

INTRODUCING TESLA P100

New GPU Architecture to Enable the World's Fastest Compute Node

GIANT LEAPS IN EVERYTHING

PASCAL ARCHITECTURE

Tesla P100 GPU: GP100

56 SMs

3584 CUDA Cores

5.3 TF Double Precision

10.6 TF Single Precision

21.2 TF Half Precision

16 GB HBM2

720 GB/s Bandwidth

GPU Performance Comparison

	P100	M40	K40
Double Precision TFlop/s	5.3	0.2	1.4
Single Precision TFlop/s	10.6	7.0	4.3
Half Precision Tflop/s	21.2	NA	NA
Memory Bandwidth (GB/s)	720	288	288
Memory Size	16GB	12GB, 24GB	12GB

GP100 SM

	GP100	
CUDA Cores	64	
Register File	256 KB	
Shared Memory	64 KB	
Active Threads	2048	
Active Blocks	32	

IEEE 754 Floating Point on GP100

3 sizes, 3 speeds, all fast

Feature	Half precision	Single precision	Double precision
Layout	s5.10	s8.23	s11.52
Issue rate	pair every clock	1 every clock	1 every 2 clocks
Subnormal support	Yes	Yes	Yes
Atomic Addition	Yes	Yes	Hew Yes

Half-precision Floating Point (FP16)

16 bits

. f r a c

1 sign bit, 5 exponent bits, 10 fraction bits

2⁴⁰ Dynamic range

Normalized values: 1024 values for each power of 2, from 2⁻¹⁴ to 2¹⁵

Subnormals at full speed: 1024 values from 2⁻²⁴ to 2⁻¹⁵

Special values

+- Infinity, Not-a-number

USE CASES

Deep Learning Training

Radio Astronomy

Sensor Data

Image Processing

NVLink

NVLink

NVLink on Tesla P100

NVLINK - GPU CLUSTER

Two fully connected quads, connected at corners

160GB/s per GPU bidirectional to Peers

Load/store access to Peer Memory

Full atomics to Peer GPUs

High speed copy engines for bulk data copy

PCIe to/from CPU

NVLINK to CPU

Fully connected quad

120 GB/s per GPU bidirectional for peer traffic

40 GB/s per GPU bidirectional to CPU

Direct Load/store access to CPU Memory

High Speed Copy Engines for bulk data movement

Tesla P100 Physical Connector

With NVLink

HBM2 STACKED MEMORY

HBM2: 720GB/sec bandwidth

And ECC is free

UNIFIED MEMORY

Page Migration engine

Support Virtual Memory Demand Paging

49-bit Virtual Addresses

Sufficient to cover 48-bit CPU address + all GPU memory

GPU page faulting capability

Can handle thousands of simultaneous page faults

Up to 2 MB page size

Better TLB coverage of GPU memory

Kepler/Maxwell Unified Memory

Simpler
Programming &
Memory Model

Single allocation, single pointer, accessible anywhere
Eliminate need for explicit copy
Greatly simplifies code porting

Performance Through Data Locality Migrate data to accessing processor

Guarantee global coherency

Still allows explicit hand tuning

Pascal Unified Memory

Large datasets, simple programming, High Performance

Oversubscribe GPU memory Allocate up to system memory size

Usage hints via cudaMemAdvise API Explicit prefetching API

CPU/GPU Data coherence Unified memory atomic operations

Introducing Tesla p100

New GPU Architecture to Enable the World's Fastest Compute Node

More P100 Features: compute preemption, new instructions, larger L2 cache, more...

Find out more at http://devblogs.nvidia.com/parallelforall/inside-pascal

OPTIMIZATION 1 LAUNCH CONFIGURATION

Optimization priorities

Focusing on the tall poles

- Parallelize sequential code
- Minimize host-device data transfers
- Optimize resource utilization
 - Maximize device utilization
 - Efficient global memory accesses
 - Minimize long sequences of divergent execution within warps

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

Execution Model

Software

Thread

Hardware

Device

Threads are executed by scalar CUDA Cores

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one multiprocessor - limited by multiprocessor resources (shared memory and register file)

A kernel is launched as a grid of thread blocks

Launch Configuration: General Guidelines

How many blocks should we use?

1,000 or more thread blocks is best

Rule of thumb: enough blocks to fill the GPU at least 10s of times over

Makes your code ready for several generations of future GPUs

Example P100

56 SM @ 32 thread = 1792 threadblocks to fill the GPU ONCE

But effective number of threadblocks per SM depends on the kernel

Launch Configuration: General Guidelines

How many threads per block should we choose?

