Quiz 7

CMPSC 360

Kinner Parikh March 23, 2022

Question 2: Consider the statement $5 \mid (n^5 - n)$ for all $n \ge 0$

Proof:

We proceed by induction on the variable n.

Let P(n) hold the property statement for n.

Base Case (n = 0):

We need to prove $5 \mid (0^5 - 0)$.

By definition of divides, we get $0^5 - 0 = 5a$ for some $a \in \mathbb{Z}$.

We get $0 - 0 = 0 = 5 \cdot 0 = 0$

The base case is proved.

Inductive Hypothesis (n = k):

For any arbitrary integer n = k where $k \ge 0$, assume that P(k) is true

This means $5 \mid (k^5 - k)$

Using the definition of divides, we get $k^5 - k = 5q$ where $q \in \mathbb{Z}$.

Inductive Step (n = k + 1):

We have to show that P(k+1) is true, which means $5 \mid [(k+1)^5 - (k+1)]$

Expanding the expression, we get:

$$(k+1)^5 - (k+1) = k^5 + 5k^4 + 10k^3 + 10k^2 + 5k + 1 - k - 1$$
 [algebra]

$$= k^5 + 5k^4 + 10k^3 + 10k^2 + 4k$$

$$= (k^5 - k) + 5k^4 + 10k^3 + 10k^2 + 5k$$

$$= 5q + 5k^4 + 10k^3 + 10k^2 + 5k$$
 [inductive step]

$$= 5(q + k^4 + 2k^3 + 2k^2 + k)$$

$$= 5t \text{ for some } t \in \mathbb{Z} \text{ and } t = q + k^4 + 2k^3 + 2k^2 + k$$

We have $(k+1)^5 - (k+1) = 5t$. By definition of divides, we get $5 \mid (k+1)^5 - (k+1)$ Therefore, it is true that $\forall n \in \mathbb{Z}, n \geq 0, 5 \mid (n^5 - n)$. \square **Question 3:** $S_n = S_{n-1} + S_{n-2} + S_{n-3}$, where n > 2. $S_0 = 0, S_1 = 1, S_2 = 1$. Prove $\forall n \ge 0, S_n < 2^n$

Proof:

We proceed by strong induction on n.

Let S_n be defined as $S_n = S_{n-1} + S_{n-2} + S_{n-3}$ for n > 2 where $S_0 = 0, S_1 = 1, S_2 = 1$ Let P(n) be the proposition that $S_n < 2^n$.

Base Case (n = 0, n = 1, n = 2, n = 3):

When n = 0, we know that $0 < 2^0 = 0 < 1$. P(n) holds for n = 0. When n = 1, we know that $1 < 2^1 = 1 < 2$. P(n) holds for n = 1.

When n=2, we know that $1<2^2=1<4$. P(n) holds for n=2.

When n = 3, we know that $(1 + 1 + 0) < 2^3 = 2 < 8$. P(n) holds for n = 3.

The base case is proved.

Inductive Hypothesis (n = k):

Suppose k is an arbitrary integer greater than 2. Assume that P(i) is true for all $1 \le i \le k$ for some integer k.

Inductive Step (n = k + 1):

We have to prove P(k+1) is true. This means we have to show that $S_{k+1} < 2^{k+1}$. Let's explore both sides of the equation:

$$\begin{split} S_{k+1} < 2^{k+1} \\ S_{(k+1)-1} + S_{(k+1)-2} + S_{(k+1)-3} < 2^{k+1} \\ S_k + S_{k-1} + S_{k-2} < 2^{k+1} \\ S_k + S_{k-1} + S_{k-2} < 2 \cdot 2^k \\ S_k + S_{k-1} + S_{k-2} < S_{k-3} < 2 \cdot 2^k \\ S_k + S_k - S_{k-3} < 2 \cdot 2^k \text{ [inductive step]} \\ 2S_k - S_{k-3} < 2 \cdot 2^k \end{split}$$

Since we know that P(k) is true, we can say for sure that $2S_k < 2 \cdot 2^k$.

This means that it is true that $2S_k - S_{k-3} < 2 \cdot 2^k$.

Therefore, $\forall n \geq 0, S_n < 2^n$. \square