Chapter 9 Trees 树

Lu Han

hl@bupt.edu.cn

9.1 Introduction 简介

Definition 9.1.1 A (free) tree (自由树) T is a simple graph satisfying the following: If v and w are vertices in T, there is a unique simple path from v to w.

A **rooted tree** (有根树) is a tree in which a particular vertex is designated the root.

In graph theory rooted trees are typically drawn with their roots at the top.

- We call the level of the root level 0.
- The vertices under the root are said to be on level 1, and so on.

9.1 Introduction 简介

The **level of a vertex** v (顶点 v 所在的层次): the length of the simple path from the root to v.

The **height** (高度) of a rooted tree: the maximum level number that occurs.

A **rooted tree** (有根树) is a tree in which a particular vertex is designated the root.

In graph theory rooted trees are typically drawn with their roots at the top.

- We call the level of the root level 0.
- The vertices under the root are said to be on level 1, and so on.

Definition 9.2.1 Let T be a tree with root v_0 . Suppose that x, y, and z are vertices in T and that (v_0, v_1, \ldots, v_n) is a simple path in T. Then

- (a) v_{n-1} is the parent (父节点) of v_n .
- (b) v_0, \ldots, v_{n-1} are ancestors (祖先节点) of v_n .
- (c) v_n is a child (子节点) of v_{n-1} .
- (d) If x is an ancestor of y, y is a **descendant** (后代节点) of x.
- (e) If x and y are children of z, x and y are siblings (兄弟节点).
- (f) If x has no children, x is a **terminal vertex** (or a leaf) (终节点/叶节点).
- (g) If x is not a terminal vertex, x is an internal (or branch) vertex (中间节点/枝节点).

Definition 9.2.1 Let T be a tree with root v_0 . Suppose that x, y, and z are vertices in T and that (v_0, v_1, \ldots, v_n) is a simple path in T. Then (h) The **subtree** (子树) of T rooted at x is the graph with vertex set V and edge set E, where V is x together with the descendants of x and $E = \{e \mid e \text{ is an edge on a simple path from } x \text{ to some vertex in } V\}$.

Draw the subtree rooted at *c*.

Definition 9.1.1 A **(free) tree (**自由树**)** T is a simple graph satisfying the following: If v and w are vertices in T, there is a unique simple path from v to w.

A tree is connected.

A tree cannot contain a cycle.

A graph with no cycles is called an acyclic graph (非循环图).

- (a) T is a tree.
- (b) T is connected and acyclic.
- (c) T is connected and has n-1 edges.
- (d) T is acyclic and has n-1 edges.

Definition 9.1.1 A **(free) tree (**自由树**)** T is a simple graph satisfying the following: If v and w are vertices in T, there is a unique simple path from v to w.

A tree is connected.

A tree cannot contain a cycle.

A graph with no cycles is called an acyclic graph (非循环图).

- (a) *T* is a tree.
- (b) T is connected and acyclic.
- (c) T is connected and has n-1 edges.
- (d) T is acyclic and has n-1 edges.

 $(b)\rightarrow(c)$

- (a) *T* is a tree.
- (b) T is connected and acyclic.
- (c) T is connected and has n-1 edges.
- (d) T is acyclic and has n-1 edges.

 $(p)\rightarrow(c)$

[If (b), then (c).] Suppose that T is connected and acyclic. We will prove that T has n-1 edges by induction on n.

If n = 1, T consists of one vertex and zero edges, so the result is true if n = 1.

Now suppose that the result holds for a connected, acyclic graph with n vertices. Let T be a connected, acyclic graph with n+1 vertices. Choose a path P with no repeated edges of maximum length. Since T is acyclic, P contains no cycles. Therefore, P contains a vertex v of degree 1 (see Figure 9.2.4). Let T^* be T with v and the edge incident on v removed. Then T^* is connected and acyclic, and because T^* contains n vertices, by the inductive hypothesis T^* contains n-1 edges. Therefore, T contains n edges. The inductive argument is complete and this portion of the proof is complete.

$$(c)\rightarrow(d)$$

- (a) *T* is a tree.
- (b) T is connected and acyclic.
- (c) T is connected and has n-1 edges.
- (d) T is acyclic and has n-1 edges.

