Introduction to Machine Learning

Evaluation: Measures for Binary Classification: ROC Measures

Learning goals

- Understand why accuracy is not an optimal performance measure for imbalanced labels
- Understand the different measures computable from a confusion matrix
- Be aware that each of these measures has a variety of names

IMBALANCED BINARY LABELS

Classify all as "no disease" (green) \rightarrow high accuracy.

Accuracy Paradox

IMBALANCED COSTS

Classify incorrectly as "no disease" \rightarrow very high cost

CONFUSION MATRIX

- +: "positive" class
- n_+ : number of observations in +
- n_: number of observations in −

LABELS: ROC METRICS

From the confusion matrix (binary case), we can calculate "ROC" metrics.

		True C		
		+	_	
Pred.	+	TP	FP	$PPV = \frac{TP}{TP + FP}$
ŷ	_	FN	TN	$NPV = \frac{TN}{FN+TN}$
<u> </u>		$TPR = \frac{TP}{TP+FN}$	$TNR = \frac{TN}{FP + TN}$	Accuracy = $\frac{TP+TN}{TOTAL}$

- True Positive Rate: How many of the true 1s did we predict as 1?
- True Negative Rate: How many of the true 0s did we predict as 0?
- Positive Predictive Value: If we predict 1 how likely is it a true 1?
- Negative Predictive Value: If we predict 0 how likely is it a true 0?

HISTORY ROC

ROC = receiver operating characteristics

Initially developed by electrical engineers and radar engineers during World War II for detecting enemy objects in battlefields.

//media.iwm.org.uk/iwm/mediaLib//39/media-39665/large.jpg

Still has the funny name.

LABELS: ROC

Example

		Act	val Class y	
		Positive	Negative	
ŷ Pred.	Positive	True Positive (TP) = 20	False Positive (FP) = 180	Positive predictive value = TP / (TP + FP) = 20 / (20 + 180) = 10 %
	Negative	False Negative (FN) = 10	True Negative (TN) = 1820	Negative predictive value = TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5 %
			True Negative Rate = TN / (FP + TN) = 1820 / (180 + 1820) = 91%	

MORE METRICS AND ALTERNATIVE TERMINOLOGY

Unfortunately, for many concepts in ROC, 2-3 different terms exist.

		True condition				
	Total population Condition positive		Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population	
Predicted	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
condition	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR)	F ₁ score = 1 1 Recall + Precision 2
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	$Specificity (SPC), \\ Selectivity, True negative \\ rate (TNR) \\ = \frac{\Sigma \ True \ negative}{\Sigma \ Condition \ negative}$	Negative likelihood ratio (LR-) = FNR TNR	= <u>LR+</u> LR-	

► Clickable version/picture source

▶ Interactive diagram

LABELS: F₁-MEASURE

A measure that balances two conflicting goals

- Maximising Positive Predictive Value
- Maximising True Positive Rate

is the harmonic mean of PPV and TPR:

$$F_1 = 2\frac{PPV \cdot TPR}{PPV + TPR}$$

Note: still doesn't account for the number of true negatives.

LABELS: F₁-MEASURE

Tabulated F_1 -Score for different TPR (rows) and PPV (cols) combinations.

```
0.0 0.2 0.4 0.6 0.8 1.0

0.0 0 0.00 0.00 0.00 0.00 0.00

0.2 0 0.20 0.27 0.30 0.32 0.33

0.4 0 0.27 0.40 0.48 0.53 0.57

0.6 0 0.30 0.48 0.60 0.69 0.75

0.8 0 0.32 0.53 0.69 0.80 0.89

1.0 0 0.33 0.57 0.75 0.89 1.00
```

- → Tends more towards the lower of the 2 combined values.
 - TPR = 0 or $PPV = 0 \Rightarrow F_1$ of 0
 - Predicting always "neg": F₁ = 0
 - Predicting always "pos": $F_1 = 2PPV/(PPV+1) = 2n_+/(n_++n)$, which will be rather small, if the size of the positive class n_+ is small.