Diszkrét Matematika I-II. jegyzet

Vághy Mihály

Tartalomjegyzék

1.		nbinatorika	4
	1.1.	Ismétlés nélküli permutáció	4
	1.2.	Ismétléses permutáció	4
	1.3.	Ismétlés nélküli variáció	4
	1.4.	Ismétléses variáció	4
	1.5.	Ismétlés nélküli kombináció	4
	1.6.	Ismétléses kombináció	4
	1.7.	Összeadási szabály	4
	1.8.		4
	1.9.		5
		Binomiális tétel	5
	1.11.	Binomiális együtthatók tulajdonságai	5
2	Hel.	mazalgebra	8
۷٠	9 1	Halmaz	8
		Üres halmaz	8
		Részhalmaz	8
	2.4.	Halmazok egyenlősége	8
			8
	2.6.	Halmazok uniója	8
	2.7.	Halmazok metszete	8
	2.8.	Halmazok különbsége	8
	2.9.	Halmaz komplementere	8
	2.10.	. De Morgan-azonosságok	9
3.		ıktúrák	10
	3.1.	Művelet	10
	3.2.	Kommutativitás	10
	3.3.	Asszociativitás	10
	3.4.	Egységelem	10
		Inverz elem	
	3.6.	Tétel	
	3.7.	Csoport, félcsoport	11
		Gyűrű	
		Test, ferdetest	12
		. Vektortér	
		Altér	
		. Vektortér axiómák következményei	12
	3.12.	. vektorter axiomak következmenyer	12
4.	Log	ika	13
		Negáció	13
		Konjunkció	13
		Diszjunkció	13
	4.4.		$\frac{13}{13}$
		Implikáció	
	4.5.	Ekvivalencia	13
	4.6.	Tautológia	13
	4.7.	Kontradikció	13
	4.8.	Modell	13
	4.9.	Ekvivalens formulák	13
	4.10.	. Azonosságok	14
	4.11.	Tétel	14
	4.12.	Logikai következmény	14
	4.13.	. Tétel	14
		Tétel	14

	4.15. Tétel	14
	4.16. Tételek	15
	4.17. Helyes következtetési séma	15
	4.18. Modus ponens	15
	4.19. Modus tollens	15
	4.20. Hipotetikus szillogizmus	15
	4.21. Modus tollendo ponens	15
	4.22. Indirekt	15
	4.23. Literál	15
	4.24. Klóz	15
	4.25. Konjunktív normálforma	15
	4.26. Tétel	15
	4.27. Diszjunktív normálforma	15
	4.28. Tétel	15
	4.29. Rezolúció alapelve	16
	4.30. Rezolvens	16
	4.31. Helyesség	16
	4.32. Teljesség	16
5.	. Relációk	17
	5.1. Reláció	17
	5.2. Bináris reláció	
	5.3. Ekvivalencia reláció	
	5.4. Rendezési reláció	
	5.5. Telies rendezés	

1. Kombinatorika

1.1. Ismétlés nélküli permutáció

Adott n különböző elem. Ezen elemek különböző sorrendjeit permutációnak nevezzük. Az ilyen permutációk száma

$$P_n = n!$$
.

1.2. Ismétléses permutáció

Adott n különböző elem, melyek között $k_1, k_2, ..., k_r$ azonos elem van. Ekkor az elemek permutálásával ismétléses permutációhoz jutunk. Az ilyen permutációk száma

$$P_n^{(k_1, k_2 \cdots, k_r)} = \frac{n!}{k_1! \cdot k_2! \dots k_r!} = \frac{n!}{\prod_{i=1}^r k_i}.$$

1.3. Ismétlés nélküli variáció

Adott n különböző elem, melyek közül válasszunk ki k darabot, ahol $1 \le k \le n$, majd írjuk fel ezeket az elemeket az öszes lehetséges sorrendben. Így az n elem k-adosztályú variációihoz jutunk. Ezen variációk száma

$$V_n^k = \frac{n!}{(n-k)!}.$$

1.4. Ismétléses variáció

Adott n különböző elem, melyek közül válasszunk ki k darabot úgy, hogy egy elemet többször is választhatunk, majd írjuk fel ezeket az elemeket az összes lehetséges sorrendben. Ekkor az n elem k-adosztályú ismétléses variációihoz jutunk. Ezen variációk száma

$$V_n^{k,i} = n^k$$
.

