

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of

Masashi KITABAYASHI et al.

Application No.: 10/617,394

Filed: July 11, 2003

Docket No.: 116440

For: METHOD OF MANUFACTURING ILLUMINATION OPTICAL UNIT, APPARATUS FOR MANUFACTURING ILLUMINATION OPTICAL UNIT, ILLUMINATION OPTICAL UNIT MANUFACTURED BY THE MANUFACTURING METHOD, AND PROJECTOR

CLAIM FOR PRIORITY

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

The benefit of the filing date of the following prior foreign application filed in the following foreign country is hereby requested for the above-identified patent application and the priority provided in 35 U.S.C. §119 is hereby claimed:

Japanese Patent Application No. 2002-205458, filed July 15, 2002.

In support of this claim, a certified copy of said original foreign application:

X is filed herewith.

 was filed on in Parent Application No. filed .

 will be filed at a later date.

It is requested that the file of this application be marked to indicate that the requirements of 35 U.S.C. §119 have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of this document.

Respectfully submitted,

A handwritten signature in black ink, appearing to read "J. A. Oliff".

James A. Oliff
Registration No. 27,075

Michael Britton
Registration No. 47,260

JAO:MB/gam

Date: August 18, 2003

OLIFF & BERRIDGE, PLC
P.O. Box 19928
Alexandria, Virginia 22320
Telephone: (703) 836-6400

<p>DEPOSIT ACCOUNT USE AUTHORIZATION Please grant any extension necessary for entry; Charge any fee due to our Deposit Account No. 15-0461</p>
--

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office

出願年月日

Date of Application:

2002年 7月15日

出願番号

Application Number:

特願2002-205458

[ST.10/C]:

[JP2002-205458]

出願人

Applicant(s):

セイコーエプソン株式会社

2003年 4月18日

特許庁長官
Commissioner,
Japan Patent Office

太田信一郎

出証番号 出証特2003-3027990

【書類名】 特許願
【整理番号】 EPS0575
【提出日】 平成14年 7月15日
【あて先】 特許庁長官殿
【国際特許分類】 G03B 21/00
G02B 7/00
【発明者】
【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株式会社内
【氏名】 北林 雅志
【発明者】
【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株式会社内
【氏名】 宮嶋 尚行
【発明者】
【住所又は居所】 長野県諏訪市大和3丁目3番5号 セイコーエプソン株式会社内
【氏名】 丸山 正樹
【特許出願人】
【識別番号】 000002369
【氏名又は名称】 セイコーエプソン株式会社
【代理人】
【識別番号】 100079083
【弁理士】
【氏名又は名称】 木下 實三
【電話番号】 03(3393)7800
【選任した代理人】
【識別番号】 100094075
【弁理士】

【氏名又は名称】 中山 寛二

【電話番号】 03(3393)7800

【選任した代理人】

【識別番号】 100106390

【弁理士】

【氏名又は名称】 石崎 剛

【電話番号】 03(3393)7800

【手数料の表示】

【予納台帳番号】 021924

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 照明光学ユニットの製造方法、照明光学ユニットの製造装置
、この製造方法により製造された照明光学ユニット、および、プロジェクタ

【特許請求の範囲】

【請求項1】 光源から射出された光束を複数の部分光束に分割する光束分割素子と、各部分光束を集光する集光素子と、各部分光束の偏光方向を揃える偏光変換素子とを備えた照明光学ユニットを製造する照明光学ユニットの製造方法であって、

前記集光素子および前記偏光変換素子の相対位置を外形基準で調整し、位置決め固定する第1位置決め工程と、

前記光束分割素子と、互いに位置決めされた前記集光素子および前記偏光変換素子とを所定の光路上に重ね合わせた上で、これらの素子に光束を導入する光束導入工程と、

前記これらの素子を介した光束の光学像を投影板上に形成する光学像形成工程と、

形成された光学像を撮像素子を用いて検出する光学像検出工程と、

検出された光学像にコンピュータを用いて画像処理を施し、前記光学像による照明領域および設計上の照明領域を対比する照明領域対比工程と、

前記集光素子および前記偏光変換素子に対する前記光束分割素子の相対位置を調整する光束分割素子位置調整工程と、

位置調整中、前記コンピュータにより、前記照明領域対比工程による対比結果に基づいて、前記設計上の照明領域に対する前記光学像の照明領域の最適な状態を判定する最適状態判定工程と、

判定された最適状態における前記光束分割素子の位置で、前記集光素子および前記偏光変換素子に対して前記光束分割素子を位置決め固定する第2位置決め工程とを備えていることを特徴とする照明光学ユニットの製造方法。

【請求項2】 請求項1に記載の照明光学ユニットの製造方法において、

前記投影板上には、前記設計上の照明領域となる見切枠が形成され、

前記照明領域対比工程は、

前記画像検出工程で検出された画像を取り込む画像取込手順と、
取り込まれた光学像を画素単位で取得する輝度値取得手順と、
前記光学像の照明領域の内外に亘って設定された走査線を選択する走査線選択
手順と、

選択された走査線上の画素位置に応じた輝度値の変化を表す輝度値変化曲線を
取得する輝度値変化曲線取得手順と、

取得された輝度値変化曲線から、照明領域外部を表す部分および照明領域内部
を表す部分の間の輝度値変化部分を直線近似して近似直線を算出する近似直線算
出手順と、

算出された近似直線に基づいて前記光学像の照明領域の境界点を取得する境界
点取得手順と、

取得された境界点の画像上の位置と、前記見切棒の画像の画素位置とを対比し
て、照明マージンを算出する照明マージン算出手順とを備えていることを特徴と
する照明光学ユニットの製造方法。

【請求項3】請求項2に記載の照明光学ユニットの製造方法において、
前記設計上の照明領域は略矩形状に設定され、
前記走査線選択手順、輝度値変化曲線取得手順、近似直線算出手順、および、
境界点取得手順は、前記見切棒画像の互いに対向する辺に沿って複数回実施され
得られた境界点のうち、一方の辺に沿った境界点と、他方の辺に沿った境界点
間の一対の辺に直交する方向の最小距離をD s、前記見切棒画像の一対の画素位
置間の距離をD aとすると、

前記照明マージン算出手順は、前記照明マージンMを、下記式(1)

【数1】

$$M = (D_s - D_a) / 2 \cdots (1)$$

により算出することを特徴とする照明光学ユニットの製造方法。

【請求項4】請求項3に記載の照明光学ユニットの製造方法において、
前記照明領域対比工程は、さらに、前記見切棒画像の角隅部の画素位置から画
像中心を算出する見切棒画像中心算出手順と、前記光学像の角隅部を与える境界

点の位置から画像中心を算出する光学像中心位置算出手順と、これらの画像中心のずれ量を算出する画像中心ずれ量算出手順とを備え、

前記最適状態判定工程は、前記照明マージン算出手順で算出された照明マージンMが予め設定された閾値以上であり、かつ、前記画像中心ずれ量算出手順で算出されたずれ量が予め設定された閾値以下である場合に、前記光学像の照明領域が最適状態であると判定することを特徴とする照明光学ユニットの製造方法。

【請求項5】請求項1から請求項4のいずれかに記載の照明光学ユニットの製造方法において、

前記光束分割素子位置調整工程は、

前記光束分割素子を保持する光束分割素子保持手順と、

前記光束導入工程にて導入された光束の光軸をZ軸、このZ軸と直交し、互いに直交する2軸をX軸、Y軸としたときに、前記X軸方向に前記光束分割素子を移動させるX軸位置調整手順と、

前記Y軸方向に前記光束分割素子を移動させるY軸位置調整手順と、

前記Z軸を中心として前記光束分割素子を回転させる面内回転位置調整手順とを備えていることを特徴とする照明光学ユニットの製造方法。

【請求項6】請求項1から請求項5のいずれかに記載の照明光学ユニットの製造方法において、

前記光束分割素子は、前記集光素子および前記偏光変換素子に対して光硬化型接着剤により接着され、

前記光束分割素子位置調整工程は、前記光硬化型接着剤が未硬化な状態で実施され、

前記第2位置決め工程は、前記光硬化型接着剤に光線を照射して、該光硬化型接着剤を硬化させて固定することを特徴とする照明光学ユニットの製造方法。

【請求項7】請求項1から請求項6のいずれかに記載の照明光学ユニットの製造方法により製造されたことを特徴とする照明光学ユニット。

【請求項8】請求項7に記載の照明光学ユニットを備えていることを特徴とするプロジェクタ。

【請求項9】光源から射出された光束を複数の部分光束に分割する光束分割

素子と、各部分光束を集光する集光素子と、各部分光束の偏光方向を揃える偏光変換素子とを備えた照明光学ユニットを製造する照明光学ユニットの製造装置であって、

外形基準で相対位置が調整され、位置決め固定された前記集光素子および前記偏光変換素子を保持する素子保持体と、

この素子保持体に保持された集光素子および偏光変換素子と前記光束分割素子を重ね合わせるような位置で、該光束分割素子を保持する光束分割素子保持体と

これらの素子に光束を導入する光源と、

これらの素子を介した光束の光学像を投影する投影板と、

前記集光素子および前記偏光変換素子に対して前記光束分割素子の相対位置を調整する位置調整部と、

前記集光素子および前記偏光変換素子に対して前記光束分割素子の位置決め固定を実施する位置決め固定部と、

前記投影板上に形成された光学像を撮像する撮像素子と、

撮像された光学像を取り込む画像取込装置と、

取り込まれた画像の画像処理を実施する画像処理装置とを備え、

この画像処理装置は、

前記光学像による照明領域および設計上の照明領域を対比する照明領域対比手段と、

この照明領域対比手段の対比結果に基づいて、前記設計上の照明領域に対する前記光束分割素子の最適状態を判定する最適状態判定手段とを備えていることを特徴とする照明光学ユニットの製造装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、光源から射出された光束を複数の部分光束に分割する光束分割素子と、各部分光束を集光する集光素子と、各部分光束の偏光方向を揃える偏光変換素子とを備えた照明光学ユニットを製造する照明光学ユニットの製造方法、照明

光学ユニットの製造装置、この製造方法により製造された照明光学ユニット、および、プロジェクタに関する。

【0002】

【背景技術】

従来より、光源ランプと、この光源ランプから射出された光束を画像情報に応じて変調する電気光学装置と、この電気光学装置で変調された光束を拡大投写する投写光学系とを備えたプロジェクタが利用されている。

このようなプロジェクタでは、光源ランプから射出された光束により、電気光学装置の画像形成領域をムラ無く均一に照明するために、光源ランプおよび電気光学装置の間に複数の光学素子から構成される照明光学系が介在配置されている。

【0003】

この照明光学系は、例えば、光源ランプから射出された光束を複数の部分光束に分割する光束分割素子、分割された複数の部分光束を電気光学装置の画像形成領域上に集光する集光素子、および、光源ランプから射出された光束の偏光方向を略同一方向に揃える偏光変換素子等から構成されている。

