Eilenberg-MacLane Spectra as Thom Spectra

David Mehrle

April 10 and 17, 2019

1 Introduction

The goal of these two lectures is to prove a theorem, originally due to Bökstedt:

Theorem 1 (Bökstedt).

$$THH_*(\mathbb{F}_p) = \mathbb{F}_p[x], |x| = 2$$

This was originally proved by a tedious spectral sequences argument, but that's not the approach we'll take. Instead, we'll take advantage of two different theorems.

Theorem 2 (Hopkins–Mahowald). There is an equivalence of \mathbb{E}_2 -ring spectra

$$H\mathbb{F}_{\mathfrak{p}} \simeq Mf_{\mathfrak{p}}$$
,

 $\textit{where} \ f_{\mathfrak{p}} \colon \Omega^2 S^3 \to B \ GL_1(\mathbb{S}_{\widehat{\mathfrak{p}}}) \ \textit{is the map determined by} \ 1 - \mathfrak{p} \in \pi_1 B \ GL_1(\mathbb{S}_{\widehat{\mathfrak{p}}}) \simeq \mathbb{Z}_{\mathfrak{p}}^\times.$

Theorem 3 (Blumberg–Cohen–Schlichtkrull). Let $f: X \to B \operatorname{GL}_1(R)$ be an \mathbb{E}_2 -map of spaces. Assume that the \mathbb{E}_2 -structure on Mf extends to an \mathbb{E}_3 -structure. Then there is an equivalence of \mathbb{E}_1 -R-module spectra

$$THH(Mf/R) \simeq Mf \otimes BX_+$$

Proof of Theorem 1. We compute only $THH(\mathbb{F}_p)$. The computation of $THH(\mathbb{Z})$ is similar. By Theorem 1, it suffices to compute $THH(Mf_p)$. By Theorem 3,

$$THH(H\mathbb{F}_p) \simeq THH(Mf_p) \simeq Mf_p \otimes \Sigma_+^\infty B(\Omega^2 S^3) \simeq Mf_p \otimes \Sigma_+^\infty \Omega S^3 \simeq H\mathbb{F}_p \otimes \Sigma_+^\infty \Omega S^3.$$

So as a spectrum, $THH(H\mathbb{F}_p) \simeq H\mathbb{F}_p \otimes \Sigma_+^\infty \Omega S_+^3$. The homotopy of this spectrum is (by definition!) the \mathbb{F}_p -homology of ΩS^3 , which can be calculated by the Serre spectral sequence associated to the fibration

$$\Omega S^3 \to Map([0,1], S^3) \to S^3$$
.

$$\mathsf{E}^2_{s,t} = \mathsf{H}_s(S^3;\mathsf{H}_t(\Omega S^3;\mathbb{F}_p)) \implies \mathsf{H}_{s+t}(\mathsf{Map}([0,1],S^3);\mathbb{F}_p) = 0.$$

I leave this as an exercise (see Hatcher's spectral sequences book).

2 Thom Spectra

Let R be an \mathbb{E}_{n+1} -ring spectrum. There is a category of modules R-**Mod**, which is an \mathbb{E}_n -monoidal ∞ -category if R is an \mathbb{E}_{n+1} -algebra. So R-**Mod** has a tensor product.

Definition 1. The **Picard groupoid** of R is the subcategory of R-**Mod** consisting of all invertible R-modules for objects and equivalences between them for morphisms.

More precisely, $\mathbf{Pic}(R)$ consists of R-modules M such that there exists another R-module N with $M \otimes_R N \simeq R$, but the module N and the equivalence $M \otimes_R N \simeq R$ is not part of the data of the object $M \in \mathbf{Pic}(R)$.

Definition 2. A **local system of** R**-modules** over a space X is a functor $X \to \mathbf{Pic}(R)$.

