<mark>Chapitre 3 :</mark> Suites numériques

Motivation.

Les suites numériques ont des applications dans de nombreux problèmes dans la vie quotidienne, elles répondent également aux plusieurs questions lié à des phénomènes dans d'autres sciences. Par exemple :

• **Etude du marché**: Le prix d'un ordinateur portable acheté est $430 \in$. On estime qu'une fois sorti du magasin sa valeur u_n (en euro) après n mois est donnée par la formule :

$$u_n = 40 + 300 \times (0.95)^n$$

Question: Déterminer le mois à partir duquel l'ordinateur aura une valeur inférieure à 100 €?

• Modèle proie/prédateur : On s'intéresse à l'évolution de la population de truites (les proies) et de brochets (les prédateurs) dans la Meuse. On désigne par T_n et B_n le nombre respectif de truites et de brochets dans la Meuse le premier juin de l'année m = 2021 + n.

Question : Quels sont les nombres des truites et des brochets dans la Meuse pour que ceux-ci soit constante ?

3.1. Définitions et propriétés.

Définition 1.

 Une suite numérique est une liste de nombres réels ou complexes définie comme étant une application, donnée par :

- u(n) est l'image de n, on utilise la notation u_n . On note la suite par $(u_n)_{n\in\mathbb{N}}$.
- Les éléments de la suite sont appelés « termes ».
- u_n s'appelle terme général de la suite, et n est son indice.
- On peut définir u_n par une formule explicite ou par une formule implicite (récurrente).

Exemples.

- **1)** La liste des nombres impairs (1;3;5;7;9;...) est une suite définie par la formule explicite : $u_n = 2n + 1$, $\forall n \in \mathbb{N}$.
- **2)** La liste des nombres $(0; 1; \sqrt{2}; \sqrt{3}; \sqrt{4}; \sqrt{5}; ...)$ est une suite définie par la formule explicite : $u_n = \sqrt{n}$, $\forall n \in \mathbb{N}$.

- 3) La suite **arithmétique** est donnée par la relation de récurrence : $u_{n+1} = u_n + q$, $\forall n \in \mathbb{N}$ avec le premier u_0 et la raison q.
 - On peut définir la suite arithmétique par la relation explicite : $u_n = nq + u_0$, $\forall n \in \mathbb{N}$.
- **4)** La suite de **Fibonacci** est donnée par la relation de récurrence : $F_{n+2} = F_{n+1} + F_n$, $\forall n \in \mathbb{N}$ avec les deux premiers termes : $F_0 = 1$, $F_1 = 1$.

Définitions 2.

- La suite $(u_n)_{n\in\mathbb{N}}$ est **croissante** si : $\forall n\in\mathbb{N}$, $u_{n+1}\geq u_n$.
- La suite $(u_n)_{n\in\mathbb{N}}$ est **strictement croissante** si : $\forall n\in\mathbb{N}$, $u_{n+1}>u_n$.
- La suite $(u_n)_{n\in\mathbb{N}}$ est **décroissante** si : $\forall n\in\mathbb{N}$, $u_{n+1}\leq u_n$.
- La suite $(u_n)_{n \in \mathbb{N}}$ est **strictement décroissante** si : $\forall n \in \mathbb{N}$, $u_{n+1} < u_n$.
- La suite $(u_n)_{n\in\mathbb{N}}$ est monotone si elle croissante ou décroissante
- La suite $(u_n)_{n\in\mathbb{N}}$ est **strictement monotone** si elle est strictement croissante ou strictement décroissante.

Astuces.

- Pour étudier la monotonie, il suffit de déterminer le signe de $u_{n+1}-u_n$. Elle est croissante ssi $\forall n \in \mathbb{N}$, $u_{n+1}-u_n \geq 0$ (et vice versa).
- Si la suite est strictement positive, elle est croissante ssi : $\forall n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} \geq 1$ (et vice versa).
- Si on pose $f(n) = u_n$, il suffit d'étudier le sens de variation de la fonction f(x) avec x positive.

Exemples.

