T0 Model: Granulation, Limits and Fundamental Asymmetry

Johann Pascher

September 12, 2025

Abstract

The T0 model describes a fundamental granulation of spacetime at the sub-Planck scale $L_0 = \xi \times L_P$ with $\xi \approx 1.333 \times 10^{-4}$. This work examines the consequences for scale hierarchies, time continuity, and the mathematical completeness of various gravitational theories. The time-mass duality $T(x,t) \cdot m(x,t) = 1$ requires both fields to be coupled and variable, while the fundamental ξ -asymmetry enables all developmental processes.

Contents

1	Granulation as Fundamental Principle of Reality							
	1.1	Minimum Length Scale L_0	2					
	1.2	The Extreme Scale Hierarchy	2					
	1.3	Casimir Scale as Evidence of Granulation						
2	Limit Systems and Scale Hierarchies							
	2.1	Three-Scale Hierarchy	2					
	2.2	Relational Number System	3					
	2.3	CP Violation from Universal Asymmetry						
3	Fun	Fundamental Asymmetry as Motion Principle						
	3.1	The Universal ξ -Constant	3					
	3.2	Eternal Universe Without Big Bang						
	3.3	Time Exists Only After Field-Asymmetry Excitation						
4	Hierarchical Structure: Universe > Field > Space							
	4.1	The Fundamental Order Hierarchy	4					
	4.2	Causal Downward Coupling						
5	Continuous Time Beyond Certain Scales							
	5.1	The Crucial Scale Hierarchy of Time	4					
		5.1.1 Granulated Zone (below L_0)	4					
		5.1.2 Transition Zone (around L_0)						
		5.1.3 Continuous Zone (above L_0)						
	5.2	Quantitative Scaling of Time Continuity						
	5.3	Thermodynamic Arrow of Time						
	0.0							

6	Practical vs. Fundamental Physics 6.1 Time is Practically Experienced as Constant	6 6
	6.3 Resolution of the Apparent Contradiction	6
7	Gravitation: Mass Variation vs. Space Curvature 7.1 Two Equivalent Interpretations	7 7
	7.3 Experimental Indistinguishability	7
8	Mathematical Completeness: Both Fields Coupled Variable8.1 The Correct Mathematical Formulation8.2 Verification of Mathematical Consistency8.3 Why Both Fields Must Be Variable8.4 Einstein's Arbitrary Constant Setting8.5 Parameter Elegance	8 8 8 8 8
9	Pragmatic Preference: Variable Mass with Constant Time 9.1 The Pragmatic Alternative for Our Experience Space	9 9 9 10
10	The Eternal Philosophical Boundary 10.1 What the T0 Model Explains	10 10 10 10
11	11.2 Atom Interferometry	11
12	Conclusion: Asymmetry as Engine of Reality	11
13	Mathematical Proof: The Formula $T \cdot m = 1$ Excludes Singularities13.1 Important Clarification: T as Oscillation Period13.2 The Fundamental Exclusion Property13.3 Proof 1: Exclusion of Infinite Mass13.4 Proof 2: Exclusion of Infinite Time13.5 Proof 3: Exclusion of Zero Values13.6 Proof 4: Exclusion of Mathematical Singularities13.7 The Algebraic Protection Function13.7.1 Automatic Correction13.7.2 Mathematical Stability13.8 Proof 5: Positive Definiteness13.9 The Fundamental Insight About Time and Continuity13.9.1 What $T \cdot m = 1$ does NOT state:13.9.2 What $T \cdot m = 1$ actually describes:13.9.3 The continuous time flow remains unaffected	12 12 12 12 13 13 13 14 14 14 14 14 15
	13.10Cosmological Implications	$15 \\ 15$

Johann Pascher	T0 Model: G	ranulation, Limits and	Fundamental Asymmetr	<u>y</u>
13.11Conclusion: Mat	hematical Certainty			6

1 Granulation as Fundamental Principle of Reality

1.1 Minimum Length Scale L_0

The T0 model introduces a fundamental length scale deeper than the Planck length:

$$L_0 = \xi \times L_P \approx \frac{4}{3} \times 10^{-4} \times 1.616 \times 10^{-35} \text{ m} \approx 2.155 \times 10^{-39} \text{ m}$$
 (1)

