## Laboratory Exercise 2

## Numbers and Displays

This is an exercise in designing combinational circuits that can perform binary-to-decimal number conversion and binary-coded-decimal (BCD) addition.

## Part I

Figure 1a shows a circuit for a *full adder*, which has the inputs a, b, and  $c_i$ , and produces the outputs s and  $c_o$ . Parts b and c of the figure show a circuit symbol and truth table for the full adder, which produces the two-bit binary sum  $c_o s = a + b + c_i$ . Figure 1d shows how four instances of this full adder module can be used to design a circuit that adds two four-bit numbers. This type of circuit is usually called a *ripple-carry* adder, because of the way that the carry signals are passed from one full adder to the next. Write Verilog code that implements this circuit, as described below.



Figure 1: A ripple-carry adder circuit.

- 1. Create a new project for the adder circuit. Write a Verilog module for the full adder subcircuit and write a top-level Verilog module that instantiates four instances of this full adder.
- 2. Use switches  $SW_{7-4}$  and  $SW_{3-0}$  to represent the inputs A and B, respectively. Use  $SW_8$  for the carry-in  $c_{in}$  of the adder. Connect the outputs of the adder,  $c_{out}$  and S, to the red lights LEDR.
- 3. Include the necessary pin assignments for your FPGA board, compile the circuit, and download it into the FPGA chip.
- 4. Test your circuit by trying different values for numbers A, B, and  $c_{in}$ .

## Part II

For this part you are to design a circuit that has two decimal digits, X and Y, as inputs. Each decimal digit is represented as a 4-bit number. In technical literature this is referred to as the *binary coded decimal* (BCD) representation.

You are to design a circuit that adds the two BCD digits. The inputs to your circuit are the numbers X and Y, plus a carry-in,  $c_{in}$ . When these inputs are added, the result will be a 5-bit binary number. But this result is to be displayed on 7-segment displays as a two-digit BCD sum  $S_1S_0$ .  $SW_9$  decides on the digit shown. If it is logic-0, the 7-segment shows the first digit. It shows the second digit if it is logic-1. For a sum equal to zero you would display  $S_1S_0=00$ , for a sum of one  $S_1S_0=01$ , for nine  $S_1S_0=09$ , for ten  $S_1S_0=10$ , and so on. Note that the inputs X and Y are assumed to be decimal digits, which means that the largest sum that needs to be handled by this circuit is  $S_1S_0=9+9+1=19$ .

Perform the steps given below.

- 1. Create a new project for your BCD adder. You should use the four-bit adder circuit from part I to produce a four-bit sum and carry-out for the operation X + Y.
- 2. Use switches  $SW_{7-4}$  and  $SW_{3-0}$  for the inputs X and Y, respectively, and use  $SW_8$  for the carry-in. Connect the four-bit sum and carry-out produced by the operation X+Y to the red lights LEDR. Display the BCD values of X and Y on the 7-segment display depending on the  $SW_9$
- 3. Include the necessary pin assignments for your FPGA board, compile the circuit, and download it into the FPGA chip.
- 4. Test your circuit by trying different values for numbers X, Y, and  $c_{in}$ .