Г-4. Автоматы

23 ноября 2024 г. 23:21

Помеченные орграфы

Ребра часто представляют взаимодействие между объектами-вершинами
 Когда моделируют несколько видов взаимодействия, ребра помечают, задавая функцию \(\ell\): \(\ell\): \(\ell\) и из множества ребер в некоторое конечное множество меток тройку \(\ell\) (\(\ell\)) из мазывают помеченым (оргурафом иногда говорят о раскрашивании ребер

1: concemabraem pedpy e20 Bec

Rosbisiones nemku

Ourcount completely

MAL -universal language Примеры: слева control flow graph, справа UML class diagram Z compour Kounusmop

Примеры: слева business decision tree, справа граф Кэли симметрической группы S_{ϵ}

• Самая важная модель помеченного орграфа — конечный автомат

Детериинированный конечный обтошет

Детерминированный конечный автомат

* детерменированный конечный автомат (ДКА) — это пятерка $A = (Q, \Sigma, \delta, \tau)$:

• Q — непустов конечное множество состояний автомата \rightarrow состояний из симвалов, которые коке-по обрабатывает обрабатывает \rightarrow состояний обрабатывает \rightarrow состояний \rightarrow состо те. обтомот переходий из некоторого состояний по некоторому симболу в другое состояние.

* \$ c < v < T \subseteq Q — множество коле
**. Т \subseteq Q — множество коле
**. Т \subseteq Q — множество першан

** δ — множество першан

Функционирование ДКА

• ДКА — простейший пример математической машины:

- входом для ДКА является произвольное слово $w \in \Sigma^*$ ДКА работает тактам (у него «дискретное время») перед первым тактом ДКА аккориств в так-альном состояния s паред первым тактом ДКА аккориств в так-альном состояния s передате s

- * U, то он не читает / отвергает w Слова, которые читает ДКА A, образуют множество $L(A)\subseteq \Sigma^*$, которое называется языком, распознаваемым A
 - ванвается языком, распознаваемым »

 (формальный) язык это произвольное множество слов

Примеры ДКА

- ДКА, распознающий множество чисел, кратных 3, в двоичной записи:
 - ведущие нули игнорируются
 слева диаграмма (граф) переходов, справа таблица переходов

Vi- Ocmamor om guenue Ha 3

1 Достройте при

• ДКА, распознающий множество строк, в которых есть подстрока 010:

! Перестройте пример так, чтобы рас есть подпоследовательность 010

Комментарии и соглашения

- Так как ДКА орграф, можно говорить о маршрутах
- Так как ДКА орграф, можно говорить о маршрутах.
 при этом вершины и ребра часто вызывают состояниями и переходами каждый маршрут в А помечен словом w ∈ Σ*, полученным конкатенаци состаяльющих маршрут ребер
 Для каждого слова w ∈ Σ* существует единственный маршрут в ДКА A = (Q, Σ, δ, s, T), помеченный w и начинающийся в з ж А читаги и со этот маршрут зажиливается в вершине из Т
 Функцию переходов б доопределяют на всём множестве Q × Σ*;

- $\delta(q,a)$ это конец ребра с меткой a, исходящего из q \Leftrightarrow конец маршрута с меткой w и началом q обозначим за $\delta(q,w)$ часто пышут q, w место $\delta(q,w)$, если автомат известен * например, A читает w \Leftrightarrow $s.w \in T$

Bapuayun no meny DKA.

Конечные автоматы с выходом

- Несложно сделать так, чтобы ДКА выдавал k вариантов ответа вместо 2:

 множество T задает разбиение Q на два класса T и Q \ T, которым соответствуют ответы 1 и 0
 вместо этого можно задать разбиение Q на k классов, которым соответствуют k возможных ответов
 в предольном случае k = |Q| ответ это состояние (кли его номер)
 Полученнал такой модификацией ДКА машина это конечный автомат с выходом
 всли автомат, полеостичий

