院系	信息管理学院
专业	电子商务

联系方式	17399983760
邮箱	2723162295@qq.com

结课论文

题 目 淘宝用户行为分析—以天池数据集为例

 院(系)
 信息管理学院

 专业
 电子商务

 年级
 2020级

 学生姓名
 郭学成

 学号
 2020214272

 指导教师
 翟姗姗

二〇二二年 十二月

目录

一、背景3
二、数据集介绍3
2.1 概述3
2.2介绍3
三、分析思路4
3.1 思路4
3.2 目标5
3.3 工具及第三方包5
四、数据分析及可视化6
4.1 异常数据处理6
4.2 淘宝用户流量分析7
4.3 用户消费行为分析8
4.4 商品销售情况分析13
五、总结15
六、参考资料15
七、源码截图

一、背景

用户行为分析,是指在获得网站或 APP 等平台访问量基本数据的情况下,对有关数据进行统计、分析,从中发现用户访问网站或 APP 等平台的规律,并将这些规律与 网络营销策略 等相结合,从而发现目前网络营销活动中可能存在的问题,并为进一步修正或重新制定网络营销策略提供依据。

本文选用的数据集是阿里天池项目中的淘宝用户行为数据 UserBehavior.csv,利用Python进行数据分析。

二、数据集介绍

数据来源链接:<u>淘宝用户购物行为数据集数据集-阿里云天池 (aliyun.com)</u> 同时下面关于数据集的所有介绍可以在天池数据集上面查看。

2.1 概述

UserBehavior 是阿里巴巴提供的一个淘宝用户行为数据集,用于隐式反馈推 荐问题的研究。

2.2 介绍

文件名称	说明	包含特征		
UserBehavior.csv	包含所有的用户行为数据	用户ID,商品ID,商品类目ID,行为类型,时间戳		

本数据集包含了 2017 年 11 月 25 日至 2017 年 12 月 3 日之间,有行为的约一百万随机用户的所有行为(行为包括点击、购买、加购、喜欢)。数据集的组织形式和 MovieLens-20M 类似,即数据集的每一行表示一条用户行为,由用户ID、商品 ID、商品类目 ID、行为类型和时间戳组成,并以逗号分隔。关于数据集中每一列的详细描述如下:

列名称	说明
用户ID	整数类型,序列化后的用户ID
商品ID	整数类型,序列化后的商品ID
商品类目ID	整数类型,序列化后的商品所属类目ID
行为类型	字符串,枚举类型,包括('pv', 'buy', 'cart', 'fav')
时间戳	行为发生的时间戳

注意到,用户行为类型共有四种,它们分别是:

行为类型	说明
ру	商品详情页pv,等价于点击
buy	商品购买
cart	将商品加入购物车
fav	收藏商品

关于数据集大小的一些说明如下:

维度	数量
用户数量	987,994
商品数量	4,162,024
用户数量	987,994
商品类目数量	9,439
所有行为数量	100,150,807

三、分析思路

3.1 思路

查阅互联网公开资料了解到,目前常用用户行为分析方法有"行为事件分析" "用户留存分析""转化分析 (漏斗)""行为路径分析",结合本次用到的数据集中 2,分析思路如下图 3.1:

图 3.1

3.2 目标

"淘宝用户行为数据分析"主要分四个方面,接下来本人将对现有思路展开数据分析工作,使用 2021 版本的 pycharm 对这四个方面进行数据处理及分析,并对分析的结果进行可视化展示。

3.3 工具及第三方包

- (1) PyCharm Community Edition 2021 && python 3.8
- (2) jupyter notebook (在 pycharm 中安装 jupyter, 然后运行,可以在浏览器中使用)
- (3)pandas version=1.2.4(Pandas 库是一个免费、开源的第三方 Python 库)
- (4) matplotlib version=3.3.4 (Matplotlib 是一个 Python 的 2D 绘图库)
- (5) pyecharts version=1.9.1 (pyecharts 是一个用于生成 Echarts 图表的 类库。 echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化。 pyecharts 实际上就是 Echarts 与 Python 的对接)
 - (6) Xmind: 是一个全功能的思维导图和头脑风暴软件

四、数据分析及可视化

4.1 异常数据处理

(1) 发现问题

在处理时间戳转化为标准的时间格式时,发现下图情况:

Out[15]:					
	用户行为	buy	cart	fav	þv
	时间				
	1929-09-21	NaN	NaN	NaN	19.0
	1929-09-22	NaN	NaN	NaN	5.0
	2017-11-08	NaN	NaN	NaN	1.0
	2017-11-11	NaN	NaN	NaN	1.0
	2017-11-13	NaN	NaN	NaN	3.0
	2017-11-17	NaN	NaN	NaN	1.0

