DEFINICJE

1.Odcinek

Odcinkiem o końcach A i B nazywamy zbiór składający z punktu A i B oraz wszystkich punktów leżącymi między punktami A i B.

2. Półprosta

Jeżeli A i B są różnymi punktami, to półprostą o początku A przechodzącą przez B nazywamy zbiór składający się z punktu A i wszystkich punktów leżących po tej samej stronie punktu A co punkt B.

3. Prostych równoległych

Dwie proste k i l nazywamy równoległymi, wtedy i tylko wtedy, gdy nie mają żadnego punktu wspólnego lub gdy są równe.

4. Odległości

Liczbę $|\overline{AB}|$ nazywamy odległością odcinka \overline{AB} albo odległością między punktami A i B. $AB=d(A,\ B)$ - odległość między punktami AB

5. Łamanej

Dane są punkty

$$A_1, A_2, A_3, ..., A_{n-1}, A_n$$

Łamaną nazywamy figurę złożoną z odcinków $\overline{A_1A_2}$, $\overline{A_2A_3}$, $\overline{A_3A_4}$, ..., $\overline{A_{n-1}A_n}$

Łamaną nazywamy zamkniętą, gdy $A_1 = A_n$

6. Wielokąta

Wielokątem nazywamy część płaszczyzny ograniczoną łamaną zamkniętą wraz z tą łamaną.

7. Okregu

Okręgiem o środku O i promieniu r nazywamy zbiór punkt płaszczyzny, których odległość od punktu O wynosi r.

$$o(O,r) = \{X \in \Pi : OX = r\}$$

8. Koło

Kołem o środku \mathcal{O} i promieniu r nazywamy zbiór punktów płaszczyzny, których odległość od środka jest mniejsza bądź równa r:

$$o(0,r) = \{X \in \Pi \colon 0X \le r\}$$

9. Kata

Kątem nazywamy dwie półproste o wspólnym początku wraz z jednym z dwóch obszarów, na które te półproste dzielą płaszczyznę.

10. Prostych prostopadłych

Proste, które przecinają się pod kątem prostym nazywamy prostopadłymi.

11. Przekątnej

Przekątną wielokąta jest odcinkiem wielokąta łączącym wierzchołki wielokąta, który nie jest bokiem.

12. Figury wypukłej

Figurę nazywamy wypukłą, wtedy i tylko wtedy, gdy każdy odcinek o końcach w tej figurze zawiera się w tej figurze.

Figura F jest wypukła $\Leftrightarrow \widehat{A}, \widehat{B} (A, B \in F => \overline{AB} \subset F)$.

13. Odległości punktu od prostej

Odległością od punktu P od prostej I nazywamy długość odcinka \overline{PQ} .

$$d(P,l) = PQ$$

14. Kąta przyległego

15. Kąta zewnętrznego

Kątem zewnętrznym wielokąta wypukłego nazywamy każdy kąt przyległy do kąta wewnętrznego tego wielokąta.

16. Trójkątów przystających

Dwa trójkąty nazywamy przystającymi, wtedy i tylko wtedy, gdy mają takie same miary kątów i długości boków.

 $\Delta ABC \equiv \Delta A'B'C'$

Cechy przystawania trójkątów:

1. bok-bok-bok(BBB):

Jeżeli AB = A'B', BC = B'C', AC = A'C' to $\triangle ABC \equiv \triangle A'B'C'$.

2. bok-kąt-bok(BKB):

Jeżeli AB = A'B', AC = A'C', $\sphericalangle A = \sphericalangle A'to \Delta ABC \equiv A'B'C'$.

3. kąt-bok-kąt(KBK):

Jeżeli AB=A'B', $\sphericalangle A=\sphericalangle A'$, $\sphericalangle B=\sphericalangle B'$ to $\Delta ABC\equiv\Delta A'B'C'$

17. Symetralna odcinka

Symetralną niezerowego odcinka nazywamy prostą prostopadłą do tego odcinka przechodzącą przez jego środek.

18. Środkowa boku

Środkową boku nazywamy odcinek łączący wierzchołek z środkiem przeciwległego boku.

19. Okręgu opisanego

Okręgiem opisanym na wielokącie nazywamy okrąg do którego należą wszystkie wierzchołki tego wielokąta.

20. Kąt środkowy

∢AOB jest środkowy

21. Kąt wpisany

22. Okręgu wpisanego

Okręgiem wpisanym w wielokąt wypukły nazywamy okrąg, który jest styczny do wszystkich prostych zawierających boki wielokąta, którego środek jest wewnątrz wielokąta.

23. Podobieństwa trójkątów

Dwa trójkąty nazywamy podobnym, jeżeli mają równe kąty i boki jednego trójkąta są proporcjonalne do odpowiednich boków drugiego trójkąta

 $\Delta ABC \sim \Delta A'B'C'$

Cechy podobieństwa trójkątów:

1. bok-bok-bok(BBB):

Jeżeli
$$\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}$$
, to $\Delta ABC \sim \Delta A'B'C'$.

$$\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'} = \frac{1}{3}$$
Wayyozas

 $\triangle ABC \sim \triangle A'B'C'$

2. bok-kąt-bok(BKB):

Jeżeli
$$\frac{AB}{A'B'} = \frac{CA}{C'A'}$$
 oraz $∢A = ∢A'$, to $ΔABC \sim ΔA'B'C'$

3. kąt-kąt(KK): Jeżeli $\sphericalangle A= \sphericalangle A'$ oraz $\sphericalangle B= \sphericalangle B'$, to $\Delta ABC\sim \Delta A'B'C'$

AKSJOMATY – twierdzenia, które nie wymagają dowodu

Aksjomat 1.

Przez 2 różne punkty przechodzi dokładnie jedna prosta.

Aksjomat 2. (Euklidesa)

Jeżeli dany jest punkt P i prosta l to istnieje dokładne jedna prosta przechodząca przez punkt P i równoległa do prostej l.

Aksjomat 3. (odległości)

Każdemu odcinkowi \overline{AB} przyporządkowana jest liczba nieujemna $|\overline{AB}|$ taka, że:

- (1) $|\overline{AB}| = 0 \Leftrightarrow A = B$
- (2) $|\overline{AB}| + |\overline{BC}| \ge |\overline{AC}|$, dla dowolnych punktów A, B, C.

