Numerical Analysis & Scientific Computing II

Lesson 3

Boundary Value Problems for ODEs

3.1 Well-posedness

3.2 Shooting Method

Boundary Value Problems: Shooting Method

Recall the following discussion in the contest of solvability of two-point BVP

$$y' = f(t, y), \qquad a < t < b,$$

with boundary conditions

$$g(y(a), y(b)) = 0.$$

We noted that if y(t;x) denotes the solution to the IVP y'=f(t,y), y(a)=x, $x \in \mathbb{R}^n$, then this solution is a solution to the BVP if

$$g(x,y(b;x))=0.$$

Thus, one approach to solve the BVP therefore is to find an x that solves the system of nonlinear algebraic equations h(x) = 0, where h(x) = g(x, y(b; x)).

Boundary Value Problems: Shooting Method

Recall the following discussion in the contest of solvability of two-point BVP

$$y' = f(t, y), \qquad a < t < b,$$

with boundary conditions

$$g(y(a), y(b)) = 0.$$

We noted that if y(t;x) denotes the solution to the IVP y' = f(t,y), y(a) = x, $x \in \mathbb{R}^n$, then this solution is a solution to the BVP if

$$g(x,y(b;x))=0.$$

Thus, one approach to solve the BVP therefore is to find an x that solves the system of nonlinear algebraic equations h(x) = 0, where h(x) = g(x, y(b; x)).

For example, consider the ODE u'' = f(t, u, u') with boundary conditions $u(a) = \alpha$, $u(b) = \beta$.

Recall the following discussion in the contest of solvability of two-point BVP

$$y' = f(t, y), \qquad a < t < b,$$

with boundary conditions

$$g(y(a), y(b)) = 0.$$

We noted that if y(t;x) denotes the solution to the IVP y' = f(t,y), y(a) = x, $x \in \mathbb{R}^n$, then this solution is a solution to the BVP if

$$g(x,y(b;x))=0.$$

Thus, one approach to solve the BVP therefore is to find an x that solves the system of nonlinear algebraic equations h(x) = 0, where h(x) = g(x, y(b; x)).

For example, consider the ODE u'' = f(t, u, u') with boundary conditions $u(a) = \alpha$, $u(b) = \beta$.

If we knew u'(a), then ...

Recall the following discussion in the contest of solvability of two-point BVP

$$y' = f(t, y), \qquad a < t < b,$$

with boundary conditions

$$g(y(a), y(b)) = 0.$$

We noted that if y(t;x) denotes the solution to the IVP y'=f(t,y), y(a)=x, $x \in \mathbb{R}^n$, then this solution is a solution to the BVP if

$$g(x,y(b;x))=0.$$

Thus, one approach to solve the BVP therefore is to find an x that solves the system of nonlinear algebraic equations h(x) = 0, where h(x) = g(x, y(b; x)).

For example, consider the ODE u'' = f(t, u, u') with boundary conditions $u(a) = \alpha$, $u(b) = \beta$.

$$h(s) = \begin{bmatrix} y_1(a; \alpha, s) - \alpha \\ y_1(b; \alpha, s) - \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Recall the following discussion in the contest of solvability of two-point BVP

$$y' = f(t, y), \qquad a < t < b,$$

with boundary conditions

$$g(y(a), y(b)) = 0.$$

We noted that if y(t;x) denotes the solution to the IVP y' = f(t,y), y(a) = x, $x \in \mathbb{R}^n$, then this solution is a solution to the BVP if

$$g(x,y(b;x))=0.$$

Thus, one approach to solve the BVP therefore is to find an x that solves the system of nonlinear algebraic equations h(x) = 0, where h(x) = g(x, y(b; x)).

For example, consider the ODE u'' = f(t, u, u') with boundary conditions $u(a) = \alpha$, $u(b) = \beta$.

$$h(s) = \begin{bmatrix} y_1(a; \alpha, s) - \alpha \\ y_1(b; \alpha, s) - \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ that is, } h_2(\alpha, s) \coloneqq y_1(b; \alpha, s) - \beta = 0$$

Recall the following discussion in the contest of solvability of two-point BVP

$$y' = f(t, y), \qquad a < t < b,$$

with boundary conditions

$$g(y(a), y(b)) = 0.$$

We noted that if y(t;x) denotes the solution to the IVP y'=f(t,y), y(a)=x, $x \in \mathbb{R}^n$, then this solution is a solution to the BVP if

$$g(x,y(b;x))=0.$$

Thus, one approach to solve the BVP therefore is to find an x that solves the system of nonlinear algebraic equations h(x) = 0, where h(x) = g(x, y(b; x)).

