CHAPTER

2

Complex Numbers

Section-A

JEE Advanced/ IIT-JEE

A Fill in the Blanks

1. If the expression

(1987 - 2 Marks)

$$\frac{\left[\sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right) + i\tan\left(x\right)\right]}{\left[1 + 2i\sin\left(\frac{x}{2}\right)\right]}$$

is real, then the set of all possible values of x is

- 2. For any two complex numbers z_1 , z_2 and any real number a and b. (1988 2 Marks) $|az_1 bz_2|^2 + |bz_1 + az_2|^2 = \dots$
- 3. If a, b, c, are the numbers between 0 and 1 such that the points $z_1 = a + i$, $z_2 = 1 + bi$ and $z_3 = 0$ form an equilateral triangle, then $a = \dots$ and $b = \dots$ (1989 2 Marks)
- 4. ABCD is a rhombus. Its diagonals AC and BD intersect at the point M and satisfy BD = 2AC. If the points D and M represent the complex numbers 1 + i and 2 i respectively, then A represents the complex numberor.......

(1993 - 2 Marks)

- 5. Suppose Z_1 , Z_2 , Z_3 are the vertices of an equilateral triangle inscribed in the circle |Z|=2. If $Z_1=1+i\sqrt{3}$ then $Z_2=...$, $Z_3=...$ (1994 2 Marks)
- 6. The value of the expression $1 \cdot (2-\omega)(2-\omega^2) + 2 \cdot (3-\omega)(3-\omega^2) + \dots + (n-1) \cdot (n-\omega)(n-\omega^2)$, where ω is an imaginary cube root of unity, is.....

(1996 - 2 Marks)

B True / False

- 1. For complex number $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, we write $z_1 \cap z_2$, if $x_1 \le x_2$ and $y_1 \le y_2$. Then for all complex numbers z with $1 \cap z$, we have $\frac{1-z}{1+z} \cap \theta$. (1981 2 Marks)
- 2. If the complex numbers, Z_1 , Z_2 and Z_3 represent the vertices of an equilateral triangle such that

$$|Z_1| = |Z_2| = |Z_3|$$
 then $Z_1 + Z_2 + Z_3 = 0$. (1984 - 1 Mark)

- 3. If three complex numbers are in A.P. then they lie on a circle in the complex plane. (1985 1 Mark)
- 4. The cube roots of unity when represented on Argand diagram form the vertices of an equilateral triangle.

(1988 - 1 Mark)

(1980)

C MCQs with One Correct Answer

- 1. If the cube roots of unity are 1, ω , ω^2 , then the roots of the equation $(x-1)^3 + 8 = 0$ are (1979)
 - (a) $-1, 1+2\omega, 1+2\omega^2$
- (b) -1, $1-2\omega$, $1-2\omega^2$
- (c) -1, -1, -1
- (d) None of these
- 2. The smallest positive integer n for which

$$\left(\frac{1+i}{1-i}\right)^n = 1 \text{ is}$$

- (a) n = 8
- (b) n = 16
- (c) n = 12
- (d) none of these
- 3. The complex numbers z = x + iy which satisfy the equation

$$\left| \frac{z - 5i}{z + 5i} \right| = 1 \text{ lie on}$$
 (1981 - 2 Marks)

- (a) the x-axis
- (b) the straight line y = 5
- (c) a circle passing through the origin
- (d) none of these

4. If
$$z = \left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^5 + \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)^5$$
, then (1982 - 2 Marks)

- (a) Re(z) = 0
- (b) Im(z) = 0
- (c) Re(z) > 0, Im(z) > 0
- (d) Re(z) > 0, Im(z) < 0
- 5. The inequality |z-4| < |z-2| represents the region given by (1982 2 Marks)
 - (a) $Re(z) \ge 0$
- (b) Re(z) < 0
- (c) Re(z) > 0
- (d) none of these
- 6. If z = x + iy and $\omega = (1 iz)/(z i)$, then $|\omega| = 1$ implies that, in the complex plane, (1983 1 Mark)
 - (a) z lies on the imaginary axis
 - (b) z lies on the real axis
 - (c) z lies on the unit circle
 - (d) None of these

7. The points z_1, z_2, z_3, z_4 in the complex plane are the vertices of a parallelogram taken in order if and only if

(1983 - 1 Mark)

