

Nome:		Nº
	Curso: Informática Integrado	
	Disciplina: Matemática III	

3°Ano

Prof. Leonardo

Data:___ /___ /2019

Capítulo 06 - Prismas

Prismas

Os prismas são poliedros convexos que têm duas faces paralelas e congruentes (bases) e as demais faces em forma de paralelogramos (faces laterais). Veja alguns exemplos:

Classificação

Um prisma é classificado de acordo com o número de arestas de uma das bases.

Exemplos

Prisma quadrangular

Prisma triangular

Prisma pentagonal

Quando as arestas laterais são perpendiculares aos planos das bases, temos um prisma reto. Caso contrário, temos um prisma oblíquo.

Exemplos

Prisma pentagonal reto

Prisma quadrangular oblíquo

Note que, num prisma reto, as arestas laterais têm a mesma medida que a altura do prisma. Quando, num prisma reto, as bases são polígonos regulares, o denominamos prisma regular.

Exemplos

Prisma regular triangular

Prisma regular hexagonal

Note que, num prisma regular, as faces laterais são retangulares e congruentes entre si.

Área da superfície de um prisma

A área total de um prisma, S_T , é a soma das áreas de todas as faces do prisma (as duas bases e as faces laterais).

Considere:

 S_B : a área de uma das bases e S_l : a soma das áreas de todas as faces laterais.

Temos que:

$$S_T = 2S_B + S_I$$

Observação:

Quando um prisma é regular podemos calcular facilmente a sua área, pois todas as faces laterais são congruentes.

Volume de um prisma

Por definição, a unidade de medida de volume é um cubo de aresta 1 (cubo unitário).

Descobrir o volume de um paralelepípedo retângulo significa dizer em quantos cubos unitários podemos decompô-lo. Sendo assim, podemos concluir que o volume do paralelepípedo é o produto de suas três dimensões:

$$V = a.b.c$$

Como $a.\,b$ indica a área da base e c indica a altura, é possível indicar o volume do paralelepípedo retângulo da seguinte maneira:

$$V = S_B. h$$

Observação:

Como o cubo é um caso particular de paralelepípedo retângulo com todas as medidas iguais, seu volume é dado por:

$$V = a^3$$

Podemos generalizar o conceito de volume para qualquer prisma através do seguinte princípio:

Princípio de Cavalieri:

Dados dois sólidos com mesma altura e um plano α , se qualquer plano β , paralelo a α intercepta os sólidos e determina secções de mesma área, os sólidos têm volumes iguais.

Observe a seguinte figura:

lpha//eta e $A_1=A_2\Rightarrow V_1=V_2$ Como o prisma 1 é um paralelepípedo, temos que:

$$V_1 = V_2 = S_B. h$$

De maneira geral, o volume de um prisma qualquer é dado por:

$$V = S_B \cdot h$$

EXERCÍCIOS DE FIXAÇÃO - PRISMAS

01. (Unigranrio - Medicina 2017) Um prisma reto tem como base um hexágono regular, que pode ser inscrito em uma circunferência de raio $2\ m$. Se a altura desse prisma é igual ao dobro do lado do hexágono regular que forma a sua base, então, pode-se afirmar que seu volume, em m^3 , é igual a:

- a) $4\sqrt{3}$
- *b*) $6\sqrt{3}$
- *c*) $24\sqrt{3}$
- *d*) $30\sqrt{3}$
- *e*) $48\sqrt{3}$

02. (G1 - ifsp 2016) A figura abaixo representa a planificação de um poliedro *P*:

Avalie as afirmações I, II e III sobre o poliedro representado pela planificação:

- I. O número de arestas do poliedro P corresponde a uma vez e meia o número de vértices.
- II. O poliedro ${\it P}$ tem, pelo menos, duas faces paralelas.
- III. O poliedro ${\it P}$ pode ser classificado como pentágono.

Contém uma afirmação verdadeira:

- a) apenas II.
- b) apenas $I \in II$.
- c) apenas I e III.
- d) apenas II e III.
- e) I, II e III.

03. (Ufrgs 2015) O primeiro prêmio de um torneio recebe um troféu sólido confeccionado em metal, com as medidas abaixo.

