Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Visualization and Dimensionality Reduction

Class Logistics and Agenda

- Dimensionality Reduction
 - PCA
 - Randomized PCA
 - Images

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful

Purpose:

- Avoid curse of dimensionality
- Select subsets of independent features
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- Principle Component Analysis
- Non-linear PCA
- Stochastic Neighbor Embedding

I invented PCA... and Social Darwinism

Aside: Eigen Vectors are your friend!

Three Blue One Brown:

https://www.youtube.com/watch?v=PFDu9oVAE-g

 Goal is to find a projection that captures the largest amount of variation in data

- Find the eigenvectors of the covariance matrix
- keep the "k" largest eigenvectors

E1	E2
0.85	0.85
0.52	-0.52

	A1	A2
1	66	33.6
2	54	26.6
3	69	23.3
4	73	28.1
5	61	43.1
6	62	25.6

COV	arıa	nce
	ai iu	

37.1	-6.7
-6.7	43.9

	A1	A2
1	1.83	3.55
2	-10.1	-3.45
3	4.83	-6.75
4	8.83	-1.95
5	-3.17	13.05
6	-2.17	-4.45

zero mean

 $attribute_2$

now I can represent data as if it only had one attribute!!

This projection is called a **Transform** known as the **Karhunen-Loève Transform (KLT)**

	A1	A2
1	1.83	3.55
2	-10.1	-3.45
3	4.83	-6.75
4	8.83	-1.95
5	-3.17	13.05
6	-2.17	-4.45

zero mean

0.85*att1 + **0.52***att2

P113.40152-10.37930.595546.491554.09156-4.1585

First Principle Component

This projection is called a **Transform** known as the **Karhunen-Loève Transform (KLT)**

Explained Variance

- Each principle component explains a certain amount of variation in the data.
- This explained variation is encoded in the eigenvalues of each eigenvector

sum of q largest eigenvalues

$$r_q = \frac{\sum_{j=1}^q \lambda_j}{\sum_{j=1}^p \lambda_j}$$

sum of all eigenvalues

Genetic profiles distilled to 2 components

- Need more help with the PCA algorithm (and python)?
 - check out Sebastian Raschka's notebooks:

http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/principal_component_analysis.ipynb

Or check out PCA for dummies:

https://georgemdallas.wordpress.com/ 2013/10/30/principal-componentanalysis-4-dummies-eigenvectorseigenvalues-and-dimension-reduction/

Explained variance by different principal components

Dimension Reduction

04. Dimension Reduction and Images. ipynb

PCA biplots

Other Tutorials:

http://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html#example-decomposition-plot-pca-vs-lda-py

http://nbviewer.ipython.org/github/ogrisel/notebooks/blob/master/Labeled%20Faces%20in%20the%20Wild%20recognition.ipynb

Self Test ML2b.1

Principal Components Analysis works well for categorical data by design.

- A. True
- B. False
- C. It doesn't but people do it anyway

Dimensionality Reduction: Randomized PCA

- **Problem**: PCA on all that data can take a while to compute
 - What if the number of instances is gigantic?
 - What if the number of dimensions is gigantic?
- What if we partially construct the covariance matrix with a lower rank matrix?
 - By transforming our table data, A, with another orthogonal matrix, Q, we can approximate the covariance matrix, but with lower rank
 - Gives a matrix with typically good enough precision of actual eigenvectors, like using SVD. QQ^TA is surrogate

Example Objective
$$\|\boldsymbol{A} - \boldsymbol{Q}\boldsymbol{Q}^*\boldsymbol{A}\| \leq \left[1 + 11\sqrt{k+p} \cdot \sqrt{\min\{m,n\}}\right] \sigma_{k+1}$$

Halko, et al., (2009) Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions. https://arxiv.org/pdf/0909.4061.pdf

Image Processing and Representation

Images as data

- an image can be represented in many ways
- most common format is a matrix of pixels
 - each "pixel" is BGR(A)

Image Representation

need a compact representation

grayscale

0.3*R+0.59*G+0.11*B, "luminance"

gray

1	4	2	5	6	9
1	4	2	5	5	9
1	4	2	8	8	7
3	4	3	9	9	8
1	0	2	7	7	9
1	4	3	9	8	6
2	4	2	8	7	9

