

Graphe des liaisons du mécanisme à étudier :

Hyperstatisme:

 $h = m_u + m_i + 6\gamma - N_C$

Le mécanisme comporte :

- 4 boucles indépendantes : $\gamma = 4$
- 19 inconnues cinématiques : 11 pivots + 4 pivots glissantes : $N_C = 11 + 4 \times 2 = 19$
- Pas de mobilités internes $m_i = 0$ et 3 mobilités utiles : les mobilités des liaisons pivots (0-1), (1-2) et (2-3), $m_u = 3$

D'où un degré d'hyperstatisme : $h = 3 + 0 + 6 \times 4 - 19$, soit h = 8

Isostatisme:

On change les pivots situées aux l'extrémités des vérins (pivots glissantes) par des sphériques, soient les liaisons (1-4), (1-4'), (2-5), (2-5'), (2-6), (2-6'), (3-7) et (3-7').

Le mécanisme comporte désormais:

- Toujours 4 boucles indépendantes : $\gamma = 4$
- 35 inconnues cinématiques : 3 pivots + 4 pivots glissantes et 8 sphériques: $N_C = 3 + 4 \times 2 + 8 \times 3 = 35$
- Toujours 3 mobilités utiles : les mobilités des liaisons pivots (0-1), (1-2) et (2-3), $m_u = 3$, mais des mobilités internes :rotation du corps et de la tige autour de leur axe (2 mobilités internes) pour chacun des 4 vérins: $m_i = 4 \times 2 = 8$

D'où un degré d'hyperstatisme : $h = 3 + 8 + 6 \times 4 - 35$, soit h = 0, le mécanisme est bien isostatique.

On peut aussi remplacer ces mêmes liaisons par des sphériques à doigts (la rotation éliminée sera celle de la mobilité interne de la solution à sphérique), ainsi il n'y aura pas de mobilité interne.

QUESTION 3 – QUESTION 4 (en vert)

Réponse à la question 6

POSITION POUR LAQUELLE LA VITESSE EST MINIMALE

Explication:

- La distance AC étant fixe, $C \in$ cercle de centre A de rayon AC
- On veut que la vitesse de C du berceau ($\overrightarrow{V_{C50}}$) soit minimale. Or $\overrightarrow{V_{C50}} = \overrightarrow{V_{C40}} = \overrightarrow{V_{C43}} + \overrightarrow{V_{C30}}$. $\overrightarrow{V_{C43}}$ étant supposé constant, et $\overrightarrow{V_{C43}}$, $\overrightarrow{V_{C30}}$ étant orthogonal, $\overrightarrow{V_{C50}}$ sera minimal si $\overrightarrow{V_{C30}}$ l'est aussi, c'est-à-dire nul. $\overrightarrow{V_{C30}} = \overrightarrow{0}$ si (AC) \bot (BC). Le triangle ABC doit donc être rectangle en C. Donc $C \in C$ cercle de centre D milieu de AB de rayon DA.

QUESTION 7

$$\overrightarrow{V}(D,5/0) = \underbrace{\overrightarrow{V}(A,5/0)}_{=0} + \overrightarrow{DA} \wedge \overrightarrow{\Omega}(5/0) = -H \ \overrightarrow{x}_5 \wedge \dot{\theta} \ \overrightarrow{z}_0 = H \dot{\theta} \ \overrightarrow{y}_5$$

Graphe des liaisons :

Ecriture de la fermeture cinématique :

$${}_{C}\{V(5/0)\} + {}_{C}\{V(0/3)\} + {}_{C}\{V(3/4)\} + {}_{C}\{V(4/5)\} = \begin{cases} \vec{0} \\ \vec{0} \end{cases}$$

Expression en fonction du paramétrage :

$$\begin{cases}
\dot{\theta} \ \vec{z}_{0} \\
c \dot{\theta} \ \vec{y}_{5}
\end{cases} + \begin{cases}
-\dot{\beta} \ \vec{z}_{0} \\
r \dot{\beta} \ \vec{x}_{3}
\end{cases} + \begin{cases}
\ddot{0} \\
-v \ \vec{y}_{3}
\end{cases} + \begin{cases}
\dot{(\dot{\beta} - \dot{\theta})} \vec{z}_{0} \\
\ddot{0}
\end{cases} = \begin{cases}
\ddot{0} \\
\ddot{0}
\end{cases}$$

Détails du calcul des vecteurs vitesse

•
$$\vec{V}(C,5/0) = \underbrace{\vec{V}(A,5/0)}_{\hat{0}} + \overrightarrow{CA} \wedge \overrightarrow{\Omega}(5/0) = -c \vec{x}_5 \wedge \dot{\theta} \vec{z}_0 = c \dot{\theta} \vec{y}_5$$

• $\vec{V}(C,0/3) = \underbrace{\vec{V}(B,0/3)}_{\hat{0}} + \overrightarrow{CB} \wedge \overrightarrow{\Omega}(0/3) = -r \vec{y}_3 \wedge -\dot{\beta} \vec{z}_0 = r \dot{\beta} \vec{x}_3$

•
$$\vec{V}(C,0/3) = \underbrace{\vec{V}(B,0/3)}_{\hat{0}} + \overrightarrow{CB} \wedge \overrightarrow{\Omega}(0/3) = -r \ \vec{y}_3 \wedge -\dot{\beta} \ \vec{z}_0 = r\dot{\beta} \ \vec{x}_3$$

D'où : $c\dot{\theta}$ $\vec{y}_5 + r\dot{\beta}$ $\vec{x}_3 - v$ $\vec{y}_3 = \vec{0}$, soit le résultat demandé en projetant sur \vec{y}_3 :

$$v = c \dot{\theta} \underbrace{\left(\vec{y}_5 \cdot \vec{y}_3\right)}_{\cos(\theta - \beta)},$$

$$v = c\dot{\theta}\cos(\theta - \beta)$$

OUESTION 9

Fermeture géométrique :

