Estudio gráfico de superficies minimales a través de la representación de Weierstrass-Enneper

Paula Solabre Felipe Sergio Palomo Vega

Tutor: Juan Ángel Rojo Carulli

Junio 2020

1 Introducción

En este trabajo vamos a hablar de la relevancia de las superficies minimales y la utilidad de la representación en el formato Weierstrass-Enneper.

En la segunda sección. vamos a repasar ciertos conceptos fundamentales y estudiar las coordenadas *isotermas* (también llamadas *conformes*).

En la tercera sección profundizaremos sobre las relación entre superficies minimales y funciones holomorfas.

En la cuarta sección presentaremos la representación de Weierstrass-Enneper para obtener reparametrizaciones de superficies minimales, la cual justificaremos y ejemplificaremos adecuadamente.

Finalmente, en la quinta sección presentaremos algunas superficies minimales que hemos representado usando Maple, acompañadas del código correspondiente a cada una de ellas.

2 Preliminares

Aquí vamos a fijar algunas notaciones e introducir conceptos básicos de variable compleja y superficies, a saber:

- El concepto de función holomorfa f(u, v), aquella que cumple que $f(u, v) = f_1(u, v) + i f_2(u, v)$, siendo z = u + i v, junto a las ecuaciones de Cauchy-Riemann en cada punto de su dominio (u_0, v_0) .
- Las ecuaciones de Cauchy-Riemann, fundamentales en el momento en que se introduce la variable compleja:

$$\frac{\partial f_1}{\partial u}(u_0, v_0) = \frac{\partial f_2}{\partial v}(u_0, v_0)$$
$$\frac{\partial f_1}{\partial v}(u_0, v_0) = -\frac{\partial f_2}{\partial u}(u_0, v_0)$$

- Se llama función meromorfa a aquella función holomorfa en todo su dominio salvo en un conjunto finito de puntos, lo que se conoce como los polos. e.g.: $f(z) = \frac{1}{z}$ es una función meromorfa en C.
- Se llama superficie parametrizada al par (A, φ) donde $A \in \mathbb{R}^2$ es un conjunto abierto conexo del plano y $\varphi : A \to \mathbb{R}^3$ es una aplicación inyectiva, continua y cuya aplicación inversa es continua. También se pide que φ sea de clase C^{∞} (infinitas veces derivable) y que su matriz Jacobiana $d\varphi$ tenga rango 2 en todo punto $(u, v) \in A$.

$$d\varphi = \begin{pmatrix} \frac{\partial \varphi}{\partial u} & \frac{\partial \varphi}{\partial v} \end{pmatrix} \in \mathbb{M}_{3 \times 2}$$

• Por último, el concepto de coordenadas isotermas: si S es una superficie minimal, cerca de cada punto $p \in S$ existe un abierto $U^p \subseteq S$ que contiene a p, y existe una parametrización $\varphi: A \to U^p$, con $A \subseteq \mathbb{R}^2$ abierto, tal que, respecto de la parametrización φ , la primera forma fundamental tiene la forma $\begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} E & 0 \\ 0 & E \end{pmatrix}$, es decir, F = 0, E = G.

3 Relación entre superficies minimales y funciones holomorfas

Dada una superficie S parametrizada por:

$$\begin{cases} \varphi: A & \longrightarrow & S \subseteq \mathbb{R}^3 \\ (u, v) & \longmapsto & (x_1(u, v), x_2(u, v), x_3(u, v)) \end{cases}$$

es posible expresar la condición de que φ sea (o no) una parametrización por coordenadas isotermas en términos de que ciertas funciones con valores en \mathbb{C} cumplan una condición algebraica, en concreto $\Phi_1^2 + \Phi_2^2 + \Phi_3^2 = 0$, como se verá más adelante.

