Полученные результаты:

	Mean	Mean	t-value	df	р	Valid N	Valid N	Std.Dev	Std.Dev	F-ratio	р
NewVa	5,52726 4	5,58330 3	- 0,13603 6	9 8	0,89207 2	40	60	2,10002 3	1,96206 4	1,14557 0	0,62759 1

Выдвинем гипотезу о равенстве дисперсий:

$$H_0$$
: $(\sigma_1^2 = \sigma_2^2)$

Применим способ проверки гипотезы, в котором используется решающее правило, основанное на P-значении:

принимается гипотеза
$$egin{cases} H_0, & \mbox{если}\, P \geq \mathbf{\alpha}, \\ H_1, & \mbox{если}\, P < \mathbf{\alpha}. \end{cases}$$

Так как P = 0.627, значит $P > \alpha = 0.05$, следовательно гипотеза H_0 : $(\sigma_1^2 = \sigma_2^2)$ принимается, значит дисперсии равны.

Выдвинем гипотезу H_0 о равенстве мат. ожиданий: $\mu_1 = \mu_2$.

Так как гипотеза о равенстве дисперсий подтвердилась, целесообразно использовать *t*–критерий Стьюдента.

Применим аналогичный способ проверки гипотезы, в котором используется решающее правило, основанное на *P*–значении:

принимается гипотеза
$$egin{cases} H_0, & \mbox{если}\,P \geq \mathbf{\alpha}, \\ H_1, & \mbox{если}\,P < \mathbf{\alpha}. \end{cases}$$

Так как p = 0.892 > 0.05 то принимается гипотеза H_0 , означает что мат. ожидания двух выборок равны.

Рисунок 8. Гистограммы распределения переменной Var1 в двух выборах.

Решение задач Фишера об ирисах.

SEPALLEN: длинна чашелистика;

SEPALWID: ширина чашелистика;

PETALLEN: длинна лепестка;

PETALWID: ширина лепестка;

IRISTYPE: типы ирисов (SETOSA, VERSICOL, VIRGINIC).

Рисунок 9. Группируем данные по типу ирисов и выбираем анализируемые значения.

Выбранные группы: SETOSA, VIRGINIC.

Построим таблицу результатов оценок групп:

	T-tests; Grouping: IRISTYPE: Three types of iris (IRISDAT.STA) Group 1: SETOSA: Iristype "Setosa" Group 2: VIRGINIC: Iristype "Virginic"													
	Mean	Mean	t-value	df	р	t separ.	df	р	Valid N	Valid N	Std.Dev.	Std.Dev.	F-ratio	р
Variable	SETOSA	VIRGINIC			*	var.est.		2-sided	SETOSA	VIRGINIC	SETOSA	VIRGINIC	Variances	Variances
SEPALLEN	5,006000	6,588000	-15,3862	98	0,000000	-15,3862	76,51587	0,000000	50	50	0,352490	0,635880	3,25430	0,000064
SEPALWID	3,428000	2,974000	6,4503	98	0,000000	6,4503	95,54723	0,000000	50	50	0,379064	0,322497	1,38158	0,261389
PETALLEN	1,462000	5,552000	-49,9862	98	0,000000	-49,9862	58,60939	0,000000	50	50	0,173664	0,551895	10,09934	0,000000
PETALWID	0,246000	2,026000	-42,7858	98	0,000000	-42,7858	63,12262	0,000000	50	50	0,105386	0,274650	6,79199	0,000000

Выдвинем 4-ре гипотезы $H_{01}, H_{02}, H_{03}, H_{04}$ о равенстве дисперсий для каждого признака, и проверим их решающим правилом основанном на P-значении.

$$\left\{egin{aligned} H_0, & ext{если}\, P \geq \mathbf{C}, \ H_1, & ext{если}\, P < \mathbf{C}. \end{aligned}
ight.$$

Для признаков SEPALLEN, PETALLEN, PETALWID отклоняются соответственно H_{01} , H_{03} , H_{04} ; так как P < 0.05. Для признака SEPALWID H_{02} принимается, так как P = 0.26 > 0.05.

Выдвинем 4-ре гипотезы H_{11} , H_{12} , H_{13} , H_{14} соответственно признакам SEPALLEN, SEPALWID, PETALLEN, PETALWID; гипотезы о

равенстве мат. ожиданий.

Для гипотез H_{11} , H_{13} , H_{14} воспользуемся t-критерием Уэлча (так как у них дисперсии различные), а для H_{12} воспользуемся t-критерием Стьюдента.

В качестве решающего правила будем использовать правило основанное на Р-значении.

$$\left\{egin{aligned} H_0, & ext{если}\, P \geq \mathbf{Q}, \ H_1, & ext{если}\, P < \mathbf{Q}. \end{aligned}
ight.$$

Таким образом получим:

Для гипотезы H_{11} : P = 0 < 0.05 а значит H_{11} отклоняется.

Для гипотезы H_{12} : P = 0 < 0.05 а значит H_{12} отклоняется.

Для гипотезы H_{13} : P = 0 < 0.05 а значит H_{13} отклоняется.

Для гипотезы H_{14} : P = 0 < 0.05 а значит H_{14} отклоняется.