Numpy Matrix 2 4 2 8 7 9

image[rows, cols]

		1 1					
	G	1	4	2	5	6	9
\mathbb{B}	1	4	2	5	6	9	9
1	4	2	5	6	9	9	7
1	4	2	5	5	9	7	8
1	4	2	8	8	7	8	9
3	4	3	9	9	8	9	6
1	0	2	7	7	9	6	9
1	4	3	9	8	6	9	厂
2	4	2	8	7	9		_

Numpy Matrix image[rows, cols, channels]

Image Representation, Features

Problem: need to represent image as table data

need a compact representation

1	4	2	5	6	9
1	4	2	5	5	9
1	4	2	8	8	7
3	4	3	9	9	8
1	0	2	7	7	9
1	4	3	9	8	6
2	4	2	8	7	9

Image Representation, Features

Problem: need to represent image as table data

need a compact representation

Solution: row concatenation (also, vectorizing)

. . .

Row N 9 4 6 8 8 7 4 1 3 9 2 1 1 5 2 1 5 9 1

Self test: 3a-1

- When vectorizing images into table data, each "feature column" corresponds to:
 - a. the value (color) of pixel
 - b. the spatial location of a pixel in the image
 - c. the size of the image
 - d. the spatial location and color channel of a pixel in an image

Dimension Reduction with Images

Demo

Images Representation in PCA and Randomized PCA

04.Dimension Reduction and Images.ipynb

For Next Lecture

- Next Lecture:
 - Finish Dimension Reduction Demo
 - Crash-course Image Feature Extraction

Lecture Notes for **Machine Learning in Python**

Professor Eric Larson **Dimensionality Reduction and Images**

Class Logistics and Agenda

Logistics:

- Lab due soon!
- Next Time: Flipped Module
- Turn in one per team (HTML), please include team member names from canvas

Agenda

- Common Feature Extraction Methods for Images
- Begin Town Hall, if time

Last time...

E1	E2
0.85	0.85
0.52	-0.52

	A1	A2
1	66	33.6
2	54	26.6
3	69	23.3
4	73	28.1
5	61	43.1
6	62	25.6

	A1	A2
1	1.83	3.55
2	-10.1	-3.45
3	4.83	-6.75
4	8.83	-1.95
5	-3.17	13.05
6	-2.17	-4.45

zero mean

Dimension Reduction with Images

Demo

"Finish"

Images Representation in PCA and Randomized PCA

04. Dimension Reduction and Images. ipynb

Features of Images

Convolution

- For images:
 - kernel (matrix of values)
 - slide kernel across image, pixel by pixel
 - multiply and accumulate

This Example:

3x3 Kernel (dark)
Ignoring edges of input
Input Image is 5x5
Output is then 3x3

Convolution

$$\mathbf{O}[i,j] = \sum_{\substack{i \in \mathbb{Z} \\ \text{output image} \\ \text{at pixel i,j}}} \mathbf{I} \begin{bmatrix} i - \frac{r}{2} : i + \frac{r}{2}, j - \frac{c}{2} : j + \frac{c}{2} \end{bmatrix} \cdot \mathbf{k} \text{ kernel of size} \\ \text{r x c} \\ \text{usually r=c}$$

input image at r x c range of pixels

usually r=c

contorod in i i

Convolution of Image and Kernel Is Multiplication of their Frequencies

5	2	3	4	12	9	8	8
5	2	1	4	12	9	8	8
7	2	1	4	12	9	8	8
7	2	1	4	12	9	8	8
5	2	3	4	12	9	8	8
5	2	1	4	12	9	8	8
5	2	1	4	12	9	8	8

input image

1	2	1
2	4	2
1	2	1

kernel

output image

Convolution Examples

https://www.kdnuggets.com/2016/11/intuitive-explanation-convolutional-neural-networks.html/2

