Module	Description	Example	Script
core	continue, going on to next loop item	continue	g06/demo.py
core	dictionary, adding a new entry	co['po'] = 'CO'	g05/demo.py
core	dictionary, creating	co = {'name':'Colorado', 'capital':'Denver'}	g05/demo.py
core	dictionary, creating via comprehension	$word_lengths = \{ w:len(w) \text{ for } w \text{ in } wordlist \}$	g06/demo.py
core	dictionary, iterating through key-value pairs	for w,l in word_lengths.items():	g06/demo.py
core	dictionary, looking up a value	name = ny['name']	g05/demo.py
core	dictionary, making a list of	list1 = [co, ny]	g05/demo.py
core	dictionary, obtaining a list of keys	names = super_dict.keys()	g05/demo.py
core	f-string, grouping with commas	<pre>print(f'Total population: {tot_pop:,}')</pre>	g12/demo.py
core	f-string, using a formatting string	print(f"PV of {payment} with $T=\{year\}$ and $r=\{r\}$ is $\{p,\}$	g08/demo.py
core	file, closing	fh.close()	g02/demo.py
core	file, opening for reading	fh = open('states.csv')	g05/demo.py
core	file, opening for writing	fh = open(filename, "w")	g02/demo.py
core	file, output using print	<pre>print("It was written during",year,file=fh)</pre>	g02/demo.py
core	file, output using write	fh.write("Where was this file was written?\n")	g02/demo.py
core	file, print without adding spaces	<pre>print('\nOuter:\n', join_o['_merge'].value_counts(), s</pre>	g15/demo.py
core	file, reading one line at a time	for line in fh:	g05/demo.py
core	for, looping through a list	for n in a_list:	g04/demo.py
core	for, looping through a list of tuples	for number,name in div_info:	g14/demo.py
core	function, calling	$d1_ssq = sumsq(d1)$	g07/demo.py
core	function, calling with an optional argument	sample_function(100, 10, r=0.07)	g08/demo.py
core	function, defining	def sumsq(values: list) -> float:	g07/demo.py
core	function, defining with optional argument	def sample_function(payment:float,year:int,r:float=0.05	g08/demo.py
core	function, returning a result	return values	g07/demo.py
core	function, using type hinting	def readlist(filename: str) -> list:	g07/demo.py
core	if, starting a conditional block	if I == 5:	g06/demo.py
core	if, using an elif statement	elif s.isalpha():	g06/demo.py
core	if, using an else statement	else:	g06/demo.py
core	list, appending an element	a_list.append("four")	g03/demo.py
core	list, create via comprehension	cubes = $[n**3 \text{ for n in a_list}]$	g04/demo.py

Module	Description	Example	Script
core	list, creating	a_list = ["zero", "one", "two", "three"]	g03/demo.py
core	list, determining length	$n = len(b_list)$	g03/demo.py
core	list, extending with another list	a_list.extend(a_more)	g03/demo.py
core	list, generating a sequence	$b_{list} = range(1,6)$	g04/demo.py
core	list, joining with spaces	a_string = " ".join(a_list)	g03/demo.py
core	list, selecting an element	print(a_list[0])	g03/demo.py
core	list, selecting elements 0 to 3	<pre>print(a_list[:4])</pre>	g03/demo.py
core	list, selecting elements 1 to 2	print(a_list[1:3])	g03/demo.py
core	list, selecting elements 1 to the end	print(a_list[1:])	g03/demo.py
core	list, selecting last 3 elements	print(a_list[-3:])	g03/demo.py
core	list, selecting the last element	print(a_list[-1])	g03/demo.py
core	list, sorting	$c_sort = sorted(b_list)$	g03/demo.py
core	list, summing	total = sum(numbers)	g06/demo.py
core	math, raising a number to a power	a_cubes.append(n**3)	g04/demo.py
core	math, rounding a number	rounded = round(ratio,2)	g05/demo.py
core	sets, computing difference	<pre>print(name_states - pop_states)</pre>	g14/demo.py
core	sets, creating	$name_states = set(\ name_data[`State']\)$	g14/demo.py
core	sets, of tuples	tset1 = set([(1,2), (2,3), (1,3), (2,3)])	g14/demo.py
core	string, concatenating	name = $s1+"$ "+ $s2+"$ "+ $s3$	g02/demo.py
core	string, convert to lower case	lower = [s.lower() for s in wordlist]	g06/demo.py
core	string, convert to title case	$new_s = s.title()$	g06/demo.py
core	string, converting to an int	value = int(s)	g06/demo.py
core	string, creating	filename = "demo.txt"	g02/demo.py
core	string, finding starting index	$mm_start = long_string.find("mm")$	g06/demo.py
core	string, including a newline character	fh.write(name+"!\n")	g02/demo.py
core	string, is entirely numeric	if s.isnumeric():	g06/demo.py
core	string, matching a substring	$has_{\tilde{n}} = [s \text{ for } s \text{ in lower if "ñ" in } s]$	g06/demo.py
core	string, matching end	<pre>a_end = [s for s in lower if s.endswith("a")]</pre>	g06/demo.py
core	string, matching multiple starts	ab_start = [s for s in lower if s.startswith(starters)]	g06/demo.py
core	string, matching partial string	$is_gas = trim['DBA Name'].str.contains('XPRESS')$	g28/demo.py
core	string, matching start	$a_start = [s for s in lower if s.startswith("a")]$	g06/demo.py
core	string, matching start	$is_big = trim['DBA Name'].str.startswith(store)$	g28/demo.py
core	string, replacing a substring	words = s.replace(``,'','' ``).split()	g06/demo.py
core	string, splitting on a comma	parts = line.split(',')	g05/demo.py

core string, splitting on whitespace string, stripping blank space clean = [tem.strip() for item in parts]	Module	Description	Example	Script
core string, stripping blank space clean = [item.strip() for item in parts] g05/demo.py core tuple, creating starters = ("a","b","0") g06/demo.py core type, obtaining for a variable print('\nraw_states is a DataFrame object:', type(raw g10/demo.py cov setting up a DictReader object reader = csv.DictReader(fth) g25/demo.py cov setting up a DictReader object reader = csv.DictReader(fth) g25/demo.py geopandas importing the module import fiona list layers in a geopackage layers = fional listlayers(demo_file) g25/demo.py geopandas clip a layer zips_clip = zips.clip(county,keep_geom_type=True) g25/demo.py geopandas combine all geographies in a layer water_dis = water_by_name_dissolve() g25/demo.py geopandas combine geographies by attribute water_dis_water_dis_buffer(1600) g25/demo.py geopandas computing areas zips_rawater water_dis.buffer(1600) g25/demo.py geopandas construct a buffer near_water water_dis.buffer(1600) g25/demo.py geopandas drawing a heatmap extracting geometry from a geodataframe importing the module geopandas well and the print geometry from a geodataframe well geomaters water dispenders as g23/demo.py geopandas merging data onto a geodataframe object served_by = centroids, sjoin_nearest(geo,how='left',dist g28/demo.py geopandas plot with categorical coloring sell-plot with categorical coloring sell-plot ("Number of points."; len(w_geo.exterior.coords) g23/demo.py geopandas project a layer county.per	core	string, splitting on whitespace	b_list = b_string.split()	g03/demo.py
