Введение в численные методы. Одномерная минимизация. Семинар 7. 11 февраля 2020 г.

Семинарист: Данилова М.

Программа курса

- 1. Введение в численные методы.
- 2. Одномерная оптимизация.
- 3. Градиентный метод.
- 4. Метод Ньютона.
- 5. Квазиньютоновские методы.
- 6. Ускоренные градиентные методы.
- 7. Стохастический градиентный спуск.
- 8. Оптимальные методы и нижние оценки.
- 9. Проксимальные методы.Метод внутренней точки.
- 10. Введение в pytorch.
- 11. Введение в оболочку и пакеты сухру, варианты солверов.

Литература

- 1. Б.Т. Поляк. Введение в оптимизацию.
- 2. Ю.Е. Нестеров. Методы выпуклой оптимизации.
- 3. А.В. Гасников. Современные численные методы оптимизации.
- 4. В.Г. Жадан. Методы оптимизации.
- 5. Matrixcookbook.
- 6. Sébastien Bubeck. Convex Optimization: Algorithms and Complexity.

Введение в численные методы оптимизации

В этом курсе нас будут интересовать алгоритмы(методы) решения оптимизационных задач вида

$$\min_{x \in X} f(x)$$

Можно решить задачу аналитически с помощью условий оптимальности или геометрического подхода, но это возможно сделать только в самых простых случаях. Когда это сделать не представляется возможным мы приходим к понятию **численных методов**.

- Точно решить задачу с помощью численных методов невозможно из-за погрешности машинной арифметики.
- Решить задачу означает найти её приближенное решение с заранее заданной точностью $\varepsilon>0.$

Численные методы

Общая итеративная схема

- 1. задаем начальную точку x_0 и требуемую точность $\varepsilon>0$
- 2. выбираем направление $d(x_k) = d_k$
- 3. выбираем длину шага $\alpha(x_k) = \alpha_k$
- 4. делаем шаг $x_{k+1} = x_k + \alpha_k d(x_k)$ (линейный поиск)
- 5. проверка условия остановки:
 - либо x_{k+1} ответ
 - ullet либо k:=k+1 и переходим на шаг 2

Критерии остановки

- 1. сходимость по аргументу: $||x_k x^*|| \le \varepsilon$
- 2. сходимость по функционалу: $|f_k f^*| \le \varepsilon$
- 3. если f(x) дифференцируема, то можно проверять: $\|\nabla f(x_k)\| \le \varepsilon$

Замечания

• в общем случае x^* нам неизвестно, тогда

$$||x_{k+1} - x_k|| = ||x_{k+1} - x_k + x^* - x^*|| \le ||x_{k+1} - x^*|| + ||x_k - x^*|| \le 2\varepsilon$$

• критерии 1) и 2) основаны на использовании абсолютных изменений, лучше использовать их относительные изменения:

$$- \frac{\|x_{k+1} - x_k\|}{\|x_k\|}$$
$$- \frac{|f(x_{k+1}) - f(x_k)|}{|f(x_k)|}$$

- ullet критерии остановки дополняются заданием максимально возможного числа итераций N
- Пусть \bar{x} ваше решение, а x^* истинное решение, тогда с помощью методов можно получить $f(\bar{x}) \approx f(x^*)$, но нельзя гарантировать $\|\bar{x} x^*\| \le \delta$

Оракул

Предполагается, что численный метод может накапливать специфическую информацию о задаче при помощи некоторого оракула.

- Оракул некоторое устройство, которое отвечает на последовательные вопросы численного метода.
- Единственной информацией, получаемой в ходе работы итеративного метода являются ответы оракула.
- Ответы оракула локальные, то есть изменяя задачу далеко от тестовой точки х исходный ответ в точке х не меняется.

Примеры оракулов

- **Оракул нулевого порядка** в запрашиваемой точке x возвращает значение целевой функции f(x).
- Оракул первого порядка в запрашиваемой точке возвращает значение функции f(x) и её градиент в данной точке $\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$.

Классификация

- 1. (a) методы нулевого порядка: оракул возвращает значени функции f(x)
 - (b) методы первого порядка: f(x), f'(x)
 - (c) методы второго порядка: f(x), f'(x), f''(x)
- 2. (a) одношаговые методы: $x_{k+1} = \Phi(x_k)$
 - (b) многошаговые методы: $x_{k+1} = \Phi(x_k, x_{k-1})$

Как сравнивать методы оптимизации?

1. Сложность

- **Аналитическая сложность** число обращений к оракулу, необходимое для решения задачи с точностью ε .
- **Арифметическая сложность** общее число вычислений (включая работу оракула), необходимых для решения задачи с точностью ε .

