Система рівнянь Максвелла

Лекції з електрики та магнетизму

Пономаренко С. М.

Зміст

1. Струм зміщення Приклади розрахунку струмів зміщення

2. Система рівнянь Максвелла

Основоположники теорії електромагнітного поля

Теорія електромагнітного поля, початки якої заклав Фарадей, математично була завершена Максвеллом. При цьому однією з найважливіших нових ідей, висунутих Максвеллом, була думка про симетрію в взаємозалежності електричного і магнітного полів.

Майкл Фарадей (1791 – 1867) — англійський фізик і хімік.

Джеймс Клерк Максвелл (1831 – 1879) — шотландський вчений.

Цитати із книги «Еволюція фізики»

А. Ейнштейн, Л. Інфельд

Кількісне, математичне формулювання законів поля дано в так званих рівняннях Максвелла. [Експериментальні] факти призвели до формулювання цих рівнянь, але зміст їх значно багатший [...]. Їхня проста форма приховує глибину, що виявляється тільки при ретельному вивченні.

Формулювання цих рівнянь є найважливішою подією з часу Ньютона не тільки важливою подією з часу Ньютона не тільки внаслідок цінності їхнього змісту, а й тому, що вони дають зразок нового типу законів. Характерну особливість рівнянь Максвелла, яка проявляється і в усіх інших рівняннях сучасної фізики, можна виразити в одному реченні: рівняння Максвелла суть закони, що виражають структуру поля.

5

Струм зміщення і закон збереження заряду

Протиріччя в законах магнетизму

Теорема про циркуляцію для постійного магнітного поля:

$$rot \vec{H} = \frac{4\pi}{c} \vec{j}$$

виявляється невірною у випадку змінного електричного поля.

Застосовуючи операцію div до цього рівняння і враховуючи тотожність div rot $\vec{H}=0$, отримуємо div $\vec{j}=0$. З іншого боку, якщо густина заряду змінюється з часом, $\frac{\partial \rho}{\partial t}\neq 0$ то в силу закону збереження заряду

$$\operatorname{div} \vec{j} = -\frac{\partial \rho}{\partial t},$$

тобто $\operatorname{div} \vec{j} \neq 0$. Це протиріччя показує, що необхідно видозмінити теорему про циркуляцію.

5

Струм зміщення і закон збереження заряду

Гіпотеза Максвелла

Для вирішення цього протиріччя Дж. Максвелл увів поняття струму зміщення $\vec{j}_{\scriptscriptstyle 3M}$ співвідношенням

$$\operatorname{rot} \vec{H} = \frac{4\pi}{c} (\vec{j} + \vec{j}_{\mathsf{3M}}),$$

щоб закон збереження заряду виконувалося. Застосовуючи операцію div до записаного рівняння, отримуємо:

$$\operatorname{div}(\vec{j} + \vec{j}_{\text{3M}}) = 0, \Rightarrow \operatorname{div} \vec{j}_{\text{3M}} = \frac{\partial \rho}{\partial t}.$$

За теоремою Гаусса для електричного поля $ho = \frac{1}{4\pi} \operatorname{div} \vec{D}$. Отже:

$$\operatorname{div} \vec{j}_{\scriptscriptstyle \mathsf{3M}} = \frac{\partial}{\partial t} \left(\frac{1}{4\pi} \operatorname{div} \vec{D} \right), \ \Rightarrow \qquad \vec{j}_{\scriptscriptstyle \mathsf{3M}} = \frac{1}{4\pi} \frac{\partial \vec{D}}{\partial t}.$$

Струм зміщення і закон збереження заряду

Теорема про циркуляцію магнітного поля

Таким чином, теорема про циркуляцію для магнітного поля, що узгоджується із законом збереження заряду, має записуватися у вигляді

$$\operatorname{rot} \vec{H} = \frac{4\pi}{c}\vec{j} + \frac{1}{c}\frac{\partial \vec{D}}{\partial t},$$

В інтегральній формі теорема про циркуляцію має вигляд

$$\oint\limits_L \vec{H} \cdot d\vec{r} = \frac{4\pi}{c} \iint\limits_S \vec{j} \cdot d\vec{S} + \frac{1}{c} \iint\limits_S \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S},$$

де $I_{\rm 3M}=\frac{1}{4\pi}\iint\limits_{S}\frac{\partial \bar{D}}{\partial t}\cdot d\vec{S}$ — струм зміщення, що пронизує площу S, натягнуту на контур L. Отже, згідно гіпотези Максвелла змінне електричне поле поряд зі звичайними струмами, також створює магнітне поле.

