Ejercicio 5. Calcula, para todo número entero n, mcd(28n - 5, 35n - 8).

Solución 5.

Aplicando el Algoritmo de Euclides tenemos que dados dos números enteros a y b, entonces $\operatorname{mcd}(a,b) = \operatorname{mcd}(b,r)$, donde r es el resto de la división entera a = bq + r, con $q,r \in \mathbb{Z}, 0 \leq r < b$.

En nuestro caso tenemos

$$mcd(28n-5,35n-8) = mcd(35n-8,28n-5) = mcd(28n-5,7n-3) = mcd(7n-3,7)$$

Como 7 es primo, tenemos que mcd(7n-3,7)=1, excepto en los casos en que 7n-3 es un múltiplo de 7, en cuyo caso mcd(7n-3,7)=7.

Veamos cuándo sucede eso: La condición de que 7n-3 sea un múltiplo de 7 es equivalente a escribir $7n-3\equiv 7 \mod 7$, esto es, $7n\equiv 10 \mod 7$, que es lo mismo que $7n\equiv 3 \mod 7$. Pero esta ecuación nunca tiene solución, ya que $\operatorname{mcd}(7,7)=7 \nmid 3$. Por consiguiente, no existe $n\in \mathbb{Z}$ tal que 7n-3 sea múltiplo de 7, y por tanto el máximo común divisor de 35n-8 y 28n-5 será 1 para todo entero n.