Aksjomat 4. (O współliniowości punktów)

Punkty A, B i C leżą na jednej prostej, wtedy i tylko wtedy, gdy:

$$AC = AB + BC$$
 lub $AC = |AB - BC|$.

$$AC = AB + BC$$

$$AC = AB - BC$$

$$AC = BC - AB$$

$$AC = AB - BC$$

$$AC = BC - AB$$

$$AC = BC + AB$$

Aksjomat 5. (O nie współliniowości punktów)

Punkty A, B i C nie leżą na jednej prostej, wtedy i tylko wtedy, gdy: |AB-BC| < AC < AB+BC – nierówność trójkąta

Aksjomat 6. (O mierzeniu kątów – addytywność miary kąta)

Każdemu kątowi przyporządkowana jest liczba α w następujący sposób:

- 1. $0 \le \alpha \le 360^{\circ}$
- 2. $\alpha = 0^{\circ} \Leftrightarrow \text{kat jest zerowy}$
- 3. $\alpha = 180^{\circ} \Leftrightarrow \text{kqt jest półpełny}$
- 4. Jeśli półprosta OC leży wewnątrz ∢AOB, to:

$$| \sphericalangle AOB | = | \sphericalangle AOC | + | \sphericalangle COB |$$
, gdzie $| \sphericalangle AOB |$ to miara kąta.

Aksjomat 7. (O prostopadłości)

Jeżeli dany jest punkt P i prosta l, to istnieje dokładnie jedna prosta k przechodząca przez P i prostopadła do prostej l.

Aksjomat 8.

Jeżeli punkty P i Q leżą na prostej l, a prosta l jest równoległa do prostej k , to d(P,k)=d(Q,k).

Aksjomat 9. (trójkąta prostokątnego)

Niech trójkąty ΔABC i $\Delta A'B'C'$ będą trójkątami prostokątnymi o kątach prostych o wierzchołkach C i C'. Wówczas jeżeli zachodzi jeden z poniższych warunków:

(1)
$$CA = C'A'$$
 i $CB = C'B'$

(2)
$$CA = C'A'$$
 i $| \sphericalangle A | = | \sphericalangle A' |$

(3)
$$AB = A'B' i | \langle A | = | \langle A' |$$

towarzyszące kąty odpowiadające mają równe miary, a wszystkie odpowiadające sobie boki mają równe długości.

Aksjomat 10. (o addytywności pola powierzchni)

Jeżeli pewna figura składa się z dwóch części to jej pole jest równe sumie pól tych części.

Aksjomat 11. (o polu kwadratu)

Pole kwadratu o boku a wynosi a².

TWIERDZENIA

Twierdzenie 1.

Dwie nierównoległe proste mają dokładnie jeden punkt wspólny.

Dowód:

Proste mają jeden punkt wspólny, gdyż nie są równoległe. Gdyby miały jeszcze jeden punkt wspólny to z **Aksjomatu 1.** Musiały by być równe, czyli równoległe. Otrzymaliśmy więc sprzeczność. <u>g.e.d.</u>

Twierdzenie 2. (o przychodności równoległości)

Jeżeli $k \parallel l \mid l \mid l \parallel m$, to $k \parallel m$.

Dowód:

Załóżmy, nie wprost, że $k \not\parallel m$ to z **Twierdzenia 1.** Proste k i m przecinają się w punkcie P. Prosta k przechodzi przez P i jest równoległa l. Prosta m przechodzi przez P i jest równoległa l. **Z aksjomatu 2. (Euklidesa)** k = m, czyli $k \parallel m$ – sprzeczność. q.e.d.

Twierdzenie 3. (o kątach wierzchołkowych)

Kąty wierzchołkowe mają taką samą miarę.

Dowód:

Z aksjomatu 6.3 wiemy, że:

 $\alpha + \beta' = 180^{\circ}$ $\alpha' + \beta' = 180^{\circ}$

Odejmując stronami otrzymujemy:

 $\alpha = \alpha'$

q.e.d.

Twierdzenie 4.

Jeżeli prosta l jest prostopadła do prostej m i prosta k jest prostopadła do m, to proste k i l są równoległe.

Dowód:

Załóżmy nie wprost, że $k \not \mid l$. Z **Tw. 1.** Prosta l i k mają dokładnie jeden punkt wspólny P: $P \in l$ i $P \in k$

Wtedy proste l i k są prostopadłe do prostej m i przechodzą przez punkt P. Co jest sprzeczne z aksjomatem 7.

Twierdzenie 5.

Iloczyn dwóch figur wypukłych jest figurą wypukłą.

Dowód:

Niech F_1 , F_2 będą figurami wypukłymi oraz niech A, $B \in F_1 \cap F_2$.

Stąd $A, B \in F_1$ i $A, B \in F_2$

Wówczas $\overline{AB} \subset F_1$ oraz $\overline{AB} \subset F_2$ (bo F_1 , F_2 są wypukłe)

Zatem $\overline{AB} \in F_1 \cap F_2$.

<u>q.e.d.</u>

Twierdzenie 6. (o przekątnych wielokąta)

Liczba przekątnych n-kąta wyraża się wzorem:

$$\frac{n(n-3)}{2}$$

Dowód:

Z wierzchołka A₁ można poprowadzić n-3 przekątnych.

Z wierzchołka A₂ można poprowadzić n-3 przekątnych.

...

Z wierzchołka A_n można poprowadzić n-3 przekątnych.

Zatem przeprowadziliśmy n(n-3) przekątnych. Ale każdą przekątną policzyliśmy 2 razy, wobec tego liczba wszystkich przekątnych wynosi

$$\frac{n(n-3)}{2}.$$

Twierdzenie 7. (o kątach naprzemianległych)

Kąty odpowiadające mają równe miary; kąty naprzemianległe mają równe miary.

