Stats 300A HW3 Solutions

Song Mei

October 18, 2018

Problem 1

(a)

Define a projector operator to be the following:

$$\operatorname{Proj}(\boldsymbol{\theta}) = \begin{cases} \boldsymbol{\theta}, & \text{if } \boldsymbol{\theta} \in \Theta^{\varepsilon}, \\ \arg\min_{\boldsymbol{\theta}' \in \Theta} \|\boldsymbol{\theta} - \boldsymbol{\theta}'\|_{2}^{2}, & \text{if } \boldsymbol{\theta} \notin \Theta^{\varepsilon}. \end{cases}$$

Since Θ is a convex compact set, the minimizer $\arg\min_{\boldsymbol{\theta}'\in\Theta}\|\boldsymbol{\theta}-\boldsymbol{\theta}'\|_2^2$ is unique, so that Proj operator is well defined.

Given an estimator $\hat{\boldsymbol{\theta}}: \mathcal{X} \to \mathbb{R}^d$ such that $\mathsf{P}_{\boldsymbol{\theta}}(\hat{\boldsymbol{\theta}}(\boldsymbol{X}) \notin \Theta^{\varepsilon}) > \delta$, we take $\tilde{\boldsymbol{\theta}} = \mathsf{Proj}(\hat{\boldsymbol{\theta}})$. Then for any $\boldsymbol{\theta} \in \Theta$, we have

$$\|\tilde{\boldsymbol{\theta}}(\boldsymbol{x}) - \boldsymbol{\theta}\|_2^2 \le \|\hat{\boldsymbol{\theta}}(\boldsymbol{x}) - \boldsymbol{\theta}\|_2^2 - \eta \mathbf{1} \{\hat{\boldsymbol{\theta}}(\boldsymbol{x}) \notin \Theta^{\varepsilon}\},$$

where

$$\eta = \min_{\boldsymbol{\theta} \in \Theta, \boldsymbol{\theta}' \in \partial \Theta^{\varepsilon}} \|\boldsymbol{\theta}' - \boldsymbol{\theta}\|_2^2 - \|\operatorname{Proj}(\boldsymbol{\theta}') - \boldsymbol{\theta}\|_2^2.$$

Since Θ is a convex compact set, and $\partial \Theta^{\varepsilon}$ is a compact set, we have $\eta > 0$. As a result, we have for any $\theta \in \Theta$,

$$\mathsf{E}_{\boldsymbol{\theta}}[\|\hat{\boldsymbol{\theta}}(\boldsymbol{X}) - \boldsymbol{\theta}\|_2^2] \leq \mathsf{E}_{\boldsymbol{\theta}}[\|\hat{\boldsymbol{\theta}}(\boldsymbol{X}) - \boldsymbol{\theta}\|_2^2] - \eta \mathsf{P}_{\boldsymbol{\theta}}(\hat{\boldsymbol{\theta}}(\boldsymbol{X}) \not\in \Theta^{\varepsilon}) \leq \mathsf{E}_{\boldsymbol{\theta}}[\|\hat{\boldsymbol{\theta}}(\boldsymbol{X}) - \boldsymbol{\theta}\|_2^2] - \eta \delta,$$

and

$$\sup_{\boldsymbol{\theta} \in \Theta} \mathsf{E}_{\boldsymbol{\theta}}[\|\tilde{\boldsymbol{\theta}}(\boldsymbol{X}) - \boldsymbol{\theta}\|_2^2] \leq \sup_{\boldsymbol{\theta} \in \Theta} \mathsf{E}_{\boldsymbol{\theta}}[\|\hat{\boldsymbol{\theta}}(\boldsymbol{X}) - \boldsymbol{\theta}\|_2^2] - \eta \delta.$$

That means $\tilde{\theta}$ has strictly better worst risk than $\hat{\theta}$, so that $\hat{\theta}$ is not minimax optimal on Θ .

