

Chimie Niveau moyen Épreuve 1

Mercredi 16 mai 2018 (après-midi)

45 minutes

Instructions destinées aux candidats

- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.
- Le tableau périodique est inclus pour référence en page 2.
- Le nombre maximum de points pour cette épreuve d'examen est de [30 points].

Le tableau de la classification périodique des éléments	6 7 8 9 10 11 12 13 14 15 16 17 18	2 He	5 6 7 8 9 10 B C N O F Ne 10,81 12,01 14,01 16,00 19,00 20,18	13 14 15 16 17 18 AI Si P S CI Ar 26,98 28,09 30,97 32,07 35,45 39,95	24252627282930313233343536CrMnFeCoNiCuZnGaGeAsSeBrKr52,0054,9455,8558,9358,6963,5565,3869,7272,6374,9278,9679,9083,90	42434445464748495051525354MoTcRuRhPdAgCdInSnSpTeIXe95,96(98)101,07102,91106,42107,87112,41114,82118,71121,76127,60126,90131,29	74757677787980818283848586WReOsIrPtAuHgTlPbBiPoAtRn183,84186,21190,23192,22195,08196,97200,59204,38207,2208,98(209)(210)(222)	106 107 108 109 110 111 112 113 114 115 116 117 118 Sg Bh Hs Mt Ds Rg Cn Unt Uug Uuh Uuh Uus Uuo (269) (270) (269) (278) (281) (281) (285) (286) (288) (293) (294) (294)	60 61 62 63 64 65 66 67 68 69 70 71 Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 144,24 (145) 150,36 151,96 157,25 158,93 162,50 164,93 167,26 168,93 173,05 174,97	93 94 95
au de la classification pério	10							110 Ds (281)		
	6									
	œ	-								96 1
	^								-	66 ;
e table	9	mique	e relative						-	92
	ß	Numero atomique	Masse atomique relative		23 V 50,94	41 Nb 92,91	73 Ta 9 180,95	105 Db (268)	59 Pr 140,91	91
	4	ž	Mass		22 Ti 5 47,87	40 Zr 91,22	72 Hf 178,49	104 Rf (267)	Ce 140,12	06 i
	ო				21 Sc 3 44,96	39 Y Y 88,91	57 † La 3 138,91	89 ‡ Ac (227)	-	**
	7		Be 9,01	12 Mg 9 24,31	20 Ca 0 40,08	38 Sr 7 87,62	56 Ba 11 137,33	88 Ra (226)		
	-	- I ,	3 Li 6,94	11 Na 22,99	19 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		
		~	7	က	4	2	9	7		

1. Quelle est la somme des coefficients lorsque l'équation est équilibrée à l'aide du rapport des nombres entiers le plus petit ?

$$_Na_2S_2O_3(aq) + _HCl(aq) \rightarrow _S(s) + _SO_2(g) + _NaCl(aq) + _H_2O(l)$$

- A. 6
- B. 7
- C. 8
- D. 9
- 2. Quel est le nombre d'atomes d'oxygène dans 2,0 mol de carbonate de sodium hydraté, Na₂CO₃•10H₂O ?

La constante d'Avogadro, L ou N_A : $6.02 \times 10^{23} \text{ mol}^{-1}$

- A. 6
- B. 26
- C. 3.6×10^{24}
- D. 1.6×10^{25}
- 3. Quel est le volume, en cm³, de la solution finale si $100 \, \text{cm}^3$ d'une solution contenant 1,42 g de sulfate de sodium, Na_2SO_4 , sont dilués à une concentration de 0,020 mol dm⁻³? $M_r(\text{Na}_2\text{SO}_4) = 142$
 - A. 50
 - B. 400
 - C. 500
 - D. 600

4. Quel est le pourcentage de rendement lorsque 2,0 g d'éthène, C_2H_4 , sont formés à partir de 5,0 g d'éthanol, C_2H_5OH ?

