Provably Robust Offline Reinforcement Learning via Smoothed Policy Iteration

Tengyang Xie

tx10@illinois.edu

Reinforcement Learning

Sequential Decision-Making under Uncertainty

Motivations

► RL has been used in many *safety-critical* applications (e.g., medical treatment, autonomous driving).

Motivations

- ▶ RL has been used in many *safety-critical* applications (e.g., medical treatment design, autonomous driving).
- Observation from real-world applications contains unavoidable perturbation (e.g., sensor errors or adversarial attack).

76% it is a

45 MPH Sign

Motivations

- ► RL has been used in many *safety-critical* applications (e.g., medical treatment design, autonomous driving).
- Observation from real-world applications contains unavoidable perturbation (e.g., sensor errors or adversarial attack).

Goal: Robust RL against (adversarial) perturbations on state observations.

Problem Setup

- ► Typical RL: Observe state s, take action $a \sim \pi(\cdot|s)$, receive reward r and next state s'.
- This paper: Observe perturbed state s+v(s), take action $a \sim \pi(\cdot|s+v(s))$, receive reward r and next perturbed state s'+v(s').

(v(s) — arbitrary L^2 bounded perturbation)

Challenge

For any given π , what we actually execute is $\pi \circ \nu$.

Because the observation can be always perturbed like this —

Proposed Method

Policy Iteration + Lipschitz

Why policy iteration (PI)?

PI is the foundation of all policy-based methods, e.g., actor-critic, TRPO, PPO...

Basic framework of PI: At every iteration t, repeat

- (1) Estimate Q^{π_t} .
- (2) Set the greedy policy of Q^{π_t} as π_{t+1} .

Proposed Method

Policy Iteration + Lipschitz

Why Lipschitz?

Lipschitz continuity measures the robustness for supervised learning [Salman et al., 2019; Bubeck et al., 2020].

Open Question:

Can the same principle ($Lipschitz \Rightarrow robustness$) apply to RL? If so, how?

Our Algorithm

Given perturbed batch data $\mathcal{D} = \{s_i + v(s_i), a_i, s_i' + v(s_i'), r_i\}_{i=1}^n$, where $r_i \sim \mathcal{R}(s, a)$ and $s' \sim \mathcal{P}(\cdot | s, a)$.

- 1. Initialize policy as π_1 .
- 2. For t = 1, 2, ..., T, do
 - 2.1 (*Policy Evaluation*) Estimate Q^{π_t} as f_t using \mathcal{D} , where f_t satisfies:
 - i) $||f_t Q^{\pi_t \circ \mathbf{v}}||_{\infty} = \varepsilon_1$,
 - ii) f_t is L-Lipschitz.
 - 2.2 (*Policy Improvement*) $\pi_{t+1} \leftarrow \text{greedy policy of } f_t$.
- 3. Output π_{T+1} .

Robust Policy Improvement

Theorem (Robust Policy Improvement). Assume (Q, π) pair satisfies:

- (i) $||Q Q^{\pi}||_{\infty} = \varepsilon_1$.
- (ii) Q is L-Lipschitz.

Let $\pi_Q \circ \nu_{\epsilon_2}$ be the perturbed greedy policy w.r.t. Q and an ϵ_2 -bounded perturbation ν_{ϵ_2} , then for any $s \in \mathcal{S}$,

$$V^{\pi_{Q}\circ {
m v}_{arepsilon_2}}(s) \geq \, V^{\pi}(s) - rac{2arepsilon_1 + 2Larepsilon_2}{1-\gamma},$$

where $\pi_Q \circ \mathsf{v}_{\varepsilon_2}(s) = \operatorname{argmax}_{a \in \mathcal{A}} Q(\mathsf{v}_{\varepsilon_2}(s), a).$

Performance Bound

Theorem (Performance Bound). Let π_{T+1} be the out put of our algorithm. Then,

$$\begin{split} &J(\pi^{\star}) - J(\pi_{T+1}) \\ &\leq \gamma^T \, V_{\max} + \frac{1 - \gamma^T}{1 - \gamma} \left(2L\varepsilon_2 + 2\varepsilon_1 + \frac{\gamma(2\varepsilon_1 + 2L\varepsilon_2)}{1 - \gamma} \right), \end{split}$$

where ε_1 is the estimation error in the policy evaluation step $(\varepsilon_1 = \varepsilon_Q + O(n^{-1/2}))$ or $\varepsilon_1 = O(n^{-1/d})$ depends on the evaluation algorithm), and ε_2 is the perturbation scale.

Policy Evaluation Subroutine

Why is Lipschitz policy evaluation possible?

Lipschitz MDP ⇒ Lipschitz Q-Function [Asadi et al., 2018]

Options for us:

- (i) Non-parametric policy evaluation over a Lipschitz function class.
- (ii) General function class + randomized smoothing.

(i) Non-Parametric Policy Evaluation over a Lipschitz Function Class

Inspired by [Tang et al., 2020].

Algorithm:

Given batch data $\mathcal{D} = \{(s_i, a_i, r_i, s_i')\}_{i=1}^n$ (all the states are perturbed by v_{ϵ_2}) and target policy π .

- 1. Set $q_{0,i} = r_i \gamma Ld(s_i, s_i'), \forall i \in [i]$
- 2. For t = 1, 2, ..., T
 - $2.1 \quad Q_t(s,a) = \max_{i \in [n]: a=a} (q_{t-1,i} Ld(s,s_i) L\varepsilon_2), \ \forall (s,a) \in \mathcal{S} \times \mathcal{A}$
 - $\textcolor{red}{\textbf{2.2}} \hspace{0.2cm} q_{t,i} = r_i + \gamma [\widehat{T}^{\pi} Q_t](s_i,a_i), \forall i \in [i]$

Issue ①: Need to know/estimate Lipschitz constant.