2. Скорость сходимости

Скорость сходимости

• линейная (геометрическая)

$$\exists 0 < C < 1, K \ge 0: \quad ||x_{k+1} - x^*|| \le C||x_k - x^*|| \quad \forall k \ge K$$

 $\exists C > 0, 0 < q < 1, K > 0: \quad ||x_k - x^*|| \le Cq^k \quad \forall k > K$

• сверхлинейная

$$||x_{k+1} - x^*|| \le C_k ||x_k - x^*||, \quad C_k > 0, \ C_k \to 0, \ k \to \infty$$

• квадратичная

$$\exists C > 0, \ k \ge 0: \quad ||x_{k+1} - x^*|| \le C||x_k - x^*||^2 \quad \forall k \ge K$$
$$\exists C > 0, \ 0 < q < 1, \ K > 0: \quad ||x_k - x^*|| < Cq^{2^k} \quad \forall k > K$$

Методы спуска

Общая итеративная схема

$$x_{k+1} = x_k + \alpha_k h_k$$
$$f(x_{k+1}) < f(x_k)$$

- \bullet $\alpha_k > 0$ длина шага
- h_k направление убывания
- x_0 начальное приближение

Правила выбора длины шага

1. Правило постоянного шага:

$$\alpha_k = \alpha > 0$$

2. Правило априорного выбора:

последовательность $\{\alpha_k\}_{k=0}^{\infty}$ выбирается заранее. Например,

$$\alpha_k = \frac{\alpha}{\sqrt{k+1}}$$

3. Правило одномерной минимизации:

$$\alpha_k = \arg\min_{\alpha > 0} f(x_k + \alpha h_k)$$

- 4. **Правило Армихо:** задаются два числа $0 < \varepsilon < 1, \ 0 < \theta < 1$ и выбирают начальное значение длины шага $\bar{\alpha}$. Полагаем $\alpha = \bar{\alpha}$. Выбор α_k проводится согласно следующей двухэтапной процедуре:
 - Шаг 1. Проверяем выполнение условия

$$f(x_k + \alpha h_k) - f(x_k) \le \varepsilon \alpha \langle f_x'(x_k), h_k \rangle$$

которое называется неравенством Армихо.

• Шаг 2. Если неравенство Армихо не выполняется, то заменяем α на $\alpha := \theta \alpha$ и идем на шаг 1. В противном случае полагаем $\alpha_k = \alpha$ и заканчиваем процесс.

5. **Правило Голдштейна:** в нем задаются два параметра: $0 < \varepsilon_1 < 1$ и $0 < \varepsilon_2 < 1$, причем $\varepsilon_1 < \varepsilon_2$. Шаг α на k-й итерации подбирается таким образом, чтобы он удовлетворял условиям

$$\varepsilon_1 \le \frac{f(x_k + \alpha h_k) - f(x_k)}{\alpha \langle f'_x(x_k), h_k \rangle} \le \varepsilon_2.$$

Левое неравенство - это правило Армихо. Правое неравенство вводится для того, чтобы шаг не был достаточно малым.

Замечания

- правила постоянного шага и априорного выбора являются самыми простыми и используются в контексте задач выпуклой оптимизации;
- стратегия одномерной минимазации интересна только с теоретической точки зрения, так как на практике применима только тогда, когда вспомогательная задача решается либо очень быстро, либо аналитически;
- правила Армихо и Гольдштейна используются в большинстве практических алгоритмов;
- правило Армихо гарантирует, что функция в точке x_{k+1} не превосходит её линейной аппроксимации с коэффициентом наклона ε ;
- правило Гольдштейна гарантирует то же, что и правило Армихо, а также что функция в точке x_{k+1} убывает не меньше, чем её линейная аппроксимация с коэффициентом наклона ε_2 (то есть расположена между графиками линейных апроксимаций с коэффициентами наклона ε_1 , ε_2 .).

Одномерная минимизация

В данном разделе речь пойдет о решении задачи минимизации функции одного аргумента на отрезке:

$$\min_{x \in X} f(x), \tag{1}$$

где $x \in \mathbb{R}$, X = [a, b], a < b, f(x) - непрерывна на [a, b]. Данная задача часто встречается в качестве вспомогательной подзадачи во многих численных методах.

Унимодальность

Определение 1. функция f(x) – унимодальная на [a,b], если существует такая точка $x_* \in [a,b]$, что $f(x_1) > f(x_2)$ для любых $a \le x_1 < x_2 < x_*$ и $f(x_1) < f(x_2)$ для любых $x_* < x_1 < x_2 \le b$.

Замечание 1. 1. Если на [a,b] унимодальная функция f(x) достигает своего минимума, то она достигает его в точке x_* .

