Министерство образования и науки Российской Федерации Новосибирский государственный технический университет Кафедра прикладной математики

Уравнения математической физики

Лабораторная работа №2

Факультет ПМИ

Группа ПМ-01

Студент Жигалов П.С.

Преподаватель Задорожный А.Г.

Персова М.Г.

Вариант 13

1. Цель работы

Разработать программу решения нелинейной одномерной краевой задачи методом конечных элементов. Провести сравнение метода простой итерации и метода Ньютона для решения данной задачи.

2. Задание

Уравнение: $-\operatorname{div}(\lambda\operatorname{grad} u) + \gamma u = f(u)$. Базисные функции линейные

3. Анализ

3.1. Вариационная постановка и дискретизация

Для нелинейной задачи $-\operatorname{div}(\lambda\operatorname{grad} u)+\gamma u=f(u)$ (1) выполним вариационную постановку Галеркина: скалярно умножим правую и левую часть на пробную функцию $v\in H_0$, H_0 - множество функций, удовлетворяющих первым краевым условиям. $\int\limits_{\Omega}\lambda\operatorname{grad} u\cdot\operatorname{grad} v\cdot d\Omega-\int\limits_{S_1}\lambda\frac{\partial u}{\partial n}vdS-\int\limits_{S_2}\theta vdS-\int\limits_{S_3}\beta\left(u-u_\beta\right)vdS+\int\limits_{\Omega}(\gamma u-f(u))vd\Omega=0 \ \ (2).$

Перейдем от гильбертова пространства H к конечномерному пространству V^h , которое определим как линейное пространство, натянутое на базисные функции ψ_i , i=1...n. Заменим в функцию u аппроксимирующей ее функцией u^h , а функцию v - функцией v^h и получим аппроксимацию уравнения Галеркина:

$$\int_{\Omega} \lambda \operatorname{grad} u^h \cdot \operatorname{grad} v^h \cdot d\Omega + \int_{\Omega} \gamma u^h v^h d\Omega + \int_{S_h} \beta u^h v^h dS = \int_{\Omega} f(u^h) v^h d\Omega + \int_{S_h} \theta v^h dS + \int_{S_h} \beta u_{\beta} v^h dS$$
(3)

Поскольку любая функция v^h может быть представлена в виде линейной комбинации $v^h = \sum_{i=1}^n q_i \psi_i$, вариационное уравнение (3) эквивалентно следующему:

$$\int_{\Omega} \lambda gradu^{h} \cdot grad\psi_{i} \cdot d\Omega + \int_{\Omega} \gamma u^{h} \psi_{i} d\Omega + \int_{S_{i}} \beta u^{h} \psi_{i} dS = \int_{\Omega} f(u^{h}) \psi_{i} d\Omega + \int_{S_{i}} \theta \psi_{i} dS + \int_{S_{i}} \beta u_{\beta} \psi_{i} dS$$
(4)

Таким образом, МКЭ-решение u^h удовлетворяет (4). Оно может быть представлено в виде: $u^h = \sum_{j=1}^n q_j \psi_j$ (5). Подставляя (5) в (4) получим СЛАУ Aq = b(q), где:

$$A_{ij} = \int_{\Omega} \lambda \operatorname{grad} \psi_{j} \cdot \operatorname{grad} \psi_{i} \cdot d\Omega + \int_{\Omega} \gamma \psi_{j} \psi_{i} d\Omega + \int_{S_{i}} \beta \psi_{j} \psi_{i} dS \qquad (6)$$

$$b_{i}(q) = \int_{\Omega} f(u^{h}(q))\psi_{i}d\Omega + \int_{S_{2}} \theta \psi_{i}dS + \int_{S_{3}} \beta u_{\beta}\psi_{i}dS$$
 (7)

3.2. Вычисление компонент матрицы и вектора правой части для метода простой итерации

Поскольку случай одномерный, линейные базисные функции на конечном элементе могут быть записаны в виде: $\psi_1 = \frac{x_{i+1} - x}{h} \;,\; \psi_2 = \frac{x - x_i}{h} \;,\; \text{где} \;\; h_x = x_{i+1} - x_i \;.$

Матрица A представляется в виде $A_{i,j} = \int_a^b \lambda \cdot \frac{\partial \psi_i}{\partial x} \cdot \frac{\partial \psi_j}{\partial x} dx + \int_a^b \gamma \psi_i \psi_j dx$ (в случае третьих краевых добавляется добавка из β), ее можно представить в виде сборки из локальных матриц.

Вид локальной матрицы будет следующим:
$$\hat{A}_{i,j} = \int_{a}^{b} \lambda_k \cdot \frac{\partial \hat{\psi}_i}{\partial x} \cdot \frac{\partial \hat{\psi}_j}{\partial x} dx + \int_{a}^{b} \gamma_k \hat{\psi}_i \hat{\psi}_j dx = \hat{G}_{i,j} + \hat{M}_{i,j}$$
 (8).

$$\hat{G}_{i,j} = \int_{a}^{b} \lambda_{k} \cdot \frac{\partial \hat{\psi}_{i}}{\partial x} \cdot \frac{\partial \hat{\psi}_{j}}{\partial x} dx \quad , \quad \hat{G} = \frac{\lambda_{k}}{h_{k}} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
 (9) - локальная матрица жесткости
$$\hat{M}_{i,j} = \int_{a}^{b} \gamma_{k} \hat{\psi}_{i} \hat{\psi}_{j} dx \quad , \quad \hat{M} = \gamma_{k} h_{k} \begin{pmatrix} 1/3 & 1/6 \\ 1/6 & 1/3 \end{pmatrix} = \frac{\gamma_{k} h_{k}}{6} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 (10) - локальная матрица массы.

Вектор правых частей также можно представить в виде $b_i(q) = \int_a^b f(u^h(q)) \psi_i dx$ (в случае первых краевых добавляется добавка из u_g , в случае вторых – из θ , в случае третьих – из βu_{β}), его также можно представить в виде сборки из локальных векторов.

Вид локального вектора будет следующим: $\hat{b}_i = \int\limits_a^b f\left(u^h\left(q\right)\right)\hat{\psi}_i dx$, $\hat{b} = \begin{pmatrix} \int\limits_a^b f\left(u^h\right)\hat{\psi}_1 dx \\ \int\limits_a^b f\left(u^h\right)\hat{\psi}_2 dx \end{pmatrix}$. Заменяя $f\left(u^h\left(q\right)\right)$ ли-

