

Data Mining

Week 6: Artificial Neural Networks

Pabitra Mitra

Computer Science and Engineering, IIT Kharagpur

Neural networks

- Networks of processing units (neurons) with connections (synapses) between them
- Large number of neurons: 10¹⁰
- Large connectitivity: 10⁵
- Parallel processing
- Distributed computation/memory
- Robust to noise, failures

Connectionism

- Alternative to *symbolism*
- Humans and evidence of connectionism/parallelism:
 - Physical structure of brain:
 - Neuron switching time: 10⁻³ second
 - Complex, short-time computations:
 - Scene recognition time: 10⁻¹ second
 - 100 inference steps doesn't seem like enough
 - → much parallel computation
- Artificial Neural Networks (ANNs)
 - Many neuron-like threshold switching units
 - Many weighted interconnections among units
 - Highly parallel, distributed process
 - Emphasis on tuning weights automatically (search in weight space)

Biological neuron

Biological neuron

- dendrites: nerve fibres carrying electrical signals to the cell
- cell body: computes a non-linear function of its inputs
- axon: single long fiber that carries the electrical signal from the cell body to other neurons
- synapse: the point of contact between the axon of one cell and the dendrite of another, regulating a chemical connection whose strength affects the input to the cell.

Biological neuron

- A variety of different neurons exist (motor neuron, on-center off-surround visual cells...), with different branching structures
- The connections of the network and the strengths of the individual synapses establish the function of the network.

When to consider ANNs

- Input is
 - high-dimensional
 - discrete or real-valued
 - e.g., raw sensor inputs
 - noisy
- Long training times
- Form of target function is unknown
- Human readability is unimportant
- Especially good for complex recognition problems
 - Speech recognition
 - Image classification
 - Financial prediction

Problems too hard to program

• ALVINN: a perception system which learns to control the NAVLAB vehicles by watching a person drive

Perceptron

- $\blacksquare -w_0$: threshold value or bias $\left(\sum_{i=1}^n w_i x_i\right) (-w_0)$
- $\blacksquare f$ (or o()): activation function (thresholding unit), typically:

$$f(x) = \begin{cases} 1 & x > 0 \\ -1 & \text{otherwise} \end{cases}$$

Decision surface of a perceptron

■ Decision surface is a hyperplane given by

 $\sum_{i=0}^{n} w_i x_i = 0$

- 2D case: the decision surface is a line
- Represents many useful functions: for example, $x_1 \wedge x_2$?
- $\blacksquare x_1 \vee x_2$?
- $\blacksquare x_1 XOR x_2 ?$

Not linearly separable!

- Generalization to higher dimensions
 - Hyperplanes as decision surfaces

Learning Boolean AND

 x_2

 x_1

XOR

x_1	<i>X</i> ₂	r
О	О	О
О	1	1
1	О	1
1	1	О

• No w_0 , w_1 , w_2 satisfy:

(Minsky and Papert, 1969)

Boolean functions

- Solution:
 - network of perceptrons
 - Any boolean function representable as DNF
 - 2 layers
 - Disjunction (layer 1) of conjunctions (layer 2)
- Example of XOR
 - (X1=1 AND X2=0) OR (X1=0 AND X2=1)
- Practical problem of representing high-dimensional functions

Training rules

- Finding learning rules to build networks from TEs
- Will examine two major techniques
 - Perceptron training rule
 - Delta (gradient search) training rule (for more perceptrons as well as general ANNs)
- Both focused on learning weights
 - Hypothesis space can be viewed as set of weights

Perceptron training rule

- ITERATIVE RULE: $w_i := w_i + \Delta w_i$
 - where $\Delta w_i = \eta (t o) x_i$
 - t is the target value
 - -o is the perceptron output for x
 - η is small positive constant, called the learning rate
- Why rule works:
 - E.g., t = 1, o = -1, $x_i = 0.8$, $\eta = 0.1$
 - then $\Delta w_i = 0.16$ and $w_i x_i$ gets larger
 - o converges to t

Perceptron training rule

- The process will converge if
 - training data is linearly separable, and
 - $-\eta$ is sufficiently small
- But if the training data is not linearly separable, it may not converge (Minsky & Pappert)
 - Basis for Minsky/Pappert attack on NN approach
- Question: how to overcome problem:
 - different model of neuron?
 - different training rule?
 - both?

