Maximum of Dyson Brownian motion and non-colliding systems with a boundary

Alexei Borodin, Patrik L. Ferrari, Michael Prähofer, Tomohiro Sasamoto, Jon Warren

May 25, 2009

Abstract

We prove an equality-in-law relating the maximum of GUE Dyson's Brownian motion and the non-colliding systems with a wall. This generalizes the well known relation between the maximum of a Brownian motion and a reflected Brownian motion.

1 Introduction and Results

Dyson's Brownian motion model of GUE (Gaussian unitary ensemble) is a stochastic process of positions of m particles, $X(t) = (X_1(t), \ldots, X_m(t))$ described by the stochastic differential equation,

$$dX_i = dB_i + \sum_{\substack{1 \le j \le m \\ j \ne i}} \frac{dt}{X_i - X_j}, \quad 1 \le i \le m,$$

$$\tag{1.1}$$

where B_i , $1 \le i \le m$ are independent one dimensional Brownian motions [5]. The process satisfies $X_1(t) < X_2(t) < \cdots < X_m(t)$ for all t > 0. We remark that the process X can be started from the origin, i.e., one can take $X_i(0) = 0, 1 \le i \le m$. See [8].

One can introduce similar non-colliding system of m particles with a wall at the origin [6, 7,14]. The dynamics of the positions of the m particles $X^{(C)} = (X_1^{(C)}, \dots, X_m^{(C)})$ satisfying

^{*}California Institute of Technology, e-mail: borodin@caltech.edu

[†]Bonn University, e-mail: ferrari@uni-bonn.de

[‡]TU München, e-mail: praehofer@ma.tum.de

[§]TU München, e-mail: sasamoto@ma.tum.de, Chiba University, sasamoto@math.s.chiba-u.ac.jp

[¶]University of Warwick, e-mail: j.warren@warwick.ac.uk

 $0 < X_1(t) < X_2(t) < \cdots < X_m(t)$ for all t > 0 are described by the stochastic differential equation,

$$dX_i^{(C)} = dB_i + \frac{dt}{X_i^{(C)}} + \sum_{\substack{1 \le j \le m \\ j \ne i}} \left(\frac{1}{X_i^{(C)} - X_j^{(C)}} + \frac{1}{X_i^{(C)} + X_j^{(C)}} \right) dt, \ 1 \le i \le m.$$
 (1.2)

This process is referred to as Dyson's Brownian motion of type C. It can be interpreted as a system of m Brownian particles conditioned to never collide with each other or the wall.

One can also consider the case where the wall above is replaced by a reflecting wall [7]. The dynamics of the positions of the m particles $X^{(D)} = (X_1^{(D)}, \ldots, X_m^{(D)})$ satisfying $0 \le X_1(t) < X_2(t) < \cdots < X_m(t)$ for all t > 0, is described by the stochastic differential equation,

$$dX_i^{(D)} = dB_i + \frac{1}{2} \mathbf{1}_{(i=1)} dL(t) + \sum_{\substack{1 \le j \le m \\ j \ne i}} \left(\frac{1}{X_i^{(D)} - X_j^{(D)}} + \frac{1}{X_i^{(D)} + X_j^{(D)}} \right) dt, \ 1 \le i \le m, \ (1.3)$$

where L(t) denotes the local time of $X_1^{(D)}$ at the origin. This process will be referred to as Dyson's Brownian motion of type D. Some authors consider a process defined by the s.d.e.s (1.3) without the local time term. In this case the first component of the process is not constrained to remain non-negative, and the process takes values in the Weyl chamber of type D, $\{|x_1| < x_2 < x_3 \ldots < x_m\}$. The process we consider with a reflecting wall is obtained from this by replacing the first component with its absolute value, with the local time term appearing as a consequence of Tanaka's formula.