нейным интерполянтом, получим $f\left(u^{h}\left(q\right)\right)\sim f^{k}\left(u^{h}\left(q,x_{k}\right)\right)\hat{\psi_{1}}\left(x\right)+f^{k}\left(u^{h}\left(q,x_{k+1}\right)\right)\hat{\psi_{2}}\left(x\right)$. Тогда:

$$\hat{b} = \begin{pmatrix} \int_{a}^{b} \left(f^{k} \left(u^{h} \left(q, x_{k} \right) \right) \hat{\psi}_{1} + f^{k} \left(u^{h} \left(q, x_{k+1} \right) \right) \hat{\psi}_{2} \right) \hat{\psi}_{1} dx \\ \int_{a}^{b} \left(f^{k} \left(u^{h} \left(q, x_{k} \right) \right) \hat{\psi}_{1} + f^{k} \left(u^{h} \left(q, x_{k+1} \right) \right) \hat{\psi}_{2} \right) \hat{\psi}_{2} dx \end{pmatrix} = \begin{pmatrix} \frac{h_{k}}{6} \left(2 f^{k} \left(u^{h} \left(q, x_{k} \right) \right) + f^{k} \left(u^{h} \left(q, x_{k+1} \right) \right) \right) \\ \frac{h_{k}}{6} \left(f^{k} \left(u^{h} \left(q, x_{k} \right) \right) + 2 f^{k} \left(u^{h} \left(q, x_{k+1} \right) \right) \right) \\ f^{k} \left(u^{h} \left(q, x_{k} \right) \right) + 2 f^{k} \left(u^{h} \left(q, x_{k+1} \right) \right) \end{pmatrix}, (11) \text{ Tak kak } \int_{a}^{b} \hat{\psi}_{1}^{2} dx = \frac{h_{k}}{3}, \int_{a}^{b} \hat{\psi}_{1} \hat{\psi}_{2} dx = \frac{h_{k}}{6}, \int_{a}^{b} \hat{\psi}_{2}^{2} dx = \frac{h_{k}}{3}. \end{pmatrix}$$

3.3. Вычисление компонент матрицы и вектора правой части для метода Ньютона

Так как исходно левая часть уравнения линейна, формирование локальных линеаризованных матрицы и вектора в методе Ньютона происходит по следующим формулам:

$$\hat{A}_{i,j}^{L} = \hat{A}_{i,j} \left(\hat{q}^{0} \right) - \frac{\partial \hat{b}_{i} \left(\hat{q} \right)}{\partial \hat{q}_{j}} \bigg|_{\hat{a} = \hat{a}^{0}} (12), \qquad \qquad \hat{b}_{i}^{L} = \hat{b}_{i} \left(\hat{q}^{0} \right) - \sum_{r=1}^{\hat{n}} \frac{\partial \hat{b}_{i} \left(\hat{q} \right)}{\partial \hat{q}_{r}} \bigg|_{\hat{a} = \hat{a}^{0}} \hat{q}_{r}^{0} (13).$$

Так как \hat{f}^k можно представить в виде $\hat{f}^k\left(u^h\left(\hat{q},\hat{x}\right)\right) = \hat{f}^k\left(u^h\left(\hat{q},\hat{x}_1\right)\right)\psi_1 + \hat{f}^k\left(u^h\left(\hat{q},\hat{x}_2\right)\right)\psi_2$, то $\hat{b}_i\left(\hat{q}\right)$ можно представить в виде $\hat{b}_i\left(\hat{q}\right) = \int\limits_a^b \left(\hat{f}^k\left(u^h\left(\hat{q},\hat{x}_1\right)\right)\psi_1 + \hat{f}^k\left(u^h\left(\hat{q},\hat{x}_2\right)\right)\psi_2\right)\psi_i dx$, откуда

$$\frac{\partial \hat{b}_{i}(\hat{q})}{\partial \hat{q}_{r}}\bigg|_{\hat{q}=\hat{q}^{0}} = \int_{a}^{b} \left(\frac{\partial \hat{f}^{k}\left(u^{k}(\hat{q},\hat{x}_{1})\right)}{\partial \hat{q}_{r}}\bigg|_{\hat{q}=\hat{q}^{0}} \psi_{1} + \frac{\partial \hat{f}^{k}\left(u^{k}(\hat{q},\hat{x}_{2})\right)}{\partial \hat{q}_{r}}\bigg|_{\hat{q}=\hat{q}^{0}} \psi_{2} \right) \psi_{i} dx \quad (14).$$

Найдем $\frac{\partial \hat{f}^k \left(u^h \left(\hat{q}, \hat{x}_l \right) \right)}{\partial \hat{q}_r} \bigg|_{\hat{q} = \hat{q}^0}$ как производную сложной функции:

$$\left.\frac{\partial \hat{f}^{k}\left(u^{h}\left(\hat{q},\hat{x}_{l}\right)\right)}{\partial \hat{q}_{r}}\right|_{\hat{q}=\hat{q}^{0}}=\frac{\partial \hat{f}^{k}\left(u^{h}\left(\hat{q},\hat{x}_{l}\right)\right)}{\partial u}\right|_{u=v^{h}(\hat{q},\hat{x}_{l})}\cdot\frac{\partial u^{h}\left(\hat{q},\hat{x}_{l}\right)}{\partial \hat{q}_{r}}\bigg|_{\hat{q}=\hat{q}^{0}}\text{, figh }\frac{\partial u^{h}\left(\hat{q},\hat{x}_{l}\right)}{\partial \hat{q}_{r}}\bigg|_{\hat{q}=\hat{q}^{0}}=\begin{cases}1,l=r\\0,l\neq r\end{cases}$$

Тогда части добавок будут выглядеть следующим образом:

$$\frac{\partial \hat{b}_{1}(\hat{q})}{\partial \hat{q}_{1}}\bigg|_{\hat{q}=\hat{q}^{0}} = \frac{h_{k}}{3} \left(\frac{\partial \hat{f}^{k}\left(u^{h}(\hat{q},\hat{x}_{1})\right)}{\partial u} \bigg|_{u=u^{h}(\hat{q},\hat{x}_{1})} \right) \qquad \qquad \frac{\partial \hat{b}_{1}(\hat{q})}{\partial \hat{q}_{2}}\bigg|_{\hat{q}=\hat{q}^{0}} = \frac{h_{k}}{6} \left(\frac{\partial \hat{f}^{k}\left(u^{h}(\hat{q},\hat{x}_{2})\right)}{\partial u} \bigg|_{u=u^{h}(\hat{q},\hat{x}_{2})} \right) \\
\frac{\partial \hat{b}_{2}(\hat{q})}{\partial \hat{q}_{1}}\bigg|_{\hat{q}=\hat{q}^{0}} = \frac{h_{k}}{6} \left(\frac{\partial \hat{f}^{k}\left(u^{h}(\hat{q},\hat{x}_{1})\right)}{\partial u} \bigg|_{u=u^{h}(\hat{q},\hat{x}_{1})} \right) \qquad \qquad \frac{\partial \hat{b}_{2}(\hat{q})}{\partial \hat{q}_{2}}\bigg|_{\hat{q}=\hat{q}^{0}} = \frac{h_{k}}{3} \left(\frac{\partial \hat{f}^{k}\left(u^{h}(\hat{q},\hat{x}_{2})\right)}{\partial u} \bigg|_{u=u^{h}(\hat{q},\hat{x}_{2})} \right)$$

Их необходимо подставить в формулы (12) и (13).

