INSURANCE AMOUNT PREDICTION

The insurance dataset contains information about individuals' age, gender, BMI, number of children, smoking status, and region, Medical history, Family medical history, Exercise frequently, occupation, coverage level as well as the associated insurance charges.

- Age: The age of the customer. (Float):
- Gender : Gender of the person (object):
- bmi : Body Mass Index(Float):
- Children: The number of children the customer has. (Integer)
- Smoker: Whether or not the customer is a smoker. (Object) \Box
- Region: The region the customer lives in. (Object)
- Medical history: Medical history of the person(object)
- Family Medical History: Medical History of the family of the person (object)
- exercise_frequency: Wheather the person exercise frequently or not (object)
- Occupation : Job of the person (object)
- . Coverage level: Which level of coverage has he owns like Premium, Standard, Basic (object)
- Charges: The insurance charges for the customer. (Float)

In []:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
df=pd.read_csv('/content/Insurance_Final.csv')
df
```

		age	gender	bmi	children	smoker	region	medical_history	family_medical_history	exercise_frequency	occupa
Ī	0	46.0	male	21.45	5	yes	southeast	Diabetes	NaN	Never	Blue c
	1	25.0	female	25.38	2	yes	northwest	Diabetes	High blood pressure	Occasionally	White c
	2	38.0	male	44.88	2	ves	southwest	NaN	Hiah blood pressure	Occasionally	Blue c

3	age 25.0	gender male	bmi 19.89	children 0	smoker no	region northwest	medical_history NaN	family_medical_history Diabetes	exercise_frequency Rarely	occupa White c
4	49.0	male	38.21	3	yes	northwest	Diabetes	High blood pressure	Rarely	White c
49995	29.0	male	37.91	4	no	northeast	Heart disease	Diabetes	Frequently	Stu
49996	39.0	female	20.57	1	no	northeast	High blood pressure	High blood pressure	Frequently	Blue c
49997	23.0	female	37.22	4	yes	northeast	Heart disease	High blood pressure	Occasionally	Blue c
49998	65.0	male	45.35	0	yes	southwest	NaN	NaN	Occasionally	Unemple
49999	22.0	female	27.26	1	no	southeast	High blood pressure	Diabetes	Frequently	White c

50000 rows × 12 columns

```
In []:
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 12 columns):

#	Column	Non-Ni	ull Count	Dtype						
0	age	49999	non-null	float64						
1	gender	49998	non-null	object						
2	bmi	49999	non-null	float64						
3	children	50000	non-null	int64						
4	smoker	49998	non-null	object						
5	region	49999	non-null	object						
6	medical_history	37498	non-null	object						
7	family_medical_history	37482	non-null	object						
8	exercise_frequency	50000	non-null	object						
9	occupation	49999	non-null	object						
10	coverage_level	49996	non-null	object						
11	charges	49999	non-null	float64						
dtyp	es: float64(3), int64(1)	, obje	ct(8)							
memo	memory usage: 4.6+ MB									

OBSERVATION ON DATASET

• To find the person with highest insurance amount

```
In []:
print(df['charges'].max())
df_max=df.loc[df['charges']==32087.05668627213]
df_max
```

32087.05668627213

Out[]:

	age	gender	bmi	children	smoker	region	medical_history	family_medical_history	exercise_frequency	occupation
31763	36.0	male	42.89	4	yes	northeast	Heart disease	Heart disease	Frequently	Whi coll
4								18		····•

• To find person with lowest insurance amount

```
In [ ]:
```

```
print(df['charges'].min())
```

```
df_max=df.loc[df['charges']==4472.317058132149]
df_max
```

4472.317058132149

Out[]:

age gender bmi children smoker region medical_history family_medical_history exercise_frequency occupation

254 34.0 female 22.69 1 no northwest NaN NaN Never Unemploye

In []:

df.head()

Out[]:

	age	gender	bmi	children	smoker	region	medical_history	family_medical_history	exercise_frequency	occupation
0	46.0	male	21.45	5	yes	southeast	Diabetes	NaN	Never	Blue collar
1	25.0	female	25.38	2	yes	northwest	Diabetes	High blood pressure	Occasionally	White collar
2	38.0	male	44.88	2	yes	southwest	NaN	High blood pressure	Occasionally	Blue collar
3	25.0	male	19.89	0	no	northwest	NaN	Diabetes	Rarely	White collar
4	49.0	male	38.21	3	yes	northwest	Diabetes	High blood pressure	Rarely	White collar
4)