1) La suite des nombres impairs (1;3;5;7;9;11;...) est strictement croissante, puisque :

$$\forall n \in \mathbb{N}$$
 , $u_{n+1} - u_n = (2(n+1)+1) - (2n+1) = 2 > 0$

2) La suite de terme général $u_n = \frac{1}{\sqrt{n}}$, $\forall n \in \mathbb{N}^*$ est décroissante, puisque :

$$\forall n \in \mathbb{N}$$
 , $\frac{u_{n+1}}{u_n} = \frac{1}{\sqrt{n+1}} \times \sqrt{n} < 1$

- 3) La suite arithmétique est monotone, puisque : $u_{n+1} u_n = q$, $\forall n \in \mathbb{N}$. Par exemple, elle est strictement croissante si la raison q est positive. De plus, elle est constante si q = 0.
- **4)** La suite définie par le terme général $u_n = \frac{(-1)^n}{\sqrt{n}}$, $n \in \mathbb{N}^*$, n'est ni croissante ni décroissante.

Exercice. Démontrer que :

- La somme de deux suites croissantes (resp. décroissantes) est une suite croissante (resp. décroissante).
- Le produit d'une suite croissante (resp. décroissante) par un nombre réel positif est une suite croissante (resp. décroissante).
- Le produit d'une suite croissante (resp. décroissante) par un nombre réel négatif est une suite décroissante (resp. croissante).

Définitions 3.

- La suite $(u_n)_{n\in\mathbb{N}}$ est **constante** si : $\forall n\in\mathbb{N}$, $u_{n+1}=u_n$. La suite $(u_n)_{n\in\mathbb{N}}$ est **stationnaire** si : $\exists n_0\in\mathbb{N}$, $\forall n\geq n_0$ $\exists n_0 \in \mathbb{N}$, $\forall n \geq n_0$: $u_{n+1} = u_n$.
- La suite $(u_n)_{n\in\mathbb{N}}$ est **périodique** si : $\exists s\in\mathbb{N}, \forall n\in\mathbb{N}$, $u_{n+s}=u_n$.

Exemples.

- **1)** La suite de terme général $u_n = 5$, $\forall n \in \mathbb{N}$ est constante (tous les termes égaux).
- **2)** La suite définie par $u_0=1$, $u_1=3$, $u_2=5$, $u_3=7$, $u_n=2$, $\forall n\geq 4$ est stationnaire.
- 3) La suite définie par le terme général $u_n = \sin\left(n\frac{\pi}{3}\right)$, $n \in \mathbb{N}$ est périodique avec s = 6.

Définitions 4.

- On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **majorée** si : $\exists M \in \mathbb{R}, \forall n \in \mathbb{N} , u_n \leq M$
- $\exists m \in \mathbb{R}, \forall n \in \mathbb{N} \ , \ u_n \geq m$ On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **minorée** si :
- On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est **bornée** si : $\exists M \in \mathbb{R}, \forall n \in \mathbb{N} \ , \ |u_n| \leq M$ C'est-à-dire que $(u_n)_{n\in\mathbb{N}}$ est **majorée** et **minorée**.

Exemples.

- 1) La suite des nombres impairs $\{1; 3; 5; 7; 9; 11; ...\}$ n'est pas majorée, elle est minorée par m=1(atteint pour n = 0).
- 2) La suite de terme général $u_n = \frac{1}{\sqrt{n}}$, $\forall n \in \mathbb{N}^*$ est bornée, elle est minorée par m = 0 (jamais atteint), elle est majorée par M=1 (atteint pour =1, $u_1=M$)
- 3) La suite géométrique $(2^n)_{n\in\mathbb{N}}$ est minorée par m=1 (atteint pour n=0), elle n'est pas majorée.
- **4)** La suite géométrique $\left(\left(\frac{1}{2}\right)^n\right)_{n\in\mathbb{N}}$ est minorée par m=0 (jamais atteint), elle est majorée par M=01 (atteint pour n = 0).

3.2. Convergence et limites.

Dans cette section, on va introduire la notion de la limite d'une suite numérique.

Définition 5.

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente vers $\ell\in\mathbb{R}$, quand $n\to+\infty$ ssi:

 $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N} : n > N \implies |u_n - \ell| \le \varepsilon$

Dans ce cas, on écrit : $\lim_{n \to \infty} u_n = \ell$.

