数学分析I

由于水平有限,加之对笔记的理解和挖掘在一定程度上不够充分,错误在所难免,敬请各位读者补充和斧正

Edited by Stellaria

数列极限

数列极限作为数学分析的开头起着至关重要的作用,极限是数学分析中的重要基石

Example1:

计算:
$$\lim_{n\to\infty} \frac{1!+2!+\ldots+n!}{n!}$$

 \triangleleft

$$1 \leq rac{1!+2!+\ldots+n!}{n!} < rac{(n-2)(n-2)!+(n-1)!+n!}{n!} = rac{n-2}{(n-1)n} + rac{1}{n} + 1$$
根据 夹逼定理 可知 $\lim_{n o\infty}rac{1!+2!+\ldots+n!}{n!} = 1$

 \triangleright

Example2:

计算:
$$\lim_{n o\infty}\sqrt[n]{rac{1 imes3 imes\ldots imes(2n-1)}{2 imes4 imes\ldots imes(2n)}}$$

 \triangleleft

 \triangleright

Example3:

证明:
$$\lim_{n \to \infty} (\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n}) = \ln 2$$

我们知道:
$$\sum_{n=1}^n rac{1}{n} = \ln n + \gamma + lpha_n \quad \lim_{n o\infty} lpha_n = 0$$

令该等式中
$$n=2n$$
 可以得到: $\sum_{n=1}^{2n}rac{1}{n}=\ln 2n+\gamma+lpha_{2n}$

上述两个等式相减,可以得到: $\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2n}=\ln 2+\alpha_{2n}-\alpha_n$ 等式左右取极限即可

 \triangleright

Cauthy Theorem:

$$\lim_{n o\infty}a_n=a\Rightarrow\lim_{n o\infty}rac{a_1+a_2+\ldots+a_n}{n}=a$$

 \triangleleft

由
$$\lim_{n\to\infty}a_n=a$$
 有 $\forall \, arepsilon>0$ $\exists \, N_1 \ \forall \, n>N_1: |a_n-a|<rac{arepsilon}{2}$ $|rac{a_1+a_2+\ldots+a_n}{n}-a|=|rac{a_1-a+a_2-a+\ldots+a_n-a}{n}|$ $<|rac{a_1-a+a_2-a+\ldots a_{N_1}-a}{n}|+|rac{a_{N_1+1}-a+\ldots a_n-a}{n}|$ $<|rac{a_1-a+a_2-a+\ldots a_{N_1}-a}{n}|+rac{n-N_1}{n}\cdotrac{arepsilon}{2}<|rac{a_1-a+a_2-a+\ldots a_{N_1}-a}{n}|+rac{arepsilon}{n}\cdotrac{arepsilon}{2}<|rac{a_1-a+a_2-a+\ldots a_{N_1}-a}{n}|+rac{arepsilon}{2}$ 又因为 $a_1-a+a_2-a+\ldots+a_{N_1}-a$ 是一个确定的常数,记作 C 我们知道 $\lim_{n\to\infty}rac{C}{n}=0$ 故有 $\forall \, arepsilon>0$ $\exists \, N_1 \ \forall \, n>N_2: |rac{a_1-a+a_2-a+\ldots a_{N_1}-a}{n}|<rac{arepsilon}{2}$ 最后我们取 $N=\max(N_1,N_2)$ 即可得 $|rac{a_1+a_2+\ldots+a_n}{n}-a|$

 \triangleright

柯西定理的证明十分有意思,初学者需要理解掌握,是一种用定义来分段证明极限的方法

Example4:

计算:
$$\lim_{n\to\infty} \sqrt[n]{rac{1}{n!}}$$

 \triangleleft

$$0 < \sqrt[n]{rac{1}{n}!} \le rac{1+rac{1}{2}+\dotsrac{1}{n}}{n}$$
 由柯西定理可只不等号右端的式子极限为 0 ,根据夹逼定理原极限为 0

 \triangleright

Example5:

证明:
$$\lim_{n \to \infty} \sqrt[n]{n!} = +\infty$$

由上题可以直接得证,这里给出另一种方法:

$$e^n>1+n+rac{1}{2!}n^2+\dotsrac{1}{n!}n^n>rac{n^n}{n!}\Rightarrow n!>rac{n^n}{e^n}\Rightarrow \sqrt[n]{n!}>rac{n}{e} o +\infty\quad as\quad n o\infty$$

 \triangleright

Corollary:

设
$$a_n>0$$
 $\lim_{n \to \infty} rac{a_{n+1}}{a_n} = a$ 则有 $\lim_{n \to \infty} \sqrt[n]{a_n} = a$ 下面的引理即证明

Lemma:

设
$$a_n>0$$
 $\lim_{n o\infty}a_n=a$ 则有 $\lim_{n o\infty}\sqrt[n]{a_n}=a$ 请读者自证

Example:

计算:
$$\lim_{n o \infty} rac{\sqrt[n]{n!}}{n}$$

 \langle

$$\lim_{n o \infty} rac{\sqrt[n]{n!}}{n} = \lim_{n o \infty} \sqrt[n]{rac{n!}{n^n}}$$
 根据上题的推论可以得到 $\lim_{n o \infty} rac{n^n}{(n+1)^n} = \lim_{n o \infty} rac{1}{(1+rac{1}{n})^n} = rac{1}{e}$ 故原权

有用的放缩不等式:

$$a^n > rac{(a-1)^2}{4} n^2$$
 (a 可以是任何大于1的数或式)

Example6:

用
$$arepsilon-N$$
 语言证明: $\lim_{n o\infty}\sqrt[n]{n^k}=1$ $(k\in\mathbb{N}^*)$

 \triangleleft

$$egin{aligned} |\sqrt[n]{n^k}-1| &= |\sqrt[n]{\underbrace{\sqrt{n} imes\sqrt{n}... imes\sqrt{n}}_{2k \uparrow}}\underbrace{ imes1 imes1... imes1}_{n-2k \uparrow}-1| < rac{2k\sqrt{n}+n-2k}{n}-1 = rac{2k}{\sqrt{n}}-rac{2k}{n} < rac{2k}{\sqrt{n}} \ &\Rightarrow n > rac{4k^2}{arepsilon^2} \quad orall \ arepsilon > 0 \quad \exists \ N = \max(2k, [rac{4k^2}{arepsilon}]) \quad orall \ n > N : |\sqrt[n]{n^k}-1| < arepsilon \end{aligned}$$

