# 庄逸的数学与技术屋

## GPA 计算的理论分析

### Vortexer99

## 目录

| 1 | <b>预备知识</b>                                  | 2  |
|---|----------------------------------------------|----|
|   | 1.1 写在前面                                     | 2  |
|   | 1.2 名词解释                                     | 2  |
| 2 | 基础计算                                         | 3  |
|   | 2.1 绩点换算表                                    | 3  |
|   | 2.2 GPA 与均分计算                                | 3  |
| 3 | 边际效应                                         | 4  |
|   | 3.1 一般情况                                     | 4  |
|   | 3.2 同学分的情况                                   | 5  |
|   | 3.3 同成绩同绩点的情况                                | 5  |
|   | 3.4 同成绩同学分的情况                                | 6  |
|   | 3.5 单课程的情况                                   | 6  |
|   | 3.6 单课程对 gpa 和均分的贡献                          | 7  |
|   | 3.7 到达一定贡献需要的学分数                             | 7  |
| 4 | 按属性分类计算                                      | 7  |
|   | 4.1 按学期分类                                    | 8  |
|   | 4.2 按课程类型分类                                  | 8  |
| 5 | 近似计算及误差分析                                    | 8  |
|   | 5.1 估算单课程的 gpa 影响                            | 8  |
|   | 5.1.1 当前 gpa 估计的影响                           | 8  |
|   | 5.1.2 总学分估计的影响                               | 8  |
| 6 | Mist Mit | 10 |
|   | 6.1 估计总学分对单门课程 gpa 变化造成的影响                   | 10 |

#### 预备知识 1

#### 1.1 写在前面

本篇文章专为 GPA 计算器提供理论支撑。下列理论仅适用国科大, 勿随意用于其 他学校。

本篇文章未完待续。欢迎大家提出各种创意。

#### 1.2 名词解释

对于一个具体的同学来说,有许多隶属于他的课程,只考虑参与 gpa 和均分计算的 课程,设课程数为  $N, N \in \mathbb{N}^+$ ,对于其中的第 i 门课程  $(1 \le i \le N)$ ,

- 学分 (credit) cr[i]: 是课程的一个基本属性,表示课程对应的学分。取值为非负数。
- •(百分制)成绩 (gr) gr[i]: 是课程的一个基本属性,表示这个同学在这门课得到的 成绩。取值范围为 [0,100] ∩ N 和"补考通过"。
- 学期 (semester) sem[i]: 是课程的一个基本属性,表示这门课所在的学期。取值范 围为 1,2,3,4,5,6,7,8,按照时间顺序分别表示大一至大四的秋季、春季学期。
- 类型 (type): 是课程的一个基本属性,本质上是一个关于 i 的检验 (取值为 0-1) 函数,具体见相关讨论(暂时没有)。
- 绩点 (grade point) gp[i]: 是课程的一个属性,由成绩换算得到,即由换算函数 grtogp决定。

$$gp[i] = grtogp(gr[i])$$
 (1.1)

具体见绩点换算表。

• 绩点分 (credited grade point) crap[i]: 是课程的一个属性,等于这门课的学分乘绩 点。

$$crgp[i] = cr[i] \cdot gp[i] \tag{1.2}$$

• 成绩学分 (credited grade) crgr[i]: 是课程的一个属性,等于这门课的学分乘成绩。 或简称成绩分。

$$crgr[i] = cr[i] \cdot gr[i] \tag{1.3}$$

对于这些课的总体,有以下一些统计量。

- 总学分 (total credit)  $cr_{total} = cr$ : 为所有课程的学分之和。
- 总绩点分 (total credited grade point)  $crgp_{total} = crgp$ : 为所有课程的绩点分之和。
- 总成绩分 (total credited grade)  $crgr_{total} = crgr$ : 为所有课程的成绩分之和。

- GPA (Grade point average)  $gpa_{total} = gpa$ : 为所有课程的绩点学分加权平均。又 称平均绩点或加权平均绩点或总绩点。
- 平均成绩 (Grade average)  $gra_{total} = gra$ : 为所有课程的成绩学分加权平均。又称 加权平均成绩、均绩或均分。

由于直接对成绩或绩点求平均无适用场景,因此为简便起见,下文凡是出现"平均","加 权平均"等,均指"学分加权平均"。

在引入了总体统计量之后,对于课 i,还能定义其对总体统计量的贡献。

- GPA 贡献: 是课程的一个属性,为当前情况下计算所得的 GPA 与仅去掉该课程 计算所得的 GPA 之差。
- 均分贡献: 是课程的一个属性, 为当前情况下计算所得的均分与仅去掉该课程计算 所得的均分之差。

### 2 基础计算

#### 2.1 绩点换算表

每门课的绩点由成绩换算得到,换算函数适合用变量-值的表格形式呈现。 成绩与绩点的换算表可从本科教育网教学管理栏目相关文件找到。截至目前(2019 年7月17日),换算表见表1

| 成绩 gr[i]   | [90, 100] | [87, 89] | [85, 86] | [83, 84] | {82} | [80, 81] | [78, 79] | [76, 77] |
|------------|-----------|----------|----------|----------|------|----------|----------|----------|
| 绩点 $gp[i]$ | 4.0       | 3.9      | 3.8      | 3.7      | 3.6  | 3.5      | 3.4      | 3.3      |
| 成绩 $gr[i]$ | {75}      | {74}     | {73}     | {72}     | {71} | [69, 70] | {68}     | {67}     |
| 绩点 $gp[i]$ | 3.2       | 3.1      | 3.0      | 2.9      | 2.8  | 2.7      | 2.6      | 2.5      |
| 成绩 $gr[i]$ | {66}      | [64, 65] | $\{63\}$ | $\{62\}$ | {61} | {60}     | [0, 59]  | 补考通过     |
| 绩点 $gp[i]$ | 2.4       | 2.3      | 2.2      | 2.1      | 1.8  | 1.6      | 0        | 1.0      |

表 1: 成绩与绩点换算表

#### 2.2 GPA 与均分计算

GPA 的计算方式为绩点通过学分加权平均,即

$$gpa = \frac{\sum_{i=1}^{N} gp[i] \cdot cr[i]}{\sum_{i=1}^{N} cr[i]}$$
 (2.1)

其中学分为基础信息,绩点通过绩点换算表由基础信息成绩得到。再由绩点分、总绩点 分和总学分的定义,

$$gpa = \frac{\sum_{i=1}^{N} crgp[i]}{\sum_{i=1}^{N} cr[i]} = \frac{crgp}{cr}$$
(2.2)

类似地, 平均成绩的计算方式也为学分加权平均, 即

$$gra = \frac{\sum_{i=1}^{N} gr[i] \cdot cr[i]}{\sum_{i=1}^{N} cr[i]}$$
 (2.3)

