lab14 - mini project

Karina Cardenas, A16742606

2025 - 05 - 15

Table of contents

Required Packages	2
Data Import	2
Tidy	3
Remove zero count genes	4
Setup DESeq object for analysis	4
Run DESeq analysis	4
Extract the results	5
Add Gene Annotation	6
Save my results to a CSV file	7
Pathway Anlysis	7
Gene Ontology	10
Reactome Analysis	11
Result visualization volcano plot	11 11 12
Upregulated Pathway	$\frac{12}{15}$

Here we will perform a complete RNASeq analysis from coutns to pathways and biological interpertation.

Required Packages

```
library(DESeq2)
library(AnnotationDbi)
library(org.Hs.eg.db)
library(pathview)
library(gageData)
library(gage)
```

Data Import

```
colData <- read.csv("GSE37704_metadata.csv", row.names=1)
countData <- read.csv("GSE37704_featurecounts.csv", row.names=1)</pre>
```

```
head(colData)
```

condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd

```
head(countData)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0

ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR493371					
ENSG00000186092	0					
ENSG00000279928	0					
ENSG00000279457	46					
ENSG00000278566	0					
ENSG00000273547	0					
ENSG00000187634	258					

Check the correspondance of colData rows and countData columns

rownames(colData)

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

colnames(countData)

- [1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370"
- [7] "SRR493371"

Tidy

Q1. Complete the code below to remove the troublesome first column from count-Data

counts <- countData[,-1]</pre>

head(counts)

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
all(rownames(colData) == colnames(counts) )
```

[1] TRUE

Remove zero count genes

We will have rows in **counts** for genes that we can not say anything about because they have zero expression in the particular tissue we are looking at.

Q2. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

if the rowSums() is zero then a given gene (i.e. row) had no count data and we should exclude these genes from tfurther consideration

```
to.keep <- rowSums(counts) != 0
cleancounts <- counts[to.keep,]</pre>
```

Q3. How many genes do we have left?

```
nrow(cleancounts)
```

[1] 15975

Setup DESeq object for analysis

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run DESeq analysis

dds <- DESeq(dds)

```
estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing
```

Extract the results

```
res <- results(dds)
head(res)</pre>
```

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43989e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215599	1.040744	2.97994e-01
	pao	lj			

<numeric>

ENSG00000279457 6.86555e-01

ENSG00000187634 5.15718e-03

ENSG00000188976 1.76549e-35

ENSG00000187961 1.13413e-07

ENSG00000187583 9.19031e-01

ENSG00000187642 4.03379e-01

Add Gene Annotation

```
columns(org.Hs.eg.db)
 [1] "ACCNUM"
                   "ALIAS"
                                  "ENSEMBL"
                                                 "ENSEMBLPROT"
                                                                "ENSEMBLTRANS"
 [6] "ENTREZID"
                   "ENZYME"
                                  "EVIDENCE"
                                                 "EVIDENCEALL"
                                                                "GENENAME"
[11] "GENETYPE"
                   "GO"
                                  "GOALL"
                                                 "IPI"
                                                                "MAP"
[16] "OMIM"
                   "ONTOLOGY"
                                  "ONTOLOGYALL" "PATH"
                                                                "PFAM"
                                                 "SYMBOL"
[21] "PMID"
                   "PROSITE"
                                  "REFSEO"
                                                                "UCSCKG"
[26] "UNIPROT"
res$symbol <- mapIds(org.Hs.eg.db,
                    keys=row.names(res), # Our genenames
                    keytype="ENSEMBL",
                                            # The format of our genenames
                    column="SYMBOL",
                                            # The new format we want to add
                    multiVals="first")
'select()' returned 1:many mapping between keys and columns
res$entrez <- mapIds(org.Hs.eg.db,
                    keys=row.names(res),
                                            # Our genenames
                    keytype="ENSEMBL",
                                            # The format of our genenames
                    column="ENTREZID",
                                              # The new format we want to add
                    multiVals="first")
'select()' returned 1:many mapping between keys and columns
res$genename <- mapIds(org.Hs.eg.db,
                    keys=row.names(res),
                                            # Our genenames
                    keytype="ENSEMBL",
                                            # The format of our genenames
                    column="GENENAME",
                                             # The new format we want to add
                    multiVals="first")
'select()' returned 1:many mapping between keys and columns
head(res)
```

