## (b) Fourier Sine Integral

When f(x) is an odd function, f(s) will be odd but f(s) sin  $\omega s$  will be even and f(s) cos  $\omega s$  will be odd. Hence, the first integral will be zero and we get

This is called Fourier Sine Integral.

**Ex. 1**: Express the function 
$$f(x) = \begin{cases} 1 & \text{for } |x| < 1 \\ 0 & \text{for } |x| > 1 \end{cases}$$
 as Fourier Integral.

(M.U. 1997, 99, 2002, 03)

Hence, evaluate 
$$\int_0^\infty \frac{\sin \omega \sin \omega x}{\cos \omega} d\omega$$
. (M.U. 1994, 95, 2003)

**Sol.**: The Fourier Integral for f(x) is  $\frac{1}{x} = \frac{1}{x} = \frac{1}{x}$ 

$$f(x) = \frac{1}{\pi} \int_0^{\infty} \int_{-\infty}^{\infty} f(s) \cos \omega (s - x) d\omega ds$$

[ By data f(s) = 0 from  $-\infty$  to -1, f(s) = 1 from -1 to 1 and f(s) = 0 from 1 to  $\infty$ . ]

Hence, 
$$f(x) = \frac{1}{\pi} \int_0^\infty \int_{-1}^1 1 \cdot \cos \omega (s - x) \, d\omega \, ds$$
$$= \frac{1}{\pi} \int_0^\infty \left[ \frac{\sin \omega (s - x)}{\omega} \right]_{-1}^1 \, d\omega$$
$$= \frac{1}{\pi} \int_0^\infty \frac{\sin \omega (1 - x) - \sin \omega (-1 - x)}{\omega} \, d\omega$$
$$= \frac{1}{\pi} \int_0^\infty \frac{\sin \omega (1 + x) + \sin \omega (1 - x)}{\omega} \, d\omega$$

$$\therefore f(x) = \frac{2}{\pi} \int_0^\infty \frac{\sin \omega \cos \omega x}{\omega} d\omega$$

$$\therefore \int_0^\infty \frac{\sin \omega \cdot \cos \omega x}{\omega} d\omega = \frac{\pi}{2} \cdot f(x)$$

$$=\begin{cases} \frac{\pi}{2} \text{ for } f(x) = 1 \text{ when } |x| < 1\\ 0 \text{ for } f(x) = 0 \text{ when } |x| > 1 \end{cases}$$

At |x| = 1 i.e.  $x = \pm 1$ , f(x) is discontinuous and the integral

$$= \frac{\pi}{2} \cdot \frac{1}{2} \left[ \lim_{x \to 1^{-}} f(x) + \lim_{x \to 1^{+}} f(x) \right]$$
$$= \frac{\pi}{4} [1 + 0] = \frac{\pi}{4}$$

$$\therefore \int_0^\infty \frac{\sin \omega \cdot \cos \omega x}{\omega} d\omega = \begin{cases} \pi/2 & \text{when } |x| < 1 \\ 0 & \text{when } |x| > 1 \\ \pi/4 & \text{when } |x| = 1 \end{cases}$$

Cor. 1: Putting x = 1 in the above result, we get

$$\int_0^\infty \frac{\sin \omega \cos \omega}{\omega} d\omega = \frac{\pi}{4} \quad i.e. \quad \int_0^\infty \frac{\sin 2\omega}{\omega} d\omega = \frac{\pi}{2}$$

Cor. 2: Putting x = 0, in the above result

$$\int_0^\infty \frac{\sin \omega}{\omega} d\omega = \frac{\pi}{2}$$

Ex. 2: Express the function 
$$f(x) = \begin{cases} \sin x, & 0 < x \le \pi \\ 0, & x < 0, x > \pi \end{cases}$$

as Fourier Integral and prove that

$$f(x) = \frac{1}{\pi} \int_0^\infty \frac{\sin \omega x + \cos \left[\omega (\pi - x)\right]}{1 - \omega^2} d\omega$$
 (M.U. 2001, 06, 09)