 \triangleright

Example7:

设
$$x_n \geq 0$$
 且 $\lim_{n \to \infty} x_n = a \geq 0$ 证明: $\lim_{n \to \infty} \sqrt{x_n} = \sqrt{a}$

法一:
$$|\sqrt{x_n} - \sqrt{a}| < \sqrt{|x_n - a|} \iff (\sqrt{x_n} - \sqrt{a})^2 < (\sqrt{x_n} - \sqrt{a})(\sqrt{x_n} + \sqrt{a}) < |x - a|$$
 法二: $|\sqrt{x_n} - \sqrt{a}| = |\frac{x_n - a}{\sqrt{x_n} + \sqrt{a}}| < \frac{1}{\sqrt{a}}|x_n - a|$

Example8:

计算:
$$\lim_{n \to \infty} \frac{(2n-1)!!}{(2n)!!}$$

 \triangleleft

 \triangleright

$$0 < rac{(2n-1)!!}{(2n)!!} < rac{(2n-1)!!}{\sqrt{1 imes 3} imes \sqrt{3 imes 5} imes \ldots imes \sqrt{(2n-1) imes (2n+1)}} = rac{1}{\sqrt{2n+1}}$$

Example9:

$$x_n = (1 + rac{1}{n})^n$$
 证明 $x_{n+1} > x_n$ 且 x_n 上有界

 \triangleleft

$$x_n = \overbrace{(1+rac{1}{n})(1+rac{1}{n})\dots(1+rac{1}{n})}^{n op} imes 1 < (rac{n(1+rac{1}{n})+1}{n+1})^{n+1} = (1+rac{1}{n+1})^{n+1} = x_{n+1} \ x_n < 2+rac{1}{2!}+rac{1}{3!}+\dots+rac{1}{n!} < 2+rac{1}{2}+rac{1}{2^2}+\dots+rac{1}{2^{n-2}} < 3$$

 \triangleright

Important Identity:

$$e = 1 + rac{1}{1!} + rac{1}{2!} + \ldots + rac{1}{n!} + rac{ heta_n}{n!n} \quad (rac{n}{n+1} < heta_n < 1)$$

Example:

计算:
$$\lim_{n\to\infty} n \sin(2\pi n! e)$$

 \triangleleft

根据上述恒等式有:
$$n\sin\left(2\pi\frac{1}{n+1}\right) < n\sin\left(2\pi n!e\right) < n\sin\left(2\pi\frac{1}{n}\right)$$

 \triangleright

Example 10:

证明:
$$\lim_{n o\infty}(1+rac{1}{n^2})(1+rac{2}{n^2})\dots(1+rac{n}{n^2})=e^{rac{1}{2}}$$

易知
$$(1+\frac{1}{n^2})(1+\frac{2}{n^2})\dots(1+\frac{n}{n^2})=e^{\sum_{k=1}^n\ln\left(1+\frac{k}{n^2}\right)}$$
 $\frac{1}{n^2+n}\times k<\frac{k}{n^2+k}<\ln\left(1+\frac{k}{n^2}\right)$ 对第二个不等式求和可以得到: $\frac{1}{n^2+n}\times\frac{n(n+1)}{2}<\sum_{k=1}^n\ln\left(1+\frac{k}{n^2}\right)<\frac{1}{n^2}\times\frac{n(n+1)}{2}$ 根据夹逼定理容易得到: $\lim_{n\to\infty}\sum_{k=1}^n\ln\left(1+\frac{k}{n^2}\right)=\frac{1}{2}$ 取自然对数即可

Example11:

计算:
$$\lim_{n o\infty}\sum_{k=1}^n(\sqrt{1+rac{k}{n^2}}-1)$$

 \triangleleft

$$\frac{\frac{k}{n^2}}{\sqrt{1+\frac{n}{n^2}}+1} < \sqrt{1+\frac{k}{n^2}}-1 = \frac{\frac{k}{n^2}}{\sqrt{1+\frac{k}{n^2}}+1} < \frac{\frac{k}{n^2}}{\sqrt{1+\frac{1}{n^2}}+1}$$
对不等式进行求和 $\Rightarrow \frac{1}{\sqrt{1+\frac{n}{n^2}}+1} \times \frac{n(n+1)}{2n^2} < \sum_{k=1}^n (\sqrt{1+\frac{k}{n^2}}-1) < \frac{1}{\sqrt{1+\frac{1}{n^2}}+1} \times \frac{n(n+1)}{2n^2}$
根据夹逼定理容易得到:
$$\lim_{n\to\infty} \sum_{k=1}^n (\sqrt{1+\frac{k}{n^2}}-1) = \frac{1}{4}$$

 \triangleright

数列极限到此为止,读者千万不能把重点放在求各种数列极限中,理解极限和定理才是这一章的关键,过分追求各种技巧对于数学分析的学习反而事倍功半

函数极限与连续

Important limit:

$$\lim_{x\to 0}\frac{\sin x}{x}=1$$

Proposition1:

设
$$\lim_{x \to x_0} lpha(x) = 0$$
 $\lim_{x \to x_0} eta(x) = 0$ 且 $lpha(x)
eq eta(x)$ 那么有 1 . $\sin\left(lpha(x)\right) - \sin\left(eta(x)\right) \sim lpha(x) - eta(x)$ 2 . $\tan\left(lpha(x)\right) - \tan\left(eta(x)\right) \sim lpha(x) - eta(x)$ 3 . $e^{lpha(x)} - e^{eta(x)} \sim lpha(x) - eta(x)$

Proposition2:

设
$$\lim_{x \to x_0} \alpha(x) = 1$$
 $\lim_{x \to x_0} \beta(x) = 1$ 且 $\alpha(x) \neq \beta(x)$ 那么有 $1.$ $\alpha^k(x) - \beta^k(x) \sim k \times [\alpha(x) - \beta(x)]$ $k \in \mathbb{N}^*$ $2.$ $\alpha^{\frac{1}{k}}(x) - \beta^{\frac{1}{k}}(x) \sim \frac{1}{k} \times [\alpha(x) - \beta(x)]$ $k \in \mathbb{N}^*$ $3.$ $\ln \alpha(x) - \ln \beta(x) \sim \alpha(x) - \beta(x)$

