Lazy Evaluation in Haskell

Winter 2015-2016

Table of Contents

Review

Examples

Special cases

List Comprehensions

Generators and qualifiers

Graph search

Infinite Lists

Simple definition: lazy evaluation

- Lazy evaluation means that an expression is evaluated only if it is required.
- In terms of Lambda calculus: evaluate the outer function application first.

$$(\lambda z.(z^2 + 3)) (3 + 4) = (3 + 4)^2 + 3$$

= $(7^2 + 3)$
= $49 + 3$
= 52

How to understand it

- In the lambda calculus, everything is either a function, or a literal constant, i.e., a number, or other value.
- Expressions are made up of subexpressions, using literals and function calls.
- Evaluating an expression:
 - 1. A literal does not need to be evaluated.
 - 2. A function call is evaluated by using the application rule.
- Lazy evaluation: Perform the outer function call first.

$$(\lambda z.(z^2 + 3)) (3 + 4) = (3 + 4)^2 + 3$$

= $(7^2 + 3)$
= $49 + 3$
= 52

Evaluation finishes when you've reached a literal value.

Operational Definition: Lazy evaluation

- Literal constants (functions, numbers, characters, Boolean values) are already evaluated. They don't need further evaluation.
- Haskell tries to be lazy about function calls.
- Lazy evaluation performs the outer application first.
- The result is either:
 - 1. A literal constant.
 - 2. Another function call.
- Sub-expressions are evaluated only when required.

Simple Arithmetic Example

- Lazy evaluation means that it is not always necessary to evaluate every expression.
- Consider the simple function:

plus
$$ab = a + b$$

plus
$$(4*2) (5-3)$$

= $(\lambda a.\lambda b.(a+b)) (4*2) (5-3)$
= $(4*2) + (5-3)$
= $8+2$
= 10

- Note that the expressions given as arguments to plus were not evaluated before using the application rule.
- In a nut-shell, lazy evaluation is evaluating the outer-most application first.

Another Simple Example

Consider the following more complicated expression:

$$plus (5 + 2) (plus 7 (8 - 6))$$

$$= (5 + 2) + (plus 7 (8 - 6))$$

$$= 7 + (plus 7 (8 - 6))$$

$$= 7 + (7 + (8 - 6))$$

$$= 7 + (7 + 2)$$

$$= 7 + 9$$

$$= 16$$

- Because of lazy evaluation, the outer application of plus was evaluated before the inner application was rewritten.
- The "harder" work was "postponed" until the very last minute.

Yet another simple example

Consider the function

```
\begin{array}{lll} \text{seven} & :: & \text{a} & - > \textbf{Int} \\ \text{seven} & \text{x} & = & 7 \end{array}
```

seven (plus
$$7(8-6)$$
)
$$= 7$$

- Because of lazy evaluation, the inner application of plus is not evaluated at all.
- Evaluating the argument to seven is wasted work.
- Consider the following function, which is an infinite loop:

$$\mathsf{dumb}\ \mathsf{x} = 1 + \mathsf{dumb}\ \mathsf{x}$$

seven (dumb
$$1$$
) = 7

The tricky bits

- Haskell has syntax we've never seen in the Lambda Calculus:
 - Guarded expressions
 - Patterns
 - If-then-else
 - Recursion
 - etc...
- The key is to recognize when evaluation is required.

Evaluation required on test in if-then-else

```
or :: Bool -> Bool -> Bool or a b = if (a == True) then True else b
```

- The first argument is compared to the literal **True**
- The first argument must be evaluated.
- The second argument does not need to be evaluated (yet), so Haskell doesn't.
- If the first argument is **False**, the second argument is returned without evaluation.

Evaluation required on match against literal

```
and :: Bool -> Bool -> Bool and False b = False and a b = b
```

- The first argument is matched against the literal **False**
- To check the match, the first argument must be evaluated.
- The second argument is not matched against a literal.
- The second argument does not need to be evaluated (yet), so Haskell doesn't.
- If the first argument is **True**, the second argument is returned without evaluation.

Evaluation required on test with guard

```
or :: Bool -> Bool -> Bool
or a b
| a == True = True
| otherwise = b
```

- The first argument is compared to the literal **True**
- The first argument must be evaluated.
- The second argument does not need to be evaluated (yet), so Haskell doesn't.
- If the first argument is **False**, the second argument is returned without evaluation.

