18.06-Pan

Basis and solving Ax = b

Worksheet 5

- 1. Linearly independent and span.
 - The vectors $\vec{v_1}, \vec{v_2}, ..., \vec{v_n}$ are linearly independent if _____

• The vectors $\vec{v_1}, \vec{v_2}, ..., \vec{v_n}$ span the vector space S if $\forall S \in S$ is α linear.

• The vectors $\vec{v_1}, \vec{v_2}, ..., \vec{v_n}$ are a basis for S if V_1 ... Un linearly independent and C

- The dimension of a space S is ______
- 2. Solve Ax = b. Let A be a rank $r m \times n$ matrix
 - Ax = b is solvable if

- Suppose Ax = b is solvable. Then

 - if r < n, Ax = b has <u>infinitely</u> solutions. if r = n, Ax = b has <u>a unique</u> solutions.

Problems

1. (a) Find a basis for symmetric 2×2 matrices. What is the dimension of symmetric 2×2 matrices? Also, do this for skew-symmetric 2×2 matrices.

Skew-symmetric dim=1 basis (01)

(b) Let $\vec{v_1}, \vec{v_2}, ..., \vec{v_m}$ be a basis for symmetric 2×2 matrices. Let $\vec{w_1}, \vec{w_2}, ..., \vec{w_n}$ be a basis for skew-symmetric 2×2 matrices. Are $\vec{v_1}, \vec{v_2}, ..., \vec{v_m}, \vec{w_1}, \vec{w_2}, ..., \vec{w_n}$ linearly independent? What subspace of 2×2 matrices do they span?

Linear independent. $Q_{1}\left(\begin{smallmatrix} 100\\ 000 \end{smallmatrix}\right) + b\left(\begin{smallmatrix} 00\\ 01 \end{smallmatrix}\right) + C\left(\begin{smallmatrix} 04\\ 10 \end{smallmatrix}\right) + d\left(\begin{smallmatrix} 01\\ -10 \end{smallmatrix}\right) = \begin{bmatrix} 00\\ 00 \end{smallmatrix}\right) + d\left(\begin{smallmatrix} 01\\ -10 \end{smallmatrix}\right) = \begin{bmatrix} 00\\ 00 \end{smallmatrix}\right) + d\left(\begin{smallmatrix} 01\\ -10 \end{smallmatrix}\right) = \begin{bmatrix} 00\\ 00 \end{smallmatrix}\right) + d\left(\begin{smallmatrix} 01\\ -10 \end{smallmatrix}\right) = \begin{bmatrix} 00\\ 00\\ 00 \end{smallmatrix}) = \begin{bmatrix} 00\\ 00\\ 00 \end{smallmatrix}$ $Q_{1}=0$ $Q_{2}=0$ $Q_{3}=0$ $Q_{4}=0$ $Q_{5}=0$ $Q_{5}=0$

Page 1 of 2

18.06-Pan

Basis and solving Ax = b

Worksheet 5

- 2. A set F consists of functions $f(x) = ae^x + be^{-x}$, where $a, b \in \mathbb{R}$.
 - (a) Is F a vector space? Provide a basis of F.

bass: ex, e-x

= aex + b = fcm

(b) Define a map $V: F \to \mathbb{R}^2$ that sends $f(x) = ae^x + be^{-x}$ to $V(f) = \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$. What is V(f') for $f \in F$? Find a matrix A satisfying AV(f) = V(f') for all $f \in F$.

$$f(x)=ae^{x}+be^{-x} \qquad A(\frac{9}{6})=(\frac{9}{-6})$$

$$f(x)=ae^{x}-be^{-x}$$

$$A\left(\begin{smallmatrix} q \\ 6 \end{smallmatrix}\right) = \left(\begin{smallmatrix} q \\ -6 \end{smallmatrix}\right)$$

U(f') = (a, -b) $A = \begin{pmatrix} 10 \\ 0 - 1 \end{pmatrix}$

(c) Show that $A^2 = I_2$ and thus $\frac{d^2}{dx^2} f(x) = f(x)$.

that
$$A^2 = I_2$$
 and thus $\frac{d}{dx^2} f(x) = f(x)$.

$$A^2 = \begin{pmatrix} I_0 \\ O \end{pmatrix} \qquad \frac{d^2}{dx^2} f(x) = \frac{d}{dx} I_0 e^{x} - be^{-x}$$

3. (a) Find a basis for the space of all the degree ≤ 3 polynomials. $V = \{f(x) =$ $a + bx + cx^2 + dx^3 | a, b, c, d \in \mathbb{R} \}.$

 $f(x) = a+bx+c x^2+dx^3 f(x) = f(-1)$ f(x) = a+b+c + d = 0 b+d=0

$$f(1) = a+b+C+d$$

$$f(-1) = a-b+C-d$$
So $f(x) = a+b+C+C+d$

basis $1, x^2, x-x^3$

Page 2 of 2