Understanding Price and Popularity in New York City Airbnb Sites

Rihui Ou, David Buch

Duke University

February 4, 2020

Problem Statement

- AirBnB is an online marketplace allowing property owners to advertise housing available for short-term rent and connect with guests seeking accommodation
- We want to understand the role of location and room type in determining the price and popularity of AirBnB listings in NYC
- Data describe nearly 50k sites listed on AirBnB website in 2019
- Specifically we want to know:
 - What are Influential Factors in Price/Popularity?
 - Oces Neighborhood/Borough Affect Price/Popularity? (Rank Ordering)
 - Open Listing Type differ among Neighborhoods/Boroughs
 - 4 How (including site name) might a host Maximize a Listing's Price/Popularity?

Data Formatting/EDA

Problems with the Data:

- price = 10k too often
- Some sites never available, some sites have no reviews. Both present potential problems.
- No good measure of popularity

Defining a Proxy for Popularity:

- Define: "Popularity¹" is proportional to unique customers per day available
- Assume: Review probability independent of experience. Popularity constant over time. Availability constant over time.
- Popularity = $\frac{12*reviews_per_month}{availability_365}$

¹Note this would bias popularity towards sites with shorter length of stay (pointed out by Joseph Lawson)

Name Features

- Want to understand how site name influences price and popularity.
- We specifically look at choice of words describing site: adjectives
- Check for most common words
- Remove location and room type words
- Subjectively group adjectives into major categories

comfort	space	beauty	upkeep	luxury	superlative	
cozy	spacious	beautiful	new	luxury	great	
comfy	large	lovely	bright		amazing	
comfortable	huge	gorgeous	clean		prime	
charm	big	view	sunny		best	
charming	space		modern		perfect	
quiet						

Logging Responses

Note: Price of goods and popularity are both commonly modeled with lognormal or Pareto distributions

Model

Gaussian spatial regression model

$$y(s) = x(s)^{\top} \beta + w(s) + \epsilon(s), \quad \epsilon(s) \stackrel{iid}{\sim} N(0, \tau^2), \quad w(s) \sim GP(\mathbf{0}, C(\cdot, \cdot))$$

where $\mathbf{s} = (\text{longtitude}, \text{latitude}) \in \Re^2$ is a location on the 2-D plane.

- y(s) responses: log(Price) or log(Popularity)
- x(s) covariates: room_type, minimum_nights, availability_365, calculated_host_listings_count
- w(s) a Gaussian spatial process with covariance function $C(\cdot, \cdot)$: these are random intercepts with spatial dependence which capture the effect that cannot be explained by covariates.
- \bullet $\epsilon(s)$: a white noise process that stands for measurement errors.

Figure: Relative price map of NYC. Thanks to **Alessandro Zito** for guidance and support in creating this plot.

7 / 12

Figure: Relative popularity map of NYC. Thanks to **Alessandro Zito** for guidance and support in creating this plot. $_{8/12}$

(i) - Influential Factors

Price	Popularity						
Effect Size							
	mean	2.5%	97.5%	mean	2.5%	97.5%	
room_typePrivate room	-51.3540	-51.9198	-50.7618	-12.8378 -10	6.8896	-8.6252	
room_typeShared room	-68.5131	-69.6083	-67.3524	-38.0226 -4	6.2593	-28.4590	
minimum_nights	-0.2397	-0.2597	-0.2098	-1.9801 -	2.0977	-1.8723	
comfort	-11.0059	-12.3747	-9.6428	25.7216 1	8.3292	33.4691	
space	0.7125	-0.9752	2.4700	-3.5360 -	9.7873	2.8087	
beauty	1.4301	-0.6678	3.5516	-8.8442 -1	5.5238	-1.4987	
upkeep	-2.2347	-3.8249	-0.6578	7.0365	0.7125	13.8145	
luxury	31.9034	27.4431	36.3016	-19.0226 -2	8.6305	-8.0293	
superlative	-3.1493	-5.1999	-1.0940	-1.5184 -	9.3442	7.1758	
calculated_host_listings_count	0.0100	-0.0100	0.0300	-0.7373 -	0.8067	-0.6678	

Figure: 95% CIs and means of the fixed effects on the percentage scale

Influential factors for

- Price: room type, minimum nights, some words...
- Popularity: room type, minimum nights, listing per host, some words...

(ii) - Heterogeneity among neighbourhoods and boroughs

Price	Popularity
Borough Ranking	
2.5% 97.5% mean Staten Island -57.8005 3.9696 -34.7004 Bronx -57.8917 3.3409 -33.4774 Queens -53.5366 14.4812 -26.0713 Brooklyn -46.1235 32.7740 -13.2858 Manhattan -25.6824 82.6514 20.5608	2.5% 97.5% mean Staten Island -39.7221 56.5907 -6.1193 Bronx -16.9913 106.6722 25.6879 Brooklyn -9.4662 120.4741 35.4045 Queens -8.1576 127.3634 38.3053 Manhattan -6.1284 128.6615 40.2268
Neighbourhood (Worst, Best)	
2.5% 97.5% mean Todt Hill -68.1350 -21.2969 -51.9842 Emerson Hill -67.5731 -19.9242 -51.0236 Willowbrook -66.5642 -18.0779 -49.3892	2.5% 97.5% mean Todt Hill -50.76306 42.37842 -18.13709 Grant City -47.39362 36.49533 -17.95273 New Dorp Beach -47.24878 35.50817 -17.47429
2.5% 97.5% mean Greenwich Village -11.2131 117.5139 43.9197 Chelsea -9.9925 122.8541 47.1832 West Village -7.8282 125.3125 49.1954	2.5% 97.5% mean Vinegar Hill 4.561689 153.4457 57.71984 Clason Point -1.083876 158.2423 57.78168 Lower East Side 5.248765 154.3549 58.13260

Figure: Expected values and 95% Cls inferred from resampling sites within boroughs/neighbourhoods on the percentage scale

Most

- Expensive borough: Manhattan, Expensive neighbourhood: West
 Village
- Popular borough: Manhattan, Popular neighbourhood: Lower East / 12

(iii) - Independence of room type among neighborhoods

Figure: Due to low cell counts, χ^2 test asymptotic assumptions were not valid. Here we see log likelihood test statistics of independence plotted against simulated distributions of the test statistic under independence. (Staten Island $p \approx 0.02$)

Summary

- Maximize Price: "Luxury Entire Home in West Village" (-15%, 388%) increase compared to an average location and no selected adjective used
- Maximize Popularity: "New cozy entire home in Lower East Side Manhattan" (-14%, 470%) increase
- Future Work:
 - Improved proxy for popularity; better data
 - Joint modeling of price and popularity; inference about potential revenue

