考虑带阻力的动力方程

$$m\frac{\mathrm{d}^2 \boldsymbol{p}_i}{\mathrm{d}t^2} + c \left\| \frac{\mathrm{d}\boldsymbol{p}_i}{\mathrm{d}t} \right\| \frac{\mathrm{d}\boldsymbol{p}_i}{\mathrm{d}t} = \boldsymbol{u}_i,$$

其中m为质量,c为阻力系数,即

$$\frac{\mathrm{d}\boldsymbol{X}}{\mathrm{d}t} = \boldsymbol{F}(\boldsymbol{X}),\tag{1}$$

其中

$$m{X} = egin{pmatrix} m{p} \\ m{v} \end{pmatrix} \in \mathbb{R}^{40}, \; m{p} = egin{pmatrix} m{p}_1 \\ dots \\ m{p}_{10} \end{pmatrix}, \; m{v} = egin{pmatrix} m{v}_1 \\ dots \\ m{v}_{10} \end{pmatrix}, \; m{F}(m{X}) = egin{pmatrix} m{v} \\ m^{-1}(m{u} - c \| m{v} \| m{v}) \end{pmatrix}.$$

易知质心 c(X), $\|r_i\|$, $\hat{r_i}$, Φ 均为 Lipschitz 连续函数, 且初值条件满足

$$\min_{i \neq j} \| \boldsymbol{p}_i(0) - \boldsymbol{p}_j(0) \| > d_s > 0.$$

由 Picard 定理可知方程 (1) 的解存在且唯一, 解为

$$\boldsymbol{X}(t) = \boldsymbol{X}(0) + \int_0^t \boldsymbol{F}(\boldsymbol{X}(s)) ds,$$

即

$$\mathbf{v}_i(t) = \mathbf{v}_i(0) + \int_0^t \left[m^{-1} \mathbf{u}_i(\mathbf{X}(s)) - \frac{c}{m} || \mathbf{v}_i(s) || \mathbf{v}_i(s) \right] \mathrm{d}s,$$
$$\mathbf{p}_i(t) = \mathbf{p}_i(0) + \int_0^t \mathbf{v}_i(s) \mathrm{d}s.$$

下面证明防撞性. 定义

$$\Psi(d) = k_r \exp\left\{-\frac{(d-d_s)^2}{2\sigma^2}\right\},$$

$$\Phi(d) = -\frac{\mathrm{d}\Psi}{\mathrm{d}d} = \frac{k_r}{\sigma^2} \exp\left\{-\frac{(d-d_s)^2}{2\sigma^2}\right\} (d-d_s),$$

$$E_{ij}(t) = \frac{1}{2} \left(\frac{\mathrm{d}d_{ij}}{\mathrm{d}t}\right)^2 + \psi(d_{ij}(t)),$$

其中 $d_{ij}(t) = \|\boldsymbol{p}_i(t) - \boldsymbol{p}_j(t)\|$. 则系统能量为

$$\mathcal{E}(t) = \sum_{1 \leq i < j \leq N} E_{ij}(t).$$

而

$$\frac{\mathrm{d}E_{ij}}{\mathrm{d}t} = \frac{\mathrm{d}d_{ij}}{\mathrm{d}t} \cdot \frac{\mathrm{d}^2 d_{ij}}{\mathrm{d}t^2} + \varPhi(d_{ij}) \frac{\mathrm{d}d_{ij}}{\mathrm{d}t},$$

$$\frac{\mathrm{d}^2 d_{ij}}{\mathrm{d}t^2} = \frac{1}{d_{ij}} \left[\|\boldsymbol{v}_i - \boldsymbol{v}_j\|^2 + (\boldsymbol{p}_i - \boldsymbol{p}_j) \cdot (\boldsymbol{u}_i - \boldsymbol{u}_j) - \left(\frac{\mathrm{d}d_{ij}}{\mathrm{d}t}\right)^2 \right],$$
(2)

其中 $\mathbf{u}_i = \dot{\mathbf{v}}_i$. 对于 \mathbf{u}_i , 有

$$\boldsymbol{u}_i = \frac{1}{m} \left[-k_p (d_i - R^*) \widehat{\boldsymbol{r}}_i - k_d v_{r,i} \widehat{\boldsymbol{r}}_i - k_v (v_{\theta,i} - v_d) \widehat{\boldsymbol{\theta}}_i \right] + \frac{1}{m} \sum_{k \neq i} \Phi(d_{ik}) (\boldsymbol{p}_i - \boldsymbol{p}_k) =: \boldsymbol{u}_{i_1} + \boldsymbol{u}_{i_2}.$$

设 $\|\boldsymbol{u}_{i_1} - \boldsymbol{u}_{j_1}\| \leqslant L$. 取

$$k_r > L\sigma^2 e^{\frac{1}{2}} \max \left\{ \frac{1}{d_s}, \frac{1}{\min\limits_{k \neq l} d_{kl}(0)} \right\},$$

则当 $d_{ij} \leq d_s + \sigma$ 时,有

$$\|\boldsymbol{u}_{i_2} - \boldsymbol{u}_{j_2}\| > 2L.$$

于是

$$(p_i - p_j) \cdot (u_i - u_j) \geqslant ||u_{i_2} - u_{j_2}||d_{ij} - Ld_{ij} > Ld_{ij}.$$

代入 (2) 式有

$$\frac{\mathrm{d}E_{ij}}{\mathrm{d}t} \geqslant \frac{\mathrm{d}d_{ij}}{\mathrm{d}t}(L + \varPhi(d_{ij})) > 0.$$

由此即知

$$\frac{\mathrm{d}\mathcal{E}}{\mathrm{d}t} \geqslant -\kappa \mathcal{E}(t),$$

其中 $\kappa > 0$ 为常数. 而

$$\mathcal{E}(0) \geqslant \sum_{i < j} \Psi(d_{ij}(0)) > \psi(d_s + \sigma) \cdot \binom{N}{2},$$

$$\mathcal{E}(t) \geqslant \mathcal{E}(0) e^{-\kappa t} > 0,$$

$$\Psi(d_{ij}(t)) \leqslant E_{ij}(t) \leqslant \mathcal{E}(t).$$

由 Ψ 严格单调递减可知

$$d_{ij}(t) \geqslant \Psi^{-1}(\mathcal{E}(t)) > \Psi^{-1}(\mathcal{E}(0)e^{-\kappa t}).$$

$$\underline{\lim_{t \to \infty}} d_{ij}(t) \geqslant \Psi^{-1}(0) = d_s.$$

故总是不会相撞.

下面讨论收敛性,即讨论系统收敛至

$$S = { \| \boldsymbol{r}_i \| = R, \boldsymbol{v}_i \cdot \widehat{\boldsymbol{r}}_i = 0, \| \boldsymbol{v}_i \| = v_d }.$$

构造 Lyapunov 函数

$$V = \frac{1}{2} \sum_{i=1}^{N} [k_p (d_i - R)^2 + ||\boldsymbol{v}_i - v_d \widehat{\boldsymbol{\theta}}_i||^2] + \sum_{i < j} \Psi(d_{ij}),$$

则

$$\dot{V} = -\sum_{i} k_{d} v_{r,i}^{2} - \sum_{i} k_{v} (v_{\theta,i} - v_{d})^{2} - \sum_{i} c ||v_{i}||^{3} \leqslant 0,$$

故方程渐进收敛至 S.