Lecturer 6, 7, 8, 9 Radio ommunication Systems

- Introduction
- Types of Digital Modulation
 - Frequency Shift Keying FSK
 - MSK Minimum Shift Keying
 - Amplitude Shift Keying ASK
 - Phase Shift Keying PSK
- M-ary PSK Encoding
 - Quadrature QPSK
 - **8-PSK**
- QAM: (8-QAM)
- Carrier Recovery Circuits

Digital Radio

Why Digital?

- Ease of processing,
- Ease of multiplexing, and
- Noise immunity.

All Digital Communications

Transmission, reception and processing of information.

Increasing of Information Capacity

No of independent symbols that can be carried through system in a given time.

Information Capacity

- 1928 Hartley introduces useful rule:
 - Capacity C is proportional to both the bandwidth B and the time T:

$$C \sim BT$$

 \rightarrow 1948 Shannon published a limit for C:

$$C \leq B \log_2\left(1 + \frac{S}{N}\right) = 3.32 B \log_{10}\left(1 + \frac{S}{N}\right)$$

S/N = 1000 (30 dB), B = 2.7 kHz, C: $C \le 2700 \log_2(1 + 1000) \le 26.9 kbps$

Limit Misunderstood

- Above example may be true, but it cannot be done with a binary system.
- To achieve 26.9 kbps through 2.7 kHz channel, each symbol must contain more than one bit of information.
- So, to achieve Shannon limit, digital transmission systems that have more than two output conditions (symbols) must be used.

(a) Baseband Transmission

(b) Digital Radio Transmission

Types of Modulation

- Amplitude Shift Keying ASK تعديل إزاحة السعة
 - Frequency Shift Keying FSK تعديل إزاحة التردد -
 - تعديل الإزاحة الدنيا Minimum Shift Keying MSK تعديل الإزاحة الدنيا
- Gaussian Minimum Shift Keying GMSK تعديل الإزاحة الدنيا الجاوسي
 - Phase Shift Keying PSK تعديل إزاحة الطور
 - تعديل إزاحة الطور الثنائي Binary Phase Shift Keying BPSK.
 - تعديل إزاحة الطور التفاضلي Differential Phase Shift Keying DPSK.
 - راحة الطور متعدد المستويات M-ary Phase Shift Keying متعدد المستويات معديل إزاحة الطور متعدد المستويات
 - تعديل إزاحة الطور التعامدي Quadrature Phase Shift Keying QPSK.
 - تعديل إزاحة الطور الثماني Eight Levels Phase Shift Keying 8PSK تعديل إزاحة الطور الثماني
 - تعديل السعة التعامدي Quadrature Amplitude Modulation QAM

FSK equency Shift Keying

FSK Transmitter Signal Simple, low performance.

- Constant envelope angle modulation.

$$v_{FSK}(t) = V_c cos \left[\left(\omega_c + f_m(t) \frac{\Delta \omega}{2} \right) t \right]$$

- $-f_m(t)$ binary digital modulating signal
- V_c , ω_c , carrier amplitude, frequency
- \blacksquare Carrier frequency shifts between $\omega_c \pm \Delta\omega/2$
- \blacksquare Shift rate equals the input bit rate f_b b/s.

FSK Transmitter

Fig 2.2 Ringry FSK Modulator

Bit and Baud Rates

- Bit rate, in bits per second,
 - Is the rate of change at the input to the modulator.
- Baud rate, in symbol per sec
 - Is the rate of change at the output of the modulator and
 - Is equal to the reciprocal of the time of one output signaling element (termed as symbol).
- So, <u>baud</u> is the line speed in symbols per second.