Hence, deduce that 
$$\int_0^\infty \frac{\cos(\omega \pi/2)}{1-\omega^2} d\omega = \frac{\pi}{2}.$$

**Sol.**: The Fourier integral for f(x) is

$$f(x) = \frac{1}{\pi} \int_0^{\infty} \int_{-\infty}^{\infty} f(s) \cos \omega (s - x) d\omega ds$$

$$= \frac{1}{\pi} \int_0^{\infty} \int_0^{\pi} \sin s \cos \omega (s - x) d\omega ds$$

$$= \frac{1}{2\pi} \int_0^{\infty} \int_0^{\pi} 2 \sin s \cos \omega (s - x) d\omega ds$$

$$= \frac{1}{2\pi} \int_0^{\infty} \int_0^{\pi} [\sin (s + \omega s - \omega x) + \sin (s - \omega s + \omega x)] d\omega ds$$

$$= \frac{1}{2\pi} \int_0^{\infty} \left[ -\frac{\cos (s + \omega s - \omega x)}{1 + \omega} - \frac{\cos (s - \omega s + \omega x)}{1 - \omega} \right]_0^{\pi} d\omega$$

$$= \frac{1}{2\pi} \int_0^{\infty} \left[ -\frac{\cos (\pi + \pi \omega - \omega x)}{1 + \omega} - \frac{\cos (\pi - \pi \omega + \omega x)}{1 - \omega} \right] d\omega$$

$$= \frac{1}{2\pi} \int_0^{\infty} \left[ \frac{\cos (\pi \omega - \omega x)}{1 + \omega} + \frac{\cos \omega x}{1 - \omega} \right] d\omega$$

$$+ \frac{\cos \omega x}{1 + \omega} + \frac{\cos \omega x}{1 - \omega} d\omega$$

= = Ccos wx Ce cos s

$$= \frac{1}{2\pi} \int_0^\infty \left[ \left( \frac{1}{1+\omega} \right) \left\{ \cos \omega x + \cos \omega \left( \pi - x \right) \right\} \right] d\omega$$

$$+ \left( \frac{1}{1-\omega} \right) \left\{ \cos \omega x + \cos \omega \left( \pi - x \right) \right\} \right] d\omega$$

$$= \frac{1}{2\pi} \int_0^\infty \left( \frac{1}{1+\omega} + \frac{1}{1-\omega} \right) \left\{ \cos \omega x + \cos \omega \left( \pi - x \right) \right\} d\omega$$

$$= \frac{1}{2\pi} \int_0^\infty \frac{2}{(1-\omega^2)} \left\{ \cos \omega x + \cos \omega \left( \pi - x \right) \right\} d\omega$$

$$f(x) = \frac{1}{\pi} \int_0^\infty \left[ \frac{\cos \omega x + \cos \omega \left( \pi - x \right)}{(1-\omega^2)} \right] d\omega$$

Putting  $x = \pi/2$ , we get,

$$\sin \frac{\pi}{2} = \frac{1}{\pi} \int_0^\infty \frac{\left[\cos \frac{\pi \omega}{2} + \cos \frac{\pi \omega}{2}\right]}{(1 - \omega^2)} d\omega$$

$$= \frac{2}{\pi} \int_0^\infty \frac{\cos \pi \omega / 2}{1 - \omega^2} d\omega$$

$$\therefore 1 = \frac{2}{\pi} \int_0^\infty \frac{\cos(\pi \omega / 2)}{1 - \omega^2} d\omega \quad \therefore \quad \frac{\pi}{2} = \int_0^\infty \frac{\cos(\pi \omega / 2)}{1 - \omega^2} d\omega$$

Unfortunately there is no uniformity in the notation of Fourier Integral. Some authors use  $\lambda$  or  $\alpha$  in place of  $\omega$  and t in place of s.

