

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

FEBRUARY/MARCH 2011

MEMORANDUM

MARKS: 150

SYMBOL	EXPLANATION
A	Accuracy
CA	Consistent accuracy
C	Conversion
J	Justification (Reason/Opinion)
M	Method
MA	Method with accuracy
P	Penalty for no units, incorrect rounding off, etc.
R	Rounding off
RT/RG	Reading from a table/Reading from a graph
S	Simplification
SF	Correct substitution in a formula
О	Own opinion

This memorandum consists of 22 pages.

QUESTI	ON 1 [40 MARKS]		
Ques	Solution	Explanation	AS
1.1.1(a)	✓M $A = 100\% - (15,6 + 27,2 + 22,4 + 7,2 + 2,3 + 6,0 + 4,4)\%$ $= 14,8\%$ ✓CA	1M subtracting from 100% 1CA value of A	12.4.4
	OR		
	Number of learners in school = $\frac{340}{27,2\%}$		
	= 1 250 ✓M	1MA number of learners at school	
	$A = \frac{185}{1250} \times 100\%$ $= 14,8\% \checkmark CA$		
	= 14,8% ✓CA	1CA value of A (2)	
1.1.1(b)	Total number of learners = $\frac{195}{15,6\%}$		12.4.4 12.1.1
	= 1 250 ✓A	1A number of learners	
	$\frac{B}{1\ 250} \times 100\% = 4.4\% \checkmark M$	1M using 4,8%	
	$B = \frac{4,4\% \times 1250}{100\%}$		
	= 55 ✓CA	1CA value of B	
		(3)	

Ques	Solution	Explanation	AS
1.1.2	Percentage = $7.2\% + 2.4\% + 6\% + 4.4\% \checkmark M$ = $20\% \checkmark CA$	1M adding 1CA percentage	12.4.4
	OR		
	Percentage = $\frac{90 + 30 + 75 + 55}{1250} \times 100\%$ \checkmark M	1M finding percentage	
	$= \frac{250}{1250} \times 100\%$		
	= 20% ✓CA	1CA percentage	
			2)

	Solution	1									
3	TA		ime usually o travel to			earners o	f Vuka H	igh Schoo	ol		
		ne taken i nutes	0 to less	10 to less than 20	20 to less than 30	30 to less than 40	40 to less than 50	50 to less than 60	60 to less than 70	70 to less than 80	
		mber of rners	195	340	185	280	90	30	75	В	
		RELA	TIONSH TIME	IP BETW E TAKEN					S AND		
		350									
		300									
		250									
	Number of learners	200									
	Number 0	150 -									
		100 -									
		50 -									
		0	10	20	30	40	50	60	70	80	
			10				minutes		, 0		

Ques	Solution	Explanation	AS
1.2.1(a)	Average speed = $\frac{\text{distance}}{\text{time}}$ \checkmark M	1M rearranging the formula	12.2.1
	$= \frac{12 \mathrm{km}}{60 \mathrm{min}} \checkmark\mathrm{SF}$	1SF substitution	
	$= \frac{12\ 000\ \mathrm{m}}{60\mathrm{min}} \checkmark \mathrm{C}$	1C conversion	
	= 200 metres per minute ✓ CA	1CA solution	
	OR Distance = average speed × time	OR	
	12 km = average speed × 60 minutes ✓SF	1SF substitution	
	12 000 m = average speed × 60 minutes \checkmark C	1C conversion	
	$\frac{12\ 000\ \text{m}}{60\text{min}} = \text{average speed} \qquad \checkmark \text{M}$	1M rearranging the formula	
	Average speed = 200 metres per minute ✓CA	1CA solution (4)	
1.2.1(b)	200 m/minute is too fast for walking and too slow for travelling by car or by taxi. ✓O Thus, the learner was cycling/running/travelling in a donkey cart. ✓✓J	10 Own opinion 2J justification/reason	12.1.2
	OR ✓ ✓ J		
	Any other sensible reason	(3)	
1.2.2	The statement of the newspaper was NOT correct. ✓O ✓J The sample chosen was too small (not representative of the	1O conclusion of the newspaper	12.4.6
	whole country) so cannot be used to make conclusions about the whole country. ✓ J	2J representivity of the sample (3)	