 $\overrightarrow{O_0B} + \overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{AO_0} = \overrightarrow{0}$, ce qui s'exprime en fonction du paramétrage :

$$b \ \vec{x}_0 + r \ \vec{y}_3 - c \ \vec{x}_5 - a \ \vec{y}_0 = \vec{0} \ .$$

En projection respectivement sur \vec{x}_0 et sur \vec{y}_0 :

$$\begin{cases} b - r\sin\beta - c\cos\theta = 0 \\ r\cos\beta - c\sin\theta - a = 0 \end{cases} \Leftrightarrow \begin{cases} r\sin\beta = b - c\cos\theta \\ r\cos\beta = a + c\sin\theta \end{cases}, \text{ d'où } \boxed{\tan\beta = \frac{b - c\cos\theta}{a + c\sin\theta}}$$

En projection sur \vec{x}_3 : $a \cdot \sin \beta + c \cdot \cos(\theta - \beta) - b \cdot \cos \beta = 0$, soit en développant le cos et en refactorisant :

$$(a+c\cdot\sin\theta)\cdot\sin\beta - (b-c\cdot\cos\theta)\cdot\cos\beta = 0$$
. On en déduit la même relation demandée: $\tan\beta = \frac{b-c\cdot\cos\theta}{a+c\cdot\sin\theta}$

QUESTION 10

1ère méthode : dans la suite logique de l'énoncé!!!

$$\overline{v = c\dot{\theta}\cos(\theta - \beta)} = c\dot{\theta}\left[\cos\beta\cos\theta + \sin\beta\sin\theta\right] = c\dot{\theta}\cos\beta\left[\cos\theta + \tan\beta\sin\theta\right]$$

Or
$$\cos \beta = \frac{1}{\sqrt{1 + \tan^2 \beta}}$$
, d'où l'expression de la vitesse en fonction de $\tan \beta$:

$$v = \frac{c\dot{\theta}}{\sqrt{1 + \tan^2 \beta}} \left[\cos \theta + \tan \beta \sin \theta \right], \text{ soit}$$

$$v = \frac{c\dot{\theta}}{\sqrt{1 + \left(\frac{b - c\cos \theta}{a + c\sin \theta}\right)^2}} \left[\cos \theta + \frac{b - c\cos \theta}{a + c\sin \theta} \sin \theta \right] = \frac{c\dot{\theta}(\cos \theta(a + c\sin \theta) + \sin \theta(b - c\cos \theta))}{\sqrt{(a + c\sin \theta)^2 + (b - c\cos \theta)^2}}$$

$$v = \frac{c\dot{\theta}(a\cos \theta + b\sin \theta)}{\sqrt{(a + c\sin \theta)^2 + (b - c\cos \theta)^2}}$$

Or la vitesse des points de la plate-forme étant considéré constante, on a

Soit le résultat :
$$||\vec{V}(D,5/0)|| = H\dot{\theta} = \text{constante d'où } c\dot{\theta} = \frac{c||\vec{V}(D,5/0)||}{H} = \frac{cV_{plate-forme}}{H}.$$
Soit le résultat :
$$||\vec{V}(D,5/0)|| (a\cos\theta + b\sin\theta) || H\sqrt{(a+c\sin\theta)^2 + (b-c\cos\theta)^2} || H$$

$\underline{2^{\text{ème}}}$ méthode : à partir de la fermeture géométrique :

Il suffit de remarquer que $v = \dot{r}$. Or, d'après la fermeture géométrique projetée sur \vec{y}_3 , on trouve

$$r = \sqrt{(b - c\cos\theta)^2 + (a + c\sin\theta)^2}, \text{ d'où}$$

$$v = \dot{r} = \frac{2c\dot{\theta}\sin\theta(b - c\cos\theta) + 2c\dot{\theta}\cos\theta(a + c\sin\theta)}{2\sqrt{(b - c\cos\theta)^2 + (a + c\sin\theta)^2}} = \frac{c\dot{\theta}[\sin\theta(b - c\cos\theta) + \cos\theta(a + c\sin\theta)]}{\sqrt{(b - c\cos\theta)^2 + (a + c\sin\theta)^2}}$$

$$v = \dot{r} = \frac{c\dot{\theta}[b\sin\theta + a\cos\theta]}{\sqrt{(b - c\cos\theta)^2 + (a + c\sin\theta)^2}}, \text{ soit le même résultat.}$$

3^{ème} méthode:

$$\vec{V}(D,5/0) = H \cdot \dot{\theta} \cdot \vec{y}_5 = H \cdot \frac{v}{c \cdot \cos(\theta - \beta)} \cdot \vec{y}_5 = \frac{H \cdot v}{c \cdot \cos\left(\theta - \beta\right)} \cdot \vec{y}_5 = \frac{H \cdot v}{c \cdot \cos\left(\theta - \beta\right)} \cdot \vec{y}_5$$
pour avoir $||\vec{V}(D,5/0)||$ constante, il faut :
$$\frac{H \cdot v}{c \cdot \cos\left(\theta - \arctan\left(\frac{b - c \cdot \cos\theta}{a + c \cdot \sin\theta}\right)\right)} = cste$$

$$\Rightarrow v = \frac{cste}{H} \cdot c \cdot \cos\left(\theta - \arctan\left(\frac{b - c \cdot \cos\theta}{a + c \cdot \sin\theta}\right)\right)$$

En posant
$$\overrightarrow{OG} = \begin{vmatrix} x_G \\ y_G \\ z_G \end{vmatrix}$$
, on peut, par raison de symétrie, prendre : $\overrightarrow{OG} = \begin{vmatrix} L/2 \\ y_G \\ 0 \end{vmatrix}$. Il ne reste alors plus qu'à

déterminer y_G , qui est le même que pour une section de la poutre :

$$my_G = \int_{\text{morceau de gauche}} ydm + \int_{\text{morceau du bas}} ydm + \int_{\text{morceau de droite}} ydm = 2 \int_{\text{morceau de droite}} ydm$$

$$my_G = 2\int_0^h y \frac{m}{3h} dy = \frac{2m}{3h} \int_0^h ydy = \frac{2m}{3h} \frac{h^2}{2} = \frac{h}{3}$$

$$my_G = 2\int_0^h y \frac{m}{3h} dy = \frac{2m}{3h} \int_0^h y dy = \frac{2m}{3h} \frac{h^2}{2} = \frac{h}{3}$$