Possible frequencies

13

Highest Modulating Frequency

- If bit width is T_b , bit rate will be $f_b = \frac{1}{T_b}$
- Fastest rate occurs when input is a series of alternating 1's and 0's:
- If fundamental frequency is considered, highest modulating frequency is one-half the input bit rate.

$$f_m = \frac{f_b}{2}$$

Modulation Index of FSK

14

Peak frequency deviation Δf is one half the difference between f_m and f_s :

$$\Delta f = \frac{f_m - f_s}{2}$$

Formula for modulation index used in FM is also valid for binary FSK as:

$$MI = \frac{\Delta f}{f_m} = \frac{\frac{f_m - f_s}{2}}{\frac{f_b}{2}} = \frac{f_m - f_s}{f_b}$$

- MI is kept below 1.0 for narrow band FM.
- BW is determined from Bessel functions table.
- MI 0.5 and 1.0, either two or three sets of significant side frequencies are generated.
- Thus, minimum BW is two or three times the bit rate.

Bandwidth of Binary FSK

BW for FSK signal is given by Carson's rule in terms of the frequency deviation and the bandwidth of the digital modulation

$$BW_{FSK} = 2(\Delta f + B)$$

For alternating 1 and 0, the bandwidth equals the bit rate B = R:

$$BW_{FSK} = 2(\Delta f + R)$$

Receiver Binary FSK

- Noncoherent Detection:
 - We do not have knowledge of the carrier.
 - Signal coming is divided into two BPF and envelope detectors.
 - Finally, binary restoration circuit.
- Coherent detection:
 - We need a complete knowledge of the exact carrier frequency on reception.
 - Received signal is applied into two multipliers, at f1 and f0, then to LPF.
 - Finally binary restoration circuit.

Noncoherent Detector

FSK

FSK Synchronous Detector

19 Applications of FSK

- Binary FSK has a poorer error performance than PSK or QAM.
- Its use is restricted to lowperformance, low-cost, asynchronous data modems that are used for data communication over analogue, voice band telephone lines.

Bell 103-type FSK Modem

Table 2.1 Mark and Space Frequencies for the Bell Type 103 Modem

	Data	Originate Modem	Answer Modem
Transmit	Mark (binary 1)	$f_1 = 1270 \text{ Hz}$	$f_1 = 2225 \text{ Hz}$
frequencies	Space (binary 0)	$f_2 = 1070 \text{ Hz}$	$f_2 = 2025 \text{ Hz}$
Receive	Mark (binary 1)	$f_1 = 2225 \text{ Hz}$	$f_1 = 1270 \text{ Hz}$
frequencies	Space (binary 0)	$f_2 = 2025 \text{ Hz}$	$f_2 = 1070 \text{ Hz}$

Bell 103-type FSK Modem

- Keyboard-type computer terminals are often used for communication with a remote computer via dial-up telephone lines.
- Dial-up means that the computer terminal user calls the computer facility on a telephone and uses the telephone connection for data communication.
- Modem (modulator and demodulator) is connected to the phone line at each end as shown
- Two FSK frequency bands are used (one around 1 kHz and another around 2 kHz) so that it is possible to talk and listen simultaneously (full-duplex).
- The standard mark and space frequencies are shown in Table where the peak to peak deviation is $2\Delta F = 200 \text{ Hz}$

MSK Minimum Shift Keying

Minimum Shift Keying

- ☐ MSK is a continuous phase FSK keying (CPFSK).
- MSK is FSK except mark and space frequencies are synchronized with input binary rate.
- Synchronous means precise time relationship.
- \square Mark and space frequencies are separated from center frequency by odd multiple of one-half f_b

$$f_m$$
 and $f_s = n\frac{f_b}{2}$

- MSK has a better bit error performance than FSK for a given signal to noise ratio.
- MSK has less bandwidth than FSK
- □ However, it requires synchronizing circuits and is therefore more expensive to implement.