Ques	Solution	Explanation	AS
1.3	Area needed for 1 bicycle = $(1.8 \text{ m} \times 0.45 \text{ m}) + 0.5 \text{ m}^2\text{MA}$ $\checkmark \text{CA}$ $= 0.81 \text{ m}^2 + 0.5 \text{ m}^2$ $= 1.31 \text{ m}^2 \checkmark \text{CA}$ So, area needed for 124 bicycles = $124 \times 1.31 \text{ m}^2 \checkmark \text{A}$ $\checkmark \text{CA}$ $= 162.44 \text{ m}^2 \checkmark \text{CA}$ OR Area needed for 1 bicycle $\checkmark \text{MA} \qquad \checkmark \text{C} \qquad \checkmark \text{A}$ $= (180 \text{ cm} \times 45 \text{ cm}) + 0.5 \times 10000 \text{ cm}^2$ $= 8100 \text{ cm}^2 + 5000 \text{ m}^2$	1C conversion to m 1MA area for a bicycle 1CA additional space 1A total area for a bicycle 1A multiplication by 124 1CA Solution 1CA correct unit 1C conversion to cm ² 1MA area for a bicycle 1A additional space 1CA total area for a bicycle	12.3.1 12.3.1
	= 13 100 cm ² \checkmark CA So, area needed for 124 bicycles = 124 × 13 100 cm ² = 1 624 400 cm ² \checkmark CA = 162,44 m ² \checkmark A	1CA multiplication by 124 1CA Solution 1A correct unit	

Ques	Solution	Explanation	AS
1.4.1	Mean $= \frac{2+4+6+3+4+5+6+5+7+5+16+9+5+C+17+9}{16}$ $= \frac{103+C}{16} $	1MA finding the mean 1S simplification	12.4.3 12.4.4
	Mean = 7 $\therefore \frac{103 + C}{16} = 7 \checkmark M$ $103 + C = 7 \times 16$ $C = 112 - 103$	1M equating to 6	
	= 9 ✓CA	1CA value of C (4)	
1.4.2	Responses in ascending order are:		12.4.3
	2; 3; 4; 4; 5; 5; 5; 6; 6; 7; 9; 9; 9; 16; 17 ✓CA	1CA ascending order	
	The median = $\frac{5+6}{2}$ \checkmark M = 5,5 people \checkmark CA	1M finding the median 1CA median (3)	
1.4.3	Mrs James should use the median rather than the mean ✓O	10 correct measure	12.4.3
	The mean (i.e. 7 people) is not a good measure to use as 10 of the 16 households have less than 7 people. The mean is affected by large numbers. ✓ J	1J rejecting the mean	
	More than 50% of the households have 5 people or less thus making the median (i.e. 5,5 people) a more accurate measure.	1J accepting the median (3)	

Ques	ON 2 [33 MARKS] Solution	Explanation	AS
Ques		Laplanation	710
2.1.1(a)	4 √M		12.2.1
2.1.1(a)	$P = \frac{4}{2} \qquad \checkmark M$	1 M method	
	= 2 ✓CA	1CA seeless of D	
	= 2 ✓CA	1CA value of P	
		(2)	
2 1 1(b)	1 = 5	1 M method	
2.1.1(0)	$\frac{1-\overline{Q}}{Q}$ W	1 W memod	12.2.1
	$1 = \frac{5}{Q} \checkmark M$ $Q = \frac{5}{1}$ $= 5 \checkmark CA$		
	1 -5 \(\C \Lambda \)	1CA value of Q	
	- 3 · C/1		
	OR		
	4 .		
	$0.8 = \frac{1}{O} \checkmark M$	1 M method	
	$0.8 = \frac{4}{Q} \checkmark M$ $Q = \frac{4}{0.8}$ $= 5 \checkmark CA$		
	$Q = \frac{1}{0.8}$	1CA value of O	
	= 5 √ CA	1CA value of Q	
		(2)	

