2 = CH_2$
$C \rightarrow CH_2 = O$ 22. $A \rightarrow (CH_3)_2 CH - COOH$	D (CH) CVD
23. A \rightarrow CH ₃ -CH ₂ -CH-CN	$B \rightarrow (CH_3)_2 CHBr$
CH ₃	CH ₃
24 A . DATE	$B \rightarrow RNC$
$C \rightarrow HCOOH$	
25. $A \rightarrow C_6H_5NH_2$ $C \rightarrow C_6H_5OH$	$B \to C_6 H_5 N_2 Cl$
26. A \rightarrow CH ₃ – CH(OH)CH ₂ OH	B→CH-CHCIC□ Ci
27 A . OTT	$B \rightarrow CH = CH$
$C \rightarrow C_6 H_6$	

•	
$28. A \rightarrow C_6 H_6$	$B \rightarrow C_6 H_5 COOH$
29. $A \rightarrow CH_3CCl_2CH_3$	$B \rightarrow CH_3COCH_3$
30. $A \rightarrow CH_2CICH_2CI$	$B \rightarrow CH \equiv CH$
31. $A \rightarrow C_6H_5NH_2$	$B \rightarrow C_6 H_5 N_2 C1$
$C \rightarrow C_6H_5OH$	-
32. $A \rightarrow C_6H_5NH_2$	$B \rightarrow C_6 H_5 N_2 CI$
$C \rightarrow C_6 H_5 OH$	· -
$D \rightarrow HO - \left\langle \bigcirc \right\rangle - N = N - \left\langle \bigcirc \right\rangle$	$\langle \circ \rangle$
33. $A \rightarrow C_2H_5NH_2$	$B \rightarrow C_2H_5OH$
$C \rightarrow CHI_3$	
34. $A \rightarrow CH_3 - O - CH_2CH_3$	$B \rightarrow CH_3CI$
$C \rightarrow CH_3CH_2CI$	$D \rightarrow CH_3CH_2CH_2CH_3$
35. A \rightarrow CH ₃ COCI	$B \rightarrow CH_3CHO$
$C \rightarrow Metaldehyde$	
36. A \rightarrow CH ₃ CCl ₂ CH ₃	$B \rightarrow CH_3COCH_3$
37. A \rightarrow RCOOH	$B \rightarrow RCOC1$
$C \rightarrow R - CHO$ 38. $A \rightarrow CH_3CH_2CCl_3$	D 622
39. A \rightarrow CH ₃ CHCl ₂	$B \rightarrow CH_3CH_2COOH$
40. A \rightarrow CH ₃ COOH	$B \rightarrow CH_3CHO$
	$B \to CH^3COCI$
41. $A \rightarrow CH_3 - CH(OH)CH_2CH_3$	
$B \rightarrow CH_3 - CH = CH - CH$ 42. A \rightarrow CH \rightarrow CH	
43. A \rightarrow C ₆ H ₅ NH ₂	$B \to C_6 H_6$
	$B \rightarrow C_6 H_6$
44. A \rightarrow CH ₃ CO \rightarrow CH ₃ - CHCO \rightarrow CH ₃	
45. $A \rightarrow CH_3 - C \equiv CH$	$B \rightarrow Mesitylene$
46. A \rightarrow CH ₃ COOH	$B \rightarrow CH_3Br$
47. A \rightarrow CH ₃ CH ₂ NH ₂	$B \rightarrow CH_3CH_2OH$
$C \rightarrow CHI_3$	$D \rightarrow CH \equiv CH$
48. $A \rightarrow CH_3 - CH_2 - C < CH_3$ $CH_3 - CH_2 - C < CH_3$	

49. $A \xrightarrow{CH_3} CH_3 \xrightarrow{CH_3} CCH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{CH_3} C=C \xrightarrow{CH_3} CH_3$

50. A \rightarrow CH₃C \equiv CH

 $B \rightarrow CH_3COCH_3$

51. $A \rightarrow CH_3CH_2CI$

 $B \rightarrow CH_2 = CH_2$

 $C \rightarrow Mustrad gas$

52. $A \rightarrow C_6H_5N_2C1$

 $B \rightarrow C_6H_5OH$

53. $A \rightarrow CH \equiv CH$

 $B \rightarrow C_6 H_6$

54. A \rightarrow CH₃CH₂CCl₃

 $B \rightarrow CH_3CH_2COOH$

 $C \rightarrow CH_3CH_2CONH_2$

55. A \rightarrow CH₃Cl

 $B \rightarrow CH_3CH_2CI$

 $C \rightarrow CH_3CH_2CH_3$

56: $A \rightarrow CH_2CICH_2CI$

 $B \rightarrow CH \equiv CH$

 $C \rightarrow Vinyl$ acetylene

57. A \rightarrow CH₃ - CH - COOH

 $B \rightarrow CH_3 - CH - Br$ CH_3

58. A \rightarrow CH₃ - CH₂ - CH - CN

CH₃

 $\begin{array}{c} \text{B} \rightarrow \text{CH}_3 - \text{CH}_2 - \text{CH} - \text{COOH} \\ \mid & \mid \\ \text{CH}_3 \end{array}$

2. प्रमुख यौगिक (IMPORTANT COMPOUNDS)

1. निओप्रीन रबड़ (Neoprene Rubber)

जब क्लोरोप्रीन के n अणुओं को उच्च दाब पर में से गुजारते है तो निओप्रिन रबर बनता है।

$$nCH_2 = CH - C = CH_2 \xrightarrow{\text{High}} [-CH_2 - CH = C - CH_2 -]_n$$

neoprene rubber

2. प्राकृतिक रबड़ (Natural Rubber)

जब आइसोप्रीन को उच्च दाब व ताप पर गुजारते हैं तो प्राकृतिक रबड़ प्राप्त होता है।

$$nCH_2 = CH - C = CH_2$$
 $\rightarrow [-CH_2 - CH = C - CH_2 -]_n$

$$CH_3$$
Isoprene Natural rubber

3. टेफलॉन (Teflon)

ट्रेटा फ्लोरोऐथीन के n अणुओं से टेफलॉन प्राप्त होता है।

$$\begin{array}{ccc}
CF_2 = CF_2 & \rightarrow & [-CF_2 - CF_2 -]_n \\
\text{Tetrafluroethene} & & \text{Teflon}
\end{array}$$

4. प्रोपार्जिल ऐल्कोहॉल (Propargyl alcohol)

जब ऐसीटिलीन की $\mathrm{CH_2}$ = O के साथ $\mathrm{Cu_2C_2}$ (क्यूप्रस ऐसीटिलाइंड)

की उपस्थिति में क्रिया करते हैं तो प्रोपार्जिल एल्कीहाँल बनता है।

$$CH \equiv CH + CH_2 = O \xrightarrow{Cu_2C_2} CH \equiv C + CH_2OH$$

5. But-2-yne-1,4-diol

जब ऐसीटिलीन की $\mathrm{CH_2}=\mathrm{O}$ के साथ $\mathrm{Cu_2C_2}$ की उपस्थित में क्रिया करते हैं तो But-2-yne-1, 4-diol बनता है।

$$\mathrm{CH} \equiv \mathrm{CH} + 2\mathrm{CH}_2 = \mathrm{O} - \overset{\mathrm{Cu}_2\mathrm{C}_2}{\longrightarrow} \mathrm{CH}_2\mathrm{OH} - \mathrm{C} \equiv \mathrm{C} - \mathrm{CH}_2\mathrm{OH}$$

6. बेन्जीन (Benzene)

जब ऐसीटिलीन के तीन अणुओं को लाल तृप्त निलका में से गुजारते हैं तो बेन्जीन प्राप्त होती है।

$$3CH \equiv CH \xrightarrow{\text{red hot tube}} C_6H_6$$

7. क्लोरल (Chloral)

ऐसीटिल्डिहाइड की Cl_2 के साथ क्रिया कराने पर क्लोरल प्राप्त होता है।

$$CH_3CHO + 3Cl_2 \rightarrow CCl_3CHO$$
 Chloral

8. क्लोरोपिक्रिन (Chloropicrin)

जब क्लोरोफॉर्म सान्द्र HNO_3 के साथ क्रिया करता है तो क्लोरोपिक्रिन प्राप्त होता है।

$$\label{eq:CHCl3} \begin{split} \text{CHCl}_3 + \text{HONO}_2(\text{conc.}) &\rightarrow \text{C(NO}_2)\text{Cl}_3 + \text{H}_2\text{O} \\ &\quad \quad \text{Chloropicrin (Tear gas)} \end{split}$$

9. क्लोरीटॉन (Chloretone)

