大数据产业和产品链条

南京大学 软件学院 刘嘉

PART-1

大数据是否能改造你的业务

大数据和数据分析数据挖掘的差别

大数据、人工智能和互联网产品

数据是所有工作的基础、资产

商业化产品离不开业务场景

深度学习是什么?

深度学习和数据的关系

优化方法是关键

数据的作用

大数据进入行业的三要素

全量加工

行为数据

自动化应用

交易数据

• 业务流程必须要记录的数据

• 电信:通话记录、话费

• 银行:存取款、利息

• 医疗:病历

- 特点
 - 数据规模中等
 - 一致性要求极高

行为数据

• 业务流程中非必须记录的数据

• 互联网:后台日志

• 电信:通信内容、上网记录

• 医疗:日常健康指标

- 特点
 - 数据规模巨大
 - 一致性要求相对较低

采样分析

- 通过小规模数据取得相当准确的结果
 - 用户教育程度分布统计
 - 人口普查
 - 百度迁徙地图
- 特点
 - 实际上不需要大规模计算

全量加工

- 必须分析全量数据才能得到问题的结果
 - 个性化推荐
 - 计算广告
 - 个人征信
- 特点
 - 大规模计算实际上无法避免

洞察应用

- 全局或局部性的统计信息获取
 - 企业财务报表
 - 日常运营报表
- 特点
 - 主要用于宏观决策支持
 - 面向管理者和运营人员

自动化应用

- 个体的行为和兴趣特征捕获
 - 定向广告
 - 客户关系维护
- 特点
 - 主要用户微观业务实施
 - 面向机器和市场销售人员

广告行业

用户行为日志、包括搜索、 交易、网页浏览、分享等等。 所有用户都需要分析用户画像,无法通过采样计算。

根据用户行为得到用户画像, 像, 再将用户画像自动匹配广

再将用户画像自动匹配广告。

保险行业(展望)

"上一年未出险人群" "癌症发病率是平均三倍" 出险率预估+个性化定价

非理财险的利润率来源于信息不对称 利润=保费-平均赔偿*出险率 通过对出险率的准确预测,可以极大 地提升保险产品利润

医疗行业(展望)

可穿戴设备和云存储的普及, 个人健康数据规模将爆发增长 个人健康建模+疾病的管理预防

基于个人健康数据,实现个性化医疗和点对点医疗新模式

洞察应用:海量健康数据将催生数据驱动的医学研究方法

大数据自动化系统一般框架

开源软件的使用

- 优势
 - 大量细分使用场景都有开源方案
 - 大型互联网公司的开源产品经过了充分的测试
- 顾虑
 - 需要专业能力去鉴别好的和不太好的开源项目
 - 在遇到深层次的bug时无能为力
- 核心业务逻辑不应该选择开源软件

数据作为资产

- 如何让数据帮你赚钱
- 如何用数据洞察你的用户
- 如何让数据进行交易

• 如何让数据组织你的运维

数据用于交易

数据用于自我提升

数据商业化体系闭环

PART-2

数据作为资产的变现

免费模式

- 免费模式的本质
 - 能够个性化传播信息的产品,售价都会趋向其边际成本
- 免费模式的举例
 - 网站、App应用:边际成本 ≈ 0
 - 手机、智能电视:边际成本 ≈ 硬件成本
- 免费模式的目的
 - 获得其他资产,通过后向渠道变现

广告是最直接的数据赚钱模式

公司	Alphabet	Facebook	腾讯	阿里巴巴	百度
总收入 (亿美元)	817.62	179.28	158.41	122.93	102.23
广告营销 (亿美元)	732.23	170.83	26.90+87.14	77.04	100.78
广告占比	89.6%	95.3%	17.0+55.0%	62.7%	98.6%

线上可变现资产

流量变现到数据变现

数据驱动的商业产品发展历程

合约分配的交易模式

需求节点(Demand Nodes,订单要求的定向标签组合)

供给节点(Supply Nodes,定向标签的最细组合) 假设:节点内部的流量差异可以忽略

竞价的交易模式

- 将对象a={1,2,...A}排放到位置s={1,2,...S}
- 対象a的出价bid为b_a,而其对位置s的计价为r_{as}=u_sv_a,
 (u₁>u₂>u₃...>u_s)
- · Va为点击价值, us为点击率
- 对称纳什均衡 (Symmetric Nash Equilibrium)
 - (vs ps) xs>=(vs ps)xt , 其中pt = bs + 1
 - 寻找收入最大化且稳定的纳什均衡状态是竞价系统设计的关键

