Politecnico di Milano

Corso di laurea in
Computer Science and Engineering

Riconoscimento di Anomalie con Ganomaly: patch-wise analysis e transfer learning

Autore:
Daniele Moltisanti

Relatore:
Prof. Giacomo Boracchi

Correlatore: Luca Frittoli

1

Riconoscimento di Anomalie

- Descrizione del problema
- Soluzioni soluzioni al problema

Descrizione del problema

- **Dominio**: immagini relative a lastre di acciaio
- Diettivo: identificare i difetti (anomalie)
 presenti su tale dominio
- **Detector**: strumento che rileva anomalie all'interno di immagini

Obiettivo

Si vuole stimare un modello data-driven che misuri il grado di anomalia di ogni pixel

- > L'anomaly score map associa ad ogni pixel un valore di anomalia (anomaly score)
- > Pixel con un **alto valore di anomalia** vengono riconosciuti anomali

1

Riconoscimento di Anomalie

- Descrizione del problema
- Soluzioni esistenti al problema

Soluzioni esistenti al problema

- I modelli semi-supervisionati apprendono i pattern delle sole immagini normali
- > Calcolano l'**anomaly score** per un'immagine
- > Sfruttano il valore di anomaly score per definire la **presenza di anomalie**
- > Un alto valore anomaly score identifica un'immagine anomala

Soluzioni esistenti al problema

Soluzioni esistenti al problema:

Ganomaly

- > Il modello è addestrato per generare immagini normali
- > Un'immagine anomala tende ad essere ricostruita come un'immagine normale
- > L'anomaly score è definito sulla base dell'errore degli encoding
- > Un'immagine anomala determina un **alto** errore degli encoding

- > Il modello è addestrato per generare immagini normali
- > Un'immagine anomala tende ad essere ricostruita come un'immagine normale
- > L'anomaly score è definito sulla base dell'errore degli encoding
- > Un'immagine anomala determina un **alto** errore degli encoding

- > Il modello è addestrato per generare immagini normali
- > Un'immagine anomala tende ad essere ricostruita come un'immagine normale
- > L'anomaly score è definito sulla base dell'errore degli encoding

$$A(x) = \parallel z - z' \parallel_2$$

> Un'immagine anomala determina un alto errore degli encoding

- > Il modello è addestrato per generare immagini normali
- > Un'immagine anomala tende ad essere ricostruita come un'immagine normale
- > L'anomaly score è definito sulla base dell'errore degli encoding

$$A(x) = \|z - z'\|_2$$

> Un'immagine anomala determina un alto errore degli encoding

2

Approccio Proposto

- Patch-wise Training e Patch-Ganomaly
- TL-Ganomaly
- Post-Processing: apprendimento di filtri

Obiettivi:

- Identificare la **regione anomala** all'interno di un'immagine
- Soluzione applicabile ad immagini di dimensione arbitraria

Soluzioni:

Patch-Ganomaly: estensione di Ganomaly mediante l'utilizzo della tecnica di addestramento 'Patch-wise Training'

Da immagini a patch:

- > Tecnica di apprendimento basata su porzioni di immagini (patch)
- > Da ogni immagine viene estratto un numero **N** di patch
- > Il training set di immagini viene trasformato in un patch set

Da immagini a patch:

- > Tecnica di apprendimento basata su porzioni di immagini (patch)
- > Da ogni immagine viene estratto un numero ${\bf N}$ di patch
- > Il training set di immagini viene trasformato in un patch set

Da immagini a patch:

- > Tecnica di apprendimento basata su porzioni di immagini (patch)
- > Da ogni immagine viene estratto un numero **N** di patch
- > Il training set di immagini viene trasformato in un **patch set**

Patch-Ganomaly

Inferenza

A partire da una patch, Patch-Ganomaly calcola l'anomaly score ad esso relativo

Inferenza

A partire da una patch, Patch-Ganomaly calcola l'anomaly score ad esso relativo

Patch-Ganomaly:

- > Estrazione di **tutte** le patch che compongono un'immagine
- > Inferenza del modello **Patch-Ganomaly** sulle patch estratte
- > Gli anomaly score delle patch formano l'anomaly score map associata all'immagine
- > Stabilendo una **soglia di decisione** si possono discriminare gli anomaly score provenienti da pixel anomali

- > Estrazione di **tutte** le patch che compongono un'immagine
- > Inferenza del modello **Patch-Ganomaly** sulle patch estratte
- > Gli anomaly score delle patch formano l'anomaly score map associata all'immagine
- > Stabilendo una **soglia di decisione** si possono discriminare gli anomaly score provenienti da pixel anomali

- > Estrazione di **tutte** le patch che compongono un'immagine
- > Inferenza del modello **Patch-Ganomaly** sulle patch estratte
- > Gli anomaly score delle patch formano l'anomaly score map associata all'immagine
- > Stabilendo una **soglia di decisione** si possono discriminare gli anomaly score provenienti da pixel anomali

- > Estrazione di **tutte** le patch che compongono un'immagine
- > Inferenza del modello **Patch-Ganomaly** sulle patch estratte
- > Gli anomaly score delle patch formano l'anomaly score map associata all'immagine
- > Stabilendo una **soglia di decisione** si possono discriminare gli anomaly score provenienti da pixel anomali

- > Estrazione di **tutte** le patch che compongono un'immagine
- > Inferenza del modello **Patch-Ganomaly** sulle patch estratte
- > Gli anomaly score delle patch formano l'anomaly score map associata all'immagine
- > Stabilendo una **soglia di decisione** si possono discriminare gli anomaly score provenienti da pixel anomali

- > Estrazione di **tutte** le patch che compongono un'immagine
- > Inferenza del modello **Patch-Ganomaly** sulle patch estratte
- > Gli anomaly score delle patch formano l'anomaly score map associata all'immagine
- > Stabilendo una **soglia di decisione** si possono discriminare gli anomaly score provenienti da pixel anomali

2

Approccio Proposto

- Patch-wise Training e Patch-Ganomaly
- TL-Ganomaly
- Post-Processing: apprendimento di filtri

Obiettivi:

- Migliorare la **precisione** del modello Patch-Ganomaly
- Valutare il contributo apportato dall'**integrazione** di **reti pre-addestrate**

Soluzioni:

• **TL-Ganomaly:** patch-wise training e transfer learning su Ganomaly

- > Rete pre-addestrata: VGG16
- > Riduzione dei layer della VGG16
- Estrazione della rappresentazione latente

- > Rete pre-addestrata: VGG16
- > Riduzione dei layer della VGG16
- Estrazione della rappresentazione latente
- Adattamento della
 rappresentazione latente della
 VGG16 al vettore latente di
 Ganomaly

- > Rete pre-addestrata: VGG16
- > Riduzione dei layer della VGG16
- > Estrazione della rappresentazione latente
- Adattamento della
 rappresentazione latente della
 VGG16 al vettore latente di
 Ganomaly
- L'encoder del modello TL-Ganomaly diventa la VGG16 adattata

2

Approccio Proposto

- Patch-wise Training e Patch-Ganomaly
- TL-Ganomaly
- Post-Processing: apprendimento di filtri

Obiettivi:

- Migliorare l'efficacia dei modelli di segmentazione proposti applicando un filtro agli anomaly score map generati dai modelli
- Ideare un post-processing **ad-hoc** per il dataset utilizzato

Soluzioni:

• Conv-Processing: apprendimento di filtri per la fase di post-processing

Post-Processing

- > Migliorativo per i problemi di **segmentazione**
- > Applicazione di un filtro all'anomaly score map

Post-Processing

- > Modello **Supervisionato**
- > Training set formato da una **piccola** parte di immagini etichettate
- > Fornisce il **filtro convoluzionale**

Conv-Processing

- > Rete Neurale: un layer Convoluzionale
- > Training set etichettato: anomaly score map e maschere di anomalia
- Apprende i parametri del kernel convoluzionale

