1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v1

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} \ \frac{\partial g}{\partial x} \cos(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$$

$$\boxed{\mathsf{B}} - \frac{\partial g}{\partial x} \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg).$$

$$\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) - \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

$$\boxed{\mathsf{D}} - \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}}\right) \mathsf{sen}(yg) - \left(y \frac{\partial g}{\partial \mathsf{y}} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \cos(yg).$$

$$\boxed{\mathsf{E}} - \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{sen}(yg) - \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

1.2 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:

A
$$f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$

B
$$f(x,y) = -\sqrt{-x^2 - y^2 + 16}$$

$$f(x, y) = \sqrt{-x^2 - y^2 + 16}$$

$$f(x, y) = -\sqrt{-x^2 - y^2 + 4}$$

$$[E] f(x,y) = \sqrt{-x^2 - y^2 + 2}.$$

1.3 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A elipsóides e um ponto.
- B elipses e um ponto.
- C hipérboles.
- D circunferências e um ponto.
- E retas.

1.4 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{0}{k}-0}{k}.$$

$$\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$$

$$\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^5}-0}{k}.$$

1.5 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- $\stackrel{\cdot}{\mathsf{A}}$ Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f\notin C^0(D_f)$.
- B Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
- C Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
- \square Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.
- $oxed{\mathsf{E}}$ Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

1.6	Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
A	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
E	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
_	1

- $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
- $\boxed{D} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
- $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
- 1.7 O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição x-y=-1 é:
 - |A| (-1/2, 1/2) associado a $\lambda = 2$.
 - B (1,2) associado a $\lambda = 1$.
 - C (1,2) associado a $\lambda = 2$.
 - D (-1/2, 1/2) associado a $\lambda = -1$.
 - [E] (1,2) associado a $\lambda = -1$.
- **1.8** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (2, -2) na direção do vetor $\vec{v} = (0, 1)$ é:
 - A -3
 - B -4.
 - C -1.
 - D 1.
 - E 2.
- **1.9** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln(y x)}$. Então, o domínio da função é:
 - $\boxed{\mathsf{A}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathsf{IR}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - $\overline{|\mathsf{E}|} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- **1.10** Considere a função real de duas variáveis reais $f(x,y) = x^3 (x-3)^2 6x y^2$. Então:
 - $\boxed{\mathsf{A}}\ (-2/3,0)$ é um minimizante local de f.
 - $\boxed{\mathsf{B}}\ (-2/3,0)$ é um ponto de sela de f.
 - $\boxed{\mathsf{C}}$ (0,0) é um maximizante local de f.
 - $\overline{|D|}$ (-2/3,0) é um maximizante local de f.
 - $oxed{\mathsf{E}}$ (0,0) é um ponto de sela de f.

 $1^{\circ} \ semestre \ do \ ano \ letivo \ 2019/20 - LEAP+M|EPOL+M|ET|, \ Departamento \ de \ Matemática, \ Universidade \ do \ Minholomorphism \ de \ Matemática, \ Universidade \ do \ Minholomorphism \ de \ Matemática, \ Universidade \ do \ Minholomorphism \ de \ Matemática, \ Universidade \ do \ Minholomorphism \ de \ Matemática, \ Universidade \ do \ Minholomorphism \ de \ Matemática, \ Universidade \ do \ Minholomorphism \ de \ Matemática, \ Universidade \ do \ Minholomorphism \ de \ Matemática)$

Teste 1 — 6 de maio de 2020

nome completo:

v2

n° de aluno:

- **1.1** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (-1, -4) na direção do vetor $\vec{v} = (1, 0)$ é:
 - A 1.
 - B -2.
 - C -1.
 - D 4.
 - E 2.
- **1.2** Considere a função real de duas variáveis reais $f(x, y) = -x^2 + (y + 2)^2 + y^3 4y$. Então:
 - |A| (0, -2/3) é um ponto de sela de f.
 - [B] (0,0) é um maximizante local de f.
 - (0, -2/3) é um minimizante local de f.
 - D (0, -2/3) é um maximizante local de f.
 - [E] (0,2/3) é um minimizante local de f.
- **1.3** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é:
 - |A| (-1/2, -1/2) associado a $\lambda = 2$.
 - [B] (-2,1) associado a $\lambda = -1$.
 - (-1/2, -1/2) associado a $\lambda = -2.$
 - D (1, -2) associado a $\lambda = 1$.
 - |E| (-1/2, -1/2) associado a $\lambda = -1$.
- **I.4** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).
 - |B| Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
 - \square Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
 - $|\mathsf{D}|$ Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
 - $oxed{\mathsf{E}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f\notin C^1(D_f)$.
- **1.5** Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $\underset{(x,y) \in C_m}{\bigsqcup} \lim_{(x,y) \to (0,0)} f(x,y) = 1.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m^2}.$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$

I.6 Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

 $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

 $\boxed{\mathsf{B}} \ \frac{\partial g}{\partial v} \cos(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \sin(xg).$

 $\boxed{ \bigcirc \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \sin(xg). }$

 $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \cos(xg).$

1.7 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln{(y-x)}}$. Então, o domínio da função é:

 $\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

 $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

 \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}$

1.8 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:

A $f(x, y) = -\sqrt{-x^2 - y^2 + 4}$

B $f(x,y) = -\sqrt{-x^2 - y^2 + 2}$.

 $|C| f(x, y) = -\sqrt{-x^2 - y^2 + 16}$

 $f(x,y) = \sqrt{-x^2 - y^2 + 2}$

 $|E| f(x,y) = \sqrt{-x^2 - y^2 + 4}.$

I.9 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

A hipérboles.

B elipses e um ponto.

C elipsóides e um ponto.

D parabolóides e um ponto.

E circunferências e um ponto.

I.10 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 $\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$

 $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$

 $\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{0}{h^2} - 0}{h}.$

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v3

- **I.1** A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:
 - $A f(x,y) = \sqrt{-x^2 y^2 + 4}$
 - B $f(x,y) = -\sqrt{-x^2 y^2 + 16}$
 - C $f(x,y) = -\sqrt{-x^2 y^2 + 2}$.
 - D $f(x,y) = -\sqrt{-x^2 y^2 + 4}$
 - $[E] f(x,y) = \sqrt{-x^2 y^2 + 2}$
- **1.2** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x y = -1 é:
 - A (-1/2, 1/2) associado a $\lambda = -1$.
 - [B] (1,2) associado a $\lambda = 1$.
 - |C| (-1/2, 1/2) associado a $\lambda = -2$.
 - |D| (-1/2, 1/2) associado a $\lambda = 2$.
 - [E] (1,2) associado a $\lambda = 2$.
- **1.3** Considere a função real de duas variáveis reais $f(x,y) = x^3 + (x-3)^2 + 6x y^2$. Então:
 - |A| (0,0) é um ponto de sela de f.
 - |B| (2/3,0) é um minimizante local de f.
 - |C| (0,0) é um maximizante local de f.
 - |D| (2/3,0) é um maximizante local de f.
 - |E| (-2/3,0) é um minimizante local de f.
- **1.4** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipsóides e um ponto.
 - B circunferências e um ponto.
 - C parábolas e um ponto.
 - D parabolóides e um ponto.
 - E retas.
- **1.5** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \ \frac{\partial g}{\partial y} \cos(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{C}} \ \tfrac{\partial g}{\partial y} \cos(xg) + \left(x \tfrac{\partial g}{\partial x} + g\right) x \tfrac{\partial g}{\partial v} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- **1.6** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln{(x+y)}}$. Então, o domínio da função é:
 - A $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 < 2) \land (y \neq x 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
 - $E \mid D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$

1.7 A derivada dirigida da função real de duas variáveis reais $f(x,y)=x+y^2$ em $(2,-1)$ na direção do vetor $\vec{v}=(0,1)$ é: A 1. B 4. C 2. D -2. E 3.	
1.8 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira. A Se f não é diferenciável em D_f , então f não admite derivadas parciais de 1^a ordem em D_f . B Se f é diferenciável em (a,b) , então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$. C Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$. D Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f . E Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então f não é diferenciável em (a,b) .	
1.9 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então: $ \boxed{A} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 0. $ $ \boxed{B} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m. $ $ \boxed{C} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m^2}. $ $ \boxed{D} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m}. $ $ \boxed{E} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 1. $	
I.10 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão: A $\lim_{k \to 0} \frac{\frac{k^2}{k} - 0}{k}$. B $\lim_{k \to 0} \frac{\frac{k^2}{k^5} - 0}{k}$. C $\lim_{k \to 0} \frac{\frac{0}{k} - 0}{k}$. D $\lim_{k \to 0} \frac{\frac{0}{k^4} - 0}{k}$. E $\lim_{k \to 0} \frac{\frac{k^2}{k^5} - 0}{k}$.	

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v4

- **I.1** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial v} + x \frac{\partial^2 g}{\partial v \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial v} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - C $\frac{\partial g}{\partial v}\cos(xg) + \left(x\frac{\partial g}{\partial x} + g\right)x\frac{\partial g}{\partial v}\sin(xg).$
 - $\boxed{\mathsf{D}} \ \tfrac{\partial g}{\partial y} \cos(xg) \left(x \tfrac{\partial g}{\partial x} + g\right) x \tfrac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \cos(xg).$
- **1.2** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se não existe um plano tangente ao gráfico de f no ponto (a, b), então $f \notin C^1(D_f)$.
 - B Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .

 - \square Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).
 - $oxed{\mathsf{E}}$ Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
- **1.3** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A hipérboles.
 - B parabolóides e um ponto.
 - C circunferências e um ponto.
 - D retas.
 - E elipses e um ponto.
- 1.4 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:
 - A $f(x,y) = -\sqrt{-x^2 y^2 + 16}$
 - B $f(x,y) = \sqrt{-x^2 y^2 + 2}$
 - $|C| f(x,y) = \sqrt{-x^2 y^2 + 16}$
 - $D f(x, y) = \sqrt{-x^2 y^2 + 4}$
 - $|E| f(x,y) = -\sqrt{-x^2 y^2 + 4}$
- **1.5** Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
 - $\begin{bmatrix} \mathbf{B} & \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 1.$

 - $\square \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\begin{bmatrix} \mathsf{E} \end{bmatrix} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$

		dirigida	da função	real de d	duas vari	áveis reais	f(x,y) =	$x + y^2$	em (-2, 2) na direção	do vetor	$\vec{v} = (0,$	1) é
A	4.												

1.7 Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 - x^3 + 6x + y^2$. Então:

- |A| (2/3,0) é um ponto de sela de f.
- |B| (-2/3,0) é um minimizante local de f.
- |C| (-2/3,0) é um maximizante local de f.
- |D| (2/3,0) é um minimizante local de f.
- |E| (2/3,0) é um maximizante local de f.

I.8 Seja
$$\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$
 Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-0}{k}.$$

$$\begin{array}{c|c}
C & \lim_{k \to 0} \frac{\frac{0}{k^4} - 0}{k}. \\
D & \lim_{k \to 0} \frac{\frac{0}{k} - 0}{k}.
\end{array}$$

$$\boxed{\mathsf{E}} \lim_{k \to 0} \frac{\frac{k^2}{k} - 1}{k}.$$

1.9 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(y - x)}$. Então, o domínio da função é:

$$\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$$

B
$$D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$$

C
$$D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$$

$$\square$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$

$$\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$$

1.10 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x - y = -1 é:

- |A| (1, 2) associado a $\lambda = 2$.
- $|\mathsf{B}|$ (-1/2, 1/2) associado a $\lambda = -1$.
- C (1,2) associado a $\lambda = 1$.
- |D| (1,2) associado a $\lambda = -1$.
- |E| (-1/2, 1/2) associado a $\lambda = 2$.

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: n° de aluno:

v5

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(y - x)}$. Então, o domínio da função é:

- $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 > 2) \land (y \neq x + 1)\}.$
- D $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

1.2 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A parábolas e um ponto.
- B circunferências e um ponto.
- C elipses e um ponto.
- D parabolóides e um ponto.
- E elipsóides e um ponto.

1.3 O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x + y = -1 é:

- |A|(1,-2) associado a $\lambda=1$.
- $|\mathsf{B}|$ (-2,1) associado a $\lambda=1$.
- C (-1/2, -1/2) associado a $\lambda = 2$.
- $|\mathsf{D}|$ (-1/2, -1/2) associado a $\lambda = -1$.
- |E| (-2,1) associado a $\lambda = -1$.

1.4 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:

- $|A| f(x, y) = \sqrt{-x^2 y^2 + 2}$
- B $f(x, y) = \sqrt{-x^2 y^2 + 4}$.
- $C f(x,y) = -\sqrt{-x^2 y^2 + 16}$
- $D f(x, y) = \sqrt{-x^2 y^2 + 16}$
- $[E] f(x,y) = -\sqrt{-x^2 y^2 + 2}.$

1.5 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{2h}-0}{h}.$
- $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{0}{h^4}-0}{h}.$

l.6	Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 - x^3 + 6x + y^2$. Então:
Α	(-2/3,0) é um minimizante local de f .
В	(2/3,0) é um ponto de sela de f .
С	(2/3,0) é um minimizante local de f .
D	(0,0) é um ponto de sela de f .
E	(-2/3,0) é um ponto de sela de f .
1.7	Considere a função $f(x,y)=\frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m=\{(t,mt^2):t\in\mathbb{R}\}\cap D_f,\ m\in\mathbb{R}.$ Então:
Α	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
В	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
С	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}}f(x,y)=m.$
D	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
E	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
I.8 propo	Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das osições é verdadeira. Se f não é diferenciável em (a,b) , então f não possui derivadas dirigidas em todas as direções no ponto (a,b) .
В	Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então $f \notin C^1(D_f)$.
С	Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então $f \notin C^0(D_f)$.
D	Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
E	Se f não possui derivadas dirigidas em todas as direções no ponto (a, b) , então f não é contínua em (a, b) .
	A derivada dirigida da função real de duas variáveis reals $f(x,y)=x-y^2$ em $(3,-4)$ na direção do vetor $\vec{v}=(1,0)$ é:
Α	2.
В	-1 .
С	-1.4.-3.1.
D	-3 .
Ε	1.
	a2 f
1.10	Sejam $f(x,y)=\cos(yg)$ e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
	$-\left(\frac{\partial g}{\partial x}+y\frac{\partial^2 g}{\partial x\partial y}\right)\operatorname{sen}(yg)-\left(y\frac{\partial g}{\partial y}+g\right)y\frac{\partial g}{\partial x}\operatorname{sen}(yg).$
В	$-\frac{\partial g}{\partial x}\operatorname{sen}(yg) - \left(y\frac{\partial g}{\partial y} + g\right)y\frac{\partial g}{\partial x}\operatorname{cos}(yg).$
С	$-\left(\frac{\partial g}{\partial x}+y\frac{\partial^2 g}{\partial x\partial y}\right)\operatorname{sen}(yg)-\left(y\frac{\partial g}{\partial y}+g\right)y\frac{\partial g}{\partial x}\operatorname{cos}(yg).$
D	$\frac{\partial g}{\partial x}\cos(yg) - \left(y\frac{\partial g}{\partial y} + g\right)y\frac{\partial g}{\partial x}\sin(yg).$
Ε	$\left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \cos(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \sin(yg).$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v6

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

- **I.1** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A circunferências e um ponto.
 - B hipérboles.
 - C elipsóides e um ponto.
 - D parábolas e um ponto.
 - E retas.
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln{(x+y)}}$. Então, o domínio da função é:
 - $\boxed{\mathsf{A}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
 - $\boxed{\mathsf{B}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}$
 - $oxed{\mathsf{E}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- **1.3** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:
 - |A| (1/2, 1/2) associado a $\lambda = -2$.
 - $|\mathsf{B}|$ (1/2, 1/2) associado a $\lambda = 1$.
 - (2,-1) associado a $\lambda = -1$.
 - D (2, -1) associado a $\lambda = 1$.
 - |E| (1/2, 1/2) associado a $\lambda = 2$.
- **1.4** Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

 - $\mathbb{B} \lim_{k \to 0} \frac{\frac{k^2}{k} 1}{k}.$
 - $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k}-0}{k}.$

1.5	Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
Α	
В	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
С	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}}f(x,y)=m.$
D	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
Ε	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
	Considere a função real de duas variáveis reais $f(x,y) = x^3 + (x-3)^2 + 6x - y^2$. Então: $(2/3,0)$ é um maximizante local de f .
=	(-2/3,0) é um ponto de sela de f .
C	(0,0) é um minimizante local de f .
D	(0,0) é um ponto de sela de f .
Ε	(2/3,0) é um minimizante local de f .
1.7	A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:
	$f(x,y) = \sqrt{-x^2 - y^2 + 16}.$
	$f(x,y) = \sqrt{-x^2 - y^2 + 4}$.
	$f(x,y) = -\sqrt{-x^2 - y^2 + 2}.$
	$f(x,y) = \sqrt{-x^2 - y^2 + 2}$.
Е	$f(x,y) = -\sqrt{-x^2 - y^2 + 4}.$
1.8	Sejam $f(x,y)=\cos(xg)$ e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y\partial x}(x,y)$ é igual a:
Α	$\left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
В	$\left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
С	$-\left(\frac{\partial g}{\partial y}+x\frac{\partial^2 g}{\partial y\partial x}\right)\operatorname{sen}(xg)-\left(x\frac{\partial g}{\partial x}+g\right)x\frac{\partial g}{\partial y}\operatorname{cos}(xg).$
D	$-\frac{\partial g}{\partial y}\operatorname{sen}(xg) + \left(x\frac{\partial g}{\partial x} + g\right)x\frac{\partial g}{\partial y}\operatorname{cos}(xg).$
Ε	$-\frac{\partial g}{\partial y}\operatorname{sen}(xg)-\left(x\frac{\partial g}{\partial x}+g\right)x\frac{\partial g}{\partial y}\operatorname{cos}(xg).$
1.9	A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em $(2, -1)$ na direção do vetor $\vec{v} = (0, 1)$ é:
Α	2.
В	2. -2. -3. 1. -1.
С	- 3.
D	$oxed{1}$
Ε	-1.
.10	Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual da
prop	osições é verdadeira. Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
	Se não existe um plano tangente ao gráfico de f em (a, b) , então f não admite derivadas parciais de 1^a ordem em (a, b)
ال	(a, b), citab i filab admitted an graneo de i citi (a, b) , citab i filab admitted crivadas parciais de 1. Ordeni citi (a, b)

 $oxed{C}$ Se não existe um plano tangente ao gráfico de f em (a,b), então f não é contínua em (a,b).

 $oxed{\mathsf{E}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é diferenciável em (a,b).

 \square Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v7

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$
- $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

- $\boxed{\mathsf{E}} \frac{\partial g}{\partial v} \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$

1.2 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- $\overline{\mathsf{A}}$ Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .
- \square Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).
- C Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
- D Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).

E Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então não existe um plano tangente ao gráfico de f em (a, b).

1.3 O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x + y = -1 é:

- A (1, -2) associado a $\lambda = 1$.
- B (-1/2, -1/2) associado a $\lambda = -2$.
- C (-1/2, -1/2) associado a $\lambda = -1$.
- D (-2,1) associado a $\lambda = 1$.
- |E| (-1/2, -1/2) associado a $\lambda = 2$.

1.4 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- |A| hipérboles.
- B circunferências e um ponto.
- C retas.
- D elipsóides e um ponto.
- |E| parábolas e um ponto.

1.5 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} 0}{k}.$
- $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} 0}{k}.$

	onsidere a função real de duas variáveis reais $f(x,y)=x^2+(y-2)^2-y^3+4y$. Então: 0,2/3) é um maximizante local de f .
=	(0,2/3) é um minimizante local de f .
C (0	0, $-2/3$) é um maximizante local de f .
D (0	(0,0) é um ponto de sela de f .
E (0	(0,2/3) é um ponto de sela de f .
A 3. B - C 4. D 2.	derivada dirigida da função real de duas variáveis reais $f(x,y)=x+y^2$ em $(-3,-1)$ na direção do vetor $\vec{v}=(0,1)$ é: 3.
E -	·2.
A f (B f (D f)	função cujo gráfico representa a metade inferior da esfera de centro $(0,0,0)$ e raio 2 é: $(x,y)=\sqrt{-x^2-y^2+16}$. $(x,y)=\sqrt{-x^2-y^2+2}$. $(x,y)=-\sqrt{-x^2-y^2+4}$. $(x,y)=\sqrt{-x^2-y^2+4}$. $(x,y)=-\sqrt{-x^2-y^2+16}$.
1.9 Co	onsidere a função real de duas variáveis reais $f(x,y)=rac{\sqrt{-2x^2-2y^2+4}}{\ln{(y-x)}}$. Então, o domínio da função é:
	$\mathcal{D}_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$
B	$\mathcal{D}_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$
C D	$\mathcal{D}_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
D	$\mathcal{D}_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$
E D	$\mathcal{D}_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
I. 10	Considere a função $f(x,y)=\frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m=\{(t,mt^2):t\in\mathbb{R}\}\cap D_f,\ m\in\mathbb{R}.$ Então:
A	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
B (x	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}}f(x,y)=1.$
C (x	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
D (x	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
E (x	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
Fim.	

^	4	1:	ь л	ater	4 +	:	СС
Δ	ทล	use	IVI	arer	nat	เกล	-

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v8

- **1.1** Considere a função real de duas variáveis reais $f(x,y) = x^3 (x-3)^2 6x y^2$. Então:
 - |A| (0,0) é um minimizante local de f.
 - [B] (0,0) é um maximizante local de f.
 - |C| (-2/3,0) é um minimizante local de f.
 - \square (2/3,0) é um minimizante local de f.
 - [E] (0,0) é um ponto de sela de f.
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln{(x+y)}}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$

 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
 - $E \mid D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- **1.3** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-2, 2) na direção do vetor $\vec{v} = (0, 1)$ é:
 - A 3.
 - |B|-1.
 - C 4.
 - |D|-2.
 - |E| 1.
- **1.4** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A retas.
 - B circunferências e um ponto.
 - C elipsóides e um ponto.
 - D elipses e um ponto.
 - |E| parabolóides e um ponto.
- **1.5** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - |A| Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f \notin C^1(D_f)$.
 - $|\mathsf{B}|$ Se f não é diferenciável em (a,b), então f não possui derivadas dirigidas em todas as direções no ponto (a,b).
 - |C| Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
 - |D| Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).
 - E Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
- 1.6 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:
 - $|A| f(x, y) = -\sqrt{-x^2 y^2 + 2}.$
 - B $f(x, y) = \sqrt{-x^2 y^2 + 2}$.
 - $C f(x, y) = \sqrt{-x^2 y^2 + 16}$.
 - D $f(x, y) = -\sqrt{-x^2 y^2 + 16}$.
 - E $f(x,y) = \sqrt{-x^2 y^2 + 4}$

1.7 O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x - y = -1 é:

- $\boxed{\mathsf{A}}$ (1,2) associado a $\lambda=1$.
- $\boxed{\mathsf{B}}\ (-1/2,1/2)$ associado a $\lambda=-1$.
- \square (1,2) associado a $\lambda = -1$.
- $| \mathsf{E} | (-1/2, 1/2)$ associado a $\lambda = 2$.

I.8 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$
- $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$
- $\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{h^3}{2h}-0}{h}.$

1.9 Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

- $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
- $\begin{bmatrix}
 B
 \end{bmatrix} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
- $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
- $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
- $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$

I.10 Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \, \mathsf{sen}(yg).$
- $\boxed{\mathsf{B}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{cos}(yg) + \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
- $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{sen}(yg) + \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

- **I.1** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x y = 1 é:
 - $\boxed{\mathsf{A}}\ (1/2,-1/2)$ associado a $\lambda=2$.
 - [B] (1/2, -1/2) associado a $\lambda = -2$.
 - |C| (1/2, -1/2) associado a $\lambda = 1$.
 - D (2,1) associado a $\lambda = -1$.
 - [E] (2,1) associado a $\lambda = -2$.
- **1.2** Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
- **1.3** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipsóides e um ponto.
 - B retas.
 - C elipses e um ponto.
 - D circunferências e um ponto.
 - E parabolóides e um ponto.
- **1.4** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (2, -2) na direção do vetor $\vec{v} = (0, 1)$ é:
 - A 2.
 - B 1.
 - $\left| \mathsf{C} \right| 1$.
 - D 3.
 - E −4.
- **1.5** Considere a função real de duas variáveis reais $f(x, y) = (x 3)^2 x^3 + 6x + y^2$. Então:
 - |A| (-2/3,0) é um ponto de sela de f.
 - $|\mathsf{B}|$ (2/3,0) é um maximizante local de f.
 - |C| (-2/3,0) é um minimizante local de f.
 - |D| (2/3,0) é um ponto de sela de f.
 - (-2/3,0) é um maximizante local de f.

1.6 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{B}} \lim_{h \to 0} \frac{\frac{h^3}{h^4} - 1}{h}$$

$$\boxed{\mathsf{C}} \lim_{h \to 0} \frac{\frac{0}{h^4} - 0}{h}.$$

$$\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$$

$$\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{0}{h^5}-0}{h}.$$

1.7 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

A Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).

 $\overline{\mathbb{B}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f \notin C^1(D_f)$.

|C| Se f é diferenciável em D_f , então $f \in C^1(D_f)$.

 \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

 $\boxed{\mathsf{E}}$ Se f não é diferenciável em (a,b), então f não possui derivadas dirigidas em todas as direções no ponto (a,b).

1.8 Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

$$\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$$

$$\boxed{\mathsf{D}} \ \tfrac{\partial g}{\partial v} \cos(xg) + \left(x \tfrac{\partial g}{\partial x} + g\right) x \tfrac{\partial g}{\partial v} \operatorname{sen}(xg).$$

1.9 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:

$$A f(x, y) = -\sqrt{-x^2 - y^2 + 2}$$

$$\overline{|B|} f(x, y) = -\sqrt{-x^2 - y^2 + 16}$$

C
$$f(x,y) = \sqrt{-x^2 - y^2 + 16}$$

$$f(x,y) = \sqrt{-x^2 - y^2 + 4}$$

$$f(x,y) = -\sqrt{-x^2 - y^2 + 4}$$

1.10 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln(x + y)}$. Então, o domínio da função é:

$$A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$$

B
$$D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$$

C
$$D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$$

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v10

- **I.1** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parabolóides e um ponto.
 - B circunferências e um ponto.
 - C elipses e um ponto.
 - D elipsóides e um ponto.
 - E parábolas e um ponto.
- **1.2** Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
 - $\left[\underline{\mathsf{A}} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m}.$
 - $\left[\mathsf{B} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in \mathcal{C}_m}} f(x,y) = 1.$
 - $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
- **1.3** Considere a função real de duas variáveis reais $f(x, y) = -x^2 + (y + 2)^2 + y^3 4y$. Então:
 - |A| (0, -2/3) é um ponto de sela de f.
 - |B| (0,0) é um maximizante local de f.
 - |C| (0, -2/3) é um maximizante local de f.
 - |D| (0, -2/3) é um minimizante local de f.
 - |E| (0,2/3) é um ponto de sela de f.
- **1.4** O ponto crítico da função real de duas variáveis reals $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:
 - |A| (1/2, 1/2) associado a $\lambda = -2$.
 - $|\mathsf{B}|$ (2, -1) associado a $\lambda = 1$.
 - |C| (2, -1) associado a $\lambda = -1$.
 - $|\mathsf{D}|$ (1/2, 1/2) associado a $\lambda = 1$.
 - |E| (1/2, 1/2) associado a $\lambda = 2$.
- **1.5** Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \frac{\partial g}{\partial x} \operatorname{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg).$

 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$

- **1.6** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - B Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).
 - \square Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .
 - D Se f possui derivadas dirigidas em todas as direções no ponto (a, b), então f é diferenciável em (a, b).
 - | E | Se não existe um plano tangente ao gráfico de f no ponto (a, b), então f não é diferenciável em (a, b).
- **1.7** Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{0}{k^4} 0}{k}.$
 - $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$
 - $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$
 - $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^5}-0}{k}.$
 - $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} 0}{k}.$
- 1.8 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:
 - A $f(x,y) = -\sqrt{-x^2 y^2 + 16}$.
 - B $f(x,y) = \sqrt{-x^2 y^2 + 16}$
 - $|C| f(x,y) = -\sqrt{-x^2 y^2 + 2}$
 - $D f(x,y) = \sqrt{-x^2 y^2 + 4}$
 - $|E| f(x,y) = \sqrt{-x^2 y^2 + 2}.$
- **1.9** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (2, -2) na direção do vetor $\vec{v} = (0, 1)$ é:
 - A -4
 - B -3.
 - C 4.
 - D 3.
 - E 2.
- **I.10** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln{(y-x)}}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - $\overline{|C|}$ $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $\overline{|D|} D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$

^	4	1:	ь л	ater	4 +	:	СС
Δ	ทล	use	IVI	arer	nat	เกล	-

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v11

- **I.1** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x y = 1 é:
 - A (2,1) associado a $\lambda = 1$.
 - [B] (2,1) associado a $\lambda = -1$.
 - |C| (1/2, -1/2) associado a $\lambda = -2$.
 - $|\mathsf{D}|$ (2, 1) associado a $\lambda = -2$.
 - [E] (1/2, -1/2) associado a $\lambda = 1$.
- **I.2** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{D}} \stackrel{\partial g}{\partial v} \cos(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \sin(xg).$
 - $\boxed{\mathsf{E}} \frac{\partial g}{\partial y} \cos(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \sin(xg).$
- **1.3** Considere a função real de duas variáveis reais $f(x, y) = -x^2 (y 2)^2 + y^3 4y$. Então:
 - |A| (0, -2/3) é um maximizante local de f.
 - [B] (0, -2/3) é um ponto de sela de f.
 - |C| (0,2/3) é um minimizante local de f.
 - |D| (0,0) é um ponto de sela de f.
 - |E| (0,0) é um maximizante local de f.
- 1.4 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:
 - $|A| f(x, y) = \sqrt{-x^2 y^2 + 16}$
 - B $f(x, y) = -\sqrt{-x^2 y^2 + 2}$
 - $C f(x, y) = \sqrt{-x^2 y^2 + 2}$
 - $\overline{\square} f(x,y) = \sqrt{-x^2 y^2 + 4}$
 - $E f(x, y) = -\sqrt{-x^2 y^2 + 4}$
- **1.5** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, -2) na direção do vetor $\vec{v} = (1, 0)$ é:
- A 3.
- |B|-2.
- C 2.
- D 1.
- |E| 4
- **1.6** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se não existe um plano tangente ao gráfico de f no ponto (a, b), então f não é diferenciável em (a, b).
 - B Se f não é diferenciável em D_f , então f não admite derivadas parciais de 1ª ordem em D_f .
 - C Se não existe um plano tangente ao gráfico de f em (a,b), então f não admite derivadas parciais de 1^a ordem em (a,b).
 - |D| Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .
 - | E | Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

1.7 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln{(y-x)}}$. Então, o domínio da função é: $A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$ B $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$

C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}$ \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$

 $oxed{\mathsf{E}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 > 2) \land (y \neq x + 1)\}.$

1.8 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

A elipses e um ponto.

B hipérboles.

C retas.

D parabolóides e um ponto.

|E| circunferências e um ponto.

I.9 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4 + y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 $\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{0}{h^5}-0}{h}.$

 $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$

 $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-1}{h}.$

1.10 Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

 $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$

 $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$

 $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$

 $\boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$

 $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v12

- 1.1 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:
 - A $f(x,y) = -\sqrt{-x^2 y^2 + 4}$.
 - B $f(x,y) = -\sqrt{-x^2 y^2 + 2}$.
 - C $f(x,y) = \sqrt{-x^2 y^2 + 4}$.
 - $D f(x,y) = \sqrt{-x^2 y^2 + 16}.$
 - $[E] f(x,y) = -\sqrt{-x^2 y^2 + 16}.$
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = x^3 (x-3)^2 6x y^2$. Então:
 - $\boxed{\mathsf{A}}\ (-2/3,0)$ é um maximizante local de f.
 - |B| (2/3,0) é um ponto de sela de f.
 - (-2/3,0) é um minimizante local de f.
 - $\boxed{\mathsf{D}}$ (0,0) é um minimizante local de f.
 - [E] (2/3,0) é um minimizante local de f.
- **I.3** Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

 - $\boxed{ \bigcirc \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg). }$
- **1.4** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - $\boxed{\mathsf{A}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é diferenciável em (a,b).
 - B Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).
 - C Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
 - D Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - $\mid E \mid$ Se não existe um plano tangente ao gráfico de f em (a,b), então f não é contínua em (a,b).
- **1.5** A derivada dirigida da função real de duas variáveis reais $f(x,y) = x + y^2$ em (3,1) na direção do vetor $\vec{v} = (0,1)$ é:
 - |A|-4
 - B 2.
 - C -2.
 - D 1.
 - |E|-1
- **1.6** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:
 - |A| (-1,2) associado a $\lambda = 2$.
 - |B| (2, -1) associado a $\lambda = 1$.
 - C (1/2, 1/2) associado a $\lambda = 2$.
 - |D| (1/2, 1/2) associado a $\lambda = -2$.
 - |E| (1/2, 1/2) associado a $\lambda = 1$.

1.7 Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

$$\begin{bmatrix} A & \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.
\end{bmatrix}$$

$$\boxed{ \mathbb{B}} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m^2}.$$

$$\left[C \right] \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$$

$$\boxed{\square} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m.$$

$$\left[\mathbb{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m}.$$

I.8 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x - y)}$. Então, o domínio da função é:

$$\boxed{A} D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$$

$$\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$$

$$C$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$

$$| E | D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1) \}$$

1.9 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

A elipsóides e um ponto.

B circunferências e um ponto.

C parabolóides e um ponto.

D elipses e um ponto.

E hipérboles.

I.10 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$$

$$\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{0}{k^4} - 0}{k}.$$

$$\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$$

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v13

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(y-x)}}$. Então, o domínio da função é:

- $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$

1.2 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:

- A $f(x,y) = -\sqrt{-x^2 y^2 + 2}$.
- B $f(x, y) = \sqrt{-x^2 y^2 + 4}$
- $C f(x,y) = -\sqrt{-x^2 y^2 + 16}$
- $D f(x, y) = -\sqrt{-x^2 y^2 + 4}$
- $[E] f(x,y) = \sqrt{-x^2 y^2 + 16}.$

1.3 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{0}{h^4}-0}{h}.$
- $\boxed{\mathsf{C}} \lim_{h \to 0} \frac{\frac{h^3}{h^2} 0}{h}.$
- $\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{h^3}{h^5} 0}{h}.$

1.4 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A elipses e um ponto.
- B hipérboles.
- C elipsóides e um ponto.
- D circunferências e um ponto.
- E parabolóides e um ponto.

1.5 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- A Se f possui derivadas dirigidas em todas as direções no ponto (a, b), então f é diferenciável em (a, b).
- B Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.
- |C| Se f não é diferenciável em (a, b), então f não possui derivadas dirigidas em todas as direções no ponto (a, b).
- \square Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .
- | E | Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

1.00	ponto crítico da função real de duas variaveis reals $f(x,y) = x^2 + y^2$ com restrição $x - y = -1$ e:
A (:	1,2) associado a $\lambda=-1$.
B (-	$-1/2,1/2)$ associado a $\lambda=-1$.
C (-	$-1/2,1/2)$ associado a $\lambda=-2$.
D (:	1,2) associado a $\lambda=2$.
E (-	$-1/2,1/2)$ associado a $\lambda=2.$
	v^2
1.7 Co	onsidere a função $f(x,y)=\frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m=\{(t,mt^2):t\in\mathbb{R}\}\cap D_f,m\in\mathbb{R}.$ Então:
($\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}}f(x,y)=m.$
B (x	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}}f(x,y)=m^2.$
	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
\Box (x	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
$\mathbb{E}_{(x)}$	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m}.$
A (B ∂/∂) C (Ejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a: $\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \Big) \cos(xg) - \Big(x \frac{\partial g}{\partial x} + g \Big) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$ $\frac{\partial g}{\partial y} \cos(xg) - \Big(x \frac{\partial g}{\partial x} + g \Big) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$ $\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \Big) \cos(xg) + \Big(x \frac{\partial g}{\partial x} + g \Big) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
	$\frac{g}{y}\cos(xg) + \left(x\frac{\partial g}{\partial x} + g\right)x\frac{\partial g}{\partial y}\sin(xg).$ $\frac{\partial g}{\partial y} + x\frac{\partial^2 g}{\partial y\partial x}\sin(xg) + \left(x\frac{\partial g}{\partial x} + g\right)x\frac{\partial g}{\partial y}\cos(xg).$
<u> </u>	$\frac{\partial y}{\partial y} + \frac{\partial y}{\partial x} \frac{\partial y}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial y}{\partial y} = \frac{\partial y}{\partial y} + \frac{\partial y}{\partial y} + \frac{\partial y}{\partial y} + \frac{\partial y}{\partial y} = \frac{\partial y}{\partial y} + $
A 2 B 3 C 4 D -	
	Considere a função real de duas variáveis reais $f(x,y) = x^2 + (y-2)^2 - y^3 + 4y$. Então:
	(0,0) é um ponto de sela de f .
= `	(0,2/3) é um ponto de sela de f .
	(0,2/3) é um maximizante local de f .
	0,-2/3) é um maximizante local de f .
E (0	(0,-2/3) é um minimizante local de f .
Fim.	

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v14

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x - y)}$. Então, o domínio da função é:

- $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 > 2) \land (y \neq x 1)\}.$
- $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 > 2) \land (y \neq x 1)\}.$

1.2 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

- C $-\frac{\partial g}{\partial y} \operatorname{sen}(xg) + \left(x\frac{\partial g}{\partial y} + g\right) x\frac{\partial g}{\partial y} \cos(xg).$
- $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$
- $\boxed{\mathsf{E}} \ -\tfrac{\partial g}{\partial y} \operatorname{sen}(xg) \left(x\tfrac{\partial g}{\partial x} + g\right) x\tfrac{\partial g}{\partial v} \cos(xg).$

1.3 Sejam D_f um subconjunto aberto de IR² e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- |A| Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
- $\boxed{\mathsf{B}}$ Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
- C Se $\frac{\partial^2 f}{\partial x \partial y}(a, b) \neq \frac{\partial^2 f}{\partial y \partial x}(a, b)$, então não existe um plano tangente ao gráfico de f em (a, b).
- \square Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é diferenciável em (a, b).
- E Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.

1.4 Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt): t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

- $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}}} f(x,y) = m^2.$
- $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
- $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
- $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
- $\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 1.$

1.5 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:

- |A| (2, -1) associado a $\lambda = 1$.
- B (-1,2) associado a $\lambda=2$.
- C (2, -1) associado a $\lambda = -1$.
- \square (1/2, 1/2) associado a $\lambda = 1$.
- E (1/2, 1/2) associado a $\lambda = 2$.

1.6	A derivada dirigida da função	real de duas variáveis re	ais $f(x, y) = x - y^2$ en	n (3,2) na direção	do vetor $\vec{v} = (1,0)$ 6
-----	-------------------------------	---------------------------	----------------------------	--------------------	------------------------------

- A 4.
- B 1.
- C -3.
- D -4.
- E -2.

1.7 Seja
$$\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$
 Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \lim_{k \to 0} \frac{\frac{k^2}{k^4} 0}{k}.$
- $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$
- $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$
- $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{0}{k^4} 0}{k}.$

1.8 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A hipérboles.
- B elipses e um ponto.
- C circunferências e um ponto.
- D parábolas e um ponto.
- E parabolóides e um ponto.

I.9 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:

- A $f(x,y) = -\sqrt{-x^2 y^2 + 2}$.
- B $f(x,y) = \sqrt{-x^2 y^2 + 4}$
- $f(x,y) = \sqrt{-x^2 y^2 + 16}$
- D $f(x,y) = -\sqrt{-x^2 y^2 + 4}$
- $f(x,y) = \sqrt{-x^2 y^2 + 2}$

1.10 Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 - x^3 + 6x + y^2$. Então:

- $\boxed{\mathsf{A}}$ (2/3,0) é um ponto de sela de f.
- $\overline{|B|}$ (2/3,0) é um minimizante local de f.
- $\overline{|C|}$ (-2/3,0) é um ponto de sela de f.
- \square (-2/3,0) é um minimizante local de f.
- (0,0) é um maximizante local de f.

| Fim.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v15

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$$

$$\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k} - 0}{k}.$$

$$\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k^4}-0}{k}.$$

$$\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$$

1.2 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:

A
$$f(x,y) = \sqrt{-x^2 - y^2 + 2}$$
.

$$f(x,y) = -\sqrt{-x^2 - y^2 + 16}$$

$$f(x, y) = \sqrt{-x^2 - y^2 + 16}$$

$$f(x,y) = \sqrt{-x^2 - y^2 + 4}$$
.

$$f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$

1.3 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-3, -1) na direção do vetor $\vec{v} = (0, 1)$ é:

$$A - 1$$

1.4 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A elipses e um ponto.
- B circunferências e um ponto.
- C parábolas e um ponto.
- D hipérboles.
- E elipsóides e um ponto.

1.5 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(x+y)}}$. Então, o domínio da função é:

$$|A| D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1) \}.$$

$$\overline{|\mathsf{B}|} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$$

$$C$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$

$$D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$$

$$D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$$

1.6 Sejam $f(x,y)=\cos(xg)$ e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial v\partial x}(x,y)$ é igual a: $\boxed{\mathsf{A}} - \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$ $\boxed{\mathsf{B}} - \frac{\partial g}{\partial v} \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$ $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$ $\begin{bmatrix} \mathsf{E} \end{bmatrix} - \frac{\partial g}{\partial y} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial y} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$ 1.7 Considere a função real de duas variáveis reais $f(x,y) = x^3 + (x-3)^2 + 6x - y^2$. Então: |A| (0,0) é um maximizante local de f. |B| (-2/3,0) é um ponto de sela de f. |C| (0,0) é um minimizante local de f. D (2/3,0) é um minimizante local de f. |E| (-2/3,0) é um maximizante local de f **1.8** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é: |A| (1/2, 1/2) associado a $\lambda = 1$. B (-1,2) associado a $\lambda = 2$. C (2, -1) associado a $\lambda = 1$. |D| (1/2, 1/2) associado a $\lambda = -2$. |E|(2,-1) associado a $\lambda=-1$. **1.9** Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt): t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então: $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$ $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$ $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$ $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$ $\left[\underline{\mathsf{E}} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m.$

1.10 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das

 $|\mathsf{A}|$ Se f não é diferenciável em D_f , então f não admite derivadas parciais de 1^a ordem em D_f .

B Se não existe um plano tangente ao gráfico de f no ponto (a, b), então f não é diferenciável em (a, b).

|E| Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).

proposições é verdadeira.

Fim

Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v16

- **I.1** Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

 - $\boxed{\mathsf{B}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) + \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$

 - $\boxed{\mathsf{E}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{sen}(yg) + \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$
- **1.2** O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x + y = -1 é:
 - $\boxed{\mathsf{A}}\ (-1/2,-1/2)$ associado a $\lambda=-2$.
 - B (-1/2, -1/2) associado a $\lambda = -1$.
 - C (-2.1) associado a $\lambda = -1$.
 - \square (-1/2, -1/2) associado a $\lambda = 2$.
 - [E] (1, -2) associado a $\lambda = 1$.
- **1.3** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parábolas e um ponto.
 - B parabolóides e um ponto.
 - C circunferências e um ponto.
 - D hipérboles.
 - |E| elipses e um ponto.
- **1.4** Considere a função real de duas variáveis reais $f(x, y) = (x 3)^2 x^3 + 6x + y^2$. Então:
 - A (2/3,0) é um maximizante local de f.
 - [B] (-2/3,0) é um ponto de sela de f.
 - |C| (-2/3,0) é um maximizante local de f.
 - |D| (0,0) é um minimizante local de f.
 - |E| (0,0) é um ponto de sela de f.
- **1.5** Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C}} f(x,y) = m.$
 - $\begin{bmatrix} \mathsf{B} & \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.
 \end{bmatrix}$
 - $\boxed{\mathbb{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2.$
 - $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
 - $\left[\underline{\mathsf{E}} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in \mathcal{C}_m}} f(x,y) = 0.$

1.6	A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em $(3, 1)$ na direção do vetor $\vec{v} = (0, 1)$ é:
А	$\sqrt{-1}$.
В	3 -2. 2 2. 3 3. 3 -4.
C	
	3.
E	$\begin{bmatrix} -4 \end{bmatrix}$
1.7	Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das posições é verdadeira.
	Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então $f \notin C^0(D_f)$.
В	Se f é diferenciável em (a,b) , então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.
C	Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então não existe um plano tangente ao gráfico de f em (a,b) .
	Se f possui derivadas dirigidas em todas as direções no ponto (a,b) , então f é diferenciável em (a,b) .
E	Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então f não é contínua em (a,b) .
1.8	Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

1.9 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:

1.10 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln{(x+y)}}$. Então, o domínio da função é:

 $\boxed{\mathsf{A}} \lim_{k \to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$

 $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k} - 0}{k}.$

Fim.

A $f(x,y) = -\sqrt{-x^2 - y^2 + 2}$. B $f(x,y) = -\sqrt{-x^2 - y^2 + 4}$. C $f(x,y) = -\sqrt{-x^2 - y^2 + 16}$. D $f(x,y) = \sqrt{-x^2 - y^2 + 2}$. E $f(x,y) = \sqrt{-x^2 - y^2 + 4}$.

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v17

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

I.1 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$

- $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$

I.2 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- $|\mathsf{A}|$ Se f admite derivadas parciais de 1º ordem em D_f , então f é diferenciável em D_f .
- B Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.
- \square Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
- $oxed{\mathsf{E}}$ Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

1.3 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x - y = 1 é:

- A (2,1) associado a $\lambda = -1$.
- lacksquare B (2,1) associado a $\lambda=1$.
- $\boxed{\mathsf{C}}\ (1/2,-1/2)$ associado a $\lambda=2$.
- $\boxed{\mathsf{D}}\ (1/2,-1/2)$ associado a $\lambda=1$.
- $\boxed{\mathsf{E}}$ (2,1) associado a $\lambda=-2$.

1.4 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A hipérboles.
- B circunferências e um ponto.
- C parabolóides e um ponto.
- D elipses e um ponto.
- E parábolas e um ponto.

1.5 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:

- A $f(x,y) = \sqrt{-x^2 y^2 + 16}$.
- $\overline{|B|} f(x,y) = -\sqrt{-x^2 y^2 + 4}.$
- C $f(x,y) = \sqrt{-x^2 y^2 + 4}$.
- D $f(x,y) = \sqrt{-x^2 y^2 + 2}$.

1.6 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em $(-3, -1)$ na direção do vetor $\vec{v} = (0, 1)$ é: A 1.	
B 2. C 3.	
D = 1.	
$\begin{bmatrix} E \end{bmatrix}$ -2 .	
1.7 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:	
$ \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0. $	
$ B \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m^2}. $	
$ \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C}} f(x,y) = \frac{1}{m}. $	
$ \boxed{D} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2. $	
$ \begin{bmatrix} E & \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m. \end{bmatrix} $	
1.8 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x-y)}$. Então, o domínio da função é:	
$\boxed{E} \ D_f = \{(x,y) \in IR^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$	
1.9 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:	
$\boxed{A} - \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$	
$\boxed{B} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$	
$\boxed{D} - \frac{\partial g}{\partial v} \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) \times \frac{\partial g}{\partial v} \operatorname{cos}(xg).$	
$\left(\frac{1}{\partial y} + \lambda \frac{1}{\partial y \partial x}\right) \operatorname{sch}(\lambda y) + \left(\lambda \frac{1}{\partial x} + y\right) \lambda \frac{1}{\partial y} \operatorname{sch}(\lambda y).$	
1.10 Considere a função real de duas variáveis reais $f(x,y) = -x^2 + (y+2)^2 + y^3 - 4y$. Então:	
$\begin{bmatrix} A \end{bmatrix}$ (0,0) é um ponto de sela de f .	
[B] $(0,0)$ é um minimizante local de f .	
C (0, -2/3) é um minimizante local de f .	

 \square (0,2/3) é um ponto de sela de f. \square (0,2/3) é um maximizante local de f.

∆nálise Matemática FF

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v18

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(y - x)}}$. Então, o domínio da função é:

- $A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- $\boxed{\mathsf{B}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- $\boxed{\mathsf{D}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$

1.2 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:

- A $f(x,y) = -\sqrt{-x^2 y^2 + 2}$.
- B $f(x, y) = \sqrt{-x^2 y^2 + 2}$
- C $f(x,y) = -\sqrt{-x^2 y^2 + 16}$.
- $D f(x, y) = \sqrt{-x^2 y^2 + 4}$
- $[E] f(x,y) = -\sqrt{-x^2 y^2 + 4}.$

1.3 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A retas.
- B elipsóides e um ponto.
- C hipérboles.
- D circunferências e um ponto.
- E parabolóides e um ponto.

1.4 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- A Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
- B Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
- C Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
- D Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).
- $oxed{\mathsf{E}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é diferenciável em (a,b).

1.5 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (2, -1) na direção do vetor $\vec{v} = (0, 1)$ é:

- |A|-1.
- B -3.
- C -2.
- D 2.
- F 4
- **1.6** Considere a função real de duas variáveis reais $f(x, y) = -x^2 + (y + 2)^2 + y^3 4y$. Então:
 - |A| (0,2/3) é um maximizante local de f.
 - [B] (0,0) é um ponto de sela de f.
 - C (0,0) é um maximizante local de f.
 - D (0, -2/3) é um minimizante local de f.
 - |E| (0,2/3) é um ponto de sela de f.

1.7 Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

 $\boxed{\mathsf{A}} - \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y}\right) \mathsf{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \cos(yg).$

 $\boxed{\mathsf{B}} \ \frac{\partial g}{\partial x} \cos(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \sin(yg).$

 $\boxed{\square - \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg)}.$

 $\boxed{\mathsf{E}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) - \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \, \mathsf{sen}(yg).$

1.8 Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

 $\left[A \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m}.$

 $\mathbb{B} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$

 $\left[C \right] \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$

 $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$

 $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$

1.9 O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x + y = -1 é:

 $\boxed{\mathsf{A}}$ (1, -2) associado a $\lambda = 1$.

 $\boxed{\mathsf{B}}\ (-2,1)$ associado a $\lambda=1$.

 $\boxed{\mathsf{C}}$ (-2,1) associado a $\lambda=-1$.

 $\boxed{\mathsf{D}} \ (-1/2, -1/2)$ associado a $\lambda = 2$.

|E| (-1/2, -1/2) associado a $\lambda = -1$.

I.10 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

 $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} - 0}{k}.$

 $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$

 $\boxed{\mathsf{E}} \lim_{k \to 0} \frac{\frac{0}{k^4} - 0}{k}.$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v19

- **l.1** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - $\boxed{\mathbb{A}}$ Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
 - $\boxed{\mathsf{B}}$ Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).
 - \square Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então não existe um plano tangente ao gráfico de f em (a, b).
 - \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - $oxed{\mathsf{E}}$ Se f é diferenciável em (a,b), então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.
- **I.2** Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{0}{k^4} 0}{k}.$
 - $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} 0}{k}.$
 - $\lim_{k \to 0} \frac{\frac{k^2}{k} 0}{k}.$

 - $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} 0}{k}.$
- **1.3** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:
 - $\boxed{\mathsf{A}}$ (1/2, 1/2) associado a $\lambda=1$.
 - $\overline{|B|}$ (2, -1) associado a $\lambda = -1$.
 - $\overline{|C|}$ (1/2, 1/2) associado a $\lambda = 2$.
 - $\overline{|D|}$ (1/2, 1/2) associado a $\lambda = -2$.
 - $oxed{\mathsf{E}}$ (2, -1) associado a $\lambda=1$
- **1.4** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (2, -2) na direção do vetor $\vec{v} = (0, 1)$ é:
 - A 2.
 - B 3.
 - C 1.
 - D -1.
 - E -4.

- **1.5** Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então: $\boxed{A} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m^2.$ $\boxed{B} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m.$ $\boxed{C} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m}.$
 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 0.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
- 1.6 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:
 - $A f(x,y) = \sqrt{-x^2 y^2 + 16}$
 - B $f(x,y) = -\sqrt{-x^2 y^2 + 4}$
 - C $f(x,y) = \sqrt{-x^2 y^2 + 4}$
 - $D f(x,y) = -\sqrt{-x^2 y^2 + 2}.$
 - E $f(x, y) = -\sqrt{-x^2 y^2 + 16}$
- 1.7 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln{(x+y)}}$. Então, o domínio da função é:

 - B $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
 - $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathsf{IR}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
- **1.8** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parábolas e um ponto.
 - B retas.
 - C elipsóides e um ponto.
 - D elipses e um ponto.
 - E circunferências e um ponto.
- **1.9** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \ \frac{\partial g}{\partial y} \cos(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \sin(xg).$
 - $\boxed{\mathsf{B}} \ \frac{\partial g}{\partial y} \cos(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{E}} \left(\tfrac{\partial g}{\partial y} + x \tfrac{\partial^2 g}{\partial y \partial x} \right) \mathsf{sen}(xg) + \left(x \tfrac{\partial g}{\partial x} + g \right) x \tfrac{\partial g}{\partial y} \mathsf{cos}(xg).$
- **I.10** Considere a função real de duas variáveis reais $f(x,y) = x^3 (x-3)^2 6x y^2$. Então:
 - $\boxed{\mathsf{A}}\ (-2/3,0)$ é um ponto de sela de f.
 - $\overline{|B|}$ (-2/3,0) é um maximizante local de f.
 - $\overline{|C|}$ (2/3,0) é um maximizante local de f.
 - \square (2/3,0) é um ponto de sela de f.
 - $oxed{\mathsf{E}}$ (-2/3,0) é um minimizante local de f.