It is known the processes $X^{(C,D)}$ can be obtained using the Doob h-transform, see [6]. Let $(P_t^{0,(C,D)}; t \geq 0)$ be the transition semigroup for m independent Brownian motions killed on exiting $\{0 < x_1 < x_2 \ldots < x_m\}$, resp. the transition semigroup for m independent Brownian motions reflected at the origin killed on exiting $\{0 \leq x_1 < x_2 \ldots < x_m\}$. From the Karlin-McGregor formula, the corresponding densities can be written as

$$\det\{\phi_t(x_i - x_j') - \phi_t(x_i + x_j')\}_{1 \le i, j \le m},\tag{1.4}$$

resp.,

$$\det\{\phi_t(x_i - x_j') + \phi_t(x_i + x_j')\}_{1 \le i, j \le m},\tag{1.5}$$

where $\phi_t(z) = \frac{1}{\sqrt{2\pi t}} e^{-z^2/(2t)}$. Let

$$h^{(C)}(x) = \prod_{i=1}^{m} x_i \prod_{1 \le i < j \le m} (x_j^2 - x_i^2),$$

$$h^{(D)}(x) = \prod_{1 \le i < j \le m} (x_j^2 - x_i^2).$$
(1.6)

For notational simplicity we suppress the index C, D for the semigroups and in h in the following. Then one can show that h(x) is invariant for the P_t^0 semigroup and we may define a Markov semigroup by

$$P_t(x, dx') = h(x')P_t^0(x, dx')/h(x). (1.7)$$

This is the semigroup of the Dyson non-colliding system of Brownian motions of type C and D. Similarly to the X process, the processes $X^{(C)}$ and $X^{(D)}$ can also be started from the origin (see [9] or use Lemma 4 in [7] and apply the same arguments as in [8]).

In GUE Dyson's Brownian motion of n particles, let us take the initial conditions to be $X_i(0) = 0, 1 \le i \le n$. The quantity we are interested in is the maximum of the position of the top particle for a finite duration of time, $\max_{0 \le s \le t} X_n(s)$. In the sequel we write sup instead of max to conform with common usage in the literature. Let m be the integer such that n = 2m when n is even and n = 2m - 1 when n is odd. Consider the non-colliding systems of $X^{(C)}$, $X^{(D)}$ of m particles starting from the origin, $X_i^{(C,D)}(0) = 0, 1 \le i \le m$.

Our main result of this note is

Theorem 1. Let X and $X^{(C)}, X^{(D)}$ start from the origin. Then for each fixed $t \geq 0$, one has

$$\sup_{0 \le s \le t} X_n(s) \stackrel{d}{=} \begin{cases} X_m^{(C)}(t), & \text{for } n = 2m, \\ X_m^{(D)}(t), & \text{for } n = 2m - 1. \end{cases}$$
 (1.8)

To prove the theorem we introduce two more processes Z_j and Y_j . In the Z process, $Z_1 \leq Z_2 \leq \ldots \leq Z_n$, Z_1 is a Brownian motion and Z_{j+1} is reflected by Z_j , $1 \leq j \leq n-1$. Here the reflection means the Skorokhod construction to push Z_{j+1} up from Z_j . More precisely,

$$Z_1(t) = B_1(t),$$

$$Z_j(t) = \sup_{0 \le s \le t} (Z_{j-1}(s) + B_j(t) - B_j(s)), \quad 2 \le j \le n,$$
(1.9)

where B_i , $1 \le i \le n$ are independent Brownian motions, each starting from 0. The process is the same as the process $(X_1^1(t), X_2^2(t), \ldots, X_n^n(t); t \ge 0)$ studied in section 4 of [15]. The representation (1.9) was given earlier in [2]. In the Y process, $0 \le Y_1 \le Y_2 \le \ldots \le Y_n$, the interactions among Y_i 's are the same as in the Z process, i.e., Y_{j+1} is reflected by Y_j , $1 \le j \le n-1$, but Y_1 is now a Brownian motion reflected at the origin (again by Skorokhod construction). Similarly to (1.9),

$$Y_1(t) = B_1(t) - \inf_{0 \le s \le t} B_1(s) = \sup_{0 \le s \le t} (B_1(t) - B_1(s)),$$

$$Y_j(t) = \sup_{0 \le s \le t} (Y_{j-1}(s) + B_j(t) - B_j(s)), \quad 2 \le j \le n.$$
(1.10)