जब ऐसीटॉन, क्लोरोफॉर्म के साथ क्रिया करता है तो क्लोरीटॉन बनता है।

$$CH_3$$
 $C = O + CHCl_3 \rightarrow CH_3$ CH_3 CCl_3 Chloretone

10. ग्लाइकॉलिक अम्ल (Glycollic acid)

जब फार्मिल्डिहाइड HCN के साथ क्रिया करने के पश्चात्, जल अपघटन से ग्लाइकॉलिक अम्ल बनता है।

$$CH_2 = O + HCN \rightarrow CH \xrightarrow{OH} \xrightarrow{2H_2O} CH_2 \xrightarrow{OH} + NH_3$$

formaldehyde cyanohydrin

Glycollic acid

11. ग्लाइकॉलीड (Glycollide)

जब ग्लाइकोलिक अम्ल को गर्म करते हैं तो ग्लाइकॉलीड प्राप्त होता है।

$$\begin{array}{c} \text{CH}_2 - \text{OH} \\ \mid \text{COOH} \end{array} \begin{array}{c} \text{HOOC} \\ \mid \text{HO-CH}_2 \end{array} \xrightarrow{\Delta} \begin{array}{c} \text{CH}_2 - \text{O-C} = \text{O} \\ \mid \text{C} - \text{O-CH}_2 \end{array} \begin{array}{c} +2\text{H}_2\text{O} \\ \mid \text{O} \end{array}$$

12. लैक्टिक अम्ल (Lactic acid)

जब ऐसीटिल्डिहाइड की HCN के साथ क्रिया कराने के बाद जल अपघटन से लेक्टिक अम्ल प्राप्त होता है।

$$CH_3CH = O + HCN \rightarrow CH_3CH \xrightarrow{OH} \xrightarrow{2H_2O} CH_3 - CH \xrightarrow{OH} COOH$$

13. लैक्टाइड (Lactide)

जब लैक्टिक अम्ल को गर्म किया जाता है तो लैक्टाइड प्राप्त होता है।

Lactide

14. यूरोट्रोपीन या हेक्सामेथिलीनटैट्राऐमीन, ऐमीनोफॉर्म

(Urotropin or Hexamethylene tetraamine, Aminoform) जब फॉर्मल्डिहाइड की अमोनिया से क्रिया करते हैं तो यूरोट्रोपिन बनता है।

$$6\text{CH}_2 = \text{O} + 4\text{NH}_3 \rightarrow (\text{CH}_2)_6 \,\text{N}_4 + 6\text{H}_2\text{O}$$

15. डाइऐसीटोन ऐमीन (Diacetone amine)

जब ऐसीटॉन की अमोनिया से क्रिया कराते हैं तो *डाइऐसीटॉन ऐमीन* प्राप्त होता है।

$$CH_3 \rightarrow C = O + H - CH_2COCH_3 \rightarrow CH_3 \rightarrow CH_2COCH_3 + H_2O$$

$$CH_3 \rightarrow C + CH_2COCH_3 + H_2O$$

$$CH_3 \rightarrow C + CH_2COCH_3 + H_2O$$

$$CH_3 \rightarrow C + CH_2COCH_3 + H_2O$$

Diacetone amine

16. ग्लूकोस (Glucose)

जब फॉर्मिल्डिहाइड के 6 मोल को चूने के पानी में से गुजारते हैं तो खूकोज बनता है।

$$6CH_2 = O \xrightarrow{Ca(OH)_2} C_6H_{12}O_6 \quad (Glucose)$$

17. ट्राइऑक्सेन (Trioxan)

जब फॉर्मिल्डिहाइड को सान्द्र $H_2 SO_4$ में से गुजारते हैं तो *ट्राइऑक्सेन* बनता है।

$$3CH_2 = O \xrightarrow{H_2SO_4} (CH_2O)_3$$
 (Trioxan)

18. पैराऐल्डिहाइड (Paraldehyde)

जब एसीटिल्डहाइड के 3 मोल H_2SO_4 में से गुजारते हैं तो \dot{V} राएिल्डहाइड प्राप्त होता है।

$$3CH_3CHO \xrightarrow{H_2SO_4} (CH_3CHO)_3$$
 (Paraldehyde)

19. मेटाऐल्डिहाइड (Metaldehyde)

जब एसीटिल्डहाइड के 4 मोल को शुष्क HCl गैस में से गुजारते हैं तो *मेटाएिल्डहाइड* बनता है।

$$4CH_3CHO \xrightarrow{dry HClgas} (CH_3CHO)_4$$
 (Metaldehyde)

20. ऐल्डॉल (Aldol)

जब ऐसीटिल्डिहाइड के 2 मोल को 10% NaOH विलयन में गुजारते हैं तो *एल्डोल* बनता है।

$$CH_3 - CH = O + H - CH_2CHO \xrightarrow{10\%NaOH} CH_3 - CH - CH_2 - CHO$$
OH

(Aldol)

21. क्रोटोनऐल्डिहाइड (Crotonaldehyde)

जब एल्डोल को गर्म करते है तो क्रोटोनऐल्डिहाइड बनता है।

$$CH_3CH - CH_2 - CHO \xrightarrow{\Delta} CH_3 - CH = CH - CHO + H_2O$$

OH Aldol

Crotonaldehyde

22. डाइऐसीटोन ऐल्कोहॉल (Diacetone alcohol)

जब ऐसीटॉन के दो मोल को क्षार की उपस्थित में से गुजारते हैं तो डाइऐसीटॉन एल्कोहॉल बनता है।

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \end{array} \text{C} = \text{O} + \text{H} - \text{CH}_{2}\text{COCH}_{3} \xrightarrow{\text{Alkali}} \begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \end{array} \begin{array}{c} \text{C} - \text{CII}_{2}\text{COCH}_{3} \\ \text{OH} \end{array}$$

Diacetone alcohol

23. सिनेमेल्डिहाइड (Cinnamaldehyde)

बेन्जेल्डिहाइड व ऐसिटल्डिहाइड की क्षार की उपस्थिति में क्रिया कराते है, तो *सिनेमेल्डिहाइड* बनता है।

$$C_{6}H_{5}CH = O + HCH_{2}CHO \xrightarrow{alkali} C_{6}H_{5}CH - CH_{2} - CHO$$

$$OH \qquad OH \qquad \Delta$$

$$C_{6}H_{5}CH = CH - CHO + H_{2}O$$
Cinnamaldehyde

24. मेथिल ग्लाइऑक्सल (Methyl glyoxal)

जब ऐसीटॉन का ऑक्सीकरण SeO₂ के साथ करते हैं तो *मेथिल* ग्लाइऑक्सल बनता है।

25. मेसिटिल ऑक्साइड (Mesityl oxide)

जब ऐसीटॉन के दो मोल को शुष्क HCl गैस में गर्म करने पर मेसिटील ऑक्साइड प्राप्त होता है।

$$CH_3$$
 $C = O + H_2CHCOCH_3 \xrightarrow{dry HC1 \text{ gas}}$

$$CH_3$$
 $C = CHCOCH_3 + H_2O$

Mesityl oxide

26. फोरोन (Phorone)

जब ऐसीटॉन के तीन मोल को शुष्क HCl गैस में गर्म करने पर फोरॉन प्राप्त होता है।

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

√dry HCl gas

$$CH_3$$
 $C = CHCOCH = C < CH_3 CH_3 $+ 2H_2O$$

Phorone

क्रिये अध्यान

27. पीनेकोल (Pinnacol)

जब ऐसीटॉन के दो मोल का अपचयन कराते हैं तो *पिनाकॉल* बनता है।

$$\underbrace{CH_3}_{CH_3} C = O + O = C < \underbrace{CH_3}_{CH_3}$$

$$\underbrace{CH_3}_{2H} \underbrace{Mg/Hg}_{C_6H_6sol}$$

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \end{array} \begin{array}{c} \text{C} - \text{C} \\ \text{CH}_{3} \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{OH} \end{array} \begin{array}{c} \text{OH} \end{array} \begin{array}{c} \text{CH}_{3} \end{array} \begin{array}{c} \text{Pinacol} \end{array}$$

28. हेमीऐसीटैल (Hemiacetal)

ऐसीटिल्डिहाइड की ऐथेनॉल से क्रिया कराने पर हेमीऐसीटल प्राप्त होता है।

$$CH_3$$
 $C = O + HOC_2H_5 \rightarrow CH_3$ $C < OH$ OC_2H_5

Hemiacetal

29. सल्फोनल (Sulphonal)