## Ex. 3: Express the function

$$f(x) = \begin{cases} -e^{kx} & \text{for } x < 0 \\ e^{-kx} & \text{for } x > 0 \end{cases}$$

as Fourier Integral and hence, prove that

urier Integral and hence, prove that
$$\int_0^\infty \frac{\omega \sin \omega x}{\omega^2 + k^2} d\omega = \frac{\pi}{2} e^{-kx} \text{ if } x > 0, k > 0$$
(M.U. 2002)

**Sol.**: Since, the given function f(x) is an odd function we use (3)

$$f(x) = \frac{2}{\pi} \int_0^\infty \sin \omega x \int_0^\infty f(s) \sin \omega s \, d\omega \, ds$$

$$f(x) = \frac{2}{\pi} \int_0^\infty \sin \omega x \int_0^\infty e^{-ks} \sin \omega s \, d\omega \, ds$$

$$= \frac{2}{\pi} \int_0^\infty \sin \omega x \left[ \frac{1}{k^2 + \omega^2} e^{-ks} (-k \sin \omega s - \omega \cos \omega s) \right]_0^\infty d\omega$$

$$f(x) = \frac{2}{\pi} \int_0^\infty \sin \omega x \cdot \frac{\omega}{k^2 + \omega^2} d\omega$$

$$\therefore \int_0^\infty \frac{\omega \sin \omega x}{\omega^2 + k^2} d\omega = \frac{\pi}{2} f(x) = \frac{\pi}{2} e^{-kx} \text{ if } x > 0$$

Ex. 4: Using Fourier Cosine Integral prove that

$$e^{-x}\cos x = \frac{2}{\pi} \int_0^\infty \frac{(\omega^2 + 2)}{(\omega^4 + 4)} \cdot \cos \omega x \, d\omega$$
 (M.U. 2002, 05, 07)

Sol. : By Fourier cosine integral formula

$$f(x) = \frac{2}{\pi} \int_{0}^{\infty} \cos \omega x \int_{0}^{\infty} f(s) \cos \omega s \, d\omega \, ds$$

$$= \frac{2}{\pi} \int_{0}^{\infty} \cos \omega x \int_{0}^{\infty} e^{-s} \cos s \cdot \cos \omega s \, d\omega \, ds$$

$$= \frac{1}{\pi} \int_{0}^{\infty} \cos \omega x \int_{0}^{\infty} e^{-s} [\cos (\omega + 1) s + \cos (\omega - 1) s] \, d\omega \, ds$$

$$= \frac{1}{\pi} \int_{0}^{\infty} \cos \omega x \left[ \frac{1}{1 + (\omega + 1)^{2}} \cdot e^{-s} \{ -\cos (\omega + 1) s + (\omega + 1) \sin (\omega + 1) s \}_{0}^{\infty} \right]$$

$$+ \frac{1}{1 + (\omega - 1)^{2}} \cdot e^{-s} \{ -\cos (\omega - 1) s + (\omega - 1) \sin (\omega - 1) s \}_{0}^{\infty} \right]$$

$$= \frac{1}{\pi} \int_{0}^{\infty} \cos \omega x \left[ \frac{1}{1 + (\omega + 1)^{2}} + \frac{1}{1 + (\omega - 1)^{2}} \right] d\omega$$

$$= \frac{1}{\pi} \int_{0}^{\infty} \cos \omega x \left[ \frac{\omega^{2} - 2\omega + 2 + \omega^{2} + 2\omega + 2}{\{(\omega^{2} + 2) + 2\omega\} \{(\omega^{2} + 2) + 2\omega\} \}} \right] d\omega$$

$$= \frac{1}{\pi} \int_{0}^{\infty} \cos \omega x \cdot \frac{2(\omega^{2} + 2)}{(\omega^{2} + 2)^{2} - 4\omega^{2}} \cdot d\omega$$

$$\therefore f(x) = \frac{1}{\pi} \int_{0}^{\infty} \cos \omega x \cdot \frac{(\omega^{2} + 2)}{(\omega^{4} + 4)} d\omega.$$

