

# เรื่อง การพยากรณ์อุณหภูมิเฉลี่ยของผิวโลก

## จัดทำโดย

นางสาว ปรียานุช สุภาสีบ รหัสนักศึกษา 61070306 นางสาว อิงฟ้า ภูติวรนาถ รหัสนักศึกษา 61070330

### เสนอ

ผศ.ดร.กนกวรรณ อัจฉริยะชาญวณิช

รายงานนี้เป็นส่วนหนึ่งของวิชา Introduction to Business Intelligence (06026115)
สาขาวิทยากรข้อมูลและการวิเคราะห์เชิงธุรกิจ คณะเทคโนโลยีสารสนเทศ
สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
ประจำภาคเรียนที่ 2 ปีการศึกษา

#### คำนำ

รายงานฉบับนี้เป็นส่วนหนึ่งของรายวิชา Introduction to Business Intelligence (06026115) โดยมีจุดประสงค์เพื่อการศึกษาความรู้ที่ได้จากการใช้ Alteryx ในการทำ Data Mining ผู้จัดทำได้เลือกหัวข้อ การพยากรณ์อุณหภูมิเฉลี่ยของผิวโลกในการจัดทำรายงาน

ผู้จัดทำขอขอบพระคุณ ผศ.ดร.กนกวรรณ อัจฉริยะชาญวณิช ผู้ให้ความรู้และแนวทางการศึกษา ผู้จัดทำหวังว่ารายงานฉบับนี้จะให้ความรู้และเป็นประโยชน์แก่ผู้อ่าน หากมีข้อผิดพลาดประการใด ผู้จัดทำขอ น้อมรับไว้และขออภัยมา ณ ที่นี้ด้วย

ผู้จัดทำ

## สารบัญ

|   |                                | หน้า |
|---|--------------------------------|------|
| ก | คำนำ                           | ก    |
| ข | สารบัญ                         | ગુ   |
| 1 | บทสรุปผู้บริหาร                | 1    |
| 2 | การอธิบายปัญหา                 | 2    |
| 3 | การอธิบายข้อมูล                | 2    |
| 4 | การเตรียมข้อมูล                | 3    |
| 5 | วิธีการไขปัญหาด้วย Data Mining | 11   |
| 6 | บทสรุป                         | 19   |
| 7 | บรรณานุกรม                     | 20   |

## 1.บทสรุปบริหาร

ในปัจจุบันสภาวะภูมิอากาศของโลกมีการเปลี่ยนแปลงไปอย่างมาก เนื่องมาจากสาเหตุภาวะโลกร้อน (Global Warming) โดยสังเกตได้จากการที่อุณหภูมิของโลกที่มีค่าสูงขึ้นมากขึ้นเรื่อยๆในทุกๆปี ซึ่งสาเหตุหลัก ของปัญหานี้เกิดจากก๊าซเรือนกระจก (Green House Gas) กล่าวคือมลภาวะจากก๊าซที่มีคุณสมบัติในการดูด ซับพลังงานความร้อนที่สะท้อนจากโลกกลับสู่ชั้นบรรยากาศ เช่น คาร์บอนไดออกไซด์ มีเทน ในตรัสออกไซด์ คลอโรฟลูออโรคาร์บอน เป็นต้น ก๊าซเหล่านั้นใช้ในกระบวนการผลิตของโรงงานอุตสาหกรรม บ้างเกิดจากไอ เสียจากการเผาไหม้เชื้อเพลิงในภาคขนส่ง หรือเมื่อภาคอุตสาหกรรมการผลิตไฟฟ้า หรือ การกระทำใดๆ ก๊าซ ดังกล่าวมีความสามารถในการกักเก็บความร้อนบางส่วนไว้ในโลก โดยไม่ปล่อยความร้อนสู่บรรยากาศ ด้วย ลักษณะที่คล้ายกับหลักการของเรือนกระจกที่ใช้ในการปลูกพืช จึงมักเรียกกันว่า ปรากฏการณ์เรือนกระจก (Greenhouse Effect)

ผลจากการที่อุณหภูมิเฉลี่ยของโลกสูงขึ้นทำให้เกิดการเปลี่ยนแปลงของสภาพภูมิอากาศ (Climate Change) จะส่งผลต่อการดำรงอยู่ของสิ่งมีชีวิตทั้งมนุษย์สัตว์โดยตรง และยังส่งผลทางอ้อมต่อความมั่นคงทาง สังคม และเศรษฐกิจของประเทศ อาทิเช่น การส่งผลกระทบทางลบต่อผลผลิตทางการเกษตร ผลิตภาพของ แรงงานซึ่งเกิดจากสภาวะการทำงานที่ไม่เป็นปกติ ทำงานได้ยากลำบากขึ้น สุขภาพทางจิตใจย่ำแย่ซึ่งจะทำให้ อัตราการเติบโตของเศรษฐกิจโลกได้รับผลกระทบตามมา

