Algorithmique et structures de données

Séance VII - Bentley Ottmann

Frédéric Wagner

Ensimag 1ère année - 2016-2017

Sommaire

Bentley Ottmann

Principe Difficultés

Code fourni

Travail demandé

Sorted Containers

Sommaire

Bentley Ottmann

Principe

Difficultés

Code fourni

Travail demandé

Sorted Containers

Intersections de segments

Algorithme naïf

Entrées : Ensemble S de segments, sans overlap.

Sorties : Pour chaque $s \in S$, un ensemble de points d'intersections.

1 **pour chaque** couple (s_1, s_2) de segments distincts faire

```
si s<sub>1</sub> intersecte s<sub>2</sub> en i alors
ajouter i aux intersections de s<sub>1</sub>;
ajouter i aux intersections de s<sub>2</sub>;
finsi
```

6 fin

- ▶ coût au pire cas $\Theta(n^2)$
 - constante plus ou moins grande
- ▶ $10^9 \Rightarrow 10^7 \Rightarrow n < 10^{3.5}$
- ▶ si pavage : m² segments
- pire si l'algorithme est appelé un grand nombre de fois

- similaire à l'algorithme d'intersections de facettes (BPI)
- ▶ simulation d'un balayage du plan

- similaire à l'algorithme d'intersections de facettes (BPI)
- simulation d'un balayage du plan

- similaire à l'algorithme d'intersections de facettes (BPI)
- simulation d'un balayage du plan

- similaire à l'algorithme d'intersections de facettes (BPI)
- simulation d'un balayage du plan

- similaire à l'algorithme d'intersections de facettes (BPI)
- simulation d'un balayage du plan

- similaire à l'algorithme d'intersections de facettes (BPI)
- simulation d'un balayage du plan

- similaire à l'algorithme d'intersections de facettes (BPI)
- simulation d'un balayage du plan

- similaire à l'algorithme d'intersections de facettes (BPI)
- simulation d'un balayage du plan

Idée principale

Juste avant une intersection, les deux segments sont voisins.

Grenoble INP Ensimag

Principe

- simulation d'un balayage du plan
 - seuls les endroits Intéressants sont simulés
 - évènements (= points?)
- on stocke les segments en vie
- ▶ lorsqu'un segment apparaît on teste l'intersection avec ses voisins
- lorsqu'un segment disparaît on teste l'intersection de ses voisins

- ▶ balayage de bas en haut (par rapport au svg)
- relation à gauche de

- ▶ balayage de bas en haut (par rapport au svg)
- relation à gauche de

- balayage de bas en haut (par rapport au svg)
- relation à gauche de

- ▶ balayage de bas en haut (par rapport au svg)
- relation à gauche de

- ▶ balayage de bas en haut (par rapport au svg)
- relation à gauche de

Clef de comparaison

- objectif : comparaison simple de segments
- mais:
 - la comparaison dépend de la position courante
 - ▶ fonction clef(segment, position) \rightarrow (x, angle)
 - pour certaines positions, segments non comparables
 - ▶ ne pas appeler avant ou après le segment
 - on prend la convention suivante : être à une intersection signifie 'juste après'
 l'intersection

Angle support

- utilisation d'angles lors des intersections
- support du segment

2

7

8

9

10 11 fintq

Algorithme

```
Entrées : S, l'ensemble des segments
  Sorties: Pour chaque segment, les intersections qui ne tombent pas sur une
            extrémité
1 pour chaque s \in S faire
      créer les évènements E de début et de fin
3 fin
4 segments_vivants \leftarrow \emptyset;
5 point_courant ← None;
6 tant que E n'est pas vide faire
      enlever de E l'évènement e le plus proche;
      terminer les segments de e (et détecter les intersections);
      point_courant \leftarrow point de e (pour les clefs de comparaison);
      démarrer les segments de e (et détecter les intersections);
```


Gestion des intersections

- ▶ lors de la détection :
 - stocker le résultat
 - créer des évènements de début et fin de segments

Filtrer

Une intersection peut être à la fin (ou au début) d'un segment tout en étant à l'intérieur de l'autre.

Sommaire

Bentley Ottmann

Difficultés

- ▶ de nombreux problèmes d'arrondis sont possibles :
 - intersections entre droites quasi-horizontales et la droite de balayage
 - i intersection de s_1 s_2 ; il est possible que l'intersection de s_1 avec la droite y=i.y ne donne pas i
 - réation de points dans le passé
 - **.** . . .

Exemple

Calcul de la pente d'une droite quasi verticale

$$p = \frac{y_2 - y_1}{x_2 - x_1}$$

Ajusteur

- on contraint les points pour éviter certains problèmes
- ▶ quasi horizontal ⇒ horizontal
- ▶ quasi vertical ⇒ vertical
- changements non visibles pour l'utilisateur
- ▶ ajouts en Θ(1)

Attention!

Tout nouveau point doit obligatoirement passer par l'ajusteur.