程序化交易模式

重定向的数据变现模式

- 网站重定向(Site retargeting)
 - 根据用户在广告主网站上的行为进行重定向
- 搜索重定向(Search Retargeting)
 - 根据用户与广告主相关的搜索行为进行重定向
- 个性化重定向 (Personalized Retargeting)
 - 根据用户再广告主网站上关注的具体产品和购买阶段,推送商品粒度的广告,可以视为一个站外推荐引擎

合作的数据变现—Look-alike

• 问题:

- 对于中小电商, 仅对老用户定向营销远远不够
- 对于某些类型的广告商,大多数用户无法通过重定向渠道捕捉,例如银行

•新客推荐

- 由广告商提供一部分种子用户,DSP通过网络行为的相似性为其找到潜在用户
- 是一种广告商自定义标签,可视为扩展重定向
- 在同样reach水平下,效果应好于通用标签

数据变现的逻辑

- 数据变现,数据交易都依附于流量
- 数据变现
 - 人口属性这样粗粒度的分类:合约
 - 高价值的小数据,长尾效益:竞价
 - 广告主拿自己的数据变现:程序化交易
 - 移动的模式:场景数据
- •数据不仅能变现,还能是一个巨大的市场,2200亿超过传统媒体

PART-3

数据作为资产的预先处理

受众定向与用户画像

强调获得用户固有 的可解释属性

在一定程度上是可验证

例:人口属性、生活方式、职业特征、 收入状况

强调<mark>根据需求</mark>找到 相应用户

重点是<mark>可优化</mark>而非 可验证

例:某运动鞋的目标受众、某游戏的高付费人群

受众定向方法分类

- 受众定向即为(a,u,c)打标签的过程
 - 上下文标签可以认为是即时受众标签
- 标签的两大主要作用
 - 建立面向直接变现(广告主)的流量售卖体系
 - · 为数据业务估计模块(如CTR预测)提供特征

常见受众定向方式

阶段

效果

曝光 (exposure)

关注 (attention)

理解 (comprehension)

信息接受 (message)

保持 (retention)

购买 (purchase)

上下文

重定向 Look-alike

网站/频道

Hyper-local 人口属性

行为

作用阶段

地域

受众定向标签体系

• 结构化标签体系

- 按照某分类法(Taxonomy)制定一个层次标签体系,父节点与子节点在人群覆盖上是包含关系
- 主要用于面向品牌广告的受众定向(GD系统),固定领域知识下的标签系统

• 非结构化标签体系

- 根据某类定向需求设置标签,标签并不能为同一个分类体系所描述
- 适用于多种目标、特别是效果目标并存的精准选择要求

• 关键字

- 按照搜索或浏览内容的关键词划分人群
- 非结构化,容易理解,但操作和优化不容易

受众定向标签

一级标签	二级标签		
Finance	Bank Accounts, Credit Cards, Investiment, Insurance, Loans, Real Estate,		
Service	Local, Wireless, Gas & Electric,		
Travel	Europe, Americas, Air, Lodging, Rail,		
Tech	Hardware, Software, Consumer, Mobile,		
Entertainment	Games, Movies, Television, Gambling,		
Autos	Econ/Mid/Luxury, Salon/Coupe/SUV,		
FMCG	Personal care,		
Retail	Apparel, Gifts, Home,		
Other	Health, Parenting, Moving,		

类别	描述	数据来源	用户规模
Intent	最近输入词表现出某种产品或服务需求的用户	Bluekai Intent	160+MM
B2B	职业上接近某种需求的用户	Bizo	90MM
Past Purchase	根据以往消费习惯判断可能购买某产品的用户	Addthis, Alliant	65+MM
Geo/Demo	地理上或人口属性上接近某标签的用户	Bizo, Datalogix, Expedia	
Interest/LifeStyle	可能喜欢某种商品,或某种生活风格的用户	Forbes, i360, IXI,	103+MM
Qualified Demo	多数据源上达成共识验证一致的人口属性	多数据源	90+MM
Estimated Financial	根据对用户财务状况的估计做的分类	V12	