Dowód:

Niech:

 $k \parallel l$ oraz

 $m \not\parallel k$

Niech $\overline{AD} \perp l$ i $\overline{BC} \perp l$

Z Tw. 3. (o kątach wierzchołkowych) wiemy, że

 $\triangleleft BAC = \alpha$

Z Aksjomatu 8. AD = BC

Oczywiście AB = CD

Z Aksjomatu 9. (trójkąta prostokątnego)

 $\alpha = \beta$

Zatem z Aksjomatu 6.3.

 $\gamma = \delta$

<u>q.e.d.</u>

Twierdzenie 8. (o sumie kątów trójkąta)

Suma miar kątów dowolnego trójkąta wynosi 180°.

Dowód:

Z **Aksjomatu 2.** (Euklidesa) wiemy, że istnieje dokładnie jedna prosta przechodząca przez punkt C i równoległa do \overline{AB} . Z **Tw. 7.** (o kątach naprzemianległych) oraz **Aksjomatu 6.3** i **6.4** :

$$\alpha + \beta + \gamma = 180^{\circ}$$

Twierdzenie 9. (o sumie kątów wielokąta)

Suma miar kątów dowolnego n-kąta wypukłego wynosi $(n-2)\cdot 180^\circ$.

Dowód:

Z **Tw. 8. (o sumie kątów trójkąta)** mamy, że suma kątów wewnętrznych wszystkich trójkątów wynosi 180° . Wobec tego suma kątów wewnętrznych tego wielokąta wynosi $(n-2)*180^\circ$. $\underline{q.e.d.}$

Twierdzenie 10. (o sumie kątów zewnętrznych wielokąta)

Suma miar kątów zewnętrznych n-kąta wypukłego wynosi 720°.

Dowód:

$$\begin{array}{l} \alpha'_1 + \alpha'_2 + \alpha'_3 + \cdots + \alpha'_n = \\ = (180^\circ - \alpha_1) + (180^\circ - \alpha_2) + (180^\circ - \alpha_3) + \cdots + (180^\circ - \alpha_n) = \\ = 180^\circ \mathrm{n} - (\alpha_1 + \alpha_2 + \alpha_3 + \cdots + \alpha_n) \\ \mathrm{Zatem} \ \mathrm{z} \ \mathbf{Tw.} \ \mathbf{9} \ \mathbf{(o} \ \mathrm{sumie} \ \mathrm{kqt\acute{o}w} \ \mathrm{wielokqta}) \\ = 180^\circ \mathrm{n} - 180^\circ (\mathrm{n} - 2) = 360^\circ \\ \mathrm{Stqd} \\ 2 \cdot 360^\circ = 720^\circ \\ \underline{g.e.d.} \end{array}$$

Twierdzenie 11. (o kącie zewnętrznym trójkąta)

Kąt zewnętrzny dowolnego trójkąta jest równy sumie kątów do niego nieprzylegających.

$$\alpha' = \beta + \gamma$$

Dowód:

$$L = \alpha' = 180^{\circ} - \alpha = \beta + \gamma$$

<u>q.e.d.</u>

Twierdzenie 12. (pole prostokąta)

Pole prostokąta o bokach a i b wynosi ab.

Dowód:

$$[ABCD] = [ALPK] + [PMCN] + [LBMP] + [KPND]$$

Z **aksjomatu 11. i 10.** otrzymujemy

$$(a + b)^{2} = a^{2} + b^{2} + 2S$$

$$a^{2} + 2ab + b^{2} = a^{2} + b^{2} + 2S$$

$$2ab = 2S$$

$$ab = S$$

$$g.e.d.$$

Twierdzenie 13. (pole trójkąta prostokątnego)

Pole trójkąta prostokątnego jest równe połowie iloczynu jego przyprostokątnych.

Dowód:

Wniosek z Tw. 12.

$$2S = ab$$

$$S = \frac{ab}{2}$$

q.e.d.

Twierdzenie 14. (pole trójkąta)

Pole dowolnego trójkąta jest równe połowie iloczynu jego boku i opuszczonej na ten bok wysokości.

$$S = \frac{1}{2}ah_a = \frac{1}{2}bh_b = \frac{1}{2}ch_c$$

Dowód:

1° Niech ∆ABC będzie ostrokątny

$$|AB| = c;$$
 $|CC'| = h_c$

Z aksjomat 10. (o addytywności pola powierzchni) i Tw. 12

$$\begin{split} S &= [ABC] = [AC'C] + [CC'B] = \\ &= \frac{1}{2}AC'^{h_c} + \frac{1}{2}C'Bh_c = \frac{1}{2}h_c(AC' + C'B) = \frac{1}{2}AB\ h_c = \frac{1}{2}ch_c \\ g.e.d. \end{split}$$

2° Niech ∆ABC będzie rozwartokątny

$$|CC'| = h$$

Z aksjomat 10. (o addytywności pola powierzchni)

$$[ACC'] = [ABC] + [BC'C]$$
Stąd
$$[ABC] = [AC'C] - [BC'C] =$$

$$= \frac{1}{2}AC'h - \frac{1}{2}BC'h = \frac{1}{2}h(AC' - BC') = \frac{1}{2}h \cdot AB$$
q.e.d.

Twierdzenie 15. (o polach czworokątów)

1) Pole równoległoboku

$$S = ah_a = bh_b$$

2) Pole rombu

$$S = \frac{1}{2}d_1d_2$$

3) Pole trapezu

$$S = \frac{(a+b) \cdot h}{2}$$

Dowód:

1) Pole równoległoboku

Z aksjomatu 10. (o addytywności pola powierzchni)

$$[ARCD] = [ARD] + [RDC]$$

$$[ABCD] = [ABD] + [BDC]$$

Zatem z **Tw. 14 (o polu trójkąta)**
 $= \frac{1}{2}ah_a + \frac{1}{2}ah_a =$
 $= ah_a$

2) Pole rombu

Z aksjomatu 10. (o addytywności pola powierzchni) i Tw. 14(o polu trójkąta)

$$[ABCD] = [ACD] + [ABC] =$$

$$= \frac{1}{2}PD \cdot AC + \frac{1}{2}PB \cdot AC = \frac{1}{2}AC \cdot (DP + PB) =$$

$$= \frac{1}{2}d_1d_2$$

3) Pole trapezu

Z aksjomatu 10. (o addytywności pola powierzchni) i Tw. 13 i 14

$$[ABCD] = [AD'D] + [D'C'CD] + [C'BC] =$$

$$= \frac{1}{2}AD' \cdot h + D'C' \cdot h + \frac{1}{2}C'B \cdot h =$$

$$= \frac{1}{2}h \cdot (AD' + 2 \cdot D'C' + C'B) = \frac{1}{2}h \cdot (a+b)$$

q.e.d.

