Honours Algebra Notes

Leon Lee

February 28, 2024

Contents

1	\mathbf{Vec}	etor Spaces
	1.1	Fields and Vector Spaces
		1.1.3 Vector Space Terminology
		1.1.5 Vector Space Lemmas
	1.2	Product of Sets and of Vector Spaces
	1.3	Vector Subspaces
		1.3.3 Subspace terminology
	1.4	Linear Independence and Bases
		1.4.4 Family notation

1 Vector Spaces

1.1 Fields and Vector Spaces

Definition 1.1.1: Definition of a field

A field F is a set with functions

- Addition: $+: F \times F \to F, (\lambda, \mu) \mapsto \lambda + \mu$
- Multiplication: $\cdot: F \times F$, $(\lambda, \mu) \mapsto \lambda \mu$

and two distinguished members 0_F , 1_F with $0_F \neq 1_F$ s.t. (F, +) and $F \setminus \{0_F, \cdot\}$ are abelian groups whose neutral elements are 0_F and 1_F respectively, and which also satisfies

$$\lambda(\mu + \nu) = \lambda\mu + \lambda\nu \in F$$

for any $\lambda, \mu, \nu \in F$. Additional Requirements: For all $\lambda, \mu \in F$,

- $\lambda + \mu = \mu + \lambda$
- $\lambda \cdot \mu = \mu \cdot \lambda$
- $\lambda + 0_F = \lambda$
- $\lambda \cdot 1_F = \lambda \in F$

For every $\lambda \in F$ there exists $-\lambda \in F$ such that

$$\lambda + (-\lambda) = 0_F \in F$$

For every $\lambda \neq 0 \in F$ there exists $\lambda^{-1} \neq 0 \in F$ such that

$$\lambda(\lambda^{-1}) = 1_F \in F$$

NOTE: This is a terrible definition of a field, just think of it as a group with two operations instead of one

Definition 1.1.2: Definition of a Vector Space

A vector space V over a field F is a pair consisting of an abelian group $V = (V, \dot{+})$ and a mapping

$$F \times V \to V : (\lambda, \vec{v}) \mapsto \lambda \vec{v}$$

such that for all $\lambda, \mu \in F$ and $\vec{v}, \vec{w} \in V$ the following identities hold:

$$\lambda(\vec{v} \dot{+} \vec{w}) = (\lambda \vec{v}) \dot{+} (\lambda \vec{w})$$
$$(\lambda + \mu) \vec{v} = (\lambda \vec{v}) \dot{+} (\mu \vec{v})$$
$$\lambda(\mu \vec{v}) = (\lambda \mu) \vec{v}$$
$$1_F \vec{v} = \vec{v}$$

The first two laws are the **Distributive Laws**, the third law is called the **Associativity Law**. A vector field V over a field F is commonly called an F-vector space

3

1.1.3 Vector Space Terminology

 \bullet Elements of a vector space: $\mathbf{vectors}$

• Elements of the field F: scalars

- The field F itself: ground field

• The map $(\lambda, \vec{v}) \mapsto \lambda \vec{v}$: multiplication by scalars, or the action of the field F on V

Notes:

- This is not the same as the "scalar product", as that produces a scalar from two vectors
- Let the zero element of the abelian group V be written as $\vec{0}$ and called the **zero vector**
- The use of $\dot{+}$ and 1_F is there for mostly pedantic rigorous reasons, and a much less confusing way of defining a vector field is defined below:

Definition 1.1.4: Alternative Vector Space definition

A vector space V over a field F is a pair consisting of an abelian group $V=(V,\dot+)$ and a mapping

$$F \times V \to V : (\lambda, \vec{v}) \mapsto \lambda \vec{v}$$

such that for all $\lambda, \mu \in F$ and $\vec{v}, \vec{w} \in V$ the following identities hold:

$$\lambda(\vec{v} \dot{+} \vec{w}) = \lambda \vec{v} \dot{+} \lambda \vec{w}$$
$$(\lambda + \mu) \vec{v} = \lambda \vec{v} \dot{+} \mu \vec{v}$$
$$\lambda(\mu \vec{v}) = (\lambda \mu) \vec{v}$$
$$1 \vec{v} = \vec{v}$$

1.1.5 Vector Space Lemmas

Product with the scalar zero: If V is a *vector space* and $\vec{v} \in V$, then $0\vec{v} = \vec{0}$, or in words "zero times a vector is the zero vector"

Product with the scalar (-1): If V is a vector space and $\vec{v} \in V$, then $(-1)\vec{v} = -\vec{v}$

Product with the zero vector: If V is a vector space over a field F, then $\lambda \vec{0} = \vec{0}$ for all $\lambda \in F$.

Furthermore, if $\lambda \vec{v} = \vec{0}$ then either $\lambda = 0$ or $@\vec{v} = \vec{0}$

1.2 Product of Sets and of Vector Spaces

Definition 1.2.1: Cartesian Product of n sets

Trivially: $X \times Y = \{(x, y) : x \in X, y \in Y\}$

Just extend this to n numbers

$$X_1 \times \cdots \times X_n := \{(x_1, \dots, x_n) : x_i \in X_i \text{ for } 1 \le i \le n\}$$

The elements of a product are called *n*-tuples. An individual entry $x_i = (x_1, \dots, x_n)$ is called a **component**.