行为定向(Behavioral Targeting)

• 根据用户历史上网记录和其他数据计算出用户兴趣

行为定向特征选择过程

行为定向建模

行为定向数据组织

- Session log
 - 将各种行为日志整理成以用户ID为key的形式,作为各数据处理模块的输入源,可以将 targeting变成局部计算
- 行为定向两种长期特征累积方式
 - 滑动窗方式 $x^{\sim}(d) = \sum_{\delta=0}^{D} x(d-\delta)$
 - 时间衰减方式

$$x^{\sim}(d) = \alpha x^{\sim} (d-1) + x(d)$$

受众定向评测-Reach/CTR曲线

场景数据

- 用户当前所处的场合和状态
 - 例如:地铁上、上厕所、开会中、运动中......
- 丰富的场景是移动设备所特有的
 - 台式机:位置固定,只有极简单的场景
 - 笔记本:可以移动,但只有工作和娱乐类场景
 - 移动设备:人体器官,具有人们所有可能的场景
- 场景不是上下文
 - 场景是用户的状态,而非媒体的特征

如何检测场景

- 根据移动多种信息来源和传感器进行检测
- 例:检测用户是否处于工作状态
 - 每天上午10点,对用户地理位置采样,如果大多数采样在同一个位置,则该位置为用户上班地点
 - 如果采样没有明显位置规律,则用户为销售等无固定地点工作者
 - 检测到用户处于上班地点,则认为用户处于工作状态
- 注意, 场景检测不需要逻辑上完全正确

人口属性定向

- 人口属性
 - 由于监测的原因,实践中主要使用的是性别、年龄
 - 在传统广告中为人群选择的主要语言
- 人口属性定向
 - 以性别定向为例,为二分类问题

g=arg
$$max_{g\{M,F\}}p(g|b)$$

• 需要有一定数量标注样本,特征来自于用户行为

PART-4

数据作为资产的交易

有价值的行为数据来源(一)

• 决策行为

- 转化(Conversion)、预转化(Pre-conversion)
- 对应着非常明确的用户兴趣,价值最高

• 主动行为

- 搜索(Search)、广告点击(Ad click)、搜索点击(Search click)
- 在明确意图支配下主动产生的行为,价值也很高

• 半主动行为

- 分享 (Share)、网页浏览 (Page View)
- 量最大,用户意图较弱,但也有一定价值

有价值的行为数据来源(二)

- 被动行为
 - 广告浏览 (Ad View)
 - 负面的加权因素
- 用户ID
 - 最重要的数据,一串0前面的那个1
 - 稳定、精确的用户ID能大幅提高行为数据使用效率
- 社交关系
 - 可以用与用户兴趣的平滑:当某个人的行为不足,无法进行精准的行为定向时,可以考虑借鉴其社交网络朋友的行为和兴趣。

如何标识一个用户?

- Web/WAP环境
 - Cookie:存续性差,跨域时需要映射
- iOS应用
 - IDFA: 存续性好于cookie, 但iOS10有更严格的政策
- Android应用
 - Android ID:存续性好于IDFA;IMEI:在中国部分使用
- 无以上ID场景
 - FingerPrint (IP+User Agent);存在http头中,可作缺省标识

三方数据的概念

• 其他来源数据

第三方数据

第二方数据

•中间平台数据 (广告平台数据)

• 数据使用者数据 (广告主数据)

第一方数据

第一方DMP

目的

- 为应用/网站提供第一方数据加工和应用能力
- 结合公开市场第三方数据,加工跨媒体用户标签,支持应用/网站业务运营和可能的广告投放

• 主要特征

- 第一方用户定制化划分能力
- 统一的对外数据接口

第一方DMP商业模式

- DMP应数据源(Data Provider, DP)的要求,收集第一方数据,并加工成第一方需要的用户标签
- DP可以根据这些用户标签进行站内的运营,也可以用来指导DSP进行广告投放
- DMP会向DP收取费用,但是绝对不会把数据二次变现

第三方DMP商业模式

- DMP从多个DP那里收集原始数据,按照自己的逻辑加工成用户标签,并向DSP出售标签数据收入
- DMP获得的收入再按照一定的比例分成个DP

数据交易该怎么做?(广告售卖模式)

- 数据传输附着在实时竞价过程中,无额外开销
- 需求方可以自由地选择需要的部分人群数据,并且按照实际的广告展示/数据交易付费

为什么数据不能共享

- 疑问:数据交换似乎在发生啊?
 - 那往往是因为有更高层次的交换,即投资关系
- 为什么大公司不把数据共享出来
 - 你见过大公司把钱共享出来么?
 - 短时间的贴补性共享是可行的
- 政府数据是可以共享的,这本质上是转移支付

如何给数据定价?

