Statistical Learning Causal Inference for Complex Longitudinal Data

Setup

- Consider the effect of a time-varying dichotomous treatment on a continuous outcome Y measured at the end of study at time K+1.
- Treatment history $\overline{A} = \overline{A}_K$, where $\overline{A}_k = (A_0, A_1, \dots, A_k)$.
- Covariates history $\overline{L} = \overline{L}_K$, where $\overline{L}_k = (L_0, L_1, \dots, L_k)$.

Identifying assumptions

- Consistency: If $\overline{A} = \overline{a}$, then $Y = Y^{\overline{a}}$.
- Sequential randomization: $Y^{\overline{a}} \perp A_k | \overline{A}_{k-1} = \overline{a}_{k-1}, \overline{L}_k$ for all possible values \overline{a} .
- **Positivity**: If $f_{\overline{A}_{k-1},\overline{I}_k}\left(\overline{a}_{k-1},\overline{I}_k\right) \neq 0$, then we have $f_{A_k|\overline{A}_{k-1},\overline{I}_k}\left(a_k|\overline{a}_{k-1},\overline{I}_k\right) \neq 0$ for all a_k .

Causal DAGs

g-formula

Under the three assumptions, with covariate L_t discrete, the g-formula for $E\left(Y^{\overline{a}}\right)$ is

$$E\left(Y^{\overline{a}}\right) = \sum_{\overline{I}} E\left(Y|\overline{A} = \overline{a}, \overline{L} = \overline{I}\right) \prod_{k=0}^{K} f\left(I_{k}|\overline{A}_{k-1} = \overline{a}_{k-1}, \overline{L}_{k-1} = \overline{I}_{k-1}\right)$$

When covariate L_t is continuous, the sum is replaced by integral in the g-formula.

Proof

Take 2 stages as an example.

$$\begin{split} &E(Y^{a_0,a_1})\\ &=\int E(Y^{a_0,a_1}|L_0=I_0)f_{L_0}(I_0)\mathrm{d}I_0\\ &=\int E(Y^{a_0,a_1}|L_0=I_0,A_0=a_0)f_{L_0}(I_0)\mathrm{d}I_0\\ &=\int\int E(Y^{a_0,a_1}|L_0=I_0,A_0=a_0,L_1=I_1)\times\\ &f_{L_1|A_0,L_0}(I_1|A_0=a_0,L_0=I_0)f_{L_0}(I_0)\mathrm{d}I_0\mathrm{d}I_1\\ &=\int\int E(Y|L_0=I_0,A_0=a_0,L_1=I_1,A_1=a_1)\times\\ &f_{L_1|A_0,L_0}(I_1|A_0=a_0,L_0=I_0)f_{L_0}(I_0)\mathrm{d}I_0\mathrm{d}I_1 \end{split}$$

The main issue of specifying models of g-formula is that under standard parametrization, there is no parameter to encode the null hypothesis of no joint effect of (a_0, a_1) .

 Suppose that L₁ is binary and Y is continuous, so that the g-formula in this graph gives

$$E(Y^{a_0,a_1}) = \sum_{l_1=0}^{1} E(Y|A_0 = a_0, A_1 = a_1, L_1 = l_1) \times f_{L_1|A_0}(l_1|A_0 = a_0)$$

• A standard modeling approach would fit a linear regression

$$E(Y|A_0 = a_0, A_1 = a_1, L_1 = l_1; \gamma) = (1, a_0, a_1, l_1)\gamma$$

and a logistic regression

$$logit\{f(L_1 = 1 | A_0 = a_0; \alpha)\} = (1, a_0)\alpha$$

where $\gamma = (\gamma_0, \gamma_1, \gamma_2, \gamma_3)^{\top}$ and $\alpha = (\alpha_0, \alpha_1)^{\top}$.