4. Исследования и тесты

4.1. Решение – полином первой степени

Уравнение: $-\operatorname{div}\operatorname{grad} u + u = u$, решение: u = x + 2 , сетка: [0,1] с шагом h = 0.1 , краевые условия: первыелервые, коэффициент релаксации $\omega = 1$, целевая невязка 10^{-10} .

x	u *	Простой итерации	Ньютона	$ u^*-u^{si} $	$ u^*-u^N $
0.00	2.000000000000000	2.000000000000000	2.000000000000000	0.000E+00	0.000E+00
0.10	2.100000000000000	2.0999999999634	2.0999999999738	3.660E-12	2.620E-12
0.20	2.200000000000000	2.1999999999305	2.19999999999510	6.950E-12	4.900E-12
0.30	2.300000000000000	2.29999999999043	2.2999999999337	9.570E-12	6.630E-12
0.40	2.40000000000000	2.3999999998875	2.39999999999233	1.125E-11	7.670E-12
0.50	2.500000000000000	2.4999999998817	2.49999999999207	1.183E-11	7.930E-12
0.60	2.600000000000000	2.5999999998875	2.59999999999258	1.125E-11	7.420E-12
0.70	2.70000000000000	2.69999999999043	2.6999999999379	9.570E-12	6.210E-12
0.80	2.800000000000000	2.7999999999304	2.7999999999556	6.960E-12	4.440E-12
0.90	2.900000000000000	2.89999999999634	2.89999999999770	3.660E-12	2.300E-12
1.00	3.00000000000000	3.00000000000000	3.00000000000000	0.000E+00	0.000E+00
Итераций		11	9		
Невязка		7.688E-11	9.955E-11		
Погрешность		3.165E-12	2.124E-12		

4.2. Решение – полином второй степени

Уравнение: $-{
m div}\,{
m grad}\,u+u=u-4$, решение: $u=2x^2$, сетка: $\left[0,1\right]$ с шагом h=0.1 , краевые условия: первые, коэффициент релаксации $\omega=1$, целевая невязка 10^{-10} .

x	u *	Простой итерации	Ньютона	$ u^*-u^{si} $	$ u^*-u^N $
0.00	0.000000000000000	0.00000000000000	0.00000000000000	0.000E+00	0.000E+00
0.10	0.02000000000000	0.01999999999913	0.0199999999936	8.739E-13	6.412E-13
0.20	0.08000000000000	0.07999999999834	0.0799999999880	1.662E-12	1.200E-12
0.30	0.180000000000000	0.17999999999771	0.17999999999838	2.288E-12	1.625E-12
0.40	0.320000000000000	0.31999999999731	0.31999999999812	2.690E-12	1.879E-12
0.50	0.500000000000000	0.49999999999717	0.4999999999806	2.829E-12	1.944E-12
0.60	0.720000000000000	0.71999999999731	0.71999999999818	2.691E-12	1.819E-12
0.70	0.98000000000000	0.97999999999771	0.9799999999848	2.289E-12	1.523E-12
0.80	1.280000000000000	1.27999999999833	1.27999999999891	1.670E-12	1.090E-12
0.90	1.620000000000000	1.61999999999912	1.61999999999943	8.802E-13	5.702E-13
1.00	2.000000000000000	2.000000000000000	2.000000000000000	0.000E+00	0.000E+00
Итераций		11	9		
Невязка		3.017E-11	3.999E-11		
Погрешность		1.988E-12	1.367E-12		

4.3. Решение – полином третьей степени

Уравнение: $-\operatorname{div}\operatorname{grad} u + u = -6\sqrt[3]{u} + u$, решение: $u = x^3$, сетка: $\begin{bmatrix} 0,1 \end{bmatrix}$ с шагом h = 0.1 , краевые условия: первые, коэффициент релаксации $\omega = 1$, целевая невязка 10^{-10} .

x	u *	Простой итерации	Ньютона	$ u^*-u^{si} $	$ u^*-u^N $
0.00	0.000000000000000	0.00000000000000	0.00000000000000	0.000E+00	0.000E+00
0.10	0.00100000000000	0.13078411087609	0.00099999999889	1.298E-01	1.111E-12
0.20	0.00800000000000	0.24260922847276	0.00799999999902	2.346E-01	9.814E-13
0.30	0.02700000000000	0.33002143332642	0.02699999999908	3.030E-01	9.218E-13
0.40	0.06400000000000	0.39330433888995	0.06399999999918	3.293E-01	8.199E-13
0.50	0.12500000000000	0.43647689268848	0.12499999999931	3.115E-01	6.950E-13
0.60	0.21600000000000	0.47446580699731	0.21599999999944	2.585E-01	5.580E-13
0.70	0.34300000000000	0.53830872171540	0.34299999999958	1.953E-01	4.179E-13
0.80	0.51200000000000	0.64239062670151	0.51199999999972	1.304E-01	2.771E-13
0.90	0.72900000000000	0.79415635148477	0.72899999999986	6.516E-02	1.381E-13
1.00	1.000000000000000	1.000000000000000	1.000000000000000	0.000E+00	0.000E+00
Итераций		100001	35		
Невязка		9.798E-01	5.181E-11		
Погрешность		5.004E-01	1.555E-12		

4.4. Решение – не полином (синус)

Уравнение: $-\operatorname{div}\operatorname{grad} u + u = 2u$, решение: $u = \sin\left(x\right)$, сетка: $\left[0,2\right]$ с шагом h = 0.2 , краевые условия: первые-первые, коэффициент релаксации $\omega = 1$, целевая невязка 10^{-10} .

x	u *	Простой итерации	Ньютона	$ u^*-u^{si} $	$ u * - u^N $
0.00	0.00000000000000	0.00000000000000	0.00000000000000	0.000E+00	0.000E+00
0.20	0.19866933079506	0.19804432410100	0.19804432411017	6.250E-04	6.250E-04
0.40	0.38941834230865	0.38821933731183	0.38821933732937	1.199E-03	1.199E-03
0.60	0.56464247339504	0.56296841659214	0.56296841661631	1.674E-03	1.674E-03
0.80	0.71735609089952	0.71534788991844	0.71534788994673	2.008E-03	2.008E-03
1.00	0.84147098480790	0.83930294378166	0.83930294381106	2.168E-03	2.168E-03
1.20	0.93203908596723	0.92990821180332	0.92990821183064	2.131E-03	2.131E-03
1.40	0.98544972998846	0.98356348465787	0.98356348468006	1.886E-03	1.886E-03
1.60	0.99957360304151	0.99813676474786	0.99813676476236	1.437E-03	1.437E-03
1.80	0.97384763087820	0.97304898134033	0.97304898134714	7.986E-04	7.986E-04
2.00	0.90929742682568	0.90929700000000	0.90929700000000	4.268E-07	4.268E-07
Итераций		42	29		
Невязка		6.145E-11	5.188E-11		
Погрешность		1.951E-03	1.951E-03		

4.5. Решение – не полином (экспонента)

Уравнение: $-\operatorname{div}\operatorname{grad} u + u = 0$, решение: $u = e^x$, сетка: [0,10] с шагом h = 1 , краевые условия: первые-первые, коэффициент релаксации $\omega = 1$, целевая невязка 10^{-10} .

