Source: Hastie et at. (2009), Daumé III. Thanks to D. Hsu. Please do not distribute these slides publicly, beyond using them for this course.

MARKOV MODELS

Markov model: a stochastic process $\{Y_t\}_{t\in\mathbb{N}}$ where, for each $t\in\mathbb{N}$, the conditional distribution of the next state Y_{t+1} given all previous states $\{Y_{\tau}: \tau \leq t\}$ only depends on the value of the current state Y_t .

MARKOV MODELS

Markov model: a stochastic process $\{Y_t\}_{t\in\mathbb{N}}$ where, for each $t\in\mathbb{N}$, the conditional distribution of the next state Y_{t+1} given all previous states $\{Y_{\tau}: \tau \leq t\}$ only depends on the value of the current state Y_t .

Conditioned on present Y_t , past $\{Y_\tau\}_{\tau < t}$ and future $\{Y_\tau\}_{\tau > t}$ are independent.

$$\cdots \longrightarrow Y_{t-1} \longrightarrow Y_t \longrightarrow Y_{t+1} \longrightarrow \cdots$$

Markov models

Markov model: a stochastic process $\{Y_t\}_{t\in\mathbb{N}}$ where, for each $t\in\mathbb{N}$, the conditional distribution of the next state Y_{t+1} given all previous states $\{Y_{\tau}: \tau \leq t\}$ only depends on the value of the current state Y_t .

Conditioned on present Y_t , past $\{Y_\tau\}_{\tau < t}$ and future $\{Y_\tau\}_{\tau > t}$ are independent.

$$\cdots \longrightarrow Y_{t-1} \longrightarrow Y_t \longrightarrow Y_{t+1} \longrightarrow \cdots$$

Specifying a Markov chain (with discrete state space $[K] = \{1, 2, \dots, K\}$):

▶ Initial state distribution: K-dimensional probability vector π

$$\pi_i = \Pr(Y_1 = i).$$

▶ Transition matrix: $K \times K$ matrix A

$$A_{i,j} = \Pr(Y_{t+1} = j \mid Y_t = i)$$

(rows of A are probability vectors).

Hidden Markov model (HMM): a Markov chain $\{(X_t,Y_t)\}_{t\in\mathbb{N}}$, where

Hidden Markov model (HMM): a Markov chain $\{(X_t, Y_t)\}_{t \in \mathbb{N}}$, where

▶ $\{Y_t\}_{t\in\mathbb{N}}$ is also a Markov chain (with state space $[K] = \{1, 2, ..., K\}$) (hidden state sequence);

Hidden Markov model (HMM): a Markov chain $\{(X_t, Y_t)\}_{t \in \mathbb{N}}$, where

- ▶ $\{Y_t\}_{t\in\mathbb{N}}$ is also a Markov chain (with state space $[K] = \{1, 2, ..., K\}$) (hidden state sequence);
- \blacktriangleright conditioned on Y_t , corresponding X_t is independent of all other variables;

Hidden Markov model (HMM): a Markov chain $\{(X_t, Y_t)\}_{t \in \mathbb{N}}$, where

- ▶ $\{Y_t\}_{t\in\mathbb{N}}$ is also a Markov chain (with state space $[K] = \{1, 2, ..., K\}$) (hidden state sequence);
- \triangleright conditioned on Y_t , corresponding X_t is independent of all other variables;
- ▶ the Y_t are hidden, and the X_t are observed.

Hidden Markov model (HMM): a Markov chain $\{(X_t, Y_t)\}_{t \in \mathbb{N}}$, where

- ▶ $\{Y_t\}_{t\in\mathbb{N}}$ is also a Markov chain (with state space $[K] = \{1, 2, ..., K\}$) (hidden state sequence);
- \triangleright conditioned on Y_t , corresponding X_t is independent of all other variables;
- ▶ the Y_t are hidden, and the X_t are observed.