Gradient descent

- Solution: use alternate rule
 - More general
 - Basis for networks of units
 - Works in non-linearly separable cases
- Let $o(x) = w_0 + w_1 x_1 + \dots + w_n x_n$
 - Simple example of linear unit (will generalize)
 - Omit the thresholding initially
- D is the set of training examples $\{d = \langle x, t_d \rangle\}$
- We will learn w_i 's that minimize the squared error

$$E[\vec{w}] = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Error minimization

- Look at error E as a function of weights {wi}
- Slide down gradient of E in weight space
- Reach values of {wi} that correspond to minimum error
 - Look for global minimum
- Example of 2-dimensional case:
 - E = w1*w1 + w2*w2
 - Minimum at w1=w2=0
- Look at general case of n-dimensional space of weights

Gradient descent

• Gradient "points" to the steepest increase:

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n} \right]$$

• Training rule: $\Delta \vec{w} = -\eta \nabla E[\vec{w}]$ where η is a positive constant (learning rate)

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

How might one interpret this update rule?

$$\frac{\partial E}{\partial w_{i}} = \frac{\partial}{\partial w_{i}} \frac{1}{2} \sum_{d \in D} (t_{d} - o_{d})^{2}$$

$$= \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_{i}} (t_{d} - o_{d})^{2}$$

$$= \frac{1}{2} \sum_{d \in D} 2(t_{d} - o_{d}) \frac{\partial}{\partial w_{i}} (t_{d} - o_{d})$$

$$= \sum_{d \in D} (t_{d} - o_{d}) \frac{\partial}{\partial w_{i}} (t_{d} - \vec{w}_{d} \cdot \vec{x}_{d})$$

$$= \sum_{d \in D} (t_{d} - o_{d}) (-x_{i,d})$$

$$\Delta w_{i} = -\eta \frac{\partial E}{\partial w_{i}} = -\eta \sum_{d \in D} (t_{d} - o_{d}) (-x_{i,d}) = \eta \sum_{d \in D} (t_{d} - o_{d}) x_{i,d}$$

$$\Delta w_{i} = \sum_{d \in D} (\eta (t_{d} - o_{d}) x_{i,d})$$

Gradient descent algorithm

Gradient-Descent (training examples, η)

Each training example is a pair $\langle x, t \rangle$: x is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- Initialize each w_i to some small random value
- Repeat until the termination condition is met
 - 1. Initialize each Δw_i to zero
 - 2. For each training example $\langle x, t \rangle$
 - Input *x* to the unit and compute the output *o*
 - For each linear unit weight w_i $\Delta w_i \leftarrow \Delta w_i + \eta (t - o) x_i$
 - 3. For each linear unit weight w_i $w_i \leftarrow w_i + \Delta w_i$
- At each iteration, consider reducing η

Also called

- LMS (Least Mean Square) rule
- Delta rule

Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:

$$E_D[\vec{w}] = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

- Repeat
 - 1. Compute the gradient $\nabla E_D[\vec{w}]$
 - 2. $\vec{w} \leftarrow \vec{w} \eta \nabla E_D[\vec{w}]$

Incremental mode Gradient Descent: $E_d[\vec{w}] = \frac{1}{2}(t_d - o_d)^2$

- Repeat
 - For each training example d in D
 - 1. Compute the gradient $\nabla E_d[\vec{w}]$
 - 2. $\vec{w} \leftarrow \vec{w} \vec{\eta} \nabla E_d [\vec{w}]$
- Incremental can approximate batch if η is small enough

Incremental Gradient Descent Algorithm

Incremental-Gradient-Descent (training examples, η)