【0004】

このような照明光学系を調整する場合、従来は、光源ランプ、光束分割素子、集光素子、偏光変換素子、および、電気光学装置等を収納する光学部品用筐体内に設置する。そして、実際に光源ランプから射出された光束をスクリーン上に投写しながら、光束分割素子、集光素子、および、偏光変換素子の位置調整を実施し、目視にて最も明るくなる部分、最も明るさのムラの無くなる位置を最適位置と判断することで実施していた。

【0005】

【発明が解決しようとする課題】

近年では、プロジェクタの小型化に伴って、光源ランプから電気光学装置までの光路長が短くなっている、光源ランプと電気光学装置の間に介在配置される照明光学系による集光効率の向上が要求されている。

しかしながら、従来の照明光学系の調整では、光学部品用筐体に対して光束分

割素子、集光素子、および、偏光変換素子を各々位置調整するため、高精度な位置調整が困難である。

【0006】

さらに、これらの最適位置をスクリーン上に投写された光学像から目視にて判断しているために、調整する人により調整精度にばらつきが出たり、作業時間の経過により調整精度が低下するおそれがある。

そして、複数の光学素子の位置関係を高精度に調整して照明光学系による集光効率を向上させるために、これらの光学素子をユニット化する方法が望まれている。

【0007】

本発明の目的は、光束分割素子、集光素子、および、偏光変換素子を一体化した照明光学ユニットを高精度かつ効率的に製造できる照明光学ユニットの製造方法、照明光学ユニットの製造装置、この製造方法により製造された照明光学ユニット、および、プロジェクタを提供することにある。

【0008】

【課題を解決するための手段】

本発明の照明光学ユニットの製造方法は、光源から射出された光束を複数の部分光束に分割する光束分割素子と、各部分光束を集光する集光素子と、各部分光束の偏光方向を揃える偏光変換素子とを備えた照明光学ユニットを製造する照明光学ユニットの製造方法であって、前記集光素子および前記偏光変換素子の相対位置を外形基準で調整し、位置決め固定する第1位置決め工程と、前記光束分割素子と、互いに位置決めされた前記集光素子および前記偏光変換素子とを所定の光路上に重ね合わせた上で、これらの素子に光束を導入する光束導入工程と、前記これらの素子を介した光束の光学像を投影板上に形成する光学像形成工程と、形成された光学像を撮像素子を用いて検出する光学像検出工程と、検出された光学像にコンピュータを用いて画像処理を施し、前記光学像による照明領域および設計上の照明領域を対比する照明領域対比工程と、前記集光素子および前記偏光変換素子に対する前記光束分割素子の相対位置を調整する光束分割素子位置調整工程と、位置調整中、前記コンピュータにより、前記照明領域対比工程による対

比結果に基づいて、前記設計上の照明領域に対する前記光学像の照明領域の最適な状態を判定する最適状態判定工程と、判定された最適状態における前記光束分割素子の位置で、前記集光素子および前記偏光変換素子に対して前記光束分割素子を位置決め固定する第2位置決め工程とを備えていることを特徴とするものである。

【0009】

ここで、光束分割素子としては、例えば、前記電気光学装置の画像形成領域に応じたレンズを照明光軸に直行する面内でマトリクス状に配列したレンズアレイを採用できる。さらに、このレンズアレイの他、入射した光束を内面反射を利用して複数の部分光束に分割するロッド等も採用できる。すなわち、光源から射出された光束を複数の部分光束に分割できる光学素子であれば、種々のものを採用できる。

【0010】

このような本発明によれば、照明領域対比工程において、検出された光学像にコンピュータを用いて画像処理を施し、例えば、光学像による照明領域の外縁の位置、外縁の所定位置における距離、または、外縁内の面積等と、設計上の照明領域における外縁の位置、外縁の所定位置における距離、または、外縁内の面積等とを対比する。そして、例えば、設計上の照明領域に対して光学像による照明領域が同等、大きい、あるいは、小さい等の評価を対比結果として算出できる。また、設計上の照明領域に対しての相対値を算出してもよい。また、これと同時に、光束分割素子位置調整工程において、集光素子および偏光変換素子に対する光束分割素子の相対位置を調整する。そして、最適状態判定工程において、この位置調整中に、コンピュータにより、照明領域対比工程による上記のような対比結果に基づいて設計上の照明領域に対する光学像の照明領域の最適な状態を判定できる。

したがって、従来の目視による曖昧な調整精度を改善し、各光学素子の光学的相対位置を高精度に調整できるとともに、効率的に調整することができ、集光効率の向上した照明光学ユニットを製造できる。

【0011】

また、光束分割素子位置調整工程では、第1位置決め工程にて位置決め固定された集光素子および偏光変換素子に対して光束分割素子のみの位置調整を実施する。そして、第2位置決め固定工程では、この光束分割素子の位置調整の後に、位置決め固定する。

したがって、位置調整を簡単な工程で実施することができ、照明光学ユニットの製造効率を向上できる。

【0012】

本発明の照明光学ユニットの製造方法では、前記投影板上には、前記設計上の照明領域となる見切枠が形成され、前記照明領域対比工程は、前記画像検出工程で検出された画像を取り込む画像取込手順と、取り込まれた光学像を画素単位で取得する輝度値取得手順と、前記光学像の照明領域の内外に亘って設定された走査線を選択する走査線選択手順と、選択された走査線上の画素位置に応じた輝度値の変化を表す輝度値変化曲線を取得する輝度値変化曲線取得手順と、取得された輝度値変化曲線から、照明領域外部を表す部分および照明領域内部を表す部分の間の輝度値変化部分を直線近似して近似直線を算出する近似直線算出手順と、算出された近似直線に基づいて前記光学像の照明領域の境界点を取得する境界点取得手順と、取得された境界点の画像上の位置と、前記見切枠の画像の画素位置とを対比して、照明マージンを算出する照明マージン算出手順とを備えていることが好ましい。

【0013】

このような方法では、投影板に設計上の照明領域となる見切枠が形成されている場合に、照明領域対比工程では、この見切枠の画像と光学像の照明領域とを対比できる。

例えば、この照明領域対比工程では、以下のようない手順で見切枠の画像と光学像の照明領域とを対比する。

(A) 先ず、画像取込手順により、画像検出工程にて検出された光学像をビデオキャプチャーボード等の画像取込手段で取り込み、輝度値取得手順により、この取り込んだ光学像の輝度値を、例えば、0～255の256階調に分けて取得する。

【0014】

(B) 次に、走査線選択手順により、例えば、光学像の照明領域内外にわたって横方向に延びる走査線を1つ選択する。そして、輝度値変化曲線取得手順により、この選択した一走査線において、X軸（横軸）を各画素位置とし、Y軸（縦軸））をこれらの対応する輝度値として、XY座標にプロットした輝度値変化曲線を取得できる。

【0015】

この取得した輝度値変化曲線は、光学像の照明領域の境界部分において、光学像の外側から中央部分に向って、一般に、略クランク状またはS字状として取得される。すなわち、輝度値変化曲線は、輝度値が略0である照明領域外部を表す部分と、輝度値が略255である照明領域内部を表す部分と、その間の輝度値変化部分とで構成されている。

なお、光学像の照明領域の中央部分から光学像の外側に向う場合には、前述とは逆のクランク状または逆S字状の輝度値変化曲線を取得する。また、縦方向の走査線も、縦と横とを換えて同様に取得する。

【0016】

(C) 次に、近似直線算出算出手順において、例えば、輝度値変化部分の全体を最小二乗法等の手段により直線近似して、近似直線を算出できる。また、輝度値変化部分全体を用いずに、輝度値変化部分の一部のみを取り出して、この一部の両端に基づいて直線近似して近似直線を算出することもできる。

【0017】

(D) そして、境界点取得手順により、例えば、この輝度値変化部分と輝度値255階調を示す線（輝度値255階調線）との交点を取得して、この交点を、照明領域の境界を示す点、すなわち、照明用に十分な輝度値を有する限界の位置を示す境界点とする。

なお、輝度値変化部分と輝度値255階調線との交点以外に、輝度値変化部分と輝度値255階調線との交点のX座標から所定画素シフトしたX座標を境界点の画素位置としてもよいし、また、輝度値変化部分と、照明領域内部を示す部分を直線近似した線との交点を境界点としてもよい。

【0018】

(E) 最後に、照明マージン算出手順により、例えば、走査線上の見切枠画像の画素位置または画素位置間の距離に対する、走査線上の境界点の位置または境界点間の距離の相対値を取得し、この相対値を照明マージンとして算出する。

なお、上記(B)～(D)の操作を、照明領域の内外にわたる全ての縦横方向の走査線で実施して全ての走査線での境界点を取得し、これら取得した境界点に基づいて照明マージン算出手順にて照明マージンを算出してもよい。この場合には、見切枠画像の所定の画素位置、所定の画素位置間の距離、および、見切枠画像の面積等に対する、境界点の集合により形成される照明領域の外縁の所定位置、外縁の所定位置間の距離、および、外縁内の面積等の相対値を取得し、この相対値を照明マージンとして算出できる。

【0019】

ここで、光束導入工程にて、ハロゲンランプ等の光源ランプから光束を導入した場合には、基本的には一定輝度値の光束を放射しているが、製造時の外部環境等の影響によって、瞬間的に輝度値が小さくなる等の変化を起こす場合がある。

しかしながら、本発明によれば、輝度値変化曲線の輝度値変化部分の傾きが光源ランプの変化等に影響されず、この影響を受けない輝度値変化部分を直線近似して境界点を特定したので、正確な領域情報を算出できる。

【0020】

本発明の照明光学ユニットの製造方法では、前記設計上の照明領域は略矩形状に設定され、前記走査線選択手順、輝度値変化曲線取得手順、近似直線算出手順、および、境界点取得手順は、前記見切枠画像の互いに対向する辺に沿って複数回実施され、得られた境界点のうち、一方の辺に沿った境界点と、他方の辺に沿った境界点間の一対の辺に直交する方向の最小距離をD_s、前記見切画像の一対の画素位置間の距離をD_aとすると、前記照明マージン算出手順は、前記照明マージンMを、下記式(2)

【0021】

【数2】

$$M = (D_s - D_a) / 2 \dots (2)$$

【0022】

により算出することが好ましい。

このような方法では、照明マージン算出手順は、設計上の照明領域が略矩形状に設定されている場合に、見切棒画像の互いに対向する辺に沿って取得した複数の境界点に基づいて、最適な照明マージンを算出できる。

ここで、例えば、上記（D）の手順において取得した境界点が他の走査線に基づいて取得される境界点に対して特異的な点である場合に、上記（E）の手順にて照明マージンを算出すると、照明領域全体における正確な照明マージンを算出できないおそれがある。