ผู้จัดทำจึงตระหนัก และเลือกที่จะศึกษาในเรื่องก๊าซเรือนกระจกดังกล่าวโดยใช้เทคนิค Data Mining ด้วยเทคนิคการวิเคราะห์การถดถอยเชิงเส้น (Linear Regression) ในการพยากรณ์ว่าอุณหภูมิเฉลี่ยของโลกจะ สูงขึ้น หรือลดลงตามปริมาณก๊าซที่ก่อให้เกิดสภาวะเรือนกระจก เพื่อนำค่าทำนายไปใช้วิเคราะห์ในการลด ปริมาณของก๊าซเรือนกระจก และวางแผนที่จะรณรงค์ทางด้านทรัพยากรธรรมชาติในทุกๆด้าน รวมถึงการ อนุรักษ์สิ่งแวดล้อมอย่างเหมาะสม ดังนั้นการทำให้ผู้คนได้ตระหนักถึงผลกระทบที่รุนแรงจากภาวะอุณหภูมิ โลกที่สูงขึ้น จะทำให้การดำรงชีวิตในปัจจุบันของทุกคนได้คงอยู่ต่อไป การปรับตัว และสร้างภูมิคุ้มกันให้เข้ากับ สภาพแวดล้อมที่เปลี่ยนไป เป็นสิ่งที่ควรดำเนินการควบคู่กันไป และต้องดำเนินการโดยเร่งด่วนอย่างมี ประสิทธิภาพ

ซึ่งทางผู้จัดทำได้เลือกข้อมูลที่จะทำการวิเคราะห์มาจากทั้ง 2 ตาราง คือ จากตารางที่ 3.1 berkley\_earth\_GlobalTemperatures ได้เลือกใช้ตัวแปร LandAverageTemperature มาเป็นตัวแปร ตามสำหรับสมการทำนาย และตัวแปร dt และจากตารางที่ 3.2 noaa\_aggi\_forcing ทำการเลือกตัวแปร ก๊าซเรือนกระจกทั้งหมด 6 ตัวแปร คือ CO2, CH4, N2O, CFC12, CFC11, 15\_minor มาเป็นตัวแปรต้น สำหรับสมการทำนาย และตัวแปร year อีกหนึ่งตัวแปรในการสร้างสมการพยากรณ์

## 2.คำอธิบายปัญหา

### เป้าหมายของการทำ Data Mining

เป้าหมายของการวิเคราะห์ คือ การพยากรณ์อุณหภูมิเฉลี่ยของโลกว่าจะสูงขึ้น หรือ ลดลงด้วยตัวแปร อิสระ คือ ปริมาณก๊าซที่ก่อให้เกิดภาวะเรือนกระจก โดยทางเราได้เลือกใช้เทคนิคการวิเคราะห์การถดถอยเชิง เส้น (Linear Regression) ในการทำนายค่าเฉลี่ยของอุณหภูมิโลก ซึ่งการที่อุณหภูมิของโลกมีแนวโน้มเริ่ม สูงขึ้นในทุกๆปีทำให้ทางผู้จัดทำจึงใช้ค่าทำนายเพื่อนำไปช่วยในการลดปริมาณก๊าซเรือนกระจกที่มีการปล่อย ออกมามากเกินไป และช่วยในการวางแผนการจัดการทรัพยากรธรรมชาติในอนาคตอย่างเหมาะสม

## 3.การอธิบายข้อมูล

## การเก็บรวบรวมข้อมูล

ข้อมูลที่นำมาใช้เป็นข้อมูลทุติยภูมิ (Secondary Data) เป็นข้อมูลที่ผู้จัดทำไม่ได้เก็บรวบรวมเอง โดย นำชุดข้อมูลมาจากเว็บไซต์ Data.world เป็นเว็บไซต์ที่เก็บรวบรวมข้อมูลมาให้เรียบร้อยแล้ว และหัวข้อเรื่องที่ ใช้คือ Global Temp & Greenhouse Gas

## ข้อมูลที่ใช้

ตารางที่ 3.1 berkley\_earth\_GlobalTemperatures

| ตัวแปร                                    | ประเภทข้อมูล | คำอธิบาย                      |
|-------------------------------------------|--------------|-------------------------------|
| dt                                        | date         | ปี-เดือน-วัน                  |
| LandAverageTemperature                    | decimal      | ค่าเฉลี่ยอุณหภูมิผิวโลก       |
| LandAverageTemperatureUncertainty         | decimal      | ความไม่แน่นอนของค่าเฉลี่ย     |
|                                           |              | อุณหภูมิผิวโลก                |
| LandMaxTemperature                        | decimal      | ค่าอุณหภูมิผิวโลกที่สูงที่สุด |
| LandMaxTemperatureUncertainty             | decimal      | ความไม่แน่นอนของค่า           |
|                                           |              | อุณหภูมิผิวโลกที่สูงที่สุด    |
| LandMinTemperature                        | decimal      | ค่าอุณหภูมิผิวโลกที่ต่ำที่สุด |
| LandMinTemperatureUncertainty             | decimal      | ความไม่แน่นอนของค่า           |
|                                           |              | อุณหภูมิผิวโลกที่ต่ำที่สุด    |
| LandAndOceanAverageTemperature            | decimal      | อุณหภูมิเฉลี่ยผิวโลกและใน     |
|                                           |              | มหาสมุทร                      |
| LandAndOceanAverageTemperatureUncertainty | decimal      | ความไม่แน่นอนของอุณหภูมิ      |
|                                           |              | เฉลี่ยผิวโลกและในมหาสมุทร     |