Twierdzenie 16. (Pitagorasa)

Jeżeli trójkąt jest prostokątny to suma kwadratów przyprostokątnych jest równa kwadratowi przeciwprostokątnej.

$$a^2 + b^2 = c^2$$
Dowód:

Niech

$$AK = BL = CM = DN = a$$

 $KB = LC = MD = NA = b$
 $NK = KL = LM = MN = c$

Z aksjomatu 9.1(trójkąta prostokątnego):

$$\angle AKN = \angle BLK = \angle CML = \angle DNM = \alpha$$

 $\angle ANK = \angle LKB = \angle MLC = \angle DMN = \beta$

Z aksjomatu 6.4 i 6.3

$$\alpha + \angle NKL + \beta = 180^{\circ}$$

ale
$$\alpha + \beta = 90^{\circ}$$

Stąd
$$\triangleleft NKL = 90^{\circ}$$

Analogicznie dowodzimy, że pozostałe kąty czworokąta KLMN są proste

Z aksjomatu 10:

$$[ABCD] = [KLMN] + 4[NAK]$$

Stad

$$(a+b)^{2} = c^{2} + 4 \cdot \frac{a \cdot b}{2}$$

$$a^{2} + 2ab + b^{2} = c^{2} + 2ab$$

$$a^{2} + b^{2} = c^{2}$$
q.e.d.

Twierdzenie 17. (związki miarowe w trójkącie prostokątnym)

W dowolnym trójkącie prostokątnym prawdziwe są równości

(1)
$$h^2 = pq$$
 (2) $a^2 = pc$ (3) $b^2 = qc$

$$(2) a^2 = p$$

(3)
$$b^2 = qc$$

Dowód:

Z Tw. 16 (Pitagorasa)

$$\begin{cases} h^2 + p^2 = a^2 \\ h^2 + q^2 = b^2 \\ a^2 + b^2 = c^2 \end{cases}$$

Z (1) i (2) do (3):

$$h^{2} + p^{2} + h^{2} + q^{2} = c^{2}$$

$$2h^{2} + p^{2} + q^{2} = (p + q)^{2}$$

$$2h^{2} + p^{2} + q^{2} = p^{2} + q^{2} + 2qp$$

$$2h^{2} = 2qp$$

$$(4) h^{2} = ap$$

Z (4) do (1):

$$qp + p^{2} = a^{2}$$

$$p(p + q) = a^{2}$$

$$pc = a^{2}$$

Z (4) do (2):

$$pq + q^{2} = b^{2}$$

$$q(p + q) = b^{2}$$

$$qc = b^{2}$$

Dowód:

Łatwo zauważyć, że $\Delta BDC \sim \Delta ADC \sim \Delta ABC$ cecha **KK:**

Stąd

$$\frac{h}{p} = \frac{q}{h}$$

$$\frac{h^2 = pq}{a}$$

$$\frac{a}{p} = \frac{c}{a}$$

$$\frac{a^2 = pc}{a}$$

$$\frac{b}{q} = \frac{c}{b}$$

$$\frac{b^2 = qc}{q.e.d.}$$

Twierdzenie 18. (Tw. Odwrotne od Tw. Pitagorasa)

Jeżeli boki trójkąta ABC spełniają równość

$$a^2 + b^2 = c^2,$$

to trójkąt ABC jest prostokątny o kącie prostokątnym w wierzchołku C.

Dowód(nie wprost):

Załóżmy, że $a^2 + b^2 = c^2$ i trójkąt ABC nie jest prostokątny.

1) Niech $\triangle ABC$ jest ostrokątny

Z Tw. 16 Pitagorasa:

$$\begin{cases} (a-x)^2 + y^2 = c^2 \\ x^2 + y^2 = b^2 \\ a^2 + b^2 = c^2 \end{cases}$$

$$(a-x)^{2} + y^{2} = a^{2} + b^{2}$$

$$a^{2} - 2ax + x^{2} + y^{2} = a^{2} + b^{2}$$

$$-2ax + x^{2} + y^{2} = b^{2}$$

$$-2ax + b^2 = b^2$$

$$-2ax = 0$$

$$x = 0$$
 - sprzeczność

2) Niech $\triangle ABC$ jest rozwartokątny, gdzie $\angle C > 90^{\circ}$

Z Tw. 16 Pitagorasa:

$$\begin{cases}
x^2 + y^2 = b^2 \\
(a + x)^2 + y^2 = c^2 \\
a^2 + b^2 = c^2
\end{cases}$$

Z (1) i (3) do (2):
$$a^2 + 2ax + x^2 + y^2 = x^2 + y^2 + a^2$$
 $2ax = 0$ $x = 0$ – sprzeczność

Twierdzenie 19. (pons asinorum)

Dwa boki trójkąta są równe, wtedy i tylko wtedy, gdy kąty leżące naprzeciwko tych boków są równe. <u>Dowód:</u>

1) (⇒) Załóżmy, że dwa boki są równe – AB=BC.

Z Tw. 16 Pitagorasa

$$AD^2 = AC^2 - h^2$$
 oraz $DB^2 = CB^2 - h^2$

Stąd

AD = BD

Z cechy **BKB**

 $\Delta ADC \equiv \Delta DCB$

Zatem

 $\sphericalangle A =
\sphericalangle B$

2) (\Leftarrow) Załóżmy, że $\sphericalangle A = \sphericalangle B$.

