UC Berkeley

Department of Electrical Engineering and Computer Sciences

EE126: PROBABILITY AND RANDOM PROCESS

Spring 2017

Issued: Thursday, April 13, 2017

Self-graded Scores Due: 5pm, Monday, April 24, 2017
Submit your self-graded scores via the google form:
https://goo.gl/forms/JMeMWFTMaS16tOaB3. Make sure that you use your

SORTABLE NAME on bCourses.

Problem 1. We first compute the LLSE: We need $E[\Theta]$, σ_X^2 , and $cov(X, \Theta)$. First, $E[\Theta] = 50$. The variance of X is

$$\operatorname{var}(X) = E[\operatorname{var}(X|\Theta)] + \operatorname{var}(E[X|\Theta]).$$

The first term can be found as follows.

$$\operatorname{var}(X|\Theta) = \Theta^2/12 \Rightarrow E[\operatorname{var}(X|\Theta)] = \int_0^{100} \frac{1}{100} \frac{\theta^2}{12} d\theta = \frac{10000}{36}$$

By noting $E[X|\Theta] = \Theta/2$, the second term is $\frac{1}{4} \frac{10000}{12} = \frac{10000}{48}$. Thus, $var(X) = \frac{70000}{144}$.

Now, the covariance can be found as follows.

$$cov(X, \Theta) = E[\Theta X] - E[\Theta]E[X]$$

We found $E[\Theta]$ above, and $E[X] = E[E[X|\Theta]] = E[\Theta/2] = 25$. Also,

$$E[\Theta X] = E[E[\Theta X | \Theta]] = E[\Theta^2 / 2] = (\text{var}(\Theta) + E[\Theta]^2) / 2 = (\frac{10000}{12} + 2500) / 2 = \frac{5000}{3}.$$

Thus, $\operatorname{cov}(X,\Theta) = \frac{1250}{3}$. Then, the LLSE of Θ is

$$L[\Theta|X] = E[\Theta] + \frac{\text{cov}(X,\Theta)}{\sigma_X^2}(X - E[X]) = 50 + \frac{6}{7}(X - 25).$$

Now, we compute the MAP rule: Given $X, X \leq \Theta \leq 100$. In order to maximize $f(X|\Theta) = \frac{1}{\Theta}$, one should choose $\hat{\Theta} = X$.

Finally, the MMSE is given by: The MMSE of Θ given X is $E[\Theta|X]$. We know that $f(\theta|x) = \frac{f(x|\theta)f(\theta)}{f(x)}$. We can easily see that $f(\theta) = \frac{1}{100}\mathbf{1}\{0 \le \theta \le 100\}$, and that $f(x|\theta) = \frac{1}{\theta}\mathbf{1}\{0 \le x \le \theta\}$. To find f(x) we integrate the joint distribution $f(x,\theta) = f(x|\theta)f(\theta)$ with respect to θ .

$$f(x) = \int_{\theta=x}^{100} \frac{1}{100\theta} d\theta = \frac{1}{100} \log \frac{100}{x}.$$

Thus,

$$f(\theta|x) = \frac{1}{\theta \log \frac{100}{x}} \mathbf{1}\{0 \le x \le \theta \le 100\}.$$

$$E[\Theta|X] = \int_{\theta=x}^{100} \frac{\theta}{\theta \log \frac{100}{x}} d\theta = \frac{100 - x}{\log \frac{100}{x}}.$$

(a) The different estimators are as shown in Figure 1.

Figure 1: Comparison of estimators

(b) The mean squared error of the MMSE as a function of X is shown in Figure 2.

Problem 2. Let $X_1 = E[X|Y]$ and $X_2 = E[X|Y,Z]$. Note that

$$E((X - X_2)(X_2 - X_1)) = E(E[(X - X_2)(X_2 - X_1)|Y, Z]).$$

Also,

$$E[(X-X_2)(X_2-X_1)|Y,Z] = (X_2-X_1)E[X-X_2|Y,Z] = (X_2-X_1)(X_2-X_2) = 0.$$

Hence,

$$E((X-X_1)^2) = E((X-X_2+X_2-X_1)^2) = E((X-X_2)^2) + E((X_2-X_1)^2) \ge E((X-X_2)^2).$$

The intuition of this inequality is that as we gain more information, the MMSE becomes more precise, i.e., the variance of the estimator decreases.

