Gabarito da AP3 - Fundamentos de Algoritmos para Computação

1. (1.5) Mostre usando Indução Matemática que:

$$\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\ldots\left(1+\frac{1}{n}\right)=\frac{n+1}{2}$$

para todo número natural $n \geq 2$.

Resposta: Seja
$$P(n): (1+\frac{1}{2})(1+\frac{1}{3})(1+\frac{1}{4})\dots(1+\frac{1}{n}) = \frac{n+1}{2}$$
.

Base da indução:

Para n=2, $\left(1+\frac{1}{2}\right)=\frac{3}{2}=\frac{2+1}{2}$, portanto P(2) é verdadeira.

Hipótese de Indução:

Suponha verdadeiro para k, isto é, P(k) é verdadeiro:

$$P(k): (1+\frac{1}{2})(1+\frac{1}{3})(1+\frac{1}{4})\dots(1+\frac{1}{k}) = \frac{k+1}{2}$$

Devemos provar que P(k+1) é verdadeiro, isto é:

$$P(k+1): (1+\frac{1}{2})(1+\frac{1}{3})(1+\frac{1}{4})\dots(1+\frac{1}{k})(1+\frac{1}{k+1}) = \frac{k+2}{2}$$

Desenvolvendo para k+1 e usando a hipótese de indução, temos que:

ando para
$$k+1$$
 e usando a hipótese de indução, temos que:
$$\underbrace{\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\ldots\left(1+\frac{1}{k}\right)}_{(Por\ hipótese\ indutiva)} = \underbrace{\left(\frac{k+1}{2}\right)\left(1+\frac{1}{k+1}\right)}_{(Por\ hipótese\ indutiva)} = \underbrace{\left(\frac{k+1}{2}\right)\left(\frac{k+1+1}{k+1}\right)}_{(k+1)} = \underbrace{\left(\frac{k+1}{2}\right)\left(\frac{k+2}{k+1}\right)}_{(k+1)} = \underbrace{\left(\frac{k+2}{2}\right)\left(\frac{k+2}{k+1}\right)}_{(k+1)} = \underbrace{\left(\frac{k+2}{2}\right)\left(\frac{k+2}{k+1}\right)}_{(k+2)} = \underbrace{\left(\frac{k+2}{2}\right)\left(\frac{k+2}{2}\right)}_{(k+2)} = \underbrace{\left(\frac{k+2}{2}\right)}_{(k+2)} = \underbrace{\left(\frac{k+2}{2}\right)}_{(k+2$$

Logo, pelo princípio da indução, a expressão é verdadeira, $\forall n \geq 2$.

- 2. (1.5) Calcule, justificando.
 - (i) De quantos modos diferentes podemos distribuir 30 bombons idênticos em 5 caixas distintas? (Obs: cada caixa pode conter zero ou mais bombons.)

Resposta: Este poblema é equivalente a encontrar o número de soluções inteiras não-negativas $(x_i \ge 0, i = 1, 2, 3, 4, 5)$ da equação:

$$x_1 + x_2 + x_3 + x_4 + x_5 = 30,$$

onde x_i denota o número de bombons na caixa i, para i = 1, 2, 3, 4, 5, o que é equivalente a encontrar o número de sequências de (30+5) binários com exatamente cinco 1's (as caixas), trinta 0's (os bombons), onde o último elemento de sequência é 1.

Isto é, o número corresponde a:

$$CR_5^{30} = C_{34}^{30} = \frac{34!}{30!4!} = \frac{34.33.32.31}{4.3.2.1}$$

(ii) E se tivermos a restrição de que nenhuma caixa pode ficar vazia?

Resposta: Este número é o número de soluções inteiras positivas da equação:

$$x_1 + x_2 + x_3 + x_4 + x_5 = 30,$$

onde x_i denota o número de bombons na caixa, $x_i > 0$ i, e $x_i \ge 1$ para i = 1, 2, 3, 4, 5.

Iremos fazer este problema recair em um outro problema em que sabemos resolver, pois $x_i \ge 1$ significa que $x_i - 1 \ge 0$, definindo $y_i = x_i - 1$, logo $y_i \ge 0$, i = 1, 2, 3, 4, 5:

Temos que $x_i = y_i + 1$, para i = 1, 2, 3, 4, 5.

Daí, a equação $x_1+x_2+x_3+x_4+x_5=30$ transforma-se em $y_1+y_2+y_3+y_4+y_5=25$ com $y_i \ge 0, i=1,2,3,4,5$.

Logo, temos que o número de modos diferentes de distribuir 30 bombons idênticos em 5 caixas diferentes tal que nenhuma delas fique vazia corresponde ao número de soluções não negativas da última equação que é:

$$CR_5^{25} = C_{29}^{25} = \frac{29!}{25!4!} = \frac{29.28.27.26}{4.3.2.1}$$

3. (1.5) Quantos são os anagramas da palavra TRITRIACONTAEDRO (poliedro de 33 faces) que começam com a letra A? Justifique.

