

Week 9: Adversarial Machine **Assarning Pro Mulnerabilities** (Part I)

https://tutorcs.com

WeChat: cstutoromp90073
Security Analytics

Yi Han, CIS

Semester 2, 2021

Overview

- Week 9: Adversarial Machine Learning Vulnerabilities
 - Definition + examples
 - Classification
 - Evasion attackssignment Project Exam Help
 - Gradient-descent based approaches
 - Automatic differentiation
 - Real-world exany Chat: cstutorcs
 - Poisoning attacks
 - Transferability

Overview

- Week 9: Adversarial Machine Learning Vulnerabilities
 - Definition + examples
 - Classification
 - Evasion atta Assignment Project Exam Help
 - Gradient-descent based approaches https://tutorcs.com

 - Real-world exanWeChat: cstutorcs
 - Poisoning attacks
 - Transferability

Definition

What is Adversarial Machine Learning (AML)?

"Adversarial machine learning is a technique employed in the field of machine learning which attempts to feel models through malicious input." – Wikipedia

https://tutorcs.com

WeChat: cstutorcs

Input vector

- Test-time attack
 - Image classifier C: input images $X \rightarrow \{0, 1, 2, ..., 9\}$,

Output vector

Test-time attack

- Training-time attack
 - Insert extra training points to maximise the loss

- Huge amount of attention
 - Mission-critical tasks

gnment Project Exam He

https://tutores.com >

WeChat: cstutorcs

Overview

- Week 9: Adversarial Machine Learning Vulnerabilities
 - Definition + examples
 - Classification
 - Evasion atta Assignment Project Exam Help
 - Gradient-descent based approaches https://tutorcs.com

 - Real-world exanWeChat: cstutorcs
 - Poisoning attacks
 - Transferability

Classification

- Classification [1]
 - Exploratory vs. Causative influence
 - Exploratory/evasion: test time
 - Causative/poisoning: training time
 - Integrity vs. Adissignment Pityjectti Exam Help

 - Integrity: harmful instances to pass filters
 Availability: denial of service, benign instances to be filtered
 - Targeted vs. Indiscriminate/Untargeted specificity
 - Targeted: misclassified as a specific class
 - Indiscriminate/untargeted: misclassified as any other class
 - White-box vs. Black-box attacker information
 - White-box: full knowledge of the victim model
 - Black-box: no/minimum knowledge of the model

Overview

- Week 9: Adversarial Machine Learning Vulnerabilities
 - Definition + examples
 - Classification
 - Evasion attackssignment Project Exam Help
 - Gradient-descent based approaches
 - Automatic differentiation
 - Real-world exanWeChat: cstutorcs
 - Poisoning attacks
 - Transferability

- Evasion attack
 - Aim: minimum perturbation δ to the input x, in order to cause model C to misclassify

Assignment P(@j&c€ F(Xajh)Help

such thap (s./ty)torcs.com

WeChat! Estatores

Indiscriminate

OR
$$C(x + \delta) = l_{target}$$

Targeted

- Evasion attack
 - Formulated as an optimisation problem

arg min
$$\|\delta\|$$
 (1)

Assignment Project Exam Help s. t. $C(x + \delta) \neq C(x)$ Highly non-linear or $C(x + \delta) = l_{target}$ Highly non-linear $C(x + \delta) = l_{targe$

Transform (1) to the following problem [2]:

$$\arg\min_{\delta\in[0,1]^d} \|\delta\| - c \cdot f_{true}(x+\delta)$$

Indiscriminate

 $\underset{\delta \in [0,1]}{\operatorname{arg}} \underset{d}{\operatorname{min}} \underset{\delta \in [0,1]}{\operatorname{Alssign}} \underset{d}{\operatorname{hriefiturde}}$

Targeted

https://tutorcs.com

WeChat: Objective function *f*: how close the prediction and the target are, e.g., the cross entropy loss function

- Indiscriminate attack: $\arg\min_{\delta \in [0,1]^d} \|\delta\| c \cdot f_{true}(x+\delta)$
 - Prediction as different from the truth as possible

Misclassified as any class other than "9" Assignment Project Exam Help

Ground truth (One-hot vector)

Prediction

- Targeted attack: $\underset{\delta \in [0,1]^d}{\min} \|\delta\| + c \cdot f_{target}(x + \delta) \longleftarrow$
 - Prediction as close to the target as possible

