Navigation Systems

Inertialnavigation (Trägheitsnavigation)

Inhalte

- Einführung
- Sensoren
- Plattform-Typen
- Navigationsgleichungen
- Plattform-Ausrichtung
- Navigationsqualität

Einführung (1/8)

- Generelle Bemerkungen
 - Historische Entwicklung
 - **Ursprünge**: Ende des 19. bzw. Anfang des 20. Jahrhunderts
 - Entwicklung erster Inertialer Zielführungssysteme während des Zweiten Weltkriegs in Deutschland (V2-Raketen)
 - Konstruktion erster Inertialer Navigationssysteme (INS) für den Lufteinsatz um 1950 durch Charles Draper am MIT
 - Entwicklung Inertialer Vermessungssysteme (ISS) ab 1970
 - Heutige Nutzung
 - Verbreiteter Einsatz für zivile und militärische Anwendungen
 - Inertialnavigation wird sehr häufig mit GPS integriert

Einführung (2/8)

- Inertiale Messtechnik (1/3)
 - Grundsätzliche Fragestellungen
 - Aufgabe der Navigation?
 - Was bedeutet "inertial"?
 - Messungen
 - Spezifische Kraft entlang der Achsen eines wohldefinierten Referenzrahmens (Navigationsrahmen) unter Verwendung von Beschleunigungsmessern (Accelerometer)
 - "Stabilisierung" (mechanisch bzw. analytisch) der Achsen des Referenzrahmens durch Drehratensensoren (Gyroskope bzw. Gyros)

Einführung (3/8)

- Inertiale Messtechnik (2/3)
 - Aus der Messung der spezifischen Kraft können Beschleunigungen abgeleitet werden
 - Einfache Integration der Beschleunigungen liefert Geschwindigkeit (bzw. Geschwindigkeitsdifferenzen)
 - Zweifache Integration der Beschleunigungen liefert Positionsdifferenzen (relative Positionierung)
 - Integrationskonstanten
 - Startposition
 - Startgeschwindigkeit
 - Startausrichtung (attitude) ist implizit enthalten

Einführung (4/8)

- Inertiale Messtechnik (3/3)
 - Probleme
 - Präsenz von Gravitationsfeldern → kinematische Fahrzeugbeschleunigung wird durch Anziehungsbeschleunigung überlagert
 - Abhängig von der Wahl des Referenzrahmens treten
 Scheinkräfte auf → werden durch Rotation des Referenzrahmens relativ zum inertialen Raum verursacht
 - Konsequenzen
 - Gesetze der Newtonschen Mechanik sind nicht mehr unverändert gültig
 - Störbeschleunigungen müssen bei der Lösung der Navigationsgleichungen berücksichtigt werden

Einführung (5/8)

- Plattformen (1/3)
 - Accelerometer und Gyros werden gemeinsam auf Plattformen montiert → typisch: orthogonale Dreibeine (*triads*) von Sensoren → Inertiale Messeinheit (IMU)
 - Navigationsrahmen
 - Inertial nicht-rotierend
 - Quasi-inertialer Bezugsrahmen ... *i*-Frame
 - Inertial rotierend
 - Local-level Bezugsrahmen ... *l*-Frame
 - Körper-Bezugsrahmen (body frame)... b-Frame

Einführung (6/8)

- Plattformen (2/3)
 - Im *i*-Frame: spezifische Kraft ist **Differenz** zwischen:
 - (inertialer) kinematischer Beschleunigung des Fahrzeugs
 - Gravitation an der Position des Fahrzeugs
 - Warum Differenz?
 - Gedankenexperiment:

Vertikal ausgerichteter Accelerometer auf Erdoberfläche

- Konsequenz der Erdanziehung?
- Konsequenz einer Beschleunigung "nach oben"?
- Konsequenz eines "freien Falls"?
- Andere Frames
 - Zusätzliches Auftreten von Störbeschleunigungen

Einführung (6b/8)

Verhalten des Accelerometers

Trägheit

Einführung (7/8)

- Plattformen (3/3)
 - Haupttypen
 - Kardanisch gelagerte Plattformen (gimbaled platforms)
 - Lagerung in meist drei oder vier Kardangelenken
 mechanische Isolation der Plattform von den rotatorischen Bewegungen des Fahrzeugs
 - Einhaltung einer festen Orientierung (alignment) bzgl.
 des inertialen Raums (i) oder bzgl. der Erdoberfläche (l)
 - Realisierung durch motorisch betriebene Kardangelenke
 - Steuerung der Gelenke aufbauend auf Gyro-Messungen
 - Analytische Systeme (strapdown systems)
 - Keine mechanische Isolation (evtl. Schocklagerung)
 - Voll-analytische Lösung der Navigationsgleichungen (b)