The counterfactual mean is

$$\begin{split} &E(Y^{a_0,a_1})\\ &= \sum_{l_1=0}^1 E(Y|A_0 = a_0, A_1 = a_1, L_1 = l_1; \gamma) \times f(l_1|A_0 = a_0; \alpha)\\ &= \left(1, a_0, a_1, \frac{\exp((1, a_0)\alpha)}{1 + \exp((1, a_0)\alpha)}\right) \gamma \end{split}$$

The counterfactual mean is

$$\begin{split} &E(Y^{a_0,a_1})\\ &= \sum_{l_1=0}^1 E(Y|A_0 = a_0, A_1 = a_1, L_1 = l_1; \gamma) \times f(l_1|A_0 = a_0; \alpha)\\ &= \left(1, a_0, a_1, \frac{\exp((1, a_0)\alpha)}{1 + \exp((1, a_0)\alpha)}\right) \gamma \end{split}$$

• $E(Y^{a_0,a_1})$ does not depend on (a_0,a_1) if either $\gamma_1=\gamma_2=\gamma_3=0$ or $\gamma_1=\gamma_2=\alpha_1=0$

Recall that

$$E(Y|A_0 = a_0, A_1 = a_1, L_1 = l_1; \gamma) = (1, a_0, a_1, l_1)\gamma$$
$$logit\{f(L_1 = 1|A_0 = a_0; \alpha)\} = (1, a_0)\alpha$$

We have

$$\gamma_3 \neq 0$$
 $\alpha_1 \neq 0$

Marginal structural models

• An alternative is to directly specify a model for the marginal mean $E(Y^{a_0,a_1};\psi)$ with finite dimensional parameter ψ . For example, we could specify

$$E(Y^{a_0,a_1};\psi)=\psi_0+\psi_1a_0+\psi_2a_1$$
 or $E(Y^{a_0,a_1};\psi)=\psi_0+\psi_1(a_0+a_1)$ or $E(Y^{a_0,a_1};\psi)=\psi_0+\psi_1a_1$

ullet Note here that ψ has a causal interpretation, it is the parameter of a Marginal Structural Mean Model (MSMM)

Marginal structural models

- MSMs focus on $E\left(Y^{\overline{A}=\overline{a}}\right)$ for all possible values \overline{a} .
- It is said that the time-varying treatment has a causal effect on the average value of Y if $E\left(Y^{\overline{a}}\right)-E\left(Y^{\overline{a}'}\right)\neq 0$ for at least two values $\overline{a},\overline{a}'$.
- For the first example on the previous page, $E(Y^{a_0,a_1};\psi)=E(Y^{0,0};\psi)\Longleftrightarrow \psi_1=\psi_2=0.$

Mean MSMs

Under the three assumptions, for the following mean MSM,

$$E(Y^{\overline{a}}) = \mu_{\psi}(\overline{a}),$$

we have

$$E\left[h(\overline{A})(Y-\mu_{\psi}(\overline{A}))/W\right]=0,$$

where

$$W = \prod_{k=0}^{K} W_k = \prod_{k=0}^{K} \frac{f\left(A_k | \overline{L}_k, \overline{A}_{k-1}\right)}{f^*\left(A_k | \overline{A}_{k-1}\right)}.$$

IPTW

Under the three assumptions, the IPTW formula for $E\left(Y^{\overline{a}}\right)$ is the mean of Y among the subset $(\overline{A}=\overline{a})$ in a pseudo-population, constructed by weighting each subject by their subject-specific weights

$$W = \prod_{k=0}^{K} f\left(A_k | \overline{A}_{k-1}, \overline{L}_k\right)$$

or stabilized weights

$$SW = \prod_{k=0}^{K} \frac{f\left(A_{k}|\overline{A}_{k-1}, \overline{L}_{k}\right)}{f^{\star}\left(A_{k}|\overline{A}_{k-1}\right)}$$

IPTW

IPTW creates a pseudo-population, in which

- the mean of $Y^{\overline{a}}$ is identical to that in the true population
- the treatment at each time *t* depends at most on past treatment history.