Significance of L_0 :

- Absolute physical lower limit for spatial structures
- Granulated spacetime structure not continuous
- Sub-Planck physics with new fundamental laws
- Universal scale for all physical phenomena

1.2 The Extreme Scale Hierarchy

From L_0 to cosmological scales extends a hierarchy of over 60 orders of magnitude:

$$L_0 \approx 10^{-39} \text{ m} \quad \text{(Sub-Planck minimum)}$$
 (2)

$$L_{\rm P} \approx 10^{-35} \,\mathrm{m}$$
 (Planck length) (3)

$$L_{\text{Casimir}} \approx 100 \text{ micrometers} \quad \text{(Casimir scale)}$$
 (4)

$$L_{\text{Atom}} \approx 10^{-10} \text{ m} \quad \text{(Atomic scale)}$$
 (5)

$$L_{\text{Macro}} \approx 1 \text{ m} \quad \text{(Human scale)}$$
 (6)

$$L_{\rm Cosmo} \approx 10^{26} \,\mathrm{m}$$
 (Cosmological scale) (7)

1.3 Casimir Scale as Evidence of Granulation

At the Casimir characteristic scale, first measurable effects appear:

$$L_{\xi} \approx \frac{1}{\sqrt{\xi \times L_{\rm P}}} \approx 100 \text{ micrometers}$$
 (8)

Experimental evidence:

- Deviations from $1/d^4$ law at distances $\approx 10 \text{ nm}$
- ξ -corrections in Casimir force measurements
- Limits of continuum physics become visible

2 Limit Systems and Scale Hierarchies

2.1 Three-Scale Hierarchy

The T0 model organizes all physical scales into three fundamental domains:

- 1. L_0 -domain: Granulated physics, universal laws
- 2. Planck domain: Quantum gravity, transition dynamics
- 3. Macro domain: Classical physics with ξ -corrections

2.2 Relational Number System

Prime number ratios organize particles into natural generations:

- 3-limit: u-, d-quarks (1st generation)
- 5-limit: c-, s-quarks (2nd generation)
- 7-limit: t-, b-quarks (3rd generation)

The next prime number (11) leads to ξ^{11} -corrections $\approx 10^{-44}$, which lie below the Planck scale.

2.3 CP Violation from Universal Asymmetry

The ξ -asymmetry explains:

- CP violation in weak interactions
- Matter-antimatter asymmetry in the universe
- Chiral symmetry breaking in nature

3 Fundamental Asymmetry as Motion Principle

3.1 The Universal ξ -Constant

$$\xi = \frac{4}{3} \times 10^{-4} \approx 1.333 \times 10^{-4} \tag{9}$$

Origin: Geometric 4/3-constant from optimal 3D space packing

Effect: Universal asymmetry enabling all development

3.2 Eternal Universe Without Big Bang

The T0 model describes an eternal, infinite, non-expanding universe:

- No beginning, no end timeless existence
- Heisenberg's uncertainty principle forbids Big Bang: $\Delta E \times \Delta t \geq \hbar/2$
- Structured development instead of chaotic explosion
- Continuous ξ -field dynamics instead of Big Bang

3.3 Time Exists Only After Field-Asymmetry Excitation

Hierarchy of time emergence:

- 1. **Timeless universe**: Perfect symmetry, no time
- 2. ξ -asymmetry arises: Symmetry breaking activates time field
- 3. Time-energy duality: $T(x,t) \cdot E(x,t) = 1$ becomes active
- 4. Manifested time: Local time emerges through field dynamics
- 5. Directed time: Thermodynamic arrow of time stabilizes

Time is not fundamental but emergent from field asymmetry.

4 Hierarchical Structure: Universe > Field > Space

4.1 The Fundamental Order Hierarchy

Universe (highest order level):

- Superordinate structure with eternal, infinite properties
- Global organizational principles determine everything below
- ξ -asymmetry as universal guiding structure
- Thermodynamic overall balance of all processes

Field (middle organizational level):

- Universal ξ -field as mediator between universe and space
- Local dynamics within global constraints
- Time-energy duality as field principle
- Structure-forming processes through asymmetry

Space (manifestation level):

- 3D geometry as stage for field manifestations
- Granulation at L_0 -scale
- Local interactions between field excitations

4.2 Causal Downward Coupling

$$UNIVERSE \rightarrow FIELD \rightarrow SPACE \rightarrow PARTICLES \tag{10}$$

The universe is not just the sum of its spatial parts. Superordinate properties emerge only at the highest level. The ξ -constant is universal, not a space property.