core type, obtaining for a variable print('\nraw_states is a DataFrame object:', type(raw g10/demo.py csv setting up a DictReader object reader = csv.DictReader(fh) g09/demo.py fiona importing the module import fiona list layers in a geopackage layers = fiona.listlayers(demo_file) g25/demo.py geopandas adding a heatmap legend slices.plot('s_pop',edgecolor='yellow,linewidth=0.2,le g27/demo.py geopandas combine all geographies in a layer vater_dis = water_by_name.dissolve() g25/demo.py geopandas combine geographies by attribute vater_by_name = water.dissolve('FULLNAME') g25/demo.py geopandas computing areas zips['z_area'] = zips.area g27/demo.py geopandas construct a buffer near_water = water_dis.buffer(1600) g25/demo.py geopandas constructing centroids centroids [geometry] = tracts.centroid g28/demo.py geopandas extracting geometry from a geodataframe peopandas importing the module import geopandas obtaining coordinates print('Number of points:'.len('m,on='STATEFP',how=left',dist g23/demo.py geopandas overlaying a layer using union slices = zips.overlay(county,how='union',keep_geom_type g23/demo.py geopandas overlaying a layer using union slices = zips.overlay(county,how='union',keep_geom_type g23/demo.py geopandas project a layer county = Count	core	string, stripping blank space	clean = [item.strip() for item in parts]	
csv setting up a DictReader object reader = csv.DictReader(fh) g09/demo.py fiona importing the module import fiona list layers in a geopackage layers = fiona.listlayers(demo_file) g25/demo.py geopandas adding a heatmap legend slices.plot('s_pop'.edgecolor='yellow'.linewidth=0.2.le g27/demo.py geopandas combine all geographies in a layer water_dis= water_by_name(sloslve() g25/demo.py geopandas combine geographies by attribute water_by_name = water_dissolve() g25/demo.py geopandas computing areas zips['z_area'] = zips.area geopandas construct a buffer near_water = water_dis_buffer(1600) g25/demo.py geopandas constructing centroids centroids['geometry'] = tracts.centroid g28/demo.py geopandas extracting geometry from a geodataframe wexpeo=wn/[geometry] = tracts.centroid g23/demo.py geopandas importing the module import geopandas as gpd geopandas merging data onto a geodataframe overlaying a layer using union slices = zips.overlay(county,low="STATEFP',how="left',valida g23/demo.py geopandas plotting a boundary syr.boundary.plot(color='gray',linewidth=1,ax=ax1) g23/demo.py geopandas plotting a boundary syr.boundary.plot(color='gray',linewidth=1,ax=ax1) g23/demo.py geopandas reading a file syr gpd.read_file("tb_2016_36_place-syracuse.zip") g23/demo.py geopandas reading a file syr gpd.read_file("tb_2016_36_place-syracuse.zip") g23/demo.py geopandas setting transparency via alpha geopandas spotial join, crosses i_crosses_z = inter.sjoin(zips,how="right',predicate= g26/demo.py geopandas setting transparency via alpha geopandas spatial join, crosses	core	tuple, creating	starters = ("a","b","0")	g06/demo.py
fiona importing the module import fiona list layers in a geopackage layers = fiona.listlayers(demo_file) g25/demo.py geopandas adding a heatmap legend slices.plot('s_pop',edgecolor='yellow',linewidth=0.2,le g27/demo.py geopandas clip a layer zips_clip = zips.clip(county,keep_geom_type=True) g25/demo.py geopandas combine all geographies in a layer water_dis = water_by_name.dissolve() g25/demo.py geopandas combine geographies by attribute water_by_name = water.dissolve('FULLNAME') g25/demo.py geopandas computing areas zips['z_area'] = zips.area g27/demo.py geopandas construct a buffer near_water = water_dis.buffer(1600) g25/demo.py geopandas drawing a heatmap near_wv.plot("mil",cmap="Blues',legend=True,ax=ax) g23/demo.py geopandas drawing a heatmap near_wv.plot("mil",cmap="Blues',legend=True,ax=ax) g23/demo.py geopandas importing the module import geopandas as gpd g22/demo.py geopandas pion to nearest object served_by = centroids.sioin_nearest(geo,how='left',dist g28/demo.py geopandas overlaying a layer using union slices = zips overlay(county,how='union',keep_geom_type g27/demo.py geopandas plot with categorical coloring sel.plot('NAME',cmap='Dark2',ax=ax1) g23/demo.py geopandas project a layer county = county-to_crs(epsg=untn18n) g22/demo.py geopandas project a layer county = county-to_crs(epsg=untn18n) g22/demo.py geopandas reading a file syr-gpd.read_file("t_2016_36_place-syracuse.zip") g22/demo.py geopandas reading a file syr-gpd.read_file("t_2016_36_place-syracuse.zip") g22/demo.py geopandas setting the color of a plot county-plot(color='grai,'linewidth=1,ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(zlopshow='right',predicate='c g26/demo.py geopandas spatial join, croases i_croases = z-inter.sjoin(zips,how='right',predicate='c g26/demo.py geopandas spatial join, croases i_croases = z-inter.sjoin(zips,how='right',predicate='c g26/demo.py geopandas spatial join, croases	core	type, obtaining for a variable	<pre>print('\nraw_states is a DataFrame object:', type(raw</pre>	g10/demo.py
geopandas adding a heatmap legend slices.plot('s_pop',edgecolor='yellow',linewidth=0.2,le g27/demo.py geopandas combine all geographies in a layer water_dis = water_by_name_dissolve() g25/demo.py geopandas combine geographies by attribute water_by_name = water.dissolve('FULLNAME') g25/demo.py geopandas computing areas zips['z_area'] = zips.area g27/demo.py geopandas construct a buffer near_water = water_dis_buffer(1600) g25/demo.py geopandas construct a buffer near_water = water_dis_buffer(1600) g25/demo.py geopandas construct a buffer near_water = water_dis_buffer(1600) g28/demo.py geopandas construct a buffer near_w.plot("mil", cmap="Blues',legend=True,ax=ax") g23/demo.py geopandas geopandas geometry from a geodataframe import geopandas as gpd geopandas importing the module import geopandas as gpd geopandas obtaining coordinates print('Number of points:', len(ww_geo.exterior.coords) g23/demo.py geopandas overlaying a layer using union slices = zips.overlay(county,how='union',keep_geom_type g23/demo.py geopandas point in the categorical coloring sel.plot("NAME',cmap="Dark2',ax=ax1) g23/demo.py geopandas project a layer county = countyto_creps="Union",keep_geom_type g23/demo.py geopandas project a layer county = countyto_creps="Union",keep_geom_type g23/demo.py geopandas project a layer countyto_creps="Union",keep_geom_type g23/demo.py geopandas geofig a shapefile states = gpd.read_file("tl_2016_36_place-syracuse.zip") g23/demo.py geopandas setting transparency via alpha near_clip.plot(color='tan',ax=ax1) g25/demo.py geopandas	CSV	setting up a DictReader object	reader = csv.DictReader(fh)	g09/demo.py
