Problem Set - 19 Jan 2024

PROBLEM 1 (2018 AMC 10A #13)

A paper triangle with sides of lengths 3, 4, and 5 inches, as shown, is folded so that point A falls on point B. What is the length in inches of the crease?

- **(A)** $1 + \frac{1}{2}\sqrt{2}$ **(B)** $\sqrt{3}$
- (C) $\frac{7}{4}$
- (D) $\frac{15}{8}$
- (\mathbf{E}) 2

PROBLEM 2 (2011 AMC 12B #13)

Brian writes down four integers w > x > y > z whose sum is 44. The pairwise positive differences of these numbers are 1, 3, 4, 5, 6 and 9. What is the sum of the possible values of w?

- **(A)** 16
- **(B)** 31
- **(C)** 48
- **(D)** 62
- **(E)** 93

PROBLEM 3 (2010 AMC 12B #11)

A palindrome between 1000 and 10,000 is chosen at random. What is the probability that it is divisible by 7?

- (A) $\frac{1}{10}$ (B) $\frac{1}{9}$ (C) $\frac{1}{7}$ (D) $\frac{1}{6}$ (E) $\frac{1}{5}$

PROBLEM 4 (2018 AIME I #12)

For every subset T of $U = \{1, 2, 3, \dots, 18\}$, let s(T) be the sum of the elements of T, with $s(\emptyset)$ defined to be 0. If T is chosen at random among all subsets of U, the probability that s(T) is divisible by 3 is $\frac{m}{n}$, where m and n are relatively prime positive integers. Find m.

PROBLEM 5 (2015 AIME I #13)

With all angles measured in degrees, the product $\prod_{k=1}^{45}\csc^2(2k-1)^\circ=m^n$, where m and n are integers greater than 1. Find m+n.

Using content from the AoPS Wiki | amctrivial.com