MSK versus FSK

(a) Continuous Phase MSK

(b) Non-continuous FSK

Fig.2.8 Comparison of the Phase Continuity between MSK and FSK

ASK Amplitude Shift Keying

Amplitude Shift Keying

- ☐ In ASK, amplitude of carrier switches between; zero (Off state) and some amplitude (On state)
- ☐ Such systems are termed on-off-keyed systems OOK.
- Spectrum of OOK depend on the particular binary sequence to be transmitted. However, the amplitude modulated OOK is the DSB.SC given by:

$$f_{OOK}(t) = f_{ASK}(t) = A f(t) \cos \omega_c t$$

Spectrum of OOK signal is given as:

$$F_{OOK}(\omega) = F_{ASK}(\omega) = \frac{A}{2} [F(\omega - \omega_c) + F(\omega + \omega_c)]$$

OOK Waveforms

Fig.2.9 ASK or OOK Signal

Spectrum of OOK

- Assume the digital signal f(t) is rectangular pulse (special case of binary in which all symbols are 0 except for one 1).
- For a pulse of amplitude A and duration 7, the spectrum of OOK modulator is given by:

$$F_{OOK}(\omega) = \frac{AT}{2} \left[\frac{\sin(\omega - \omega_c)T/2}{(\omega - \omega_c)T/2} + \frac{\sin(\omega + \omega_c)T/2}{(\omega + \omega_c)T/2} \right] = \frac{AT}{2} \left[Sa \left\{ \frac{(\omega - \omega_c)T}{2} \right\} + Sa \left\{ \frac{(\omega + \omega_c)T}{2} \right\} \right]$$

- For alternating 1's and 0's, spectrum is (sin x) /x.
- \square So, spectrum of pulse of width T and period 2T which is translated to frequency f_c as in Fig.2.10

29 Spectrum of Periodic OOK

Fig.2.10 Spectrum of Periodic OOK Signal

PSK Phase Shift Keying

Phase Shift Keying

- □ PSK is similar to phase modulation PM except that its input gives rise to a limited number of output phases.
- With binary BPSK two output phases are possible for a single carrier frequency. One phase represents a løgic 1 and the other represents a logic 0.
- With carrier amplitude V_c and frequency ω_c PSK voltage for binary digital modulating signal f(t) is:

$$v(t) = V_c f(t) \sin \omega_c t = \begin{cases} +V_c \sin \omega_c t & \text{if} & f(t) = +1 \\ -V_c \sin \omega_c t & \text{if} & f(t) = -1 \end{cases}$$

- So, the carrier amplitude remains constant, whereas its phase shifts by 180°.
- ☐ Recall, carrier phase shift rate equals input bit rate.

Fig.2.14 Output of BPSK Modulator

PSK Modulator

- ☐ Simplified block diagram of BPSK is shown in Fig.2.11
- ☐ Balanced modulator acts as a phase reversing switch.
- Carrier is transferred to output either in phase or 180° with respect to reference carrier oscillator.
- ☐ Balanced ring modulator circuit is shown in Fig.2.12.
- Digital voltage must be much greater than the peak carrier voltage for proper operation.
 - □ For logic 1: D1 and D2 are ON while D3 and D4 are OFF, carrier voltage across T2 is in phase with the carrier voltage across T1 or the reference oscillator.
 - ☐ For logic 0: D1 and D2 are OFF while D3 and D4 are ON, carrier voltage across T2 is 180° out of phase with reference oscillator.

Transmitter of BPSK

PSK Balanced Ring Modulator

Fig.2.12 Balanced Ring Modulator

Representation of BPSK

- Figure shows truth table, phasor diagram and constellation diagram for a BPSK.
- Constellation diagram is similar to phasor except that the entire phasor is not drawn.
- Only the relative positions of the peaks of the phasors are shown.

37

Truth, Phasor, Constellation

Binary input	Output phase
Logic 0	180°
Logic 1	0°

(a) Truth table

(b) Phasor diagram

(c) Constellation diagram

Fig.2.13 BPSK Representation

Band Width of PSK

- 38
- □ Balanced modulator is product so carrier is multiplied by binary data (either +1 or −1).
- Also, widest bandwidth occurs when data is alternating 1/0 sequence.
- Product modulator output of the BPSK is:

$$output = \sin \omega_a t \sin \omega_c t = \frac{1}{2} \cos(\omega_c - \omega_a)t + \frac{1}{2} \cos(\omega_c + \omega_a)t$$

