Synchronisation in Netzwerken: Master Stability Function und Permutationssymmetrien

Felix Zimmermann, Halgurd Taher, Paul-Rainer Affeld

Institut fur Theoretische Physik, Technische Universitat Berlin, Germany

6. Juli 2015

Inhalt

- 1 Einleitung
- 2 Synchronisation I
- Simulationsbeispiel
- Oluster und Permutationssymmetrien
- **5** Synchronisation II
- 6 Lokale Stabilitätsanalyse
- 7 Fazit

Einleitung

- Einleitung
- 2 Synchronisation I
- Simulationsbeispiel
- 4 Cluster und Permutationssymmetrier
- 5 Synchronisation II
- 6 Lokale Stabilitätsanalyse
- Fazit

Dynamik auf Netzwerken

- N miteinander gekoppelte Knoten
- Jeder Knoten wird durch dynamische Gleichung beschrieben

$$\dot{\mathbf{x}}_{i}(t) = \mathbf{f}(\mathbf{x}_{i}(t)) + \sigma \sum_{j} A_{ij} \mathbf{h}(\mathbf{x}_{j})
i = 1, ..., N
A_{ij} Kopplungsmatrix
\mathbf{f}, \mathbf{h} : \mathbb{R}^{n} \to \mathbb{R}^{n}$$
(1)

Definiere

$$\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_N)^{\mathrm{T}}, \mathbf{F} = (\mathbf{f}(\mathbf{x}_1), ..., \mathbf{f}(\mathbf{x}_N))^{\mathrm{T}}, \mathbf{H} = (\mathbf{h}(\mathbf{x}_1), ..., \mathbf{h}(\mathbf{x}_N))^{\mathrm{T}}$$

⇒ äquivalente Gleichung zu (1)

$$\overset{\cdot}{\mathsf{X}}(t) = \mathsf{F}(\mathsf{X}(t)) + \sigma \mathsf{A} \otimes \mathsf{H}(\mathsf{X}(t))$$

Synchronisation I

- Einleitung
- 2 Synchronisation I
- Simulationsbeispie
- 4 Cluster und Permutationssymmetrier
- 5 Synchronisation II
- 6 Lokale Stabilitätsanalyse
- Fazit

Synchronisation I

Globale Synchronisation liegt vor wenn

$$x_1(t) = x_2(t) = ... = x_N(t) =: s(t)$$

erfüllt ist.

Stabilität der Synchronisation:

• Wie entwickelt sich kleine Abweichung von $\mathbf{s}(t)$ zeitlich weiter?

Linearisierung um $\mathbf{s}(t) \Rightarrow \text{Master Stability Equation (MSE)}$:

$$\delta \mathbf{X}(t) = \left[D\mathbf{F}(\mathbf{s}(t)) + \sigma \mathbf{A} \otimes D\mathbf{H}(\mathbf{s}(t)) \right] \delta \mathbf{X}(t)$$

Master Stability Function

Ljapunow-Exponenten λ_i

$$\lambda_i = \lim_{t \to \infty} \frac{1}{t} ln \left(\frac{|\delta \mathbf{x}_i(t)|}{|\delta \mathbf{x}_i(0)|} \right)$$

Master Stability Function (MSF) A ist größter Ljapunow Exponent

- $\Lambda > 0$, Synchronisation instabil, Fehler wächst, Bahnkurven $\mathbf{x}_i(t)$ entfernen sich von $\mathbf{s}(t)$
- $\Lambda < 0$, Synchronisation stabil, Fehler schrumpft, Bahnkurven $\mathbf{x}_i(t)$ nähern sich wieder $\mathbf{s}(t)$

Voraussetzungen für Synchronisation

- jeder Knoten benötigt gleichen Input
- setzt u.a. konstante Zeilensumme von A voraus

Voraussetzungen für Synchronisation

- jeder Knoten benötigt gleichen Input
- setzt u.a. konstante Zeilensumme von A voraus

Im Allgemeinen nicht erfüllt, z.B.:

Zeilensumme NICHT konstant

Simulationsbeispiel

- Einleitung
- 2 Synchronisation I
- Simulationsbeispiel
- Cluster und Permutationssymmetrier
- Synchronisation II
- 6 Lokale Stabilitätsanalyse
- Fazit