Niech CD będzie dwusieczną kąta $\sphericalangle C$

Stąd

 $\sphericalangle ACD = \sphericalangle DCB$

Stąd na podstawie cechy KBK

 $\Delta ADC \equiv \Delta DCB$

Zatem AC=CB

Twierdzenie 20. (O symetralnej)

Niech A i B będą różnymi punktami. Równość AP=BP zachodzi, wtedy i tylko wtedy, gdy punkt leży na symetralnej.

Dowód:

1) (\Longrightarrow) Załóżmy, że AP = BP.

Niech SP jest środkową \overline{AB}

Z cechy BBB

 $\Delta ASP \equiv \Delta SBP$

Stad ASP = PSB

Ale $\angle ASP + \angle PSB = 180^{\circ}$

Więc $\angle ASP = 90^{\circ}$, co oznaczam że $\overline{PS} \perp \overline{AB}$, co oznacza, że \overline{PS} jest symetralną odcinka \overline{AB} .

2) (\Leftarrow) Załóżmy, że punkt P leży na symetralnej odcinka \overline{AB} .

Z cechy **BKB**

 $\Delta ASP \equiv \Delta SBP$

Zatem AP=BP

Twierdzenie 21. (O symetralnych w trójkącie)

Symetralne trzech boków dowolnego trójkąta przecinają się w jednym punkcie.

Dowód:

Niech l będzie symetralną odcinka \overline{AB} a k symetralną odcinka \overline{BC}

Wówczas niech $l \cap k = \{P\}$

Stąd P $\in l$ oraz $P \in k$

Z Tw. 20 (O symetralnej)

PA = PB

PB = PC

Stąd PA = PC

Z Tw. 20 (O symetralnej)

 $P \in \text{symetralnej } \overline{AC}$

Zatem punkt P jest punktem przecięcia symetralnych \overline{AB} , \overline{BC} i \overline{AC} .

<u>q.e.d.</u>

Twierdzenie 22.

Na każdym trójkącie można opisać okrąg.

Dowód.

Z dowodu **Tw. 21 (O symetralnych w trójkącie)** wynika, że punkt przecięcia się symetralnych boków trójkąta jest równooddalony od wszystkich jego wierzchołków. Jest więc środkiem okręgu opisanego na trójkącie.

Twierdzenie 23. (O kątach w kole)

- (1) Kąt środkowy oparty na tym samym łuku co kąt wpisany jest od niego dwa razy większy.
- (2) Kąty wpisane oparte na tych samych łukach są równe.
- (3) Kąt wpisany oparty na półokręgu jest prosty.
- (4) Kąty wpisane oparte na uzupełniających się łukach dają w sumie 180°.

Dowód:

(1)

1° Niech $\angle ABO + \angle OBC > 90^{\circ}$

Z Tw. 19 (pons asinorum)

$$\angle ABO = \frac{180^{\circ} - \alpha}{2} = 90^{\circ} - \frac{\alpha}{2}$$

$$\angle OBC = \gamma + \beta$$

$$\angle CAB = \angle ABO - \gamma = 90^{\circ} - \frac{\alpha}{2} - \gamma$$

 $Z \Delta ABC$ i Tw 8 (o sumie kątów trójkąta) i Aksjomatu 6.

 2° Niech $\angle ABO + \angle OBC < 90^{\circ}$

Z Aksjomatu 6. (O addytywności kątów)

$$\beta = \gamma + \delta$$

Z Tw. 19. (pons asinorum)

$$\angle AOC = 180^{\circ} - 2\gamma$$

$$\triangleleft BOC = 180^{\circ} - 2\delta$$

Z Aksjomatu 6.

$$360^{\circ} = \alpha + \angle AOC + \angle BOC$$

$$360^{\circ} = \alpha + (180^{\circ} - 2\gamma) + (180^{\circ} - 2\delta)$$

$$\alpha = 2\beta$$

 3° Niech $\angle ABO + \angle OBC = 90^{\circ}$

Z **Tw. 11**

$$\alpha = 2\beta$$

<u>q.e.d.</u>

(2)

Z **Tw. 23.1.**

 $\sphericalangle COD = 2\alpha$

$$\angle COD = 2\beta$$

Stąd

 $2\alpha = 2\beta$

 $\alpha = \beta$

<u>q.e.d.</u>

(3)

$$\angle AOB = 180^{\circ}$$

Z **Tw. 23.1.**

$$\sphericalangle ACB = \frac{1}{2} \sphericalangle AOB = \frac{1}{2} 180^{\circ} = 90^{\circ}$$

q.e.d.

(4)

Z Aksjomatu 6. (O addytywności kątów)

 $\angle DOB + \angle BOD = 360^{\circ}$

Z **Tw. 23.1.**
$$\not \subset DOB = 2\gamma$$
 $\not \subset BOD = 2\alpha$ Zatem $2\alpha + 2\gamma = 360^{\circ}$ $\alpha + \gamma = 180^{\circ}$

<u>q.e.d.</u>

Twierdzenie. 24 (O kącie między styczną i sieczną)

Kąt między styczną do okręgu i sieczną przechodzącą przez punkt styczności jest równy kątowi opartego na tym samym łuku co łuk wyznaczony przez sieczną i znajduje się po drugiej stronie niż ten łuk.

Dowód:

Z Aksjomatu 6. (O addytywności kątów)

$$90^{\circ} - \beta + \alpha = 90^{\circ}$$

 $\alpha = \beta$

Twierdzenie 25. (O okręgu opisanym na wielokącie)

Na wielokącie wypukłym można opisać okrąg, wtedy i tylko wtedy, gdy symetralne wszystkich jego boków przecinają się w jednym punkcie.

