Lecture 7 Time-dependent Covariates in Cox Regression

So far, we've been considering the following Cox PH model:

$$\lambda(t|\mathbf{Z}) = \lambda_0(t) \exp(\boldsymbol{\beta}'\mathbf{Z})$$

= $\lambda_0(t) \exp(\sum \beta_i Z_i)$

where β_j is the parameter for the the j-th covariate (Z_j) .

Important features of this model:

- (1) the baseline hazard depends on t, but not on the covariates $Z_1, ..., Z_p$
- (2) the hazard ratio $\exp(\boldsymbol{\beta}'\mathbf{Z})$ depends on the covariates $Z_1,...,Z_p$, but not on time t.

But there are cases where if we measure some of the Z_j 's over time, they may vary. Eg. a patient's performance status, certain biomarkers, or –

Example to motivate time-dependent covariates

Stanford Heart transplant example:

Variables:

- SURVIVAL time from program enrollment until death or censoring
- DEAD indicator of death (1) or censoring (0)
- TRANSPL whether patient ever had transplant (1 if yes, 2 if no)
- SURGERY previous heart surgery prior to program
- AGE age at time of acceptance into program
- WAIT time from acceptance into program until transplant surgery (=. for those without transplant)

Initially, a Cox PH model was fit for predicting survival time:

$$\lambda(t|\mathbf{Z}) = \lambda_0(t) \exp(\beta_1 * transpl + \beta_2 * surgery + \beta_3 * age)$$

However, this model does not take into consideration that some patients had shorter waiting time to get transplants than others. A model with a time dependent indicator of whether a patient had a transplant at each point in time might be more appropriate.

Cox model with time-dependent covariates

$$\lambda(t|\mathbf{Z}(t)) = \lambda_0(t) \exp{\{\boldsymbol{\beta}'\mathbf{Z}(t)\}}$$

The hazard at time t depends (only) on the value of the covariates at that time, i.e $\mathbf{Z}(t)$. The regression effect of $\mathbf{Z}(\cdot)$ is constant $\boldsymbol{\beta}$ over time.

Some people do not call this model 'proportional hazards' any more, because the hazard ratio $\exp\{\beta'\mathbf{Z}(t)\}$ varies over time. But many of us still use the term 'PH' loosely here.

Comparison with a single binary predictor (like heart transplant):

- A Cox PH model with time-independent covariate would compare the survival distributions between those without a transplant (ever) to those with a transplant. A subject's transplant status at the end of the study would determine which category they were put into for the entire study follow-up.
- A Cox model with time-dependent covariate would compare the risk of an event between transplant and non-transplant at each event time, but would re-evaluate which risk group each person belonged in based on whether they'd had a transplant by that time.

Inference:

We still use the **partial likelihood** to estimate β

$$L(\boldsymbol{\beta}) = \prod_{i=1}^{n} \left[\frac{\exp\{\boldsymbol{\beta}' \mathbf{Z}_i(X_i)\}}{\sum_{j \in R(X_i)} \exp\{\boldsymbol{\beta}' \mathbf{Z}_j(X_i)\}} \right]^{\delta_i}$$

Note that each term in the partial likelihood is <u>still</u> the conditional probability of choosing individual i to fail from the risk set, given the risk set at time X_i and given that one failure is to occur.

Inference then proceeds similarly to the Cox model with time-independent covariates. The only difference is that the values of \mathbf{Z} now changes at each risk set.

Example:

Suppose Z(t) is a time-varying covariate:

						Z	$\overline{(t)}$			
ID	time	event	group	t=3	4	5	6	7	8	9
1	3	1	1	0						
6	4	0	0	1	1					
3	5	1	1	1	1	1				
2	5	0	1	0	0	0				
4	6	1	1	0	0	0	0			
7	7	1	0	0	0	0	1	1		
8	8	0	0	0	0	0	0	0	0	
5	8	0	1	0	0	0	0	1	1	
9	9	1	0	0	0	0	1	1	1	1
_10	10	0	0	0	1	1	1	1	1	1

ordered			Partial
failure	Individuals		Likelihood
time (τ_j)	at risk	failure ID	contribution
3			
۳			
5			
6			
-			
7			
0			
9			

(Be sure to do this exercise in order to be convinced that the procedure follows is valid for fitting the Z(t) model.)

