

Logistic Regression I

Summary of the last lecture

- Types of residuals
- Residual plots
- Over-dispersion

Key terms of this lecture

- Logistic regression
 - Terminology
 - Ungrouped data/Grouped data

Reading

- McCullagh and Nelder (1989) Chapter 7
- Dobson and Bartnett (2008) Chapter 4

1

STAT 635-GLM-Lecture Notes 8, Binary Variables and Logistic Regression, Part I, Fall 2017

Binomial Distribution

- Example: Budworm data. This example comes from Venables and Ripley's *Modern Applied Statistics with S*, Springer 4th edition, 2002. [See the attached pages for detail.]
 - Batches of 20 moths subjected to increasing doses of a poison, "success" = death.
 - o Data is grouped: for each of 6 doses (1.0, 2.0, 4.0, 8.0, 16.0, 32.0 mg) and each of male and female, we have 20 moths. in each group.
 - o There are 12 covariate patterns. Or there are 6x2=12 groups based on different Values of X's.

dose	1	2	4	8	16	32
Male	1	4	9	13	18	20
Female	0	2	6	10	12	16

The number of moths that died in each group is shown in the table. Data suggests that the probability of dying increases with dose.

Terminology

• Odds for a single moth to die

$$\mathsf{odds}(p) = \frac{p}{1-p}.$$

• Log-odds (a.k.a logit)

$$\mathsf{logit}(p) = \log\left(\frac{p}{1-p}\right)$$

3

STAT 635-GLM-Lecture Notes 8, Binary Variables and Logistic Regression, Part I, Fall 2017

Terminology (cont'd)

- Between two groups, e.g., exposed vs. unexposed, Trt1 vs. Trt2)
 - In budworm example, consider the male budworms receiving doses 1 and 2 at which $y_1=1$ and $y_2=4$ moths died out of m=20.
 - Risk Difference: $RD = p_1 p_2$ (e.g., 0.05 0.2 = -0.15) $\frac{1}{2c} \frac{4}{2c} = 0.05 0.2$
 - Relative Risk: $RR = p_1/p_2$ (e.g., 0.05/0.2 = 0.25)
 - \circ Odds of dying: $\mathsf{odds}(p_1) = p_1/(1-p_1)$ and $\mathsf{odds}(p_2) = p_2/(1-p_2)$
 - o Odds ratio: $OR = \text{odds}(p_1)/\text{odds}(p_2)$ (e.g., odds of dying at close 1 (0.05/0.95)/(0.2/0.8) = 0.21)
 - o Log-Odds ratio: Log- $OR = \log(OR)$ (e.g., $\log(0.21) = -1.56$)

Terminology (cont'd)

Interpretation:

- RD: hard to explain a difference of -0.15 in probability
- RR and OR: A ratio of 0.25 in probability is easier to interpret.
 - * RR = 0.25: The risk of dying from dose 1 is only 1/4 of the risk of dying from dose 2.
 - * Thus, having RR < 1 means that dose 1 is less poisonous than dose 2.
 - * Note: 0.25 does not say anything about the risk of dying from dose 2.
- o Log-OR $OR \in (0,\infty)$; Log- $OR \in -\infty,\infty$). Useful in interpretation of parameters in logistic regression.

5

STAT 635-GLM-Lecture Notes 8, Binary Variables and Logistic Regression, Part I, Fall 2017

Grouped vs. Ungrouped Data

- Grouped data (budworm example, seed example)
 - Data are presented by distinct covariate values (e.g., dose-gender seed-extract combination)
 - o After counting number of responses in each category, we have a binomial r.v. (i.e. Response is the number of success)
- Ungrouped data
- Each record represents one individual. Response is binary (0 or 1)