No. of workers	1	2	4	5	8	
Time taken (in hours) for TYPE A	4	2	1	0,8	0,5	
Time taken (in hours) for TYPE B	5	2,5	1,25	1	0,625	
TIME TAK			KER TO		E	
7						Type A Sandal 2A all points
6 VA						plotted 1CA correct graph 1A label
ae taker	ĆCA	✓A				Type B Sandal 2A all points plotted
		A A	/CA		TYPE B	1CA correct
0 1 2	3 Nu	4 5		7	8 9	
						(8)
Inverse proportion or	T., 1:	4	:	CA.		2CA type of

Ques	Solution	Explanation	AS
2.2.1	Jabu's wages = R11,25/hour × 40 hours \checkmark M = R450,00 \checkmark CA \checkmark M \checkmark CA Each worker earns 80% of R450,00 = R360,00 Total paid = R450,00 + 3 × R360 \checkmark M = R1 530,00 \checkmark CA	1M calculating Jabu's wages 1CA Jabu's wages 1M calculating worker's wages 1CA worker's wages 1M adding all wages 1CA total wages	12.1.3 12.2.1
	OR Jabu's wages = R11,25/hour × 40 hours \checkmark M = R450,00 \checkmark CA \checkmark M Each worker earns 80% of R11,25 = R9,00 \checkmark CA Total paid = R450,00 + 3 × R9,00/hour × 40 hours \checkmark M = R1 530,00 \checkmark CA	1M calculating Jabu's wages 1CA Jabu's wages 1M calculating worker's wages 1A worker's hourly wage 1M adding all wages 1CA total wages (6)	
2.2.2	Overtime pay per hour = $1.5 \times R11.25 \checkmark M$ = $R16.875$ $\approx R16.88 \checkmark CA$ Jabu's earning = $R450.00 + R16.88/hour \times 8 hours \checkmark M$ = $R450.00 + R135.04 \checkmark CA$ = $R585.04 \checkmark CA$ OR $\checkmark A$ Jabu's earning = $R450.00 + 8 \times (1.5 \times R11.25) \checkmark M$ = $R450.00 + R135.00 \checkmark CA$ = $R585.00 \checkmark CA$	1M calculating overtime rate 1CA overtime rate 1M calculating Jabu's wages 1CA overtime pay 1CA total earnings 1A number of hours overtime 1A multiplying by overtime rate 1M calculating Jabu's wages 1CA overtime pay 1CA total earnings	12.1.3

$\begin{array}{c} 11\\ NSC-Memorandum \end{array}$

Ques	Solution	Explanation	AS
2.3.1(a)	Percentage = 25% ✓ ✓A	2A percentage	12.4.3
	OR		
	Percentage = $\frac{3}{12} \times 100\%$ \checkmark A	1A number of days 1CA percentage	
	= 25% ✓CA	(2	2)
2.3.1(b)	Percentage = 50% ✓ ✓ A	2A percentage	12.4.3
	OR		
	Percentage = $\frac{6}{12} \times 100\%$ \checkmark A = 50% \checkmark CA	1A number of days	
		1CA percentage	2)
2.3.2(a)	P(3 Type B) = $\frac{2 \checkmark A}{12 \checkmark A}$ $= \frac{1}{6}$	1A number of days 1A total number of days	12.4.5
	= 0,1666 ≈ 0,167	(2	2)
2.3.2(b)	P(more than 4 Type A) = $\frac{6}{12} \checkmark A$	1A number of days 1A total number of	12.4.5
	$=\frac{1}{2}$ $=0.25$	days	2)

