A Macroeconomic Model for Dynamic Scoring *

Richard W. Evans[†]

Evan Magnusson[‡] Isaac Swift[¶] Kerk L. Phillips§

July 2014

(version 14.07.a)

Abstract

Put abstract here.

keywords: Put keywords here.

JEL classification: Put JEL codes here.

^{*}Put thanks here.

 $^{^{\}dagger}$ Brigham Young University, Department of Economics, 167 FOB, Provo, Utah 84602, (801) 422-8303, revans@byu.edu.

 $^{^{\}ddagger} Brigham$ Young University, Department of Economics, 163 FOB, Provo, Utah 84602, evan-mag42@gmail.com.

[§]Brigham Young University, Department of Economics, 166 FOB, Provo, Utah 84602, (801) 422-5928, kerk_phillips@byu.edu.

[¶]Brigham Young University, Department of Economics, 163 FOB, Provo, Utah 84602, isaacdswift@gmail.com.

1 Introduction

Put introduction here.

2 Model

Model intro here.

2.1 Individual problem

A measure 1/S of individuals with heterogeneous working ability $e \in \mathcal{E} \subset \mathbb{R}_{++}$ is born in each period t and live for $S \geq 3$ periods. Their working ability evolves over their lifetime according to an age-dependent deterministic process. At birth, a fraction 1/J of the 1/S measure of new agents are randomly assigned to one of J ability types indexed by j = 1, 2, ...J. Once ability type is determined, that measure 1/(SJ) of individuals' ability evolves deterministically according to $e_j(s)$. We calibrate the matrix of lifetime ability paths $e_j(s)$ for all types j using CPS hourly wage by age distribution data.¹

Individuals are endowed with a measure of time in each period t that they supply inelastically to the labor market. Let s represent the periods that an individual has been alive. The fixed labor supply in each period t by each age-s individual is denoted by l(s).

At time t, all generation s agents with ability $e_j(s)$ know the real wage rate w_t and know the one-period real net interest rate $r_t - \delta$ on bond holdings $b_{j,s,t}$ that mature at the beginning of period t. For ease of notation, we subtract the depreciation rate δ from the net interest rate r_t to represent the fact that any depreciation is passed through directly from firms to households. In each period t, age-s agents with working ability e choose how much to consume $c_{j,s,t}$ and how much to save for the next period by loaning capital to firms in the form of a one-period bond $b_{j,s+1,t+1}$ in order to

¹Appendix A-1 gives a detailed description of the calibration of the deterministic ability process by age s and type j, as well as alternative specifications and calibrations.

maximize expected lifetime utility of the following form,

$$U_{j,s,t} = \sum_{v=0}^{S-s} \beta^{u} u \left(c_{j,s+u,t+u} \right) \quad \text{where} \quad u \left(c_{j,s,t} \right) = \frac{\left(c_{j,s,t} \right)^{1-\sigma} - 1}{1-\sigma} \quad \forall j, s, t$$
 (1)

where u(c) is a constant relative risk aversion utility function, $\sigma \geq 1$ is the coefficient of relative risk aversion, and $\beta \in (0,1)$ is the agent's discount factor.

Because agents are born without any bonds maturing and because they purchase no bonds in the last period of life s = S, the per-period budget constraints for each agent normalized by the price of consumption are the following,

$$w_t e_j(s) l(s) \ge c_{j,s,t} + b_{j,s+1,t+1}$$
 for $s = 1$ $\forall j, t$ (2)

$$(1 + r_t - \delta) b_{j,s,t} + w_t e_j(s) l(s) \ge c_{j,s,t} + b_{j,s+1,t+1}$$
 for $2 \le s \le S - 1$ $\forall j,t$ (3)

$$(1 + r_t - \delta) b_{j,s,t} + w_t e_j(s) l(s) \ge c_{j,s,t} \qquad \text{for} \quad s = S \qquad \forall j, t \quad (4)$$

In addition to the budget constraints in each period, the utility function imposes nonnegative consumption through inifinite marginal utility. We allow the possibility for individual agents to borrow $b_{j,s,t} < 0$ for some j and s in period t. However, the borrowing must satisfy a series of individual feasibility constraints as well as a strict constraint that the aggregate capital stock $K_t > 0$ be positive in every period.²

We next describe the Euler equations that govern the choices of consumption $c_{j,s,t}$ and savings $b_{j,s+1,t+1}$ by household of age s and ability $e_j(s)$ in each period t. We work backward from the last period of life s = S. Because households do not save in the last period of life $b_{j,s+1,t+1} = 0$ due to our assumption of no bequest motive, the household's final-period maximization problem is given by the following.

$$\max_{c_{j,S,t}} \frac{(c_{j,S,t})^{1-\sigma} - 1}{1-\sigma} \quad \text{s.t.} \quad (1 + r_t - \delta) \, b_{j,S,t} + w_t e_j(S) l(S) \ge c_{j,S,t} \quad \forall t$$
 (5)

Because u(c) is monotonically increasing in c, the s=S problem (5) is simply to choose the maximum amount of consumption possible. The household trivially con-

²We describe these constraints in detail in Appendix A-2.

sumes all of its income in the last period of life.

$$c_{j,S,t} = (1 + r_t - \delta) b_{j,S,t} + w_t e_j(S) l(S) \quad \forall t$$
 (6)

In general, maximizing (1) with respect to (2), (3), (4), and the implied individual and aggregate borrowing constraints gives the following set of S-1 intertemporal Euler equations.

$$(c_{j,s,t})^{-\sigma} = \beta (1 + r_{t+1} - \delta) (c_{j,s+1,t+1})^{-\sigma}$$

for $1 < s < S - 1$, $\forall t$

Note from (3) that $c_{j,s,t}$ in (7) depends on the household's age s, his ability $e_j(s)$, and the initial wealth with which the household entered the period $b_{j,s,t}$.

