CONCOURS COMMUN POLYTECHNIQUE (ENSI)

FILIERE MP

MATHEMATIQUES 2

PROBLÈME

Partie I - Un exemple de chaîne de MARKOV

Q1 L'énoncé fournit :

$$\forall n \in \mathbb{N}, \ P_{X_n=1}(X_{n+1}=2) = \frac{1}{2} \ \mathrm{et} \ P_{X_n=2}(X_{n+1}=1) = \frac{1}{4}.$$

D'après la formule des probabilités totales,

$$\begin{split} P\left(X_{1}=1\right) &= P\left(\left(X_{0}=1\right) \cap \left(X_{1}=1\right)\right) + P\left(\left(X_{0}=2\right) \cap \left(X_{1}=1\right)\right) \\ &= P\left(X_{0}=1\right) \times P_{X_{0}=1}\left(X_{1}=1\right) + P\left(X_{0}=2\right) \times P_{X_{0}=2}\left(X_{1}=1\right) \\ &= \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{4} = \frac{3}{8} \end{split}$$

puis $P(X_1 = 2) = \frac{5}{8}$.

Q2 Plus généralement, pour $n \in \mathbb{N}$,

$$\begin{split} P\left(X_{n+1} = 1\right) &= P\left(X_{n} = 1\right) \times P_{X_{n} = 1}\left(X_{n+1} = 1\right) + P\left(X_{n} = 2\right) \times P_{X_{n} = 2}\left(X_{n+1} = 1\right) \\ &= \frac{1}{2}P\left(X_{n} = 1\right) + \frac{1}{4}P\left(X_{n} = 2\right) \end{split}$$

 $\mathrm{et}\ \mathrm{de}\ \mathrm{m\^{e}me},\ P\left(X_{n+1}=2\right)=\left(1-\frac{1}{2}\right)P\left(X_{n}=1\right)+\left(1-\frac{1}{4}\right)P\left(X_{n}=2\right)=\frac{1}{2}P\left(X_{n}=1\right)+\frac{3}{4}P\left(X_{n}=2\right).\ \mathrm{Par}\ \mathrm{suite},$

$$\mu_{n+1} = \left(\begin{array}{cc} P\left(X_{n+1} = 1\right) & P\left(X_{n+1} = 2\right) \end{array} \right) = \left(\begin{array}{cc} P\left(X_{n} = 1\right) & P\left(X_{n} = 2\right) \end{array} \right) \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{4} \end{array} \right) = \mu_{n} A.$$

Q3
$$\mu_5 = \mu_0 A^5 = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{171}{512} & \frac{341}{512} \\ \frac{341}{1024} & \frac{683}{1024} \end{pmatrix} = \begin{pmatrix} \frac{683}{2048} & \frac{1365}{2048} \end{pmatrix} \text{ puis}$$

 $P\left(X_{5}=1\right)=0,33 \text{ arrondi au centième et } P\left(X_{5}=2\right)=0,67 \text{ arrondi au centième}.$

$$\mathbf{Q4} \quad P(T=0) = P\left(X_0 = 1\right) = \frac{1}{2} \text{ puis } P(T=1) = P\left((X_0 = 2) \cap (X_1 = 1)\right) = P\left(X_0 = 2\right) \times P_{X_0 = 2}\left(X_1 = 1\right) = \frac{1}{2} \times \frac{1}{4} = \frac{1}{8}.$$

Soit $k \ge 2$. D'après la formule des probabilités composées et puisque l'état de la particule au temps n+1 dépend uniquement de son état au temps n,

$$\begin{split} P(T=k) &= P\left(\left(\bigcap_{i=0}^{k-1} \left(X_i = 2\right)\right) \cap X_k = 1\right) \\ &= P_{\bigcap_{i=0}^{k-1} \left(X_i = 2\right)} \left(X_k = 1\right) \times P_{\bigcap_{i=0}^{k-2} \left(X_i = 2\right)} \left(X_{k-1} = 2\right) \times \ldots \times P_{X_0 = 2} \left(X_1 = 2\right) \times P\left(X_0 = 2\right) \\ &= P_{X_{k-1} = 2} \left(X_k = 1\right) \times P_{X_{k-2} = 2} \left(X_{k-1} = 2\right) \times \ldots \times P_{X_0 = 2} \left(X_1 = 2\right) \times P\left(X_0 = 2\right) \\ &= \frac{1}{4} \times \left(\frac{3}{4}\right)^{k-1} \times \frac{1}{2} = \frac{1}{6} \left(\frac{3}{4}\right)^{k}. \end{split}$$