QUES	TION 3 [25 MARKS]		
Ques	Solution	Explanation	AS
3.1.1	Distance around the pencil = $6 \times 3 \text{ mm}$	1M multiplying by 6	12.3.1
	= 18 mm ✓A	1A distance	
	Length of pencil covered by beads = $\frac{1}{3} \times 180 \text{ mm} \checkmark \text{C}$	1C conversion	
	= 60 mm ✓ A	1A length	
	Surface area of pencil covered by beads		
	= 18 mm × 60 mm ✓ MA	1MA use of area formula	
	$= 1 080 \text{ mm}^2 \checkmark \text{CA}$	1CA area of beaded section	
	OR		
	Area of one of the beaded sides of the pencil $= 3 \text{ mm} \times (\frac{1}{3} \times 180 \text{ mm}) \checkmark \text{MA} \checkmark \text{C}$ $\checkmark \text{CA}$ $= 3 \text{ mm} \times 60 \text{ mm}$	1MA use of area formula 1C conversion 1CA width	
	$= 180 \text{ mm}^2 \checkmark \text{CA}$	1CA area of one beaded side	
	∴ Surface area of the pencil covered by beads $= 6 \times 180 \text{ mm}^2 \checkmark \text{CA}$	1CA multiplying by 6	
	$= 1 080 \text{ mm}^2 \checkmark \text{CA}$	1CA area of beaded section (6)	

Ques	Solution	Explanation	AS
3.1.2	Distance around the pencil = 18 mm $\checkmark M$ \therefore The number of beads = $18 \text{ mm} \div 1,5 \text{ mm}$ = $12 \checkmark \text{CA}$	1M dividing 1CA number of beads	12.3.1 12.1.1
	Length of beaded area = 60 mm The number of beads = $60 \text{ mm} \div 1,5 \text{ mm}$ = $40 \checkmark \text{CA}$	1M dividing 1CA number of beads	
	So the number of beads needed = $12 \times 40 \checkmark M$ = $480 \checkmark CA$	1M multiplying 1CA solution	
	OR Width of one side of penall = 2 mm		
	Width of one side of pencil = 3 mm Number of beads needed for width = 3 mm \div 1,5 mm = 2 Length of pencil to be beaded = 60 mm Number of beads needed for length = 60 mm \div 1,5 mm = 40 Number of beads needed for one side of pencil = 2 × 40 = 80 beads	1M dividing 1A number on width 1M dividing 1A number on length 1CA number on side	
	Number of beads needed for six sides of pencil = 6×80 = $480 \checkmark CA$	1CA number on six sides (6)	

Ques	Solution	Explanation	AS
3.2.1	Cost of labour (for beading) = $\frac{5}{60} \times R15,50$ = R1,29 \checkmark CA Cost of beads = $\frac{480}{1000} \times R8,00$ \checkmark MA = R3,84 \checkmark CA	1MA fraction and multiplication 1CA cost of labour 1MA fraction and multiplication 1CA cost of beads	12.1.1
	Cost of pencil = $\frac{R30,00}{12}$ \checkmark MA = $R2,50$ \checkmark CA	1MA dividing by 12 1CA cost of one pencil	
	= R1,29+ R3,84 + R2,50 = R7,63 ✓CA % Selling price = 100% + 35% = 135%	1CA total cost of a pencil	
	Selling price $= \frac{135}{100} \times R7,63$ $= 1,35 \times R7,63$ $= R10,30 \checkmark CA$	1M calculating increase % 1CA cost of pencil (9)	

Ques	Solution	Explanation AS
3.2.2	Price of pencil = R10,30 R1 = ARS 0,54895 R10,30 = ARS 0,54895 × 10,30 ✓A = ARS 5,654185	1A using the exchange rate
	Price of one pencil = ARS 5,654185 ✓CA	1CA price of pencil in Argentinean peso
	Number of pencils = $\frac{ARS \ 100}{ARS \ 5,654185} \checkmark M$ $= 17,686$	1M finding number of pencils
	≈ 17 ✓CA	1CA number of pencils (4)

