Contrôle TD 2

Nom:	Prénom :	Classe:
Question de cours		
Soient E et F deux \mathbb{R} -ev, et $\varphi \in L(E, F)$	une application linéaire de E dans F .	
1. Donner la définition mathématique		
-	<u> </u>	
2. A quelles conditions sur $\operatorname{Ker} \varphi$ et In	m φ , φ est-elle injective? φ est-elle surjective?	
Parmi les deux affirmations suivant	e dimensions finies : $\dim E = 5$ et $\dim F = 3$. tes l'une est impossible. votre réponse à l'aide du théorème du rang dont vou	ıs rappellerez l'énoncé.
(a) φ est injective.		
(b) φ est surjective.		
)

Exercice 1

Soit g l'application linéaire définie par $g: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow \mathbb{R}^3 \\ \\ (x,y,z) & \longmapsto \ (2x+y-z,z-2x-y,z-2x-y) \end{array} \right.$

1. Déterminer le noyau de g et sa dimension en justifiant soigneusement votre réponse.

2. g est-elle une projection?

Exercice 2

 $\text{Soit } f: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \longrightarrow & \mathbb{R}_2[X] \\ P & \longmapsto & 2X^2P''-P \end{array} \right. \quad \text{Montrer que } f \text{ est un endomorphisme de } \mathbb{R}_2[X].$