Example1:

计算:
$$\lim_{x\to 0} \frac{\cos x\sqrt{\cos 2x}\sqrt[3]{\cos 3x}-1}{\ln\cos 3x}$$

 \triangleleft

$$\lim_{x \to 0} \frac{\cos x \sqrt{\cos 2x} \sqrt[3]{\cos 3x} - 1}{\ln \cos x} = \lim_{x \to 0} \frac{\ln \left(\cos x \sqrt{\cos 2x} \sqrt[3]{\cos 3x}\right)}{\ln \cos x} = \lim_{x \to 0} \frac{\cos x + \frac{1}{2}\cos 2x + \frac{1}{3}\cos 3x}{\cos x - 1}$$

$$= 1 + \frac{1}{2} \times \frac{\cos 2x - 1}{\cos x - 1} + \frac{1}{3} \times \frac{\cos 3x - 1}{\cos x - 1} = 1 + \frac{1}{2} \times 4 + \frac{1}{3} \times 9 = 6$$
经过归纳我们可以得到:
$$\lim_{x \to 0} \frac{\cos x \sqrt{\cos 2x} \dots \sqrt[n]{\cos nx} - 1}{\ln \cos x} = \frac{n(n+1)}{2} \quad n \in \mathbb{N}^*$$

 \triangleright

Example2:

计算:
$$\lim_{x \to 0} \frac{\sqrt[5]{1+3x^4} - \sqrt{1-2x}}{\sqrt[3]{1+x} - \sqrt{1+x}}$$

 \triangleleft

$$\lim_{x \to 0} \frac{\sqrt[5]{1+3x^4} - \sqrt{1-2x}}{\sqrt[3]{1+x} - \sqrt{1+x}} = \lim_{x \to 0} \frac{\left[(1+3x^4)^2\right]^{\frac{1}{10}} - \left[(1-2x)^5\right]^{\frac{1}{10}}}{(1+x)^{\frac{1}{3}}\left[1-(1+x)^{\frac{1}{6}}\right]} = \lim_{x \to 0} \frac{\frac{1}{10}\left[(1+3x^4)^2 - (1-2x)^5\right]^{\frac{1}{10}}}{-\frac{1}{6}x} = \lim_{x \to 0} \frac{\frac{1}{10}\left[(1+3x^4)^2 - (1-2x)^5\right]^{\frac{1}{10}}}{-\frac{1}{6}x} = \lim_{x \to 0} \frac{\frac{1}{10}\left[(1+3x^4)^2 - (1-2x)^5\right]^{\frac{1}{10}}}{-\frac{1}{6}x} = -6$$

 \triangleright

Example3:

计算:
$$\lim_{r\to 0} (\frac{\sin x}{r})^{\frac{1}{1-\cos x}}$$
 (1^{∞})

$$\lim_{x \to 0} (\frac{\sin x}{x})^{\frac{1}{1 - \cos x}} = \lim_{x \to 0} e^{\frac{1}{1 - \cos x} \ln \frac{\sin x}{x}}$$

$$\lim_{x \to 0} \frac{\ln \frac{\sin x}{x}}{1 - \cos x} = \lim_{x \to 0} \frac{\frac{\sin x}{x} - 1}{1 - \cos x} = \lim_{x \to 0} \frac{\sin x - x}{\frac{1}{2}x^3} = -\frac{1}{3} \quad$$
 因此原极限 = $e^{-\frac{1}{3}}$

Example4:

计算:
$$\lim_{x\to 0} \frac{\sqrt[6]{1+x\sin x}-\sqrt{\cos x}}{\sqrt[3]{\cos x}-\sqrt{\cos x}}$$

 \triangleleft

$$\lim_{x \to 0} \frac{\sqrt[6]{1 + x \sin x} - \sqrt{\cos x}}{\sqrt[3]{\cos x} - \sqrt{\cos x}} = \lim_{x \to 0} \frac{\sqrt[6]{1 + x \sin x} - 1}{\sqrt[3]{\cos x} - \sqrt{\cos x}} - \lim_{x \to 0} \frac{\sqrt{\cos x} - 1}{\sqrt[3]{\cos x} - \sqrt{\cos x}} = \lim_{x \to 0} \left(\frac{\frac{1}{6} x \sin x}{-\frac{1}{6} (\cos x - 1)} - \frac{\frac{1}{2} (\cos x - 1)}{-\frac{1}{6} (\cos x - 1)} \right) = 5$$

 \triangleright

Example5:

计算:
$$\lim_{x o 0} rac{ an(an x) - \sin(\sin x)}{ an x - \sin x}$$

 \triangleleft

$$\frac{\tan(\tan x) - \sin(\sin x)}{\tan x - \sin x} = \frac{\tan(\tan x) - \tan(\sin x)}{\tan x - \sin x} + \frac{\tan(\sin x) - \sin(\sin x)}{\tan x - \sin x}$$

$$\lim_{x \to 0} \frac{\tan(\tan x) - \tan(\sin x)}{\tan x - \sin x} = \lim_{x \to 0} \frac{(1 + \tan(\tan x) \tan(\sin x))(\tan(\tan x - \sin x))}{\tan x - \sin x} = 1$$

$$\lim_{x \to 0} \frac{\tan(\sin x) - \sin(\sin x)}{\tan x - \sin x} = 1 \quad \text{故原极限} = 2$$

 \triangleright

Example1:

设
$$f(x) = (\sin x)^2 + \sin^2 x$$
 $x \in \mathbb{R}$ 证明: $f(x)$ 不是周期函数

 \triangleleft

因为 f(x) 在 \mathbb{R} 上连续, 但不一致连续, 根据引理的逆否命题就可证明 $Lemma: \emptyset f(x)$ 是在 $(-\infty, +\infty)$ 连续的周期函数, 则 f(x) 一致连续

 \triangleright

Example2:

证明:设 f(x) 在 $[0,+\infty)$ 满足 Lipschitz 条件 即 $\exists M>0: |f(x_1)-f(x_2)|=M|x_1-x_2|$ 则 $f(\sqrt{x})$ 在 $[0,+\infty)$ 一致连续

 \triangleleft

$$|f(\sqrt{x_1}) - f(\sqrt{x_2})| \leq M|\sqrt{x_1} - \sqrt{x_2}| \leq M\sqrt{|x_1 - x_2|}$$

 \triangleright

Example3:

设
$$f(x)$$
 在 $[a, +\infty)$ 一致连续 $\phi(x)$ 在 $[a, +\infty)$ 连续,且 $\lim_{x\to\infty}[f(x)-\phi(x)]=0$ 证明: $\phi(x)$ 在 $[a, +\infty)$ 一致连续

 \triangleleft

令
$$F(x)=f(x)-\phi(x)$$
 $F(x)$ 在 $[a,+\infty]$ 连续 $\lim_{x\to\infty}F(x)=0$ 所以 $F(x)$ 在 $[a,+\infty)$ 上一致连续 所以 $\phi(x)=F(x)-f(x)$ 在 $[a,+\infty)$ 一致连续

 \triangleright

函数极限到此为止,同上一章一样,把重心放在理解定理和函数极限上

微分学

微分学是建立在极限基础上的数学分析**I**的另一大重点

导数

Example1:

$$f(x) = |x|$$
 在 $x = 0$ 处不可导

 \triangleleft

$$\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} \frac{|x|}{x}$$
 左右极限不同,故极限不存在,所以不可导

 \triangleright

Corollary:

设
$$f(x)\in\mathbb{C}(-1,1)$$
 $f(0)=0$ $f'(0)$ 存在. 则有: $\lim_{n\to\infty}\sum_{k=1}^n f(\frac{k}{n^2})=\frac{f'(0)}{2}$ 进一步地,有 $\lim_{n\to\infty}\sum_{k=1}^n f(\frac{k^{i-1}}{n^i})=\frac{1}{i}f'(0)$ $i\in\mathbb{N}^*$

这里只给出i=2的情况,其余情况请读者自行归纳证明

设
$$f'(0)=A=\lim_{x\to 0}rac{f(x)}{x}$$
 根据极限的 $\varepsilon-\delta$ 定义: $\forall \, \varepsilon>0$ $\exists \, \delta>0$ $|x|<\delta:|rac{f(x)}{x}-A|$ $\Rightarrow A-\varepsilon<rac{f(x)}{x} 取 $rac{1}{N}<\delta(N>rac{1}{\delta})$ 当 $n>N$ 时: $0<rac{1}{n^2}<rac{2}{n^2}<rac{n}{n^2}<rac{1}{N}$ 即 $0<rac{k}{n^2}<\delta\Rightarrow(A-\varepsilon)rac{k}{n^2} 将不等式取极限可以得到: $\lim_{n\to\infty}\sum_{k=1}^n f(rac{k}{n^2})=rac{A}{2}=rac{f'(0)}{2}$$$

 \triangleright

微分中值定理

Darboux Theorem:

设
$$f(x)$$
 在 $[a,b]$ 可导, $f'(a) \neq f'(b)$, μ 是介于 $f'(a)$, $f'(b)$ 之间任意实数, 即 $f'(a) < \mu < f'(b)$ 则存在 $\xi \in (a,b): f'(\xi) = \mu$

Rolle Theorem:

设
$$f(x)\in \mathbb{C}[a,b]$$
, 且在 (a,b) 可导, $f(a)=f(x_1)=f(x_2)=\ldots f(x_i)=f(b)$ $(x_i\in (a,b))$ 则存在 $\xi\in (a,b):f^{(i+1)}(\xi)=0$

Example1:

设
$$f(x)\in\mathbb{C}[0,4]$$
,在 $[0,4]$ 二阶可导, $f(0)=0$, $f(1)=1$, $f(4)=2$ 证明: 存在 $\xi:f''(\xi)=-rac{1}{3}$

 \triangleleft

考虑函数 F(x) = f(x) - p(x) $p(x) = ax^2 + bx + c : p(0) = 0, p(1) = 1, p(4) = 2$ 容易得到多项式p(x)的表达式,又因为 F(0) = F(1) = F(4) 根据 Rolle 定理即可证明

 \triangleright

Lagrange Mean Theorem:

Example2:

$$n>1$$
 $s>0$ $1^s+2^s+\ldots+n^s=\phi(n)$ 则成立: $\frac{n^{s+1}}{s+1}<\phi(n)<\frac{(n+1)^{s+1}}{s+1}$

令
$$f(x) = x^{s+1}$$
 在 $[k, k+1]$ 由 $Lagrange$ 中值定理可得: $(k+1)^{s+1} - k^{s+1} = (s+1)\xi^s$ $(\xi \in (s+1) \times k^s < (k+1)^{s+1} - k^{s+1} < (s+1) \times (k+1)^s$ 对上述两个不等式进行求和即得到答案

Example3:

设
$$f(x)\in\mathbb{C}[a,b]$$
 在 (a,b) 可导 $a>0$ 证明: 存在 ξ , $\eta\in(a,b)$: $f'(\xi)=rac{a+b}{2n}f'(\eta)$

 \triangleleft

根据
$$Lagrange$$
 中值定理可得: $f(b)-f(a)=f'(\xi)(b-a)$ $\xi\in(a,b)$ 根据 $Cauthy$ 中值定理可得: $\dfrac{f(b)-f(a)}{b^2-a^2}=\dfrac{f'(\eta)}{2\eta}$ $\eta\in(a,b)$ 两式相除即可

 \triangleright

Example4:

设
$$f(x) \in \mathbb{C}[a,b]$$
, 且在 (a,b) 二阶可导 证明: 存在 $\xi \in (a,b): f(a)-2f(\frac{a+b}{2})+f(b)=\frac{(b-\epsilon)}{4}$