Définitions 6.

- Si $(u_n)_{n\in\mathbb{N}}$ ne converge pas, on dit qu'elle est divergente, c'est-à-dire si la limite est infinie ou n'existe pas.
- On dit que la suite $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$, on écrit $\lim_{n\to+\infty}u_n=+\infty$, ssi :

$$\forall A>0, \exists N\in\mathbb{N}, \forall n\in\mathbb{N} : n>N \Longrightarrow u_n>A$$

• On dit que la suite $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$, on écrit $\lim_{n\to+\infty}u_n=-\infty$, ssi :

$$\forall B < 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N} : n > N \implies u_n < B$$

Proposition 1. (Unicité de la limite)

La limite d'une suite convergente est unique.

Preuve. Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente vers deux limites ℓ , ℓ' . Alors, d'après la définition 3.5, on a :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N} : n > N \Longrightarrow |u_n - \ell| \le \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0, \exists N' \in \mathbb{N}, \forall n \in \mathbb{N} : n > N' \implies |u_n - \ell'| \le \frac{\varepsilon}{2}$$

On prend $N'' = \max\{N, N'\}$, on aura pour n > N'' (i.e. n > N et n > N'):

$$|\ell - \ell'| = |\ell - u_n + u_n - \ell'| \le |u_n - \ell| + |u_n - \ell'| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

 ${\rm Donc}: \ \ \forall \varepsilon > 0 \ , |\ell-\ell'| < \varepsilon \ \ , {\rm ce\ qui\ veut\ dire}\ |\ell-\ell'| = 0 \ \ , {\rm d'où\ le\ r\'esultat}\ \ \ell = \ell' \ .$

Exemples.

1) La suite de terme général $u_n = \frac{1}{\sqrt{n}}$, $\forall n \in \mathbb{N}^*$ tend vers « 0 ». En effet, on a :

$$|u_n - 0| \le \varepsilon \Leftrightarrow \frac{1}{\sqrt{n}} \le \varepsilon \Leftrightarrow \frac{1}{\varepsilon^2} \le n$$

Dans il suffit de prendre $N = \left[\frac{1}{\varepsilon^2}\right] + 1$, pour que la définition de la convergence soit vérifié:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N} : n > N \implies |u_n - \ell| \le \varepsilon$$

- **2)** La suite géométrique $(2^n)_{n\in\mathbb{N}}$ est divergente, elle tend vers $+\infty$.
- 3) La suite géométrique $\left(\left(\frac{1}{2}\right)^n\right)_{n\in\mathbb{N}}$ est convergente, elle tend vers 0.
- **4)** Dans le cas général : La suite géométrique $(q^n)_{n \in \mathbb{N}}$ est convergente si : $-1 < q \le 1$.

Exemple important. La suite de terme général $u_n = \sin\left(n\frac{\pi}{2}\right)$ est divergente, puisque elle n'admet pas de limite quand $n \to +\infty$ (On donne la démonstration dans la dernière section).

Exercice. Pour les suites suivantes : $x_n = \frac{1}{\sqrt{n}}$, $y_n = n^2$, $z_n = 1 - 10n$

Créer un tableur Excel qui calcule les premiers termes (jusqu'au n=20).

Proposition 2.

Toute suite converge est bornée.

Preuve. Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente vers ℓ . D'après la définition 3.5, on a pour $\varepsilon=1$:

$$\exists N \in \mathbb{N} : n > N \Longrightarrow |u_n - \ell| \le 1$$
,

Donc pour > N, on a

$$|u_n| = |\ell + u_n - \ell| \le |\ell| + |u_n - \ell| \le |\ell| + 1$$

On pose $M = \max(|u_0|, |u_1|, ..., |u_N|, |\ell| + 1)$. On aura $\forall n \in \mathbb{N} : |u_n| \leq M$.

Remarque. L'inverse n'est pas toujours vrai : une suite bornée ne converge pas forcément.

Par exemple, la suite de terme général $u_n = (-1)^n$ est bornée (elle veut +1 ou -1 suivant la parité de n), mais cette suite ne converge pas.

Propriétés. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes vers ℓ et ℓ' (respectivement).