Ainsi, $\forall k \in \mathbb{N}^*$, $P(T = k) = \frac{1}{6} \left(\frac{3}{4}\right)^k$.

 $\mathbf{Q5} \quad \chi_A = X^2 - \mathrm{Tr}(A)X + \det(A) = X^2 - \frac{5}{4}X + \frac{1}{4} = \left(X - \frac{1}{4}\right)(X - 1). \ \chi_A \ \mathrm{est \ scind\'e \ sur} \ \mathbb{R} \ \mathrm{\grave{a} \ racines \ simples \ et \ donc \ } A \ \mathrm{est \ scind\acute{e} \ sur} \ \mathbb{R}.$

$$\begin{split} \operatorname{Ker}(A-I) & \text{ est la droite d'équation } -x+y=0 \text{ et donc } \operatorname{Ker}(A-I) = \operatorname{Vect}\left(e_{1}\right) \text{ où } e_{1}=\left(\begin{array}{c}1\\1\end{array}\right). \\ \operatorname{Ker}\left(A-\frac{1}{4}I\right) & \text{ est la droite d'équation } x+2y=0 \text{ et donc } \operatorname{Ker}\left(A-\frac{1}{4}I\right) = \operatorname{Vect}\left(e_{2}\right) \text{ où } e_{2}=\left(\begin{array}{c}2\\-1\end{array}\right). \\ \operatorname{Par suite} \\ A=QDQ^{-1} & \text{ où } Q=\left(\begin{array}{cc}1&2\\1&-1\end{array}\right), \ Q^{-1}=\frac{1}{3}\left(\begin{array}{cc}1&2\\1&-1\end{array}\right) \text{ et } D=\operatorname{diag}\left(1,\frac{1}{4}\right). \end{split}$$

Q6 L'application $f: M \mapsto MQM^{-1}$ est un endomorphisme de l'espace $\mathcal{M}_2(\mathbb{R})$ qui est de dimension finie sur \mathbb{R} . On sait alors que l'application f est continue sur $\mathcal{M}_2(\mathbb{R})$. De même, l'application $g: M \mapsto \mu_0 M$ est linéaire sur $\mathcal{M}_2(\mathbb{R})$ qui est de dimension finie sur \mathbb{R} à valeurs dans $\mathcal{M}_{1,2}(\mathbb{R})$ et donc l'application $M \mapsto \mu_0 M$ est continue sur $\mathcal{M}_2(\mathbb{R})$.

 $\mathbf{Q7} \quad \text{Pour tout entier naturel } n, \ D^n = \left(\operatorname{diag}\left(1,\frac{1}{4}\right)\right)^n = \operatorname{diag}\left(1,\left(\frac{1}{4}\right)^n\right). \ \text{La suite } (D^n) \ \text{converge vers la matrice } \Delta = \operatorname{diag}(1,0). \ \text{Par continuité de } f \ \text{sur } \mathcal{M}_2(\mathbb{R}) \ \text{et donc en } \Delta, \ \text{la suite } (A^n) = (f(D^n)) \ \text{converge vers } f(\Delta) = Q\Delta Q^{-1}. \ \text{De même, par continuité de } g, \ \text{la suite } (\mu_n) = (g(A^n)) \ \text{converge vers } \mu_0 Q\Delta Q^{-1} \ \text{avec}$

