Markovian population models are a powerful paradigm to describe processes of stochastically interacting agents. Their dynamics is given by a continuous-time Markov chains over the population sizes. Such large state-spaces make their analysis challenging.

In this thesis we develop methods for this problem class leveraging their structure. We derive linear moment constraints on the expected occupation measure and exit probabilties. In combination with semi-definite constraints on moment matrices, we obtain a convex program. This way, we are able to provide bounds on mean first-passage times and reaching probabilties. We further use these linear constraints as control variates to improve Monte Carlo estimation of different quantities. Two different algorithm for the construction of efficient variate sets are presented and evaluated.

Another set of contributions is based on a state-space lumping scheme that aggregates states in a grid structure. Based on the probabilities of these approximations we iteratively refine relevant and truncate irrelevant parts of the state-space. This way, the algorithm learns a well-justified finite-state projection for different scenarios.

Michael Backenköhler

Analysis of Markovian Population Models

Michael Backenköhler

Analysis of Markovian Population Models

DISSERTATION