DEFENSA ROBOTICA MANIPULADORA

Autores: Lozano Romero, Daniel

Mérida Floriano, Javier

Montes Grova, Marco Antonio

INDICE DE LA PRESENTACION

- 1. Modelado Cinemático Robot RRR
- 2. Control Cinemático
- 3. Modelado dinámico
- 4. Control dinámico
- 5. Conclusiones generales

INDICE DE LA PRESENTACION

- 1. Modelado Cinemático Robot RRR
- 2. Control Cinemático
- 3. Modelado dinámico
- 4. Control dinámico
- 5. Conclusiones generales

MODELADO CINEMÁTICO ROBOT

Parámetros

Denavit-Hartemberg

Art.	θ_i	d_i	a_i	α_i
1	θ_1	L0+L1	0	$\frac{\pi}{2}$
2	θ_2	0	L2	0
3	θ_3	L3	L2	0

MODELADO CINEMÁTICO ROBOT

Cinemática Directa

$$^{1}A_{0}^{2}A_{1}^{3}A_{2} = ^{3}T_{0}$$

$${}^{3}T_{0} = \begin{pmatrix} \cos(\theta_{2} + \theta_{3})\cos(\theta_{1}) & -\sin(\theta_{2} + \theta_{3})\cos(\theta_{1}) & -\sin(\theta_{1}) & \cos(\theta_{1})[L3\cos(\theta_{2} + \theta_{3}) + L2\cos(\theta_{2})] \\ \cos(\theta_{2} + \theta_{3})\sin(\theta_{1}) & -\sin(\theta_{2} + \theta_{3})\sin(\theta_{1}) & \cos(\theta_{1}) & \sin(\theta_{1})[L3\cos(\theta_{2} + \theta_{3}) + L2\cos(\theta_{2})] \\ \sin(\theta_{2} + \theta_{3}) & \cos(\theta_{2} + \theta_{3}) & 0 & L0 + L1 + L3\sin(\theta_{2} + \theta_{3}) + L2\sin(\theta_{2}) \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• Cinemática Inversa

$$\theta_1 = atan2(sin(\theta_1), cos(\theta_1)) = atan2(\frac{py}{A}, \frac{px}{A})$$
$$\theta_2 = atan2(\pm\sqrt{1 - (\frac{A}{\rho})^2}, \frac{A}{\rho}) - \alpha$$

$$\theta_3 = \beta - atan2(sin(\theta_3), cos(\theta_3)) = \beta - atan2(\pm \sqrt{1 - (\frac{C - L2^2 - L3^2}{2L2L3})^2}, \frac{C - L2^2 - L3^2}{2L2L3})$$

INDICE DE LA PRESENTACION

- 1. Modelado Cinemático Robot RRR
- 2. Control Cinemático
- 3. Modelado dinámico
- 4. Control dinámico
- 5. Conclusiones generales

CONTROL CINEMÁTICO ROBOT

• Trayectoria pedida con GDT mediante splines

CONTROL CINEMÁTICO ROBOT

• Trayectoria pedida con GDT trapezoidal

INDICE DE LA PRESENTACION

- 1. Modelado Cinemático Robot RRR
- 2. Control Cinemático
- 3. Modelado dinámico
- 4. Control dinámico
- 5. Conclusiones generales

• Combinación linealmente independiente de parámetros dinámicos a estimar

$$\theta = \begin{pmatrix} m_1 s_{11z}^2 + m_2 s_{22x}^2 + m_3 s_{33x}^2 + I_{11yy} + I_{22yy} + I_{33yy} + R_1^2 J m_1 - m_2 - 1.64 m_3 \\ B m_1 \\ -m_2 s_{22x}^2 + I_{22xx} - I_{22yy} + m_2 + m_3 \\ m_2 s_{22x}^2 + I_{22zz} + R_2^2 J m_2 - m_2 - m_3 \\ B m_2 \\ -m_3 s_{33x}^2 + I_{33xx} - I_{33yy} + 0.64 m_3 \\ m_3 s_{33x}^2 + I_{33zz} - 0.64 m_3 \\ J m_3 \\ B m_3 \\ -m_2 - m_3 + m_2 s_{22x} \\ m_3 s_{33x} - 0.8 m_3 \end{pmatrix}$$

- Tipos de experimentos implementados para estimar los terminos gravitatorios
 - \rightarrow Velocidades bajas y constantes

- Tipos de experimentos implementados para estimar los terminos viscosos
 - → Valores de velocidades elevados. Acceleraciones constantes

- Tipos de experimentos implementados para estimar los terminos inerciales
 - → Aceleraciones elevadas. Movimientos cortos y rápidos