Soit
$$\overrightarrow{OG} = \begin{bmatrix} L/2 \\ h/3 \\ 0 \end{bmatrix}$$

Ou plus simplement, en cherchant le centre de gravité des trois masses ponctuelles (m, G_1) ,

$$(m, G_2)$$
 et (m, G_3) : $3my_G = my_{G1} + my_{G2} + my_{G3} = m\frac{h}{2} + m.0 + m\frac{h}{2} = mh$, d'où le résultat : $y_G = \frac{h}{3}$

• G centre de gravité de 5 donc,
$$\overrightarrow{\boldsymbol{\sigma}}_{G,50} = \begin{bmatrix} I_{Gx} \\ I_{Gy} \end{bmatrix}_{I_{Gz}} = \begin{bmatrix} I_{Gx} \\ I_{Gy} \\ I_{Gz} \end{bmatrix}_{b_{z}} \begin{vmatrix} 0 \\ 0 = I_{Gz}\dot{\theta}\ \vec{z}_{0} \end{vmatrix}$$

$$\overrightarrow{\boldsymbol{\sigma}}_{A,50} = \overrightarrow{\boldsymbol{\sigma}}_{G,50} + \overrightarrow{AG} \wedge 3m \overrightarrow{V}_{G,50} = \overrightarrow{\boldsymbol{\sigma}}_{G,50} + \overrightarrow{AG} \wedge 3m \left[\overrightarrow{GA} \wedge \overrightarrow{\Omega}_{50}\right] = \begin{vmatrix} 0 & 1 & |C| & |C|$$

$$\vec{\sigma}_{A,50} = \begin{vmatrix} 0 \\ 0 \\ I_{Gz}\dot{\theta} \end{vmatrix} + 3m \begin{vmatrix} \frac{L}{2} - d \\ \frac{h}{3} \\ 0 \end{vmatrix} - \left(\frac{L}{2} - d\right)\dot{\theta} = \begin{vmatrix} 0 \\ 0 \\ I_{Gz}\dot{\theta} \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ I_{Gz}\dot{\theta} \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{vmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{vmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d \\ 0 \end{bmatrix} \dot{\theta} = \begin{bmatrix} \frac{L}{2} - d$$

$$\overrightarrow{\boldsymbol{\sigma}}_{A,50} = \left[I_{Gz} + 3m \left[\left(\frac{L}{2} - d \right)^2 + \frac{h^2}{9} \right] \right] \dot{\theta} \ \vec{z}_0. \text{ Or A est fixe dans le mouvement de 5/0, donc} :$$

$$\vec{\delta}_{A,50} = \left[\frac{d\vec{\mathcal{O}}_{A,50}}{dt} \right]_0 = \left[I_{Gz} + 3m \left[\left(\frac{L}{2} - d \right)^2 + \frac{h^2}{9} \right] \right] \ddot{\theta} \ \vec{z}_0$$

• Ce que l'on retrouve bien sur, en utilisant Huygens :

$$\vec{\delta}(A,5/0) = \left[\frac{d\vec{\sigma}(A,5/0)}{dt}\right]_{R_0}$$

$$\vec{\sigma}(A,5/0) = I(A,5) \cdot \vec{\Omega}(5/0) = \begin{bmatrix} I_{Ax} & 0 & 0 \\ 0 & I_{Ay} & 0 \\ 0 & 0 & I_{Az} \end{bmatrix}_{(\vec{x}_{5},\vec{y}_{5},\vec{z}_{0})} \cdot \begin{bmatrix} 0 \\ 0 \\ \dot{\theta} \end{bmatrix} = I_{Az} \cdot \dot{\theta} \cdot \vec{z}_{0}$$

avec
$$I_{Az} = I_{Gz} + 3 \cdot m \cdot \left[\left(\frac{L}{2} - d \right)^2 + \frac{h^2}{9} \right]$$

$$\vec{\sigma}(A,5/0) = \left[I_{Gz} + 3 \cdot m \cdot \left[\left(\frac{L}{2} - d \right)^2 + \frac{h^2}{9} \right] \right] \cdot \dot{\theta} \cdot \vec{z}_0 \quad \text{D'où} \quad \vec{\delta}(A,5/0) = \left[I_{Gz} + 3 \cdot m \cdot \left[\left(\frac{L}{2} - d \right)^2 + \frac{h^2}{9} \right] \right] \cdot \ddot{\theta} \cdot \vec{z}_0$$

QUESTION 13

La plate-forme restant toujours horizontale, elle est animée d'un mouvement de translation (circulaire), on en déduit donc $\vec{\delta}_{G_P,60} = \vec{0}$.

$$\vec{\delta}_{A,60} = \vec{\delta}_{G_P,60} + \overrightarrow{AG_P} \wedge M \vec{a}_{G_P,60}$$

Or
$$\overrightarrow{AG_P} = \overrightarrow{AD} + \overrightarrow{DG_P} = H \vec{x}_5 + \lambda \vec{x}_0 + \mu \vec{y}_0$$
, d'où,

$$\vec{V}_{G_P,60} = \left[\frac{d\vec{A}G_P}{dt} \right]_0 = H\dot{\theta} \ \vec{y}_5$$
, et $\vec{a}_{G_P,60} = \left[\frac{d\vec{V}_{G_P,60}}{dt} \right]_0 = H\ddot{\theta} \ \vec{y}_5 - H\dot{\theta}^2 \ \vec{x}_5$

Soit en effectuant le calcul dans la base 5 :

$$\vec{\delta}_{A,60} = M \begin{vmatrix} H + \lambda \cos \theta + \mu \sin \theta \\ -\lambda \sin \theta + \mu \cos \theta \\ 0 \end{vmatrix} \wedge \begin{vmatrix} -H\dot{\theta}^2 \\ H\ddot{\theta} \end{vmatrix} = M \left[H\ddot{\theta} (H + \lambda \cos \theta + \mu \sin \theta) + H\dot{\theta}^2 (-\lambda \sin \theta + \mu \cos \theta) \right] \vec{z}_0$$

$$\vec{\delta}_{A,60} = M \left[H\ddot{\theta} (H + \lambda \cos \theta + \mu \sin \theta) + H\dot{\theta}^2 (-\lambda \sin \theta + \mu \cos \theta) \right] \vec{z}_0$$

$$\vec{\delta}_{A,60} = M \Big[H \dot{\theta} \big(H + \lambda \cos \theta + \mu \sin \theta \big) + H \dot{\theta}^2 \big(-\lambda \sin \theta + \mu \cos \theta \big) \Big] \vec{z}_0$$

QUESTION 14

Les deux questions précédentes invitent clairement à isoler l'ensemble $\{5+6\}$ et à appliquer le théorème du moment dynamique en A !!!

