LAB 4-2 ASSIGNMENT

Ch. 3 Modules

Start: 02/02/2024 4:37 PM Name: Imani Hollie

EXCERCISE 3 – HOW MUCH INSURANCE?

Write the Algorithm, Pseudocode, Flowchart, and Python Code for the following programming problem:

Scenario: Calculate Insurance

Many financial experts advise that property owners should insure their homes or buildings for at least 80% of the amount it would cost to replace the structure. Design a modular program that asks the user to enter the replacement cost of a building and then displays the minimum amount of insurance they should buy for the property.

Step 1: The Algorithm

- 1. MODULE 1 main()
 - a. Get the total for the replacement cost:
 - i. Prompt for the total amount needed for replacement cost
 - b. Call module
- 2. MODULE 2 minInsCov()
 - a. Calculate the minimum insurance:
 - i. Multiply minimum insurance by total for replacement cost for property
 - i. Multiply 0.8 by the total for replacement cost for Minimum Insurance
 - b. Display total for replacement cost and total for minimum insurance coverage:
 - i. Display Total Replacement Cost
 - ii. Display Minimum Insurance Coverage

The Input, Processing, and Output

Table 1-1 Calculating Minimum Insurance Coverage (x)					
INPUTS	Input Type	Value	Data Type		
Total Replacement Cost (totalCost)	Variable	(a)	Float		
PROCEDURE	x = a * 0.8				
	minInsCov = totalCost * 0.8				
OUTPUTS	Output Type	Value	Data Type		
Minimum Insurance Coverage	Variable	(x)	Float		
(minInsCov)					

The IPO for Table 1-1 is as follows:

- 1. The inputs for Table 1-1 are as follows:
 - a. Total Replacement Cost (a)
- 2. The procedure for Table 1-1 are as follows:
 - a. x = a * 0.8
 - minInsCov = totalCost * 0.8
- 3. The output for Table 1-1 are as follows:
 - a. Minimum Insurance Coverage (x)

Step 2: The Pseudocode

Refer to Tables 1-1 and 1-2 in Step 1 for the needed variables.

- 1. //This program takes in the total replacement cost for property and
- 2. //the minimum amount of insurance recommended to cover it.
- 3. //Output is then printed to the screen.
- 4. //Declare the main module
- 5. //main() input and calls minInsurance()
- 6. Module main()
 - a. //Declare variables
 - b. Declare Float totalCost
 - c. //Input totalCost
 - d. Display "Enter the total replacement cost for your property."
 - e. Input totalCost
 - f. //Call module
 - g. Call minInsurance(totalCost)
- 7. End Module
- 8. //Declare the minInsurance module
- 9. //minInsurance() calculates and outputs
- 10. Module minInsurance (Float Ref minInsCov)
 - a. //Declare variables
 - b. Declare Float minInsCov
 - c. //Calculate minInsCov
 - d. Set minInsCov = totalCost * 0.8
 - e. //Display total replacement cost and minimum insurance coverage
 - f. Display "Total Replacement Cost: ", totalCost
 - q. Display "Minimum Insurance Cost: ", minInsCov
- 11. End Module

Step 3: The Flowchart

Refer to the png file submitted along with the PDF file as it contains the Flowchart.

Step 4: The Python Code

Refer to the txt file submitted along with the PDF file as it contains the Python Code.

```
#Imani Hollie 02.02.2024
#This program will collect total replacement cost for property
#(replacement total and min. insurance coverage)
#Module 1 - main() [Input and Calls minIns()]
totalCost = float(input('Enter Total Replacement Cost for Property: '))
#Module 2 - minIns() [Calculations and Output]
def minIns(Cost):
    #Calculations----
   minInsCov = Cost * 0.8
    #Output-----
    print('Total Replacement Cost:', Cost)
    print('Minimum Insurance Cost:', minInsCov)
    #Output is then printed to the screen
#End Module 2
minIns(totalCost)
#End Module 1
```

Screenshot of Terminal

```
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS

PS C:\Users\Imani\OneDrive - Gwinnett Technical College\Spring 2024\CIST 1305 (PDD)\Lesson 4\Codes> python Lab4-2.1.py
Enter Total Replacement Cost for Property: 500024
Total Replacement Cost: 500024.0
Minimum Insurance Cost: 400019.2

PS C:\Users\Imani\OneDrive - Gwinnett Technical College\Spring 2024\CIST 1305 (PDD)\Lesson 4\Codes> []
```

EXERCISE 8 – STADIUM SEATING

Write the Algorithm, Pseudocode, Flowchart, and Python Code for the following programming problem:

Scenario: Stadium Seating

There are three seating categories at a stadium. For a softball game, Class A seats cost \$15, Class B seats cost 12\$, and Class C seats cost \$9. Design a modular program that asks how many tickets for each class of seats were sold, and then displays the amount of income generated from ticket sales.