Además, también se puede traducir la condición de que S sea o no minimal en términos de que dichas funciones sean o no holomorfas. En concreto, a partir de la parametrización $\varphi = (x_1, x_2, x_3)$ puedo definir las 3 funciones \mathbb{C} -valuadas siguientes:

$$\Phi_1(u,v) = \frac{\partial x_1}{\partial z} = \frac{\partial}{\partial z}(x_1) = \frac{1}{2} \left(\frac{\partial}{\partial u} - i \frac{\partial}{\partial v} \right)(x_1) = \frac{1}{2} \left(\frac{\partial x_1}{\partial u}(u,v) - i \frac{\partial x_1}{\partial v}(u,v) \right)$$

En notación abreviada: $\Phi_1 = \frac{1}{2} \left(\frac{\partial x_1}{\partial u} - i \frac{\partial x_1}{\partial v} \right)$.

Análogamente se definen Φ_2 , Φ_3 , y entonces quedan las siguientes

3.1 Funciones de reparametrización

$$\begin{split} &\Phi_1 = \frac{1}{2} \left(\frac{\partial x_1}{\partial u} - \mathrm{i} \frac{\partial x_1}{\partial v} \right) \\ &\Phi_2 = \frac{1}{2} \left(\frac{\partial x_2}{\partial u} - \mathrm{i} \frac{\partial x_2}{\partial v} \right) \\ &\Phi_3 = \frac{1}{2} \left(\frac{\partial x_3}{\partial u} - \mathrm{i} \frac{\partial x_3}{\partial v} \right) \end{split}$$

Estas tres funciones $\Phi_i:A\longrightarrow\mathbb{C}$ están definidas en $A\subseteq\mathbb{R}^2$ el dominio de la parametrización φ , y toman valores en \mathbb{C} . Con ellas se puede traducir la condición de que φ dé coordenadas isotermas y sea una superficie minimal mediante el siguiente procedimiento:

1. $\Phi_1^2 + \Phi_2^2 + \Phi_3^2 = 0 \iff E = G, F = 0$, o sea si y solo si la parametrización φ da coordenadas isotermas.

- 2. Φ_1, Φ_2, Φ_3 son funciones holomorfas (o sea, verifican las ecuaciones de Cauchy-Riemann) si y solo si las funciones $x_1(u,v), x_2(u,v), x_3(u,v)$ son funciones armónicas, es decir si y solo si $\triangle x_1 = 0, \triangle x_2 = 0, \triangle x_3 = 0$, donde $\triangle x = \frac{\partial^2 x}{\partial u^2} + \frac{\partial^2 x}{\partial v^2}$, para x = x(u,v) función.
- 3. Dada una superficie S en coordenadas isotermas dadas por $\varphi:A\longrightarrow S$, la curvatura media H verifica lo siguiente: si definimos el laplaciano de φ componente a componente ($\triangle\varphi=\triangle(x_1,x_2,x_3)=(\triangle x_1,\triangle x_2,\triangle x_3)$) se cumple que $\triangle\varphi=(\triangle x_1,\triangle x_2,\triangle x_3)=2EH\cdot N$, siendo N el vector normal unitario, o sea $N=\frac{\varphi_u\times\varphi_v}{|\varphi_u\times\varphi_v|}$.
- 4. Conclusión: son equivalentes las siguientes condiciones:
 - (a) La parametrización

$$\varphi: A \subseteq \mathbb{R}^2 \longrightarrow \varphi(A) \subseteq \mathbb{R}^3$$
$$(u, v) \longmapsto (x_1(u, v), x_2(u, v), x_3(u, v))$$

tiene como imagen una superficie minimal $S=\varphi(A)$ y es una parametrización isoterma.

(b) Si defino $\Phi_i = \frac{1}{2} \left(\frac{\partial x_i}{\partial u} - \mathrm{i} \frac{\partial x_i}{\partial v} \right)$, se verifica que $\Phi_1^2 + \Phi_2^2 + \Phi_3^2 = 0$, y que Φ_i es holomorfa $\forall i = 1, 2, 3$.

4 Representación de Weierstrass - Enneper

Consiste, básicamente, en reconstruir la parametrización $\varphi = (x_1, x_2, x_3)$ a partir de las funciones $\Phi_i = \frac{1}{2} \left(\frac{\partial x_i}{\partial u} - \mathrm{i} \frac{\partial x_i}{\partial v} \right)$.