There are special mappings called **projections** for a cartesian product:

$$\operatorname{pr}_i: X_1 \times \dots \times X_n \to X_i$$

 $(x_1, \dots, x_n) \mapsto x_i$

The cartesian product of n copies of a set X is written in short as: X^n

The elements of X^n are n-tuples of elements from X. In the special case n=0 we use the general convention that X^0 is "the" one element set, so that for all $n, m \ge 0$, we then have the canonical bijection

$$X^{n} \times X^{m} \to X^{n+m}$$

$$((x_{1}, x_{2}, \dots, x_{n}), (x_{n+1}, x_{n+2}, \dots, x_{n+m})) \mapsto (x_{1}, x_{2}, \dots, x_{n}, x_{n+1}, x_{n+2}, \dots, x_{n+m})$$

Note: the \rightarrow should have a tilde but idk how to typeset it like that [Bunch of examples: check LN 1.3]

1.3 Vector Subspaces

Definition 1.3.1: Vector Subspace

A subset U of a vector space V is called a **vector subspace** or **subspace** if U contains the zero vector, and whenever $\vec{u}, \vec{v} \in U$ and $\lambda \in F$ we have $\vec{u} + \vec{v} \in U$ and $\lambda \vec{u} \in U$

Note There is a more generalized definition using concepts we haven't learned yet, it is as follows: Let F be a field. A subset of an F-vector space is called a vector subspace if it can be given the structure of an F-vector space such that the embedding is a "homomorphism of F-vector spaces". This definition is a lot more general since it also applies to subgroups, subfields, sub-"any structure", etc

Definition 1.3.2: Spanning Subspace

Let T be a subset of a vector space V over a field F. Then amongst all vector subspaces of V that include T there is a smallest vector subspace

$$\langle T \rangle = \langle T \rangle_F \subseteq V$$

It can be described as the set of all vectors $\alpha_1 \vec{v}_1 + \cdots + \alpha_r \vec{v}_r$ with $\alpha_1, \ldots, \alpha_r \in F$ and $\vec{v}_1, \ldots, \vec{v}_r \in T$, together with the zero vector in the case $T = \emptyset$

1.3.3 Subspace terminology

- An expression of the form $a_1\vec{v}_1 + \cdots + \alpha_r\vec{v}_r$ is called a **linear combination** of vectors $\vec{v}_1, \ldots, \vec{v}_r$.
- The smallest vector subspace $\langle T \rangle \subseteq V$ containing T is called the **vector subspace generated by** T or the vector subspace **spanned by** T or even the **span of** T
- If we allow the zero vector to be the "empty linear combination of r = 0 vectors", which is what we will mean from hereon, then the span of T is exactly the set of all linear combinations of vectors from T

Definition Number: Generating Subspace

A subset of a vector space is called a **generating** or **spanning set** of our vector space if its span is all of the vector space. A vector space that has a finite generating set is said to be **finitely generated**.

1.4 Linear Independence and Bases

Definition 1.4.1: Linear Independence

A subset L of a vector space V is called **linearly independent** if for all pairwise different vectors $\vec{v}_1, \ldots, \vec{v}_r \in L$ and arbitrary scalars $\alpha, \ldots, \alpha_r \in F$,

$$a_1\vec{v}_1 + \dots + \alpha_r\vec{v}_r = \vec{0} \implies a_1 = \dots = \alpha_r = 0$$

Definition 1.4.2: Linear Dependence

A subset L of a vector space V is called **ilnearly dependent** if it is not linearly independent (duh..). This means there exists pairwise different vectors $\vec{v}j_1, \ldots, \vec{v}_r \in L$ and scalars $\alpha_1, \ldots, \alpha_r \in F$, not all zero, such that $\alpha_1 \vec{v}_1 + \cdots + \alpha_r \vec{v}_r = \vec{0}$

Definition 1.4.3: Basis of a Vector Space

A basis of a vector space V is a linearly independent generating set in V

1.4.4 Family notation

Let A and I be sets. We will refer to a mapping $I \to A$ as a **family of elements of** A **indexed** by I and use the notation

$$(a_i)i \in I$$

This is used mainly when I plays a secondary role to A. In the case $I = \emptyset$, we will talk about the **empty family** of elements of A.

Random facts:

- The family $(\vec{v}_i)_{i \in I}$ would be called a generating set if the set $\{\vec{v}_i : i \in I\}$ is a generating set.
- It would be called linearly independent or a linearly independent family if, for pairwise distinct indices $i(1), \ldots, i(r) \in I$ and arbitrary scalars $a_1, \ldots, a_r \in F$,

$$a_1 \vec{v}_{i(1)} + \dots + a_r \vec{v}_{i(r)} = \vec{0} \to \alpha_1 = \dots = a_r = 0$$

A difference between families and subsets is that the same vector can be represented by different indices in a family, in which case linear independence as a family is not possible. A family of vectors that is not linearly independent is called a **linearly dependent family**. A family of vectors that is a generating set and linearly independent is called either a **basis** or a **basis** indexed by $i \in I$

Example 1.4.5: Standard Basis

Let F be a field and $n \in \mathbb{N}$. We consider the following vectors in F^n

$$\vec{e}_i = (0, \dots, 0, 1, 0, \dots, 0)$$

with one 1 in the *i*-th place and zero everywhere else. Then $\vec{e}_1, \ldots, \vec{e}_n$ form an ordered basis of F^n , the so-called **standard basis of** F^n

Theorem 1.4.6: Linear combinations of basis elements

Let F be a field, V a vector space over F and $\vec{v}_1, \ldots, \vec{v}_r \in V$ vectors. The family $(\vec{v}_i)_{1 \leq i \leq r}$ is a basis of V if and only if the following "evaluation" mapping

$$\psi: F^r \to V$$

$$(\alpha_1, \dots, \alpha_r) \mapsto a_1 \vec{v}_1 + \dots + \alpha_r \vec{v}_r$$

is a bijection

If we label our ordered family by $\mathcal{A} = (\vec{v}_1, \dots, \vec{v}_r)$, then we done the above mapping by

$$\psi = \psi_{\mathcal{A}} : F^r \to V$$