A CONCEPTUAL MODEL FOR OPTIMIZATION PROBLEMS

JEAN P. MARTINS

Abstract.

Definition 0.1 (Component). In a combinatorial optimization problem, a component $c \in C$ is the elementary unity of a solution.

Definition 0.2 (Search space). The search space S of a combinatorial optimization problem is a subset of the powerset of components $S_{\leq n}(2^C)$ (only S for simplicity), in which elements $x \in S$ can be composed of a maximum of n components. In practical terms S is implicitly defined by C and n.

Example 0.1 (Knapsack problem component). In a knapsack problem, a component is an item. There are n available items (components) $C = \{1, 2, ..., n\}$. Therefore, elements $x \in S$ can be composed of a maximum of n items.

Example 0.2 (Minimum spanning tree component). In a minimum spanning tree problem, a component is an edge. Considering a undirected complete graph G = (V, E), with |V| = n, there are $(n^2 + 1)/2$ available edges (components).