Beispiel

- Diskretes System mit N = 11 Knoten
- Kopplungsmatrix A₁
- Diskrete dynamische Gleichung gegeben durch

$$x_i^{t+1} = \left[\beta \mathcal{I}(x_i^t) + \sigma \sum_{j=1}^{N} A_{ij} \mathcal{I}(x_j^t)\right] \mod 2\pi$$
$$\beta, \sigma \text{ Kopplungsparameter}$$
$$\mathcal{I}(x) = \frac{1 - Cos(x)}{2}$$

(aus Pecora et. al 2014)

Beispiel

Simulation des Beispiels

Beobachtungen

- Keine globale Synchronisation
- 5 Gruppen von Knoten die sich synchron verhalten
- $\bullet \Rightarrow \text{Cluster}$

Cluster und Permutationssymmetrien

- Einleitung
- 2 Synchronisation I
- Simulationsbeispiel
- Oluster und Permutationssymmetrien
- 5 Synchronisation II
- 6 Lokale Stabilitätsanalyse
- Fazit

Cluster

 \mathbf{A}_1 hat zwar global keine konstante Zeilensumme aber:

- Forderung nach gleichem Input für jeden Knoten kann <u>innerhalb</u> eines Cluster erfüllt werden (da gleiche Zeilensumme innerhalb eines Clusters für z.b. A₁)
- Knoten können vertauscht werden ohne Dynamik zu ändern
- ⇒ Netzwerk besitzt offensichtlich Symmetrien Suche nach Permutationssymmetrien sinnvoll:
 - \bullet mathematisch beschrieben durch Permutationsmatrizen P_i
 - ullet ${f A}={f P}{f A}{f P}^{-1}\Rightarrow {f A}$ bleibt unverändert bei Tauschen der Knoten

Permutationssymmetrien

Beispiele für Permutationssymmetrien:

- Knoten 1 und 2 vertauschbar
 - \Rightarrow 1 und 2 im Cluster
- Knoten 1 und 2 vertauschbar bei gleichzeitiger Vertauschung von 3 und 4
 - ⇒ Cluster (1,2) und (3,4) "verschränkt" (Pecora et al.:

Cluster

- Clustersuche in der Regel numerisch
- Bibliothek nauty liefert M Cluster http://pallini.di.uniroma1.it/
- Nach Finden der Cluster kann Störung umgeschrieben werden:

$$\delta \mathbf{X}(t) = [D\mathbf{F}(\mathbf{s}(t)) + \sigma \mathbf{A} \otimes D\mathbf{H}(\mathbf{s}(t))] \delta \mathbf{X}(t)$$

$$= \left[\sum_{m=1}^{M} \mathbf{E}^{(m)} \otimes D\mathbf{F}(\mathbf{s}_{m}(t)) + \sigma \mathbf{A} \otimes \mathbf{I}_{n} \sum_{m=1}^{M} \mathbf{E}^{(m)} \otimes D\mathbf{H}(\mathbf{s}_{m}(t)) \right] \mathbf{X}(t)$$

 $\mathbf{s}_m(t)$ ist synchroner Orbit des Clusters m

 $\mathbf{E}_{ii}^{(m)} = 1$ wenn Knoten i zum Cluster m gehört

Synchronisation II

- Einleitung
- 2 Synchronisation I
- 3 Simulationsbeispie
- 4 Cluster und Permutationssymmetrier
- **5** Synchronisation II
- 6 Lokale Stabilitätsanalyse
- Fazit

Formen von Synchronisation

- globale Synchronisation alle Knoten des Netzwerks synchron
- isolierte Synchronisation innerhalb eines Clusters alle Knoten eines Clusters synchron
- gemeinsame Synchronisation zweier Cluster zwei Cluster zeigen gleichzeitig isolierte Synchronisation

Isolierte Synchronisation

Warum kann ein Cluster synchron sein während andere nicht synchron sind?