其中学分、成绩均为基础已知信息。再由成绩分、总成绩分和总学分的定义,

$$gra = \frac{\sum_{i=1}^{N} crgr[i]}{\sum_{i=1}^{N} cr[i]} = \frac{crgr}{cr}$$
 (2.4)

### 3 边际效应

很多时候我们比较关心多几门或少几门课会对我们的 gpa 和均分造成怎样的影响。

#### 3.1 一般情况

考虑增加  $k(k \in \mathbb{N}^+)$  门课程,对 N 门课之外的第  $i(1 \le i \le k)$  门增加的课程,设 其学分为  $\delta cr[i]$ ,成绩为  $\delta gr[i]$ ,换算得到的绩点为  $\delta gp[i]$ ,其他属性和这 k 门课的总属 性同理用撇表示。

则依照 GPA 的计算方式,有

$$gpa' = \frac{\sum_{i=1}^{N} gp[i] \cdot cr[i] + \sum_{i=1}^{k} \delta gp[i] \cdot \delta cr[i]}{\sum_{i=1}^{N} cr[i] + \sum_{i=1}^{k} \delta cr[i]} = \frac{crgp + \delta crgp}{cr + \delta cr}$$
(3.1)

对于减少课程的情况,设也减少这k门课程,有

$$gpa' = \frac{\sum_{i=1}^{N} gp[i] \cdot cr[i] - \sum_{i=1}^{k} \delta gp[i] \cdot \delta cr[i]}{\sum_{i=1}^{N} cr[i] - \sum_{i=1}^{k} \delta cr[i]}$$
(3.2)

可以将负号吸收进去,化为

$$gpa' = \frac{\sum_{i=1}^{N} gp[i] \cdot cr[i] + \sum_{i=1}^{k} \delta gp[i] \cdot (-\delta cr[i])}{\sum_{i=1}^{N} cr[i] + \sum_{i=1}^{k} (-\delta cr[i])}$$
(3.3)

由此可见,对于减少课程的情况,只需要令减少的课程学分取为负,则式 3.1可以通用。 以后我们均这么处理,并只考虑增加课程的情况而忽略减少课程的情况。

下面计算与原 gpa 的差值

$$\Delta gpa = gpa' - gpa = \frac{crgp + \delta crgp}{cr + \delta cr} - \frac{crgp}{cr}$$
(3.4)

化简得

$$\Delta gpa = \frac{cr \cdot \delta crgp - \delta cr \cdot crgp}{cr(cr + \delta cr)}$$
(3.5)

注意到  $crgp = gpa \cdot cr$ , 得

$$\Delta gpa = \frac{\delta crgp - \delta cr \cdot gpa}{cr + \delta cr} = \frac{1}{cr + \delta cr} \sum_{i=1}^{k} \delta cr[i](\delta gp[i] - gpa)$$
 (3.6)

这是一个重要结论,因为这一公式表示总的 gpa 改变,是由每一门新增的课绩点与原 gpa 的差值乘上对应的学分系数求和,再乘以一个增加后总学分(如果  $\delta cr$  较小的话,就可以用当前学分近似)的倒数因子得到。从中可以得出以下浅显的结论:

- 1. 新的课程的绩点比原 gpa 越高,新 gpa (和原 gpa 的差值)就越高。
- 2. 新的课程的学分越多,提高/降低 gpa 的效果就越明显。
- 3. 所有课程总学分越多,提高/降低 gpa 的效果就越不明显。

对于均分,分析和结论是完全类似的,此处略去,仅列出结论。

$$gra' = \frac{\sum_{i=1}^{N} gr[i] \cdot cr[i] - \sum_{i=1}^{k} \delta gr[i] \cdot \delta cr[i]}{\sum_{i=1}^{N} cr[i] - \sum_{i=1}^{k} \delta cr[i]}$$
(3.7)

$$\Delta gra = \frac{\delta crgr - \delta cr \cdot gra}{cr + \delta cr} = \frac{1}{cr + \delta cr} \sum_{i=1}^{k} \delta cr[i](\delta gr[i] - gra)$$
 (3.8)

#### 3.2 同学分的情况

若增加的课都是同一个学分,即  $\delta cr[i] \equiv \delta cr^*$   $1 \le i \le k$ ,则

- 总增加的学分  $\delta cr = \sum_{i=1}^{k} \delta cr[i] = k \cdot \delta cr^*$
- 总增加的绩点分  $\delta crgp = \sum_{i=1}^k \delta cr[i] \cdot \delta gp[i] = \delta cr^* \sum_{i=1}^k \delta gp[i] = \delta cr^* \cdot \delta gp$
- 总增加的成绩分  $\delta crgr = \sum_{i=1}^k \delta cr[i] \cdot \delta gr[i] = \delta cr^* \sum_{i=1}^k \delta gr[i] = \delta cr^* \cdot \delta gr$ 代入前面的结论,直接可得到

$$\Delta gpa = \frac{\delta cr^*}{cr + \delta cr} \sum_{i=1}^{k} (\delta gp[i] - gpa)$$
(3.9)

同理,

$$\Delta gra = \frac{\delta cr^*}{cr + \delta cr} \sum_{i=1}^{k} (\delta gr[i] - gra)$$
(3.10)

#### 3.3 同成绩同绩点的情况

由于成绩到绩点的转换为一对一或多对一,同成绩可以推出同绩点,因此为避免重复,我们就直接研究同成绩的情况。

此时增加的课绩点均相同,即  $\delta gp[i] \equiv \delta gp^*$   $1 \le i \le k$ ,则代入之前的结论,有

$$\Delta gpa = \frac{1}{cr + \delta cr} \sum_{i=1}^{k} \delta cr[i](\delta gp^* - gpa) = \frac{\delta cr}{cr + \delta cr}(\delta gp^* - gpa)$$
(3.11)

可以发现此时新增某一门课的具体学分和有多少门课已经不再重要,只需要抓住新课的总绩点和总新增学分即可。并且此时很容易就可看出新课绩点只要比以前高,gpa 就会

上升,反之亦然;前面的放缩系数也反映了新增课程的学分与原有总学分对 gpa 变化的影响。

对于均分, 也类似有

$$\Delta gra = \frac{1}{cr + \delta cr} \sum_{i=1}^{k} \delta cr[i](\delta gr^* - gra) = \frac{\delta cr}{cr + \delta cr}(\delta gr^* - gra)$$
(3.12)

#### 3.4 同成绩同学分的情况

若增加的课学分、成绩、绩点分别均相同,即结合前两小节的条件,不难得出

$$\Delta gpa = \frac{k \cdot \delta cr^*}{cr + k \cdot \delta cr^*} (\delta gp^* - gpa)$$
 (3.13)