ここでは、例えば、上記（B）～（D）の操作を、見切棒画像の互いに対向する全ての縦横方向の走査線で実施して全ての走査線での境界点を取得する。そして、照明マージン算出手順では、取得された複数の境界点のうち、見切棒画像の互いに対向する一方の辺に沿った境界点と、他方の辺に沿った境界点間の一対の辺に直交する方向の最小距離 D_s 、および、見切画像の一対の画素位置間の距離 D_a に基づいて、式（2）により照明マージン M を算出する。

【0023】

したがって、例えば、取得された複数の境界点のうち、設計上の照明領域となる見切棒画像の内側に位置するような特異的な境界点があった場合であっても、見切棒画像に対する光学像の照明領域全体の照明マージンを確実に算出できる。

【0024】

本発明の照明光学ユニットの製造方法では、前記照明領域対比工程は、さらに、前記見切棒画像の角隅部の画素位置から画像中心を算出する見切棒画像中心算出手順と、前記光学像の角隅部を与える境界点の位置から画像中心を算出する光学像中心位置算出手順と、これらの画像中心のずれ量を算出する画像中心ずれ量算出手順とを備え、前記最適状態判定工程は、前記照明マージン算出手順で算出された照明マージン M が予め設定された閾値以上であり、かつ、前記画像中心ずれ量算出手順で算出されたずれ量が予め設定された閾値以下である場合に、前記光学像の照明領域が最適状態であると判定することが好ましい。

【0025】

ここで、例えば、照明領域対比工程にて取得した複数の境界点に誤差が生じて いる場合には、照明マージン算出手順では、不適切な照明マージンを算出するおそれがある。また、例えば、設計上の照明領域の中心軸と光学像の照明領域の 中心軸とがずれている場合には、照明光軸のずれた照明光学ユニットを製造してしま うおそれがある。

【0026】

本発明では、照明領域対比工程は、見切枠画像中心算出手順、光学像中心位置 算出手順、および、画像中心ずれ量算出手順を備えていることにより、設計上の 照明領域の中心軸と光学像の照明領域の中心軸とのずれ量を算出できる。

また、最適状態判定工程では、照明マージンMが予め設定された閾値以上で あり、かつ、画像中心ずれ量算出手順で算出されたずれ量が予め設定された閾値以 下である場合に、光学像の照明領域が最適状態であると判定する。このことによ り、照明領域対比工程にて取得した複数の境界点に誤差が生じている場合であつ ても、設計上の照明領域に対して有効な照明マージンを確保した照明光学ユニッ ツを製造でき、さらに、照明光軸のずれのない照明光学ユニットを製造できる。

【0027】

なお、最適状態判定工程において、照明マージンMを判定する際、予め設定さ れた閾値を下限値として、さらに、上限値を有するような範囲内に照明マージン Mが位置しているか否かを判定するようにしてもよい。このようにすれば、所定 の照明マージンを有する照明領域を確保するとともに、最適な照明領域の範囲内 に光学像の照明領域を確保した照明光学ユニットを製造できる。

【0028】

本発明の照明光学ユニットの製造方法では、前記光束分割素子位置調整工程は 、前記光束分割素子を保持する光束分割素子保持手順と、前記光束導入工程にて 導入された光束の光軸をZ軸、このZ軸と直交し、互いに直交する2軸をX軸、 Y軸としたときに、前記X軸方向に前記光束分割素子を移動させるX軸位置調整 手順と、前記Y軸方向に前記光束分割素子を移動させるY軸位置調整手順と、前 記Z軸を中心として前記光束分割素子を回転させる面内回転位置調整手順とを備 えていることが好ましい。

このような方法では、光束分割素子位置調整工程は、光束分割素子保持手順、X軸位置調整手順、Y軸位置調整手順、および、面内回転位置調整手順とを備えていることにより、光束分割素子の位置調整を高精度に実施でき、照明光学ユニットを高精度かつ効率的に製造できる。

【0029】

本発明の照明光学ユニットの製造方法では、前記光束分割素子は、前記集光素子および前記偏光変換素子に対して光硬化型接着剤により接着され、前記光束分割素子位置調整工程は、前記光硬化型接着剤が未硬化な状態で実施され、前記第2位置決め工程は、前記光硬化型接着剤に光線を照射して、該光硬化型接着剤を硬化させて固定することが好ましい。

このような方法では、第2位置決め工程では、光束分割素子を集光素子および偏光変換素子に対して接着する光硬化型接着剤に光線を照射して、光硬化型接着剤を硬化させて光束分割素子を固定する。このことにより、照明光学ユニットの製造を容易に行え、照明光学ユニットの製造効率の向上を図れる。

【0030】

また、本発明は、前記の各請求項に係る照明光学ユニットの製造方法を実施するための照明光学ユニットの製造装置としても成立するものである。すなわち、本発明の照明光学ユニットの製造装置は、光源から射出された光束を複数の部分光束に分割する光束分割素子と、各部分光束を集光する集光素子と、各部分光束の偏光方向を揃える偏光変換素子とを備えた照明光学ユニットを製造する照明光学ユニットの製造装置であって、外形基準で相対位置が調整され、位置決め固定された前記集光素子および前記偏光変換素子を保持する素子保持体と、この素子保持体に保持された集光素子および偏光変換素子と前記光束分割素子を重ね合わせるような位置で、該光束分割素子を保持する光束分割素子保持体と、これらの素子に光束を導入する光源と、これらの素子を介した光束の光学像を投影する投影板と、前記集光素子および前記偏光変換素子に対して前記光束分割素子の相対位置を調整する位置調整部と、前記集光素子および前記偏光変換素子に対して前記光束分割素子の位置決め固定を実施する位置決め固定部と、前記投影板上に形成された光学像を撮像する撮像素子と、撮像された光学像を取り込む画像取込装

置と、取り込まれた画像の画像処理を実施する画像処理装置とを備え、この画像処理装置は、前記光学像による照明領域および設計上の照明領域を対比する照明領域対比手段と、この照明領域対比手段の対比結果に基づいて、前記設計上の照明領域に対する前記光束分割素子の最適状態を判定する最適状態判定手段とを備えていることを特徴とするものである。

【0031】

ここで、撮像素子としては、例えば、CCD (Charged Coupled Device)、MOS (Metal Oxide Semiconductor) センサ等の撮像素子を採用できる。

また、画像取込装置としては、上記の撮像素子から出力される電気信号を取得して画像処理装置にて読み取り可能な画像信号に変換して出力するビデオキャプチャボード等を採用できる。

また、画像処理装置を構成する各手段としては、例えば、コンピュータの動作制御を行うOS (Operating System) 上に展開されるプログラムとして構成できる。

このような本発明の照明光学ユニットの製造装置では、上述した照明光学ユニットの製造方法と同様の工程により照明光学ユニットを製造することができ、前記と同様の作用および効果を享受できる。

【0032】

そして、前述の照明光学ユニットの製造方法により製造された照明光学ユニットによれば、集光効率の向上した照明光学ユニットとすることができます、これをプロジェクタに適用することにより、小型化および高輝度化に対応できるとともに、製造効率の向上を図ることができる。

【0033】

【発明の実施の形態】

以下、本発明の一実施形態を図面に基づいて説明する。

〈1〉 照明光学ユニットを利用したプロジェクタの構造

図1は、本発明の実施形態に係る照明光学ユニットを備えたプロジェクタの光学系の構造を表す模式図である。

図1において、100は、プロジェクタであり、このプロジェクタ100は、

インテグレータ照明光学系110、色分離光学系120、リレー光学系130、電気光学装置140、クロスダイクロイックプリズム150、および、投写光学系160を備えている。

【0034】

インテグレータ照明光学系110は、光源装置111、照明光学ユニット112、および、重疊レンズ113を備えて構成されている。

光源装置111は、光源ランプ111Aおよびリフレクタ111Bから構成されている。

照明光学ユニット112は、光源装置111から射出された光束を複数の部分光束に分割して、後述する電気光学装置140の液晶パネル141の画像形成領域に集光する。この照明光学ユニット112は、光束分割素子としての第1レンズアレイ112A、集光素子としての第2レンズアレイ112B、偏光変換素子としてのPBSアレイ112Cを備えて構成されている。

【0035】

第1レンズアレイ112Aは、光源ランプ111Aから射出された光束を複数の部分光束に分割する。この第1レンズアレイ112Aは、図1に示すように、照明光軸Aと直交する面内にマトリクス上に配列される複数のレンズを備えて構成され、各レンズの縦横比は、後述する液晶パネル141の画像形成領域の縦横比と対応している。

【0036】

第2レンズアレイ112Bは、第1レンズアレイ112Aにより分割された部分光束を集光する。この第2レンズアレイ112Bは、第1レンズアレイ112Aと同様に、照明光軸Aに直交する面内にマトリクス状に配列される複数のレンズを備えている。各レンズの配列は、第1レンズアレイ112Aを構成するレンズと対応しているが、その大きさは、第1レンズアレイ112Aのように液晶パネル141の画像形成領域の縦横比と対応する必要はない。

【0037】

PBSアレイ112Cは、光源ランプ111Aから射出された光束の偏光方向を略一方向に揃える。このPBSアレイ112Cは、図2に示すように、偏光分

離膜112C1、反射膜112C2、位相差板112C3、および、遮光板112C4を備えている。

偏光分離膜112C1は、第1レンズアレイ112Aおよび第2レンズアレイ112Bを介した各部分光束に含まれる偏光光束のうち、P偏光光束またはS偏光光束の一方の偏光光束を透過し、他方の偏光光束を反射することで、両偏光光束を分離する。

【0038】

反射膜112C2は、この偏光分離膜112C1で反射された偏光光束を90°折り曲げて、偏光分離膜112C1を透過した偏光光束の射出方向に、この折り曲げた偏光光束の射出方向を揃える。

位相差板112C3は、偏光分離膜112C1を透過した偏光光束の射出位置に応じて配置され、該偏光光束の偏光方向を変換する。例えば、透過した偏光光束がP偏光光束であれば、この位相差板112C3は、S偏光光束に変換する。

遮光板112C4は、PBSアレイ112Cに入射する不要な光束を遮断し、適切な偏光変換を実現するために設けられている。

【0039】

このような照明光学ユニット112は、図3に示すように、枠体としての保持枠112Dによって一体化される。

この保持枠112Dは、略箱状に形成され、照明光軸に沿った方向の側面（図3中、左右方向の側面）には、断面略クランク状に形成された係合部112D1が形成されている。この係合部112D1は、上述する照明光学ユニット設置部20の素子保持体としての保持枠保持部21と係合する。

また、この保持枠112Dの光入射側および光射出側の端面は、光源ランプ111Aから射出される光束が透過するように開口が形成されている。

さらに、この保持枠112Dの光入射側および光射出側に交差する一方の端面（図3中、紙面と略直交する端面のうち、手前側の端面）も開口され、照明光学ユニット112内に空気が滞留しないようになっている。