x	u*	Простой итерации	Ньютона	$ u*-u^{si} $	$ u*-u^N $
0.00	1.000000000000E+00	1.000000000000E+00	1.000000000000E+00	0.000E+00	0.000E+00
1.00	2.718281828459E+00	1.912756574388E+00	1.912756574388E+00	8.055E-01	8.055E-01
2.00	7.389056098931E+00	5.120821038041E+00	5.120821038041E+00	2.268E+00	2.268E+00
3.00	2.008553692319E+01	1.447387074734E+01	1.447387074734E+01	5.612E+00	5.612E+00
4.00	5.459815003314E+01	4.119556535346E+01	4.119556535346E+01	1.340E+01	1.340E+01
5.00	1.484131591026E+02	1.173519383837E+02	1.173519383837E+02	3.106E+01	3.106E+01
6.00	4.034287934927E+02	3.343306374745E+02	3.343306374745E+02	6.910E+01	6.910E+01
7.00	1.096633158428E+03	9.525061015346E+02	9.525061015346E+02	1.441E+02	1.441E+02
8.00	2.980957987042E+03	2.713688887436E+03	2.713688887436E+03	2.673E+02	2.673E+02
9.00	8.103083927575E+03	7.731298338261E+03	7.731298338261E+03	3.718E+02	3.718E+02
10.00	2.202646579481E+04	2.202646579500E+04	2.202646579500E+04	1.933E-07	1.933E-07
Итераций		2	2		
Невязка		6.145E-11	5.188E-11		
Погрешность		2.053E-02	2.053E-02		

4.6. Исследование на вложенных сетках

Уравнение: $-\operatorname{div}\operatorname{grad} u + u = 2u$, решение: $u = \cos\left(x\right)$, сетка: $\left[0,2\right]$ с шагом h = 0.2 h/2 = 0.1 h/4 = 0.05 , краевые условия: первые-первые, коэффициент релаксации $\omega = 1$, целевая невязка 10^{-10} .

Метод простой итерации:

x	u *	u^h	$u^{h/2}$	$u^{h/4}$	$ u*-u^h $	$ u^*-u^{h/2} $	$\left u*-u^{h/4}\right $
0.00	1.00000000	1.00000000	1.00000000	1.00000000	0.00E+00	0.00E+00	0.00E+00
0.20	0.98006658	0.97947473	0.97991780	0.98002931	5.92E-04	1.49E-04	3.73E-05
0.40	0.92106099	0.92002993	0.92080178	0.92099605	1.03E-03	2.59E-04	6.49E-05
0.60	0.82533561	0.82402765	0.82500674	0.82525321	1.31E-03	3.29E-04	8.24E-05
0.80	0.69670671	0.69528255	0.69634857	0.69661695	1.42E-03	3.58E-04	8.98E-05
1.00	0.54030231	0.53891032	0.53995221	0.54021454	1.39E-03	3.50E-04	8.78E-05
1.20	0.36235775	0.36112445	0.36204751	0.36227995	1.23E-03	3.10E-04	7.78E-05
1.40	0.16996714	0.16898926	0.16972109	0.16990541	9.78E-04	2.46E-04	6.17E-05
1.60	-0.02919952	-0.02986074	-0.02936596	-0.02924133	6.61E-04	1.66E-04	4.18E-05
1.80	-0.22720209	-0.22752422	-0.22728326	-0.22722255	3.22E-04	8.12E-05	2.05E-05
2.00	-0.41614684	-0.41614700	-0.41614700	-0.41614700	1.63E-07	1.63E-07	1.63E-07
Итераций		41	41	40			
Невязка		6.829E-11	6.222E-11	8.393E-11			
Погреш- ность		1.474E-03	3.707E-04	9.293E-05			

$$\log_2 \frac{\|u^* - u_h\|}{\|u^* - u_{h/2}\|} \approx 1.99, \qquad \log_2 \frac{\|u^* - u_{h/2}\|}{\|u^* - u_{h/4}\|} \approx 2.00$$

Метод Ньютона:

x	u *	u^h	$u^{h/2}$	$u^{h/4}$	$ u^*-u^h $	$\left u^*-u^{h/2}\right $	$\left u^*-u^{h/4}\right $
0.00	1.00000000	1.00000000	1.00000000	1.00000000	0.00E+00	0.00E+00	0.00E+00
0.20	0.98006658	0.97947473	0.97991780	0.98002931	5.92E-04	1.49E-04	3.73E-05
0.40	0.92106099	0.92002993	0.92080178	0.92099605	1.03E-03	2.59E-04	6.49E-05
0.60	0.82533561	0.82402765	0.82500674	0.82525321	1.31E-03	3.29E-04	8.24E-05
0.80	0.69670671	0.69528255	0.69634857	0.69661695	1.42E-03	3.58E-04	8.98E-05
1.00	0.54030231	0.53891032	0.53995221	0.54021454	1.39E-03	3.50E-04	8.78E-05
1.20	0.36235775	0.36112445	0.36204751	0.36227995	1.23E-03	3.10E-04	7.78E-05
1.40	0.16996714	0.16898926	0.16972109	0.16990541	9.78E-04	2.46E-04	6.17E-05
1.60	-0.02919952	-0.02986074	-0.02936596	-0.02924133	6.61E-04	1.66E-04	4.18E-05
1.80	-0.22720209	-0.22752422	-0.22728326	-0.22722255	3.22E-04	8.12E-05	2.05E-05
2.00	-0.41614684	-0.41614700	-0.41614700	-0.41614700	1.63E-07	1.63E-07	1.63E-07
Итераций		55	55	55			
Невязка		6.829E-11	8.890E-11	6.916E-11			
Погреш- ность		1.474E-03	3.707E-04	9.293E-05			

$$\log_2 \frac{\|u^* - u_h\|}{\|u^* - u_{h/2}\|} \approx 1.99, \qquad \log_2 \frac{\|u^* - u_{h/2}\|}{\|u^* - u_{h/4}\|} \approx 2.00$$

4.7. Исследование зависимости сходимости от параметра релаксации

Уравнение: $-\operatorname{div}\operatorname{grad} u + u = u - 4$, решение: $u = 2x^2$, сетка: $\begin{bmatrix} 0,5 \end{bmatrix}$ с шагом h = 1, краевые условия: первые-

первые, целевая невязка $10^{-10}\,$.

ω	Итер.SI	Итер. N	ω	Итер.SI	Итер. N
0.20	360	231	1.10	57	33
0.30	237	151	1.20	52	29
0.40	175	111	1.30	47	26
0.50	138	86	1.40	43	28
0.60	114	70	1.50	39	36
0.70	96	59	1.60	48	48
0.80	83	50	1.70	67	68
0.90	72	43	1.80	107	108
1.00	64	38	1.90	225	228

4.8. Неравномерная сетка с краевыми условиями третьего рода

Уравнение: $-\operatorname{div}\operatorname{grad} u + u = 2u$, решение: $u = \sin(x)$, сетка: [0,2] с начальным шагом $h_0 = 0.05$ и коэффициентом разрядки k = 1.3 , краевые условия: третьи-первые, коэффициент релаксации $\omega = 1$, целевая невязка 10^{-10} .

