Homework 1

Reinforcement Learning: The Q-learning algorithm

Anna Vandi Gabriele Cianni

Exercise 1

R-Matrix:

State/Action	Move to 0	Move to 1	Move to 2	Move to 3	Move to 4	Move to 5
0	-1	-1	-1	-1	0	-1
1	-1	-1	-1	0	-1	100
2	-1	-1	-1	0	-1	-1
3	-1	0	-1	-1	0	-1
4	0	-1	-1	0	-1	100
5	-1	0	-1	-1	0	100

Q-Learning Algorithm

Question 1

Initialize the Q table (all 0)

State/Action	Move to 0	Move to 1	Move to 2	Move to 3	Move to 4	Move to 5
0	0	0	0	0	0	0
1	0	0	0	0	0	0

2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

Question 2

Episode 1: start state 1

Looking at R-Table I see that there are 2 possible actions if I am in state 1:

- Go to state 3
- Go to state 5

Random selection: I want to go to 5

a) Bellman equation: compute new value of Q(1,5)

Bellman equation should be:

delta_Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all
actions)]-Q(state, action)

newQ(state, action) = Q(state, action) + ALPHA * delta_Q(state, action)

but (ALPHA=1) I can summarize as follow:

Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all actions)]

Q(1, 5) = R(1, 5) + 0.8 * Max[Q(5,1), Q(5,4), Q(5,5)]=100+0=100

Update Q-table

State/Action	Move to 0	Move to 1	Move to 2	Move to 3	Move to 4	Move to 5
0	0	0	0	0	0	0
1	0	0	0	0	0	100
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

Question 3

Episode 2: start state 3 Initial state: State 3

action: go to 1 (random)

Q(3, 1) = R(3, 1) + 0.8 * Max[Q(1,5), Q(1,3), Q(1,1)] = 0 + 0.8 * (100) = 80

State/Action	Move to 0	Move to 1	Move to 2	Move to 3	Move to 4	Move to 5
0	0	0	0	0	0	0
1	0	0	0	0	0	100
2	0	0	0	0	0	0
3	0	80	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

State 1 is not the goal state, I continue in this episode.

Starting state: 1 action: go to 5

Q(1, 5) = R(1, 5) + 0.8 * Max[Q(5,1), Q(5,4), Q(5,5)] = 100+0=100

Goal state has been reached, episode ends.

Q-table at the end of this episode.

State/Action	Move to 0	Move to 1	Move to 2	Move to 3	Move to 4	Move to 5
0	0	0	0	0	0	0
1	0	0	0	0	0	100
2	0	0	0	0	0	0
3	0	80	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

Question 4

Explore more episodes to find Q-table reaching convergence values.

Episode 3: start state 4

Initial state: State 4 action: go to 5

Q(4, 5) = R(4, 5) + 0.8 * Max[Q(5,1), Q(5,4), Q(5,5)] = 100 + 0.8*(0) = 100

Goal state reached

State/Action	Move to 0	Move to 1	Move to 2	Move to 3	Move to 4	Move to 5
0	0	0	0	0	0	0
1	0	0	0	0	0	100
2	0	0	0	0	0	0
3	0	80	0	0	0	0
4	0	0	0	0	0	100
5	0	0	0	0	0	0

Episode 4: start state 0

Initial state: State 0 action: go to 4

Q(0, 4) = R(0, 4) + 0.8 * Max[Q(4,5), Q(4,3), Q(4,0)] = 0+0.8*(100) = 80

State/Action	Move to 0	Move to 1	Move to 2	Move to 3	Move to 4	Move to 5
0	0	0	0	0	80	0
1	0	0	0	0	0	100
2	0	0	0	0	0	0
3	0	80	0	0	0	0
4	0	0	0	0	0	100
5	0	0	0	0	0	0

Current state: State 4

action: go to 3

Q(4, 3) = R(4, 3) + 0.8 * Max[Q(3,1), Q(3,4), Q(3,2)] = 0 + 0.8 * (80) = 64

(-) /1 [(-) /1 (-) /1						
State/Action	Move to 0	Move to 1	Move to 2	Move to 3	Move to 4	Move to 5
0	0	0	0	0	80	0
1	0	0	0	0	0	100
2	0	0	0	0	0	0
3	0	80	0	0	0	0
4	0	0	0	64	0	100
5	0	0	0	0	0	0

