Criterio del confronto asintotico

Alessio Serraino

March 6, 2016

<u>Teorema:</u> (del confronto asintotico) Siano $\{a_n\}$, $\{b_n\}$ due successioni tali che $a_n \sim b_n$.

Allora se $\sum a_n$ diverge anche $\sum b_n$ diverge, se $\sum a_n$ converge anche $\sum b_n$ converge **Dimostrazione**

 $a_n \sim b_n$ per ipotesi, quindi per la definizione di asintotivo vale definitivamente

$$1 - \varepsilon < \frac{a_n}{b_n} < 1 + \varepsilon$$

Scegliamo $\varepsilon=\frac{1}{2}$ (Possiamo sceglierlo piccolo quanto vogliamo, in ogni caso la disugualianza è vera definitivamenta)

$$\frac{1}{2} < \frac{a_n}{b_n} < \frac{3}{2}$$

 b_n è a termini definitivamente positivi, quindi b_n è definitivamente positivo. Posso moltiplicare per b_n senza invertire le disugualianze

$$\frac{1}{2}b_n < a_n < \frac{3}{2}b_n$$

Se $\sum a_n$ converge allora la serie $\sum \frac{1}{2}b_n$ converge per confronto. Ma se converge la serie $\sum \frac{1}{2}b_n$ allora anche la serie $\sum b_n$ converge, dimostrando il primo punto.

Se $\sum a_n$ diverge allora la serie $\sum \frac{3}{2}b_n$ diverge per confronto. Ma se diverge la serie $\sum \frac{3}{2}b_n$ allora anche la serie $\sum b_n$ diverge, dimostrando il secondo punto.