UNIVERSITY OF DUBLIN

TRINITY COLLEGE

Faculty of Engineering, Mathematics and Science

School of Computer Science and Statistics

Trinity Term 2014

B.A. (Mod.) Business & Computing B.A. (Mod) CSLL

CS4052 – Computer Graphics

Friday, 2nd May 2014

GMB

14:00 - 16:00

Dr. Rachel McDonnell

Instructions to Candidates:

Answer any FOUR questions – 25 marks each. All questions carry equal marks.

Please use a **separate answer book** for each question.

The entire question paper must be handed in at the end of the examination.

(a)	Compare and contrast the Gouraud and Phong shading	(5 Marks)
	algorithms. Which handles specular reflection better?	
(b)	i. Define the full Phong Illumination model and explain	(10 Marks)
	each of the terms.	(10 Marks)
	ii. Write a vertex and fragment shader in GLSL (or	
	equivalent shader language) to colour an object	
	using the full Phong Illumination model.	

Question 2

Question 2		
(a)	Given the following vertex shader, determine what you	(10 Marks)
	would expect a rectangular flat planar object to look like, if	
	it was rendered using this vertex shader. Assume that the	
	plane is tessellated to contain at least 5 vertices wide and	
	4 vertices high. Also, assume that the plane lies on the x-z	
	axis.	
	<pre>in vec3 vp; uniform mat4 proj_mat, view_mat, model_mat; uniform float time;</pre>	
	<pre>void main() { vec3 pos = vp; pos.y = sin (6.28 * -pos.x + time * 0.005) * 0.125; gl_Position = proj_mat * view_mat * model_mat * vec4 (pos, 1.0); }</pre>	
(b)	Provide an outline of the basic ray-tracing algorithm. You are encouraged to use pseudocode and drawings to	(15 Marks)
	illustrate its operation.	

(a)	Explain the following terms:	(5 Marks)
	i. Isometric projection	
	ii. View frustrum	
(b)	Given the image below, provide the modern shader-based	(10 Marks)
	OpenGL application code and shaders to show how this	
	image could be created. Assume that we have already	
	loaded a vertex buffer object with the necessary vertex	
	data for a regular teapot object, and have enabled and	
	bound that buffer. Also, assume that you have access to	
	functions to rotate, translate, and do perspective and	
	orthographic projections on 4 x 4 matrices.	
/ -\		/40 M
(c)	Describe the process for transforming a vertex using a	(10 Marks)
	perspective projection. Use diagrams and equations where	
	appropriate.	

(a)	Distinguish between the implicit and parametric	(5 Marks)
	representations of an object, and discuss their relative	
	merits.	
(b)	Explain how Bezier curves are related to Hermite curves,	(10 Marks)
	and derive the change of basis matrix from Hermite to	
	Bezier.	
(c)	Explain each of the following in the context of Parametric	(10 Marks)
	Cubic curves, giving example matrices where appropriate.	
	i. Curve Continuity	
	ii. Geometric and parametric continuity	
	iii. Geometry matrix	
	iv. Basis Matrix	
	v. Blending functions	

Question 5

Question 5		
(a)	Show using a diagram how changing basis is geometrically equivalent to transformation. Use the	(5 Marks)
	example of the $\begin{bmatrix} 0.5 \\ 0.7 \\ 0.5 \end{bmatrix}$ vector t with respect to xyz .	
	L – L J	
(b)	Provide OpenGL code (or similar Graphics API) to create	(10 Marks)
	a virtual hand with a lower arm, wrist, and three fingers,	
	each with two segments. Assume you have access to	
	<pre>functions to drawArm(), drawWrist(), and</pre>	(5 Marks)
	<pre>drawFingerSegment();</pre>	
	i. Write the necessary code to animate a slow	
	clockwise rotation of the wrist (using a right	(5 Marks)
	handed system)	(5 Marks)
	ii. Write the necessary code to animate the motion	
	of the fingers as if flexing (bending at the	
	knuckle) one by one (using a right handed	
	system)	

Explain how transformations can be composed. Illustrate	(10 Marks)
your answer by showing how a shear by θ along the y-axis	
of an object centred at some arbitrary point C = (cx, cy,	
cz), can be achieved by composition of rotation and scale.	
The object should remain centred about C after the shear.	
Provide the OpenGL code that would achieve this	
transformation.	
Describe each of the steps of the programmable 3D graphics pipeline.	(15 Marks)
	your answer by showing how a shear by θ along the y-axis of an object centred at some arbitrary point $C = (cx, cy, cz)$, can be achieved by composition of rotation and scale. The object should remain centred about C after the shear. Provide the OpenGL code that would achieve this transformation. Describe each of the steps of the programmable 3D

© University of Dublin 2014