- 1) Pour $\alpha \in \mathbb{R}$ on a: $\lim_{n \to +\infty} \alpha u_n = \alpha \ell$.
- 2) $\lim_{n \to +\infty} (u_n + v_n) = \ell + \ell$ et $\lim_{n \to +\infty} (u_n \times v_n) = \ell \times \ell'$.
- 3) Pour $\ell \in \mathbb{R}^*$ on a: $\lim_{n \to +\infty} \frac{1}{u_n} = \frac{1}{\ell}$ et $\lim_{n \to +\infty} \left(\frac{v_n}{u_n}\right) = \frac{\ell'}{\ell}$.
- 4) $\lim_{n\to+\infty}u_n=\ell \Leftrightarrow \lim_{n\to+\infty}(u_n-\ell)=0$.

3.3. Théorèmes de convergence.

Dans cette section on va donner des théorèmes pour démontrer la convergence d'une suite.

Théorème 1. (Règle de comparaison)

• Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes, telle que : $\forall n\in\mathbb{N},\ u_n\leq v_n$. Alors :

$$\lim_{n\to+\infty}u_n\leq\lim_{n\to+\infty}v_n.$$

• Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites, telle que : $\forall n\in\mathbb{N},\ u_n\leq v_n$. Alors :

$$\lim_{n \to +\infty} u_n = +\infty \implies \lim_{n \to +\infty} v_n = +\infty.$$

Théorème 2. (Théorème des gendarmes)

Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ trois suites, telles que :

$$\forall n \in \mathbb{N}, \ u_n \le w_n \le v_n$$
 et $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = \ell.$

Alors la suite $(w_n)_{n\in\mathbb{N}}$ est convergente, et on a : $\lim_{n\to+\infty} w_n = \ell$.

Conséquence.

- ✓ Si $(u_n)_{n\in\mathbb{N}}$ est une suite convergente, telle que : $\forall n\in\mathbb{N},\ u_n\geq 0$. Alors : $\lim_{n\to+\infty}u_n\geq 0$.
- ✓ **Attention!** si $u_n > 0$ n'implique pas $\lim_{n \to +\infty} u_n > 0$.

Contre-exemple:
$$\frac{1}{n} > 0$$
 . Mais on a: $\lim_{n \to +\infty} u_n = 0$

Exemple. Pour démontrer la convergence de la suite de terme général $w_n = \frac{(-1)^n}{1+n+n^2}$, on doit trouver deux suites encadrent $(w_n)_{n\in\mathbb{N}}$, et qui sont convergentes vers la même limite. En effet, on a :

$$1 + n + n^2 \ge n^2 \iff \frac{1}{1 + n + n^2} \le \frac{1}{n^2} \iff -\frac{1}{n^2} \le \frac{(-1)^n}{1 + n + n^2} \le \frac{1}{n^2}$$

D'autre part, nous avons :

$$\lim_{n \to +\infty} \left(\frac{1}{n^2}\right) = \lim_{n \to +\infty} \left(-\frac{1}{n^2}\right) = 0$$

Alors: $\lim_{n\to+\infty} w_n = 0.$

Proposition 3. (Limite d'un produit)

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites, telles que :

$$(u_n)_{n\in\mathbb{N}}$$
 est bornée et $\lim_{n\to+\infty}v_n=0$.

Alors:
$$\lim_{n\to+\infty}(u_n\times v_n)=0.$$

Exemple. Soient les deux suites : $x_n = \sin n$, $y_n = \frac{1}{n^4}$. Il est clair que Sinus est bornée ($|\sin n| \le 1$) et $\lim_{n \to +\infty} \frac{1}{n^4} = 0$. Alors, d'après le théorème 1, on aura : $\lim_{n \to +\infty} (x_n \times y_n) = \lim_{n \to +\infty} \frac{\sin n}{n^4} = 0$.

