Physics

Dr. Gasser E. Hassan 2022

Lecturer

Dr. Gasser F. Hassan

PhD, LEEDS, UK gasser hassan@yahoo.com

Associate Prof. of Fluid Mechanics and Energy Resources in City of Scientific Research and Technological Applications (SRTAC)

Adjunct professor in Mechanical Engineering Department, PUA and AAST (Egypt)

Part-time Lecturer in university of leeds (UK)

Fellow of Academy of Scientific Research and Technology (ASRT) - Egypt

Member in Future Studies and Risk Management Council – ASRT – Egypt

President of Egyptian society of Water and Energy (EWE)

Member (Gold) in International Solar Energy Society (ISES)

Member in Egyptian Young Academy of Science and Technology (EYAS)

B.Sc. 2000 - Alexandria University

M.Sc. 2005 - Alexandria University

PhD. 2010 – University of Leeds, UK

Computational Fluid Dynamics in Industrial and Environmental applications

Research Interests

Computational Fluid Dynamics "CFD" in Industrial and Environmental applications

Projects: Solar power station (CSP), Solar GH self-sustained of Energy and water, Natural Gas Combustion Systems Technologies, Air flow in Urban Environment, Wind Turbine, Pipeline design and simulation, ...

Course Contents

- Dimensions and Units
- Principles of Thermodynamics
- Principles of Heat Transfer
- Principle of Electromagnetic

Units and Dimensions الوحدات والأبعاد

Physical Quantity الكمية الفيزيائية

Derived Quantity کمیة مشتقة

Fundamental Quantity کمیة أساسیة

Physical Quantities الكميات الفيزيائية

Derived Quantities كميات مشتقة

Fundamental Quantities كميات أساسية

Velocity	السرعة	Length الطول ١
Acceleration	العجلة	۲ ـ الكتلة ۲
Force	القوة	۳ - الزمن Time
Energy	الطاقة	٤ - درجة الحرارة
Volume	الحجم	Temperature
Density	الكثافة	۵ - التيار الكهربي
Pressure	الضغط	Electric current

System of units

أنظمة الوحدات

	الطول Length	Mass الكتلة	الزمن Time
CGS French	cm	gm	S
FPS British System	ft قدم	lb باوند Pound	S
SI Units (MKS)	m	Kg	S

الأبعاد Dimensions

It is a symbol of a physical quantity and it does not change by changing system of the units.

البعد هو رمز للكمية الفيزيائية و لا يتغير بتغير نظام الوحدات

Fundamental Quantities, Dimensions and their SI Units

Quantity		Dimension	SI Units
Length	الطول	L	m (meter)
Mass	الكتلة	M	Kg (kilogram)
Time	الزمن	T	S (Second)
Tempera	ture درجة الح	K	K (Kelvin)
Electric پربی	current التيار الك	A	A (Ampere)

الاستخدامات الأساسية لمعادلات الأبعاد

- ١) استنتاج أبعاد الكميات المشتقة
- ٢) الحكم علي صحة المعادلات الفيزيائية
- ٣) استنتاج بعض المعادلات الفيزيائية البسيطة

Dimensional Analysis

- ► Technique to check the correctness of an equation or to assist in deriving an equation
- Any relationship can be correct only if the dimensions on both sides of the equation are the same

١ استنتاج أبعاد الكميات المشتقة

Dimensions of Derived Quantities

أبعاد الكميات المشتقة

أبعاد الكميات المشتقة

$$[v] = [L T^{-1}]$$

$$[a] = [L T^{-2}]$$

$$[F] = [M L T^{-2}]$$

$$Work, Energy: W = F x$$

$$[W] = [M L T^{-2} L] = [M L^{2} T^{-2}]$$

Power:
$$P = \frac{W}{t}$$

$$[P] = \left\lceil \frac{M L^2 T^{-2}}{T} \right\rceil = \left[M L^2 T^{-3} \right]$$

