RSA加密体制破译报告

2016全国高校密码数学挑战赛

2016 年全国高校密码数学挑战赛 答题卷

作品名称: <u>R</u>	SA 加密体制破資	<u> 报告——</u> >	<u>以河安团队答题卷</u>
指导老师:		程庆丰	
参 塞 学品。		李钰汀	

摘要

RSA 密码算法是当今使用最广泛的公开密钥密码体制。它是利用大数分解 的困难性而设计的一种公钥密码算法,凭借其安全性高、体制成熟完善、计算可 行性高等优势在公钥密码体制中独树一帜,并在计算机通信、企业身份认证等商业领域得到了广泛的应用。

本文对 21 个片段的加密数据进行了细致的观察与分析,采用 Fermat 分解法和 p-1分解法成功分解了 Frame2、Frame6、Frame10 和 Frame19 的模数并由此得到了正确的明文消息;使用公共模数攻击法和低加密指数攻击法找到了存在某些安全缺陷的消息片段,成功破译了 Frame0、Frame3、Frame4、Frame8、Frame12、Frame16 和 Frame20 的明文消息;借鉴因数碰撞的思想,用欧几里德算法遍历所有模数,求出 Frame1 和 Frame18 的模数的公因数,进而成功分解了 Frame1 和 Frame18 的模数得到正确的加解密参数,破译了明文消息;利用已经得到的若干明文片段,通过查阅资料、语义分析等方法,采用猜测明文攻击,得到了其余分片的所有明文,并验证了其正确性;利用已得到的若干个素数参数,找到了随机数生成的规律,从而破解了所有分片的加解密参数(具体结果见附录),并对其正确性进行了验证。

目 录

1. 理论分	计析报	<u> </u>	1
1.1	RSA	· 密码体制的发展历程	1
1.2	常见	L攻击方法	5
1.3	相关	理论基础	7
1.3	3.1	费马(Fermat)分解法	8
1.3	3.2	Pollard <i>p</i> –1分解法	8
1.3	3.3	低加密指数攻击原理	8
1.3	3.4	公共模数攻击1	0
1.3	3.5	欧几里德(Euclid)算法1	0
1.3	3.6	扩展的欧几里德算法1	1
1.3	3.7	随机数发生器1	1
1.4	解题	夏思路1	5
1.4	4.1	初步攻击尝试1	5
1.4	4.2	因数碰撞法求两个模数的最大公因数1	8
1.4	4.3	猜测明文攻击1	9
1.4	4.4	寻找随机数生成规律1	9
2. 实验数	女据报	是告2	1
2.1	实验	☆环境2	1
2.1	1.1	符号说明2	1
2.1	1.2	硬件设备2	1
2.1	1.3	软件工具2	2
2.2	常用]攻击方法2	4

	2.2	.1	费马分解法	24
	2.2	2	Pollard p-1分解法	27
	2.2	3	低加密指数攻击	31
	2.2	.4	公共模数攻击	35
	2.3	因	数碰撞法的意外发现	36
	2.4	猜	则明文攻击还原全部明文	40
	2.5	还	原随机数发生器	42
	2.6	结	果检验	66
3.	小结	•••••		67
	3.1	解是	题方法总结	67
	3.2	结	果分析	68
参	考文献	<u>.</u>		70
附	录	•••••		72
	附录	1	明文信息	72
	附录	2	通讯序号与接受序号对照表	73
	附录	3	RSA 加解密参数表(16 进制)	74
	附录	4	RSA 加解密参数表(10 进制)	95

1. 理论分析报告

1.1 RSA 密码体制的发展历程

2014年2月27日,习近平总书记主持召开中央网络安全和信息化领导小组第一次会议并发表了重要讲话,强调了网络安全和信息化的重要性。2016年4月19日,习近平主持召开网络安全和信息化工作座谈会,提出推动网信事业发展,在核心技术有所突破。网络空间安全上升至国家战略层面,信息化时代的实力较量已迫在眉睫。

密码学作为网络空间安全的重要组成部分,其起源十分古老,目前正在蓬勃发展并得到有效应用。它综合了数学基础理论、计算机科学、网络技术、信息论等跨领域的专业知识。从公元前古希腊斯巴达出现的 Scytale,到古罗马帝国著名的凯撒密码;从一战时期的"齐默尔曼电报",到二战时 Enigma 的破译,密码技术在人类社会中得到了越来越广泛的应用。在密码学的发展过程中,古今中外的专家学者们克服了重重困难,不断突破现有的理论,取得了众多丰硕的研究成果。

公钥密码体制作为当今应用最广泛的加密体制,在网络空间安全领域占有重要的一席之地,它与分组密码和杂凑函数一起,为电子商务应用提供了基础密码模块,与我们的日常生活、商业应用、数据保护等息息相关。而在公钥密码算法中,RSA 加密体制算法是目前最有影响力的加密算法,它能够抵御目前为止已知的绝大多数密码攻击。

1976年,Whitfield Diffie 和 Martin Hellman^[1]发表了"密码学的新方向"一文,首次提出了公开密钥体制(简称为"公钥密码")的思想,介绍了公钥加密和数字签名的新构想,自此,开启了密码学历史上一场伟大的变革。2016年3月2日,美国计算机协会(ACM)宣布授予两位伟大的密码研究专家 Whitfield Diffie 和 Martin Hellman2015年的 ACM 图灵奖,他们对密码学的杰出贡献得到了世人的认可。

图 1.1 Whitfield Diffie 和 Martin Hellman

公钥密码体制(也称非对称加密体制)如今已成为大多数互联网安全应用的基础,是一种无需事先共享密钥就可以在两个用户之间安全地传送信息的方法,不同于通信双方必须提前商定密钥的对称加密算法。公钥密码的提出被视为是现代密码学的开端,具有划时代的意义。

公钥密码最大的优点是不需要通过安全渠道传递密钥,其公开一个密钥、隐藏另一个密钥的特点大大简化了密钥管理。两个用户采用公钥密码通信时,消息接收者可以完全公开加密规则与加密密钥,只保留解密密钥,任何想要向该用户发送消息的人只需用它公开的加密密钥,按照加密规则对信息进行加密,发送给该用户即可;只有该用户拥有的解密密钥才能恢复明文信息,无须担心消息被中

途截获。另外,该用户用解密密钥可以制作电子签名,由公开的加密密钥来验证, 保证了签名来源的唯一性,有效防止了中间人的攻击,同时具备抗抵赖特性。

图 1.2 常见公钥加密体制

但是,由 Whitfield Diffie 和 Martin Hellman 最初所提出的 MH 背包算法于 1984 年被破译,因而失去了实际意义。真正有生命力的公开密钥加密系统算法 是由 Ronald Rivest、Adi Shamir 和 Leonard Adlemen^[2]共同设计的 RSA 算法。他们的研究成果在 1977 年 4 月以"数字签名和公开密钥密码体制"为题公开发表,引起了密码学界的广泛关注,并受到高度评价。

几十年来,RSA 密码体制经历了各种攻击和考验,不断成熟完善,逐渐为人们所接受,并以其利于理解与操作、安全性高的优点,迅速影响了全世界的加密算法发展与应用进程。

图 1.3 RSA 的起源与发展

RSA 加密算法的主要特点在它能提供两种不同的密钥,所有使用者共用公钥,只有持有对应私钥的用户才能解密。这两个密钥之间存在着相互依存关系:即用其中任一个密钥加密的信息只能用另一个密钥进行解密。若以公钥作为加密密钥,以用户专用密钥(私钥)作为解密密钥,则可实现多个用户加密的信息只能由一个用户解读。依据此原理,RSA 算法可用于文件加密。

图 1.4 加解密过程

1.2 常见攻击方法

虽然 RSA 密码体制在理论上是安全的,但是在实际应用中,现实条件的制约和个人操作的失误往往会导致 RSA 密码系统产生不同的缺陷^[3]。这就给攻击者以可乘之机。

下面列举了几种常用的攻击方法:

图 1.5 常见攻击方法

从上图可以看出,针对 RSA 密码系统的攻击,尤其是分解因子的手段,国内外研究方法逐步从传统的纯数学方法演变成数学和物理技术相结合的方法(例如各种侧信道攻击技术),更加实用、高效^[4]。图 1.6 总结了近年来世界各国对 RSA 攻击技术的研究方向:

图 1.6 近年来各国针对 RSA 攻击技术的研究

RSA加密算法理论基于简单的数论基础——两个大素数相乘是非常简单的,但是如果对两个素数的乘积做因式分解是非常困难的^[5]。以目前计算机的计算能力能成功分解的大数长度是有限的。刚开始的 RSA 密码算法采用的模数长度大多数为 512bit; 直到 1999 年,使用 512bit 长度的模数的 RSA 密码算法被一台Cray 超级电脑攻破,耗费近 8 个月时间; 10 年之后,768bit 模数的 RSA 密码算法被攻破,所需时间是分解 512bit 的数千倍;而分解 1024bit 模数所需时间则是768bit 的一千多倍,因此,在短时间内,1024bit 长度的模数仍然是安全的。

表 1.1 攻击进展

时间	被分解的模数		
1993.9-1994.4	RSA-129		
1999.1-1999.8	RSA-155		
2003.12	RSA-160		
2003.12-2005.5	RSA-200		
2005.11	RSA-640		
2009.12	RSA-768		
2013.9	RSA-210		

RSA 密钥长度随着保密级别提高,增加十分迅速。表 1.2 列出了对同一安全级别下不同算法所对应的密钥长度。

表 1.2 密钥长度与安全级别

对称密钥长度(bit)	RSA 密钥长度(bit)	ECC 密钥长度(bit)	保密年限
80	1024	160	2010
112	2048	224	2030
128	3072	256	2040
192	7680	384	2080
256	15360	512	2120

1.3 相关理论基础

密码学是以数学学科为基础理论、以计算机科学为实现工具而形成的具有自己特色理论体系的一门科学。本节介绍了攻击 RSA 密码体制的方法所依赖的核心理论内容,并在之后的解题过程中有所应用与涉及。

1.3.1 费马(Fermat)分解法

为了降低模数N 被试除法攻破的可能性,算法设计者通常选择具有相同比特大小的参数p和q,然而,如果p和q太过接近,就可以利用费马分解法找到它们。

费马分解法基于如下思想: 设 N=pq , 其中 $p \le q$ 都是奇数 , 然后令 $x=\frac{1}{2}(p+q)$, $y=\frac{1}{2}(q-p)$,可以找到 $N=x^2-y^2=(x+y)(x-y)$ 或 $y^2=x^2-N$ 。

定理 1 设 N=pq,其中 p>q 且 $\Delta=p-q$,则当 $\Delta< N^{\frac{1}{4}}$ 时,费马分解法可以有效地分解 N 。

1.3.2 Pollard *p* –1 分解法

RSA 加密算法中,素数 p 和 q 应该满足: $p\pm1$ 和 $q\pm1$ 至少有一个素因子大于 10^{20} ,否则,要分解的整数 N 有一个素因数 p ,且 (p-1) 有小的素因数时就可以 利用 Pollard p-1 分解法有效分解模数 N ,从而得到 p 。

设 N = pq,其中 p、q 为两个不同素数。选取一个整数 k 使其满足 (p-1)|k!,根据欧拉定理,对任意与 p 互素的整数 g 可以得到 $g^{p-1} \equiv 1 \pmod{p}$,因此,有 $g^{k!} \equiv 1 \pmod{p}$,即: $p|g^{k!}-1$;又由于 p|n,因此 $p|((g^{k!} \mod n)-1)$ 。 但是,如何 选取 k 是该算法中的关键问题,如果 k 选取太小,则可能不满足关系 p-1|k!;如果 k 选取太大(比如令 k=p-1),算法执行的复杂度就会急剧加大。因此,在执行算法前,先对可能满足关系 p-1|k!的 k 进行猜测,并根据计算能力进行设定。

1.3.3 低加密指数攻击原理

在设计算法时为了加速计算,常常使用较小的加密指数e,但是这种做法存

在很大的安全隐患。如果相同的消息使用同样的加密指数加密后发送给不同的接收者,则该明文消息可以被非常有效的恢复。该攻击方法基于著名的中国剩余定理。

定理 2(中国剩余定理) 设 m_0, \dots, m_{k-1} 是两两互素的正整数,对任意整数 a_0, \dots, a_{k-1} ,一次同余方程组

$$x \equiv a_i \pmod{m_i}$$
, $0 \le i \le k-1$,

必有解,且解数唯一。这个唯一解是

$$x \equiv M_0 M_0' a_0 + \dots + M_{k-1} M_{k-1}' a_{k-1} \pmod{m}$$
,

其中

$$m = m_0 \cdots m_{k-1} = m_i M_i (0 \le i \le k-1)$$
,

以及

$$M_i M_i' \equiv 1 \pmod{m_i} (0 \le i \le k - 1)$$
.

假设有三组密文是由同一明文、同一加密密钥加密得到,则根据该定理可以有效地还原其明文。设密钥 $e_1 = e_2 = e_3 = 3$,可列出同余方程组:

$$\begin{cases} c_1 \equiv m^3 \pmod{N_1} \\ c_2 \equiv m^3 \pmod{N_2} \\ c_3 \equiv m^3 \pmod{N_3} \end{cases}$$

对下面同余系统应用中国剩余定理:

$$\begin{cases} m^3 \equiv c_1 \pmod{N_1} \\ m^3 \equiv c_2 \pmod{N_2} \\ m^3 \equiv c_3 \pmod{N_3} \end{cases}$$

得到:

$$\begin{split} m^3 &\equiv c_1 \cdot (N_2 \cdot N_3) \cdot ((N_2 N_3)^{-1} \operatorname{mod} N_1) + \\ &c_2 \cdot (N_1 \cdot N_3) \cdot ((N_1 N_3)^{-1} \operatorname{mod} N_2) + \\ &c_3 \cdot (N_1 \cdot N_2) \cdot ((N_1 N_2)^{-1} \operatorname{mod} N_3) (\operatorname{mod} N_1 \cdot N_2 \cdot N_3) \end{split}$$

所以:

$$m = (m^3)^{\frac{1}{3}}$$
 o

1.3.4 公共模数攻击

RSA 加密中的四个参数 $\{d, p, q, \varphi(N)\}$ 是同等重要的,任何一个参数泄露都会给其余三个的安全性带来威胁。但是,如果在 RSA 加密中使用相同的模数,那么有可能在不知道四个参数知识的情况下,攻击得到 RSA 加解密体制参数。

定理3 设 $N_1 = N_2$ 、 $m_1 = m_2$ 、 $e_1 \neq e_2$,且 $\gcd(e_1, e_2)$ 满足:

$$\begin{cases} c_1 \equiv m^{e_1} \pmod{N} \\ c_2 \equiv m^{e_2} \pmod{N} \end{cases}$$

则可以容易地恢复m:即

$$\{[c_1,e_1,N],[c_2,e_2,N]\} \stackrel{P}{\Longrightarrow} \{m\}$$
.

证明 因为 $\gcd(e_1,e_2)=1$,因此可用扩展欧几里德算法在多项式时间内找到 $x,y\in Z$ 使得

$$e_1 x + e_2 y = 1$$
.

因而,

$$c_1^x c_2^y \equiv (m_1^{e_1})^x (m_2^{e_2})^y$$
$$\equiv m^{e_1 x + e_2 y}$$
$$\equiv m \pmod{N}_{\circ}$$

1.3.5 欧几里德(Euclid)算法

欧几里德算法又称辗转相除法,是数论和代数学中的重要方法。其思想方法

在数学的许多分支都有重要的应用。利用欧几里德算法可以求出若干个整数之间的最大公因数,可以直接用于求解一次不定方程^[6]。

$$a = q_0 b + r_0$$
, $0 < r_0 < b |$,
 $b = q_1 r_0 + r_1$, $0 < r_1 < r_0$,
 $r_0 = q_2 r_1 + r_2$, $0 < r_2 < r_1$,

• • • • • •

$$r_{k-3} = q_{k-1}r_{k-2} + r_{k-1}$$
, $0 < r_{k-1} < r_{k-2}$, $r_{k-2} = q_k r_{k-1} + r_k$, $0 < r_k < r_{k-1}$, $r_{k-1} = q_{k+1} r_k$ \circ

1.3.6 扩展的欧几里德算法

扩展的欧几里德算法是在已知整数a、b的情况下,可以在求得它们的最大公约数的同时,能够找到整数x、y (其中一个很可能是负数),使它们满足等式: $ax+by=\gcd(a,b)$ 。

定理 5 已知两个非负整数 a 和 b , gcd(a,b) 表示 a 和 b 的最大公约数,则必然存在整数对 (x,y) ,使得:

$$ax + by = \gcd(a,b)$$
 o

1.3.7 随机数发生器

在 RSA 密码算法的设计中,素数的生成是一个关键的环节。一般来说,产生一个素数的过程是: 先生成一个符合要求的随机数,通过素性检测判断其是否

为素数,若是素数,则输出该数;若不是素数,那么再生成一个随机数,直到通过素性检测为止。因此,素数发生器实质上是一个随机数发生器。

1927 年,剑桥大学出版社出版了一张列昂纳德·提珀特随机排列的 41600 个随机数字的表,这是世界上第一张公开发表的随机数表。在这张表出版仅十年之后,提珀特的四万个随机数表对于很大的抽样实验已不够用。1938 年,数学家费歇尔和雅特斯发表了 15000 个补充随机数字; 1939 年肯德尔和巴秉顿发表了一张包含 100000 个随机数字的表; 1949 年洲际贸易委员会(ICC)发表了一张由一个被称为复合随机化过程生成的 105000 个随机数字的表。随后人们开始寻求新的方法来大量产生符合要求的随机数以满足日益增长的需要。

图 1.7 随机数发生器的种类

以下为常见的一些随机数发生器。

1) 平方取中生成器

平方取中的方法是最早的伪随机数算法之一,由冯诺尼曼提出。其算法首先

给出一个 2r 为数作为种子,取其中间的 r 位作为第一个伪随机数,然后将第一个随机数平方构成一个新的 2r 位的数,再取中间的 r 为作为第二个伪随机数,以此类推。其递推公式表示为:

$$X_n = X_{n-1}^2 \bmod 2^r \circ$$

该方法生成的随机数存在均匀性不好,周期依赖于输入种子的值,容易通过 大量的随机序列得到循环规律,从而分析得到全部序列。

2) 移位寄存器

移位寄存器由 Tausworthe 在 1965 年提出,它由串联的 n 个二元域上的寄存器及一个反馈函数构成。其通过反馈函数计算出寄存器下一比特信息,然后移存器进行移位输出,一个线性移位寄存器的基本结构如图 1.8 所示:

图 1.8 线性移位寄存器基本结构

推移公式为:

$$f(a_i, a_{i+1}, ..., a_{i+n-1}) = a_{i+n}$$
,

在选择合适的反馈函数时,线性移位寄存器生成的序列能够表现出非常好的特性。当n 级线性移位寄存器的反馈函数为n 次本原多项式时,所生成的序列称为m序列,其具有良好的0-1分布、游程分布特征,序列周期上也达到了最大的 2^n -1。

线性移位寄存器是移位寄存器最基本的结构,使用非线性的反馈函数、添加

非线性前馈、使用多个线性反馈移存器的组合等多种方式来实现复杂的移位寄存器结构,将使移位寄存器产生的伪随机序列的结构变得更加复杂,难以分析。

然而对于一般的线性移位寄存器而言,其线性的递推结构使得伪随机序列的分析并不困难,特别在获得连续 2n bit 序列信息时,能够利用代数方法求解得到线性移位寄存器的结构信息。

3) 线性同余生成器

线性同余生成器由 Lehmer 在 1951 年提出此方法利用数论中的同余运算来产生随机数,故称为同余生成器,是使用最广的随机数发生器之一。其计算公式为:

$$X_n = aX_{n-1} + b \bmod m,$$

- ①当a=1并且b≠0时,此同余生成器称为乘法同余生成器;
- ②当 $a\neq1$ 并且b=0时,此同余生成器称为加法同余生成器;
- ③当 $a\neq1$ 并且 $b\neq0$ 时,此同余生成器称为混合同余生成器。

线性同余生成器可以在一维空间中产生较好的随机数,但在二维或更高维的空间中线性同余生成器的均匀性较差。在参数 a、b、m 的选取满足下述条件时,其可以获得满周期的随机数:

- ①*b* 与 *m* 互素:
- ②对于 m 的每一个质因数 p, a-1为 p 的倍数;
- ③若m能够被4整除,则a-1也可被4整除。
- 4) 非线性同余生成器

非线性同余生成器是从线性同余生成器发展而来,其递推关系式同样使用同余式,但不同的是使用了非线性的函数,其递推公式为:

$$X_n = f(X_{n-1}) \operatorname{mod} m$$
,

其中 f 为非线性函数,一般可以使用高次多项式构成二次或更高次的同余生成器,使用逆函数构成逆同余发生器,使用指数函数构成指数同余发生器,也可以使用各种组合方式构成结构更为复杂的非线性同余发生器。

1.4 解题思路

本问题是一个传统的 RSA 密码体制破译问题。题目中已知明文的加密规则,并截获了所有的加密指数e、模数 N 和密文c,要求据此求出解密指数 d、素数 p、q 并最终恢复全部的明文 m。

本题中,模数 N 的长度为 1024bit,对其准确快速地进行素数分解仍然是一个较大的难题。就目前的计算机水平来说,1024bit 长度的模数是基本安全的,2048bit 的模数是绝对安全的。直接对 1024bit 的模数进行因数分解在操作可行性上存在很大困难,然而对于某些存在不安全的 RSA 加解密体制参数,我们可以用特定的攻击方法,针对其中隐藏的安全缺陷进行破译。

根据题目中加密帧数据的格式分离出每个片段的模数N、加密指数e和密文c。其中,明文分成8个字符后进行加密,每一分片较短,符合猜测明文攻击的条件;有三组加密指数e同为3,有五组加密指数e同为5,存在明文片段相同的可能性,可以尝试公共模数攻击法对其进行破解;素数p、q中至少有一个是由随机数发生器生成的,若能找到随机数生成的规律,就可以破解全部加解密参数。