For example, consider the ODE u'' = f(t, u, u') with boundary conditions $u(a) = \alpha$, $u(b) = \beta$.

$$h(s) = \begin{bmatrix} y_1(a; \alpha, s) - \alpha \\ y_1(b; \alpha, s) - \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ that is, } h_2(\alpha, s) \coloneqq y_1(b; \alpha, s) - \beta = 0$$

Recall the following discussion in the contest of solvability of two-point BVP

$$y' = f(t, y), \qquad a < t < b,$$

with boundary conditions

$$g(y(a), y(b)) = 0.$$

We noted that if y(t;x) denotes the solution to the IVP y' = f(t,y), y(a) = x, $x \in \mathbb{R}^n$, then this solution is a solution to the BVP if

$$g(x,y(b;x))=0.$$

Thus, one approach to solve the BVP therefore is to find an x that solves the system of nonlinear algebraic equations h(x) = 0, where h(x) = g(x, y(b; x)).

For example, consider the ODE u'' = f(t, u, u') with boundary conditions $u(a) = \alpha$, $u(b) = \beta$.

$$h(s) = \begin{bmatrix} y_1(a; \alpha, s) - \alpha \\ y_1(b; \alpha, s) - \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ that is, } h_2(\alpha, s) \coloneqq y_1(b; \alpha, s) - \beta = 0$$

Recall the following discussion in the contest of solvability of two-point BVP

$$y' = f(t, y), \qquad a < t < b,$$

with boundary conditions

$$g(y(a), y(b)) = 0.$$

We noted that if y(t;x) denotes the solution to the IVP y' = f(t,y), y(a) = x, $x \in \mathbb{R}^n$, then this solution is a solution to the BVP if

$$g(x,y(b;x))=0.$$

Thus, one approach to solve the BVP therefore is to find an x that solves the system of nonlinear algebraic equations h(x) = 0, where h(x) = g(x, y(b; x)).

For example, consider the ODE u'' = f(t, u, u') with boundary conditions $u(a) = \alpha$, $u(b) = \beta$.

$$h(s) = \begin{bmatrix} y_1(a; \alpha, s) - \alpha \\ y_1(b; \alpha, s) - \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ that is, } h_2(\alpha, s) \coloneqq y_1(b; \alpha, s) - \beta = 0$$

Recall the following discussion in the contest of solvability of two-point BVP

$$y' = f(t, y), \qquad a < t < b,$$

with boundary conditions

$$g(y(a), y(b)) = 0.$$

We noted that if y(t;x) denotes the solution to the IVP y' = f(t,y), y(a) = x, $x \in \mathbb{R}^n$, then this solution is a solution to the BVP if

$$g(x,y(b;x))=0.$$

Thus, one approach to solve the BVP therefore is to find an x that solves the system of nonlinear algebraic equations h(x) = 0, where h(x) = g(x, y(b; x)).

For example, consider the ODE u'' = f(t, u, u') with boundary conditions $u(a) = \alpha$, $u(b) = \beta$.

$$h(s) = \begin{bmatrix} y_1(a; \alpha, s) - \alpha \\ y_1(b; \alpha, s) - \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ that is, } h_2(\alpha, s) \coloneqq y_1(b; \alpha, s) - \beta = 0$$

Boundary Value Problems: Shooting Method

Recall the following discussion in the contest of solvability of two-point BVP

$$y' = f(t, y), \qquad a < t < b,$$

with boundary conditions

$$g(y(a), y(b)) = 0.$$

We noted that if y(t;x) denotes the solution to the IVP y' = f(t,y), y(a) = x, $x \in \mathbb{R}^n$, then this solution is a solution to the BVP if

$$g(x,y(b;x))=0.$$

Thus, one approach to solve the BVP therefore is to find an x that solves the system of nonlinear algebraic equations h(x) = 0, where h(x) = g(x, y(b; x)).

