Exponentialfunktionen Erkundung

Julina Elfert Tanel Malak Ben Siebert Moritz Junkermann

19. Januar 2024

Inhaltsverzeichnis

1	Able	eitungsregeln für Produkte	2	
	1.1	Teilaufgabe a)	2	
	1.2	Teilaufgabe b)	2	
	1.3	Teilaufgabe c)	2	
2	Produktregel-Zettel			
3	Fun	ktionen in Funktionen	4	
	3.1	Arbeitsauftrag A)	4	
		3.1.1 Teilaufgabe 1)	4	
		3.1.2 Teilaufgabe 2)	4	
	3.2	Arbeitsauftrag B)	4	
		3.2.1 Teilaufgabe 1)	4	
		3.2.2 Teilaufgabe 2)	4	
	3.3	Arbeitsauftrag C)	4	
4	Die Ableitung von Verkettungen untersuchen			
	4.1	Teilaufgabe a)	5	
	4.2	Teilaufgabe b)	5	
5	Test	wacen	6	

1. Ableitungsregeln für Produkte

1.1 Teilaufgabe a)

$f(x) = u(x) \times v(x)$	$u'(x) \times v(x)$	$u(x) \times v'(x)$
$x^6 = x^1 \times x^5$	$1 \times x^5 = x^5$	$x^2 \times 5x^4 = 5x^5$
$x^6 = x^2 \times x^4$	$2x \times x^4 = 2x^5$	$x^2 \times 4x^3 = 4x^5$
$x^6 = x^3 \times x^3$	$3x^2 \times x^3 = 3x^5$	$x^3 \times 3x^2 = 3x^5$
$x^6 = x^4 \times x^2$	$4x^4 \times x^2 = 4x^5$	$x^4 \times 2x = 2x^5$
$x^6 = x^5 \times x^1$	$5x^4 \times x^1 = 5x^5$	$x^5 \times 1 = x^5$

1.2 Teilaufgabe b)

Die Formel lautet: $f'(x) = \Big(u'(x) \times v(x)\Big) + \Big(u(x) \times v'(x)\Big)$

1.3 Teilaufgabe c)

$$f(x) = 3x^4 = 3x^2 \times x^2 = u(x) \times v(x)$$

Anwendung der Regel (siehe 1.2)

$$6x \times x^2 + 3x^2 \times 2x$$
$$= 6x^3 + 3x^3$$
$$= 12x^3$$

Hierdurch ist bewiesen, dass die Regel (siehe 1.2) stimmt.

2. Produktregel-Zettel

Richtige Reihenfolge:

1.
$$\frac{f(x_0+h)-f(x_0)}{h}$$

2. =
$$\frac{u(x_0+h)\times v(x_0+h)-u(x_0)\times v(x_0)}{h}$$

3. =
$$\frac{(u(x_0+h)-u(x_0))\times v(x_0)+u(x_0+h)\times (v(x_0+h)-v(x_0))}{h}$$

4. =
$$\frac{u(x_0+h)-u(x_0)}{h} \times v(x_0) + u(x_0+h) \times \frac{v(x_0+h)-v(x_0)}{h}$$

$$F\ddot{\mathrm{u}} \mathrm{r}\ h \to 0 = -u(x_0) * v(x_0)$$

3. Funktionen in Funktionen

3.1 Arbeitsauftrag A)

3.1.1 Teilaufgabe 1)

Funktionen: $f(x) = x^2$; $g_1(x) = (x - 1)^2$

Die Nullstellen von f und die der Ableitung f' sind identisch. Man konnte sehen, dass g identisch mit f nur um eine Einheit verschoben ist. Die Ableitung von g und von f verlaufen parallel. Beide Ableitungen verlaufen durch die Scheitelpunkt der jeweiligen Funktion.

3.1.2 Teilaufgabe 2)

Auf Grund der in Teilaufgabe eins erarbeiteten Ergebnisse, ist die Ableitung von g um b nach unten verschoben.

3.2 Arbeitsauftrag B)

3.2.1 Teilaufgabe 1)

Funktionen: $f(x) = x^2$; $h_1(x) = (2x)^2 = 4x^2$

Ableitungen: f'(x) = 2x; $h'_1(x) = 2x \times 4 = 8x$

Man erhält die Ableitung $h_1'(x)$ aus der Funktion f'(x), indem man vier mit der Ableitung $h_1'(x)$ multipliziert.

3.2.2 Teilaufgabe 2)

Funktion: $h(x) = f(a \times x)$

Um den Ableitungsgraphen von h(x) aus f'(x) zu erhalten, muss man diesen um den Faktor a multiplizieren (Strecken oder Stauchen).

3.3 Arbeitsauftrag C)

Allgemeine Regel Die Ableitung einer Funktion k(x) = f(ax - b) kann mit Hilfe des Ableitungsgraphen $f(x) = x^2$ erhalten werden, wenn dieser um b nach unten verschoben und mit a multipliziert wird.

4

4. Die Ableitung von Verkettungen untersuchen

4.1 Teilaufgabe a)

Schnipsel	Zusammenhang
$u(v) = v^2; \ u'(v) = 2v$	Ableitung
$v(x) = 3x + 1; \ v'(x) = 3$	Ableitung
$f(x) = 9x^2 + 6x + 1; \ f(x) = (3x+1)^2$	Klammern aufgelöst
$f(x) = 9x^2 + 6x + 1; \ f(x) = (3x+1)^2; \ f'(x) =$	Ableitung von $f(x)$
18x + 6	
$u'(v(x)) = 2 \times (3x+1); \ v(x) = 3x+1; \ u'(v) = 2v$	Eingesetzt
$f(x) = (3x+1)^2$	u(v(x)) eingesetzt

4.2 Teilaufgabe b)

Funktionen: $f(x) = (x+2)^2$; $g(x) = (e^x - 1)^2$

$$g(x) = (e^x - 1)^2 \Rightarrow g(x) = (e^x)^2 - e^x - e^x + 1 = (e^x)^2 - 2e^x + 1 = e^{2x} - 2e^x + 1$$

- 1. 1
- 2. 2
- 3. f'(x) = 2x + 4
- 4. $f(x) = x^2 + 4x + 4$
- 5. $f(x) = (x+2)^2$
- 6. $g(x) = (e^x 1)^2$
- 7. 7
- 8.8

5. Testwagen