

PROJECT/INDEP STUDY TITLE LINE 1 PROJECT/INDEP TITLE LINE 2 (OPTIONAL)

MR./MS. FIRSTNAME1 LASTNAME1 MR./MS. FIRSTNAME2 LASTNAME2 MR./MS. FIRSTNAME3 LASTNAME3

A PROJECT SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR
THE DEGREE OF BACHELOR OF ENGINEERING (COMPUTER ENGINEERING)
FACULTY OF ENGINEERING
KING MONGKUT'S UNIVERSITY OF TECHNOLOGY THONBURI
202x

Project/Indep study title line 1 Project/Indep title line 2 (optional)

Mr./Ms. Firstname1 Lastname1 Mr./Ms. Firstname2 Lastname2 Mr./Ms. Firstname3 Lastname3

A Project Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Engineering (Computer Engineering) Faculty of Engineering King Mongkut's University of Technology Thonburi 202x

Project Committee	
(Assoc.Prof. My main advisor name, Ph.D.)	Project Advisor
(Assoc.Prof. My Co-advisor name, Ph.D.)	Project Co-Advisor
(Asst.Prof. Committee2, Ph.D.)	Committee Member
(Asst.Prof. Committee3, Ph.D.)	Committee Member

Copyright reserved

Project/Indep study title line 1

Project/Indep title line 2 (optional)

Credits 3

Member(s) Mr./Ms. Firstname1 Lastname1

Mr./Ms. Firstname2 Lastname2 Mr./Ms. Firstname3 Lastname3

Project Advisor Assoc.Prof. My main advisor name, Ph.D. Co-advisor Assoc.Prof. My Co-advisor name, Ph.D.

Program Bachelor of Engineering
Field of Study Computer Engineering
Department Computer Engineering

Faculty Engineering

Academic Year 202x

Abstract

In a multihop ad hoc network, the interference among nodes is reduced to maximize the throughput by using a smallest transmission range that still preserve the network connectivity. However, most existing works on transmission range control focus on the connectivity but lack of results on the throughput performance. This paper analyzes the per-node saturated throughput of an IEEE 802.11b multihop ad hoc network with a uniform transmission range. Compared to simulation, our model can accurately predict the per-node throughput. The results show that the maximum achievable per-node throughput can be as low as 11% of the channel capacity in a normal set of α operating parameters independent of node density. However, if the network connectivity is considered, the obtainable throughput will reduce by as many as 43% of the maximum throughput.

Keywords: Multihop ad hoc networks / Topology control / Single-Hop Throughput

หัวข้อปริญญานิพนธ์ หัวข้อปริญญานิพนธ์บรรทัดแรก

หัวข้อปริญญานิพนธ์บรรทัดสอง

หน่วยกิต 3

ผู้เขียน นายสมศักดิ์ คอมพิวเตอร์

นางสาวสมศรี คอมพิวเตอร์2 นางสาวสมปอง คอมพิวเตอร์3

อาจารย์ที่ปรึกษา รศ.ดร.ที่ปรึกษา วิทยานิพนธ์

รศ.ดร.ที่ปรึกษา วิทยานิพนธ์ร่วม

 หลักสูตร
 วิศวกรรมศาสตรบัณฑิต

 สาขาวิชา
 วิศวกรรมคอมพิวเตอร์

 ภาควิชา
 วิศวกรรมคอมพิวเตอร์

 คณะ
 วิศวกรรมศาสตร์

ปีการศึกษา 256x

บทคัดย่อ

การวิจัยครั้งนี้มีวัตถุประสงค์ เพื่อศึกษาความพึงพอใจในการให้บริการงานทั่วไปของสานักวิชา พื้นฐานและภาษา เพื่อเปรียบเทียบ ระดับความพึงพอใจต่อการให้บริการงาน ทั่วไปของสานักวิชาพื้นฐานและภาษา ของนักศึกษาที่มาใช้บริการสานักวิชาพื้นฐานและภาษา สถาบัน เทคโนโลยีไทย-ญี่ปุ่น จาแนกตามเพศ คณะ และชั้นปีที่ศึกษา เพื่อศึกษาปัญหาและข้อเสนอแนะของ นักศึกษามาเป็นแนวทาง ในการพัฒนาและปรับปรุงการให้บริการของสานักวิชาพื้นฐานและภาษา

คำสำคัญ: การชุบเคลือบด้วยไฟฟ้า / การชุบเคลือบผิวเหล็ก / เคลือบผิวรังสี

ACKNOWLEDGMENTS

Acknowledge your advisors and thanks your friends here..