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v20

- **I.1** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x+y)}$. Então, o domínio da função é:

 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 > 2) \land (y \neq -x + 1)\}.$
 - $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = x^2 + (y-2)^2 y^3 + 4y$. Então:
 - A (0, -2/3) é um ponto de sela de f.
 - [B] (0,2/3) é um minimizante local de f.
 - |C| (0,0) é um minimizante local de f.
 - |D| (0,0) é um maximizante local de f.
 - [E] (0, -2/3) é um minimizante local de f.
- **I.3** Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

 - $\boxed{\mathsf{B}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \, \mathsf{sen}(yg).$

 - $\boxed{ \mathbb{D} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \operatorname{sen}(yg) + \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \cos(yg). }$
- **1.4** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parabolóides e um ponto.
 - B circunferências e um ponto.
 - C elipses e um ponto.
 - D hipérboles.
 - E elipsóides e um ponto.
- **1.5** O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x y = -1 é:
 - |A| (-1/2, 1/2) associado a $\lambda = 2$.
 - |B| (1,2) associado a $\lambda = 1$.
 - |C| (-1/2, 1/2) associado a $\lambda = -1$.
 - $|\mathsf{D}|$ (1,2) associado a $\lambda = -1$.
 - (-1/2, 1/2) associado a $\lambda = -2$.
- **1.6** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - |A| Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f \notin C^1(D_f)$.
 - B Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
 - C Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
 - |D| Se f não é diferenciável em (a, b), então f não possui derivadas dirigidas em todas as direções no ponto (a, b).
 - [E] Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).

1.7 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é: $|A| f(x, y) = \sqrt{-x^2 - y^2 + 4}$

B $f(x,y) = \sqrt{-x^2 - y^2 + 16}$

 $|C| f(x,y) = -\sqrt{-x^2 - y^2 + 16}$

 $| D | f(x, y) = -\sqrt{-x^2 - y^2 + 4}$

E $f(x,y) = -\sqrt{-x^2 - y^2 + 2}$

1.8 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

 $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k}-0}{k}.$

 $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{0}{k^4} - 0}{k}.$

 $\mathbb{E} \lim_{k \to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$

1.9 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-3, -1) na direção do vetor $\vec{v} = (0, 1)$ é:

B 3.

C -3.

D 4.

E 2.

I.10 Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

 $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$

 $\boxed{\mathbb{B}} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m^2}.$

 $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$

 $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$

 $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

|v21

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

- **I.1** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln(y x)}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 > 2) \land (y \neq x + 1)\}$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- **1.2** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (3, -4) na direção do vetor $\vec{v} = (1, 0)$ é:
 - A 2.
 - B 1.
 - C -4.
 - D -3.
 - E 3.
- **1.3** Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$

 - $\boxed{ \mathsf{D} } \tfrac{\partial g}{\partial \mathsf{x}} \operatorname{sen}(yg) \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \cos(yg).$
 - $\boxed{\mathsf{E}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{sen}(yg) \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$
- 1.4 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:
 - A $f(x,y) = \sqrt{-x^2 y^2 + 16}$
 - B $f(x, y) = -\sqrt{-x^2 y^2 + 16}$
 - $| C | f(x, y) = \sqrt{-x^2 y^2 + 2}$
 - $D f(x, y) = -\sqrt{-x^2 y^2 + 4}$
 - $E f(x,y) = \sqrt{-x^2 y^2 + 4}$
- **1.5** Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
 - $[A] \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m^2}.$
 - $\boxed{\mathbb{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
 - $\begin{bmatrix}
 E
 \end{bmatrix} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$

1.6 O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição $x+y=-1$ é: A $(-2,1)$ associado a $\lambda=1$. B $(-1/2,-1/2)$ associado a $\lambda=-1$. C $(-1/2,-1/2)$ associado a $\lambda=2$. D $(1,-2)$ associado a $\lambda=1$. E $(-1/2,-1/2)$ associado a $\lambda=-2$.
1.7 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão: A $\lim_{k \to 0} \frac{\frac{0}{k} - 0}{k}$. B $\lim_{k \to 0} \frac{\frac{k^2}{k} - 0}{k}$. C $\lim_{k \to 0} \frac{\frac{k^2}{k} - 0}{k}$. D $\lim_{k \to 0} \frac{\frac{k^2}{k} - 0}{k}$. E $\lim_{k \to 0} \frac{\frac{k^2}{k} - 1}{k}$.
1.8 Considere a função real de duas variáveis reais $f(x,y) = -x^2 - (y-2)^2 + y^3 - 4y$. Então: A $(0,0)$ é um maximizante local de f . B $(0,2/3)$ é um maximizante local de f . C $(0,-2/3)$ é um ponto de sela de f . D $(0,0)$ é um minimizante local de f . E $(0,0)$ é um ponto de sela de f .
1.9 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira. A Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então f não é diferenciável em (a,b) . B Se f é diferenciável em D_f , então $f \in C^1(D_f)$. C Se f é diferenciável em (a,b) , então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$. D Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$. E Se não existe um plano tangente ao gráfico de f em (a,b) , então f não admite derivadas parciais de 1^a ordem em (a,b) .
I.10 As curvas de nível da função $f(x,y)=x^2+y^2$ são: A parabolóides e um ponto. B hipérboles. C elipsóides e um ponto. D circunferências e um ponto. E retas.

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v22

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{0}{k^4} 0}{k}.$
- $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^5}-0}{k}.$

1.2 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A elipsóides e um ponto.
- B circunferências e um ponto.
- C retas.
- D parábolas e um ponto.
- E hipérboles.

1.3 Considere a função real de duas variáveis reais $f(x,y) = -x^2 - (y-2)^2 + y^3 - 4y$. Então:

- $\boxed{\mathsf{A}}\ (0,-2/3)$ é um minimizante local de f.
- $\boxed{\mathsf{B}}\ (0,-2/3)$ é um ponto de sela de f.
- $\boxed{\mathsf{C}}$ (0,2/3) é um minimizante local de f.
- $\boxed{\mathsf{D}}$ (0,0) é um minimizante local de f.
- $oxed{\mathsf{E}}$ (0,2/3) é um ponto de sela de f.

1.4 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-2, 2) na direção do vetor $\vec{v} = (0, 1)$ é:

- A -3.
- B 4.
- C −1.
- D -4.
- E 3.

1.5 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x-y)}$. Então, o domínio da função é:

- $\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- $\overline{|\mathsf{B}|} \ D_f = \{(x,y) \in \mathsf{IR}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- $C D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- $\overline{|D|}$ $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- $\overline{|E|}$ $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

1.6 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a: $\begin{bmatrix} A & -\frac{\partial g}{\partial y} \sec(xg) - \left(x\frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg). \\ B & \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \sec(xg) + \left(x\frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \sec(xg). \\ C & \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \cos(xg) - \left(x\frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \sec(xg). \end{bmatrix}$

 $\boxed{\mathsf{E}} - \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$

 $\boxed{\mathsf{D}} - \frac{\partial g}{\partial v} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$

1.7 O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição x+y=1 é:

 $\boxed{\mathsf{A}}$ (-1,2) associado a $\lambda=2$.

 $\boxed{\mathsf{B}}$ (2, -1) associado a $\lambda = -1$.

 $\boxed{\mathsf{C}}\ (1/2,1/2)$ associado a $\lambda=1$.

 \square (1/2, 1/2) associado a $\lambda = 2$.

[E] (1/2, 1/2) associado a $\lambda = -2$.

1.8 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:

A $f(x,y) = \sqrt{-x^2 - y^2 + 2}$

 $f(x,y) = -\sqrt{-x^2 - y^2 + 2}$.

 $C f(x,y) = \sqrt{-x^2 - y^2 + 16}$

 $D f(x, y) = -\sqrt{-x^2 - y^2 + 4}$

 $[E] f(x,y) = -\sqrt{-x^2 - y^2 + 16}$

I.9 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

 $\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$

 $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$

 $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$

 $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$

I.10 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

 $\stackrel{\frown}{\mathsf{A}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então não existe um plano tangente ao gráfico de f em (a,b).

B Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).

 $\lceil \mathsf{C} \rceil$ Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .

 $\overline{|D|}$ Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

 $\overline{\mathbb{E}}$ Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v23

- **1.1** Considere a função real de duas variáveis reais $f(x,y) = x^3 (x-3)^2 6x y^2$. Então:
 - A (0,0) é um minimizante local de f.
 - [B] (0,0) é um ponto de sela de f.
 - |C| (2/3,0) é um minimizante local de f.
 - \square (-2/3,0) é um minimizante local de f.
 - [E] (0,0) é um maximizante local de f.
- **1.2** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A hipérboles.
 - B elipses e um ponto.
 - C retas.
 - D parabolóides e um ponto.
 - E circunferências e um ponto.
- **1.3** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f não é diferenciável em (a, b), então f não possui derivadas dirigidas em todas as direções no ponto (a, b).
 - B Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - \square Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).
 - D Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então $f \notin C^1(D_f)$.
 - | E | Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
- **I.4** Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial v}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \ \frac{\partial g}{\partial x} \cos(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$
 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \cos(yg).$

 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
 - $\boxed{\mathsf{E}} \frac{\partial g}{\partial x} \operatorname{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg).$
- **1.5** Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} 0}{k}.$
 - $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{0}{k^2} 0}{k}.$
 - $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k^5}-0}{k}.$
 - $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$
 - $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{0}{k^4} 0}{k}.$

- **1.6** Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então: $\boxed{\mathbb{A}} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 0.$

 - $\boxed{\mathbb{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m.$
- 1.7 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (3, 1) na direção do vetor $\vec{v} = (0, 1)$ é:
 - A 1.
 - B 2.
 - C 4.
 - D -2.
 - $\boxed{\mathsf{E}}$ -1.
- **1.8** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x y = 1 é:
 - $\boxed{\mathsf{A}}\ (1/2,-1/2)$ associado a $\lambda=-2$.
 - $\boxed{\mathsf{B}}\ (1/2,-1/2)$ associado a $\lambda=2$.
 - (2,1) associado a $\lambda = -2$.
 - \square (1/2, -1/2) associado a $\lambda = 1$.
 - [E] (2,1) associado a $\lambda = -1$.
- **1.9** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln(x y)}$. Então, o domínio da função é:
 - $\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$

 - $\overline{|D|} D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - $\overline{|\mathsf{E}|} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- 1.10 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:
 - A $f(x,y) = \sqrt{-x^2 y^2 + 4}$.
 - B $f(x,y) = -\sqrt{-x^2 y^2 + 4}$.
 - $|C| f(x,y) = -\sqrt{-x^2 y^2 + 16}.$
 - $D f(x,y) = -\sqrt{-x^2 y^2 + 2}$
 - $|E| f(x,y) = \sqrt{-x^2 y^2 + 16}.$

1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v24

- **I.1** Considere a função real de duas variáveis reais $f(x,y) = x^3 (x-3)^2 6x y^2$. Então:
 - |A| (-2/3,0) é um minimizante local de f.
 - [B] (0,0) é um ponto de sela de f.
 - |C| (0,0) é um minimizante local de f.
 - \square (2/3,0) é um ponto de sela de f.
 - [E] (2/3,0) é um minimizante local de f.
- **1.2** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:
 - A (-1,2) associado a $\lambda=2$.
 - B (1/2, 1/2) associado a $\lambda = -2$.
 - $\lceil \mathsf{C} \rceil$ (1/2, 1/2) associado a $\lambda = 1$.
 - D (2, -1) associado a $\lambda = -1$.
 - [E] (2, -1) associado a $\lambda = 1$.
- **I.3** Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \frac{\partial g}{\partial v} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \operatorname{cos}(xg).$

 - $\boxed{\mathsf{D}} \frac{\partial g}{\partial v} \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$
 - $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$
- **1.4** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reals com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
 - B Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.
 - $\lceil \mathsf{C} \rceil$ Se não existe um plano tangente ao gráfico de f em (a,b), então f não admite derivadas parciais de 1^a ordem em (a,b).
 - $\overline{|D|}$ Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
 - $oxed{\mathsf{E}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).
- **1.5** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (3, -4) na direção do vetor $\vec{v} = (1, 0)$ é:
 - A 2.
 - B -2.
 - C 1.
 - D -1.
 - |E| 3.

1.6 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

 $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$

 $\boxed{\mathsf{B}} \lim_{k \to 0} \frac{\frac{k^2}{k} - 0}{k}.$

 $\boxed{\mathsf{C}} \lim_{k \to 0} \frac{\frac{k^2}{k^4} - 1}{k}.$

 $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{0}{k^4} - 0}{k}.$

1.7 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

A circunferências e um ponto.

B hipérboles.

C parábolas e um ponto.

D retas.

E parabolóides e um ponto.

1.8 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

 $\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$

 $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2.$

 $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$

 $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$

 $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$

1.9 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:

A $f(x,y) = -\sqrt{-x^2 - y^2 + 16}$

B $f(x,y) = \sqrt{-x^2 - y^2 + 16}$

 $f(x,y) = -\sqrt{-x^2 - y^2 + 4}$

 $D f(x, y) = -\sqrt{-x^2 - y^2 + 2}$

E $f(x,y) = \sqrt{-x^2 - y^2 + 2}$.

I.10 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln{(y - x)}}$. Então, o domínio da função é:

A $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$

B $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v25

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial v \partial x}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \ \tfrac{\partial g}{\partial v} \cos(xg) + \left(x \tfrac{\partial g}{\partial x} + g\right) x \tfrac{\partial g}{\partial v} \operatorname{sen}(xg).$
- $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial v} + x \frac{\partial^2 g}{\partial v \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial v} \cos(xg).$
- $\boxed{\mathsf{D}} \ \frac{\partial g}{\partial y} \cos(xg) \left(x \frac{\partial g}{\partial y} + g\right) x \frac{\partial g}{\partial y} \sin(xg).$
- $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

I.2 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$
- $\boxed{\mathsf{B}} \lim_{h \to 0} \frac{\frac{h^3}{h^2} 1}{h}.$
- $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{2h}-0}{h}.$

1.3 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x + y)}$. Então, o domínio da função é:

- B $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

1.4 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- A Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
- $\overline{\mathbb{B}}$ Se f é diferenciável em (a,b), então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.
- $\lceil \mathsf{C} \rceil$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).
- \square Se não existe um plano tangente ao gráfico de f no ponto (a,b), então f não é diferenciável em (a,b).
- $oxed{\mathsf{E}}$ Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .

1.5 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, 1) na direção do vetor $\vec{v} = (0, 1)$ é:

- A -4.
- B 2.
- C 1.
- D -1.
- E -2.

1.6	O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição $x-y=-1$ é:
Α	$\left[(-1/2,1/2) ight]$ associado a $\lambda=-1$.

$$\boxed{\mathsf{B}}$$
 (1,2) associado a $\lambda=2$.

$$\overline{|C|}$$
 (1,2) associado a $\lambda = -1$.

$$\boxed{\mathsf{D}}$$
 $(-1/2,1/2)$ associado a $\lambda=-2$.

$$[E]$$
 $(-1/2, 1/2)$ associado a $\lambda = 2$.

1.7 Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

$$[A] \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$$

$$\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$$

$$\boxed{\mathbb{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$$

$$\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$$

$$\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$$

1.8 Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 - x^3 + 6x + y^2$. Então:

- $\boxed{\mathsf{A}}$ (0,0) é um maximizante local de f.
- $\boxed{\mathsf{B}}$ (2/3,0) é um minimizante local de f.
- $\boxed{\mathsf{C}}$ (0,0) é um minimizante local de f.
- $\boxed{\mathsf{D}}$ (-2/3,0) é um minimizante local de f.
- [E] (-2/3,0) é um maximizante local de f.

I.9 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A hipérboles.
- B retas.
- C circunferências e um ponto.
- D elipsóides e um ponto.
- E elipses e um ponto.

 $\textbf{I.10} \quad \text{A função cujo} \quad \underbrace{\text{gráfico representa a metade inferior da esfera de centro } (0,0,0) \text{ e raio 4 \'e}:}$

A
$$f(x,y) = -\sqrt{-x^2 - y^2 + 4}$$

B
$$f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$
.

$$f(x,y) = -\sqrt{-x^2 - y^2 + 16}$$

D
$$f(x, y) = \sqrt{-x^2 - y^2 + 4}$$

E
$$f(x,y) = \sqrt{-x^2 - y^2 + 2}$$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v26

- **1.1** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (3, -4) na direção do vetor $\vec{v} = (1, 0)$ é:
 - |A| -4
 - B 3.
 - C -2.
 - D 1.
 - E 1.
- **1.2** Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \ \frac{\partial g}{\partial \mathsf{x}} \cos(\mathsf{y} g) + \left(\mathsf{y} \frac{\partial g}{\partial \mathsf{y}} + g\right) \mathsf{y} \frac{\partial g}{\partial \mathsf{x}} \operatorname{sen}(\mathsf{y} g).$
 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) + \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$

 - $\boxed{ \mathbb{D} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg). }$
 - $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{sen}(yg) + \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \cos(yg).$
- **1.3** Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 x^3 + 6x + y^2$. Então:
 - A (0,0) é um ponto de sela de f.
 - |B| (2/3,0) é um minimizante local de f.
 - |C| (2/3,0) é um maximizante local de f.
 - |D| (2/3,0) é um ponto de sela de f.
 - |E| (0,0) é um maximizante local de f.
- **1.4** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A circunferências e um ponto.
 - B elipsóides e um ponto.
 - C elipses e um ponto.
 - D parabolóides e um ponto.
 - |E| parábolas e um ponto.
- **1.5** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{h \to 0} \frac{\frac{0}{h^5} 0}{h}.$
 - $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-1}{h}.$
 - $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$

 - $\boxed{\mathsf{E}} \lim_{h \to 0} \frac{\frac{h^3}{h^4} 0}{h}.$

1.6 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das
proposições é verdadeira.
A Se f possui derivadas dirigidas em todas as direções no ponto (a,b) , então f é diferenciável em (a,b) .
B Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b) .
C Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
D Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então $f \notin C^1(D_f)$.
$oxed{E}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então f não é contínua em (a,b) .

```
1.7 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:
  A f(x, y) = -\sqrt{-x^2 - y^2 + 4}
```

B
$$f(x, y) = -\sqrt{-x^2 - y^2 + 2}$$

B
$$f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$

C $f(x,y) = \sqrt{-x^2 - y^2 + 16}$

$$f(x,y) = \sqrt{-x^2 - y^2 + 2}$$

1.8 Considere a função real de duas variáveis reais
$$f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x - y)}$$
. Então, o domínio da função é:

$$\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$$

B
$$D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$$

C
$$D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$$

$$\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathsf{IR}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$$

1.9 O ponto crítico da função real de duas variáveis reals
$$f(x,y) = x^2 + y^2$$
 com restrição $x + y = 1$ é:

$$|A|$$
 $(1/2, 1/2)$ associado a $\lambda = 1$.

$$[B]$$
 (2, -1) associado a $\lambda = -1$.

$$\lceil C \rceil$$
 (1/2, 1/2) associado a $\lambda = 2$.

$$\lceil \mathsf{D} \rceil$$
 $(-1,2)$ associado a $\lambda=2$.

$$|\mathsf{E}|$$
 $(1/2,1/2)$ associado a $\lambda=-2$.

I.10 Considere a função
$$f(x,y) = \frac{x^2}{x^4 + y}$$
 com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

$$\boxed{\mathbb{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$$

$$\boxed{ \mathbb{B}} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m}.$$

$$\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$$

$$\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$$

$$\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 1.$$

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v27

- **I.1** Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $[A] \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$

 - $\begin{bmatrix} \exists \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
- **I.2** Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} 0}{k}.$
 - $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{0}{k^4} 0}{k}.$
 - $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} 0}{k}.$
- **1.3** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x+y)}$. Então, o domínio da função é:
 - $\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - $\overline{|C|}$ $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - $\overline{\square}$ $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- **1.4** Considere a função real de duas variáveis reais $f(x,y) = x^3 (x-3)^2 6x y^2$. Então:
 - $\boxed{\mathsf{A}}$ (0,0) é um minimizante local de f.
 - $\boxed{\mathsf{B}}$ (2/3,0) é um maximizante local de f.
 - $\overline{\mathbb{C}}$ (0,0) é um ponto de sela de f.
 - $\overline{|D|}$ (-2/3,0) é um minimizante local de f.
 - [E] (0,0) é um maximizante local de f.

$oxed{B}$ $(1/2,1/2)$ associado a $\lambda=1.$
\fbox{C} $(2,-1)$ associado a $\lambda=1.$
\boxed{D} $(2,-1)$ associado a $\lambda=-1$.
$\boxed{E}\ (1/2,1/2)$ associado a $\lambda=2$.
1.6 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira. A Se f é diferenciável em (a,b) , então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$. B Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então $f \notin C^0(D_f)$. C Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$. D Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então f não é contínua em (a,b) .
$oxed{E}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então não existe um plano tangente ao gráfico de f em (a,b) .
1.7 As curvas de nível da função $f(x, y) = x^2 + y^2$ são: A elipses e um ponto. B parabolóides e um ponto. C retas. D elipsóides e um ponto. E circunferências e um ponto.
1.8 A derivada dirigida da função real de duas variáveis reais $f(x,y)=x-y^2$ em $(3,1)$ na direção do vetor $\vec{v}=(0,1)$ é: A 3. B 1. C -1. D -2. E 4.
1.9 Sejam $f(x,y) = \text{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
$ \begin{array}{l} \boxed{A} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{cos}(xg). \\ \boxed{B} \frac{\partial g}{\partial y} \operatorname{cos}(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg). \\ \boxed{C} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{cos}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg). \\ \boxed{D} \frac{\partial g}{\partial y} \operatorname{cos}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg). \\ \boxed{E} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{cos}(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg). \end{array} $
1.10 A função cujo gráfico representa a metade superior da esfera de centro $(0,0,0)$ e raio 2 é: A $f(x,y) = -\sqrt{-x^2 - y^2 + 4}$. B $f(x,y) = \sqrt{-x^2 - y^2 + 16}$. C $f(x,y) = \sqrt{-x^2 - y^2 + 2}$. D $f(x,y) = \sqrt{-x^2 - y^2 + 4}$.

1.5 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:

 $\boxed{\mathsf{A}}\ (-1,2)$ associado a $\lambda=2$.

E $f(x,y) = -\sqrt{-x^2 - y^2 + 2}$.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v28

- **I.1** Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
 - $\boxed{ \mathbb{B}} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m^2}.$

 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
- **1.2** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é:
 - |A| (-1/2, -1/2) associado a $\lambda = -1$.
 - B (-1/2, -1/2) associado a $\lambda = 2$.
 - |C| (1, -2) associado a $\lambda = 1$.
 - |D| (-2,1) associado a $\lambda = 1$.
 - |E| (-1/2, -1/2) associado a $\lambda = -2$.
- **1.3** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-2, 1) na direção do vetor $\vec{v} = (0, 1)$ é:
- A 1.
- B 2.
- C -2.
- D -4.
- E 3.
- **I.4** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 - $\boxed{\mathsf{D}} \lim_{h \to 0} \frac{\frac{h^3}{h^4} 0}{h}.$
- **1.5** Considere a função real de duas variáveis reais $f(x, y) = -x^2 + (y + 2)^2 + y^3 4y$. Então:
 - |A| (0, -2/3) é um maximizante local de f.
 - $|\mathsf{B}|$ (0,2/3) é um ponto de sela de f.
 - |C| (0,0) é um maximizante local de f.
 - (0,2/3) é um maximizante local de f.
 - |E| (0,2/3) é um minimizante local de f.

1.6 Sejam $f(x,y)=\cos(yg)$ e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

 $\boxed{\mathsf{A}} - \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{sen}(yg) - \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$

 $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) - \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$

I.7 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(y - x)}}$. Então, o domínio da função é:

 $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$

 $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$

 \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 < 2) \land (y \neq -x + 1)\}.$

 $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$

1.8 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

A circunferências e um ponto.

B elipsóides e um ponto.

C elipses e um ponto.

D parabolóides e um ponto.

E parábolas e um ponto.

1.9 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

|A| Se f é diferenciável em (a,b), então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.

 $\boxed{\mathsf{B}}$ Se não existe um plano tangente ao gráfico de f em (a,b), então f não admite derivadas parciais de 1^a ordem em (a,b).

 \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

 \square Se não existe um plano tangente ao gráfico de f no ponto (a, b), então f não é diferenciável em (a, b).

 \square Se f é diferenciável em D_f , então $f \in C^1(D_f)$.

1.10 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:

A $f(x,y) = \sqrt{-x^2 - y^2 + 4}$

B $f(x,y) = -\sqrt{-x^2 - y^2 + 2}$.

 $|C| f(x, y) = \sqrt{-x^2 - y^2 + 16}$

 $D f(x, y) = -\sqrt{-x^2 - y^2 + 4}$

 $|E| f(x, y) = -\sqrt{-x^2 - y^2 + 16}$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v29

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

$$\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$$

$$\boxed{\mathbb{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$$

$$\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$$

$$\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$$

1.2 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:

A
$$f(x,y) = -\sqrt{-x^2 - y^2 + 16}$$
.

B
$$f(x,y) = \sqrt{-x^2 - y^2 + 4}$$

C
$$f(x,y) = -\sqrt{-x^2 - y^2 + 4}$$

$$|E| f(x,y) = \sqrt{-x^2 - y^2 + 2}.$$

I.3 Sejam $f(x,y) = \operatorname{sen}(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{cos}(yg) + \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

$$\boxed{\mathsf{D}} \ \frac{\partial g}{\partial x} \cos(yg) + \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \sin(yg).$$

$$\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{sen}(yg) + \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$$

1.4 O ponto crítico da função real de duas variáveis reals $f(x, y) = x^2 + y^2$ com restrição x - y = 1 é:

- |A| (2,1) associado a $\lambda = -2$.
- $|\mathsf{B}|$ (2,1) associado a $\lambda = -1$.
- |C| (1/2, -1/2) associado a $\lambda = 1$.
- \square (1/2, -1/2) associado a $\lambda = 2$.
- [E] (1/2, -1/2) associado a $\lambda = -2$.

1.5 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x - y^2$ em (-1, -4) na direção do vetor $\vec{v} = (1, 0)$ é:

- A 3.
- B 1.
- C -2.
- D 4.
- E 2.

1.6 Considere a função real de duas variáveis reais $f(x, y) = x^2 + (y - 2)^2 - y^3 + 4y$. Ent.	ão:
$oxed{A}$ (0,0) é um maximizante local de f .	
$\boxed{B}\ (0,-2/3)$ é um ponto de sela de f .	

 $\overline{\mathbb{C}}$ (0,0) é um ponto de sela de f.

 $\overline{\square}$ (0,2/3) é um minimizante local de f.

[E] (0,2/3) é um ponto de sela de f.

1.7 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln{(x-y)}}$. Então, o domínio da função é:

 $\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$

 $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$

C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$

 \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

1.8 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

 $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{0}{k^4} - 0}{k}.$

 $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k} - 0}{k}.$

 $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} - 0}{k}.$

 $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$

 $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$

I.9 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

A parabolóides e um ponto.

B elipses e um ponto.

C hipérboles.

D circunferências e um ponto.

E elipsóides e um ponto.

I.10 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

 $oxed{A}$ Se f é diferenciável em D_f , então $f \in C^1(D_f)$.

B Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .

 \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

 \square Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.

[E] Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é diferenciável em (a, b).

Fim

Δnál	lise	Mate	mática	FF

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v30

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

1.1 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x - y^2$ em (3, 1) na direção do vetor $\vec{v} = (0, 1)$ é:

- A -2.
- B -1.
- C 1.
- D 3.
- E −3.

1.2 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(y - x)}$. Então, o domínio da função é:

- $C D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- $\boxed{\mathsf{E}} \ \ D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

1.3 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x - y = -1 é:

- |A| (1,2) associado a $\lambda = 1$.
- [B] (-1/2, 1/2) associado a $\lambda = -2$.
- |C| (1,2) associado a $\lambda = -1$.
- D (1,2) associado a $\lambda = 2$.
- |E| (-1/2, 1/2) associado a $\lambda = -1$.

1.4 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- A Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
- B Se f possui derivadas dirigidas em todas as direções no ponto (a, b), então f é diferenciável em (a, b).
- |C| Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).
- \square Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.
- $oxed{\mathsf{E}}$ Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

1.5 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A elipsóides e um ponto.
- B circunferências e um ponto.
- C parabolóides e um ponto.
- D hipérboles.
- E elipses e um ponto.

1.6 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$$

$$\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k^4} - 0}{k}.$$

$$\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k}-0}{k}.$$

$$\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$$

1.7 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:

A
$$f(x,y) = -\sqrt{-x^2 - y^2 + 16}$$
.

B
$$f(x,y) = \sqrt{-x^2 - y^2 + 2}$$

$$|C| f(x,y) = -\sqrt{-x^2 - y^2 + 4}$$

D
$$f(x,y) = \sqrt{-x^2 - y^2 + 4}$$

$$|E| f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$

I.8 Sejam $f(x,y) = \operatorname{sen}(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) + \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$$

$$\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{sen}(yg) + \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$$

$$\boxed{\mathsf{D}} \ \frac{\partial g}{\partial x} \cos(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \sin(yg).$$

$$\boxed{\mathsf{E}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{cos}(yg) - \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

1.9 Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

$$\left[A \right] \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$$

$$\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$$

$$\boxed{C} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$$

$$\square \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$$

$$\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m.$$

I.10 Considere a função real de duas variáveis reais $f(x,y) = x^3 + (x-3)^2 + 6x - y^2$. Então:

- [A] (2/3,0) é um minimizante local de f.
- $\boxed{\mathsf{B}}$ (0,0) é um minimizante local de f.
- $\boxed{\mathsf{C}}\ (-2/3,0)$ é um maximizante local de f.
- \square (0,0) é um maximizante local de f.
- $\boxed{\mathsf{E}}\ (-2/3,0)$ é um ponto de sela de f.

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v31

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

l.1 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- $\boxed{\mathsf{A}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).
- B Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.
- C Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .
- $\boxed{\mathsf{D}}$ Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
- [E] Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).
- **I.2** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \begin{array}{c} \frac{\partial g}{\partial v} \cos(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \sin(xg). \end{array}$

 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \cos(xg).$

 - $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- **1.3** Considere a função real de duas variáveis reais $f(x,y) = -x^2 (y-2)^2 + y^3 4y$. Então:
 - |A| (0, -2/3) é um maximizante local de f.
 - $\boxed{\mathsf{B}}$ (0,2/3) é um maximizante local de f.
 - |C| (0,0) é um ponto de sela de f.
 - $\boxed{\mathsf{D}}$ (0, -2/3) é um ponto de sela de f.
 - [E] (0,0) é um maximizante local de f.
- 1.4 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:
 - $|A| f(x, y) = \sqrt{-x^2 y^2 + 4}.$
 - B $f(x,y) = -\sqrt{-x^2 y^2 + 2}$
 - $C f(x, y) = \sqrt{-x^2 y^2 + 16}$
 - D $f(x, y) = -\sqrt{-x^2 y^2 + 16}$.
 - E $f(x,y) = \sqrt{-x^2 y^2 + 2}$.
- **1.5** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parábolas e um ponto.
 - B circunferências e um ponto.
 - C elipsóides e um ponto.
 - D parabolóides e um ponto.
 - | E | hipérboles.

1.6 Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então: $\lim_{(x,y)\to(0,0)} f(x,y) = 1.$ $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$ $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2.$ $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$ $\begin{bmatrix} \mathsf{E} & \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$ 1.7 O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição x+y=-1 é: $\boxed{\mathsf{A}}\ (1,-2)$ associado a $\lambda=1$. B (-2,1) associado a $\lambda = -1$. C (-1/2, -1/2) associado a $\lambda = -1$. \square (-1/2, -1/2) associado a $\lambda = -2$. |E| (-1/2, -1/2) associado a $\lambda = 2$. **1.8** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, -2) na direção do vetor $\vec{v} = (1, 0)$ é: |A| -3. B 1. C 2. D 4. E 3. **1.9** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x-y)}$. Então, o domínio da função é: D $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$ $oxed{\mathsf{E}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$ **I.10** Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão: $\boxed{\mathsf{A}} \lim_{k \to 0} \frac{\frac{k^2}{k^5} - 0}{k}.$ $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$ $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k} - 0}{k}.$ $\boxed{\mathsf{E}} \lim_{k \to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$

Fim

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v32

- **1.1** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x y = 1 é:
 - A (2,1) associado a $\lambda = -1$.
 - [B] (1/2, -1/2) associado a $\lambda = -2$.
 - C (2,1) associado a $\lambda = -2$.
 - D (1/2, -1/2) associado a $\lambda = 1$.
 - [E] (1/2, -1/2) associado a $\lambda = 2$.
- **1.2** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).
 - B Se $\frac{\partial^2 f}{\partial x \partial y}(a, b) \neq \frac{\partial^2 f}{\partial y \partial x}(a, b)$, então não existe um plano tangente ao gráfico de f em (a, b).
 - C Se f possui derivadas dirigidas em todas as direções no ponto (a, b), então f é diferenciável em (a, b).
 - D Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então não existe um plano tangente ao gráfico de f em (a, b).
 - $\mid E \mid$ Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
- **1.3** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipses e um ponto.
 - B retas.
 - C elipsóides e um ponto.
 - D parábolas e um ponto.
 - | E | circunferências e um ponto.
- 1.4 Considere a função real de duas variáveis reais $f(x,y) = x^3 + (x-3)^2 + 6x y^2$. Então:
 - [A] (0,0) é um maximizante local de f.
 - [B] (2/3,0) é um minimizante local de f.
 - C (2/3,0) é um maximizante local de f.
 - \square (0,0) é um minimizante local de f.
 - |E|(0,0) é um ponto de sela de f.
- **1.5** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln{(y x)}}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $|C| D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

 - $E \mid D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$

1.6 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão: $\boxed{\mathsf{A}} \lim_{k \to 0} \frac{\frac{k^2}{k^4} - 1}{k}.$ $\lim_{k \to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$ $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{\mathsf{0}}{k^4} - \mathsf{0}}{k}.$ $\boxed{\mathsf{E}} \lim_{k \to 0} \frac{\frac{0}{k^2} - 0}{k}.$ 1.7 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é: $|A| f(x, y) = -\sqrt{-x^2 - y^2 + 16}$ $|B| f(x, y) = -\sqrt{-x^2 - y^2 + 4}$ $|C| f(x,y) = -\sqrt{-x^2 - y^2 + 2}$ $D f(x, y) = \sqrt{-x^2 - y^2 + 2}$ $|E| f(x, y) = \sqrt{-x^2 - y^2 + 4}.$ **1.8** Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a: $\boxed{\mathsf{B}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) - \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \, \mathsf{sen}(yg).$ $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) + \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$ $\begin{bmatrix} \mathsf{E} \end{bmatrix} \frac{\partial g}{\partial x} \cos(yg) - \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg).$ **1.9** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-3, -1) na direção do vetor $\vec{v} = (0, 1)$ é: A 1. B -2. C 4. $|\mathsf{D}| - 1$. | E | 2. **I.10** Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então: $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$ $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$ $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$ $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$ $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v33

- **I.1** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A hipérboles.
 - B circunferências e um ponto.
 - C elipsóides e um ponto.
 - D parábolas e um ponto.
 - E elipses e um ponto.
- **1.2** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{h \to 0} \frac{\frac{0}{h^4} 0}{h}.$
 - $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{2h}-0}{h}.$
 - $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$

 - $\boxed{\mathsf{E}} \lim_{h \to 0} \frac{\frac{h^3}{h^2} 1}{h}.$
- **1.3** Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
- **1.4** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln{(y x)}}$. Então, o domínio da função é:
 - $\boxed{A} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
 - B $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$

 - $\overline{|E|} D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- **1.5** Considere a função real de duas variáveis reais $f(x, y) = x^2 + (y 2)^2 y^3 + 4y$. Então:
 - |A| (0, -2/3) é um ponto de sela de f.
 - $\boxed{\mathsf{B}}\ (0,-2/3)$ é um maximizante local de f.
 - $\boxed{\mathsf{C}}$ (0,0) é um maximizante local de f.
 - $\boxed{\mathsf{D}}$ (0,2/3) é um ponto de sela de f.
 - [E] (0,0) é um ponto de sela de f.

1.6 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é: $|A| f(x, y) = \sqrt{-x^2 - y^2 + 4}$ B $f(x, y) = -\sqrt{-x^2 - y^2 + 2}$ $C f(x, y) = -\sqrt{-x^2 - y^2 + 4}$ D $f(x, y) = \sqrt{-x^2 - y^2 + 16}$. $|E| f(x,y) = \sqrt{-x^2 - y^2 + 2}$ **1.7** Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a: $\boxed{\mathsf{B}} \frac{\partial g}{\partial x} \cos(yg) + \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \sin(yg).$ $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) + \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$ **1.8** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (2, -1) na direção do vetor $\vec{v} = (0, 1)$ é: |A| 1. B -2. C -1. D 4. |E| 2. 1.9 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira. A Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b). B Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$. C Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b). D Se f possui derivadas dirigidas em todas as direções no ponto (a, b), então f é diferenciável em (a, b). $|\mathsf{E}|$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então não existe um plano tangente ao gráfico de f em (a, b). **1.10** O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x + y = 1 é: |A| (-1,2) associado a $\lambda=2$.

B (2,-1) associado a $\lambda=-1$. C (1/2,1/2) associado a $\lambda=2$. D (1/2,1/2) associado a $\lambda=1$. E (1/2,1/2) associado a $\lambda=-2$.

۸ "	ί	ico	Ν /	~ t		ć٠	ica	CC
Δn:	aı	ise	IVI	аι	em	ΑТ	ıca	гг

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v34

- **I.1** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-3, -1) na direção do vetor $\vec{v} = (0, 1)$ é:
 - A 4.
 - B 3.
 - C 1.
 - D -2.
 - E 2.
- **1.2** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parabolóides e um ponto.
 - B elipsóides e um ponto.
 - C elipses e um ponto.
 - D circunferências e um ponto.
 - E parábolas e um ponto.
- **1.3** Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$

 - $\boxed{ \boxed{ }} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg).$
- **I.4** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - |A| Se f não é diferenciável em (a,b), então f não possui derivadas dirigidas em todas as direções no ponto (a,b).
 - B Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - C Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.
 - D Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
 - $\boxed{\mathsf{E}}$ Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).
- **1.5** Considere a função real de duas variáveis reais $f(x, y) = -x^2 + (y + 2)^2 + y^3 4y$. Então:
 - |A| (0, -2/3) é um minimizante local de f.
 - B (0, -2/3) é um ponto de sela de f.
 - |C| (0,0) é um maximizante local de f.
 - $|\mathsf{D}|$ (0,0) é um minimizante local de f.
 - [E] (0,0) é um ponto de sela de f.
- 1.6 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:
 - $|A| f(x, y) = \sqrt{-x^2 y^2 + 16}.$
 - B $f(x, y) = -\sqrt{-x^2 y^2 + 4}$.
 - $C f(x, y) = -\sqrt{-x^2 y^2 + 16}$
 - $D f(x, y) = \sqrt{-x^2 y^2 + 2}$
 - $E f(x, y) = \sqrt{-x^2 y^2 + 4}$

1.7 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} 0}{k}.$
- $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k} 0}{k}.$

1.8 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

- $\left[\underline{\mathsf{A}} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in \mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
- $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
- $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m.$
- $\begin{bmatrix}
 \mathsf{E} \\ \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$

I.9 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2-2y^2+4}}{\ln{(y-x)}}$. Então, o domínio da função é:

- $\boxed{\mathsf{B}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- $C D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- $\overline{|D|} D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- $\overline{|E|}$ $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$

1.10 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é:

- $\boxed{\mathsf{A}}\ (-1/2,-1/2)$ associado a $\lambda=2$.
- $\boxed{\mathsf{B}} \ (-2,1) \ \mathsf{associado} \ \mathsf{a} \ \lambda = 1.$
- $\left[\mathsf{C} \right] \left(-1/2, -1/2 \right)$ associado a $\lambda = -1$.
- $\overline{|D|}$ (-1/2, -1/2) associado a $\lambda = -2$.
- (-2,1) associado a $\lambda=-1.$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v35

- **I.1** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parabolóides e um ponto.
 - B retas.
 - C circunferências e um ponto.
 - D elipsóides e um ponto.
 - E parábolas e um ponto.
- **I.2** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 - $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$
 - $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{2h}-0}{h}.$
- **1.3** Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \frac{\partial g}{\partial y} \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$
 - $\boxed{\mathsf{B}} \frac{\partial g}{\partial v} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$

 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$
- **1.4** Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
 - $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
 - $\begin{bmatrix} \exists \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$

1.5 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln{(y-x)}}$. Então, o domínio da função é: A $D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}$. B $D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}$. C $D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}$. D $D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}$. E $D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}$. 1.6 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição $x + y = 1$ é: A $(1/2,1/2)$ associado a $\lambda = 2$.
$oxed{B}$ $(1/2,1/2)$ associado a $\lambda=-2$. $oxed{C}$ $(1/2,1/2)$ associado a $\lambda=1$. $oxed{D}$ $(2,-1)$ associado a $\lambda=1$. $oxed{E}$ $(2,-1)$ associado a $\lambda=-1$.
1.7 Considere a função real de duas variáveis reais $f(x,y) = x^3 - (x-3)^2 - 6x - y^2$. Então: A $(-2/3,0)$ é um maximizante local de f . B $(2/3,0)$ é um maximizante local de f . C $(-2/3,0)$ é um minimizante local de f . D $(0,0)$ é um maximizante local de f . E $(2/3,0)$ é um minimizante local de f .
1.8 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira. A Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então $f\notin C^1(D_f)$. B Se f possui derivadas dirigidas em todas as direções no ponto (a,b) , então f é diferenciável em (a,b) . C Se não existe um plano tangente ao gráfico de f em (a,b) , então f não admite derivadas parciais de f ordem em f 0. D Se não existe um plano tangente ao gráfico de f 1 no ponto f 2, f 3, então f 4 f 5. E Se f 6 não possui derivadas dirigidas em todas as direções no ponto f 4, f 5, então f 6 não é contínua em f 6, f 7.
I.9 A derivada dirigida da função real de duas variáveis reais $f(x,y)=x+y^2$ em $(-2,2)$ na direção do vetor $\vec{v}=(0,1)$ é: A 4. B 1. C -1. D -4. E -2.
I.10 A função cujo gráfico representa a metade inferior da esfera de centro $(0,0,0)$ e raio 2 é:

1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v36

- **I.1** Considere a função real de duas variáveis reais $f(x,y) = x^3 (x-3)^2 6x y^2$. Então:
 - A (2/3,0) é um ponto de sela de f.
 - [B] (-2/3,0) é um ponto de sela de f.
 - |C| (-2/3,0) é um maximizante local de f.
 - |D| (0,0) é um ponto de sela de f.
 - [E] (0,0) é um minimizante local de f.
- 1.2 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln(x + y)}$. Então, o domínio da função é:
 - A $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $E \mid D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- **1.3** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - |A| Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é diferenciável em (a, b).
 - B Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .
 - C Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
 - \square Se não existe um plano tangente ao gráfico de f em (a, b), então f não é contínua em (a, b).
 - $oxed{\mathsf{E}}$ Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
- **1.4** Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $| A | \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 0.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m^2}.$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$

1.5 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão: $\exists \lim_{k \to 0} \frac{\frac{0}{k} - 0}{k}.$ $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$ $\boxed{\mathsf{E}} \lim_{k \to 0} \frac{\frac{k^2}{k} - 0}{\nu}.$ 1.6 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é: A $f(x,y) = -\sqrt{-x^2 - y^2 + 16}$. B $f(x, y) = \sqrt{-x^2 - y^2 + 2}$ $C f(x,y) = -\sqrt{-x^2 - y^2 + 2}$ $D f(x, y) = \sqrt{-x^2 - y^2 + 16}$ $|E| f(x, y) = \sqrt{-x^2 - y^2 + 4}.$ **1.7** Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a: $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$ C $-\frac{\partial g}{\partial y} \operatorname{sen}(xg) - (x\frac{\partial g}{\partial x} + g) x\frac{\partial g}{\partial y} \cos(xg)$. $\boxed{\mathsf{D}} - \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$ $\boxed{\mathsf{E}} - \frac{\partial g}{\partial y} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$ **1.8** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x - y = 1 é: |A| (1/2, -1/2) associado a $\lambda = -2$. $|\mathsf{B}|$ (2, 1) associado a $\lambda = 1$. C (2,1) associado a $\lambda = -2$. D (2,1) associado a $\lambda = -1$. |E| (1/2, -1/2) associado a $\lambda = 1$. **1.9** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-3, -1) na direção do vetor $\vec{v} = (0, 1)$ é: |A|-1. B -2. C 1. D 2. E -3. **1.10** As curvas de nível da função $f(x, y) = x^2 + y^2$ são: A parábolas e um ponto. B circunferências e um ponto. C elipsóides e um ponto. D elipses e um ponto. E hipérboles.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v37

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 A função cujo gráfico representa a metade inferior da esfera de centro (0, 0, 0) e raio 2 é:

- A $f(x,y) = -\sqrt{-x^2 y^2 + 16}$.
- B $f(x,y) = \sqrt{-x^2 y^2 + 4}$
- $C f(x, y) = \sqrt{-x^2 y^2 + 16}$
- D $f(x,y) = -\sqrt{-x^2 y^2 + 4}$
- $[E] f(x, y) = \sqrt{-x^2 y^2 + 2}.$

1.2 Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

- $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C}} f(x,y) = m.$
- $\mathbb{B} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
- $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
- $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
- $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$

1.3 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A elipses e um ponto.
- B circunferências e um ponto.
- C parabolóides e um ponto.
- D parábolas e um ponto.
- | E | retas.

1.4 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(y - x)}}$. Então, o domínio da função é:

- $|A| D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1) \}.$
- $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- D $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- $\overline{|E|} D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$

1.5 Considere a função real de duas variáveis reais $f(x, y) = x^3 - (x - 3)^2 - 6x - y^2$. Então:

- |A| (2/3,0) é um ponto de sela de f.
- |B| (-2/3,0) é um maximizante local de f.
- (2/3,0) é um minimizante local de f.
- \square (-2/3,0) é um minimizante local de f.
- |E| (-2/3,0) é um ponto de sela de f.

I.6 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição $x + y = -1$ é: $A = -1$ (-2,1) associado a $A = -1$.
$\boxed{\mathbb{B}}$ $(-1/2,-1/2)$ associado a $\lambda=-2$.
\boxed{C} (1, -2) associado a $\lambda=1$.
\square $(-1/2, -1/2)$ associado a $\lambda = 2$.

1.7 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-2, 2) na direção do vetor $\vec{v} = (1, 0)$ é:

A 3.

B 1.

C -4.

D -1.

E -2.

1.8 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

 $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{0}{k^4} - 0}{k}.$

 $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$

 $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k}-1}{k}.$

I.9 Sejam $f(x,y)=\cos(xg)$ e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

 $\boxed{\mathsf{A}} - \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$

 $\boxed{\mathsf{B}} - \frac{\partial g}{\partial v} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$

[E] (-1/2, -1/2) associado a $\lambda = -1$.

 $\boxed{ } \boxed{ \boxed{ } \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \sin(xg). }$

 $\boxed{\mathsf{E}} - \tfrac{\partial g}{\partial y} \operatorname{sen}(xg) - \left(x \tfrac{\partial g}{\partial x} + g\right) x \tfrac{\partial g}{\partial y} \operatorname{cos}(xg).$

l.10 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

A Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .

B Se f é diferenciável em D_f , então $f \in C^1(D_f)$.

C Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

 \square Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é diferenciável em (a,b).

 $oxed{\mathsf{E}}$ Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v38

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x-y)}$. Então, o domínio da função é:

- $A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- B $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 > 2) \land (y \neq x + 1)\}.$
- \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- $E \mid D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1) \}.$

1.2 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:

- $|A| f(x,y) = -\sqrt{-x^2 y^2 + 2}$
- $|B| f(x, y) = -\sqrt{-x^2 y^2 + 4}$
- $C f(x,y) = \sqrt{-x^2 y^2 + 16}$
- $D f(x, y) = \sqrt{-x^2 y^2 + 4}$
- $|E| f(x, y) = -\sqrt{-x^2 y^2 + 16}$

1.3 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A parabolóides e um ponto.
- B elipses e um ponto.
- C circunferências e um ponto.
- D| parábolas e um ponto.
- E elipsóides e um ponto.

1.4 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{2h}-0}{h}.$
- $\begin{array}{|c|c|} \hline C & \lim_{h \to 0} \frac{\frac{h^3}{h^2} 0}{h}. \\ \hline D & \lim_{h \to 0} \frac{\frac{0}{h^2} 0}{h}. \end{array}$

1.5 Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

- $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
- $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2.$
- $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
- $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
- $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$

1.6 Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 - x^3 + 6x + y^2$. Então:
[A] (0,0) é um ponto de sela de f .
$\boxed{B}\ (0,0)$ é um minimizante local de f .
C $(-2/3,0)$ é um minimizante local de f .
\square (2/3,0) é um minimizante local de f .
$oxed{E}\ (0,0)$ é um maximizante local de f .
$\partial^2 f$
1.7 Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
$\boxed{A} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
$\boxed{D} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
$\boxed{E} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \cos(xg).$
1.8 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das
proposições é verdadeira.
A Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
B Se não existe um plano tangente ao gráfico de f em (a,b) , então f não admite derivadas parciais de 1ª ordem em (a,b) .
$oxed{C}$ Se $f otin C^1(D_f)$, então f não é diferenciável em D_f .
\square Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então f não é diferenciável em (a,b) .
$oxed{\mathbb{E}}$ Se $rac{\partial^2 f}{\partial x \partial y}(a,b) eq rac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b) .
1.9 A derivada dirigida da função real de duas variáveis reais $f(x,y) = x - y^2$ em (3,2) na direção do vetor $\vec{v} = (0,1)$ é:
A 3.
B 1.
A 3. B 1. C -4. D -1.
$\boxed{\square}$ -1.
E 4.
I.10 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição $x - y = 1$ é:
$oxed{A}$ $(1/2,-1/2)$ associado a $\lambda=1$.

lacksquare B (2,1) associado a $\lambda=-2$.

 $oxed{\mathbb{D}}$ (2,1) associado a $\lambda=-1$. $oxed{\mathbb{E}}$ (2,1) associado a $\lambda=1$.

Fim.

 $\boxed{\mathsf{C}}$ (1/2, -1/2) associado a $\lambda = -2$.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v39

- **I.1** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln(y x)}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 > 2) \land (y \neq -x + 1)\}.$
 - $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = x^2 + (y-2)^2 y^3 + 4y$. Então:
 - $\boxed{\mathsf{A}}$ (0,2/3) é um minimizante local de f.
 - |B| (0,0) é um ponto de sela de f.
 - (0,0) é um minimizante local de f.
 - $\boxed{\mathsf{D}}$ (0, -2/3) é um minimizante local de f.
 - [E] (0, -2/3) é um ponto de sela de f.
- **1.3** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:
 - |A| (2, -1) associado a $\lambda = 1$.
 - $|\mathsf{B}|$ (-1,2) associado a $\lambda=2$.
 - (2,-1) associado a $\lambda = -1.$
 - $|\mathsf{D}|$ (1/2, 1/2) associado a $\lambda = 2$.
 - $|\mathsf{E}|$ (1/2, 1/2) associado a $\lambda = 1$.
- **1.4** Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
 - $\left[\overline{C} \right] \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$

I.5 S	eja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
A	$\lim_{h\to 0} \frac{\frac{h^3}{h^5} - 0}{h}$.
В	$\lim_{h\to 0} \frac{\frac{h^3}{h^4}-1}{h}$.
C ;	$\lim_{h\to 0} \frac{\frac{h}{h^4} - 0}{h}.$
	$\lim_{h\to 0} \frac{\frac{h^2}{h^2}-0}{h}.$
,	$\lim_{b \to 0} \frac{h}{\frac{h^5}{b^5} - 0}.$
,	
	as curvas de nível da função $f(x,y)=x^2+y^2$ são: parabolóides e um ponto.
=	circunferências e um ponto.
	parábolas e um ponto. Elipses e um ponto.
\equiv	retas.
I.7 S	ejam $f(x,y)=\mathrm{sen}(xg)$ e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y\partial x}(x,y)$ é igual a:
	$\left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
	$\frac{\partial g}{\partial y}\cos(xg) + \left(x\frac{\partial g}{\partial x} + g\right)x\frac{\partial g}{\partial y}\sin(xg).$
С	$\left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$
	$\left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
E	$\frac{\partial g}{\partial y}\cos(xg) - \left(x\frac{\partial g}{\partial x} + g\right)x\frac{\partial g}{\partial y}\sin(xg).$
	função cujo gráfico representa a metade superior da esfera de centro $(0,0,0)$ e raio 4 é: $f(x,y) = \sqrt{-x^2 - y^2 + 16}$.
	$f(x,y) = \sqrt{-x^2 - y^2 + 10}.$
<u>C</u> 1	$f(x,y) = -\sqrt{-x^2 - y^2 + 4}.$
	$f(x,y) = -\sqrt{-x^2 - y^2 + 2}.$ $f(x,y) = -\sqrt{-x^2 - y^2 + 16}.$
	Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das sições é verdadeira.
=	Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .
	Se não existe um plano tangente ao gráfico de f em (a,b) , então f não admite derivadas parciais de 1ª ordem em (a,b) . Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
=	Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então f não é diferenciável em (a,b) .
=	Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então f não é contínua em (a,b) .
	A derivada dirigida da função real de duas variáveis reais $f(x,y)=x+y^2$ em $(3,-2)$ na direção do vetor $\vec{v}=(1,0)$ é:
A - B 1	–4. 1
=	3.
D -	
E 2	2.
Fim.	

