Lösungshinweise zur 5. Übung

Differential- und Integralrechnung für Informatiker

(A 17)

- 1) Wir stellen fest, dass die bei a)-l) auftretenden Reihen positive Glieder haben.
- a) Aus den Ungleichungen $\frac{2^n}{7^n+10^n}<\frac{2^n}{7^n}=\left(\frac{2}{7}\right)^n,$ für alle $n\geq 0,$ folgt

$$\sum \frac{2^n}{7^n + 10^n} \ll \sum \left(\frac{2}{7}\right)^n.$$

Die Konvergenz der geometrischen Reihe $\sum_{n\geq 0} \left(\frac{2}{7}\right)^n$ hat nun, aufgrund des ersten Vergleichskriteriums, die Konvergenz der gegebenen Reihe zur Folge.

b) Es sei x_n das allgemeine Glied der Reihe. Aus

$$\lim_{n \to \infty} \sqrt[n]{x_n} = \lim_{n \to \infty} \frac{\sqrt[n]{n}}{\ln n} = \frac{1}{\infty} = 0 < 1$$

folgt, nach dem Wurzelkriterium, die Konvergenz der Reihe.

c) Es sei $x_n := \frac{x^n}{n^p}$, für $n \geq 1$. Es gilt

$$\lim_{n \to \infty} D_n = \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} x \left(\frac{n}{n+1}\right)^p = x.$$

Nach dem Quotientenkriterium ist für x < 1 die Reihe konvergent, und für x > 1 divergent. Für x = 1 erhält man die verallgemeinerte harmonische Reihe $\sum_{n \geq 1} \frac{1}{n^p}$, die für p > 1 konvergent und für $p \leq 1$ divergent ist.

d) Wir vergleichen das allgemeine Glied der Reihe mit dem allgeimen Glied der harmonischen Reihe für ein geeignetes α , das gleich bestimmt wird. Seien $x_n := \frac{\sqrt{2n-1}}{n^2+1}$ und $y_n := \frac{1}{n^{\alpha}}$, für $n \ge 1$. Dann ist

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{\sqrt{2n-1}}{n^2+1} \cdot n^{\alpha} = \lim_{n \to \infty} \frac{n^{\frac{1}{2}}\sqrt{2-\frac{1}{n}}}{n^2(1+\frac{1}{n^2})} \cdot n^{\alpha} = \lim_{n \to \infty} \frac{\sqrt{2-\frac{1}{n}}}{n^{\frac{3}{2}}\left(1+\frac{1}{n^2}\right)} \cdot n^{\alpha}.$$

Damit dieser Grenzwert eine positive reelle Zahl ist, setzen wir $\alpha := \frac{3}{2}$, und erhalten

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{1}{n}}}{n^{\frac{3}{2}} \left(1 + \frac{1}{n^2}\right)} \cdot n^{\frac{3}{2}} = \sqrt{2} \in (0, \infty).$$

Nach dem zweiten Vergleichskriterium ist die Reihe äquivalent zur verallgemeinerten harmonischen Reihe mit $\alpha=\frac{3}{2}>1$. Also ist die Reihe konvergent.

e) Sei $x_n := \frac{3n}{(4+\frac{5}{n})^n}$, für $n \ge 1$. Die Relationen

$$\lim_{n \to \infty} \sqrt[n]{x_n} = \lim_{n \to \infty} \left(\frac{3n}{(4 + \frac{5}{n})^n} \right)^{\frac{1}{n}} = \lim_{n \to \infty} \frac{3^{\frac{1}{n}} n^{\frac{1}{n}}}{4 + \frac{5}{n}} = \frac{1}{4} < 1$$

implizieren, anhand des Wurzelkriteriums, die Konvergenz der Reihe.