Each training example is a pair $\langle x, t \rangle$: x is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- Initialize each w_i to some small random value
- Repeat until the termination condition is met
 - 1. Initialize each Δw_i to zero
 - 2. For each $\langle x, t \rangle$
 - Input x to the unit and compute output o
 - For each linear unit weight w_i

$$w_i \leftarrow w_i + \eta (t - o) x_i$$

Perceptron vs. Delta rule training

- Perceptron training rule guaranteed to succeed if
 - Training examples are linearly separable
 - Sufficiently small learning rate
- Delta training rule uses gradient descent
 - Guaranteed to converge to hypothesis with minimum squared error
 - Given sufficiently small learning rate
 - Even when training data contains noise
 - Even when training data not linearly separable
- Can generalize linear units to units with threshold
 - Just threshold the results

Perceptron vs. Delta rule training

- Delta/perceptron training rules appear same *but*
 - Perceptron rule trains discontinuous units
 - Guaranteed to converge under limited conditions
 - May not converge in general
 - Gradient rules trains over continuous response (unthresholded outputs)
 - Gradient rule always converges
 - Even with noisy training data
 - Even with non-separable training data
 - Gradient descent generalizes to other continuous responses
 - Can train perceptron with LMS rule
 - get prediction by thresholding outputs

Multilayer networks of sigmoid units

- Needed for relatively complex (i.e., typical) functions
- Want non-linear response units in many systems
 - Example (next slide) of phoneme recognition
 - Cascaded nets of linear units only give linear response
 - Sigmoid unit as example of many possibilities
- Want differentiable functions of weights
 - So can apply gradient descent
 - Minimization of error function
 - Step function perceptrons non-differentiable

Speech recognition example

Multilayer networks

Sigmoid unit

- f is the sigmoid function
- Derivative can be easily computed:
- Logistic equation
 - used in many applications
 - other functions possible (tanh)
- Single unit:
 - apply gradient descent rule
- Multilayer networks: backpropagation

$$f(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{df(x)}{dx} = f(x)(1 - f(x))$$

Error Gradient for a Sigmoid Unit

$$\begin{split} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} (t_d - o_d)^2 \\ &= \frac{1}{2} \sum_{d \in D} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) \\ &= \sum_{d \in D} (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i} \right) \\ &= -\sum_{d \in D} (t_d - o_d) \frac{\partial o_d}{\partial \text{net}_d} \frac{\partial \text{net}_d}{\partial w_i} \end{split}$$

net: linear combination o (output): logistic function

$$\begin{split} \frac{\partial o_d}{\partial \text{net}_d} &= \frac{\partial f(\text{net}_d)}{\partial \text{net}_d} = f(\text{net}_d) \Big(1 - f(\text{net}_d) \Big) = o_d (1 - o_d) \\ \frac{\partial \text{net}_d}{\partial w_i} &= \frac{\partial (\vec{w} \cdot \vec{x}_d)}{\partial w_i} = x_{i,d} \\ \end{split}$$

$$\frac{\partial E}{\partial w_i} = -\sum_{d \in D} (t_d - o_d) o_d (1 - o_d) x_{i,d}$$

... Incremental Version

Batch gradient descent for a single Sigmoid unit

$$E_D = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$\frac{\partial E_D}{\partial w_i} = -\sum_{d \in D} (t_d - o_d) o_d (1 - o_d) x_{i,d}$$

■ Stochastic approximation

$$E_d = \frac{1}{2} (t_d - o_d)^2$$

$$\left| \frac{\partial E_d}{\partial w_i} = -(t_d - o_d)o_d(1 - o_d)x_{i,d} \right|$$

Backpropagation procedure

- Create FFnet
 - n_i inputs
 - n_o output units
 - Define error by considering *all* output units
 - n hidden units
- Train the net by propagating errors backwards from output units
 - First output units
 - Then hidden units
- Notation: x_ji is input from unit i to unit j
 w_ji is the corresponding weight
- Note: various termination conditions: Error, # iterations,...

