Linear Models II

BIOE 210

Review: A noisy linear system

x ^{true}	y ^{true}
0.07	-0.05
0.16	0.40
0.48	0.66
0.68	0.65
0.83	1.12

A matrix formalism for linear models

Let's write out one equation for each observation of the model $y = \beta_0 + \beta_1 x$.

$$-0.05 = \beta_0 + 0.07\beta_1 + \epsilon_1$$

$$0.40 = \beta_0 + 0.16\beta_1 + \epsilon_2$$

$$0.66 = \beta_0 + 0.48\beta_1 + \epsilon_3$$

$$0.65 = \beta_0 + 0.68\beta_1 + \epsilon_4$$

$$1.12 = \beta_0 + 0.83\beta_1 + \epsilon_5$$

A matrix formalism for linear models

Let's write out one equation for each observation of the model $y = \beta_0 + \beta_1 x$.

$$-0.05 = \beta_0 + 0.07\beta_1 + \epsilon_1$$

$$0.40 = \beta_0 + 0.16\beta_1 + \epsilon_2$$

$$0.66 = \beta_0 + 0.48\beta_1 + \epsilon_3$$

$$0.65 = \beta_0 + 0.68\beta_1 + \epsilon_4$$

$$1.12 = \beta_0 + 0.83\beta_1 + \epsilon_5$$

$$\begin{pmatrix} -0.05 \\ 0.40 \\ 0.66 \\ 0.65 \\ 1.12 \end{pmatrix} = \begin{pmatrix} 1 & 0.07 \\ 1 & 0.16 \\ 1 & 0.48 \\ 1 & 0.68 \\ 1 & 0.83 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \end{pmatrix}$$

A matrix formalism for linear models

Let's write out one equation for each observation of the model $y = \beta_0 + \beta_1 x$.

$$-0.05 = \beta_0 + 0.07\beta_1 + \epsilon_1$$

$$0.40 = \beta_0 + 0.16\beta_1 + \epsilon_2$$

$$0.66 = \beta_0 + 0.48\beta_1 + \epsilon_3$$

$$0.65 = \beta_0 + 0.68\beta_1 + \epsilon_4$$

$$1.12 = \beta_0 + 0.83\beta_1 + \epsilon_5$$

$$\begin{pmatrix} -0.05 \\ 0.40 \\ 0.66 \\ 0.65 \\ 1.12 \end{pmatrix} = \begin{pmatrix} 1 & 0.07 \\ 1 & 0.16 \\ 1 & 0.48 \\ 1 & 0.68 \\ 1 & 0.83 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \end{pmatrix}$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Solving the linear system

A few points about $\mathbf{y} = \mathbf{X}\beta + \epsilon$:

- ▶ The unknowns are β , not **X**.
- ► The coefficient matrix X is called the design matrix.
- ► The design matrix **X** is rarely square.

Solving the linear system

A few points about $\mathbf{y} = \mathbf{X}\beta + \epsilon$:

- ▶ The unknowns are β , not **X**.
- ▶ The coefficient matrix **X** is called the *design matrix*.
- ► The design matrix **X** is rarely square.

The solution to this system that minimizes the errors in ϵ is

$$\beta = \mathbf{X}^+ \mathbf{y}$$

where \mathbf{X}^+ is the *pseudoinverse* of \mathbf{X} .

The intercept

The linear model

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \epsilon$$

has intercept (or *grand mean*) β_0 .

The intercept

The linear model

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \epsilon$$

has intercept (or *grand mean*) β_0 .

Really, we should write the model as

$$\mathbf{y} = \beta_0 \mathbf{1} + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \epsilon.$$

The intercept

The linear model

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \epsilon$$

has intercept (or *grand mean*) β_0 .

Really, we should write the model as

$$\mathbf{y} = \beta_0 \mathbf{1} + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \epsilon.$$

Or, in vector form

$$\mathbf{y} = \begin{pmatrix} \mathbf{1} & \mathbf{x}_1 & \mathbf{x}_2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} + \epsilon.$$

If we wanted to fit a model without an intercept, we would write

$$\mathbf{y} = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \epsilon.$$

If we wanted to fit a model without an intercept, we would write

$$\mathbf{y} = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \epsilon.$$

Why would we not want an intercept?

• When all inputs $\mathbf{x}_i = 0$, the response $y = \beta_0$.

If we wanted to fit a model without an intercept, we would write

$$\mathbf{y} = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \epsilon.$$

Why would we not want an intercept?

- When all inputs $\mathbf{x}_i = 0$, the response $y = \beta_0$.
- If we know our system has zero response without an input, we don't include an intercept.

If we wanted to fit a model without an intercept, we would write

$$\mathbf{y} = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \epsilon.$$

Why would we not want an intercept?

- When all inputs $\mathbf{x}_i = 0$, the response $y = \beta_0$.
- If we know our system has zero response without an input, we don't include an intercept.
- This is rare, so most models include an intercept.