此时  $\Delta gpa$  中 k 和  $\delta cr^*$  只出现在  $k \cdot \delta cr^*$  中。根据之前的讨论,若考虑减少的情况,只需令学分为负。而

$$k \cdot (-\delta cr^*) = (-k) \cdot \delta cr^* \tag{3.14}$$

所以此时不仅可以令学分为负,还可以单独令新增课程数 k 为负,来计算减少的情况,而这是与直觉符合的——增加 -1 门课,就是减少 1 门课。

#### 3.5 单课程的情况

当课程数为1时,显然满足同成绩同学分的要求。

$$\Delta gpa = \frac{\delta cr^*}{cr + \delta cr^*} (\delta gp^* - gpa) \tag{3.15}$$

其文字表达式为

新 gpa-旧 gpa = 
$$\frac{$$
新课学分  $}{$ 新总学分  $} \times ($ 新课绩点-旧 gpa $)$  (3.16)

实际计算常用上式,但它可以写成漂亮的对称的比例式:

$$\frac{gpa' - gpa}{\delta gp^* - gpa} = \frac{\delta cr^*}{cr + \delta cr^*}$$
 (3.17)

其文字表达式为

$$\frac{\text{新 gpa-IP gpa}}{\text{新课绩点-IP gpa}} = \frac{\text{新课学分}}{\text{新总学分}}$$
 (3.18)

举例而言,如果当前 gpa=3.7,总学分 cr=60。如果多一门 1 学分的课,该课的绩点为 3.8,即  $\delta cr^*=1$ , $\delta gp^*=3.8$ ,计算这一门课和原 gpa 的差值  $\delta gp^*-gpa=0.1$ ,再计算放缩比例为该门课学分比上新总学分  $1/61\approx0.0164$ ,相乘即可得到  $\Delta gpa=0.00164$ 。如果这门课是 4 学分,则放缩比例将会达到  $4/64\approx0.06250$ ,最后结果大约是之前的四倍即  $\Delta gpa=0.00625$ 。而如果多一门 1 学分的课,绩点为 3.3,差值放大了 4 倍, $\delta gp^*-gpa=-0.4$ ,最后的结果和一门 4 学分 3.8 绩点的课大致持平,即造成  $\Delta gpa=-0.00656$ 。

对于均分有类似结论。

$$\Delta gra = \frac{\delta cr^*}{cr + \delta cr^*} (\delta gr^* - gra)$$
 (3.19)

新均分-旧均分 = 
$$\frac{$$
新课学分 $}{$ 新总学分 $} \times ($ 新课成绩-旧均分 $)$  (3.20)

#### 3.6 单课程对 gpa 和均分的贡献

一门课程(记为第j门)对 gpa 的贡献定义为现 gpa 与除去此课计算所得 gpa 之 差,记为 $\Delta_i gpa$ 。由上一节的讨论,套用减少课程的情况,可知

$$\Delta_{j}gpa = gpa - gpa' = -\frac{-cr[j]}{cr - cr[j]}(gp[j] - gpa) = \frac{cr[j]}{cr - cr[j]}(gp[j] - gpa)$$
 (3.21)

需要注意的是虽然这里是"减少课程j",但是和平时所说的"多一门课j之后gpa······ "计算结果是一样的,因为此处的总学分已经考虑了课程i,显然在计算这一门课的贡 献时这一门已经在工作表里了。

对均分的贡献,类似为

$$\Delta_{j}gra = gra - gra' = -\frac{-cr[j]}{cr - cr[j]}(gr[j] - gra) = \frac{cr[j]}{cr - cr[j]}(gr[j] - gra) \qquad (3.22)$$

#### 3.7 到达一定贡献需要的学分数

正如小节 3.3所述, 同成绩或同绩点时课程门数及具体每门课的学分不再重要, 只需 要关心总新增的绩点即可。

$$\Delta gpa = \frac{\delta cr}{cr + \delta cr} (\delta gp^* - gpa) \tag{3.23}$$

不同的是,此时目标 gpa(gpa') 已定,不确定的是  $\delta cr$  和  $\delta gp^*$ 。一般而言,是通过 给定  $\delta gp^*$  去求  $\delta cr$ ,即要有多少学分的某某成绩才能达到多少 gpa。不难解得

$$\delta cr = cr \times \frac{gpa' - gpa}{\delta gp^* - gpa'} \tag{3.24}$$

对均分目标同理。

$$\delta cr = cr \times \frac{gra' - gra}{\delta gr^* - gra'} \tag{3.25}$$

## 4 按属性分类计算

没啥意思也不难有空再写。不就是按照一定规则把课程分类然后分别求和嘛? 然后 它们合起来还能是总的。

#### 4.1 按学期分类

#### 4.2 按课程类型分类

#### 近似计算及误差分析 5

平时使用时,可以作一些近似简化公式以便记忆和计算。当然,在电脑中计算的都 是准确值。

#### 5.1 估算单课程的 gpa 影响

在单课程的情况中,我们已经得到了一门课影响 gpa 的公式。

$$\Delta gpa = \frac{\delta cr^*}{cr + \delta cr^*} (\delta gp^* - gpa) \tag{5.1}$$

此为准确值。

#### 5.1.1 当前 gpa 估计的影响

首先来考察如果现有 qpa 不准会对结果造成多少影响。显然,一般人只会记选课系 统里查到的两位小数,比较在意的同学会自己计算记到三四位小数,不太可能会有人直 接记精确的分数。因此,假设 gpa 有 0.01 的误差,记  $\Delta = |\Delta gpa - \Delta' gpa|$ ,显然有

$$\Delta = \frac{\delta cr^*}{cr + \delta cr^*} |gpa_1 - gpa_2| = 0.01 \times \frac{\delta cr^*}{cr + \delta cr^*}$$
(5.2)

作为一个比较高的精度,如果我们希望  $\Delta < 0.001$ ,那么可以解得

$$9\delta cr^* < cr \tag{5.3}$$

目前一门课学分最高的为 5 分的毛概,代入可得条件为  $\delta cr > 45$ ,而毛概课是大二下的 课程,此时学分早已过百,条件是满足的。如果按照最高是4学分计算,条件为 $\delta cr > 36$ , 这大约在大一上结束时可以勉强达到,在大一下出分时基本适用。同时,如果有 cr = 90的学分,那么一次性可以将 10 个学分的同绩点的课合并计算而满足要求。

注意到分式永远小于 1, 一定有  $\Delta < |gpa_1 - gpa_2|$ , 换句话说, 就是在别的量均为 精确值的情况下,由 gpa 估计值引起的增量 gpa 误差一定不会超过本身估计值的精度。 例如如果你记住了三位小数的现有 gpa,那么计算出的  $\Delta qpa$  一定至少有三位小数的精 度。