Backpropagation (stochastic case)

- Initialize all weights to small random numbers
- Repeat

For each training example

- 1. Input the training example to the network and compute the network outputs
- 2. For each output unit *k*

$$\delta_k \leftarrow o_k (1 - o_k) (t_k - o_k)$$

3. For each hidden unit h

$$\delta_h \leftarrow o_h (1 - o_h) \Sigma_{k \in \text{outputs}} w_{k,h} \delta_k$$

4. Update each network weight $w_{i,i}$

$$w_{j,i} \leftarrow w_{j,i} + \Delta w_{j,i} - n \delta r$$

where $\Delta w_{j,i} = \eta \, \delta_j x_{j,i}$

Errors propagate backwards $\int_{2}^{\delta_{3}=o_{3}(1-o_{3})(t_{3}-o_{3})} dt_{3}$

• Same process repeats if we have more layers

 $w_{1,7}$ updated based on δ_1 and $x_{1,7}$

Properties of Backpropagation

- Easily generalized to arbitrary directed (acyclic) graphs
 - Backpropagate errors through the different layers
- Training is slow but applying network after training is fast

Convergence of Backpropagation

- Convergence
 - Training can take thousands of iterations \rightarrow slow!
 - Gradient descent over entire network weight vector
 - Speed up using small initial values of weights:
 - Linear response initially
 - Generally will find local minimum
 - Typically can find good approximation to global minimum
 - Solutions to local minimum trap problem
 - Stochastic gradient descent
 - Can run multiple times
 - Over different initial weights
 - Committee of networks
 - Can modify to find better approximation to global minimum
 - include weight momentum α $\Delta w_{i:}(t_n) = \eta \ \delta_i x_{i:} + \alpha \ \Delta w_{i:}(t_n)$
 - $\Delta w_{i,j}(t_n) = \eta \ \delta_j x_{i,j} + \alpha \ \Delta w_{i,j}(t_{n-1})$ * Momentum avoids local max/min and plateaus

Example of face recognition

- Task: recognize faces from sample of
 - 20 people in 32 poses
 - Choose output of 4 values for direction of gaze
 - 120x128 images (256 gray levels)
- Can compute many functions
 - Identity/direction of face (used in book)/...
- Design issues
 - Input encoding (pixels/features/?)
 - Reduced image encoding (30x32)
 - Output encoding (1 or 4 values?)
 - Convergence to .1/.9 and not 0/1
 - Network structure (1 layer of 3 hidden units)
 - Algorithm parameters
 - Eta=.3; alpha=.3; stochastic descent method
- Training/validation sets
- Results: 90% accurate for head pose

Some issues with ANNs

- Interpretation of hidden units
 - Hidden units "discover" new patterns/regularities
 - Often difficult to interpret
- Overfitting
- Expressiveness
 - Generalization to different classes of functions

Dealing with overfitting

- Complex decision surface
- Divide sample into
 - Training set
 - Validation set
- Solutions
 - Return to weight set occurring near minimum over validation set
 - Prevent weights from becoming too large
 - Reduce weights by (small) proportionate amount at each iteration

Expressiveness

- Every Boolean function can be represented by network with a single hidden layer
 - Create 1 hidden unit for each possible input
 - Create OR-gate at output unit
 - but might require exponential (in number of inputs) hidden units

Expressiveness

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer (Cybenko et al '89)
 - Hidden layer of sigmoid functions
 - Output layer of linear functions
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers (Cybenko '88)
 - Sigmoid units in both hidden layers
 - Output layer of linear functions

Extension of ANNs

- Many possible variations
 - Alternative error functions
 - Penalize large weights
 - » Add weighted sum of squares of weights to error term
 - Structure of network
 - Start with small network, and grow
 - Start with large network and diminish
- Use other learning algorithms to learn weights

Extensions of ANNs

- Recurrent networks
 - Example of time series
 - Would like to have representation of behavior at t+1 from arbitrary past intervals (no set number)
 - Idea of simple recurrent network
 - -hidden units that have feedback to inputs
- Dynamically growing and shrinking networks

Summary

- Practical method for learning continuous functions over continuous and discrete attributes
- Robust to noise
- Slow to train but fast afterwards
- Gradient descent search over space of weights
- Overfitting can be a problem
- Hidden layers can invent new features

End of Artificial Neural Networks

