

Schletter, Inc.		35° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	14.43 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
$C_s =$	0.64	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1.2 (Pressure)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	2 (Pressure)	testing done by Ruscheweyh Consult. Coefficients are
Cf- _{TOP}	=	-2.4 -1.2 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1.2 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

;	S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
S	DS =	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
;	$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
S	S _{D1} =	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
	T _a =	0.00	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
Тор	M3	Outer	N7	Outer
Bottom	M7	Inner	N15	Inner
	M11	Outer	N23	Outer
<u>Location</u>	Rear Struts	Location	Rear Reactions	Location
Outer	M2	Outer	N8	Outer
Inner	M6	Inner	N16	Inner
Outer	M10	Outer	N24	Outer
<u>Location</u>	Bracing	<u>9</u>		
Outer	M15	5		
Inner	M16A	A		
Outer				
	Top Bottom Location Outer Inner Outer Location Outer Inner	Top M3 Bottom M7 M11 M11 Location Rear Struts Outer M2 Inner M6 Outer M10 Location Bracing Outer M15 Inner M16/	Top M3 Outer Bottom M7 Inner M11 Outer M11 Outer Location M2 Outer Inner M6 Inner Outer M10 Outer Location Bracing Outer M15 Inner M16A	Top Bottom M3 M7 Inner Outer N15 M11 N7 N15 M11 Location Outer Rear Struts M2 Outer Location M8 Inner Rear Reactions N8 Inner Outer M6 Inner Inner N16 N24 Location Outer Bracing Outer M15 Inner M15 Inner

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
L _b =	<u>36</u>	in
$\Phi F_{ty STRONG-AXIS} =$	30.25	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
I _y =	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
$M_y =$	-0.255	k-ft
$M_z =$	-0.025	k-ft
$M_{y \text{ allowable}} =$	1.287	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>23%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type =	<u>1.5x0.25</u>	
Aluminum Type =	6061-T6	
$F_{ty} =$	35	ksi
Φ =	0.90	
$S_y =$	0.02	in ³
E =	10100	ksi
$I_y =$	33.25	in ⁴
A =	0.38	in ²
g =	0.45	lbs/ft
$M_y =$	0.001	k-ft
$P_n =$	0.170	k
M _{y allowable} =	0.046	k-ft
P _{n allowable} =	11.813	k
Utilization =	<u>4%</u>	

A cross brace kit is required every 55 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	<u>15.68</u>	<u>1665.73</u> k	
Compressive Load =	721.74	<u>1050.92</u> k	
Lateral Load =	<u>1.31</u>	<u>1090.99</u> k	
Moment (Weak Axis) =	0.00	0.00 k	

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 25081.1 in-lbs Resisting Force Required = 836.04 lbs A minimum 60in long x 20in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1393.39 lbs to resist overturning. Minimum Width = <u>20 in</u> in Weight Provided = Sliding Force = 262.22 lbs Use a 60in long x 20in wide x 18in tall Friction = 0.4 Weight Required = 655.55 lbs ballast foundation to resist sliding. Resisting Weight = 1812.50 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 262.22 lbs Cohesion = 130 psf Use a 60in long x 20in wide x 18in tall 8.33 ft² Area = ballast foundation. Cohesion is OK. Resisting = 906.25 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width			
	<u>20 in</u>	21 in	22 in	23 in
$P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.67 \text{ ft}) =$	1813 lbs	1903 lbs	1994 lbs	2084 lbs

ASD LC		1.0D -	+ 1.0S			1.0D+	1.0W		1	.0D + 0.75L +	0.75W + 0.75	S		0.6D+	- 1.0W	
Width	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in
FA	223 lbs	223 lbs	223 lbs	223 lbs	304 lbs	304 lbs	304 lbs	304 lbs	372 lbs	372 lbs	372 lbs	372 lbs	30 lbs	30 lbs	30 lbs	30 lbs
FB	137 lbs	137 lbs	137 lbs	137 lbs	480 lbs	480 lbs	480 lbs	480 lbs	447 lbs	447 lbs	447 lbs	447 lbs	-800 lbs	-800 lbs	-800 lbs	-800 lbs
F_V	15 lbs	15 lbs	15 lbs	15 lbs	468 lbs	468 lbs	468 lbs	468 lbs	361 lbs	361 lbs	361 lbs	361 lbs	-524 lbs	-524 lbs	-524 lbs	-524 lbs
P _{total}	2172 lbs	2263 lbs	2353 lbs	2444 lbs	2596 lbs	2687 lbs	2777 lbs	2868 lbs	2631 lbs	2722 lbs	2812 lbs	2903 lbs	317 lbs	372 lbs	426 lbs	480 lbs
M	192 lbs-ft	192 lbs-ft	192 lbs-ft	192 lbs-ft	416 lbs-ft	416 lbs-ft	416 lbs-ft	416 lbs-ft	438 lbs-ft	438 lbs-ft	438 lbs-ft	438 lbs-ft	681 lbs-ft	681 lbs-ft	681 lbs-ft	681 lbs-ft
е	0.09 ft	0.08 ft	0.08 ft	0.08 ft	0.16 ft	0.15 ft	0.15 ft	0.15 ft	0.17 ft	0.16 ft	0.16 ft	0.15 ft	2.15 ft	1.83 ft	1.60 ft	1.42 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft									
f _{min}	233.0 psf	232.2 psf	231.6 psf	231.0 psf	251.6 psf	250.0 psf	248.5 psf	247.1 psf	252.6 psf	250.9 psf	249.4 psf	248.0 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	288.3 psf	284.9 psf	281.9 psf	279.1 psf	371.5 psf	364.2 psf	357.5 psf	351.4 psf	378.8 psf	371.1 psf	364.2 psf	357.8 psf	360.0 psf	212.4 psf	172.0 psf	154.5 psf

Maximum Bearing Pressure = 379 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 20in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

Bearing Pressure

0.0 ft-lbs

Resisting Force Required = 0.00 lbs S.F. = 1.67

Weight Required = 0.00 lbs Minimum Width = 20 in in Weight Provided = 1812.50 lbs A minimum 60in long x 20in wide x 18in tall ballast foundation is required to resist overturning.

ASD LC	1	.238D + 0.875	iΕ	1.1785	D+0.65625E	+ 0.75S	0	.362D + 0.875	iΕ
Width		20 in			20 in			20 in	
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer
F _Y	44 lbs	96 lbs	41 lbs	117 lbs	303 lbs	115 lbs	13 lbs	28 lbs	12 lbs
F _V	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs
P _{total}	2288 lbs	1813 lbs	2285 lbs	2253 lbs	2439 lbs	2251 lbs	669 lbs	1813 lbs	668 lbs
М	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft
L/6	0.28 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft
f _{min}	274.5 sqft	217.5 sqft	274.2 sqft	270.2 sqft	292.7 sqft	269.9 sqft	80.3 sqft	217.5 sqft	80.2 sqft
f _{max}	274.5 psf	217.5 psf	274.2 psf	270.5 psf	292.7 psf	270.2 psf	80.3 psf	80.2 psf	

Maximum Bearing Pressure = 293 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 20in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 20in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	0.555 k	Maximum Axial Load =	0.962 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>10%</u>	Utilization =	<u>17%</u>
Diagonal Strut		Bracing	
Maximum Axial Load =	0.660 k	Maximum Axial Load =	0.170 k
	0.660 k 5.692 k		0.170 k 8.894 k
Maximum Axial Load =		Maximum Axial Load =	
Maximum Axial Load = M8 Bolt Shear Capacity =	5.692 k	Maximum Axial Load = M10 Bolt Capacity =	8.894 k

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 33.11 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.662 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.002 \text{ in} \\ \hline & N\!\!\!\!/\!\!\!/\!\!\!\!A} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_b = 36.00 \text{ in}$$
 $J = 0.255$
 93.7419

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.3 \text{ ksi}$$

3.4.16

$$b/t = 7.4$$

$$Rn - \frac{\theta_y}{\theta_y} F_{CY}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 0.0 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 36.00 \text{ in}$$

$$J = 0.255$$

$$97.3454$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$C2 = \left(\frac{C_c}{c}\right)^2$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\varphi F_I = 30.2$$

3.4.16

 $\phi F_1 =$

$$b/t = 23.9$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$C2 = \frac{k_1 Bp}{k_1 Bp}$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$
$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi F_C \varphi$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.3 \text{ ksi}$$

$$|x| = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

$$Sx = 0.511 \text{ in}^3$$

$$M_{max} St = 1.287 \text{ k-ft}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

$$\psi = 120291 \text{ mm}^4$$

$$0.289 \text{ in}^4$$

$$x = 20 \text{ mm}$$

$$Sy = 0.367 \text{ in}^3$$

$$M_{max}Wk = 0.871 \text{ k-ft}$$

Compression

3.4.9

$$\phi F_L = \phi y F c y$$
 $\phi F_L = 33.3 \text{ ksi}$

$$b/t = 23.9$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$
 $\phi F_L = 28.5 \text{ ksi}$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^T$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\begin{array}{ll} \phi F_{L} = & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{max} = & 25.51 \text{ kips} \end{array}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.25 \\ & 21.9891 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

 $\phi F_L = 29.7 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} L_b &=& 33.78 \text{ in} \\ ry &=& 1.374 \\ Cb &=& 1.25 \\ &=& 24.5845 \\ S1 &=& \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 &=& 1.37733 \\ S2 &=& 1.2C_c \\ S2 &=& 79.2 \\ \phi F_L &=& \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt(Cb))] \\ \phi F_1 &=& 29.7 \text{ ksi} \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16

N/A for Strong Direction

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$\theta_{\rm tot} = \frac{1}{2}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

3.4.16.2

$$b/t = 24.46$$

$$t = 2.6$$

$$ds = 6.05$$

$$rs = 3.49$$

$$S = 21.70$$

$$\rho st = 0.22$$

$$F_{UT} = 9.37$$

$$F_{ST} = 28.24$$

$$\phi F_L = Fut + (Fst - Fut)\rho st < Fst$$

 $\phi F_L = 13.5 \text{ ksi}$

3.4.18

$$h/t = 24.46$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.7 \text{ ksi}$$

$$lx = 364470 \text{ mm}^4$$

$$0.876 \text{ in}^4$$

$$y = 37.77 \text{ mm}$$

$$Sx = 0.589 \text{ in}^3$$

$$M_{max}St = 1.455 \text{ k-ft}$$

3.4.18

S1.18
$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$by = 217168 \text{ mm}^4$$

$$\begin{array}{rcl} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Compression

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

 $\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^* \sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$

3.4.9

b/t =4.29 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi b/t =24.46 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi

3.4.9.1

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{1}{\phi_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{max} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

$$\phi F_L = 31.2 \text{ ksi}$$

Weak Axis:

$$\begin{array}{lll} L_b = & 18.00 \text{ in} \\ J = & 0.16 \\ & 47.2194 \\ \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ & S2 = \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ & \varphi F_L = & \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \varphi F_L = & 31.2 \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$

$$L = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

15 mm

0.163 in³

3.4.18

h/t =

$$m = 0.65$$
 $C_0 = 15$
 $C_0 = 15$
 $C_0 = 15$
 $S_0 = \frac{k_1 B b r}{m D b r}$
 $S_0 = 77.3$
 $\phi F_L = 1.3 \phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L = 39958.2 \text{ mm}^4$
 $\phi F_L = 15 \text{ mm}$
 $\phi F_L = 15 \text{ mm}$

 $M_{max}Wk = 0.423 \text{ k-ft}$

7.75

mDbr

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

y =

 $M_{max}St = 0.423 \text{ k-ft}$

Sx=

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.83792$$

$$φF_L = φcc(Bc-Dc*λ)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$
 S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)
$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

b/t = 7.75
S1 = 12.21
S2 = 32.70
$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\begin{array}{ll} \phi F_{L} = & 24.52 \text{ ksi} \\ A = & 323.87 \text{ mm}^2 \\ & 0.50 \text{ in}^2 \\ P_{max} = & 12.31 \text{ kips} \end{array}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = \left(\frac{Bc - \frac{2}{\theta_b}Fcy}{1.6Dc}\right)$$
$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$
 $1x = 39958.2 \text{ mm}^4$
 0.096 in^4
 $y = 15 \text{ mm}$

$$Sx = 0.163 \text{ in}^3$$

$$M_{max}St = 0.404 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$c2 = \left(\frac{C_{c}}{C_{c}}\right)^{2}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ \text{ly} = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ \text{x} = & 15 \text{ mm} \\ \text{Sy} = & 0.163 \text{ in}^3 \\ M_{\text{max}} W k = & 0.450 \text{ k-ft} \end{array}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$

$$S2^* = 1.23671$$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 42.32 \text{ in}$$
 $J = 0.16$
 111.025

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.0 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_1 = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

Not Used Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

 $Cc = 15$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.0 \text{ ksi}$$
 $1x = 39958.2 \text{ mm}^4$

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.406 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 42.32 \text{ in}$$
 $J = 0.16$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.0$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.1$$

$$k_1 B p$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_1 = \phi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

 $m = 0.65$

$$C_0 = 15$$

 $Cc = 15$

$$k_1Bbr$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$Sy = 0.163 \text{ in}^3$$

SCHLETTER

Compression

3.4.7 1.81475 λ = 0.437 in r = $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ S1* = 0.33515 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ 1.23671 S2* = $\phi cc = 0.83406$ $\phi F_L = (\phi ccFcy)/(\lambda^2)$ $\phi F_{L} = 8.86409 \text{ ksi}$ 3.4.9 b/t = 7.75 S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$
 $\phi F_L = 33.3 \text{ ksi}$

$$b/t = 7.75$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

4.45 kips

APPENDIX B

 $P_{max} =$

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	•			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

		Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	1	M13	Υ	-4.45	-4.45	0	0
2	2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-40.249	-40.249	0	0
2	M16	Υ	-40.249	-40.249	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-88.797	-88.797	0	0
2	M16	V	-147.995	-147.995	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	177.594	177.594	0	0
2	M16	V	88.797	88.797	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	275.225	2	287.553	2	.008	10	0	10	0	1	0	1
2		min	-313.183	3	-437.778	3	165	3	0	3	0	1	0	1
3	N7	max	.027	3	191.767	1	.107	10	0	10	0	1	0	1
4		min	108	2	7.798	15	58	3	0	3	0	1	0	1
5	N15	max	.087	3	555.181	2	.025	9	0	9	0	1	0	1
6		min	-1.01	2	16.949	15	871	3	001	3	0	1	0	1
7	N16	max	754.632	2	808.401	2	0	15	0	9	0	1	0	1
8		min	-839.224	3	-1281.327	3	-108.235	3	0	3	0	1	0	1
9	N23	max	.028	3	192.154	1	.399	3	0	3	0	1	0	1
10		min	108	2	7.914	15	106	10	0	10	0	1	0	1
11	N24	max	275.225	2	289.671	2	109.453	3	0	9	0	1	0	1
12		min	-314.572	3	-438.382	3	008	10	0	3	0	1	0	1
13	Totals:	max	1303.856	2	2279.166	2	0	3						
14		min	-1466.838	3	-2005.474	3	0	2						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
1	M2	1	max	182.144	2	.679	4	.035	9	0	10	0	10	0	1
2			min	-356.532	3	.16	15	066	3	0	3	0	3	0	1
3		2	max	182.279	2	.621	4	.035	9	0	10	0	10	0	15
4			min	-356.431	3	.146	15	066	3	0	3	0	3	0	4
5		3	max	182.414	2	.564	4	.035	9	0	10	0	10	0	15
6			min	-356.33	3	.133	15	066	3	0	3	0	3	0	4
7		4	max	182.549	2	.506	4	.035	9	0	10	0	10	0	15
8			min	-356.229	3	.119	15	066	3	0	3	0	3	0	4
9		5	max	182.684	2	.449	4	.035	9	0	10	0	10	0	15
10			min	-356.128	3	.106	15	066	3	0	3	0	3	0	4
11		6	max	182.819	2	.392	4	.035	9	0	10	0	9	0	15
12			min	-356.026	3	.092	15	066	3	0	3	0	3	0	4
13		7	max	182.954	2	.334	4	.035	9	0	10	0	9	0	15
14			min	-355.925	3	.079	15	066	3	0	3	0	3	0	4
15		8	max	183.089	2	.277	4	.035	9	0	10	0	9	0	15
16			min	-355.824	3	.065	15	066	3	0	3	0	3	0	4
17		9	max	183.223	2	.219	4	.035	9	0	10	0	9	0	15
18			min	-355.723	3	.052	15	066	3	0	3	0	3	0	4
19		10	max	183.358	2	.162	4	.035	9	0	10	0	9	0	15
20			min	-355.622	3	.037	12	066	3	0	3	0	3	0	4
21		11	max		2	.112	2	.035	9	0	10	0	9	0	15
22			min	-355.521	3	.015	12	066	3	0	3	0	3	0	4
23		12		183.628	2	.067	2	.035	9	0	10	0	9	0	15
24			min	-355.42	3	014	3	066	3	0	3	0	3	0	4
25		13	max	183.763	2	.022	2	.035	9	0	10	0	9	0	15
26			min	-355.318	3	047	3	066	3	0	3	0	3	0	4
27		14	max		2	016	15	.035	9	0	10	0	9	0	15
28			min	-355.217	3	081	3	066	3	0	3	0	3	0	4
29		15	max		2	03	15	.035	9	0	10	0	9	0	15
30			min	-355.116	3	126	4	066	3	0	3	0	3	0	4
31		16	max		2	043	15	.035	9	0	10	0	9	0	15
32			min	-355.015	3	183	4	066	3	0	3	0	3	0	4
33		17	max		2	057	15	.035	9	0	10	0	9	0	15
34			min	-354.914	3	241	4	066	3	0	3	0	3	0	4
35		18	_		2	07	15	.035	9	0	10	0	9	0	15
36			min	-354.813	3	298	4	066	3	0	3	0	3	0	4
37		19	max		2	084	15	.035	9	0	10	0	9	0	12
0,			HIGA	.01.072				.000				•			

