

Examen Fundamenten voor de Informatica

1 februari 2024

Vincent Van Schependom

Theorie

Vraag 1 (3.5 pt.)

- Beschrijf wat het chromatisch getal van een graaf is.
- Bewijs dat het chromatisch getal van een enkelvoudige, vlakke graaf nooit meer dan 5 kan zijn.

Vraag 2 (1.5 pt.)

Is onderstaande stelling juist of fout? Beargumenteer uitgebreid waarom.

Bij het doorlopen van een volledige, binaire boom vergt breedte-eerst meer geheugenruimte dan diepte-eerst.

Vraag 3 (5 pt.)

- \bullet Definieer de klasse \mathcal{R} van reguliere talen. Wat is het verband met eindige automaten?
- ullet Toon aan dat reguliere talen tot ${f P}$ behoren.
- Bewijs dat $L = \{0^i 1^i \mid i \in \mathbb{N}\}$ geen reguliere taal is.
- Tot welke complexiteitsklasse behoort L?

Oefeningen

Oefening 1 (5 pt.)

De cyclische graaf C_n is de enkelvoudige graaf met $n \geq 3$ knopen die samen een kring vormen. Het wiel W_n met $n \geq 3$ spaken bestaat uit een cyclische graaf C_n , waaraan 1 knoop is toegevoegd, die verbonden is met elke andere knoop. De lijngraaf L(G) van een graaf G is een graaf met voor elke boog in G een knoop, waarbij twee knopen verbonden zijn indien de overeenkomstige bogen in G een gemeenschappelijke knoop hebben.

- Teken de lijngrafen $L(W_3)$, $L(W_4)$ en $L(W_5)$.
- Wat zijn het aantal knopen, het aantal bogen en de graden van de knopen in algemene grafen $L(W_n)$?
- Voor welke waarden van n is $L(W_n)$ vlak?

Oefening 2 (3 pt.)

Een manier om een lijst te sorteren is het *Gnome sort* algoritme. Hierbij wordt over een lijst a geïtereerd vanaf index 0 tot index len(a) als volgt. Indien $\sigma_{i-1} = \sigma_i$, worden de symbolen omgewisseld en wordt de index met 1 verlaagd. Indien dit niet het geval is, wordt de index met 1 verloogd.

- Beschrijf een Turingmachine die een string over het alfabet $\{1,2,3\}$ sorteert aan de hand van het *Gnome sort* algoritme.
- Bepaal de tijdscomplexiteit van deze Turingmachine.

Oefening 3 (2 pt.)

Voer het maximale stromingsalgoritme uit op een netwerk G(V, E).