บทที่ 5

แบบจำลองทางคณิตศาสตร์ต่อเนื่อง

ในบทนี้เราจะกล่าวถึง การสร้างแบบจำลองทางคณิตศาสตร์ด้วยสมการเชิงอนุพันธ์สามัญ (Ordinary Differential Equations) หรือ ระบบสมการเชิงอนุพันธ์ (Systems of Ordinary Differential Equations) ที่อยู่ในรูปของ

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(t, x) \tag{5.1}$$

เมื่อ x คือตัวแปรที่ถูกนิยามในรูปของฟังก์ชันต่อเนื่องของเวลา t โดยที่ $x(t) \in \mathbb{R}^n$ สำหรับบาง จำนวนเต็มบวก n และ

$$x(t_0) = x_0 \tag{5.2}$$

คือเงื่อนไขค่าเริ่มต้น (Initial Value) ณ เวลา t_0 ของแบบจำลองนี้

แบบจำลองชนิดนี้มักจะถูกใช้เมื่อเราทราบว่าตัวแปรที่เราสนใจสามารถถูกนิยามในรูปของ ฟังก์ชันต่อเนื่อง x และทราบอนุพันธ์ของฟังก์ชัน x หรืออัตราการเปลี่ยนแปลง ณ ขณะเวลา t ของ x ตลอดจนต้องทราบเงื่อนไขค่าเริ่มต้นของแบบจำลอง

สมการเชิงอนุพันธ์หรือระบบสมการเชิงอนุพันธ์ดังกล่าว อาจจะอยู่ในรูปของสมการเชิง อนุพันธ์อันดับหนึ่ง หรือ สมการเชิงอนุพันธ์อันดับสูงก็ได้ ทำให้การหาผลเฉลยนั้นอาจจะมีทั้งใน แบบสมการเชิงอนุพันธ์เชิงเส้นที่หาผลเฉลยเชิงวิเคราะห์ (Analytical Solutions) หรือเฉลย แม่นตรงแม่นตรง (Exact Solutions) ได้ง่าย ไปจนถึงสมการเชิงอนุพันธ์ไม่เชิงเส้นที่หาผล เฉลยแม่นตรงยาก หรืออาจจะเป็นระบบสมการเชิงอนุพันธ์ที่ซับซ้อนไม่สามารถหาผลเฉลยแม่น ตรงได้ ซึ่งจะต้องใช้ระเบียบวิธีการทางตัวเลข (Numerical Methods) ในการหาผลเฉลยเชิง ตัวเลข (Numerical Solutions) แทน

5.1 การสร้างแบบจำลองโดยใช้สมการเชิงอนุพันธ์สามัญ

การสร้างแบบจำลองในลักษณะนี้ โดยหลักการแล้วไม่แตกต่างกับการสร้างแบบจำลองทาง คณิตศาสตร์อื่น ๆ ไม่ว่าจะเป็นการทำความเข้าใจปัญหา การตั้งสมมติฐาน หรือการกำหนด ตัวแปร มากไปกว่านั้นยังคล้ายคลึงกับการสร้างแบบจำลองทางคณิตศาสตร์ดีสครีต เพียงแต่เรา จะทราบอัตราการเปลี่ยนแปลงของสถานะ (state) ที่เป็นฟังก์ชันต่อเนื่อง ทั้งนี้เราอาจแบ่งขั้น ตอนการสร้างแบบจำลองโดยใช้สมการเชิงอนุพันธ์สามัญได้ ดังนี้

- 1. แปลงปัญหาให้อยู่ในรูปของสมการเชิงอนุพันธ์ ซึ่งเป็นขั้นที่มีความสำคัญมากและ ควรทำด้วยความระมัดระวัง ซึ่งโดยปกติจะพิจารณาถึงว่าตัวแปรที่เราสนใจนั้นมีการ เปลี่ยนแปลงในทิศทางเพิ่มขึ้นหรือลดลงเมื่อใด
- 2. ตรวจสอบความสอดคล้องในด้านมิติของตัวแปรทุกตัวในสมการเชิงอนุพันธ์
- 3. เมื่อได้แบบจำลองอยู่ในรูปของปัญหาค่าเริ่มต้น (5.1) (5.2) แล้วจึงเลือกวิธีการหา ผลเฉลย โดยพิจารณาสมการเชิงอนุพันธ์นั้นว่าง่ายพอที่จะหาผลเฉลยโดยการหาผล เฉลยแม่นตรง หรือจะใช้ระเบียบวิธีเชิงตัวเลขในการหาผลเฉลยเชิงตัวเลข
- 4. ตรวจสอบผลเฉลยที่ได้ว่าสอดคล้องกับเงื่อนไขค่าเริ่มต้นและสมมติฐานของปัญหา

ตัวอย่าง 5.1 กำหนดให้ y แทนปริมาณของแบคทีเรียชนิดหนึ่งที่มีอยู่ในจานเลี้ยงเชื้อ แบคทีเรียชนิดนี้มีอัตราการเปลี่ยนแปลงของ ณ เวลาใด ๆ แปรผันตรงกับค่าของปริมาณของ แบคทีเรียที่มีอยู่ ณ เวลานั้น ถ้ากำหนดให้เงื่อนไขค่าเริ่มต้นของปริมาณแบคทีเรียในจานเลี้ยง เชื้อ คือ $y(0) = y_0 > 0$ เราสามารถเขียนแบบจำลองทางคณิตศาสตร์อธิบายถึงการ เปลี่ยนแปลงของ y ได้ ดังสมการเชิงอนุพันธ์ต่อไปนี้

$$\frac{\mathrm{d}y}{\mathrm{d}t} = ky$$

เมื่อ k เป็นจำนวนจริงใด ๆ

ในการตรวจสอบความสอดคล้องในด้านมิติของสมการเชิงอนุพันธ์นี้จะเห็นว่าถ้า พารามิเตอร์ k ไม่มีมิติ และไม่ว่า y จะมีมิติเป็นอย่างไรก็ตาม แล้วสมการเชิงอนุพันธ์นี้จะ มีความสอดคล้องในด้านมิติเสมอ

ในการหาผลเฉลยของสมการเชิงอนุพันธ์นี้ เราสามารถหาผลเฉลยแม่นตรงได้ เพราะ สมการเชิงอนุพันธ์นี้เป็นสมการเชิงอนุพันธ์สามัญที่แยกออกจากกันได้ (Seperable Ordinary Differntial Equation) และผลเฉลยของสมการเชิงอนุพันธ์นี้ คือ

$$y(t) = y_0 \exp(kt)$$

จะเห็นได้ชัดว่าค่าของ y(t) จะเปลี่ยนแปลงในทิศทางใดจะขึ้นอยู่กับค่า k เป็นสำคัญ โดยใน กรณีนี้ ถ้า k>0 จะถึงการเจริญเติบโตของแบคทีเรียในจานเลี้ยงเชื้อ แต่ถ้า k<0 จะหมายถึง การเสื่อมถอยหรือลดลงของปริมาณแบคทีเรียในจานเลี้ยงเชื้อ และในกรณีที่ค่า k=0 จะหมาย ถึงการคงที่หรือไม่มีการเปลี่ยนแปลงของปริมาณแบคทีเรียในจานเลี้ยงเชื้อ