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]				z Shear[lb]							
38			min	-354.711	3	356	4	066	3	0	3	0	3	0	4
39	M3	1	max	244.621	2	1.736	4	.02	10	0	10	0	3	0	4
40			min	-225.109	3	.408	15	063	3	0	3	0	10	0	12
41		2	max	244.551	2	1.56	4	.02	10	0	10	0	3	0	2
42				-225.162	3	.367	15	063	3	0	3	0	10	0	3
43		3	max		2	1.383	4	.02	10	0	10	0	3	0	2
44				-225.214	3	.325	15	063	3	0	3	0	10	0	3
45		4	max		2	1.207	4	.02	10	0	10	0	3	0	15
46		-	min		3	.284	15	063	3	0	3	0	10	0	4
		-			•				_						
47		5	max		2	1.031	4	.02	10	0	10	0	3	0	15
48				-225.319	3	.242	15	063	3	0	3	0	10	0	4
49		6		244.271	2	.854	4	.02	10	0	10	0	3	0	15
50			min	-225.372	3	.201	15	063	3	0	3	0	10	0	4
51		7	max	244.201	2	.678	4	.02	10	0	10	0	3	0	15
52			min	-225.424	3	.159	15	063	3	0	3	0	10	0	4
53		8	max	244.131	2	.502	4	.02	10	0	10	0	3	0	15
54			min	-225.477	3	.118	15	063	3	0	3	0	10	001	4
55		9		244.061	2	.325	4	.02	10	0	10	0	3	0	15
56		Ť	min	-225.529	3	.076	15	063	3	0	3	0	10	001	4
57		10		243.991	2	.149	4	.02	10	0	10	0	3	0	15
58		10					12	063	3	0	3	0	10		
		44		-225.582	3	.034						-		001	4
59		11		243.921	2	.007	2	.02	10	0	10	0	3	0	15
60				-225.634	3	054	3	063	3	0	3	0	10	001	4
61		12	max		2	048	15	.02	10	0	10	0	3	0	15
62				-225.687	3	204	4	063	3	0	3	0	10	001	4
63		13	max	243.781	2	089	15	.02	10	0	10	0	3	0	15
64			min	-225.739	3	38	4	063	3	0	3	0	10	001	4
65		14		243.711	2	131	15	.02	10	0	10	0	3	0	15
66			min		3	557	4	063	3	0	3	0	10	001	4
67		15		243.641	2	172	15	.02	10	0	10	0	3	0	15
68		10		-225.844	3	733	4	063	3	0	3	0	10	0	4
69		16		243.571	2	214	15	.02	10	0	10	0	9	0	15
		10										_			
70		47		-225.897	3	909	4	063	3	0	3	0	10	0	4
71		17	max		2	255	15	.02	10	0	10	0	10	0	15
72				-225.949	3	-1.086	4	063	3	0	3	0	3	0	4
73		18			2	297	15	.02	10	0	10	0	10	0	15
74			min	-226.002	3	-1.262	4	063	3	0	3	0	3	0	4
75		19	max	243.361	2	338	15	.02	10	0	10	0	10	0	1 1
76			min	-226.054	3	-1.438	4	063	3	0	3	0	3	0	1
77	M4	1		190.603	1	0	1	.108	10	0	1	0	3	0	1
78				7.446	15	0	1	585	3	0	1	0	2	0	1
79		2		190.667	1	0	1	.108	10	0	1	0	10	0	1
80			min	7.466	15	0	1	585	3	0	1	0	3	0	1
		2					-								
81		3	max	190.732	1	0	1	.108	10	0	1_	0	10	0	1
82			min	7.485	15	0	1	585	3	0	1_	0	3	0	1
83		4	max	190.797	1	0	1	.108	10	0	1_	0	10	0	1
84			min	7.505	15	0	1	585	3	0	1	0	3	0	1
85		5	max	190.861	1	0	1	.108	10	0	1	0	10	0	1
86			min	7.524	15	0	1	585	3	0	1	0	3	0	1
87		6	max	190.926	1	0	1	.108	10	0	1	0	10	0	1
88		Ť	min	7.544	15	0	1	585	3	0	1	0	3	0	1
89		7	max		1	0	1	.108	10	0	1	0	10	0	1
90		-		7.563	15	0	1	585	3	0	1	0	3	0	1
		0	min				•								
91		8	max	191.056	1	0	1	.108	10	0	1_	0	10	0	1
92		-	min	7.583	15	0	1	585	3	0	1	0	3	0	1
93		9	max	191.12	1	0	1	.108	10	0	1_	0	10	0	1
94			min	7.602	15	0	1	585	3	0	1	0	3	0	1

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]							LC	y-y Mome		l _	
95		10	max	191.185	1	0	1	.108	10	0	1	0	<u>10</u>	0	1
96			min	7.622	15	0	1	585	3	0	1	0	3	0	1
97		11	max	191.25	1	0	1	.108	10	0	1	0	10	0	1
98		40	min	7.641	15	0	1	585	3	0	1	0	3	0	1
99		12	max	191.314	1	0	1	.108	10	0	1	0	10	0	1
100		40	min	7.661	15	0	1	585	3	0	1_	0	3	0	1
101		13	max	191.379	1	0	1	.108	10	0	1	0	10	0	1
102			min	7.68	15	0	1	585	3	0	1	0	3	0	1
103		14	max	191.444	1	0	1	.108	10	0	1	0	10	0	1
104		4.5	min	7.7	15	0	1	585	3	0	1_	0	3	0	1
105		15	max	191.508	1	0	1	.108	10	0	1	0	10	0	1
106		4.0	min	7.72	15	0	1	585	3	0	1	0	3	0	1
107		16	max		1	0	1	.108	10	0	1	0	10	0	1
108			min	7.739	15	0	1	585	3	0	1	0	3	0	1
109		17	max	191.638	1	0	1	.108	10	0	1	0	10	0	1
110			min	7.759	15	0	1	585	3	0	1	0	3	0	1
111		18	max	191.703	1	0	1	.108	10	0	1	0	10	0	1
112			min	7.778	15	0	1	585	3	0	1	0	3	0	1
113		19	max	191.767	1	0	1	.108	10	0	1	0	10	0	1
114			min	7.798	15	0	1	585	3	0	1	0	3	0	1
115	M6	1	max		2	.678	4	.001	9	0	3	0	3	0	1
116			min	-961.677	3	.16	15	317	3	0	13	0	13	0	1
117		2	max	530.753	2	.621	4	.001	9	0	3	0	3	0	15
118			min	-961.575	3	.146	15	317	3	0	13	0	13	0	4
119		3	max	530.888	2	.564	4	.001	9	0	3	0	3	0	15
120			min	-961.474	3	.133	15	317	3	0	13	0	13	0	4
121		4	max	531.023	2	.506	4	.001	9	0	3	0	3	0	15
122			min	-961.373	3	.119	15	317	3	0	13	0	13	0	4
123		5	max	531.158	2	.449	4	.001	9	0	3	0	3	0	15
124			min	-961.272	3	.104	12	317	3	0	13	0	13	0	4
125		6	max	531.293	2	.391	4	.001	9	0	3	0	3	0	15
126			min	-961.171	3	.081	12	317	3	0	13	0	13	0	4
127		7	max	531.428	2	.342	2	.001	9	0	3	0	3	0	15
128			min	-961.07	3	.059	12	317	3	0	13	0	13	0	4
129		8	max	531.562	2	.297	2	.001	9	0	3	0	9	0	15
130			min	-960.969	3	.036	12	317	3	0	13	0	3	0	4
131		9	max	531.697	2	.253	2	.001	9	0	3	0	9	0	12
132			min	-960.867	3	.014	3	317	3	0	13	0	3	0	4
133		10	max	531.832	2	.208	2	.001	9	0	3	0	9	0	12
134			min	-960.766	3	02	3	317	3	0	13	0	3	0	4
135		11		531.967	2	.163	2	.001	9	0	3	0	9	0	12
136			min	-960.665	3	053	3	317	3	0	13	0	3	0	4
137		12	max	532.102	2	.118	2	.001	9	0	3	0	9	0	12
138					3	087	3	317	3	0	13	0	3	0	2
139		13		532.237	2	.073	2	.001	9	0	3	0	9	0	12
140			min	-960.463	3	12	3	317	3	0	13	0	3	0	2
141		14		532.372	2	.029	2	.001	9	0	3	0	9	0	12
142				-960.362	3	154	3	317	3	0	13	0	3	0	2
143		15		532.507	2	016	2	.001	9	0	3	0	9	0	12
144			min	-960.26	3	188	3	317	3	0	13	0	3	0	2
145		16	max		2	043	15	.001	9	0	3	0	9	0	12
146		10	min	-960.159	3	221	3	317	3	0	13	0	3	0	2
147		17		532.776	2	056	15	.001	9	0	3	0	9	0	3
148				-960.058	3	255	3	317	3	0	13	0	3	0	2
149		18		532.911	2	255	15	.001	9	0	3	0	9	0	3
150		10	min	-959.957	3	299	4	317	3	0	13	0	3	0	2
151		10		533.046	2	083	15	.001	9	0	3	0	9	0	3
LIUI		וו	πιαλ	000.040		.000	IJ	.001	l J		J		J		

Model Name

: Schletter, Inc. : HCV

:

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]		y-y Mome		z-z Mome	<u>LC</u>
152			min	-959.856	3	356	4	317	3	0	13	0	3	0	2
153	M7	1	max	659.86	2	1.738	4	.058	3	0	9	0	9	0	2
154			min	-555.715	3	.408	15	002	9	0	3	0	3	0	3
155		2	max	659.79	2	1.562	4	.058	3	0	9	0	9	0	2
156			min	-555.767	3	.367	15	002	9	0	3	0	3	0	3
157		3	max	659.72	2	1.386	4	.058	3	0	9	0	9	0	2
158			min	-555.82	3	.325	15	002	9	0	3	0	3	0	3
159		4	max	659.65	2	1.209	4	.058	3	0	9	0	9	0	2
160			min	-555.872	3	.284	15	002	9	0	3	0	3	0	3
161		5	max	659.58	2	1.033	4	.058	3	0	9	0	9	0	15
162			min	-555.925	3	.242	15	002	9	0	3	0	3	0	3
163		6	max	659.51	2	.857	4	.058	3	0	9	0	9	0	15
164			min	-555.977	3	.201	15	002	9	0	3	0	3	0	4
165		7	max	659.44	2	.68	4	.058	3	0	9	0	9	0	15
166			min	-556.03	3	.16	15	002	9	0	3	0	3	0	4
167		8	max	659.37	2	.504	4	.058	3	0	9	0	9	0	15
168			min	-556.082	3	.118	15	002	9	0	3	0	3	001	4
169		9	max	659.3	2	.329	2	.058	3	0	9	0	9	0	15
170			min	-556.135	3	.071	12	002	9	0	3	0	3	001	4
171		10	max	659.23	2	.191	2	.058	3	0	9	0	9	0	15
172		10	min	-556.187	3	002	3	002	9	0	3	Ö	3	001	4
173		11	max	659.16	2	.054	2	.058	3	0	9	0	9	0	15
174			min	-556.24	3	105	3	002	9	0	3	0	3	001	4
175		12	max	659.09	2	048	15	.058	3	0	9	0	9	0	15
176		12	min	-556.292	3	208	3	002	9	0	3	0	3	001	4
177		13	max	659.02	2	089	15	.058	3	0	9	0	9	0	15
178		13	min	-556.345	3	378	4	002	9	0	3	0	3	001	4
179		14	max	658.95	2	131	15	.058	3	0	9	0	9	0	15
180		14	min	-556.397	3	554	4	002	9	0	3	0	3	001	4
181		15	max	658.88	2	172	15	.058	3	0	9	0	9	0	15
182		13	min	-556.45	3	731	4	002	9	0	3	0	3	0	4
183		16	max	658.81	2	214	15	.058	3	0	9	0	9	0	15
184		10	min	-556.502	3	907	4	002	9	0	3	0	3	0	4
185		17	max	658.74	2	<u>907</u> 255	15	.058	3	0	9	0	9	0	15
186		17	min	-556.555	3	-1.084	4	002	9	0	3	0	3	0	4
187		18		658.67	2	296	15	.058	3	0	9	0	9	0	15
188		10	max min	-556.607	3	-1.26	4	002	9	0	3	0	3	0	4
189		19		658.6	2	338	15	.058	3		9	0	9	0	1
190		19	max min	-556.66	3		4	002	9	0	3	0	3	0	1
191	M8	1		554.016	2	-1.436	1	.026	9	0	1	0	<u>ა</u> 1		1
192	IVIO	<u> </u>	max	16.598		0	1	879	3	0	1	0	3	0	1
193		2		554.081	2	0	1	.026	9	0	1	0	9	0	1
				16.617			1		3	_	1			0	
194		2	min		15	0	1	879		0	<u> </u>	0	3_		1
195		3	max		2	0	_	.026	9	0	1	0	9	0	1
196		1	min	16.637	15	0	1	879	3	0	1	0	3	0	1
197		4	max	554.21	2	0	1	.026	9	0	1	0	9	0	1
198		-	min	16.656	15	0	1	879	3	0	1	0	3	0	1
199		5	max		2	0	1	.026	9	0	1	0	9	0	1
200			min	16.676	15	0	1	879	3	0	1	0	3	0	1
201		6	max	554.34	2	0	1	.026	9	0	1	0	9	0	1
202		-	min	16.695	15	0	1	879	3	0	1	0	3	0	1
203		7	max		2	0	1	.026	9	0	1_	0	9	0	1
204			min	16.715	15	0	1_	879	3	0	1	0	3	0	1
205		8	max		2	0	1	.026	9	0	1_	0	9	0	1
206			min	16.734	15	0	1	879	3	0	1	0	3	0	1
207		9	max	554.534	2	0	1	.026	9	0	1	0	9	0	1
208			min	16.754	15	0	1	879	3	0	1	0	3	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
209		10	max	554.598	2	0	1	.026	9	0	1	0	9	0	1
210			min	16.773	15	0	1	879	3	0	1	0	3	0	1
211		11	max	554.663	2	0	1	.026	9	0	1	0	9	0	1
212			min	16.793	15	0	1	879	3	0	1	0	3	0	1
213		12	max	554.728	2	0	1	.026	9	0	1	0	9	0	1
214			min	16.812	15	0	1	879	3	0	1	0	3	0	1
215		13	max	554.793	2	0	1	.026	9	0	1	0	9	0	1
216			min	16.832	15	0	1	879	3	0	1	0	3	0	1
217		14	max	554.857	2	0	1	.026	9	0	1	0	9	0	1
218			min	16.852	15	0	1	879	3	0	1	001	3	0	1
219		15	max	554.922	2	0	1	.026	9	0	1	0	9	0	1
220			min	16.871	15	0	1	879	3	0	1	001	3	0	1
221		16	max	554.987	2	0	1	.026	9	0	1	0	9	0	1
222			min	16.891	15	0	1	879	3	0	1	001	3	0	1
223		17	max	555.051	2	0	1	.026	9	0	1	0	9	0	1
224			min	16.91	15	0	1	879	3	0	1	001	3	0	1
225		18	max	555.116	2	0	1	.026	9	0	1	0	9	0	1
226			min	16.93	15	0	1	879	3	0	1	001	3	0	1
227		19	max	555.181	2	0	1	.026	9	0	1	0	9	0	1
228			min	16.949	15	0	1	879	3	0	1	001	3	0	1
229	M10	1	max	183.242	2	.679	4	.011	10	0	1	0	9	0	1
230			min	-228.435	3	.16	15	036	9	0	3	0	3	0	1
231		2	max	183.377	2	.621	4	.011	10	0	1	0	9	0	15
232			min	-228.334	3	.146	15	036	9	0	3	0	3	0	4
233		3	max	183.512	2	.564	4	.011	10	0	1	0	9	0	15
234			min	-228.233	3	.133	15	036	9	0	3	0	3	0	4
235		4	max		2	.506	4	.011	10	0	1	0	9	0	15
236			min	-228.132	3	.119	15	036	9	0	3	0	3	0	4
237		5	max	183.782	2	.449	4	.011	10	0	1	0	9	0	15
238			min	-228.031	3	.106	15	036	9	0	3	0	3	0	4
239		6	max	183.916	2	.392	4	.011	10	0	1	0	9	0	15
240			min	-227.93	3	.092	15	036	9	0	3	0	3	0	4
241		7	max	184.051	2	.334	4	.011	10	0	1	0	9	0	15
242		'	min	-227.829	3	.079	15	036	9	0	3	0	3	0	4
243		8	max	184.186	2	.277	4	.011	10	0	1	0	10	0	15
244			min	-227.727	3	.065	15	036	9	0	3	0	3	0	4
245		9	max		2	.219	4	.011	10	0	1	0	10	0	15
246		-	min	-227.626	3	.052	15	036	9	0	3	0	3	0	4
247		10	max	184.456	2	.162	4	.011	10	0	1	0	10	0	15
248		10	min	-227.525	3	.038	12	036	9	0	3	0	3	0	4
249		11		184.591	2	.112	2	.011	10	0	1	0	10	0	15
250		11	min	-227.424	3	.015	12	036	9	0	3	0	3	0	4
251		12		184.726	2	.067	2	.011	10	0	1	0	10	0	15
252		12			3	013	3	036	9	0	3	0	3	0	4
253		13	max	184.86	2	.022	2	.011	10	0	1	0	10	0	15
254		13	min	-227.222	3	047	3	036	9	0	3	0	3	0	4
255		1.1		184.995		047 016		.011	10		1		10	0	15
		14		-227.12	3		15		9	0	3	0			
256		4.5	min			08	3	036		0		0	3	0	4
257		15	max		2	03	15	.011	10	0	1	0	10	0	15
258		40	min	-227.019	3	126	4	036	9	0	3	0	3	0	4
259		16			2	043	15	.011	10	0	1	0	10	0	15
260		47	min	-226.918	3	183	4	036	9	0	3	0	3	0	4
261		17	max		2	057	15	.011	10	0	1	0	10	0	15
262		4.0		-226.817	3	241	4	036	9	0	3	0	3	0	4
263		18	max		2	07	15	.011	10	0	1	0	10	0	15
264			min	-226.716	3	298	4	036	9	0	3	0	3	0	4
265		<u> 19</u>	max	185.67	2	084	15	.011	10	0	1	0	10	0	12