 $(c)\rightarrow(d)$

[If (c), then (d).] Suppose that T is connected and has n-1 edges. We must show that T is acyclic.

Suppose that T contains at least one cycle. Since removing an edge from a cycle does not disconnect a graph, we may remove edges, but no vertices, from cycle(s) in T until the resulting graph T^* is connected and acyclic. Now T^* is an acyclic, connected graph with n vertices. We may use our just proven result, (b) implies (c), to conclude that T^* has n-1 edges. But now T has more than n-1 edges. This is a contradiction. Therefore, T is acyclic. This portion of the proof is complete.

(d)→(a)

- (a) *T* is a tree.
- (b) T is connected and acyclic.
- (c) T is connected and has n-1 edges.
- (d) T is acyclic and has n-1 edges.

[If (d), then (a).] Suppose that T is acyclic and has n-1 edges. We must show that T is a tree, that is, that T is a simple graph and that T has a unique simple path from any vertex to any other vertex.

The graph T cannot contain any loops because loops are cycles and T is acyclic. Similarly, T cannot contain distinct edges e_1 and e_2 incident on v and w because we would then have the cycle (v, e_1, w, e_2, v) . Therefore, T is a simple graph.

Suppose, by way of contradiction, that T is not connected (see Figure 9.2.5). Let T_1, T_2, \ldots, T_k be the components of T. Since T is not connected, k > 1. Suppose that T_i has n_i vertices. Each T_i is connected and acyclic, so we may use our previously proven result, (b) implies (c), to conclude that T_i has $n_i - 1$ edges. Now

$$n-1 = (n_1-1) + (n_2-1) + \dots + (n_k-1)$$
 (counting edges)
 $< (n_1 + n_2 + \dots + n_k) - 1$ (since $k > 1$)
 $= n-1$, (counting vertices)

which is impossible. Therefore, *T* is connected.

Figure 9.2.5 The proof of Theorem 9.2.3 [if (d), then (a)]. The T_i are components of T. T_i has n_i vertices and $n_i - 1$ edges. A contradiction results from the fact that the total number of edges must equal n - 1.

Suppose that there are distinct simple paths P_1 and P_2 from a to b in T (see Figure 9.2.6). Let c be the first vertex after a on P_1 that is not in P_2 ; let d be the vertex preceding c on P_1 ; and let e be the first vertex after d on P_1 that is also on P_2 . Let $(v_0, v_1, \ldots, v_{n-1}, v_n)$ be the portion of P_1 from $d = v_0$ to $e = v_n$. Let $(w_0, w_1, \ldots, w_{m-1}, w_m)$ be the portion of P_2 from $d = w_0$ to $e = w_m$. Now

$$(v_0, \dots, v_n = w_m, w_{m-1}, \dots, w_1, w_0)$$
 (9.2.1)

is a cycle in T, which is a contradiction. [In fact, (9.2.1) is a simple cycle since no vertices are repeated except for v_0 and w_0 .] Thus there is a unique simple path from any vertex to any other vertex in T. Therefore, T is a tree. This completes the proof.

Figure 9.2.6 The proof of Theorem 9.2.3 [if (d), then (a)]. P_1 (shown dashed) and P_2 (shown in color) are distinct simple paths from a to b. c is the first vertex after a on P_1 not in P_2 . d is the vertex preceding c on P_1 . e is the first vertex after d on P_1 that is also on P_2 . As shown, a cycle results, which gives a contradiction.

If T is a graph with n vertices, the following are equivalent (Theorem 9.2.3):

- (a) T is a tree.
- (b) If v and w are vertices in T, there is a unique simple path from v to w.
- (c) T is connected and acyclic.
- (d) T is connected and has n-1 edges.
- (e) T is acyclic and has n-1 edges.

