Homework 4

Dan Sokolsky

October 20, 2020

Exercise 1.

Proof. Let $\{Q_j\}$ be the cubes defined in the proof of the Calderón–Zygmund lemma. Let $S = \{x \in [0,1)^n \mid M_4f(x) > \lambda\}$, where $x_0 = 0$ in the definition

$$M_4 f(x) = \sup_{Q \in \mathfrak{D} : Q \in [0,1]^n} \oint_Q |f|$$

 (\subseteq) Let $Q_j = [a, b]^n$. Let $\tilde{Q}_j = [a, b)^n$. Then, Q_j, \tilde{Q}_j only differ on a set of measure 0. By construction,

$$\int_{\tilde{Q}_j} |f| = \int_{Q_j} |f| > \lambda$$

so that $M_4f(x) > \lambda$ for all $x \in Q_j$. Therefore, $Q_j \subseteq S$ (for a.e. $x \in Q_j$). Thus, $\bigcup Q_j \subseteq S$ up to a set of measure 0.

 (\supseteq) Let $x \in S$. Then there exists a dyadic cube $Q \subseteq [0,1)^n$ such that

$$\oint_{\mathcal{O}} |f| > \lambda$$

So that $Q=Q_j$ for some j. Thus $S\subseteq \cup Q_j$. Therefore, $S=\cup Q_j$ up to a set of measure 0.

Exercise 2.

Proof.

Exercise 3.

Proof.