Proposition 4. (Approximation des réels)

Soient $x \in \mathbb{R}$ et $(u_n)_{n \in \mathbb{N}}$ une suite, telles que :

$$u_n = \frac{E(10^n x)}{10^n}.$$

Alors, u_n est une approximation décimale du nombre x à $10^{
m n}$ près, et de plus on a :

$$\lim_{n\to+\infty}u_n=x.$$

Preuve. D'après la définition de la partie entière, on a : $E(10^n x) \le 10^n x < E(10^n x) + 1$. Alors

$$\frac{E(10^n x)}{10^n} \le x < \frac{E(10^n x)}{10^n} + \frac{1}{10^n}$$

D'où $u_n \le x < u_n + \frac{1}{10^n}$, c'est-à-dire $0 \le x - u_n < \frac{1}{10^n}$

D'autre part, on a $\lim_{n\to+\infty}\frac{1}{10^n}=0$ (suite géométrique de raison $q=\frac{1}{10}$)

Enfin, d'après le théorème de gendarmes : $\lim_{n \to +\infty} u_n = x$.

Exemple. Soient le nombre $\pi = 3,14159265 \dots$ et la suite $(u_n)_{n \in \mathbb{N}}$, donnée par :

$$u_0 = \frac{E(10^0 \, \pi)}{10^0} = E(\pi) = 3$$
 , $u_1 = \frac{E(10^1 \, \pi)}{10^1} = \frac{E(31,415 \dots)}{10} = 3,1$

$$u_2 = \frac{E(10^2 \pi)}{10^2} = \frac{E(314.15 ...)}{100} = 3,14$$

.....

$$u_n = \frac{E(10^n \pi)}{10^n} = \frac{E(31415 \dots)}{10^n} = 3, \underbrace{1415 \dots x_n}_{n \text{ chifres}}$$

Exercice. Montrer que la suite de terme général $u_n = \frac{E(10^n x)}{10^n}$ est croissante.

Théorème 3. (Convergence et monotonie)

■ Toute suite croissante et majorée est convergente, de plus on a :

$$\lim_{n\to+\infty}u_n=\sup(u_n)_{n\in\mathbb{N}}.$$

Toute suite décroissante et minorée est convergente et on a :

$$\lim_{n\to+\infty}u_n=\inf(u_n)_{n\in\mathbb{N}}.$$

Remarques

- Toute suite croissante qui n'est pas majorée tend vers +∞.
- Toute suite décroissante qui n'est pas minorée tend vers $-\infty$.

Exemple. La suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n=\frac{5n-2}{3n+1}$ est croissante, car :

$$\forall n \in \mathbb{N}$$
, $\frac{u_{n+1}}{u_n} = \frac{5n+3}{3n+4} \times \frac{3n+1}{5n-2} \ge 1$

On peut démontrer par définition que : $\sup(u_n)_{n\in\mathbb{N}}=\frac{5}{3}$. Alors, la suite $(u_n)_{n\in\mathbb{N}}$ converge vers $\frac{5}{3}$.

Définitions 7. (Suites adjacentes متتاليات متجاورة)

On dit que deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont **adjacentes** si :

- \bullet $(u_n)_{n\in\mathbb{N}}$ est croissante et $(v_n)_{n\in\mathbb{N}}$ est décroissante.
- $\lim_{n \to +\infty} (u_n v_n) = 0.$

Théorème 4.

Les suites adjacentes convergent vers la même limite.

Preuve. D'après la deuxième condition, on a :

$$u_0 \le u_1 \le u_2 \le \dots \le u_n \le \dots \le v_n \le \dots \le v_2 \le v_1 \le v_0$$

D'après la première condition, la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée, donc elle converge vers ℓ . La suite $(v_n)_{n\in\mathbb{N}}$ est décroissante et minorée, donc elle converge vers ℓ' .

D'autre part,
$$\ell' - \ell = \lim_{n \to +\infty} (u_n - v_n) = 0$$
 . Alors : $\ell' = \ell$.

Exemple. Soient deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par :

$$u_n = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots + \frac{1}{n^3}$$
 , $v_n = u_n + \frac{1}{n}$

On va montrer que ces deux suites sont adjacentes, en effet on a :

- 1) La suite $(u_n)_{n\in\mathbb{N}}$ est strictement croissante, car : $u_{n+1}-u_n=\frac{1}{(n+1)^3}>0$. La suite $(v_n)_{n\in\mathbb{N}}$ est strictement décroissante, car : $v_{n+1}-v_n=\frac{1}{(n+1)^3}+\frac{1}{(n+1)}-\frac{1}{n}<0$.
- 2) $\forall n \in \mathbb{N}$, $\frac{1}{n} > 0 \Longrightarrow u_n + \frac{1}{n} > u_n \Longrightarrow v_n > u_n$.
- 3) $\lim_{n \to +\infty} (u_n v_n) = \lim_{n \to +\infty} \frac{1}{n} = 0$.

