- **55.** 93 Ω
- **57.** 3.000 m; $2.00 \times 10^{-7} \text{ C}$
- **59.** $4.0 \times 10^3 \text{ V/m}$
- **61. a.** 4.11×10^{-15} J **b.** 2.22×10^6 m/s
- **63. a.** $1.13 \times 10^5 \text{ V/m}$ **b.** $1.81 \times 10^{-14} \text{ N}$
 - c. 4.39×10^{-17} J
- **65.** 0.545 m, -1.20 m
- **67. a.** 7.2×10^{-13} J **b.** 2.9×10^7 m/s
- **69. a.** 3.0×10^{-3} A **b.** 1.1×10^{18} electrons/min
- **71. a.** 32 V **b.** 0.16 V
- **73.** $1.0 \times 10^5 \text{ W}$
- **75.** $3.2 \times 10^5 \text{ J}$
- **77.** 13.5 h
- **79.** $2.2 \times 10^{-5} \text{ V}$

CHAPTER 18

Practice A, p. 650

- **1. a.** 43.6 Ω **b.** 0.275 A
- **3.** 1.0 V, 2.0 V, 2.5 V, 3.5 V
- **5.** 0.5 Ω

Practice B, p. 655

- **1.** 4.5 A, 2.2 A, 1.8 A, 1.3 A
- 3. a. 2.2Ω
 - **b.** 6.0 A, 3.0 A, 2.00 A

Practice C, p. 659

- 1. a. 27.8Ω
 - **b.** 26.6 Ω
 - **c.** 23.4 Ω

Practice D, p. 662

- R_a : 0.50 A, 2.5 V
- *R_b*: 0.50 A, 3.5 V
- R_c : 1.5 A, 6.0 V

- R_d : 1.0 A, 4.0 V
- R_{e} : 1.0 A, 4.0 V
- R_f : 2.0 A, 4.0 V

18 Review, pp. 666-671

- **17. a.** 24Ω
 - **b.** 1.0 A
- **19. a.** 2.99 Ω
 - **b.** 4.0 A
- **21. a.** seven combinations
 - **b.** $R, 2R, 3R, \frac{R}{2}, \frac{R}{3}, \frac{2R}{3}, \frac{3R}{2}$
- **23.** 15 Ω
- **25.** 3.0 Ω: 1.8 A, 5.4 V 6.0 Ω: 1.1 A, 6.5 V 9.0 Ω: 0.72 A, 6.5 V
- **27.** 28 V
- **29.** 3.8 V
- **31.** a. 33.0 Ω
 - **b.** 132 V
 - **c.** 4.00 A, 4.00 A
- **33.** 10.0Ω
- **35.** a. a
 - **b.** c
 - **c.** d
 - **d.** e
- **37.** 18.0 Ω: 0.750 A, 13.5 V 6.0 Ω: 0.750 A, 4.5 V
- **39.** 4.0Ω
- **41.** 13.96 Ω
- **43.** a. 62.4Ω
 - **b.** 0.192 A
 - **c.** 0.102 A
 - **d.** 0.520 W
 - **e.** 0.737 W
- **47.** a. 5.1Ω
 - **b.** 4.5 V
- **49. a.** 11 A (heater), 9.2 A (toaster), 12 A (grill)
 - **b.** The total current is 32.2 A, so the 30.0 A circuit breaker will open the circuit if these appliances are all on.

CHAPTER 19

Practice A, p. 689

- 1. 3.57×10^6 m/s
- 3. 6.0×10^{-12} N west

Practice B, p. 692

- 1. 1.7×10^{-7} T in +z direction
- **3.** 1.5 T

19 Review, pp. 695-699

- **31.** 2.1×10^{-3} m/s
- **33.** 2.00 T
- **39.** 2.1×10^{-2} T, in the negative *y* direction
- **41.** 2.0 T, out of the page
- **43.** a. 8.0 m/s
 - **b.** 5.4×10^{-26} J
- **45.** 2.82×10^7 m/s

CHAPTER 20

Practice A, p. 714

- 1. 0.30 V
- **3.** 0.14 V

Practice B, p. 726

- **1.** 4.8 A; 6.8 A, 170 V
- **3. a.** 7.42 A
 - **b.** 14.8 Ω
- **5. a.** $1.10 \times 10^2 \,\mathrm{V}$
 - **b.** 2.1 A

Practice C, p. 729

- 1. 55 turns
- **3.** 25 turns
- **5.** 147 V

20 Review, pp. 739–743

- **11.** 0.12 A
- **27. a.** $2.4 \times 10^2 \,\mathrm{V}$
 - **b.** 2.0 A

948