geopandas adding a heatmap legend slices.plot('s_pop',edgecolor='yelllow',linewidth=0.2,le g27/demo.py geopandas clip a layer zips_clip = zips.clip(county,keep_geom_type=True) g25/demo.py geopandas combine geographies by attribute water_by_name_dissolve() g25/demo.py geopandas computing areas zips['z_area'] = zips.area g27/demo.py geopandas construct a buffer near_water = water_dis.buffer(1600) g25/demo.py geopandas constructing centroids centroids['geometry'] = tracts.centroid g28/demo.py geopandas extracting geometry from a geodataframe geopandas extracting geometry from a geodataframe ww_geo = wv['geometry'] g23/demo.py geopandas importing the module import geopandas as gpd g22/demo.py geopandas pobtaining coordinates print ('Number of points:', len(ww_geo.exterior.coords) g23/demo.py geopandas overlaying a layer using union slices = zips.overlay(county,how='union',keep_geom_type g23/demo.py geopandas plot with categorical coloring sel.plot('NAME',cmap='Dark2',ax=ax1) g23/demo.py geopandas project a layer county county county county county county county geopandas reading a file syr eading a file states gpd.read_file("tL_2016_36_place-syracuse.zip") g23/demo.py geopandas reading a file states gpd.read_file("tL_2016_36_place-syracuse.zip") g23/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas spatial join, contains c_contains_z = county.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas spatial join, contains c_contains_z = county.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas spatial join, contains c_contains_z = county.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas spatial join, contains	fiona	importing the module	import fiona	
geopandas combine all geographies in a layer water_dis = zips_clip (county,keep_geom_type=True) g25/demo.py geopandas combine geographies by attribute water_by_name - water_dissolve() g25/demo.py geopandas combine geographies by attribute water_by_name = water_dissolve('FULLNAME') g25/demo.py geopandas construct a buffer near_water = water_dis.buffer(1600) g25/demo.py geopandas construct a buffer near_water = water_dis.buffer(1600) g25/demo.py geopandas constructing centroids centroids'[geometry'] = tracts.centroid g28/demo.py geopandas extracting geometry from a geodataframe wv_geo = wv['geometry'] g23/demo.py geopandas importing the module import geopandas as gpd g22/demo.py geopandas pion to nearest object served_by = centroids.gioin_nearest(geo,how='left',dist g28/demo.py geopandas obtaining coordinates print('Number of points:', len(wv_geo.exterior.coords) g23/demo.py geopandas obtaining coordinates print('Number of points:', len(wv_geo.exterior.coords) g23/demo.py geopandas plot with categorical coloring sel.plot('NAME',cmap='Dark2',ax=ax1) g22/demo.py geopandas plotting a boundary syr.boundary.plot(color='gray',linewidth=1,ax=ax1) g22/demo.py geopandas reading a file states gpd.read_file("tl_2016_36_place-syracuse.zip") g22/demo.py geopandas reading a file states gpd.read_file("tl_2016_36_place-syracuse.zip") g22/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas spatial join, contains c_ccontains_z = county.sjoin(zips,how='right',predicate=' g26/demo.py geopandas spatial join, crosses i_crosses_z = inter.sjoin(zips,how='right',predicate=' g26/demo.py geopandas spatial join, contains	fiona	list layers in a geopackage	layers = fiona.listlayers(demo_file)	g25/demo.py
geopandas combine all geographies in a layer water_dis = water_by_name.dissolve() geopandas combine geographies by attribute water_by_name = water.dissolve('FULLNAME') geopandas computing areas zips['z_area'] = zips.area geopandas construct a buffer near_water = water_diss.buffer(1600) geopandas constructing centroids centroids['geometry'] = tracts.centroid g28/demo.py geopandas drawing a heatmap near_w.plot("mil",cmap='Blues',legend=True,ax=ax) g23/demo.py geopandas importing the module import geopandas as gpd geopandas importing the module import geopandas join to nearest object served_by = centroids.sjoin_nearest(geo,how='left',dist g28/demo.py geopandas merging data onto a geodataframe conus = conus.merge(trim_on='STATEFP',how='left',valida g23/demo.py geopandas obtaining coordinates print('Number of points:', len(ww_geo.exterior.coords) g23/demo.py geopandas plot with categorical coloring sel.plot('NAME',cmap='Dark2',ax=ax1) g23/demo.py geopandas plotting a boundary syr.boundary.plot(color='gray',linewidth=1,ax=ax1) g23/demo.py geopandas reading a file syr gpd.read_file("tl_2016_36_place-syracuse.zip") g22/demo.py geopandas reading a file states = gpd.read_file("tl_2016_36_place-syracuse.zip") g23/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g23/demo.py geopandas setting transparency via alpha near_clip.plot(color='tan',ax=ax1) g25/demo.py geopandas spatial join, contains c_contains_z = county.sjoin(zips,how='right',predicate='c g26/demo.py geopandas spatial join, crosses i_crosses_z = inter.sjoin(zips,how='right',predicate='c g26/demo.py	geopandas	adding a heatmap legend	slices.plot('s_pop',edgecolor='yellow',linewidth=0.2,le	g27/demo.py
geopandas combine geographies by attribute water_by_name = water.dissolve('FULLNAME') g25/demo.py geopandas computing areas zips['z_area'] = zips.area g27/demo.py geopandas construct a buffer near_water = water_dis.buffer(1600) g25/demo.py geopandas constructing centroids centroids['geometry'] = tracts.centroid g28/demo.py geopandas drawing a heatmap near_wv.plot("mil".cmap='Blues',legend=True,ax=ax) g23/demo.py geopandas importing the module import geopandas as gpd g22/demo.py geopandas join to nearest object served_by = centroids.sjoin_nearest(geo,how='left',dist g28/demo.py geopandas obtaining coordinates print('Number of points:', len(wv_geo.exterior.coords) g23/demo.py geopandas overlaying a layer using union slices = zips.overlay(county,how='union',keep_geom_type g23/demo.py geopandas plot with categorical coloring sel.plot('NAME',cmap='Dark2',ax=ax1) g23/demo.py geopandas project a layer county = county.cocrs(epsg=utm18n) g22/demo.py geopandas reading a file syr_egod.read_file("tb_2016_36_place-syracuse.zip") g23/demo.py geopandas reading a shapefile states = gpd.read_file("tb_2016_36_place-syracuse.zip") g23/demo.py geopandas setting transparency via alpha near_clip.plot(color='tan',ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(color='tan',ax=ax1) g25/demo.py geopandas spatial join, contains c_contains_z = county.sjoin(zips,how='right',predicate='c g26/demo.py geopandas spatial join, corsses i_crosses_z = inter.sjoin(zips,how='right',predicate='c g26/demo.py	geopandas		$zips_clip = zips.clip(county,keep_geom_type=True)$	g25/demo.py