การหาค่า k นั้นเราจำเป็นที่ต้องทราบข้อมูลจริงของปริมาณแบคทีเรีย ณ เวลาที่ต่างกัน อย่างน้อย 2 จุดเวลา เช่น เราอาจจะทราบว่า $y(t_1)=y_1>0$ และ $y(t_2)=y_2>0$ เมื่อเราแทนค่าสองเงื่อนไขนี้ลงในผลเฉลยจะได้ว่า

$$y_1 = y_0 \exp(kt_1),$$

$$y_2 = y_0 \exp(kt_2)$$

และเมื่อนำสมการทั้งสองมาหารกันจะได้

$$\frac{y_1}{y_2} = \exp(k(t_1 - t_2))$$

นั่นคือ

$$k = \frac{1}{(t_1 - t_2)} \ln \left(\frac{y_1}{y_2} \right)$$

ตัวอย่าง 5.2 ครึ่งชีวิต (Half-Life) ของธาตุกัมมันตรังสี คือระยะเวลาที่สารสลาย ตัวไปจนเหลือเพียงครึ่งหนึ่งของปริมาณเดิม นิวเคลียสของธาตุกัมมันตรังสีที่ไม่เสถียร จะสลาย ตัวและแผ่รังสีได้เองตลอดเวลา โดยไม่ขึ้นอยู่กับอุณหภูมิหรือความดัน อัตราการสลายตัวเป็น สัดส่วนโดยตรงกับจำนวนอนุภาคในธาตุกัมมันตรังสีนั้น ถ้ากำหนดให้ x(t) เป็นปริมาณธาตุกัมมันตรังสีชนิดหนึ่ง ณ เวลา t เราสามารถเขียนแบบจำลองของการเปลี่ยนแปลงปริมาณของ ธาตุกัมมันตรังสีชนิดหนึ่ง ดังสมการเชิงอนุพันธ์ต่อไปนี้

$$\frac{\mathrm{d}x}{\mathrm{d}t} = kx$$

ถ้าสมมติให้ $x(0)=x_0$ คือ ปริมาณของธาตุกัมมันตรังสีชนิดนี้ ณ เวลาเริ่มต้นการทดลอง และ $T\in\mathbb{R}$ คือ ครึ่งชีวิตของธาตุกัมมันตรังสีชนิดนี้ แล้วจะได้ว่า

$$k = \frac{1}{(0-T)} \ln \left(\frac{x_0}{\frac{1}{2} \cdot x_0} \right) = -\frac{1}{T} \cdot \ln(2)$$

นั่นคือเราสามารถเขียนแบบจำลองของปริมาณธาตุกัมมันตรังสีชนิดนี้ได้ คือ

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{1}{T} \cdot \ln(2) \cdot x$$

และ

$$x(t) = x_0 \exp(-\frac{1}{T} \cdot \ln(2) \cdot t)$$

คือผลเฉลยของสมการเชิงอนุพันธ์นี้

ตัวอย่าง 5.3 ในการทดลองหาครึ่งชีวิตของธาตุกัมมันตรังสีคาร์บอน- $14~(^{14}{
m C}~)$ เราทราบว่า ณ จุดเริ่มต้นการทดลอง วัดปริมาณของคาร์บอน-14~ได้ 154.000~กรัม เมื่อเวลาผ่านไป 50~ปี ทำการวัดปริมาณของคาร์บอน-14~อีกครั้ง ได้ 153.071~กรัม จงหาครึ่งชีวิตของคาร์บอน-14~

 \Diamond

ตัวอย่าง 5.4 นักวิทยาศาสตร์สามารถใช้ประโยชน์จากการสลายตัวของคาร์บอน-14 ในการ ตรวจสอบอายุของวัตถุโบราณ เนื่องจากโลกของเราได้รับรังสีคอสมิกซึ่งเป็นอนุภาคที่มีพลังงาน สูงจากอวกาศตลอดเวลา เมื่อรังสีคอสมิกทะลุผ่านมายังชั้นบรรยากาศของโลกจะเข้าชนกับ อะตอมของในโตรเจนในชั้นบรรยากาศ อนุภาคนิวตรอนของรังสีคอสมิกจะเปลี่ยนอะตอมของ ในโตรเจน-14 ไปอยู่ในรูปของคาร์บอน-14 และไฮโดรเจนอะตอม

คาร์บอน-14 จะปะปนอยู่กัยสิ่งมีชีวิตทุกชนิด ในมนุษย์ เราจะได้รับคาร์บอน-14 โดยตรง จากการกินพืช หรือ กินสัตว์ที่กินพืช และทันทีที่สิ่งมีชีวิตตาย กระบวนการหายใจหรือบริโภค คาร์บอน-14 เข้าร่างกายก็จะหยุด จากนั้นคาร์บอน-14 ที่มีอยู่ในร่างกายก็เริ่มสลายตัว

ถ้าเราพบซากฟอสซิลที่มีปริมาณคาร์บอน-14 เป็น 10% ของปริมาณคาร์บอน-14 ในสิ่งมี ชีวิตปัจจุบัน เราสามารถประมาณอายุของฟอสซิลนี้ได้ดังนี้

 \Diamond

ตัวอย่าง 5.5 จงประมาณค่าอายุของฟอสซิลที่มากที่สุด ที่เราสามารถตรวจสอบอายุด้วยวิธี การคาร์บอน-14

ตัวอย่าง 5.6 การถ่ายเทพลังงานความร้อนโดยการพาความร้อนกรณีที่อุณหภูมิในร่างกาย ร้อนกว่าอุณหภูมิภายนอก พลังงานความร้อนที่บรรจุอยู่ในร่างกายที่มีมวล M คือ $Q=M\cdot c\cdot T(t)$ เมื่อ c เป็นค่าความจุความร้อนจำเพาะของวัตถุ และ T(t) คือ อุณหภูมิภายใน ร่าง ณ เวลา t และกฏการเย็นของนิวตัน (Newton's Law of Cooling) กล่าวว่า อัตรา การถ่ายเทพลังงานความร้อน แปรผันโดยตรงกับความแตกต่างของอุณหภูมิภายในร่างกาย กับ อุณหภูมิภายนอก นั่นคือ

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = M \cdot c \cdot \frac{\mathrm{d}T}{\mathrm{d}t} = h \cdot A \cdot (T_e - T)$$

เมื่อ T_e คืออุณหภูมิภายนอกที่คงที่, A เป็นพื้นที่ของผิว และ h เป็นสัมประสิทธิของการถ่ายเท ความร้อนที่ขึ้นอยู่กับธรรมชาติของผิว ถ้า M,c,h และ A เป็นจำนวนจริงบวก เราสามารถ เขียนสมการเชิงอนุพันธ์ข้างต้นได้ ดังนี้

$$\frac{\mathrm{d}T}{\mathrm{d}t} = \alpha - \beta T$$

เมื่อ $\alpha=\frac{hAT_e}{Mc}$ และ $\beta=\frac{\alpha}{T_e}$ ซึ่งจะเห็นได้ว่าสมการเชิงอนุพันธ์นี้จะมีจำนวนตัวแปรที่ใช้ใน การวิเคราะห์หาผลเฉลยลดลงจากตอนเริ่มแรก