2. Определение для проивзольных f(x) не предполагает непрерывности.

3. для непрерывных функций свойство унимодальности означает обязательное наличие у функции f(x) единственного локального минимума на [a,b].

Утверждение 1. Пусть f(x) – унимодальная на отрезке [a,b] функция, достигающего своего минимума в точке $x_* \in [a,b]$. Пусть имеются две точки $x_1 \in [a,b], \ x_2 \in [a,b]$ такие, что $x_1 < x_2$. Тогда

- 1. если $f(x_1) \leq f(x_2)$, то $x_* \in [a, x_2]$,
- 2. если $f(x_1) \ge f(x_2)$, то $x_* \in [x_1, b]$.

Доказательство. Докажем первый пункт от противного. Пусть $f(x_1) \leq f(x_2)$, но $x_* > x_2$. Тогда обязательно $x_1 < x_2 < x_*$ из условий и в силу унимодальности $f(x_1) > f(x_2)$. Получено противоречие.

Методы последовательной локализации решения

Для решения задач (1) с непрерывными унимодальными функциями являются эффективными **методы последовательной локализации решения**.

Основная идея – построить последовательность вложенных отрезков локализации решения x_* задачи (1):

$$[a,b] \supseteq [a_0,b_0] \supset [a_1,b_2] \supset \cdots \supset [a_k,b_k] \supset \cdots;$$

 $x_* \in [a_i,b_i] \quad \forall i.$

В качестве начально отрезка $[a_0,b_0]$ обычно берется сам отрезок [a,b]. Длины отрезков $\triangle_k=b_k-a_k$ образуют монотонно убывающую последовательность:

$$\triangle_0 > \triangle_1 > \triangle_2 > \dots > \triangle_k > \dots \to 0.$$

Если построен отрезок $[a_k,b_k]$, то в качестве приближенного решения задачи (1), берется проивзольная точка x_k из отрезка $[a_k,b_k]$. Обычно в качестве такой точки целесообразно брать середину отрезка $x_k = \frac{a_k+b_k}{2}$. Это гарантирует, что $|x_k-x_*| \leq \frac{\triangle_k}{2}$, а в общем случае $|x_k-x_*| \leq \triangle_k$.

Для прерывания процесса задается точность $\varepsilon > 0$, для того, что бы выполнялось следующее неравенство для оценки расстояния между x_* и найденой точки x_k

$$|x_k - x_*| \le \varepsilon.$$

Условие остановки: $\triangle_k \le 2\varepsilon$.

Методы одномерной минимизации

- 1. метод дихотомии (метод деления отрезка пополам)
- 2. метод золотого сечения
- 3. метод Фибоначчи

Рассматривем только унимодальные функции.

Метод дихотомии

Алгоритм

Начальная итерация (k=0)

полагаем
$$a_0=a$$
 $b_0=b$ $c_0=rac{a_0+b_0}{2}$ вычисляем $f(c_0)$

Общая k-ая итерация

Шаг 1

берем точку $y_k = \frac{a_k + c_k}{2}$ и вычисляем $f(y_k)$

1. если $f(y_k) \leq f(c_k)$, то

$$a_{k+1} = a_k$$
$$b_{k+1} = c_k$$
$$c_{k+1} = y_k$$

переходим на шаг 3

2. если $f(y_k) > f(c_k)$, то берем точку $z_k = \frac{c_k + b_k}{2}$ и вычисляем $f(z_k)$

Шаг 2

если
$$f(c_k) \le f(z_k)$$
, то

$$a_{k+1} = y_k$$
$$b_{k+1} = z_k$$
$$c_{k+1} = c_k$$

иначе

$$a_{k+1} = c_k$$
$$b_{k+1} = b_k$$
$$c_{k+1} = z_k$$

Шаг 3

увеличиваем счетчик k := k + 1 и переходим на **шаг 1**

Анализ

В силу утверждения 1 мы имеем $x_* \in [a_{k+1}, b_{k+1}],$

$$\triangle_{k+1} = b_{k+1} - a_{k+1} = \frac{1}{2}(b_k - a_k) = \dots = \frac{1}{2^k}(b - a).$$

На каждой итерации f(x) вычисляется максимум в двух точках, на 0-ой итерации в одной точке.