理论上时间戳是从格林威治时间 1970 年 1 月 1 日 00 时 00 分 00 秒开始计算的总秒数,不可能有上面这种情况,然后通过代码反复调试,并且在查阅资料后发现是原始数据的问题(eg.时间戳带有负号,或者是时间戳的位数很少等等):

(2) 解决方法

将所有时间不在 2017-11-25 00:00:00 - 2017-12-04 00:00:00 (大约九天,2017年11月27日是周一)范围内的数据全部删除。经过处理后仍然有部分数据的时间是在 2017-11-24 16:00:00-2017-11-24 23:59:59,再次查阅资料和验证数据集,结果是时间转化的函数有一点误差,但是考虑到暂时没有好的办法解决并且收到影响的数据很少,所以这里再不做处理。最后经过统计,一共删除了 55576 条 (约 5.5 万)数据;构建新的数据集UserBehavior_removed_exception_data.csv,数据量是:100095231条(约1亿);处理代码如下:

```
fp = open(fp1, 'r', encoding='utf-8')
      fpp = open(fp2, 'w', encoding='utf-8')
4
5
      lines = fp.readlines()
6
      . . .
14
      count = 0
     for i in lines:
      if not (1512316800 >= int(i.strip().split(",")[-1]) >= 1511539200):
16
18
          else:
19
             fpp.write(i)
20
      print(count)
      fp.close()
22 fpp.close()
```

4.2 淘宝用户流量分析

(1) 分析用户将近一个月的 pv 和 uv

源码截图: 图 1

结果展示:

用户行为

buy 2015839 cart 5530446 fav 2888258 pv 89660687

Name: 用户ID, dtype: int64

uv 987991

根据统计结果: pv: 89660687 (约9千万浏览量) uv:987991(约100万独立访客数)

(2) 分析 10 天内, 每天的 pv 和 uv

源码截图:图2图3

结果展示:

用户每天的四种行为数据量(图 4.2.1)

Out[7]:					
	用户行为	buy	cart	fav	pv
	时间				
	2017-11-24	16863	64328	35722	1064517
	2017-11-25	201298	569236	305814	9435257
	2017-11-26	214314	575420	305722	9475590
	2017-11-27	218402	539212	289413	8966430
	2017-11-28	211757	533807	289431	8849194

每天的独立访客数(图 4.2.2)

In [8]: #打印结果,只展示了前几行数据

uv1.nunique().head()

Out[8]: 时间

2017-11-24 164703 2017-11-25 705571 2017-11-26 713522 2017-11-27 709207 2017-11-28 708339 Name: 用户ID, dtype: int64

淘宝每天的访客数和浏览量(图 4.2.3)

小结:观察到淘宝每天的访客数基本稳定在100万左右,说明淘宝的日活跃用户基数大。

4.3 用户消费行为分析

4.3.1 时间维度分析用户消费行为习惯

分析每天不同时刻的用户行为(buy, cart, fav, pv)——这里只随机选取两天 (11.28 周二, 11.29 周三,均为非活动日)分析,然后将结果可视化呈现。(注: 需要将浏览量和其他行为分开绘制图,原因是浏览量的数量远远大于其他用户行为 产生的数量,如果在一起绘制不能有效判断用户行为的变化。)

源码截图: 图 4

结果展示:

11月28日-11月29日两天的淘宝浏览量(pv)(图4.3.1.1)

淘宝记录的 11 月 28 日-11 月 29 日两天的三种用户行为数量(黑线:将商品加入购物车 cart;红线:收藏商品 fav;绿线:用户下单 buy;)(图 4.3.1.2)

小结:选取了11月28号(周二)和28号(周三),根据上图所示,可知用户的逛海宝时问与人的作息时间基本一致。13:00-14:00之间浏览量达到最高值,随后开始下降,到19:00-20:00之间下降到最低值,大部分人在21:00之后又开始刷手机逛海宝,人数一直增加,到02:00左右人数开始稳定,总结来说,该数据符合人的作息时间,尤其是上班族/学生。

4.3.2 用户行为转化分析

"用户行为转化"定义: 用户浏览商品详情页面,可以直接购买,也可以加购物车、收藏购买,用户收藏和加入购物车并没有必然的联系,不存在上下级,所以这里不画单一转化漏斗,而画出 pv 到成其他三种行为转化率的漏斗图。

源码截图: 图 5 图 6

结果展示:

用户四种行为记录单一环节转化率(图 4.3.2.1)