 Grouped data vs. ungrouped data. Estimates and standard errors are the same, Example. Seed data o Both results are exactly the same. but the measures of goodness of fit o Differences: See example: Senility and Waise pase 140, ardede Further grouping: the Hosmer - Lemeshow * DFs are different, so is GOF * Overdispersion be found in grouped data statistic Line. By grouping Values of the fold number of observations

per group are approximately equal

Budworm Example

- ullet Goal: describe the dependence of the mortality of budworms on sex S and the applied dose D.
 - i.e. explain E[Y] as a function of the covariates.
- Data:
 - o D: logarithm of dose (1,2,4,8,16,32 (μg)) of cypermethrin (continuous covariates)
 - o S: sex (male, female) (class or factor covariates)
- Distribution assumption: $y_{ij} \sim \text{Binomial}(n_{ij}, p_{ij})$, for $i=1,2,\ j=1,\ldots,6$, with $E[Y_{ij}] = n_{ij}p_{ij}$ where $n_{ij}=20$ known in this example.
- ullet Thus, the question is the relationship between p_{ij} and covariates.

7

STAT 635-GLM-Lecture Notes 8, Binary Variables and Logistic Regression, Part I, Fall 2017

Budworm Example (cont'd)

- Exploratory Plots: see R and SAS code, budworm.R and budworm.SAS
 - o Observed proportions

$$\hat{p}_{ij} = \frac{y_{ij}}{n_{ij}}.$$

Empirical logits

$$\mathsf{elogit}_{ij} = \log\left(\frac{y_{ij} + 0.5}{n_{ij} - y_{ij} + 0.5}\right)$$

• What do plots suggest? [See the attached plots.]

Budworm Example (cont'd)

- Components of GLM logistic regression
 - Random component

$$y_{ij} \sim B_{in}(n_{ij}, P_{ij}), \quad n_{ij} = 20$$

or
$$Y_i \sim Bin(n_i, p_i)$$
, $n_i = 20$
o Linear predictor (Systematic component)

Link function

$$\eta_i = \log \frac{p_i}{1 - p_i}$$
 or $\log \frac{p_i}{1 - p_i} = \gamma_i$

Thus, the model would be,

9

STAT 635-GLM-Lecture Notes 8, Binary Variables and Logistic Regression, Part I, Fall 2017

Budworm Example (cont'd)

- Parameter estimation
 - \circ MLE of β using IWLS.
- Interpretation of Parameters

holding logdose Constant
$$\circ \beta_0 + \beta_1$$
 log-odds when $Sex = 1$ (male) and logdose = \circ (dose = 1)

- Revisit:
 - Odds

$$\mathsf{odds}(p_{ij}) = \frac{p_{ij}}{1 - p_{ij}} = \exp(\mathsf{logit}(p_{ij})) = \exp(\eta_{ij}),$$

Thus

$$p_{ij} = \frac{\exp(\operatorname{logit}(p_{ij}))}{1 + \exp(\operatorname{logit}(p_{ij}))}.$$

$$= \frac{e \times p(n_{ij})}{1 + e \times p(n_{ij})}.$$

The fitted probabilities:
$$\hat{p}_{ij} = \frac{\exp(\hat{\eta}_{ij})}{1 + \exp(\hat{\eta}_{ij})}, \hat{\eta}_{ij} = X_{ij}\hat{\beta}$$

11

STAT 635-GLM-Lecture Notes 8, Binary Variables and Logistic Regression, Part I, Fall 2017

Budworm Example (cont'd): Interpretation

- Interpretation of a continuous covariate
 - Using GLM for Binomial distribution, let $D = \log(\mathsf{dose})$,

$$logit(p_{i,d+1}) = \beta_0 + \beta_1 S + \beta_2 (D+1)$$
$$logit(p_{i,d}) = \beta_0 + \beta_1 S + \beta_2 D$$

thus, β_2 is a change in logits per unit increase of log-dose. i.e.

$$odds(p_{i,D+1}) = exp(logit(p_i, D+1))$$

$$= exp(logit(p_i, D+1))$$

thus, in example, increasing the log-dose by one unit increases the odds of = $e \times P(\beta_2) e \times P(\beta_0 + \beta_1 \beta_1 + \beta_2 P)$ death by a factor of $exp(\beta_2)$

onfidence interval for
$$\beta_2$$
 (Wald CI or LR CI)

$$exp(P_2) = \frac{1}{odds(P_i, D)}$$

• Confidence interval for β_2 (Wald Cl or LR Cl)

• Confidence interval for β_2 (Wald Cl or LR Cl)

• Confidence interval for the odds ratio (OR) is

• Confidence interval for the odds ratio (OR) is

• Confidence interval for OR (Exp(CI for β_2)

= $e_{xp}(\hat{\beta}_2 \pm 1.96 SE(\hat{\beta}_2))$ This C1 Excluding the odds $e_{xp}(\hat{\beta}_2 \pm 1.96 SE(\hat{\beta}_2))$ This CI Excluding Unity (1) indicates Ba is significantly different from Zero.