QUESTION 4 [34 MARKS]				
Ques	Solution		Explanation	AS
4.1.1	METHOD 1	METHOD 2		12.1.3
	Discount = 5% of R139 900 $^{\circ}$ M = $\frac{5}{100}$ × R139 900 = 0,05 × R139 900 = R6 995,00 $^{\circ}$ A	Price after discount $\checkmark M$ = 95% of R139 900 $= \frac{95}{100} \times R139 900$ $= 0.95 \times R139 900$ $= R132 905 \checkmark CA$	1M calculating % 1A calculating 5% 1CA cash price (ex VAT) OR 1M subtracting from 100%	
	= R139 900 - R6 995,00 = R132 905 \(\sqrt{CA} \)		1M calculating percentage 1CA discounted price	
	VAT $= 14\% \text{ of } R132 905$ $= \frac{14}{100} \times R132 905$ $= R18 606,70 \checkmark CA$ Total cost including VAT $= R132 905 + R18 606,70$ $= R151 511,70 \checkmark CA$	Total cost including VAT = 114% of R132 905 \checkmark M = $\frac{114}{100}$ × R132 905 = 1,14 × R132 905 = R151 511,70 \checkmark CA	1M adding 14% 1CA price including VAT OR 1CA calculating VAT 1CA cash price (incl. VAT)	
	$= \frac{0.73}{100}$ $= 0.00$	5% of R151 511,70 5 × R151 511,70 775 × R151 511,70 136,34 ✓ CA	1M calculating % 1CA delivery cost	
	Full purchase cash price = R151 511,70 + R 1 136, = R158 998,04 ✓ CA	34 + R1 400,00 + R4 950,00	1CA purchase price (8))

Ques	Solution		Explanation	AS
4.1.2	Deposit = 20% of R158 998, = R31 799,61 \checkmark CA		1CA deposit amount	12.1.3
	= R127 198,43		1M subtracting 1CA amount financed	
			1CA correct % 1M calculating % 1CA amount financed	
			1SF substituting P 1A value of <i>i</i> 1CA amount to be repaid	
	METHOD 1 Monthly instalment $= \frac{R203 517,49}{60} \checkmark M$ $= R3 391,95816$ $\approx R3 391,96 \checkmark CA$ The monthly instalment is over by R7,04 \checkmark J	METHOD 2 R3 399,00 × 60 \checkmark M = R203 940,00 \checkmark CA The monthly instalment is over by R422,51 over the 60 months. \checkmark J	1M multiplying by 60 OR 1M dividing by 60 1CA monthly instalment OR 1CA total paid 1J conclusion (9)	

Ques	Solution	Explanation	AS
4.2	Area to be paved = 2,99 m× 10,35 m $= 30,9465 \text{ m}^2 \checkmark \text{CA}$	1MA using area formula 1CA paving area	12.3.1
	Area of the top face of a brick = 23 cm × 11,5 cm = 264,5 cm ² \checkmark A = 0,02645 m ² \checkmark C	1MA using area formula 1A area of each brick 1C converting	
	Number of bricks = $\frac{30,9465 \text{m}^2}{0,02645 \text{m}^2} \checkmark \text{M}$ = 1 170 bricks $\checkmark \text{CA}$	1M dividing 1CA number of bricks	
	Number of pallets = $\frac{1170}{354}$ \checkmark M	1M dividing by 160	
	= 3,305 So, 4 pallets will be needed ✓CA	1CA number of pallets	
	OR		

2,99 m = 299 cm ✓C METHOD 1	METHOD 2	1C conversion
Number bricks lengthwise	Number of bricks	
$= \frac{299 \mathrm{cm}}{23 \mathrm{cm}} \checkmark \mathrm{M}$	lengthwise	114 1: :1:
	$= \frac{299 \mathrm{cm}}{11,5 \mathrm{cm}} \checkmark \mathrm{M}$	1M dividing
= 13 bricks ✓CA	,	
	= 26 bricks ✓CA	1CA no. of bricks
40		
$10,35 \text{ cm} = 1\ 035 \text{ cm}$		1C conversion
METHOD 1	METHOD 2	7
Number of bricks	Number of bricks	
breadthwise	breadthwise	
$=\frac{1\ 035\mathrm{cm}}{}$	1 035 cm	
$=\frac{11,5 \text{ cm}}{1}$	$=\frac{23\mathrm{cm}}{23\mathrm{cm}}$	
= 90 bricks ✓CA	= 45 bricks ✓CA	1CA no of bricks
Total number of bricks	Total number of bricks	
= 13 × 90 ✓ CA	$= 26 \times 45$	1CA multiplying
= 1 170 bricks ✓CA	= 1 170 bricks ✓CA	1CA total no. of bricks
Number of pallets = $\frac{1170}{354}$	∕M	1M dividing
		Tivi dividilig
= 3,305	(0)	1CA no of nallets
So, 4 pallets will be needed	∨ CA	1CA no. of pallets (9)
Daliyary aharaa		1A constant amount
Delivery charge ✓A ✓A	✓A	1A constant amount 1A rate per km
$= R95 + R5,45 \times (\text{no of kild})$	ometres above 10 km)	1A correct equation
OR		
\checkmark A \checkmark A Delivery = R 95 + R5,45 × (✓A	1A constant amount 1A rate per km

