Eminor Array

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 megabytes

Gew is looking for "Eminor" sequences $[a_1, a_2, \ldots, a_m]$ which have the following properties:

- The sequence is not empty $(m \ge 1)$;
- $1 \le a_i \le 2^n 1$;
- The array is strictly increasing $(a_i < a_{i+1}, \text{ for each } i \leq m-1);$
- There are no three consecutive elements with their bitwise XOR equal to zero $(a_i \oplus a_{i+1} \neq a_{i+2})$, for each $i \leq m-2$. Here \oplus denotes the bitwise XOR operation).

Now, Gew is curious about how many "Eminor" sequences there are. Since there may be a large number of "Eminor" sequences, you only need to output the answer modulo 998 244 353.

Input

The input contains a single integer n $(1 \le n \le 10^6)$.

Output

Output a single integer, denoting the number of "Eminor" sequences, modulo 998 244 353.

Examples

standard input	standard output
1	1
2	6
3	91

Note

For the second testcase, the following are 6 possible "Eminor" sequences.

- [1]
- [2]
- [3]
- [1, 2]
- [1,3]
- [2,3]

 $Irrelevent:\ Originating\ from\ an\ incorrect\ problem\ reading\ https://codeforces.com/gym/102956/problem/C\ XD$