Álgebra Linear e Geometria Analítica

Vetores, Retas e Planos

Departamento de Matemática Universidade de Aveiro

Produto interno em \mathbb{R}^n

Dados os vetores
$$X=(x_1,\ldots,x_n)$$
 e $Y=(y_1,\ldots,y_n)\in\mathbb{R}^n$

ullet o produto interno (ou produto escalar) de X e Y é o escalar real

$$X \cdot Y = X^T Y = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

= $x_1 y_1 + \cdots + x_n y_n$

Nota: Pode também utilizar-se a notação X|Y ou $\langle X,Y\rangle$.

• o comprimento ou norma de X é

$$\|X\| = \sqrt{X \cdot X} = \sqrt{x_1^2 + \dots + x_n^2}$$

Vetores, Retas e Planos ALGA 🖺 2/22

Dados $X, Y, Z \in \mathbb{R}^n$ e $\alpha \in \mathbb{R}$,

1.
$$X \cdot X \ge 0$$
;

$$2. X \cdot X = 0 \iff X = 0;$$

3.
$$X \cdot Y = Y \cdot X$$
;

4. i.
$$(X + Y) \cdot Z = X \cdot Z + Y \cdot Z$$
,

ii.
$$X \cdot (Y + Z) = X \cdot Y + X \cdot Z$$
;

5.
$$(\alpha X) \cdot Y = \alpha (X \cdot Y) = X \cdot (\alpha Y);$$

6.
$$\|\alpha X\| = |\alpha| \|X\|$$
.

Desigualdade de Cauchy-Schwarz e desigualdade triangular

Teorema (Desigualdade de Cauchy-Schwarz)

Dados $X, Y \in \mathbb{R}^n$,

$$|X\cdot Y|\leq \|X\|\|Y\|.$$

Teorema (Desigualdade Triangular)

Dados $X, Y \in \mathbb{R}^n$,

$$||X + Y|| \le ||X|| + ||Y||.$$

Ângulo entre vetores

Em
$$\mathbb{R}^2$$
, sejam $X = (x, 0), x > 0$
e $Y = (a, b) \neq (0, 0)$.

Temos:

•
$$X \cdot Y = xa$$
 e $||X|| = x$

$$\bullet \ \frac{X \cdot Y}{\|X\|} = a = \|Y\| \cos(\theta)$$

Logo,
$$cos(\theta) = \frac{X \cdot Y}{\|X\| \|Y\|}, \ \theta \in [0, \pi]$$

Em geral, para $X, Y \in \mathbb{R}^n \setminus \{0\}$, o ângulo entre os vetores X e Y é

$$\theta = \angle(X, Y) = \arccos \frac{X \cdot Y}{\|X\| \|Y\|} = \arccos (\frac{X}{\|X\|} \cdot \frac{Y}{\|Y\|}).$$

Nota: pela desigualdade de Cauchy-Schwarz $|\frac{X \cdot Y}{\|X\| \|Y\|}| \le 1$ e $\theta \in [0, \pi]$.

Vetores, Retas e Planos ALGA 🛱 5/22

Vetores ortogonais, colineares, com o mesmo sentido e unitários

- Dados os vetores $X, Y \in \mathbb{R}^n \setminus \{0\}$,
 - ▶ X e Y são ortogonais ou perpendiculares, $X \perp Y$, se $\theta = \frac{\pi}{2}$, i.e., se $X \cdot Y = 0$.
 - ▶ X e Y são colineares ou paralelos ou têm a mesma direção,

se
$$\theta = 0$$
 ou $\theta = \pi$, i.e., se $|X \cdot Y| = ||X|| ||Y||$.

- ightharpoonup X e Y têm o mesmo sentido, se $\theta = 0$, i.e., se $X \cdot Y = ||X|| ||Y||$.
- ▶ X e Y têm sentido oposto ou contrário, se $\theta = \pi$, i.e., se $X \cdot Y = -\|X\| \|Y\|$.