geopandas computing areas zips['z_area'] = zips.area g27/demo.py geopandas construct a buffer near_water = water_dis.buffer(1600) g25/demo.py geopandas constructing centroids centroids['geometry'] = tracts.centroid g28/demo.py geopandas drawing a heatmap near_wv.plot("mil",cmap='Blues',legend=True,ax=ax) g23/demo.py geopandas extracting geometry from a geodataframe ww_geo = w['geometry'] g23/demo.py geopandas importing the module import geopandas as gpd g22/demo.py geopandas pioin to nearest object served_by = centroids.sjoin_nearest(geo,how='left',dist g28/demo.py geopandas obtaining coordinates print('Number of points:', len(ww_geo.exterior.coords) g23/demo.py geopandas overlaying a layer using union slices = zips.overlay(county,how='union',keep_geom_type g27/demo.py geopandas plot with categorical coloring sel.plot('NAME',cmap='Dark2',ax=ax1) g23/demo.py geopandas plotting a boundary syr.boundary,plot(color='gray',linewidth=1,ax=ax1) g22/demo.py geopandas project a layer county = county = county,to_crs(epsg=utm18n) g22/demo.py geopandas reading a file states = gpd.read_file("tl_2016_36_place-syracuse.zip") g22/demo.py geopandas reading data in WKT format coords = gpd.GeoSeries.from_wkt(big['Georeference']) g28/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas spatial join, contains c_contains_z = county.sjoin(zips,how='right',predicate=-c g26/demo.py geopandas spatial join, corsses i_crosses_z = inter.sjoin(zips,how='right',predicate='c g26/demo.py geopandas i_crosses_z = inter.sjoin(zips,how='right',predicate='c g26/demo.py	geopandas	combine all geographies in a layer	water_dis = water_by_name.dissolve()	g25/demo.py
geopandas construct a buffer near_water = water_dis.buffer(1600) g25/demo.py geopandas constructing centroids centroids centroids['geometry'] = tracts.centroid g28/demo.py geopandas drawing a heatmap near_wv.plot("mil".cmap='Blues',legend=True,ax=ax) g23/demo.py geopandas extracting geometry from a geodataframe wv_geo = wv['geometry'] g23/demo.py geopandas join to nearest object served_by = centroids.sjoin_nearest(geo,how='left',dist g28/demo.py geopandas obtaining coordinates print('Number of points:', len(wv_geo.exterior.coords) g23/demo.py geopandas overlaying a layer using union slices = zips.overlay(county,how='union',keep_geom_type g23/demo.py geopandas plotting a boundary syr.boundary.plot(color='gray',linewidth=1,ax=ax1) g22/demo.py geopandas project a layer county = county.to_crs(epsg=utm18n) g22/demo.py geopandas reading a file syr = gpd.read_file("tb_2016_36_place-syracuse.zip") g22/demo.py geopandas reading a shapefile states = gpd.read_file("cb_2019_us_state_500k.zip") g23/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas spatial join, contains c_contains z= county.sjoin(zips,how='right',predicate=-: g26/demo.py geopandas spatial join, corosses	geopandas	combine geographies by attribute	$water_by_name = water.dissolve('FULLNAME')$	g25/demo.py
geopandas constructing centroids centroids (g28/demo.py geopandas drawing a heatmap near_wv.plot("mil",cmap='Blues',legend=True,ax=ax) g23/demo.py geopandas extracting geometry from a geodataframe geopandas importing the module import geopandas as gpd geopandas join to nearest object served_by = centroids.sjoin_nearest(geo,how='left',dist g28/demo.py geopandas merging data onto a geodataframe conus merge(trim,on='STATEFP',how='left',valida g23/demo.py geopandas obtaining coordinates print('Number of points:', len(wv_geo.exterior.coords) g23/demo.py geopandas overlaying a layer using union slices = zips.overlay(county,how='union',keep_geom_type g27/demo.py geopandas plotting a boundary syr.boundary.plot(color='gray',linewidth=1,ax=ax1) g23/demo.py geopandas project a layer county county.to_crs(epsg=utm18n) g22/demo.py geopandas reading a file syr = gpd.read_file("tl_2016_36_place-syracuse.zip") g22/demo.py geopandas reading data in WKT format coords = gpd.GeoSeries.from_wkt(big['Georeference']) g28/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting transparency via alpha pc-actions pc-action	geopandas	computing areas	zips['z_area'] = zips.area	g27/demo.py
geopandas drawing a heatmap near_wv.plot("mil",cmap="Blues',legend=True,ax=ax) g23/demo.py geopandas extracting geometry from a geodataframe geopandas importing the module import geopandas as gpd g22/demo.py geopandas join to nearest object served_by = centroids.sjoin_nearest(geo,how='left',dist g28/demo.py geopandas merging data onto a geodataframe conus = conus.merge(trim,on='STATEFP',how='left',valida g23/demo.py geopandas obtaining coordinates print('Number of points:', len(wv_geo.exterior.coords) g23/demo.py geopandas overlaying a layer using union slices = zips.overlay(county,how='union',keep_geom_type g27/demo.py geopandas plot with categorical coloring sel.plot('NAME',cmap='Dark2',ax=ax1) g23/demo.py geopandas project a layer county = county.to_crs(epsg=utm18n) g22/demo.py geopandas reading a file syr = gpd.read_file("tl_2016_36_place-syracuse.zip") g22/demo.py geopandas reading a shapefile states = gpd.read_file("cb_2019_us_state_500k.zip") g23/demo.py geopandas reading data in WKT format coords = gpd.GeoSeries.from_wkt(big['Georeference']) g28/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py g25/demo.py geopandas spatial join, contains c_contains_z = county.sjoin(zips,how='right',predicate=-: g26/demo.py g26/demo.py i_crosses_z = inter.sjoin(zips,how='right',predicate='c g26/demo.py	geopandas	construct a buffer	$near_water = water_dis.buffer(1600)$	g25/demo.py
geopandas extracting geometry from a geodataframe geopandas importing the module import geopandas as gpd g22/demo.py geopandas join to nearest object served_by = centroids.sjoin_nearest(geo,how='left',dist g28/demo.py geopandas merging data onto a geodataframe conus = conus.merge(trim,on='STATEFP',how='left',valida g23/demo.py geopandas obtaining coordinates print('Number of points:', len(wv_geo.exterior.coords) g23/demo.py geopandas plot with categorical coloring sel.plot('NAME',cmap='Dark2',ax=ax1) g23/demo.py geopandas plotting a boundary syr.boundary.plot(color='gray',linewidth=1,ax=ax1) g22/demo.py geopandas project a layer county = county.to_crs(epsg=utm18n) g25/demo.py geopandas reading a file syr = gpd.read_file("tb_2016_36_place-syracuse.zip") g22/demo.py geopandas reading data in WKT format coords = gpd.GeoSeries.from_wkt(big['Georeference']) g28/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas spatial join, contains c_contains_z = county.sjoin(zips,how='right',predicate=-c g26/demo.py geopandas spatial join, crosses i_crosses_z = inter.sjoin(zips,how='right',predicate='c g26/demo.py	geopandas	constructing centroids	centroids['geometry'] = tracts.centroid	g28/demo.py
