Lesson 9

Implementing Secure Network Designs

Topic 9A

Implement Secure Network Designs

Syllabus Objectives Covered

3.3 Given a scenario, implement secure network designs

Secure Network Designs

- What problems arise from weaknesses in the network design/architecture?
 - Single points of failure
 - Complex dependencies
 - Availability over confidentiality and integrity
 - Lack of documentation and change control
 - Overdependence on perimeter security
- Best practice design and architecture guides
 - Cisco's SAFE Architecture
 - Places in the Network

Business Workflows and Network Architecture

- Corporate network
 - Access
 - Email mailbox server
 - Mail transfer server
- Segmentation
- Data flows and access controls

Network Appliances

Routing and Switching Protocols

- Forwarding
 - Layer 2 forwarding
 - Layer 3 forwarding
- Address Resolution Protocol (ARP)
 - Map IP addresses to MAC addresses
- Internet Protocol (IP)
 - IPv4 and IPv6
 - Network prefix/subnet mask
- Routing protocols
 - Communicate routing table updates

Network Segmentation

- Network segment
 - Nodes can communicate at layer 2
 - Broadcast domain
- Implementing network segments
 - Separate unmanaged switches
 - Configure virtual LANs (VLANs) on managed switches
- Layer 3 subnets
 - Map subnets to VLANs

Network Topology and Zones

- Physical and logical topologies
- Zones represent isolated segments for hosts that have the same security requirement
- Traffic between zones is subject to filtering by a firewall
- Main zone types
 - Intranet (private)
 - Extranet
 - Internet (public)
- Enterprise architecture zones
 - Access blocks representing host groups

Images © 123rf.com.

Demilitarized Zones

- Demilitarized zones (DMZs) isolate hosts that are Internet-facing
- Communications through the DMZ should not be allowed
- Ideally use proxies to rebuild packets for forwarding
- Bastion hosts
 - Not fully trusted by internal network
 - Run minimal services
 - Do not store local network account credentials
- Using different types of DMZ for different functions

Demilitarized Zone Topologies

Images © 123rf.com.

Screened Host

- Screened host
 - Local network screened by a single firewall
- "SOHO DMZ"
 - SOHO router configuration option
 - Host configured to accept connections from the Internet

Implications of IPv6

- Enabled by default configuration issues
 - Risks of unmanaged configurations
 - IPv6-specific attack vectors
- Map IPv6 address space to appropriate security zones
- Configure IPv6 firewall rules
- Typically no need for address translation

Other Secure Network Design Considerations

- Data center and cloud design requirements
- East-west traffic
 - North-south traffic enters and leaves data center
 - East-west traffic is between servers within the data center
 - Problem for security inspection and filtering
- Zero trust
 - Do not rely on perimeter security
 - Continuous/context-based authentication
 - Microsegmentation
 - Single host zones

Topic 9B

Implement Secure Switching and Routing

Syllabus Objectives Covered

- 1.4 Given a scenario, analyze potential indicators associated with network attacks
- 3.1 Given a scenario, implement secure protocols
 - Routing and switching only
- 3.3 Given a scenario, implement secure network designs

Man-in-the-Middle and Layer 2 Attacks

- Man-in-the-Middle (MitM) attacks
 - Threat actor can intercept and modify communications
 - On-path attack
 - Snooping
 - Spoofing
- MAC address cloning/spoofing
 - Media Access Control (MAC) hardware interface address
 - Easy to change for a different value

ARP Poisoning and MAC Flooding Attacks

- Address Resolution Protocol (ARP) poisoning
 - Broadcasting unsolicited ARP replies to poison the cache of local hosts with spoofed MAC address
 - Attacker usually tries to masquerade as default gateway
- MAC flooding
 - Overwhelm switch memory to trigger unicast flooding
 - Facilitates sniffing

Screenshot used with permission from wireshark.org.