5

Струм зміщення і закон збереження заряду

Порівняння закону Фарадея та гіпотези Максвелла

Порівняємо закон електромагнітної індукції Фарадея, та «оновлену» теорему про циркуляцію за відсутності струмів провідності $(\vec{j}=0)$ у вакуумі $(\varepsilon=\mu=1\Rightarrow\vec{\pmb{E}}=\vec{\pmb{D}},\,\vec{\pmb{H}}=\vec{\pmb{B}}).$

$$\operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

Закон магнітоелектричної індукції

$$\operatorname{rot} \vec{B} = +\frac{1}{c} \frac{\partial \vec{E}}{\partial t}$$

Радіальне стікання заряду з кулі

Нехай куля несе заряд Q, який стікає в зовнішнє середовище. Унаслідок стікання заряду виникають струми, які можуть індукувати магнітне поле. Знайдемо це магнітне поле.

Стікання заряду з кулі створює струм провідності, який дорівнює:

$$I = -\frac{\partial Q}{\partial t}.$$

Електричне поле кулі $\vec{E}(r)=\frac{Q(t)}{r^3}\vec{r}$ також зменшується з часом, а тому струм зміщення дорівнює:

$$I_{\scriptscriptstyle \mathrm{3M}} = \frac{1}{4\pi} \oiint \frac{\partial \vec{E}}{\partial t} \cdot d\vec{S} = + \frac{\partial Q}{\partial t} = -I.$$

З теореми про циркуляцію:

$$\oint\limits_{\cdot} \vec{H} \cdot d\vec{r} = \frac{4\pi}{c} (I + I_{\scriptscriptstyle \mathrm{3M}}) = 0, \ \Rightarrow \ \vec{H} = \vec{B} = 0. \label{eq:equation:equation}$$

Отже, в цьому випадку, магнітного поля не виникає.

Струм зміщення в конденсаторі

Теорема про циркуляцію має вигляд:

• Для лівого рисунка

$$\oint_{I} \vec{H} \cdot d\vec{r} = \frac{4\pi}{c} I.$$

• Для правого рисунка

$$\oint_{L} \vec{H} \cdot d\vec{r} = \frac{4\pi}{c} I_{\text{3M}}.$$

Оскільки різні поверхні спираються на один і той же контур L, то циркуляція $\oint \vec{H} \cdot d\vec{r}$ не повинна залежати вибору поверхні. А, отже, $I=I_{\scriptscriptstyle 3M}$, тобто в середині конденсатора «протікає» струм зміщення, який замикає коло.

Струм зміщення в конденсаторі

зміщення

провідності

Теорема про циркуляцію має вигляд:

• Для лівого рисунка

$$\oint_{I} \vec{H} \cdot d\vec{r} = \frac{4\pi}{c}I.$$

• Для правого рисунка

$$\oint_{L} \vec{H} \cdot d\vec{r} = \frac{4\pi}{c} I_{\text{\tiny 3M}}.$$

Як видно з теореми про циркуляцію, струми зміщення замикають струми провідності і створюють магнітне поле точно так само, як і струми провідності. Вони, однак, не створюють прямо теплового ефекту, до них незастосовні закон Ома і закон Джоуля-Ленца.

Система рівнянь Максвелла

8

Доповнивши основні факти зі сфери електромагнетизму, та доповнивши їх гіпотезою струмів зміщення, Максвелл зміг написати систему фундаментальних рівнянь електродинаміки. Таких рівнянь чотири.