In []:

df.tail()

Out[]:

	age	gender	bmi	children	smoker	region	medical_history	family_medical_history	exercise_frequency	occupa
49995	29.0	male	37.91	4	no	northeast	Heart disease	Diabetes	Frequently	Stu
49996	39.0	female	20.57	1	no	northeast	High blood pressure	High blood pressure	Frequently	Blue c
49997	23.0	female	37.22	4	yes	northeast	Heart disease	High blood pressure	Occasionally	Blue c
49998	65.0	male	45.35	0	yes	southwest	NaN	NaN	Occasionally	Unemple
49999	22.0	female	27.26	1	no	southeast	High blood pressure	Diabetes	Frequently	White c
										<u> </u>

SCATTER PLOT

In []:

x=df.iloc[:,:-1]
x=x.head(50)
x

occupation	exercise_frequency	family_medical_history	medical_history	region	smoker	children	bmi	gender	age	
Blue colla	Never	NaN	Diabetes	southeast	yes	5	21.45	male	46.0	0
White colla	Occasionally	High blood pressure	Diabetes	northwest	yes	2	25.38	female	25.0	1
Blue colla	Occasionally	High blood pressure	NaN	southwest	yes	2	44.88	male	38.0	2
White colla	Rarely	Diabetes	NaN	northwest	no	0	19.89	male	25.0	3

4	49 .8	gender	3 8.12 1	children	smoker	nortingiest	medical history	family hroedical history	exercise_frequency	Whatestile
5	55.0	female	36.41	0	yes	northeast	NaN	NaN	Never	Studen
6	64.0	female	20.12	2	no	northeast	High blood pressure	High blood pressure	Never	Blue colla
7	53.0	male	30.51	4	no	southeast	Heart disease	High blood pressure	Rarely	Studen
8	40.0	female	44.93	2	yes	northeast	NaN	Diabetes	Occasionally	Unemployed
9	22.0	female	32.13	5	yes	northeast	Diabetes	NaN	Never	Studen
10	21.0	male	42.08	1	yes	northwest	NaN	Diabetes	Rarely	Studen
11	45.0	female	39.68	1	no	northwest	High blood pressure	High blood pressure	Occasionally	Blue colla
12	56.0	female	44.86	0	yes	northwest	NaN	Heart disease	Rarely	Unemployed
13	55.0	male	39.95	5	yes	southeast	High blood pressure	High blood pressure	Frequently	Studen
14	24.0	female	48.98	5	yes	southwest	Diabetes	High blood pressure	Rarely	White colla
15	36.0	male	39.17	2	yes	southwest	High blood pressure	NaN	Occasionally	Studen
16	45.0	female	43.77	4	yes	northwest	Diabetes	Heart disease	Never	Unemployed
17	32.0	female	45.46	2	yes	southeast	NaN	High blood pressure	Occasionally	Blue colla
18	30.0	male	24.69	0	yes	southeast	NaN	Diabetes	Frequently	White colla
19	46.0	female	31.27	1	no	southwest	NaN	Diabetes	Frequently	Unemployed
20	25.0	male	39.82	3	no	northwest	Diabetes	NaN	Occasionally	White colla
21	64.0	female	29.31	2	no	northeast	High blood pressure	NaN	Frequently	Unemployed
22	65.0	female	31.11	5	yes	southeast	High blood pressure	Diabetes	Never	White colla
23	25.0	male	22.15	4	no	northwest	Diabetes	NaN	Occasionally	Unemployed
24	35.0	male	46.83	1	yes	southwest	Diabetes	High blood pressure	Frequently	White colla
25	60.0	female	23.83	2	no	northwest	Heart disease	NaN	Rarely	Studen
26	65.0	female		4	yes	southwest	Heart disease	High blood pressure	Never	Studen
27	26.0	male	27.74	0	yes	southwest	NaN	NaN	Never	White colla
28	43.0	female	26.46	0	yes	southwest	High blood pressure	Heart disease	Occasionally	White colla
29	33.0	female	30.75	1	no	southwest	High blood pressure	Diabetes	Never	White colla
30	44.0	male	41.15	4	no	northwest	Heart disease	High blood pressure	Occasionally	White colla
31	19.0	male	30.97	4	no	northeast	High blood pressure	Diabetes	Frequently	Studen
32	55.0	male	47.62	3	yes	northeast	Diabetes	Diabetes	Occasionally	White colla
33	41.0	male	48.97	4	yes	northeast	High blood pressure	Heart disease	Never	White colla
34	41.0	female	43.83	2	no	northeast	Diabetes	Heart disease	Frequently	White colla
35	38.0	female	25.90	4	yes	southwest	NaN	Diabetes	Frequently	Studen
36	22.0	male	35.34	5	no	southwest	High blood pressure	Heart disease	Occasionally	Blue colla
37	26.0	female	45.06	2	no	southeast	NaN	Diabetes	Frequently	Unemployed
38	26.0	female	35.78	4	no	southwest	High blood pressure	High blood pressure	Rarely	Unemployed
39	42.0	male	40.54	0	yes	northwest	High blood pressure	High blood pressure	Occasionally	Blue colla
40	44.0	female	24.01	1	no	northwest	Diabetes	Diabetes	Never	Studen