	F 4 O 3	
[]11+	1181	
Out	Lauj	

	用户行为	pv	单一环节转化率	总体转化率
0	pv	18090843	1.0000	1.0000
1	cart	1088554	0.0602	0.0602
2	fav	589019	0.5411	0.0326
3	buy	434839	0.7382	0.0240

关于 4.3.2 小节的总结

4.3.2.1 转化率低的可能原因分析:

- (1)可能是用户不能够搜索到自己想要的东西导致的,因为有时候当用户输入关键词后,返回的页面是和关键词相关的一些商品,并非用户想要的。当然这是对于某些特定的商品而言,在淘宝上搜索宝贝,会搜索出一大堆无关东西。
- (2)可能是商品页面的描述信息或者首页展示图片比较拉跨,用户看了就划走了。
- (3)可能是用户自身需求临时改变的原因,因为人的消费具有即时性和冲动性,可能昨天晚上逛淘宝想买一大堆吃的,然后浏览了一大堆商品后添加了部分商品到购物车,第二天发现好像又没那么想要了,消费的冲动时间已经过去了。
- (4)也可能是物流原因,有些商品需要很快到手就用的,这种受物流影响比较大,比如在淘宝买书,每天就要用,这时候用户可能会跳转到京东上购买。

4.3.2.2 优化环节建议

(1) 首先是商铺的页面要设计的吸引人,同时要和卖的商品主题相关,最 好不要挂羊头卖狗肉,很容易引起消费者的吐槽和不满。

- (2) 其次是物流方面,越快越好,同时不能使商品有损坏。
- (3)把握好消费者逛淘宝的时间,同时当消费者对商品感兴趣(就算收藏或者已经添加到购物车了),如果消费者还在犹豫下单,可能是价格方面对于消费者不是特别友好,还在纠结中,这个时候需要商铺适当发一些优惠券或者红包折扣之类的,能够快速转化成交单。

4.3.3 月复购率

月复购率:一个月內购买次数超过 k 次的用户数与所有购买过的用户数(k 值可调整, 这里 k 设置为 2)

源码截图: 图 7

结果展示:

10 天内的淘宝访问记录数

Out[20]: 商品ID 849841 商品类目ID 849841 用户行为 849841 时间 849841 dtype: int64

10 天内的有购买记录用户数

 Out [21]:
 商品ID
 252375

 商品类目ID
 252375

 用户行为
 252375

 时间
 252375

dtype: int64

10 天内购买次数超过 k 次的用户数 (k=2)

Out[27]: 商品ID 94250

商品类目ID 94250 用户行为 94250 时间 94250 dtype: int64

总结:

月复购率="10天内的有购买记录用户数"/"10天内购买次数超过 k 次的用户数 (k=2)", 计算结果 94250/252375*100%= 37.35%; 根据统计结果可以知道淘宝的用户复购率较高,用户粘性大,用户对淘宝喜爱程度高。

4.3.4 用户购买和不购买的路径分析

源码截图&&结果展示:

(1) 购买的路径方式

```
In [29]: #四种行为按商品分组
          item_pv = pv_data.groupby('商品ID')['用户行为'].count().reset_index()
item_cart=cart_data.groupby('商品ID')['用户行为'].count().reset_index()
item_collect=collect_data.groupby('商品ID')['用户行为'].count().reset_index()
          item_buy=buy_data.groupby('商品ID')['用户行为'].count().reset_index()
          pd.merge(item_pv, item_buy, on='商品D', how='inner').count()
                                                                                     #89786
Out[29]: 商品ID
                       215227
          用户行为_x
                         215227
          用户行为。
                         215227
           dtype: int64
In [30]: #点击—加购物车—购买
          pv_cart=pd.merge(item_pv,item_cart,on='商品ID',how='inner')
                                                                                     #61102
          pd.merge(pv_cart,item_buy,on='商品ID',how='inner').count()
Out[30]: 商品ID
                      125583
          用户行为_x
用户行为_y
                         125583
                         125583
          用户行为
                         125583
           dtype: int64
In [31]: #点击—收藏—购买
          pv_collect=pd.merge(item_pv,item_collect,on='商品ID',how='inner')
          pd.merge(pv_collect, item_buy, on='商品ID', how='inner').count()
                                                                                     #19869
Out[31]: 商品ID
          用户行为_x
                         89484
          用户行为」。
                         89484
           用户行为
                         89484
           dtype: int64
In [32]: #点击—加购物车—收藏—购买
          pv_cart_collect=pd.merge(pv_cart,item_collect,on='商品ID',how='inner')
          pd.merge(pv_cart_collect, item_buy, on='商品ID', how='inner').count()
                                                                                     #13892
Out[32]: 商品ID
                       71765
          用户行为_x
用户行为_x
                         71765
                         71765
           用户行为_x
                         71765
           用户行为」。
                         71765
           dtype: int64
```