Prediction Target (One-hot vector)

Transform (1) to the following problem [2]:

$$\arg\min_{\delta\in[0,1]^d} \|\delta\| - c \cdot f_{true}(x+\delta)$$

Indiscriminate

 $\underset{\delta \in [0,1]^d}{\text{arg min}} Assignment Project Exam Help$

Targeted

https://tutorcs.com

How to find the minimum perturbation δ ? We Chat: cstutorcs

Evasion attacks (gradient descent)

Gradient descent

 Gradient: a vector that points in the direction of greatest increase of a function

https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

Evasion attacks (gradient descent)

$$\arg\min_{\delta \in [0,1]^d} \|\delta\| - c \cdot f_{true}(x+\delta)$$

Indiscriminate

$$\arg\min_{\delta \in [0,1]^{d_{|}}} \|\delta\| + c \cdot f_{target}(x+\delta)$$

Targeted

Assignment Project Exam Help

- Start with the initial ihputsx/tutorcs.com
- Repeat $x_i \leftarrow x_{i-1} \lambda v_{\partial x_{i-1}}^{\partial v_{\partial x_{i-1}}}$ at > 0 stutores

Until (1) $C(x_i) \neq C(x_0) (or C(x_i) = l_{target})$, or \rightarrow success

(2)
$$\|\delta\| = \|x_i - x_0\| > \epsilon$$
, or

(3)
$$i \geq i_{max}$$
, or

$$(4) |J(x_i) - J(x_{i-1})| \le \Delta$$

Evasion attacks (gradient descent)

$$\arg\min_{\delta\in[0,1]^d} \|\delta\| - c \cdot f_{true}(x+\delta)$$

Indiscriminate

$$\underset{\delta \in [0,1]^d}{\operatorname{arg \ min}} \|\delta\| + c \cdot f_{target}(x+\delta)$$
Assignment Project Exam Help

Targeted

https://tutorcs.com

Repeat $x_i \leftarrow x_{i-1} - \frac{\partial v_{och}^{\partial t}}{\partial x_{i-1}}$ at > 0 stutores

How to design the objective function *f*?

Evasion attacks (FGSM)

Fast gradient sign method (FGSM) [3]:

$$\operatorname*{arg\ min}_{\delta \in [0,1]^d} \begin{tabular}{l} & -c \cdot f_{true}(x+\delta) & \operatorname*{arg\ min}_{f = \operatorname{cross}} & \delta \in [0,1]^d \\ & \operatorname*{entropy\ loss}_{\delta \in [0,1]^d} \\ & + c \operatorname{Assign}(\operatorname{ent} \operatorname{Broject\ Example in}_{\delta \in [0,1]^d} \\ & \operatorname{https://tutorcs.com} \\ \end{aligned}$$

Single step ε: fast rather than eptimales

$$x' \leftarrow x + \epsilon \cdot sign\left(\frac{\partial loss_{true}}{\partial x}\right)$$

$$OR \quad x' \leftarrow x - \epsilon \cdot sign\left(\frac{\partial loss_{target}}{\partial x}\right)$$

Not meant to produce the minimal adversarial perturbations

Evasion attacks (Iterative Gradient Sign)

- Iterative gradient sign [4]
 - Single step $\epsilon \rightarrow$ multiple smaller steps α

$$- x_i \leftarrow \text{clip}_{\epsilon} \left(x_{i} + \alpha \cdot \text{sign} \left(\frac{\partial f_{true}}{\text{Project}} \right) \right) \text{OR}_{\text{Exam Help}}$$

$$- x_{i} \leftarrow \operatorname{clip}_{\epsilon} \left(x_{i-1} - \alpha' \operatorname{sign} \left(\frac{\alpha \delta \kappa \epsilon_{s} x_{0}}{\delta x_{i-1}} \right) \right)$$

$$- \operatorname{clip}_{\epsilon} : \text{ make sure that } x_{ij} \text{ is within the range of } \left[x_{0j} - \epsilon, x_{0j} + \epsilon \right]$$

> projection

Evasion attacks (Momentum Iterative FGSM)

Momentum iterative fast gradient sign method

$$-g_i = \mu \cdot g_{i-1} + \frac{\nabla_x J(x_{i-1})}{\|\nabla_x J(x_{i-1})\|_1}, \ x_i \leftarrow x_{i-1} - \alpha \cdot \text{sign}(g_i)$$

