## زنجیرهسازی کارکردهای مجازی سرویس شبکه با در نظر گرفتن محدودیت منابع مدیریتی

پرهام الوانی شهریور ۱۳۹۸

دانشکده مهندسی کامپیوتر دکتر بهادر بخشی



- 🕦 مقدمه
- 🔐 سابقهی کارها
- 😙 تعريف مساله
- 🐿 فرمول بندی و مدل سازی ریاضی مساله
  - ۵ راهحل پیشنهادی
    - 👂 ارزیابی

ارزيابي

راهحل پیشنهادی

۱. مقدمه

فرمول بندی و مدل سازی ریاضی مساله

تعريف مساله

سابقهی کارها

مقدمه

## شبکەھای سنتی

- ◄ یک سرویس شبکه به صورت تعدادی کارکرد مشخص که ترافیک با ترتیب مشخصی از آن
   ها عبور می کند، تعریف می شود.
- ▶ کارکردهای شبکه به صورت سختافزار و نرمافزار اختصاصی تهیه شده از سازندگان مختلف استفاده می شوند.
- ▶ کارکردها باید در مکان مناسب در شبکه قرار گیرند و ترافیک به سمت آنها هدایت شود.

## شبکه ها<del>ی سنتی</del>

- ◄ افزایش نیازمندی به سرویسهای متنوع با عمرکوتاه و نرخ بالای ترافیک
  - خریداری، انبارداری و استقرار سختافزارهای اختصاصی
    - افزایش هزینههای خرید، آموزش و انبارداری
      - کاهش فضای فیزیکی
      - سربار آموزش کارکنان
    - محدودیت نوآوری در سختافزار و سرویس

## Network Functions Virtualization مجازی سازی کارکردهای شبکه

#### شبکه های سنتی

- ▶ ترافیک کاربر باید از تعدادی کارکرد شبکه به ترتیب معینی عبور کند.
- ▶ کارکردها به صورت سختافزاری به یکدیگر متصلند و ترافیک با استفاده از جداول مسیریابی به سمت آنها هدایت می شود.
  - ◄ نیاز به تغییر همبندی سریع و یا مکان کارکردها برای سرویسدهی بهتر
    - استقرار و تغییر ترتیب کارکردها دشوار است
      - امكان رخدادن خطاهای متعدد

## Service Function Chaining زنجیرهسازی کارکرد سرویس

## معماری پیشنهادی

- ◄ مجازيسازي كاركردهاي شبكه
- اواخر سال ۲۰۱۲، ETSI NFV ISG توسط هفت اپراتور جهانی شبکه تأسیس شد.
  - اکنون بیش از ۲۵۰ سازمان با آن همکاری میکنند.
  - اجرای کارکردها بر روی سرورهای استاندارد با توان بالا به وسیله مجازی سازی کارکردها
    - کاهش نیاز به تجهیزات سختافزاری خاص منظوره
      - اشتراک گذاری منابع بین کارکردها
    - کاهش هزینههای تجهیزات و مصرف انرژی از طریق تجمیع کارکردها

- ◄ زنجيرهسازي كاركرد سرويس
- امکان تعریف زنجیره کارکردها به صورت پویا و بدون تغییر در زیرساخت
  - فيزيكي
  - RFC 7665 •

## معماری پیشنهادی



شکل ۱: معماری سطح بالای مجازیسازی کارکردهای شبکه

## معماري پيشنهادي

- مارکرد سرویس را برعهده دارد. NFVO وظیفهی استقرار زنجیرههای کارکرد سرویس را برعهده دارد.
- ▼ VNFM مسئول چرخهی زندگی کارکردهای مجازی شبکه میباشد.
- ▶ چرخهی زندگی هر کارکرد مجازی شامل عملیاتهایی همچون نمونهسازی، مقیاسکردن، بهروزرسانی و پایان دادن میباشد.
- ▶ هر نمونه از کارکردهای مجازی شبکه نیاز دارد تحت مدیریت یکی از VNFMهای موجود در شبکه باشد.