Loop Prevention

- Spanning Tree Protocol (STP)
- Broadcast storm prevention
 - Broadcast and flooded unicast getting amplified as it loops continually around network
 - Storm control if STP has failed
- Bridge Protocol Data Unit (BPDU) guard
 - Configure switches to defeat attempts to engineer a loop
 - Portfast setting configured for access ports
 - BPDU guard disables port if STP traffic is detected

Physical Port Security and MAC Filtering

- Physical port security
 - Secure switch hardware
 - Physically disconnect unused ports
 - Disable unused ports via management interface
- MAC address limiting and filtering
 - Configure permitted MACs
 - Limit number of MAC changes
- DHCP snooping
 - Dynamic ARP inspection

```
NYCORE1#

*Mar 1 00:02:27.991: %SYS-5-CONFIG_I: Configured from console by console

*Mar 1 00:02:46.287: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to up

NYCORE1#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

NYCORE1(config)#ip arp inspection vlan 1,999

NYCORE1(config)#

*Mar 1 00:07:20.561: %SW_DAI-4-DHCP_SNOOPING_DENY: 1 Invalid ARPs (Req) on Fa1/0/23, vlan 1.([0023.04*0.0000/192.168.16.21/00:07:20 UTC Mon Mar 1 1993])||
```

Network Access Control

- Endpoint security/defense in depth
- IEEE 802.1X/port-based network access control (PNAC)
- Can also enforce health policy
- Posture assessment
 - Agent-based
 - Persistent versus non-persistent
 - Agentless
 - Scanning software
 - Device polling

Route Security

- Sources of routing table updates
- Preventing route injection
- Source routing
- Patch management and router appliance hardening

Lesson 9C

Implement Secure Wireless Infrastructure

Syllabus Objectives Covered

- 1.4 Given a scenario, analyze potential indicators associated with network attacks
- 3.4 Given a scenario, install and configure wireless security settings

Wireless Network Installation Considerations

- Ensure maximum availability from legitimate access points
- Wireless access point (WAP) placement
 - Service set identifier (SSID) and basic service set identifier (BSSID)
 - Frequency bands and channels
 - Co-channel interference (CCI)
 - Adjacent channel interference (ACI)
- Site surveys and heat maps
 - Architectural plan
 - Wi-Fi analyzer
 - Heat map plots signal strength from high (red) to low (green/blue)
 - Channel layout shows overlapping usage

Controller and Access Point Security

Screenshot used with permission from Ubiquiti Networks.

- Configuration of multi-WAP WLANs
- Hardware and software controllers
- Fat versus thin WAPs
- Physical security and management interfaces

Wi-Fi Protected Access

- WPA (v1)
 - RC4 with Temporal Key Integrity Protocol (TKIP)
- Wi-Fi protected access 2 (WPA2)
 - Advanced Encryption Standard (AES) replaces RC4
 - Counter Mode with Cipher Block Chaining Message Authentication Code (CBC-MAC) Protocol (CCMP) replaces TKIP
 - Also enables enterprise authentication options
- Wi-Fi protected access 3 (WPA3)
 - Simultaneous Authentication of Equals (SAE)
 - Enhanced Open
 - Updated cryptography
 - Management protection frames

Wi-Fi Authentication Methods

- WPA2 pre-shared key authentication
 - Passphrase used to generate a pairwise master key (PMK)
 - 4-way handshake
 - PMK is used to derive session keys
- WPA3 personal authentication
 - Password Authenticated Key Exchange (PAKE)
 - Simultaneous Authentication of Equals (SAE) protocol replaces the 4-way handshake
 - Dragonfly handshake

Wi-Fi Protected Setup (WPS)

- Pushbutton or passcode autoconfiguration of access points and clients
- Brute-force vulnerability in passcode algorithm
- Access point may support lockout to mitigate
- Make sure access point firmware is up-to-date
- EasyConnect and Device Provisioning Protocol (DPP)

Open Authentication and Captive Portals

- Use an access point without authentication (or encryption)
- Secondary authentication via captive portal or splash page
- Everything sent over link can be snooped
- Use secure protocols for confidential data (HTTPS, Secure IMAP, FTPS)
- Use a Virtual Private Network (VPN) to create a secure tunnel
- Wi-Fi Enhanced Open

Enterprise/IEEE 802.1X Authentication

Screenshot used with permission from Cisco.

