

Objectives

- Explain basic data transmission concepts, including throughput, bandwidth, multiplexing, and common transmission flaws
- Identify and describe the physical characteristics and official standards of coaxial cable, twisted-pair, and fiber-optic cable, and their related connectors
- Compare the benefits and limitations of various networking media
- Select and use the appropriate tool to troubleshoot common cable problems

Transmission Basics

- Transmission techniques in use on today's network are complex and varied
- This section covers:
 - Measurements that indicate network efficiency
 - Obstacles to good network performance

Throughput and Bandwidth (1 of 2)

- Bandwidth
 - The amount of data that could be theoretically transmitted during a given period of time
- Throughput
 - Measure of how much data is actually transmitted during given time period
- Both are commonly expressed as bits transmitted per second, called bit rate

Throughput and Bandwidth (2 of 2)

Quantity	Prefix	Abbreviation
1 bit per second	n/a	1 bps = 1 bit per second
1000 bits per second	kilo	1 Kbps = 1 kilobit per second
1,000,000 bits per second	mega	1Mbps = 1 megabit per second
1,000,000,000 bits per second	giga	1 Gbps = 1 gigabit per second
1,000,000,000,000 bits per second	tera	1 Tbps = 1 terabit per second

Transmission Flaws (1 of 4)

Noise:

- Any undesirable influence degrading or distorting signal
- Measured in dB (decibels)
- Types of noise
 - EMI (electromagnetic interference):
 - Caused by motors, power lines, televisions, copiers, fluorescent lights, etc.
 - One type of EMI is RFI (radio frequency interference)
 - Cross-talk:
 - Signal on one wire infringes on adjacent wire signal
 - Alien cross-talk occurs between two cables
 - Near end cross-talk (NEXT) occurs near source
 - Far end cross-talk (FEXT) occurs at the far end

Transmission Flaws (2 of 4)

Figure 5-1 Crosstalk between wires in a cable

Transmission Flaws (3 of 4)

- -Loss of signal's strength as it travels away from source
- Signals can be boosted:
 - Repeater Regenerates a digital signal in its original form
 - Without noise previously accumulated

Transmission Flaws (4 of 4)

- 1919
- 1000 1919 2019 10SÉ RIZAL LINIVERSITY

- Latency:
 - Delay between signal transmission and receipt
 - May cause network transmission errors
- Latency causes:
 - Cable length
 - Intervening connectivity device
- Round trip time (RTT):
 - Time for packet to go from sender to receiver, then back from receiver to sender
- If packets experience varying amounts of delay:
 - They can arrive out of order
 - A problem commonly called jitter or PDV (packet delay variation)

Duplex, Half-Duplex, and Simplex (1 of 2)

- 2 1919
- NIC settings include the direction in which signals travel over the media and the number of signals that can traverse the media at any given time
 - These two settings are combined to create different methods of communication
- Full-duplex—Also called duplex
 - Signals travel in both directions over a medium simultaneously
- Half-duplex
 - Signals may travel in both directions but only in one direction at a time
- Simplex
 - Signals may travel in only one direction and is sometimes called one-way or unidirectional, communication

Duplex, Half-Duplex, and Simplex (2 of 2

Multiplexing (1 of 4)

- Multiplexing
 - A form of transmission that allows multiple signals to travel simultaneously over one medium
- Subchannels
 - -Logical multiple smaller channels
- Multiplexer (mux):
 - Combines many channel signals
 - Required at the transmitting end of the channel
- Demultiplexer (demux)
 - -Separates the combined signals

Multiplexing (2 of 4)

Three types of multiplexing are used on copper lines

- TDM (time division multiplexing)
 - Divides channel into multiple time intervals
- STDM (statistical time division multiplexing):
 - Transmitter assigns slots to nodes
 - According to priority and need
 - Maximizes available bandwidth on a network
- FDM (frequency division multiplexing)
 - Assigns different frequency band for each communications subchannel

Multiplexing (3 of 4)

Three types of multiplexing are used on fiber-optic cable

- WDM (wavelength division multiplexing)
 - Carries multiple light signals simultaneously by dividing a light beam into different wavelengths or colors
- DWDM (dense wavelength division multiplexing):
 - Extraordinary capacity
 - Typically used on high-bandwidth or long-distance WAN links
- CWDM (Coarse wavelength division multiplexing):
 - Channels are spaced more widely apart across entire frequency band
 - Effective distance is more limited because the signal is not amplified

Multiplexing (4 of 4)

Figure 5-4 CWDM multiplexers come in 4-channel, 8-channel, 16-channel, and 18-channel varieties

Source: Telecom Engineering, Inc.