#### 5.1.2 总学分估计的影响

在影响新 gpa 的公式中,注意到分母有新学分项。一方面,计算时需要加上新课的 学分,不是非常方便,另一方面,在估计时当前学分也有不少误差,例如选课系统中下 学期选的课,讲座不计入 gpa 计算等造成的误差。下面进行一些研究。

设 cr 表示总学分的准确值, cr' 表示代入分母的总估计值, 令

$$\Delta = \left(\frac{\delta cr^*}{cr'} - \frac{\delta cr^*}{cr + \delta cr^*}\right) |\delta gp^* - gpa|$$
 (5.4)

$$= \frac{(cr + \delta cr^* - cr')}{cr'(cr + \delta cr^*)} \delta cr^* |\delta gp^* - gpa|$$
(5.5)

$$\Delta = \frac{\Delta cr\delta cr^*}{(cr + \delta cr^* - \Delta cr)(cr + \delta cr^*)} |\delta gp^* - gpa|$$
(5.6)

对于关于学分的分数项,可以证明它基本上是关于  $\delta cr^*$  的增函数。证明如下。将分子的  $\delta cr^*$  除下去,分母为

$$(cr + \delta cr^* - \Delta cr)(cr/\delta cr^* + 1) = \delta cr^* + \frac{(cr - \Delta cr)cr}{\delta cr^*} + \text{const}$$
 (5.7)

求导可知其为减函数的充要条件为

$$\delta cr^{*2} \le cr^2 - cr\Delta cr \tag{5.8}$$

解得

$$\frac{\Delta cr}{cr} \le 1 - \frac{\delta cr^{*2}}{cr^2} \tag{5.9}$$

就算学分的估计有 36% 的误差,即取  $\Delta cr/cr = 0.36$  代入,得

$$\delta cr^* \le 0.8cr \tag{5.10}$$

一门课按最大学分为 4 算,只需要有 5 个总学分即可达标。而 36% 的学分误差,若约为 1/3,相当于 60 学分估计成 40-80 学分,120 学分估计成 80-160 学分,这是一个很大的范围。最后既然分母是减函数,那么学分项就是关于  $\delta cr^*$  的增函数。

下面直接列表。先将公式变形为

$$\Delta' = \frac{\Delta}{10 \left| \delta g p^* - g p a \right|} = \frac{\Delta c r \delta c r^*}{10 \left( cr + \delta c r^* - \Delta c r \right) \left( cr + \delta c r^* \right)}$$
 (5.11)

解得

$$\Delta cr = \frac{(cr + \delta cr^*)^2}{(cr + \delta cr^*) + \delta cr^*/10\Delta'}$$
(5.12)

考虑  $|\Delta'| \leq \alpha$  的条件,以解出对应的学分估计偏差  $\Delta cr$  的范围。为此,分别代入  $\Delta' = \alpha$  和  $\Delta' = -\alpha$  的情况,解得两个边界值。

对于  $0<\Delta'\leq\alpha$  的情况,因为各项都是整数,最后可以顺利得到一个正数  $\beta$ ,使得  $\Delta cr\leq\beta$ 。但是对于负数的情况,有时会造成一定的问题。一般而言,我们希望在  $\Delta'=-\alpha$  的时候解出一个负数  $\beta$ ,从而使得  $\Delta cr\geq\beta$  等价于  $\Delta'\geq-\alpha$ 。但是,当  $\Delta'$  比较小的时候如  $\Delta'=-0.1$ ,分母就直接是 cr,最后结果却是一个正数。怎么回事呢?

我们先将式 5.11进行变形,得

$$\frac{\delta cr^*}{10\Delta'} = \frac{(cr + \delta cr^*)^2}{\Delta cr} - (cr + \delta cr^*)$$
 (5.13)

对于  $\Delta' \geq -\alpha$ , 成立

$$\frac{\delta cr^*}{10\Delta'} \le \frac{\delta cr^*}{10(-\alpha)} \tag{5.14}$$

于是

$$\frac{(cr + \delta cr^*)^2}{\Delta cr} - (cr + \delta cr^*) \le -\frac{\delta cr^*}{10(\alpha)}$$
(5.15)

如果已经有

$$-(cr + \delta cr^*) \le -\frac{\delta cr^*}{10(\alpha)} \tag{5.16}$$

那么可以看出,无论  $\Delta cr$  取负多少,不等式总成立。反而是它取正数的时候才有可能取 到等号。但是取正数的时候应当受另一边界控制。故可以直接认为  $0 > \Delta cr > -\infty$ 

回过头来再看最开始的式子式 5.1, 在式子中我们将分母  $cr + \delta cr^*$  用 cr' 替换, 而  $\Delta cr = cr + \delta cr^* - cr', \ \Delta cr$  趋向负无穷, 意味着 cr' 趋向正无穷, 于是式子的分母越来 越大,整个式子越来越趋向于零。但是,如果其本身精确值就小于要求的精确度,代入 学分越大,其值越来越小,显然总是在要求的精确度内的。

以下将依照新增课程学分从 1 至 4, 在一定学分 cr 的情况下, 为达到  $\Delta'$  的准确度, 估计的偏差  $-\Delta cr$  的上限与下限共八张表。注意,实际准确度  $\Delta$  还需要从  $\Delta'$  乘以一个 gpa 差值的十倍绝对值  $10 |\delta qp^* - qpa|$ 。对于 1.5 学分的课程,其要求低于 2 学分的课 程,但高于1学分的课程。

作为一个例子,从选课系统上看到的总学分,由于讲座课程、新学期课程等因素,往 往比实际计入 gpa 的总学分要多。设多出 20 学分,若我们直接代入公式计算 gpa 的变 化,对于一个实际计入 gpa 的有 60 学分的同学,一门 2 学分的课而言,先找到  $\delta cr^* = 2$ 的上限表, 然后找到 cr = 60 的一行, 发现 11 < 20 < 28, 因此如果代入选课系统显示 的 60 + 20 = 80 学分,可以保证  $|\Delta'| < 0.001$ 。如果这门课绩点减去旧 gpa 是 0.3,那 么实际的误差上限是  $\Delta'$  的上限乘以其十倍,即  $|\Delta| < 0.003$ 。

从上限表中也可看出,如果总学分多到一定程度,对于特定精度上限可以达到无穷。 也就是说,可以随意往上估计而不超准确度。

有一个大问题是,在估计总学分时,显然并不清楚总学分具体多少,就没法依靠 cr去查表。不过仍然可以大致估计,如在上面的例子中只知道显示的学分是 80,找 cr = 80和 cr = 60 一起参考。

