IMAGE COMPLETION

deceivingly simple, impressive results

WHAT IS IT?

• fill in a missing part of an image

MANY NAMES

- image completion
- in-painting
- object removal
- image restoration
- filling-in
- error concealment
- image extrapolation

we'll see why in later examples

TEXTURE SYNTHESIS

a detour?

WHAT IS IT?

produce a similar texture starting from a sample

Texture Synthesis by Non-parametric Sampling

Alexei A. Efros and Thomas K. Leung Computer Science Division University of California, Berkeley Berkeley, CA 94720-1776, U.S.A. {efros,leungt}@cs.berkeley.edu

Abstract

A non-parametric method for texture synthesis is proposed. The texture synthesis process grows a new image outward from an initial seed, one pixel at a time. A Markov random field model is assumed, and the conditional distribution of a pixel given all its neighbors synthesized so far is estimated by querying the sample image and finding all similar neighborhoods. The degree of randomness is controlled by a single perceptually intuitive parameter. The method aims at preserving as much local structure as possible and produces good results for a wide variety of synthetic and real-world textures.

1. Introduction

Texture synthesis has been an active research topic in computer vision both as a way to verify texture analysis methods as well as in its own right. Potential applications

of spatial locality. The result is a very simple texture synthesis algorithm that works well on a wide range of textures and is especially well-suited for constrained synthesis problems (hole-filling).

1.1. Previous work

Most recent approaches have posed texture synthesis in a statistical setting as a problem of sampling from a probability distribution. Zhu et. al. [12] model texture as a Markov Random Field and use Gibbs sampling for synthesis. Unfortunately, Gibbs sampling is notoriously slow and in fact it is not possible to assess when it has converged. Heeger and Bergen [6] try to coerce a random noise image into a texture sample by matching the filter response histograms at different spatial scales. While this technique works well on highly stochastic textures, the histograms are not pow-

INSPIRATION

- ► A Mathematical Theory of Communication – Shannon 1948
- build n-grams probabilities table from a book
- eg:
 - go is often followed by home
 - how, are, you are frequently encountered together
- sample repeatedly to create sentences

	bake	cake	go	home	will
bake	-	71	-	-	-
cake	-	-	-	12	-
go	6	-	3	49	-
home	7	24	-	-	-
will	53	-	14	-	-

	bake	cake	go	home	will
bake	-	71	-	-	-
cake	-	-	-	12	-
go	6	-	3	49	-
home	7	24	-	-	-
will	53	-	14	-	-

will was followed by bake 53 times

	bake	cake	go	home	will
bake	-	71	-	-	-
cake	-	-	-	12	-
go	6	-	3	49	-
home	7	24	-	-	-
will	53	-	14	-	-

	bake	cake	go	home	will
bake	_	71	-	-	-
cake	-	-	-	12	-
go	6	-	3	49	-
home	7	24	-	-	-
will	53	-	14	-	-

will was followed by bake 17 times will was followed by go 64 times

• finish this:

Today I will ...

	bake	cake	go	home	will
bake	_	71	-	-	-
cake	_	-	-	12	~
go	6	-	3	49	-
home	7	24	-	-	-
will	53	-	14	-	-

will was followed by bake 17 times will was followed by go 64 times

• finish this:

Today I will ...

	bake	cake	go	home	will
bake	_	71	-	-	-
cake	-	-	-	12	-
go	6	-	3	49	-
home	7	24	-	-	-
will	53	-	14	-	-

- finish this:

 Today I will ...
- bake

	bake	cake	go	home	will
bake	-	71	-	-	-
cake	-	-	-	12	-
go	6	-	3	49	-
home	7	24	-	-	-
will	53	-	14	-	-

- finish this:

 Today I will ...
- bake

	bake	cake	go	home	will
bake	-	71	-	-	-
cake	-	-	-	12	-
go	6	-	3	49	-
home	7	24	-	-	-
will	53	-	14	-	-

- finish this:

 Today I will ...
- bake
- cake

	bake	cake	go	home	will
bake	-	71	-	-	-
cake	-	-	-	12	-
go	6	-	3	49	-
home	7	24	-	-	-
will	53	-	14	_	-

