## Type I and Type II error

In hypothesis testing, we have two hypotheses, the null  $\mathbf{H}_0$  and the alternative  $\mathbf{H}_a$ . We get a random sample, use it to obtain a test statistic, construct a null distribution (or when, as usual, we are unable to do that, we approximate it with a randomization distribution), locate our test statistic on this (approximate) null distribution, then find a P-value which measures how likely one is to obtain a result at least as extreme as our test statistic in a world where the null hypothesis is true. Examples of this process for various settings have been provided at https://rstudio.calvin.edu:3939/connect/#/apps/55/. I carry out one below involving the single quantitative variable pulse (in beats per minute).

## Example 1:

I wish to test the hypothesis that mean resting pulse rate is 72 beats per minute vs. a 2-sided alternative. The hypotheses are

**H**<sub>0</sub>: 
$$\mu = 72$$
, **H**<sub>a</sub>:  $\mu \neq 72$ .

In the Lock5withR dataset **BodyTemp50**, there is a sample (we will suppose it is a random sample) of 50 subjects, with one measurement variable being Pulse. The mean for this sample, our **test statistic**, is  $\bar{x} = 74.4$ :

```
mean(~Pulse, data=BodyTemp50)
[1] 74.4
```

If we were bootstrapping to find a confidence interval for  $\mu$ , the population mean pulse, we would do something like this:

```
manybstrapXbars <- do(5000) * mean(~Pulse, data=resample(BodyTemp50))</pre>
```

Constructing a randomization distribution for a single mean is quite similar. The previous command produces a *bootstrap distribution*, one centered on the mean of the original sample, 74.4. That is the one thing we must change in order to call our result a *randomization distribution*, as a randomization distribution should be centered on the null value, 72, in this case. This amounts to sliding all of our bootstrapped statistics over the appropriate amount, in this case adding

$$72 - 74.4 = -2.4$$

to each one.

```
manyRandomizationXbars <- do(5000) * (mean(~Pulse, data=resample(BodyTemp50)) - 2.4)
head(manyRandomizationXbars)

result
1 72.38
2 70.96</pre>
```

```
3 71.96
4 72.26
5 71.56
6 71.70
```

These results can be plotted to help us visualize our *P*-value:

```
gf_histogram(~result, data=manyRandomizationXbars, fill=~(abs(result-72) >= 2.4))
2 * nrow( filter(manyRandomizationXbars, result >= 74.4) ) / 5000
[1] 0.0064
```



If we are using significance level  $\alpha = 0.05$ , this *P*-value of 0.0064 represents a statistically significant result (since it is smaller that  $\alpha$ ), and we reject  $\mathbf{H}_0$  in favor of the alternative.

Now, a null hypothesis is either true or it isn't. In deciding, we have computed a *P*-value which assesses our test result against the list of possibilities in a world where the null hypothesis is true. Our null distribution shows that a result like ours can happen in a world such as that, so we rejected the null with some uncertainty in our conclusion.

That's the reality of things. A null hypothesis is true or it is not. But only God can know for certain. We draw a conclusion to reject it or not, but under undertainty. Our conclusion may be mistaken.

Here is what can happen:

|                         | We reject $\mathbf{H}_0$ | We do not reject $\mathbf{H}_0$ |  |  |
|-------------------------|--------------------------|---------------------------------|--|--|
| $\mathbf{H}_0$ is true  | Mistake (Type I error)   | Success                         |  |  |
| $\mathbf{H}_0$ is false | Success                  | Mistake (Type II error)         |  |  |

In the analogy we have made between hypothesis tests and trials by jury, a Type I error is like

convicting an innocent defendent, whereas a Type II error is like failing to convict a guilty person. No one wants to commit this sort of mistake, and by adjusting the line between what we consider *reasonable doubt* and *beyond reasonable doubt*, we can affect how likely we are to make these mistakes. But when you demand stronger evidence to convict, you both

- make it less likely you'll commit Type I error, and
- more likely you'll commit Type II error.

It is like this with setting  $\alpha$ . When you set  $\alpha=0.05$ , you are declaring you are willing to live with rejecting a true null hypothesis in 5% of cases. Think that's too frequent? Then go ahead and set it lower (i.e., so as to require stronger evidence), maybe at  $\alpha=0.01$ . But doing so comes at a cost: the likelihood that you will commit Type II error increases in the process. There is no getting around this. Many people have come to feel that  $\alpha=0.05$  is the right compromise.

## Two independent samples vs. matched pairs

Consider this research question: Is it better to fish a certain lake from shore, or from a boat?

Our response variable will be quantitative, the ratio of fishing hours to fish caught. Here is some data.

| month | Apr. | May | June | July | Aug. | Sept. | Oct. |
|-------|------|-----|------|------|------|-------|------|
| shore | 3.3  | 3.6 | 3.9  | 3.2  | 3.0  | 1.8   | 1.6  |
| boat  | 3.8  | 3.0 | 3.3  | 2.2  | 1.6  | 1.4   | 1.5  |

We have a binary categorical explanatory variable: "Where fishing from?", with values "shore" and "boat". We have a quantitative response variable. We have bootstrapped and tested hypotheses for the difference  $\mu_1 - \mu_2$ , but the methods I've discussed have presumed *independent samples*. The data collected to investigate the question do not represent independent samples. The responses in the different months are naturally related: when one goes up, the other seems more likely to go up, both being related to the population of fish in the lake during that month. This data is **matched pairs** data, and we should:

• use the months as *cases*, and produce for each case a single difference:

| month      | Apr. | May | June | July | Aug. | Sept. | Oct. |
|------------|------|-----|------|------|------|-------|------|
| shore      | 3.3  | 3.6 | 3.9  | 3.2  | 3.0  | 1.8   | 1.6  |
| boat       | 3.8  | 3.0 | 3.3  | 2.2  | 1.6  | 1.4   | 1.5  |
| difference | -0.5 | 0.6 | 0.6  | 1.0  | 1.4  | 0.4   | 0.1  |

• Proceed as if in a "single mean" setting. A confidence interval would be for the purpose of estimating the mean difference  $\mu_{\text{diff}}$ . An hypothesis test would focus on hypotheses:

$$\mathbf{H}_0$$
:  $\mu_{\mathbf{diff}} = 0$  vs.  $\mathbf{H}_0$ :  $\mu_{\mathbf{diff}} \neq 0$ .

Either way, the slips of paper we would insert into a bag for bootstrapping or randomization would contain only the last set of numbers, the differences.

**Practice**: Does the data suggest independent samples, warranting analysis on the difference of two means  $\mu_1 - \mu_2$ , or is it matched pairs?

1. A study was conducted to investigate the effectiveness of hypnotism in reducing pain. Results for randomly selected subjects are shown in the table below. A lower score indicates less pain.

| subject | A   | В   | С   | D    | Е    | F   | G   | Н    |
|---------|-----|-----|-----|------|------|-----|-----|------|
| before  | 6.6 | 6.5 | 9.0 | 10.3 | 11.3 | 8.1 | 6.3 | 11.6 |
| after   | 6.8 | 2.4 | 7.4 | 8.5  | 8.1  | 6.1 | 3.4 | 2.0  |

- 2. To study the effects of a drug on blood pressure, patients had a base reading taken of their diastolic blood pressure. After 3 weeks on the medication, new readings of their diastolic blood pressures were taken.
- 3. A collection of statistics students is randomly assigned to two groups. One group is given a study regimen that includes listening to recordings of classical music by Mozart, while the other group must study in silence. The response variable is student scores on an exam.