ऐसीटॉन की थायोएल्कोहॉल से क्रिया कराने के पश्चात् प्राप्त यौगिक का ऑक्सीकरण करने से *सल्फोनल* प्राप्त होता है।

$$\begin{array}{c}
CH_3 \\
CH_3
\end{array}
C = O + HSC_2H_5 \\
HSC_2H_5$$

$$CH_3 \\
CH_3$$

$$CH_3 \\
SC_2H_5$$

$$+ H_2O$$

$$\downarrow 4[O]$$

$$CH_3 \\
CH_3$$

$$SO_2C_2H_5$$

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{Sulphonal} \end{array} \\ \text{SO}_{2}\text{C}_{2}\text{H}_{5}$$

30. बाइयूरेट (Biuret)

यूरिया को गर्म करने से प्राप्त होता है।

 $NH_2CONH_2 + HNHCONH_2 \xrightarrow{\Lambda} NH_2CONHCONH_2 + NH_3$ Urea
Urea
Urea
Urea

31. ट्राइयूरेट (Triuret)

यूरिया को ${
m SOCl}_2$ की उपस्थिति में गर्म करने पर ट्राइयूरेट प्राप्त होता है।

$$\begin{array}{c} \text{NH}_2\text{CONH}_2 + \text{HNHCONH}_2 + \text{HNHCONH}_2 \\ \text{Urea} & | \text{SOCl}_2 \, / \, \Delta \\ \\ \text{NH}_2\text{CONHCONHCONH}_2 + 2 \text{NH}_3 \\ \\ \text{Triuret} \end{array}$$

32. सायन्यूरिक अम्ल (Cyanuric acid)

यूरिया को 170°C ताप पर गर्म करने पर प्राप्त होता है।

$$NH_2CONH_2 \xrightarrow{170^{\circ}} HOCN + NH_3$$

3HOCN $\xrightarrow{\text{Polymerisation}}$ (HOCN)₃Cyanuric acid

33. ऑकसऐलिल यूरिया या पेराबोनिक अम्ल

(Oxalyl Urea or Parabonic acid)

यूरिया को जब ओक्सेलिक एस्टर से क्रिया कराने पर, पेराबोनिक अम्ल बनता है।

NHH
$$C_2H_5O-C=O$$
 NH-C=O
CO $C_2H_5O-C=O$ NH-C=O C_2H_5OH

Urea Oxalicester

Oxalyl Urea

34. मेलोनिल यूरिया या बार्बिटयूरिक अम्ल

(Malonyl Urea or Barbituric acid)

NHH
$$C_2H_5O-C=O$$
 NH-C=O
CO $CH_2 \rightarrow CO$ $CH_2 + 2C_2H_5OH$
NHH $C_2H_5O-C=O$ NH-C=O

Urea

Malonic ester

Malonyl Urea

35. 4-मेथिल यूरेसिल (4-Methyl Uracil)

यूरिया को जब ऐसीटो ऐसीटिक एस्टर की एनोल अवस्था के साथ क्रिया करने पर 4-मेथिल यूरेसिल प्राप्त होता है।

NHH HO —
$$C - CH_3$$
 NH — $C - CH_3$ CO + CH \rightarrow CO CH + $C_2H_5OH + H_2O$ NH — $C_2H_5O - C = O$ NH — $C = O$

Urea

enol form of acetoacetic ester 4-methyl Uracil

36. सल्फेमिक अम्ल (Sulphamic acid)

जब यूरिया पयूमिंग सल्फ्यूरिक अम्ल के साथ क्रिया करने पर सल्फेमिक अम्ल बनता है।

$$\begin{array}{c} \mathrm{NH_{2}CONH_{2} + SO_{3} + H_{2}SO_{4} \rightarrow 2NH_{2}SO_{3}H + CO_{2}} \\ \mathrm{Fu\,min\,ig\,sulphuric\,acid} \end{array}$$

37. मोनोमेथिलॉल यूरिया (Monomethylol Urea)

यूरिया को जब मेथेनल के साथ क्रिया कराने पर मोनोमेथिलॉल यूरिया बनता है।

$$NH_2CONH_2 + CH_2 = O \rightarrow NH_2CONH - CH_2OH$$

38. ऐसीटोऐसीटिकएस्टर (Aceto acetic ester)

दो अणु ऐथिल ऐसीटेट के $\mathrm{C_2H_5ONa}$ के साथ क्रिया करने पर प्राप्त होता है।

$$CH_{3}COOC_{2}H_{5} + H - CH_{2}COOC_{2}H_{5} \xrightarrow{C_{2}H_{5}ONa/Acid}$$

$$CH_{3}COCH_{2}COOC_{2}H_{5} + C_{2}H_{5}OH$$

39. टॉलूईन या मेथिल बेन्जीन या फेनिल मेथेन

(Toluene or methyl benzene or phenyl methane) बेन्जीन की CH_3Cl के साथ $AlCl_3$ की उपस्थिति में क्रिया करने से टॉल्ईन प्राप्त होती है।

 ${\rm C_6H_5H + Cl - CH_3} \xrightarrow{\rm AlCl_3} {\rm C_6H_5CH_3 + HCl}$

40. क्यूमीन या आइसोप्रोपिल बेन्जीन

(Cumene or isopropylbenzene)

बेन्जीन की $\mathrm{CH_3-CH=CH_2}$ के साथ $\mathrm{AICl_3}$ की उपस्थिति में क्रिया कराने से $\frac{\mathrm{avg}}{\mathrm{He}}$ बनती है।

 $C_6H_5H + CH_3 - CH = CH_2 \xrightarrow{AlCl_3} C_6H_5CH(CH_3)_2$

41. ऐसीटोफीनॉन या मेथिल फेनिल कीटोन

(Acetophenone or methyl phenyl ketone)

बेन्जीन की CH_3COCI के साथ $AICI_3$ की उपस्थिति में क्रिया कराने से \dot{V} सीटोफीनॉन बनता है।

$$C_6H_5H + CH_3COCl \xrightarrow{AlCl_3} CH_3COC_6H_5 + HCl$$
Acetophenone

42. बेन्जोफीनॉन (Benzophenone)

बेन्जीन की $C_6H_5\mathrm{COCl}$ के साथ AlCl_3 की उपस्थिति में क्रिया कराने से *बेन्जोफीनॉन* बनता है।

$$C_6H_5H + CIOCC_6H_5 \xrightarrow{AICl_3} C_6H_5COC_6H_5 + HCl$$

43. डाइफेनिल (Diphenyl)

बेन्जीन को लाल तप्त लोह पाईप में से गुजारने पर *डाइफेनिल* प्राप्त होता है।

$$2C_6H_5H \xrightarrow{\text{red hot iron pipe}} C_6H_5 - C_6H_5 + H_2$$

44. बी.एच.सी. या बेन्जीनहैक्साक्लोराइड 666, लिण्डेन, गेमेक्सेन (B.H.C. or Benzenehexachloride, 666, lindane, Gamhexane) बेन्जीन की Cl_2 के साथ क्रिया कराने पर बी.एच.सी. प्राप्त होता है।

$$C_6H_6 + 3Cl_2 \rightarrow C_6H_6Cl_6$$

45. टी.एन.बी.(विस्फोटक) T.N.B. (explosive)

बेन्जीन फ्यूमिंग नाइट्रीक अम्ल के साथ 100°C ताप पर क्रिया कराने पर *टी.एन.बी.* प्राप्त होता है।

$$\bigcirc + conc. \ HNO_3 + NO_2 \xrightarrow{100^{\circ}C} O_2N \xrightarrow{NO_2} NO_2$$

Benzene

T.N.B

46. टी.एन.टी. (ट्राइनाइट्रो टॉलूईन) (T.N.T. (Trinitro toluene) टॉलूईन फ्यूमिंग नाइट्रोक अम्ल के साथ 100°C ताप पर क्रिया कराने पर टी.एन.टी. प्राप्त होता है।

$$H_3C$$
 \bigcirc +conc. HNO_3 $\xrightarrow{100^{\circ}C}$ O_2N \bigcirc NO_2

Toluene

T.N.T.