Considerando que as bases do troféu são congruentes e paralelas, o volume de metal utilizado na sua confecção é

- a) $100\sqrt{3}$.
- b) $150\sqrt{3}$.
- c) $1.000\sqrt{3}$.
- d) $1.500\sqrt{3}$.
- *e*) $3.000\sqrt{3}$.

04. (Uern 2015) A peça geométrica, desenvolvida através de um *software* de modelagem em três dimensões por um estudante do curso de engenharia e estagiário de uma grande indústria, é formada a partir de dois prismas de base hexagonal regular e assemelha-se ao formato de uma porca de parafuso.

Considerando que o lado do hexágono maior mede $8\ cm$; que o comprimento do prisma é igual a $35\ cm$; e, que o lado do hexágono menor mede $6\ cm$, então o volume da peça, de forma que se possa calcular, posteriormente, a quantidade de matéria-prima necessária à sua produção em massa em determinado período de tempo é, em cm^3 : (Considere $\sqrt{3}=1,7$.)

- *a*) 1.064.
- *b*) 1.785.
- c) 2.127.
- d) 2.499.

05. (Ucs 2014) O volume de um prisma reto, cuja base é um retângulo com lados de medidas 4 m e 6 m, é igual a $120 m^3$. Qual será o volume, em m^3 , do prisma reto que tem como base o polígono com vértices nos pontos médios da base do prisma anterior e que tem o triplo da altura do prisma anterior?

- a) 30
- b) 60
- c) 120
- d) 180
- e) 300

06. (Ufsm 2013) Os produtos de plástico são muito úteis na nossa vida, porém causam muitos danos ao meio ambiente. Algumas empresas começaram a investir em alternativas para evitar a poluição causada pelo plástico. Uma dessas alternativas é a utilização do bioplástico na fabricação de embalagens, garrafas, componentes de celulares e autopeças. Uma embalagem produzida com bioplástico tem a forma de um prisma hexagonal regular com $10\ cm$ de aresta da base e $6\ cm$ de altura. Qual é o volume, em cm^3 , dessa embalagem?

- a) $150\sqrt{3}$.
- b) 1.500.
- c) $900\sqrt{3}$.
- d) 1.800.
- *e*) $1.800\sqrt{3}$.

07. (Esc. Naval 2013) Num prisma hexagonal regular a área lateral é 75% da área total. A razão entre a aresta lateral e a aresta da base é

- a) $\frac{2\sqrt{5}}{3}$
- $b) \frac{3\sqrt{3}}{2}$
- $c) \; \frac{5\sqrt{3}}{2}$
- $d) \; \frac{2\sqrt{3}}{5}$
- $e) \frac{5\sqrt{2}}{3}$

08. (Uel 2011) Uma metalúrgica produz uma peça cujas medidas são especificadas na figura a seguir.

A peça é um prisma reto com uma cavidade central e com base compreendida entre dois hexágonos regulares, conforme a figura. Considerando que os eixos da peça e da cavidade coincidem, qual o volume da peça?

- a) $640\sqrt{3} \text{ cm}^3$
- b) $1280\sqrt{3} \ cm^3$
- c) $2560\sqrt{3} \text{ cm}^3$
- d) $320\sqrt{3} \text{ cm}^3$
- e) $1920\sqrt{3} \text{ cm}^3$