【0040】

さらにまた、この保持枠112Dの光入射側および光射出側に交差する他方の

端面には、具体的な図示は省略するが、光学部品を収納する光学部品用筐体への固定用のねじを挿入するための孔が形成されている。

そして、この保持枠112Dの光入射側の端面には、第1レンズアレイ112Aが固定され、光射出側の端面には、第2レンズアレイ112BおよびPBSアレイ112Cが固定される。この際、光射出側の端面は、第2レンズアレイ112BおよびPBSアレイ112Cの外形形状と略同様な形状となっている。このため、これら光学素子を光束射出側の端面に外形形状を合わせて固定することで、これら光学素子の設計上の位置にあわせることが可能となっている。

また、これらの光学素子の保持枠112Dに対する固定は、紫外線硬化型接着剤により行われる。

重畠レンズ113は、図2に示すように、照明光学ユニット112を経た複数の部分光束を集光して、後述する液晶パネル141の画像形成領域上に重畠させる。

【0041】

色分離光学系120は、インテグレータ照明光学系110から射出された複数の部分光束を、赤、緑、青の3色の色光に分離する。この色分離光学系120は、2枚のダイクロイックミラー121、122と、反射ミラー123とを備えている。具体的には、ダイクロイックミラー121にて赤色光Rとその他の色光G、Bとが分離され、ダイクロイックミラー122にて緑色光Gおよび青色光Bが分離される。

【0042】

リレー光学系130は、色分離光学系120で分離された色光、すなわち、本実施形態では青色光Bを後述する液晶パネル141Bまで導く。このリレー光学系130は、入射側レンズ131、リレーレンズ132、および、反射ミラー133、134を備えている。

【0043】

電気光学装置140は、3枚の液晶パネル141(141R, 141G, 141B)を備え、色分離光学系120で分離された各色光R, G, Bを液晶パネル141R, 141G, 141Bによって、画像情報に応じて変調して光学像を形

成する。この液晶パネル141は、例えば、ポリシリコンTFTをスイッチング素子として用いている。

なお、この液晶パネル141の光路前段には、フィールドレンズ142が配置され、このフィールドレンズ142は、インテグレータ照明光学系110から射出された光束を照明光軸Aに対して平行に入射させる。

【0044】

クロスダイクロイックプリズム150は、3枚の液晶パネル141から射出された色光毎に変調された画像を合成してカラー画像を形成する。このクロスダイクロイックプリズム150には、赤色光を反射する誘電体多層膜と青色光を反射する誘電体多層膜とが、4つの直角プリズムの界面に沿って略X字状に形成され、これらの誘電体多層膜によって3つの色光が合成される。

投写光学系160は、複数の組レンズからなるレンズユニットから構成され、クロスダイクロイックプリズム150で合成されたカラー画像を拡大投写する。

【0045】

上述したインテグレータ照明光学系110、色分離光学系120、リレー光学系130、電気光学装置140、クロスダイクロイックプリズム150、および、投写光学系160を備えた光学エンジンは、具体的な図示は省略するが、光学部品を収納する光学部品用筐体に収納され、一体化される。

ここで、色分離光学系120、および、リレー光学系130を構成するレンズ、ミラー等の光学部品は、光学部品用筐体に対して直接固定されるが、インテグレータ照明光学系110については、第1レンズアレイ112A、第2レンズアレイ112B、および、PBSアレイ112Cは、保持枠112Dにより照明光学ユニット112として一体化されているため、照明光学ユニット112の保持枠112Dごと光学部品用筐体に装着される。

【0046】

〈2〉 照明光学ユニットの製造装置の構造

図4は、照明光学ユニットを製造する照明光学ユニットの製造装置を示す正面図である。図5は、照明光学ユニットを製造する照明光学ユニットの製造装置を示す側面図である。

図4または図5において、1は、照明光学ユニットの製造装置であり、この照明光学ユニットの製造装置1は、製造装置本体10、照明光学ユニット設置部20、位置調整部30、および、光源としての照明装置40を備えて構成されている。

【0047】

製造装置本体10は、検出装置を収納する基部11と、この基部11の上端部から垂直方向に延び、照明光学ユニット設置部20、位置調整部30、および、照明装置40を支持する支持部12とを備えている。

基部11の天面には、照明装置40の照明光軸直下に位置する部分に、支持部12に沿って垂直方向に延びる略箱状の遮光部13が形成されている。

この遮光部13は、照明装置40から射出される光束を透過させるために、その天面および底面に、開口部が形成されている。そして、この天面における開口部には、照明光学ユニット設置部20に設置された照明光学ユニット112を介した光束に基づく光学像を形成する投影板14が配置されている。

【0048】

図6は、投影板の構造を示す正面図である。

投影板14は、すりガラスから構成され、図6に示すように、このすりガラス上には、設計上の照明領域（液晶パネル141の画像形成領域と略同寸法）の大きさに設定された見切枠14Aが形成されている。

また、具体的な図示は省略するが、この投影板14上には、プロジェクタ100の液晶パネル141の光路前段に設けられるフィールドレンズ142と同様のフィールドレンズが設けられている。このような構成により、プロジェクタ100に組み込んだ際に最適な照明光学ユニット112を製造することができる。

【0049】

また、基部11の内部には、図4または図5に示すように、撮像素子としてのCCDカメラ50、PC60(Personal Computer)、位置決め固定部としての紫外線照射装置70(図4)が収納されている。

CCDカメラ50は、電荷結合素子(Charge Coupled Device)を撮像素子とするエリアセンサであり、照明装置40の照明光軸上、投影板14の直下に配置

される。そして、このCCDカメラ50は、投影板14上に形成された光学像を撮像して電気信号に変換する。また、この電気信号は、PC60に出力される。

また、具体的な図示は省略するが、このCCDカメラ50は、投影板14に対して設置位置を移動可能に基部11の内部に収納されている。

【0050】

PC60は、一般的なPCであり、ディスプレイ61とPC本体62とを備え、CCDカメラ50と図示しない所定の接続ケーブルで電気的に接続されている。

ディスプレイ61は、一般的な液晶型ディスプレイであり、PC本体62の制御の下、後述するようにPC本体62で各種処理された結果を表示する。このディスプレイ61は、基部11の天面後方側（図5中右側）に位置し、垂直方向に延びるディスプレイ載置台11Aに載置される。

【0051】

図7は、PC本体における制御構造を模式的に示すブロック図である。

PC本体62は、CCDカメラ50にて撮像された光学像を取得し、この光学像の画像処理を施して、各種処理情報をディスプレイ61に表示させる。このPC本体62は、図7に示すように、画像取込装置63、および、画像処理装置64を備えている。

画像取込装置63は、CCDカメラ50にて撮像された光学像に関する電気信号を取り込み、コンピュータにて読み取可能な画像信号に変換して画像処理装置64に出力する。この画像取込装置63は、例えば、ビデオキャプチャボード等で構成される。

【0052】

画像処理装置64は、画像取込装置63から出力される画像信号を入力して照明光学ユニット112を介した光束の光学像に基づいて画像処理を施し、この処理結果をディスプレイ61に表示させる。この画像処理装置64は、照明領域対比手段65、最適状態判定手段66、および、表示制御手段67を備えている。

図8は、画像処理装置64にて認識される光学像を模式的に示す図である。

この光学像200には、照明光学ユニット112を介した光束に基づく光学像

の他、投影板14に形成された見切棒14Aに基づく光学像201（見切棒画像）も含んでいる。この光学像200は、その中心軸に対応する部分の輝度が最も大きく、中心から離れるにしたがって輝度が小さくなる。すなわち、取り込まれた光学像200は、外側に向って段々暗くなっている。

【0053】

照明領域対比手段65は、照明光学ユニット112を介した光束の光学像200の照明領域、および、この光学像200に含まれる見切棒画像201とを対比する。この照明領域対比手段65は、輝度値取得部65A、走査線選択部65B、輝度値変化曲線取得部65C、近似直線算出部65D、境界点取得部65E、照明マージン算出部65F、および、画像中心ずれ量算出部65Gを備えている。

【0054】

輝度値取得部65Aは、画像取込装置63から出力される画像信号を取得し、光学像200の輝度値を画素単位で取得する。

図9は、取り込まれた光学像において走査線を選択して輝度値変化曲線を取得する様子を示す図である。

走査線選択部65Bは、図9（A）に示すように、光学像200の照明領域LA内外にわたって設定される走査線SLを選択する。

【0055】

輝度値変化曲線取得部65Cは、図9（B）に示すように、走査線選択部65Bにて選択された走査線SL上の画素位置に応じた輝度値の変化を表す輝度値変化曲線300を取得する。

近似直線算出部65Dは、輝度値変化曲線取得部65Cにて取得された輝度値変化曲線300から輝度値変化部分303の近似直線を算出する。

【0056】

境界点取得部65Eは、近似直線算出部65Dにて算出された近似直線に基づいて光学像200の照明領域LAの境界点を取得する。

照明マージン算出部65Fは、見切棒画像201の画素位置、および、境界点取得部65Eにて取得された境界点に基づいて、見切棒画像201に対する光学

像200の照明領域LAの照明マージンを算出する。そして、この照明マージンに関するマージン情報を出力する。

【0057】

画像中心ずれ量算出部65Gは、見切枠画像201の中心位置、および、光学像200の照明領域の中心位置を算出し、これら中心位置のずれ量を算出する。そして、この中心位置のずれ量に関する中心位置ずれ情報を出力する。

最適状態判定手段66は、照明領域対比手段65にて算出された照明マージン、および、中心位置のずれ量に基づいて、光学像200の照明領域LAの最適な状態（第1レンズアレイ112Aの最適位置）を判定する。そして、判定結果に関する判定情報を出力する。

表示制御手段67は、照明マージン算出部65Fから出力されるマージン情報、画像中心ずれ量算出部65Gから出力される中心位置ずれ情報、および、最適状態判定手段66から出力される判定情報を取得し、これらの情報をディスプレイ61に表示させる。

【0058】

図4に戻って、紫外線照射装置70は、照明光学ユニット112の保持枠112Dの光入射側端面と第1レンズアレイ112Aとの間に介在する紫外線硬化型接着剤に紫外線を照射して硬化させ、保持枠112Dおよび第1レンズアレイ112Aを固定する。この紫外線照射装置70は、具体的な図示は省略するが、光ファイバ等の導光手段にて接続され、位置調整部30に設置された光線照射部（図示省略）を備えている。

【0059】

図4または図5に戻って、支持部12は、照明光学ユニット設置部20、位置調整部30、および、照明装置40を支持する。また、この支持部12は、垂直方向に該支持部12に沿って延び、後述する照明光学ユニット設置部20の素子保持体としての保持枠保持部21を上下に摺動可能にするレール12Aを備えている。

