Theorem 1.9. Given integers $\Delta \geq 1$ and $n \geq 2\Delta$. There exist $A, B \subseteq \mathbb{Z}$, |A| = |B| = n and a relation $\mathcal{R} \subseteq A \times B$ with bounded degree Δ from B such that

$$|A +_{\mathcal{R}} B| = |A| + |B| - 1 - \left| \frac{5\Delta}{2} \right|.$$

We believe the above theorem is tight, which suggests Theorem 1.5(i) could potentially be strengthened to $|A +_{\mathcal{R}} B| \ge |A| + |B| - 1 - \left| \frac{5\Delta}{2} \right|$. It is worth noting that any improvement of the -3Δ term in Theorem 1.5(i) would directly lead to a strengthening of Theorem 1.6(i), with the same parameters c_{ε} , p_0 unchanged. The bottleneck of the current method for potential improvement of Theorem 1.6(i) lies in the case $A, B \subseteq \mathbb{Z}$ after applying the rectifiability argument. The remaining part of the proof would remain valid without any modification.

Conjecture 1.10. Suppose $\Delta \geqslant 1$ is an integer, $A, B \subseteq \mathbb{Z}$ satisfies $|B| \leqslant |A|$, and $\mathcal{R} \subseteq A \times B$ is a binary relation between A and B. If the maximum degree of \mathcal{R} on B is at most Δ , we have

$$|A +_{\mathcal{R}} B| \ge |A| + |B| - 1 - \left| \frac{5\Delta}{2} \right|.$$

The second part of this paper presents two examples. The first explans why the additional requirement $|B| = O_{\varepsilon}(p)$ is necessary for Corollary 1.8(i) to hold. The second demonstrates why a stronger assumption $|A|+|B| \ge (1+\delta)p$ is required for Conjecture 1.2 to hold in order to prove $|A+R| \ge p-2$, even in the case where $|B| \leqslant \varepsilon p$.

Theorem 1.11(i) restates an example originally given by Lev [Lev00b]. We reformulated it here for consistency with the notation and style used throughout this paper. Theorem 1.11(ii) was inspired from the same paper.

Theorem 1.11. Suppose p is a prime number.

- (i) For any integer $k \geqslant 1$ and $1 \leqslant \ell \leqslant \lfloor \frac{p-k-1}{2k-1} \rfloor$, there exist subsets $A, B \subseteq \mathbb{F}_p$ and a function $R \colon B \to A$ such that $|A| = p (k-1)\ell k + 1$, $|B| = k\ell + 2$ and $|A +_{\mathcal{R}} B| = p k$.
- (ii) For any prime number p, there exists a subset $A \subseteq \mathbb{F}_p$ and a symmetric relation $\mathcal{R} \subseteq A \times A$ with maximum degree 1, such that $|A| = 6\lfloor \frac{p}{11} \rfloor - 3$ and |A| + R A| = p - 3.
- (iii) For any $\varepsilon > 0$, there exists $\delta > 0$ such that for any sufficiently large prime number p, there exist $A, B \subseteq \mathbb{F}_p$ with $|A| + |B| > (1 + \delta)p - O(1)$, $|B| \leqslant \varepsilon p$, and a relation $\mathcal{R} \subseteq A \times B$ with maximum degree 1, such that $|A +_{\mathcal{R}} B| = p - 3$.

Plugging $\ell = \lfloor \frac{p-k-1}{2k-1} \rfloor$ and $\ell = 1$ into Theorem 1.11(i), we have the following.

Corollary 1.12. Suppose p is a prime number.

- (i) For any integer $k \geqslant 1$, there exist subsets $A, B \subseteq \mathbb{F}_p$ and a function $R: B \to A$ such that $|A| = p (k-1) \lfloor \frac{p-k-1}{2k-1} \rfloor k + 1$, $|B| = k \lfloor \frac{p-k-1}{2k-1} \rfloor + 2$ and $|A +_{\mathcal{R}} B| = p k$.
- (ii) For any $\varepsilon > 0$, there exist $A, B \subseteq \mathbb{F}_p$ and a function $R: B \to A$ such that $|A| = (1-2\varepsilon)p + O(1)$, $|B| = \varepsilon p + O(1)$ and $|A| + \mathcal{R}|B| = |A| + |B| - 4$, where the value of the O(1) term within the expressions of |A| and |B| are smaller than 3.

Thus, for potential extensions of Corollary 1.8(i), in the regime where $|A|+|B|\geqslant p$, it is necessary to assume at least $|A|+|B|\geqslant p-k+\lfloor\frac{p-k-1}{2k-1}\rfloor+4>\frac{2k}{2k-1}p-k+2$ in order to establish $|A+\mathcal{R}B|\geqslant p-k+1$. In the regime $|A| + |B| \leq (1 - \varepsilon)p$, an additional assumption $|B| \leq \varepsilon p$ is required.

Combining Corollary 1.8(i) and the examples above, we propose the following conjecture. The main obstacle in proving this conjecture lies in the fact that, in Theorem 1.6, the parameter c_{ε} is not linear in ε . So it remains unclear how to prove $|A+R| \ge |A|+|B|-3$ under assumptions such as |A| + c|B| < p for any constant c.

Conjecture 1.13. Suppose p is a prime number, $A, B \subseteq \mathbb{F}_p$ with $|B| \leq |A|$. Let $\mathcal{R}: B \to A$ be an arbitrary function from B to A. If $|A| + 2|B| \le p$, then $|A +_{\mathcal{R}} B| \ge |A| + |B| - 3$.