Question # 1:

[2+2+2]=6 marks

If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$, under what conditions $span\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ will represent

a) a line

If u, v, w are producty multiple of each other then span {u, v, w} = line.

If two vectors are linearly independent but there is lionear combination of other two then span {u,v,w} = plane.

If all three vectors are linearly independent then Span {u,v,w}=1R3

Question # 2:

|2+2+2+2+2+2+2| = 16 marks

For the matrix

 $A = \begin{bmatrix} 1 & 0 & -2 & 5 \\ 0 & 1 & 4 & -2 \\ 0 & 0 & 3 & 5 \\ 0 & 0 & 1 & 4 \end{bmatrix} \quad \sim \quad \begin{bmatrix} 1 & 0 & -2 & 3 \\ 0 & 1 & 4 & -2 \\ 0 & 0 & 3 & 5 \\ 0 & 0 & 1 & 4 \end{bmatrix}$

Prove or disprove the following statements (give detailed justification of your answer

a) Columns of A are linearly dependent.

Columns of A are linearly independent bace An =0 has only trivial solution

b) Matrix is invertible.

Matrix is invertible sonce it is 4x4 matrix with 4 pivot postiums and So it is now againstent to In

	National University of Computer and Emerging Sciences
	School of Computing Fall 2020 Islamabad Campus
	c) Columns of A will span Rs.
	No columns of A can not span 123 at each column is element of 124.
	each column is
	d) Columns of A will span R ⁴ .
	Yes, It will bypan IK mill
	d) Columns of A will span R4. Yes, It will span IR 4 since Ax = b is consistent for x, be 1124
	e) The system $A\mathbf{x} = \mathbf{b}$ is inconsistent for any $\mathbf{x}, \mathbf{b} \in \mathbb{R}^4$.
	Azb is consistent for any u, b EIR4
f	The system $A\mathbf{x} = 0$ has only trivial solution.
	Yes Ax=0 has only trivial bolition
	The system $Ax = 0$ has only trivial solution. Yes $Ax = 0$ has only trivial solution since the is no feet variable involuted.
g)	$Nul(A) = \{0\}.$
	Mu(A) = {0}. Mince An =0 only of x [0]
	> Nul(A) = {3] = {33.
h)	$Col(A) = \mathbb{R}^4$.
	Yes colla): R"
	yes collas. R" pere each bell", Areb is consistent -
	forthe enter

a) Ax = b $A_{2\times3} \times a_{3\times1} = b_{2\times1}$ $\times \in \mathbb{R}^3$ and $b \in \mathbb{R}^2$ and Ax = b is ansistant for all $b \in \mathbb{R}^2$

b) Bx = 0 => B R 4 = 3x1

> 2 E 1R4

Bx = 0 will have infinite solution as

it involve 2 free variables.

c) Cx = 0 $C_{3\times2} \times_{2\times1} = C_{3\times1}$ $\Rightarrow \times ER^{2}$ $C\times = 0$ will have only trivial solution

d) Dx = b $D_{3x2} \stackrel{\times}{}_{2x1} \stackrel{?}{}_{3x1}$ $\Rightarrow \quad \times \in \mathbb{R}^2 \quad b \in \mathbb{R}^3$ $Dx = b \quad will \quad not \quad be \quad consisted \quad for \quad all$ $Dx = b \quad will \quad not \quad be \quad consisted \quad for \quad all$

b) For what value of b_2 does

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 6 & 3 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 3 \\ b_2 \end{bmatrix}$$

has a solution?

$$\begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{3}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{3}{3} & \frac{1}{8} & \frac{2}{3} & \frac{3}{8} \\ \frac{1}{9} & \frac{2}{3} & \frac{1}{3} & \frac{3}{3} & \frac{1}{8} & \frac{2}{3} & \frac{3}{8} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{$$

c) Network of water pipes with flows measured in litres per minute is shown by the figure

Set up the linear system (DON'T SOLVE) to find possible flows.

at A
$$ab = f_1 + f_2$$

at C $f_1 + f_3 = 30$

Total Info = Total aitform the

30 = 30 we need to solve $f_1 + f_2 = 20$

So to find for we need to solve $f_1 + f_2 = 20$

Page 7 of 7 $f_1 + f_3 = 30$

Scanned with CamScan