1.4.1 初步攻击尝试

关于 RSA 密码系统的攻击方法,人们首先想到的就是分解模数。然而,当模数超过 512bit 时,对其进行分解是一件非常困难的事情。通过查阅文献资料,

总结前人经验,我们考虑了一些 RSA 加密系统可能存在的一些隐藏缺陷:如模数生成时选择了不安全的素数,明文片段之间可能存在的联系等等。对此,我们可以用一些针对特定系统缺陷的攻击方法,尝试对模数进行分解,对明文消息进行破译。

1) 费马分解法

观察题目,可以发现一句提示"如果参数选取不当,同样存在被破译的可能", 由此,我们猜测,在 21 组模数中,必然有存在安全缺陷的参数,故可以尝试整 数分解法进行攻击。

费马分解法在两个素数 p、q 十分相近的情况下,可以有效地对模数 N 进行分解。所以,可以考虑采用费马分解法对所有的模数进行攻击,若存在满足条件的模数,就可以成功破译。

2) Pollard p-1分解法

思路同上,若某个模数N的素因数为p,p-1存在小因数,则可以用 Pollard p-1分解法破解该模数N。根据算法原理,通过编程实现,对每个模数进行攻击尝试,若存在满足攻击条件的数,就能够有效破解。

3) 低加密指数攻击

查阅相关文献后我们了解到:相同的明文消息m采用同一公钥e和不同模数 N 加密后得到根据不同的密文c,应用中国剩余定理求解同余式组,可以有效地恢复明文消息。其中,对于不同的模数 N ,要求它们的最大公因数为 1,且模数 N 的个数与公钥e 的值相同。

通过对所截获加密帧数据的观察,我们发现:在 21 个片段中,有些片段中的加密密钥是相同的,具体如下:Frame7、Frame11 和 Frame15 这 3 个分片均使

用"3"作为加密密钥; Frame3、Frame8、Frame12、Frame16 和 Frame20 这 5 个分片均使用"5"作为加密密钥,通过验证,这两组消息分片中的模数各自互素。如果这两组数据是由相同的明文片段加密得到的,那么它们就完全符合低加密指数攻击条件。所以,我们假设这两组数据均符合条件,尝试低加密指数攻击法进行破译。

下面,分别对两组消息片段进行破译并验证。

(1)对 Frame7、Frame11 和 Frame15 的攻击

①初次尝试

假设 Frame7、Frame11 和 Frame15 三个片段存在相同的明文,基于该攻击方法的原理,可以对其进行有效攻击,得到有意义的明文消息。

然而在攻击过程中,通过 C++语言进行编程实现,最终得到的结果并不符合题目中对明文消息格式的要求,且毫无语义。因此,本次攻击没有成功。说明这三组消息的明文可能并不完全相同,才导致攻击失败。

②算法改进

仔细研究该攻击方法的原理,我们发现: 其所需的消息个数并非一定要等于公钥值的大小,即不要求模数 N 的个数与公钥 e 的值相同; 起决定作用的是 m^e 与 $N_1 \cdots N_k$ 的大小关系(N_1, \cdots, N_k 为加密时所用消息的模数)。当 m^e 小于 $N_1 \cdots N_k$ 时,可以对其进行有效攻击。

观察题目中明文格式和模数格式的要求: 明文长度固定为 512bit,模数长度固定为 1024bit,针对 e=3 的攻击情形, $|m^3|=1536$ 远小于任意两个模数的乘积,因此针对 Frame7、Frame11 和 Frame15 的攻击,只要其中任意两个消息存在相同明文,即可进行有效攻击。

通过改进后的攻击算法,依然未能获得正确的明文消息,因此可得出结论: 这三个消息的明文片段均不相同。

(2)对 Frame3、Frame8、Frame12、Frame16 和 Frame20 的攻击

借鉴上述改进后的算法思想,先对 m^e 与 $N_1 \cdots N_k$ 的大小关系做出判断。通过计算可得知:当e=5时,只需存在 3 个消息拥有相同的加密明文即可实施有效攻击。

通过编程实现,对任意 3 个消息片段进行计算均可得到有效的明文消息,且得到的这些明文均相同。由此,破解得到 Frame3、Frame8、Frame12、Frame16和 Frame20 这 5 个消息的明文片段,并证明这 5 个消息由同一明文片段加密所得。

4) 公共模数攻击

当系统中不同的消息共用一个模数N,只有e和d不同,系统将是危险的,此时,攻击者可能无需分解N就能够恢复明文。

通过观察加密帧数据,我们已经知道 Frame0 与 Frame4 中的模数 N 是相同的,若这两个消息存在相同的明文,则可以使用共模攻击的方法进行有效攻击。

根据共模攻击的原理,通过编程实现对 Frame0 和 Frame4 进行攻击测试,最终得到了符合明文格式要求,且具有语言意义的明文消息。

1.4.2 因数碰撞法求两个模数的最大公因数

通过阅读 Joppe W. Bos、 Alex Halderman 和 Nadia Heninger 等人[7]所著 "Elliptic Curve Cryptography in Practice"一文,我们发现了一个巧妙的想法——从求任意两个模数的最大公因数入手,实现对大整数的因数分解。若某两个数的最大公因数为 1,则说明这两个数互素;若最大公因数大于 1,则说明该最大公因数同为这两个模数的一个因数,可以分别进行除法运算,进一步求出两个模数

的另一个因数,即间接实现了大数分解。与费马分解法和 p-1 分解法相比,这种方法在运算效率方面有显著优势,计算可行性更强。

在实现过程中,我们采用欧几里得算法,对 21 个模数 N 两两求最大公因数,需要计算 C_{21}^2 次,即 210 次,其中,Frame0 与 Frame4 中的模数 N 是相同的,不 予考虑,计算余下的 209 组模数 N ,可得到结果:Frame1 与 Frame18 中的两个模数 N 存在不为 1 的最大公因数,进而成功地对 Frame1 的模数与 Frame18 的模数进行分解,得到重要参数 p 和 q ,并依此计算出 $\varphi(N)$,再由公钥 e 计算得到私钥 d 。最终,使用私钥 d ,根据解密算法得到明文消息,即可最终实现对密文的完全破解。对得到的明文消息进行加密验证,与所截获密文消息完全相同。

至此,完成了对 Frame1 与 Frame18 的完全破解,得到了有意义的明文消息与 RSA 体制参数 p 和 q 。

1.4.3 猜测明文攻击

目前我们已经将现有条件下所能实现的全部常见攻击方法进行了试验,共得到了13个分片的明文,不考虑重复发送的消息,有8个片段的明文数据。根据已有的关键信息,通过查阅相关文献资料和互联网搜索,采用语义分析与加密验证相结合的方法,最终恢复了全部明文信息。

1.4.4 寻找随机数生成规律

仔细阅读题目,我们发现,题目中提到"素数p由某一随机数发生器生成"和"素数q可以随机选择,也可以由2)中的随机数发生器产生"这两条重要信息。这意味着,在我们现已分解得到的 Frame1、Frame2、Frame6、Frame10、Frame18和 Frame19这六个分片中的12个素数中,至少有6个素数是由同一个随机数发

生器生成的。于是我们考虑,能否通过已有的素数,找出随机数的生成规律,进而破解所有的素数参数呢?下面,我们将研究的重心转移到如何还原随机数发生器的问题上。

随机数发生器生成的随机数是伪随机的,也就是说,根据特定的数学函数、利用计算机强大的计算功能生成的数,其实是有内在规律可循的,并不是真正意义上的随机^[8]。伪随机与真随机的区别在于,对于给定的初值,一个伪随机生成器产生的随机数是能够完全确定的,而真随机数是完全无法预测的^[9]。从信息论的角度来说,在信息的传递过程中,信息量只能保持不变或减少。所以当有限的比特信息(在随机数发生器中,我们称输入的初值为"种子")生成更多、更长的伪随机序列时,其信息量并没有增加。因此,随机数发生器生成的伪随机序列一定会在某些方面呈现出相关特征^[10]。利用这些特征,我们可以进行利用已知的六组素数对随机数的生成规律进行探究,并还原随机数发生器。

分别检测这 12 个素数序列的 0-1 分布特征、游程分布特征、移位相加特征、 采样特征,在获得的数字特征中观察分析其共性特点,去除非生成器产生的素数 的干扰,然后再与已知的随机数发生器的特征特点进行比较,猜想得到可能使用 的随机数发生器结构。

对于可能使用的移存器结构和同余式结构,通过不断的尝试,对猜想的随机数发生器结构进行实验验证。最终根据实验结果和数据特征,联想经典的 RC4 与 BBS 生成器的级联结构,确定了真实的随机数发生器的结构。利用获得的随机数发生器遍历初值,将产生的序列与模数 N 计算最大公因数,确定是否为模数 N 的因数,得到 RSA 重要加密参数,破解加密数据帧内容。

由于其分析过程需要依赖于实验数据,因此将具体的分析过程描述在实验数据报告部分,详见第2部分第5小节。

2. 实验数据报告

2.1 实验环境

2.1.1 符号说明

表 2.1 符号说明

N_i	Frame <i>i</i> 中的模数 <i>N</i> (<i>i</i> = 0,···,20)
p_i, q_i	Frame <i>i</i> 中的 RSA 体制参数(<i>i</i> = 0,···,20)
d_{i}	Frame <i>i</i> 中的私钥 <i>d</i> (<i>i</i> = 0,···,20)
e_i	Frame <i>i</i> 中的公钥 <i>e</i> (<i>i</i> = 0,···,20)
c_{i}	Frame <i>i</i> 中的密文(<i>i</i> = 0,···,20)
m_{i}	Frame <i>i</i> 中消息解密得到的明文(<i>i</i> = 0,···,20)
x	x 在二进制表示形式下的位数

注:特别强调的是,在本部分第 2、3 小节中,p 和 q 的顺序是按照程序运行结果显示的,未区分是否由随机数发生器产生;在第 5 小节中,还原了随机数发生器后,对所有的素数进行检验,判别出了由随机数发生器产生的素数和随机选择的素数,具体结果见附录 3(16 进制)或附录 4(10 进制)。

2.1.2 硬件设备

在算法实现的过程中,我们共用了两台笔记本电脑,电脑系统信息如表 2.2:

表 2.2 硬件设备

		电脑 1	电脑 2	
Windows 版本		Windows 8	Windows 7	
系统	处理器	Intel(R) Core(TM) i5-4260U	Intel(R) Core(TM) i5-2415M	
	类型	64 位操作系统	64 位操作系统	

由于设备所限,我们在算法实现过程中,优先考虑低耗时、低耗能的方法, 所以在运行程序时,超过5小时仍未得到正确结果的,暂时不予考虑。

2.1.3 软件工具

计算机是我们在破译密码时得力的研究工具。许多数学软件都提供了对 RSA 加密体制运算上的支持功能,如 Magma、Matlab 和 Maple 等数学软件,它们拥有系统完整的封装函数,但是,在一定程度上限制了用户的底层权限,功能完整性有所欠缺。为了解决这一问题,本文选用了最基础的编程语言——C语言开发平台[11],调用了 GMP 大数库[12]和 Miracl 大数库[13],对 RSA 破译算法进行理论的实现与验证。

1) Microsoft Visual C++

Microsoft Visual C++(简称 Visual C++),是 Microsoft 公司推出的以 C++语言为基础的开发 Windows 环境程序,是面向对象的可视化集成编程系统。它不但具有程序框架自动生成、灵活方便的类管理、代码编写和界面设计集成交互操作、可开发多种程序等优点,而且通过设置就可使其生成的程序框架支持数据库接口、OLE2.0、WinSock 网络以及 3D 控制界面。

本小组在具体思路的实现方式上,均是基于 Microsoft Visual C++环境、用基

本 C++语言编程实现的, 所用版本为 Microsoft Visual C++ 6.0。

2) GMP 数学函数库

GMP 大数库是 GNU 项目的一部分,诞生于 1991 年。作为一个大整数运算库,它包括了任意精度的整数、有理数和浮点数的各种基本运算操作,其目标是为所有需要不能由基本 C 语言类型直接支持的多精度类型的应用提供尽可能快的算法。它的主要应用方向是密码学、网络安全、代数系统、计算科学等。GMP 库的运行速度非常快,但是它所提供的只是数学运算功能,并没有密码学相关的高级功能。

本小组在编写基本 C 语言类型的代码时,由于题目对数据的格式规定,数字长度、精度范围等要求无法得到实现,经过适当调用 GMP 库中的集成函数,成功运行了程序并且得到了符合题目要求的数据。

3) Miracl 库

Miracl (Multiprecision Integer and Rational Arithmetic C/C++ Library) 是 Shamus Software 公司开发的一个大数运算函数库,是当今著名密码学 C 语言函数库,它的使用许可针对教育科学研究或者非商业目的的应用是免费的,是基于当前使用较为广泛的公钥加密算法保护实现的大数库之一。在功能上,它不但提供了高精度的大整数和分数的各种数学运算操作,而且提供了很多密码学算法中的功能模块,尤其是针对公钥密码学和椭圆曲线密码学的实现。最为特别的是,它还提供了很多椭圆曲线密码体制中的底层功能模块。由于 Miracl 库的内部实现采用了很多的汇编代码,故运算速度也非常快。Miracl 函数库自从开发至今,以其紧凑、快速、高效的优势得到了广泛的应用。

2.2 常用攻击方法

2.2.1 费马分解法

如果 21 个分片中,存在由两个比较接近的素数相乘得到的模数,那么,费马分解法将很快可以破解它。根据费马分解法的原理,我们用 C 语言开发平台编写程序,对所有 21 个分片的模数 N 进行攻击尝试。主要代码如下:

```
费马分解法代码:
      输入N;
       k \leftarrow \left| \sqrt{N} \right| + 1;
       y \leftarrow k^2 - N;
       d \leftarrow 1;
      while (\lfloor \sqrt{y} \rfloor! = \sqrt{y} \&\& \lfloor \sqrt{y} \rfloor \ge N/2)
           y \leftarrow y + 2k + d;
           d \leftarrow d + 2;
           };
      if(\left|\sqrt{y}\right| < N/2)
          输出"没有找到因子";
      else
           x \leftarrow \sqrt{N+y};
           y \leftarrow \sqrt{y};
           p \leftarrow x - y;
           q \leftarrow \sqrt{x+y};
           输出 p,q;
      }
```

根据该原理,对所有 21 个分片进行攻击后, Frame10 在较短时间内被成功破解。

程序运行结果如图 2.1:

图 2.1 破解 Frame10

运行结果显示,程序成功分解了 Frame10 的模数,得到了加解密参数,如表 2.3:

表 2.3 Frame10 模数分解结果

	Frame10							
N_{10}	85A0AC7E685995D9F8012C3A0249491956697997BBB6E5DDC1B53DC6 184A843C3E4EB9B2D97FEAFAD097AA0FF640846287953C88F5A0813F D81FF3EBBDD62D66F4403653DCEC64ACE99F9FAAED4FD35513214E F4B4B9AA910E5923CD87F9330E3599F2CF1AD90EFC6BDABBD249D1 AC8CF83836FE18399379E712010FC25A3DA3							
p_{10}	B8F4B3E37AA6DEAD7CA8BB875F7A20F1F79C096B6D8E33755DD0C1 8FF8E2DA39234447F39576193DFBF84097174A3481DBEC8F7B925EB00 5F720589F5AB24FC9							
q_{10}	B8F4B3E37AA6DEAD7CA8BB875F7A20F1F79C096B6D8E33755DD0C1 8FF8E2DA39234447F39576193DFBF84097174A3481DBEC8F7B925EB00 5F720589F5AB2500B							

根据得到的参数进行解密运算,运行结果如图 2.2:

图 2.2 破译 Frame10

经过解密运算,我们恢复了明文片段为"77696C6C20676574"。通过查阅 16 进制 ASCII 码的对应规则,得到其相应的字符如表 2.4:

ASCII 码 77 69 6C 6C 20 67 65 74 空格 对应字符 1 1 W i e t g

表 2.4 Frame10 明文还原

最终,利用费马分解法成功破解了 Frame 10 的加解密参数,并恢复了明文信息为 "will get"。

分析本次攻击过程:分解模数所耗时长仅 0.01 秒,分解所得到的两个素数 p 和 q 在 16 进制表示下仅后四位不相同。这是因为,费马分解法能够针对由两个比较接近的素数 p、q 相乘得到的模数存在的缺陷实行十分有效的攻击,本次攻击结果也证实了这一点;除此之外,分解时长非常短,更进一步说明了由两个相近素数生成的模数存在极大的安全威胁。这说明,算法设计者在挑选素数时,考虑选择相同长度的两个素数的同时,还应该注意尽可能地令两个数值的差距大一

些, 否则, 参数将存在安全缺陷, 很容易被费马分解法攻破。

2.2.2 Pollard *p*-1分解法

根据 Pollard p-1的原理,在 C 语言开发平台下编写程序,对剩余 20 个分片的模数 N 进行攻击尝试。主要代码如下:

```
Pollard p-1 分解法代码:
输入N,B;
a \leftarrow 2;
k \leftarrow 1;
while (k \leq B)
{
a \leftarrow a^k \mod N;
p \leftarrow \gcd(a-1,N);
if(1 
{
<math>q \leftarrow N/p;
\mathfrak{m} \sqcup p,q;
}
```

对所有分片进行攻击后,成功破解了 Frame2、Frame6 和 Frame19。

1) 对 Frame2 中的模数的破解:

图 2.3 破解 Frame2

运行结果显示,成功分解了 Frame2 的模数,得到了加解密参数,如表 2.5:

表 2.5 Frame2 模数分解结果

	Frame2
N_2	808627CED38A980D765454AC5DFEFC10195F6FEF9B35B52B742DBCE 2419C34080A3EF3E9673FEA4DD629FF382155031EA6DCBA8372D42C1 862F32B2BEE47E157FA7150C544635035F366F7D68234F56FA24180EB6 A00A0F85C65AAEB455B8ED28F2285376CDA786F8C658CFEB3752F35 04A7256EA3DBD22EEF20267D156FAB51
p_2	3EA18C437BE22139DF56AE544E1F2232C25B9C75532C15BBFCB087A6 680914D4F355B0E779B6087DDB4AA938453329B6F98F91995780017FE 3249B0A4D9D28D8F
q_2	20D553F6EC8DF4DD610278518BABE13E0EFD87744717F733836C63440 7D0230E467B622F9787080ADDE08CB349423BC93EFD965375B51F301 BD9D9D25C61891F

表 2.6 Frame2 明文还原

ASCII 码	20	54	68	61	74	20	69	73
对应字符	空格	Т	h	a	t	空格	i	S

经过解密运算,我们恢复了明文片段为"2054686174206973"。通过查阅 16

进制 ASCII 码的对应规则,得到其相应的字符见表 2.6。

最终,利用 Pollard p-1 分解法成功破解了 Frame2 的加解密参数,并恢复了明文信息为" That is"。

2) 对 Frame6 中的模数的破解:

图 2.4 破解 Frame6

运行结果显示,成功分解了 Frame6 的模数,得到了加解密参数,如表 2.7:

表 2.7 Frame6 模数分解结果

	Frame6
N_6	D11B49BF43234D6595219AB7C21730DE0A13A7A01E63831A4D4F8DC 5A7E68FCA0E9768EF0DABCAD036E08E17E4B27C1151DF364556D8F9 3D19565D9F40F095A49C6185F2630671EB5EC1EAA514BEC32D93A0F0 459B52F1E34D4B9113413403F66619262EF1D3CBB025648C997CD1438 DE21CFE4BEA0C6E00C72FFDE587929CB3
$p_{_{6}}$	D65F770611
q_6	F9B6087D1A3861D77F8AD7C19E2C84BB3E9E47459D6061DF8AF21B0 98BD45D43F886570D1D881AE75B5A3F51467C7ECBC76E57D53AB0A CEF90C264996E2409534B56699D94D837F7CB2AAAE1A2CC1CDB243E AC65CC00DBFFAA9232298474D963F226402D8028B907CEFA1A71B31 C5EEB550E44F55150EF0FD86283

经过解密运算,我们恢复了明文片段为"20224C6F67696320"。通过查阅 16

进制 ASCII 码的对应规则,得到其相应的字符如表 2.8:

表 2.8 Frame6 明文还原

ASCII 码	20	22	4C	6F	67	69	63	20
对应字符	空格	"	L	0	g	i	С	空格

最终,利用 Pollard p-1分解法成功破解了 Frame6 的加解密参数,并恢复了明文信息为""Logic"。

3) 对 Frame19 中的模数的破解:

图 2.5 破解 Frame 19

运行结果显示,成功分解了 Frame19 的模数,得到了加解密参数,如表 2.9:

表 2.9 Frame 19 模数分解结果

Frame19 8614C70089AADE50E5A14DE1FB8FCF0880046E9494EEAD3BF600EBE 451E335B4C9E21DE984912BCA15914711A9C359056A2AD0543035E971 A2FAA387EA53AAD48A7016735E2BB60716626CAD6CF4F9CC41A59C F31EF07473A1DE08A018CAB7C6B95BF7AC9F501BD42FCC4C7CD834 B6A7723B6ABCC9A98146A750A9222CCE2CC7

P ₁₉	87CA9B01006C99FB8ADEFE85E3A08B1F5B320649F614DA838CC6B64 DEBC82C27F39A5291B8BC640BA3AE5F1590F0A62FF1029FD9E864569 36F9618DD73181937F36A0E21250CD21B907E03A53240A53F9AD2BD6 90EB4F6A3A6663F6D6E686A47873ACDB1455CE42B514EEC35C790884 F58A25EF96904BAB3313629
$q_{_{19}}$	FCC696496F

经过解密运算,我们恢复了明文片段为"696E737465696E2E"。通过查阅 16 进制 ASCII 码的对应规则,得到其相应的字符如表 2.10:

 ASCII 码
 69
 6E
 73
 74
 65
 69
 6E
 2E

 对应字符
 i
 n
 s
 t
 e
 i
 n
 .