Más adelante se demostrará que, en dominios $A\subseteq\mathbb{R}^2\cong\mathbb{C}$ suficientemente "buenos" (por ejemplo, si A es un disco), entonces, a partir de las funciones $\Phi_1=\frac{\partial x_1}{\partial z}, \Phi_2=\frac{\partial x_2}{\partial z}, \Phi_3=\frac{\partial x_3}{\partial z}$ dadas antes, se pueden recuperar x_1,x_2,x_3 salvo una constante. La manera de recuperar x_i a partir de Φ_i es integrando y tomando partes reales:

$$x_i = 2\Re\Big(\int \Phi_i(x)dz\Big)$$

Entonces, si partimos de 3 funciones Φ_1, Φ_2, Φ_3 que son holomorfas y cumplen $\Phi_1^2 + \Phi_2^2 + \Phi_3^2 = 0$, mediante la fórmula (1) podemos definir x_1, x_2, x_3 , que quedan:

$$\begin{cases} \varphi: A & \longrightarrow & \mathbb{R}^3 \\ (u, v) & \longmapsto & (x_1(u, v), x_2(u, v), x_3(u, v)) \end{cases}$$

que es claramente una parametrización, la cual será isoterma porque estoy tomando Φ_1, Φ_2, Φ_3 tales que $\Phi_1^2 + \Phi_2^2 + \Phi_3^2 = 0$, y la imagen de φ dada por $S = \varphi(A) \subseteq \mathbb{R}^3$ será una superficie minimal, porque las Φ_i se tomarán holomorfas de partida.

Por tanto, la contrucción de superficies minimales (parametrizadas en un dominio A que elegimos) queda reducida a la construcción de funciones holomorfas Φ_1, Φ_2, Φ_3 tales que $\Phi_1^2 + \Phi_2^2 + \Phi_3^2 = 0$.

4.1 Construcción de las Φ_i

Hay muchas formas de construir Φ_1, Φ_2, Φ_3 para que cumplan estas condiciones. Una de ellas es tomar dos funciones f(z), g(z) tales que f(z) sea holomorfa en A, g(z) sea meromorfa en A y $f(z)g^2(z)$ sea holomorfa. Es decir, g(z) puede tener polos en ciertos puntos de A, pero:

- dichos polos de g(z) deben ser ceros de f(z) de tal modo que, al multiplicar f(z) y $g^2(z)$ me salga una función holomorfa, o sea, que se cancelen los polos de $g^2(z)$ con los ceros de f(z),
- g(z) no se puede anular en A.

Dados tales f(z), g(z), entonces las funciones

$$\begin{cases}
\Phi_1 = \frac{1}{2}f(1-g^2) \\
\Phi_2 = \frac{1}{2}f(1+g^2) \\
\Phi_3 = f g
\end{cases}$$

son funciones holomorfas en A y cumplen $\Phi_1^2 + \Phi_2^2 + \Phi_3^2 = 0$, ergo me dan $\Phi = (x_1, x_2, x_3)$ parametrización isoterma de una superficie minimal mediante la fórmula $x_i = 2\Re \Big(\int \Phi_i(x) dz \Big)$, donde $\int \Phi_i(x) dz$ es la integral de $\Phi_i(z)$, o sea una primitiva holomorfa de $\Phi_i(z)$. Aquí usamos un importante teorema de Análisis Complejo.

Por tanto, para que esto no cause problemas, vamos a tomar las funciones f(z), g(z) definidas en discos (o, más generalmente, dominios simplemente conexos del plano), y de este modo las Φ_i también estarán definidas en un disco y podremos entonces asegurar que existe $\int \Phi_i(x)dz = \text{primitiva holomorfa de }\Phi_i(z)$.

