Subspace Homework Solutions

DS5020

2020-06-07

Basis

Express v = (1, -2, 5) in \mathbb{R}^3 as a linear combination of the

vectors

$$u_1 = (1, 1, 1), \qquad u_2 = (1, 2, 3), \qquad u_3 = (2, -1, 1)$$

Subspace

Let $V = \mathbb{R}^3$. Show that W is not a subspace of V, where

(a)
$$W = \{(a, b, c) : a \ge 0\}$$
, (b) $W = \{(a, b, c) : a^2 + b^2 + c^2 \ge 1\}$.

Subspace

Prove that the intersection of two subspaces of space *V* is also a subspace of *V*.

Vector Span

Find conditions on a, b, c so that v = (a, b, c) in \mathbb{R}^3 belongs to

 $W = \operatorname{span}(u_1, u_2, u_3)$, where

$$u_1 = (1, 2, 0), u_2 = (-1, 1, 2), u_3 = (3, 0, -4)$$

Linear Dependence

Determine whether or not u and v are linearly dependent

where

(a)
$$u = (1, 2), v = (3, -5),$$

(b)
$$u = (1, -3), v = (-2, 6),$$

(c)
$$u = (1, 2, -3), v = (4, 5, -6)$$

(d)
$$u = (2, 4, -8), v = (3, 6, -12)$$

Linear Dependence

Determine whether or not u and v are linearly dependent,

where

(a)
$$u = 2t^2 + 4t - 3$$
, $v = 4t^2 + 8t - 6$,

(b)
$$u = 2t^2 - 3t + 4$$
, $v = 4t^2 - 3t + 2$,

$$(c)^{u = \begin{bmatrix} 1 & 3 & -4 \\ 5 & 0 & -1 \end{bmatrix}}, v = \begin{bmatrix} -4 & -12 & 16 \\ -20 & 0 & 4 \end{bmatrix},$$

$$(\mathbf{d})^{u} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}, v = \begin{bmatrix} 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

Linear Dependence

Determine whether or not each of the following lists of vec-

tors in \mathbb{R}^3 is linearly dependent:

(a)
$$u_1 = (1, 2, 5), u_2 = (1, 3, 1), u_3 = (2, 5, 7), u_4 = (3, 1, 4),$$

(b)
$$u = (1, 2, 5), v = (2, 5, 1), w = (1, 5, 2),$$

(c)
$$u = (1, 2, 3), v = (0, 0, 0), w = (1, 5, 6).$$

Basis

Determine whether or not each of the following form a

basis of \mathbb{R}^3 :

(c)
$$(1, 1, 1), (1, 2, 3), (2, -1, 1);$$

Basis

Determine whether (1, 1, 1, 1), (1, 2, 3, 2), (2, 5, 6, 4), (2, 6,

8, 5) form a basis of \mathbb{R}^4 . If not, find the dimension of the subspace they span.

Basis and Dimension

Find a basis and dimension of the subspace W of \mathbb{R}^3 where

(a)
$$W = \{(a, b, c) : a + b + c = 0\},\$$

(b)
$$W = \{(a, b, c) : (a = b = c)\}$$