- (a) $z_1 + z_4 = z_2 + z_3$
- (b) $z_1 + z_3 = z_2 + z_4$
- (c) $z_1 + z_2 = z_3 + z_4$
- (d) None of these
- If a, b, c and u, v, w are complex numbers representing the of vertices two triangles such c = (1 - r) a + rb and w = (1 - r)u + rv, where r is a complex number, then the two triangles (1985 - 2 Marks)
 - (a) have the same area
- (b) are similar
- (c) are congruent
- (d) none of these
- If ω (\neq 1) is a cube root of unity and $(1+\omega)^7 = A + B\omega$ then A and B are respectively (1995S)
 - (a) 0, 1
- (b) 1,1
- (c) 1,0
- (d) -1, 1
- 10. Let z and ω be two non zero complex numbers such that $|z| = |\omega|$ and Arg $z + \text{Arg }\omega = \pi$, then z equals (1995S)
 - (a) ω
- (b) $-\omega$
- (c) $\overline{\omega}$
- (d) $-\overline{\omega}$
- 11. Let z and ω be two complex numbers such that $|z| \leq 1$, $|\omega| \le 1$ and $|z+i\omega| = |z-i\overline{\omega}| = 2$ then z equals (1995S)
- (b) i or -i (c) 1 or -1
- 12. For positive integers n_1 , n_2 the value of the expression

 $(1+i)^{n_1} + (1+i^3)^{n_1} + (1+i^5)^{n_2} + (1+i^7)^{n_2}$, where $i = \sqrt{-1}$ is a real number if and only if (a) $n_1 = n_2 + 1$ (b) n(c) $n_1 = n_2$ (d) n

- (b) $n_1 = n_2 1$ (d) $n_1 > 0, n_2 > 0$
- 13. If $i = \sqrt{-1}$, then $4 + 5\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{334} + 3\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{365}$

is equal to

(1999 - 2 Marks)

- (a) $1-i\sqrt{3}$ (b) $-1+i\sqrt{3}$ (c) $i\sqrt{3}$
- 14. If arg(z) < 0, then arg(-z) arg(z) =

(2000S)

- (a) π (b) $-\pi$ (c) $-\frac{\pi}{2}$ (d) $\frac{\pi}{2}$
- 15. If z_1 , z_2 and z_3 are complex numbers such that (2000S)

 $|z_1| = |z_2| = |z_3| = \left|\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}\right| = 1$, then $|z_1 + z_2 + z_3|$ is 23. Let $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$, then the value of the det.

- (a) equal to 1
- (b) less than 1
- (c) greater than 3
- (d) equal to 3
- 16. Let z_1 and z_2 be n^{th} roots of unity which subtend a right angle at the origin. Then n must be of the form (2001S)
 - (a) 4k+1 (b) 4k+2 (c) 4k+3

- 17. The complex numbers z_1 , z_2 and z_3 satisfying

 $\frac{z_1 - z_3}{z_2 - z_3} = \frac{1 - i\sqrt{3}}{2}$ are the vertices of a triangle which is

(a) of area zero

(2001S)

- (b) right-angled isosceles
- (c) equilateral
- (d) obtuse-angled isosceles

- 18. For all complex numbers z_1 , z_2 satisfying $|z_1|=12$ and $|z_2-3-4i|=5$, the minimum value of $|z_1-z_2|$ is
- (b) 2
- (c) 7
- 19. If |z| = 1 and $\omega = \frac{z-1}{z+1}$ (where $z \neq -1$), then Re(ω) is
 - (a) 0

- (b) $-\frac{1}{|z+1|^2}$ (2003S)
- (c) $\left| \frac{z}{z+1} \right| \cdot \frac{1}{|z+1|^2}$ (d) $\frac{\sqrt{2}}{|z+1|^2}$
- If $\omega \neq 1$ be a cube root of unity and $(1 + \omega^2)^n = (1 + \omega^4)^n$, then the least positive value of n is
 - (a) 2
- (b) 3
- (c) 5
- (d) 6
- The locus of z which lies in shaded region (excluding the boundaries) is best represented by (2005S)