Dowód:

1) (⇒) Załóżmy, że na wielokącie można opisać okrąg

Łatwo zauważyć, że

$$\mathit{OA}_1 = \mathit{OA}_2 \mathbin{\mathrm{i}} \mathit{OA}_2 = \mathit{OA}_3 \mathbin{\mathrm{i}} \ldots \mathbin{\mathrm{i}} \mathit{OA}_n = \mathit{OA}_1$$

Czyli z Tw. 20. (O symetralnej)

$$0 \in sym.\,\overline{A_1A_2} \, \mid O \in sym.\,\overline{A_2A_3} \mid \dots \mid O \in sym.\,\overline{A_nA_1}$$

Zatem

$$sym.\overline{A_1A_2} \cap sym.\overline{A_2A_3} \cap ... \cap sym..\overline{A_nA_1} = \{0\}$$

2) (\Leftarrow) Niech symetralne boków A_1A_2 , A_2A_3 , ..., A_nA_1 przecinają się w punkcie O.

$$\mathit{OA}_1 = \mathit{OA}_2 \, \mathrm{i} \, \mathit{OA}_2 = \mathit{OA}_3 \, \mathrm{i} \dots \mathrm{i} \, \mathit{OA}_n = \mathit{OA}_1$$

Zatem O jest środkiem okręgu opisanego na wielokącie $A_1A_2A_3\dots A_n$. $\underline{q.e.d.}$

Twierdzenie 26. (O okręgu opisanym na czworokącie)

Na czworokącie wypukłym można opisać okrąg, wtedy i tylko wtedy, gdy suma przeciwległych kątów jest równa 180° .

Dowód:

1) (⇒) Załóżmy, że na czworokącie ABCD można opisać okrąg.

Z Tw. 23.4

$$\angle A + \angle C = 180^{\circ}$$

$$\triangleleft B + \triangleleft D = 180^{\circ}$$

<u>q.e.d.</u>

2) (\Leftarrow) Załóżmy, że w czworokącie ABCD $\sphericalangle A + \sphericalangle C = 180^\circ$ oraz $\sphericalangle B + \sphericalangle D = 180^\circ$ Przypuśćmy, że na czworokącie ABCD nie można opisać okręgu, tzn. zajdzie 1 z 2 przypadków.

1°

Na czworokącie ABC'D jest opisany okrąg.

Z części (1) Tw. 26. wiemy, że

$$\triangleleft A + \varphi = 180^{\circ}$$

Ale z założenia wiemy, że

$$\varphi = \angle C$$

Ale z Tw. 11(O kącie zewnętrznym trójkąta)

$$\varphi = \angle C + \beta$$

Stąd

$$\varphi > \angle C$$
 – sprzeczność

Na czworokącie ABC''D jest opisany okrąg.

Z części (1) Tw. 26. wiemy, że

$$\triangleleft A + \varphi = 180^{\circ}$$

Ale z założenia wiemy, że

 $\varphi = \not \propto C$

Ale z Tw. 11(O kącie zewnętrznym trójkąta)

$$\sphericalangle C = \varphi + \beta$$

Stąd

 $\varphi > \sphericalangle \mathcal{C}$ – sprzeczność

Wobec tego nasze przypuszczenie, że na czworokącie ABCD nie można opisać okręgu doprowadza nas do sprzeczności w każdym przypadku. Zatem na czworokącie ABCD można opisać okrąg.

Twierdzenie 27. (O dwusiecznej)

Punkt X leży na dwusiecznej kąta, wtedy i tylko wtedy, gdy jest w tej samej odległości od ramion. <u>Dowód:</u>

1) (\Longrightarrow) Załóżmy, że punkt X leży na dwusiecznej kąta AOD.

Łatwo zauważyć, że
$$∢OXY = ∢OXZ$$

Zatem z cechy **KBK** $\Delta OYX \equiv \Delta OZX$

Zatem XZ = XY

a.e.d.

2) (\Leftarrow) Załóżmy, że d(X, pr. OA) = d(X, pr. OB), czyli XZ = XY

Z Tw. 16 (Pitagorasa)

$$OY^2 = OX^2 - a^2 = OX^2 - a^2 = OZ^2$$

Zatem

$$OY = OZ$$

Wobec tego z cechy **BKB**

$$\Delta OYX \equiv \Delta OZX$$

Zatem, wszystkie miary kątów muszą być sobie równe , co oznacza, że punkt X leży na dwusiecznej.

<u>q.e.d.</u>

Twierdzenie 28. (O dwusiecznych w trójkącie)

Dwusieczne kątów wewnętrznych dowolnego trójkąta przecinają się w jednym punkcie.

Dowód:

Niech dwusieczne kątów dwóch kątów (A i B) przecinają się w punkcie P.

Z Tw. 27 (O dwusiecznej) wiemy, że

$$d(P, pr. AB) = d(P, pr. AC)$$

oraz

$$d(P, pr. AB) = d(P, pr. BC)$$

Stąd

$$d(P, pr. BC) = d(P, pr. AC)$$

Zatem z **Tw. 27** punkt P należy do dwusiecznej kąta C

<u>q.e.d.</u>

Twierdzenie 29. (O okręgu wpisanym w trójkąt)

W każdy trójkąt można wpisać okrąg.

Dowód:

Z dowodu **Tw. 28** wynika, że punkt przecięcia się dwusiecznych kątów trójkąta jest środkiem okręgu wpisanego.

Twierdzenie 30. (O okręgu wpisanym w wielokąt)

W wielokąt możemy wpisać okrąg, wtedy i tylko wtedy, gdy dwusieczne wszystkich jego kątów przecinają się w jednym punkcie.

Dowód:

1) (\Longrightarrow) Załóżmy, że w wielokąt $A_1A_2A_3\dots A_n$ można wpisać okrąg.

Stąd $d(I,pr.A_1A_2)=d(I,pr.A_2A_3)=\cdots=d(I,pr.A_nA_1)$

Z Tw. 27(O dwusiecznej)

 $I \in dw. \triangleleft A_1 \mid I \in dw. \triangleleft A_2 \mid I \in dw. \triangleleft A_3 \mid ... \mid I \in dw. \triangleleft A_n$

Zatem dwusieczne kątów tego czworokąta przecinają się w punkcie I. Czyli jest on środkiem okręgu wpisanego.

2) (\Leftarrow) Niech dwusieczne boków A_1A_2 , A_2A_3 , ..., A_nA_1 przecinają się w punkcie I. Z Tw. 27(O dwusiecznej)

$$d(I, pr. A_1 A_2) = d(I, pr. A_2 A_3) = \cdots = d(I, pr. A_n A_1)$$

Zatem I jest środkiem okręgu wpisanego w wielokąt $A_1A_2A_3\dots A_n$.

Twierdzenie 31.