最后还能简单看一下 gpa 变化的比值,即

$$\frac{gpa'}{gpa} = \frac{cr + \delta cr^*}{cr'} = 1 + \frac{\Delta cr}{cr'}$$
 (5.17)

貌似没什么用。

#### 附录 6

### 6.1 估计总学分对单门课程 gpa 变化造成的影响

使用方法见小节 5.1.2最后。

| $cr \backslash  \Delta' $ | 0.00005 | 0.0001 | 0.0002 | 0.0005   | 0.001    | 0.002    | 0.005    | 0.01     | 0.02     | 0.05     |
|---------------------------|---------|--------|--------|----------|----------|----------|----------|----------|----------|----------|
| 10                        | 0       | 0      | 0      | 1        | 1        | 3        | 13       | $\infty$ | $\infty$ | $\infty$ |
| 20                        | 0       | 0      | 1      | 2        | 6        | 15       | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 30                        | 0       | 1      | 2      | 6        | 14       | 51       | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 40                        | 1       | 2      | 4      | 11       | 28       | 187      | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 50                        | 1       | 3      | 6      | 17       | 53       | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 60                        | 2       | 4      | 8      | 27       | 95       | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 70                        | 3       | 5      | 12     | 39       | 174      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 80                        | 3       | 7      | 16     | 55       | 345      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 90                        | 4       | 9      | 20     | 76       | 920      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 100                       | 5       | 11     | 26     | 103      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 110                       | 7       | 14     | 32     | 138      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 120                       | 8       | 17     | 39     | 185      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 130                       | 9       | 20     | 47     | 249      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 140                       | 11      | 23     | 55     | 337      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 150                       | 12      | 27     | 65     | 465      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 160                       | 14      | 31     | 76     | 665      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 170                       | 16      | 35     | 89     | 1008     | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 180                       | 18      | 40     | 103    | 1724     | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 190                       | 20      | 45     | 118    | 4053     | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 200                       | 22      | 51     | 135    | $\infty$ |
| 210                       | 25      | 56     | 154    | $\infty$ |
| 220                       | 27      | 63     | 175    | $\infty$ |
| 230                       | 30      | 69     | 198    | $\infty$ |
| 240                       | 33      | 77     | 224    | $\infty$ |
| 250                       | 36      | 84     | 253    | $\infty$ |
| 260                       | 39      | 92     | 285    | $\infty$ |
| 270                       | 42      | 101    | 321    | $\infty$ |
| 280                       | 46      | 110    | 361    | $\infty$ |
| 290                       | 50      | 119    | 405    | $\infty$ |
| 300                       | 53      | 130    | 455    | $\infty$ |

表 2:  $\delta cr^* = 1$  时估计学分与准确学分差值的上限

| $cr \backslash  \Delta' $ | 0.00005 | 0.0001 | 0.0002 | 0.0005 | 0.001 | 0.002 | 0.005 | 0.01 | 0.02 | 0.05 |
|---------------------------|---------|--------|--------|--------|-------|-------|-------|------|------|------|
| 10                        | 0       | 0      | 0      | -1     | -1    | -2    | -4    | -6   | -8   | -9   |
| 20                        | 0       | 0      | -1     | -2     | -4    | -6    | -11   | -14  | -17  | -19  |
| 30                        | 0       | -1     | -2     | -4     | -7    | -12   | -19   | -23  | -27  | -29  |
| 40                        | -1      | -2     | -3     | -7     | -12   | -18   | -28   | -33  | -37  | -39  |
| 50                        | -1      | -2     | -5     | -10    | -17   | -26   | -37   | -43  | -46  | -49  |
| 60                        | -2      | -4     | -7     | -14    | -23   | -34   | -46   | -52  | -56  | -59  |
| 70                        | -2      | -5     | -9     | -19    | -29   | -42   | -55   | -62  | -66  | -69  |
| 80                        | -3      | -6     | -11    | -23    | -36   | -50   | -65   | -72  | -76  | -79  |
| 90                        | -4      | -8     | -14    | -28    | -43   | -59   | -75   | -82  | -86  | -89  |
| 100                       | -5      | -9     | -17    | -34    | -51   | -68   | -84   | -92  | -96  | -99  |
| 110                       | -6      | -11    | -20    | -40    | -58   | -77   | -94   | -102 | -106 | -109 |
| 120                       | -7      | -13    | -24    | -46    | -66   | -86   | -104  | -112 | -116 | -119 |
| 130                       | -8      | -15    | -27    | -52    | -74   | -95   | -114  | -122 | -126 | -129 |
| 140                       | -9      | -17    | -31    | -58    | -82   | -104  | -123  | -132 | -136 | -139 |
| 150                       | -11     | -20    | -35    | -65    | -91   | -113  | -133  | -142 | -146 | -149 |
| 160                       | -12     | -22    | -39    | -72    | -99   | -123  | -143  | -152 | -156 | -159 |
| 170                       | -13     | -25    | -44    | -79    | -108  | -132  | -153  | -162 | -166 | -169 |
| 180                       | -15     | -28    | -48    | -86    | -117  | -142  | -163  | -172 | -176 | -179 |
| 190                       | -17     | -31    | -53    | -93    | -125  | -151  | -173  | -181 | -186 | -189 |
| 200                       | -18     | -34    | -58    | -101   | -134  | -161  | -183  | -191 | -196 | -199 |
| 210                       | -20     | -37    | -63    | -108   | -143  | -171  | -193  | -201 | -206 | -209 |
| 220                       | -22     | -40    | -68    | -116   | -152  | -180  | -203  | -211 | -216 | -219 |
| 230                       | -24     | -43    | -73    | -124   | -161  | -190  | -213  | -221 | -226 | -229 |
| 240                       | -26     | -47    | -78    | -132   | -170  | -200  | -223  | -231 | -236 | -239 |
| 250                       | -28     | -50    | -84    | -140   | -179  | -209  | -232  | -241 | -246 | -249 |
| 260                       | -30     | -54    | -90    | -148   | -189  | -219  | -242  | -251 | -256 | -259 |
| 270                       | -32     | -58    | -95    | -156   | -198  | -229  | -252  | -261 | -266 | -269 |
| 280                       | -35     | -62    | -101   | -164   | -207  | -239  | -262  | -271 | -276 | -279 |
| 290                       | -37     | -66    | -107   | -172   | -217  | -248  | -272  | -281 | -286 | -289 |
| 300                       | -39     | -70    | -113   | -181   | -226  | -258  | -282  | -291 | -296 | -299 |