For example, consider the ODE u'' = f(t, u, u') with boundary conditions $u(a) = \alpha$, $u(b) = \beta$.

$$h(s) = \begin{bmatrix} y_1(a; \alpha, s) - \alpha \\ y_1(b; \alpha, s) - \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ that is, } h_2(\alpha, s) \coloneqq y_1(b; \alpha, s) - \beta = 0$$

Recall the following discussion in the contest of solvability of two-point BVP

$$y' = f(t, y), \qquad a < t < b,$$

with boundary conditions

$$g(y(a), y(b)) = 0.$$

We noted that if y(t;x) denotes the solution to the IVP y' = f(t,y), y(a) = x, $x \in \mathbb{R}^n$, then this solution is a solution to the BVP if

$$g(x,y(b;x))=0.$$

Thus, one approach to solve the BVP therefore is to find an x that solves the system of nonlinear algebraic equations h(x) = 0, where h(x) = g(x, y(b; x)).

For example, consider the ODE u'' = f(t, u, u') with boundary conditions $u(a) = \alpha$, $u(b) = \beta$.

$$h(s) = \begin{bmatrix} y_1(a; \alpha, s) - \alpha \\ y_1(b; \alpha, s) - \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ that is, } h_2(\alpha, s) \coloneqq y_1(b; \alpha, s) - \beta = 0$$

Recall the following discussion in the contest of solvability of two-point BVP

$$y' = f(t, y), \qquad a < t < b,$$

with boundary conditions

$$g(y(a), y(b)) = 0.$$

We noted that if y(t;x) denotes the solution to the IVP y' = f(t,y), y(a) = x, $x \in \mathbb{R}^n$, then this solution is a solution to the BVP if

$$g(x,y(b;x))=0.$$

Thus, one approach to solve the BVP therefore is to find an x that solves the system of nonlinear algebraic equations h(x) = 0, where h(x) = g(x, y(b; x)).

For example, consider the ODE u'' = f(t, u, u') with boundary conditions $u(a) = \alpha$, $u(b) = \beta$.

$$h(s) = \begin{bmatrix} y_1(\alpha; \alpha, s) - \alpha \\ y_1(b; \alpha, s) - \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ that is, } h_2(\alpha, s) \coloneqq y_1(b; \alpha, s) - \beta = 0$$

Boundary Value Problems: Shooting Method

In particular, consider the two-point BVP

$$u'' = f(t, u, u'), \quad a < t < b,$$

 $a_0 u(a) - a_1 u'(a) = \alpha, \quad b_0 u(b) + b_1 u'(b) = \beta,$

where the function f is assumed to satisfy the following Lipschitz conditions:

$$|f(t, u_1, v) - f(t, u_2, v)| \le K|u_1 - u_2|,$$

 $|f(t, u, v_1) - f(t, u, v_2)| \le K|v_1 - v_2|,$

for all points (t, u_i, v) , $(t, u, v_j) \in R := [a, b] \times \mathbb{R} \times \mathbb{R}$. In addition, assume that on R, f satisfies

$$f_u(t,u,v) = \frac{\partial f(t,u,v)}{\partial u} > 0, |f_v(t,u,v)| = \left| \frac{\partial f(t,u,v)}{\partial v} \right| \le M,$$

for some M > 0. For the boundary conditions, assume

$$a_0 a_1 \ge 0$$
, $b_0 b_1 \ge 0$, $|a_0| + |a_1| \ne 0$, $|b_0| + |b_1| \ne 0$, $|a_0| + |b_0| \ne 0$.