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns

	baseMean 1	og2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43989e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215599	1.040744	2.97994e-01
	padj	j symbol	entrez		genename
	<numeric></numeric>	<pre><character></character></pre>	<character></character>		<character></character>
ENSG00000279457	6.86555e-01	NA	NA		NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile al	lpha motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like	nucleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like	e family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstri	n homology
ENSG00000187642	4 022700-01	PERM1	0/000	DDADCC1 as	nd ESRR ind

Save my results to a CSV file

```
write.csv(res, file = "annotated_results.csv")
```

Pathway Anlysis

```
data(kegg.sets.hs)
data(sigmet.idx.hs)

# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]

# Examine the first 3 pathways
head(kegg.sets.hs, 3)
```

```
$`hsa00232 Caffeine metabolism`
[1] "10" "1544" "1548" "1549" "1553" "7498" "9"
```

```
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                         "10720"
                                   "10941"
                                             "151531" "1548"
                                                                 "1549"
                                                                           "1551"
 [9] "1553"
               "1576"
                         "1577"
                                   "1806"
                                             "1807"
                                                       "1890"
                                                                 "221223" "2990"
[17] "3251"
               "3614"
                         "3615"
                                   "3704"
                                             "51733"
                                                       "54490"
                                                                 "54575"
                                                                           "54576"
[25] "54577"
               "54578"
                         "54579"
                                   "54600"
                                             "54657"
                                                       "54658"
                                                                 "54659"
                                                                           "54963"
[33] "574537" "64816"
                         "7083"
                                   "7084"
                                             "7172"
                                                       "7363"
                                                                 "7364"
                                                                           "7365"
[41] "7366"
                                   "7372"
                                             "7378"
                                                       "7498"
                                                                 "79799"
               "7367"
                         "7371"
                                                                           "83549"
[49] "8824"
               "8833"
                         "9"
                                   "978"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                          "10606"
                                    "10621"
                                              "10622"
                                                        "10623"
                                                                  "107"
                                                                            "10714"
  [9] "108"
                "10846"
                          "109"
                                                                  "112"
                                                                            "113"
                                    "111"
                                              "11128"
                                                        "11164"
                                                                            "159"
 [17] "114"
                "115"
                          "122481" "122622" "124583"
                                                       "132"
                                                                  "158"
                "171568" "1716"
                                    "196883" "203"
                                                        "204"
                                                                  "205"
                                                                            "221823"
 [25] "1633"
                                                                            "270"
 [33] "2272"
                "22978"
                          "23649"
                                    "246721"
                                              "25885"
                                                        "2618"
                                                                  "26289"
 [41] "271"
                "27115"
                          "272"
                                    "2766"
                                              "2977"
                                                        "2982"
                                                                  "2983"
                                                                            "2984"
                "2987"
                          "29922"
                                    "3000"
                                                                  "318"
                                                                            "3251"
 [49] "2986"
                                              "30833"
                                                        "30834"
 [57] "353"
                "3614"
                          "3615"
                                    "3704"
                                              "377841"
                                                        "471"
                                                                  "4830"
                                                                            "4831"
                "4833"
                          "4860"
                                              "4882"
 [65] "4832"
                                    "4881"
                                                        "4907"
                                                                  "50484"
                                                                            "50940"
                                              "5137"
                                                                  "5139"
 [73] "51082"
                "51251"
                          "51292"
                                    "5136"
                                                        "5138"
                                                                            "5140"
 [81] "5141"
                "5142"
                          "5143"
                                    "5144"
                                              "5145"
                                                        "5146"
                                                                  "5147"
                                                                            "5148"
                                    "5152"
 [89] "5149"
                "5150"
                          "5151"
                                              "5153"
                                                        "5158"
                                                                  "5167"
                                                                            "5169"
 [97] "51728"
                "5198"
                          "5236"
                                    "5313"
                                              "5315"
                                                        "53343"
                                                                  "54107"
                                                                            "5422"
                                                                            "5433"
[105] "5424"
                "5425"
                          "5426"
                                    "5427"
                                              "5430"
                                                        "5431"
                                                                  "5432"
[113] "5434"
                "5435"
                          "5436"
                                    "5437"
                                              "5438"
                                                        "5439"
                                                                  "5440"
                                                                            "5441"
                          "55276"
                                    "5557"
                                              "5558"
                                                        "55703"
                                                                  "55811"
[121] "5471"
                "548644"
                                                                            "55821"
[129] "5631"
                "5634"
                          "56655"
                                    "56953"
                                              "56985"
                                                        "57804"
                                                                  "58497"
                                                                            "6240"
                                                        "7498"
[137] "6241"
                "64425"
                          "646625"
                                    "654364"
                                              "661"
                                                                  "8382"
                                                                            "84172"
[145] "84265"
                "84284"
                          "84618"
                                    "8622"
                                              "8654"
                                                        "87178"
                                                                  "8833"
                                                                            "9060"
                                                        "955"
                                                                            "957"
[153] "9061"
                "93034"
                          "953"
                                    "9533"
                                              "954"
                                                                  "956"
[161] "9583"
                "9615"
```