法一:
$$\diamondsuit \ p(x) = rac{(x-rac{a+b}{2})(x-b)}{(a-rac{a+b}{2})(a-b)} f(a) + rac{(x-a)(x-b)}{(rac{a+b}{2}-a)(rac{a+b}{2}-b)} f(rac{a+b}{2}) + rac{(x-rac{a+b}{2})(x-a)}{(b-rac{a+b}{2})(b-a)} f(a) = f(a), p(b) = f(b), p(rac{a+b}{2}) = f(rac{a+b}{2})$$

令
$$F(x)=f(x)-p(x)$$
 $F(a)=F(rac{a+b}{2})=F(b)=0$ 根据 $Rolle$ 定理: 存在 $\xi\in(a,b):F''($ 代入计算即可

法二: 根据
$$Cauthy$$
 中值定理: 令 $F(x)=f(a)-2f(\frac{a+x}{2})+f(x)$ $G(x)=(x-a)^2$
$$F(a)=0, G(a)=0$$
 只需证 $\frac{F(b)}{G(b)}=\frac{1}{4}f''(\xi)$ 即可
$$\frac{F(b)}{G(b)}=\frac{F''(\eta)}{G''(\eta)}=\frac{f'(\eta)-f'(\frac{a+\eta}{2})}{2(\eta-a)}=\frac{f''(\xi)\frac{a+b}{2}}{2(\eta-a)}=\frac{1}{4}f''(\xi)$$

 \triangleright

Example5:

设
$$f(x)$$
 在 $[a,b]$ 三阶可导,证明: 存在 $\xi \in (a,b)$: $f(b) = f(a) + \frac{1}{2}(b-a)[f'(b) - f'(a)] - \frac{1}{12}(b-a)$

法一:令
$$F(x)=f(x)-f(a)-rac{1}{2}(x-a)[f'(x)-f'(a)]$$
 $G(x)=(x-a)^3$
$$F(a)=F'(a)=0, F''(x)=-rac{1}{2}(x-a)f'''(x), G(a)=G'(a)=0, G''(x)=6(x-a)$$
 根据 $Cauthy$ 中值定理有: $rac{F(x)}{G(x)}=rac{F''(\xi)}{G''(\xi)}=-rac{1}{12}f'''(\xi)$ 代入移项即可

$$F(a) = F(b) = 0$$
 根据 $Rolle$ 定理:存在 $\eta \in (a,b): F'(\eta) = 0$ $F'(a) = F'(b) = F'(\eta) = 0$ 同理:存在 $\xi \in (a,b): F'''(\xi) = 0$

 $\Gamma^{-}(u) = \Gamma^{-}(v) = \Gamma^{-}(\eta) = 0$ Fig. 14. $\zeta \in (u,v) : \Gamma^{-}(\zeta) = 0$

根据行列式函数的求导法则即可得到结论,计算有点繁琐这里就不写出具体过程了

 \triangleright

Corollary1:

设
$$f(x)$$
 在 $(a, +\infty)$ 可导,导数有界,则 $f(x)$ 在 $(a, +\infty)$ 一致连续

Corollary2:

设
$$f(x)$$
 在 $(a, +\infty)$ 可导,且 $\lim_{x \to +\infty} |f'(x)| = +\infty$ 则 $f(x)$ 一定不一致连续

Corollary3:

设
$$f(x)$$
 在 $(a,+\infty)$ 可导,且 $\lim_{x \to +\infty} f'(x) = A > 0$ 则 $\lim_{x \to +\infty} f(x) = +\infty$

凹凸性

 $I \in \mathbb{R}$ 上的区间,给定 I 上定义实值函数 f 那么下面的几个性质是等价的:

1). 对任意
$$x, y \in I$$
 任意 $t \in [0, 1]$, 有: $f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$

2). 对任意
$$x,y,z \in I$$
 如果 $x < y < z$,那么: $\dfrac{f(y)-f(x)}{y-x} \leq \dfrac{f(z)-f(x)}{z-x} \leq \dfrac{f(z)-f(y)}{z-y}$

3). 对任意
$$x,y,z \in I$$
 如果 $x < y < z,$ 那么: $\begin{vmatrix} 1 & 1 & 1 \ x & y & z \ f(x) & f(y) & f(z) \end{vmatrix} \geq 0$

Jensen Inequality

Example1:

证明:
$$\frac{3}{3+2} + \frac{3^2}{3^2+2} + \ldots + \frac{3^n}{3^n+2} > \frac{n^2}{n+1}$$

即证明:
$$\dfrac{1}{1+rac{2}{3}}+\dfrac{1}{1+rac{2}{3^2}}+\ldots+\dfrac{1}{1+rac{2}{3^n}}>\dfrac{n^2}{n+1}$$
 令 $f(x)=\dfrac{1}{1+x_k}$ $x_k=\dfrac{2}{3^k}$ $k=1,2,\ldots n$ $f(x)$ 是下凸函数

根据
$$Jensen$$
 不等式,可得: $\sum_{i=1}^n f(x_i) \geq \frac{n}{1 + \frac{1}{n}(\frac{2}{3} + \frac{2}{3^2} + \ldots + \frac{2}{3^n})} > \frac{n}{1 + \frac{1}{n}} = \frac{n^2}{n+1}$

Example2:

证明:
$$(a+b)e^{a+b} \le ae^{2a} + be^{2b}$$
 $(a>0,b>0)$

 \triangleleft

令
$$f(x) = e^{2x}$$
 $\lambda_1 = \frac{a}{a+b}$ $\lambda_2 = \frac{b}{a+b}$ 根据 $Jensen$ 不等式可得: $\frac{a}{a+b}e^{2a} + \frac{b}{a+b}e^{2b} \geq e^{2\frac{a^2+b^2}{a+b}} \Rightarrow ae^{2a} + be^{2b} \geq (a+b)e^{2\frac{a^2+b^2}{a+b}} \geq (a+b)e^{a+b}$

 \triangleright

Example3:

证明: 设
$$0 < \alpha < \beta$$
 $a_1, a_2, \ldots, a_n > 0$ 则有: $(\frac{a_1^{\alpha} + a_2^{\alpha} + \ldots + a_n^{\alpha}}{n})^{\frac{1}{\alpha}} \leq (\frac{a_1^{\beta} + a_2^{\beta} + \ldots + a_n^{\alpha}}{n})^{\frac{1}{\alpha}}$

 \triangleleft

Example4:

证明:
$$(\sin x)^{\sin x} < (\cos x)^{\cos x}$$
 (其中 $0 < x < \frac{\pi}{2}$)

 \triangleleft

令
$$f(x) = \ln x$$
 取 $b = \cos x + \sin x$ $a = \sin x$ $t = \tan x$ $t \in (0,1)$ $\ln x$ 是上凸函数,根据定义有: $\ln (ta + (1-t)b) \ge t \ln a + (1-t) \ln b$ $\Rightarrow \ln \cos x \ge \tan x \ln \sin x + (1-\tan x) \ln (\cos x + \sin x)$ 其中 $(1-\tan x) \ln (\cos x + \sin x) > (1-\tan) \ln \left(\sqrt{2} \sin \frac{\pi}{4}\right) > 0$

因此 $\ln \cos x \geq \tan x \ln \sin x \Rightarrow \cos x \ln \cos x \geq \sin x \ln \sin x \Rightarrow (\sin x)^{\sin x} < (\cos x)^{\cos x}$

 \triangleright

Example5:

设
$$f(x)$$
 在 $[0,+\infty)$ 可导, $f(0)=0,f'(x)$ 单调增加 证明: $\dfrac{f(x)}{x}$ 在 $(0,+\infty)$ 单调增加

 \triangleleft

$$(\frac{f(x)}{x})' = \frac{xf'(x) - f(x)}{x^2} = \frac{f'(x) - f'(\xi)}{x} > 0$$

 \triangleright

Corollary:

 \triangleleft

根据定义 对任意
$$x,y,z\in I$$
 如果 $x< y< z,$ 那么: $\dfrac{f(y)-f(x)}{y-x}\leq \dfrac{f(z)-f(x)}{z-x}\leq \dfrac{f(z)-f(y)}{z-y}$ 替换变量可得: $|f(x)-f(x_0)|\leq M|x-x_0|$ $M=\max(\dfrac{f(y)-f(x)}{y-x},\dfrac{f(z)-f(y)}{z-y})$

 \triangleright

洛必达法则

L'Hospital Rule 洛医院,一种求取极限的简单方法,绝大数情况下可以被 *Taylor* 公式取代

洛必达法则的证明 - 知乎 (zhihu.com)

泰勒公式及其应用

Taylor Formula——单变量微分学的顶峰

Example1:

计算:
$$\lim_{x \to +\infty} (x + x^2 \ln \left(1 + \frac{1}{x}\right))$$

 \triangleleft

根据
$$\ln\left(1+\frac{1}{x}\right)$$
的 $Taylor$ 公式: $\ln\left(1+\frac{1}{x}\right)=\frac{1}{x}-\frac{1}{2x^2}+o(\frac{1}{x^2})$ $\lim_{x\to+\infty}(x+x^2\ln\left(1+\frac{1}{x}\right))=\lim_{x\to+\infty}(x-x^2(\frac{1}{x}-\frac{1}{2x^2}+o(\frac{1}{x^2})))=\frac{1}{2}$

 \triangleright

Example2:

计算:
$$\lim_{n \to \infty} n[e(1+rac{1}{n})^{-n}-1]$$

 \triangleleft

$$egin{aligned} \lim_{n o \infty} n[e(1+rac{1}{n})^{-n}-1] &= \lim_{n o \infty} n[e imes e^{-n\ln(1+rac{1}{n})}-1] = \lim_{n o \infty} n[e^{1-n\ln(1+rac{1}{n})}-1] \ &= \lim_{n o \infty} n[1-n\ln\left(1+rac{1}{n}
ight)] = \lim_{n o \infty} n^2[rac{1}{n}-\ln\left(1+rac{1}{n}
ight)] = rac{1}{2} \end{aligned}$$

 \triangleright

Example3:

 \triangleleft

$$\sqrt[5]{x^5 + 7x^4 + 2} = x(1 + \frac{7x^4 + 2}{x^5})^{\frac{1}{5}} = x(1 + \frac{1}{5}(\frac{7}{x} + \frac{2}{x^5}) + o(\frac{1}{x})) = x + \frac{7}{5} + xo(\frac{1}{x})$$
因此 $a = 1, \ b = \frac{7}{5}$

 \triangleright

Example4:

设
$$\lim_{x\to 0}(rac{\sin 3x}{x^3}+rac{f(x)}{x^2})=0$$
 设 $f(x)$ 在 $x=0$ 处二阶可导, 求 $f(0),f'(0),f''(0)$

<

根据
$$Taylor$$
 公式: $f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + o(x^2)$
$$\frac{\sin 3x}{x^3} + \frac{f(x)}{x^2} = \frac{\sin 3x + xf(x)}{x^3} = \frac{3x - \frac{9}{2}x^3 + f(0)x + f'(0)x^2 + \frac{1}{2}f''(0)x^3 + o(x^3)}{x^3}$$
 因为 $\lim_{x \to 0} (\frac{\sin 3x}{x^3} + \frac{f(x)}{x^2}) = 0$ 故有 $f(0) = 3, f'(0) = 0, f''(0) = 9$

 \triangleright

Example5:

设
$$f(x)\in\mathbb{C}[0,4]$$
,在 $[0,4]$ 二阶可导, $f(0)=0$, $f(1)=1$, $f(4)=2$ 证明: 存在 $\xi:f''(\xi)=-rac{1}{3}$

 \triangleleft

根据
$$f(x)$$
 在 $x_0=1$ 的 $Talor$ 公式: $f(x)=f(1)+f'(1)(x-1)+\frac{1}{2}f''(\xi)(x-1)^2$ $\xi\in [$ 代入 $x=0 \Rightarrow 0=1-f'(1)+\frac{f''(\xi_1)}{2}$ 代入 $x=4 \Rightarrow 2=1+3f'(1)+\frac{9}{2}f''(\xi_2)$

消去
$$f'(1) \Rightarrow 3f''(\xi_1) + 9f''(\xi_2) = -4$$
 根据 $Darboux$ 定理, 存在 $\xi \in (\xi_1, \xi_2) : f''(\xi) = \frac{1}{4}f''(\xi_1) -$ 即 $f''(\xi) = -\frac{1}{3}$