- (a) z:|z+1| > 2 and $|arg(z+1)| < \pi/4$
- (b) z: |z-1| > 2 and $|\arg(z-1)| < \pi/4$
- (c) $z:|z+1| \le 2$ and $|arg(z+1)| \le \pi/2$
- (d) $z: |z-1| \le 2$ and $|\arg(z+1)| \le \pi/2$
- 22. a, b, c are integers, not all simultaneously equal and ω is cube root of unity ($\omega \neq 1$), then minimum value of $|a + b\omega + c\omega^2|$ is (2005S)
 - (a) 0 (b) 1 (c) $\frac{\sqrt{3}}{2}$ (d) $\frac{1}{2}$

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 - \omega^2 & \omega^2 \\ 1 & \omega^2 & \omega^4 \end{vmatrix}$$
 is

(2002 - 2 Marks)

- (b) $3\omega(\omega-1)$
- (d) $3\omega(1-\omega)$
- 24. If $\frac{w \overline{w}z}{1 z}$ is purely real where $w = \alpha + i\beta$, $\beta \neq 0$ and $z \neq 1$,

then the set of the values of z is

(2006 - 3M, -1)

- (a) $\{z: |z|=1\}$
- (b) $\{z: z=\overline{z}\}$
- (c) $\{z: z \neq 1\}$
- (d) $\{z: |z|=1, z\neq 1\}$

- 25. A man walks a distance of 3 units from the origin towards the north-east (N 45° E) direction. From there, he walks a distance of 4 units towards the north-west (N 45° W) direction to reach a point P. Then the position of P in the Argand plane is (2007 - 3 marks)
 - (a) $3e^{i\pi/4} + 4i$
- (b) $(3-4i)e^{i\pi/4}$
- (c) $(4+3i)e^{i\pi/4}$
- (d) $(3+4i)e^{i\pi/4}$
- 26. If |z| = 1 and $z \neq \pm 1$, then all the values of $\frac{z}{1 + z^2}$ lie on
 - (a) a line not passing through the origin (2007 3 marks)
 - (b) $|z| = \sqrt{2}$
 - (c) the x-axis
 - (d) the y-axis
- 27. A particle P starts from the point $z_0 = 1 + 2i$, where $i = \sqrt{-1}$. It moves horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach a point z_1 . From z_1 the particle moves $\sqrt{2}$ units in the direction of the vector $\hat{i} + \hat{j}$ and then it moves through an angle $\frac{\pi}{2}$ in anticlockwise direction on a circle with centre at origin, to reach a point z_2 . The point z_2 is given by
 - (a) 6 + 7i
- (b) -7 + 6i
- (c) 7 + 6i
- (d) -6 + 7i
- 28. Let $z = \cos \theta + i \sin \theta$. Then the value of $\sum_{i=1}^{15} \text{Im}(z^{2m-1})$

at $\theta = 2^{\circ}$ is (2009)

- (a) $\frac{1}{\sin 2^{\circ}}$ (b) $\frac{1}{3\sin 2^{\circ}}$ (c) $\frac{1}{2\sin 2^{\circ}}$ (d) $\frac{1}{4\sin 2^{\circ}}$
- 29. Let z = x + iy be a complex number where x and y are integers. Then the area of the rectangle whose vertices are the roots

of the equation : $z\bar{z}^3 + \bar{z}z^3 = 350$ is

(2009)

- (b) 32
- (c) 40
- 30. Let z be a complex number such that the imaginary part of zis non-zero and $a = z^2 + z + 1$ is real. Then a cannot take the

- (a) -1 (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) $\frac{3}{4}$
- 31. Let complex numbers α and $\frac{1}{\alpha}$ lie on circles $(x-x_0)^2$ $+(y-y_0)^2 = r^2$ and $(x-x_0)^2 + (y-y_0)^2 = 4r^2$.

respectively. If $z_0 = x_0 + iy_0$ satisfies the equation

$$2|z_0|^2 = r^2 + 2$$
, then $|\alpha| =$

- (a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{2}$ (c) $\frac{1}{\sqrt{7}}$ (d) $\frac{1}{3}$

MCQs with One or More than One Correct

If $z_1 = a + ib$ and $z_2 = c + id$ are complex numbers such that $|z_1| = |z_2| = 1$ and $\text{Re}(z_1 \bar{z}_2) = 0$, then the pair of complex numbers $w_1 = a + ic$ and $w_2 = b + id$ satisfies –

