Quality Control Formulas Sheet

Variable Control Charts											
\overline{X} and	R Charts		\overline{X} and S Charts								
	Trial Limits										
$\bar{\bar{X}} = \frac{\sum_{i=1}^{g} \bar{X}_i}{a}$	$\bar{R} = \frac{\sum_{i=1}^{g} f_i}{G_i}$	$\frac{1}{2}R_i$	$\bar{\bar{X}} = \frac{\sum_{i=1}^{g} \bar{X}_i}{a}$	$\overline{S} = \frac{\sum_{i=1}^{g} S_i}{g}$ $UCL_S = B_4 \overline{S}, LCL_S = B_3 \overline{S}$							
$CLs_{\bar{X}} = \bar{\bar{X}} \pm A_2 \bar{R}$	$UCL_R = D_4 \overline{R},$	$LCL_R = D_3\overline{R}$	$CLs_{\bar{X}} = \bar{\bar{X}} \pm A_3 \bar{S}$	$UCL_S = B_4 \overline{S}$,	$LCL_S = B_3 \overline{S}$						
		Revised Li	mits								
$\bar{\bar{X}}_{new} = \bar{X}_o = \frac{\sum \bar{X} - \bar{X}_d}{g - g_d}$	$\bar{R}_{new} = R_o = 0$	$\frac{\sum R - R_d}{g - g_d}$	$\bar{\bar{X}}_{new} = \bar{X}_o = \frac{\sum \bar{X} - \bar{X}_d}{g - g_d}$	$\bar{S}_{new} = R_o = \frac{\sum S - S_d}{g - g_d}$							
σ_o	$=\frac{R_o}{d_2}$		$\overline{\bar{X}}_{new} = \overline{X}_o = \frac{\sum \overline{X} - \overline{X}_d}{g - g_d} \qquad \overline{S}_{new} = R_o = \frac{\sum S - S_d}{g - g_d}$ $\sigma_o = \frac{S_o}{c_4}$								
$CL_{S\overline{X}} = \overline{X}_o \pm A\sigma_o$	$UCL_R = D_2\sigma_o$, I	$LCL_R = D_1 \sigma_o$	$CLs_{\overline{X}} = \overline{X}_o \pm A\sigma_o$	$UCL_S = B_6 \sigma_o$,	$LCL_S = B_5 \sigma_o$						
		Capability In	ndices								
$C_p = \frac{U}{V}$	ISl — LSL 6σ		$C_{pk} = \frac{Min\{(USl - \overline{X}), (\overline{X} - LSL)\}}{3\sigma}$								
The standardized normal dist	ribution can be used	d for the distrib	oution of averages with th	e modification							

Attributes Control Charts									
P Chart	np Chart	c Chart	u Chart						
	Trial Lim	nits							
$\bar{p} = \frac{\sum np}{\sum n}$	${\it Cl}=nar{p}$	$\bar{c} = \frac{\sum c}{g}$	$\overline{u} = \frac{\sum c}{\sum n}$						
$CLs_p = \bar{p} \pm 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$	$CLs_p = n\bar{p} \pm 3\sqrt{n\bar{p}(1-\bar{p})}$	$CLs_c = \bar{c} \pm 3\sqrt{\bar{c}}$	$CLs_u = \overline{u} \pm 3\sqrt{\frac{\overline{u}}{n}}$						
	Revised Li	mits							
$\bar{p}_{new} = p_o = \frac{\sum np - np_d}{\sum n - n_d}$	$Cl = np_o$	$\bar{c}_{new} = c_o = \frac{\sum c - c_d}{g - g_d}$	$\overline{u}_{new} = u_o = \frac{\sum c - c_d}{\sum n - n_d}$						
$CLs_p = p_o \pm 3 \sqrt{\frac{p_o(1 - p_o)}{n}}$	$CLs_p = np_o \pm 3\sqrt{n\overline{p_o}(1 - p_o)}$	$CLs_c = c_o \pm 3\sqrt{c_o}$	$CLs_u = u_o \pm 3\sqrt{\frac{u_o}{n}}$						
	Quality Rating	g System							
$D = w_c u_c + w$	$u_{ma}u_{ma}+w_{mi}u_{mi}$	$\sigma_{ou} = \sqrt{\frac{w_c^2 u_{oc} + w_{ma}^2 u_{oma} + w_{mi}^2 u_{omi}}{n}}$							
	Poisson Distr	ibution							
	$P(c) = \frac{(np_o)^c}{c!} e^{-np_o}$								