$$\begin{split} \mu_0 Q \Delta Q^{-1} &= \frac{1}{3} \left(\begin{array}{ccc} 1/2 & 1/2 \end{array} \right) \left(\begin{array}{ccc} 1 & 2 \\ 1 & -1 \end{array} \right) \left(\begin{array}{ccc} 1 & 0 \\ 0 & 0 \end{array} \right) \left(\begin{array}{ccc} 1 & 2 \\ 1 & -1 \end{array} \right) \\ &= \frac{1}{3} \left(\begin{array}{ccc} 1/2 & 1/2 \end{array} \right) \left(\begin{array}{ccc} 1 & 0 \\ 1 & 0 \end{array} \right) \left(\begin{array}{ccc} 1 & 2 \\ 1 & -1 \end{array} \right) = \frac{1}{3} \left(\begin{array}{ccc} 1/2 & 1/2 \end{array} \right) \left(\begin{array}{ccc} 1 & 2 \\ 1 & 2 \end{array} \right) \\ &= \left(\begin{array}{ccc} 1/3 & 2/3 \end{array} \right) \end{split}$$

Partie II - Spectre d'une matrice stochastique

Q8 Soit $U = (1)_{1 \leq i \leq p} \in \mathcal{M}_{p,1}(\mathbb{R})$.

$$AU = \left(\sum_{j=1}^{n} a_{i,j}\right)_{1 \le i \le p} = (1)_{1 \le i \le p} = U.$$

Puisque $U \neq 0$, on en déduit que 1 est valeur propre de A et que U est un vecteur propre associé.

Q9 Soit $x = (x_i)_{1 \le i \le p} \in \mathcal{M}_{p,1}(\mathbb{R})$. Pour tout $i \in [1, p]$,

$$|(Ax)_{i}| = \left| \sum_{j=1}^{p} \alpha_{i,j} x_{j} \right| \leqslant \sum_{j=1}^{p} \alpha_{i,j} |x_{j}| \leqslant \left(\sum_{j=1}^{n} \alpha_{i,j} \right) ||x||_{\infty} = ||x||_{\infty}$$

puis $||Ax||_{\infty} \leq ||x||_{\infty}$.

Q10 Soit λ une valeur propre de A dans $\mathbb C$ puis x un vecteur propre associé. D'après la question précédente,

$$\|\lambda\|\|x\|_{\infty} = \|\lambda x\|_{\infty} = \|Ax\|_{\infty} \leqslant \|x\|_{\infty}.$$

Puisque $x \neq 0$, on a encore $\|x\|_{\infty} > 0$. Après simplification par $\|x\|_{\infty}$, on obtient $|\lambda| \leqslant 1$.

Localisation des valeurs propres

Q11 Soit x' un vecteur propre de A associé à λ . Le vecteur $x = \frac{1}{\|x'\|_{\infty}} x'$ est encore un vecteur propre de A associé à λ et vérifie de plus $\|x\|_{\infty} = 1$.

Q12 Puisque $Ax = \lambda x$, on a en particulier $(Ax)_i = \lambda x_i$ puis $\sum_{j=1}^n \alpha_{i,j} x_j = \lambda x_i$ puis

$$(\lambda - \alpha_{i,i}) x_i = \sum_{j \neq i} \alpha_{i,j} x_j.$$

On en déduit que

$$|\lambda - \alpha_{i,i}| = |(\lambda - \alpha_{i,i}) x_i| = \left| \sum_{j \neq i} \alpha_{i,j} x_j \right| \leqslant \sum_{j \neq i} \alpha_{i,j} |x_j| \leqslant \sum_{j \neq i} \alpha_{i,j} = 1 - \alpha_{i,i}.$$

Etude d'un exemple

Q13 Soit λ une valeur propre de A. Puisque la matrice A est effectivement stochastique, ou bien $\left|\lambda - \frac{1}{2}\right| \leqslant \frac{1}{2}$ ou $\left|\lambda - \frac{1}{6}\right| \leqslant \frac{5}{6}$ ou $\left|\lambda - \frac{1}{3}\right| \leqslant \frac{2}{3}$. λ est donc dans $D_f\left(\frac{1}{2}, \frac{1}{2}\right) \cup D_f\left(\frac{1}{6}, \frac{5}{6}\right) \cup D_f\left(\frac{1}{3}, \frac{2}{3}\right) = D_f\left(\frac{1}{6}, \frac{5}{6}\right)$.