أبعاد الكميات المشتقة

الكثافة **Density** (ρ)

$$a) \quad [\rho] = \left[m^{-1} L^3 \right]$$

$$\boldsymbol{b}) \quad [\boldsymbol{\rho}] = \left[\boldsymbol{M}^{-1} \ \boldsymbol{L}^3 \right]$$

$$\boldsymbol{c}) \quad [\boldsymbol{\rho}] = \left[\boldsymbol{M} \ \ell^{-3} \right]$$

c)
$$[\rho] = [M \ \ell^{-3}]$$

$$[\rho] = [ML^{-3}]$$

Density:
$$\rho = \frac{m}{V}$$
 $m: mass$
 $Volume: V = \ell^3$
 $[V] = [L^3]$
 $Density: \rho = \frac{m}{V}$
 $[\rho] = \left[\frac{M}{L^3}\right] = [ML^{-3}]$

أبعاد الكميات المشتقة

$$\triangleright [v] = \begin{bmatrix} L & T^{-1} \end{bmatrix}$$

$$|F| = |M L T^{-2}|$$

$$|W| = |M L^2 T^{-2}|$$

$$|P| = |M L^2 T^{-3}|$$

→
$$[v] = [L \ T^{-1}]$$

→ $[a] = [L \ T^{-2}]$
→ $[F] = [M \ L \ T^{-2}]$
→ $[W] = [M \ L^{2} \ T^{-2}]$
→ $[P] = [M \ L^{2} \ T^{-3}]$
→ $[V] = [L^{3}]$

$$\triangleright [p] = \left[\frac{M L T^{-2}}{L^2} \right]$$

$$\triangleright [p] = [M L^{-1} T^{-2}]$$

$$\mathbf{Volume}: V = \ell^3$$

$$\blacktriangleright [V] = [L^3]$$

• Density :
$$\rho = \frac{m}{v}$$

$$|V| = |L^3|$$

$$|Density| |\rho| = |\frac{m}{v}|$$

$$|\rho| = |\frac{M}{L^3}| = |ML^{-3}|$$

أبعاد الكميات المشتقة

$$\triangleright [v] = \begin{bmatrix} L & T^{-1} \end{bmatrix}$$

$$\mid \boldsymbol{a} \mid = \left[L \ T^{-2} \right]$$

$$\blacktriangleright [W] = [M L^2 T^{-2}]$$

$$P] = [M L^2 T^{-3}]$$

$$\blacktriangleright [V] = [L^3]$$

$$S = F/\ell$$

$$|S| = |M T^{-2}|$$

▶ Electric current :I

> Area of circle

$$A = \pi r^2$$

$$\mid [A] = [L^2]$$

أبعاد كميات المشتقة ووحداتها في النظام العالمي Dimension of Derived Quantities

Physical Quantity	Dimensions	SI Units
a = v/t	$\begin{bmatrix} L & T^{-2} \end{bmatrix}$	m/S^2
F = m a	$\left[M\ L\ T^{-2}\right]$	$Kg m/S^2 = N$
W = F x	$\left[M L^2 T^{-2}\right]$	N m = J
P = W/t	$\left[M L^2 T^{-3}\right]$	J/S = W
p = F/A	$\begin{bmatrix} M \ L^{-1} \ T^{-2} \end{bmatrix}$	$N/m^2 = Pa$
$S = F/\ell$	$\left[M\ T^{-2}\right]$	N/m

G: Universal gravitational constant ثابت الجذب العالمي

Derive the dimension and SI units of G

- استنتج ابعاد ثابت الجنب العالمي G وحداته في النظام الدولي.
 - $\max (m_1, m_2)$ حيث
 - كتلة الجسم الأول وكتلة الجسم الثانى
 - المسافة بين الجسمين r Distance
 - Force ▶ قوة التجاذب المادى بين الجسمين

G: Universal gravitational constant ثابت الجذب العالمي

G: Universal gravitational constant ثابت الجذب العالمي

الوحدات

$$G = \frac{F r^2}{m_1 m_2} \qquad \left(N m^2/kg^2\right)$$

$$[G] = [M^{-1} L^3 T^{-2}] (kg^{-1} m^3 S^{-2})$$

Temperature gradient الانحدار الحراري

Temperature gradient: The variation of temperature with position

الانحدار الحراري : تغير درجة الحرارة مع المسافة
$$\frac{d T}{d x}$$
 ابعاد الانحدار الحراري
$$\left[\frac{d T}{d X}\right] = \begin{bmatrix} K & L^{-1} \end{bmatrix}$$
 الوحدات : (K/m) : تغير درجة الحرارة مع المسافة الانحدار الحراري ال