CHART FOR AVERAGES

CHART FOR STANDARD DEVIATIONS

CHART FOR RANGES

Observations in Sample, <i>n</i>	Factors for Control Limits			Factor for Central Line		Factors for Control Limits			Factor for Central Line		Factors for Control Limits			
	A	A ₂	A ₃	c ₄	B ₃	B ₄	B ₅	В ₆	d ₂	<i>d</i> ₃	D_1	D ₂	<i>D</i> ₃	D ₄
2	2.121	1.880	2.659	0.7979	0	3.267	0	2.606	1.128	0.853	0	3.686	0	3.267
3	1.732	1.023	1.954	0.8862	0	2.568	О	2.276	1.693	0.888	О	4.358	О	2.574
4	1.500	0.729	1.628	0.9213	0	2.266	О	2.088	2.059	0.880	О	4.698	О	2.282
5	1.342	0.577	1.427	0.9400	0	2.089	0	1.964	2.326	0.864	О	4.918	О	2.114
6	1.225	0.483	1.287	0.9515	0.030	1.970	0.029	1.874	2.534	0.848	О	5.078	О	2.004
7	1.134	0.419	1.182	0.9594	0.118	1.882	0.113	1.806	2.704	0.833	0.204	5.204	0.076	1.924
8	1.061	0.373	1.099	0.9650	0.185	1.815	0.179	1.751	2.847	0.820	0.388	5.306	0.136	1.864
9	1.000	0.337	1.032	0.9693	0.239	1.761	0.232	1.707	2.970	0.808	0.547	5.393	0.184	1.816
10	0.949	0.308	0.975	0.9727	0.284	1.716	0.276	1.669	3.078	0.797	0.687	5.469	0.223	1.777
11	0.905	0.285	0.927	0.9754	0.321	1.679	0.313	1.637	3.173	0.787	0.811	5.535	0.256	1.744
12	0.866	0.266	0.886	0.9776	0.354	1.646	0.346	1.610	3.258	0.778	0.922	5.594	0.283	1.717
13	0.832	0.249	0.850	0.9794	0.382	1.618	0.374	1.585	3.336	0.770	1.025	5.647	0.307	1.693
14	0.802	0.235	0.817	0.9810	0.406	1.594	0.399	1.563	3.407	0.763	1.118	5.696	0.328	1.672
15	0.775	0.223	0.789	0.9823	0.428	1.572	0.421	1.544	3.472	0.756	1.203	5.741	0.347	1.653
16	0.750	0.212	0.763	0.9835	0.448	1.552	0.440	1.526	3.532	0.750	1.282	5.782	0.363	1.637
17	0.728	0.203	0.739	0.9845	0.466	1.534	0.458	1.511	3.588	0.744	1.356	5.820	0.378	1.622
18	0.707	0.194	0.718	0.9854	0.482	1.518	0.475	1.496	3.640	0.739	1.424	5.856	0.391	1.608
19	0.688	0.187	0.698	0.9862	0.497	1.503	0.490	1.483	3.689	0.734	1.487	5.891	0.403	1.597
20	0.671	0.180	0.680	0.9869	0.510	1.490	0.504	1.470	3.735	0.729	1.549	5.921	0.415	1.585

