Quorum Sensing Work-Precision Diagrams

David Widmann, Chris Rackauckas

July 5, 2020

1 Quorum Sensing

Here we test a model of quorum sensing of Pseudomonas putida IsoF in continuous cultures with constant delay which was published by K. Buddrus-Schiemann et al. in "Analysis of N-Acylhomoserine Lactone Dynamics in Continuous Cultures of Pseudomonas Putida IsoF By Use of ELISA and UHPLC/qTOF-MS-derived Measurements and Mathematical Models", Analytical and Bioanalytical Chemistry, 2014.

```
using DelayDiffEq, DiffEqDevTools, DiffEqProblemLibrary, Plots
Error: ArgumentError: Package Plots not found in current path:
- Run `import Pkg; Pkg.add("Plots")` to install the Plots package.
using DiffEqProblemLibrary.DDEProblemLibrary: importddeproblems; importddeproblems()
import DiffEqProblemLibrary.DDEProblemLibrary: prob_dde_qs
gr()
Error: UndefVarError: gr not defined
sol = solve(prob_dde_qs, MethodOfSteps(Vern9(); fpsolve = NLFunctional(; max_iter =
1000)); reltol=1e-14, abstol=1e-14)
plot(sol)
Error: UndefVarError: plot not defined
Particularly, we are interested in the third, low-level component of the system:
sol = solve(prob_dde_qs, MethodOfSteps(Vern9(); fpsolve = NLFunctional(; max_iter =
1000)); reltol=1e-14, abstol=1e-14, save_idxs=3)
test_sol = TestSolution(sol)
plot(sol)
Error: UndefVarError: plot not defined
```

1.1 Qualitative comparisons

First we compare the quality of the solution's third component for different algorithms, using the default tolerances.

