

Pontifícia Universidade Católica de Minas Gerais - Ciência da Comp. /Eng. de Software

Disciplina: Teoria dos Grafos e Computabilidade

Professor : Zenilton Kleber Gonçalves do Patrocínio Júnior

2ª AVALIAÇÃO - 20 pontos

Nome:

1) Considerando o grafo abaixo, determine (passo a passo) a AGM usando o método de Kruskal. (03 pts)

2) Considere a matriz D abaixo, em que um valor na posição $D[i,j] \neq 0$ representa o comprimento da aresta direcionada (i,j), enquanto ∞ representa a ausência dela. Demonstrar passo a passo o uso do método de Floyd-Warshall para se determinar a distância entre todos os pares de vértices do grafo. (06 pts)

0	1	∞	∞	∞	∞
	1	3	30	30	3
∞	0	1	3	2	8
3	8	0	2	8	8
∞	8	8	0	8	2
∞	8	8	-3	0	8
∞	8	8	8	3	0

k = 1 k = 2

3) Considerando a rede de fluxo abaixo, determinar o valor do fluxo máximo e as arestas do corte s-t de capacidade mínima. É obrigatório demonstrar passo a passo o método utilizado para cálculo de fluxo máximo. (03 + 02 = 05 pts)

4) Seja $T = (V_T, E_T)$ uma AGM de um grafo não-direcionado conexo G = (V, E) com custos positivos nas arestas, em que $V_T = V(G)$, $E_T \subseteq E(G)$ e $|E_T| = |V_T| - 1$. Forneça um algoritmo (passo a passo) para encontrar uma nova AGM do grafo após a remoção de uma de suas arestas, isto é, obter AGM de G - e, em que e representa uma aresta qualquer de G, isto é, $e = \{v, w\} \in E(G)$. Além disso, forneça um exemplo de uso de seu método.

Seu algoritmo deve <u>obrigatoriamente</u> obter a nova AGM <u>a partir da anterior</u> em um tempo O(m), em que m representa o número de arestas de G (Obs.: soluções que calculem novamente a AGM desde início serão desconsideradas). (04 + 02 = 06 pts)