(i) Non-Parametric Policy Evaluation over a Lipschitz Function Class

Theorem

Let $Q=Q_T,\,T o\infty$, we have

$$\|Q_T - Q^\pi\|_\infty \leq rac{2L(arepsilon_{\mathcal{S}} + arepsilon_2)}{1 - \gamma},$$

where $\varepsilon_S := \sup_{(s,a) \in S \times A} \min_{i \in [n]: a_i = a} d(s, s_i)$, and ε_2 is the perturbation bound.

Issue ②: $\varepsilon_S = O(n^{-1/d})$ — curse of dimensionality, inevitable for non-parametric approaches.

(ii) General Function Class + Randomized Smoothing

For any Q-function class \mathcal{F} , construct $\widetilde{\mathcal{F}}$ as

$$egin{aligned} \widetilde{\mathcal{F}} = & \{f \circ \mathcal{N}(0, \sigma I); f \in \mathcal{F}\}, \ \ ext{where} \ & (f \circ \mathcal{N}(0, \sigma I)) \left(s, a
ight) \coloneqq \mathop{\mathbb{E}}_{\epsilon \sim \mathcal{N}(0, \sigma I)} \left[f(s + \epsilon, a)
ight]. \end{aligned}$$

Lipschitz constant is controlled by $O(V_{\text{max}}/\sigma)$.

Theorem. For any function \mathcal{F} , if $f(s,a) \in [0, V_{\max}]$ for any $f \in \mathcal{F}$ and any $(s,a) \in \mathcal{S} \times \mathcal{A}$, then $f \circ \mathcal{N}(0,\sigma I)$ is $\frac{V_{\max}}{\sigma} \sqrt{2/\pi}$ -Lipschitz.

Approximation error scales with $O(\sigma)$.

(ii) General Function Class + Randomized Smoothing

For any Q-function class \mathcal{F} , construct $\widetilde{\mathcal{F}}$ as

$$egin{aligned} \widetilde{\mathcal{F}} &= \{f \circ \mathcal{N}(0, \sigma I); f \in \mathcal{F}\}, \ ext{where} \ &(f \circ \mathcal{N}(0, \sigma I)) \, (s, a) \coloneqq \mathop{\mathbb{E}}_{\epsilon \sim \mathcal{N}(0, \sigma I)} \left[f(s + \epsilon, a)
ight]. \end{aligned}$$

Lipschitz constant is controlled by $O(V_{\text{max}}/\sigma)$.

Approximation error scales with $O(\sigma)$.

Theorem. If $Q^{\pi} \in \mathcal{F}$, then

$$\min_{\widetilde{f} \in \widetilde{\mathcal{F}}} \left\| \widetilde{f} - \mathcal{T}^{\pi} \widetilde{f} \right\|_{\infty} \leq \sigma L_R \sqrt{\frac{2}{\pi}} + \sigma (L_{\mathcal{P}} + 1) L_Q \sqrt{\frac{2}{\pi}}.$$

(ii) General Function Class + Randomized Smoothing

For any Q-function class \mathcal{F} , construct $\widetilde{\mathcal{F}}$ as

$$egin{aligned} \widetilde{\mathcal{F}} = & \{f \circ \mathcal{N}(0, \sigma I); f \in \mathcal{F}\}, \ \ ext{where} \ & (f \circ \mathcal{N}(0, \sigma I)) \, (s, a) \coloneqq \mathop{\mathbb{E}}_{\epsilon \sim \mathcal{N}(0, \sigma I)} \left[f(s + \epsilon, a)
ight]. \end{aligned}$$

Theorem^a (informal). Let π_{T+1} be the output of the algorithm and the policy evaluation subroutine uses the randomized smoothed function class.

If $\sigma = \Theta(\sqrt{V_{\text{max}}\varepsilon_2})$ (ε_2 is the perturbation bound), then,

$$J(\pi^{\star}) - J(\pi_{T+1}) \leq O\left(n^{-1/2} + \sqrt{V_{\max}\varepsilon_2}\right).$$

^aproof uncompleted due to limited time

Conclusion

We provide a novel RL algorithm that:

- Provably robust against perturbations on state observations.
- ► The performance is guaranteed with a finite-sample error bounds.

Messages from our results:

- ▶ The principle of $Lipschitz \Rightarrow robustness$ also applies to RL indeed.
- ▶ Randomized smoothing still works well in RL against perturbations on state observations.

Future Directions

Next plan for this project:

- ▶ Complete the proof of current randomized smoothing part.
- ▶ The theoretical analysis can be further improved by $\|\cdot\|_{\infty} \to C\|\cdot\|_{2,\mu}^{-1}$, which is more suitable for capturing rich observation with function approximation.
- ► Experiments.

Future work:

- Policy-gradient based approaches.
- ▶ Online setting with exploration.

 $^{^{1}}C$ is the concentrability coefficient for capturing the distribution shift.

Reference I

- Kavosh Asadi, Dipendra Misra, and Michael Littman. Lipschitz continuity in model-based reinforcement learning. In International Conference on Machine Learning, pages 264–273, 2018.
- Sébastien Bubeck, Yuanzhi Li, and Dheeraj Nagaraj. A law of robustness for two-layers neural networks. arXiv preprint arXiv:2009.14444, 2020.
- Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers. In Advances in Neural Information Processing Systems, pages 11292–11303, 2019.

Reference II

Ziyang Tang, Yihao Feng, Na Zhang, Jian Peng, and Qiang Liu. Off-policy interval estimation with lipschitz value iteration. Advances in Neural Information Processing Systems, 33, 2020.