Karl Rupp https://karlrupp.net/

> now: Freelance Scientist

formerly: Institute for Microelectronics, TU Wien

based on experiences in developing

International Workshop on OpenCL April 21, 2016

83 libraries listed on iwocl.org

Abacus	CF4OCL	FSCL.Compiler	OpenCL il	Rust-OpenCL
		•		•
ACML	clBLAS	GMAC	OpenCL.NET	ScalaCL
Accelerate	cIFFT	Go-OpenCL	OpenCLIPP	SkelCL
amgCL	CLFORTRAN	GPULib	OpenCLLink	SnuCL
Aparapi	cIMAGMA	gpumatrix	OpenClooVision	SpeedIT 2.4
AQUAgpusph	clpp	Halide	OpenCV-CL	streamscan
ArrayFire	clSpMV	Harlan	OpenHMPP	s-u/OpenCL
ASL	CLTune	Haskell	Paralution	TM-Task
Barracuda	Clyther	HOpenCL	PyOpenCL	VexCL
Bolt	COPRTHR	JOCL	RaijinCL	ViennaCL
Boost.Compute	Data Layout	libCL	Rivertrail	ViNN
Bullet Physics	DelphiOpenCL	Libra SDK	RNG	VirtualCL
C++ AMP	ForOpenCL	Lua	ROpenCL	VOBLA
CALDGEMM	fortranCL	M3	Rose-OpenCL	

69 libraries from iwocl.org still accessible, no transitives

Abacus	C++ AMP	GPULib	OpenCLLink	SkelCL
ACML	CALDGEMM	Halide	OpenCV-CL	SnuCL
Accelerate	CF4OCL	Harlan	Paralution	SpeedIT 2.4
amgCL	clBLAS	HOpenCL	PyOpenCL	TM-Task
Aparapi	cIFFT	JOCL	RaijinCL	VexCL
AQUAgpusph	CLFORTRAN	libCL	Rivertrail	ViennaCL
ArrayFire	CLTune	Libra SDK	RNG	ViNN
ASL	COPRTHR	Lua	ROpenCL	VirtualCL
Bolt	Data Layout	M3	Rose-OpenCL	VOBLA
Boost.ComputeFSCL.CompilerOpenCL.jl			Rust-OpenCL	
Bullet Physics	GMAC	OpenCLIPP	ScalaCL	

53 active libraries (based on list at iwocl.org)

Bindings (18)

Aparapi Abacus

CLFORTRAN

FSCL.Compiler Halide

Harlan **HOpenCL**

CF4OCI

JOCL

Lua

OpenCL.il

OpenCLIPP OpenCLLink

PyOpenCL PyOpenCL Rivertrail

ROpenCL

Rose-OpenCL

Rust-OpenCL

ScalaCl

Algorithms (35)

ACMI Accelerate amgCL AQUAgpusph ArrayFire ASI **Bolt** Boost.Compute **Bullet Physics** C++ AMP

CALDGEMM clBI AS

cIFFT CLTune

COPRTHR

Data Layout GMAC

(based on list at iwocl.org, filtering applied)

GPULib libCl

Libra SDK

M3

OpenCV-CL Paralution

RaijinCL

RNG SkelCl

SnuCL SpeedIT 2.4

TM-Task VexCI

ViennaCl ViNN

VirtualCI

VOBLA

Bindings (18) Aparapi

CF4OCL CLFORTRAN

FSCL.Compiler

Halide Harlan **HOpenCL**

JOCI

Lua

OpenCL.jl OpenCLIPP

OpenCLLink

PvOpenCL Rivertrail

ROpenCL

Rose-OpenCL

Rust-OpenCL

ScalaCL

Math (14)

Abacus ACMI amgCL ArrayFire CALDGEMM cIBLAS

GPULib Paralution

RaijinCL SkelCl

SpeedIT 2.4

VexCI ViennaCL

VOBI A

Primitives (7)