Hidden Markov model (HMM): a Markov chain $\{(X_t, Y_t)\}_{t \in \mathbb{N}}$, where

- ▶ $\{Y_t\}_{t\in\mathbb{N}}$ is also a Markov chain (with state space $[K] = \{1, 2, ..., K\}$) (hidden state sequence);
- \triangleright conditioned on Y_t , corresponding X_t is independent of all other variables;
- ▶ the Y_t are hidden, and the X_t are observed.

$$\begin{array}{cccc}
\cdots \longrightarrow Y_{t-1} \longrightarrow & Y_t & \longrightarrow Y_{t+1} \longrightarrow \cdots \\
\downarrow & \downarrow & \downarrow \\
X_{t-1} & X_t & X_{t+1}
\end{array}$$

Time-homogeneous HMM: conditional distribution of X_t given Y_t does not depend on t. (We'll focus on these.)

Hidden Markov model (HMM): a Markov chain $\{(X_t, Y_t)\}_{t \in \mathbb{N}}$, where

- ▶ $\{Y_t\}_{t\in\mathbb{N}}$ is also a Markov chain (with state space $[K] = \{1, 2, ..., K\}$) (hidden state sequence);
- \triangleright conditioned on Y_t , corresponding X_t is independent of all other variables;
- ▶ the Y_t are hidden, and the X_t are observed.

$$\begin{array}{cccc}
\cdots \longrightarrow Y_{t-1} \longrightarrow & Y_t & \longrightarrow Y_{t+1} \longrightarrow \cdots \\
\downarrow & \downarrow & \downarrow \\
X_{t-1} & X_t & X_{t+1}
\end{array}$$

Time-homogeneous HMM: conditional distribution of X_t given Y_t does not depend on t. (We'll focus on these.)

Useful subscript notation: $Y_{s:t} = (Y_s, Y_{s+1}, \dots, Y_t)$ for $s \leq t$.

For time-homogeneous HMM where X_t takes values in $[D] = \{1, 2, \dots, D\}$:

For time-homogeneous HMM where X_t takes values in $[D] = \{1, 2, \dots, D\}$:

▶ Initial state distribution: K-dimensional probability vector π

$$\pi_i = \Pr(Y_1 = i).$$

For time-homogeneous HMM where X_t takes values in $[D] = \{1, 2, ..., D\}$:

▶ Initial state distribution: K-dimensional probability vector π

$$\pi_i = \Pr(Y_1 = i).$$

▶ Transition matrix: $K \times K$ matrix A

$$A_{i,j} = \Pr(Y_{t+1} = j \mid Y_t = i)$$

(rows of A are probability vectors).

For time-homogeneous HMM where X_t takes values in $[D] = \{1, 2, ..., D\}$:

▶ Initial state distribution: K-dimensional probability vector π

$$\pi_i = \Pr(Y_1 = i).$$

▶ Transition matrix: $K \times K$ matrix A

$$A_{i,j} = \Pr(Y_{t+1} = j \mid Y_t = i)$$

(rows of A are probability vectors).

Emission matrix: $K \times D$ matrix **B**

$$B_{i,j} = \Pr(X_t = j \mid Y_t = i)$$

(rows of B are probability vectors).

Solution: Viterbi algorithm and several other approaches

(Y is hidden, X is observed.)

 $(Y_{1:\ell} \text{ is hidden, } X_{1:\ell} \text{ is observed.})$

Mixture model

 \boldsymbol{X}

(Y is hidden, X is observed.)

For K component mixture model, Y takes values in [K].

Hidden Markov model

$$Y_1 \rightarrow Y_2 \rightarrow \cdots \rightarrow Y_\ell$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_1 \qquad X_2 \qquad \qquad X_\ell$$

 $(Y_{1:\ell} \text{ is hidden, } X_{1:\ell} \text{ is observed.})$

Mixture model

 \boldsymbol{X}

(Y is hidden, X is observed.)

For K component mixture model, Y takes values in [K].

Hidden Markov model

$$Y_1 \rightarrow Y_2 \rightarrow \cdots \rightarrow Y_{\ell}$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_1 \qquad X_2 \qquad \qquad X_{\ell}$$

 $(Y_{1:\ell} \text{ is hidden, } X_{1:\ell} \text{ is observed.})$

For sequence of length ℓ , $Y_{1:\ell}$ takes values in $[K]^{\ell}$.

Mixture model

 \boldsymbol{X}

(Y is hidden, X is observed.)

