Análises do dados de vacinação

Gestantes e puérperas

11/setembro/2023

Contents

T	Sobre	e a base de dados e pacotes do R utilizados	
2	Trata	mento dos dados	ç
	2.1 V	Variável que indica se gestante ou puérpera	Ć
		Raça	
		$\widehat{\mathrm{dade}}$	
		JF de aplicação	
		Município de aplicação	
		JF de residência	
		Município de residência	
		Qual vacina aplicada	
		Qual dose	
		Sobre tempo entre aplicação e importação no RNDS	
3	Exclu	são dos casos inconsistentes	28
	3.1 I	Dados com status "entered-in-error"	28
	3.2 I	D do paciente que se repete para um mesmo número de dose e para o mesmo estabelecimento	
	Ċ	le saúde	29
	3.3 A	Ano de aplicação da vacina	30

1 Sobre a base de dados e pacotes do R utilizados

 $\label{eq:constraint} A \ seguir \ s\~{a}o \ carregados \ os \ pacotes \ do \ R \ (https://www.r-project.org) \ utilizados \ para \ filtragem \ e \ tratamento \ dos \ dados \ considerados \ no \ dashboard \ https://observatorioobstetrico.shinyapps.io/vacinacao-covid19.$

```
#carregar pacotes
loadlibrary <- function(x) {
   if (!require(x, character.only = TRUE)) {
      install.packages(x, dependencies = T)
      if (!require(x, character.only = TRUE))
        stop("Package not found")
   }
}</pre>
```

```
packages <-
  c(
    "readr",
    "readxl",
    "janitor",
    "dplyr",
    "forcats",
    "stringr",
    "lubridate",
    "summarytools",
    "magrittr",
    "questionr",
    "knitr",
    "data.table",
    "janitor",
    "modelsummary"
  )
lapply(packages, loadlibrary)
options(scipen=999)
```

```
#funções que vamos usar para as medidas descritivas
media <- function(x)
  mean(x, na.rm = TRUE)

mediana <- function(x)
  median(x, na.rm = TRUE)

DP <- function(x)
  sd(x, na.rm = TRUE)

minimo <- function(x)
  base::min(x, na.rm = TRUE)

maximo <- function(x)
  base::max(x, na.rm = TRUE)

q25 <- function(x)
  stats::quantile(x, p = 0.25, na.rm = TRUE)

q75 <- function(x)
  stats::quantile(x, p = 0.75, na.rm = TRUE)</pre>
```

```
TQR <- function(x)
  round(q75(x) - q25(x), 2)
n <- function(x)
  sum(!is.na(x))
faltantes <- function(x)
  round(sum(is.na(x)), digits = 0)

#dados <- read_csv("vacinacao-total-2023-04-04.csv")
dados1 <- read.csv("vacinacao_covid_001801.csv")
dados2 <- read.csv("vacinacao_covid_001901.csv")

dados <- rbind(dados1, dados2)
remove(dados1)
remove(dados2)</pre>
```

Dados obtidos em https://opendatasus.saude.gov.br/dataset/covid-19-vacinacao na data de 08/setembro/2023. A extração dos dados é realizada por meio de consultas à API ElasticSearch disponibilizada em https://opendatasus.saude.gov.br/dataset/covid-19-vacinacao.

Além disso, visando diminuir o volume de dados retornado pelas consultas, é realizada uma pré-filtragem dos dados diretamente na API, sendo retornados apenas registros cujo campo vacina_grupoAtendimento_codigo seja igual a 1901 (código para puérpera) ou 1801 (código para gestante). Essa etapa de extração foi realizada utilizando a linguagem de programação python.

1.0.1 Código para extração

```
import requests
import json
import time
import http.server
import socketserver
import csv
from apscheduler.schedulers.background import BackgroundScheduler
from datetime import datetime

def get_dados_vacinacao(grupoAtendimento = '001801'):
    start_time = time.time()
    print(f'Iniciando exportação de registros do grupo de atendimento {grupoAtendimento}
```

```
as {datetime.fromtimestamp(start_time).strftime("%H:%M:%S")}')
total = 0
response = requests.post("https://imunizacao-es.saude.gov.br/_search?scroll=1m",
                            'size': 10000,
                            'query': {
                               'bool': {
                                  'filter': [{
                                     'term': {
                                        'vacina_grupoAtendimento_codigo': grupoAtendimento
                                      }
                                    }]
                                  }
                                }
                            },
                         auth=('imunizacao_public', 'qlto5t&7r_@+#Tlstigi'),
                         headers={'Content-type': 'application/json'})
json_response = json.loads(response.text)
print(f'Total de registros a serem exportados: {json_response["hits"]["total"]["value"]}')
hits = [ dict(sorted(hit['_source'].items())) for hit in json_response['hits']['hits']]
csv_header = hits[0].keys()
with open(f'vacinacao_covid_{grupoAtendimento}.csv', 'w', encoding="utf-8") as f:
 writer = csv.DictWriter(f, fieldnames=csv_header)
 writer.writeheader()
 writer.writerows(hits)
total += len(hits)
print(f'Registros exportados: {total}')
while (hits):
 response = requests.post("https://imunizacao-es.saude.gov.br/_search/scroll",
                         json={ 'scroll': '1m', 'scroll_id': json.loads(response.text)['_scroll_id']}
                         auth=('imunizacao_public', 'qlto5t&7r_@+#Tlstigi'),
                         headers={'Content-type': 'application/json'})
 hits = [dict(sorted(hit['_source'].items())) for hit in json.loads(response.text)['hits']['hits']]
```

```
with open(f'vacinacao_covid_{grupoAtendimento}.csv', 'a', encoding="utf-8") as f:
      writer = csv.DictWriter(f, fieldnames=csv_header)
      writer.writerows(hits)
   total += len(hits)
   print(f'Registros exportados: {total}')
  print(f'Finalizando exportação de registros do grupo de atendimento {grupoAtendimento} as {time.strft
  print(f'Importado {total} de registros em {"{:,.2f}".format((time.time() - start_time)/60)} minutos')
  return hits
get_dados_vacinacao('001901')
get_dados_vacinacao('001801')
#Criação das variáveis de data, mês e ano da aplicação
dados <- dados %>%
  dplyr::mutate(
   data_nascimento = str_sub(paciente_dataNascimento, start = 1, end = 10),
   data_aplic = str_sub(vacina_dataAplicacao, start = 1, end = 10),
   data_import = str_sub(data_importacao_rnds, start = 1, end = 10),
   dt_nasc = as.Date(data_nascimento),
   dt_aplic = as.Date(data_aplic),
   dt_import = as.Date(data_import),
   ano_aplic = year(dt_aplic),
   mes_aplic = month(dt_aplic)
  )
summary(dados$dt aplic)
                     1st Qu.
                                   Median
                                                  Mean
                                                             3rd Qu.
## "1989-01-20" "2021-07-07" "2021-09-13" "2021-11-16" "2022-02-01" "2023-09-08"
summary(dados$dt_import)
                     1st Qu.
                                   Median
                                                             3rd Qu.
           Min.
                                                  Mean
                                                                             Max.
## "1989-01-20" "2021-07-13" "2021-09-21" "2021-09-06" "2022-02-27" "2023-09-09"
```

A data máxima de aplicação é 2023-09-08 e a data máxima de importação é 2023-09-09.

