

MOBILNÍ APLIKACE PRO DETEKCI BAREV A VIZUÁLNÍ NÁVRH BAREVNÝCH SCHÉMAT

Šárka Prokopová

Bakalářská práce Fakulta informačních technologií České vysoké učení technické v Praze Katedra softwarového inženýrství Studijní program: Informatika Specializace: Softwarové inženýrství

Vedoucí: doc. Ing. Marek Suchánek, Ph.D. et Ph.D.

23. července 2025

Název (cs): Mobilní aplikace pro detekci barev a vizuální návrh barevných schémat

Název (en):

Jazyk práce: čeština

Se stále rostoucí oblíbeností a důležitostí vizuálního obsahu potřebují designéři, umělci a tvůrci obsahu nástroj, který jim umožní snadno a rychle identifikovat barvy a vytvářet soudržná barevná schémata. Cílem této práce je vyvinou multiplatformní mobilní aplikaci, která snadno umožní detekovat barvy ve fotografiích a nabízet vhodné barevné kombinace. Navíc taková aplikace může být užitečná i pro jedince s barvoslepostí nebo zrakovým postižením, kteří mohou mít potíže s rozlišováním barev. V neposlední řadě se v rámci takové aplikace dá zohlednit i použití metod rozšířené reality (AR).

Analyzujte a popište barevné modely spolu s teorií a vnímáním barev lidmi, metody tvorby barevných palet, známé sady barev (např. Pantone či pojmenované barvy HTML) a možnosti extrakce informací o barvách z fotografií. Prozkoumejte také možnosti využití AR pro práci s barvami v rámci práce s mobilními zařízeními a fotografiemi.

Proveďte rešerši existujících řešení, které se zabývají extrakcí barev z fotografií za účelem tvorby barevných palet, hledáním shodných barev ze známých barevných sad či využívají AR pro obdobnou práci s barvami.

Sestavte požadavky na vlastní řešení ve formě multiplatformní mobilní aplikace podporující Android a iOS (v aktuálních verzích).

Navrhněte architekturu aplikace v souladu s požadavky a zvolenými technologiemi. Volbu technologií zdůvodněte v kontextu požadavků. Dále navrhněte také uživatelské rozhraní tak, aby ovládání bylo intuitivní a uživatelsky přívětivé. Při návrhu zohledněte možný budoucí rozvoj (jiná logika tvorby palet, nové sady barev atd.), popište použité návrhové vzory.

Implementujte aplikaci dle návrhu, při vývoji aplikujte osvědčené postupy doporučené pro zvolené technologie (dokumentace, CI/CD, konvence stylu kódu, statická analýza apod.).

Výslednou aplikaci řádně otestujte pomocí uživatelského testování. Pro aplikační logiku připravte také automatické (jednotkové) testy.

Zhodnoť te přínosy aplikace, porovnejte ji s konkurenčními řešeními a navrhněte další možný rozvoj.

České vysoké učení technické v Praze Fakulta informačních technologií © 2025 Šárka Prokopová. Všechna práva vyhrazena.

Tato práce vznikla jako školní dílo na Českém vysokém učení technickém v Praze, Fakultě informačních technologií. Práce je chráněna právními předpisy a mezinárodními úmluvami o právu autorském a právech souvisejících s právem autorským. K jejímu užití, s výjimkou bezúplatných zákonných licencí a nad rámec oprávnění uvedených v Prohlášení, je nezbytný souhlas autora.

Odkaz na tuto práci: Prokopová Šárka. Mobilní aplikace pro detekci barev a vizuální návrh barevných schémat. Bakalářská práce. České vysoké učení technické v Praze, Fakulta informačních technologií, 2025.

 $Chtěl\ bych\ poděkovat\ především$

Prohlášení

Prohlašuji, že jsem předloženou práci vypracovala samostatně a že jsem uvedla veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských závěrečných prací.

Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorského zákona, ve znění pozdějších předpisů, zejména skutečnost, že České vysoké učení technické v Praze má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle § 60 odst. 1 citovaného zákona.

V Praze dne 23. července 2025

Abstrakt

Tato bakalářská práce se věnuje vývoji multiplatformní mobilní aplikace pro detekci barev a vizuální návrh barevných schémat s dodržením tradičních postupů softwarového inženýrství. Součástí práce je analýza teorie barev, vnímání barev spolu s představením známých barevných sad a popsáním tvorby barevných palet. Provedena je také rešerše existujících řešení a využití metod rozšířené reality.