Cas des matrices stochastiques strictement positives

Q14 D'après le résultat admis par l'énoncé,

$$1 - a_{i,i} - |\lambda| = |1 - a_{i,i}| - |\lambda| \leqslant ||\lambda| - |1 - a_{i,i}|| \leqslant |\lambda - (1 - a_{i,i})| \leqslant 1 - a_{i,i} - a_{i,p}$$

et donc

$$|\lambda| \geqslant a_{i,p} > 0$$
.

Par suite, $\lambda \neq 0$. Ainsi, B' n'admet pas 0 pour valeur propre et donc B' est inversible.

Q15 Puisque 1 est valeur propre de A, la matrice B n'est pas inversible ou encore rg(B) < p. Mais d'après la question précédente, il existe une matrice carrée extraite de B, de format p-1 et inversible. Donc, $rg(B) \ge p-1$. Finalement, rg(B) = p-1. Le théorème du rang fournit alors

$$\dim \left(\operatorname{Ker} \left(A - \operatorname{I}_{\mathfrak{p}} \right) \right) = \dim \left(\operatorname{Ker} (B) \right) = \mathfrak{p} - \operatorname{rg} (B) = 1.$$

Partie III - Itérées d'une matrice stochastique

Un contre-exemple

$$\mathbf{Q16} \quad \mathbf{B} = \left(\begin{array}{cc} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{array} \right).$$

Q17 B est une matrice stochastique qui n'est pas strictement positive. D'autre part, $B^2 = I_2$ et donc, pour tout $\mathfrak{p} \in \mathbb{N}$, $B^{2\mathfrak{p}} = I_2$ et $B^{2\mathfrak{p}+1} = B$. La suite $(B^n)_{n \in \mathbb{N}}$ admet deux suites extraites convergentes, de limites différentes et donc la suite $(B^n)_{n \in \mathbb{N}}$ est divergente. La proposition 2 est donc fausse si on enlève l'hypothèse « strictement positive ».

Résultat préliminaire

Q18 Il existe $k \in \mathbb{N}^*$ tel que $N^k = 0$. Le polynôme X^k est annulateur de N et donc le polynôme minimal de N, qui est un diviseur unitaire de X^k , est de la forme $\mu_N = X^l$. D'près le théorème de Cayley-Hamilton, on sait que $l \leqslant p$ et donc $N^p = N^{p-l} \times N^l = N^{p-l} \times \mu_N(N) = 0$.

Q19 Le résultat est clair quand k = 0. Soit $k \in \mathbb{N}^*$ fixé.

$$\binom{n}{k} = \frac{n(n-1)\dots(n-k+1)}{k!} \underset{n\to+\infty}{\sim} \frac{n^k}{k!}.$$

(au numérateur, le nombre de facteurs est constant quand n varie).

Puisque $|\lambda|<1,\,\lambda^n\underset{n\to+\infty}{=}o\left(n^{-k}\right)$ d'après un théorème de croissances comparées. Par suite,

$$\binom{n}{k} \lambda^{n-k} \underset{n \to +\infty}{\sim} \frac{n^k}{k!} \lambda^{n-k} = \frac{\lambda^{-k}}{k!} \lambda^n n^k \underset{n \to +\infty}{=} o(1).$$

Ainsi,
$$\lim_{n \to +\infty} \binom{n}{k} \lambda^{n-k} = 0$$
.