Le graphe des liaisons complété des actions mécaniques extérieures représentées ci-dessous, permettait de s'en rendre compte.

Inventaire des actions mécaniques extérieures :

• 0 sur 5 :

 $\overrightarrow{M}_A(0 \rightarrow 5).\overrightarrow{z}_0 = 0$, c'est pour cela qu'il faut écrire le théorème du moment en A (pas d'inconnues de liaisons dans l'expression)

• Vérin 4 sur 5 :

d'après l'énoncé c'est un glisseur de résultante $\vec{R} = R \ \vec{y}_3$. Le point d'application n'étant pas donné on peut le justifier par l'isolement de 3+4 et le fait que leurs masses sont négligées (donc pas d'effet inertie). Ensemble soumis à 2 forces idem qu'en statique, opposées alignées donc avec (BC). On a donc

$$\overrightarrow{M}_{A}(0 \to 5).\overrightarrow{z}_{0} = \underbrace{\overrightarrow{M}_{C}(0 \to 5)}_{0}.\overrightarrow{z}_{0} + \left(\overrightarrow{AC} \wedge R \overrightarrow{y}_{3}\right)\overrightarrow{z}_{0} = cR(\overrightarrow{x}_{5} \wedge \overrightarrow{y}_{3}).\overrightarrow{z}_{0} = cR(\overrightarrow{z}_{0} \wedge \overrightarrow{x}_{5}).\overrightarrow{y}_{3} = cR(\overrightarrow{y}_{5}.\overrightarrow{y}_{3}) = cR\cos(\theta - \beta)$$

• \vec{g} sur 5 :

$$\overrightarrow{M}_{A}(\overrightarrow{g} \to 5).\overrightarrow{z}_{0} = \underbrace{\overrightarrow{M}_{G}(\overrightarrow{g} \to 5)}_{\overrightarrow{0}}.\overrightarrow{z}_{0} + \left(\overrightarrow{AG} \land -3mg \ \overrightarrow{y}_{0}\right)\overrightarrow{z}_{0} = -3mg(\overrightarrow{y}_{0} \land \overrightarrow{z}_{0}).\overrightarrow{AG}$$

$$\overrightarrow{M}_A(\overrightarrow{g} \to 5).\overrightarrow{z}_0 = -3mg \ \overrightarrow{x}_0.\overrightarrow{AG} = -3mg \left[\left(\frac{L}{2} - d \right) \cos \theta + \frac{h}{3} \sin \theta \right]$$

• \vec{g} sur 6:

$$\overrightarrow{M}_{A}(\overrightarrow{g} \to 6).\overrightarrow{z}_{0} = \underbrace{\overrightarrow{M}_{G_{P}}(\overrightarrow{g} \to 6)}_{\overrightarrow{Q}}.\overrightarrow{z}_{0} + \underbrace{(\overrightarrow{A}G_{P} \land -Mg \ \overrightarrow{y}_{0})}_{\overrightarrow{Q}}\overrightarrow{z}_{0} = -Mg(\overrightarrow{y}_{0} \land \overrightarrow{z}_{0}).\overrightarrow{A}G_{P}$$

$$\overrightarrow{M}_A(\overrightarrow{g} \rightarrow 5).\overrightarrow{z}_0 = -Mg \overrightarrow{x}_0.\overrightarrow{AG}_P = -Mg[H\cos\theta + \lambda]$$

Théorème du moment dynamique à l'ensemble (5+6) en projection sur (A, \vec{z}_0) :

$$\left|I_{Gz} + 3m\left[\left(\frac{L}{2} - d\right)^2 + \frac{h^2}{9}\right]\right| \ddot{\theta} + M\left[H\ddot{\theta}(H + \lambda\cos\theta + \mu\sin\theta) + H\dot{\theta}^2(-\lambda\sin\theta + \mu\cos\theta)\right] =$$

$$cR\cos(\theta-\beta)-3mg\left[\left(\frac{L}{2}-d\right)\cos\theta+\frac{h}{3}\sin\theta\right]-Mg\left[H\cos\theta+\lambda\right]$$

Soit l'expression de l'effort des vérins :

$$R = \frac{\left[I_{Gz} + 3m\left[\left(\frac{L}{2} - d\right)^2 + \frac{h^2}{9}\right]\right]\ddot{\theta} + M\left[H\ddot{\theta}\left(H + \lambda\cos\theta + \mu\sin\theta\right) + H\dot{\theta}^2\left(-\lambda\sin\theta + \mu\cos\theta\right)\right] + 3mg\left[\left(\frac{L}{2} - d\right)\cos\theta + \frac{h}{3}\sin\theta\right] + Mg\left[H\cos\theta + \lambda\right]}{c\cos(\theta - \beta)}$$

$$v = R\omega = R \frac{2\pi N}{60}$$
, soit numériquement $v = 0.2\pi = 0.628 \text{ m.s}^{-1}$

QUESTION 16

Réponse à la question 16

PRINCIPE DU SYSTEME DE DEPLOIEMENT.

 $\vec{V}(B,_{P3/P4}) = \vec{V}(M,_{P3/P4})$ puisque P3 est en translation / P4. D'autre part : $\vec{V}(B,_{P3/P4}) = \vec{V}(B,_{Treuil/P4})$ et $\vec{V}(A,_{Treuil/P4}) = \vec{0}$ (pas de glissement en A). Or $\vec{V}(C,_{Treuil/P4}) = \vec{V}(C,_{P2/P4})$ (pas de glissement en C). On en déduit $\vec{V}(C,_{P2/P4})$ par « le triangle des vitesses », du treuil / P4.

