

ITMO Template Example

First A.¹

Second A.²

¹Faculty/Department ITMO University

²Faculty/Department ITMO University

Date Ocasion

Table of Contents

- 1. Mathematics
- 1.1 Theorem
- 1.2 Example
- 2. Highlighting
- 3. Lists
- 4. Effects

Theorem 1

For a prime p and $a \in \mathbb{Z}$ it holds that $a^p \equiv a \pmod{p}$.

Proof.

The invertible elements in a field form a group under multiplication In particular, the elements

$$1,2,\ldots,p-1\in\mathbb{Z}_p$$

form a group under multiplication modulo p. This is a group of order p-1. For $a\in\mathbb{Z}_p$ and $a\neq 0$ we thus get $a^{p-1}=1\in\mathbb{Z}_p$. The claim follows.

3/7

Theorem 1 For a prime p and $a \in \mathbb{Z}$ it holds that $a^p \equiv a \pmod{p}$.

Proof. The invertible elements in a field form a group under multiplication. In particular, the elements

$$1,2,\ldots,p-1\in\mathbb{Z}_p$$

form a group under multiplication modulo p. This is a group of order p-1. For $a\in\mathbb{Z}_p$ and $a\neq 0$ we thus get $a^{p-1}=1\in\mathbb{Z}_p$. The claim follows.

Example 1 The function $\phi: \mathbb{R} \to \mathbb{R}$ given by $\phi(x) = 2x$ is continuous at the point $x = \alpha$, because if $\varepsilon > 0$ and $x \in \mathbb{R}$ is such that $|x - \alpha| < \delta = \frac{\varepsilon}{2}$, then

$$|\phi(x)-\phi(\alpha)|=2|x-\alpha|<2\delta=\varepsilon.$$

Sometimes it is useful to highlight certain words in the text.

Important

If a lot of text should be highlighted, it is a good idea to put it in a box.

It is easy to match the colour theme.

Sometimes it is useful to highlight certain words in the text.

Important

If a lot of text should be highlighted, it is a good idea to put it in a box.

It is easy to match the colour theme.

- 1 Fancy lists are marked with a number inside a circle.
 - Bullet lists are marked with a red box.
 - 1. Numbered lists are marked with a white number inside a red box.

Effects that control.

Theorem 2 This theorem is only visible on slide number

- 1. Effects that control
- 2. when text is displayed

Theorem 2 This theorem is only visible on slide number

- Effects that control
- 2. when text is displayed
- 3. are specified with 12 and a list of slides.

Theorem 2 This theorem is only visible on slide number

- Effects that control
- 2. when text is displayed
- 3. are specified with it and a list of slides.

Theorem 2 This theorem is only visible on slide number

7/7

- Effects that control
- 2. when text is displayed
- 3. are specified with it and a list of slides.

Theorem 2 This theorem is only visible on slide number

Use **textblock** for arbitrary placement of objects.

It creates a box with the specified width (here in a percentage of the slide's width) and upper left corner at the specified coordinate (x, y) (here x is a percentage of width and y a percentage of height).