

Universidade Federal de Santa Catarina Centro Tecnológico

Departamento de Informática e Estatística Ciências da Computação & Engenharia Eletrônica

Sistemas Digitais

INE 5406

Aula 9-T

3. O Processador MIPS monociclo: execução das instruções e análise de *timing* (tempos de estabilização dos sinais, atrasos dos caminhos, caminhos críticos e frequência máxima do relógio).

Profs. José Luís Güntzel, Rafael Luiz Cancian e Cristina Meinhardt {j.guntzel, rafael.cancian, cristina.meinhardt}@ufsc.br

Elementos de Memória com Capacidade de Escrita

Estimativa do Período do Relógio

Uma instrução por ciclo de relógio...

Para que o MIPS monociclo tenha tempo suficiente para realizar qualquer instrução, é necessário que:

$$T >= D$$

Onde D = atraso crítico, da instrução mais lenta.

Será preciso realizar a análise de timing cada uma das instruções

Período do Relógio x Escritas em Elementos de Memória

Instruções tipo R e lw

PC MIPS monociclo (componentes combinacionais) PC e banco de registradores

Instrução sw

Instruções beq e j

- Toda instrução inicia com a escrita do PC
- Toda a instrução termina com a escrita do PC
 - Instruções tipo R e lw também escrevem em um registrador
 - Instruções sw também escrevem na memória de dados

Tempo de Estabilização (TE) no Nível RT

Nomenclatura para as características temporais dos componentes do MIPS monociclo:

Componente	Característica	
Memória de instruções	tempo para leitura	td _{I MEM}
Memória de dados	tempo para leitura	td _{I MEM}
Memória de dados	tempo para escrita (setup)	td _{EMEM}
Banco de Registradores	tempo para leitura	
Banco de Registradores	tempo para escrita (setup)	td _{LREG}
ULA	atraso para qualquer operação	td _{ULA}
Somador (qualquer)	atraso	td _{soma}
Mux 2:1 (qualquer)	atraso	td _{mux}
PC	tempo de setup	tsu
PC	tempo de carga	tco
PC	tempo de hold	th
Deslocador, extensão de sinal, porta AND	atraso	td _{fios}
Controle	atraso	td _{controle}
Controle da ULA	atraso	td _{ctrlULA}

Tempo de Estabilização (TE) no Nível RT

O Caso do PC

^{*} Toma-se a borda de relógio t0 como referência de tempo; logo, TE(sPC) = tco após t0.

Tempo de Estabilização (TE) no Nível RT

Para Elementos Combinacionais (exceto muxes): o caso da Extensão de sinal e do Deslocador

Tempo de Estabilização (TE) no Nível RT

Para Elementos Combinacionais (exceto muxes): o caso do Controle do MIPS monociclo

 $TE(qq sinal de controle) = TE(Instr) + td_{controle}$

Obs: esta equação só vale para os sinais de controle que só dependem do opcode. Isto excluir **cULA** e **FontePC**.

Tempo de Estabilização (TE) no Nível RT

Para Elementos Combinacionais (exceto muxes)

$$\begin{split} & \mathsf{TE}(\mathsf{S}) = \mathsf{max} \; \{ \; \mathsf{TE}(\mathsf{A}) \; , \; \mathsf{TE}(\mathsf{B}) \; \} \; + \; \mathsf{td}_{\mathsf{soma}} \\ & \mathsf{TE}(\mathsf{C}_{\mathsf{out}}) = \mathsf{max} \; \{ \mathsf{TE}(\mathsf{A}) \; , \; \mathsf{TE}(\mathsf{B}) \} \; + \; \mathsf{td}_{\mathsf{soma}} \end{split}$$

TE(cULA) = max { TE(Instr) , TE(ULAOp) } + td_{ctrl-ULA}

$$\label{eq:temperature} \begin{split} &\text{TE}(\text{Resultado}) = \max\{ \text{ TE}(\text{A}), \text{ TE}(\text{M2}), \text{ TE}(\text{cULA}) \, \} + \text{td}_{\text{ULA}} \\ &\text{TE}(\text{Zero}) = \max\{ \text{ TE}(\text{A}), \text{ TE}(\text{M2}), \text{ TE}(\text{cULA}) \, \} + \text{td}_{\text{ULA}} \end{split}$$

Tempo de Estabilização (TE) no Nível RT

Para Elementos Combinacionais (exceto muxes):

Leituras do Banco de Registradores (são assíncronas e portanto, ocorrem de maneira similar à operação de um bloco combinacional)

Nas leituras do Banco_Reg:

$$TE(A) = TE(B) = TE(Instr) + td_{LREG}$$

Tempo de Estabilização (TE) no Nível RT

Para Elementos Combinacionais (exceto muxes):

Leituras das Memórias são assíncronas (e portanto, ocorrem de maneira similar à operação de um bloco combinacional)