Results from fitting two models

Model with time-independent Z(3):

Testing Global Null Hypothesis: BETA=0

Criterion	Without Covariates	With Covariates	Model Chi-Square
-2 LOG L	16.953	13.699	3.254 with 2 DF (p=0.1965)
Score	•	•	3.669 with 2 DF (p=0.1597)
Wald	•	•	2.927 with 2 DF (p=0.2315)

Analysis of Maximum Likelihood Estimates

		Parameter	Standard	Wald	Pr >	Risk
Variable	DF	Estimate	Error	Chi-Square	Chi-Square	Ratio
				_	_	
GROUP	1	1.610529	1.21521	1.75644	0.1851	5.005
Z2	1	1.360533	1.42009	0.91788	0.3380	3.898

Model with time-dependent Z(t):

Testing Global Null Hypothesis: BETA=0

Criterion	Without Covariates	With Covariates	Model Chi-Square
-2 LOG L	16.953	14.226	2.727 with 2 DF (p=0.2558)
Score	•		2.725 with 2 DF (p=0.2560)
Wald	•	•	2.271 with 2 DF (p=0.3212)

Analysis of Maximum Likelihood Estimates

		Parameter	Standard	Wald	Pr >	Risk
Variable	DF	Estimate	Error	Chi-Square	Chi-Square	Ratio
GROUP	1	1.826757	1.22863	2.21066	0.1371	6.214
Z	1	0.705963	1.20630	0.34249	0.5584	2.026

Time-varying covariates in R (and most software)

The original data on page 4 may be stored as ('wide' format):

Table 1: A Toy Data Example

Subject ID	Group	Z 1	Time1	Z2	Time2	Status
1	1	0	3			1
2	1	0	5			0
3	1	1	5			1
4	1	0	6			1
5	1	0	6	1	8	0
6	0	1	4			0
7	0	0	5	1	7	1
8	0	0	8			0
9	0	0	5	1	9	1
10	0	0	3	1	10	0

We first need to create a data set with start (or 'time') and stop ('time2') values of time ('long' format):

id	start	stop	status	group	Z
1	0	3	1	1	0
2	0	5	0	1	0
3	0	5	1	1	1
4	0	6	1	1	0
5	0	6	0	1	0
5	6	8	0	1	1
6	0	4	0	0	1
7	0	5	0	0	0
7	5	7	1	0	1
8	0	8	0	0	0
9	0	5	0	0	0
9	5	9	1	0	1
10	0	3	0	0	0
10	3	10	0	0	1

Note that each different value of Z(t) for a subject generates a row of pseudo data.

The R command to fit the Cox model would then be: 'coxph(Surv(time=start, time2=stop, status) \sim group + z, data)'.

Results:

```
Alive Dead Deleted
     9
          5
                   0
      coef exp(coef) se(coef)
[1,] 1.827
                6.21
                          1.23 1.487 0.137
[2,] 0.706
                2.03
                          1.21 0.585 0.558
     exp(coef) exp(-coef) lower .95 upper .95
[1,]
          6.21
                     0.161
                               0.559
                                           69.0
[2,]
          2.03
                     0.494
                               0.190
                                           21.5
Likelihood ratio test= 2.73 on 2 df,
                                         p=0.256
Efficient score test = 2.73
                              on 2 df,
                                         p=0.256
```

Q: why is this approach valid?

(hint: write down the likelihood)

Note: this form of Surv() is also used to handle <u>left truncated</u> data, where 'time' is the truncation (entry) time Q, and 'time2' is the event time.

Most other softwares handle time-dependent covariates similarly (Stata). SAS has multiple programming options (see Allison book).

Applications

The Cox model where time-dependent covariates is used:

I. When **important covariates change** during a study

• Framingham Heart study

5209 subjects followed since 1948 to examine relationship between risk factors and cardiovascular disease. A particular example:

Outcome: time to congestive heart failure

Predictors: age, systolic blood pressure, # cigarettes

per day

• Liver Cirrhosis (Andersen and Gill, p.528)

Clinical trial comparing treatment to placebo for cirrhosis. The outcome of interest is time to death. Patients were seen at the clinic after 3, 6 and 12 months, then yearly.