geopandas join to nearest object served_by = centroids.sjoin_nearest(geo,how='left',dist g28/demo.py geopandas merging data onto a geodataframe conus = conus.merge(trim,on='STATEFP',how='left',valida g23/demo.py geopandas obtaining coordinates print('Number of points:', len(wv_geo.exterior.coords) g23/demo.py geopandas overlaying a layer using union slices = zips.overlay(county,how='union',keep_geom_type g27/demo.py geopandas plot with categorical coloring sel.plot('NAME',cmap='Dark2',ax=ax1) g23/demo.py geopandas plotting a boundary syr.boundary.plot(color='gray',linewidth=1,ax=ax1) g22/demo.py geopandas project a layer county = county.to_crs(epsg=utm18n) g25/demo.py geopandas reading a file syr = gpd.read_file("tl_2016_36_place-syracuse.zip") g22/demo.py geopandas reading a shapefile states = gpd.read_file("tl_2016_36_place-syracuse.zip") g23/demo.py geopandas reading data in WKT format coords = gpd.GeoSeries.from_wkt(big['Georeference']) g28/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas spatial join, contains c_contains_z = county.sjoin(zips,how='right',predicate= g26/demo.py geopandas spatial join, crosses i_crosses_z = inter.sjoin(zips,how='right',predicate='c g26/demo.py	geopandas	drawing a heatmap	near_wv.plot("mil",cmap='Blues',legend=True,ax=ax)	g23/demo.py
geopandas join to nearest object served_by = centroids.sjoin_nearest(geo,how='left',dist g28/demo.py geopandas merging data onto a geodataframe conus = conus.merge(trim,on='STATEFP',how='left',valida g23/demo.py geopandas obtaining coordinates print('Number of points:', len(wv_geo.exterior.coords) g23/demo.py geopandas plot with categorical coloring sel.plot('NAME',cmap='Dark2',ax=ax1) g23/demo.py geopandas plotting a boundary syr.boundary.plot(color='gray',linewidth=1,ax=ax1) g22/demo.py geopandas project a layer county = county.to_crs(epsg=utm18n) g25/demo.py geopandas reading a file syr = gpd.read_file("tl_2016_36_place-syracuse.zip") g22/demo.py geopandas reading a shapefile states = gpd.read_file("cb_2019_us_state_500k.zip") g23/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py g25/demo.py geopandas spatial join, contains c_contains_z = county.sjoin(zips,how='right',predicate= g26/demo.py g26/demo.py i_crosses_z = inter.sjoin(zips,how='right',predicate='c g26/demo.py	geopandas	extracting geometry from a geodataframe	wv_geo = wv['geometry']	g23/demo.py
merging data onto a geodataframe conus = conus.merge(trim,on='STATEFP',how='left',valida g23/demo.py obtaining coordinates print('Number of points:', len(wv_geo.exterior.coords) g23/demo.py geopandas overlaying a layer using union slices = zips.overlay(county,how='union',keep_geom_type g27/demo.py geopandas plot with categorical coloring sel.plot('NAME',cmap='Dark2',ax=ax1) g23/demo.py geopandas plotting a boundary syr.boundary.plot(color='gray',linewidth=1,ax=ax1) g22/demo.py geopandas project a layer county = county.to_crs(epsg=utm18n) g25/demo.py geopandas reading a file states = gpd.read_file("tl_2016_36_place-syracuse.zip") g23/demo.py geopandas reading data in WKT format coords = gpd.GeoSeries.from_wkt(big['Georeference']) g28/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py g25/demo.py geopandas spatial join, contains c_contains_z = county.sjoin(zips,how='right',predicate=-'c g26/demo.py g26/demo.py i_crosses_z = inter.sjoin(zips,how='right',predicate=-'c g26/demo.py	geopandas	importing the module	import geopandas as gpd	g22/demo.py
geopandas obtaining coordinates print('Number of points:', len(wv_geo.exterior.coords) g23/demo.py geopandas overlaying a layer using union slices = zips.overlay(county,how='union',keep_geom_type g27/demo.py geopandas plot with categorical coloring sel.plot('NAME',cmap='Dark2',ax=ax1) g23/demo.py geopandas plotting a boundary syr.boundary.plot(color='gray',linewidth=1,ax=ax1) g22/demo.py geopandas project a layer county = county.to_crs(epsg=utm18n) g25/demo.py geopandas reading a file states = gpd.read_file("tl_2016_36_place-syracuse.zip") g22/demo.py geopandas reading a shapefile states = gpd.read_file("cb_2019_us_state_500k.zip") g23/demo.py geopandas reading data in WKT format coords = gpd.GeoSeries.from_wkt(big['Georeference']) g28/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas spatial join, contains c_contains_z = county.sjoin(zips,how='right',predicate= g26/demo.py g26/demo.py i_crosses_z = inter.sjoin(zips,how='right',predicate='c g26/demo.py	geopandas	join to nearest object	$served_by = centroids.sjoin_nearest(geo,how='left',dist$	g28/demo.py
geopandas overlaying a layer using union slices = zips.overlay(county,how='union',keep_geom_type g27/demo.py geopandas plot with categorical coloring sel.plot('NAME',cmap='Dark2',ax=ax1) g23/demo.py geopandas plotting a boundary syr.boundary.plot(color='gray',linewidth=1,ax=ax1) g22/demo.py geopandas project a layer county = county.to_crs(epsg=utm18n) g25/demo.py geopandas reading a file syr = gpd.read_file("tl_2016_36_place-syracuse.zip") g22/demo.py geopandas reading a shapefile states = gpd.read_file("cb_2019_us_state_500k.zip") g23/demo.py geopandas reading data in WKT format coords = gpd.GeoSeries.from_wkt(big['Georeference']) g28/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas spatial join, contains c_contains_z = county.sjoin(zips,how='right',predicate= g26/demo.py geopandas spatial join, crosses i_crosses_z = inter.sjoin(zips,how='right',predicate='c g26/demo.py	geopandas	merging data onto a geodataframe	conus = conus.merge(trim,on='STATEFP',how='left',valida	g23/demo.py
geopandas plot with categorical coloring sel.plot('NAME',cmap='Dark2',ax=ax1) g23/demo.py geopandas plotting a boundary syr.boundary.plot(color='gray',linewidth=1,ax=ax1) g22/demo.py geopandas project a layer county = county.to_crs(epsg=utm18n) g25/demo.py geopandas reading a file syr = gpd.read_file("tl_2016_36_place-syracuse.zip") g22/demo.py geopandas reading a shapefile states = gpd.read_file("cb_2019_us_state_500k.zip") g23/demo.py geopandas reading data in WKT format coords = gpd.GeoSeries.from_wkt(big['Georeference']) g28/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas spatial join, contains c_contains_z = county.sjoin(zips,how='right',predicate= g26/demo.py geopandas spatial join, crosses i_crosses_z = inter.sjoin(zips,how='right',predicate='c g26/demo.py	geopandas	obtaining coordinates	print('Number of points:', len(wv_geo.exterior.coords)	g23/demo.py