In particular, consider the two-point BVP

$$u'' = f(t, u, u'), \quad a < t < b,$$

 $a_0 u(a) - a_1 u'(a) = \alpha, \quad b_0 u(b) + b_1 u'(b) = \beta,$

where the function f is assumed to satisfy the following Lipschitz conditions:

$$|f(t, u_1, v) - f(t, u_2, v)| \le K|u_1 - u_2|,$$

 $|f(t, u, v_1) - f(t, u, v_2)| \le K|v_1 - v_2|,$

for all points (t, u_i, v) , $(t, u, v_j) \in R := [a, b] \times \mathbb{R} \times \mathbb{R}$. In addition, assume that on R, f satisfies

$$f_u(t,u,v) = \frac{\partial f(t,u,v)}{\partial u} > 0, |f_v(t,u,v)| = \left| \frac{\partial f(t,u,v)}{\partial v} \right| \le M,$$

for some M > 0. For the boundary conditions, assume

$$a_0 a_1 \ge 0$$
, $b_0 b_1 \ge 0$, $|a_0| + |a_1| \ne 0$, $|b_0| + |b_1| \ne 0$, $|a_0| + |b_0| \ne 0$.

Theorem

The BVP, under these assumptions, has a unique solution.

In particular, consider the two-point BVP

$$u'' = f(t, u, u'), \quad a < t < b,$$

 $a_0 u(a) - a_1 u'(a) = \alpha, \quad b_0 u(b) + b_1 u'(b) = \beta,$

where the function f is assumed to satisfy the following Lipschitz conditions:

$$|f(t, u_1, v) - f(t, u_2, v)| \le K|u_1 - u_2|,$$

 $|f(t, u, v_1) - f(t, u, v_2)| \le K|v_1 - v_2|,$

for all points
$$(t, u_i, v)$$
, $(t, u, v_j) \in R := [a, b] \times \mathbb{R} \times \mathbb{R}$. In addition, assume that on R , f satisfies
$$f_u(t, u, v) = \frac{\partial f(t, u, v)}{\partial u} > 0, |f_v(t, u, v)| = \left|\frac{\partial f(t, u, v)}{\partial v}\right| \le M,$$

for some M > 0. For the boundary conditions, assume

$$a_0 a_1 \ge 0$$
, $b_0 b_1 \ge 0$, $|a_0| + |a_1| \ne 0$, $|b_0| + |b_1| \ne 0$, $|a_0| + |b_0| \ne 0$.

Theorem

The BVP, under these assumptions, has a unique solution.

How do we solve the BVP using the shooting method?

Boundary Value Problems: Shooting Method

Consider the two-point BVP

$$u'' = f(t, u, u'), \quad a < t < b,$$

 $a_0 u(a) - a_1 u'(a) = \alpha, \quad b_0 u(b) + b_1 u'(b) = \beta.$

Boundary Value Problems: Shooting Method

Consider the two-point BVP

$$u'' = f(t, u, u'), \quad a < t < b,$$

 $a_0 u(a) - a_1 u'(a) = \alpha, \quad b_0 u(b) + b_1 u'(b) = \beta.$

Let y(t; s) be the solution to the IVP

$$y'' = f(t, y, y'), \quad a < t < b,$$

 $y(a) = a_1 s - c_1 \alpha, \quad y'(a) = a_0 s - c_0 \alpha$

depending on the parameter s, where c_0 , c_1 are arbitrary constants satisfying $a_1c_0 - a_0c_1 = 1$. Note that $a_0y(a;s) - a_1y'(a;s) = \alpha$.

Consider the two-point BVP

$$u'' = f(t, u, u'), \quad a < t < b,$$

 $a_0 u(a) - a_1 u'(a) = \alpha, \quad b_0 u(b) + b_1 u'(b) = \beta.$

Let y(t; s) be the solution to the IVP

$$y'' = f(t, y, y'), \quad a < t < b,$$

 $y(a) = a_1 s - c_1 \alpha, \quad y'(a) = a_0 s - c_0 \alpha$

depending on the parameter s, where c_0 , c_1 are arbitrary constants satisfying $a_1c_0 - a_0c_1 = 1$. Note that $a_0y(a;s) - a_1y'(a;s) = \alpha$.

For y(t; s) to be the solution to the BVP, it must satisfy

$$h(s) \coloneqq b_0 y(b; s) + b_1 y'(b; s) - \beta = 0.$$

Consider the two-point BVP

$$u'' = f(t, u, u'), \quad a < t < b,$$

 $a_0 u(a) - a_1 u'(a) = \alpha, \quad b_0 u(b) + b_1 u'(b) = \beta.$

Let y(t; s) be the solution to the IVP

$$y'' = f(t, y, y'), \quad a < t < b,$$

 $y(a) = a_1 s - c_1 \alpha, \quad y'(a) = a_0 s - c_0 \alpha$

depending on the parameter s, where c_0 , c_1 are arbitrary constants satisfying $a_1c_0 - a_0c_1 = 1$. Note that $a_0y(a;s) - a_1y'(a;s) = \alpha$.