จากตารางที่ 3.1 ได้แสดงข้อมูลรายละเอียดของตัวแปรต่างๆของค่าเฉลี่ยอุณหภูมิผิวโลกทั่วโลกในทุกเดือน ตั้งแต่ปี ค.ศ. 1750 จนถึงปี 2015 มีจำนวนทั้งสิ้น 3,192 แถวโดยในการทำพยากรณ์นี้ เราได้เลือกใช้ตัวแปร LandAverageTemperature คือ ค่าเฉลี่ยอุณหภูมิโลกเพื่อเป็นตัวแปรตามในการวิเคราะห์สมการถดถอยเชิง เส้น และตัวแปร dt คือ ปี-เดือน-วัน ที่มีการเก็บข้อมูลค่าเฉลี่ยอุณหภูมิโลก

ตารางที่ 3.2 noaa aggi forcing

| ตัวแปร           | ประเภทข้อมูล | คำอธิบาย                              |
|------------------|--------------|---------------------------------------|
| year             | string       | ปี ค.ศ                                |
| CO2              | decimal      | ก๊าซคาร์บอนไดออกไซด์                  |
| CH4              | decimal      | ก๊าซมีเทน                             |
| N2O              | decimal      | ก๊าซไนตรัสออกไซด์                     |
| CFC12            | decimal      | ก๊าซไดคลอโรไดฟลูโอโรมีเทน             |
| CFC11            | decimal      | ก๊าซไตรคลอโรฟลูโอโรมีเทน              |
| 15_minor         | decimal      | ก๊าซเรือนกระจก 15-minor               |
| total            | decimal      | ผลรวม                                 |
| co2_eq_ppm_total | decimal      | ผลรวมคาร์บอนไดออกไซด์เทียบเท่า        |
| aggi_1990_1      | decimal      | ดัชนีก๊าซเรือนกระจก ใช้ปี 1990 เป็นปี |
|                  |              | พื้นฐานที่มีค่าเท่ากับ 1              |
| aggi_change      | decimal      | ดัชนีก๊าซเรือนกระจก                   |

จากตารางที่ 3.2 แสดงข้อมูลรายละเอียดของตัวแปรก๊าซที่ส่งผลทำให้เกิดสภาวะเรือนกระจกรวมถึงดัชนีก๊าซ เรือนกระจกซึ่งมีการเก็บข้อมูลปริมาณก๊าซเรือนกระจกมาตั้งแต่ปี ค.ศ. 1979 จนถึงปี 2015 เป็นจำนวนข้อมูล ทั้งหมด 39 แถว ทางผู้จัดทำได้เลือกตัวแปรก๊าซเรือนกระจกที่นำไปใช้ในการพยากรณ์ทั้งหมด 6 ตัวแปร คือ CO2, CH4, N2O, CFC12, CFC11, 15\_minor และได้เลือกตัวแปร year คือ ปีค.ศ.ที่ได้ทำการเก็บข้อมูล ปริมาณก๊าซเรือนกระจก

## 4.การเตรียมข้อมูล

1.นำ Input Data Tool มาวางใน Workflow จากนั้นเชื่อมต่อข้อมูลที่มีชื่อไฟล์ว่า berkley\_earth\_Global Temperatures.csv ดังที่แสดงในรูปที่ 4.1



รูปที่ 4.1 การเชื่อมข้อมูลด้วย Input Data Tool

2.น้ำ Select Tool มาวางต่อจาก Input Data Tool จากนั้นเลือกข้อมูลแค่ Landaveragetemperature และ dt แล้วเปลี่ยน Type ของข้อมูล Landaveragetemperature จาก String เป็น int64 ดังแสดงรูปที่ 4.2



รูปที่ 4.2 การใช้ Select Tool เพื่อเลือกฟิลด์ที่ต้องการ และเปลี่ยน type ข้อมูล

3.จากรูปที่ 4.3 นำ Text To Columns Tool หรือ เครื่องมือที่ใช้ในการตัดคำ และให้ทำการตั้งค่าใน Configuration ดังนี้

- -เลือกคอลัมน์ dt ตรงส่วน column to split
- -กำหนดส่วน Delimiters คือ "-"
- -กำหนดส่วน number of columns(จำนวนคอลัมน์) คือ 3



รูปที่ 4.3 การนำ Text To Columns Tool มาใช้ในการตัดคำในคอลัมน์ dt

4.ใช้ Select Tool ในการเลือกฟิลด์ที่ต้องการ คือ 1 และ Landaveragetemperature แล้วเปลี่ยนชื่อฟิลด์ที่ ชื่อ 1 เป็น Year ดังรูปที่ 4.4



รูปที่ 4.4 การใช้ Select Tool เพื่อเปลี่ยนชื่อฟิลด์ เลือกฟิลด์ที่ต้องการ

5.จากรูปที่ 4.5 เนื่องจากข้อมูลที่นำมาใช้นั้นมีข้อมูลบางส่วนที่เป็นค่า Null จึงต้องมีการกรอง ค่า Null ออก โดยใช้ Filter Tool และทำการตั้งค่า Configuration เพื่อไม่ให้ข้อมูลมีค่า Null โดยเลือก Customer filter จากนั้นใส่คำสั่งเพื่อกรองข้อมูลที่มี Null ดังนี้

