第五章 弯曲应力(一) 第 13 讲

§ 5.1 概述

纯弯曲和横力弯曲的概念

作内力图

AB段: $F_s=0$, M=const 梁在对称面仅受一对外力偶的作用,称为纯弯曲(pure bending)

AC和BD段:

$$F_s \neq 0$$
, $M \neq 0$

称为横力弯曲(nonuniform bending)

在横截面上:

弯曲内力:M,F。 $\tau \, \mathrm{d}A \Rightarrow F_{s} \quad \tau \Leftrightarrow F_{s}$

弯曲应力: σ , τ $\sigma dA \Rightarrow M$ $\sigma \Leftrightarrow M$

只有切向内力元素 τ dA才能合成剪力 F_s ! 只有法向内力元素 σ dA才能合成弯矩M!

纯弯曲情形:

$$F_s = 0 \Rightarrow \tau = 0$$

 $M \neq 0 \Rightarrow \sigma = ?$

几何关系 从三方面考虑: 物理关系 静力学关系

§ 5.2 纯弯曲时的正应力

一、几何关系

用较易变形的材料制成的矩形截面等直梁作纯弯曲试验

梁在纯弯曲时的平面假设:

变形观察

纵向线

各纵向线段弯成弧线; 靠近顶端的纵向线缩短; 靠近底端的纵向线段伸长.

横向线

各横向线仍保持为直线; 相对转过了一个角度; 仍与变形后的纵向弧线垂直.

梁的各个横截面在变形后仍保持为<mark>平面</mark>,并仍垂直于变形后的轴线,只是横截面绕某一轴旋转了一个角度。

中性层和中性轴

推论: 必有一层变形前后长度不变的纤维—中性层中性层与横截面的交线称为中性轴

几何关系的三维图示

几何关系的二维图示

二、物理关系

作单向受力假设: 假设各纵向纤维之间互不挤压。

三、静力关系

内力元素 σ dA 构成

空间平行力系

$$F_N = \int_A \sigma dA = 0$$

$$M_{y} = \int_{A} z \cdot \sigma dA = 0$$

$$M = \int_A y \cdot \sigma dA$$

1) 老亮等,材料力学史漫话,高等教育出版社,1993.

考察
$$M_y = \int_A z \cdot \sigma dA = 0 \Rightarrow \int_A z \cdot E \frac{y}{\rho} dA = 0$$

$$\Rightarrow \int_A yz dA = 0$$

$$\Rightarrow \int_A yz dA = 0$$

$$\Rightarrow I_{yz} = 0$$
自动満足
$$Dy 軸 为 对 称 軸$$

考察
$$\int_{A} y \cdot \sigma dA = M \Rightarrow \int_{A} y \cdot E \frac{y}{\rho} dA = M \Rightarrow \frac{E}{\rho} \int_{A} y^{2} dA = M$$

$$\Rightarrow \frac{EI_{z}}{\rho} = M \Rightarrow \frac{1}{\rho} = \frac{M}{EI_{z}}$$

$$\sigma = E \frac{y}{\rho} \Rightarrow \sigma = E \frac{M \cdot y}{EI_{z}}$$
你弯曲时正应力
$$\sigma = \frac{My}{I_{z}}$$
的计算公式

小结: 几个重要的结果

中性轴经过截面形心

由横截面上正应力合成的轴力等于零来确定

中性层的曲率公式

$$|k| = \frac{1}{\rho} = \frac{\overline{M}}{\overline{EI_z}}$$

抗弯刚度

纯弯曲时正应力计算公式
$$\sigma = \frac{My}{I_z}$$

$$\varphi' = \frac{T}{GI_p}$$
 抗扭刚度

$$\varepsilon = \frac{\sigma}{E} = \frac{F}{EA}$$
 抗拉刚度

横截面上的应力分布图: $\sigma = \frac{My}{I_z}$

$$\sigma_{\text{max}} = \frac{M y_{\text{max}}}{I_z} = \frac{M}{W_z}$$
 $W_z = \frac{I_z}{y_{\text{max}}}$ 抗弯截面系数

$$W_z = \frac{I_z}{y_{\text{max}}}$$

T型截面上的最大正应力(假设弯矩M>0):

$$\sigma_{t \max} = \frac{My_1}{I_z}, \qquad \sigma_{c \max} = \frac{My_2}{I_z}$$

特征:

最大拉应力和最大压应力在数值上不相等!