GABARITO - PRISMAS

01	С	02	В	03	D
04	D	05	D	06	С
07	В	08	E		

PRISMAS - ENEM

- **01. (Enem 2015)** O tampo de vidro de uma mesa quebrou-se e deverá ser substituído por outro que tenha a forma de círculo. O suporte de apoio da mesa tem o formato de um prisma reto, de base em forma de triângulo equilátero com lados medindo 30~cm. Uma loja comercializa cinco tipos de tampos de vidro circulares com cortes já padronizados, cujos raios medem 18~cm, 26~cm, 30~cm, 35~cm e 60~cm. O proprietário da mesa deseja adquirir nessa loja o tampo de menor diâmetro que seja suficiente para cobrir a base superior do suporte da mesa. Considere 1,7 como aproximação para $\sqrt{3}$. O tampo a ser escolhido será aquele cujo raio, em centímetros, é igual a
- a) 18.
- b) 26.
- c) 30.
- d) 35.
- e) 60.
- **02. (Enem PPL 2015)** Uma fábrica que trabalha com matéria-prima de fibra de vidro possui diversos modelos e tamanhos de caixa-d'água. Um desses modelos é um prisma reto com base quadrada. Com o objetivo de modificar a capacidade de armazenamento de água, está sendo construído um novo modelo, com as medidas das arestas da base duplicadas, sem a alteração da altura, mantendo a mesma forma. Em relação ao antigo modelo, o volume do novo modelo é
- a) oito vezes maior.
- b) quatro vezes maior.
- c) duas vezes maior.
- d) a metade.
- e) a quarta parte.
- **03. (Enem 2017)** Uma rede hoteleira dispõe de cabanas simples na ilha de Gotland, na Suécia, conforme Figura 1. A estrutura de sustentação de cada uma dessas cabanas está representada na Figura 2. A ideia é permitir ao hóspede uma estada livre de tecnologia, mas conectada com a natureza.

Figura 1

Figura 2

ROMERO, L. Tendências. Superinteressante, n. 315, fev. 2013 (adaptado).

- A forma geométrica da superfície cujas arestas estão representadas na Figura 2 é
- a) tetraedro.
- b) pirâmide retangular.
- c) tronco de pirâmide retangular.
- d) prisma quadrangular reto.
- e) prisma triangular reto.

GABARITO – PRISMAS - ENEM

01	Α	02	В	03	E		

Caso particular de prisma: paralelepípedo

Todo prisma, cujas bases são paralelogramos, recebe o nome de paralelepípedo.

Exemplos

Quando um paralelepípedo é reto e as bases são retângulos, dizemos que trata-se de um paralelepípedo retângulo.

Exemplo

A diagonal de um paralelepípedo retângulo é obtida aplicando o teorema de Pitágoras para encontrar a diagonal da base e depois novamente aplicando o teorema para encontrar o valor da diagonal do paralelepípedo.

EXERCÍCIOS DE FIXAÇÃO - PARALELEPÍPEDO

01. (Unicamp 2017) Um paralelepípedo retângulo tem faces de áreas $2 cm^2$, $3 cm^2$ e $4 cm^2$. O volume desse paralelepípedo é igual a

- a) $2\sqrt{3} \ cm^3$.
- b) $2\sqrt{6} \ cm^3$.
- c) 24 cm^3 .
- \vec{d}) 12 cm³.

02. (Ufpr 2017) A piscina usada nas competições de natação das Olimpíadas Rio 2016 possui as medidas oficiais recomendadas: 50 metros de extensão, 25 metros de largura e 3 metros de profundidade. Supondo que essa piscina tenha o formato de um paralelepípedo retângulo, qual dos valores abaixo mais se aproxima da capacidade máxima de água que essa piscina pode conter?

- a) 37.500 litros.
- b) 375.000 litros.
- c) 3.750.000 litros.
- d) 37.500.000 litros.
- e) 375.000.000 litros.

03. (Uerj 2017) Dois cubos cujas arestas medem 2 cm são colados de modo a formar o paralelepípedo ABCDA'B'C'D'. Esse paralelepípedo é seccionado pelos planos ADEF e BCEF, que passam pelos pontos médios F e E das arestas A'B' e C'D', respectivamente. A parte desse paralelepípedo compreendida entre esses planos define o sólido ABCDEF, conforme indica a figura a seguir.

O volume do sólido ABCDEF, em cm^3 , é igual a:

- a) 4
- *b*) 6
- c) 8
- d) 12

04. (G1 - **ifpe 2016)** Uma folha retangular de papelão de $40\ cm$ por $30\ cm$ será utilizada para confeccionar uma caixa, sem tampa, em forma de paralelepípedo, de base retangular. Para isso, deve-se, a partir desta folha de papelão, retirar 4 quadrados de lado 5 cm, de cada um dos vértices e, em seguida, dobrar os lados, conforme a figura abaixo:

Determine, em litros, o volume dessa caixa.