выходом в сол автомат, проверяющий делимость на 3, будет возвращать номер текущего состояния, он будет вычислять функцию х mod 3 • Последовательность {a}; ½ называется К-автоматной, если существует автомат с выходом, который по к-ченной записк числа л возвращает а», {цля любого л) • k-автоматные последовательности интересны тем, что о них можно доказывать теоремы автоматое каким построенным автоматов — b https://github.com/hasrousavi/kilmst • вариант автомата с выходом, мозвращающий свое состояние на каждом такте, называют машиной Мурз • наримирк, каждый элемент дислем электронных часов управляется машиной Мурз, совершающей один такт в секунду

Конечные преобразователи

- Детерминированный конечный преобразователь
 ом же детерминированный конечный трансдыосер, машина Мили
 получается из ДКА добавлением выходного алфавита Г и переопределением
 функция переходов (6 становится функций виз Q × ∑ в Q × Г)
 * каждое ребро графа помечено парой буле (а, b), где а ∈ Σ, b ∈ Г
 * по слову w ∈ Σ* поребразователь оваращиет слово и длины [w] е реальном
 времени
 и[г] это була, написанная на ребре, по которому автомат идет, читая w[r]
 часто (но не обязательно) Г = Σ

Пример: преобразователь изменяет входное слово в алфавите {a, b}, заменяя в каждой последовательности букв а все буквы, кроме первой, на

Qi - coemannus

Об автоматах есть отдельный курс теории автоматов, а здесь мы обсудим только пару базовых для этой теории теорем

Недетерминированный конечный совтомат

Недетерминированный конечный автомат

- * Что если отказаться от ограничения
 из каждой вершины исходит ровно одно ребро с данной меткой?
 Если мы возымем произвольный орграф, в котором выделены множество решин T, а каждое ребро помечено буквой из алфавита Σ . то получится машина, называемая недетерминированным консечным автоматом (НКА)
 НКА это пятерка $A = (Q \times E \times Q)$ множество переходов A = A = A = A = A = A (A = A = A = A). Так A = A = A = A (A = A = A = A) A = A = A = A (A = A = A) множество вершини A = A = A) множество вершини A = A = A (A = A = A) множество вершини A = A = A) множество вершини A = A = A (A = A = A) множество вершини A = A = A) множество вершини A = A = A (A = A = A) множество вершини A = A = A) множество вершини A = A = A (A = A = A) множество вершини A = A = A) множество вершини A = A = A (A = A = A) множество вершини

- НКА $\mathcal{A}=(Q,\Sigma,\delta,S,T)$ читает/допускает слово $\mathbf{w}\in\Sigma^*$, если существует (s,t)-маршрут с меткой \mathbf{w} для некоторых $s\in S,\ t\in T$, то есть $\delta(S,\mathbf{w})\cap T\neq\varnothing$ Язык $\mathcal{U}(A)$ состоит из всех слов, читаемых \mathcal{A}

Данный НКА читает в точности те слова, которые можно разбить на блоки 01 и 010:

- * Недетерминированный выбор связан с состоянием q_1
- Недетерминированный выбор связан с состоянием q;
 Слово начинается с 1 или содержит 11 автомат его не читает (δ(S, w) = Ø)
 δ(S, 010100) = {q_s} автомат не читает 010100
 δ(S, 010101) = {q_o, q_o} автомат читает 010101
 Термин счедетерминированный в применятельно к алгоритму/машине означает, что вычисление может пойти различными путями
 если очередной переход можно выборать несколькими способами, НКА делает недетерминированный выбор м.в. бучисление филіси» найти трачинции тум определение прочтених спова и означает, что НКА при выбора всегда
 сугадываеть так, чтобы в конце оказаться в терминальном состоянии
 Определения утилия слова? (от полаживает в терминальном состоянии
- ★ Определение чтения слова/распознавания языка при помощи НКА включает фундаментальную асимметрию между кванторами ∃ и ∀
- Похоже, что НКА обладают большими вычислительными возможностями, чем ДКА; тем не менее, это не так (см. следующий фрагмент)

Repexog on HKA K DKA

A ROLLHERMOR MONEY

Теорема Рабина-Скотта

Теорема Рабина-Скотта

Для любого НКА существует ДКА, распознающий тот же самый язык.