1.5. Ismétlés nélküli kombináció

Adott n különböző elem, melyek közül válasszunk ki k darabot, majd írjuk fel ezeket az elemeket úgy, hogy nem vagyunk tekintettel a sorrendre. Ekkor az n elem k-adosztályú ismétlés nélküli kombinációihoz jutunk. Ezen kombinációk száma

$$C_n^k = \frac{n!}{k! \cdot (n-k)!} = \binom{n}{k}.$$

1.6. Ismétléses kombináció

Adott n különzötő elem, melyek közül válasszunk ki k darabot úgy, hogy egy elemet többször is választhatunk, és nem vagyunk tekintettel a sorrendre. Ekkor az n elem k-adosztályú ismétléses kombinációihoz jutunk. Ezen kombinációk száma

$$C_n^{k,i} = C_{n+k-1}^k = \frac{(n+k-1)!}{k! \cdot (n-1)!} = \binom{n+k-1}{k}.$$

1.7. Összeadási szabály

Egymást kölcsönösen kizáró események együttes száma az események számának összege.

1.8. Szorzási szabály

Egymástól független események együttes száma az események számának szorzata.

1.9. Szita formula

Adottak a véges $A_1, A_2, ..., A_n$ halmazok, és tekintsük az

$$A = A_1 \cup A_2 \cup \dots \cup A_n = \bigcup_{i=1}^n A_i$$

halmazt. Legyen továbbá

$$S_k = \sum_{1 \le j_1 < j_2 < \dots < j_k \le n} \left| A_{j_1} \cap A_{j_2} \cap \dots \cap A_{j_k} \right| = \sum_{1 \le j_1 < j_2 < \dots < j_k \le n} \left| \bigcap_{i=1}^k A_{j_i} \right|.$$

Ekkor

$$|A| = \left| \bigcup_{i=1}^{n} A_i \right| = \sum_{i=1}^{n} (-1)^{i+1} S_i.$$

1.10. Binomiális tétel

Adott $a, b \in \mathbb{R}$ és $n \ge 1 \in \mathbb{N}$. Ekkor

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Bizonyítás

Kombinatorikai úton fogunk bizonyítani. Vegyük észre ugyanis, hogy a disztributivitás miatt feltehetjük azt a kérdést, hogy az $(a+b)^n$ kifejezésben mi lesz az $a^{n-k}b^k$ tag együtthatója. Ehhez az kell, hogy az n-tényezős szorzatban pontosan k tényezőből válasszuk a b-t, és n-k tényezőből az a-t. Tehát az együttható $\binom{n}{k}$.

1.11. Binomiális együtthatók tulajdonságai

1. Szimmetria-tulajdonság

$$\binom{n}{k} = \binom{n}{n-k}$$

2. Addíciós képlet

$$\binom{n-1}{k} + \binom{n-1}{k-1} = \binom{n}{k}$$

3. Elnyelési tulajdonság

$$\frac{n}{k} \cdot \binom{n-1}{k-1} = \binom{n}{k}$$

4. Trinomiális alak

$$\binom{n}{k}\binom{k}{m} = \binom{n}{m}\binom{n-m}{k-m}$$

5. Binomiális együtthatók összege

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

6. Binomiális együtthatók alternáló összege

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$$

7. Felső összegzés

$$\sum_{i=k}^{n} \binom{i-1}{k-1} = \binom{n}{k}$$

8. Párhuzamos összegzés

$$\sum_{k=0}^{n} \binom{m+k}{k} = \binom{m+n+1}{n}$$

9. Vandermonde-azonosság

$$\sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k} = \binom{m+n}{r}$$

Bizonyítás

1. Írjuk fel az együtthatókat faktoriálisok segítségével!

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!k!} = \binom{n}{n-k}$$

Ez a kettő nyilván egyenlő.