CONTENTS

		PAGE
ABSTRA	СТ	ii
THAI AB	STRACT	iii
ACKNOV	VLEDGMENTS	iv
CONTEN	TS	v
LIST OF		vi
LIST OF		vii
	SYMBOLS	viii
LIST OF	TECHNICAL VOCABULARY AND ABBREVATIONS	ix
CHAPTE		
	DDUCTION Dealers and	1
1.1 1.2	Background Motivations	1
1.2	Problem Statements	1
1.3	Objectives	1
1.4	Scope of Work	1
1.6	Project Schedule	1
	GROUND THEORY AND RELATED WORK	2
2.1 2.2	Recommender Systems Tout Processing Alexathres	2 2
2.2.1	Text Processing Algorithms Algorithm I	2
	Algorithm II	2
2.2.2	Development Tools	2
3. PROPO	OSED WORK	3
3.1	System Architecture	3
3.2	System Specifications and Requirements	3
3.3	Hardware Module 1	3
3.3.1	Component 1	3
3.3.2	Logical Circuit Diagram	3
3.4	Hardware Module 2	3
3.4.1	Component 1	3
3.4.2	1	3
3.5	Path Finding Algorithm	3
3.6	Database Design	3
3.7	GUI Design	3
4. IMPLE	EMENTATION RESULTS	4
5. CONC	LUSIONS	5
5.1	Problems and Solutions	5
5.2	Future Works	5
REFERE	NCES	6
APPEND	IX	7
A I	First appendix title	8
B S	Second appendix title	10

LIST OF TABLES

TABLE		PAGE
2.1	test table method1	2
3.1	test table x1	3

LIST OF FIGURES

FIGURE		PAGE
1.1	This is the figure x11	1
2.1	The network model	2

LIST OF SYMBOLS

SYMBOL		UNIT
α	Test variable	m^2
λ	Interarival rate	jobs/
		second
μ	Service rate	jobs/
		second

LIST OF TECHNICAL VOCABULARY AND ABBREVATIONS

ABC = Adaptive Bandwidth Control MANET = Mobile Ad Hoc Network

CHAPTER 1 INTRODUCTION

1.1 Background

Explain the background of your works for readers. You can refer to figure by like this.. Figure 1.1.

Figure 1.1 This is the figure x11

1.2 Motivations

Explain the motivations of your works.

- What are the problems you are addressing?
- Why they are important?
- What are the limitations of existing approaches?

You may combine this section with the background section.

1.3 Problem Statements

1.4 Objectives

1.5 Scope of Work

Explain the scope of your works.

- What are the problems you are addressing?
- Why they are important?
- What are the limitations of existing approaches?

1.6 Project Schedule

CHAPTER 2 BACKGROUND THEORY AND RELATED WORK

Explain theory, algorithms, protocols, or existing research works and tools related to your work.

2.1 Recommender Systems

Table 2.1 test table method1

Center	Center	left aligned	Right	Right aligned
Center	Center	left aligned	Right	Right aligned
Center	Center	left aligned	Right	Right aligned
Center	Center	left aligned	Right	Right aligned
Center	Center	left aligned	Right	Right aligned

2.2 Text Processing Algorithms

2.2.1 Algorithm I

You can place the figure and refer to it as Figure 2.1. The figure and table numbering will be run and updated automatically when you add/remove tables/figures from the document.

Figure 2.1 The network model

2.2.2 Algorithm II

Add more subsections as you want.

2.3 Development Tools

CHAPTER 3 PROPOSED WORK

Explain the design (how you plan to implement your work) of your project. Adjust the section titles below to suit the types of your work. Detailed physical design like circuits and source codes should be placed in the appendix.

3.1 System Architecture

Table 3.1 test table x1

SYMBOL		UNIT
$\overline{\alpha}$	Test variable	m^2
λ	Interarrival rate	jobs/
		second
μ	Service rate	jobs/
		second

- 3.2 System Specifications and Requirements
- 3.3 Hardware Module 1
- **3.3.1** Component 1
- 3.3.2 Logical Circuit Diagram
- 3.4 Hardware Module 2
- 3.4.1 Component 1
- **3.4.2** Component 2
- 3.5 Path Finding Algorithm
- 3.6 Database Design
- 3.7 GUI Design

CHAPTER 4 IMPLEMENTATION RESULTS

You can title this chapter as Preliminary Results or Work Progress for the progress reports. Pres	sent imple-
mentation or experimental results here and discuss them.	