QUESTION 17

Les vitesses des plans étant multipliées par 2 entre chaque plan, on en déduit les vitesses des plans par rapport au bâti, puis par rapport au plan précédents :

$$V_{P3/0} = V_{P3/P4} = v = 0,628 \text{ m.s}^{-1}$$

$$V_{P2/0} = V_{P2/P4} = 2v \Rightarrow V_{P2/P3} = v = 0,628 \text{ m.s}^{-1}$$

$$V_{P1/0} = V_{P1/P4} = 4v \Longrightarrow V_{P1/P2} = 2v = 1,26 \text{ m.s}^{-1}$$

Le temps de déploiement est donc celui des deux plus « lents », c'est-à-dire de P3/P4 et P2/P3, soit :

$$t_{\text{déploiement}} = \frac{9-2}{v} = \frac{7}{0.2\pi} = \frac{35}{\pi} \approx 11.2 \text{ s}$$

Tous les solides sont en translation puisque l'angle de dressage est ici considéré constant, donc leurs énergies cinétiques sont de la forme $E_C = \frac{1}{2}mV^2$

- Plate-forme : $E_{CPf} = \frac{1}{2} mV^2$
- Plan 1 : $E_{CP1} = \frac{1}{2}MV^2$
- Plan 2: $E_{CP2} = \frac{1}{2}M\frac{V^2}{4}$
- Plan 3: $E_{CP3} = \frac{1}{2}M\frac{V^2}{16}$
- Plan 4, fixe : $E_{CP3} = 0$

D'où l'énergie cinétique totale de l'ensemble (plate-forme + plans) :

$$E_{C(Pf+P1+P2+P3+P4)} = \frac{1}{2} \left(m + M \left(1 + \frac{1}{4} + \frac{1}{16} \right) \right) V^2, \text{ soit : } E_{C(Pf+P1+P2+P3+P4)} = \frac{1}{2} \left(m + \frac{21}{16} M \right) V^2$$

QUESTION 19

Solide en rotation autour d'un axe fixe : $E_{CT} = \frac{1}{2}I\omega^2$, or $V_{P3/0} = V_{P3/P4} = v = \frac{V}{4} = R\omega$, donc

$$E_{CT} = \frac{1}{2}I\frac{V^2}{16R^2}$$
, soit $E_{CT} = \frac{1}{2}\frac{I}{16R^2}V^2$

QUESTION 20

$$P_{ext} = P_{\vec{g} \to Pf} + P_{\vec{g} \to P1} + P_{\vec{g} \to P2} + P_{\vec{g} \to P3} + \underbrace{P_{\vec{g} \to P4}}_{0. \text{P4 immobile}} + P_{m \to Treuil}$$

$$P_{\vec{g} \to Pf} = \{T(\vec{g} \to Pf)\} \otimes \{V(Pf/0)\} = \begin{cases} -mg\vec{y}_0 \\ \vec{0} \end{cases} \otimes \begin{cases} \vec{0} \\ V\vec{x}_1 \end{cases} = -mgV(\vec{y}_0.\vec{x}_1) = -mgV \sin \theta$$

De la même façon,

$$P_{\vec{g}\to P1} = -MgV\sin\theta$$

$$P_{\bar{g}\to P2} = -Mg\frac{V}{2}\sin\theta$$

$$P_{\vec{g}\to P3} = -Mg\,\frac{V}{4}\sin\theta$$

Et:
$$P_{m \to Treuil} = C\omega = \frac{CV}{4R}$$

D'où l'expression des puissances extérieures : $P_{ext} = \frac{CV}{4R} - gV \sin\theta \left[m + M \left(1 + \frac{1}{2} + \frac{1}{4} \right) \right]$, soit :

$$P_{ext} = V \left[\frac{C}{4R} - g \left(m + \frac{7}{4} M \right) \sin \theta \right]$$

$$P_{\text{int}} = P_{P3 \leftrightarrow P4} + P_{P2 \leftrightarrow P3} + P_{P1 \leftrightarrow P2}$$

$$P_{P2\leftrightarrow P1} = \{T(P2\to P1)\} \otimes \{V(P1/P2)\} = \begin{cases} -F \ \vec{x}_1 \\ ? \end{cases} \otimes \begin{cases} \frac{\vec{0}}{V} \vec{x}_1 \\ = -F \frac{V}{2} (\vec{x}_1.\vec{x}_1) = -F \frac{V}{2} (\vec{x}_1.\vec{x}_1.\vec{x}_1) = -F \frac{V}{2} (\vec{x}_1.\vec{x}_1.\vec{x}_1) = -F \frac{V}{2} (\vec{x}_1.\vec{x}_1.\vec{x}$$

De la même façon,

$$P_{P3\leftrightarrow P2} = \{T(P3\to P2)\} \otimes \{V(P2/P3)\} = \begin{cases} -F\vec{x}_1 \\ ? \end{cases} \otimes \begin{cases} \left(\frac{V}{2} - \frac{V}{4}\right)\vec{x}_1 \\ \end{cases} = -F\frac{V}{4}(\vec{x}_1.\vec{x}_1) = -F\frac{V}{4}(\vec{x}_2.\vec{x}_1) = -F\frac{V}{4}(\vec{x}_2.\vec{x}_2) = -F\frac{V$$

$$P_{P_{4\leftrightarrow P_{3}}} = \{T(P_{4} \to P_{3})\} \otimes \{V(P_{3}/P_{4})\} = \begin{cases} -F \vec{x}_{1} \\ ? \end{cases} \otimes \begin{cases} \vec{0} \\ (\frac{V}{4})\vec{x}_{1} \end{cases} = -F \frac{V}{4} (\vec{x}_{1}.\vec{x}_{1}) = -F \frac{V}{4}$$

D'où l'expression des puissances intérieures : $P_{\text{int}} = -FV \left[\frac{1}{2} + \frac{1}{4} + \frac{1}{4} \right]$, soit : $\boxed{P_{\text{int}} = -FV}$