1.1.1 RK methods

```
sol = solve(prob_dde_qs, MethodOfSteps(BS3()); reltol=1e-3, abstol=1e-6, save_idxs=3)
p = plot(sol);
Error: UndefVarError: plot not defined
scatter!(p,sol.t, sol.u)
Error: UndefVarError: scatter! not defined
Error: UndefVarError: p not defined
sol = solve(prob_dde_qs, MethodOfSteps(Tsit5()); reltol=1e-3, abstol=1e-6, save_idxs=3)
p = plot(sol);
Error: UndefVarError: plot not defined
scatter!(p,sol.t, sol.u)
Error: UndefVarError: scatter! not defined
р
Error: UndefVarError: p not defined
sol = solve(prob_dde_qs, MethodOfSteps(RK4()); reltol=1e-3, abstol=1e-6, save_idxs=3)
p = plot(sol);
Error: UndefVarError: plot not defined
scatter!(p,sol.t, sol.u)
Error: UndefVarError: scatter! not defined
Error: UndefVarError: p not defined
sol = solve(prob_dde_qs, MethodOfSteps(DP5()); reltol=1e-3, abstol=1e-6, save_idxs=3)
p = plot(sol);
Error: UndefVarError: plot not defined
scatter!(p,sol.t, sol.u)
Error: UndefVarError: scatter! not defined
р
Error: UndefVarError: p not defined
sol = solve(prob_dde_qs, MethodOfSteps(DP8()); reltol=1e-3, abstol=1e-6, save_idxs=3)
p = plot(sol);
Error: UndefVarError: plot not defined
scatter!(p,sol.t, sol.u)
```

```
Error: UndefVarError: scatter! not defined
p
Error: UndefVarError: p not defined
sol = solve(prob_dde_qs, MethodOfSteps(OwrenZen3()); reltol=1e-3, abstol=1e-6,
save_idxs=3)
p = plot(sol);
Error: UndefVarError: plot not defined
scatter!(p,sol.t, sol.u)
Error: UndefVarError: scatter! not defined
Error: UndefVarError: p not defined
sol = solve(prob_dde_qs, MethodOfSteps(OwrenZen4()); reltol=1e-3, abstol=1e-6,
save_idxs=3)
p = plot(sol);
Error: UndefVarError: plot not defined
scatter!(p,sol.t, sol.u)
Error: UndefVarError: scatter! not defined
p
Error: UndefVarError: p not defined
sol = solve(prob_dde_qs, MethodOfSteps(OwrenZen5()); reltol=1e-3, abstol=1e-6,
save idxs=3)
p = plot(sol);
Error: UndefVarError: plot not defined
scatter!(p,sol.t, sol.u)
Error: UndefVarError: scatter! not defined
Error: UndefVarError: p not defined
1.1.2 Rosenbrock methods
sol = solve(prob_dde_qs, MethodOfSteps(Rosenbrock23()); reltol=1e-3, abstol=1e-6,
save_idxs=3)
p = plot(sol);
Error: UndefVarError: plot not defined
scatter!(p,sol.t, sol.u)
Error: UndefVarError: scatter! not defined
```

```
р
Error: UndefVarError: p not defined
sol = solve(prob_dde_qs, MethodOfSteps(Rosenbrock32()); reltol=1e-3, abstol=1e-6,
save_idxs=3)
p = plot(sol);
Error: UndefVarError: plot not defined
scatter!(p,sol.t, sol.u)
Error: UndefVarError: scatter! not defined
Error: UndefVarError: p not defined
sol = solve(prob_dde_qs, MethodOfSteps(Rodas4()); reltol=1e-3, abstol=1e-6, save_idxs=3)
p = plot(sol);
Error: UndefVarError: plot not defined
scatter!(p,sol.t, sol.u)
Error: UndefVarError: scatter! not defined
р
Error: UndefVarError: p not defined
sol = solve(prob_dde_qs, MethodOfSteps(Rodas5()); reltol=1e-4, abstol=1e-6, save_idxs=3)
p = plot(sol);
Error: UndefVarError: plot not defined
scatter!(p,sol.t, sol.u)
Error: UndefVarError: scatter! not defined
Error: UndefVarError: p not defined
1.1.3 Lazy interpolants
sol = solve(prob_dde_qs, MethodOfSteps(Vern7()); reltol=1e-3, abstol=1e-6, save_idxs=3)
p = plot(sol);
Error: UndefVarError: plot not defined
scatter!(p,sol.t, sol.u)
Error: UndefVarError: scatter! not defined
р
Error: UndefVarError: p not defined
```

```
sol = solve(prob_dde_qs, MethodOfSteps(Vern9()); reltol=1e-3, abstol=1e-6, save_idxs=3)
p = plot(sol);

Error: UndefVarError: plot not defined

scatter!(p,sol.t, sol.u)

Error: UndefVarError: scatter! not defined

p

Error: UndefVarError: p not defined
```

1.2 Qualitative comparisons

Error: UndefVarError: plot not defined

Now we compare these methods quantitatively.

1.2.1 High tolerances

```
RK methods We start with RK methods at high tolerances.
```

```
abstols = 1.0 . / 10.0 .^{(4:7)}
reltols = 1.0 ./ 10.0 .^ (1:4)
setups = [Dict(:alg=>MethodOfSteps(BS3())),
          Dict(:alg=>MethodOfSteps(Tsit5())),
          Dict(:alg=>MethodOfSteps(RK4())),
          Dict(:alg=>MethodOfSteps(DP5())),
          Dict(:alg=>MethodOfSteps(OwrenZen3())),
          Dict(:alg=>MethodOfSteps(OwrenZen4())),
          Dict(:alg=>MethodOfSteps(OwrenZen5()))]
names = ["BS3", "Tsit5", "RK4", "DP5", "OwrenZen3", "OwrenZen4", "OwrenZen5"]
wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups;names=names,
save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final)
plot(wp)
Error: UndefVarError: plot not defined
We also compare interpolation errors:
abstols = 1.0 ./ 10.0 .^{(4:7)}
reltols = 1.0 ./ 10.0 .^ (1:4)
setups = [Dict(:alg=>MethodOfSteps(BS3())),
          Dict(:alg=>MethodOfSteps(Tsit5())),
          Dict(:alg=>MethodOfSteps(RK4())),
          Dict(:alg=>MethodOfSteps(DP5())),
          Dict(:alg=>MethodOfSteps(OwrenZen3())),
          Dict(:alg=>MethodOfSteps(OwrenZen4())),
          Dict(:alg=>MethodOfSteps(OwrenZen5()))]
names = ["BS3", "Tsit5", "RK4", "DP5", "OwrenZen3", "OwrenZen4", "OwrenZen5"]
wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups;names=names,
                      save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2)
plot(wp)
```

