Manfrino, Ortega, Delgato Inequalities A Mathematical Olympiad Approach

1.25 (Difference of AM and GM)

Let $p = \sqrt{a}, q = \sqrt{b}$. We have

$$\begin{split} p &\leq \frac{1}{2}(p+q) \leq q \\ \frac{1}{2}\frac{p+q}{p} &\leq 1 \leq \frac{1}{2}\frac{p+q}{q} \\ \frac{1}{2}\frac{p^2-q^2}{p} &\leq p-q \leq \frac{1}{2}\frac{p^2-q^2}{q} \\ \frac{1}{4}\frac{p^2-q^2}{p^2} &\leq (p-q)^2 \leq \frac{1}{4}\frac{p^2-q^2}{q^2} \end{split}$$

(Can also be proven by direct computation)

Lesson: AM-GM can be factorized

1.33
$$x^4 + y^4 + 8 \ge 8xy$$

Looks like a special case of 4-term AMGM, $x^4 + y^4 + p^4 + q^4 \ge 4xypq$. Comparing coefficients, we have $p^4 + q^4 = 8$, pq = 2, hence $p = q = \sqrt{2}$

1.38
$$a > 1 \implies a^n - 1 > n(a^{\frac{n+1}{2}} - a^{\frac{n-1}{2}})$$

$$a^{n} - 1 = (a - 1)(1 + a + a^{2} + \dots a^{n-1})$$

$$\geq (a - 1)(a^{1+2+\dots n-1})^{1/n} \cdot n$$

$$= n(a - 1)a^{\frac{n-1}{2}}$$

$$= RHS$$

1.39
$$(1+a)(1+b)(1+c) \implies 8 \implies abc \le 1$$

 $1 = \frac{1+a}{2} \frac{1+b}{2} \frac{1+c}{2} \ge \sqrt{abc}$. Now square.

1.40
$$\frac{a^3}{b} + \frac{b^3}{c} + \frac{c^3}{a} \ge ab + bc + ca$$

By cyclic (see section), since (3, -1, 0) > (1, 1, 0). Can also expand to get rid of the -1.

1.41
$$a^2b^2 + b^2c^2 + c^2a^2 \ge abc(a+b+c)$$

By muirhead, since (2, 2, 0) > (2, 1, 1).

1.51
$$a + b + c = 1 \implies \left(\frac{1}{a} + 1\right) \left(\frac{1}{b} + 1\right) \left(\frac{1}{c} + 1\right) \ge 64$$

This is equivalent to $(1+a)(1+b)(1+c) \ge 64abc$. Using 1 = a+b+c, $(2a+b+c)(a+2b+c)(a+b+2c) \ge 64abc$. Apply 4-term AMGM, e.g. the first factor is $\ge (a^2bc)^{\frac{1}{4}}$.

Note the starting inequality is sharp when a=b=c. 3-term doesn't work since it is not sharp in that case.

1.52
$$a + b + c = 1 \implies \left(\frac{1}{a} - 1\right) \left(\frac{1}{b} - 1\right) \left(\frac{1}{c} - 1\right) \ge 8$$

Equivalent to $(b+c)(a+c)(a+b) \ge 8abc$ which holds by AMGM on each factor.

1.53

Unsolved...

1.54

Let $p = \frac{1}{1+a}$. Then the inequality is equivalent to 1.52.

1.55

Equivalent to $HM(a,b) + HM(b,c) + HM(a,c) \le 3 * AM(a,b,c)$. Rewrite the RHS as AM(a,b) + AM(b,c) + AM(a,c).

Same strategy used to show that $3*AM(x,y,z) \ge GM(x,y) + GM(y,z) + GM(x,z)$.

1.56

1.57

1.58
$$x^4 + y^4 + z^2 \ge \sqrt{8}xyz$$

LHS = $x^4 + y^4 + \frac{z^2}{2} + \frac{z^2}{2}$. Now apply 4-term AMGM.

1.59

Using the substitution x=1+p we have $(1+p)^2p+(1+q)^2q\geq 8pq$. We have $(1+p)^2\geq 4p$ by AMGM. Then $4(p^2+q^2)\geq 8pq$ which holds by AMGM.

We know we first have to apply AMGM to the 1 + p term by dimensional analysis.

Good example of weighted AMGM

IMO 2000 Q2

$$A + B + C \le AB + BC + CA$$

Cyclic
$$(1,0,0) > (p,q,0)$$

Let a, b, c > 0, p + q = 1. Define $(r, s, t) = \frac{1}{3} \sum_{cyc} a^r b^s c^t$. Then (1, 0, 0) > (p, q, 0).

Proof: we have $pa + qb \ge a^p b^q, pb + qc \ge b^p + c^q, pc + qa \ge c^p a^q$ by weighted AMGM. Summing them gives $(p+q)(a+b+c) \ge (p,q,0)$.