## چالشھا



- ◄ مدیریت و هماهنگی
- ◄ مصرف بهینهی انرژی

سرويس

- ▼ تخصیص منابع به کارکردهای مجازی
- ◄ مسيريابى زنجيرههاى كاركرد
- ◄ پذيرش زنجيرههای کارکرد سرویس
- ◄ به روزرسانی و مقیاس کردنکارکردهای مجازی سرویس

- ◄ وظايف
- نمونهسازی
- خاتمەدادن
  - نگهداری
- مقياس كردن
  - نظارت
  - عيبيابي
    - و...

- ◄ چالشها
- تاخیر در جمع اوری دادههای نظارت
- نگاشت VNFMها به نمونهها با توجه به تعداد بالای آنها

سابقهی کارها

مقدمه

فرمول بندی و مدل سازی ریاضی مساله

۲. سابقهی کارها

ارزيابي

راهحل پیشنهادی

## سابقهی کارها

## جدول ۱: معیارهای مقایسه مقالات پذیرش زنجیرههای کارکرد سرویس

| منبع | منابع<br>تخصیص |                  | محدودیت<br>ظرفیت |       | برخط<br>یا |            | نگاشت<br>کارکرد |      | انتساب<br>کارکرد |              | اشتراک<br>نمونه |       | تخصیم<br>NFM |       |
|------|----------------|------------------|------------------|-------|------------|------------|-----------------|------|------------------|--------------|-----------------|-------|--------------|-------|
|      | يافته          | پردازشی<br>نمونه |                  |       | برون<br>خط |            | و<br>لينک       |      |                  |              |                 |       |              |       |
| #    | BW MEM other   | CPU              | دارد             | ندارد | برخط       | برون<br>خط | كاركرد          | لینک | یک<br>نمونه      | چند<br>نمونه | دارد            | ندارد | دارد         | ندارد |

## سابقهی کارها

## جدول ۲: مقایسه مقالات پذیرش زنجیرههای کارکرد سرویس

| منبع              | منابع<br>تخصیص<br>یافته |    |     | محدودی<br>ظرفیت<br>پردازشی<br>نمونه |       | برخط<br>یا<br>برون<br>خط |            | نگاشت<br>کارکرد<br>و<br>لینک |      | انتساب<br>کارکرد |              | اشتراک<br>نمونه |       | تخصیم<br>NFM |       |
|-------------------|-------------------------|----|-----|-------------------------------------|-------|--------------------------|------------|------------------------------|------|------------------|--------------|-----------------|-------|--------------|-------|
| #                 | IEM other               | BW | CPU | دارد                                | ندارد | برخط                     | برون<br>خط | کارکرد                       | لینک | یک<br>نمونه      | چند<br>نمونه | دارد            | ندارد | دارد         | ندارد |
| [۲]               |                         | ✓  | ✓   | _                                   | ✓     | _                        | ✓          | ✓                            | ✓    | ✓                | _            | _               | ✓     | _            | ✓     |
| [۴]               |                         | ✓  | ✓   | ✓                                   | _     | _                        | ✓          | ✓                            | ✓    | _                | ✓            | _               | ✓     | _            | ✓     |
| [۵]               |                         | ✓  | ✓   | ✓                                   | _     | _                        | ✓          | ✓                            | ✓    | _                | ✓            | _               | ✓     | _            | ✓     |
| [٣]               | —VNFM<br>capacity       | _  | _   |                                     | ✓     | ✓                        |            | _                            | ✓    |                  | _            | _               | _     | ✓            |       |
| <br>پژوهش<br>حاضر | ✓ –                     | ✓  | ✓   | ✓                                   | _     | _                        | ✓          | ✓                            | ✓    | ✓                | _            | _               | ✓     | ✓            | _     |

## سابقەي كارھا

- این مقاله مسالهی جایگذاری m VNFMها را مطرح میکند.
- ▶ این مقاله فرض می کند زنجیرههای جایگذاری شدهاند و هر در بازهی زمانی می توانند بازنگاشت شوند.
- ◄ این مساله قصد دارد با در نظر گرفتن هزینههای عملیاتی مسالهی بازنگاشت VNFMها در بازههای زمانی را حل کند.

