Solutions to Problems in Introduction to Stochastic Processes (2nd Edition) by Gregory F. Lawler

Cobaltito27

Compiled on April 12, 2022

0. Preliminaries

0.1 Solution

The coefficient matrix (A) of this ODE is:

$$A = \begin{bmatrix} -1 & 1\\ 3 & -3 \end{bmatrix} \tag{0.1.1}$$

It is easy to see the diagonalization of matrix (A) being:

$$A = Q\Lambda Q^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 0 & \\ & -4 \end{bmatrix} \begin{bmatrix} 3/4 & 1/4 \\ 1/4 & -1/4 \end{bmatrix}$$
 (0.1.2)

Therefore, the general solution to this ODE should be in the form of Eq. 0.1.3.

$$\vec{y_c} = e^{At}\vec{c} = Qe^{\Lambda t}Q^{-1}\vec{c} = \begin{bmatrix} 1 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} 3/4 & 1/4 \\ 1/4 & -1/4 \end{bmatrix} \vec{c} = \frac{1}{4} \begin{bmatrix} 3 + e^{-4t} & 1 - e^{-4t} \\ 3 - 3e^{-4t} & 1 + 3e^{-4t} \end{bmatrix} \vec{c}$$
(0.1.3)

The particular solution for the given initial condition is:

$$\because \frac{1}{4} \begin{bmatrix} 3+1 & 1-1 \\ 3-3 & 1+3 \end{bmatrix} \vec{c} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$$

$$\therefore \vec{c} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \tag{0.1.4}$$

$$\therefore \vec{y_p} = \vec{c} = \frac{1}{4} \begin{bmatrix} 3 + e^{-4t} & 1 - e^{-4t} \\ 3 - 3e^{-4t} & 1 + 3e^{-4t} \end{bmatrix} \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \tag{0.1.5}$$

0.2 Solution

The characteristic equation for this problem is:

$$\lambda = \frac{1}{4} + \frac{3}{4}\lambda^2$$

$$\therefore \lambda_1 = 1, \lambda_2 = 1/3 \tag{0.2.1}$$

Its general solution is:

$$y_c = C_1 + C_2(\frac{1}{3})^n (0.2.2)$$

Under its given initial conditions, we have:

$$\begin{cases} C_1 + C_2 = 0 \\ C_1 + C_2/3 = 1 \end{cases}$$

$$\therefore C_1 = \frac{3}{2}, C_2 = -\frac{3}{2}$$

$$\therefore y_p = \frac{3}{2} - \frac{3}{2} (\frac{1}{3})^n$$
(0.2.3)

0.3 Solution

The characteristic equation for this problem is:

$$\lambda^2 - \lambda - 1 = 0$$

$$\therefore \lambda_1 = \frac{1 + \sqrt{5}}{2}, \lambda_2 = \frac{1 - \sqrt{5}}{2} \tag{0.3.1}$$

Its general solution is:

$$y_c = C_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + C_2 \left(\frac{1-\sqrt{5}}{2}\right)^n \tag{0.3.2}$$

Under its given initial conditions, we have:

$$\begin{cases} C_1(\frac{1+\sqrt{5}}{2}) + C_2(\frac{1-\sqrt{5}}{2}) = 1\\ C_1(\frac{1+\sqrt{5}}{2})^2 + C_2(\frac{1-\sqrt{5}}{2})^2 = 1 \end{cases}$$

$$\therefore C_1 = \frac{1}{\sqrt{5}}, C_2 = -\frac{1}{\sqrt{5}}$$

$$\therefore y_p = \frac{1}{\sqrt{5}}(\frac{1+\sqrt{5}}{2})^n - \frac{1}{\sqrt{5}}(\frac{1-\sqrt{5}}{2})^n \tag{0.3.3}$$

0.4 Solution

The characteristic equation for this problem is:

$$3\lambda = 1 + \lambda^2 + \lambda^3$$

$$\therefore (\lambda - 1)(\lambda^2 + 2\lambda - 1) = 0$$

$$\lambda_1 = 1, \lambda_2 = -1 + \sqrt{2}, \lambda_3 = -1 - \sqrt{2}$$

Its general solution is:

$$\therefore y_c = C_1 + C_2(-1 + \sqrt{2})^n + C_3(-1 - \sqrt{2})^n$$
(0.4.1)

Under its initial condistions:

$$\lim_{n\to+\infty} y_c \ exists \ and = 1$$

$$\therefore C_1 = 1, C_3 = 0 \tag{0.4.2}$$

$$y_p(n=0) = C_1 + C_2 = 0$$

$$C_2 = -1$$

$$y_p = 1 - (\sqrt{2} - 1)^n$$
(0.4.2)