5 Continuous Time Beyond Certain Scales

5.1 The Crucial Scale Hierarchy of Time

In the T0 model, different time domains exist with fundamentally different properties. The further we move from L_0 , the more continuous and constant time becomes.

5.1.1 Granulated Zone (below L_0)

$$L_0 = \xi \times L_P \approx 2.155 \times 10^{-39} \text{ m}$$
 (11)

- Time is discretely granulated, not continuous
- Chaotic quantum fluctuations dominate
- Physics loses classical meaning
- All fundamental forces equally strong

5.1.2 Transition Zone (around L_0)

- Time-mass duality $T \cdot m = 1$ becomes fully active
- Intensive interaction of all fields
- Transition from granulated to continuous

5.1.3 Continuous Zone (above L_0)

Central Insight

Distance to $L_0 \uparrow \Rightarrow$ Time continuity $\uparrow \Rightarrow$ Constant direction \uparrow (12)

- Beyond a certain point, time becomes continuous
- Constant directed flow direction emerges
- The greater the distance to L_0 , the more stable the time direction
- Emergent classical physics with ξ -corrections

5.2 Quantitative Scaling of Time Continuity

Time continuity as function of distance to L_0 :

Time continuity
$$\propto \log \left(\frac{L}{L_0}\right)$$
 for $L \gg L_0$ (13)

Practical scales:

$$L = 10^{-35} \text{ m (Planck)}$$
: Still granulated (14)

$$L = 10^{-15} \text{ m (Nuclear)}$$
: Transition to continuity (15)

$$L = 10^{-10} \text{ m (Atomic)}$$
: Practically continuous (16)

$$L = 10^{-3} \text{ m (mm)}$$
: Completely continuous, constant direction (17)

$$L = 1 \text{ m (Meter)}: \text{ Perfectly linear, directed time}$$
 (18)

5.3 Thermodynamic Arrow of Time

Scale-dependent entropy:

- Granulated level (L_0) : Maximum entropy, perfect symmetry
- Transition level: Entropy gradients emerge
- Continuous level: Second law becomes active
- Macroscopic level: Irreversible time direction

6 Practical vs. Fundamental Physics

6.1 Time is Practically Experienced as Constant

De facto for us: Time flows constantly in our experience domain

- Local scales (m to km): Time is practically perfectly linear and constant
- Measurable variations: Only under extreme conditions (GPS satellites, particle accelerators)
- Everyday physics: Time constancy is a good approximation

6.2 Speed of Light as Clear Upper Limit

Observed reality:

- c = 299,792,458 m/s is measurable upper limit for information transfer
- Causality: No signals faster than c observed
- Relativistic effects: Clearly measurable at $v \to c$
- Particle accelerators: Confirm c-limit daily

6.3 Resolution of the Apparent Contradiction

Macroscopic level (our world):

$$L = 1 \text{ m to } 10^6 \text{ m (km range)} \tag{19}$$

- Time flows constantly: $dt/dt_0 \approx 1 + 10^{-16}$ (immeasurable)
- c is practically constant: $\Delta c/c \approx 10^{-16}$ (immeasurable)
- Einstein physics works perfectly

Fundamental level (T0 model):

$$L_0 = 10^{-39} \text{ m to } L_P = 10^{-35} \text{ m}$$
 (20)

- Time-mass duality: $T \cdot m = 1$ is fundamental
- c is ratio: c = L/T (must be variable)
- Mathematical consistency requires coupled variation

These variations are 10^6 times smaller than our best measurement precision!