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v40

- **I.1** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
 - B Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
 - C Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).
 - \square Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então não existe um plano tangente ao gráfico de f em (a,b).
 - $oxed{\mathsf{E}}$ Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).
- **1.2** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parabolóides e um ponto.
 - B hipérboles.
 - C circunferências e um ponto.
 - D retas.
 - E elipses e um ponto.
- 1.3 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:
 - A $f(x,y) = -\sqrt{-x^2 y^2 + 2}$
 - B $f(x,y) = \sqrt{-x^2 y^2 + 2}$
 - C $f(x,y) = -\sqrt{-x^2 y^2 + 4}$.
 - $D f(x, y) = -\sqrt{-x^2 y^2 + 16}$
 - $|E| f(x,y) = \sqrt{-x^2 y^2 + 4}$
- **1.4** Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $\begin{bmatrix}
 A \\ \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2.$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\left[\underline{\mathsf{E}} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 0.$
- **1.5** Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \frac{\partial g}{\partial y} \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$
 - $\boxed{\mathsf{B}} \frac{\partial g}{\partial y} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial y} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$

 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$

Considere a função real de duas variáveis reais $f(x,y) = x^3 + (x-3)^2 + 6x - y^2$. Então: (0,0) é um maximizante local de f .
(2/3,0) é um minimizante local de f .
(-2/3,0) é um ponto de sela de f .
$\bigcirc (0,0)$ é um ponto de sela de f .
[0,0) é um minimizante local de f .
(0,0) e um minimizante local de 7.
Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2-2y^2+4}}{\ln{(x+y)}}$. Então, o domínio da função é:
$B D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
$ C D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}. $
$D D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição $x+y=-1$ é: $(-1/2,-1/2)$ associado a $\lambda=2$.
$\begin{array}{c} (-1/2, -1/2) \text{ associado a } \lambda = 2. \\ \hline \\ (-2, 1) \text{ associado a } \lambda = 1. \end{array}$
$C = (-1/2, -1/2)$ associado a $\lambda = -1$.
$\begin{array}{c} (-1/2, -1/2) \text{ associado a } \lambda = -1. \\ \hline 0 \\ (1, -2) \text{ associado a } \lambda = 1. \end{array}$
$C = (-2, 1)$ associado a $\lambda = 1$.
$L = (-2, 1)$ association at $\lambda = -1$.
Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
$\underline{\underline{A}} \lim_{h \to 0} \frac{\frac{0}{h^4} - 0}{h}.$
$\mathbb{B} \lim_{h \to 0} \frac{\frac{h^3}{h^2} - 0}{h}.$
$\overline{C} \lim_{h \to 0} \frac{\frac{h^3}{h^4} - 0}{h}.$
A derivada dirigida da função real de duas variáveis reais $f(x,y)=x-y^2$ em $(3,1)$ na direção do vetor $\vec{v}=(0,1)$ é: -2 .
A -2. B 3. C 1. D 4.
O 4.
E -3.

1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v41

- **1.1** Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 x^3 + 6x + y^2$. Então:
 - |A| (-2/3,0) é um maximizante local de f.
 - $\boxed{\mathsf{B}}$ (2/3,0) é um ponto de sela de f.
 - |C| (0,0) é um ponto de sela de f.
 - \square (2/3,0) é um minimizante local de f.
 - [E] (-2/3,0) é um minimizante local de f.
- **1.2** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x y = -1 é:
 - $\boxed{\mathsf{A}}$ (1,2) associado a $\lambda=1$.
 - $\boxed{\mathsf{B}}$ (1,2) associado a $\lambda=2$.
 - C (-1/2, 1/2) associado a $\lambda = 2$.
 - \square (-1/2, 1/2) associado a $\lambda = -2$.
 - [E] (-1/2, 1/2) associado a $\lambda = -1$.
- **I.3** Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \frac{\partial g}{\partial x} \operatorname{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg).$

 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
 - $\boxed{ \mathbb{D} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg). }$
 - $\boxed{\mathsf{E}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{sen}(yg) \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$
- **1.4** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (3, -4) na direção do vetor $\vec{v} = (1, 0)$ é:
 - A 1.
 - B 4.
 - C -3.
 - D 3.
 - E 1.
- **1.5** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A circunferências e um ponto.
 - B parábolas e um ponto.
 - C hipérboles.
 - D elipses e um ponto.
 - E retas.

I.6 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{0}{h^5}-0}{h}.$$

$$\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{0}{h^4} - 0}{h}.$$

$$\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$$

$$\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-1}{h}.$$

1.7 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x+y)}$. Então, o domínio da função é:

$$\boxed{\mathsf{A}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$$

$$\overline{|C|}$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$

$$\square$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

1.8 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

$$\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$$

$$\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$$

$$\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$$

$$\boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$$

$$\left[\underline{\mathsf{E}} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m^2.$$

1.9 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:

A
$$f(x,y) = -\sqrt{-x^2 - y^2 + 16}$$

B
$$f(x,y) = -\sqrt{-x^2 - y^2 + 4}$$

C
$$f(x,y) = \sqrt{-x^2 - y^2 + 4}$$
.

D
$$f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$
.

E
$$f(x,y) = \sqrt{-x^2 - y^2 + 2}$$
.

I.10 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

 $\stackrel{\cdot}{|A|}$ Se não existe um plano tangente ao gráfico de f em (a,b), então f não admite derivadas parciais de 1^a ordem em (a,b).

 $\overline{|B|}$ Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .

 $\lceil \mathsf{C} \rceil$ Se f não é diferenciável em (a,b), então f não possui derivadas dirigidas em todas as direções no ponto (a,b).

 $\overline{\mathbb{D}}$ Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).

E Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v42

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

$$\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m.$$

$$\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$$

$$\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$$

$$\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$$

1.2 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} - 0}{k}.$$

$$\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$$

$$\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$$

$$\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k} - 0}{k}.$$

I.3 Sejam $f(x,y) = \operatorname{sen}(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} \left(\tfrac{\partial g}{\partial x} + y \tfrac{\partial^2 g}{\partial x \partial y} \right) \mathsf{sen}(yg) + \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial x} \mathsf{cos}(yg).$$

1.4 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x - y = 1 é:

- $\boxed{\mathsf{A}}\ (1/2,-1/2)$ associado a $\lambda=-2$.
- $|\mathsf{B}|$ (2, 1) associado a $\lambda = -2$.
- |C| (1/2, -1/2) associado a $\lambda = 1$.
- |D| (1/2, -1/2) associado a $\lambda = 2$.
- |E| (2, 1) associado a $\lambda = 1$.

	A função cujo gráfico representa a metade inferior da esfera de centro $(0,0,0)$ e raio 2 é: $f(x,y) = \sqrt{-x^2 - y^2 + 4}.$ $f(x,y) = -\sqrt{-x^2 - y^2 + 16}.$ $f(x,y) = \sqrt{-x^2 - y^2 + 16}.$ $f(x,y) = \sqrt{-x^2 - y^2 + 2}.$ $f(x,y) = -\sqrt{-x^2 - y^2 + 4}.$ A derivada dirigida da função real de duas variáveis reais $f(x,y) = x + y^2$ em $(3,1)$ na direção do vetor $\vec{v} = (0,1)$ é:
1.U [/	
	3 3. -2.
Ī	2.
Ē	2.= −4.
	(0.210.2.4)
_	Considere a função real de duas variáveis reais $f(x,y)=rac{\sqrt{2x^2+2y^2-4}}{\ln{(x+y)}}$. Então, o domínio da função é:
_	$D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
_	$D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$
	$ D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}. $
=	$D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
L	
1.8 //	Considere a função real de duas variáveis reais $f(x,y) = -x^2 - (y-2)^2 + y^3 - 4y$. Então: $\sqrt{(0,0)}$ é um minimizante local de f .
Ē	
Ī	(0, -2/3) é um maximizante local de f .
E	
	Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reals com domínio D_f . Indique qual das
pro	posições é verdadeira. Se f possui derivadas dirigidas em todas as direções no ponto (a, b), então f é diferenciável em (a, b).
E	
E	
I.10	As curvas de nível da função $f(x,y)=x^2+y^2$ são:
E	hipérboles.
(circunferências e um ponto.
	retas.
E	elipsóides e um ponto.
Fir	n.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v43

- **I.1** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é:
 - |A| (-2,1) associado a $\lambda=1$.
 - B (1, -2) associado a $\lambda = 1$.
 - C (-1/2, -1/2) associado a $\lambda = 2$.
 - |D| (-1/2, -1/2) associado a $\lambda = -1$.
 - |E| (-2,1) associado a $\lambda = -1$.
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln(x y)}$. Então, o domínio da função é:

 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $E \mid D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- **I.3** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 - $\square \lim_{h \to 0} \frac{\frac{h^3}{h^2} 0}{h}.$
- 1.4 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - B Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f \notin C^1(D_f)$.
 - |C| Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).
 - D Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
 - $|\mathsf{E}|$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).
- **1.5** Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 x^3 + 6x + y^2$. Então:
 - |A| (2/3,0) é um minimizante local de f.
 - $|\mathsf{B}|$ (2/3,0) é um ponto de sela de f .
 - |C| (-2/3,0) é um ponto de sela de f.
 - |D| (0,0) é um ponto de sela de f.
 - |E| (-2/3,0) é um minimizante local de f.

- - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
 - $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\boxed{\mathbb{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
- **1.7** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A hipérboles.
 - B elipsóides e um ponto.
 - C circunferências e um ponto.
 - D parabolóides e um ponto.
 - E parábolas e um ponto.
- **1.8** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, -2) na direção do vetor $\vec{v} = (1, 0)$ é:
 - $\begin{bmatrix} A \end{bmatrix}_1$
 - B 1.
 - C -3.
 - D 4.
 - E -4
- 1.9 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:
 - A $f(x,y) = -\sqrt{-x^2 y^2 + 2}$
 - $B f(x,y) = -\sqrt{-x^2 y^2 + 4}.$
 - C $f(x,y) = \sqrt{-x^2 y^2 + 2}$
 - D $f(x, y) = \sqrt{-x^2 y^2 + 4}$
 - E $f(x,y) = -\sqrt{-x^2 y^2 + 16}$.
- **I.10** Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{sen}(yg) \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \cos(yg).$

 - $\boxed{\mathsf{D}} \tfrac{\partial g}{\partial x} \operatorname{sen}(yg) \left(y \tfrac{\partial g}{\partial y} + g\right) y \tfrac{\partial g}{\partial x} \cos(yg).$

 $1^{\circ}\ semestre\ do\ ano\ letivo\ 2019/20\ --\ LEAP+M|EPOL+M|ET|,\ Departamento\ de\ Matemática,\ Universidade\ do\ Minho$

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v44

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$$

$$\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$$

$$\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$$

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$$

1.2 Considere a função real de duas variáveis reais $f(x, y) = -x^2 - (y - 2)^2 + y^3 - 4y$. Então:

- A (0,0) é um ponto de sela de f.
- [B] (0,0) é um maximizante local de f.
- (0, -2/3) é um ponto de sela de f.
- $\boxed{\mathsf{D}}$ (0, -2/3) é um maximizante local de f.
- [E] (0,2/3) é um minimizante local de f.

1.3 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{0}{h^5}-0}{h}.$$

$$\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$$

1.4 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} - \frac{\partial g}{\partial y} \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$$

	As curvas de nível da função $f(x,y)=x^2+y^2$ são:
-	B elipsóides e um ponto.
_	C hipérboles.
E	circunferências e um ponto.
	A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:
	$A f(x,y) = -\sqrt{-x^2 - y^2 + 16}.$
_	$\int_{-\infty}^{\infty} f(x,y) = \sqrt{-x^2 - y^2 + 2}.$
	$f(x,y) = -\sqrt{-x^2 - y^2 + 2}.$
	$\int_{-\infty}^{\infty} f(x,y) = \sqrt{-x^2 - y^2 + 4}.$
L	$f(x,y) = \sqrt{-x^2 - y^2 + 16}.$
I 7	Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln(y - x)}$. Então, o domínio da função é:
	$\overline{A} D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$
_	$ \exists D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}. $
	$D D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
	O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição $x+y=1$ é: \overline{A} $(2,-1)$ associado a $\lambda=-1$.
	$3 (2, -1) \text{ associado a } \lambda = -1.$ $3 (2, -1) \text{ associado a } \lambda = 1.$
_	$D = (1/2, 1/2)$ associado a $\lambda = 1$.
=	$ (1/2, 1/2) \text{ associado a } \lambda = 2. $
	Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das
	posições é verdadeira. A Se não existe um plano tangente ao gráfico de ƒ no ponto (a,b), então ƒ ∉ C ⁰ (D _f).
Ē	
[Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então f não é contínua em (a,b) .
Ī	Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então $f \notin C^1(D_f)$.
Ē	Se não existe um plano tangente ao gráfico de f em (a,b) , então f não admite derivadas parciais de 1^a ordem em (a,b) .
1.10 	
	3 –3.
	3.
=	
Fir	n.

Δná	lise	Ma	tem	ática	FF

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

√45

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

I.1 Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

$$\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$$

$$\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$$

$$\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$$

$$\boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$$

$$\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$$

1.2 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:

- A (1/2, 1/2) associado a $\lambda = -2$.
- [B] (1/2, 1/2) associado a $\lambda = 1$.
- C (-1,2) associado a $\lambda=2$.
- \square (2, -1) associado a $\lambda = 1$.
- [E] (1/2, 1/2) associado a $\lambda = 2$.

1.3 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- A Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
- B Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
- $\lceil \mathsf{C} \rceil$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).
- \square Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
- $\overline{\mathbb{E}}$ Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.

1.4 Considere a função real de duas variáveis reais $f(x, y) = -x^2 - (y - 2)^2 + y^3 - 4y$. Então:

- A (0, -2/3) é um minimizante local de f.
- |B| (0,2/3) é um ponto de sela de f.
- |C| (0, -2/3) é um maximizante local de f.
- D (0,0) é um minimizante local de f.
- $[\mathsf{E}]$ (0,0) é um ponto de sela de f.

1.5 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-3, -1) na direção do vetor $\vec{v} = (0, 1)$ é:

- A 4
- |B| -3.
- C -2.
- D 2.
- E 1.

1.6 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x+y)}$. Então, o domínio da função é:

 $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

 $\boxed{\mathsf{D}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$

 $|E| D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$

1.7 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

A elipses e um ponto.

B circunferências e um ponto.

C elipsóides e um ponto.

D parábolas e um ponto.

E hipérboles.

I.8 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

 $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

 $\boxed{\mathsf{B}} - \frac{\partial g}{\partial v} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$

 $\boxed{\mathsf{C}} - \frac{\partial g}{\partial v} \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$

 $\boxed{ \bigcirc \left(\frac{\partial g}{\partial v} + x \frac{\partial^2 g}{\partial v \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial v} \sin(xg). }$

I.9 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

 $\boxed{\mathsf{A}} \lim_{k \to 0} \frac{\frac{0}{k} - 0}{k}.$

 $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{0}{k^4} - 0}{k}.$

 $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$

 $\mathbb{E}\lim_{k\to 0}\frac{\frac{k^2}{k}-1}{k}$.

1.10 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:

 $A f(x,y) = \sqrt{-x^2 - y^2 + 2}$

B $f(x,y) = -\sqrt{-x^2 - y^2 + 4}$.

 $C f(x, y) = -\sqrt{-x^2 - y^2 + 16}$

 $f(x,y) = \sqrt{-x^2 - y^2 + 16}$

 $f(x,y) = -\sqrt{-x^2 - y^2 + 2}$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v46

- **1.1** O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x + y = -1 é:
 - $\boxed{\mathsf{A}}\ (-1/2, -1/2)$ associado a $\lambda = -2$.
 - $\boxed{\mathsf{B}}\ (-1/2,-1/2)$ associado a $\lambda=-1$.
 - |C| (1, -2) associado a $\lambda = 1$.
 - $\boxed{\mathsf{D}}\ (-1/2, -1/2)$ associado a $\lambda = 2$.
 - [E] (-2,1) associado a $\lambda = 1$.
- **1.2** Considere a função real de duas variáveis reais $f(x, y) = x^3 + (x 3)^2 + 6x y^2$. Então:
 - A (0,0) é um ponto de sela de f.
 - [B] (0,0) é um minimizante local de f.
 - (2/3,0) é um ponto de sela de f.
 - \square (-2/3,0) é um minimizante local de f.
 - [E] (2/3,0) é um minimizante local de f.
- **1.3** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f não é diferenciável em (a, b), então f não possui derivadas dirigidas em todas as direções no ponto (a, b).
 - B Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
 - \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - \square Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f \notin C^1(D_f)$.
 - E Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
- **1.4** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln(x y)}$. Então, o domínio da função é:
 - A $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $| E | D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1) \}.$
- 1.5 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:
 - $|A| f(x,y) = -\sqrt{-x^2 y^2 + 2}.$
 - B $f(x, y) = \sqrt{-x^2 y^2 + 4}$.
 - C $f(x,y) = -\sqrt{-x^2 y^2 + 16}$.
 - $D f(x, y) = -\sqrt{-x^2 y^2 + 4}$
 - $|E| f(x, y) = \sqrt{-x^2 y^2 + 16}.$
- **I.6** Sejam $f(x,y)=\cos(yg)$ e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$

 - $\boxed{ \Box } \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \operatorname{sen}(yg) \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \cos(yg).$
 - $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$

- **1.7** Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então: $\boxed{\mathbb{A}} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m^2}.$
 - $\mathbb{B} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\boxed{C} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
 - $\boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
- **1.8** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-3, -1) na direção do vetor $\vec{v} = (0, 1)$ é:

 - B 1.
 - C 3.
 - D -2.
 - $\boxed{\mathsf{E}}$ -1.
- **I.9** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A circunferências e um ponto.
 - B elipsóides e um ponto.
 - C hipérboles.
 - D parabolóides e um ponto.
 - E parábolas e um ponto.
- **I.10** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se }(x,y) \neq (0,0), \\ 0 & \text{se }(x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{h \to 0} \frac{\frac{0}{h^4} 0}{h}.$
 - $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{0}{h^2}-0}{h}.$
 - $\boxed{\mathsf{C}} \lim_{h \to 0} \frac{\frac{h^3}{h^2} 1}{h}.$
 - $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{2h}-0}{h}.$
 - $\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v47

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} 0}{k}.$
- $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} 0}{k}.$

- $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k}-0}{k}.$

1.2 A derivada dirigida da função real de duas variáveis reais $f(x,y) = x + y^2$ em (3,1) na direção do vetor $\vec{v} = (0,1)$ é:

- A -2.
- В 3.
- C -3.
- D -4.
- E 2.

1.3 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A parábolas e um ponto.
- B elipsóides e um ponto.
- C circunferências e um ponto.
- D parabolóides e um ponto.
- E hipérboles.

1.4 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- $oxed{\mathsf{A}}$ Se não existe um plano tangente ao gráfico de f em (a,b), então f não admite derivadas parciais de 1^a ordem em (a,b).
- $oxed{\mathsf{B}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).
- C Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.
- \square Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
- $oxed{\mathsf{E}}$ Se f é diferenciável em (a,b), então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.

- I.5 Considere a função $f(x,y)=\frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m=\{(t,mt^2):t\in\mathbb{R}\}\cap D_f,\ m\in\mathbb{R}.$ Então: $\boxed{\mathbb{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y)=1.$ $\boxed{\mathbb{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y)=\frac{1}{m^2}.$
 - $\Box \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$ $\Box \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\boxed{D} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 0.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
- **1.6** Considere a função real de duas variáveis reais $f(x,y) = -x^2 (y-2)^2 + y^3 4y$. Então:
 - |A| (0, -2/3) é um maximizante local de f.
 - [B] (0, -2/3) é um ponto de sela de f.
 - (0, -2/3) é um minimizante local de f.
 - $\boxed{\mathsf{D}}$ (0,0) é um ponto de sela de f.
 - [E] (0,2/3) é um ponto de sela de f.
- 1.7 O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição x-y=-1 é:
 - |A| (1,2) associado a $\lambda = 1$.
 - $|\mathsf{B}| \; (-1/2,1/2) \; \mathsf{associado} \; \mathsf{a} \; \lambda = 2.$
 - |C| (-1/2, 1/2) associado a $\lambda = -2$.
 - D (1,2) associado a $\lambda = 2$.
 - [E] (-1/2, 1/2) associado a $\lambda = -1$.
- **1.8** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x-y)}$. Então, o domínio da função é:
 - $\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - $\overline{|\mathsf{E}|} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- 1.9 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:
 - A $f(x,y) = -\sqrt{-x^2 y^2 + 2}$
 - B $f(x,y) = -\sqrt{-x^2 y^2 + 16}$.
 - C $f(x,y) = -\sqrt{-x^2 y^2 + 4}$.
 - $| D | f(x,y) = \sqrt{-x^2 y^2 + 4}$
 - E $f(x,y) = \sqrt{-x^2 y^2 + 16}$.
- **I.10** Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \operatorname{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg).$
 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
 - $\boxed{ \Box} \tfrac{\partial g}{\partial x} \operatorname{sen}(yg) \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial x} \operatorname{cos}(yg).$
 - $\boxed{\mathsf{E}} \ \frac{\partial g}{\partial x} \cos(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \sin(yg).$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v48

- **1.1** O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x y = -1 é:
 - $\boxed{\mathsf{A}}$ (1,2) associado a $\lambda=2$.
 - [B] (-1/2, 1/2) associado a $\lambda = -1$.
 - |C| (-1/2, 1/2) associado a $\lambda = -2$.
 - $\lceil \mathsf{D} \rceil$ (1,2) associado a $\lambda = -1$.
 - [E] (-1/2, 1/2) associado a $\lambda = 2$.
- 1.2 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln(x-y)}$. Então, o domínio da função é:

 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- **1.3** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (2, -1) na direção do vetor $\vec{v} = (0, 1)$ é:
 - |A| 2
 - B 4.
 - C 1.
 - D 2.
 - E 3.
- **1.4** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parabolóides e um ponto.
 - B circunferências e um ponto.
 - C retas.
 - D elipses e um ponto.
 - E hipérboles.
- **1.5** Considere a função real de duas variáveis reais $f(x, y) = -x^2 (y 2)^2 + y^3 4y$. Então:
 - |A| (0,2/3) é um minimizante local de f.
 - $|\mathsf{B}|$ $(\mathsf{0},\mathsf{0})$ é um ponto de sela de f .
 - |C| (0,2/3) é um ponto de sela de f.
 - \square (0, -2/3) é um ponto de sela de f.
 - |E|(0,0) é um minimizante local de f.

Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das

A Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).

B Se f não é diferenciável em (a, b), então f não possui derivadas dirigidas em todas as direções no ponto (a, b).

A $f(x,y) = -\sqrt{-x^2 - y^2 + 4}$ B $f(x,y) = \sqrt{-x^2 - y^2 + 16}$. C $f(x,y) = -\sqrt{-x^2 - y^2 + 2}$. D $f(x,y) = \sqrt{-x^2 - y^2 + 2}$. E $f(x,y) = \sqrt{-x^2 - y^2 + 4}$.

 $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

D Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

 $\boxed{\mathsf{B}} - \frac{\partial g}{\partial v} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$

 $\boxed{\mathsf{E}} - \frac{\partial g}{\partial v} \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$

proposições é verdadeira.

 $\boxed{\mathsf{A}} \lim_{k \to 0} \frac{\frac{0}{k^4} - 0}{k}.$

 $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} - 0}{k}.$

 $\boxed{\mathsf{E}} \lim_{k \to 0} \frac{\frac{k^2}{k} - 1}{k}.$

Fim

1.8 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

C Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.

|E| Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f \notin C^1(D_f)$.

I.10 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v49

- **I.1** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln{(y x)}}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$

 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
 - $\boxed{\mathsf{E}} \ D_f = \{ (x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x 1) \}.$
- **1.2** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (3, 2) na direção do vetor $\vec{v} = (0, 1)$ é:
- A -4.
- B 2.
- C 3.
- $|\mathsf{D}| 1$.
- E 1.
- **1.3** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).
 - $\boxed{\mathsf{B}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f\notin C^1(D_f)$.
 - \square Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
 - \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - $\overline{\mathbb{E}} \text{ Se } \tfrac{\partial^2 f}{\partial x \partial y}(a,b) \neq \tfrac{\partial^2 f}{\partial y \partial x}(a,b), \text{ então não existe um plano tangente ao gráfico de } f \text{ em } (a,b).$
- **1.4** Considere a função real de duas variáveis reais $f(x,y) = -x^2 + (y+2)^2 + y^3 4y$. Então:
 - |A| (0, -2/3) é um maximizante local de f.
 - |B| (0,2/3) é um ponto de sela de f.
 - |C| (0,2/3) é um minimizante local de f.
 - |D| (0,0) é um maximizante local de f.
 - |E| (0, -2/3) é um minimizante local de f.
- **1.5** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:
 - |A| (-1,2) associado a $\lambda = 2$.
 - $|\mathsf{B}|$ (1/2, 1/2) associado a $\lambda = 1$.
 - $\lceil C \rceil$ (1/2, 1/2) associado a $\lambda = 2$.
 - $|\mathsf{D}|$ (1/2, 1/2) associado a $\lambda = -2$.
 - |E| (2, -1) associado a $\lambda = 1$.
- **1.6** Sejam $f(x,y) = \operatorname{sen}(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$

 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) + \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
 - $\boxed{ \mathbb{D} \left(\frac{\partial g}{\partial \mathbf{x}} + y \frac{\partial^2 g}{\partial \mathbf{x} \partial y} \right) \operatorname{sen}(yg) + \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial \mathbf{x}} \cos(yg). }$

- **1.7** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parábolas e um ponto.
 - B retas.
 - C hipérboles.
 - D circunferências e um ponto.
 - E elipsóides e um ponto.
- **1.8** Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $[A] \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
- 1.9 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:
 - A $f(x,y) = -\sqrt{-x^2 y^2 + 16}$.
 - B $f(x,y) = \sqrt{-x^2 y^2 + 16}$
 - $|C| f(x,y) = \sqrt{-x^2 y^2 + 2}$
 - $D f(x, y) = -\sqrt{-x^2 y^2 + 2}$
 - $|E| f(x,y) = \sqrt{-x^2 y^2 + 4}.$
- **I.10** Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$
 - $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} 0}{k}.$
 - $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k} 0}{k}.$

 - $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v50

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} - \frac{\partial g}{\partial v} \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$$

$$\boxed{\mathsf{B}} - \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$$

$$\boxed{\mathsf{D}} - \frac{\partial g}{\partial y} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial y} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$$

$$\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$$

1.2 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-2, 2) na direção do vetor $\vec{v} = (0, 1)$ é:

- A 1.
- B 4.
- C -3.
- D 3.
- E -4

1.3 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln(x+y)}$. Então, o domínio da função é:

$$A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}$$

C
$$D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$$

I.4 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$$

$$\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$$

1.5 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:

- A $f(x,y) = \sqrt{-x^2 y^2 + 2}$.
- B $f(x,y) = \sqrt{-x^2 y^2 + 16}$.
- C $f(x,y) = -\sqrt{-x^2 y^2 + 2}$.
- E $f(x,y) = \sqrt{-x^2 y^2 + 4}$

1.6 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
A retas.
B hipérboles.
C circunferências e um ponto.
D elipses e um ponto.
E elipsóides e um ponto.
1.7 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira. A Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f . B Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$. C Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então f não é diferenciável em (a,b) . D Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
$oxed{E}$ Se f não é diferenciável em D_f , então f não admite derivadas parciais de 1^a ordem em D_f .
1.8 Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
$ \begin{bmatrix} A \end{bmatrix} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0. $
$ \begin{bmatrix} B \end{bmatrix} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in \mathcal{C}_m}} f(x,y) = 1. $
$ \Box \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}. $
$ \boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2. $
$ \boxed{E} \underset{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}}{\text{lim}} f(x,y) = m. $
Considere a função real de duas variáveis reais $f(x,y) = -x^2 - (y-2)^2 + y^3 - 4y$. Então: A $(0,2/3)$ é um ponto de sela de f .
\overline{B} (0, -2/3) é um minimizante local de f .
$\overline{\mathbb{C}}$ (0,2/3) é um minimizante local de f .
\boxed{D} (0,0) é um ponto de sela de f .
E (0, -2/3) é um ponto de sela de f .
110 O manta antica da fora esta da doca conjúncia maio f() 2 2 como mateira esta 1 f
I.10 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição $x - y = 1$ é: \boxed{A} (2,1) associado a $\lambda = -2$.
$(1/2, -1/2)$ associado a $\lambda = 1$.
C $(1/2, -1/2)$ associado a $\lambda = 1$.
$oxed{E}$ (2,1) associado a $\lambda=1$.
Fim.

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v51

- **I.1** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $A \frac{\partial g}{\partial x}\cos(xg) + (x\frac{\partial g}{\partial x} + g)x\frac{\partial g}{\partial y}\sin(xg)$.
 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \cos(xg).$

 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x-y)}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}$
 - $\boxed{\mathsf{B}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}$
 - $\boxed{\mathsf{D}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- **1.3** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
 - B Se não existe um plano tangente ao gráfico de f em (a,b), então f não é contínua em (a,b).
 - C Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - \square Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é diferenciável em (a,b).
- **1.4** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{h \to 0} \frac{\frac{h^3}{h^5} 0}{h}.$
 - $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$

 - $\boxed{\mathsf{D}} \lim_{h \to 0} \frac{\frac{0}{h^5} 0}{h}.$
 - $\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$
- **1.5** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A circunferências e um ponto.
 - B elipses e um ponto.
 - C parabolóides e um ponto.
 - D parábolas e um ponto.
 - E hipérboles.

A B C D	A derivada dirigida da função real de duas variáveis reais $f(x,y)=x-y^2$ em $(3,2)$ na direção do vetor $\vec{v}=(1,0)$ é: -3 . 1. 4. -1. -2.
В	Considere a função real de duas variáveis reais $f(x,y) = x^3 + (x-3)^2 + 6x - y^2$. Então: $(0,0)$ é um ponto de sela de f . $(-2/3,0)$ é um ponto de sela de f . $(0,0)$ é um maximizante local de f . $(2/3,0)$ é um maximizante local de f . $(0,0)$ é um minimizante local de f .
A B C D	O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição $x+y=-1$ é: $(-1/2,-1/2)$ associado a $\lambda=2$. $(-2,1)$ associado a $\lambda=-1$. $(-1/2,-1/2)$ associado a $\lambda=-1$. $(-1/2,-1/2)$ associado a $\lambda=-2$. $(1,-2)$ associado a $\lambda=1$.
B C D	Considere a função $f(x,y)=\frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m=\{(t,mt^2):t\in\mathbb{R}\}\cap D_f,\ m\in\mathbb{R}.$ Então: $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}}f(x,y)=m.$ $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}}f(x,y)=1.$ $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}}f(x,y)=0.$ $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}}f(x,y)=m^2.$ $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}}f(x,y)=\frac{1}{n}$
A B C	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$ A função cujo gráfico representa a metade superior da esfera de centro $(0,0,0)$ e raio 2 é: $f(x,y) = \sqrt{-x^2-y^2+4}.$ $f(x,y) = -\sqrt{-x^2-y^2+4}.$ $f(x,y) = -\sqrt{-x^2-y^2+2}.$ $f(x,y) = \sqrt{-x^2-y^2+16}.$ $f(x,y) = \sqrt{-x^2-y^2+2}.$

1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v52

- **I.1** Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:
- $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{0}{k^4} 0}{k}.$
- $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$
- $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} 0}{k}.$
- **1.2** Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$

 - $\boxed{ \bigcirc \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg). }$
 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
 - $\boxed{\mathsf{E}} \frac{\partial g}{\partial x} \operatorname{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg).$
- 1.3 A função cujo gráfico representa a metade inferior da esfera de centro (0, 0, 0) e raio 2 é:
 - A $f(x,y) = -\sqrt{-x^2 y^2 + 4}$.
 - B $f(x,y) = \sqrt{-x^2 y^2 + 4}$
 - $|C| f(x,y) = -\sqrt{-x^2 y^2 + 16}.$
 - $D f(x,y) = \sqrt{-x^2 y^2 + 2}$
 - $|E| f(x, y) = \sqrt{-x^2 y^2 + 16}$
- **1.4** Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
 - $[A] \lim_{(x,y)\to(0,0)} f(x,y) = m^2.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
 - $\left[C \right] \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$

	As curvas de nível da função $f(x,y)=x^2+y^2$ são:
A	
E	
	empsoides e um ponto.
	Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x + y)}$. Então, o domínio da função é: $D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}$. $D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}$. $D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}$. $D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}$. $D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}$. $D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}$.
	O ponto crítico da função real de duas variáveis reals $f(x,y)=x^2+y^2$ com restrição $x-y=-1$ é: $(-1/2,1/2)$ associado a $\lambda=-1$.
E	$(1,2)$ associado a $\lambda=2$.
	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (1,2) associado a $\lambda = -1$.
	$\left[(-1/2,1/2) \text{ associado a } \lambda = 2. \right]$
E	$\left(-1/2,1/2\right)$ associado a $\lambda=-2$.
	(0, -2/3) é um ponto de sela de f .
	Se f possui derivadas dirigidas em todas as direções no ponto (a, b) , então f é diferenciável em (a, b) . Se não existe um plano tangente ao gráfico de f no ponto (a, b) , então f não é diferenciável em (a, b) .
I.10	3. 142.
Fin	n.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v53

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

1.1 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:

- A $f(x,y) = -\sqrt{-x^2 y^2 + 16}$.
- B $f(x, y) = -\sqrt{-x^2 y^2 + 4}$
- $|C| f(x, y) = \sqrt{-x^2 y^2 + 2}.$
- $D f(x, y) = -\sqrt{-x^2 y^2 + 2}$
- [E] $f(x, y) = \sqrt{-x^2 y^2 + 4}$.

1.2 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A parábolas e um ponto.
- B elipsóides e um ponto.
- C elipses e um ponto.
- D circunferências e um ponto.
- E hipérboles.

I.3 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{0}{k^4} 0}{k}.$
- $\boxed{\mathsf{D}} \lim_{k \to 0} \frac{\frac{k^2}{k^4} 0}{k}$

1.4 Considere a função real de duas variáveis reais $f(x, y) = x^3 + (x - 3)^2 + 6x - y^2$. Então:

- |A| (2/3,0) é um ponto de sela de f.
- $|\mathsf{B}|$ (-2/3,0) é um maximizante local de f.
- |C| (-2/3,0) é um minimizante local de f.
- |D| (2/3,0) é um maximizante local de f.
- |E| (0,0) é um maximizante local de f.

1.5 O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x - y = -1 é:

- |A| (1,2) associado a $\lambda = 1$.
- (-1/2, 1/2) associado a $\lambda = -2$.
- |C| (1,2) associado a $\lambda = 2$.
- |D| (-1/2, 1/2) associado a $\lambda = 2$.
- $|\mathsf{E}|$ (-1/2,1/2) associado a $\lambda=-1$.

1.6	Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
Α	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}}f(x,y)=1.$
В	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}}f(x,y)=m^2.$
С	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}}} f(x,y) = m.$

$$\begin{bmatrix}
\text{E} & \lim_{(x,y)\to(0,0)} f(x,y) = 0. \\
(x,y)\in\mathcal{C}_{n}
\end{bmatrix}$$

- 1.7 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln(x+y)}$. Então, o domínio da função é:
 - $|A| D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1) \}.$
 - B $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$

 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathsf{IR}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- **1.8** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (-1, -4) na direção do vetor $\vec{v} = (1, 0)$ é:
 - A -4.
 - B 4.
 - C 1.
 - D 2.
 - $\begin{bmatrix} \mathsf{E} \end{bmatrix}$ -2.
- **I.9** Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$
 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \sin(xg).$
 - $\boxed{\mathsf{E}} \tfrac{\partial g}{\partial y} \operatorname{sen}(xg) + \left(x \tfrac{\partial g}{\partial x} + g \right) x \tfrac{\partial g}{\partial y} \cos(xg).$
- **I.10** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f possui derivadas dirigidas em todas as direções no ponto (a, b), então f é diferenciável em (a, b).
 - B Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
 - \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - \square Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
 - $oxed{\mathsf{E}}$ Se não existe um plano tangente ao gráfico de f no ponto (a,b), então f não é diferenciável em (a,b).

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v54

- **I.1** Considere a função real de duas variáveis reais $f(x,y) = x^3 + (x-3)^2 + 6x y^2$. Então:
 - |A| (-2/3,0) é um ponto de sela de f.
 - [B] (0,0) é um minimizante local de f.
 - (2/3,0) é um ponto de sela de f.
 - |D| (-2/3,0) é um minimizante local de f.
 - [E] (-2/3,0) é um maximizante local de f.
- **1.2** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x y = 1 é:
 - |A| (2,1) associado a $\lambda = -1$.
 - [B] (2,1) associado a $\lambda = 1$.
 - (2,1) associado a $\lambda = -2.$
 - \square (1/2, -1/2) associado a $\lambda = 1$.
 - [E] (1/2, -1/2) associado a $\lambda = 2$.
- **1.3** Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \operatorname{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$
 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \mathsf{cos}(yg).$
- **1.4** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln{(y-x)}}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
 - B $D_f = \{(x, y) \in \mathbb{R}^2 : (y < -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- **1.5** Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k}-0}{k}.$

 - $\boxed{\mathsf{C}} \lim_{k \to 0} \frac{\frac{k^2}{k} 1}{k}.$
 - $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{0}{k^4} 0}{k}.$
 - $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} 0}{k}.$

1.6	As curvas de nível da função $f(x,y)=x^2+y^2$ são:
А	elipses e um ponto.
В	parabolóides e um ponto.
C	elipsóides e um ponto.
	circunferências e um ponto.
E	hipérboles.
I.7 B C	A derivada dirigida da função real de duas variáveis reais $f(x,y)=x+y^2$ em $(-2,1)$ na direção do vetor $\vec{v}=(0,1)$ é: $\begin{bmatrix} 1. \\ -3. \\ -4. \\ \end{bmatrix}$
B C	A função cujo gráfico representa a metade inferior da esfera de centro $(0,0,0)$ e raio 4 é: $f(x,y) = -\sqrt{-x^2 - y^2 + 4}.$ $f(x,y) = \sqrt{-x^2 - y^2 + 4}.$ $f(x,y) = \sqrt{-x^2 - y^2 + 2}.$ $f(x,y) = -\sqrt{-x^2 - y^2 + 2}.$ $f(x,y) = -\sqrt{-x^2 - y^2 + 16}.$
1. 9	Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt): t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então: $\lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 0.$
В	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
C	$ (x,y) \to (0,0) $ $ (x,y) \in \mathcal{C}_m $
	$(x,y) \in \mathcal{C}_m$
E	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
А	posições é verdadeira. $oxed{eta}$ Se f não f não admite derivadas parciais de 1^a ordem em D_f .
В	Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então f não é diferenciável em (a,b) . Se f é diferenciável em (a,b) , então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.

 $oxed{\mathsf{E}}$ Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).

 $\boxed{\mathbb{D}}$ Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v55

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \mathsf{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \mathsf{cos}(xg).$

- $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- $\boxed{\mathsf{E}} \frac{\partial g}{\partial v} \cos(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \sin(xg).$

1.2 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (2, -2) na direção do vetor $\vec{v} = (0, 1)$ é:

- A 3.
- B -4.
- C -3.
- D 4.
- $\begin{bmatrix} \mathsf{E} \end{bmatrix} 1$

1.3 Considere a função real de duas variáveis reais $f(x,y) = -x^2 - (y-2)^2 + y^3 - 4y$. Então:

- |A|(0,0) é um minimizante local de f.
- [B] (0,0) é um maximizante local de f.
- |C| (0,0) é um ponto de sela de f.
- |D| (0, -2/3) é um ponto de sela de f.
- |E| (0, -2/3) é um maximizante local de f.

1.4 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A elipsóides e um ponto.
- B circunferências e um ponto.
- C retas.
- D elipses e um ponto.
- E parabolóides e um ponto.

1.5 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(y - x)}$. Então, o domínio da função é:

- $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- D $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- $| E | D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 > 2) \land (y \neq x 1) \}.$

1.6 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
$\boxed{A} \lim_{h \to 0} \frac{\frac{h^3}{h^4} - 0}{h}.$
$\boxed{B} \lim_{h \to 0} \frac{\frac{h^3}{h^2} - 1}{h}.$
$\boxed{C} \lim_{h \to 0} \frac{\frac{h^3}{h^2} - 0}{h}.$
$\boxed{D} \lim_{h \to 0} \frac{\frac{0}{h^{f}} - 0}{h}.$
$\boxed{E} \lim_{h \to 0} \frac{\frac{h^3}{2h} - 0}{h}.$
1.7 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:
A $f(x,y) = \sqrt{-x^2 - y^2 + 4}$. B $f(x,y) = \sqrt{-x^2 - y^2 + 2}$.
C $f(x,y) = \sqrt{-x^2 - y^2 + 16}$. D $f(x,y) = -\sqrt{-x^2 - y^2 + 4}$.
E $f(x,y) = -\sqrt{-x^2 - y^2 + 16}$.
1.8 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual de proposições é verdadeira.
A Se f não possui derivadas dirigidas em todas as direções no ponto (a, b) , então $f \notin C^1(D_f)$. B Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
Se f não e diferenciavel em \mathcal{D}_f , então $f \notin \mathcal{C}(\mathcal{D}_f)$. C Se f não possui derivadas dirigidas em todas as direções no ponto (a, b) , então f não é contínua em (a, b) .
$\overline{\overline{\mathbb{D}}}$ Se não existe um plano tangente ao gráfico de f em (a,b) , então f não admite derivadas parciais de 1^a ordem em (a,b)
$oxed{E}$ Se $rac{\partial^2 f}{\partial x \partial y}(a,b) eq rac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b) .
1.9 Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
$ \begin{bmatrix} A \end{bmatrix} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2. $
$ \mathbb{B} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1. $
$ \Box \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m}. $
$ \boxed{D} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}. $
$ \left[E \right] \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m. $

1.10 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é:

 $\boxed{\mathsf{A}}\ (-1/2,-1/2)$ associado a $\lambda=2$.

 $\lceil C \rceil$ (-1/2, -1/2) associado a $\lambda = -1$.

 $\begin{bmatrix} \mathsf{B} \end{bmatrix}$ (1, -2) associado a $\lambda = 1$.

 \square (-2,1) associado a $\lambda=1$. \square (-2,1) associado a $\lambda=-1$.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v56

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função $f(x,y) = \frac{x^2}{x^4 + v}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

- $\boxed{\mathbb{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
- $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
- $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
- $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
- $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$

1.2 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln{(y-x)}}$. Então, o domínio da função é:

- $\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x+1) \}.$
- B $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

1.3 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, -2) na direção do vetor $\vec{v} = (0, 1)$ é:

- A -1.
- В 3.
- C 4.
- D 1.
- |E|-4

1.4 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- A Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
- B Se não existe um plano tangente ao gráfico de f no ponto (a,b), então f não é diferenciável em (a,b).
- $oxed{C}$ Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).
- \square Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
- $oxed{\mathsf{E}}$ Se f não é diferenciável em D_f , então f não admite derivadas parciais de 1^a ordem em D_f .

1.5 Considere a função real de duas variáveis reais $f(x,y) = x^3 - (x-3)^2 - 6x - y^2$. Então:

- A (-2/3,0) é um maximizante local de f.
- $oxed{\mathsf{B}}$ (2/3,0) é um ponto de sela de f.
- $\boxed{\mathsf{C}}$ (-2/3,0) é um ponto de sela de f.
- \square (2/3,0) é um minimizante local de f.
- $oxed{\mathsf{E}}$ (0,0) é um minimizante local de f.

1.6 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:

- A $f(x,y) = \sqrt{-x^2 y^2 + 4}$
- B $f(x,y) = \sqrt{-x^2 y^2 + 16}$
- C $f(x,y) = -\sqrt{-x^2 y^2 + 2}$
- D $f(x,y) = \sqrt{-x^2 y^2 + 2}$.
- $|E| f(x, y) = -\sqrt{-x^2 y^2 + 16}$

1.7 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A circunferências e um ponto.
- B elipsóides e um ponto.
- C parabolóides e um ponto.
- D retas.
- E hipérboles.

I.8 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$
- $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$
- $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-0}{k}.$

1.9 O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x - y = -1 é:

- $\boxed{\mathsf{A}}\ (-1/2,1/2)$ associado a $\lambda=2$.
- \square (-1/2, 1/2) associado a $\lambda = -2$.
- (1,2) associado a $\lambda = -1$.
- $\boxed{\mathsf{D}} \ (-1/2,1/2)$ associado a $\lambda=-1$.
- [E] (1,2) associado a $\lambda = 2$.

I.10 Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{cos}(yg) \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
- $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$
- $\boxed{ \Box } \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \operatorname{sen}(yg) \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$
- $\boxed{\mathsf{E}} \tfrac{\partial g}{\partial x} \operatorname{sen}(yg) \left(y \tfrac{\partial g}{\partial y} + g\right) y \tfrac{\partial g}{\partial x} \cos(yg).$

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v57

- **I.1** O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x y = -1 é:
 - $\boxed{\mathsf{A}}$ (1,2) associado a $\lambda=2$.
 - [B] (-1/2, 1/2) associado a $\lambda = 2$.
 - C (-1/2, 1/2) associado a $\lambda = -2$.
 - $|\mathsf{D}|$ (-1/2, 1/2) associado a $\lambda = -1$.
 - [E] (1,2) associado a $\lambda = 1$.
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln{(y-x)}}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - $\boxed{\mathsf{D}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- **1.3** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - B Se não existe um plano tangente ao gráfico de f no ponto (a, b), então $f \notin C^0(D_f)$.
 - C Se f não é diferenciável em (a, b), então f não possui derivadas dirigidas em todas as direções no ponto (a, b).
 - D Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).
 - E Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f \notin C^1(D_f)$.
- **1.4** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial v} + x \frac{\partial^2 g}{\partial v \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial v} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{B}} \ \frac{\partial g}{\partial v} \cos(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \sin(xg).$

 - $\boxed{\mathsf{D}} \ \tfrac{\partial g}{\partial y} \cos(xg) + \left(x \tfrac{\partial g}{\partial x} + g\right) x \tfrac{\partial g}{\partial y} \operatorname{sen}(xg).$
- **1.5** Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 x^3 + 6x + y^2$. Então:
 - |A| (2/3,0) é um ponto de sela de f.
 - $|\mathsf{B}|$ (-2/3,0) é um maximizante local de f.
 - C (2/3,0) é um maximizante local de f.
 - |D| (-2/3,0) é um minimizante local de f.
 - [E] (0,0) é um maximizante local de f.
- 1.6 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:
 - $|A| f(x,y) = -\sqrt{-x^2 y^2 + 2}.$
 - B $f(x, y) = -\sqrt{-x^2 y^2 + 4}$
 - C $f(x,y) = \sqrt{-x^2 y^2 + 16}$.
 - $D f(x, y) = \sqrt{-x^2 y^2 + 4}$
 - $|E| f(x, y) = -\sqrt{-x^2 y^2 + 16}.$

I.7 A derivada dirigida da função real de duas variáveis reais $f(x,y)=x+y^2$ em $(-2,2)$ na direção do vetor $\vec{v}=(1,0)$ é: A 4. B -4. C -1. D 2. E 1.
1.8 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
A elipsóides e um ponto.
B retas.
C hipérboles.
D parabolóides e um ponto.
E circunferências e um ponto.
I.9 Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então: $ \boxed{\mathbb{A}} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m}. $
$ \mathbb{B} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}. $
$ \left[\begin{array}{c} \operatorname{lim}_{(x,y)\to(0,0)} \\ (x,y)\in C_m \end{array} \right] f(x,y) = 1. $
$ \square \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m. $
$ \begin{bmatrix} E & \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0. \end{bmatrix} $

I.10 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

 $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v58

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

1.1 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:

- $A f(x,y) = \sqrt{-x^2 y^2 + 2}$
- B $f(x,y) = -\sqrt{-x^2 y^2 + 4}$.
- C $f(x,y) = \sqrt{-x^2 y^2 + 16}$.
- D $f(x,y) = \sqrt{-x^2 y^2 + 4}$.
- $[E] f(x,y) = -\sqrt{-x^2 y^2 + 16}.$

1.2 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- A Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).
- B Se não existe um plano tangente ao gráfico de f no ponto (a, b), então f não é diferenciável em (a, b).
- C Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
- \square Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
- |E| Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .

1.3 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:

- A (2,-1) associado a $\lambda=-1$.
- [B] (1/2, 1/2) associado a $\lambda = 2$.
- |C| (1/2, 1/2) associado a $\lambda = -2$.
- |D| (2, -1) associado a $\lambda = 1$.
- |E| (1/2, 1/2) associado a $\lambda = 1$.

1.4 Considere a função real de duas variáveis reais $f(x,y) = x^3 - (x-3)^2 - 6x - y^2$. Então:

- |A| (-2/3,0) é um ponto de sela de f.
- |B| (0,0) é um minimizante local de f.
- |C| (0,0) é um ponto de sela de f.
- |D| (2/3,0) é um ponto de sela de f.
- |E| (2/3,0) é um minimizante local de f.

1.5 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \frac{\partial g}{\partial y} \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \operatorname{cos}(xg).$
- $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$

1.6 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A parábolas e um ponto.
- B elipsóides e um ponto.
- C circunferências e um ponto.
- D hipérboles.
- |E| retas.

- 1.7 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então: $\boxed{\mathbb{A}} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C}} f(x,y) = \frac{1}{m}.$

 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
 - $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
- **1.8** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (2, -1) na direção do vetor $\vec{v} = (0, 1)$ é:
 - A 1.
 - B 4.
 - C 2.
 - D -2.
 - E 3.
- **1.9** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 - $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$
 - $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^5}-0}{h}.$
 - $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-1}{h}.$
 - $\boxed{\mathsf{E}} \lim_{h \to 0} \frac{\frac{0}{h^5} 0}{h}.$
- **I.10** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln(y x)}$. Então, o domínio da função é:
 - $\boxed{A} D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$

 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
 - $\overline{|D|} D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
 - $\overline{|\mathsf{E}|} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v59

- **I.1** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipses e um ponto.
 - B hipérboles.
 - C elipsóides e um ponto.
 - D circunferências e um ponto.
 - E retas.
- 1.2 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:
 - A $f(x,y) = \sqrt{-x^2 y^2 + 2}$
 - B $f(x, y) = -\sqrt{-x^2 y^2 + 2}$
 - $|C| f(x,y) = \sqrt{-x^2 y^2 + 4}.$
 - $D f(x, y) = \sqrt{-x^2 y^2 + 16}$
 - $[E] f(x,y) = -\sqrt{-x^2 y^2 + 16}$
- **1.3** Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
 - $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
 - $\square \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
- **1.4** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (3,2) na direção do vetor $\vec{v} = (1,0)$ é:
 - A -3
 - B 3.
 - C 1.
 - D 2
 - E 2.
- **1.5** Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

 - $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k}-0}{k}.$

 - $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{0}{k}-0}{k}.$

- **1.6** Considere a função real de duas variáveis reais $f(x,y) = x^3 (x-3)^2 6x y^2$. Então:
 - $\boxed{\mathsf{A}}$ (2/3,0) é um ponto de sela de f.
 - [B] (0,0) é um minimizante local de f.
 - |C| (2/3,0)é um minimizante local de f.
 - \square (0,0) é um ponto de sela de f.
 - [E] (2/3,0) é um maximizante local de f.
- **1.7** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - \overline{A} Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
 - B Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
 - \square Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).
 - $\boxed{\mathsf{D}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).
 - E Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então não existe um plano tangente ao gráfico de f em (a, b).
- **I.8** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \cos(xg).$
 - $\boxed{\mathsf{B}} \frac{\partial g}{\partial y} \cos(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \sin(xg).$

 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- **1.9** O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x y = -1 é:
 - |A| (-1/2, 1/2) associado a $\lambda = -1$.
 - [B] (1,2) associado a $\lambda = -1$.
 - $\lceil C \rceil$ (-1/2, 1/2) associado a $\lambda = 2$.
 - \square (1,2) associado a $\lambda = 1$.
 - |E| (1,2) associado a $\lambda = 2$.
- **I.10** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln(x y)}$. Então, o domínio da função é:

 - B $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

 - $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v60

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x + y = -1 é:

- $\boxed{\mathsf{A}}$ (-2,1) associado a $\lambda=1$.
- (-1/2, -1/2) associado a $\lambda = 2$.
- (-1/2, -1/2) associado a $\lambda = -1.$
- $|\mathsf{D}|$ (1,-2) associado a $\lambda=1$.
- [E] (-2,1) associado a $\lambda = -1$.

1.2 Considere a função real de duas variáveis reais $f(x, y) = x^3 + (x - 3)^2 + 6x - y^2$. Então:

- |A| (2/3,0) é um ponto de sela de f.
- |B| (2/3,0) é um maximizante local de f.
- (-2/3,0) é um minimizante local de f.
- $\boxed{\mathsf{D}}$ (0,0) é um maximizante local de f.
- [E] (0,0) é um ponto de sela de f.