Третьи краевые условия:
$$\frac{\partial u}{\partial n}\Big|_{x=0} + u\Big|_{x=0} - 1 = 0$$

x	u *	Простой итерации	Ньютона	$ u^*-u^{si} $	$ u*-u^N $
0.00	0.00000000000000	-0.01399160235724	-0.01399160213121	1.399E-02	1.399E-02
0.05	0.04997916927068	0.03530576645776	0.03530576669467	1.467E-02	1.467E-02
0.12	0.11474668839366	0.09924207154255	0.09924207179240	1.550E-02	1.550E-02
0.20	0.19817927269289	0.18169282653996	0.18169282680452	1.649E-02	1.649E-02
0.31	0.30443955522297	0.28685535241621	0.28685535269613	1.758E-02	1.758E-02
0.45	0.43690498611986	0.41822016523857	0.41822016553170	1.868E-02	1.868E-02
0.64	0.59543099372021	0.57591875905608	0.57591875935445	1.951E-02	1.951E-02
0.88	0.77019191958923	0.75073264183311	0.75073264211781	1.946E-02	1.946E-02
1.19	0.92943734098401	0.91217757522179	0.91217757545569	1.726E-02	1.726E-02
1.60	0.99955142227177	0.98912975320628	0.98912975332818	1.042E-02	1.042E-02
2.00	0.90929742682568	0.90929700000000	0.90929700000000	4.268E-07	4.268E-07
Итераций		139	76		
Невязка		9.255E-11	7.635E-11		
Погрешность		2.629E-02	2.629E-02		

5. Выводы

По результатам исследований, метод Ньютона, как и следовало ожидать, оказался лучше, так как сходился в среднем за меньшее число итераций, к тому же позволил решить задачу, решением которой был полином третьей степени. С точки зрения получения формул и построения матриц метод Ньютона сложнее метода простой итерации, однако позволяет учесть особенности нелинейности конкретной задачи.

6. Код программы

Метод простой итерации

```
#define class type
    module simple_iter_module
         implicit none
         type, private :: finite element
              double precision :: begin_, end_, lambda_, gamma_
         end type
         type, private :: area
              type(finite_element), allocatable :: fe(:)
              ! Для первых \overline{b}ound_val1_x = ug, bound_val2_x = undefined
              ! Для третьих bound_vall_x = theta, bound_val2_x = undefined ! Для третьих bound val1 x = beta, bound val2 x = ub
              double precision :: bound val1 1, bound val2 1, bound val1 r, bound val2 r
              integer :: bound type 1, bound type r
         type, private :: slae
              double precision, allocatable :: di(:), dl(:), du(:), f(:), q(:), q old(:)
              integer :: n
              procedure :: solve
         end type
         type :: simple iter solver
              double precision :: omega_
              integer :: maxiter_ = 100000
double precision :: epsilon_ = 1d-10
              type(area), private :: area
type(slae), private :: slae
              double precision, private :: & ! матрица массы
                  m x(2,2)=reshape(source=(/2d0,1d0,1d0,2d0/),shape=(/2,2/))
              double precision, private :: & ! матрица жесткости g_x(2,2)=reshape(source=(/ld0,-ld0,-ld0,ld0/),shape=(/2,2/))
         contains
              procedure :: read
              procedure :: solve
              procedure :: clean_
              procedure :: write_
procedure, private :: get_matrix
```

```
procedure, private :: f_{\underline{}}
          procedure, private :: psi1
procedure, private :: psi2
           procedure, private :: residual
           procedure, private, nopass :: norm_2
     end type
contains
     function f_(this, q, x, num_fe)
           implicit none
           class(simple_iter_solver) :: this
           double precision :: q(*), u, f_, x
          touse precision: . q(*), u, 1_, x
integer :: num_fe
u = q(num_fe) * psi1(this, x, num_fe) + &
        q(num_fe+1) * psi2(this, x, num_fe)
! # Test 4.1.
           f_{-} = u
! # Test 4.2.
           f = -4d0 + u
           ! # Test 4.3.
            \begin{array}{l} \text{f} = -640 * \text{sign(abs(u)**(1d0/3d0), u)} + \text{u} \\ \text{f} = 2d0 * \text{u} \end{array} 
          f_{-} = 2d0 * u
! # Test 4.5.
           f_{-} = 0d0
           ! # Test 4.6.
              = 2d0 * u
           ! # Test 4.7.
           f_ = -4d0 + u
! # Test 4.8.
           f_{-} = 2d0 * u
           \overline{f}_{-} = - 4d0 * this%area%fe(num_fe)%lambda_ + &
                this%area%fe(num_fe)%gamma_ * u
     end function
     function psil(this, x, num fe)
           implicit none
           class(simple_iter_solver) :: this
           double precision :: x, psi1, x1, x2, hx
          integer :: num_fe
x1 = this%area%fe(num_fe)%begin_
x2 = this%area%fe(num_fe)%end_
           hx = x2 - x1
           psi1 = (x2 - x) / hx
     end function
     function psi2(this, x, num fe)
           implicit none
           class(simple_iter_solver) :: this
           double precision :: x, psi2, x1, x2, hx
           integer :: num fe
          x1 = this%area%fe(num_fe)%begin_
x2 = this%area%fe(num_fe)%end_
          hx = x2 - x1

psi2 = (x - x1) / hx
     end function
     subroutine read_(this)
           implicit none
           class(simple_iter_solver) :: this
           integer :: i
           open(10, file='../area.txt', status='old')
           read(10,*) this%area%fe num
           allocate (this%area%fe(this%area%fe num))
          do i=1,this%area%fe num
                read(10,*) this area fe(i) begin_, &
                     this%area%fe(i)%end_, & this%area%fe(i)%lambda_, &
                     this%area%fe(i)%gamma
           end do
           close(10)
           open(10, file='../bound.txt', status='old')
           read(10,*) this%area%bound_type_l
          if(this%area%bound_type_1 if(this%area%bound_type_1.eq.3) then read(10,*) this%area%bound_val1_1,this%area%bound_val2_1
           else
                read(10,*) this%area%bound_vall_l
                this%area%bound_val2_1 = 0\overline{d}0
           end if
          read(10,*) this%area%bound_type_r
if(this%area%bound_type_r.eq.3) then