Os dados já estão filtrados vacina_grupoAtendimento_codigo igual a 1801 (código de gestante) ou 1901 (código de puérpera).

```
dados$vacina_grupoAtendimento_codigo <- as.character(dados$vacina_grupoAtendimento_codigo)
#tabela de frequência para grupo de atendimento
questionr::freq(
   dados$vacina_grupoAtendimento_codigo,
   cum = FALSE,
   total = TRUE,
   na.last = TRUE,
   valid = TRUE
) %>%
   kable(caption = "Tabela de frequências para grupo de atendimento",
        digits = 2, format = "markdown")
```

Table 1: Tabela de frequências para grupo de atendimento

	n	%	val%
1801	2268948	77.5	77.5
1901	657013	22.5	22.5
Total	2925961	100.0	100.0

Há atualmente 2925961 observações na base de dados e são as variáveis:

names(dados)

```
[1] "X.timestamp"
##
   [2] "X.version"
##
   [3] "co_condicao_maternal"
##
   [4] "data_importacao_datalake"
##
   [5] "data_importacao_rnds"
##
   [6] "document_id"
##
   [7] "ds_condicao_maternal"
##
   [8] "dt_deleted"
##
   [9] "estabelecimento_municipio_codigo"
## [10] "estabelecimento_municipio_nome"
## [11] "estabelecimento_razaoSocial"
## [12] "estabelecimento_uf"
```

- ## [13] "estabelecimento_valor"
- ## [14] "estalecimento_noFantasia"
- ## [15] "id_sistema_origem"
- ## [16] "paciente_dataNascimento"
- ## [17] "paciente_endereco_cep"
- ## [18] "paciente_endereco_coIbgeMunicipio"
- ## [19] "paciente_endereco_coPais"
- ## [20] "paciente_endereco_nmMunicipio"
- ## [21] "paciente_endereco_nmPais"
- ## [22] "paciente_endereco_uf"
- ## [23] "paciente_enumSexoBiologico"
- ## [24] "paciente_id"
- ## [25] "paciente_idade"
- ## [26] "paciente_nacionalidade_enumNacionalidade"
- ## [27] "paciente_racaCor_codigo"
- ## [28] "paciente_racaCor_valor"
- ## [29] "sistema_origem"
- ## [30] "status"
- ## [31] "vacina_categoria_codigo"
- ## [32] "vacina_categoria_nome"
- ## [33] "vacina_codigo"
- ## [34] "vacina_dataAplicacao"
- ## [35] "vacina_descricao_dose"
- ## [36] "vacina_fabricante_nome"
- ## [37] "vacina_fabricante_referencia"
- ## [38] "vacina_grupoAtendimento_codigo"
- ## [39] "vacina_grupoAtendimento_nome"
- ## [40] "vacina_lote"
- ## [41] "vacina_nome"
- ## [42] "vacina_numDose"
- ## [43] "data_nascimento"
- ## [44] "data_aplic"
- ## [45] "data_import"
- ## [46] "dt_nasc"
- ## [47] "dt_aplic"
- ## [48] "dt_import"

```
## [49] "ano_aplic"
## [50] "mes_aplic"
Veja que há também as variáveis vacina_grupoAtendimento_nome e vacina_categoria_codigo e
vacina_categoria_nome.
with(
 dados,
  ctable(
   vacina_grupoAtendimento_codigo,
   vacina_grupoAtendimento_nome,
   prop = "n"
 )
## Cross-Tabulation
## vacina_grupoAtendimento_codigo * vacina_grupoAtendimento_nome
## Data Frame: dados
##
##
                                      vacina_grupoAtendimento_nome Gestante Puérpera
                                                                                               Total
     vacina_grupoAtendimento_codigo
##
                                1801
                                                                        2268948
                                                                                             2268948
##
##
                               1901
                                                                                    657013
                                                                                              657013
##
                              Total
                                                                        2268948
                                                                                    657013
                                                                                             2925961
dados$vacina_categoria_codigo <-</pre>
  as.character(dados$vacina_categoria_codigo)
with (dados,
     ctable(
       vacina_grupoAtendimento_codigo,
       vacina_categoria_codigo,
       prop = "n"
     ))
## Cross-Tabulation
## vacina_grupoAtendimento_codigo * vacina_categoria_codigo
## Data Frame: dados
```

```
##
##
                                                                                25
                                       vacina_categoria_codigo
                                                                       21
                                                                                        Total
##
     vacina_grupoAtendimento_codigo
##
                                                                  2268948
                                                                                      2268948
                                1901
                                                                            657013
##
                                                                                       657013
                               Total
                                                                  2268948
                                                                            657013
                                                                                      2925961
##
with(dados,
     ctable(vacina_grupoAtendimento_codigo, vacina_categoria_nome, prop = "n"))
## Cross-Tabulation
## vacina_grupoAtendimento_codigo * vacina_categoria_nome
## Data Frame: dados
##
##
                                       vacina_categoria_nome
                                                                Gestantes Puérperas
                                                                                         Puérperas
                                                                                                       Tot
##
     vacina_grupoAtendimento_codigo
##
                                                                  2268948
                                                                                                     22689
##
                                1901
                                                                                436477
                                                                                            220536
                                                                                                       6570
##
                               Total
                                                                  2268948
                                                                               436477
                                                                                            220536
                                                                                                     29259
```

2 Tratamento dos dados

2.1 Variável que indica se gestante ou puérpera

Table 2: Tabela de frequências para gestante ou puérpera

	n	%	val%
gesta	2268948	77.5	77.5
puerp	657013	22.5	22.5
Total	2925961	100.0	100.0