- 市场化的定价方式是唯一的选择
- 目前数据的价值是被低估的
 - 上页的交易方式并未限制数据供给次数
 - 这间接地抬高了流量价格,而低估了数据价格
- 能否采用竞价交易方式?
 - 不限量供应的商品,是无法竞价的
 - 数据的限量供应怎么做?

数据隐私的初步认识

- 隐私安全基本原则
 - A29: 欧盟负责隐私保护条例制定的委员会
 - A29原则
 - Personal Identifiable Information (PII) 不能使用
 - 用户可以要求系统停止记录和使用自己的行为数据
 - 不能长期保存和使用用户的行为数据
- Quasi-identifier与K-anonymity
 - Quasi-identifier: 鼓楼区,36岁,在苏宁易购上班
 - K-anonymity:南京市,30-40岁,互联网行业

互联网行为数据隐私问题

- 稀疏行为数据的新挑战
 - 从一个人观影或购物记录,能否反推他是谁?
 - 实际案例: Netflix推荐大赛, 有人从数据集发现同事是同性恋
 - 理论研究: Robust De-anonymization of Large Sparse Datasets
- 深度个性化系统也有隐私安全风险
 - 相关研究课题是差分隐私(Differential Privacy)
 - 最大化个性化推荐准确率和最小化隐私泄露风险
 - 原始数据的随机化处理
- 隐私是大数据头上的达摩克里斯之剑

PART-5

数据作为资产的内部使用

增长黑客(数据化运营)

- 建立用户转化漏斗
 - 总体的数据发生变化, 到底是哪个环节变化了?
 - 每个产品/运营岗位都对漏斗上的某个环节负责
- 用多维报表找到问题
 - 某个环节的数据变化了,原因到底是什么?
- 建立灵活的实验框架
 - 除了被动地发现问题, 更要主动地探索新方案
- 数据对于产品的改进,作用是有限的

用户转化漏斗示例

漏斗设计的原则与作用

• 原则:整个漏斗过程用于优化一个唯一的目标

• 作用:将该目标分解为若干比率的乘积,便于发现问题并优化

• 示例

• 总用户时长=下载量× 激活率×留存率 ×平均用户时长

应用分析常见度量

- 转化率
 - 激活数与点击数的比
- {次日/七日/月}留存率
 - 某日激活的用户中, {次日/七日/月}后活跃的用户占比
- {日/月}活跃用户(DAU、MAU)
 - 每{日/月}活跃的独立用户数
- 用户时长
 - 每个活跃用户平均消耗的时间

所有指标都是可量化可度量

网站分析常见度量

- 访客数
 - UV (Unique Visitor)
- 浏览量
 - PV (Page View)
- 页面停留时长
- 跳出率
 - Bounce Rate
- 网站热力图

网站/应用分析工具

- 网站分析工具
 - Google Analytics、百度统计、CNZZ
 - 无埋点: Heap Analytics
- 应用分析工具
 - TalkingData、友盟+
 - Flurry、Google Analytics
- 应用归因工具
 - Appsflyer、Tune、Adjust、TalkingData

数据魔方(Data Cube)

- 什么是数据魔方?
 - 用户可以较灵活选择维度组合,得到定制化报表
 - 为人工决策提供便利
- 技术方案
 - OLAP数据库
- 开源方案
 - Saiku+MySQL

为什么需要A/B测试?