Budworm Example (cont'd): Interpretation

- Interpretation of a factor

thus, the OR of dying as a male moth relative to a female moth is $e \times p(\beta_i)$

i.e. the odds of dying for males is about $\underline{e \times p(\beta_i)}$ times the odds for females.

- Confidence interval for β_1 e.g., Wald $CI = \hat{\beta_i} \pm 1.96 SE(\hat{\beta_i})$
- Confidence interval for the odds ratio (OR) is.. $exp(\hat{\beta}, \pm 1.96SC(\hat{\beta},))$

13

STAT 635-GLM-Lecture Notes 8, Binary Variables and Logistic Regression, Part I, Fall 2017

Budworm Example (cont'd): Probability

 Estimation (or prediction) of the probability of dying at certain levels of the covariates

$$\mathsf{logit}(p_{ij} = \eta = \beta_0 + \beta_1 S + \beta_2 D.$$

(1) Estimate of log-odds at female moth to die at dose 27 (i.e. log(27) = 3.3).

$$\hat{\eta} = \hat{\beta}_0 + \hat{\beta}_1(S=0) + \hat{\beta}_2(D=3.3).$$

 \circ Confidence interval for η (log-odds, here)

$$\hat{\eta} = \mathbf{C}\hat{\beta},$$

where C = (1, S, D) = (1, 0, 3.3). Using Wald Statistic,

$$(\mathbf{C}\hat{\beta} - \mathbf{C}\beta)^T \{\hat{V}(\mathbf{C}\hat{\beta})\}^{-1} (\mathbf{C}\hat{\beta} - \mathbf{C}\beta) \sim \chi_1^2$$

Budworm Example (cont'd): Model Comparison

Consider an interaction model
 Testing all parameters are equal

(1) Test
$$H_0: \beta = \beta_1 = \beta_2 = \beta_3$$
:

$$\Leftrightarrow \quad \mathcal{C}\beta = 0, \quad \mathcal{C} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}, \quad \widehat{V}(\beta) = \begin{pmatrix} 0.30548 & 4 \\ 0.60577 & 0.01812 \\ 4 & 0.15772 \end{pmatrix}$$

$$\Leftrightarrow \quad (\widehat{C}\widehat{G} = \widehat{C}_3)^T \widehat{V}(\widehat{C}_3) (\widehat{C}_3 = \widehat{C}_3) = (\widehat{C}_3 = \widehat{C}_3)^T \widehat{V}(\widehat{C}_3 = \widehat{C}_3 = \widehat{C}_3) = (\widehat{C}_3 = \widehat{C}_3 =$$

Then $(\hat{c}\hat{\beta} - \hat{c}\beta)^T \hat{V}(\hat{\beta}) (\hat{c}\hat{\beta} - \hat{c}\beta) = (\hat{c}\hat{\beta} - \hat{0})^T \hat{V}(\hat{\beta}) (\hat{c}\hat{\beta} - \hat{0}) \sim \mathcal{X}_3)$ (2) Test H_0 $\beta_3 = 0$.

To compare the main effects model and the interaction model and test importance of covariates

Wald lest:
$$\hat{\beta}_3 = 0.5091$$
, $SE(\hat{\beta}_3) = 0.3895$, 95% (1: (-0.2543, 1.2726)
Ho: $\beta_3 = 0$, $\chi^2_{caic}(i) = 1.71$, $p-Value = 0.1912$, non-Significant

Ho:
$$\beta_3 = 0$$
, $\Lambda_{calc}(1) = 1.71$, $\rho = 1.712$, $\rho = 1.712$)

Deviance: $D_2 - D_1 = 6.7571 - 4.9937 = 1.7634 \approx LR$ (In fact, they are equivalent).