I.3 Sejam $f(x,y) = \operatorname{sen}(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{sen}(yg) + \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$

- $\boxed{ \bigcirc \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) \left(y \frac{\partial g}{\partial v} + g \right) y \frac{\partial g}{\partial x} \sin(yg). }$

1.4 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k}-0}{k}.$
- $\boxed{\mathsf{C}} \lim_{k \to 0} \frac{\frac{k^2}{k^4} 0}{k}.$

1.5 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(y - x)}}$. Então, o domínio da função é:

- $\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$

	A função cujo gráfico representa a metade superior da esfera de centro $(0,0,0)$ e raio 2 é: $f(x,y) = \sqrt{-x^2 - y^2 + 4}$.
_	$f(x,y) = -\sqrt{-x^2 - y^2 + 16}.$
	$\int_{0}^{\infty} f(x,y) = \sqrt{-x^2 - y^2 + 16}.$
	$\int_{0}^{\infty} f(x,y) = -\sqrt{-x^2 - y^2 + 2}.$
E	$f(x,y) = -\sqrt{-x^2 - y^2 + 4}.$
1.7	Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
Α	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m}.$
E	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}}f(x,y)=1.$
	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
E	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
IΩ	_ A derivada dirigida da função real de duas variáveis reais $f(x,y)=x+y^2$ em $(-2,1)$ na direção do vetor $\vec{v}=(0,1)$ é:
G	$\sqrt{-1}$.
E	$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ -2. $\begin{bmatrix} -3 \end{bmatrix}$ -3.
	$\stackrel{ o}{ ext{D}}$ 1.
19	As curvas de nível da função $f(x,y)=x^2+y^2$ são:
E	retas.
	elipses e um ponto.
	parábolas e um ponto.
E	circunferências e um ponto.
1.10	Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das
	posições é verdadeira.
E	
	Se f não é diferenciável em (a,b) , então f não possui derivadas dirigidas em todas as direções no ponto (a,b) .
E	Se f possui derivadas dirigidas em todas as direções no ponto (a,b) , então f é diferenciável em (a,b) .
Fin	n.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v61

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(y - x)}}$. Então, o domínio da função é:

- $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 < 2) \land (y \neq x + 1) \}.$
- B $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathsf{IR}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$

1.2 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-1}{h}.$

1.3 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A parabolóides e um ponto.
- B hipérboles.
- C retas.
- D circunferências e um ponto.
- E elipsóides e um ponto.

1.4 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, -2) na direção do vetor $\vec{v} = (0, 1)$ é:

- |A| 3.
- B -4.
- |C|-1.
- D 3.
- |E| 2.

2	
I.5 Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$	R. Então:
$ \mathbb{B} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m. $	
$C \lim_{x \to \infty} f(x, y) = 0.$	

$$\square \lim_{(x,y)\to(0,0)} f(x,y) = m^2.$$

$$\boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$$

$$\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$$

- **1.6** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:
 - |A| (2, -1) associado a $\lambda = -1$.
 - $|\mathsf{B}|$ (1/2,1/2) associado a $\lambda=1$.
 - |C| (-1,2) associado a $\lambda=2$.
 - $|\mathsf{D}|$ (2, -1) associado a $\lambda = 1$.
 - |E| (1/2, 1/2) associado a $\lambda = -2$.
- 1.7 Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial y}(x,y)$ é igual a:

 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{v}} \right) \mathsf{sen}(yg) + \left(y \frac{\partial g}{\partial \mathsf{v}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$
 - $\left[C \right] \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg).$
 - $\boxed{\mathsf{D}} \frac{\partial g}{\partial x} \cos(yg) + \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \sin(yg).$
- 1.8 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:
 - A $f(x, y) = \sqrt{-x^2 y^2 + 16}$
 - B $f(x, y) = \sqrt{-x^2 y^2 + 4}$
 - $C f(x,y) = -\sqrt{-x^2 y^2 + 4}$
 - $D f(x, y) = -\sqrt{-x^2 y^2 + 2}$
 - $|E| f(x, y) = -\sqrt{-x^2 y^2 + 16}$
- 1.9 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - |A| Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então não existe um plano tangente ao gráfico de f em (a, b).
 - $|\mathsf{B}|$ Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).
 - \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - D Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
 - |E| Se f admite derivadas parciais de 1º ordem em D_f , então f é diferenciável em D_f .
- **1.10** Considere a função real de duas variáveis reais $f(x,y) = -x^2 + (y+2)^2 + y^3 4y$. Então:
 - |A| (0,0) é um ponto de sela de f.
 - |B|(0,0) é um maximizante local de f.
 - |C| (0,2/3) é um ponto de sela de f.
 - |D| (0, -2/3) é um ponto de sela de f.
 - |E| (0, -2/3) é um minimizante local de f.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v62

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

$$\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$$

$$\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$$

$$\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$$

$$\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 0.$$

1.2 Sejam $f(x,y)=\cos(yg)$ e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} - \frac{\partial g}{\partial x} \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg).$$

$$\boxed{\mathsf{C}} - \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{sen}(yg) - \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$$

$$\boxed{ \boxed{ }} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) - \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg).$$

$$\boxed{\mathsf{E}} - \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{sen}(yg) - \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

1.3 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, -2) na direção do vetor $\vec{v} = (1, 0)$ é:

- A -4.
- B 4.
- C −3.
- D -1.
- E 1.

I.4 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \lim_{k \to 0} \frac{\frac{k^2}{k^4} 1}{k}.$
- $\boxed{\mathsf{B}} \lim_{k \to 0} \frac{\frac{k^2}{k^4} 0}{k}.$
- $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^5}-0}{k}.$

1.5	Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das
	osições é verdadeira.
Α	Se f não possui derivadas dirigidas em todas as direções no ponto (a, b) , então não existe um plano tangente ao gráfico de
	$f \in (a,b)$.
В	Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b) .

 $\boxed{\mathsf{C}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).

 \square Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.

 $oxed{\mathsf{E}}$ Se f é diferenciável em (a,b), então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.

1.6 O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x - y = 1 é:

|A| (2,1) associado a $\lambda = -2$.

[B] (2,1) associado a $\lambda = 1$.

 $\lceil C \rceil$ (1/2, -1/2) associado a $\lambda = 1$.

 $\boxed{\mathsf{D}}$ (2,1) associado a $\lambda=-1$.

[E] (1/2, -1/2) associado a $\lambda = -2$.

1.7 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

A elipsóides e um ponto.

B circunferências e um ponto.

C hipérboles.

D elipses e um ponto.

E parabolóides e um ponto.

1.8 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:

A
$$f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$
.

B
$$f(x, y) = \sqrt{-x^2 - y^2 + 2}$$
.

C
$$f(x,y) = -\sqrt{-x^2 - y^2 + 16}$$
.

$$D f(x, y) = \sqrt{-x^2 - y^2 + 4}$$

$$[E] f(x,y) = \sqrt{-x^2 - y^2 + 16}.$$

1.9 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(y-x)}}$. Então, o domínio da função é:

$$A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$$

$$\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$$

$$C$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$

$$\square$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$

$$| E | D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1) \}.$$

I.10 Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 - x^3 + 6x + y^2$. Então:

|A| (-2/3,0) é um ponto de sela de f.

|B| (2/3,0) é um maximizante local de f.

|C| (-2/3,0) é um maximizante local de f.

D (0,0) é um minimizante local de f.

|E| (0,0) é um maximizante local de f.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v63

- 1.1 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:
 - $|A| f(x,y) = \sqrt{-x^2 y^2 + 16}.$
 - B $f(x,y) = \sqrt{-x^2 y^2 + 4}$.
 - $|C| f(x, y) = -\sqrt{-x^2 y^2 + 4}.$
 - $D f(x,y) = \sqrt{-x^2 y^2 + 2}$
 - $[E] f(x,y) = -\sqrt{-x^2 y^2 + 16}.$
- **1.2** Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$

 - $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}$
 - $\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m.$
- **1.3** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parabolóides e um ponto.
 - B parábolas e um ponto.
 - C circunferências e um ponto.
 - D elipses e um ponto.
 - E hipérboles.
- **1.4** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é:
 - |A| (-1/2, -1/2) associado a $\lambda = -1$.
 - $|\mathsf{B}|$ (1,-2) associado a $\lambda=1$.
 - |C| (-2,1) associado a $\lambda=1$.
 - $|\mathsf{D}|$ (-1/2, -1/2) associado a $\lambda = 2$.
 - |E| (-1/2, -1/2) associado a $\lambda = -2$.
- **1.5** Considere a função real de duas variáveis reais $f(x,y) = x^2 + (y-2)^2 y^3 + 4y$. Então:
 - |A| (0,2/3) é um maximizante local de f.
 - |B| (0,0) é um minimizante local de f.
 - |C| (0,0) é um maximizante local de f.
 - |D| (0, -2/3) é um minimizante local de f.
 - |E|(0,0) é um ponto de sela de f.

1.6	A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em $(2, -1)$ na direção do vetor $\vec{v} = (0, 1)$ é:
Α	$\sqrt{1-2}$

1.7 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

A Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então não existe um plano tangente ao gráfico de f em (a, b).

B Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).

C Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.

 \square Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).

[E] Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.

I.8 Sejam
$$f(x,y) = \cos(xg)$$
 e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$$

$$\boxed{\mathsf{B}} - \frac{\partial g}{\partial v} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$$

1.9 Seja
$$\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$
 Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{0}{k^4}-0}{k}.$$

$$\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} - 0}{k}.$$

I.10 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln{(x+y)}}$. Então, o domínio da função é:

B
$$D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}$$

$$C D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$$

$$\square$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$

$$\boxed{\mathsf{E}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$$

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v64

- **I.1** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln(x + y)}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x+1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $\boxed{\mathsf{D}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- **1.2** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então $f \notin C^1(D_f)$.
 - B Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - C Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
 - \square Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
 - $oxed{\mathsf{E}}$ Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
- **1.3** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:
 - $|\mathsf{A}|$ (1/2,1/2) associado a $\lambda=-2$.
 - [B] (2, -1) associado a $\lambda = -1$.
 - (-1,2) associado a $\lambda = 2.$
 - $|\mathsf{D}|$ (1/2,1/2) associado a $\lambda=2$.
 - |E| (1/2, 1/2) associado a $\lambda = 1$.
- **1.4** Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$
- **1.5** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A hipérboles.
 - B parábolas e um ponto.
 - C retas.
 - D elipses e um ponto.
 - E circunferências e um ponto.
- **1.6** Considere a função real de duas variáveis reais $f(x,y) = x^3 (x-3)^2 6x y^2$. Então:
 - |A| (2/3,0) é um maximizante local de f.
 - B (2/3,0) é um minimizante local de f.
 - |C| (0,0) é um minimizante local de f.
 - |D| (-2/3,0) é um maximizante local de f.
 - [E] (0,0) é um maximizante local de f.

1.7 A derivada dirigida da função real de duas variáveis reais $f(x,y) = x - y^2$ em (2,3) na direção do ve	etor $\vec{v}=(1,0)$ é
---	------------------------

$$D -1$$
.

I.8 Seja
$$\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$
 Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{0}{k^4}-0}{k}.$$

$$\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$$

$$\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} - 0}{k}.$$

$$\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$$

1.9 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:

A
$$f(x,y) = \sqrt{-x^2 - y^2 + 16}$$

B
$$f(x,y) = \sqrt{-x^2 - y^2 + 4}$$

$$C$$
 $f(x,y) = -\sqrt{-x^2 - y^2 + 4}$

$$|E| f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$

I.10 Considere a função
$$f(x,y) = \frac{y^2}{(x^2+y)^2}$$
 com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$$

$$\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2.$$

$$\Box \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$$

$$\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$$

$$\left[\mathbb{E} \left[\lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m} \right].$$

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v65

- **I.1** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (3, 1) na direção do vetor $\vec{v} = (0, 1)$ é:
 - |A|-2
 - B 2.
 - C -3.
 - D 4.
 - E 3.
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln(y x)}$. Então, o domínio da função é:
 - $\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 > 2) \land (y \neq x + 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}$
 - $E \mid D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- **1.3** Considere a função real de duas variáveis reais $f(x, y) = x^2 + (y 2)^2 y^3 + 4y$. Então:
 - |A| (0, -2/3) é um ponto de sela de f.
 - $B \mid (0,0)$ é um minimizante local de f.
 - |C| (0,0) é um ponto de sela de f.
 - |D| (0,2/3) é um maximizante local de f.
 - |E|(0,-2/3) é um maximizante local de f.
- **1.4** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parabolóides e um ponto.
 - B retas.
 - C elipses e um ponto.
 - D hipérboles.
 - E circunferências e um ponto.
- **1.5** Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\boxed{\mathbb{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2.$
 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$

1.6 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{0}{h^5}-0}{h}.$
- $\boxed{\mathsf{B}} \lim_{h \to 0} \frac{\frac{h^3}{h^4} 1}{h}.$
- $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$
- $\boxed{\mathsf{E}} \lim_{h \to 0} \frac{\frac{h^3}{h^4} 0}{h}.$

1.7 O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição x+y=-1 é:

- $\boxed{\mathsf{A}}\ (-1/2,-1/2)$ associado a $\lambda=-2$.
- $\begin{bmatrix} \mathsf{B} \end{bmatrix}$ (1, -2) associado a $\lambda=1$.
- (-2,1) associado a $\lambda = -1$.
- \square (-1/2, -1/2) associado a $\lambda = -1$.
- [E] (-2,1) associado a $\lambda = 1$.

1.8 A função cujo gráfico representa a metade inferior da esfera de centro (0, 0, 0) e raio 2 é:

- A $f(x,y) = -\sqrt{-x^2 y^2 + 2}$
- B $f(x, y) = -\sqrt{-x^2 y^2 + 4}$
- C $f(x,y) = \sqrt{-x^2 y^2 + 4}$
- $\boxed{\mathsf{D}} \ f(x,y) = -\sqrt{-x^2 y^2 + 16}.$
- $| E | f(x,y) = \sqrt{-x^2 y^2 + 2}$

I.9 Sejam D_f um subconjunto aberto de IR² e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- $\stackrel{\cdot}{|A|}$ Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
- $\overline{\mathbb{B}}$ Se f é diferenciável em (a,b), então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.
- $oxedsymbol{\mathsf{C}}$ Se f admite derivadas parciais de 1 a ordem em D_f , então f é diferenciável em D_f .

Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então não existe um plano tangente ao gráfico de f em (a, b).

 $oxed{\mathsf{E}}$ Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

I.10 Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \ \frac{\partial g}{\partial x} \cos(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$
- $\boxed{\mathsf{B}} \frac{\partial g}{\partial x} \operatorname{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg).$
- $\boxed{\mathsf{C}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{sen}(yg) \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$
- $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$

۸ ۸	áΙ	i	Ν./Ι	2+0	má	tica	

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v66

- **l.1** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - B Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então $f \notin C^1(D_f)$.
 - C Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
 - \square Se f não é diferenciável em (a, b), então f não possui derivadas dirigidas em todas as direções no ponto (a, b).
 - $oxed{\mathsf{E}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).
- **1.2** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é:
 - $\boxed{\mathsf{A}}\ (-1/2, -1/2)$ associado a $\lambda=2$.
 - $|\mathsf{B}|$ (-2,1) associado a $\lambda=-1$.
 - $\lceil C \rceil$ (-1/2, -1/2) associado a $\lambda = -2$.
 - \square (-2,1) associado a $\lambda = 1$.
 - [E] (-1/2, -1/2) associado a $\lambda = -1$.
- **1.3** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, 1) na direção do vetor $\vec{v} = (0, 1)$ é:
 - A -3.
 - В 1.
 - C 2.
 - D 3.
 - |E|-4
- **1.4** Considere a função real de duas variáveis reais $f(x, y) = -x^2 (y 2)^2 + y^3 4y$. Então:
 - |A| (0, -2/3) é um minimizante local de f.
 - |B| (0,2/3) é um ponto de sela de f.
 - |C| (0, -2/3) é um ponto de sela de f.
 - $|\mathsf{D}|$ (0,2/3) é um minimizante local de f.
 - |E| (0,0) é um minimizante local de f.
- **1.5** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{cos}(xg).$
 - $\boxed{\mathsf{E}} \ \frac{\partial g}{\partial y} \cos(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \sin(xg).$

Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então: $\lim_{\substack{(x,y)\to(0,0)\\(y,y)\to 0}} f(x,y) = \frac{1}{m}.$ $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$ $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$ $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$ $\bigsqcup_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} \lim_{f(x,y)=m.$ 1.7 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é: $|A| f(x, y) = \sqrt{-x^2 - y^2 + 16}$ B $f(x, y) = \sqrt{-x^2 - y^2 + 4}$ $C f(x,y) = -\sqrt{-x^2 - v^2 + 2}$ $D f(x, y) = \sqrt{-x^2 - y^2 + 2}$ $[E] f(x,y) = -\sqrt{-x^2 - y^2 + 4}$ **1.8** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln(x + y)}$. Então, o domínio da função é: $A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 < 2) \land (y \neq x - 1)\}.$ B $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$ C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 < 2) \land (y \neq x + 1)\}$ \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$ $E \mid D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1) \}.$ **1.9** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão: $\boxed{\mathsf{A}} \lim_{h \to 0} \frac{\frac{h^2}{2h} - 0}{h}.$ B $\lim_{h \to 0} \frac{\frac{h^3}{h^4} - 0}{h}$. $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-1}{h}.$ **I.10** As curvas de nível da função $f(x,y) = x^2 + y^2$ são: A hipérboles. B elipses e um ponto. C parábolas e um ponto. D circunferências e um ponto.

E parabolóides e um ponto.

Fim

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

√67

n° de aluno:

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \lim_{k \to 0} \frac{\frac{0}{k^4} 0}{k}.$
- $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{0}{k^2} 0}{k}.$
- $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$
- $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k} 0}{k}.$

1.2 Considere a função real de duas variáveis reais $f(x,y) = -x^2 - (y-2)^2 + y^3 - 4y$. Então:

- A (0,0) é um ponto de sela de f.
- [B] (0, -2/3) é um maximizante local de f.
- (0,0) é um maximizante local de f.
- $\boxed{\mathsf{D}}$ (0, -2/3) é um minimizante local de f.
- |E| (0,2/3) é um maximizante local de f.

1.3 Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

- $\prod_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} \lim_{f(x,y)=m.$
- $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
- $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
- $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
- $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$

1.4 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-2, 1) na direção do vetor $\vec{v} = (0, 1)$ é:

- |A| 1.
- B -2.
- C -4.
- D 2.
- E -3.

1.5 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A retas.
- B parabolóides e um ponto.
- C elipsóides e um ponto.
- D hipérboles.
- E circunferências e um ponto.

```
1.6 Considere a função real de duas variáveis reais f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln{(x+y)}}. Então, o domínio da função é: 

A D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x+1)\}.

B D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x-1)\}.

C D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x+1)\}.
```

1.7 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:

 $\boxed{D} D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$ $\boxed{E} D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 > 2) \land (y \ne x - 1)\}.$

```
A = (-1, 2) associado a \lambda = 2.
```

$$\boxed{\mathsf{B}}$$
 (1/2, 1/2) associado a $\lambda = 1$.

$$\lceil \mathsf{C} \rceil$$
 (2, -1) associado a $\lambda = -1$.

$$\boxed{\mathsf{D}}\ (1/2,1/2)$$
 associado a $\lambda=-2$.

$$[E]$$
 (1/2, 1/2) associado a $\lambda = 2$.

1.8 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:

$$A f(x,y) = \sqrt{-x^2 - y^2 + 16}$$

B
$$f(x,y) = -\sqrt{-x^2 - y^2 + 4}$$

$$C f(x,y) = \sqrt{-x^2 - y^2 + 2}$$

$$D f(x, y) = \sqrt{-x^2 - y^2 + 4}$$

$$[E] f(x, y) = -\sqrt{-x^2 - y^2 + 16}.$$

1.9 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

A Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então não existe um plano tangente ao gráfico de f em (a, b).

B Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.

 $\lceil \mathsf{C} \rceil$ Se f admite derivadas parciais de 1º ordem em D_f , então f é diferenciável em D_f .

 \square Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).

[E] Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).

I.10 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} - \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$$

$$\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$$

$$\boxed{\mathsf{D}} - \frac{\partial g}{\partial y} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$$

$$\boxed{\mathsf{E}} - \tfrac{\partial g}{\partial y} \operatorname{sen}(xg) - \left(x \tfrac{\partial g}{\partial x} + g \right) x \tfrac{\partial g}{\partial y} \operatorname{cos}(xg).$$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v68

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{C}} \lim_{k \to 0} \frac{\frac{0}{k^4} - 0}{k}.$$

$$\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k}-1}{k}.$$

1.2 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x-y)}$. Então, o domínio da função é:

$$\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$$

$$\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$$

$$C$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$

$$\square$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$

$$\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathsf{IR}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$$

1.3 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:

A
$$f(x,y) = -\sqrt{-x^2 - y^2 + 4}$$

B
$$f(x,y) = -\sqrt{-x^2 - y^2 + 16}$$
.

C
$$f(x,y) = \sqrt{-x^2 - y^2 + 2}$$

D
$$f(x,y) = \sqrt{-x^2 - y^2 + 4}$$
.

E
$$f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$
.

1.4 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, -2) na direção do vetor $\vec{v} = (1, 0)$ é:

- A 2.
- B -3.
- C 3.
- D 1.
- $\boxed{\mathsf{E}}$ -2.

1.5 Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt): t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

$$\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m}.$$

$$\exists \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$$

$$\left[C \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m.$$

$$\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$$

$$\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 1.$$

1.6 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a: $\begin{bmatrix} A & -\frac{\partial g}{\partial y} \sec(xg) + \left(x\frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg). \\ B & -\frac{\partial g}{\partial y} \sec(xg) - \left(x\frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg). \end{bmatrix}$

 $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

1.7 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

A circunferências e um ponto.

B parábolas e um ponto.

C elipsóides e um ponto.

D retas.

E hipérboles.

1.8 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

|A| Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

 $\boxed{\mathsf{B}}$ Se não existe um plano tangente ao gráfico de f em (a,b), então f não admite derivadas parciais de 1^a ordem em (a,b).

 \square Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).

 \square Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.

[E] Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f \notin C^1(D_f)$.

1.9 Considere a função real de duas variáveis reais $f(x,y) = x^2 + (y-2)^2 - y^3 + 4y$. Então:

|A| (0, -2/3) é um minimizante local de f.

 $|\mathsf{B}|$ (0,0) é um ponto de sela de f.

|C| (0,2/3) é um ponto de sela de f.

|D| (0,2/3) é um minimizante local de f.

|E| (0, -2/3) é um maximizante local de f.

1.10 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x - y = -1 é:

A (1,2) associado a $\lambda = 1$.

 $|\mathsf{B}|$ (-1/2, 1/2) associado a $\lambda = -2$.

|C| (1,2) associado a $\lambda = -1$.

|D| (-1/2, 1/2) associado a $\lambda = 2$.

|E| (-1/2, 1/2) associado a $\lambda = -1$.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v69

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

1.1 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:

- A $f(x,y) = -\sqrt{-x^2 y^2 + 2}$.
- B $f(x,y) = \sqrt{-x^2 y^2 + 2}$.
- C $f(x,y) = \sqrt{-x^2 y^2 + 4}$.
- $D f(x, y) = -\sqrt{-x^2 y^2 + 16}$
- $[E] f(x, y) = -\sqrt{-x^2 y^2 + 4}$

1.2 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$
- $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial v} + x \frac{\partial^2 g}{\partial v \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial v} \operatorname{sen}(xg).$
- $\boxed{\mathsf{D}} \frac{\partial g}{\partial v} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$

I.3 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- A Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
- B Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
- \square Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .
- \square Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).

 $oxed{\mathsf{E}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então não existe um plano tangente ao gráfico de f em (a,b).

1.4 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-2, 2) na direção do vetor $\vec{v} = (0, 1)$ é:

- A -4
- B 1.
- C -3.
- D 4.
- $\begin{bmatrix} \mathsf{E} \end{bmatrix} 1$.

I.5 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \lim_{k \to 0} \frac{\frac{0}{k^4} 0}{k}.$
- $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k}-0}{k}.$
- $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} 0}{k}.$

```
1.6 Considere a função real de duas variáveis reais f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(y-x)}}. Então, o domínio da função é:
  A D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.
  \square D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.
  C D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.
  \boxed{\mathsf{D}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.
  oxed{\mathsf{E}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 < 2) \land (y \neq x - 1)\}.
1.7 As curvas de nível da função f(x, y) = x^2 + y^2 são:
  A retas.
  B circunferências e um ponto.
  C elipsóides e um ponto.
  D hipérboles.
  |E| parabolóides e um ponto.
1.8 O ponto crítico da função real de duas variáveis reais f(x,y) = x^2 + y^2 com restrição x - y = -1 é:
  |A| (-1/2, 1/2) associado a \lambda = -2.
  |\mathsf{B}| (-1/2, 1/2) associado a \lambda = -1.
  |C| (1,2) associado a \lambda = 1.
  |\mathsf{D}| (1,2) associado a \lambda = -1.
  |E| (1,2) associado a \lambda = 2.
1.9 Considere a função f(x,y) = \frac{x^2}{(x+y)^2} com domínio D_f e o conjunto C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}. Então:
        \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.
  \boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2.
  \boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.
       \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.
       \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.
1.10 Considere a função real de duas variáveis reals f(x,y) = -x^2 - (y-2)^2 + y^3 - 4y. Então:
  |A| (0,0) é um ponto de sela de f.
   B \mid (0,0) é um maximizante local de f.
```

 $1^{\circ}\ semestre\ do\ ano\ letivo\ 2019/20\ --\ LEAP+MIEPOL+MIETI,\ Departamento\ de\ Matemática,\ Universidade\ do\ Minho$

Teste 1 — 6 de maio de 2020

nome completo:

√70

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

I.1 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \lim_{k \to 0} \frac{\frac{0}{k^4} 0}{k}.$
- $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} 0}{k}.$
- $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$
- $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-0}{k}.$
- $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k}-0}{k}.$

1.2 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

- $\left[\underline{\mathsf{A}} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 1.$
- $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m.$
- $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
- $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
- $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$

1.3 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:

- $\boxed{\mathsf{A}}$ (-1,2) associado a $\lambda=2$
- lacksquare B (1/2, 1/2) associado a $\lambda=1$.
- $\boxed{\mathsf{C}}$ (2, -1) associado a $\lambda=1$.
- \square (2, -1) associado a $\lambda = -1$.
- $\boxed{\mathsf{E}}\ (1/2,1/2)$ associado a $\lambda=2$.

I.4 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- \overline{A} Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
- B Se f não é diferenciável em (a, b), então f não possui derivadas dirigidas em todas as direções no ponto (a, b).
- \square Se não existe um plano tangente ao gráfico de f em (a,b), então f não admite derivadas parciais de 1^a ordem em (a,b).
- \square Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).
- $oxed{\mathsf{E}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f\notin \mathcal{C}^1(D_f)$.

1.5 E	elipses e um ponto. hipérboles.
E	
	Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2-2y^2+4}}{\ln{(x+y)}}$. Então, o domínio da função é: \overline{A} $D_f = \{(x,y) \in \mathbb{R}^2 : (y>x) \land (x^2+y^2 \le 2) \land (y \ne x-1)\}$. $D_f = \{(x,y) \in \mathbb{R}^2 : (y>-x) \land (x^2+y^2 \le 2) \land (y \ne x+1)\}$. $D_f = \{(x,y) \in \mathbb{R}^2 : (y>-x) \land (x^2+y^2 \le 2) \land (y \ne x+1)\}$. $D_f = \{(x,y) \in \mathbb{R}^2 : (y>-x) \land (x^2+y^2 \le 2) \land (y \ne x-1)\}$. $D_f = \{(x,y) \in \mathbb{R}^2 : (y>x) \land (x^2+y^2 \le 2) \land (y \ne x+1)\}$.
A	A derivada dirigida da função real de duas variáveis reais $f(x,y)=x+y^2$ em $(-1,2)$ na direção do vetor $\vec{v}=(0,1)$ é: $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ 2.
	Sejam $f(x,y) = \text{sen}(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
	$\frac{\partial g}{\partial x}\cos(yg) + \left(y\frac{\partial g}{\partial y} + g\right)y\frac{\partial g}{\partial x}\sin(yg).$
	$\frac{\partial g}{\partial x}\cos(yg) - \left(y\frac{\partial g}{\partial y} + g\right)y\frac{\partial g}{\partial x}\sin(yg).$
	$\left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \cos(yg) + \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$
E	$ \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \operatorname{sen}(yg) + \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \cos(yg). $
	A função cujo gráfico representa a metade inferior da esfera de centro $(0,0,0)$ e raio 4 é: A $f(x,y) = -\sqrt{-x^2 - y^2 + 16}$. B $f(x,y) = -\sqrt{-x^2 - y^2 + 4}$. C $f(x,y) = \sqrt{-x^2 - y^2 + 2}$. D $f(x,y) = \sqrt{-x^2 - y^2 + 4}$. E $f(x,y) = \sqrt{-x^2 - y^2 + 16}$.
l.10	

 $\boxed{\mathsf{B}}$ (2/3,0) é um minimizante local de f.

 $\boxed{\mathbb{C}}$ (0,0) é um ponto de sela de f. $\boxed{\mathbb{D}}$ (-2/3,0) é um ponto de sela de f. $\boxed{\mathbb{E}}$ (0,0) é um maximizante local de f.

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

|v71

- **I.1** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipses e um ponto.
 - B hipérboles.
 - C parábolas e um ponto.
 - D parabolóides e um ponto
 - E circunferências e um ponto.
- **1.2** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

 - C $\frac{\partial g}{\partial v}\cos(xg) \left(x\frac{\partial g}{\partial x} + g\right)x\frac{\partial g}{\partial v}\sin(xg)$.
- **1.3** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1º ordem em (a, b).
 - B Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então $f \notin C^1(D_f)$.
 - C Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
 - $\boxed{\mathsf{D}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).
 - Se f não é diferenciável em (a, b), então f não possui derivadas dirigidas em todas as direções no ponto (a, b).
- **1.4** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 - $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$

 - $\boxed{\mathsf{D}} \ \lim_{h \to 0} \frac{\frac{h^3}{h^2} 1}{h}.$
- **1.5** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é:
 - $\boxed{\mathsf{A}}$ (-2,1) associado a $\lambda=-1$.
 - (-1/2, -1/2) associado a $\lambda = -1$.
 - $\boxed{\mathsf{C}}\ (-1/2,-1/2)$ associado a $\lambda=-2$.
 - \square (-2,1) associado a $\lambda=1$.
 - [E] (1, -2) associado a $\lambda = 1$.

l.6 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:	
A $f(x,y) = \sqrt{-x^2 - y^2 + 4}$.	
B $f(x,y) = \sqrt{-x^2 - y^2 + 16}$.	
C $f(x,y) = -\sqrt{-x^2 - y^2 + 4}$.	
D $f(x,y) = \sqrt{-x^2 - y^2 + 2}$.	
$ E f(x,y) = -\sqrt{-x^2 - y^2 + 16}.$	
1.7 Considere a função real de duas variáveis reais $f(x,y)=rac{\sqrt{-2x^2-2y^2+4}}{\ln{(x+y)}}$. Então, o domínio da função é:	
$\boxed{A} D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$	
$C D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$	
$\boxed{\mathbb{D}} D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$	
$\boxed{E} \ D_f = \{(x, y) \in IR^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$	
1.8 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:	
$ \underbrace{\left[A \right]}_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m. $	
$ \mathbb{B} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}. $	
$(x,y) \to (0,0)$ $(x,y) \in C_m$	
$ \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m}. $	
$ \lim_{(x,y)\to(0,0)} f(x,y) = m^2. $	
$(x,y) \to (0,0)$ $(x,y) \in C_m$	
1.9 A derivada dirigida da função real de duas variáveis reais $f(x,y) = x - y^2$ em $(2,3)$ na direção do vetor $\vec{v} = (1,0)$ é:	
B 2.	
C -4.	
$\lfloor E \rfloor -1$.	
1.10 Considere a função real de duas variáveis reais $f(x,y) = x^3 - (x-3)^2 - 6x - y^2$. Então:	
A $(-2/3,0)$ é um minimizante local de f .	
$\overline{\mathbb{B}}$ (0,0) é um minimizante local de f .	
$\overline{\mathbb{C}}$ (-2/3,0) é um maximizante local de f .	

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v72

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{k \to 0} \frac{\frac{0}{k} - 0}{k}.$$

$$\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k} - 0}{k}.$$

$$\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k^4} - 0}{k}.$$

1.2 O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x - y = 1 é:

- $\boxed{\mathsf{A}}$ (2,1) associado a $\lambda=-1$.
- $\begin{bmatrix} \mathsf{B} \end{bmatrix}$ (2,1) associado a $\lambda = -2$.
- $\lceil C \rceil$ (1/2, -1/2) associado a $\lambda = 2$.
- $\boxed{\mathsf{D}}$ (1/2, -1/2) associado a $\lambda = -2$.
- [E] (1/2, -1/2) associado a $\lambda = 1$.

1.3 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:

A
$$f(x,y) = -\sqrt{-x^2 - y^2 + 4}$$

B
$$f(x,y) = \sqrt{-x^2 - y^2 + 16}$$
.

C
$$f(x,y) = \sqrt{-x^2 - y^2 + 2}$$
.

D
$$f(x,y) = \sqrt{-x^2 - y^2 + 4}$$

1.4 Considere a função real de duas variáveis reais $f(x, y) = x^2 + (y - 2)^2 - y^3 + 4y$. Então:

- A (0, -2/3) é um ponto de sela de f.
- |B| (0, -2/3) é um minimizante local de f.
- |C| (0,2/3) é um maximizante local de f.
- |D| (0,2/3) é um minimizante local de f.
- |E| (0,2/3) é um ponto de sela de f.

1.5 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(x+y)}}$. Então, o domínio da função é:

$$\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$$

B
$$D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$$

$$C D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$$

$$\square$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$

$$\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathsf{IR}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$$

1.6	Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
Α	
В	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
С	$ (x,y) \to (0,0) $ $ (x,y) \in C_m $
D	$(x,y) \rightarrow (0,0)$
Ε	$\lim_{\substack{(x,y) \in C_m \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m^2}.$
I. 7	
В] -2.] -4.] 2.] -1.
D	$\begin{bmatrix} -1 \end{bmatrix}$
Ε] –3.
1. 8	Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das osições é verdadeira.
А	1 , , , , , , , , , , , , , , , ,
В	Se f não possui derivadas dirigidas em todas as direções no ponto (a, b) , então não existe um plano tangente ao gráfico de f em (a, b) .
С	Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b) .
D	Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então f não é contínua em (a,b) .
Е	Se f é diferenciável em (a, b) , então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
	As curvas de nível da função $f(x,y)=x^2+y^2$ são:
В	elipsóides e um ponto. parabolóides e um ponto.
C	circunferências e um ponto.
D	elipses e um ponto.
E	hipérboles.
l.10	Sejam $f(x,y)=\cos(yg)$ e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
	$\left[\left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) - \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \right]$
	$ \left[\begin{array}{c} \frac{\partial g}{\partial x} \cos(yg) - \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg). \end{array} \right] $
	$\left[-\frac{\partial g}{\partial x} \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \cos(yg). \right]$
	$ \left[-\left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \right] $
LE	$\left] - \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \cos(yg).$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v73

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

I.1 A função cujo gráfico representa a metade inferior da esfera de centro (0, 0, 0) e raio 4 é:

- A $f(x,y) = -\sqrt{-x^2 y^2 + 16}$
- B $f(x, y) = -\sqrt{-x^2 y^2 + 2}$
- C $f(x,y) = \sqrt{-x^2 y^2 + 16}$.
- $D f(x, y) = \sqrt{-x^2 y^2 + 4}.$
- $[E] f(x,y) = -\sqrt{-x^2 y^2 + 4}.$

I.2 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} 0}{k}.$
- $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k} 0}{k}.$
- $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$
- $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$
- $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} 0}{k}.$

1.3 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x - y^2$ em (3, -4) na direção do vetor $\vec{v} = (1, 0)$ é:

- A 1.
- $\boxed{\mathsf{B}}$ -4.
- C -3.
- D -2.
- E 2.

1.4 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- $\overline{|A|}$ Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
- $\overline{|B|}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).
- $\overline{\mathbb{C}}$ Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
- $\overline{\square}$ Se f não é diferenciável em (a,b), então f não possui derivadas dirigidas em todas as direções no ponto (a,b).
- $oxed{\mathsf{E}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f\notin C^1(D_f)$.

1.5 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A parábolas e um ponto.
- B retas.
- C circunferências e um ponto.
- D hipérboles.
- E elipsóides e um ponto.

1.6 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:

- $\boxed{\mathsf{A}}\ (1/2,1/2)$ associado a $\lambda=-2$
- $|\mathsf{B}|$ (1/2, 1/2) associado a $\lambda = 1$.
- C (2, -1) associado a $\lambda = 1$.
- $\boxed{\mathsf{D}}$ (2, -1) associado a $\lambda = -1$.
- [E] (-1,2) associado a $\lambda=2$.

1.7 Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{sen}(yg) + \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$
- $\boxed{\mathsf{B}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{cos}(yg) + \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
- $\boxed{ \mathbb{D} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg). }$

1.8 Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

- $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
- $\left[\mathsf{B} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m^2.$
- $\boxed{\mathbb{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m}.$
- $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
- $\begin{bmatrix}
 \mathsf{E} & \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$

1.9 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x-y)}$. Então, o domínio da função é:

- $\overline{|B|} D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$

I.10 Considere a função real de duas variáveis reais $f(x,y) = -x^2 + (y+2)^2 + y^3 - 4y$. Então:

- $\begin{bmatrix} A \end{bmatrix}$ (0, -2/3) é um maximizante local de f.
- $|\mathsf{B}|$ (0, –2/3) é um minimizante local de f.
- |C| (0,0) é um maximizante local de f.
- $|\mathsf{D}|$ (0,0) é um minimizante local de f.
- |E| (0,2/3) é um ponto de sela de f.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v74

- **l.1** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se não existe um plano tangente ao gráfico de f no ponto (a, b), então $f \notin C^1(D_f)$.
 - B Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
 - C Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).
 - \square Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).
 - $\mid E \mid$ Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
- **1.2** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x y = 1 é:
 - |A| (1/2, -1/2) associado a $\lambda = -2$.
 - $|\mathsf{B}|$ (1/2, -1/2) associado a $\lambda = 1$.
 - (2,1) associado a $\lambda = 1$.
 - D (2, 1) associado a $\lambda = -2$.
 - [E] (2,1) associado a $\lambda = -1$.
- **I.3** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{h \to 0} \frac{\frac{0}{h^4} 0}{h}.$
 - $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$
- **1.4** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln{(x+y)}}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}$
 - B $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
- **1.5** Considere a função real de duas variáveis reais $f(x, y) = -x^2 (y 2)^2 + y^3 4y$. Então:
 - |A| (0, -2/3) é um maximizante local de f.
 - B (0, -2/3) é um minimizante local de f.
 - (0,0) é um ponto de sela de f.
 - $\boxed{\mathsf{D}}$ (0,0) é um minimizante local de f.
 - |E| (0,2/3) é um ponto de sela de f.

1.6	A derivada dirigida da função real de duas variáveis reais $f(x,y)=x+y^2$ em $(2,-1)$ na direção do vetor $\vec{v}=(0,1)$ é:
Δ	_3.
E	3. -2. 1. 4.
	$1 \over 2$
LE	
1.7_	As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
Δ	
_	hipérboles.
	parábolas e um ponto.
_ =	elipsóides e um ponto.
E	elipses e um ponto.
1.8	_
_	$f(x,y) = -\sqrt{-x^2 - y^2 + 2}.$
_	$f(x,y) = -\sqrt{-x^2 - y^2 + 16}.$
	$f(x,y) = \sqrt{-x^2 - y^2 + 4}.$
	$f(x,y) = \sqrt{-x^2 - y^2 + 2}.$
L	$f(x,y) = \sqrt{-x^2 - y^2 + 16}.$
	a^2f
	Sejam $f(x,y)=\cos(yg)$ e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
	Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial f}{\partial x \partial y}(x,y)$ é igual a: $\int -\frac{\partial g}{\partial x} \sin(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg).$
Δ	
A	$] - \frac{\partial g}{\partial x} \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg). $
E	
	$ \frac{\partial g}{\partial x} \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{cos}(yg). $ $ \frac{\partial g}{\partial x} \operatorname{cos}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). $ $ \frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). $ $ \frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{cos}(yg). $ $ \frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{cos}(yg). $ $ \frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \operatorname{cos}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). $
	$ \begin{array}{l} -\frac{\partial g}{\partial x} \operatorname{sen}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{cos}(yg). \\ \\ \frac{\partial g}{\partial x} \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \\ \frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x\partial y} \operatorname{sen}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \\ \frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x\partial y} \operatorname{sen}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{cos}(yg). \\ \\ \frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x\partial y} \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \\ \frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x\partial y} \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \\ \operatorname{Considere a função} f(x,y) = \frac{y^2}{(x+y^2)^2} \operatorname{com domínio} D_f \ e \ o \ \operatorname{conjunto} C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f, \ m \in \mathbb{R}. \ \operatorname{Então}: \\ \\ \lim_{(x,y) \to (0,0)} f(x,y) = 1. \end{array} $
E I.10	$ \begin{array}{l} -\frac{\partial g}{\partial x} \operatorname{sen}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{cos}(yg). \\ \vdots \\ \frac{\partial g}{\partial x} \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \\ - \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{sen}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \\ - \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{sen}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{cos}(yg). \\ \vdots \\ \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \\ Considere a função f(x,y) = \frac{y^2}{(x+y^2)^2} \operatorname{com domínio } D_f \text{ e o conjunto } C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f, \ m \in \mathbb{R}. \text{ Então:} \\ \vdots \\ \lim_{(x,y) \to (0,0) \atop (x,y) \in C_m} f(x,y) = 1. \end{array} $
E I.10	$ \begin{array}{l} -\frac{\partial g}{\partial x} \operatorname{sen}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{cos}(yg). \\ \vdots \frac{\partial g}{\partial x} \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots - \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{sen}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots - \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{sen}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{cos}(yg). \\ \vdots \cdot \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \cdot \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \cdot \left(\frac{\operatorname{lim}}{(x,y) \to (0,0)} f(x,y) = \frac{y^2}{(x+y^2)^2} \operatorname{com dominio } D_f \text{ e o conjunto } C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f, \ m \in \mathbb{R}. \text{ Então:} \\ \vdots \cdot \left(\frac{\operatorname{lim}}{(x,y) \to (0,0)} f(x,y) = \frac{1}{m}. \\ \vdots \cdot \left(\frac{\operatorname{lim}}{(x,y) \to (0,0)} f(x,y) = \frac{1}{m}. \\ \vdots \cdot \left(\frac{\operatorname{lim}}{(x,y) \to (0,0)} f(x,y) = \frac{1}{m}. \\ \end{array} \right) $
E I.10	$ \begin{array}{l} -\frac{\partial g}{\partial x} \operatorname{sen}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{cos}(yg). \\ \vdots \frac{\partial g}{\partial x} \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots - \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{sen}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots - \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{sen}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{cos}(yg). \\ \vdots \cdot \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \cdot \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \cdot \left(\frac{\operatorname{lim}}{(x,y) \to (0,0)} f(x,y) = \frac{y^2}{(x+y^2)^2} \operatorname{com dominio } D_f \text{ e o conjunto } C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f, \ m \in \mathbb{R}. \text{ Então:} \\ \vdots \cdot \left(\frac{\operatorname{lim}}{(x,y) \to (0,0)} f(x,y) = \frac{1}{m}. \\ \vdots \cdot \left(\frac{\operatorname{lim}}{(x,y) \to (0,0)} f(x,y) = \frac{1}{m}. \\ \vdots \cdot \left(\frac{\operatorname{lim}}{(x,y) \to (0,0)} f(x,y) = \frac{1}{m}. \\ \end{array} \right) $
E I.10	$ \begin{array}{l} -\frac{\partial g}{\partial x} \operatorname{sen}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{cos}(yg). \\ \vdots \frac{\partial g}{\partial x} \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots - \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{sen}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots - \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{sen}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{cos}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial^2 g}{\partial x\partial y}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial g}{\partial x}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial g}{\partial x}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial g}{\partial x}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial g}{\partial x}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial g}{\partial x}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial g}{\partial x}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial g}{\partial x}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial g}{\partial x}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial g}{\partial x}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \operatorname{cos}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial g}{\partial x}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{\partial y} + y\frac{\partial g}{\partial x}\right) \operatorname{cos}(yg). \\ \vdots \left(\frac{\partial g}{\partial x} + y\frac{\partial g}{\partial x}\right) \operatorname{cos}(yg) - \left(y\frac{\partial g}{$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v75

- 1.1 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:
 - A $f(x,y) = \sqrt{-x^2 y^2 + 2}$.
 - B $f(x, y) = \sqrt{-x^2 y^2 + 4}$.
 - C $f(x,y) = -\sqrt{-x^2 y^2 + 2}$
 - $D f(x, y) = -\sqrt{-x^2 y^2 + 4}$
 - $[E] f(x, y) = -\sqrt{-x^2 y^2 + 16}$
- **1.2** Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k}-1}{k}.$
 - $\boxed{\mathsf{B}} \lim_{k \to 0} \frac{\frac{0}{k} 0}{k}.$
 - $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} 0}{k}.$
 - $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k} 0}{k}.$
 - $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} 0}{k}.$
- **1.3** Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \frac{\partial g}{\partial x} \operatorname{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg).$

 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
 - $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$
- **1.4** Considere a função real de duas variáveis reais $f(x,y) = -x^2 + (y+2)^2 + y^3 4y$. Então:
 - $\boxed{\mathsf{A}}$ (0,0) é um minimizante local de f.
 - $\overline{|B|}$ (0,2/3) é um ponto de sela de f.
 - $\overline{|C|}$ (0,2/3) é um maximizante local de f.
 - $\overline{|D|}$ (0,2/3) é um minimizante local de f.
 - (0,0) é um ponto de sela de f.
- **1.5** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:
 - $\boxed{\mathsf{A}}\ (1/2,1/2)$ associado a $\lambda=1$.
 - $\overline{|B|}$ (1/2, 1/2) associado a $\lambda = -2$.
 - $\overline{|C|}$ (1/2, 1/2) associado a $\lambda = 2$.
 - $\boxed{\mathsf{D}}$ (2, -1) associado a $\lambda = -1$.
 - $oxed{\mathsf{E}}$ (2, -1) associado a $\lambda=1$.

I	A] parabolóides e um ponto.
E	B elipses e um ponto.
(parábolas e um ponto.
	circunferências e um ponto.
E	retas.
	Considere a função $f(x,y)=\frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m=\{(t,mt^2):t\in\mathbb{R}\}\cap D_f,\ m\in\mathbb{R}.$ Então: $\overline{A}\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}}f(x,y)=m.$
	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
E	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
	Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln{(y - x)}}$. Então, o domínio da função é:
	$A D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
_	$B D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
	$D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$
_	$D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
E	$D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
1.9	A derivada dirigida da função real de duas variáveis reais $f(x,y)=x-y^2$ em $(3,-4)$ na direção do vetor $\vec{v}=(1,0)$ é:
_	$\Delta $ -2 .
E	$\begin{bmatrix} 3 \\ -1 \end{bmatrix}$.
_	
E	

1.10 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das

|E| Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então não existe um plano tangente ao gráfico de

A Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f\notin C^0(D_f)$.

 $oxed{C}$ Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .

 \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

1.6 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

proposições é verdadeira.

f em (a, b).

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v76

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

- $[A] \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
- $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
- $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
- $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
- $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$

I.2 Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \, \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \, \tfrac{\partial^2 g}{\partial \mathsf{x} \, \partial \mathsf{y}} \right) \mathsf{cos}(yg) + \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \, \mathsf{sen}(yg).$
- $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{sen}(yg) + \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \cos(yg).$
- $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \cos(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \operatorname{sen}(yg).$

1.3 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:

- A $f(x, y) = -\sqrt{-x^2 y^2 + 16}$
- B $f(x,y) = \sqrt{-x^2 y^2 + 2}$
- $|C| f(x,y) = -\sqrt{-x^2 y^2 + 2}$
- $\boxed{\mathsf{D}} \ f(x,y) = \sqrt{-x^2 y^2 + 16}.$
- $|E| f(x,y) = -\sqrt{-x^2 y^2 + 4}.$

1.4 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A parabolóides e um ponto.
- B hipérboles.
- C elipsóides e um ponto.
- D elipses e um ponto.
- E circunferências e um ponto.

1.5 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, 1) na direção do vetor $\vec{v} = (0, 1)$ é:

- A -4.
- B -1.
- C 2.
- D -2.
- E 3.

I.6 O ponto crítico da função real de duas variáveis reals $f(x,y) = x^2 + y^2$ com restrição $x + y = 1$ é: A $(1/2, 1/2)$ associado a $\lambda = -2$.
$oxed{B}$ (2, -1) associado a $\lambda=-1$.
$\boxed{C}\ (1/2,1/2)$ associado a $\lambda=1$.
$\overline{ D }$ (1/2, 1/2) associado a $\lambda=2$.
\boxed{E} (-1,2) associado a $\lambda=2$.
1.7 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das
proposições é verdadeira. A Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b) .
B Se f não é diferenciável em (a, b) , então f não possui derivadas dirigidas em todas as direções no ponto (a, b) .
C Se f não possui derivadas dirigidas em todas as direções no ponto (a, b) , então $f \notin C^1(D_f)$.
\square Se não existe um plano tangente ao gráfico de f em (a, b) , então f não admite derivadas parciais de 1^a ordem em (a, b) .
$oxed{E}$ Se f é diferenciável em D_f , então $f\in C^1(D_f)$.
I.8 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln{(y - x)}}$. Então, o domínio da função é:
$ \boxed{A} D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}. $
B $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$
C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
1.9 Considere a função real de duas variáveis reais $f(x,y) = x^3 + (x-3)^2 + 6x - y^2$. Então: A (0,0) é um minimizante local de f .

|B| (-2/3,0) é um maximizante local de f.

|C| (2/3,0)é um maximizante local de f.

 $\overline{\mathbb{D}}$ (-2/3,0) é um minimizante local de f.

 $\boxed{\mathsf{E}}$ (2/3,0) é um ponto de sela de f.

I.10 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 $\boxed{\mathsf{A}} \lim_{h \to 0} \frac{\frac{h^3}{h^4} - 0}{h}.$

 $\begin{array}{c|c}
 & h \to 0 & h \\
\hline
B & \lim_{h \to 0} \frac{h^3}{h^4} - 1 \\
\hline
C & \lim_{h \to 0} \frac{h^5}{h} - 0 \\
\hline
h & h
\end{array}$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v77

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

I.1 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{0}{h^4}-0}{h}.$
- $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{0}{h^2}-0}{h}.$

1.2 Considere a função real de duas variáveis reais $f(x,y) = x^3 + (x-3)^2 + 6x - y^2$. Então:

- $\boxed{\mathsf{A}}$ (2/3,0) é um maximizante local de f.
- $\boxed{\mathsf{B}}\ (-2/3,0)$ é um ponto de sela de f.
- (-2/3,0)é um minimizante local de f.
- $\boxed{\mathsf{D}}$ (2/3,0) é um ponto de sela de f.
- [E] (-2/3,0) é um maximizante local de f.

1.3 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- A Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
- B Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).

Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então não existe um plano tangente ao gráfico de f em (a, b).

- D Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
- $oxed{\mathsf{E}}$ Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

1.4 Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{sen}(yg) \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$

- $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$
- $\boxed{\mathsf{E}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$

1.5 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A circunferências e um ponto.
- B retas.
- C hipérboles.
- D parabolóides e um ponto.
- E elipsóides e um ponto.

	O ponto critico da função real de duas variaveis reals $f(x,y) = x^2 + y^2$ com restrição $x + y = 1$ e:
Α	$\frac{\lambda}{2}$ (2, -1) associado a $\lambda = -1$.
E	$(2,-1)$ associado a $\lambda=1$.
C	$(1/2,1/2)$ associado a $\lambda=-2$.
	$(1/2,1/2)$ associado a $\lambda=1$.
E	$(1/2,1/2)$ associado a $\lambda=2$.
1.7	A derivada dirigida da função real de duas variáveis reais $f(x,y)=x-y^2$ em $(3,-4)$ na direção do vetor $\vec{v}=(1,0)$ é:
A	A = A
E	3 1. C –2.
	-1.
E	
1.8	A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:
	$A f(x,y) = \sqrt{-x^2 - y^2 + 16}.$
E	$f(x,y) = -\sqrt{-x^2 - y^2 + 2}.$
	$f(x,y) = -\sqrt{-x^2 - y^2 + 4}.$
	$\int f(x,y) = -\sqrt{-x^2 - y^2 + 16}.$
E	$f(x,y) = \sqrt{-x^2 - y^2 + 4}.$
	\mathbf{v}^2
1.9	Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
A	
	$(x,y)\in C_m$
E	$(x,y) \rightarrow (0,0)$
[$(x,y) \in C_m$
	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
	1
Ľ	$(x,y) \xrightarrow{(x,y) \in C_m} (0,0) \xrightarrow{(x,y) \in C_m} m^2$
E	$\lim_{(x,y)\to(0,0)} f(x,y) = 0.$
	$(x,y) \rightarrow (0,0)$ $(x,y) \in C_m$
1 10	O Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln{(x+y)}}$. Então, o domínio da função é:
1.1C	
	$\overline{B} D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
	$ D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}. $
_	$ D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}. $
_	

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v78

- **I.1** Considere a função real de duas variáveis reais $f(x,y) = -x^2 (y-2)^2 + y^3 4y$. Então:
 - |A| (0, -2/3) é um maximizante local de f.
 - [B] (0,0) é um minimizante local de f.
 - (0,0) é um maximizante local de f.
 - D (0,0) é um ponto de sela de f.
 - [E] (0,2/3) é um minimizante local de f.
- **1.2** Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m^2}.$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m.$
- **1.3** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, 1) na direção do vetor $\vec{v} = (0, 1)$ é:
 - A -2
 - B 2.
 - C 3.
 - D 4
 - E 1.
- **1.4** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(y-x)}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 > 2) \land (y \neq x 1)\}.$
 - $\overline{|\mathsf{B}|} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- **1.5** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parabolóides e um ponto.
 - B parábolas e um ponto.
 - C elipses e um ponto.
 - D circunferências e um ponto.
 - | E | hipérboles.

