1. 用按层次顺序遍历二叉树的方法,统计树中具有度为1的结点数目。 解: 下图为其树的形状:

binary tree

下图为核心代码(可运行文件在 code 压缩包内,文件名为 HW8.1. cpp)

```
// 创建一个队列用于存储待访问的节点
TreeNode **queue = (TreeNode **)malloc(sizeof(TreeNode *) * 100);
int front = 0, rear = 0; // 队列的前后指针 int count = 0; // 废为1的节点数目 queue[rear++] = root; // 将根节点入队 while (front < rear)
     TreeNode *node = queue[front++]; // 取出队头节点
     int degree = 0;
     if (node->left)
          degree++;
          queue[rear++] = node->left;
     if (node->right)
          degree++;
          queue[rear++] = node->right;
     // 如果当前节点的度为1,则将计数器加1
if (degree == 1)
          count++;
free(queue); // 释放队列内存
return count;
```

2. 求任意二叉树中第一条最长的路径长度,并输出此路径上各结点的值。

解: 二叉树的图形与 1. 一样。

图略

下图为核心代码(可运行文件在 code 压缩包内,文件名为 HW8. 2. cpp)

```
void FindLongesetPath(TreeNode *node, int length, int *MaxLength, int *currentPath, int *longestPath)

{

// 该节点不存在
if (node == NULL)

return;

// 读结点存在
else

{

// 先是录音结点的值,随后长度加一
currentPath[length] = node->val;
length = length + 1;
// 己是对信件节点

if (node->left == NULL && node->right == NULL)

{

if (*MaxLength < length)

{

*MaxLength = length;

for (int i = 0; i < *MaxLength; i++) // 更新最长路径

{

longestPath[i] = currentPath[i];

}

return;

}

return;

// 还有于结点
else

{

FindLongesetPath(node->left, length, MaxLength, currentPath, longestPath);

FindLongesetPath(node->right, length, MaxLength, currentPath, longestPath);
}

}

}

}
```

- 3. 已知一棵度为 k 的树中有 n1 个度为 1 的结点,n2 个度为 2 的结点, \cdots ,nk 个度为 k 的结点,问该树中有多少个叶子结点?
- 解:二叉树的图形与1.一样。

图略

下图为核心代码(可运行文件在 code 压缩包内,文件名为 HW8. 3. cpp)

4. 将下列二叉链表改为先序线索链表(不用画树)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Info	A	В	С	D	E	F	G	Н	I	J	К	L	М	N
Ltag														
Lehild	2	4	6	0	7	0	10	0	12	13	0	0	0	0
Rtag	Ţ. <u> </u>													
Rehild	3	5	0	0	8	9	11	0	0	0	14	0	0	0

解:

HW8.4二叉链表的二叉树型

ORDER: A B D E G J M K N H C F I L

		1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ir	nfo	A	В	С	D	E	F	G	Н	I	J	ĸ	L	M	N
ī.	tag.	0	0	0	1	0	1	0	1	0	0	1	1	1	1
. L	child	2	4	6	2	7	3	10	14	12	13	13	14	10	11
R	Rtag	0	0	0	1	0	0	0	1	1	1	0	1	1	1
R	Rehild	3	5	0	5	8	9	11	3	12	13	14	NULL	11	8