- 多维情况下,魔方里大部分区域数据非常稀疏
 - 极端情况:对于新Feature,需要主动分配测试流量
- 某维度上的两个选项(例如两个不同的模型),数据并不是完全可比
- 因此,我们需要一个主动的A/B测试框架,以便
 - 主动分配流量给新的产品特征
 - 保证对比实验的各组在数据上完全可比
 - 尽可能在同样的流量规模上容纳更多的实验

分层实验框架

发布层1 发布层 发布层2 UI层 实验层 非重叠测试域 广告检索层 广告排序层

A/B测试并不是万能的

- 用户产品过于依赖数据会丧失对关键创新的把握
 - · 汽车无法从"跑得更快的马"进化而来(例: Zynga)
- 多数情形下,需要测试的可行组合太多,必须先经过人的筛选,或更复杂的 E&E策略
 - 例:每天数十万的新闻,那些有可能最受用户欢迎?
- 博弈性场景无法通过A/B测试获得可靠结论
- A/B测试最适合的场景
 - 理性产品、被动反应场景

PART-6

数据领域的职业生涯和技能树

应该有怎样的大数据行业视野

什么是大数据?如何利用大数据?

大数据都能做什么?市场上是怎么做的?

我应该准备好哪些能力

大数据职业发展方向

系统工程师系统架构师

- 数据处理系统
- 高并发服务系统搭建

算法工程师 数据科学家

- 大规模数据集
 - 统计
 - 建模
 - 优化

数据产品经理产品架构师

- 数据使用逻辑
- 功能设计与优化

大数据职业发展阶段

掌握基础技能和思想

参与完整的业务闭环

独立负责项目或产品

数据产品经理基本素养

基础工具:EXCEL、SQL、Hive/Pig

典型问题:机制设计、冷启动、标签体系

思维模式:依赖数据做决策,建立产品闭环

职能分工:功能产品,策略产品

系统工程师基本素养

编程语言: C/C++、Go、Java

开源工具:No-SQL、Nginx、Spark、Kafka

主要问题:大数据存储与计算、高并发服务

算法工程师基础素养

编程语言: Java、Python、C/C++

知识准备:ML/DL、最优化、分布式计算

主要问题:报表/BI、用户画像、预测模型

参与一个业务闭环过程

- ·什么是一个业务闭环—OPEN?
 - 建立明确的优化目标(Objective)
 - 打通数据记录和分析流程(Process)
 - 建立A/B测试优化的框架(Experiment)
 - 将目标按转化网络分解(Net)
- 通过闭环的优化过程,抚摸和感知数据

示例:在线广告—Objective

计算广告的核心问题,是为一系列用户与环境的组合,找到最合适的广告投放策略以优化整体广告活动的利润。

示例:在线广告—Process

示例:在线广告—Net

广告页

广告主网站

eCPM = r(a,u,c) = μ(a,u,c) - v(a,u) 点击率 点击价值

转化页

示例:搜索

- Objective :
 - nDCG/Bad case/用户反馈
- Process :
 - 爬虫、倒排索引、相关性排序、用户数据增强
- Experiment
- Net:
 - 搜索->结果展示->点击->翻页/新搜索

主持一项数据产品

O 定目标 P 搭流程

E 建实验环境 N 做分解

误区一:数据科学的关键在于模型

两个重要的定理

没有免费午餐定理 (No Free Lunch, NFL)

没有任何算法在所有数据情形下有 天然的优势,哪怕跟随机猜测相 比。

丑小鸭定理 (The Ugly Duckling)

• "丑小鸭与白天鹅之间的区别和两

只白天鹅之间的区别一样大"

误区二:我需要成为全栈工程师

- 全栈工程师:
 - 全栈工程师,指同时具备前端和后台能力,并能利用多种技能独立完成 产品的人。什么是产品?
 - 杂则必然不精
- 不同的技术岗位,需要不同的素养
 - 系统工程师:良好的代码习惯,严谨的测试流程
 - 算法工程师:很多算法逻辑是不容易测试的

误区三:我不是技术出身所以不懂产品

- 什么是技术?
 - 实现产品逻辑的代码、模型和架构
 - 例:深度学习、爬虫、Nginx服务器
- 什么是产品?
 - 定义问题、解决问题的逻辑
 - 例:用户标签体系,冷启动策略,语义检索
- 所有的岗位,都必须深入理解产品

误区四:不断切换从事的业务领域

- 业务领域先验知识的积累,是成功进行数据建模的基础
- 业务领域的商业逻辑需要花时间搞清楚,这是产品决策的基础
- 同一个领域的不断努力可以形成个人口碑

Q&A