The really short answer: 128, 256, or 512 are often good choices

The slightly longer answer:

Pick a size that suits the problem well

Multiples of 32 threads are best

Pick a number of threads per block (and a number of blocks) that is sufficient to keep the SM busy

Warps

A thread block consists of warps of 32 threads

A warp is executed physically in parallel on some multiprocessor.

Threads of a warp issue instructions in lock-step (as with SIMD)

Latency Hiding

The warp issues

The warp waits (latency)

Latency Hiding

Instruction latencies

Roughly 10-20 cycles for arithmetic operations

Global memory accesses have higher latencies (400-800 cycles)

Instruction Level Parallelism (ILP)

Independent instructions between two dependent ones

ILP depends on the code, done by the compiler

Switching to a different warp

If a warp must stall for N cycles due to dependencies, having N other warps with eligible instructions keeps the SM going

Switching among concurrently resident warps has no overhead

State (registers, shared memory) is partitioned, not stored/restored

Occupancy

Occupancy: number of concurrent warps per SM, expressed as:

Absolute number of warps of threads that fit concurrently (e.g., 1..64), or

Ratio of warps that fit concurrently to architectural maximum (0..100%)

Occupancy limiters:

Threads per thread block

Registers per thread

Shared memory per thread block

Pascal P100 SM resources:

- 64K 32-bit registers
- Up to 48 KB of shared memory
- Up to 64 warps (2048 threads)
- Up to 32 concurrent thread blocks

Occupancy and Performance

Note that 100% occupancy isn't needed to reach maximum performance

Higher occupancy gives SM scheduler more choice to select next warp

Once the "needed" occupancy (enough warps to switch among to cover latencies) is reached, further increases won't improve performance

Level of occupancy needed depends on the code

More independent work per thread -> less occupancy is needed

Memory-bound codes tend to need more occupancy

Higher latency than for arithmetic, need more work to hide it

Occupancy examples

Maximal occupancy, e.g. for BW limited kernel:

64 warps -> maximum choice for scheduler

32 thread blocks -> minimal impact of barriers

=> 2 warps / thread block = 64 threads optimal (Kepler GK110: 128)

Maximum number of registers per thread without limiting occupancy:

64k regs / (64 warps * 32 threads/warp) = 32 regs/thread

Maximum amount of shared memory per block:

48KB /32 thread blocks = 1526 B

Pascal P100 SM resources:

- 64K 32-bit registers
- Up to 48 KB of shared memory
- Up to 64 warps (2048 threads)
- Up to 32 concurrent thread blocks

Thread Block Size and Occupancy

Thread block size is a multiple of warp size (32)

Even if you request fewer threads, hardware rounds up

Thread blocks can be too small

Pascal SM can run up to 32 thread blocks concurrently

SM can reach the block count limit before reaching good occupancy

E.g.: 1-warp blocks = 16 warps/SM on P100 (50% occ - lower end)

Thread blocks can be too big

Enough SM resources for more threads, but not enough for a whole block

A thread block isn't started until resources are available for all of its threads

Thread Block Sizing

CUDA Occupancy Calculator

Analyze effect of resource consumption on occupancy

DVIDIA

Occupancy Analysis in NVIDIA Visual Profiler

Occupancy here is limited by grid size and number of threads per block

Requests per Thread and Performance

Experiment: vary size of accesses by threads of a warp, check performance

Memcopy kernel: each warp has 2 concurrent requests (one write and the read following it

Accesses by a warp:

4B words: 1 line

8B words: 2 lines

16B words: 4 lines

To achieve same throughput at lower occupancy or with smaller words, need more independent requests per warp

Optimizing Access Concurrency

Ways to increase concurrent accesses:

Increase occupancy (run more warps concurrently)

Adjust block dimensions to maximize occupancy

If occupancy is limited by registers per thread, try to reduce register count (-maxrregcount option or __launch_bounds__)

Modify code to process several elements per thread

Doubling elements per thread doubles independent accesses per thread

OPTIMIZATION 2 GLOBAL MEMORY ACCESS

Mechanics of a Memory Access

Memory operations are issued per warp

Just like all other instructions

Operation:

Threads in a warp provide memory addresses

Hardware determines which lines/segments are needed, fetches them

Memory Access Efficiency Analysis

Two perspectives on the throughput:

Application's point of view: count only bytes requested by application

HW point of view: count all bytes moved by hardware

The two views can be different:

Memory is accessed at 32 byte granularity

With a scattered or offset pattern, the application doesn't use all the bytes the hardware actually transferred

Broadcast: the same small transaction serves many threads in a warp

Scenario:

