IN THE CLAIMS:

1 2

Please amend the claims to read in full as follows:

	1. (Amended) A method of eliminating parasitic bipolar transistor action in a Silicon on	
Ins	ulator (SOI) Metal Oxide Semiconductor (MOS) device located in a logic circuit, said logic	
circ	cuit being adapted to receive an input signal and a clock signal, the method comprising:	
	controlling the conduction of an active discharging device with the input signal, said	
	active discharging device being coupled to an intermediate node of said logic circuit,	
	whereby the parasitic bipolar transistor is deactivated.	
	2. (Amended) The method of claim 1, wherein the SOI device comprises a gate and a	
dra	in, and wherein the method further comprises:	
	providing a first signal to said gate of said SOI device;	
	providing a second signal to said drain of said SOI device; and	
	activating the conduction of said active discharging device according to the state of said	
first signal.		
	3. (Amended) The method of claim 2 wherein the first signal is said input signal.	
	4. (Amended) The method of claim 2 wherein said first signal causes said SOI device to	
cor	nduct current whenever said logic circuit is being pre-charged.	
	5. (Amended) The method of claim 2 wherein the second signal pre-charges said drain	
dur	ring a pre-charge cycle.	

Docket No.: RO998-200B Serial No.: 09/334,171

6. (Amended) The method according to claim 1, wherein the active discharging device

provides a conduction path between said intermediate node and a voltage source.

1	7. (Amended) A method of eliminating parasitic bipolar transistor action in a Silicon on
2	Insulator (SOI) Metal Oxide Semiconductor (MOS) dynamic logic circuit having an input, an
3	output, a clock, an active discharge transistor, and a plurality of stacked SOI Metal Oxide
4	Semiconductor (MOS) transistors interconnected to define a common node and an intermediate
5	node, wherein:
6	said plurality of stacked SOI MOS transistors is controlled by a plurality of inputs;
7	said common node is coupled to a pre-charging device;
8	said intermediate node is in a path between said common node and a voltage source, said
9	path defined by said plurality of stacked SOI MOS transistors;
10	said intermediate node is coupled to said common node by at least a first of said plurality
11	of stacked SOI MOS transistors; and
12	said active discharging transistor is controlled by at least one of said plurality of inputs,
13	said active discharging transistor defining a discharge path between said intermediate
14	node and said voltage source,
15	the method comprising:
16	controlling the conduction of said active discharging transistor during a pre-charge cycle
17	and
18	actively discharging said intermediate node, whereby the parasitic bipolar transistors are
19	deactivated and the charge at said intermediate node is maintained at a predetermined level.
1	8. (Unchanged) The method according to claim 7, wherein pre-charging occurs during a
2	low state of said clock.
1	9. (Unchanged) The method according to claim 7, wherein pre-charging occurs during a
2	high state of said clock.
1	10. (Unchanged) The method according to claim 7, wherein during the pre-charging all
2	said inputs are set to a predetermined logic state.

Docket No.: RO998-200B Serial No.: 09/751,163

1

11. (Unchanged) The method according to claim 10, wherein said logic state is low.

1	12. (Unchanged) The method according to claim 10, wherein said logic state is high.
1	13. (Unchanged) The method according to claim 7, wherein the step of actively
2	discharging said intermediate nodes prevents the body voltages of said stacked SOI transistors
3	from reaching a voltage stage sufficient to activate the parasitic bipolar transistors of said stacked
1	SOI transistors.
l	14. (Unchanged) The method according to claim 7, wherein said stacked transistors are
2	N-Field Effect Transistors (NFET) and said active discharging transistors are P-Field Effect
3	Transistors (PFET).
I	15. (Unchanged) The method according to claim 7, wherein said stacked transistors are
2	P-Field Effect Transistors (PFET) and said active precharging transistors are N-Field Effect
3	Transistors (NFET).

16. (Unchanged) The method according to claim 7, wherein said pre-charging device

comprises transistors coupled to said stacked transistors.

Docket No.: RO998-200B Serial No.: 09/751,163

1

2

Please add the following new claims:

1

2

- 1 17. (New) A method of reducing the effects of parasitic bipolar transistor action in a 2 silicon-on-insulator (SOI) logic circuit during a pre-charge cycle, comprising:
- 3 coupling an active discharge device to an intermediate node of the SOI logic circuit; and
- controlling the conduction of the active discharging device using a non-clock signal,
 whereby the charge at the intermediate node is maintained at a predetermined level during the
 pre-charge cycle.
 - 18. (New) The method of claim 17, wherein the predetermined level is a common ground potential for the SOI logic circuit.
- 1 19. (New) The method of claim 17, wherein the non-clock signal comprises an active 2 low signal applied to an input of the SOI logic circuit during the pre-charge cycle.
- 1 20. (New) The method of claim 1, wherein said input signal is a non-clock signal.
- 1 21. (New) The method of claim 6, wherein the voltage source comprises a system 2 ground.

Docket No.: RO998-200B Serial No.: 09/751,163