凸优化第 11 周作业

1 预习

下节课讲授算法讲义剩余内容,没有小测,但请提前预习。

2 作业题

1. (Non-convex gradient descent) Consider minimizing a differentiable function f with dom $f = \mathbb{R}^n$, whose gradient is L-Lipschitz continuous for a constant L > 0, i.e.,

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2, \quad \forall x, y \in \mathbb{R}^n.$$

Consider the gradient descent method starting from x_0 , with the updates

$$x_{k+1} = x_k - t\nabla f(x_k),$$

where $t \leq 1/L$. Notice that we **do not** assume that f is convex. Prove the following statements:

(a)
$$f(y) \le f(x) + \nabla f(x)^{\top} (y - x) + \frac{L}{2} ||y - x||_2^2, \quad \forall x, y \in \mathbb{R}^n.$$

(b)
$$f(x_{k+1}) \le f(x_k) - \left(1 - \frac{Lt}{2}\right) t \|\nabla f(x_k)\|_2^2.$$

(c)
$$\|\nabla f(x_k)\|_2^2 \le \frac{2}{t} (f(x_k) - f(x_{k+1})).$$

(d)
$$\sum_{i=0}^{k} \|\nabla f(x_i)\|_2^2 \le \frac{2}{t} (f(x_0) - f(x^*)).$$

(e)
$$\min_{i=0,...,k} \|\nabla f(x_i)\|_2 \le \sqrt{\frac{2}{t(k+1)} (f(x_0) - f(x^*))}$$

As a result, we have proved that gradient descent reaches an ϵ -substationary point (i.e., $\|\nabla f(x)\|_2 \le \epsilon$) in $O(1/\epsilon^2)$ iterations.

2. (Ill-conditioned linear equation) Consider solving the linear equation Ax = b, where A is an ill-conditioned matrix. This is equivalent to solving the optimization problem

minimize
$$f(x) = \frac{1}{2} ||Ax - b||_2^2$$
.

Consider the proximal operator

$$\operatorname{Prox}_{\alpha f}(v) = \operatorname*{arg\,min}_{x} \alpha f(x) + \frac{1}{2} ||x - v||^{2}.$$

- (a) Derive the exact form of the iteration $x_{k+1} = \text{Prox}_{\alpha f}(x_k)$.
- (b) Implement the above iteration and solve the problem using the data 1A.csv and 1b.csv provided in the attachment. Choose α by yourself to make the iteration numerically stable and efficient. Stop when $f(x_k) \leq 0.02$. Plot i) $\log(\|x_k x^*\|_2)$ vs. $\log(k)$; ii) $\log(f(x_k))$ vs. $\log(k)$. Assume that the total number of iterations is T, then you may treat last iterate x_T as the true optimal solution x^* , and make the plot for $k = 0, 1, \ldots, T 1$.
- 3. (LASSO) Consider the LASSO problem:

minimize
$$h(x) = \frac{1}{2} ||Ax - b||_2^2 + ||x||_1$$
,

where A, b are provided in the attachments 2A.csv and 2b.csv.

(a) Implement the sub-gradient method with the following iteration:

$$x_{k+1} = x_k - \alpha_k g_k, \ g_k \in \partial h(x),$$

where $\alpha_k = c \cdot k^{-\beta}$, with c = 0.01, $\beta = 0.5$. Use the starting point x_0 provided in 2x0.csv. Stop when $||x_k - x_{k-1}||_2^2 < 10^{-8}$. Plot i) $\log(||x_{k+1} - x_k||_2)$ vs. $\log(k)$; ii) $\log(||x_k - x^*||_2)$ vs. $\log(k)$; iii) $\log(h(x_k))$ vs. $\log(k)$. Assume that the total number of iterations is T, then you may treat last iterate x_T as the true optimal solution x^* , and make the plot for $k = 0, 1, \ldots, T - 1$.

(b) When A is full column rank, the function $f(x) = \frac{1}{2} ||Ax - b||_2^2$ is strongly convex, i.e.,

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x) + \frac{m}{2} ||y - x||^2.$$

With A, b provided in 2A.csv and 2b.csv, find the maximal m such that the above inequality holds. Repeat problem (a) with step size $\alpha_k = 1/(mk)$.

3 作业说明

- 1. 编程作业部分需要撰写报告,包含推导步骤和运行结果。报告提交电子版,和代码一起打包提交至网络 学堂。
- 2. 编程语言不限,但不能使用现成的优化器。
- 3. **请大家务必在截止时间之前提交作业**,迟交一周以内的作业得分是卷面分的 50%,迟交超过一周的作业 不得分。
- 4. 每次作业的满分是 25 分。