    read(10,*) this%area%bound_val1_r,this%area%bound_val2_r
                read(10,*) this%area%bound_val1_r
                this%area%bound_val2_r = 0d0
           end if
           close(10)
     end subroutine
     function norm_2(x, n)
           implicit none
           double precision :: x(*), norm 2
          integer :: n, i
norm_2 = 0d0
do i = 1, n
```

```
norm 2 = norm 2 + x(i) **2
    end do
end function
function residual(this)
    implicit none
class(simple_iter_solver) :: this
double precision :: residual
    integer :: i
    double precision, allocatable :: dq(:)
    do i = 2, this%slae%n - 1
dq(i) = this%slae%d (i) * this%slae%q_old(i) + &
             end do
    dq(this%slae%n) = this%slae%di(this%slae%n) * this%slae%q old(this%slae%n) + &
        this%slae%dl(this%slae%n-1) * this%slae%q old(this%slae%n-1)
    dq = dq - this%slae%f
    residual = dsqrt(norm_2(dq, this%slae%n) / &
        norm 2(this%slae%f, this%slae%n))
    deallocate(dg)
    print*, residual
end function
subroutine get_matrix(this)
    implicit none
class(simple iter solver) :: this
    integer :: i, j, ind
    double precision :: h, g mul, m mul, f1, f2, f mul
    this%slae%di = 0d0
    this%slae%dl = 0d0
    this%slae%du = 0d0
    this%slae%f = 0d0
    ! Цикл по КЭ
    do i = 1, this%area%fe num
        h = this%area%fe(i)%end - this%area%fe(i)%begin
         ! Добавки в матрицу
        g_mul = this%area%fe(i)%lambda_ / h
m_mul = this%area%fe(i)%gamma_ * h / 6d0
        do_{j} = 0, 1
             ind = i + j
             this%slae%di(ind) = this%slae%di(ind) + &
                 g_mul * this%g_x(j+1, j+1) + & m mul * this%m x(j+1, j+1)
         this%slae%dl(i) = this%slae%dl(i) + &
             g_mul * this%g_x(2, 1) + & m_mul * this%m_x(2, 1)
         -this%slae%du(i) = -this%slae%du(i) + &
             g_mul * this%g_x(1, 2) + & m_mul * this%m_x(1, 2)
         ! Добавки в правую часть
         f_{mul} = h / 6d0
         f1 = f_(this, this%slae%q, this%area%fe(i)%begin_, i)
         fl = f_(this, this%slae%q, this%area%fe(i)%end_, i)
this%slae%f(i) = this%slae%f(i) + f_mul * (2d0 * fl + f2)
         this%slae%f(i+1) = this%slae%f(i+1) + f mul * (f1 + 2d0 * f2)
    end do
    ! Краевые слева
    select case(this%area%bound_type_1)
    case(1)
         this%slae%di(1) = 1d0
         this%slae%du(1) = 0d0
         this%slae%f(1) = this%area%bound vall 1
    case(2)
        this%slae%f(1) = this%slae%f(1) + this%area%bound val1 1
    case(3)
        this%slae%di(1) = this%slae%di(1) + this%area%bound vall l
         this%slae%f(1) = this%slae%f(1) + this%area%bound val1 1 \times \delta
             this%area%bound_val2_l
    end select
    ! Краевые справа
    ind = this%slae%n
    select case(this%area%bound type r)
    case(1)
        this%slae%di(ind) = 1d0
         this%slae%dl(ind-1) = 0d0
        this%slae%f(ind) = this%area%bound vall r
    case(2)
         this%slae%f(ind) = this%slae%f(ind) + this%area%bound vall r
    case(3)
         this\$slae\$di(ind) = this\$slae\$di(ind) + this\$area\$bound\_val1\_r \\ this\$slae\$f(ind) = this\$slae\$f(ind) + this\$area\$bound\_val1\_r * \& 
             this%area%bound val2 r
    end select
end subroutine
subroutine solve_(this)
    implicit none
    class(simple_iter_solver) :: this
    integer :: i, iter = 0
this%slae%n = this%area%fe_num + 1
    allocate (this%slae%di(this%slae%n))
```

```
allocate(this%slae%du(this%slae%n - 1))
         allocate(this%slae%dl(this%slae%n - 1))
         allocate(this%slae%f(this%slae%n))
         allocate(this%slae%q(this%slae%n))
         allocate(this%slae%q_old(this%slae%n))
         this%slae%q = 0d0
              this%slae%q old = this%slae%q
             call get_matrix(this)
call this%slae%solve()
             this%slae%q = this%omega_ * this%slae%q + & (1d0 - this%omega_) * this%slae%q_old
             iter = iter + 1
print*, 'Iteration:', iter
do i = 1, this%slae%n
   print*, this%slae%q(i)
              end do
             if(residual(this).lt.this%epsilon_.or.iter.gt.this%maxiter_) exit
         end do
    end subroutine
    subroutine solve(this)
         implicit none
         class(slae) :: this
         integer :: i
         double precision, allocatable :: dl(:), du(:), di(:), f(:)
         allocate(di(this%n))
         allocate(du(this%n - 1))
         allocate(dl(this%n - 1))
allocate(f(this%n))
         di = this%di
         dl = this%dl
         du = this%du
         f = this f
         do i = 2, this%n
             dl(i-1) = dl(i-1) / di(i-1)
             di(i) = di(i) - dl(i-1) * du(i-1)
              f(i) = f(i) - f(i-1) * dl(i-1)
         end do
do i = this%n, 2, -1
this%q(i) = f(i) / di(i)
f(i-1) = f(i-1) - this%q(i) * du(i-1)
         end do
         this q(1) = f(1) / di(1)
         deallocate(di)
         deallocate (du)
         deallocate(d1)
         deallocate(f)
    end subroutine
    subroutine clean_(this)
         implicit none
class(simple iter solver) :: this
         deallocate (this%slae%di)
         deallocate(this%slae%du)
         deallocate(this%slae%dl)
         deallocate(this%slae%f)
         deallocate(this%slae%g)
         deallocate(this%slae%q old)
         deallocate(this%area%fe)
    end subroutine
    subroutine write_(this)
         implicit none
         class(simple_iter_solver) :: this
         integer :: i
         open(10, file='../simple_iter.txt', status='unknown')
         do i = 1, this%slae%n
            write(10, fmt='( e27.16 )') this%slae%q(i)
         end do
         close(10)
    end subroutine
end module
program main
    use simple_iter_module
    implicit none
    type(simple_iter_solver) :: si
    call si%read_()
    call si%solve_()
    call si%write_()
    call si%clean ()
end program
```

