

Semi-Supervised Action Recognition with Temporal Contrastive Learning

¹ IIT Madras, ² IIT Kharagpur, ³ MIT-IBM Watson AI Lab, ⁴ Boston University

Problem Definition and Contribution

Goal: Leverage freely available unlabeled videos along with limited labeled videos for action recognition

Motivations:

- Annotating videos is expensive and time consuming
- Semi Supervised Action Recognition in Videos is still under explored
- Naive extensions of image based approaches to videos yield sub-optimal performance

Key Contributions:

- we treat the time axis in unlabeled videos specially, by processing them at two different speeds and propose a Temporal Contrastive Learning (TCL) framework for semi-supervised action recognition
- Introduction of novel group contrastive loss
- State of the art results on large scale video datasets

Group Contrastive Loss

Main idea: Directly applying contrastive loss between different video instances in absence of class-labels does not take the high level action semantics into account.

$$\mathcal{L}_{gc}(R_f^l, R_s^l) = -\log \frac{h(R_f^l, R_s^l)}{h(R_f^l, R_s^l) + \sum_{\substack{m=1 \ p \in \{s, f\}}}^{C} \mathbb{1}_{\{m \neq l\}} h(R_f^l, R_p^m)}$$

Key Idea

Contrasting video representations between base and auxiliary pathways exploits temporal information in videos to learn rich feature representation

Loss functions for TCL framework:

$$\mathcal{L}_{total} = \mathcal{L}_{sup} + \gamma * \mathcal{L}_{ic} + \beta * \mathcal{L}_{gc}$$

- \mathcal{L}_{qc} : Group Contrastive Loss
- γ : Weight of Instance Contrastive loss
- \mathcal{L}_{sup} : Cross Entropy Loss

• β : Weight of Group Contrastive loss

• \mathcal{L}_{ic} : Instance Contrastive Loss

$$\mathcal{L}_{ic}(U_f^i, U_s^i) = -\log \frac{h \left(g(U_f^i), g(U_s^i) \right)}{h \left(g(U_f^i), g(U_s^i) \right) + \sum\limits_{\substack{k=1 \\ p \in \{s, f\}}}^B \mathbb{1}_{\{k \neq i\}} h \left(g(U_f^i), g(U_p^k) \right)}$$

Experiments & Results

Performance Comparison in Mini-Son	mothing-V2.

	ResNet-18			ResNet-50		
Approach	1%	5%	10%	1%	5%	10%
Supervised (8f)	5.98 ± 0.68	17.26 ± 1.17	24.67 ± 0.68	5.69 ± 0.51	16.68 ± 0.25	25.92 ± 0.53
Pseudo-Label (ICMLW'13)	6.46 ± 0.32	18.76 ± 0.77	25.67 ± 0.45	6.66 ± 0.89	18.77 ± 1.18	28.85 ± 0.91
Mean Teacher (NeurIPS'17)	7.33 ± 1.13	20.23 ± 1.59	30.15 ± 0.42	6.82 ± 0.18	21.80 ± 1.54	32.12 ± 2.37
S4L (ICCV'19)	7.18 ± 0.97	18.58 ± 1.05	26.04 ± 1.89	6.87 ± 1.29	17.73 ± 0.26	27.84 ± 0.75
MixMatch (NeurIPS'19)	7.45 ± 1.01	18.63 ± 0.99	25.78 ± 1.01	6.48 ± 0.83	17.77 ± 0.12	27.03 ± 1.66
FixMatch (NeurIPS'20)	6.04 ± 0.44	21.67 ± 0.18	33.38 ± 1.58	6.54 ± 0.71	25.34 ± 2.03	37.44 ± 1.31
TCL (Ours)	7.79 ± 0.57	29.81 ± 0.77	38.61 ± 0.91	7.54 ± 0.32	27.22 ± 1.86	40.70 ± 0.42
TCL w/ Finetuning	8.65 ± 0.76	30.55 ± 1.36	40.06 ± 1.14	8.56 ± 0.31	28.84 ± 1.22	41.68 ± 0.56
TCL w/ Pretraining & Finetuning	9.91 ± 1.84	30.97 ± 0.07	41.55 ± 0.47	9.19 ± 0.43	29.85 ± 1.76	41.33 ± 1.07

Semi-supervised action recognition under domainshift (Charades-Ego):

Approach			
Supervised (8f)			
	$\rho = 1$	$\rho = 0.5$	$\rho = 0$
Pseudo-Label (ICMLW'13)	18.00 ± 0.16	17.87 ± 0.14	17.79 ± 0.33
FixMatch (NeurIPS'20)	18.02 ± 0.31	18.00 ± 0.29	17.96 ± 0.25
TCL (Ours)	19.13 ± 0.37	18.95 ± 0.17	18.50 ± 0.95
TCL w/ Finetuning	19.68 ± 0.37	19.58 ± 0.31	19.56 ± 0.82

Comparison of TCL with Pseudo-Label and **FixMatch**

Performance Comparison in Jester and Kinetics-400:

	Jester			Kinetics-400	
Approach	1%	5%	10%	1%	5%
Supervised (8f)	52.55 ± 4.36	85.22 ± 0.61	90.45 ± 0.33	6.17 ± 0.32	20.50 ± 0.23
Pseudo-Label (ICMLW'13)	57.99 ± 3.70	87.47 ± 0.64	90.96 ± 0.48	6.32 ± 0.19	20.81 ± 0.86
Mean Teacher (NeurIPS'17)	56.68 ± 1.46	88.80 ± 0.44	92.07 ± 0.03	6.80 ± 0.42	22.98 ± 0.43
S4L (ICCV'19)	64.98 ± 2.70	87.23 ± 0.15	90.81 ± 0.32	6.32 ± 0.38	23.33 ± 0.89
MixMatch (NeurIPS'19)	58.46 ± 3.26	89.09 ± 0.21	92.06 ± 0.46	6.97 ± 0.48	21.89 ± 0.22
FixMatch (NeurIPS'20)	61.50 ± 0.77	90.20 ± 0.35	92.62 ± 0.60	6.38 ± 0.38	25.65 ± 0.28
TCL (Ours)	75.21 ± 4.48	93.29 ± 0.24	94.64 ± 0.21	7.69 ± 0.21	30.28 ± 0.13
TCL w/ Finetuning	77.25 ± 4.02	93.53 ± 0.15	94.74 ± 0.25	8.45 ± 0.25	31.50 ± 0.23
TCL w/ Pretraining & Finetuning	82.55 ± 1.94	93.73 ± 0.25	94.93 ± 0.02	11.56 ± 0.22	31.91 ± 0.46

Qualitative Examples

Comparison with self-supervised methods:

Self-Supervised Approach	Top-1 Accuracy
Odd-One-Out Networks	19.56
Memory-augmented Dense Predictive Coding	18.67
Video Clip Order Prediction	23.93
TCL (Ours)	29.81 ± 0.77

Project Webpage:

https://cvir.github.io/TCL/

Code & Dataset & Model