From the results in [4, 8, 15], we know

$$(X_n(t); t \ge 0) \stackrel{d}{=} (Z_n(t); t \ge 0)$$
 (1.11)

and hence

$$\sup_{0 \le s \le t} X_n(s) \stackrel{d}{=} \sup_{0 \le s \le t} Z_n(s). \tag{1.12}$$

In this note we show

Proposition 2. The following equalities in law hold between processes:

$$(Y_{2m}(t); t \ge 0) \stackrel{d}{=} (X_m^{(C)}(t); t \ge 0),$$

$$(Y_{2m-1}(t); t \ge 0) \stackrel{d}{=} (X_m^{(D)}(t); t \ge 0),$$
(1.13)

 $m \in \mathbb{N}$.

The proof of this proposition is given in Section 2. The idea behind it is that the processes $(Y_i)_{i\geq 1}$ and $(X_j^{(C,D)})_{j\geq 1}$ could be realized on a common probability space consisting of Brownian motions satisfying certain interlacing conditions with a boundary [15,16]. Such a system is expected to appear as a scaling limit of the discrete processes considered in [3,16]. In this enlarged process, the processes $Y_n(t)$ and $X_m^{(C,D)}(t)$ just represent two different ways of looking at the evolution of a specific particle and so the statement of Proposition 2 follows immediately. Justification of such an approach is however quite involved, and we prefer to give a simple independent proof. See also [4] for another representation of $X_m^{(C,D)}$ in terms of independent Brownian motions.

Then to prove (1.8) it is enough to show

Proposition 3. For each fixed t we have

$$\sup_{0 \le s \le t} Z_n(s) \stackrel{d}{=} Y_n(t). \tag{1.14}$$

This is shown in Section 3. For n = 1 case, this is well known from the Skorokhod construction of reflected Brownian motion [10]. The n > 1 case can also be understood graphically by reversing time direction and the order of particles. This relation could also be established as a limiting case of the last passage percolation. In fact the identities in our theorem was first anticipated from the consideration of a diffusion scaling limit of the totally asymmetric exclusion process with 2 speeds [1].

Acknowledgments.

AB was partially supported by NSF grant DMS-0707163. TS thanks S. Grosskinsky and O. Zaboronski for inviting him to a workshop at University of Warwick, and N. O'Connell and H. Spohn for useful discussions and suggestions. His work was partially supported by the Grant-in-Aid for Young Scientists (B), the Ministry of Education, Culture, Sports, Science and Technology, Japan.

2 Proof of proposition 2

In this section we prove the relation between $X^{(C,D)}$ and Y, (1.13). The following Lemma is a generalization of the Rogers-Pitman criterion [11] for a function of a Markov process to be Markovian.

Lemma 4. Suppose that $\{X(t): t \geq 0\}$ is a Markov process with state space E, evolving according to a transition semigroup $(P_t; t \geq 0)$ and with initial distribution μ . Suppose that $\{Y(t): t \geq 0\}$ is a Markov process with state space F, evolving according to a transition semigroup $(Q_t; t \geq 0)$ and with initial distribution ν . Suppose further that L is a Markov transition kernel from E to F, such that $\mu L = \nu$ and the intertwining $P_t L = LQ_t$ holds. Now let $f: E \to G$ and $g: F \to G$ be maps into a third state space G, and suppose that

$$L(x,\cdot)$$
 is carried by $\{y \in F : g(y) = f(x)\}$ for each $x \in E$.

Then we have

$${f(X(t)): t \ge 0} \stackrel{d}{=} {g(Y(t)): t \ge 0},$$

in the sense of finite dimensional distributions.