表 3:  $\delta cr^* = 1$  时估计学分与准确学分差值的下限

| $cr \backslash  \Delta' $ | 0.00005 | 0.0001 | 0.0002 | 0.0005 | 0.001    | 0.002    | 0.005    | 0.01     | 0.02     | 0.05     |
|---------------------------|---------|--------|--------|--------|----------|----------|----------|----------|----------|----------|
| 10                        | 0       | 0      | 0      | 0      | 1        | 2        | 5        | 18       | $\infty$ | $\infty$ |
| 20                        | 0       | 0      | 0      | 1      | 3        | 6        | 27       | $\infty$ | $\infty$ | $\infty$ |
| 30                        | 0       | 1      | 1      | 3      | 6        | 15       | 128      | $\infty$ | $\infty$ | $\infty$ |
| 40                        | 0       | 1      | 2      | 5      | 11       | 30       | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 50                        | 1       | 1      | 3      | 8      | 18       | 56       | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 60                        | 1       | 2      | 4      | 11     | 28       | 101      | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 70                        | 1       | 3      | 6      | 16     | 40       | 185      | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 80                        | 2       | 4      | 7      | 21     | 57       | 374      | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 90                        | 2       | 4      | 9      | 27     | 78       | 1058     | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 100                       | 3       | 5      | 12     | 35     | 106      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 110                       | 3       | 7      | 14     | 44     | 143      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 120                       | 4       | 8      | 17     | 54     | 191      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 130                       | 5       | 9      | 20     | 65     | 256      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 140                       | 5       | 11     | 24     | 78     | 348      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 150                       | 6       | 13     | 27     | 93     | 481      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 160                       | 7       | 14     | 31     | 110    | 691      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 170                       | 8       | 16     | 36     | 130    | 1057     | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 180                       | 9       | 18     | 40     | 152    | 1840     | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 190                       | 10      | 20     | 46     | 177    | 4608     | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 200                       | 11      | 23     | 51     | 206    | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 210                       | 12      | 25     | 57     | 239    | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 220                       | 13      | 28     | 63     | 277    | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 230                       | 14      | 30     | 70     | 320    | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 240                       | 16      | 33     | 77     | 371    | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 250                       | 17      | 36     | 85     | 429    | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 260                       | 18      | 39     | 93     | 497    | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 270                       | 20      | 43     | 102    | 578    | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 280                       | 21      | 46     | 111    | 674    | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 290                       | 23      | 50     | 120    | 789    | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 300                       | 25      | 54     | 131    | 931    | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |

表 4:  $\delta cr^* = 2$  时估计学分与准确学分差值的上限

| $cr \backslash  \Delta' $ | 0.00005 | 0.0001 | 0.0002 | 0.0005 | 0.001 | 0.002 | 0.005 | 0.01 | 0.02 | 0.05 |
|---------------------------|---------|--------|--------|--------|-------|-------|-------|------|------|------|
| 10                        | 0       | 0      | 0      | 0      | -1    | -1    | -3    | -4   | -7   | -9   |
| 20                        | 0       | 0      | 0      | -1     | -2    | -4    | -8    | -12  | -15  | -19  |
| 30                        | 0       | -1     | -1     | -2     | -4    | -8    | -14   | -20  | -24  | -28  |
| 40                        | 0       | -1     | -2     | -4     | -7    | -12   | -22   | -28  | -34  | -38  |
| 50                        | -1      | -1     | -3     | -6     | -11   | -18   | -29   | -38  | -44  | -48  |
| 60                        | -1      | -2     | -4     | -8     | -15   | -24   | -38   | -47  | -53  | -58  |
| 70                        | -1      | -3     | -5     | -11    | -19   | -30   | -46   | -56  | -63  | -68  |
| 80                        | -2      | -3     | -6     | -14    | -24   | -37   | -55   | -66  | -73  | -78  |
| 90                        | -2      | -4     | -8     | -17    | -29   | -44   | -64   | -76  | -83  | -88  |
| 100                       | -3      | -5     | -9     | -21    | -34   | -52   | -73   | -85  | -93  | -98  |
| 110                       | -3      | -6     | -11    | -24    | -40   | -59   | -83   | -95  | -103 | -108 |
| 120                       | -4      | -7     | -13    | -29    | -46   | -67   | -92   | -105 | -113 | -118 |
| 130                       | -4      | -8     | -15    | -33    | -52   | -75   | -101  | -115 | -123 | -128 |
| 140                       | -5      | -9     | -18    | -37    | -59   | -83   | -111  | -124 | -133 | -138 |
| 150                       | -6      | -11    | -20    | -42    | -66   | -92   | -120  | -134 | -143 | -148 |
| 160                       | -6      | -12    | -23    | -47    | -72   | -100  | -130  | -144 | -153 | -158 |
| 170                       | -7      | -14    | -25    | -52    | -80   | -109  | -140  | -154 | -163 | -168 |
| 180                       | -8      | -15    | -28    | -57    | -87   | -117  | -149  | -164 | -173 | -178 |
| 190                       | -9      | -17    | -31    | -62    | -94   | -126  | -159  | -174 | -182 | -188 |
| 200                       | -10     | -19    | -34    | -68    | -102  | -135  | -169  | -184 | -192 | -198 |
| 210                       | -11     | -20    | -37    | -73    | -109  | -144  | -178  | -194 | -202 | -208 |
| 220                       | -12     | -22    | -40    | -79    | -117  | -153  | -188  | -204 | -212 | -218 |
| 230                       | -13     | -24    | -44    | -85    | -125  | -162  | -198  | -214 | -222 | -228 |
| 240                       | -14     | -26    | -47    | -91    | -132  | -171  | -208  | -224 | -232 | -238 |
| 250                       | -15     | -28    | -51    | -97    | -140  | -180  | -217  | -233 | -242 | -248 |
| 260                       | -16     | -30    | -54    | -104   | -149  | -190  | -227  | -243 | -252 | -258 |
| 270                       | -17     | -33    | -58    | -110   | -157  | -199  | -237  | -253 | -262 | -268 |
| 280                       | -19     | -35    | -62    | -117   | -165  | -208  | -247  | -263 | -272 | -278 |
| 290                       | -20     | -37    | -66    | -123   | -173  | -218  | -257  | -273 | -282 | -288 |
| 300                       | -21     | -40    | -70    | -130   | -182  | -227  | -267  | -283 | -292 | -298 |

