

VERSION 2

APR 13, 2023

OPEN BACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.q26g7yzz3gwz/v2

External link:

https://doi.org/10.1371/journa l.pone.0283990

Protocol Citation: Antoine Champie 2023. HTTM: gDNA extraction. **protocols.io** https://dx.doi.org/10.17504/protocols.io.q26g7yzz3gwz/v2

MANUSCRIPT CITATION:

Champie A, Grandmaison AD, Jeanneau S, Grenier F, Jacques P, Rodrigue S (2023) Enabling low-cost and robust essentiality studies with high-throughput transposon mutagenesis (HTTM). PLoS ONE 18(4): e0283990. doi: 10.1371/journal.pone.028399

License: This is an open access protocol distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

HTTM: gDNA extraction V.2

Antoine Champie¹

¹Université de Sherbrooke

Antoine Champie

ABSTRACT

Part of the HTTM protocol dedicated to the extraction of gDNA from transposon mutated cell pellets.

MATERIALS

■ Homemade DNA lysis Buffer:

A	В
Component	Amount for 1000ml of solution
CTAB 2%	20g
1,5M Guanidine HCI	143,2g
10mM Tris HCl	1,57g

Mix well and adjust pH to 8.0.

■ Homemade wash solution:

A	В
Component	Amount for 1000ml of solution
Ethanol 100%	800ml
Tris HCl 1M pH 8,0	10ml
NaCl 4M	25ml
EDTA 0,5M	2ml

Mix well and adjust pH to 8.0.

■ Elution Buffer (Low TE Buffer): 10 mM Tris-HCl (pH 8.0) + 0.1 mM EDTA

Protocol status: Working We use this protocol and it's

working

Created: Aug 24, 2022

Last Modified: Apr 13, 2023

PROTOCOL integer ID: 69131

Solutions for plate regeneration, from this protocol:

(1)https://doi.org/10.1016/j.ab.2008.10.021.

■ NaOH 1N + Triton X100 0,15% (v/v)

A	В
Component	Amount for 1000ml of solution
Water	960ml
NaOH	40g
Triton X-100	1,5ml

Mix well and store in a base resistant container.

■ HCl 1.5N + Triton X100 0,15% (v/v)

A	В
Component	Amount for 1000ml of solution
Water	873,5ml
HCI Stock (37%)	125ml
Triton X-100	1,5ml

Mix well and store in an acid resistant container.

DNA extraction

2h 5m

- 2 Add Add of lysis solution to each well of the deep-well plate and resuspend the pellet.

4 While still warm, add \pm 260 μ L of ethanol 100%, without overmixing.

Note

Overmixing will result in DNA agglomeration and difficulty with the extraction.

- 5 Transfer immediately to a deep-well plate fitted with an array of silica columns.
- 6 Centrifuge twice at (3) 4000 x g, 00:10:00

10m

- 7 Discard flowthrough and add \angle 500 μ L of wash solution.
- 8 Centrifuge at 3000 x g, 00:10:00

10m

- **8.1** Repeat steps 7 and 8.
- 9 Discard flowthrough.

Centrifuge at 3000 x g, 00:10:00 to eliminate traces of wash solution.

10m

- **11** Discard flowthrough.
- 12 Add a collector plate between the silica column array and the deep-well plate.
- Add Δ 50 μ L of low TE to the silica matrix in each well.
- Cover with an adhesive aluminum foil and incubate at \$\ 55 \cdot \cdot \) for $\bigcirc 00:15:00$
- 15m

15 Centrifuge at 3000 x g, 00:10:00

10m

Silica array regeneration (Optional)

1h 5m

Put the contaminated silica array on an empty deep-well plate. Add \perp 150 μ L of 1N NaOH + 0.15%(v/v) Triton X-100 to each well.

17 Incubate at Room temperature for 00:05:00

5m

18 Centrifuge 3000 x g, 00:05:00

5m

- Add \underline{A} 200 μ L of 1,5N HCl+ 0,15% (v/v) Triton X-100 to each well.
- 20 Incubate at \$\mathbb{I}\$ Room temperature for \(\mathbb{O} \) 00:30:00

30m

21 Centrifuge 3000 x g, 00:05:00

5m

- 22 Add \perp 150 μ L of 1N NaOH + 0,15%(v/v) Triton X-100 to each well.
- 23 Incubate at Room temperature for 00:05:00

5m

24 Centrifuge 🕃 3000 x g, 00:05:00

- 5m
- 24.1 Collect the flowthrough in a beaker. Neutralize pH if needed and dispose of the flow through.

- 25 Add $\underline{\mathbb{Z}}$ 200 μL of ddH₂O to each well.
- 26 Centrifuge 3000 x g, 00:05:00

5m

- **26.1** Repeat steps 25 and 26.
- 27 Silica columns array are ready to be reused.