Copper Cable

1919

Coaxial cable is considered a "legacy" cable

Twisted-Pair Cable (1 of 3)

- 1919
- JOSÉ RIZAL UNIVERSITY

- Color-coded insulated copper wire pairs:
 - -0.4-0.8 mm diameter
 - Encased in a plastic sheath
 - Every two wires are twisted together

Twisted-Pair Cable (2 of 3)

- Twisted-pair cabling in Ethernet networks contains four wire part
 - Fast Ethernet uses one pair to send data and one pair to receive data
 - Networks using Gigabit Ethernet use all four pairs for both sending and receiving
- Wiring standard specification
 - TIA/EIA 568
- Most common twisted pair types:
 - Category (cat) 3, 5, 5e, 6, 6a, and 7
 - CAT 5e or higher used in modern LANs
- Two categories:
 - Shielded twisted pair (STP)
 - Unshielded twisted pair (UTP)

Twisted-Pair Cable (3 of 3)

Figure 5-9 This data cable is Cat 5e

STP (Shielded Twisted Pair)

- Surrounded by metallic substance shielding (foil):
 - Barrier to external electromagnetic forces
 - Contains electrical energy of signals inside
 - Must be grounded

UTP (Unshielded Twisted Pair)

- One or more insulated wire pairs encased in plastic sheath:
 - No additional shielding
 - Less expensive, less noise resistance

Comparing STP and UTP

- 1919
- 1000 1919 2019 IOSÉ RIZAL UNIVERSITY

- Throughput
 - STP and UTP can transmit the same rates
- Cost
 - STP and UTP vary in cost
 - STP is more expensive than UTP
- Connector
 - STP and UTP use Registered Jack 45
- Noise immunity
 - STP is more noise resistant
- Size and scalability
 - Maximum segment length for both: 100 meters on Ethernet networks that support data rates from 1 Mbps and 10 Gbps

Cable Pinouts (1 of 4)

- Proper cable termination is a requirement for two nodes on a network to communicate
 - Poor terminations can lead to loss or noise in a signal
- TIA/EIA specifies two methods of inserting wires into RJ-45 plugs:
 - -TIA/EIA 568A
 - -TIA/EIA 568B
- No functional difference between the two standards
 - Just make sure you use the same standard on every RJ-45 plug and jack

Cable Pinouts (2 of 4)

Pin#	T568A Color	T568B Color	Fast Ethernet function	Gigabit Ethernet function
1	White/green	White/orange	Tx+	Bidirectional+
2	Green	Orange	Tx-	Bidirectional-
3	White/orange	White/green	Rx+	Bidirectional+
4	Blue	Blue	Unused	Bidirectional+
5	White/blue	White/blue	Unused	Bidirectional –
6	Orange	Green	Rx-	Bidirectional-
7	White/brown	White/brown	Unused	Bidirectional+
8	Brown	Brown	Unused	${\sf Bidirectional}-$
Figure	E 13 TECON	LTECOP		e red .

Figure 5-13 T568A and T568B standard terminations for Fast Ethernet and Gigabit Ethernet

Cable Pinouts (3 of 4)

- -Terminate RJ-45 plugs at both ends identically
- Crossover cable
 - -Transmit and receive wires on one end reversed
- Rollover cable (also called console cable):
 - All wires are reversed
 - -Terminations are a mirror image of each other
 - Used to connect a computer to the console port of a router
 - When making configuration changes to the device

Cable Pinouts (4 of 4)

Figure 5-17 RJ-45 terminations on a rollover cable

PoE (Power over Ethernet) (1 of 4)

- PoE—IEEE 802.3af standard which specifies a method for supplying electrical power over twisted-pair
 Ethernet connections
- Amount of power provided:
 - -15.4 watts for standard PoE devices
 - -25.5 watts for newer PoE+ devices (802.3at standard)
- PoE standard specifies two types of devices:
 - PSE (power sourcing equipment)
 - -PD (powered devices)

PoE (Power over Ethernet) (2 of 4)

PoE requires Cat 5 or better copper cable

- The IEEE standard requires that a PSE device first determine whether a node is PoE-capable before attempting to supply it with power
- On networks that demand PoE but don't have PoEcapable equipment, you can add PoE adapters

PoE (Power over Ethernet) (3 of 4)

Figure 5-28 Power and data separately enter this PoE injector through ports shown on the right, and exit together through the port shown on the left

Figure 5-27 PoE adapters can add PoE functionality to non-PoE devices on a network