geopandas plotting a boundary syr.boundary.plot(color='gray',linewidth=1,ax=ax1) g22/demo.py geopandas project a layer county = county.to_crs(epsg=utm18n) g25/demo.py geopandas reading a file syr = gpd.read_file("tl_2016_36_place-syracuse.zip") g22/demo.py geopandas reading a shapefile states = gpd.read_file("cb_2019_us_state_500k.zip") g23/demo.py geopandas reading data in WKT format coords = gpd.GeoSeries.from_wkt(big['Georeference']) g28/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas spatial join, contains c_contains_z = county.sjoin(zips,how='right',predicate= g26/demo.py geopandas spatial join, crosses i_crosses_z = inter.sjoin(zips,how='right',predicate='c g26/demo.py	geopandas	overlaying a layer using union	slices = zips.overlay(county,how='union',keep_geom_type	g27/demo.py
geopandas plotting a boundary syr.boundary.plot(color='gray',linewidth=1,ax=ax1) g22/demo.py geopandas project a layer county = county.to_crs(epsg=utm18n) g25/demo.py geopandas reading a file syr = gpd.read_file("tl_2016_36_place-syracuse.zip") g22/demo.py geopandas reading a shapefile states = gpd.read_file("cb_2019_us_state_500k.zip") g23/demo.py geopandas reading data in WKT format coords = gpd.GeoSeries.from_wkt(big['Georeference']) g28/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas spatial join, contains c_contains_z = county.sjoin(zips,how='right',predicate= g26/demo.py geopandas spatial join, crosses i_crosses_z = inter.sjoin(zips,how='right',predicate='c g26/demo.py	geopandas	plot with categorical coloring	sel.plot('NAME',cmap='Dark2',ax=ax1)	g23/demo.py
geopandas reading a file syr = gpd.read_file("tl_2016_36_place-syracuse.zip") g22/demo.py geopandas reading a shapefile states = gpd.read_file("cb_2019_us_state_500k.zip") g23/demo.py geopandas reading data in WKT format coords = gpd.GeoSeries.from_wkt(big['Georeference']) g28/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas spatial join, contains c_contains_z = county.sjoin(zips,how='right',predicate= g26/demo.py geopandas spatial join, crosses i_crosses_z = inter.sjoin(zips,how='right',predicate='c g26/demo.py	geopandas	plotting a boundary	syr.boundary.plot(color='gray',linewidth=1,ax=ax1)	g22/demo.py
geopandas reading a file syr = gpd.read_file("tl_2016_36_place-syracuse.zip") g22/demo.py geopandas reading a shapefile states = gpd.read_file("cb_2019_us_state_500k.zip") g23/demo.py geopandas reading data in WKT format coords = gpd.GeoSeries.from_wkt(big['Georeference']) g28/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas spatial join, contains c_contains_z = county.sjoin(zips,how='right',predicate= g26/demo.py geopandas spatial join, crosses i_crosses_z = inter.sjoin(zips,how='right',predicate='c g26/demo.py	geopandas	project a layer	county = county.to_crs(epsg=utm18n)	g25/demo.py
geopandasreading a shapefilestates = gpd.read_file("cb_2019_us_state_500k.zip")g23/demo.pygeopandasreading data in WKT formatcoords = gpd.GeoSeries.from_wkt(big['Georeference'])g28/demo.pygeopandassetting the color of a plotcounty.plot(color='tan',ax=ax1)g25/demo.pygeopandassetting transparency via alphanear_clip.plot(alpha=0.25,ax=ax1)g25/demo.pygeopandasspatial join, containsc_contains_z = county.sjoin(zips,how='right',predicate=g26/demo.pygeopandasspatial join, crossesi_crosses_z = inter.sjoin(zips,how='right',predicate='cg26/demo.py				g22/demo.py
geopandas reading data in WKT format coords = gpd.GeoSeries.from_wkt(big['Georeference']) g28/demo.py geopandas setting the color of a plot county.plot(color='tan',ax=ax1) g25/demo.py geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas spatial join, contains c_contains_z = county.sjoin(zips,how='right',predicate= g26/demo.py geopandas spatial join, crosses i_crosses_z = inter.sjoin(zips,how='right',predicate='c g26/demo.py	geopandas			g23/demo.py
geopandassetting the color of a plotcounty.plot(color='tan',ax=ax1)g25/demo.pygeopandassetting transparency via alphanear_clip.plot(alpha=0.25,ax=ax1)g25/demo.pygeopandasspatial join, containsc_contains_z = county.sjoin(zips,how='right',predicate=g26/demo.pygeopandasspatial join, crossesi_crosses_z = inter.sjoin(zips,how='right',predicate='cg26/demo.py				
geopandas setting transparency via alpha near_clip.plot(alpha=0.25,ax=ax1) g25/demo.py geopandas spatial join, contains c_contains_z = county.sjoin(zips,how='right',predicate= g26/demo.py geopandas spatial join, crosses i_crosses_z = inter.sjoin(zips,how='right',predicate='c g26/demo.py				
geopandasspatial join, contains $c_{contains}z = county.sjoin(zips,how='right',predicate=$ $g26/demo.py$ geopandasspatial join, crosses $i_{cosses}z = inter.sjoin(zips,how='right',predicate='c$ $g26/demo.py$		· ·	,	- ,
		•		
	.			

Module	Description	Example	Script
geopandas	spatial join, overlaps	z_overlaps_c = zips.sjoin(county,how='left',predicate='	g26/demo.py
geopandas	spatial join, touches	<pre>z_touch_c = zips.sjoin(county,how='left',predicate='tou</pre>	g26/demo.py
geopandas	spatial join, within	<pre>z_within_c = zips.sjoin(county,how='left',predicate='wi</pre>	g26/demo.py
geopandas	testing if rows touch a geometry	touches_wv = conus.touches(wv_geo)	g23/demo.py
geopandas	writing a layer to a geodatabase	conus.to_file("conus.gpkg",layer="states")	g23/demo.py
json	importing the module	import json	g05/demo.py
json	using to print an object nicely	<pre>print(json.dumps(list1,indent=4))</pre>	g05/demo.py
matplotlib	axes, adding a horizontal line	ax21.axhline(medians['etr'], c='r', ls='-', lw=1)	g13/demo.py
matplotlib	axes, adding a vertical line	ax21.axvline(medians['inc'], c='r', ls='-', lw=1)	g13/demo.py
matplotlib	axes, labeling the X axis	ax2.set_xlabel('Millions')	g12/demo.py
matplotlib	axes, labeling the Y axis	ax1.set_ylabel('Millions')	g12/demo.py
matplotlib	axes, turning off a label	ax.set_ylabel(None)	g14/demo.py
matplotlib	axis, turning off	ax1.axis('off')	g27/demo.py
matplotlib	changing marker size	geo.plot(color='blue',markersize=1,ax=ax1)	g28/demo.py
matplotlib	colors, xkcd palette	syr.plot(color='xkcd:lightblue',ax=ax1)	g22/demo.py
matplotlib	figure, adding a title	fig2.suptitle('Pooled Data')	g13/demo.py
matplotlib	figure, four panel grid	fig3, axs = plt.subplots(2,2,sharex = True, sharey = True)	g13/demo.py