Remark 3. This is a lot like the definition of a presheaf, which is a functor from the opposite of the topology on X to a category \mathcal{C} . Except now we consider the whole space X with all it's higher homotopy data, where $X \simeq X^{op}$ as quasicategories (since it's an ∞ -groupoid).

Definition 4. Given a local system of R-modules, $f: X \to \mathbf{Pic}(R)$, the associated Thom spectrum is

$$Mf = colim(i \circ f) = colim(X \xrightarrow{f} Pic(R) \xrightarrow{i} R-Mod).$$

To construct Thom spectra, we need a better way to get our hands on these maps $X \to \mathbf{Pic}(R)$. To that end, we introduce the "group of units" of a ring spectrum. Most Thom spectra we consider will factor through the classifying space of this "group of units".

Definition 5. Let R be an \mathbb{E}_1 -ring spectrum. The **space of units** of R is the homotopy pullback of spaces

$$GL_{1}(R) \longrightarrow \Omega^{\infty}(R)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(\pi_{0}R)^{\times} \longrightarrow \pi_{0}R$$

This is an \mathbb{E}_1 -algebra in spaces, and if R is an E_{∞} -ring spectrum, then $GL_1(R)$ is an \mathbb{E}_{∞} -algebra in spaces.

The homotopy groups of $GL_1(R)$ aren't too bad to compute either, since homotopy commutes with pullback diagrams.

$$\pi_n \operatorname{GL}_1(R) = \begin{cases} (\pi_0 R)^\times & n = 0 \\ \pi_n R & n > 0. \end{cases}$$

Proposition 6. There is an equivalence of spaces between $B GL_1(R)$ and the component of Pic(R) containing R.

We can now give some examples of Thom spectra.

Example 7. If X = BG is the classifying space of some group, then we can recognize Mf as the homotopy coinvariants R_{hG} . This is because the homotopy coinvariants are defined by the colimit

$$colim(BG \rightarrow Sp)$$
,

where the unique point of BG is sent to R.

Example 8. If $X = \Omega^2 \Sigma^2 Y$ for some space Y (i.e. X is the free \mathbb{E}_2 -algebra on Y), then \mathbb{E}_2 -maps $\Omega^2 \Sigma^2 Y \to B \operatorname{GL}_1(R)$ are in bijection with maps $Y \to B \operatorname{GL}_1(R)$, by the universal property of free \mathbb{E}_2 -algebras.

In particular, if $Y = S^1$, to define a map $\Omega^2 S^3 \to B \operatorname{GL}_1(R)$, it suffices to pick an element in $\pi_1 B \operatorname{GL}_1(R) \cong \pi_0 \operatorname{GL}_1(R) \cong \pi_0(R)^{\times}$.

This is how we will construct $H\mathbb{F}_p$ as a Thom spectrum.

Example 9. The classical Thom spectrum MO is constructed from the J homomorphism J: BO \rightarrow B GL₁(S).

Proposition 10. For a fixed ring spectrum R, the Thom spectrum construction defines a functor $M: S_{/BGL_1(R)} \to R\text{-Mod}$ that is both colimit-preserving and symmetric monoidal with respect to the Cartesian monoidal structure on its domain.

Lemma 11 (Thom Isomorphism Theorem). Let $f: X \to B$ $GL_1(R)$ be an n-fold loop map. Any \mathbb{E}_n R-algebra map $Mf \to A$ gives rise to an isomorphism of \mathbb{E}_n A-algebras $A \otimes_R Mf \simeq A \otimes \Sigma_+^\infty X$.

3 Main Theorem

Theorem 1 (Hopkins–Mahowald). There are an equivalences of \mathbb{E}_2 -ring spectra

$$H\mathbb{F}_{\mathfrak{p}} \simeq Mf_{\mathfrak{p}}$$
,

where $f_{\mathfrak{p}} \colon \Omega^2 S^3 \to B \operatorname{GL}_1(\mathbb{S}_{\widehat{\mathfrak{p}}})$ is the map determined by $1 - \mathfrak{p} \in \pi_1 B \operatorname{GL}_1(\mathbb{S}_{\widehat{\mathfrak{p}}}) \simeq \mathbb{Z}_{\mathfrak{p}}^{\times}$.

