Ruhr-Universität Bochum Autonomous Vehicles and Artificial Intelligence Sommersemester 2022

Finale Präsentation

Leitfaden

01

Planung

Ausgangssituation Und Design Decisions 02

Implementierung

Übersicht & Orientierung

03

Navigation

Waypoint Berechnung

04

Results

Demo und Diskussior

01 Planung

Ausgangssituation Und Design Decisions

Ausgangssituation & Design Decisions:

Stateless oder Stateful?:

- Das Problem der ersten Runde bei einem stateful Ansatz
- Zeitdruck einen präsentierbaren Status zu erreichen
 - → Stateless

Was wir brauchen:

- Einen Weg um LiDAR Daten und Bounding Boxes zusammen zu führen.
- Die relative Positionen aller sichtbaren Cones im LiDAR radius.
- Eine Heuristik um aus den relativen Positionen Fahranweisungen abzuleiten
- Eine Notbremse, falls die Verbindung zum Turtlebot abbricht.

02Implementierung

Übersicht & Orientierung

Übersicht

Aufgaben Controller:

- Das Finden der zwei nächsten cones (blau und gelb) -> Sensor Fusion
- Ermittlung des Anpassungsbedarfs der Orientierung
- Berechnung von Waypoints
- Das Senden von Fahranweisungen
- Das Senden einer Heartbeat message

Aufgaben Heartbeat:

- Weiterleitung von Fahranweisung
- Starten einer Notbremse

Finden der zwei nächsten Cones

- Mapping der LiDAR Range indizes auf die X-Koordinaten der Bounding Boxes
- Selektierung der cones mit der niedrigsten Range
- Ableitung des Winkels aus Range index
- Winkel + Range = Position der cones

Anpassungsbedarf der Orientierung

- Wenn kein gelber Cone
 → Linksdrehung
- Wenn kein blauer Cone
- → Rechtsdrehung

03 Navigation

Waypoint Berechnung

Waypoint Berechnung 1

Ausgangssituation

Gesucht

Waypoint Berechnung 2

Abstand der Cones berechnen

Seitenhalbierende

Waypoint Berechnung 3

X Strecke zum Mittelpunkt berechnen

Winkel berechnen

04 Results

Demo und Diskussion

Diskussion & Ausblick:

Simulation ≠ echte Welt

- Fahrgeschwindigkeit ist niedriger
- Netzwerk Verzögerungen
- Schiefe Kamera
- Unebenes Gelände
- → Steile Kurven sind schwierig und werden teilweise geschnitten

Ausblick:

- Eventuell einsatz von bereits implementierten Controllern → Nav2
- Tracken von Cones die im Kamera Sichtfeld waren, jetzt aber nur noch im LiDAR zu sehen sind
- Kombination mit Stateful Design für besseres Path planning

Vielen Dank

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**