Na základě analýzy jsou sestaveny požadavky aplikace, dle nichž se zrealizoval návrh. Ten je doprovázen implementací aplikace a jejím testováním. Konec práce se věnuje zhodnocení výsledků a popisu možného rozvoje aplikace.

Výstupem této práce je funkční mobilní aplikace umožňující rozpoznávat barvy a na jejich základě vytvářet barvné palety.

Klíčová slova teorie barev, vnímání barev, mobilní aplikace, AR, extrakce barev, barevné palety

Abstract

This bachelor thesis focuses on the development of a multiplatform mobile application for colour detection and visual design of colour schemes following traditional software engineering principles. The thesis includes an analysis of colour theory, colour perception along with an introduction of recognized colour sets and a description of the creation of colour palettes. A survey of existing solutions and the use of augmented reality methods is also presented.

On the basis of the analysis, the application requirements are established, according to which the design is developed. This is followed by the implementation of the application and its testing. The end of the thesis is dedicated to the evaluation of the results and description of the possible development of the application.

The output of this work is a functional mobile application that enables the recognition of colours and to create colour palettes based on the colours.

Keywords colour theory, perception of colours, mobile application, AR, colour extraction, colour palettes

			Obs	ah	
Ú	vod			1	
1	Cíl	práce		1	
2	Ana	${f dyz}$ a		2	
	2.1	Teorie barev		2	
		2.1.1 Barva		2	
		2.1.1.1 Isaac Newton		3	
		2.1.1.2 Johann Wolfgang von Goethe		3	
		2.1.1.3 Young-Helmholtzova teorie		3	
		2.1.1.4 Vlastnosti barev		4	
		2.1.1.5 Moderní definice		5	
		2.1.2 Oko a barevné vidění		5	
		2.1.2.1 Vliv kontextu na vnímání barev		5	
		2.1.2.2 Vliv barev v běžném světě		5	
		2.1.3 Poruchy barevného vidění		5	
	2.2	2.1.4 Teorie barev		5	
	2.2	Barevné sady a tvorba barevných palet		5	
	2.3	Extrakce informace z fotografie a AR		5	
	2.4	Rešerše existujících řešení		5	
	2.5	Požadavky		5	
	2.6	Model případu užití		5	
3	Náv	rh		6	
4	Implementace			7	
5	Tes	tování		8	
6	Vyhodnocení a další rozvoj				
Zá	ivěr			10	
Literatura 1					
\mathbf{A}	Uká	izky		12	

Obsah	viii

Obsah příloh 15

Seznam obrázků

Seznam tabulek

Seznam výpisů kódu

Seznam zkratek

AR Augmented Reality FA Finite Automaton

Úvod

Barvy a vnímání barev je i přes její důkladné zkoumání v historii stále velmi subjektivní záležitostí. Přesto se v průběhu času některým teoretikům, vědcům a filozofům podařilo stanovit určitá pravidla a vlastnosti barev, které se ve společnosti hojně využívají. At už se jedná o předpokládaný umělecký průmysl, v tomto smyslu nejen malba či kresba, využití v psychologii, digitálním odvětví, marketingu, či dokonce politice, barvy jsou důležitým aspektem, díky kterému můžeme v lidech probouzet emoce, prohlubovat naše myšlenky, v určitých případech je využívat také jako nástroj manipulace.

Barvy působí v nervovém systému. Ne každý však má možnost barvy vidět. Je tedy otázkou, jak se takový člověk může přizpůsobit dnešní společnosti a zda je možné od společnosti takovému člověku porozumět.

Hlavním cílem této bakalářské práce je proto vyvinout multiplatformní aplikaci, která s pomocí rozšířené reality umožní rozeznávat barvy objektů v reálném světě a vytvářet další barevné palety. Díky této aplikaci mohou lidé s poruchou vnímání barev rozlišovat barvy a lépe chápat návaznost na další odstíny. Zároveň je aplikace pomocníkem, díky kterému mohou umělci, tvůrci obsahu a designéři rychle detekovat barvy a vytvářet soudržná schémata.

Již existující řešení se soustředí většinou pouze na jediný aspekt, buď pouhé rozeznávání barev na fotografii či tvorbu palet na základě stanovené barvy. Pro uživatele právě sjednocení těchto funkcionalit umožňuje správné porozumění barvám a jejich vnímání. Práce se zabývá analýzou, návrhem a implementací aplikace podle tradičních postupů softwarového inženýrství.