Fixed covariates: treatment, gender, age (at diagnosis)

Time-varying covariates: alcohol consumption, nutritional status, bleeding, albumin, bilirubin, alkaline phosphatase and prothrombin.

• Recidivism study: (Allison 'Survival Analysis Using SAS', p.42)

432 male inmates were followed for one year after release from prison, to evaluate risk of re-arrest as function of financial aid (FIN), age at release (AGE), race (RACE), full-time work experience prior to first arrest (WEXP), marital status (MAR), parole status (PARO=1 if released with parole, 0 otherwise), and number of prior convictions (PRIO). Data were also collected on employment status over time during the year.

Time-independent model:

A time independent model might include the employment status of the individual at the beginning of the study (1 if employed, 0 if unemployed), or perhaps at any point during the year.

Time-dependent model:

However, employment status changes over time, and it may be the more recent employment status that would affect the hazard for re-arrest. For example, we might want to define a time-dependent covariate for each month of the study that indicates whether the individual was employed during the past month.

Recidivism Example:

Hazard for arrest within one year of release from prison:

Model without employment status

Testing Global Null Hypothesis: BETA=0

Criterion	Without Covariates	With Covariates	Model Chi-Square
-2 LOG L	1350.751	1317.496	33.266 with 7 DF (p=0.0001)
Score			33.529 with 7 DF (p=0.0001)
Wald	•	•	32.113 with 7 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Variable	DF	Parameter Estimate	Standard Error	Wald Chi-Square	Pr > Chi-Square	Risk Ratio
FIN	1	-0.379422	0.1914	3.931	0.0474	0.684
AGE	1	-0.057438	0.0220	6.817	0.0090	0.944
RACE	1	0.313900	0.3080	1.039	0.3081	1.369
WEXP	1	-0.149796	0.2122	0.498	0.4803	0.861
MAR	1	-0.433704	0.3819	1.290	0.2561	0.648
PARO	1	-0.084871	0.1958	0.188	0.6646	0.919
PRIO	1	0.091497	0.0287	10.200	0.0014	1.096

What are the important predictors of recidivism?

Recidivism Example: Output

Model WITH employment as time-dependent covariate

Analysis of Maximum Likelihood Estimates

Variable	DF	Parameter Estimate	Standard Error	Wald Chi-Square	Pr > Chi-Square	Risk Ratio
FIN	1	-0.356722	0.1911	3.484	0.0620	0.700
AGE	1	-0.046342	0.0217	4.545	0.0330	0.955
RACE	1	0.338658	0.3096	1.197	0.2740	1.403
WEXP	1	-0.025553	0.2114	0.015	0.9038	0.975
MAR	1	-0.293747	0.3830	0.488	0.4431	0.745
PARO	1	-0.064206	0.1947	0.109	0.7416	0.938
PRIO	1	0.085139	0.0290	8.644	0.0033	1.089
EMPLOYED	1	-1.328321	0.2507	28.070	0.0001	0.265

Is current employment important?

Do the other covariates change much?

Can you think of any problem with using current employment as a predictor?

Another option for assessing impact of employment

Allison suggests using the employment status of the past week rather than the current week.

The coefficient for EMPLOYED changes from -1.33 to -0.79, so the risk ratio is about 0.45 instead of 0.27. It is still highly significant with $\chi^2 = 13.1$.

Does this model improve the causal interpretation?

Other options for time-dependent covariates:

- multiple lags of employment status (week-1, week-2, etc.)
- cumulative employment experience (proportion of weeks worked)

II. For **cross-over studies**, to indicate change in treatment

• Stanford heart study (Cox and Oakes p.129)
Between 1967 and 1980, 249 patients entered a program at Stanford University where they were registered to receive a heart transplant. Of these, 184 received transplants, 57 died while waiting, and 8 dropped out of the program for other reasons. Does getting a heart transplant improve survival? Here is a sample of the data:

Waiting time	transplant?	survival post transplant	total survival	final status
49	2			1
5	2	•		1
0	1	15	15	1
35	1	3	38	1
17	2		•	1
11	1	46	57	1

etc

(survival is not indicated above for those without transplants, but was available in the dataset)

Naive approach: Compare the total survival of transplanted and non-transplanted.