Einführung (8/8)

Kritische Beurteilung der Inertialnavigation

Vorteile

- Autonomes Verfahren
- Hohe Datenraten
- Keine line-of-sight-Problematik
- Keine Störbarkeit von Außen (→ hohe Zuverlässigkeit)
- Unabhängigkeit von Wetterbedingungen
- Hohe Kurzzeitstabilität
- Genaueste Technik zur Attitude-Bestimmung

Nachteile

- Zeitliche Abnahme der Navigationsqualität (systematisch)
- Bedarf nach Startwerten für den Zustandsvektor
- Hoher Preis von hochqualitativen Systemen

Sensoren 1 – Accelerometer (1/2)

- Prinzip
 - Messung von Kräften, die auf eine Prüfmasse einwirken
- Sensorarchitektur

Open-loop: Direkte Messung der Bewegung der Prüfmasse

Closed-loop: Kompensation der einwirkenden Kräfte durch

sensor-intern erzeugte Gegenkräfte

Prüfmasse bleibt im Gleichgewicht

Gemeinsame Elemente

- Instrumenten-"Hülle"
- Prüfmasse
- Kalibrierte Aufhängung der Prüfmasse

Sensoren 1 – Accelerometer (2/2)

- Einfaches Prinzip
 - Kraft-Rückstellung
 - Prinzip von Federoder Pendel-Accelerometern
 - Beispiel: Feder-Accelerometer (linear)

Sensoren 2 – Gyros (1/5)

Aufgabenstellung

 Messung der Drehgeschwindigkeit (angular rate) des Navigationsrahmens relativ zum inertialen Raum

Wichtigste Realisierungen

- Mechanische Gyros
 - Schnell rotierender K\u00f6rper
 - Vibrierender Körper (Foucault-Pendel)
- Optische Gyros

Einsatz

- Kardanische Plattformen: meist mechanische Gyros
- Analytische Systeme: meist optische Gyros

Sensoren 2 – Gyros (2/5)

- Rotations-Gyros (1/2)
 - Prinzip
 - Rotations-symmetrischer fester K\u00f6rper rotiert mit hoher Geschwindigkeit um seine (Haupt-) Symmetrieachse
 - Bei (nahezu) reibungsfreier Lagerung symmetrisch zum Schwerpunkt (auf der Symmetrieachse) erzeugt das Erdschwerefeld kein Drehmoment auf den Körper

Sensoren 2 – Gyros (3/5)

- Rotations-Gyros (2/2)
 - Haupteigenschaften solcher K\u00f6rper
 - Tendenz zur Beibehaltung der Rotationsachse im inertialen Raum (erreichbar bei freier Lagerung)
 - Spezielle Reaktion auf äußere Kräfte bei nicht-freier Lagerung
 - (→ Präzession)

Sensoren 2 – Gyros (4/5)

- Optische Gyros (1/2)
 - Prinzip: Sagnac-Effekt (Relativitätstheorie)
 - Zwei von derselben Diode erzeugte Laserstrahlen bewegen sich in entgegen gesetzter Richtung in einem geschlossenen und als eben angenommenen Lichtweg
 - Stationärer Fall: beide Strahlen müssen gleich lange Wege zurücklegen, um zur Diode zurückzukehren
 - Verdrehung der gesamten Anordnung (Drehachse orthogonal zur Ebene des Lichtwegs ist) → Wege unterscheiden sich
 - Der Weg des "gleich-rotierenden" Strahls verlängert sich
 - Der Weg des entgegengesetzten Strahls verkürzt sich
 - Aufgrund der Endlichkeit der Lichtgeschwindigkeit kann dieser Wegunterschied gemessen werden (→ Rotation)

Sensoren 2 – Gyros (5/5)

- Optische Gyros (2/2)
 - Beispiel: Ring Laser Gyro RLG

Plattform-Typen (1/3)

- Kardanisch gelagerte Plattformen
 - Schematische Darstellung: Local-level Plattform

Plattform-Typen (2/3)