สมการเชิงอนุพันธ์นี้เป็นสมการเชิงอนุพันธ์สามัญเชิงเส้นอันดับหนึ่ง (First-Order Linear Ordinary Differential Equation) ที่มีสัมประสิทธ์เป็นจำนวนจริง เราจึงสามารถหาผล เฉลยแม่นตรงได้ เช่น การใช้วิธีตัวประกอบของการอินทิเกรต (Integrating Factor Method) หรือ การใช้สมการช่วย (Auxiliary Equation) เป็นต้น

ตัวอย่าง 5.7 ในที่เกิดเหตุฆาตกรรมแห่งหนึ่ง เจ้าหน้าที่พบศพผู้เสียชีวิตจำนวนหนึ่งศพใน เวลา 8.00 น. และได้ทำการวัดอุณหภูมิร่างผู้เสียชีวิตได้ $22.5\,^{\circ}\mathrm{C}$ จากนั้นอีก 1 ชั่วโมง ได้ทำการวัดอุณหภูมิร่างผู้เสียชีวิตอีกครั้งได้ $22.2\,^{\circ}\mathrm{C}$ จงประมาณเวลาที่เกิดเหตุฆาตกรรม ถ้า กำหนดให้อุณหภูมิในที่เกิดเหตุคือ $25\,^{\circ}\mathrm{C}$ คงที่ตลอดเวลา และอุณหภูมิปกติของร่างกายมนุษย์ ปกติคือ $35.9-37.6\,^{\circ}\mathrm{C}$

5.2 แบบจำลองในรูปของสมการอนุพันธ์สามัญไม่เชิงเส้น

สมการเชิงอนุพันธ์เชิงเส้นนั้นสามารถหาผลเฉลยชัดแจ้งได้ง่าย แต่ในความเป็นจริงแล้วบ่อยครั้ง ที่แบบจำลองทางคณิตศาสตร์ที่สร้างขึ้นนั้นไม่ใช่สมการเชิงอนุพันธ์สามัญเชิงเส้น ยกตัวอย่าง เช่น แบบจำลองทางคณิตศาสตร์ของการเจริญเติบโตของสิ่งมีชีวิตในระบบนิเวศจะอยู่ในรูป แบบสมการเชิงอนุพันธ์สามัญไม่เชิงเส้น (Nonlinear Ordinary Differnetial Equations)

ตัวอย่าง 5.8 [Logistic Differential Equation] สมการเชิงอนุพันธ์ลอจิสติก คือ สมการ เชิงอนุพันธ์สามัญไม่เชิงเส้นที่อยู่ในรูป

$$\frac{\mathrm{d}x}{\mathrm{d}t} = k \cdot x \cdot \left(1 - \frac{x}{a}\right) \tag{5.3}$$

เมื่อ k และ a เป็นจำนวนจริงที่ไม่ใช่ศูนย์

แบบจำลองคณิตศาสตร์ (5.3) จัดเป็นทั้งสมการเชิงอนุพันธ์เบอร์นูลลิ (Bernoulli differential equation) และ สมการเชิงอนุพันธ์แบบแยกส่วนได้ ทำให้เราสามารถหาผลเฉลยชัดแจ้ง ได้ คือ

$$x(t) = \frac{ax_0 \exp(kt)}{a + x_0(\exp(kt) - 1)}$$

เมื่อ $x(0) = x_0$ และจะเห็นได้ว่า เมื่อเวลาผ่านไปเป็นระยะเวลานานผลเฉลยจะลู่เข้าสู่ค่า a เนื่องจาก

$$\lim_{t \to \infty} x(t) = \lim_{t \to \infty} \frac{ax_0 \exp(kt)}{a + x_0(\exp(kt) - 1)} = a$$

 \Diamond

ตัวอย่าง 5.9 ในตอนเริ่มแรกนั้นสมการเชิงอนุพันธ์ลอจิสติก (5.3) ได้ถูกใช้ในการศึกษาใน ด้านการเพิ่มของจำนวนประชากร เมื่อการเติบโตแบบยกกำลัง (Exponential Growth) หรือ แบบจำลองทางคณิตศาสตร์ดังสมการ $\frac{\mathrm{d}x}{\mathrm{d}t} = kx$ ไม่สามารถใช้อธิบายการเปลี่ยนแปลงของ ประชากรได้

สมการเชิงอนุพันธ์ลอจิสติก (5.3) สามารถใช้อธิบายถึงการเปลี่ยนแปลงของปรากรได้ดีใน สภาวะที่ทรัพยากรจำกัด เนื่องจากจำนวนของประชากรไม่สามารถเพิ่มขึ้นอย่างไม่สิ้นสุด เมื่อ ทรัพยากรที่จำเป็นในการดำรงชีวิต (เช่น อาหาร น้ำ หรือ ที่อยู่อาศัย) มีอยู่อย่างจำกัด

มากไปกว่านั้นถ้าเราพิจารณาในเงื่อนไขที่ x(t) มีค่าน้้อย ๆ จะเห็นได้ว่าอัตราการ เปลี่ยนแปลงของ x ในสมการเชิงอนุพันธ์ลอจิสติก จะใกล้เคียงกับอัตราการเปลี่ยนแปลงของ x ในสมการเชิงอนุพันธ์แบบยกกำลัง แต่เมื่อเวลาผ่านไปนานมาก ๆ แล้ว x(t) จะเริ่มคงที่ ไม่ใช่ เพิ่มขึ้นอย่างไม่สิ้นสุด \diamondsuit

ตัวอย่าง 5.10 การเติบโตของประชากรในประเทศสหรัฐอเมริกาในปี ค.ศ. 1790 - 1930 สามารถอธิบายโดยแบบจำลองทางคณิตศาสตร์ในรูปสมการเชิงอนุพันธ์ลอจิสติก (5.3) ได้เป็น อย่างดีที่ค่า $a \approx 225$ แต่หลักจากนั้นแล้วจะเห็นว่าจำนวนของประชากรไม่ได้เป็นไปตามผล เฉลยของสมการเชิงอนุพันธ์ลอจิสติกนี้ ทั้งนี้อาจมีสาเหตุมาจากขีดจำกัดของทรัพยากรที่จำเป็น ในการดำรงชีวิตได้มีการเปลี่ยนค่าไป

รูปที่ 5.1: การเติบโตของประชากรในประเทศสหรัฐอเมริกาในปี ค.ศ. 1790 - 1930

ในกรณีที่เราต้องการที่จะปรับปรุงแบบจำลองนี้ให้อธิบายพฤติกรรมการเติบโตของ ประชากรได้ดีขึ้น เราอาจแทนค่าพารามิเตอร์ a ด้วยฟังก์ชันค่าจริง $\alpha:\mathbb{R}_+ \to \mathbb{R}_+$ นั่นคือ

$$\frac{\mathrm{d}x}{\mathrm{d}t} = k \cdot x \cdot \left(1 - \frac{x}{\alpha(t)}\right)$$

โดยที่เราอาจจะนิยามให้ $\alpha(t)$ เปลี่ยนแปลงไปตามเวลา t เพื่อให้สอดคล้องกับการเติบโตของ ประชากรตามความเป็นจริง

