Algebraic Geometry – Exercises 27 February 2007

1. (3 points) For $n \geq 0$ we denote by $C_{\mathbb{R}^n}^{\infty}$ the sheaf of C^{∞} -functions on open subsets of \mathbb{R}^n . Show that for $n, m \geq 0$ the map

$$\operatorname{Hom}_{\operatorname{LRS}_{\mathbb{R}}}\left((\mathbb{R}^n, C^{\infty}_{\mathbb{R}^n}), (\mathbb{R}^m, C^{\infty}_{\mathbb{R}^m})\right) \to C^{\infty}_{\mathbb{R}^n}(\mathbb{R}^n)^m$$

given by

$$(f,\phi) \mapsto (\phi(\mathbb{R}^m)(x_1),\ldots,\phi(\mathbb{R}^m)(x_m))$$

is a bijection.

- **2.** (2 points) Let k be an algebraically closed field. Determine $\operatorname{Aut}_{LRS_k}(\mathbb{A}^1_k)$.
- **3.** (2 points) Let k be an algebraically closed field. Let f_1 and f_2 be squarefree elements of k[x], monic and of the same degree d. Put $Y_1 = Z(f_1)$ and $Y_2 = Z(f_2)$.
 - a) Show that Y_1 and Y_2 are isomorphic as varieties.
 - b) For which values of d is there always an automorphism σ of \mathbb{A}^1_k such that $\sigma Y_1 = Y_2$ holds?
- **4.** (3 points) Let A be a ring (commutative with 1 as usual) and let $S \subset A$ be a subset closed under multiplication and containing 1. Define an equivalence relation \sim on $A \times S$ as follows:

$$(a,s) \sim (b,t) \quad \Leftrightarrow \quad \exists u \in S : u(at-bs) = 0.$$

Denote $(A \times S)/\!\!\sim$ by $S^{-1}A$.

a) Show that $S^{-1}A$ carries naturally the structure of a ring together with a homomorphism $A \to S^{-1}A$ that satisfies the following universal property: for any ring B, any homomorphism $\phi: A \to B$ with $\phi(S) \subset B^*$ factors in a unique way as

$$A \to S^{-1}A \to B$$
.

b) Prove that $S^{-1}A$ is isomorphic to

$$A[\{x_s : s \in S\}]/(\{sx_s - 1 : s \in S\}).$$

- c) For $f \in A$, consider $S = \{1, f, f^2, \ldots\}$ and denote $S^{-1}A$ by A_f . Find a necessary and sufficient condition for f in order that A_f be the zero ring.
- d) Prove that in any ring, the intersection of all the prime ideals is equal to the nilradical.
- e) For $\mathfrak p$ a prime ideal of A consider $S=A-\mathfrak p$ and denote $S^{-1}A$ by $A_{\mathfrak p}$. Prove that $A_{\mathfrak p}$ is a local ring.
- **5.** (3 points) Let (X, \mathcal{O}_X) be a locally ringed space. For $x \in X$, define k(x) to be the residue field of the local ring $\mathcal{O}_{X,x}$. Take $f \in \mathcal{O}_X(X)$ and define

$$D(f) := \{ x \in X : \overline{f}_x \neq 0 \text{ in } k(x) \}.$$

Prove that D(f) is an open subset of X and that $f|_{D(f)}$ is a unit in $\mathcal{O}_X(D(f))$.