Proof of Lemma 4. For any bounded function α on G let $\Gamma_1 \alpha$ be the function $\alpha \circ f$ defined on E and let $\Gamma_2 \alpha$ be the function $\alpha \circ g$ defined on F. Then it follows from the condition that $L(x,\cdot)$ is carried by $\{y \in F : g(y) = f(x)\}$ that whenever h is a bounded function defined on F then

$$L(\Gamma_2 \alpha \times h) = \Gamma_1 \alpha \times Lh, \tag{2.1}$$

which is shorthand for $\int L(x, dy)\Gamma_2\alpha(y)h(y) = \Gamma_1\alpha \times Lh$. For any bounded test functions $\alpha_0, \alpha_1, \dots, \alpha_n$ defined on G, and times $0 < t_1 < \dots < t_n$, we have, using the previous equation and the intertwining relation repeatedly,

$$\mathbb{E}[\alpha_{0}(g(Y(0)))\alpha_{1}(g(Y(t_{1})))\dots\alpha_{n}(g(Y(t_{n})))]$$

$$= \nu(\Gamma_{2}\alpha_{0} \times Q_{t_{1}}(\Gamma_{2}\alpha_{1} \times Q_{t_{2}-t_{1}}(\dots(\Gamma_{2}\alpha_{n-1} \times Q_{t_{n}-t_{n-1}}\Gamma_{2}\alpha_{n})\dots)))$$

$$= \mu L(\Gamma_{2}\alpha_{0} \times Q_{t_{1}}(\Gamma_{2}\alpha_{1} \times Q_{t_{2}-t_{1}}(\dots(\Gamma_{2}\alpha_{n-1} \times Q_{t_{n}-t_{n-1}}\Gamma_{2}\alpha_{n})\dots)))$$

$$= \mu(\Gamma_{1}\alpha_{0} \times P_{t_{1}}(\Gamma_{1}\alpha_{1} \times P_{t_{2}-t_{1}}(\dots(\Gamma_{1}\alpha_{n-1} \times P_{t_{n}-t_{n-1}}\Gamma_{1}\alpha_{n})\dots)))$$

$$= \mathbb{E}[\alpha_{0}(f(X(0)))\alpha_{1}(f(X(t_{1})))\dots\alpha_{n}(f(X(t_{n})))]$$
(2.2)

which proves the equality in law.

We let $(Y(t):t\geq 0)$ be the process Y of n reflected Brownian motions with a wall introduced in the previous section. It is clear from the construction (1.10) that the process Y is a time homogeneous Markov process. We denote its transition semigroup by $(Q_t;t\geq 0)$. It turns out that there is an explicit formula for the corresponding densities. Recall $\phi_t(z)=\frac{1}{\sqrt{2\pi t}}e^{-z^2/(2t)}$. Let us define $\phi_t^{(k)}(y)=\frac{d^k}{dy^k}\phi_t(y)$ for $k\geq 0$ and $\phi_t^{(-k)}(y)=(-1)^k\int_y^\infty \frac{(z-y)^{k-1}}{(k-1)!}\phi_t(z)dz$ for $k\geq 1$.

$$\begin{vmatrix} z_1^1 & & & & & \\ & z_1^2 & & & & \\ z_1^3 & & z_2^3 & & & \\ & z_1^4 & & z_2^4 & & \\ z_1^5 & & z_2^5 & & z_3^5 & & \\ & \vdots & & \vdots & & \ddots & \\ z_1^n & & z_2^n & & z_3^n & \dots & z_n^n \end{vmatrix}$$

Figure 1: The set \mathbb{K} . The triangle represents the intertwining relations of the variables z and the vertical line on the left indicates $z_1^{2k+1} \geq 0$, see (2.5),(2.6). The set of variables on the bottom line is denoted by b(z) and the one on the upper right line by e(z).

Proposition 5. The transition densities $q_t(y, y')$ from $y = (y_1, ..., y_n)$ at t = 0 to $y' = (y'_1, ..., y'_n)$ at t of the Y process can be written as

$$q_t(y, y') = \det\{a_{i,j}(y_i, y'_j)\}_{1 \le i, j \le n}$$
(2.3)

where $a_{i,j}$ is given by

$$a_{i,j}(y,y') = (-1)^{i-1}\phi_t^{(j-i)}(y+y') + (-1)^{i+j}\phi_t^{(j-i)}(y-y'). \tag{2.4}$$

The same type of formula was first obtained for the totally asymmetric simple exclusion process by Schütz [13]. The formula for the Z process was given as a Proposition 8 in [15], see also [12].