2. Írjuk fel az együtthatókat faktoriálisok segítségével!

$$\binom{n-1}{k} + \binom{n-1}{k-1} = \frac{(n-1)!}{k!(n-1-k)!} + \frac{(n-1)!}{(k-1)!(n-k)!} = \frac{(n-k)(n-1)! + k(n-1)!}{k!(n-k)!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

3. Írjuk fel az együtthatókat fatoriálisok segítségével!

$$\frac{n}{k} \binom{n-1}{k-1} = \frac{n}{k} \cdot \frac{(n-1)!}{(k-1)!(n-k)!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

4. Írjuk fel az együtthatókat faktoriálisok segítségével!

$$\binom{n}{k} \binom{k}{m} = \frac{n!}{k!(n-k)!} \cdot \frac{k!}{m!(k-m)!} = \frac{n!}{(n-k)!} \cdot \frac{1}{m!(k-m)!} \cdot \frac{(n-m)!}{(n-m)!} = \frac{n!}{m!(n-m)!} \cdot \frac{(n-m)!}{(n-k)!(k-m)!} = \binom{n}{m} \binom{n-m}{k-m}$$

5. A binomiális tételben legyen a = b = 1. Ekkor

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} = 2^n.$$

A kombinatorikai jelentése ennek az, hogy egy n elemű halmaznak pontosan 2^n darab részhalmaza van.

6. A binomiális tételben legyen a = 1 és b = -1. Ekkor

$$(a+b)^n = \sum_{k=0}^n (-1)^k \binom{n}{k} = 0.$$

A kombinatorikai jelentése ennek az, hogy egy n elemű halmaznak pontosan ugyanannyi páros és páratlan elemszámú részhalmaza van.

7. Vegyük észre, hogy $\binom{k-1}{k-1} = \binom{k}{k} = 1$. Ekkor

$$\sum_{i=k}^n \binom{i-1}{k-1} = \binom{k}{k} + \binom{k}{k-1} + \ldots + \binom{n-1}{k-1}.$$

Használjuk az addíciós képletet, hiszen $\binom{k}{k}+\binom{k}{k-1}=\binom{k+1}{k}.$ Így

$$\sum_{i=k}^n \binom{i-1}{k-1} = \binom{k+1}{k} + \binom{k+1}{k-1} + \ldots + \binom{n-1}{k-1}.$$

Vegyük észre, hogy itt is tudjuk használni az addíciós képletet. Tehát ismételten alkalmazva a képletet, azt kapjuk, hogy

$$\sum_{i=k}^{n} \binom{i-1}{k-1} = \binom{n}{k}.$$

8. Vegyük észre, hogy a szimmetria-tulajdonság miatt

$$\sum_{k=0}^{n} {m+k \choose k} = \sum_{k=0}^{n} {m+k \choose m} = \sum_{i=m+k}^{m+n} {i \choose m}.$$

Egy felső összegzést kaptunk, amire már ismerünk képletet, hiszen

$$\sum_{i=m+k}^{m+n} \binom{i}{m} = \binom{m+n+1}{m+1} = \binom{m+n+1}{n}.$$

Ezzel kaptuk is a bizonyítandót.

9. Vizsgáljuk meg az $(1+x)^m \cdot (1+x)^n = (1+x)^{m+n}$ kifejezés mindkét oldalán az x^r tag együtthatóját. A bal oldalon nyilván

$$\sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k}$$

illetve a jobb oldalon

$$\binom{m+n}{r}$$
.

A két kifejezésnek egyenlőnek kell lennie, tehát

$$\sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k} = \binom{m+n}{r}.$$

Diszkrét Matematika I-II. 2. HALMAZALGEBRA

2. Halmazalgebra

2.1. Halmaz

A halmazt nem definiáljuk meg, annyit követelünk meg, hogy egy elemről egyértelműen eldönthető legyen, hogy a halmaz része-e, vagy sem.

2.2. Üres halmaz

Üres halmaznak egy eleme sincs, jele \emptyset .

2.3. Részhalmaz

Adott A halmaz részhalmaza B-nek, ha minden $a \in A$ -ra $a \in B$ teljesül.

2.4. Halmazok egyenlősége

Adott A és B halmazok akkor egyenlők, ha ugyanazok az elemeik. Azt is mondhatjuk, hogy A=B akkor és csak akkor, ha $A\subset B$ és $B\subset A$.