• Betrachte Dynamik des Knoten i aus Cluster n. \mathbf{P}_m sei Permutationsmatrix zu Symmetriepermutation π des Clusters m.

$$\begin{aligned} \left[\mathbf{P}_{m}\dot{\mathbf{X}}\right]_{i} &= \dot{\mathbf{x}}_{i} \\ \left[\mathbf{P}_{m}\mathbf{F}(\mathbf{X})\right]_{i} + \left[\mathbf{P}_{m}\mathbf{A}\mathbf{H}(\mathbf{X})\right]_{i} &= \mathbf{f}(\mathbf{x}_{i}) + \sigma \sum_{j} A_{ij}\mathbf{h}(\mathbf{x}_{j}) \\ \mathbf{f}(\mathbf{x}_{i}) + \sigma \sum_{j} A_{ij}\mathbf{h}(\mathbf{x}_{\pi(j)}) &= \mathbf{f}(\mathbf{x}_{i}) + \sigma \sum_{j} A_{ij}\mathbf{h}(\mathbf{x}_{j}) \end{aligned}$$

• Ein Knoten aus n ist gleich an jeden Knoten aus m gekoppelt.

Isolierte Synchronisation

Warum kann ein Cluster synchron sein während andere nicht synchron sind?

- \bullet Ein Knoten aus n ist gleich an jeden Knoten aus m gekoppelt.
- Analog führt Anwendung von P_n auf "Jeder Knoten aus n ist gleich an einen Knoten aus m gekoppelt"
- Jeder Knoten in
n bekommt in der Summe den gleichen Input vom Cluster m, egal ob dieser synchron oder nicht ist.
 - \Rightarrow Wenn Permutationsmatrizen existieren die die Cluster getrennt permutieren, existiert isolierte Synchronisation
 - \Rightarrow Isolierte Synchronisation <u>nicht</u> bei "verschränkten" Clustern

Lokale Stabilitätsanalyse

- Einleitung
- 2 Synchronisation I
- 3 Simulationsbeispiel
- 4 Cluster und Permutationssymmetrier
- Synchronisation II
- 6 Lokale Stabilitätsanalyse
- 7 Fazit

Stabiltät der Clustersynchronität

Stabilitätsanalyse:

- für einzelne Cluster schwierig: in welche Richtung sollte $\delta \mathbf{X}$ betrachtet werden?
- $\bullet \Rightarrow \text{Basistransformation mit Transformationsmatrix } \mathbf{T}$
- T blockdiagonalisiert A
- \bullet oberer $M \times M$ Block beschreibt die Bewegung innerhalb der Synchronisationsmannigfaltigkeit

(Pecora et al. 2014)

MSF für Cluster

Nach Transformation durch ${\sf T}$ ergibt sich linearisierte Störung ${\boldsymbol \eta}$ in neuer Basis

$$\dot{\eta}(t) = \left[\sum_{m=1}^{M} \mathbf{J}^{(m)} \otimes D\mathbf{F}(\mathbf{s}_{m}(t)) + \sigma \mathbf{B} \otimes \mathbf{I}_{n} \sum_{m=1}^{M} \mathbf{J}^{(m)} \otimes D\mathbf{H}(\mathbf{s}_{m}(t))\right] \eta(t)$$
 $\eta(t) = \mathbf{T} \otimes \mathbf{I}_{n} \delta \mathbf{X}(t)$
 $\mathbf{B} = \mathbf{T} \mathbf{A} \mathbf{T}^{-1}$
 $\mathbf{J}^{(m)} = \mathbf{T} \mathbf{E}^{(m)} \mathbf{T}^{-1}$

aus dieser MSE kann MSF für jedes Cluster (lokal) berechnet werden

Simulation lokale MSF

 $Stabilit \"{a}ts analyse$

Simulation lokale MSF

Fazit

- Einleitung
- 2 Synchronisation I
- Simulationsbeispiel
- Cluster und Permutationssymmetrier
- 5 Synchronisation II
- 6 Lokale Stabilitätsanalyse
- 7 Fazit

Fazit

- globale Stabilitätsanalyse über MSF setzt konstante Zeilensumme voraus
- In Netzwerken mit Symmetrien existieren Cluster
- Knoten eines Cluster können synchron laufen
- lokale Stabilitätsanalyse der Synchronisation durch Basistransformation möglich
- Isolierte Desynchronisation bei nicht verschränkten(non intertwined) Clustern möglich