(b)

First we consider the case when $M \neq \mathbf{0}$. Since Θ is a compact convex set, we take R large enough so that $\Theta^{\varepsilon} \subseteq \mathsf{B}(\mathbf{0},R)$ for some small $\varepsilon > 0$. The estimator $\hat{\boldsymbol{\theta}}(\boldsymbol{y}) = \boldsymbol{M}\boldsymbol{y} + \boldsymbol{\theta}_0 \stackrel{d}{=} \boldsymbol{M}\boldsymbol{D}\boldsymbol{\theta} + \boldsymbol{\theta}_0 + \sigma \boldsymbol{M}\boldsymbol{g}$, where $\boldsymbol{g} \sim \mathcal{N}(\mathbf{0},\mathbf{I}_n)$. Note $\sigma \boldsymbol{M}\boldsymbol{g}$ is not identically $\boldsymbol{0}$ when $\boldsymbol{M} \neq \boldsymbol{0}$, and $\boldsymbol{\Theta}$ is a compact set, we have

$$\inf_{\boldsymbol{\theta} \in \Theta} \mathsf{P}_{\boldsymbol{\theta}}(\|\boldsymbol{M}\boldsymbol{D}\boldsymbol{y} + \boldsymbol{\theta}_0\|_2 \ge R) \equiv \delta > 0.$$

By problem (a), we conclude that $\hat{\theta}$ cannot be minimax optimal on Θ .

Remark 1. To show $\hat{\boldsymbol{\theta}} = \boldsymbol{\theta}_0$ is not minimax optimal, we need to make the additional assumption that $\boldsymbol{D} \in \mathbb{R}^{n \times d}$ has full column rank, otherwise this conclusion doesn't hold. In the following, we prove this conclusion under this additional assumption.

Then we consider the case when M = 0. That means, $\hat{\theta} = \theta_0$. If $\theta_0 \notin \Theta$, it is obvious $\hat{\theta}$ is not minimax optimal on Θ . Hence we consider the case when $\hat{\theta} = \theta_0 \in \Theta$.

We claim that the $\theta = \theta_0$ cannot be the Bayes estimator for any prior except the prior $\delta(\theta_0)$. Suppose this claim holds, the Bayes risk $R_B(\hat{\theta}, \delta(\theta_0)) = 0$. Since Θ contains at least two points, it is easy to see that the minimax risk should be large than 0, hence $\delta(\theta_0)$ is not the least favorable prior. By minimax theorem, the minimax estimator should be the Bayes estimator for least favorable prior. Therefore, $\hat{\theta} = \theta_0$ cannot be the minimax estimator.

Now suffice to show the claim above. Suppose Q is a prior probability distribution on Θ and $Q(\Theta \setminus \{\theta_0\}) > 0$, then the Bayes estimator under prior Q and square loss should be the posterior expectation $\hat{\theta}_Q(x) = \mathsf{E}_Q[\theta|x]$. We would like to show $\mathsf{E}_Q[\theta|x] \not\equiv \theta_0$. The intuition why $\mathsf{E}_Q[\theta|x] \not\equiv \theta_0$ can be explained by the following: when $||x||_2 \to \infty$, the posterior expectation $\mathsf{E}_Q[\theta|x]$ should be at the boundary of the support of Q. In the following we show the above intuition rigorously.

By the fact that $Q(\Theta \setminus \{\theta_0\}) > 0$, there exists a neighborhood $B(\theta_{\star}, \delta)$ such that $Q(B(\theta_{\star}, \delta)) \equiv \eta > 0$ and $\|\theta_{\star} - \theta_0\|_2 \geq 2\delta$. Now we take $\mathbf{x}_k = \mathbf{D}[\theta_0 + k(\theta_{\star} - \theta_0)]$, then we have (denoting $\varphi_n(\mathbf{x}) = (1/(2\pi)^{n/2}) \exp\{-\|\mathbf{x}\|_2^2/2\}$ to be the standard Gaussian density function on \mathbb{R}^n)