2.5. Hatványhalmaz

Adott A halmaz hatványhalmaza az a halmaz, amelyik A részhalmazait tartalmazza. Jele $\mathbb{P}(A)$ vagy 2^A . Fennáll továbbá, hogy

$$|\mathbb{P}(A)| = |2^A| = 2^{|A|}.$$

2.6. Halmazok uniója

Két halmaz uniója azon elemeket tartalmazza, amelyek legalább az egyik halmazban benne vannak. Tehát adott A és B halmazok esetén

$$A \cup B := \big\{ x \big| x \in A \lor x \in B \big\}.$$

2.7. Halmazok metszete

Két halmaz
 metszete azon elemeket tartalmazza, amelyek mindkét halmazban benne vannak. Teh
át adott Aés Bhalmazok esetén

$$A\cap B:=\big\{x\big|x\in A\wedge x\in B\big\}.$$

2.8. Halmazok különbsége

Két halmaz különbsége azon elemeket tartalmazza, amelyek pontosan az első halmazban vannak benne. Tehát adott A és B halmazok esetén

$$A \backslash B := \{ x | x \in A \land x \notin B \}.$$

2.9. Halmaz komplementere

Adott $A \subset U$ halmaz, ahol U az univerzális halmaz. Ekkor A komplementere

$$\overline{A} = U \backslash A$$
.

 $Megjegyz\acute{e}s$: A halmaz komplementerét többféleképpen is lehet jelölni. Ebben a jegyzetben az \overline{A} jelölést fogjuk használni. Egy másik elterjedt jelölés az A^C , ez azért célszerű, mert \overline{A} -val jelöljük a halmaz lezártját is.

2017. november 25. 21:16 8 Vághy Mihály

Diszkrét Matematika I-II. 2. HALMAZALGEBRA

2.10. De Morgan-azonosságok

Adott A és B halmazok esetén

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

és

$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$

Bizonyítás

1. Kétoldali tartalmazással fogunk bizonyítani. Azt kell belátnunk, hogy bármilyen $x \in \overline{A \cup B}$ esetén $x \in \overline{A} \cap \overline{B}$ teljesül és fordítva, hiszen ez azt jelenti, hogy a két halmaz egymás részhalmaza, tehát valóban egyenlők.

$$x \in \overline{A \cup B} \implies x \notin A \cup B \implies x \notin A \land x \notin B \implies x \in \overline{A} \land x \in \overline{B} \implies x \in \overline{A} \cap \overline{B}$$

$$x \in \overline{A} \cap \overline{B} \implies x \in \overline{A} \land x \in \overline{B} \implies x \notin A \land x \notin B \implies x \notin A \cup B \implies x \in \overline{A \cup B}$$

2.

$$x \in \overline{A \cap B} \implies x \notin A \cap B \implies x \notin A \lor x \notin B \implies x \in \overline{A} \lor x \in \overline{B} \implies x \in \overline{A} \cup \overline{B}$$

$$x \in \overline{A} \cap \overline{B} \implies x \in \overline{A} \lor x \in \overline{B} \implies x \notin A \lor x \notin B \implies x \notin A \cap B \implies x \in \overline{A \cap B}$$

Diszkrét Matematika I-II.

3. STRUKTÚRÁK

3. Struktúrák

3.1. Művelet

Adott egy H nemüres halmaz. Ekkor a H halmazon értelmezett kétváltozós művelet egy olyan speciális $H \times H \mapsto H$ leképezés, amire $\forall a,b \in H$ egyértelműen hozzárendel egy H-beli elemet.

Megjegyz'es: Ezt úgy is megfogalmazhatjuk, hogy egy (kétváltozós) leképezést akkor nevezünk műveletnek, ha a H halmaz zárt a leképezésre nézve.

3.2. Kommutativitás

Egy H halmazon értelmezett \times művelet kommutatív, ha $\forall a,b \in H$ esetén

$$a \times b = b \times a$$

teljesül.

3.3. Asszociativitás

Egy H halmazon értelmezett × művelet asszociatív, ha $\forall a, b, c \in H$ esetén

$$a \times (b \times c) = (a \times b) \times c$$

teljesül.

3.4. Egységelem

1. Egy H halmazon értelmezett \times művelet baloldali egységelemének egy olyan $e_b \in H$ elemet nevezünk, amire $\forall a \in H$ esetén

$$e_b \times a = a$$

teljesül.