表 2.10 Frame19 明文还原

最终,利用 Pollard p-1 分解法成功破解了 Frame 19 的加解密参数,并恢复了明文信息为 "instein."。

分析本次攻击过程,我们可以看到两组成功分解的模数 N 都得到了一个位数较短的素数参数和一个位数较长的素数参数,这是因为,Pollard p-1 分解法是从素数 p-1 的小因子开始尝试,知道能整除为止,若模数存在较小的因子,将很容易被分解。所以,我们在选取素数参数时应注意,尽量不选取位数相差过大的两个数,以降低被 Pollard p-1 分解法破解的可能性。

2.2.3 低加密指数攻击

低加密指数攻击法适用于加密密钥相同且模数互素的数,通过对数据的观察, 我们发现 Frame7、Frame11、Frame15 和 Frame3、Frame8、Frame12、Frame16、 Frame20 这两组数分别符合低加密指数攻击的条件。

1) 对 Frame7、Frame11 和 Frame15 的攻击

假设 Frame7、Frame11 和 Frame15 三个分片是由相同的明文加密得到的,即已知 $e_7 = e_{11} = e_{15} = 3$,设 $m_7 = m_{11} = m_{15} = m$,可列出如下同余式:

$$\begin{cases} c_7 \equiv m^3 \pmod{N_7} \\ c_{11} \equiv m^3 \pmod{N_{11}} \\ c_{15} \equiv m^3 \pmod{N_{15}} \end{cases}$$

对其应用中国剩余定理,可以求出m的值。根据该攻击法原理,编写 C 语言程序,主要代码如下:

低加密指数攻击代码:

输入
$$c_7, c_{11}, c_{15}, N_7, N_{11}, N_5$$
;

 $N'_7 \leftarrow (N_{11}N_{15})^{-1} \mod N_7$;

 $N'_{11} \leftarrow (N_7N_{15})^{-1} \mod N_{11}$;

 $N'_{15} \leftarrow (N_7N_{11})^{-1} \mod N_{15}$;

 $m' = c_7N'_7N_{11}N_{15} + c_{11}N_7N'_{11}N_{15} + c_{15}N_7N_{11}N'_{15} \mod (N_7N_{11}N_{15})$;

 $m \leftarrow \sqrt[3]{m'}$.

但通过对此方法下程序运行结果的观察,可以发现,得到的明文数据与题中 所给的加密规则不符,且不对应有明确语义的明文信息,该方法失败。

通过改进计算方法,假设有两组是由同一明文加密得到,不同时计算三组数据,而是在从任意两组数据入手,两两判断是否有相同的明文消息。

程序运行结果显示如图 2.6:

图 2.6 破译 Frame7、Frame11 和 Frame15

观察运行结果,我们可以看到:攻击任意两组数据得到的明文都不符合题目的加密规则,且无法还原成有意义的语句信息,说明本次攻击失败,Frame7、Frame11 和 Frame15 不是由同样的明文加密得到的。

2) 对 Frame3、Frame8、Frame12、Frame16、Frame20 的攻击

借鉴上一次对 Frame7、Frame11 和 Frame15 的攻击过程中积累的经验,先 判断 m^e 与 $N_1 \cdots N_k$ 的大小关系:

$$|m^3| = 1536 < N_i \cdot N_j (i = 3, 8, 12, 16, 20, j = 3, 8, 12, 16, 20) \circ$$

由计算结果知:只要5个分片中有3个是由同一明文加密得到的,就符合低加密指数攻击的条件。

于是,假设这五组数据中有三组是由同一明文加密得到,利用改进后的算法进行判断。

程序运行结果如图 2.7:

图 2.7 破译 Frame3、Frame8、Frame12、Frame16 和 Frame20

观察运行结果,可以发现:对任意三组数据进行攻击,得到的明文数据均相同,说明 Frame3、Frame8、Frame12、Frame16、Frame20 这五组数均是由同一明文加密得到的。

我们恢复了明文片段为"7420697320612066"。通过查阅 16 进制 ASCII 码的对应规则,得到其相应的字符如表 2.11:

ASCII 码	74	20	69	73	20	61	20	66
对应字符	t	空格	i	S	空格	a	空格	f

表 2.11 Frame3、Frame8、Frame12、Frame16 和 Frame20 明文还原

最终我们破译了 Frame3、Frame8、Frame12、Frame16、Frame20 的明文, 同为 "t is a f"。

2.2.4 公共模数攻击

通过观察数据,我们了解到: Frame0 与 Frame4 有相同的模数。猜测这两组数据是由同一明文信息加密得到的,则可以尝试公共模数攻击法。

假设 Frame0 与 Frame4 有相同的明文,应用扩展欧几里德算法的原理,可列出等式:

$$c_0 \equiv m^{e_0} \bmod N_0 ,$$

$$c_4 \equiv m^{e_4} \bmod N_4 ,$$

可以找到x和y, 使得:

$$e_0 \cdot x + e_4 \cdot y = 1,$$

可以解得明文:

$$m \equiv c_0^x \cdot c_4^y \circ$$

计算过程通过编程实现。主要代码如下:

公共模数攻击代码:
输入 e_i, e_j, c_i, c_j ; $[x, y] = ext \gcd(e_i, e_j);$ $m = c_i^x c_j^y;$

程序运行结果如图 2.8:

图 2.8 破译 Frame0 和 Frame4

通过程序实现,我们恢复了明文片段为"4D79207365637265"。通过查阅 16 进制 ASCII 码的对应规则,得到其相应的字符如表 2.12:

ASCII 码 79 4D 20 73 65 63 72 65 对应字符 M 空格 y \mathbf{S} e c r e

表 2.12 Frame0 和 Frame4 明文还原

最终,利用公共模数攻击法恢复了明文信息为"My secre"。

2.3 因数碰撞法的意外发现

根据 "Elliptic Curve Cryptography in Practice"一文中因数碰撞的思想,我们用 C语言程序实现了欧几里德算法,对全部 21 组模数两两求最大公因数。程序运行结果如图 2.9:

图 2.9 对 21 个模数两两求最大公因数

观察结果,可以看到: Frame0 与 Frame4 有大于 1 的最大公因数; Frame1 与 Frame18 有大于 1 的最大公因数。然而 Frame0 与 Frame4 的模数相同,求出的最大公因数是它们共有的模数本身,仍是平凡因数,所以没有达到成功分解模数的目标; 而 Frame1 与 Frame18 的最大公因数为非平凡因数,可以通过除法运算分别求得模数 N_1 和 N_{18} 的另一个因数(如下表),即求出素数 p 和 q ,破译明文。

表 2.13 Frame1 和 Frame18 的模数分解

$\gcd(N_1,N_{18})$	8ADEFE85E3A08B1F5B320649F614DA838CC6B64DEBC82C27 F39A5291B8BC640BA3AE5F1590F0A62FF1029FD9E86456936F 9618DD73181937F36A0E21250CD21B
N ₁ 的另一 个因数	F3EECA557B30A36F05427F1936A4E7D387D6AC1D65587E774F AA9561FB4C4B5B70BEBEE52C80727F3F12ECA96CF457E34E A622AD70A89F87737AA4F12B9C2D6B
N ₁₈ 的另一 个因数	F52C8FBBED9ECA4564601CDF29F2CE09C2D4C84387863A0D C48835E7DA5A52515D7C49CB366E9AD5C1B027EFEFC2D799 652434539A560C9DFBD812F70A2A7DE1

用程序实现,显示结果如图 2.10:

图 2.10 破译 Frame1

模数 N_1 分解的结果如表 2.14:

表 2.14 Framel 模数分解结果

	Frame1
N_1	845334AC0B3EB2239FDF0E3069750901E791CB774AD36941E30D85E5A 0FED57749A30DC1F1F4CB191D9863F437C98293E8E8888B963BCF16B6 91F1D4EEF56C6807440E5FB5EC5B95DF3434DEDA30C60DCB4E77294 BE027F984D5E675AEB1CBBE57E8CAF140226EAD6DCD9A9636A0CFF 586FA434804CB09D7E8C48DE34EBE9049
$p_{_1}$	8ADEFE85E3A08B1F5B320649F614DA838CC6B64DEBC82C27F39A529 1B8BC640BA3AE5F1590F0A62FF1029FD9E86456936F9618DD73181937 F36A0E21250CD21B
$q_{_1}$	F3EECA557B30A36F05427F1936A4E7D387D6AC1D65587E774FAA9561 FB4C4B5B70BEBEE52C80727F3F12ECA96CF457E34EA622AD70A89F8 7737AA4F12B9C2D6B

经过解密运算,我们恢复了明文片段为"2E20496D6167696E"。通过查阅 16 进制 ASCII 码的对应规则,得到其相应的字符如表 2.15:

表 2.15 Frame1 明文还原

ASCII 码	2E	20	49	6D	61	67	69	6E
对应字符		空格	I	m	a	g	i	n

图 2.11 破译 Frame18

最终,利用因数碰撞法成功破解了 Frame1 的加解密参数,并恢复了明文信息为". Imagin"。

模数 N_{18} 分解的结果如表 2.16:

表 2.16 Frame 18 模数分解结果

	Frame18
N_{18}	84FF95E263D30FAD83684CC08B11DAB54F5A0F3D24A8763C47B57750 ED2E342022652836E2EBB30A765DC7364F417E4555D1FD72D140EFB7 2E283007028CC2A4FE97E4FE3B5D272C917E734F8715A0C5BFF290064 0D8097425AFA965F9B1566F339F155ACEB59EDE241327813C920A6FB 98A6BB9209379F1BBEBCC955949D8BB
P_{18}	8ADEFE85E3A08B1F5B320649F614DA838CC6B64DEBC82C27F39A529 1B8BC640BA3AE5F1590F0A62FF1029FD9E86456936F9618DD73181937 F36A0E21250CD21B
$q_{_{18}}$	F52C8FBBED9ECA4564601CDF29F2CE09C2D4C84387863A0DC48835E 7DA5A52515D7C49CB366E9AD5C1B027EFEFC2D799652434539A560C 9DFBD812F70A2A7DE1

经过解密运算,我们恢复了明文片段为"6D204120746F2042"。通过查阅 16 进制 ASCII 码的对应规则,得到其相应的字符如表 2.17:

表 2.17 Frame18 明文还原

ASCII 码	6D	20	41	20	74	6F	20	42
对应字符	m	空格	A	空格	t	О	空格	В

最终,利用因数碰撞法成功破解了 Frame18 的加解密参数,并恢复了明文信息为"m A to B"。

分析本次攻击过程:程序运行所耗时长仅 0.01 秒,且算法复杂度低,实现过程简单。如果我们用整数分解的方法去攻击所有的模数,所耗费的时间是无法估量的,并且,这种方法对设备的要求也非常严格。而实现欧几里德算法就简单得多,且仅用一台笔记本电脑就能够实现。这也给我们一个警示——在生成模数时,不要选择相同的素数去生成不同的模数,否则,将存在被因数碰撞法破解的安全威胁。

2.4 猜测明文攻击还原全部明文

通过以上攻击方法的尝试,目前已经得到了 13 个分片中的明文信息,不考虑重复发送的消息,共有 8 段明文消息。

表 2.18 明文信息

通信序号	0	1	2	3	4	5	6	7
明文	My secre	t is a f	_	_	_	instein.	That is	"Logic
通信序号	8	9	10	11	12	13	14	15
明文	will get	_	m A to B	. Imagin	_	_	_	_

观察通信序号为 10 的分片的明文消息 "m A to B",可以肯定的是,"m"一定是某个单词的尾字母,联想与"to"相关的介词结构,很容易想到"from······

to·····"; "from A to B"这句话并不常见,通过搜集资料,我们找到了爱因斯坦的一句名言"Logic will get you from A to B. Imagination will take you everywhere."。这句话同时符合了序号为 7、8、10 和 11 四个分片的明文信息,于是,我们猜测,这句话就是序号为 7 的分片到序号为 15 的分片的明文信息。

用题目中所给的加密参数对这句话进行验证。其中通信序号为 7 的分片信息不完整,缺少第一个字符(1Byte);通信序号为 15 的分片信息不完整,缺少最后两个字符(2Byte),联系上下文和常用语言习惯,我们猜测最后两字符明文信息是"."和""。由于缺失部分较短,我们编写程序遍历了缺失部分所有可能的情况,经过极短时间的运行就得到了验证结果。最终,通过加密验证和暴力破解相结合的方式,证明了猜想是正确的。此时所得到的明文如表 2.19:

通信序号 7 0 1 2 3 4 5 6 明文 My secre t is a f instein. That is "Logic 通信序号 9 8 13 10 11 12 14 15 明文 will get you fro m A to B . Imagin ation wi ll take ywhere." you ever

表 2.19 明文信息

消息后半部分的这句话是爱因斯坦的一句名言,再观察通信序号为 5 的分片,很容易联想到爱因斯坦的英文表示"Einstein",自然,通信序号为 4 的分片明文就是"Albert E",通过加密验证,猜想正确。

再联系通信序号为 0 和 1 的分片,我们猜测整个明文消息可能是"我的秘诀是爱因斯坦的著名名言,逻辑会把你从 A 带到 B,想象力能带你去任何地方。"由此猜测,通信序号为 2 的分片最后一个字符"f"是"famous"的首字母,而后,我们列出了一些与"famous"相关且符合语境的短语:"famous quotes"、

"famous saying"、"famous notes"等,用加密密钥对这些可能的明文进行猜测明文攻击,最终验证"amous sa"为通讯序号为 3 的分片的明文。

因此猜测通讯序号为 4 的分片明文中,前 4 个字母为"ying",第 5 个字母很可能为空格。再根据英语语法规则:名词之后常用介宾结构做后置定语;而人名之前的介词常用"of"。由此我们对"ying of"做了加密验证,证明了猜想是完全正确的。

至此,我们确定了全部的明文信息,如表 2.20:

通信序号 0 1 2 3 4 5 6 7 明文 My secre t is a f amous sa ying of Albert E instein. That is "Logic 通信序号 8 9 10 11 12 13 14 15 明文 . Imagin m A to B ywhere." will get you fro ation wi ll take you ever

表 2.20 明文信息

最终,全部明文信息破译成功,将所有分片的明文信息按照通信序号连接起来得到通关密语: My secret is a famous saying of Albert Einstein. That is "Logic will get you from A to B. Imagination will take you everywhere."

2.5 还原随机数发生器

通过之前的费马分解法、Pollard p-1分解法、因子碰撞法等大整数分解方法,已经成功分解得到了六组素数,共 12 个。在这 12 个素数中,至少有 6 个素数是由同一个随机数发生器产生的。因此,观察并分析这 12 个素数,发现其中的特点和潜在规律,是还原随机数发生器的关键。使用 16 进制表示已经获得的 12 个素数,如表 2.21:

表 2.21 已获得素数的 16 进制表示

p_1	8ADEFE85E3A08B1F5B320649F614DA838CC6B64DEBC82C27F39A 5291B8BC640BA3AE5F1590F0A62FF1029FD9E86456936F9618DD73 181937F36A0E21250CD21B
$q_{_{ m I}}$	F3EECA557B30A36F05427F1936A4E7D387D6AC1D65587E774FAA9 561FB4C4B5B70BEBEE52C80727F3F12ECA96CF457E34EA622AD70 A89F87737AA4F12B9C2D6B
p_2	20D553F6EC8DF4DD610278518BABE13E0EFD87744717F733836C63 4407D0230E467B622F9787080ADDE08CB349423BC93EFD965375B5 1F301BD9D9D25C61891F
q_2	3EA18C437BE22139DF56AE544E1F2232C25B9C75532C15BBFCB08 7A6680914D4F355B0E779B6087DDB4AA938453329B6F98F91995780 017FE3249B0A4D9D28D8F
p_{6}	D65F770611
q_6	F9B6087D1A3861D77F8AD7C19E2C84BB3E9E47459D6061DF8AF21 B098BD45D43F886570D1D881AE75B5A3F51467C7ECBC76E57D53 AB0ACEF90C264996E2409534B56699D94D837F7CB2AAAE1A2CC1 CDB243EAC65CC00DBFFAA9232298474D963F226402D8028B907CE FA1A71B31C5EEB550E44F55150EF0FD86283
p_{10}	B8F4B3E37AA6DEAD7CA8BB875F7A20F1F79C096B6D8E33755DD 0C18FF8E2DA39234447F39576193DFBF84097174A3481DBEC8F7B9 25EB005F720589F5AB24FC9
q_{10}	B8F4B3E37AA6DEAD7CA8BB875F7A20F1F79C096B6D8E33755DD 0C18FF8E2DA39234447F39576193DFBF84097174A3481DBEC8F7B9 25EB005F720589F5AB2500B
p_{18}	8ADEFE85E3A08B1F5B320649F614DA838CC6B64DEBC82C27F39A 5291B8BC640BA3AE5F1590F0A62FF1029FD9E86456936F9618DD73 181937F36A0E21250CD21B
q_{18}	F52C8FBBED9ECA4564601CDF29F2CE09C2D4C84387863A0DC488 35E7DA5A52515D7C49CB366E9AD5C1B027EFEFC2D799652434539 A560C9DFBD812F70A2A7DE1
$p_{_{19}}$	FCC696496F

 q_{19}

87CA9B01006C99FB8ADEFE85E3A08B1F5B320649F614DA838CC6 B64DEBC82C27F39A5291B8BC640BA3AE5F1590F0A62FF1029FD9E 86456936F9618DD73181937F36A0E21250CD21B907E03A53240A53F 9AD2BD690EB4F6A3A6663F6D6E686A47873ACDB1455CE42B514E EC35C790884F58A25EF96904BAB3313629

通过观察上述 12 个素数,可以发现以下显著特征:

- ① *p*₁与 *p*₁₈相同;
- ②若把这 12 个数看作字符串, p_1 为 q_{19} 的子串;
- ③ p_{10} 与 q_{10} 只有最后 4 位不一致;
- ④ p₆与p₁₉只有40bit长;
- ⑤ q₆与q₁₉有984bit长;
- ⑥在 16 进制编码中,只有 p_6 与 q_2 的第 1 位小于 8,即首比特为 0。

在上述分析中, p_1 、 p_{18} 、 q_{19} 这 3 个素数分别在 3 组不同的加密帧中,却存在着数据上的紧密联系,因而这 3 个素数是同一随机数发生器生成的可能性较大。此外," p_1 为 q_{19} 的子串"这一特征非常符合移位寄存器产生序列的特点,因此,猜测该随机数发生器结构可能为某一移位寄存器。

下面,依据一般序列密码的分析方法,我们对上述 12 个素数分析了相关的数字特征。

- 1) 0-1 分布数字特征的检验
- 0-1 分布特征是伪随机序列数最基本的数字特征,一个良好的随机数发生器产生的随机序列应当 0-1 分布均匀。由于 p_6 与 p_{19} 只有 40bit 长,其比特特征缺乏统计意义,因此,我们只对其余的 10 个素数进行特征统计。统计结果如下图:

图 2.12 0-1 分布数字特征的检验

用表格表示统计规律:

表 2.22 0-1 分布的数字特征统计

素数	()	1			
永	个数	占比	个数	占比		
$p_{_1}$	253	0.49	259	0.51		
$q_{\scriptscriptstyle 1}$	278	0.54	234	0.46		
p_2	257	0.50	253	0.50		
q_2	256	0.50	258	0.50		
q_6	494	0.50	490	0.50		
p_{10}	275	0.54	237	0.46		
q_{10}	271	0.53	241	0.47		
p_{18}	253	0.49	259	0.51		
$q_{_{18}}$	261	0.51	251	0.49		

$q_{\scriptscriptstyle 19}$ 484	0.49	500	0.51
---------------------------------	------	-----	------

观察统计结果: 0、1 分布相对均匀,并没有出现明显的优势,说明本题中的随机数序列并不符合 0-1 分布。

2) 游程分布数字特征的检验

定义1 对于n bit 序列 $a = \{0,1\}^n$,定义一组连续的相同符号称为一个游程,符号为 1 的称为 1-游程,符号为 0 的称为 0-游程,连续相同符号的个数称为这个游程的长度。即当连续比特的 k 个 0 的前一位和后一位均为 1 时,就称这 k 个 0 是长为 k 的 0-游程;反之,称为长 k 的 1-游程。

游程分布特征体现了伪随机序列在多比特字串上的独立性质,一个好的统计特性的伪随机序列,应当满足以下要求:

- ①0、1个数接近;
- ②相同长度的 0、1-游程的个数大致相等;
- ③长为 k 的游程的个数接近于长为 k+1的游程个数的两倍。

若某一伪随机序列在游程分布上出现不规律性,则意味着该序列的生成规律 上存在一定的趋势或结构。

对已知的12个素数序列进行游程分布统计,如下图:

"C:\Users\	My\Docur	ments\Prog	jrams\rsa_a	attack\Deb	ug\main.exe	_			3	4.39	_
жжжжжж	×××;;;	程分布	分析××	XXXXXX	XXXX						^
р											
序列长度	:512										=
游程长度	_1	2	3	4	5	6	7	8	9	10	
0	56	34	17	10	4	4	0	0	0	0	
1	61	39	10	7	4	0	4	1	0	0	
a	[1]										
序列长度	: 512										
游程长度	1	2	3	4	5	6	7	8	9	10	
0	80	35	10	9	2	0	0	1	0	0	
1	74	29	16	6	6	5	2	0	0	0	
	[2]										
p 序列长度	.510										
游程长度	1	2	3	4	5	6	7	8	9	10	
0	55	26	19	9	4	2	3	0	0	0	
1	51	33	17	6	8	3	1	0	0	Θ	
q	[2]										
序列长度 游程长度	:514	2	3	4	5	6	7	8	9	10	
が住て及 0	1 62	38	15	11	2	0	1	0	9	0	
ı	66	37	13	6	7	0	0	1	0	1	
'	•	٠.		•		•	•		·		
р	[6]										
序列长度	: 40										
游程长度		2	3	4	5	6	7	8	9	10	
0	5	1	1	1	1	0	0	0	0	0	
1	4	3	2	0	1	0	0	0	0	0	
	[6]										
■序列长度	: 984										
游程长度	1	2	3	4	5	6	7	8	9	10	
0	125	55	32	21	6	3	0	1	1	1	
1	121	68	29	8	11	5	2	1	0	0	
											▼

图 2.13 游程分布特征分析 1

图 2.14 游程分布特征分析 2

从实验结果分析,整体的游程分布情况较好,但在个别较长游程上存在分布 比例与真随机序列分布规律偏差较大的情况。例如 p_1 、 q_1 、 p_{10} 、 q_{10} 和 p_{18} 在较 长的 0、1 游程上差异较大, q_2 在长为 7、8、9 的游程都存在的情况下未出现长 为 6 的游程等。这可能由于统计的序列长度都不足 1000bit,难以满足游程分布 统计分析的要求导致的,也可能是由于随机数发生器本身的结构特点导致的。

若这些游程统计的特征是由于随机数发生器导致的,则说明 p_1 、 q_1 、 p_{10} 、 q_{10} 和 p_{18} 这些素数序列存在结构上的内部联系,它们很可能是来自于同一随机数发生器。