Warp requests 32 aligned, consecutive 4-byte words

Addresses fall within 4 segments

Warp needs 128 bytes

128 bytes move across the bus

Bus utilization: 100%

Scenario:

Warp requests 32 aligned, permuted 4-byte words

Addresses fall within 4 segments

Warp needs 128 bytes

128 bytes move across the bus

Bus utilization: 100%

Scenario:

Warp requests 32 misaligned, consecutive 4-byte words

Addresses fall within at most 5 segments

Warp needs 128 bytes

At most 160 bytes move across the bus

Bus utilization: at least 80%

Some misaligned patterns will fall within 4 segments, so 100% utilization

Scenario:

All threads in a warp request the same 4-byte word

Addresses fall within a single segment

Warp needs 4 bytes

32 bytes move across the bus

Bus utilization: 12.5%

Scenario:

Warp requests 32 scattered 4-byte words

Addresses fall within N segments

Warp needs 128 bytes

*N**32 bytes move across the bus

Bus utilization: 128 / (N*32)

Structures of Non-Native Size

Say we are reading a 12-byte structure per thread

```
struct Position
      float x, y, z;
 global void kernel( Position *data, ...)
      int idx = blockIdx.x * blockDim.x + threadIdx.x;
      Position temp = data[idx];
```

Structure of Non-Native Size

Compiler converts temp = data[idx] into 3 loads:

Each loads 4 bytes

Can't do an 8 and a 4 byte load: 12 bytes per element means that every other element wouldn't align the 8-byte load on 8-byte boundary

Addresses per warp for each of the loads:

Successive threads read 4 bytes at 12-byte stride

First Load Instruction

Second Load Instruction

Third Load Instruction

Performance and Solutions

Because of the address pattern, we end up moving 3x more bytes than application requests

We waste a lot of bandwidth, leaving performance on the table

Potential solutions:

Change data layout from array of structures to structure of arrays

In this case: 3 separate arrays of floats

The most reliable approach (also ideal for both CPUs and GPUs)

Use loads via read-only cache

As long as lines survive in the cache, performance will be nearly optimal

Stage loads via shared memory

A note about caches

L1 and L2 caches

Ignore in software design

Thousands of concurrent threads - cache blocking difficult at best

Read-only Data Cache

Shared with texture pipeline

Useful for uncoalesced reads

Handled by compiler when const
__restrict__ is used, or use __ldg()
primitive

Blocking for GPU Memory Caches

Short answer: DON'T

GPU caches are not intended for the same use as CPU caches

Smaller size (especially per thread), so not aimed at temporal reuse

Intended to smooth out some access patterns, help with spilled registers, etc.

Usually not worth trying to cache-block like you would on CPU

100s to 1,000s of run-time scheduled threads competing for the cache

If it is possible to block for L1 then it's possible block for SMEM

Same size

Same or higher bandwidth

Guaranteed locality: hw will not evict behind your back

OPTIMIZATION 3 INSTRUCTION THROUGHPUT

Exposing Sufficient Parallelism

What SMX ultimately needs:

Sufficient number of independent instructions

Two ways to increase parallelism:

More independent instructions (ILP) within a thread (warp)

More concurrent threads (warps)

Independent Instructions: ILP vs. TLP

SM can leverage available Instruction-Level Parallelism more or less interchangeably with Thread-Level Parallelism

Sometimes easier to increase ILP than to increase TLP

E.g., # of threads may be limited by algorithm or by HW resource limits

But if each thread has some degree of independent operations to do, Pascal SM can leverage that. (E.g., a small loop that is unrolled.)

Control Flow

Instructions are issued per 32 threads (warp)

Divergent branches:

Threads within a *single warp* take different paths

```
if-else, ...
```

Different execution paths within a warp are serialized

Different warps can execute different code with no impact on performance

Control Flow

Avoid diverging within a warp

Note: *some* divergence is not necessarily a problem, but large amounts impacts execution efficiency

Example with divergence:

```
if (threadIdx.x > 2) {...} else {...}
```

Branch granularity < warp size

Example without divergence:

```
if (threadIdx.x / warpSize > 2) {...} else {...}
```

Branch granularity is a whole multiple of warp size

Control Flow

instructions // then-clause // else-clause

Execution within warps is coherent

Execution diverges within a warp

Execution diverges within a warp

Topics not covered here...

Streams

Improved device utilization via concurrent kernels

Asynchronous data transfers

Unified memory

Minimizing impact of host/device transfers

Memory hints

Global atomics

New Instructions

FP16, INT8 vector instructions

http://docs.nvidia.com/cuda/pascal-tuning-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