7 Gravitation: Mass Variation vs. Space Curvature

7.1 Two Equivalent Interpretations

Einstein interpretation:

- m = constant (fixed mass)
- $g_{\mu\nu}$ = variable (curved spacetime)
- Mass causes space curvature

T0 interpretation:

- m(x,t) = variable (dynamic mass)
- $g_{\mu\nu} = \text{fixed (flat Euclidean space)}$
- Mass varies locally through ξ -field

7.2 Important Insight: We Don't Know!

Attention - Fundamental Point

We DO NOT KNOW whether mass causes space curvature or whether mass itself varies! This is an assumption, not a proven fact!

Both interpretations are equally valid:

Einstein assumption:

$$Mass/energy \rightarrow Space curvature \rightarrow Gravitation$$
 (21)

$$G_{\mu\nu} = 8\pi T_{\mu\nu} \tag{22}$$

T0 alternative:

$$\xi$$
-field \to Mass variation \to Gravitational effects (23)

$$m(x,t) = m_0 \cdot (1 + \xi \cdot \Phi(x,t)) \tag{24}$$

7.3 Experimental Indistinguishability

All measurements are frequency-based:

- Clocks: Hyperfine transition frequencies
- Scales: Spring oscillations/resonance frequencies
- Spectrometers: Light frequencies and transitions
- **Interferometers**: Phases = frequency integrals

Identical frequency shifts:

Einstein:
$$\nu' = \nu_0 \sqrt{1 + 2\Phi/c^2} \approx \nu_0 (1 + \Phi/c^2)$$
 (25)

T0:
$$\nu' = \nu_0 \cdot \frac{m(x,t)}{T(x,t)} \approx \nu_0 (1 + \Phi/c^2)$$
 (26)

Only frequency ratios are measurable - absolute frequencies are fundamentally inaccessible!

8 Mathematical Completeness: Both Fields Coupled Variable

8.1 The Correct Mathematical Formulation

Mathematically correct in T0 model:

$$T(x,t) = \text{variable}$$
 (Time as dynamic field) (27)

$$m(x,t) = \text{variable} \quad \text{(Mass as dynamic field)}$$
 (28)

Coupled through fundamental duality:

$$T(x,t) \cdot m(x,t) = 1 \tag{29}$$

Both fields vary TOGETHER:

$$T(x,t) = T_0 \cdot (1 + \xi \cdot \Phi(x,t)) \tag{30}$$

$$m(x,t) = m_0 \cdot (1 - \xi \cdot \Phi(x,t)) \tag{31}$$

8.2 Verification of Mathematical Consistency

Duality check:

$$T(x,t) \cdot m(x,t) = T_0 m_0 \cdot (1 + \xi \Phi)(1 - \xi \Phi) \tag{32}$$

$$= T_0 m_0 \cdot (1 - \xi^2 \Phi^2) \tag{33}$$

$$\approx T_0 m_0 = 1 \quad \text{(for } \xi \Phi \ll 1\text{)}$$
 (34)

Mathematical consistency confirmed!

8.3 Why Both Fields Must Be Variable

Lagrange formalism requires:

$$\delta S = \int \delta \mathcal{L} \, d^4 x = 0 \tag{35}$$

Complete variation:

$$\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial T} \delta T + \frac{\partial \mathcal{L}}{\partial m} \delta m + \frac{\partial \mathcal{L}}{\partial \partial_{\mu} T} \delta \partial_{\mu} T + \frac{\partial \mathcal{L}}{\partial \partial_{\mu} m} \delta \partial_{\mu} m$$
 (36)

For mathematical completeness:

- $\delta T \neq 0$ (Time must be variable)
- $\delta m \neq 0$ (Mass must be variable)
- Both coupled through $T \cdot m = 1$

8.4 Einstein's Arbitrary Constant Setting

Einstein arbitrarily sets:

$$m_0 = \text{constant} \quad \Rightarrow \quad \delta m = 0$$
 (37)

Mathematical problem:

- Incomplete variation of the Lagrangian
- Violates variation principle of field theory
- Arbitrary symmetry breaking without justification

8.5 Parameter Elegance

Einstein:
$$m_0, c, G, \hbar, \Lambda, \alpha_{\text{EM}}, \dots$$
 ($\gg 10$ free parameters) (38)

T0:
$$\xi$$
 (1 universal parameter) (39)

9 Pragmatic Preference: Variable Mass with Constant Time

9.1 The Pragmatic Alternative for Our Experience Space

As pragmatists, one can certainly prefer:

Time:
$$t = \text{constant}$$
 (practical experience) (40)

Mass:
$$m(x,t) = \text{variable (dynamic adjustment)}$$
 (41)

Why this is pragmatically sensible:

- Time constancy corresponds to our direct experience
- Mass variation is conceptually easier to imagine
- Practical calculations often become simpler
- Intuitive understandability for applications

9.2 Practical Advantages of Constant Time

In our experienceable space (m to km):

- Time flows linearly and constantly our direct experience
- Clocks tick uniformly practical time measurement
- Causal sequences are clearly defined
- Technical applications (GPS, navigation) function

Language convention:

- Time passes constantly
- Mass adapts to the fields
- Matter becomes heavier/lighter depending on location

9.3 Variable Mass as Intuitive Concept

Pragmatic interpretation:

$$m(x) = m_0 \cdot (1 + \xi \cdot \text{Gravitational field}(x))$$
 (42)

Intuitive conception:

- Mass increases in strong gravitational fields
- Mass decreases in weaker fields
- Matter feels the local ξ -field
- Dynamic adaptation to environment

9.4 Scientific Legitimacy of Preference

Important Insight

Pragmatic preferences are scientifically justified when both approaches are experimentally equivalent!

Justification:

- Scientifically equivalent to Einstein approach
- Often practically advantageous for applications
- Didactically easier to teach
- Technically more efficient to implement

The choice between constant time + variable mass vs. Einstein is a matter of taste - both are scientifically equally justified!

10 The Eternal Philosophical Boundary

10.1 What the T0 Model Explains

- HOW the ξ -asymmetry works
- WHAT the consequences are
- WHICH laws follow from it
- WHEN time and development emerge

10.2 What the T0 Model CANNOT Explain

The fundamental questions remain:

- WHY does the ξ -asymmetry exist?
- WHERE does the original energy come from?
- WHO/WHAT gave the first impulse?
- WHY does anything exist at all instead of nothing?

10.3 Scientific Humility

The eternal boundary: Every explanation needs unexplained axioms. The ultimate reason always remains mysterious. The that of existence is given, the why remains open.

The elegant shift: The T0 model shifts the mystery to a deeper, more elegant level - but it cannot resolve the fundamental riddle of existence.

And that is good. Because a universe without mystery would be a boring universe.

11 Experimental Predictions and Tests

11.1 Casimir Effect Modifications

- Deviations from $1/d^4$ law at $d \approx 10$ nm
- ξ -corrections in precision measurements
- Frequency-dependent Casimir forces

11.2 Atom Interferometry

- ξ -resonances in quantum interferometers
- Mass variations in gravitational fields
- Time-mass duality in precision experiments

11.3 Gravitational Wave Detection

- ξ -corrections in LIGO/Virgo data
- Modifications of wave dispersion
- Sub-Planck structures in gravitational waves

12 Conclusion: Asymmetry as Engine of Reality

The T0 model shows that granulation, limits, and fundamental asymmetry are inseparably connected with the scale-dependent nature of time:

- 1. **Granulation** at L_0 defines the base scale of all physics
- 2. Limit systems organize particles into natural generations
- 3. Fundamental asymmetry generates time, development, and structure formation
- 4. Hierarchical organization from universe through field to space
- 5. Continuous time emerges beyond certain scales through distance to L_0
- 6. Mathematical completeness requires T0 formulation over Einstein
- 7. Experimental indistinguishability of different interpretations
- 8. **Pragmatic preferences** are scientifically justified
- 9. Philosophical boundaries remain and preserve the mystery

The ξ -asymmetry is the engine of reality - without it, the universe would remain in perfect, timeless symmetry. With it emerges the entire diversity and dynamics of our observable world.

The T0 model thus offers a unified explanation for fundamental puzzles of physics - from the granulation of spacetime to the emergence of time itself.

13 Mathematical Proof: The Formula $T \cdot m = 1$ Excludes Singularities

13.1 Important Clarification: T as Oscillation Period

ATTENTION: In this analysis, T does not mean the experienced, continuously flowing time, but the **oscillation period** or **characteristic time constant** of a system. This is a fundamental difference:

- T =oscillation period (discrete, characteristic time unit)
- Not: T = continuous time coordinate (our everyday experience)

13.2 The Fundamental Exclusion Property

The equation $T \cdot m = 1$ is not just a mathematical relationship – it is an **exclusion theorem**. Through its algebraic structure, it makes certain states mathematically impossible.