Proof of Proposition 5. For a fixed y', define $G_t(y,t)$ to be (2.3) as a function of y and t. We check that G satisfies (i) the heat equation, (ii) the boundary conditions $\frac{\partial G}{\partial y_1}|_{y_1=0}=0$, $\frac{\partial G}{\partial y_i}|_{y_i=y_{i-1}}=0$, $i=2,3,\ldots,n$ and (iii) the initial conditions $G(y,t=0)=\prod_{i=1}^n \delta(y_i-y_i')$.

(i) holds since $\phi_t^{(k)}(y)$ for each k satisfies the heat equation. (ii) follows from the relations, $\frac{\partial}{\partial y}a_{1j}(y,y')|_{y=0} = \phi_t^{(j)}(y') + (-1)^{j+1}\phi_t^{(j)}(-y') = 0$ and $\frac{\partial}{\partial y}a_{ij}(y,y') = -a_{i-1,j}(y,y')$. For (iii) we notice that the first term in (2.4) goes to zero as $t \to 0$ for y, y' > 0 and the statement for the remaining part is shown in Lemma 7 in [15].

For n = 2m, resp. n = 2m - 1 we take $(X(t), t \ge 0)$ to be Dyson Brownian motion of type C, resp. of type D. The transition semigroup $(P_t; t \ge 0)$ of this process is given by (1.7).

Let \mathbb{K} denote the set with n layers $z=(z^1,z^2,\ldots,z^n)$ where $z^{2k}=(z_1^{2k},z_2^{2k},\ldots,z_k^{2k})\in\mathbb{R}^k_+,\ z^{2k-1}=(z_1^{2k-1},z_2^{2k-1},\ldots,z_k^{2k-1})\in\mathbb{R}^k_+$ and the intertwining relations,

$$z_1^{2k-1} \le z_1^{2k} \le z_2^{2k-1} \le z_2^{2k} \le \dots \le z_k^{2k-1} \le z_k^{2k} \tag{2.5}$$

and

$$0 \le z_1^{2k+1} \le z_1^{2k} \le z_2^{2k+1} \le z_2^{2k} \le \dots \le z_k^{2k} \le z_{k+1}^{2k+1}$$
 (2.6)

hold (Fig. 1). Let n = 2m or n = 2m - 1 for some integer m. We define a kernel L^0 from $E = \{0 \le x_1 \le ... \le x_m\}$ to $F = \{0 \le y_1 \le ... \le y_n\}$. For $z \in \mathbb{K}$, define $b(z) = z^n = (z_1^n, ..., z_m^n) \in E$, $e(z) = (z_1^1, z_1^2, z_2^3, z_2^4, ..., z_m^n) \in F$ and $\mathbb{K}(x) = \{z \in \mathbb{K}; b(z) = x \in E\}$, $\mathbb{K}[y] = \{z \in \mathbb{K}; e(z) = y \in F\}$. The kernel L^0 is defined by

$$L^{0}g(x) = \int_{F} L^{0}(x, dy)g(y) = \int_{\mathbb{K}(x)} g(e(z))dz.$$
 (2.7)

where the integrals are taken with respect to Lebesgue measure but integrations with respect to z on the RHS is for b(z) = x fixed.

The function h defined at (1.6) is equal to the Euclidean volume of $\mathbb{K}(x)$. Consequently we may define L to be the Markov kernel $L(x, dy) = L^0(x, dy)/h(x)$. In the remaining part of this section we show

Proposition 6.

$$LQ_t = P_t L. (2.8)$$

Now if we apply Lemma 4 with $f(x) = x_m$, $g(y) = y_n$ and the initial conditions starting from the origin we obtain (1.13).