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	. LC_
266			min	-226.615	3	356	4	036	9	0	3	0	3	0	4
267	M11	1	max		2	1.736	4	.054	1	0	3	0	3	0	4
268			min	-226.437	3	.408	15	071	3	0	10	0	1	0	15
269		2	max	244.163	2	1.56	4	.054	1	0	3	0	3	0	2
270			min	-226.49	3	.367	15	071	3	0	10	0	1	0	12
271		3	max	244.093	2	1.383	4	.054	1	0	3	0	3	0	2
272			min	-226.542	3	.325	15	071	3	0	10	0	1	0	3
273		4	max	244.023	2	1.207	4	.054	1	0	3	0	3	0	15
274			min	-226.595	3	.284	15	071	3	0	10	0	1	0	4
275		5	max	243.953	2	1.031	4	.054	1	0	3	0	3	0	15
276			min	-226.647	3	.242	15	071	3	0	10	0	1	0	4
277		6	max	243.883	2	.854	4	.054	1	0	3	0	3	0	15
278			min	-226.7	3	.201	15	071	3	0	10	0	1	0	4
279		7	max	243.813	2	.678	4	.054	1	0	3	0	3	0	15
280			min	-226.752	3	.159	15	071	3	0	10	0	1	0	4
281		8	max	243.743	2	.502	4	.054	1	0	3	0	3	0	15
282			min	-226.805	3	.118	15	071	3	0	10	0	1	001	4
283		9	max	243.673	2	.325	4	.054	1	0	3	0	3	0	15
284			min	-226.857	3	.076	15	071	3	0	10	0	1	001	4
285		10	max	243.603	2	.149	4	.054	1	0	3	0	3	0	15
286			min	-226.91	3	.035	15	071	3	0	10	0	1	001	4
287		11	max	243.533	2	.007	2	.054	1	0	3	0	3	0	15
288			min	-226.962	3	044	3	071	3	0	10	0	1	001	4
289		12	max	243.463	2	048	15	.054	1	0	3	0	3	0	15
290			min	-227.015	3	204	4	071	3	0	10	0	1	001	4
291		13	max		2	089	15	.054	1	0	3	0	3	0	15
292			min	-227.067	3	38	4	071	3	0	10	0	1	001	4
293		14	max	243.323	2	131	15	.054	1	0	3	0	3	0	15
294			min	-227.12	3	557	4	071	3	0	10	0	1	001	4
295		15	max	243.253	2	172	15	.054	1	0	3	0	3	0	15
296			min	-227.172	3	733	4	071	3	0	10	0	1	0	4
297		16	max	243.183	2	214	15	.054	1	0	3	0	3	0	15
298			min	-227.225	3	909	4	071	3	0	10	0	1	0	4
299		17	max	243.113	2	255	15	.054	1	0	3	0	3	0	15
300			min	-227.277	3	-1.086	4	071	3	0	10	0	10	0	4
301		18	max	243.043	2	297	15	.054	1	0	3	0	3	0	15
302			min	-227.33	3	-1.262	4	071	3	0	10	0	10	0	4
303		19	max	242.973	2	338	15	.054	1	0	3	0	3	0	1
304			min	-227.382	3	-1.438	4	071	3	0	10	0	10	0	1
305	M12	1	max	190.989	1	0	1	.402	3	0	1	0	2	0	1
306			min		15	0	1	108	10	0	1	0	3	0	1
307		2		191.054	1	0	1	.402	3	0	1	0	1	0	1
308			min	7.582	15	0	1	108	10	0	1	0	10	0	1
309		3	max		1	0	1	.402	3	0	1	0	3	0	1
310			min	7.602	15	0	1	108	10	0	1	0	10	0	1
311		4	max		1	0	1	.402	3	0	1	0	3	0	1
312			min	7.621	15	0	1	108	10	0	1	0	10	0	1
313		5	max		1	0	1	.402	3	0	1	0	3	0	1
314			min	7.641	15	0	1	108	10	0	1	0	10	0	1
315		6	max	191.312	1	0	1	.402	3	0	1	0	3	0	1
316		Ť	min	7.66	15	0	1	108	10	0	1	0	10	0	1
317		7		191.377	1	0	1	.402	3	0	1	0	3	0	1
318			min	7.68	15	0	1	108	10	0	1	0	10	0	1
319		8	max		1	0	1	.402	3	0	1	0	3	0	1
320			min	7.699	15	0	1	108	10	0	1	0	10	0	1
321		9	max		1	0	1	.402	3	0	1	0	3	0	1
322		-	min	7.719	15	0	1	108	10	0	1	0	10	0	1
JZZ			1111111	1.119	10	U		100	10	U		U	10	U	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	<u>LC</u>
323		10	max	191.571	1	0	1	.402	3	0	1	0	3	0	1
324			min	7.738	15	0	1	108	10	0	1	0	10	0	1
325		11	max	191.636	1	0	1	.402	3	0	1	0	3	0	1
326			min	7.758	15	0	1	108	10	0	1	0	10	0	1
327		12	max	191.701	1	0	1	.402	3	0	1	0	3	0	1
328			min	7.778	15	0	1	108	10	0	1	0	10	0	1
329		13	max	191.765	1	0	1	.402	3	0	1	0	3	0	1
330			min	7.797	15	0	1	108	10	0	1	0	10	0	1
331		14	max	191.83	1	0	1	.402	3	0	1	0	3	0	1
332			min	7.817	15	0	1	108	10	0	1	0	10	0	1
333		15	max	191.895	1	0	1	.402	3	0	1	0	3	0	1
334			min	7.836	15	0	1	108	10	0	1	0	10	0	1
335		16	max	191.96	1	0	1	.402	3	0	1	0	3	0	1
336			min	7.856	15	0	1	108	10	0	1	0	10	0	1
337		17	max	192.024	1	0	1	.402	3	0	1	0	3	0	1
338			min	7.875	15	0	1	108	10	0	1	0	10	0	1
339		18	max	192.089	1	0	1	.402	3	0	1	0	3	0	1
340			min	7.895	15	0	1	108	10	0	1	0	10	0	1
341		19	max	192.154	1	0	1	.402	3	0	1	0	3	0	1
342			min	7.914	15	0	1	108	10	0	1	0	10	0	1
343	M1	1	max	54.073	1	335.11	3	2.723	10	0	2	.016	3	0	2
344			min	1.401	10	-204.807	2	-7.22	1	0	3	005	10	0	3
345		2	max	54.233	1	334.938	3	2.723	10	0	2	.014	3	.045	2
346			min	1.534	10	-205.036	2	-7.22	1	0	3	005	10	073	3
347		3	max	120.234	3	3.256	9	2.712	10	0	10	.012	3	.089	2
348			min	-36.38	2	-30.535	2	-7.198	1	0	1	004	10	144	3
349		4	max	120.354	3	3.066	9	2.712	10	0	10	.011	3	.095	2
350			min	-36.22	2	-30.763	2	-7.198	1	0	1	004	10	143	3
351		5	max	120.475	3	2.875	9	2.712	10	0	10	.01	3	.102	2
352			min	-36.06	2	-30.992	2	-7.198	1	0	1	003	10	141	3
353		6	max	120.595	3	2.684	9	2.712	10	0	10	.008	3	.109	2
354			min	-35.9	2	-31.221	2	-7.198	1	0	1	002	10	14	3
355		7	max	120.715	3	2.494	9	2.712	10	0	10	.007	3	.115	2
356			min	-35.739	2	-31.449	2	-7.198	1	0	1	002	10	138	3
357		8	max	120.835	3	2.303	9	2.712	10	0	10	.005	3	.122	2
358			min	-35.579	2	-31.678	2	-7.198	1	0	1	001	10	136	3
359		9	max	120.955	3	2.112	9	2.712	10	0	10	.004	3	.129	2
360			min	-35.419	2	-31.907	2	-7.198	1	0	1	0	10	135	3
361		10	max	121.075	3	1.922	9	2.712	10	0	10	.002	3	.136	2
362			min	-35.259	2	-32 136	2	-7.198	1	0	1	0	2	133	3
363		11	max	121.195	3	1.731	9	2.712	10	0	10	0	3	.143	2
364			min	-35.099	2	-32.364	2	-7.198	1	0	1	002	1	131	3
365		12	max	121.315	3	1.541	9	2.712	10	0	10	.001	10	.15	2
366			min	-34.939	2	-32.593	2	-7.198	1	0	1	003	1	129	3
367		13	max	121.436	3	1.35	တ	2.712	10	0	10	.002	10	.157	2
368			min	-34.778	2	-32.822	2	-7.198	1	0	1	005	1	128	3
369		14		121.556	3	1.159	9	2.712	10	0	10	.002	10	.164	2
370			min	-34.618	2	-33.051	2	-7.198	1	0	1	006	1	126	3
371		15		121.676	3	.969	9	2.712	10	0	10	.003	10	.172	2
372		ľ	min	-34.458	2	-33.279	2	-7.198	1	0	1	008	1	124	3
373		16			2	181.139	2	2.73	10	0	9	.004	10	.177	2
374			min	1.472	15	-209.099	3	-7.245	1	0	3	009	1	12	3
375		17	max	81.068	2	180.911	2	2.73	10	0	9	.004	10	.138	2
376			min	1.52	15	-209.271	3	-7.245	1	0	3	011	1	075	3
377		18	max	-1.559	10	317.741	2	2.838	10	0	3	.005	10	.069	2
378		0	min	-54.218	1	-171.4	3	-7.517	1	0	2	013	1	038	3
379		19	max		10	317.512	2	2.838	10	0	3	.005	10	<u>.000</u>	2
010		10	παλ	1.740	10	017.012		2.000	10			.000	ıu		

Model Name

Schletter, Inc. HCV

: Standard DV/

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]			LC	z-z Mome	LC
380			min	-54.058	1	-171.572	3	-7.517	1	0	2	014	1_	0	3
381	<u>M5</u>	1_	max	152.478	1	1010.319	3	0	1_	0	9	.016	3	0	3
382			min	-17.086	3	-598.261	2	-98.728	3	0	3	0	15	0	2
383		2	max	152.638	1	1010.148	3	0	1	0	9	0	9	.129	2
384			min	-16.966	3	-598.49	2	-98.728	3	0	3	005	3	218	3
385		3	max	295.493	3	4.136	9	10.322	3	0	3	0	9	.257	2
386			min	-72.172	2	-90.484	2	029	9	0	1	026	3	433	3
387		4	max	295.613	3	3.946	9	10.322	3	0	3	0	9	.277	2
388			min	-72.012	2	-90.713	2	029	9	0	1	023	3	425	3
389		5	max	295.733	3	3.755	9	10.322	3	0	3	0	9	.296	2
390			min	-71.852	2	-90.941	2	029	9	0	1	021	3	417	3
391		6	max	295.854	3	3.564	9	10.322	3	0	3	0	9	.316	2
392			min	-71.692	2	-91.17	2	029	9	0	1	019	3	409	3
393		7	max	295.974	3	3.374	9	10.322	3	0	3	0	9	.336	2
394			min	-71.532	2	-91.399	2	029	9	0	1	017	3	401	3
395		8	max	296.094	3	3.183	9	10.322	3	0	3	0	9	.356	2
396			min	-71.371	2	-91.628	2	029	9	0	1	014	3	394	3
397		9		296.214	3	2.993		10.322	3	0	3	0	9	.376	2
		9	max				9			_	1				
398		40	min	-71.211	2	-91.856	2	029	9	0		012	3	386	3
399		10	max	296.334	3	2.802	9	10.322	3	0	3	0	13	.396	2
400		4.4	min	-71.051	2	-92.085	2	029	9	0	1	01	3	378	3
401		11	max	296.454	3	2.611	9	10.322	3	0	3	0	1	.416	2
402			min	-70.891	2	-92.314	2	029	9	0	1	008	3	37	3
403		12	max	296.574	3	2.421	9	10.322	3	0	3	0	1	.436	2
404			min	-70.731	2	-92.543	2	029	9	0	1	006	3	362	3
405		13	max	296.694	3	2.23	9	10.322	3	0	3	0	1	.456	2
406			min	-70.571	2	-92.771	2	029	9	0	1	003	3	354	3
407		14	max	296.815	3	2.039	9	10.322	3	0	3	0	1	.476	2
408			min	-70.41	2	-93	2	029	9	0	1	001	3	345	3
409		15	max	296.935	3	1.849	9	10.322	3	0	3	.001	3	.496	2
410			min	-70.25	2	-93.229	2	029	9	0	1	0	9	337	3
411		16	max	239.779	2	490.118	2	10.311	3	0	3	.003	3	.511	2
412			min	2.919	15	-530.116	3	031	9	0	1	0	9	325	3
413		17	max	239.939	2	489.889	2	10.311	3	0	3	.005	3	.405	2
414			min	2.967	15	-530.287	3	031	9	0	1	0	9	21	3
415		18	max	4.668	3	939.481	2	9.428	3	0	3	.007	3	.203	2
416			min	-152.668	1	-484.673	3	006	9	0	9	0	9	105	3
417		19	max	4.788	3	939.252	2	9.428	3	0	3	.009	3	0	3
418		1.0	min	-152.508	1	-484.845	3	006	9	0	9	0	9	0	2
419	M9	1	max	54.073	1	334.965	3	105.289	3	0	3	.005	10	0	2
420	1010	<u> </u>	min	1.4	10			-2.723	10	0	2	028	3	0	3
421		2	max		1	334.793	3	105.289	3	0	3	.005	10	.045	2
422			min	1.534	10	-205.036		-2.723	10	0	2	013	1	073	3
423		3						7.198			1	.013	3	1	2
423		3		119.288 -35.977	3	3.263 -30.509	9		1	0			1	.089	3
		4	min		2			-2.712	10	0	10	011	_	144	
425		4	max		3	3.073	9	7.198	1	0	1	.016	3	.095	2
426		_	min	-35.816	2	-30.738	2	-2.712	10	0	10	009	1	143	3
427		5	max		3	2.882	9	7.198	1	0	1	.015	3	.102	2
428			min	-35.656	2	-30.966	2	-2.712	10	0	10	008	1	141	3
429		6		119.648	3	2.692	9	7.198	1	0	1	.015	3	.109	2
430			min		2	-31.195	2	-2.712	10	0	10	006	1	14	3
431		7	max	119.768	3	2.501	9	7.198	1	0	1	.014	3	.115	2
432			min	-35.336	2	-31.424	2	-2.712	10	0	10	005	1	138	3
433		8	max	119.889	3	2.31	9	7.198	1	0	1	.014	3	.122	2
434			min	-35.176	2	-31.652	2	-2.712	10	0	10	003	1	136	3
435		9	max		3	2.12	9	7.198	1	0	1	.013	3	.129	2
436			min	-35.016	2	-31.881	2	-2.712	10	0	10	002	1	135	3