Prediction vs. Inference

Prediction uses a model to find the response of inputs we've never seen before.

Inference uses a model to understand what inputs determine the response.

Our training data include a design matrix \mathbf{X} and a vector of responses \mathbf{y} . Each has n observations (rows).

Our training data include a design matrix \mathbf{X} and a vector of responses \mathbf{y} . Each has n observations (rows).

We fit the model $\mathbf{y} = \mathbf{X}\beta + \epsilon$ to find the best parameters β .

Our training data include a design matrix **X** and a vector of responses **y**. Each has *n* observations (rows).

We fit the model $\mathbf{y} = \mathbf{X}\beta + \epsilon$ to find the best parameters β .

We feed the training data back into the model to find the residuals:

$$\epsilon = \mathbf{y} - \mathbf{X}\boldsymbol{\beta}$$

$$= \mathbf{y}^{\text{true}} - \mathbf{y}^{\text{pred}}$$

Our training data include a design matrix \mathbf{X} and a vector of responses \mathbf{y} . Each has n observations (rows).

We fit the model $\mathbf{y} = \mathbf{X}\beta + \epsilon$ to find the best parameters β .

We feed the training data back into the model to find the residuals:

$$\epsilon = \mathbf{y} - \mathbf{X}\boldsymbol{\beta}$$

$$= \mathbf{y}^{\text{true}} - \mathbf{y}^{\text{pred}}$$

We quantify the accuracy using the *root mean squared error* of the residuals.

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(y_i^{\text{true}} - y_i^{\text{pred}} \right)^2}$$

A model's predictions should be reported \pm the RMSE.

A model's predictions should be reported \pm the RMSE.

The 95% confidence interval of a prediction is $\pm 2 \times RMSE$.

A model's predictions should be reported \pm the RMSE.

The 95% confidence interval of a prediction is $\pm 2 \times RMSE$.

Example: A model to predict pulse rate has RMSE of 12 bpm. If the model predicts 68 bpm for a patient, the 95% confidence interval is

$$[68 - 2 \times 12, 68 + 2 \times 12] = [44, 92]$$
 bpm

A model's predictions should be reported \pm the RMSE.

The 95% confidence interval of a prediction is $\pm 2 \times RMSE$.

Example: A model to predict pulse rate has RMSE of 12 bpm. If the model predicts 68 bpm for a patient, the 95% confidence interval is

$$[68 - 2 \times 12, 68 + 2 \times 12] = [44, 92]$$
 bpm

Remember: If you transformed your model, the RMSE will be in the transformed units!

Model inference involves asking two questions about each of the models inputs.

- 1. How large of an effect does this input have on the output?
- 2. How confident are we in our estimate of this effect?

Model inference involves asking two questions about each of the models inputs.

- 1. How large of an effect does this input have on the output?
- 2. How confident are we in our estimate of this effect?

Consider the two input model

$$\mathbf{y} = 1.2 - 3.6\mathbf{x}_1 + 0.8\mathbf{x}_2 + \epsilon.$$

Model inference involves asking two questions about each of the models inputs.

- 1. How large of an effect does this input have on the output?
- 2. How confident are we in our estimate of this effect?

Consider the two input model

$$\mathbf{y} = 1.2 - 3.6\mathbf{x}_1 + 0.8\mathbf{x}_2 + \epsilon.$$

The parameters –3.6 and 0.8 are called *effect sizes*.

Model inference involves asking two questions about each of the models inputs.

- 1. How large of an effect does this input have on the output?
- 2. How confident are we in our estimate of this effect?

Consider the two input model

$$y = 1.2 - 3.6x_1 + 0.8x_2 + \epsilon$$
.

The parameters -3.6 and 0.8 are called *effect sizes*.

- ▶ A unit change in variable x₁ would decrease the response by 3.6 units.
- ► A unit change in **x**₂ would *increase* the response by 0.8 units.

How sure are we of the effect sizes?

$model2 = fitlm(tbl, 'y \sim x^2')$

```
model2 =
Linear regression model:
y \sim 1 + x + x^2
```

Estimated Coefficients:

	Estimate	SE	tStat	pvalue
(Intercept) x x^2	0.33485 1.3816 1.0595	8.0944 2.3069 0.14057	0.041369 0.59887 7.537	0.96709 0.55065 2.5514e-11

Number of observations: 100, Error degrees of freedom: 97 Root Mean Squared Error: 20.9

R-squared: 0.932, Adjusted R-Squared 0.931

F-statistic vs. constant model: 667, p-value = 2.1e-57

What does this *p*-value mean?

- ► A low *p*-value indicates that an effect of this size was unlikely to occur randomly.
- It also means the confidence interval excludes zero, so we reject the hypothesis that the true effect is zero.

What does this *p*-value mean?