Por convenção, se X=0 ou Y=0, então X e Y são colineares e ortogonais.

• Um vetor unitário é um vetor de norma igual a 1.

Se $X \neq 0$, o vetor

$$U = \frac{1}{\|X\|}X$$

é um vetor unitário com a mesma direção e sentido de X.

Produto externo em \mathbb{R}^3

Dados os vetores $X = (x_1, x_2, x_3)$ e $Y = (y_1, y_2, y_3) \in \mathbb{R}^3$,

• o produto externo (ou produto vetorial) de X e Y é o vetor de \mathbb{R}^3

$$X \times Y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1).$$

Nota: Para determinar o produto externo pode utilizar-se COMO AUXILIAR DE CÁLCULO o seguinte "determinante simbólico"

$$\mathbf{X} \times \mathbf{Y} = \begin{vmatrix} i & j & k \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$$
 $com \quad i = (1,0,0)$
 $j = (0,1,0)$
 $k = (0,0,1)$

fazendo o seu desenvolvimento pela primeira linha.

Propriedades do produto externo em \mathbb{R}^3

Dados $X, Y, Z \in \mathbb{R}^3$, $\alpha \in \mathbb{R}$, e O o vetor nulo de \mathbb{R}^3

- 1. $X \times Y = -(Y \times X)$;
- 2. i. $X \times (Y + Z) = X \times Y + X \times Z$,
 - ii. $(X + Y) \times Z = X \times Z + Y \times Z$;
- **3.** $\alpha(X \times Y) = (\alpha X) \times Y = X \times (\alpha Y)$;
- **4.** $X \times X = 0$;
- **5.** $X \times O = O \times X = O$;
- 6. Fórmulas de Lagrange
 - i. $(X \times Y) \times Z = (Z \cdot X)Y (Z \cdot Y)X$,
 - ii. $X \times (Y \times Z) = (X \cdot Z)Y (X \cdot Y)Z$.
- 7. Identidade de Jacobi $X \times (Y \times Z) + Y \times (Z \times X) + Z \times (X \times Y) = O$.

Vetor produto externo (interpretação geométrica)

Proposição:

Sejam $X, Y \in \mathbb{R}^3$. O vetor $X \times Y$ é ortogonal a X e a Y, e

$$||X \times Y|| = ||X|| ||Y|| \sin(\theta),$$

onde θ é o ângulo entre X e Y.

Observação:

O vetor $X \times Y$ é o vetor ortogonal a X e Y, com norma $||X||||Y||\sin(\theta)$ e tal que os vetores X, Y e $X \times Y$, aplicados no mesmo ponto, formam um triedro direto (regra da mão direita).

Vetores, Retas e Planos ALGA 🖽 9/22

Produto misto

Se
$$X=(x_1,x_2,x_3),\ Y=(y_1,y_2,y_3),\ Z=(z_1,z_2,z_3)\in\mathbb{R}^3$$
, então

$$(X \times Y) \cdot Z = X \cdot (Y \times Z) = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}$$

diz-se o produto misto de X, Y e Z.

Consequências das propriedades do produto interno em \mathbb{R}^3

1. Como
$$(X \times Y) \cdot X = (X \times Y) \cdot Y = 0$$
, então

$$X \times Y$$
 é um vetor ortogonal a X e a Y .

2.
$$\|X \times Y\| = \|X\| \|Y\| \sin(\theta)$$
, onde θ é o ângulo entre X e Y .

Exercício: Mostre que
$$Y \cdot (Z \times X) = (X \times Y) \cdot Z$$
.