Alors, d'après le théorème, les deux suites convergent vers la même limite ℓ , qui s'appelle « constante d'Apéry » noté $\zeta(3)$ (la fonction zeta) . On peut calculer des valeurs approchées de $\zeta(3)$ en utilisant l'encadrement $u_n \leq \zeta(3) \leq v_n$. Par exemple, pour n=4 , on a :

$$1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} \le \zeta(3) \le 1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \frac{1}{4}$$

C'est-à-dire : $1,177662\overline{037} \dots \le \zeta(3) \le 1,427662\overline{037} \dots$

Exercice. Montrer la convergence de la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_n=1+\frac{1}{2^2}+\frac{1}{3^2}+\ldots\ldots+\frac{1}{n^2}$

3.4. Suites récurrentes.

Définitions 8. (Suites récurrentes متتاليات تراجعية)

On dit que $(u_n)_{n\in\mathbb{N}}$ est une suite **récurrente** si :

- Le terme initial u_0 est donné.
- $\forall n \in \mathbb{N} \ , \ u_{n+1} = f(u_n) \ ,$ telle que f est une application de \mathbb{R} dans \mathbb{R} .

Remarque : On peut définir les termes de la suite récurrente par :

$$u_0$$
, $u_1 = f(u_0)$, $u_2 = f(u_1) = f(f(u_0))$, $u_3 = f(u_2) = f(f(f(u_0)))$, ...

Exemples.

1) La suite définie par le premier terme $u_0=1$ et la relation de récurrence

$$u_{n+1} = 1 + \sqrt{u_n}$$
 , $\forall n \in \mathbb{N}$,

Est une suite récurrente, avec $f(x) = 1 + \sqrt{x}$. Dans ce cas les premiers termes sont :

$$u_0 = 1$$
 , $u_1 = 2$, $u_2 = 1 + \sqrt{2}$, $u_3 = 1 + \sqrt{1 + \sqrt{2}}$, $u_4 = 1 + \sqrt{1 + \sqrt{1 + \sqrt{2}}}$,

2) La suite définie par le premier terme $u_0=0$ et la relation de récurrence

$$u_{n+1} = a + \frac{u_n}{2(1+u_n^2)}$$
 , $\forall n \in \mathbb{N}$, $a \in \mathbb{R}_+^*$

Est une suite récurrente, avec $f(x) = a + \frac{x}{2(1+x^2)}$. Dans ce cas les premiers termes sont :

$$u_0 = 0$$
 , $u_1 = a$, $u_2 = a + \frac{a}{2(1+a^2)}$, $u_3 = a + \frac{a + \frac{a}{2(1+a^2)}}{2\left(1 + \left(a + \frac{a}{2(1+a^2)}\right)^2\right)}$,

Proposition 5.

Si la fonction f est **continue** et la suite récurrente $(u_n)_{n\in\mathbb{N}}$ **converge** vers ℓ , alors cette limite est un **point fixe** de f, i.e.: $f(\ell) = \ell$

Preuve. On a $\lim_{n\to+\infty} u_{n+1} = \lim_{n\to+\infty} u_n = \ell$, et comme f est continue alors :

$$f(\ell) = f\left(\lim_{n \to +\infty} u_n\right) = \lim_{n \to +\infty} f(u_n) = \lim_{n \to +\infty} u_{n+1} = \ell$$

Proposition 6.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite récurrente. La monotonie de la suite est donnée par :

- 1) Si f est croissante alors $(u_n)_{n\in\mathbb{N}}$ est monotone, et on a deux cas :
 - $u_1 \ge u_0 \implies (u_n)_{n \in \mathbb{N}}$ est croissante.
 - $u_1 \le u_0 \implies (u_n)_{n \in \mathbb{N}}$ est décroissante.
- **2)** Si f est décroissante alors $(u_n)_{n\in\mathbb{N}}$ n'est pas monotone. Donc, elle ne converge pas.
- 3) Si f est constante alors $(u_n)_{n\in\mathbb{N}}$ est constante. Donc, elle est convergente.