47. ऐजोक्सी बेन्जीन (Azoxybenzene)

नाइट्रोबेन्जीन का अपचयन Na3AsO3 के क्षारीय विलयन के साथ

अपचयन से *ऐजोक्सी बेन्जीन* प्राप्त होता है।

$$\begin{array}{c} C_6H_5NO_2 \\ C_6H_5NO_2 \end{array} + 6H \xrightarrow{\begin{array}{c} \text{alkaline sol. of} \\ Na_3AsO_3 \end{array}} \begin{array}{c} C_6H_5N \rightarrow O \\ C_6H_5N \end{array} + 3H_2O$$

Nitrobenzene

Azoxybenzene

48. ऐजोबेन्जीन (Azobenzene)

नाइट्रोबेन्जीन का अपचयन $\mathrm{Na_2SnO_2}$ के क्षारीय विलयन के साथ अपचयन से *ऐजोबेन्जीन* प्राप्त होता है।

$$\begin{array}{c} C_6H_5NO_2 \\ C_6H_5NO_2 \end{array} +8H \xrightarrow{\begin{array}{c} \text{alkaline sol of} \\ Na_2SnO_2 \end{array}} \begin{array}{c} C_6H_5N \\ \parallel \\ C_6H_5N \end{array} +4H_2O$$

nitrobenzene

Azobenzene

49. हाइड्रोऐजोबेन्जीन (Hydroazobenzene)

नाइट्रोबेन्जीन का अपचयन Zn dust व $\mathrm{CH_3OH} + \mathrm{KOH}$ के क्षारीय विलयन के साथ अपचयन से *हाइड्रोऐजोबेन्जीन* प्राप्त होता है।

$$\begin{array}{c} \text{C}_6\text{H}_5\text{NO}_2 \\ \text{C}_6\text{H}_5\text{NO}_2 \end{array} 10\text{H} \xrightarrow{\text{Zn dust} \atop \text{CH}_3\text{OH}+\text{KOH}} \to \begin{array}{c} \text{C}_6\text{H}_5\text{NH} \\ \text{C}_6\text{H}_5\text{NH} \end{array} + 4\text{H}_2\text{O}$$

Hydroazobenzene

50. p- हाइड्रॉक्सी ऐनिलीन (p-hydroxyaniline)

प्रबल अम्ल या क्षार की उपस्थिति में नाइट्रो बेन्जीन का विद्युत अपघंटन से p- हाइड्रॉक्सी ऐनिलीन प्राप्त होता है।

$$\begin{array}{c}
NO_2 \\
\hline
O \\
+4H & \underline{\text{strong acid}}
\end{array}$$

$$\begin{array}{c}
NH_2 \\
OH
\end{array}$$

Nitrobenzene

51. ऐसीटेनिलाइड या N-फेनिल ऐसीटामाइड

(Acetanilide or N-phenyl acetamide)

ऐनिलीन की CH3COCI के साथ क्रिया कराने पर *ऐसीटऐनिलाइड* बनता है।

$$C_6H_5NH_2 + CIOCCH_3 \rightarrow C_6H_5NHOCCH_3 + HCI$$

aniline

acetyl chloride

Acetanilide

52. बेन्जेनीलाइड (Benzanilide)

ऐनिलीन की C_6H_5COCI के साथ क्रिया कराने पर *बेन्जऐनिलाइड* बनता है।

$$C_6H_5NH_2 + CIOCC_6H_5 \rightarrow C_6H_5NHOCC_6H_5 + HCI$$

aniline

benzoyl chloride Benzanilide

53. बेन्जल ऐनिलीन या बेन्जाइलीडीन ऐनिलीन

(Benzalaniline or Benzylidene aniline)

ऐनिलीन की C_6H_5 CHO के साथ क्रिया कराने पर *बेन्जल ऐनिलीन* बनता है।

$$C_6H_5NH_2 + O = CHC_6H_5 \rightarrow C_6H_5N = CHC_6H_5 + H_2O$$

aniline

Benzaldehyde

Benzalaniline

18:14

54. p- ऐमीनो ऐजोबेन्जीन p-amino - azobezene

ऐनिलीन की $C_6H_5N_2Cl$ के साथ क्रिया कराने पर $\emph{p-}$ ऐमीनो– ऐजोबे-जीन प्राप्त होता है।

$$H_2N$$
 $+ CI - N = N$

aniline

↓ benzenediazonium chloride

$$H_2N$$
 $N=N$

p-amino-azobenzene [yellow dye]

55. p- हाइड्रॉक्सी ऐजोबेन्जीन (p-hydroxy azobenzene)

फीनॉल की $C_6 H_5 N_2 Cl$ के साथ क्रिया कराने पर p- *हाइड्रॉक्सी ऐजोबेन्जीन* प्राप्त होता है।

$$HO\left(\bigcirc\right) + Cl - N = N$$

pheno

↓ benzenediazonium chloride

p-hydroxy- azobenzene

56. 2,4,6-दाइब्रोमो एनिलीन (2,4,6- tribromo aniline)

ऐनिलीन की ब्रोमीन जल के साथ क्रिया कराने पर 2, 4 6-ट्राइब्रोमों एनिलीन प्राप्त होता है।

$$\underbrace{ \begin{array}{c} \text{NH}_2 \\ \\ \end{array}}_{\text{H}_2} + 3 \text{Br}_2 \text{(water)} \rightarrow \underbrace{ \begin{array}{c} \text{NH}_2 \\ \\ \text{Br} \end{array}}_{\text{Br}} + 3 \text{HBr}$$

57. 2, 4, 6-द्राईस्नोमो फीनॉल (2, 4, 6- tribromophenol)

फीनॉल की ब्रोमीन जल के साथ क्रिया कराने पर 2, 4, 6-ट्राइब्रोमों फीनॉल प्राप्त होता है।

$$+3Br_2$$
 (water) $\rightarrow Br$ $-Br + 3HBr$

58. ऐनीसॉल या मेथिल फेनिल ईथर

(Anisole or methylphenyl ether)

फीनॉल की CH3I के साथ क्रिया कराने पर *ऐनीसॉल* प्राप्त होता है।

$$C_6H_5OH + I - CH_3 \rightarrow C_6H_5OCH_3 + HI$$

Phenol

Anisole

59. फेनीटॉल या ऐथिल फेनिल ईथर

(Phenetole or Ethyl phenyl ether)

फीनॉल की C_2H_5I के साथ क्रिया कराने पर *फेनीटॉल* प्राप्त होता है। $C_6H_5OH + I - C_2H_5 \rightarrow C_6H_5OC_2H_5 + HI$

Phenetole

60. फेनिल ऐसीटेट (Phenyl acetate)

फीनॉल की $\mathrm{CH_3COCl}$ के साथ क्रिया कराने पर *फेनिल ऐसीटेट* प्राप्त होता है।

$$C_6H_5OH + CIOCCH_3 \rightarrow C_6H_5OOCCH_3 + HC1$$

acetyl chloride Phenyl acetate

61. फेनिल बेन्जोएट (Phenyl benzoate)

फीनॉल की $C_6H_5\mathrm{COCl}$ के साथ क्रिया कराने पर *फेनिल बेन्जोएट* प्राप्त होता है।

$$C_6H_5OH + ClOCC_6H_5 \rightarrow C_6H_5OOCC_6H_5 + HC1$$

phenol benzoyl chloride

phenyl benzoate

62. पिक्रिक अम्ल (Picric acid)

फीनॉल की सान्द्र $\mathrm{HNO_3}$ के साथ क्रिया कराने पर $\overline{\mathit{U}}$ क्रिक अम्ल प्राप्त होता है।

$$+$$
 conc. $3HNO_3 \rightarrow NO_2 OH NO_2 + 3H_2O$

phenol

nicric acia

63. सेलिसेल्डिहाइड (Salicylaldehyde)

फीनॉल की CHCl₃ व KOH के साथ क्रिया कराने पर *सेलिसेल्डिहाइड* प्राप्त होता है।

HO OH
$$CHCl_3 + 3KOH (alc.) \rightarrow CHO + 3KCl + H_2O$$

phenol

Salicylaldehyde

64. सेलिसिलिक अम्ल (Salicylic acid)

फीनॉल की CCl₄ व KOH के साथ क्रिया कराने पर *सेलिसिलिक* अम्ल प्राप्त होता है।

HO
$$+$$
 CCl₄ + 4KOH (alc.) \rightarrow COOH $+$ 4KCl + 2H₂O

phenol

Salicylic acid

65. क्वीनॉल (Quinol)

फीनॉल की $K_2S_2O_8$ के क्षारीय विलयन के साथ क्रिया कराने पर क्वीनॉल प्राप्त होता है।

66. फिनोल्फ्थेलिन (Phenolphthalein)

फीनॉल की थैलिक एनहाइड्राइड के साथ क्रिया कराने पर फिनोल्फ्थेलिन प्राप्त होता है।

phenol

phenolphthalein

67. इण्डोफीनॉल (Indophenol)

फीनॉल की मोनोऑक्साइम क्विनॉन के साथ क्रिया कराने पर *इण्डोफिनॉल* प्राप्त होता है।

HO
$$\longrightarrow$$
 + HO \longrightarrow N \longrightarrow O

 $\downarrow_{\text{H}_2\text{SO}_4/\text{H}_2\text{O}}$

HO \longrightarrow N \longrightarrow O

68. o & p- क्रीसॉल (o & p- Cresol)