Ejemplo 1 $f(z) = z^2, g(z) = \frac{1}{z}, f$ es holomorfa en todo \mathbb{C} , g es mesomorfa en \mathbb{C} (pues sus polos son un conjunto discreto de puntos de \mathbb{C}). Además, $f(z)g^2(z) = z^2 \frac{1}{z^2} = 1$ es holomorfa en \mathbb{C} . Por tanto, tanto f como fg^2 son holomorfas en un disco (de radio infinito en este caso) \Rightarrow existe primitiva de las funciones Φ_1, Φ_2, Φ_3 . Vamos a calcularlas:

$$\Phi_1 = \frac{1}{2}f(1-g^2) = \frac{1}{2}z^2(1-\frac{1}{z^2}) = \frac{1}{2}(z^2-1)$$

$$\Phi_2 = \frac{i}{2}f(1-g^2) = \frac{i}{2}z^2(1+\frac{1}{z^2}) = \frac{i}{2}(z^2+1)$$

$$\Phi_3 = f \cdot g = z$$

Calculamos primitivas de Φ_1, Φ_2, Φ_3 :

$$\int \Phi_1(z)dz = \int \frac{1}{2}(z^2 - 1)dz = \frac{1}{2}\frac{1}{3}z^3 - z = \frac{1}{6}z^3 - z$$

$$= \frac{1}{6}(u + iv)^3 - (u + iv), (z = u + iv)$$

$$= \frac{1}{6}(u^3 + 3iu^2v - 3uv^2 - iv^3) - (u + iv)$$

$$= \frac{1}{6}u^3 - 3uv^2 - u + i(3u^2v - u - v^3)$$

$$\Rightarrow x_1(u, v) = 2\Re(\int \Phi_1) = \frac{1}{3}u^3 - 6uv^2 - 2u$$

$$\int \Phi_2(z)dz = \int \frac{i}{2}(z^2+1)dz = \frac{i}{2}\frac{1}{3}z^3 - z = \frac{i}{6}z^3 - z$$

$$= \frac{i}{6}(z^3+3z) = \frac{i}{6}z(z^2+3), (z=u+iv)$$

$$= \frac{1}{6}(u+iv)((u+iv)^2+3) = \frac{i}{6}(u+iv)(u^2-v^2+2iuv+3)$$

$$= \frac{i}{6}(u(u^2-v^3+3)-2uv^2+i(v(u^2-v^2+3)+2u^2v))$$

$$= -\frac{1}{6}(v(u^2-v^2+3)+2u^2v) + \frac{i}{6}(u(u^2-v^2+3)-2uv^2)$$

$$= -\frac{1}{6}(3vu^2-v^3+3v) + \frac{i}{6}(-3uv^2+u^3+3u)$$

$$\Rightarrow x_2(u,v) = 2\Re(\int \Phi_2) = -\frac{1}{3}(3vu^2-v^3+3v)$$

$$\int \Phi_3(z)dz = \int \frac{1}{2}zdz = \frac{1}{2}(u+iv)^2 = \frac{1}{2}(u^2-v^2+2iuv)$$

$$\Rightarrow x_3(u,v) = 2\Re(\int \Phi_3) = u^2-v^2$$

La parametrización asociada sería:

$$\Phi(u,v) = (x_1(u,v), x_2(u,v), x_3(u,v))$$
$$= (\frac{1}{3}u^3 - 6uv^2 - 2u, -u^2v + \frac{1}{3}v^3 - v, u^2 - v^2)$$

4.2 Resultado 1

En una superficie parametrizada por $\varphi:A\subseteq\mathbb{R}^2\longrightarrow S\subseteq\mathbb{R}^3$ conforme, se cumple que $\triangle=2EH\cdot N.$

Demostración 2 Sabemos que

$$\begin{cases} E = \langle \Phi_u, \Phi_u \rangle = G = \langle \Phi_v, \Phi_v \rangle \\ F = \langle \Phi_u, \Phi_v \rangle = 0 \end{cases}$$

Por tanto, se deduce que

$$\begin{cases} 0 = \langle \Phi_u, \Phi_u \rangle - \langle \Phi_v, \Phi_v \rangle & (1) \\ 0 = \langle \Phi_u, \Phi_v \rangle & (2) \end{cases}$$

Derivamos la primera ecuación respecto de u y de v:

$$(1)\begin{cases} 0 &= \frac{\partial}{\partial u} \left(\langle \Phi_u, \Phi_u \rangle - \langle \Phi_v, \Phi_v \rangle \right) = 2 \langle \Phi_{uu}, \Phi_u \rangle - 2 \langle \Phi_{uv}, \Phi_v \rangle \\ 0 &= \frac{\partial}{\partial v} \left(\langle \Phi_u, \Phi_u \rangle - \langle \Phi_v, \Phi_v \rangle \right) = 2 \langle \Phi_{uv}, \Phi_u \rangle - 2 \langle \Phi_{vv}, \Phi_v \rangle \end{cases}$$