【0060】

照明光学ユニット設置部20は、製造対象となる照明光学ユニット112を設

置する部分である。この照明光学ユニット設置部20は、保持枠保持部21、および、紫外線遮蔽カバー22を備えている。

図10は、保持枠保持部を前方側から見た図である。

保持枠保持部21は、支持部12のレール12Aに上下に摺動可能に固定され、保持枠112Dを保持する。

また、この保持枠保持部21は、基部11の内部に設けられた空圧部11B（図4）とエアーチューブにて接続され、空圧部11Bにて所定の圧力に設定された空気を導入することにより、レール12Aに対して上下に摺動する。

そしてまた、照明光学ユニットの製造装置1の基部11の天面には、保持枠保持部上下摺動スイッチSW1（図4、図5）が設けられ、この保持枠保持部上下摺動スイッチSW1により、空圧部11Bから保持枠保持部21への空気の導入が切り替えられる。

【0061】

この保持枠保持部21は、支持部12のレール12Aに上下に摺動可能に固定される摺動部21Aと、摺動部21Aの端面から該端面に直交し、かつ、上下に延びるように形成された延出部21Bと、この延出部21Bの端面から左右に延びるように形成された把持部21Cと、摺動部21Aの端面から該端面に直交し、かつ、左右に延びるように形成された重畠レンズ設置部21Dとを備えている。

【0062】

このうち、把持部21Cにおいて、先端部分には保持枠112Dの係合部112D1と係合するために、断面略L字状に形成された把持面21C1が形成されている。

【0063】

重畠レンズ設置部21Dは、保持枠保持部21の下方に位置し、プロジェクタ100の重畠レンズ113と同様の重畠レンズ500を設置する。そして、照明光学ユニット112が把持部21Cに把持された際には、照明光学ユニット112とこの重畠レンズ設置部21Dに設置された重畠レンズ500との相対位置は、プロジェクタ100における照明光学ユニット112と重畠レンズ113の設

計上の位置と略同一となる。このような構成により、プロジェクトタ100に組み込んだ際に最適な照明光学ユニット112を製造することができる。

【0064】

紫外線遮蔽カバー22は、紫外線照射装置70から位置調整部30に設置された光線照射部を介して照射される紫外線が外部に散乱することを防止する。この紫外線遮蔽カバー22は、位置調整部30の下端部から重畳レンズ設置部21Dにかけて囲うように略箱状に形成されている。また、この紫外線遮蔽カバー22の前方側（図5中左側）は、紫外線遮蔽カバー内部に位置する保持枠保持部21に照明光学ユニット112を設置可能にするために、左右方向に開閉可能に形成されている（図4参照）。

【0065】

図11は、位置調整部を前方側から見た図である。図12は、位置調整部を側面から見た図である。

位置調整部30は、PC本体62にて画像処理され、ディスプレイ61に表示された各種情報に基づいて、照明光学ユニット112の第1レンズアレイ112Aの位置調整を実施する。この位置調整部30は、光束分割素子保持体としての光束分割素子挟持部31、および、調整部本体32を備えて構成されている。

【0066】

図13は、光束分割素子挟持部を上方から見た図である。

光束分割素子挟持部31は、調整部本体32の下方に位置し、第1レンズアレイ112Aの調整位置に設置される。そして、この光束分割素子挟持部31は、照明光学ユニット112の保持枠112Dの光束入射側の端面に紫外線硬化型接着剤を介して密着された第1レンズアレイ112Aを挟持する。すなわち、この光束分割素子挟持部31は、保持枠保持部21が上方に摺動し、照明光学ユニット112の調整位置にセットされた際に、第1レンズアレイ112Aを挟持する。

【0067】

この光束分割素子挟持部31は、第1レンズアレイ112Aの外周形状と略同一の挟持面が形成された2つのクランプ部31Aを備え、第1レンズアレイ11

2 A の外周部分を左右方向（図13中の左右方向）からこれらのクランプ部31Aで挟むように第1レンズアレイ112Aを挟持する。このクランプ部31Aは、空圧部11B（図4）とエアーチューブにて接続され、空圧部11Bにて所定の圧力に設定された空気を導入することにより、2つのクランプ部31Aが近接して第1レンズアレイ112Aの外周を挟持する。

そして、照明光学ユニットの製造装置1の基部11の天面には、クランプスイッチSW2が設けられ、このクランプスイッチSW2により、空圧部11Bからクランプ部31Aへの空気の導入が切り替えられる。

【0068】

また、この光束分割素子挟持部31は、後述する調整部本体32のY軸位置調整部322、X軸位置調整部323、および、面内回転位置調整部324と機械的に接続されている。このため、調整部本体32による調整により、光束分割素子挟持部31が平面方向に移動し、これに連動して、第1レンズアレイ112Aが保持棒112Dの光束入射端面に対して移動する。

【0069】

調整部本体32は、図11または図12に示すように、光束分割素子挟持部31を照明光軸と直行する面内で位置調整を実施する。この調整部本体32は、調整部本体基部321、Y軸位置調整部322、X軸位置調整部323、および、面内回転位置調整部324を備えて構成されている。

調整部本体基部321は、調整部本体32の上方に位置し、支持部12に固定されて調整部本体32全体を支持する。

【0070】

Y軸位置調整部322は、図11に示すように、調整部本体基部321の下端部に係合し、Y軸方向に摺動可能なY軸摺動板322Aと、このY軸摺動板322AをY軸方向に摺動させるY軸方向調整つまみ322Bとを備えている。具体的に、このY軸摺動板322Aは、X軸位置調整部323および面内回転位置調整部324を介して光束分割素子挟持部31と機械的に接続し、Y軸摺動板322AがY軸方向に摺動することで、光束分割素子挟持部31がこれに連動してY軸方向に移動する。

【0071】

X軸位置調整部323は、図12に示すように、Y軸位置調整部322のY軸摺動板322Aの下端部に係合し、X軸方向に摺動可能なX軸摺動板323Aと、このX軸摺動板323AをX軸方向に摺動させるX軸方向調整つまみ323Bとを備えている。具体的に、このX軸摺動板323Aは、面内回転位置調整部324を介して光束分割素子挟持部31と機械的に接続し、X軸摺動板323AがX軸方向に摺動することで、光束分割素子挟持部31がこれに連動してX軸方向に移動する。

【0072】

面内回転位置調整部324は、図12に示すように、X軸位置調整部323のX軸摺動板323Aの下端部に機械的に固定される面内回転位置調整基部324Aと、この面内回転位置調整基部324Aの下端部に係合し、Z軸を中心として回転摺動可能な面内回転摺動板324Bと、この面内回転摺動板324Bを面内回転位置調整基部324Aに対して面内方向に回転摺動させる面内回転調整つまみ324Cと、面内回転位置調整基部324Aおよび面内回転摺動板324Bを位置固定する位置固定部324Dとを備えている。そして、面内回転摺動板324Bは、光束分割素子挟持部31と機械的に接続し、この面内回転摺動板324Bが面内回転位置調整基部324Aに対して面内方向に回転摺動することで、光束分割素子挟持部31がこれに連動して面内方向に移動する。

【0073】

このうち、位置固定部324Dは、図11に示すように、面内回転位置調整基部324Aに固定され、左右方向に延びるルーズ孔が形成されたルーズ孔形成部324D1と、ルーズ孔形成部324D1に形成されたルーズ孔に嵌合し、面内回転摺動板324Bと係合する係合つまみ324D2とを備えている。すなわち、係合つまみ324D2を緩め、面内回転摺動板324Bへの係合状態を解除することで、面内回転摺動板324Bの面内回転位置調整基部324Aに対する面内方向への回転摺動が可能となる。

【0074】

また、図12に示すように、面内回転位置調整基部324Aおよび面内回転摺

動板324Bに跨って、回転調整めもり324Eが形成されている。そして、作業者は、この回転調整めもり324Eを見ることで、面内回転位置調整基部324Aに対する面内回転摺動板324Bの回転方向の位置を認識できる。

なお、具体的な図示は省略するが、これら位置調整部30の照明光軸には、照明装置40からの光束が透過するように、開口が形成されている。

【0075】

図4または図5に戻って、照明装置40は、照明光学ユニットの製造装置1の上方側に位置し、調整対象となる照明光学ユニット112に平行光束を供給する。この照明装置40は、光源部41および鏡筒部42を備えている。

光源部41は、筐体内部に収納される光源ランプ411を備え、この光源ランプ411としては、例えば、タンクスチレン球が用いられる。

鏡筒部42は、筒状先端部分に平行化レンズ421が設けられている。

このような照明装置40において、光源ランプ411から射出された拡散光束は、鏡筒部42の先端の平行化レンズ421によって平行化されて照明装置40の外部に平行光束として射出される。

【0076】

〈3〉 照明光学ユニットの製造方法

図14は、照明光学ユニットを製造する動作を説明するフローチャートである。

次に、上述した照明光学ユニットの製造装置1による照明光学ユニット112の製造方法を図4ないし図13、および図14のフローチャートを参照して説明する。

【0077】

(A) 先ず、保持枠112Dの光射出側の端面に、第2レンズアレイ112BおよびPBSアレイ112Cを外形基準で調整し、これら光学素子を位置決め固定する(第1位置決め固定工程:ステップS1)。なお、ここでの固定は、紫外線硬化型接着剤に限らず、熱硬化型接着剤等を用いてもよい。

【0078】

(B) ステップS1の後、保持枠112Dの光入射側の端面に第1レンズアレイ

112Aを紫外線硬化型接着剤を介して密着させる。そして、照明光学ユニット設置部20の紫外線遮蔽カバー22を開放し、第1レンズアレイ112Aが密着した保持枠112Dを照明光学ユニット設置部20の保持枠保持部21に設置する（ステップS2）。また、設置した後に、紫外線遮蔽カバー22を閉じて密閉する。具体的に、保持枠112Dの係合部112D1を保持枠保持部21における把持部21Cの把持面21C1に当接するように設置する。

【0079】

(C) ステップS2において、保持枠112Dを保持枠保持部21に設置した後、この保持枠保持部21を上昇させ、第1レンズアレイ112Aの調整位置にセットする（ステップS3）。具体的に、製造装置1に設けられた保持枠保持部上下摺動スイッチSW1を操作することで、保持枠保持部21には、空圧部11Bにて所定の圧力に設定された空気が導入され、レール12Aに対して上方に摺動する。

【0080】

(D) ステップS3において、保持枠保持部21が上昇して調整位置にセットされると、位置調整部30の光束分割素子挟持部31が第1レンズアレイ112Aの外周を挟持する（ステップS4）。具体的に、製造装置1に設けられたクランプスイッチSW2を操作することで、光束分割素子挟持部31には、空圧部11Bにて所定の圧力に設定された空気が導入される。そして、光束分割素子挟持部31の2つのクランプ部31Aが近接するように移動し、第1レンズアレイ112Aの外周を挟持する。

【0081】

(E) 照明装置40の光源ランプ411を駆動し、照明光学ユニット112に平行光を導入する（光束導入工程：ステップS5）。

(F) ステップS5において、光束が導入されると、照明光学ユニット112、および、重畠レンズ設置部21Dに設置された重畠レンズ113を介した光束の光学像が投影板14に形成される（光学像形成工程：ステップS6）。