41	@ge	gendae	4 4/m 4	childreß	smoker	sou thgion	medicar history pressure	family_medical_distory	exercis@cfr asjuently	Watepatita
42	38.0	male	46.70	5	no	southeast	NaN	High blood pressure	Frequently	Blue colla
43	65.0	male	23.19	1	no	southeast	High blood pressure	NaN	Frequently	Studen
44	19.0	male	22.52	1	no	southeast	Diabetes	High blood pressure	Rarely	Studen
45	35.0	male	49.01	4	no	northwest	Heart disease	NaN	Never	Unemployed
46	23.0	male	38.53	2	yes	southeast	Heart disease	Heart disease	Never	Unemployed
47	31.0	male	30.40	3	no	southeast	High blood pressure	Heart disease	Frequently	Blue colla
48	46.0	female	49.42	1	yes	northeast	High blood pressure	Diabetes	Rarely	Blue colla
49	56.0	male	40.31	2	yes	northwest	Heart disease	High blood pressure	Occasionally	Unemployed

In []:

4

```
y=df.iloc[:,-1]
y=y.head(50)
y
```

Out[]:

```
0
      20460.307669
      20390.899218
1
2
      20204.476302
3
      11789.029843
4
      19268.309838
5
      11896.836613
6
       9563.655011
7
      15845.293730
8
      14036.544129
9
      13669.577830
      18996.131561
10
11
      14892.145930
12
      17740.278300
13
      16972.489611
14
      16243.133212
15
      13683.049130
      18334.599389
16
17
      14174.328774
      18455.147694
18
      13775.765035
19
      11014.284341
20
21
       9414.800786
22
      21821.940055
23
       8327.544962
24
      20364.433860
25
      16140.478462
26
      23176.908664
      11621.388689
27
      18725.811332
28
      14536.912975
29
30
      16161.137819
31
      12623.384578
32
      21609.957520
33
      23529.766655
      17183.601696
34
35
      17034.559108
36
      14743.157943
37
      14922.198081
38
       9943.371682
      17637.797647
39
40
       8713.333376
41
      15075.217324
42
      14399.173901
43
      11050.255459
```

лл

0401 410110

```
44 9421.413112

45 14612.231337

46 21195.320075

47 15853.048501

48 18121.971216

49 24275.473776

Name: charges, dtype: float64
```

In []:

```
sns.regplot(x=x['age'], y=y, marker='h', color='r')
```

Out[]:

<Axes: xlabel='age', ylabel='charges'>

In []:

```
sns.regplot(x=x['bmi'], y=y, color='g', marker='h')
```

Out[]:

<Axes: xlabel='bmi', ylabel='charges'>


```
20 25 30 35 40 45 50
bmi
```

```
In [ ]:
```

```
sns.regplot(x=x['children'], y=y, color='k', marker='h')
```

Out[]:

<Axes: xlabel='children', ylabel='charges'>

In []:

```
df.isna().sum()
```

Out[]:

```
1
age
                                 2
gender
                                 1
bmi
                                 0
children
                                 2
smoker
region
                                 1
medical history
                             12502
                             12518
family medical history
exercise frequency
                                 0
                                 1
occupation
coverage_level
                                 4
                                 1
charges
dtype: int64
```