当中性轴是横截面的对称轴时:

$$y_1 = y_2 = y_{\text{max}}$$

$$\sigma_{t \max} = \sigma_{c \max}$$

几种常见截面的 I_z 和 W_z

附录III 型钢表 (GB/T 706-2016) pp. 368-385 (工字钢、槽钢、等边角钢、不等边角钢的截面尺寸、截面面积、截面特性)

型号	截面尺寸/mm						截面面积/	理论 重量/	外表 面积/	惯性矩/cm ⁴		惯性半径/cm		截面模数①/ cm³	
	h	b	d	t	r	r_1	cm^2	(kg/m)	(m^2/m)	I_z	I_{y}	i_z	i_y	W_{z}	$W_{_{\mathbf{y}}}$
10	100	68	4. 5	7. 6	6. 5	3.3	14. 33	11. 3	0.432	245	33.0	4. 14	1.52	49. 0	9. 72
12	120	74	5.0	8. 4	7. 0	3.5	17. 80	14. 0	0.493	436	46. 9	4. 95	1.62	72. 7	12. 7
12.6	126	74	5.0	8.4	7. 0	3.5	18. 10	14. 2	0. 505	488	46. 9	5. 20	1.61	77. 5	12. 7
14	140	80	5. 5	9. 1	7. 5	3.8	21.50	16. 9	0.553	712	64.4	5. 76	1.73	102	16. 1
16	160	88	6.0	9.9	8. 0	4.0	26. 11	20. 5	0.621	1 130	93. 1	6. 58	1.89	141	21. 2
18	180	94	6. 5	10. 7	8. 5	4. 3	30. 74	24. 1	0.681	1 660	122	7. 36	2.00	185	26.0
20a	200	100	7. 0	11. 4	9. 0	4. 5	35. 55	27. 9	0.742	2 370	158	8. 15	2. 12	237	31.5
20b		102	9.0				39. 55	31. 1	0. 746	2 500	169	7. 96	2.06	250	33. 1
22a	220	110	7. 5	12. 3	9. 5	4. 8	42. 10	33. 1	0.817	3 400	225	8. 99	2. 31	309	40. 9
22b		112	9. 5	12. 3	2. 3		46. 50	36. 5	0.821	3 570	239	8. 78	2. 27	325	42. 7

① 本书正文中称为截面系数。

§ 5.3 横力弯曲时的正应力

纯弯曲正应力公式
$$\sigma = \frac{My}{I_z}$$

上式是在平面假设和单向受力假设的基础上推导的,实验证明在纯弯曲情况下是正确的。

对于横力弯曲:

- ① 由于存在剪力,横截面将产生剪切变形,使横截面发生翘曲。
- ② 此外,在与中性层平行的纵截面上,有时还有由横向力引起的挤压应力(如表面作用均布载荷情形)。

因此,梁在纯弯曲时所作的平面假设和单向受力假设都不成立。

矩形截面简支梁受均布荷载作用

弹性力学解1)

$$\sigma_x = \frac{My}{I_z} + q \frac{y}{h} (4 \frac{y^2}{h^2} - \frac{3}{5})$$

纯弯曲正应力公式

修正项

$$\sigma_{y} = -\frac{q}{2}(1 + \frac{y}{h})(1 - \frac{2y}{h})^{2}$$

当 $\frac{l}{h} > 5$ 时,跨中截面处的最大弯曲正应力用 $\sigma = \frac{My}{I_z}$ 公式计算的相对误差不超过1%。

有非常好的计算精度!

