	Program Name: Data Science and Machine Learning Overview			
	Session	Objectives	Program Structure	
Day 1-2	 Introduction To Data Science What is Data Science ? Data Science team structure Data Science stages Machine Learning and data science 	Introduction to data science discipline as an approach to extract hidden patterns from data Skills required in Data Science, Structure of data science team	Presentations, discussions	
	 Introduction to Machine Learning What is Machine Learning ? Why Machine Learning Requisites for Machine Learning 	Introduce participants to machine learning concept Applications of machine learning with examples Pre-requisites for machine learning	Presentations, discussions, Case studies on implementation of machine learning	
	 Preparing for ML projects Defining the objectives Identifying the required data items Identifying sources of data Data cleansing Preparing data for ML 	Introduce the approach to machine learning project with focus on clarity of objectives, identifying sources of data, preparing data for analytics Hadoop stack and its applications	Presentations, discussions, hands on?	
	 Introduction to Machine Learning Patterns in data, what does it mean? Representing reality in models Supervised machine learning Unsupervised machine learning Challenges of machine learning Generalization and model fit 	To help participants understand what patterns in data mean To familiarize participants with the two broad classification of machine learning styles, their applicability, requirements of each type Concepts of over fitting / under fitting and generalization	Presentations and discussion on live case studies	
	Basics of R 1. Installing R, RStudio 2. R Datatypes 3. Basic syntax 4. Variables 5. Vectors 6. Matrices 7. DataFrames 8. Lists	Introduce participants to the basics of R. Participants will be able to do simple data manipulations such as looping through a sequence of numbers to find totals etc.	Presentations, discussions	
	Data Interfaces 1. CSV files 2. Excel files 3. Text files 4. Databases 5. Web links	Introduce participants to the R way of loading multiple types of data from various sources	Presentations, discussions, Case studies on implementation of machine learning	
Day 3	 Variables, Attributes and Relations 1. What are variables? 2. Dependent, independent variables 3. Scales 4. Importance of relation between variables 5. Concept of significance in analyzing variable relations 6. Concept of normal distribution 7. Statistical reasoning 	Introduction to types of variables and how variables influence each other. The importance of identifying correct variables that link to the objectives	Presentations, discussions	

	Descriptive Statistics	A thorough introduction to metrics about	Presentations,
	1. Data about data	data such as mean, median, quantiles,	discussions,
	2. Correlations	mode, relation between variables	Case studies on
	3. Regression		implementation of
	_		machine learning
	Basic statistical functions in R	Familiarize participants to R functions for	Presentations,
	1. Mean, Median, Mode	basic statistical analysis	discussions, hands
	2. Liner regression		on?
	3. Multiple regression		
	Charts and graphs	Introduce participants to R tools and	Presentations,
	1. Pie chart	techniques for creating charts and graphs	discussions
	2. Line charts		
	3. Scatter plots		
	4. Histograms		
	Inferential Statistics	A conceptual introduction to inferential	Presentations,
	Concept of samples and population	statistics	discussions, hands on?
	2. Hypothesis and hypothesis testing		
	3. Infer about population from		This will not be an in-
	sample		depth mathematical
	4. Confidence levels, intervals and P		session
	Value, Z scores		
Day 4,5	Supervised Learning Methods	Introduce participants to supervised	Presentations,
July 1,5	1. Linear regression	learning approach with focus on	discussions and
	2. Decision trees	model generation through training data,	hands-on coding to
	3. Naive Bayesian classifiers	testing the model , interpreting the	implement a POC
	·	results	
	Unsupervised Learning Methods	To explain concepts of unsupervised	Presentations,
	1. Clustering	machine learning, their applications and	discussions and
		how systems learn on their own	demos
	Machine Learning Project	To explore the avenues for machine	Student
	To be decided	learning in current context	presentations