【0082】

(G) CCDカメラ50は、ステップS6において投影板14上に形成された光

学像を検出する（光学像検出工程：ステップS7）。そして、このCCDカメラ50は、検出した光学像を電気信号に変換し、PC60に出力する。

(H) PC本体62を操作し、今回の照明光学ユニット112（第1レンズアレイ112A、第2レンズアレイ112B、PBSアレイ112C）の組み合わせに対応するプロジェクタの機種データを呼び出す（ステップS8）。

【0083】

この機種データとしては、液晶パネル141の画像形成領域の大きさ、照明領域を特定する走査線の数量に関するデータ、照明領域を対比する際のマージン量の閾値データ、および、照明領域を対比する際の中心ずれ量の閾値データ等を呼び出す。なお、このようなデータは、ユーザ等により設定可能となっており、例えば、テキストファイルで保存される。

【0084】

(I) PC本体62は、CCDカメラ50から出力される電気信号を取得する。そして、この電気信号に基づく光学像の画像処理を施し、見切枠画像201（図8）および照明光学ユニット112を介した光束に基づく光学像200（図8）の照明領域を対比し、ディスプレイ61に各種処理情報を表示させる（照明領域対比工程：ステップS9）。

【0085】

具体的に、照明領域対比工程S9は、以下に示す手順により実施される。

図15は、照明領域対比工程の手順を説明するフローチャートである。

(I-1) 先ず、PC本体62の画像取込装置63が、CCDカメラ50から出力される電気信号を取得し、画像処理装置64にて読み取可能な画像信号に変換して出力する（画像取込手順：ステップS91）。

【0086】

(I-2) 次に、画像処理装置64の輝度値取得部65Aは、画像信号を取得し、取得した画像信号に基づく光学像200（図8）の輝度値を0～255の256階調に分けて、画素単位で取得する（輝度値取得手順：ステップS92）。

(I-3) 次に、走査線選択部65Bは、取り込んだ光学像200の輝度値を照明領域LAの内外に亘る横方向の横走査線の中から1つの横走査線を選択する（

走査線選択手順：ステップS93）。具体的には、図9（A）に示すように、光学像200の左端から中央部分にかけて、光学像200の照明領域LAの内外に亘る横走査線SLの中から1つの横走査線SL1を選択する。

【0087】

(I-4) 次に、輝度値変化曲線取得部65Cは、ステップS93において選択した横走査線SL1上の画素位置に応じた輝度値（階調）の変化を示す輝度値変化曲線300を取得する（輝度値変化曲線取得手順：ステップS94）。具体的に、図9（B）に示すように、横軸（X軸）を走査線上の画素位置とし、縦軸（Y軸）を対応する輝度値の階調として、XY座標にプロットした輝度値変化曲線300を取得する。

【0088】

この取得した輝度値変化曲線300は、図9（B）に示すように、光学像200の照明領域LAの境界部分において、光学像200の外側から中央部分に向って、クランク状またはS字状に取得される。すなわち、輝度値変化曲線300は、階調が略0であって照明領域LAの外部であることを示す部分である基準部301と、階調が略255であって適正な照明領域を示す照明領域LA内部である照明部分302と、その間の輝度値変化部分303とで構成される。

【0089】

図16は、図9（B）における輝度値変化曲線300の一部を拡大して示す図である。

(I-5) 次に、近似直線算出部65Dは、輝度値変化部分303を直線として近似し、この近似直線を算出する（近似直線算出手順：ステップS95）。具体的には、図17に示すフローチャートに基づいて近似直線を算出する。

【0090】

(I-5-1) 図16、図17に示すように、輝度値変化部分303で直線性の高い部分となるような基準となる輝度基準値、例えば、220階調を設定する（ステップS951）。

(I-5-2) 次に、この220階調を示す220階調線Y1と、輝度値変化部分303との交点Aの座標を取得する。そして、この交点AのX座標の前後10

画素離れた画素位置を示す点である点B, Cを取得する（ステップS952）

【0091】

(I-5-3) これらの取得した点B, Cの座標、すなわち、点B, Cの画素位置および画素位置の階調に基づいて、点B, C間の輝度値変化部分303を直線として近似し、この変化部分近似直線303Aを算出する（ステップS953）。

【0092】

(I-6) 次に、図15、図16に示すように、変化部分近似直線303Aに基づいて、境界点取得部65Eは、光学像200の照明領域LAの境界点Hを取得する（境界点取得手順：ステップS96）。具体的には、図18に示すフローチャートに基づいて境界点Hを取得する。

(I-6-1) 図16、図18に示すように、変化部分近似直線303Aと255階調線Y2との交点Gを取得する（ステップS961）。

【0093】

(I-6-2) この交点Gから光学像200の中心側へ所定画素分、例えば、50画素分シフトした画素位置における照明部分302上の基準となる点Eを取得する（ステップS962）。

(I-6-3) 次に、光学像200の略中心となる画素位置における照明部分302上の点Fを取得する（ステップS963）。

【0094】

(I-6-4) これらの点E, Fの座標、すなわち、点E, Fの画素位置および画素位置の階調に基づいて、点E, F間の照明部分302を直線として近似し、この照明部分近似直線302Aを算出する（ステップS964）。

(I-6-5) 次に、算出された変化部分近似直線303Aと、照明部分近似直線302Aとの交点Hを取得する（ステップS965）。このようにして、取得された交点Hが境界点である。

【0095】

(I-7) このような手順で、左側の横走査線SL1の全ての境界点Hを取得した後に、同様な手順で、右側の横走査線および上下側の縦走査線についても境界

点Hを取得する（ステップS97）。この際、走査線選択手順S93では、ステップS8にて呼び出された走査線の数量に関するデータに基づいて特定の数量の走査線SLが選択される。

(I-8) 次に、照明マージン算出部65Fは、見切枠画像201の画素位置、および、ステップS87にて取得された境界点Hに基づいて、見切枠画像201に対する光学像200の照明領域LAの照明マージンMを算出する（照明マージン算出手順：ステップS98）。具体的には、図19に示すフローチャートに基づいて照明マージンMを算出する。

図20は、左右マージンの算出方法を説明する図である。図21は、上下マージンの算出方法を説明する図である。

先ず、照明マージン算出部65Fによる左右マージンの算出手順を図19に示すフローチャート、図20を参照して説明する。

【0096】

(I-8-1) 照明マージン算出部65Fは、輝度値取得手順S82において、取得された輝度値から、見切枠画像201の画素位置を認識する（ステップS981）。

(I-8-2) この認識した画素位置の座標から見切枠画像201の左右端縁間の距離Da hを算出する（ステップS982）。

【0097】

(I-8-3) また、照明マージン算出部65Fは、境界点取得部65Eにて取得された境界点Hのうち、見切枠画像201の左端縁に沿った境界点と右端縁に沿った境界点との最小距離Ds hを算出する（ステップS983）。すなわち、この最小距離Ds hは、見切枠画像201の左端縁に沿った境界点H1および右端縁に沿った境界点H2における見切枠画像201の左右端縁に直交する方向の距離に相当する。

【0098】

(I-8-4) そして、照明マージン算出部65Fは、ステップS982にて算出した距離Da h、および、ステップS983にて算出した距離Ds hに基づいて、左右マージンMhを以下の式(3)により算出する。

【0099】

【数3】

$$M_h = (D_{sh} - D_{ah}) / 2 \cdots (3)$$

【0100】

また、照明マージン算出部 65F は、このような手順において、左右方向を上下方向に展開して、上下マージン M_v を算出する。すなわち、図 21 に示すように、照明マージン算出部 65F は、見切棒画像 201 の上下端縁間の距離 D_{av} および、見切棒画像 201 の上端縁に沿った境界点 H3 および下端縁に沿った境界点 H4 における見切棒画像 201 の上下端縁に直交する方向の距離 D_{sv} に基づいて、上下マージン M_v を以下の式 (4) により算出する (ステップ S98 4)。

【0101】

【数4】

$$M_v = (D_{sv} - D_{av}) / 2 \cdots (4)$$

【0102】

(I-9) 次に、画像中心ずれ量算出部 65G は、見切棒画像 201 の中心位置、および、光学像 200 の照明領域 LA の略中心位置を算出し、これら中心位置のずれ量を座標値として算出する (ステップ S99) 具体的には、図 22 に示すフローチャートに基づいて中心位置のずれ量を算出する。

図 23 は、画像中心ずれ量算出部による中心位置のずれ量の算出方法を説明する図である。

【0103】

(I-9-1) 先ず、画像中心ずれ量算出部 65G は、見切棒画像 201 の画素位置の座標値から、四隅の点 A1, A2, A3, A4 の座標値を算出する。そして、これら四隅の点 A1, A2, A3, A4 の座標値に基づいて、見切棒画像 201 の中心位置 Oa の座標値を算出する (見切棒画像中心位置算出手順: ステップ S991)

【0104】

(I-9-2) 次に、画像中心ずれ量算出部 65G は、ステップ S87 において

取得した境界点Hから、見切梓画像201の各左右端縁に沿った近似直線L1, L2, L3, L4を算出する（ステップS992）。

(I-9-3) また、画像中心ずれ量算出部65Gは、これら算出した近似直線L1, L2, L3, L4の交点S1, S2, S3, S4の座標値を算出する（ステップS993）。

【0105】

(I-9-4) さらに、画像中心ずれ量算出部65Gは、これら算出した交点S1, S2, S3, S4の座標値に基づいて、照明領域LAの略中心位置Osの座標値を算出する（光学像中心位置算出手順：ステップS994）。

(I-9-5) そして、画像中心ずれ量算出部65Gは、ステップS991にて算出した中心位置Oaの座標値、および、ステップS994にて算出した中心位置Osの座標値から、見切梓画像201と照明領域LAの中心位置のずれ量を算出する（画像中心ずれ量算出手順：ステップS995）。具体的に、中心位置のずれ量は、中心位置Osおよび中心位置OaのX座標のずれ量として、中止ずれ量Xを算出する。また、中心位置Osおよび中心位置OaのY座標のずれ量として、中心ずれ量Yを算出する。

【0106】

(I-10) ステップS88にて照明マージンを算出し、また、ステップS99にて画像中心ずれ量を算出した後、表示制御手段67は、照明領域対比手段65から左右マージンMh、上下マージンMv、中心ずれ量X、および、中心ずれ量Yを取得する。そして、表示制御手段67は、ディスプレイ61にこれらの情報を表示させる（ステップS100）。具体的に、表示制御手段67は、図24に示すように、ディスプレイ61に情報Aの表示を実施する。

【0107】

(J) 作業者は、ステップS100にてディスプレイ61に表示された情報Aを観察しながら、位置調整部30を操作して、第1レンズアレイ112Aの位置調整を実施する（光束分割素子位置調整工程：ステップS10）。具体的には、図25に示すフローチャートに基づいて位置調整を実施する。