 \Diamond

หมายเหตุ สมการเชิงอนุพันธ์ต่อไปนี้

$$\frac{\mathrm{d}x}{\mathrm{d}t} = c \cdot x \cdot (a - x)$$

สมมูลกับสมการเชิงอนุพันธ์ลอจิสติก (5.3) เมื่อ k=ac

ตัวอย่าง 5.11 เราสามารถใช้สมการเชิงอนุพันธ์ลอจิสติก (5.3) ในการทำแบบจำลองทาง คณิตศาสตร์ของการระบาดของโรคติดต่อที่ไม่สามารถรักษาให้หายได้ ถ้ากำหนดให้โรคติดต่อนี้

เกิดขึ้นในเมืองที่มีประชากร 1 ล้านคน และ x(t) คือ จำนวนคนที่เป็นโรคติดต่อนี้ ณ เวลา t (หน่วยคือล้านคน) ดังนั้น 1-x(t) ก็คือ จำนวนคนที่ไม่เป็นโรคนี้ ณ เวลา t

อัตราการเปลี่ยนแปลงของจำนวนคนที่เป็นโรคนี้ สามารถถูกอธิบายได้ดังสมการเชิง อนุพันธ์

$$\frac{\mathrm{d}x}{\mathrm{d}t} = k \cdot x \cdot (1 - x)$$

โดยที่ k>0 คืออัตราการการระบาดของโรค (ซึ่งในที่นี้ก็คือการเติบโตของประชากรกลุ่มที่เป็น โรคนั่นเอง) \Diamond

ตัวอย่าง 5.12 กำหนดให้ถังใบหนึ่งบรรจุน้ำเกลือ 100 ลิตร ซึ่งมีเกลือ s_0 กิโลกรัม ละลายอยู่ ต่อมามีการเติมน้ำเกลือ (ไม่ทราบความเข้มข้น) เข้าไปในถังใบนี้ด้วยอัตรา 10 ลิตร ต่อนาที และปล่อยน้ำเกลือออกจากถังด้วยอัตราเดียวกัน จึงไม่ทำให้ปริมาณของน้ำเกลือในถัง เปลี่ยนแปลงไป

ถ้าเรากำหนดให้ S(t) คือ ปริมาณหรือมวลของเกลือที่ละลายอยู่ในถัง ณ เวลา t (หน่วย เป็นกิโลกรัม) และ C(t) คือ ความเข้มข้นของน้ำเกลือที่ถูกเติมเข้ามาในถัง ณ เวลา t เราจะได้ ว่าอัตราการเปลี่ยนแปลงของปริมาณเกลือที่ละลายอยู่ในถัง คือ

$$\frac{dS}{dt} = 10 \cdot C(t) - 10 \cdot \frac{S(t)}{100} = 10C(t) - \frac{S(t)}{10}$$

เมื่อ $S(0)=s_0$ ซึ่งเราสามารถหาผลเฉลยแม่นตรงโดยการใช้ตัวประกอบของการอินทิเกรตได้ ดังนี้

$$S(t) = s_0 \exp\left(-\frac{t}{10}\right) + 10 \exp\left(-\frac{t}{10}\right) \int_0^t C(t) \exp\left(\frac{s}{10}\right) ds$$

ตัวอย่าง 5.13 จากตัวอย่างที่แล้ว ถ้าเรากำหนดให้ ความเข้มข้นของน้ำเกลือที่ถูกเติมเข้ามา ในถังคงที่ตลอดเวลา นั่นคือ

$$C(t) = c > 0$$

เราจะได้ว่าปริมาณของเกลือที่ละลายอยู่ในถัง ณ เวลา t คือ

$$S(t) = s_0 \exp\left(-\frac{t}{10}\right) + 100c\left(1 - \exp\left(-\frac{t}{10}\right)\right)$$

แต่ถ้าความเข้มข้นของน้ำเกลือที่ถูกเติมเข้ามาในถังไม่คงที่และเปลี่ยนไปตามเวลา กำหนด โดย

$$C(t) = 0.2 + 0.1\sin(t)$$

เราจะได้ว่าปริมาณของเกลือที่ละลายอยู่ในถัง ณ เวลา t คือ

$$S(t) = s_0 \exp\left(-\frac{t}{10}\right) + 20 + \frac{10}{101} \left(\sin(t) - 10\cos(t) - 192\exp\left(-\frac{t}{10}\right)\right)$$

 \Diamond

ตัวอย่าง 5.14 [Lake Pollution] ทะเลสาบแห่งหนึ่งมีการปนเปื้อนของสารพิษชนิดหนึ่ง อย่างทั่วถึงทั้งทะเลสาบ ถ้ากำหนดให้ v คือ ปริมาตรของน้ำในทะเลสาบแห่งนี้ (ลิตร), ρ คือ ความเข้มข้นของสารพิษในทะเลสาบ (กรัมต่อลิตร), f คืออัตราการไหลเข้าและออกของน้ำใน ทะลสาบ (ลิตรต่อวัน), m คือ ปริมาณหรือมวลของสารพิษในทะเลสาบ (กรัม) และ c คือ ความ เข้มข้นของสารพิษที่ไหลเข้ามาในทะเลสาบ (กรัมต่อลิตร)

อัตราการเปลี่ยนแปลงของปริมาณหรือมวลของสารพิษในทะเลสาบ คือ

$$\frac{\mathrm{d}m}{\mathrm{d}t} = fc - f \cdot \frac{m}{v}$$

ถ้าปริมาตรของน้ำในทะเลสาบแห่งนี้คงที่จะได้ว่า

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\rho v \right) = v \frac{\mathrm{d}\rho}{\mathrm{d}t}$$

นั่นคือ

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \frac{f}{v}c - \frac{f}{v}\rho = \frac{f}{v}(c - \rho)$$

ซึ่งผลเฉลยแม่นตรงของสมการเชิงอนุพันธ์นี้ ด้วยเงื่อนไขค่าเริ่มต้น $ho(0)=
ho_0$ คือ

$$\rho(t) = c - (c - c_0) \exp\left(-\frac{ft}{v}\right)$$

และจะพบว่า

$$\lim_{t \to \infty} \rho(t) = \lim_{t \to \infty} \left(c - (c - c_0) \exp\left(-\frac{ft}{v}\right) \right) = c$$

นั่นคือ ความเข้มข้นของสารพิษในทะเลสาบจะเพิ่มขึ้นหรือลดลงจนลู่เข้าสู่ค่าลิมิตนี้

5.3 การสร้างแบบจำลองโดยใช้ระบบของสมการเชิงอนุพันธ์สามัญ

บ่อยครั้งเราจะพบว่าปัญหาที่เราสนใจประกอบไปด้วยตัวแปรที่เกี่ยวข้องมากกว่าหนึ่งตัว ทำให้ การเขียนอัตราการเปลี่ยนแปลงของตัวแปรเหล่านี้มักจะซับซ้อน และต้องใช้หลายสมการใน การทำแบบจำลอง มากไปกว่านั้นสมการเชิงอนุพันธ์อันดับสูงสามารถถูกแปลงให้มาอยู่ในรูป ของระบบสมการเชิงอนุพันธ์อันดับหนึ่งที่สมมูลกันได้

ระบบสมการเชิงอนุพันธ์อันดับหนึ่งจึงเป็นรูปแบบที่พบเห็นได้มากที่สุดในการทำแบบ จำลองทางคณิตศาสตร์ต่อเนื่อง และมีตัวอย่างที่น่าสนใจดังนี้