Mohammad Abu-Lebdeh et al. "On the Placement of VNF Managers in Large-Scale and Distributed NFV Systems". In: *IEEE Transactions on Network and Service Management* 14.4 (Dec. 2017), pp. 875–889. DOI: 10.1109/tnsm.2017.2730199. URL: https://doi.org/10.1109/tnsm.2017.2730199

ارزياني

## پژوهش حاضر

- ◄ در نظر گرفتن جایگذاری زنجیرهها به صورت توامان با جایگذاری منابع مدیریتی
  - ◄ در نظر گرفتن منابع پردازشی
  - ◄ در نظر گرفتن هزینهی گواهی VNFMها
- ► تصمیمگیری برای پذیرش یا عدم پذیرش یک زنجیره با توجه به منابع مدیریتی در کنار منابع پردازشی

راهحل پیشنهادی

ارزيابي

فرمول بندی و مدل سازی ریاضی مساله

٣. تعريف مساله

تعريف مساله

سابقهی کارها

مقدمه

- lacktriangle توپولوژی زیرساخت شامل پنهای باند لینکها و ظرفیت  $\mathrm{NFVI ext{-}PoP}$ ها، موجود است.
  - . تقاضای زنجیره کارکرد سرویس به صورت کامل و از پیش مشخص شده داریم  ${\bf n}$
- ◄ هر تقاضا شامل نوع و تعداد نمونههای مجازی، پهنای باند لینکهای مجازی و توپولوژی نمونههای مجازی میباشد.

- ▶ نمونهها بین زنجیرهها به اشتراک گذاشته نمیشوند.
  - ◄ محدوديت ظرفيت لينكها
- ▼ محدودیت توان پردازش سرورهای فیزیکی با توجه به میزان حافظه و تعداد پردازندهها
  - ▶ برخی از سرورهای فیزیکی نمیتوانند سرورهای فیزیکی مشخصی را مدیریت کنند.
    - ▶ برخی از سرورهای فیزیکی توانایی پشتیبانی از کارکردهای مجازی را ندارد.
- ▶ برخی از نمونههای کارکرد مجازی تنها میتوانند روی سرورهایی خاص نگاشته شوند.

- ◄ برای مدیریت یکدست و آسانتر زنجیرهها و در عین حال جمع آوری راحتر خطاها، برای هر زنجیره یک VNFM تخصیص می دهیم.
  - امیتوانند بین زنجیره به اشتراک گذاشته شوند. ightharpoons VNFM
- ▶ هر نمونه از VNFMها میتواند تعداد مشخصی از نمونههای کارکرد مجازی شبکه را سرویس دهد.
- lacktriangle برای ارتباط میان هر نمونه از m VNFMها و m VNFها پهنای باند مشخصی رزرو میگردد.
- ▶ در صورتی که NFVI-PoP بتواند از VNFM پشتیبانی نماید، می توان به هر تعداد که ظرفیت آن اجازه می دهد بر روی آن VNFM نصب نمود.

مقدمه سابقهی کارها تعریف مساله فرمول بندی و مدل سازی ریاضی مساله راه حل پیشنهادی ارزیابی

#### تعريف مساله

بیشینهسازی سود حاصل از پذیرش زنجیرههای کارکرد سرویس با در نظر گرفتن نیاز نمونههای کارکرد مجازی شبکه به VNFM.