- finish this:

 Today I will ...
- bake
- cake

	bake	cake	go	home	will
bake	-	71	-	-	-
cake	-	-	-	12	-
go	6	-	3	49	-
home	7	24	-	-	-
will	53	-	14	_	-

- finish this:

 Today I will ...
- bake
- cake
- ▶ home

	bake	cake	go	home	will
bake	-	71	-	-	-
cake	-	-	-	12	-
go	6	-	3	49	-
home	7	24	-	-	-
will	53	-	14	-	-

- finish this:

 Today I will ...
- bake
- cake
- home
- Today I will bake a cake at home.
- alternative:Today I will go home.

CORE IDEA

- generalize to 2D
 - unit: letter ~ pixel
 - − context: n-gram ~ texel
- eg:
 - red often follows red
 - grey seldom after red
- find missing pixel color in probability table, based on neighbors

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

X		X
Х		

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

with some stochasticity

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

CONTINUE THE TEXTURE

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

CONTINUE THE TEXTURE

	red	grey
left red, above red	3	0
left red, above grey	3	4
left grey, above red	2	4
left grey, above grey	1	2

small mistake

BUT THERE'S A PROBLEM!

- words are categorical (finite & unordered), pixels are continuous
 - discretization leads to millions of colors
 - info about red should also (partially) apply to dark red
- building a probability table is unfeasible
 - gets exponentially larger when considering more neighbors
 - one image is not exhaustive, exact match might not be present
- **solution**: mimic table by looking up directly in the image
 - don't store anything, search every time

ALGORITHM

- input: image and hole position
 - 1. pick a pixel on the hole's edge empty pixels having at least one filled neighbor
 - 2. select a patch around it
 - 3. find the most similar patch to it using sum of squared distances
 - 4. replace pixel with found patch center
 - 5. repeat until the hole is filled
- output: filled image

ALGORITHM

source: Texture Synthesis Paper presentation

ONE LAST CONSIDERATION

- texture types:
 - regular (repeating)
 - stochastic
 - combination
- add stochasticity by not always picking the closest match

ALGORITHM PARAMETERS

patch size: texel size (how often texture repeats)

selection std: texture randomness (picking most similar)

EXAMPLES

DEMO

PRACTICAL CONSIDERATIONS

- to speed up computation:
 - replace the whole patch instead of the center pixel
 - restrict searching from whole image to a smaller area

ORIGINAL

REMOVED

THAT WAS NOT A TEXTURE!

- turns out texture synthesis was not a detour
- photos are made up of many "textures"
- the method can be used for many tasks

MORE EXAMPLES

r Dick Gephardt was fair ful riff on the looming and asked, "What's your tions?" A heartfelt sight story about the emergences against Clinton. "Boy a people about continuin ardt began, patiently observith this latest tanger

NOT ACTUAL WORDS!

ORIGINAL

EXPANDED

IMAGE RESTORATION

DAMAGED

MASK

RESTORED

WRINKLE REMOVAL

ORIGINAL MASK

REMOVED

OBJECT REMOVAL

ORIGINAL MASK REMOVED

OBJECT REMOVAL

ORIGINAL

MASK REMOVED

OBJECT REMOVAL

TEXT REMOVAL

Hello! We are Penguin A and B. You guys must think that so many words have made a large amount of image information lost. s this true? We disagree. We are more optimistic. The TV model can restore us. See va

METHOD COMPARISON

ORIGINAL

REMOVED

CONTENT-AWARE RESIZE

source: FMI UB CV lecture 4

IN-PAINTING

RESIZING

LIMITATIONS

ORIGINAL

FAILURE

SUMMARY

TEXTURE SYNTHESIS

- fundamentally sound
- conceptually simple
- widely applicable
- not very robust
- pretty slow

REFERENCES

- Texture Synthesis by Non-Parametric Sampling,
 A. Efros & T. Leung
- Inpainting Methods Survey, M. Bertalmio et al
- ▶ Assignment 4 CPSC 425: Computer Vision, University of British Colombia
- many published example runs on various image inputs

THANK YOU!