ตัวอย่าง 5.15 [Lotka-Volterra Equations] ระบบนิเวศแห่งหนึ่งประกอบไปด้วยผู้ล่า (Predetor) และ เหยื่อ (Prey) จำนวนของผู้ล่าและเหยื่อนั้นสัมพันธ์กันกล่าวคือ ถ้าผู้ล่ามี จำนวนมากก็จำทำให้เหยื่อมีจำนวนลดลง และถ้าเหยื่อมีจำนวนลดลงมาก ผู้ล่าก็จะขาดอาหาร และมีจำนวนลดลงเช่นกัน และอาจทำให้ทั้งผู้ล่าและเหยื่อต่างสูญพันธ์ทั้งสองฝ่าย

รูปที่ 5.2: จำนวนของลิงบาบูนและเสือชีทาห์ในระบบนิเวศแห่งหนึ่ง

ถ้าเรากำหนดให้ x แทน จำนวนของของเหยื่อ และ y แทนจำนวนของผู้ล่าในระบบนิเวศ นี้ เราสามารถเขียนอัตราการเปลี่ยนแปลงของทั้งจำนวนผู้ล่าและเหยื่อได้ คือ

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \alpha x - \beta xy$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \delta xy - \gamma y$$
(5.4)

เมื่อพารามิเตอร์ α คือ อัตราการเกิดของเหยื่อภายใต้สมมติฐานที่ว่าพวกมันสามารถเพิ่มจำนวน ประชากรได้ในอัตรายกกำลัง (Exponential Growth) และไม่ลดจำนวนลงนอกจากจะถูก กินโดยผู้ล่าเท่านั้น, β คือ อัตราการบริโภคของผู้ล่าเพื่อพบเจอกับเหยื่อ, δ คือ อัตราการเพิ่ม จำนวนประชาการของผู้ล่าซึ่งขึ้นอยู่กับทั้งปริมาณของผู้ล่าเองและปริมาณของเหยื่อที่มีในขณะ นั้น (ซึ่งไม่จำเป็นต่อเท่ากับ β) และ γ คือ อัตราการลดลงของปริมาณผู้ล่า (ตายตามธรรมชาติ หรือการย้ายถิ่น)

ระบบสมการเชิงอนุพันธ์ (5.4) เป็นระบบสมการเชิงอนุพันธ์ไม่เชิงเส้น และไม่สามารถ เขียนผลเฉลยแม่นตรงได้โดยง่าย แต่เราสามารถใช้ระเบียบวิธีเชิงตัวเลขในการหาผลเฉลยเชิง ตัวเลขได้ ดังในรูป 5.2 แสดงถึงจำนวนของลิงบาบูน (เหยื่อ) และ เสือชีทาห์ (ผู้ล่า) ในระบบ นิเวศแห่งหนึ่ง

 \Diamond

ตัวอย่าง 5.16 [Kermack-McKendrick Compartmental Model in Epidemiology/ SIR Model] แบบจำลองต่อไปนี้เป็นการนำระบบสมการ Lotka-Volterra (5.4) มาปรับปรุง เพื่อใช้ในการศึกษาการระบาดของโรคติดต่อในประชากรหนึ่งกลุ่ม

กำหนดให้ N คือ จำนวนประชากรทั้งหมด ซึ่งประชากรกลุ่มนี้ถูกแบ่งออกเป็นสามกลุ่ม ตามสภาวะของการติดโรค โดยที่ S คือ จำนวนของประชากรที่ยังไม่ได้ติดโรค (Susceptible Compartment) และมีโอกาสจะติดโรคได้, I คือ จำนวนของประชากรที่ติดโรค (Infectious Compartment) และ R (Resistant Compartment) คือ จำนวนประชากรที่ได้รับการรักษา หายและมีภูมิคุ้มกันจากโรคนี้

รูปที่ 5.3: ตัวอย่างผลเฉลยเชิงตัวเลขของแบบจำลอง SIR Model

อัตราการเปลี่ยนแปลงของจำนวนประชากรในแต่ละกลุ่ม แสดงได้ดังระบบสมการเชิง อนุพันธ์ต่อไปนี้

$$\frac{dS}{dt} = -\beta SI + \delta R$$

$$\frac{dI}{dt} = \beta SI - \gamma I$$

$$\frac{dR}{dt} = \gamma I - \delta R$$
(5.5)

โดยที่ β คือ อัตราการการระบาดของโรค, γ คือ อัตราการรักษาโรค และ δ คือ อัตราการเสื่อม ถอยของภูมิคุ้มกัน ซึ่งจากระบบสมการเชิงอนุพันธ์ (5.5) จะเห็นว่า

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(S+I+R) = \frac{\mathrm{d}S}{\mathrm{d}t} + \frac{\mathrm{d}I}{\mathrm{d}t} + \frac{\mathrm{d}R}{\mathrm{d}t} = 0$$

นั่นคือจำนวนประชากรทั้งหมด N นั้นเป็นค่าคงที่

ในรูป 5.3 แสดงผลเฉลยเชิงตัวเลขของระบบสมการเชิงอนุพันธ์ (5.5) ด้วยเงื่อนไขค่าเริ่ม ต้น $S(0)=997,\,I(0)=3,\,R(0)=0$ ค่าพารามิเตอร์ $\beta=0.4,\,\gamma=0.04,\,$ และ $\delta=0$

ตัวอย่าง 5.17 [Romeo and Juliet Love Model] แบบจำลองต่อไปนี้เป็นการศึกษาความ รู้สึกชอบหรือไม่ชอบระหว่างคู่รัก โดยกำหนดให้ R(t) คือ ความรู้สึกที่ฝ่ายชาย (Romeo) มีต่อ ฝ่ายหญิง (Juliet) ณ เวลา t และ J(t) คือ ความรู้สึกที่ฝ่ายหญิงมีต่อฝ่ายชาย ณ เวลา t โดยที่ ถือว่าความรู้สึกดังกล่าวสามารถวัดค่าออกมาเป็นจำนวนจริงได้ โดยที่เมื่อค่า R(t),J(t)>0 จะหมายถึงความรู้สึกชอบ, รัก, สนใจ หรือหลงไหลอีกฝ่ายหนึ่ง แต่เมื่อ R(t),J(t)<0 จะ หมายถึงความรู้สึกไม่ชอบหรือเกลียดอีกฝ่ายหนึ่ง และ R(t),J(t)=0 จะหมายถึงหมดความ สนใจหรือความเมินเฉยต่ออีกฝ่าย

กำหนดให้ความรู้สึกของฝ่ายหญิงจะเปลี่ยนไปตามความรู้สึกที่ฝ่ายชายมีให้ กล่าวคือ ถ้า ฝ่ายชายรักฝ่ายหญิง ฝ่ายหญิงก็จะเพิ่มความรู้สึกด้านบวกที่มีต่อฝ่ายชาย แต่ความรู้สึกที่ฝ่าย ชายมีต่อฝ่ายหญิงเป็นไปในทางตรงกันข้าม กล่าวคือ ถ้าฝ่ายหญิงมอบความรู้สึกด้านบวกแก่ ฝ่ายชาย ฝ่ายชายจะลดความรู้สึกรักหรือชอบลงมา