1.6	Sejam	D_f	um	subconjunto	aberto	de IR²	e f	uma	função	real	de dua	as v	variáveis	reais c	om	domínio	D_f .	Indique	qual	das
	osições			leira		.a. I		_	. ~											

|A| Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .

B Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).

 \square Se f é diferenciável em D_f , então $f \in C^1(D_f)$.

 \square Se não existe um plano tangente ao gráfico de f em (a, b), então f não é contínua em (a, b).

 $\boxed{\mathsf{E}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é diferenciável em (a,b).

1.7 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:

A
$$f(x,y) = \sqrt{-x^2 - y^2 + 4}$$

B
$$f(x,y) = \sqrt{-x^2 - y^2 + 2}$$
.

$$|C| f(x, y) = \sqrt{-x^2 - y^2 + 16}$$

$$D f(x, y) = -\sqrt{-x^2 - y^2 + 4}$$

$$[E] f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$

1.8 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é:

$$\boxed{\mathsf{A}}$$
 (-2,1) associado a $\lambda=-1$.

$$\boxed{\mathsf{B}}$$
 (-2,1) associado a $\lambda=1$.

$$\lceil C \rceil$$
 $(-1/2, -1/2)$ associado a $\lambda = -1$.

$$\square$$
 $(-1/2, -1/2)$ associado a $\lambda = -2$.

$$|E| (-1/2, -1/2)$$
 associado a $\lambda = 2$.

I.9 Sejam
$$f(x,y) = \operatorname{sen}(yg)$$
 e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

$$\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{cos}(yg) + \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

$$\boxed{ \bigcirc \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) - \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg). }$$

$$\boxed{\mathsf{E}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{sen}(yg) + \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \cos(yg).$$

I.10 Seja
$$\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$
 Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{0}{k^4} - 0}{k}.$$

$$\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v79

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

1.1 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:

$$A f(x,y) = \sqrt{-x^2 - y^2 + 16}$$

B
$$f(x, y) = -\sqrt{-x^2 - y^2 + 2}$$

C
$$f(x,y) = -\sqrt{-x^2 - y^2 + 4}$$
.

$$D f(x,y) = -\sqrt{-x^2 - y^2 + 16}$$

$$[E] f(x, y) = \sqrt{-x^2 - y^2 + 4}.$$

I.2 Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} - \tfrac{\partial g}{\partial \mathsf{x}} \operatorname{sen}(yg) - \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g\right) y \tfrac{\partial g}{\partial \mathsf{x}} \cos(yg).$$

$$\boxed{\mathsf{B}} \frac{\partial g}{\partial x} \cos(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$$

$$\boxed{ \bigcirc \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) - \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg). }$$

$$\boxed{\mathsf{E}} - \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg).$$

I.3 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-1}{h}.$$

$$\mathbb{B} \lim_{h \to 0} \frac{\frac{h^3}{h^2} - 0}{h}.$$

$$\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$$

$$\boxed{\mathsf{E}} \lim_{h \to 0} \frac{\frac{0}{h^4} - 0}{h}.$$

1.4 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x + y)}$. Então, o domínio da função é:

B
$$D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$$

C
$$D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$$

$$\boxed{\mathsf{D}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 > 2) \land (y \neq x - 1)\}.$$

1.5 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x - y = 1 é:

- $\boxed{\mathsf{A}}\ (1/2,-1/2)$ associado a $\lambda=1$.
- $\boxed{\mathsf{B}}$ (2, 1) associado a $\lambda = -2$.
- $\boxed{\mathsf{C}}$ (2,1) associado a $\lambda=-1$.
- $\boxed{\mathsf{D}}$ (1/2, -1/2) associado a $\lambda=2$.
- | E | (2,1) associado a $\lambda = 1$.

	A derivada dirigida da função real de duas variáveis reais $f(x,y)=x-y^2$ em $(3,1)$ na direção do vetor $\vec{v}=(0,1)$ é:
	$\frac{\lambda}{2} = 1$.
[
	3 –2. 4. O 3.
	$\equiv 1.$
1.7	As curvas de nível da função $f(x,y)=x^2+y^2$ são:
[/	
E	
	retas.
	elipses e um ponto.
E	parabolóides e um ponto.
1.8	Considere a função real de duas variáveis reais $f(x,y)=x^2+(y-2)^2-y^3+4y$. Então:
A	A = (0, -2/3) é um maximizante local de f .
E	(0,2/3) é um maximizante local de f .
((0,2/3) é um minimizante local de f .
	0 (0,0) é um minimizante local de f .
[(0,-2/3) é um ponto de sela de f .
1.9	$(x,y) \to (0,0)$ $(x,y) \in C_m$
	$ (x,y) \mapsto (0,0) $ $ (x,y) \in C_m $
	$ \underset{(x,y) \to (0,0)}{\lim} f(x,y) = 0. $
[$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
1.10	Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das
	posições é verdadeira.
[
E	Se f é diferenciável em (a, b) , então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
Fir	n.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v80

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

- **I.1** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (3, -4) na direção do vetor $\vec{v} = (1, 0)$ é:
 - A 4.
 - B -4.
 - C 2.
 - D 1.
 - $\boxed{\mathsf{E}}$ -1.
- **1.2** Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \frac{\partial g}{\partial v} \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$

 - $\boxed{ \square \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg). }$
- **1.3** Considere a função real de duas variáveis reais $f(x, y) = x^3 + (x 3)^2 + 6x y^2$. Então:
 - A = (-2/3, 0) é um ponto de sela de f.
 - $\boxed{\mathsf{B}}$ (0,0) é um ponto de sela de f.
 - (2/3,0) é um maximizante local de f.
 - $\boxed{\mathsf{D}}$ (2/3,0) é um ponto de sela de f.
 - |E| (-2/3,0) é um minimizante local de f.
- 1.4 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:
 - $|A| f(x, y) = \sqrt{-x^2 y^2 + 16}$
 - B $f(x, y) = \sqrt{-x^2 y^2 + 4}$.
 - $C f(x, y) = -\sqrt{-x^2 y^2 + 2}$
 - $D f(x, y) = -\sqrt{-x^2 y^2 + 4}$
 - $E f(x, y) = \sqrt{-x^2 y^2 + 2}$
- **1.5** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x y = 1 é:
 - |A| (1/2, -1/2) associado a $\lambda = -2$.
 - $|\mathsf{B}|$ (2, 1) associado a $\lambda = -2$.
 - |C| (1/2, -1/2) associado a $\lambda = 1$.
 - $|\mathsf{D}|$ (2,1) associado a $\lambda=1$.
 - [E] (2,1) associado a $\lambda = -1$.
- **1.6** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipsóides e um ponto.
 - B parábolas e um ponto.
 - C elipses e um ponto.
 - D circunferências e um ponto.
 - | E | parabolóides e um ponto.

```
1.7 Considere a função real de duas variáveis reais f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x - y)}. Então, o domínio da função é:
  A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.
  C D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}
  \square D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.
  oxed{\mathsf{E}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 > 2) \land (y \neq x - 1)\}.
1.8 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f. Indique qual das
proposições é verdadeira.
   \overline{\mathsf{A}} Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).
   B Se \frac{\partial^2 f}{\partial x \partial y}(a, b) \neq \frac{\partial^2 f}{\partial y \partial x}(a, b), então não existe um plano tangente ao gráfico de f em (a, b).
  \square Se f admite derivadas parciais de 1<sup>a</sup> ordem em D_f, então f é diferenciável em D_f.
  |D| Se não existe um plano tangente ao gráfico de f no ponto (a,b), então f \notin C^0(D_f).
  |\mathsf{E}| Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então não existe um plano tangente ao gráfico de
        f em (a, b).
1.9 Considere a função f(x,y) = \frac{y^2}{(x+y^2)^2} com domínio D_f e o conjunto C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}. Então:
       \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.
        \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.

\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.

\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2.

  \boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.
I.10 Seja \frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases} Então, \frac{\partial^2 f}{\partial x^2}(0,0) pode ser obtida a partir da expressão:
 \boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{0}{h^4}-0}{h}.
  Fim.
```

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

√81

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

- **I.1** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parabolóides e um ponto.
 - B elipses e um ponto.
 - C elipsóides e um ponto.
 - D circunferências e um ponto.
 - El parábolas e um ponto.
- **1.2** O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x y = -1 é:
 - |A| (-1/2, 1/2) associado a $\lambda = -1$.
 - $\boxed{\mathsf{B}}\ (-1/2,1/2)$ associado a $\lambda=2$.
 - C (1,2) associado a $\lambda = -1$.
 - D (1,2) associado a $\lambda = 1$.
 - [E] (1,2) associado a $\lambda = 2$.
- **1.3** Considere a função real de duas variáveis reais $f(x, y) = x^2 + (y 2)^2 y^3 + 4y$. Então:
 - |A| (0, -2/3) é um ponto de sela de f.
 - |B| (0,2/3) é um minimizante local de f.
 - |C| (0, -2/3) é um maximizante local de f.
 - $\boxed{\mathsf{D}}$ (0,0) é um minimizante local de f.
 - |E| (0,0) é um ponto de sela de f.
- **1.4** Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

 - $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{0}{k}-0}{k}.$

 - $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} 0}{k}.$
- **1.5** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se não existe um plano tangente ao gráfico de f no ponto (a, b), então f não é diferenciável em (a, b).
 - B Se f não é diferenciável em D_f , então f não admite derivadas parciais de 1^a ordem em D_f .
 - |C| Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).
 - \square Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .
 - |E| Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

- **1.6** Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então: $\boxed{\mathbb{A}} \lim_{(x,y) \to (0,0)} f(x,y) = 1.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m.$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
 - $\boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
- **1.7** Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{sen}(yg) \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \cos(yg).$

 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
 - $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \, \mathsf{sen}(yg).$
- **1.8** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (3, -4) na direção do vetor $\vec{v} = (1, 0)$ é:
- A 3.
- B 1.
- C -2.
- D -4.
- E -3.
- 1.9 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:
 - A $f(x,y) = \sqrt{-x^2 y^2 + 4}$
 - B $f(x,y) = -\sqrt{-x^2 y^2 + 4}$
 - $|C| f(x,y) = \sqrt{-x^2 y^2 + 16}.$
 - $D f(x,y) = \sqrt{-x^2 y^2 + 2}.$
 - E $f(x, y) = -\sqrt{-x^2 y^2 + 16}$.
- **I.10** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln{(x y)}}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $\overline{|\mathsf{B}|} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1) \}.$

Fim

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v82

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

$$\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$$

$$\boxed{C} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$$

$$\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$$

$$\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$$

1.2 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$$

$$\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{0}{h^2}-0}{h}.$$

$$\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$$

I.3 Sejam $f(x,y)=\cos(xg)$ e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y\partial x}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} - \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$$

$$\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$$

$$\boxed{\mathsf{D}} - \frac{\partial g}{\partial v} \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$$

$$\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$$

1.4 Considere a função real de duas variáveis reais $f(x,y) = x^2 + (y-2)^2 - y^3 + 4y$. Então:

- A (0,2/3) é um maximizante local de f.
- $\boxed{\mathsf{B}}\ (0,2/3)$ é um ponto de sela de f.
- $oxed{C}$ (0,0) é um ponto de sela de f.
- $\boxed{\mathsf{D}}\ (0,-2/3)$ é um maximizante local de f.
- [E] (0, -2/3) é um ponto de sela de f.

1.5 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira. A Se não existe um plano tangente ao gráfico de f em (a,b) , então f não admite derivadas parciais de 1^a ordem em (a,b) . B Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$. C Se f não é diferenciável em (a,b) , então f não possui derivadas dirigidas em todas as direções no ponto (a,b) . D Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então $f \notin C^1(D_f)$. E Se f é diferenciável em (a,b) , então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.	
1.6 As curvas de nível da função $f(x, y) = x^2 + y^2$ são: A circunferências e um ponto. B hipérboles. C elipses e um ponto. D parábolas e um ponto. E retas.	
1.7 A derivada dirigida da função real de duas variáveis reais $f(x,y)=x+y^2$ em $(3,1)$ na direção do vetor $\vec{v}=(0,1)$ é:	
1.8 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:	

1.9 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x - y = -1 é:

1.10 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2-2y^2+4}}{\ln(y-x)}$. Então, o domínio da função é:

A $f(x,y) = -\sqrt{-x^2 - y^2 + 4}$. B $f(x,y) = -\sqrt{-x^2 - y^2 + 16}$. C $f(x,y) = -\sqrt{-x^2 - y^2 + 2}$. D $f(x,y) = \sqrt{-x^2 - y^2 + 16}$. E $f(x,y) = \sqrt{-x^2 - y^2 + 2}$.

A (1,2) associado a $\lambda=1$. B (1,2) associado a $\lambda=-1$. C (-1/2,1/2) associado a $\lambda=2$. D (-1/2,1/2) associado a $\lambda=-1$. E (-1/2,1/2) associado a $\lambda=-2$.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v83

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^4} - 0}{h}.$$

$$\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{0}{h^4}-0}{h}.$$

$$\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-1}{h}.$$

1.2 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:

A
$$f(x,y) = \sqrt{-x^2 - y^2 + 16}$$

B
$$f(x, y) = -\sqrt{-x^2 - y^2 + 4}$$

C
$$f(x,y) = \sqrt{-x^2 - y^2 + 4}$$

$$D f(x,y) = \sqrt{-x^2 - y^2 + 2}$$

$$|E| f(x, y) = -\sqrt{-x^2 - y^2 + 16}.$$

1.3 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

$$\boxed{\mathsf{B}} - \frac{\partial g}{\partial v} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$$

1.4 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A circunferências e um ponto.
- B elipses e um ponto.
- C hipérboles. D retas.
- E parábolas e um ponto.

1.5 Considere a função real de duas variáveis reais $f(x,y) = x^2 + (y-2)^2 - y^3 + 4y$. Então:

- |A| (0,2/3) é um minimizante local de f.
- |B| (0,0) é um minimizante local de f.
- |C| (0, -2/3) é um maximizante local de f.
- |D| (0,0) é um ponto de sela de f.
- |E| (0,2/3) é um maximizante local de f.

1.6 Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:	
$ \operatorname{B} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2. $	

- $\boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
- $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
- **1.7** O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x y = 1 é:
 - |A| (1/2, -1/2) associado a $\lambda = 1$.
 - $\boxed{\mathsf{B}}\ (1/2,-1/2)$ associado a $\lambda=-2$.
 - C (1/2, -1/2) associado a $\lambda = 2$.
 - $\boxed{\mathsf{D}}$ (2, 1) associado a $\lambda = -1$.
 - [E] (2,1) associado a $\lambda = 1$.
- **1.8** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln{(x+y)}}$. Então, o domínio da função é:

 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
- **1.9** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-2, 2) na direção do vetor $\vec{v} = (0, 1)$ é:
- A 4.
 B -2.
- C -4.
- D 1.
- E 3.
- **I.10** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - $oxed{\mathsf{A}}$ Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .
 - B Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é diferenciável em (a, b).
 - $oxedsymbol{\Box}$ Se não existe um plano tangente ao gráfico de f em (a,b), então f não é contínua em (a,b).
 - D Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
 - $oxed{\mathsf{E}}$ Se f é diferenciável em (a,b), então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v84

- **I.1** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln{(x+y)}}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 < 2) \land (y \neq x 1)\}$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
 - $| E | D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1) \}.$
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = x^3 + (x-3)^2 + 6x y^2$. Então:
 - A (-2/3,0) é um ponto de sela de f.
 - [B] (2/3,0) é um maximizante local de f.
 - (-2/3,0) é um maximizante local de f.
 - $\boxed{\mathsf{D}}$ (0,0) é um maximizante local de f.
 - [E] (2/3,0) é um ponto de sela de f.
- **1.3** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A circunferências e um ponto.
 - B retas.
 - C elipses e um ponto.
 - D parabolóides e um ponto.
 - E elipsóides e um ponto.
- 1.4 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:
 - $|A| f(x, y) = \sqrt{-x^2 y^2 + 4}$
 - B $f(x, y) = -\sqrt{-x^2 y^2 + 2}$
 - $C f(x, y) = \sqrt{-x^2 y^2 + 16}$
 - $| D | f(x, y) = -\sqrt{-x^2 y^2 + 16}$
 - $|E| f(x, y) = -\sqrt{-x^2 y^2 + 4}$
- **1.5** Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
 - $\boxed{\mathbb{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$

1.6 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$$

$$\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k^4} - 0}{k}.$$

$$\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$$

1.7 Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} - \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}}\right) \mathsf{sen}(yg) - \left(y \frac{\partial g}{\partial \mathsf{y}} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \cos(yg).$$

$$\boxed{\mathsf{B}} - \frac{\partial g}{\partial x} \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg).$$

$$\boxed{ \mathbb{D} \left(\frac{\partial g}{\partial \mathbf{x}} + y \frac{\partial^2 g}{\partial \mathbf{x} \partial y} \right) \cos(yg) - \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial \mathbf{x}} \sin(yg). }$$

1.8 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é:

- A (-2,1) associado a $\lambda = -1$.
- [B] (1, -2) associado a $\lambda = 1$.
- $\lceil \mathsf{C} \rceil$ (-1/2, -1/2) associado a $\lambda = -1$.
- $\boxed{\mathsf{D}}\ (-1/2,-1/2)$ associado a $\lambda=-2$.
- [E] (-1/2, -1/2) associado a $\lambda = 2$.

1.9 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

|A| Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).

- $\overline{|B|}$ Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
- $\overline{\mathbb{C}}$ Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .
- \square Se não existe um plano tangente ao gráfico de f no ponto (a,b), então f não é diferenciável em (a,b).

 \Box Se f possui derivadas dirigidas em todas as direções no ponto (a, b), então f é diferenciável em (a, b).

1.10 A derivada dirigida da função real de duas variáveis reais $f(x,y) = x + y^2$ em (-2,2) na direção do vetor $\vec{v} = (0,1)$ é:

- A 1.
- B 4.
- C 3.
- D -2.
- E 1.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v85

- **I.1** Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$

 - $\boxed{\mathsf{E}} \lim_{k \to 0} \frac{\frac{0}{k^4} 0}{k}.$
- **1.2** Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
- **1.3** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln{(y-x)}}$. Então, o domínio da função é:
 - A $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - B $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- **1.4** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:
 - $\boxed{\mathsf{A}}$ (1/2,1/2) associado a $\lambda=-2$.
 - $\boxed{\mathsf{B}}$ (2, -1) associado a $\lambda = -1$.
 - $\boxed{\mathsf{C}}$ (1/2, 1/2) associado a $\lambda=1$.
 - $\boxed{\mathsf{D}}$ (2, -1) associado a $\lambda=1$.
 - [E] (-1,2) associado a $\lambda = 2$.
- **1.5** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (3, -4) na direção do vetor $\vec{v} = (1, 0)$ é:
 - A 4.
 - B -4.
 - C -2.
 - D 1.
 - E -1.

1.6	Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reals com domínio D_f . Indique qual das
proj	posições é verdadeira.
A	Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
Е	Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
	Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então f não é contínua em (a,b) .

- **1.7** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
- A hinérholes
- B elipsóides e um ponto.
- C parabolóides e um ponto.
- D retas.
- E circunferências e um ponto.
- **I.8** Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \mathsf{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \, \mathsf{sen}(xg).$
 - $\boxed{\mathsf{B}} \frac{\partial g}{\partial v} \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$

 - $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- 1.9 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:

 \square Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f \notin C^1(D_f)$.

 $oxed{\mathsf{E}}$ Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f\notin \mathcal{C}^0(D_f)$.

- A $f(x,y) = -\sqrt{-x^2 y^2 + 4}$.
- B $f(x,y) = \sqrt{-x^2 y^2 + 2}$.
- $|C| f(x,y) = -\sqrt{-x^2 y^2 + 2}.$
- $\overline{|D|} f(x, y) = -\sqrt{-x^2 y^2 + 16}.$
- E $f(x,y) = \sqrt{-x^2 y^2 + 4}$
- **I.10** Considere a função real de duas variáveis reais $f(x,y) = x^3 (x-3)^2 6x y^2$. Então:
 - |A| (-2/3,0)é um maximizante local de f.
 - [B] (2/3,0) é um maximizante local de f.
 - (2/3,0) é um minimizante local de f.
 - |D| (0,0) é um maximizante local de f.
 - |E| (0,0) é um ponto de sela de f.

| Fim.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v86

nº de aluno:

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Sejam $f(x,y)=\cos(xg)$ e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial v\partial x}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} - \frac{\partial g}{\partial v} \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$$

$$\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$$

$$C$$
 $-\frac{\partial g}{\partial v} \operatorname{sen}(xg) + \left(x\frac{\partial g}{\partial x} + g\right) x\frac{\partial g}{\partial v} \cos(xg).$

$$\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$$

$$\boxed{\mathsf{E}} - \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$$

1.2 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$$

$$\mathbb{B}\lim_{h\to 0}\frac{\frac{0}{h^5}-0}{h}.$$

1.3 A derivada dirigida da função real de duas variáveis reais $f(x,y) = x - y^2$ em (3,-4) na direção do vetor $\vec{v} = (1,0)$ é:

- A -3.
- B -4.
- C 1.
- D 3.
- E -1

I.4 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x+y)}$. Então, o domínio da função é:

- A $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

1.5 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A hipérboles.
- B circunferências e um ponto.
- C elipsóides e um ponto.
- D retas.
- E parabolóides e um ponto.

1.6 Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:	
$ \mathbb{B} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0. $	
$ \boxed{C} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2. $	
$ \boxed{D} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m. $	
$ \left[\mathbb{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 1. $	
1.7 O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição $x-y=-1$ é: A $(-1/2,1/2)$ associado a $\lambda=-1$.	
\fbox{B} (1,2) associado a $\lambda=2$.	
$\begin{bmatrix} C \end{bmatrix}$ (1,2) associado a $\lambda = -1$.	
$D (-1/2, 1/2)$ associado a $\lambda = -2$. $E (1,2)$ associado a $\lambda = 1$.	
$oxed{E}$ (1, 2) associado a $\lambda=1$.	
I.8 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das	
proposições é verdadeira. \boxed{A} Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .	
\square Se não existe um plano tangente ao gráfico de f em (a,b) , então f não admite derivadas parciais de 1^a ordem em (a,b) .	
C Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b) .	
\square Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então f não é diferenciável em (a,b) .	
$oxed{E}$ Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.	
1.9 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:	
$\boxed{A} f(x,y) = \sqrt{-x^2 - y^2 + 4}.$	
B $f(x,y) = \sqrt{-x^2 - y^2 + 16}$.	
$C f(x,y) = -\sqrt{-x^2 - y^2 + 2}.$	
$ E f(x,y) = -\sqrt{-x^2 - y^2 + 16}.$	
1.10 Considere a função real de duas variáveis reais $f(x,y) = -x^2 + (y+2)^2 + y^3 - 4y$. Então:	
A = (0, 2/3) é um minimizante local de f .	
$\begin{bmatrix} B \end{bmatrix} (0,0)$ é um minimizante local de f .	
C $(0, -2/3)$ é um minimizante local de f .	
\boxed{D} $(0,2/3)$ é um maximizante local de f . \boxed{E} $(0,0)$ é um ponto de sela de f .	
Fim.	

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v87

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 A função cujo gráfico representa a metade inferior da esfera de centro (0, 0, 0) e raio 2 é:

- A $f(x, y) = \sqrt{-x^2 y^2 + 4}$.
- B $f(x,y) = \sqrt{-x^2 y^2 + 2}$.
- $C f(x, y) = \sqrt{-x^2 y^2 + 16}$
- D $f(x,y) = -\sqrt{-x^2 y^2 + 4}$.
- $[E] f(x,y) = -\sqrt{-x^2 y^2 + 16}.$

1.2 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é:

- |A| (-2,1) associado a $\lambda=1$.
- [B] (-1/2, -1/2) associado a $\lambda = 2$.
- (-2,1) associado a $\lambda = -1$.
- D (1, -2) associado a $\lambda = 1$.
- $|\mathsf{E}|$ (-1/2, -1/2) associado a $\lambda = -1$.

1.3 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-2, 2) na direção do vetor $\vec{v} = (1, 0)$ é:

- |A|-2.
- B -4.
- C -3.
- D 4.
- |E| 1.

1.4 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições \hat{g} verdadoire.

oposições e verdadeira.

- A Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é diferenciável em (a, b).
- B Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
- C Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .
- |D| Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
- | E | Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .

1.5 Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \cos(xg).$

1.6 Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 - x^3 + 6x + y^2$. Então:

- $|\mathsf{A}|$ (0,0) é um minimizante local de f .
- |B| (-2/3,0) é um maximizante local de f.
- C (2/3,0) é um maximizante local de f.
- D (0,0) é um ponto de sela de f.
- |E|(0,0) é um maximizante local de f.

- **1.7** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parábolas e um ponto.
 - B hipérboles.
 - C elipsóides e um ponto.
 - D elipses e um ponto.
 - circunferências e um ponto.
- Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
 - $\lim_{(x,y)\to(0,0)} f(x,y) = m^2.$
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
- **I.9** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 - $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$
- **I.10** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln{(y x)}}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1) \}.$
 - $\boxed{\mathsf{B}} \ \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - $|E| D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$

Fim

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v88

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial v}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} - \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y}\right) \mathsf{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$$

$$\boxed{ \bigcirc \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) - \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg). }$$

$$\boxed{\mathsf{E}} - \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}}\right) \mathsf{sen}(yg) - \left(y \frac{\partial g}{\partial \mathsf{y}} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

1.2 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:

A
$$f(x,y) = -\sqrt{-x^2 - y^2 + 16}$$
.

B
$$f(x,y) = \sqrt{-x^2 - y^2 + 2}$$
.

C
$$f(x,y) = \sqrt{-x^2 - y^2 + 16}$$

$$D f(x, y) = -\sqrt{-x^2 - y^2 + 4}$$

$$[E] f(x,y) = -\sqrt{-x^2 - y^2 + 2}.$$

1.3 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-1, 2) na direção do vetor $\vec{v} = (0, 1)$ é:

- A 4.
- B -2.
- C 3.
- D 1.
- $|\mathsf{E}| 1$.

1.4 Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

$$\begin{bmatrix} A & \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$$

$$\mathbb{B} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$$

$$\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$$

I.5 Seja $\frac{\partial f}{\partial x}(x)$	$(x,y) = \begin{cases} \frac{x^3}{x^4 + y} \\ 0 \end{cases}$	se $(x, y) \neq (0, 0)$, se $(x, y) = (0, 0)$.	Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
	0		
	<u>0</u> .		

- $\boxed{\mathsf{C}} \lim_{h \to 0} \frac{\frac{h^3}{h^4} 1}{h}.$
- $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$
- $\boxed{\mathsf{E}} \lim_{h \to 0} \frac{\frac{h^3}{h^5} 0}{h}.$
- **1.6** Considere a função real de duas variáveis reais $f(x,y) = x^2 + (y-2)^2 y^3 + 4y$. Então:
 - A (0,2/3) é um minimizante local de f.
 - [B] (0, -2/3) é um minimizante local de f.
 - (0,2/3) é um maximizante local de f.
 - \square (0,0) é um ponto de sela de f.
 - [E] (0,0) é um minimizante local de f.
- **1.7** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln{(x-y)}}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$

 - $\boxed{\mathsf{D}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- **1.8** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A retas.
 - B circunferências e um ponto.
 - C parabolóides e um ponto.
 - D hipérboles.
 - |E| elipsóides e um ponto.
- **I.9** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
 - B Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
 - $\boxed{\mathsf{C}}$ Se f não é diferenciável em (a,b), então f não possui derivadas dirigidas em todas as direções no ponto (a,b).
 - \square Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f \notin C^1(D_f)$.
 - $oxed{\mathsf{E}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).
- **I.10** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x y = -1 é:
 - |A| (-1/2, 1/2) associado a $\lambda = 2$.
 - $|\mathsf{B}|$ (-1/2, 1/2) associado a $\lambda = -1$.
 - |C| (1,2) associado a $\lambda = 1$.
 - $|\mathsf{D}|$ (1,2) associado a $\lambda=2$.
 - |E| (-1/2, 1/2) associado a $\lambda = -2$.

1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v89

- **I.1** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x y = 1 é:
 - A (2,1) associado a $\lambda = -2$.
 - |B| (2, 1) associado a $\lambda = -1$.
 - C (1/2, -1/2) associado a $\lambda = -2$.
 - D (1/2, -1/2) associado a $\lambda = 1$.
 - [E] (1/2, -1/2) associado a $\lambda = 2$.
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = x^3 (x-3)^2 6x y^2$. Então:
 - |A| (-2/3,0) é um ponto de sela de f.
 - [B] (-2/3,0) é um maximizante local de f.
 - C (2/3,0) é um ponto de sela de f.
 - $\boxed{\mathsf{D}}\ (-2/3,0)$ é um minimizante local de f.
 - [E] (0,0) é um ponto de sela de f.
- **1.3** Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
- **1.4** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln(x + y)}$. Então, o domínio da função é:
 - $\boxed{A} D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 < 2) \land (y \neq x 1)\}.$
 - B $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$

 - $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathsf{IR}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- **1.5** Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
 - $\underset{(x,y) \in C_m}{\lim} f(x,y) = m.$
 - $\boxed{\mathbb{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
 - $\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m^2.$

1.6 As curvas de nível da função $f(x, y) = x^2 + y^2$ são: A circunferências e um ponto.
B parábolas e um ponto.
C parabolides e um ponto.
D retas.
E hipérboles.
1.7 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira. A Se f é diferenciável em (a,b) , então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.
B Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então $f \notin C^0(D_f)$.
$oxed{C}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então f não é contínua em (a,b) .
D Se f não possui derivadas dirigidas em todas as direções no ponto (a, b) , então não existe um plano tangente ao gráfico de f em (a, b) .
$oxed{E}$ Se f possui derivadas dirigidas em todas as direções no ponto (a,b) , então f é diferenciável em (a,b) .
I.8 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
$\boxed{A} \lim_{h \to 0} \frac{\frac{o}{h^2} - o}{h}.$
$\boxed{B} \lim_{h \to 0} \frac{\frac{0}{h^5} - 0}{h}.$
$\boxed{C} \lim_{h \to 0} \frac{\frac{h^3}{h^4} - 1}{h}.$
$\boxed{D} \lim_{h \to 0} \frac{\frac{h^3}{h^4} - 0}{h}.$
$\boxed{E} \lim_{h \to 0} \frac{\frac{h^3}{h^5} - 0}{h}.$
1.9 A função cujo gráfico representa a metade superior da esfera de centro $(0,0,0)$ e raio 2 é: $A = \int f(x,y) = \sqrt{-x^2 - y^2 + 16}$.
B $f(x,y) = \sqrt{-x^2 - y^2 + 4}$. C $f(x,y) = \sqrt{-x^2 - y^2 + 2}$.
$ C f(x,y) = \sqrt{-x^2 - y^2 + 2}. $ $ D f(x,y) = -\sqrt{-x^2 - y^2 + 2}. $ $ E f(x,y) = -\sqrt{-x^2 - y^2 + 16}. $
I.10 A derivada dirigida da função real de duas variáveis reais $f(x,y) = x + y^2$ em $(3,-2)$ na direção do vetor $\vec{v} = (0,1)$ é:
B 1.
B 1. C -4. D 3.
E -1 .

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v90

- **I.1** Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
- **1.2** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é:
 - A = (-1/2, -1/2) associado a $\lambda = -2$.
 - B (-1/2, -1/2) associado a $\lambda = 2$.
 - $\lceil \mathsf{C} \rceil (-1/2, -1/2)$ associado a $\lambda = -1$.
 - (-2,1) associado a $\lambda = 1$.
 - $|\mathsf{E}|$ (1, -2) associado a $\lambda = 1$.
- **1.3** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipses e um ponto.
 - B parábolas e um ponto.
 - C parabolóides e um ponto.
 - D circunferências e um ponto.
 - E elipsóides e um ponto.
- **I.4** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \ \frac{\partial g}{\partial v} \cos(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \operatorname{sen}(xg)$

 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial v} + x \frac{\partial^2 g}{\partial v \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial v} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- **1.5** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .
 - B Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é diferenciável em (a, b).
 - C Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
 - \square Se não existe um plano tangente ao gráfico de f em (a, b), então f não é contínua em (a, b).
 - |E| Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .

1.6	Considere a função	real de duas v	ariáveis reais f((x,y) = (x -	$(3)^2 - x^3 + 6$	$6x + y^2$. Então:
-----	--------------------	----------------	-------------------	--------------	-------------------	---------------------

- $\boxed{\mathsf{A}}$ (0,0) é um ponto de sela de f.
- $\boxed{\mathsf{B}}$ (2/3,0) é um ponto de sela de f.
- (-2/3,0) é um maximizante local de f.
- $\boxed{\mathsf{D}}$ (0,0) é um maximizante local de f.
- [E] (2/3,0) é um minimizante local de f.

1.7 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x - y)}$. Então, o domínio da função é:

- $|A| D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1) \}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$

1.8 Seja
$$\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$
 Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \lim_{k \to 0} \frac{\frac{0}{k} 0}{k}.$
- $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} 0}{k}.$
- $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k}-1}{k}.$
- $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^5}-0}{k}.$

- A $f(x, y) = -\sqrt{-x^2 y^2 + 16}$
- B $f(x,y) = \sqrt{-x^2 y^2 + 2}$
- $|C| f(x, y) = \sqrt{-x^2 y^2 + 16}.$
- $| D | f(x,y) = \sqrt{-x^2 y^2 + 4}$
- $|E| f(x,y) = -\sqrt{-x^2 y^2 + 2}$

1.10 A derivada dirigida da função real de duas variáveis reais
$$f(x,y) = x + y^2$$
 em $(-2,2)$ na direção do vetor $\vec{v} = (1,0)$ é:

- A 4.
- B -3.
- C 3.
- D 2.
- E 1.

| Fim.

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v91

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

- **I.1** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A retas.
 - B circunferências e um ponto.
 - C elipsóides e um ponto.
 - D parábolas e um ponto.
 - E hipérboles.
- **1.2** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, -2) na direção do vetor $\vec{v} = (0, 1)$ é:
 - A 1.
 - B -4.
 - C -3.
 - D 4.
 - E 2.
- **1.3** O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x + y = -1 é:
 - |A| (-1/2, -1/2) associado a $\lambda = -1$.
 - B (1, -2) associado a $\lambda = 1$.
 - |C| (-1/2, -1/2) associado a $\lambda = 2$.
 - $\boxed{\mathsf{D}}\ (-1/2, -1/2)$ associado a $\lambda = -2$.
 - |E| (-2,1) associado a $\lambda = 1$.
- **1.4** Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m^2}.$

 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_{-}}} f(x,y) = 1.$
- 1.5 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:
 - $|A| f(x,y) = -\sqrt{-x^2 y^2 + 2}$
 - B $f(x,y) = -\sqrt{-x^2 y^2 + 16}$.
 - $C f(x,y) = \sqrt{-x^2 y^2 + 4}$
 - $D f(x,y) = \sqrt{-x^2 y^2 + 2}$
 - $[E] f(x,y) = -\sqrt{-x^2 y^2 + 4}.$

1.6 Considere a função real de duas variáveis reais $f(x,y) = -x^2 - (y-2)^2 + y^3 - 4y$. Então:

- $\boxed{\mathsf{A}}$ (0,0) é um maximizante local de f.
- [B] (0,0) é um ponto de sela de f.
- (0,2/3) é um minimizante local de f.
- $\boxed{\mathsf{D}}$ (0, -2/3) é um minimizante local de f.
- [E] (0,2/3) é um maximizante local de f.

I.7 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} - \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$$

- $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- $\boxed{\mathsf{D}} \frac{\partial g}{\partial y} \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial y} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$
- $\boxed{\mathsf{E}} \tfrac{\partial g}{\partial y} \operatorname{sen}(xg) + \left(x \tfrac{\partial g}{\partial x} + g \right) x \tfrac{\partial g}{\partial y} \operatorname{cos}(xg).$

1.8 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x + y)}$. Então, o domínio da função é:

- A $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- $\boxed{\mathsf{E}} \ \ D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$

1.9 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- A Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
- $\boxed{\mathsf{B}}$ Se f não é diferenciável em (a,b), então f não possui derivadas dirigidas em todas as direções no ponto (a,b).
- |C| Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
- \square Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).
- [E] Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f \notin C^1(D_f)$.

I.10 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{0}{h^4}-0}{h}.$

- $\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{h^3}{h^5}-0}{h}.$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v92

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

- **1.1** Considere a função real de duas variáveis reais $f(x,y) = x^2 + (y-2)^2 y^3 + 4y$. Então:
 - |A| (0, -2/3) é um ponto de sela de f.
 - [B] (0,0) é um ponto de sela de f.
 - |C| (0,0) é um maximizante local de f.
 - |D| (0, -2/3) é um maximizante local de f.
 - [E] (0,2/3) é um ponto de sela de f.
- 1.2 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:
 - A $f(x, y) = \sqrt{-x^2 y^2 + 16}$
 - B $f(x,y) = -\sqrt{-x^2 y^2 + 16}$
 - $C f(x, y) = \sqrt{-x^2 y^2 + 2}$
 - $D f(x, y) = -\sqrt{-x^2 y^2 + 2}$
 - $[E] f(x, y) = -\sqrt{-x^2 y^2 + 4}$
- **1.3** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
 - B Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então não existe um plano tangente ao gráfico de f em (a, b).
 - |C| Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .
 - \square Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
 - [E] Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
- **1.4** Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $\underset{(x,y)\in C_m}{\lim} f(x,y) = 1.$
 - $\left[\mathsf{B} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m^2}.$
 - $\boxed{\mathbb{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m.$
 - $\square \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2.$
 - $\underset{(x,y) \in C_m}{\sqsubseteq} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 0.$
- **1.5** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln{(x+y)}}$. Então, o domínio da função é:
 - $\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$

1.6 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{0}{h^4}-0}{h}.$
- $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{0}{h^5}-0}{h}.$
- $\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$

I.7 Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{sen}(yg) + \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$

- $\boxed{\mathsf{D}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
- $\boxed{\mathsf{E}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) + \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$

1.8 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x - y^2$ em (3, 1) na direção do vetor $\vec{v} = (0, 1)$ é:

- A 1.
- B -2.
- C 2.
- D 3.
- E 1.

1.9 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A elipses e um ponto.
- B hipérboles.
- C circunferências e um ponto.
- D parábolas e um ponto.
- E parabolóides e um ponto.

1.10 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é:

- $\boxed{\mathsf{A}}\ (-1/2,-1/2)$ associado a $\lambda=-2$.
- $oxed{\mathsf{B}}\ (-1/2,-1/2)$ associado a $\lambda=-1$.
- $\boxed{\mathsf{C}}\ (-1/2,-1/2)$ associado a $\lambda=2$.
- $\boxed{\mathsf{D}}$ (-2,1) associado a $\lambda=-1$.
- (-2,1) associado a $\lambda = 1$.

 $1^{\circ} \ semestre \ do \ ano \ letivo \ 2019/20 \ -- \ LEAP+MIEPOL+MIETI, \ Departamento \ de \ Matemática, \ Universidade \ do \ Minho$

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v93

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(y - x)}}$. Então, o domínio da função é:

- $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 < 2) \land (y \neq -x + 1)\}$
- $\boxed{\mathsf{D}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- $oxed{\mathsf{E}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 < 2) \land (y \neq x 1)\}.$

1.2 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k} 0}{k}.$

1.3 Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

- $\boxed{\mathsf{D}} \ \frac{\partial g}{\partial x} \cos(yg) + \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \sin(yg).$

1.4 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- $\boxed{\mathsf{A}}$ Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).
- B Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então não existe um plano tangente ao gráfico de f em (a, b).
- C Se $\frac{\partial^2 f}{\partial x \partial y}(a, b) \neq \frac{\partial^2 f}{\partial y \partial x}(a, b)$, então não existe um plano tangente ao gráfico de f em (a, b).
- \square Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
- |E| Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .

1.5 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A retas.
- B elipsóides e um ponto.
- C parabolóides e um ponto.
- D circunferências e um ponto.
- E parábolas e um ponto.

1.6	Considere a função $f(x,y)=\frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m=\{(t,mt):t\in\mathbb{R}\}\cap D_f,\ m\in\mathbb{R}.$ Então:
Д	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
Е	
C	$(x,y) \in \mathcal{C}_m$
	$ (x,y) \to (0,0) $ $ (x,y) \in C_m $
E	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m.$
1.7	A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:
	$f(x,y) = \sqrt{-x^2 - y^2 + 2}.$
E	$f(x,y) = -\sqrt{-x^2 - y^2 + 4}$.
	$f(x,y) = \sqrt{-x^2 - y^2 + 4}$.
	$f(x,y) = -\sqrt{-x^2 - y^2 + 16}.$
E	$f(x,y) = \sqrt{-x^2 - y^2 + 16}.$
1.8	A derivada dirigida da função real de duas variáveis reais $f(x,y)=x+y^2$ em $(2,-2)$ na direção do vetor $\vec{v}=(0,1)$ é:
Α	
E	1. 4. -4.
C	$\frac{1}{2}$ 4.
	-4.
E	i 3.
I. 9 △	Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 - x^3 + 6x + y^2$. Então: $(-2/3,0)$ é um minimizante local de f .
E	(0,0) é um maximizante local de f .
	(0,0) é um minimizante local de f .
E	(-2/3,0) é um maximizante local de f .
I.10	
E	
E	
	$(1, -2)$ associated a $\Lambda - 1$.

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

√94

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(x+y)}}$. Então, o domínio da função é:

- $A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
- \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
- $| E | D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1) \}.$

1.2 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:

- A $f(x,y) = -\sqrt{-x^2 y^2 + 4}$.
- B $f(x,y) = \sqrt{-x^2 y^2 + 16}$
- $|C| f(x,y) = \sqrt{-x^2 y^2 + 4}.$
- $D f(x, y) = -\sqrt{-x^2 y^2 + 16}$
- $|E| f(x, y) = \sqrt{-x^2 y^2 + 2}$

1.3 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

 $\stackrel{\frown}{\mathsf{A}}$ Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).

B Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então não existe um plano tangente ao gráfico de f em (a, b).

- C Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).
- \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
- $\overline{|E|}$ Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.

1.4 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x - y^2$ em (3, 2) na direção do vetor $\vec{v} = (1, 0)$ é:

- |A| 1.
- B -2.
- C 4.
- D 3.
- |E|-4

1.5 O ponto crítico da função real de duas variáveis reals $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:

- $\begin{bmatrix} A \end{bmatrix}$ (2, -1) associado a $\lambda = -1$.
- $|\mathsf{B}|$ (1/2, 1/2) associado a $\lambda = -2$.
- |C| (1/2, 1/2) associado a $\lambda = 1$.
- $|\mathsf{D}|$ (-1,2) associado a $\lambda=2$.
- |E| (2, -1) associado a $\lambda = 1$.

1.6 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial v \partial x}(x,y)$ é igual a:

- $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

- $\boxed{\mathsf{E}} \frac{\partial g}{\partial y} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$

1.7	Considere a	função	real de duas	variáveis	reais $f(x, y)$	$(x) = x^3 - 1$	$(x - 3)^{-1}$	$)^2 - 6x -$	y^2 .	Então:

- $|\mathsf{A}|$ (2/3,0) é um maximizante local de f.
- $\overline{\mathsf{B}}$ (-2/3,0) é um minimizante local de f.
- \square (0,0) é um maximizante local de f.
- |E| (0,0) é um ponto de sela de f.

1.8 Seja
$$\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$
 Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \ \lim_{h \to 0} \frac{\frac{h^3}{h^4} 1}{h}.$
- $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{0}{h^5}-0}{h}.$
- $\boxed{D} \lim_{h \to 0} \frac{\frac{h^3}{h^5} 0}{h}.$ $\boxed{E} \lim_{h \to 0} \frac{\frac{h^3}{h^4} 0}{h}.$

1.9 Considere a função
$$f(x,y) = \frac{x^2}{(x+y)^2}$$
 com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

- $\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
- $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
- $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m.$
- $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2.$

$$\begin{bmatrix}
E
\end{bmatrix} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$$

- **1.10** As curvas de nível da função $f(x,y) = x^2 + y^2$ são:
 - |A| circunferências e um ponto.
 - B retas.
 - C parábolas e um ponto.
 - D elipses e um ponto.
 - E elipsóides e um ponto.

Fim

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v95

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} - \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y}\right) \mathsf{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$$

$$\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{cos}(yg) - \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

$$\boxed{\mathsf{D}} - \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}}\right) \mathsf{sen}(yg) - \left(y \frac{\partial g}{\partial \mathsf{y}} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

$$\mathbb{E} - \frac{\partial g}{\partial x} \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg).$$

1.2 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln{(x-y)}}$. Então, o domínio da função é:

$$A D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$$

$$\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$$

$$\square$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$

$$\square$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$

$$oxed{\mathsf{E}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$$

1.3 O ponto crítico da função real de duas variáveis reais
$$f(x,y) = x^2 + y^2$$
 com restrição $x - y = 1$ é:

$$|A|$$
 $(1/2, -1/2)$ associado a $\lambda = 1$.

B
$$(1/2, -1/2)$$
 associado a $\lambda = -2$.

$$|\mathsf{C}|$$
 (2,1) associado a $\lambda = -1$.

$$D$$
 (2, 1) associado a $\lambda = 1$.

$$|E|$$
 (2, 1) associado a $\lambda = -2$.

1.4 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:

$$|A| f(x,y) = \sqrt{-x^2 - y^2 + 4}$$

B
$$f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$

$$C f(x, y) = \sqrt{-x^2 - y^2 + 2}$$

$$D f(x, y) = \sqrt{-x^2 - y^2 + 16}$$

$$|E| f(x,y) = -\sqrt{-x^2 - y^2 + 4}$$

1.5 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-1, 2) na direção do vetor $\vec{v} = (0, 1)$ é:

- |A| 1.
- B 4.
- |C|-1.
- D -2.
- |E|-4

1.6	(Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
	Α	$\lim_{h\to 0}\frac{\frac{0}{h^4}-0}{h}.$
	В	$\lim_{h\to 0}\frac{\frac{h^3}{h^2}-1}{h}.$
	С	$\lim_{h\to 0}\frac{\frac{h^3}{h^2}-0}{h}.$
	D	$\lim_{h\to 0}\frac{\frac{h^3}{2h}-0}{h}.$
	Ε	$\lim_{h\to 0}\frac{\frac{0}{h^2}-0}{h}.$
		Considere a função real de duas variáveis reais $f(x,y) = -x^2 - (y-2)^2 + y^3 - 4y$. Então: $(0,0)$ é um ponto de sela de f .
Ī	В	(0,0) é um maximizante local de f .
Ī	C	(0,2/3) é um minimizante local de f .
		(0,-2/3) é um maximizante local de f .
Ī	E	(0,-2/3) é um ponto de sela de f .
1.8	(Considere a função $f(x,y)=\frac{x^2}{x^4+y}$ com domínio D_f e o conjunto $C_m=\{(t,mt^2):t\in\mathbb{R}\}\cap D_f,\ m\in\mathbb{R}.$ Então:
[Α	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
	В	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
	С	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
	D	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
		$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
1. 9 pro		Sejam D_f um subconjunto aberto de IR 2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das esições é verdadeira.
		Se não existe um plano tangente ao gráfico de f em (a, b) , então f não admite derivadas parciais de 1^a ordem em (a, b) .
	В	Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .
Ī	С	Se f é diferenciável em (a, b) , então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
		Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
	E	Se f não possui derivadas dirigidas em todas as direções no ponto (a, b) , então f não é diferenciável em (a, b) .
l.1		As curvas de nível da função $f(x,y)=x^2+y^2$ são: elipsóides e um ponto.
-	_	parábolas e um ponto.
	=	hipérboles.
_	_	parabolóides e um ponto.
-	=	circunferências e um ponto.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v96

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

- **I.1** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parabolóides e um ponto.
 - B circunferências e um ponto.
 - C elipsóides e um ponto.
 - D parábolas e um ponto.
 - E retas.
- 1.2 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:

$$A f(x,y) = \sqrt{-x^2 - y^2 + 2}$$

B
$$f(x, y) = \sqrt{-x^2 - y^2 + 16}$$

$$C f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$

$$D f(x, y) = \sqrt{-x^2 - y^2 + 4}.$$

$$|E| f(x, y) = -\sqrt{-x^2 - y^2 + 16}$$

1.3 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$$

$$\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{0}{h^4}-0}{h}.$$

$$\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-1}{h}.$$

1.4 Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

$$| \text{A} | \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 1.$$

$$\begin{bmatrix} \mathbf{B} \end{bmatrix} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$$

$$\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$$

$$\boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$$

$$\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$$

1.5 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira. A Se f é diferenciável em D_f , então $f \in C^1(D_f)$. B Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então $f \notin C^1(D_f)$. C Se f não é diferenciável em (a,b) , então f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então f não é contínua em (a,b) . E Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então $f \notin C^0(D_f)$.
1.6 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln(x + y)}$. Então, o domínio da função é: A $D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}$. B $D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}$. C $D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}$. D $D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}$. E $D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}$.
I.7 Considere a função real de duas variáveis reais $f(x,y) = -x^2 + (y+2)^2 + y^3 - 4y$. Então: A $(0,-2/3)$ é um minimizante local de f . B $(0,-2/3)$ é um maximizante local de f . C $(0,2/3)$ é um minimizante local de f . D $(0,0)$ é um maximizante local de f . E $(0,2/3)$ é um maximizante local de f .
I.8 O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição $x-y=-1$ é: A $(1,2)$ associado a $\lambda=2$. B $(-1/2,1/2)$ associado a $\lambda=-2$. C $(-1/2,1/2)$ associado a $\lambda=-1$. D $(-1/2,1/2)$ associado a $\lambda=2$. E $(1,2)$ associado a $\lambda=-1$.
I.9 Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a: $ \boxed{A} - \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \sin(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \sin(yg)}. $ $ \boxed{B} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \cos(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \sin(yg)}. $ $ \boxed{C} - \frac{\partial g}{\partial x} \sin(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg)}. $ $ \boxed{D} - \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \sin(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg)}. $ $ \boxed{E} \frac{\partial g}{\partial x} \cos(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \sin(yg)}. $
I.10 A derivada dirigida da função real de duas variáveis reais $f(x,y)=x-y^2$ em $(-1,-4)$ na direção do vetor $\vec{v}=(1,0)$ é: A = 2. $B = 1$. $C = -4$. $D = -2$. $E = 3$.
Fim.

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v97

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

- **I.1** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipsóides e um ponto.
 - B circunferências e um ponto.
 - C parábolas e um ponto.
 - D parabolóides e um ponto.
 - E elipses e um ponto.
- **1.2** Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C}} f(x,y) = m^2.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
 - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\begin{bmatrix}
 \mathsf{E} & \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.
 \end{bmatrix}$
- 1.3 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln{(y-x)}}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}$
 - $\overline{|\mathsf{B}|} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
 - $\overline{|C|}$ $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
 - $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- 1.4 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, -2) na direção do vetor $\vec{v} = (0, 1)$ é:
 - A -4.
 - B 1.
 - C 4.
 - D -3.
 - E 2.
- **I.5** Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$
 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

 - $\boxed{\mathsf{D}} \frac{\partial g}{\partial y} \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$

1.6	O ponto crítico d	a função real	de duas variáveis	rea is $f(x, v)$	$= x^2 + y$.² com restrição x – j	v = 1
1.0	o ponto critico a	a runção rear	ac adas variaveis	$ICais I(\Lambda, y)$	— ^ I y	Com restrição x	<i>y</i> —

- A (1/2, -1/2) associado a $\lambda = -2$.
- [B] (2,1) associado a $\lambda = 1$.
- (2,1) associado a $\lambda = -2.$
- \square (1/2, -1/2) associado a $\lambda = 1$.
- [E] (2,1) associado a $\lambda = -1$.

I.7 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{0}{h^4}-0}{h}.$
- $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^5}-0}{h}.$
- $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-1}{h}.$
- $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$
- $\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$

1.8 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- proposições é verdadeira. A Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
 - B Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então $f \notin C^1(D_f)$.
 - \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - \square Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
 - [E] Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).

1.9 Considere a função real de duas variáveis reais $f(x, y) = -x^2 - (y - 2)^2 + y^3 - 4y$. Então:

- $\boxed{\mathsf{A}}\ (0,2/3)$ é um maximizante local de f.
- $oxed{\mathsf{B}}$ (0,0) é um minimizante local de f .
- $\boxed{\mathsf{C}}$ (0,-2/3) é um ponto de sela de f.
- $\boxed{\mathsf{D}}$ (0,2/3) é um ponto de sela de f.
- E (0, -2/3) é um maximizante local de f.

I.10 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:

- A $f(x, y) = -\sqrt{-x^2 y^2 + 16}$
- B $f(x,y) = -\sqrt{-x^2 y^2 + 4}$.
- $C f(x,y) = \sqrt{-x^2 y^2 + 16}$
- D $f(x, y) = \sqrt{-x^2 y^2 + 4}$.
- E $f(x,y) = \sqrt{-x^2 y^2 + 2}$.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v98

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

- **1.1** Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 x^3 + 6x + y^2$. Então:
 - $\boxed{\mathsf{A}}\ (-2/3,0)$ é um minimizante local de f.
 - $\boxed{\mathsf{B}}\ (-2/3,0)$ é um ponto de sela de f.
 - (0,0) é um maximizante local de f.
 - \square (2/3,0) é um maximizante local de f.
 - [E] (2/3,0) é um ponto de sela de f.
- **1.2** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{h \to 0} \frac{\frac{h^3}{2h} 0}{h}.$
 - $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{0}{h^2}-0}{h}.$
 - $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-1}{h}.$

 - $\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{0}{h^4} 0}{h}.$
- **1.3** O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x y = -1 é:
 - A (1,2) associado a $\lambda = 1$.
 - |B| (-1/2, 1/2) associado a $\lambda = -2$.
 - C (1,2) associado a $\lambda = -1$.
 - |D| (-1/2, 1/2) associado a $\lambda = 2$.
 - |E| (-1/2, 1/2) associado a $\lambda = -1$.
- **I.4** Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \frac{\partial g}{\partial y} \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \operatorname{cos}(xg).$
 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$
 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- **1.5** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipsóides e um ponto.
 - B parabolóides e um ponto.
 - C retas.
 - D parábolas e um ponto.
 - | E | circunferências e um ponto.

