Лабораторная работа № 5.1.2 Исследование эффекта Комптона

Илья Прамский

Сентябрь 2024

1 Теоретическая справка

Рассмотрим взаимодействие фотона и электрона, как упругое соударение двух частиц. Запишем для рассматриваемого процесса законы сохранения энергии и импульса:

$$mc^2 + \hbar\omega_0 = \gamma mc^2 + \hbar\omega_1$$

$$\frac{\hbar\omega_0}{c} = \gamma mv \cos\varphi + \frac{\hbar\omega_1}{c} \cos\theta$$

$$\gamma mv \sin\varphi = \frac{\hbar\omega_1}{c} \sin\theta$$
(1)

Перейдя к длинам волн λ_0 и λ_1 , получим изменение длины волны рассеянного излучения:

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_k (1 - \cos \theta) \tag{2}$$

Где $\Lambda_k = \frac{h}{mc} = 2,42 \cdot 10^{-10} \ \text{cm}$ - комптоновская длина волны электрона.

В дальнейшем же будет удобнее пользоваться другим видом полученной формулы:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta \tag{3}$$

где $\varepsilon_0=\frac{E_0}{mc^2}$ - начальная энергия γ -квантов в единицах mc^2 , $\varepsilon(\theta)$ - энергия рассеянных γ -квантов в тех же единицах.

Схема экспериментальной установки:

Рис. 1: (a) Блок-схема установки по изучению рассения γ -квантов. (b) Блок-схема измерительного комплекса.

Воспользуемся также тем, что $\varepsilon(\theta) = AN(\theta)$, где $N(\theta)$ - номер канала, соответствующего вершине фотопика при данном θ , A - коэффициент пропорциональности. Тогда формулу (3) можно переписать в другом виде:

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos theta) \tag{4}$$

Тогда энергию покоя электрона можно определить как:

$$mc^2 = E_\gamma \frac{N(90)}{N(0) - N(90)} \tag{5}$$

Где $E_{\gamma}=E(0)$ - энергия γ -лучей, испускаемых источником(в нашем случае ^{137}Cs .

2 Ход работы

По измеренным данным составим таблицу и построим график зависимости $\frac{1}{N(\theta)} = f(1-\cos\theta).$

$\theta,^{\circ}$	0	10	20	30	40	50	60	70	80	90	100	110
$1-\cos\theta$	0	0,015	0,060	0,134	0,234	$0,\!357$	0,500	0,658	0,826	1,000	1,174	1,342
N	846	820	754	707	645	582	468	460	416	383	344	315
σ_N	11	7	11	17	38	21	27	19	22	18	14	13
$\frac{1}{N}$, 10^{-3}	1,18	1,22	1,33	1,41	1,55	1,72	2,14	2,17	2,40	2,61	2,90	3,17
$\sigma_{\frac{1}{N}}, 10^{-3}$	0,02	0,01	0,02	0,03	0,09	0,06	0,12	0,09	0,13	0,12	0,11	0,13

Из графика получается

$$A = (1,49 \pm 0,04) \cdot 10^{-3}$$

$$\frac{1}{N_{\text{\tiny HAMJ}}(0)} = (1,200 \pm 0,007) \cdot 10^{-3}$$

Теперь найдём $N_{\rm наил}(0)$ и $N_{\rm наил}(90)$, используя данные значения.

$$N_{\rm наил}(0)=833\pm5$$

$$N_{ ext{ham.}}(90) = \frac{1}{\frac{1}{N_{ ext{ham.}}(0)} + A} = 372 \pm 6$$

Получается энергия покоя электрона(учитывая, что $E_{\gamma}=662$ кэВ, по формуле (5)).

$$mc^2 = 534 \pm 16$$
кэВ

3 Вывод

В ходе данной работы была оценена энергия покоя электрона, она получилось равной $mc_{\rm эксп}^2=534\pm16$ кэВ, теоретическое же значение $mc_{\rm reop}^2=511$ кэВ.