Proof of Proposition 6. The kernels $P_t(x,\cdot)$ and $L(x,\cdot)$ are continuous in x. Thus we may consider x in the interior of E, and it is enough to prove

$$(L^{0}Q_{t})(x,dy) = (P_{t}^{0}L^{0})(x,dy).$$
(2.9)

From the definition of the kernel L^0 , this is equivalent to showing

$$\int_{\mathbb{K}(x)} q_t(e(z), y) dz = \int_{\mathbb{K}[y]} p_t^0(x, b(z)) dz$$
 (2.10)

where q_t and p^0 are densities corresponding to Q_t and P_t^0 . Integrations with respect to z are on the LHS with b(z) = x fixed and on the RHS with e(z) = y fixed.

Let us consider the case where n=2m. Using the determinantal expressions for q_t and p_t^0 we show that both sides of (2.10) are equal to the determinant of size 2m whose (i,j) matrix element is $a_{2i,j}(0,y_j)$ for $1 \leq i \leq m, 1 \leq j \leq 2m$ and $a_{2m,j}(x_{i-m},y_j)$ for $m+1 \leq i \leq 2m, 1 \leq j \leq 2m$.

The integrand of the LHS of (2.10) is

$$q_t(e(z), y) = \det\{a_{i,j}(e(z)_i, y_j)\}_{1 \le i, j \le 2m}$$
(2.11)

with b(z)=x. We perform the integral with respect to z^1,\ldots,z^{2m-1} in this order. After the integral up to $z^{2l-1}, 1 \leq l \leq m$, we get the determinant of size 2m whose (i,j) matrix element is $a_{2i,j}(0,y_j)$ for $1 \leq i \leq l$, $a_{2l,j}(z_{i-l}^{2l},y_j)$ for $l+1 \leq i \leq 2l$ and $a_{i,j}(e(z)_i,y_j)$ for $2l+1 \leq i \leq 2m$. Here we use a property of $a_{i,j}$,

$$a_{i,j}(y,y') = \int_{y}^{\infty} a_{i-1,j}(u,y')du,$$
 (2.12)

and do some row operations in the determinant. The case for l=m gives the desired expression.

The integrand of the RHS of (2.10) is

$$p_t^0(x, z^{2m}) = \det(a_{2m,2m}(x_i, z_j^{2m}))_{1 \le i, j \le m}$$
(2.13)

with the condition e(z) = y. We perform the integrals with respect to $(z_1^{2m}, \ldots, z_{m-1}^{2m}), (z_1^{2m-1}, \ldots, z_{m-1}^{2m-1}), \ldots, z_1^4, z_1^3$ in this order. We use properties of $a_{i,j}$,

$$a_{i,j}(y,y') = -\int_{y'}^{\infty} a_{i,j+1}(y,u)du,$$
 (2.14)

$$a_{2i,2j}(x,0) = 0$$
, $a_{2i,2i-1}(0,y) = 1$, $a_{2i,j}(0,y) = 0$, $2i \le j$. (2.15)

After each integration corresponding to a layer of \mathbb{K} we simplify the determinant using column operations. We also expand the size of the determinant after an integration corresponding to $(z_1^{2l}, \ldots, z_{l-1}^{2l})$ for $1 \leq l \leq m$, by adding a new first row

$$\underbrace{(1,1,\ldots,1,0,0,\ldots,0)}_{l} = \underbrace{(a_{2l,2l-1}(0,z_1^{2l-1}),\ldots,a_{2l,2l-1}(0,z_l^{2l-1}),a_{2l,2l}(0,e(z)_{2l}),\ldots,a_{2l,2m}(0,e(z)_{2m})))}_{2m-2l+1}$$
(2.16)

together with a new column. After the integrals up to $(z_1^{2l-1}, \ldots, z_{l-1}^{2l-1})$ have been performed, we obtain the determinant of size 2m-l+1,

$$\begin{vmatrix} a_{2(l+i-1),2(l-1)}(0,z_j^{2(l-1)}) & a_{2(l+i-1),j+l-1}(0,e(z)_{j+l-1}) \\ a_{2m,2(l-1)}(x_{i-m+l-1},z_j^{2(l-1)}) & a_{2m,j+l-1}(x_{i-m+l-1},e(z)_{j+l-1}) \end{vmatrix}.$$
(2.17)

Here $1 \le i \le m-l+1$ (resp. $m-l+2 \le i \le 2m-l+1$) for the upper expression (resp. the lower expression) and $1 \le j \le l-1$ (resp. $l \le j \le 2m-l+1$) for the left (resp. right) expression. For l=1 this reduces to the same determinant as for the LHS.

