OMS拆单合单接入计费平台压测计划

一、压测目的

oms拆单合单接入计费平台,当前OMS大促期间单一市场预估最高请求计费平台为10QPS,此次压测目的为验证在单机(单一市场)CPU <= 60% MEM <= 60% 的前提下,sscfinance的性能瓶颈,并进行针对性的优化,为后续业务场景提供性能依据。

另: rateapioffline单机最高QPS约为4000, oms拆单合单接入计费平台, rateAPI能够满足需求。 数据来源参考: rateoffline压测报告

二、环境信息

压测工具: sparta

被测容器信息:

(test环境)

资源类型		实例信息	监控手段
sscfinance-grpc-test	110	1*8C*8G	grafana
下游依赖: sls-rateapioffline-test		1*1C*8G	grafana

(livetest环境)

资源类型	实例信息	监控手段
sscfinance-grpc-livetest	待定	grafana cat
下游依赖: sls-rateapioffline	-thobse.	grafana cat

被测系统拓扑图:

test环境:

livetest环境: (sscfinance-grpc-livetest 环境待申请,申请后进行压测)

三、压测范围及目标

服务名: sscfinance-grpc-xx

接口名	日常qps	大促qps
/ssc_protobuf.ChargeOrderApiService/GetAsf		新增接口: 大促期间单一市场预估最高请求计费平台为10QPS
其余接口	忽略不计	忽略不计

目标:压测得出在CPU <= 60% MEM <= 60%的前提下,sscfinance的极限QPS。

四、压测场景

压测数据准备:使用自定义单一压测数据

压力梯度:

轮次	并发数	时长
1	50	300s
2	100	300s
3	200	300s
4	300	300s

测试场景:

场景一:

验证功能	sscfinance 单机能处理的并发数据	ee.
被测服务 器	sscfinance	JF IO
依赖下游 服务器	rateapioffline	
依赖下游 DB	从库从数据	
测试目的	验证sscfinance 单机能处理的并发数据	

	"ine shop the period of the pe	PEI
前置条件	1. 测试环境可用; 2. 测试工具; 3. 测试数据ok),
方法	通过测试脚本调用对应的服务进行测试;记录被测系统的cpu,内存使用情况;记录被测环境db的qps和cpu、网络等各项性能指标;作为系统在实际使用情况中的性能表现依据。 对失败发生时各项指标数据进行分析,定位问题发生的原因。	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
并发连接 数	关键性能数据: QPS、CPU、MEM、latency	加压方式
50	1. CPU <20%; 2. MEN <20%; 3. latency < 100ms;	一次加压
100	1. CPU <20%; 2. MEN <20%; 3. latency < 100ms;	一次加压
200	1. CPU <80%; 2. MEN <80%; 3. latency < 100ms;	一次加压
300	1. CPU <80%; 2. MEN <80%; 3. latency < 100ms;	一次加压

五、压测时间表

时间 10.11	事 项 压测脚本及环境准备	责任人 吴棠雄	准备完成	
10.12	第一轮压测	吴棠雄	输出第一轮压测结论	
alt	20EE			