Lazy Evaluation of non-trivial functions

```
fact n  \mid \ n == 0 = 1 \\ \mid \ n > 0 \ = n * (fact (n-1))
```

- Suppose we require Haskell to evaluate fact (2 + 1).
- (2+1) gets evaluated when the first guard n == 0 is tried.
- n's value, 3, is stored
- If the first guard is **True**, 1 is returned
- If the first guard is False, the next guard is tried.
- If n > 0, then the expression 3 * (fact (3 1)) is returned but not evaluated.
- If the value of 3 * (fact (3 1)) is needed, it may be evaluated later. For now, Haskell just returns the expression itself.

• The function errorB halts with an error if the first argument is negative.

```
\begin{array}{lll} \mathsf{errorB} \times \mathsf{y} \\ \mid \mathsf{x} < \mathsf{0} &= \mathsf{error} \text{ "negative"} \\ \mid \mathsf{otherwise} = \mathsf{y} \end{array}
```

```
Main> errorB (10) 2
2
Main> errorB (-10) 2
```

Program error: negative

 The function foo adds 2 values together, unless one of the arguments is negative.

$$foo\ a\ b = (error B\ a\ b)\ + (error B\ b\ a)$$

```
Main> foo 1 2
3
Main> foo 2 1
3
Main> foo 2 (-3)
```

Program error: negative

 The function bar adds 5 to every element in a list, unless one of the elements is negative.

```
bar [] = []
bar (x:xs) = (foo x 5) : bar xs
```

```
Main> bar [1,2,3,5,10]

[6,7,8,10,15]

Main> bar [1,2,-3,5,10]

[6,7,

Program error: negative
```

• Notice that two values are displayed before the error occurs!

Pay careful attention to the following example:

```
Main> length (bar [1,2,3,5,10])

5

Main> length (bar [-1,-2,-3,-5,-10])

5
```

- Notice that no error was thrown. Why?
 - The function bar creates a list by applying (foo 5) to each element.
 - If foo were evaluated, an error would be thrown.
 - The function **length** does not evaluate the elements in the list, it just counts how many there are.

• **length** does not evaluate the elements of the list.

length
$$[] = 0$$

length $(x:xs) = 1 +$ length xs

 length does not use x in any way; x is never matched or compared to anything. If it has a value, length doesn't care.

When are expressions evaluated?

- In pattern matching against a literal value.
- In guards when an expression is checked.
- In if-then-else when an expression is checked
- By the **show** function in Hugs.

List Comprehensions: Introduction I

- A "comprehension" is the name for special syntax to create lists
- The syntax is similar to set notation in mathematics
- The syntax is designed to be convenient for the programmer, but it's nothing more than functions.
- Because of lazy evaluation:
 - 1. a list is only created if necessary
 - 2. the whole list may not be needed Haskell creates only as much as is needed by other functions

Simple Examples: lists of numbers

```
Prelude> [1 .. 5] [1,2,3,4,5]
```

Prelude> [10 .. 20] [10,11,12,13,14,15,16,17,18,19,20]

Prelude> [3.0 .. 7.0] [3.0,4.0,5.0,6.0,7.0]

Prelude> [0.5 .. 5.5] [0.5,1.5,2.5,3.5,4.5,5.5]

Prelude> [0.5 .. 5] [0.5,1.5,2.5,3.5,4.5,5.5]

Prelude> [3.0 .. 7.0] [3.0,4.0,5.0,6.0,7.0]

Prelude> [3.1 .. 7] [3.1,4.1,5.1,6.1,7.1]

General case: [n..m] evaluates to $[n, n+1, n+2, \cdots, n+k]$ where $n+k \leq m+1/2$.

Adjusting the interval between elements

```
Prelude> [1,3 .. 10] [1,3,5,7,9]
```

General case: [n, p..m] evaluates to $[n, n+(p-n), n+2(p-n), \cdots, n+k(p-n)]$ where $n+k(p-n) \leq m+(p-n)/2$.

Extension to other Enum types

```
      Prelude> ['a' .. 'f']

      "abcdef"

      Prelude> ['a', 'e' .. 'z']

      "aeimquy"
```

Using comprehensions in functions

A comprehension can be defined using variables:

- You might think this is a waste of effort, to build a list only to count to n.
- Because of lazy evaluation, and the way **product** is defined, very little extra memory is needed.

