

WHAT IS CLAIMED IS:

1 1. A method for compiling a design for an integrated circuit, the method
2 comprising:

3 automatically performing multiple compilations of the design using a series of
4 values for each input parameter in a set of input parameters to generate output values for one
5 or more output metrics;

6 reporting the output values for the output metrics; and
7 concluding the compilations when a stopping criteria has been reached.

1 2. The method according to claim 1 wherein:

2 the method produces a table of results of the output metrics for each
3 combination of input parameters used for a compilation.

1 3. The method according to claim 1 wherein:

2 the method produces a signature of the best configuration of input parameters,
3 for use in future compilations.

1 4. The method according to claim 1 wherein:

2 the method produces a metric of average results across a range of input
3 parameters to indicate expected noise or variability.

1 5. The method according to claim 4 wherein:

2 the metric is used to distinguish gains due to the input parameters from
3 random fluctuation.

1 6. The method according to claim 1 wherein:

2 one of the input parameters is a random seed or initial configuration
3 parameter.

1 7. The method according to claim 1 wherein:

2 one of the input parameters is effort level for the compilation tool or a portion
3 of the compilation tool.

1 8. The method according to claim 1 wherein:

2 one of the input parameters modifies a default cost of a given resource for
3 placement.

- 1 9. The method according to claim 1 wherein:
2 one of the input parameters modifies a default soft-limit for fitting or
3 synthesis.
- 1 10. The method according to claim 1 wherein:
2 one of the input parameters modifies a coefficient indicating the speed versus
3 resource usage optimization for the compilations.
- 1 11. The method according to claim 1 wherein:
2 one of the input parameters defines a level of effort to a register packing
3 algorithm that combines circuit elements in the design into fewer logic elements on the
4 integrated circuit when enabled.
- 1 12. The method according to claim 1 wherein:
2 one of the input parameters is a balancing parameter to technology mapping in
3 synthesis.
- 1 13. The method according to claim 1 wherein:
2 one of the input parameters adds or deletes one optimization algorithm or step
3 from a default CAD flow, or modifies an order in which CAD steps are applied to the
4 integrated circuit.
- 1 14. The method according to claim 1 wherein:
2 one of the input parameters is a choice or specification of an alternate
3 synthesis optimization script.
- 1 15. The method according to claim 1 wherein:
2 one of the input parameters enables a netlist optimization or physical
3 resynthesis step.
- 1 16. The method according to claim 1 wherein:
2 the set of output metrics include a measure of the longest delay path in the
3 design.
- 1 17. The method according to claim 1 wherein:

2 the set of output metrics includes a quantification of logic area or other
3 resource usage of the integrated circuit.

1 18. The method according to claim 1 wherein:
2 the set of output metrics includes an estimate of power consumption.

1 19. The method according to claim 1 wherein:
2 the set of output metrics includes a metric for a number of paths, register-register pairs, IO-
3 register pairs, or register-IO pairs that fail to meet a specified timing constraint.

1 20. The method according to claim 1 wherein:
2 the set of output metrics includes a minimum slack calculated on the
3 integrated circuit.

1 21. The method according to claim 1 wherein:
2 the set of output metrics includes a total slack calculated on the integrated
3 circuit.

1 22. The method according to claim 1 wherein:
2 the stopping criteria for the method is based on exhausting all possible
3 combination of specified input parameters independent of results.

1 23. The method according to claim 1 wherein:
2 the stopping criteria is based on achieving a user's specified constraints.

1 24. The method according to claim 1 wherein:
2 the stopping criteria is a total compile time consumed over all of the
3 compilations thus far.

1 25. The method according to claim 1 wherein:
2 the stopping criteria is based on a number of failed constraints in the
3 integrated circuit.

1 26. The method according to claim 1 wherein:
2 the stopping criteria for the method is based on the number of failing timing
3 paths in the circuit.

1 27. The method according to claim 1 wherein:

2 the stopping criteria is based on achieving a minimum worst-case slack in the
3 integrated circuit.

1 28. The method according to claim 1 wherein:
2 the stopping criteria is based on a total slack in the circuit.

1 29. The method according to claim 1 wherein:
2 the stopping criteria is based on a statistical calculation of possible success by
3 the method.

1 30. The method according to claim 1 wherein:
2 an order of configurations tested is a static schedule pre-calculated by a tool.

1 31. The method according to claim 1 wherein:
2 the order of configurations is dynamically modified based on a metric of
3 current distance from the user goals.

1 32. A computer system for automating compilation of a design for an
2 integrated circuit, the method comprising:
3 code for automatically performing multiple compilations of the design using a
4 series of values for each input parameter in a set of input parameters to generate output values
5 for one or more output metrics;
6 code for reporting the output values of the output metrics; and
7 code for concluding when a stopping criteria has been reached.

1 33. The computer system according to claim 32 wherein the code for
2 reporting the output values further comprises:
3 code for producing a table of results of the output metrics for each
4 combination of input parameters used for a compilation.

1 34. The computer system according to claim 32 further comprising:
2 code for producing a signature of the best configuration of input parameters,
3 for use in future compilations.

1 35. The computer system according to claim 32 further comprising:
2 code for producing a metric of average results across a range of input
3 parameters to indicate expected noise or variability.

1 36. The computer system according to claim 35 wherein the metric is used
2 to distinguish gains due to the input parameters from random fluctuation.

1 37. The method according to claim 32 wherein:
2 one of the input parameters is a random seed or initial configuration
3 parameter.

1 38. The method according to claim 32 wherein:
2 one of the input parameters is effort level for the compilation tool or a portion
3 of the compilation tool.

1 39. The method according to claim 32 wherein:
2 one of the input parameters modifies a default cost of a given resource for
3 placement.

1 40. A method for determining tuning parameters for a CAD algorithm or
2 tool, the method comprising:
3 performing multiple compilations of a design of an integrated circuit using a
4 series of values for each tuning parameter in a set of tuning parameters;
5 performing multiple compilations of the design using a series of exogenous
6 parameters;
7 generating outputs values for one or more output metrics;
8 reporting the output values of the output metrics; and
9 concluding efficacy of the tuning parameters in the presence of exogenous
10 noise.