Copyright reserved

4.3.2	Delivery charge by ABC Transport		12.2.1
	= $R95 + R5,45 \times (35 \text{ km} - 10 \text{ km})$ \checkmark SF = $R95 + R5,45 \times 25 \text{ km}$	1SF substitution	
	= R 231,25	1A delivery charge	
	Friend's charge = R250,00		
	Ravi should use ABC transport because he would save R18,75	1CA choice 2J justification (5)	

Question 5 [18 MARKS]				
Ques	Solution	Explanation	AS	
5.1.1	Capacity = 2,5 m \times 2,5 m \times 2 m \checkmark SF	1SF substitution	12.3.1	
	$= 12.5 \text{ m}^3 \qquad \checkmark \text{CA}$	1CA computation	12.3.2	
	= 12,5 k ℓ ✓C	1C converting to k ℓ		
		(3)		
5.1.2	65% of capacity = 0,65 of 12,5 k ℓ		12.1.1	
	= 8,125 k ℓ ✓A	1A 65% of tank	12.2.1	
			12.3.2	
	Full output = $3.6 \text{ k} \ell / \text{hour}$			
	$\frac{2}{3}$ of output = $\frac{2}{3} \times 3.6 \mathrm{k}\ell/\mathrm{hour} \checkmark\mathrm{M}$	1M multiplication		
	= 2,4 k ℓ /hour \checkmark CA	1CA operating output rate		
	Time taken to fill 65% = $\frac{8,125 \mathrm{k}\ell}{2,4 \mathrm{k}\ell/\mathrm{hour}} \checkmark \mathrm{M}$	1M finding time		
	= 3,385 hours ✓CA	1CA time in hours		
	$= 3 \text{ hours} + 0.385 \times 60 \text{ min}$			
	= 3 hours + 23,125 minutes			
	= 3 h 24 min ✓CA	1CA time in minutes and		
		hours		
		(6)		
5 2 1	Daily water consumption		12.2.1	
5.2.1	Daily water consumption		12.2.1	
	$\checkmark M$ $= 40 \times 90 \ell + 20 \times 50 \ell + 30 \times 50 \ell + 50 \times 5 \ell$	2M substitution	12.3.1	
	$= 6350 \ell$		12.3.2	
		1CA simplification		
	= 6,350 kℓ ✓C	1C conversion		
		(4)		

Ques	Solution	Explanation	AS
5.2.2	Water needed for ten days = $6,35 \text{ k}\ell \times 10^{-4} \text{ M}$	1M multiplication	12.1.1
	$= 63.5 \text{ kl}$ $= 63.5 \text{ m}^3 \checkmark \text{C}$	1C conversion	12.2.1 12.3.2
	$3,14 \times (\text{radius})^2 \times 2 \text{ m} = 63,5 \text{ m}^3 \checkmark \text{SF}$	1SF substitution	
	$(\text{radius})^2 = \frac{63.5 \text{m}^3}{3.14 \times 2 \text{m}}$ $(\text{radius})^2 = 10.111 \text{m}^2 \checkmark \text{CA}$	1CA simplification	
	radius = $\sqrt{10,111m^2}$ radius = 3,17985m radius = 3,18 m \checkmark CA	1CA solution (5)	

TOTAL: 150