CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 9 FEBBRAIO 2018

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola** e **gruppo** di **appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Sia (S, <) un insieme ordinato, e sia $X \subseteq S$.

- (i) Dare le definizioni di minimo di S, elemento minimale di S, minorante di X in S, estremo inferiore di X in S.
- (ii) Se \mathcal{F} è una partizione di un insieme A, nell'insieme ordinato $(\mathcal{P}(A),\subseteq)$ esistono inf \mathcal{F} e sup \mathcal{F} ?

Esercizio 2. Si consideri l'applicazione $f: X \in \mathcal{P}(\mathbb{Z}) \longmapsto X^* = \{|x| \mid x \in X\} \in \mathcal{P}(\mathbb{Z}).$

- (i) Dare un esempio di $X \in \mathcal{P}(\mathbb{Z})$ tale che $|X| > |X^*|$.
- (ii) Dare un esempio di $Y \in \mathcal{P}(\mathbb{Z})$ tale che $Y \not\subseteq \mathbb{N}$ e $|Y| = |Y^*|$.
- (iii) f è iniettiva? f è suriettiva?
- (iv) Indicato con \sim il nucleo di equivalenza di f, si determinino gli elementi di $[\varnothing]_{\sim}$, $[\{1\}]_{\sim}$, $[\{1,-2\}]_{\sim}$.
- (v) Se X è una parte finita di \mathbb{N}^* e n=|X|, quanti sono gli $Y\subseteq\mathbb{Z}$ tali che $Y^*=X$?
- (vi) Si dica se le seguenti affermazioni sono vere o false:
 - (a) $(\forall X, Y \in \mathcal{P}(\mathbb{Z}))(X \subset Y \Rightarrow X^* \subset Y^*);$
 - (b) $(\forall X, Y \in \mathcal{P}(\mathbb{Z}))(X \subset Y \Rightarrow X^* \subseteq Y^*).$

Consideriamo poi la relazione d'ordine σ così definita:

$$(\forall X, Y \in \mathcal{P}(\mathbb{Z})) (X \ \sigma \ Y \iff (X = Y \lor X^* \subset Y^*))$$

- (vii) Determinare in $(\mathcal{P}(\mathbb{Z}), \sigma)$ eventuali minimo, massimo, elementi minimali, elementi massimali. Sia $K = \{\{2, 1, -1\}, \{2, 1, 3\}\}.$
 - (viii) In $(\mathcal{P}(\mathbb{Z}), \sigma)$, l'elemento $\{1, 2\}$ è un minorante di K?
 - (ix) Determinare, in $(\mathcal{P}(\mathbb{Z}), \sigma)$, l'insieme di tutti i minoranti di K e, se esiste, inf K.
 - (x) $(\mathcal{P}(\mathbb{Z}), \sigma)$ è un reticolo?

Esercizio 3. Sia * l'operazione binaria definita in $\mathbb{Z}_{16} \times \mathbb{Z}_{16}$ ponendo, per ogni $a, b, c, d \in \mathbb{Z}_{16}$, (a, b) * (c, d) = (ac, b).

- (i) Si verifichi se * è associativa e se è commutativa; se, rispetto a *, $\mathbb{Z}_{16} \times \mathbb{Z}_{16}$ ha elementi neutri a destra, a sinistra, neutri.
- (ii) Si dica se esiste, e nel caso si trovi, una coppia $(c,d) \in \mathbb{Z}_{16} \times \mathbb{Z}_{16}$ tale che:
 - (a) $(\overline{10}, \overline{4}) * (c, d) = (\overline{3}, \overline{4});$
 - (b) $(\overline{10}, \overline{4}) * (c, d) = (\overline{8}, \overline{4});$
- (iii) Si verifichi che, per ogni $b \in \mathbb{Z}_{16}$, $T := \mathbb{Z}_{16} \times \{b\}$ è parte chiusa rispetto a * e che (T, *) è un monoide commutativo, determinandone gli elementi invertibili.

Esercizio 4.

- (i) Determinare, se esiste, un polinomio $f \in \mathbb{R}[x]$ di grado 5 tale che f(1) = f(-1) = f(2) = 0 e f non si possa scrivere come prodotto di fattori di primo grado (si scriva eventualmente f come prodotto di polinomi irriducibili).
- (ii) Determinare, se esiste, un polinomio $g \in \mathbb{R}[x]$ di grado 5 che sia prodotto di due polinomi irriducibili.
- (iii) Determinare, se esiste, un polinomio $h \in \mathbb{R}[x]$ di grado 4 che sia prodotto di tre polinomi irriducibili.