3) 移加特性的检验

定理 6 序列 $a = \{0,1\}^n$ 是由一个周期为 T 反馈移位寄存器生成,则存在 k 个整数 s_0, s_1, \dots, s_k ,其中 $0 \le k \le T$ 使得序列 a 满足下列关系式:

$$L^{s_0}(a) + L^{s_1}(a) + \cdots + L^{s_{k-1}}(a) = L^{s_k}(a)$$
,

其中 $L^{s}(a)$ 表示将序列 a 左移 s bit 后的序列。

移加特性反映的是反馈移位寄存器抽头位置的特征信息,若生成器是一个线性反馈移位寄存器,其反馈函数为 $g(a_0,a_1,\cdots,a_{n-1})=\sum_{i=0}^{n-1}b_{n-i-1}a_i$,其中 $b_{s_0}=b_{s_2}=\cdots=b_{s_{k-1}}=1$,除此之外,其余的系数均为 0,则显然可以得出 $L^{s_0}(a)+L^{s_1}(a)+\cdots+L^{s_{k-1}}(a)=L^{s_k}(a)$,也就是意味着,抽头的位置即为移位相加的位置[14] 。

对于非线性反馈寄存器,依然可以找到满足这样条件的 s_0, s_1, \dots, s_k ,但 s_i 的值可能会很大($0 \le s_i \le T$)。因此在实际操作过程中,由于已知序列的长度限制或时间限制,往往无法有效地找到满足等式成立的 s_0, s_1, \dots, s_k 。通常情况下,选择

较少的移位序列 $L^{t_0}(a)$, $L^{t_1}(a)$, …, $L^{t_{j-1}}(a)$, 当 t_0 , t_1 , …, t_{j-1} 的分布与 b_{s_0} , b_{s_2} , …, $b_{s_{k-1}}$ 的分布间距特征有明显的相关关系时,新序列 $a' = L^{s_0}(a) + L^{s_1}(a) + \dots + L^{s_{k-1}}(a)$ 往往会出现显著的优势特征。利用这种方法,可以有效地利用序列的移加特性分析寄存器抽头的分布情况。

因此我们对已知的 12 个素数序列分别进行移加特性检验。我们选取原序列,将其与移位 s bit 后的序列进行异或运算,然后观察新序列的 0-1 分布情况。

用程序对每一组素数进行移加特性检验, 共检验了偏移 1 到 32 位的分布特征, 结果显示如下:

图 2.15 p[1]移加特性检验

```
"C:\Users\My\Documents\Programs\rsa_attack\Debug\main.exe"
       -p[2]--
                                    2.37
                                                             3.08
15
                   1.38
10
                            0.30
11
                                                                      0.20
16
                                             1.88
           3.63
                                                     1.19
                            0.10
                                    3.41
           5.29
                   1.60
                                             0.10
                                                     3.02
                                                              0.10
                                                                      0.00
                    18
                                             21
                                                      22
                                                              23
                                                                       24
           2.54
25
                            3.56
27
                                    0.41
28
                                                     0.41
30
                                                              1.33
  比势度:
                   0.61
                                             2.15
                                                                      0.82
                    26
                                             29
 尤势度:
           2.58
                   0.62
                            2.59
                                    2.28
                                             0.31
                                                     2.08
                                                              1.15
                                                                      1.26
     ---q[2]--
                              3
                                              5
                                                       6
                                                                        8
                   1.56
10
                            1.08
                                    3.33
                                             1.87
                                                     3.35
14
                                                              0.49
15
                                                                      3.16
           0.68
             9
                           2.49
19
                                                             2.30
                                    3.59
                                                     3.20
           0.69
                   0.99
                                             1.70
                                                                      3.82
                                     20
                                                      22
                    18
                                                                       24
                            2.12
           2.31
25
                   4.64
26
                                    1.21
                                                              0.71
31
                                             0.30
                                                     1.63
                                                                      2.45
                                             29
                                                      30
                                                                       32
           1.74
                            1.54
  说势度:
                                    2.47
                   0.00
                                             1.55
                                                     2.89
                                                              0.31
                                                                      0.83
```

图 2.16 p[2]移加特性检验

р	[6]								
掃移:	1	2	3	4	5	6	7	8	
弹度:	3.85	0.00	1.35	5.56	1.43	14.71	7.58	9.38	
掃移:	9	10	11	12	13	14	15	16	
弹度:	1.61	0.00	5.17	10.71	9.26	7.69	22.00	4.17	
掃移:	17	18	19	20	21	22	23	24	
试势度:	6.52	13.64	26.19	5.00	2.63	5.56	8.82	6.25	
#移:	25	26	27	28	29	30	31	32	
(势度:	16.67	0.00	11.54	8.33	13.64	20.00	27.78	12.50	
	[6]								
幕移:	1	2	3	4	5	6	7	8	
τ势度:	0.15	0.31	1.89	1.63	4.24	3.07	0.05	0.72	
릚移:	9	10	11	12	13	14	15	16	
〕势度:	2.10	0.41	0.77	0.51	2.32	2.06	0.88	5.06	
掃移:	17	18	19	20	21	22	23	24	
ζ势度:	3.88	1.04	1.81	1.24	0.78	1.35	0.68	1.46	
#移:	25	26	27	28	29	30	31	32	
的 搜	0.16	1.67	1.72	0.31	1.94	1.89	1.42	1.68	

图 2.17 p[6]移加特性检验

图 2.18 p[10]移加特性检验

р	[18]								
扁移:	1	2	3	4	5	6	7	8	
党势度:	1.08	2.35	2.26	0.79	0.30	0.20	3.27	2.18	
幕移:	9	10	11	12	13	14	15	16	
党势度:	0.10	0.20	0.30	1.40	0.10	1.41	3.52	9.88	
扁移:	17	18	19	20	21	22	23	24	
比势度:	2.93	1.62	2.94	2.24	2.34	2.45	2.56	1.64	
扁移:	25	26	27	28	29	30	31	32	
比势度:	1.33	1.85	1.75	0.21	0.72	0.83	4.47	0.42	
q	[18]								
扁移:	1	2	3	4	5	6	7	8	
比势度:	0.10	0.78	2.85	2.95	1.28	2.77	1.68	3.57	
晶移:	9	10	11	12	13	14	15	16	
比势度:	4.27	1.20	4.29	0.40	2.10	0.60	1.71	7.46	
晶移:	17	18	19	20	21	22	23	24	
说势度:	1.31	0.81	3.35	2.85	0.31	0.82	0.10	1.02	
幕移:	25	26	27	28	29	30	31	32	
比势度:	1.13	0.41	1.55	2.89	1.35	3.32	2.18	3.13	

图 2.19 p[18]移加特性检验

	[19]								
掃移:	1	2	3	4	5	6	7	8	
〕势度:	1.28	7.89	17.57	11.11	7.14	11.76	16.67	0.00	
掃移:	9	10	11	12	13	14	15	16	
烫度:	4.84	20.00	1.72	14.29	9.26	0.00	2.00	12.50	
掃移:	17	18	19	20	21	22	23	24	
读度:	15.22	0.00	7.14	15.00	13.16	11.11	2.94	6.25	
赭:	25	26	27	28	29	30	31	32	
势度:	3.33	14.29	26.92	0.00	4.55	0.00	5.56	0.00	
	[19]								
稀: "	1	2	3	4	5	6	7	8	
势度:	0.66	1.73	1.89	0.71	1.69	1.64	1.79	0.92	
稀:	9	10	11	12	13	14	15	16	
势度:	1.49	0.92	0.98	0.93	0.88	0.72	1.29	7.54	
	17	18	19	20	21	22	23	24	
移:		3.93	1.30	2.28	0.67	1.25	1.72	0.31	
移: 势度:	0.36	3.33							
移: :势度: :赫移:	0.36 25	26	27	28	29	30	31	32	

图 2.20 p[19]移加特性检验

其中优势 A 定义为:

$$\mathcal{A} = |(M(1)/M - 1/2) \times 100|$$

= |(M(0)/M - 1/2) \times 100|,

M(1)表示 1 的个数,M(0)表示 0 的个数,M表示总比特数。

由于 p_6 与 p_{19} 较短,其序列统计出的移加特性存在较大偏差,不予考虑。将其余 10 个素数的优势做成折线图进行比较分析,如图 2.21:

图 2.21 移加序列的优势比较

从上图的对比中可以发现,虽然 p_{10} 序列在偏移为 9 和 10 时优势比较高、 q_2 在多个位置都有较高优势,但从整体分析,在偏移为 16 时,除 p_2 以外其余 9 个素数序列的优势均明显增大。根据多个素数由同一随机数发生器产生的条件,可以认为,16(或其倍数)是该生成器递推关系中一个重要的周期参数。

4) 采样特征的检验

定义 2 对于序列 $a = \{a_i\}_{i=0}^{\infty}$, $a^{(k,j)} = \{a_{ik+j}\}_{i=0}^{\infty}$ 称为序列 a 的起点为 j 的 k-采样序列。称 $a = \{a_i\}_{i=0}^{\infty}$ 为被采序列, $a^{(k,j)} = \{a_{ik+j}\}_{i=0}^{\infty}$ 为采出序列。

鉴于上一环节中对移加特性分析得到的结论,可以选取 k = 16,即对序列进行 16-采样分析,采样序列如图 2.22:

图 2.22 对 p[1]进行 16-采样分析

观察结果可以发现: 当j不同时,p[1]的采出序列的周期不同,当j=15时,p[1]的采出序列为"0101010101······"的循环序列。

对其余几个序列进行相同的检验,得到了相似的结果,程序显示如下:

图 2.23 对 p[2]进行 16-采样分析

图 2.24 对 p[6]进行 16-采样分析

```
"C:\Users\My\Documents\Programs\rsa_attack\Debug\main.exe"
                                                                - - X
 -----p[10]-----
起点为0:
起点为1:
起点为2:
              11010100100001110010100011111000
             点为4:
  占 为5:
  点为6:
              点为8:
   为9:
              点为11:
点为12:
点为13:
点为14:
              10110100101101001011010010110100
              01100110011001100110011001100110
0101010101010101010101010101010101
  ----q[10]--
起点为0:
起点为1:
起点为2:
             点为3:
  点为4:
点为5:
              点为6:
   为8:
             为9:
   为10:
为11:
为12:
   为13:
为14:
为15:
              10110100101101001011010010110100
01100110011001100110011001100111
01010101010101010101010101010101010
```

图 2.25 对 p[10]进行 16-采样分析

```
C:\Users\My\Documents\Programs\rsa_attack\Debug\main.exe
                                                              - - X
     -p[18]----
起点为0:
起点为1:
起点为2:
             111100111110101010111111000001001
             010010110100111001101101011111001
             点为4:
点为5:
点为6:
100110100000111001100101111110001
             0101010101010101010101010101010101
   ---q[18]--
----q
起点为0:
起点为1:
起点为3:
             11110001111010100001101100101000
              10111001110010111100101110001001
             点为4:
 点为55.
为为6.
为为为7.
为为8.
             点为9:
点为10:
点为11:
点为12:
             11100101000110101110010100011010
             10110100101101001011010010110100
01100110011001100110011001100110
   为14:
   为15:
             0101010101010101010101010101010101
```

图 2.26 对 p[18]进行 16-采样分析

```
"C:\Users\My\Documents\Programs\rsa_attack\Debug\main.exe"
 ----p[19]---
起点为0:
起点为1:
起点为2:
        110
        101
        101
 点为3:
        110
 点为4:
点为5:
点为6:
        101
111
       011
001
 点为7:
点为7:
点为8:
点为9:
       10
11
00
E起为11:
起点为12:
起点点为13:
起点为14:
起点为15:
        00
        01
10
        10
  --q[19]
点为10:
点为10:
点为11:
点为为12:
点为14:
5:
```

图 2.27 对 p[19]进行 16-采样分析

除去 p_6 和 p_{19} 由于长度过短,缺乏统计意义以外,通过观察,可以看出其余的 10 个素数序列中存在下述规律:

- ①当 j=15时, $p_1,q_1,q_2,q_6,p_{10},q_{10},p_{18},q_{18},q_{19}$ 这 9 个素数的采出序列均是 01 循环序列;
 - ②当 j=14 时, $p_1,q_1,q_2,q_6,p_{10},p_{18},q_{18},q_{19}$ 这 8 个素数的采出序列的周期均为 4;
 - ③当 j=13时, $p_1,q_1,q_2,q_6,p_{10},p_{18},q_{18},q_{19}$ 这 8 个素数的采出序列的周期均为 8;
 - ④当 j=12 时, $p_1,q_1,q_2,q_6,p_{10},p_{18},q_{18},q_{19}$ 这 8 个素数的采出序列的周期均为 16;
 - ⑤当 j=11时, $p_1,q_1,q_2,q_6,p_{10},p_{18},q_{18},q_{19}$ 这 8 个素数的采出序列的周期均为 32。 分析上述规律,可以得到以下三条结论:
- ①根据题目条件,每对素数中至少有一个由同一个素数生成器生成的素数。 经过 16-采样分析,在六对素数里,每一对中均至少有一个素数满足上述规律。 因此上述规律很可能是随机数发生器的特征,且 $p_1,q_1,q_2,q_6,p_{10},p_{18},q_{18},q_{19}$ 则很可能 就是该随机数发生器生成的素数。
- ②原素数在二进制表示下呈现出以 16 或 16 的倍数为周期的特征,因此,如果该规律是由于随机数发生器导致的,则该生成器的结构特征将可能与 16 有直接关系。
- ③将素数序列按每16bit为一组进行拆分,规定每组数最低比特位为第0位,最高位为第15位,纵向观察相同比特位的分布规律:第0位比特每2组为一循环周期,第1位比特每4组为一循环周期,第2位比特每8组为一循环周期,第3位比特每16组为一循环周期,第4位比特每32组为一循环周期,第5位比特至第15位比特因原序列长度有限,无法得出明显规律,但是可以推测:第w位比特可能每2^{w+1}组为一循环周期。这种根据比特位位置的不同而导致周期翻倍的

规律与带进位四则运算的二进制比特规律相同,其周期的翻倍是由于低位比特的进位而导致的。

在上述的分析中,我们在各种数字特征中,发现伪随机序列的结构即相似与 移位寄存器序列的前后递推关系,即序列中可由前序列计算出后续序列(或由后 向前),同时又符合同余发生器的四则运算特性。

我们先通过求解线性移位寄存器的方法,尝试计算出线性移位寄存器的反馈 多项式,但在验证正确性时,发现其不能符合已知 12 个素数中任意一个素数序 列,因此随机数发生器一定不是简单的线性移位寄存器。

通过翻阅文献,得知素数序列的前后递推关系的结构可以使用多个小整数级 联的方式实现,如经典的 RC4 算法和 BBS 算法,将递推关系式中每次得到的随 机序列串联得到更长的随机序列。因此该随机数可能也使用了该结构。

综合上述分析结果,现猜测该随机数发生器结构的基本雏形

$$X_n = f(X_{n-1})$$
 ,
$$s = \overline{X_0 X_1 \cdots} \ \overrightarrow{\text{PL}} \ s = \overline{\cdots X_1 X_0} \ ,$$

其中X,长度为16bit,f为整数环上的某一多项式。

这一结构中的f函数的特征与同余生成器的结构十分相似,在当f为模某一整数下的一次线性多项式时,即为线性同余生成器。考虑到线性同余生成器是一种结构简单且普遍使用的随机数发生器,因此我们先尝试求解简单情况下的结果,即假设f为一次同余式:

$$X_n = aX_{n-1} + b \bmod m \circ$$

由于 $p_1,q_1,q_2,q_6,p_{10},p_{18},q_{18},q_{19}$ 均符合生成器特征,但 q_{19} 包含有 p_1 序列,认为 q_{19} 和 p_1 是生成器产生的序列的可能性最大,因此将 q_{19} 序列每 16bit 作一划分,

将其分成 61 个子串(共计 984bit),并依次赋值于 X_0, X_1, \dots, X_{60} ,然后求解参数 a,b,m。由于求解带未知模数的同余式是困难的(解不唯一),根据之前分析得 到的 16bit 特征, X_i 的取值应当在 0 到 2^{16} 之间,于是先假设 $m=2^{16}$,然后尝试 求解同余式方程组,观察是否有满足方程组的解。解同余式方程过程如下:

$$\begin{cases} X_1 \equiv aX_0 + b \\ X_2 \equiv aX_1 + b \end{cases} \mod 2^{16}$$

$$\Rightarrow X_2 - X_1 \equiv a(X_1 - X_0) \mod 2^{16},$$

$$\Rightarrow \begin{cases} a \equiv (X_2 - X_1)(X_1 - X_0)^{-1} \mod 2^{16} \\ b \equiv X_1 - aX_0 \mod 2^{16} \end{cases}$$

最终解得:

$$\begin{cases} a = 365 \\ b = 65535 \end{cases}$$

在模216下也可表示为:

$$\begin{cases} a = 365 \\ b = -1 \end{cases}$$

即随机数发生器的递推函数为:

$$X_n = 365X_{n-1} - 1 \mod 2^{16}$$
,

生成的序列为:

$$s = \overline{X_0 X_1 \cdots}$$

用其余已知的 11 个素数 $p_1,q_1,p_2,q_2,p_6,q_6,p_{10},q_{10},p_{18},q_{18},p_{19}$ 依次验证生成器的正确性,最终包括 q_{19} 在内的 8 个素数 $p_1,q_1,q_2,q_6,p_{10},p_{18},q_{18},q_{19}$ 符合该生成器的生成规律,即可认为 $p_1,q_1,q_2,q_6,p_{10},p_{18},q_{18},q_{19}$ 这 8 个素数由该随机数发生器生成的序列,同时也证明了该生成器的正确性。

使用上述分析得到的随机数发生器,遍历初值 X_0 ,然后截取所产生序列的

前 512bit 作为大整数 x,依次与未分解的大整数 N 使用欧几里得算法求解最大公因子,若最大公因子不为 1,则其最大公因数即 x 为 N 的一个非平凡因子,成功分解大整数 N。(由于 N 只有两个非平凡的素因子,若 $\gcd(x,N) \neq 1$,则必有 $\gcd(x,N) = x$ 。同样的,在求公因子之前不必先验证 x 是否为素数,若 x 不是素数,则必有 $\gcd(x,N) = 1$,同时一个素性检测算法并不比欧几里得算法更有效率。)依据上述算法,成功分解出 $N_0,N_3,N_4,N_5,N_7,N_8,N_9,N_{11},N_{12},N_{14},N_{15},N_{16},N_{20}$ 。

其分解结果如表 2.23:

表 2.23 分解模数结果

	Frame 0					
N_0	803F734ED9E3A3FBDEF8E3540B7B676FB66D15D2E5139840CB3C D06E62634C00A48EA2BF9BC3D7A709DBB47BE7E27DFB2C0E5B 81254E6C326691471AE6DDC4A35539018BA6305DAFF1C480F1951 18B1310C546C31FE62C7AEC2A947013AC2897D00FD60E7B792DD 499315341895BD1D1C9AA923E9373E1E01E2856B4FC8C6893					
$p_0^{\ *}$	821273A9E7F4B6E3C1A619AD9BA8EE87167A0BF1069C6C6B948E CE755CD0548F8FE2253912440AF39C76143DDAF833978E4ADF81 AAECB27B795E0B05B620AB9F					
${q_0}^*$	FC68E047C53A33B1B35CBA2B6F4EB2351590BE4F56A284F997045 0B30F36AFFDEBB815576D0A774107ACF03B841E5EC51EE0055FA 8722A89A554B8C36E06DE8D					
	Frame 3					
N_3	8365D1FF23709FAAEF6330AECA9C848B292E0872C5C41E8CBE9D 0780F32EBFC5FCC7947BD666F06AA619F952AFB8D7C08B921196 0D1916235D8AB3A60DEC45B1EF5CC21848E56D5235717186EAD5 1AE22A5661BDFDC42E31F9181F6AB1D070FDEBB078A9980D7A0 571B587130A1D3056CBA40CBBA287CD5031838BAB893B476B					
<i>p</i> ₃ *	86B6117DEF3812D7DC8A70C1C32C45BB6B9E7045126032DF87F2 D40950D43E43C586A00D32880BE7F85A1851AB7C7FCB346EC0D5 EFB0BDEFCDC25D9973242A53					

-						
q_3^*	F9B405A30966666D096869471A3A64B1905CD32B144EF335C29067 4F4BA2D5F9140489B3543610FD38B8DE57020AE84124AC493B691 EDFC50BE0EE5FDD72BB89					
	Frame 4					
N_4	803F734ED9E3A3FBDEF8E3540B7B676FB66D15D2E5139840CB3C D06E62634C00A48EA2BF9BC3D7A709DBB47BE7E27DFB2C0E5B 81254E6C326691471AE6DDC4A35539018BA6305DAFF1C480F1951 18B1310C546C31FE62C7AEC2A947013AC2897D00FD60E7B792DD 499315341895BD1D1C9AA923E9373E1E01E2856B4FC8C6893					
P ₄ *	821273A9E7F4B6E3C1A619AD9BA8EE87167A0BF1069C6C6B948E CE755CD0548F8FE2253912440AF39C76143DDAF833978E4ADF81 AAECB27B795E0B05B620AB9F					
${q_4}^*$	FC68E047C53A33B1B35CBA2B6F4EB2351590BE4F56A284F997045 0B30F36AFFDEBB815576D0A774107ACF03B841E5EC51EE0055FA 8722A89A554B8C36E06DE8D					
	Frame 5					
N_5	8D41AC379635A2C8FFA55F609BE3EB6219C7AD0D3C335AC1F7A E27C3C0510E9ACDE319A6E00B891BDDB05C6B53F62E9321340B C0F19727C0526AC811CC02C7229241045A3D125978C1181264FDE4 9D8A148AAD8A8796C12C2AB5E8D7B0F98EDAC907C092B70D8B 36E5BDC47C5801E4225BB508B1F081F5331C9B1324875EA25F					
p ₅ *	A2F2530963D4554390860F0D758892E7735A77511E7C76CB5F6E0F D592B024EFA8C29C9946240153E356219DECD8AFF7E32AE2E17A CC14DBBC3E6465240053FF					
${q_{\scriptscriptstyle{5}}}^*$	DDEC697B645E1A051920D29F4CB259C903941A031646C1CD5148 E3A7951A9611F63C138BDD2E5A952670CDAF4282D35955E476135 916045D3898B0B7F4EA31A1					
	Frame 7					