Resposta: Temos 3 letras T, 3 letras R, 2 letras I, 2 letras A, 2 letras O, 1 letra C, 1 letra N, 1 letra E, 1 letra D.

Como queremos todos os anagramas da palavra TRITRIACONTAEDRO que começam com a letra A, basta fixarmos uma letra A e permutarmos o restante. Daí, o número de anagramas é $P_{15}^{3,3,2,2,1,1,1,1,1} = \frac{15!}{3!3!2!2!1!1!1!1!1!} = 15.14.13.12.11.10.7.6.5.4.3$

4. (1.5) No desenvolvimento de $\left(\frac{\sqrt{x}}{4} + \frac{3}{x^2}\right)^{100}$ encontre o coeficiente de x^{-50} . Justifique.

Resposta: Temos n = 100, $a = \frac{\sqrt{x}}{4}$ e $b = \frac{3}{x^2}$.

Daí, para $0 \le k \le 100$ temos:

$$T_{k+1} = C_n^k a^{n-k} b^k =$$

$$= C_{100}^k \left(\frac{\sqrt{x}}{4}\right)^{100-k} \left(\frac{3}{x^2}\right)^k =$$

$$= C_{100}^k \frac{(\sqrt{x})^{100-k}}{4^{100-k}} \cdot \frac{3^k}{x^{2k}} =$$

$$= C_{100}^k \frac{(x^{\frac{1}{2}})^{100-k}}{4^{100-k}} \cdot \frac{3^k}{x^{2k}} =$$

$$= C_{100}^k \frac{x^{\frac{100-k}{2}}}{4^{100-k}} \cdot \frac{3^k}{x^{2k}} =$$

$$= C_{100}^k \frac{x^{\frac{100-k}{2}} \cdot x^{-2k} \cdot 3^k}{x^{\frac{100-k}{2}} \cdot 2^k \cdot 3^k} =$$

$$= C_{100}^k \frac{x^{\frac{100-k}{2} - 2k} \cdot 3^k}{4^{100-k}} =$$

$$= C_{100}^k \frac{x^{\frac{100-k}{2} - 2k} \cdot 3^k}{4^{100-k}} =$$

$$= C_{100}^k \frac{x^{\frac{100-k}{2} - 2k} \cdot 3^k}{4^{100-k}} =$$

$$= C_{100}^k \frac{x^{\frac{100-5k}{2} - 3k}}{4^{100-k}} =$$

Devemos determinar k tal que $T_{k+1} = C_{100}^k \frac{x^{-50} \cdot 3^k}{4^{100-k}}$.

Portanto, deve ser
$$\frac{100-5k}{2} = -50 \Rightarrow 100 - 5k = -100 \Rightarrow k = 40$$
.

Logo, o coeficiente de
$$x^{-50}$$
 em $\left(\frac{\sqrt{x}}{4} + \frac{3}{x^2}\right)^{100}$ é $C_{100}^{40} \frac{3^{40}}{4^{60}} = \frac{3^{40}.100!}{4^{60}.60!40!}$.

5. (4.0) Considere os grafos G_1 e G_2 dados por:

$$V(G_1) = \{a, b, c, d, e, f\},$$

$$E(G_1) = \{(a, b), (b, c), (c, d), (d, e), (e, f), (f, a), (b, e), (c, f), (a, d)\}$$

$$V(G_1) = \{a, b, c, d, e, f\},$$

$$V(G_2) = \{a, b, c, d, e, f\},$$

$$V(G_2) = \{u, x, y, z, w, v\},$$

$$E(G_1) = \{(u, x), (x, y), (y, z), (z, w), (w, v), (v, u), (x, v), (y, w), (u, z)\}$$

(i) Desenhe os grafos G_1 e G_2 .

Resposta:

Figura 1: Grafo G_1

Figura 2: Grafo G_2

(ii) Mostre que G_1 e G_2 não são isomorfos.

Resposta: G_1 e G_2 não são isomorfos, já que o grafo G_1 não possui ciclos de tamanho 3 e G_2 possui.

(iii) G_1 é um grafo planar? Justifique. Caso seja, dê seu número de faces.

Resposta: Não, pois G_1 é isomorfo ao $K_{3,3}$, que sabemos que não é um grafo planar.

(iv) G_2 é um grafo planar? Justifique. Caso seja, dê seu número de faces.

Resposta: Sim, pois G possui a seguinte representação plana:

Figura 3: Representação plana de G_2

Temos n = 6, m = 9, logo pela fórmula de Euler, G_2 possui n + f = m + 2, ou seja, f = 5, isto é, 5 faces.

(v) G_1 é um grafo hamiltoniano? Justifique.

Resposta: Sim, pois G_1 possui o seguinte ciclo hamiltoniano: a, b, c, d, e, f, a.

(vi) Mostre que G_1 é bipartido. Dê a sua bipartição.

Resposta: Como G_1 não possui ciclos ímpares temos que G_1 é bipartido, pelo teorema de caracterização dos grafos bipartidos.

G pode ser particionado em 2 conjuntos independentes A e B tal que $A = \{a, c, e\}$ e $B = \{b, d, f\}$.