FINM 34500/STAT 39000

Winter 2025 Problem Set 7 (due Feb 24)

Reading: 5.1 — 5.3

Exercise 1 Book, Exercise 5.1

Exercise 2 Book, Exercise 5.2

Exercise 3 Book, Exercise 5.3

Exercise 4 Let B_t be a standard Brownian motion with $B_0 = 0$. Let m > 0 and let $X_t = e^{-mB_t^2}$.

1. Find a function g such that if

$$M_t = X_t \exp\left\{\int_0^t g(B_s) \, ds\right\},$$

then M_t is a local martingale.

- 2. What SDE does M_t satisfy?
- 3. Let Q be the probability measure obtained by tilting by M_t , that is, if V is \mathcal{F}_t -measurable,

$$Q(V) = \mathbb{E}\left[M_t \, 1_A\right].$$

Find the SDE satisfied by B_t with respect to a Q-Brownian motion.

4. Explain why M_t is actually a martingale and not just a local martingale.

Exercise 5 Let B_t be a standard Brownian motion with $B_0 = 1$. Let $T = \min\{t : B_t = 0\}$. Let t > 0 and let $X_t = B_t^r$.

1. Find a function g such that if

$$M_t = X_t \exp\left\{\int_0^t g(B_s) ds\right\},$$

then M_t is a local martingale for t < T.

- 2. What SDE does M_t satisfy?
- 3. Let Q be the probability measure obtained by tilting by M_t . Find the SDE satisfied by B_t with respect to a Q-Brownian motion.
- 4. For which values of r > 0 is is true that

$$Q\{T < \infty\} = 0?$$