Figure 2: Mean squared error

- Problem 3. (a) Note that $f_{Y|X}(y|x) = f_{Z|X}(y-x^2) = f_{Y|X}(y|-x)$. Thus, one can see that for any estimator \hat{X} , $E[\hat{X}|X=x] = E[\hat{X}|X=-x]$. Let this quantity be b. Note that in order for \hat{X} to be unbiased, one needs $E[\hat{X}|X=x]-x=0$ as well as $E[\hat{X}|X=-x]+x=0$. This happens only when x=0, so there is no unbiased estimator based on the observations Y.
 - (b) Note that X + Y and X Y are orthogonal, so L[X|X + Y, X Y] = L[X|X + Y] + L[X|X Y]. Note that $L[X|X + Y] = \frac{1}{2}(X + Y)$ and $L[X|X Y] = \frac{1}{2}(X Y)$. Thus, $L[X|X + Y, X Y] = \frac{1}{2}(X + Y) + \frac{1}{2}(X Y)$.

Problem 4. The LLSE of U given V is $L[U|V] = \mu_U + \frac{\rho}{\sigma_V^2}(V - \mu_V)$. We also know that for jointly Gaussian random variables, Z' = U - L[U|V] is independent of V, we have:

$$U = \mu_U + \frac{\rho}{\sigma_V^2} (V - \mu_V) + Z'$$

Let $a = \frac{\rho}{\sigma_V^2}$, $Z = \mu_U - \frac{\rho}{\sigma_V^2} \mu_V + Z'$. Then U = aV + Z and Z is independent of V. Thus we can see that $E[Z] = \mu_U - \frac{\rho}{\sigma_V^2} \mu_V$, and $\text{var}(Z) = \sigma_U^2 - \frac{\rho^2}{\sigma_V^2}$. Then, we know that $Z \sim \mathcal{N}(\mu_U - \frac{\rho}{\sigma_V^2} \mu_V, \sigma_U^2 - \frac{\rho^2}{\sigma_V^2})$. Thus, we know that a = 0.5 and $Z \sim \mathcal{N}(-1, 2)$.

Problem 5. First note that since $(X,X+Y_1,\ldots,X+Y_n)$ are jointly Gaussian, the MMSE is linear: $E[X|Y]=\sum_i c_i(X+Y_i)+c_0$. Note that by symmetry, all the coefficients are equal and $c_0=0$ as the estimator is unbiased. Thus, we can see that \hat{X}_n takes the form $a_n(nX+\sum_{i=1}^n Y_i)$. Now, note that $E[(X-a_n(nX+Y_1))(X+Y_1)]=0$ by orthogonality. Thus, $E[X^2]=a_nnE[X^2]-a_nE[Y^2]=1-a_n(n+1)=0$, so $a_n=\frac{1}{n+1}$. Thus, one has $X-\hat{X}=\frac{1}{n+1}X-\frac{\sum_i Y_i}{n+1}=\mathcal{N}(0,\frac{1}{(n+1)^2}+\frac{n}{(n+1)^2})=\mathcal{N}(0,\frac{1}{n+1})=\frac{1}{\sqrt{n+1}}Z$, where Z is standard normal. Thus, $P(|\frac{1}{\sqrt{n+1}}Z|>0.1)=0$

 $P(|Z| > 0.1\sqrt{n+1}) = 0.05$. Using the table, this holds if $0.1\sqrt{n+1} = 1.96$, so $n = \lceil 383.16 \rceil = 384$.

Problem 6. (a) $\hat{X}(0) = \frac{1}{2}Y(0)$

(b) We use the scalar Kalman filter. Note that $\hat{X}(10) = \frac{1}{2}\hat{X}(9) + k_{10}(Y(10) - \frac{1}{2}\hat{X}(9))$. All that is left to compute is the gain k_{10} . We compute $k_{10} = 0.531$ so that $\hat{X}(10) = 3.32$.