Problem: Selection (length) Bias (why?). In causal inference, the treatment assignment is wrong at t for those who received transplant after t. See also Xu et al. (2012).

RESULTS for Stanford Heart Transplant data:

Naive model with fixed transplant indicator:

Criterion	Covariates	Covariates	Model Chi-Square
-2 LOG L	718.896	674.699	44.198 with 1 DF (p=0.0001)
Score	•		68.194 with 1 DF (p=0.0001)
Wald	•	•	51.720 with 1 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Variable	DF	Parameter Estimate	Standard Error	Wald Chi-Square	Pr > Chi-Square	Risk Ratio
TSTAT	1	-1.999356	0.27801	51.72039	0.0001	0.135

Model with time-dependent transplant indicator:

Testing Global Null Hypothesis: BETA=0

Criterion	Without Covariates	With Covariates	Model Chi-Square
-2 LOG L	1330.220	1312.710	17.510 with 1 DF (p=0.0001)
Score			17.740 with 1 DF (p=0.0001)
Wald			17.151 with 1 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Variable	DF	Parameter Estimate	Standard Error	Wald Chi-Square	Pr > Chi-Square	Risk Ratio
TSTAT	1	-0.965605	0.23316	17.15084	0.0001	0.381

The second model took about twice as long to run as the first model, which is usually the case for models with time-dependent covariates.

III. For testing the PH assumption

For example, we can fit these two models:

(1) Time independent covariate Z_1

$$\lambda(t, \mathbf{Z}) = \lambda_0(t) \exp(\beta_1 * Z_1)$$

The hazard ratio for Z_1 is $\exp(\beta_1)$.

(2) Time dependent covariate Z_1

$$\lambda(t, \mathbf{Z}) = \lambda_0(t) \exp(\beta_1 * Z_1 + \beta_2 * Z_1 * t)$$

The hazard ratio for Z_1 is $\exp(\beta_1 + \beta_2 t)$.

A test of the parameter $\beta_2 = 0$ is a test of the PH assumption.

Q: what are the pros and cons of such a test?

(We will talk more about testing the PH assumption.)

Illustration: Colon Cancer data

Model without time*stage interaction

Event and Censored Values

Percent			
Censored	Censored	Event	Total
20.44	56	218	274

Testing Global Null Hypothesis: BETA=0

Criterion	Without Covariates	With Covariates	Model Chi-Square
-2 LOG L	1959.927	1939.654	20.273 with 2 DF (p=0.0001)
Score			18.762 with 2 DF (p=0.0001)
Wald			18.017 with 2 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Variable	DF	Parameter Estimate	Standard Error	Wald Chi-Square	Pr > Chi-Square	Risk Ratio
TRTM	1	0.016675	0.13650	0.01492	0.9028	1.017
STAGEN	1	-0.701408	0.16539	17.98448	0.0001	0.496

Model WITH time*stage interaction

Testing Global Null Hypothesis: BETA=0

Criterion	Without Covariates	With Covariates	Model Chi-Square
-2 LOG L	1959.927	1902.374	57.553 with 3 DF (p=0.0001)
Score	•	•	35.960 with 3 DF (p=0.0001)
Wald			19.319 with 3 DF (p=0.0002)

Analysis of Maximum Likelihood Estimates

Variable	DF	Parameter Estimate	Standard Error	Wald Chi-Square	Pr > Chi-Square	Risk Ratio
TRTM	1	0.008309	0.13654	0.00370	0.9515	1.008
STAGEN	1	1.402244	0.45524	9.48774	0.0021	4.064
TSTAGE	1	-8.322371	2.04554	16.55310	0.0001	0.000

Notice the change in sign of stage effect alone? The time-varying effect of stage is: 1.4-8.32t, compared to the fixed effect of $\beta=-0.7$ from the first model.

Ex: think about how to fit the above interaction model?

Like in Cox and Oakes, we can run a few different models on covariates by time interaction, other than the linear effect of time.