2.2 Firm problem

A unit measure of identical, perfectly competitive firms exist in this economy. The representative firm is characterized by the following Cobb-Douglas production technology,

$$Y_t = AK_t^{\alpha} L_t^{1-\alpha} \quad \forall t \tag{8}$$

where A is the fixed technology process and $\alpha \in (0, 1)$ and L_t is measured in efficiency units of labor. The interest rate r_t in the cost function is a gross real interest rate because depreciation is paid by the households. The real profit function of the firm is the following.

Real Profits =
$$AK_t^{\alpha}L_t^{1-\alpha} - r_tK_t - w_tL_t$$
 (9)

Profit maximization results in the real wage w_t and the real rental rate of capital r_t being determined by the marginal products of labor and capital, respectively.

$$w_t = (1 - \alpha) \frac{Y_t}{L_t} \quad \forall t \tag{10}$$

$$r_t = \alpha \frac{Y_t}{K_t} \qquad \forall t \tag{11}$$

2.3 Market clearing and equilibrium

Labor market clearing requires that aggregate labor demand L_t measured in efficiency units equal the sum of individual efficiency labor supplied $e_j sl(s)$. The supply side of market clearing in the labor market is trivial because household labor is supplied inelastically. Capital market clearing requires that aggregate capital demand K_t equal the sum of capital investment by households $b_{j,s,t}$. Aggregate consumption C_t is defined in (14), and investment is defined by the standard Y = C + I constraint as shown in (15).

$$L_t = \frac{1}{SJ} \sum_{s=1}^{S} \sum_{j=1}^{J} e_j(s) l(s) \quad \forall t$$
 (12)

$$K_t = \frac{1}{SJ} \sum_{s=1}^{S} \sum_{j=1}^{J} b_{j,s,t}$$
 $\forall t$ (13)

$$C_t \equiv \frac{1}{SJ} \sum_{s=1}^{S} \sum_{j=1}^{J} c_{j,s,t} \qquad \forall t$$
 (14)

$$Y_t = C_t + K_{t+1} - (1 - \delta)K_t \quad \forall t$$
 (15)

The steady-state equilibrium for this economy is defined as follows.

Definition 1 (Steady-state equilibrium). A non-autarkic steady-state equilibrium in the overlapping generations model with S-period lived agents and heterogeneous ability $e_i(s)$ is defined as a constant distribution of capital

$$\Gamma_t = \bar{\Gamma} = \bar{\gamma}(s, e, b) \quad \forall t,$$

a savings decision rule given beliefs $b' = \phi(s, e, b|\Omega)$, consumption allocations $c_{s,t}$ for all s and t, aggregate firm production Y_t , aggregate labor demand N_t , aggregate capital demand K_t , real wage w_t , and real interest rate r_t for all t such that the following conditions hold:

- i. households optimize according to (??), (??) and (??),
- ii. firms optimize according to (??) and (??),
- iii. markets clear according to (??), (??), and (??),
- iv. and the steady-state distribution $\Gamma_t = \bar{\Gamma}$ is induced by the policy rule $b' = \phi(s, e, b|\Omega)$.

APPENDIX

A-1 Calibration of ability process

Put description of ability process $e_j(s)$ calibration here. Make sure to include careful description of what the data are and where they came from.

A-2 Constraints on individual borrowing

As described in Section 2.1, individuals are allowed to borrow $b_{j,s,t}$ for some j and s in period t. However, two constraints must hold. First, the individual must be able to pay back the balance with interest r_{t+1} in the next period without driving consumption in the next period $c_{j,s+1,t+1}$ to be nonpositive. Let $\bar{b}_{j,s,t}$ be the minimum value of savings in a period.

$$b_{j,s,t} \ge \bar{b}_{j,s,t} \quad \forall j, s, t \tag{A.2.1}$$

Rearranging the bugdet constraints in (2), (3), and (4) and using backward induction gives the following expressions for $\bar{b}_{i,s,t}$,

$$\bar{b}_{j,S,t} = \frac{\varepsilon - w_t e_j(S) l(S)}{1 + r_t - \delta}$$

$$\bar{b}_{j,S-1,t-1} = \frac{\varepsilon + \bar{b}_{j,S,t} - w_{t-1} e_j(S-1) l(S-1)}{1 + r_{t-1} - \delta}$$

$$\vdots$$

$$\bar{b}_{j,2,t-S+2} = \frac{\varepsilon + \bar{b}_{j,3,t-S+3} - w_{t-S+2} e_j(2) l(2)}{1 + r_{t-S+2} - \delta}$$
(A.2.2)

In addition to the individual borrowing constraint (A.2.1), a strict aggregate borrowing constraint must be met. That is, the aggregate capital stock must be strictly positive.

$$K_t > 0 \quad \forall t$$
 (A.2.3)

References

TECHNICAL APPENDIX

T-1 Structures to add to the model and order

- i. Put depreciation on the firm side
- ii. Endogenize labor
- iii. Make sure bond holdings are correct
- iv. Add demographics
- v. Add household tax structures
- vi. Add firm structures