

ATK-MO301 模块用户手册

高性能电容半导体指纹识别模块

用户手册

正点原子

广州市星翼电子科技有限公司

修订历史

版本	日期	原因
V1.0	2022/06/25	第一次发布

目 录

1,	特性参数	1
2,	使用说明	2
	2.1 模块引脚说明	2
	2.2 指令格式详解	3
	2.2.1 指令包格式	3
	2.2.2 应答包格式	3
	2.2.3 数据包格式	4
	2.3 指令集详解	4
	2.3.1 自动注册模板 PS_AutoEnroll	4
	2.3.2 自动验证指纹 PS_AutoIdentify	5
	2.3.3 删除模板 PS_DeleteChar	7
	2.3.4 清空指纹库 PS_Empty	7
	2.3.5 取消指令 PS_Cancel	8
	2.3.6 休眠指令 PS_Sleep	8
	2.3.7 读取有效模板个数 PS_ValidTempleteNum	9
	2.3.8 读取索引表 PS_ReadIndexTable	9
	2.3.9 获取图像 PS_GetImage	
	2.3.10 注册用获取图像	.10
	2.3.11 生成特征 PS_GenChar	.11
	2.3.12 合并模板 PS_RegMB	
	2.3.13 存储模板 PS_StorMB	
	2.3.14 搜索模板 PS_SearchMB	
	2.3.15 握手命令 PS_GetChipEcho	
	2.3.16 上传图像 PS_UpImage	
	2.3.17 读取系统基本参数 PS_ReadSysPara	
	2.3.18 特征上传 PS_FingerCharUp	
	2.3.19 特征下载 PS_FingerCharDown	
	2.3.20 模组设置 PS_FingerModuleSet	
	2.4 录入指纹流程说明	
	2.4.1 自动注册模板流程	
	2.4.2 分布式注册模板流程	
	2.5 验证指纹流程	
	2.5.1 自动验证指纹流程	
	2.5.2 分布式指纹验证流程	
	结构尺寸	
1,	其他	.23

1,特性参数

ATK-MO301模块是正点原子推出的一款高性能电容式半导体指纹识别模块,该模块采用了瑞典 FPC 公司的按压式电容指纹传感器,该传感器具有功耗低、性能稳定、图像一致性效果好、耐静电等级高等特点,模块还搭载了 GigaDevice (兆易创新) 生产的指纹控制专用芯片,该控制芯片针对指纹传感器,在图像、速度和算法上做了大量的优化,使得模块具有更快的识别速度和更高的通过率。相较于传统的光学指纹模块,本模块具有识别速度快、体积小、功耗低等有点。

ATK-MO301 模块配备了串口通讯接口,用户无需研究复杂的图像处理及指纹识别的相关算法,仅需通过简单的串口通讯,按照相应的通讯协议即可控制本模块。本模块可应用与各种考勤机、保险箱柜、指纹门禁系统和指纹锁等场合。

ATK-MO301 模块的各项基本参数,如下表所示:

项目	说明
通讯接口	UART
通讯波特率	57600bps (可设置)
传感器图像大小	160pixel*160pixel
对比速度	<6ms (1 对 1)
拒真率 (FRR)	<1%
认假率 (FAR)	<0.001%
指纹存储容量	500 枚(ID: 0~499)
使用寿命	1000000 次
外形尺寸	20.5mm*33.5mm

表 1.1 ATK-MO301 模块基本参数

ATK-MO301 模块的各项电气参数,如下表所示:

项目	说明
电源电压	3.0V~3.6V, 典型值: 3.3V
IO 口电平	3.3V
工作电流	20mA~50mA,典型值: 40mA
静态功耗	3uA~10uA,典型值: 5uA

表 1.2 ATK-MO301 模块电气参数

2, 使用说明

2.1 模块引脚说明

ATK-MO301 模块通过 6 个 1.25mm 间距的端子与外部相连接,模块外观如下图所示:

图 2.1.1 ATK-MO301 模块实物图 ATK-MO301 模块的各个引脚的详细描述,如下图表所示:

图 2.1.2 ATK-MO301 模块引脚说明

序号	名称	说明
1	Vtouch	触摸唤醒电路电源
2	TouchInt	触摸唤醒输出信号
3	+3.3V	模块电源
4	TXD	UART 通讯接口发送引脚
5	RXD	UART 通讯接口接收引脚
6	GND	电源地

