FEUILLE D'EXERCICES N°1 ESPACES VECTORIELS

Rappels et compléments

Exercice 1:

- 1. Les parties suivantes sont-elles des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$?
 - a) $\{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid (u_n) \text{ born\'ee}\}$
 - b) $\{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid (u_n) \text{ monotone} \}$
 - c) $\{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid (u_n) \text{ convergente}\}$
 - d) $\{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid (u_n) \text{ arithmétique} \}$
- **2.** Soit $F = \{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, u_{n+2} = nu_{n+1} + u_n\}.$ Montrer que F est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

Exercice 2:

Soit E un \mathbb{K} -espace vectoriel et F, G, H des sous-espaces vectoriels de E.

- 1. a) Comparer : $F + (G \cap H)$ et $(F + G) \cap (F + H)$.
 - b) Montrer que, si $F \subset G$, on a : $F + (G \cap H) = (F + G) \cap (F + H)$. Contre-exemple si $F \not\subset G$?
- **2.** Comparer : $F \cap (G + H)$ et $(F \cap G) + (F \cap H)$.
- **3.** Montrer que, si $F \subset G$, F + H = G + H et $F \cap H = G \cap H$, alors F = G.
- **4.** Montrer que, si $F \cap H \subset G$, $H \subset F + G$ et $G \subset H$, alors G = H.

5. Soient F, G, F', G' des sous-espaces vectoriels de E tels que $F \cap G =$ $F' \cap G'$.

Montrer que : $(F + (G \cap F')) \cap (F + (G \cap G')) = F$.

Exercice 3:

Soit H l'ensemble des polynômes de la forme $aX^3 + (b-2a)X^2 -$ 2bX + 3a avec a et b réels.

Montrer que, muni des lois usuelles, il s'agit d'un plan vectoriel et en donner une base.

Exercice 4:

Soient $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0\}$ et $G = \{(a - b, a + b) \mid (a - b) \mid$ $[b, a-3b) \mid a, b \in \mathbb{R} \}.$

- 1. Montrer que F et G sont des sous-espaces vectoriels de \mathbb{R}^3 .
- **2.** Déterminer F + G et $F \cap G$.

Exercice 5:

On considère les quatre vecteurs de \mathbb{R}^3 : u = (2,3,-1), v =(1,-1,-2), w = (3,7,0), x = (5,0,-7).

Montrer que Vect(u, v) = Vect(w, x).

Exercice 6:

On considère dans \mathbb{R}^4 le sous-espace L engendré par les vecteurs (1,1,1,1), (1,3,1,3), (1,-1,1,-1) et le sous-espace M engendré par (1, 2, 0, 2), (1, 2, 1, 2), (3, 1, 3, 1).

Calculer les dimensions de L et de M et montrer que $L \subset M$.

Exercice 7:

Soit E un espace vectoriel de dimension finie $n \ge 1$.

1. Soient F et G deux sous-espaces vectoriels de E tels que dim F + $\dim G > n$. Montrer que $F \cap G$ n'est pas réduit au vecteur nul.

2. Soient F, G et H trois sous-espaces vectoriels de E tels que dim F+ $\dim G + \dim H > 2n$. Que peut-on dire de $F \cap G \cap H$?

Exercice 8:

Soit E un K-espace vectoriel de dimension finie n, et (e_1, e_2, \ldots, e_n) une base de E. On pose, pour tout $i \in \{1, ..., n\}$, $f_i = \sum_{j \neq i} e_j$. Que peut-on dire de la famille $(f_i)_{1 \le i \le n}$?

Exercice 9:

Soit E un K-espace vectoriel et (e_1, \ldots, e_p) une famille libre de vecteurs de E.

Montrer que si $a \in E$ est tel que $a \notin Vect(e_1, \ldots, e_p)$ alors la famille $(e_1 + a, \ldots, e_p + a)$ est libre.

Exercice 10:

Soient $f_1, f_2, f_3, f_4 : [0, 2\pi] \to \mathbb{R}$ définies par : $\forall x \in \mathbb{R}, f_1(x) = \cos x$, $f_2(x) = x \cos x, f_3(x) = \sin x, f_4(x) = x \sin x.$ Montrer que la famille (f_1, f_2, f_3, f_4) est libre.

Exercice 11:

Dans le \mathbb{R} -espace vectoriel E des applications de \mathbb{R} dans \mathbb{R} on note f_n la fonction définie sur \mathbb{R} pour $n \in \mathbb{N}$ par : $\forall x \in \mathbb{R}$, $f_n(x) = \sin(x+n)$. Déterminer la dimension de $Vect(f_0, \ldots, f_n)$.

Exercice 12:

Dans le \mathbb{R} -espace vectoriel des applications de \mathbb{R} dans \mathbb{R} , étudier l'indépendance linéaire des familles suivantes :

- 1. $(x \mapsto \sin nx)_{n \in \mathbb{N}^*}$
- **2.** $(x \mapsto \operatorname{ch} nx)_{n \in \mathbb{N}}$.

Exercice 13:

Dans le \mathbb{R} -espace vectoriel des applications de $]1, +\infty[$ dans \mathbb{R} , étudier si la famille de fonctions $\{x \mapsto x^{\alpha}(\ln x)^{\beta}\}_{(\alpha,\beta)\in\mathbb{R}^2}$ est libre.

Exercice 14:

Soient A et B deux polynômes de $\mathbb{C}[X]$, non constants et sans racine commune.