0.5 Solution

First, one needs to solve its corresponding homogeneous equation:

$$f(n) = \frac{1}{2}f(n+1) + \frac{1}{2}f(n-1)$$

Its general solution is:

$$\tilde{y_c} = C_1 + C_2 n \tag{0.5.1}$$

Then let's try and get a particular solution for this heterogeneous equation using **undetermined coefficient method** by assuming a particular solution in the form of Eq. 0.5.2. (In fact, B and C in Eq. 0.5.2 are not necessary, since they are already implied in its general solution.)

$$y_p = An^2 + Bn + C \tag{0.5.2}$$

By taking y_p into the original equation, we will see that A = 1. Hence the general solution to this heterogeneous equation is:

$$y_c = C_1 + C_2 n + n^2 (0.5.3)$$

0.6 Solution

Both (a) and (b) have the identical characteristic equation:

$$\lambda^2 + \lambda + 1 = 0$$

$$\therefore \lambda = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$

Let's denote $\lambda = a \pm bi$ for simplicity.

(a) ODE

$$y_{c} = C_{1}e^{\lambda_{1}t} + C_{2}e^{\lambda_{2}t}$$

$$= C_{1}e^{(a+bi)t} + C_{2}e^{(a-bi)t}$$

$$= e^{at}(C_{1}(\cos bt + i\sin bt) + C_{2}(\cos bt - i\sin bt))$$

$$= e^{at}(D_{1}\cos bt + D_{2}\sin bt)$$

$$\therefore y_{c} = e^{-\frac{1}{2}t}(D_{1}\cos\frac{\sqrt{3}}{2}t + D_{2}\sin\frac{\sqrt{3}}{2}t)$$
(0.6.1)

(b) Difference equation

$$y_c = C_1 \lambda_1^n + C_2 \lambda_2^n$$

On the other hand, we have:

$$\lambda = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i = e^{\pm \frac{2}{3}i\pi}$$

$$\therefore \lambda^n = e^{\pm \frac{2}{3}in\pi} = \cos \frac{2}{3}n\pi \pm i \sin \frac{2}{3}n\pi$$

Ultimately, we have:

$$y_c = D_1 \cos \frac{2}{3}n\pi + D_2 \sin \frac{2}{3}n\pi$$

0. Preliminaries

0.1 Solution

The coefficient matrix (A) of this ODE is:

$$A = \begin{bmatrix} -1 & 1\\ 3 & -3 \end{bmatrix} \tag{0.1.1}$$

It is easy to see the diagonalization of matrix (A) being:

$$A = Q\Lambda Q^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 0 & 3/4 & 1/4 \\ 1/4 & -1/4 \end{bmatrix}$$
 (0.1.2)

Therefore, the general solution to this ODE should be in the form of Eq. 0.1.3.

$$\vec{y_c} = e^{At}\vec{c} = Qe^{\Lambda t}Q^{-1}\vec{c} = \begin{bmatrix} 1 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 1 & \\ 1/4 & -1/4 \end{bmatrix} \vec{c} = \frac{1}{4} \begin{bmatrix} 3 + e^{-4t} & 1 - e^{-4t} \\ 3 - 3e^{-4t} & 1 + 3e^{-4t} \end{bmatrix} \vec{c}$$
(0.1.3)

The particular solution for the given initial condition is:

$$\because \frac{1}{4} \begin{bmatrix} 3+1 & 1-1 \\ 3-3 & 1+3 \end{bmatrix} \vec{c} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$$

$$\therefore \vec{c} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \tag{0.1.4}$$

$$\therefore \vec{y_p} = \vec{c} = \frac{1}{4} \begin{bmatrix} 3 + e^{-4t} & 1 - e^{-4t} \\ 3 - 3e^{-4t} & 1 + 3e^{-4t} \end{bmatrix} \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \tag{0.1.5}$$

0.2 Solution

The characteristic equation for this problem is:

$$\lambda = \frac{1}{4} + \frac{3}{4}\lambda^2$$

$$\therefore \lambda_1 = 1, \lambda_2 = 1/3 \tag{0.2.1}$$

Its general solution is:

$$y_c = C_1 + C_2(\frac{1}{3})^n (0.2.2)$$

Under its given initial conditions, we have:

$$\begin{cases} C_1 + C_2 = 0 \\ C_1 + C_2/3 = 1 \end{cases}$$

$$\therefore C_1 = \frac{3}{2}, C_2 = -\frac{3}{2}$$

$$\therefore y_p = \frac{3}{2} - \frac{3}{2} (\frac{1}{3})^n \tag{0.2.3}$$

0.3 Solution

The characteristic equation for this problem is:

$$\lambda^2 - \lambda - 1 = 0$$

$$\therefore \lambda_1 = \frac{1 + \sqrt{5}}{2}, \lambda_2 = \frac{1 - \sqrt{5}}{2} \tag{0.3.1}$$