ここで、照明領域対比手段65は、この位置調整部30によって第1レンズア

レイ112Aの位置が変更されると、この変更に連動して、照明マージンおよび中心位置のずれ量を算出し、ディスプレイ61に情報Aを表示させる。このため、作業者はこの表示された情報Aを観察しながら位置調整を実施できる。

【0108】

(J-1) 先ず、作業者は、位置調整部30における調整部本体32のY軸位置調整部322およびX軸位置調整部323を操作し、第2レンズアレイ112BおよびPBSアレイ112Cに対する第1レンズアレイ112Aの粗調整を実施する(ステップS101)。

具体的に、作業者は、ディスプレイ61に表示された中心ずれ量Xを観察しながら、X軸方向調整つまみ323Bを操作して、第1レンズアレイ112AをX軸方向に位置調整する(X軸位置調整手順:ステップS101A)。

また、作業者は、ディスプレイ61に表示された中心ずれ量Yを観察しながら、Y軸方向調整つまみ323Bを操作して、第1レンズアレイ112AをY軸方向に位置調整する(Y軸位置調整手順:ステップS101B)。

そして、中心ずれ量Xおよび中心ずれ量Yが略0になるようにX軸位置調整手順S101AおよびY軸位置調整手順S101Bを実施する。

【0109】

(J-2) 次に、作業者は、位置調整部30における調整部本体32の面内回転位置調整部324を操作して第1レンズアレイ112Aの位置調整を実施し、照明マージンを調整する(面内回転位置調整手順:ステップS102)。

具体的に、作業者は、面内回転位置調整部324における位置固定部324Dを操作して、面内回転摺動板324Bを摺動可能にする。そして、作業者は、ディスプレイ61の左右マージンM_hおよび上下マージンM_vを観察しながら、面内回転調整つまみ324Cを操作して、面内回転摺動板324Bを回転摺動させて、第1レンズアレイ112Aの位置調整を実施する。

【0110】

(J-3) 次に、作業者は、再度、ディスプレイ61に表示された中心ずれ量Xおよび中心ずれ量Yを観察しながら、X軸方向調整つまみ323BおよびY軸方向調整つまみ322Bを操作して、第1レンズアレイ112Aの位置調整を実施

する。そして、これら中心ずれ量Xおよび中心ずれ量Yが略0になるように調整する（ステップS103）。

なお、本発明に係る光束分割素子保持手順に相当するステップS4をこの光束分割素子位置調整工程S10にて実施してもよい。

【0111】

(K) そして、PC本体62における画像処理装置64の最適状態判定手段66は、ステップS9にて位置調整が実施されている際に、照明領域対比手段65にて算出された照明マージンおよび中心位置のずれ量を取得する。そしてまた、最適状態判定手段66は、これら取得した照明マージンおよび中心位置のずれ量が所定の閾値以上であるか否かを判定する（最適状態判定工程：ステップS11）。

【0112】

具体的に、最適状態判定手段66は、ステップS8にて呼び出したマージン量の閾値データに基づいて、左右マージンM_hおよび上下マージンM_vがそれぞれ閾値以上であるか否かを判定する（ステップS111）。

ステップS111において、「N o (N)」と判定した際には、最適状態判定手段66は、表示制御手段67に判定情報を出力する。そして、表示制御手段67は、この判定情報に基づいて、ディスプレイ61に「N G」の文字を点灯させる（図24参照）。この場合、ステップS10に戻って、作業者は再度、位置調整を実施する必要がある。

【0113】

一方、ステップS111において、「Y e s (Y)」と判定した際には、最適状態判定手段66は、ステップS8にて呼び出した中心ずれ量の閾値データに基づいて、中心ずれ量Xおよび中心ずれ量Yがそれぞれ閾値以下であるか否かを判定する（ステップS112）。

ステップS112において、「N」と判定した際には、ステップS111と同様に、ディスプレイ61に「N G」の文字が点灯される。また、この場合、ステップS10に戻って、作業者は再度、位置調整を実施する必要がある。

【0114】

一方、ステップS112において、「Y」と判定した際には、最適状態判定手段66は、表示制御手段67に判定情報を出力する。そして、表示制御手段67は、この判定情報に基づいて、ディスプレイ61に「OK」の文字を点灯させる（図24参照）。すなわち、最適状態判定手段66は、照明マージンが所定の閾値以上であり、かつ、中心ずれ量が所定の閾値以下である場合に、第1レンズアレイ112Aの位置が最適な状態であると判定する。

【0115】

(L) 次に、紫外線照射装置70から光ファイバ等の導光手段を介して、位置調整部30に設置された光線照射部（図示省略）から保持枠112Dの光入射側端面と第1レンズアレイ112Aとの間に紫外線を照射する。そして、保持枠112Dと第1レンズアレイ112Aとの間に介在する紫外線硬化型接着剤がこの紫外線の照射により硬化し、保持枠112Dの光入射側端面に第1レンズアレイ112Aが接着固定される（第2位置決め工程：ステップS12）。

【0116】

(M) そして、製造装置1に設けられたクランプスイッチSW2を操作し、光束分割素子挟持部31による第1レンズアレイ112Aの挟持状態を解除する（ステップS13）。そしてまた、製造装置1に設けられた保持枠保持部上下摺動スイッチSW1を操作し、保持枠保持部21をレール12Aに対して下方に摺動する（ステップS14）。そしてさらに、紫外線遮蔽カバー22を開放して照明光学ユニット112を取り出す（ステップS15）。

以上のような工程により、照明光学ユニット112が製造される。

【0117】

〈4〉実施形態の効果

本実施形態によれば、以下のようない効果がある。

(1) 照明光学ユニットの製造方法において、照明領域対比工程S9では、光学像検出工程S7にて検出された光学像を取り込んで、PC60を用いて画像処理を施すことにより、見切枠画像201および光学像200の照明領域LAを対比できる。また、光束分割素子位置調整工程S10では、第2レンズアレイ112BおよびPBSアレイ112Cに対する第1レンズアレイ112Aの相対位置を

調整する。そして、最適状態判定工程 S 1 1 では、この位置調整を実施している際に、P C 6 0 により、照明領域対比工程 S 9 にて算出される対比結果に基づいて設計上の照明領域である見切棒画像 2 0 1 に対する光学像 2 0 0 の照明領域 L A の最適な状態を判定できる。

したがって、従来の目視による曖昧な調整精度を改善し、各光学素子の光学的相対位置を高精度に調整できるとともに、効率的に調整することができ、集光効率の向上した照明光学ユニット 1 1 2 を製造できる。

【0 1 1 8】

(2) 光束分割素子位置調整工程 S 1 0 では、第1位置決め工程 S 1 にて保持棒 1 1 2 D に位置決め固定された第2レンズアレイ 1 1 2 B および P B S アレイ 1 1 2 C に対して第1レンズアレイ 1 1 2 A のみの位置調整を実施する。そして、第2位置決め工程 S 1 2 では、この第1レンズアレイ 1 1 2 A の位置調整の後に、保持棒 1 1 2 D に位置決め固定する。

したがって、位置調整を簡単な工程で実施することができ、照明光学ユニット 1 1 2 の製造効率を向上できる。

【0 1 1 9】

(3) 照明領域対比工程 S 9 では、輝度値変化曲線 3 0 0 の輝度値変化部分 3 0 3 の傾きは光源ランプ 4 1 1 の変化等に影響されず、この影響を受けない輝度値変化部分 3 0 3 を変化部分近似直線 3 0 3 A として直線近似したことに基づいて境界点 H を取得したので、光学像 2 0 0 の正確な照明領域 L A を算出できる。

【0 1 2 0】

(4) また、照明領域対比工程 S 9 では、直線性の高い部分である輝度基準値 2 2 0 階調線近傍の点 A を基準として、この点 A の前後 1 0 画素離れた点 B, C に基づいて、変化部分近似直線 3 0 3 A を算出したので、画像取り込みのタイミングによる近似直線の傾きのばらつきを最小限に抑えた正確な近似直線を取得でき、光学像 2 0 0 の正確な照明領域 L A を算出できる。

【0 1 2 1】

(5) 照明マージン算出手順 S 9 8 では、ステップ S 9 7 にて取得された複数の境界点 H のうち、見切棒画像 2 0 1 の互いに対向する一方の辺に沿った境界点と

、他方の辺に沿った境界点間の一対の辺に直交する方向の最小距離 (D_{sh} 、 D_{sv}) 、および、見切枠画像 201 の一対の画素位置間の距離 (D_{ah} 、 D_{av}) に基づいて、式(3)および(4)により照明マージン(左右マージン M_h 、上下マージン M_v)を算出する。

したがって、例えば、取得された複数の境界点 H のうち、特異的な境界点があった場合であっても、見切枠画像 201 に対する光学像 200 の照明領域 LA 全体の照明マージンを確実に算出できる。

【0122】

(6) 照明領域対比工程 S9 では、見切枠画像中心算出手順 S991、光学像中心位置算出手順 S994、および、画像中心ずれ量算出手順 S995 を備えていることにより、設計上の照明領域である見切枠画像 201 の中心軸と光学像 200 の照明領域 LA の中心軸とのずれ量を算出できる。

また、最適状態判定工程 S11 では、照明マージン(左右マージン M_h 、上下マージン M_v)が所定の閾値以上であり、かつ、画像中心ずれ量算出手順 S99 で算出された中心位置のずれ量(中心ずれ量 X、中心ずれ量 Y)が所定の閾値以下である場合に、光学像 200 の照明領域 LA が最適状態であると判定する。このことにより、照明領域対比工程 S9 にて取得した複数の境界点 H に誤差が生じている場合であっても、設計上の照明領域である見切枠画像 201 に対して有効な照明マージンを確保した照明光学ユニット 112 を製造でき、さらに、照明光軸のずれのない照明光学ユニット 112 を製造できる。

【0123】

(7) 光束分割素子位置調整工程 S10 では、位置調整部 30 における Y 軸位置調整部 322、X 軸位置調整部 323、および、面内回転位置調整部 324 を操作し、第 1 レンズアレイ 112A を X 軸方向、Y 軸方向、Z 軸を中心とした回転方向に位置調整し、照明マージンおよび中心位置のずれ量を調整する。

したがって、第 1 レンズアレイ 112A の位置調整を高精度に実施でき、照明光学ユニット 112 を高精度に製造できる。

【0124】

(8) 第 2 位置決め工程 S12 では、第 1 レンズアレイ 112A と保持枠 112

Dの光入射側端面との間に介在する紫外線硬化型接着剤に、紫外線照射装置70と光ファイバ等の導光手段で接続された光線照射部から紫外線を照射する。そして、この接着剤を硬化させて第1レンズアレイ112Aと保持枠112Dを接着固定する。