IV. For **fitting non-PH models**

The second model in the above is a non-proportional hazards model.

In general, a **non-proportional hazards** model can be written

$$\lambda(t|\mathbf{Z}) = \lambda_0(t) \exp{\{\boldsymbol{\beta}(t)'\mathbf{Z}\}}$$

so that the regression effect of \mathbf{Z} changes with time.

We can put different assumptions on $\beta(t)$. We can model it as piecewise constant, linear (as in the previous example) or piecewise linear, or piecewise cubic (spline), etc.

Piecewise constant $\beta(t)$:

- Depending on how we dividing the intervals, the piecewise constant model can approximate any shape of $\beta(t)$.
- It is relatively easy to fit (see below).
- It has simple interpretations; eg. the hazard ratio is xxx from t_1 to t_2 , etc.
- Without any other indications, we often take equal number of events per interval.

When $\boldsymbol{\beta}(t)$ is piecewise constant, the non-PH model can be written as a Cox model with time-dependent covariates, as in the following.

Suppose $0 = t_0 < t_1 < t_2 < ... < t_K$, and $\beta(t) = \beta_k$ on $[t_{k-1}, t_k)$, i.e.,

$$oldsymbol{eta}(t) = \sum\limits_{k=1}^K oldsymbol{eta}_k I_{[t_{k-1},t_k)}(t)$$

where $I_{[t_{k-1},t_k)}(\cdot)$ is the indicator function for interval $[t_{k-1},t_k)$.

Then

$$eta(t)'\mathbf{Z} = \{\sum_{k=1}^{K} oldsymbol{eta}_k I_{[t_{k-1},t_k)}(t)\}'\mathbf{Z}$$

$$= \sum_{k=1}^{K} oldsymbol{eta}_k' \{I_{[t_{k-1},t_k)}(t)\mathbf{Z}\}$$

$$= \sum_{k=1}^{K} oldsymbol{eta}_k'\mathbf{Z}_k(t)$$

where $\mathbf{Z}_{k}(t) = I_{[t_{k-1},t_{k})}(t)\mathbf{Z}$.

One can show that fitting the above $\mathbf{Z}(t)$ using partial likelihood is in fact equivalent to: estimating $\boldsymbol{\beta}_k$ using the survival data in the interval $[t_{k-1}, t_k)$, by excluding all those data points i such that $X_i < t_{k-1}$, and treating all those i such that $X_i \ge t_k$ as censored (i.e. set $\delta_i = 0$ for estimating $\boldsymbol{\beta}_k$).

<u>Exercise</u>: prove the above for K = 3 using the partial likelihood. Can you make a connection here to left truncation, what do you learn?

There are ways to search for an optimal change point of $\beta(t)$; see O'Quigley and Pessione (1991).

There are also ways to find multiple change points using a tree-based approach, following which a piecewise constant $\beta(t)$ can be fitted; see Xu and Adak (2002).

Some further notes

In practice, Z(t) may not be measured at each time point t. What do we do?

- use the most recent value (assumes step function)
- interpolate
- impute based on some model for the 'missing' mechanism

Types of time-varying covariates:

• internal covariates:

variables that relate to the individuals, and can only be measured when an individual is alive, e.g. white blood cell count, CD4 count

• external covariates:

- variable which changes in a known way, e.g. age, dose of drug
- variable that exists totally independently of all individuals, e.g. air temperature

These concepts are relavent particularly when predicting survival (estimating S(t|Z)). It is difficult to predict survival based on internal covariates. Often survival prediction is done only based on time-independent covariates.

Some cautionary notes

- Time-varying covariates must be carefully constructed to ensure interpretability. (What is the interpretation of β ?)
- There is no point adding a time-varying covariate whose value changes the same as study time you will get the same answer as using a fixed covariate measured at study entry. For example, suppose we want to study the effect of age on time to death.

We could

- 1. use age at start of the study as a fixed covariate
- 2. age as a time varying covariate

However, the results will be the same! Why?

Technical assumption:

 $\mathbf{Z}(t)$ needs to be *predictable* (given the history up to t-) in order to apply the martingale theory to the Cox model.