## چالشها و نوآوریهای مساله

- ▼ در نظر گرفتن نیازمندی نمونههای کارکرد مجازی به یک
  - ◄ در نظر گرفتن نیازمندی تاخیر برای لینکهای مدیریتی
- ▼ تخصیص منابع مدیریتی به زنجیرهها و مسیریابی ارتباط مدیریتی
  - ◄ جایگذاری و مسیریابی توامان زنجیرههای کارکرد سرویس
    - ◄ طراحي مسالهي نزديک به واقعيت

## روند حل مساله

- ◄ مدلسازي مساله
- ◄ حل مسالهی بهینه در ابعاد کوچک
  - ◄ پیادهسازی راهحل مکاشفهای
- ◄ مقایسهی نتایج راهحل مکاشفهای با جواب بهینه

84 / 44

سابقهی کارها

مقدمه

۴. فرمولبندی و مدلسازی ریاضی مساله

#### فرمولبندى

هدف اصلی مساله پذیریش بیشترین تعداد تقاضا میباشد. در اینجا فرض میکنیم پذیرش هر تقاضا سودی منحصر به فرد و هزینهای برای تهیه گواهی VNFM در بر خواهد داشت. بنابراین تابع هدف به شکل زیر میباشد:

$$\max \sum_{h=1}^{I} c_h x_h - \sum_{w \in V_S^{PN}} licenseFee.\bar{y}_w$$
 (1)

#### فرمولبندي

محدوديت حافظه نودها

$$\sum_{k=1}^{F} y_{wk} memory(k) + \bar{y_w} me\bar{m}ory \le N_{ram}^{PN}(w) \quad \forall w \in V_s^{PN}$$
 (2)

محدوديت تعداد يردازندههاى نودها

$$\sum_{k=1}^{F} y_{wk} core(k) + \bar{y_w} core \le N_{core}^{PN}(w) \quad \forall w \in V_s^{PN}$$
 (3)

## فرمولبندى

اگر تقاضای hام پذیرفته شده باشد میبایست تمام  $VNF\ node$ های آن سرویس شده باشند.  $VNF\ node$  حداکثر یکبار سرویس داده شود.

$$X_h = \sum_{k=1}^{r} \sum_{w \in V_{\ell}^{PN}} Z_{vw}^k \quad \forall v \in V_{h,F}^{SFC}, \forall h \in [1, \dots, T]$$
 (4)

#### فرمولبندى

اگر تقاضای hام پذیرفته شده باشد میبایست توسط یک VNFM سرویس شده باشد. توجه شود که این محدودیت اجازهی تخصیص بیش از یک VNFM به زنجیره نمی دهد.

$$X_h = \sum_{w \in V_s^{p_N}} \bar{Z}_{hw} \quad \forall h \in [1, \dots, T]$$
 (5)

مقدمه

محدودیت ظرفیت سرویسدهی VNFM این محدودیت براساس تعداد ماشینهای مجازی که هر VNFM سرویس می دهد تعیین شده است.

$$\sum_{i=1}^{T} \overline{Z}_{iw}.(len(i) - \sum_{v \in V_{i,F}^{SFC}} \sum_{k \in [1,...,F]} type(v,k).isManageable(k)) \le$$

$$capacity.\overline{y}_{w} \quad \forall w \in V_{s}^{PN}$$

#### فرمولبندى

از نوع VNF اوی سرویس می شود میبایست این VNF او نوع v ، VNF او نوع v ، VNF او باشد.

$$z_{vw}^{k} \le type(v, k) \quad \forall w \in V_{s}^{PN}, \forall k \in [1, \dots, F], \forall v \in \cup_{i=1}^{T} V_{i,F}^{SFC}$$
 (7)

## فرمولبندى

در صورتی که سرور  ${
m w}$  توانایی اجرای نمونههای  ${
m VNF}$  را نداشته باشد نباید نمونهای روی آن قرار گیرد.

$$\sum_{k \in [1, \dots, F]} y_{wk} \le M.vnfSupport(w) \quad w \in V_S^{PN}$$
 (8)

# برخی از سرورهای نمی توانند توسط سرورهای مشخصی مدیریت شوند. این ویژگی به ادمین

شبکه امکان مدیریت بیشتری میدهد و او میتواند با دست باز تمامی سیاستهای مورد نظرش را اعمال نماید.