CHAPTER 5 CONCLUSIONS

This chapter is optional for proposal and progress reports but is required for the final report.

5.1 Problems and Solutions

State your problems and how you fixed them.

5.2 Future Works

What could be done in the future to make your projects better.

REFERENCES

- L. Bao and J.J. Garcia-Luan-Aceves, 2003, "Topology Management in Ad Hoc Networks," in Proc. ACM MobiHoc'03, Maryland, USA, June 2003, pp. 129–140.
- 2. Y. Barowski, S. Biaz, and P. Agrawal, 2005, "Towards the Performance Analysis of IEEE 802.11 in Multi-hop Ad-Hoc Networks," in **Proc. IEEE WCNC'05**, Mar. 2005, pp. 100–106.
- 3. C. Bettstetter, G. Resta, and P. Santi, 2003, "The Node Distribution of the Random Waypoint Mobility Model for Wireless Ad Hoc Networks," **IEEE Trans. Mobile Computing**, vol. 2, no. 3, pp. 257–269, Jul–Sep 2003.
- 4. G. Bianchi, 2000, "Performance Analysis of the IEEE 802.11 Distributed Coordination Function," **IEEE J. Select. Areas Commun.**, vol. 13, no. 3, pp. 535–548, Mar. 2000.
- 5. D.Y. Eun and N.B. Shroff, 2001, "A Measurement-Analytic Framework for QoS Estimation Based on the Dominant Time Scale," in **Proc. IEEE INFOCOM'01**, Anchorage, AK, Apr. 2001.
- P. Gupta and P.R. Kumar, 1998, "Critical Power for Asymptotic Connectivity in Wireless Networks," Stochastic Analysis, Control, Optimization and Applications, pp. 547–566, 1998.
- 7. H. Honkasalo, K. Pehkonen, M.T. Niemi, and A.T. Leino, 2002, "WCDMA and WLAN for 3G and Beyond," **IEEE Wireless Commun. Mag.**, pp. 14–18, Apr. 2002.
- 8. H.S. Kim and N.B. Shroff, 2001, "Loss Probability Calculations and Asymptotic Analysis for Finite Buffer Multiplexers," **IEEE/ACM Trans. Networking**, vol. 9, no. 6, pp. 755–768, Dec. 2001.
- 9. I. Norros, 1995, "On the use of Fractional Brownian Motion in the Theory of Connectionless Networks," **IEEE J. Select. Areas Commun.**, vol. 13, no. 6, pp. 953–962, Aug. 1995.
- 10. P. Santi, 2005, Topology Control in Wireless Ad Hoc and Sensor Networks, Wiley, p.133.
- 11. C.-C. Shen, C. Srisathapornphat, R. Lui, Z. Huang, C. Jaikaeo, and E.L. Lloyd, 2004, "CLTC: A Cluster-Based Topology Control Framework for Ad Hoc Network," **IEEE Trans. Mobile Computing**, vol. 3, no. 1, pp. 18–32, Jan–Mar 2004.
- 12. J.P. Singh, N. Bambos, B. Srinivasan, and D. Clawin, 2002, "Wireless LAN Performance under Varied Stress Conditions in Vehicular Traffic Scenarios," in **Proc. IEEE Vehicular Technology Conference**, 2002.
- 13. L. Subramanian and R.H. Katz, 2000, "An Architecture for Building Self-Configurable Systems," in **Proc. ACM MobiHoc'00**, Boston, USA, Aug. 2000.
- 14. H. Takagi and L. Kleinrock, 1984, "Optimal Transmission Ranges for Randomly Distributed Packet Radio Terminals," **IEEE Trans. Commun.**, vol. COM-32, no. 3, pp. 246–257, Mar. 1984.
- C. Yu, K.G. Shin, and B. Lee, 2004, "Power-Stepped Protocol: Enhancing Spatial Utilization in a Clustered Mobile Ad Hoc Network," IEEE J. Select. Areas Commun., vol. 22, no. 7, pp. 1322–1334, Sept. 2004.

APPENDIX AFIRST APPENDIX TITLE

Put appropriate topic here

This is where you put hardware circuit diagrams, detailed experimental data in tables or source codes, etc..