TODO kapitoly

Kapitola 1

Cíl práce

Hlavním cílém této práce je vývoj multiplatformní aplikace pro detekci barev a tvorbu barevných schémat za použití programovacího jazyka TODO, a to dle tradičních postupů softwarového inženýrství. Práce se tedy soustředí na analýzu, sestavení požadavků, návrh, implementaci a následné testování.

Prvním bodem je analýza teorie barev, vnímání barev a popsání známých barevných sad a tvorby palet. Současně se analýza zabývá extrakcí informací z fotografií, a nakonec také využitím AR pro práci s mobilním zařízením a fotografiemi.

V další části se budeme věnovat rozborem existujících řešení, které detekují barvy z fotografií či tvoří barevná schémata na základě stanovených barev.

Dále sestavíme požadavky a případy užití naší výsledné aplikace. Navážeme návrhem aplikace, tvorbou architektury a přípravou konceptu uživatelského rozhraní. Dle tohoto návrhu proběhne implementace aplikace a následné testování.

Nakonec vyhodnotíme výslednou aplikaci spolu s dílčími cíli této práce, prodiskutujeme přínos a případný možný rozvoj aplikace.

Kapitola 2

Analýza

První kapitola je věnována analýze, jenž je potřebná pro získání potřebných informací a popsání požadavků softwarového produktu. Díky analýze se můžeme v následující kapitole věnovat návrhu.

Následující stránky jsou věnovány analýze teorie barev a vnímání barev lidmi. Následně je věnována pozornost známým barevným sadám a tvorbě barevných palet, extrakcí informací z fotografie a využití AR k této extrakci. Prostor je věnován také existujícím aplikacím s podobnými funkcionalitami, díky kterým si upřesníme a definujeme funkční a nefunkční požadavky. Na závěr specifikujeme požadavky pomocí modelu případů užití.

2.1 Teorie barev

Teorie barev by se dala popsat jako soubor postupů a pravidel zahrnující používání primárních pigmentových barev, vytváření barevné harmonie, míchání barev a jejich aplikaci.

Abychom se však mohli věnovat samotným teoriím a určit postupy, se kterými budeme k této práci přistupovat, je třeba začít s úplnmými základy a definovat si, co vlastně je barva a jak je vnímána lidským okem.

2.1.1 Barva

Vnímání barev je velmi subjektivní a již od dob Aristotela nám jejich zkoumání nepřineslo jednotný názor, který by přesně definoval barvu. Ten založil své poznatky na pozorování slunečního světla, které při odrazu či průchodu objektem snižuje svou intenzitu nebo je ztmaveno. Vnímal tak barvu jako mísení, míchání, superpozici či juxtapozici černé a bílé [1].

Tento názor se však později setkal s kritikou a byl nahrazen novými poznatky od dalších teoretiků. Dodnes je však velmi dobrým základem pro další zkoumání vlastností barev.

Teorie barev 3

2.1.1.1 Isaac Newton

S významným názorem přišel v 18. století významný fyzik, matematik, astronom a alchymista, Isaac Newton, ve své knize *Optika*. Kniha dokumentuje Newtonovy pokusy s lomem světla skrze hranol. Během svého pozorování objevil, že se jediný paprsek světla rozkládá do více barev v podlouhlém tvaru. V té době se jednalo o překvapující objev. Dle přijatých zákonů lomu by mělo totiž rozptýlené světlo nabírat kruhovitých obrazců [2]. Po dalších pozorováních vznesl Newton názor, že barva je viditelná část elektromagnetického spektra. Díky tomu můžeme rozeznávat různé barvy, ve svém spektru identifikoval také konkrétní odstíny. Nejprve červenou, žlutou, zelenou, modrou a fialovou, později také oranžovou a indigo [3]. Počet barev, tedy číslo 7, v tomto případě hraje významnou roli. Prvočíslo s mystickými významy udává také počet tónů na stupnici. A dle Newtona právě tóny a sluch souvisel s barevným viděním.

I přesto se ve své době nesetkal vždy s pozitivním ohlasem. Mnozí umělci stále věřili, že barva je něco mnohem komplexnějšího. Barvá má průhlednost, může být leská i matná, disponuje texturou i odstínem. Všechny tyto složky jsou důležitými aspekty, které nám dohromady vytváří svět tak, jak jej vidíme [4].

