Homework #2 Physics, summer 2020/21

1) **(4pkt)** Examine the total work done in the cyclical process ABCDA shown in Figure (Take the data in the figure to be precise to three significant figures.)

- a) Calculate the work done along each segment of the path and add these values to get the total work.
- b) Calculate the area inside the rectangle ABCDA. Do you expect such result? Why?
- 2) (**6pkt**) Archimedes' principle can be used to calculate the density of a fluid as well as that of a solid. Suppose a chunk of iron with a mass of 390.0 g in air is found to have an apparent mass of 350.5 g when completely submerged in an unknown liquid.
 - a) What mass of fluid does the iron displace?
 - b) What is the volume of iron, using its density as given in Table.
 - c) Calculate the fluid's density and identify it.

Substance	ρ	Substance	ρ	Substance	ρ
	(g/mL)		(g/mL)		(g/mL)
Solids		Liquids		Gases	
Aluminum	2.7	Water (4ºC)	1.000	Air	1.29×10-₃
Brass	8.44	Blood	1.05	Carbon dioxide	1.98×10-3
Copper (average)	8.8	Sea water	1.025	Carbon monoxide	1.25×10-³
Gold	19.32	Mercury	13.6	Hydrogen	0.090×10 ⁻³
Iron or steel	7.8	Ethyl alcohol	0.79	Helium	0.18×10-³
Lead	11.3	Petrol	0.68	Methane	0.72×10-3
Polystyrene	0.10	Glycerin	1.26	Nitrogen	1.25×10-3
Tungsten	19.30	Olive oil	0.92	Nitrous oxide	1.98×10-3