したがって、照明光学ユニット112の製造を容易に行え、照明光学ユニット112の製造効率の向上を図れる。

【0125】

〈5〉実施形態の変形

なお、本発明は、前記実施の形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。

前記実施形態において、照明領域対比工程S9では、取得した境界点Hに基づく最小距離Ds、および、見切枠画像201の画素位置間の距離Daに基づいて、照明マージンMを算出していたが、これに限らない。例えば、見切枠画像201における所定の画素位置の座標値に対する、取得した所定の境界点Hの座標値の相対値を照明マージンMとして採用してもよい。さらに、見切枠画像201の面積に対する、複数の境界点Hの集合で形成される光学像200の照明領域LAの面積の相対値を照明マージンMとして採用してもよい。

【0126】

また、照明領域対比工程S9では、複数の走査線から複数の境界点Hを取得して、これら取得した境界点Hに基づいて照明マージンMを算出していたが、これに限らない。例えば、单一の走査線から境界点Hを取得する。そして、この走査線上の見切枠画像201の画素位置または画素位置間の距離に対する、境界点Hの位置または境界点H間の距離の相対値を取得し、この相対値を照明マージンMとして算出してもよい。

【0127】

さらに、照明マージン算出手順S98では、取得した境界点Hに基づく最小距離Ds、および、見切枠画像201の画素位置間の距離Daに基づいて、式(3)、(4)にて照明マージンM(左右マージンM_h、上下マージンM_v)を算出していたが、これに限らない。その他の数式を用いて照明マージンMを算出して

もよい。

【0128】

前記実施形態において、近似直線算出手順S95では、変化部分近似直線303Aを取得する際に、220階調を輝度基準値として設定したが、これに限らない。例えば、100階調等のその他の階調を輝度基準値として設定してもよい。この際、輝度基準値は予め設定されていてもよい。

また、前後10画素分離れた画素位置の点B, Cに基づいて、変化部分近似直線303Aを取得したが、これに限らない。例えば、前後20画素等のその他の画素数分離れた位置の点に基づいて取得してもよい。

さらに、変化部分近似直線303Aを取得する際に、2点B, Cに基づいて直線近似していたが、3点以上の複数の点を取得して、最小二乗法等の手法を用いて直線近似してもよい。要するに、輝度値変化部分303を適正に直線近似できればよい。

【0129】

前記実施形態において、境界点取得手順S96では、所定画素分として50画素分シフトするようにした（ステップS962）が、このシフト画素数は、特に限定されない。例えば、変化部分近似直線303Aの傾き（図16の角度 ϕ ）に応じて変化させてもよい。すなわち、傾きが大きい場合（角度 ϕ ：大）には大きくシフトさせ、傾きが小さい場合（角度 ϕ ：小）には小さくシフトさせる。このようにすれば、照明部分302上の点Eを、直線近似する際に、基準として適性な点を確実に特定できる。ただし、このシフトさせる画素数は特に限定されない。

また、光学像200の略中央部分の画素位置に点Fに基づいて、照明部分近似直線302Aを算出したが、これに限らない。その他の画素位置の点に基づいて算出してもよい。

【0130】

前記実施形態において、光束分割素子として第1レンズアレイ112Aを用いた構成を説明したが、これに限らない。例えば、入射した光束を内面反射を利用して複数の部分光束に分割するロッド等を採用してもよい。すなわち、光束を複

数の部分光束に分割できる光学素子があれば、種々のものを採用できる。

【0131】

前記実施形態において、照明光学ユニット112は、第1レンズアレイ112A、第2レンズアレイ112B、および、PBSアレイ112Cを一体化する保持枠112Dを用いた構成を説明したが、このような構成に限らない。すなわち、第1レンズアレイ112Aを、第2レンズアレイ112BおよびPBSアレイ112Cに対して位置決めできるような構成とすればよく、スペーサ等を利用して一体化するような構成でもよい。

また、照明光学ユニット112として、第1レンズアレイ112A、第2レンズアレイ112B、および、PBSアレイ112Cの他、重畳レンズ113等のその他の光学素子を一体化するように構成してもよい。

【0132】

前記実施形態において、照明光学ユニット112は、紫外線硬化型接着剤を使用して一体化していたが、これに限らない。例えば、熱硬化型接着剤、弹性系接着剤、瞬间系接着剤等のその他の接着剤を採用してもよい。

【0133】

前記実施形態において、投影板14には、見切枠14Aが形成された構成を説明したが、これに限らない。例えば、画像処理装置64に、プロジェクタの種類に応じた見切枠画像を記録する記録手段を設ける。そして、照明領域対比手段65は、この記録手段に記録された見切枠画像のうち、選択されたプロジェクタの種類に応じた見切枠画像と光学像200の照明領域LAとを対比するような構成としてもよい。

また、投影板14は、すりガラスで構成したが、これに限らない。例えば、アクリル等の各種プラスチック、樹脂等、その他の材料で構成してもよい。

【0134】

前記実施形態において、製造対象となる照明光学ユニット112は、プロジェクタ100のインテグレータ照明光学系110を構成する光学ユニットであったが、これに限らず、他の用途に使用されてもよい。

【0135】

【発明の効果】

このような本発明によれば、光束分割素子、集光素子、および、偏光変換素子を一体化した照明光学ユニットを高精度かつ効率的に製造できる、という効果がある。

【図面の簡単な説明】

【図1】

本発明の実施形態に係る照明光学ユニットを備えたプロジェクタの光学系の構造を示す模式図である。

【図2】

前記実施形態における光学系の構造を説明する模式図である。

【図3】

前記実施形態における照明光学ユニットの構造を示す概要斜視図である。

【図4】

前記実施形態における照明光学ユニットを製造する照明光学ユニットの製造装置を示す正面図である。

【図5】

前記実施形態における照明光学ユニットを製造する照明光学ユニットの製造装置を示す側面図である。

【図6】

前記実施形態における投影板の構造を示す正面図である。

【図7】

前記実施形態におけるPC本体における制御構造を模式的に示すブロック図である。

【図8】

前記実施形態における画像処理装置にて認識される光学像を模式的に示す図である。

【図9】

前記実施形態におけるPC本体にて取り込まれた光学像において走査線を選択して輝度値変化曲線を取得する様子を示す図である。

【図10】

前記実施形態における照明光学ユニットの設置状態を説明する図である。

【図11】

前記実施形態における位置調整部を示す正面図である。

【図12】

前記実施形態における位置調整部を示す側面図である。

【図13】

前記実施形態における光束分割素子挿持部を上方から見た図である。

【図14】

前記実施形態における照明光学ユニットを製造する動作を説明するフローチャートである。

【図15】

前記実施形態における照明領域対比工程の手順を説明するフローチャートである。

【図16】

前記実施形態における輝度値変化曲線の一部を拡大して示す図である。

【図17】

前記実施形態における近似直線算出手順を説明するフローチャートである。

【図18】

前記実施形態における境界点取得手順を説明するフローチャートである。

【図19】

前記実施形態における照明マージン算出手順を説明するフローチャートである

【図20】

前記実施形態における照明マージン算出手順にて左右マージンの算出手順を説明する図である。

【図21】

前記実施形態における照明マージン算出手順にて上下マージンの算出手順を説明する図である。

【図22】

前記実施形態における画像中心ずれ量算出部による中心位置のずれ量の算出手順を説明するフローチャートである。

【図23】

前記実施形態における画像中心ずれ量算出部による中心位置のずれ量の算出手順を説明する図である。

【図24】

前記実施形態における表示制御手段によりディスプレイに表示される情報を示す図である。

【図25】

前記実施形態における光束分割素子位置調整工程の手順を説明するフローチャートである。

【符号の説明】

- 1 照明光学ユニットの製造装置
- 1 4 投影板
- 1 4 A 見切枠
- 2 1 素子保持体としての保持枠保持部
- 3 0 位置調整部
- 3 1 光束分割素子保持体としての光束分割素子挾持部
- 4 0 光源としての照明装置
- 5 0 撮像素子としてのCCDカメラ
- 6 0 PC
- 6 3 画像取込装置
- 6 4 画像処理装置
- 6 5 照明領域対比手段
- 6 6 最適状態判定手段
- 7 0 位置決め固定部としての紫外線照射装置
- 1 0 0 プロジェクタ
- 1 1 2 照明光学ユニット

112A 光束分割素子としての第1レンズアレイ

112B 集光素子としての第2レンズアレイ

112C 偏光変換素子としてのPBSアレイ

200 光学像

201 見切棒画像

300 輝度値変化曲線

301 照明領域外部を表す部分としての基準部分

302 照明領域内部を表す部分としての照明部分

303 輝度値変化部分

303A 近似直線としての変化部分近似直線

S1 第1位置決め工程

S4 光束分割素子保持手順

S5 光束導入工程

S6 光学像形成工程

S7 光学像検出工程

S9 照明領域対比工程

S10 光束分割素子位置調整工程

S11 最適状態判定工程

S12 第2位置決め工程

S91 画像取込手順

S92 輝度値取得手順

S93 走査線選択手順

S94 輝度値変化曲線取得手順

S95 近似直線算出手順

S96 境界点取得手順

S98 照明マージン算出手順

S101A X軸位置調整手順

S101B Y軸位置調整手順

S102 面内回転位置調整手順

S 9 9 1 見切棒画像中心位置算出手順

S 9 9 4 光学像中心位置算出手順

S 9 9 5 画像中心ずれ量算出手順

D s , D s h , D s v 最小距離

D a , D a h , D a v 見切棒画像の一対の画素位置の距離

H 境界点

L A 照明領域

M , M h , M v 照明マージン（左右マージン、上下マージン）

S L 走査線

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

【図22】

【図23】

【図24】

61

NG	OK
----	----

A {

左右マージン	M _h (mm) = 0.000
上下マージン	M _v (mm) = △.△△△
中心ずれ量X	(mm) = □.□□□
中心ずれ量Y	(mm) = ☆.☆☆☆

【図25】

【書類名】 要約書

【要約】

【課題】 光束分割素子、集光素子、および、偏光変換素子を一体化した照明光学ユニットを高精度かつ効率的に製造できる照明光学ユニットの製造方法を提供する。

【解決手段】 第1位置決め工程S1は、集光素子および偏光変換素子を位置決め固定する。光束導入工程S5は、光束分割素子、集光素子、および、偏光変換素子に光束を導入する。光学像形成工程S6は、これらの素子を介した光学像を検出する。照明領域対比工程S9は、検出された光学像に画像処理を施し、光学像による照明領域および設計上の照明領域を対比する。光束分割素子位置調整工程S10は、光束分割素子の位置調整を実施する。最適状態判定工程S11は、対比結果に基づいて、設計上の照明領域に対する光学像の照明領域の最適状態を判定する。第2位置決め工程S12は、集光素子および偏光変換素子に対して光束分割素子を位置決め固定する。

【選択図】 図14

出願人履歴情報

識別番号 [000002369]

1. 変更年月日 1990年 8月20日

[変更理由] 新規登録

住 所 東京都新宿区西新宿2丁目4番1号

氏 名 セイコーエプソン株式会社