Theory of CAN

Common CAN Protocol Message Layout												
CAN ID (Hex)	Transmitter	Recipient(s)	DLC	Byte 0								
			DLC	7	6	5	4	3		2	1	0
0x100	SC	EC	1						SC_Enable SC_FloorReq		1	
0x101	EC	ALL	1						EC_Status EC_Pos			
0x200	СС	SC	1						CC_FloorReq			
0x201	F1	SC	1							F1_FloorReq		<u></u>
0x202	F2	SC	1 -						1	E2 ElgarDag		
0x203	F3	SC	1	Variable		$\overline{}$	value		Comment #		# bits	

Legend

Supervisory

SC Controller

EC Elevator Controller

CC Car Controller

F1 Floor 1 Controller

F2 Floor 2 Controller

F3 Floor 3 Controller

1		.1 1	E2 FloorBo	.~
1	Variable	value	Comment	# bits
	SC_Enable	0 = disable 1 = enable	SC can enable or disable elevator	1
	SC_FloorReq	1 = Floor 1 2 = Floor 2 3 = Floor 3	SC command to EC to request a specific floor	2
	EC_Status	0 = disable 1 = enable	EC reports its state (enabled / disabled) to SC	1
	EC_Pos	0 = moving 1 = Floor 1 2 = Floor 2 3 = Floor 3	EC report current floor number of the car to all modules	2
	CC_FloorReq	1 = Floor 1 2 = Floor 2 3 = Floor 3	Car controller requests floor number	2
	F1_FloorReq	1 = Request	Floor 1 requests elevator car	1
	F2_FloorReq	1 = Request	Floor 2 requests elevator car	1
	F3_FloorReq	1 = Request	Floor 3 requests elevator car	1

Explanation of CAN Theory

CAN Protocol Message Layout

Each CAN message is defined by:

- CAN ID (identifies the sender type)
- Transmitter (who sends it)
- Recipient(s) (who reads it)
- **DLC** (Data Length Code always 1 byte in this doc)
- Byte 0 Data (content of the message)

The specific meaning of bits inside Byte 0 (like how many bits for floor number vs enable state) is not detailed but likely follows a bitfield or enum.

Message Breakdown

CAN ID From To DLC Byte 0 Content

0x100	SC	EC 1	SC_Enable, SC_FloorReq
0x101	EC	ALL 1	EC_Status, EC_Pos
0x200	CC	SC 1	CC_FloorReq
0x201	F1	SC 1	F1_FloorReq
0x202	F2	SC 1	F2_FloorReq
0x203	F3	SC 1	F3_FloorReq

System Operation Summary

- 1. A **user presses a floor button** (either in the car or on a floor panel).
- 2. The respective controller (CC or Fx) sends a request message to SC.
- 3. The SC updates its **state machine** and sends movement commands to EC.
- 4. EC moves the elevator and sends back **position/status updates** on CAN.
- 5. All controllers can read this to update LEDs or display current floor.