表 2.1.1 ATK-MO301 模块引脚说明

说明: ATK-MO301 模块在正常工作时,TouchInt 引脚持续输出高电平,当模块接收到 PS_Sleep 指令后,进入休眠状态,在休眠状态下,ATK-MO301 模块的 TouchInt 引脚持续输出低电平,若在 ATK-MO301 模块休眠状态下,有手指触摸 ATK-MO301 模块的传感器,则将唤醒 ATK-MO301 模块,此时 TouchInt 将从低电平调转为高电平。

2.2 指令格式详解

外部主控需要通过不同的指令控制 ATK-MO301 模块的各种功能,外部主控发出的指令和模块的响应均是以规定格式的数据包进行的,因此外部主控必须按照规定的格式封装要发送的指令或参数,并按规定的格式解析收到的数据包。

2.2.1 指令包格式

指令包的包标识为 0x01, 其格式如下表所示:

名称	包头	设备地址	包标识	包长度	指令	参数 1	•••	参数 N	校验和
字节数	2 bytes	4 bytes	1 byte	2 bytes	1 byte				2 bytes
内容	0xEF01	xxxx	01	N					

图 2.2.1.1 指令包格式

- 若无设置设备地址,则设备地址默认为 0xFFFFFFFF。
- 包长度 N:数据包中指令、参数、校验和的总字节数。
- 指令:指令包发送的指令。
- 参数: 在不同的指令下, 有不同的含义的长度。
- 校验和:数据包中包标识至参数 N 的所有字节数据之和。

2.2.2 应答包格式

应答包的包标识为 0x07, 其格式如下表所示:

名称	包头	设备地址	包标识	包长度	确认码	参数1	•••	参数 N	校验和
字节数	2 bytes	4 bytes	1 byte	2 bytes	1 byte				2 bytes
内容	0xEF01	xxxx	07	N					

图 2.2.2.1 应答包格式

应答包与指令包类似,不同之处在于确认码,同时不同的确认码也对应了不同的参数含义和参数长度,确认码的定义如下表所示:

确认码	描述
0x00	指令执行完毕或 OK
0x01	数据包接收有误
0x02	传感器上没有手指
0x09	没有搜索到指纹
0x0A	特征合并失败
0x0B	访问指纹库时地址需要超出指纹库范围
0x10	删除模板失败
0x11	清空指纹库失败
0x13	口令不正确
0x18	读写 Flash 出错
0x1E	自动录入指纹失败

0x1F	指纹库满
0x20	地址错误
0x24	指纹库为空

表 2.2.2.1 应答包确认码描述

2.2.3 数据包格式

数据包可分为两类:包标识为 0x02 的数据包表示还有后续包,包表示为 0x08 的数据包表示结束包,其具体的格式如下表所示:

名称	包头	设备地址	包标识	包长度	数据	校验和
字节数	2 bytes	4 bytes	1 byte	2 bytes	N byte(s)	2 bytes
内容	0xEF01	XXXX	02/08			

图 2.2.3.1 数据包格式

- 数据包必须跟在指令包或应答包后面。
- 上传和下载的数据包格式想用。
- 数据包中"数据"段的最大长度为 128 bytes,即包长度最大为 130 (128 bytes 数据和 2 bytes 校验和),若需要传输大于 128 bytes 的数据,则需把数据分成多个数据包进行传输。

2.3 指令集详解

2.3.1 自动注册模板 PS_AutoEnroll

- 功能说明:一站式注册指纹,包含采集指纹、生成特征、合并模板、存储模板等功能。
- 输入参数: ID 号、录入次数、参数
- 返回参数:确认码、参数
- 指令码: 0x31
- 指令包格式:

包头	设备地址	包标识	包长度	指令码	ID 号	录入次数	参数	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes	1 byte	2 bytes	2 bytes
0xEF01	xxxx	0x01	0x0008	0x31	XXXX	XX	XXXX	XXXX

表 2.3.1.1 自动注册模板指令包格式

輔助说明:

- ID号: 高字节在前,低字节在后。录入1号指纹,则为0x0001。
- 录入次数:录入 4次,则为 0x04。
- 参数: 最低位为 bit0
 - ◆ bit0: 采图背光灯控制位, 0: LED 常亮; 1: LED 获取图像成功后熄灭
 - ◆ bit1: 采图预处理控制位, 0: 关闭预处理; 1: 打开预处理
 - ◆ bit2: 注册过程中,是否要求返回关键步骤状态,0: 要求返回;1: 不要求返回
 - ◆ bit3: 是否允许覆盖 ID 号, 0: 不允许; 1: 允许
 - ◆ bit4: 允许指纹重复注册控制位, 0: 允许; 1: 不允许
 - ◆ bit5: 是否要求手指在每次采图后离开, 0: 要求离开, 1: 不要求离开

◆ bit6~bit15: 预留

● 应答包格式:

包头	设备地址	包标识	包长度	确认码	参数 1	参数 2	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	1 byte	1 byte	2 bytes
0xEF01	XXXX	0x07	0x05	XX	XX	xxxx	XXXX

表 2.3.1.2 自动注册模板应答包格式

确认码、参数 1、参数 2 描述,如下表所示:

确认码	描述	参数1	描述	参数 2	描述
0x00	成功	0x00	指纹合法性检测	0x00	指纹合法性检测
0x01	失败	0x01	获取图像	0xF0	合并模板
0x07	生成特征失败	0x02	生成特征	0xF1	检验指纹是否已注册
0x0A	合并模板失败	0x03	判断手指离开	0xF2	存储模板
0x0B	ID 号超出范围	0x04	合并模板	n	当前录入第 n 次
0x1F	指纹库已满	0x05	注册检验		
0x22	指纹模板非空	0x06	存储模板		
0x25	录入次数设置错误		_		_
0x26	超时				
0x27	指纹已存在				

表 2.3.1.3 自动注册模板应答包确认码、参数等描述

● 指令说明:

- 合法性检测:
 - ◆ 若指定 ID 号无效,则确认码、参数 1 和参数 2 返回(以下直接以括号表述)0x0B 0x00 0x00。
 - ◆ 若录入次数设置错误(0x25 0x00 0x00)。
 - ◆ 在不覆盖指纹的状态下,若指纹库已满(0x1F0x000x00)。
 - ◆ 若指定 ID 号已存在(0x22 0x00 0x00)。
 - ◆ 若指令合法性检测成功(0x00 0x00 0x00),并进入第一次指纹录入。
- 等待采图成功(0x00 0x01 n)。
- 等待生成特征成功(0x00 0x02 n); 失败(0x07 0x02 n), 并重新等待采图成功。
- 等待手指离开,第一次录入成功(0x00 0x03 0x00),手指离开后跳转到步骤 2,进入下一次循环,直到 n 为设置的录入次数。注:若录入过程中设置为不要求手指离开,那么在第一次录入成功(0x00 0x03 0x00)后直接跳转到步骤 2,最后一次采集指纹,没有手指离开录入成功的应答。
- 合并模板: 将之前获取的指纹特征合并为一个指纹模板, 若成功 (0x00 0x04 0xF0), 若失败 (0x0A 0x04 0xF0)。
- 指纹重复检查:将新录入指纹与以存储的指纹进行匹配检查,若有相同指纹 (0x27 0x05 0xF1)并结束流程,若没有相同指纹 (0x00 0x05 0xF1)。
- 存储模板数据, 若存储失败 (0x01 0x06 0xF2) 并结束流程, 若成功 (0x00 0x06 0xF2)。
- 若指令执行期间收到 PF Cancel 指令,则终止该指令并返回应答。

2.3.2 自动验证指纹 PS AutoIdentify

功能说明:自动采集指纹,在指纹库中搜索与目标模板或整个指纹库模板,并返回搜索结果。如果目标模板同当前采集的指纹对比得分大于最高阈值,并且目标模板为不完整特征,则以采集的特征更新目标模板的空白区域。一站式搜索包含获取图

- 像、生成特征、搜索指纹等功能。
- 输出参数:安全等级、ID号
- 返回参数:确认码、ID号(相匹配指纹模板 ID号)
- 指令代码: 0x32
- 指令包格式

包头	设备地址	包标识	包长度	指令码	安全等级	ID 号	参数	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	1 byte	2 bytes	2 bytes	2 bytes
0xEF01	xxxx	0x01	0x0008	0x32	XX	xxxx	xxxx	xxxx

表 2.3.2.1 自动验证指纹指令包格式

● 辅助说明:

- ID 号: 高字节在前, 低字节在后。若进行 1:1 匹配, ID 号则为对比的目标模板 ID 号; 若为 1:N 搜索, ID 号则为 0xFFFF。
- 参数:最低位为 bit0
 - ◆ bit0: 采图背光灯控制位, 0: LED 常亮; 1: LED 获取图像成功后熄灭
 - ◆ bit1: 采图预处理控制位, 0: 关闭预处理; 1: 打开预处理
 - ◆ bit2: 录入过程中,是否要求返回关键步骤状态,0: 要求返回;1: 不要求返回
 - ◆ bit3~bit15: 预留

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	参数	ID 号	得分	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	1 byte	2 bytes	2 bytes	2 bytes
0xEF01	xxxx	0x07	0x0008	XX	XX	xxxx	xxxx	xxxx

表 2.3.2.2 自动验证指纹应答包格式

● 确认码、参数描述,如下表所示:

确认码	描述	参数	描述
0x00	成功	0x00	指纹合法性检测
0x01	失败	0x01	获取图像
0x07	生成特征失败	0x05	己注册指纹对比
0x09	没有搜索到指纹		
0x0B	ID 号超出范围		
0x17	残留指纹		
0x23	指纹模板为空		
0x24	指纹库为空		
0x26	超时		
0x27	指纹已存在		

表 2.3.2.3 自动验证指纹应答包确认码、参数等描述

● 指令说明:

- 若指纹库为空,则确认码和参数返回(以下直接以括号表述)0x240x00。
- 若指定 ID 号无效 (0x0B 0x00)。
- 若注册的模板不存在(0x23 0x00)。
- 指令合法性检测成功(0x00 0x00),并进入指纹录入。
- 在设定的超时时间内,若没有完成一次完整的指纹录入(0x26 0x00),流程结束。
- 指纹图像检查不正确,等待下一次采图。

- 录入指纹获取图像成功(0x00 0x01)。
- 生成特征失败(0x09 0x05), 流程结束。
- 生成特征后,当前采集到的指纹模板与已注册指纹模板之间进行对比,并返回结果,若对比失败(0x09 0x05),并结束流程,若对比成功(0x00 0x05),并返回正确的 ID 号和得分。
- 若指令执行期间收到 PF Cancel 指令,则终止该指令并返回应答。

2.3.3 删除模板 PS_DeleteChar

- 功能说明: 删除 Flash 数据库中指定 ID 号开始的 N 个指纹模板
- 输入参数: ID (指纹库模板号), N (删除的模板个数)
- 返回参数:确认码
- 指令代码: 0x0C
- 指令包格式:

包头	芯片地址	包标识	包长度	指令码	ID	删除个数	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes	2 bytes	2 bytes
0xEF01	XXXX	0x01	0x0007	0x0C	ID	N	xxxx

表 2.3.3.1 删除模板指令包格式

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	XXXX	0x07	0x0003	XX	xxxx

表 2.3.3.2 删除模板应答包格式

● 确认码描述,如下表所示:

确认码	描述
0x00	删除模板成功
0x01	删除模板失败

表 2.3.3.3 删除模板应答包确认码描述

2.3.4 清空指纹库 PS Empty

- 功能说明:删除 Flash 数据库中所有指纹模板
- 输入参数:无
- 返回参数:确认码
- 指令代码: 0x0D
- 指令包格式:

包头	芯片地址	包标识	包长度	指令码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	0x01	0x0003	0x0D	xxxx

表 2.3.4.1 清空指纹库指令包格式

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	0x07	0x0003	XX	xxxx

表 2.3.4.2 清空指纹库应答包格式

● 确认码描述,如下表所示:

确认码	描述
0x00	清空指纹库成功
0x01	收包有误
0x11	清空指纹库失败

表 2.3.4.3 清空指纹库应答包确认码描述

2.3.5 取消指令 PS_Cancel

● 功能说明:取消命令

● 输入参数:无

● 返回参数:确认码

● 指令代码: 0x30

● 指令包格式:

包头	芯片地址	包标识	包长度	指令码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	XXXX	0x01	0x0003	0x30	XXXX

表 2.3.4.1 取消指令指令包格式

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	XXXX	0x07	0x0003	XX	xxxx

表 2.3.5.2 取消指令应答包格式

● 确认码描述,如下表所示:

确认码	描述
0x00	取消指令成功
0x01	取消指令失败

表 2.3.5.3 取消指令应答包确认码描述

2.3.6 休眠指令 PS_Sleep

- 功能说明:设置传感器进入睡眠模式,只针对传感器自动低功耗有效,其余采用直接掉电方式。
- 输入参数:无
- 返回参数:确认码
- 指令代码: 0x33 或 0x60
- 指令包格式:

包头	芯片地址	包标识	包长度	指令码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	XXXX	0x01	0x0003	0x33/0x60	XXXX

表 2.3.6.1 休眠指令指令包格式

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	0x07	0x0003	XX	xxxx

表 2.3.6.2 休眠指令应答包格式

● 确认码描述,如下表所示:

确认码	描述
0x00	休眠设置成功
0x01	休眠设置失败

表 2.3.6.3 休眠指令应答包确认码描述

2.3.7 读取有效模板个数 PS_ValidTempleteNum

● 功能说明:读取有效模板个数

● 输入参数:无

● 返回参数:确认码,ValidN(有效模板个数)

● 指令代码: 0x1D

● 指令包格式:

包头	芯片地址	包标识	包长度	指令码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	XXXX	0x01	0x0003	0x1D	xxxx

表 2.3.7.1 读取有效模板个数指令包格式

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	模板个数	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 Bytes	2 bytes
0xEF01	xxxx	0x07	0x0005	XX	ValidN	xxxx

表 2.3.7.2 读取有效模板个数应答包格式

● 确认码描述,如下表所示:

确认码	描述
0x00	读取成功
0x01	收包有误

表 2.3.7.3 读取有效模板个数应答包确认码描述

2.3.8 读取索引表 PS ReadIndexTable

- 功能说明:读取录入模板的索引表
- 输入参数: 索引表页码 (0~3), 页码 0、1、2、3 分别对应模板从 0~256、256~512、512~768、768~1024 的索引,模块最大支持 1024 个指纹索引。
- 返回参数:确认码、索引表信息(32 bytes,每一位对应一个指纹模板,1 表示存储区域的模板已经录入,0表示没录入)。
- 指令代码: 0x1F
- 指令包格式:

包头	芯片地址	包标识	包长度	指令码	页码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	1 byte	2 bytes
0xEF01	XXXX	0x01	0x0004	0x1F	0~3	XXXX

表 2.3.8.1 读取索引表指令包格式

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	索引信息	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	32 bytes	2 bytes
0xEF01	XXXX	0x07	0x0023	XX	Index	XXXX

表 2.3.8.2 读取索引表应答包格式

● 确认码描述,如下表所示:

确认码	描述
0x00	读取索引表成功
0x01	收包有误

表 2.3.8.3 读取索引表应答包确认码描述

2.3.9 获取图像 PS_GetImage

- 功能说明:探测手指,探测到后录入指纹图像与 ImageBuffer,并返回录入成功确 认码;若探测不到手指,则直接返回无手指确认码(模块对于每一条指令都快速反 应,因此如迅速探测,需进行循环处理,可限定循环的次数或总时间)。
- 输入参数:无
- 返回参数:确认码
- 指令代码: 0x01
- 指令包格式:

包头	芯片地址	包标识	包长度	指令码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	0x01	0x0003	0x01	0x0005

表 2.3.9.1 获取图像指令包格式

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	0x07	0x0003	XX	XXXX

表 2.3.9.2 获取图像应答包格式

● 确认码描述,如下表所示:

,,					
确认码	描述				
0x00	获取图像成功				
0x02	获取图像失败				

表 2.3.9.3 获取图像应答包确认码描述

2.3.10 注册用获取图像

- 功能说明:注册指纹时,探测手指,探测到后录入指纹图像与图像缓冲区,并返回成功确认码;若探测不到手指,则直接返回无手指确认码。
- 输入参数:无
- 返回参数:确认码
- 指令代码: 0x29
- 指令包格式:

包头	芯片地址	包标识	包长度	指令码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	0x01	0x0003	0x29	0x002D

表 2.3.10.1 注册用获取图像指令包格式

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	0x07	0x0003	XX	XXXX

表 2.3.10.2 注册用获取图像应答包格式

● 确认码描述,如下表所示:

确认码	描述
0x00	获取图像成功
0x02	获取图像数百

表 2.3.10.3 注册用获取图像应答包确认码描述

2.3.11 生成特征 PS_GenChar

- 功能说明:将获取到的原始图像生成指纹特征,特征存储于 CharBuffer1、CharBuffer2、CharBuffer3、CharBuffer4。
- 输入参数: BufferID (1~4)
- 返回参数:确认码
- 指令代码: 0x02
- 指令包格式:

包头	芯片地址	包标识	包长度	指令码	缓冲区号	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	1 byte	2 bytes
0xEF01	xxxx	0x01	0x0004	0x02	BufferID	xxxx

表 2.3.11.1 生成特征指令包格式

注意:在注册指纹的过程中,BufferID表示第几次按下手指,其他情况下,BufferID有相应的默认值。

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	0x07	0x0003	XX	XXXX

表 2.3.11.2 生成特征应答包格式

● 确认码描述,如下表所示:

确认码	描述
0x00	生成特征成功
0x01	收包有误
0x06	指纹图像太乱,生成特征不成功
0x07	指纹图像正常,但特征点太少,生成特征不成功
0x15	图像缓冲区内没有有效的原始图影,生成特征不成功

表 2.3.11.3 生成特征应答包确认码描述

2.3.12 合并模板 PS RegMB

- 功能说明:将生成的特征文件融合后生成新模板,结果存于特征文件缓冲区中。
- 输入参数:无
- 返回参数:确认码
- 指令代码: 0x05
- 指令包格式:

包头	芯片地址	包标识	包长度	指令码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	0x01	0x0003	0x05	xxxx

表 2.3.12.1 合并模板指令包格式

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	0x07	0x0003	XX	xxxx

表 2.3.12.2 合并模板应答包格式

● 确认码描述,如下表所示:

确认码	描述
0x00	合并模板成功
0x01	合并模板失败

表 2.3.12.3 合并模板应答包确认码描述

2.3.13 存储模板 PS StorMB

- 功能说明:将特征文件缓冲区中的模板文件存储到指定 ID 号的 Flash 数据库中。
- 输入参数: BufferID (默认为 1)、PageID (指纹库指定位置)
- 返回参数:确认码指令代码: 0x06
- 指令包格式:

包头	芯片地址	包标识	包长度	指令码	缓冲区号	位置号	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	1 byte	2 bytes	2 bytes
0xEF01	xxxx	0x01	0x0006	0x06	BufferID	PageID	xxxx

表 2.3.13.1 存储模板指令包格式

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	0x07	0x0003	XX	XXXX

表 2.3.13.2 存储模板应答包格式

● 确认码描述,如下表所示:

1915年1131日	
确认码	描述
0x00	存储模板成功
0x01	存储模板失败

表 2.3.13.3 存储模板应答包确认码描述

2.3.14 搜索模板 PS_SearchMB

- 功能说明:以特征文件缓冲区中的特征文件搜索整个或部分指纹库,若搜索到,则 返回页码。
- 输入参数: BufferID (默认为 1)、StartPage (起始页)、PageNum (页数)
- 返回参数:确认码、页码(匹配指纹模板的页码)、得分
- 指令代码: 0x04
- 指令包格式:

包头	芯片地址	包标识	包长度	指令码	缓冲区号	起始页	页数	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	1 byte	2 bytes	2 bytes	2 bytes
0xEF01	xxxx	0x01	0x0008	0x04	BufferID	StartPage	PageNum	xxxx

表 2.3.14.1 搜索模板指令包格式

● 应答包格式:

						A A1	
何 弘.	芯片地址	包标识	包长度	确认码	页码	1 / 1 / 1 / 1	核吸和
包头	一心刀地址		包长度	确认码	人的	得分	校验和

ATK-MO301 模块用户手册

高性能电容半导体指纹识别模块

2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 byes	2 bytes	2 bytes
0xEF01	XXXX	0x07	0x0007	XX	PageID	MatchScore	XXXX

表 2.3.14.2 搜索模板应答包格式

● 确认码描述,如下表所示:

确认码	描述
0x00	搜索到模板
0x01	收包有误
0x09	没有搜索到模板

表 2.3.14.3 搜索模板应答包确认码描述

2.3.15 握手命令 PS_GetChipEcho

● 功能说明:检测模组是否正常工作

● 输入参数:无

● 返回参数:确认码

● 指令代码: 0x35

● 指令包格式:

包头	芯片地址	包标识	包长度	指令码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	XXXX	0x01	0x0003	0x35	XXXX