2.2 Raça

Table 3: Tabela de frequências para raça/cor original

	n	%	val%
1	1038108	35.5	35.5
2	140890	4.8	4.8
3	859039	29.4	29.4
4	460966	15.8	15.8
5	3766	0.1	0.1
99	422963	14.5	14.5
NA	229	0.0	NA

```
n % val%
Total 2925961 100.0 100.0
```

```
#Criando a variável de raça/cor
dados <- dados %>%
mutate(
    raca = case_when(
        paciente_racaCor_codigo == "1" ~ "branca",
        paciente_racaCor_codigo == "2" ~ "preta",
        paciente_racaCor_codigo == "3" ~ "parda",
        paciente_racaCor_codigo == "4" ~ "amarela",
        paciente_racaCor_codigo == "5" ~ "indigena",
        TRUE ~ NA_character_
    )
)
```

Table 4: Tabela de frequências para raça/cor

	n	%	val%
amarela	460966	15.8	18.4
branca	1038108	35.5	41.5
indigena	3766	0.1	0.2
parda	859039	29.4	34.3
preta	140890	4.8	5.6
NA	423192	14.5	NA

	n	%	val%
Total	2925961	100.0	100.0

2.3 Idade

	n	faltantes	media	DP	mediana	minimo	maximo
dif_idade	2925732.00	229.00	0.00	0.00	0.00	0.00	0.00

Podemos observar que há 0 observações com a variável original de idade (paciente_idade) diferente da variável criada como a diferença entre data de nascimento e de aplicação da dose.

2.4 UF de aplicação

```
#Criando a variável de UF de aplicação

dados <- dados %>%

mutate(
    aplic_uf = case_when(
        estabelecimento_uf == "" ~ NA_character_,
        estabelecimento_uf == "XX" ~ NA_character_,

        TRUE ~ estabelecimento_uf
    )
)
```

Table 6: Tabela de frequências para UF de aplicação

	n	%	val%
AC	7265	0.2	0.2
AL	34183	1.2	1.2
AM	60325	2.1	2.1
AP	6777	0.2	0.2
BA	202120	6.9	6.9
CE	105830	3.6	3.6
DF	44790	1.5	1.5
ES	90091	3.1	3.1
GO	101027	3.5	3.5
MA	83800	2.9	2.9
MG	367513	12.6	12.6
MS	21090	0.7	0.7
MT	60656	2.1	2.1
PA	95585	3.3	3.3
РВ	74660	2.6	2.6
PE	202299	6.9	6.9
PΙ	54164	1.9	1.9
PR	244806	8.4	8.4
RJ	212332	7.3	7.3
RN	67990	2.3	2.3
RO	29151	1.0	1.0
RR	1685	0.1	0.1

	n	%	val%
RS	165323	5.7	5.7
SC	96671	3.3	3.3
SE	36057	1.2	1.2
SP	444245	15.2	15.2
TO	15526	0.5	0.5
Total	2925961	100.0	100.0

2.5 Município de aplicação

```
#Criando a variável de município (código IBGE) da aplicação

dados <- dados %>%

mutate(
    aplic_muni = ifelse(
        is.na(estabelecimento_municipio_codigo) |
        estabelecimento_municipio_codigo == 9999999,
        NA,
        estabelecimento_municipio_codigo
    )
)
```

2.6 UF de residência

```
#Criando a variável de UF da residência

dados <- dados %>%

mutate(
    resid_uf = case_when(
        paciente_endereco_uf == "" ~ NA_character_,
        paciente_endereco_uf == "XX" ~ NA_character_,
        paciente_endereco_uf == "None" ~ NA_character_,
        TRUE ~ paciente_endereco_uf
    )
)
```

```
#tabela de frequência para UF residência
questionr::freq(
```

Table 7: Tabela de frequências para UF de residência

	n	%	val%
AC	7726	0.3	0.3
AL	36456	1.2	1.3
AM	59526	2.0	2.0
AP	7030	0.2	0.2
BA	207663	7.1	7.1
CE	108109	3.7	3.7
DF	45816	1.6	1.6
ES	87768	3.0	3.0
GO	99298	3.4	3.4
MA	81361	2.8	2.8
MG	366474	12.5	12.6
MS	22547	0.8	0.8
MT	61372	2.1	2.1
PA	96277	3.3	3.3
РВ	77240	2.6	2.6
PE	197156	6.7	6.8
PΙ	53850	1.8	1.8
PR	237485	8.1	8.1
RJ	209996	7.2	7.2
RN	67739	2.3	2.3
RO	29424	1.0	1.0
RR	2433	0.1	0.1
RS	166127	5.7	5.7
SC	100380	3.4	3.4

	n	%	val%
SE	35806	1.2	1.2
SP	434318	14.8	14.9
ТО	16773	0.6	0.6
NA	9811	0.3	NA
Total	2925961	100.0	100.0