Метод Ньютона

```
#define class type
   module newton_module
   implicit none

   type, private :: finite_element
        double precision :: begin_, end_, lambda_, gamma_
   end type
```

```
type, private :: area
          type(finite_element), allocatable :: fe(:)
integer :: fe_num
          ! Для первых bound vall x = ug, bound val2 x = undefined
         : для вервых bound_vall_x = ug, bound_val2_x = undefined
! Для третьих bound_vall_x = beta, bound_val2_x = undefined
! Для третьих bound_vall_x = beta, bound_val2_x = ub
double precision :: bound_val1_1, bound_val2_1, bound_val1_r, bound_val2_r
integer :: bound_type_1, bound_type_r
     end type
     type, private :: slae
          double precision, allocatable :: di(:), dl(:), du(:), f(:), q(:), q\_old(:)
          integer :: n
     contains
         procedure :: solve
     end type
     type, private :: temp_matrix
          double precision, allocatable :: dl(:), du(:), di(:), f(:)
     contains
         procedure :: alloc
          procedure :: dealloc
     end type
     type :: newton solver
          double precision :: omega = 1.0d0
          integer :: maxiter = 10000
          double precision :: epsilon_ = 1d-10
          type (area), private :: area type (slae), private :: slae
          type (temp matrix), private :: tmpmtr
          double precision, private :: & ! матрица массы
              m_x(2,2)=reshape(source=(/2d0,1d0,1d0,2d0/),shape=(/2,2/))
          double precision, private :: & ! матрица жесткости
              g_x(2,2)=reshape(source=(/1d0,-1d0,-1d0,1d0/),shape=(/2,2/))
     contains
         procedure :: read
          procedure :: solve
          procedure :: clean_
          procedure :: write_
         procedure, private :: get_matrix
procedure, private :: f_
procedure, private :: df_dq
          procedure, private :: dbi_dqr
          procedure, private, nopass :: f_u
         procedure, private :: psi1 procedure, private :: psi2
          procedure, private :: residual
          procedure, private, nopass :: norm 2
     end type
contains
     function f_u(u_, lambda_, gamma_)
          implicit none
          double precision :: u_, lambda_, gamma_, f_u
          ! # Test 4.1.
          f_u = u_1
! # Test 4.2.
          f u = -4d0 + u
          ! # Test 4.3.
          f_u = -6d0 * sign(abs(u_)**(1d0/3d0), u_) + u_
          ! # Test 4.4.
          f_u = 2d0 * u_
          ! # Test 4.5.
          f_u = 0d0
           _# Test 4.6.
          f u = 2d0 * u
          ! # Test 4.7.
          f u = -4d0 + u
          ! # Test 4.8.
          f_u = 2d0 * u_
!f_u = - 4d0 * lambda_ + gamma_ * u_
     end function
     function f_(this, q, x, num_fe)
          implicit none
          class(newton_solver) :: this
          double precision :: q(*), u, f_{-}, x
         integer :: num_fe
u = q(num_fe) * psi1(this, x, num_fe) + &
    q(num_fe+1) * psi2(this, x, num_fe)
f_ = f_u(u, this%area%fe(num_fe)%lambda_, &
              this%area%fe(num_fe)%gamma_)
     end function
     function df_dq(this, q, l, r, num_fe)
   implicit none
          class(newton solver) :: this
          double precision :: q(*), df_dq, df_du, u1, u2, u, h, x, x1, x2
          integer :: num_fe, l, r
          if(l.eq.1) then
              x = this%area%fe(num fe)%begin
          else
              x = this%area%fe(num_fe)%end_
          end if
```

```
h = (this%area%fe(num fe)%end - this%area%fe(num fe)%begin ) / 1d6
    x1 = x - h
    x2 = x + h
   df_du = (f_u(u2, this%area%fe(num_fe)%lambda_, &
             this%area%fe(num_fe)%gamma_) &
             - f_u(u1, this%area%fe(num_fe)%lambda_, &
             this%area%fe(num_fe)%gamma_)) / h
    else
        df du = 0d0
    end if
    if(r.eq.1) then
        df_dq = df_du * psil(this, x, num_fe)
    else
       df dq = df du * psi2(this, x, num fe)
    end if
end function
function dbi_dqr(this, q, i, r, num_fe)
    implicit none
    class(newton solver) :: this
    integer :: i, r, num_fe
    double precision :: q(*), dbi_dqr, h, df1, df2
    h = this%area%fe(num_fe)%end_ - this%area%fe(num_fe)%begin_
df1 = df_dq(this, q, 1, r, num_fe)
df2 = df_dq(this, q, 2, r, num_fe)
if(dabs(df1).le.this%epsilon_.and.dabs(df1).le.this%epsilon_) then
        dbi_dqr = 0d0
    else
        if(i.eq.1) then
            dbi_dqr = h / 6d0 * (2d0 * df1 + df2)
        else
             dbi dqr = h / 6d0 * (df1 + 2d0 * df2)
        end if
    end if
end function
function psil(this, x, num fe)
    implicit none
    class(newton_solver) :: this
    double precision :: x, psi1, x1, x2, hx
integer :: num_fe
    x1 = this%area%fe(num fe)%begin
    x2 = this%area%fe(num fe)%end
    hx = x2 - x1
    psi1 = (x2 - x) / hx
end function
function psi2(this, x, num_fe)
    implicit none
    class(newton_solver) :: this
    double precision :: x, psi2, x1, x2, hx
    integer :: num_fe
x1 = this%area%fe(num fe)%begin
    x2 = this%area%fe(num fe)%end
    hx = x2 - x1
    psi2 = (x - x1) / hx
end function
subroutine read (this)
    implicit none
    class(newton_solver) :: this
    integer :: i
    open(10, file='../area.txt', status='old')
    read(10,*) this%area%fe num
    allocate (this%area%fe (this%area%fe num))
    do i=1,this%area%fe num
        read(10,*) this area fe(i) begin_, &
             this%area%fe(i)%end_, &
             this%area%fe(i)%lambda_, &
             this%area%fe(i)%gamma_
    end do
    open(10, file='../bound.txt', status='old')
    read(10,*) this%area%bound_type_1 if(this%area%bound_type_1.eq.3) then
        read(10,*) this%area%bound val1 1, this%area%bound val2 1
        read(10,*) this%area%bound vall 1
        this%area%bound val2 1 = 0d0
    end if
    read(10,*) this%area%bound_type_r
if(this%area%bound type r.eq.3) then
        read(10,*) this%area%bound val1 r,this%area%bound val2 r
        read(10,*) this%area%bound_val1_r
        this%area%bound_val2_r = 0d0
    end if
    close(10)
end subroutine
```

```
function norm 2(x, n)
         implicit none
         double precision :: x(*), norm_2
         integer :: n, i
         norm_2 = 0d0
        do i = 1, n
               norm_2 = norm_2 + x(i) **2
         end do
end function
function residual(this)
         implicit none
         class(newton solver) :: this
         double precision :: residual
         integer :: i
         double precision, allocatable :: dq(:)
        this%tmpmtr%du(1) * this%slae%q_old(2) do i = 2, this%slae%n - 1
                  dq(i) = this%tmpmtr%di(i) * this%slae%q old(i) + &
                           this%tmpmtr%dl(i) * this%slae%q_old(i+1) + & this%tmpmtr%dl(i-1) * this%slae%q_old(i-1)
         end do
        dq(this%slae%n) = this%tmpmtr%di(this%slae%n) * this%slae%q old(this%slae%n) + &
                 this%tmpmtr%dl(this%slae%n-1) * this%slae%q old(this%slae%n-1)
         dq = dq - this%tmpmtr%f
         residual = dsqrt(norm_2(dq, this%slae%n) / &
                 norm_2(this%tmpmtr%f, this%slae%n))
         deallocate(dq)
        print*, residual
end function
subroutine get_matrix(this)
        implicit none
         class(newton_solver) :: this
         integer :: i, j, ind
         double precision :: h, g mul, m mul, f1, f2, f mul, add