Cumulative Standard Normal Distribution

Z	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.02	-0.01	-0.00
-3.9	0.000033	0.000034	0.000036	0.000037	0.000039	0.000041	0.000042	0.000044	0.000046	0.000048
-3.8	0.000050	0.000052	0.000054	0.000057	0.000059	0.000062	0.000064	0.000067	0.000069	0.000072
-3.7	0.000075	0.000078	0.000082	0.000085	0.000088	0.000092	0.000096	0.000100	0.000104	0.000108
-3.6	0.000112	0.000117	0.000121	0.000126	0.000131	0.000136	0.000142	0.000147	0.000153	0.000159
-3.5	0.000165	0.000172	0.000179	0.000185	0.000193	0.000200	0.000208	0.000216	0.000224	0.000233
-3.4	0.000242	0.000251	0.000260	0.000270	0.000280	0.000291	0.000302	0.000313	0.000325	0.000337
-3.3	0.000350	0.000362	0.000376	0.000390	0.000404	0.000419	0.000434	0.000450	0.000467	0.000483
-3.2	0.000501	0.000519	0.000538	0.000557	0.000577	0.000598	0.000619	0.000641	0.000664	0.000687
-3.1	0.000711	0.000736	0.000762	0.000789	0.000816	0.000845	0.000874	0.000904	0.000935	0.000968
-3.0	0.001001	0.001035	0.001070	0.001107	0.001144	0.001183	0.001223	0.001264	0.001306	0.001350
-2.9	0.001395	0.001441	0.001489	0.001538	0.001589	0.001641	0.001695	0.001750	0.001807	0.001866
-2.8	0.001926	0.001988	0.002052	0.002118	0.002186	0.002256	0.002327	0.002401	0.002477	0.002555
-2.7	0.002635	0.002718	0.002803	0.002890	0.002980	0.003072	0.003167	0.003264	0.003364	0.003467
-2.6	0.003573	0.003681	0.003793	0.003907	0.004025	0.004145	0.004269	0.004396	0.004527	0.004661
-2.5	0.004799	0.004940	0.005085	0.005234	0.005386	0.005543	0.005703	0.005868	0.006037	0.006210
-2.4	0.006387	0.006569	0.006756	0.006947	0.007143	0.007344	0.007549	0.007760	0.007976	0.008198
-2.3	0.008424	0.008656	0.008894	0.009137	0.009387	0.009642	0.009903	0.010170	0.010444	0.010724
-2.2	0.011011	0.011304	0.011604	0.011911	0.012224	0.012545	0.012874	0.013209	0.013553	0.013903
-2.1	0.014262	0.014629	0.015003	0.015386	0.015778	0.016177	0.016586	0.017003	0.017429	0.017864
-2.0	0.018309	0.018763	0.019226	0.019699	0.020182	0.020675	0.021178	0.021692	0.022216	0.022750
-1.9	0.023295	0.023852	0.024419	0.024998	0.025588	0.026190	0.026803	0.027429	0.028067	0.028717
-1.8	0.029379	0.030054	0.030742	0.031443	0.032157	0.032884	0.033625	0.034379	0.035148	0.035930
-1.7	0.036727	0.037538	0.038364	0.039204	0.040059	0.040929	0.041815	0.042716	0.043633	0.044565
-1.6	0.045514	0.046479	0.047460	0.048457	0.049471	0.050503	0.051551	0.052616	0.053699	0.054799
-1.5	0.055917	0.057053	0.058208	0.059380	0.060571	0.061780	0.063008	0.064256	0.065522	0.066807
-1.4	0.068112	0.069437	0.070781	0.072145	0.073529	0.074934	0.076359	0.077804	0.079270	0.080757
-1.3	0.082264	0.083793	0.085343	0.086915	0.088508	0.090123	0.091759	0.093418	0.095098	0.096801
-1.2	0.098525	0.100273	0.102042	0.103835	0.105650	0.107488	0.109349	0.111233	0.113140	0.115070
-1.1	0.117023	0.119000	0.121001	0.123024	0.125072	0.127143	0.129238	0.131357	0.133500	0.135666
-1.0	0.137857	0.140071	0.142310	0.144572	0.146859	0.149170	0.151505	0.153864	0.156248	0.158655
-0.9	0.161087	0.163543	0.166023	0.168528	0.171056	0.173609	0.176185	0.178786	0.181411	0.184060
-0.8	0.186733	0.189430	0.192150	0.194894	0.197662	0.200454	0.203269	0.206108	0.208970	0.211855
-0.7	0.214764	0.217695	0.220650	0.223627	0.226627	0.229650	0.232695	0.235762	0.238852	0.241964
-0.6	0.245097	0.248252	0.251429	0.254627	0.257846	0.261086	0.264347	0.267629	0.270931	0.274253
-0.5	0.277595	0.280957	0.284339	0.287740	0.291160	0.294599	0.298056	0.301532	0.305026	0.308538
-0.4	0.312067	0.315614	0.319178	0.322758	0.326355	0.329969	0.333598	0.337243	0.340903	0.344578
-0.3	0.348268	0.351973	0.355691	0.359424	0.363169	0.366928	0.370700	0.374484	0.378281	0.382089
-0.2	0.385908	0.389739	0.393580	0.397432	0.401294	0.405165	0.409046	0.412936	0.416834	0.420740
-0.1	0.424655	0.428576	0.432505	0.436441	0.440382	0.444330	0.448283	0.452242	0.456205	0.460172
0.0	0.464144	0.468119	0.472097	0.476078	0.480061	0.484047	0.488033	0.492022	0.496011	0.500000

Cumulative Standard Normal Distribution (continued)