(1985 - 2 Marks)

- (a) $|w_1| = 1$
- (b) $|w_2| = 1$
- (c) $\operatorname{Re}(w_1\overline{w}_2) = 0$
- (d) none of these
- Let z_1 and z_2 be complex numbers such that $z_1 \neq z_2$ and $|z_1| = |z_2|$. If z_1 has positive real part and z_2 has negative

imaginary part, then $\frac{z_1 + z_2}{z_1 - z_2}$ may be (1986 - 2 Marks)

- (b) real and positive
- (c) real and negative
- (d) purely imaginary
- (e) none of these.
- If z_1 and z_2 are two nonzero complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then Arg z_1 - Arg z_2 is equal to (1987 - 2 Marks)
 - (a) $-\pi$ (b) $-\frac{\pi}{2}$ (c) 0 (d) $\frac{\pi}{2}$

- (e) π
- The value of $\sum_{k=1}^{6} (\sin \frac{2\pi k}{7} i \cos \frac{2\pi k}{7})$ is (1987 2 Marks)
 - (a) -1
- (b) 0 (c) -i
- (d) i

- (e) None
- If ω is an imaginary cube root of unity, then $(1 + \omega \omega^2)^7$ (1998 - 2 Marks) (b) -128ω (c) $128\omega^2$ (d) $-128\omega^2$ equals

- The value of the sum $\sum_{n=1}^{13} (i^n + i^{n+1})$, where $i = \sqrt{-1}$, equals

(1998 - 2 Marks) (d) 0

- (a) i (b) i-1 (c) -i
- 7. If $\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy$, then
 - (a) x = 3, y = 2
- (b) x = 1, y = 3
- (c) x = 0, y = 3
- (d) x = 0, y = 0
- Let z_1 and z_2 be two distinct complex numbers and let $z = (1 - t)z_1 + tz_2$ for some real number t with 0 < t < 1. If Arg (w) denotes the principal argument of a non-zero complex number w, then (2010)
 - (a) $|z-z_1|+|z-z_2|=|z_1-z_2|$
 - (b) $Arg(z-z_1) = Arg(z-z_2)$

 - (d) $Arg(z-z_1) = Arg(z_2-z_1)$

Let $w = \frac{\sqrt{3} + i}{2}$ and $P = \{w^n : n = 1, 2, 3, ...\}$. Further $H_1 =$

$$\left\{z \in \mathbb{C} : \operatorname{Re} z > \frac{1}{2}\right\} \text{ and } H_2 = \left\{z \in \mathbb{C} : \operatorname{Re} z < \frac{-1}{2}\right\}, \text{ where c is the}$$

set of all complex numbers. If $z_1 \in P \cap H_1, z_2 \in P \cap H_2$ and O represents the origin, then $\angle z_1Oz_2 = (JEE Adv. 2013)$

- (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{6}$ (c) $\frac{2\pi}{3}$ (d) $\frac{5\pi}{6}$
- 10. Let a, $b \in \mathbb{R}$ and $a^2 + b^2 \neq 0$.

Suppose $S = \left\{ Z \in \mathbb{C} : Z = \frac{1}{a + ibt}, t \in \mathbb{R}, t \neq 0 \right\}$, where

 $i = \sqrt{-1}$. If z = x + iy and $z \in S$, then (x, y) lies on

(JEE Adv. 2016)

- (a) the circle with radius $\frac{1}{2a}$ and centre $\left(\frac{1}{2a}, 0\right)$ for a > 0, $b \neq 0$
- (b) the circle with radius $-\frac{1}{2a}$ and centre $\left(-\frac{1}{2a},0\right)$ for $a < 0, b \ne 0$
- the x-axis for $a \neq 0$, b=0
- the y-axis for a = 0, $b \ne 0$

E **Subjective Problems**

- Express $\frac{1}{1-\cos\theta+2i\sin\theta}$ in the form x+iy. 1. (1978)
- If x = a + b, $y = a\gamma + b\beta$ and $z = a\beta + b\gamma$ where γ and β are the 2. complex cube roots of unity, show that $xyz = a^3 + b^3$.

