ML Algorithms NEURAL NETWORKS

ClassA Detailed Look At Neural Networks

Topic

How to estimate parameters in a network of neurons

- The neural network has a cost function.
- It is a generalization of the cost function for a single neuron
 - L layers (L 2 hidden layers)
 - $d^{(l)}$ nodes in Layer l, $0 \le l \le L$
 - Weights: $w_{ij}^{(l)}$, $i \le d^{(l-1)} \& j \le d^{(l)}$

$$x_i^{(l)} = F(\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(l)})$$

$$x_i^{(l)} = F(\mathbf{w}^{(1)}, \mathbf{w}^{(2)}, \dots, \mathbf{w}^{(l)})$$

What the network looks like in the final 2 layers

A neural network that only performs binary classifications has 1 output node: L

How a neural network uses data to produce an output

Architecture of a neural network

How a neural network uses data to produce an output

Architecture of a neural network

Compute the output produced by this neural network for data point 1, 3

Architecture of a neural network

- Step 1: Compute the signal from going into the node in the hidden layer $\Box s_1^{(1)} = 0.5 * 1 + 0.6 * 3 = 2.3$
- Step 2: Compute the output coming out of the node in the hidden layer $\Box x_1^{(1)} = h\left(s_1^{(1)}\right) = h(2.3) = 1 \frac{1}{1 + \exp(-2.3)} = 0.91$
- Step 3: Compute the signal going into the node in the output layer $\Box s_1^{(2)} = 0.8 * x_1^{(1)} = 0.8 * 0.91 = 0.728$
- Step 4: Compute the output coming out of the node in the output layer $\Box x_1^{(2)} = h\left(s_1^{(2)}\right) = h(0.728) = \mathbf{0.67}$

Estimating a Neural Network: Cost Function

- Vector of weights : $\mathbf{w} = [w_{ij}^{(l)}]$
- Output for observation i: $h(w)_i$
- Cost for observation i: $C_i(w) = y_i \log(h(w)_i) + (1 y_i) \log(1 h(w)_i)$
- Cost over the entire data: $C(\mathbf{w}) = \sum_{i=1}^{n} C_i(\mathbf{w})$
- To minimize a multivariate function use a gradient/stochastic gradient descent
- Both methods require partial derivatives of the cost function, with respect to the weights
- Gradient of the Cost Function: $\nabla C = \left[\frac{\partial C}{\partial w_{ij}^{(l)}}\right]$
- The gradient of the cost function in a neural network is a long vector
- Modern day neural networks have millions of weights
- Computing each partial derivative is not feasible

Recap

- Estimating a neural network
- Estimating a neural network: Cost function

JIGSAW ACADEMY

THE ONLINE SCHOOL OF ANALYTICS