Zero ULA Resultado Mem_Dados Dado a ser escrito

Nas leituras de Mem_Instr:

$$TE(Instr) = TE(sPC) + td_{LMEM}$$

Nas leituras de Mem_Dados:

 $TE(Dado lido) = max{TE(Resultado), TE(LerMem)} + td_{LMEM}$

INE/CTC/UFSC
Sistemas Digitais

Tempo de Estabilização (TE) no Nível RT

O Caso dos Muxes

Tempo de Estabilização (TE) no Nível RT

O Caso do sinal FontePC

Análise de *Timing* por meio dos TEs

Para um exemplo concreto, assumamos os seguintes valores para as características temporais dos componentes do MIPS monociclo:

Componente	Característica	Símbolo	Valor [ps]
Memória de instruções	tempo para leitura	td _{LMFM}	300
Memória de dados	tempo para leitura	td _{LMFM}	300
Memória de dados	tempo para escrita (setup)	td _{EMEM}	300
Banco de Registradores	tempo para leitura	td _{LREG}	70
Banco de Registradores	tempo para escrita (setup)	td _{EREG}	70
ULA	atraso para qualquer operação	td _{ULA}	60
Somador (qualquer)	atraso	td _{soma}	20
Mux 2:1 (qualquer)	atraso	td _{mux}	2
PC	tempo de setup	tsu	5
PC	tempo de carga	tco	5
PC	tempo de hold	th	desprezível (=0)
Deslocador, extensão de sinal, porta AND	atraso	td _{fios}	desprezível (=0)
Controle	atraso	td _{controle}	desprezível (=0)*
Controle da ULA	atraso	td _{ctrlULA}	desprezível (=0)*

^{*} isto significa que o atraso para gerar qualquer sinal de controle é zero

Início da Execução de Qualquer Instrução

Início da Execução de Qualquer Instrução

Instrução Lida!!

Calculam-se todos TE(??) = TE(Instr) + td_{fios}

Calculam-se todos TE(??) = TE(Instr) + td_{fios}

A Seguir, calculam-se os TEs dos Sinais de Controle

No exemplo em questão, temos:

Componente	Característica	Símbolo	Valor [ps]
	•••	•••	•••
Controle	atraso	td _{controle}	desprezível (=0)
Controle da ULA	atraso	td _{ctrlULA}	desprezível (=0)

Então: $TE(qq sinal de controle) = TE(Instr) + td_{controle} = 305 + 0 = 305 ps$

Cuidado! Se $td_{controle} \neq 0 \rightarrow TE(qq sinal de controle) \neq TE(Instr)$

E o TE de cULA

No exemplo em questão, temos:

Componente	Característica	Símbolo	Valor [ps]
	•••		•••
Controle	atraso	td _{controle}	desprezível (=0)
Controle da ULA	atraso	td _{ctrlULA}	desprezível (=0)

Então: $TE(cULA) = max \{ TE(Instr), TE(ULAOp) \} + td_{ctrl-ULA} = max \{ 305, 305 \} + 0 = 305 ps$

Cuidado! Se $td_{ctr|ULA} \neq 0 \rightarrow TE(cULA) \neq TE(ULAOp)$

Consideraremos cada Tipo de Instrução em Separado

Exercício:

Elabore em grupo de até 6 participantes um vídeo explicando a análise de timing passo a passo para as partes seguintes das instruções do tipo R, Load, Store, Desvio Condicional e Desvio Incondicional.

O vídeo deverá ser didático e mostrar passo-a-passo os tempos de estabilização dos sinais, como apresentado para o bloco inicial do processamento de instruções nestes slides (18 a 28).

A tabela de valores continuará sendo a apresentada no slide 17.

No Fórum específico deste exercício, vocês devem:

- Postar o link para o vídeo produzido, identificando o nome de todos os participantes na postagem
- Comentar as postagens dos colegas

Somadores

VAHID, Frank. Digital Design with RTL Design, VHDL and Verilog. 2nd Edition. Wiley, 2010.

ou

VAHID, Frank. Sistemas Digitais: projeto, otimização e HDLs. Porto Alegre: Bookman, 2008. (ISBN 270.05.770.00)

978-85-7780-190-9)

Seção 4.3.

PATTERSON, David A.; HENNESSY, John L. "Computer Organization and Design: the hardware/software Interface", 3rd edition, Morgan Kaufmann Publishers, San Francisco, California, USA, 2007.

Se usar a 2ª Edição: Seções 4.1 a 4.5.

Se usar a 3ª Edição: Seções 3.1 a 33 e Apêndice B (no CD)

Controle da ULA do MIPS

PATTERSON, David A.; HENNESSY, John L. "Computer Organization and Design: the hardware/software Interface", 3rd edition, Morgan Kaufmann Publishers, San Francisco, California, USA, 2007.

Se usar a 3^a Edição: Seções 5.1 a 5.3, 5.4 e C.2 (Apêndice C, no CD)