$$\begin{aligned} 1 - z_{vw_1}^k + \overline{z}_{hw_2} &= 0 \quad \forall w_1 \in V_s^{PN} \forall w_2 \in V_s^{PN} \\ &\quad notManagableBy(w_1, w_2) = 1 \\ &\quad \forall h \in [1, \dots, T], \forall v \in V_{h,F}^{SFC}, \forall k \in [1, \dots, T] \end{aligned} \tag{9}$$

مقدمه

#### Flow Conservation

$$\sum_{(i,j)\in E^{PN}} \tau_{ij}^{(u,v)} - \sum_{(j,i)\in E^{PN}} \tau_{ji}^{(u,v)} = \sum_{k=1}^{F} z_{ui}^{k} - \sum_{k=1}^{F} z_{vi}^{k}$$

$$\forall i \in V_{S}^{PN}, (u,v) \in E_{h}^{SFC}, h \in [1,\dots,T]$$
(10)

مقدمه

سابقهی کارها

#### Flow Conservation

$$\sum_{(i,j)\in E^{PN}} \bar{\tau}_{ij}^{V} - \sum_{(j,i)\in E^{PN}} \bar{\tau}_{ji}^{V} = \sum_{k=1}^{F} z_{Vi}^{k} - \bar{z}_{hi}$$

$$\forall i \in V_{S}^{PN}, v \in V_{h,F}^{SFC}, h \in [1, \dots, T]$$
(11)

#### فرمولبندى

محدوديت ظرفيت لينكها

$$\sum_{\mathbf{v} \in \cup_{i=1}^T V_{i,F}^{SFC}} \bar{\tau}_{ij}^{\mathbf{v}} * band\overline{\mathbf{w}}idth + \sum_{(u,v) \in \cup_{i=1}^T E_i^{SFC}} \tau_{ij}^{(u,v)} * bandwidth(u,v) \leq C_{ij}$$

$$\forall (i,j) \in E^{PN}$$

$$(12)$$

## مسالەي نمونە

زنجیرههای زیر را به عنوان تقاضاها در نظر میگیریم.



# فرض میکنیم مرکز دادهای دارای توپولوژی زیر میباشد.



جدول ۳: نیازمندی نمونههای مسالهی نمونه

| $\mathrm{Spec}/\mathrm{VNF}$ | vFW | vNAT | vIDS |
|------------------------------|-----|------|------|
| CPU (vCore)                  | 2   | 2    | 2    |
| Memory (GB)                  | 2   | 4    | 2    |

#### شكل ۲: مشخصات سرورهای زيرساخت مسالهی نمونه

|                       | Server 1,2,7,8 | Servers 3,4,5,6 |
|-----------------------|----------------|-----------------|
| Installed vCPU        | 144            | 72              |
| Installed Memory (GB) | 1408           | 288             |
| Link (Gbps)           | 40             | 40              |

#### مسالەي نمونە

- ◄ نمونهها تنها میتوانند روی سرورهای ۱، ۳، ۵ و ۷ قرار گیرند.
- ◄ مدیریت سرورهای ۱ و ۳ تنها میتواند روی سرورهای ۲ و ۴ صورت گیرد،
  - ▶ مدیریت سرور ۵ تنها میتواند روی سرورهای  $^{*}$  و  $^{?}$  صورت گیرد.
  - ▶ مدیریت سرور ۷ تنها میتواند روی سرورهای ۶ و ۸ صورت گیرد.
    - ▼ هر VNFM تنها میتواند ۵ نمونه را پشتیبانی کند.
  - ◄ « VNFM نیاز به ۴ گیگابایت حافظه و ۲ هستهی پردازشی دارد.

|         | Src      | Node-0   | Node-1   | Dst      | VNFM     |
|---------|----------|----------|----------|----------|----------|
| Chain 0 | Switch-9 | Server-7 | Server-5 | Switch-9 | Server-6 |
| Chain 1 | Switch-9 | Server-3 | Server-3 | Switch-9 | Server-4 |



ارزيابي

راهحل پیشنهادی

۵. راهحل پیشنهادی

فرمول بندی و مدل سازی ریاضی مساله

تعريف مساله

سابقهی کارها

مقدمه

# راهحل پیشنهادی

- ◄ مسالهی اصلی یک مسالهی NP-Hard می باشد.
- ◄ براى حل مساله در زمان معقول براى ابعاد بزرگ نیاز به یک الگوریتم سریح میباشد.
  - ▶ از ایدهی الگوریتم [1] برای جایگذاری زنجیرهها شروع میکنیم.