3

Esperimenti

- Dataset e Modelli di riferimento
- Patch-Ganomaly e TL-Ganomaly
- Post-Processing: apprendimento di filtri

Dataset

- > Dataset fornito da **Kaggle**
- > Competizione 'Steel Defect Detection' (https://www.kaggle.com/c/severstal-steel-defect-detection)
- \sim **15.000** immagini (256 x 1600)

Esperimenti:

Modelli di Riferimento

Modelli di Riferimento

Il modelli proposti, Patch-Ganomaly e TL-Ganomaly, vengono confrontati con due modelli di riferimento:

- > Modello Supervionato: Rete Neurale Convoluzionale (CNN) fully-connected
- > Modello Semi-Supervisionato: Convolutional Autoencoder

 Addestrati sfruttando la tecnica del patchwise training

3

Esperimenti

- Dataset e Modelli di riferimento
- Patch-Ganomaly e TL-Ganomaly
- Post-Processing: apprendimento di filtri

Esperimenti:

- > Patch normali del training set usato per l'addestramento
- > Calcolo degli anomaly score
- > Il **quantile al 95%** degli anomaly score rappresenta la **soglia di decisione**
- > Tolleranza del 5% di **falsi positivi**

- > Patch normali del training set usato per l'addestramento
- > Calcolo degli anomaly score
- > Il **quantile al 95%** degli anomaly score rappresenta la **soglia di decisione**
- > Tolleranza del 5% di **falsi positivi**

- > Patch normali del training set usato per l'addestramento
- > Calcolo degli anomaly score
- > Il **quantile al 95%** degli anomaly score rappresenta la **soglia di decisione**
- > Tolleranza del 5% di **falsi positivi**

Esperimenti:

Risultati

Risultati

Su un test set di **120** immagini:

- > <u>Segmentazione migliore:</u> Patch-Ganomaly
- > <u>Migliore Precisione</u>: **TL-Ganomaly**

Immagini Test

Immagine Originale

Maschera di Anomalia

Difetto di tipo 1

Difetto di tipo 2

Difetto di tipo 3

Pixel Anomali

Difetti di tipo 1

Difetti di tipo 2

Difetti di tipo 3

3

Esperimenti

- Dataset e Modelli di riferimento
- Patch-Ganomaly e TL-Ganomaly
- Post-Processing: apprendimento di filtri

Post-Processing

PG-Detector

TL-Detector

Conv-Processing:

PG-Detector

Risultati

Su un test set di 120 immagini:

- Segmentazione migliore: PG-Detector
- Migliore Precisione: PG-Detector
- Migliore Precision/Recall: PG-Detector

Immagine Test

Immagine Originale

Maschera di Anomalia

Pixel Anomali

Post-Processing

Conv-Processing:

TL-Detector

Risultati

Su un test set di 120 immagini:

- Segmentazione migliore: TL-Detector
- Migliore Precisione: TL-Ganomaly Conv.Costante
- Miglior Precision/Recall: TL-Detector

4

Conclusioni

Conclusioni

Contributi:

- > Mediante l'utilizzo del **patch-wise training** e il **transfer learning** abbiamo creato i modelli **Patch-Ganomaly** e **TL-Ganomaly**
- > Riconoscono la **regione anomala** all'interno di un'immagine, risolvendo il problema di **segmentazione**
- > Sono applicabili ad immagini di dimensione arbitraria
- > Conv-Processing fornisce il filtro adhoc per le anomaly score map generate dai modelli proposti

Conclusioni

Risultati:

- > Patch-Ganomaly e TL-Ganomaly risolvono il problema di segmentazione in maniera più efficace rispetto ai modelli di riferimento
- > **TL-Ganomaly** si constraddistingue per la sua **precisione**
- Patch-Ganomaly fornisce una migliore segmentazione della regione anomala
- > Il post-processing apportato con il modello **Conv-Processing** migliora le performance dei modelli proposti

Grazie per l'attenzione

Patch-wise Training

Addestramento:

- > Apprendimento basato su un training set di patch
- > La **patch** è definita **anomala** se il suo centro fa parte della regione anomala
- > La patch normale presenta il suo centro privo di anomalie