फीनॉल की CH,Cl के साथ AlCl, की उपस्थिति में क्रिया कराने पर *o & p- क्रीसॉल* प्राप्त होता है।

$$\begin{array}{c}
OH & 2 + CH_3Cl \xrightarrow{AlCl_3} & CH_3 & CH_3 \\
OH & O-Cresol & p-Cresol
\end{array}$$

69. डी.डी.टी.(डाइक्लोरोडाइफेनिल ट्राइक्लोरो एथेन) कीटनाशक D.D.T., (Dichloro diphenyl trichloroethane) insecticide

70. ऑरलॉन (Orlon)

$$nCH_2 = CH - CN \xrightarrow{HT} \{-CH_2 - CH - CN\}_n$$

अध्यास के लिए प्रश्न

प्र.1. निम्न को आपस में कैसे बदलेंगे-

- (1) CH2Cl को Westrosol में CH₂CI
- (2) CH≡CH को क्रोटोनल्डिहाइड में
- (3) CH = CH को Chloroprene में -

- (4) CHCl3 को Chloropicrin में
- (5) CH3COOH को Phorone में
- (6) CH2COOC2H5 को Aceto acetic ester में
- (7) CH₂ = C = O को Acetic anhydride में
- (8) CH, = O को Glycollide में

प्र.2. निम्न को कैसे बदलेंगे-

- (1) Urea को Biuret में
- (2) COCI, को Parabonic acid में
- (3) CO₂ को 4-methyl uracil में
- (4) C₆H₅OH को phenoilphthalein में
- (5) C₆H₆ को Dipheny! में
- (6) C₆H₅OH को T.N.B. में
- (7) C₆H₅OH को B.H.C. पाउड़र में
- (8) C₆H₅OH को Prerie acid में

प्र.3. निम्न में A व B को पहचानिये-

- $A \xrightarrow{alc.KOH} B \xrightarrow{S_2Cl_2} Mustard gas$ (1)
- $A \xrightarrow{Cl_2} B \xrightarrow{Ca(OH)_2} Westrosol$ (2)
- $A \xrightarrow{Cu_2Cl_2} B \xrightarrow{HCl} Chloroprene$ (3)
- $A \xrightarrow{Cl_2 \wedge OH} B \xrightarrow{CH_3COCH_3} Chloretone$ (4)
- $A \xrightarrow{HCN} B \xrightarrow{H_2O} Glycollic acid$ (5)
- $A \xrightarrow{HCN} B \xrightarrow{H_2O} Latic acid$ (6)
- $A \xrightarrow{Boil} B \xrightarrow{phthalic} phenolphthalein$ (7)
- $A \xrightarrow{Zn \text{ dust}} B \xrightarrow{CH_3COCl} Acetophenone$ (8)
- $A \xrightarrow{aq \text{ KOH}} B \xrightarrow{NH_3} Urotropin$ (9)
- $A \xrightarrow{aq \text{ KOH}} B \xrightarrow{dry \text{ HClgas}} Mesityl oixide$

- $A \rightarrow CH_3CH_2CI$
- $B \rightarrow CH_2 = CH_2$
- 2. $A \rightarrow CH \equiv CH$
- $B \rightarrow CHCl_2$
- CHCI₂
- 3. $A \rightarrow CH \equiv CH$
- $B \rightarrow CH_2 = CH C \equiv CH$
- $A \rightarrow C_2H_5OH$ 4.
- $B \rightarrow CHCl_3$
- $A \rightarrow CH_2 = O$
- $B \rightarrow CH_2 < \frac{OH}{CN}$
- $A \rightarrow CH_3CHO$
- $B \rightarrow CH_3CH \langle CN \rangle$
- $A \rightarrow C_6H_5N = N Cl + B \rightarrow C_6H_5OH$

18. 16

 $A \rightarrow C_6H_5OH$ 8.

 $B \rightarrow C_6 H_6$

 $A \rightarrow CH_2Cl_2$ 9.

 $B \rightarrow CH_2 = O$

10. $A \rightarrow CH_3CCl_2CH_3$ $B \rightarrow CH_3COCH_3$

एल्डोल संघनन (Aldol condensation)— यह दो अणु ऐल्डिहाइड अणओं के मध्य या दो अणुओं कीटॉन के मध्य, जिनमें $\alpha - H$ परमाणु उपस्थित हो, तनु क्षार की उपस्थिति में क्रिया करते हैं।

$$CH_3 - C - CH_2 - C - H \xrightarrow{Heat} CH_3 - CH = CH - C - H$$

Aldol

Crotonaldehyde

$$CH_3 - C - CH_3 + HCH_2 - C - CH_3$$

O

O

CH₃ - C - CH₃ + HCH₂ - C - CH₃

Acetone

$$\begin{array}{ccc} \text{OH} & \text{O} & \text{O} \\ \text{CH}_3 - \text{C} - \text{CH}_2 - \text{C} - \text{CH}_3 \xrightarrow{\text{Heat}} & \text{CH}_3 - \text{C} = \text{CH} - \text{C} - \text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \text{Diacetone alcohol} & \text{Mesityloxide} \end{array}$$

यदि एल्डिहाइड व कीटॉन के दो अणु भिन्न हो तो अभिक्रिया को क्रास एल्डॉल संघनन कहते हैं।

$$CH_3 - C - H + HCH_2COCH_3 \xrightarrow{KCN} CH_3 - C - CH_2COCH_3$$
Accetaldehyde Accetone
$$H$$
4-Hydroxypentan-2-one

2. बुवो-ब्लांक अभिक्रिया (Bouveault-Blanc Reduction)— इस अभिक्रिया में एस्टर का एल्कोहॉल में अपचयन होता है, इसमें सोडियम व एल्कोहॉल अपचायक के रूप में काम में लेते हैं।

$$\begin{array}{c} \text{CH}_{3}\text{COOC}_{2}\text{H}_{5} \xrightarrow{\text{Na /alcohol}} \text{C}_{2}\text{H}_{5}\text{OH} + \text{CH}_{3}\text{CH}_{2}\text{OH} \\ \text{Ethyl acetate} \end{array}$$

3. ब्लेंक अभिक्रिया (Blace Reaction)— इस अभिक्रिया में बेन्जीन $CH_2 = O$ व HCl के साथ $ZnCl_2$ के साथ क्रिया करता है। $C_6H_6 + CH_2 = O + HC1 \xrightarrow{ZnCl_2} C_6H_5CH_2Cl + H_2O$

(Benzyl chloride)

4. क्लेजन श्मिट संघनन (Claisen Schmidt Condensation)— इस संघनन में बेन्जल्डिहाइड व ऐलिफैटिक ऐल्डिहाइड तनु क्षार की उपस्थिति में क्रिया करते हैं।

$$\xrightarrow{-H_2O}$$
 $C_6H_5CH = CH - CHO$
Cinnamaldehyde

5. क्लेजन संघनन (Claisen Condensation)— इस संघनन में सोडियम व ऐल्कोहॉल की उपस्थिति में दो अणु ऐथिल ऐसीटेट के क्रिया करते हैं।

2CH₃COCH₂CH₃
$$\xrightarrow{\text{(i) NaOC}_2\text{H}_5}$$
Ethyl acetate

O

CH₃CCH₂COCH₂CH₃ + CH₃CH₂OH

Ethyl acetoacetate

6. कैनिजारों अभिक्रिया (Cannizzaro's Reaction)— वे ऐल्डिहाइड जिनमें α – H परमाणु अनुपस्थित हो, सान्द्र क्षार के साथ क्रिया करते हैं, यहाँ ऐल्डिहाइड का एक अणु ऐल्कोहॉल में अपचियत होता है जबिक दूसरा अणु अम्ल में ऑक्सीकृत होता है।

C6H5CHO+C6H5CHO Benzaldehyde

> C₆H₅COONa+C₆H₅CH₂OH Sod. benzoate Benzyl alcohol

$$2(CH_3)_3 C.CHO \xrightarrow{50\% \text{ NaOH}}$$
2,2-dim ethyl

propanal

7. कार्बिलऐमीन अभिक्रिया (Carbylamine Reaction)— इस अभिक्रिया में प्राथमिक ऐमीन व क्लोरोफार्म के साथ NaOH/KOH की उपस्थिति में क्रिया करते हैं।

$$\begin{array}{c} C_2H_5NH_2 + Cl_3CH + 3KOH \rightarrow C_2H_5N \xrightarrow{\hspace{1cm} -C} C + 3KCl + 3H_2O \\ \text{Ethyl a mine Chloroform} & \text{Ethyl isocyanide} \end{array}$$

$$C_6H_5NH_2 + Cl_3CH + 3KOH \rightarrow C_6H_5N \xrightarrow{\longrightarrow} C + 3KCl + 3H_2O$$
Aniline Chloroform Phyenyl isocyanide