Preuve. On suppose que $u_1 \ge u_0$, pour le cas $u_1 \le u_0$, on fait la même chose.

- 1) Si f est croissante et $u_1 \ge u_0$, on a : $u_2 = f(u_1) \ge f(u_0) = u_1$, puis $u_3 \ge u_2$, ... etc. Alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.
- **2)** Si f est décroissante et $u_1 \ge u_0$, on a :

$$u_2=f(u_1)\leq f(u_0)=u_1$$
 , $u_3\geq u_2$, $u_4\leq u_3$, $u_5\geq u_4$, $u_6\leq u_5$.

D'où $u_{n+1} - u_n$ est de signe alterné, donc la suite ne sera pas convergente.

3) Si f est constante on a: $u_2 = f(u_1) = f(u_0) = u_1$, $u_3 = u_2$, $u_4 = u_3$, $u_5 = u_4$.

Alors $(u_n)_{n\in\mathbb{N}}$ est constante. Donc, elle est convergente.

Proposition 7.

Soient $f:[a,b] \to [a,b]$ une fonction continue et croissante. Alors la suite récurrente $(u_n)_{n\in\mathbb{N}}$ liée à f est convergente vers $\ell\in[a,b]$, avec $f(\ell)=\ell$.

Preuve. Si f est croissante et $u_1 \ge u_0$, alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante (d'après la proposition 6) et majorée par b (car $u_{n+1} = f(u_n) \in [a,b]$), donc elle est convergente. Si f est croissante et $u_1 \le u_0$, alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante et minorée par a, donc elle est convergente.

Remarque: Dans la pratique, il suffit de vérifier que $f([a,b]) \subset [a,b]$.

Exemple 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite récurrente définie par la donnée de $u_0\in[0,2]$, et la relation :

$$u_{n+1} = \frac{1}{4}(u_n^2 - 1)(u_n - 2) + u_n.$$

- La fonction f est un polynôme définie sur \mathbb{R} par $f(x) = \frac{1}{4}(x^2 1)(x 2) + x$. Cette fonction est continue et dérivable sur \mathbb{R} , de plus elle est strictement croissante sur l'intervalle [0,2], donc la suite est monotone et on a $f([0,2]) = \left[\frac{1}{2},2\right] \subset [0,2]$.
- Les points fixes de la fonction f sont: $x = -1 \lor x = 1 \lor x = 2$ Donc, la limite de la suite est l'un des points fixes $\{-1, 1, 2\}$.
- Etude des cas :
- **a.** Si $u_0=1$ ou $u_0=2$, on a: $u_1=u_0$, $u_2=u_0$, Alors la suite est constante, donc converge vers u_0 .
- **b.** Si $u_0 \in [0,1[$, on a $f([0,1]) = \left[\frac{1}{2},1\right] \subset [0,1]$ et $u_1 u_0 = \frac{1}{4}(u_0^2 1)(u_0 2) \ge 0$. Alors la suite est croissante et majorée par 1, donc elle converge vers $\ell \in [0,1]$. D'autre part ℓ est un point fixe de , c'est-à-dire $\ell \in \{-1,1,2\}$. Donc $\ell = 1$.
- c. Si $u_0 \in]1,2[$, on a f([1,2]) = [1,2] et $u_1 u_0 = \frac{1}{4}(u_0^2 1)(u_n 2) \le 0$. Alors la suite est décroissante et minorée par 1, ce qui veut dire qu'elle est convergente vers $\ell \in$

[1,2] . D'autre part ℓ est un point fixe de , c'est-à-dire $\ell \in \{-1$, 1 , 2 $\}$. Donc $\ell = 1$.

