Quantitative Helly-type theorems via sparse approximation

Víctor Hugo Almendra-Hernández, Matthew Kendall Instructor: Gergely Ambrus

August 21, 2021

Convex sets

A point set $K \subseteq \mathbb{R}^d$ is *convex* if for any two points $x, y \in K$, the straight line segment from x to y is in K:

Convex hull

For a point set $X \subseteq \mathbb{R}^d$, the *convex hull* conv X is the "smallest" convex set containing X, or the intersection of all convex sets containing X.

Useful convex sets: halfspaces, simplices

A hyperplane in \mathbb{R}^d is a d-1 dimensional affine subspace (e.g. line in \mathbb{R}^2 , plane in \mathbb{R}^3).

A (closed) halfspace is the set of points "on one side" of the hyperplane. A simplex is the convex hull of d+1 points not all lying on the same hyperplane (e.g. triangle in \mathbb{R}^2 , tetrahedron in \mathbb{R}^3).

A Simplex in \mathbb{R}^3

Useful convex sets: polytopes

A *polytope* is the convex hull of a finite set of points. Equivalently, a polytope is the bounded intersection of a finite number of closed halfspaces.

Helly's theorem

Helly's theorem (1913)

Let K_1, \ldots, K_n be convex sets in \mathbb{R}^d . If the intersection of any d+1 of the sets is nonempty, then the intersection of all the sets is nonempty.

Figure: Helly's theorem in the plane

Quantitative Helly: general scheme

Helly's theorem

Let K_1, \ldots, K_n be convex sets in \mathbb{R}^d . If the intersection of any d+1 of the sets is nonempty, then the intersection of all the sets is nonempty.

Quantitative version ??

If the intersection of any d+1 sets is large, then the intersection of all the sets is not too small.

NOT TRUE!

General quantitative Helly's theorem

If the intersection of any 2d sets is large, then the intersection of all the sets is not too small.

2*d* necessary

Figure: 2d halfspaces intersecting in small cube

Quantitative Helly-type theorem

Two "measures" of size:

- The *volume* $\operatorname{vol}_d(K)$ of a convex set K is its standard Lebesgue measure in \mathbb{R}^d .
- The diameter diam K of a convex (compact) set K is $\max_{x,y\in K}|x-y|$.

Bárány-Katchalski-Pach (1982, 1984)

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^d . If the intersection of any 2d of the sets has volume at least 1, then the volume of $\bigcap \mathcal{F}$ is at least a positive constant.

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^d . If the intersection of any 2d of the sets has diameter at least 1, then the diameter of $\bigcap \mathcal{F}$ is at least a positive constant.

Theorem reformulation

Bárány-Katchalski-Pach (1982, 1984)

Let $\mathcal{F} = \{K_1, \dots, K_n\}$ be a finite family of convex sets in \mathbb{R}^d with $\operatorname{vol}_d(\bigcap \mathcal{F}) = 1$. Then *there exists* a subfamily \mathcal{F}' of at most 2d convex sets such that the volume of $\bigcap \mathcal{F}'$ is at most v(d).

Let $\mathcal{F} = \{K_1, \dots, K_n\}$ be a finite family of convex sets in \mathbb{R}^d with $\operatorname{diam}(\bigcap \mathcal{F}) = 1$. Then *there exists* a subfamily \mathcal{F}' of at most 2d convex sets such that the diameter of $\bigcap \mathcal{F}'$ is at most c(d).

Problem history

- Bárány-Katchalski-Pach (1982, 1984)
 - First bounds: $v(d) \le d^{2d^2}$ and $c(d) \le c'd^{2d}$.
 - Conjecture: $v(d) \approx d^{c_1 d}$, $c(d) \approx c_2 d^{1/2}$.
- Naszódi (2015)
 - Proved BKP volume conjecture: $v(d) \le d^{2d}$.
 - Lower bound on exponent for volume: $v(d) \ge (cd)^{d/2}$.
- Brazitikos (2017)
 - $v(d) \le (cd)^{3d/2}$, current best.
- Brazitikos (2018)
 - First polynomial bound on diameter: $c(d) \le (cd)^{11/2}$.
- Ivanov, Naszódi (2021)
 - $c(d) \leq (2d)^3$, current best.
 - Lower bound on exponent for diameter: $c(d) \ge (cd)^{1/2}$.

Many other directions! (fractional Helly, large subfamilies, ...)