And the maximal interpolation error:

Error: UndefVarError: plot not defined

Since the correct solution is in the range of 1e-7, we see that most solutions, even at the lower end of tested tolerances, always lead to relative maximal interpolation errors of at least 1e-1 (and usually worse). RK4 performs slightly better with relative maximal errors of at least 1e-2. This matches our qualitative analysis above.

Rosenbrock methods We repeat these tests with Rosenbrock methods, and include RK4 as reference.

```
abstols = 1.0 . / 10.0 .^{(4:7)}
reltols = 1.0 ./ 10.0 .^ (1:4)
setups = [Dict(:alg=>MethodOfSteps(Rosenbrock23())),
          Dict(:alg=>MethodOfSteps(Rosenbrock32())),
          Dict(:alg=>MethodOfSteps(Rodas4())),
          Dict(:alg=>MethodOfSteps(RK4()))]
names = ["Rosenbrock23", "Rosenbrock32", "Rodas4", "RK4"]
wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups;names=names,
save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final)
plot(wp)
Error: UndefVarError: plot not defined
abstols = 1.0 . / 10.0 .^{(4:7)}
reltols = 1.0 . / 10.0 .^{(1:4)}
setups = [Dict(:alg=>MethodOfSteps(Rosenbrock23())),
          Dict(:alg=>MethodOfSteps(Rosenbrock32())),
          Dict(:alg=>MethodOfSteps(Rodas4())),
          Dict(:alg=>MethodOfSteps(RK4()))]
names = ["Rosenbrock23", "Rosenbrock32", "Rodas4", "RK4"]
wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups;names=names,
                      save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2)
plot(wp)
Error: UndefVarError: plot not defined
abstols = 1.0 . / 10.0 .^{(4:7)}
reltols = 1.0 . / 10.0 .^{(1:4)}
```

Out of the tested Rosenbrock methods Rodas4 and Rosenbrock23 perform best at high tolerances.

Error: UndefVarError: plot not defined

Lazy interpolants Finally we test the Verner methods with lazy interpolants, and include Rosenbrock23 as reference.

```
abstols = 1.0 . / 10.0 .^{(4:7)}
reltols = 1.0 ./ 10.0 .^ (1:4)
setups = [Dict(:alg=>MethodOfSteps(Vern6())),
          Dict(:alg=>MethodOfSteps(Vern7())),
          Dict(:alg=>MethodOfSteps(Vern8())),
          Dict(:alg=>MethodOfSteps(Vern9())),
          Dict(:alg=>MethodOfSteps(Rosenbrock23()))]
names = ["Vern6", "Vern7", "Vern8", "Vern9", "Rosenbrock23"]
wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups;names=names,
save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final)
plot(wp)
Error: UndefVarError: plot not defined
abstols = 1.0 . / 10.0 .^{(4:7)}
reltols = 1.0 . / 10.0 .^{(1:4)}
setups = [Dict(:alg=>MethodOfSteps(Vern6())),
          Dict(:alg=>MethodOfSteps(Vern7())),
          Dict(:alg=>MethodOfSteps(Vern8())),
          Dict(:alg=>MethodOfSteps(Vern9())),
          Dict(:alg=>MethodOfSteps(Rosenbrock23()))]
names = ["Vern6", "Vern7", "Vern8", "Vern9", "Rosenbrock23"]
wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups;names=names,
                      save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2)
plot(wp)
Error: UndefVarError: plot not defined
abstols = 1.0 . / 10.0 .^{(4:7)}
reltols = 1.0 ./ 10.0 .^ (1:4)
setups = [Dict(:alg=>MethodOfSteps(Vern6())),
          Dict(:alg=>MethodOfSteps(Vern7())),
          Dict(:alg=>MethodOfSteps(Vern8())),
          Dict(:alg=>MethodOfSteps(Vern9())),
          Dict(:alg=>MethodOfSteps(Rosenbrock23()))]
names = ["Vern6", "Vern7", "Vern8", "Vern9", "Rosenbrock23"]
wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups;names=names,
                      save idxs=3,appxsol=test sol,maxiters=Int(1e5),error estimate=:L\infty)
plot(wp)
```

```
Error: UndefVarError: plot not defined
```

