-Artificial Neural Network-Adaptive Resonance Theory(ART)

朝陽科技大學 資訊管理系 李麗華 教授

Introduction

- ART = Adaptive Resonance Theory
- The ART network is proposed by Grossberg in 1976.
- There are two commonly used models:
 - ART1: this model takes only binary input
 - ART2: this model takes continuous or binary input

Introduction (cont.)

- •The ART network features :
 - ① It is a two layered network with the forward & backward process until the message resonate.
 - ② ART is a kind of unsupervised learning network.
 - The input and output layers are connected by the bottom-up weights for competitive learning and by the top-down weights for ouster pattern learning.
 - When unfamiliar input is fed in, the ART network will dynamically generate the output node for representing the data cluster.

ART Network Architecture

- Input layer : $X \in \{0,1\}$
- Output layer: a cluster layer

The network starts from only one node and grows until all the input pattern are learned.

 Connections: every input node has one bottom-up link to output node and one top-down link to input node

ART Process Steps (1/3)

- 1. Setup network, i.e. the input nodes •
- 2. Set initial weights, i.e., $W_{i1}^{t} = 1$ $w_{i1}^{b} = \frac{1}{1+N}$

- 3. Input the pattern X
- 4. Calculate the "matching value" for every output node j .

$$net_j = \sum_i W_{ij}^b \cdot X_i$$
 (at the very beginning, j=1)

5. Find the winning node j*

6. Calculate "similar value"
$$V_j^* = \frac{\sum_{ij}^* X_i}{\sum_{ij}^* X_i}$$

ART Process Steps (2/3)

- 7. Do the vigilance test for winning node
 - Case 1: if $V_i < \rho$ (vigilance value)
 - → This means the input pattern does not similar to the connected weights and, hence, it does not belongs to this j* cluster.
 - → Find the next winning output node to see if it can pass the vigilance test, otherwise, generate a new output node.

$$W_{ik}^{t} = X_{i}$$

$$W_{ik}^{b} = \frac{X_{i}}{0.5 + \sum X_{i}}$$

Setup new output node &: if $i = i^*$, then $Y_{\&}=1$, else $Y_{\&}=0$

ART Process Steps (3/3)

Case2: if $V_i \ge \rho$

- → This means the input pattern matches to the output node j*. Therefore, the j* node is the cluster for representing this pattern X.
 - ... in this case, all we have to do is to update weights.

$$W_{ij^*}^t = W_{ij^*}^t \cdot X_i$$

$$W_{ij^*}^b = \frac{W_{ij}^t \cdot X_i}{0.5 + \sum_{i} W_{ij^*}^t \cdot X_i}$$

8. Repeat from step 3 to step 7 for all the input patterns. The network terminates when all the input is fed into ART network.

Example (1/6)

Please find the cluster for the following patterns.

令圖形

X:用數字1表示

O:用數字0表示

Example (2/6)

1. Let $\rho = 0.5$

$$W_{11}^{t} = 1$$
 $W_{12}^{t} = 1 \cdots W_{16}^{t} = 1$ \longrightarrow $W_{10}^{t} = \{ 1, 1, 1, 1, 1, 1, 1 \}$

$$W_1^b = \{\frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \dots \frac{1}{7}\}$$

- 2. Input 1st pattern $X_1 = \{1,0,1,0,1,0\}$
- 3. calculate matching value (匹配值)

$$net_1 = \sum_{i} W_{i1}^b \cdot X_2 = \frac{3}{7}$$

$$\max_{j} [net_{j}] \Rightarrow net_{1110} j^* = 1_{110101110101010101010110111010110}$$

Example (3/6)

4. Calculate "similar value"

$$V_{j}^{*} = \frac{\sum W_{ij^{*}}^{t} \times X_{i}}{\sum X_{i}} = \frac{3}{3} = 1$$

:
$$V_{j^*} > \rho$$
 (=0.5)

(通過vigilance test, 所以引用case 2)

update weights

$$W_{ij^*}^t = W_{ij^*}^t \cdot X_i \Rightarrow W_1^t \{1, 0, 1, 0, 1, 0\}.$$

$$W_{ij^*}^b = \frac{W_{ij^*}^t \cdot X_i}{0.5 + 3} \Rightarrow W_1^b = \{\frac{1}{3.5}, \frac{0}{3.5}, \frac{1}{3.5}, \frac{0}{3.5}, \frac{1}{3.5}, \frac{0}{3.5}\}$$

Example (4/6)

- Input 2nd pattern: X= {0,1,0,1,0,1}
- match value net₁=0
- net_i*=net₁
- Similar value

$$V_{j*} = \frac{\sum W_{ij*}^t \cdot X_i}{\sum X_i} = \frac{0}{3} = 0$$

 $:: V_{i*} < \rho$ (=0.5) ...沒有通過vigilance test,所以引用case1

: no other output node, : generate Y₂ & assign new weights

$$W_{2}^{t} = \{0,1,0,1,0,1\} \quad W_{2}^{b} = \{0,1,0,1,0,1\} \quad W_{3}^{b} = \{0,1,0,1,0,1\} \quad$$

Example(5/6)

•input 3^{th} pattern $X = \{1,1,1,0,0,0\}$

•match value net1 =
$$\frac{2}{3.5}$$
 \Rightarrow 0.57 \rightarrow net_1 net2 = $\frac{1}{3.5}$ \Rightarrow 0.285 \rightarrow net_1 $j*=1$ $V_j^*=\frac{2}{3}=0.66$ $> \rho$ (= 0.5)

- 号 | 用 Case 2, so we do the weight updating
- $W_1^t = \{1,0,1,0,0,0\}$ $W_1^b = \{\frac{1}{3.5}, \frac{0}{3.5}, \frac{1}{3.5}, \frac{0}{3.5}, \frac{0}{3.5}, \frac{0}{3.5}\}$

Example(6/6)

 The final clustering of this example is 8 cluster for 12 input patterns.