- If $x + iy = \sqrt{\frac{a + ib}{c + id}}$, prove that $(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$. (1979) 3.
- 4. Find the real values of x and y for which the following equation is satisfied $\frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i$ (1980)
- Let the complex number z_1 , z_2 and z_3 be the vertices of an equilateral triangle. Let z_0 be the circumcentre of the triangle. Then prove that $z_1^2 + z_2^2 + z_3^2 = 3z_0^2$. (1981 - 4 Marks)
- Prove that the complex numbers z_1 , z_2 and the origin form an equilateral triangle only if

$$z_1^2 + z_2^2 - z_1 z_2 = 0.$$
 (1983 - 3 Marks)

If 1, $a_1, a_2, \ldots, a_{n-1}$ are the n roots of unity, then show that $(1-a_1)(1-a_2)(1-a_3)...(1-a_{n-1}) = n$ (1984 - 2 Marks) 8. Show that the area of the triangle on the Argand diagram formed by the complex numbers z, iz and z + iz is $\frac{1}{2}|z|^2$.

(1986 - 21/2 Marks)

Let $Z_1 = 10 + 6i$ and $Z_2 = 4 + 6i$. If Z is any complex number such that the argument of $\frac{(Z-Z_1)}{(Z-Z_2)}$ is $\frac{\pi}{4}$, then prove that

$$|Z-7-9i|=3\sqrt{2}$$
. (1990 - 4 Marks)

- 10. If $iz^3 + z^2 z + i = 0$, then show that |z| = 1. (1995 - 5 Marks)
- If $|Z| \le 1$, $|W| \le 1$, show that $|Z-W|^2 \le (|Z|-|W|)^2 + (Arg Z - Arg W)^2$ (1995 - 5 Marks)
- Find all non-zero complex numbers Z satisfying $\overline{Z} = iZ^2$. (1996 - 2 Marks)
- Let z₁ and z₂ be roots of the equation $z^2+pz+q=0$, where the coefficients p and q may be complex numbers. Let A and Brepresent z₁ and z₂ in the complex plane. If $\angle AOB = \alpha \neq 0$ and OA = OB, where O is the origin, prove that

$$p^2 = 4q \cos^2\left(\frac{\alpha}{2}\right) \qquad (1997 - 5 Marks)$$

- For complex numbers z and w, prove that $|z|^2 w |w|^2 z = z w$ if and only if z = w or $z \overline{w} = 1$. (1999 - 10 Marks)
- 15. Let a complex number α , $\alpha \neq 1$, be a root of the equation z^{p+q} - z^p - z^q + 1 = 0, where p, q are distinct primes. Show that either $1 + \alpha + \alpha^2 + \dots + \alpha^{p-1} = 0$ or $1 + \alpha + \alpha^2 + \dots + \alpha^{q-1} = 0$, but not both together. (2002 - 5 Marks)
- If z_1 and z_2 are two complex numbers such taht $|z_1| \le 1 \le |z_2|$ then prove that $\left| \frac{1 - z_1 \overline{z}_2}{z_1 - z_2} \right| < 1$.
- Prove that there exists no complex number z such that $|z| < \frac{1}{3}$ and $\sum_{r=0}^{n} a_r z^r = 1$ where $|a_r| < 2$. (2003 - 2 Marks)
- Find the centre and radius of circle given by

$$\left|\frac{z-\alpha}{z-\beta}\right| = k, k \neq 1$$

where, z = x + iy, $\alpha = \alpha_1 + i\alpha_2$, $\beta = \beta_1 + i\beta_2$ (2004 - 2 Marks)

If one the vertices of the square circumscribing the circle $|z-1| = \sqrt{2}$ is $2+\sqrt{3}i$. Find the other vertices of the (2005 - 4 Marks) square.

F Match the Following

DIRECTIONS (Q. 1 and 2): Each question contains statements given in two columns, which have to be matched. The statements in Column-I are labelled A, B, C and D, while the statements in Column-II are labelled p, q, r, s and t. Any given statement in Column-I can have correct matching with ONE OR MORE statement(s) in Column-II. The appropriate bubbles corresponding to the answers to these questions have to be darkened as illustrated in the following example:

If the correct matches are A-p, s and t; B-q and r; C-p and q; and D-s then the correct darkening of bubbles will look like the given.