Aplicações do produto externo e do produto misto

Sejam $X, Y, Z \in \mathbb{R}^3$, então

ullet a área do paralelogramo com lados correspondentes aos vetores $X,\ Y$ é

$$A_{\diamondsuit} = \|X \times Y\|$$

 \bullet a área do triangulo com dois dos seus lados correspondentes aos vetores X, Y é

$$A_{\triangle} = \frac{\|X \times Y\|}{2}$$

ullet o volume do paralelepípedo com arestas correspondentes aos vetores $X,\ Y,\ Z$ é

$$V = |(X \times Y) \cdot Z|$$

Exercício: Prove estas afirmações, resolvendo os exercícios 7.(a) e 9.(a) da Folha de exercícios nº3.

Vetores, Retas e Planos ALGA 📛 11/22

Distâncias

A distância entre dois pontos P e Q de \mathbb{R}^n é

$$d(P,Q) = \|\overrightarrow{PQ}\|.$$

Em particular, para $Q(x_1, ..., x_n)$ e $P(y_1, ..., y_n)$, tem-se

$$d(P,Q) = \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2}.$$

Dados \mathcal{F} e \mathcal{G} (\mathcal{F} e \mathcal{G} são pontos, retas ou planos de \mathbb{R}^3), a distância entre \mathcal{F} e \mathcal{G} é

$$d(\mathcal{F},\mathcal{G}) = \min \{ d(P,Q) : P \in \mathcal{F}, Q \in \mathcal{G} \}.$$

Nota: Se $\mathcal{F} \cap \mathcal{G} \neq \emptyset$, então $d(\mathcal{F}, \mathcal{G}) = 0$. De seguida, analisamos os casos em que \mathcal{F} e \mathcal{G} são disjuntos.

Vetores, Retas e Planos ALGA 🖽 12/22

Distância de um ponto a um plano

→ Recorrendo ao ponto do plano mais próximo do ponto considerado.

Dados um plano \mathcal{P} e um ponto $P \notin \mathcal{P}$, existe uma única reta \mathcal{R} perpendicular ao plano \mathcal{P} e contendo o ponto P.

A distância do ponto P ao plano \mathcal{P} é

$$d(P, \mathcal{P}) = d(P, \mathbf{Q}),$$

em que Q é o ponto de interseção da reta \mathcal{R} com o plano \mathcal{P} .

Distância de um ponto a um plano

→ Recorrendo a um ponto arbitrário do plano e à equação geral do plano.

Dados um plano \mathcal{P} e um ponto $P \notin \mathcal{P}$, sejam $Q \in \mathcal{P}$ e w um vetor não nulo ortogonal ao plano \mathcal{P} . Então,

$$d(P,\mathcal{P}) = \frac{|\overrightarrow{QP} \cdot w|}{\|w\|}.$$

Sendo $P(x_0, y_0, z_0)$ e ax + by + cz + d = 0 uma equação geral do plano \mathcal{P} , tem-se

$$d(P,P) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

Vetores, Retas e Planos ALGA 🛱 14/22

Aplicação: Distância de uma reta a um plano e distância entre dois planos

Uma reta \mathcal{R} e um plano \mathcal{P} disjuntos são estritamente paralelos. De forma análoga, dois planos disjuntos, \mathcal{P} e \mathcal{P}' , são estritamente paralelos.

A distância de uma reta \mathcal{R} a um plano \mathcal{P} coincide com a distância de um qualquer ponto da reta \mathcal{R} ao plano \mathcal{P} , ou seja,

$$d(\mathcal{R}, \mathcal{P}) = d(\mathcal{P}, \mathcal{P}),$$
 para qualquer $\mathcal{P} \in \mathcal{R}$.

A distância entre dois planos \mathcal{P} e \mathcal{P}' , coincide com a distância de um ponto arbitrário de um dos planos, por exemplo, \mathcal{P}' , ao outro plano, ou seja,

$$d(\mathcal{P}',\mathcal{P}) = d(\mathcal{P},\mathcal{P}),$$
 para qualquer $\mathcal{P} \in \mathcal{P}'.$

Vetores, Retas e Planos ALGA 🖽 15/22

Distância de um ponto a uma reta

→ Recorrendo ao ponto da reta mais próximo do ponto considerado.