Podemos observar que há 9811 NA (dados faltantes) para UF de residência. Vamos verificar a distribuição de dados faltantes da UF de residência por UF de aplicação:

```
#criação do indicador de missing para UF de residência
dados <- dados %>%
  mutate(indic_na_uf_resid = ifelse(is.na(resid_uf), "sim", "não"))
with(dados, ctable(aplic_uf, indic_na_uf_resid, prop = "r"))
## Cross-Tabulation, Row Proportions
## aplic_uf * indic_na_uf_resid
## Data Frame: dados
##
##
##
                 indic_na_uf_resid
                                                                                    Total
                                                   não
                                                                  sim
     aplic_uf
##
##
           AC
                                         7252 (99.8%)
                                                           13 (0.2%)
                                                                           7265 (100.0%)
                                                                          34183 (100.0%)
##
           AL
                                        34112 (99.8%)
                                                            71 (0.2%)
                                        60011 (99.5%)
                                                           314 (0.5%)
                                                                          60325 (100.0%)
##
           AM
                                                                           6777 (100.0%)
##
           AΡ
                                         6751 (99.6%)
                                                            26 (0.4%)
##
           BA
                                       201545 ( 99.7%)
                                                           575 (0.3%)
                                                                         202120 (100.0%)
           CE
                                       105137 (99.3%)
                                                           693 (0.7%)
                                                                         105830 (100.0%)
##
                                        44530 (99.4%)
                                                           260 (0.6%)
                                                                          44790 (100.0%)
##
           DF
##
           ES
                                        89855 (99.7%)
                                                           236 (0.3%)
                                                                          90091 (100.0%)
                                       100715 ( 99.7%)
                                                                         101027 (100.0%)
           GO
                                                           312 (0.3%)
##
                                        83412 (99.5%)
                                                                          83800 (100.0%)
##
           MA
                                                           388 (0.5%)
           MG
                                       366324 (99.7%)
                                                          1189 (0.3%)
                                                                         367513 (100.0%)
##
##
           MS
                                        21048 (99.8%)
                                                            42 (0.2%)
                                                                          21090 (100.0%)
                                        60544 ( 99.8%)
                                                                          60656 (100.0%)
##
           MT
                                                           112 (0.2%)
```

```
95245 (99.6%)
                                                                          95585 (100.0%)
##
           PA
                                                           340 (0.4%)
##
           PB
                                       74425 (99.7%)
                                                           235 (0.3%)
                                                                          74660 (100.0%)
##
           PΕ
                                       201450 ( 99.6%)
                                                          849 (0.4%)
                                                                         202299 (100.0%)
                                       53889 (99.5%)
                                                           275 (0.5%)
                                                                          54164 (100.0%)
##
           ΡI
##
           PR
                                       244168 (99.7%)
                                                           638 (0.3%)
                                                                         244806 (100.0%)
                                       211598 (99.7%)
                                                           734 (0.3%)
                                                                         212332 (100.0%)
##
           RJ
           RN
                                       67833 (99.8%)
                                                          157 (0.2%)
                                                                          67990 (100.0%)
##
           RO
                                       29052 (99.7%)
                                                           99 (0.3%)
                                                                          29151 (100.0%)
##
           R.R.
                                         1673 (99.3%)
                                                           12 (0.7%)
                                                                           1685 (100.0%)
##
##
           RS
                                       164912 (99.8%)
                                                          411 (0.2%)
                                                                          165323 (100.0%)
##
           SC
                                        96502 (99.8%)
                                                          169 (0.2%)
                                                                          96671 (100.0%)
                                        35953 (99.7%)
                                                          104 (0.3%)
                                                                          36057 (100.0%)
##
           SE
##
           SP
                                       442752 ( 99.7%)
                                                          1493 (0.3%)
                                                                         444245 (100.0%)
##
           TO
                                        15462 (99.6%)
                                                            64 (0.4%)
                                                                          15526 (100.0%)
##
        Total
                                     2916150 ( 99.7%)
                                                         9811 (0.3%)
                                                                        2925961 (100.0%)
```

2.7 Município de residência

```
#Criando a variável de município (código IBGE) da residência

dados <- dados %>%

mutate(
    resid_muni = ifelse(
        is.na(paciente_endereco_coIbgeMunicipio) |
            paciente_endereco_coIbgeMunicipio == 999999,
        NA,
        paciente_endereco_coIbgeMunicipio
    )
)
```

2.8 Qual vacina aplicada

```
#tabela de frequência para vacina_nome
questionr::freq(
  dados$vacina_nome,
  cum = FALSE,
  total = TRUE,
```

Table 8: Tabela de frequências para vacina nome (original)

	n	%	val%
COVID-19 ASTRAZENECA - ChAdOx1-S	6074	0.2	0.2
COVID-19 ASTRAZENECA/FIOCRUZ - COVISHIELD	250309	8.6	8.6
COVID-19 JANSSEN - Ad26.COV2.S	76264	2.6	2.6
COVID-19 PEDIÁTRICA - PFIZER COMIRNATY	435	0.0	0.0
COVID-19 PFIZER - COMIRNATY	1840705	62.9	62.9
COVID-19 PFIZER - COMIRNATY BIVALENTE	106687	3.6	3.6
COVID-19 PFIZER - COMIRNATY PEDIÁTRICA	180	0.0	0.0
COVID-19 PFIZER - COMIRNATY PEDIÁTRICA MENOR DE 5	120	0.0	0.0
ANOS			
COVID-19 SINOVAC - CORONAVAC	2431	0.1	0.1
COVID-19 SINOVAC/BUTANTAN - CORONAVAC	642756	22.0	22.0
Total	2925961	100.0	100.0

```
dados$id <- 1:dim(dados)[1]
#Criando a variável de qual vacina aplicada
dados <- dados %>%
mutate(
    qual_vacina = case_when(
        vacina_nome == "COVID-19 PFIZER - COMIRNATY BIVALENTE" ~ "Bivalente",
        id %in% str_which(vacina_nome, "AstraZeneca") ~ "AstraZeneca",
        id %in% str_which(vacina_nome, "ASTRA") ~ "AstraZeneca",
        id %in% str_which(vacina_nome, "Coronavac") ~ "Coronavac",
        id %in% str_which(vacina_nome, "CORONAVAC") ~ "Coronavac",
        id %in% str_which(vacina_nome, "JANSSEN") ~ "Janssen",
        id %in% str_which(vacina_nome, "PFIZER") ~ "Pfizer",
        id %in% str_which(vacina_nome, "Pfizer") ~ "Pfizer",
        id %in% str_which(vacina_nome, "Pfizer") ~ "Pfizer",
        id %in% str_which(vacina_nome, "Covishield") ~ "Covishield",
```

```
vacina_nome == "Pendente Identificação" ~ NA_character_,
      vacina_nome == "Pendente Identificação" ~ NA_character_,
      vacina_nome == "INF3" ~ NA_character_,
      TRUE ~ vacina_nome
      # vacina_nome == "Vacina covid-19 - Ad26.COV2.S - Janssen-Cilag" ~ "Janssen",
      # vacina_nome == "Covid-19-AstraZeneca" ~ "AstraZeneca",
      # vacina_nome == "Covid-19-Coronavac-Sinovac/Butantan" ~ "Coronavac",
      # vacina_nome == "Vacina covid-19 - BNT162b2 - BioNTech/Fosun Pharma/Pfizer" ~ "Pfizer",
      # vacina_nome == "Vacina Covid-19 - Covishield" ~ "Covishield",
      # vacina_nome == "" ~ NA_character_,
      # vacina_nome == "Pendente Identificação" ~ NA_character_,
      \# vacina\_nome == "Pendente Identifica 	ilde{A} 	ilde{S} 	ilde{A} 	ilde{to}" \sim NA\_character\_,
      # TRUE ~ vacina_nome
    )
)
#tabela de frequência para qual_vacina
questionr::freq(
  dados$qual_vacina,
  cum = FALSE,
 total = TRUE,
```

vacina_nome == "" ~ NA_character_,

na.last = TRUE,
valid = TRUE

) %>%

Table 9: Tabela de frequências para qual vacina

kable(caption = "Tabela de frequências para qual vacina",

digits = 2, format = "markdown")

