Theory of Computation

ChanBong

February 25, 2023

Contents

1	Lecture 1: Introduction 1.1 Basic Defination	2 2
	1.1 Dasic Defination	
2	2007410 27 0141111101	3
	2.1 Grammer	3
3	Lecture 3: Deterministic Finite Acceptors	4
	3.1 Language from grammer	4
	3.2 Deterministic Finite Acceptors (DFA)	4
	3.3 Graphical Representation of DFA	5
4	Lecture 4: DFA Acceptance	6
	4.1 Walk in DFA	6
	4.2 DFA Acceptance	7
5	Lecture 5: Non Deterministic Fnite Automata	8
	5.1 Non Deterministic Fnite Automata (NFA)	8
		9
	5.3 Convert from DFA to NFA	10
6	Lecture 7: NFA to DFA Convergance	11
7	Lecture 8: NFA to DFA Convergance	12
	7.1 Procedure "Reduce"	12
8	Revision	14
	8.1 Regular Expressions	14

January 6, 2023

Lecture 1: Introduction

1.1 Basic Defination

To get started, we will define what is computation and various jargons we'll be using throughout this course

Definition 1.1 Strings: set of alphabets. Denoted by Σ

Example 1.1: Some examples of strings are:

- u = aabbca
- v = bac
- uv = aabbcca

Definition 1.2 Length of a string: Number of alphbets in the string

Empty strings are denoted by λ .

- $\bullet \ |\lambda| = 0.$
- $\lambda w = w\lambda = w$.

If w = uv then u is called **prefix** of w and v is called **suffix** of w.

Example 1.2: Consider w = abcab. Then $\{\lambda, a, ab, abc, abca, abcab\}$ are all prefixes of w and $\{\lambda, b, bc, bca, bcab\}$ are all suffixes of w.

January 9, 2023

Lecture 2: Grammer

```
Theorem 2.1: |uv| = |u| + |v|.
```

```
Proof: We will use mathematical induction to prove this. Base case: |\lambda v| = |v| = |\lambda| + |v|. Inductive step: Assume |uv| = |u| + |v|. Then |u'v| = |u'| + |v| = |u| + |v| + 1. Thus, |uv| = |u'v| = |u| + |v| + 1 = |u| + |v|. Thus, |uv| = |u| + |v|.
```

2.1 Grammer

Definition 2.1 Grammer: A grammer $\mathbb{G} = \{ \mathbb{V}, \mathbb{T}, \mathbb{S}, \mathbb{P} \}$

- ullet V is finite set of objects called variables.
- $\bullet~\mathbb{T}$ is finite st of objects called terminals.
- $\mathbb{S} \in \mathbb{V}$: special symbol called start variable
- $\bullet~\mathbb{P}$ is a finite set of rules

January 10, 2023

Lecture 3: Deterministic Finite Acceptors

3.1 Language from grammer

Example 3.1: Consider the grammer $\mathbb{G} = (\{s\}, \{a, b\}, \mathbb{S}, \mathbb{P}); \quad \mathbb{P}_1 \mathbb{S} \to a \mathbb{S} b / \lambda$ then language generated by this grammer is

$$\mathbb{L}(G_1) = \{a^m b^m : m \ge 0\}$$

Example 3.2: Consider the grammer $\mathbb{G} = (\{s, \mathbb{A}\}, \{a, b\}, \mathbb{S}, \mathbb{P}); \mathbb{P}_2\mathbb{S} \to a\mathbb{S}b/\lambda, \mathbb{A} \to a\mathbb{A}b/\lambda$ then language generated by this grammer is

$$\mathbb{L}(G_2) = \{a^m b^m : m \ge 0\}$$

Definition 3.1: Two grammers are equivalent iff $L(G_1) = L(G_2)$

3.2 Deterministic Finite Acceptors (DFA)

Definition 3.2: A DFA is defined by $\mathbb{M} = (\mathbb{Q}, \Sigma, \mathbb{D}, \mathbb{Q}_0, \mathbb{F})$ where

- \mathbb{Q} is a finite set of states
- Σ is a finite set of input symbols
- $\mathbb{D}: \mathbb{Q} \times \mathbb{E} \to \mathbb{Q}$ is a transition function
- $\mathbb{Q}_0 \in \mathbb{Q}$ is the start state
- $\mathbb{F} \subseteq \mathbb{Q}$ is the set of final states