รูปที่ 5.4: ตัวอย่างผลเฉลยเชิงตัวเลขของแบบจำลอง Romeo and Juliet Love Model

ด้วยสมมติฐานนี้ เราสามารถเขียนอัตราการเปลี่ยนแปลงของความรู้สึกของฝ่ายชายและ ฝ่ายหญิงได้ดังระบบสมการเชิงอนุพันธ์ต่อไปนี้

$$\frac{\mathrm{d}R}{\mathrm{d}t} = -rJ$$

$$\frac{\mathrm{d}J}{\mathrm{d}t} = jR$$
(5.6)

เมื่อพารามิเตอร์ r และ j คือจำนวนจริงบวก

รูป 5.4 แสดงผลเฉลยเชิงตัวเลขของระบบสมการเชิงอนุพันธ์ (5.6) ที่มีเงื่อนไขค่าเริ่มต้น $R(0)=3,\ J(0)=0$ และค่าพารามิเตอร์ r=j=1

้อย่างไรก็ตาม เราสามารถพัฒนาแบบจำลองทางคณิตศาสตร์ข้างต้นโดยการเพิ่ม สมมติฐานให้อัตราการเปลี่ยนแปลงความรู้สึกของแต่ละฝ่ายต้องขึ้นอยู่กับความรู้สึกของ ตนเองในขณะนั้นด้วย (ไม่ใช่ขึ้นอยู่กับความรู้สึกของฝ่ายตรงข้ามเพียงอย่างเดียวดังในระบบ สมการเชิงอนุพันธ์ (5.6)) ซึ่งอาจจะเขียนแบบจำลองใหม่ได้ดังนี้

$$\frac{\mathrm{d}R}{\mathrm{d}t} = aR + bJ$$

$$\frac{\mathrm{d}J}{\mathrm{d}t} = cR + dJ$$
(5.7)

เมื่อพารามิเตอร์ a,b,c และ d คือจำนวนจริง

 \Diamond

ตัวอย่าง 5.18 [Lanchester Combat Model] ในการสู้รบระหว่างสองกองทัพภายใต้ สถานการณ์ที่ทั้งสองกองทัพมีจำนวนทหารมากเพียงพอที่จะสู้รบกัน, ไม่มีกำลังเสริมอื่น ๆ เข้า มาเกี่ยวข้อง, การสูญเสียทหารจะเกิดขึ้นจากการสู้รบเท่านั้น และการสู้รบนี้ทั้งสองฝ่ายใช้การ เล็งสังหาร (Aimed Fire) เพื่อหวังผลในการกำจัดฝ่ายตรงข้าม กำหนดให้ R(t) และ B(t)

รูปที่ 5.5: ผลเฉลยเชิงตัวเลขของการสู้รบในยุทธภูมิอิโวะจิมะในแบบจำลอง Lanchester Coombat Model

คือ จำนวนของทหารในกองทัพสีแดง และ จำนวนของทหารในกองทัพสีน้ำเงิน ณ เวลา t ตาม ลำดับ

อัตราการเปลี่ยนแปลงของกำลังทหารของทั้งสองฝ่ายสามารถเขียนได้ดังระบบสมการเชิง อนุพันธ์ต่อไปนี้

$$\frac{\mathrm{d}R}{\mathrm{d}t} = -bB$$

$$\frac{\mathrm{d}B}{\mathrm{d}t} = -rR$$
(5.8)

เมื่อ r และ b คือจำนวนจริงบวก ซึ่งแทนด้วยความสามารถในการรบของกองทัพฝ่ายแดงและ น้ำเงินตามลำดับ

ในรูป 5.5 แสดงผลเฉลยเชิงตัวเลขของการสู้รบในยุทธภูมิอิโวะจิมะในปี ค.ศ. 1945 (Battle of Iwo Jima) อันเป็นยุทธการที่กองทัพเรือสหรัฐอเมริกาบุกยึดเกาะอิโวจิมาจาก กองทัพญี่ปุ่นในระหว่างสงครามโลกครั้งที่สอง โดยการสู้รบนี้ได้ถูกจำลองในรูปของระบบ สมการเชิงอนุพันธ์ (5.8) โดยใช้เงื่อนไขค่าเริ่มต้น $R(0)=66,454,\ B(0)=18,274$ ค่า พารามิเตอร์ r=0.0544 และ b=0.0106 ซึ่งในการรบครั้งนี้จบลงที่ทั้งสองกองทัพสูญเสีย อย่างรุนแรงทั้งสองฝ่าย และกองทัพญี่ปุ่นเป็นฝ่ายแพ้

 \Diamond

ตัวอย่าง 5.19 ถ้าในยุทธภูมิอิโวะจิมะฝ่ายกองทัพเรือสหรัฐอเมริกาใช้วิธีการกราดยิง (Random Fire) อัตราการเปลี่ยนแปลงของกำลังทหารของทั้งสองฝ่ายสามารถเขียนได้ดังระบบ สมการเชิงอนุพันธ์ต่อไปนี้

$$\frac{\mathrm{d}R}{\mathrm{d}t} = -bB$$

$$\frac{\mathrm{d}B}{\mathrm{d}t} = -f \cdot p(B) \cdot R$$
(5.9)

รูปที่ 5.6: ผลเฉลยเชิงตัวเลขของการสู้รบในยุทธภูมิอิโวะจิมะเมื่อกองทัพเรือสหรัฐอเมริกาใช้วิธี การกราดยิง

เมื่อ b คือจำนวนจริงบวกซึ่งแทนด้วยความสามารถในการรบของกองทัพญี่ปุ่น, f คือ จำนวนจริงบวกแทนด้วยอัตราการกราดยิงเฉลี่ยของกองทัพเรือสหรัฐอเมริกา และ p คือความ น่าจะเป็นที่กระสุนของกองทัพเรือสหรัฐอเมริกาที่สามารถสังหารทหารญี่ปุ่นได้ โดยในแบบ จำลองนี้ p(B) ไม่ใช่ค่าคงที่แต่จะเปลี่ยนไปตามจำนวนของทหารญี่ปุ่น

ในรูป 5.6 แสดงผลเฉลยเชิงตัวเลขของการสู้รบในยุทธภูมิอิโวะจิมะเมื่อกองทัพเรือ สหรัฐอเมริกาใช้วิธีการกราดยิง โดยใช้เงื่อนไขค่าเริ่มต้น $R(0)=66,454,\ B(0)=18,274$ ค่าพารามิเตอร์ $r=0.0544,\ f=0.01$ และ p(B) นิยามโดย

$$p(B(t)) = \frac{\operatorname{rand}(0, B(t))}{B(t)}$$

โดยที่ $\operatorname{rand}(a,b)$ คือตัวแปรสุ่มในช่วงปิด [a,b] ที่มีการแจกแจงแบบเอกรูป (Uniform Distribution) แม้การรบครั้งนี้จบลงที่กองทัพญี่ปุ่นเป็นฝ่ายแพ้เช่นเดิม แต่กองทัพเรือ สหรัฐอเมริกาสูญเสียอย่างรุนแรงกว่าเมื่อเทียบกับวิธีการเล็งสังหาร