Consequently, minimum double-sided Nyquist bandwidth is:

$$B_{BPSK} = (\omega_c + \omega_a) - (\omega_c - \omega_a) = 2\omega_a = 2(f_b/2) = f_b$$

Minimum bandwidth to pass worst-case BPSK equals input bit rate. 39

- Simple block diagram of BPSK detection.
- Coherent carrier recovery circuit detects and regenerates carrier that is both frequency and phase coherent with the original transmit carrier.
- Balanced modulator output is the product of two inputs (BPSK signal and the recovered carrier).
- The LPF separates the recovered binary data from the complex demodulated spectrum.

Detection of BPSK

Demodulation Process

For input +sin w_ct (logic 1), balanced output is:

$$Output = \sin \omega_c t \sin \omega_c t = \sin^2 \omega_c t = \frac{1}{2} (1 - \cos 2\omega_c t) = \frac{1}{2} - \frac{1}{2} \cos 2\omega_c t$$

$$Filter output = +\frac{1}{2} \quad dc \ voltage \equiv Logic1$$

• For input - $sin w_c t$ (logic 0), the output is:

$$Output = -\sin \omega_c t \sin \omega_c t = -\sin^2 \omega_c t = -\frac{1}{2} (1 - \cos 2\omega_c t) = -\frac{1}{2} + \frac{1}{2} \cos 2\omega_c t$$

$$Filter\ output = -\frac{1}{2} \quad dc\ voltage \equiv Logic\ 0$$

M-ary Phase Shift Keying

M-ary Encoding

- In M-ary, one of M possible signals may be transmitted during each signaling interval.
- It is advantageous to encode at a level higher than binary, e.g., 4PSK and 8PSK.
- Each possible transmitted signal of an M-ary message sequence is referred to as "symbol".
- Mathematically, the number of bits per symbol n is related to the number of possible signals M by:

$$M=2^n$$

Quadrature PSK

- QPSK, is another form of angle modulated, constant envelope digital modulation, and M=4 possible symbols.
- 4 phases are possible for a single carrier frequency.
- Binary input data are combined into groups of 2 bits called dibits.
- Éach dibit code generates one of the four possible output phases.
- For each 2- bit, a single output change occurs. So, the output baud rate is one-half of the input bit rate.

QPSK Truth Table

Inputs		Output	
Α	В	Phase	
0	0	-135	
0	1	-45	
1	0	+135	
1	1	+45	

QPSK Phasor Constellation

QPSK Transmitter

Transmitter Operation

- QPSK modulator is a two BPSK modulators combined in parallel.
- Two bits are clocked into the bit splitter.
- After both bits have been serially inputted, they are simultaneously parallel outputted.
- One bit is directed to I-channel to modulate the carrier that is in phase with the reference.
- Other bit is directed to Q-channel to modulate carrier that is 90° out of phase or in quadrature with the reference.
- If linear summer combines the two quadrature signals, there are 4 possible phases as follows:

 $\pm \sin \omega_c t \pm \cos \omega_c t$

Splitting to I and Q Channels

Fig.3.16: Highest Fundamental Frequency

Bandwidth of QPSK

50

- Input data rate f_b is divided into two channels.
- I or Q channel bit rate is $\frac{1}{2}$ input rate, i.e., $f_b/2$.
- Highest fundamental frequency at input of balanced modulators is one-fourth of input rate, i.e., $f_b/4$
- Balanced modulator product of I or Q channels:

Output =
$$\sin \omega_a t \sin \omega_c t = \sin 2\pi \frac{f_b}{4} t \sin 2\pi f_c t$$

Output =
$$\sin 2\pi \left(f_c - \frac{f_b}{4} \right) t \sin 2\pi \left(f_c + \frac{f_b}{4} \right) t$$

So, output extends from fc-fb/4 up to fc+fb/4:

$$BW_{QPSK} = f_c + \frac{f_b}{4} - \left(f_c - \frac{f_b}{4}\right) = \frac{f_b}{2}$$

Minimum bandwidth of QPSK is less than incoming rate so that bandwidth is compressed to $f_b/2$ only.