Example 3.3: Consider the DFA $\mathbb{M} = (\{q_0, q_1, q_2\}, \{a, b\}, \mathbb{D}, q_0, \{q_1\}).$ $\mathbb{D}(q_0, a) = q_1, \mathbb{D}(q_0, b) = q_0, \mathbb{D}(q_1, a) = q_2, \mathbb{D}(q_1, b) = q_0, \mathbb{D}(q_2, a) = q_2, \mathbb{D}(q_2, b) = q_2$

3.3 Graphical Representation of DFA

Definition 3.3 : A DFA is represented by a directed graph G=(V,E) where

- \bullet $V = \mathbb{Q}$
- $\bullet \ E = \{(q, \mathbb{D}(q, \mathbb{E}), \mathbb{E}) : q \in \mathbb{Q}, \mathbb{E} \in \mathbb{E}\}$
- $\bullet\,$ an open \to indicates the start state
- $\bullet \ \bigcirc$ indicates the final state

Example 3.4: Consider the DFA $\mathbb{M} = (\{q_0, q_1, q_2\}, \{a, b\}, \mathbb{D}, q_0, \{q_1\}).$ $\mathbb{D}(q_0, a) = q_1, \mathbb{D}(q_0, b) = q_0, \mathbb{D}(q_1, a) = q_2, \mathbb{D}(q_1, b) = q_0, \mathbb{D}(q_2, a) = q_2, \mathbb{D}(q_2, b) = q_2$

Figure 3.1: DFA

January 12, 2023

Lecture 4: DFA Acceptance

4.1 Walk in DFA

Definition 4.1 Trap State: A state q is a trap state iff $\mathbb{D}(q,\mathbb{E})=q$ for all $\mathbb{E}\in\mathbb{E}$

Example 4.1: $\mathbb{M} = (\{q_0, q_1, q_2\}, \{a, b\}, \mathbb{D}, q_0, \{q_1\}). \ L(M) = \{a^n b : n \ge 0\}$

Figure 4.1: DFA

Here q_2 is a trap state.

Theorem 4.2: Let \mathbb{M} be a DFA and let G_m be its graphical representation. Then for every $q_i \in Q$ and $w \in \Sigma^+$ we have $D^+(q_i, w) = q_j$ iff there is a walk from q_i to q_j with label w.

Proof: We will use mathematical induction on the length of w.

Base case: w = a. Then $D^+(q_i, a) = q_j$ iff there is a edge from q_i to q_j with label a.

Inductive step: Assume for all |u| = n < m, if $D^+(q_i, u) = q_k$ then there is a walk form q_i to q_j with label u.

Now if $w \in \Sigma^+$, with |w| = n + 1 = m, say w = ua.

Then $D^+(q_i, w) = D^+(D^+(q_i, v), a) = D^+(q_k, a) = q_j \implies$ there is a walk from q_i to q_j with label w.

Backward direction: Assume for all |u| = n < m, if there is a walk from q_i to q_j with label u then $D^+(q_i, u) = q_j$.

<u>Remark</u>: If there is a walk from q_i to q_j with label w, then $D^+(q_i, w) = q_j$

4.2 DFA Acceptance

Definition 4.2: A DFA accepts a string w iff w is accepted by \mathbb{M} .

Definition 4.3 Regular Language: A language L is called regular iff there is a DFA M such that L(M) = L.

Example 4.3: Find a DFA for the language $L = \{abw : w \in \{a, b\}\}.$

Figure 4.2: Solution to the above example

Example 4.4: Show that the language $L = \{awa : w \in \{a, b\}^+\}$ is regular.

Figure 4.3: Solution to the above example

∮ How to prove that a language is not regular?

Definition 4.4 Concatanation of two languages:

January 16, 2023

Lecture 5: Non Deterministic Fnite Automata

Continuing Example 4.4

Figure 5.1: Solution to the above example

Define $L^2 = \{; w_1, w_2 \in \{a, b\}^+\}$

Figure 5.2: Solution to the L^2 example

5.1 Non Deterministic Fnite Automata (NFA)

Inconvinences in DFA:

- We needed to introduce all the states wheather or not they serve any meaningful purpose.
- in DFA, transition function is a complete function.

