

Performance Indices for Classification

J.-S. Roger Jang (張智星)
MIR Lab, CSIE Dept.
National Taiwan University
jang@mirlab.org, http://mirlab.org/jang

2023/11/29

Outline

- Confusion matrices
 - Performance indices based on confusion matrix
- ROC, DET and AUROC
 - Cost-sensitive classification
- PRC and AUPRC
 - Lift charts
- Exercises

Intro. to Performance Indices (PIs)

- Performance index
 - AKA performance metrics, figure of merit, etc.
 - To evaluate the performance of a ML model
- Different situations require different Pls
 - Purposes
 - Classification
 - Sequence decoding
 - Regression
 - Ranking
 - Situations
 - Imbalanced dataset for classification
 - Binary or multi-class classification problems

Confusion Matrix for Binary Classification

- Confusion matrix for binary classification
 - Can be extended to multi-class classification

Pls Derived from Confusion Matrices

- Numerous PIs can be derived from a confusion matrix!
 - Accuracy, recognition rate

• Accuracy =
$$\frac{TP+TN}{All}$$

True positive rate, sensitivity, hit rate, recall

• TPR =
$$\frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$$

True negative rate, specificity, selectivity

• TNR =
$$\frac{TN}{N} = \frac{TN}{FP + TN} = 1 - FPR$$

False positive rate, miss rate

False negative rate

• FNR =
$$\frac{FN}{P}$$
 = 1 - TPR

Precision

• Precision =
$$\frac{TP}{TP+FP}$$

ACTUAL VALUES

		POSITIVE	NEGATIVE
VALUES	POSITIVE	TP	FP
	NEGATIVE	FN	TN

PREDICTED

Precision and Recall

From the viewpoint of information retrieval

- Precision: $p = \frac{TP}{TP + FP}$
- Recall: $r = \frac{TP}{TP + FN}$
- F-measure: $f = \frac{2pr}{p+r} = \frac{TP}{(2TP+FP+FN)/2}$
- Usually

Aka F1-score

- p ↗ → r ↘
- P 🕽 → r 🗷

How many relevant items are selected?

Harmonic mean

of p and r

ROC and **DET**

ROC (Receiver Operating Characteristics) curve

- TPR vs. FPR when threshold is varying
- Endpoints at (0, 0) & (1, 1)

Similarity, likelihood, etc

- DET (Detection Error Tradeoff) curve
 - FNR vs. FPR when threshold is varying
 - Endpoints at (0, 1) & (1, 0)

ROC

AUROC

- AUROC: Area under ROC
 - $0.5 \leq AUROC \leq 1.0$
 - o 0.5 → Random guess
 - 1.0 → Perfect classification
 - Suitable PI for imbalance datasets
 - Determine the operating point based on cost
 - o For covid-19 detection, which classifier is better, A or B? At what operating points?

Two Ways to Plot ROC

- Sample-point based
 - Less smooth
 - More realistic
- Distribution based
 - More smooth
 - If the threshold is at the intersection
 - FNR+FPR is minimized
 - TPR+TNR is maximized

Cost-sensitive Classification

Cost matrix

Prediction

usually a big number

Objective function

- $f(\theta) = C_{TP} * TP(\theta) + C_{FN} * FN(\theta) + C_{FP} * FP(\theta) + C_{TN} * TN(\theta)$ = $\alpha * FN(\theta) + FP(\theta)$
- $\hat{\theta} = \arg\min_{\theta} f(\theta)$

Precision-Recall Curve (PRC)

- PRC
 - Plot of precision vs. recall
- AUPRC (area under PRC)
 - Usually not smooth
 - Where are the endpoints?

Quiz!

Lift Charts

Good for convincing people to appreciate power of ML

• Example:

← 對40%人發送廣告,就可以抓到83%想出國的人!

Could be negative!

Accuracy of Sequence Decoding

- Accuracy of ASR (automatic speech recognition) for English
 - WER: word error rate

$$WER = \frac{D+I+S}{N} \Rightarrow Accuracy = 1 - WER$$

Length of groundtruth

Example:

Human-labeled Transcript: How are you today John Speech Recognition Result: How you a today Jones

$$WER = \frac{1+1+1}{5} = 60\% \Rightarrow Accuracy = 40\%$$

- Facts
 - Accuracy could be negative!

 Counter intuitive!
 - You need to use edit distance (based on DP) to find D, I, and S.
 - → Computation intensive!

Error Rate of Sequence Decoding

Quiz!

Error rates of ASR for Chinese and mixed code

- Chinese
 - o Groundtruth: 先填表格 再打疫苗
 - o ASR result: 鮮甜表格 再打疫苗

$$\circ$$
 CER= $\frac{2}{8}$ = 25.0%

• WER=
$$\frac{1+1}{6}$$
=33.3%

- Chinese and English
 - o Groundtruth: 我有點喜歡iPhone
 - o ASR result: 我優點喜歡哀鳳

$$\circ$$
 CER = $\frac{7}{11}$ = 63.6%

• WER =
$$\frac{4}{5}$$
 = 80.0%

• MER=
$$\frac{3}{6}$$
 = 55.7%

WER: Word error rate

(Chinese & English: word)

CER: Character error rate

(Chinese & English: character)

MER: mixed error rate

(Chinese: character, English: word)

Exercise: Pls Based on a Confusion Matrix

 Derive various PIs based on the confusion matrix obtained from a detection method for covid-19:

Exercise: ROC/DET/PRC

- A plot of sample data vs. thresholds is shown next.
 - Plot FNR/FPR vs. thresholds, ROC, DET, PRC.
 - Plot $f(\theta) = \alpha * FN(\theta) + FP(\theta)$ when α =1 and 3, respectively. What is the corresponding $\arg\min_{\theta} f(\theta)$?

Exercise: DET/ROC

Another example

- FNR & FPR curves
- DET plots
- Cost function

Exercise: PRC

Another example

- Precision & recall curves
- PRC plots

Exercise: DET/PRC

- Increasing? Decreasing? Or none of the above?
 - FNR vs. threshold
 - FPR vs. threshold
 - DET (FNT vs. FPR)
 - Precision vs. threshold
 - Recall vs. threshold
 - PRC (precision vs. recall)
- Endpoints?
 - DET
 - PRC

Exercise: Lift Chart

 Plot the ideal lift chart of a random-guess classifier, with no. of bins equal to 10, and N:P=7:3 where N and P are numbers of negative and positive cases, respectively.

Exercise: Yet Another Lift Chart

 Plot the lift chart of a perfect classifier when P=335 and N=665, with no. of bins equal to 10.