1. Пусть нам можно выполнить N вычислений f(x) и для удобства пусть N — нечетное, тогда какое число итераций K мы можем выполнить?

$$\frac{N-1}{2} = K$$

$$x_{K+1} = c_{K+1} = \frac{a_{K+1} - b_{K+1}}{2}$$

$$|x_{K+1} - x_*| \le \frac{1}{2} (b_{K+1} - a_{K+1}) = \frac{1}{2^{\frac{N-1}{2}}} \frac{b-a}{2} = \left(\frac{1}{2}\right)^K \frac{b-a}{2}$$

2. Пусть нам нужна точность ε , тогда что мы можем сказать про число итераций K?

$$|x_{K+1} - x_*| \le \frac{1}{2^K} \frac{b - a}{2} \le \varepsilon$$
$$\left(\frac{1}{2}\right)^{K+1} \le \frac{\varepsilon}{b - a}$$
$$K \ge \log_2 \frac{b - a}{\varepsilon} - 1$$

Метод золотого сечения

Нам заданы отрезок [a,b] и функция f(x). Золотым сечением называется такое деление отрезка на две неравные части, что отношение длины всего отрезка к большей части равно отношению большей части к меньшей. Эта пропорция часто встречается в природе и в человеческой деятельности.

1. **Меньшая золотая точка** отрезка [a,b]

$$\frac{b-a}{b-y} = \frac{b-y}{y-a}$$

решая данную пропорцию мы получим

$$y = y(a, b) = a + \frac{2}{3 + \sqrt{5}}(b - a) \approx a + 0,382(b - a)$$

2. **Большая золотая точка** отрезка [a,b]

$$\frac{b-a}{z-a} = \frac{z-a}{b-z}$$

решая данную пропорцию мы получим

$$z = z(a, b) = a + \frac{\sqrt{5} - 1}{2}(b - a) \approx a + 0,618(b - a)$$

3. введем величину $au = \frac{1+\sqrt{5}}{2}$ и преобразуем

$$y(a,b) = a + \frac{1}{\tau^2}(b-a)$$

$$z(a,b) = a + \frac{1}{\tau}(b-a)$$

Утверждение 2. Пусть y и z - меньшая и большая золотые точки отрезка [a,b]. Тогда

1. выполняются следующие равенства

$$z - a = b - y = \frac{\sqrt{5} - 1}{2}(b - a) = \frac{1}{\tau}(b - a);$$

2. y - большая золотая точка отрезка $[a,z],\ z$ - меньшая золотая точка отрезка [y,b].

Алгоритм

Начальная итерация (k=0)

полагаем
$$a_1=a$$
 $b_1=b$ $y_1=y(a,b)$ $z_1=z(a,b)$ вычисляем $f(y_1)$

Общая k-ая итерация

Шаг 1

вычисляем то из значений $f(y_k),\ f(z_k),$ которое еще не вычислено если $f(y_k) \leq f(z_k),$ то

$$a_{k+1} = a_k$$

$$b_{k+1} = z_k$$

$$z_{k+1} = y_k$$

$$y_{k+1} = y(a_{k+1}, b_{k+1})$$

иначе, когда $f(y_k) > f(z_k)$

$$a_{k+1} = y_k$$

$$b_{k+1} = b_k$$

$$z_{k+1} = z(a_{k+1}, b_{k+1})$$

$$y_{k+1} = z_k$$

Шаг 2

увеличиваем счетчик k:=k+1 и переходим на **шаг 1**

Анализ

В силу утверждения 1 и 2 на каждой k-ой итерации мы имеем

1.
$$x_* \in [a_{k+1}, b_{k+1}],$$

2.
$$y_{k+1} = y(a_{k+1}, b_{k+1}), z_{k+1} = z(a_{k+1}, b_{k+1}).$$

Приближение для x_{k+1} – любая точка из отрезка $[a_{k+1}, b_{k+1}]$.

На каждой итерации f(x) вычисляется в одной точке.

$$\triangle_{k+1} = b_{k+1} - a_{k+1} = \frac{1}{\tau}(b_k - a_k) = \left(\frac{1}{\tau}\right)^k (b - a)$$

1. Пусть нам можно выполнить N вычислений f(x), тогда какое число итераций K мы можем выполнить?

$$N - 1 = K$$

$$|x_{K+1} - x_*| \le \Delta_{K+1} = \left(\frac{1}{\tau}\right)^{N-1} (b - a) \approx 0,618^K (b - a)$$

2. Пусть нам нужна точность ε , тогда что мы можем сказать про число итераций K?

$$|x_{K+1} - x_*| \le \varepsilon$$

$$\left(\frac{1}{\tau}\right)^K \le \frac{\varepsilon}{b - a}$$

$$K \ge \frac{\ln \frac{b - a}{\varepsilon}}{\ln \tau}$$

Сравнение методов дихотомии и золотого сечения

- \bullet константа геометрической прогрессии метода золотого сечения $(\frac{1}{\tau}=0,618)$ больше, чем у метода дихотомии $(\frac{1}{2}=0,5)$
- количество вызовов функции у метода золотого сечения меньше, чем у метода дихотомии