Example: If $x_n = (a^n + b^n)^n$ for all $n \in \mathbb{N}$ and 0 < a < b, show that $\lim_{n \to \infty} x_n = b$.

Solution: $x_n = b \left[\left(\frac{a}{b} \right)^n + 1 \right]^{\frac{1}{n}} > b$ for all $n \in \mathbb{N}$, $\left[\text{Since } \left(\frac{a}{b} \right)^n + 1 \right] > 1 \text{ } \forall n \in \mathbb{N} \right]$

Again, $0 < a < b \Rightarrow a^n < b^n \text{ for all } n \in \mathbb{N}$.

 $\therefore a^n + b^n < 2b^n$ or, $x_n < 2^{\frac{1}{n}}b$ for all $n \in \mathbb{N}$.

Let $u_n = b$ for all $n \in \mathbb{N}$. $v_n = 2^{\frac{1}{n}} b$ for all $n \in \mathbb{N}$.

Then $\lim_{n\to\infty} u_n = b$ and $\lim_{n\to\infty} v_n = b \left[as \lim_{n\to\infty} 2^{\frac{1}{n}} = 1 \right]$.

Now un < xn < len un for all n ∈ IN.

:. By Sandwich theorem $\lim_{n\to\infty} x_n = b$.

· Cauchy Sequence.

A sequence {un} is said to be a Cauchy sequence if for a pre-assigned positive & the exists a natural number k such that

 \forall n, m \not k. 16h - 6hm / < E

A convergent sequence is a Cauchy sequence.

[Proof: Note left as a reading exercise.]

A Cauchy sequence of real numbers is convergent.

[Proof: left as a reading exercise]

Example: Prove that { 1 } is a Cauchy) sequence.

let un=+ +nen.

Let E>0 be given. There is a natural number k such that

Then | um - un| = | Im - In | \le Im + In < E min if m, n >k.

This proves that the sequence \quad \text{un} is a Cauchy Sequence.

* Prove that the requence & C-jn} is NOT a Cauchy requence. $\frac{501^n}{1}$. Explained. Let $u_n = (-1)^n$.

Then | um - un | = | (-Dm - (-Dn).

|um-un| = 0 pif m and n are both odd or both even. |um-un| = 2 if one of m, n is odd and the other is even. Let us choose $E = \frac{1}{2}$. Then it is NOT possible to find a natural number k such that $|u_m - u_n| < E$ for all m, n > k.

Hence {un} is NOT a Cauchy sequence.

*

Prove that the sequence $\{u_n\}$ where $u_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$, is NOT convergent.

=> let + 6 be a natural number

Note that $|u_{2m} - u_{m}|$ = $\frac{1}{m+1} + \frac{1}{m+2} + \cdots + \frac{1}{2m}$ > $\frac{1}{2m} + \frac{1}{2m} + \cdots + \frac{1}{2m}$ = $\frac{1}{2}$

: $|u_{2m} - u_m| > \frac{1}{2}$ for any $m \in \mathbb{N}$.

If we choose $E = \frac{1}{2}$ then no natural number k can be found such that $|u_m - u_n| < E$ will held for all m,n > k.

:. This shows that {un} is NOT a Cauchy sequence, therefore {un} is NOT convergent.

that Prove the sequence $\{u_n\}$ where $u_1=0$, $u_2=1$ and $u_{n+2}=\frac{1}{2}(u_{n+1}+u_n)$ for all $n\geqslant 1$ is a Cauchy sequence.

$$u_{n+2} - u_{n+1} = \frac{1}{2} (u_{n+1} + u_n) - u_{n+1} = -\frac{1}{2} (u_{n+1} - u_n)$$
or, $|u_{n+2} - u_{n+1}| = \frac{1}{2} |u_{n+1} - u_n|$ for all $n \in \mathbb{N}$.

$$|u_{n+2} - u_{n+1}| = \frac{1}{2} |u_{n+1} - u_n| = \frac{1}{2^2} |u_n - u_{n-1}| = \frac{1}{2^n}$$

$$= \frac{1}{2^n} |u_2 - u_1| = \frac{1}{2^n}$$

Let
$$m > n$$
. Then $|u_m - u_n|$

$$\leq |u_m - u_{m-1}| + |u_{m-1} - u_{m-2}| + \cdots + |u_{m+1} - u_n|$$

$$= \left(\frac{1}{2}\right)^{m-2} + \left(\frac{1}{2}\right)^{m-3} + \cdots + \left(\frac{1}{2}\right)^{n-1}$$

$$= \frac{4}{2^n} \left[1 - \left(\frac{1}{2}\right)^{m-n}\right] < \frac{4}{2^n}$$

Let $\varepsilon>0$. Then there exists a natural number k such that $\frac{4}{2^n} < \varepsilon$ for all $n > \kappa$.

Hence | um - un | < E for all m, n > k.

This proves that the sequence & un? is a Cauchy sequence.

[what if
$$u_{n+2} = c (u_{n+1} + u_n)$$
, $u_{n+2} = c (u_{n+1} + u_n)$, $u_{n+2} = c$, $u_{n+1} = c$, u_{n+1}