

Entzerrung von Kegeloberflächen aus einer Einkameraansicht basierend auf projektiver Geometrie

BACHELORARBEIT
zur Erlangung des akademischen Grades
BACHELOR OF SCIENCE

Westfälische Wilhelms-Universität Münster Fachbereich Mathematik und Informatik Institut für Informatik

Betreuung:

Dimitri Berh

Erstgutachten:

Prof. Dr. Xiaoyi Jiang

Zweitgutachten:

Prof. Dr. Klaus Hinrichs

Eingereicht von:

Lars Haalck

Münster, August 2016

Zusammenfassung

bla bla zusammenfassung

Inhaltsverzeichnis

1	Einleitung	1
2	Theoretische Grundlagen 2.1 Kegel	3
3	Implementierung	7
4	Analyse	9
5	Fazit und Ausblick	11
Αŀ	obildungsverzeichnis	13
Та	bellenverzeichnis	15

1 Einleitung

einleitung

2 Theoretische Grundlagen

Rechtshändiges Koordinatensystem...

2.1 Kegel

Abbildung 2.1: Gerader Kreiskegel

Kreisgrundläche mit Radius normaler Kegel Spitze S(0,0,0)

$$x = \frac{u}{h}R\cos\theta$$

$$y = u$$

$$z = \frac{u}{h}R\sin\theta$$
(2.1)

mit $u \in [0, H]$ und $\theta \in [0, 2\pi)$

Abbildung 2.2: Kegelstumpf

$$x = (r + \frac{u}{h}(R - r))\cos\theta$$

$$y = u$$

$$z = (r + \frac{u}{h}(R - r))\sin\theta$$
(2.2)

mit $u \in [0, \Delta H]$ und $\theta \in [0, 2\pi)$

$$x = -(s + \lambda(S - s)) \sin\phi$$

$$y = (s + \lambda(S - s)) \cos\phi$$
(2.3)

mit $\lambda \in [0, 1]$ und $\phi \in [0, \alpha]$

Sei
$$\mathcal{R}(y) := r + \frac{y}{h}(R - r), \Phi(x, y, z) := \operatorname{atan2}\left(\frac{z}{d(y)}, \frac{x}{d(y)}\right), \mathcal{S}(y) := s + \frac{y}{\Delta H}(S - s)$$

$$\Psi \colon [r, R] \times [0, \Delta H] \times [r, R] \to [s, S] \times [s, S]$$

$$(x, y, z) \mapsto (-S(y) \sin \Phi(x, y, z), S(y) \cos \Phi(x, y, z))$$
(2.4)

Sei
$$\mathcal{R}(y) := r + \frac{y}{h}(R - r), \Phi(x, y, z) := \operatorname{atan2}\left(\frac{z}{d(y)}, \frac{x}{d(y)}\right), \mathcal{S}(y) := s + \frac{y}{\Delta H}(S - s)$$

$$\Psi^{-1}: [s, S] \to [r, R] \times [0, \Delta H] \times [r, R] \times [s, S]$$

$$(x, y, z) \mapsto (-\mathcal{S}(y) \sin \Phi(x, y, z), \mathcal{S}(y) \cos \Phi(x, y, z))$$
(2.5)

Abbildung 2.3: Kegelmantelfläche

Gerader Kreiskegel kamerakalibrierung
projektionsmatrix (homogene Koordinaten????) SVD, QR, LSQ?
kegel koordianten
kegel mantelfläche
kegel abbildungen
Hough?
Paremterschätzung Ransac. anzahl interationen
ellipse distanz mit transformationen die nötig sind
Hauptachsentransformation
schnittpunkt linie ellipse
Kantendetektion (canny sobel)
evtl noch am ende delaunay
deformable templates

3 Implementierung

implementierung

4 Analyse

analyse?

5 Fazit und Ausblick

fazit

Abbildungsverzeichnis

2.1	Gerader Kreiskegel	3
2.2	Kegelstumpf	4
	Kegelmantelfläche	

Tabellenverzeichnis

Plagiatserklärung

TT' '1	• 1	. 1	1	1.	vorliegend	1 1	1 '.	1
Hiermir	versione	re icn	กลรร	are	vormegend	1e A1	neit	uner
1110111111	VCISICIIC	ic icii,	aabb	uic	VOITICECTIC	10 111	DCIL	ubci

Entzerrung von Kegeloberflächen aus einer Einkameraansicht basierend auf projektiver Geometrie

selbstständig verfasst worden ist, dass keine anderen Quellen und Hilfsmittel als die angegebenen benutzt worden sind und dass die Stellen der Arbeit, die anderen Werken – auch elektronischen Medien – dem Wortlaut oder Sinn nach entnommen wurden, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht worden sind.

Lars Haalck, Münster, 28. August 2016

Ich erkläre mich mit einem Abgleich der Arbeit mit anderen Texten zwecks Auffindung von Übereinstimmungen sowie mit einer zu diesem Zweck vorzunehmenden Speicherung der Arbeit in eine Datenbank einverstanden.

Lars Haalck, Münster, 28. August 2016