Velocity Gradient انحدار السرعة

Velocity gradient: The variation of velocity with position

المسافة : تغير السرعة مع المسافة
$$\frac{d \, v}{d \, X}$$
 $\frac{d \, v}{d \, X}$ ابعاد الانحدار السرعة $\left[\frac{d \, v}{d \, X}\right] = \left[\frac{L \, T^{-1}}{L}\right] = \left[\frac{T^{-1}}{L}\right]$ الوحدات : (S^{-1}) : ناوحدات

Pressure Gradient

انحدار الضغط

Pressure gradient : The variation of Pressure with position

انحدار الضغط : تغير الضغط مع المسافة
$$rac{d p}{d X}$$
 $[p] = \left[rac{M \ L \ T^{-2}}{L^2}
ight]$ ابعاد الانحدار الضغط

$$\left[\frac{d p}{d X} \right] = \left[\frac{M L^{-1} T^{-2}}{L} \right] = \left[M L^{-2} T^{-2} \right]$$

$$\left(kg m^{-2} S^{-2} \right) \text{ or } \left(Pa/m \right) :$$
الوحدات

أبعاد الكميات المشتقة

Q: Electric Charge

الشحنة الكهربية

$$I=\frac{Q}{t}$$

$$Q = It$$

e: charge of electron

شحنة الاكترون

Dimension of Q?

Q: Electric Charge

$$Q = I t$$

$$a) [Q] = [A s]$$

$$b [Q] = [A T]$$

$$c) [Q] = [A t]$$

$$d) \quad [Q] = [I \ s]$$

e: charge of electron شحنة الاكترون

استنتج ابعاد الجهد الكهربي

Derive dimension of electric potential

$$V = IR$$
 \times

$$V = \frac{W}{Q} = \frac{work}{charge}$$

$$Power(P) = VI$$

$$Energy(E) = VIt$$

Dimension of electric potential

$$[V] = [M L^2 T^{-3} A^{-1}]$$

الوحدات uints

$$\left(Kg\ m^2S^{-3}A^{-1}\right) = volt$$

استنتج ابعاد المقاومة الكهربية Derive dimension of electric Resistance

$$V = IR$$

$$R = \frac{V}{I}$$
$$[V] = \begin{bmatrix} M L^2 T^{-3} A^{-1} \end{bmatrix}$$

$$[R] = [M L^2 T^{-3} A^{-2}]$$

DIMENSIONS AND UNITS

- Any physical quantity can be characterized by dimensions.
- •The magnitudes assigned to the dimensions are called units.
- Some basic dimensions such as mass M, length L, time T, and temperature K, electrical Current A are selected as primary or fundamental dimensions, while others such as velocity V, energy E, and volume V are expressed in terms of the primary dimensions and are called secondary dimensions, or derived dimensions.
- Metric SI system:.
- English system

TABLE 1-1	
The seven fundament dimensions and their	
Dimension	Unit
Length Mass Time Temperature Electric current Amount of light Amount of matter	meter (m) kilogram (kg) second (s) kelvin (K) ampere (A) candela (cd) mole (mol)

IABLE 1-2				
Standard prefixes in SI units				
Multiple	Prefix			
10 ¹² 10 ⁹ 10 ⁶ 10 ³ 10 ² 10 ¹ 10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻⁶	tera, T giga, G mega, M kilo, k hecto, h deka, da deci, d centi, c milli, m micro, µ			
10 ⁻⁹ 10 ⁻¹²	nano, n pico, p			

Primary Dimensions in Standard International System (SI) and British Gravitational System (BG)

Primary dimension	SI unit	BG unit	Conversion factor
Mass {M}	Kilogram (kg)	Slug	1 slug = 14.5939 kg
Length $\{L\}$	Meter (m)	Foot (ft)	1 ft = 0.3048 m
Time $\{T\}$	Second (s)	Second (s)	1 s = 1 s
Temperature $\{\Theta\}$	Kelvin (K)	Rankine (°R)	1 K = 1.8°R

Table 1.1 provides a list of dimensions for a number of common physical quantities.

