Putnam preparation

Polynomials, Abstract Algebra

- (1) Given the polynomial $F(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ with integral coefficients $a_0, a_1, \ldots, a_{n-1}$, and given also that there exist four distinct integers a, b, c, d such that F(a) = F(b) = F(c) = F(d) = 5, show that there is no integer k such that F(k) = 8.
- (2) If x + y + z = 0, prove that

$$\frac{x^2 + y^2 + z^2}{2} \cdot \frac{x^5 + y^5 + z^5}{5} = \frac{x^7 + y^7 + z^7}{7} .$$

- (3) Suppose that G is a set and * is a binary operation such that
 - (i) Associative property. a * (b * c) = (a * b) * c for all $a, b, c \in G$.
 - (ii) Right identity. There exists an element $e \in G$ such that a * e = a for all $a \in G$.
 - (iii) Right inverse. For each $a \in G$ there exists an element $a^{-1} \in G$ such that $a*a^{-1} = e$. Prove that G is a group.
- (4) If G is a finite group and m is a positive integer relatively prime to the order of G, then for each $a \in G$, there is a unique $b \in G$ such that $b^m = a$.
- (5) (Morning 1) Prove that if F(x) is a polynomial with integral coefficients, and there exists an integer k such that none of the integers $F(1), F(2), \ldots, F(k)$ is divisible by k, then F(x) has no integral zero.
- (6) (A1) Consider a set S and a binary operation * on S. Assume that (a*b)*a=b for all $a,b \in S$. Prove that a*(b*a)=b for all $a,b \in S$.
- (7) (A3)
 - (a) Find all pairs (m, n) of positive integers such that $|3^m 2^n| = 1$.
 - (b) Find all pairs (m, n) of integers larger than 1 such that $|p^m q^n| = 1$, where p and q are primes.

Disclaimer: Most (if not all) the material here is from outside sources, I am not claiming any originality.