- - оказательство: возымем произвольный НКА $B=(Q,\Sigma,\delta,S,T)$ • построим ДКА A такой, что L(A)=L(B) пусть $A=(2^Q,\Sigma,\delta',S,T')$, где $\delta'(P,a)=\delta(P,a),\ T'=\{P\in 2^Q\mid P\cap T\neq\varnothing\}$

- Accasem. In $\delta(P, w) = \delta(P, w)$ are nodoto chose w suppyled no |w|:
 Gas arrangement and |w| = 0 succes $\delta(P, \lambda) = \delta(P, \lambda) = P$ was independent form $w = u_0$, $a \in \Sigma$ $\delta'(P, \lambda) = \delta(P, \lambda) = \delta'(\delta(P, \lambda), a)$ $\delta(\delta(P, \lambda), a) = \delta'(\delta(P, \lambda), a) = \delta'(\delta(P, \lambda), a) = \delta(\delta(P, \lambda), a)$ Octanoch Sametynt, $\delta(P, \lambda) = \bigcup_{v \in P} \delta(q, u_0) = \delta(P, u_0)$ Octanoch Sametynt, $\delta(P, u) \in T' = \{w \in \Sigma^* \mid \delta'(S, w) \cap T \neq \emptyset\} = \{w \in \Sigma^* \mid \delta(S, w) \cap T \neq \emptyset\} = \{w \in \Sigma^* \mid \delta(S, w) \cap T \neq \emptyset\} = \{w \in \Sigma^* \mid \delta(S, w) \cap T \neq \emptyset\} = \{w \in \Sigma^* \mid \delta(S, w) \cap T \neq \emptyset\}$

Достижимые состояния. Детерминирование НКА

- Пусть $\mathcal{A} = (Q, \Sigma, \delta, s, T) ДКА$

 - то $A=(V_1,L_1,0,3,1)^T-M^{N}$. Состояния $q\in \Sigma^*$ такое, что q=s.w т.е. если вершина q достижимо из анальной вершины s и т.е. если вершина q достижимо из анальной обришны s то балласт, который занимает недостижнимы состояния масойно удалить это балласт, который занимает лишнее место q и не влинет на функционирование автомата достижнимые состояния находится поиском из ычальной вершины
- * достимимые состояния находится поиском из начальной вершины ϵ При построении ДКА A, распознающего тот ме явых, что и данный НКА B, поиск совмещают с построением, получая A без недостижимых состояний: 1. для каждого $P \subseteq Q$ label(P) \leftarrow 0. 3. пока $(3P \in Q': bbel(P) = 0)$, повторять 4. для каждого $a \in \Sigma$ 5. $(P,a) \leftarrow \bigcup_{n \in P} B(q,a)$ 6. $(P',a) \leftarrow \bigcup_{n \in P} B(q,a)$ 7. (bbel(P) = 0) 8. $T' \leftarrow \{P \in Q' \mid P \cap T \neq \varnothing\}$ 8. $T' \leftarrow \{P \in Q' \mid P \cap T \neq \varnothing\}$ 9.
- * Обычно при клопызования этого алгоритма Q' получается намного меньше, чем 2^Q ; тем не менее, существуют НКА, для которых $Q'=2^Q$. 1 Изучнв доказательство теоремы Рабина—Скотта, придумайте, как вычислить ответ НКА B на слове и за время $O[|W| + |Q|^2]$.

 это бывает выгоднее, чем построение и хранение большого ДКА

	0	1	T
90	<i>q</i> 1	Ø	1
q_1	Ø	q_0, q_2	0
Ø	Ø	Ø	.0
q_0, q_2	q0, q1	Ø	1
an an	n.	an an	1

Onepayuu Hag 93 bikamu

Моноид слов. Операции над языками

- Базовые определения:

 Σ конечное мномество (алфавит)

 Σ конечное мномество (алфавит)

 Σ конечное мномество (алфавит)

 Σ конечное мномество (алфавит)

 Σ конемство конечных последовательностей элементов Σ (слов, строк)

 |w| д длина слова w, λ пустое слове (длины 0)

 $(\omega) = 1 \times \Sigma$ задама операция коняственция (учысюмения) слов

 $(\omega) = 1 \times \Sigma$ хальи (конечный иля беспонечный)

 $(\omega) = 1 \times \Sigma$ тальи (конечный иля беспонечный)

 Булевы операции над языками:

 $(\omega) = 1 \times \Sigma$ $(\omega) = 1$

Операции над языками (2)