#### ایدهی اصلی



- ◄ الگوريتم براي جايگذاري زنجيره از يک گراف چند مرحلهاي استفاده ميكند.
- ◄ در هر مرحله جایگذاری مرحلهی قبلی نهایی میشود و بر اساس آن یک مجموعهی امکانپذیر شکل میگیرد.

#### JSD-MP

- Joint Service Deployment Manager Placement ◀
  - ◄ زنجيرهها را با استفاده از الگوريتم [1] جايگذاري ميكنيم.
- ▼ در زمان انتخاب مجموعهی امکانپذیر محدودیتهای مساله را اعمال میکنیم.
  - ◄ بعد از جایگذاری هر زنجیره VNFM آن را انتخاب میکنیم.
- ▶ برای انتخاب VNFM اولویت با نمونههایی است که ظرفیت آنها کامل استفاده نشده است.
- ightharpoonup در بین VNFMهایی که ظرفیت خالی دارند اولویت با نمونههایی است که منابع پردازشی بیشتری دارند.

#### $\overline{ m eJSD} ext{-MP}$

- ▶ الگوريتم پيشنهادي JSD-MP از برونخط بودن مساله استفاده نميكند.
- ◄ براي استفاده از ويژگي برونخط بودن مساله زنجيرهها را بر اساس قيمتشان مرتب ميكنيم.
  - الگوریتم پیشنهادی  $JSD ext{-MP}$  زمان اجرای زیادی دارد که میتوان آن را کاهش داد.
- ▼ برای کاهش زمان اجرای الگوریتم نسبت مشخصی از زنجیرهها را با الگوریتم التعداد التعدادی می کنیم.
  - enhanced JSD-MP ◀

ارزيابي

راهحل پیشنهادی

فرمول بندی و مدل سازی ریاضی مساله

۶. ارزیابی

تعريف مساله

سابقهی کارها

مقدمه

#### پیادہسازی بھینہ

فرمولبندی ارائه شده بر روی نرمافزار  $\operatorname{CPLEX}$  که محصول شرکت  $\operatorname{IBM}$  بوده و برای حل مسائل برنامهریزی خطی و ... استفاده می شود، به زبان جاوا پیاده سازی شده است.



# توپولوژی FatTree



# $\overline{ ext{USnet}}$ توپولوژی



### محيط ارزيابي

- ◄ برای ارزیابی از زنجیرههای تصادفی استفاده میشود و هر نمونه از ارزیابی میانگین
   ۱۰ احرا می باشد.
  - ▼ زنجیرههای تولید شده دارای گرهی آغازی و پایانی میباشند و ترافیک عبوری از
     آنها ۲۵۰ واحد است.

مقدمه سابقهی کارها تعریف مساله فرمول،بندی و مدلسازی ریاضی مساله رامحل پیشنهادی ارزیابی

# شكاف بهينه الگوريتم بهينه



مقدمه سابقهی کارها تعریف مساله فرمول بندی و مدل سازی ریاضی مساله رامحل پیشنهادی ارزیابی

#### نسبت سود به هزینه



مقدمه سابقهی کارها تعریف مساله فرمول بندی و مدل سازی ریاضی مساله رامحل پیشنهادی ارزیابی

# سود نهایی در توپولوژی FatTree



مقدمه سابقهی کارها تعریف مساله فرمول بندی و مدل سازی ریاضی مساله رامحل پیشنهادی ارزیابی

# $\overline{\mathrm{USnet}}$ سود نهایی در توپولوژی



# زمان اجرا



- ◄ هر دو الگوریتم ارائه شده سود نهایی نزدیکی به الگوریتم بهینه ارائه میکنند.
- JSD-MP در زمان کمتر نتایجی بهتر یا برابر با الگوریتم eJSD-MP در زمان کمتر نتایجی بهتر یا برابر با الگوریتم eJSD-MP ارائه می کند.