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC		LC	z-z Mome	LC
437		10	max	120.129	3	1.929	9	7.198	1	0	1	.013	3	.136	2
438			min	-34.855	2	-32.11	2	-2.712	10	0	10	0	1	133	3
439		11	max	120.249	3	1.739	9	7.198	1_	0	1_	.012	3	.143	2
440			min	-34.695	2	-32.339	2	-2.712	10	0	10	0	10	131	3
441		12	max	120.369	3	1.548	9	7.198	1	0	1	.012	3	.15	2
442			min	-34.535	2	-32.567	2	-2.712	10	0	10	001	10	13	3
443		13	max	120.489	3	1.357	9	7.198	1	0	1	.011	3	.157	2
444			min	-34.375	2	-32.796	2	-2.712	10	0	10	002	10	128	3
445		14	max	120.609	3	1.167	9	7.198	1	0	1	.011	3	.164	2
446			min	-34.215	2	-33.025	2	-2.712	10	0	10	002	10	126	3
447		15	max	120.729	3	.976	9	7.198	1	0	1	.01	3	.172	2
448			min	-34.055	2	-33.254	2	-2.712	10	0	10	003	10	124	3
449		16	max	81.129	2	180.824	2	7.245	1	0	10	.01	3	.177	2
450			min	1.539	15	-210.093	3	-2.73	10	0	3	004	10	12	3
451		17	max	81.289	2	180.595	2	7.245	1	0	10	.011	1	.138	2
452			min	1.587	15	-210.265	3	-2.73	10	0	3	004	10	075	3
453		18	max	-1.559	10	317.741	2	7.517	1	0	2	.013	1	.069	2
454			min	-54.218	1	-171.381	3	-2.838	10	0	3	005	10	038	3
455		19	max	-1.425	10	317.512	2	7.517	1	0	2	.014	1	0	2
456			min	-54.058	1	-171.553	3	-2.838	10	0	3	005	10	0	3
457	M13	1	max	105.278	3	204.757	2	-1.401	10	0	2	.028	3	0	2
458			min	-2.723	10	-335.05	3	-54.071	1	0	3	005	10	0	3
459		2	max	105.278	3	148.809	2	.404	10	0	2	.023	3	.096	3
460			min	-2.723	10	-241.691	3	-39.592	1	0	3	008	2	059	2
461		3	max	105.278	3	92.862	2	2.21	10	0	2	.018	3	.161	3
462			min	-2.723	10	-148.333	3	-25.113	1	0	3	012	1	099	2
463		4	max	105.278	3	36.914	2	4.016	10	0	2	.013	3	.195	3
464			min	-2.723	10	-54.975	3	-13.677	3	0	3	018	1	121	2
465		5	max	105.278	3	38.384	3	9.129	2	0	2	.009	3	.198	3
466			min	-2.723	10	-19.034	2	-12.726	3	0	3	019	1	124	2
467		6	max	105.278	3	131.742	3	18.325	1	0	2	.005	3	.169	3
468			min	-2.723	10	-74.982	2	-11.775	3	0	3	016	1	108	2
469		7	max	105.278	3	225.101	3	32.804	1	0	2	.003	10	.11	3
470			min	-2.723	10	-130.929	2	-10.824	3	0	3	007	1	074	2
471		8	max	105.278	3	318.459	3	47.283	1	0	2	.01	2	.019	3
472			min	-2.723	10	-186.877	2	-9.873	3	0	3	003	3	021	2
473		9	max	105.278	3	411.817	3	61.762	1	0	2	.024	1	.051	2
474			min	-2.723	10	-242.825	2	-8.922	3	0	3	006	3	102	3
475		10	max	105.278	3	-5.048	15	76.241	1	0	2	.047	1	.141	2
476		'	min	-2.723	10	-505.176	3	3.227	15	0	3	025	3	255	3
477		11	max	7.23	1	242.825	2	10.117	3	0	3	.024	1	.051	2
478			min	-2.723	10	-411.817	3	-61.762	1	0	2	022	3	102	3
479		12	max	7.23	1	186.877	2	11.068	3	0	3	.01	2	.019	3
480		1,2	min	-2.723	10	-318.459	3	-47.283	1	0	2	018	3	021	2
481		13	max	7.23	1	130.929	2	12.019	3	0	3	.003	10	.11	3
482			min	-2.723	10	-225.1	3	-32.804	1	0	2	014	3	074	2
483		14	max	7.23	1	74.982	2	12.97	3	0	3	0	10	.169	3
484		1 -	min	-2.723	10	-131.742	3	-18.324	1	0	2	016	1	108	2
485		15	max	7.23	1	19.034	2	13.922	3	0	3	0	15	.198	3
486		13	min	-2.723	10	-38.384	3	-9.128	2	0	2	019	1	124	2
487		16	max	7.23	1	54.975	3	14.873	3	0	3	0	12	.195	3
488		10	min	-2.723	10	-36.914		-4.015	10	0	2	018	1	121	2
489		17	max	7.23	1	148.333	3	25.113	1	0	3	.004	3	.161	3
490		17	min	-2.723		-92.862	2	-2.21	10	0	2	012	1	099	2
490		18		7.23	10	241.692	3	39.592	1		3	.012	3	.096	3
491		10		-2.723	10	-148.809	2		10	0	2	008	2		2
		10	min					404 54.071		0				059	
493		19	max	7.23	1	335.05	3	54.071	_ 1	0	3	.016	3	0	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]		Torque[k-ft]		y-y Mome	LC	z-z Mome	<u>LC</u>
494			min	-2.723	10	-204.757	2	1.401	10	0	2	005	10	0	3
495	M16	1	max	2.838	10	317.579	2	-1.424	10	0	3	.014	1	0	2
496			min	-7.508	1	-171.596	3	-54.06	1	0	2	005	10	0	3
497		2	max	2.838	10	230.059	2	.381	10	0	3	.005	3	.05	3
498			min	-7.508	1	-125.596	3	-39.581	1	0	2	008	2	091	2
499		3	max	2.838	10	142.539	2	2.187	10	0	3	.001	3	.084	3
500			min	-7.508	1	-79.596	3	-25.102	1	0	2	012	1	153	2
501		4	max	2.838	10	55.019	2	3.992	10	0	3	0	15	.103	3
502			min	-7.508	1	-33.596	3	-10.623	1	0	2	018	1	186	2
503		5	max	2.838	10	12.404	3	9.099	2	0	3	0	15	.106	3
504			min	-7.508	1	-32.501	2	-8.293	3	0	2	019	1	19	2
505		6	max	2.838	10	58.404	3	18.335	1	0	3	0	10	.094	3
506			min	-7.508	1	-120.021	2	-7.342	3	0	2	016	1	165	2
507		7	max	2.838	10	104.404	3	32.815	1	0	3	.003	10	.067	3
508			min	-7.508	1	-207.541	2	-6.391	3	0	2	01	3	11	2
509		8	max	2.838	10	150.404	3	47.294	1	0	3	.01	2	.025	3
510			min	-7.508	1	-295.061	2	-5.44	3	0	2	012	3	026	2
511		9	max	2.838	10	196.404	3	61.773	1	0	3	.025	1	.087	2
512			min	-7.508	1	-382.581	2	-4.488	3	0	2	014	3	033	3
513		10	max	2.838	10	242.404	3	76.252	1	0	15	.048	1	.229	2
514			min	-7.508	1	-470.101	2	-3.537	3	0	2	015	3	106	3
515		11	max	2.838	10	382.581	2	2.2	3	0	2	.025	1	.087	2
516			min	-7.508	1	-196.404	3	-61.773	1	0	3	005	3	033	3
517		12	max	2.838	10	295.061	2	3.151	3	0	2	.01	2	.025	3
518			min	-7.508	1	-150.404	3	-47.294	1	0	3	004	3	026	2
519		13	max	2.838	10	207.541	2	4.102	3	0	2	.003	10	.067	3
520			min	-7.508	1	-104.404	3	-32.814	1	0	3	007	1	11	2
521		14	max	2.838	10	120.021	2	5.053	3	0	2	0	10	.094	3
522			min	-7.508	1	-58.404	3	-18.335	1	0	3	016	1	165	2
523		15	max	2.838	10	32.501	2	6.004	3	0	2	0	3	.106	3
524			min	-7.508	1	-12.404	3	-9.099	2	0	3	019	1	19	2
525		16	max	2.838	10	33.596	3	10.623	1	0	2	.003	3	.103	3
526			min	-7.508	1	-55.019	2	-3.992	10	0	3	018	1	186	2
527		17	max	2.838	10	79.596	3	25.102	1	0	2	.005	3	.084	3
528			min	-7.508	1	-142.539	2	-2.187	10	0	3	012	1	153	2
529		18	max	2.838	10	125.596	3	39.581	1	0	2	.008	3	.05	3
530			min	-7.508	1	-230.059	2	381	10	0	3	008	2	091	2
531		19	max	2.838	10	171.596	3	54.06	1	0	2	.014	1	0	2
532			min	-7.508	1	-317.579	2	1.425	10	0	3	005	10	0	3
533	M15	1	max	0	1	.648	3	.184	3	0	1	0	1	0	1
534			min	-168.589	3	0	1	0	1	0	3	0	3	0	1
535		2	max	0	1	.576	3	.184	3	0	1	0	1	0	1
536			min	-168.664	3	0	1	0	1	0	3	0	3	0	3
537		3	max	0	1	.504	3	.184	3	0	1	0	1	0	1
538			min	-168.74	3	0	1	0	1	0	3	0	3	0	3
539		4	max	0	1	.432	3	.184	3	0	1	0	1	0	1
540			min	-168.815	3	0	1	0	1	0	3	0	3	0	3
541		5	max	0	1	.36	3	.184	3	0	1	0	1	0	1
542			min		3	0	1	0	1	0	3	0	3	0	3
543		6	max	0	1	.288	3	.184	3	0	1	0	1	0	1
544			min		3	0	1	0	1	0	3	0	3	0	3
545		7	max	0	1	.216	3	.184	3	0	1	0	3	0	1
546				-169.042	3	0	1	0	1	0	3	0	1	0	3
547		8	max	0	1	.144	3	.184	3	0	1	0	3	0	1
548			min	-169.117	3	0	1	0	1	0	3	0	1	0	3
549		9	max	0	1	.072	3	.184	3	0	1	0	3	0	1
550			min		3	0	1	0	1	0	3	0	1	0	3

Model Name

: Schletter, Inc. : HCV

: Ctondord D\/Mir

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

551	LC	z-z Mome	LC	y-y Mome	LC.	Torque[k-ft	LC	z Shear[lb]	LC	y Shear[lb]	LC	Axial[lb]		Sec	Member	
1	1	0	3	0		0	3	.184	1	0		_	max	10		551
554	3	0		0	3	0			1		3	-169.268	min			
555	1			0	_			.184	_					11		
556	3			-												
S57	1													12		
S58	3													40		
S59	1											_		13		
560 min -169.571 3 288 3 0 1 0 3 0 1 0 561 15 max 0 1 0 1 .184 3 0 1 0 3 0 562 min -169.646 3 366 3 0 1 0 3 0 1 0 563 16 max 0 1 0 1 .184 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0	3		-									_		4.4		
561 15 max 0 1 0 1 .184 3 0 1 0 3 0 562 min -169.646 3 36 3 0 1 0 3 0	1								_	-				14		
562 min -169.646 3 36 3 0 1 0 3 0 1 0 563 16 max 0 1 0 1 .184 3 0 1 0	1	_				_								1 =		
563 16 max 0 1 0 1 .184 3 0 1 0 3 0 564 min -169.722 3 432 3 0 1 0 3 0 1 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td>15</td> <td></td> <td></td>									_			_		15		
564 min -169.722 3 432 3 0 1 0 3 0 1 0 565 17 max 0 1 0 1 .184 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 <td>1</td> <td></td> <td>16</td> <td></td> <td></td>	1													16		
565 17 max 0 1 0 1 .184 3 0 1 0 3 0 566 min -169.797 3 504 3 0 1 0 3 0 1 0 567 18 max 0 1 0 1 .184 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 <	3				_				_			_		10		
566 min -169.797 3 504 3 0 1 0 3 0 1 0 567 18 max 0 1 0 1 .184 3 0 1 0 <td>1</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>17</td> <td></td> <td></td>	1			-										17		
567 18 max 0 1 0 1 .184 3 0 1 0 3 0 568 min -169.873 3 576 3 0 1 0 3 0 1 0 569 19 max 0 1 0 1 .184 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0	3													17		
568 min -169.873 3 576 3 0 1 0 3 0 1 0 569 19 max 0 1 0 1 .184 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 <td>1</td> <td></td> <td>18</td> <td></td> <td></td>	1													18		
569 19 max 0 1 0 1 .184 3 0 1 0 3 0 570 min -169.948 3 648 3 0 1 0 3 0 1 0 571 M16A 1 max 0 1 1.109 4 .009 9 0 3 0	3													10		
570 min -169.948 3 648 3 0 1 0 3 0 1 0 571 M16A 1 max 0 1 1.109 4 .009 9 0 3 0 3 0 572 min -167.225 3 0 1 078 3 0 9 0 9 0 9 0 9 0 9 0 3 0 </td <td>1</td> <td></td> <td>_</td> <td>T</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>19</td> <td></td> <td></td>	1		_	T								_		19		
571 M16A 1 max 0 1 1.109 4 .009 9 0 3 0 3 0 572 min -167.225 3 0 1 078 3 0 9 0 9 0 9 0 9 0 9 0 9 0 3 0 <td< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>1</td><td>- ' '</td><td></td><td></td></td<>	1								_				1	- ' '		
572 min -167.225 3 0 1 078 3 0 9 0 9 0 9 0 9 0 9 0 9 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 9 0 3 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 3 0 9 0 3 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9	1	_	3			_	9							1	M16A	
573 2 max 0 1 .986 4 .009 9 0 3 0 3 0 574 min -167.149 3 0 1 078 3 0 9 0 9 0 9 0 3 0 9 0 9 0 3 0 9 0 3 0 9 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 9 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3	1											_				
574 min -167.149 3 0 1 078 3 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 3 0 3 0 576 min -167.074 3 0 1 078 3 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 3 0 1 078 3 0 9 0 3 0 3 0 1 078 3 0 9 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3	1			0					4	.986				2		
575 3 max 0 1 .863 4 .009 9 0 3 0 3 0 576 min -167.074 3 0 1 078 3 0 9 0 9 0 9 0 9 0 9 0 3 0 9 0 3 0 3 0 9 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 9 0 3 0 9 0 3 0 9 0 9 0 3 0 9 0 3 0 3 0 3 0 9 0 3 0 3 0 9 0 9 0 3 0 9 0 9 0 9 0 </td <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td>	4										3					
576 min -167.074 3 0 1 078 3 0 9 0 9 0 9 0 577 4 max 0 1 .739 4 .009 9 0 3 0 3 0 578 min -166.998 3 0 1 078 3 0 9 0 9 0 9 0 0 9 0 9 0 3 0 3 0 1 078 3 0 9 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 9 0 9 0 9 0 9 0 9 0 3 0 9 0 9 0 9 0 </td <td>1</td> <td>0</td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td></td> <td>4</td> <td>.863</td> <td></td> <td></td> <td>max</td> <td>3</td> <td></td> <td></td>	1	0		0		0			4	.863			max	3		
577 4 max 0 1 .739 4 .009 9 0 3 0 3 0 578 min -166.998 3 0 1 078 3 0 9 0 9 0 9 0 0 9 0 </td <td>4</td> <td>0</td> <td>9</td> <td>0</td> <td>9</td> <td>0</td> <td>3</td> <td></td> <td>1</td> <td></td> <td>3</td> <td>-167.074</td> <td>min</td> <td></td> <td></td> <td></td>	4	0	9	0	9	0	3		1		3	-167.074	min			
579 5 max 0 1 .616 4 .009 9 0 3 0 3 0 580 min -166.923 3 0 1 078 3 0 9 0 9 0 9 0 0 9 0 </td <td>1</td> <td>0</td> <td>3</td> <td>0</td> <td>3</td> <td>0</td> <td>9</td> <td>.009</td> <td>4</td> <td>.739</td> <td>1</td> <td>0</td> <td>max</td> <td>4</td> <td></td> <td>577</td>	1	0	3	0	3	0	9	.009	4	.739	1	0	max	4		577
580 min -166.923 3 0 1 078 3 0 9 0 9 0 581 6 max 0 1 .493 4 .009 9 0 3 0 3 0 582 min -166.847 3 0 1 078 3 0 9 0 9 001 583 7 max 0 1 .37 4 .009 9 0 3 0 3 0 584 min -166.771 3 0 1 078 3 0 9 0 9 001	4	0	9	0	9	0	3	078	1	0	3	-166.998	min			578
581 6 max 0 1 .493 4 .009 9 0 3 0 3 0 582 min -166.847 3 0 1 078 3 0 9 0 9 001 583 7 max 0 1 .37 4 .009 9 0 3 0 3 0 584 min -166.771 3 0 1 078 3 0 9 0 9 001	1	0	3	0		0		.009	4	.616	_1_	_	max	5		
582 min -166.847 3 0 1 078 3 0 9 0 9 001 583 7 max 0 1 .37 4 .009 9 0 3 0 3 0 584 min -166.771 3 0 1 078 3 0 9 0 9 001	4	_										-166.923	min			
583 7 max 0 1 .37 4 .009 9 0 3 0 3 0 584 min -166.771 3 0 1 078 3 0 9 0 9 001	1											_		6		
584 min -166.771 3 0 1078 3 0 9 0 9001	4								_							
	1													7		
<u> 585 8 max 0 1 .246 4 .009 9 0 3 0 3 0 </u>	4			-												
	1													8		
586 min -166.696 3 0 1078 3 0 9 0 9001	4								_							
587 9 max 0 1 .123 4 .009 9 0 3 0 3 0	1													9		
588 min -166.62 3 0 1078 3 0 9 0 9001	4		_	T				•						40		
589	1	_			1				_					10		
000	1								_			112	min	11		590
591	4															
592 11111 - 166.469 3123 4078 3 0 9 0 9001 593 12 max .242 4 0 1 .009 9 0 3 0 3 0	1													12		
593	4	_												12		
595	1													13		
596 min -166.318 337 4078 3 0 9 0 3001	4													13		
597	1													14		
598 min -166.243 3493 4078 3 0 9 0 3001	4													17		
599	1							•						15		
600 min -166.167 3616 4078 3 0 9 0 3 0	4													Ŭ		
601 16 max .759 4 0 1 .009 9 0 3 0 9 0	1	_		_		_								16		
602 min -166.092 3739 4078 3 0 9 0 3 0	4													ľ		
603 17 max .888 4 0 1 .009 9 0 3 0 9 0	1							1						17		
604 min -166.016 3863 4078 3 0 9 0 3 0	4															
605 18 max 1.017 4 0 1 .009 9 0 3 0 9 0	1													18		
606 min -165.941 3986 4078 3 0 9 0 3 0	4								4							
607	1	0	9	0	3	0	9		1		4			19		

Model Name

Schletter, Inc.HCV

....

