2.5.1 Измерение коэффициента поверхностного натяжения жидкости

Анна Назарчук Б02-109

1 Аннотация

В работе исследуется коэффициент поверхностного натяжения воды и его температурная зависимость с помощью прибора Ребиндера.

Цель: 1. измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта; 2. определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

Оборудование:прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы.

2 Теоретические сведения

Из-за поверхностного натяжения возникают разные далвения с разных сторон искривленной поверхности жидкости:

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = \frac{2\sigma}{r}$$
 (формула Лапласа) (1)

 σ - коэффицент поверхностного натяжения, r - радиус кривизны поверхности.

3 Экспериментальная установка и методика измерений

Схема экспериментальной установки представлена на рисунке 1. Тестовая жидкость (этиловый спирт) наливается в сосуд, через пробку в него входит полая металлическа игла. При создании достаточно разреженного воздуха в колбе пузырьки воздуха начинают пробулькивать, поверхностное натяжение измеряется по величине разряжения. Разряжение создается с помощью аспиратора, разность давлений измеряется спиртовым микроманометром.

Для стабилизации температуры через рубашку колбы с исследуемой жидкостью прогоняется вода из термостата. Из-за большой теплопроводности трубки температура в разных частях трубки заметно различна и ввиду теплового расширения поднимается уровень жидкости при изменении температуры. Поэтому при температурном измерениии кончик иглы опускают до самого дна сосуда, тогда:

$$\Delta P = P - \rho g h \tag{2}$$

 ρ - плотность жидкости, h - высота погружения иглы.

Рис. 1: Схема установки

4 Измерения и обработка данных

Измерение радиуса иглы

Измерение радиусы иглы проводится двумя различными способами: с помощью коэффиента поверхностного натяжения спирта и непосредственно на микроскопе.

Данные показаний на спирте в таблице 1. Из них получается значение радиуса иглы (табл. 2)

Таблица 2: Радуис иглы, измеренный через эталонную жидкость

	1	1 16
$r, 10^{-3} m$	$\sigma_r, 10^{-3} \text{M}$	ε , %
0.66	0.007	1.1

При измерении на микроскопе получается радиус иглы, равный:

$$r = (0.6 \pm 0.003) \cdot 10^{-3} \,\mathrm{M}$$
 (3)

В дальнейшем примем r, равный измеренному на эталонной жидкости, так как рехультаты измерений близки друг к другу.

Измерения глубины погружения

Сравним измеренную с помощью линейки высоту погружения с результами при погружении иглы в воду при комнатной температуре. Из первых двух столбцов таблицы с данными (4) получим и данных линейки, что:

Таблица 3: Высота погружения

$h_{\Delta P}, 10^{-3} \text{ M}$	$\sigma_h, 10^{-3} \text{M}$	ε , %	$h_{\text{линейка}} \ 10^{-3} \text{ M}$
6.27	0.13	2.07	6

Измерения коэффициента поверхностного натяжения воды при разных температурах

Результаты измерений представлены в таблице 4.

Таблица 4: Показания микроманометра при расположении иглы на глубине и поверхности

