

컨테이너 터미널 야드 장치율 영향 요인 분석 연구

지도교수 : 김 율 성

2021, 05,20

한국해양대학교 석사과정 이정민 (공동저자: 정성훈 , 심민섭)

목차

- 1. 서론 (연구 배경, 목적 및 방법)
- 2. 선행 연구 고찰
- 3. 부산항 신항 컨테이너 터미널 및 분석 대상 터미널 현황
- 4. 장치장 점유율 및 영향 요인 분석
- 5. 결론

1. 서 론 (연구 배경, 목적 및 방법)

연구 배경

- 컨테이너 시장의 지속적인 성장과 대형선의 시장 투입 증대로 인한 터미널 경쟁구도의 지속적 증가
- Pandemic으로 인한 해운 경기 예측과 상이하게 교역량의 증가와 함께 선복 부족 초래
- 유례없는 야드 장치율 증가 및 장기화로 인한 터미널 운영사의 전반적인 지표 저하

연구 목적

- 장치장 점유율과 터미널 주요 KPI 상관 관계 분석
- 장치장 점유율 증대를 초래하는 주요 요인에 대한 분석
- 주요 요인 간의 영향도 와 밀접도를 분석하고 수치화를 통하여 영향정도를 도출

연구 방법

- 국내외 문헌조사
- 사례분석 대상 터미널의 실제 자료 취합
- 야드 장치율 및 영향 요소의 상관 관계 분석

2. 선행 연구 고찰

색인 주안점

- Yard 장치율에 따른 영향도 분석
- 장치장의 소요 규모를 결정하는 인자
- 하역 생산성 과 야드 장치장과의 상관 관계
- 야드에서 발생하는 move에 대한 분석

ИХ	논문 내용
김창곤 외 3 인	컨테이너 장치장 소요 규모 산정 및 영향 요소 분석, Peak시를 감안하여 규모 산정 권고
송용석 외 3인	장치장 활용 증대를 위한 장치장 할당 방식, Random & Grouping 방식을 비교
송용석	선박 대형화, 척당 물량 증가를 감안한 장치장 규모, 20.8% 장치장 점유율 증가 예측 및 생산성 하락, 정시성 영향 요소로 정의
신성현	터미널 Yard 내 발생하는 move중 unproductive 발생 원인 및 항목별 점유율 제시
Virgile Galle	비생산적 move에 대하여 크레인 효율성 증대를 위한 야드 운영 최적화를 위한 신규 모델 제시
Lu Zhen 외 4인	컨테이너 야드 효율성 증대를 위한 야드 장비, 장치장, 차량 관리 3가지 측면 개선안 제시

3. 부산항 신항 컨테이너 터미널 및 분석 터미널 현황

구성

- 컨테이너 터미널의 개요
- 부산신항만 운영 터미널의 주요 제원 과 최근 3개년 실적
- 사례 분석 터미널 소개 및 신개념 도입사항

Exclusive Linear Berth(2km)

- Berth flexibility with 2Km linear berths
- Direct TS connection between mother and feeder
- Enhanced capacity by investing on technology

On-dock Service

- Rail station, Customs & X-ray station
- Container Repair & Cleaning Services
- CFS

120 Hectare

Stacking Capacity
117,081TEU

구 성

- 장치장 capacity 및 변동이력
- 장치장 점유율 현황
- 장치장 점유율 상승 원인
- 장치장 상승으로 인한 영향

장치장 Capacity 변동

Area	Design	Concrete beam 2017. Jun	Leg extention 2018. Jan	Current
Full	63,930	70,848	79,508	79,508
Empty	35,301	35,301	35,301	37,573
Max capacity	99,231	106,149	114,809	117,081

장치장 현황

- Pandemic 상황으로 인한 장치장 점유율 증가

장치장 점유율 상승 원인

환적화물 증가

	Full area 점유율	Stacking Teus				TS점유율	
	rull alea 合命室	Export	Import	TS	총계	13日市置	
2018	73%	16,832	11,845	23,136	51,814	45%	
2019	72%	15,452	11,013	24,339	50,804	48%	
2020.상반기	79%	17,377	9,918	27,690	54,985	50%	
2020.하반기	84%	21,329	8,561	33,060	62,951	53%	
2021	84%	19,984	9,009	37,851	66,844	57%	

평균장치일수 증가

영향

장치장 점유율 상승에 따른 주요 KPI 의 상관 관계 분석

- > 선박 비 정시율
- > 주 별 처리 실적
- ▶ 평균 투입 크레인 수
- Peak 투입 크레인 수
- ▶ RMG 총 처리 수량
- > RMG 가동 시간
- ▶ GC 가동 시간
- ➤ GMPH
- ➤ YT 평균 이동 거리
- Yard 전체 처리 move
- Unproductive move
- Dwell days
- ➤ TS 장치 물량 %

P 사의 자료를 바탕으로 야드장치율에 따른 영향 정도를 도출하고자 SPSS 회귀분석을 사용하였으며 단순 회귀분석을 통해 영향을 주는 주요 요소들을 도출하였다

5. 결론

연구결과

독립 변수	표준화 회귀계수	t	유의 확률	r2
평균 투입 crane 수	0.297	4.02	0.000	0.083
weekly handling volume	-0.139	-1.82	0.710	0.013
GC 가동시간	0.126	1.65	0.101	0.01
YT 평균 이동 거리	0.136	1.78	0.077	0.013
Peak투입 crane 수	0.162	2.12	0.035	0.02
비정시율	0.451	6.53	0.000	0.199
RMG MOVES	0.640	10.77	0.000	0.406
RMG 가동시간	0.192	2.53	0.012	0.031
Crane 비생산성 HR	0.654	11.18	0.000	0.425
Yard 전체moves	0.593	9.52	0.000	0.348
unproductive moves	0.804	17.46	0.000	0.644
Dwell day Full	0.724	13.55	0.000	0.521
장치물량 TS (%)	0.688	12.25	0.000	0.47

- ▶ Peak투입 크레인 수, 비정시율, RMG MOVE 횟수, RMG가동시간, 크레인 비생산성, Yard 전체 move, Unproductive moves, Dwell day full, 장치물량 T/S(teu)는 t > ±1.96을 만족하였으며, 유의확률 0.05이하에서 회귀모형이 적합하다고 나왔다. 9개의 독립변수가 full 컨테이너 장치장에 유의미한 영향을 미친다는 것을 의미한다.
- RMG MOVE 횟수, 크레인생산성, Yard 전체 move, Unproductive moves, Dwell day full, 장치물량 T/S(teu)의 경우 설명력을 나타내는 통계량인 R²의 값이 0.4이상으로 나왔기 때문에 40%이상의 설명력을 가진다고 볼 수 있다.
- ➤ 표준화 계수는 9개의 독립변수 모두 정(+)의 방향으로 나왔으며 이를 통해 9개의 독립변수가 증가될수록 full 컨테이너 야드 장치장에 영향이 높아지는 것을 알 수 있다.

