Midterm 1: HW 1-4. Midterm 2: HW 5-9.

VERY IMPORTANT: the easiest example of nonnormal subgroup: $G = S_3$, and H has order 2, *i.e.* $H = \{e, \{1 2\}\}$.

True: any subgroup of an abelian group is normal. False: any abelian subgroup of a group is normal. The example above!

The group G and the trivial subgroup are normal.

Any subgroup of index 2 is normal.

The kernel of a homomorphism is normal.

False: subgroup of index 3 is normal. The example above again!

True: $3\mathbb{Z} \leq \mathbb{Z}$ because \mathbb{Z} is abelian.

Note. $H \subseteq G$ is equivalent to:

- gH = Hg for all $g \in G$. The left/right cosets containing g. Because e is in H.
- $gHg^{-1} = H$ for all $g \in G$. $gHg^{-1} = \{ghg^{-1} : h \in H\}$.

Claim. gHg^{-1} is a subgroup of G (even if H is not normal).

Proof

It is clearly a subset.

Identity: since $e \in H$, $geg^{-1} = gg^{-1} = e \in gHg^{-1}$.

Closure: $gh_1g^{-1}gh_2g^{-1} = gh_1h_2g^{-1} \in gHg^{-1}$.

Inverse: $(qhq^{-1})^{-1} = qhq^{-1} \in qHq^{-1}$.

Example. $G = S_3, H = \{e, (1\ 2)\}.$ Let $g = (1\ 2\ 3).$

$$gHg^{-1} = \{(1\ 2\ 3)e(1\ 3\ 2), (1\ 2\ 3)(1\ 2)(1\ 3\ 2)\} = \{e, (2\ 3)\} \neq H.$$

This is a subgroup of S_3 , this proves that it is not normal.

This form is called **conjugation**. We conjugated H by g to get gHg^{-1} . This might not give us the same subgroup but it would have the same order.

Then
$$qH = Hq \Leftrightarrow qHq^{-1} = Hqq^{-1} = H$$
.

• $ghg^{-1} \in H$ for all $g \in G$, $h \in H$. This is very useful if everything else doesn't work.

Warning: this only checks that a known subgroup is normal. It doesn't prove that something is a subgroup.

Recall last time we tried to put a group structure on the (left) cosets of H in G. That is,

$$(xH)*(yH) = xyH.$$

However, this is not well-defined unless $y^{-1}hy \in H$ for all $y \in G, h \in H$. Let $y = g^{-1}$, then $ghg^{-1} \in H \ \forall \ h \in H, g \in G$.

Example (not well-defined function). $f\left(\frac{a}{b}\right) = a$ is not well-defined because by choosing different representations we get different answers.

Definition: quotient group

Let G be a group and $N \subseteq G$. We define a new group, G/N (read G mod N), where G/N is the set of cosets of N in G, and the operation is (xN)*(yN)=xyN.

Intuition. N is normal guarantees that if we choose different elements from the same cosets, we would get answers in another same coset.

To show that the quotient group is indeed a group,

Proof

- (i) identity: eH = N so that (eN) * (xN) = exN = xN = (xN) * (eN).
- (ii) inverses: $(xN) * (x^{-1}N) = xx^{-1}N = N = (x^{-1}N) * (xN)$.
- (iii) associativity: (xN)*(yN)*(zN) = (xyN)*(zN) = xyzN = x(yz)N = (xN)*((yN)*(zN)) by associativity in G.

Example. $G = \mathbb{Z}, N = 6\mathbb{Z}$. Note N is normal because it is a subgroup of an abelian group. Then $G/N = \mathbb{Z}/6\mathbb{Z}$ is the definition of the integers mod 6, \mathbb{Z}_6 . It follows that \mathbb{Z}_6 is a group and $+_n$ is associative.

$$G/N = \{0 + 6\mathbb{Z}, 1 + 6\mathbb{Z}, \dots, 5 + 6\mathbb{Z}\}.$$

Then an example is

$$(3+6\mathbb{Z}) + (5+6\mathbb{Z}) = 8+6\mathbb{Z} = 2+6\mathbb{Z}.$$

This is because $8-2 \in 6\mathbb{Z}$, so $8+6\mathbb{Z}=2+6\mathbb{Z}$.

Theorem: fundamental homomorphsim theorem (1st isomorphism theorem

Let $\phi:G\to H$ be a homomorphism. Then $\ker\phi\unlhd G$ and $\operatorname{im}\phi\unlhd H,$ and

$$G/\ker\phi\simeq\operatorname{im}\phi.$$

Furthermore, an isomorphism is given by

$$\psi: g(\ker \phi) \to \phi(g).$$

WARNING: the input of ψ is coset. So we need to prove that it is a function first.