> Output voltages of three-phase inverter (1)

where, upper transistors: S₁, S₃, S₅ lower transistors: S₄, S₆, S₂ switching variable vector: a, b, c

Output voltages of three-phase inverter

- \bullet S₁ through S₆ are the six power transistors that shape the output voltage
- *When an upper switch is turned on (i.e., a, b or c is "1"), the corresponding lower switch is turned off (i.e., a', b' or c' is "0")

Eight possible combinations of on and off patterns for the three upper transistors (S_1, S_3, S_5)

Voltage	Switching Vectors		Line to neutral voltage			Line to line voltage			
Vectors	a	b	c	Van	V _{bn}	V _{cn}	V _{ab}	V _{bc}	V _{ca}
V_0	0	0	0	0	0	0	0	0	0
V_1	1	0	0	2/3	-1/3	-1/3	1	0	-1
V ₂	1	1	0	1/3	1/3	-2/3	0	1	-1
V_3	0	1	0	-1/3	2/3	-1/3	-1	1	0
V_4	0	1	1	-2/3	1/3	1/3	-1	0	1
V_5	0	0	1	-1/3	-1/3	2/3	0	-1	1
V ₆	1	0	1	1/3	-2/3	1/3	1	-1	0
V ₇	1	1	1	0	0	0	0	0	0

(Note that the respective voltage should be multiplied by V_{dc})

SVPWM

Line to neutral (phase) voltage vector $[V_{an} V_{bn} V_{cn}]^t$

$$\begin{bmatrix} V_{an} \\ V_{bn} \\ V_{cn} \end{bmatrix} = \frac{1}{3} V_{dc} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Voltage	Switching Vectors		Line to neutral voltage			Line to line voltage			
Vectors	a	b	c	Van	V _{bn}	V _{cn}	V_{ab}	V _{bc}	V _{ca}
V ₀	0	0	0	0	0	0	0	0	0
V ₁	1	0	0	2/3	-1/3	-1/3	1	0	-1
V ₂	1	1	0	1/3	1/3	-2/3	0	1	-1
V ₃	0	1	0	-1/3	2/3	-1/3	-1	1	0
V ₄	0	1	1	-2/3	1/3	1/3	-1	0	1
V ₅	0	0	1	-1/3	-1/3	2/3	0	-1	1
V ₆	1	0	1	1/3	-2/3	1/3	1	-1	0
V ₇	1	1	1	0	0	0	0	0	0

(Note that the respective voltage should be multiplied by V_{dc})

◆ Line to line voltage vector [V_{ab} V_{bc} V_{ca}]^t

$$\begin{bmatrix} V_{ab} \\ V_{bc} \\ V_{ca} \end{bmatrix} = V_{dc} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \text{ where switching variable vector } [a \ b \ c]^t$$

> Principle of Space Vector PWM

- ◆ Treats the sinusoidal voltage as a constant amplitude vector rotating at constant frequency
- This PWM technique approximates the reference voltage V_{ref} by a combination of the eight switching patterns (V_0 to V_7)
- Coordinate Transformation (abc reference frame to the stationary d-q frame): A three-phase voltage vector is transformed into a vector in the stationary d-q coordinate frame which represents the spatial vector sum of the three-phase voltage
- ◆ The vectors (V₁ to V₆) divide the plane into six sectors (each sector: 60 degrees)
- V_{ref} is generated by two adjacent non-zero vectors and two zero vectors

Basic switching vectors and Sectors

- 6 active vectors (V₁,V₂, V₃, V₄, V₅, V₆)
 - **⇒** Axes of a hexagonal
- ⇒ DC link voltage is supplied to the load
 - \Rightarrow Each sector (1 to 6): 60 degrees

- 2 zero vectors (V_0, V_7)
 - **⇒** At origin
- ⇒ No voltage is supplied to the load

Steps for implementation of Space Vector PWM

• Step 1. Determine V_d , V_q , V_{ref} , and angle (α)

• Step 2. Determine time duration T_1 , T_2 , T_0

• Step 3. Determine the switching time of each transistor $(S_1 \text{ to } S_6)$

\triangleright Step 1. Determine V_d , V_q , V_{ref} , and angle (α)

Coordinate transformationabc to dq

Voltage Space Vector and its components in (d, q).