         this%slae%di = 0d0
         this%slae%dl = 0d0
         this%slae%du = 0d0
         this%slae%f = 0d0
         this%tmpmtr%di = 0d0
         this%tmpmtr%dl = 0d0
         this%tmpmtr%du = 0d0
         this%tmpmtr%f = 0d0
         ! Цикл по КЭ
         do i = 1, this%area%fe num
                 h = this%area%fe(i)%end - this%area%fe(i)%begin
                  ! Добавки в матрицу
                 g_mul = this%area%fe(i)%lambda_ / h
m mul = this%area%fe(i)%gamma_ * h / 6d0
                 do j = 0, 1
                           ind = i + j
                           add = g_{mul} * this%g_x(j+1, j+1) + &
                           m_mul * this%m_x(j+1, j+1)
this%slae%di(ind) = this%slae%di(ind) + add
                           this%tmpmtr%di(ind) = this%tmpmtr%di(ind) + add
                  end do
                 add = g mul * this%g x(2, 1) + &
                           m mul * this%m_x(2, 1)
                 m_mul * this%m_x(1, 1)

this%slae%dl(i) = this%slae%dl(i) + add

this%tmpmtr%dl(i) = this%tmpmtr%dl(i) + add

add = g_mul * this%g_x(1, 2) + &

m_mul * this%m_x(1, 2)

this%slae%du(i) = this%slae%du(i) + add
                  this%tmpmtr%du(i) = this%tmpmtr%du(i) + add
                  ! Добавки в правую часть f mul = h / 6d0
                 f_{\rm min} = f_{\rm m} odd f_{\rm min} = f_
                  this%slae%f(i) = this%slae%f(i) + add
                  this%tmpmtr%f(i) = this%tmpmtr%f(i) + add
                  add = f_mul * (f1 + 2d0 * f2)
this%slae%f(i+1) = this%slae%f(i+1) + add
                  this%tmpmtr%f(i+1) = this%tmpmtr%f(i+1) + add
          ! Добавки от линеаризации
        do i = 1, this%area%fe_num this%slae%di(i) = \frac{1}{2}this%slae%di(i) = \frac{1}{2}this%slae%di(i) = \frac{1}{2}this%slae%di(i+1) = this%slae%di(i+1) - \frac{1}{2}dqr(this, this%slae%q, 2, 2, i)
                  this%slae%dl(i) = this%slae%dl(i) - dbi_dqr(this, this%slae%q, 2, 1, i) this%slae%du(i) = this%slae%du(i) - dbi_dqr(this, this%slae%q, 1, 2, i)
                 end do
         ! Краевые слева
         select case(this%area%bound type 1)
         case(1)
                  this%slae%di(1) = 1d0
                  this % slae % du(1) = 0d0
```

```
this%slae%f(1) = this%area%bound val1 1
                this%tmpmtr%di(1) = 1d0
                this%tmpmtr%du(1) = 0d0
                this%tmpmtr%f(1) = this%area%bound val1 1
        case(2)
                this\$slae\$f(1) = this\$slae\$f(1) + this\$area\$bound val1 l
                this%tmpmtr%f(1) = this%tmpmtr%f(1) + this%area%bound vall 1
        case(3)
                this%slae%di(1) = this%slae%di(1) + this%area%bound vall l
                this%slae%f(1) = this%slae%f(1) + this%area%bound_val1_1 * &
                        this%area%bound_val2_l
                 \begin{array}{lll} this \$tmpmtr \$ di \, (1) &= this \$tmpmtr \$ di \, (1) &+ this \$area \$bound\_val1\_1 \\ this \$tmpmtr \$ f \, (1) &= this \$tmpmtr \$ f \, (1) &+ this \$area \$bound\_val1\_1 &* \& this \$area \$bound\_val1\_2 &* \& this \$area \$b
                       this%area%bound_val2_1
        end select
        ! Краевые справа
        ind = this%slae%n
        select case(this%area%bound_type_r)
        case(1)
                this slae (ind) = 1d0
                this%slae%dl(ind-1) = 0d0
                this%slae%f(ind) = this%area%bound val1 r
                this%tmpmtr%di(ind) = 1d0
                this%tmpmtr%dl(ind-1) = 0d0
                this%tmpmtr%f(ind) = this%area%bound vall r
        case(2)
                this%slae%f(ind) = this%slae%f(ind) + this%area%bound_val1_r
                this%tmpmtr%f(ind) = this%tmpmtr%f(ind) + this%area%bound_vall_r
        case(3)
                this%slae%di(ind) = this%slae%di(ind) + this%area%bound vall r
                this%slae%f(ind) = this%slae%f(ind) + this%area%bound vall r
                        this%area%bound val2 r
                this%tmpmtr%di(ind) = this%tmpmtr%di(ind) + this%area%bound_vall_r
                this \$tmpmtr\$f(ind) = this \$tmpmtr\$f(ind) + this \$area\$bound\_vall\_r\_* \&
                      this%area%bound val2 r
        end select
end subroutine
subroutine alloc(this, n)
        implicit none
        class(temp_matrix) :: this
        integer :: n
        allocate(this%di(n))
        allocate(this%du(n - 1))
        allocate(this%dl(n - 1))
        allocate(this%f(n))
end subroutine
subroutine dealloc(this)
        implicit none
        class(temp_matrix) :: this
        deallocate(this%di)
        deallocate(this%du)
        deallocate(this%dl)
        deallocate(this%f)
end subroutine
subroutine solve_(this)
   implicit none
        class(newton solver) :: this
        integer :: i, iter = 0
this%slae%n = this%area%fe_num + 1
        allocate(this%slae%di(this\frac{-}{%}slae%n))
        allocate(this%slae%du(this%slae%n - 1))
        allocate(this%slae%dl(this%slae%n - 1))
        allocate(this%slae%f(this%slae%n))
        allocate(this%slae%q(this%slae%n))
        allocate (this%slae%q_old(this%slae%n))
        call this%tmpmtr%alloc(this%slae%n)
        this%slae%q = 0d0
        do
                this%slae%q old = this%slae%q
                call get_matrix(this)
                call this%slae%solve()
                this%slae%q = this%omega_ * this%slae%q + & (1d0 - this%omega_) * this%slae%q_old
                iter = iter + 1
                print*, 'Iteration:', iter
                do i = 1, this%slae%n
    print*, this%slae%q(i)
                end do
                if(residual(this).lt.this%epsilon .or.iter.gt.this%maxiter) exit
        end do
        call this%tmpmtr%dealloc()
end subroutine
subroutine solve (this)
        implicit none
        class(slae) :: this
        integer :: i
        do i = 2, this%n
                this%dl(i-1) = this%dl(i-1) / this%di(i-1)
                this%di(i) = this%di(i) - this%dl(i-1) * this%du(i-1)
                this%f(i) = this%f(i) - this%f(i-1) * this%dl(i-1)
        do i = this%n, 2, -1
```

```
 \begin{array}{ll} this \$q(i) = this \$f(i) \ / \ this \$di(i) \\ this \$f(i-1) = this \$f(i-1) - this \$q(i) \ * \ this \$du(i-1) \end{array} 
              end do
              this q(1) = this f(1) / this di(1)
       end subroutine
      subroutine clean_(this)
  implicit none
  class(newton_solver) :: this
             deallocate(this%slae%di)
             \texttt{deallocate(this} \$slae \$du)
             deallocate(this%slae%dl)
deallocate(this%slae%f)
             deallocate(this%slae%q)
             deallocate(this%slae%q old)
             deallocate(this%area%fe)
       end subroutine
      subroutine write_(this)
  implicit none
              class(newton_solver) :: this
            crass(newcon_solver) :: this
integer :: i
open(10, file='../newton.txt', status='unknown')
do i = 1, this%slae%n
   write(10, fmt='(e27.16)') this%slae%q(i)
             end do
             close(10)
       end subroutine
end module
program main
      use newton module
       implicit none
      tmprict none
type(newton_solver) :: n
call n%read_()
call n%solve_()
call n%write_()
call n%clean_()
end program
```