f) Wir vergleichen dass allgemeine Glied der Reihe mit dem allgemeinen Glied $\frac{1}{n^{\alpha}}$ der verallgemeinerten harmonischen Reihe, wobei $\alpha \in \mathbb{R}$ geeignet gewählt wird. Aus

$$\lim_{n \to \infty} \frac{n^{\alpha} (\sqrt{n+1} - \sqrt{n})}{n^{\frac{3}{4}}} = \lim_{n \to \infty} \frac{n^{\alpha}}{(\sqrt{n+1} + \sqrt{n})n^{\frac{3}{4}}} = \lim_{n \to \infty} \frac{n^{\alpha}}{\left(\sqrt{1 + \frac{1}{n}} + 1\right)n^{\frac{5}{4}}}$$

folgt, dass für $\alpha = \frac{5}{4}$ der obige Grenzwert gleich $\frac{1}{2}$ ist. Nach dem zweiten Vergleichskriterium ist also die gegebene Reihe äquivalent zur Reihe $\sum_{n\geq 1}\frac{1}{n^{\frac{5}{4}}}$, also ist sie konvergent.

g) Sei x_n , $n \ge 1$, das allgemeine Glied der Reihe. Es ist $C_{2n}^n = \frac{(2n)!}{n!(n)!}$. Wir wenden das Quotientenkriterium an und berechnen

$$D_n := \frac{x_{n+1}}{x_n} = \frac{1}{2^{\alpha \cdot (n+1)}} \cdot \frac{(2(n+1))!}{(n+1)!(n+1)!} \cdot 2^{\alpha \cdot n} \cdot \frac{n!n!}{(2n)!} = \frac{2n+1}{n+1} \cdot \frac{1}{2^{\alpha - 1}}.$$

Also ist $D=\lim_{n\to\infty}D_n=\frac{1}{2^{\alpha-2}}$. Nach dem Quotientenkriterium ist die Reihe konvergent für $\alpha>2$, und divergent für $\alpha<2$. Ist $\alpha=2$, wenden wir das Kriterium von Raabe an. Aus

$$R = \lim_{n \to \infty} R_n = \lim_{n \to \infty} n \left(\frac{2(n+1)}{2n+1} - 1 \right) = \lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2}$$

folgt, anhand des Kriteriums von Raabe, die Divergenz der Reihe.

h) Sei $x_n := \frac{n^2}{2^{n^2}}$, für $n \geq 1$. Die Relationen

$$\lim_{n \to \infty} \sqrt[n]{x_n} = \lim_{n \to \infty} \frac{(\sqrt[n]{n})^2}{2^n} = 0 < 1$$

implizieren, anhand des Wurzelkriteriums, die Konvergenz der Reihe.

i) Sei $x_n := \frac{2^n n!}{n^n}$, für $n \ge 1$. Dann ist

$$\lim_{n \to \infty} D_n = \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \frac{2n^n}{(n+1)^n} = \lim_{n \to \infty} \frac{2}{\left(1 + \frac{1}{n}\right)^n} = \frac{2}{e} < 1.$$

Nach dem Quotientenkriterium ist also die gegebene Reihe konvergent.

- j) Wegen $\lim_{n\to\infty}\frac{n^\alpha}{(2n+1)^\alpha}=\left(\frac{1}{2}\right)^\alpha$ ist, nach dem zweiten Vergleichskriterium, die gegebene Reihe äquivalent zur verallgemeinerten harmonische Reihe $\sum_{n\geq 1}\frac{1}{n^\alpha}$, also ist sie für $\alpha>1$ konvergent und für $\alpha\leq 1$ divergent.
- k) Es sei x_n , $n \ge 1$, das allgemeine Glied der Reihe. Wegen

$$\lim_{n \to \infty} D_n = \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim \frac{(n+1)^4}{n^4 e^{2n+1}} = 0 < 1$$

ist, nach dem Quotientenkriterium, die gegebene Reihe konvergent.

1) Aus der im Hinweis erwähnten Gleichheit folgt

$$\lim_{n \to \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}} = 1.$$

Nach dem zweiten Vergleichskriterium ist die gegebene Reihe äquivalent zur harmonischen Reihe $\sum_{n\geq 1} \frac{1}{n}$, also divergent.