A glimpse under the hood

 A comprehension is a syntactic convenience; the notation is mapped to a function expression involving a function called enumFromTo or enumFromThenTo, eg

```
\begin{array}{l} \textbf{Prelude} > [1 \ .. \ 5] \\ [1,2,3,4,5] \\ \textbf{Prelude} > \ \textbf{enumFromTo} \ 1 \ 5 \\ [1,2,3,4,5] \\ \textbf{Prelude} > [1,3 \ .. \ 10] \\ [1,3,5,7,9] \\ \textbf{Prelude} > \ \textbf{enumFromThenTo} \ 1 \ 3 \ 10 \\ [1,3,5,7,9] \end{array}
```

Informally, we call this kind of convenience syntactic sugar.

This notation is available to any Enum type.

Comprehensions and Lazy Evaluation

- The comprehension technique is still based on functions, but these functions are hidden by "syntactic sugar"
- If the functions are lazy, then the lists they define are constructed lazily, i.e., only as needed.
- Example:

```
Main> take 3 [1 .. 100000] [1,2,3]
```

- The comprehension defines a very long list.
- take only needs 3 of them.
- The rest of the list is not needed, and not created!

Generators

 Haskell allows a programmer to construct lists from other lists, using notation even more similar to set notation:

- You can read the <- in two ways:
 - 1. takes the value of each of (like an assignment)
 - 2. an element in (like set theory's \in relation)

Qualifiers

You can also restrict the values by adding a qualifier:

Prelude>
$$[x \mid x < -[1 .. 10], x 'mod' 2 == 0]$$
 [2,4,6,8,10]

The qualifier is a way to restrict the elements in the set, to those that satisfy the condition

Prelude>
$$[x \mid x < -[0, 5 ... 100], 23 < x && x < 61]$$
 [25,30,35,40,45,50,55,60]

every elements is checked

The general form: $[e|q_1, \cdots, q_k]$

Text

- e is any expression, using names in the scope, and names defined by <- in any of the q_i
- the q_i are called qualifiers, and can be
 - 1. a generator, pat <- list The scope of pat is the comprehension
 - 2. pat can be a pattern matching the contents of the list (e.g., a tuple for a list of tuples)
 - 3. a qualifier any expression with a Boolean value. The expression can use names in any of q_1, \dots, q_{i-1} .
- We read the expression left-to-right;
- Names defined by a generator can be used in any expression to its right

More examples

```
allpairs :: [a]->[b]->[(a,b)]
allpairs xs ys = [(x,y) | x <- xs, y <- ys]
```

```
Prelude> allpairs [1 .. 3] "abc" [(1,' a '),(1,' b '),(1,' c '),(2,' a '),(2,' b '), (2,' c '),(3,' a '),(3,' b '),(3,' c ')]
```

somepairs :: Num a => a -> [(a,a)] somepairs n = [(x,y) |
$$x < -[1 ... n]$$
, $y < -[x+1 ... n]$]

Prelude> somepairs 3
$$[(1,2),(1,3),(2,3)]$$

- In many cases, simple comprehensions can be written a number of ways.
- A comprehension replaces the (tedious) design of a function to generate lists
- The comprehension technique is still based on functions, but these functions are hidden by "syntactic sugar"

Graph search

- Assume a directed graph is represented by a list of pairs as edges.
- E.g., here's a simple "chain graph"

```
simpleEdgeSet = [(1,2),(2,3),(3,4)]
```

- Write a program that performs depth-first search (DFS) in a graph, given:
 - A starting node
 - A goal node
 - Returns True if the goal node can be reached by DFS.
 - Variation 1: return a path from start to goal
 - Variation 2: return all paths from start to goal

Implementing Search

- Key concept: Given a list of nodes to explore, pick one.
- To explore a node means to follow an edge out of it, to another node.
- Algorithm Search
 - 1. If you've reached the goal, return true
 - 2. If there are no more choices, return false
 - 3. Otherwise, pick a node, then:
 - 3.1 Collect all nodes adjacent to the current node
 - 3.2 Add them to the list of choices
 - 3.3 Search using the new list of choices