Pole dowolnego trójkąta wyznacza się wzorem

$$s = r \cdot p$$
,

gdzie 2p to obwód

Dowód:

Z Aksjomatu 10. (O addytywności pola powierzchni)

$$[ABC] = [AIB] + [BIC] + [CIA] =$$

$$= \frac{1}{2}cr + \frac{1}{2}ar + \frac{1}{2}br = \frac{1}{2}r(a+b+c) =$$

$$= \frac{1}{2}r \cdot 2p = r \cdot p$$
q.e.d.

Twierdzenie 32.

W dowolnym trójkącie zachodzi równość

$$\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c} = \frac{1}{r}$$

Z Tw. 31 oraz Tw. 14 (pole trójkąta):

$$S = \frac{1}{2}ah_a = \frac{1}{2}bh_b = \frac{1}{2}ch_c = r \cdot p$$

Stąd
$$h_a=rac{2S}{a}$$
 i $h_b=rac{2S}{b}$ oraz $h_c=rac{2S}{c}$ Zatem

$$L = \frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c} = \frac{a}{2S} + \frac{b}{2S} + \frac{c}{2S} = \frac{a+b+C}{2S} = \frac{2p}{2S} = \frac{2p}{2r \cdot p} = \frac{1}{r} = P.$$

Twierdzenie 33.

Jeżeli w wielokąt wypukły $A_1A_2A_3A_4\dots A_{n-1}A_n$ można wpisać okrąg jego pole wyraża się wzorem $S=p\cdot r.$

Dowód:

Niech w wielokąt $A_1A_2A_3A_4\dots A_{n-1}A_n$ można było wpisać okrąg.

Z Aksjomatu 10. (O addytywności pola powierzchni):

$$\begin{split} &[A_1A_2A_3A_4\dots A_{n-1}A_n] = [A_1IA_2] + [A_2IA_3] + [A_3IA_4] + \dots + [A_{n-1}IA_n] + [A_nIA_1] = \\ &= \frac{|A_1A_2|\cdot r}{2} + \frac{|A_2A_3|\cdot r}{2} + \frac{|A_3A_4|\cdot r}{2} + \dots + \frac{|A_{n-1}A_n|\cdot r}{2} + \frac{|A_nA_1|\cdot r}{2} = \\ &= \frac{r}{2}\cdot (|A_1A_2| + |A_2A_3| + |A_3A_4| + \dots + |A_{n-1}A_n| + |A_nA_1|) = \\ &\frac{r}{2}\cdot 2p = p\cdot r. \end{split}$$

Twierdzenie 34. (o trójliściu)

Niech I będzie środkiem okręgu wpisanego w trójkąta ABC oraz prosta CI przecina okrąg opisany na trójkącie ABC w punkcie D.

Wówczas

$$AD = ID = BD$$

Dowód:

Z Tw. 8 (O sumie kątów trójkąta)

$$\angle AID = 180^{\circ} - \beta - \frac{\alpha}{2} - \frac{\gamma}{2}$$

Z Δ*ABC* :

$$\sphericalangle AID = \alpha + \gamma - \frac{\alpha}{2} - \frac{\gamma}{2} = \frac{\alpha}{2} + \frac{\gamma}{2} = \sphericalangle IAD$$

Zatem z **Tw. 19 (pons asinorum)** ΔAID jest równoramienny, czyli

$$AD = DI$$

Skoro $\angle DAB = \angle DBA$ to z **Tw. 19** $\triangle ADB$ jest równoramienny, czyli

$$AD = DB$$

Twierdzenie 35. (Zasadnicze twierdzenie)

Jeżeli punkt P leży na zewnątrz okręgu to istnieją dokładnie dwie proste styczne do tego okręgu i przechodzące przez punkt P. Ponadto odcinki wyznaczone na tych prostych przez punkt P i punkty styczności są równe.

<u>Dowód:</u>

Z Tw. 16 (Pitagorasa)

$$AP^2 = PS^2 - r^2$$

$$BP^2 = PS^2 - r^2$$

Stąd

$$AP = BP$$

Twierdzenie 36.

Suma przyprostokątnych dowolnego trójkąta prostokątnego jest równa sumie średnic okręgu opisanego na nim i okręgu wpisanego w nim.

Dowód:

$$a + b = y + r + x + r =$$

= $2r + (x + y) = 2r + c = 2r + 2R$

<u>q.e.d.</u>

Wniosek:

$$r = \frac{a+b-c}{2}$$

Twierdzenie 37.

Niech okrąg wpisany w trójkąt ABC będzie styczny do \overline{AB} , \overline{BC} , \overline{CA} , odpowiednio w punktach M, K, L. Wówczas AM = AL = p - a, BM = BK = p - b, CK = CL = p - c. Dowód:

Z Tw. 35 (Zasadnicze twierdzenie)

$$AM = AL i BM = BK i CK = CL$$

Niech AM = x, BM = y, CK = z

Wówczas

$$(x + y = c)$$

$$\{y + z = a\}$$

$$(z + x = b)$$

Odejmując (3) od sumy (1) i (2) otrzymujemy:

$$x + y + y + z - z - x = c + a - b$$

$$2y = c + a - b$$

$$2y = c + a + b - 2b$$

$$2y = 2p - 2b$$

$$y = p - b$$

Odejmując (1) od sumy (2) i (3) otrzymujemy:

$$y + z + z + x - x - y = a + b - c$$

$$2x = a + b + c - 2c$$

$$2x = 2p - 2c$$

$$x = p - c$$

Odejmując (2) od sumy (1) i (3) otrzymujemy:

$$x + y + z + x - y - z = c + b - a$$

$$2x = a + b + c - 2a$$

$$2x = 2p - 2a$$

$$\underline{x} = \underline{p} - \underline{a}$$

Twierdzenie 38. (O okręgu wpisanym w czworokąt)

W czworokąt można wpisać okrąg, wtedy i tylko wtedy, gdy sumy przeciwległych boków są równe. Dowód:

1) (⇒) Załóżmy, że w czworokąt *ABCD* można wpisać okrąg.

