Problem Statement

The objective of this Case is to Predication of bike rental count on daily based on the environmental and seasonal settings.

Bike rental data

Method:

We want to extract the total number of people who rent a Bike daily based on Weather condition.

Exploratory Data Analysis - It includes following steps Looking into the data means visualizing the data through graphs and analyzing all variables.

- Visualization
- Missing value analysis
- Outlier analysis
- Correlation
- Feature scaling
- Dummy data create
- Feature sampling

Models:- Applied below models on preprocessed data

- Decision tree
- Random forest
- Linear regression

To see data information, datatype and number of observation

data.info()

There are variables of datatype float and int and date has object Observations are 731 and variables are 16

Check unique values

instant	731
dteday	731
season	4
yr	2
mnth	12
holiday	2
weekday	7
workingday	2
weathersit	3
temp	499
atemp	690
hum	595
windspeed	650
casual	606
registered	679
cnt	696
dtype: int64	

Target variable is 'cnt' Unique values of 'cnt' is 696

Checking for missing value

print(data.isnull().sum())

season	0
yr	0
mnth	0
holiday	0
weekday	0
workingday	0
weathersit	0
temp	0
atemp	0
hum	0
windspeed	13
cnt	0
dtype: int64	

Windspeed variable has 13 missing values

Data Understanding

Understanding the data set and to see how different features interact with each other and the target. First the amount of bike rental counts for each day of the week is analyzed.

Outlier Analysis

Humidity and windspeed has outlier values As windspeed has above 75th quartile so we have to deal with it

Using mean imputation method we imputed missing values in windspeed variable data['windspeed'] = data['windspeed'].fillna(data['windspeed'].mean())

print(data.isnull().sum())

season	0
yr	0
mnth	0
holiday	0
weekday	0
workingday	0
weathersit	0
temp	0
atemp	0
hum	0
windspeed	0
cnt	0
dtype: int64	

Now there are no missing values

Pairplots

Correlation Plot

ANOVA test for P values

	sum_sq	df	F	PR(>F)
season	4.517974e+08		143.967653	2.133997e-30
Residual	2.287738e+09	729.0	NaN	I NaN
	sum_sq	df	F	PR(>F)
yr	8.798289e+08	1.0	344.890586	2.483540e-63
Residual	1.859706e+09	729.0	NaN	I NaN
	sum_sq	df	F	PR(>F)
mnth	2.147445e+08	1.0	62.004625	1.243112e-14
Residual	2.524791e+09	729.0	NaN	NaN
	sum_sq	df	F	PR(>F)
holiday	1.279749e+07	1.0	3.421441	0.064759
Residual	2.726738e+09	729.0	NaN	NaN
	sum_sq	df	F	PR(>F)
weekday	1.246109e+07	1.0	3.331091	0.068391
Residual	2.727074e+09	729.0	NaN	NaN
	sum_s	sq c	lf F	PR(>F)
workingday	y 1.024604e+0	7 1.	0 2.736742	0.098495
Residual	2.729289e+0	9 729.	0 NaN	l NaN
	sum_s	sq c	lf	F PR(>F)
weathersi	t 2.422888e+6	8 1.	0 70.72929	8 2.150976e-16
Residual	2.497247e+8	9 729.	.0 Na	N NaN

'temp' and 'atemp' are correlated so one of them should be removed

Data before scaling

	season	yr	mnth	weathersit	temp	hum	windspeed	cnt
0	1	0	1	2	0.344167	0.805833	0.160446	985
1	1	0	1	2	0.363478	0.696087	0.248539	801
2	1	0	1	1	0.196364	0.437273	0.248309	1349
3	1	0	1	1	0.200000	0.590435	0.160296	1562
4	1	0	1	1	0.226957	0.436957	0.186900	1600

Data after scaling

	season	yr	mnth	weathersit	temp	hum	windspeed	cnt
0	1	0	1	2	-0.826097	1.249316	-0.364668	985
1	1	0	1	2	-0.720601	0.478785	0.873479	801
2	1	0	1	1	-1.633538	-1.338358	0.870246	1349
3	1	0	1	1	-1.613675	-0.263001	-0.366777	1562
4	1	0	1	1	-1.466410	-1.340576	0.007143	1600