- a) 3 litros
- b) 2 litros
- c) 1 litro
- d) 4 litros
- e) 5 litros

05. (G1 - ifsul 2016) Um tanque vazio, com formato de paralelepípedo reto retângulo, tem comprimento de 8 metros, largura de 3 metros e altura de 1,5 metros. Esse tanque é preenchido com óleo a uma vazão de 1.000 litros a cada 15 minutos. Nesse sentido, após duas horas do início do preenchimento, a altura de óleo no interior do tanque atingirá, aproximadamente,

- a) 24 cm.
- b) 33 cm.
- c) 1,05 m.
- *d*) 1,15 m.

06. (Ufrgs 2016) Uma caixa com a forma de um paralelepípedo retangular tem as dimensões dadas por x, x+4 e x-1. Se o volume desse paralelepípedo é 12, então as medidas das dimensões da caixa são

- a) 1, 1 e 12.
- b) 1, 2 e 6.
- c) 1, 3 e 4.
- d) 2, 2 e 3.
- e) 2, 3 e 4.

07. (Unesp 2016) Um paralelepípedo reto-retângulo foi dividido em dois prismas por um plano que contém as diagonais de duas faces opostas, como indica a figura.

Comparando-se o total de tinta necessária para pintar as faces externas do paralelepípedo antes da divisão com o total necessário para pintar as faces externas dos dois prismas obtidos após a divisão, houve um aumento aproximado de

- a) 42%.
- b) 36%.
- c) 32%.
- d) 26%.
- e) 28%.

08. (Espcex (Aman) 2016) As medidas das arestas de um paralelepípedo retângulo são diretamente proporcionais a 3, 4 e 5 e a soma dessas medidas é igual a 48 cm. Então a medida da sua área total, em cm^2 , é

- a) 752
- b) 820
- c) 1.024
- *d*) 1.302
- e) 1.504

09. (Pucrj **2015**) O que acontece com o volume de um paralelepípedo quando aumentamos a largura e a altura em 10% e diminuímos a profundidade em 20%?

- a) Não se altera
- b) Aumenta aproximadamente 3%
- c) Diminui aproximadamente 3%
- d) Aumenta aproximadamente 8%
- e) Diminui aproximadamente 8%

10. (Unesp 2015) Quando os meteorologistas dizem que a precipitação da chuva foi de $1\,mm$, significa que houve uma precipitação suficiente para que a coluna de água contida em um recipiente que não se afunila como, por exemplo, um paralelepípedo reto-retângulo, subisse 1mm. Essa precipitação, se ocorrida sobre uma área de $1\,m^2$, corresponde a 1 litro de água. O esquema representa o sistema de captação de água da chuva que cai perpendicularmente à superfície retangular plana e horizontal da laje de uma casa, com medidas $8\,m$ por $10\,m$. Nesse sistema, o tanque usado para armazenar apenas a água captada da laje tem a forma de paralelepípedo reto-retângulo, com medidas internas indicadas na figura.

Estando o tanque de armazenamento inicialmente vazio, uma precipitação de $10\ mm$ no local onde se encontra a laje da casa preencherá

- a) 40% da capacidade total do tanque.
- b) 60% da capacidade total do tanque.
- c) 20% da capacidade total do tanque.
- d) 10% da capacidade total do tanque.
- e) 80% da capacidade total do tanque.
- **11.** (**Uern 2015**) Uma caixa em formato de paralelepípedo reto, com volume igual a $180 \ cm^3$, apoiada sobre um plano da forma mostrada na figura seguinte, ocupa, no plano, uma área equivalente a $45 \ cm^2$.

Para diminuir a área ocupada, a posição da caixa foi alterada de modo que fosse apoiada ao plano a menor base possível. Sabendo-se que a maior aresta da caixa excede a menor em 5 cm, então a área do plano ocupada pela caixa após sua posição ser alterada foi, em cm^2 :

- a) 12.
- b) 20.
- c) 28.
- d) 36.