All in all, at high tolerances Rodas5 and Rosenbrock23 are the best methods for solving this stiff DDE.

1.2.2 Low tolerances

Rosenbrock methods We repeat our tests of Rosenbrock methods Rosenbrock23 and Rodas5 at low tolerances:

```
abstols = 1.0 ./ 10.0 .^ (8:11)
reltols = 1.0 ./ 10.0 .^ (5:8)
setups = [Dict(:alg=>MethodOfSteps(Rosenbrock23())),
          Dict(:alg=>MethodOfSteps(Rodas4())),
          Dict(:alg=>MethodOfSteps(Rodas5()))]
names = ["Rosenbrock23", "Rodas4", "Rodas5"]
wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups;names=names,
save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final)
plot(wp)
Error: UndefVarError: plot not defined
abstols = 1.0 . / 10.0 .^{(8:11)}
reltols = 1.0 ./ 10.0 .^ (5:8)
setups = [Dict(:alg=>MethodOfSteps(Rosenbrock23())),
          Dict(:alg=>MethodOfSteps(Rodas4())),
          Dict(:alg=>MethodOfSteps(Rodas5()))]
names = ["Rosenbrock23", "Rodas4", "Rodas5"]
wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups;names=names,
                      save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2)
plot(wp)
Error: UndefVarError: plot not defined
abstols = 1.0 ./ 10.0 .^ (8:11)
reltols = 1.0 ./ 10.0 .^{(5:8)}
setups = [Dict(:alg=>MethodOfSteps(Rosenbrock23())),
          Dict(:alg=>MethodOfSteps(Rodas4())),
          Dict(:alg=>MethodOfSteps(Rodas5()))]
names = ["Rosenbrock23", "Rodas4", "Rodas5"]
wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups;names=names,
                      {\tt save\_idxs=3,appxsol=test\_sol,maxiters=Int(1e5),error\_estimate=:L\infty)}
plot(wp)
Error: UndefVarError: plot not defined
Thus at low tolerances Rodas5 outperforms Rosenbrock23.
using DiffEqBenchmarks
DiffEqBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file])
```

1.3 Appendix

These benchmarks are a part of the DiffEqBenchmarks.jl repository, found at: https://github.com/JuliaDenchmarks.jl repository,

```
using DiffEqBenchmarks
DiffEqBenchmarks.weave_file("StiffDDE","QuorumSensing.jmd")
Computer Information:
Julia Version 1.4.2
Commit 44fa15b150* (2020-05-23 18:35 UTC)
Platform Info:
  OS: Linux (x86_64-pc-linux-gnu)
  CPU: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz
  WORD_SIZE: 64
  LIBM: libopenlibm
  LLVM: libLLVM-8.0.1 (ORCJIT, skylake)
Environment:
  JULIA_DEPOT_PATH = /builds/JuliaGPU/DiffEqBenchmarks.jl/.julia
  JULIA_CUDA_MEMORY_LIMIT = 2147483648
  JULIA PROJECT = 0.
  JULIA_NUM_THREADS = 8
```

Package Information:

```
Status: `/builds/JuliaGPU/DiffEqBenchmarks.jl/benchmarks/StiffDDE/Project.toml` [bcd4f6db-9728-5f36-b5f7-82caef46ccdb] DelayDiffEq 5.24.1 [f3b72e0c-5b89-59e1-b016-84e28bfd966d] DiffEqDevTools 2.22.0 [a077e3f3-b75c-5d7f-a0c6-6bc4c8ec64a9] DiffEqProblemLibrary 4.8.0
```