	n	%	val%
AstraZeneca	256383	8.8	8.8
Bivalente	106687	3.6	3.6
Coronavac	645187	22.1	22.1
Janssen	76264	2.6	2.6
Pfizer	1841440	62.9	62.9
Total	2925961	100.0	100.0

n % val%

2.9 Qual dose

Table 10: Tabela de frequências para qual dose

	n	%	val%
	4	0.0	0.0
1 ^a Dose	1068927	36.5	36.5
1ª Dose Revacinação	1521	0.1	0.1
1º Reforço	4046	0.1	0.1
2ª Dose	985170	33.7	33.7
2ª Dose Revacinação	1885	0.1	0.1
2° Reforço	140974	4.8	4.8
3ª Dose	5599	0.2	0.2
3ª Dose Revacinação	1052	0.0	0.0
3° Reforço	1590	0.1	0.1
4 ^a Dose	3365	0.1	0.1
4ª Dose Revacinação	1784	0.1	0.1
5 ^a Dose	113	0.0	0.0
5ª Dose Revacinação	15	0.0	0.0
Dose	2053	0.1	0.1
Dose Adicional	29254	1.0	1.0
Reforço	677760	23.2	23.2

	n	%	val%
Revacinação	632	0.0	0.0
Única	217	0.0	0.0
Total	2925961	100.0	100.0

Vamos analisar a seguir o cruzamento dos dados de qual vacina aplicada com a descrição da dose.

#tabela cruzada de qual dose e qual vacina
with(dados, table(qual_vacina,vacina_descricao_dose))

##		vacina	a_descr	ricao_	dose						
##	qual_vacina		1ª I	Oose 1	.ª Dose	Revacin	ação	1º Ref	orço	2ª Do	se
##	AstraZeneca	ı	3 63	3940			295		93	420	67
##	Bivalente		0	7			0		834		1
##	Coronavac		0 311	1746			48		343	2973	70
##	Janssen		0	54			121		44		49
##	Pfizer		1 693	3180			1057	:	2732	6456	83
##		vacina	a_descr	ricao_	dose						
##	qual_vacina	2ª Do	ose Rev	acina	ıção 2º	Reforço	3ª D	ose 3ª	Dose	Reva	cinação
##	AstraZeneca	1			489	43199		253			241
##	Bivalente				0	12		11			0
##	Coronavac				25	8493		179			37
##	Janssen				127	11334		22			143
##	Pfizer			1	244	77936	5	134			631
##		vacina	a_descr	ricao_	dose						
##	qual_vacina	3º R€	eforço	4ª Do	se 4ª	Dose Rev	acina	ção 5ª	Dose	!	
##	AstraZeneca	ì	333	4	131			494	0)	
##	Bivalente		0		0			0	0)	
##	Coronavac		50		34			38	0)	
##	Janssen		274	2	268			150	0)	
##	Pfizer		933	26	32		1	102	113	1	
##		vacina	a_descr	ricao_	dose						
##	qual_vacina	5ª Do	ose Rev	acina	ıção	Dose Dos	e Adi	cional	Refo	rço R	evacinação
##	AstraZeneca	ì			1	0		5333	99	093	118
##	Bivalente				0	0		6	105	806	0
##	Coronavac				1	0		1142	25	651	20

```
##
     Janssen
                                      0
                                          2053
                                                          2965
                                                                  58424
                                                                                   43
##
     Pfizer
                                     13
                                             0
                                                          19808 388786
                                                                                  451
##
                 vacina_descricao_dose
                   Única
## qual_vacina
##
     AstraZeneca
                       0
##
     Bivalente
                       10
     Coronavac
##
                      10
##
     Janssen
                     193
     Pfizer
                       4
##
```

Vamos fazer agora a junção de informações que se referem a mesma dose de vacina.

```
dados <- dados %>%
mutate(
  num_dose = case_when(
    vacina_descricao_dose == "1a Dose" ~ "1a dose",
    vacina_descricao_dose == "2a Dose"~ "2a dose",
    vacina_descricao_dose == "3a Dose" ~ "3a dose",
    vacina_descricao_dose == "4a Dose" ~ "4a dose",
    (vacina_descricao_dose == "1o Reforço" |
        vacina_descricao_dose == "Dose Adicional") |
        vacina_descricao_dose == "Reforço" ~ "Dose adicional + 1o reforço + reforço",
        vacina_descricao_dose == "Dose" |
            vacina_descricao_dose == "Única" ~ "Dose+Única",
        TRUE ~ as.character(vacina_descricao_dose)
    )
)
```

```
#tabela cruzada de qual dose e qual vacina
with(dados, table(qual_vacina, num_dose))
```

```
##
                 num dose
## qual_vacina
                         1a dose 1ª Dose Revacinação 2a dose 2ª Dose Revacinação
##
     AstraZeneca
                       3
                            63940
                                                   295
                                                          42067
                                                                                 489
##
     Bivalente
                       0
                                7
                                                     0
                                                              1
                                                                                   0
##
     Coronavac
                          311746
                                                    48
                                                         297370
                                                                                   25
##
     Janssen
                       0
                               54
                                                   121
                                                             49
                                                                                 127
     Pfizer
                          693180
                                                                                1244
##
                                                  1057 645683
                       1
##
                 num_dose
```

```
##
     AstraZeneca
                       43199
                                  253
                                                        241
                                                                   333
                                                                            431
     Bivalente
                          12
                                                          0
                                                                     0
                                                                              0
##
                                   11
##
     Coronavac
                        8493
                                  179
                                                        37
                                                                    50
                                                                             34
##
     Janssen
                       11334
                                   22
                                                        143
                                                                   274
                                                                            268
##
     Pfizer
                       77936
                                 5134
                                                        631
                                                                   933
                                                                           2632
##
                 num_dose
                  4ª Dose Revacinação 5ª Dose 5ª Dose Revacinação
  qual_vacina
##
                                   494
                                              0
##
     AstraZeneca
##
     Bivalente
                                     0
                                              0
                                                                   0
##
     Coronavac
                                    38
                                              0
                                                                   1
##
     Janssen
                                   150
                                              0
                                                                   0
##
     Pfizer
                                  1102
                                            113
                                                                  13
##
                 num_dose
## qual_vacina
                  Dose adicional + 1º reforço + reforço Dose+Única Revacinação
                                                                    0
##
     AstraZeneca
                                                   104519
                                                                               118
     Bivalente
                                                   106646
                                                                                 0
##
                                                                   10
     Coronavac
                                                                   10
##
                                                    27136
                                                                                20
##
     Janssen
                                                    61433
                                                                 2246
                                                                                43
##
     Pfizer
                                                   411326
                                                                    4
                                                                               451
dados_bruto <- dados %>%
  select(paciente_id, resid_muni = paciente_endereco_nmMunicipio,
         aplicacao_muni = estabelecimento_municipio_nome,
         dt_nasc, dt_aplic, dt_import, ano_aplic,
         mes_aplic, aplic_uf, gest_puerp, idade_anos,
         raca, resid_uf, qual_vacina, num_dose,
         sexo = paciente_enumSexoBiologico
  )
saveRDS(dados_bruto, "dados_vac_select_bruto.rds")
```

