

$$R_1 = -H$$
 (GB) Me HO O R₁
 $R_1 = -OH$ (GC)

 $R_1 = -OH$ (GC)

 $R_1 = -OH$ (GC)

 $R_2 = OH$ (GC)

 $R_2 = OH$ (GC)

 $R_1 = OH$ (GC)

 $R_2 = OH$ (GC)

 $R_1 = OH$ (GC)

Reaction conditions:	alkyl halide (10eq.)	K ₂ CO ₃ (10eq.)	DMF, 0.5 – 10 h, r.t.
R	ratio 10-O/1-O in GC ^a	separation of the mixture b	deprotection method
benzyloxymethyl-	1.4 : 1°	+	H ₂ , Pd/C, 1 atm
benzyl-	14:1	++	H ₂ , Pd/C, 4 atm
p-MeO-benzyl-	20 : 1		CAN or H ₂ , Pd/C, 1
		•	atm
	•		
allyl-	5:1		1) <i>t</i> -BuOK, 100°C;
			2) 0.1 N-HCl, reflux
cinnamyl-	5:1		1) <i>t-</i> BuOK, 100°C;
			2) 0.1 N-HCl,
			reflux

^{*}ratios for GB were similar or better; b += good, -= bad; c (Corey, 1992)

FIGURE 4

$$H_{2}$$
 (4atm), 10% Pd/C H_{2} H_{3} H_{2} H_{3} H_{2} H_{3} H_{4} H_{5} H_{6} H_{2} H_{2} H_{3} H_{3} H_{4} H_{5} H_{5} H_{6} H_{6} H_{6} H_{6} H_{6} H_{6} H_{7} H_{8} $H_{$

Compound 8 - no reaction.

