# Introduction

Computer Architecture and Computer Organisation

INFO 2603 Platform Technologies

Week 1: 03-Sept-2018

1

#### Computer Architecture vs Computer Organisation

Computer Architecture describes architectural attributes that impact on the logical execution of a program.

Computer Organisation describes operational units and interconnections that implement an architectural specification. (Affects price and performance)

#### Course Introduction

#### Main Areas:

- Computer Architecture
- Computer Networks
- Operating Systems

100% Coursework: Practical Lab Exams and Written Exams

# Computer Architecture

Examples of architectural attributes:

- Instruction set
- Number of bits used for representing data types (numbers, characters)
- Input/Output mechanisms
- Techniques for addressing memory

# Computer Organisation

Examples of organisational attributes:

- Control signals
- Interfaces between the computer and peripherals
- Memory technology used

## Distinction

Many computer manufacturers offer a family of computer models, all with the same architecture but differences in organisation. (Different price and performance).

# 

### Hardware Review

- Tremendous variety of computers available based on:
  - Cost
  - Performance
  - Size
  - Application
- · List some examples:
  - Brands
    - HP
    - Apple
    - Dell
    - Asus
    - Toshiba
    - Lenovo
  - Types:
    - Desktop
    - Laptop
    - Table
    - · Smart phone
    - .

## Hardware Review

- Brands
  - HP
  - Apple
  - Dell
  - Asus
  - Toshiba
  - Lenovo
- · Types:
  - Desktop
  - Laptop
  - Tablet
  - Smart phone
  - Server
  - · Super computer
  - Embedded Systems (Pi)
  - Wearables

#### Hardware Review

- Computers are complex systems.
- Easier to understand using:
  - Hierarchical nature of computer systems
  - Interrelated subsystems
  - Drill down to elementary subsystems

## Computer Structure & Function

- Structure is the way in which components relate to each other
- Function is the operation of individual components as part of the structure

## **Basic Computer Functions**

All computer functions can be classified as:

- Data processing
- Data storage
- Data movement
- Control









# Operation (d) Processing from storage to I/O • Processing being done on data moving en route between local storage and the external environment



#### Principal Elements of a Computer System

- Central Processing Unit (CPU) Processor
  - Controls the operation of the computer
  - Performs data processing functions
- Main Memory: stores data
- Input/Output (I/O) Subsystem
  - Moves data between the computer and its external environment
- System Interconnection
  - Mechanism for communication among CPU, main memory and I/O



#### **CPU Structural Components**

- Control Unit (CU)
  - Controls the operation of the CPU
- Arithmetic and Logic Unit (ALU)
  - Performs the computer's data processing functions
- Registers
  - Provide storage internal to the CPU
- CPU Interconnection
  - Mechanism for communication among the CU, ALU and registers

#### Structure - The Control Unit (CU)

- One common implementation approach:
  - Microprogrammed Implementation: The CU operates by executing microinstructions that define its functionality.



#### First Generation: Vacuum Tubes

- ENIAC: Electronic Numerical Integrator And Computer
  - Built in response to war (World War II) 1943
  - Calculate range and trajectory firing tables
  - Ballistics equations (vs solved by hand = days)
  - 5000 additions per second;
  - Decimal machine (rather than binary: Why?)
  - Finished in 1946 (too late for use in war)
- General purpose: reused to determine feasibility of hydrogen bomb

#### First Generation: ENIAC



1946 Public Unveiling

http://www.computerhistory.org/timeline/computers

#### von Neumann Machine

- John von Neumann: mathematician and physicist.
  - ENIAC consultant 1945
  - Proposed that a program could be represented in a form suitable for storage in memory alongside the data.
    - Computers then get instructions by reading them from memory: stored-program concept

https://www.britannica.com/biography/John-von-Neumann

#### Numeration Systems Hash Marks Roman Binary 11 100 Five Six Eight Nine Eleven XI 1011 1101 1111 10010 10011 https://www.allaboutcircuits.com/textbook/digital/chpt-1/decimal-versus-binary-numeration/

https://www.allaboutcircuits.com/textbook/digital/chpt-1/decimal-versus-binary-numeration/



#### von Neumann Architecture: Registers

| MAR | Memory Address Register      | Holds the memory location of data that needs to be accessed |
|-----|------------------------------|-------------------------------------------------------------|
| MDR | Memory Data Register         | Holds data that is being transferred to or from memory      |
| AC  | Accumulator                  | Where intermediate arithmetic and logic results are stored  |
| PC  | Program Counter              | Contains the address of the next instruction to be executed |
| CIR | Current Instruction Register | Contains the current instruction during processing          |

• Registers are high speed storage areas.

https://www.computerscience.gcse.guru/theory/von-neumann-architecture

#### Computer Components: Hardwired Program

- Small set of basic logic components that can
  - be combined in various ways to store binary data
  - perform arithmetic and logical operations.
- The configuration is a form of programming using hardware: **hardwired program**

#### von Neumann Architecture

- Three Key Concepts
  - Data and instructions are stored in a single read-write memory
  - The contents of this memory are addressable by location (irrespective of the type of data stored there)
  - Execution occurs in a sequential fashion from one instruction to the next.

#### Computer Components: Software Program

- A general purpose configuration of arithmetic and logic functions.
- The control signals applied can be changed!
- A new sequence of codes results in new functionality: Software

# Reading

- Chapter 1: Computer Organisation and Architecture
- http://www.computerhistory.org/timeline/computers/