Ex. 5: Find Fourier Integral representation for

$$f(x) = \begin{cases} 1 - x^2 & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$$
 (M.U. 1998, 2003, 08)

**Sol.**: By data f(s) = 0 from  $-\infty$  to -1,  $f(s) = 1 - s^2$  from -1 to 1 and f(s) = 0 from 1 to  $\infty$ .

Also 
$$f(-s) = 1 - (-s)^2 = 1 - s^2$$
  
=  $f(s)$  from -1 to 1

Hence, f(s) is an even function and we use (2).

$$f(x) = \frac{2}{\pi} \int_0^\infty \cos \omega x \int_0^\infty f(s) \cos \omega s \, d\omega \, ds$$

$$= \frac{2}{\pi} \int_0^\infty \cos \omega x \left[ \int_0^1 (1 - s^2) \cos \omega s \, ds \right] d\omega$$

$$= \frac{2}{\pi} \int_0^\infty \cos \omega x \left[ (1 - s^2) \left( \frac{\sin \omega s}{\omega} \right) - \left( -\frac{\cos \omega s}{\omega^2} \right) (-2s) + \left( -\frac{\sin \omega s}{\omega^3} \right) (-2) \right]_0^1 d\omega$$

$$= \frac{2}{\pi} \int_0^\infty \cos \omega x \left[ 0 - \frac{2\cos \omega}{\omega^2} + \frac{2\sin \omega}{\omega^3} \right] d\omega$$

$$= \frac{4}{\pi} \int_0^\infty \frac{\sin \omega - \omega \cos \omega}{\omega^3} \cdot \cos \omega x \, d\omega$$

Ex. 6: Find Fourier integral representation of

$$f(x) = \begin{cases} e^{ax} & x \le 0, \ a > 0 \\ e^{-ax} & x \ge 0, \ a > 0 \end{cases}$$
 (M.U. 1996, 97, 2002, 09)

Hence, show that  $\int_0^\infty \frac{\cos \omega x}{\omega^2 + a^2} d\omega = \frac{\pi}{2a} e^{-ax}, \quad x > 0, \quad a > 0.$ Sol.: Since, f(x) is an even function we use (2).

$$f(x) = \frac{2}{\pi} \int_0^\infty \cos \omega x \int_0^\infty f(s) \cos \omega s \, d\omega \, ds$$

$$= \frac{2}{\pi} \int_0^\infty \cos \omega x \int_0^\infty e^{-as} \cos \omega s \, d\omega \, ds$$

$$= \frac{2}{\pi} \int_0^\infty \cos \omega x \left[ \frac{1}{a^2 + \omega^2} \cdot e^{-as} (-a \cos \omega s + \omega \sin \omega s) \right]_0^\infty \, d\omega$$

$$\therefore f(x) = \frac{2}{\pi} \int_0^\infty \cos \omega x \cdot \frac{a}{a^2 + \omega^2} \, d\omega$$

$$\therefore \int_0^\infty \frac{\cos \omega x}{a^2 + \omega^2} \, d\omega = \frac{\pi}{2a} f(x) = \frac{\pi}{2a} e^{-ax}, \ x > 0, \ a > 0$$

Ex. 7: Find Fourier Integral representation of

$$f(x) = x$$
,  $0 < x < a$   
 $f(x) = 0$ ,  $x > a$   
(eq. 1005)  $f(-x) = f(x)$  (M.U. 1995)