- Momentum overcome two problems of vanilla gradient descent
 Get stuck in focal minima

 - Oscillation https://tutorcs.com

https://medium.com/analytics-vidhya/momentum-rmspropand-adam-optimizer-5769721b4b19

https://eloquentarduino.github.io/2020/04/stochasticgradient-descent-on-your-microcontroller/

Evasion attacks (C&W)

C & W attack [2]

arg min
$$\|\delta\| + c \cdot f(x + \delta)$$

 $\delta \in [0,1]^d$
Assignment Project Exam Help
 $C(x + \delta) = l_{target}$ if and only if $f(x + \delta) \le 0$
https://tutorcs.com

$$C(x + \delta)$$
 where $C(x + \delta) > 0$

Consistent with the definition of function *f*: how close the prediction and the target are

Evasion attacks (C&W)

$$C(x + \delta) = l_{target}$$
 if and only if $f(x + \delta) = f(x') \le 0$

- Option 1: $f(x') = max \left(\max_{i \neq t} F(x')_i F(x')_t, 0 \right)$
- Option 2: $f(x') = \log(1 + \exp(\max_{i \neq t} F(x')_i F(x')_t)) \log(2)$
- Option 3: f(x') = max(8.5ignment) Project Exam Help

F(x): output vector for x, i.e. herebabilities of the input x belonging to each class. For

example:

CleverHans

- CleverHans
- Do not use the latest version
- Download from: https://github.com/tensorflow/cleverhans/releases/tag/v.3.0.1
- Prerequisite:
 - Assignment Project Exam Help

 Python3 (https://www.python.org/downloads/)

 - Tensorflow (https://www.tensorflow (https://www.tensorflow.gra/install/)
 - Python 3.5/3.6/3.7 and TensorFlow {1.8, 1.12, 1.14}
- Installation:

- WeChat: cstutorcs
- cd cleverhans
- pip install -e .

Overview

- Week 9: Adversarial Machine Learning Vulnerabilities
 - Definition + examples
 - Classification
 - Evasion attackssignment Project Exam Help
 - Gradient-descent based approaches
 - Automatic differentiation
 - Real-world exanWeChat: cstutorcs
 - Poisoning attacks
 - Transferability

$$\arg\min_{\delta\in[0,1]^d}\|\delta\|-c\cdot f_{true}(x+\delta) \qquad \text{Indiscriminate}$$

$$\arg\min_{\delta\in[0,1]^d}\|\delta\|+c\cdot f_{target}(x+\delta) \qquad \text{Targeted}$$

$$\operatorname{Assignment\ Project\ Exam\ Help}$$

- Start with the initial interest of tutores.com
- Repeat $x_i \leftarrow x_{i-1} \frac{\partial V_{och}^{\partial L}}{\partial x_{i-1}}$ it>Ostutorcs Until $C(x_i) \neq C(x_0) (or \ C(x_i) = l_{target})$

How to calculate the partial derivatives?

Derivative

- Definition: $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$
- Numerical differentiation

-
$$\frac{f(x+h)-f(x)}{h}$$
, $\frac{f(x+h)-f(x-h)}{h}$ Project Exam Help $\frac{f(x)}{h}$ Significant round-off errors

WeChat: cstutorcs

- Symbolic differentiation: apply chain rules to symbolic expressions
 - Exponentially-long results

Automatic differentiation

- A set of techniques to numerically evaluate the derivative of a function specified by a computer program – Wikipedia
- Any complicated function f can be rewritten as the composition of a sequence of phisits and the composition of the

Apply the chain rule

• Forward mode:
$$\frac{\partial f}{\partial x} = \frac{\partial f_0}{\partial f_1} \left(\frac{\partial f_1}{\partial f_2} \left(\dots \left(\frac{\partial f_{n-1}}{\partial f_n} \frac{\partial f_n}{\partial x} \right) \right) \right)$$

• Reverse mode:
$$\frac{\partial f}{\partial x} = \left(\left(\frac{\partial f_0}{\partial f_1} \frac{\partial f_1}{\partial f_2} \right) \dots \right) \frac{\partial f_{n-1}}{\partial f_n} \frac{\partial f_n}{\partial x}$$

- Given $y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 \sin(x_2)$, calculate $\frac{\partial y}{\partial x_1}$ at (2,5)
- Forward mode [5]