13.3 Proof 1: Exclusion of Infinite Mass

Assumption: There exists an infinite mass $m = \infty$

Mathematical consequence:

$$T \cdot m = 1 \tag{43}$$

$$T \cdot \infty = 1 \tag{44}$$

$$T = \frac{1}{\infty} = 0 \tag{45}$$

Contradiction: T=0 is not in the domain of the equation $T \cdot m = 1$, since:

- The product $0 \cdot \infty$ is mathematically undefined
- The original equation $T \cdot m = 1$ would be violated $(0 \cdot \infty \neq 1)$

Conclusion: $m = \infty$ is excluded by the formula.

13.4 Proof 2: Exclusion of Infinite Time

Assumption: There exists an infinite time $T = \infty$

Mathematical consequence:

$$T \cdot m = 1 \tag{46}$$

$$\infty \cdot m = 1 \tag{47}$$

$$m = \frac{1}{\infty} = 0 \tag{48}$$

Contradiction: m=0 is not in the domain, since:

- The product $\infty \cdot 0$ is mathematically undefined
- The equation $T \cdot m = 1$ would be violated $(\infty \cdot 0 \neq 1)$

Conclusion: $T = \infty$ is excluded by the formula.

Proof 3: Exclusion of Zero Values 13.5

Assumption: There exists T = 0 or m = 0

Case 1: T = 0

$$T \cdot m = 1 \Rightarrow 0 \cdot m = 1 \tag{49}$$

This is impossible for any finite value of m, since $0 \cdot m = 0 \neq 1$.

Case 2: m = 0

$$T \cdot m = 1 \Rightarrow T \cdot 0 = 1 \tag{50}$$

This is impossible for any finite value of T, since $T \cdot 0 = 0 \neq 1$.

Conclusion: Both T=0 and m=0 are excluded by the formula.

13.6 **Proof 4: Exclusion of Mathematical Singularities**

Definition of a singularity: A point where a function becomes undefined or infinite.

Analysis of the function $T = \frac{1}{m}$:

Potential singularities could occur at:

- m=0 (division by zero)
- $T \to \infty$ (infinite function values)

Exclusion by the constraint $T \cdot m = 1$:

- 1. At m=0: The equation $T \cdot m=1$ cannot be satisfied
- 2. At $T \to \infty$: Would require $m \to 0$, which is already excluded

Mathematical proof of singularity freedom:

For every point (T, m) with $T \cdot m = 1$:

$$T = \frac{1}{m} \text{ with } m \in (0, +\infty)$$
 (51)

$$T = \frac{1}{m} \text{ with } m \in (0, +\infty)$$

$$m = \frac{1}{T} \text{ with } T \in (0, +\infty)$$
(51)

Both functions are on their entire domain:

- Continuous
- Differentiable
- Finite Well-defined

13.7The Algebraic Protection Function

The equation $T \cdot m = 1$ acts like an algebraic protection against singularities:

13.7.1**Automatic Correction**

If
$$m$$
 becomes very small $\Rightarrow T$ automatically becomes very large (53)

If
$$T$$
 becomes very small $\Rightarrow m$ automatically becomes very large (54)

But:
$$T \cdot m$$
 always remains exactly 1 (55)

13.7.2 Mathematical Stability

$$\lim_{m \to 0^+} T = +\infty, \text{ but } T \cdot m = 1 \text{ remains satisfied}$$
 (56)

$$\lim_{T \to 0^+} m = +\infty, \text{ but } T \cdot m = 1 \text{ remains satisfied}$$
 (57)

The constraint **forces** the variables into a finite, well-defined region.

13.8 Proof 5: Positive Definiteness

Theorem: All solutions of $T \cdot m = 1$ are positive.

Proof:

$$T \cdot m = 1 > 0 \tag{58}$$

Since the product is positive, both factors must have the same sign.