This appendix describes two static allocation methods for fGn (or fBm) traffic. Here, λ and C are respectively the traffic arrival rate and the service rate per dimensionless time step. Their unit are converted to a physical time unit by multiplying the step size Δ . For a fBm self-similar traffic source, Norros [9] provides its EB as

$$C = \lambda + (\kappa(H)\sqrt{-2\ln\epsilon})^{1/H} a^{1/(2H)} x^{-(1-H)/H} \lambda^{1/(2H)}$$
(A.1)

where $\kappa(H) = H^H(1-H)^{(1-H)}$. Simplicity in the calculation is the attractive feature of (A.1).

The MVA technique developed in [8] so far provides the most accurate estimation of the loss probability compared to previous bandwidth allocation techniques according to simulation results. Consider a discrete-time queueing system with constant service rate C and input process λ_n with $\mathbb{E}\{\lambda_n\} = \lambda$ and $\mathrm{Var}\{\lambda_n\} = \sigma^2$. Define $X_n \equiv \sum_{k=1}^n \lambda_k - Cn$. The loss probability due to the MVA approach is given by

$$\varepsilon \approx \alpha e^{-m_x/2}$$
 (A.2)

where

$$m_x = \min_{n \ge 0} \frac{((C - \lambda)n + B)^2}{\text{Var}\{X_n\}} = \frac{((C - \lambda)n^* + B)^2}{\text{Var}\{X_{n^*}\}}$$
(A.3)

and

$$\alpha = \frac{1}{\lambda\sqrt{2\pi\sigma^2}} \exp\left(\frac{(C-\lambda)^2}{2\sigma^2}\right) \int_C^\infty (r-C) \exp\left(\frac{(r-\lambda)^2}{2\sigma^2}\right) dr \tag{A.4}$$

For a given ε , we numerically solve for C that satisfies (A.2). Any search algorithm can be used to do the task. Here, the bisection method is used.

Next, we show how $\operatorname{Var}\{X_n\}$ can be determined. Let $C_\lambda(l)$ be the autocovariance function of λ_n . The MVA technique basically approximates the input process λ_n with a Gaussian process, which allows $\operatorname{Var}\{X_n\}$ to be represented by the autocovariance function. In particular, the variance of X_n can be expressed in terms of $C_\lambda(l)$ as

$$Var\{X_n\} = nC_{\lambda}(0) + 2\sum_{l=1}^{n-1} (n-l)C_{\lambda}(l)$$
(A.5)

Therefore, $C_{\lambda}(l)$ must be known in the MVA technique, either by assuming specific traffic models or by offline analysis in case of traces. In most practical situations, $C_{\lambda}(l)$ will not be known in advance, and an on-line measurement algorithm developed in [5] is required to jointly determine both n^* and m_x . For fGn traffic, $\operatorname{Var}\{X_n\}$ is equal to $\sigma^2 n^{2H}$, where $\sigma^2 = \operatorname{Var}\{\lambda_n\}$, and we can find the n^* that minimizes (A.3) directly. Although λ can be easily measured, it is not the case for σ^2 and H. Consequently, the MVA technique suffers from the need of prior knowledge traffic parameters.

APPENDIX B SECOND APPENDIX TITLE

Put appropriate topic here

Next, we show how $\operatorname{Var}\{X_n\}$ can be determined. Let $C_\lambda(l)$ be the autocovariance function of λ_n . The MVA technique basically approximates the input process λ_n with a Gaussian process, which allows $\operatorname{Var}\{X_n\}$ to be represented by the autocovariance function. In particular, the variance of X_n can be expressed in terms of $C_\lambda(l)$ as

$$Var\{X_n\} = nC_{\lambda}(0) + 2\sum_{l=1}^{n-1} (n-l)C_{\lambda}(l)$$
(B.1)

Add more topic as you need

Therefore, $C_{\lambda}(l)$ must be known in the MVA technique, either by assuming specific traffic models or by offline analysis in case of traces. In most practical situations, $C_{\lambda}(l)$ will not be known in advance, and an on-line measurement algorithm developed in [5] is required to jointly determine both n^* and m_x . For fGn traffic, $\operatorname{Var}\{X_n\}$ is equal to $\sigma^2 n^{2H}$, where $\sigma^2 = \operatorname{Var}\{\lambda_n\}$, and we can find the n^* that minimizes (A.3) directly. Although λ can be easily measured, it is not the case for σ^2 and H. Consequently, the MVA technique suffers from the need of prior knowledge traffic parameters.