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608	3		min	-165.865	3	-1.109	4	078	3	0	9	0	3	0	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.002	2	.011	2	0	9	4.552e-5	10	NC	3	NC	1
2			min	004	3	011	3	003	3	-2.53e-4	3	3924.883	2	NC	1
3		2	max	.002	2	.01	2	0	9	4.334e-5	10	NC	3	NC	1
4			min	004	3	011	3	003	3	-2.391e-4	3	4292.811	2	NC	1
5		3	max	.002	2	.009	2	0	9	4.116e-5	10	NC	3	NC	1
6			min	003	3	01	3	003	3	-2.252e-4	3	4732.079	2	NC	1
7		4	max	.002	2	.008	2	0	9	3.897e-5	10	NC	1	NC	1
8			min	003	3	01	3	002	3	-2.113e-4	3	5260.135	2	NC	1
9		5	max	.001	2	.007	2	0	9	3.679e-5	10	NC	1	NC	1
10			min	003	3	009	3	002	3	-1.974e-4	3	5900.294	2	NC	1
11		6	max	.001	2	.006	2	0	9	3.46e-5	10	NC	1_	NC	1_
12			min	003	3	009	3	002	3	-1.835e-4	3	6684.218	2	NC	1
13		7	max	.001	2	.006	2	0	9	3.242e-5	10	NC	_1_	NC	1
14			min	002	3	008	3	002	3	-1.696e-4	3	7655.721	2	NC	1
15		8	max	.001	2	.005	2	0	9	3.024e-5	10	NC	_1_	NC	1
16			min	002	3	008	3	001	3	-1.558e-4	3	8876.773	2	NC	1
17		9	max	.001	2	.004	2	0	9	2.805e-5	10	NC	_1_	NC	1
18			min	002	3	007	3	001	3	-1.419e-4	3	NC	1_	NC	1
19		10	max	0	2	.003	2	0	9	2.587e-5	10	NC	_1_	NC	1
20			min	002	3	007	3	0	3	-1.28e-4	3	NC	1_	NC	1
21		11	max	00	2	.003	2	0	9	2.369e-5	10	NC	_1_	NC	1_
22			min	002	3	006	3	0	3	-1.141e-4	3	NC	1_	NC	1
23		12	max	0	2	.002	2	0	9	2.15e-5	10	NC	1	NC	1
24			min	001	3	005	3	0	3	-1.002e-4	3	NC	1_	NC	1
25		13	max	0	2	.002	2	0	9	1.932e-5	10	NC	1	NC	1
26			min	001	3	005	3	0	3	-8.631e-5	3	NC	_1_	NC	1
27		14	max	0	2	.001	2	0	9	1.713e-5	<u>10</u>	NC	1	NC	1
28		<u> </u>	min	001	3	004	3	0	3	-7.242e-5	3	NC	1_	NC	1
29		15	max	0	2	0	2	0	9	1.495e-5	10	NC	1	NC NC	1
30		40	min	0	3	003	3	0	3	-5.853e-5	3	NC	1	NC	1
31		16	max	0	2	0	2	0	9	1.277e-5	10	NC NC	1	NC NC	1
32		47	min	0	3	002	3	0	3	-4.464e-5	3	NC NC	1_	NC NC	1
33		17	max	0	2	0	2	0	9	1.058e-5	<u>10</u>	NC NC	1	NC NC	1
34		40	min	0	3	002	2	0	3	-3.075e-5	3	NC NC	<u>1</u> 1	NC NC	1
35		18	max	0	3	0		0	9	8.4e-6 -2.311e-5	10		1	NC NC	1
36 37		19	min	<u> </u>	1	<u> </u>	3	<u> </u>	1	6.216e-6	9 10	NC NC	<u>1</u> 1	NC NC	1
38		19	max	0	1	0	1	0	1	-1.779e-5	9	NC NC	1	NC NC	1
39	M3	1		0	1	0	1	0	1	8.548e-6	9	NC NC	1	NC NC	1
40	IVIO		max	0	1	0	1	0	1	-2.994e-6	10	NC NC	1	NC NC	1
41		2	max	0	3	0	2	0			9	NC NC	+	NC NC	1
42			min	0	2	0	3	0	9	-4.182e-6		NC	1	NC	1
43		3	max	0	3	0	2	0	3	1.437e-5	1	NC	1	NC	1
44		-	min	0	2	002	3	0	9	-5.369e-6	10	NC	1	NC	1
45		4	max	0	3	<u>002</u> 0	2	0	3	1.761e-5	1	NC	1	NC	1
46			min	0	2	003	3	0	9	-6.557e-6		NC	1	NC	1
47		5	max	0	3	003 0	2	0	3	2.085e-5	1	NC	1	NC	1
48			min	0	2	004	3	0	9	-7.745e-6	10	NC	1	NC	1
49		6	max	0	3	- <u>004</u> 0	2	0	3	2.408e-5	1	NC	1	NC	1
50			min	0	2	005	3	0	9	-8.933e-6		NC	1	NC	1
51		7	max	0	3	<u>005</u>	2	0	3	2.732e-5	1	NC	1	NC	1
JI			παλ	<u> </u>	, J	<u> </u>		<u> </u>	J	2.1026-0		110		110	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r LC			T	
52			min	0	2	005	3	0	10 -1.012e-5 10	NC	1	NC	1
53		8	max	0	3	.001	2	0	3 3.056e-5 1	NC	_1_	NC	1
54			min	001	2	006	3	0	10 -1.131e-5 10	NC	1	NC	1
55		9	max	.001	3	.001	2	0	3 3.379e-5 1	NC	1	NC	1
56			min	001	2	007	3	0	10 -1.25e-5 10	NC	1	NC	1
57		10	max	.001	3	.002	2	0	3 3.703e-5 1	NC	_1_	NC	1
58			min	001	2	007	3	0	10 -1.368e-5 10	NC	1	NC	1
59		11	max	.001	3	.002	2	0	3 4.027e-5 1	NC	1	NC	1
60			min	002	2	008	3	0	10 -1.487e-5 10	NC	1	NC	1
61		12	max	.002	3	.003	2	0	3 4.35e-5 1	NC	1	NC	1
62			min	002	2	008	3	0	10 -1.606e-5 10	NC	1	NC	1
63		13	max	.002	3	.004	2	.001	3 4.724e-5 3	NC	1	NC	1
64			min	002	2	008	3	0	10 -1.725e-5 10	NC	1	NC	1
65		14	max	.002	3	.004	2	.001	3 5.103e-5 3	NC	1	NC	1
66			min	002	2	009	3	0	10 -1.844e-5 10	NC	1	NC	1
67		15	max	.002	3	.005	2	.001	3 5.482e-5 3	NC	1	NC	1
68			min	002	2	009	3	0	10 -1.962e-5 10	8557.174	2	NC	1
69		16	max	.002	3	.006	2	.002	3 5.861e-5 3	NC	1	NC	1
70			min	002	2	009	3	0	10 -2.081e-5 10	7264.34	2	NC	1
71		17	max	.002	3	.007	2	.002	3 6.24e-5 3	NC	1	NC	1
72			min	002	2	009	3	0	10 -2.2e-5 10	6261.651	2	NC	1
73		18	max	.002	3	.008	2	.002	3 6.619e-5 3	NC	1	NC	1
74			min	003	2	009	3	0	10 -2.319e-5 10	5475.275	2	NC	1
75		19	max	.003	3	.009	2	.002	3 6.998e-5 3	NC	3	NC	1
76			min	003	2	009	3	0	10 -2.437e-5 10	4853.133	2	NC	1
77	M4	1	max	0	1	.012	2	0	10 3.053e-5 10	NC	1	NC	1
78			min	0	15	011	3	002	3 -8.119e-5 1	NC	1	NC	1
79		2	max	0	1	.012	2	0	10 3.053e-5 10	NC	1	NC	1
80			min	0	15	01	3	002	3 -8.119e-5 1	NC	1	NC	1
81		3	max	0	1	.011	2	0	10 3.053e-5 10	NC	1	NC	1
82			min	0	15	01	3	002	3 -8.119e-5 1	NC	1	NC	1
83		4	max	0	1	.01	2	0	10 3.053e-5 10	NC	1	NC	1
84			min	0	15	009	3	001	3 -8.119e-5 1	NC	1	NC	1
85		5	max	0	1	.01	2	0	10 3.053e-5 10	NC	1	NC	1
86			min	0	15	009	3	001	3 -8.119e-5 1	NC	1	NC	1
87		6	max	0	1	.009	2	0	10 3.053e-5 10	NC	1	NC	1
88			min	0	15	008	3	001	3 -8.119e-5 1	NC	1	NC	1
89		7	max	0	1	.008	2	0	10 3.053e-5 10	NC	1	NC	1
90			min	0	15	007	3	0	3 -8.119e-5 1	NC	1	NC	1
91		8	max	0	1	.008	2	0	10 3.053e-5 10	NC	1	NC	1
92			min	0	15	007	3	0	3 -8.119e-5 1	NC	1	NC	1
93		9	max	0	1	.007	2	0	10 3.053e-5 10		1	NC	1
94			min	0	15	006	3	0	3 -8.119e-5 1	NC	1	NC	1
95		10	max	0	1	.006	2	0	10 3.053e-5 10	NC	1	NC	1
96			min	0	15	006	3	0	3 -8.119e-5 1	NC	1	NC	1
97		11	max	0	1	.006	2	0	10 3.053e-5 10	NC	1	NC	1
98			min	0	15	005	3	0	3 -8.119e-5 1	NC	1	NC	1
99		12	max	0	1	.005	2	0	10 3.053e-5 10	NC	1	NC	1
100		1-	min	0	15	004	3	0	3 -8.119e-5 1	NC	1	NC	1
101		13	max	0	1	.004	2	0	10 3.053e-5 10	NC	1	NC	1
102		10	min	0	15	004	3	0	3 -8.119e-5 1	NC	1	NC NC	1
103		14	max	0	1	.003	2	0	10 3.053e-5 10	NC	-	NC	1
104		17	min	0	15	003	3	0	3 -8.119e-5 1	NC	1	NC NC	1
105		15	max	0	1	.003	2	0	10 3.053e-5 10	NC	1	NC NC	1
106		13	min	0	15	002	3	0	3 -8.119e-5 1	NC NC	1	NC NC	1
107		16	max	0	1	.002	2	0	10 3.053e-5 10	NC NC	1	NC NC	1
107		10	min	0	15	002	3	0	3 -8.119e-5 1	NC	1	NC NC	1
100			1111111	U	IU	002	J	U	J -0.1186-5 1	INC	_	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio	LC	(n) L/z Ratio	LC
109		17	max	0	1	.001	2	0	10	3.053e-5	10	NC	_1_	NC	1
110			min	0	15	001	3	0	3	-8.119e-5	1	NC	1	NC	1
111		18	max	0	1	0	2	0	10	3.053e-5	10	NC	1_	NC	1
112			min	0	15	0	3	0	3	-8.119e-5	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	3.053e-5	10	NC	1	NC	1
114			min	0	1	0	1	0	1	-8.119e-5	1	NC	1	NC	1
115	M6	1	max	.006	2	.03	2	0	9	5.667e-4	3	NC	3	NC	1
116			min	01	3	03	3	008	3	-2.401e-7	9	1398.14	2	5303.046	3
117		2	max	.005	2	.028	2	0	9	5.488e-4	3	NC	3	NC	1
118			min	009	3	028	3	008	3	-5.066e-7	9	1499.896	2	5598.831	3
119		3	max	.005	2	.026	2	0	9	5.309e-4	3	NC	3	NC	1
120			min	009	3	027	3	007	3	-7.731e-7	9	1617.017	2	5955.54	3
121		4	max	.005	2	.024	2	0	9	5.13e-4	3	NC	3	NC	1
122			min	008	3	025	3	007	3	-1.04e-6	9	1752.592	2	6385.534	3
123		5	max	.004	2	.022	2	0	9	4.95e-4	3	NC	3	NC	1
124			min	008	3	024	3	006	3	-1.306e-6	9	1910.605	2	6905.382	3
125		6	max	.004	2	.02	2	0	9	4.771e-4	3	NC	3	NC	1
126			min	007	3	022	3	006	3	-1.572e-6	9	2096.276	2	7537.538	3
127		7	max	.004	2	.018	2	0	9	4.592e-4	3	NC	3	NC	1
128			min	007	3	021	3	005	3	-1.839e-6	9	2316.567	2	8312.913	3
129		8	max	.003	2	.016	2	0	9	4.412e-4	3	NC	3	NC	1
130			min	006	3	019	3	005	3	-2.105e-6	9	2580.976	2	9274.926	3
131		9	max	.003	2	.015	2	0	9	4.233e-4	3	NC	3	NC	1
132			min	006	3	017	3	004	3	-2.372e-6	9	2902.794	2	NC	1
133		10	max	.003	2	.013	2	0	9	4.054e-4	3	NC	3	NC	1
134		1.0	min	005	3	016	3	004	3	-2.638e-6	9	3301.214	2	NC	1
135		11	max	.002	2	.011	2	0	9	3.875e-4	3	NC	3	NC	1
136			min	004	3	014	3	003	3	-2.905e-6	9	3805.002	2	NC	1
137		12	max	.002	2	.01	2	0	9	3.695e-4	3	NC	3	NC	1
138		1-	min	004	3	012	3	003	3	-3.171e-6	9	4459.33	2	NC	1
139		13	max	.002	2	.008	2	0	9	3.516e-4	3	NC	1	NC	1
140		1.0	min	003	3	011	3	002	3	-3.438e-6	9	5339.43	2	NC	1
141		14	max	.002	2	.006	2	0	9	3.337e-4	3	NC	1	NC	1
142		17	min	003	3	009	3	002	3	-3.704e-6	9	6580.625	2	NC	1
143		15	max	.001	2	.005	2	0	9	3.158e-4	3	NC	1	NC	1
144		15	min	002	3	007	3	001	3	-3.971e-6	9	8453.423	2	NC	1
145		16	max	0	2	.004	2	0	9	2.978e-4	3	NC	1	NC	1
146		10	min	002	3	005	3	0	3	-4.237e-6	9	NC	1	NC	1
147		17	max	0	2	.002	2	0	9	2.799e-4	3	NC	1	NC	1
148		17	min	001	3	004	3	0	3	-4.504e-6	9	NC	1	NC	1
149		18	max	0	2	.001	2	0	9	2.62e-4		NC	1	NC	1
150		10	min	0	3	002	3	0	3	-4.77e-6	9	NC	1	NC	1
151		19	max	0	1	0	1	0	1	2.441e-4	3	NC	1	NC	1
152		19	min	0	1	0	1	0	1	-5.036e-6	9	NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	2.405e-6	9	NC	1	NC	1
154	IVI7	-	min	0	1	0	1	0	1	-1.162e-4	3	NC NC	1	NC	1
155		2		0	3	.001	2	0	3	2.201e-6	9	NC	1	NC	1
156		 	max min	0	2	002	3	0	9	-8.783e-5	3	NC NC	1	NC	1
		2			3		2						1		1
157 158		3	max min	0	2	.002 004	3	.001 0	9	1.996e-6 -5.948e-5	3	NC NC	1	NC NC	1
159		1	1 1	.001	3		2	.002				NC NC	1	NC NC	1
160		4	max		2	.003			3	1.792e-6	9	NC NC	1	NC NC	1
		F	min	001		006	3	0	9	-3.113e-5	3				
161		5	max	.001	3	.005	2	.002	3	1.588e-6	9	NC NC	1	NC NC	1
162		_	min	002	2	007	3	0	9	-2.782e-6	3	NC NC	•	NC NC	•
163		6	max	.002	3	.006	2	.002	3	2.557e-5	3_	NC POEC FE1	1	NC NC	1
164		7	min	002	2	009	3	0	9	0	5	8056.551	2	NC NC	
165		7	max	.002	3	.007	2	.003	3	5.392e-5	3	NC	1	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					LC
166			min	002	2	011	3	0	9	0	5	6666.518	2	NC	1
167		8	max	.002	3	.008	2	.003	3	8.227e-5	3	NC	_1_	NC	1
168			min	003	2	012	3	0	9	0	5	5645.726	2	NC	1
169		9	max	.003	3	.009	2	.003	3	1.106e-4	3	NC	_1_	NC	1
170		4.0	min	003	2	014	3	0	9	0	5	4860.513	2	NC	1
171		10	max	.003	3	.011	2	.003	3	1.39e-4	3_	NC 4000 000	3	NC NC	1
172		44	min	004	2	015	3	0	9	0	5	4236.682	2	NC NC	1
173		11	max	.004	3	.012	2	.004	3	1.673e-4	3	NC	3	NC	1
174		40	min	004	2	017	3	0	9	0	<u>15</u>	3729.533	2	NC NC	1
175		12	max	.004 005	3	.014 018	3	.004	9	1.957e-4	<u>3</u>	NC 3310.313	3	NC NC	1
176 177		13	min		3		2	<u> </u>	3	0 2.24e-4	<u>15</u>	NC	3	NC NC	1
178		13	max	.004 005	2	.016 019	3	<u>.004</u>	9	-4.634e-8	9	2959.496	2	NC NC	1
179		14	max	.005	3	019 .017	2	.004	3	2.524e-4	3	NC	3	NC NC	1
180		14	min	005	2	02	3	0 4	9	-2.506e-7	9	2663.215	2	NC	1
181		15	max	.005	3	.019	2	.004	3	2.807e-4	3	NC	3	NC	1
182		10	min	006	2	021	3	0	9	-4.549e-7	9	2411.255	2	NC	1
183		16	max	.005	3	.021	2	.004	3	3.091e-4	3	NC	3	NC	1
184		10	min	006	2	022	3	0	9	-6.591e-7	9	2195.862	2	NC	1
185		17	max	.006	3	.023	2	.004	3	3.374e-4	3	NC	3	NC	1
186		<u> </u>	min	007	2	023	3	0	9	-8.634e-7	9	2011.016	2	NC	1
187		18	max	.006	3	.025	2	.004	3	3.658e-4	3	NC	3	NC	1
188			min	007	2	024	3	0	9	-1.068e-6	9	1851.958	2	NC	1
189		19	max	.006	3	.027	2	.004	3	3.941e-4	3	NC	3	NC	1
190			min	007	2	025	3	0	9	-1.272e-6	9	1714.881	2	NC	1
191	M8	1	max	.003	2	.035	2	0	9	-5.27e-8	15	NC	1	NC	1
192			min	0	15	03	3	003	3	-2.674e-4	3	NC	1	6955.533	3
193		2	max	.002	2	.033	2	0	9	-5.27e-8	15	NC	1	NC	1
194			min	0	15	028	3	003	3	-2.674e-4	3	NC	1	7583.727	3
195		3	max	.002	2	.031	2	0	9	-5.27e-8	<u>15</u>	NC	1_	NC	1_
196			min	0	15	027	3	002	3	-2.674e-4	3	NC	1	8331.578	3
197		4	max	.002	2	.029	2	0	9	-5.27e-8	15	NC	_1_	NC	1
198			min	0	15	025	3	002	3	-2.674e-4	3	NC	1_	9230.607	3
199		5	max	.002	2	.027	2	0	9	-5.27e-8	<u>15</u>	NC	_1_	NC	1
200			min	0	15	023	3	002	3	-2.674e-4	3	NC	_1_	NC	1
201		6	max	.002	2	.025	2	0	9	-5.27e-8	<u>15</u>	NC	_1_	NC	1
202		<u> </u>	min	0	15	022	3	002	3	-2.674e-4	3	NC	1_	NC	1
203		7	max	.002	2	.023	2	0	9	-5.27e-8	<u>15</u>	NC	1_	NC NC	1
204			min	0	15	02	3	001	3	-2.674e-4	3_	NC	_1_	NC NC	1
205		8	max	.002	2	.022	2	0	9	-5.27e-8	<u>15</u>	NC NC	1_	NC NC	1
206			min	0	15	018	3	001		-2.674e-4		NC NC	1	NC NC	1
207		9	max	.001	2	.02	2	0	9	-5.27e-8	<u>15</u>	NC NC	1	NC	1
208		10	min	0	15 2	017	2	<u>001</u>	3	-2.674e-4	<u>3</u>	NC NC	<u>1</u> 1	NC NC	1
209		10	max	.001		.018	3	0	9	-5.27e-8	<u>15</u>		1	NC NC	1
210		11	min max	<u> </u>	15 2	015 .016	2	<u> </u>	9	-2.674e-4 -5.27e-8	<u>3</u> 15	NC NC	1	NC NC	1
212			min	0	15	013	3	0	3	-2.674e-4	3	NC	1	NC	1
213		12	max	.001	2	.014	2	0	9	-5.27e-8	15	NC	1	NC	1
214		12	min	0	15	012	3	0	3	-2.674e-4	3	NC	1	NC	1
215		13	max	0	2	.012	2	0	9	-2.674e-4 -5.27e-8	<u> </u>	NC NC	1	NC NC	1
216		13	min	0	15	012	3	0	3	-3.27e-6 -2.674e-4	3	NC NC	1	NC NC	1
217		14	max	0	2	.01	2	0	9	-5.27e-8	15	NC	1	NC	1
218			min	0	15	008	3	0	3	-2.674e-4	3	NC	1	NC	1
219		15	max	0	2	.008	2	0	9	-5.27e-8	15	NC	1	NC	1
220		10	min	0	15	007	3	0	3	-2.674e-4	3	NC	1	NC	1
221		16	max	0	2	.006	2	0	9	-5.27e-8	15	NC	1	NC	1
222		1.0	min	0	15	005	3	0	3	-2.674e-4	3	NC	1	NC	1
			170011		10	.000		•	U	2.0770 4		110		110	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio) LC
223		17	max	0	2	.004	2	0	9	-5.27e-8	<u>15</u>	NC	_1_	NC	1
224			min	0	15	003	3	0	3	-2.674e-4	3	NC	1_	NC	1
225		18	max	0	2	.002	2	0	9	-5.27e-8	<u>15</u>	NC	_1_	NC	1
226			min	0	15	002	3	0	3	-2.674e-4	3	NC	1_	NC	1
227		19	max	0	1	0	1	0	1	-5.27e-8	<u>15</u>	NC	1_	NC	1
228	1440		min	0	1	0	1	0	1	-2.674e-4	3	NC	1_	NC	1
229	<u>M10</u>	1_	max	.002	2	.011	2	0	10	1.191e-4	1_	NC	3	NC	1
230			min	002	3	011	3	0	3	-6.375e-4	3	3927.767	2	NC NC	1
231		2	max	.002	2	.01	2	0	10	1.134e-4	1	NC 420C OCC	3	NC NC	1
232		2	min	002	2	<u>011</u>	2	0	1	-6.141e-4	3	4296.066 NC	2	NC NC	1
233		3	max	.002 002	3	.009	3	<u> </u>	10	1.077e-4 -5.908e-4	<u>1</u> 3	4735.801	3	NC NC	1
235		4	min	002 .002	2	01 .008	2	0	10			NC	<u>2</u> 1	NC NC	1
236		4	max	002	3		3	0	1	-5.674e-4	<u>1</u> 3	5264.443	2	NC NC	1
237		5		.002	2	01 .007	2	0	10	9.632e-5	<u> </u>	NC	1	NC NC	1
238		- 5	max	002	3	009	3	0	1	-5.44e-4	3	5905.35	2	NC	1
239		6	max	.002	2	.006	2	0	10	9.061e-5	1	NC	1	NC	1
240			min	002	3	009	3	0	1	-5.206e-4	3	6690.239	2	NC	1
241		7	max	.002	2	.006	2	0	3	8.49e-5	1	NC	1	NC	1
242			min	002	3	008	3	0	1	-4.972e-4	3	7663.006	2	NC	1
243		8	max	.001	2	.005	2	0	3	7.919e-5	1	NC	1	NC	1
244			min	001	3	008	3	0	1	-4.738e-4	3	8885.744	2	NC	1
245		9	max	.001	2	.004	2	0	3	7.349e-5	1	NC	1	NC	1
246			min	001	3	007	3	0	1	-4.504e-4	3	NC	1	NC	1
247		10	max	0	2	.003	2	0	3	6.778e-5	1	NC	1	NC	1
248			min	001	3	007	3	0	1	-4.27e-4	3	NC	1	NC	1
249		11	max	0	2	.003	2	0	3	6.207e-5	1	NC	1	NC	1
250			min	001	3	006	3	0	1	-4.036e-4	3	NC	1	NC	1
251		12	max	0	2	.002	2	0	3	5.636e-5	1	NC	1	NC	1
252			min	0	3	005	3	0	1	-3.802e-4	3	NC	1	NC	1
253		13	max	0	2	.002	2	0	3	5.066e-5	_1_	NC	1_	NC	1
254			min	0	3	005	3	0	1	-3.568e-4	3	NC	1_	NC	1
255		14	max	00	2	.001	2	0	3	4.495e-5	_1_	NC	_1_	NC	1
256			min	0	3	004	3	0	1	-3.334e-4	3	NC	1_	NC	1
257		15	max	0	2	0	2	0	3	3.924e-5	_1_	NC	_1_	NC	1
258			min	0	3	003	3	0	1	-3.1e-4	3	NC	1_	NC	1
259		16	max	0	2	0	2	0	3	3.353e-5	1_	NC	1_	NC	1
260			min	0	3	002	3	0	1	-2.866e-4	3	NC	1_	NC	1
261		17	max	0	2	0	2	0	3	2.783e-5	1	NC	_1_	NC	1
262		40	min	0	3	002	3	0	1	-2.632e-4	3	NC NC	1_	NC NC	1
263		18	max	0	2	0	2	0	3	2.212e-5		NC NC	1_	NC NC	1
264		10	min	0	3	0	3	0	1	-2.398e-4	3	NC NC	1_	NC NC	1
265		19	max	0	1	0	1	0 0	1	1.641e-5 -2.164e-4	1_2	NC NC	1	NC NC	1
266 267	M11	1	min	<u> </u>	1	<u> </u>	1	0	1	1.036e-4	3	NC NC	1	NC NC	1
268	IVI I I		max min	0	1	0	1	0	1	-7.902e-6	1	NC NC	1	NC NC	1
269		2	max	0	3	0	2	0	1	7.74e-5	3	NC	1	NC	1
270		 	min	0	2	0	3	0	3	-1.112e-5	1	NC	1	NC	1
271		3		0	3	0	2	0	1	5.116e-5	3	NC	1	NC	1
272			max min	0	2	002	3	0	3	-1.434e-5	1	NC NC	1	NC NC	1
273		4	max	0	3	<u>002</u> 0	2	0	1	2.492e-5	3	NC NC	1	NC NC	1
274			min	0	2	003	3	001	3	-1.757e-5	1	NC	1	NC	1
275		5	max	0	3	003	2	<u>001</u> 0	1	7.793e-6	10	NC	1	NC	1
276			min	0	2	004	3	002	3	-2.079e-5	1	NC	1	NC	1
277		6	max	0	3	0	2	<u>.002</u>	10	8.994e-6	10	NC	1	NC	1
278			min	0	2	004	3	002	3	-2.755e-5	3	NC	1	NC	1
279		7	max	0	3	0	2	0	10		10	NC	1	NC	1
			man												