Pearson χ^2 . χ^2 χ^2

Here, when $d = (D^{*}(Y, \Omega)) = D(Y, \Omega)/d = D(Y, \Omega)$ so LR = Dev. STAT 635-GLM-Lecture Notes 8, Binary Variables and Logistic Regression, Part I, Fall 2017

Budworm Example (cont'd): GOF

For model with interaction Using Deviance, $D(\mathbf{Y}, \hat{\mu}) = 4.9937$. df = 12-4=8Compare this model with the saturated model with the n parameters, the fest is not significant, indiduting a good fit

• Using Pearson's χ^2

$$X^2 = \sum_{i=1}^n rac{(ilde{Y}_i - \hat{\mu}_i)^2}{V(\hat{\mu}_i)} = 3.5047$$
 df=8,

18

where $ilde{Y}_i=Y_i/m$ is the response variable for Binomial proportion.

For binomial distribution, V(Ac) = Ac(1-Ac)/mi

$$\chi^2 = \frac{(\gamma_i - m_i \hat{\mu}_i)^2}{m_i (i - \hat{\mu}_i) \hat{\mu}_i}$$

Thus, the CI for η is

$$\hat{\eta} - \sqrt{\chi_{0.05,1}^2 \hat{V}(\mathbf{C}\hat{\beta})} \le \eta \le \hat{\eta} + \sqrt{\chi_{0.05,1}^2 \hat{V}(\mathbf{C}\hat{\beta})}.$$

(2) Estimation of p

$$\hat{p} = \frac{\exp(\hat{\eta})}{1 + \exp(\hat{\eta})}$$

and the CI for p is

i.
$$\eta = C\beta$$
, $Var(\widehat{\eta}) = \widehat{V}(C\widehat{\beta}) = \widehat{C}\widehat{V}(\widehat{\beta})C^{T}$. $\widehat{V}(\widehat{\beta})$ can be obtained from SAS budworm. sas, by model index/ntotal=Sex logose/
i.e., $\widehat{V}(\widehat{\beta}) = \begin{pmatrix} 0.21951 & -0.09875 & -0.07575 \\ -0.09875 & 0.12601 & 0.01875 \end{pmatrix}$

$$\begin{array}{c} 0.01875 & 0.01875 \\ -0.01575 & 0.01875 & 0.03576 \end{pmatrix}$$
i. 95% C1 for $\eta = C\beta$ is $\widehat{\eta} \pm \sqrt{2}$, $\widehat{V}(C\widehat{\beta}) = \widehat{\eta} \pm 1.96 \widehat{C}\widehat{V}(\widehat{\beta})C^{T}$
and 95% C1 for \widehat{P} is $exp(\widehat{\eta} - 1.96 \widehat{C}\widehat{V}(\widehat{\beta})C^{T}) = exp(\widehat{\eta} + 1.96 \widehat{C}\widehat{V}(\widehat{\beta})C^{T})$

$$\overline{1 + exp(\widehat{\eta} - 1.96 \widehat{C}\widehat{V}(\widehat{\beta})C^{T})} = exp(\widehat{\eta} + 1.96 \widehat{C}\widehat{V}(\widehat{\beta})C^{T})$$

STAT 635-GLM-Lecture Notes 8, Binary Variables and Logistic Regression, Part I, Fall 2017

Budworm Example (cont'd): Interaction

• Consider a model with interaction

$$logit(p) = \eta = \beta_0 + \beta_1 S + \beta_2 D + \beta_3 S \times D.$$

• Interpretations of parameters.

• Interpretations of parameters.

•
$$\beta_0$$
: $\log - odds$ at $S = O(female)$ and $D = o$ (dose = 1.)

• β_1 $\log - OR$ of dying as a male ($S = 0$) moth relative to a female.

• β_3 : Interaction effects, $\log - OR$ of dying as a male moth relative to a female moth at a fixed D Cevel when $D = i$

• Graphical interpretation.

• M legit

• Graphical interpretation.

A logit

female $\beta_3 \neq 0$ implies two lines are not parallel

Nogldose) 3 16