foldchanges = res\$log2FoldChange
names(foldchanges) = res\$entrez
head(foldchanges)

<NA> 148398 26155 339451 84069 84808
0.17925708 0.42645712 -0.69272046 0.72975561 0.04057653 0.54281049

keggres = gage(foldchanges, gsets=kegg.sets.hs) attributes(keggres)

\$names

[1] "greater" "less" "stats"

head(keggres\$less)

	p.geomean stat.mean p.val
hsa04110 Cell cycle	8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication	9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport	1.246882e-03 -3.059466 1.246882e-03
hsa03440 Homologous recombination	3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis	3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis	8.961413e-03 -2.405398 8.961413e-03
	q.val set.size exp1
hsa04110 Cell cycle	0.001448312 121 8.995727e-06
hsa03030 DNA replication	0.007586381 36 9.424076e-05
hsa03013 RNA transport	0.066915974 144 1.246882e-03
hsa03440 Homologous recombination	0.121861535 28 3.066756e-03
hsa04114 Oocyte meiosis	0.121861535 102 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis	0.212222694 53 8.961413e-03

keggrespathways <- rownames(keggres\$greater)[1:5]</pre>

```
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids
```

[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"

Q4. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

```
keggrespathways_down <- rownames(keggres$less)[1:5]</pre>
```

```
keggresids_down = substr(keggrespathways_down, start=1, stop=8)
keggresids_down
```

[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"

Gene Ontology

```
data(go.sets.hs)
data(go.subs.hs)
# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]
gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
lapply(gobpres, head)
```

\$greater			
		p.geomean	stat.mean p.val
GO:0007156	homophilic cell adhesion	8.519724e-05	3.824205 8.519724e-05
GD:0002009	morphogenesis of an epithelium	1.396681e-04	3.653886 1.396681e-04
GO:0048729	tissue morphogenesis	1.432451e-04	3.643242 1.432451e-04
GO:0007610	behavior	1.925222e-04	3.565432 1.925222e-04
GD:0060562	epithelial tube morphogenesis	5.932837e-04	3.261376 5.932837e-04
GO:0035295	tube development	5.953254e-04	3.253665 5.953254e-04
		q.val set	t.size exp1
GO:0007156	homophilic cell adhesion	0.1951953	113 8.519724e-05
GD:0002009	morphogenesis of an epithelium	0.1951953	339 1.396681e-04
GO:0048729	tissue morphogenesis	0.1951953	424 1.432451e-04
GO:0007610	behavior	0.1967577	426 1.925222e-04
GO:0060562	epithelial tube morphogenesis	0.3565320	257 5.932837e-04
GO:0035295	tube development	0.3565320	391 5.953254e-04
\$less			
фтерр		n geomean s	stat.mean p.val
GU • 00/18285	organelle fission		-8.063910 1.536227e-15
	•		-7.939217 4.286961e-15
GD:0000280			-7.939217 4.286961e-15
GU:0000087	M phase of mitotic cell cycle	1.169934e-14 -	-/./9/496 1.169934e-14