2. Egy H halmazon értelmezett × művelet jobboldali egységelemének egy olyan $e_j \in H$ elemet nevezünk, amire $\forall a \in H$ esetén

$$a \times e_j = a$$

teljesül.

3. Egy H halmazon értelmezett × művelet egységelemének egy olyan $e \in H$ elemet nevezünk, amire $\forall a \in H$ esetén

$$a \times e = e \times a = a$$

teljesül.

3.5. Inverz elem

1. Egy $a \in H$ elem baloldali inverzén egy olyan $a_b^{-1} \in H$ elemet értünk, amire

$$a_h^{-1} \times a = e$$

teljesül.

2. Egy $a \in H$ elem jobboldali inverzén egy olyan $a_j^{-1} \in H$ elemet értünk, amire

$$a\times a_j^{-1}=e$$

teljesül.

3. Egy $a \in H$ elem inverzén egy olyan $a^{-1} \in H$ elemet értünk, amire

$$a^{-1} \times a = a \times a^{-1} = e$$

teljesül.

Diszkrét Matematika I-II.

3. STRUKTÚRÁK

3.6. Tétel

1. Adott H halmazon értelmezett asszociatív művelet esetén, ha léteznek egyoldali egységelemek, akkor ezek egyenlők.

2. Adott H halmazon értelmezett asszociaítv műveletén esetén, ha léteznek egyoldali inverz elemek, akkor ezek egyenlők.

Bizonyítás

1. Legyen a művelet \times és legyen a balegység e_b , a jobbegység pedig e_i . Ekkor

$$e_b = e_b \times e_i = e_i$$
.

2. Legyen a művelet × és legyen a balinverz a_b^{-1} , a jobbinverz pedig a_i^{-1} . Ekkor

$$a_b^{-1} = a_b^{-1} \times e = a_b^{-1} \times (a \times a_j^{-1}) = (a_b^{-1} \times a) \times a_j^{-1} = e \times a_j^{-1} = a_j^{-1}.$$

3.7. Csoport, félcsoport

Adott a H halmazon értelmezett \times művelet. Ekkor a (H, \times) struktúra

- 1. félcsoport, ha a \times művelet
 - (a) asszociatív
- 2. kommutatív félcsoport, ha a \times művelet
 - (a) asszociatív
 - (b) kommutatív
- 3. egységelemes félcsoport, ha a \times művelet
 - (a) asszociatív
 - (b) a műveletre nézve van halmazbeli egység
- 4. kommutatív egységelemes félcsoport, ha a \times művelet
 - (a) asszociatív
 - (b) a műveletre nézve van halmazbeli egység
 - (c) kommutatív
- 5. csoport, ha a \times művelet
 - (a) asszociatív
 - (b) a műveletre nézve van halmazbeli egység
 - (c) a műveletre nézve minden elemnek van halmazbeli inverze
- 6. kommutatív csoport, vagy Abel-csoport, ha a × művelet
 - (a) asszociatív
 - (b) a műveletre nézve van halmazbeli egység
 - (c) a műveletre nézve minden elemnek van halmazbeli inverze
 - (d) kommutatív.

Diszkrét Matematika I-II. 3. STRUKTÚRÁK

3.8. Gyűrű

Adottak a H halmazon értelmezett + és · műveletek. Ekkor $(H,+,\cdot)$ gyűrű, ha (H,+) Abel-csoport és (H,\cdot) félcsoport, továbbá $\forall a,b,c\in H$ esetén

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

$$(a+b) \cdot c = a \cdot c + b \cdot c$$

disztributivitási szabályok teljesülnek.

3.9. Test, ferdetest

Adottak a H halmazon értelmezett + és \cdot műveletek. Ekkor $(H,+,\cdot)$ test, ha (H,+) és (H,\cdot) Abel-csoport, továbbá a \cdot művelet disztributív a + műveletre nézve.

Ha (H,\cdot) csoport, de nem Abel-csoport, akkor $(H,+,\cdot)$ ferdetest.