FILLING MISSING VALUES

In []:

```
df['age']=df['age'].fillna(df['age'].mean())
df['gender']=df['gender'].fillna(df['gender'].mode() [0])
df['bmi']=df['bmi'].fillna(df['bmi'].mean())
df['smoker']=df['smoker'].fillna(df['smoker'].mode() [0])
df['region']=df['region'].fillna(df['region'].mode() [0])
df['medical_history']=df['medical_history'].fillna(df['medical_history'].mode() [0])
df['family_medical_history']=df['family_medical_history'].fillna(df['family_medical_history'].mode() [0])
df['occupation']=df['occupation'].fillna(df['occupation'].mode() [0])
```

```
df['coverage_level']=df['coverage_level'].fillna(df['coverage_level'].mode() [0])
df['charges']=df['charges'].fillna(df['charges'].mode() [0])
```

VISUALIZATION

CHECKING FOR CHITLAVERS

```
In [ ]:
lst=['gender','smoker','region','medical_history','family_medical_history','exercise_freq
uency','occupation','coverage_level']
for col in 1st:
    fig=px.pie(df,names=col,title=f'Pie chart of {col}')
    fig.show()
Output hidden; open in https://colab.research.google.com to view.
In [ ]:
lst1=['gender','smoker','region','medical history','family medical history','exercise fre
quency', 'occupation', 'coverage level']
for i in lst1:
  print(i, df[i].unique())
gender ['male' 'female']
smoker ['yes' 'no']
region ['southeast' 'northwest' 'southwest' 'northeast']
medical history ['Diabetes' 'High blood pressure' 'Heart disease']
family medical history ['Diabetes' 'High blood pressure' 'Heart disease']
exercise_frequency ['Never' 'Occasionally' 'Rarely' 'Frequently']
occupation ['Blue collar' 'White collar' 'Student' 'Unemployed']
coverage_level ['Premium' 'Standard' 'Basic']
In [ ]:
df.dtypes
Out[]:
                          float64
age
gender
                           object
bmi
                           float64
children
                            int64
smoker
                           object
region
                           object
medical history
                           object
family_medical history
                          object
exercise frequency
                           object
occupation
                           object
coverage level
                           object
charges
                          float64
dtype: object
In [ ]:
df.dtypes
Out[]:
                          float64
age
gender
                           object
bmi
                          float64
children
                            int64
smoker
                           object
region
                           object
medical history
                           object
family medical history
                           object
exercise frequency
                           object
occupation
                           object
coverage level
                           object
                          float64
charges
dtype: object
```

```
In [ ]:
```

```
for i in['age', 'bmi', 'children']:
  plt.figure(figsize=(6,6))
  sns.boxplot(df[i],color='blue')
  plt.xlabel(i)
  plt.ylabel('Range')
```


LABEL ENCODING

```
In [ ]:
```

```
from sklearn.preprocessing import LabelEncoder
lb=LabelEncoder()
df['gender']=lb.fit_transform(df['gender'])
df['smoker']=lb.fit_transform(df['smoker'])
df['region']=lb.fit_transform(df['region'])
df['medical_history']=lb.fit_transform(df['medical_history'])
df['family_medical_history']=lb.fit_transform(df['family_medical_history'])
df['exercise_frequency']=lb.fit_transform(df['exercise_frequency'])
df['occupation']=lb.fit_transform(df['occupation'])
df['coverage_level']=lb.fit_transform(df['coverage_level'])
```

In []:

```
df.dtypes
```

Out[]:

```
age
                             float64
gender
                               int64
bmi
                             float64
children
                               int64
smoker
                               int64
                               int64
region
medical history
                               int64
{\tt family\_medical\_history}
                               int64
exercise frequency
                               int64
                               int64
occupation
coverage level
                               int64
charges
                             float64
dtype: object
```