Рівняння	Інтегральна форма	Диференціальна форма
Теорема Гаусса для магнітного поля	$\iint\limits_{S} \vec{B} \cdot d\vec{S} = 0$	$\operatorname{div} \vec{B} = 0$
Теорема про циркуляцію для електричного поля	$\oint\limits_L \vec{E} \cdot d\vec{r} = -\frac{1}{c} \iint\limits_S \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$	$\operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$
Теорема Гаусса для електричного поля	$\iint\limits_{S} \vec{D} \cdot d\vec{S} = 4\pi \iiint\limits_{V} \rho dV$	$\operatorname{div} \vec{D} = 4\pi\rho$
Теорема про циркуляцію для магнітного поля	$\oint\limits_{L} \vec{H} \cdot d\vec{r} = \frac{4\pi}{c} \iint\limits_{S} \left(\vec{j} + \frac{1}{4\pi} \frac{\partial \vec{D}}{\partial t} \right) \cdot d\vec{S}$	$\operatorname{rot} \vec{H} = \frac{4\pi}{c}\vec{j} + \frac{1}{c}\frac{\partial \vec{D}}{\partial t}$

Вираз електричного поля через потенціали

Рівняння Максвелла групуються парами. Перша пара рівнянь — рівняння без зарядів та струмів, друга пара — рівняння із зарядами та струмами.

Теорема Гаусса для магнітного поля дозволяє ввести векторний потенціал:

$$\vec{B} = \operatorname{rot} \vec{A}$$

Тоді теорема про циркуляцію для електричного поля записується як:

$$\operatorname{rot}\left(\vec{E} + \frac{\partial \vec{A}}{\partial t}\right) = 0$$

Ця рівність означає, що це поле може бути представлене як градієнт скалярної функції, тоді отримуємо:

$$\vec{E} = -\vec{\nabla}\varphi - \frac{\partial\vec{A}}{\partial t}$$

У випадку постійних у часі полів: $\vec{E} = -\vec{\nabla} \varphi$, тобто, що введена тут функція φ збігається зі скалярним потенціалом.

У стаціонарному випадку часткові похідні за часом від полів дорівнюють нулю, тому рівняння максвела розпадається на дві окремі системи для електростатики і магнітостатики.

Рівняння електростатики	Рівняння магнітостатики
$\int \operatorname{div} \vec{D} = 4\pi \rho,$	$\int \operatorname{div} \vec{B} = 0,$
$\int \operatorname{rot} \vec{E} = 0.$	$\begin{cases} \cot \vec{H} = \frac{4\pi}{c} \vec{j}. \end{cases}$

Матеріальні рівняння

Рівняння Максвелла мають бути доповнені співвідношеннями, що зв'язують поля \vec{D} та \vec{E} з одного боку, та \vec{H} та \vec{B} з іншого боку.

	Вираз
Вектор індукції електричного поля	$\vec{D} = \vec{E} + 4\pi \vec{P}$
Вектор поляризації (для лінійних ізотропних речовин)	$\vec{P} = \chi_e \vec{E}$
Діелектрична проникніть (для лінійних ізотропних речовин)	$\varepsilon = 1 + 4\pi \chi_e$
\vec{D} та \vec{E} (для лінійних ізотропних речовин)	$\vec{D} = \varepsilon \vec{E}$
Вектор напруженості магнітного поля	$\vec{H} = \vec{B} - 4\pi \vec{J}$
Вектор намагнічування (для лінійних ізотропних речовин)	$\vec{J}=\chi_e \vec{H}$
Магнітна проникніть (для лінійних ізотропних речовин)	$\mu = 1 + 4\pi \chi_m$
Зв'язок $ec{H}$ та $ec{B}$ (для лінійних ізотропних речовин)	$\vec{B} = \mu \vec{H}$
У разі струму, спричиненого електричним полем у провідному середовищі, має місце закон Ома	$\vec{j} = \lambda \vec{E}$

Граничні умови

Диференціальні рівняння Максвелла треба доповнити граничними умовами, яким має задовольняти електромагнітне поле на межі розділу двох середовищ. Ці умови неявно містяться в інтегральній формі рівнянь Максвелла і отримуються за їх допомогою. Граничні умови в стаціонарному випадку аналогічні і для випадку змінних полів.

Умови для електричних векторів	Умови для магнітних векторів
$D_{2n} - D_{1n} = 4\pi\sigma$	$B_{1n}=B_{2n}$
$E_{1\tau} = E_{2\tau}$	$\left[\vec{n} \times \vec{H}_2\right] - \left[\vec{n} \times \vec{H}_1\right] = \frac{4\pi}{c}\vec{i}$

Тут σ — поверхнева густина вільних електричних зарядів, а \vec{i} — поверхнева густина струму провідності на розглянутій границі розділу. У випадку, коли поверхневих струмів немає, гранична умова для тангенціальної компоненти вектора напруженості магнітного поля набуває вигляду:

$$H_{1\tau} = H_{2\tau}$$