1.6 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira. A Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então $f \notin C^0(D_f)$. B Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b) . C Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então $f \notin C^1(D_f)$. D Se não existe um plano tangente ao gráfico de f em (a,b) , então f não admite derivadas parciais de f 0 ordem em f 0. E Se f 1 não é diferenciável em f 1, então f 2 não possui derivadas dirigidas em todas as direções no ponto f 1.
1.7 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2-2y^2+4}}{\ln{(y-x)}}$. Então, o domínio da função é: $ \boxed{A} D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}. $ $ \boxed{B} D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}. $ $ \boxed{C} D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}. $ $ \boxed{D} D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}. $ $ \boxed{E} D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}. $
1.8 A função cujo gráfico representa a metade inferior da esfera de centro $(0,0,0)$ e raio 4 é: A $f(x,y) = -\sqrt{-x^2 - y^2 + 2}$. B $f(x,y) = \sqrt{-x^2 - y^2 + 2}$. C $f(x,y) = -\sqrt{-x^2 - y^2 + 4}$. D $f(x,y) = \sqrt{-x^2 - y^2 + 16}$. E $f(x,y) = \sqrt{-x^2 - y^2 + 4}$.
1.9 Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt): t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
I.10 A derivada dirigida da função real de duas variáveis reais $f(x,y) = x - y^2$ em $(-1,-4)$ na direção do vetor $\vec{v} = (1,0)$ é: A 2. B 1. C -4. D 3. E -2.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v99

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

- **1.1** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (2, 3) na direção do vetor $\vec{v} = (1, 0)$ é:
 - A 4.
 - B 2.
 - C 1.
 - $\boxed{\mathsf{D}}$ -1.
 - $\boxed{\mathsf{E}}$ -2.
- **1.2** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:
 - |A| (-1,2) associado a $\lambda=2$.
 - B (1/2, 1/2) associado a $\lambda = 1$.
 - $\lceil C \rceil$ (1/2, 1/2) associado a $\lambda = 2$.
 - \square (1/2, 1/2) associado a $\lambda = -2$.
 - [E] (2, -1) associado a $\lambda = -1$.
- **1.3** Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $| \text{Im}_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
 - $\begin{bmatrix} \mathsf{B} & \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.
 \end{bmatrix}$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
 - $\square \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
 - $\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m.$
- **1.4** Considere a função real de duas variáveis reais $f(x, y) = x^2 + (y 2)^2 y^3 + 4y$. Então:
 - |A|(0,-2/3) é um ponto de sela de f.
 - |B| (0, -2/3) é um maximizante local de f.
 - |C| (0,2/3) é um ponto de sela de f.
 - D (0, -2/3) é um minimizante local de f.
 - [E] (0,2/3) é um minimizante local de f.
- **1.5** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - |A| Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é diferenciável em (a,b).
 - |B| Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
 - |C| Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).
 - \square Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
 - |E| Se não existe um plano tangente ao gráfico de f em (a, b), então f não é contínua em (a, b).

1.6 Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial v \partial x}(x,y)$ é igual a:

 $\boxed{\mathsf{A}} \begin{array}{c} \frac{\partial g}{\partial v} \cos(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \sin(xg). \end{array}$

 $\boxed{ \bigcirc \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \sin(xg). }$

 $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \cos(xg).$

 $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

I.7 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

 $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$

 $\boxed{\mathsf{C}} \lim_{k \to 0} \frac{\frac{k^2}{k} - 0}{k}.$

 $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} - 0}{k}.$

I.8 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2-2y^2+4}}{\ln{(y-x)}}$. Então, o domínio da função é:

 $A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$

 $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathsf{IR}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}$

C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$

1.9 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

A circunferências e um ponto.

B parábolas e um ponto.

C elipses e um ponto.

D elipsóides e um ponto.

E parabolóides e um ponto.

1.10 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:

B $f(x,y) = -\sqrt{-x^2 - y^2 + 2}$.

 $C f(x,y) = -\sqrt{-x^2 - y^2 + 16}$

 $E f(x,y) = -\sqrt{-x^2 - y^2 + 4}$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v100

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

l.1 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- A Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então $f \notin C^1(D_f)$.
- B Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
- C Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
- $|\mathsf{D}|$ Se f não é diferenciável em (a,b), então f não possui derivadas dirigidas em todas as direções no ponto (a,b).
- $\mid E \mid$ Se f é diferenciável em D_f , então $f \in C^1(D_f)$.

1.2 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x - y = 1 é:

- $\begin{bmatrix} \mathsf{A} \end{bmatrix}$ (2, 1) associado a $\lambda = -2$.
- (1/2, -1/2) associado a $\lambda = 1$.
- C (1/2, -1/2) associado a $\lambda = -2$.
- $|\mathsf{D}|$ (2, 1) associado a $\lambda = 1$.
- [E] (1/2, -1/2) associado a $\lambda = 2$.

1.3 Sejam $f(x,y) = \operatorname{sen}(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

- $\boxed{\mathsf{E}} \left(\tfrac{\partial g}{\partial \mathbf{x}} + y \tfrac{\partial^2 g}{\partial \mathbf{x} \partial \mathbf{y}} \right) \mathsf{sen}(yg) + \left(y \tfrac{\partial g}{\partial \mathbf{y}} + g \right) y \tfrac{\partial g}{\partial \mathbf{x}} \mathsf{cos}(yg).$

1.4 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A hipérboles.
- B circunferências e um ponto.
- C elipsóides e um ponto.
- D parabolóides e um ponto.
- E elipses e um ponto.

1.5 Considere a função real de duas variáveis reais $f(x, y) = x^3 + (x - 3)^2 + 6x - y^2$. Então:

- |A| (-2/3,0) é um maximizante local de f.
- $|\mathsf{B}|$ (2/3,0) é um ponto de sela de f.
- |C| (0,0) é um maximizante local de f.
- $|\mathsf{D}|$ (2/3,0) é um maximizante local de f.
- [E] (2/3,0) é um minimizante local de f.

1.6 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
$\boxed{A} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\to(0,0)}} f(x,y) = \frac{1}{m}.$
$ \begin{bmatrix} B \end{bmatrix} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2. $
$ \begin{array}{c} (x,y) \in C_m \\ \hline C & \lim_{(x,y) \to (0,0)} f(x,y) = 0. \end{array} $
$\boxed{\mathbb{D}} \lim_{(x,y)\to(0,0)} f(x,y) = m.$
$(x,y) \to (0,0) \qquad m^2$ $(x,y) \in C_m$
1.7 A função cujo gráfico representa a metade inferior da esfera de centro $(0,0,0)$ e raio 4 é: A $f(x,y) = \sqrt{-x^2 - y^2 + 4}$.
B $f(x,y) = \sqrt{-x^2 - y^2 + 16}$. C $f(x,y) = -\sqrt{-x^2 - y^2 + 16}$.
1.8 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x-y)}$. Então, o domínio da função é: $\boxed{\underline{A}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y>-x) \land (x^2+y^2 \ge 2) \land (y \ne -x+1)\}.$
$ \begin{array}{ c c c c c }\hline \textbf{B} & D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}. \\\hline \textbf{C} & D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}. \end{array} $
$ \boxed{D} D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}. $ $ \boxed{E} D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}. $
1.9 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:
$ \boxed{A} \lim_{k \to 0} \frac{\frac{k^2}{k} - 0}{k}. $ $ \boxed{Q} = 0 $
$ C \lim_{k \to 0} \frac{\frac{k^2}{k^5} - 0}{k}. $ $ \frac{k^2}{k} - 1 $
$ \boxed{D} \lim_{k \to 0} \frac{\frac{k^2}{k} - 1}{k}. $ $ \boxed{D} \lim_{k \to 0} \frac{\frac{\mathfrak{d}^2}{k} - 0}{k}. $
$\boxed{E} \lim_{k \to 0} \frac{\frac{0}{k^4} - 0}{k}.$
I.10 A derivada dirigida da função real de duas variáveis reais $f(x,y) = x + y^2$ em $(3,-2)$ na direção do vetor $\vec{v} = (0,1)$ é: \boxed{A} 3.
B 4.C −1.
 B 4. C −1. D 1. E −4.
Fim.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v101

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{0}{h^2}-0}{h}.$
- $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-1}{h}.$

1.2 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x-y)}$. Então, o domínio da função é:

- A $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathsf{IR}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$

1.3 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x - y = 1 é:

- $\begin{bmatrix} \mathsf{A} \end{bmatrix}$ (2,1) associado a $\lambda = -1$.
- [B] (1/2, -1/2) associado a $\lambda = -2$.
- |C| (2, 1) associado a $\lambda = -2$.
- \square (1/2, -1/2) associado a $\lambda = 2$.
- [E] (1/2, -1/2) associado a $\lambda = 1$.

1.4 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- |A| Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é diferenciável em (a,b).
- B Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .
- C Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
- \square Se não existe um plano tangente ao gráfico de f em (a,b), então f não é contínua em (a,b).
- $oxed{\mathsf{E}}$ Se f é diferenciável em (a,b), então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.

1.5 Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
- $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$
- $\boxed{ \ \, } \boxed{ \ \, } \boxed{ \frac{\partial g}{\partial x} \cos(yg) \left(y\frac{\partial g}{\partial y} + g\right) y\frac{\partial g}{\partial x} \sin(yg). }$

I.6 □	
	3 2. C -3.
[<u>U</u>
	□ − 4.
	E -1 .
1.7 [/	A função cujo gráfico representa a metade inferior da esfera de centro $(0,0,0)$ e raio 4 é: $f(x,y) = -\sqrt{-x^2 - y^2 + 2}.$
	$ \vec{S} f(x,y) = \sqrt{-x^2 - y^2 + 16}.$
	$f(x,y) = \sqrt{-x^2 - y^2 + 4}$.
	$\int f(x,y) = \sqrt{-x^2 - y^2 + 2}.$
_	$ f(x,y) = -\sqrt{-x^2 - y^2 + 16}. $
_	
1.8	Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
[/	$\frac{\overline{\Delta}}{ \underset{(x,y)\in C_m}{\lim}} f(x,y) = 0.$
	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
	$ \bigcap_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} \lim_{f(x,y)} f(x,y) = \frac{1}{m}. $
	$\overline{\mathbb{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
1.9	As curvas de nível da função $f(x,y)=x^2+y^2$ são:
	hipérboles.
	parábolas e um ponto.
	circunferências e um ponto.
	retas.
	elipsóides e um ponto.
l. 1	O Considere a função real de duas variáveis reais $f(x,y) = x^3 + (x-3)^2 + 6x - y^2$. Então:
,	(-2/3,0) é um minimizante local de f .
	(0,0) é um minimizante local de f .
($\mathbb{C}(2/3,0)$ é um maximizante local de f .
	0 (0,0) é um ponto de sela de f .
	(0,0) é um maximizante local de f .

1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v102

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

I.1 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:

- A $f(x,y) = \sqrt{-x^2 y^2 + 16}$.
- B $f(x,y) = \sqrt{-x^2 y^2 + 2}$.
- C $f(x,y) = -\sqrt{-x^2 y^2 + 4}$.
- $[E] f(x, y) = \sqrt{-x^2 y^2 + 4}.$

1.2 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:

- A (2, -1) associado a $\lambda = 1$.
- [B] (1/2, 1/2) associado a $\lambda = 1$.
- $\begin{bmatrix} \mathsf{C} \end{bmatrix}$ (2, -1) associado a $\lambda = -1$.
- \square (-1,2) associado a $\lambda = 2$.
- E (1/2, 1/2) associado a $\lambda = 2$.

1.3 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reals com domínio D_f . Indique qual das proposições é verdadeira.

A Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é diferenciável em (a, b).

 $\boxed{\mathsf{B}}$ Se f admite derivadas parciais de 1ª ordem em D_f , então f é diferenciável em D_f .

C Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.

D Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .

 $\overline{|E|}$ Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

1.4 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

- $\underset{(x,y)\in C_m}{\lim} f(x,y) = 0.$
- $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
- $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
- $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
- $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$

.5	Seja $\frac{\partial f}{\partial x}$	$(x,y)=\bigg\{$	$0^{\frac{x^3}{x^4+y}}$	se $(x, y) \neq (0, 0)$, se $(x, y) = (0, 0)$.	Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
	$\frac{0}{h^5}$	`			

$$\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{0}{h^5}-0}{h}.$$

$$\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$$

$$\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$$

$$\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-1}{h}.$$

I.6 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln{(x+y)}}$. Então, o domínio da função é:

$$\boxed{\mathsf{A}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$$

$$\boxed{\mathsf{B}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$$

$$C$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

$$\square$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$

$$\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathsf{IR}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$$

1.7 A derivada dirigida da função real de duas variáveis reais $f(x,y) = x - y^2$ em (2,3) na direção do vetor $\vec{v} = (1,0)$ é:

- A 1
- B 4.
- C -3.
- D 1.
- E 3.

1.8 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A elipsóides e um ponto.
- B parabolóides e um ponto.
- C parábolas e um ponto.
- D hipérboles.
- E circunferências e um ponto.

1.9 Considere a função real de duas variáveis reais $f(x,y) = x^3 + (x-3)^2 + 6x - y^2$. Então:

- $\begin{bmatrix} A \end{bmatrix}$ (0,0) é um maximizante local de f.
- (-2/3,0) é um ponto de sela de f.
- $\overline{|C|}$ (0,0) é um ponto de sela de f.
- \square (2/3,0) é um maximizante local de f.
- $\boxed{\mathsf{E}}\ (-2/3,0)$ é um minimizante local de f.

I.10 Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} \left(\tfrac{\partial g}{\partial \mathbf{x}} + y \tfrac{\partial^2 g}{\partial \mathbf{x} \partial \mathbf{y}} \right) \mathsf{sen}(yg) + \left(y \tfrac{\partial g}{\partial \mathbf{y}} + g \right) y \tfrac{\partial g}{\partial \mathbf{x}} \cos(yg).$$

$$\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) - \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

$$\boxed{\mathsf{C}} \ \frac{\partial g}{\partial x} \cos(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \sin(yg).$$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v103

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

I.1 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{B}} \lim_{h \to 0} \frac{\frac{h^3}{h^2} 1}{h}.$
- $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$
- $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{2h}-0}{h}.$

1.2 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x - y = 1 é:

- $\boxed{\mathsf{A}}\ (1/2,-1/2)$ associado a $\lambda=1$.
- $\boxed{\mathsf{B}}\ (1/2,-1/2)$ associado a $\lambda=2$.
- (2,1) associado a $\lambda = 1$.
- $\boxed{\mathsf{D}}$ (1/2, -1/2) associado a $\lambda = -2$.
- [E] (2, 1) associado a $\lambda = -2$.

1.3 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- |A| Se f possui derivadas dirigidas em todas as direções no ponto (a, b), então f é diferenciável em (a, b).
- B Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
- $\lceil \mathsf{C} \rceil$ Se não existe um plano tangente ao gráfico de f em (a,b), então f não admite derivadas parciais de 1^a ordem em (a,b).
- \square Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.
- $oxed{\mathsf{E}}$ Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

1.4 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x - y^2$ em (3, 2) na direção do vetor $\vec{v} = (1, 0)$ é:

- A 1.
- B 2.
- C -4.
- D 3.
- E 4.

1.5 Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) + \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$
- $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{sen}(yg) + \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$
- $\boxed{ \ \, } \boxed{ \ \, } \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg).$

1.6 Considere a função $f(x,y) = \frac{x^2}{(x^2 + y)^2}$ com domínio D_f e o conjunto $C_m = \{(t, mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então: $\boxed{ A | \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m}}.$

 $\begin{bmatrix}
B & \lim_{(x,y)\to(0,0) \\ (x,y)\in C_m} f(x,y) = m^2.
\end{bmatrix}$

 $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$

 $\left[\underline{\mathsf{E}} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in \mathcal{C}_m}} f(x,y) = 0.$

1.7 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(x+y)}}$. Então, o domínio da função é:

 $\boxed{A} D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}$

 $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$

C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$

 \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$

1.8 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

A elipsóides e um ponto.

B circunferências e um ponto.

C elipses e um ponto.

D retas.

E parábolas e um ponto.

1.9 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:

A $f(x,y) = \sqrt{-x^2 - y^2 + 2}$.

B $f(x,y) = -\sqrt{-x^2 - y^2 + 2}$.

C $f(x,y) = -\sqrt{-x^2 - y^2 + 4}$

 $|E| f(x,y) = \sqrt{-x^2 - y^2 + 4}.$

I.10 Considere a função real de duas variáveis reais $f(x,y) = -x^2 + (y+2)^2 + y^3 - 4y$. Então:

 $\boxed{\mathsf{A}}$ (0,0) é um minimizante local de f.

 $oxed{\mathsf{B}}$ (0,2/3) é um minimizante local de f .

 $\boxed{\mathsf{C}}$ (0,0) é um ponto de sela de f.

 $\boxed{\mathsf{D}}$ (0,2/3) é um ponto de sela de f.

 $\boxed{\mathsf{E}}$ (0, -2/3) é um ponto de sela de f.

1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v104

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

- **1.1** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (3, 2) na direção do vetor $\vec{v} = (1, 0)$ é:
 - A 4.
 - B -2.
 - C 1.
 - D 3.
 - E -4.
- **1.2** O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x y = -1 é:
 - |A| (-1/2, 1/2) associado a $\lambda = 2$.
 - B (-1/2, 1/2) associado a $\lambda = -2$.
 - C (1,2) associado a $\lambda = 2$.
 - $\lceil \mathsf{D} \rceil$ (1,2) associado a $\lambda = -1$.
 - [E] (-1/2, 1/2) associado a $\lambda = -1$.
- **1.3** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipsóides e um ponto.
 - B circunferências e um ponto.
 - C hipérboles.
 - D elipses e um ponto.
 - E retas.
- **1.4** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 - $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$
 - $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{\mathsf{0}}{h^2}-\mathsf{0}}{h}.$
- **1.5** Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \frac{\partial g}{\partial y} \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$

 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

1.6 Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 - x^3 + 6x + y^2$. Então:	
$oxed{A}$ (0,0) é um maximizante local de f .	
$oxed{B}$ (2/3,0) é um minimizante local de f .	
C $(-2/3,0)$ é um ponto de sela de f .	

1.7 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(x+y)}}$. Então, o domínio da função é:

 $\boxed{ D } (-2/3,0)$ é um minimizante local de f. $\boxed{ E } (0,0)$ é um minimizante local de f.

$$\square$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$

$$C$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$

$$\square$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$

$$|E| D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$$

1.8 Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

$$\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$$

$$\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$$

$$\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$$

$$\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$$

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$$

I.9 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- A Se não existe um plano tangente ao gráfico de f no ponto (a, b), então f ∉ C¹(D_f).
- B Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
- C Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
- \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

I.10 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:

A
$$f(x,y) = \sqrt{-x^2 - y^2 + 2}$$

B
$$f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$

C
$$f(x,y) = \sqrt{-x^2 - y^2 + 16}$$

D
$$f(x, y) = \sqrt{-x^2 - y^2 + 4}$$
.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v105

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

1.1 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:

- A $f(x, y) = \sqrt{-x^2 y^2 + 2}$.
- B $f(x,y) = -\sqrt{-x^2 y^2 + 16}$
- C $f(x,y) = -\sqrt{-x^2 y^2 + 2}$
- D $f(x,y) = \sqrt{-x^2 y^2 + 4}$.
- $[E] f(x, y) = \sqrt{-x^2 y^2 + 16}.$

1.2 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2-2y^2+4}}{\ln{(x+y)}}$. Então, o domínio da função é:

- $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
- $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- $oxed{\mathsf{E}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$

1.3 Considere a função real de duas variáveis reais $f(x, y) = -x^2 - (y - 2)^2 + y^3 - 4y$. Então:

- |A| (0, -2/3) é um minimizante local de f.
- (0,2/3) é um maximizante local de f.
- (0,2/3) é um ponto de sela de f.
- $\boxed{\mathsf{D}}$ (0, -2/3) é um ponto de sela de f.
- |E| (0, -2/3) é um maximizante local de f.

1.4 Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

- $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
- $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
- $\square \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
- $\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 0.$

1.5 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- |A| Se não existe um plano tangente ao gráfico de f em (a,b), então f não admite derivadas parciais de 1^a ordem em (a,b).
- B Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
- C Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .
- \square Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
- |E| Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é diferenciável em (a, b).

I.6 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

 $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k^5}-0}{k}.$

 $\begin{array}{c|c}
\hline
 & k \to 0 & k \\
\hline
 & \lim_{k \to 0} \frac{\frac{k^2}{k} - 1}{k}.
\end{array}$

 $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{0}{k^4} - 0}{k}.$

1.7 O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição x+y=-1 é:

A (1,-2) associado a $\lambda=1$.

 $| \mathsf{B} | (-2,1)$ associado a $\lambda = 1$.

|C| (-1/2, -1/2) associado a $\lambda = -2$.

 $\boxed{\mathsf{D}}\ (-1/2,-1/2)$ associado a $\lambda=-1$.

[E] (-1/2, -1/2) associado a $\lambda = 2$.

1.8 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

A circunferências e um ponto.

B retas.

C elipses e um ponto.

D elipsóides e um ponto.

E parabolóides e um ponto.

1.9 Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial v \partial x}(x,y)$ é igual a:

 $\boxed{\mathsf{A}} \ \tfrac{\partial g}{\partial y} \cos(xg) + \left(x \tfrac{\partial g}{\partial x} + g\right) x \tfrac{\partial g}{\partial y} \operatorname{sen}(xg).$

 $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

 $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \cos(xg).$

 $\boxed{ \boxed{ }} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

 $\boxed{\mathsf{E}} \ \tfrac{\partial g}{\partial y} \cos(xg) - \left(x \tfrac{\partial g}{\partial x} + g\right) x \tfrac{\partial g}{\partial y} \operatorname{sen}(xg).$

1.10 A derivada dirigida da função real de duas variáveis reais $f(x,y) = x + y^2$ em (3,-2) na direção do vetor $\vec{v} = (1,0)$ é:

A 1.

B -2.

C 4.

D -3.

E -4.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v106

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

I.1 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{h \to 0} \frac{\frac{0}{h^4} - 0}{h}.$$

$$\lim_{h \to 0} \frac{\int_{h^5}^{h^5} - 0}{h}.$$

$$\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-1}{h}.$$

$$\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$$

1.2 Sejam $f(x,y)=\cos(yg)$ e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) - \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

$$\boxed{\mathsf{B}} - \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{sen}(yg) - \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

$$\boxed{\mathsf{E}} - \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg).$$

1.3 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:

A
$$f(x,y) = \sqrt{-x^2 - y^2 + 4}$$

B
$$f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$

$$|C| f(x,y) = -\sqrt{-x^2 - y^2 + 4}.$$

$$\boxed{\mathsf{D}} \ f(x,y) = \sqrt{-x^2 - y^2 + 16}$$

$$|E| f(x,y) = \sqrt{-x^2 - y^2 + 2}$$

1.4 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-2, 2) na direção do vetor $\vec{v} = (1, 0)$ é:

- A 4.
- B 1.
- C 3.
- D -3.
- E -2.

1.5	Considere a função $f(x,y)=\frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m=\{(t,mt):t\in \mathbb{R}\}\cap D_f,\ m\in \mathbb{R}$. Então:
Α	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
В	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
С	$ \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1. $
D	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
E	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
	Considere a função real de duas variáveis reais $f(x,y) = -x^2 - (y-2)^2 + y^3 - 4y$. Então: $\left[(0,-2/3) \text{ é um maximizante local de } f \right]$.
	$\left[\left(0,0 ight) $ é um minimizante local de $f.$
С	$\left[(0,-2/3) \text{ \'e um minimizante local de } f. \right]$
	(0,2/3) é um maximizante local de f .
E	(0,2/3) é um ponto de sela de f .
B C	Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(y - x)}}$. Então, o domínio da função é:
1.8	
_	$\left[\begin{array}{l} (2,1) \text{ associado a } \lambda = -1. \\ (1/2,-1/2) \text{ associado a } \lambda = -2. \end{array}\right]$
С	$\left[(2,1) \text{ associado a } \lambda = -2. \right]$
D	$\left[\left(2,1 ight)$ associado a $\lambda=1$.
E	$\left[\begin{array}{ll} (1/2,-1/2) \text{ associado a } \lambda=1. \end{array}\right]$
I.9 prop A B C	Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f . Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então f não é diferenciável em (a,b) . Se f possui derivadas dirigidas em todas as direções no ponto (a,b) , então f é diferenciável em (a,b) .
I.10	
В	elipses e um ponto.
C	parábolas e um ponto.
D	retas.
E	hipérboles.
Fin	ı.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v107

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

- **I.1** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A retas.
 - B circunferências e um ponto.
 - C parábolas e um ponto.
 - D elipsóides e um ponto.
 - E parabolóides e um ponto.
- **1.2** O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x y = -1 é:
 - |A| (-1/2, 1/2) associado a $\lambda = 2$.
 - [B] (1,2) associado a $\lambda = 1$.
 - (1,2) associado a $\lambda = -1$.
 - $\boxed{\mathsf{D}}\ (-1/2,1/2)$ associado a $\lambda=-2$.
 - [E] (-1/2, 1/2) associado a $\lambda = -1$.
- **1.3** Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $\left[A \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 1.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$

 - $\square \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
 - $\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m.$
- **1.4** Considere a função real de duas variáveis reais $f(x,y) = -x^2 + (y+2)^2 + y^3 4y$. Então:
 - $\boxed{\mathsf{A}}$ (0,0) é um maximizante local de f.
 - $oxed{\mathsf{B}}$ (0,2/3) é um maximizante local de f .
 - $\boxed{\mathsf{C}} \ (0, -2/3) \ \mathsf{\acute{e}} \ \mathsf{um} \ \mathsf{ponto} \ \mathsf{de} \ \mathsf{sela} \ \mathsf{de} \ f \, .$
 - $\boxed{\mathsf{D}}$ (0, -2/3) é um maximizante local de f.
 - | E | (0, -2/3) é um minimizante local de f.
- **1.5** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln{(x+y)}}$. Então, o domínio da função é:
 - $\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $\overline{|B|}$ $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $\overline{|C|}$ $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$

1.6 A derivada dirigida da função real de duas variáveis reais $f(x,y)=x+y^2$ em $(2,-2)$ na direção do vetor $\vec{v}=(0,1)$ é: $\boxed{A}-4$. $\boxed{B}-1$. $\boxed{C}-3$. \boxed{D} 4. \boxed{E} 2.
 I.7 Sejam D_f um subconjunto aberto de IR² e f uma função real de duas variáveis reais com domínio D_f. Indique qual das proposições é verdadeira. A Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então não existe um plano tangente ao gráfico de f em (a, b). B Se f possui derivadas dirigidas em todas as direções no ponto (a, b), então f é diferenciável em (a, b). C Se não existe um plano tangente ao gráfico de f no ponto (a, b), então f ∉ C⁰(D_f). D Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b). E Se f admite derivadas parciais de 1ª ordem em D_f, então f é diferenciável em D_f.
1.8 A função cujo gráfico representa a metade superior da esfera de centro $(0,0,0)$ e raio 4 é: [A] $f(x,y) = \sqrt{-x^2 - y^2 + 16}$. [B] $f(x,y) = -\sqrt{-x^2 - y^2 + 4}$. [C] $f(x,y) = -\sqrt{-x^2 - y^2 + 16}$. [D] $f(x,y) = \sqrt{-x^2 - y^2 + 2}$. [E] $f(x,y) = \sqrt{-x^2 - y^2 + 2}$.
I.9 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a: $\begin{bmatrix} A & \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \sin(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \sin(xg). \\ B & -\frac{\partial g}{\partial y} \sin(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg). \\ C & -\frac{\partial g}{\partial y} \sin(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg). \\ D & -\left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \sin(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg). \\ E & \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \sin(xg). \end{bmatrix}$
I.10 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão: A $\lim_{h \to 0} \frac{\frac{h^2}{h^2} - 1}{h}$. B $\lim_{h \to 0} \frac{\frac{h^2}{h^2} - 0}{h}$. C $\lim_{h \to 0} \frac{\frac{h^2}{h^2} - 0}{h}$. D $\lim_{h \to 0} \frac{\frac{h^2}{h} - 0}{h}$. E $\lim_{h \to 0} \frac{0}{\frac{h^2}{h}} - 0$.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v108

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

I.1 Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) - \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

$$\boxed{ \Box } - \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \cos(yg).$$

$$\boxed{\mathsf{E}} - \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}}\right) \mathsf{sen}(yg) - \left(y \frac{\partial g}{\partial \mathsf{y}} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

1.2 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x - y^2$ em (-1, -4) na direção do vetor $\vec{v} = (1, 0)$ é:

- A -2.
- B 4.
- C -3.
- D 1.
- E 3.

1.3 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln{(y-x)}}$. Então, o domínio da função é:

$$\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$$

$$\boxed{\mathsf{B}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$$

C
$$D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$$

1.4 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{2h}-0}{h}.$$

I.5 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

 $\boxed{\mathsf{A}}$ Se não existe um plano tangente ao gráfico de f em (a,b), então f não admite derivadas parciais de 1^a ordem em (a,b).

- B Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
- |C| Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .
- \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

 $oxed{\mathsf{E}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é diferenciável em (a,b).

	A função cujo gráfico representa a metade superior da esfera de centro $(0,0,0)$ e raio 4 é: $f(x,y) = -\sqrt{-x^2 - y^2 + 16}.$
_	$\exists f(x,y) = -\sqrt{-x^2 - y^2 + 4}.$
	$\int_{0}^{\infty} f(x,y) = \sqrt{-x^2 - y^2 + 16}.$
	$ \int f(x,y) = -\sqrt{-x^2 - y^2 + 2}. $ $ \exists f(x,y) = \sqrt{-x^2 - y^2 + 4}. $
L	
	$\frac{\Delta}{\Delta}$ (0,2/3) é um ponto de sela de f .
	$\frac{3}{2}$ (0,0) é um ponto de sela de f.
	(0,-2/3) é um ponto de sela de f .
=	0 (0, -2/3) é um minimizante local de f.
L	[0,2/3) é um maximizante local de f .
1.8	
=	$\frac{\Delta}{\Delta}$ (2, -1) associado a λ = 1.
	$ \begin{array}{c c} 3 & (-1,2) \text{ associado a } \lambda = 2. \end{array} $
	$ (1/2, 1/2) \text{ associado a } \lambda = -2. $
_ =	
	Considere a função $f(x,y)=\frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m=\{(t,mt^2):t\in\mathbb{R}\}\cap D_f,\ m\in\mathbb{R}.$ Então:
1	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
I	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
($\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
	$ \boxed{\prod_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.} $
I	$ \overline{\underline{\mathbb{E}}} \underset{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}}{\underbrace{(x,y)\to(0,0)}} f(x,y) = 0. $
1.10	
[/	
	3 parábolas e um ponto.
(C retas.

D circunferências e um ponto.

E elipses e um ponto.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v109

- **l.1** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se não existe um plano tangente ao gráfico de f no ponto (a, b), então $f \notin C^1(D_f)$.
 - $\boxed{\mathsf{B}}$ Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).
 - \square Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).
 - \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - $oxed{\mathsf{E}}$ Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f\notin \mathcal{C}^0(D_f)$.
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = x^2 + (y-2)^2 y^3 + 4y$. Então:
 - |A| (0, -2/3) é um ponto de sela de f.
 - $|\mathsf{B}|$ (0,0) é um maximizante local de f.
 - |C| (0,2/3) é um minimizante local de f.
 - $\boxed{\mathsf{D}}$ (0, -2/3) é um maximizante local de f.
 - [E] (0,2/3) é um ponto de sela de f.
- **I.3** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-1}{h}.$
 - $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$

 - $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$
- **1.4** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (3, 2) na direção do vetor $\vec{v} = (1, 0)$ é:
 - A 4.
 - B -3.
 - C 1.
 - D -2.
 - $\left| \mathsf{E} \right| 1$.
- 1.5 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:
 - $|A| f(x, y) = \sqrt{-x^2 y^2 + 16}$
 - B $f(x, y) = \sqrt{-x^2 y^2 + 4}$
 - $C f(x, y) = \sqrt{-x^2 y^2 + 2}$
 - D $f(x, y) = -\sqrt{-x^2 y^2 + 4}$.
 - $E f(x, y) = -\sqrt{-x^2 y^2 + 16}$

1.6 O ponto crítico da funçã \boxed{A} $(-1/2, 1/2)$ associado a	o real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição $x-y=-1$ é: $\lambda=-2$.
$oxed{B}$ (1,2) associado a $\lambda=-$	-1.
$\boxed{C}\ (-1/2,1/2)$ associado a	$\lambda = -1.$
\square (1,2) associado a $\lambda=2$	<u>'</u> .
\boxed{E} (1,2) associado a $\lambda=1$	
I.7 As curvas de nível da fur	oção $f(x,y) = x^2 + y^2$ são:
A parábolas e um ponto.	
B elipses e um ponto.	
C parabolóides e um pont).
D circunferências e um po	nto.
E retas.	
1.8 Considere a função $f(x, x)$	$(y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
$\boxed{A} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}$	
$ \exists \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}. $	
$ \boxed{C} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2. $	
$ \boxed{D} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0. $	
$ \left[E \right] \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m. $	
$\textbf{I.9} \text{Sejam } f(x,y) = \cos(xg)$	e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y\partial x}(x,y)$ é igual a:
$\boxed{A} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) -$	$-\left(x\frac{\partial g}{\partial x}+g\right)x\frac{\partial g}{\partial y}\operatorname{sen}(xg)$
	$-\left(x\frac{\partial g}{\partial x}+g\right)x\frac{\partial g}{\partial y}\operatorname{sen}(xg).$
$C - \frac{\partial g}{\partial y} \operatorname{sen}(xg) - (x \frac{\partial g}{\partial x} + g)$	·
$\boxed{D} - \frac{\partial g}{\partial y} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right)$	· - 29
	, 0,
$\begin{bmatrix} \bot \end{bmatrix} - \left(\frac{\partial \tilde{y}}{\partial \tilde{y}} + x \frac{\partial y \tilde{\partial} x}{\partial y \tilde{\partial} x} \right) \operatorname{sen}(xg)$	$y = (x_{\partial x} + y) x_{\partial y} \cos(xy)$.
I.10 Considere a função rea	de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2-2y^2+4}}{\sqrt{-2x^2-2y^2+4}}$. Então, o domínio da função é:

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v110

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reals com domínio D_f . Indique qual das proposições é verdadeira.

 $\boxed{\mathsf{A}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).

 $\boxed{\mathsf{B}}$ Se não existe um plano tangente ao gráfico de f em (a,b), então f não admite derivadas parciais de 1^a ordem em (a,b).

C Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então $f \notin C^1(D_f)$.

 \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

E Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).

1.2 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:

A
$$f(x, y) = -\sqrt{-x^2 - y^2 + 16}$$

B
$$f(x,y) = \sqrt{-x^2 - y^2 + 4}$$

$$|C| f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$

$$D f(x, y) = -\sqrt{-x^2 - y^2 + 4}$$

$$[E] f(x,y) = \sqrt{-x^2 - y^2 + 2}$$

1.3 Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}$$

$$\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$$

$$\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$$

$$\square \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$$

$$\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$$

1.4 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x+y)}$. Então, o domínio da função é:

- B $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- $\boxed{\mathsf{D}} \ \ \mathcal{D}_f = \{(x,y) \in \mathsf{IR}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- $\overline{\mathbb{E}}$ $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$

1.5	Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} $	$\begin{cases} \frac{x^3}{x^2+y^2} \\ 0 \end{cases}$	se $(x, y) \neq (0, 0)$, se $(x, y) = (0, 0)$.	Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
Α	$\lim_{h\to 0}\frac{\frac{h^3}{2h}-0}{h}.$			
	$\frac{h^3}{h^2} - 0$			

	$h\rightarrow 0$	n
R	lim	$\frac{h^3}{h^2} - 0$
Ы	$h \rightarrow 0$	

$$\begin{array}{c|c}
 & h \to 0 & h \\
\hline
C & \lim_{h \to 0} \frac{\frac{0}{h^4} - 0}{h}.
\end{array}$$

$$\boxed{\mathsf{E}} \ \lim_{h \to 0} \frac{\frac{h^3}{h^2} - 1}{h}.$$

- **1.6** Considere a função real de duas variáveis reais $f(x, y) = -x^2 + (y + 2)^2 + y^3 4y$. Então:
 - |A| (0,0) é um minimizante local de f.
 - |B| (0,0) é um ponto de sela de f.
 - |C| (0,0) é um maximizante local de f.
 - $\boxed{\mathsf{D}}$ (0,2/3) é um maximizante local de f.
 - [E] (0,2/3) é um ponto de sela de f.
- **1.7** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipses e um ponto.
 - B hipérboles.
 - C parábolas e um ponto.
 - D retas.
 - E circunferências e um ponto.
- **1.8** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{B}} \frac{\partial g}{\partial v} \cos(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \sin(xg).$
 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{D}} \ \frac{\partial g}{\partial y} \cos(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \sin(xg).$
 - $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \cos(xg).$
- **1.9** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x y = -1 é:
 - |A| (1,2) associado a $\lambda = -1$.
 - B (-1/2, 1/2) associado a $\lambda = -1$.
 - $\lceil C \rceil$ (-1/2, 1/2) associado a $\lambda = -2$.
 - $|\mathsf{D}|$ (1, 2) associado a $\lambda = 2$.
 - |E| (-1/2, 1/2) associado a $\lambda = 2$.
- **1.10** A derivada dirigida da função real de duas variáveis reais $f(x,y) = x y^2$ em (3,2) na direção do vetor $\vec{v} = (0,1)$ é:
 - |A| -4.
 - В 4.
 - C 2.
 - D 1.
 - |E|-1.

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v111

- **1.1** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, -2) na direção do vetor $\vec{v} = (1, 0)$ é:
 - A -4
 - B -2.
 - C 4.
 - D -3.
 - E 1.
- **1.2** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \mathsf{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \mathsf{cos}(xg).$
 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - C $\frac{\partial g}{\partial v}\cos(xg) + \left(x\frac{\partial g}{\partial x} + g\right)x\frac{\partial g}{\partial v}\sin(xg).$
 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \sin(xg).$
- **I.3** Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{0}{k^4} 0}{k}.$

 - $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$
 - $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$
- **I.4** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
 - B Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - $\lceil C \rceil$ Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
 - $\overline{|D|}$ Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.
 - $oxed{\mathsf{E}}$ Se f não é diferenciável em (a,b), então f não possui derivadas dirigidas em todas as direções no ponto (a,b).
- **1.5** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln{(y x)}}$. Então, o domínio da função é:

 - $\overline{|B|}$ $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$

I. 6	O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição $x-y=-1$ é: $\left[(1,2) \right]$ associado a $\lambda=2$.
В	$\left[(-1/2,1/2) \text{ associado a } \lambda = -2. \right]$
C	
D	
E	$\left[(-1/2,1/2) \text{ associado a } \lambda = -1. \right]$
1.7	Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
Α	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
В	$ (x,y) \to (0,0) $ $ (x,y) \in C_m $
С	$ (x,y) \to (0,0) $ $ (x,y) \in C_m $
D	$ (x,y) \rightarrow (0,0) $ $ (x,y) \in C_m $
E	$ \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0. $
1.8	A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:
	$f(x,y) = \sqrt{-x^2 - y^2 + 4}.$
В	$f(x,y) = -\sqrt{-x^2 - y^2 + 16}.$
C	$f(x,y) = \sqrt{-x^2 - y^2 + 16}.$
D	$f(x,y) = -\sqrt{-x^2 - y^2 + 2}.$
E	$f(x,y) = -\sqrt{-x^2 - y^2 + 4}.$
1.9	As curvas de nível da função $f(x,y)=x^2+y^2$ são:
Α	
В	retas.
C	parábolas e um ponto.
D	parabolóides e um ponto.
E	
I 10	Considere a função real de duas variávois reais $f(v, v) = v^3 + (v + 3)^2 + 6v + v^2 + 5v^2$
I. 10 A	
В	
ال	$\int \left(\frac{2}{10}, 0 \right) e^{-\frac{\pi}{10}} e^{-\frac{\pi}{10}}$

 $\boxed{\mathbb{C}}$ (0,0) é um minimizante local de f. $\boxed{\mathbb{D}}$ (0,0) é um ponto de sela de f. $\boxed{\mathbb{E}}$ (2/3,0) é um ponto de sela de f.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v112

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(y-x)}}$. Então, o domínio da função é:

- $\boxed{\mathsf{B}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- $\boxed{\mathsf{D}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$

1.2 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x - y^2$ em (3, -4) na direção do vetor $\vec{v} = (1, 0)$ é:

- A 1.
- B 3.
- C -4.
- D 4.
- E 1.

1.3 Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

- $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

I.4 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- \bigcap Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
- $\boxed{\mathsf{B}}$ Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .
- $\overline{|C|}$ Se não existe um plano tangente ao gráfico de f em (a,b), então f não é contínua em (a,b).
- $\overline{|D|}$ Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).
- Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é diferenciável em (a, b).

1.5 Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

- $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
- $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
- $\square \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
- $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
- $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$

I.6 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 $\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-1}{h}.$

 $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{2h}-0}{h}.$

 $\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{0}{h^4}-0}{h}.$

1.7 O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição x+y=1 é:

 $\boxed{\mathsf{A}}\ (1/2,1/2)$ associado a $\lambda=1$.

 $\begin{bmatrix} \mathsf{B} \end{bmatrix}$ (2, -1) associado a $\lambda=1$.

 $\lceil C \rceil$ (1/2, 1/2) associado a $\lambda = 2$.

 $\boxed{\mathsf{D}}$ (-1,2) associado a $\lambda=2$.

[E] (1/2, 1/2) associado a $\lambda = -2$.

1.8 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:

A $f(x,y) = -\sqrt{-x^2 - y^2 + 4}$.

B $f(x,y) = \sqrt{-x^2 - y^2 + 4}$.

 $C f(x, y) = \sqrt{-x^2 - y^2 + 16}$

 $\overline{|D|} f(x,y) = -\sqrt{-x^2 - y^2 + 2}$

1.9 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

A elipsóides e um ponto.

B elipses e um ponto.

C hipérboles.

D retas

E circunferências e um ponto.

1.10 Considere a função real de duas variáveis reais $f(x,y) = x^3 + (x-3)^2 + 6x - y^2$. Então:

 $\boxed{\mathsf{A}}\ (-2/3,0)$ é um minimizante local de f.

 $oxed{\mathsf{B}}$ (2/3,0) é um maximizante local de f.

 $\boxed{\mathsf{C}}\ (-2/3,0)$ é um maximizante local de f.

 $\boxed{\mathsf{D}}$ (2/3,0) é um ponto de sela de f.

 $\boxed{\mathsf{E}}$ (2/3,0) é um minimizante local de f.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v113

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

I.1 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x-y)}$. Então, o domínio da função é:

- $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 > 2) \land (y \neq -x + 1) \}$
- $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 > 2) \land (y \neq x 1)\}.$
- D $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 > 2) \land (y \neq x 1)\}.$
- $| E | D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 > 2) \land (y \neq x 1) \}$

1.2 Sejam f(x,y) = sen(xg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial v} + x \frac{\partial^2 g}{\partial v \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial v} \operatorname{sen}(xg).$
- $\boxed{\mathsf{B}} \frac{\partial g}{\partial y} \cos(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \sin(xg).$
- $\left[\mathsf{C}\right] \frac{\partial g}{\partial y} \cos(xg) + \left(x \frac{\partial g}{\partial y} + g\right) x \frac{\partial g}{\partial y} \sin(xg).$
- $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial v} + x \frac{\partial^2 g}{\partial v \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial v} \cos(xg).$

1.3 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k}-0}{k}.$

- $\mathbb{E}\lim_{k\to 0}\frac{\frac{0}{k^4}-0}{k}$

1.4 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x - y = 1 é:

- |A| (1/2, -1/2) associado a $\lambda = -2$.
- |B| (2, 1) associado a $\lambda = -1$.
- |C| (2.1) associado a $\lambda = 1$.
- $|\mathsf{D}|$ (1/2, -1/2) associado a $\lambda = 1$.
- |E| (1/2, -1/2) associado a $\lambda = 2$.

1.5 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- $|\mathsf{A}|$ Se f não é diferenciável em (a,b), então f não possui derivadas dirigidas em todas as direções no ponto (a,b).
- B Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).
- C Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
- D Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
- | E | Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.

		As curvas de nível da função $f(x,y)=x^2+y^2$ são: circunferências e um ponto.
Ī	В	parabolóides e um ponto.
_		parábolas e um ponto.
Ī	D	retas.
Ĺ	E	hipérboles.
1. 7	A B C	A função cujo gráfico representa a metade superior da esfera de centro $(0,0,0)$ e raio 4 é: $f(x,y) = \sqrt{-x^2 - y^2 + 2}.$ $f(x,y) = \sqrt{-x^2 - y^2 + 16}.$ $f(x,y) = -\sqrt{-x^2 - y^2 + 16}.$ $f(x,y) = -\sqrt{-x^2 - y^2 + 2}.$
I.8 []	A B C	Considere a função real de duas variáveis reais $f(x,y) = x^2 + (y-2)^2 - y^3 + 4y$. Então: $(0,0)$ é um maximizante local de f . $(0,0)$ é um ponto de sela de f . $(0,0)$ é um maximizante local de f . $(0,2/3)$ é um maximizante local de f .
_		(0,2/3) é um minimizante local de f .
	A B C	A derivada dirigida da função real de duas variáveis reais $f(x,y)=x+y^2$ em $(-2,2)$ na direção do vetor $\vec{v}=(0,1)$ é: -1 . 4. 3. 1. -2.
l.1		Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt): t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
Ĺ	Α	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
	В	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
		$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
	D	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$

 $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v114

n° de aluno:

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x - y)}$. Então, o domínio da função é:

- $A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- $| E | D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 > 2) \land (y \neq -x + 1) \}.$

1.2 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:

- |A| (-1,2) associado a $\lambda = 2$.
- [B] (1/2, 1/2) associado a $\lambda = 2$.
- $\lceil C \rceil$ (1/2, 1/2) associado a $\lambda = 1$.
- D (2, -1) associado a $\lambda = 1$.
- [E] (2, -1) associado a $\lambda = -1$.

1.3 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, -2) na direção do vetor $\vec{v} = (0, 1)$ é:

- A 1.
- |B|-1.
- C -4.
- D 2.
- |E| 3.

1.4 Sejam $f(x,y)=\cos(xg)$ e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial v\partial x}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- $\boxed{\mathsf{B}} \frac{\partial g}{\partial v} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$
- $\boxed{ \mathbb{D} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg). }$
- $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$

1.5 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:

- A $f(x, y) = -\sqrt{-x^2 y^2 + 2}$
- B $f(x,y) = \sqrt{-x^2 y^2 + 2}$
- $C f(x, y) = -\sqrt{-x^2 y^2 + 16}$
- $D f(x, y) = -\sqrt{-x^2 y^2 + 4}$
- $|E| f(x,y) = \sqrt{-x^2 y^2 + 16}.$

	se $(x, y) \neq (0, 0)$, se $(x, y) = (0, 0)$.	Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
$\boxed{A} \lim_{h \to 0} \frac{\frac{h^3}{h^2} - 0}{h}.$		
$\boxed{B} \lim_{h\to 0} \frac{\frac{0}{h^4}-0}{h}.$		
$\bigcap_{h \to 0} \frac{\frac{h^3}{h^5} - 0}{h}$.		

	$H \rightarrow 0$		"	
	lim	$\frac{0}{h^5}$	_	0
Ш	h \0		h	

$$\lim_{h \to 0} \frac{\frac{h^3}{h^4} - 0}{h}$$

- **1.7** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parábolas e um ponto.
 - B hipérboles.
 - C elipses e um ponto.
 - D circunferências e um ponto.
 - E parabolóides e um ponto.
- **1.8** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reals com domínio D_f . Indique qual das proposições é verdadeira.
 - |A| Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - B Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então não existe um plano tangente ao gráfico de f em (a, b).
 - $\lceil \mathsf{C} \rceil$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).
 - \square Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .
 - $\overline{\boxed{\mathsf{E}}} \ \mathsf{Se} \ f \ \mathsf{\acute{e}} \ \mathsf{differenci\acute{a}vel} \ \mathsf{em} \ (a,b), \ \mathsf{ent\~{ao}} \ \tfrac{\partial^2 f}{\partial x \partial y}(a,b) = \tfrac{\partial^2 f}{\partial y \partial x}(a,b).$
- **1.9** Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

$$\left[\underline{\mathsf{A}} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in \mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$$

$$\left[\mathbf{B} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 1.$$

$$\Box \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$$

$$\boxed{\mathbb{D}} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m}.$$

$$\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m^2.$$

- **1.10** Considere a função real de duas variáveis reais $f(x,y) = -x^2 + (y+2)^2 + y^3 4y$. Então:
 - A (0, -2/3) é um minimizante local de f.
 - $oxed{\mathsf{B}}$ (0,2/3) é um minimizante local de f .
 - $\boxed{\mathsf{C}}$ (0,0) é um ponto de sela de f.
 - $\boxed{\mathsf{D}}$ (0,2/3) é um ponto de sela de f.
 - [E] (0,2/3) é um maximizante local de f.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v115

- **1.1** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-2, 1) na direção do vetor $\vec{v} = (0, 1)$ é:
 - A 3.
 - B -3.
 - C −4.
 - D -1.
 - E 2.
- **1.2** O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x y = -1 é:
 - $\boxed{\mathsf{A}}\ (-1/2,1/2)$ associado a $\lambda=2$.
 - [B] (1,2) associado a $\lambda = 2$.
 - $\lceil \mathsf{C} \rceil$ (-1/2, 1/2) associado a $\lambda = -1$.
 - \square (1,2) associado a $\lambda = 1$.
 - $[\mathsf{E}]$ (1,2) associado a $\lambda=-1$.
- **1.3** Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

 - $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} 0}{k}.$
- **1.4** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f possui derivadas dirigidas em todas as direções no ponto (a, b), então f é diferenciável em (a, b).
 - B Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.
 - C Se f admite derivadas parciais de 1º ordem em D_f , então f é diferenciável em D_f .
 - |D| Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).
 - |E| Se f não é diferenciável em (a, b), então f não possui derivadas dirigidas em todas as direções no ponto (a, b).
- **1.5** Considere a função real de duas variáveis reais $f(x, y) = x^2 + (y 2)^2 y^3 + 4y$. Então:
 - |A| (0,0) é um maximizante local de f.
 - |B| (0, -2/3) é um minimizante local de f.
 - |C| (0,2/3) é um ponto de sela de f.
 - |D| (0,2/3) é um maximizante local de f.
 - |E| (0, -2/3) é um maximizante local de f.

1.6 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln{(x+y)}}$. Então, o domínio da função é: A $D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x+1)\}$. A $D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x+1)\}$. A $D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x+1)\}$.

1.7 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

A circunferências e um ponto.

B parábolas e um ponto.

C retas.

D parabolóides e um ponto.

E hipérboles.

1.8 Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

 $\boxed{\mathsf{B}} \frac{\partial g}{\partial y} \cos(xg) - \left(x \frac{\partial g}{\partial y} + g\right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

 $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \mathsf{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \mathsf{cos}(xg).$

 $\boxed{ \mathbb{D} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \sin(xg). }$

1.9 Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

 $\left[\underline{\mathsf{A}} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m.$

 $\left[\mathsf{B} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 1.$

 $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$

 $\boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$

 $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$

1.10 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:

 $|A| f(x,y) = \sqrt{-x^2 - y^2 + 4}.$

 $f(x,y) = -\sqrt{-x^2 - y^2 + 2}.$

C $f(x,y) = \sqrt{-x^2 - y^2 + 2}$

D $f(x,y) = \sqrt{-x^2 - y^2 + 16}$.

 $\boxed{\mathsf{E}} \ f(x,y) = -\sqrt{-x^2 - y^2 + 4}.$

1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v116

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

I.1 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$$

$$\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-1}{h}.$$

1.2 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:

A
$$f(x,y) = \sqrt{-x^2 - y^2 + 2}$$

B
$$f(x,y) = \sqrt{-x^2 - y^2 + 16}$$

$$|C| f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$

$$| D | f(x,y) = \sqrt{-x^2 - y^2 + 4}$$

$$|E| f(x, y) = -\sqrt{-x^2 - y^2 + 16}.$$

1.3 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- |A| Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
- B Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f \notin C^1(D_f)$.
- $\lceil \mathsf{C} \rceil$ Se f não é diferenciável em (a,b), então f não possui derivadas dirigidas em todas as direções no ponto (a,b).
- \square Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).
- [E] Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.

1.4 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A parabolóides e um ponto.
- B elipses e um ponto.
- C circunferências e um ponto.
- D hipérboles.
- E elipsóides e um ponto.