表 5:  $\delta cr^* = 2$  时估计学分与准确学分差值的下限

| $cr \backslash  \Delta' $ | 0.00005 | 0.0001 | 0.0002 | 0.0005 | 0.001    | 0.002    | 0.005    | 0.01     | 0.02     | 0.05     |
|---------------------------|---------|--------|--------|--------|----------|----------|----------|----------|----------|----------|
| 10                        | 0       | 0      | 0      | 0      | 1        | 1        | 4        | 10       | 84       | $\infty$ |
| 20                        | 0       | 0      | 0      | 1      | 2        | 4        | 14       | 76       | $\infty$ | $\infty$ |
| 30                        | 0       | 0      | 1      | 2      | 4        | 9        | 40       | $\infty$ | $\infty$ | $\infty$ |
| 40                        | 0       | 1      | 1      | 3      | 7        | 17       | 109      | $\infty$ | $\infty$ | $\infty$ |
| 50                        | 0       | 1      | 2      | 5      | 11       | 29       | 401      | $\infty$ | $\infty$ | $\infty$ |
| 60                        | 1       | 1      | 3      | 7      | 17       | 46       | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 70                        | 1       | 2      | 4      | 10     | 23       | 69       | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 80                        | 1       | 2      | 5      | 13     | 32       | 103      | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 90                        | 1       | 3      | 6      | 17     | 42       | 152      | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 100                       | 2       | 4      | 8      | 21     | 54       | 226      | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 110                       | 2       | 4      | 9      | 26     | 68       | 345      | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 120                       | 3       | 5      | 11     | 32     | 85       | 560      | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 130                       | 3       | 6      | 13     | 38     | 106      | 1041     | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 140                       | 3       | 7      | 15     | 45     | 130      | 2921     | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 150                       | 4       | 8      | 17     | 52     | 159      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 160                       | 5       | 9      | 20     | 61     | 194      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 170                       | 5       | 11     | 23     | 70     | 236      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 180                       | 6       | 12     | 25     | 80     | 286      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 190                       | 6       | 13     | 28     | 92     | 348      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 200                       | 7       | 15     | 32     | 104    | 425      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 210                       | 8       | 16     | 35     | 117    | 521      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 220                       | 9       | 18     | 39     | 132    | 646      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 230                       | 9       | 20     | 43     | 148    | 810      | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 240                       | 10      | 21     | 47     | 165    | 1036     | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 250                       | 11      | 23     | 51     | 184    | 1362     | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 260                       | 12      | 25     | 56     | 205    | 1869     | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 270                       | 13      | 27     | 61     | 228    | 2760     | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 280                       | 14      | 29     | 66     | 253    | 4711     | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 290                       | 15      | 32     | 71     | 280    | 12264    | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 300                       | 16      | 34     | 77     | 309    | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |

表 6:  $\delta cr^* = 3$  时估计学分与准确学分差值的上限

| $cr \backslash  \Delta' $ | 0.00005 | 0.0001 | 0.0002 | 0.0005 | 0.001 | 0.002 | 0.005 | 0.01 | 0.02 | 0.05 |
|---------------------------|---------|--------|--------|--------|-------|-------|-------|------|------|------|
| 10                        | 0       | 0      | 0      | 0      | -1    | -1    | -2    | -4   | -6   | -9   |
| 20                        | 0       | 0      | 0      | -1     | -2    | -3    | -6    | -10  | -14  | -18  |
| 30                        | 0       | 0      | -1     | -2     | -3    | -6    | -12   | -17  | -23  | -28  |
| 40                        | 0       | -1     | -1     | -3     | -5    | -10   | -18   | -25  | -32  | -38  |
| 50                        | 0       | -1     | -2     | -4     | -8    | -14   | -25   | -34  | -41  | -48  |
| 60                        | -1      | -1     | -3     | -6     | -11   | -19   | -32   | -43  | -51  | -58  |
| 70                        | -1      | -2     | -3     | -8     | -14   | -24   | -40   | -52  | -61  | -67  |
| 80                        | -1      | -2     | -4     | -10    | -18   | -30   | -48   | -61  | -70  | -77  |
| 90                        | -1      | -3     | -5     | -12    | -22   | -36   | -57   | -70  | -80  | -87  |
| 100                       | -2      | -3     | -7     | -15    | -26   | -42   | -65   | -80  | -90  | -97  |
| 110                       | -2      | -4     | -8     | -18    | -31   | -49   | -74   | -89  | -100 | -107 |
| 120                       | -2      | -5     | -9     | -21    | -36   | -55   | -83   | -99  | -110 | -117 |
| 130                       | -3      | -6     | -11    | -24    | -41   | -63   | -92   | -109 | -120 | -127 |
| 140                       | -3      | -7     | -12    | -28    | -46   | -70   | -101  | -118 | -129 | -137 |
| 150                       | -4      | -7     | -14    | -31    | -52   | -77   | -110  | -128 | -139 | -147 |
| 160                       | -4      | -8     | -16    | -35    | -57   | -85   | -119  | -138 | -149 | -157 |
| 170                       | -5      | -9     | -18    | -39    | -63   | -93   | -128  | -147 | -159 | -167 |
| 180                       | -5      | -11    | -20    | -43    | -69   | -101  | -138  | -157 | -169 | -177 |
| 190                       | -6      | -12    | -22    | -47    | -76   | -109  | -147  | -167 | -179 | -187 |
| 200                       | -7      | -13    | -24    | -51    | -82   | -117  | -157  | -177 | -189 | -197 |
| 210                       | -7      | -14    | -26    | -56    | -88   | -125  | -166  | -187 | -199 | -207 |
| 220                       | -8      | -15    | -29    | -60    | -95   | -133  | -176  | -197 | -209 | -217 |
| 230                       | -9      | -17    | -31    | -65    | -102  | -142  | -185  | -206 | -219 | -227 |
| 240                       | -9      | -18    | -34    | -70    | -109  | -150  | -195  | -216 | -229 | -237 |
| 250                       | -10     | -20    | -37    | -75    | -116  | -159  | -205  | -226 | -239 | -247 |
| 260                       | -11     | -21    | -39    | -80    | -123  | -167  | -214  | -236 | -249 | -257 |
| 270                       | -12     | -23    | -42    | -85    | -130  | -176  | -224  | -246 | -259 | -267 |
| 280                       | -13     | -24    | -45    | -91    | -137  | -185  | -233  | -256 | -269 | -277 |
| 290                       | -14     | -26    | -48    | -96    | -145  | -194  | -243  | -266 | -279 | -287 |
| 300                       | -15     | -28    | -51    | -102   | -152  | -203  | -253  | -276 | -289 | -297 |