Culliu	iative stand	laiu i voi illai	Distribution	(continued)						
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.500000	0.503989	0.507978	0.511967	0.515953	0.519939	0.532922	0.527903	0.531881	0.535856
0.1	0.539828	0.543795	0.547758	0.551717	0.555760	0.559618	0.563559	0.567495	0.571424	0.575345
0.2	0.579260	0.583166	0.587064	0.590954	0.594835	0.598706	0.602568	0.606420	0.610261	0.614092
0.3	0.617911	0.621719	0.625516	0.629300	0.633072	0.636831	0.640576	0.644309	0.648027	0.651732
0.4	0.655422	0.659097	0.662757	0.666402	0.670031	0.673645	0.677242	0.680822	0.684386	0.687933
0.5	0.691462	0.694974	0.698468	0.701944	0.705401	0.708840	0.712260	0.715661	0.719043	0.722405
0.6	0.725747	0.729069	0.732371	0.735653	0.738914	0.742154	0.745373	0.748571	0.751748	0.754903
0.7	0.758036	0.761148	0.764238	0.767305	0.770350	0.773373	0.776373	0.779350	0.782305	0.785236
0.8	0.788145	0.791030	0.793892	0.796731	0.799546	0.802338	0.805106	0.807850	0.810570	0.813267
0.9	0.815940	0.818589	0.821214	0.823815	0.826391	0.828944	0.831472	0.833977	0.836457	0.838913
1.0	0.841345	0.843752	0.846136	0.848495	0.850830	0.853141	0.855428	0.857690	0.859929	0.862143
1.1	0.864334	0.866500	0.868643	0.870762	0.872857	0.874928	0.876976	0.878999	0.881000	0.882977
1.2	0.884930	0.886860	0.888767	0.890651	0.892512	0.894350	0.896165	0.897958	0.899727	0.901475
1.3	0.903199	0.904902	0.906582	0.908241	0.909877	0.911492	0.913085	0.914657	0.916207	0.917736
1.4	0.919243	0.920730	0.922196	0.923641	0.925066	0.926471	0.927855	0.929219	0.930563	0.931888
1.5	0.933193	0.934478	0.935744	0.936992	0.938220	0.939429	0.940620	0.941792	0.942947	0.944083
1.6	0.945201	0.946301	0.947384	0.948449	0.949497	0.950529	0.951543	0.952540	0.953521	0.954486
1.7	0.955435	0.956367	0.957284	0.958185	0.959071	0.959941	0.960796	0.961636	0.962462	0.963273
1.8	0.964070	0.964852	0.965621	0.966375	0.967116	0.967843	0.968557	0.969258	0.969946	0.970621
1.9	0.971283	0.971933	0.972571	0.973197	0.973810	0.974412	0.975002	0.975581	0.976148	0.976705
2.0	0.977250	0.977784	0.978308	0.978822	0.979325	0.979818	0.980301	0.980774	0.981237	0.981691
2.1	0.982136	0.982571	0.982997	0.983414	0.983823	0.984222	0.984614	0.984997	0.985371	0.985738
2.2	0.986097	0.986447	0.986791	0.987126	0.987455	0.987776	0.988089	0.988396	0.988696	0.988989
2.3	0.989276	0.989556	0.989830	0.990097	0.990358	0.990613	0.990863	0.991106	0.991344	0.991576
2.4	0.991802	0.992024	0.992240	0.992451	0.992656	0.992857	0.993053	0.993244	0.993431	0.993613
2.5	0.993790	0.993963	0.994132	0.994297	0.994457	0.994614	0.994766	0.994915	0.995060	0.995201
2.6	0.995339	0.995473	0.995604	0.995731	0.995855	0.995975	0.996093	0.996207	0.996319	0.996427
2.7	0.996533	0.996636	0.996736	0.996833	0.996928	0.997020	0.997110	0.997197	0.997282	0.997365
2.8	0.997445	0.997523	0.997599	0.997673	0.997744	0.997814	0.997882	0.997948	0.998012	0.998074
2.9	0.998134	0.998193	0.998250	0.998305	0.998359	0.998411	0.998462	0.998511	0.998559	0.998605
3.0	0.998650	0.998694	0.998736	0.998777	0.998817	0.998856	0.998893	0.998930	0.998965	0.998999
3.1	0.999032	0.999065	0.999096	0.999126	0.999155	0.999184	0.999211	0.999238	0.999264	0.999289
3.2	0.999313	0.999336	0.999359	0.999381	0.999402	0.999423	0.999443	0.999462	0.999481	0.999499
3.3	0.999517	0.999533	0.999550	0.999566	0.999581	0.999596	0.999610	0.999624	0.999638	0.999650
3.4	0.999663	0.999675	0.999687	0.999698	0.999709	0.999720	0.999730	0.999740	0.999749	0.999758
3.5	0.999767	0.999776	0.999784	0.999792	0.999800	0.999807	0.999815	0.999821	0.999828	0.999835
3.6	0.999841	0.999847	0.999853	0.999858	0.999864	0.999869	0.999874	0.999879	0.999883	0.999888
3.7	0.999892	0.999896	0.999900	0.999904	0.999908	0.999912	0.999915	0.999918	0.999922	0.999925
3.8	0.999928	0.999931	0.999933	0.999936	0.999938	0.999941	0.999943	0.999946	0.999948	0.999950
3.9	0.999952	0.999954	0.999956	0.999958	0.999959	0.999961	0.999963	0.999964	0.999966	0.999967