PSALTer results panel

$$\begin{split} \mathcal{S} == & \iiint \left(\rho \, \varphi + \, h^{\alpha\beta} \, \, \mathcal{T}_{\alpha\beta} + \frac{1}{2} \, \alpha_{2} \, \partial_{\alpha} \varphi \, \partial^{\alpha} \varphi + \frac{1}{8} \, \alpha_{1} \, \left(24 \, (1 + \varphi) \, \partial_{\alpha} \partial^{\alpha} \varphi - 8 \, \partial_{\alpha} h^{\beta}_{\beta} \, \partial^{\alpha} \varphi + 8 \, \partial^{\alpha} \varphi \, \partial_{\beta} h^{\beta}_{\alpha} \, - \\ & 4 \, \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} + 4 \, \partial_{\beta} \partial^{\beta} h^{\alpha}_{\alpha} - \partial_{\beta} h^{\chi}_{\chi} \, \partial^{\beta} h^{\alpha}_{\alpha} + 2 \, \partial^{\beta} h^{\alpha}_{\alpha} \, \partial_{\chi} h^{\chi}_{} \, - 2 \, \partial_{\beta} h_{\alpha\chi} \, \partial^{\chi} h^{\alpha\beta} + \partial_{\chi} h_{\alpha\beta} \, \partial^{\chi} h^{\alpha\beta} \right) + \\ & \alpha_{1} \cdot \left(-4 \, \partial_{\beta} \partial_{\alpha} h^{\chi}_{\chi} \, \partial^{\beta} \partial^{\alpha} \varphi - 8 \, \partial_{\beta} \partial_{\alpha} \varphi \, \partial^{\beta} \partial^{\alpha} \varphi + 4 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial_{\alpha} h^{\chi}_{} + 4 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial_{\beta} h^{\chi}_{} - 4 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial^{\chi} h_{\alpha\beta} + 4 \, \partial^{\alpha} \partial^{\alpha} \varphi \, \partial_{\chi} \partial_{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \, \partial_{\delta} \partial_{\beta} h^{\alpha}_{} - 4 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial^{\chi} h_{\alpha\beta} + 4 \, \partial^{\alpha} \partial^{\alpha} \varphi \, \partial_{\chi} \partial^{\chi} h^{\beta}_{\beta} \right) - \partial_{\chi} \partial_{\beta} h^{\delta}_{\delta} \, \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} - 2 \, \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \, \partial_{\delta} \partial_{\beta} h^{\chi}_{} - 4 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial^{\chi} h_{\alpha\beta} + 4 \, \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial_{\chi} h^{\beta}_{\beta} + \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} \, \partial_{\delta} \partial_{\chi} h^{\alpha\beta}_{\alpha} - 2 \, \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \, \partial_{\delta} \partial_{\beta} h^{\chi}_{\alpha} - 2 \, \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \, \partial_{\delta} \partial_{\chi} h^{\chi\delta} - \\ & 2 \, \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \, \partial_{\delta} \partial_{\chi} h^{\beta}_{\beta} + 4 \, \partial^{\chi} \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial_{\chi} h^{\beta}_{\beta} + \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} \, \partial_{\delta} \partial_{\chi} h^{\chi\delta} - 2 \, \partial_{\beta} \partial^{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial^{\beta} h^{\chi}_{\alpha} \, \partial_{\delta} \partial^{\lambda} h^{\chi\delta} - \\ & \partial_{\chi} \partial^{\chi} h^{\alpha\beta} \, \partial_{\delta} \partial^{\delta} h_{\alpha\beta} + 4 \, \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \, \partial_{\delta} \partial^{\delta} h_{\beta\chi} - 2 \, \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial^{\delta} h^{\chi}_{\alpha} \, \partial_{\delta} \partial^{\delta} h^{\chi}_{\alpha} \, \partial_{\delta} \partial^{\delta} h^{\chi}_{\alpha} \, \partial_{\delta} \partial^{\delta} h^{\chi}_{\alpha} \, \partial_{\delta} \partial^{\delta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial^{\delta} h^{\chi}_{\alpha} + \partial_{\beta} \partial^{\delta} \partial^{\lambda} h^{\alpha\beta} - \partial_{\delta} \partial^{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial^{\delta} h^{\alpha}_{\phantom{$$

<u>Wave</u> <u>operator</u>

Saturated propagator

<u>Source</u> <u>constraints</u>

Spin-parity form	Covariant form	Multiplicities
${\overset{0^+}{\cdot}}\mathcal{T}^\perp == 0$	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == 0$	1
$^{1}\mathcal{T}^{\perp}^{\alpha} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3
Total expected gauge generators:		4

<u>Massive</u> <u>spectrum</u>

(There are no massive particles)

Massless spectrum

Massless particle

Massess parefete		
Pole residue:	$\frac{p^2}{\alpha_1} > 0$	
Polarisations:	2	

Massless particle

Pole residue:	$\frac{1+8p^2}{6a+a}>0$
Polarisations:	1

<u>Gauge symmetries</u>

(Not yet implemented in PSALTer)

<u>Unitarity</u> conditions

$$\alpha_{\cdot} > 0 \&\& \alpha_{\cdot} > -6 \alpha_{\cdot}$$

<u>Validity</u> <u>assumptions</u>

(Not yet implemented in PSALTer)