$$\langle \mathsf{E}_Q[\boldsymbol{\theta}|\boldsymbol{x}_k] - \boldsymbol{\theta}_0, \boldsymbol{\theta}_\star - \boldsymbol{\theta}_0 \rangle = \frac{\int_{\boldsymbol{\Theta}} \langle \boldsymbol{\theta} - \boldsymbol{\theta}_0, \boldsymbol{\theta}_\star - \boldsymbol{\theta}_0 \rangle \varphi_n(\boldsymbol{D}(\boldsymbol{\theta}_0 - \boldsymbol{\theta} + k(\boldsymbol{\theta}_\star - \boldsymbol{\theta}_0))/\sigma) Q(\mathrm{d}\boldsymbol{\theta})}{\int_{\boldsymbol{\Theta}} \varphi_n(\boldsymbol{D}(\boldsymbol{\theta}_0 - \boldsymbol{\theta} + k(\boldsymbol{\theta}_\star - \boldsymbol{\theta}_0))/\sigma) Q(\mathrm{d}\boldsymbol{\theta})}.$$

The integration in the numerator above can be decomposed into the integration in $B(\theta_{\star}, \delta)$ and the integration outside $B(\theta_{\star}, \delta)$,

$$\int_{\Theta} \langle \boldsymbol{\theta} - \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\star} - \boldsymbol{\theta}_{0} \rangle \varphi_{n}(\boldsymbol{D}(\boldsymbol{\theta}_{0} - \boldsymbol{\theta} + k(\boldsymbol{\theta}_{\star} - \boldsymbol{\theta}_{0}))/\sigma) Q(d\boldsymbol{\theta})$$

$$\geq \|\boldsymbol{\theta}_{\star} - \boldsymbol{\theta}_{0}\|_{2} (\|\boldsymbol{\theta}_{\star} - \boldsymbol{\theta}_{0}\| - \delta) \frac{1}{(2\pi\sigma^{2})^{n/2}} \exp\{-\|\boldsymbol{D}[k(\boldsymbol{\theta}_{\star} - \boldsymbol{\theta}_{0}) - \boldsymbol{u}]\|_{2}^{2}/(2\sigma^{2})\} \eta$$

$$- \|\boldsymbol{\theta}_{\star} - \boldsymbol{\theta}_{0}\|_{2} \operatorname{Diam}(\Theta) \frac{1}{(2\pi\sigma^{2})^{n/2}} \exp\{-\|k\boldsymbol{D}(\boldsymbol{\theta}_{\star} - \boldsymbol{\theta}_{0})\|_{2}^{2}/(2\sigma^{2})\} (1 - \eta),$$

where Diam(Θ) gives the diameter of Θ , and $\boldsymbol{u} = [(\|\boldsymbol{\theta}_{\star} - \boldsymbol{\theta}_{0}\|_{2} - \delta)/\|\boldsymbol{\theta}_{\star} - \boldsymbol{\theta}_{0}\|_{2}](\boldsymbol{\theta}_{\star} - \boldsymbol{\theta}_{0})$. Note (we already assumed \boldsymbol{D} has full column rank)

$$\lim_{k\to\infty} \frac{\exp\{-\|\boldsymbol{D}[k(\boldsymbol{\theta}_{\star}-\boldsymbol{\theta}_{0})-\boldsymbol{u}]\|_{2}^{2}/(2\sigma^{2})\}}{\exp\{-\|k\boldsymbol{D}(\boldsymbol{\theta}_{\star}-\boldsymbol{\theta}_{0})\|_{2}^{2}/(2\sigma^{2})\}} = \infty,$$

hence for large k, we have

$$\langle \mathsf{E}_{O}[\boldsymbol{\theta}|\boldsymbol{x}_{k}] - \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{\star} - \boldsymbol{\theta}_{0} \rangle > 0.$$

That means, we have $\mathsf{E}_Q[\boldsymbol{\theta}|\boldsymbol{x}_k] \neq \boldsymbol{\theta}_0$ for large k. This proves the claim.