The case n=2m-1 is almost identical. Similar arguments show that both sides of (2.9) are equal to a determinant size 2m-1 whose (i,j) matrix element is $a_{2i,j}(0,y_j)$ for $1 \le i \le m-1, 1 \le j \le 2m-1$ and $a_{2m-1,j}(x_{i-m+1},y_j)$ for $m+1 \le i \le 2m-1, 1 \le j \le 2m-1$.

3 Proof of proposition 3

Using (1.10) repeatedly, one has

$$Y_n(t) = \sup_{0 \le t_1 \le \dots \le t_n \le t} \sum_{i=1}^n (B_i(t_{i+1}) - B_i(t_i))$$
(3.1)

with $t_{n+1} = t$. By renaming $t - t_{n-i+1}$ by t_i and changing the order of the summation, we have

$$Y_n(t) = \sup_{0 \le t_1 \le \dots \le t_n \le t} \sum_{i=1}^n (B_{n-i+1}(t - t_{i+1}) - B_{n-i+1}(t - t_i)).$$
 (3.2)

Since $\tilde{B}_i(s) := B_{n-i+1}(t) - B_{n-i+1}(t-s) \stackrel{d}{=} B_i(s),$

$$Y_n(t) \stackrel{d}{=} \sup_{0 \le t_1 \le \dots \le t_n \le t} \sum_{i=1}^n (B_i(t_i) - B_i(t - t_{i-1})) = \sup_{0 \le s \le t} Z_n(t).$$
 (3.3)

References

- [1] A. Borodin, P. L. Ferrari, T. Sasamoto, Two speed TASEP, arXiv:0904.4655.
- [2] Y. Baryshnikov, Gues and queues, Prob. Th. Rel. Fields 119 (2001), 256–274.
- [3] A. Borodin and J. Kuan, Random surface growth with a wall and Plancherel measures for $O(\infty)$, arXiv:0904.2607.
- [4] P. Bougerol and T. Jeulin, Paths in Weyl chambers and random matrices, Prob. Th. Rel. Fields 124 (2002), 517–543.
- [5] F. J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix, J. Math. Phys 3 (1962), 1191–1198.
- [6] D. J. Grabiner, Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. Henri Poincaré, Probabilités et Statistiques 35:2 (1999), 177–204.
- [7] M. Katori and T. Tanemura, Symmetry of matrix-valued stochastic processes and non-colliding diffusion particle systems., J. Math. Phys. 45 (2004), 3058–3085.
- [8] N. O'Connell and M. Yor, A representation for non-colliding random walks, Elec. Comm. Probab. 7 (2002), 1–12.
- [9] P. Bougerol P. Biane and N. O'Connell, *Littelmann paths and Brownian paths*, Duke Math. Jour. **130** (2005), 127–167.
- [10] D. Revuz and M. Yor, Continuous martingales and Brownian motion, Springer, 1999.
- [11] L.C.G. Rogers and J.W. Pitman, Markov functions, Ann. Prob. 9 (1981), 573–582.
- [12] T. Sasamoto and M. Wadati, Determinant Form Solution for the Derivative Nonlinear Schrödinger Type Model, J. Phys. Soc. Jpn. 67 (1998), 784–790.
- [13] G. M. Schütz, Exact solution of the master equation for the asymmetric exclusion process, J. Stat. Phys. 88 (1997), 427–445.

- [14] C. A. Tracy and H. Widom, *Nonintersecting Brownian excursions*, Ann. Appl. Prob. **17** (2007), 953–979.
- [15] J. Warren, Dyson's Brownian motions, intertwining and interlacing, E. J. Prob. 12 (2007), 573–590.
- [16] J. Warren and P. Windridge, Some examples of dynamics for Gelfand Tsetlin patters, arXiv:0812.0022.