

Linear Regression

Machine Learning Algorithm for Thrillers

Presented 7.12.22

Created by: Jenni Hawk

Art Company

Assignment Goals

- Learn the fundamentals of linear regression
- Viability Analysis
- Instantiate model, Train + Test, Score
- Learn coding fundamentals: Statsmodels, Sklearn, etc

Business Situation

A newly emerged production studio plans to make movies in the thriller genre and would like to know which characteristics of thrillers are predictors of US Box Office Gross.

Key Questions:

Does a set of features do a good job in predicting US Gross for thrillers?

Which features are significant predictors of US Gross for thrillers?

Project Steps

ACTION

WEBSCRAPING

- · Scraped IMDB Thrillers for target and feature data
- 1100 thriller titles, 16 potential predictor variables

EDA & REGRESSION VIABILITY

- Data cleanup, address missing values, etc
- Create dummy variables for categorical features
- Correlation matrix and regression plots to check linear relationships

Linear Regression Modeling

- · Fit data to the model
- · Train, Test, Score
- Coefficients: most impactful features

EDA & Continued Model Optimization

- · Predicted vs Actuals
- Regularization

TOOLS USED

Request Module, BeautifulSoup Library

Pandas, Seaborn, Statsmodels

cpi library (to apply inflation to budget based on year)

Pandas, Sklearn

Sklearn, Matplotlib, Seaborn

Features Scraped From Thriller List IMDB

IMDB: Thrillers Categorized by Genre

Thriller (Sorted by US Box Office Descending)

Linear Regression Modeling

Check Linear Relationships

Feature Target Correlation Analysis

Low correlation doesn't mean it won't contain signal that can be discovered

Positive Correlation with US Gross Ne	aa	I
---------------------------------------	----	---

gative Correlation with US Gross

Close to zero -.10 to .10

Budget	0.72	
Duration	0.56	
Adventure 0.49		
Action	0.42	
PG	0.42	
PG-13	0.33	
Sci-Fi	0.24	
Music	0.18	

Data: Pearson Correlation / Seaborn Heatmap

R Rating - 0.47 Horror -0.36 Crime -0.25 Drama -0.21 Mystery -0.21 Romance -0.14 Biography -0.11 Fantasy -0.08 Comedy -0.03

History -0.03

War -0.10 Sport -0.09 Western -.07 Musical -0.06 Animation - 0.00 Family 0.01

Fit the data on the linear regression model

Scores

R^2

Slight overfitting expected

Train R^2 .318

Test R^2 .276 28% of Variance explained by model

MAE: Mean Absolute Error

How close the prediction is against the real value

\$46,825,271

Predicted vs Actuals

Underpredicting – big blockbusters may be the issue

<u>Findings</u>

- Residuals are problematic
 - · Heteroskedasticity: unequal variability (scatter)
- Hypothesize that block busters are underpredicting

Future Work

Address the blockbusters

Regression Coefficients

What the model considers to be the most impactful features and the per-unit impact on US Gross

Positive Impact on Thriller US Gross

PG 68,017,516.47

Adventure 19,793,585.00

Sci-Fi 19,450,110.29

Comedy 12,575,077.35

Duration 1,647,406.25

Budget 0.39

Negative Impact on Thriller US Gross

History -76,092,866.62 Musical -67,808,047.35 Biography -57,640,257.49 Animation -54,468,082.93 R Rating -40,303,575.50 -28,094,114.77 Drama PG-13 -27,713,940.97 Romance -29,425,524.70 Action -20,658,701.63 -14,634,199.66 Horror Mystery -12,610,294.09 Crime -10,495,540.63 Fantasy -7,649,883.02

Neither Positive Nor Negative Impact

War	0.00
Sport	0.00
Western	0.00
Family	0.00
Music	0.00