(1992 - 2 Marks)

$z \neq 0$ is a complex number

Column I

(A) Re
$$z=0$$

(B) Arg
$$z = \frac{\pi}{4}$$

Column II

(p)
$$Re z^2 = 0$$

(q)
$$Im z^2 = 0$$

(r)
$$\text{Re } z^2 = \text{Im } z^2$$

2. Match the statements in Column I with those in Column II.

(2010)

[Note: Here z takes values in the complex plane and Im z and Re z denote, respectively, the imaginary part and the real part of z.] Column I Column II

- (A) The set of points z satisfying
 - |z-i||z|| = |z+i||z|| is contained in or equal to
- (B) The set of points z satisfying |z+4|+|z-4|=10 is contained in or equal to
- (C) If |w| = 2, then the set of points $z = w - \frac{1}{w}$ is contained in or equal to
- (D) If |w| = 1, then the set of points $z = w + \frac{1}{w}$ is contained in or equal to.

- (p) an ellipse with eccentricity $\frac{4}{\epsilon}$
- the set of points z satisfying Im z = 0
- the set of points z satisfying $|\text{Im } z| \le 1$ (r)
- the set of points z satisfying | Re z | ≤ 2
- the set of points z satisfying |z| < 3

DIRECTIONS (Q. 3): Following question has matching lists. The codes for the list have choices (a), (b), (c) and (d) out of which ONLY ONE is correct.

Let $z_k = \cos\left(\frac{2k\pi}{10}\right) + i\sin\left(\frac{2k\pi}{10}\right)$; k = 1, 2, ..., 9.

(JEE Adv. 2014)

P. For each z_k there exists as z_i such that z_k . $z_i = 1$

- Q. There exists a $k \in \{1, 2, ..., 9\}$ such that $z_1, z = z_k$ has no solution z in the set of complex numbers
- **R.** $\frac{|1-z_1||1-z_2|...|1-z_9|}{10}$ equals
- S. $1 \sum_{k=1}^{9} \cos\left(\frac{2k\pi}{10}\right) \text{ equals}$
 - PORS
- (a) 1 2 4 3
- 2 3 4

- List-II
- True 1.
- 2. False
- 3.
- 2
- O R S 3 4
- (b) 2 (d) 2

G Comprehension Based Questions

PASSAGE-1

Let A, B, C be three sets of complex numbers as defined below

$$A = \{z : \text{Im } z \ge 1\}$$

$$B = \{z : |z-2-i| = 3\}$$

$$C = \{z : \text{Re}((1-i)z) = \sqrt{2}\}\$$

- The number of elements in the set $A \cap B \cap C$ is 1. (2008)
- (b) 1
- (c) 2
- (d) ∞
- 2. Let z be any point in $A \cap B \cap C$.

Then,
$$|z + 1 - i|^2 + |z - 5 - i|^2$$
 lies between

(2008)

- (a) 25 and 29
- (b) 30 and 34
- (c) 35 and 39
- (d) 40 and 44
- Let z be any point $A \cap B \cap C$ and let w be any point satisfying |w-2-i| < 3. Then, |z| - |w| + 3 lies between
 - (a) -6 and 3
- (b) -3 and 6
- (2008)

- (c) -6 and 6
- (d) -3 and 9

PASSAGE-2

Let $S = S_1 \cap S_2 \cap S_3$, where

$$\begin{split} S_1 &= \{z \in \mathbb{C} : \mid z \mid <4\}, \ S_2 = \left\{z \in \mathbb{C} : \mathrm{Im} \left[\frac{z-1+\sqrt{3}\,i}{1-\sqrt{3}\,i}\right] > 0\right\} \\ &\text{and } S_3 = \{z \in \mathbb{C} : \mathrm{Re}\,z > 0\}. \end{split}$$

4. Area of S = (JEE Adv. 2013)

- (a) $\frac{10\pi}{3}$ (b) $\frac{20\pi}{3}$ (c) $\frac{16\pi}{3}$

$\min |1 - 3i - z| =$ 5.