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r			LC) LC
280			min	0	2	005	3	002	3 -5.378e-5	3	NC	1_	NC	1
281		8	max	.001	3	.001	2	0	10 1.139e-5	10	NC	1_	NC	1
282			min	001	2	006	3	002	3 -8.002e-5	3	NC	1_	NC	1
283		9	max	.001	3	.001	2	0	10 1.259e-5	10	NC	1_	NC	1
284		40	min	001	2	007	3	003	3 -1.063e-4	3	NC	1_	NC	1
285		10	max	.001	3	.002	2	0	10 1.379e-5	10	NC	1	NC	1
286		44	min	001	2	007	3	003	3 -1.325e-4	3	NC NC	1_	NC NC	1
287		11	max	.001	3	.002	2	0	10 1.499e-5	10	NC NC	1_	NC	1
288		40	min	002	2	008	3	003	3 -1.587e-4	3	NC NC	1_	NC NC	1
289		12	max	.002	3	.003	3	003	10 1.619e-5	10	NC NC	<u>1</u> 1	NC NC	1
290 291		13	min	002 .002	3	008 .004	2	003 0	3 -1.85e-4 10 1.739e-5	10	NC NC	1	NC NC	1
292		13	max	002	2	004 008	3	003	3 -2.112e-4		NC NC	1	NC NC	1
293		14	max	.002	3	.004	2	<u>003</u> 0	10 1.859e-5	10	NC NC	1	NC NC	1
294		14	min	002	2	009	3	003	3 -2.374e-4	3	NC	1	NC	1
295		15	max	.002	3	.005	2	<u>003</u> 0	10 1.98e-5	10	NC	1	NC	1
296		10	min	002	2	009	3	003	3 -2.637e-4	3	8567.459	2	NC	1
297		16	max	.002	3	.006	2	<u>.005</u>	10 2.1e-5	10	NC	1	NC	1
298		10	min	002	2	009	3	003	3 -2.899e-4	3	7272.275	2	NC	1
299		17	max	.002	3	.007	2	<u></u> 0	10 2.22e-5	10	NC NC	1	NC	1
300		<u> </u>	min	002	2	009	3	003	3 -3.161e-4	3	6267.934	2	NC	1
301		18	max	.002	3	.008	2	0	10 2.34e-5	10	NC	1	NC	1
302			min	003	2	009	3	002	3 -3.424e-4	3	5480.376	2	NC	1
303		19	max	.003	3	.009	2	0	10 2.46e-5	10	NC	3	NC	1
304			min	003	2	009	3	002	3 -3.686e-4	3	4857.373	2	NC	1
305	M12	1	max	0	1	.012	2	.001	3 4.448e-4	3	NC	1	NC	1
306			min	0	15	011	3	0	10 -3.082e-5	10	NC	1	NC	1
307		2	max	0	1	.012	2	.001	3 4.448e-4	3	NC	1	NC	1
308			min	0	15	011	3	0	10 -3.082e-5	10	NC	1	NC	1
309		3	max	0	1	.011	2	.001	3 4.448e-4	3	NC	1_	NC	1
310			min	0	15	01	3	0	10 -3.082e-5	10	NC	1_	NC	1
311		4	max	0	1	.01	2	0	3 4.448e-4	3	NC	_1_	NC	1
312		_	min	0	15	009	3	0	10 -3.082e-5	10	NC	_1_	NC	1
313		5	max	0	1	.01	2	0	3 4.448e-4	3	NC	1_	NC	1
314			min	0	15	009	3	0	10 -3.082e-5	10	NC	1_	NC	1
315		6	max	0	1	.009	2	0	3 4.448e-4	3	NC	1_	NC	1
316		-	min	0	15	008	3	0	10 -3.082e-5	10	NC NC	1_	NC NC	1
317		7	max	0	1	.008	2	0	3 4.448e-4	3	NC	1	NC	1
318			min	0	15	007	3	0	10 -3.082e-5		NC NC	1_	NC NC	1
319 320		8	max	<u> </u>	15	.008	3	<u> </u>	3 4.448e-4 10 -3.082e-5	3	NC NC	1	NC NC	1
			min		1	007	2				NC NC	1	NC NC	1
321		9	max min	<u> </u>	15	.007 006	3	0 0	3 4.448e-4 10 -3.082e-5	10	NC NC	1	NC NC	1
323		10		0	1	.006	2	0	3 4.448e-4	3	NC NC	1	NC NC	1
324		10	max min	0	15	006	3	0	10 -3.082e-5		NC	1	NC	1
325		11	max	0	1	.006	2	0	3 4.448e-4	3	NC	1	NC	1
326			min	0	15	005	3	0	10 -3.082e-5		NC	1	NC	1
327		12	max	0	1	.005	2	0	3 4.448e-4	3	NC	1	NC	1
328		12	min	0	15	004	3	0	10 -3.082e-5	_	NC	1	NC	1
329		13	max	0	1	.004	2	0	3 4.448e-4	3	NC	1	NC	1
330		13	min	0	15	004	3	0	10 -3.082e-5		NC	1	NC	1
331		14	max	0	1	.003	2	0	3 4.448e-4	3	NC	1	NC	1
332			min	0	15	003	3	0	10 -3.082e-5		NC	1	NC	1
333		15	max	0	1	.003	2	0	3 4.448e-4	3	NC	1	NC	1
334			min	0	15	002	3	0	10 -3.082e-5		NC	1	NC	1
335		16	max	0	1	.002	2	0	3 4.448e-4	3	NC	1	NC	1
336			min	0	15	002	3	0	10 -3.082e-5		NC	1	NC	1
000						.002			10 0.0020 0			_		

