CS 580 RYL 4

Setup

RYL 4

```
In [2]: # Consider the model:
        # y = \theta 1 * e^{(-\theta 2x)} + \theta 3
        # and the data points
        # {(0, 2.300), (1, 1.036), (2, 0.571)}
        def model(x, th):
             x: scalar or vector
             th: 3-dim vector
             return (th[0] * jnp.exp(-th[1]*x)) + th[2]
        data = jnp.array([
             [0, 2.300],
             [1, 1.036],
[2, 0.571]
        data_x = data[:, 0]
        data_y = data[:, 1]
In [3]: # plot a generic version of our model with the data for context
        dummy_x = jnp.linspace(-1,10,100)
        dummy_y = model(dummy_x, jnp.array([1.5,0.6,0])) # using theta from part c
        plt.plot(dummy_x, dummy_y)
        plt.scatter(data_x, data_y, marker="x", color="black")
```

Out[3]: <matplotlib.collections.PathCollection at 0x1153c8ec0>


```
In [4]: # (a) Define your cost as the square of the l2 norm and write a function which takes vectors x,y,
        # and \theta and returns the cost.
        def cost(x, y, th):
            0.000
            x: vector
            y: vector (same shape as x)
             th: 3-dim vector
            return jnp.linalg.norm(y-model(x, th), ord=2)**2
In [5]: # (b) Use an automatic differentiation library of your choice to take the gradient of your cost
        # function
        cost_gradient = jax.grad(cost, 2) # gradient with respect to theta
In [6]: # (c) Calculate the normalized negative gradient (g_hat) at \theta=(1.5, 0.6, 0)
        theta_0 = jnp.array([1.5, 0.6, 0])
        g_hat = jnp.linalg.norm(-cost_gradient(data_x, data_y, theta_0), ord=2)
        g_hat
Out[6]: Array(3.0126598, dtype=float32)
In [7]: # (d) Plot L(\theta\theta + \alpha*g\_hat) where Lis your loss function, \theta\theta is the theta vector given in
```

```
In [7]: # (d) Plot L(θ0 + α*g_hat) where Lis your loss function, θ0 is the theta vector given in
# part c, g_hat is the normalized negative gradient from part c, and α is a scalar with
# values ranging from 0 to 1.

def L(alph):
    return [cost(data_x, data_y, theta_0 + a * g_hat) for a in alph]

alpha = jnp.linspace(0, 1, 100)
losses = L(alpha)

plt.plot(alpha, losses)
plt.ylim(-10,40)
```

Out[7]: (-10.0, 40.0)


```
In [8]: # (e) Using the same y-axis, plot L(θθ + α*d_hat) where d_hat=(0.138, 0.983, 0.118)

def L_g(alph):
    return [cost(data_x, data_y, theta_θ + a * g_hat) for a in alph]

d_hat = jnp.array([0.138, 0.983, 0.118])

def L_d(alph):
    return [cost(data_x, data_y, theta_θ + a * d_hat) for a in alph]

alpha = jnp.linspace(θ, 1, 100)
    losses_g_hat = L_g(alpha)
    losses_d_hat = L_d(alpha)

plt.plot(alpha, losses_g_hat, label="losses_g_hat")
    plt.plot(alpha, losses_d_hat, label="losses_d_hat")
    plt.ylim(-10,40)
    plt.legend()
```

Out[8]: <matplotlib.legend.Legend at 0x1153c96a0>

In [9]: # (f) Using your two plots, explain why the gradient is useful in the context of modeling.

the gradient is useful in the context of modeling because stepping around our cost surface with # the gradient with respect to the parameters allows characterization of the cost surface, and # can therefore help us to find minima.

2464 MOTES 580 10-11-25 SINGULAR: SQUARE BUT NOT INVERTIBLE. SU'S: DESCRIBE VNEER TAWTY SHAPE / ECITSIS. 4 CONDITION #: P(B/A) = P(AnB) · PA110 OF SEAN MAJOR/ NEOB SEMI MINOL AXES P(B/A) = P(A/B) P(B) · HOW NAPROW 15 BAYES THE LANDSCAPE · BIG CIN: ONE PCAS = SPCALB, P(B,) TOTAL PARAM MOLDS MORE INFO. MLE: dl =0 l: 1865, D: PARAM. SOLUE FOR 8 - ASSUMINE: C= = 11/- AO112 - HOPUSCHDASTIL COV = FIM-AO= 752(A'A) AD61025 3.D.