3.10. Vektortér

Adott T test és V nemüres halmaz. Legyen értelmezve V-n egy + művelet. Legyen továbbá értelmezve egy olyan skalárral való szorzás, $\cdot: T \times V \mapsto V$ függvény, ami $\forall \lambda \in T$ és $\mathbf{v} \in V$ -hez egyértelműen hozzárendel egy $\lambda \cdot \mathbf{v} \in V$ elemet. Ekkor azt mondjuk, hogy V vektortér a T test felett, ha

- 1. (V, +) Abel-csoport
- 2. a · skalárral való szorzásra és a + műveletre $\forall \lambda, \mu \in T$ és $\mathbf{v}, \mathbf{u} \in V$ esetén

(a)
$$(\lambda + \mu) \cdot \mathbf{v} = \lambda \cdot \mathbf{v} + \mu \cdot \mathbf{v}$$

(b)
$$\lambda(\mathbf{v} + \mathbf{u}) = \lambda \mathbf{v} + \lambda \mathbf{u}$$

$$(\lambda \mu) \mathbf{v} = \lambda(\mu \mathbf{v})$$

$$1\mathbf{v} = \mathbf{v}$$

ahol 1 a T test (multiplikatív) egysége.

3.11. Altér

Egy T test feletti V vektortér W nemüres részhalmaza akkor és csak akkor altér, ha zárt az összeadásra, és a skalárral való szorzásra nézve. Ekkor azt mondjuk, hogy W altere V-nek, azaz $W \leq V$.

3.12. Vektortér axiómák következményei

Adott $\lambda \in T$ és $\mathbf{v} \in V$. Ekkor

1. $0 \cdot \mathbf{v} = \mathbf{0}$

ahol0a Ttest össze
adás egysége, ${\bf 0}$ pedig a Vhalmazbeli össze
adás egysége

2. $\lambda \cdot \mathbf{0} = \mathbf{0}$

3. $\mathbf{v}^{-1} = (-1)\mathbf{v}$

4. $\lambda \mathbf{v} = 0 \iff \mathbf{v} = \mathbf{0} \quad \text{vagy} \quad \lambda = 0$

4. Logika

4.1. Negáció

A	$\neg A$
I	H
H	I

4.2. Konjunkció

A	B	$A \wedge B$
I	I	I
I	H	Н
H	I	H
H	H	H

4.3. Diszjunkció

A	B	$A \lor B$
I	I	I
I	H	I
H	I	I
H	Н	Н

4.4. Implikáció

A	B	$A \to B$
I	I	I
I	Н	Н
H	I	I
H	H	I

4.5. Ekvivalencia

$$A \leftrightarrow B := (A \to B) \land (B \to A)$$

A	В	$A \rightarrow B$	$B \to A$	$A \leftrightarrow B$
I	I	I	I	I
I	Н	Н	I	H
H	I	I	Н	H
H	Н	I	I	I

4.6. Tautológia

Az a formula, amely minden interpretációban igaz, tautológia.

4.7. Kontradikció

Az a formula, amely minden interpretációban hamis, kontradikció.

4.8. Modell

Azt az interpretációt, amelyben a formula igaz, modellnek nevezzük.

4.9. Ekvivalens formulák

Azt mondjuk, hogy $A \equiv B$, hogyha minden interpretációban ugyanaz az igazságértékük.

4.10. Azonosságok

1.

$$A \to B \equiv \neg A \vee B$$

A	B	$A \rightarrow B$	$\neg A \lor B$
I	I	I	I
I	Н	H	H
H	I	I	I
H	H	I	I

2.

$$\neg (A \lor B) \equiv \neg A \land \neg B$$

A	B	$\neg (A \lor B)$	$\neg A \wedge \neg B$
I	I	H	H
I	H	H	H
H	I	H	H
H	H	I	I

3.

$$\neg (A \land B) \equiv \neg A \lor \neg B$$

A	B	$\neg (A \land B)$	$\neg A \lor \neg B$
I	I	H	H
I	H	I	I
H	I	I	I
H	H	I	I

4.11. Tétel

 $\alpha \equiv \beta$ akkor és csak akkor, ha $\alpha \leftrightarrow \beta$ tautológia.

4.12. Logikai következmény

Azt mondjuk, hogy az $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ formulahalmaz következménye β , ha minden olyan interpretációban, amelyben az α_i formulák igazak, β is igaz.

Azt is mondhatjuk, hogy az $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ formulahalmaz következménye β , ha β legalább akkor igaz, amikor $\forall \alpha_i$ igaz.

