Guía 3: ejercicios

Ejercicio 1

Los únicos posibles reticulados par cuyo universo es $\{2,3,4\}$ son aquellos tales que se cumple alguna de las siguientes:

- 2 ≤ 3 ≤ 4
- 2 ≤ 4 ≤ 3
- $3 \le 2 \le 4$
- 3 ≤ 4 ≤ 2
- 4 < 2 < 3
- $4 \le 3 \le 2$

Agregando, obvio, las relaciones reflexivas $2 \le 2, 3 \le 3, 4 \le 4$.

Ejercicio 2

Trivial. Notemos que en este ejercicio se cumple que $\forall A, B \in \mathcal{P}(\omega), sup(\{A, B\}) = A \cup B$ e $inf(\{A, B\}) = A \cap B$.

Ejercicio 2,5

Su mínimo sí existe y es 1. Respecto al máximo, este no tiene.

Sin embargo, cumple con el hecho de ser reticulado par porque $\forall a,b \in \mathbb{N}, sup(\{a,b\}) = mcm(a,b) \wedge inf(\{a,b\}) = mcd(a,b)$, los cuales pertenecen al universo \mathbb{N} .

Ejercicio 3

El item A es trivial y el B sale del primero dado que todo par de elementos del universo tiene un orden, por lo que su supremo está definido y existe.

Ejercicio 4

Item A

Verdadero. Trivial de ver dado que $\forall a,b \in \{1\}, sup(\{a,b\}) = inf(\{a,b\}) = 1$ por lo que existe.

Item B

Verdadero. Como es un reticulado par, entonces podemos considerar iterativamente tener un elemento $x \in P$ e $y \in S$ de modo que $sup(\{x,y\})$ existe por definición. La iteración comienza con algún $x \in S$, siendo los y siempre distintos en cada "ronda" y siendo el supremo el próximo valor x. Con esto, se ve por inducción que el supremo de S existe (tomando todos los elementos de este conjunto de a pares con el valor actual del supremo calculado).

Item C

Falso. Digamos que tenemos el reticulado par (P, \leq) cuyo diagrama de Hasse es:

Luego, si $S=\{2,3\}$, claramente no se cumple que $(S,\leq \cap S^2)$ sea un reticulado par porque no existe $sup(\{2,3\})$ en S.

Item D

Verdadero. Como $(S, \leq \cap S^2)$ también es un reticulado par, entonces esto significa que dado $a,b \in S$, existe $inf(a,b) \in S$. Luego, extendiendo la definición para P, es trivial notar que $inf(a,b) \in P$ refiere al mismo elemento de S.

Item E

Falso. Notar que como $\mathbb N$ no es un elemento del universo, entonces las cotas superiores de $\{\mathbb N-\{1\},\{1\}\}\}$ son $\mathbb N\cup\{x\}:x\in\mathbb R-\mathbb N$, y tales que no tienen relación entre sí según \subseteq . Luego, es claro que no hay ninguna de estas cotas superiores que sea el supremo de $\{\mathbb N-\{1\},\{1\}\}\}$ por lo que no se cumple con la definición de reticulado par.

Ejercicio 5

mcm y mcd respectivamente para s, i.

Ejercicio 6

 \cup y \cap respectivamente para s, i

Ejercicio 7

Trivial viendo que s=mcm y que i=mcd. El diagrama de Hasse de (D_{60},\leq_{60}) es el siguiente:

Ejercicio 8

No. Un ejemplo es $inf(\{\{1,2,3\},\{2,3,4\}\})=\{2,3\}$ pero que no cumple si $P=\{\{1,2,3\},\{2,3,4\},\{2\}\}$ dado que el ínfimo, en este caso, sería $\{2\}$.

Ejercicio 9

No. Análogo al ejercicio 8.

Ejercicio 10

Supongamos que m no es un elemento máximo de (P, \leq) pero sí maximal. Luego, existe $m' \in P$ que también es maximal. Por definición de reticulado par tenemos que $sup(\{m,m'\})$ existe, por lo que o bien $m \leq m'$ o $m' \leq m$, por lo que se llega a un absurdo que vino de suponer que hay más de un maximal. Finalmente, al ser único este maximal, es el máximo del reticulado par. \blacksquare

Respecto a si se puede debilitar la hipótesis para que esto siga siendo verdadero, la respuesta es *no*. Lo único que se puede hacer es cambiarla por que sea un conjunto totalmente ordenado, donde también cumple esta propiedad.

Ejercicio 11

Item 1

Queremos demostrar que $x \le x \ s \ y \ \forall x, y \in L$.