(c)

Let $\Theta = \{-1,1\}$, $\mathsf{P}_1 = \mathsf{P}_0 = \delta(0)$ (no matter what θ is, the data X is deterministically 0). Hence we only need to consider the estimator that is a constant mapping (Rao-Blackwell theorem tells us that we don't need to consider randomized estimator). The risk function for any constant estimator is $R(\hat{\theta} = a; \Theta) = \sup\{(1-a)^2, (-1-a)^2\}$. Minimizing this over a, the minimax estimator is $\hat{\theta} = 0$. For this estimator, for $\varepsilon < 1/4$, $\mathsf{P}_0(\hat{\theta} \notin \{-1,1\}^{\varepsilon}) = \mathsf{P}_1(\hat{\theta} \notin \{-1,1\}^{\varepsilon}) = 1$.

(d)

Consider the estimator $\tilde{\theta} = \text{Proj}(\hat{\theta})$, where Proj operator enjoy the same definition of Problem (a), then we have

$$L(\tilde{\theta}(x), \theta) \le L(\hat{\theta}(x), \theta) - \eta \mathbf{1} \{\hat{\theta}(x) \notin \Theta^{\varepsilon}\},$$

where

$$\eta = \min_{\theta \in \Theta, \theta' \in \partial \Theta^{\varepsilon}} L(\theta', \theta) - L(\operatorname{Proj}(\theta'), \theta).$$

Since L is strictly decreasing for $a < \theta$ and strictly increasing for $a > \theta$, and Θ and $\partial \Theta^{\varepsilon}$ are compact sets, we have $\eta > 0$.

As a result, we have for any $\theta \in \Theta$,

$$R(\tilde{\theta},\theta) = \mathsf{E}_{\theta}[L(\tilde{\theta}(X),\theta)] \leq \mathsf{E}_{\theta}[L(\hat{\theta}(X),\theta)] - \eta \mathsf{P}_{\theta}(\hat{\theta}(X) \not\in \Theta^{\varepsilon}) \leq R(\hat{\theta},\theta) - \eta \delta.$$

Since $R(\hat{\theta}, \theta)$ is continuous in θ , $R(\hat{\theta}, \theta)$ can attain the maximum, and we have

$$\sup_{\theta \in \Theta} R(\tilde{\theta}, \theta) \leq \sup_{\theta \in \Theta} R(\hat{\theta}, \theta) - \eta \delta.$$

That means $\hat{\theta}$ is not minimax optimal on Θ .

Problem 2

(a)

Let $\theta_1 = 1/2 - 1/(2\sqrt{2})$, $\theta_2 = 1/2 + 1/(2\sqrt{2})$, and let q = 1/2. Under the square loss, the Bayes optimal estimator for Q is given by the conditional expectation

$$\hat{\theta}_{B}(x) = \mathsf{E}[\theta|X = x]
= \begin{cases} \frac{\theta_{1}^{2} + \theta_{2}^{2}}{\theta_{1} + \theta_{2}} & \text{if } x = 1 \\ \frac{\theta_{1}(1 - \theta_{1}) + \theta_{2}(1 - \theta_{2})}{1 - \theta_{1} + 1 - \theta_{2}} & \text{if } x = 0 \end{cases}
= \begin{cases} \frac{3}{4} & \text{if } x = 1 \\ \frac{1}{4} & \text{if } x = 0 \end{cases}$$

$$= \frac{x}{2} + \frac{1}{4}.$$
(1)

The above implies that $\hat{\theta}_B(Q) = \hat{\theta}_{MM}$.