The difference is that in the unstabilized pseudo-population $P_{ps}\left(A_k=1|\overline{A}_{k-1},\overline{L}_k\right)=\frac{1}{2}$, while in the stabilized pseudo-population $P_{ps}\left(A_k=1|\overline{A}_{k-1},\overline{L}_k\right)$ is equal to $P\left(A_k=1|\overline{A}_{k-1}\right)$ in the true population, where the subscript ps refers to the pseudo-population. Hence, $E\left(Y^{\overline{a}}\right)$ in the true population is $E_{ps}\left(Y|\overline{A}=\overline{a}\right)$.

Procedure

- Specify models for $f(A_0|L_0)$ and $f(A_1|L_1,A_0,L_0)$; say logistic regressions and obtain the MLEs $\hat{\alpha}_0$ and $\hat{\alpha}_1$
- For each person in the study, compute the weight $\hat{W} = \hat{f}(A_0|L_0;\hat{\alpha}_0)\hat{f}(A_1|L_1,A_0,L_0;\hat{\alpha}_1)$ which corresponds to the estimated probability of receiving the treatment you did indeed receive
- ullet Regress Y on A_0 and A_1 using weighted least-squares with weights \hat{W}^{-1}

Proof sketch

$$E\left(SW^{-1}h\left(A_{0},A_{1}\right)Y\right)$$

$$=E\left(SW^{-1}h\left(A_{0},A_{1}\right)E\left(Y\mid A_{0},A_{1},L_{0},L_{1}\right)\right)$$

$$=\sum_{l_{0},l_{1},a_{0},a_{1}}SW^{-1}h\left(a_{0},a_{1}\right)E\left(Y\mid a_{0},a_{1},l_{0},l_{1}\right)$$

$$\times f\left(a_{1}\mid l_{1},a_{0},l_{0}\right)f\left(l_{1}\mid l_{0},a_{0}\right)f\left(a_{0}\mid l_{0}\right)f\left(l_{0}\right)$$

$$=\sum_{l_{0},l_{1},a_{0},a_{1}}\frac{f^{*}\left(a_{0}\right)f^{*}\left(a_{1}\mid a_{0}\right)}{f\left(a_{0}\mid l_{0}\right)f\left(a_{1}\mid l_{1},a_{0},l_{0}\right)}h\left(a_{0},a_{1}\right)E\left(Y\mid a_{0},a_{1},l_{0},l_{1}\right)$$

$$\times f\left(a_{1}\mid l_{1},a_{0},l_{0}\right)f\left(l_{1}\mid l_{0},a_{0}\right)f\left(a_{0}\mid l_{0}\right)f\left(l_{0}\right)$$

$$=\sum_{a_{0},a_{1}}f^{*}\left(a_{0}\right)f^{*}\left(a_{1}\mid a_{0}\right)\sum_{l_{0},l_{1}}E\left(Y\mid a_{0},a_{1},l_{0},l_{1}\right)h\left(a_{0},a_{1}\right)$$

$$\times f\left(l_{1}\mid l_{0},a_{0}\right)f\left(l_{0}\right)$$

$$=\sum_{a_{0},a_{1}}f^{*}\left(a_{0}\right)f^{*}\left(a_{1}\mid a_{0}\right)E\left(Y^{a_{0},a_{1}}\right)h\left(a_{0},a_{1}\right)$$

$$=E\left(SW^{-1}h(A_{0},A_{1})E[Y^{A_{0},A_{1}}]\right)$$

Censoring

For time k, denote lost-to-follow-up by $C_k=0$, follow-up by $C_k=1$. The stabilized weight for each subject is $SW^+\times SW$, where

$$SW^{+} = \prod_{k=0}^{K} \frac{Pr\left(C_{k} = 1 | \overline{C}_{k-1} = \overline{1}_{k-1}, \overline{A}_{k-1} = \overline{a}_{k-1}, \overline{L}_{k} = \overline{I}_{k}\right)}{Pr\left(C_{k} = 1 | \overline{C}_{k-1} = \overline{1}_{k-1}, \overline{A}_{k-1} = \overline{a}_{k-1}\right)}$$