8. युग्मन अभिक्रिया (Coupling Reaction)— इस अभिक्रिया में डायजोनियम लवण फीनॉल व ऐरोमैटिक ऐमीन्स से क्रिया कर सामान्य सूत्र Ar - N = N - Ar वाला यौगिक बनाता है, इसे एजो यौगिक कहते हैं।

(i) फीनॉल के साथ अभिक्रिया

$$\begin{array}{c|c}
\hline
& N_2Cl + \\
\hline
& Phenol
\end{array}$$
Benzene diazonium
Phenol

p-Hydroxy azobenzene (orange dye)

(ii) ऐनिलीन के साथ अभिक्रिया

$$\langle \bigcirc \rangle$$
 $N_2Cl + \langle \bigcirc \rangle$ $NH_2 \xrightarrow{H^-}$ $273K$

Benzene diazonium

Aniline

chloride

(yellow dye)

 कर्टियस अभिक्रिया (Curtius Reaction)— इस अभिक्रिया में अम्ल एजाइड (R – CON₃), प्राथमिक ऐमीन में बदलता है।

$$\begin{array}{ccc}
O & & H & O \\
R - C - N_3 & \xrightarrow{CH_3OH} & R - N - C - OCH_3
\end{array}$$

 $\xrightarrow{\text{NaOH}}$ R - NH₂

1° A min e

ऐसीड एजाइड को ऐसीड क्लोराइड या एस्टर की हाइड्रेजीन से प्राप्त करते है।

$$R - C - C1 \xrightarrow{NH_2 - NH_2} R - C - NH - NH_2$$

 $\xrightarrow{\text{HNO}_2} \text{R} - \text{C} - \text{N}_3$

10. क्लीमेन्सन् अपचयन अभिक्रिया (Clemmensen Reduction Reaction)— इस अभिक्रिया में एल्डिहाइड व कीटॉन का अपचयन Zn-Hg व HCl सान्द्र के साथ क्रिया कर एल्केन में बदलता है।

$$CH_3CHO + [H] \xrightarrow{Zn-Hg/HCl} CH_3 - CH_3 + H_2O$$
Acetaldehyde Ethane

 $\begin{array}{c} \text{CH}_3\text{COCH}_3 + 4[\text{H}] - \xrightarrow{Zn - \text{Hg/HCl}} \text{CH}_3 - \text{CH}_2 - \text{CH}_3 + \text{H}_2\text{O} \\ \text{Acetone} \end{array}$

$$\begin{array}{c} C_6H_5COCH_3 + 4[H] \xrightarrow{Zn-Hg/HCl} \\ \text{Acetophenone} \end{array} \xrightarrow{Zn-Hg/HCl} C_6H_5CH_2CH_3 + H_2O$$

$$O + 4 [H] \xrightarrow{Zn-Hg/HCl} + H_2O$$

Cyclohexanone Cyclohexane
11. डार्जेन अभिक्रिया (Darzen Reaction)— अशाखित प्राथमिक
एल्कोहॉल को SOCl₂ के साथ क्रिया करने पर क्लोरो व्युत्पन्न एल्केन
प्राप्त होता है।

 $ROH + SOCl_2 \xrightarrow{Pyridine} RCl + SO_2 + HCl$

12. एल्बस् अभिक्रिया (Elb's Reaction)— $K_2S_2O_8$ के क्षारीय विलयन के साथ फीनॉल के ऑक्सीकरण से क्यूनॉल प्राप्त होता है।

13. फिन्केल्सटाइन अभिक्रिया (Finkelstein Reaction)–इस अभिक्रिया में क्लोरो, ब्रोमो, आइडो समूह द्वारा प्रतिस्थापित होता है, इस अभिक्रिया में ऐसीटोन की उपस्थिति में KI के साथ क्रिया कराते हैं।

$$R - Cl + KI \xrightarrow{acetone} RI + KCl$$

 $R - Br + KI \xrightarrow{acetone} RI + KBr$

14. फ्रीडल-क्राफ्ट अभिक्रिया (Friedel-Craft Reaction)— इस अभिक्रिया में बेन्जीन के नाभी का एक हाइड्रोजन परमणु किसी एल्किल समूह, एसील समूह द्वारा प्रतिस्थापी होता है। इसमें निर्जल AlCl₃ उत्प्रेरक के रूप में कार्य करता है।

(a) फ्रींडल-क्राफ्ट एल्किलीकरण (Friedel-Crafts Alkylation)— बेन्जीन एल्किल हैलाइड से AICl₃ की उपस्थिति में क्रिया कर एल्किल बेन्जीन प्राप्त होता है। कमरे के ताप पर अभिक्रिया तेज होती है।

$$\begin{array}{c} C_6H_6 + CH_3Cl & \xrightarrow{Anhyd.\ AlCl_3} C_6H_5 - CH_3 + HCl \\ \text{Benzene Methyl chloride} & \text{Toluene} \end{array}$$

(b) फ्रीडल-क्राफ्ट एसिलीकरण (Friedel-Craft's Acylation)— इस अभिक्रिया में बेन्जीन, एसीटिल क्लोराइड के साथ AICl₃ की उपस्थिति में क्रिया कर कीटॉन बनाता है।

$$\begin{array}{c} C_6H_6 + RCOCl & \xrightarrow{Anhyd. \ AlCl_3} \\ C_6H_5COR + HCl & \\ \hline \text{Ketone} \end{array}$$

15. फ्रीज पुर्निवन्यास अभिक्रिया (Fries Rearrangement)— इस अभिक्रिया में फेनिल बेन्जोऐट समायवीकरण AICl₃ की उपस्थिति में गर्म करने पर p- हाइड्रॉक्सी बेन्जोफीनॉन बनाते हैं।

Phenyl benzoate

p-Hvdroxybenzophenone

16. फिटींग अभिक्रिया (Fitting Reaction)— इस अभिक्रियों ऐरोमैटिक हैलाइड धात्विक सोडियम के साथ ईथर की उपस्थित में क्रिया कर ऐरामैटिक हाइड्रोकार्बन बनाते हैं।

$$2C_6H_5Cl + 2Na \xrightarrow{\text{other}} C_6H_5 - C_6H_5 + 2NaCl$$

17. फ्रेकलैण्ड अभिक्रिया (Frankland Reaction)

$$2CH_3I + 2Zn \xrightarrow{dry \text{ ether}} (CII_3)_2 Zn + ZnI_2$$

18. गाटरमान अभिक्रिया (Gattermann Reaction)— इस अभिक्रिया में डाइजोनियम लवणसे क्लोरोबेन्जीन व ब्रोमोबेन्जीन बनाते हैं। इस अभिक्रिया में Cu/HCl या Cu/HBr के साथ क्रिया कराते हैं।

$$\begin{array}{c}
N_2^+\text{Cl} \\
\hline
Cu/\text{HBr} \\
\hline
\end{array}$$

$$\begin{array}{c}
\text{Br} \\
+N_2 + \text{HCl}$$

19. गाटरमॉन-कॉच अभिक्रिया (Gattermann Koch Reaction)— इस

अभिक्रिया में बेन्जीन की नाभी का एक हाइड्रोजन परमाणु –CHO समूह के द्वारा प्रतिस्थापी होता है। यहाँ CO व HCl के मिश्रण को AlCl₃ की उपस्थिति में बेन्जीन के साथ क्रिया कराते हैं।

$$CO + HCl \rightarrow HCOCl$$
Formyl chloride

$$C_6H_6 + HCOCl \xrightarrow{AlCl_3, CuCl} C_6H_5CHO + HCl$$

20. ग्रेंब्रिल थैलेमाइड अभिक्रिया (Gabriel Phthalimide Synthesis)— इस संश्लेषण में 1º प्राथमिक ऐमीन बनता है। इसमें थैलीमाइड को सर्वप्रथम KOH के साथ क्रिया कराते हैं इसके पश्चात् RI से क्रिया कराते हैं।