2º Reforço 3a dose 3ª Dose Revacinação 3º Reforço 4a dose

Há na base de dados 2925961 observações.

qual_vacina

2.10 Sobre tempo entre aplicação e importação no RNDS

A variável vacina_dataAplicacao indica a data de aplicação da vacina e a variável data_importacao_rnds não está no dicionário, mas estamos entendendo como a data da importação na RNDS (Rede Nacional de

Dados em Saúde). Vamos analisar o tempo entre a data da aplicação e a data da importação no sistema.

```
# tempo_rnds_aplic: tempo entre aplicação e importação no RNDS

dados <- dados %>%

mutate(
   tempo_rnds_aplic = as.numeric(dt_import - dt_aplic),
)
```

```
#tempos negativos (data a importação anterior à data da aplicação)
sum(dados$tempo_rnds_aplic<0)
```

[1] 50168

Podemos observar que há 50168 casos inconsistentes, em que a data da importação é anterior à data da aplicação.

Segue a distribuição por estado de aplicação com relação ao indicador de tempo negativo:

```
dados <- dados %>%
  mutate(indic_tempo_neg = ifelse(
    is.na(tempo_rnds_aplic),
    NA,
    ifelse(tempo rnds aplic < 0, "sim", "não")</pre>
 ))
with(dados, ctable(aplic_uf, indic_tempo_neg, prop = "n"))
## Cross-Tabulation
## aplic_uf * indic_tempo_neg
## Data Frame: dados
##
##
##
                 indic_tempo_neg
                                        não
                                                sim
                                                         Total
##
     aplic_uf
           AC
                                       7265
                                                   0
                                                          7265
##
                                      34183
                                                   0
                                                         34183
##
           AL
##
           AM
                                      60325
                                                   0
                                                         60325
                                                   0
                                                          6777
##
           AP
                                       6777
                                     202120
##
           BA
                                                        202120
           CE
                                      67818
                                              38012
                                                        105830
##
```

##	DF	44790	0	44790
##	ES	90091	0	90091
##	GO	101027	0	101027
##	MA	83800	0	83800
##	MG	357321	10192	367513
##	MS	21090	0	21090
##	MT	60333	323	60656
##	PA	95585	0	95585
##	РВ	74660	0	74660
##	PE	202299	0	202299
##	PI	54164	0	54164
##	PR	243426	1380	244806
##	RJ	212332	0	212332
##	RN	67990	0	67990
##	RO	29151	0	29151
##	RR	1685	0	1685
##	RS	165063	260	165323
##	SC	96670	1	96671
##	SE	36057	0	36057
##	SP	444245	0	444245
##	TO	15526	0	15526
##	Total	2875793	50168	2925961
##				

E por UF de residência:

```
with(dados,ctable(resid_uf,indic_tempo_neg, prop="n"))
```

```
## Cross-Tabulation
## resid_uf * indic_tempo_neg
## Data Frame: dados
##
##
                indic_tempo_neg
                                      não
                                              sim
                                                      Total
     resid_uf
##
##
           AC
                                     7726
                                                0
                                                       7726
##
           AL
                                    36438
                                               18
                                                      36456
                                    59506
                                               20
                                                      59526
##
           AM
```

##	AP	7028	2	7030
##	ВА	207595	68	207663
##	CE	71489	36620	108109
##	DF	45792	24	45816
##	ES	87744	24	87768
##	GO	99249	49	99298
##	MA	81331	30	81361
##	MG	356470	10004	366474
##	MS	22536	11	22547
##	MT	61034	338	61372
##	PA	96235	42	96277
##	РВ	77186	54	77240
##	PE	197068	88	197156
##	PI	53790	60	53850
##	PR	236090	1395	237485
##	RJ	209820	176	209996
##	RN	67651	88	67739
##	RO	29411	13	29424
##	RR	2431	2	2433
##	RS	165839	288	166127
##	SC	100339	41	100380
##	SE	35795	11	35806
##	SP	433922	396	434318
##	TO	16763	10	16773
##	<na></na>	9515	296	9811
##	Total	2875793	50168	2925961
##				

Se filtrarmos apenas os casos com tempo positivo, temos as seguintes medidas descritivas do tempo de atraso de importação por UF de aplicação:

aplic_uf	n	faltantes	media	DP	mediana	minimo	maximo
AC	7265.00	0.00	14.41	26.85	6.00	0.00	459.00
AL	34183.00	0.00	11.76	46.47	0.00	0.00	728.00
AM	60325.00	0.00	21.17	56.86	4.00	0.00	806.00
AP	6777.00	0.00	31.82	56.45	12.00	0.00	689.00
BA	202120.00	0.00	27.26	58.38	6.00	0.00	835.00
CE	67818.00	0.00	169.61	253.79	28.00	0.00	846.00
DF	44790.00	0.00	9.44	34.89	0.00	0.00	815.00
ES	90091.00	0.00	8.21	41.04	1.00	0.00	765.00
GO	101027.00	0.00	8.89	32.45	1.00	0.00	732.00
MA	83800.00	0.00	12.20	35.14	1.00	0.00	742.00
MG	357321.00	0.00	17.46	48.15	2.00	0.00	844.00
MS	21090.00	0.00	14.71	46.50	2.00	0.00	771.00
MT	60333.00	0.00	8.10	38.17	0.00	0.00	3295.00
PA	95585.00	0.00	21.96	50.69	4.00	0.00	825.00
PB	74660.00	0.00	18.65	59.57	1.00	0.00	773.00
PE	202299.00	0.00	17.68	39.76	4.00	0.00	756.00
PI	54164.00	0.00	13.84	41.57	1.00	0.00	736.00
PR	243426.00	0.00	8.05	38.48	0.00	0.00	833.00
RJ	212332.00	0.00	18.31	47.10	0.00	0.00	852.00
RN	67990.00	0.00	9.17	35.55	1.00	0.00	751.00
RO	29151.00	0.00	7.75	34.19	0.00	0.00	702.00
RR	1685.00	0.00	99.55	92.43	92.00	0.00	398.00
RS	165063.00	0.00	7.92	29.30	0.00	0.00	675.00
SC	96670.00	0.00	11.32	48.00	0.00	0.00	720.00
SE	36057.00	0.00	31.23	69.30	2.00	0.00	685.00
SP	444245.00	0.00	17.68	59.03	0.00	0.00	913.00
TO	15526.00	0.00	6.81	32.32	0.00	0.00	762.00