!IsNull([year]) AND !IsNull([LandAverageTemperature])



รูปที่ 4.5 การใช้ Filter Tool ในการกรองค่า Null

6.ทำการ Summarize ข้อมูล โดยใช้ Summarize Tool ในส่วนของ Configuration ให้ทำการจัดค่า Year แบบ Group by, LandAverageTemperature แบบ Average ตามลำดับในรูปที่ 4.6



รูปที่ 4.6 การใช้ Summarize Tool เพื่อจัดกลุ่มข้อมูล และหาค่าเฉลี่ย

7.น้ำ Input Data Tool มาวางใน Workflow จากนั้นเชื่อมต่อกับข้อมูล noaa\_aggi\_forcing.csv ดังที่ แสดงในรูปที่ 4.7



รูปที่ 4.7 การนำ Input Data Tool มาเชื่อมต่อข้อมูล

8.นำ Select Tool มาวางต่อจาก Input Data Tool จากนั้นเลือกฟิลด์ข้อมูลที่ต้องการใช้ คือ Year, CO2, CH4, N2O, CFC12, CFC11 และ 15-minor ดังรูปที่ 4.8



รูปที่ 4.8 การนำ Select Tool มาเลือกฟิลด์ที่ต้องการ

9.จากรูปที่ 4.9 เนื่องจากข้อมูลที่นำมาใช้นั้นมีข้อมูลบางส่วนที่เป็นค่า Null จึงต้องมีการกรองค่า Null ออก โดยใช้ Filter Tool และทำการตั้งค่า Configuration เพื่อไม่ให้ข้อมูลมีค่า Null โดยเลือก Customer filter จากนั้นใส่คำสั่งเพื่อกรองข้อมูลที่มี Null ดังนี้

!IsNull([Year]) AND
!IsNull([CO2]) AND
!IsNull([CH4]) AND
!IsNull([N2O]) AND
!IsNull([CFC12]) AND
!IsNull([CFC11]) AND

!IsNull([15-minor])



รูปที่ 4.9 การใช้ Filter Tool กรองค่า Null

10. จากนั้นนำ Join Tool มาวางใน Workflow แล้วเชื่อมข้อมูลตารางจากสองแหล่งเข้าด้วยกันโดยใช้ Join by Specific Fields ทำการเลือก Left เป็น Year และ Right เป็น Year ดังรูปที่ 4.10



รูปที่ 4.10 การตั้งค่า configuration ใน Join Tool เพื่อเชื่อมตาราง

11.เมื่อดูจากรูปที่ 4.11 จะมีฟิลด์ Year ที่ซ้ำกันเมื่อทำการ Join ข้อมูลดังนั้นจึงต้องนำฟิลด์ที่ซ้ำกันออกโดย การคลิกที่ Options และเลือก Deselect Duplicate ดังรูปที่ 4.11

|   |              | Input | Field    | Type     |   | Size | Rename     | De  |
|---|--------------|-------|----------|----------|---|------|------------|-----|
| Þ |              | Left  | Year     | V_String | • | 254  |            | Tex |
|   | $\checkmark$ | Left  | Avg_Land | Double   | • | 8    |            |     |
|   |              | Right | Year     | V_String | • | 254  | Right_Year |     |
|   |              | Right | CO2      | V_String | • | 254  |            |     |
|   | $\checkmark$ | Right | CH4      | V_String | • | 254  |            |     |
|   |              | Right | N2O      | V_String | • | 254  |            |     |
|   | $\checkmark$ | Right | CFC12    | V_String | • | 254  |            |     |
|   |              | Right | CFC11    | V_String | • | 254  |            |     |
|   |              | Right | 15-minor | V_String | • | 254  |            |     |
|   | $\checkmark$ |       | *Unknown | Unknown  | • | 0    |            | Dyı |

รูปที่ 4.11 เป็นส่วนของ configuration ด้านล่างใน Join Tool

ผลลัพธ์หลังการเชื่อมข้อมูลจากทั้ง 2 ตารางจะได้ทั้งหมด 9 Fields 37 records ดังรูปที่ 4.12

| 9 of 9 Field | 9 of 9 Fields ▼ ✔ Cell Viewer ▼ 37 records displayed ↑ ↓ |                            |            |       |       |       |       |       |          |
|--------------|----------------------------------------------------------|----------------------------|------------|-------|-------|-------|-------|-------|----------|
| Record       | Year                                                     | Avg_LandAverageTemperature | Right_Year | CO2   | CH4   | N20   | CFC12 | CFC11 | 15-minor |
| 1            | 1979                                                     | 8.25                       | 1979       | 1.027 | 0.406 | 0.104 | 0.092 | 0.039 | 0.031    |
| 2            | 1980                                                     | 8.416667                   | 1980       | 1.058 | 0.413 | 0.104 | 0.097 | 0.042 | 0.034    |
| 3            | 1981                                                     | 8.666667                   | 1981       | 1.077 | 0.42  | 0.107 | 0.102 | 0.044 | 0.036    |
| 4            | 1982                                                     | 8.166667                   | 1982       | 1.089 | 0.426 | 0.111 | 0.107 | 0.046 | 0.038    |
| 5            | 1983                                                     | 8.416667                   | 1983       | 1.115 | 0.429 | 0.113 | 0.113 | 0.048 | 0.041    |
| 6            | 1984                                                     | 8.166667                   | 1984       | 1.14  | 0.432 | 0.116 | 0.118 | 0.05  | 0.044    |
| 7            | 1985                                                     | 8.083333                   | 1985       | 1.162 | 0.437 | 0.118 | 0.123 | 0.053 | 0.047    |
| 8            | 1986                                                     | 8.166667                   | 1986       | 1.184 | 0.442 | 0.122 | 0.129 | 0.056 | 0.049    |
| 9            | 1987                                                     | 8.5                        | 1987       | 1.211 | 0.447 | 0.12  | 0.136 | 0.059 | 0.053    |
| 10           | 1988                                                     | 8.583333                   | 1988       | 1.25  | 0.451 | 0.122 | 0.143 | 0.062 | 0.057    |

