Ch4 函数的连续性

主讲教师: 顾燕红

办公室: 汇星楼409

办公室答疑时间:每周二15点至17点

微信号: 18926511820 QQ号: 58105217

Email: yhgu@szu.edu.cn

(添加好友、加群请备注学号姓名数学分析1)

QQ群、QQ、微信群、微信随时答疑解惑

2023年11月21日

§1连续性概念

§ 2 连续函数的性质

§3初等函数的连续性

初等函数的连续性

指数函数的性质

设
$$a > 0, a \neq 1, x_1, x_2$$
为任意实数,则有
$$a^{x_1}a^{x_2} = a^{x_1+x_2}, (a^{x_1})^{x_2} = a^{x_1x_2}.$$

 $\forall \varepsilon > 0 \left(\varepsilon < a^{x_1}, \varepsilon < a^{x_2}\right)$,存在有理数 $r_1 \leq x_1, r_2 \leq x_2$,使得 $a^{r_1} > a^{x_1} - \varepsilon$, $a^{r_2} > a^{x_2} - \varepsilon$, 于是有 $(a^{x_1}-\varepsilon)(a^{x_2}-\varepsilon) < a^{r_1} \cdot a^{r_2} = a^{r_1+r_2} \le a^{x_1+x_2}$. 由 ε 的任意性知, $a^{x_1} \cdot a^{x_2} \leq a^{x_1+x_2}$. 存在有理数 $r_0(r_0 \le x_1 + x_2)$, 使 $a^{r_0} > a^{x_1 + x_2} - \varepsilon$. 再取有理数 $r_1 \leq x_1, r_2 \leq x_2$, 使 $r_0 \leq r_1 + r_2$,则 $a^{r_0} \leq a^{r_1+r_2} = a^{r_1} \cdot a^{r_2} \leq a^{x_1} \cdot a^{x_2}$ 从而 $a^{x_1+x_2}-\varepsilon < a^{x_1}\cdot a^{x_2}$, 由 ε 的任意性知, $a^{x_1+x_2} < a^{x_1}\cdot a^{x_2}$. 这就证明了 $a^{x_1} \cdot a^{x_2} = a^{x_1 + x_2}$. 对于0 < a < 1的情形,只要令 $b = \frac{1}{a}$,就有 $a^{x_1} \cdot a^{x_2} = b^{(-x_1)} \cdot b^{(-x_2)} = b^{-(x_1+x_2)} = a^{x_1+x_2}$.

指数函数的连续性

指数函数 $y = a^x$ $(a > 0, a \neq 1)$ 在 \mathbb{R} 上是连续的.

证 先假设a>1.

首先证明指数函数在x = 0处连续, 即 $\lim_{x \to 0} a^x = 1$.

对orall arepsilon (0 < arepsilon < 1),取 $\delta = \min \left\{ \log_a (1 + arepsilon), \left| \log_a (1 - arepsilon) \right| \right\}$,

当 $|x| < \delta$ 时,就有 $|a^x - 1| < \varepsilon$.

所以 a^x 在x = 0处连续.

对于一般的点 $x_0 \in \mathbb{R}$,由指数函数的性质得

$$\lim_{x \to x_0} a^x = \lim_{x \to x_0} a^{x_0} \cdot a^{x-x_0} = a^{x_0} \lim_{\Delta x \to 0} a^{\Delta x} = a^{x_0}.$$

所以 $y = a^x$ 在 \mathbb{R} 上连续.

对于0 < a < 1的情形,只要令 $b = \frac{1}{a}$,由 $a^x = \left(\frac{1}{b}\right)^x = \frac{1}{b^x}$,就可得到相应的结论.

注 当a=1时, $y=a^x=1$ 显然是连续函数.

对数函数的连续性

对数函数 $y = \log_a x (a > 0, a \neq 1)$ 在定义域 $(0, +\infty)$ 上是连续的.

幂函数的连续性

对 $\forall \alpha \in \mathbb{R}$,幂函数 $y = x^{\alpha}$ 在(0,+∞)上是连续的.