Phthalimide

pot. phthalimide

N-Alkyl phthalimide

Phthalic acid p-amine

इस संश्लेषण से ऐमीन अच्छी तरह प्राप्त होता है।

21. ग्रोव अभिक्रिया (Grove Reaction)

$$R - OH + HC1 \xrightarrow{ZnCl_2} RC1 + H_2O$$

22. गुरवेट अभिक्रिया (Gurbet Reaction)

$$R - CH2 - CH2 - CH - CH2OH$$

23. हैलोफार्म अभिक्रिया (Haloform Reaction)— इस अभिक्रिया में, कीटॉन (मेथिल कीटॉन) ऐल्डिहाइड, ऐथेनल, एक एल्केनॉल-2 को ऑक्सीकरण कराते है तो एक पीला अवक्षेप बनता है।

$$CH_3CHO + 3NaOI \rightarrow CHI_3 + H COONa + 2NaOH$$
Ethanol Iodoform

CH₃COCH₃+3NaOI → CHI₃+CH₃ COONa+2NaOH
Acetone Iodoform

24. हैल-व्होलार्ड जेलिन्सकी अभिक्रिया (Hell- Volhard Zelinsky (HVZ) Reaction)— कार्बोक्सिलिक अम्ल के α— कार्बन का हाइड्रोजन परमाणु क्लोरो या ब्रोमो द्वारा सूर्य के प्रकाश की उपस्थिति में प्रतिस्थापित होता है।

$$\begin{array}{c}
CH_3CH_2COOH \xrightarrow{Br_2,P} CH_3 - CHCOOH \\
Pr opanoic acid
\end{array}$$

2-Bromopropanoic acid

25. **हॉफमॉन ब्रोमामाइड अभिक्रिया (Hoffmann Bromamide Reaction)**— इस अभिक्रिया में ऐसीड ऐमाइड समूह प्राथमिक ऐमीन में बदलता है। इस अभिक्रिया में ऐसीड ऐमाइड को Br₂ व KOH के साथ क्रिया कराते हैं।

 $CH_3CONH_2+Br_2+4KOH \rightarrow CH_3NH_2+K_2CO_3+2KBr+2H_2O$ Acetamide Methyl amine $CH_3CONH_4+Br_2+4KOH_3+CH_3NH_2+K_3CO_3+2KBr+2H_3$

 $\begin{array}{c} \text{CH}_3\text{CH}_2\text{CONH}_2 + \text{Br}_2 + 4\text{KOH} \rightarrow \text{C}_2\text{H}_5\text{NH}_2 + \text{K}_2\text{CO}_3 + 2\text{KBr} + 2\text{H}_2\text{O} \\ \text{Propanamide} \\ \end{array}$

26. **हॉफमॉन मस्टर्ड ऑयल अभिक्रिया (Hoffmann Mustard Oil Reaction)**— इस अभिक्रिया में प्राथमिक ऐमीन CS_2 के साथ गर्म करते हैं, सर्वप्रथम डाइथायोकार्बेमिक अम्ल बनता है जो $HgCl_2$ के सा थ विघटित होकर एल्किल आइसोथायोसायनेट प्राप्त होता है। जिसमें एक विशेष गंध सरसों के तेल जैसी होती है।

$$\begin{array}{c} S \\ C_2H_5NH_2 \\ \text{Ethyla min e} \end{array} + \begin{array}{c} C = S \\ Carbon \\ disulphide \end{array} \rightarrow \begin{array}{c} C_2H_5 - NH - C - SH \\ Dithioethyl \\ carbamic \ acid \end{array}$$

$$\begin{array}{c}
 & \text{HgCl}_2 \\
 & \text{Heat}
\end{array}
\xrightarrow{C_2H_5} - N = C = S + 2HCl + HgS$$
Ethyl isothiocyanate

27. हुन्स्डीकर अभिक्रिया (Hunsdiecker Reaction)— इस अभिक्रिया में R-Br का निर्माण होता है। इसमें वसीय अम्ल के रजत लवण को Br_2 के साथ CCl_4 की उपस्थिति में क्रिया कराते हैं।

$$CH_3CH_2COOAg + Br_2 \xrightarrow{CCl_4} CH_3CH_2Br + CO_2 + AgBr$$

Silver propionate

This reaction can be used in descending of series.

- 28. आयोडोफार्म परीक्षण (Iodoform Test)— यह परीक्षण निम्न यौगिक देते हैं।
 - (a) प्राथमिक ऐल्कोहॉल में-केवल ethyl alcohol
 - (b) द्वितीयक ऐल्कोहॉल में-सभी alkanol-2
 - (c) एल्डिहाइड में-केवल CH3CHO
 - (d) कीटॉन में-सभी alkanone-2
 - (e) ऐल्कोहॉल में- CH₃ CH -OH

bynzyl alcohol

(f) कार्बोनिल यौगिक में- CH₃-C-

इस परीक्षण में, उपरोक्त यौगिक I_2 व NaOH के साथ क्रिया कराने पर CHI_3 का पीला अवक्षेप प्राप्त होता है।

$$\label{eq:CH3-CH3-CH3-COONa+5NaI+5H2OOH} \begin{array}{c} \text{CH}_3 - \text{CH} - +4\text{I}_2 + 6\text{NaOH} \rightarrow \text{CHI}_3 + -\text{COONa} + 5\text{NaI} + 5\text{H}_2\text{O} \\ \text{OH} \end{array}$$

$$CH_3 - C - +3I_2 + 4NaOH \rightarrow CHI_3 + -COONa + 3NaI + 3H_2O$$

29. कोल्बे अभिक्रिया (Kolbe's Reaction)— इस अभिक्रिया में सोडियम फिनॉक्साइड व CO₂ को 4-7 वायुमण्डल दाब पर 398K पर गर्म करने पर सोडियम सेलिसायलेट प्राप्त होता है, जो जल अपघटन से सैलिसिलिक अम्ल बनाता है।

ONa
$$+CO_2 \xrightarrow{(398K)} +COONa$$

Sod. phenoxide o-Sodium salicylate (chief produc t) यद्यपि p- हाइड्रॉक्सी बेन्जॉइक अम्ल भी बनता है, लेकिन बहुत ही कम मात्रा में।

30. नोवेनैजेल अभिक्रिया (Knoevenagel Reaction)

$$> C = O + H_2C < \frac{COOC_2H_5}{COOC_2H_5} \rightarrow > C = C < \frac{COOC_2H_5}{COOC_2H_5}$$

$$> C = C$$

$$> C = C$$

$$> COOC_2H_5$$

$$> C = C$$

$$> COOH$$

$$> C = CH - COOH \leftarrow \Delta$$

$$> C = CH - COOH \leftarrow \Delta$$

$$= COOH$$

$$> COOH$$

$$> COOH$$

$$> COOH$$

$$> COOH$$

$$> COOH$$

$$> COOH$$

H
$$C = O + ME \rightarrow CH_2 = CH - COOH$$
Acrylic acid

$$CH_3 - CH = O + ME \rightarrow CH_3 - CH = CH - COOH$$
Crotonic acid

$$C_6H_5CH = O + ME \rightarrow C_6H_5CH = CH - COOH$$
Cinnamic acid

31. लेडेरर-मानसे अभिक्रिया (Laderer Manasse Reaction)

OH
$$+CH_2 = O \xrightarrow{H^+ \text{ or } OH^-} CH_2OH + OH CH_2OH$$

o & p hydroxy

32. मेन्डियस अभिक्रिया (Mendius Reaction)— इस अभिक्रिया में सायनाइड का अपचयन नवजात H के साथ [जो कि Na + Hg + alcohol] क्रिया कराने से प्राथमिक ऐमीन बनते हैं।

$$CH_3CN + 4[H] \xrightarrow{Na/C_2H_3OH} CH_3CH_2NH_2$$

Ethyla min e

$$C_6H_5CN + 4[H] \xrightarrow{Na/C_2H_5OH} C_6H_5CH_2NH_2$$

Benzyl a min e

उपरोक्त अपचयन को LiAlH, के साथ भी प्राप्त कर सकते हैं।

33. थैलीन संघनन (phthalein Condenssation)

$$\begin{array}{cccc}
 & O &$$

phthalic anhydride

Phenolphthalein

34. रोजन्मुण्ड अभिक्रिया (Rosenmund Reaction)— ऐसीड क्लोराइड का Pd व BaSO₄ की उपस्थिति में हाइड्रोजन के साथ क्रिया कराते हैं। यहाँ BaSO₄. Pd की उत्प्रेरक क्षमता को कम करता है।

For example:

$$\begin{array}{c} \text{CH}_{3}\text{COCl} + \text{H}_{2} \xrightarrow{\quad \text{Pd-BaSO}_{4} \quad} \text{CH}_{3}\text{CHO} + \text{HCl} \\ \text{Acetal Chloride} & \text{Actaldehyde} \end{array}$$

$$C_6H_5COCl + H_2 \xrightarrow{Pd-BaSO_4} C_6H_5CHO + HCl$$

Benzoyl chloride Benzaldehyde

35. राइमर-टीमान अभिक्रिया (Reimer-Tiemann Reaction)— इस अभिक्रिया में फीनॉल की CHCl₃ व जलीय KOH के साथ क्रिया कराते हैं। 333–343 K ताप पर।