■ TABLE 1.1

Dimensions Associated with Common Physical Quantities

	MLT System		MLT System
Acceleration	LT^{-2}	Moment of inertia (mass	ML^2
Angle	$M^{0}L^{0}T^{0}$	Momentum	MLT^{-1}
Angular acceleration	T^{-2}	Power	ML^2T^{-3}
Angular velocity	T^{-1}	Pressure	$ML^{-1}T^{-2}$
Area	L^2	Specific heat	$L^2T^{-2}\Theta^{-1}$
Density	ML^{-3}	Specific weight	$ML^{-2}T^{-2}$
Energy	ML^2T^{-2}	Strain	$M^0L^0T^0$
Force	MLT^{-2}	Stress	$ML^{-1}T^{-2}$
Frequency	T^{-1}	Surface tension	MT^{-2}
Heat	ML^2T^{-2}	Temperature	Θ
Length	L	Time	T
Mass	M	Torque	ML^2T^{-2}
Modulus of elasticity	$ML^{-1}T^{-2}$	Velocity	LT^{-1}
Moment of a force	ML^2T^{-2}	Viscosity (dynamic)	$ML^{-1}T^{-1}$
Moment of inertia (area)	L^4	Viscosity (kinematic)	L^2T^{-1}

■ TABLE 1.3

Conversion Factors from BG and EE Units to SI Units^a

	To Convert from	to	Multiply by
Acceleration	ft/s ²	m/s ²	3.048 E - 1
Area	ft ²	m^2	9.290 E - 2
Density	lbm/ft ³	kg/m^3	1.602 E + 1
	slugs/ft ³	kg/m ³	5.154 E + 2
Energy	Btu	J	1.055 E + 3
	ft • lb	J	1.356
Force	lb	N	4.448
Length	ft	m	3.048 E - 1
	in.	m	2.540 E - 2
	mile	m	1.609 E + 3
Mass	lbm	kg	4.536 E - 1
	slug	kg	1.459 E + 1
Power	ft · lb/s	w	1.356
	hp	\mathbf{W}	7.457 E + 2
Pressure	in. Hg (60 °F)	N/m^2	3.377 E + 3
	lb/ft ² (psf)	N/m^2	4.788 E + 1
	lb/in. ² (psi)	N/m^2	6.895 E + 3
Specific weight	lb/ft ³	N/m^3	1.571 E + 2
Temperature	°F	$^{\circ}\mathrm{C}$	$T_C = (5/9)(T_F - 32^\circ)$
	°R	K	5.556 E - 1
Velocity	ft/s	m/s	3.048 E - 1
	mi/hr (mph)	m/s	4.470 E - 1
Viscosity (dynamic)	$lb \cdot s/ft^2$	$N \cdot s/m^2$	4.788 E + 1
Viscosity (kinematic)	ft ² /s	m^2/s	9.290 E - 2
Volume flowrate	ft ³ /s	m^3/s	2.832 E - 2
	gal/min (gpm)	m^3/s	6.309 E - 5

■ TABLE 1.4Conversion Factors from SI Units to BG and EE Units^a

	To Convert from	to	Multiply by
Acceleration	m/s^2	ft/s ²	3.281
Area	m^2	ft^2	1.076 E + 1
Density	kg/m³	lbm/ft ³	6.243 E - 2
	kg/m³	slugs/ft ³	1.940 E - 3
Energy	J	Btu	9.478 E - 4
	J	ft • lb	7.376 E - 1
Force	N	lb	2.248 E - 1
Length	m	ft	3.281
-	m	in.	3.937 E + 1
	m	mile	6.214 E - 4
Mass	kg	lbm	2.205
	kg	slug	6.852 E - 2
Power	w	ft · lb/s	7.376 E - 1
	W	hp	1.341 E - 3
Pressure	N/m^2	in. Hg (60 °F)	2.961 E - 4
	N/m^2	lb/ft^2 (psf)	2.089 E - 2
	N/m^2	$lb/in.^2$ (psi)	1.450 E - 4
Specific weight	N/m^3	lb/ft ³	6.366 E - 3
Temperature	$^{\circ}\mathrm{C}$	$^{\circ}\mathrm{F}$	$T_F = 1.8 T_C + 32^{\circ}$
	K	°R	1.800
Velocity	m/s	ft/s	3.281
	m/s	mi/hr (mph)	2.237
Viscosity (dynamic)	$N \cdot s/m^2$	$1b \cdot s/ft^2$	2.089 E - 2
Viscosity (kinematic)	m^2/s	ft ² /s	1.076 E + 1
Volume flowrate	m^3/s	ft^3/s	3.531 E + 1
	m^3/s	gal/min (gpm)	1.585 E + 4