• We can't leave arrows hanging.

Definition 5.1 NFA: An NFA is defined by $\mathbb{M} = (\mathbb{Q}, \Sigma, \mathbb{D}, \mathbb{Q}_0, \mathbb{F})$ where $\mathbb{Q}, \Sigma, \mathbb{Q}_0, \mathbb{F}$ are same as in DFA, but

$$\mathbb{D}: \mathbb{Q} * (\Sigma \cap \{ \lambda \}) \to 2^Q$$
 Power set of Q

Example 5.1: $\mathbb{D}(q_1, a) = \{q_2, q_3\} \text{ and } \mathbb{D}(q_i, \lambda) = \{q_i, q_j\}$

- can have empty strings now
- machine can move from one state to another without processing any input
- \bullet any state with a path label w can end up in a subset of final states

5.2 NFA Acceptance

Example 5.2: Consider the following NFA

Figure 5.3: Solution to the above example

Definition 5.2 NFA Acceptance: The Language accepted by NFA M is $L(M) = \{ w \in \Sigma^*, \mathbb{D}^*(q_0, w) \mid F \neq \phi \}$

Remark It may end up in a non-final state but it must have at least one element from final state.

Lanuguage accepted by Example 5.2 is $L(M) = \{a^3\} \cap \{a^{2n} : n \ge 1\}$

Definition 5.3 Extended Transition function: $\mathbb{D}^*isdefined\mathbb{D}^*(q_i, w)$ contains q_j iff there is a walk from q_i to q_j laveled w in transition graph.

Example 5.3: Consider this NFA $L(M) = \{(10)^n : n \ge 0\}$

Figure 5.4: Solution to the above example

Figure 5.5: Solution to the above example

Definition 5.4 Dead Configuration: A state from which you can't go anywhere. It has no outgoing arrow

Definition 5.5 Equivalent Automata: If two automation accept the same language.

$$M_1 \approx M_2$$
 if $L(M_1) = L(M_2)$

5.3 Convert from DFA to NFA

 \oint Find a DFA that accepts $L(M_2)$?

19th January

Lecture 7: NFA to DFA Convergance

Example 6.1: Convert the following NFA to DFA

Figure 6.1: DFA

23rd January

Lecture 8: NFA to DFA Convergance

Theorem 7.1: The procedure **Mark** applicated to any DFA $M = \{\mathbb{Q}, \Sigma, \mathbb{D}, q_0, \mathbb{F}\}$ terminates and determines all pairs of distinguishable states.

7.1 Procedure "Reduce"

Given DFA $M=\{\mathbb{Q},\Sigma,\mathbb{D},q_0,\mathbb{F}\}$ construct a reduces DFA $\hat{M}=\{\hat{\mathbb{Q}},\Sigma,\hat{\mathbb{D}},\hat{q_o},\hat{\mathbb{F}}\}$ as follows

- Use procedure "Mark" to generate equivalence classes.
- For each equivalance class $\{q_1 \dots q_k\}$ of indistinguishable states create a state with label $i_1 \dots i_k$ for $\hat{\mathbb{M}}$
- For each transition rule of \mathbb{M} fo the form $\mathbb{D}(q_r, a) = q_s$, find the label $r \in \{i_1 \dots i_k\}$ add rule $\hat{\mathbb{D}}(i_1 \dots i_k, u) = j$ and j_t in $\hat{\mathbb{M}}$.
- The initial state $\hat{q_0}$ is that state which contains $0, q_0 \in \{q_1 \dots q_k\}$
- The $\hat{\mathbb{F}}$ will contain all those states, whose label contains the $q_i \in \mathbb{F}$

Example 7.2: Convert this using Procedure "Reduce"

Figure 7.1: DFA

Theorem 7.3: Given any DFA $M=\{\mathbb{Q},\Sigma,\mathbb{D},q_0,\mathbb{F}\}$ the procedure "Reduce" produces another DFA \hat{M} such that $L(M)=L(\hat{M})$. Furthermore $\hat{\mathbb{M}}$ is minimal in the sense that there is no DFA with less number of states than in \hat{M} , which accepts L(M)

February 25, 2023

Revision

8.1 Regular Expressions

Finite Languages

- Are Regular
- $\bullet\,$ have a finite automata
- have a regular expression