

INSCENIZACJA

Dostępna pamięć: 256 MB.

Stefan Beitberg jest reżyserem kina akcji. W ostatnim czasie pracuje nad nowym filmem, którego tematem są porachunki bajtockich mafii. Beitberg zastanawia się, jaki powinien być przebieg kulminacyjnej sceny filmu, w której odbędzie się widowiskowa strzelanina.

W scenie uczestniczy n gangsterów, ponumerowanych dla uproszczenia kolejnymi liczbami od 1 do n. Gdy napięcie sięga zenitu, każdy z gangsterów wyciąga swoją broń i wymierza ją w kierunku pewnego innego gangstera. Zadnych dwóch uczestników sceny nie mierzy do tego samego gangstera. Gangsterzy są biedni, lecz dobrze wyszkoleni — każdy z nich może oddać co najwyżej jeden, ale zawsze celny i śmiertelny, strzał.

W pewnym momencie któryś z bandziorów nie wytrzymuje napięcia i rozpoczyna się strzelanina.

Reżyser ustalił pewną początkową kolejność, w jakiej gangsterzy mają pociągać za spust. Mianowicie, gangster i strzela w kierunku gangstera p_i dokładnie w momencie t_i , chyba że do tego czasu gangster i został już zabity. Przyjmujemy, że gangster ginie dokładnie w chwili, gdy ktoś oddaje strzał w jego kierunku.

Reżyser chciałby wiedzieć, ilu gangsterów zostanie przy życiu pod koniec sceny. Beitberg nie jest jeszcze całkowicie pewien co do kolejności, w jakiej gangsterzy mają strzelać. Co pewien czas wydaje polecenie, aby zmienić jedną z wartości t_i . Po każdej takiej zmianie chciałby znać liczbę gangsterów, którzy przeżyją, dla nowej kolejności oddawania strzałów (przy uwzględnieniu wszystkich dotychczas wykonanych zmian).

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita n ($2 \leqslant n \leqslant 200\,000$), oznaczająca liczbę gangsterów biorących udział w scenie. W drugim wierszu znajduje się n liczb całkowitych p_1, p_2, \ldots, p_n $(1 \leqslant p_i \leqslant n, \ p_i \neq i, \ p_i \neq p_j \ \mathrm{dla} \ i \neq j)$, określających, do kogo zamierzają strzelać kolejni gangsterzy.

W trzecim wierszu znajduje się n liczb całkowitych u_1, u_2, \ldots, u_n ($1 \le u_i \le 10^9$), opisujących początkową kolejność oddawania strzałów przez gangsterów: początkowa wartość t_i jest równa u_i .

W czwartym wierszu znajduje się jedna liczba całkowita q (0 $\leq q \leq$ 200 000), oznaczająca liczbę zmian wartości t_1,\ldots,t_n planowanych przez Beitberga. Kolejne q wierszy to opis tych zmian. W i-tym z nich znajdują się dwie liczby całkowite k_i i v_i ($1 \leqslant k_i \leqslant n, 1 \leqslant v_i \leqslant 10^9$), oznaczające, że *i*-ta zmiana polega na ustawieniu wartości t_{k_i} na v_i . Liczby $u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_q$ są parami różne.

Wyjście

Twój program powinien wypisać na wyjście dokładnie q+1 wierszy. W pierwszym wierszu powinna znaleźć się liczba gangsterów, którzy przeżyją strzelaninę, zakładając początkową kolejność strzelania. W i-tym z q kolejnych wierszy należy wypisać liczbę gangsterów pozostałych przy życiu, przy założeniu, że kolejność strzelania określa ciąg t_1, \ldots, t_n po dokonaniu wszystkich zmian od pierwszej do *i*-tej.

Przykład

Dla danych wejściowych:	poprawnym wynikiem jest:
4	2
2 3 4 1	2
1 2 3 4	1
3	1
1 8	

INS 1/1