Step 1: The Algorithm

- 1. MODULE 1 main()
 - a. Get the total for the seats sold:
 - i. Prompts for the total amount of Class A tickets sold
 - ii. Prompts for the total amount of Class B tickets sold
 - iii. Prompts for the total amount of Class C tickets sold
 - b. Calculate the Total Seats Sold:
 - i. Add the total of each ticket class for total seats sold
 - c. Display Total Seats Sold:
 - i. Display Total Class A Seats
 - ii. Display Total Class B Seats
 - iii. Display Total Class C Seats
 - iv. Display Total Seats
- 2. MODULE 2 totalTicketSales()
 - a. Calculate the amount for each seat sold:
 - i. Multiply total Class A tickets sold by 15
 - ii. Multiply total Class B tickets sold by 12
 - iii. Multiply total Class C tickets sold by 9
 - iv. Add the total of each sale for ticket class and add the total for total sales sold
 - b. Display total for each ticket class sold and total ticket sales:
 - i. Display Total Class A Ticket Sales
 - ii. Display Total Class B Ticket Sales
 - iii. Display Total Class C Ticket Sales
 - iv. Display Total Ticket Sales

The Input, Processing, and Output

Table 2-1 Calculating Total Seats Sold (x)					
INPUTS	Input Type	Value	Data Type		
Class A Seats (aSeat)	Variable	(a)	Float		
Class B Seats (bSeat)	Variable	(b)	Float		
Class C Seats (cSeat)	Variable	(c)	Float		
PROCEDURE	x = (a+b+c)				
	totalSeats = aSeat + bSeat + cSeat				
OUTPUTS	Output Type	Value	Data Type		
Total Seats (totalSeats)	Variable	(x)	Float		

The IPO for Table 2-1 is as follows:

- 1. The inputs for Table 2-1 are as follows:
 - a. Class A Seats (a)
 - b. Class B Seats (b)
 - c. Class C Seats (c)
- 2. The procedures for Table 2-1 are as follows:
 - a. x = (a + b + c)

totalSeats = classASeat + classBSeat + classCSeat

- 3. The output for Table 2-1 are as follows:
 - a. Total Class A Seats (a)
 - b. Total Class B Seats (b)
 - c. Total Class C Seats (c)
 - d. Total Seats (x)

Table 2-2 Calculating Total Sales (y)					
INPUTS	Input Type	Value	Data Type		
Class A Seats (aSeat)	Variable	(a)	Float		
Class B Seats (bSeat)	Variable	(b)	Float		
Class C Seats (cSeat)	Variable	(c)	Float		
Class A Cost (aCost)	Variable	(d)	Float		
Class B Cost (bCost)	Variable	(e)	Float		
Class C Cost (cCost)	Variable	(f)	Float		
PROCEDURE	d = a * 15				
	aCost = aSeat * 15				
	e = b * 12				
	bCost = bSeat * 12				
	f = c * 9				
	cCost = cSeat * 9				
	y = (d + e + f)				
	totalCost = aCost + bCost + cCost				
OUTPUTS	Output Type	Value	Data Type		
Total Sales (totalSales)	Variable	(y)	Float		

The IPO for Table 2-2 is as follows:

- 1. The inputs for Table 2-2 are as follows:
 - a. Class A Seats (a)
 - b. Class B Seats (b)
 - c. Class C Seats (c)

- d. Class A Cost (d)
- e. Class B Cost (e)
- f. Class C Cost (f)
- g. Total Cost (y)
- 2. The procedures for Table 2-2 are as follows:
 - a. d = a * 15
 - aCost = aSeat * 15
 - b. e = b * 12bCost = bSeat * 12
 - c. f = c * 9
 - cCost = cSeat * 15d. y = (d + e + f)
 - totalCost = aCost + bCost + cCost
- 3. The output for Table 2-2 are as follows:
 - a. Total Class A Cost (d)
 - b. Total Class B Cost (e)
 - c. Total Class C Cost (f)
 - d. Total Sales (y)

Step 2: The Pseudocode

Refer to Tables 2-1 and 2-2 in Step 1 for the needed variables.