Forward evaluation trace

- Example 1: $y = \ln(x_1) + x_1x_2 \sin(x_2)$
- Calculate $\left(\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2}\right)$

 - Forward mode: ___ time(s)
 Assignment Project Exam Help
 Reverse mode: ___ time(s)

https://tutorcs.com

- Example 2: $y_1 = \ln(x) + x_1 y_2 = x_1 + \sin(x)$
- Calculate $\left(\frac{\partial y_1}{\partial x}, \frac{\partial y_2}{\partial x}\right)$
 - Forward mode: time(s)
 - Reverse mode: time(s)

Function $f: \mathbb{R}^n \to \mathbb{R}^m$

- n independent x_i as inputs, m dependent y_i as outputs
- Forward mode: $m \gg n$ (one forward run can calculate $\frac{\partial y}{\partial x_i}$)

 Assignment Project Exam Help
- Reverse mode: $n\gg m$ (one reverse run can calculate $\frac{\partial y_j}{\partial x}$)

 **https://laid.delanover.com/gradients-in-tensorflow/

weChat: cstutorcs

Tensorflow example

```
x = tf.Variable(1.)
y = tf.Variable(2.)
z = tf.subtract(2*x, y)
grad = tf.gradients(z, [x, y])
sess = tf.Session()
sess.run(tf.global variables initializer())
print(sess.run(grad)) # [2.0, -1.0]
```


Overview

- Week 9: Adversarial Machine Learning Vulnerabilities
 - Definition + examples
 - Classification
 - Evasion attackssignment Project Exam Help
 - Gradient-descent based approaches https://tutorcs.com

 - Real-world example Chat: cstutorcs
 - Poisoning attacks
 - Transferability

Evasion attacks (real-world example)

- Robust Physical-World Attacks on Deep Learning Visual Classification [6]
 - Stop sign, Right Turn sign → Speed Limit 45
 - Drive-By (Field) Tests
 Start from 250 ft away
 Distance/Angle Subtle Poster Right Turn Graffiti
 Classify every A Staffschmae ent Project Examples against LISA-CNN and GTSRB-CNN.

Targeted-Attack Success

100%

73.33%

100%

66.67%

Camouflage Art

(GTSRB-CNN)

80%

Overview

- Week 9: Adversarial Machine Learning Vulnerabilities
 - Definition + examples
 - Classification
 - Evasion atta Assignment Project Exam Help
 - Gradient-descent based approaches https://tutorcs.com

 - Real-world exanWeChat: cstutorcs
 - Poisoning attacks
 - Transferability

Insert extra points to maximally decrease the accuracy [8]

- Attacker's aim: maximise the hinge loss over the validation data $D_{val} = \{x_i, y_i\}_{i=1}^m$
- Optimisation problem:

$$\underset{\text{Assignment Project}}{\operatorname{arg max } L(x_{e})} = \sum_{j=0}^{m} \left(\underbrace{1 - y_{i} f_{H}(x_{i})}_{Help} \right)$$

To find the optimal poisoning data x_c :

- Random initial attack/pointat: cstutores
- Update: re-compute the SVM;

$$x_c^p \leftarrow x_c^{p-1} + \alpha \frac{\partial L}{\partial x_c^{p-1}}, p > 0$$

• Until $L(x_c^p) - L(x_c^{p-1}) < \varepsilon$

Class 1 (+)

Class 2 (-)

As the attack point x_c moves towards a local maximum, both the hinge loss and the classification error increase.

- Poison frog attacks [10]
 - E.g., add a seemingly innocuous image (that is properly labeled) to a training set, and control the identity of a chosen image at test time

Step 1: choose an instance from the target class – *t* (target instance)

oject Exanst Polpample an instance from the base class – b (base instance)

Step 3: perturb b to create a poison instance – *p*

Step 4: inject *p* into the training dataset

The model is then re-trained. The attack succeeds if the poisoned model labels *t* as the base class

- Generate poison data p
 - Optimisation problem: $p = \underset{x}{\operatorname{argmin}} \|f(x) f(t)\|_{2}^{2} + \beta \|x b\|_{2}^{2}$
 - f(x): output of the second last layer of the neural network
 - $||f(x) f(t)||_2$: makes p move toward the target instance in feature space and get embedded in the target class distribution
 - $\beta \|x b\|_2^2$: makes properties a base class instance to a human labeller