Applying machine learning algorithms

```
Decision Tree Model:

RMSE = 997.3873927346699

RSquared test = 0.7073525764693427

MAPE = 25.707144204754727

Random Forest Model:

RMSE = 569.3767118168532

RSquared test = 0.904628995618636

MAPE= 13.426577692653508

Linear Regression Model

RMSE= 736.2047259447532

RSquared test= 0.8405538055300172

MAPE= 17.217590042129967
```

Conclusion

Root Mean Square Error (RMSE) is the standard deviation of the residuals (prediction **errors**). Residuals are a measure of how far from the regression line data points are, RMSE is a measure of how spread out these residuals are. In other words, it tells you how concentrated the data is around the line of best fit.

Whereas **R-squared** is a relative measure of fit, **RMSE** is an absolute measure of fit. As the square root of a variance, **RMSE** can be interpreted as the standard deviation of the unexplained variance and has the useful property of being in the same units as the response variable.

The mean absolute percentage error (MAPE), also known as mean absolute percentage deviation (MAPD), is a measure of prediction accuracy of a forecasting method in statistics, for example in trend estimation, also used as a Loss function for regression problems in Machine Learning.

Lower values of RMSE and MAPE and higher value of R-Squared Value indicate better fit.

Choosing Random Forest as a method

Extra figures of R code

Bikes rented Vs. variation in temperature and hunidity

Bikes rented Vs. temperature and weathersite

Bikes rented Vs. temperature and workingday

CORRELATION PLOT

Temp and atemp are highly correlated as we see dark blue color

ANOVA test

```
> summary(aov(formula = cnt~season,data = df))
                  Sum Sq Mean Sq F value Pr(>F)
            Df
             1 4.268e+08 426760312
                                     135.6 <2e-16 ***
season
Residuals
           715 2.250e+09
                           3146948
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> summary(aov(formula = cnt~yr,data = df))
            Df
                  Sum Sq
                           Mean Sq F value Pr(>F)
             1 8.813e+08 881327066
                                       351 <2e-16 ***
yr
                           2511190
           715 1.796e+09
Residuals
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> summary(aov(formula = cnt~mnth,data = df))
            Df
                  Sum Sq
                           Mean Sq F value
             1 2.035e+08 203533335
                                     58.84 5.61e-14 ***
mnth
Residuals
           715 2.473e+09
                           3459153
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> summary(aov(formula = cnt~holiday,data = df))
            Df
                  Sum Sq Mean Sq F value Pr(>F)
holiday
             1 1.377e+07 13770983
                                    3.697 0.0549 .
Residuals
           715 2.663e+09 3724555
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> summary(aov(formula = cnt~weekday,data = df))
            Df
                  Sum Sq Mean Sq F value Pr(>F)
             1 1.381e+07 13809167
                                    3.708 0.0546 .
weekday
Residuals
           715 2.663e+09 3724502
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
> summary(aov(formula = cnt~workingday,data = df))
             Df
                   Sum Sq Mean Sq F value Pr(>F)
              1 8.494e+06 8494340
                                    2.276 0.132
workingday
Residuals
            715 2.668e+09 3731935
> summary(aov(formula = cnt~weathersit,data = df))
                            Mean Sq F value Pr(>F)
                   Sum Sq
weathersit
              1 2.432e+08 243197751
                                      71.45 <2e-16 ***
            715 2.434e+09
Residuals
                            3403678
Signif. codes:
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

hist(df\$cnt, col="blue", xlab="Count", main="Histogram for Count")

Histogram for Count

hist(df\$hum, col="orange", xlab="Count", main="Histogram for Humidity")

Histogram for Humidity

hist(df\$windspeed, col="sky blue", xlab="Count", main="Histogram for Windspeed")

Histogram for Windspeed

hist(df\$temp, col="red", xlab="Count", main="Histogram for Temperature")

Histogram for Temperature

