Department of Computer Science and Engineering (CSE) BRAC University

Practice Problem Set 3.2

CSE251 - Electronic Devices and Circuits

DIODE CIRCUIT MODELS

Method of assumed states, Exponential Model, and Piecewise Linear Models: CVD+R and CVD

Course Description, COs, and Policies

Midterm and Final Questions

• If the diode in the following circuit has a reverser saturation current $I_o = 10^{-13} A$, follow an iterative approach and write a program to determine I_D and V_D . Assume the ideality factor $\eta = 1$ and the thermal voltage $V_T = 25 \ mV$.

<u>Hint</u>: There will be two simultaneous equations: one is the diode's current-voltage relation and the other is the result of applying KVL around the loop.

$$I_D = I_o \left(e^{\frac{V_D}{\eta V_T}} - 1 \right)$$
 and $I_D = -\frac{1}{2}V_D + \frac{5}{2}$

Take an array of V_D with values in a reasonable range. For example, from $0.400\,V$ to $0.800\,V$. For each V_D , evaluate I_D using both the equations. The value of V_D for which both the equations of I_D yields the closest value is the answer.

• The I-V characteristic of the diode in the following circuit has been plotted below. Determine I_D and V_D .

Ans: $I_D = 15 \, mA$, $V_D = 0.82 \, V$

• For the circuits shown below, using ideal diode model, find the values of the voltages and currents indicated.

Ans: (a) I = 1 mA, V = -5 V; (b) I = 0 mA, V = 5 V; (c) I = 1 mA, V = 5 V; (d) I = 0 mA, V = -5 V

• Determine V_{o_1} and V_{o_2} for the circuits shown below. Use CVD+R Model with $V_{D_{o,Si}}=0.7~V$, $r_o=20~\Omega$, $V_{D_{o,Ge}}=0.3~V$, $r_o=10~\Omega$, and $V_{D_{o,GaAs}}=1.2~V$, $r_o=5~\Omega$.

 $\underline{\mathsf{Ans}} \text{: } (a) \ V_{o_1} = \mathbf{11}. \ 3 \ V, V_{o_2} = \mathbf{1}. \ 21 \ V; (b) \ V_{o_1} = \mathbf{0} \ V, V_{o_2} = \mathbf{0} \ V$

• For the circuits shown below, using CVD model (with $V_{D_o}=0.7\ V$), find I_D .

• For the circuit shown below, using CVD model (with $V_{D_o}=0.7\ V$), determine I_D .

Ans: $I_D = 0 mA$

For the circuits shown below, using ideal diode model, find the values of the

voltages and currents indicated.

(a)

Ans: (a) D_1 ON, D_2 ON, I = 0.3 mA, V = 0 V; (b) D_1 OFF, D_2 ON, I = 0 mA, V = -1 V

• For the circuit shown below, using CVD model (with $V_{D_o}=0.7\ V$), determine V_O .

Ans: $D_1 ON$, $D_2 OFF$, $V_0 = -15 V$

• For the circuit shown below, using CVD model (with $V_{D_o}=0.7\ V$), determine I.

• For the circuit shown below, using CVD model (with $V_{D_0}=0.7\ V$), determine I_1,I_2 , and I_3 .

Ans: D_1 ON, D_2 ON, $I_1 = 3.22$ mA, $I_2 = 0.64$ mA, $I_3 = 3.86$ mA

• For the circuit shown below, using CVD model (with $V_{D_o}=0.7\ V$), determine v_O .

Ans: $D_1 OFF$, $D_2 ON$, $v_0 = 7.735 V$

• For the circuit shown below, using CVD model (with $V_{D_o}=0.7\ V$), determine v_O .

Ans: D_1 ON, D_2 ON, $v_0 = 4$ V

• For the circuit shown below, using CVD model (with $V_{D_o}=0.7\ V$), determine V_O .

• For the circuit shown below, using CVD model (with $V_{D_o}=0.7\ V$), determine v_O .

• For the circuit shown below, using CVD model (with $V_{D_o}=0.7\ V$), determine V_O .

• For the circuit shown below, using CVD model (with $V_{D_o} = 0.7 \ V$), determine V_A .

Ans: $D_1 ON$, $D_2 ON$, $V_A = 3.7 V$

• For the circuit shown below, using CVD model (with $V_{D_o}=0.7\ V$), show that all the diodes remain off.

• For the circuit shown below, using CVD model (with $V_{D_o}=0.7\ V$), determine the voltage across R_2 .

Ans: $D_1 ON, D_2 OFF, D_3 OFF, V_{R_2} = 6.11 V$

• For the circuit shown below, using CVD model (with $V_{D_o}=0.7\ V$), determine V_A and V_B .

Ans: $D_1 ON$, $D_2 OFF$, $D_3 ON$, $V_A = -2.16 V$, $V_B = -0.65 V$

• For the circuit shown below, using CVD model (with $V_{D_0} = 0.7 \ V$), determine V_1 and V_2 .

• For the circuit shown below, using CVD model (with $V_{D_O}=0.7\ V$), determine V_O .

Ans: $D_1 OFF$, $D_2 ON$, $D_3 ON$, $V_0 = 0 V$