(b)

As suggested in the hint, there exists an integer m, such that choosing $q_i \ge 0$ for $i = 0, 1, \dots, m$ such that (here Q is the measure induced by a Beta $(\sqrt{n}/2, \sqrt{n}/2)$ random variable)

$$\sum_{i=0}^{m} q_i \left(\frac{i}{m}\right)^k = \int \theta^k Q(\mathrm{d}\theta) \quad \text{for all } k = 0, 1, \dots, n+1.$$
 (2)

Then the above implies that, for any polynomial p of degree at most n+1, we have

$$\sum_{i=0}^{m} q_i p\left(\frac{i}{m}\right) = \int p(\theta) Q(\mathrm{d}\theta). \tag{3}$$

Consider the prior distribution:

$$Q_1 = \sum_{i=0}^{n+1} q_i \delta\left(\frac{i}{m}\right) \tag{4}$$

The Bayes optimal estimator is given by the conditional expectation

$$\hat{\theta}_{Q_1}(X) = \mathsf{E}_{Q_2}[\theta|X]
= \frac{\sum_{i=0}^{n+1} q_i (i/m)^{X+1} (1 - i/m)^{n-X}}{\sum_{i=0}^{n+1} q_i (i/m)^X (1 - i/m)^{n-X}}.$$
(5)

On the other hand, the Bayes estimator with respect to Beta $(\sqrt{n}/2, \sqrt{n}/2)$ is given by

$$\hat{\theta}_{MM}(X) = \frac{\sqrt{n}}{1 + \sqrt{n}} \cdot \frac{X}{n} + \frac{1}{1 + \sqrt{n}} \cdot \frac{1}{2}$$

$$= \mathsf{E}_{Q}[\theta|X]$$

$$= \frac{\int \theta^{X+1} (1 - \theta)^{n-X} Q(\mathrm{d}\theta)}{\int \theta^{X} (1 - \theta)^{n-X} Q(\mathrm{d}\theta)}.$$
(6)

Let $p_1(t;X) = t^{X+1}(1-t)^{n-X}$, $p_2(t;X) = t^X(1-t)^{n-X}$, then it clear that both p_1 and p_2 as a function of t are polynomial of degree at most n+1. Hence by (3) we have

$$\hat{\theta}_{Q_1}(X) = \frac{\sum_{i=0}^m p_1\left(\frac{i}{m}, X\right) q_i}{\sum_{i=0}^m p_2\left(\frac{i}{m}, X\right) q_i} = \frac{\int p_1(\theta, X) Q(\mathrm{d}\theta)}{\int p_2(\theta, X) Q(\mathrm{d}\theta)} = \hat{\theta}_{MM}(X). \tag{7}$$

Therefore,

$$\hat{\theta}_{Q_1}(X) = \hat{\theta}_{MM}(X) = \frac{\sqrt{n}}{1 + \sqrt{n}} \cdot \frac{X}{n} + \frac{1}{1 + \sqrt{n}} \cdot \frac{1}{2}.$$
 (8)

Problem 3

(a)

Since L is upper bounded by L_0 , $R(A, \theta)$ is also bounded from above by L_0 for all $A \in \mathcal{A}$ and $\theta \in \Theta$. Given Q, for any statistical procedure A, we have

$$R(A,Q) = \int_{\mathbb{R}^d} R(A,\boldsymbol{\theta}) Q(\mathrm{d}\boldsymbol{\theta}) = \int_{\Theta} R(A,\boldsymbol{\theta}) Q(\mathrm{d}\boldsymbol{\theta}) + \int_{\Theta^c} R(A,\boldsymbol{\theta}) Q(\mathrm{d}\boldsymbol{\theta})$$

$$\leq \sup_{\boldsymbol{\theta} \in \Theta} R(A,\boldsymbol{\theta}) + L_0 Q(\Theta^c). \tag{9}$$

Hence

$$R_B(Q) - L_0Q(\Theta^c) \le R(A, Q) - L_0Q(\Theta^c) \le \sup_{\theta \in \Theta} R(A, \theta).$$
(10)