For K component mixture model, Y takes values in [K].

Hidden Markov model

$$\begin{array}{cccc} Y_1 & \to & Y_2 & \longrightarrow \cdots \longrightarrow & Y_{\ell} \\ \downarrow & & \downarrow & & \downarrow \\ X_1 & & X_2 & & & X_{\ell} \end{array}$$

 $(Y_{1:\ell} \text{ is hidden, } X_{1:\ell} \text{ is observed.})$

For sequence of length ℓ , $Y_{1:\ell}$ takes values in $[K]^{\ell}$.

Mixture model

 \boldsymbol{X}

(Y is hidden, X is observed.)

For K component mixture model, Y takes values in [K].

Hidden Markov model

$$\begin{array}{cccc} Y_1 & \to & Y_2 & \to \cdots & \to & Y_{\ell} \\ \downarrow & & \downarrow & & \downarrow \\ X_1 & & X_2 & & & X_{\ell} \end{array}$$

 $(Y_{1:\ell} \text{ is hidden, } X_{1:\ell} \text{ is observed.})$

For sequence of length ℓ , $Y_{1:\ell}$ takes values in $[K]^{\ell}$.

$$\blacktriangleright Y_1 \to Y_2 \to X_2$$

CONNECTIONS TO MIXTURE MODELS

Mixture model

(Y is hidden, X is observed.)

For K component mixture model, Y takes values in [K].

Hidden Markov model

$$\begin{array}{cccc} Y_1 & \to & Y_2 & \to \cdots & \to & Y_{\ell} \\ \downarrow & & \downarrow & & \downarrow \\ X_1 & & X_2 & & & X_{\ell} \end{array}$$

 $(Y_{1:\ell} \text{ is hidden, } X_{1:\ell} \text{ is observed.})$

For sequence of length ℓ , $Y_{1:\ell}$ takes values in $[K]^{\ell}$.

- $\blacktriangleright Y_1 \to Y_2 \to X_2$
- $X_2 \to Y_2 \to Y_3 \to X_3$

CONNECTIONS TO MIXTURE MODELS

Mixture model

 \boldsymbol{X}

(Y is hidden, X is observed.)

For K component mixture model, Y takes values in [K].

Hidden Markov model

$$Y_1 \rightarrow Y_2 \rightarrow \cdots \rightarrow Y_{\ell}$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_1 \qquad X_2 \qquad X_{\ell}$$

 $(Y_{1:\ell} \text{ is hidden, } X_{1:\ell} \text{ is observed.})$

For sequence of length ℓ , $Y_{1:\ell}$ takes values in $[K]^{\ell}$.

- $ightharpoonup Y_1
 ightharpoonup Y_2
 ightharpoonup X_2$
- $X_2 \to Y_2 \to Y_3 \to X_3$
- $ightharpoonup X_1 o Y_1 o Y_{2:\ell} o X_{2:\ell}$

EXAMPLE: DISHONEST CASINO

Casino die-rolling game:

Randomly switch between two possible dice: one is fair, the other loaded.

The dice are otherwise indistinguishable!

Example: dishonest casino

Casino die-rolling game:

Randomly switch between two possible dice: one is fair, the other loaded.

The dice are otherwise indistinguishable!

HMM parameters:

and $\pi = (1,0)$ if the casino starts out with the fair die.

EXAMPLE: DISHONEST CASINO

Casino die-rolling game:

Randomly switch between two possible dice: one is fair, the other loaded.

The dice are otherwise indistinguishable!

HMM parameters:

Transition matrix fair die loaded die

$$m{A} = {}^{
m fair \, die}_{
m loaded \, die} \left(egin{array}{cc} 0.95 & 0.05 \\ 0.10 & 0.90 \end{array}
ight),$$

Emision matrix

Ansition matrix fair die loaded die
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0.95 & 0.05 \\ 0.10 & 0.90 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ fair die & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{2} \end{pmatrix}$,

and $\pi = (1,0)$ if the casino starts out with the fair die.

Problem: Based on a sequence of rolls, guess which die was used at each time.