Ajusteur

- on contraint les points pour éviter certains problèmes
- ▶ quasi horizontal ⇒ horizontal
- ▶ quasi vertical ⇒ vertical
- changements non visibles pour l'utilisateur
- ▶ ajouts en Θ(1)

Attention!

Tout nouveau point doit obligatoirement passer par l'ajusteur.

Ajusteur

- on contraint les points pour éviter certains problèmes
- ▶ quasi horizontal ⇒ horizontal
- ▶ quasi vertical ⇒ vertical
- changements non visibles pour l'utilisateur
- ▶ ajouts en Θ(1)

Attention!

Tout nouveau point doit obligatoirement passer par l'ajusteur.

Cache d'intersections

- calcul des clefs
- ▶ intersection droite horizontale ⇔ segments
- pour certains y : ne pas faire le calcul car on connaît déjà la réponse
 - mise en cache
 - création initiale des évènements
 - création des évènements d'intersection.
 - calcul de clef : lire d'abord dans le cache

Attention!

D'abord l'ajusteur.

Sommaire

Bentley Ottmann

Code fourni

- petite bibliothèque de géométrie
- ▶ class Point
- ► class Segment
- ▶ intersection de segments
- ► affichage graphique
- chargement de fichiers de tests

```
Grenoble INP
Ensimag
```

```
points = [
     [Point([random(), random()]) for _ in range(5)]
     for _ in range(2)
]
segments = [
     [Segment(endpoints) for endpoints in combinations(p, r=2)]
     for p in points
]
```

tycat(points, segments)


```
Grenoble INP
Ensimag
```

```
points = [
       [Point([random(), random()]) for _ in range(5)]
      for _ in range(2)
]
segments = [
      [Segment(endpoints) for endpoints in combinations(p, r=2)]
      for p in points
]
```

```
tycat(
    zip(iter(points), iter(segments))
)
```



```
Grenoble INP
Ensimag
```

```
points = [
       [Point([random(), random()]) for _ in range(5)]
      for _ in range(2)
]
segments = [
      [Segment(endpoints) for endpoints in combinations(p, r=2)]
      for p in points
]
```

```
tycat(
   *zip(iter(points), iter(segments))
)
```



```
points = [
     [Point([random(), random()]) for _ in range(5)]
     for _ in range(2)
]
segments = [
     [Segment(endpoints) for endpoints in combinations(p, r=2)]
     for p in points
]
```

```
intersections = filter(None, (
    c[0].intersection_with(c[1])
    for c in product(*segments))
)
tycat(segments[0], segments[1],
    intersections)
```


Tests

▶ load_segments

Grenoble INP Ensimag

Ajusteur

- CoordinatesHash
- ightharpoonup insertions en O(1)
- constante faible pour les points déjà vus
- auto-utilisé lors du chargement des tests

Sommaire

Bentley Ottmann

Travail demandé

Objectif principal

- ▶ implémenter Bentley Ottmann
- le code fonctionne au moins sur les tests fournis
 - ▶ bo.py
- mesure de performance (courbe)
- rapport centré sur les expériences

Objectif secondaire

- de nombreuses variantes sont possibles pour l'implémentation
- ▶ toutes les idées sont les bienvenues
 - implémenter plusieurs variantes
 - peut également être différents choix de paramètres
 - validation expérimentale
 - b objectif : pouvoir convaincre quelqu'un

Précisons

Seul l'algorithme et l'utilisation de python pur est imposé. tout est changeable

Grenoble INP Ensimag

Méthodologie

- l'algorithme est complexe
- ▶ le débogage est encore plus complexe
 - avancer pas à pas
 - tester chaque morceau de code
 - écriture de tests
 - ne pas cibler immédiatement les exemples complexes
- échanges d'idées : OK
- ► échanges de code : PAS OK

Méthodologie

- biais expérimentaux classiques :
 - perturbations de la machine
 - variations aléatoires
 - comparaisons faisant varier plusieurs paramètres d'un coup
- présentation
 - une courbe exhibe un comportement
 - on choisit la courbe en fonction du comportement que l'on veut montrer
 - n'hésitez pas à mesurer des nombres d'appels ou temps passés dans différentes fonctions et à le mettre en lien avec ce que l'on attendrait théoriquement

Sommaire

Bentley Ottmann

Principe

Code fourni

code fourni

Travail demandé

Sorted Containers

SortedContainers

http://www.grantjenks.com/docs/sortedcontainers/

Sorted Container

- ▶ objectif : remplacer les ABR
- ensemble d'éléments ordonnés

Sorted Container

- ▶ objectif : remplacer les ABR
- ensemble d'éléments ordonnés
- utilisation d'un vecteur?

