Math 220 A - Zerture 6

October 16, 2020

$$= \begin{cases} f d_2 = 0 & \text{if } y \text{ poisse } c' \\ y & \text{loop} \end{cases}$$

We seek improvements

New assumption.

Proposition C
$$\dagger$$
 \dagger satisfies (*) then $\int f dz = 0$

or.

for all $R \subseteq U$.

Proof

III If α is outside R , let $U^{new} = U \setminus \{\alpha\}$

where $U \setminus \{\alpha\}$ is a southing R in the subdividing R in the subdividing R in the subdividing R is a south R , let R be a square of oids R with vertex R .

IIII If R is a work R , let R be a square of oids R with vertex R .

Square of oids R with vertex R and R is a square of oids R with vertex R and R is a square of oids R with vertex R and R is a square of oids R with vertex R and R is a square of oids R with vertex R and R is a square of oids R in the vertex R in R is a square of oids R in R in

Prop A
$$= \begin{cases}
f d_2 = 0 & \forall \gamma \text{ piece wise } C^2 \\
\gamma & \log p
\end{cases}$$

Local Cauchy Integral Formula

$$f(a) = \frac{1}{2\pi i} \int \frac{f(2)}{2-a} d2$$

Proof
$$Z=1$$

$$= \begin{cases} f(z) - f(a) \\ 2 - a \end{cases} \quad \text{if } 2 \neq a$$

$$f'(a) \quad \text{if } 2 = a$$

=>
$$\mp$$
 continuous on \mathcal{U} . & holomorphic in $\mathcal{U} \setminus \{a\}$.

Let Δ s.t. $\Delta \subseteq \Delta \subseteq \Delta \subseteq \mathcal{U}$. Apply Corollary t to Δ with $\gamma = \partial \Delta$:

$$= \frac{1}{2\pi i} \int_{\partial \Delta} \frac{f(x)}{x-a} dx = f(a) \cdot \frac{1}{2\pi i} \int_{\partial \Delta} \frac{dx}{x-a} dx$$

=> Local Cauchy follows.

1. (next lemma)

$$\int \frac{dz}{z^2 - a} = 2\pi i$$

Proof

Lot c be the controfs.

$$= > \int \frac{dz}{z} = 2\pi z$$

$$\frac{dw}{w} = 2\pi^{2}$$

It suffices to show
$$\int \left(\frac{d2}{2-a} - \frac{d2}{2-c} \right) = 0 \iff \int \mathcal{R} d2 = 0$$

primitive in $C \setminus [a,c]$. Let $log \frac{2-a}{2-c} = g(2)$

=> g'= h.

Issue We need to show $\frac{2-a}{2-c} \in \mathcal{C} = \mathcal{C} \setminus R_{\leq 0}$

$$\frac{2-a}{2-c} = -u$$
, $u \in \mathbb{R}_{20} \iff Z = a \cdot \frac{1}{u+1} + c \cdot \frac{u}{u+1} \cdot 6$

E segment from a to c. (false)

$$n (\gamma, a) = \frac{1}{2\pi}, \quad \int \frac{dz}{z-a}$$

Example A y cirole

$$n(\gamma, a) = 1$$
 if $a \in lnf \gamma$.

by the Lemma.

Example
$$B$$
 $\gamma_k(t) = e^{2\pi i t k}$ $0 \le t \le 1$.

$$\Rightarrow$$
 $n(\gamma_k, o) = k.$

$$n(\gamma_k, o) = \frac{1}{2\pi i} \int \frac{d2}{2} =$$

$$n(\gamma_{k}, o) = \frac{1}{2\pi i} \int \frac{d2}{2} = \frac{1}{2\pi i k}$$

$$= \frac{1}{2\pi i} \int \frac{e^{2\pi i k}}{e^{2\pi i k}} dt$$

Cauchy (revisited) f: x - a holomorphic,

$$f(a)$$
. $n(\gamma, a) = \frac{1}{2\pi i} \int \frac{f(z)}{2-a} dz$

The proof is identical to the

previous proof.

Proof
$$n(\gamma, a) = \frac{1}{2\pi i}$$
 $\int_{\alpha}^{\beta} \gamma'(s) ds$ where

$$h(t) = \int_{\alpha}^{t} \frac{\gamma'(s)}{\gamma(s)-a} ds, h(\alpha) = 0.$$
Want $h(\beta) \in 2\pi i \mathbb{Z}$.

$$h'(t) = \frac{\gamma'(t)}{\gamma(t) - \alpha}$$

$$Compuk$$

$$h'(t) = \frac{\gamma'(t)}{\gamma(t) - a}$$

$$\Rightarrow \left(e^{-\lambda(t)}(\gamma(t) - a)\right) = e^{-\lambda(t)}(-\lambda'(t)(\gamma(t) - a) + \gamma'(t))$$

$$=> e \qquad (\gamma(t)-a) \quad constant. \quad 2et \quad t=\alpha, \quad t=\beta:$$

$$\frac{e^{-k(a)}}{(\gamma(a)-a)}=\frac{-k(\beta)}{(\gamma(\beta)-a)}.$$