1) 徐芝纶, 弹性力学(第4版), 高等教育出版社, 2006.

梁的弯曲正应力强度条件

$$\sigma_{\max} = \frac{M_{\max}}{W_z} \leq [\sigma]$$

利用上式可以进行三方面的强度计算:

- [1] 已知外力、截面形状尺寸、许用应力,校核梁的强度
- [2] 已知外力、截面形状、许用应力,设计梁的截面尺寸
- [3] 已知截面形状尺寸、许用应力, 求许可载荷

例1 图示受均布载荷作用的外伸梁,材料的许用应力[σ]=160MPa, 按弯曲正应力校核该梁的强度。

解: 先确定危险截面及最大弯矩 *M*_{max} 作剪力图和弯矩图

求支座约束力
$$F_A \times 4 = 60 \times 3 \Longrightarrow F_A = 45 \text{kN}$$

 $F_B = 60 \text{kN} - 45 \text{kN} = 15 \text{kN}$

例2 图示放置的铸铁梁,许用拉应力[σ_t]=30MPa,许用压应力 [σ_c]=60MPa,试校核此梁的强度。

- 1)对于铸铁梁,拉伸和压缩力学性能不同,在危险截面处,拉伸强度和压缩强度都应校核。
- 2) 对于T型截面梁,形心到上下表面的距离是不相等的。

解: 1) 确定危险截面 及最大弯矩 M_{max}

对于只有集中力作用情形, 弯矩图各段均为直线,且在 各集中力作用处,弯矩图有 尖角。

此时,危险截面(弯矩最大的截面)肯定出现在集中力作用处或支座处。

$$M_{\rm max} = 4 \,\mathrm{kN}$$

2) 强度校核 $\sigma = \frac{My}{I_z}$ 求截面形心

$$y_c = \frac{80 \times 20 \times 10 + 120 \times 20 \times (20 + 60)}{80 \times 20 + 120 \times 20}$$
$$= 52 \text{mm}$$

求截面对中性轴z的惯性矩

$$I_z = \frac{80 \times 20^3}{12} + 80 \times 20 \times (52 - 10)^2 + \frac{20 \times 120^3}{12} + 20 \times 120 \times (88 - 60)^2$$
$$= 7.63 \times 10^{-6} \,\text{m}^4$$

危险截面及作用弯矩

- (1) 截面B (上部受拉) $M_B = 4.0 \text{ kN.m}$
- (2) 截面C (下部受拉) $M_C = 2.5 \text{ kN.m}$

哪个截面上的应力最大, 需具体计算后才能确定!

$$\sigma = \frac{My}{I_z}$$

强度校核

B截面(上拉下压): $M_B = 4.0 \text{ kN.m}$ $\frac{A}{1 \text{ m}}$ $\frac{C}{1 \text{ m}}$ $\frac{D}{1 \text{ m}}$ $\frac{D}{88}$

$$\sigma_{tB} = \frac{M_B \cdot y_{t \text{max}}}{I_z} = \frac{4.0 \times 10^3 \times 52 \times 10^{-3}}{7.63 \times 10^{-6}} = 27.3 \text{MPa} < [\sigma_t] = 30 \text{MPa}$$

$$\sigma_{tB} = \frac{1}{I_z} = \frac{7.63 \times 10^{-6}}{7.63 \times 10^{-6}} = 27.3 \text{MPa} < [\sigma_t] = 30 \text{MPa}$$

$$M \cdot v = 4.0 \times 10^3 \times 88 \times 10^{-3}$$

$$\sigma_{cB} = \frac{M_B \cdot y_{c \text{max}}}{I_c} = \frac{4.0 \times 10^3 \times 88 \times 10^{-3}}{7.63 \times 10^{-6}} = 46.1 \text{MPa} < [\sigma_c] = 60 \text{MPa}$$

B截面安全!