- objectif : remplacer les ABR
- ensemble d'éléments ordonnés
- ▶ utilisation d'un vecteur?
- remove / insert
 - déplace potentiellement tout le monde
 - ▶ coût : $\Theta(n)$

- objectif : remplacer les ABR
- ensemble d'éléments ordonnés
- ▶ utilisation d'un vecteur?
- remove / insert
 - déplace potentiellement tout le monde
 - ▶ coût : $\Theta(n) = O(1)$

- objectif : remplacer les ABR
- ensemble d'éléments ordonnés
- utilisation d'un vecteur?
- ► remove / insert
 - déplace potentiellement tout le monde
 - ▶ coût : $\Theta(n) = O(1)$ (pour *n* suffisamment petit Θ)

- objectif : remplacer les ABR
- ensemble d'éléments ordonnés
- ▶ utilisation d'un vecteur?
- remove / insert
 - déplace potentiellement tout le monde
 - ▶ coût : $\Theta(n) = O(1)$ (pour *n* suffisamment petit Θ)
- ▶ limite sur la taille

Taille maximale: m

- n éléments
- ▶ limite *m*
- chaque vecteur entre $c \times m$ et m éléments
- ▶ $O(\frac{n}{m})$ vecteurs

- n éléments
- ▶ limite *m*
- ▶ chaque vecteur entre $c \times m$ et m éléments
- $\triangleright O(\frac{n}{m})$ vecteurs
- ▶ algorithme de recherche?

- n éléments
- ▶ limite *m*
- ▶ chaque vecteur entre $c \times m$ et m éléments
- $\triangleright O(\frac{n}{m})$ vecteurs
- ▶ algorithme de recherche?
 - dichotomie pour trouver le bon vecteur
 - dichotomie pour trouver la bonne position

- n éléments
- ▶ limite *m*
- ▶ chaque vecteur entre $c \times m$ et m éléments
- $\triangleright O(\frac{n}{m})$ vecteurs
- ▶ algorithme de recherche?
 - dichotomie pour trouver le bon vecteur
 - dichotomie pour trouver la bonne position
- ► coût?

- n éléments
- ▶ limite m
- ▶ chaque vecteur entre $c \times m$ et m éléments
- $\triangleright O(\frac{n}{m})$ vecteurs
- ▶ algorithme de recherche?
 - dichotomie pour trouver le bon vecteur
 - dichotomie pour trouver la bonne position
- ► coût?

$$O\left(\log(\frac{n}{m}) + \log(m)\right) = O(\log(n))$$

Insertion

- ▶ trouver la position $O(\log(n))$
- ▶ ajouter l'élément dans le vecteur O(m)
- ▶ si besoin :
 - ► scinder le vecteur en 2 O(m)
 - ▶ insérer le nouveau vecteur dans la table des max $O(\frac{n}{m})$

Insertion

- ▶ trouver la position $O(\log(n))$
- ▶ ajouter l'élément dans le vecteur O(m)
- ▶ si besoin :
 - scinder le vecteur en 2 O(m)
 - ightharpoonup insérer le nouveau vecteur dans la table des max $O(\frac{n}{m})$
- ▶ de quelle type d'analyse a-t'on besoin?

Insertion

- ▶ trouver la position $O(\log(n))$
- ▶ ajouter l'élément dans le vecteur O(m)
- ▶ si besoin :
 - scinder le vecteur en 2 O(m)
 - ▶ insérer le nouveau vecteur dans la table des max $O(\frac{n}{m})$
- de quelle type d'analyse a-t'on besoin?

Coût amorti

On moyenne le coût sur des séquences d'opérations

- ► analyse à la louche
- ▶ on part d'un conteneur de *n* éléments
- on ajoute *n* nouveaux éléments

- ► analyse à la louche
- ▶ on part d'un conteneur de *n* éléments
- on ajoute *n* nouveaux éléments
- ▶ en gros $O(\frac{n}{m})$ nouveaux vecteurs

- ▶ analyse à la louche
- ▶ on part d'un conteneur de *n* éléments
- ▶ on ajoute *n* nouveaux éléments
- en gros $O(\frac{n}{m})$ nouveaux vecteurs
- ▶ au total $O(n\log(n) + nm + (\frac{n}{m})(m + \frac{n}{m})) = O(n\log(n) + nm + \frac{n^2}{m^2})$

- analyse à la louche
- ▶ on part d'un conteneur de *n* éléments
- ▶ on ajoute *n* nouveaux éléments
- en gros $O(\frac{n}{m})$ nouveaux vecteurs
- ▶ au total $O(n\log(n) + nm + (\frac{n}{m})(m + \frac{n}{m})) = O(n\log(n) + nm + \frac{n^2}{m^2})$
- en amorti $O(\log(n) + m + \frac{n}{m^2})$

- ▶ analyse à la louche
- on part d'un conteneur de n éléments
- ▶ on ajoute *n* nouveaux éléments
- ▶ en gros $O(\frac{n}{m})$ nouveaux vecteurs
- ▶ au total $O(n\log(n) + nm + (\frac{n}{m})(m + \frac{n}{m})) = O(n\log(n) + nm + \frac{n^2}{m^2})$
- en amorti $O(\log(n) + m + \frac{n}{m^2})$
- ▶ en choisit la meilleure valeur de *m* :

$$O\left(\log(n) + \sqrt[3]{n} + \frac{n}{n^{\frac{2}{3}}}\right) = O(\sqrt[3]{n})$$

Sorted Containers vs ABR

