

UNIVERSITAS GADJAH MADA

Weighted Graphs

Wahyono, Ph.D.
Department of Computer Science and Electronics
Faculty of Mathematics and Natural Sciences
Universitas Gadjah Mada, Yogyakarta, Indonesia
Email: wahyo@ugm.ac.id

Weighted Graphs

- Once again, a graph where edges have weights, which quantifies the relationship
- These graphs can be directed or undirected

Weighted Graph: Adjacency List

- The adjacency list for a weighted graph contains edge weights
 - Instead of 0 and 1
- If there is no edge connecting vertices i and j, a weight of INFINITY is used (not 0!)
 - Because '0' can also be a weight
 - Also most applications of weighted graphs are to find minimum spanning trees or shortest path (we'll look at this)
- Also remember if the graph is undirected, redundant information should be stored

Weighted Graph: Adjacency List

	A	В	C	D	E	F
A	INF	INF	INF	INF	0.1	0.9
В	0.3	INF	0.3	0.4	INF	INF
C	INF	INF	INF	0.6	0.4	INF
D	INF	INF	INF	INF	1	INF
E	0.55	INF	INF	INF	INF	0.45
F	INF	INF	INF	1	INF	INF

Shortest Path Problem

Shortest Path Problem - The problem of finding shortest paths from a source vertex *v* to all other vertices in the graph.

Applications

- Maps (Map Quest, Google Maps)
- Routing Systems

From Computer Desktop Encyclopedia © 1998 The Computer Language Co. Inc.

Shortest Path: unweighted graph

- Starting vertex: V₂
- Use BFS (Breath First Search) instead of DFS (Depth First Search) to find shortest path in unweighted graph (or each edge have the same weight)

Shortest Path: positive weighted graph

- In many applications, e.g., transportation networks, the edges of a graph have different weights.
- Dijkstra's algorithm finds shortest paths from a start vertex s to all the other vertices in a graph with
 - non-negative edge weights
- Dijkstra's algorithm uses a greedy method

Dijkstra's Algorithm

- Given a weighted graph, find the shortest path (in terms of edge weights)
 between two vertices in the graph
- Numerous applications
 - Cheapest airline fare between departure and arrival cities
 - Shortest driving distance in terms of mileage

Dijkstra's Algorithm

• Suppose in the graph below, we wanted the shortest path from s to t

- Idea: Maintain a table of the current shortest paths from s to all other vertices (and the route it takes)
 - When finished, the table will hold the shortest path from B to all other vertices

Find shortest path from s to t.

S = { s } PQ = { 2, 3, 4, 5, 6, 7, t }

S = { s, 2, 6, 7 } PQ = { 3, 4, 5, t }

S = { s, 2, 3, 6, 7 } PQ = { 4, 5, t }

S = { s, 2, 3, 4, 5, 6, 7 } PQ = { t }

S = { s, 2, 3, 4, 5, 6, 7, t } PQ = { }

32

Example

• Let's try this example with train costs:

Find the shortest path from D to all other vertices!

UNIVERSITAS GADJAH MADA

THANK YOU