รูปที่ 4.12 ผลลัพธ์จากการเชื่อมตาราง

12.ใช้ Select Tool ดังรูปที่ 4.13 ในการเลือกฟิลด์ที่ต้องการ คือ Year, CO2, CH4, N2O, CFC12, CFC11 และ 15-minor แล้วเปลี่ยน Type จาก String เป็น Float ยกเว้นฟิลด์ Year ดังที่แสดงในรูปที่ 4.14



รูปที่ 4.13 การนำ Select Tool มาใช้ในการเลือกฟิลด์



รูปที่ 4.14 การ configuration ค่าใน Select Tool

## ผลลัพธ์ที่ได้หลังจาการใช้ Select Tool จะได้ข้อมูลทั้งหมด 8 Fields 37 records ดังรูปที่ 4.15

| 8 of 8 Fields • V Cell Viewer • 37 records displayed |    |      |                            |       |       |       |       |       |          |  |
|------------------------------------------------------|----|------|----------------------------|-------|-------|-------|-------|-------|----------|--|
| Record                                               | ,  | Year | Avg_LandAverageTemperature | CO2   | CH4   | N20   | CFC12 | CFC11 | 15-minor |  |
|                                                      | 1  | 1979 | 8.25                       | 1.027 | 0.406 | 0.104 | 0.092 | 0.039 | 0.031    |  |
|                                                      | 2  | 1980 | 8.416667                   | 1.058 | 0.413 | 0.104 | 0.097 | 0.042 | 0.034    |  |
|                                                      | 3  | 1981 | 8.666667                   | 1.077 | 0.42  | 0.107 | 0.102 | 0.044 | 0.036    |  |
|                                                      | 4  | 1982 | 8.166667                   | 1.089 | 0.426 | 0.111 | 0.107 | 0.046 | 0.038    |  |
|                                                      | 5  | 1983 | 8.416667                   | 1.115 | 0.429 | 0.113 | 0.113 | 0.048 | 0.041    |  |
|                                                      | 6  | 1984 | 8.166667                   | 1.14  | 0.432 | 0.116 | 0.118 | 0.05  | 0.044    |  |
|                                                      | 7  | 1985 | 8.083333                   | 1.162 | 0.437 | 0.118 | 0.123 | 0.053 | 0.047    |  |
|                                                      | 8  | 1986 | 8.166667                   | 1.184 | 0.442 | 0.122 | 0.129 | 0.056 | 0.049    |  |
|                                                      | 9  | 1987 | 8.5                        | 1.211 | 0.447 | 0.12  | 0.136 | 0.059 | 0.053    |  |
|                                                      | 10 | 1988 | 8.583333                   | 1.25  | 0.451 | 0.122 | 0.143 | 0.062 | 0.057    |  |
|                                                      | 11 | 1989 | 8.416667                   | 1.274 | 0.455 | 0.126 | 0.149 | 0.064 | 0.061    |  |
|                                                      | 12 | 1990 | 8.666667                   | 1,292 | 0.459 | 0.129 | 0.154 | 0.065 | 0.065    |  |

รูปที่ 4.15 ผลลัพธ์จากการใช้ Select Tool

## 5.วิธีการแก้ไขปัญหาด้วย Data Mining

หลังจากได้ทำการจัดเตรียมและทำความสะอาดข้อมูลแล้ว จึงจะสามารถนำข้อมูลมาทำการพยากรณ์ (Prediction) ด้วยเทคนิค Linear Regression ดังขั้นตอนต่อไปนี้

1.นำ Create Samples Tool ดังรูปที่ 5.1 มาวางต่อจาก Select Tool เพื่อใช้แบ่งข้อมูลออกเป็น 2 ชุด



รูปที่ 5.1 การนำ Create Sample Tool มาวางใน workflow

2.กำหนดค่า configuration ให้ Estimation sample percent เป็น 80 และ Validation sample percent เป็น 20 เพื่อแบ่งชุดข้อมูลออกเป็น 2 ชุด คือ Train และ Test ดังรูปที่ 5.2