PoE (Power over Ethernet) (4 of 4)

Source: D-Link North America

Figure 5-28 Power and data separately enter this PoE injector through ports shown on the right, and exit together through the port shown on the left

Ethernet Standards for Twisted-Pair Cable (1 of 2)

- A cable's category (Cat 5e or Cat 6) determines the fastest network speed it can support
 - A Layer 1 characteristic
- A device's NIC is also rated for maximum network speeds
- Most LANs today use devices and NICs that can support Fast Ethernet and Gigabit Ethernet
 - Devices can auto-negotiate for the fastest standard they have in common

Ethernet Standards for Twisted-Pair Cable (2 of 2)

Table 5-4 Ethernet standards used with twisted-pair cabling

	Standard	Maximum transmission speed (Mbps)	Maximum distance per segment (m)	Physical media	Pairs of wires used for transmission
	100Base-T Fast Ethernet	100	100	Cat 5 or better	2 pair
	1000Base-T Gigabit Ethernet	1000	100	Cat 5 or better (Cat 5e is preferred)	4 pair
	10GBase-T 10- Gigabit Ethernet	10,000	100	Cat 6a or Cat 7 (Cat 7 is preferred)	4 pair

Fiber-Optic Cable (1 of 4)

1919

- Fiber-optic cable (fiber)
 - Contains one or more glass or plastic fibers at its center (core)
- Data transmission
 - Pulsing light sent from laser or light-emitting diode (LED) through central fibers
- Cladding:
 - Layer of glass or plastic surrounding fibers
 - Different density from glass or plastic in strands
 - Reflects light back to core
 - Allows fiber to bend

Fiber-Optic Cable (2 of 4)

- 1919
- JOSÉ RIZAL UNIVERSITY

- Plastic buffer outside cladding:
 - Protects cladding and core
 - Opaque to absorb escaping light
 - -Surrounded by Kevlar (polymeric fiber) strands
- Plastic sheath covers Kevlar strands

Figure 5-29 A fiber-optic cable

Source: Optical Cable Corporation

Fiber-Optic Cable (3 of 4)

- 1919 2019 IOSÉ RIZAL UNIVERSITY

- Benefits over copper cabling:
 - Extremely high throughput
 - Very high noise resistance
 - Excellent security
 - Able to carry signals for longer distances
- Drawbacks:
 - More expensive than twisted pair cable
 - Requires special equipment to splice

Fiber-Optic Cable (4 of 4)

- Throughput
 - Proven reliable in transmitting data at rates that can reach 100 gigabits per second per channel
- Cost
 - Most expensive transmission medium
- Noise immunity
 - Unaffected by EMI
- Size and scalability:
 - Segment lengths vary from 2 to 40,000 meters
 - Depends on the light's wavelength and type of cable

SMF (Single Mode Fiber) (1 of 2)

- Consists of narrow core (8–10 microns in diameter
 - -Laser-generated light travels over one path
 - Little reflection
 - Light does not disperse as signal travels
- Can carry signals many miles:
 - Before repeating is required
- Rarely used for shorter connections:
 - Due to cost
 - The Internet backbone depends on SMF

SMF (Single Mode Fiber) (2 of 2)

MMF (Multimode Fiber) (1 of 2)

- Contains a core with a larger diameter than single mode fibe
 - Common sizes: 50 or 62.5 microns
- Laser or LED generated light pulses travel at different angles
- Greater attenuation than single-mode fiber
- Common uses:
 - Cables connecting routers, switches, and servers on the backbone of a network
 - Cables to connect a desktop workstation to the network
- Transition between SMF and MMF might occur at an FDP (fiber distribution panel)

MMF (Multimode Fiber) (2 of 2)

Figure 5-32 Transmission over multimode fiber-optic cable

Fiber Connectors (1 of 3)

- 1919
- JOSÉ RIZAL UNIVERSITY

- MMF connectors
 - -Classified by the number of fibers
- SMF connectors
 - -Classified by size and shape of the ferrule
- Ferrule—The extended tip of a connector that makes contact with the receptacle in the jack

Figure 5-33 A cap protects the ferrule when the connector is not in use

Fiber Connectors (2 of 3)

- Shapes and polishes used by SMF ferrules to reduce back reflection:
 - Ultra Polished Connector (UPC)
 - Angle Polished Connector (APC)

connectors

Two current types of mechanical connections in fiber-optic

Fiber Connectors (3 of 3)