N_7	DD1B58FF0DE86CD28DFFB60CC1EE0EFA3250D58264B3DA9CEA A5B5C17C728741F728C462C347DCB707BA7EE8672295F5A750C19 D48AE23A32FC21E76F3188B85008E4EC1A66371BBB0825E558E87 6D80FA59E7099AF25B0B298131277E634772F24EE0ED1BACD3BA 6F8D8E443D5AE16FAF6AA7DBAA59F91F763E4EAFD7D7F5CD
<i>P</i> ₇ *	ECE0BB5F2672D0895354CEC3CC06E48DDD082467E6DA24D17DF CA04B8AEE15556A30666F0C427A1915A4DAD3FED6571D3458A1 7736AAF061BA4C9E5BC7BEC9E5
q_7^*	EEF4B1E3A0A60CAD12A89987E57A2EF1ED9CC76B538E2175B3D 05F8F3EE2A839D944C5F33B76C73D11F89E971D4AC28151ECCD7 BF85E1E05CD20769F20B29DC9
	Frame 8
N_8	9288E1EEF599EA72113D950723A8FC0ADD096C7312D8E78911FE6 4A4322C4FEC96FD70B345AA5A345481FB91D8549998A90E2429D CAF1EEEC863F396479A0BBD121E36B0EFAC8D002FC95B58B587 9DD75251B5CEFCBE90BF50669742821BE2E89B3831FD6F0F3EAB 310E5BF3FC66D702D5FF1581EE1DEFF161EFCA359063C6AB
$p_{8}^{\ st}$	A526772DEB284807B1FAC171CE1CDDEB680E5BF51C505E0F1B62 0AB949C42C735FF6D1BD0A78ED1709CAF501526C83FB2CDEF88 555A0151F1D32A04988140483
${q_{_8}}^*$	E324DA534856229D59D818F7982AF3E1B7CC0DDBC13E85653100 DCFF17929B293974EA632F26392D8528DA07DBFAA371081C8FEB 320E5DF5F650300F85622CB9
	Frame 9
N_9	8B39E72D3C13D48F7773118B19F0D1A0CC592FD8FF12469E1D51 ABA8869A23297CD62E28BCF885F744BD4A7C53CB5369F941F401 EC010DA8665B7EB0B17B1839B3F0E49B51A266DDB84899EB302E 050E43A284B5051C5B9002BA2B8BF1DD3A22C0BAB03A6E780F2 18852EE086F05E9ADF290189439AFF15986077D36D271C9A1
P ₉ *	B6E2C03911449DF333765F3DC9F8F697954ADA8189ECA57BF05E B6058520CE9F98B2B5C92F94D6032246DDCD3D485FA7611A7211 A23C4F8B692EF6959270C9AF

$q_{\scriptscriptstyle 9}{}^*$	C2E2DC39FD4419F3FF763B3D75F83297214A7681F5ECA17B3C5E1 205B1208A9FA4B2D1C91B945203EE46B9CDE9489BA7ED1A0E110 E3C4B8BB52E5295BE7085AF					
	Frame 11					
<i>N</i> ₁₁	9FEDDC9C122AA836E9A04FE9358A118B358C7BC6F3ABDE4E035 E2BCB15B52950DB1D23449EA62F83406FB591ED39564FD0E2DA D0954156037BB32C9C23C49DA83E2E85BC09A9B6FD75E2F55129 044FA0F996895E8BF5E53D88938E4A3366649E97961BE5B7B40954 76D013D2E9F6FE75DC21295747BF371AE346355A5ADBD93F					
<i>p</i> ₁₁ *	C9C4AC73DFF651BD8A786D1789CA7501D26C03FBACDE7885D5 A0951F9D32204908148483EEC6704D1DC87627759AAC910ABC4E0 B45AE591502F0302FB30239D9					
$q_{\scriptscriptstyle 11}{}^*$	CAEA4FA1888CAF9B5FFEDD254DC0DABFE252AEE962340423E5 E6C8ED79E8CFC73EBA6F3188DC21AB00CE25B5C3101DCF8022B 0799C84283350B6137DC938E4D7					
	Frame 12					
N_{12}	808B8F96E7255B3F169EE854ABE0CD0AC7A4AE1B388CBC9A234 E225842208A435842C254A55855B867F3FCA78E3887C8D1663B501 A5D4D5E32F3EF84847F45651A5E2FC8A091E12E2B4DB7AB41113 D258E2200FFB2BBF8B7C38B0049B3E2E60C65EB8B6375F03A40D C9F9AB01FEC60E09DC8CA3644A83738BDA0CFDB2B5ABB3D					
P ₁₂ *	85622CB9C3C41E7369F613BD2478FF17B3CA57010C6CB5FB76DE 7A85AFA0671F0732424982147683F8C6B24D37C888271F9A0E91C4 BC800B8FAEDB155CF0822F					
${q_{\scriptscriptstyle 12}}^*$	F6B6C17DDF3842D74C8A20C1B32C75BBDB9E2045026062DFF7F2 840940D46E433586500D22883BE7685AC8519B7CAFCBA46E70D5 DFB0EDEF3DC20D9963245A53					
	Frame 14					

N_{14}	AAE5F7D640FD102E49217A08E0A4AF72EC895D5ABA020BEAF6F 73053F4053D47CB7EBF3D583532ABFFF50F69508A4DBF2421742D CC2C16AE00E88C237653EC4DCFCD9A918763A9C9DE3CE3DA1F E2BC94FF93A9A7C261400A6E363C66816FDA0E44EE73662CFD2B 8BFA926EF2B40F7D41F35B7E89516BC28330B5CF49976B8D7F
P ₁₄ *	D12A38E118CC5ADB8A3E1A65A200F9FF70928029BA74D7631826 6E2D1628970754FA2871A91C1CEB3B0E32F5A7508D0F1E6251B98 4C44B7392F688BDF578FC17
q_{14}	D12A38E118CC5ADB8A3E1A65A200F9FF70928029BA74D7631826 6E2D1628D708F61CF38BDB569321B9F5C0672E5BFE43A67EF230 D650CC03A6A51784B065D2D9
	Frame 15
N ₁₅	D2611805B6839FD983F2C574BDAD1C50A4FB9FAB35F3BB643F90 A9FBB0B84AF1D042E35E821564FCA783F1A2AF41349BB3E1C159 B20EA6A0DB9E70597CB5C0780EF6CD78481AEAC0DF65A8DE35 A8B5021FCE55332C5B2ADAEDCF80963BD6FFF773CAB55D73637 C9BD667148FB1359782D38C41CBB43FA5FD56F424F842D8683D
P ₁₅ *	E79833B7BBEAECA1618C149B60FE4A25B6C08FBFF352EBE95B3 4092306E6D5ED02E824C76FBA4C31A1DCC6AB41CED2B56C1012 CFD1222D79D5846D33B1B6607D
q ₁₅ *	E88C8F9BBFFEBD25ADC0BABF42528EE9C234E42345E6A8EDD9 E8AFC79EBA4F31E8DC01AB60CE05B52310FDCFE0229079FC8408 33B0B6F37D2938C4D7A68A72C1
	Frame 16
N_{16}	811F75BEAD6F0C3EA1560CFA4BFD4762F1DA3A30E22644AB16B 1BEA5A6A1AF14F0C3C2E63865FD29241246C1473892232DAB6224 AF1600F73340CBCA7BF5AF01EA1FA007E46064CE2F8DD92A9E7 FA9F16CFEEE5A6CF67683BCD97F1E7E1BA73A9F86A8E4D74963 93AC9727D10530A76B03B3A23321E8BDD756FCE265494F6D35
<i>p</i> ₁₆ *	859E8245BC6094DF41F206099AD4C0431F86F20D1C88ADE7F25A8 A51357C41CBCE6E52D519B09FEF07C20F993D242C533256C49D53 D88AF7222AB5E151CC9FDB

${q_{_{16}}}^st}$	F762B6B985C4B873FBF63DBD0678391765CA21010E6C8FFB48DE E485D1A0E11FF9324C49C41490830AC65C4D99C84227519A589146 BCDA0BE1AEC515FEF07C2F
	Frame 20
N_{20}	8178408D7E1155B9F5B0665A3EDFE279189567AAC333CA33A7304 AE1BB9C9A921735888FB7BC9B41550817B1C0D42B2AB03045467 09648F45147180AD5FC839FB8F90B2D30772718A7B45E6204CE788 6122874759F93C198CE61D10555F03C13FD83E639A637D849C846D 5589029533E567E12FD992D690EC5EF38569327FC8D
p ₂₀ *	85C6BB4D0CC839277C9AA791E9BC410BBCAE0415D1F0532F9A0 294D93964D393A8965DDDD4186637BC6AA321960CEF1BE97EE8 A5B340923F83D2F2699FB4B3A3
${q_{20}}^*$	F7C23F99AD24DC532256F49DC3D83AF7122AE5E1C1CC4FDBDB 3E9765DB003EFFD192CD2983746C6389268B2D6F287C07D5FA157 1921C51EBCC0EEFF52050120F

在上表中,用*号标记的 p 和 q 是由该随机数发生器生成得到的,即在 $N_0, N_3, N_4, N_5, N_7, N_8, N_9, N_{11}, N_{12}, N_{14}, N_{15}, N_{16}, N_{20}$ 这 13 个大整数的素因子p, q中,除了 N_{14} 的一个素因子外,其余的 25 个素因子均是由该随机数发生器生成的。

至此,一共有 19 个 RSA 模数被成功分解,但仍有 N_{13} 和 N_{17} 两个大数未能成功分解。再次分析观察已经得到的素数,可以发现问题在参数 p 和 q 的选取上一一并非都是选取 512bit 长。在之前得到的 12 个素数中, q_6 和 q_{19} 是由该生成器产生,但长度为 984bit, q_2 同样由生成器产生,长度为 514bit。因此猜想 N_{13} 和 N_{17} 的素因子可能长度不为 512bit。调整算法参数,将初值遍历后产生的序列截取 40 至 984bit,然后再依次计算与 N_{13} 和 N_{17} 的最大公因数。(实际操作中为了节省时间,不会直接对 946 种截取情况进行遍历,因为这可能需要十几分钟,虽然可以忍受但并不高效。我们采取的做法是缩小范围依次尝试 500 至 520bit、470

至 500bit、520 至 550bit……实际在第一次截取 500 至 520bit 时已经计算出结果。) 最终成功计算出 N_{13} 和 N_{17} 的素因子。由表 2.24 列出:

表 2.24 分解模数结果

	Frame 13					
N_{13}	866AA521700CC11B537E0AA52D40843F8DD23469B9B4C5A3C966 266DC9682947DA3A24B1505C932BD44EB3358290274F0BA295F9D 40449B314531725BDB1DF55D57D088A5D188994C77362BFE54777 D666B8C4D59C0C9C2B4D4E63780FD8D7C637444E0A9EC83A9ED 3FA856D5155F6FCB5861F0CB66994EE0CCB615B99D22E73					
p ₁₃ *	219AA9485C033046D4DF82A94B50210FE3748D1A6E6D3168F2598 99B725A0A51F68E892C541724CAF513ACCD60A409D3C2E8A57E7 501126CC50DB43F7E2E2795F					
$q_{_{13}}$	40000000000000000000000000000000000000					
	Frame 17					
N_{17}	9E52BAE97E34F02361E694ED55E87BC77ABAFB3124DC8DABFC CE71B51F1049CF3C22BC79B8841433CCB6DF840F2BD5A6E75A1 CE52F54048FF4930E7B103C6A3433A2663BD9CBA0E38A35695F92 7EB2FF7A51939869A113D8A6CB03228C0E5D1466B1FF491129A98 8EFDBC636AB2610CAA50925554BE758321178F9EB94072C1D					
P ₁₇ *	2794AEBA5F8D3C08D879A53B557A1EF1DEAEBECC4937236AFF3 39C6D47C41273CF08AF1E6E21050CF32DB7DF694E2435E0A287B0 764B28EEDC67BF9162181C37F					
$q_{_{17}}$	40000000000000000000000000000000000000					

同样,带*的素数为该随机数发生器产生的,其长度为 514bit,符合我们猜想的结果。

至此,对题目中的 21 组 RSA 模数 N 全部分解成功。最后利用分解得到的 p

和 q 计算出解密私钥,解密得到明文信息,获得 21 组数据帧中的全部明文与加密参数信息。

2.6 结果检验

得到全部加解密参数及明文消息后,我们对所有的结果进行了检验。还原随 机数发生器之前,无法判断破解出的参数究竟是不是由随机数发生器生成的。确 定了随机数的生成规律后,我们对所有的素数进行了检测。

根据随机数的产生规律,逐个对第2节和第3节中破解出的模数进行了验证。最终发现,Frame1与Frame18的两个素数参数都是由随机数发生器生成的素数,其余四个分片Frame2、Frame6、Frame10和Frame19中,均有一个素数参数是由随机数发生器生成的;在第5节中破解出来的素数,也都验证了它们是否是由随机数发生器产生的。具体结果见附录3(16进制)和附录4(10进制)。

最后,根据题目中的加密规则与加密参数,我们对每一个分片的明文序列进行了加密验证,将计算得到的密文序列与题目所给的密文序列一一比对,验证了所有明文消息与加解密参数的正确性。

3. 小结

3.1 解题方法总结

本文综合使用了费马分解法等常规攻击方法、因数碰撞法、猜测明文攻击和随机数发生器攻击方法完全破解了题目,得到了所有的明文和参数。其中,利用不同方法得到了各个分片的破译结果,具体见表 3.1:

表 3.1 解题方法总结

攻击方法	破解模数	破译明文	
费马分解法	Frame 10	Frame 10	
Pollard <i>p</i> -1 分解法	Frame 2、Frame6、Frame 19	Frame 2, Frame6, Frame 19	
低加密指数攻击	无	Frame 3、Frame8、Frame12、 Frame16、Frame 20	
公共模数攻击	无	Frame0、Frame 4	
因数碰撞法	Frame1 Frame 18	Frame1、Frame 18	
猜测明文攻击	无	Frame 5、Frame7、Frame9、 Frame11、Frame13、 Frame14、Frame15、 Frame17	
随机数发生器攻击	Frame 0、Frame 3、Frame 4、 Frame 5、Frame7、Frame 8、 Frame 9、Frame 11、Frame 12、 Frame 13、Frame 14、Frame 15、 Frame 16、Frame 17、Frame 20	验证了全部明文的正确性	

3.2 结果分析

破解了全部 RSA 加解密体制参数并破译了全部的明文信息后,我们回顾了整个过程中所采用的攻击方法和程序运行的效率,对 RSA 加密算法的原理、应用与破译有了更深入的了解和认识。综合破译结果,对 RSA 加密算法设计过程中的一些经验进行总结。

1) 参数的选取

(1) 关于素数 p、q 的选取

首先我们采用了两种常见的整数分解法——费马分解法和 Pollard p-1分解法,成功地分解出了四组模数。这两种整数分解法都是确定性的算法,通过寻找特定的条件,使得素因数在某区间分布的概率大大提高,这样一来,算法的实现过程就变得简单可行。只要选取的素数符合某些规律,其生成的模数就存在用该类方法破解的安全威胁。

此外,如果用同一个素数生成两个不同的模数,也存在通过求两个模数最大公因数进而成功分解的可能性。总结了这些方法的攻击特点,RSA 算法设计者在选择素数时应当注意以下几点:

表 3.2 RSA 密码体制中素数的选择

	RSA 密码体制中素数	p、q 的选择									
1	p、q 的长度不宜相差过大	防止被试除法轻易破解									
2	p、q 的在数值上的差距应当尽可能大 防止被费马分解法轻易破解										
3	p-1 和 q-1 有大的素因数	防止被 Pollard p-1 分解法轻易破解									
4	选择 p 使得 p 和(p-1)/2 均为素数	防止消息加密后没有被隐藏									
5	不要用同一个素数 p 生成不同的模数	防止被因数碰撞法轻易破解									

然后,我们利用已知的六组素数参数,分析它们之间的关系,找到了随机数产生的规律,最终还原了随机数发生器,进而求出了所有的素数参数。这也向我们证明:如果采用数学方法生成伪随机数,就存在随机数发生器被还原的风险。所以,我们在选择随机数时,应尽量减弱随机数之间的相关关系,可以采用增大随机函数的复杂性的方法,例如增加代数次数、线性复杂度等[15]。

(2) 关于模数 N 的选取

根据公共模数攻击的原理,我们成功破译 Frame0 和 Frame4 的过程,耗时仅 0.03 秒,由此可知,将同一个明文信息发送给不同的人时,尽量不要选取相同的模数 N。否则,当窃听者截获加密后的不同明文后,仅根据已知的公钥,就能够恢复明文消息。

此外,不同的用户应该选用不同的模数 N,,用户之间不能共享。这是因为,当某中心选择公用的模数 N,然后把(e,d)分发给众多用户,任何一对(e,d)都能分解模数 N,从而,本质上来讲,任何用户都可以求出共享该模数的每个用户的解密密钥 d [16]。

(3) 关于加密指数 e 的选取

为了提高运算效率,RSA 算法设计者常常选取较小的加密指数e。然而,利用很小的e,不同的模数,去加密同样一段明文信息时,系统将是非常危险的。若密文不慎被攻击者截获,仅根据加密指数e,就可以有效地恢复明文信息。

所以,在选择加密指数 e 时,应尽量选择 16bit 以上的数,即不影响计算效率,又保证了算法的安全性;另外,当明文信息很短时,可以使用独立随机值填充的方法,降低明文信息的相关性,使得攻击者无法用低加密指数攻击法破译算法系统。

2) 对明文的要求

在本题的破译过程中,我们用到了猜测明文攻击的方法,根据已知的8个明文片段,通过互联网搜索,结合语义、语境的判断,最终恢复了全部明文信息。 这也证实了,当明文空间较小时,猜测明文攻击是一种有效的攻击方法。

要想避免以这种方式破译出明文,我们在与特定对象进行通信交流时,可以 提前商定某种语法规则,使得语言表达的意思不是其本身的意思,这样,即使消 息被中途截获并破译,攻击者也无法理解明文所表达的意义;或尽可能地增大明 文空间,并提前商定哪些字符不具有语义,也能有效防止攻击者对明文消息的恢 复;还可以将明文分片加密后打乱顺序随机发送,采用只有合法接收者才能还原 的发送顺序,即使消息全部被破译也难以恢复成完整的具有明确语义的语句,降 低猜测明文攻击的可行性。

参考文献

- [1] Whitfield Diffie, Martin Hellman. New Directions in Cryptography[J]. *IEEE Transactions on Information Theory*, 1976, 22(6): 644-654.
- [2] Ronald Rivest, Adi Shamir, Leonard Adlemen. A Method for Obtaining Digital Signatures and Public-key Cryptosystems[J]. *Communications of the ACM*, 1978, 21(4): 120-126.
- [3] 谢健全, 杨春华. RSA 中几种可能泄密的参数选择[J]. 计算机工程, 2006, 32(16): 118-119.
- [4] 王小云, 胡磊, 王明强. 公钥密码发展研究[A]. 2014-2015 密码学学科发展报告[M]. 中国科学技术出版社, 2016.

- [5] 张乐友, 胡予濮. 公钥广播加密的发展现状[A]. 中国密码学发展报告 2011[M]. 电子工业出版社, 2012.
- [6] 王小云, 王明强, 孟宪萌. 公钥密码学的数学基础[M]. 科学出版社, 2013.
- [7] Joppe W. Bos, Alex Halderman, Nadia Heninger. Elliptic Curve Cryptography in Practice[A]. In: Proc. *Financial Cryptography and Data Security*[C], *LNCS 8437*, Springer-Verlag, 2014: 157-175.
- [8] 龙建超. 公钥算法中大素数生成方法的研究改进[D]. 昆明: 云南大学, 2014.
- [9] 谭阳, 关于随机数生成算法的研究[D]. 长沙: 湖南师范大学, 2008.
- [10] 杨雪, 关于随机数发生器的综述[D]. 长春: 吉林大学, 2006.
- [11] Microsoft Visual C++, https://www.visualstudio.com/.
- [12] GMP package, GNU Multiple Precision Arithmetic Library, https://gmplib.org/.
- [13] Miracl package, http://www.shamus.ie/.
- [14] 张广强, 张小彩. 混合线性同余发生器的周期分析[J]. 商丘师范学院学报, 2007, 23(6): 40-12.
- [15] 吴飞. 产生随机数的几种方法及其应用[J]. 数值计算与计算机应用, 2006, 27(1): 48-51.
- [16] 孙淑玲. 应用密码学[M]. 清华大学出版社, 2003.

附 录

附录1 明文信息

通讯序号				()								l							2	2			
明文	М	у		s	e	с	r	e	t		i	s		a		f	a	m	О	u	s		s	a
通讯序号				3	3							۷	1							5	5			
明文	у	i	n	g		0	f		A	1	b	e	r	t		Е	i	n	s	t	e	i	n	•
通讯序号				(5							7	7							8	3			
明文		Т	h	a	t		i	s		"	L	O	g	i	с		W	i	1	1		g	e	t
通讯序号				Ģ)							A	A							F	3			
明文		у	О	u		f	r	О	m		A		t	О		В	•		Ι	m	a	g	i	n
通讯序号				(C							Ι)							F	Ξ			
明文	a	t	i	О	n		w	i	1	1		t	a	k	e		у	O	u		e	V	e	r
通讯序号]	7																			
明文	у	w	h	e	r	e	•	"																

将所有分片的明文信息按照通信序号连接起来,得到通关密语: My secret is a famous saying of Albert Einstein. That is "Logic will get you from A to B. Imagination will take you everywhere."