$$V_{d} = V_{an} - V_{bn} \cdot \cos 60 - V_{cn} \cdot \cos 60$$
$$= V_{an} - \frac{1}{2}V_{bn} - \frac{1}{2}V_{cn}$$

$$V_{q} = 0 + V_{bn} \cdot \cos 30 - V_{cn} \cdot \cos 30$$
$$= V_{an} + \frac{\sqrt{3}}{2} V_{bn} - \frac{\sqrt{3}}{2} V_{cn}$$

$$\begin{bmatrix} V_{d} \\ V_{q} \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} V_{an} \\ V_{bn} \\ V_{cn} \end{bmatrix}$$

$$\left|\overline{V}_{ref}\right| = \sqrt{{V_d}^2 + {V_q}^2}$$

$$\alpha = \tan^{-1}(\frac{V_q}{V_d}) = \omega_s t = 2\pi \pi t$$

 $(where f_s = fundamenta frequency)$

> Step 2. Determine time duration T_1 , T_2 , T_0 (1)

Fig. 14 Reference vector as a combination of adjacent vectors at sector 1.

> Step 2. Determine time duration T_1 , T_2 , T_0 (2)

Switching time duration at Sector 1

$$\int_{0}^{T_{z}} \overline{V}_{ref} = \int_{0}^{T_{1}} \overline{V}_{1}dt + \int_{0}^{T_{1}+T_{2}} \overline{V}_{2}dt + \int_{0}^{T_{z}} \overline{V}_{0}$$

$$\therefore T_{z} \cdot \overline{V}_{ref} = (T_{1} \cdot \overline{V}_{1} + T_{2} \cdot \overline{V}_{2})$$

$$\Rightarrow T_{z} \cdot |\overline{V}_{ref}| \cdot \begin{bmatrix} \cos(\alpha) \\ \sin(\alpha) \end{bmatrix} = T_{1} \cdot \frac{2}{3} \cdot V_{dc} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + T_{2} \cdot \frac{2}{3} \cdot V_{dc} \cdot \begin{bmatrix} \cos(\pi/3) \\ \sin(\pi/3) \end{bmatrix}$$
(where, $0 \le \alpha \le 60^{\circ}$)

$$T_1 = T_z \cdot a \cdot \frac{\sin(\pi/3 - \alpha)}{\sin(\pi/3)}$$

$$T_2 = T_z \cdot a \cdot \frac{\sin(\alpha)}{\sin(\pi/3)}$$

$$\therefore T_0 = T_z - (T_1 + T_2), \quad \text{where, } T_z = \frac{1}{f_s} \text{ and } a = \frac{\left| \overline{V}_{ref} \right|}{\frac{2}{3} V_{dc}}$$

> Step 2. Determine time duration T_1 , T_2 , T_0 (3)

Switching time duration at any Sector

$$\therefore T_{1} = \frac{\sqrt{3} \cdot T_{z} \cdot \left| \overline{V}ref \right|}{V_{dc}} \left(\sin \left(\frac{\pi}{3} - \alpha + \frac{n-1}{3} \pi \right) \right)$$

$$= \frac{\sqrt{3} \cdot T_{z} \cdot \left| \overline{V}ref \right|}{V_{dc}} \left(\sin \frac{n}{3} \pi - \alpha \right)$$

$$= \frac{\sqrt{3} \cdot T_{z} \cdot \left| \overline{V}ref \right|}{V_{dc}} \left(\sin \frac{n}{3} \pi \cos \alpha - \cos \frac{n}{3} \pi \sin \alpha \right)$$

$$\therefore T_2 = \frac{\sqrt{3} \cdot T_z \cdot \left| \overline{V}ref \right|}{V_{dc}} \left(\sin \left(\alpha - \frac{n-1}{3} \pi \right) \right)$$
$$= \frac{\sqrt{3} \cdot T_z \left| \overline{V}ref \right|}{V_{dc}} \left(-\cos \alpha \cdot \sin \frac{n-1}{3} \pi + \sin \alpha \cdot \cos \frac{n-1}{3} \pi \right)$$

$$T_0 = T_z - T_1 - T_2, \quad \text{where, n = 1 through 6(that is, Sector 1 to 6)}$$