A forest (森林) is a simple graph with no cycles.

If T is a graph with n vertices, the following are equivalent (Theorem 9.2.3):

- (a) T is a tree.
- (b) If v and w are vertices in T, there is a unique simple path from v to w.
- (c) T is connected and acyclic.
- (d) T is connected and has n-1 edges.
- (e) T is acyclic and has n-1 edges.

A forest (森林) is a simple graph with no cycles.

Forest

Definition 9.3.1 A tree T is a **spanning tree (生成树)** of a graph G if T is a subgraph of G that contains all of the vertices of G.

Definition 9.3.1 A tree T is a **spanning tree (生成树)** of a graph G if T is a subgraph of G that contains all of the vertices of G.

In general, a graph will have several spanning trees.

Theorem 9.3.4 A graph *G* has a spanning tree if and only if *G* is connected.

Breadth-First Search 广度优先搜索

The idea of breadth-first search is to process all the vertices on a given level before moving to next-higher level.

Breadth-First Search 广度优先搜索

- Select an ordering, say *abcdefgh*, of the vertices of *G*.
- Select the first vertex a and label it the root. Let T consist of the single vertex a and no edges.
- Add to T all edges (a, x) and vertices on which they are incident, for x = b to h, that do not produce a cycle when added to T.
- Repeat this procedure with the vertices on level 1 (2, 3, ...) by examing each in order.
- Since no edge can be added to the single vertex *h* on lever 4, the procedure ends.

Breadth-First Search 广度优先搜索

Input: A connected graph G with vertices ordered

 v_1, v_2, \ldots, v_n

Output: A spanning tree T

```
bfs(V, E) {
  // V = \text{vertices ordered } v_1, \dots, v_n; E = \text{edges}
  //V' = vertices of spanning tree T; E' = edges of spanning tree T
  //v_1 is the root of the spanning tree
  // S is an ordered list
  S = (v_1)
   V' = \{v_1\}
  E'=\varnothing
   while (true) {
      for each x \in S, in order,
         for each y \in V - V', in order,
            if ((x, y) is an edge)
               add edge (x, y) to E' and y to V'
      if (no edges were added)
         return T
      S = children of S ordered consistently with the original vertex ordering
```

Depth-First Search 深度优先搜索

The idea of depth-first search is to proceeds to successive levels in a tree at the earliest possible opportunity.

Depth-First Search 深度优先搜索

- Select an ordering, say *abcdefgh*, of the vertices of *G*.
- Select the first vertex a and label it the root. Let T consist of the single vertex a and no edges.
- Add to T the edge (a, x) with minimal x and the vertex x, which is incident and does not produce a cycle when added to T.
- Repeat this procedure with the vertex on the next level until we cannot add an edge.
- Backtrack to the parent of the current vertx and try to add an edge.
- When no more edges can be added, we finally backtrack to the root and algorithm ends.

Input: A connected graph G with vertices ordered

 v_1, v_2, \ldots, v_n

Depth-First Search 深度优先搜索

Output: A spanning tree T

```
dfs(V, E) {
   //V' = vertices of spanning tree T; E' = edges of spanning tree T
   //v_1 is the root of the spanning tree
   V' = \{v_1\}
   E'=\varnothing
   w = v_1
   while (true) {
      while (there is an edge (w, v) that when added to T does not create a cycle
         in T) {
         choose the edge (w, v_k) with minimum k that when added to T
            does not create a cycle in T
         add (w, v_k) to E'
         add v_k to V'
         w = v_k
      if (w == v_1)
         return T
      w = \text{parent of } w \text{ in } T \text{ // backtrack}
```