E por UF de residência:

minimo maxir	mi	mediana	DP	media	faltantes	n	resid_uf
0.00 759.		6.00	31.67	14.84	0.00	7726.00	AC
0.00 733.		0.00	47.12	12.25	0.00	36438.00	AL
0.00 806.		4.00	57.36	21.30	0.00	59506.00	AM
0.00 745.		11.00	58.06	31.16	0.00	7028.00	AP
0.00 835.		5.00	57.84	26.33	0.00	207595.00	BA
0.00 846.		21.00	247.14	156.62	0.00	71489.00	CE
0.00 815.		0.00	36.88	10.17	0.00	45792.00	DF
0.00 765.		1.00	41.53	8.64	0.00	87744.00	ES
0.00 755.		1.00	35.09	9.56	0.00	99249.00	GO
0.00 742.		1.00	35.92	12.25	0.00	81331.00	MA
0.00 844.		2.00	48.81	17.52	0.00	356470.00	MG
0.00 771.		1.00	46.98	14.77	0.00	22536.00	MS
0.00 3295.		0.00	39.32	8.39	0.00	61034.00	MT
0.00 825.		4.00	50.38	21.48	0.00	96235.00	PA
0.00 773.		1.00	59.17	18.50	0.00	77186.00	PB
0.00 766.		4.00	41.04	17.84	0.00	197068.00	PE
0.00 744.		1.00	43.40	14.19	0.00	53790.00	PI
0.00 833.		0.00	39.30	8.34	0.00	236090.00	PR
0.00 852.		0.00	48.35	18.32	0.00	209820.00	RJ
0.00 768.		1.00	37.20	9.50	0.00	67651.00	RN
0.00 702.		0.00	34.24	7.92	0.00	29411.00	RO
0.00 706.		8.00	90.07	68.71	0.00	2431.00	RR
0.00 766.		0.00	30.19	8.05	0.00	165839.00	RS
0.00 766.		0.00	49.04	11.67	0.00	100339.00	SC
0.00 705.		2.00	69.17	31.07	0.00	35795.00	SE
0.00 913.		0.00	59.02	17.69	0.00	433922.00	SP
0.00 762.		0.00	35.43	7.46	0.00	16763.00	ТО

3 Exclusão dos casos inconsistentes

3.1 Dados com status "entered-in-error"

Há na base de dados a variável status que tem as categorias "entered-in-error" e "final". Quando status é "entered-in-error", a variável dt_deleted informa uma data (caso contrário, o campo é vazio).

```
#tabela de frequência para status
questionr::freq(
  dados$status,
  cum = FALSE,
  total = TRUE,
  na.last = TRUE,
  valid = TRUE
) %>%
  kable(caption = "Tabela de frequências para status",
       digits = 2, format = "markdown")
```

Table 13: Tabela de frequências para status

	n	%	val%
entered-in-error	66370	2.3	2.3
final	2859591	97.7	97.7
Total	2925961	100.0	100.0

Vamos excluir os casos "entered-in-error" por entender que esses casos foram identificados com algum erro e não deveriam ser considerados na base de dados.

```
dados1 <- dados %>%

filter(status != "entered-in-error")
```

3.2 ID do paciente que se repete para um mesmo número de dose e para o mesmo estabelecimento de saúde

Há na bases de dados a coluna paciente_id. Vamos agora identificar os casos duplicados com relação à combinação paciente_id, data de nascimento, estabelecimento_valor (pensando na hipótese de poder repetir o paciente_id entre os estabelecimentos) e vacina_descricao_dose (número da dose).

```
## [1] 49467
```

Podemos observar que há 49467 observações duplicadas (observações que não são únicas). Vamos filtrar então só os casos únicos de combinação de paciente_id, data de nascimento, estabelecimento_valor e

vacina_descricao_dose (número da dose).

Ficamos agora com 2834476 observações.

3.3 Ano de aplicação da vacina

Agora vamos analisar a data da aplicação da vacina.

```
# with(dados2, ctable(mes_aplic, ano_aplic, round.digits = 0))
```

Veja que há 53 casos com data de aplicação em 2020 e 1 em 2019.

No que segue vamos excluir esses casos de vacinação em 2019 e 2020.

```
# vamos excluir os casos de vacinação em 2020 e em 2019
dados3 <- dados2 %>%
filter(ano_aplic %in% c(2021, 2022, 2023))
```

Ficamos agora com 2834420 observações.

A variável que indica o sexo biológico é paciente_enumSexoBiologico. Vamos avaliar a frequência desta variável.

```
#tabela de frequência para sexo
questionr::freq(
  dados3$paciente_enumSexoBiologico,
  cum = FALSE,
  total = TRUE,
  na.last = TRUE,
  valid = TRUE
) %>%
  kable(caption = "Tabela de frequências para variável
      sexo", digits = 2, format = "markdown")
```

Table 14: Tabela de frequências para variável sexo

	n	%	val%
	184	0	0
F	2806065	99	99
M	28171	1	1
Total	2834420	100	100

Note que há 28355 observações que não são sexo biológico feminino.

No que segue vamos excluir esses casos.

```
# vamos excluir os casos de sexo biológico não feminino
dados4 <- dados3 %>%
filter(paciente_enumSexoBiologico == "F")
```

Ficamos agora com 2806065 observações.

