姓名: John 学号: Zonggoss)

院系: 数分

大连理工大学

题号	2	3	4	5	6	7	8	9	松分
标准分	5	5	5	5	10	5	5	5	60
得 分									

1. 填空

- (1). $(101110)_B = (4b)_D = (2E)_H$
- (2). $(0010)_{B} = (001)_{Gray}$; $(15)_{D} = (000)_{Gray}$; $(15)_{D} = (000)_{S421BCD}$;
- (3). 1010101, 偶检验, 校验位为 ____;
- (4). P 型半导体中,多子是 它它,PN 结中内电场方向为 W > P:
- (5). 类功率放大器效率最高;
- (6). 电压反馈可以稳定输出 电压 ;引入串联反馈,输入电阻 变大 ;
- (7). 直流稳压电源一般包括变压、水流、水流、与水压环节;
- (9). 变压器二次侧电压有效值 U, 全波整流电压平均值为____。 从

2. (5%) E_1 =40V, E_2 =20V, R_1 = R_2 =4 Ω , R_3 =13 Ω , 试用戴维宁定理求电流 I_3

$$I = \frac{E_r - E_r}{R_1 + R_2} = 2\hat{J}(A)$$

3. (5%) E=10V、IS=1A , $R_1=10\Omega$, $R_2=R_3=5\Omega$,用叠加原理求 R_2 的电流 I_2

≥. 短臣.

4. (5%) 输入电压 U_i =15V 存在±20% 波动,稳压二极管 U_z =6V, I_{zmin} =10mA, I_{zmax} =40mA. R_L =100~250Ω, 求限流电阻 R.

5. (10%)
$$R_b = 565K\Omega$$
, $R_C = R_L = 4K\Omega$,

$$\beta = 50$$
, $U_{BE} = 0.7V$, $V_{cc} = 12V$. Note: $r_{be} = 200 + (1 + \beta) \frac{26(mv)}{I_{EQ}}$

- (1) 画直流通路.
- (2) 计算静态工作点.
- (3) 画交流通路, 微变等效电路.
- (4) 计算 Au, Ri, Ro.

(2) 计算 uo.

- 7. (5%) 开环放大倍数 A=-1000, 反馈系数 F=-0.099, dA/A=20%
 - (1) 闭环放大倍数 AF
 - (2) 计算 d A_F/A_F

$$|Af| = \frac{|A|}{|+|AF|} = \frac{1000}{|+|AF|} = \frac{10$$

8. (5%) CW117 输出电压 U12=1.5V, 求 u。变化范围

$$\frac{1.5 \cdot R_1 + R_2}{R_1} = \frac{U_0}{U_{12}} = \frac{U_0}{1.5}.$$

$$\frac{1.5 \cdot R_1 + R_2}{R_1} = \frac{1.5 \times (280 + R_2)}{280}$$

$$\frac{1.5 \cdot R_1 + R_2}{R_1} = \frac{1.5 \times (280 + R_2)}{280}$$

9. (5%) 回滯比较器, R₁=10kΩ, R₂=20kΩ, U_Z=6V.

画 u_o .