matplotlib	figure, left and right panels	fig2, (ax21,ax22) = plt.subplots(1,2)	g13/demo.py
matplotlib	figure, saving	fig2.savefig('figure.png')	g12/demo.py
matplotlib	figure, setting the size	fig, $axs = plt.subplots(1,2,figsize=(12,6))$	g21/demo.py
matplotlib	figure, tuning the layout	fig2.tight_layout()	g12/demo.py
matplotlib	figure, working with a list of axes	for ax in axs:	g21/demo.py
matplotlib	importing pyplot	import matplotlib.pyplot as plt	g12/demo.py
matplotlib	setting an edge color	$slices.plot (`COUNTYFP', edge color=`yellow', linewidth=0.2.\dots$	g27/demo.py
matplotlib	setting the default resolution	plt.rcParams['figure.dpi'] = 300	g12/demo.py
matplotlib	using subplots to set up a figure	fig1, $ax1 = plt.subplots()$	g12/demo.py
os	delete a file	os.remove(out_file)	g25/demo.py
os	importing the module	import os	g25/demo.py
os	test if a file or directory exists	if os.path.exists(out_file):	g25/demo.py
pandas	RE, replacing a digit or space	$unit_part = values.str.replace(r'\d \s',",regex=True)$	g24/demo.py
pandas	RE, replacing a non-digit or space	$value_part = values.str.replace(r'\D \s',",regex=True)$	g24/demo.py
pandas	RE, replacing a non-word character	$units = units.str.replace(r'\W',",regex=True)$	g24/demo.py

Module	Description	Example	Script
pandas	columns, dividing along index	by_day_pct = 100*by_day_use.div(by_day_tot,axis='index'	g18/demo.py
pandas	columns, dividing with explicit alignment	normed2 = 100*states.div(pa_row,axis='columns')	g10/demo.py
pandas	columns, listing names	<pre>print('\nColumns:', list(raw_states.columns))</pre>	g10/demo.py
pandas	columns, renaming	county = county.rename(columns={'B01001_001E':'pop'})	g11/demo.py
pandas	columns, retrieving one by name	pop = states['pop']	g10/demo.py
pandas	columns, retrieving several by name	print(pop[some_states]/1e6)	g10/demo.py
pandas	dataframe, appending	gen_all = pd.concat([gen_oswego, gen_onondaga])	g16/demo.py
pandas	dataframe, boolean row selection	print(trim[has_AM], "\n")	g13/demo.py
pandas	dataframe, dropping a column	$both = both.drop(columns='_merge')$	g16/demo.py
pandas	dataframe, dropping duplicates	flood = flood.drop_duplicates(subset='TAX_ID')	g15/demo.py
pandas	dataframe, dropping missing data	merged = geocodes.dropna()	g12/demo.py
pandas	dataframe, finding duplicate records	$dups = parcels.duplicated(subset='TAX_ID', keep=False$	g15/demo.py
pandas	dataframe, getting a block of rows via index	sel = merged.loc[number]	g14/demo.py
pandas	dataframe, inner 1:1 merge	join_i = parcels.merge(flood, how='inner', on="TAX_ID",	g15/demo.py
pandas	dataframe, inner join	$merged = name_data.merge(pop_data,left_on="State",right$	g14/demo.py
pandas	dataframe, left 1:1 merge	$join_I = parcels.merge(flood, how='left', on="TAX_ID",$	g15/demo.py
pandas	dataframe, left m:1 merge	both = gen_all.merge(plants, how='left', on='Plant Code	g16/demo.py
pandas	dataframe, making a copy	trim = trim.copy()	g13/demo.py
pandas	dataframe, melting	long_form = means.reset_index().melt(id_vars='month')	g18/demo.py
pandas	dataframe, outer 1:1 merge	$join_o = parcels.merge(flood, how='outer', on="TAX_ID",$	g15/demo.py
pandas	dataframe, pivoting	<pre>by_day_use = usage.pivot(index=['month','day'],columns=</pre>	g18/demo.py
pandas	dataframe, reading zipped pickle format	sample2 = pd.read_pickle('sample_pkl.zip')	g17/demo.py
pandas	dataframe, resetting the index	$hourly = hourly.reset_index()$	g18/demo.py
pandas	dataframe, right 1:1 merge	<pre>join_r = parcels.merge(flood, how='right', on="TAX_ID",</pre>	g15/demo.py
pandas	dataframe, saving in zipped pickle format	sample.to_pickle('sample_pkl.zip')	g17/demo.py
pandas	dataframe, selecting rows by list indexing	print(low_to_high[-5:])	g10/demo.py
pandas	dataframe, selecting rows via boolean	dup_rec = flood[dups]	g15/demo.py
pandas	dataframe, selecting rows via query	trimmed = county.query("state == '04' or state == '36' ")	g11/demo.py
pandas	dataframe, selective drop of missing data	trim = demo.dropna(subset="Days")	g13/demo.py
pandas	dataframe, set index keeping the column	states = states.set_index('STUSPS',drop=False)	g23/demo.py
pandas	dataframe, shape attribute	print('number of rows, columns:', conus.shape)	g23/demo.py
pandas	dataframe, sorting by a column	<pre>county = county.sort_values('pop')</pre>	g11/demo.py
pandas	dataframe, sorting by index	summary = summary.sort_index(ascending=False)	g16/demo.py
pandas	dataframe, summing a boolean	<pre>print('\nduplicate parcels:', dups.sum())</pre>	g15/demo.py
pandas	dataframe, summing across columns	by_day_tot = by_day_use.sum(axis='columns')	g18/demo.py
pandas	dataframe, unstacking an index level	bymo = bymo.unstack('month')	g18/demo.py

Module	Description	Example	Script
pandas	dataframe, using a multilevel column index	means = grid['mean']	g21/demo.py
pandas	dataframe, using xs to select a subset	<pre>print(county.xs('04',level='state'))</pre>	g11/demo.py
pandas	dataframe, using xs with columns	c1 = grid.xs('c1',axis='columns',level=1)	g21/demo.py
pandas	dataframe, writing to a CSV file	merged.to_csv('demo-merged.csv')	g14/demo.py
pandas	datetime, building via to_datetime()	$date = pd.to_datetime(recs[`ts'])$	g15/demo.py
pandas	datetime, building with a format	$ymd = pd.to_datetime(\ sample[\text{`TRANSACTION_DT'}],\ format{=}$	g17/demo.py
pandas	datetime, extracting day attribute	recs[`day'] = date.dt.day	g15/demo.py
pandas	datetime, extracting hour attribute	recs['hour'] = date.dt.hour	g15/demo.py
pandas	general, display information about object	sample.info()	g17/demo.py
pandas	general, displaying all columns	pd.set_option('display.max_columns',None)	g17/demo.py
pandas	general, displaying all rows	pd.set_option('display.max_rows', None)	${\sf g10/demo.py}$
pandas	general, importing the module	import pandas as pd	${\sf g10/demo.py}$
pandas	general, using copy_on_write mode	$pd.options.mode.copy_on_write = True$	g17/demo.py
pandas	general, using qcut to create deciles	$dec = pd.qcut(\ county['pop'],\ 10,\ labels = range(1,11)\)$	g11/demo.py
pandas	groupby, cumulative sum within group	${\sf cumulative_inc} = {\sf group_by_state['pop'].cumsum()}$	g11/demo.py
pandas	groupby, descriptive statistics	<pre>inc_stats = group_by_state['pop'].describe()</pre>	g11/demo.py
pandas	groupby, iterating over groups	for t,g in group_by_state:	g11/demo.py
pandas	groupby, median of each group	<pre>pop_med = group_by_state['pop'].median()</pre>	g11/demo.py
pandas	groupby, quantile of each group	$pop_25th = group_by_state['pop'].quantile(0.25)$	g11/demo.py
pandas	groupby, return group number	$groups = group_by_state.ngroup()$	g11/demo.py