Q20 Soit $n \ge p$. Puisque les matrices λI_p et N commutent, la formule du binôme de NEWTON fournit

$$(\lambda I_p + N)^n = \sum_{k=0}^n \binom{n}{k} \lambda^{n-k} N^k = \sum_{k=0}^{p-1} \binom{n}{k} \lambda^{n-k} N^k.$$

Le nombre de terme de la dernière somme est constant quand n varie et chaque terme tend vers 0 quand n tend vers $+\infty$. Donc,

$$\lim_{n\to+\infty} \left(\lambda I_p + N\right)^n = 0.$$

Convergence d'une suite de matrices

$$A = P \operatorname{diag}(1, \lambda_1 I_{p_1} + N_1, \dots, \lambda_r I_{p_r} + N_r) P^{-1}.$$

Un calcul par blocs fournit pour tout entier naturel n,

$$A^n = P\mathrm{diag}\left(1, \left(\lambda_1 I_{\mathfrak{p}_1} + N_1\right)^n, \ldots, \left(\lambda_r I_{\mathfrak{p}_r} + N_r\right)^n\right) P^{-1}.$$

D'après la question précédente, la suite $\left(\operatorname{diag}\left(1,\left(\lambda_{1}I_{p_{1}}+N_{1}\right)^{n},\ldots,\left(\lambda_{r}I_{p_{r}}+N_{r}\right)^{n}\right)\right)_{n\in\mathbb{N}}$ converge vers la matrice $\Delta=\operatorname{diag}(1,0,\ldots,0)$. Par continuité de l'application $M\mapsto PMP^{-1}$, la suite $\left(A^{n}\right)_{n\in\mathbb{N}}$ converge vers $P\Delta P^{-1}$.

Partie IV - Probabilité invariante par une matrice stochastique

- **Q22** Pour tout $i \in [\![1,p]\!]$, l'application $f_i : X = (x_1 \dots x_p) \mapsto x_i$ est une forme linéaire sur $\mathcal{M}_{p,1}(\mathbb{R})$ et en particulier continue sur $\mathcal{M}_{1,p}(\mathbb{R})$. Pour tout $i \in [\![1,p]\!]$, l'ensemble $F_i = \{X \in \mathcal{M}_{1,p}/x_i \geqslant 0\} = f_i^{-1}([0,+\infty[)$ est un fermé de $\mathcal{M}_{1,p}(\mathbb{R})$ en tant qu'image réciproque d'un fermé de \mathbb{R} par une application continue.
- L'hyperplan affine $H = \{X \in \mathcal{M}_{1,p}(\mathbb{R}) / x_1 + \ldots + x_p = 1\}$ est un hyperplan affine de $\mathcal{M}_{p,1}(\mathbb{R})$ et en particulier un fermé de $\mathcal{M}_{1,p}(\mathbb{R})$.

Mais alors, l'ensemble des vecteurs stochastiques de $\mathcal{M}_{1,p}(\mathbb{R})$ qui est $\left(\bigcap_{i=1}^p F_i\right) \cap H$, est un fermé de $\mathcal{M}_{1,p}(\mathbb{R})$ en tant qu'intersection de fermés de $\mathcal{M}_{1,p}(\mathbb{R})$.

Convergence de la suite

Q23 Pour $n \in \mathbb{N}$, $\mu_n = \mu_0 A^n$. D'après la question 21, la suite (A^n) converge dans $\mathcal{M}_p(\mathbb{R})$. Par continuité de l'application $M \mapsto \mu_0 M$, la suite (μ_n) converge dans $\mathcal{M}_{1,p}(\mathbb{R})$ vers un certain élément μ_∞ de $\mathcal{M}_{1,p}(\mathbb{R})$.

 $\mathbf{Q24} \quad \mathrm{Par\ hypoth\`ese},\ \forall j \in [\![1,p]\!],\ m_j \geqslant 0 \ \mathrm{et}\ \sum_{j=1}^p m_j = 1.\ \mathrm{La\ vecteur\ } \mu A \ \mathrm{est}$

$$\mu A = \left(\sum_{i=1}^p m_i \alpha_{i,j}\right)_{1\leqslant j \leqslant p}.$$

Déjà, $\forall j \in [\![1,p]\!], \, \sum_{i=1}^p m_i \alpha_{i,j} \geqslant 0$ puis

$$\sum_{j=1}^{p} \left(\sum_{i=1}^{p} m_{i} a_{i,j} \right) = \sum_{i=1}^{p} m_{i} \left(\sum_{j=1}^{p} a_{i,j} \right) = \sum_{i=1}^{p} m_{i} = 1.$$

Donc, µA est un vecteur stochastique.