■ TABLE 1.5 Approximate Physical Properties of Some Common Liquids (BG Units)

Liquid	Temperature (°F)	Density, $ ho$ (slugs/ft ³)	Specific Weight, γ (lb/ft³)	Dynamic Viscosity, μ (lb·s/ft²)	Kinematic Viscosity, ν (ft ² /s)	Surface Tension, ^a σ (lb/ft)	Vapor Pressure, Pv [lb/in.² (abs)]	Bulk Modulus, $^{\rm b}$ E_v $({\rm lb/in.}^2)$
Carbon tetrachloride	68	3.09	99.5	2.00 E - 5	6.47 E - 6	1.84 E - 3	1.9 E + 0	1.91 E + 5
Ethyl alcohol	68	1.53	49.3	2.49 E - 5	1.63 E - 5	1.56 E - 3	8.5 E - 1	1.54 E + 5
Gasoline ^c	60	1.32	42.5	6.5 E - 6	4.9 E - 6	1.5 E - 3	8.0 E + 0	1.9 E + 5
Glycerin	68	2.44	78.6	3.13 E - 2	1.28 E - 2	4.34 E - 3	2.0 E - 6	6.56 E + 5
Mercury	68	26.3	847	3.28 E - 5	1.25 E - 6	3.19 E - 2	2.3 E - 5	4.14 E + 6
SAE 30 oil ^c	60	1.77	57.0	8.0 E - 3	4.5 E - 3	2.5 E - 3		2.2 E + 5
Seawater	60	1.99	64.0	2.51 E - 5	1.26 E - 5	5.03 E - 3	2.26 E - 1	3.39 E + 5
Water	60	1.94	62.4	2.34 E - 5	1.21 E - 5	5.03 E - 3	2.26 E - 1	3.12 E + 5

■ TABLE 1.6

Approximate Physical Properties of Some Common Liquids (SI Units)

Liquid	Temperature (°C)	Density, ho (kg/m ³)	Specific Weight, γ (kN/m³)	Dynamic Viscosity, μ (N · s/m²)	Kinematic Viscosity, ν (m^2/s)	Surface Tension, ^a σ (N/m)	Vapor Pressure, P_v [N/m ² (abs)]	Bulk Modulus, b E_v (N/m^2)
Carbon tetrachloride	20	1,590	15.6	9.58 E - 4	6.03 E - 7	2.69 E - 2	1.3 E + 4	1.31 E + 9
Ethyl alcohol	20	789	7.74	1.19 E - 3	1.51 E = 6	2.28 E - 2	5.9 E + 3	1.06 E + 9
Gasoline ^c	15.6	680	6.67	3.1 E - 4	4.6 E $- 7$	2.2 E - 2	5.5 E + 4	1.3 E + 9
Glycerin	20	1,260	12.4	1.50 E + 0	1.19 E - 3	6.33 E - 2	1.4 E - 2	4.52 E + 9
Mercury	20	13,600	133	1.57 E - 3	1.15 E - 7	4.66 E - 1	1.6 E - 1	2.85 E + 10
SAE 30 oil ^c	15.6	912	8.95	3.8 E - 1	4.2 E - 4	3.6 E - 2	_	1.5 E + 9
Seawater	15.6	1,030	10.1	1.20 E - 3	1.17 E - 6	7.34 E - 2	1.77 E + 3	2.34 E + 9
Water	15.6	999	9.80	1.12 E - 3	1.12 E - 6	7.34 E — 2	1.77 E + 3	2.15 E + 9