附录 2 通讯序号与接受序号对照表

由于存在重复发送的分片,所以不同的分片对应的明文消息可能是相同的, 通讯序号与分片的对应关系如下:

通讯序号	0	1	2	3
分片	Frame0, Frame4	Frame3, Frame8, Frame12, Frame16, Frame20	Frame7	Frame11
通讯序号	4	5	6	7
分片	Frame15	Frame19	Frame2	Frame6
通讯序号	8	9	A	В
分片	Frame10	Frame14	Frame18	Frame1
通信序号	С	D	E	F
分片	Frame5	Frame9	Frame13	Frame17

附录 3 RSA 加解密参数表 (16 进制)

	Fı	rame 0								
N	803F734ED9E3A3FBDEF D06E62634C00A48EA2BI 81254E6C326691471AE6I 18B1310C546C31FE62C7 499315341895BD1D1C9A	F9BC3D7A709D DDC4A3553901 AEC2A947013A	BB 8BA C28	47E 1630 897	BE71 05D D00	E27 AFI FD	DFE F1C 60E	32C 480 7B7	0E5 F19: 92E	B 51
<i>p</i> *	821273A9E7F4B6E3C1A6 CE755CD0548F8FE22539 AAECB27B795E0B05B62	12440AF39C76								
q^*	FC68E047C53A33B1B35C 0B30F36AFFDEBB815576 8722A89A554B8C36E06D	6D0A774107AC								
e	42A04A989C5800528EF66 69C747CCE5446D5E8502 BD88529BD2480E201919 BC935E433EFCD960A1B EE78D71870B7134881CA	2CA2A2C383C2 58497C6182337 F841FD6059981	28E 8C <i>A</i> 194	85 <i>A</i> 406 1A	DE0 1220	38C 01C CB1	37C 8B6 A32	ED FB1 23A	2E1 480	8 29
d	5B3B2DA24B37CED4E91 68544192A6D48C301F947 01EA7A3562D6E27687A5 257E03AFC86DF4311DD 79F4815B39057C452BBD	7394AE8609390 5F4DB1DC49591 150249CB6A743	5F7 F5B 3847	949 ED 7710	E82 65A CA8	247 7B1 7C6	B52 1259 5211	2F04 95D	13E7 C47	78 75
С	45446FC78AC9AA9F2E38 16E9F884FA51E20893FA0 F812523EEC79E0CF96719 48AE7603C9A1DEC4EEA 79B3EC1FA3EBC6584547	OAEAF5975E28. 90317BEF53EE8 AC1E41AD5FB8	A68 8FF2 725	FB0 29A FD:	CD9 F44 3DC	BA 11 <i>A</i> E40	469 1238 205	EA(8E7) 8DE)026 FCE	53 E1
m	9876543210ABCDEF0000 00000000000000000000000000000000									_
通讯序号	0	明文分片	M	у		S	e	c	r	e

	Fı	rame 1								
N	845334AC0B3EB2239FDF 5E5A0FED57749A30DC13 3BCF16B691F1D4EEF56C 0DCB4E77294BE027F984 DCD9A9636A0CFF586FA	F1F4CB191D98 C6807440E5FB5 D5E675AEB1C	63F EC: BBI	437 5 B 9 E57	C98 5DI E8C	3293 5343 SAF	8E8I 84D 140	E888 ED <i>i</i> 2261	88B 430	96 C6
<i>p</i> *	8ADEFE85E3A08B1F5B3 A5291B8BC640BA3AE5F 73181937F36A0E21250CI	F1590F0A62FF10								
q^*	F3EECA557B30A36F0542 9561FB4C4B5B70BEBEE 70A89F87737AA4F12B9C	52C80727F3F12								
e	10001									
d	4CCA3C76DACFB771150 C5247BFF622CAE6E0C80 E07110E4C900681E0A001 A465D7207B191CE41F1E 3A28D7D1D57BF14310F2	CB142E8AEE38 BACAC93E48El ECBEBFF5F258	4E8 D30 146]	3732 DF9 B6D	2E26 9A7 0F8	580 4B7	E69 226 CE	F76 1B2 451	F7 <i>E</i>	A4 AB
c	0251025DC5FB84476581I 4C17CFE316A6218194DD D122B151DCFD6D75FD2 86CF4E34EFBD09E8FF9F 37F683579BA624EFBB29	04BE03D30EF91 202DC2C758E89 FBFB4B5254CA	ECC 97B 232	CBB ABI 3A	4C6 E0A 4631	6096 4CI 1397	573I D842 ABI	0853 2FF 016l	3590 35D E30	0D 00
т	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	В	明文分片	٠		I	m	a	g	i	n

	Fı	rame 2								
N	808627CED38A980D7654 BCE2419C34080A3EF3E9 72D42C1862F32B2BEE47 6FA24180EB6A00A0F85C 658CFEB3752F3504A7256	9673FEA4DD629 E157FA7150C5 C65AAEB455B8	9FF38 44635 ED28	321 503 5F2	55 5F: 285	031 366 537	EAG F7E 6CE	6DC 0682 0A78	BA 234F	.83 .55
<i>p</i> *	3EA18C437BE22139DF56 87A6680914D4F355B0E7 80017FE3249B0A4D9D28	79B6087DDB4 <i>A</i>								
q	20D553F6EC8DF4DD610 34407D0230E467B622F97 B51F301BD9D9D25C6189	787080ADDE080	-							
e	10001									
d	759C4E6951E38DE923D3 A1202EA0F4AFDE082633 3016D6F3C91AFFC5DA3 78CC82C4E7C36EC448FI 915A74186BD000B3DF21	29BF3619EF487 1B5BF33746594 D0F18C07AF173	FFDI 4E573 3E0D	F11 305 339	B6 BF E9	F73 F45 9711	FF6 0E9 7D	64A. 943C A2F	AB()7 9 A
С	38702EF6FD51CA1CA834 E3DD9089E194DE67FD44 AF8F31BBA2851DBA1A4 5F9283A164C3AA547936 3904EB55A6A570E8D4B	27F61327157098 1C2985B7FC233 3F89260219F99	830A′ 8018E 64738	73E 242: 3B7	31 <i>A</i> 554 C7	A1C 4C2 78C	B58 AA 5D0	32E5 BD6	56D 59A	06 22
m	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	6	明文分片		Γ	h	a	t		i	S

	Fı	rame 3								
N	8365D1FF23709FAAEF63 0780F32EBFC5FCC7947E 0D1916235D8AB3A60DE 1AE22A5661BDFDC42E3 571B587130A1D3056CBA	BD666F06AA619 C45B1EF5CC21 B1F9181F6AB1D	9F9: 848 9070	52A 3E56 3FD	FB8 5D5 EBI	3D7 235 307	C08 717 8A9	B92 186 980	2119 EAI D7 <i>E</i>	96 O5
<i>p</i> *	86B6117DEF3812D7DC8A D40950D43E43C586A00E EFB0BDEFCDC25D99732	032880BE7F85A								
q^*	F9B405A30966666D09686 4F4BA2D5F9140489B354 EDFC50BE0EE5FDD72B	3610FD38B8DE								
e	5									
d	4ED6B132AEDD2C99C2I 2B048091E8D976CADE2: 0F3A17573AED1B99EFD E7576ACB569DEFB810C 6B1359FB23730459DE93	5E3E70A903FFI 3B8DC369DC2I 9E779BF2EF3E	D42 B33 0C0	C8C 613 CF3′	CB3 02A 7A7	63B .926 0AI	B4 <i>A</i> 5E62 E321	A6B 2E58 F58.	A24 8E18 A3F	47 86 ₹C
С	76CBCAF65993678479920 1314DF5DECD3AA97F3I 49E552FAA2FB9F6A19A 9042DBA4C1A91F39AC0 62A20040473D8F3D8339	DA89851A043A E95BA73ECD6 CAD516C8DE7	F16 E7C FB4	E65 C05 1593	70E 6CD 89A	7D(9C(203	03A 03E(8C2	4F3)3E(4C1	225 06F8 13F7	D 82
m	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	1	明文分片	t		i	s		a		f

	Fı	rame 4								
N	803F734ED9E3A3FBDEF D06E62634C00A48EA2B1 81254E6C326691471AE6I 18B1310C546C31FE62C7 499315341895BD1D1C9A	F9BC3D7A709D DDC4A3553901 AEC2A947013A	BB 8BA C28	47E x630 897]	BE71 D5D D00	E27 AFI FD	DFE F1C 60E	32C 480 7B7	0E5 F19:	В 51
<i>p</i> *	821273A9E7F4B6E3C1A6 CE755CD0548F8FE22539 AAECB27B795E0B05B62	12440AF39C761								
q^*	FC68E047C53A33B1B350 0B30F36AFFDEBB815570 8722A89A554B8C36E06D	6D0A774107AC								
e	D8BFFCDD82504C05A24 FCA1801A2C3A2A56254 C0B3765C55C5B78B9465 D7837AA64334EB5F7C66 BEDCDF420EB6DF9178C	9D433C600E3A 517C14438AD87 58D570CBF8134	408 6E0 4B7	5C1 C0F F7E	235 7AC 87E	35 <i>A</i> 2227 EEF <i>A</i>	AA7 7929 A95	AD 988I 179	14D 3B6 CA1	055 C
d	7D71AF7541F1B1BA8A8 969FF5CD12B40CFED555 6C78799FD20CF61113CD A863D1639446BD3F21D2 F13060219B9C5DA80DF8	EA2B5F1572EB 96775370905169 24C60B406308F	F14 53F 458	532 0A 640	B17 A64. FE0	7062 AFI BB	2A20 2A8 8F3	063′ 4C6 FE9	71B 60D	E5 8
С	1BDAF2DBCEC34D66020 42E5101F92A0F5D88A44 708E363A657665CF05CB 1F95EFCE164D62EEE92F D93BC6F8342C089AF284	5D7BDF36F381 1F289EB758E09 BCE562B94B451	6AI 9D1 IFD	EBE 135 9B5	05A 181 566E	98A 6DF E4F	.8F0 F1EI 862:)6A)F4 5E0	B2C 575 428.	CD F0
m	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	0	明文分片	M	у		s	e	c	r	e

	Fı	rame 5								
N	8D41AC379635A2C8FFA: E27C3C0510E9ACDE319. C0F19727C0526AC811CC 9D8A148AAD8A8796C12 36E5BDC47C5801E4225E	A6E00B891BDI C02C7229241045 CC2AB5E8D7B0	DB0 5A3 F98	5C6 D12 BED	6B53 2597 AC9	3F62 78C2 9070	2E9 1181 C09	321 1264 2B7	340 4FD 70D8	B E4
<i>p</i> *	A2F2530963D4554390860 D592B024EFA8C29C9946 CC14DBBC3E6465240053	6240153E356219								
<i>q</i> *	DDEC697B645E1A051920 E3A7951A9611F63C138B 916045D3898B0B7F4EA3	DD2E5A952670		-				_	_	-
e	10001									
d	34302045853C99C0F31A9 D8358095A80FD323B66F E71B36778ABBA2E15863 E831EE561FE23E25A31F 75CD19493CB2C97F7DA	8FDAA115E8D 86A58A048944E 01829DF96E179	6B0 89B 9BF	7C8 DB2 36E	8447 A27 EE15	7B1] 554 5C6]	EA6 23E D6F	6B40 60A 7984	C8E	26 31
С	251A6449A3E9A4A44423 D4CAF3799B07BB5FC05 F61C824F55C6A4C0E895 CA740940293FF5B2AED FFCFA0B2FE484D01994I	0AAB3762EE10 D48AB46C67A AE129FABF384)E23 66F 0D8	34D DA 379 <i>A</i>	FFF C65 AD2	F101 F2F 25F9	D7] 60I 9393	E55 D5A BFF9	1DE 215 9A6	E4 0F
т	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	С	明文分片	a	t	i	О	n		w	i

	Fı	rame 6							
N	D11B49BF43234D659521 8DC5A7E68FCA0E9768E 556D8F93D19565D9F40F C32D93A0F0459B52F1E3 5648C997CD1438DE21CF	F0DABCAD036 095A49C6185F2 34D4B91134134	E08E 263067 03F66	17E4 1EB 5192	B27 5E0 62E	C11 C1E F1C	51I AA5 3C	DF3(514I	64 BE
<i>p</i> *	F9B6087D1A3861D77F8A 1B098BD45D43F886570D 3AB0ACEF90C264996E2A C1CDB243EAC65CC00D 7CEFA1A71B31C5EEB55	01D881AE75B5 <i>A</i> 409534B56699D BFFAA9232298	A3F51 94D83 474D9	467C 87F7 63F2	C7E0 CB2	CBC 2AA	C76I AE	E57I 1A2	D5 C
q	D65F770611								
e	10001								
d	64B69CED76636BD8D5B DAC5BD818ACFFA411A 2157373CE8F201FA84BC D1D626E48665C6A182E2 A0924BF26EFBBCB8F2E	9CA1262BABA 9AFBAA291094 25F922C4C8E42	3D69I 12362I 4379E	FB2B B727 C8E	B1I 60C 558	E555 27C C49	56B 2B9 4AI	D1C A9D D52	CD 05 6
С	4333AF6B43F36028D8D9 33674A6D08D5B1F2580A 1A62BB2A9E79559F3D52 AF318D20A5150AD46D6 85F2348537787063321FFI	11A0B07E9D853 281014535F6C54 22A6A12DE0A	3536C 4F83C 758EE	D994 A8D 7DF	1E19 1970 15F:	9788 0EE 5D1	89D 8B67 0F2	122′ 7D9	70 9
m	9876543210ABCDEF0000 00000000000000000000000000000000								
通讯序号	7	明文分片	"	L	О	g	i	c	

	Fı	rame 7								
N	DD1B58FF0DE86CD28DI A5B5C17C728741F728C4 D48AE23A32FC21E76F33 6D80FA59E7099AF25B0E 6F8D8E443D5AE16FAF6A	62C347DCB707 188B85008E4EC 3298131277E634	BA 21A 1772	7EE 663′ 2F24	E867 71B 4EE	7229 BB(0ED	95F5 982: 91B	5A7: 5E5: ACI	50C 58E D3B	19 87
<i>p</i> *	ECE0BB5F2672D0895354 CA04B8AEE15556A30666 7736AAF061BA4C9E5BC	5F0C427A1915 <i>A</i>								
q*	EEF4B1E3A0A60CAD12A 05F8F3EE2A839D944C5F BF85E1E05CD20769F20B	33B76C73D11F								
e	3									
d	936790AA09459DE1B3FF D652F704D6A4C5D841D B1EC26CCA8169A4A210 E6AB75235224405C0DD7 2DAA00DE6162685361B6	7853DCF5A7C5 5D02187B40FF 7FA7820DDCDE	3F8 3F8	AEF 70D 5970	6C6 AE C9E	3F9 31A 678	01A DF 5C8	35D 95B 3D4]	668 E8 <i>E</i>	D AE
С	B1E7F916884F9D17DFFC B8EF61C833300CB47285 CCC27628EA781F546863 E512B14926CA0C361DD6 7752CAAABA06AE53C41 0	4FF642F540DB2 FA431B9057FA 6DAAEBC3F2E	2321 7DC 9CF	DEI C1A E511	D170 A41 D01	095] C12 2F4	F4F 27F 017	DD0 B22 3CF	CA6 B11 F88F	5C 13 50
т	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	2	明文分片	a	m	О	u	s		s	a

	Fı	rame 8								
N	9288E1EEF599EA72113D 4A4322C4FEC96FD70B34 CAF1EEEC863F396479A0 9DD75251B5CEFCBE90E 310E5BF3FC66D702D5FE	45AA5A3454811 0BBD121E36B0 BF50669742821E	FB9 EFA BE2	1D8 AC8 E89	3549 D00 B38	9998 92F0 31F	3A90 C951 FD61	0E2 B58 F0F:	429 B58 3EA	D 87
<i>p</i> *	A526772DEB284807B1FA 0AB949C42C735FF6D1B3 555A0151F1D32A0498814	D0A78ED1709C								
q^*	E324DA534856229D59D8 DCFF17929B293974EA63 320E5DF5F650300F85622	32F26392D8528I				_				-
e	5									
d	753A4E58C47B21F4DA9° 1D5028237323ABFDF3C2 16F27F256D1CC2DE9FAI 309A1C1F9099818F2F108 B4870BBD7FFBFABB402	29E21E1C376CE E6FC93B0F1DB BD002F2D4E704	E62] FC: 15I	DB1 9BE D66	.376 281E 7D6	E14 E283 C4I	46EI 82B9 80F	DA4 9A5 78C	1E9I 90C	BB 23
С	246F3344F2C341FDA293 E3D10C94D2365155959B 98DF7055D7E474CFEE60 9D34FC801200DB462538 CE7A758B9EFD6D5FEA	481085379A9C8 CE3529980A3FA E2E9FE80803A	85B 80C 8EF	9FC 537. 502F	CB86 AF9 F662	6C7 9C3 2D0]	E36 75E6 E5A	76B 606l .C90	2BI E89	FD B1
m	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	1	明文分片	t		i	s		a		f

	Fı	rame 9								
N	8B39E72D3C13D48F7773 ABA8869A23297CD62E2 EC010DA8665B7EB0B17 050E43A284B5051C5B90 18852EE086F05E9ADF29	8BCF885F744B B1839B3F0E491 02BA2B8BF1DI	D4 <i>A</i> B51 D3 <i>A</i>	A7C A26 A220	53C 66Dl C0B	B53 DB8 AB	369I 3489 03A	F94 99El .6E7	1F40 B30	01 2E
<i>p</i> *	B6E2C03911449DF333765 B6058520CE9F98B2B5C9 A23C4F8B692EF69592706)2F94D6032246I								
q^*	C2E2DC39FD4419F3FF76 205B1208A9FA4B2D1C91 E3C4B8BB52E5295BE708	1B945203EE46B			-	_	_			
e	10001									
d	4D82B10767F90A4FCD0A 91A5E3A81B9ADB14874 CD531CCB03C3E89041C A57F2B98158F7FF756FF3 CB3FD733E68266146E36	6E4DB676AED0 2AD6B3072820 328F8000537D1	0E0 22C F2E	298 [181 [36]	5CA F46 BCB	A081 5F0 8931	DAA OCA E674	499° 3C9 4D3	711′ 9340 0F2	76)2
С	1478D729930A4BAC9A13 EEAE6114CEEFD83F0EC D467DDDEAA86BBB2C1 E8775A553063F8240CC30 4B207AC691DEEFE08A6	CE19D1DD12047 IFEA07CE8F660 CED605AE7169	70F)440 9A]	7D7 0F7. FFB	C22 A26 574	2882 9F2 0C5	2A5′ 2D50 322E	7A3 C90 EAC	DF2 90C 8C8	23 26 36
m	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	D	明文分片	1	1		t	a	k	e	

	Fr	ame 10								
N	85A0AC7E685995D9F801 DC6184A843C3E4EB9B2 5A0813FD81FF3EBBDD6 FD35513214EF4B4B9AA9 C6BDABBD249D1AC8CB	D97FEAFAD09 52D66F44036531 910E5923CD87I	7A <i>A</i> DCI 5933	A0F EC6 30E	F640 4AC 3599	0846 CE99 9F26	5287 9F91 CF1	7953 FAA AD	3C8 AED 90E	8F 94
<i>p</i> *	B8F4B3E37AA6DEAD7C D0C18FF8E2DA39234447 B925EB005F720589F5AB	7F39576193DFB								
q	B8F4B3E37AA6DEAD7C D0C18FF8E2DA39234447 B925EB005F720589F5AB	F39576193DFB					_			
e	10001									
d	382AD8366DF031EFA3B2 A6268B571ADCCD6D471 9F6ACD78719761CD61B3 651C507BE3299AD6DD0 ABCC77C4DD7CAE74E6	15BC0CBE94F2 3E5A688F87A3: 10AA362B20AI	260 5C5 3C0	C64 0C3 CB:	2D0 3C3 5809	OCD 3B5 9FD	948 1D1 F9E	8BI D87 DFD	EEE 7A0 9D6	E 57 66
С	704A43957AC6D55375FE 75F161A72C4C0820F3A6 F8338B9880A8ED05CC49 71E8CC43103D8E813A9E 92166961D70E5AF868B7	A2D9474DF3Cl 98098AE299905 EA8E502709136	E86 BDI 0DI	D6E DD2 E301	878I AF0 D92	3508 542 536	814] 376. 9DF	F67 507	10D 0AE	A DF
m	9876543210ABCDEF0000 00000000000000000000000000000000									-
通讯序号	8	明文分片	w	i	1	1		g	e	t

	Fr	ame 11								
N	9FEDDC9C122AA836E9A E2BCB15B52950DB1D23 D0954156037BB32C9C23 044FA0F996895E8BF5E53 76D013D2E9F6FE75DC23	449EA62F83406 C49DA83E2E85 3D88938E4A336	6FB 6BC 6664	591 109 <i>A</i> 19E	ED3 19B0 19796	8956 6FD 61B	64FI 975E E5B	D0E 2F5 37B4	2D 5512 4093	A 29
<i>p</i> *	C9C4AC73DFF651BD8A7 A0951F9D3220490814848 B45AE591502F0302FB302	3EEC6704D1D								
q^*	CAEA4FA1888CAF9B5FF E6C8ED79E8CFC73EBA6 0799C84283350B6137DC9	6F3188DC21AB				-		_	_	_
e	3									
d	6A9E9312B6C71ACF466A E9728763CE1B8B3CBE17 8B0E2B8EACFD221DBD 83650AA94D88FE450FDB 560FA3D90264FF920DD7 0B	783146ECA5780 6D2DBE6F1BA ECF06288B2CA)4A′ A5I D36	790: 3C4 5832	BF3 6B6 24D	7B8 6F23 B43	BED BC30 5DA	FE0 0791 A1A	973 D1C .CA	CB D
С	9A597210DA69760A66B0 9EC25B9A19F328BC5588 FD77081DF6E08976EBF5 787A42683D81ADC28450 401CEA94DA7D11142BB	32EE9ED05FC91 57A3BB21AC13 5051B44617C20	BD9 FE2 81D	9027 25A 25A	6B0 742 CA3	0F71 A 0C 3141	F1D 2137 DC	227 E00 2C8	946 97B1	F D8
m	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	3	明文分片	y	i	n	g		О	f	

