A note on the instability and degeneracy of deep learning models

Andee Kaplan

Iowa State University ajkaplan@iastate.edu

June 22, 2017

Slides available at http://bit.ly/kaplan-private

Introduction

- A probability model exhibits instability if small changes in a data outcome result in large changes in probability
- Model degeneracy implies placing all probability on a small portion of the sample space

Goal: Quantify instability for general probability models defined on sequences of observations, where each sequence of length N has a finite number of possible outcomes

Notation

- $X = (X_1, ..., X_N)$ a set of discrete random variables with a finite sample space, \mathcal{X}^N
- ullet For each N, $P_{oldsymbol{ heta}_N}$ is a probability model on \mathcal{X}^N

FSFS models

Finitely Supported Finite Sequence (FSFS) model class

A series P_{θ_N} of probability models, indexed by a generic sequence of parameters θ_N , to describe data of each length $N \geq 1$ with model support of P_{θ_N} equaling the (finite) sample space \mathcal{X}^N .

- ullet The size and structure of such parameters $oldsymbol{ heta}_N$ are without restriction
- Natural cases include $m{ heta}_N \in \mathbb{R}^{q(N)}$ for some arbitrary integer-valued function $q(\cdot) \geq 1$

Discrete exponential family models

Exponential family model for \boldsymbol{X} with pmf of the form

$$p_{N,\lambda}(\mathbf{x}) = \exp\left[\boldsymbol{\eta}^T(\lambda)\mathbf{g}_N(\mathbf{x}) - \psi(\lambda)\right], \quad \mathbf{x} \in \mathcal{X}^N,$$

for fixed positive dimensions of the parameter, $\lambda \in \Lambda \subset \mathbb{R}^k$ and natural parameter $\eta: \mathbb{R}^k \mapsto \mathbb{R}^L$ spaces, $\boldsymbol{g}_N: \mathcal{X}^N \mapsto \mathbb{R}^L$ a vector of sufficient statistics,

$$\psi(\lambda) = \log \sum_{\mathbf{x} \in \mathcal{X}^N} \exp \left[\boldsymbol{\eta}^T(\lambda) \mathbf{g}_N(\mathbf{x}) \right], \qquad \lambda \in \Lambda,$$

the normalizing function, and $\Lambda = \{ \lambda \in \mathbb{R}^k : \psi(\lambda) < \infty, k \leq q(N) \}$ is the parameter space.

Discrete exponential family models (cont'd)

- Such models arise with
 - Spatial data on a lattice (Besag 1974)
 - Network data (Wasserman and Faust 1994; Handcock 2003)
 - ullet Binomial sampling with N iid Bernoulli random variables
- These models are special cases of the FSFS models
- $P_{ heta_N}(extbf{x}) \equiv p_{N,\lambda_N}(extbf{x})$ with $heta_N = \lambda_N$ a sequence of elements of $\Lambda \subset \mathbb{R}^k$
- $P_{\theta_N}(\mathbf{x}) > 0$ for all $\mathbf{x} \in \mathcal{X}^N$
- ullet The dimension of the parameter $oldsymbol{ heta}_N$ is the same for each N (k)
- Schweinberger (2011) considered instability in such exponential models

Restricted Boltzmann machines

Deep learning

Instability results

Implications

Thank you

Questions?

- Slides http://bit.ly/kaplan-private
- Contact
 - Email ajkaplan@iastate.edu
 - Twitter http://twitter.com/andeekaplan
 - GitHub http://github.com/andeek

References I

Besag, Julian. 1974. "Spatial Interaction and the Statistical Analysis of Lattice Systems." Journal of the Royal Statistical Society. Series B (Methodological). JSTOR, 192–236.

Handcock, Mark S. 2003. "Assessing Degeneracy in Statistical Models of Social Networks." Center for Statistics; the Social Sciences, University of Washington. http://www.csss.washington.edu/.

Schweinberger, Michael. 2011. "Instability, Sensitivity, and Degeneracy of Discrete Exponential Families." Journal of the American Statistical Association 106 (496). Taylor & Francis: 1361–70.

Wasserman, Stanley, and Katherine Faust. 1994. Social Network Analysis: Methods and Applications. Vol. 8. Cambridge: Cambridge University Press.