2.028624e-11 -6.878340 2.028624e-11 GO:0007059 chromosome segregation GO:0000236 mitotic prometaphase 1.729553e-10 -6.695966 1.729553e-10 q.val set.size exp1 GO:0048285 organelle fission 5.841698e-12 376 1.536227e-15 GO:0000280 nuclear division 5.841698e-12 352 4.286961e-15 5.841698e-12 GO:0007067 mitosis 352 4.286961e-15 GO:0000087 M phase of mitotic cell cycle 1.195672e-11 362 1.169934e-14

```
GO:0007059 chromosome segregation
                                        1.658603e-08
                                                          142 2.028624e-11
                                        1.178402e-07
                                                          84 1.729553e-10
GO:0000236 mitotic prometaphase
$stats
                                         stat.mean
                                                       exp1
GO:0007156 homophilic cell adhesion
                                          3.824205 3.824205
GD:0002009 morphogenesis of an epithelium 3.653886 3.653886
GO:0048729 tissue morphogenesis
                                          3.643242 3.643242
GO:0007610 behavior
                                          3.565432 3.565432
GO:0060562 epithelial tube morphogenesis 3.261376 3.261376
GO:0035295 tube development
                                          3.253665 3.253665
```

Reactome Analysis

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))
[1] "Total number of significant genes: 8147"</pre>
```

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote
```

Result visualization

volcano plot

```
library(ggplot2)

mycols <- rep("black", nrow(res))
mycols[res$log2FoldChange <= -2] <- "blue"
mycols[res$log2FoldChange >= 2] <- "red"
mycols[res$padj >= 0.05] <- "orange"

ggplot(as.data.frame(res)) +
   aes(x = res$log2FoldChange, y = -log(res$padj)) +
   geom_point(col = mycols, alpha = 0.5) +
   geom_vline(xintercept = c(-2, 2), linetype = "dashed", color = "red") +</pre>
```

```
geom_hline(yintercept = -log10(0.05), linetype = "dashed", color = "black") +
theme_minimal() +
labs(x = "log2FC", y = "adj. p-value", title = "Log2FC vs P-value")
```

Warning: Removed 1237 rows containing missing values or values outside the scale range (`geom_point()`).

Pathways

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/karinacardenas/Desktop/BIMM 143/lab14

Info: Writing image file hsa04110.pathview.png

Figure 1: Figure 1. Pathway of hsa04110

pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")

Upregulated Pathway

Figure 2: Figure 2. Pathway of hsa04640, $^150 \mathrm{does}$ not include ids "hsa04630" "hsa04142" "hsa04330

```
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/karinacardenas/Desktop/BIMM 143/lab14
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/karinacardenas/Desktop/BIMM 143/lab14
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/karinacardenas/Desktop/BIMM 143/lab14
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/karinacardenas/Desktop/BIMM 143/lab14
Info: Writing image file hsa03440.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/karinacardenas/Desktop/BIMM 143/lab14
```

Info: Writing image file hsa04114.pathview.png

Downregulated Pathviews

Then, to perform pathway analysis online go to the Reactome website (https://reactome.org/PathwayBrowser/#Select "choose file" to upload your significant gene list. Then, select the parameters "Project to Humans", then click "Analyze".

Figure 3: Reactome - Sensory Perception