哈尔滨工业大学深圳研究生院

2017年 秋 季学期期末考试试卷

ourse Name:_	计算理论 ALecturer:								Total
Question	One	Two	Three	Four	Five	Six	Seven	Eight	
Mark									
a) Suppose L ₁ and a) L ₁ ∪ L ₂) Language (a ⁱ b ⁱ c a) regular langua c) decidable langua is not a dec a) Appa b)	b)L ₁ o j= [i=j or j= age guage idable la	k where b) content d) Turing	i.j,k≥0}i kt-free lar g-recogni	is	1 01 a,0,0				
is wrong for a) aaqiaa yield: c) aaqiaa yield:	r Turing s aq _i aba	machine	b) aaq _i aa	a yields a a yields a					
which of the foll	owing is	correct _							
a) If A≤ _m B and	B is Turi	ng-recog	nizable, t	then A is	Turing-re	cogniza	ble.		
b) If A≤ _m B and	A is not	Turing-re	ecognizab	ole, then I	3 is not T	uring-re	cognizabl	e.	
c) EQ _{TM} is neith	ner Turin	g-recogn	izable noi	r co-Turii	ng-recogn	nizable.			
d) All of a b.c									

- (6) Let M be an LBA with a states and g symbols in the tape alphabet. There are exactly configurations of M for a tape of length n.
 - a) qng'
 - b) ngq'
 - c) qng9
 - d) ngq8
- (7) Let t(n) be a function, where $t(n) \geqslant n$. Then every t(n) time multi-tape Turing machine has an equivalent time single-tape Turing machine.
 - a) O(t(n)) b) $O(t^2(n)$ c) $O(t^3(n))$ d) $2^{O(t(n))}$

- (8) is not correct about CFG and PDA.
 - a) There is no rule of the form A->bC or A->Bc in Chomsky normal form. b) A string w is derived ambiguously in context-free grammar G if it has two or more different rightmost
 - c) A pushdown automata has an extra component called stack.
 - d) If a pushdown automaton recognizes some language, then it is context free.
- (9) ___ is not correct about P and NP.
 - a) A language in P is decided by a polynomial time Turing machine
 - b) A language in NP is decided by a polynomial time Turing machine
 - c) If B is NP-complete and B∈P, then P=NP
 - d) If B is NP-complete and B \leq_p C for C in NP, then C is NP-complete
- (10) is wrong.
 - a) a language in P is decided by a polynomial time Turing machine
 - b) a language in NP is decided by a polynomial time Turing machine
 - c) a language in NP is decided by a polynomial time nondeterministic Turing machine
 - d) a language in NP is verified by a polynomial time Turing machine

Ouestion Two:

Prove: $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and M halts on input w} \}$ is undecidable. (10 %)

Question Three:

Convert the following nondeterministic finite automata (NFA) to deterministic finite automata (DFA) and regular expression (RE).(10 %)

Question Four:

Let the TM be M=($\{q_1,q_2,q_3\},\{0,1\},\{0,1,B\},\delta,q_1,B,\{q_2\}$), where δ consists of the rules:

- $\delta(q_1,1)=(q_3,0,R)$
- $\delta(q_3,0)=\{q_1,1,R\}$
- $\delta(q_3,1)=\{q_2,0,R\}$
- $\delta(q_3,B)=\{q_3,1,L\}$
- 1) The starting state will always be q1, and q2 will be the only accepting state.
- 2) The tape symbols are X1, X2, ..., Xs. X1 will be the symbol 0, X2 will be 1 and X3 will be B, the blank
- 3) We refer to direction L as D1 and direction R as D2.
- Give the encoding sequence of TM M as what we talked about in class. (10%)

What is the different from P and NP class? What kind of problems is called NP-complete problems? You can answer this question in your own words. (10 %)

Question Six:

For the language $A\!=\!\!\{0^n1^nn\!\geqslant\!0\}$, there is a TM M1 that decides it.

M1="On input string w:

1. Scan across the tape and reject if a 0 is found to the right of a 1.

- 2. Repeat the following as long as some 0s and some 1s remain on the tape:
- Repeat are construing.
 Scan across the tape, checking whether the total number of 0s and 1s remaining is even or odd. If it is odd, reject.
- Scan again across the tape, crossing off every other 0 starting with the first 0, and then crossing off every other 1 starting with the first 1.
- 5. If no 0s and no 1s remain on the tape, accept. Otherwise, reject."

Prove the correctness of the TM and analysis its time complexity. (10%).