Our main result

Theorem (A-H., A., K. 2021)

Let $\{K_1, \ldots, K_n\}$ be a family of convex sets and $K = \bigcap K_i$. There exists a subset of indices $\sigma = \{i_1, \ldots, i_{2d}\}$ such that $K_{\sigma} = K_{i_1} \cap \cdots \cap K_{i_{2d}}$ satisfies

$$\operatorname{vol}_d K_{\sigma} \leq (c_1 d)^{3d/2} \operatorname{vol}_d K$$
 and $\operatorname{diam} K_{\sigma} \leq (c_2 d)^2 \operatorname{diam} K$.

Thus,

$$v(d) \le (c_1 d)^{3d/2}$$
 and $c(d) \le (c_2 d)^2$.

Previously: $v(d) \le (c_1'd)^{3d/2}$ (Brazitikos '17) and $c(d) \le (c_2'd)^3$ (Ivanov, Naszódi '21)

Polytope approximation

Let $Q \subset \mathbb{R}^d$ be a polytope. There exists a subset of at most 2d vertices of Q such that their convex hull Q' satisfies

$$Q \subseteq cQ'$$
.

Figure: Polytope approximation in \mathbb{R}^2

Polytope approximation

Let $Q \subset \mathbb{R}^d$ be a polytope. There exists a subset of at most 2d vertices of Q such that their convex hull Q' satisfies

$$Q \subseteq cQ'$$
.

Figure: Polytope approximation in \mathbb{R}^2 , different origin

Polytope approximation, revised

Lemma

Let $Q \subset \mathbb{R}^d$ be a polytope such that $Q \subset -dQ$. There exists a subset of at most 2d vertices of Q such that their convex hull Q' satisfies

$$Q\subseteq -2d^2Q'$$
.

- Natural assumption: for a convex set K, there exists an affine image K' such that $K' \subset -dK'$ (e.g. the centroid of K is the origin).
- Ivanov, Naszódi '21 proved:

$$Q \subseteq -8d^3Q'$$
.

- This statement may be interesting to study in its own right!
 - This is different from other polytope approximation problems because we are only allowed to choose vertices of the original polytope

Proof of key lemma I

Figure: Planar case

- Among all simplices with d vertices in Q and one vertex fixed at the origin, choose a simplex S of maximal volume.
- If we replace v_1 with another point $q \in Q$, then q must lie in a "strip". Similar with v_2, \ldots, v_d .
- *P*: intersection of those strips, *P* is a parallelotope.
 - Q ⊆ P

Proof of key lemma II

Figure: Including P in a scaled and translated copy of S

Polarity

To use our lemma, we need to build a connection between *vertices* and *convex* sets.

We define the *polar* K° of a convex set K to be $K^{\circ} = \{x \in \mathbb{R}^d : \langle x, y \rangle \leq 1 \text{ for all } y \in K\}.$

- Polar of a halfspace is a segment in the direction of the normal.
- Polar of a ball is another ball with reciprocal radius.

• $(P^{\circ})^{\circ} = P$.

Polarity

• Polars of finite intersections/unions:

$$\left(\bigcap K_i\right)^\circ = \mathsf{conv}\left(\bigcup K_i^\circ\right), \ \ \mathsf{and} \ \ \left(\mathsf{conv}\left\{\bigcup K_i\right\}\right)^\circ = \bigcap K_i^\circ$$

Sketch of proof

Let $\{K_1,\ldots,K_n\}$ be a family of convex sets and $K=\bigcap K_i$. There exists a subset of indices $\sigma=\{i_1,\ldots,i_{2d}\}$ such that $K_\sigma=K_{i_1}\cap\cdots\cap K_{i_{2d}}$ satisfies

$$\operatorname{vol}_d K_{\sigma} \leq (c_1 d)^{3d/2} \operatorname{vol}_d K$$
 and $\operatorname{diam} K_{\sigma} \leq (c_2 d)^2 \operatorname{diam} K$.

Simplifications:

- The K_i are halfspaces
- The K_i are tangent to the unit ball

Sketch of proof II

To choose 2d halfspaces, we instead choose 2d vertices from the polar $Q = K^{\circ}$.

Sketch of proof III

Obtain 2d vertices by applying approximation lemma on $Q=\mathcal{K}^{\circ}.$

Sketch of proof IV

Take the polar once more to get the desired 2d halfspaces.

Thank you for your attention!