Input: A connected graph G with vertices ordered

 v_1, v_2, \ldots, v_n

Depth-First Search 深度优先搜索

Output: A spanning tree T

```
dfs(V, E) {
  //V' = vertices of spanning tree T; E' = edges of spanning tree T
  //v_1 is the root of the spanning tree
   V' = \{v_1\}
  E'=\varnothing
   w = v_1
   while (true) {
      while (there is an edge (w, v) that when added to T does not create a cycle
         in T) {
         choose the edge (w, v_k) with minimum k that when added to T
            does not create a cycle in T
         add (w, v_k) to E'
         add v_k to V'
         w = v_k
      if (w == v_1)
         return T
      w = parent of w in T // backtrack
```

Backtracking

回溯

Four-Queens Problem 4皇后问题

To place for tokens on a 4×4 grid so that no two tokens are on the same row, column, or diagonal.

Two-Queens Problem

Three-Queens Problem

Four-Queens Problem 4皇后问题

To place for tokens on a 4×4 grid so that no two tokens are on the same row, column, or diagonal.

Four-Queens Problem 4皇后问题

Definition 9.4.1 Given a weighted graph G, a minimal spanning tree (最小生成树) of G is a spanning tree of G that has minimum weight.

Definition 9.4.1 Given a weighted graph G, a minimal spanning tree (最小生成树) of G is a spanning tree of G that has minimum weight.

Prim's Algorithm 普里姆算法

The algorithm begins with a single vertex. Then at each iteration, it adds to the current tree a minimum-weight edge that does not complete a cycle.

Keep finding the minimumweight edge with one vertex in the tree and one vertex not in the tree.

Prim's Algorithm 普里姆算法

Kruskal's Algorithm 克鲁斯卡尔算法

It is a greedy algorithm in graph theory as in each step it adds the next lowest-weight edge that will not form a cycle to the minimum spanning forest.

Kruskal's Algorithm 克鲁斯卡尔算法

Minimal Spanning Trees and Metric TSP

Traveling salesman problem (TSP)

Given a completem graph with nonnegative edge costs, find a minimum cost cycle visiting every vertex exactly once.

Metric TSP

The edge costs satisf triangle inequality.

Traveling salesman problem (TSP)

Given a completem graph with nonnegative edge costs, find a minimum cost cycle visiting every vertex exactly once.

Metric TSP

The edge costs satisf triangle inequality.

The Metric TSP is an NP-hard problem.

If $P \neq NP$, we can't simultaneously have algorithms that

- (1) find optimal solutions
- (2) in polynomial-time
- (3) for any instance.

At least one of these requirements must be relaxed in any approach to dealing with an NP-hard optimization problem.

NP-hard Problem

Traveling Salesman Problem

P: (Decision) problems solvable in Polynomial time

P: (Decision) problems solvable in Polynomial time

Why polynomial time is important?

P: (Decision) problems solvable in Polynomial time

Why polynomial time is important?

	f(n)	n = 20	n = 40	n = 60
算法1	$\log_2 n$	4.32×10 ⁻⁶ 秒	5.32×10 ⁻⁶ 秒	5.91×10 ⁻⁶ 秒
算法 2	\sqrt{n}	4.47×10 ⁻⁶ 秒	6.32×10 ⁻⁶ 秒	7.75 × 10 ⁻⁶ 秒
算法3	n	20×10 ⁻⁶ 秒	40×10 ⁻⁶ 秒	60×10 ⁻⁶ 秒
算法 4	$n \log_2 n$	86×10 ⁻⁶ 秒	213 × 10 ⁻⁶ 秒	354×10 ⁻⁶ 秒
算法 5	n^2	400×10 ⁻⁶ 秒	1600×10 ⁻⁶ 秒	3600×10 ⁻⁶ 秒
算法 6	n^4	0.16秒	2.56秒	秒
算法 7	2 ⁿ	1.05秒	12.73天	年
算法8	n!	77147年	2.56×10 ³⁴ 年	2.64×10 ⁶⁸ 年

P: (Decision) problems solvable in Polynomial time

NP: Decision Problems verifiable in Polynomial time

P: (Decision) problems solvable in Polynomial time

NP: Decision Problems verifiable in Polynomial time

P: (Decision) problems solvable in Polynomial time

NP: Decision Problems verifiable in Polynomial time

千禧年大奖难题 Millennium Prize Problems

P: (Decision) problems solvable in Polynomial time

NP: Decision Problems verifiable in Polynomial time

Traveling salesman problem (TSP)

Given a completem graph with nonnegative edge costs, find a minimum cost cycle visiting every vertex exactly once.

