2014-2015 学年第二学期第一层次期中考试试卷 2015.4.25

一、计算下列各题: (每小题 6 分, 共 48 分)

1. 设函数
$$z = \arctan \frac{x}{y}$$
, 求 $\Delta z = \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$.

2. 求曲线
$$\begin{cases} z = x^2 + y^2, \\ x^2 + y^2 = 2x \end{cases}$$
 在点 $(1,-1,2)$ 处的切线方程与法平面方程.

3.求函数 $u = x + e^x \sin(y - z)$ 在点A(1,1,1)处沿 $\vec{l} = (1,2,-2)$ 的方向导数.

4. 求函数
$$z = x^2 + xy + 2y^2 - x + 3y + 3$$
 的极值.

5. 计算二重积分
$$I_1 = \iint\limits_D |y + \sqrt{3}x| \, dx dy$$
 , 其中 $D: x^2 + y^2 \leq 1$.

6. 求三重积分
$$I_2 = \iint\limits_{\Omega} e^{|y|} dx dy dz$$
, 其中 $\Omega: \ x^2 + y^2 + z^2 \leq 1$.

7. 求
$$I_3 = \int_C (x^2 + y^2 + z^2) ds$$
 , 其 中 C 为 螺 旋 线 $x = a \cos t, y = a \sin t, z = bt$ $(0 \le t \le 2\pi)$ 的部分 .

8. 求
$$I_4 = \int_C (x^2y + 3xe^x) dx + (\frac{1}{3}x^3 - y\sin y) dy$$
, 其中 C 为摆线 $x = t - \sin t$, $y = 1 - \cos t$ 从 $A(2\pi, 0)$ 到 $O(0, 0)$ 的一段弧 .

二、设函数
$$f(x,y) = \begin{cases} \frac{x-y}{\sqrt{x^2+y^2}} \ln(1+\sqrt{x^2+y^2}), (x,y) \neq (0,0), \\ 0, & \text{试讨论 } f(x,y) \triangleq (0,0) \end{cases}$$

处的连续性,可偏导性与可微性 . (12分)

三、求曲面
$$S: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
上的一点 $P(x, y, z)$,使得由 $P, A(a, 0, 0), B(0, b, 0)$,

C(0,0,c)构成的四面体体积最大 . (10 分)

四、求柱面 $x^2+y^2=y$ 与球面 $x^2+y^2+z^2=1$ 所围立体的体积与表面积. (12 分)

五、计算三重积分
$$I=\iint_{\Omega}z^2dxdydz$$
 , 其中 Ω 为 $x^2+y^2+z^2\leq R^2$, $x^2+y^2\leq Rx$ 所围成的空间区域(其中 $R>0$) .(10 分)

六、设
$$f(x)$$
在区间 $[a,b]$ 上连续,证明:
$$\iint_D e^{f(x)-f(y)} dx dy \ge (b-a)^2$$
.其中积分区域为

 $D = \{(x, y) \mid a \le x \le b, a \le y \le b\}.$ (8 \(\frac{1}{2}\))

参考答案:

- 一、1. $\Delta z = 0$. 2. 切线方程为: $\frac{x-1}{1} = \frac{y+1}{0} = \frac{z-2}{2}$, 法平面为: x+2z-5=0.
 - 3. $\frac{\partial u}{\partial \vec{l}}\Big|_{A} = \frac{1+4e}{3}$. 4. 驻点为: $P_0(1,-1)$, 极小值为 1, 无极大值. 5. $\frac{8}{3}$.
 - 6. 2π . 7. $2\pi\sqrt{a^2+b^2}(a^2+\frac{4b^2\pi^2}{3})$. 8. $3e^{2\pi}(1-2\pi)-3$.
- 二. f(x,y)在(0,0)处连续、可偏导、可微.
- 三、驻点为($\pm \frac{a}{\sqrt{3}}$, $\pm \frac{b}{\sqrt{3}}$, $\pm \frac{c}{\sqrt{3}}$). 由几何意义,经验证最大点为($-\frac{a}{\sqrt{3}}$, $-\frac{b}{\sqrt{3}}$, $-\frac{c}{\sqrt{3}}$).
- 四、 $V = \frac{2}{3}(\pi \frac{4}{3})$. 曲面面积为: 2π .