Évolution spontanée d'un système chimique

I. Système chimique à l'état final

A. Transformation totale et non totale

1. Transformation totale

Lors d'une transformation totale, on a $x_f = x_{\text{max}}$ avec x_f l'avancement final. On représente l'équation chimique par une flèche \rightarrow .

2. Transformation non-totale / partielle / limitée

Lors d'une transformation partielle, on a $x_f < x_{\rm max}$. Lorsque la réaction se "termine", il reste encore une partie des réactifs. Les réactifs et les produits coexistent. La réaction a trouvé un état d'équilibre où les quantités de matière n'évoluent plus.

On représente l'équation chimique par une double flèche \rightleftharpoons .

* La réaction peut se faire dans les 2 sens. Cela veut dire qu'au niveau macroscopique, on observe un équilibre dynamique car les molécules réagissent simultanément dans les deux sens. Les concentrations globales (réactifs, produits) n'évoluent plus.

B. Vitesse volumique

Soit l'équation chimique:

$$aA + bB \stackrel{1}{\rightleftharpoons} cC + dD$$

On parle de sens direct (1) lorsque la réaction se fait de gauche à droite, i.e. disparition des réactifs. La vitesse volumique de disparition des réactifs a pour relation :

$$v_{\rm disp} = -\frac{d[A]}{dt}$$

Par rapport à A, on parle de sens indirect (2) lorsque la réaction chimique évolue de droite à gauche, i.e. apparition des réactifs. La vitesse volumique d'apparition des réactifs a pour relation :

$$v_{\rm app} = +\frac{d[A]}{dt}$$

C) Taux d'avancement final τ_f

On a:

$$\tau_f = \frac{\tau_f}{\tau_{\text{max}}}$$
 avec τ_{max} l'avancement maximal théorique.

Si $\tau_f=1$ alors la transformation est totale. Si $\tau_f<1$ alors la transformation est partielle.

II. Évolution d'un système chimique

A. L'activité d'une espèce chimique α

L'activité α d'une espèce chimique A est une grandeur sans dimension qui est définie selon l'état physique de l'espèce chimique A dans un mélange.

- Si A est solide/solvant alors $\alpha(A) = 1$
- Si A est un soluté [ion] alors $\alpha(A) = \frac{[A]}{c^0}$ avec $c^0 = 1$ mol·L⁻¹

B. Quotient de réaction Q_r

On a:

$$Q_r = \frac{\alpha(C)^c \times \alpha(D)^d}{\alpha(A)^a \times \alpha(B)^b}$$

Si A, B, C et b sont des ions, on peut écrire à l'instant t :

$$Q_{r,t} = \frac{[C]_t^c \times [D]_t^d}{[A]_t^a \times [B]_t^b}$$

C. Constante d'équilibre

$$Q_{\text{réac}} = Q_{\text{r,f}} = K(T)$$

La constante d'équilibre K(T) est propre à chaque réaction chimique qui dépend uniquement de la température en Kelvin K.

D. Évolution spontanée d'un équilibre

- Si $Q_{\rm r,t} < K(T)$ alors la réaction chimique va dans le sens direct (1) jusqu'à ce que $Q_{\rm r,t} = K(T)$.
- Si $Q_{r,t} > K(T)$ alors la réaction chimique va dans le sens indirect (2).
- Si $Q_{r,t} = K(T)$ alors on est dans un équilibre dynamique.

E. Les piles électrochimiques

A. Rappels sur les réactions d'oxydoréduction

- Un oxydant est une espèce chimique capable de gagner un électron e^- .
- Un réducteur est une espèce chimique capable de perdre un e^- .

On a le couple : Ox/Red.

La demi-équation :

$$Ox + ne^- \rightleftharpoons Red.$$

- Si $Ox + ne^- \rightarrow Red$ alors on a une réduction.
- Si Red \rightarrow Ox + ne^- alors on a une oxydation.

B. Pour deux couples pour une réaction d'oxydoréduction

$$\frac{Ox_1/Red_1}{Ox_2/Red_2}$$
 \Rightarrow $Ox_1 + Red_2 \rightarrow Ox_2 + Red_1$

B) Composition d'une pile électrochimique

Une pile électrochimique est constituée de deux compartiments séparés appelés demi-piles reliés par un pont salin conducteur. Chaque demi-pile est constituée d'une électrode et d'un électrolyte contenant des espèces conductrices. Elle doit contenir les espèces conjuguées d'un même couple d'oxydo-réduction. Pour un couple d'oxydo-réduction ion métallique / métal, le métal constitue l'électrode de la demi-pile et l'ion métallique est présent dans l'électrolyte.

C) Fonctionnement d'une pile électrochimique

L'anode est la borne moins de la pile et correspond à l'endroit où une oxydation se déroule. La cathode est la borne plus de la pile et correspond à l'endroit où une réduction se produit.

Astuce: Anode débute par une voyelle comme oxydation.

À l'inverse, cathode et réduction commencent par une consonne.

D) Étude quantitative de la pile

La capacité $Q_{\rm pile}$ d'une pile correspond à la charge électrique qui circule pendant la durée complète de son fonctionnement, de son état initial jusqu'à son usure.

On a:

$$Q_{\text{pile}} = I \times \Delta t$$
 où Q_{pile} est en Coulomb (C)

ou

 $Q_{\rm pile} = n(e^-) \times e \times N_A$ avec e la charge élémentaire $1, 6 \times 10^{-19}\,{\rm C}$ et N_A la constante d'Avogadro $6, 02 \times 10^{23}\,{\rm mol}^{-1}$ ou

$$Q_{\text{pile}} = n \, (e^{-}) \times F$$
 avec F la constante de Faraday $96\,320\,\text{C}\,\text{mol}^{-1}$

 $n(e^{-})$ est la quantité de matière d'électrons échangés en mole.