Its general solution is:

$$y_c = C_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + C_2 \left(\frac{1-\sqrt{5}}{2}\right)^n \tag{0.3.2}$$

Under its given initial conditions, we have:

$$\begin{cases} C_1(\frac{1+\sqrt{5}}{2}) + C_2(\frac{1-\sqrt{5}}{2}) = 1\\ C_1(\frac{1+\sqrt{5}}{2})^2 + C_2(\frac{1-\sqrt{5}}{2})^2 = 1 \end{cases}$$

$$\therefore C_1 = \frac{1}{\sqrt{5}}, C_2 = -\frac{1}{\sqrt{5}}$$

$$\therefore y_p = \frac{1}{\sqrt{5}}(\frac{1+\sqrt{5}}{2})^n - \frac{1}{\sqrt{5}}(\frac{1-\sqrt{5}}{2})^n \tag{0.3.3}$$

0.4 Solution

The characteristic equation for this problem is:

$$3\lambda = 1 + \lambda^2 + \lambda^3$$

$$\therefore (\lambda - 1)(\lambda^2 + 2\lambda - 1) = 0$$

$$\lambda_1 = 1, \lambda_2 = -1 + \sqrt{2}, \lambda_3 = -1 - \sqrt{2}$$

Its general solution is:

$$\therefore y_c = C_1 + C_2(-1 + \sqrt{2})^n + C_3(-1 - \sqrt{2})^n \tag{0.4.1}$$

Under its initial condistions:

$$\therefore \lim_{n \to +\infty} y_c \ exists \ and = 1$$

$$\therefore C_1 = 1, C_3 = 0 \tag{0.4.2}$$

$$y_p(n=0) = C_1 + C_2 = 0$$

$$C_2 = -1$$

$$y_p = 1 - (\sqrt{2} - 1)^n$$
(0.4.2)

0.5 Solution

First, one needs to solve its corresponding homogeneous equation:

$$f(n) = \frac{1}{2}f(n+1) + \frac{1}{2}f(n-1)$$

Its general solution is:

$$\tilde{y_c} = C_1 + C_2 n \tag{0.5.1}$$

Then let's try and get a particular solution for this heterogeneous equation using **undetermined coefficient method** by assuming a particular solution in the form of Eq. 0.5.2. (In fact, B and C in Eq. 0.5.2 are not necessary, since they are already implied in its general solution.)

$$y_p = An^2 + Bn + C \tag{0.5.2}$$

By taking y_p into the original equation, we will see that A=1. Hence the general solution to this heterogeneous equation is:

$$y_c = C_1 + C_2 n + n^2 (0.5.3)$$

0.6 Solution

Both (a) and (b) have the identical characteristic equation:

$$\lambda^2 + \lambda + 1 = 0$$

$$\therefore \lambda = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$

Let's denote $\lambda = a \pm bi$ for simplicity.

(a) ODE

$$y_{c} = C_{1}e^{\lambda_{1}t} + C_{2}e^{\lambda_{2}t}$$

$$= C_{1}e^{(a+bi)t} + C_{2}e^{(a-bi)t}$$

$$= e^{at}(C_{1}(\cos bt + i\sin bt) + C_{2}(\cos bt - i\sin bt))$$

$$= e^{at}(D_{1}\cos bt + D_{2}\sin bt)$$

$$\therefore y_{c} = e^{-\frac{1}{2}t}(D_{1}\cos\frac{\sqrt{3}}{2}t + D_{2}\sin\frac{\sqrt{3}}{2}t)$$
(0.6.1)

(b) Difference equation

$$y_c = C_1 \lambda_1^n + C_2 \lambda_2^n$$

On the other hand, we have:

$$\lambda = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i = e^{\pm \frac{2}{3}i\pi}$$

$$\therefore \lambda^n = e^{\pm \frac{2}{3}in\pi} = \cos \frac{2}{3}n\pi \pm i \sin \frac{2}{3}n\pi$$

Ultimately, we have:

$$y_c = D_1 \cos \frac{2}{3} n\pi + D_2 \sin \frac{2}{3} n\pi$$

Reference

Lawler, G. F. (2018). Introduction to stochastic processes. Chapman and Hall/CRC. https://doi.org/10.1201/9781315273600