Week 12A Assignment: Statistical Methods II

Solutions

Question 1

When a total of n items are allocated independently to k different bins with probabilities p_1, p_2, \ldots, p_k , the joint distribution follows a multinomial distribution. Suppose $p_k = 0$. If the kth bin is dropped, how does the chi-squared test statistic change?

Solution

- The observed count O_k for the k^{th} bin is **zero** because $p_k = 0$ implies no items are allocated to this bin in the simulation.
- The expected count $E_k = n \cdot p_k = 0$.
- The term $\frac{(O_k E_k)^2}{E_k} = \frac{0}{0}$ is **undefined** and excluded from the chi-squared statistic.
- Dropping the k^{th} bin removes this undefined term, but the remaining terms (for bins $1, 2, \ldots, k-1$) remain unchanged.

The test statistic does not change.

Question 2

How do the degrees of freedom (df) and p-value change if the $k^{\rm th}$ bin is dropped?

Solution

• Degrees of Freedom:

Original df =
$$(k-1)$$
 – estimated parameters
After dropping k^{th} bin: = $(k-2)$ – estimated parameters.

Since no parameters are estimated here, df decreases by 1.

• P-value: The same test statistic is compared to a chi-squared distribution with lower df. This makes the p-value larger because the critical value for significance increases.

df decreases by 1; p-value increases.

Figure 1: Chi Square Graph

Question 3

Show that the chi-square test cannot distinguish between the PDFs:

$$f_1(x) = \frac{\log 2}{2} e^{-(\log 2)|x|}, \quad f_2(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}, \quad f_3(x) = (\log 2)|x|e^{-(\log 2)|x|^2},$$

with thresholds at -1, 0, and 1.

Solution

For all three distributions, the probabilities in the four intervals $(-\infty, -1)$, [-1, 0), [0, 1), and $[1, \infty)$ are equal:

- Laplace (f_1) : Symmetric with median at 0. Integrating |x| over the intervals gives equal probabilities (0.25 each).
- Normal (f_2) : $\sigma = 1/\Phi^{-1}(0.75)$ ensures $\Phi(1/\sigma) = 0.75$. Thus, P(-1 < X < 1) = 0.5, splitting into four equal parts.
- Modified Normal (f_3) : Symmetric with the same partitioning due to |x| scaling.

All three PDFs yield equal bin probabilities, making the chi-square test indistinguishable.

Question 4

Simulate n = 1000 samples from Poisson($\lambda = 2$), compute MLE and chi-square statistic, and analyze p-values under df = 5 and df = 4.

Solution

Key steps and results:

- MLE for λ : $\hat{\lambda} = \text{sample mean}$.
- Bins: $0, 1, 2, 3, 4, \ge 5$.

• Chi-square statistic:

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}, \quad E_i = n \cdot P(X = i).$$

• Degrees of Freedom Adjustment:

```
Correct df = 4 (bins -1 - estimated parameters = 5 - 1 - 1),
Incorrect df = 5 (no adjustment).
```

• Conclusion:

- Using df = 5: P-values are skewed (non-uniform), leading to inflated Type I errors.
- Using df = 4: P-values follow a uniform distribution.

```
Proper df adjustment (df=4) is critical for valid inference.
```

Question 4: Simulation and Chi-Square Test for Poisson Distribution

```
set.seed(123) # For reproducibility
n_{sim} \leftarrow 10000 # Number of simulations
n <- 1000
                # Sample size
lambda_true <- 2 # True Poisson rate</pre>
# Initialize vectors to store results
p_values_df5 <- numeric(n_sim) # P-values assuming df=5</pre>
p_values_df4 <- numeric(n_sim) # P-values assuming df=4</pre>
for (i in 1:n_sim) {
  # Step 1: Simulate data from Poisson(lambda=2)
  data <- rpois(n, lambda_true)</pre>
  # Step 2: Compute MLE of lambda (sample mean)
  lambda_hat <- mean(data)</pre>
  # Step 3: Define bins (0,1,2,3,4, >=5)
  observed <- c(
    sum(data == 0),
    sum(data == 1),
    sum(data == 2),
    sum(data == 3),
    sum(data == 4),
    sum(data >= 5)
  )
  # Expected counts under Poisson(lambda_hat)
  expected <- c(
    dpois(0, lambda_hat) * n,
```

```
dpois(1, lambda_hat) * n,
    dpois(2, lambda_hat) * n,
    dpois(3, lambda_hat) * n,
    dpois(4, lambda_hat) * n,
    ppois(4, lambda_hat, lower.tail = FALSE) * n
  # Chi-square statistic (avoid division by zero)
  chi_sq <- sum((observed - expected)^2 / expected)</pre>
  \# Step 4: Calculate p-values with df=5 and df=4
  p_values_df5[i] <- pchisq(chi_sq, df = 5, lower.tail = FALSE)</pre>
  p_values_df4[i] <- pchisq(chi_sq, df = 4, lower.tail = FALSE)</pre>
# Step 5: Compare p-value distributions
par(mfrow = c(1, 2))
hist(p_values_df5, main = "P-values (df=5)", xlab = "P-value", col = "lightblue", bre
abline(h = n_sim/20, col = "red", lty = 2) # Expected uniform distribution
hist(p_values_df4, main = "P-values (df=4)", xlab = "P-value", col = "lightgreen", br
abline(h = n_sim/20, col = "red", lty = 2)
# Check uniformity (proportion of p-values < alpha)
alpha <- 0.05
cat("Proportion of p-values <", alpha, "with df=5:", mean(p_values_df5 < alpha), "\n"
cat("Proportion of p-values <", alpha, "with df=4:", mean(p_values_df4 < alpha), "\n"
```


Figure 2: P value Histogram