Salicylaldehyde (o-Hydroxybenzaldehyde) यदि फीनॉल को CCl4 के साथ NaOH की उपस्थिति में क्रिया कराते है तो Salicylic acid प्राप्त होता है। OH

Salicylic acid

36. SÅÆE&ܥ¿ØÙ¥çÖç ýØæ(Stephen's Reduction)— इस अभिक्रिया में RCN का अपचयन SnCl₂ व HCl के साथ कराते हैं। $SnCl_2 + 2HCl \rightarrow SnCl_4 + 2H$

$$R - C \equiv N + 2[H] \rightarrow RCH = NH \xrightarrow{H_2O} RCHO + NH_3$$
Aldehyde

Form example:

$$CH_3C = N + 2[H] \xrightarrow{SnCl_3/HCl} CH_3CH = NH$$
Methylcyanide Acetal dim ine

$$\xrightarrow{\text{H}_2\text{O}} \text{CH}_3\text{CHO} + \text{NH}_3$$
Acetaldehyde

37. सैण्डमायर अभिक्रिया (Sandmeyer Reaction)— इस अभिक्रिया में डाइजोनियम समूह का -Cl, -Br या -CN द्वारा प्रतिस्थापन होता है।

$$CuCl/HCl \rightarrow \bigcirc$$

$$CuRr/HBr \rightarrow \bigcirc$$

$$CuBr/HBr \rightarrow \bigcirc$$

$$CN$$

$$KCN \xrightarrow{CuCN} \rightarrow \bigcirc$$

Benzonitrile

38. शॉटन बॉमन अभिक्रिया (Schotten Baumann Reaction)— वे यौगिक जिनके क्रियात्मक समूह में सिक्रिय हाइड्रोजन परमाणु उपस्थित हो, जैसे-फीनॉल, एनीलिन, द्वितीयक एमीन, एल्कोहॉल आदि बेन्जॉइल क्लोराइड के साथ क्रिया कर N-aryl बेन्जॉमाइड बनाते है।

$$\begin{array}{c} C_6H_5NH_2 + ClCOC_6H_5 & \xrightarrow{Base} \\ C_6H_5NHCOC_6H_5 + HCl \\ & Benzoyl chloride \end{array}$$

$$\begin{array}{ccc} C_6H_5OH + ClCOC_6H_5 & \xrightarrow{Base} & C_6H_5OCOC_6H_5 + HCl \\ \hline Phenol & Benzoyl chloride & & Phyenyl benzoate \\ \end{array}$$

$$\begin{array}{c} C_2H_5OH + CICO C_6H_5 \xrightarrow{\quad \text{Base} \quad} C_6H_5COOC_2H_5 + HC1 \\ \text{Ethyl alcohol} \end{array}$$

39. स्कीमिट अभिक्रिया (Schmidt's Reaction)

$$R - COOH + N_3H \rightarrow RNH_2 + CO_2 + N_2$$

40. स्वार्ट अभिक्रिया (Swart Reaction)

$$R - I + AgF \xrightarrow{\text{Ethylene}} R - F + AgI$$

41. टिशेन्को अभिक्रिया (Tischenko's Reaction)

$$CH_3 - CH = O + OCHCH_3 \xrightarrow{AlCO_3} CH_3COOC_2H_5$$

42. उलमॉन अभिक्रिया (Ulmann Reaction)— इस अभिक्रिया में $C_6H_{
m c}$ I की Cu के साथ क्रिया कराते हैं।

$$C_6H_5I + 2Cu + IC_6H_5 \xrightarrow{\text{Heat}} C_6H_5 - C_6H_5 + 2CuI$$
Iodobenze

Sealed tube

Diphenyl

43. विलियमसन संश्लेषण (Williamson Synthesis)— इस विधि मतें सममित व असममित ईथर प्राप्त किये जा सकते हैं।

$$\begin{array}{c} CH_3I + NaOC_2H_5 \rightarrow CH_3OC_2H_5 + NaI\\ \text{Sod. ethoxide} & \text{Methoxy ethane} \end{array}$$

$$\begin{array}{c} C_2H_5I + NaOCH(CH_3)_2 \rightarrow C_2H_5O - CH(CH_3)_2 + NaI\\ \text{Sod. isopropoxide} & 2-\text{Ethoxypropane} \end{array}$$

$$\begin{array}{c} \mathrm{CH_{3}I} + \mathrm{NaOC_{6}H_{5}} \rightarrow \mathrm{CH_{3}OC_{6}H_{5}} \\ \mathrm{Sod.\ phenoxide} & \mathrm{Anisole} \end{array}$$

44. वुल्फ किञ्नर अपचयन अभिक्रिया (Wolff Kishner Reduction Reaction)— उच्च क्वथनांक वाले विलायकों की उपस्थिति में [Ethylene glyco + $\mathrm{NH_2NH_2}$ व KOH] कार्बोनिल यौगिकों का अपचयन पौटेशियम tert. butoxide से कराते हैं।

$$\begin{array}{c} CH_3 \\ CH_3C = O \end{array} \xrightarrow{NH_2-NH_2} \begin{array}{c} CH_3 \\ -H_2O \end{array} \xrightarrow{CH_3-C} \begin{array}{c} CH_3 \\ -H_3-C = N-NH_2 \end{array} \xrightarrow{453-473K} \begin{array}{c} KOH \\ \hline \end{array}$$
Acetone Hydrazone

$$CH_3$$
 $CH_3 - CH_2 + N_2$
Propage

$$C_6H_5 - C = O \xrightarrow{NH_2 - NH_2} C_6H_5 - C = N - NH_2$$

Benzophenone

Hydrazone

$$\xrightarrow{\text{KOH}} C_6 H_5$$

$$C_6 H_5 - C H_2 + N_2$$

Diphenyl methane

45. वुर्ट्ज अभिक्रिया (Wurtz Reaction)— इस अभिक्रिया में धात्विक सोडियम एल्किल हैलाइड के साथ शुष्क ईथर की उपस्थिति में क्रिया करा कर उच्च ऐल्केन बनाते है।

$$RX + 2Na + XR \xrightarrow{Dry \text{ ether}} R - R + 2NaX$$
Alkane

प्राय: इसमें ब्रोमो या आइडो एल्केन का प्रयोग करते है क्योंकि ये अधिक क्रियाशील होते हैं।

$$2CH_3I + 2Na \xrightarrow{Dry \text{ ether}} CH_3 - CH_3 + NaI$$
Iodo methane
Ethane

यदि हम दो एल्किल हैलइंड के अणु जो भिन्न हो, क्रिया करने पर तीन प्रकार के हाइड्रोकार्बन का मिश्रण बनाते हैं।

$$\begin{array}{c} CH_3I + 2Na + IC_2H_5 & \xrightarrow{Dry \text{ ether}} CH_3 - C_2H_5 + 2NaI \\ \text{Iodomethane Iodoethane} & \text{Pr opane} \end{array}$$

$$2CH_3I + 2Na \xrightarrow{Dryether} CH_3 - CH_3 + 2NaI$$

Ethane

$$2C_2H_5I + 2Na \xrightarrow{Dryether} C_2H_5 - C_2H_5 + 2NaI$$
Butane

46. वुर्ट्ज फिटिंग अभिक्रिया (Wurtz-Fitting Reaction)— इस अभिक्रिया में एरिल हैलाइड व एल्किल हैलाइड की सोडियम के साथ ईथर की उपस्थिति में क्रिया करते हैं।

SACRESCENTISTED FOR

प्र.1.निम्न पर संक्षिप्त टिप्पणी लिखिये।

- (a) वुर्द्ज अभिक्रिया
- (b) हैलोफार्म अभिक्रिया
- (c) केनिजारो अभिक्रिया
- (d) टिशेन्को अभिक्रिया
- (e) वुल्फ किश्चनर अभिक्रिया
- (f) रोजन्मुण्ड अभिक्रिया
- (g) मेन्डियस अभिक्रिया
- (h) हॉफमॉन मस्टर्ड आयल अभिक्रिया
- (i) गेब्रिल थैलेमाइड अभिक्रिया

प्र.2.निम्न अभिक्रियाओं की रासायनिक समीकरण दीजिये।

- (1) गाटरमान अभिक्रिया
- (2) हॉफमॉन ब्रोमाइड अभिक्रिया
- (3) फिन्कैल्स्टाइन अभिक्रिया
- (4) डेरफीन अभिक्रिया
- (5) डार्जेन अभिक्रिया
- (6) कार्बिलऐमीन अभिक्रिया
- (7) क्लीमेन्सन् अपचयन अभिक्रिया
- (8) फ्रीडल क्राफ्ट अभिक्रिया
- (9) फ्रीज पुर्नविन्यास अभिक्रिया