OUESTION 22

Théorème de l'énergie cinétique appliqué à l'ensemble (Treuil + parc échelle + plate-forme) :

$$\frac{dE_C}{dt} = P_{\text{int}} + P_{ext}, \text{ soit :}$$

$$\frac{d\left[\frac{1}{2}\left(m + \frac{21}{16}M\right)V^{2} + \frac{1}{2}\frac{I}{16R^{2}}V^{2}\right]}{dt} = -FV + V\left[\frac{C}{4R} - g\left(m + \frac{7}{4}M\right)\sin\theta\right]$$

$$\left[m + \frac{21}{16}M + \frac{I}{16R^{2}}\right]V\dot{V} = -FV + V\left[\frac{C}{4R} - g\left(m + \frac{7}{4}M\right)\sin\theta\right]$$

D'où :
$$\left[m + \frac{21}{16}M + \frac{I}{16R^2} \right] \dot{V} = -F + \frac{C}{4R} - g \left(m + \frac{7}{4}M \right) \sin \theta$$
, dont on déduit le couple moteur, avec $\dot{V} = \Gamma_0$
$$C = 4R \left[\left(m + \frac{21}{16}M + \frac{I}{16R^2} \right) \Gamma_0 + F + g \left(m + \frac{7}{4}M \right) \sin \theta \right]$$

OUESTION 23

La condition de non basculement de l'ensemble est que la réaction normale du contact avec le sol en M soit positive : $[Y_M > 0]$

Remarque:

La position limite demandée (calcul de statique) provoquera le basculement dès lors que les effets dynamiques (rentrée ou sortie du parc échelle) rentreront en compte !!!

Calcul de la position limite en statique :

Appliquons le théorème du moment statique à l'ensemble projeté suivant (N, \vec{z}_0) pour éliminer de l'équation les inconnues de liaisons X_N, Y_N, X_M qui ne nous intéressent pas.

$$\overrightarrow{M}_{N}(\vec{z} \rightarrow Pf).\vec{z}_{0} = \underbrace{\overrightarrow{M}_{G_{P}}(\vec{z} \rightarrow Pf)}_{\vec{0}}.\vec{z}_{0} + \left(\overrightarrow{NG_{P}} \wedge -m_{P}g \ \vec{y}_{0}\right)\vec{z}_{0} = -m_{P}g\left(\vec{y}_{0} \wedge \vec{z}_{0}\right).\overrightarrow{NG_{P}} = -m_{P}g\underbrace{\vec{x}_{0}.\overrightarrow{NG_{P}}}_{L-b} = -m_{P}g\left(L-b\right)$$

De la même manière :

$$\overrightarrow{M}_{N}(\vec{g} \rightarrow \text{Veh + Charge}).\vec{Z}_{0} = \underbrace{\overrightarrow{M}_{G_{V}}(\vec{g} \rightarrow \text{Veh + Charge})}_{\vec{0}}.\vec{Z}_{0} + \underbrace{\left(\overrightarrow{NG_{V}} \land -m_{V}g \ \vec{y}_{0}\right)}_{\vec{z}_{0}} \vec{z}_{0} = -m_{V}g\underbrace{\vec{x}_{0}.\overrightarrow{NG_{V}}}_{-b} = m_{V}gb$$

$$\overrightarrow{M}_{N}\left(\overrightarrow{g} \rightarrow \operatorname{Parc} \operatorname{\acute{e}ch}\right) \overrightarrow{Z}_{0} = \underbrace{\overrightarrow{M}_{G_{V}}\left(\overrightarrow{g} \rightarrow \operatorname{Parc} \operatorname{\acute{e}ch}\right)}_{\overrightarrow{0}} \overrightarrow{Z}_{0} + \left(\overrightarrow{NG_{E}} \wedge -m_{E}g \ \overrightarrow{y}_{0}\right) \overrightarrow{Z}_{0} = -m_{E}g \underbrace{\overrightarrow{x}_{0}.\overrightarrow{NG_{E}}}_{\underline{L}-b} = -m_{V}g \left(\frac{L}{2} - b\right)$$

Pour les réactions du sol sur les stabilisateurs :

$$\overrightarrow{M}_N$$
 (sol \rightarrow stabilisateurN) = $\overrightarrow{0}$

$$\overrightarrow{M}_{N}$$
 (sol \rightarrow stabilisateurM). $\overrightarrow{z}_{0} = \underbrace{\overrightarrow{M}_{M}$ (sol \rightarrow stabilisateurM). $\overrightarrow{z}_{0} + (\overrightarrow{NM} \wedge \overrightarrow{R}_{N})\overrightarrow{z}_{0} = -2bY_{M}$

D'où l'équation du moment à l'ensemble projeté suivant (N, \vec{z}_0) :

$$-m_P g(L-b) - m_E g\left(\frac{L}{2} - b\right) + m_V g b - 2b Y_M = 0$$

$$L_{\text{max}} = L(Y_M = 0) \implies -m_P g(L_{\text{max}} - b) - m_E g\left(\frac{L_{\text{max}}}{2} - b\right) + m_V g b = 0$$
, soit:

$$L_{\text{max}} = 2b \frac{m_P + m_E + m_V}{2m_P + m_E}$$

En négligeant les frottements, on obtient le schéma bloc cicontre :

Soit la fonction de transfert globale :

$$\frac{\Omega_{\scriptscriptstyle M}}{U_{\scriptscriptstyle C}} = \frac{\frac{k}{R_{\scriptscriptstyle 1}J_{\scriptscriptstyle 1}p}}{1 + \frac{kk_{\scriptscriptstyle e}}{R_{\scriptscriptstyle 1}J_{\scriptscriptstyle 1}p}} = \frac{k}{kk_{\scriptscriptstyle e} + R_{\scriptscriptstyle 1}J_{\scriptscriptstyle 1}p}, \text{ ce qui donne une vitesse de}$$

rotation en régime permanent (p=0) : $\Omega_M = \frac{1}{k_e} U_C$ à comparer à $\Omega_M = \frac{1}{k} U_C$ du moteur supposé électriquement parfait de l'énoncé. On a donc : $k_e = k$

QUESTION 26

On peut « progressivement » se ramener à un shéma bloc « classique » :

On considère que $U_C = 0$, et on regroupe C_P et C_{S1}

Ce qui se présente sous forme « classique » :

