CS251: Homework #4

Due on November 5, 2019 at 2:00pm $Steven\ Libby\ Section\ A$

Austen Nelson

Problem 1

Part One

$$\frac{x=y}{y=x} \frac{\overline{y=y}}{=E2} REFL$$

Part Two

$$\frac{x=y}{x=z} = y=z$$

Part Three

 $\begin{aligned} &\forall y.y=0 \lor (\exists z.y=z+1),\\ &\forall x.x+0=x,\\ &\forall x.x=0+x,\\ &\forall xy.x+(y+1)=(y+1)+x,\\ &\vdash \forall nm.n+m=m+n \end{aligned}$

1.	$\forall y.y = 0 \lor (\exists z.y = z + 1)$	Premise
2.	$\forall x. x + 0 = x$	Premise
3.	$\forall x. x = 0 + x$	Premise
4.	$\forall xy.x + (y+1) = (y+1) + x$	Premise
5.	[c],[d]	Assumptions
6.	[d=e+1]	Assumption
7.	c + (e+1) = (e+1) + c	$\forall E, 4$
8.	c + (e+1) = d + c	= E2, 6, 7
9.	c + d = d + c	= E1, 6, 8
10.	$(d=e+1) \to (c+d=d+c)$	$\rightarrow I, 6-10$
11.	[d=0]	assumption
12.	c + 0 = c	$\forall E, 2$
13.	c = 0 + c	$\forall E, 3$
14.	c = d + c	= E2, 11, 13
15.	c + 0 = d + c	= E1, 12, 14
16.	c + d = d + c	= E1, 11, 16
17.	$(d=0) \to (c+d=d+c)$	$\rightarrow I, 11-16$
18.	$d = 0 \lor = e + 1$	$\forall E, 1$
19.	c + d = d + c	$\veeE, 18, 17, 10$
20.	$\forall n, m.n + m = m + n$	$\forall I, 5-19$

Problem 2

```
 \forall (U \in \mathbb{C}^{n \times n})(a \in \mathbb{C}^n)(b \in \mathbb{C}^n).U(\langle a|b\rangle) = \langle a|b\rangle, 
 \forall (U \in \mathbb{C}^{n \times n})(a \in \mathbb{C}^n)(b \in \mathbb{C}^n).U(ab) = U(a)U(b), 
 \forall a \in \mathbb{R}. \ (a \cdot a = a) \to (a = 0 \lor a = 1), 
 \forall (a \in \mathbb{C}^n)(b \in \mathbb{C}^n).\langle a|b\rangle = (\langle a| \otimes \langle 0|)(|b\rangle \otimes |0\rangle), 
 \forall (a \in \mathbb{C}^n)(b \in \mathbb{C}^n).(\langle a| \otimes \langle a|)(|b\rangle \otimes |b\rangle) = \langle a|b\rangle \cdot \langle a|b\rangle, 
 \vdash 
 ((U(|a\rangle \otimes |0\rangle) = |a\rangle \otimes |a\rangle) \land (U(|b\rangle \otimes |0\rangle) = |b\rangle \otimes |b\rangle)) \to \langle a|b\rangle = 0 \lor \langle a|b\rangle = 1
```

1.	$\forall (U \in \mathbb{C}^{n \times n}) (a \in \mathbb{C}^n) (b \in \mathbb{C}^n) . U(\langle a b \rangle) = \langle a b \rangle$	Premise
2.	$\forall (U \in \mathbb{C}^{n \times n}) (a \in \mathbb{C}^n) (b \in \mathbb{C}^n) . U(ab) = U(a) U(b)$	Premise
3.	$\forall a \in \mathbb{R}. \ (a \cdot a = a) \to (a = 0 \lor a = 1)$	Premise
4.	$\forall (a \in \mathbb{C}^n)(b \in \mathbb{C}^n).\langle a b\rangle = (\langle a \otimes \langle 0)(b\rangle \otimes 0\rangle)$	Premise
5.	$\forall (a \in \mathbb{C}^n)(b \in \mathbb{C}^n).(\langle a \otimes \langle a)(b\rangle \otimes b\rangle) = \langle a b\rangle \cdot \langle a b\rangle$	Premise
6.	$[((U(a\rangle\otimes 0\rangle)= a\rangle\otimes a\rangle)\wedge(U(b\rangle\otimes 0\rangle)= b\rangle\otimes b\rangle))]$	Assumption
7.	$U(a angle\otimes 0 angle)= a angle\otimes a angle$	$\wedge E1, 6$
8.	$U(a\rangle \otimes 0\rangle) = U(a\rangle) \otimes U(0\rangle)$	$\forall E, 2$
9.	$U(a\rangle)\otimes U(0\rangle)= a\rangle\otimes a angle$	= E1, 7, 8
10.	U(a angle)= a angle	$\forall E, 1$
11.	$U(0\rangle) = 0\rangle$	$\forall E, 1$
12.	$ a angle\otimes 0 angle= a angle\otimes a angle$	=E1*2,9,10,11
13.	$U(b angle\otimes 0 angle)= b angle\otimes b angle$	$\wedge E2, 6$
14.	$U(b\rangle \otimes 0\rangle) = U(b\rangle) \otimes U(0\rangle)$	$\forall E, 2$
15.	$U(b\rangle) \otimes U(0\rangle) = b\rangle \otimes b\rangle$	= E1, 13, 14
16.	$U(b\rangle) = b\rangle$	$\forall E, 1$
17.	$U(0\rangle) = 0\rangle$	$\forall E, 1$
18.	$ b angle\otimes 0 angle= b angle\otimes b angle$	=E1*2,15,16,17
19.	$\langle a b\rangle = (\langle a \otimes\langle 0)(b\rangle\otimes 0\rangle)$	$\forall E, 4$
20.	$\langle a b angle = (\langle a \otimes \langle 0)(b angle\otimes b angle)$	= E1, 18, 19
21.	$(\langle a \otimes\langle a)(b\rangle\otimes b\rangle)=\langle a b\rangle\cdot\langle a b\rangle$	$\forall E, 5$
22.	$(\langle a \otimes \langle 0)(b\rangle\otimes b\rangle)=\langle a b\rangle\cdot \langle a b\rangle$	= E1, 12, 21
23.	$\langle a b\rangle \cdot \langle a b\rangle = \langle a b\rangle$	= E1, 20, 22
24.	$(\langle a b\rangle \cdot \langle a b\rangle = \langle a b\rangle) \to (\langle a b\rangle = 0 \lor \langle a b\rangle = 1)$	$\forall E, 3$
25.	$\langle a b\rangle = 0 \lor \langle a b\rangle = 1$	$\rightarrow E, 23, 24$
26.	$((U(a\rangle\otimes 0\rangle)= a\rangle\otimes a\rangle)\wedge(U(b\rangle\otimes 0\rangle)= b\rangle\otimes b\rangle))\rightarrow\langle a b\rangle=0\vee\langle a b\rangle=1$	$\rightarrow I, 6-25$