Implementing DFS

- A specialization of the search algorithm
- Use a LIFO queue to store the choices
- Pick the first node in the queue
- Add the new nodes to the front of the queue
- In Haskell, we can use a list for our FIFO queue.
- A draft of the program:

```
dfs edges goal [] = False

dfs edges goal (c: choices)

| goal == c = True

| otherwise = dfs goal (newchoices ++ choices)

where newchoices = . . .
```

Generating new choices

- The edges are stored in a list
- Given a node c, filter the list for the ones that start at c
- Need to have list of edges as input.
- A revised draft of the program:

```
dfs edges goal [] = False
dfs edges goal (c: choices)
  | goal == c = True
  | otherwise = dfs edges goal (newchoices ++ choices)
    where newchoices = [ v | (u,v) <- edges, u == c]</pre>
```

Demonstration

The Maybe type

- For search tasks, you want to return a value if you find one
- Or return some signal that the search failed
- Haskell defines the **Maybe** type for this purpose.

```
data Maybe a = Nothing | Just a deriving (Show)
```

- The container Just <value> should be used to indicate a successful search, and to contain the object that you found.
- The value Nothing can be used to indicate that the search was unsuccessful. It contains nothing.
- This solves a problem that sometimes arises when there is no value that you can force into service to signal failure.
 - In other languages, we sometimes force a value to serve as a signal of this kind, e.g., return -1;
 , or return null;
 - This only works if the value you choose is not one of the possible answers.
- Predefined for you in the Haskell Prelude.

Finding a path

- Need to store the path to each choice from the starting point
- When the goal is reached, the path is right there!

Demonstration

The paths are reversed. The input is clumsy.

Tidying up

```
dfsp2 edges goal start = dfsloop [(a, []) \mid a < - \text{start}]

where dfsloop [] = \text{Nothing}

dfsloop ((c, p): \text{choices})

| \text{goal} == c = \text{Just}(c:p)

| \text{otherwise} = \text{dfsloop}(\text{new} + + \text{choices})

where \text{new} = [(v,c:p) \mid (u,v) < - \text{edges}, u == c]
```

Finding all paths

- When you find one path, don't stop, look for more!
- Put any answers you find in a list.

```
\begin{array}{lll} \mbox{dfspall edges goal start} &= \mbox{dfsloop} \; [(a \ , []) \ | \ a < - \; \mbox{start}] \\ \mbox{where dfsloop} \; [] &= [] \\ \mbox{dfsloop} \; ((c \ , p) : \mbox{choices}) \\ \mbox{| goal } &== c &= (\mbox{Just} \; (c : p)) \; : \; (\mbox{dfsloop} \; \mbox{choices}) \\ \mbox{| otherwise} &= \mbox{dfsloop} \; (\mbox{new} \; + + \; \mbox{choices}) \\ \mbox{| where} \; \mbox{new} &= [\; (v \ , c : p) \; | \; (u \ , v) \; < - \; \mbox{edges}, \; u \; == c] \end{array}
```

Demonstration

```
Main> dfspall [(1,2),(1,3),(1,4),(2,5)] 5 [1]

[Just [5,2,1]]

Main> dfspall [(1,2),(1,3),(1,4),(2,5),(3,5)] 5 [1]

[Just [5,2,1], Just [5,3,1]]

Main> dfspall [(1,2),(1,3),(1,4),(2,5),(3,5)] 1 [5]

[]
```

Breadth first search

- In BFS, explore old nodes first, new nodes later.
- Very simple change!

```
bfspall edges goal start = loop [(a,[]) \mid a < - \text{start}]
where loop [] = []
loop ((c,p): \text{choices})
\mid \text{goal} == c = (\text{Just } (c:p)) : (\text{loop choices})
\mid \text{otherwise} = \text{loop } (\text{choices} + + \text{new})
where \text{new} = [(v,c:p) \mid (u,v) < - \text{edges}, u == c]
```

Infinite Lists

- Because of lazy evaluation, list comprehensions can specify infinitely long lists
- You can write expressions that are lazy, and do not require the entire list to be constructed first
- Such functions process the list, one by one, and just keep going
- Much like a while(true) loop in C or Java
- The simplest infinite list is constructed by

```
\begin{array}{ll} \text{ifny } :: & [\textbf{Integer}] \\ \text{ifny } &= [1 \ ..] \end{array}
```

This is a comprehension with no end point

The function iterate

Defined in Haskell:

```
iterate f \times = x: iterate f (f \times)
```

- Can create infinite lists which are based on a given function
- Examples:

```
Main> iterate (+1) 0  [0,1,2,3,4,5,6,7,8,9,\{ \text{ Interrupted !} \}  Main> take 10 (iterate (\ \times -> \times + \times) 2) [2,4,8,16,32,64,128,256,512,1024]
```

What good are infinite lists?