• Robot Ideal con reductoras

Parametro estimado	Valor obtenido	Covarianza obtenida
$\theta(1)$	15.6322	0.0338
$\theta(2)$	0.0012	0.0218
$\theta(3)$	7.389	0.0481
$\theta(4)$	55.1139	0.00081
$\theta(5)$	0.00085	0.02744
$\theta(6)$	2.0841	0.047868
$\theta(7)$	-2.0414	0.00623
$\theta(8)$	0.051	0.00113
$\theta(9)$	0.0015	0.033
$\theta(10)$	-6.665	0.00054
$\theta(11)$	-2.222	0.00113

• Comparativa sistema y modelo ideal con reductoras ante entrada unitaria de intensidad

• Error en la trayectoria del modelo ideal con reductoras

• Robot Ideal de accionamiento directo

Parametro estimado	Valor obtenido	Covarianza obtenida
$\theta(1)$	-9.31476	0.00364
$\theta(2)$	0.001193	2.868
$\theta(3)$	7.3803	0.00036
$\theta(4)$	-7.2341	0.00369
$\theta(5)$	0.00121	5.890
$\theta(6)$	2.078	0.00358
$\theta(7)$	-2.0335	0.00359
$\theta(8)$	0.051	0.0148
$\theta(9)$	0.00146	2.19
$\theta(10)$	-6.6585	0.003621
$\theta(11)$	-2.222	0.00356

• Comparativa sistema y modelo ideal de accionamiento directo ante entrada unitaria de intensidad

• Error en la trayectoria del modelo ideal de accionamiento directo

• Robot Real con reductoras

Parametro estimado	Valor obtenido	Covarianza obtenida
$\theta(1)$	16.995	4.0573
$\theta(2)$	0.00122	0.2538
$\theta(3)$	12.393	1.291
$\theta(4)$	38.28	1.9472
$\theta(5)$	0.00129	0.941
$\theta(6)$	1.434	0.917
$\theta(7)$	4.0372	4.545
$\theta(8)$	0.0491	1.234
$\theta(9)$	0.00151	1.468
$\theta(10)$	-6.6722	0.003858
$\theta(11)$	-2.199	0.008916

• Comparativa sistema y modelo real con reductoras ante entrada unitaria de intensidad

• Error en la trayectoria del modelo real con reductoras

• Robot Real de accionamiento directo

Parametro estimado	Valor obtenido	Covarianza obtenida
$\theta(1)$	-11.07265	2.715
$\theta(2)$	0.018174	0.54845
$\theta(3)$	7.753	0.32937
$\theta(4)$	-7.3756	1.1879
$\theta(5)$	0.060807	3.259
$\theta(6)$	-2.19164	1.3296
$\theta(7)$	-1.0052	2.889
$\theta(8)$	0.10404	4.1499
$\theta(9)$	0.006486	4.0307
$\theta(10)$	-6.7508	1.2175
$\theta(11)$	-2.217	4.972

• Comparativa sistema y modelo real de accionamiento directo ante entrada unitaria de intensidad

• Error en la trayectoria del modelo real de accionamiento directo

INDICE DE LA PRESENTACION

- 1. Modelado Cinemático Robot RRR
- 2. Control Cinemático
- 3. Modelado dinámico
- 4. Control dinámico
- 5. Conclusiones generales

Controlador PID

• Se implementa un controlador PID en forma absoluta discreto diseñado, por el lugar de las raices sin cancelación de dinámica, empleando el error en posicion

$$I_m = K_P(e(t) + \frac{1}{T_I} \int_0^t e(\tau) d\tau + T_D \frac{d(e)t}{dt})$$

• Controladores obtenidos a partir de los modelos resultantes de la implementación del algoritmo de N-E

• Implementación del PID

• Resultados controlador PID

Controlador Par Calculado

• Se busca desacoplar totalmente las interacciones del robot consigo mismo, por ello se busca la siguiente ley de control, resultando en un doble integrador

$$Im = M_A(q)\ddot{q} + C_A(q, \dot{q})\dot{q} + G_A(q) - Im = M_A(q)(\ddot{q}_{ref} + u) + C_A(q, \dot{q})\dot{q} + G_A(q) \ddot{\ddot{q}} = u$$

• Se diseñará un controlador PD para la dinámica del error resultante

$$\tilde{\ddot{q}}(t) = u(t) \rightarrow \tilde{q}(s)s^2 = u(s) \rightarrow \frac{\tilde{q}(s)}{u(s)} = \frac{1}{s^2} \left[\frac{ud.error}{ud.sc}\right]$$

• Implementación del Par Calculado

Se empleará el modelo obtenido a partir del algoritmo de N-E con los parámetros del robot real/ideal de accionamiento directo

• Resultados controlador Par Calculado

INDICE DE LA PRESENTACION

- 1. Modelado Cinemático Robot RRR
- 2. Control Cinemático
- 3. Modelado dinámico
- 4. Control dinámico
- 5. Conclusiones generales