C截面(上压下拉): $M_c = 2.5 \text{ kN.m}$

$$\sigma_{tC} = \frac{M_C \cdot y_{t \text{max}}}{I_z} = \frac{2.5 \times 10^3 \times 88 \times 10^{-3}}{7.63 \times 10^{-6}} = 28.8 \text{MPa} < [\sigma_t] = 30 \text{MPa}$$

综上,此梁安全! $\sigma_{cC} = \frac{M_C \cdot y_{c \text{max}}}{I} = \frac{2.5 \times 10^3 \times 52 \times 10^{-3}}{7.63 \times 10^{-6}} = 17.0 \text{MPa} < [\sigma_c] = 60 \text{MPa}$ Catalogue 2.5 Catalogue

若梁上下倒置,是否合适?

 $\sigma_{tB} = \frac{M_B \cdot y_{t \text{max}}}{I} = \frac{4.0 \times 10^3 \times 88 \times 10^{-3}}{7.63 \times 10^{-6}} = 46.1 \text{MPa} > [\sigma_t] = 30 \text{MPa}$

 $I_z = 7.63 \times 10^{-6} \,\mathrm{m}^4$

例3 从圆木中锯出矩形截面梁,请确定矩形截面梁的最佳尺寸

比例,高度h:b是多少?

我国的《营造法式》中给出的 尺寸比例是h:b=3:2=1.5。

《营造法式》的作者是宋代李诫,出版于1103年。是北宋官方颁布的一部建筑设计、施工的规范书。这是我国古代最完整的建筑技术书籍,标志着中国古代建筑已经发展到了较高阶段。

解: 由 $\sigma = \frac{M}{W_z}$ 知,原问题要求所锯出矩形截面梁的 W_z 最大!

矩形截面: $W_z = \frac{1}{6}bh^2$

$$=\frac{1}{6}(bd^2-b^3)$$

设圆木的直径为d,则有 $b^2 + h^2 = d^2$,则 $W_z = \frac{1}{6}b(d^2 - b^2)$

 $=4\times\int_0^\alpha R^2\sin^2\theta\times R\cos\theta\times R\cos\theta d\theta = 4R^4\int_0^\alpha\sin^2\theta\cos^2\theta d\theta$

 $=R^4 \int_0^\alpha (\sin 2\theta)^2 d\theta = R^4 \int_0^\alpha \frac{1-\cos 4\theta}{2} d\theta = \frac{R^4}{8} (4\alpha - \sin 4\alpha)$

 $\sigma = \frac{M}{W_z} \qquad W_z = \frac{I_z^{\bullet}}{v_{\text{max}}}$ $W_z = \frac{R^3}{8} \frac{(4\alpha - \sin 4\alpha)}{\sin \alpha}$ $y_{\text{max}} = R \sin \alpha$

其他更好的加工方案?

$$W_z = \frac{R^3}{8} \frac{(4\alpha - \sin 4\alpha)}{\sin \alpha}$$

$$\frac{\mathrm{d}W_z}{\mathrm{d}\alpha} = 0$$

$$4\sin\alpha(1-\cos4\alpha)-(4\alpha-\sin4\alpha)=0$$

解得:
$$\alpha_0 = 1.36 \, \text{rad} = 78.08^{\circ}$$

$$\delta = R - R \sin \alpha_0 = 0.02156R$$

$$W_{z \text{max}} = 0.7908 R^3$$
 W_z 比原来的圆形

截面还要大!

$$W_{\text{zb}} = \frac{\frac{1}{64}\pi(2R)^2}{R} = \frac{1}{4}\pi R^3 = 0.7854 R^3$$

$$W_{z/F} = \frac{1}{6}bh^2 = \frac{1}{3}b^3 = \frac{8}{9\sqrt{3}}R^3 = 0.5132R^3$$

d = 2R

Thank you for your attention!

作业

P177: 5.5

P181-182: 5.15 \ 5.16

对应第6版的题号 P173: 5.5; P176: 5.15、5.16

下次课讲 弯曲切应力和弯曲中心的概念 (第II册 第十二章 § 12.2)