Rubric - Quy 1

Advanced Statistics: Theory and Methods- Quiz 1

Name	ID Number
1 An analyst working for a city's transpo	ortation department is looking at traffic patterns
	over a given period. Data include the following:
	ach accident, whether or not a Seatbelt/ Helmet
	ction, (d) R: traffic density (number of vehicles
per kilometre).	
For each random variable, define the dom × ∈ [0, 1933,)(durule) × ~ pous (1), where it is the aug no of accidents obtained for data.	ain and an appropriate probability distribution. (c) $Z \in [0, \infty)$ (continuous) $Z \sim \text{(ramma (Exponential) (A),}$ where to be the arg no of rehicles walting at the intersection.
Y : {0,1}, Y~ Ber(p) p is the prob. that one () wear seatbelt / relinet. (discrete)	(PRE {0,1,2,3,} (discrete) R ~ Poiss (\$\tilde{x}\), where \$\tilde{x}\$ is the (1) average broffic density. (ii) RE [0,\infty), R~ log-normal if R is right- lii) RE [0,\infty), R~ log-normal if R is right- liii) RE [0,\infty], R~ log-normal if R is right- liii) RE [0,\infty], R~ log-normal if R is right- liii) RE [0,\infty], R~ log-normal if R is right- liii) RE [0,\infty], R~ log-normal if R is right- liii) RE [0,\infty], R~ log-normal if R is right- liii) RE [0,\infty], R~ log-normal if R is right- liii) RE [0,\infty], R~ log-normal if R is right- liii) RE [0,\infty], R~ log-normal if R is right- liii) RE [0,\infty], R~ log-normal if R is right- liii) RE [0,\infty], R~ log-normal if R is right- liiii) RE [0,\infty], R~ log-normal if R is right- liiii) RE [0,\infty], R~ log-normal if R is right- liiiii R is log-normal if R is right- liiii R is log-normal if R is right- lii

2. The cumulative distribution function of a discrete random variable X is given by

$$F(x) = \begin{cases} 0, & x < -2; \\ 0.1, & -2 \le x < -1; \\ 0.4, & -1 \le x < 1; \\ 0.9, & 1 \le x < 2; \\ 1, & x \ge 2. \end{cases}$$

Find the corresponding probability mass function.

$$b(x) = F(x) - \lim_{h \to 0} F(x-h)$$

$$b(x) = \begin{cases} 0.1, & x = -2 \\ 0.3, & x = -1 \\ 0.5, & x = 1 \\ 0.1, & x = 2 \end{cases}$$

 The proportion of impurities X in certain copper ore samples is a continuous random variable with pdf given by

$$f(x) = \begin{cases} Cx^2(1-x) & 0 \le x \le 1 \\ 0 & o.w. \end{cases}$$

- (a) For what value of C is f(x) a valid probability distribution function?
- (b) Find the corresponding cumulative distribution function.
- (c) Find the mean of X.

(a)
$$|\int f(x) dx = 1 \Rightarrow c |\int (x^2 - x^3) dx = 1$$

 $\Rightarrow c (\frac{x^3}{3} - \frac{x^4}{4})|_{0}^{1} = 1 \Rightarrow c (\frac{1}{3} - \frac{1}{4}) = 1$
 $\Rightarrow |C = 12| \Rightarrow \int (x) = 12(x^2 - x^3), \quad o \in x \in I$
(b) $|\int f(x)| = |P(x \le x)| = |\int f(x)| dx$
 $= \int_{-\infty}^{x} \int (x^2 - x^3) dx, \quad x \in [0, 1]$
 $= \int_{-\infty}^{x} \int (x^2 - x^3) dx, \quad x \in [0, 1]$
 $= \int_{-\infty}^{x} \int (x^2 - x^3) dx + |\int f(x)| dx$
 $= \int_{-\infty}^{x} \int (x^2 - x^3) dx + |\int f(x)| dx$

$$F_{\chi}(x) = \begin{cases} x^{3}(4-3x), & x \in^{2}[D,1] \\ 1, & x \in (1/\infty) \end{cases}$$

$$(c) \quad E'(x) = \int_{0}^{1} x f(x) dx = 12 \int_{0}^{1} (x^{3}-x^{4}) dx = 12 \left(\frac{x^{4}}{4}-\frac{x^{5}}{5}\right) \Big|_{0}^{1} = 12 \left(\frac{1}{4}-\frac{1}{5}\right)$$

$$= \int_{0}^{1} \mu = \frac{12}{20} = \frac{3}{5} = 0.6$$