12. (Mackenzie 2012)

O número mínimo de cubos de mesmo volume e dimensões inteiras, que preenchem completamente o paralelepípedo retângulo da figura, é

- a) 64
- b) 90
- c) 48
- d) 125
- e) 100

GABARITO - PARALELEPÍPEDOS

01	В	02	С	03	С
04	Α	05	В	06	В
07	D	08	E	09	С
10	С	11	В	12	В

PARALELEPÍPEDO - ENEM

01. (Enem PPL 2018) Uma fábrica comercializa chocolates em uma caixa de madeira, como na figura.

A caixa de madeira tem a forma de um paralelepípedo reto-retângulo cujas dimensões externas, em centímetro, estão indicadas na figura. Sabe-se também que a espessura da madeira, em todas as suas faces, é de 0,5 cm. Qual é o volume de madeira utilizado, em centímetro cúbico, na construção de uma caixa de madeira como a descrita para embalar os chocolates?

- a) 654.
- b) 666.
- c) 673.
- d) 681.
- e) 693.

02. (Enem 2017) Uma empresa especializada em conservação de piscinas utiliza um produto para tratamento da água cujas especificações técnicas sugerem que seja adicionado $1,5\ mL$ desse produto para cada $1.000\ L$ de água da piscina. Essa empresa foi contratada para cuidar de uma piscina de base retangular, de profundidade constante igual a $1,7\ m$, com largura e comprimento iguais a $3\ m$ e $5\ m$, respectivamente. O nível da lâmina d'água dessa piscina é mantido a $50\ cm$ da borda da piscina. A quantidade desse produto, em mililitro, que deve ser adicionada a essa piscina de modo a atender às suas especificações técnicas é

- a) 11,25.
- b) 27,00.
- c) 28,80.
- d) 32,25.
- e) 49,50.

03. (Enem 2016) Um petroleiro possui reservatório em formato de um paralelepípedo retangular com as dimensões dadas por $60~m \times 10~m$ de base e 10~m de altura. Com o objetivo de minimizar o impacto ambiental de um eventual vazamento, esse reservatório é subdividido em três compartimentos, A,~B e C,~ de mesmo volume, por duas placas de aço retangulares com dimensões de 7~m de altura e 10~m de base, de modo que os compartimentos são interligados, conforme a figura. Assim, caso haja rompimento no casco do reservatório, apenas uma parte de sua carga vazará.

Suponha que ocorra um desastre quando o petroleiro se encontra com sua carga máxima: ele sofre um acidente que ocasiona um furo no fundo do compartimento \mathcal{C} . Para fins de cálculo, considere desprezíveis as espessuras das placas divisórias. Após o fim do vazamento, o volume de petróleo derramado terá sido de

- a) $1.4 \times 10^3 \ m^3$
- b) $1.8 \times 10^3 \ m^3$
- c) $2.0 \times 10^3 \ m^3$
- d) $3.2 \times 10^3 \ m^3$
- e) $6.0 \times 10^3 \ m^3$

04. (Enem 2ª aplicação 2016) O recinto das provas de natação olímpica utiliza a mais avançada tecnologia para proporcionar aos nadadores condições ideais. Isso passa por reduzir o impacto da ondulação e das correntes provocadas pelos nadadores no seu deslocamento. Para conseguir isso, a piscina de competição tem uma profundidade uniforme de $3\,m$, que ajuda a diminuir a "reflexão" da água (o movimento) contra uma superfície e o regresso no sentido contrário, atingindo os nadadores), além dos já tradicionais $50\,m$ de comprimento e $25\,m$ de largura. Um clube deseja reformar sua piscina de $50\,m$ de comprimento, $20\,m$ de largura e $2\,m$ de profundidade de forma que passe a ter as mesmas dimensões das piscinas olímpicas.

Após a reforma, a capacidade dessa piscina superará a capacidade da piscina original em um valor mais próximo de

- a) 20%
- b) 25%
- c) 47%
- d) 50%
- e) 88%

05. (Enem 2015) Uma fábrica de sorvetes utiliza embalagens plásticas no formato de paralelepípedo retangular reto. Internamente, a embalagem tem $10\ cm$ de altura e base de $20\ cm$ por $10\ cm$. No processo de confecção do sorvete, uma mistura é colocada na embalagem no estado líquido e, quando levada ao congelador, tem seu volume aumentado em 25%, ficando com consistência cremosa. Inicialmente é colocada na embalagem uma mistura sabor chocolate com volume de $1.000\ cm^3$ e, após essa mistura ficar cremosa, será adicionada uma mistura sabor morango, de modo que, ao final do processo de congelamento, a embalagem fique completamente preenchida com sorvete, sem transbordar. O volume máximo, em cm^3 , da mistura sabor morango que deverá ser colocado na embalagem é

- a) 450.
- b) 500.
- c) 600.
- d) 750.
- e) 1.000.