при разных температурах

t = 23		t = 30 °	С	t = 35 °	С	t = 40 °	С
$h_{ m ext{rлубина}}$	$h_{\text{пов-ть}}$	$h_{ ext{ iny}бинa}$	$h_{\text{пов-ть}}$	$h_{ m \scriptscriptstyle \GammaЛУ}$ бина	$h_{\text{пов-ть}}$	$h_{ m ext{rлубина}}$	$h_{\text{пов-ть}}$
144	111.5	141	107.5	138.5	107.5	137.5	107
143.5	110.5	141	107.5	138.5	107.5	137.5	107
143.5	111	141	107.5	138.5	107.5	137.5	107
144	111.5	140.5	107.5	138.5	107.5	137.5	107
143.5	110.5	140.5	107.5	138.5	107.5	137.5	106.5
144	110.5	140.5	107.5	138.5	107.5	137	106.5
143.5	110.5	140.5	108	138.5	107.5	137	106.5
143.5	110.5	140.5	107	138.5	107.5	137	106.5
t = 45 °	С	t = 50 °	\overline{C}	t = 55 °	\overline{C}	+ 60 0	\overline{C}
լ ե — 40		$\iota = \mathfrak{so}$	\cup	$\iota = \mathfrak{ss}$	\cup	t = 60 °	\cup
$h_{\text{глубина}}$ 136.5	$h_{\text{пов-ть}}$ 106	$t = 50$ $h_{\text{глубина}}$ 135.5	$h_{\text{пов-ть}}$ 104.5	$t = 55$ $h_{\text{глубина}}$ 134	$h_{\text{пов-ть}}$ 103.5	$t = 60$ $h_{\text{глубина}}$ 133.5	$h_{\text{пов-ть}}$ 102.5
$h_{ m глубина}$	$h_{\text{пов-ть}}$	$h_{ m ext{rлубина}}$	$h_{\text{пов-ть}}$	$h_{ m \scriptscriptstyle rлубина}$	$h_{\text{пов-ть}}$	$h_{ m глубина}$	$h_{\text{пов-ть}}$
$h_{\text{глубина}}$ 136.5	h _{пов-ть} 106	h _{глубина} 135.5	$h_{\text{пов-ть}} = 104.5$	h _{глубина} 134	$h_{\text{пов-ть}} = 103.5$	h _{глубина} 133.5	$h_{\text{пов-ть}} = 102.5$
h _{глубина} 136.5 136.5	h _{пов-ть} 106 106	h _{глубина} 135.5 135.5	$h_{\text{пов-ть}}$ 104.5 104.5	h _{глубина} 134 134.5	h _{пов-ть} 103.5 103.5	h _{глубина} 133.5 133.5	$h_{\text{пов-ть}}$ 102.5 102.5
h _{глубина} 136.5 136.5 136.5	h _{пов-ть} 106 106 106	h _{глубина} 135.5 135.5 135	$h_{\text{пов-ть}}$ 104.5 104.5 103.5	h _{глубина} 134 134.5 134.5	$h_{\text{пов-ть}}$ 103.5 103.5 103.5	h _{глубина} 133.5 133.5 133.5	$h_{\text{пов-ть}}$ 102.5 102.5 102.5
h _{глубина} 136.5 136.5 136.5 136.5	h_{пов-ть}106106106106	$h_{\text{глубина}}$ 135.5 135.5 135	$h_{\text{пов-ть}}$ 104.5 104.5 103.5 103.5	h _{глубина} 134 134.5 134.5 135	$h_{\text{пов-ть}}$ 103.5 103.5 103.5 104.5	h _{глубина} 133.5 133.5 133.5 134	$h_{\text{пов-ть}}$ 102.5 102.5 102.5 102.5 103
$h_{\text{глубина}}$ 136.5 136.5 136.5 136.5 136.5	$h_{\text{пов-ть}}$ 106 106 106 106 106 106	$h_{\text{глубина}}$ 135.5 135.5 135 135 135	$h_{\text{пов-ть}}$ 104.5 104.5 103.5 103.5 104	h _{глубина} 134 134.5 134.5 135 135	$h_{\text{пов-ть}}$ 103.5 103.5 103.5 104.5 104	$h_{\text{глубина}}$ 133.5 133.5 133.5 134 134	$h_{\text{пов-ть}}$ 102.5 102.5 102.5 102.5 103

После обработки с известным радиусом иглы и перепадом высот, получим значения коэффицента поверхностного натяжения, представим в виде графика (2) Значения коэффицента натяжения при измерениях на глубине сосуда близки к табличным, их и будем учитывать при дальнейших расчетах. Несовпадение с результами измерений на поверхности жидкости объясняется теплопроводностью металла.

Из аппроксимации графика найдем $\frac{d\sigma}{dt}$:

Используя полученные результаты, построим графики зависимости:

- 1. теплоты образования единицы поверхности жидкости $q=-T\cdot \frac{d\sigma}{dt}$ (рис. 3) 2. поверхностной энергии U единицы площади $F\colon U/F=(\sigma-T\cdot \frac{d\sigma}{dt})$ (рис. 4). График выглядит как случайно разбросанные точки, однако его аппроксимация близка к

Рис. 2: Зависимость коэффицента поверхностного натяжения воды от температуры

Таблица 5: Зависимость коэффицента поверхностного натяжения воды от температуры

$\frac{d\sigma}{dt}$, $10^{-3} \frac{MH}{M \cdot K}$	σ_{σ} , $10^{-3} \frac{MH}{M \cdot K}$	ε , %
-0.17	0.02	9.6

горизонтали, что подтвреждается теорией. Разброс точек возникает из-за неидеальности полученных значений.

5 Выводы

- 1. Измерены коэффциенты поверхностного натяжения при разных температур, пронаблюдалась близость полученных результатов к табличным значениям.
- 2. Получена температурная зависимость коэффициента поверхностного натяжения воды от температуры. $\frac{d\sigma}{dt}=-0.17\pm0.02,\,10^{-3}\,\frac{_{
 m MH}}{_{
 m M\cdot K}}$ при теоретическом значении $\frac{d\sigma}{dt}=-0.15,\,10^{-3}\,\frac{_{
 m MH}}{_{
 m M\cdot K}}$
- 3. Вычислены зависимости теплоты образования единицы поверхности жидкости от температуры и поверхностной энергии единицы площади от температуры, постоянство второй из них подтверждается теоретически.

Рис. 3: Зависимость теплоты образования единицы поверхности жидкости от температуры

Рис. 4: Зависимость поверхностной энергии единицы площади от температуры