**Sol.**: Since, f(x) is even function we use (2).

$$f(x) = \frac{2}{\pi} \int_0^\infty \cos \omega x \int_0^\infty f(s) \cos \omega s \, d\omega \, ds$$

$$= \frac{2}{\pi} \int_0^\infty \cos \omega x \int_0^a s \cos \omega s \, d\omega \, ds$$

$$= \frac{2}{\pi} \int_0^\infty \cos \omega x \left[ \frac{s(\sin \omega s)}{\omega} - \int \frac{\sin \omega s}{\omega} (1) \cdot ds \right]_0^a \, d\omega$$

$$= \frac{2}{\pi} \int_0^\infty \cos \omega x \left[ \frac{s(\sin \omega s)}{\omega} + \frac{\cos \omega s}{\omega^2} \right]_0^a \, d\omega$$

$$= \frac{2}{\pi} \int_0^\infty \cos \omega x \left[ \frac{a \sin a\omega}{\omega} + \frac{\cos a\omega}{\omega^2} - \frac{1}{\omega^2} \right] d\omega$$

$$= \frac{2}{\pi} \int_0^\infty \cos \omega x \left[ \frac{a \sin a\omega}{\omega} + \frac{\cos a\omega}{\omega^2} - \frac{1}{\omega^2} \right] d\omega$$

Ex. 8: Express the function

$$f(x) = \begin{cases} \pi/2 & \text{for } 0 < x < \pi \\ 0 & \text{for } x > \pi \end{cases}$$
 burier Sine Integral.

as Fourier Sine Integral.

(M.U. 1998)

Hence, show that

$$\int_0^\infty \frac{1 - \cos \pi \omega}{\omega} \sin \omega x \, d\omega = \frac{\pi}{2} \text{ when } 0 < x < \pi.$$

Sol.: Fourier Sine Integral by (3), page 10-25 is

$$f(x) = \frac{2}{\pi} \int_0^\infty \sin \omega x \int_0^\pi \frac{\pi}{2} \cdot \sin \omega s \, d\omega \, ds$$

$$= \frac{2}{\pi} \int_0^\infty \sin \omega x \cdot \frac{\pi}{2} \left[ -\frac{\cos \omega s}{\omega} \right]_0^\pi \, d\omega$$

$$= \int_0^\infty \sin \omega x \left[ \frac{-\cos \pi \omega + 1}{\omega} \right] d\omega$$

$$= \int_0^\infty \frac{1 - \cos \pi \omega}{\omega} \cdot \sin \omega x \, d\omega$$

$$\therefore \int_0^\infty \frac{1-\cos\pi\omega}{\omega} \cdot \sin\omega \, x \cdot d\omega = f(x) = \frac{\pi}{2} \text{ when } 0 < x < \pi.$$

Ex. 9: Find Fourier Sine integral representation for  $f(x) = \frac{e^{-xx}}{x}$ . (M.U. 2004, 09)

Sol.: By (3) Fourier Sine integral is given by

$$f(x) = \frac{2}{\pi} \int_0^\infty \sin \omega x \int_0^\infty f(s) \sin \omega s \, d\omega \, ds$$
$$= \frac{2}{\pi} \int_0^\infty \sin \omega x \int_0^\infty \frac{e^{-as}}{s} \sin \omega s \, ds \, d\omega$$

To evaluate  $\int_0^\infty \frac{e^{-as}}{s} \sin \omega s \, ds$ 

we use the rule of differentiation under the integral sign

Let 
$$I = \int_0^\infty \frac{e^{-as}}{s} \cdot \sin \omega s \, ds$$

$$\therefore \frac{dI}{d\omega} = \int_0^\infty \frac{\partial}{\partial \omega} \left( \frac{e^{-as}}{s} \cdot \sin \omega s \right) ds$$

$$= \int_0^\infty \frac{e^{-as}}{s} \cdot (\cos \omega s) \cdot s \, ds = \int_0^\infty e^{-as} \cos \omega s \, ds$$

$$= \frac{1}{a^2 + \omega^2} \left[ e^{-as} (-a \cos \omega s + \omega \sin \omega s) \right]_0^\infty$$

$$= \frac{1}{a^2 + \omega^2} (a)$$

$$\frac{1}{a^2 + \omega^2}(a)$$

$$\frac{dI}{d\omega} = \frac{a}{a^2 + \omega^2}$$
Integrating w.r.t.  $\omega$ ,  $\omega$ 