Patch-wise Training

Addestramento:

- > Apprendimento basato su un training set di patch
- > La **patch** è definita **anomala** se il suo centro fa parte della regione anomala
- > La patch normale presenta il suo centro privo di anomalie

Patch-wise Training

Addestramento:

- > Apprendimento basato su un training set di patch
- > La **patch** è definita **anomala** se il suo centro fa parte della regione anomala
- > La patch normale presenta il suo centro privo di anomalie

Ganomaly:

Addestramento

- > La funzione obiettivo (objective function) del Generatore tiene conto di tre funzioni di perdita (loss functions):
 - Errore di Ricostruzione
 - Errore degli Encoding
 - Errore delle Feature

- > La **funzione obiettivo** (objective function) del **Generatore** tiene conto di tre **funzioni di perdita** (loss functions):
 - Errore di Ricostruzione

 $\left[L_{con} = \| x - x' \|_1 \right]$

- Errore degli Encoding
- Errore delle Feature

- > La **funzione obiettivo** (objective function) del **Generatore** tiene conto di tre **funzioni di perdita** (loss functions):
 - Errore di Ricostruzione
 - Errore degli Encoding \longrightarrow $L_{enc} = \|z z'\|_2$
 - Errore delle Feature

- > La **funzione obiettivo** (objective function) del **Generatore** tiene conto di tre **funzioni di perdita** (loss functions):
 - Errore di Ricostruzione
 - Errore degli Encoding
 - Errore delle Feature

$$L_{adv} = || f(x) - f(x') ||_2$$

> La funzione obiettivo (objective function) del Generatore è la somma pesata delle tre loss functions:

$$L_{gen} = w_{con}L_{con} + w_{enc}L_{enc} + w_{adv}L_{adv}$$

- > La funzione obiettivo (objective function) del Discriminatore tiene conto della seguente funzione di perdita (loss function):
 - Binary Cross Entropy $L_{Dis} = \frac{L_{BCE}(1, out(x)) + L_{BCE}(0, out(x'))}{2}$

Conv-Processing

Post-Processing

Primo confronto tra:

 Patch-Ganomaly con filtro
 convoluzionale costante in postprocessing

Modello
Patch-Ganomaly

0,11 0,11 0,11 0,11 0,11 0,10

Filtro Conv. Costante

Patch-Ganomaly con filtro
 convoluzionale fornito dal modello
 Conv-Processing (PG-Detector)

0.120

0.115

0,11 0,11 0,11

PG-Detector

Post-Processing

Secondo confronto tra:

 TL-Ganomaly con filtro
 convoluzionale costante in postprocessing

TL-Ganomaly con filtro
 convoluzionale fornito dal modello
 Conv-Processing (TL-Detector)

TL-Detector

Modelli di Riferimento

Conv 2D

Conv Transpose 2D

Il modelli proposti, Patch-Ganomaly e TL-Ganomaly, vengono confrontati con due modelli di riferimento:

- Modello Supervionato: Rete Neurale
 Convoluzionale (CNN) fully-connected
- > Modello Semi-Supervisionato: Convolutional Autoencoder

- > Addestrati sfruttando la tecnica del patchwise training
- > Training set di 30.000 patch

Batch Normalization 2D

Activation Map

Kernel

Latent Vector

Modelli di Riferimento

Anomaly Score:

- > CNN: binary cross entropy
- > Autoencoder: errore di ricostruzione

Area Anomala Predetta

Area Anomala Predetta

Più peso ai Veri Positivi
$$\leftarrow$$
 $\mathbf{Dice} = 2 \frac{Precision * Recall}{Precision + Recall} =$

$$= \frac{2*TP}{2*TP+FP+FN}$$

Immagini Test

Immagine Originale

Maschera di Anomalia

Difetto di tipo 1

Difetto di tipo 2

Difetto di tipo 3

Pixel Anomali

Pixel Riconosciuti Anomali

Difetti di tipo 1

Difetti di tipo 2

Difetti di tipo 3