In []:

```
df.corr()
```

	age	gender	bmi	children	smoker	region	medical_history	family_medical_history	ех
age	1.000000	0.002018	0.003922	0.005598	0.001661	0.001994	0.003179	0.002511	
gender	0.002018	1.000000	- 0.007656	0.003792	0.000379	0.000945	0.003729	0.004335	
bmi	0.003922	0.007656	1.000000	0.000985	0.004712	0.000494	-0.004723	0.003979	
children	- 0.005598	0.003792	0.000985	1.000000	0.002281	- 0.003815	0.003419	0.003825	
smoker	- 0.001661	0.000379	- 0.004712	0.002281	1.000000	0.007702	-0.004768	-0.001839	
region	0.001994	0.000945	0.000494	0.003815	0.007702	1.000000	0.002917	0.006080	
medical_history	0.003179	0.003729	0.004723	0.003419	0.004768	0.002917	1.000000	-0.000393	
family_medical_history	0.002511	0.004335	0.003979	0.003825	0.001839	0.006080	-0.000393	1.000000	
exercise_frequency	0.000935	0.008181	0.004406	0.002725	0.005001	0.000743	0.000687	0.003076	
occupation	0.001015	0.000977	0.005779	0.007962	0.000281	0.001285	-0.001140	-0.000263	
coverage_level	- 0.001558	0.007594	0.009787	0.002808	0.001280	0.003920	-0.005529	-0.004174	
charges	0.057656	0.116691	0.101623	0.070588	0.564261	0.059501	-0.204960	0.065676	
[4]						1			Þ

CORELATION

In []:

```
plt.figure(figsize=(20,10))
sns.heatmap(df.corr(),annot=True)
plt.show()
```


- 0.8

- 0.6

0.4

- 0.2

Τœ

```
In [ ]:
```

```
df_corr=df.corr()
df_corr
```

Out[]:

	age	gender	bmi	children	smoker	region	medical_history	family_medical_history	ех
age	1.000000	0.002018	0.003922	0.005598	0.001661	0.001994	0.003179	0.002511	
gender	0.002018	1.000000	0.007656	0.003792	0.000379	0.000945	0.003729	0.004335	
bmi	0.003922	0.007656	1.000000	0.000985	0.004712	0.000494	-0.004723	0.003979	
children	0.005598	0.003792	0.000985	1.000000	0.002281	0.003815	0.003419	0.003825	
smoker	- 0.001661	0.000379	- 0.004712	0.002281	1.000000	0.007702	-0.004768	-0.001839	
region	0.001994	0.000945	0.000494	0.003815	0.007702	1.000000	0.002917	0.006080	
medical_history	0.003179	0.003729	0.004723	0.003419	0.004768	0.002917	1.000000	-0.000393	
family_medical_history	0.002511	0.004335	0.003979	0.003825	0.001839	0.006080	-0.000393	1.000000	
exercise_frequency	0.000935	- 0.008181	0.004406	0.002725	0.005001	0.000743	0.000687	0.003076	
occupation	0.001015	0.000977	0.005779	0.007962	0.000281	- 0.001285	-0.001140	-0.000263	
coverage_level	0.001558	0.007594	0.009787	0.002808	0.001280	0.003920	-0.005529	-0.004174	
charges	0.057656	0.116691	0.101623	0.070588	0.564261	- 0.059501	-0.204960	0.065676	
4									F

In []:

df_corrr=df_corr[abs(df_corr)>0.05]

In []:

sns.heatmap(df_corrr)

Out[]:

<Axes: >

In []:

Out[]:

x1

	age	gender	bmi	children	smoker	region	medical_history	family_medical_history	exercise_frequency	coverage_le
0	46.0	1	21.45	5	1	2	0	0	1	
1	25.0	0	25.38	2	1	1	0	2	2	
2	38.0	1	44.88	2	1	3	2	2	2	
3	25.0	1	19.89	0	0	1	2	0	3	
4	49.0	1	38.21	3	1	1	0	2	3	
49995	29.0	1	37.91	4	0	0	1	0	0	
49996	39.0	0	20.57	1	0	0	2	2	0	
49997	23.0	0	37.22	4	1	0	1	2	2	
49998	65.0	1	45.35	0	1	3	2	0	2	
49999	22.0	0	27.26	1	0	2	2	0	0	

50000 rows × 10 columns

y1=df.iloc[:,-1]

```
In []:
x1.ndim
Out[]:
2
In []:
```

```
у1
Out[]:
0
         20460.307669
         20390.899218
1
         20204.476302
3
         11789.029843
        19268.309838
49995 18515.139201
49996 15486.399455
49997
      19650.342574
49998 12956.013072
49999 16700.823932
Name: charges, Length: 50000, dtype: float64
In [ ]:
y1.ndim
Out[]:
SPLITING INTO TRAIN & TEST DATA
```

```
In [ ]:
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x1,y1,test_size=0.30,random_state=42)
x_train
```