	Fr	ame 12								
N	808B8F96E7255B3F169EI E225842208A435842C254 A5D4D5E32F3EF84847F4 D258E2200FFB2BBF8B70 C9F9AB01FEC60E09DC8	A55855B867F3 A5651A5E2FC8 <i>A</i> C38B0049B3E2	FC <i>E</i> 109 1260	A781 1E12 C65	E38 2E2 EB8	87C B4I 8B6	(8D) (1) (375)	1663 AB4 F03	3B50 4111 A40	01 13
<i>p</i> *	85622CB9C3C41E7369F6 7A85AFA0671F073242498 BC800B8FAEDB155CF08	82147683F8C6B								
q^*	F6B6C17DDF3842D74C8 840940D46E433586500D2 DFB0EDEF3DC20D99632	22883BE7685AC								
e	5									
d	336B063C5C7557B2D5D9 40F01A736A8156811A884 BB88C14619301CE994EF 8732B09D7D74C5F324EE E32733A1EA943925719B	4223557CF66196 4A5B54D6D323 EB0CD7DE7C5 <i>A</i>	843 3BC 404	05B CCC 4107	036 161] 7AC	505 EBC	3C2 CE11 5208	7E2 1C3 87C	200 <i>E</i> C4E	A8 36
С	3F312B5FDA3A9AA43DI 991FF7D423596B5CC230 0C3B162816EFCC6341A9 BBD3F065FFA3E0961EB3 A6534CA01F5606B062FB	DB4E5BE42E70 96D3CDCF849A 2393C6F2689B7	C88 35E 260	6E1 3866 3B2	FA6 5EF 21A	B39 B9E 2E1	9002 E5F5 C67	2B14 6C48 74E1	48F 8DF E2A	67 19
m	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	1	明文分片	t		i	s		a		f

	Fr	ame 13								
N	866AA521700CC11B537E 266DC9682947DA3A24B 40449B314531725BDB1D D666B8C4D59C0C9C2B4 3FA856D5155F6FCB5861	1505C932BD44I F55D57D088A5 D4E63780FD8D	EB3 D18 D7C	358 889! 637	290 94C 444]	274 773 E0 <i>A</i>	F0B 62B 9E0	A29 FE5 C83	95F9 5477	9D 77
<i>p</i> *	219AA9485C033046D4DF 99B725A0A51F68E892C5 501126CC50DB43F7E2E2	41724CAF513A								
q	40000000000000000000000000000000000000									
e	10001									
d	411BED4AEA1CB3794A1 917AC2817AE57C1687E9 B9232E93D8F77A91E476 BAB717B222E0D3B11D7 571FAB7044E9A4000E27	7FB4A7F12610 01684DE51E1F 7BABDB47D7F	CD(91E A54	0BE 437 4159	0167 806 9591	7843 C7E E3B	32E0 EBC 770	CBE 316 C38	DF 75B	88 666
С	3B54C09AC3380DD2CD8 4D4A41B8F803A7151D6F C0BFDA39C885C1401F82 CDD0907716FCE3AF5E3 F505030E3AA56C6C1022	FEEA62B04B90 21872F17610CD 9678EFE9B344I	854. F5I E2C	A96 BC8 05E	F1E B7E	3528 0230 973	84F2 6960 F4D	2091 5B3 9A39	FB8 A74	D 19
m	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	E	明文分片	у	О	u		e	v	e	r

	Fr	ame 14								
N	AAE5F7D640FD102E492 73053F4053D47CB7EBF3 CC2C16AE00E88C237653 E2BC94FF93A9A7C26140 8BFA926EF2B40F7D41F3	D583532ABFFF BEC4DCFCD9A 00A6E363C6681	F50F6 91876 6FD	595(53A 40E	08 <i>A</i> 9C E44	A4D 29D EE	BF2 E3C 736	2421 CE31 62C	1742 DA 1 FD2	2D IF
<i>p</i> *	D12A38E118CC5ADB8A3 6E2D1628970754FA2871A 4C44B7392F688BDF578F	A91C1CEB3B0E								
q	D12A38E118CC5ADB8A3 6E2D1628D708F61CF38B D650CC03A6A51784B063	3DB569321B9F5								
e	10001									
d	2F0ECFE5C1536DA7311F A64D17BE7197596377496 F6BDC7AE169275D84712 BCC9A68A25BC25110413 31D5ECE6FC413166757E	6F06870371A18 AB7976740C56F 184330DD747A	B32D BB2A C2051)6A .FD D74	89 76 4C(EA1 46F 0297	BE9 3B5 7A1	490 6C08 013	4F2 83A	A F2
С	32083A7D65AD94E25E19 5F134BA59FE8607941E51 B095DDD1EE1757919D8 3A5591B6C75ED9B65AF F1A595DFFD9051D5DDF	FE605243EFA6E 2C39865C81F5F 8A516B44B0610	E3638 F7FA3 62550	8 A 4 8E4 934	AE E7 7C	3961 2FC CE9	BB6 C976 972H	FAI 5D8 E4A	ED <i>A</i> A37 E12	AA 'E
m	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	9	明文分片		у	0	u		f	r	О

	Fr	ame 15								
N	D2611805B6839FD983F20 A9FBB0B84AF1D042E35 B20EA6A0DB9E70597CB A8B5021FCE55332C5B2A C9BD667148FB1359782D	E821564FCA78. 35C0780EF6CD7 ADAEDCF80963	3F1 7848 3BD	A2 <i>E</i> 31A 96FI	AF4 EA0 FF77	1349 COD 73C	9BE 9F65 AB5	3E 3A8 55D	1C1 DE3 736	59 35 37
<i>p</i> *	E79833B7BBEAECA1618 4092306E6D5ED02E824C CFD1222D79D5846D33B	76FBA4C31A1I								
q^*	E88C8F9BBFFEBD25AD0 E8AFC79EBA4F31E8DC0 33B0B6F37D2938C4D7A0	01AB60CE05B5								-
e	3									
d	8C40BAAE79AD153BAD B5C6A7CB25874BE02C9 0E676B46F15E7BEF590F 0C3A92A1C49096354CC1 C72360FB8AB85F82CD86	79456B8EDFDC DCE804ED48C0 10EAD25CC851	C502 D6C D0H	2A1 332 ECE	1711 CB8 291E	F80 30A 25B(CDI 68A 0045	BD2 ABB 5F4′	2296 3B <i>A</i> 7173	58 AD 3C
С	4A6972B03F96CC30DE3F B219506A12F3E4D522B4 35262A4CECCAD554F57 2048B0FC9270AFE51C63 3CA7B429121BD0BB9AF	.0B10EB3F630A D1721DB61B26 F5F27A9A3CFI	.068 0A0 078	C6C B59	0818 25FE 971E	86F2 8CB 05C	29B 8020 BF7	F78 AC 'FBl	236 326	0E 56
т	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	4	明文分片	A	1	b	e	r	t		Е

	Fr	ame 16								
N	811F75BEAD6F0C3EA15 1BEA5A6A1AF14F0C3C2 AF1600F73340CBCA7BF FA9F16CFEEE5A6CF676 93AC9727D10530A76B03	2E63865FD2924 5AF01EA1FA00 83BCD97F1E7E	124 7E4 1B	6C1 1606 473	.473 64Cl A9F	892 E2F F86 <i>A</i>	232 8DE 48E	DA 092. 4D7	B62 A9E 496	224 E7
<i>p</i> *	859E8245BC6094DF41F20 A51357C41CBCE6E52D5 D88AF7222AB5E151CC9	19B09FEF07C20								
q^*	F762B6B985C4B873FBF6 E485D1A0E11FF9324C49 BCDA0BE1AEC515FEF0	C41490830AC6								
e	5									
d	674C5E322458D6988111A EEAEBB48C10C09C9BEI 8C119A5F5C33D63B965E D458624AF7034CDC6E60 D89654F1D02D8D330204	B605197541CDE E2599F0E51F3A CE19A69F92653	86B 1B6 86A	CD 5279 579	D29 2F2 84D	3A8 27B′ 49E	81C: 7AA E613	2489 AB60 868F	91B 642	850 88
С	224CD570EAF4D650AA2 A56AE86EA517DF43F9F 6A82A437516530D130163 50A63AF038B0449CF2A3 68E901745D4F9231627C9	130CC7CA75C8 1552D016ADB2 3442BA6696B64	8868 D87 85 <i>8</i>	3623 746I \ 461	BA DC9 D47	145 2D3 545	189 30F2 591	E2E 2A4 AA	D163 D90 DB1	32)A
m	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	1	明文分片	t		i	s		a		f

	Fr	ame 17								
N	9E52BAE97E34F02361E6 CE71B51F1049CF3C22BC CE52F54048FF4930E7B10 7EB2FF7A51939869A113 8EFDBC636AB2610CAA	C79B8841433CC 03C6A3433A266 D8A6CB03228C	CB6 63B COE:	DF8 D90 5D1	340F CBA 466	F2BI A0E3 B1H	D5A 38A FF49	6E′ 356 9112	75A 95F 29A	1
<i>p</i> *	2794AEBA5F8D3C08D87 39C6D47C41273CF08AF1 764B28EEDC67BF916218	E6E21050CF32								
q	40000000000000000000000000000000000000									
e	10001									
d	6F02930C24F1F96ED5B6 864BF8FBF2C4DBE57F4 0BCBEAC744388D91E70 CA55C02AFC3C9C4E417 7475913D15E12203150C1	1D99EC28B8F7 C3EBB1C59690 2DF2BA630E59	EA DD 060	A3A 866)A3	6E6 047 A89	68C 6C0 1D1	DE: 0767 D8C	5B9: 'B64 '47F	51F 1925	5F 5F
С	1FCA302BE54FD4B4F8D B9980EC12FDF92F4F408 BA67321938D487D7286B 3DA0C76ECF00957894D3 E9FD96264786FAB50A31	C15239FE5EED D9EF539CB2B0 556ACBCE10E1	408 068 FF6	3248 FE0 58A	3D59 261 536	985 7BE B82	10C E295 EF0	0E7 541(761)9B3	8E 3B
m	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	F	明文分片	у	w	h	e	r	e		"

	Fr	ame 18								
N	84FF95E263D30FAD8368 7750ED2E342022652836E 140EFB72E283007028CC C5BFF2900640D80974252 327813C920A6FB98A6BE	E2EBB30A765D0 2A4FE97E4FE3 AFA965F9B1560	C73 B 5 E 5F3:	64F 0272 39F	5417 2C9 155	'E45 17E ACI	555I 734 EB5	D1F F87 9EI	D72 15A	D 0
<i>p</i> *	8ADEFE85E3A08B1F5B3 A5291B8BC640BA3AE5F 73181937F36A0E21250CI	F1590F0A62FF10								
q^*	F52C8FBBED9ECA45646 835E7DA5A52515D7C496 39A560C9DFBD812F70A	CB366E9AD5C1								
e	10001									
d	41F02573746273E766BB1 7BE9576E0CD1D1BBAD A7702F6DA9B7EC9CC31 DF572D442526B66E20CE A685AF6E45123818B3E1	5068F8CA6F697 CF4849B626659 31A6C5E07F0A	77D 9A <i>A</i> C7E	D08 A584 E04E	8840 4228 0680	0AC 87B 0C5	87B 950 4FF	BF/ C40 2C0	ACE 408 0288	38 9
c	45D8BD62BBF9966C8172 37D167D5C881B100D83I C8D7EDAC87132AADAC C6BA0A10BC1AC227328 EF8BF24B5017FA8481B3	D73352F18A609 C33DEF0BDA60 32FA4AC47EFB	149 C9E EEF	63C A91 E99I	A81 750 32D	F7D 818 35E	F9E D86 EBD	3921 5999 A20	1127 9052)19I	73 21 D1
т	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	A	明文分片	m		A		t	О		В

	Fr	ame 19								
N	8614C70089AADE50E5A EBE451E335B4C9E21DE9 3035E971A2FAA387EA53 F9CC41A59CF31EF07473 42FCC4C7CD834B6A772	984912BCA159 8AAD48A70167 8A1DE08A018C	147 35E AB	11A 2BI 7C6	9C3 B60′ B95	3590 7166 3BF)56 <i>F</i> 626(7AC	A2A CAI C9F:	D05 D6C 501H	54 F4 BD
<i>p</i> *	87CA9B01006C99FB8AD B64DEBC82C27F39A529 E86456936F9618DD73181 3F9AD2BD690EB4F6A3A 14EEC35C790884F58A25	1B8BC640BA3 <i>A</i> 1937F36A0E212 A6663F6D6E686	AE5 50C A47	F15 D2 7873	90F 1B9	ОА 07Е	52F1 503 <i>A</i>	F102 A5 32	29F] 240 <i>A</i>	D9 45
q	FCC696496F									
e	10001									
d	444AA8E158F808BE0868 0EDA9AED471C1E9C1D9 E9CB2E5583B84B7F71E6 67A0355AE99EB3ACE56 C2B72FA9EFC513BC8619	9E5264C45375E 551B9156EF68E E5B093C827E6	3F <i>A</i> 2C1 0BE	158 158 8081	5790 800 B70	C28 C148 C9E	D5I 8355 93D	D61 SE9 CA	D24 BA2 A70	F 23
С	4B6A6A6CE0CD9D8E0D 519C4B6B0B606D64DC53 DB595AE7D53FBDEE703 1E04F82A9CDC067D3669 14ED95083D091DA69F80	31A29C0A7510 371DEBCB9A93 926B58A9092F5	928] 88B9 5D]	D44 94D B22	87E C0F F8E	E7B0 F266 D4B0	C3E 5326 CD9	0450 6A91 9777	CDB DF6 7A9	8A 619 9F
m	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	5	明文分片	i	n	s	t	e	i	n	•

	Fr	ame 20								
N	8178408D7E1155B9F5B00 AE1BB9C9A921735888FI 09648F45147180AD5FC83 6122874759F93C198CE61 5589029533E567E12FD99	B7BC9B4155081 39FB8F90B2D30 D10555F03C13	17B 1772 FD8	1C0 2718 33E	D42 8A7 639 <i>8</i>	2B2. B45 A63	AB(5E62)304 2040	154 <i>6</i> CE7	67 88
<i>p</i> *	85C6BB4D0CC839277C9 294D93964D393A8965DD A5B340923F83D2F2699F	DDD4186637BC								
q*	F7C23F99AD24DC532256 3E9765DB003EFFD192CI 1921C51EBCC0EEFF5205	D2983746C6389								
e	5									
d	4DAE8D21B20A66A2C69 60210A2AC324745351EF 38D5EF8FD910E6CE6CA 11B8EC953186D811254C 9CA9F535F24DCC1030C	D4A45D273304 B55EF076702A F1396108DB9E5	DB(471 5B3	0440 FA4 820)7F4 2B9 33D	4D1 9ED 1E2	99C 0B41 2F33	E90	C32. 5789	A4 93
С	210B2C8CA031259D2EF2 9E62463C8649EF5983EB9 0DA5DA71AE31705A550 4B41C7F58ECCDC357778 6F1BDF841D1362287A49	94CFF6F0D6A1 91B6856C151449 866C117D3BE11	881 DF E37	A0I C76 A45	D4E 6B70 676E	190 026 E340	EF8 A9F C901	A1A AB′ DF7	ACC 74A ′B81	C2 .A
т	9876543210ABCDEF0000 00000000000000000000000000000000									
通讯序号	1	明文分片	t		i	s		a		f

附录 4 RSA 加解密参数表(10 进制)

	Fi	rame 0								
N	9005870518655856993526194 8251093307045093124134867 5753301402088676701668212 7215370534716084813732883 7004249132500203484871610	865210377276811- 035175754850951 918187890434411	4420 8971 5524)567 1033	1198 3807	3481 7997	4236 8959	5086 9810	7111 6732	106 29
<i>p</i> *	6812427463539231600349464 1320419892511765086368785 56279629494046731167									
q^*	1321976720758664079557152 6985743152190617208920569 9107894773842719465101									_
e	4678646536268633491726599 6867869794877498845030561 2234035324609604060428488 1399203901890478653711508 7271345416818313808448127	212796792653392 350558733782932 788800552854790	3268 2949 0640	3260 9633	4125 6376	5570 5091	0012 8079	2515 9744	3569 7754	96 45
d	6406470278515002392460225 0144490835963557937774136 2781644497540776761680298 6939982295212400272230683 1218242200767385491772216	835178141785744 713545220705034 558836635823224	5486 4702 3298	5173 2048 3861	2756 2337	5713 7025	4650 6362	0600 2505	2197 7570	78 03
С	4864117372047570227869031 1930773386153198223372579 5805315553713680858906705 7847959780977101451922363 7203097693267301081836981	328462635803653 068657158073776 4762975111653440	5615 1946 0020	5166 5287	7438 0082	3020 2101	9276 1001	5666 1144	3283 5592	37 278
m	7985094500508197619216095 2293358555096757707390195 867276861362837615205									
通讯序号	0	明文分片	M	y		s	e	c	r	e

①本附录中带*的p和q是由随机数发生器生成的。

	Frame 1												
N	9292179080070582697749 6168726101016067456726 2105292971919086388883 6544089987043488709421 5233769089985063860828 136919334252875849	58225055173524 88813639124068 6772312358731	0913 3157 1423	3894 7994 317	483; 465; 774;	928′ 420′ 2599	711 733 942	1319 846: 1998	9242 3678 8085	27 80 53			
<i>p</i> *	7273268163465293471933 3471302263984423914189 2051215852541640704451	5686247617379	8834										
q^*	1277579606750453488930 1462366302734214583227 0576072883856397371621	4736194145090	438	130			_		_	-			
e	65537												
d	3370235084506122506759 8860500471812135487532 8394995406297460723923 8467873895824269701077 7556557924949475841898 38440597282630629	1813777888439 14304289210356 16969119951947	6242 0403 6276	2172 3873 6843	282: 821: 846:	344 648 1428	102′ 440′ 8100	7750 2430 0589	6204 6203 9462	48 36 26			
С	1626661141529320283833 3687998320433794207275 7010182076965661241973 5720014700549254630959 7917287048672537343548 27749365878233484	0922331869434 4057871562023 3917018833724	7625 463 0098	597′ 1596 8238	7694 698: 860	450 522 842	076 348: 124:	1460 510 211	0048 157 1516	86 12 66			
m	7985094500508197619216 3222161890809457825126 4932649594298123971808	7121296120303	8444										
通讯序号	11	明文分片			I	m	a	g	i	n			

	Fı	rame 2								
N	9025265360096445352455 3520872164147768650421 6643607865954300286844 2056461670857376476438 9670406785228124876225 916059133498338129	0381763300535 1941189331607 6830123818197	9996 4286 1832	686 531 233	011: 279: 443	3582 3730 472	217: 082: 506	5067 2963 1068	7268 3564 8289	85 42 91
<i>p</i> *	5248406512257276755729 6733197354892893647364 8908144612639586183759	1642121864158	8088	396						
q	1719620105458406433483 7711050583216552385626 6522693290629520826275	1308397965147	9555	_				_		-
e	65537									
d	8258895191658208655835 6147729457074171559623 8662289255489437978586 3115722345807460930396 4951639990422347138894 295543873255793553	5790700042109 4474983697684 2707884815449	7238 6725 7243	868 548 367	493 403 792	723′ 886: 965!	774 551 925	6664 7634 1005	4238 4379 5227	89 90 71
С	3963226350487047857486 6410237055871793939895 4349838153691234792087 1085989895119020634505 0987623886812686545521 528512800343192265	5624412675744 2634471659422 6426253251079	8219 7785 9298	989 530 322	163 883 424	678. 660 252.	587 193 271	892. 218 9572	3764 172′ 2696	48 76 63
m	7985094500508197619216 3752852087229515882327 5996366037837632296569	1052861074508	7205							
通讯序号	6	明文分片		T	h	a	t		i	s

	Frame 3											
N	9227062778302034190376 6135487358785338853904 3608086461928580603321 8460622389350632712611 7584130630596342720833 576053124769728363	1855724967826 1083096246398 2739408023014	858 616 900	532 401 003	184 433 600	594(154(028(0442 0330 6549	238 503′ 929	6888 7718 4884	89 86 48		
<i>p</i> *	7055398260479522499340 0110293347858492481988 6493942294363217586016	2726159210873	803	090								
q^*	1307801833099484562155 0615773048246855802311 7414941747977576661456	9263345259914	812	797						. –		
e	5											
d	5536237666981220514226 5681292415271203312342 6164851877157148361992 7488481215879364334209 6098320707497674046089 666628394542132669	25113434980696 26649857747839 23179763879232	115 168 732	1193 632 826	310′ 854 078	7564 8969 587	4265 931′ 373′	5432 700 334	2133 1758 6627	33 86 78		
С	8342143428660254649336 4040331447569764445309 1385720208179245619909 0742189645490481887443 3632262742398190575822 792263361394479317	9371955661032 97972344479704 9231990567738	816 537 173	389 510 059	281 180 815	837 135 647	4248 4862 539	886 247 737	6315 2762 8005	57 15 52		
m	7985094500508197619216 4283542283649573939527 7060082481377140622034	4984426028713	596	573								
通讯序号	1	明文分片	t		i	s		a		f		

	Fr	rame 4								
N	9005870518655856993526 3760044382510933070450 8481423608671110657533 9710333807997895981067 0434411552463739669878 014643951785502867	9312413486786 0140208867670 3297215370534	5210 1668 7160	037 3212 084	727 203: 813	681 517: 732	144: 575: 883:	2050 4850 918	5711 0951 1878	19 18 89
<i>p</i> *	6812427463539231600349 0355835761320419892511 5641113715563483025627	7650863687856	9037							
q^*	1321976720758664079557 2256305169857431521906 3114086004034928891078	1720892056981	8877	791						
e	1522069925757068934848 4140341403795669566553 1827422540843366433981 3311183448063157563046 9775726531698188911802 8773714479076093197	3186650071476 6076439405464 5024863454659	1463 0500 7784	389° 022 159°	737 172 796	020 202 388	554: 860: 665:	2159 728 6422	9561 8096 2706	18 67 61
d	8808983115855943267394 7653737689967883346026 1061454295081091244820 4712349091366249935240 5914919458120628631732 916343380712892733	9941054190515 8296826028260 9523091888379	5116 2592 1359	524: 199 915:	377: 354 524	567 091 694	109 363 293	1200 1663 943	6157 3462 7062	74 13 18
С	1956063455630575555092 0844104485773927537226 4508058805126003398691 6599764768920302951713 5583045438153697076529 294232192817502376	4434294041902 6951334892919 5396008631050	1385 4643 2925	563 380 544	617 985 022	595 946 651	641 854 948	5380 9710 0092	0462 8922 3924	27 29 47
m	7985094500508197619216 0389680322933585550967 3272825770085042286727	5770739019554	5717							
通讯序号	0	明文分片	M	у		s	e	c	r	e