- SMF connectors are typically available with a 1.25 mm ferrule or a 2.5-mm ferrule:
 - Most common 1.25-mm connector is the LC (local connector)
 - Two 2.5-mm connectors are the SC (standard connector)
 and ST (straight tip)
- Most common MMF connector is the MTRJ
- Existing fiber networks might use ST or SC connectors
 - LC and MT-RJ are used on the very latest fiber-optic technology

Media Converters

- Media converter:
 - Hardware that enables networks or segments running on different media to interconnect and exchange signals
 - Completes the physical connection and converts electrical signals from copper cable to light wave signals

Can also be used to convert networks using MMF with networks

using SMF

Fiber Transceivers (1 of 4)

Some switches allow you to change and upgrade its interfaces

- They contain sockets where one of many types of modular interfaces, called transceivers, can be plugged in
- GBIC—A standard type of modular interface designed for Gigabit Ethernet connections
 - May contain RJ-45 or fiber-optic cable ports

Figure 5-37 GBIC (Gigabit interface converter) with dual SC ports

Fiber Transceivers (2 of 4)

- Newer transceivers that have made the GBIC obsolete:
 - SFP (small form-factor pluggable)
 - XFP (10 Gigabit small form-factor pluggable)
 - -SFP+
 - QSFP (quad small form-factor pluggable)
 - QSFP+
 - CFP (centum form-factor pluggable)
- To avoid a transceiver mismatch
 - Devices must be paired based on supported speeds and protocols

Fiber Transceivers (3 of 4)

Figure 5-38 These SFPs slide into a switch to add fiber-optic connectivity

Figure 5-39 This media converter supports both SFP+ and XFP

Fiber Transceivers (4 of 4)

- 1919
- 1000 1919 2019 IOSÉ RIZAL UNIVERSITY

- BiDi transceivers:
 - Allows bidirectional transmission on both ports
 - Means fiber cable carries data in both directions
- Installing a transceiver:
 - Slide the transceiver into a socket on the back of the connectivity device
 - Most SFPs come with a tab or latch system and keyed so that they will slide into the socket when aligned properly

Ethernet Standards for Fiber-Optic Cable (1 of 2)

• Table 5-6 Ethernet standards using fiber-optic cable

Standard		Maximum transmission speed (Mbps)	Maximum distance per segment (m)	Physical media
Gigabit Ethernet	1000Base-LX	1000	550 for MMF, 5000 for S M F	MMF or S MF
	1000Base-SX	1000	Up to 550, depending on modal bandwidth and fiber core diameter	MMF
10-Gigabit Ethernet	10GBase-SR and 10GBase-LW	10,000	Up to 300, depending on modal bandwidth and fiber core diameter	MMF
	10GBase-LR and 10GBase-LW	10,000	10,000	SMF
	10GBase-ER and 10GBase-EW	10,000	40,000	SMF

Ethernet Standards for Fiber-Optic Cable (2 of 2)

Table 5-7 1000Base-SX Segment lengths

Multimode fiber diameter	Maximum segment length	
50 microns	550 m	
62.5 microns	275 m	

Common Fiber Cable Problems

- Fiber type mismatch:
 - More of a fiber core mismatch
 - Even same-mode cables can be mismatched if the cores have different widths
- Wavelength mismatch
 - –SMF, MMF, and POF (Plastic Optical Fiber) use different wavelengths
- Dirty connectors
 - -Signal loss and other errors can start to cause problems

Troubleshooting Tools

- Start troubleshooting a network connection problem by checking the network connection LED status indicator lights:
 - -Steady light indicates connectivity
 - Blinking light indicates activity
 - Red or amber light might indicate a problem
- If a cabling issue is suspected
 - Know which tools are designed to analyze and isolate problems

Toner and Probe Kit (1 of 3)

- JOSÉ RIZAL UNIVERSITY

- Tone generator (toner):
 - Small electronic device
 - Issues signal on wire pair
- Tone locator (probe)
 - Emits tone when electrical activity detected
- Probe kit or toner probe
 - Generator and locator combination
- Testing requires trial and error
- Used to determine where wired pair terminates
- Not used to determine cable characteristics

Toner and Probe Kit (2 of 3)

Figure 5-43 A toner and probe kit by Fluke Corporation

Toner and Probe Kit (3 of 3)

Tone generator

Figure 5-44 A toner and probe kit locates the termination of a wire

Multimeter (1 of 2)

11919

- Multimeter
 - Measures electric circuit characteristics
 - Resistance, voltage, and impedance
- Use a multimeter to do the following:
 - Measure voltage to verify cable is conducting electricity
 - Check for the presence of noise
 - Test for short or open circuits in the wire:
 - Short circuit is an unwanted connection
 - Open circuit is one where needed connections are missing