- Forward-backward-splitting iterative procedure [11]
 - Forward step: gradient descent update to minimise the L2 distance to the target instance in feature space
 - Backward step: proximal update that minimises the Euclidean distance from the base instance in input space

https://tutorcs.com

Algorithm 1 Poisoning Example Generation

```
Input: target instance t, base instance t, learning rate \mathbf{x}. Initialize \mathbf{x}: x_0 \leftarrow b

Define: L_p(x) = \|f(\mathbf{x}) - f(\mathbf{t})\|^2

for i = 1 to maxIters do

Forward step: \widehat{x_i} = x_{i-1} - \lambda \nabla_x L_p(x_{i-1})

Backward step: x_i = (\widehat{x_i} + \lambda \beta b)/(1 + \beta \lambda)

end for
```


Results

Using Machine Teaching to Identify Optimal Training-Set Attacks on Machine Learners [9]

- Attacker's objective : $O_A(D, \hat{\theta}_D) = \|\hat{\theta}_D \theta^*\| + \|D D_0\|_2$ Assignment Project Exam Help $-\hat{\theta}_D$: parameters of the poisoned model after the attack

 - $-\theta^*$: parameters dfttps:attatkersstanget model, i.e., model that the attacker aims to obtain
 - D: poisoned training data
 - $-D_0$: original training data

Overview

- Week 9: Adversarial Machine Learning Vulnerabilities
 - Definition + examples
 - Classification
 - Evasion atta Assignment Project Exam Help
 - Gradient-descent based approaches https://tutorcs.com

 - Real-world exanWeChat: cstutorcs
 - Poisoning attacks
 - Transferability

- Implicit assumption: full knowledge of the target model
- What if the target model is unknown to the attacker?
- Transferability: for two models that perform the same task, trained on different datasets adversarial samples generated against one model can often fool the other model as well [12][13]
 - Intra-technique: bttpstheutarget and surrogate model use the same machine learning technique

 WeChat: cstutorcs

 Inter-technique: the target and surrogate model use different
 - machine learning techniques

- Verification on the MNIST dataset of handwritten digits
 - Grey-scale, 0-255
 - Size: 28px * 28px

0000000000000000

Assignment Project Exam Helk

DNN, SVM, LR, DT, letters://tutorcs.com

https://upload.wikimedia.org/wikipedia/ commons/2/27/MnistExamples.png

- Black-box attack WeChat: cstutorcs
 - Step 1: adversary trains their own model surrogate/source
 - Step 2: generate adversarial samples against the surrogate
 - Step 3: apply the adversarial samples against the target model

Intra-technique

71% adv. samples against the source are also

Inter-technique

- Non-smoothness can hurt the transferability [7]
 - A is the surrogate model; B is the target model
 - Smoothed loss surface contributes to transferability

$$-x_{i} \leftarrow x_{i-1} - \alpha \frac{\partial J(x_{i-1})}{\text{Assignment Project Exam}} \sum_{j=1}^{m} \frac{\partial J(x_{i-1} + \xi_{j})}{\partial x}, \xi_{j} \sim \mathcal{N}(0, \sigma^{2})$$

- Input diversity improves transferability [15]
 - Adversarial samples may overfit to the surrogate model
 - Data augmentation
 - Random resizing: resize an input image to a random size
 - Random paddingn padrze Projecut de araimal de le parandom manner
 - Diverse Inputs Iterative Fast Gradient Sign Method (DI²-FGSM)

$$x_{i} \leftarrow x_{i-1} - \alpha \cdot \operatorname{sign}\left(\frac{\partial f(x_{i-1})}{\partial x}\right) \xrightarrow{\text{tutores.com}} x_{i} \leftarrow x_{i-1} - \alpha \cdot \operatorname{sign}\left(\frac{\partial f(x_{i-1};p)}{\partial x}\right), \quad T(x_{i-1};p) = \begin{cases} T(x_{i-1}) & \text{with prob. } p \\ x_{i-1} & \text{with prob. } 1-p \end{cases}$$

Momentum Diverse Inputs Iterative Fast Gradient Sign Method (M-DI²-FGSM)

$$g_i = \mu \cdot g_{i-1} + \frac{\nabla_x J(x_{i-1})}{\|\nabla_x J(x_{i-1})\|_1} \qquad \qquad g_i = \mu \cdot g_{i-1} + \frac{\nabla_x J(T(x_{i-1};p))}{\|\nabla_x J(T(x_{i-1};p))\|_1}$$

- Backpropagation smoothness [16], backpropagation linearity [17]
 - Non-linear activation functions, e.g., ReLU, sigmoid
 - Non-continuous derivative at zero during backpropagation
 - Continuous derivative property can improve transferability
 - Keep the ReLAtington out the Province passibut delip backpropagation approximate the ReLU derivative with a continuous derivative, e.g. using softplus function (log(tpse//t)utorcs.com

Figure 1. Activation functions (left) and their derivatives (right).