 $\frac{1}{\mu_1 + J_1 p} \underbrace{\frac{\Omega_M}{\mu_1 + J_1 p}}$

D'où la fonction de transfert ou transmittance en boucle fermée demandée :

$$\frac{\Omega_{M}}{-(C_{P}+C_{S1})} = \frac{\frac{1}{\mu_{1}+J_{1}p}}{1+\frac{kk_{e}}{R_{1}(\mu_{1}+J_{1}p)}} = \frac{R_{1}}{kk_{e}+R_{1}\mu_{1}+R_{1}J_{1}p}, \text{ soit } \frac{\Omega_{M}}{(C_{P}+C_{S1})} = \frac{-R_{1}}{kk_{e}+R_{1}\mu_{1}+R_{1}J_{1}p}$$

QUESTION 27

1ère méthode: modification de schéma bloc

Le schéma bloc de l'énoncé peut aussi s'écrire :

On peut remplacer la boucle entourée ci-dessus par le bloc : $\frac{H_2}{1 + \frac{H_2C_{yV}}{R_3}} = \frac{H_2R_3}{R_3 + H_2C_{yV}}, \text{ ce qui donne le}$

schéma bloc ci-dessous:

On déplace ensuite le point « de prélèvement » comme indiqué en pointillé ci-dessus :

On peut remplacer la boucle entourée en pointillée par : $\frac{\frac{H_2R_3}{R_2\left(R_3+H_2C_{yV}\right)}}{1+\frac{H_2R_3C_{yV}}{R_2\left(R_3+H_2C_{yV}\right)}} = \frac{H_2R_3}{H_2R_3C_{yV}+R_2\left(R_3+H_2C_{yV}\right)},$

soit le schéma bloc :

Ce qui donne la fonction de transfert :

$$\frac{C_{P}}{-C_{S1}} = \frac{\frac{H_{1}H_{2}R_{3}}{H_{2}R_{3}C_{yV} + R_{2}(R_{3} + H_{2}C_{yV})}}{1 + \frac{H_{1}H_{2}R_{3}}{H_{2}R_{3}C_{yV} + R_{2}(R_{3} + H_{2}C_{yV})} \frac{R_{3} + H_{2}C_{yV}}{H_{2}R_{3}}} = \frac{\frac{H_{1}H_{2}R_{3}}{H_{2}R_{3}C_{yV} + R_{2}(R_{3} + H_{2}C_{yV})}}{1 + \frac{H_{1}(R_{3} + H_{2}C_{yV})}{H_{2}R_{3}C_{yV} + R_{2}(R_{3} + H_{2}C_{yV})}}$$

$$\frac{C_{P}}{C_{S1}} = \frac{-H_{1}H_{2}R_{3}}{H_{1}(R_{3} + H_{2}C_{yV}) + H_{2}R_{3}C_{yV} + R_{2}(R_{3} + H_{2}C_{yV})}$$

$2^{\grave{e}^{me}}$ méthode: analytique:

On pose les fonctions en sortie des comparateurs, définies sur le schéma bloc redessiné ci-dessous :

On écrit le système à 4 équations :

$$\begin{cases} \Omega_{S1} = H_2 \varepsilon_3 \\ \varepsilon_3 = \frac{1}{R_2} \varepsilon_2 - \frac{C_{yV}}{R_3} \Omega_{S1} \\ \varepsilon_2 = H_1 \varepsilon_1 - C_{yV} \Omega_{S1} \end{cases} \text{ les équations (3) et (4) permettent d'écrire : } \varepsilon_2 = -H_1 \left(C_{S1} + \frac{1}{R_2} \varepsilon_2 \right) - C_{yV} \Omega_{S1}, \text{ soit } \varepsilon_1 = -C_{S1} - \frac{1}{R_2} \varepsilon_2 \end{cases}$$

$$\left(1 + \frac{H_1}{R_2}\right) \varepsilon_2 = -C_{S1}H_1 - C_{yV}\Omega_{S1}, \text{ d'où : } \varepsilon_2 = -\frac{R_2}{R_2 + H_1} \left[C_{S1}H_1 + C_{yV}\Omega_{S1}\right]. \text{ En } \text{ winjectant } \text{ we résultat dans (1)}$$

et (2), on a : $\Omega_{S1} = \frac{H_2}{R_2} \varepsilon_2 - \frac{H_2 C_{yV}}{R_2} \Omega_{S1}$, soit l'équation reliant les deux fonctions C_{S1} et Ω_{S1} :

$$\Omega_{S1} = -\frac{H_2}{R_2} \left(\frac{R_2}{R_2 + H_1} \left[C_{S1} H_1 + C_{yV} \Omega_{S1} \right] \right) - \frac{H_2 C_{yV}}{R_3} \Omega_{S1}.$$
 En factorisant, on obtient :

$$\Omega_{S1} \left[1 + \frac{H_2 C_{yV}}{R_3} + \frac{H_2 C_{yV}}{R_2 + H_1} \right] = -\frac{H_2 H_1}{R_2 + H_1} C_{S1}. \text{ On en déduit le rapport souhaité :} \\ \frac{\Omega_{S1}}{C_{S1}} = -\frac{H_2 H_1 R_3}{R_3 (R_2 + H_1) + H_2 C_{yV} (R_3 + R_2 + H_1)} \text{ expression identique à la 1}^{\text{ère}} \text{ méthode.}$$

$$\frac{\Omega_{S1}}{C_{S1}} = -\frac{H_2 H_1 R_3}{R_3 (R_2 + H_1) + H_2 C_{yV} (R_3 + R_2 + H_1)}$$
 expression identique à

Mise sous forme canonique de la fonction sans retard $G(p) = \frac{\theta_s}{\theta_c} = \frac{3,24}{p^2 + 3,24p + 1} = \frac{1}{1 + p + \frac{p^2}{1.8^2}}$.

On identifie donc un second ordre de <u>gain unitaire</u>, de pulsation propre $\omega_0 = 1.8 \text{ rad.s}^{-1}$, de facteur d'amortissement tel que $\frac{2\xi}{\omega_0} = 1$, soit $\xi = 0.9$

OUESTION 29

Gain statique unitaire, DONC $\varepsilon_s = 0$

La formulation de la question semble inviter les candidats à redémontrer ce résultat de cours.