Multimeter (2 of 2)

Figure 5-45 A multimeter

Cable Continuity Tester (1 of 3)

- 1919
- JOSÉ RIZAL UNIVERSITY

- Cable continuity testers (cable testers)
 - -Tests whether cable carries signal to destination
- Copper-based cable tester
 - Consists of two parts:
 - Base unit generates voltage
 - Remote unit detects voltage
- Series of lights, audible tone
 - -Used to signal pass/fail

Cable Continuity Tester (2 of 3)

- Some continuity testers verify UTP, STP wires paired to see the correctly
 - -Not shorted, exposed, crossed
- Fiber optic continuity tester:
 - Issues light pulses on fiber
 - Determines whether pulses reach other end
- Offer convenience: Portable, lightweight, and low cost

Cable Continuity Tester (3 of 3)

Figure 5-46 Use a cable tester pair to determine the type of cable and if the cable is good

Cable Performance Tester (1 of 2)

Cable performance tester, line tester, or certifier

- Performs similarly to continuity testers but can be used to:
 - Measure distance to a connectivity device, termination point, or cable fault
 - Measure attenuation
 - Measure NEXT (near end cross-talk)
 - Measure termination resistance and impedance
 - Issue pass/fail ratings for Cat 3–7 standards
 - Store and print results or save to a computer database
 - Graphically depict attenuation and cross-talk

Cable Performance Tester (2 of 2)

- -Issue signal, measures signal bounce back
- Indicates distance between nodes
- Indicates whether terminators properly installed, functional
- OTDRs (optical time domain reflectometers):
 - Measure fiber length
 - Determine faulty splice locations, breaks, connectors, bends, and measure attenuation over cable
 - Measure attenuation over the cable
 - Can be expensive

OPM (Optical Power Meter) (1 of 2)

- -Also called a light meter
- Measures the amount of light power transmitted on a fiberoptic line
- Must be calibrated precisely, following highly accurate optical power standards
- Surrounding room temperature, connection type, and the skill of the technician all affect the final test results

OPM (Optical Power Meter) (2 of 2)

Courtesy of Fluke Networks

Figure 5-47 (a) On the left, the DTX-1800 device by Fluke Networks is a high-end cable performance tester designed to certify structured cabling (b) The optical power meter on the right is a more budget-friendly device that measures light power transmitted on a fiber-optic line

Chapter Summary (1 of 4)

 Bandwidth is the amount of data that could theoretically by transmitted during a given period of time

- Noise can degrade or distort a signal
- Duplex signals are free to travel in both directions over a medium simultaneously
- Today's networks might use RG-59 coaxial cable for short connections
- Twisted-pair cable consists of color-coded pairs of insulated copper wires that are twisted in pairs:
 - STP cable's shielding acts as a barrier to external electromagnetic forces
 - UTP cable is both less expensive and less resistant to noise than STP
 - STP and UTP both use RJ-45 modular connectors and data jacks

Chapter Summary (2 of 4)

- A crossover cable has the transmit and receive wires reverbed
- A router's console port is used with a console cable, or rollover cable
- A crimper pushes on the pins inside an RJ-45 connector so they pierce the wire's insulation
- Data is transmitted through the central fibers of fiber-optic cable via pulsing light sent from a laser or an LED source
- Laser-generated light travels over a single path in SMF cables
- MMF contains a core with a larger diameter than SMF over which many pulses of light generated by a laser or LED light source travel at different angles
- Older fiber networks might use ST or SC connectors

Chapter Summary (3 of 4)

- A media converter is hardware that enables networks or segments running on different media to interconnect and exchange signals
- Cabling problems unique to fiber include fiber type mismatch, wavelength mismatch, and dirty connectors
- Start troubleshooting a network connection problem by checking the network connection LED status indicator lights
- A tone generator issues a signal on a wire that can be detected by a tone locator
- A multimeter can measure many characteristics of an electric circuit, including its resistance, voltage, and impedance

Chapter Summary (4 of 4)

- A cable continuity tester is battery operated and has two parts: The base unit that connects to one end of the cable and generates a voltage, and the remote unit that connects to the other end of the cable and detects the voltage
- A sophisticated cable performance tester will include TDR (time domain reflector) that issues a signal on a cable and then measures the way the signal bounces back
 - Detecting the type and locations of cable defects
- An OPM (optical power meter) measures the amount of light power transmitted on a fiber-optic line