Exemple.2 Soit $(u_n)_{n\in\mathbb{N}}$ une suite récurrente définie par $u_0=3$ et la relation : $u_{n+1}=4e^{u_n-4}$

- La fonction définie par $f(x) = 4e^{x-4}$ est continue et dérivable sur \mathbb{R} . De plus, elle est strictement croissante sur [0,4] donc la suite est monotone.
- On cherche les points fixes de la fonction f: (l'intersection du graphe de f et la droite y = x) $f(x) = x \Leftrightarrow 4e^{x-4} = x \Leftrightarrow x = 4, x = c \text{ tel que } c \in [0.08, 0.09]$
- On démontre par récurrence que $0 \leq u_n \leq 4$, $\forall n \in \mathbb{N}$. En effet, on a :

$$u_0 = 3 \le 4$$
 et $u_n \le 4 \Leftrightarrow u_n - 4 \le 0 \Leftrightarrow 4e^{u_n - 4} \le 4 \Leftrightarrow u_{n+1} \le 4$

L'inégalité à gauche est évidente, car l'exponentielle est strictement positive.

• La suite est décroissante (puisque $u_1 = \frac{4}{e^3} \le 3 = u_0$) et minorée par 0, donc elle est convergente vers $\ell \in [0,4]$. D'autre part $\ell \in \{c$, $4\}$ c'est un point fixe de f. Donc $\ell = c$.

3.5. Suites extraites.

Définitions 9. (Suites extraites متتاليات مستخرجة)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. On appelle suite **extraite** ou **sous-suite** de $(u_n)_{n\in\mathbb{N}}$ toute suite $(v_m)_{m\in\mathbb{N}}$ telle que : $v_m=u_{\varphi(n)}$

Où $\varphi: \mathbb{N} \to \mathbb{N}$ est une application strictement croissante.

Exemples. Soit la suite définie par le terme : $u_n = (-1)^n$. On peut extraire plusieurs sous-suites :

• Pour $\varphi(n)=2n+1$, nous avons la sous-suite de terme général $u_{2n+1}=(-1)^{2n+1}=-1$.

$$u_1 = -1, u_3 = -1, u_5 = -1, u_7 = -1, ..., u_{2n+1} = -1$$

• Pour $\varphi(n)=3n$, nous avons la sous-suite de terme général $u_{3n}=(-1)^{3n}=(-1)^n$.

$$u_0 = 1, u_3 = -1, u_6 = 1, u_9 = -1, \dots, u_{3n} = (-1)^n$$

Proposition 8.

Si $(u_n)_{n\in\mathbb{N}}$ est convergente, alors toute sous-suite converge aussi vers la même limite, i.e.

$$\lim_{n \to +\infty} u_n = \ell \quad \Longrightarrow \quad \forall \varphi : \lim_{n \to +\infty} u_{\varphi(n)} = \ell$$

Exemple. La suite définie par le terme général : $u_n = \frac{1}{2^n}$, converge vers $\ell = 0$. Toutes les soussuites extraites convergent vers $\ell = 0$: $\left(\frac{1}{4^n}\right)_{n \in \mathbb{N}}$, $\left(\frac{1}{8^n}\right)_{n \in \mathbb{N}}$, $\left(\frac{1}{2 \cdot 4^n}\right)_{n \in \mathbb{N}}$,

Corollaire 2.

Si la suite $(u_n)_{n\in\mathbb{N}}$ admet deux sous-suites ne convergent pas vers la même limite, ou bien une sous-suite divergente, alors cette suite est divergente.

Exemple. Les sous-suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ de la suite $u_n=(-1)^n$ convergent vers deux limites différentes $\ell_1=1$ et $\ell_2=-1$. Donc la suite $(u_n)_{n\in\mathbb{N}}$ diverge.

Exemple important. La suite de terme général $u_n = \sin\left(n\frac{\pi}{2}\right)$ est divergente. En effet, soit les deux sous-suites extraites suivantes : $u_{2n} = \sin(n\pi) = 0$, $u_{4n+1} = \sin\left(2n\pi + \frac{\pi}{2}\right) = 1$

Ce qui veut dire que : $\lim_{n \to +\infty} u_{2n} = 0 \neq 1 = \lim_{n \to +\infty} u_{4n+1}$.

Théorème 5. (Bolzano-Weierstrass)

Toute suite bornée admet une sous-suite convergente.