Ekkor

$$\{\alpha_1, \alpha_2, \dots, \alpha_n\} \vDash_0 \beta.$$

4.13. Tétel

 $\{\alpha_1, \alpha_2, \dots, \alpha_n\} \vDash_0 \beta$ akkor és csak akkor, ha

$$\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n \vDash_0 \beta$$
.

4.14. Tétel

$$\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n = \alpha \vDash_0 \beta$$

akkor és csak akkor, ha $\alpha \to \beta$ tautológia.

4.15. Tétel

 $\alpha \vDash_0 \beta$ akkor és csak akkor, ha $\alpha \land \neg \beta$ kontradikció.

4.16. Tételek

- 1. Tautológia következménye csak tautológia lehet.
- 2. Tautológia minden formula következménye.
- 3. Kontradikciónak bármi lehet következménye.
- 4. Kontradikció csak kontradikciónak lehet következménye.

4.17. Helyes következtetési séma

Azt mondjuk, hogy egy következtetési séma helyes, hogyha a következmény valóban a feltételek logikai következménye.

4.18. Modus ponens

$$\{\alpha, \alpha \to \beta\} \models_0 \beta$$

4.19. Modus tollens

$$\{\alpha \to \beta, \neg \beta\} \vDash_0 \alpha$$

4.20. Hipotetikus szillogizmus

$$\{\alpha \to \beta, \beta \to \gamma\} \vDash_0 \gamma$$

4.21. Modus tollendo ponens

$$\{\alpha \vee \beta, \neg \beta\} \vDash_0 \alpha$$

4.22. Indirekt

$$\{\neg \alpha \to \neg \beta, \beta\} \vDash_0 \alpha$$

4.23. Literál

Atomot vagy annak tagadását literálnak nevezzük.

4.24. Klóz

Literálok diszjunkcióját klóznak nevezzük.

4.25. Konjunktív normálforma

Klózok konjunkcióját konjunktív normálformának nevezzük.

4.26. Tétel

Minden formulához létezik vele ekvivalens konjunktív normálforma.

4.27. Diszjunktív normálforma

Konjunkciók diszjunkciója diszjunktív normálformának nevezzük.

4.28. Tétel

Minden formulához létezik vele ekvivalens diszjunktív normálforma.

4.29. Rezolúció alapelve

$$\{\alpha \lor \beta, \gamma \lor \neg \beta\} \vDash_0 \alpha \lor \gamma$$

4.30. Rezolvens

Az $\alpha \vee \beta$ és $\gamma \vee \neg \beta$ klózok rezolvense $\alpha \vee \gamma.$

4.31. Helyesség

Ha adott Sklózhalmazból levezethető az üres klós, akkor S kielégíthetetlen.

4.32. Teljesség

HaSvéges klózhalmaz kielégíthetetlen, akkor $S\text{-}\mathsf{ből}$ levezethető az üres klóz.

Diszkrét Matematika I-II. 5. RELÁCIÓK

5. Relációk

5.1. Reláció

Az R reláció ha

$$R \subset A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \}.$$

5.2. Bináris reláció

R bináris reláció a H halmazon, ha

$$R \subset H \times H = \{(a,b) | a,b \in H\}.$$

5.3. Ekvivalencia reláció

Az ekvivalencia reláció egy olyan bináris reláció, melyre az alábbiak teljesülnek.

1. Reflexív

$$(a,a) \in R$$

2. Szimmetrikus

$$(a,b) \in R \implies (b,a) \in R$$

3. Tranzitív

$$(a,b) \in R \quad \land \quad (b,c) \in R \implies (a,c) \in R$$

5.4. Rendezési reláció

A rendezési reláció egy olyan bináris reláció, melyre az alábbiak teljesülnek.

1. Reflexív

$$(a,a) \in R$$

2. Antiszimmetrikus

$$(a,b) \in R \quad \land \quad (b,a) \in R \implies a = b$$

3. Tranzitív

$$(a,b) \in R \quad \land \quad (b,c) \in R \implies (a,c) \in R$$

5.5. Teljes rendezés

Azt mondjuk, hogy az Rrendezési reláció teljes, ha $\forall a,b \in H$ esetén

$$(a,b) \in R \quad \lor \quad (b,a) \in R$$

teljesül.

Egyébként parciális, vagy részben rendezési reláció.