BUAN 6356.501 - Business Analytics with R (Spring 2019) Problem Set 5

Question 1

The variables sat and income are generated from the following linear equations for 3 groups.

```
Group 1: sat = -100z + 1100 + 50w and income = 5z + 50
Group 2: sat = -80z + 1200 + 50w and income = 5z + 80
Group 3: sat = -120z + 1000 + 50w and income = 5z + 30
where z and w are random variables from a normal distribution
```


Question 2

Pooled model does not take groups into account and generates a regression line considering all points as individual observations. Hence, the predicted line has a positive slope for income. But the fixed-effects model considers groups and predicts 3 lines having negative slopes for income. This can be confirmed by the similar results we get from running the individual models separately.

```
Call:
lm(formula = sat ~ income, data = dtable)

Residuals:
    Min    1Q Median    3Q    Max
-452.84   -81.64    7.67    88.71    440.50

Coefficients:
        Estimate Std. Error t value Pr(>|t|)
(Intercept) 950.8914    9.1279    104.17    <2e-16 ***
income        2.7923    0.1593    17.53    <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 129.1 on 1498 degrees of freedom
Multiple R-squared: 0.1703,    Adjusted R-squared: 0.1697
F-statistic: 307.4 on 1 and 1498 DF,   p-value: < 2.2e-16</pre>
```

We get below tree diagrams for 3 models, one with income, one with group and one with both.

sat using only income

sat using only group

sat using income and group

Question 4We get the following tree diagram by running a glmtree model which is accurate as per the data.

Question 5We get the optimal number of K-means clusters as 2 from the eigen values ratio and elbow plot.

59.4% of group1 observations fall in cluster 1 and 40.6% of group1 observations fall in cluster 2. 89.2% of group2 observations fall in cluster 1 and 10.8% of group2 observations fall in cluster 2. 23.2% of group3 observations fall in cluster 1 and 76.8% of group3 observations fall in cluster 2.

When we know that 3 groups exist, K-means gave 2 and failed to correctly identify the groups. But we get optimal number of hierarchical clusters as 4 from eigen values ratio and elbow plot. Both the models could not predict the correct number of groups as optimal number of clusters.

Cluster Dendrogram

dist(xtable) hclust (*, "complete")

The pooled model remains same as it would not consider any groups or clusters in the model. Due to incorrect number of clusters, even fixed-effects model shows positive slope for income.

K-means fixed-effects model

```
call:
lm(formula = sat \sim income + kgroup - 1, data = xtable)
Residuals:
   Min
            10 Median
                           3Q
                                  Max
-346.37 -57.78
                  2.35
                         58.88 264.88
Coefficients:
        Estimate Std. Error t value Pr(>|t|)
         0.7354
income
                    0.1089 6.752 2.08e-11 ***
kgroup1 1154.9498
                    7.1458 161.626 < 2e-16 ***
kgroup2 934.2559 5.7478 162.541 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 81.12 on 1497 degrees of freedom
Multiple R-squared: 0.9947, Adjusted R-squared: 0.9946
F-statistic: 9.294e+04 on 3 and 1497 DF, p-value: < 2.2e-16
```

Hierarchy cluster fixed-effects model

```
call:
lm(formula = sat \sim income + hgroup - 1, data = xtable)
Residuals:
    Min
              10 Median
                               3Q
-211.733 -37.068 -1.724
                           39.119 168.246
Coefficients:
        Estimate Std. Error t value Pr(>|t|)
income 1.396e-01 6.591e-02 2.118 0.0343 *
hgroup1 1.140e+03 4.408e+00 258.698 <2e-16 ***
hgroup2 9.967e+02 3.608e+00 276.233 <2e-16 ***
hgroup3 1.272e+03 4.967e+00 256.055 <2e-16 ***
hgroup4 8.256e+02 4.665e+00 176.980 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 47.67 on 1495 degrees of freedom
Multiple R-squared: 0.9982, Adjusted R-squared: 0.9982
F-statistic: 1.621e+05 on 5 and 1495 DF, p-value: < 2.2e-16
```

When only single variable such as income is considered, we get optimal K-means clusters as 3. Cluster 1 has a 52% accuracy, Cluster 2 has a 71% accuracy and Cluster 3 has a 47% accuracy.

Question 9

When scaled data is considered for multiple variables, we get optimal K-means clusters as 3. Cluster 1 has a 74% accuracy, Cluster 2 has a 100% accuracy and Cluster 3 has a 66% accuracy. The accuracy of K-means model increased when scaled data is used. This could be the reason for the incorrect optimal number of clusters when we used multiple variables without scaling.