Metric TSP

The edge costs satisf triangle inequality.

The Metric TSP is an NP-hard problem.

If $P \neq NP$, we can't simultaneously have algorithms that

- (1) find optimal solutions
- (2) in polynomial-time
- (3) for any instance.

At least one of these requirements must be relaxed in any approach to dealing with an NP-hard optimization problem.

Traveling salesman problem (TSP)

Given a completem graph with nonnegative edge costs, find a minimum cost cycle visiting every vertex exactly once.

Metric TSP

The edge costs satisf triangle inequality.

The Metric TSP is an NP-hard problem.

If $P \neq NP$, we can't simultaneously have algorithms that

- (1) find optimal solutions 2-approximation algorithm
- (2) in polynomial-time
- (3) for any instance.

At least one of these requirements must be relaxed in any approach to dealing with an NP-hard optimization problem.

Traveling salesman problem (TSP)

Given a completemeraph with nonnegative edge costs, find a minimum cost cycle visiting every vertex exactly once.

Metric TSP

The edge costs satisf triangle inequality.

Approximation Algorithms

Definition: An α -appproximation algorithm for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

A 2-approximation algorithm for the Metric TSP

Input: A completem graph with nonnegative edge costs that satisfy the triangle inequality.

Ouptput: A cycle *C* visiting every vertex exactly once.

- 1. Find an MST, *T* of *G*.
- 2. Double every edge of the MST to obtain an Euler graph.
- 3. Find an Euler cycle, T_{ey} , on this graph.
- 4. Output the cycle that visits vertices of G in the order of their first appearance in T_{eu} . Let \mathcal{C} be this cycle.

Input: A complete graph with nonnegative edge costs that satisfy the triangle inequality. **Ouptput:** A cycle *C* visiting every vertex exactly once.

- 1. Find an MST, T of G.
- 2. Double every edge of the MST to obtain an Euler graph.
- 3. Find an Euler cycle, T_{eu} , on this graph.
- 4. Output the cycle that visits vertices of G in the order of their first appearance in T_{eu} . Let C be this cycle.

Input: A complete graph with nonnegative edge costs that satisfy the triangle inequality. **Ouptput:** A cycle *C* visiting every vertex exactly once.

- 1. Find an MST, T of G.
- 2. Double every edge of the MST to obtain an Euler graph.
- 3. Find an Euler cycle, T_{eu} , on this graph.
- 4. Output the cycle that visits vertices of G in the order of their first appearance in T_{eu} . Let C be this cycle.

Input: A complete graph with nonnegative edge costs that satisfy the triangle inequality. **Ouptput:** A cycle *C* visiting every vertex exactly once.

- 1. Find an MST, T of G.
- 2. Double every edge of the MST to obtain an Euler graph.
- 3. Find an Euler cycle, T_{eu} , on this graph.
- 4. Output the cycle that visits vertices of G in the order of their first appearance in T_{eu} . Let \mathcal{C} be this cycle.

Input: A complete graph with nonnegative edge costs that satisfy the triangle inequality. **Ouptput:** A cycle *C* visiting every vertex exactly once.

- 1. Find an MST, T of G.
- 2. Double every edge of the MST to obtain an Euler graph.
- 3. Find an Euler cycle, T_{eu} , on this graph.
- 4. Output the cycle that visits vertices of G in the order of their first appearance in T_{eu} . Let C be this cycle.

Proof