- Analytische Systeme (1/2)
 - Entwicklung etwa ab 1980
 - Verfügbarkeit optischer Gyros
 - Leistungsfähige Rechnertechnologie
 - Aufbau
 - Direkte Montage der Sensoranordnung auf dem Fahrzeug (strapdown) → alle Messungen werden im b-Frame getätigt
 - Die Gyros messen die Winkelbewegungen des Fahrzeugs und ihr Output wird dazu verwendet, um die Accelerometer-Messungen analytisch in den gewählten Navigationsrahmen zu transformieren
 - Im Prinzip kann ein beliebiger Navigationsrahmen verwendet werden → Praxis: quasi-inertialer und Local-level Bezugsrahmen

Plattform-Typen (3/3)

- Analytische Systeme (2/2)
 - Vorteile
 - Geringere mechanische Komplexität
 - Geringe Ausmaße und Masse
 - Geringerer Preis
 - Vereinfachte Wartung

Aktuelle Situation

- Heute dominieren die analytischen Systeme den INS-Markt.
- Kardanisch gelagerte Systeme sind nur mehr in wenigen
 Spezialanwendungen vertreten.

Navigationsgleichungen

Ziel

- Bestimmung des (vollständigen) Zustandsvektors eines Fahrzeugs
 - Position
 - Geschwindigkeit
 - Attitude

Kriterien

- Lösung hängt ab ...
 - vom Typ des INS (kardanisch gelagert vs. analytisch)
 - von der Wahl des Navigationsrahmens

Plattform-Ausrichtung

Hauptaufgaben

- Bestimmung von Startposition und Startgeschwindigkeit
 - Position durch anderes System oder bekannten Startpunkt
 - Geschwindigkeit durch anderes System oder Null

Initial Alignment

- Bestimmung von Startwerten für die Attitude
- Ermittelung systematischer Fehlereinflüsse

Fehlerkontrolle

 Beschränkung der Auswirkung der systematischen Fehlereinflüsse durch geeignete Techniken (ZUPT, CUPT)

Navigationsqualität (1/4)

Problematik

- Ermittelung der Navigationsqualität ist abhängig vom
 - Systemtyp
 - Navigationsrahmen
 - Sensorarten
 - •

und liefert komplizierte Gleichungssysteme.

Navigationsqualität (2/4)

Graphische Veranschaulichung: Accelerometer-Bias von 2·10⁻⁴ m/s²

Navigationsqualität (3/4)

Graphische Veranschaulichung: Gyro-Bias von 0.1°/hr

Navigationsqualität (4/4)

- Gebräuchliche Systemeinteilung
 - Zeitlicher Anstieg des Circular Error Probable (Konfidenz: 50%)
 - Systemklassen
 - Schlecht > 10 nmi / hr
 - Mittel ~ 1 nmi / hr
 - Gut < 0.1 nmi / hr

Literatur (1/2)

- Beyer J, Wigger B (2001): Grundlagen der Navigation und Anwendungen I+II. Lecture Notes, Technical University Darmstadt, Darmstadt, Germany.
- Britting KR (1971): Inertial navigation system analysis. Wiley, New York.
- Farrell JA, Barth M (1999): The Global Positioning System and inertial navigation. McGraw-Hill, New York.
- Greenspan RL (1995): Inertial navigation technology from 1970–1995. Navigation 42(1): 165–185.
- Greenspan RL (1996): GPS and inertial integration. In: Parkinson BW, Spilker JJ (eds): Global Positioning System theory and applications, vol 2. American Institute of Aeronautics and Astronautics, Washington DC: 187–220.
- Grewal MS, Weill LR, Andrews AP (2001): Global positioning systems, inertial navigation, and integration. Wiley, New York.
- Hofmann-Wellenhof B, Legat K, Wieser M (2003): Navigation principles of positioning and guidance. Springer, Wien.

Literatur (2/2)

- Jekeli C (2001): Inertial navigation systems with geodetic applications. Walter de Gruyter, Berlin.
- Lawrence A (1998): Modern inertial technology navigation, guidance, and control, 2nd edition. Springer, New York.
- May MB (1993): Inertial navigation and GPS. GPS World, 4(9): 56–66.
- Schwarz KP (1983): Inertial surveying and geodesy. Reviews of Geophysics and Space Physics, 21(4): 878-890.
- Schwarz KP (1986): The error model of inertial geodesy a study in dynamic system analysis. In: Sünkel H (ed): Mathematical and numerical techniques in physical geodesy. Springer, Berlin.
- Straßer G (1963): Der Kreisel. Sonderdruck, Soldat und Technik, Frankfurt.
- Tazartes DA, Kayton M, Mark JM (1997): Inertial navigation. In: Kayton M, Fried WR (eds): Avionics navigation systems, 2nd edition. Wiley, New York: 313–392.