 \Diamond

ตัวอย่าง 5.20 เมื่อมนุษย์บริโภคแอลกอฮอร์เข้าไป แอลกอฮอร์จะไม่ถูกย่อยแต่จะถูกดูด ซึมอย่างรวดเร็วจากกะเพราะอาหารสู่กระแสเลือด (โดยเฉพาะอย่างยิ่งเมื่อบริโภคในขณะท้อง ว่าง) และอัตราการดูดซึมนี้จะเร็วยิ่งขึ้นเมื่อแอลกอฮอร์อยู่ในลำไส้ แอลกอฮอร์ส่วนใหญ่ร้อยละ 90-98 จะถูกออกซิไดซ์และกำจัดที่ตับ และส่วนที่เหลือจะยังคงอยู่ในร่างกายที่ปอดหรือในรูป ของปัสสาวะ น้ำลาย หรือ เหงื่อ

ปริมาณของความเข้มข้นของแอลกอฮอร์ในเลือด (Blood Alcohol Level: BAL หรือ Blood Alcohol Concentration: BAC) ถูกใช้เป็นตัวชี้วัดระดับความมีนเมา ซึ่งค่า BAL นี้จะวัดจากน้ำหนักของแอลกอฮอร์ (กรัม) ที่มีในเลือดปริมาตร 100 มิลลิลิตร ทั้งนี้ระดับความ มีนเมาและผลกระทบต่อร่างกายของผู้บริโภคแอลกอฮอร์ได้ถูกแสดงดัง ตาราง 5.1

BAL	ผลกระทบต่อร่างกาย	ระดับความมื้นเมา
0.03	ครึกครื่น ขาดความยับยั้งชั่งใจ พูดมากแต่ขาด	น้อย
	สาระ ขาดสมาธิ การตัดสินใจบกพร่อง	
0.05	เพิ่มความเสี่ยงต่ออุบัติเหตุ พฤติกรรมรุนแรง	ปานกลาง
0.15	พูดไม่ค่อยชัด เดินเซ สับส่น ไม่รู้เวลาสถาน	ค่อนข้างมาก
	ที่บุคคล ที่บุคคล	
0.20	สติสัมปชัญญะเปลี่ยนแปลง สับสน ง่วงซึม แต่	มาก
	สามารถปลุ้กให้ตื่นได้ ทำอะไรไปแล้วจำไม่ได้	
0.3	สูญเสียสติสัมปชัญญะ แม้ยังรู้สึกตัว แต่ไม่รับรู้ถึง	อันตราย
0.0	สิ่งที่เกิดขึ้นรอบตัว	
		0.4
0.35	สำลัก อาเจียน หมดสติ อาจถึงขึ้นเสียชีวิต	อันตรายมาก
0.40	หมดสติโดยสมบูรณ์ หยุดหายใจ อาจถึงขึ้นเสีย	อันตรายถึงชีวิต
	ชีวิต	

ตารางที่ 5.1: ระดับความมึนเมาและผลกระทบต่อร่างกายของผู้บริโภคแอลกอฮอร์

ถ้ากำหนดให้ $C_g(t)$ คือ ความเข้มข้นของของแอลกอฮอร์ที่อยู่ในทางเดินอาหาร (Gastrointestinal tract: GI-tract) ณ เวลา t (หน่วยคือ BAL) และ $C_b(t)$ คือ ความเข้มข้นของ ของแอลกอฮอร์ที่อยู่ในกระแสเลือด ณ เวลา t (หน่วยคือ BAL) แล้วอัตราการเปลี่ยนแปลง ของ $C_g(t)$ และ $C_b(t)$ สามารถแสดงได้ดังระบบสมการเชิงอนุพันธ์ต่อไปนี้

$$\frac{\mathrm{d}C_g}{\mathrm{d}t} = I - k_1 C_g$$

$$\frac{\mathrm{d}C_b}{\mathrm{d}t} = k_2 C_g - \frac{k_3 C_b}{C_b + M}$$
(5.10)

เมื่อ I,k_1,k_2,k_3 และ M คือ จำนวนจริงบวก โดยที่ I แทน อัตราการบริโภคแอลกอฮอร์ใน หนึ่งหน่วยเวลา

ถ้าบริโภคแอลกอฮอร์ในขณะท้องว่าง แล้วเราจะกำหนดให้ $k_1=k_2$ แต่ถ้าบริโภค แอลกอฮอร์พร้อมกับอาหาร (หรือบริโภคในรูปเจือจาง) เราจะต้องกำหนดให้ $k_1>k_2$ จากระบบสมการเชิงอนุพันธ์นี้จะเห็นได้ว่า ปริมาณแอลกอฮอร์ในระบบทางเดินอาหารที่ลดลง และ ปริมาณแอลกอฮอร์กระแสเลือดที่เพิ่มขึ้นนั้นเป็นสัดส่วนโดยตรงกับปริมาณแอลกอฮอร์ใน ระบบทางเดินอาหาร

ในส่วนของกลไกการกำจัดแอลกอฮอร์ที่ตับนั้นมีความซับซ้อนมากกว่า เนื่องจาก ไม่ว่า ปริมาณของแอลกอฮอร์จะมากเท่าไรหรือจะมีความเข้มข้นเพียงใดก็ตาม อัตราการกำจัดจะเป็น ค่าคงที่เสมอ ซึ่งในที่นี้ เรากำหนดให้อัตราการกำจัดแอลกอฮอร์ที่ตับคือ $-\frac{k_3C_b}{C_b+M}$ จะเห็นได้ ว่าเมื่อ C_b มีค่ามากเมื่อเปรียบเทียบกับ M จะได้ว่า

$$\frac{\mathrm{d}C_b}{\mathrm{d}t} \approx -k_3$$

ซึ่งหมายถึง C_b จะลดลงด้วยอัตราคงที่นั่นเอง และเมื่อ C_b มีค่าน้อยเมื่อเปรียบเทียบกับ M จะ ได้ว่า

$$\frac{\mathrm{d}C_b}{\mathrm{d}t} \approx -\frac{k_3}{M}C_b$$

นั่นคือ

$$C_b(t) \approx C_b(0) \exp\left(-\frac{k_3}{M}t\right)$$

ซึ่งเป็นตัวการันตีว่าค่าของ $C_b(t)$ ยังคงเป็นบวกเสมอนั่นเอง

ตัวอย่าง 5.21 ชายหนุ่มน้ำหนัก 68 กิโลกรัม ดื่มเบียร์ 2 กระบ๋อง ติด ๆ กันในขณะท้องว่าง แล้วหยุดดื่มทันที ถ้าเบียร์ที่เขาดื่มมีความเข้มข้นของแอลกอฮอร์ 5% โดยปริมาตร และแต่ละ กระบ๋องมีความจุ 330 มิลลิลิตร เราหาค่า BAL ของชายหนุ่มคนนี้หลังจากดื่มเบียร์ได้ด้วยแบบ จำลอง (5.10) ดังต่อไปนี้

