Physical Chemistry (Chem 132A)

Lecture 23 Friday, December 1

Homework Due on Saturday, December 2

Last homework of the quarter will be available Saturday evening. Due on Saturday, December 9

Reminder: FINAL EXAM, DEC. 15, 8—10AM

Relationship between reaction mechanisms and rate laws when overall reaction is not an elementary step??

TWO STEP REACTION WITH SLOW FIRST STEP

$$NO_2(g) + CO(g) \longrightarrow NO(g) + CO_2(g)$$
 overall reaction

Step 1
$$NO_2(g) + NO_2(g) \longrightarrow NO_3(g) + NO(g)$$
 Slow

Step 2
$$NO_3(g) + CO(g) \longrightarrow NO_2(g) + CO_2(g)$$
 Fast

The slow first step controls the rate of the reaction

Rate =
$$k[NO_2]^2$$

REACTION INTERMEDIATES

Intermediate---formed and used up in course of reaction. In last example NO₃ is an intermediate.

What if the first elementary step is not SLOW?

$$2H_2(g) + 2NO(g) \longrightarrow 2H_2O(g) + N_2(g)$$
 overall rxn

$$2NO(g) \xleftarrow{k_1} N_2O_2(g) FAST EQUILIBRIUM$$

$$H_2(g) + N_2O_2(g) \xrightarrow{k_2} H_2O(g) + N_2O(g)$$
 SLOW

$$N_2O(g) + H_2(g) \xrightarrow{k_3} N_2(g) + H_2O(g)$$
 FAST

USE THE EQUILIBRIUM CONDITION

Rate = $k_2[H_2][N_2O_2]$ **Based on the SLOW STEP**

We don't want the N_2O_2 in the rate law since it isn't a reactant or product.

Since 2NO \longleftrightarrow N₂O₂ Is at equilibrium----forward rate = reverse rate

$$k_1[NO]^2 = k_{-1}[N_2O_2]_{EQ}$$

$$[N_2O_2]_{EO} = (k_1/k_{-1})[NO]^2$$

Rate =
$$k_2[H_2](k_1/k_1)[NO]^2 = k[H_2][NO]^2$$

WHAT IF WE DON'T KNOW THAT STEP 2 IS SLOW? STEADY STATE APPROXIMATION

$$2H_2(g) + 2NO(g) \longrightarrow 2H_2O(g) + N_2(g)$$
 overall rxn

Mechanism

$$2NO(g) \xleftarrow{k_1} N_2O_2(g)$$

$$H_2(g) + N_2O_2(g) \xrightarrow{k_2} H_2O(g) + N_2O(g)$$

$$N_2O(g) + H_2(g) \xrightarrow{k_3} N_2(g) + H_2O(g)$$

We might write: Rate =
$$\frac{d[N_2]}{dt} = k_3[N_2O][H_2]$$

Intermediate

Steady State Approximation

The rate of formation of an intermediate is set equal to the rate it is used up by a subsequent reaction

Unimolecular Reactions

$$A \longrightarrow P$$

Cyclo-
$$C_3H_6(g)$$
 \longrightarrow $CH_3CH=CH_2(g)$

Rate = $k_r[cyclo-C_3H_6]$ ---observation

How does this reaction occur?

Lindemann-Hinshelwood Mechanism

$$\mathbf{A} + \mathbf{A} \longrightarrow \mathbf{A}^* + \mathbf{A} \qquad \frac{d[A^*]}{dt} = k_a [A]^2$$

$$\mathbf{A} + \mathbf{A}^* \longrightarrow \mathbf{A} + \mathbf{A} \qquad \frac{d[A^*]}{dt} = -k_a^{'} [A][A^*]$$

$$\mathbf{A}^* \longrightarrow \mathbf{P} \qquad \frac{d[A^*]}{dt} = -k_b [A^*]$$

Use Steady State Approximation on [A*]

$$\frac{d[A^*]}{dt} = k_a [A]^2 - k_a [A] [A^*] - k_b [A^*]_{ss} = 0$$

$$[A^*]_{ss} = \frac{k_a [A]^2}{k_b + k_a [A]}$$

$$\frac{d[P]}{dt} = k_b [A^*]_{ss} = \frac{k_a k_b [A]^2}{k_b + k_a [A]}$$

If the decay of A* to P is the slow step then:

$$k_a'[A][A^*] > k_b[A^*]$$

$$k_a'[A] > k_b$$

$$\frac{d[P]}{dt} = \frac{k_a k_b}{k_a'} [A] = k_r [A]$$

So it looks like it is First Order

Simple Collision Theory Picture

For a Bimolecular Reaction:

$$A + B \longrightarrow P$$

Rate = $k_r[A][B]$ proportional to # collisions

collisions $\sim v_{\text{mean}} \sim (T/M)^{1/2}$

Should also be proportional to cross section σ

And the number densities of A and B

Rate $\sim \sigma (T/M)^{1/2}[A][B]$

Also expect there to be a positive activation energy

So: Rate $\sim \sigma (T/M)^{1/2} e^{-E'/RT} [A][B]$ k $\sim \sigma (T/M)^{1/2} e^{-E'/RT}$

Also expect a "steric factor" $k \sim P \sigma (T/M)^{1/2} e^{-E'/RT}$

Gas collision rate

$$Z_{AB} = \sigma \left(\frac{8kT}{\pi\mu}\right)^{1/2} N_A^2[A][B]$$

$$\sigma = \pi d^2$$

$$d = \frac{1}{2}(d_A + d_B)$$

$$\mu = \frac{m_A m_B}{m_A + m_B}$$

Energy Dependence

Write the cross section σ as an energy dependent quantity

 $\sigma(E)$

= 0 if the "collision energy" < threshold value

THE END

SEE YOU ON MONDAY

ONE MORE WEEK