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	.001	2	0	3	4.448e-4	3	NC	1	NC	1
338			min	0	15	001	3	0	10	-3.082e-5	10	NC	1	NC	1
339		18	max	0	1	0	2	0	3	4.448e-4	3	NC	1	NC	1
340			min	0	15	0	3	0	10	-3.082e-5	10	NC	1	NC	1
341		19	max	0	1	0	1	0	1	4.448e-4	3	NC	1	NC	1
342			min	0	1	0	1	0	1	-3.082e-5	10	NC	1	NC	1
343	M1	1	max	.01	3	.027	3	.005	3	3.921e-3	2	NC	1	NC	1
344			min	01	2	021	2	0	9	-5.817e-3	3	NC	1	NC	1
345		2	max	.01	3	.016	3	.004	3	1.951e-3	2	NC	4	NC	1
346		_	min	01	2	013	2	0	9	-2.859e-3	3	5558.076	2	NC	1
347		3	max	.01	3	.007	3	.003	3	4.48e-5	3	NC	4	NC	1
348			min	01	2	005	2	0	9	-5.761e-5		2818.391	3	NC	1
349		4	max	.01	3	.002	2	.002	3	4.791e-5	3	NC NC	4	NC	1
350			min	01	2	002	3	001	9	-4.871e-5		1888.413	3	NC	1
351		5	max	.01	3	.002	2	.002	3	5.101e-5	3	NC	4	NC	1
352		J	min	01	2	008	3	001	9	-3.982e-5	9	1478.701	3	NC	1
353		6	max	.01	3	.014	2	.002	3	5.412e-5	3	NC	4	NC	1
354		0	min	01	2	014	3	001	9	-3.093e-5		1257.464	3	NC	1
355		7	max	.01	3	.018	2	.002	3	5.723e-5	3	NC	4	NC	1
356		-	min	01	2	018	3	0	9	-2.203e-5	9	1127.604	3	NC	1
357		8	max	.01	3	.021	2	.001	3	6.033e-5	3	NC	4	NC	1
358		0	min	01	2	021	3	0	9	-1.314e-5		1051.15	3	NC	1
359		9		.009	3	.024	2	.001	3	6.344e-5		NC	4	NC	1
		9	max	01	2	023	3	.001	9	-4.243e-6	<u>3</u> 9	1011.037	3	NC NC	1
360		10			3	.025	2	•	3			NC	4	NC NC	1
361 362		10	max	<u>.009</u> 01	2	025	3	.002	9	6.655e-5 -2.607e-6	<u>3</u>	999.601	3	NC NC	1
363		11	min	.009	3	024 .024	2	.002	3		3	NC		NC NC	1
			max	01	2	023	3		10	6.966e-5		1014.586	3	NC NC	1
364		12			3	.023		.002	3	-6.127e-6	3	NC	4	NC NC	1
365		12	max	.009	2		3		10	7.276e-5			3	NC NC	1
366		13	min	<u>01</u>	3	021 .02		.002	3	-9.648e-6 7.587e-5		1058.087 NC	<u>3</u>		1
367		13	max	.009	2		3				3			NC NC	_
368		4.4	min	<u>01</u>		018		0	10	-1.317e-5			3	NC NC	1
369		14	max	.009	3	.015	2	.002	3	7.898e-5	3	NC 4000 CEO	4_	NC NC	1
370		4.5	min	01		014	3	0	10	-1.669e-5	10	1268.658	3	NC NC	1
371		15	max	.009	3	.009	2	.002	3	8.208e-5	3	NC	4_	NC	1
372		40	min	01		008	3	0	10	-2.021e-5	10	1486.735	3	NC NC	1
373		16	max	.009	3	.002	2	.002	3	8.626e-5	3	NC	4_	NC	1
374		47	min	01	2	002	3	0	10	-2.279e-5		1877.52	3	NC	1
375		17	max	.009	3	.006	3	.002	3	1.158e-4	3	NC 0704 054	4	NC	1
376		10	min	01	2	008	2	0	10	-2.862e-6		2724.254	3	NC NC	1
377		18	max	.009	3	.014	3	.002	3	2.894e-3		NC	1	NC	1
378		40	min	01	2	018	2	0				5341.638	3	NC NC	1
379		19	max	.009	3	.023	3	.001	3	5.843e-3	2	NC 5700,000	1_	NC	1
380		-	min	01	2	029	2	0	9	-3.572e-3		5736.633	2	NC	1
381	<u>M5</u>	1	max	.026	3	.076	3	.005	3	2.195e-5	3_	NC 1001 005	1_	NC	1
382			min	027	2	061	2	0	9	0	15	4204.935	3	NC	1
383		2	max	.026	3	.046	3	.007	3	1.757e-4	3_	NC	4_	NC	1
384			min	027	2	037	2	0	9	-2.069e-6		1914.723	2	NC	1
385		3	max	.026	3	.018	3	.008	3	3.263e-4	3	NC	4	NC	1
386			min	027	2	014	2	0	9	-4.172e-6	9	981.355	2	NC NC	1
387		4	max	.026	3	.007	2	.009	3	3.128e-4	3_	NC 004.404	5	NC 0700 044	1
388			min	027	2	006	3	0	9	-3.901e-6		664.131	3_	9782.011	3
389		5	max	.026	3	.025	2	.01	3	2.992e-4	3_	NC 5404	5	NC	1
390			min	027	2	026	3	0	9	-3.629e-6		519.191	3_	8198.947	3
391		6	max	.026	3	.041	2	.01	3	2.856e-4	3_	NC 444.507	5_	NC 7400 044	1
392		_	min	027	2	041	3	0	9	-3.358e-6		441.597	3_	7422.814	
393		7	max	.025	3	.053	2	.01	3	2.72e-4	3	NC	5	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	<u>z [in]</u>				(n) L/y Ratio			
394			min	027	2	054	3	0	9	-3.087e-6	9	396.404	3	7080.451	3
395		8	max	.025	3	.063	2	01	3	2.585e-4	3	NC	5	NC	1
396			min	027	2	062	3	0	9	-2.815e-6	9	370.081	3_	7030.076	3
397		9	max	.025	3	.069	2	.01	3	2.449e-4	3	NC OFC FOZ	5	NC	1
398		40	min	027	2	067	3	0	9	-2.544e-6	9	356.587	3	7220.608	3
399		10	max	.025	3	.071	2	.009	3	2.313e-4	3	NC 252.002	5	NC 7050 540	1
400		4.4	min	027	2	068	3	0	9	-2.272e-6	9	352.662	2	7650.516	3
401		11	max	.025	3	.071	2	.008	3	2.177e-4	3	NC OFF 440	5_	NC	1
402		40	min	027	2	066	3	0	9	-2.001e-6		355.116	2	8358.72	3
403		12	max	.025	2	.066	3	800.	3	2.041e-4 -1.729e-6	3	NC 260 220	5	NC	3
404		40	min	027		06		0	9		9	368.338	2	9433.487	
405		13	max	.025	3	.057	2	.007	3	1.906e-4	3	NC	5	NC NC	1
406		4.4	min	027		051	3	0	9	-1.458e-6	9	395.509	2	NC NC	1
407		14	max	.025	3	.044	2	.006	3	1.77e-4	3	NC	5_	NC	1
408		4.5	min	027	2	039	3	0	9	-1.186e-6	9	443.947	2	NC NC	1
409		15	max	.025	3	.027	2	.005	3	1.634e-4	3	NC F20 CO2	5	NC NC	1
410		4.0	min	027	2	024	3	0	9	-9.147e-7	9	530.603	3	NC NC	1
411		16	max	.025	3	.005	2	.004	3	1.455e-4	3	NC C70.07	5	NC NC	1
412		47	min	027	2	005	3	0	9	-9.001e-7	9	670.97	3	NC NC	•
413		17	max	.025 027	2	.017 022	3	.003	3	2.389e-5	3	NC 973.179	3	NC NC	1
414		10	min					0	9	-7.001e-6	9			NC NC	-
415		18	max	.025	3	.04	3	.002	3	8.975e-6	3	NC 1908.322	4		1
416		40	min	027		053	2	0	9	-3.658e-6	9		3	NC NC	1
417		19	max	.025	3	.065	3	.001	3	-5.056e-8	<u>15</u>	NC 4007.404	2	NC NC	1
418	MO	1	min	027	3	085	3	0	3	-3.933e-6	3	1967.104 NC	1	NC NC	1
419	<u>M9</u>		max	.01	2	.025		.005	9	5.861e-3 -3.921e-3	3	NC NC	1		1
420		2	min	01	3	021	2	0	3		3	NC NC	•	NC NC	
421			max	.01	2	.015	3	.003		2.867e-3		4617.154	3	NC NC	1
422 423		3	min	01	3	013 .005	3	0	3	-1.951e-3		NC	4	NC NC	1
424		3	max	.01 01	2	005	2	<u> </u>	10	5.554e-5 -7.081e-5	<u>1</u> 3	2388.287	3	NC NC	1
425		4	max	.01	3	.002	2	.001	1	4.637e-5	<u> </u>	NC	4	NC	1
426		4	min	01	2	003	3	<u>.001</u>	3	-7.398e-5	3	1696.708	3	NC NC	1
427		5		.01	3	.003	2	.001	1	3.72e-5	<u> </u>	NC	4	NC NC	1
428		J	max	01	2	01	3	002	3	-7.715e-5	3	1365.979	3	8252.455	3
429		6		.01	3	.014	2	.002	1	2.803e-5	<u>3</u> 1	NC	4	NC	1
430			max	01	2	015	3	003	3	-8.032e-5	3	1180.544	3	7150.266	3
431		7	max	.01	3	.018	2	<u>003</u> 0	1	1.886e-5	<u> </u>	NC	4	NC	1
432			min	01	2	019	3	004	3	-8.348e-5		1069.876	3	6509.039	3
433		8	max	.01	3	.021	2	004	1	9.694e-6	<u> </u>	NC	4	NC	1
434			min	01	2	022	3	004				1004.775			
435		9	max	.01	3	.024	2	<u></u> 0	1	5.253e-7	1	NC	4	NC	1
436		 	min	01	2	024	3	005	3	-8.982e-5		971.76	3	5981.275	_
437		10	max	.01	3	.025	2	0	1	2.744e-6	10	NC	4	NC	1
438		10	min	01	2	024	3	005	3	-9.299e-5	3	964.83	3	5976.602	3
439		11	max	.01	3	.024	2	<u>.003</u>	10	6.255e-6	10	NC	4	NC	1
440			min	01	2	023	3	005	3	-9.615e-5	3	982.558	3	6125.451	3
441		12	max	.009	3	.023	2	0	10	9.767e-6	10	NC	4	NC	1
442		12	min	01	2	021	3	005	3	-9.932e-5		1027.436	3	6444.669	3
443		13	max	.009	3	.02	2	<u>005</u>	10	1.328e-5	10	NC	4	NC	1
444		10	min	01	2	018	3	004	3	-1.025e-4	3	1106.89	3	6981.462	3
445		14	max	.009	3	.015	2	0	10	1.679e-5	10	NC	4	NC	1
446		'-	min	01	2	014	3	004	3	-1.057e-4		1236.842	3	7834.665	3
447		15	max	.009	3	.009	2	<u>004</u>	10	2.03e-5	10	NC	4	NC	1
448		10	min	01	2	008	3	003	3	-1.088e-4	3	1451.606	3	9212.565	3
449		16	max	.009	3	.002	2	- <u>003</u> 0	10	2.286e-5	10	NC	4	NC	1
450		'	min	01	2	002	3	002	3	-1.009e-4	_	1835.338	3	NC	1
TJU			111001	.01		.002	J	.002	J	1.0036-4	J	1000.000	J	140	

