Artificial Intelligence : Linear Updates

chandru@iitpkd.ac.in

We want to understand the behaviour of iterative algorithms leading to temporal difference learning TD(0) algorithm. In what follows η_t will be a sequence of identically distributed independent random variables which take -1 and 1 with equal probability.

- Step1 Averaging of only noise: Generate t=1000 samples of $\eta_t, t=1,\ldots,1000$ and then compute the sample mean $\theta_t=\frac{\eta_1+\ldots+\eta_t}{t}$. Plot η_t , and θ_t , and visually check how the averaging happens.
- Step2 Averaging of only noise using recursion: On the same samples of η_t , let $\theta_t = \theta_{t-1} + \alpha_t(\eta_t \theta_{t-1})$, what happens with $\alpha_t = \frac{1}{t}$, and what happens with $\alpha_t = \frac{1}{t+1}$, or say $\alpha_t = \frac{1}{t+k}, k \ge 1$.
- Step3 Recursion with constant step-size and only noise: On the same samples of η_t , let $\theta_t = \theta_{t-1} + \alpha_t(\eta_t \theta_{t-1})$, what happens with $\alpha_t = \alpha$, for $\alpha = 2, 1, 0.1, 0.01$. Plot the results.
- Step4 Averaging and Recursion with input plus noise: Let $\theta_t = \theta_{t-1} + \alpha_t(\theta_* + \eta_t \theta_{t-1})$, now repeat Steps 1, 2, 3. Let θ_* be any real number say 1 or -1.5 etc.

In what follows $\eta_t \in \mathbb{R}^2$ will be a sequence of identically distributed independent random variables which take -1 and 1 with equal probability, i.e., $\eta_t = (\eta_t(1), \eta_t(2))$ and each entry is independent of the other. In what follows $\theta_t \in \mathbb{R}^2$

- Step1 Averaging of only noise: Generate t=1000 samples of $\eta_t, t=1,\ldots,1000$ and then compute the sample mean $\theta_t=\frac{\eta_1+\ldots+\eta_t}{t}$. Plot η_t , and θ_t , and visually check how the averaging happens.
- Step2 Averaging of only noise using recursion: On the same samples of η_t , let $\theta_t = \theta_{t-1} + \alpha_t(\eta_t \theta_{t-1})$, what happens with $\alpha_t = \frac{1}{t}$, and what happens with $\alpha_t = \frac{1}{t+1}$, or say $\alpha_t = \frac{1}{t+k}, k \ge 1$.
- Step3 Recursion with constant step-size and only noise: On the same samples of η_t , let $\theta_t = \theta_{t-1} + \alpha_t(\eta_t \theta_{t-1})$, what happens with $\alpha_t = \alpha$, for $\alpha = 2, 1, 0.1, 0.01$. Plot the results.
- Step4 Averaging and Recursion with input plus noise: Let $\theta_t = \theta_{t-1} + \alpha_t(\theta_* + \eta_t \theta_{t-1})$, now repeat Steps 1, 2, 3. Now $\theta_* \in \mathbb{R}^2$.

Note that from 1-dim to 2-dim nothing much should change for these set of experiments. Let us understand the 2-dim case bit more: in what follows $A \in \mathbb{R}^{2 \times 2}$ and $b \in \mathbb{R}^2$. Our aim is to find out and check in experiment which values of $\alpha > 0$ gives convergence and for which values leads to divergent behaviour. We can plot $||\theta_t - \theta_*||_2^2$.

- 1. Let $\theta_t = \theta_{t-1} + \alpha(b \theta_{t-1})$. This is same as $\eta_t = 0$ and $\theta_* = b$ in the Step 4 of the previous set.
- 2. Let $\theta_t = \theta_{t-1} + \alpha(b A\theta_{t-1})$. Note that if $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then we get Step 1 above. Now let i) $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$, ii) $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, iii) $A = \begin{bmatrix} 1 & 0.1 \\ -0.1 & 1 \end{bmatrix}$, iv) $A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$, v) $A = \begin{bmatrix} 1 & 10 \\ 10 & 1 \end{bmatrix}$, vi) $A = \begin{bmatrix} 1 & 0.1 \\ 10 & 1 \end{bmatrix}$. What happens in these cases for different bs, check with $b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $b = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $b = \begin{bmatrix} 10 \\ 1 \end{bmatrix}$ (use your imagination).

- 3. Now consider Step 2, let us add noise, $\theta_t=\theta_{t-1}+\alpha(b-A\theta_{t-1}+\eta_t)$. Plot what happens. 4. Now try with diminishing step-sizes, i.e., $\alpha_t=\frac{c}{c_1+t}$, where c=0.1 and vary $c_1=10,100,1000$ etc.

Let us now understand how $b-A\theta$ looks like. Pick the different As and bs in the above set of experiments, and plot $(b - A\theta)$ as vectors in 2-dim.