1.5 Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
$ \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m. $
$ \Box \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}. $
$ \boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0. $
$ \mathbb{E} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2. $
1.6 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x - y)}$. Então, o domínio da função é: A $D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}$. B $D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}$. C $D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}$. D $D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}$. E $D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}$.
1.7 Sejam $f(x,y) = \text{sen}(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
$ \begin{array}{l} \boxed{A} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \operatorname{sen}(yg) + \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg). \\ \boxed{B} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \cos(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \boxed{C} \left(\frac{\partial g}{\partial x} \cos(yg) + \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \boxed{D} \left(\frac{\partial g}{\partial x} \cos(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \\ \boxed{E} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \cos(yg) + \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg). \end{array} $
1.8 O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição $x-y=-1$ é: A $(1,2)$ associado a $\lambda=1$. B $(1,2)$ associado a $\lambda=-1$. C $(-1/2,1/2)$ associado a $\lambda=2$. D $(-1/2,1/2)$ associado a $\lambda=-1$. E $(-1/2,1/2)$ associado a $\lambda=-2$.
1.9 Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 - x^3 + 6x + y^2$. Então: A $(0,0)$ é um minimizante local de f . B $(2/3,0)$ é um maximizante local de f . C $(-2/3,0)$ é um maximizante local de f . D $(-2/3,0)$ é um ponto de sela de f . E $(0,0)$ é um ponto de sela de f .
1.10 A derivada dirigida da função real de duas variáveis reais $f(x,y) = x - y^2$ em (3,1) na direção do vetor $\vec{v} = (0,1)$ é:
Li min

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v117

- **I.1** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - $\boxed{\mathsf{A}}$ Se não existe um plano tangente ao gráfico de f em (a,b), então f não admite derivadas parciais de 1^a ordem em (a,b).
 - B Se não existe um plano tangente ao gráfico de f em (a, b), então f não é contínua em (a, b).
 - |C| Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
 - \square Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é diferenciável em (a, b).
 - $\overline{\mathbb{E}}$ Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln(x + y)}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$

 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
 - $\boxed{\mathsf{E}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
- 1.3 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:
 - A $f(x,y) = \sqrt{-x^2 y^2 + 16}$
 - B $f(x, y) = -\sqrt{-x^2 y^2 + 4}$.
 - $C f(x,y) = \sqrt{-x^2 y^2 + 2}$
 - $D f(x,y) = -\sqrt{-x^2 y^2 + 16}$
 - $|E| f(x,y) = \sqrt{-x^2 y^2 + 4}$
- **1.4** Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

 - $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{0}{k^4} 0}{k}.$

 - $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k}-0}{k}.$
- **I.5** Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \frac{\partial g}{\partial y} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$
 - $\boxed{\mathsf{B}} \frac{\partial g}{\partial v} \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$
 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

Fim.	
A B C D	A derivada dirigida da função real de duas variáveis reais $f(x,y)=x-y^2$ em $(3,-4)$ na direção do vetor $\vec{v}=(1,0)$ é: 4. -2 . 1. 2. 3.
	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$ $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$ $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
Α	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
1.9	Considere a função $f(x,y)=\frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m=\{(t,mt^2):t\in\mathbb{R}\}\cap D_f,\ m\in\mathbb{R}.$ Então:
	parábolas e um ponto. elipsóides e um ponto.
С	hipérboles.
Α	As curvas de nível da função $f(x,y)=x^2+y^2$ são: retas. circunferências e um ponto.
	$(1,-2)$ associado a $\lambda=1$.
	$(-2,1)$ associado a $\lambda=1$.
	$(-1/2,-1/2)$ associado a $\lambda=2$. $(-1/2,-1/2)$ associado a $\lambda=-1$.
Α	O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição $x+y=-1$ é: $(-1/2,-1/2)$ associado a $\lambda=-2$. $(-1/2,-1/2)$ associado a $\lambda=2$.
Е	(-2/3,0) é um ponto de sela de f .
	(2/3,0) é um maximizante local de f .
=	(2/3,0) é um minimizante local de f . $(0,0)$ é um minimizante local de f .
	(-2/3,0) é um maximizante local de f .
	Considere a função real de duas variáveis reais $f(x,y)=(x-3)^2-x^3+6x+y^2$. Então:

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v118

- **I.1** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x y = 1 é:
 - $\boxed{\mathsf{A}}\ (1/2,-1/2)$ associado a $\lambda=1$.
 - $|\mathsf{B}|$ (2, 1) associado a $\lambda=1$.
 - |C| (1/2, -1/2) associado a $\lambda = 2$.
 - D (1/2, -1/2) associado a $\lambda = -2$.
 - [E] (2,1) associado a $\lambda = -1$.
- **1.2** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
 - B Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então $f \notin C^1(D_f)$.
 - |C| Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).
 - $|\mathsf{D}|$ Se f não é diferenciável em (a,b), então f não possui derivadas dirigidas em todas as direções no ponto (a,b).
 - $oxed{\mathsf{E}}$ Se não existe um plano tangente ao gráfico de f em (a,b), então f não admite derivadas parciais de 1^a ordem em (a,b).
- **1.3** Considere a função real de duas variáveis reais $f(x, y) = x^3 (x 3)^2 6x y^2$. Então:
 - $\boxed{\mathsf{A}}$ (0,0) é um ponto de sela de f.
 - |B| (2/3,0) é um ponto de sela de f.
 - |C| (-2/3,0) é um maximizante local de f.
 - |D| (-2/3,0) é um ponto de sela de f.
 - |E| (2/3,0) é um minimizante local de f.
- **1.4** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln{(y x)}}$. Então, o domínio da função é:
 - $\boxed{\mathsf{A}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
 - $C D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
 - $\overline{\square}$ $D_f = \{(x, y) \in \mathbb{R}^2 : (y < -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- **1.5** Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
 - $\left[\underline{\mathsf{A}} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_{-x}}} f(x,y) = \frac{1}{m^2}.$
 - $\mathbb{B} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\square \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
 - $\left[\underline{\mathsf{E}} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m.$

- **1.6** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A circunferências e um ponto.
 - B elipsóides e um ponto.
 - C hipérboles.
 - D elipses e um ponto.
 - E parábolas e um ponto.
- **I.7** Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

 - $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$
 - $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k^4} 0}{k}.$
 - $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k}-0}{k}.$
 - $\boxed{\mathsf{E}} \lim_{k \to 0} \frac{\frac{k^2}{k^4} 0}{k}.$
- 1.8 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:
 - A $f(x,y) = \sqrt{-x^2 y^2 + 16}$
 - B $f(x,y) = -\sqrt{-x^2 y^2 + 2}$
 - $C f(x,y) = \sqrt{-x^2 y^2 + 2}$
 - $| D | f(x, y) = -\sqrt{-x^2 y^2 + 4}$
 - $|E| f(x, y) = -\sqrt{-x^2 y^2 + 16}$
- **1.9** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (2, 3) na direção do vetor $\vec{v} = (1, 0)$ é:
 - A 3.
 - B 2.
 - C 1.
 - D -3.
 - E -2.
- **I.10** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $C \frac{\partial g}{\partial v} \cos(xg) + (x \frac{\partial g}{\partial x} + g) x \frac{\partial g}{\partial v} \sin(xg).$
 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \cos(xg).$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v119

- **I.1** Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2.$
 - $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
 - $\square \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
 - $\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m.$
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = x^3 (x-3)^2 6x y^2$. Então:
 - A (0,0) é um minimizante local de f.
 - |B| (2/3,0) é um maximizante local de f.
 - |C| (0,0) é um maximizante local de f.
 - \square (-2/3,0) é um ponto de sela de f.
 - [E] (-2/3,0) é um maximizante local de f.
- **1.3** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:
 - |A| (2, -1) associado a $\lambda = 1$.
 - $|\mathsf{B}|$ (1/2, 1/2) associado a $\lambda = 1$.
 - |C| (2, -1) associado a $\lambda = -1$.
 - D (1/2, 1/2) associado a $\lambda = -2$.
 - $|\mathsf{E}|$ (-1,2) associado a $\lambda=2$.
- 1.4 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:
 - $|A| f(x, y) = \sqrt{-x^2 y^2 + 16}$
 - B $f(x,y) = -\sqrt{-x^2 y^2 + 4}$.
 - C $f(x,y) = \sqrt{-x^2 y^2 + 4}$.
 - D $f(x,y) = -\sqrt{-x^2 y^2 + 16}$.
 - E $f(x,y) = \sqrt{-x^2 y^2 + 2}$.
- **1.5** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parabolóides e um ponto.
 - B elipses e um ponto.
 - C elipsóides e um ponto.
 - D retas.
 - E circunferências e um ponto.

1.6	Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das
prop	osições é verdadeira.
Α	$igchterize{\mathbb{I}}$ Se f não é diferenciável em D_f , então f não admite derivadas parciais de 1^a ordem em D_f .
В	Se f não possui derivadas dirigidas em todas as direções no ponto (a, b) , então f não é contínua em (a, b) .

|C| Se f é diferenciável em D_f , então $f \in C^1(D_f)$.

 \square Se não existe um plano tangente ao gráfico de f no ponto (a, b), então f não é diferenciável em (a, b).

1.7 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$$

$$\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$$

$$C$$
 $-\frac{\partial g}{\partial v} \operatorname{sen}(xg) - (x\frac{\partial g}{\partial x} + g) x\frac{\partial g}{\partial v} \cos(xg)$.

$$\boxed{\mathsf{D}} - \left(\frac{\partial g}{\partial v} + x \frac{\partial^2 g}{\partial v \partial x}\right) \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$$

$$\boxed{\mathsf{E}} - \frac{\partial g}{\partial y} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \operatorname{cos}(xg).$$

1.8 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(y - x)}}$. Então, o domínio da função é:

$$A D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1) \}.$$

$$\square$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$

$$\square$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$

$$\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$$

1.9 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, -2) na direção do vetor $\vec{v} = (0, 1)$ é:

$$D - 1$$

I.10 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$$

$$\lim_{k \to 0} \frac{\int_{k}^{\infty} \frac{0}{k^4} - 0}{k}.$$

$$\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k} - 0}{k}.$$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v120

- **I.1** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x y = 1 é:
 - |A| (1/2, -1/2) associado a $\lambda = -2$.
 - [B] (2, 1) associado a $\lambda = -1$.
 - |C| (1/2, -1/2) associado a $\lambda = 1$.
 - \square (2,1) associado a $\lambda = 1$.
 - [E] (1/2, -1/2) associado a $\lambda = 2$.
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = x^2 + (y-2)^2 y^3 + 4y$. Então:
 - |A| (0,2/3) é um ponto de sela de f.
 - [B] (0, -2/3) é um maximizante local de f.
 - C (0, -2/3) é um ponto de sela de f.
 - $\boxed{\mathsf{D}}$ (0,0) é um maximizante local de f.
 - [E] (0,2/3) é um minimizante local de f.
- **1.3** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial v \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \cos(xg).$
 - $\boxed{\mathsf{B}} \ \frac{\partial g}{\partial v} \cos(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \sin(xg).$
 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{D}} \stackrel{\partial g}{\partial v} \cos(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \operatorname{sen}(xg).$
- **1.4** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parábolas e um ponto.
 - B elipses e um ponto.
 - C circunferências e um ponto.
 - D hipérboles.
 - E retas.
- 1.5 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:
 - A $f(x,y) = -\sqrt{-x^2 y^2 + 2}$
 - B $f(x,y) = -\sqrt{-x^2 y^2 + 16}$
 - $C f(x, y) = \sqrt{-x^2 y^2 + 2}$
 - D $f(x, y) = -\sqrt{-x^2 y^2 + 4}$
 - $|E| f(x,y) = \sqrt{-x^2 y^2 + 16}.$
- **1.6** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln(x y)}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 > 2) \land (y \neq -x + 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - D $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - $E \mid D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$

I.7 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 $\boxed{\mathsf{B}} \lim_{h \to 0} \frac{\frac{0}{h^4} - 0}{h}.$

 $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$

 $\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{0}{h^5}-0}{h}.$

1.8 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, 1) na direção do vetor $\vec{v} = (0, 1)$ é:

A 1

B 3.

C -4.

D -1.

E 2.

1.9 Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt): t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

 $[A] \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$

 $\begin{bmatrix}
B \end{bmatrix} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$

 $\square \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$

 $\square \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$

 $\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in \mathcal{C}_m}} f(x,y) = 1.$

I.10 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

 $\stackrel{\cdot}{\mathsf{A}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é diferenciável em (a,b).

B Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.

 \square Se não existe um plano tangente ao gráfico de f em (a,b), então f não admite derivadas parciais de 1^a ordem em (a,b).

D Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).

 $oxed{\mathsf{E}}$ Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v121

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$
- $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^5}-0}{h}.$
- $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$
- $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-1}{h}.$
- $\boxed{\mathsf{E}} \lim_{h \to 0} \frac{\frac{0}{h^4} 0}{h}.$

1.2 Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

- $\left[\underline{\mathsf{A}} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in \mathcal{C}_m}} f(x,y) = m.$
- $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
- $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
- $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
- $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$

I.3 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x-y)}$. Então, o domínio da função é:

- $\boxed{A} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- B $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- $C D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}$
- $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathsf{IR}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$

1.4 Considere a função real de duas variáveis reais $f(x, y) = x^3 + (x - 3)^2 + 6x - y^2$. Então:

- $\boxed{\mathsf{A}}\ (-2/3,0)$ é um minimizante local de f.
- $\boxed{\mathsf{B}}$ (2/3,0) é um ponto de sela de f.
- $\boxed{\mathsf{C}}$ (0,0) é um minimizante local de f.
- \square (2/3,0) é um minimizante local de f.
- (-2/3,0) é um maximizante local de f.

I.5 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A circunferências e um ponto.
- B retas.
- C elipses e um ponto.
- D parabolóides e um ponto.
- E parábolas e um ponto.

I.6 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:	
A $f(x,y) = -\sqrt{-x^2 - y^2 + 16}$.	
B $f(x,y) = \sqrt{-x^2 - y^2 + 16}$.	
C $f(x,y) = -\sqrt{-x^2 - y^2 + 2}$.	
$D f(x,y) = -\sqrt{-x^2 - y^2 + 4}$.	

E $f(x,y) = \sqrt{-x^2 - y^2 + 4}$.

1.7 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é: A = -1 (-2, 1) associado a A = -1.

 $\boxed{\mathsf{B}} \ (-1/2, -1/2)$ associado a $\lambda = -2$.

 $\lceil C \rceil$ (-1/2, -1/2) associado a $\lambda = 2$.

 \square (-1/2, -1/2) associado a $\lambda = -1$.

E (1, -2) associado a $\lambda = 1$.

I.8 Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

 $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

 $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \cos(xg).$

 $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$

 $\boxed{\mathsf{D}} \ \tfrac{\partial g}{\partial y} \cos(xg) - \left(x \tfrac{\partial g}{\partial x} + g\right) x \tfrac{\partial g}{\partial y} \operatorname{sen}(xg).$

1.9 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-2, 2) na direção do vetor $\vec{v} = (0, 1)$ é:

A -2.

В 3.

C -4.

D 4.

E -1.

l.10 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

 $\stackrel{.}{\mathsf{A}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então não existe um plano tangente ao gráfico de f em (a,b).

 $oxed{\mathsf{B}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).

Se f é diferenciável em (a,b), então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.

 \square Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.

 $\frac{\overline{\overline{E}}}{|E|}$ Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).

∆nálise	Matem	ática	FF
Ananse	ivialeni	alla	

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 - 6 de maio de 2020

nome completo:

v122

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

I.1 Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

$$\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m}.$$

$$\left[\mathsf{B} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m^2.$$

$$\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$$

$$\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$$

$$\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = 0.$$

1.2 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

A Se não existe um plano tangente ao gráfico de f no ponto (a, b), então f não é diferenciável em (a, b).

 $\boxed{\mathsf{B}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).

 $\lceil \mathsf{C} \rceil$ Se f não é diferenciável em D_f , então f não admite derivadas parciais de 1^a ordem em D_f .

 \square Se f é diferenciável em D_f , então $f \in C^1(D_f)$.

|E| Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .

1.3 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:

A
$$f(x,y) = \sqrt{-x^2 - y^2 + 4}$$

B
$$f(x,y) = \sqrt{-x^2 - y^2 + 16}$$
.

C
$$f(x,y) = \sqrt{-x^2 - y^2 + 2}$$
.

D
$$f(x,y) = -\sqrt{-x^2 - y^2 + 4}$$

$$f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$

1.4 Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) - \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$$

$$\boxed{\mathsf{B}} - \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{sen}(yg) - \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

$$\boxed{\mathsf{C}} - \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \mathsf{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \mathsf{cos}(yg).$$

$$\boxed{\mathsf{E}} \ \tfrac{\partial g}{\partial x} \cos(yg) - \left(y\tfrac{\partial g}{\partial y} + g\right) y\tfrac{\partial g}{\partial x} \operatorname{sen}(yg).$$

1.5 A derivada dirigida da função real de duas variáveis reais $f(x,y)=x-y^2$ em (-1,-4) na direção do vetor $\vec{v}=(1,0)$ é:

- A 3.
- B 4.
- |C|-4.
- D -3.
- |E| 1.

1.6 Considere a função real de duas variáveis reais $f(x,y) = -x^2 - (y-2)^2 + y^3 - 4y$. Er	$S = \{x, y\} = \{x, y\} = \{x, y\} = \{y\} = \{y\}$
--	--

- $\boxed{\mathsf{A}}$ (0,0) é um minimizante local de f.
- $\boxed{\mathsf{B}}$ (0,2/3) é um maximizante local de f.
- (0, -2/3) é um maximizante local de f.
- \square (0,2/3) é um ponto de sela de f.
- [E] (0,2/3) é um minimizante local de f.

1.7 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A elipsóides e um ponto.
- B elipses e um ponto.
- C retas.
- D circunferências e um ponto.
- E parabolóides e um ponto.

1.8 Considere a função real de duas variáveis reais
$$f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x+y)}$$
. Então, o domínio da função é:

- $\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathsf{IR}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x+1) \}.$
- $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}$
- $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$

I.9 Seja
$$\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$
 Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{0}{h^4}-0}{h}.$
- $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$

I.10 O ponto crítico da função real de duas variáveis reais
$$f(x,y) = x^2 + y^2$$
 com restrição $x + y = -1$ é:

- |A| (-2,1) associado a $\lambda = -1$.
- $\begin{bmatrix} \mathsf{B} \end{bmatrix}$ (-1/2, -1/2) associado a $\lambda = -1$.
- C (1, -2) associado a $\lambda = 1$.
- $|\mathsf{D}|$ (-2,1) associado a $\lambda=1$.
- [E] (-1/2, -1/2) associado a $\lambda = -2$.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v123

- **I.1** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parábolas e um ponto.
 - B retas.
 - C circunferências e um ponto.
 - D parabolóides e um ponto.
 - E elipsóides e um ponto.
- 1.2 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:
 - A $f(x,y) = \sqrt{-x^2 y^2 + 16}$
 - B $f(x, y) = -\sqrt{-x^2 y^2 + 16}$
 - $C f(x, y) = \sqrt{-x^2 y^2 + 4}$
 - $D f(x, y) = -\sqrt{-x^2 y^2 + 4}$
 - $[E] f(x,y) = -\sqrt{-x^2 y^2 + 2}$
- **I.3** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{0}{h^5}-0}{h}.$
 - $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{0}{h^4}-0}{h}.$
 - $\square \lim_{h \to 0} \frac{\frac{h^3}{h^4} 0}{h}.$
 - $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^5}-0}{h}.$
 - $\boxed{\mathsf{E}} \lim_{h \to 0} \frac{\frac{h^3}{h^4} 1}{h}.$
- **1.4** O ponto crítico da função real de duas variáveis reals $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:
 - $|\mathsf{A}|$ (1/2,1/2) associado a $\lambda=1$.
 - $|\mathsf{B}|$ (-1,2) associado a $\lambda=2$.
 - |C| (1/2, 1/2) associado a $\lambda = -2$.
 - |D| (2, -1) associado a $\lambda = -1$.
 - |E| (1/2, 1/2) associado a $\lambda = 2$.
- **1.5** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f não é diferenciável em (a, b), então f não possui derivadas dirigidas em todas as direções no ponto (a, b).
 - B Se f admite derivadas parciais de 1º ordem em D_f , então f é diferenciável em D_f .
 - C Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.
 - $\overline{\mathbb{D}}$ Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
 - E Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.

1.6 Considere a função real de duas variáveis reais $f(x,y) = x^2 + (y-2)^2 - y^3 + 4y$. Então:
$\begin{bmatrix} A \end{bmatrix}$ (0,2/3) é um minimizante local de f .
$\begin{bmatrix} B \end{bmatrix}$ (0,0) é um maximizante local de f .
C (0,0) é um ponto de sela de f .
D (0, -2/3) é um minimizante local de f .
$oxed{E}$ (0,0) é um minimizante local de f .
1.7 Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
$ \underset{(x,y) \in C_m}{\lim} f(x,y) = m. $
$ \mathbb{B} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0. $
$ \boxed{C} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m}. $
$ \boxed{D} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}. $
$ \left[E \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m^2. $
I.8 Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
$\boxed{A} \ \frac{\partial g}{\partial x} \cos(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$
$\boxed{B} - \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg).$
$\boxed{E} - \frac{\partial g}{\partial x} \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{cos}(yg).$
1.9 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x - y^2$ em $(3, 2)$ na direção do vetor $\vec{v} = (0, 1)$ é:
A 2. B 4. C -3. D -4. E 1.
I.10 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2-2y^2+4}}{\ln(y-x)}$. Então, o domínio da função é:
$\boxed{A} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$

 $\begin{array}{|c|c|c|}\hline B & D_f = \{(x,y) \in \mathbb{R}^2 : (y>-x) \land (x^2+y^2 \leq 2) \land (y \neq -x+1)\}. \\\hline C & D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2+y^2 \leq 2) \land (y \neq x+1)\}. \\\hline D & D_f = \{(x,y) \in \mathbb{R}^2 : (y>x) \land (x^2+y^2 \leq 2) \land (y \neq x+1)\}. \\\hline E & D_f = \{(x,y) \in \mathbb{R}^2 : (y>x) \land (x^2+y^2 \leq 2) \land (y \neq x-1)\}. \end{array}$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v124

- **I.1** Considere a função real de duas variáveis reais $f(x,y) = x^3 + (x-3)^2 + 6x y^2$. Então:
 - $|\mathsf{A}|$ (0,0) é um ponto de sela de f.
 - $\boxed{\mathsf{B}}\ (-2/3,0)$ é um ponto de sela de f.
 - (2/3,0) é um minimizante local de f.
 - \square (2/3,0) é um ponto de sela de f.
 - [E] (0,0) é um maximizante local de f.
- **1.2** Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \ \frac{\partial g}{\partial x} \cos(yg) + \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$

 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
 - $\boxed{\mathsf{D}} \frac{\partial g}{\partial x} \cos(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$
 - $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) + \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
- **1.3** Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
 - $\boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
- 1.4 A função cujo gráfico representa a metade inferior da esfera de centro (0, 0, 0) e raio 4 é:
 - A $f(x, y) = \sqrt{-x^2 y^2 + 2}$
 - B $f(x,y) = -\sqrt{-x^2 y^2 + 16}$
 - $C f(x,y) = -\sqrt{-x^2 y^2 + 4}$
 - D $f(x,y) = \sqrt{-x^2 y^2 + 4}$
 - $|E| f(x,y) = -\sqrt{-x^2 y^2 + 2}$
- **1.5** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é:
 - |A| (-1/2, -1/2) associado a $\lambda = -1$.
 - $|\mathsf{B}|$ (-2,1) associado a $\lambda=-1$.
 - $|\mathsf{C}|$ (-2,1) associado a $\lambda=1$.
 - $\boxed{\mathsf{D}}$ (-1/2, -1/2) associado a $\lambda = 2$.
 - |E| (-1/2, -1/2) associado a $\lambda = -2$.

- 1	A derivada dirigida da função real de duas variáveis reais $f(x,y)=x+y^2$ em $(-2,1)$ na direção do vetor $\vec{v}=(0,1)$ é:
F	3 –4
[B -4. C -2.
	0 - 1.
	As curvas de nível da função $f(x,y)=x^2+y^2$ são:
	B hipérboles.
_	parabolóides e um ponto.
	orcunferências e um ponto.
L	elipsóides e um ponto.
1.8	Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das
	posições é verdadeira. A Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
_	Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então $f \notin C^1(D_f)$.
=	Se f não é diferenciável em (a, b) , então f não possui derivadas dirigidas em todas as direções no ponto (a, b) .
	Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
_ =	Se não existe um plano tangente ao gráfico de f em (a,b) , então f não admite derivadas parciais de 1^a ordem em (a,b) .
Ľ	[a,b], entad existe an plane tangente ad graned de i em (a,b) , entad i had admite derivadas pareiais de i ordem em (a,b) .
_	Considere a função real de duas variáveis reais $f(x,y)=rac{\sqrt{2x^2+2y^2-4}}{\ln{(y-x)}}$. Então, o domínio da função é:
	$\frac{A}{2} D_f = \{ (x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1) \}.$
	$\underline{B} D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
	$D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
_	$ D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}. $
ŀ	
I 16	Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:
	$\lim_{k\to 0}\frac{\frac{k^2}{k^5}-0}{k}.$
E	$\exists \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$
($\lim_{k\to 0}\frac{\frac{k^2}{k^4}-0}{k}.$
	$\lim_{k \to 0} \frac{\frac{k^2}{k^4} - 1}{k}.$
L	$\frac{\mathcal{O}}{k} \stackrel{\text{lim}}{\underset{k \to 0}{\sim}} \frac{k}{k}$.
F	$ = \lim_{k \to 0} \frac{\frac{0}{k^4} - 0}{k}. $
	with the state of

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v125

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial v \partial x}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- $\boxed{\mathsf{B}} \ \frac{\partial g}{\partial v} \cos(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \sin(xg).$
- $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \cos(xg).$

1.2 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-2, 2) na direção do vetor $\vec{v} = (0, 1)$ é:

- A -4.
- B 4.
- C −2.
- D -3.
- E -1.

1.3 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A elipses e um ponto.
- B circunferências e um ponto.
- C parabolóides e um ponto.
- D hipérboles.
- E retas.

1.4 O ponto crítico da função real de duas variáveis reals $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:

- |A| (1/2, 1/2) associado a $\lambda = 1$.
- [B] (1/2, 1/2) associado a $\lambda = -2$.
- |C| (2, -1) associado a $\lambda = 1$.
- $|\mathsf{D}|$ (1/2, 1/2) associado a $\lambda=2$.
- |E| (-1,2) associado a $\lambda = 2$.

I.5 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k}-0}{k}.$
- $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$
- $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^5}-0}{k}.$
- $\boxed{\mathsf{E}} \lim_{k \to 0} \frac{\frac{0}{k^4} 0}{k}.$

1.6 Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
$ \mathbb{B}\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m}. $
$ \Box \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1. $
$ \boxed{D} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}. $
1.7 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira. A Se f não é diferenciável em (a,b) , então f não possui derivadas dirigidas em todas as direções no ponto (a,b) . B Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então $f \notin C^0(D_f)$. C Se não existe um plano tangente ao gráfico de f em (a,b) , então f não admite derivadas parciais de f 0 ordem em f 0. D Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f 0 em f 0.
E Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então $f \notin C^1(D_f)$.
 Considere a função real de duas variáveis reais f(x,y) = (x - 3)² - x³ + 6x + y². Então: (2/3,0) é um ponto de sela de f. (2/3,0) é um minimizante local de f. (-2/3,0) é um minimizante local de f. (0,0) é um maximizante local de f. (-2/3,0) é um maximizante local de f. (-2/3,0) é um maximizante local de f.
1.9 A função cujo gráfico representa a metade superior da esfera de centro $(0,0,0)$ e raio 4 é: [A] $f(x,y) = \sqrt{-x^2 - y^2 + 16}$. [B] $f(x,y) = -\sqrt{-x^2 - y^2 + 16}$. [C] $f(x,y) = \sqrt{-x^2 - y^2 + 4}$. [D] $f(x,y) = -\sqrt{-x^2 - y^2 + 4}$. [E] $f(x,y) = -\sqrt{-x^2 - y^2 + 4}$.
1.10 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln{(x+y)}}$. Então, o domínio da função é: A $D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x+1)\}$. B $D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x+1)\}$. C $D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x+1)\}$. D $D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x+1)\}$. D $D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x+1)\}$.
Fim.

∆nálise Matemática FF

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v126

- **I.1** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipses e um ponto.
 - B hipérboles.
 - C elipsóides e um ponto.
 - D retas.
 - E circunferências e um ponto.
- **I.2** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).
 - B Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
 - C Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - $|\mathsf{D}|$ Se f não é diferenciável em (a,b), então f não possui derivadas dirigidas em todas as direções no ponto (a,b).
 - $\mid E \mid$ Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.
- 1.3 A função cujo gráfico representa a metade inferior da esfera de centro (0, 0, 0) e raio 4 é:
 - $|A| f(x, y) = -\sqrt{-x^2 y^2 + 2}$
 - B $f(x,y) = \sqrt{-x^2 y^2 + 16}$.
 - C $f(x, y) = \sqrt{-x^2 y^2 + 2}$
 - D $f(x,y) = -\sqrt{-x^2 y^2 + 4}$
 - $|E| f(x,y) = -\sqrt{-x^2 y^2 + 16}.$
- **1.4** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln(x+y)}$. Então, o domínio da função é:

 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $C \mid D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - $E \mid D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- **1.5** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (-1, -4) na direção do vetor $\vec{v} = (1, 0)$ é:
 - |A| 3.
 - B 1.
 - C -1.
 - D 2.
 - |E| 4.
- **1.6** Considere a função real de duas variáveis reais $f(x,y) = x^2 + (y-2)^2 y^3 + 4y$. Então:
 - |A| (0, -2/3) é um ponto de sela de f.
 - $|\mathsf{B}|$ (0,0) é um ponto de sela de f.
 - |C| (0,0) é um minimizante local de f.
 - |D| (0, -2/3) é um minimizante local de f.
 - |E| (0,0) é um maximizante local de f.

1.7 Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

$$\begin{bmatrix} A & \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$$

$$\left[\mathsf{B} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m.$$

$$\boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$$

$$\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$$

I.8 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{h \to 0} \frac{\frac{h^3}{h^4} - 1}{h}.$$

$$\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$$

$$\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^5}-0}{h}.$$

$$\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{0}{h^4}-0}{h}.$$

$$\mathbb{E} \lim_{h \to 0} \frac{\frac{0}{h^5} - 0}{h}.$$

1.9 Sejam $f(x,y)=\cos(xg)$ e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y\partial x}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} - \frac{\partial g}{\partial y} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$$

$$\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$$

$$\boxed{\mathsf{D}} - \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$$

$$\boxed{\mathsf{E}} - \frac{\partial g}{\partial v} \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$$

1.10 O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x - y = 1 é:

- $\boxed{\mathsf{A}}$ (2,1) associado a $\lambda=-1$.
- $\boxed{\mathsf{B}}$ (2,1) associado a $\lambda=-2$.
- $\overline{|\mathsf{C}|}$ (1/2, -1/2) associado a $\lambda = 1$.
- $\overline{|D|}$ (2, 1) associado a $\lambda = 1$.
- $\boxed{\mathsf{E}}\ (1/2, -1/2)$ associado a $\lambda=2$.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

nº de aluno:

v127

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

$$\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$$

$$\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$$

$$\Box \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$$

$$\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$$

$$\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$$

1.2 Considere a função real de duas variáveis reais $f(x,y) = x^3 + (x-3)^2 + 6x - y^2$. Então:

- |A| (2/3,0) é um maximizante local de f.
- |B| (2/3,0) é um ponto de sela de f.
- C = (-2/3, 0) é um minimizante local de f.
- \square (-2/3,0) é um ponto de sela de f.
- [E] (-2/3,0) é um maximizante local de f.

1.3 O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x - y = -1 é:

- |A| (1,2) associado a $\lambda = 2$.
- |B| (-1/2, 1/2) associado a $\lambda = 2$.
- |C| (1,2) associado a $\lambda = -1$.
- $|\mathsf{D}|$ (1,2) associado a $\lambda = 1$.
- |E| (-1/2, 1/2) associado a $\lambda = -1$.

1.4 Sejam $f(x,y)=\cos(yg)$ e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

$$\boxed{\mathsf{B}} - \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{sen}(yg) - \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$$

$$\boxed{\mathsf{E}} - \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{sen}(yg) - \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

1.5 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x - y^2$ em (3, 2) na direção do vetor $\vec{v} = (0, 1)$ é:

- |A|-1.
- |B| 3.
- C -4.
- D 3.
- E 2.

```
I.6 Considere a função real de duas variáveis reais f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x-y)}. Então, o domínio da função é: 

A D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.

A D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.
```

C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}$

$$\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathsf{IR}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$$

- **I.7** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reals com domínio D_f . Indique qual das proposições é verdadeira.
 - \overline{A} Se f não é diferenciável em (a, b), então f não possui derivadas dirigidas em todas as direções no ponto (a, b).
 - B Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.

 - \square Se f é diferenciável em (a,b), então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.
 - [E] Se f possui derivadas dirigidas em todas as direções no ponto (a, b), então f é diferenciável em (a, b).
- **1.8** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A hipérboles.
 - B elipsóides e um ponto.
 - C circunferências e um ponto.
 - D parabolóides e um ponto.
 - E elipses e um ponto.
- **I.9** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 - $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-1}{h}.$
 - $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{0}{h^5} 0}{h}.$

 - $\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$
- **I.10** A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:
 - A $f(x,y) = -\sqrt{-x^2 y^2 + 2}$
 - $f(x,y) = -\sqrt{-x^2 y^2 + 4}.$
 - $|C| f(x,y) = \sqrt{-x^2 y^2 + 16}.$
 - D $f(x,y) = -\sqrt{-x^2 y^2 + 16}$
 - E $f(x,y) = \sqrt{-x^2 y^2 + 2}$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v128

- **I.1** Considere a função real de duas variáveis reais $f(x,y) = -x^2 (y-2)^2 + y^3 4y$. Então:
 - |A| (0,2/3) é um ponto de sela de f.
 - [B] (0,2/3) é um minimizante local de f.
 - (0, -2/3) é um minimizante local de f.
 - \square (0,0) é um minimizante local de f.
 - [E] (0, -2/3) é um maximizante local de f.
- **1.2** Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \tfrac{\partial g}{\partial \mathsf{x}} \operatorname{sen}(\mathsf{y} \mathsf{g}) \left(\mathsf{y} \tfrac{\partial g}{\partial \mathsf{y}} + \mathsf{g} \right) \mathsf{y} \tfrac{\partial g}{\partial \mathsf{x}} \operatorname{cos}(\mathsf{y} \mathsf{g}).$
 - $\boxed{\mathsf{B}} \ \frac{\partial g}{\partial \mathsf{x}} \cos(\mathsf{y} g) \left(\mathsf{y} \frac{\partial g}{\partial \mathsf{y}} + g\right) \mathsf{y} \frac{\partial g}{\partial \mathsf{x}} \sin(\mathsf{y} g).$

 - $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$
- **I.3** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 - $\mathbb{B} \lim_{h \to 0} \frac{\frac{h^3}{h^2} 0}{h}.$
- 1.4 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:
 - A $f(x,y) = \sqrt{-x^2 y^2 + 4}$
 - B $f(x, y) = -\sqrt{-x^2 y^2 + 4}$.
 - $\overline{|C|} f(x,y) = -\sqrt{-x^2 y^2 + 16}.$
 - $f(x,y) = \sqrt{-x^2 y^2 + 2}$
 - $f(x, y) = \sqrt{-x^2 y^2 + 16}$
- **1.5** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:
 - $\boxed{\mathsf{A}}$ (2, -1) associado a $\lambda = -1$.
 - $\overline{|B|}$ (1/2, 1/2) associado a $\lambda = 1$.
 - $\left[\mathsf{C}\right]\left(-1,2\right)$ associado a $\lambda=2$.
 - $\overline{\square}$ (1/2, 1/2) associado a $\lambda = 2$.
 - E (1/2, 1/2) associado a $\lambda = -2$.

1.6	As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
Α	elipses e um ponto.
В	circunferências e um ponto.
С	retas.
D	hipérboles.
Ε	parábolas e um ponto.
A B C	Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2-2y^2+4}}{\ln{(x+y)}}$. Então, o domínio da função é:
	$ D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}. $ $ D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}. $
В	Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das osições é verdadeira. Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$. Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b) . Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então não existe um plano tangente ao gráfico de f em (a,b) .
D	
A B C	A derivada dirigida da função real de duas variáveis reais $f(x,y)=x-y^2$ em $(2,3)$ na direção do vetor $\vec{v}=(1,0)$ é: $\begin{bmatrix} -4 \\ 1 \end{bmatrix}$. $\begin{bmatrix} -2 \\ 3 \end{bmatrix}$. $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$.
1.10	Considere a função $f(x,y)=\frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m=\{(t,mt^2):t\in\mathbb{R}\}\cap D_f,\ m\in\mathbb{R}.$ Então:
Α	$ \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2. $
В	$ (x,y) \rightarrow (0,0) $ $ (x,y) \in C_m $
С	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
D	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
E	
Fim	

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v129

- **I.1** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipsóides e um ponto.
 - B parábolas e um ponto.
 - C circunferências e um ponto.
 - D retas.
 - E elipses e um ponto.
- **1.2** Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
 - $\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\begin{bmatrix} \mathsf{B} & \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\left[\overline{C} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m^2.$
 - $\square \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
 - $\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in \mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
- **I.3** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - [A] Se não existe um plano tangente ao gráfico de f no ponto (a,b), então f não é diferenciável em (a,b).
 - B Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - \square Se f possui derivadas dirigidas em todas as direções no ponto (a,b), então f é diferenciável em (a,b).
 - \square Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .
 - |E| Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).
- **I.4** Sejam $f(x,y) = \operatorname{sen}(yg) \in g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) + \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$

 - $\boxed{\mathsf{E}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{sen}(yg) + \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$
- **1.5** Considere a função real de duas variáveis reais $f(x,y) = x^3 (x-3)^2 6x y^2$. Então:
 - |A| (-2/3,0) é um maximizante local de f.
 - B (0,0) é um maximizante local de f.
 - |C| (2/3,0) é um maximizante local de f.
 - |D| (0,0) é um minimizante local de f.
 - |E| (0,0) é um ponto de sela de f.

1.6 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x+y)}$. Então, o domínio da função é: $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$ B $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$ C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$ \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$ $| E | D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 > 2) \land (y \neq x - 1) \}.$ 1.7 O ponto crítico da função real de duas variáveis reals $f(x,y) = x^2 + y^2$ com restrição x - y = 1 é: |A| (1/2, -1/2) associado a $\lambda = 1$. |B| (2, 1) associado a $\lambda = 1$. |C| (1/2, -1/2) associado a $\lambda = 2$. D (1/2, -1/2) associado a $\lambda = -2$. |E| (2, 1) associado a $\lambda = -2$. 1.8 A função cuio gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é: $|A| f(x,y) = -\sqrt{-x^2 - y^2 + 4}.$ B $f(x, y) = \sqrt{-x^2 - y^2 + 2}$ C $f(x, y) = \sqrt{-x^2 - y^2 + 16}$. $D f(x, y) = \sqrt{-x^2 - y^2 + 4}$ $[E] f(x,y) = -\sqrt{-x^2 - y^2 + 16}.$ **1.9** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x - y^2$ em (3, 2) na direção do vetor $\vec{v} = (0, 1)$ é: |A| -3. B 1. C -1. D 4. E -4. **I.10** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão: $\boxed{\mathsf{A}} \lim_{h \to 0} \frac{\frac{h^3}{h^4} - 0}{h}.$ $\begin{array}{c|c} \mathbb{B} & \lim_{h \to 0} \frac{\frac{h^2}{h^4} - 1}{h}. \\ \\ \mathbb{C} & \lim_{h \to 0} \frac{\frac{0}{h^4} - 0}{h}. \end{array}$

 $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{0}{h^5}-0}{h}.$

 $\boxed{\mathsf{E}} \lim_{h \to 0} \frac{\frac{h^3}{h^2} - 0}{h}.$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v130

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

1.1 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:

- A $f(x,y) = -\sqrt{-x^2 y^2 + 16}$.
- B $f(x, y) = -\sqrt{-x^2 y^2 + 2}$.
- C $f(x,y) = \sqrt{-x^2 y^2 + 2}$.
- $D f(x, y) = -\sqrt{-x^2 y^2 + 4}$
- $[E] f(x,y) = \sqrt{-x^2 y^2 + 16}.$

1.2 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-1, 2) na direção do vetor $\vec{v} = (0, 1)$ é:

- A 4.
- B -3.
- C 3.
- D 1.
- E -2.

1.3 Considere a função real de duas variáveis reais $f(x, y) = (x - 3)^2 - x^3 + 6x + y^2$. Então:

- |A| (-2/3,0) é um maximizante local de f.
- [B] (0,0) é um minimizante local de f.
- |C| (0,0) é um ponto de sela de f.
- |D| (-2/3,0) é um minimizante local de f.
- |E| (2/3,0) é um minimizante local de f.

1.4 Considere a função $f(x,y) = \frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

- $\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
- $\begin{bmatrix}
 B
 \end{bmatrix} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
- $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2.$
- $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
- $\begin{bmatrix} \mathsf{E} & \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$

1.5 O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x + y = 1 é:

- |A|(2,-1) associado a $\lambda=-1$.
- $|\mathsf{B}|$ (1/2,1/2) associado a $\lambda=-2$.
- |C| (1/2, 1/2) associado a $\lambda = 2$.
- |D| (-1,2) associado a $\lambda = 2$.
- |E| (1/2, 1/2) associado a $\lambda = 1$.

I.6 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$$

$$\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-1}{h}.$$

$$\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$$

$$\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{2h}-0}{h}.$$

$$\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{0}{h^4}-0}{h}.$$

1.7 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln{(x+y)}}$. Então, o domínio da função é:

$$\boxed{\mathsf{A}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$$

$$\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$$

$$\boxed{\mathsf{D}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$$

$$\Box$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$

I.8 Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial v \partial x}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} \ \frac{\partial g}{\partial v} \cos(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \sin(xg).$$

$$\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial v} + x \frac{\partial^2 g}{\partial v \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial v} \operatorname{sen}(xg).$$

$$\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \mathsf{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \mathsf{cos}(xg).$$

$$\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$$

1.9 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A circunferências e um ponto.
- B elipses e um ponto.
- C parábolas e um ponto.
- D retas.
- E hipérboles.

I.10 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

|A| Se não existe um plano tangente ao gráfico de f em (a,b), então f não admite derivadas parciais de 1^a ordem em (a,b).

 $\overline{\mathbb{B}}$ Se f é diferenciável em (a,b), então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.

C Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.

 \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

 $oxed{\mathsf{E}}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v131

- **I.1** O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x y = -1 é:
 - $\boxed{\mathsf{A}}$ (1,2) associado a $\lambda=2$.
 - [B] (-1/2, 1/2) associado a $\lambda = -1$.
 - C (-1/2, 1/2) associado a $\lambda = -2$.
 - D (1,2) associado a $\lambda = 1$.
 - [E] (-1/2, 1/2) associado a $\lambda = 2$.
- 1.2 Considere a função real de duas variáveis reals $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln{(x+y)}}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$

 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - $\boxed{\mathsf{D}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- **I.3** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-1}{h}.$

 - $\begin{array}{c|c}
 & h \to 0 \\
 \hline
 C & \lim_{h \to 0} \frac{\frac{0}{h^4} 0}{h}.
 \end{array}$
 - $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^5}-0}{h}.$
- **I.4** Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $A = \frac{\partial g}{\partial v} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$
 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$

 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- **1.5** Considere a função real de duas variáveis reais $f(x,y) = x^3 (x-3)^2 6x y^2$. Então:
 - |A| (-2/3,0) é um ponto de sela de f.
 - $\boxed{\mathsf{B}}$ (0,0) é um maximizante local de f.
 - $\boxed{\mathsf{C}}$ (2/3,0) é um minimizante local de f.
 - $\boxed{\mathsf{D}}$ (0,0) é um minimizante local de f.
 - | E | (-2/3,0) é um minimizante local de f.

1.6_	_ A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:
	$\int f(x,y) = -\sqrt{-x^2 - y^2 + 2}.$
	$f(x,y) = \sqrt{-x^2 - y^2 + 16}.$
C	$f(x,y) = -\sqrt{-x^2 - y^2 + 4}.$
	$f(x,y) = -\sqrt{-x^2 - y^2 + 16}.$
E	$f(x,y) = \sqrt{-x^2 - y^2 + 4}.$
1.7	Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reals com domínio D_f . Indique qual das
	posições é verdadeira.
A	Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b) .
E	Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então $f \notin C^1(D_f)$.
C	Se f possui derivadas dirigidas em todas as direções no ponto (a,b) , então f é diferenciável em (a,b) .
	Se f não é diferenciável em (a,b) , então f não possui derivadas dirigidas em todas as direções no ponto (a,b) .
E	Se não existe um plano tangente ao gráfico de f em (a,b) , então f não admite derivadas parciais de 1^a ordem em (a,b) .
1.8	A derivada dirigida da função real de duas variáveis reais $f(x,y)=x-y^2$ em (3,2) na direção do vetor $\vec{v}=(0,1)$ é:
Α	$\frac{1}{2}$ 4.
E	<u>3</u> –3.
C	4. 3 -3. 1. 3 3.
	3.
E	
	2
1.9	Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
Д	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
Г	
	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
C	$\lim_{(x,y)\to(0,0)} f(x,y) = \frac{1}{m^2}.$
_	(x,y)eu _m
	$(x,y) \to (0,0)$ $(x,y) \in C_m$
E	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}}f(x,y)=m.$
1.10	As curvas de nível da função $f(x,y)=x^2+y^2$ são:
Д	elipsóides e um ponto.
Е	elipses e um ponto.
C	parabolóides e um ponto.
	hipérboles.
E	circunferências e um ponto.

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v132

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x - y)}$. Então, o domínio da função é:

- $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

- $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$

1.2 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x - y = -1 é:

- $\boxed{\mathsf{A}}$ (1,2) associado a $\lambda=2$.
- B (1,2) associado a $\lambda = 1$.
- $\lceil \mathsf{C} \rceil$ (-1/2, 1/2) associado a $\lambda = -1$.
- \square (-1/2, 1/2) associado a $\lambda = 2$.
- [E] (-1/2, 1/2) associado a $\lambda = -2$.

1.3 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

- $A = \frac{\partial g}{\partial y} \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial y} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$

- $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \sin(xg).$

1.4 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-2, 2) na direção do vetor $\vec{v} = (1, 0)$ é:

- |A| -3.
- B 1.
- |C|-1.
- D -2.
- |E| 4.

1.5 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:

- A $f(x,y) = -\sqrt{-x^2 y^2 + 4}$
- B $f(x, y) = -\sqrt{-x^2 y^2 + 2}$.
- $C f(x,y) = -\sqrt{-x^2 y^2 + 16}$
- $D f(x, y) = \sqrt{-x^2 y^2 + 4}$
- $[E] f(x,y) = \sqrt{-x^2 y^2 + 2}.$

1.6 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reals com domínio D_f . Indique qual das proposições é verdadeira.

- A Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).
- B Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
- C Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.
- |D| Se f possui derivadas dirigidas em todas as direções no ponto (a, b), então f é diferenciável em (a, b).
- E Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .

1.7 Considere a função real de duas variáveis reais $f(x, y) = x^3 + (x - 3)^2 + 6x - y^2$. Então:

- $\boxed{\mathsf{A}}\ (-2/3,0)$ é um ponto de sela de f.
- [B] (2/3,0) é um ponto de sela de f.
- $\boxed{\mathsf{C}}$ (2/3,0) é um maximizante local de f.
- $\boxed{\mathsf{D}}\ (-2/3,0)$ é um maximizante local de f.
- [E] (0,0) é um minimizante local de f.

I.8 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \lim_{h \to 0} \frac{\frac{h^3}{h^4} 0}{h}.$
- $\boxed{\mathsf{B}} \lim_{h \to 0} \frac{\frac{h^3}{h^4} 1}{h}.$
- $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^5}-0}{h}.$
- $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$

1.9 Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

- $\underset{(x,y)\in C_m}{\lim} f(x,y) = 0.$
- $\boxed{\mathbb{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
- $\Box \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
- $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
- $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$

I.10 As curvas de nível da função $f(x,y) = x^2 + y^2$ são:

- A parábolas e um ponto.
- B circunferências e um ponto.
- C elipsóides e um ponto.
- D retas.
- E elipses e um ponto.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v133

- **I.1** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln(y x)}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$

 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 > 2) \land (y \neq x 1)\}.$

 - $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
- **1.2** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 - $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{2h}-0}{h}.$
 - $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{0}{h^2}-0}{h}.$
 - $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$
- **1.3** Considere a função real de duas variáveis reais $f(x, y) = x^3 + (x 3)^2 + 6x y^2$. Então:
 - $\boxed{\mathsf{A}}\ (-2/3,0)$ é um maximizante local de f.
 - $\overline{\mathbb{B}}$ (0,0) é um maximizante local de f.
 - $\boxed{\mathsf{C}}\ (2/3,0)$ é um maximizante local de f.
 - \square (2/3,0) é um minimizante local de f.
 - (-2/3,0) é um ponto de sela de f .
- 1.4 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:
 - A $f(x, y) = \sqrt{-x^2 y^2 + 16}$
 - $f(x,y) = \sqrt{-x^2 y^2 + 4}.$
 - $colon | f(x, y) = -\sqrt{-x^2 y^2 + 4}$
 - D $f(x, y) = -\sqrt{-x^2 y^2 + 2}$
 - E $f(x,y) = -\sqrt{-x^2 y^2 + 16}$.
- **1.5** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f admite derivadas parciais de 1º ordem em D_f , então f é diferenciável em D_f .
 - B Se $\frac{\partial^2 f}{\partial x \partial y}(a, b) \neq \frac{\partial^2 f}{\partial y \partial x}(a, b)$, então não existe um plano tangente ao gráfico de f em (a, b).
 - \square Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então não existe um plano tangente ao gráfico de f em (a,b).
 - D Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
 - $oxed{\mathsf{E}}$ Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

1.6 Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:	
$ \begin{bmatrix} A & \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m. $	
$ \left[B \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = \frac{1}{m}. $	

$$\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$$

$$\boxed{D} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$$

$$\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$$

- 1.7 O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição x+y=-1 é:
 - $\boxed{\mathsf{A}}\ (-1/2,-1/2)$ associado a $\lambda=-2$.
 - [B] (-1/2, -1/2) associado a $\lambda = -1$.
 - (-2,1) associado a $\lambda = -1.$
 - $\boxed{\mathsf{D}}\ (-1/2,-1/2)$ associado a $\lambda=2$.
 - [E] (1,-2) associado a $\lambda=1$.
- **1.8** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (3, -4) na direção do vetor $\vec{v} = (1, 0)$ é:
 - A 3
 - B 1.
 - C 2.
 - D -4.
 - |E|-1
- **1.9** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipses e um ponto.
 - B circunferências e um ponto.
 - C parábolas e um ponto.
 - D parabolóides e um ponto.
 - E elipsóides e um ponto.
- **I.10** Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \ \tfrac{\partial g}{\partial \mathsf{x}} \cos(\mathsf{y} g) \left(\mathsf{y} \tfrac{\partial g}{\partial \mathsf{y}} + g \right) \mathsf{y} \tfrac{\partial g}{\partial \mathsf{x}} \operatorname{sen}(\mathsf{y} g).$
 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{sen}(yg) + \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$
 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) + \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
 - $\boxed{ \mathbb{D} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg). }$
 - $\boxed{\mathsf{E}} \ \tfrac{\partial g}{\partial x} \cos(yg) + \left(y\tfrac{\partial g}{\partial y} + g\right) y \tfrac{\partial g}{\partial x} \operatorname{sen}(yg).$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v134

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

I.1 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (2, -1) na direção do vetor $\vec{v} = (0, 1)$ é:

- A 4.
- B 2.
- C -3.
- D -2.
- E 3.

1.2 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-1}{h}.$
- $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$
- $\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{h^3}{h^5} 0}{h}.$

1.3 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:

- A $f(x,y) = \sqrt{-x^2 y^2 + 2}$
- B $f(x, y) = -\sqrt{-x^2 y^2 + 16}$
- C $f(x,y) = -\sqrt{-x^2 y^2 + 4}$
- $D f(x,y) = \sqrt{-x^2 y^2 + 4}.$
- $|E| f(x,y) = -\sqrt{-x^2 y^2 + 2}.$

1.4 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A circunferências e um ponto.
- B elipses e um ponto.
- C parabolóides e um ponto.
- D retas.
- E hipérboles.