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

451		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
454			17	max	.009		.006					3				1
4556				min					001	3		9		3		1
456			18													
456																
457			19													-
458		1440														
ASS		<u>M13</u>	1													
A60											-3.204e-3			•		
661																_
A62			2													
663			3													_
A65			1													
465			4													
A66			5											_		
468																-
468			6													
469																_
A70			7											_		1
471																2
472			8													
473											-7.945e-3					2
474			9													
476					005							2		3		2
476			10							3		3		4		
478				min	005	3		2		2				3		2
479	477		11	max	0	9	.079	3	.027	3	1.055e-2	3	NC	4		
480	478			min	005	3	063	2	027	2	-8.622e-3	2	1351.87	3	4125.315	3
481	479		12	max	0		.086	3	.027	3		3		4		
Max				min	005									3		3
483			13													_
484 min 005 3 07 2 018 2 -6.59e-3 2 1050.215 3 5079.295 3 485 15 max 0 9 .092 3 .021 3 7.232e-3 3 NC 4 NC 1 486 min 005 3 067 2 015 2 -5.913e-3 2 1091.271 3 6309.563 3 487 16 max 0 9 .084 3 .018 3 6.403e-3 3 NC 4 NC 1 488 min 005 3 06 2 013 2 -5.236e-3 2 1257.511 3 8689.715 3 489 17 max 0 9 .069 3 .015 3 5.575e-3 3 NC 4 NC 1 490 min 005 3 -																
485			14													_
486 min 005 3 067 2 015 2 -5.913e-3 2 1091.271 3 6309.563 3 487 16 max 0 9 .084 3 .018 3 6.403e-3 3 NC 4 NC 1 488 min 005 3 06 2 013 2 -5.236e-3 2 1257.511 3 8689.715 3 489 17 max 0 9 .069 3 .015 3 5.575e-3 3 NC 4 NC 1 490 min 005 3 055 2 011 2 -4.559e-3 2 1694.995 3 NC 1 491 18 max 0 9 .049 3 .012 3 4.746e-3 3 NC 1 NC 1 492 min 005 3 027																
487 16 max 0 9 .084 3 .018 3 6.403e-3 3 NC 4 NC 1 488 min 005 3 06 2 013 2 -5.236e-3 2 1257.511 3 8689.715 3 489 17 max 0 9 .069 3 .015 3 5.575e-3 3 NC 4 NC 1 490 min 005 3 05 2 011 2 -4.559e-3 2 1694.995 3 NC 1 491 18 max 0 9 .049 3 .012 3 4.746e-3 3 NC 4 NC 1 492 min 005 3 037 2 01 2 -3.882e-3 2 3170.309 3 NC 1 NC 1 493 19 max			15													-
488 min 005 3 06 2 013 2 -5.236e-3 2 1257.511 3 8689.715 3 489 17 max 0 9 .069 3 .015 3 5.575e-3 3 NC 4 NC 1 490 min 005 3 05 2 011 2 -4.559e-3 2 1694.995 3 NC 1 491 18 max 0 9 .049 3 .012 3 4.746e-3 3 NC 4 NC 1 492 min 005 3 037 2 01 2 -3.882e-3 2 3170.309 3 NC 1 NC 1 493 19 max 0 9 .027 3 .01 3 .3917e-3 3 NC 1 NC 1 494 min 005			40													
489 17 max 0 9 .069 3 .015 3 5.575e-3 3 NC 4 NC 1 490 min 005 3 05 2 011 2 -4.559e-3 2 1694.995 3 NC 1 491 18 max 0 9 .049 3 .012 3 4.746e-3 3 NC 4 NC 1 492 min 005 3 037 2 01 2 -3.882e-3 2 3170.309 3 NC 1 493 19 max 0 9 .027 3 .01 3 3.917e-3 3 NC 1 NC 1 494 min 005 3 021 2 01 2 -3.205e-3 2 NC 1 NC 1 496 min 001 3 029 2 </td <td></td> <td></td> <td>16</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.403e-3</td> <td></td> <td></td> <td></td> <td></td> <td></td>			16								6.403e-3					
490 min 005 3 05 2 011 2 -4.559e-3 2 1694.995 3 NC 1 491 18 max 0 9 .049 3 .012 3 4.746e-3 3 NC 4 NC 1 492 min 005 3 037 2 01 2 -3.882e-3 2 3170.309 3 NC 1 493 19 max 0 9 .027 3 .01 3 3.917e-3 3 NC 1 NC 1 494 min 005 3 021 2 01 2 -3.205e-3 2 NC 1 NC 1 495 M16 1 max 0 9 .024 3 .009 3 4.259e-3 2 NC 1 NC 1 496 min 001 3 029<			47											_		
491 18 max 0 9 .049 3 .012 3 4.746e-3 3 NC 4 NC 1 492 min 005 3 037 2 01 2 -3.882e-3 2 3170.309 3 NC 1 493 19 max 0 9 .027 3 .01 3 3.917e-3 3 NC 1 NC 1 494 min 005 3 021 2 01 2 -3.205e-3 2 NC 1 NC 1 495 M16 1 max 0 9 .024 3 .009 3 4.259e-3 2 NC 1 NC 1 496 min 001 3 029 2 01 2 -3.383e-3 3 NC 1 NC 1 497 2 max 0 9 <			17													_
492 min 005 3 037 2 01 2 -3.882e-3 2 3170.309 3 NC 1 493 19 max 0 9 .027 3 .01 3 3.917e-3 3 NC 1 NC 1 494 min 005 3 021 2 01 2 -3.205e-3 2 NC 1 NC 1 495 M16 1 max 0 9 .024 3 .009 3 4.259e-3 2 NC 1 NC 1 496 min 001 3 029 2 01 2 -3.383e-3 3 NC 1 NC 1 497 2 max 0 9 .037 3 .012 3 5.16e-3 2 NC 4 NC 1 498 min 001 3 052			10	min												
493 19 max 0 9 .027 3 .01 3 3.917e-3 3 NC 1 NC 1 494 min 005 3 021 2 01 2 -3.205e-3 2 NC 1 NC 1 495 M16 1 max 0 9 .024 3 .009 3 4.259e-3 2 NC 1 NC 1 496 min 001 3 029 2 01 2 -3.383e-3 3 NC 1 NC 1 497 2 max 0 9 .037 3 .012 3 5.16e-3 2 NC 4 NC 1 498 min 001 3 052 2 01 2 -4.046e-3 3 3162.337 2 NC 1 499 3 max 0 9 <td< td=""><td></td><td></td><td>18</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			18													
494 min 005 3 021 2 01 2 -3.205e-3 2 NC 1 NC 1 495 M16 1 max 0 9 .024 3 .009 3 4.259e-3 2 NC 1 NC 1 496 min 001 3 029 2 01 2 -3.383e-3 3 NC 1 NC 1 497 2 max 0 9 .037 3 .012 3 5.16e-3 2 NC 4 NC 1 498 min 001 3 052 2 01 2 -4.046e-3 3 3162.337 2 NC 1 499 3 max 0 9 .05 3 .014 3 6.062e-3 2 NC 4 NC 1 500 min 001 3 072			10													
495 M16 1 max 0 9 .024 3 .009 3 4.259e-3 2 NC 1 NC 1 496 min 001 3 029 2 01 2 -3.383e-3 3 NC 1 NC 1 497 2 max 0 9 .037 3 .012 3 5.16e-3 2 NC 4 NC 1 498 min 001 3 052 2 01 2 -4.046e-3 3 3162.337 2 NC 1 499 3 max 0 9 .05 3 .014 3 6.062e-3 2 NC 4 NC 1 500 min 001 3 072 2 011 2 -4.709e-3 3 1684.602 2 NC 1 501 4 max 0 9			19													
496 min 001 3 029 2 01 2 -3.383e-3 3 NC 1 NC 1 497 2 max 0 9 .037 3 .012 3 5.16e-3 2 NC 4 NC 1 498 min 001 3 052 2 01 2 -4.046e-3 3 3162.337 2 NC 1 499 3 max 0 9 .05 3 .014 3 6.062e-3 2 NC 4 NC 1 500 min 001 3 072 2 011 2 -4.709e-3 3 1684.602 2 NC 1 501 4 max 0 9 .06 3 .017 3 6.963e-3 2 NC 4 NC 1 502 min 001 3 087 2		M16	1											_		
497 2 max 0 9 .037 3 .012 3 5.16e-3 2 NC 4 NC 1 498 min 001 3 052 2 01 2 -4.046e-3 3 3162.337 2 NC 1 499 3 max 0 9 .05 3 .014 3 6.062e-3 2 NC 4 NC 1 500 min 001 3 072 2 011 2 -4.709e-3 3 1684.602 2 NC 1 501 4 max 0 9 .06 3 .017 3 6.963e-3 2 NC 4 NC 1 502 min 001 3 087 2 013 2 -5.372e-3 3 1242.198 2 9269.287 3 503 5 max 0 9 .066 3 .02 3 7.865e-3 2 NC 4 NC 1		IVI IO														
498 min 001 3 052 2 01 2 -4.046e-3 3 3162.337 2 NC 1 499 3 max 0 9 .05 3 .014 3 6.062e-3 2 NC 4 NC 1 500 min 001 3 072 2 011 2 -4.709e-3 3 1684.602 2 NC 1 501 4 max 0 9 .06 3 .017 3 6.963e-3 2 NC 4 NC 1 502 min 001 3 087 2 013 2 -5.372e-3 3 1242.198 2 9269.287 3 503 5 max 0 9 .066 3 .02 3 7.865e-3 2 NC 4 NC 1 504 min 001 3 097			2													
499 3 max 0 9 .05 3 .014 3 6.062e-3 2 NC 4 NC 1 500 min 001 3 072 2 011 2 -4.709e-3 3 1684.602 2 NC 1 501 4 max 0 9 .06 3 .017 3 6.963e-3 2 NC 4 NC 1 502 min 001 3 087 2 013 2 -5.372e-3 3 1242.198 2 9269.287 3 503 5 max 0 9 .066 3 .02 3 7.865e-3 2 NC 4 NC 1 504 min 001 3 097 2 015 2 -6.035e-3 3 1068.299 2 6939.224 3 505 6 max 0 9 .07 3 .022 3 8.766e-3 2 NC 4 NC 1 <td></td>																
500 min 001 3 072 2 011 2 -4.709e-3 3 1684.602 2 NC 1 501 4 max 0 9 .06 3 .017 3 6.963e-3 2 NC 4 NC 1 502 min 001 3 087 2 013 2 -5.372e-3 3 1242.198 2 9269.287 3 503 5 max 0 9 .066 3 .02 3 7.865e-3 2 NC 4 NC 1 504 min 001 3 097 2 015 2 -6.035e-3 3 1068.299 2 6939.224 3 505 6 max 0 9 .07 3 .022 3 8.766e-3 2 NC 4 NC 1 506 min 001 3 1			3													
501 4 max 0 9 .06 3 .017 3 6.963e-3 2 NC 4 NC 1 502 min 001 3 087 2 013 2 -5.372e-3 3 1242.198 2 9269.287 3 503 5 max 0 9 .066 3 .02 3 7.865e-3 2 NC 4 NC 1 504 min 001 3 097 2 015 2 -6.035e-3 3 1068.299 2 6939.224 3 505 6 max 0 9 .07 3 .022 3 8.766e-3 2 NC 4 NC 1 506 min 001 3 1 2 018 2 -6.698e-3 3 1015.127 2 5689.133 3			Ť													
502 min 001 3 087 2 013 2 -5.372e-3 3 1242.198 2 9269.287 3 503 5 max 0 9 .066 3 .02 3 7.865e-3 2 NC 4 NC 1 504 min 001 3 097 2 015 2 -6.035e-3 3 1068.299 2 6939.224 3 505 6 max 0 9 .07 3 .022 3 8.766e-3 2 NC 4 NC 1 506 min 001 3 1 2 018 2 -6.698e-3 3 1015.127 2 5689.133 3			4													
503 5 max 0 9 .066 3 .02 3 7.865e-3 2 NC 4 NC 1 504 min 001 3 097 2 015 2 -6.035e-3 3 1068.299 2 6939.224 3 505 6 max 0 9 .07 3 .022 3 8.766e-3 2 NC 4 NC 1 506 min 001 3 1 2 018 2 -6.698e-3 3 1015.127 2 5689.133 3																
504 min 001 3 097 2 015 2 -6.035e-3 3 1068.299 2 6939.224 3 505 6 max 0 9 .07 3 .022 3 8.766e-3 2 NC 4 NC 1 506 min 001 3 1 2 018 2 -6.698e-3 3 1015.127 2 5689.133 3			5													
505 6 max 0 9 .07 3 .022 3 8.766e-3 2 NC 4 NC 1 506 min 001 3 1 2 018 2 -6.698e-3 3 1015.127 2 5689.133 3																_
506 min001 31 2018 2 -6.698e-3 3 1015.127 2 5689.133 3			6													
														2		3
507 7 max 0 9 .07 3 .024 3 9.668e-3 2 NC 4 NC 1	507		7		0	9	.07	3		3				4		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
508			min	001	3	099	2	021	2	-7.361e-3	3	1038.173	2	4987.565	
509		8	max	0	9	.068	3	.025	3	1.057e-2	2	NC	4_	NC	1
510			min	001	3	094	2	024	2	-8.024e-3	3	1118.157	2	4625.513	
511		9	max	0	9	.066	3	.025	3	1.147e-2	2	NC	4	NC	4
512			min	001	3	088	2	026	2	-8.687e-3	3	1226.981	2	4329.003	
513		10	max	0	9	.065	3	.025	3	1.237e-2	2	NC	4	NC	4
514			min	001	3	085	2	027	2	-9.35e-3	3	1290.92	2	4098.569	
515		11	max	0	9	.066	3	.023	3	1.147e-2	2	NC	_4_	NC	4
516			min	001	3	088	2	026	2	-8.682e-3	3	1226.981	2	4329.007	2
517		12	max	0	9	.068	3	.022	3	1.057e-2	2	NC	_4_	NC	1
518			min	001	3	094	2	024	2	-8.015e-3	3	1118.157	2	5013.301	2
519		13	max	0	9	.07	3	.02	3	9.668e-3	2	NC	_4_	NC	1
520			min	001	3	099	2	021	2	-7.347e-3	3	1038.173	2	6306.074	2
521		14	max	0	9	.07	3	.018	3	8.767e-3	2	NC	4_	NC	1_
522			min	001	3	1	2	018	2	-6.679e-3	3	1015.127	2	8198.594	
523		15	max	0	9	.066	3	.016	3	7.866e-3	2	NC	4	NC	1
524			min	001	3	097	2	015	2	-6.012e-3	3	1068.299	2	NC	1
525		16	max	0	9	.06	3	.014	3	6.964e-3	2	NC	4	NC	1
526			min	001	3	087	2	013	2	-5.344e-3	3	1242.198	2	NC	1
527		17	max	0	9	.05	3	.012	3	6.063e-3	2	NC	4	NC	1
528			min	001	3	072	2	011	2	-4.677e-3	3	1684.602	2	NC	1
529		18	max	0	9	.037	3	.01	3	5.162e-3	2	NC	4_	NC	1
530			min	001	3	052	2	01	2	-4.009e-3	3	3162.337	2	NC	1
531		19	max	0	9	.023	3	.009	3	4.26e-3	2	NC	1_	NC	1
532			min	001	3	029	2	01	2	-3.342e-3	3	NC	1	NC	1
533	M15	1	max	0	1	0	1	0	1	3.968e-4	3	NC	1_	NC	1
534			min	0	1	0	1	0	1	-3.169e-5	2	NC	1	NC	1
535		2	max	0	3	0	15	0	1	7.052e-4	3	NC	1_	NC	1
536			min	0	2	002	4	0	3	-3.319e-4	2	NC	1	NC	1
537		3	max	0	3	0	15	.002	2	1.014e-3	3	NC	1_	NC	1
538			min	0	2	003	4	003	3	-6.322e-4	2	NC	1	8693.889	3
539		4	max	0	3	001	15	.005	2	1.322e-3	3	NC	1_	NC	4
540			min	0	2	004	4	006	3	-9.324e-4	2	NC	1	4803.256	3
541		5	max	0	3	001	15	.008	2	1.63e-3	3	NC	1	NC	4
542			min	0	2	006	4	01	3	-1.233e-3	2	9790.17	4	3155.807	3
543		6	max	0	3	002	15	.012	2	1.939e-3	3	NC	1	NC	4
544			min	001	2	007	4	015	3	-1.533e-3	2	8239.463	4	2299.466	3
545		7	max	0	3	002	15	.016	2	2.247e-3	3	NC	2	NC	4
546			min	001	2	008	4	02	3	-1.833e-3	2	7306.917	4	1798.49	3
547		8	max	0	3	002	15	.019	2	2.556e-3	3	NC	2	NC	4
548			min	002	2	008	4	025	3	-2.133e-3	2	6747.249	4	1483.46	3
549		9	max	.001	3	002	2	.023	2	2.864e-3	3	NC	2	NC	4
550			min	002	2	009	4	029	3	-2.434e-3	2	6446.003	4	1277.263	3
551		10	max	.001	3	001	2	.025	2	3.172e-3	3	NC	2	NC	4
552			min	002	2	009	4	033	3	-2.734e-3	2	6350.703	4	1141.157	3
553		11	max	.001	3	0	2	.027	2	3.481e-3	3	NC	2	NC	4
554			min	002	2	009	4	035	3	-3.034e-3	2	6446.003	4	1054.801	3
555		12	max	.002	3	0	2	.027	2	3.789e-3	3	NC	2	NC	4
556			min	003	2	008	4	035	3	-3.334e-3	2	6747.249	4	1008.106	3
557		13	max	.002	3	.001	2	.026	2	4.097e-3	3	NC	2	NC	4
558			min	003	2	008	4	034	3	-3.634e-3	2	7306.917	4	998.152	3
559		14	max	.002	3	.002	2	.023	2	4.406e-3	3	NC	1	NC	4
560			min	003	2	007	4	031	3	-3.935e-3	2	8239.463	4	1029.304	3
561		15	max	.002	3	.004	2	.018	2	4.714e-3	3	NC	1	NC	4
562			min	003	2	006	4	025	3	-4.235e-3	2	9790.17	4	1117.564	
563		16	max	.002	3	.005	2	.011	1	5.023e-3	3	NC	1	NC	4
564			min	004	2	005	3	016	3	-4.535e-3	2	NC	1	1306.372	
							_		_		_				

Model Name

Schletter, Inc.

HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	.002	3	.007	2	.004	1	5.331e-3	3	NC	1	NC	4
566			min	004	2	004	3	003	3	-4.835e-3	2	7825.388	2	1732.007	3
567		18	max	.002	3	.009	2	.013	3	5.639e-3	3	NC	1	NC	4
568			min	004	2	003	3	013	2	-5.136e-3	2	6274.877	2	3083.857	3
569		19	max	.002	3	.011	2	.032	3	5.948e-3	3	NC	1	NC	1
570			min	004	2	002	3	029	2	-5.436e-3	2	5216.547	2	NC	1
571	M16A	1	max	.002	2	.004	2	.01	3	1.693e-3	3	NC	1	NC	1
572			min	002	3	004	3	01	2	-1.899e-3	2	NC	1	NC	1
573		2	max	.002	2	.003	2	.003	3	1.636e-3	3	NC	1	NC	1
574			min	002	3	005	3	005	2	-1.811e-3	2	NC	1	8375.747	3
575		3	max	.001	2	.001	2	.001	9	1.579e-3	3	NC	1	NC	4
576			min	002	3	006	3	003	3	-1.722e-3	2	NC	1	4747.087	3
577		4	max	.001	2	0	2	.004	1	1.523e-3	3	NC	1	NC	4
578			min	002	3	006	3	007	3	-1.634e-3	2	NC	1	3617.551	3
579		5	max	.001	2	001	2	.005	1	1.466e-3	3	NC	1_	NC	4
580			min	002	3	007	3	01	3	-1.546e-3	2	9790.17	4	3131.296	3
581		6	max	.001	2	002	15	.006	1	1.409e-3	3	NC	1_	NC	4
582			min	002	3	007	4	012	3	-1.457e-3	2	8239.463	4	2923.33	3
583		7	max	.001	2	002	15	.007	2	1.352e-3	3	NC	3	NC	4
584			min	002	3	008	4	013	3	-1.369e-3	2	7306.917	4	2879.954	3
585		8	max	.001	2	002	15	.007	2	1.295e-3	3	NC	3	NC	4
586			min	001	3	009	4	013	3	-1.28e-3	2	6747.249	4	2963.37	3
587		9	max	0	2	002	15	.007	2	1.238e-3	3	NC	3	NC	4
588			min	001	3	009	4	012	3	-1.192e-3	2	6446.003	4	3170.641	3
589		10	max	0	2	002	15	.006	2	1.182e-3	3	NC	3	NC	4
590			min	001	3	009	4	011	3	-1.103e-3	2	6350.703	4	3524.994	3
591		11	max	0	2	002	15	.005	1	1.125e-3	3	NC	3	NC	4
592			min	001	3	009	4	009	3	-1.015e-3	2	6446.003	4	4081.989	3
593		12	max	0	2	002	15	.004	1	1.068e-3	3	NC	3	NC	4
594			min	0	3	008	4	007	3	-9.265e-4	2	6747.249	4	4952.833	3
595		13	max	0	2	002	15	.003	1	1.011e-3	3	NC	3	NC	1
596			min	0	3	008	4	005	3	-8.381e-4	2	7306.917	4	6365.081	3
597		14	max	0	2	002	15	.002	1	9.543e-4	3	NC	_1_	NC	1
598			min	0	3	007	4	003	3	-7.496e-4	2	8239.463	4	8831.834	3
599		15	max	0	2	001	15	.001	4	8.975e-4	3	NC	_1_	NC	1
600			min	0	3	006	4	002	3	-6.612e-4	2	9790.17	4	NC	1
601		16	max	0	2	001	15	.001	4	8.406e-4	3	NC	_1_	NC	1
602			min	0	3	005	4	0	3	-5.728e-4	2	NC	1	NC	1
603		17	max	0	2	0	15	0	4	7.838e-4	3	NC	1_	NC	1
604			min	0	3	003	4	0	2	-4.843e-4	2	NC	1	NC	1
605		18	max	0	2	0	15	0	3	7.27e-4	3	NC	1	NC	1
606			min	0	3	002	4	0	2	-3.959e-4	2	NC	1	NC	1
607		19	max	0	1	0	1	0	1	6.701e-4	3	NC	_1_	NC	1
608			min	0	1	0	1	0	1	-3.075e-4	2	NC	1_	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

l _e (in)	da (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4 /						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.