Current state: State 3

action: go to 4

Q(3,4) = R(3,4) + 0.8 * Max[Q(4,5), Q(4,3), Q(4,0)] = 0+0.8*(64)=51.2

State/Action	Move to 0	Move to 1	Move to 2	Move to 3	Move to 4	Move to 5
0	0	0	0	0	80	0
1	0	0	0	0	0	100
2	0	0	0	0	0	0
3	0	80	0	0	51,2	0
4	0	0	0	64	0	100
5	0	0	0	0	0	0

Starting state: State 4

action: go to 5

Q(4, 5) = R(4, 5) + 0.8 * Max[Q(5,1), Q(5,4), Q(5,5)] = 100 + 0.8*(0) = 100

Goal state reached

Episode 5: start state 2

Initial state: State 2 action: go to 3

Q(2, 3) = R(2, 3) + 0.8 * Max[Q(3,1), Q(3,4), Q(3,2)] = 0 + 0.8 *(80) = 64

State/Action	Move to 0	Move to 1	Move to 2	Move to 3	Move to 4	Move to 5
0	0	0	0	0	80	0
1	0	0	0	0	0	100
2	0	0	0	64	0	0
3	0	80	0	0	51,2	0
4	0	0	0	64	0	100
5	0	0	0	0	0	0

Current state: State 3

action: go to 2

Q(3,2) = R(3,2) + 0.8 * Max[Q(2,3)] = 0+0.8*(64)=51,2

State/Action	Move to 0	Move to 1	Move to 2	Move to 3	Move to 4	Move to 5
0	0	0	0	0	80	0

1	0	0	0	0	0	100
2	0	0	0	64	0	0
3	0	80	51,2	0	51,2	0
4	0	0	0	64	0	100
5	0	0	0	0	0	0

Current state: State 2

action: go to 3

Q(2, 3) = R(2, 3) + 0.8 * Max[Q(3,1), Q(3,4), Q(3,2)] = 0+0.8*(80)=64

State/Action	Move to 0	Move to 1	Move to 2	Move to 3	Move to 4	Move to 5
0	0	0	0	0	80	0
1	0	0	0	0	0	100
2	0	0	0	64	0	0
3	0	80	51,2	0	51,2	0
4	0	0	0	64	0	100
5	0	0	0	0	0	0

Current state: State 3

action: go to 1

Q(3,1) = R(3,1) + 0.8 * Max[Q(3,1), Q(3,4), Q(3,2)] = 0+0.8*(80)=64

State/Action	Move to 0	Move to 1	Move to 2	Move to 3	Move to 4	Move to 5
0	0	0	0	0	80	0
1	0	0	0	0	0	100
2	0	0	0	64	0	0
3	0	64	51,2	0	51,2	0
4	0	0	0	64	0	100
5	0	0	0	0	0	0

Current state: State 1

action: go to 3

Q(1,3) = R(1,3) + 0.8 * Max[Q(1,3), Q(1,5)] = 0+0.8*(100) = 80

State/Action	Move to 0	Move to 1	Move to 2	Move to 3	Move to 4	Move to 5
0	0	0	0	0	80	0
1	0	0	0	80	0	100
2	0	0	0	64	0	0
3	0	80	51,2	0	51,2	0
4	0	0	0	64	0	100
5	0	0	0	0	0	0

Current state: State 3

action: go to 4

Q(3,4) = R(3,4) + 0.8 * Max[Q(4,5), Q(4,3), Q(4,0)] = 0+0.8*(100) = 80

State/Action	Move to 0	Move to 1	Move to 2	Move to 3	Move to 4	Move to 5
0	0	0	0	0	80	0
1	0	0	0	80	0	100
2	0	0	0	64	0	0
3	0	80	51,2	0	80	0
4	0	0	0	64	0	100
5	0	0	0	0	0	0

Current state: State 4

action: go to 0

Q(4,0) = R(4,0) + 0.8 * Max[Q(0,4)] = 0+0.8*(80)=64

State/Action	Move to 0	Move to 1	Move to 2	Move to 3	Move to 4	Move to 5
0	0	0	0	0	80	0
1	0	0	0	80	0	100
2	0	0	0	64	0	0
3	0	80	51,2	0	80	0
4	64	0	0	64	0	100
5	0	0	0	0	0	0

Question 5

The best sequence is: $2 \rightarrow 3 \rightarrow 1 \rightarrow 5$.

This is because in the initial state the action with the highest Q-value from the initial state 2 is to move to 3 with the value of 64. Then, from state 3, the actions with the highest Q-value are "Move to 1" and "Move to 4", because they have the same Q-value 80. In this case, it is indifferent which one to choose. Our agent choses to move to state 1 and in this state the action with the highest value is "move to 5", with a Q-value of 100. Goal state is reached.

