jm

2023-11-05

1 Rozkład normalny - standaryzacja

Uwaga: komenda

```
rnorm(n,mean=mu,sd=sigma)
```

tworzy próbę losową długości n z rozkładu normalnego $\mathcal{N}(mu, sigma^2)$. Na przykład

$$rnorm(n, mean = -5, sd = 3)$$

daje próbę z rozkładu $\mathcal{N}(-5,9)$.

- 1. Wygenerować próbki z rozkładu normalnego $\mathcal{N}(\mu, \sigma^2)$ z różnymi parametrami $\mu \in \mathbb{R}$ i $\sigma > 0$. Obejrzeć histogramy. Ocenić wpływ parametrów μ i σ na kształt histogramu. Ocenić wielkość ogonów. Jak duże (średnio) są elementy próbki w zależności od μ i σ ?
- 2. Niech $\mu=5$ i $\sigma=2$. Utworzyć wektor x zawierający próbę z rozkładu normalnego $\mathcal{N}(\mu,\sigma^2)$. Przekształcić go do wektora y:

$$y = \frac{x - \mu}{\sigma}$$
.

Obliczyć frakcję elementów y, które są nie większe niż a dla a=-3,-2,-1,0,1,2,3. Porównać otrzymane wielkości z wartościami dystrybuanty rozkładu standardowego normalnego w punktach a.

3. Powtórzyć kroki z poprzedniego punktu dla trzech wybranych przez siebie par (μ, σ) . Wysnuć wniosek dotyczący rozkładu zmiennej losowej

$$Y = \frac{X - \mu}{\sigma},$$

jeśli $X \sim \mathcal{N}(\mu, \sigma^2)$.

2 Reguła trzech sigm dla rozkładu normalnego

1. Wyznaczyć empirycznie

$$\mathbb{P}(|X - \mu| < \sigma)$$

dla $X \sim \mathcal{N}(\mu, \sigma^2)$ dla pary $(\mu, \sigma) = (0, 1)$ i dla trzech innych wybranych przez siebie par (μ, σ) .

2. To samo zrobić dla

$$\mathbb{P}(|X - \mu| < 2\sigma)$$

i

$$\mathbb{P}(|X - \mu| < 3\sigma).$$

Sformułować wnioski.

Dla rozkładu normalnego $\mathcal{N}(\mu, \sigma^2)$ napisz funkcję $F(x, \mu, \sigma^2)$, która za pomocą prostego całkowania numerycznego zwraca wartość dystrybuanty zmiennej losowej o rozkładzie $\mathcal{N}(\mu, \sigma^2)$ w punkcie x.