(2) 不购买的路径方式

```
In [44]: #不购买行为按商品分组
                 #/病失行方接南維力領
# item_nobuy=data[data['用户行为'].isin(['pv','fav','cart'])].groupby('商品ID')['用户行为'].count().reset_index
item_nobuy=data[data['用户行为'].isin(['pv','fav','cart'])].groupby('商品ID')['用户行为'].count()
                  item_nobuy.head()
  Out[44]: 商品ID
                 Name: 用户行为, dtype: int64
 In [45]: # 点击—不购买
                # pd. BataFrame (pd. merge (item_pv, item_nobuy, on='商品ID', how='inner'))#2870604
pd. merge(item_pv, item_nobuy, on='商品ID', how='inner'). head()
  Out[45]:
                       商品ID 用户行为_x 用户行为_y
                           5
                  3
                                             2
                                                             2
 In [35]: #点击—加购物车-不购买
                 #品本一級例如于一个例文
pv_cart=pd.merge(item_pv,item_cart,on='商品ID',how='inner')
pd.merge(pv_cart,item_nobuy,on='商品ID',how='inner').count()
                                                                                                                                #247177
  Out[35]: 商品ID
                 商品ID 433414
用户行为_x 433414
用户行为_y 433414
用户行为 433414
                  dtype: int64
In [36]: #点击一枚第一不购买 pv_collect=pd.merge(item_pv,item_collect,on='商品D',how='inner') pd.merge(pv_collect,item_nobuy,on='商品D',how='inner').count()
                                                                                                                                #204117

    Out [36]:
    商品ID
    294883

    用户行为_x
    294883

    用户行为_y
    294883

    用户行为
    294883

                dtype: int64
In [37]: #点击—加购物车—收藏—不购买
                pv_cart_collect=pd.merge(pv_cart, item_collect, on='商品ID', how='inner')
                pd.merge(pv_cart_collect, item_nobuy, on='商品ID', how='inner').count()

      Out [37]:
      商品取 161372
用戸行为x 161372
用戸行为y 161372
用戸行为y 161372
用戸行为y 161372
オウナッ 161372

      はype:
      intité
```

4.4 商品销售情况分析

(1) pv 前 10 的商品

源码截图&&结果展示:

3.1 浏览量 (pv) 前十的商品

小结:总共的商品数量是867189个(约86万),销售1次及以上的商品是252375个(约25万),占比 28.1%,可以考虑将销量简的产品逐渐销量依的产品(再给一些优惠),能够提升销量降低库存,提 商商品被买的概率

(2) 购买量前10的商品

源码截图&&结果展示:

3.2 购买量 (buy) 前十的商品

五、总结

(1)用户逛淘宝习惯与人的作息工作时间基本一致,在用户空闲时间.

建议: 在用户收藏/加入购物车的一段时间内, 考虑适当发一些优惠券

(2)用户购买、不购买的路径大多数都是浏览商品直接购买或者流失。

建议: 优化页面,设计页面的时候要贴合商品,同时要设计的美观

(3)加购物车和收藏到购买的转化率相比于pv到购买比较可观,应关注加购物车和收藏的商品

建议: 推送优惠券, 提高推荐系统的精确度

(4)用户月复购率也较高,对平台的粘性和忠诚度较高

建议:保持平台的不断更新迭代,顺应时代的发展,不要固步自封,长时间停留在原地

(5)pv到购买的转化率偏低,且浏览量前十商品和购买量前十商品中相同的商品较少,说明用户花了大量的时间选择合适的商品

建议:提高搜索、检索的准确度,优化推荐系统性能以及算法。

六、参考资料

- [1]天池-淘宝用户行为数据分析(python+Tableau) A1 厨师长的博客-CSDN 博客
- [2]阿里天池项目:淘宝用户行为数据分析 知乎(zhihu.com)
- [3]淘宝用户购物行为数据集 数据集-阿里云天池 (aliyun.com)
- [4] https://blog.csdn.net/Caiqiudan/article/details/108001696
- [5] https://blog.csdn.net/zkyxgs518/article/details/120080526
- [6] https://blog.csdn.net/The_Time_Runner/article/details/86619766