HMM inference/learning problems

Conditional probabilities (e.g., filtering/smoothing)

- ▶ **Given**: parameters $\theta = (\pi, A, B)$, observation sequence $x_{1:\ell} \in [D]^{\ell}$.
- ▶ **Goal**: conditional distribution of $Y_{s:t}$ given $X_{1:\ell} = x_{1:\ell}$ ($1 \le s \le t \le \ell$):

$$\Pr_{\theta}(Y_{s:t} = y_{s:t} \mid X_{1:\ell} = x_{1:\ell}), \text{ for each } y_{s:t} \in [K]^{t-s+1}.$$

HMM INFERENCE/LEARNING PROBLEMS

Conditional probabilities (e.g., filtering/smoothing)

- ▶ **Given**: parameters $\theta = (\pi, A, B)$, observation sequence $x_{1:\ell} \in [D]^{\ell}$.
- ▶ **Goal**: conditional distribution of $Y_{s:t}$ given $X_{1:\ell} = x_{1:\ell}$ ($1 \le s \le t \le \ell$):

$$\Pr_{\theta}(Y_{s:t} = y_{s:t} \mid X_{1:\ell} = x_{1:\ell}), \text{ for each } y_{s:t} \in [K]^{t-s+1}.$$

Most probable state sequence (decoding)

- ▶ **Given**: parameters $\theta = (\pi, A, B)$, observation sequence $x_{1:\ell} \in [D]^{\ell}$.
- ► Goal: $\underset{y_{1:\ell} \in [K]^{\ell}}{\arg \max} \Pr_{\theta} (Y_{1:\ell} = y_{1:\ell} \mid X_{1:\ell} = x_{1:\ell}).$

HMM INFERENCE/LEARNING PROBLEMS

Conditional probabilities (e.g., filtering/smoothing)

- ▶ **Given**: parameters $\theta = (\pi, A, B)$, observation sequence $x_{1:\ell} \in [D]^{\ell}$.
- ▶ **Goal**: conditional distribution of $Y_{s:t}$ given $X_{1:\ell} = x_{1:\ell}$ ($1 \le s \le t \le \ell$):

$$\Pr_{\theta}(Y_{s:t} = y_{s:t} \mid X_{1:\ell} = x_{1:\ell}), \text{ for each } y_{s:t} \in [K]^{t-s+1}.$$

Most probable state sequence (decoding)

- ▶ Given: parameters $\theta = (\pi, A, B)$, observation sequence $x_{1:\ell} \in [D]^{\ell}$.
- ▶ Goal: $\underset{y_{1:\ell} \in [K]^{\ell}}{\arg \max} \Pr_{\theta} (Y_{1:\ell} = y_{1:\ell} \mid X_{1:\ell} = x_{1:\ell}).$

Parameter estimation

- ▶ **Given**: n observation sequences $x_{1:\ell}^{(s)}$ for $s \in [n]$.
- ▶ **Goal**: parameter estimates $\hat{\boldsymbol{\theta}} = (\hat{\boldsymbol{\pi}}, \widehat{\boldsymbol{A}}, \widehat{\boldsymbol{B}})$.

EXAMPLE: DISHONEST CASINO

Conditional probability

Gray bars: Loaded dice used. Blue: $\Pr_{m{ heta}}(Y_t = \mathsf{loaded}|X_{1:\ell} = x_{1:\ell})$

Decoding

Gray bars: Loaded dice used. Blue: Most probable state Z_t .

SOME APPLICATIONS

▶ Bioinformatics

Observations: amino acids in a protein

Hidden states: indicators of evolutionary conservation

SOME APPLICATIONS

▶ Bioinformatics

Observations: amino acids in a protein

Hidden states: indicators of evolutionary conservation

► Natural language processing

Observations: words in a sentence

Hidden states: words' part-of-speech or other word-type semantics

SOME APPLICATIONS

Bioinformatics

Observations: amino acids in a protein

Hidden states: indicators of evolutionary conservation

► Natural language processing

Observations: words in a sentence

Hidden states: words' part-of-speech or other word-type semantics

► Speech recognition

Observations: recorded speech at various (discrete) times

Hidden states: phonemes that the speaker intended to vocalize

▶ Financial market cycles forecast:

Observations: index of stock market *Hidden states*: bull or bear market