- Any use of an infinite list could be replaced by an expression that specifies the number of items exactly
- But specifying the number ties the use of the data to the data itself
- Because of lazy evaluation, we can separate the use from the context:
 - A lazy generator builds the elements
 - A lazy function consumes them one by one until finished

What good are infinite lists? (II)

- Application: random number generator
 - set up an infinite list of random numbers
 - they are generated one by one as needed
 - without an explicit loop
- Application: File I/O
 - treat the file as a string of unknown length
 - substrings and characters can be read from the stream
 - a file is (usually finite) but treating as an infinite list simplifies the model
 - (this is what most languages' file I/O does anyway)
- Application: GUI events:
 - treat the sequence of events as a list of unknown length
 - treat each element one by one

What good are infinite lists? (III)

- Application: Implementing non-deterministic programs
 - for problems solved by search
 - treat the search space as a list of possibilities to try
 - future choices appear later in the list
 - How long is it?
 - Unknown, just generate one possibility at a time
- In general, an infinite list represents a stream of data whose length is unknown. Being able to model this data as a list "generated" one at a time is a very flexible approach to solving many kinds of problems.

A simple example: Prime numbers

- We can combine functions and comprehensions in many ways
- Consider the list of all prime numbers:

```
primes :: [Integer]
primes = [ \times | \times <- [2 ..], isAprime \times]
```

- Simple enough, requires suitable definition for isAprime
- What is a prime number? No divisor except 1 and itself

```
isAprime :: Integer -> Bool
isAprime x = nodivisor x [2 ... x-1]
where nodivisor _{-}[] = True
nodivisor x (y:ys) = not (x 'mod' y == 0)
&& nodivisor x ys
```

Very simple, but does too much work

The Sieve of Eratosthenes

Sieve the twos, and sieve the threes The Sieve of Eratosthenes When the multiples sublime The numbers that are left are prime!

- Build a list of primes by removing non-primes
 - 1. Start with all integers [2 ..]
 - 2. Keep the 2
 - 3. Remove every number greater than 2 but divisible by 2
 - 4. The next number is prime: 3 (keep it)
 - 5. Remove every number divisible by 3
 - 6. The next number is 5 (because 4 was eliminated), keep it
 - 7. remove all numbers divisible by 5
 - 8. ...
- Using lazy evaluation, we will build the list one by one
- Each prime number found causes other numbers to be eliminated


```
primes :: [Integer]
primes =
```

Where to start? The first prime number is 2

```
primes :: [Integer]

primes = 2:
```

Generate a list of numbers not divisible by 2

```
primes :: [Integer]
```

Getting there... Now eliminate factors of 3...

Let's redesign.

```
primes :: [Integer]

primes = sieve [2 ..]

sieve :: [Integer] -> [Integer]

sieve (x:xs) =
```

The relationship here is: keep x, remove multiples of x from xs

```
primes :: [Integer]

primes = sieve [2 ..]

sieve :: [Integer] -> [Integer]

sieve (x:xs) = x :
```

Keep x

```
primes :: [Integer]

primes = sieve [2 ..]

sieve :: [Integer] -> [Integer]

sieve (x:xs) = x : [y | y <- xs, y 'mod' x /= 0]
```

Eliminate multiples of x from xs but, then eliminate multiples of the first y. How?

```
primes :: [Integer]

primes = sieve [2 ..]

sieve :: [Integer] -> [Integer]

sieve (x:xs) = x : sieve [y | y <- xs, y 'mod' x /= 0]
```

Sieve the tail!

Notes

- sieve has no base case.
- primes is an infinite list
- We can ask for any subset, using take or takeWhile

```
Main> take 5 primes [2,3,5,7,11]
```

```
Main> takeWhile (<25) primes [2,3,5,7,11,13,17,19,23]
```

- Only as many primes as necessary are computed (lazy)
- Each number i is only divided by prime numbers once (efficient)