A próxima seleção é avaliar a idade das gestantes.

	n	faltantes	media	DP	mediana	minimo	maximo
idade_anos	2806065.00	0.00	28.50	6.71	28.00	0.00	114.00

Além da idade apresentada de forma quantitativa, podemos criar uma idade em categorias: até 9 anos, de 10 até 55 e maior que 55 anos.

```
dados4 <- dados4 %>%
  mutate(
   idade_cat = case_when(
    idade_anos < 10 ~ "< 10 anos",
    idade_anos >= 10 & idade_anos <= 55 ~ "de 10 a 55 anos",
     TRUE ~ "> 55 anos"
```

```
)
)
```

```
#tabela de frequência para categoria de idade
questionr::freq(
    dados4$idade_cat,
    cum = FALSE,
    total = TRUE,
    na.last = TRUE,
    valid = TRUE
) %>%
    kable(caption = "Tabela de frequências para categoria de idade",
        digits = 2, format = "markdown")
```

Table 16: Tabela de frequências para categoria de idade

	n	%	val%
< 10 anos	422	0.0	0.0
> 55 anos	4147	0.1	0.1
$de\ 10\ a\ 55\ anos$	2801496	99.8	99.8
Total	2806065	100.0	100.0

Vamos filtrar de 10 a 55 anos no que segue.

```
# vamos excluir os casos <10 e >55 anos
dados5 <- dados4 %>%
filter(idade_anos >= 10 & idade_anos <= 55)</pre>
```

Com essas seleções ficamos com 2801496 observações.

```
#tabela de frequência para grupo de atendimento
questionr::freq(
  dados5$gest_puerp,
  cum = FALSE,
  total = TRUE,
  na.last = TRUE,
  valid = TRUE
) %>%
```

```
kable(caption = "Tabela de frequências para grupo de atendimento",
     digits = 2, format = "markdown")
```

Table 17: Tabela de frequências para grupo de atendimento

	n	%	val%
gesta	2170577	77.5	77.5
puerp	630919	22.5	22.5
Total	2801496	100.0	100.0

Por fim, no total, excluímos 124465 observações que identificamos todas as inconsistências anteriormente descritas.

Apresentamos agora a distribuição das vacinas por UF de aplicação:

```
with(dados5, ctable(aplic_uf, num_dose, prop="n"))
```

Cross-Tabulation ## aplic_uf * num_dose ## Data Frame: dados5

##							
## -							
##		num_dose	1a dose	1ª Dose Revacinação	2a dose	2ª Dose Revacinação	2º Refor
##	aplic_uf						
##	AC	0	2629	11	2458	4	3'
##	AL	0	13250	1	11616	5	10
##	AM	0	24394	25	17082	24	208
##	AP	0	2459	6	2075	6	2
##	BA	3	68565	168	62254	343	155
##	CE	0	40754	20	34221	44	34
##	DF	0	15283	20	14889	15	16
##	ES	0	33370	0	30604	0	39
##	GO	0	38424	44	35014	43	34
##	MA	0	32106	32	28711	23	44
##	MG	0	136583	214	127135	153	79
##	MS	0	8057	14	7328	7	4:
##	MT	0	24906	61	22073	48	12
##	PA	0	35904	51	32459	62	42

##	PB	0	25899	39	24180	46	28
##	PE	1	79750	144	71423	66	26
##	PI	0	17286	31	16119	33	560
##	PR	0	86610	254	81629	400	69:
##	RJ	0	73230	71	66993	107	1384
##	RN	0	24608	0	20131	0	35:
##	RO	0	12046	11	10655	18	90
##	RR	0	623	2	553	1	4
##	RS	0	60467	69	55531	178	75:
##	SC	0	37151	42	34835	42	230
##	SE	0	13677	12	11422	6	23'
##	SP	0	124883	0	124492	0	358
##	TO	0	6135	15	5601	2	14
##	Total	4	1039049	1357	951483	1676	1344
##							

Apresentamos agora a distribuição das vacinas por UF de residência:

```
with(dados5, ctable(resid_uf, num_dose, prop="n"))
```

Cross-Tabulation
resid_uf * num_dose
Data Frame: dados5

1ª Dose Revacinação 2ª Dose Revacinação 2° Refor num_dose 1a dose 2a dose ## resid_uf AC## ## AL ## \mathtt{AM} ## ΑP ## BA## CE ## DF ## ES ## GO ## MAMG##

```
7
##
            MS
                              0
                                      8572
                                                                  15
                                                                           7790
                                                                                                                    5
                                     25045
                                                                          22341
                                                                                                                   12
##
            MT
                              0
                                                                  64
                                                                                                      45
##
            {\tt PA}
                              0
                                     36251
                                                                  51
                                                                          32548
                                                                                                      60
                                                                                                                   42
##
            PΒ
                              0
                                     26744
                                                                  40
                                                                          25068
                                                                                                      49
                                                                                                                   30
##
            PΕ
                              1
                                     77163
                                                                 131
                                                                          69334
                                                                                                      64
                                                                                                                   29
            PΙ
                              0
                                     17226
                                                                  28
                                                                          16004
                                                                                                      27
                                                                                                                   54
##
##
            PR
                              0
                                     83970
                                                                 253
                                                                          79205
                                                                                                     391
                                                                                                                   69
                              0
                                     72531
                                                                  71
                                                                                                                  135
##
            RJ
                                                                          66307
                                                                                                     101
##
            RN
                              0
                                     24503
                                                                   1
                                                                          20090
                                                                                                       1
                                                                                                                   34
                                     12081
                                                                          10738
                                                                                                                    9
##
            RO
                              0
                                                                  11
                                                                                                      18
##
            RR
                              0
                                        940
                                                                   1
                                                                            809
                                                                                                       1
                                                                                                                   75
            RS
                                     60537
                                                                  66
                                                                          55810
                                                                                                     178
##
                              0
            SC
                              0
                                     38681
                                                                          35975
                                                                                                                   24
##
                                                                  45
                                                                                                      49
                                                                                                       7
##
            SE
                              0
                                     13502
                                                                  12
                                                                          11337
                                                                                                                   23
##
            SP
                              0
                                    123826
                                                                  12
                                                                         122673
                                                                                                      13
                                                                                                                  342
                                                                                                                    2
            TO
                                                                           5991
                                                                                                       4
##
                              0
                                      6664
                                                                  15
                                      3380
                                                                   3
                                                                           2953
##
          <NA>
                              0
                                                                                                       6
##
         Total
                                   1039049
                                                                1357
                                                                        951483
                                                                                                    1676
                                                                                                                1344
```

```
dados6 <- dados5 %>%
  select(
    paciente_id,
    dt_nasc,
    dt_aplic,
    dt_import,
    ano_aplic,
    mes_aplic,
    gest_puerp,
    idade_anos,
    raca,
    resid_uf,
    resid_muni,
    paciente_endereco_nmMunicipio,
    qual_vacina,
    num_dose,
    aplic_uf,
```

```
aplic_muni,
   aplicacao_muni = estabelecimento_municipio_nome
)
saveRDS(dados6, file = "dados_vac_select.rds")
```