Derivamos la segunda ecuación respecto de u y de v:

$$(2) \begin{cases} 0 = \langle \Phi_{uu}, \Phi_v \rangle + \langle \Phi_u, \Phi_{uv} \rangle \\ 0 = \langle \Phi_{uv}, \Phi_v \rangle + \langle \Phi_u, \Phi_{vv} \rangle \end{cases}$$

Despejamos en (1) $\langle \Phi_{uu}, \Phi_u \rangle = \langle \Phi_{uv}, \Phi_v \rangle, \langle \Phi_{vu}, \Phi_v \rangle = \langle \Phi_{uv}, \Phi_v \rangle$ y sustituimos esto en:

 $(2) \begin{cases} 0 = \langle \Phi_{uu}, \Phi_v \rangle + \langle \Phi_{vv}, \Phi_v \rangle = \langle \Phi_{uu} + \Phi_{vv}, \Phi_v \rangle \\ 0 = \langle \Phi_{uu}, \Phi_u \rangle + \langle \Phi_{vv}, \Phi_u \rangle = \langle \Phi_{uu} + \Phi_{vv}, \Phi_u \rangle \end{cases}$

Por tanto, $\triangle \Phi = \Phi_{uu} + \Phi_{vv}$ es perpendicular a Φ_u, Φ_v , y como Φ_u, Φ_v son base del plano tangente a S, se concluye que $\triangle \Phi$ es un múltiplo del normal unitario N.

Por tanto, existe una función λ tal que $\Delta \Phi = \lambda N$ en todo punto de S. Hallamos λ : $\langle \Delta \Phi, N \rangle = \langle \lambda N, N \rangle = \lambda$, y por otro lado $\langle \Delta \Phi, N \rangle = \langle \Phi_{uu} + \Phi_{vv}, N \rangle = \langle \Phi_{uu}, N \rangle + \langle \Phi_{vv}, N \rangle = e + g$; ahora vemos quién es H y la curvatura media en coordenadas conformes:

$$I = \begin{pmatrix} E & 0 \\ 0 & E \end{pmatrix} \quad II = \begin{pmatrix} e & f \\ f & g \end{pmatrix}$$

$$L = I^{-1} \cdot II = \frac{1}{E} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} e & f \\ f & g \end{pmatrix} \Longrightarrow H = \frac{1}{2} tr(L) = \frac{1}{2E} (e+g) \Longrightarrow e+g = 2EH.$$

Concluimos que $\Phi_{uu} + \Phi_{vv} = \lambda \cdot N = (e+g) \cdot N = 2EH \cdot N$. \square

4.3 Resultado 2

Supongamos dadas 3 funciones holomorfas Φ_1, Φ_2, Φ_3 definidas en $A \subseteq \mathbb{C}$ un disco (en general, A puede ser un dominio sin agujeros o simplemente conexo), y supongamos que las Φ_j verifican:

1.
$$|\Phi_1(z)|^2 + |\Phi_2(z)|^2 + |\Phi_3(z)|^2 > 0, \forall z \in A$$
.

2.
$$\Phi_1(z)^2 + \Phi_2(z)^2 + \Phi_3(z)^2 = 0, \forall z \in A.$$

Definamos las funciones:

$$\begin{bmatrix} x_1(z) = 2\Re\left(\int \Phi_1(z)dz\right) \\ x_2(z) = 2\Re\left(\int \Phi_2(z)dz\right) \\ x_3(z) = 2\Re\left(\int \Phi_3(z)dz\right) \end{bmatrix}$$

$$\varphi: A \longrightarrow \mathbb{R}^3$$

 $z \longmapsto (x_1(z), x_2(z), x_3(z))$

donde $\int \Phi_j(z)dz$ representa una primitiva (holomorfa) sw $\Phi_1(z)$. Entonces, la función $\varphi: A \Longrightarrow \mathbb{R}^3$ es una parametrización de una superficie minimal $S = \varphi(A)$.