(A 18)

a) Sei $x_n := (-1)^n \frac{e^n}{n+3^n}$, für $n \ge 1$. Die Ungleichungen

$$|x_n| \le \left(\frac{e}{3}\right)^n, \ \forall \ n \ge 1,$$

haben zur Folge, dass $\sum |x_n| \ll \sum \left(\frac{e}{3}\right)^n$ ist. Nach dem ersten Vergleichskriterium ist also die Reihe $\sum |x_n|$ konvergent. Es folgt, dass die Reihe $\sum x_n$ absolut konvergent, also, nach **S10** aus der 5. Vorlesung, auch konvergent ist.

b) 1. Methode: Wir untersuchen zuerst die absolute Konvergenz, d.h. wir betrachten die Reihe

$$\sum_{n\geq 0} |(-1)^n (1-a_n)| = \sum_{n\geq 0} \left| 1 - \frac{n^5}{n^5 + 1} \right| = \sum_{n\geq 0} \frac{1}{n^5 + 1}.$$

Wegen

$$\frac{1}{n^5+1}<\frac{1}{n^5}, \text{ für alle } n\geq 1,$$

ist $\sum_{n\geq 0} \frac{1}{n^5+1} \ll \sum_{n\geq 0} \frac{1}{n^5}$. Das erste Vergleichskriterium liefert nun die Konvergenz der Reihe $\sum_{n\geq 0} \frac{1}{n^5+1}$. Also ist die Reihe $\sum_{n\geq 0} (-1)^n (1-a_n)$ absolut konvergent, und deswegen, nach **S10** aus der 5. Vorlesung, auch konvergent.

2. Methode: Wir untersuchen zuerst die Konvergenz der Reihe mittels des Leibniz-Kriteriums. Es sei $x_n := 1 - a_n = \frac{1}{n^5+1}, n \ge 0$. Da $(n^5+1)_{n \in \mathbb{N}}$ eine streng wachsende Folge ist, folgt, dass $(x_n)_{n \in \mathbb{N}}$ streng fallend ist. Außerdem ist

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{1}{n^5 + 1} = 0.$$

Das Leibniz-Kriterium impliziert nun die Konvergenz der Reihe $\sum_{n\geq 0} (-1)^n (1-a_n)$.

Die absolute Konvergenz wird wie in der 1. Methode beschrieben untersucht.

c) Es sei $x_n = e - \left(1 + \frac{1}{n}\right)^n$, $n \ge 1$. Diese Folge ist eine fallende gegen Null konvergierende Folge (weil die Folge $\left(\left(1 + \frac{1}{n}\right)^n\right)_{n \ge 1}$ eine gegen e konvergierende wachsende Folge ist). Das Kriterium von Leibniz sichert nun die Konvergenz der gegebenen Reihe. Wegen

$$\lim_{n \to \infty} \frac{e - \left(1 + \frac{1}{n}\right)^n}{\frac{1}{n}} = \frac{e}{2}$$

(man beachte dafür den Hinweis), ist, nach dem zweiten Vergleichskriterium, die Reihe $\sum_{n\geq 1} \left(e-\left(1+\frac{1}{n}\right)^n\right)$ äquivalent zur harmonischen Reihe, also ist sie divergent. Somit ist die gegebene Reihe nicht absolut konvergent.

(A 19)

Wir bezeichnen mit x_n , $n \ge 1$, das allgemeine (positive) Glied der Reihe. Aus

$$D_n = \frac{x_{n+1}}{x_n} = x \frac{n^n}{(n+1)^n} = x \frac{1}{\left(1 + \frac{1}{n}\right)^n}$$

folgt $\lim_{n \to \infty} D_n = \frac{x}{e}$. Nach dem Quotientenkriterium ist also die Reihe für x < e konvergent, und für x > e divergent. Für x = e wenden wir das Kriterium von Raabe an. Es ist

$$R_n = n\left(\frac{1}{D_n} - 1\right) = \frac{n}{e}\left(\left(1 + \frac{1}{n}\right)^n - e\right).$$

Wegen der im Hinweis zu (A 18) erwähnten Gleichheit (*) erhält man $\lim_{n\to\infty} R_n = -\frac{1}{2} < 1$. Das Kriterium von Raabe impliziert nun die Divergenz der Reihe.

Somit ist also die Reihe genau dann konvergent, wenn $x \in (0, e)$ ist.