◄ اعمال محدودیت برای تاخیرهای لینکهای مدیریتی

- ◄ [1] Md. Faizul Bari et al. "On orchestrating virtual network functions". In: 2015 11th International Conference on Network and Service Management (CNSM). IEEE, Nov. 2015. DOI: 10.1109/cnsm.2015.7367338. URL: https://doi.org/10.1109/cnsm.2015.7367338
- ◄ [2] V. Eramo, A. Tosti, and E. Miucci. "Server Resource Dimensioning and Routing of Service Function Chain in NFV Network Architectures". In: Journal of Electrical and Computer Engineering 2016 (2016), pp. 1–12. DOI: 10.1155/2016/7139852. URL: https://doi.org/10.1155/2016/7139852
- ◄ [4] Milad Ghaznavi et al. "Distributed Service Function Chaining". In: IEEE Journal on Selected Areas in Communications 35.11 (Nov. 2017), pp. 2479-2489. DOI: 10.1109/jsac.2017.2760178. URL: https://doi.org/10.1109/jsac.2017.2760178
- ◄ [3] Mohammad Abu-Lebdeh et al. "On the Placement of VNF Managers in Large-Scale and Distributed NFV Systems". In: IEEE Transactions on Network and Service Management 14.4 (Dec. 2017), pp. 875–889. DOI: 10.1109/tnsm.2017.2730199. URL: https://doi.org/10.1109/tnsm.2017.2730199
- ◄ [5] Huawei Huang et al. "Near-Optimal Deployment of Service Chains by Exploiting Correlations between Network Functions". In: IEEE Transactions on Cloud Computing (2017), pp. 1-1. DOI: 10.1109/tcc.2017.2780165. URL: https://doi.org/10.1109/tcc.2017.2780165

# فرمولبندي

# پارامترهای مساله

| memory(k) | required RAM of VNF in-    |
|-----------|----------------------------|
|           | stance with type $k$ in GB |
| core(k)   | required CPU cores of VNF  |
|           | instance with type $k$     |
| memory    | required RAM of VNFM in    |
|           | GB                         |
| côre      | required CPU cores of VNFM |
| capacity  | maximum number of VNF in-  |
|           | stances that VNFM can han- |
|           | dle                        |
| len(h)    | number of VNF instances in |
|           | hth SFC request            |

# فرمولبندي

# پارامترهای مساله

| type(v,k)      | assuming the value 1 if the   |
|----------------|-------------------------------|
|                | VNF instance $v$ has type $k$ |
| bandwidth(u,v) | required bandwidth in link    |
|                | from VNF instance $u$ to $v$  |
| bandwidth      | required bandwidth in manag-  |
|                | meent link                    |
| radius         | maximum neighborhood dis-     |
|                | tance for instance manage-    |
|                | ment                          |

# فرمولبندي

# پارامترهای مساله

| licenseFee             | VNFM license fee that must    |
|------------------------|-------------------------------|
|                        | pay for each VNFM             |
| vnfSupport(w)          | assuming the value 1 if the   |
|                        | physical server W can support |
|                        | VNF instances                 |
| isManageable(k)        | assuming the value 1 if the   |
|                        | type $k$ needs a manager      |
| notManagableBy(w1, w2) | assuming the value 1 if the   |
|                        | physical server w1 cannot     |
|                        | manage by physical server w2  |