(JEE Adv. 2013)

(a)
$$\frac{2-\sqrt{3}}{2}$$

- (b) $\frac{2+\sqrt{3}}{2}$
- (c) $\frac{3-\sqrt{3}}{2}$

Integer Value Correct Type

- If z is any complex number satisfying $|z-3-2i| \le 2$, then the 1. minimum value of |2z-6+5i| is
- Let $\omega = e^{\frac{i\pi}{3}}$, and a, b, c, x, y, z be non-zero complex numbers 2.

$$a+b+c=x$$
$$a+b\omega+c\omega^2=y$$

$$a + b\omega^2 + c\omega = z$$

Then the value of $\frac{|x|^2 + |y|^2 + |z|^2}{|a|^2 + |b|^2 + |c|^2}$ is

For any integer k, let $\alpha_k = \cos\left(\frac{k\pi}{7}\right) + i\sin\left(\frac{k\pi}{7}\right)$, where 3.

i =
$$\sqrt{-1}$$
. The value of the expression
$$\frac{\displaystyle\sum_{k=1}^{12} |\alpha_{k+1} - \alpha_k|}{\displaystyle\sum_{k=1}^{3} |\alpha_{4k-1} - \alpha_{4k-2}|}$$

(JEE Adv. 2015) is

Section-B JEE Main /

- 1. z and w are two nonzero complex numbers such that |z| = |w|and Arg z + Arg w = π then z equals [2002]
- (b) $-\overline{\omega}$
- (c) ω
- (d) $-\omega$
- If |z-4| < |z-2|, its solution is given by [2002] 2.
 - (a) Re(z) > 0
- (b) Re(z) < 0
- (c) Re(z) > 3
- (d) Re(z) > 2
- The locus of the centre of a circle which touches the circle $z-z_1 = a$ and $|z-z_2| = b$ externally $(z, z_1 \& z_2)$ are complex numbers) will be [2002]
 - (a) an ellipse
- (b) a hyperbola
- (c) a circle
- (d) none of these
- 4. If z and ω are two non-zero complex numbers such that

$$|z\omega| = 1$$
 and $Arg(z) - Arg(\omega) = \frac{\pi}{2}$, then $\bar{z}\omega$ is equal to

[2003]

- (a) i
- (b) 1
- (c) 1
- (d) i

Let Z_1 and Z_2 be two roots of the equation $Z^2 + aZ + b = 0$, Z being complex. Further, assume that the origin, Z_1 and Z_2 form an equilateral triangle. Then [2003]

(a)
$$a^2 = 4b$$
 (b) $a^2 = b$ (c) $a^2 = 2b$ (d) $a^2 = 3b$

- If $\left(\frac{1+i}{1-i}\right)^x = 1$ then [2003]
 - (a) x = 2n + 1, where n is any positive integer
 - (b) x = 4n, where n is any positive integer
 - (c) x = 2n, where n is any positive integer
 - (d) x = 4n + 1, where n is any positive integer.
- Let z and w be complex numbers such that $\overline{z} + i \overline{w} = 0$ and $\arg zw = \pi$. Then arg z equals [2004]
 - (a) $\frac{5\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $\frac{3\pi}{4}$ (d) $\frac{\pi}{4}$

If z = x - i y and $z^{\frac{1}{3}} = p + iq$, then $\left(\frac{x}{p} + \frac{y}{q}\right) / (p^2 + q^2)$ is

[2004]

- (a) -2
- (b) -1
- (c) 2
- (d) 1
- 9. If $|z^2 1| = |z|^2 + 1$, then z lies on

[2004]

- (a) an ellipse (b) the imaginary axis

- (c) a circle
- (d) the real axis
- 10. If the cube roots of unity are 1, ω , ω^2 then the roots of the equation $(x-1)^3 + 8 = 0$, are [2005]
 - (a) $-1, -1 + 2\omega, -1 2\omega^2$
 - (b) -1, -1, -1
 - (c) $-1, 1-2\omega, 1-2\omega^2$
 - (d) $-1, 1+2\omega, 1+2\omega^2$
- 11. If z_1 and z_2 are two non-zero complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then arg $z_1 - \arg z_2$ is equal to