Dada uma reta \mathcal{R} e um ponto $P \notin \mathcal{R}$, existe um único plano \mathcal{P} perpendicular a \mathcal{R} e que contém P.

A distância do ponto P à reta \mathcal{R} é

$$d(P,\mathcal{R})=d(P,Q),$$

em que Q é o ponto de interseção da reta \mathcal{R} com o plano \mathcal{P} .

Distância de um ponto a uma reta

→ Recorrendo a um ponto arbitrário da reta e a um vetor diretor da reta.

Dada uma reta \mathcal{R} que passa pelo ponto Q e que tem vetor diretor u,

e um ponto $P \notin \mathcal{R}$, tem-se que

$$d(P, \mathcal{R}) = \|\overrightarrow{QP}\| |\sin(\theta)| = \frac{\|u \times \overrightarrow{QP}\|}{\|u\|},$$

sendo θ o ângulo entre os vetores $u \in \overrightarrow{QP}$.

Aplicação: Distância entre retas paralelas

→ Através da distância entre um ponto e uma reta.

Duas retas disjuntas de \mathbb{R}^3 são estritamente paralelas ou enviesadas.

A distância entre duas retas estritamente paralelas \mathcal{R} e \mathcal{R}' coincide com a distância de um ponto arbitrário da reta \mathcal{R}' à reta \mathcal{R} , ou seja,

$$d(\mathcal{R}',\mathcal{R}) = d(P,\mathcal{R}),$$
 para qualquer $P \in \mathcal{R}'$.

Aplicação: Distância entre retas enviesadas

→ Através da distância entre uma reta e um plano.

Sejam \mathcal{R} e \mathcal{R}' duas retas enviesadas. Existe um único plano \mathcal{P} estritamente paralelo a \mathcal{R} e que contém \mathcal{R}' .

A distância entre as retas enviesadas \mathcal{R} e \mathcal{R}' coincide com a distância entre a reta \mathcal{R} e o plano \mathcal{P} :

$$d(\mathcal{R}, \mathcal{R}') = d(\mathcal{R}, \mathcal{P}) = d(\mathcal{P}, \mathcal{P}),$$
 para qualquer $\mathcal{P} \in \mathcal{R}$.

Aplicação: Ângulo entre retas

Dadas duas retas \mathcal{R} e \mathcal{R}' de vetores diretores u e u', respetivamente,

o ângulo entre as retas \mathcal{R} e \mathcal{R}' é

$$\angle(\mathcal{R}, \mathcal{R}') = \theta = \arccos \frac{|u \cdot u'|}{\|u\| \|u'\|}$$

20/22

com $\theta \in \left[0, \frac{\pi}{2}\right]$ e $\theta = 0$ se e só se as retas são paralelas.

Aplicação: Ângulo entre planos

O ângulo entre os planos \mathcal{P} e \mathcal{P}' é

$$\angle(\mathcal{P}, \mathcal{P}') = \theta = \angle(\mathcal{R}, \mathcal{R}'),$$

sendo \mathcal{R} e \mathcal{R}' retas perpendiculares aos planos \mathcal{P} e \mathcal{P}' , respetivamente.

Aplicação: Ângulo entre uma reta e um plano

O ângulo entre uma reta ${\mathcal R}$ e um plano ${\mathcal P}$ é

$$\angle(\mathcal{R}, \mathcal{P}) = \theta = \frac{\pi}{2} - \angle(\mathcal{R}, \mathcal{R}'),$$

onde \mathcal{R}' é uma reta ortogonal ao plano $\mathcal{P}.$ Então

$$\angle(\mathcal{R}, \mathcal{P}) = \arcsin \frac{|u \cdot w|}{\|u\| \|w\|} \in \left[0, \frac{\pi}{2}\right],$$

onde u é um vetor diretor da reta \mathcal{R} e w é um vetor ortogonal ao plano \mathcal{P} .