06. (Enem PPL 2014) Uma pessoa comprou um aquário em forma de um paralelepípedo retângulo reto, com 40~cm de comprimento, 15~cm de largura e 20~cm de altura. Chegando em casa, colocou no aquário uma quantidade de água igual à metade de sua capacidade. A seguir, para enfeitá-lo, irá colocar pedrinhas coloridas, de volume igual a $50~cm^3$ cada, que ficarão totalmente submersas no aquário. Após a colocação das pedrinhas, o nível da água deverá ficar a 6~cm do topo do aquário. O número de pedrinhas a serem colocadas deve ser igual a

- a) 48.
- b) 72.
- c) 84.
- d) 120.
- *e*) 168.

07. (Enem PPL 2014) A caixa-d'água de uma casa tem a forma de um paralelepípedo reto-retângulo e possui dimensões externas (comprimento, largura e altura) de, respectivamente, 4,0~m, 3,0~m e 2,5~m. É necessária a impermeabilização de todas as faces externas dessa caixa, incluindo a tampa. O fornecedor do impermeabilizante informou ao dono da casa que seu produto é fornecido em galões, de capacidade igual a 4,0~ litros. Informou, ainda, que cada litro impermeabiliza uma área de 17.700~ $cm^2~$ e são necessárias 3~ demãos de produto para garantir um bom resultado. Com essas informações, para obter um bom resultado no trabalho de impermeabilização, o dono da casa precisará comprar um número mínimo de galões para a execução desse serviço igual a

- a) 9.
- b) 13.
- c) 19.
- d) 25.
- e) 45.

08. (Enem 2012) Alguns objetos, durante a sua fabricação, necessitam passar por um processo de resfriamento. Para que isso ocorra, uma fábrica utiliza um tanque de resfriamento, como mostrado na figura.

O que aconteceria com o nível da água se colocássemos no tanque um objeto cujo volume fosse de $2\,400\,cm^3$?

- a) O nível subiria 0,2 cm, fazendo a água ficar com 20,2 cm de altura.
- b) O nível subiria 1 cm, fazendo a água ficar com 21 cm de altura.
- c) O nível subiria 2 cm, fazendo a água ficar com 22 cm de altura.
- d) O nível subiria 8 cm, fazendo a água transbordar.
- e) O nível subiria 20 cm, fazendo a água transbordar.

09. (Enem 2006) Eclusa é um canal que, construído em águas de um rio com grande desnível, possibilita a navegabilidade, subida ou descida de embarcações. No esquema a seguir, está representada a descida de uma embarcação, pela eclusa do porto Primavera, do nível mais alto do rio Paraná até o nível da jusante.

abaixo.

A câmara dessa eclusa tem comprimento aproximado de $200\ m$ e largura igual a $17\ m$. A vazão aproximada da água durante o esvaziamento da câmara é de $4.200\ m^3$ por minuto. Assim, para descer do nível mais alto até o nível da jusante, uma embarcação leva cerca de

- a) 2 minutos.
- b) 5 minutos.
- c) 11 minutos.
- d) 16 minutos.
- e) 21 minutos.

10. (Enem 2003) Prevenindo-se contra o período anual de seca, um agricultor pretende construir um reservatório fechado, que acumule toda a água proveniente da chuva que cair no telhado de sua casa, ao longo de um período anual chuvoso. As ilustrações a seguir apresentam as dimensões da casa, a quantidade média mensal de chuva na região, em milímetros, e a forma do reservatório a ser construído.