Out[]:

	age	gender	bmi	children	smoker	region	medical_history	family_medical_history	exercise_frequency	coverage_le
38094	54.0	0	35.06	1	1	0	1	1	0	
40624	41.0	0	44.71	0	0	0	2	0	3	
49425	43.0	1	30.91	1	0	3	2	0	3	
35734	41.0	0	43.80	0	0	3	2	2	3	
41708	34.0	1	47.84	5	0	1	2	2	3	
•••										
11284	37.0	0	24.42	3	0	0	2	1	2	
44732	27.0	1	40.23	1	1	2	1	0	2	
38158	55.0	1	26.03	4	0	3	2	2	2	
860	30.0	1	36.11	5	1	2	1	0	2	
15795	22.0	0	21.54	2	1	1	0	0	3	

35000 rows × 10 columns

In []:

x_test

		age	gender	bmi	children	smoker	region	medical_history	family_medical_history	exercise_frequency	coverage_le
3	3553	36.0	1	37.17	3	0	3	2	0	3	
	9427	54.0	0	20.32	1	1	2	1	1	3	
	199	21.0	0	27.96	2	0	3	1	1	3	
_	0447	00.0	^	40 40	^	4	•	^	^	^	

```
1244/ 23.0
                 U 46.12
       age gender bmi children smoker region medical_history family_medical_history exercise_frequency coverage_le
39489
       <del>-50.0</del>
                    30.44
                       ...
                                        ---
                                               ---
                                                               ---
                                                                                    •••
                                                                                                       ---
    ---
         •••
                                •••
15168 22.0
                  1 26.53
                                4
                                         1
                                                               0
                                                                                     2
                                                                                                        0
49241 29.0
                  0 26.34
                                4
                                         1
                                                1
                                                               1
                                                                                     0
                                                                                                        2
39317 28.0
                  1 38.29
                                3
                                         0
                                                3
                                                               2
                                                                                     2
                                                                                                        2
42191 20.0
                  1 37.53
                                5
                                         1
                                                2
                                                               0
                                                                                     2
                                                                                                        1
15109 50.0
                                         O
                                                2
                                                                                     O
                                                                                                        2
                  1 38.30
                                                               2
15000 rows × 10 columns
In [ ]:
y_train
Out[]:
38094
           25523.927518
40624
           8972.521103
49425
          13699.538103
35734
           9393.003535
41708
          11730.434150
```

11284

44732

38158 860

15795

In []:

y_test
Out[]:
33553

9427

199

12447

39489

15168 49241

39317

42191

15109

In []:

#

0

1

2

3

4

5

6

7

8

 \cap

df.info()

Column

gender bmi

smoker

region

children

medical history

exercise_frequency

age

14812.736306

21948.215336 11573.889809

21589.649719

19940.878646

8951.667599

20492.267121

18299.928568

19579.316635

15213.447970

17760.646489

16215.908584

14781.926595

18590.543582 10994.410156

Name: charges, Length: 35000, dtype: float64

Name: charges, Length: 15000, dtype: float64

family_medical_history 50000 non-null

Non-Null Count Dtype

50000 non-null int64

50000 non-null

50000 non-null

50000 non-null

50000 non-null

50000 non-null

E0000 ----11

50000 non-null float64

50000 non-null float64

int64

int64

int64

int64

int64

int64

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 12 columns):

```
y occupation 50000 non-null int64
10 coverage_level 50000 non-null int64
11 charges 50000 non-null float64
dtypes: float64(3), int64(9)
memory usage: 4.6 MB
```

MODEL CREATION

```
In [ ]:
```

```
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error, mean_squar
ed_error, r2_score
dt=DecisionTreeRegressor(criterion='squared_error', random_state=42)
rf=RandomForestRegressor(n_estimators=100, random_state=42)
reg=LinearRegression()
knn=KNeighborsRegressor(n_neighbors=7)
sv=SVR()
lst=[dt,rf,reg,knn,sv]
```