表 2.3.15.1 握手命令指令包格式

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	0x07	0x0003	XX	XXXX

表 2.3.15.2 握手命令应答包格式

● 确认码描述,如下表所示:

确认码	描述
00x0	握手成功

表 2.3.15.3 握手命令应答包确认码描述

2.3.16 上传图像 PS_UpImage

● 功能说明:将图像缓冲区的数据上传给上位机

● 输入参数:无

● 返回参数:确认码

● 指令代码: 0x0A

● 指令包格式:

包头	芯片地址	包标识	包长度	指令码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	0x01	0x0003	0x0A	xxxx

表 2.3.16.1 上传图像指令包格式

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	0x07	0x0003	XX	xxxx

表 2.3.16.2 上传图像应答包格式

● 确认码描述,如下表所示:

确认码	描述
0x00	接着发送后续数据包
0x01	收包有误
0x0F	不能发送后续数据包

表 2.3.16.3 上传图像应答包确认码描述

● 应答包后续发送的数据包格式:

包头	芯片地址	包标识	包长度	数据	校验和
2 bytes	4 bytes	1 byte	2 bytes	N byte(s)	2 bytes
0xEF01	XXXX	XX	XXXX	XX	XXXX

表 2.3.16.4 上传图像应答包后续的数据包格式

- 辅助说明:
 - 数据包的包标识为 0x02 时,表示后续还有数据包。
 - 数据包的包标识为 0x08 时,表示为最后一个数据包,即结束包。
 - UART 上传图像数据包时,按照预先设置的包长度分包发送数据包。
 - 图像数据中,一个字节包含两个像素数据,每个像素数据占用 4 bits。

2.3.17 读取系统基本参数 PS_ReadSysPara

- 功能说明:读取模块的基本参数(波特率、包大小)、软件版本、生产厂家、模组型号等信息。
- 输入参数:无
- 返回参数:确认码、基本参数(16 bytes)
- 指令代码: 0x0F
- 指令包格式:

包头	芯片地址	包标识	包长度	指令码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	0x01	0x0003	0x0F	XXXX

表 2.3.17.1 读取系统基本参数指令包格式

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	基本参数	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	16 bytes	2 bytes
0xEF01	XXXX	0x07	0x0013	XX	XXXX	XXXX

表 2.3.17.2 读取系统基本参数应答包格式

● 确认码描述,如下表所示:

确认码	描述
0x00	表示读取系统基本参数成功
0x01	收包有误

表 2.3.17.3 读取系统基本参数应答包确认码描述

● 基本参数描述,如下表所示:

名称	描述	偏移量	大小
状态寄存器	系统的状态寄存器内容	0 byte	2 bytes
传感器类型	保留(电容半导体)	2 bytes	2 bytes
指纹库大小	指纹库容量(500)	4 bytes	2 bytes

安全等级	安全等级(1、2、3、4、5)	6 bytes	2 bytes
设备地址	32 位设备地址(默认位 0xFFFFFFF)	8 bytes	4 bytes
	数据包大小代码:		
	0: 32 bytes		
数据包大小	1: 64 bytes	12 bytes	2 bytes
	2: 128 bytes (默认)		
	3: 256 bytes		
波特率	N (波特率为 9600*N bps)	14 bytes	2 bytes

表 2.3.17.4 系统基本参数描述

2.3.18 特征上传 PS FingerCharUp

● 功能说明:指纹特征上传,从指纹模块上传到上位机

● 输入参数: 指纹数据包分 1、2、3、4,总共 1KB 指纹数据

返回参数:确认码指令代码: 0x07

● 指令包格式:

包头	芯片地址	包标识	包长度	指令码	指纹数据包	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	1 byte	2 bytes
0xEF01	XXXX	0x01	0x0004	0x07	XX	xxxx

表 2.3.18.1 特征上传指令包格式

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	0x07	0x0003	XX	xxxx

表 2.3.18.2 特征上传应答包格式

● 确认码描述,如下表所示:

确认码	描述
0x00	成功
0x01	失败

表 2.3.18.3 特征上传应答包确认码描述

2.3.19 特征下载 PS_FingerCharDown

● 功能说明:指纹特征下载,从上位机端下载到指纹模块端

● 输入参数:指纹数据包分1、2、3、4包,总共1KB指纹数据

返回参数:确认码指令代码: 0x08

● 指令包格式:

包头	芯片地址	包标识	包长度	指令码	指纹数据包	指纹数据	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	1 byte	256 byte	2 bytes
0xEF01	XXXX	0x01	XXXX	0x08	XX	XXXX	XXXX

表 2.3.19.1 特征下载指令包格式

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes

0xEF01

表 2.3.19.2 特征下载应答包格式

● 确认码描述,如下表所示:

确认码	描述
0x00	成功
0x01	失败

表 2.3.19.3 特征下载应答包确认码描述

2.3.20 模组设置 PS_FingerModuleSet

● 功能说明:设置模组参数(注意:波特率设置立即生效)

● 输入参数:模组设置号、内容

返回参数:确认码指令代码: 0x0E

● 指令包格式:

包头	芯片地址	包标识	包长度	指令码	模组设置号	内容	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	1 byte	1 byte	2 bytes
0xEF01	XXXX	0x01	0x0005	0x0E	XX	XX	XXXX

表 2.3.20.1 模组设置指令包格式

● 应答包格式:

包头	芯片地址	包标识	包长度	确认码	校验和
2 bytes	4 bytes	1 byte	2 bytes	1 byte	2 bytes
0xEF01	xxxx	0x07	0x0003	XX	XXXX

表 2.3.20.2 模组设置应答包格式

● 确认码描述,如下表所示:

确认码	描述
0x00	成功
0x01	收包有误
0x18	读写 Flash 出错
0x1A	模组参数序号有误
0x1B	设定内容有误

表 2.3.20.3 模组设置应答包确认码描述

● 模组设置号和设定内容描述,如下表所示:

模组设置号	设定内容	内容说明
		9600 的倍数 N(0 <n<10)< td=""></n<10)<>
		1: 9600*1, 波特率为 9600bps
4	波特率控制	2: 9600*2, 波特率为 19200bps
		6: 9600*6, 波特率为 57600bps
		以此内推,设置波特率后必须掉电

表 2.3.20.4 模组设置号和设定内容描述

2.4 录入指纹流程说明

录入指纹(注册模板)有两种方式,分别为:自动注册方式和分布式指令注册方式。

ATK-MO301 模块用户手册

高性能电容半导体指纹识别模块

2.4.1 自动注册模板流程

自动注册方式即发送自动注册模板指令 PS_AutoEnroll,模块内部会完成一站式的指纹注册流程,包括采集指纹图像、生成特征、合并模板、存储模板等操作,其流程如下所示:

图 2.4.1.1 自动注册模板流程图

2.4.2 分布式注册模板流程

分布式指令注册方式要求用户单独使用相关指令完成指纹图像采集、生成特征、合并模板和存储模板等操作,分布式注册模板的方式更加灵活可控,推荐用户使用这种方式,其流程如下图所示:

图 2.4.2.1 分布式注册模板流程图

上图中 N 表示指纹采集的次数,根据实际情况 N 的值可取 2、3 或 4 次。

2.5 验证指纹流程

验证指纹有两种方式,分别为:自动验证方式和分布式指令验证方式。

2.5.1 自动验证指纹流程

自动验证方式即发送自动验证指纹指令 PS_AutoIdentify,模块内部会自动完成一站式的指纹验证流程,包括采集指纹图像、生成特征、指纹模板搜索等一系列操作,推荐使用这种方式进行指纹验证,其流程如下图所示:

图 2.5.1.1 自动验证指纹流程图

2.5.2 分布式指纹验证流程

分布式指纹验证方式要求用户单独使用相关指令完成指纹图像采集、生成特征和搜索指纹模板等操作,其流程如下图所示:

图 2.5.2.1 分布式指纹验证流程图

上图中,生成特征和搜索指纹特征时,使用的 BufferID 设默认为 1。

3,结构尺寸

ATK-MO301 模块的尺寸结构,如下图所示:

图 3.1 ATK-MO301 模块尺寸图

4, 其他

1、购买地址:

天猫: https://zhengdianyuanzi.tmall.com

淘宝: https://openedv.taobao.com

2、资料下载

模块资料下载地址: http://www.openedv.com/docs/modules/other/ATK-301.html

3、技术支持

公司网址: www.alientek.com

技术论坛: http://www.openedv.com/forum.php

在线教学: www.yuanzige.com

B 站视频: https://space.bilibili.com/394620890

传真: 020-36773971 电话: 020-38271790