2.1.1.2 Johann Wolfgang von Goethe

Jedním z těch, kteří barvu chápali jako mnohem abstraktnější pojem, byl německý spisovatel Johann Wolfgang von Goethe. Důležitým dílem se stala kniha *Teorie barev*, kde Goethe zpochybňuje Newtonovy názory. V jeho spisu popisuje barvu ne jako vědecký údaj, ale jako subjektivní zážitek, přírodní vjem projevující se kontrastem, mísením, zvětšením či dělením. Součástí díla je taktéž první systematická studie o fyziologických účincích barev.

Goethe rozdělil barvu do tří tříd podle toho, jak se projevují. První jsou psychologické barvy, které závisí na oku a reakci orgánů. Dalšími jsou fyzické barvy, ty jsou produkovány materiálními médii, avšak sami o sobě barvu mít nemusí. Jejich vnímání je určené okem, a to prostřednictvím vnějších vjemů či odrazů. Tyto barvy jsou pomíjivé a nelze je zadržet na dlouhou dobu. Třetí třídou jsou chemické barvy, které patří daným látkám a jsou trvalé po libovolně dlouhou dobu [1].

Goetheovo definování barev je založeno spíše na jeho zkušenosti a ve své knize se zaměřuje na vnímání psychologické a emocionální. Ačkoliv z lidského pohledu jeho tvrzení nejsou nekorektní, postrádají fyzikální základ a nesoustředí se na vědecké vlastnosti.

2.1.1.3 Young-Helmholtzova teorie

Jen o pár desítek let dál vznikla nová, dodnes v praxi využívaná teorie. Základ ji dodal anglický vědec Thomas Young v roce 1802, který příšel s trichromatickou teorií barevného vidění. Nespokojil se totiž s Newtnovým názorem o

Teorie barev 4

velkém množství částic v oku a vytvořil předpoklad, že existují tři fotosenzitivní receptory reagující na základní barvy, tedy červenou, modrou a zelenou. Drážděním receptorů pak vznikají další barevné kombinace a spojením všech tří vznikne dojem bílé barvy. Jejich absence pak vytváří dojem černé.

Myšlenku následně rozvedl německý fyziolog Hermann Ludwig Ferdinand von Helmholtz. Dle jeho poznatků nejsou receptory drážděny pouze jednou barvou, ale všemi třemi s různou intenzitou. Tak mohou vznikat všechny možné barevné odstíny a drážděním všech tří barev ve stejném poměru vytváří vjem bílé. Té lze ale dosáhnout také smícháním dvou komplementárních barev (např. modré s oranžovou).

Tuto teorii podpořili i další osobnosti, jedním z nich je Ragnar Granit. V roce 1964 Paul K. Brown a George Wald prokázali existenci tří fotopigmentů sítnice citlivé na různé vlnové délky, později Ragnar Granit, Haldan Keffer Hartline a George Wald dokázali existenci těchto fotoreceptorů spektrofotometrickým vyšetřením absorpce světla. Za tento objev získali v roce 1967 Nobelovu cenu [5].

Tato teorie je využívána dodnes, dle některých zdrojů známá pod názvem Young-Helmholtz-Maxwellova teorie. Skotský fyzik, James Maxwell, se totiž v době Helmholtzova zkoumání věnoval stejnému tématu a rozšiřoval tuto teorii o další pozorování. Potvrdil existenci tří typů receptorů a popsal barvoslepost jako poruchu těchto receptorů. Zároveň definoval světlo jako elektromagnetické vlnění a popsal souvislosti vlnových délek s barvou světla [6].

2.1.1.4 Vlastnosti barev

Pro pochopení, co je barva, je třeba znát i vlastnosti barev, které popisují jejich vzhled a charakterizují je. Definují se nejčastěji numericky vzhledem tomu, že lidské oko jej objektivně vyhodnotit nedokáže. Základními atributy barev jsou odstín, sytost a jas [7].

Odstín Odstín je vyznačován názvem konkrétní barvy. Liší se v závislosti na vlnové délce a je rozhodující pro výslednou podobu barvy. Další atributy vzhledem k jejich podstatě totiž fungují pro diskriminaci barev spíše jako doplňkové.

Sytost Sytost určuje množství bílé v konkrétní barvě. Čím větší množství bílé barvy obsahuje, tím menší je sytost. Udávána je nejčastěji v procentech, kde 0 % značí černobílou a 100 % plnou sytost bez černého či bílého pigmentu.