Ouestion Seven: Prove PATH ∈ P:

PATH={<G,s,t>| G is directed graph that has a directed path from s to t}. (10 %)

· Question Eight:

Turing machine can decide the language C={ $a^ib^ic^k \mid i^*j=k$ and $i,j,k \ge 1$ }. Please describe the process of recognization in your own words. (10%)

哈尔滨工业大学深圳研究生院 2017年 秋 季学期期末考试试卷

	HIT S	henzhe	en Grad	duate S	chool l	Examir	nation F	aper	王轩	
Course Name:_		计算理论 B					Lecturer:			
Question	One	Two	Three	Four	Five	Six	Seven	Eight	Total	
Mark										
a) Language (a'b'c' a) regular langua c) decidable lang is wrong fo a) anqua yields c) anqua yields is not a regular a) {w w begins b) {w every odd c) {w w contain d) {w the number is not correct Turing machin b) A language is c) We use detern three tapes are inp l) The single-ta	L ₂ are regressible. L ₁ or j=k ge buage d r Turing m aqaba aqibaa lalar langua with a lam position o s an even i er of 0s an about var ness are rol Turing-re ninistic Ti ut tape, sii pe Turing	ular language old of which and the same of the same of the same of the same of the same old	nages. The property of the pr	guage able yields aayields aqyields aquields aquields adie contains al} achine.	is not reg r of a,b,c ibq _i a abaaa exactly to ape Turin ministic tape	wo 1s} g machi	ne recogn	nizes it. -tape Tur		
is not a decid a) A _{DFA} b) E	able langu		8 00 1	F						
				E _{LBA}						
time single-tape a O(t(n)) b) O(ion, where Turing ma t ² (n) c	cillie.) time m	ulti-tape	Turing r	machine I	nas an equivale	
is not correct :	about CFC	and PD	Á.							
) There is no rule	of the fon	n A->bC	or A->E	Bc in Cho	msky no	rmal for	m			

- - b) A string w is derived ambiguously in context-free grammar G if it has two or more different rightmost
 - c) A pushdown automata has an extra component called stack.
 - d) If a pushdown automaton recognizes some language, then it is context free.

- is not P class.
 - a) PATH= $\{<G,s,t>|G \text{ is a directed graph that has a directed path from s to }t\}$.
 - b) SUBSET-SUM = $\{\langle S, t \rangle | S = \{x_1, ..., x_k\} \text{ and for some } \{y_1, ..., y_l\} \subseteq \{x_1, ..., x_k\} \text{ , we have } \Sigma y_i = t \}$.
 - c) RELPRIME = $\{<x,y>|x \text{ andy are relatively prime}\}$.
 - d) Every context-free language.
- (10) ____ is wrong.
 - a) a language in P is decided by a polynomial time Turing machine
 - b) a language in NP is decided by a polynomial time Turing machine
 - c) a language in NP is decided by a polynomial time nondeterministic Turing machine
 - d) a language in NP is verified by a polynomial time Turing machine

Question Two:

Prove that Language A= $\{0^n1^n2^n \mid n \ge 0\}$ is not regular. (10 %)

Ouestion Three:

Convert the following nondeterministic finite automata (NFA) to deterministic finite automata (DFA) regular expression (RE). Show every step. (12 %)

Question Four:

Let the TM be M=($\{q_1,q_2,q_3\},\{0,1\},\{0,1,B\}, \delta, q_1,B,\{q_2\}$), where δ consists of the rules:

- $\delta(q_1,1)=(q_3,0,R)$
- $\delta(q_3,0)=\{q_1,1,R\}$
- $\delta(q_3,1)=\{q_2,0,R\}$
- $\delta (q_3,B)=\{q_3,1,L\}$
- 1) The starting state will always be q_1 , and q_2 will be the only accepting state.
- 2) The tape symbols are X₁, X₂, ..., X_s. X₁ will be the symbol 0, X₂ will be 1 and X₃ will be B, the blank
- 3) We refer to direction L as D1 and direction R as D2.

Give the encoding sequence of TM M as what we talked about in class. (10%)

Ouestion Five:

Prove PATH € P: (10 points)

PATH=(<G,s,t>| G is directed graph that has a directed path from s to t) (8%)

Ouestion Six:

For the language $A=\{0^n1^n|n\ge 0\}$, there is a TM M1 that decides it.

- MI-"On input string w.
- 1. Scan across the tape and reject if a 0 is found to the right of a 1.
- 2. Repeat the following as long as some 0s and some 1s remain on the tape:
- Scan across the tape, checking whether the total number of 0s and 1s remaining is even or odd. If it is odd, reject.
- Scan again across the tape, crossing off every other 0 starting with the first 0, and then crossing off every other 1 starting with the first 1.
- 5. If no 0s and no 1s remain on the tape, accept. Otherwise, reject."
- Prove the correctness of the TM and analysis its time complexity. (10%).

Ouestion Seven:

Turing machine can decide the language C={ a'b'c^k | i*j=k and i,j,k≥1}. Please describe the process of recognization in your own words. (10%)

Question Eight:

Prove that Language A= $\{a^ib^jc^k \mid 0 \le i \le j \le k\}$ is not context-free language. (10%) Tips: pumping lemma