Q25 Mais alors, puisque μ_0 est un vecteur stochastique et que pour tout $n \in \mathbb{N}$, $\mu_{n+1} = \mu_n A$, par récurrence, pour tout $n \in \mathbb{N}$, μ_n est un vecteur stochastique.

La suite $(\mu_n)_{n\in\mathbb{N}}$ est une suite de vecteurs stochastiques convergeant vers le vecteur μ_∞ . Puisque l'ensemble des vecteurs stochastiques est un fermé de $\mathcal{M}_{1,p}(\mathbb{R})$, μ_∞ est un vecteur stochastique.

Unicité de la probabilité invariante

Q26 Soit $\mu \in \mathcal{M}_{1,p}(\mathbb{R})$ un vecteur ligne stochastique.

$$\mu A = \mu \Leftrightarrow {}^{t}A^{t}\mu = {}^{t}\mu \Leftrightarrow {}^{t}\mu \in \operatorname{Ker}({}^{t}A - I_{\mathfrak{v}}).$$

De plus, ${}^{t}\mu$ n'est pas nul et donc, la dernière condition équivaut au fait que ${}^{t}\mu$ est un vecteur propre de ${}^{t}A$ associé à la valeur propre 1.

 $\mathbf{Q27} \quad \text{D'après la question 15, } \dim \operatorname{Ker} (A - I_p) = 1. \text{ On sait que } \operatorname{rg} ({}^{t}A - I_p) = \operatorname{rg} ({}^{t}(A - I_p)) = \operatorname{rg} (A - I_p) = p - 1.$ D'après le théorème du rang, $\dim \left(\operatorname{Ker} ({}^{t}A - I_p)\right) = 1.$

Q28 Soient $\mu_{\infty} = (m_1 \dots m_p)$ et $\mu_{\infty}' = (m_1' \dots m_p')$ deux probabilités invariantes par A. Alors, ${}^t\mu_{\infty}$ et ${}^t\mu_{\infty}'$ sont des vecteurs propres de tA associé à la valeur propre 1. Puisque dim $(\operatorname{Ker}({}^tA - I_p)) = 1$ et que $\mu_{\infty} \neq 0$, il existe $\lambda \in \mathbb{R}$ tel que $\mu_{\infty}' = \lambda \mu_{\infty}$. Enfin,

$$1 = \sum_{j=1}^p m_j' = \lambda \sum_{j=1}^p m_j = \lambda$$

et donc $\mu'_{\infty} = \mu_{\infty}$. Ceci montre l'unicité de la probabilité invariante.

Partie V - Informatique : calcul effectif de la probabilité invariante d'une matrice stochastique strictement positive

Q29 Les valeurs renvoyées lorsque l'on exécute len(A), A[1], A[2][1] sont respectivement 4 (nombre de lignes), [4,5,6], 8 (attention, les indices commencent à zéro).

Q30 Une fonction difference.

```
def difference(x,y):
diff=[]
n=len(x)
for i in range(n):
    diff.append(x[i]-y[i])
return diff
```

Q31 Une fonction norme.

Q32 Une fonction itere.

```
def itere(x,A):
p=len(A)
sol=[]
for j in range(p):
    res=0
    for i in range(p):
        res=res+x[i]*A[i][j]
    sol.append(res)
return sol
```

 $\mathbf{Q23}$

Q33 Une fonction probaInvariante.

```
def probaInvariante(A,eps):
p=len(A)
u=[1.0/p for i in range(p)]
v=itere(u,A)
while norme(difference(u,v))>eps:
    u=list(v)
    v=itere(v,A)
return v
```