Montrer que les polynômes $P_k = A^k B^{n-k}$ $(k \in \{0, ..., n\})$ forment une famille libre.

Exercice 15:

Soit, pour $0 \le k \le n$, $P_k = X^k (1-X)^{n-k}$.

- 1. Montrer que la famille $(P_k)_{0 \le k \le n}$ est une base de $\mathbb{K}_n[X]$
- **2.** Donner dans cette base les coordonnées de $1, X, X^2, \dots, X^n$ (on pourra calculer $\sum_{k=0}^{n} {n \choose k} P_k$, $\sum_{k=0}^{n} k {n \choose k} P_k$ etc.).

Exercice 16:

Soit $(P_n)_{n\in\mathbb{N}}$ une suite de polynômes de $\mathbb{K}[X]$ tels que : $\forall n\in\mathbb{N}$, $\deg(P_{n+1}) > \deg(P_n).$

Montrer que $(P_n)_{n\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$ si et seulement si : $\forall n\in$ $\mathbb{N}, \deg(P_n) = n.$

Exercice 17:

Soient a_0, a_1, \ldots, a_n (n+1) éléments distincts de \mathbb{K} .

Montrer que la famille $\{(X - a_i)^n\}_{0 \le i \le n}$ est une base de $\mathbb{K}_n[X]$ (on pourra procéder par récurrence en utilisant la dérivation).

Exercice 18:

Soient P et Q deux polynômes non constants de $\mathbb{C}[X]$. On pose : $a = \deg P$ et $b = \deg Q$.

Démontrer que les trois propositions suivantes sont équivalentes :

- 1. la famille $(P, XP, \dots, X^{b-1}P, Q, XQ, \dots, X^{a-1}Q)$ est libre;
- 2. il existe $U, V \in \mathbb{C}[X]$ avec $\deg U < \deg Q$ et $\deg V < \deg P$ tels que UP + VQ = 1;
- **3.** P et Q n'ont pas de racine commune.

Exercice 19:

Dans un \mathbb{K} -espace vectoriel E, on considère une famille de n vecteurs, de rang r. On extrait de cette famille une sous-famille de n'vecteurs, de rang r'.

Montrer que : $n - r \ge n' - r'$ (utiliser la formule de Grassmann).

Exercice 20:

On se donne une subdivision $x_0 = a < x_1 < \cdots < x_n = b$ du segment [a, b].

Soit F (resp. G) l'ensemble des applications (resp. l'ensemble des applications continues) $f:[a,b] \to \mathbb{R}$ qui sont affines sur chaque intervalle $]x_k, x_{k+1}[.$

Montrer que F et G sont des espaces vectoriels pour les lois usuelles et en donner la dimension.

Exercice 21:

Soient $F = \{ f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}) \mid f(0) = f'(0) = 0 \}$ et $G = \{ x \mapsto$ ax + b, $(a, b) \in \mathbb{R}^2$.

Montrer que F et G sont deux sous-espaces vectoriels supplémentaires de $\mathcal{C}^1(\mathbb{R},\mathbb{R})$.

Exercice 22:

Soit $F = \{ f \in \mathcal{A}(\mathbb{R}, \mathbb{R}) \mid f(0) + f(1) = 0 \}.$

- 1. Montrer que F est un sous-espace vectoriel de $\mathcal{A}(\mathbb{R},\mathbb{R})$.
- 2. En déterminer un supplémentaire.

Exercice 23:

Dans \mathbb{R}^4 soient : $G = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + 2y - z - t = x - y + y \in \mathbb{R}^4 \mid x + 2y - z - t = x - y + y \in \mathbb{R}^4 \}$ 3z + 2t = 0, F = Vect((1, 2, -1, 0)) et E = Vect((0, 1, 0, 2)). A-t-on : $\mathbb{R}^4 = E \oplus F \oplus G$?

Exercice 24:

Soit $E = \mathcal{C}([0,1],\mathbb{R})$ et $H = \{ f \in E \mid \int_0^1 f(t) dt = 0 \}.$

Montrer que H est un sous-espace vectoriel de E et en donner un supplémentaire.

Exercice 25:

Soit $E = \mathcal{C}(\mathbb{R}, \mathbb{R})$, E_0 l'ensemble des applications constantes sur \mathbb{R} , E_{-} l'ensemble des applications qui sont nulles sur \mathbb{R}^{-} et E_{+} l'ensemble des applications qui sont nulles sur \mathbb{R}^+ .

Montrer qu'il s'agit de trois sous-espaces vectoriels supplémentaires $\mathrm{de}\;E.$

Exercice 26:

Soit $E = \mathbb{R}_n[X]$ $(n \in \mathbb{N}^*)$. Pour tout $i \in \{0, \ldots, n\}$ on note $F_i =$ ${P \in E \mid \forall j \in \{0, ..., n\} \setminus \{i\}, \ P(j) = 0\}.}$

Montrer que les F_i pour $0 \le i \le n$ sont des sous-espaces vectoriels supplémentaires de E.

Exercice 27:

Soit E un \mathbb{K} -espace vectoriel de dimension finie n, et F, G deux sous-espaces vectoriels de E tels que $\dim(F) = \dim(G)$. Montrer qu'il existe un sous-espace vectoriel H de E tel que $F \oplus H = G \oplus H = E$ (on pourra procéder par récurrence sur $n - \dim(F)$).