Sabendo que 100 milímetros de chuva equivalem ao acúmulo de 100 litros de água em uma superfície plana horizontal de um metro quadrado, a profundidade (ρ) do reservatório deverá medir

- a) 4 m
- b) 5 m
- c) 6 m
- d) 7 m

GABARITO - PARALELEPÍPEDOS - ENEM

01	С	02	В	03	D
04	E	05	С	06	Α
07	D	08	С	09	D
10	D				

<u>OBS</u>: Quando, num paralelepípedo retângulo, todas as arestas são congruentes temos um cubo. Note que as seis faces de um cubo são quadrados.

Da relação obtida para calcular a diagonal de um paralelepípedo retângulo, encontramos a relação que nos permite calcular a diagonal de um cubo.

Diagonal do cubo:
$$d = \sqrt{a^2 + a^2 + a^2}$$

$$d = \sqrt{3a^2}$$

$$d = a\sqrt{3}$$

EXERCÍCIOS DE FIXAÇÃO - CUBO

01. (Upe-ssa 2 2017) Um sólido foi construído removendo-se um cubo menor de um cubo maior, como mostra a figura a seguir. Se a diferença entre as medidas das arestas dos dois cubos é de $4\ cm$ e a medida do volume do sólido é $208\ cm^3$, qual a medida da área lateral da superfície do sólido?

- a) 136 cm^2
- b) $144 \ cm^2$
- c) 160 cm^2
- d) 204 cm^2
- $e) 216 cm^{2}$
- **02. (G1 ifce 2016)** Foram construídos dois cubos de madeira. Um deles tem $343 \ cm^3$ de volume e o outro tem aresta medindo $2 \ cm$ a mais que o primeiro. A área total do maior cubo, em centímetros quadrados, é
- *a*) 538.
- b) 486.
- c) 678.
- d) 729.
- e) 4.374.
- **03. (G1 cftmg 2016)** Deseja-se construir uma caixa d'água no formato de um paralelepípedo retângulo, que armazene 18.000 litros de água, como mostra a figura.

Sabe-se que o comprimento (c) é o dobro da largura (ℓ) , que a altura (h) é $\frac{1}{3}$ da medida da largura (ℓ) e que $1m^3$ equivale a 1.000 litros de água. Nessas condições, a largura dessa caixa d'água, em metros, é igual a

- *a*) 1,5.
- *b*) 1,8.
- c) 2,7.
- *d*) 3,0.
- **04. (Unesp 2016)** Um cubo com aresta de medida igual a x centímetros foi seccionado, dando origem ao prisma indicado na figura 1. A figura 2 indica a vista superior desse prisma, sendo que AEB é um triângulo equilátero.

Sabendo-se que o volume do prisma da figura 1 é igual a $2(4-\sqrt{3})cm^3$, x é igual a

- *a*) 2
- *b*) 7/2
- *c*) 3
- d) 5/2
- e) 3/2

05. (Ufrgs 2014) No cubo de aresta 10, da figura abaixo, encontra-se representado um sólido sombreado com as alturas indicadas no desenho.

O volume do sólido sombreado é

- a) 300.
- *b*) 350.
- c) 500.
- d) 600.
- e) 700.

06. (Ufrgs 2014) Os vértices do hexágono sombreado, na figura abaixo, são pontos médios das arestas de um cubo.

Se o volume do cubo é 216, o perímetro do hexágono é

- a) $3\sqrt{2}$.
- b) $6\sqrt{2}$.
- c) $9\sqrt{2}$.
- d) $12\sqrt{2}$.
- e) $18\sqrt{2}$.

07. (Ufrgs 2013) Um sólido geométrico foi construído dentro de um cubo de aresta 8, de maneira que dois de seus vértices, $P \in Q$, sejam os pontos médios respectivamente das arestas $AD \in BC$, e os vértices da face superior desse sólido coincidam com os vértices da face superior do cubo, como indicado na figura abaixo.

O volume desse sólido é

- a) 64.
- b) 128.
- c) 256.
- d) 512.
- e) 1024.

08. (Ufrgs 2010) Considere um cubo de aresta 10 e um segmento que une o ponto P, centro de uma das faces do cubo, ao ponto Q, vértice do cubo, como indicado na figura a seguir.