- 1. //This program takes in the total number of seats sold per class.
- 2. //Output is then printed to the screen.
- 3. //Declare the main module
- 4. //main() input and calls totalSales()
- 5. Module main()
 - a. //Declare variables
 - b. Declare Float aSeat
 - c. Declare Float bSeat
 - d. Declare Float cSeat
 - e. //Input totalCost
 - f. Display "Enter the total amount of Class A tickets sold."
 - q. Input aSeat
 - h. Display "Enter the total amount of Class B tickets sold."
 - i. Input bSeat
 - j. Display "Enter the total amount of Class C tickets sold."
 - k. Input cSeat
 - 1. //Call module
 - m. Call totalSales (aSeat, bSeat, cSeat)
- 6. End Module
- 7. //Declare the totalSales module
- 8. //minInsurance() calculates and outputs
- 9. Module totalSales (Float Ref totalCost)
 - a. //Declare variables
 - b. Declare Float totalSeats
 - c. Declare Float totalCosts
 - d. Declare Float aCost
 - e. Declare Float bCost
 - f. Declare Float cCost
 - q. //Calculate minInsCov
 - h. Set totalSeats = aSeat + bSeat + cSeat
 - i. Set aCost = aSeat * 15
 - j. Set bCost = bSeat * 12
 - k. Set cCost = cCost * 9
 - 1. Set totalCosts = aCost + bCost + cCost
 - m. //Display total replacement cost and minimum insurance coverage
 - n. Display "Total Class A Seats Sold: ", aSeat
 - o. Display "Total Class B Seats Sold: ", bSeat
 - p. Display "Total Class C Seats Sold: ", cSeat
 - q. Display "Total Seats Sold: ", totalSeats

STARTING OUT WITH PROGRAMMING LOGIC AND DESIGN CH. 2

- r. Display "Total Cost of Class A Seats: ", aCost
 s. Display "Total Cost of Class B Seats: ", bCost
- t. Display "Total Cost of Class C Seats: ", cCost
- u. Display "Total Sales Cost: ", totalCosts
- 10. End Module

Step 3: The Flowchart

Refer to the png file submitted along with the PDF file as it contains the Flowchart.

Step 4: The Python Code

Refer to the txt file submitted along with the PDF file as it contains the Python Code.

```
#Imani Hollie 02.02.2024
#This program will collect total seats sold per class
#(total seats per class, total seats sold,
#total cost per class, total sales made)
#Module 1 - main() [Input and Calls totalSales()]
#Inputs----
aSeat = float(input('Enter Total Class A Tickets Sold: '))
bSeat = float(input('Enter Total Class B Tickets Sold: '))
cSeat = float(input('Enter Total Class C Tickets Sold: '))
#Module 2 - totalSales() [Calculations and Output]
def totalSales(classA, classB, classC):
   #Calculations-----
   totalSeats = classA + classB + classC
   aSale = classA * 15
   bSale = classB * 12
   cSale = classC * 9
   totalSales = classA + classB + classC
   #Output-----
   print(f'Total Class A Seats: {classA}')
   print(f'Total Class B Seats: {classB}')
   print(f'Total Class C Seats: {classC}')
   print(f'Total Seats Sold: {totalSeats}')
   print(f'Total Class A Sales: ${aSale}')
   print(f'Total Class B Sales: ${bSale}')
   print(f'Total Class C Sales: ${cSale}')
    print(f'Total Sales Cost: ${totalSales}')
    #Output is then printed to the screen
#End Module 2
#Calling Module 2 totalSales()--
totalSales(aSeat, bSeat, cSeat)
#End Module 1
```

Screenshot of Terminal

```
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS

PS C:\Users\Imani\OneDrive - Gwinnett Technical College\Spring 2024\CIST 1305 (PDD)\Lesson 4\Codes> python Lab4-2.2.py
Enter Total Class A Tickets Sold: 2289
Enter Total Class B Tickets Sold: 4829
Enter Total Class C Tickets Sold: 84635
Total Class A Seats: 2289.0
Total Class B Seats: 4829.0
Total Class B Seats: 4829.0
Total Class C Seats: 84635.0
Total Seats Sold: 91753.0
Total Class A Sales: $34335.0
Total Class C Sales: $7948.0
Total Class C Sales: $7948.0
Total Class C Sales: $91753.0
PS C:\Users\Imani\OneDrive - Gwinnett Technical College\Spring 2024\CIST 1305 (PDD)\Lesson 4\Codes> []
```