Introduction to Deep Learning

2. Machine Learning Basics

Haibin Lin and Leonard Lausen gluon-nlp.mxnet.io

8:30-9:00	Continental Breakfast
9:00-9:45	Introduction and Setup
9:45-10:30	Neural Networks 101
10:30-10:45	Break
10:45-11:15	Machine Learning Basics
11:15-11:45	Context-free Representations for Language
11:45-12:15	Convolutional Neural Networks
12:15-13:15	Lunch Break
13:15-14:00	Recurrent Neural Networks
14:00-14:45	Attention Mechanism and Transformer
14:45-15:00	Coffee Break
15:00-16:15	Contextual Representations for Language
16:15-17:00	Language Generation

Model Evaluation

Training Error and Generalization Error

- Training error: model error on the training data
- Generalization error: model error on new data
- Example: practice a future exam with past exams
 - Doing well on past exams (training error) doesn't guarantee a good score on the future exam (generalization error)
 - Student A gets 0 error on past exams by rote learning
 - Student B understands the reasons for given answers

Validation Dataset and Test Dataset

- Validation dataset: a dataset used to evaluate the model
 - E.g. Take out 50% of the training data
 - Should not be mixed with the training data (#1 mistake)
- Test dataset: a dataset can be used once, e.g.
 - A future exam
 - The house sale price I bided
 - Dataset used in private leaderboard in Kaggle

K-fold Cross Validation

- Useful when not sufficient data
- Algorithm:
 - Partition the training data into K parts
 - For i = 1, ..., K
 - Use the *i*-th part as the validation set, the rest for training
 - Report the averaged the K validation errors
- Popular choices: K = 5 or 10

Underfitting Overfitting

Image credit: hackernoon.com

Underfitting and Overfitting

Data complexity

Model capacity

	Simple	Complex
Low	Normal	Underfitting
High	Overfitting	Normal

Model Capacity

- The ability to fit variety of functions
- Low capacity models struggles to fit training set
 - Underfitting
- High capacity models can memorize the training set
 - Overfitting

Influence of Model Complexity

Estimate Model Capacity

- It's hard to compare complexity between different algorithms
 - e.g. tree vs neural network
- Given an algorithm family, two main factors matter:
 - The number of parameters
 - The values taken by each parameter

$$(d+1)m + (m+1)k$$

Data Complexity

- Multiple factors matters
 - # of examples
 - # of elements in each example
 - time/space structure
 - diversity

Weight Decay

Neural Network - 10 Units, No Weight Decay

Neural Network - 10 Units, Weight Decay=0.02

Squared Norm Regularization as Hard Constraint

Reduce model complexity by limiting value range

min
$$\ell(\mathbf{w}, b)$$
 subject to $\|\mathbf{w}\|^2 \le \theta$

- Often do not regularize bias b
 - Doing or not doing has little difference in practice
- A small θ means more regularization

Squared Norm Regularization as Soft Constraint

• For each θ , we can find λ to rewrite the hard constraint version as

$$\min \ \mathscr{E}(\mathbf{w}, b) + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- Hyper-parameter λ controls regularization importance
- $\lambda = 0$: no effect
- $\lambda \to \infty, \mathbf{w}^* \to \mathbf{0}$

Illustrate the Effect on Optimal Solutions

Update Rule

Compute the gradient

$$\frac{\partial}{\partial \mathbf{w}} \left(\ell(\mathbf{w}, b) + \frac{\lambda}{2} ||\mathbf{w}||^2 \right) = \frac{\partial \ell(\mathbf{w}, b)}{\partial \mathbf{w}} + \lambda \mathbf{w}$$

Update weight at time t

$$\mathbf{w}_{t+1} = (1 - \eta \lambda) \mathbf{w}_t - \eta \frac{\partial \mathcal{E}(\mathbf{w}_t, b_t)}{\partial \mathbf{w}_t}$$

• Often $\eta\lambda < 1$, so also called weight decay in deep learning

Dropout

Motivation

 A good model should be robust under modest changes in the input

Add Noise without Bias

Add noise into x to get x', we hope

$$\mathbf{E}[\mathbf{x}'] = \mathbf{x}$$

Dropout perturbs each element by

$$x_i' = \begin{cases} 0 & \text{with probablity } p \\ \frac{x_i}{1-p} & \text{otherise} \end{cases}$$

Apply Dropout

 Often apply dropout on the output of hidden fullyconnected layers

$$\mathbf{h} = \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)$$

$$\mathbf{h}' = \text{dropout}(\mathbf{h})$$

$$\mathbf{o} = \mathbf{W}_2 \mathbf{h}' + \mathbf{b}_2$$

$$\mathbf{y} = \text{softmax}(o)$$

Dropout in Inference

- Regularization is only used in training
- The dropout layer for inference is

$$\mathbf{h}' = \mathsf{dropout}(\mathbf{h})$$

Guarantee deterministic results