Jas Jas určuje světelnou intenzitu barvy, tedy množství světla vycházející z dané barvy. Více světelných paprsků vytváří světlejší vjem barvy. Stupnice pro měření jasu je od 0 do 100, kde 0 značí absolutní černou. Lidské oko je údajně schopno rozlišit až 300 stupňů jasu barev v různých odstínech.

2.1.1.5 Moderní definice

Jak tedy definovat barvu na základě veškerých zmíněných poznatků? Obecně lze říci, že barva je aspekt způsobený kvalitou světla odrážejícího se či pohlceného daným objektem. Abychom viděli barvu, je třeba mít světlo. Lidské oko zvládne vidět pouze barvy, které se odráží nebo reflektují. Samotné vnímání zůstává stále velmi subjektivní [8].

- 2.1.2 Oko a barevné vidění
- 2.1.2.1 Vliv kontextu na vnímání barev
- 2.1.2.2 Vliv barev v běžném světě
- 2.1.3 Poruchy barevného vidění
- 2.1.4 Teorie barev
- 2.2 Barevné sady a tvorba barevných palet
- 2.3 Extrakce informace z fotografie a AR
- 2.4 Rešerše existujících řešení
- 2.5 Požadavky
- 2.6 Model případu užití

 	 Kapitola 3
	Návrh

Implementace

Testování

Vyhodnocení a další rozvoj

Závěr

Literatura

Příloha A Ukázky

Sem přijde to, co nepatří do hlavní části. - přílohy TODO

Bibliografie

- GOETHE, Johann Wolfgang von. Theory of Colours. Přel. EASTLAKE, Charles Lock. London: John Murray, 1840. With notes by Charles Lock Eastlake.
- 2. ADAMS, C. R. "in Experiments, where Sense is Judge" Isaac Newton's Tonometer and Colorimeter. *Journal of the Oughtred Society*. 2013, roč. 22, č. 1, s. 41–45. Spring issue; JOS Plus Supplement.
- 3. LIBRARIES, Smithsonian; ARCHIVES. The Science of Color [online]. Smithsonian Libraries a Archives, 2025. [cit. 2025-07-23]. Dostupné z: ht tps://library.si.edu/exhibition/color-in-a-new-light/science. Accessed July 23, 2025.
- 4. GAGE, J.; GROVIER, K. Colour in Art. Thames a Hudson Limited, 2023. World of Art. ISBN 9780500778807. Dostupné také z: https://books.google.cz/books?id=mujNEAAAQBAJ.
- 5. VACKOVÁ, Aneta. Teorie barevného vidění [online]. Brno, 2013 [cit. 2025-07-23]. Dostupné z: https://is.muni.cz/th/u7qow/Teorie_barevneho_videni.pdf. Bakalářská práce. Masarykova univerzita, Lékařská fakulta. Vedoucí práce Ph.D. PETR VESELÝ DiS.
- 6. SENGUPTA, D.L.; SARKAR, T.K. Maxwell, Hertz, the Maxwellians and the early history of electromagnetic waves. In: *IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).* 2001, sv. 1, 14–17 vol.1. Dostupné z DOI: 10.1109/APS.2001.958782.
- 7. JELEN, Vojtěch. Otázka vlivu barev na spotřebitelské chování v kontextu jejich percepce a symboliky [online]. Praha, 2023 [cit. 2025-07-23]. Dostupné z: https://dspace.cuni.cz/bitstream/handle/20.500.11956/188964 /130380558.pdf?sequence=1. Bakalářská práce. Univerzita Karlova, Fakulta humanitních studií. Vedoucí práce Ph.D. PHDR. VÁCLAV HÁJEK.

Bibliografie 14

8. LLC, Pantone. What Is Color? [online]. Pantone, n.d. [cit. 2025-07-23]. Dostupné z: https://www.pantone.com/articles/color-fundamentals/what-is-color?srsltid=AfmBOopg6UBko2e-BNFPDss2Tu_9yYq8S7QT2e_GIcs_cMvOm_fwgiri. Accessed July 23, 2025.

Obsah příloh

/	/	
	readme.txt	stručný popis obsahu média
		esář se spustitelnou formou implementace
	src	
	impl	zdrojové kódy implementace zdrojová forma práce ve formátu L ^A T _E X
	thesis	zdrojová forma práce ve formátu IATEX
		text práce
	thesis ndf	text práce ve formátu PDF