Proof. We have that $Mf_p \simeq (\mathbb{S}_p^{\widehat{}})_{h\Omega^3S^3}$. Hence, $\pi_0 Mf_p$ is the coinvariants of the $\pi_0\Omega^3S^3\cong \mathbb{Z}$ action on $\pi_0\mathbb{S}_p^{\widehat{}}\cong \mathbb{Z}_p$, where 1 acts by multiplication by 1-p.

$$\pi_0 M f_p \cong \mathbb{Z}_p/_{\langle 1-(1-p)\rangle} = \mathbb{Z}_p/p \cong \mathbb{F}_p.$$

Therefore, the zeroth Postnikov section of Mf_p defines an \mathbb{E}_2 -map

$$\varphi \colon Mf_{\mathfrak{p}} \to H\mathbb{F}_{\mathfrak{p}}.$$

We want to prove that ϕ is an equivalence. Since both $Mf_p \simeq (\mathbb{S}_p^{\widehat{}})_{h\Omega^3S^3}$ and $H\mathbb{F}_p$ are p-complete and connective, it suffices to check that ϕ is an isomorphism on $H\mathbb{F}_p$ -homology, i.e. we must check that

$$\varphi_* \colon H_*(Mf_\mathfrak{p}; \mathbb{F}_\mathfrak{p}) \to H_*(H\mathbb{F}_\mathfrak{p}, \mathbb{F}_\mathfrak{p})$$

is an isomorphism.

Note that ϕ is also a map of \mathbb{E}_2 S_p^- -algebras, again because both Mf_p and $H\mathbb{F}_p$ are p-complete and connective. Therefore, by Lemma 11, we have $Mf_p \otimes H\mathbb{F}_p \cong \Sigma_+^\infty \Omega^2 S^3 \otimes H\mathbb{F}_p$. By the Dyer–Lashof operations, it suffices to show that ϕ_* is a homology isomorphism in degrees 0 and 1. This is easy to verify.

Corollary 2. There is an equivalence of \mathbb{E}_2 -ring spectra

$$H\mathbb{Z}_{\mathfrak{p}} \simeq M(f_{\mathfrak{p}} \circ \pi),$$

where f_p is as before and π : $\tau_{\geq 2}\Omega^2S^3 \to \Omega^2S^3$ is the universal covering map.

Corollary 3. There is an equivalence of \mathbb{E}_2 -ring spectra between $H\mathbb{Z}$ and the Thom spectrum of the map

$$\tau_{\geq 2}\Omega^2S^3 \to \prod_{p \text{ prime}} \tau_{\geq 2} B \operatorname{GL}_1(\mathbb{S}_p^{\widehat{}}) \simeq \tau_{\geq 2} B \operatorname{GL}_1(\mathbb{S}) \to B \operatorname{GL}_1(\mathbb{S}).$$

Proof. Notice that because $\tau_{\geq 2}\Omega^2S^3$ is simply connected, $\pi_0Mf\simeq \mathbb{Z}$ and there is a map $Mf\to H\mathbb{Z}$. It suffices to check that this induces isomorphisms on homology both rationally and for each prime. Rationally, this is a simple check, and p-adically, this was done in the previous corollary.

Then we may use Theorem 3 to compute $THH(\mathbb{Z})$ and $THH(\mathbb{Z}_p)$:

$$THH(\mathbb{Z}) \simeq H\mathbb{Z} \otimes \Sigma^{\infty}_{+} \tau_{\geq 3} \Omega S^{3}$$

$$THH(\mathbb{Z}_p) \simeq H\mathbb{Z}_p \otimes \Sigma_+^{\infty} \tau_{\geq 3} \Omega S^3$$