 M_r (éthène) = 28; M_r (éthanol) = 46

A.
$$\frac{2,0}{28} \times \frac{5,0}{46} \times 100$$

B.
$$\frac{2,0}{\frac{28}{5,0}} \times 100$$

C.
$$\frac{28}{2,0} \times \frac{5,0}{46} \times 100$$

D.
$$\frac{28}{\frac{2,0}{5,0}} \times 100$$

5. Quelle est la composition du noyau de ²⁶Mg?

	Protons	Neutrons	Électrons
A.	12	14	12
В.	14	12	0
C.	14	12	14
D.	12	14	0

6. Quelle transition électronique émet le rayonnement de longueur d'onde la plus longue ?

7. Quelles propriétés augmentent dans une période, de la gauche vers la droite ?

A.	Rayon ionique	Électronégativité
B.	Rayon atomique	Rayon ionique
C.	Énergie de 1 ^{re} ionisation	Rayon atomique
D.	Énergie de 1 ^{re} ionisation	Électronégativité

8.	Quel	élément	app	artient	au	bloc	р	?
----	------	---------	-----	---------	----	------	---	---

- A. Pb
- B. Pm
- C. Pt
- D. Pu

9. Quelle est la formule du nitrure de magnésium ?

- A. MgN
- $\mathsf{B.} \quad \mathsf{Mg_2N_3}$
- C. Mg₃N
- D. Mg_3N_2

10. Quelle espèce possède la liaison carbone-oxygène la plus longue?

- A. CO
- B. CH₃OH
- C. CH₃CO₂
- D. H₂CO

11. Quelles sont les géométries des domaines électroniques prédites autour de l'atome de carbone et des deux atomes d'azote dans l'urée, (NH₂)₂CO, lorsqu'on applique la théorie RPEV ?

	Atome de carbone	Atomes d'azote		
A.	Triangulaire plane	Pyramide à base triangulaire		
B.	Triangulaire plane	Tétraédrique		
C.	Tétraédrique	Tétraédrique		
D.	Pyramide à base triangulaire	Triangulaire plane		

- **12.** Les composés illustrés ci-dessous possèdent des masses moléculaires relatives similaires. Quel est l'ordre croissant correct des points d'ébullition ?
 - A. $CH_3COOH < (CH_3)_2CO < (CH_3)_2CHOH$
 - B. $CH_3COOH < (CH_3)_2CHOH < (CH_3)_2CO$
 - C. $(CH_3)_2CO < CH_3COOH < (CH_3)_2CHOH$
 - D. $(CH_3)_2CO < (CH_3)_2CHOH < CH_3COOH$

13. Quelle proposition décrit la réaction illustrée dans le profil d'énergie potentielle ?

Coordonnées de la réaction

- A. La réaction est endothermique et les produits ont une enthalpie supérieure à celle des réactifs.
- B. La réaction est endothermique et les réactifs ont une enthalpie supérieure à celle des produits.
- C. La réaction est exothermique et les produits ont une enthalpie supérieure à celle des réactifs.
- D. La réaction est exothermique et les réactifs ont une enthalpie supérieure à celle des produits.
- **14.** Quelle est la variation d'enthalpie de la combustion de l'urée, (NH₂)₂CO, en kJ mol⁻¹?

$$2(NH_2)_2CO(s) + 3O_2(g) \rightarrow 2CO_2(g) + 2N_2(g) + 4H_2O(l)$$

	$\Delta H_{\rm f}$ / kJ mol ⁻¹
(NH ₂) ₂ CO(s)	-333
$CO_2(g)$	-394
$H_2O(l)$	-286

A.
$$2 \times (-333) - 2 \times (-394) - 4 \times (-286)$$

B.
$$\frac{1}{2} [2 \times (-394) + 4 \times (-286) - 2 \times (-333)]$$

C.
$$2 \times (-394) + 4 \times (-286) - 2 \times (-333)$$

D.
$$\frac{1}{2} [2 \times (-333) - 2 \times (-394) - 4 \times (-286)]$$

15. Deux solutions aqueuses de 100 cm³, l'une contenant 0,010 mol de NaOH et l'autre 0,010 mol de HCl, sont à la même température.

Lorsque les deux solutions sont mélangées, la température augmente de y $^{\circ}$ C.

Supposez que la masse volumique de la solution finale est de $1,00\,\mathrm{g\,cm^{-3}}$. Capacité calorifique massique de l'eau = $4,18\,\mathrm{J\,g^{-1}\,K^{-1}}$

Quelle est la variation d'enthalpie de neutralisation en kJ mol⁻¹ ?

A.
$$\frac{200 \times 4,18 \times y}{1000 \times 0,020}$$

B.
$$\frac{200 \times 4,18 \times y}{1000 \times 0,010}$$

C.
$$\frac{100 \times 4,18 \times y}{1000 \times 0,010}$$

D.
$$\frac{200 \times 4,18 \times (y + 273)}{1000 \times 0,010}$$

16. Le profil d'énergie potentielle de la réaction réversible $X + Y \rightleftharpoons Z$ est illustré.

Coordonnées de la réaction

Quelle flèche représente l'énergie d'activation de la réaction inverse, $Z \to X + Y$, avec un catalyseur ?