รูปที่ 5.2 การ configuration ใน Create Samples Tool

จากรูปที่ 5.3 จะแสดงผลลัพธ์ของชุดข้อมูลสำหรับใช้ Train จะมีทั้งหมด 8 Fields 30 records

| Record |   | Year | Avg LandAverageTemperature | CO2   | CH4   | N2O   | CFC12 | CFC11 | 15-minor    |
|--------|---|------|----------------------------|-------|-------|-------|-------|-------|-------------|
| Necolu |   |      | Avg_tanuAverageTemperature | COZ   | Cri4  | 1420  | CICIZ | CICII | 13-11111101 |
|        | 1 | 1979 | 8.25                       | 1.027 | 0.406 | 0.104 | 0.092 | 0.039 | 0.031       |
|        | 2 | 1980 | 8.416667                   | 1.058 | 0.413 | 0.104 | 0.097 | 0.042 | 0.034       |
|        | 3 | 1981 | 8.666667                   | 1.077 | 0.42  | 0.107 | 0.102 | 0.044 | 0.036       |
|        | 4 | 1982 | 8.166667                   | 1.089 | 0.426 | 0.111 | 0.107 | 0.046 | 0.038       |
|        | 5 | 1983 | 8.416667                   | 1.115 | 0.429 | 0.113 | 0.113 | 0.048 | 0.041       |
|        | 6 | 1984 | 8.166667                   | 1.14  | 0.432 | 0.116 | 0.118 | 0.05  | 0.044       |
|        | 7 | 1985 | 8.083333                   | 1.162 | 0.437 | 0.118 | 0.123 | 0.053 | 0.047       |
|        | 8 | 1986 | 8.166667                   | 1.184 | 0.442 | 0.122 | 0.129 | 0.056 | 0.049       |
|        | 9 | 1087 | 0.5                        | 1 211 | 0.447 | 0.12  | 0.136 | 0.050 | 0.053       |

รูปที่ 5.3 ผลลัพธ์จากชุดข้อมูล Train

จากรูปที่ 5.4 จะแสดงผลลัพธ์ชุดข้อมูลสำหรับใช้ Test จะมีทั้งหมด 8 Fields 7 records

| 8 of 8 Fields • V Cell Viewer • 7 records displayed |   |      |                            |       |       |       |       |       |          |
|-----------------------------------------------------|---|------|----------------------------|-------|-------|-------|-------|-------|----------|
| Record                                              |   | Year | Avg_LandAverageTemperature | CO2   | CH4   | N20   | CFC12 | CFC11 | 15-minor |
|                                                     | 1 | 1989 | 8.416667                   | 1.274 | 0.455 | 0.126 | 0.149 | 0.064 | 0.061    |
|                                                     | 2 | 1990 | 8.666667                   | 1.292 | 0.459 | 0.129 | 0.154 | 0.065 | 0.065    |
|                                                     | 3 | 1993 | 8.25                       | 1.334 | 0.467 | 0.133 | 0.164 | 0.068 | 0.074    |
|                                                     | 4 | 1997 | 8.75                       | 1.426 | 0.474 | 0.142 | 0.171 | 0.067 | 0.079    |
|                                                     | 5 | 2003 | 9.083333                   | 1.6   | 0.483 | 0.157 | 0.174 | 0.064 | 0.088    |
|                                                     | 6 | 2009 | 9.25                       | 1.76  | 0.489 | 0.172 | 0.171 | 0.061 | 0.103    |
|                                                     | 7 | 2013 | 9.25                       | 1.882 | 0.496 | 0.184 | 0.167 | 0.059 | 0.114    |

รูปที่ 5.3 ผลลัพธ์จากชุดข้อมูล Test

3.นำ Linear Regression Tool มาวางต่อจาก Create samples Tool ในขา E เพื่อทำการวิเคราะห์โมเดล ดังที่แสดงในรูปที่ 5.4



รูปที่ 5.4 การนำ Linear Regression Tool มาวางใน workflow

ทำการตั้งค่า Configuration โดยการตั้งชื่อโมเดลว่า Linear\_Regression จากนั้นทำการ Select the target variable (เลือกค่าเป้าหมาย) คือ Avg\_landAverageTemperature แล้ว Select the predictor variables (เลือกตัวแปรต้น) ที่คิดว่าจะส่งผลต่อตัวแปรตามหรือ ค่าเป้าหมายที่ได้เลือกไว้ ซึ่งทางผูจัดทำได้เลือกตัวแปรต้น คือ CO2, CH4, N2O, CFC12, CFC11 และ 15-minor ดังรูปที่ 5.5

|          | Setup                                    |   |  |   |  |  |  |
|----------|------------------------------------------|---|--|---|--|--|--|
| Model    | Model name                               |   |  |   |  |  |  |
| Linear   | r_Regression                             |   |  |   |  |  |  |
| Select t | the target variable                      |   |  |   |  |  |  |
| Avg_l    | LandAverageTemperature                   |   |  | • |  |  |  |
| Select t | Select the predictor variables           |   |  |   |  |  |  |
| Select   | Selected: 6 Fields: 8 Show: All Selected |   |  |   |  |  |  |
|          |                                          |   |  |   |  |  |  |
|          | Year                                     |   |  |   |  |  |  |
|          | Avg_LandAverageTemperature               | : |  |   |  |  |  |
| ~        | CO2                                      |   |  |   |  |  |  |
| ~        | CH4                                      |   |  |   |  |  |  |
| ~        | ✓ N2O                                    |   |  |   |  |  |  |
| ~        |                                          |   |  |   |  |  |  |
| ~        | CFC11                                    |   |  |   |  |  |  |
| ~        | 15-minor                                 |   |  |   |  |  |  |