Sean $a, b \in L$, tenemos por def. que $a \ s \ b = sup(\{a, b\})$, por lo que por def. de supremo, $a \ s \ b$ es cota superior de $\{a, b\}$. Luego, por def. de cota superior, $a \le a \ s \ b$

Item 2

Queremos demostrar que x i $y \le x \ \forall x, y \in L$.

Sean $a, b \in L$, tenemos por def. que $a \ i \ b = inf(\{a, b\})$, por lo que por def. de ínfimo, $a \ i \ b$ es cota inferior de $\{a, b\}$. Luego, por def. de cota inferior, $a \ i \ b \le a$

Item 3

Queremos demostrar que x s x = x $\forall x \in L$.

Sea $a \in L$, por def. de s tenemos que a s $a = sup(\{a, a\}) = sup(\{a\})$. Luego, es claro que a es cota superior de $\{a\}$ y que si z es cota superior de $\{a\}$, entonces $z \ge a$, por lo que $a = sup(\{a\})$. Luego, esto demuestra que a s a = a \blacksquare .

Item 4

Queremos demostrar que x i x = x $\forall x \in L$.

Sea $a \in L$, por def. de i tenemos que a i $a = inf(\{a,a\}) = inf(\{a\})$. Luego, es claro que a es cota inferior de $\{a\}$ y que si z es cota inferior de $\{a\}$, entonces $z \le a$, por lo que $a = inf(\{a\})$. Luego, esto demuestra que a i a = a.

Item 5

Queremos demostrar que x s y = y s x $\forall x, y \in L$.

Sean $a,b\in L$, es sencillo notar que, por def. de $s,\,x\,s\,y=sup(\{x,y\})$ y que $y\,s\,x=sup(\{y,x\})=sup(\{x,y\})$. Luego, $x\,s\,y=y\,s\,x$

Item 6

Queremos demostrar que x i y = y i x $\forall x, y \in L$.

Sean $a,b \in L$, es sencillo notar que, por def. de $i, x i y = inf(\{x,y\})$ y que $y i x = inf(\{y,x\}) = inf(\{x,y\})$. Luego, $x i y = y i x \blacksquare$.

Ejercicio 12

Queremos demostrar el lema que dice: dado un reticulado par (L, \leq) , se tiene que:

```
1. x \leq y \iff x \ s \ y = y \ orall x, y \in L
```

2.
$$x \leq y \iff x \ i \ y = x \ \forall x, y \in L$$

Item 1

Veamos los dos casos:

- Caso \Rightarrow : Sean $a, b \in L : a \leq b$, entonces es claro que por def. b es cota superior de $\{a, b\}$. Luego, como toda otra cota superior z debe cumplir que $b \leq z$, entonces b es el supremo de $\{a, b\}$, es decir, $a \circ b = b \blacksquare$.
- Caso \Leftarrow : Sean $a, b \in L$: $a \ s \ b = b$, entonces por def., $b = sup(\{a, b\})$, por lo que por def. de supremo, b es cota superior de $\{a, b\}$. Luego, esto significa que $a \le b \blacksquare$.

Con ello, se demuestra el sii ■.

Item 2

Veamos los dos casos:

- Caso \Rightarrow : Sean $a, b \in L : a \leq b$, entonces es claro que por def. a es cota inferior de $\{a, b\}$. Luego, como toda otra cota inferior z debe cumplir que $z \leq a$, entonces a es el ínfimo de $\{a, b\}$, es decir, a i b = a.
- Caso \Leftarrow : Sean $a,b \in L$: a i b=a, entonces por def., $a=inf(\{a,b\})$, por lo que por def. de ínfimo, a es cota inferior de $\{a,b\}$. Luego, esto significa que $a \leq b$

Con ello, se demuestra el sii ■.

Ejercicio 13

Queremos demostrar que dado el reticulado par (L, \leq) se tiene que:

```
1. x s (x i y) = x \forall x, y \in L
```

```
2. x i (x s y) = x \forall x, y \in L
```

Item 1

Sean $a, b \in L$, por lema 1 tenemos que $a \ i \ b \le a$, por lo que por lema 2, $(a \ i \ b) \ s \ a = a \blacksquare$.

Item 2

Sean $a, b \in L$, por lema 1 tenemos que $a \le a \ s \ b$, por lo que por lema 2, $a \ i \ (a \ s \ b) = a \ \blacksquare$.

Ejercicio 14

- Regla de Igualdad en Posets: si $x \le y$ e $y \le x$, entonces claramente x = y dado que ni x < y ni y < x.
- Regla Superar un Supremo: si $z \ge x$ y $z \ge y$, entonces z es por def. cota superior de $\{x,y\}$. Luego, por def. de supremo, $z \ge sup(\{x,y\})$. Finalmente, por def. de $s, z \ge x s y$
- Regla Ser Menor o Igual que un Ínfimo: si $z \le x$ y $z \le y$, entonces por def. z es cota inferior de $\{x,y\}$. Luego, por definición de ínfimo, $z \le inf(\{x,y\})$. Finalmente, por def. de $i, z \le x$ i y.