- 17. Quels facteurs peuvent influer sur la vitesse de réaction ?
 - I. La taille des particules du réactif solide
 - II. La concentration de la solution qui réagit
 - III. La pression du gaz qui réagit
 - A. I et II seulement
 - B. I et III seulement
 - C. II et III seulement
 - D. I, II et III
- 18. Quel facteur n'influe pas sur la position d'équilibre dans cette réaction ?

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$
 $\Delta H = -58 \text{ kJ mol}^{-1}$

- A. La variation de volume du contenant
- B. La variation de la température
- C. L'addition d'un catalyseur
- D. La variation de la pression

19. Série d'activité d'éléments choisis :

K, Ca, Al, Fe, H, Cu, Ag, Au activité la plus grande activité la plus faible

Qu'est-ce qui réagit avec l'acide sulfurique dilué ?

- I. Cu
- II. CuO
- III. CuCO₃
- A. I et II seulement
- B. I et III seulement
- C. II et III seulement
- D. I, II et III

20. Quelle proposition est correcte?

- A. Un acide fort est un bon donneur de protons et sa base conjuguée est forte.
- B. Un acide faible est un mauvais accepteur de protons et sa base conjuguée est forte.
- C. Un acide fort est un bon donneur de protons et sa base conjuguée est faible.
- D. Une base forte est un bon donneur de protons et son acide conjugué est faible.

21. Quel élément possède le même nombre d'oxydation dans les deux espèces ?

- A. C dans C₂H₄ et CO₂
- B. H dans H₂O et NaH
- C. S dans SO_4^{2-} et SO_3
- D. O dans H₂O₂ et H₂O

22. Quelle est la description de l'oxydation?

- A. La perte d'hydrogène
- B. La diminution du nombre d'oxydation
- C. Le gain d'électrons
- D. La perte d'oxygène

23. Quels sont les produits de l'électrolyse du bromure de zinc fondu ?

	Électrode négative (cathode)	Électrode positive (anode)	
A.	Zinc	Brome	
B.	Hydrogène	Brome	
C.	Brome	Zinc	
D.	Brome	Hydrogène	

- 24. Quels composés appartiennent à la même série homologue ?
 - A. CHCCH₂CH₃, CHCCH₂CH₂CH₃
 - B. CH₃CH₂CH₂CH₂OH, CH₃CH₂OCH₂CH₃
 - C. CH₂CHCH₃, CH₃CH₂CH₂CH₃
 - D. CH₃COCH₃, CH₃CH₂OCH₃

25. En appliquant les règles de l'UICPA, quel est le nom de ce composé ?

- A. Acide 1,1-diméthylpropanoïque
- B. Acide 3,3-diméthylpropanoïque
- C. Acide 2-méthylbutanoïque
- D. Acide 3-méthylbutanoïque
- 26. Quel est le mécanisme de la réaction du propène avec l'iode dans l'obscurité ?
 - A. Addition électrophile
 - B. Substitution électrophile
 - C. Substitution de radicaux libres
 - D. Substitution nucléophile

- 27. Quels composés sont des isomères de structure ?
 - I. CH₃CH₂OH et CH₃OCH₃
 - II. HOCH₂CH₃ et CH₃CH₂OH
 - III. CH₃COOH et HCOOCH₃
 - A. I et II seulement
 - B. I et III seulement
 - C. II et III seulement
 - D. I, II et III
- 28. Quelle caractéristique d'une molécule la spectroscopie infrarouge détecte-t-elle ?
 - A. La masse moléculaire
 - B. Les liaisons présentes
 - C. Le nombre total de protons
 - D. Le nombre total d'environnements des protons
- **29.** Lorsque deux quantités sont multipliées entre elles, comment leurs incertitudes sont-elles combinées ?
 - A. Les incertitudes sont additionnées.
 - B. Les pourcentages d'incertitude sont multipliés.
 - C. Les incertitudes sont multipliées.
 - D. Les pourcentages d'incertitude sont additionnés.
- **30.** La vitesse d'une réaction est étudiée à différentes températures.

Quelle est la meilleure façon de représenter graphiquement les données ?

	Axe des x	Type de variable sur l'axe des x		
A.	Vitesse	Dépendante		
B.	Vitesse	Indépendante		
C.	Température	Indépendante		
D.	Température	Dépendante		