Lab 4: Temperature dependance of Solar cell characteristics

Wadhwani Electronics Lab

Department of Electrical Engineering Indian Institute of Technology, Bombay.

Part 1: I-V characteristics of Solar cell

- Modify the netlist written for I/V characteristics of a solar cell in the previous lab.
- Run the simulation to measure the dark forward characteristics at $35^{\circ}C$, $45^{\circ}C$, $65^{\circ}C$, and $75^{\circ}C$.
- Note the values of V_D for $I_D=1$ mA, 2mA and 5mA.
- Fill up in the observation table 1 below. Calculate η for low forward bias (1mA) and for high forward bias (5mA) at all the temperatures.

Sr.No	V_D for $I_D = 1$ mA	V_D for I_D =2mA	V_D for $I_D = 5$ mA	η for $I_D = 1 \text{mA}$	η for $I_D = 5 \text{mA}$
35 ⁰ C					
45 ⁰ C					
55 ⁰ C					
65 ⁰ C					
75 ⁰ C					

Table 1

Note:-Refer ngspice commands to run simulation at different temperature.

Part-2: Lighted I/V Characteristics

In this part, we will plot the I/V characteristics of the solar cell when used as a power source. We will measure I/V characteristics at various temperatures when the solar cell is lighted at the intensity to generate I_L =8mA.

- A load resistor R is connected across the solar cell same as you have done in the previous lab. The value of R is varied from 1 to 500Ω and the values of I_R and V_R are recorded for the temperatures 35° C to 75° C in steps of 10° C.
- Plot I_D - V_D and P_R - V_D characteristics under lighted condition at all the temperatures. Note the values of Voc and Isc values for all temperatures.
- ullet Obtain Fill Factor (FF) for all the temperature and plot FF v/s temperature.
- Plot V_D v/s Temp and V_{oc} v/s Temp. You will get three sets of V_D for $I_D = 1$ mA, 2mA and 5mA obtained in Part-1.
- Comment on the dependence of V_{oc} , I_{sc} , and FF.

Part-3:Effect of R_S and R_{sh}

- Plot I/V characteristics for series resistance $R_S = 0$, 10, and 30 Ω . You may plot the part of characteristic in fourth quadrant, in the first quadrant for convenience if you should.
- How the I/V characteristics of solar cell is affected by the series resistance R_s ?
- Plot I/V characteristics for shunt resistance $R_{sh}=100~\Omega,~500~\Omega,~and~5~K\Omega.$
- What do you observe? What is effect of larger values of shunt resistance on the performance of the solar cell?
- Also plot Voc ,lsc and fillfactor versus R_s and R_{sh} and comment on dependence of these parameters on R_s and R_{sh} Note:-Rs and Rsh are the series and shunt resistances of the solar cell
 - Note:-Rs and Rsh are the series and shunt resistances of the solar cell hence their values should be varied in the model file to observe the effect.