Summary

- **Evasion attacks**
 - Indiscriminate: arg min $\|\delta\| c \cdot f_{true}(x + \delta)$ $\delta \in [0.1]^d$
 - Targeted: $\arg\min_{\delta \in [0,1]^d} \|\delta\| + c \cdot f_{target}(x + \delta)$
- - Poisoning attacks Assignment Project Exam Help Attacker's objective: $O_A(D, \hat{\theta}_D) = \|\hat{\theta}_D \theta^*\| + \|D D_0\|_2$
 - $\hat{\theta}_D$: poisoned model sittem in the pattack $\hat{\theta}_D$:
 - θ^* : attacker's target, i.e., model that the attacker aims to obtain
 - D: poisoned training Clatat: cstutorcs
 - D₀: original training data
- Transferability
 - Intra, inter-technique
 - Black-box attacks

References

- [1] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, "The Security of Machine Learning," *Machine Learning*, vol. 81, no. 2, pp. 121–148, Nov. 2010.
- [2] N. Carlini and D. Wagner, "Towards Evaluating the Robustness of Neural Networks," eprint arXiv:1608.04644, 2016.
- [3] I. J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and Harnessing Adversarial Exampless' enrine art XPr1412:6572, 2014 [e]p
- [5] A. G. Baydin and B. A. Pearlmutter, "Automatic Differentiation of Algorithms for Machine Learning," arXiv:1404.71456.[cs. stat], Apr. 2014.
- [6] I. Evtimov et al., "Robust Physical-World Attacks on Machine Learning Models," arXiv preprint arXiv:1707.08945, 2017.
- [7] Wu, L. and Zhu, Z., "Towards Understanding and Improving the Transferability of Adversarial Examples in Deep Neural Networks." Proceedings of The 12th Asian Conference on Machine Learning:837-850. Available from https://proceedings.mlr.press/v129/wu20a.html.

References

- [8] B. Biggio, B. Nelson, and P. Laskov, "Poisoning Attacks against Support Vector Machines," in *Proceedings of the 29th International Coference on International* Conference on Machine Learning, Edinburgh, Scotland, 2012, pp. 1467–1474.
- [9] S. Mei and X. Zhu, "Using Machine Teaching to Identify Optimal Training-set Attacks on Machine Learners," in Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, Texas, 2015, pp. 2871–2877.
- [10] A. Shafahi et a Shajison Fridger Target Edward Poisoning Attacks on Neural Networks," arXiv:1804.00792 [cs, stat], Apr. 2018.
- [11] T. Goldstein, C. Studertand Rt Beraniuk of field guide to forward-backward splitting with a fasta implementation, arXiv preprint arXiv:1411.3406, 2014
- [12] N. Papernot, P. McDaniel, and I. Goodfellow, "Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples," eprint arXiv:1605.07277, 2016.
- [13] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, "Practical Black-Box Attacks against Deep Learning Systems using Adversarial Examples," *eprint arXiv:1602.02697*, 2016.
- [14] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li, "Boosting adversarial attacks with momentum," in CVPR, 2018.

References

- [15] Xie, Cihang and Zhang, Zhishuai and Zhou, Yuyin and Bai, Song and Wang, Jianyu and Ren, Zhou and Yuille, Alan, "Improving Transferability of Adversarial Examples with Input Diversity," in CVPR, 2019.
- [16] Chaoning Zhang*, Philipp Benz*, Gyusang Cho*, Adil Karjauv, Soomin Ham, Chan-Hyun Youn, In So Kweon, "Backpropagating Smoothly Improves Transferability of Adversal Examples," If the Examples of Confidence on Computer Vision and Pattern Recognition Workshop on Adversarial Machine Learning, 2021 (*: Equal Contribution) https://tutorcs.com
- [17] Y. Guo, Q. Li, and H. Chen. "Backpropagating linearly improves transferability of adversarial examples," Washington 100 (1997) 179 (1997