$$0 \le \alpha \le 60^{\circ}$$

Switching Sequence in a Sector

> Step 3. Determine the switching time of each transistor

Vector	State	Time
V1	100	T1
V2	110	T2
V0	000	To/2
V7	111	To/2

Vector	State	Time
V2	110	T1
V3	010	T2
V0	000	To/2
V7	111	To/2

Switching Sequence in a Sector

	Vector	State	Time		Vector	State	Time
	V3	010	T1		V4	011	T1
	V4	011	T2		V5	001	T2
	V0	000	To/2		V0	000	To/2
	V7	111	To/2		V7	111	To/2
(upper)	T_z $T_0/2$ T_1 S_1 S_3 S_5	Γ ₂ Τ ₀ /2 Τ ₀ /2	T_z T_1 $T_0/2$	(upper)	$ \begin{array}{c c} T_2 \\ \hline T_0/2 & T_2 \\ \hline S_1 \\ S_3 \\ S_5 \\ \hline \end{array} $	T ₁ T ₀ /2 T ₀ /2	T_z T_1 T_2 T_{0}
(lower)	S ₄ S ₆ S ₂ V ₀ V ₃	V_4 V_7 V_7	V ₄ V ₃ V ₀	(lower)	S ₄ S ₆ S ₂ V ₀ V ₅	V ₄ V ₇ V ₇	V ₄ V ₅ V
		(c) Sector 3.				(d) Sector	4.

Switching Sequence in a Sector

Vector	State	Time
V5	001	T1
V6	101	T2
V0	000	To/2
V7	111	To/2

Vector	State	Time
V6	101	T1
V1	100	T2
V0	000	To/2
V7	111	To/2

Implementation of Space Vector PWM

Step 3. Determine the switching time of each transistor $(S_1 \text{ to } S_6)$

Table 1. Switching Time Table at Each Sector

Sector	Upper Switches (S ₁ , S ₃ , S ₅)	Lower Switches (S ₄ , S ₆ , S ₂)
1	$S_1 = T_1 + T_2 + T_0 / 2$ $S_3 = T_2 + T_0 / 2$ $S_5 = T_0 / 2$	$S_4 = T_0/2$ $S_6 = T_1 + T_0/2$ $S_2 = T_1 + T_2 + T_0/2$
2	$S_1 = T_1 + T_0/2$ $S_3 = T_1 + T_2 + T_0/2$ $S_5 = T_0/2$	$S_4 = T_2 + T_0/2$ $S_6 = T_0/2$ $S_2 = T_1 + T_2 + T_0/2$
3	$S_1 = T_0/2$ $S_3 = T_1 + T_2 + T_0/2$ $S_5 = T_2 + T_0/2$	$S_4 = T_1 + T_2 + T_0 / 2$ $S_6 = T_0 / 2$ $S_2 = T_1 + T_0 / 2$
4	$S_1 = T_0/2$ $S_3 = T_1 + T_0/2$ $S_5 = T_1 + T_2 + T_0/2$	$S_4 = T_1 + T_2 + T_0 / 2$ $S_6 = T_2 + T_0 / 2$ $S_2 = T_0 / 2$
5	$S_1 = T_2 + T_0/2$ $S_3 = T_0/2$ $S_5 = T_1 + T_2 + T_0/2$	$S_4 = T_1 + T_0/2$ $S_6 = T_1 + T_2 + T_0/2$ $S_2 = T_0/2$
6	$S_1 = T_1 + T_2 + T_0 / 2$ $S_3 = T_0 / 2$ $S_5 = T_1 + T_0 / 2$	$S_4 = T_0/2$ $S_6 = T_1 + T_2 + T_0/2$ $S_2 = T_2 + T_0/2$

• A voltage source inverter is supplied from a 620-V dc source and feeds a balance wye connected load. At a certain instant, the inverter is in state 3 and the output currents in phase A and B are -72 and 67A, respectively. Neglect the voltage drops in the inverter and determine all the output voltages and input current.

$$\begin{bmatrix} V_{ab} \\ V_{bc} \\ V_{ca} \end{bmatrix} = V_{dc} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 620 \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -620 \\ 0 \\ 620 \end{bmatrix}$$
$$\begin{bmatrix} V_{an} \\ V_{bn} \\ V_{cn} \end{bmatrix} = \frac{620}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 207 \\ 207 \end{bmatrix}$$