Bolt Boost.Compute cIFFT

CLTune libCL M3

RNG

Other (14)

Accelerate AQUAgpusph ASI

Bullet Physics

C++ AMP COPRTHR Data Layout

GMAC Libra SDK

OpenCV-CL SnuCL

TM-Task ViNN

VirtualCl

OpenCL vs. CUDA for Libraries

OpenCL

Header and shared library Non-intrusive to build system jit-compilation

CUDA

Custom compiler wrapper (NVCC)

NVCC dictates your host compiler

Single source

Kernel binaries embedded in executable

How about SyCL?

Bring single-source approach to OpenCL jit-compilation

Outline

How can we make OpenCL more library-friendly?

Outline

Just-In-Time Kernel Compilation

Library may provide hundreds of kernels Just-in-time compilation entails certain overhead

Kernel Interaction

Host-function not callable from OpenCL kernel on host Hindrance to software composability

OpenCL Heterogeneity

OpenCL 2.2 was released this week Many SDKs still at OpenCL 1.2 or earlier

Not In This Talk

Performance Portability

Not specific to libraries Several strategies proposed in the past

"There is no secret to performance portability; it's just hard." — Neil Trevett, IWOCL 2016

ViennaCL Approach

Extensive kernel parameterization

Built-in device database

Match device type, vendor, architecture, device name

Kernel Compilation

Library may provide hundreds of kernels Just-in-time compilation entails certain overhead

Little Experiment

Compile 64 trivial kernels of the form

```
__kernel void kernel_1_2(__global float *x){ x[1] = 2; }
```

Organize in 1 to 64 programs for 64 to 1 kernels each

OpenCL Program Cache

Compiled binaries stored in filesystem Implement in $\mathcal{O}(10)$ OpenCL SDKs? Implement in $\mathcal{O}(100)$ OpenCL-based libraries?

Proposed Solution

Make kernel caching a required (optional) feature for OpenCL SDKs

SyCL to the Rescue?

SyCL compiler cannot generate binaries for all possible targets jit-overhead still an issue (unlike CUDA)

SPIR-V to the Rescue?

May reduce jit-compilation overhead substantially Broad availability required

Kernel Interaction

Composability

Mix and match functionality in different libraries

Basic entity: function calls

Example: Sorting

```
void sort_criterion(...) { /* tricky criterion */ }
std::sort(x.begin(), x.end(), sort_criterion);
```

OpenCL on CPU

Plethora of libraries for host available

Easy to call OpenCL libraries from host

(Almost) Impossible to call host libraries from OpenCL kernel

Proposed Improvement

Allow calling host functions for OpenCL kernels on CPU

OpenCL Heterogeneity

OpenCL Releases

OpenCL 2.2 (recently)

OpenCL 2.1 (2015)

OpenCL 2.0 (2013)

OpenCL 1.2 (2011)

OpenCL 1.1 (2010)

OpenCL 1.0 (2009)

OpenCL Support in SDKs

2.2: -

2.1: -

2.0: AMD, Intel (Win), Qualcomm

1.2: Apple, Beignet, Intel (Linux), Imagination, NVIDIA, pocl, Vivante

1.1: ARM, Sony, TI

1.0: Altera, Xilinx

OpenCL Heterogeneity

The Veto Problem

What if a major vendor stops OpenCL SDK development? What if SPIR-V is not broadly available?

Possible Reasons for Slow OpenCL SDK Development

Proprietary alternative available "Will help competitor more than us" Development too expensive

OpenCL Heterogeneity

How to Encourage?

Make OpenCL a prerequisite for Vulkan certification?

Conclusion

Just-In-Time Kernel Compilation

Require optional kernel caching by OpenCL SDKs

Kernel Interaction

Allow calling host functions for OpenCL kernels on CPU

OpenCL Heterogeneity

Let OpenCL benefit from Vulkan's momentum