 \triangleright

Example6:

设
$$f(x)$$
 在 $(a,+\infty)$ 上二阶可导,且 $\lim_{x\to+\infty}f(x)$, $\lim_{x\to+\infty}f''(x)$ 存在证明: $\lim_{x\to+\infty}f'(x)=\lim_{x\to+\infty}f''(x)=0$

Thinking:

设
$$f(x)$$
 在 $(a, +\infty)$ 上 n 阶可导,且 $\lim_{x \to +\infty} f(x)$, $\lim_{x \to +\infty} f^{(n)}(x)$ 存在证明: $\lim_{x \to +\infty} f'(x) = \lim_{x \to +\infty} f''(x) = \dots = \lim_{x \to +\infty} f^{(n)}(x) = 0$

Example7:

设
$$f(x) \in \mathbb{C}[a,b]$$
, 且在 (a,b) 二阶可导 $p(x)$ 是过 $(a,f(a)),(b,f(b))$ 的一个线性函数求证: 对任意 $x \in (a,b)$, 存在 $\xi \in (a,b): p(x)-f(x)=\frac{(x-a)(b-x)}{2}f''(\xi)$

 \triangleleft

根据两点式公式可以设
$$p(x)=\frac{b-x}{b-a}f(a)+\frac{x-a}{b-a}f(b)$$
 根据 $p(x)$ 的 $Taylor$ 公式可得:
$$f(a)=f(x)+f'(x)(a-x)+\frac{f''(\xi_1)}{2}(a-x)^2$$
 $f(b)=f(x)+f'(x)(b-x)+\frac{f''(\xi_2)}{2}(b-x)^2$ 将上述两个等式代入 $p(x)$ 中得到: $p(x)=f(x)+\frac{(b-x)(x-a)}{2}[\frac{x-a}{b-a}f''(\xi_1)+\frac{b-x}{b-a}f''(\xi_2)]$ 最后根据 $Darboux$ 定理:存在 $\xi\in(\xi_1,\xi_2):\frac{x-a}{b-a}f''(\xi_1)+\frac{b-x}{b-a}f''(\xi_2)=f''(\xi)$

 \triangleright

Example8:

求
$$\sqrt{\underbrace{111...1}_{1998 \uparrow}}$$
 小数点后的第999位,第1000位,第1006位

$$\begin{split} \sqrt{\underbrace{111...1}_{1998 \uparrow}} &= \sqrt{\frac{1000...0-1}{9}} = \sqrt{\frac{10^{1998}}{9}} (1 - \frac{1}{10^{1998}}) = \frac{10^{999}}{3} (1 - \frac{1}{10^{1998}})^{\frac{1}{2}} \\ &= \frac{10^{999}}{3} (1 - \frac{1}{2} \times \frac{1}{10^{1998}} + \varepsilon) \quad |\varepsilon| < 10^{-2 \times 1998} (Taylor) \\ &= 10^{-999} \times \frac{10^{1998}}{3} (1 - \frac{1}{2} \times \frac{1}{10^{1998}} + \varepsilon) = 10^{-999} (\frac{10^{1998}}{3} - \frac{1}{6} + \eta) \quad |\eta| < \frac{1}{3} \times 10^{-1998} \\ &= 10^{-999} (\frac{10^{1998}-1}{3} + \frac{1}{6} + \eta) = 10^{-999} (\underbrace{333...3}_{1998 \uparrow} + 0.16666... + \eta) = \underbrace{33...333}_{999 \uparrow} \underbrace{333...3}_{999 \uparrow} 16666... + 1 \end{split}$$

显然第999位是3,第1000位是1,第1001位是6

 \triangleright

微分学复习题

01:

设
$$f(x) = egin{cases} |x| & x
eq 0 \ 1 & x = 0 \end{cases}$$
 证明: $f(x)$ 不存在原函数

 \triangleleft

Corollary: 导函数不存在第一类间断点,由 Lagrange 中值定理易证若存在原函数 F(x) 则 F'(x) = f(x) 但 F'(x) 有第一类间断点注意: 这里所指的第一类间断点是指可去间断点和跳跃间断点

 \triangleright

Q2:

设
$$f(x) = |x^3|$$
 证明: $f'''(0)$ 不存在

 \triangleleft

$$f'''(x) = \begin{cases} 6 & x > 0 \\ -6 & x < 0 \end{cases}$$
 若 $f'''(0)$ 存在,不能有第一类间断点,矛盾!故 $f'''(0)$ 不存在

 \triangleright

Q3:

$$\sin^2 x < \sin x^2 \ (0 < x < \sqrt{rac{\pi}{2}})$$

$$\sin x$$
 在 $[0, \frac{\pi}{2}]$ 单调增加,当 $1 \le x \le \sqrt{\frac{\pi}{2}}$ 时, $1 \le x \le x^2 \le \frac{\pi}{2}$,所以 $\sin^2 x < \sin x < \sin x^2$ 当 $0 < x < 1$ 时, $0 < x^2 < x < 1 < \sqrt{\frac{\pi}{2}}$ $\frac{\sin x}{x} < \frac{\sin x^2}{x^2} \Rightarrow x \sin x < \sin x^2 \Rightarrow \sin^2 x < \sin x^2$

Q4:

证明:
$$\sin{(\tan{x})} < \tan{(\sin{x})} \quad (0 < x < \frac{\pi}{2})$$

 \triangleleft

当
$$x \in [\arctan\frac{\pi}{2}, \frac{\pi}{2}]$$
 时(注: $x > 0$ 时 $x > \arctan x$) 因为 $4 + \pi^2 < 16$ 故 $\tan\left(\sin\left(\arctan\frac{\pi}{2}\right)\right) = \tan\left(\frac{\pi}{\sqrt{4+\pi^2}}\right) > 1$ 因此 $x \in [\arctan\frac{\pi}{2}, \frac{\pi}{2}]$ 时 $\sin\left(\tan x\right) < 1 < t$ 当 $x \in (0, \arctan\frac{\pi}{2})$ 时 $0 < \tan x < \frac{\pi}{2}$ 令 $f(x) = \tan\left(\sin x\right) - \sin\left(\tan x\right)$
$$f'(x) = \frac{\cos x}{\cos^2(\sin x)} - \frac{\cos\left(\tan x\right)}{\cos^2 x} = \frac{1}{\cos^2(\sin x)\cos^2 x}(\cos^3 x - \cos\left(\tan x\right)\cos^2(\sin x))$$
 其中 $\cos\left(\tan x\right)\cos^2(\sin x) \le \left(\frac{\cos\left(\tan x\right) + \cos\left(\sin x\right) + \cos\left(\sin x\right)}{3}\right)^3$ (均值不等式)
$$\le \cos^3\left(\frac{\tan x + 2\sin x}{3}\right) \quad (Jensen 不等式) < \cos^3 x \quad (注: \tan x + 2\sin x > 3x)$$
 因此 $f'(x) > 0$,又因为 $f(0) = 0 \Rightarrow f(x) > 0 \quad (0 < x < \arctan\frac{\pi}{2})$ 综上所述 $\sin\left(\tan x\right) < \tan\left(\sin x\right) \quad (0 < x < \frac{\pi}{2})$

 \triangleright

Q5:

设
$$f(x)$$
 在 (a,b) 可导, $\lim_{x\to a^+}f(x)=+\infty$ $\lim_{x\to b^-}f(x)=-\infty$ 且当 $x\in(a,b)$ 时 $f'(x)+f^2(x)\geq -1$ 证明: $b-a\geq\pi$

 \triangleleft

$$rac{d(\arctan f(x)+x)}{dx}=rac{f'(x)}{1+f^2(x)}+1\geq 0$$
 因此 $\arctan f(x)+x$ 在 (a,b) 单调增加所以 $rac{\pi}{2}+a\leq -rac{\pi}{2}+b\Rightarrow b-a\geq \pi$ $(f(x)=\cot x \ a=0,b=\pi$ 取等)

 \triangleright

Q6:

证明:
$$(\sin x)^{1-\cos 2x} + (\cos x)^{1+\cos 2x} \geq \sqrt{2}$$
 $(0 < x < \frac{\pi}{2})$

我们知道:
$$1-\cos x=2\sin^2 x, 1+\cos x=2\cos^2 x$$
 所以问题等价于证明: $(\sin^2 x)^{\sin^2 x}+(\cos^2 x)^{\cos^2 x}$ 令 $f(x)=x^x, x\in (0,1)$ $f'(x)=x^x(\ln x+1)$ $f''(x)=x^x(\ln x+1)^2+\frac{x^x}{x}>0$ 所以 $f(x)$ 是在 $(0,1)$ 的下凸函数 根据 $Jensen$ 不等式: $\frac{(\sin^2 x)^{\sin^2 x}+(\cos^2 x)^{\cos^2 x}}{2}\geq \frac{1}{2}$

Q7:

证明:
$$x - \frac{1}{x} < 2 \ln x \quad (0 < x < 1)$$
 $x - \frac{1}{x} > 2 \ln x \quad (x > 1)$

 \triangleleft

令
$$f(x) = x - \frac{1}{x} - 2\ln x, f'(x) = 1 + \frac{1}{x^2} - \frac{2}{x} = (1 - \frac{1}{x})^2 > 0$$
 $f(1) = 0$ 因此 $x - \frac{1}{x} < 2\ln x$ $(0 < x < 1)$ $x - \frac{1}{x} > 2\ln x$ $(x > 1)$

在上述不等式中令 $x=\sqrt{t}, t>0, t\neq 1$ 可以得到: $\dfrac{\ln t}{t-1}<\dfrac{1}{\sqrt{t}}$

特别地, 令 t=x+1, x>0,可以得到: $\ln{(1+x)}<\frac{x}{\sqrt{1+x}}$ 或 $\ln^2(1+\frac{1}{x})<\frac{1}{x(x+1)}$

 \triangleright

Q8:

求对任意正整数 n 使得不等式 $(1+rac{1}{n})^{n+lpha} \leq e \leq (1+rac{1}{n})^{n+eta}$ 成立的 lpha 的最大值和 eta 的最小值

 \triangleleft

不等式等价于:
$$\alpha \leq \frac{1}{\ln\left(1+\frac{1}{n}\right)} - n$$
 $\beta \geq \frac{1}{\ln\left(1+\frac{1}{n}\right)}$ $n \in \mathbb{N}^*$ 令 $f(x) = \frac{1}{\ln\left(1+\frac{1}{x}\right)} - x$ $x \in [1,+\infty)$ $f'(x) = \frac{1}{x(x+1)\ln^2(1+\frac{1}{x})} - 1 > 0$ (根据 $Q7$ 最后 则 $\alpha_{max} = \frac{1}{\ln 2} - 1$ $\beta_{min} = \lim_{n \to \infty} f(n) = \frac{1}{2}$

 \triangleright

09:

设
$$f(x)$$
 在 (a,b) 有二阶导数, $\lim_{x\to a^+} f(x) = \lim_{x\to +\infty} f(x) = 0$ 证明: 1. 存在 $x_n \in (a,+\infty)$: $\lim_{n\to \infty} x_n = +\infty, \lim_{n\to \infty} f'(x_n) = 0$ 2. 存在 $\xi \in (a,+\infty)$: $f''(\xi) = 0$

- 1. 由 Lagrange 中值定理: $f(a+n+1)-f(a+n)=f'(x_n)$ $x_n\in (a+n,a+n+1)$ n=1, 由于 $\lim_{x\to +\infty}f(x)=0$ 则 $\lim_{n\to \infty}f'(x_n)=0$
- 2. 若不存在 $\xi \in (a, +\infty)$: $f''(\xi) = 0$, 由 Darboux 定理可得 f''(x) 在 $(a, +\infty)$ 上不变号 不失一般性设 f''(x) > 0, $x \in (a, +\infty)$, 则 f'(x) 在 $(a, +\infty)$ 严格单调增加, 由于 $\lim_{n \to \infty} f'(x_n) = 0 \Rightarrow f$ 故 f(x) 严格单调减少, 这与 $\lim_{x \to a^+} f(x) = \lim_{x \to +\infty} f(x) = 0$ 矛盾, 故存在 $\xi \in (a, +\infty)$: $f''(\xi) = 0$