A medida do segmento PQ é

- *a*) 10.
- b) $5\sqrt{6}$.
- c) 12.
- d) 6 $\sqrt{5}$.
- e) 15.

GABARITO - CUBOS

01	В	02	В	03	D
04	Α	05	С	06	E
07	С	08	В		

CUBO – ENEM

01. (Enem 2018) *Minecraft* é um jogo virtual que pode auxiliar no desenvolvimento de conhecimentos relacionados a espaço e forma. É possível criar casas, edifícios, monumentos e até naves espaciais, tudo em escala real, através do empilhamento de cubinhos. Um jogador deseja construir um cubo com dimensões $4 \times 4 \times 4$. Ele já empilhou alguns dos cubinhos necessários, conforme a figura.

Os cubinhos que ainda faltam empilhar para finalizar a construção do cubo, juntos, formam uma peça única, capaz de completar a tarefa.

O formato da peça capaz de completar o cubo $4 \times 4 \times 4$ é

e)

02. (Enem 2017) Um casal realiza sua mudança de domicílio e necessita colocar numa caixa de papelão um objeto cúbico, de 80 cm de aresta, que não pode ser desmontado. Eles têm à disposição cinco caixas, com diferentes dimensões, conforme descrito:

- Caixa 1: 86 $cm \times 86$ $cm \times 86$ cm
- Caixa 2: 75 $cm \times 82$ $cm \times 90$ cm
- Caixa 3: 85 $cm \times 82$ $cm \times 90$ cm
- Caixa 4: 82 $cm \times 95$ $cm \times 82$ cm
- Caixa 5: 80 $cm \times 95$ $cm \times 85$ cm

O casal precisa escolher uma caixa na qual o objeto caiba, de modo que sobre o menor espaço livre em seu interior. A caixa escolhida pelo casal deve ser a de número

- *a*) 1.
- b) 2.
- c) 3.
- d) 4.
- e) 5.

03. (Enem PPL 2015) Uma empresa que embala seus produtos em caixas de papelão, na forma de hexaedro regular, deseja que seu logotipo seja impresso nas faces opostas pintadas de cinza, conforme a figura:

A gráfica que fará as impressões dos logotipos apresentou as seguintes sugestões planificadas:

Que opção sugerida pela gráfica atende ao desejo da empresa?

- a) I
- b) II
- c) III
- d) IV
- e)V

04. (Enem 2014) Um fazendeiro tem um depósito para armazenar leite formado por duas partes cúbicas que se comunicam, como indicado na figura. A aresta da parte cúbica de baixo tem medida igual ao dobro da medida da aresta da parte cúbica de cima. A torneira utilizada para encher o depósito tem vazão constante e levou 8 minutos para encher metade da parte de baixo.

Quantos minutos essa torneira levará para encher completamente o restante do depósito?

- a) 8.
- *b*) 10.
- c) 16.
- d) 18.
- e) 24.

05. (Enem 2010) Um porta-lápis de madeira foi construído no formato cúbico, seguindo o modelo ilustrado a seguir. O cubo de dentro e vazio. A aresta do cubo maior mede $12\ cm$ e a do cubo menor, que e interno, mede $8\ cm$.

O volume de madeira utilizado na confecção desse objeto foi de

- a) 12 cm^3 .
- b) 64 cm^3 .
- c) $96 cm^3$.
- d) $1216 cm^3$.
- e) $1728 cm^3$.

06. (Enem simulado 2009) Com o objetivo de trabalhar com seus alunos o conceito de volume de sólidos, um professor fez o seguinte experimento: pegou uma caixa de polietileno, na forma de um cubo com 1 metro de lado, e colocou nela 600 litros de água. Em seguida, colocou, dentro da caixa com água, um sólido que ficou completamente submerso. Considerando que, ao colocar o sólido dentro da caixa, a altura do nível da água passou a ser $80\ cm$, qual era o volume do sólido?

- a) $0.2 m^3$.
- b) $0.48 m^3$.
- c) $4.8 m^3$.
- d) $20 m^3$.
- $e) 48 m^3$.

GABARITO - CUBOS - ENEM

01	Α	02	С	03	С
04	В	05	D	06	Α