Since the above is true for all A, taking the infimum over $A \in \mathcal{A}$ gives

$$R_M(\Theta) \ge R_B(Q) - L_0 Q(\Theta^c). \tag{11}$$

(b)

Let $\hat{\boldsymbol{\theta}}$ be any estimator, and let $\tilde{\boldsymbol{\theta}}$ be the projection of $\hat{\boldsymbol{\theta}}$ onto $\mathsf{B}^d(\mathbf{0}, M\sqrt{k})$. That is

$$\tilde{\boldsymbol{\theta}} = \min \left\{ \frac{M\sqrt{k}}{\|\hat{\boldsymbol{\theta}}\|_2}, 1 \right\} \hat{\boldsymbol{\theta}}. \tag{12}$$

Then it is clear that $L(\tilde{\theta}, \theta) \leq L(\hat{\theta}, \theta)$ with probability 1 for all $\theta \in \Theta(d, k, M) \subset B^d(\mathbf{0}, M\sqrt{k})$. Since $\tilde{\theta} \in B^d(\mathbf{0}, M\sqrt{k})$, it is sufficient to only consider estimators taking values in $B^d(\mathbf{0}, M\sqrt{k})$. In this case, since both $\tilde{\theta}$ and θ are in a ball with radius $M\sqrt{k}$, there distance square is upper bounded by the diameter square of the ball. That is, for all $\theta \in \Theta$ and $\tilde{\theta}$ in the above form, we have

$$L(\tilde{\boldsymbol{\theta}}, \boldsymbol{\theta}) \le 4M^2k. \tag{13}$$

Therefore it is also sufficient to replace the square loss by $\tilde{L}(\hat{\theta}, \theta) = \min\{\|\hat{\theta} - \theta\|_2^2, 4M^2k\}$.

(c)

Let $G = \Pi_d \times \Sigma_d$ be a group, where Π_d is the permutation group on $\{1,\ldots,d\}$, and $\Sigma_d = \{+1,-1\}^d$ is the sign changing group. For any $g = [\pi,\sigma] \in G$ (π is a permutation, where $\{\pi(1),\ldots,\pi(d)\} = \{1,\ldots,d\}$ as a set; $\boldsymbol{\sigma} = [\sigma_1,\ldots,\sigma_d]^\mathsf{T} \in \{+1,-1\}^d$), the action of φ_g on $\boldsymbol{x} = (x_1,\ldots,x_d)^\mathsf{T} \in \mathbb{R}^d$ gives $\varphi_g(\boldsymbol{x}) = (\sigma_1x_{\pi(1)},\ldots\sigma_dx_{\pi(d)})^\mathsf{T}$. We would like to show our statistical model is invariant under this group. First we have $L(a,\boldsymbol{\theta}) = \|a-\boldsymbol{\theta}\|_2^2 = \|\varphi_g(a)-\varphi_g(\boldsymbol{\theta})\|_2^2 = L(\varphi_g(a),\varphi_g(\boldsymbol{\theta}))$. Next we have $\mathsf{P}_{g(\boldsymbol{\theta})}(\boldsymbol{X} \in S) = \mathsf{P}_{\boldsymbol{Z} \sim \mathcal{N}(0,\sigma^2\mathbf{I}_d)}(\varphi_g(\boldsymbol{\theta}) + \boldsymbol{Z} \in S) = \mathsf{P}_{\boldsymbol{Z} \sim \mathcal{N}(0,\sigma^2\mathbf{I}_d)}(\varphi_g(\boldsymbol{\theta}) + \varphi_g(\boldsymbol{Z}) \in S) = \mathsf{P}_{\boldsymbol{Z} \sim \mathcal{N}(0,\sigma^2\mathbf{I}_d)}(\varphi_g(\boldsymbol{\theta}+\boldsymbol{Z}) \in S) = \mathsf{P}_{\boldsymbol{\theta}}(\varphi_g(\boldsymbol{X}) \in S) = (\varphi_g)_\#\mathsf{P}_{\boldsymbol{\theta}}(\boldsymbol{X} \in S)$. Hence our model is invariant under this group. Since minimax theorem holds for this model, there exists a least favorable prior. According to invariant least favorable prior theorem, there exists a least favorable prior that is invariant under the group action. This invariant least favorable prior can only be written in the form $Q = \sum_{\ell=0}^k p_\ell Q_\ell$.