Avec un retard considéré nul, on a un système à retour unitaire pour lequel : $H_{BF} = \frac{H_{BO}}{1 + H_{BO}} = G(p)$, d'où,

en inversant la relation :
$$H_{BO} = \frac{H_{BF}}{1 - H_{BF}} = \frac{G}{1 - G} = \frac{\frac{1}{1 + p + \frac{p^2}{1,8^2}}}{1 - \frac{1}{1 + p + \frac{p^2}{1,8^2}}} = \frac{1}{p + \frac{p^2}{1,8^2}}.$$

Soit:
$$H_{BO} = \frac{1}{p\left(1 + \frac{p}{3,24}\right)}$$

Un intégrateur en boucle ouverte donne bien une erreur statique nulle.

QUESTION 30

Retard de 0,2 s:
$$e^{-0.2p}$$
. Donc: $G_R(p) = \frac{H_{BO}e^{-0.2p}}{1 + H_{BO}e^{-0.2p}}$

QUESTION 31

On a la présence d'un intégrateur en Boucle Ouverte, on doit donc trouver une erreur de traînage finie non nulle.

$$\mathcal{E}_{t} = \lim_{p \to 0} p \qquad \underbrace{\frac{0,1}{p^{2}}}_{\theta_{C} \text{ pour une rampe de pente } 0,1 \text{ rad.s}^{-1}} \left[1 - \underbrace{\frac{H_{BO}}{1 + H_{BO}}}_{H_{BF} \text{ sans retard}} \right], \text{ soit en explicitant les la fonction de transfert en boucle}$$

ouverte :
$$\varepsilon_t = \lim_{p \to 0} \frac{0.1}{p} \frac{1}{1 + H_{BO}} = \lim_{p \to 0} \frac{0.1}{p} \frac{p(p+3.6)}{p(p+3.6) + 4} = \lim_{p \to 0} \frac{0.1(p+3.6)}{p(p+3.6) + 4}$$
. $\varepsilon_t = \frac{0.36}{4} = 0.09 \text{ rad} \approx 5.15^{\circ}$

$$H_{BO}(p) = \frac{4}{p(p+3,6)} = \frac{10/9}{p(1+p/3,6)}$$

C'est une fonction de transfert correspondant à un premier ordre (gain statique = 10/9, constante de temps = 1/3,6 s) intégré. L'allure des diagrammes asymtotiques de Bode est donc la suivante :

Soit le document réponse complété ci-dessous :

QUESTION 33

 $e^{-0.2p} \rightarrow e^{-j0.2\omega}$ soit un module de 1 c'est-à-dire 0dB et un argument de $\varphi(\omega)$ – 0,2 ω , ce qui permet de dresser le tableau ci-dessous :

ω	0,5	1	10	20	30	40	50
$\varphi(\omega)$	-5,7°	-11,5°	-114,6°	-229,2°	-343,8°	-458,4°	-573°

D'où le document réponse complété :

Le correcteur PI a pour diagrammes de Bode asymtotiques, l'allure cicontre :

$$C(p) = K_C \frac{1 + T_C p}{T_C p} = \frac{K_C}{T_C p} [1 + T_C p]$$

• Donc en choisissant une constante de temps T_C assez grande, la pulsation $\frac{1}{T_C}$ sera suffisamment petite pour

Pente -20 dB/déc $20Log(10/9) = 0.9 \text{ dB} \qquad 20 \text{ LogK}_{\text{C}}$ $\omega = \frac{1}{T_{\text{C}}}$ -90°

que la marge de phase du système corrigé soit celle de la correction proportionnelle K_C

 $\left(\omega_{C0\,\mathrm{non\,corrigée}} >> \frac{1}{T_C}\right)$. Dans ce cas, on cherche à déterminer le gain K_C qui permet d'avoir une

marge de phase de 50°.

On procède donc au relevé ci-dessous :

On relève par une règle de trois $20LogK_C = 4,3dB$, soit $K_C = 1,64$

En relevant les distance a et b, on en déduit ω_1 par la relation $Log \omega_1 = Log 1 + \frac{a}{a+b} [Log 2 - Log 1]$, soit a Log 2

$$Log \omega_1 = \frac{a Log 2}{a+b}$$
, d'où : $\omega_1 = 1,46 \text{ rad.s}^{-1}$

Le correcteur serait de type $C(p) = K_C = 1,64$, on aurait donc une marge de phase de 50° .

• On cherche désormais à « dimensionner » T_C , de façon à ce que avec le correcteur $C(p) = K_C \frac{1 + T_C p}{T_C p} = \frac{K_C}{T_C p} [1 + T_C p]$, on « conserve » 45°. Ce qui signifieque l'on doit vérifier:

$$Arg\left[\frac{1+jT_{c}\omega_{l}}{jT_{c}\omega_{l}}\right] = -5^{\circ} \text{ et } \left\|\frac{1+jT_{c}\omega_{l}}{jT_{c}\omega_{l}}\right\|_{dB} n\acute{e}gligeable :$$

$$Arg\left[\frac{1+jT_{c}\omega_{1}}{jT_{c}\omega_{1}}\right] = -90^{\circ} + \arctan(T_{c}\omega_{1}), \text{ d'où : } \arctan(T_{c}\omega_{1}) = 85^{\circ}, \text{ soit } T_{c} = \frac{\tan 85^{\circ}}{\omega_{1}} = 7.8 \text{ s}.$$

On vérifie bien :
$$\left\| \frac{1 + jT_C \omega_1}{jT_C \omega_1} \right\|_{dB} = 20 Log \left[\frac{\sqrt{1 + (T_C \omega_1)^2}}{T_C \omega_1} \right] \approx 0,03 \text{ dB}$$

- On a 2 intégrateurs en Boucle Ouverte, l'erreur de traînage sera donc nulle : $\varepsilon_t = 0$
- En observant le schéma bloc complet page 15 de l'énoncé, on observe que le seul intégrateur de la boucle ouverte non corrigée est placé **après** la perturbation $C_{\text{plate-forme}}$ et ne « gommera » donc pas ses effets, ce que fera en revanche l'intégrateur du correcteur PI, placé **avant la perturbation**. θ_C

ANNEXE : Diagrammes de Bode et de Black de la correction effectuée Q34 :

On trouve une marge de phase réelle (sans négliger le gain) de 42°

