<u>Conor Kennedy</u> <u>16722649</u> <u>COMP20230 – Assignment 2</u>

Part 2

(Visited nodes are shaded & table shows currently known best distance to a node from A. Highlighted nodes show the nodes that are in connection with the node currently at)

		The Bes	t Path t	o each	Node				
	A	ß	C	0	E	F	6	Н	
A	AO	(A-8)	5 0	ھ	(A-E)9	Ø	a	(A-H) 8	
В	40	(A-B)	5 (6-4)17	- 0€-0)20	(A-E)9	0	ev	(9-H)8	
н	A 0	(A-0)	5 (A-H-C)	(5 A(B-D) 20	(A-E)9	(n-H-F)	4 00	(9-н)8	
E	4 0		(A-H-C)					9 (A-H)8	
F	4 0		(A-E-F-C)						
c	10		(A-E-F-C)						
D	t0		(A-E-F-C)14						
G	10		(A-E-F-C)14						
									- 1
								_	
-									
								_	
								-	
_									
						-			
-									
-	1								
								-	
-								-	
_									

Part 3

Originally tried to do it the same way as done in the lecture slides (first image) but found it inefficient with this problem and hard to read. I changed the way I went about it by making a table and looking for the shortest possible edge available (and one that did not create a loop).

(Visited nodes are shaded, unvisited are unshaded.)

ed.

A171949 {1' 2'5}

Edges to consider

13 Jan 210 210 215 180 185 186

2 240 - 265 135 215 180 185 186

2 240 - 265 135 215 180 185 186

cly

vished = {1,8,2,5}

(0-20) 3 4 5 6 7 8 210 340 280 200 345 135 Edges whole ne PST 230 190 205 305 -240 1 265 175 215 180 165 196 170 8 TIS 160 - 360 400 170 740 .2 215 280 5

vished = {1,8,2,5,3}

visited = {1,8,2,5,3}

\$ 3101 265 - 360 HZ 350 435 1855 \$ 186 185 195 230 1360 200 345 1855 \$ 186 185 195 230 1360 200 345 1855 \$ 186 185 195 215 180 185 136 \$ 186 185 195 215 180 185 136 \$ 186 185 195 215 180 185 136 \$ 186 185 185 185 \$ 186 185 185 185 \$ 186 185 185 \$ 186 185 185 \$ 186 185 185 \$ 186 185 185 \$ 186 185 185 \$ 186 185 185 \$ 186 185 185 \$ 186 185 185 \$ 186 185 \$ 18

Edges A		7	7	340	280	6	7 8 16 196
ĭ	-	240	210		796	30)	705 -
8	170	135	195	(Sola)	215	180	165 ME
2	340	215	1.0	180	-	360	400 196
5	580	265		260	110	310	400 195°
3	340	175	260	_	166	330	755 730

VINER {1,8,2,5,2,5,5,5,6

VISÃO {1,8,2,5,3,4,6}

Edger to consider:

E (N. 8.							
Edge na	×	r	3	ካ 310	آ 230	ر 200	34 345	8
1	~	240			20	20.7	203	
8	136	135	102	230 230	196	100	185	158
		-	502	135	215	1363	103	136
S		212	M	146	-	360	400	2 (indid)
3	510	265	×	260	ivi.	-	. 20	230
ų	370	indi 175	5(0	- 22.	36	0 -	113	705
6	200	180	32	, ,,				

risika {1,8,2,5,3,4,6,3}

