

Capstone Project - 2 Ted Talks Views Prediction

Team Member

Harish Kollana

Discussion Points

- 1. Problem Statement
- 2. Data Summary
- 3. Explorative Data Analysis
- 4. Feature Engineering
- 5. Data Cleaning
- 6. Feature Selection
- 7. Model Fitting
- 8. Feature Importance
- 9. Model Comparison
- 10. Challenges
- 11. Conclusion

TED Talks

The Dilemma

How Ted Talks Works

Ted Talks: ideas worth spreading

TED Conferences LLC is an American media organization that posts talks online for free distribution under the slogan "ideas worth spreading".

Problem Statement

TED is devoted to spreading powerful ideas on just about any topic. These datasets contain over 4,000 TED talks including transcripts in many languages. Founded in 1984 by Richard Salman as a nonprofit organization that aimed at bringing experts from the fields of Technology, Entertainment, and Design together, TED Conferences have gone on to become the Mecca of ideas from virtually all walks of life. As of 2015, TED and its sister TEDx chapters have published more than 2000 talks for free consumption by the masses and its speaker list boasts of the likes of Al Gore, Jimmy Wales, Shahrukh Khan, and Bill Gates. The main objective is to build a predictive model, which could help in predicting the views of the videos uploaded on the TEDx website.

Data Summary

Data Set Name: data_ted_talks

Data Set Information:

Number of instances: 4,005 Number of attributes: 19

Features:

'talk_id', 'title', 'speaker_1', 'all_speakers', 'occupations', 'about_speakers', 'views', 'recorded_date', 'published_date', 'event', 'native_lang', 'available_lang', 'comments', 'duration', 'topics', 'related_talks', 'url', 'description', 'transcript'

Data Summary

```
talk_id: Talk identification number provided by TED
title: Title of the talk
speaker_1: First speaker in TED's speaker list
all_speakers: Speakers in the talk
occupations: Occupations of the speakers
about_speakers: Blurb about each speaker
recorded date: Date the talk was recorded
published_date: Date the talk was published to TED.com
event: Event or medium in which the talk was given
```


Data Summary

```
native_lang: Language the talk was given in
available_lang: All available languages (lang_code) for a talk
comments: Count of comments
duration: Duration in seconds
topics: Related tags or topics for the talk
related_talks: Related talks (key='talk_id',value='title')
url: URL of the talk
description: Description of the talk
transcript: Full transcript of the talk
```


Most Popular Words In Titles

Top 10 Most Viewed Titles w.r.t speakers

Most popular Speaker according to total views on their talks

Top 10 occupations of speakers

Top 10 occupations of speakers

weekday having maximum releases

Pub_weekday w.r.t Average Views

Month having maximu releases

pub_month w.r.t to average views

year having maximum releases

year avg w.r.t views

Top 10 Events with most no of views

Top 10 events with sum of views

Top 10 native languages

Most Popular Topic Words

Most Popular Languages in Available Languages

Most Popular Words In Related Talks

Most frequent related talks categories

Feature Engineering

- 1. Speaker_1
- 2. Event
- 3. Available_lang
- 4. Topics
- 5. Publishes_date
- 6. Related_talks

Data Cleaning

- 1. Outliner Detection & Treatment Using IQR
- 2. Missing Values Treatment Using Knn Imputer
- 3. Transformations Using nplog1p

Feature Selection Using F-Regressor

Correlation

Model Fitting

- 1. Linear Regression Model
- 2. Random Forest Model
- 3. XG Boost Model

Feature Importance by Random Forest Regressor

Feature Importance XG Boost Regressor

Model Comparison

Model	MAE_train	MAE_test	r2_train	r2_test	rmse_train	rmse_test
LinearRegression	268846.003 262	261094.0 62321	0.814269	0.818878	475150.9591 77	469103.1215 63
Lasso:	268845.979 587	261094.0 37466	0.814269	0.818878	475150.9591 77	469103.1170 93
Ridge:	268845.924 378	261093.9 76795	0.814269	0.818878	475150.9591 77	469103.1032 02
KNeighborsRegres sor:	231054.636 746	281932.1 95424	0.856594	0.783506	417516.8489 40	512868.1811 45
RandomForest	187341.369 692	192304.5 62318	0.805412	0.802992	486348.1618 94	489242.6524 64
XGBRegressor:	103147.812 151	270187.5 37440	0.976271	0.792271	169837.5076 66	502379.3292 63

Challenges

- 1. Dataset has lot of features contains a categories in it.
- 2. Adding new features
- 3. Outliners In numerical Numbers
- 4. Selection comparison of models

Conclusion

Linear Regressor, Random Forest Regressor, XGB Regressor are the models used on this project and evalued on MSE, RMSE, MAE, R2 score and Adjusted R2 scores and finally selected the RandomForest Model as it gining the best score in Mean Square Error i.e. MSE is robust to outliners.

In all these 3 models our erros are ranging2,00,000 which is around 10% of the average views. The model has been able to correctly predict views 90% of the time. After hyper parameter tuning, we have prevented overfitting and decreased errors by regularizing and reducing learning rate. Given that only have 10% errors, our models have performed very well on unseen data due to various factors like feature selection, correct model selection.

Thank You