(d)

By part (b) we know that $R_M(d, k; M) = \tilde{R}_M(d, k; M)$, and we can replace the loss L by \tilde{L} , which is bounded from above by $4M^2k$. By part (a) we have

$$R_M(d,k;M) = \tilde{R}_M(d,k;M) \ge \tilde{R}_B(Q_{M,\epsilon}) - 4M^2kQ_{M,\epsilon}(\Theta^c). \tag{14}$$

Let $X \in \mathbb{R}^d$ be a random variable whose induced measure is $Q_{M,\epsilon}$, then it is clear that $Q_{M,\epsilon}(\Theta^c)$ is equal to $\mathsf{P}(\|X\|_0 > k)$. Since the coordinates of X are independent and $\mathbf{1}(X_i \neq 0)$ has $\mathsf{Bernoulli}(\epsilon)$ distribution, $\|X\|_0$ has $\mathsf{Binomial}(d,\epsilon)$ distribution. Therefore, (14) becomes

$$R_M(d, k; M) \ge \tilde{R}_B(Q_{M,\epsilon}) - 4M^2k\mathsf{P}(\mathsf{Binom}(d, \epsilon) > k).$$
 (15)

(e)

Note $\boldsymbol{\theta} = (\theta_1, \dots, \theta_d) \sim Q_{M,\varepsilon} = q_{M,\varepsilon}^{\otimes d}$, and $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\theta}, \sigma^2 \mathbf{I}_d)$. We have (X_i, θ_i) for $i \in [d]$ are mutually independent. Hence the Bayes estimator which is the posterior mean gives

$$(\hat{\boldsymbol{\theta}}_B(\boldsymbol{x}))_j = \mathsf{E}[\theta_j | \boldsymbol{X} = \boldsymbol{x}] = \mathsf{E}[\theta_j | X_j = x_j].$$

Hence

$$R_{B}(Q_{M,\epsilon}) = \mathsf{E}_{Q_{M,\epsilon}}[\|\hat{\boldsymbol{\theta}}_{B} - \boldsymbol{\theta}\|_{2}^{2}]$$

$$= \sum_{j \in [d]} \mathsf{E}_{Q_{M,\epsilon}}[((\hat{\boldsymbol{\theta}}_{B})_{j} - \theta_{j})^{2}]$$

$$= \sum_{j \in [d]} \mathsf{E}_{Q_{M,\epsilon}}[(\mathsf{E}(\theta_{j}|X_{j}) - \theta_{j})^{2}]$$

$$= \sum_{j \in [d]} \mathsf{E}_{q_{M,\epsilon}}[(\mathsf{E}(\theta_{j}|X_{j}) - \theta_{j})^{2}]$$

$$= dR_{B}(q_{M,\epsilon}).$$
(16)

Since we have

$$P(\text{Binom}(d,\epsilon) > k) \le e^{-k\eta^2/4},\tag{17}$$

which implies that $kP(\text{Binom}(d,\epsilon) > k) = o_{\eta}(k)$, using (15), (16) and (7) in the question gives

$$R_M(d, k; M) \ge dR_B(q_{M,\epsilon}) - (M^2 + 1)o_n(k) - 4M^2o_n(k).$$
 (18)

Since a constant times $o_{\eta}(k)$ is still $o_{\eta}(k)$, the $-4M^2o_{\eta}(k)$ above can be merged with the first $M^2o_{\eta}(k)$, so it can be simplifies to

$$R_M(d, k; M) \ge dR_B(q_{M,\epsilon}) - (M^2 + 1)o_n(k).$$
 (19)