Observación 3 Quizás reduciendo A y tomando un disco más pequeño contenido en él para asegurar que Φ es inyectiva y su imagen $S = \varphi(A)$ no tiene autocortes.

Demostración 4 Hay que ver que la función Φ así definida cumple que su diferencial tiene rango 2 en todo punto de A, ya que esto garantiza que su imagen es localmente una superficie. Luego hay que ver que $S = \varphi(A)$ me da una superficie minimal, para lo cual basta ver que $\frac{\partial x_j}{\partial z} := \frac{1}{2} \frac{\partial x_j}{\partial u} - \frac{i}{2} \frac{\partial x_j}{\partial v}$ coincide con $\Phi_j(z)$. Si vemos esto, como $\Phi_j(z)$ es holomorfa, se deducirá que x_j es armónica y, por tanto, $\Phi_{uu} + \Phi_{vv} = 0$, lo que implicará que H = 0, ya que $\Delta \Phi = 2EH \cdot N$ por lo anterior.

Paso 1 Ver que $\frac{\partial x_j}{\partial z} = \Phi_j(z)$:

Tenemos que, por definición, $x_j(z) = 2\Re \int \Phi_j(z)dz$, donde $\int \Phi_j(z)dz$ es una función cuya derivada $\frac{d}{dz}$ es $\Phi_j(z)$. Llamemos $F_j(z) = \int \Phi_j(z)dz$ a esta función. Pongamos $F_j(z) = f_j(z) + ig_j(z)$ en parte real e imaginaria. Consideramos $z = u + iv \leftrightarrow (u, v) \in \mathbb{R}^2$. La diferencial de F_j es:

$$dF_j(u,v) = \begin{pmatrix} \frac{\partial f_j}{\partial u} & \frac{\partial f_j}{\partial v} \\ \frac{\partial g_j}{\partial u} & \frac{\partial g_j}{\partial v} \end{pmatrix} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix},$$

por las ecuaciones de C-R, ya que f_j es holomorfa. Recordatorio: Esto me dice que

$$dF_j(u,v): \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \longmapsto \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

se identifica con el número complejo a + ib, ya que

$$\mathbb{R}^2 \ni \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \longmapsto \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} av_1 - bv_2 \\ bv_1 + av_2 \end{pmatrix}$$

$$\mathbb{C} \ni v_1 + iv_2 \longmapsto av_1 - bv_2 + i(bv_1 + av_2) = (a + ib)(v_1 + iv_2)$$

Por tanto, $\Phi_j(z) = \frac{d}{dz}(F_j(z)) = \frac{\partial f_j}{\partial u} + i\frac{\partial g_j}{\partial u}$, con

$$(*) \begin{cases} \frac{\partial f_j}{\partial u} = \frac{\partial g_j}{\partial v} \\ \frac{\partial f_j}{\partial v} = -\frac{\partial g_j}{\partial v} \end{cases}$$

Por otro lado,
$$x_j(z) = 2\Re(F_j(z)) = 2f_j(z)$$
, con lo que $\frac{\partial x_j}{\partial z} = 2\frac{\partial f_j}{\partial z} = 2\left(\frac{1}{2}\frac{\partial f_j}{\partial u} - \frac{1}{2}\frac{\partial f_j}{\partial v}\right) = \frac{\partial f_j}{\partial u} - i\frac{\partial f_j}{\partial v} = \frac{\partial f_j}{\partial u} + i\frac{\partial g_j}{\partial u} = \Phi_j(z)$ lo cual concluye el paso 1.

Paso 2 La diferencial de $\varphi_j(z): A \longrightarrow \mathbb{R}^3$ tiene rango 2 en todo $(u, v) \in A$. Sabemos que $|\Phi_1(z)|^2 + |\Phi_2(z)|^2 + |\Phi_3(z)|^2 > 0, \forall z \in A$ y por el paso 1 sabemos que $\Phi_j(z) = \frac{\partial x_j}{\partial z} = \frac{1}{2} \frac{\partial x_j}{\partial u} - \frac{i}{2} \frac{\partial x_j}{\partial v}$, por lo que $|\Phi_j(z)|^2 = \frac{1}{4} \left(\frac{\partial x_j}{\partial u}\right)^2 + \frac{1}{4} \left(\frac{\partial x_j}{\partial v}\right)^2$.