- ение языков дистрибутивно относительно объединения и пересечения

- $\mathbf{A}U(L) = \| u \notin L \|$ все собственные подслова и принадлежат $L \}$ (антисловарь) $\mathbf{B}\nabla \mathbf{C}$ о отношение \mathbf{C} быть подсловом» на $\mathbf{\Sigma}^*$ \mathbf{C} о отношение порядка \mathbf{C} до \mathbf{C} о обществу \mathbf{C}
- - $\phi(L) = \{\phi(u) \mid u \in L\}$ взятие гомоморфного образа

Регулярные эзыки. Пеорема Клини

Регулярные языки

- Пусть $\Sigma = \{a_1, \dots, a_n\}$ Язык $L \subseteq \Sigma^*$ ретулярный, если он может быть получен применением конечного числа операций объединения, умножения и итерации к языкам $\emptyset, \{\lambda\}, \{a_j\}, \dots, \{a_n\}$ операции $\cup, \cdot, ^*$ также называются регулярными
- Можно взять замыкание любого множества языков $\mathbf{L} \subseteq 2^{\Sigma^*}$ относительно регулярных операций
- ★ Множество R ⊂ 2[∞] всех регулярных языков над Σ совпадает с замыканием множества всех конечных языков над Σ относительно регулярных операций
- Обычный способ записи регулярных языков регулярные выражения:
 - символы $\varnothing, \lambda, a \in \Sigma$ являются регулярными выражениями r, s = регулярные выражения $\Rightarrow (r)[(s), (r) \cdot (s), (r)^* =$ регулярные выраже других регулярных выражений том.
- - * приоритетнее , приоритетнее | скобки, не меняющие порядок выполнения операций, опуск Знах умномення также опускается Пример: вместо $(((a) \mid (b)) \mid ((b) \cdot (c)))^*$ пишут $(a \mid b \mid bc)^*$

Теорема Клини

Язык регулярен тогда и только тогда, когда он распознается некоторым конечным

Распознаваемоеть регулярных одыков

Регулярные языки распознаются автоматами

Докажем, что любой регулярный язык распознается конечным автоматом

- * теорема Рабина-Скотта дает использовать ДКА и НКА вперемешку
- lacktriangle построить автоматы, распознающие языки $\varnothing,\{\lambda\},\{a\}$
- е по ДКА $A_1=(Q_2,\Sigma,\delta_2,s_1,T_1)$ и $A_2=(Q_2,\Sigma,\delta_2,s_2,T_2)$ построить автоматы, распознающие языки
 - аспознающие язы $L(A_1) \cup L(A_2)$ $L(A_1) \cdot L(A_2)$ $(L(A_1))^*$

$$\begin{split} \mathcal{A}_{\cup} = & \left(Q_1 \cup Q_2, \Sigma, \delta_1 \cup \delta_2, \{s_1, s_2\}, T_1 \cup T_2 \right) \\ & \mathcal{L}(\mathcal{A}_{\cup}) = \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2) \end{split}$$

Регулярные языки распознаются автоматами (2)

 $\mathcal{A} = (Q_1 \cup Q_2, \Sigma, \delta, \{s_1\}, T_2) \text{ npw } \lambda \notin L_2,$ $\mathcal{A} = (Q_1 \cup Q_2, \Sigma, \delta, \{s_1\}, T_1 \cup T_2) \text{ npw } \lambda \in L_2.$

где $\delta = \delta_1 \cup \delta_2 \cup \{(t,a,q) \mid t \in \mathcal{T}_1, q \in \mathcal{Q}_2, (s_2,a,q) \in \delta_2\}$ $L(A.) = L(A_1) \cdot L(A_2)$

 $\begin{array}{l} \mathcal{A}_* = (Q_1 \cup \{s'\}, \Sigma, \delta', \{s_1, s'\}, T \cup \{s'\}), \text{ где} \\ \delta' = \delta_1 \cup \{\{t, a, q\} \mid t \in T, q \in Q_1, \{s_1, a, q\} \in \delta\} \\ * s'$ нужно только для распознавания λ $L(\mathcal{A}_*) = (L(\mathcal{A}_1))^* \end{array}$