- ► A low *p*-value indicates that an effect of this size was unlikely to occur randomly.
- It also means the confidence interval excludes zero, so we reject the hypothesis that the true effect is zero.
- It does not mean that the effect is practically significant or important. (That's up to the effect size.)

RESEARCH ARTICLE

Marital satisfaction and break-ups differ across on-line and off-line meeting venues

John T. Cacioppo, Stephanie Cacioppo, Gian C. Gonzaga, Elizabeth L. Ogburn, and Tyler J. VanderWeele

PNAS June 18, 2013 110 (25) 10135-10140; https://doi.org/10.1073/pnas.1222447110

For respondents categorized as currently married at the time of the survey, we examined marital satisfaction. Analyses indicated that currently married respondents who met their spouse on-line reported higher marital satisfaction (M = 5.64, SE = 0.02, n = 5,349) than currently married respondents who met their spouse off-line (M = 5.48, SE = 0.01, n = 12,253; mean difference = 0.18, $F_{(1,17,601)} = 46.67$, P < 0.001).

Interactions

Imagine we're modeling the response (y) from two input variables, \mathbf{x}_1 and \mathbf{x}_2 . The simplest model is

$$y = \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \epsilon$$

Interactions

Imagine we're modeling the response (y) from two input variables, \mathbf{x}_1 and \mathbf{x}_2 . The simplest model is

$$y = \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \epsilon$$

The coefficient β_1 measures the effect of \mathbf{x}_1 and β_2 measures the effect of \mathbf{x}_2 . These effects are **independent**.

Interactions

Imagine we're modeling the response (y) from two input variables, \mathbf{x}_1 and \mathbf{x}_2 . The simplest model is

$$y = \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \epsilon$$

The coefficient β_1 measures the effect of \mathbf{x}_1 and β_2 measures the effect of \mathbf{x}_2 . These effects are **independent**.

What is there is another effect that depends on both \mathbf{x}_1 and \mathbf{x}_2 ? This is an **interaction** between \mathbf{x}_1 and \mathbf{x}_2 .

How do we model interactions?

We model the interaction of \mathbf{x}_1 and \mathbf{x}_2 using the product of these variables.

$$y = \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \beta_{12} \mathbf{x}_1 : \mathbf{x}_2 + \epsilon$$

The coefficient β_{12} is the effect size of the interaction.

How do we model interactions?

We model the interaction of \mathbf{x}_1 and \mathbf{x}_2 using the product of these variables.

$$y = \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \beta_{12} \mathbf{x}_1 : \mathbf{x}_2 + \epsilon$$

The coefficient β_{12} is the effect size of the interaction.

Why do we multiply \mathbf{x}_1 and \mathbf{x}_2 ? There are at least two ways to interpret this term.

The coded factor interpretation

Often we set up design matrices using **coded variables**. If we're testing the variable at two levels, we code the variable as "on/off" $(\{0,1\})$ or "low/high" $(\{-1,+1\})$.

The coded factor interpretation

Often we set up design matrices using **coded variables**. If we're testing the variable at two levels, we code the variable as "on/off" $(\{0,1\})$ or "low/high" $(\{-1,+1\})$.

on/off → interaction when both "on"

\mathbf{x}_1	\mathbf{x}_2	$\mathbf{X}_1:\mathbf{X}_2$
0	0	0
0	1	0
1	0	0
1	1	1

The coded factor interpretation

Often we set up design matrices using **coded variables**. If we're testing the variable at two levels, we code the variable as "on/off" $(\{0,1\})$ or "low/high" $(\{-1,+1\})$.

on/off \rightarrow interaction when both "on"

\mathbf{x}_1	\mathbf{x}_2	X ₁ : X ₂
0	0	0
0	1	0
1	0	0
1	1	1

high/low → interaction when both "high" or both "low"

\mathbf{x}_1	\mathbf{x}_2	x ₁ : x ₂
-1	-1	+1
-1	+1	-1
+1	-1	-1
+1	+1	+1

The augmented slope interpretation

We can also interpret the interaction as one variable changing the effect of the other variable.

$$y = \beta_{1}\mathbf{x}_{1} + \beta_{2}(\mathbf{x}_{1}):\mathbf{x}_{2} + \epsilon$$

$$= \beta_{1}\mathbf{x}_{1} + (\beta_{2} + \beta_{12}\mathbf{x}_{1}):\mathbf{x}_{2} + \epsilon$$

$$= \beta_{1}\mathbf{x}_{1} + \beta_{2}\mathbf{x}_{2} + \beta_{12}\mathbf{x}_{1}:\mathbf{x}_{2} + \epsilon$$

Things to remember about interactions

- Interaction are modeled as the product of variables.
- ► The interaction effect is "above and beyond" the independent effects (synergy/super-additivity, antagonism/sub-additivity).
- ► Higher-order interactions are possible (e.g. $\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3$), but these are rare.