Una comprobación inmediata nos da que $\sum |\Phi_j(z)|^2 = \frac{1}{4}E + \frac{1}{4}G$ con $E = \langle \varphi_u, \varphi_u \rangle, G = \langle \varphi_v, \varphi_v \rangle.$

También, de la condición $\Phi_1(z)^2 + \Phi_2(z)^2 + \Phi_3(z)^2 = 0$ se obtiene que F = 0, E = G, siendo $F = \langle \varphi_u, \varphi_v \rangle$.

Concluimos que $\varphi_u \neq 0, \varphi_v \neq 0, y \varphi_u, \varphi_v$ son vectores ortogonales en \mathbb{R}^3 , por lo que la diferencial de φ (cuyas columnas son φ_u, φ_v) tiene rango 2 en todo punto.

Por el teorema de la función implícita, deducimos que $\varphi: A \longrightarrow \mathbb{R}^3$ es inyectiva cerca de cada uno de los puntos de A con lo que, si elegimos un disco D contenido en A donde φ sea inyectiva, entonces $\varphi: D \longrightarrow \mathbb{R}^3$ es parametrización de la superficie = $\varphi(D)$ dada como su imagen. Para no cargar la notación, renombramos D=A y decimos que " φ es parametrización, quizás reduciendo A."

Paso 3 La superficie dada por $S = \varphi(A)$ es minimal. Esto es ya inmediato a partir de lo que vimos, puesto que la parametrización φ es conforme (porque $\sum \Phi_j^2 = 0$) y además $\Delta \varphi = 0$ porque Φ_j es holomorfa $\forall j = 1, 2, 3$). \square

Observación 5 En principio, φ podría estar definida en todo \mathbb{R}^2 , pero para que la imagen de φ sea una superficie, es probable que sea necesario restringir su dominio a un disco o algo del estilo. La razón es que φ puede no ser inyectiva en todo \mathbb{R}^2 , es decir la imagen de φ puede tener autointersecciones del tipo de la gráfica.

5 Ejemplos de superficies minimales

A continuación, introduciremos el código Maple que hemos utilizado para representar ciertos ejemplos de superficies minimales.