For y(t; s) to be the solution to the BVP, it must satisfy

$$h(s) \coloneqq b_0 y(b; s) + b_1 y'(b; s) - \beta = 0.$$

For solution of this equation using the Newton's method, we have

$$s_{m+1} = s_m - \frac{h(s_m)}{h'(s_m)}, \qquad m = 0,1,2,...$$

Consider the two-point BVP

$$u'' = f(t, u, u'), \quad a < t < b,$$

 $a_0 u(a) - a_1 u'(a) = \alpha, \quad b_0 u(b) + b_1 u'(b) = \beta.$

Let y(t; s) be the solution to the IVP

$$y'' = f(t, y, y'), \quad a < t < b,$$

 $y(a) = a_1 s - c_1 \alpha, \quad y'(a) = a_0 s - c_0 \alpha$

depending on the parameter s, where c_0 , c_1 are arbitrary constants satisfying $a_1c_0 - a_0c_1 = 1$. Note that $a_0y(a;s) - a_1y'(a;s) = \alpha$.

For y(t; s) to be the solution to the BVP, it must satisfy

$$h(s) \coloneqq b_0 y(b; s) + b_1 y'(b; s) - \beta = 0.$$

For solution of this equation using the Newton's method, we have

$$s_{m+1} = s_m - \frac{h(s_m)}{h'(s_m)}, \qquad m = 0,1,2,...$$

We need to find the derivative h'. Note that

$$h'(s) = b_0 z_s(b) + b_1 z_s'(b)$$

where

$$z_{s}(t) = \frac{\partial y(t;s)}{\partial s}.$$

Boundary Value Problems: Shooting Method

Consider the two-point BVP

$$u'' = f(t, u, u'), \quad a < t < b,$$

 $a_0 u(a) - a_1 u'(a) = \alpha, \quad b_0 u(b) + b_1 u'(b) = \beta.$

Let y(t; s) be the solution to the IVP

$$y'' = f(t, y, y'), \quad a < t < b,$$

 $y(a) = a_1 s - c_1 \alpha, \quad y'(a) = a_0 s - c_0 \alpha$

depending on the parameter s, where c_0 , c_1 are arbitrary constants satisfying $a_1c_0 - a_0c_1 = 1$.

...

We need to find the derivative h'. Note that

$$h'(s) = b_0 z_s(b) + b_1 z_s'(b)$$

where

$$z_{s}(t) = \frac{\partial y(t;s)}{\partial s}.$$

To find z_s , we differentiate the equation y''(t;s) = f(t,y(t;s),y'(t;s)) with respect to s.

Consider the two-point BVP

$$u'' = f(t, u, u'), \quad a < t < b,$$

 $a_0 u(a) - a_1 u'(a) = \alpha, \quad b_0 u(b) + b_1 u'(b) = \beta.$

Let y(t; s) be the solution to the IVP

$$y'' = f(t, y, y'), \quad a < t < b,$$

 $y(a) = a_1 s - c_1 \alpha, \quad y'(a) = a_0 s - c_0 \alpha$

depending on the parameter s, where c_0 , c_1 are arbitrary constants satisfying $a_1c_0 - a_0c_1 = 1$.

...

We need to find the derivative h'. Note that

$$h'(s) = b_0 z_s(b) + b_1 z'_s(b)$$

where

$$z_s(t) = \frac{\partial y(t;s)}{\partial s}.$$

To find z_s , we differentiate the equation y''(t;s) = f(t,y(t;s),y'(t;s)) with respect to s. Then, z_s satisfies the IVP $z_s''(t) = f_2(t,y(t;s),y'(t;s))z_s(t) + f_3(t,y(t;s),y'(t;s))z_s'(t), z_s(a) = a_1, z_s'(a) = a_0.$

The functions f_2 and f_3 denote the partial derivatives of f(t, u, v) with respect to u and v respectively.