Z Tw. 35 (Zasadnicze twierdzenie):

$$AB + CD = x + y + z + t$$

oraz

$$AB + CD = BC + AD$$

g.e.d.

2) (\Leftarrow) Załóżmy, że w czworokącie ABCD zachodzi równość (1) AB + CD = AD + BC.

Dowód(nie wprost):

Załóżmy, że w czworokąt ABCD nie można wpisać okręgu. Mogą wówczas zajść dwa przypadki.

1°

Wówczas w czworokąt ABC'D można wpisać okrąg

Zatem z pierwszej części dowodu

$$(2) AB + C'D = AD + BC'$$

Odejmując stronami (1) i (2) otrzymujemy

$$CD - CD' = BC - BC'$$

$$CC' + BC' = BC$$

Otrzymaliśmy równość trójkąta, że

$$CC' + BC' > BC$$

Zatem sprzeczność.

Wówczas w czworokąt ABC"D jest wpisany okrąg. Stąd:

$$(3)AB + C''D = AD + BC''$$

Odejmując stronami równość (1) i (3) otrzymujemy

C''D - CD = BC'' - BC

 $CC^{\prime\prime} + BC = BC^{\prime\prime}$

Otrzymaliśmy sprzeczność z nierównością trójkąta, że

CC'' + BC > BC''.

Zatem nasze przypuszczenie, że w czworokąt ABCD nie można wpisać okręgu prowadzi nas do sprzeczności. Zatem w czworokąt ABCD można wpisać okręg. g.e.d.

Twierdzenie 39.

W trapez ABCD można wpisać okrąg o środku I.

Wówczas $\angle AID = \angle BIC = 90^{\circ}$

Dowód:

Z Aksjomatu 6. (O mierzeniu kątów)

$$2\alpha + 2\delta = 180^{\circ}$$

$$\alpha + \delta = 90^{\circ}$$

Stad
$$\angle AID = 180^{\circ} - (\alpha + \delta) = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

Analogicznie udowadniamy, że

$$\angle BIC = 90^{\circ}$$

Twierdzenie 40.

W trójkącie równobocznym o boku a i wysokości h, pole wyraża się wzorami:

$$h = \frac{a\sqrt{3}}{2}$$
 oraz $S = \frac{a^2\sqrt{3}}{4}$
Dowód:

Z $\triangle ACC'$ i **Tw. 16 (Pitagorasa)**:

$$\left(\frac{1}{2}a\right)^{2} + h^{2} = a^{2}$$

$$\frac{1}{4}a^{2} + h^{2} = a^{2}$$

$$\frac{3}{4}a^{2} = h^{2}$$

$$h = \frac{\sqrt{3}}{2}a$$
Stąd

$$S = \frac{1}{2}ah = \frac{1}{2}a \cdot \frac{\sqrt{3}}{2}a = \frac{2\sqrt{3}}{4}a^2$$

Twierdzenie 41.

Odcinek łączący środki dwóch boków trójkąta jest równoległy do trzeciego boku i jest od niego dwa razy krótszy.

$$\overline{KL} \parallel \overline{AB}$$
 oraz $KL = \frac{1}{2}AB$

Dowód:

Zauważmy, że

$$\frac{CK}{CA} = \frac{1}{2} \text{ oraz } \frac{CL}{CB} = \frac{1}{2}$$

Stąd

$$\frac{CK}{CA} = \frac{CL}{CB}$$

Zatem z cechy podobieństwa **BKB**:

$$\Delta CKL \sim \Delta CAB$$

Stąd

$$\frac{KL}{AB} = \frac{1}{2} \text{ oraz } \not \subset BAC = \not \subset LKC$$

Czyli

$$KL = \frac{1}{2}AB \text{ oraz } \overline{KL} \parallel \overline{AB}$$

Twierdzenie 42. (O siecznych)

 $PA \cdot PB = PC \cdot PD$

Dowód:

1° Punkt P leży poza okręgiem

 $\Delta PBC{\sim}\Delta PAD$ KK

Zatem

$$\frac{PB}{PC} = \frac{PD}{PA}$$

Stąd

 $PB \cdot PA = PD \cdot PC$

2° Punkt P leży w okręgu

 $\Delta PBC \sim \Delta PAD$ KK

Zatem

$$\frac{PB}{PC} = \frac{PD}{PA}$$

Stąd

$$PB \cdot PA = PD \cdot PC$$

q.e.d.

Twierdzenie 43. (O siecznej i stycznej)

 $PA \cdot PB = PK^2$ <u>Dowód:</u>

 $\Delta PBK{\sim}\Delta PAK$ (KK) (bo $\sphericalangle PBK=\sphericalangle PKA$ – Tw. 24 (O kącie między styczną i sieczną))

$$\frac{PB}{PK} = \frac{PK}{PA}$$
Stąd
$$PK^2 = PB \cdot PA$$
q.e.d.

Twierdzenie 44. (O równoległoboku)

Jeżeli czworokąt jest równoległobokiem to spełnia on warunki:

- a) przeciwległe boki są równe,
- b) przeciwległe kąty są równe,
- c) kąty wewnętrzne przy jednym boku dopełniają się do 180°,
- d) przekątne przecinają się w połowie.

Dowód:

a)

Z cechy **KBK**:

$$\Delta ABC \equiv \Delta ADC$$

Stąd

$$AB = CD i AD = BC$$

<u>q.e.d.</u>

b)

$$z \underline{a} \otimes BAD = ABCD$$

analogicznie

$$\sphericalangle ABC =
\sphericalangle ADC$$

<u>q.e.d.</u>

c)

Łatwo zauważyć

$$\alpha + \beta = 180^{\circ}$$

z a)
$$AB = CD$$

Zatem z cechy **BKB:** $\Delta AEB \equiv \Delta ECD$

Czyli
$$AE = EC i DE = EB$$
 $q.e.d.$

Twierdzenie 45.

Jeżeli w czworokącie zachodzi co najmniej jeden z warunków:

- a) przeciwległe boki są równe,
- b) przeciwległe kąty są równe,
- c) kąty wewnętrzne leżące naprzeciwko są równe,
- d) przekątne połowią się

to ten czworokąt jest równoległobokiem.