Teoria sistemelor Tema 5

- 1) Se consideră sistemul de control din Figura 1. Specificațiile pentru o intrare treaptă unitară sunt:
 - Timpul de răspuns să fie $t_s=2/3$ sec.
 - Timpul răspunsului maxim să fie $t_p = \frac{\pi}{2\sqrt{3}}$ sec.
 - (a) Puteți realiza cerințele cu un regulator P? Justificați răspunsul.
 - (b) Proiectați un regulator PI astfel încât cerințele să fie îndeplinite.

Figura 1. Sistem de control în buclă închisă

- 2) Se consideră un sistem de control în buclă închisă cu reacție negativă unitară, cuun proces cu funcția de transfer $G(s)=\frac{1}{s^2}$. Se dorește ca pentru polii dominanți ai sistemului închis, timpul de răspuns să fie aproximativ $t_s=4$ sec și timpul răspunsului maxim să fie aproximativ $t_p=\frac{\pi}{\sqrt{3}}$ sec.
 - (a) Puteți obține cerințele cu un regulator proporțional (P)? De ce?
 - (b) Proiectați un regulator cu funcția de transfer $G_c(s) = \frac{k(s+z)}{s+p}$ cu 0 < z < p astfel încât cerințele să fie îndeplinite.
- 3) Pentru un sistem de control cu reacție negativă unitară și procesul $G(s) = \frac{1}{s^2 + 2s + 2}$:
 - (a) Determinați constanta erorii staționare la poziție K_p și polii sistemului închis.
 - (b) Proiectați un regulator cu întârziere de fază $G_c(s)=(s+z)/(s+p)$, 0 , care să crească constanta erorii staționare la poziție de 30 de ori, păstrând polii sistemului închis în aproximativ aceeași locație.
 - (c) Calculați polii sistemului închis cu și fără regulator și comparați valorile.