- (a) $\frac{\pi}{2}$ (b) $-\pi$ (c) 0 (d) $\frac{-\pi}{2}$
- 12. If $\omega = \frac{z}{z \frac{1}{2}i}$ and $|\omega| = 1$, then z lies on [2005]
 - (a) an ellipse
- (b) a circle
- (c) a straight line
- (d) a parabola
- 13. The value of $\sum_{k=1}^{10} \left(\sin \frac{2k\pi}{11} + i \cos \frac{2k\pi}{11} \right)$ is
- (b) 1
- (c) -1
- (d) -i
- 14. If $z^2 + z + 1 = 0$, where z is complex number, then the value

$$\left(z + \frac{1}{z}\right)^2 + \left(z^2 + \frac{1}{z^2}\right)^2 + \left(z^3 + \frac{1}{z^3}\right)^2 + \dots + \left(z^6 + \frac{1}{z^6}\right)^2$$
 is [2006]

- (a) 18 (b) 54
- (d) 12
- 15. If $|z + 4| \le 3$, then the maximum value of |z+1| is
 - (a) 6
- (b) 0 (c) 4
- (d) 10
- 16. The conjugate of a complex number is $\frac{1}{i-1}$ then that complex number is
 - (a) $\frac{-1}{i-1}$ (b) $\frac{1}{i+1}$ (c) $\frac{-1}{i+1}$ (d) $\frac{1}{i-1}$

17. Let R be the real line. Consider the following subsets of the plane $R \times R$:

 $S = \{(x, y): y = x + 1 \text{ and } 0 < x < 2\}$

 $T = \{(x, y): x - y \text{ is an integer}\}$

Which one of the following is true?

[2008]

- (a) Neither S nor T is an equivalence relation on R
- (b) Both S and T are equivalence relation on R
- (c) S is an equivalence relation on R but T is not
- (d) T is an equivalence relation on R but S is not
- The number of complex numbers z such that

$$|z-1| = |z+1| = |z-i|$$
 equals

[2010]

- (a) 1
 - (b) 2
- (c) ∞
- (d) 0
- Let α , β be real and z be a complex number. If $z^2 + \alpha z + \beta = 0$ has two distinct roots on the line Re z=1, then it is necessary that: [2011]
 - (a) $\beta \in (-1,0)$
- (b) $|\beta| = 1$
- (c) $\beta \in (1, \infty)$
- (d) $\beta \in (0,1)$
- **20.** If $\omega(\neq 1)$ is a cube root of unity, and $(1+\omega)^7 = A + B\omega$.

Then (A, B) equals

[2011]

- (a) (1, 1) (b) (1,0)
- (c) (-1,1) (d) (0,1)
- 21. If $z \ne 1$ and $\frac{z^2}{z-1}$ is real, then the point represented by the

complex number z lies:

- (a) either on the real axis or on a circle passing through the origin.
- (b) on a circle with centre at the origin
- either on the real axis or on a circle not passing through the origin.
- (d) on the imaginary axis.
- If z is a complex number of unit modulus and 22. argument θ , then arg $\left(\frac{1+z}{1+\overline{z}}\right)$ equals: [JEE M 2013]

 - (a) $-\theta$ (b) $\frac{\pi}{2} \theta$ (c) θ (d) $\pi \theta$
- If z is a complex number such that $|z| \ge 2$, then the minimum

value of
$$\left|z+\frac{1}{2}\right|$$
:

[JEE M 2014]

- (a) is strictly greater than $\frac{3}{2}$
- (b) is strictly greater than $\frac{3}{2}$ but less than $\frac{5}{2}$
- (c) is equal to $\frac{5}{2}$
- (d) lie in the interval (1, 2)

- 24. A complex number z is said to be unimodular if |z| = 1. Suppose z_1 and z_2 are complex numbers such that $\frac{z_1-2z_2}{2-z_1\overline{z}_2}$ is unimodular and z_2 is not unimodular. Then the point z_1 lies on a: [JEE M 2015]
 - (a) circle of radius 2.
 - (b) circle of radius $\sqrt{2}$.
 - (c) straight line parallel to x-axis
 - (d) straight line parallel to y-axis.

25. A value of θ for which $\frac{2+3i\sin\theta}{1-2i\sin\theta}$ is purely imaginary, is:

[JEE M 2016]

(a)
$$\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$$
 (b) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$

(b)
$$\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

(c)
$$\frac{\pi}{3}$$

(d)
$$\frac{\pi}{6}$$