	Fi	rame 5								
N	9919371154725706316081 3764532335872088470223 7841828763954360888452 4905969896321294729914 6724761095690092179821 979566824267620959	37409706733479 28184016970165 22320497759258	936 462 889	526 984 425	264 921 182	975: 422: 705:	573 229′ 042	8722 7784 1232	2216 4511 2174	67 13 47
<i>p</i> *	8534204848837515931975 2496455007444984812121 0521543174486775245354	8617056039698	073							
q^*	1162307599878724540234 9727146620333293916811 5633178480497156640718	2571607785230	1484	419						_
e	65537									
d	3664765457213078521007 0478365220386512628431 8740317681029448100952 6244905511991482571370 2436535982737603932531 053431516070034369	6865300961865 22573807206594 6819292455558	048′ 996′ 054	798 817 641	548 783 986	207 515 682	174 877 477	1179 9893 5064	9502 3955 4792	21 58 26
С	2605467779358177292486 4396138990264566536537 9895191565638309165537 6176932456931552587209 2411498650200401467760 258838789328064564	79216485158540 75476220846674 96987367001543	125: 532 758:	538 122 380	619 683 071	9994 531: 8594	4022 2974 4290	2934 497 619:	4970 1739 5801	08 97 18
m	7985094500508197619216 7116023851525446213686 8719906305590222307205	66334983129462	8692							
通讯序号	12	明文分片	a	t	i	О	n		W	i

	Fr	ame 6							
N	1468396439700164648131 0799300168290102378426 9792246413142980277245 3968205493086904939285 0896045886080174347635 8573928693059198131	7554815946189 9091810625253 9332400768913	37465 98546 56487	1530 3695 5332	288 539 316	894 950 139	322: 235: 473:	2868 2945 5120	85 51 09
<i>p</i> *	1594826922590108161395 8355402718392411641342 4841452565420868944985 7337276907853734645755 3007127746594383430808 1164931	7533184220914 4642296494202 2569827455205	03710 40708 83865	6543 5540 6010	253. 881. 616	535 563 309	1034 313 396	4523 2420 5063	32 06 58
q	920724637201								
e	65537								
d	7072330686342883623979 1862462827776049146014 8366681044024681020040 7414044570766536958201 9242807523052334299065 295008322392493473	3858130636377 5287962509953 3335350922091	54641 19698 30852	1282 3796 5907	240 972 653	164′ 633′ 179′	7940 7060 929	6880 4518 5716	02 83 69
С	4719077580747250617358 4468676457696140445235 2193780478076468177223 7899648094418862497263 0925820980263353418653 419602253279143149	7380050209942 7691836421172 2371674822397	78091 79718 25812	2304 0431 7227	407 232 029	550: 720: 990	332 429 196	2245 4555 9569	50 51 90
m	7985094500508197619216 7646714047945504270887 9783622749129730631595	0266548083667	74530						
通讯序号	7	明文分片	"	L	0	g	i	c	

	Frame 7											
N	1552664939360431038498 3602290915337311036700 7794783088845393686109 1257162761538007659060 1538332460584393303531 1110899212429555149	7140301635144 01454437286325 01420679754823	9506 278 066	6348 7476 176	879! 685! 427	9832 246 499	289′ 153′ 756′	7201 7713 2670	1641 8229 0900	11 97 01		
<i>p</i> *	1240630014530794433520 4522686524721950743049 4986287857927922374612	2015619397376	5203	554	_							
q*	1251513280490515970812 5811836263405233128780 5005575049429365754002	4981520474390	5724	401:				-				
e	3											
d	1035109959573620692332 5734860610224874024467 8529855392563595790739 5258245112065973652462 5712240707911148249316 3080361216052758891	1426867756763 94302958190883 9028417563475	3004 5189 6280	423: 998: 095:	253: 980: 316:	322 611 813	193 1010 962:	146′ 0938 3658	7760 8550 8018	07 02 88		
С	1249299432320818281058 0391567054444567983658 1622132258819278328852 8282545680158866300102 9036423944365147958096 6553798608040451024	8765369503919 27260057760825 26961554685733	3114 7558 5790	404: 837: 079	3280 937: 157	043′ 355′ 786	2032 7009 556	2720 9530 502	5938 0789 1730	35 98 08		
m	7985094500508197619216 8177404244365562328087 0847339192669238956927	4198113037872	6213									
通讯序号	2	明文分片	a	m	О	u	s		s	a		

	Frame 8											
N	1029001639304977910644 3845590533936352443564 7211548409422234391456 1519152161232750054642 5282909825146890480080 0318502441084765867	7082637326033 9823445161922 22953489162956	518 106 886	083: 875: 436	289 456 115	523: 920: 465:	2500 542 810	6704 171: 709:	4639 5113 3228	90 33 83		
<i>p</i> *	8649620751833675845720 8781448451754061726768 9909605033162371994604	34499927515021	963	060						_		
q*	1189649429527687405559 5485807068776793606182 8543849016926095004968	1484944658163	917	131								
e	5											
d	8232013114439823285152 0764724271490819548517 7692387275377875131655 7014708593606560641279 5068483608401834765652 933545677853587341	76661098608268 58587561295376 59199774081897	144 853 111	666: 359: 997	316 966 762	1860 160: 195:	0053 5683 3239	363′ 528(914′	7112 098: 759:	25 54 59		
С	2558508895009529071232 7768116285362079062975 7095433268145814662482 0540769873582431590094 4807624841386886185122 589496390425159539	5273649095493 28056419495170 2915322054614	625 693 437	1114 782 632	4600 208 116	0439 890: 732:	9041 260′ 271′	1915 775 7878	5682 4944 8238	26 44 31		
m	7985094500508197619216 4283542283649573939527 7060082481377140622034	4984426028713	596	573		_				_		
通讯序号	1	明文分片	t		i	s		a		f		

	Fı	rame 9								
N	9776795104615437232140 1233003462769415459435 9225474252128699256484 2517929519709882691122 4080795582529077092266 744384140745492897	4717280543848 2474152667158 6483155821197	524 559 251	618 816 989	701′ 750′ 297′	7998 2856 1023	800 611 1891	1060 1641 1871	6016 1944 1392	62 48 23
<i>p</i> *	9578503710865082752572 4322045327876716430278 1083446345608685268443	39367025633192	835	845		-	_			
q*	1020701708715258804071 5793288776252558629748 7310309211579090063339	36764970214783	542	926						
e	65537									
d	5442973376672701570896 7378692407992506407875 7786451219359563621650 7433575805193113857419 1541919592382469963208 105229944206178201	58963863129573 01251383710178 05645684843004	481 176 309	685 316 669	734 958 532	0713 3553 4043	8602 3893 5473	2720 5000 5508	6622 0250 8526	26 07 64
С	1437595054387388201179 2047625299699702886303 8471852361389678140880 0536682227755151435342 5442780563568811883349 091464410712019656	31938223479955 33076778591664 33864240674522	671 549 264	755 214 407	244 274 918	010: 139′ 605(3860 7780 6620	612: 625: 008:	3799 6445 5505	90 53 54
m	7985094500508197619216 1009885812241434602246 2507163016882320642312	55548670138621	894	032						
通讯序号	13	明文分片	1	1		t	a	k	e	

	Fr	ame 10								
N	9383651435834417376289 0106276642828025218933 0631086202080047406460 1878771795102669093498 4576226592039259070002 474419847211138467	0124789908656 09966270011278 66964275526538	5610 2252 2367	076 220 750	055 083 596	416 439 344	5780 3363 542	0938 3574 4508	896; 4089 8642	59 98 28
<i>p</i> *	9686924917554805418937 3203008051154435781849 5520400839465585825498	8593433858330	3180							
q	9686924917554805418937 3203008051154435781849 5520400839465585825498	8593433858330	3180							
e	65537									
d	3944206266733764064034 1973657669407870526663 1158803906323131451024 2999022244797843680951 4773582060225475139121 289600089033243889	5289189123911 3232690541231 4038515969282	1080 3840 611	045: 054: 579:	258: 328: 444:	381 003 053	6848 4579 6808	8002 9274 8313	2284 4695 3694	41 52 48
С	7885278540812733821037 5067002412358292419274 8058471840121734491606 8071498149227573165852 7286510359738598116104 438812404967605644	2879932956046 32482326101315 37465442787266	4669 2092 5549	937 215 947	555 124 828	140 266 301	557 153 571:	103(877) 586	0593 2012 7213	38 28 38
m	7985094500508197619216 1540576008661492659446 3570879460421828967252	59480235092826	7700							
通讯序号	8	明文分片	w	i	1	1		g	e	t

	Fr	ame 11								
N	1123060666016528190622 3222748897005712812882 8365019228385820143813 0114416532866424584318 7795507138497271455725 8629959223270431039	1831260649058 4150093973592 6502621312941	569′ 578∶ 267′	739 310 706	569 926: 430:	103: 353: 834:	2980 7440 2580	091′ 040′ 075′	727 3499 7248	18 97 85
<i>p</i> *	1056746104850503964197 4984695584136876402672 0589913153049613291667	8985383339563	699′	786						
q*	1062753542087014015726 6534170673076876359166 8733824083834078395250	4404686428315	860	001					_	_
e	3									
d	7487071106776854604147 1484992646704752085881 9100128189238800958756 4919200222367844573904 9077376272123172385658 880751934356006667	2208404327057 1000626490617 2347119286013	131: 187: 477(597 326 030	127: 509: 294'	355: 260: 723:	3200 3352 5780	6113 2570 0029	5145 013 9911	58 18 15
С	1083878323903377709473 4397179204492272046195 4872870862538725835055 2218691466790040179163 9403537359982380128844 9110262247417571857	5035726863109 2407507355767 5906745469370	418 352 149	657 491 538	218 226 978	498 653 415	6594 4880 9620	460 032: 034	6635 5269 1860	50 91 03
m	7985094500508197619216 2071266205081550716647 4634595903961337292127	3411800047031	646	149						
通讯序号	3	明文分片	у	i	n	g		О	f	

	Fr	ame 12								
N	9026748093936816074945 9245323647502822038591 9462152431903454768745 7829067479264301884579 0320058352559498237296 189186085941328701	4385363672064 44609118840812 98263156849027	222 055 209	154 190 440	644 257: 979	898. 311. 746	5454 3507 4854	410 787 414	6380 6754 654	67 45 16
<i>p</i> *	6985860474362742689823 1517806078459428414600 2239171033446272053359	9169313869395	439	650				_		
q^*	1292145488313699141434 1149065515779165690863 4079738243795361045482	3843111701632	550	609′						
e	5									
d	3610699237574726429978 1698129459001128815436 1784860972761381907498 6577446620289324437905 4737621617480915511928 131486109516375525	5754145468825 31843647536324 31373880877867	688 821 402	861 279 456	8579 810 053	9594 3102 449	418 240 144	1642 325′ 122	2554 7060 448	47 01 73
С	4437497929112057550398 4878064332010355432423 3799433213213628225229 3309727625340881269955 3758750494467535572805 585419962565568495	9561821358467 90047943829429 97305314344220	380 120 807	238 628 356	743; 720; 024;	267′ 564′ 994′	768′ 714; 977′	721: 575: 399:	3922 9972 8408	29 22 84
m	7985094500508197619216 4283542283649573939527 7060082481377140622034	4984426028713	596	573						
通讯序号	1	明文分片	t		i	s		a		f

	Frame 13
N	9439053399235889555070422518048460401602978160462260783304 4135524814562613596803297695605669157378162035217814540004 2310752014207967875477337622659593200181074190588328190106 8134413301177747972238252579793855818162983576847146143456 0813554411133962651212455645589624432040989600687436833459 731886703583047283
<i>p</i> *	2815987057259792059456389325049957273923776966064723883901 1417383170724985058502301163390234256825164330439886062865 686161169349465086627567328776299903327
q	3351951982485649274893506249551461531869841455148098344430 8903609304410075183867442004685745417258569225079645466215 12713438470702986642490397676148760429
e	65537
d	4572115753829795595247120906288789164119299658267459123334 8888143113634895839457416197674626049422002133268070289644 5414877438561910679570747559871962191277366557976642188990 6700218767015263374087795307280743154400994552662789125054 2293379451051502729154061517001465270366555387774409063463 710670570399331753
С	4166368995265718598451373355838803328929285775874846807093 4326941659317694408873831451567385012905508903797893149006 0672807882984089590174598905798597840726774108906578549426 3904005692459692559997376221490072864865705247497440587886 8755028761443878403349272421153452240103741921751653022646 614028009138548572
m	7985094500508197619216095181309368855600788170157608050235 4903747772957422990806476235714778091882034499289772842932 62944197281744189774342357568909108594
通讯序号	14 明文分片 y o u e v e r

	Fra	me 14							
N	12000887653685513122125 35120483456214085493237 53742773653937676695699 78447313191423418175205 38823693941124637301582 6617428970538503551	7482915446419 9422048883834 9595043109334	59935 26461 15141	7910 8626 3839	343 516 089	450: 598: 889:	285 651 241	8589 8917 3182	99 78 25
<i>p</i> *	10954856299233465126359 91097594497064157391934 48556800135128054111609	1458850990045	77509		_				-
q	10954856299233465126359 91097594497064176365197 06445933343157299202125	1188170773162	22506		_				-
e	65537								
d	33045152905749236279029 68722133214953291546906 24735964929575554824082 29149638536021366338614 60153397480381118948172 155166016198945505	5879578275796 2849427675614 1812132887701	58666 25383 28306	2930 4308 5626	872 8464 5502	316 381 626	990 941 127	1904 4690 1830	49 06 02
С	35133765260146855599194 80784645403895484746115 96125664245574588841041 45131794970001708655718 24618212464190130998359 630551978900512155	6019506899428 6052495593777 8844507774877	25550 39515 60212	3991 7899 5183	015 388 877	0420 227: 782:	0102 552: 393:	2068 5944 5640	87 41 09
m	79850945005081976192160 54344379693774810480068 73581361717139273016540	3693922101985	79487						
通讯序号	9	明文分片	У	O	u		f	r	0

	Fr	ame 15								
N	1477333493876965210156 2538947605009750392802 4297584033078453033637 8798943401316566916317 5048684517522768232958 3971714513081755709	22819269482555 71037209728810 75616232342286	955 684 884	365 354 661	534 592 616	137 021: 042:	1560 3384 375:	079 468 588	172′ 807′ 3720	70 15 64
<i>p</i> *	1212959022867974150412 2334854180628199056110 2567953681375401931440	0723882064079	166	778						_
q^*	1217958287151277646895 1929030122878089063984 4121004557624027284684	7501689294978	081	212				_		-
e	3									
d	9848889959179768067710 3592984033398335952015 5317226887189686890914 3419383352256612548788 0442858692881305020305 634391772287711403	52128463217039 40248064858737 81576038206569	702 894 908	436 076 234	894 668 850	247 602 746	707 243 833	194 624 063	4846 1828 7375	69 85 57
С	5225381759005611636827 3828903718796358618956 0210499369637791034405 4506311324053079835272 7443722614687126711272 859313677159790039	51452257464969 56063045112513 7432768980751	606′ 7344 992!	774 463 926	776 950: 293	611: 370: 801:	5158 5880 206	8382 0024 7798	2860 4677 8391	04 73 15
m	7985094500508197619216 5965128165797539105207 8421852615253435626752	2625487056190	670		-			_	_	
通讯序号	4	明文分片	A	1	b	e	r	t		Е

Frame 16										
N	9067317719301733260278 1479411887936365983777 1566843407439073491087 9583726105397665213876 1449703932139132398288 415838326249712949	1067760807223 2977415761632 34279456528493	000 386 914	026: 306: 961:	569: 252: 780:	526: 559: 300:	5512 3382 2693	2504 2279 591	4115 9143 722	51 33 10
<i>p</i> *	6998204055345503454608 4941831793060052162789 6421310283998436264246	3551055363448	779	494						
q^*	1295663522754207120237 7595997503810379893056 0717847628319427342381	54938702134285	809	182						
e	5									
d	7253854175441386608222 9183529510349092787021 9253474725951258792869 2939247896806653924020 2816258532060850948073 846715376535932349	6854208645778 98381932609305 96165770019400	400 907 456	021: 448: 697:	255 614 279	621: 904: 693:	2410 839: 722:	000: 576: 565:	3292 3589 2902	20 91 21
С	2408637170160294812231 1846810668564197542368 5272970405566664345777 8073232773024255295564 3662054605527282812231 349033514358348526	39487034362957 3035473239778 6750279842251	707 465 200	582 122 227	627 091 937	397: 841: 257:	3229 240′ 3224	906′ 748: 414	771′ 517′ 662′	77 11 21
m	7985094500508197619216 4283542283649573939527 7060082481377140622034	4984426028713	596	573						
通讯序号	1	明文分片	t		i	s		a		f

	Frame 17
N	1111783070331507391046086474741997862515169136989363314301 2106058789356440548289681404541937040181630559214968529103 4839621072343496556225594365571727260237484885924615887468 0536445197790818717789968516012075719810722612323845771263 7771400555031899048661963673470126603256941342191552014337 7137845245405768733
<i>p</i> *	3316822783084922286009469115817426366342233689972333930241 4624335921937096795361698659264621281924482566876836548283 550012466892022559940789243695658550143
q	3351951982485649274893506249551461531869841455148098344430 8903609304410075183867442004685745417258569225117538105187 51644117399610974624147782234049900131
e	65537
d	4872119532465766249728184621601565315994881916220534108477 7711217851033305239312090870568447105301803509567709256733 1521723178922627080092019802435266629990952646522726209677 8368922987278031873142541199748221996571727801079979094524 7915945311316925576971265571819052682504386474458062215314 80549202354131233
С	1395222187334055833498435136007269572138525113145744882969 5310374422440862775948038652173017199470661531762446386608 6403594970566467063324511084741616879664019923873347854008 0417312141011028469385167826450855601412915611725028631975 6059322790239187717642040318064147340154760341068910493341 59757621016327648
m	7985094500508197619216095181478599183611091811489298369091 8797609733673411379366397604415693994360860064246818155417 00816764394665173124623001351367241250
通讯序号	15 明文分片 y w h e r e . "

	Fr	ame 18								
N	9339463910866721248218 5631675767304945732437 5536910492595041064420 9533222926287107979908 8583988637159206246729 703248595045701819	74211920754668 99014092778267 89771973100731	2478 3066 8898	957: 834 8410	29 120 159	106: 584: 960'	5758 8550 7139	8668 631′ 908	8447 7079 1179	70 99 90
<i>p</i> *	7273268163465293471933 3471302263984423914189 2051215852541640704451	5686247617379	8834							
q*	1284080787476011949756 1992253853323703532620 3850292807306888945215	3622237649819	5251	632						
e	65537									
d	4630328843124975308560 5762766208878531161608 1107699402252133516413 6253288716051885129120 1842550141918980980087 994860714897150209	81165407199090 07854479538499 8745725114119	0698 9056 2358	4799 014 176	947 585 758	7225 5515 8636	5363 5499 5676	3239 9210 5127	9928 0161 7562	33 15 20
С	4904797845888580712719 2411121925201201621099 8080515691110532930662 3681752481307690875064 8780616226847056325075 293396458312728764	9273320873166 3298043490159 7137301610117	0744 2875 5923	6894 3472 558	437 200 184	7275 0122 4082	5144 2022 2802	4625 2210 2917	5434)780 7660	41 05 06
m	7985094500508197619216 9328299930093469436566 1145392883006025637234	579076091111448	8196							
通讯序号	10	明文分片	m		A		t	О		В

	Fr	ame 19								
N	9415499359327410982841 9583756844882924221269 4047219256237414786777 9425830657470218466620 1322027993848437082723 931080456249945287	5764866115436 5608399290271 7180530598057	6890 176: 989	066′ 586: 884′	7082 5502 729	218′ 3466 154′	7942 668′ 273	2630 7919 4230	0799 9799 0324	92 93 47
<i>p</i> *	8672576161185989538639 2553101081991008304507 9029550098560094058539 8213558489995356047886 6269980402604895207480 986793	4611630783548 1739663001701 66041032397335	779′ 1320 990′	702 050 722	8264 035′ 689′	492: 708: 211:	510: 1664 1139	514: 448: 9377	5753 3071 7974	32 17 40
q	1085663496559									
e	65537									
d	4795602005188816821261 5816663148254451500554 4360211823072797033741 0295530507236326408492 1408151895223149333589 410182145898514113	.8255682421970 9327234563206 9661660780606	583° 671° 790°	713 109: 861	1874 572: 510	443: 513(842)	506: 0539 642	5080 9458 729	0986 8031 1065	62 11 58
С	5295869599237118040941 5136639708219930134280 8482628224217138952270 1786903421794326066413 5229797652856708373533 328299623032632769	08779540183056 06956114594597 0647322694583	153° 244° 182°	785 889 800	792 322 800	816: 923: 838:	5124 1020 5390	4914 0632 691:	4223 2492 5423	30 25 17
m	7985094500508197619216 9858990126513527493767 2209109326545533962068	1839174065349	695							
通讯序号	5	明文分片	i	n	s	t	e	i	n	

	Fr	ame 20								
N	9091673975583808383746 8230504776419813625940 7060616982251916452685 2209659125761953892705 9431677697816965623861 177996147858865293	00465119048388 59119860095524 50886521512453	1860 0110 691	6029 6302 9029	974 246 946	976: 133 234	220 1913 986	7299 3178 5569	9922 8712 9130	29 27 03
<i>p</i> *	7006433107252813175095 0359557876174658258429 1969697255470987715747	9008132053541	043							
q^*	1297618037082581604633 7647785104809172783057 6372124664831426114462	73198854430261	177	8749						
e	5									
d	5455004385350285030247 0938302865851888175564 8236370189351149871611 7765224194403104311077 3473026560553262440238 078390647349544785	0279071429032 5471916057314 0978590371971	911! 405′ 651!	961′ 779∶ 931∶	7849 1908 523	985′ 871′ 205∶	7324 2300 5359	4379 0729 9509	9953 9694 9824	37 17 18
С	2320403909875403051395 9689791620605370809827 4810165047966740148710 4038077777414485392521 9436535491711201551797 260818927584104158	78842672608301 02050354363968 6884802529230	365 125 212	167 183 783	424 411 759	664 415 821	5558 9250 262	885 098 799	4925 5728 8452	53 38 22
m	7985094500508197619216 4283542283649573939527 7060082481377140622034	4984426028713	596	573						
通讯序号	1	明文分片	t		i	s		a		f