รูปที่ 5.5 การตั้งค่าใน Linear Regression Tool

4.จากรูปที่ 5.6 ได้นำ Browse Tool มาต่อกับขา R ของ Linear Regression Tool เพื่อดูผลลัพธ์ที่เป็น รายงานทางสถิติต่างๆ ในรูปที่ 5.7 และ 5.8



รูปที่ 5.6 การนำ Browse Tool มาวางใน workflow

#### Report

#### Report for Linear Model Linear\_Regression

Basic Summary

Call:

 $Im(formula = Avg\_LandAverageTemperature \sim CO2 + CH4 + N2O + CFC12 + CFC11 + X15.minor, data = the.data)$ 

#### Residuals:

| Min           | 1Q       | Median     | 3Q       | Max        |
|---------------|----------|------------|----------|------------|
| -0.2647       | -0.1089  | -0.0116    | 0,1208   | 0,2604     |
| Coefficients: |          |            |          |            |
|               | Estimate | Std. Error | t value  | Pr(> t )   |
| (Intercept)   | 7,5415   | 4.984      | 1,51328  | 0.14383    |
| CO2           | 7.8459   | 2.636      | 2.97673  | 0.00675 ** |
| CH4           | -0.8047  | 15.772     | -0.05102 | 0.95975    |

|             | Locilliaco | 500    |          | ''('   ' ) |
|-------------|------------|--------|----------|------------|
| (Intercept) | 7,5415     | 4,984  | 1,51328  | 0,14383    |
| CO2         | 7.8459     | 2.636  | 2.97673  | 0.00675 ** |
| CH4         | -0,8047    | 15,772 | -0.05102 | 0,95975    |
| N2O         | -68,1715   | 27,180 | -2.50815 | 0,01964 *  |
| CFC12       | 11,4460    | 9,318  | 1,22838  | 0.23173    |
| CFC11       | -17.6024   | 30,082 | -0.58516 | 0,56414    |
| X15.minor   | -9.6098    | 17.261 | -0.55674 | 0.58308    |
|             |            |        |          |            |

Significance codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.16758 on 23 degrees of freedom Multiple R-squared: 0.8347, Adjusted R-Squared: 0.7916

F-statistic: 19.36 on 6 and 23 degrees of freedom (DF), p-value 6.212e-08

Type II ANOVA Analysis

Response: Avg\_LandAverageTemperature

|           | Sum Sq | DF | F value | Pr(>F)     |
|-----------|--------|----|---------|------------|
| CO2       | 0,25   | 1  | 8.86    | 0,00675 ** |
| CH4       | 0      | 1  | 0       | 0,95975    |
| N2O       | 0.18   | 1  | 6.29    | 0.01964 *  |
| CFC12     | 0.04   | 1  | 1.51    | 0.23173    |
| CFC11     | 0.01   | 1  | 0,34    | 0,56414    |
| X15,minor | 0.01   | 1  | 0.31    | 0,58308    |
| Residuals | 0.65   | 23 |         |            |

Significance codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

รูปที่ 5.7 รายงานทางสถิติโดยสรุปต่างๆของสมการทำนาย



รูปที่ 5.7 รายงานของกราฟ Basic Diagnostic Plots

5.นำ Browse Tool มาต่อกับขา I ของ Linear Regression Tool ดังรูปที่ 5.8 เพื่อดูผลลัพธ์ซึ่งผลลัพธ์ของขา I นั้นจะคล้ายกับขา R แต่จะแยกแต่ละเรื่องของค่าทางสถิติดังนี้ Summary(ดังรูปที่ 5.9 และ 5.10), Model Performance(ดังรูปที่ 5.11 และ 5.12), Diagnostics(ดังรูปที่ 5.11)



รูปที่ 5.8 การนำ Browse Tool มาวางใน workflow



รูปที่ 5.9 รายงานแสดงค่าสถิติพรรณนาสรุปต่างๆ



รูปที่ 5.10 รายงานแสดงค่า coefficient ของสมการทำนาย



รูปที่ 5.11 Scatter Plot แสดงความสัมพันธ์ระหว่างค่า Predict กับค่า Actual



รูปที่ 5.12 Histogram ของค่าความคลาดเคลื่อนของสมการทำนาย



รูปที่ 5.13 กราฟรายงานของสถิติแบบ Diagnostics

6.หลังจากนั้นจะต้องตรวจสอบค่า Coefficients ที่นำมาสร้างสมการการทำนายโดยจะต้องทำการรันไฟล์ที่ชื่อ ว่า Model+Coefficients.yxzp ซึ่งเป็น Alteryx Macro หลังจากนั้นทำการนำ Model Coefficients Tool มาเชื่อมต่อกับขา O ของ Linear Regression Tool และนำ Browse มาเชื่อมต่อกับ Model Coefficients Tool ดังรูปที่ 5.14 เพื่อดูผลลัพธ์หลังจากใช้ Browse Tool ดังรูปที่ 5.15