■ TABLE B.2
Physical Properties of Water (SI Units)^a

Temperature (°C)	Density, $ ho$ (kg/m ³)	Specific Weight ^b , γ (kN/m ³)	Dynamic Viscosity, μ $(N\cdot s/m^2)$	Kinematic Viscosity, ν (m^2/s)	Surface Tension ^c , σ (N/m)	Vapor Pressure, p_v [N/m²(abs)]
0	999.9	9.806	1.787 E - 3	1.787 E - 6	7.56 E – 2	6.105 E + 2
5	1000.0	9.807	1.519 E - 3	1.519 E - 6	7.49 $E-2$	8.722 E + 2
10	999.7	9.804	1.307 E − 3	1.307 E − 6	7.42 E - 2	1.228 E + 3
20	998.2	9.789	1.002 E - 3	1.004 E - 6	7.28 E - 2	2.338 E + 3
30	995.7	9.765	7.975 E - 4	8.009 E - 7	7.12 E - 2	4.243 E + 3
40	992.2	9.731	6.529 E - 4	6.580 E - 7	6.96 E - 2	7.376 E + 3
50	988.1	9.690	5.468 E - 4	5.534 E - 7	6.79 $E-2$	1.233 E + 4
60	983.2	9.642	4.665 E − 4	4.745 E − 7	6.62 E - 2	1.992 E + 4
70	977.8	9.589	4.042 E - 4	4.134 E - 7	6.44 E - 2	3.116 E + 4
80	971.8	9.530	3.547 E - 4	3.650 E - 7	6.26 E – 2	4.734 E + 4
90	965.3	9.467	3.147 E - 4	3.260 E - 7	6.08 E - 2	7.010 E + 4
100	958.4	9.399	2.818 E - 4	2.940 E - 7	5.89 E - 2	1.013 E + 5

Units to remember

- ft = 12 in
- ft = 0.304 m
- in = 0.0254 m

Mass and Weight

Weight and mass are different.

 The unit of force, called Newton (N), it is defined from Newton's second law as:

```
Force = mass X acceleration

1N = (1 \text{ kg})(1 \text{ m/s}^2)
```

- ✓ Standard gravity in "SI" units is 9.81m/s² so that a 1-kg mass weighs 9.81 N under standard gravity.
- For English system
 the units for Force (weight) is lb or lbf
 the units for mass is lbm
 - ✓ Standard gravity in "English system" units is 32.17 ft/s² so that a 1-lbm mass weighs 32.17 lb under standard gravity.

Work and Power

• The unit of work in "SI" units is the joule(J), which is the work done when the point of application of a 1-N force is displaced through a 1-m distance in the direction of a force. Thus,

Work = Force
$$X$$
 distance $1 J = 1 N.m$

The unit of power is the watt (W) defined as a joule per second.
 Thus,

```
Power = Force X velocity

1W = 1 J/s = 1 N.m/s

Power = Torque X Angular Velocity
```

 Sometimes horse power (hp) is used as the unit for the power to convert (hp) into watt (W) multiply by 746 Dimensional Homogeneity: All equations must be dimensionally homogeneous.

Example 1: A useful theoretical equation for computing the relation between pressure, velocity, and altitude in a steady flow of a nearly inviscid, nearly incompressible fluid with negligible heat transfer and

shaft work is:

$$p_0 = p + \frac{1}{2}\rho V^2 + \rho g Z$$
 where p_0 = stagnation pressure
$$p = \text{pressure in moving fluid}$$

$$V = \text{velocity}$$

$$\rho = \text{density}$$

$$Z = \text{altitude}$$

$$g = \text{gravitational acceleration}$$

• Show that Eq. (1) satisfies the principle of dimensional homogeneity, which states that all additive terms in a physical equation must have the same dimensions.

Solution

We can express Eq. (1) dimensionally, using braces by entering the dimensions of each term from Table 1.2:

$$\{ML^{-1}T^{-2}\} = \{ML^{-1}T^{-2}\} + \{ML^{-3}\}\{L^{2}T^{-2}\} + \{ML^{-3}\}\{LT^{-2}\}\{L\}$$

= $\{ML^{-1}T^{-2}\}$ for all terms Ans. (a)

Example 2

During a study of a certain flow system, the following equation relating p_1 and p_2 at two points was developed:

$$p_2 = p_1 + \frac{flV}{\mathrm{Dg}}$$

In this equation V is a velocity, I the distance between the two points, D a diameter, g the acceleration of gravity, and f a dimensionless coefficient. Is this equation dimensionally consistent?