2^{nde} 3, 2017-2018 Vecteurs

1 Translations et vecteurs

Définition 1

Soit A et B deux points du plan. L'image de M par la translation de vecteur \overrightarrow{AB} est le point M' tel que ABM'M soit un parallélogramme, éventuellement applati ou réduit à un point.

<figure avec différents cas>

Exercice 1. 11, 12, 10 p. 211

Remarque : B est l'image de A par la tra, slation de vecteur $\overrightarrow{MM'}$, d'où la définition :

Définition 2 (Vecteurs égaux)

Soit A, B, C et D quatre points du plan. Lorsque D est l'image de C par la translation de vecteur \overrightarrow{AB} , on dit que $\overrightarrow{AB} = \overrightarrow{CD}$.

<figure>

Exercice 2. 18 p. 212

Définition 3

longueur, direction, sens

Exercice 3. 13 p. 211

Théorème 1

Deux vecteurs sont égaux ssi ils ont même sens, même direction et même longueur.

<figure, cas des vecteurs opposés.

Exercice 4. 14, 15 p. 211

2 Opérations sur les vecteurs

2.1 Addition

Définition 4

Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs. Le vecteur $\overrightarrow{u} + \overrightarrow{v}$ correspond à la translation de vecteur \overrightarrow{u} suivie de la translation de vecteur \overrightarrow{v} .

<figure>

Exercice 5. 33 à 35 p. 213, 32 p. 213

Remarque 1. On admet que cette opération, notée +, est commutative et associative comme l'addition des nombres réels.

Théorème 2 (relation de Chasles)

Soit A, B et C trois points du plan. On a :

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}.$$

DÉMONSTRATION : L'image de A par la translation de vecteur \overrightarrow{AB} suivie de la translation de vecteur \overrightarrow{BC} est C.

2^{nde}3, 2017-2018 Vecteurs

Définition 5

Le vecteur \overrightarrow{AA} est appelé le vecteur nul, et noté $\overrightarrow{0}$. On a ainsi, pour tous points A et B,

$$\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{0}$$
,

et on note $\overrightarrow{BA} = -\overrightarrow{AB}$ l'opposé de \overrightarrow{AB} .

Exercice 6. 29, 30, 31 p. 213

2.2 Multiplication d'un vecteur par un scalaire

Définition 6

Soit \overrightarrow{u} un vecteur et k un nombre réel. Alors le vecteur $k\overrightarrow{u}$ est défini par :

- 1. si k = 0 ou si $\overrightarrow{u} = \overrightarrow{0}$, $k\overrightarrow{u} = \overrightarrow{0}$.
- 2. $\operatorname{si} k > 0 \text{ et } \overrightarrow{u} \neq \overrightarrow{0}, \text{ alors } \dots$
- 3. k < 0 et $\overrightarrow{u} \neq \overrightarrow{0}$, alors ...

Remarque 2. u+u=2u, -u=(-1)u.

Exercice 7. 42, 46 p. 214

Exercice 8. 48, 49 p. 214

Définition 7

vecteurs colinéaires.

Exercice 9. 47 p. 214

Théorème 3

A, B, C alignés ssi

Exercice 10. 41 p. 214

3 Coordonnées