Common operations

Common operations: DAISY

$$\begin{bmatrix} \widetilde{\mathbf{h}}_{\Sigma_1}^\top(u_0, v_0), \\ \widetilde{\mathbf{h}}_{\Sigma_1}^\top(\mathbf{l}_1(u_0, v_0, R_1)), \cdots, \widetilde{\mathbf{h}}_{\Sigma_1}^\top(\mathbf{l}_T(u_0, v_0, R_1)), \\ \widetilde{\mathbf{h}}_{\Sigma_2}^\top(\mathbf{l}_1(u_0, v_0, R_2)), \cdots, \widetilde{\mathbf{h}}_{\Sigma_2}^\top(\mathbf{l}_T(u_0, v_0, R_2)), \end{bmatrix}$$

Tola et al. "Daisy: An efficient dense descriptor applied to widebaseline stereo." Pattern Analysis and Machine Intelligence, IEEE

Common operations: DAISY

$$\mathcal{D}(u_0, v_0) =$$
 take normalized histogram at point u, v

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{ op}(u_0,v_0), \qquad \widetilde{\mathbf{h}}_{\Sigma}(u,v) = \left[\mathbf{G}_1^{\Sigma}(u,v), \dots, \mathbf{G}_H^{\Sigma}(u,v) \right]^{ op}$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_1(u_0, v_0, R_1)), \cdots, \widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_T(u_0, v_0, R_1)), \\ \widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_1(u_0, v_0, R_2)), \cdots, \widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_T(u_0, v_0, R_2)),$$

Tola et al. "Daisy: An efficient dense descriptor applied to widebaseline stereo." Pattern Analysis and Machine Intelligence, IEEE

Common operations: DAISY

step, radius, num rings, num histograms per ring, orientations per histogram

Common operations: DAISY

Bag of Features Image Representation

Params:

step, radius, num rings, num histograms per ring, orientations per histogram

More Image Processing

Gradients DAISY

(if time)Gabor Filter Banks

Otto an Tartania las

Other Tutorials:

http://scikit-image.org/docs/dev/auto_examples/

Common operations: Gabor filter Banks (if time)

common used for texture classification

Matching versus Bag of Features

 Not a difference of vectors, but a percentage of matching points

SURF, ORB, SIFT, DAISY

Feature Matching

Matching test image to source dataset

- 1. Choose src image from dataset
- 2. Take keypoints of src image
- 3. Take keypoints of test image
- 4. For each kp in src:
 - 1. Match with closest kp in test
 - 2. How to define match?
- 5. Count number of matches between images
- 6. Determine if src and test are similar based on number of matches
- 7. Repeat for new src image in dataset
- 8. Once all images measured, choose best match as the target for the test image

match_descriptors

skinage.feature. match_descriptors (descriptors), descriptors2, metric=None, p=2, max_distance=inf, cross_check=True, max_ratio=1.0)

[source]

Brute-force matching of descriptors.

For each descriptor in the first set this matcher finds the closest descriptor in the second set (and vice-versa in the case of enabled cross-checking).

Town Hall for Lab 2, Images

- Quiz is live: Image Processing!
- Next Time: Logistic Regression

Supplemental Slides

- Peruse these at your own leisure!
- These slides might assist you as additional visual aides
- Slides courtesy of Tan, Steinbach, Kumar
 - Introduction to Data Mining

Dimensionality Reduction: LDA

- PCA tell us variance explained by the data in different directions, but it ignores class labels
- Is there a way to find "components" that will help with discriminate between the classes?

$$\underset{comp.}{\text{arg max}} \frac{\sum \text{ differences between classes}}{\sum \text{ variance within classes}}$$

- called Fisher's discriminant
- ...but we need to solve this using using Lagrange multipliers and gradient-based optimization
- which we haven't covered yet

I invented Lagrange multipliers... and ...nothing impresses me...

Dimensionality Reduction: LDA versus QDA

Dimensionality Reduction: LDA versus QDA

$$\underset{comp.}{\text{arg max}} \frac{\sum \text{differences between classes}}{\sum \text{variance within classes}}$$

- "differences between classes" is calculated by trying to separate the **mean value** of each **feature** in each **class**
- Linear discriminant analysis:
 - assume the covariance in each class is the same
- Quadrature discriminant analysis:

• estimate the covariance for each class

Self Test ML2b.2

LDA only allows as many components as there are unique classes in a dataset.

- A. True
- B. False
- Need more help with the PCA algorithm (and python)?
 - check out Sebastian Raschka's notebooks:

http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/principal_component_analysis.ipynb