证 由于幂函数 $y = x^{\alpha} = e^{\alpha \ln x}$ 由

$$f(u) = e^u, u \in (-\infty, +\infty)$$
与 $u = \alpha \ln x, x \in (0, +\infty)$

复合而成,

而已知指数函数与对数函数都是连续的,

根据复合函数的连续性定理知, 幂函数 $y = x^{\alpha}$ 在 $(0,+\infty)$ 连续.

注:对于具体给定的实数 α , $f(x) = x^{\alpha}$ 的定义域可以扩大.

幂函数 $f(x) = x^{\alpha}(x \in \mathbb{R})$ 在其定义域连续.

例1 设
$$\lim_{x\to x_0} u(x) = a > 0$$
, $\lim_{x\to x_0} v(x) = b$. 证明 $\lim_{x\to x_0} u(x)^{v(x)} = a^b$.

证 补充定义
$$u(x_0)=a$$
, $v(x_0)=b$,则 $u(x)$, $v(x)$ 在点 x_0 连续,从而 $v(x)\ln u(x)$ 在点 x_0 也连续.

于是
$$\lim_{x \to x_0} u(x)^{\nu(x)} = \lim_{x \to x_0} e^{\nu(x)\ln u(x)}$$
$$= e^{\lim_{x \to x_0} \nu(x)\ln u(x)}$$

$$= e^{b \ln a} = a^b.$$

注:
$$\lim_{x\to x_0} u(x)^{v(x)} = a^b = \left[\lim_{x\to x_0} u(x)\right]^{\lim_{x\to x_0} v(x)}.$$

例2 求
$$\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}} \cdot (1^{\infty})$$

$$\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}} = \lim_{x\to 0} (1 + \cos x - 1)^{\frac{1}{x^2}}$$

$$= \lim_{x \to 0} \left(1 + \cos x - 1\right)^{\frac{1}{\cos x - 1}} \frac{\cos x - 1}{x^2}$$

$$= \left(\lim_{x\to 0} (1+\cos x - 1)^{\frac{1}{\cos x - 1}}\right)^{\lim_{x\to 0} \frac{\cos x - 1}{x^2}}$$

$$= e^{\lim_{x\to 0}\frac{-\frac{x^2}{2}}{x^2}} = e^{-\frac{1}{2}}.$$

例2 求
$$\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}} \cdot (1^{\infty})$$

$$\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}} = \lim_{x\to 0} e^{\frac{1}{x^2} \ln \cos x}$$

$$= e^{\lim_{x\to 0} \frac{\ln(1+\cos x-1)}{x^2}}$$

$$= e^{\lim_{x\to 0}\frac{\cos x-1}{x^2}}$$

$$= e^{\lim_{x\to 0} \frac{-\frac{x^2}{2}}{x^2}} = e^{-\frac{1}{2}}.$$

初等函数的连续性

基本初等函数的连续性

一切基本初等函数在其定义域上是连续的.

初等函数

由基本初等函数经过有限次四则运算与复合运算 所产生的函数称为初等函数。

初等函数的连续性

初等函数在其定义区间上是连续的.

例3 求
$$\lim_{x\to 0} \frac{\ln(1+x)}{x}$$
.

解 根据对数函数的连续性,有

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}}$$
$$= \ln\left(\lim_{x \to 0} (1+x)^{\frac{1}{x}}\right)$$

例4 求
$$\lim_{x\to 0} \frac{\ln(1+x)}{\cos x}$$
.

解 因为 $\frac{\ln(1+x)}{\cos x}$ 是初等函数,所以在x=0处连续.

从而

$$\lim_{x\to 0}\frac{\ln(1+x)}{\cos x}=\frac{\ln(1+0)}{\cos 0}=0.$$

例5 据理说明
$$f(x) = \begin{cases} 1, & x \neq 0, \\ 0, & x = 0 \end{cases}$$
不是初等函数.

解 因为x = 0是f(x)的定义区间上的点,而

$$\lim_{x\to 0} f(x) = 1 \neq 0 = f(0),$$

所以f(x)在x = 0处不连续.

因此函数f(x)不是初等函数.

你应该:

知道基本初等函数的连续性

知道初等函数的连续性

会利用连续性求极限