(E005 U.M) 
$$I = a \cdot \frac{1}{a} \tan^{-1} \frac{\omega}{a} + C$$
 while  $- x = 0.00 \times 10^{-1}$  electrons example

$$\therefore \int_0^\infty \frac{e^{-as}}{s} \cdot \sin \omega s \, ds = \tan^{-1} \frac{\omega}{a} + C \text{ Imperior enlarge relation} : 102$$
To find  $C$ , we put  $\omega = 0$ .

$$\therefore 0 = 0 + C \quad \therefore C = 0$$

$$\therefore 0 = 0 + C \quad \therefore C = 0$$

$$\therefore \int_0^\infty \frac{e^{-as}}{s} \cdot \sin \omega s \, ds = \tan^{-1} \frac{\omega}{a}$$

Hence, 
$$f(x) = \frac{2}{\pi} \int_0^\infty \sin \omega x \cdot \tan^{-1} \frac{\omega}{a} d\omega$$

Ex. 10: Find Fourier Sine integral of

$$f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$$
 (M.U. 1999)

Sol. : Fourier Sine integral of 
$$f(x)$$
 is given by
$$f(x) = \frac{2}{\pi} \int_0^\infty \sin \omega x \int_0^\infty f(s) \sin \omega s \cdot d\omega \, ds$$

$$= \frac{2}{\pi} \int_0^\infty \sin \omega x \left[ \int_0^1 s \sin \omega s \, ds + \int_1^2 (2 - s) \sin \omega s \, ds + \int_2^\infty 0 \cdot \sin \omega s \, ds \right] d\omega$$

$$= \frac{2}{\pi} \int_0^\infty \sin \omega x \left\{ \left[ s \left( -\frac{\cos \omega s}{\omega} \right) - \left( -\frac{\sin \omega s}{\omega^2} \right) (1) \right]_0^1 + \left[ (2 - s) \left( -\frac{\cos \omega s}{\omega} \right) - \left( -\frac{\sin \omega s}{\omega^2} \right) (-1) \right]_1^2 \right\} d\omega$$

$$= \frac{2}{\pi} \int_0^\infty \sin \omega x \left\{ \left[ -\frac{\cos \omega}{\omega} + \frac{\sin \omega}{\omega^2} \right] + \left[ 0 - \frac{\sin 2\omega}{\omega^2} + \frac{\cos \omega}{\omega} + \frac{\sin \omega}{\omega^2} \right] \right\} d\omega$$

$$= \frac{2}{\pi} \int_0^\infty \sin \omega x \cdot \frac{(2 \sin \omega - \sin 2\omega)}{\omega^2} d\omega$$

Ex. 11: Find Fourier cosine integral for

$$f(x) = \begin{cases} 1 - x^2, & 0 \le x \le 1 \\ 0, & x > 1 \end{cases}$$
Hence, evaluate 
$$\int_0^\infty \left( \frac{x \cos x - \sin x}{x^3} \right) \cos \frac{x}{2} \cdot dx.$$
 (M.U. 2003)

