

Comunicazioni Numeriche 075II

Scrivere nome, co
gnome, corso di studio e numero di matricola in cima a ogni fogli
o05/06/2025

Rispondere ai quesiti 1-3 sul foglio protocollo 1.

1. Sia data un'urna che contiene i 90 numeri della tombola. Definiamo i seguenti eventi: (3 punti)

 $A = \{\text{Estrazione di un numero} > 60\}$

 $B = \{\text{Estrazione di un numero dispari}\}$

 $C = \{\text{Estrazione di un numero} \le 80\}$

- (a) Verificare se gli eventi A e B sono indipendenti.
- (b) Verificare se gli eventi $B \in C$ sono disgiunti.
- (c) Calcolare $\mathbb{P}(C|A)$.
- 2. Si consideri la variabile aleatoria X con una densità di probabilità del tipo: (3 punti)

$$f_X(x) = \begin{cases} \frac{k}{x^2 + 1}, & x \in [0, +\infty[\\ 0, & \text{altrove} \end{cases}$$

- (a) Determinare la costante k in modo tale che $f_X(x)$ sia una densità di probabilità e disegnare $f_X(x)$.
- (b) Calcolare e disegnare la funzione distribuzione di probabilità $F_X(x)$.
- (c) Determinare il punto \hat{x} tale che $P\{X > \hat{x}\} = \frac{1}{2}$.
- 3. Un processo stazionario Gaussiano bianco X(t) con densità spettrale di potenza $S_X(f) = \frac{N_0}{2}$ passa attraverso un sistema LTI con risposta impulsiva $h(t) = \text{rect}\left(\frac{t}{T}\right)$. Sia Y(t) il processo in uscita. (4 punti)
 - (a) Calcolare e disegnare la densità spettrale di potenza di Y(t).
 - (b) Calcolare e disegnare l'autocorrelazione di Y(t).
 - (c) Determinare la potenza media di Y(t).
 - (d) Y(t) viene campionato agli istanti $t = n T_c$, $n \in \mathbb{Z}$. Determinare il valore minimo di T_c affinché i campioni $Y(nT_c)$ siano tra loro indipendenti.

1

N.B.:
$$\int_{-\infty}^{+\infty} sinc^2(x) dx = 1$$

Rispondere ai quesiti 4-7 sul foglio protocollo 2.

- 4. Dato il filtro $h(t) = \delta(t) \cos(2\pi f_0 t) \exp(-t/T) u(t)$ con $T = 10 \,\mu\text{s}$ e $f_0 = 3$ GHz (5 punti):
 - (a) Calcolare la trasformata di Fourier del segnale.
 - (b) Calcolare la banda a -10 dB in Hz del filtro.
- 5. Un sistema wireless opera a 3 GHz e 5 GHz, con potenza trasmessa di -20 dB. La potenza ricevuta minima necessaria è pari a -100 dB, in condizioni di spazio libero. (5 punti)
 - (a) Calcolare la massima distanza (in metri) tra il trasmettitore e il ricevitore per ciascuna frequenza;
 - (b) Con antenne da 10 dBi di guadagno in trasmissione e ricezione, calcolare la nuova distanza massima.
- 6. Si consideri il codice a blocco sistematico con matrice di controllo di parità H (4 punti):

$$\mathbf{H} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

- (a) Determinare la matrice generatrice G e calcolare la distanza minima del codice;
- (b) Data la parola ricevuta $\mathbf{y} = [1,0,1,0,0,1,0]$, utilizzare la decodifica a sindrome per trovare la sequenza di bit informativi trasmessa.
- 7. Un sistema di comunicazione 4-QAM impiega il codice a blocco dell'esercizio 6, codifica di Gray, un impulso a radice di coseno rialzato con $\alpha = 0.25$ ed una banda di B = 10 MHz. (6 punti)
 - (a) Determinare l'efficienza spettrale del sistema e il tempo per trasmettere un file di 10 Mbit.
 - (b) Calcolare la probabilità di errore in uscita al decodificatore del codice a blocco, nell'ipotesi in cui $E_b/N_0 = 6$ dB (dove E_b rappresenta l'energia ricevuta per bit non codificato).