รูปที่ 5.14 การนำ Model Coefficients Tool และBrowse Tool มาวางใน workflow

| 2 of 2 Fields • Cell Viewer • 7 records |             |               |
|-----------------------------------------|-------------|---------------|
| Record                                  | Variable    | Coefficient : |
| 1                                       | (Intercept) | 7.541508      |
| 2                                       | CO2         | 7.845904      |
| 3                                       | CH4         | -0.804697     |
| 4                                       | N2O         | -68.17152     |
| 5                                       | CFC12       | 11.446014     |
| 6                                       | CFC11       | -17.602419    |
| 7                                       | X15.minor   | -9.60975      |

รูปที่ 5.15 ผลลัพธ์ Model Coefficients Tool เมื่อเชื่อมกับ Browse Tool

จากรูปที่ 5.10 และ 5.15 จะเห็นค่า Coefficient ของแต่ละตัวแปร ดังนั้นสมการทำนายในการคำนวณจาก โมเดลนี้ คือ

```
Y = 7.541508 + (7.845904)X_1 + (-0.804697)X_2 + (-68.17152)X_3 + (11.4460114)X_4 + (-17.602419)X_5 + (-9.60975)X_6
```

หรือ Avg\_landAverageTemperature = 7.541508 + (7.845904)CO2 + (-0.804697)CH4 + (-68.17152)N2O + (11.4460114)CFC12 + (-17.602419)CFC11 + (-9.60975)X15.minor

7.นำ Score Tool มาวางเชื่อมต่อ โดยนำ Input Data มาจากข้อมูล 20% ที่แบ่งไว้จาก Create Samples Tool ในขา V ต่อกับขา D และ ขา O จาก Linear Regression Tool ให้ต่อที่ขา M ดังรูปที่ 5.16



รูปที่ 5.16 การนำ Score Tool มาวางใน workflow

ทำการ configuration ใน Score Tool โดยตั้งชื่อฟิลด์ใหม่ว่า Predict ใน Configure Local Model Options ดังที่แสดงในรูปที่ 5.17

| Model Type —————                                                      |  |  |
|-----------------------------------------------------------------------|--|--|
| Local Model                                                           |  |  |
| Alteryx Promote Model                                                 |  |  |
| Configure Local Model Options                                         |  |  |
| The new field name (continuous target) or prefix (categorical target) |  |  |
| Predict                                                               |  |  |
| The target field has an oversampled value                             |  |  |
| Non-regularized linear regression only options                        |  |  |
| The target field has been natural log transformed                     |  |  |
| Include a prediction confidence interval                              |  |  |
| XDF input specific options                                            |  |  |
| Append scores to the input XDF file                                   |  |  |
| The number of records to score at a time                              |  |  |

รูปที่ 5.17 การตั้งค่าใน Score Tool

8.นำ Browse Tool มาเชื่อมต่อจาก Score Tool เพื่อดูผลลัพธ์หลังจากนั้นจะได้ workflow สุดท้าย ดังรูปที่ 5.18



รูปที่ 5.18 การนำ Browse Tool มาวางใน workflow

ผลลัพธ์หลังจากใช้ Browse Tool มาเชื่อมต่อจาก Score Tool จะได้ข้อมูลทั้งหมด 9 Fields 7 records ดังที่ แสดงในรูปที่ 5.19



รูปที่ 5.19 ผลลัพธ์จากการใช้ Browse Tool มาเชื่อมกับ Score Tool

### 6.บทสรุป

ในการสร้างการทำนายด้วยเทคนิคการวิเคราะห์การถดถอยเชิงเส้น (Linear Regression) จะเห็นได้ ผลลัพธ์ของค่า coefficient จากรูปที่ 5.10 ออกมาเป็นสมการทำนายดังนี้

$$Y = 7.541508 + (7.845904)X_1 + (-0.804697)X_2 + (-68.17152)X_3 + (11.4460114)X_4 + (-17.602419)X_5 + (-9.60975)X_6$$

หรือ Avg\_landAverageTemperature = 7.541508 + (7.845904)CO2 + (-0.804697)CH4 + (-68.17152)N2O + (11.4460114)CFC12 + (-17.602419)CFC11 + (-9.60975)X15.minor

และจากรูปที่ 5.19 จะเห็นผลลัพธ์ของค่า Predict ที่ได้นั้นมีค่าค่อนข้างใกล้เคียงกับค่า Avg\_landAverageTemperature แสดงให้เห็นว่าโมเดลมีความแม่นยำพอสมควร โดยสามารถดูเปอร์เซ็นต์ ความแม่นยำของการทำนายนี้ได้จากรูปที่ 5.9 ด้วยค่า Adjusted R Squared ที่มีค่าเท่ากับ 0.792 ซึ่ง หมายความว่า สมการการทำนายนี้สามารถทำนายค่า Predict ด้วยความแม่นยำสูงสุด 79.2% ซึ่งถือว่าอยู่ใน ระดับที่ดีจึงทำให้สามารถนำสมการการทำนายนี้ไปใช้พยากรณ์อุณหภูมิเฉลี่ยของผิวโลกในอนาคตได้ เพื่อนำไป ช่วยวิเคราะห์ในการลดปริมาณก๊าซเรือนกระจกในปัจจุบัน และช่วยในการวางแผนการจัดการ ทรัพยากรธรรมชาติในอนาคตอย่างเหมาะสม

## บรรณานุกรม

Austin Schwinn. 2017. Global Temp & Greenhouse Gas. [Online].

Available : https://data.world/amschwinn/global-temp-greenhouse-gas