1.5 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x - y)}$. Então, o domínio da função é:

- $\boxed{\mathsf{A}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- $\overline{|\mathsf{B}|} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- $\overline{|C|}$ $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$

	Considere a função real de duas variáveis reais $f(x,y) = x^3 - (x-3)^2 - 6x - y^2$. Então:
	(0,0) é um maximizante local de f . $(2/3,0)$ é um minimizante local de f .
С	
D	
E	
	O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição $x-y=1$ é:
	$ (2,1) $ associado a $\lambda = -1$.
В	$(1/2,-1/2)$ associado a $\lambda=1.$
С	(2,1) associado a $\lambda=1$.
	(2,1) associado a $\lambda=-2$.
E	$(1/2,-1/2)$ associado a $\lambda=2$.
1.8	Sejam $f(x,y) = \operatorname{sen}(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
Α	$\left \begin{array}{l} \frac{\partial g}{\partial x} \cos(yg) + \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg). \end{array} \right $
В	$\left \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \operatorname{sen}(yg) + \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \cos(yg). \right $
С	$\left \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) + \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg). \right $
D	$\left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \cos(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$
	$\left \begin{array}{c} \frac{\partial g}{\partial x} \cos(yg) - \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg). \end{array} \right $
1.9	Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das
А	osições é verdadeira. Se ƒ não é diferenciável em D_f , então ƒ ∉ $C^0(D_f)$.
В	Se não existe um plano tangente ao gráfico de f em (a,b) , então f não admite derivadas parciais de 1^a ordem em (a,b) .
	Se f é diferenciável em (a, b) , então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
D	Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então $f \notin C^0(D_f)$.
Ε	Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então $f \notin C^1(D_f)$.
l.10	Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
Α	$\left \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m. \right $
В	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
С	$\Big \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}}f(x,y)=1.$
D	$\left \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
Е	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v135

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

I.1 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} - \frac{\partial g}{\partial v} \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$$

$$\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$$

$$\boxed{ \bigcirc \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \sin(xg). }$$

$$\boxed{\mathsf{E}} - \frac{\partial g}{\partial v} \operatorname{sen}(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \cos(xg).$$

1.2 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:

A
$$f(x,y) = \sqrt{-x^2 - y^2 + 4}$$

B
$$f(x,y) = \sqrt{-x^2 - y^2 + 16}$$

$$C f(x, y) = -\sqrt{-x^2 - y^2 + 4}$$

$$D f(x, y) = -\sqrt{-x^2 - y^2 + 2}$$

$$E f(x, y) = -\sqrt{-x^2 - y^2 + 16}$$

1.3 O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x - y = -1 é:

$$|A|$$
 (1,2) associado a $\lambda = 1$.

$$[B]$$
 $(-1/2, 1/2)$ associado a $\lambda = -2$.

$$C$$
 $(-1/2, 1/2)$ associado a $\lambda = -1$.

$$|\mathsf{D}|$$
 $(-1/2,1/2)$ associado a $\lambda=2$.

$$|\mathsf{E}|$$
 (1,2) associado a $\lambda=2$.

1.4 Considere a função real de duas variáveis reais $f(x, y) = -x^2 + (y + 2)^2 + y^3 - 4y$. Então:

- |A| (0, -2/3) é um ponto de sela de f.
- |B| (0,0) é um minimizante local de f.
- |C| (0,0) é um ponto de sela de f.
- D (0,2/3) é um ponto de sela de f.
- [E] (0,0) é um maximizante local de f.

1.5 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A circunferências e um ponto.
- B elipses e um ponto.
- C parabolóides e um ponto.
- D elipsóides e um ponto.
- E hipérboles.

1.6 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, -2) na direção do vetor $\vec{v} = (0, 1)$ é:

- A 3.
- B 2.
- C -4.
- D 4.
- E 1.

- 1.7 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se $\frac{\partial^2 f}{\partial x \partial y}(a, b) \neq \frac{\partial^2 f}{\partial y \partial x}(a, b)$, então não existe um plano tangente ao gráfico de f em (a, b).
 - B Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .
 - \square Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
 - \square Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).
 - [E] Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é diferenciável em (a, b).
- **1.8** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 - $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{2h}-0}{h}.$
 - $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-1}{h}.$
 - $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^2}-0}{h}.$
- **1.9** Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
 - $\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
 - $\begin{bmatrix}
 B & \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2.
 \end{bmatrix}$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
- **I.10** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln(x + y)}$. Então, o domínio da função é:
 - $\boxed{\mathsf{A}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}$
 - $\overline{|\mathsf{B}|} \ D_f = \{(x,y) \in \mathsf{IR}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
 - $\overline{|C|}$ $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}$
 - $\overline{|D|} D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
 - $\overline{|E|} D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v136

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{A} \lim_{k \to 0} \frac{\frac{0}{k^4} 0}{k}.$
- $\mathbb{B} \lim_{k \to 0} \frac{\frac{0}{k^2} 0}{k}.$ $\mathbb{C} \lim_{k \to 0} \frac{\frac{k^2}{k} 0}{k}.$
- $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^5}-0}{\nu}.$

1.2 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- $|\mathsf{A}|$ Se não existe um plano tangente ao gráfico de f em (a,b), então f não admite derivadas parciais de 1^a ordem em (a,b).
- B Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.
- C Se f admite derivadas parciais de 1º ordem em D_f , então f é diferenciável em D_f .
- D Se f possui derivadas dirigidas em todas as direções no ponto (a, b), então f é diferenciável em (a, b).
- |E| Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).

1.3 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:

- $|A| f(x,y) = -\sqrt{-x^2 y^2 + 16}.$
- B $f(x, y) = -\sqrt{-x^2 y^2 + 2}$
- $C f(x, y) = \sqrt{-x^2 y^2 + 4}$
- $D f(x, y) = \sqrt{-x^2 y^2 + 2}$
- $[E] f(x,y) = \sqrt{-x^2 y^2 + 16}.$

1.4 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A hipérboles.
- B elipsóides e um ponto.
- C parábolas e um ponto.
- D circunferências e um ponto.
- E elipses e um ponto.

1.5 A derivada dirigida da função real de duas variáveis reais $f(x,y) = x + y^2$ em (3,1) na direção do vetor $\vec{v} = (0,1)$ é:

- A 2.
- $B \mid -1.$
- C = 3.
- $D \mid -2$.
- E 3.

I.6 O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição x-y=1 é: A (1/2,-1/2) associado a $\lambda=2$.

B (2,1) associado a $\lambda=-2$.

C (2,1) associado a $\lambda=1$.

D (1/2,-1/2) associado a $\lambda=1$.

E (1/2,-1/2) associado a $\lambda=-2$.

1.7 Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

 $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{cos}(yg) - \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$

 $\boxed{\mathsf{B}} - \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y}\right) \mathsf{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$

 $\boxed{\mathsf{C}} - \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y}\right) \mathsf{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$

 $\boxed{\mathsf{E}} - \tfrac{\partial g}{\partial x} \operatorname{sen}(yg) - \left(y \tfrac{\partial g}{\partial y} + g\right) y \tfrac{\partial g}{\partial x} \cos(yg).$

1.8 Considere a função real de duas variáveis reais $f(x,y) = -x^2 + (y+2)^2 + y^3 - 4y$. Então:

 $\boxed{\mathsf{A}}$ (0,0) é um minimizante local de f.

 $\boxed{\mathsf{B}}$ (0,2/3) é um minimizante local de f.

(0,0) é um ponto de sela de f.

 $\boxed{\mathsf{D}}$ (0, -2/3) é um minimizante local de f.

[E] (0,2/3) é um maximizante local de f.

1.9 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2+2y^2-4}}{\ln(x-y)}$. Então, o domínio da função é:

 $\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}$

 $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$

C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$

I.10 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

 $| \text{A} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m.$

 $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$

 $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$

 $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$

 $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$

1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v137

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

nº de aluno:

- **I.1** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipsóides e um ponto.
 - B parabolóides e um ponto.
 - C hipérboles.
 - D retas.
 - E circunferências e um ponto.
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln{(y x)}}$. Então, o domínio da função é:
 - $\boxed{\mathsf{A}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1) \}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 < 2) \land (y \neq -x + 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- **1.3** Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

 - C $-\frac{\partial g}{\partial v} \operatorname{sen}(xg) (x\frac{\partial g}{\partial x} + g) x\frac{\partial g}{\partial v} \cos(xg)$.
 - $\boxed{\mathsf{D}} \tfrac{\partial g}{\partial y} \operatorname{sen}(xg) + \left(x \tfrac{\partial g}{\partial x} + g\right) x \tfrac{\partial g}{\partial y} \operatorname{cos}(xg).$
- **1.4** Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
 - $\exists \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
 - $\square \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
- **1.5** Considere a função real de duas variáveis reais $f(x,y) = -x^2 + (y+2)^2 + y^3 4y$. Então:
 - $\boxed{\mathsf{A}}\ (0,-2/3)$ é um ponto de sela de f.
 - $oxed{\mathsf{B}}$ (0,0) é um maximizante local de f.
 - (0,2/3) é um maximizante local de f.
 - $\boxed{\mathsf{D}}$ (0,2/3) é um ponto de sela de f.
 - [E] (0,0) é um ponto de sela de f.

1.6	Seja $\frac{\partial f}{\partial y}(x,y) = \left\{ \right.$	$ \begin{array}{c} \frac{y^2}{x+y^4} \\ 0 \end{array} $	se $(x, y) \neq (0, 0)$, se $(x, y) = (0, 0)$.	Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da express
1.0	Seja $\frac{\partial}{\partial y}(x,y) = \left\{ \right.$	Ô	se $(x, y) = (0, 0)$.	Entao, $\frac{\partial y^2}{\partial y^2}(0,0)$ pode ser obtida a partir da exp

- $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} 0}{k}.$
- $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} 0}{k}.$
- $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k^2} 0}{k}.$
- $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^4}-1}{k}.$
- $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k} 0}{k}.$

1.7 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x - y = 1 é:

- $\boxed{\mathsf{A}}$ (2,1) associado a $\lambda=1$.
- $\boxed{\mathsf{B}}$ (1/2, -1/2) associado a $\lambda = 1$.
- $\lceil C \rceil$ (1/2, -1/2) associado a $\lambda = 2$.
- \square (1/2, -1/2) associado a $\lambda = -2$.
- [E] (2,1) associado a $\lambda = -1$.

1.8 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- A Se não existe um plano tangente ao gráfico de f no ponto (a, b), então $f \notin C^0(D_f)$.
- $\boxed{\mathsf{B}}$ Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
- \square Se f não é diferenciável em (a, b), então f não possui derivadas dirigidas em todas as direções no ponto (a, b).
- \square Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f \notin C^1(D_f)$.
- [E] Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).

1.9 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (3, -2) na direção do vetor $\vec{v} = (0, 1)$ é:

- A 1.
- B 4.
- C 3.
- D -4
- E 1.

1.10 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:

- $A f(x,y) = -\sqrt{-x^2 y^2 + 4}$
- B $f(x,y) = -\sqrt{-x^2 y^2 + 16}$.
- $\overline{|C|}$ $f(x,y) = \sqrt{-x^2 y^2 + 4}$.
- $f(x,y) = \sqrt{-x^2 y^2 + 16}$
- E $f(x,y) = -\sqrt{-x^2 y^2 + 2}$

1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v138

- **I.1** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - B Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então não existe um plano tangente ao gráfico de f em (a, b).
 - \square Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .
 - D Se f possui derivadas dirigidas em todas as direções no ponto (a, b), então f é diferenciável em (a, b).
 - $oxed{\mathsf{E}}$ Se f é diferenciável em (a,b), então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.
- **1.2** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (3, 1) na direção do vetor $\vec{v} = (0, 1)$ é:
 - A 1
 - B 1.
 - C -2.
 - D 2.
 - $\boxed{\mathsf{E}}$ -3.
- **I.3** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{0}{h^5}-0}{h}.$
 - $\boxed{\mathsf{B}} \lim_{h \to 0} \frac{\frac{0}{h^4} 0}{h}.$

 - $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-1}{h}.$
- **1.4** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \cos(xg).$
 - $\boxed{\mathsf{B}} \ \frac{\partial g}{\partial y} \cos(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \sin(xg).$

 - $\boxed{\mathsf{D}} \ \frac{\partial g}{\partial v} \cos(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \operatorname{sen}(xg).$
- 1.5 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:
 - $A f(x, y) = -\sqrt{-x^2 y^2 + 4}$
 - B $f(x, y) = \sqrt{-x^2 y^2 + 2}$.
 - C $f(x, y) = \sqrt{-x^2 y^2 + 16}$.
 - $D f(x, y) = \sqrt{-x^2 y^2 + 4}$
 - $[E] f(x,y) = -\sqrt{-x^2 y^2 + 16}$

- - $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m.$
- **1.7** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipsóides e um ponto.
 - B parábolas e um ponto.
 - C circunferências e um ponto.
 - D elipses e um ponto.
 - E retas.
- **1.8** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x y = -1 é:
 - $|\mathsf{A}|$ (1,2) associado a $\lambda=2$.
 - [B] (1,2) associado a $\lambda = 1$.
 - C (-1/2, 1/2) associado a $\lambda = 2$.
 - D (1,2) associado a $\lambda = -1$.
 - [E] (-1/2, 1/2) associado a $\lambda = -1$.
- **1.9** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln(x y)}$. Então, o domínio da função é:
 - $\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - $\overline{|D|} D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - $\overline{|\mathsf{E}|} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
- **1.10** Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 x^3 + 6x + y^2$. Então:
 - $\boxed{\mathsf{A}}$ (2/3,0) é um minimizante local de f.
 - $\boxed{\mathsf{B}}$ (0,0) é um ponto de sela de f.
 - $\boxed{\mathsf{C}}$ (0,0) é um maximizante local de f.
 - $\overline{|D|}$ (-2/3,0) é um ponto de sela de f.
 - $oxed{\mathsf{E}}$ (2/3,0) é um ponto de sela de f.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v139

- **I.1** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \cos(xg).$
 - $\boxed{\mathsf{B}} \ \frac{\partial g}{\partial v} \cos(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \sin(xg).$

 - $\boxed{\mathsf{D}} \ \frac{\partial g}{\partial v} \cos(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \sin(xg).$
 - $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
- 1.2 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 4 é:
 - A $f(x, y) = -\sqrt{-x^2 y^2 + 16}$
 - B $f(x, y) = \sqrt{-x^2 y^2 + 2}$.
 - $C f(x,y) = -\sqrt{-x^2 y^2 + 2}$
 - D $f(x,y) = \sqrt{-x^2 y^2 + 16}$
 - $|E| f(x,y) = -\sqrt{-x^2 y^2 + 4}$
- **1.3** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipsóides e um ponto.
 - B hipérboles.
 - C elipses e um ponto.
 - D parabolóides e um ponto.
 - E circunferências e um ponto.
- **1.4** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln(y x)}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 > 2) \land (y \neq -x + 1)\}.$
 - $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 > 2) \land (y \neq x + 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $E \mid D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 > 2) \land (y \neq x 1)\}.$
- **1.5** Considere a função real de duas variáveis reais $f(x, y) = x^2 + (y 2)^2 y^3 + 4y$. Então:
 - |A|(0,0) é um ponto de sela de f.
 - $|\mathsf{B}|$ (0, –2/3) é um maximizante local de f.
 - |C| (0, -2/3) é um ponto de sela de f.
 - |D| (0,0) é um minimizante local de f.
 - |E| (0,2/3) é um maximizante local de f.
- **1.6** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x y = 1 é:
 - |A| (2, 1) associado a $\lambda = -2$.
 - |B| (2, 1) associado a $\lambda = 1$.
 - |C| (2, 1) associado a $\lambda = -1$.
 - |D| (1/2, -1/2) associado a $\lambda = 2$.
 - |E| (1/2, -1/2) associado a $\lambda = 1$.

1.7 A derivada dirigida da função real de duas variáveis reais $f(x,y) = x - y^2$ em (2,3) na direção do vetor $\vec{v} = (1,0)$ é:
A 4.
B 2.

D -1. E 3.

C 1.

I.8 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k}-0}{k}.$$

$$\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} - 0}{k}.$$

1.9 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

 $\overline{\mathsf{A}}$ Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .

B Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então não existe um plano tangente ao gráfico de f em (a, b).

D Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).

|E| Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

I.10 Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:

$$\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$$

$$\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$$

$$\boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$$

$$\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m^2.$$

1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v140

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

1.1 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:

A
$$f(x,y) = \sqrt{-x^2 - y^2 + 2}$$
.

B
$$f(x,y) = \sqrt{-x^2 - y^2 + 4}$$
.

C
$$f(x,y) = -\sqrt{-x^2 - y^2 + 4}$$
.

$$D f(x,y) = -\sqrt{-x^2 - y^2 + 16}$$

$$[E] f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$

1.2 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln{(y - x)}}$. Então, o domínio da função é:

$$\boxed{\mathsf{A}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$$

$$\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$$

$$C$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 > 2) \land (y \neq x - 1)\}.$

$$D$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 > 2) \land (y \neq x + 1)\}.$

$$oxed{\mathsf{E}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$$

I.3 Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

$$\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \sin(xg).$$

1.4 Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

$$\text{A} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$$

$$\left[\underline{\mathsf{B}} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in \mathcal{C}_m}} f(x,y) = 0.$$

$$\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$$

$$\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$$

$$\begin{bmatrix}
\exists \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$$

1.5 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:
$\boxed{A} \lim_{k \to 0} \frac{\frac{k^2}{k} - 0}{k}.$
$\boxed{C} \lim_{k \to 0} \frac{\frac{0}{k^2} - 0}{k}.$
$\boxed{E} \ \lim_{k \to 0} \frac{\frac{k^2}{k^4} - 1}{k}.$
1.6 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição $x - y = 1$ é: A $(1/2, -1/2)$ associado a $\lambda = 2$.
B $(2,1)$ associado a $\lambda = -2$.
$ C $ $(1/2, -1/2)$ associado a $\lambda = 1. $
$oxed{ f D}$ $(2,1)$ associado a $\lambda=1$. $oxed{ f E}$ $(1/2,-1/2)$ associado a $\lambda=-2$.
1.7 As curvas de nível da função $f(x, y) = x^2 + y^2$ são: A elipses e um ponto.
B parábolas e um ponto.
C circunferências e um ponto.
D parabolóides e um ponto.
E elipsóides e um ponto.
1.8 Considere a função real de duas variáveis reais $f(x,y) = -x^2 + (y+2)^2 + y^3 - 4y$. Então: $\boxed{A}\ (0,0)$ é um minimizante local de f .
(0,0) e um maximizante local de f .
C (0,0) é um maximizante local de f .
\boxed{D} $(0,0)$ é um ponto de sela de f .
$oxed{E}\ (0,-2/3)$ é um minimizante local de f .
I.9 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
\boxed{A} Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então não existe um plano tangente ao gráfico de f em (a,b) .
B Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
Se f não possui derivadas dirigidas em todas as direções no ponto (a, b) , então f não é contínua em (a, b) .
D Se f é diferenciável em (a, b) , então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
$oxed{E}$ Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então $f\notin C^0(D_f)$.
I.10 A derivada dirigida da função real de duas variáveis reais $f(x,y) = x + y^2$ em $(-2,2)$ na direção do vetor $\vec{v} = (1,0)$ é: $A = -4$.
A −4. B −3.
B -3. C 4. D 1. E 3.
D 1.
E 3.
Fim.

1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v141

- **I.1** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A elipsóides e um ponto.
 - B parábolas e um ponto.
 - C circunferências e um ponto.
 - D hipérboles.
 - E elipses e um ponto.
- **1.2** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f possui derivadas dirigidas em todas as direções no ponto (a, b), então f é diferenciável em (a, b).
 - B Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b).
 - C Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^1(D_f)$.
 - \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - E Se f é diferenciável em (a, b), então $\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.
- **1.3** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-1, 2) na direção do vetor $\vec{v} = (0, 1)$ é:
 - |A| 3
 - B 1.
 - C 4.
 - D 4
 - E −2.
- **1.4** Sejam f(x,y) = sen(yg) e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial v}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) + \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$

 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{sen}(yg) + \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \cos(yg).$

 - $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) \left(y \frac{\partial g}{\partial \mathsf{y}} + g \right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$
- **1.5** Considere a função $f(x,y) = \frac{x^2}{(x+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2): t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
 - $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
 - $\square \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0.$
 - $\begin{bmatrix} \mathsf{E} \end{bmatrix} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$

I.6 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 $\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$

 $\square \lim_{h \to 0} \frac{\frac{h^3}{h^2} - 1}{h}.$

 $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{2h}-0}{h}.$

 $\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{0}{h^2}-0}{h}.$

1.7 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(x+y)}}$. Então, o domínio da função é:

 $\boxed{A} D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$

 $\boxed{\mathsf{B}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$

C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$

 $\boxed{\mathsf{D}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$

 $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathsf{IR}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$

1.8 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:

A $f(x,y) = -\sqrt{-x^2 - y^2 + 2}$

B $f(x, y) = -\sqrt{-x^2 - y^2 + 16}$.

 $|C| f(x,y) = \sqrt{-x^2 - y^2 + 4}.$

 $D f(x,y) = \sqrt{-x^2 - y^2 + 2}$

 $|E| f(x,y) = -\sqrt{-x^2 - y^2 + 4}.$

1.9 Considere a função real de duas variáveis reais $f(x,y) = x^2 + (y-2)^2 - y^3 + 4y$. Então:

 $\boxed{\mathsf{A}}\ (0,2/3)$ é um minimizante local de f.

 $\boxed{\mathsf{B}}$ (0,0) é um minimizante local de f.

 $\boxed{\mathsf{C}}$ (0,0) é um maximizante local de f.

 $\boxed{\mathsf{D}}$ (0,0) é um ponto de sela de f.

| E | (0, -2/3) é um ponto de sela de f.

1.10 O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x + y = 1 é:

 $\boxed{\mathsf{A}}$ (2, -1) associado a $\lambda=1$.

 $\boxed{\mathsf{B}}$ (1/2, 1/2) associado a $\lambda = -2$.

 $\lceil C \rceil$ (1/2, 1/2) associado a $\lambda = 2$.

 $\boxed{\mathsf{D}}$ (1/2, 1/2) associado a $\lambda=1$.

[E] (2, -1) associado a $\lambda = -1$.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v142

- **1.1** Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 x^3 + 6x + y^2$. Então:
 - A (2/3,0) é um ponto de sela de f.
 - |B| (0,0) é um ponto de sela de f.
 - (2/3,0) é um minimizante local de f.
 - D (-2/3,0) é um maximizante local de f.
 - [E] (-2/3,0) é um minimizante local de f.
- **1.2** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
 - B Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então não existe um plano tangente ao gráfico de f em (a, b).
 - C Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .
 - \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - E Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b).
- **1.3** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \ \frac{\partial g}{\partial v} \cos(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \sin(xg).$
 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{cos}(xg).$

 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{E}} \frac{\partial g}{\partial v} \cos(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \sin(xg).$
- **1.4** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-1, 2) na direção do vetor $\vec{v} = (0, 1)$ é:
 - A -4
 - B -2.
 - C 3.
 - D -3.
 - E 4.
- 1.5 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:
 - $|A| f(x,y) = -\sqrt{-x^2 y^2 + 16}.$
 - B $f(x, y) = -\sqrt{-x^2 y^2 + 4}$
 - $C f(x, y) = \sqrt{-x^2 y^2 + 4}$
 - D $f(x,y) = \sqrt{-x^2 y^2 + 2}$
 - $|E| f(x, y) = \sqrt{-x^2 y^2 + 16}.$

1.6 Considere a função $f(x,y) = \frac{y^2}{(x+y^2)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

 $\bigsqcup_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} \lim_{f(x,y)=m^2.$

 $\boxed{\mathbb{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$

 $\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$

 $\boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$

 $\begin{bmatrix} \mathsf{E} \end{bmatrix} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in \mathcal{C}_m}} f(x,y) = 0.$

1.7 O ponto crítico da função real de duas variáveis reais $f(x,y)=x^2+y^2$ com restrição x+y=-1 é:

 $\boxed{\mathsf{A}}\ (-1/2,-1/2)$ associado a $\lambda=-2$.

B (-1/2, -1/2) associado a $\lambda = -1$.

C (-2,1) associado a $\lambda = 1$.

 $\boxed{\mathsf{D}}$ (1,-2) associado a $\lambda = 1$.

[E] (-2,1) associado a $\lambda = -1$.

I.8 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

A parabolóides e um ponto.

B elipsóides e um ponto.

C circunferências e um ponto.

D elipses e um ponto.

E retas.

1.9 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2-2y^2+4}}{\ln{(y-x)}}$. Então, o domínio da função é:

A $D_f = \{(x, y) \in \mathbb{R}^2 : (y < -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}$

 $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$

 $\overline{|D|} D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$

 $\overline{|E|} D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}.$

1.10 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

 $\boxed{\mathsf{B}} \lim_{k \to 0} \frac{\frac{k^2}{k} - 0}{k}.$

 $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k^4} - 0}{k}.$

 $\boxed{\mathsf{D}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} - 0}{k}.$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v143

- **I.1** Considere a função real de duas variáveis reais $f(x,y) = (x-3)^2 x^3 + 6x + y^2$. Então:
 - $\begin{bmatrix} A \end{bmatrix}$ (-2/3,0) é um minimizante local de f.
 - [B] (0,0) é um maximizante local de f.
 - (-2/3,0) é um maximizante local de f.
 - |D| (2/3,0) é um ponto de sela de f.
 - |E|(2/3,0) é um maximizante local de f.
- 1.2 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:
 - A $f(x,y) = -\sqrt{-x^2 y^2 + 2}$.
 - B $f(x,y) = -\sqrt{-x^2 y^2 + 4}$
 - $C f(x, y) = \sqrt{-x^2 y^2 + 2}$
 - $D f(x,y) = \sqrt{-x^2 y^2 + 4}$
 - $|E| f(x, y) = \sqrt{-x^2 y^2 + 16}$
- **1.3** Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt): t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $\text{A} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
 - $\exists \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
 - $\boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
 - $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
- **1.4** Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:
 - $\boxed{\mathsf{A}} \lim_{h \to 0} \frac{\frac{h^3}{h^4} 1}{h}.$
 - $\boxed{\mathsf{B}} \lim_{h \to 0} \frac{\frac{0}{h^4} 0}{h}.$

 - $\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$
 - $\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{h^3}{h^5} 0}{h}.$
- **1.5** O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x + y = -1 é:
 - |A| (-2,1) associado a $\lambda = 1$.
 - $|\mathsf{B}|$ (-2,1) associado a $\lambda=-1$.
 - |C| (-1/2, -1/2) associado a $\lambda = -1$.
 - $|\mathsf{D}|$ (1, -2) associado a $\lambda = 1$.
 - [E] (-1/2, -1/2) associado a $\lambda = -2$.

1.6 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(y - x)}}$. Então, o domínio da função é: A $D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}$. B $D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}$. C $D_f = \{(x,y) \in \mathbb{R}^2 : (y < -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}$. D $D_f = \{(x,y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}$. D $D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x - 1)\}$.
I.7 Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a: $\begin{bmatrix} A & \frac{\partial g}{\partial y} \cos(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \sin(xg). \\ B & \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \cos(xg) - \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \sin(xg). \\ C & \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \sin(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg). \\ D & \frac{\partial g}{\partial y} \cos(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \sin(xg). \\ E & \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \sin(xg). \end{bmatrix}$
1.8 As curvas de nível da função $f(x, y) = x^2 + y^2$ são: A parábolas e um ponto. B circunferências e um ponto. C retas. D hipérboles. E elipses e um ponto.
1.9 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira. A Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então $f\notin C^1(D_f)$. B Se não existe um plano tangente ao gráfico de f em (a,b) , então f não admite derivadas parciais de 1^a ordem em (a,b) . C Se f não é diferenciável em D_f , então $f\notin C^0(D_f)$. D Se f não possui derivadas dirigidas em todas as direções no ponto (a,b) , então f não é contínua em (a,b) . E Se f não é diferenciável em (a,b) , então f não possui derivadas dirigidas em todas as direções no ponto (a,b) .
I.10 A derivada dirigida da função real de duas variáveis reais $f(x,y)=x+y^2$ em $(-2,1)$ na direção do vetor $\vec{v}=(0,1)$ é: \boxed{A} 1. \boxed{B} -3 . \boxed{C} -4 . \boxed{D} 2. \boxed{E} 3.
Fim.

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

n° de aluno:

v144

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(y-x)}}$. Então, o domínio da função é:

- $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
- $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- D $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$

1.2 Sejam $f(x,y) = \cos(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

- $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x}\right) \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$

- $\boxed{\mathsf{E}} \frac{\partial g}{\partial y} \operatorname{sen}(xg) \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial y} \cos(xg).$
- **1.3** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A hipérboles.
 - B retas.
 - C parábolas e um ponto.
 - D elipsóides e um ponto.
 - | E | circunferências e um ponto.

1.4 Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

- $\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$
- $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$
- $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
- $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
- $[E] \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$

I.5 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão: $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} - 0}{k}.$ $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{0}{k^4} - 0}{k}.$ **1.6** Considere a função real de duas variáveis reais $f(x,y) = x^3 + (x-3)^2 + 6x - y^2$. Então: |A| (-2/3,0) é um maximizante local de f. |B| (-2/3,0) é um ponto de sela de f. |C| (-2/3,0) é um minimizante local de f. |D| (2/3,0) é um ponto de sela de f. |E| (0,0) é um minimizante local de f. 1.7 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-2, 2) na direção do vetor $\vec{v} = (1, 0)$ é: |A| - 3. B 3. C -2. D 4. E 1. **1.8** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é: |A| (1, -2) associado a $\lambda = 1$. $|\mathsf{B}|$ (-1/2, -1/2) associado a $\lambda = -1$. C (-2, 1) associado a $\lambda = 1$. |D| (-1/2, -1/2) associado a $\lambda = -2$. |E| (-2,1) associado a $\lambda = -1$. 1.9 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira. A Se não existe um plano tangente ao gráfico de f no ponto (a, b), então f não é diferenciável em (a, b). B Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é contínua em (a, b). |C| Se não existe um plano tangente ao gráfico de f em (a, b), então f não admite derivadas parciais de 1^a ordem em (a, b). D Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f . $oxed{\mathsf{E}}$ Se f é diferenciável em (a,b), então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$. 1.10 A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é: $|A| f(x, y) = \sqrt{-x^2 - y^2 + 4}$ B $f(x,y) = \sqrt{-x^2 - y^2 + 2}$ $|C| f(x, y) = -\sqrt{-x^2 - y^2 + 4}$ $D \mid f(x, y) = -\sqrt{-x^2 - y^2 + 16}$

 $[E] f(x,y) = -\sqrt{-x^2 - y^2 + 2}$

Δ	ná	lise	Mat	emá	tica	FF
				LCIIIA		

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v145

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

- **1.1** Considere a função real de duas variáveis reais $f(x, y) = x^3 + (x 3)^2 + 6x y^2$. Então:
 - |A| (2/3,0) é um ponto de sela de f.
 - $\boxed{\mathsf{B}}\ (-2/3,0)$ é um minimizante local de f.
 - (2/3,0) é um minimizante local de f.
 - \square (2/3,0) é um maximizante local de f.
 - (-2/3,0) é um maximizante local de f.
- **1.2** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
 - B Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
 - C Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
 - |D| Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então f não é diferenciável em (a, b).
 - $oxed{\mathsf{E}}$ Se não existe um plano tangente ao gráfico de f em (a,b), então f não é contínua em (a,b).
- **1.3** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln{(y-x)}}$. Então, o domínio da função é:
 - $\boxed{\mathsf{A}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$

 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
 - $oxed{\mathsf{E}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- **1.4** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x y^2$ em (-1, -4) na direção do vetor $\vec{v} = (1, 0)$ é:
 - |A|-2.
 - B 3.
 - C -4.
 - D 2.
 - |E| 1.
- **1.5** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A parábolas e um ponto.
 - B circunferências e um ponto.
 - C elipses e um ponto.
 - D retas.
 - E elipsóides e um ponto.

I.6 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{B}} \lim_{h\to 0} \frac{\frac{h^3}{h^5}-0}{h}.$$

$$\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{0}{h^4}-0}{h}.$$

$$\boxed{\mathsf{D}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-1}{h}.$$

$$\boxed{\mathsf{E}} \lim_{h \to 0} \frac{\frac{0}{h^5} - 0}{h}.$$

1.7 Considere a função $f(x,y)=\frac{y^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m=\{(t,mt):t\in \mathbb{R}\}\cap D_f,\ m\in \mathbb{R}.$ Então:

$$[A] \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$$

$$\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$$

$$\boxed{\square} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$$

$$\boxed{\mathbb{D}} \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in \mathcal{C}_m}} f(x,y) = 0.$$

$$\left[\mathsf{E} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m.$$

1.8 O ponto crítico da função real de duas variáveis reals $f(x,y) = x^2 + y^2$ com restrição x - y = 1 é:

- $\boxed{\mathsf{A}}$ (2,1) associado a $\lambda=-1$.
- $\boxed{\mathsf{B}}$ (2, 1) associado a $\lambda = -2$.
- $\boxed{\mathsf{C}}\ (1/2,-1/2)$ associado a $\lambda=2$
- \square (1/2, -1/2) associado a $\lambda = -2$
- lacksquare (1/2, -1/2) associado a $\lambda = 1$.

I.9 Sejam $f(x,y)=\cos(yg)$ e $g=g(x,y)\in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial v}(x,y)$ é igual a:

$$\boxed{\mathsf{A}} - \tfrac{\partial g}{\partial x} \operatorname{sen}(yg) - \left(y \tfrac{\partial g}{\partial y} + g\right) y \tfrac{\partial g}{\partial x} \cos(yg).$$

$$\boxed{ \bigcirc \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y} \right) \cos(yg) - \left(y \frac{\partial g}{\partial y} + g \right) y \frac{\partial g}{\partial x} \sin(yg). }$$

$$\boxed{\square - \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \cos(yg)}.$$

$$\boxed{\mathsf{E}} - \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \operatorname{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$$

1.10 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:

A
$$f(x, y) = \sqrt{-x^2 - y^2 + 2}$$

B
$$f(x,y) = \sqrt{-x^2 - y^2 + 4}$$

C
$$f(x,y) = -\sqrt{-x^2 - y^2 + 16}$$

D
$$f(x,y) = -\sqrt{-x^2 - y^2 + 4}$$
.

E
$$f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v146

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

n° de aluno:

I.1 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(y-x)}}$. Então, o domínio da função é:

- $A D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
- $oxed{\mathsf{E}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$

1.2 Considere a função real de duas variáveis reais $f(x,y) = x^3 - (x-3)^2 - 6x - y^2$. Então:

- $\boxed{\mathsf{A}}$ (0,0) é um ponto de sela de f.
- [B] (0,0) é um minimizante local de f.
- (2/3,0) é um ponto de sela de f.
- \square (2/3,0) é um minimizante local de f.
- [E] (-2/3,0) é um maximizante local de f.

1.3 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:

- A $f(x,y) = -\sqrt{-x^2 y^2 + 2}$
- B $f(x, y) = \sqrt{-x^2 y^2 + 16}$.
- $|C| f(x,y) = \sqrt{-x^2 y^2 + 4}.$
- D $f(x, y) = \sqrt{-x^2 y^2 + 2}$
- $[E] f(x,y) = -\sqrt{-x^2 y^2 + 16}$

1.4 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

- $\boxed{\mathsf{A}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
- $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$
- $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
- $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$
- $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$

1.5 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x - y^2$ em (3, 2) na direção do vetor $\vec{v} = (1, 0)$ é:

- |A| -3.
- В 3.
- C -4.
- D 4.
- |E| 1.

I.6 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k}-1}{k}.$$

$$\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k}-0}{k}.$$

I.7 Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

$$\boxed{\mathsf{B}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial \mathsf{y}} \right) \mathsf{cos}(yg) - \left(y \tfrac{\partial g}{\partial \mathsf{y}} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

$$\boxed{\mathsf{C}} - \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{sen}(yg) - \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

$$\boxed{\mathsf{D}} - \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y}\right) \mathsf{sen}(yg) - \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$$

$$\boxed{\mathsf{E}} - rac{\partial g}{\partial x} \operatorname{sen}(yg) - \left(y rac{\partial g}{\partial y} + g\right) y rac{\partial g}{\partial x} \cos(yg).$$

1.8 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A hipérboles.
- B circunferências e um ponto.
- C parábolas e um ponto.
- D elipses e um ponto.
- E parabolóides e um ponto.

1.9 O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é:

- A (1, -2) associado a $\lambda = 1$.
- $\boxed{\mathsf{B}}\ (-1/2,-1/2)$ associado a $\lambda=2.$
- $\boxed{\mathsf{C}}\ (-1/2,-1/2)$ associado a $\lambda=-1$.
- \square (-1/2, -1/2) associado a $\lambda = -2$.
- [E] (-2,1) associado a $\lambda=1$.

I.10 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

- $\stackrel{\cdot}{\mathsf{A}}$ Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
- $oxed{B}$ Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então $f\notin C^1(D_f)$.
- \square Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.
- \square Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é contínua em (a,b).

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v147

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

- **I.1** Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.
 - A Se f é diferenciável em D_f , então $f \in C^1(D_f)$.
 - B Se não existe um plano tangente ao gráfico de f no ponto (a,b), então $f \notin C^0(D_f)$.
 - C Se f não possui derivadas dirigidas em todas as direções no ponto (a, b), então $f \notin C^1(D_f)$.
 - \square Se f não é diferenciável em (a, b), então f não possui derivadas dirigidas em todas as direções no ponto (a, b).
 - E Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).
- **1.2** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A circunferências e um ponto.
 - B hipérboles.
 - C retas.
 - D elipses e um ponto.
 - E parabolóides e um ponto.
- **1.3** O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x + y = -1 é:
 - |A| (-2,1) associado a $\lambda = 1$.
 - [B] (-2,1) associado a $\lambda = -1$.
 - (1, -2) associado a $\lambda = 1$.
 - \square (-1/2, -1/2) associado a $\lambda = -1$.
 - [E] (-1/2, -1/2) associado a $\lambda = 2$.
- **1.4** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{B}} \left(\frac{\partial g}{\partial y} + x \frac{\partial^2 g}{\partial y \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial y} \operatorname{sen}(xg).$
 - C $\frac{\partial g}{\partial y}\cos(xg) + \left(x\frac{\partial g}{\partial x} + g\right)x\frac{\partial g}{\partial y}\sin(xg)$.

 - $\boxed{\mathsf{E}} \left(\frac{\partial g}{\partial v} + x \frac{\partial^2 g}{\partial v \partial x} \right) \operatorname{sen}(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial v} \cos(xg).$
- 1.5 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:
 - A $f(x,y) = -\sqrt{-x^2 y^2 + 16}$.
 - B $f(x, y) = \sqrt{-x^2 y^2 + 2}$
 - C $f(x, y) = \sqrt{-x^2 y^2 + 16}$.
 - D $f(x, y) = -\sqrt{-x^2 y^2 + 2}$
 - $E f(x, y) = \sqrt{-x^2 y^2 + 4}$

I.6 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

- $\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{k^2}{k}-0}{k}.$
- $\boxed{\mathsf{B}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} 0}{k}.$
- $\boxed{\mathsf{C}} \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$
- $\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k^4} 0}{k}.$

1.7 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 - 2y^2 + 4}}{\ln{(x+y)}}$. Então, o domínio da função é:

- $\boxed{\mathsf{A}} \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- $\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
- \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne -x + 1)\}.$
- $\overline{|E|} D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 < 2) \land (y \neq x + 1)\}.$

1.8 A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (2, -2) na direção do vetor $\vec{v} = (0, 1)$ é:

- A 3.
- B 4.
- C 1.
- D -3.
- E -4.

1.9 Considere a função real de duas variáveis reais $f(x,y) = -x^2 + (y+2)^2 + y^3 - 4y$. Então:

- $\boxed{\mathsf{A}}$ (0,0) é um minimizante local de f.
- $\boxed{\mathsf{B}}$ (0,0) é um maximizante local de f.
- $\boxed{\mathsf{C}}$ (0,-2/3) é um minimizante local de f.
- $\boxed{\mathsf{D}}$ (0,2/3) é um maximizante local de f.
- $\boxed{\mathsf{E}}$ (0, -2/3) é um maximizante local de f.

I.10 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

- $\left[\underline{\mathsf{A}} \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in \mathcal{C}_m}} f(x,y) = m.$
- $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$
- $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
- $\boxed{\mathsf{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
- $\boxed{\mathsf{E}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m}.$

1º semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo:

v148

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

nº de aluno:

- **1.1** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = -1 é:
 - $\boxed{\mathsf{A}}\ (-1/2, -1/2)$ associado a $\lambda = 2$.
 - $|\mathsf{B}|$ (1,-2) associado a $\lambda=1$.
 - (-1/2, -1/2) associado a $\lambda = -2.$
 - $|\mathsf{D}|$ (-2,1) associado a $\lambda=-1$.
 - [E] (-1/2, -1/2) associado a $\lambda = -1$.
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 4}}{\ln{(y x)}}$. Então, o domínio da função é:
 - $A D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}$
 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
 - \square $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \ge 2) \land (y \ne x + 1)\}.$
 - $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$
- **1.3** As curvas de nível da função $f(x, y) = x^2 + y^2$ são:
 - A circunferências e um ponto.
 - B elipses e um ponto.
 - C parábolas e um ponto.
 - D elipsóides e um ponto.
 - E parabolóides e um ponto.
- **1.4** Considere a função $f(x,y) = \frac{x^2}{(x^2+y)^2}$ com domínio D_f e o conjunto $C_m = \{(t,mt) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:
 - $\left[A \right] \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m.$
 - $\boxed{\mathsf{B}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = \frac{1}{m^2}.$
 - $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 1.$

 - $\begin{bmatrix} \exists \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = m^2.$
- **1.5** Sejam $f(x,y) = \cos(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:
 - $\boxed{\mathsf{A}} \left(\frac{\partial g}{\partial x} + y \frac{\partial^2 g}{\partial x \partial y}\right) \operatorname{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial x} \operatorname{sen}(yg).$

 - $\boxed{\mathsf{D}} \left(\frac{\partial g}{\partial \mathsf{x}} + y \frac{\partial^2 g}{\partial \mathsf{x} \partial y}\right) \mathsf{sen}(yg) \left(y \frac{\partial g}{\partial y} + g\right) y \frac{\partial g}{\partial \mathsf{x}} \mathsf{cos}(yg).$

1.6	A derivada dirigida da função real de duas variáveis reais $f(x,y)=x+y^2$ em $(-2,1)$ na direção do vetor $\vec{v}=(0,1)$ é:
	3.
В	3 –3.
C	
D	0 2.

1.7 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 4 é:

A
$$f(x,y) = \sqrt{-x^2 - y^2 + 2}$$

B $f(x,y) = \sqrt{-x^2 - y^2 + 16}$

E 1.

$$\overline{|C|} f(x, y) = -\sqrt{-x^2 - y^2 + 4}$$

$$f(x,y) = -\sqrt{-x^2 - y^2 + 2}$$

$$|E| f(x, y) = -\sqrt{-x^2 - y^2 + 16}$$

1.8 Considere a função real de duas variáveis reais $f(x,y) = x^2 + (y-2)^2 - y^3 + 4y$. Então:

 $\boxed{\mathsf{A}}$ (0,2/3) é um maximizante local de f.

[B] (0, -2/3) é um minimizante local de f.

 $\overline{|C|}$ (0,2/3) é um ponto de sela de f.

 $\boxed{\mathsf{D}}$ (0, -2/3) é um ponto de sela de f.

[E] (0,2/3) é um minimizante local de f.

I.9 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão:

 $\boxed{\mathsf{A}} \lim_{h\to 0} \frac{\frac{h^3}{h^4}-0}{h}.$

 $\boxed{\mathsf{B}} \lim_{h \to 0} \frac{\frac{0}{h^2} - 0}{h}.$

 $\begin{array}{c|c}
\hline
 & h \to 0 & H \\
\hline
 & \lim_{h \to 0} \frac{h^3}{h^2} - 1 \\
\hline
 & h
\end{array}.$

 $\boxed{\mathsf{E}} \lim_{h \to 0} \frac{\frac{h^3}{2h} - 0}{h}.$

I.10 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

 $\overline{|A|}$ Se não existe um plano tangente ao gráfico de f em (a, b), então f não é contínua em (a, b).

 $\overline{\mathsf{B}}$ Se f é diferenciável em D_f , então $f \in C^1(D_f)$.

 $\overline{|C|}$ Se f é diferenciável em (a,b), então $\frac{\partial^2 f}{\partial x \partial y}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b)$.

 \square Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é diferenciável em (a,b).

E Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).

1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v149

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

I.1 Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{2x^2 + 2y^2 - 4}}{\ln(x+y)}$. Então, o domínio da função é:

$$\boxed{\mathsf{B}} \ D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$$

$$C$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne x - 1)\}.$

$$\square$$
 $D_f = \{(x, y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \ge 2) \land (y \ne -x + 1)\}.$

$$| E | D_f = \{(x, y) \in \mathbb{R}^2 : (y < x) \land (x^2 + y^2 > 2) \land (y \neq x + 1) \}.$$

1.2 Sejam $f(x,y) = \operatorname{sen}(yg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ é igual a:

$$\boxed{\mathsf{E}} \left(\tfrac{\partial g}{\partial \mathsf{x}} + y \tfrac{\partial^2 g}{\partial \mathsf{x} \partial y} \right) \mathsf{cos}(yg) - \left(y \tfrac{\partial g}{\partial y} + g \right) y \tfrac{\partial g}{\partial \mathsf{x}} \mathsf{sen}(yg).$$

1.3 O ponto crítico da função real de duas variáveis reais $f(x, y) = x^2 + y^2$ com restrição x + y = -1 é:

$$A$$
 $(-2,1)$ associado a $\lambda = -1$.

$$[B]$$
 $(1, -2)$ associado a $\lambda = 1$.

$$(-2,1)$$
 associado a $\lambda = 1.$

$$\boxed{\mathsf{D}}$$
 $(-1/2, -1/2)$ associado a $\lambda = -2$.

$$[E]$$
 $(-1/2, -1/2)$ associado a $\lambda = -1$.

1.4 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

- A hipérboles.
- B retas.
- C circunferências e um ponto.
- D elipsóides e um ponto.
- E parábolas e um ponto.

1.5 Seja $\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{y^2}{x+y^4} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial y^2}(0,0)$ pode ser obtida a partir da expressão:

$$\boxed{\mathsf{A}} \lim_{k\to 0} \frac{\frac{0}{k^2}-0}{k}.$$

$$\boxed{\mathsf{E}} \lim_{k\to 0} \frac{\frac{k^2}{k^5} - 0}{k}.$$

1.6	Considere a função $f(x,y) = \frac{1}{(x^2 + y)^2}$ com domínio D_f e o conjunto $C_m = \{(t, mt) : t \in \mathbb{R}\} \cap D_f, m \in \mathbb{R}$. Então:
Α	$ \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m. $
В	$\left \lim_{\substack{(x,y) \to (0,0) \\ (x,y) \in C_m}} f(x,y) = m^2.$
С	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = \frac{1}{m^2}.$
D	$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$
Ε	$ \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 0. $
1.7	Considere a função real de duas variáveis reais $f(x,y) = -x^2 + (y+2)^2 + y^3 - 4y$. Então:
Α	(0,2/3) é um minimizante local de f .
В	(0,-2/3) é um minimizante local de f .
С	(0,0) é um minimizante local de f .
D	(0,0) é um ponto de sela de f .
Ε	(0,0) é um maximizante local de f .
	A função cujo gráfico representa a metade inferior da esfera de centro (0,0,0) e raio 2 é:
	$f(x,y) = \sqrt{-x^2 - y^2 + 2}.$
	$f(x,y) = -\sqrt{-x^2 - y^2 + 2}.$
	$f(x,y) = \sqrt{-x^2 - y^2 + 4}.$
D	$f(x,y) = -\sqrt{-x^2 - y^2 + 4}.$
Ε	$f(x,y) = -\sqrt{-x^2 - y^2 + 16}.$
	A derivada dirigida da função real de duas variáveis reais $f(x,y)=x+y^2$ em $(2,-2)$ na direção do vetor $\vec{v}=(0,1)$ é:
Α	
В	-1.
С	
D	_4.
Ε	3.
.10	
prop	osições é verdadeira. Se não existe um plano tangente ao gráfico de ƒ no ponto (a,b), então ƒ ∉ $C^1(D_f)$.
E	
В	Se f possui derivadas dirigidas em todas as direções no ponto (a, b) , então f é diferenciável em (a, b) .
C	Se não existe um plano tangente ao gráfico de f no ponto (a,b) , então $f \notin C^0(D_f)$.

 \square Se f admite derivadas parciais de 1^a ordem em D_f , então f é diferenciável em D_f .

Fim.

 $oxed{\mathsf{E}}$ Se f não é diferenciável em (a,b), então f não possui derivadas dirigidas em todas as direções no ponto (a,b).

 1° semestre do ano letivo 2019/20 — LEAP+MIEPOL+MIETI, Departamento de Matemática, Universidade do Minho

Teste 1 — 6 de maio de 2020

nome completo: no de aluno:

v150

Grupo I — Para cada questão deste grupo, indique no ficheiro de respostas qual das cinco proposições é verdadeira (existe apenas uma por questão).

- **I.1** A derivada dirigida da função real de duas variáveis reais $f(x, y) = x + y^2$ em (-1, 2) na direção do vetor $\vec{v} = (0, 1)$ é:
 - A 4.
 - B -1.
 - C 1.
 - D -4.
 - E -2.
- **1.2** Considere a função real de duas variáveis reais $f(x,y) = x^2 + (y-2)^2 y^3 + 4y$. Então:
 - |A|(0,0) é um maximizante local de f.
 - [B] (0,2/3) é um ponto de sela de f.
 - (0, -2/3) é um maximizante local de f.
 - $\boxed{\mathsf{D}}$ (0,2/3) é um minimizante local de f.
 - [E] (0, -2/3) é um ponto de sela de f.
- **1.3** Considere a função real de duas variáveis reais $f(x,y) = \frac{\sqrt{-2x^2 2y^2 + 4}}{\ln{(y x)}}$. Então, o domínio da função é:

 - $\boxed{\mathsf{B}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y < -x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$
 - C $D_f = \{(x, y) \in \mathbb{R}^2 : (y > x) \land (x^2 + y^2 \le 2) \land (y \ne x + 1)\}.$

 - $\boxed{\mathsf{E}} \ \ D_f = \{(x,y) \in \mathbb{R}^2 : (y > -x) \land (x^2 + y^2 \le 2) \land (y \ne x 1)\}.$
- **1.4** Sejam $f(x,y) = \operatorname{sen}(xg)$ e $g = g(x,y) \in C^2(\mathbb{R}^2)$. Então, $\frac{\partial^2 f}{\partial y \partial x}(x,y)$ é igual a:

 - $\boxed{\mathsf{C}} \left(\frac{\partial g}{\partial v} + x \frac{\partial^2 g}{\partial v \partial x} \right) \cos(xg) + \left(x \frac{\partial g}{\partial x} + g \right) x \frac{\partial g}{\partial v} \operatorname{sen}(xg).$
 - $\boxed{\mathsf{D}} \stackrel{\partial g}{\partial v} \cos(xg) + \left(x \frac{\partial g}{\partial x} + g\right) x \frac{\partial g}{\partial v} \operatorname{sen}(xg).$
- **1.5** O ponto crítico da função real de duas variáveis reais $f(x,y) = x^2 + y^2$ com restrição x + y = 1 é:
 - |A| (1/2, 1/2) associado a $\lambda = -2$.
 - $|\mathsf{B}|$ (2, -1) associado a $\lambda = 1$.
 - |C| (1/2, 1/2) associado a $\lambda = 1$.
 - |D| (2, -1) associado a $\lambda = -1$.
 - |E| (1/2, 1/2) associado a $\lambda = 2$.

1.6 Seja $\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{x^3}{x^4+y} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Então, $\frac{\partial^2 f}{\partial x^2}(0,0)$ pode ser obtida a partir da expressão: $\boxed{A} \lim_{h \to 0} \frac{\frac{0}{h^5} - 0}{h}.$

 $\begin{array}{c}
\text{A} & \lim_{h \to 0} \frac{1}{h} \\
\text{B} & \lim_{h \to 0} \frac{\frac{h^3}{h^2} - 0}{h}
\end{array}$

 $\lim_{h \to 0} \frac{h}{h}$

 $\boxed{\mathsf{C}} \lim_{h\to 0} \frac{\frac{0}{h^4} - 0}{h}.$

 $\boxed{\mathsf{E}} \lim_{h\to 0} \frac{\frac{h^3}{h^5}-0}{h}.$

1.7 As curvas de nível da função $f(x, y) = x^2 + y^2$ são:

A circunferências e um ponto.

B elipses e um ponto.

C hipérboles.

D parábolas e um ponto.

E retas.

1.8 A função cujo gráfico representa a metade superior da esfera de centro (0,0,0) e raio 2 é:

 $|A| f(x, y) = -\sqrt{-x^2 - y^2 + 2}$

 $\overline{|B|} f(x,y) = \sqrt{-x^2 - y^2 + 4}.$

C $f(x,y) = \sqrt{-x^2 - y^2 + 16}$

E $f(x,y) = \sqrt{-x^2 - y^2 + 2}$.

1.9 Considere a função $f(x,y) = \frac{x^2}{x^4 + y}$ com domínio D_f e o conjunto $C_m = \{(t, mt^2) : t \in \mathbb{R}\} \cap D_f$, $m \in \mathbb{R}$. Então:

 $\mathbb{B} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m^2.$

 $\boxed{\mathsf{C}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in\mathcal{C}_m}} f(x,y) = 0.$

 $\boxed{\mathbb{D}} \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = m.$

 $\begin{bmatrix} \exists \lim_{\substack{(x,y)\to(0,0)\\(x,y)\in C_m}} f(x,y) = 1.$

I.10 Sejam D_f um subconjunto aberto de \mathbb{R}^2 e f uma função real de duas variáveis reais com domínio D_f . Indique qual das proposições é verdadeira.

 $oxed{\mathsf{A}}$ Se $f \notin C^1(D_f)$, então f não é diferenciável em D_f .

B Se f não é diferenciável em D_f , então $f \notin C^0(D_f)$.

 \square Se f não possui derivadas dirigidas em todas as direções no ponto (a,b), então f não é diferenciável em (a,b).

D Se $\frac{\partial^2 f}{\partial x \partial y}(a,b) \neq \frac{\partial^2 f}{\partial y \partial x}(a,b)$, então não existe um plano tangente ao gráfico de f em (a,b).

| E | Se não existe um plano tangente ao gráfico de f em (a, b), então f não é contínua em (a, b).