Exclusion of negative values:

- If T < 0 and m < 0, then $T \cdot m > 0$, but physically meaningless
- If T > 0 and m < 0, then $T \cdot m < 0 \neq 1$
- If T < 0 and m > 0, then $T \cdot m < 0 \neq 1$

Conclusion: Only T > 0 and m > 0 satisfy the equation.

13.9 The Fundamental Insight About Time and Continuity

Important physical clarification:

The formula $T \cdot m = 1$ describes **discrete**, **characteristic properties** of systems, not the continuous time flow of our experience. This means:

13.9.1 What $T \cdot m = 1$ does NOT state:

- "Time stands still" (T=0)
- "Processes take infinitely long" $(T = \infty)$
- "The time flow is interrupted"
- "Our experienced time disappears"

13.9.2 What $T \cdot m = 1$ actually describes:

- Oscillation periods have mathematical limits
- Characteristic time constants cannot become arbitrary
- Discrete time units stand in fixed relation to mass
- Periodic processes follow the constraint $T \cdot m = 1$

13.9.3 The continuous time flow remains unaffected

The continuous time coordinate t (our "arrow time") is **not affected** by this relationship. $T \cdot m = 1$ regulates only the **intrinsic time scales** of physical systems, not the superordinate time flow in which these systems exist.

Important insight about our time perception:

Our continuous time perception could practically be only a **tiny excerpt** of a much larger period – an oscillation period so immense that it far exceeds anything humans could ever experience or conceive.

Conceivable orders of magnitude:

• Human life: $\sim 10^2$ years

• Human history: $\sim 10^4$ years

• Earth age: $\sim 10^9$ years

• Universe age: $\sim 10^{10}$ years Possible cosmic period: 10^{50} , 10^{100} or even larger time scales

In such a scenario, our entire observable universe would experience only an **infinitesimal** small fraction of a fundamental oscillation period. For us, time appears linear and continuous because we perceive only a vanishingly small section of a huge cosmic "oscillation".

Analogy: Just as a bacterium on a clock hand would perceive the movement as "straight ahead", although it moves on a circular path, we might experience "linear time", although we are in a gigantic periodic structure.

This perspective shows that $T \cdot m = 1$ and our time perception can operate on completely different scales without contradicting each other.

13.10 Cosmological Implications

This viewpoint opens new possibilities:

What we observe as cosmic development and change could be only a **small section** in a much larger cyclic pattern that follows the fundamental relationship $T \cdot m = 1$.

Possible cosmic structure:

- Local time perception: Linear, continuous (our experience domain)
- Middle time scales: Observable cosmic developments
- Fundamental time scale: Gigantic period according to $T \cdot m = 1$

Implications:

- Nature could be organized in **layered-periodic** fashion
- Different time scales follow different regularities
- $T \cdot m = 1$ could be the master constraint for the largest scale
- Our observable cosmic development would be a fragment of a cyclic system

This interpretation shows how mathematical constraints $(T \cdot m = 1)$ and physical observations (linear time perception) can coexist in a **hierarchical time model**.

13.11 Conclusion: Mathematical Certainty

The formula $T \cdot m = 1$ is not just an equation – it is an **existence proof** for singularity-free physics. It proves mathematically that:

- Infinite masses do not exist
- Infinite oscillation periods do not exist
- Zero masses are excluded
- · Zero oscillation periods are excluded
- Singularities in characteristic time scales cannot occur

Mathematics itself protects physics from singularities – without affecting the continuous time flow.

References

- [1] J. Pascher, To Model: Dimensionally Consistent Reference Field-Theoretic Derivation of the β -Parameter, 2025.
- [2] J. Pascher, From Time Dilation to Mass Variation: Mathematical Core Formulations of Time-Mass Duality Theory, 2025.
- [3] A. Einstein, *The Field Equations of Gravitation*, Proceedings of the Prussian Academy of Sciences, 844–847, 1915.
- [4] M. Planck, On the Theory of the Energy Distribution Law of the Normal Spectrum, Proceedings of the German Physical Society, 2, 237–245, 1900.
- [5] H. B. G. Casimir, On the attraction between two perfectly conducting plates, Proceedings of the Royal Netherlands Academy of Arts and Sciences, 51, 793–795, 1948.