Dynamic Programming Practice Quiz, 14 questions

14/14 points (100%)

✓ Congratulations! You passed!	Next Item
1/1 point	
1. The value of any state under an optimal policy is the value of that state un all that apply]	der a non-optimal policy. [Select
Strictly greater than	
Un-selected is correct	
Greater than or equal to	
Correct Correct! This follows from the policy improvement theorem.	
Strictly less than	
Un-selected is correct	
Less than or equal to	
Un-selected is correct	
1/1 point	
2. If a policy is greedy with respect to the value function for the equiprobable ran guaranteed to be an optimal policy.	ndom policy, then it is
True	
False	

	_			
•	്റ	rr	Θ.	ct

Dynamical Programming with respect to the optimal value function are guaranteed to be 94/14 points (100%) Practice Quiz, 14 questions

/	1 / 1 point
	point
3. f a poli	cy π is greedy with respect to its own value function v_π , then it is an optimal policy.
	False
	Ture
	True
Corre	
	ect! If a policy is greedy with respect to its own value function, it follows from the policy byement theorem and the Bellman optimality equation that it must be an optimal policy.
'	
	1/1
	point
4.	
Let v_π b	be the state-value function for the policy $\pi.$ Let π' be greedy with respect to $v_\pi.$ Then $v_{\pi'} \geq v_\pi.$
	False
\bigcirc	True
Corre	
Corre	ct! This is a consequence of the policy improvement theorem.
	1/1
	point
5. otas h	so the state value function for the policy π . Let α , the the state value function for the policy π' . Assume
	be the state-value function for the policy $\pi.$ Let $v_{\pi'}$ be the state-value function for the policy $\pi'.$ Assume T_π . Then this means that $\pi=\pi'.$
	True
\bigcirc	False
	I GISC
Corre	ct

Correct! For example, two policies might share the same value function, but differ due to random tie breaking.

Dynamic Programming Practice Quiz, 14 questions

14/14 points (100%)

ctice Quiz, 14 questions	
1/1 point	
6. What is the relationship between value iteration and policy iteration? [Select all that apply]	
Value iteration is a special case of policy iteration.	
Un-selected is correct	
Policy iteration is a special case of value iteration.	
Un-selected is correct	
Value iteration and policy iteration are both special cases of generalized policy iteration.	
Correct!	
1/1 point	
7. The word synchronous means "at the same time". The word asynchronous means "not at the same to dynamic programming algorithm is: [Select all that apply]	ime". A
Asynchronous, if it does not update all states at each iteration.	
Correct Correct! Only algorithms that update every state exactly once at each iteration are synchronous.	
Asynchronous, if it updates some states more than others.	
Correct Correct! Only algorithms that update every state exactly once at each iteration are synchronous.	
Synchronous, if it systematically sweeps the entire state space at each iteration.	

Correct

Correct! Only algorithms that update every state exactly once at each iteration are synchronous.

109/2019	rundamentals of Reinforcement Learning - Home (Course)	
Dynam	ic Programming	44/44
-	z, 14 questions	14/14 points (100%
	1 / 1 point	
	'	
8.		
All Ge	neralized Policy Iteration algorithms are synchronous.	
	True	
\circ	False	
	rect	
Cor	rect! A Generalized Policy Iteration algorithm can update states in a non-system	atic fashion.
	1/1	
	point	
9.		
Policy	iteration and value iteration, as described in chapter four, are synchronous.	
	True	
Cor	rect	
	rect! As described in lecture, policy iteration and value iteration update all state	s systematic sweens
		o oyutumuu uu opu.
	False	
	1/1	
	point	
10.		
	of the following is true?	
	<u> </u>	
	Synchronous methods generally scale to large state spaces better than async	hronous methods.
\circ	Asynchronous methods generally scale to large state spaces better than sync	hronous methods.

Correct

Correct! Asynchronous methods can focus updates on more relevant states, and update less relevant states less often. If the state space is very large, asynchronous methods may still be able to achieve good performance whereas even just one synchronous sweep of the state space may be intractable.

1/1

14/14 points (100%)

Why are dynamic programming algorithms considered planning methods? [Select all that apply]

They compute optimal value functions.

Un-selected is correct

They learn from trial and error interaction.

Un-selected is correct

They use a model to improve the policy.

Correct

Correct! This is the definition of a planning method.

1/1 point

12.

Consider the undiscounted, episodic MDP below. There are four actions possible in each state, A = {up, down, right, left}, which deterministically cause the corresponding state transitions, except that actions that would take the agent off the grid in fact leave the state unchanged. The right half of the figure shows the value of each state under the equiprobable random policy. If π is the equiprobable random policy, what is q(11, down)?

	R	=	-1		
on	all	tra	nsi	itio	ทร

Т	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	T

q(11, down) = -14

Correct

Correct! Moving down incurs a reward of -1 before reaching the terminal state, after which the episode is over.

14/14 points (100%)

1/1 point

13.

Consider the undiscounted, episodic MDP below. There are four actions possible in each state, A = {up, down, right, left}, which deterministically cause the corresponding state transitions, except that actions that would take the agent off the grid in fact leave the state unchanged. The right half of the figure shows the value of each state under the equiprobable random policy. If π is the equiprobable random policy, what is q(7, down)?

R = -1 on all transitions

T	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	Т

- q(7, down) = -14

Correct

Correct! Moving down incurs a reward of -1 before reaching state 11, from which the expected future return is -14.

point

14.

Consider the undiscounted, episodic MDP below. There are four actions possible in each state, A = {up, down, Dynamics} Programming ally cause the corresponding state transitions, except that actions that would (100%) Practically in a state unchanged. The right half of the figure shows the value of each state under the equiprobable random policy. If π is the equiprobable random policy, what is v(15)? Hint: Recall the Bellman equation $v(s) = \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a)[r+\gamma v(s')]$

	R	<u> </u>	-1		
on	all	tra	ns	itio	ns

T	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	Т

$$v(15) = -25$$

$$v(15)=-23$$

$$\bigcirc \quad v(15) = -21$$

$$v(15)=-24$$

Correct

Correct! We can get this by solving for the unknown variable v(15). Let's call this unknown x. We solve for x in the equation x=1/4(-21)+3/4(-1+x). The first term corresponds to transitioning to state 13. The second term corresponds to taking one of the other three actions, incurring a reward of -1 and staying in state x.

$$\bigcirc \quad v(15) = -22$$