表 7:  $\delta cr^* = 3$  时估计学分与准确学分差值的下限

| $cr \backslash  \Delta' $ | 0.00005 | 0.0001 | 0.0002 | 0.0005 | 0.001 | 0.002    | 0.005    | 0.01     | 0.02     | 0.05     |
|---------------------------|---------|--------|--------|--------|-------|----------|----------|----------|----------|----------|
| 10                        | 0       | 0      | 0      | 0      | 1     | 1        | 3        | 8        | 33       | $\infty$ |
| 20                        | 0       | 0      | 0      | 1      | 2     | 3        | 10       | 36       | $\infty$ | $\infty$ |
| 30                        | 0       | 0      | 1      | 2      | 3     | 7        | 25       | 193      | $\infty$ | $\infty$ |
| 40                        | 0       | 0      | 1      | 3      | 5     | 12       | 54       | $\infty$ | $\infty$ | $\infty$ |
| 50                        | 0       | 1      | 1      | 4      | 8     | 20       | 112      | $\infty$ | $\infty$ | $\infty$ |
| 60                        | 1       | 1      | 2      | 6      | 12    | 30       | 256      | $\infty$ | $\infty$ | $\infty$ |
| 70                        | 1       | 1      | 3      | 8      | 17    | 43       | 913      | $\infty$ | $\infty$ | $\infty$ |
| 80                        | 1       | 2      | 4      | 10     | 22    | 61       | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 90                        | 1       | 2      | 5      | 13     | 29    | 83       | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 100                       | 1       | 3      | 6      | 16     | 37    | 113      | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 110                       | 2       | 3      | 7      | 19     | 45    | 151      | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 120                       | 2       | 4      | 8      | 23     | 56    | 202      | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 130                       | 2       | 5      | 10     | 27     | 68    | 272      | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 140                       | 3       | 5      | 11     | 32     | 81    | 370      | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 150                       | 3       | 6      | 13     | 37     | 96    | 516      | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 160                       | 3       | 7      | 15     | 42     | 114   | 747      | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 170                       | 4       | 8      | 17     | 48     | 134   | 1164     | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 180                       | 4       | 9      | 19     | 55     | 157   | 2116     | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 190                       | 5       | 10     | 21     | 62     | 183   | 6273     | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 200                       | 5       | 11     | 23     | 70     | 212   | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 210                       | 6       | 12     | 26     | 78     | 246   | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 220                       | 6       | 13     | 28     | 87     | 285   | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 230                       | 7       | 15     | 31     | 97     | 330   | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 240                       | 8       | 16     | 34     | 107    | 382   | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 250                       | 8       | 17     | 37     | 118    | 442   | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 260                       | 9       | 19     | 40     | 130    | 512   | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 270                       | 10      | 20     | 43     | 143    | 596   | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 280                       | 10      | 22     | 47     | 156    | 695   | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 290                       | 11      | 23     | 51     | 171    | 815   | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| 300                       | 12      | 25     | 54     | 186    | 963   | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |

表 8:  $\delta cr^* = 4$  时估计学分与准确学分差值的上限

| $cr \backslash  \Delta' $ | 0.00005    | 0.0001 | 0.0002 | 0.0005 | 0.001 | 0.002 | 0.005 | 0.01 | 0.02 | 0.05 |
|---------------------------|------------|--------|--------|--------|-------|-------|-------|------|------|------|
| 10                        | 0          | 0      | 0      | 0      | 0     | -1    | -2    | -4   | -6   | -9   |
| 20                        | 0          | 0      | 0      | -1     | -1    | -3    | -6    | -9   | -13  | -18  |
| 30                        | 0          | 0      | -1     | -1     | -3    | -5    | -10   | -16  | -21  | -28  |
| 40                        | 0          | 0      | -1     | -2     | -4    | -8    | -16   | -23  | -30  | -37  |
| 50                        | 0          | -1     | -1     | -3     | -6    | -11   | -22   | -31  | -39  | -47  |
| 60                        | -1         | -1     | -2     | -5     | -9    | -16   | -28   | -39  | -49  | -57  |
| 70                        | -1         | -1     | -3     | -6     | -12   | -20   | -36   | -48  | -58  | -67  |
| 80                        | -1         | -2     | -3     | -8     | -15   | -25   | -43   | -57  | -68  | -77  |
| 90                        | -1         | -2     | -4     | -10    | -18   | -30   | -51   | -66  | -78  | -87  |
| 100                       | -1         | -3     | -5     | -12    | -21   | -36   | -59   | -75  | -87  | -97  |
| 110                       | -2         | -3     | -6     | -14    | -25   | -41   | -67   | -84  | -97  | -107 |
| 120                       | -2         | -4     | -7     | -17    | -29   | -47   | -75   | -94  | -107 | -116 |
| 130                       | -2         | -4     | -8     | -19    | -34   | -54   | -84   | -103 | -117 | -126 |
| 140                       | -3         | -5     | -10    | -22    | -38   | -60   | -93   | -113 | -126 | -136 |
| 150                       | -3         | -6     | -11    | -25    | -43   | -67   | -101  | -122 | -136 | -146 |
| 160                       | -3         | -6     | -12    | -28    | -48   | -74   | -110  | -132 | -146 | -156 |
| 170                       | -4         | -7     | -14    | -31    | -53   | -81   | -119  | -141 | -156 | -166 |
| 180                       | -4         | -8     | -16    | -34    | -58   | -88   | -128  | -151 | -166 | -176 |
| 190                       | -5         | -9     | -17    | -38    | -63   | -96   | -137  | -161 | -176 | -186 |
| 200                       | -5         | -10    | -19    | -41    | -69   | -103  | -147  | -171 | -186 | -196 |
| 210                       | -6         | -11    | -21    | -45    | -75   | -111  | -156  | -180 | -196 | -206 |
| 220                       | -6         | -12    | -23    | -49    | -80   | -118  | -165  | -190 | -206 | -216 |
| 230                       | -7         | -13    | -25    | -53    | -86   | -126  | -174  | -200 | -216 | -226 |
| 240                       | -7         | -14    | -27    | -57    | -92   | -134  | -184  | -210 | -226 | -236 |
| 250                       | -8         | -15    | -29    | -61    | -99   | -142  | -193  | -219 | -235 | -246 |
| 260                       | -8         | -16    | -31    | -66    | -105  | -150  | -203  | -229 | -245 | -256 |
| 270                       | <b>-</b> 9 | -18    | -33    | -70    | -111  | -158  | -212  | -239 | -255 | -266 |
| 280                       | -10        | -19    | -35    | -74    | -118  | -167  | -222  | -249 | -265 | -276 |
| 290                       | -10        | -20    | -38    | -79    | -125  | -175  | -231  | -259 | -275 | -286 |
| 300                       | -11        | -21    | -40    | -84    | -131  | -183  | -241  | -269 | -285 | -296 |

表 9:  $\delta cr^* = 4$  时估计学分与准确学分差值的下限

#### 声明

- 1. 博客内容仅为经验之谈,如认为有问题请带着批判性思维自行辨别或与我讨论,本 人不负责因盲目应用博客内容导致的任何损失。
- 2. 虽然文章的思想不一定是原创的,但是写作一定是原创的,如有雷同纯属巧合。
- 3. 本作品采用知识共享署名-相同方式共享 4.0 国际许可协议进行许可。



博客信息 此文章的博客来源: https://vortexer99.github.io/

自豪地采用 LATEX!