Ejercicio 14,5

Queremos demostrar que dado un reticulado par (L, \leq) , se tiene que:

```
1. (x\ s\ y)\ s\ z = x\ s\ (y\ s\ z)\ orall x,y,z\in L
```

2.
$$(x\ i\ y)\ i\ z = x\ i\ (y\ i\ z)\ \forall x,y,z\in L$$

Las dos demostraciones son totalmente análogas. Vamos a demostrar el primer punto.

En la guía dos, específicamente en el ejercicio 14.5, demostramos el siguiente lema: Sea (P, \leq) un poset, sea $S \subseteq P$ y sea $b \in P$, si a = sup(S) y existe $sup(\{a,b\})$, entonces $sup(S \cup \{b\}) = sup(\{a,b\})$.

Teniendo esto en cuenta, y como todos los supremos existen en un reticulado par, tenemos que ver que:

$$(x\ s\ y)\ s\ z \overset{def.\ s}{=} \sup_{ej.\ 14.5} \sup(\{sup(\{x,y\}),z\}) \ = \sup(\{x,y,z\})$$

$$egin{array}{ll} x \ s \ (y \ s \ z) & \stackrel{def. \ s}{=} sup(\{x, sup(\{y, z\})\}) \ & \stackrel{ej. \ 14.5}{=} sup(\{x, y, z\}) \end{array}$$

Gracias a lo cual llegamos a que $(x s y) s z = x s (y s z) \blacksquare$.

Ejercicio 15

Queremos demostrar el lema que dice que: Dado un reticulado par (L, \leq) , se tiene que:

1.
$$x \leq z \land y \leq w \Rightarrow x \ s \ y \leq z \ s \ w \ orall x, y, z, w \in L$$

2.
$$x \leq z \land y \leq w \Rightarrow x \ i \ y \leq z \ i \ w \ \forall x, y, z, w \in L$$

Veamos cada item por separado.

Item 1

Sean $x,y,z,w\in L$. Notemos que como $x\leq z\wedge y\leq w$, entonces por lema 1 tenemos que $x\leq z\leq z$ s $w\wedge y\leq w\leq z$ s w, por lo que z s w es cota superior de $\{x,y\}$, por lo que por def. de supremo tenemos que z s $w\geq sup(\{x,y\})$. Luego, por def. de s, llegamos a que x s $y\leq z$ s w \blacksquare .

Item 2

Sean $x, y, z, w \in L$. Notemos que como $x \le z \land y \le w$, entonces por lema 1 tenemos que $x \ i \ y \le x \le z \land x \ i \ y \le y \le w$, por lo que $x \ i \ y$ es cota inferior de $\{z, w\}$, por lo que por def. de ínfimo tenemos que $x \ i \ y \le i \ nf(\{z, w\})$. Luego, por def. de i, llegamos a que $x \ i \ y \le z \ i \ w$.

Ejercicio 16

Queremos demostrar el lema que dice que: Dado un reticulado par (L, \leq) se tiene que $(x\ i\ y)\ s\ (x\ i\ z) \leq x\ i\ (y\ s\ z)\ \forall x,y,z \in L.$

Para ello, consideremos $a, b, c \in L$. Luego, notemos que:

- Como $a \le a \land b \le b \ s \ c$ (por lema 1), entonces por lema 5, $a \ i \ b \le a \ i \ (b \ s \ c)$
- Como $a \le a \land c \le b \ s \ c$ (por lema 1), entonces por lema 5, $a \ i \ c \le a \ i \ (b \ s \ c)$

Ahora, esto significa, por def. de cota superior, que a~i~(b~s~c) es cota superior de $\{a~i~b,a~i~c\}$. Luego, por def. de supremo, esto significa que $sup(\{a~i~b,a~i~c\}) \leq a~i~(b~s~c)$. Finalmente,

por def. de s, tenemos que $(a\ i\ b)\ s\ (a\ i\ c) \leq a\ i\ (b\ s\ c)$

Ejercicio 17

Sale directamente del lema demostrado en el ejercicio 14,5 de la guía anterior.

Ejercicio 18

Regla Igualar un Supremo: Si ud. está intentando probar que en un poset (P, \leq) se da que x = sup(S) desdoble su tarea en las dos tareas siguientes:

- 1. x es cota superior de S
- 2. $x \le z \, \forall z$ cota superior de S

Ejercicio 19

No lo voy a hacer.