Para representarlas, hemos usado los siguientes procedimientos:

```
Procedimiento WE I
Además de las funciones fy g se le da otro parámetro a. Si a = 1, z = e^z. Si a = 2, z = e^z (-iz/2), en otro caso z = z.
 > Weierfg = proc(f, g, a)
      local z1, z2, z3, x1, x2, x3, x;
      z1 = int(f \cdot (1-g^2), z);
      z2 = int(I \cdot f \cdot (1 + g^2), z);
      z3 = int(2 \cdot f \cdot g, z);
      if a = 1 then
      z1 = subs(z = exp(z), z1);
      z2 = subs(z = exp(z), z2);
      z3 = subs(z = exp(z), z3) fi;
      if a = 2 then
      \texttt{x1} \coloneqq \texttt{simplify}\big(\texttt{convert}\big(\texttt{simplify}\big(\texttt{Re}\big(\texttt{evalc}\big(\texttt{subs}\big(\texttt{z}=\texttt{u}+\texttt{I}\cdot\texttt{v},\,\texttt{expand}\big(\texttt{simplify}\big(\texttt{z1}\big)\big)\big)\big)\big),\,\texttt{trig}\big),\,\texttt{trig}\big),\,\texttt{trig}\big),\,\texttt{trig}\big),
      x2 = simplify(convert(simplify(Re(evalc(subs(z = u + I \cdot v, expand(simplify(z2))))), trig), trig), trig);
      \texttt{x3} \coloneqq \texttt{simplify}\big(\texttt{convert}\big(\texttt{simplify}\big(\texttt{Re}\big(\texttt{evalc}\big(\texttt{subs}\big(\texttt{z}=\texttt{u}+\texttt{I}\cdot\texttt{v},\,\texttt{expand}\big(\texttt{simplify}\big(\texttt{z3}\big)\big)\big)\big)\big),\,\texttt{trig}\big),\,\texttt{trig}\big),\,\texttt{trig}\big),
      x = [x1, x2, x3];
      end:
Procedimiento WE II
Además de la función F se le da otro parámetro a. Si a = 1, z = e^{x}. Si a = 2, z = e^{x} (-iz/2), en otro caso z es z.
> Weier = proc(F, a)
      local z1, z2, z3, x1, x2, x3, x;
      z1 = int(F \cdot (1-z^2), z);
      z2 = int(I \cdot F \cdot (1 + z^2), z);
      z3 = int(2 \cdot F \cdot z, z);
      if a = 1 then
      z1 = subs(z = exp(z), z1);
      z2 = subs(z = exp(z), z2);
      z3 = subs(z = exp(z), z3) fi;
      z3 = subs\left(z = exp\left(-\frac{I \cdot z}{2}\right), z3\right) fi;
      \texttt{x1} \coloneqq \textit{simplify}\big(\textit{convert}\big(\textit{simplify}\big(\textit{Re}\big(\textit{evalc}\big(\textit{subs}\big(\textit{z} = \textit{u} + \textit{I} \cdot \textit{v}, \, \textit{expand}\big(\textit{simplify}\big(\textit{z1}\big)\big)\big)\big)\big), \, \textit{trig}\big), \, \textit{trig}\big), \, \textit{trig}\big), \, \textit{trig}\big),
      \texttt{x2} \coloneqq \texttt{simplify}\big(\texttt{convert}\big(\texttt{simplify}\big(\texttt{Re}\big(\texttt{evalc}\big(\texttt{subs}\big(\texttt{z}=\texttt{u}+\texttt{I}\cdot\texttt{v},\,\texttt{expand}\big(\texttt{simplify}\big(\texttt{z2}\big)\big)\big)\big)\big),\,\texttt{trig}\big),\,\texttt{trig}\big),\,\texttt{trig}\big),\,\texttt{trig}\big),
      x3 = simplify(convert(simplify(Re(evalc(subs(z = u + I \cdot v, expand(simplify(z3))))), trig), trig), trig);
      x = [x1, x2, x3];
      end:
```

Figure 1:

Figure 2:


```
> plot3d(Weierfg(-exp(-z),-exp(z) , 2),
u = 0 ..6 Pi, v = -1 ..1, grid = [80, 15],
scaling = constrained, orientation = [50, 79],
shading = XYZ, style = patch, colorscheme = ["xgradient", [Green, Blue]]);
```

Figure 3:


```
> plot3d(Weierfg(1, z, 2), u = 0..6·Pi, v = -1..1, grid = [80, 15], scaling = constrained, orientation = [50, 79], shading = XYZ, style = patch, colorscheme = ["zgradient", [Green, Blue]]);
```

Figure 4:

Figure 5:

- > tri := Weierfg $\left(\frac{1}{\left(z^3-1\right)^2}, z^2, 0\right)$:
- > trinoid := $subs(\{u = u \cdot cos(v), v = u \cdot sin(v)\}, tri)$:
- > $plot3d(trinoid, u = 0..3.5, v = 0..2 \cdot Pi, view = [-1..1, -1..1, -1..1],$ grid = [25, 55], style = patch, shading = zhue, orientation = [62, 64]);

Figure 6: Helicoide

>
$$plot3d$$
 $\bigg(Weier \bigg(\frac{I}{2 \cdot z^2}, 2 \bigg), grid = [100, 100], \\ colorscheme = ["zgradient", [Green, Blue]] \bigg);$

Figure 7: Superficie de Enneper

>
$$plot3d \left(Weier \left(1 - \frac{1}{\frac{4}{z}} \right), grid = \left[100, 100 \right], colorscheme = \left["zgradient", \left[Blue, Green \right] \right] \right);$$

Figure 8: Catenoides

>
$$plot3d\left(Weier\left(\frac{1}{2 \cdot z^2}, 2\right), v=-2..2,\right)$$

$$colorscheme = \left["zgradient", [Green, Blue]]\right];$$