pandas	groupby, return number within group	<pre>seqnum = group_by_state.cumcount()</pre>	g11/demo.py
pandas	groupby, return rank within group	rank_age = group_by_state['pop'].rank()	g11/demo.py
pandas	groupby, select first records	$first2 = group_by_state.head(2)$	g11/demo.py
pandas	groupby, select largest values	largest = group_by_state['pop'].nlargest(2)	g11/demo.py
pandas	groupby, select last records	$last2 = group_by_state.tail(2)$	g11/demo.py
pandas	groupby, size of each group	num_rows = group_by_state.size()	g11/demo.py
pandas	groupby, sum of each group	state = county.groupby('state')['pop'].sum()	g11/demo.py
pandas	index, creating with 3 levels	$county = county.set_index(['state', 'county', 'NAME'])$	g11/demo.py
pandas	index, listing names	<pre>print('\nIndex (rows):', list(raw_states.index))</pre>	g10/demo.py
pandas	index, renaming values	div_pop = div_pop.rename(index=div_names)	g12/demo.py
pandas	index, retrieving a row by name	pa_row = states.loc['Pennsylvania']	g10/demo.py
pandas	index, retrieving first rows by location	print(low_to_high.iloc[0:10])	g10/demo.py
pandas	index, retrieving last rows by location	print(low_to_high.iloc[-5:])	g10/demo.py

Module	Description	Example	Script
pandas	index, setting to a column	states = raw_states.set_index('name')	g10/demo.py
pandas	plotting, bar plot	reg_pop.plot.bar(title='Population',ax=ax1)	g12/demo.py
pandas	plotting, histogram	hh_data['etr'].plot.hist(ax=ax1,bins=20,title='Distribu	g13/demo.py
pandas	plotting, horizontal bar plot	div_pop.plot.barh(title='Population',ax=ax2)	g12/demo.py
pandas	plotting, scatter colored by 3rd var	tidy_data.plot.scatter(ax=ax4,x='Income',y='ETR',c='typ	g13/demo.py
pandas	plotting, scatter plot	hh_data.plot.scatter(ax=ax21,x='inc',y='etr',title='ETR	g13/demo.py
pandas	plotting, turning off legend	sel.plot.barh(x=`Name',y=`percent',ax=ax,legend=None)	g14/demo.py
pandas	reading, csv data	raw_states = pd.read_csv('state-data.csv')	g10/demo.py
pandas	reading, from an open file handle	$gen_oswego = pd.read_csv(fh1)$	${\sf g16/demo.py}$
pandas	reading, setting index column	state_data = pd.read_csv('state-data.csv',index_col='na	g12/demo.py
pandas	reading, using dtype dictionary	county = pd.read_csv('county_pop.csv',dtype=fips)	g11/demo.py
pandas	series, RE at start	$is_LD = trim['Number'].str.contains(r"1 2")$	g13/demo.py
pandas	series, applying a function to each element	name_clean = name_parts.apply(' '.join)	g24/demo.py
pandas	series, automatic alignment by index	$merged[`percent'] = 100 *merged[`pop']/div_pop$	g14/demo.py
pandas	series, combining via where()	mod['comb_units'] = unit_part.where(unit_part!=" , mo	g24/demo.py
pandas	series, contains RE or RE	$is_TT = trim['Days'].str.contains(r"Tu Th")$	g13/demo.py
pandas	series, contains a plain string	$has_AM = trim['Time'].str.contains(``AM")$	g13/demo.py
pandas	series, contains an RE	$has _AMPM = trim ['Time'].str.contains (`'AM.*PM'')$	g13/demo.py
pandas	series, converting strings to title case	$fixname = subset_view['NAME'].str.title()$	g17/demo.py
pandas	series, converting to a list	print(name_data['State'].to_list())	g14/demo.py
pandas	series, converting to lower case	name = mod['name'].str.lower()	g24/demo.py
pandas	series, dropping rows using a list	conus = states.drop(not_conus)	g23/demo.py
pandas	series, element-by-element or	is_either = is_ca is_tx	g17/demo.py
pandas	series, filling missing values	mod['comb_units'] = mod['comb_units'].fillna('feet')	g24/demo.py
pandas	series, removing spaces	units = units.str.strip()	g24/demo.py
pandas	series, replacing values using a dictionary	units = units.replace(spellout)	g24/demo.py
pandas	series, retrieving an element	<pre>print("\nFlorida's population:", pop['Florida']/1e6)</pre>	${\sf g10/demo.py}$
pandas	series, sort in decending order	div_pop = div_pop.sort_values(ascending=False)	g12/demo.py
pandas	series, sorting by value	low_to_high = normed['med_pers_inc'].sort_values()	g10/demo.py
pandas	series, splitting strings on whitespace	$name_parts = name.str.split()$	g24/demo.py
pandas	series, splitting via RE	trim[`Split'] = trim[``Time''].str.split(r'': - ``)	g13/demo.py
pandas	series, splitting with expand	exp = trim[``Time''].str.split(r'': - ``, expand = True)	g13/demo.py
pandas	series, summing	$reg_pop = by_reg['pop'].sum()/1e6$	g12/demo.py
pandas	series, unstacking	$tot_wide = tot_amt.unstack('PGI')$	g17/demo.py

Module	Description	Example	Script
pandas	series, using isin()	fixed = flood['TAX_ID'].isin(dup_rec['TAX_ID'])	g15/demo.py
pandas	series, using value_counts()	<pre>print('\nOuter:\n', join_o['_merge'].value_counts(), s</pre>	g15/demo.py
requests	calling the get() method	response = requests.get(api,payload)	g19/demo.py
requests	checking the URL	print('url:', response.url)	g19/demo.py
requests	checking the response text	print(response.text)	g19/demo.py
requests	checking the status code	<pre>print('status:', response.status_code)</pre>	g19/demo.py
requests	decoding a JSON response	rows = response.json()	g19/demo.py
requests	importing the module	import requests	g19/demo.py
scipy	calling newton's method	<pre>cr = opt.newton(find_cube_root,xinit,maxiter=20,args=[y</pre>	g08/demo.py
scipy	importing the module	import scipy.optimize as opt	g08/demo.py
seaborn	adding a title to a grid object	jg.fig.suptitle('Distribution of Hourly Load')	g18/demo.py
seaborn	barplot	hue='month',palette='deep',ax=ax1)	g18/demo.py
seaborn	basic violin plot	sns.violinplot(data=janjul,x="month",y="usage")	g18/demo.py
seaborn	boxenplot	sns.boxenplot(data=janjul,x="month",y="usage")	g18/demo.py
seaborn	calling tight_layout on a grid object	jg.fig.tight_layout()	g18/demo.py
seaborn	drawing a heatmapped grid	sns.heatmap(means,annot=True,fmt=".0f",cmap='Spectral',	g21/demo.py
seaborn	importing the module	import seaborn as sns	g18/demo.py
seaborn	joint distribution hex plot	jg = sns.jointplot(data=bymo,x=1,y=7,kind='hex')	g18/demo.py
seaborn	line plot	sns.lineplot(data=long_form,x='hour',y='value',hue='mon	g18/demo.py
seaborn	setting axis titles on a grid object	jg.set_axis_labels('January','July')	g18/demo.py
seaborn	setting the theme	sns.set_theme(style="white")	g18/demo.py
seaborn	split violin plot	hue="month",palette='deep',split=True)	g18/demo.py
zipfile	importing the module	import zipfile	g16/demo.py
zipfile	opening a file in an archive	fh1 = archive.open('generators-oswego.csv')	g16/demo.py
zipfile	opening an archive	archive = zipfile.ZipFile('generators.zip')	g16/demo.py
zipfile	reading the list of files	print(archive.namelist())	g16/demo.py