Регулярность сивтоматных отзыков

Регулярность автоматных языков

- е Пусть $A = (Q, \Sigma, \delta, s, T)$ автомат; докажем, что $L(A) \in \mathbb{R}$ индукцией по $|\delta|$ база мнужции: $|\delta| = 0$ = $(L(A) = \{A\}) \in \mathbb{R}$ при $s \in T$ и $L(A) = \emptyset \in \mathbb{R}$ при $s \notin T$. Шат индукции: $|\delta| = \delta$ = $(L(A) = \{A\}) \in \mathbb{R}$ при $s \in T$ и $L(A) = \emptyset \in \mathbb{R}$ при $s \notin T$. Ватоматами $s \in T$ и $L(A) = \emptyset \in \mathbb{R}$ при $s \notin T$. В повреждами (ребрами), регулярны во по предположению индукции $s \in T$ и $s \in T$ ($s \in T$), $s \in T$ (s

- $\begin{array}{ll} \Rightarrow w_0 \in L(A_1), \ w_1, \dots, w_{n-1} \in L(A_2), \ w_n \in L(A_3) \Rightarrow w \in L(A_1)a(L(A_2)a)^*L(A_3) \\ \Rightarrow w \in L(A_n) \cup L(A_1)a(L(A_2)a)^*L(A_3) \\ &= L(A_0) \subseteq L(A) \text{o-vecageo} \\ &= u \in L(A_n)a(L(A_2)a)^*L(A_3) \\ &= w \in L(A_1)a(L(A_2)a)^*L(A_3) \\ &= w \in L(A_1)a(L(A_2)a)^*L(A_3) \\ &= u \in L(A_1)a(L(A_2)a)^*L(A_2) \\ &= u \in L(A_1)a(L(A_2)a)^*L(A_1)a(L(A_2)a)^*L(A_1)a(L(A_2)a)^*L(A_1)a(L(A_2)a)^*L(A_1)a(L(A_2)a)^*L(A_1)a(L(A_2)a)^*L(A_1)a(L(A_2)a)^*L(A_1)a(L(A_2)a)^*L(A_1)a(L(A_2)a)^*L(A_1)a(L(A_2)a)^*L(A_1)a(L(A_2)a)^*L(A_1)a(L(A_2)a)^*L(A_1)a(L(A_2)a)^*L(A_1)a(L(A_1)a(L(A_1)a)^*L(A_1)a(L$

Замкинтость относительно операций

Замкнутость R относительно операций

- Теорема Клини позволяет доказывать замкнутость R относительно операций * R замкнуто относительно дополнения: $\mathrm{ccn} \ A = (Q, \Sigma, \delta, s, T) \beta KA, \ L = L(A), \ \mathrm{to} \ L = L(\bar{A}), \ \mathrm{tr} \ A = (\bar{A}, \Sigma, \delta, s, Q \setminus T)$ * R замкнуто относительно внересчения, потому что $L_1 \cap L_2 = (\bar{L}_1 \cup \bar{L}_2)$ формулы де Моргана * R замкнуто относительно разности, потому что $L_1 \setminus L_2 = L_1 \cap \bar{L}_2$ 1 докаминуто относительно разности, потому что $L_1 \setminus L_2 = L_1 \cap \bar{L}_2$ 1 докаминуть относительно разности, потому что $L_1 \setminus L_2 = L_1 \cap \bar{L}_2$ 1 докаминуть у регулярном регулярным являются левые и правые частные гомоморичное формаций регулярных явыков можно распознавать префинское и подспояное замыжание замкность регулярных языков можно распознавать при помощи декартопа произведения $\beta(KA)$:
 пусть $A_1 = (Q_1, \Sigma, \delta_1, s_1, T_1, A_2 = (Q_2, \Sigma, \delta_2, s_2, T_2) \beta(KA)$ $A_2 = (Q_1 \times Q_2, \Sigma, \delta_3 \times \delta_2, (s_1, s_2), T_1 \times T_2)$ * $A_3 = (Q_1 \times Q_2, \Sigma, \delta_1 \times \delta_2, (s_1, s_2), T_1 \times T_2)$ * $A_4 = (Q_1 \times Q_2, \Sigma, \delta_1 \times \delta_2, (s_1, s_2), T_1 \times (Q_2 \setminus T_2))$