QPSK Receiver

- Power splitter directs QPSK signal into I and Q channels and carrier recovery circuit.
- Carrier recovery circuit reproduces the original transmit reference carrier.
- QPSK signal is demodulated in I and Q channels through product detectors.
- Detectors outputs are fed to combining circuit, to convert from parallel I and Q channels to a single binary output.

Offset QPSK [OQPSK]

- A modified form of QPSK where the bit waveforms on I and Q channels are offset or shifted in phase by one-half of a bit time.
- It can be implemented by adding a delay.
- In QPSK, change from 00 to 11 or 01 to 10 causes 180° shift in output phase.
- Since changes in I channel of OQPSK occur at midpoints of Q bits, there is never more than a single bit change in the dibit code,
- So, 90° shift in phase improves performance.
- Disadvantage: changes in phase occur at twice the data rate so bandwidth is twice.

53

OQPSK Transmitter

Offset Delay Concepts

Fig.3.19: OQPSK

8 PSK

8PSK Phasor Diagram

8PSK Truth - Constellation

Binary input			8-PSK Output	
Q	Q I C		phase	
0	0	0	-112.5	
0	0	1	-157.5	
0	1	0	-067.5	
0	1	1	-022.5	
1	0	0	+112.5	
1	0	1	+157.5	
1	1	0	+067.5	
1	1	1	+022.5	

(b) The Truth Table of 8-PSK

(c) Constellation diagram of 8-PSK

8PSK Transmitter

60

2-4 Levels Converter

Ų	С	Output
1	l 0 1	-1.307v -0.541v +1.307v +0.541v

8-PSK Receiver

7

QAM Quadrature Amplitude Modulation

QAM

- QAM is a form of digital modulation, the information is contained in both the amplitude and the phase of the transmitted carrier.
- 8-QAM is M-ary encoding technique where M = 8.
- 8-QAM output is not a constantamplitude signal such as 8-PSK.

8-QAM Transmitter

- 8-QAM defers from 8-PSK in the inverter between the C and Q.
- Data are divided into I, Q, and C channels; each with a rate fb/3.
- I and Q bits determine the polarity of PAM signal at output of 2-to-4 level converters
- C channel determines the magnitude.
- 8-QAM output is not a constant-amplitude signal such as 8-PSK.

8-QAM Truth Table

BINARY INPUT			8-QAM OUTPUT	
Q	I	С	AMPLITUDE	PHASE
0	0	0	0.765 V	-135
0	0	1	1.848 V	-135
0	1	0	0.765 V	- 45
0	1	1	1.848 V	- 45
1	0	0	0.765 V	+135
1	0	1	1.848 V	+135
1	1	0	0.765 V	+45
1	1	1	1.848 V	+45

8-QAM Transmitter

Comparison

Table 2.2: Bandwidth Efficiency of Digital Modulation Techniques

Modulation	Encoding	Bandwidth, Hz	Baud rate	Efficiency, b/s/Hz
FSK	Single bit	>f _b	f_b	<1
BPSK	Single bit	f_b	f_b	1
QPSK	Di-bit	$f_b/2$	$f_b/2$	2
8-PSK	Tri-bit	$f_b/3$	$f_b/3$	3
8-QAM	Tri-bit	f _b /3	<i>f_b</i> /3	3
16-PSK	Quad-bit	$f_b/4$	$f_b/4$	4
16-QAM	Quad-bit	$f_b/4$	$f_b/4$	4

Squaring Loop

- The received BPSK signal is filtered to reduce the spectral width of noise.
- Squaring circuit removes the modulation and generates the second harmonic of carrier.
- This harmonic is phase tracked by PLL.
- The frequency of PLL (VCO output) is then divided by 2 and used as a phase reference for the product modulators.

BPSK Carrier Recovery

Fig.2.27 Squaring Loop Carrier Recovery for BPSK