เริ่มจากเราต้องหาปริมาตรของเหลวทั้งหมดในตัวของชายผู้นี้ ซึ่งเราสามารถประมาณ ปริมาตรของเหลวในร่างกายมนุษย์อย่างง่ายได้ด้วยสมการ

$$v_f = k \cdot w$$

เมื่อ v_f คือ ปริมาตรของหลวทั้งหมดในร่างกายของชายคนนี้ (ลิตร), w คือน้ำหนักตัวของชาย คนนี้ (กิโลกรัม), k=0.82 ถ้าเป็นมนุษย์เพศชาย และ k=0.67 ถ้าเป็นมนุษย์เพศหญิง ดัง นั้นในร่างกายผู้ชายคนนี้มีของเหลวทั้งสิ้น $0.82\times 68=55.76$ ลิตร

ปริมาณของแอลกอฮอร์บริสุทธิในเครื่องดื่มแอลกอฮอร์ 1 มิลลิลิตร คือ 0.79 กรัม ดังนั้น ปริมาณของแอลกอฮอร์ในเบียร์หนึ่งกระบ๋อง คือ $0.05 \times 330 \times 0.79 = 13$ กรัม

หลังจากดื่มเบียร์ 2 กระป๋อง ติด ๆ กัน เขาจะได้รับแอลกอฮอร์เข้าสู่ระบบทางเดินอาหาร $2 \times 13 = 26$ กรัม ดังนั้น และ

$$C_g(0) = \frac{26}{55.76}$$
 กรัม/ลิตร $= \frac{26}{55.76} \cdot \frac{1}{10}$ กรัม/ 100 มิลลิลิตร $= 0.046~\mathrm{BAL}$

เนื่องจากเขาดื่มไวน์ในขณะท้องว่าง แอลกอฮอล์จึงสามารถถูกดูดซึมได้อย่างรวดเร็วใน ชั่วโมงแรก เราจึงกำหนดให้ $k_1=k_2\approx 6$ และเราใช้พารามิเตอร์ k_3 ในการกำหนดอัตราการ กำจัดแอลกอฮอร์ที่ตับซึ่งมีค่าเฉลี่ยอยู่ที่ 8 กรัมต่อชั่วโมงและขึ้นอยู่กับปริมาณของเหลวทั้งหมด ในร่างกายด้วย ดังนั้นเราจะกำหนดให้

$$k_3=rac{8}{55.76}$$
 กรัม/ลิตร $=rac{8}{55.76}\cdotrac{1}{10}$ กรัม/ 100 มิลลิลิตร $=0.014~\mathrm{BAL}$

จากสถานการณ์ที่โจทย์กำหนดให้ เราถือว่าเขาไม่ได้บริโภคแอลกอฮอร์อื่น ๆ มาก่อนหน้า นี้ เราจึงกำหนดให้ $I=0~{
m BAL},~C_b(0)=0~{
m BAL}$ และโดยทั่ว ๆ ไปเราจะกำหนดให้ $M=0.005~{
m BAL}$

รูป 5.7a แสดงผลเฉลยเชิงตัวเลขของแบบจำลอง (5.10) ด้วยเงื่อนไขค่าเริ่มต้นและ พารามิเตอร์ข้างต้น จะเห็นได้ว่า C_b เพิ่มขึ้นอย่างรวดเร็วในชั่วโมงแรกหลังดื่ม และตับจะใช้เวลา ทั้งสิ้นประมาณ 5.5 ชั่วโมงในการกำจัดแอลกอฮอร์จากกระแสเลือด อีกทั้งปริมาณแอลกอฮอร์ ที่ชายคนนี้ดื่มเข้าไปยังไม่ผิดกฎหมายในการขับขี่ยานพาหนะในหลาย ๆ ประเทศที่กำหนดให้ผู้ ขับขี่ต้องมีความเข้มข้นของของแอลกอฮอร์ที่อยู่ในกระแสเลือดไม่เกิน $0.05~\mathrm{BAL}$ อีกด้วย

ถ้าชายคนนี้ดื่มเบียร์ 3 กระบ๋องติด ๆ กัน ผลเฉลยเชิงตัวเลขดังรูป 5.7b แสดงให้เราเห็น ได้ชัดว่าค่า C_b เพิ่มขึ้น จนเกินระดับ $0.05~{\rm BAL}$ ที่กฎหมายอนุญาตให้ขับขี่ได้ และเขาต้องรอ ประมาณ $1.5~{\rm \dot{v}}$ วโมงหลังดื่มเพื่อให้ค่า C_b ลดลงจนต่ำ $0.05~{\rm BAL}$

รูปที่ 5.7: ผลเฉลยเชิงตัวเลขในตัวอย่าง 5.3

รูปที่ 5.8: ผลเฉลยเชิงตัวเลขในตัวอย่าง 5.3

ตัวอย่าง 5.22 หญิงสาวน้ำหนัก 45 กิโลกรัม ดื่มไวน์พร้อมอาหารค่ำ 2 แก้วในเวลาทั้ง สิ้น 3 ชั่วโมง ถ้าไวน์ที่เธอดื่มมีความเข้นข้นของแอลกอฮอร์ 12% โดยปริมาตร และแต่ละแก้วที่ เธอดื่มบรรจุไวน์ 330 มิลลิลิตร ความเข้มข้นของแอลกอฮอร์ในเลือดของเธอหลังจากการดื่มไวน์ สามารถหาได้ในทำนองเดียวกับตัวอย่างข้อที่แล้ว

เริ่มต้นจากการหาปริมาตรของเหลวทั้งหมดในร่างกายของหญิงสาวคนนี้ ซึ่ง คือ $0.67 \times 45 = 30.15$ ลิตร และปริมาณแอลกอฮอร์ในไวน์ 1 แก้ว คือ $0.12 \times 330 \times 0.79 = 31.284$ กรัม ดังนั้นอัตราความเข้มขั้นของแอลกอฮอร์ที่เธอ ได้รับเข้าสู่ระบบทางเดินอาหารจากไวน์ 1 แก้ว คือ

$$C_I = rac{31.284}{30.15}$$
 กรัม/ลิตร $=rac{31.284}{30.15} \cdot rac{1}{10}$ กรัม/ 100 มิลลิลิตร $=0.104~\mathrm{BAL}$

ในกรณีนี้เราจะถือว่าเธอไม่ได้ดื่มแอลกอฮอร์อื่น ๆ ก่อนหน้ามื้ออาหารนี้ ดังนั้นเราจะ กำหนดให้ $C_g(0)=C_b(0)=0$ และ จะกำหนดให้ $M=0.005,\,k_1=6,\,k_2=0.5k_1=3$ เนื่องจากเธอดื่มแอลกอฮอร์พร้อมอาหาร, และสามารถคำนวณอัตราการกำจัดแอลกอฮอร์ที่ตับ ได้ในทำนองเดียวกับตัวอย่างที่แล้ว คือ

$$k_3 = \frac{8}{30.15}$$
 กรัม/ลิตร $= \frac{8}{30.15} \cdot \frac{1}{10}$ กรัม/ 100 มิลลิลิตร $= 0.027~\mathrm{BAL}$

เนื่องจากเธอดื่มไวน์ 2 แก้วอย่างต่อเนื่องในเวลา 3 ชั่วโมง เราจะกำหนดให้

$$I = \begin{cases} \frac{2}{3} \cdot C_I = 0.069 & \text{ถ้า } 0 \leq t \leq 3 \\ 0 & \text{ถ้า } t \geq 3 \end{cases}$$

และผลเฉลยเชิงตัวเลขได้แสดงดังรูป 5.8