- Extensible Authentication Protocol (EAP) over Wireless (EAPoW)
- Network directory authorization via RADIUS or TACACS+
- User credential is used to generate session encryption key

Extensible Authentication Protocol

- Designed to provide for interoperable security devices and software
- EAP-TLS
 - Transport Layer Security (TLS) to authenticate via device certificates/smart cards
 - Both server and supplicant must have certificates
 - Mutual authentication

Screenshot used with permission from Microsoft.

PEAP, EAP-TTLS, and EAP-FAST

- Secure tunneling for user credentials
- Protected EAP (PEAP)
 - Password authentication through a TLS-protected tunnel
 - Server certificate only
 - PEAPv0 (EAP-MSCHAPv2)
 - PEAPv1 (EAP-GTC)
- EAP with Tunneled TLS (EAP-TTLS)
 - Similar to PEAP but with more flexibility on inner authentication method
- EAP with Flexible Authentication via Secure Tunneling (EAP-FAST)
 - Cisco alternative to PEAP that can be set up without certificate infrastructure

RADIUS Federation

- Federated identity solution
- Mesh network for RADIUS servers operated by different institutions
- Eduroam

Rogue Access Points and Evil Twins

- Rogue access point
 - Troubleshooting access point misconfiguration
 - Disable unused devices and interfaces
- Evil twin
 - Masquerade as legitimate AP
 - Use similar SSID
 - Capture authentication information
- Wi-Fi analyzers

Screenshot used with permission from Xirrus.

Disassociation and Replay Attacks

- Deauthentication attack
 - Attacker sends spoofed deauth packet
 - DoS and assists other attacks
- Disassociation attack
 - Similar but just causes station to disassociate
- Configure Management Frame Protection (MFP/802.11w)
- Initialization vector (IV) attack
 - Generate packets to strip IV
 - KRACK/key reinstallation

Jamming Attacks

- Environmental versus malicious interference
- Jamming attacks
 - Denial of service
 - Promote evil twin
- Use spectrum analyzer to locate source

Topic 9D

Implement Load Balancers

Syllabus Objectives Covered

- 1.4 Given a scenario, analyze potential indicators associated with network attacks
- 3.3 Given a scenario, implement secure network designs

Distributed Denial of Service (DDoS)

- Leverage bandwidth from compromised hosts/networks
 - Handlers form a command and control (C&C) network
 - Compromised hosts installed with bots that can run automated scripts
 - Co-ordinated by the C&C network as a botnet
- Overwhelm with superior bandwidth (number of bots)
- Consume resources with spoof session requests (SYN flood)

Amplification, Application, and OT Attacks

- Distributed Reflection DoS (DRDoS)
- Amplified SYN flood
 - Spoof victim's IP address and attempt to open connections with multiple servers
 - Those servers direct their SYN/ACK responses to the victim
- Application attacks
 - Bogus DNS/NTP queries
 - Direct responses at victim
 - Queries can be constructed to generate large response packets
- Operational technology (OT) networks
 - DoS against embedded systems
 - Can be more vulnerable to miscrafted packets than computing hosts

Distributed Denial of Service Attack Mitigation

- Attacks use spoofed addresses, making them hard to block
- Drop traffic to protect other hosts in the routing domain
 - Access control list (ACL)
 - remotely triggered blackhole (RTBH)
 - Sinkhole routing
- Cloud DDoS mitigation services

Screenshot used with permission from Security Onion.

Load Balancing

Images © 123rf.com.

- Distributes requests across farm or pool of servers (nodes)
 - Layer 4 load balancer
 - Layer 7 load balancer (content switch)
- Scheduling
 - Round robin
 - Fewest existing connections / best response time
 - Weighting
 - Heartbeat and health checks
- Source IP affinity
- Session persistence

Clustering

- Configure nodes for failover
- Virtual IP
 - Common Address Redundancy Protocol (CARP)
- Active/passive versus active/active
- Application clustering
 - Provides stateful fault tolerance

Images © 123RF.com.

Quality of Service

- Compared to best effort and first in, first out (FIFO)
- Quality of service (QoS) to prioritize traffic with certain characteristics
 - Bandwidth
 - Latency and jitter
- Traffic marking
 - DiffServ and 802.1p
- Traffic policing
- Denial of service and trust boundaries for traffic marking
 - Ensure bandwidth for management and security monitoring traffic

Lesson 9

Summary