PERFORMNACE EVALUATION

MAPE : 0.21550945923665693 MSE : 14826123.415064

```
In [ ]:
```

```
for i in lst:
    i.fit(x_train, y_train)
    y_pred=i.predict(x_test)
    print('MODEL IS',i)
    print('MAE :', mean_absolute_error(y_test, y_pred))
    print('MAPE :', mean_absolute_percentage_error(y_test, y_pred))
    print('MSE :', mean_squared_error(y_test, y_pred))
    print('r2_score :', r2_score(y_test, y_pred))
    mse=mean_squared_error(y_test, y_pred)
    print('RMSE :', np.sqrt(mse))
    print('***200)
```

```
MODEL IS DecisionTreeRegressor(random state=42)
MAE: 1381.2068962241317
MAPE: 0.09130470163495656
MSE : 3012878.463874638
r2 score : 0.8477232490017621
RMSE: 1735.7645185550482
****************************
*************************
*******
MODEL IS RandomForestRegressor(random state=42)
MAE : 1034.0758563952268
MAPE : 0.06855222870440443
MSE : 1630026.392143114
r2 score : 0.9176152884979893
RMSE: 1276.724869399478
****************************
*******************
*******
MODEL IS LinearRegression()
MAE: 2681.0255422384844
MAPE : 0.17481470834479643
MSE : 10898786.270720255
r2 score : 0.44915409531815165
RMSE : 3301.330984727259
*************************
*******
MODEL IS KNeighborsRegressor(n neighbors=7)
MAE: 3121.6996603739162
```

PREDICTION USING RANDOM FOREST

```
In [ ]:
```

```
rf.predict([[38.0,0,37.17,3,0,3,2,0,3,0]])
/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning:

X does not have valid feature names, but RandomForestRegressor was fitted with feature names

Out[]:
array([9271.28049867])
```

In []:

```
df1=pd.DataFrame({'Actual value':y_test,'Predicted Value':y_pred,'Difference':y_test-y_p
red})
df1
```

Out[]:

	Actual value	Predicted Value	Difference
33553	8951.667599	16587.535369	-7635.867770
9427	20492.267121	16526.897022	3965.370099
199	18299.928568	16413.685903	1886.242665
12447	19579.316635	16629.066195	2950.250440
39489	15213.447970	16628.942117	-1415.494148
15168	17760.646489	16420.009138	1340.637351
49241	16215.908584	16438.202428	-222.293844
39317	14781.926595	16556.357901	-1774.431306
42191	18590.543582	16527.240178	2063.303404
15109	10994.410156	16691.893930	-5697.483773

15000 rows × 3 columns

In []:

```
import plotly.graph_objects as go
x_num=list(range(1,6))
y_num=list(range(1,6))
y_pred_df=pd.DataFrame(y_pred)
y_test_df=pd.DataFrame(y_test)
y_pred_plot=y_pred_df.head(5)
y_test_plot=y_test_df.head(5)
```

```
plt.scatter(x_num,y_pred_plot,color='g')
plt.scatter(y_num,y_test_plot,color='r')
plt.show()
```


HYPER PARAMETER TUNING

In []:

print('r2_score :',r2_score(y_test,y_pred1))

r2 score : 0.9069959179421905

```
In [ ]:
dt1 = DecisionTreeRegressor(random state=42)
In [ ]:
from sklearn.model selection import GridSearchCV
In [ ]:
param_grid = {'max_depth': [None, 10, 20, 30], 'min_samples_split': [2, 5, 10], 'min_sampl
es leaf': [1, 2, 4]}
grid search = GridSearchCV(estimator=dt1, param grid=param grid, cv=3, n jobs=-1, verbos
e = 2)
grid_search.fit(x_train, y_train)
print("Best parameters found: ", grid_search.best_params_)
Fitting 3 folds for each of 36 candidates, totalling 108 fits
Best parameters found: {'max_depth': 10, 'min_samples_leaf': 4, 'min_samples_split': 10}
In [ ]:
dt2=DecisionTreeRegressor(max depth=10, min samples leaf=4, min samples split=10)
dt2.fit(x train, y train)
y pred1=dt2.predict(x test)
y_pred1
Out[]:
array([ 9375.25296609, 21126.87411411, 18287.77587474, ...,
       15142.77877829, 17369.69820069, 10076.746368
IMPROVED r2_score
```

In conclusion, the model i have developed has shown impressive results, achieving an accuracy of 91%. This high level of accuracy is due to choosing the right features, using advanced algorithms, and thoroughly testing the model. *THANK YOU ALL*