#### فرمولبند*ی*

# متغیرهای تصمیمگیری

- $x_h$  binary variable assuming the value 1 if the hth SFC request is accepted; otherwise its value is zero
- $Y_{wk}$  the number of VNF instances of type k that are used in server  $w \in V_s^{PN}$
- $Z_{VW}^R$  binary variable assuming the value 1 if the VNF node  $V \in \bigcup_{i=1}^T V_{i,F}^{SFC}$  is served by the VNF instance of type k in the server  $W \in V_S^{PN}$

#### فرمولبند*ی*

متغیرهای تصمیمگیری

 $\bar{y}_w$  the number of VNFMs that are used in server  $w \in V_s^{PN}$  $\bar{z}_{hw}$  binary variable assuming the value 1 if hth SFC is assigned to VNFM on server  $w \in V_s^{PN}$ 

#### لرمولبندي

متغیرهای تصمیمگیری

 $\tau_{ij}^{(u,v)}$  binary variable assuming the value 1 if the virual link (u,v) is routed on the physical network link (i,j)

 $\bar{\tau}_{ij}^{V}$  binary variable assuming the value 1 if the management traffic of VNF node V is routed on the physical network link (i,j)

| ی ارزیابی         | راەحل پیشنهاد: | و مدلسازی ریاضی مساله | فرمول بندى | تعريف مساله         | سابقەي كارھا   | مقدمه  |
|-------------------|----------------|-----------------------|------------|---------------------|----------------|--------|
|                   |                |                       |            |                     | ی              | ارزياب |
| FatT              | ی توپولوژی ree | eJ و JSD-MP برا       | بنه، SD-MP | ایی الگوریتمهای به. | جدول ۴: سود نه |        |
| JSD-I             | MP             | eJSD-l                | MP         | الگوريتم بهنيه      | تعداد زنجيرهها | •      |
| نسبت به بهینه     | سود نهایی      | نسبت به بهینه         | سود نهایی  | سود نهایی           | #              |        |
| 94.18%            | 50200          | 98.69%                | 52600      | 53300               | 130            |        |
| 87.58%            | 39500          | 92.24%                | 41600      | 45100               | 100            |        |
| 89.26%            | 32400          | 94.21%                | 34200      | 36300               | 80             |        |
| 90.58%            | 25000          | 93.48%                | 25800      | 27600               | 60             |        |
| 92.24%            | 21400          | 91.81%                | 21300      | 23200               | 50             |        |
| , 95, 19 <b>%</b> | 17800          | 94.65%                | 17700      | 18700               | 40             |        |

| ارزیابی                                                                                                          | راهحل پیشنهادی | و مدلسازی ریاضی مساله | فرمولبندى | تعريف مساله    | سابقەي كارھا   | مقدمه  |
|------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|-----------|----------------|----------------|--------|
|                                                                                                                  |                |                       |           |                | ی              | ارزياب |
| $\mathrm{USnet}$ و $\mathrm{ISD}	ext{-MP}$ براى توپولوژى e $\mathrm{JSD}	ext{-MP}$ و الدنهايى الگوريتمهاى بهينه، |                |                       |           |                | جدول ۵: سود ن  |        |
| JSD-MP                                                                                                           |                | eJSD-                 | MP        | الگوريتم بهنيه | تعداد زنجيرهها | -      |
| نسبت به بهینه                                                                                                    | سود نهایی      | نسبت به بهینه         | سود نهایی | سود نهایی      | #              | -      |
| 95.64%                                                                                                           | 37300          | 96.41%                | 37600     | 39000          | 150            |        |
| 94.09%                                                                                                           | 36600          | 94.6%                 | 36800     | 38900          | 130            |        |
| 96.88%                                                                                                           | 37300          | 96.36%                | 37100     | 38500          | 100            |        |
| 96.73%                                                                                                           | 35500          | 99.73%                | 36600     | 36700          | 80             |        |
| 96.75%                                                                                                           | 26800          | 96.39%                | 26700     | 27700          | 60             |        |
| ,97,86 <b>%</b>                                                                                                  | 18300          | 96.79%                | 18100     | 18700          | 40             |        |