七、源码截图

图 1

1.1 分析用户2017.11.25-2017.12.03的总pv和总uv

图 2

```
In [8]: # 打印结果, 只限示了前几行数据
uvl.nunique().head()
```

Out[8]: 时间

```
In [9]: import matplotlib
          import matplotlib.pyplot as plt
          from matplotlib import ticker
          # DataFrame类型自带了plot()绘制函数
          def plt_uv_pv_each_day(pv1, uv1):
              #设置字体为楷体
              matplotlib.rcParams['font.sans-serif'] = ['KaiTi']
              # pv1, uv1 = get_pv_uv_each_day()
# 这里的pv1包含的四种行为,这时,
# 组内操作的结果不是单个值,是一个序列,我们可以用.unstack()将它展开
              pv2 = pv1.count().unstack()["pv"]
              uv2 = uv1. nunique()
              fig, ax = plt.subplots(1, 1)
              # 设置 x 轴显示密度
              tick_spacing = 2
              ax. xaxis. set_major_locator(ticker.MultipleLocator(tick_spacing))
              # 设置 x 坐标轴标签的显示内容和大小
              plt.xlabel('时间', fontsize=15)
plt.ylabel('次数', fontsize=15)
# 设置 x 坐标始刻度的旋转方向和大小
              # rotation: 旋转方向
              pv2.plot(legend=True, figsize=(20, 10))
              uv2.plot(legend=True, figsize=(20, 10))
              plt.xticks(rotation=90, fontsize=12)
In [10]: #每日独立访客数 (uv), 浏览量 (pv) 数据,结果如下
          plt_uv_pv_each_day(pv1, uv1)
```

图 4

```
In [11]: data = initialize_data(bool_strftime=False)
          data.tail()
 In [12]: # 选取两天时间分析每天的不同时刻用户行为流量
           open_day=' 2017-11-28'
           close_day=' 2017-11-30'
           conl=data['时间']>=open_day
           con2=data['时间']<close_day
           data = data[con1&con2]
           data.head()
  In [13]: data['时间'] = pd. to_datetime(data['时间'])
  In [14]: #用户四种行为各自的记录
            pv_data=data[data['用户行为']=-'pv']
            cart_data=data[data['用户行为']='cart']
            collect_data=data[data['用户行为']='fav']
buy_data=data[data['用户行为']='buy']
  In [15]: #每个时刻四种行为数据量
            pv_datal = pv_data.set_index(['时间']).resample(rule='1H')['用户行为'].count()
            cart_data1 = cart_data.set_index(['时间']).resample(rule='1H')['用户行为'].count()
            collect_data1 = collect_data.set_index(['时间']).resample(rule='1H')['用户行为'].count()
            buy_data1 = buy_data.set_index(['时间']).resample(rule='1H')['用户行为'].count()
  In [16]: pv_datal.plot(legend=True, figsize=(12,6), color='blue')
```

```
In [18]: import numpy as np
          #用户发生四种行为每个行为的总数
         behavior_funnel=data['用户行为'].value_counts().reset_index()
         behavior_funnel.columns=['用户行为','pv']
          # 求出单一环节转化率;
         temp1 = np. array(behavior_funnel['pv'][1:])
         temp2 = np. array(behavior_funnel['pv'][0:-1])
         single_convs = list(temp1 / temp2)
         single\_convs.insert(0,1)
         single_convs = [round(x,4) for x in single_convs]
         behavior_funnel['单一环节转化率'] = single_convs
          #求出总体特化率
         temp3 = np.array(behavior_funnel['pv'])
          temp4= np.ones(len(behavior_funnel['pv'])) * behavior_funnel['pv'][0]
          total_convs = (temp3 / temp4).tolist()
         total_convs = [round(x, 4) for x in total_convs]
         behavior_funnel['总体转化率'] = total_convs
         behavior_funnel
```

图 6

```
In [19]: #画用户行为总体转化漏斗图
          import pyecharts.options as opts
          from pyecharts.charts import Funnel
          attrs = behavior_funnel['用户行为'].tolist()
          values = (np.array(behavior_funnel['总体转化率'])* 100).tolist() #586120
          d = [[attrs[i], values[i]] for i in range(len(attrs))]
          funnel=(
              Funnel(init_opts=opts.InitOpts(width="800px", height="600px"))
              .add(
                  series_name=*
                  data_pair=d,
                  gap=2,
                  label\_opts=opts. LabelOpts (is\_show={\tt True}, \ position={\tt "inside"}, formatter={\tt "\{c\}\%"}),
                  itemstyle_opts=opts.ItemStyleOpts(border_color="#ffff", border_width=1),
              .set_global_opts(title_opts=opts.TitleOpts(title="用户行为总体转化漏斗图"))
          funnel.render_notebook()
```

图 7