**Sol.**: Fourier cosine integral for f(x) is

$$f(x) = \frac{2}{\pi} \int_0^\infty \cos \omega \, x \left\{ \int_0^\infty f(t) \cos \omega \, t \, dt \right\} d\omega$$

$$= \frac{2}{\pi} \int_0^\infty \cos \omega \, x \left\{ \int_0^\infty (1 - t^2) \cos \omega \, t \, dt \right\} d\omega$$

$$= \frac{2}{\pi} \int_0^\infty \cos \omega \, x \left\{ \left[ (1 - t^2) \frac{\sin \omega \, t}{\omega} - (-2t) \left( -\frac{\cos \omega \, t}{\omega^2} \right) \right] + (-2) \left( -\frac{\sin \omega \, t}{\omega^3} \right) \right\} d\omega$$

$$= \frac{2}{\pi} \int_0^\infty \cos \omega \, x \left\{ -2 \cdot \frac{\cos \omega}{\omega^2} + \frac{2 \sin \omega}{\omega^3} \right\} d\omega$$

$$1 - x^2 = \frac{4}{\pi} \int_0^\infty \cos \omega \, x \left( \frac{\sin \omega - \omega \cos \omega}{\omega^3} \right) d\omega$$

Now put x = 1/2,

$$\therefore \frac{3\pi}{16} = \int_0^\infty \frac{\sin \omega - \omega \cos \omega}{\omega^3} \cos \frac{\omega}{2} \cdot d\omega$$

## **EXERCISE - III**

1. Express the function

$$f(x) = \begin{cases} 1 & \text{for } 0 \le x < 1 \\ 0 & \text{for } x > 1 \end{cases}$$

as a Fourier Cosine Integral and hence, show that

$$\int_0^\infty \frac{\sin \omega \cdot \cos \omega x}{\omega} d\omega = \frac{\pi}{2} \quad \text{if } 0 \le x < 1$$

Also show that the integral is equal to  $\pi$  / 4 for x = 1 and zero for x > 1.

$$\left( \text{Hint} : f(x) = \frac{2}{\pi} \int_0^\infty \cos \omega x \int_0^1 1 \cdot \cos \omega s \, d\omega \, ds = \frac{2}{\pi} \int_0^\infty \frac{\cos \omega x \cdot \sin \omega}{\omega} \, d\omega \right)$$

2. Find the Fourier Integral representation of

the Fourier Integral representation of 
$$f(x) = \begin{cases} 0, & x < 0 \\ 1/2, & x = 0 \end{cases}$$

$$e^{-x}, & x > 0 \end{cases}$$

$$\left( \text{Hint} : f(x) = \frac{1}{\pi} \int_0^\infty \int_{-\infty}^\infty 0 \, d\omega \, ds + \int_0^\infty \int_0^\infty e^{-s} \cos \omega \, (s - x) \, d\omega \, ds \right)$$

$$= \frac{1}{\pi} \int_0^\infty \left\{ \cos \omega x \int_0^\infty e^{-s} \cos \omega s \, ds + \sin \omega s \int_0^\infty e^{-s} \sin \omega s \, ds \right\} d\omega$$

$$= \frac{1}{\pi} \int_0^\infty \frac{\cos \omega x + \omega \sin \omega x}{1 + \omega^2} d\omega$$

when 
$$x = 0$$
,  $f(0) = \frac{1}{\pi} \int_0^{\infty} \frac{1}{1 + \omega^2} d\omega = \frac{1}{\pi} \left[ \tan^{-1} \omega \right]_0^{\infty} = \frac{1}{2}$ 

3. Express the function 
$$0 \le x \le \pi$$

$$f(x) = \begin{cases} \sin x, & 0 \le x \le \pi \\ 0, & x > \pi \end{cases}$$

as Fourier Sine Integral and evaluate

$$\int_0^\infty \frac{\sin \omega x \cdot \sin \pi \omega}{1 - \omega^2} d\omega \qquad (0 < \lambda)$$
The second (M.U. 2000) and viscosing works by a large in collection on the second collection.

