TD 4 - Marche Aléatoire

Exercice 1. Soit (S_n) une marche aléatoire issue de $S_0 = 0$.

- 1. Calculer la loi de S_1 , S_2 et S_3 .
- 2. Calculer la loi de $(n + S_n)/2$ pour tout n.
- 3. En déduire la loi de S_n pour tout n.
- **Exercice 2.** Cent personnes font la queue à un guichet de cinéma. La place coûte $5 \in$ et 60 personnes ont un billet de $5 \in$ tandis que les 40 autres ont des billets de $10 \in$. Combien faut-il prévoir de billets de $5 \in$ en caisse pour que toutes les spectatrices et les spectateurs soient servis dans leur ordre d'arrivée avec une probabilité d'au moins 95%?
- **Exercice 3.** Si a et b sont deux entiers strictement positifs, montrer qu'il y a autant de chemins de 0 à a + b que de chemins de même longueur de 0 à a b passant par a.
- **Exercice 4.** Une joueuse dispose de $10 \in$ pour jouer à une machine à sous. A chaque partie, elle met $1 \in$ dans la machine et celle-ci rend $2 \in$ ou rien avec équiprobabilité.
 - 1. Modéliser la fortune de la joueuse par une marche aléatoire. Soit N le nombre de parties jouées jusqu'à la ruine de la joueuse.
 - 2. Quelle est la parité de N? Quelle valeur minimale peut-il prendre?
 - 3. Calculer la loi de N.
- **Exercice 5.** On considère deux marches aléatoires indépendantes issues de 0 et de 2 respectivement. Quelle est la probabilité que ces deux marches se retrouvent à un moment au même endroit?
- **Exercice 6.** Deux joueurs, Julie et Thomas s'affrontent dans un jeu de pile ou face avec une pièce équilibrée. Avant chanque lancer, les deux joueurs posent chacun $1 \in \text{sur}$ la table; si le tirage donne pile, Thomas empoche les $2 \in \text{, si c'est face, c'est Julie qui gagne les mises. Au début du jeu, Thomas a 10 pièces de <math>1 \in \mathbb{N}$. Il ignore la fortune x de Julie. Le jeu s'arrête dès que l'un des deux participants est ruiné.
 - 1. Modéliser la richesse de Thomas et son évolution par une marche aléatoire (S_n) .
 - 2. Modéliser la richesse de Julie et son évolution par une marche aléatoire (R_n) .
 - 3. Calculer $R_0 + S_0$. Quelle est la relation entre R_n et S_n après n parties? On suppose maintenant que la richesse de Julie est infinie, et que le jeu s'est arrêté par la ruine de Thomas après 26 lancers.
 - 4. Décrire la partie par un chemin dont on précisera les extrémités et les spécificités.
 - 5. Combien y a-t-il de chemins quelconques ayant les mêmes extrémités?
 - 6. Combien y a-t-il de chemins possibles correspondant à cette partie? On suppose à nouveau que la durée de jeu T est inconnue
 - 7. Calculer $\mathbb{P}(T=10)$ si la richesse initiale de Julie est x=15.
 - 8. Calculer $\mathbb{P}(T=10)$ si la richesse initiale de Julie est x=10.

- 9. Calculer $\mathbb{P}(T=10)$ si la richesse initiale de Julie est x=6.
- 10. Si x est impair que peut-on dire du perdant en fonction de la parité de T?

Exercice 7. Soit $(Z_n)_{n\geqslant 1}$ une suite de variables aléatoires iid de loi uniforme sur

$$\{(1,0),(-1,0),(0,1),(0,-1)\}.$$

On pose $S_0 = 0$ et pour $n \ge 1$, $S_n = S_{n-1} + Z_n = \sum_{k=1}^n Z_k$. On dit que (S_n) est une marche aléatoire simple symétrique sur \mathbb{Z}^2 . Pour tout $n \ge 1$ on note X_n la première coordonnée de Z_n et Y_n sa deuxième coordonnée, et on introduit $U_n = X_n + Y_n$ et $V_n = X_n - Y_n$.

- 1. Identifier les lois marginales de X_n et Y_n .
- 2. Les variables X_n et Y_n sont-elles indépendantes ?
- 3. Identifier les lois de U_n et V_n .
- 4. Les variables U_n et V_n sont-elles indépendantes ?
- 5. Calculer $\mathbb{P}(S_n = (0,0))$.