$$\begin{aligned}
&\left( \text{Hint} : f(x) = \frac{2}{\pi} \int_0^\infty \sin \omega x \int_0^\infty \sin s \sin \omega s \, d\omega \, ds \\
&= \frac{2}{\pi} \int_0^\infty \sin \omega x \left[ -\frac{1}{2} \right] \int_0^\infty \left[ \cos s (1+\omega) - \cos s (1-\omega) \right] d\omega \, ds \\
&= \frac{2}{\pi} \int_0^\infty \sin \omega x \left( -\frac{1}{2} \right) \cdot \left( -2 \cdot \frac{\sin \pi \omega}{1-\omega^2} \right) d\omega \\
&= \frac{2}{\pi} \int_0^\infty \frac{\sin \omega x \cdot \sin \pi \omega}{1-\omega^2} \, d\omega
\end{aligned}$$

4. Express the function

ress the function 
$$f(x) = e^{-x} - e^{-2x}, x \ge 0$$

as Fourier Sine Integral and evaluate

$$\int_0^\infty \frac{\omega \sin \omega x}{(1+\omega^2)(4+\omega^2)} d\omega . \qquad \left[ \text{Ans.} : \frac{\pi}{6} (e^{-x} - e^{-2x}) \right]$$

5. Express the function  $f(x) = e^{-x}$  as Fourier Sine integral  $(x \ge 0)$ 

and show that 
$$\int_0^\infty \frac{\cos \omega x}{1+\omega^2} d\omega = \frac{\pi}{2} \cdot e^{-x}.$$
 (M.U. 2006)

6. Express  $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ e^{-x} & \text{for } x \ge 0 \end{cases}$ 

as a Fourier Integral and show that

$$\int_0^\infty \frac{\cos \omega x + \omega \sin \omega x}{1 + \omega^2} d\omega = \begin{cases} 0 & \text{for } x < 0 \\ 1/2 & \text{for } x = 0 \\ \pi e^{-x} & \text{for } x > 0 \end{cases}$$

( **Hint**: Foe second result put x = 0 in the integral, then

$$f(0) = \frac{1}{\pi} \int_0^\infty \frac{1}{1+\omega^2} d\omega = \frac{1}{\pi} \left[ \tan^{-1} \omega \right]_0^\infty = \frac{1}{2}.$$

7. Express  $f(x) = \frac{\pi}{2}e^{-x}\cos x$  for x > 0

as Fourier Sine integral and show that

$$\int_0^\infty \frac{\omega^3 \sin \omega x}{\omega^4 + 4} d\omega = \frac{\pi}{2} e^{-x} \cos x$$
 (M.U. 2002)

( Hint : Use 2  $\sin \omega x \cos x = [\sin (\omega + 1) x + \sin (\omega - 1) x]$  and

$$\int e^{ax} \sin bx \, dx = \frac{1}{a^2 + b^2} e^{ax} [a \sin bx - b \cos bx]$$

**8.** Express  $f(x) = e^{-kx}$  (k > 0)as Fourier Sine and Cosine Integral and show respectively that

(i) 
$$\int_0^\infty \frac{\omega \sin \omega x}{k^2 + \omega^2} d\omega = \frac{\pi}{2} e^{-kx}$$

(ii) 
$$\int_0^\infty \frac{\omega \cos \omega x}{k^2 + \omega^2} d\omega = \frac{\pi}{2k} e^{-kx}$$

(M.U. 2003, 08, 09)

9. Express the following function as Fourier Integral

$$f(x) = \begin{cases} x^2, & 0 \le x \le 1 \\ 0, & x > 1 \end{cases}$$

$$\left[ \mathbf{Ans.} : f(x) = \frac{2}{\pi} \int_0^{\infty} \left( 1 - \frac{2}{\omega^2} \sin \omega + \frac{2}{\omega} \cos \omega \right) \frac{\cos \omega x}{\omega} d\omega \right]$$

Theory

1. State Fourier Integral Theorem.

2. Define Fourier Sine and Cosine Integral . (M.U. 1998, 2005)

3. State Complex Fourier Series. (M.U. 2004)

4. Define orthogonal and orthonormal set of functions. (M.U. 2008)

