

Reproducible Research Using RMarkdown

Basic Statistics with R for Biomedical Research

UEB – VHIR

Miriam Mota-Foix

Miriam.mota@vhir.org

Why Rmarkdown?

- Reproducbility (With one click, literally)
- Organization
- •Share-ability (easily share or publish knitted files to HTML/RPubs)
- •Annotate-ability (now I'm just making these up... Markdown makes it easy to annotate your code)
- •Insert chunks of Python, Bash, SQL code

Workflow

Open an Rmd File

Choose output

Rmarkdown Example

```
title: "Example Rmarkdown"
author: "MMF'
date: "29/9/2020"
output: html_document
 ```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
R Markdown
This is an R Markdown document. Markdown is a simple formatting synt
<http://rmarkdown.rstudio.com>.
When you click the **Knit** button a document will be generated that
document. You can embed an R code chunk like this:
 ```{r cars}
summary(cars)
## Including Plots
You can also embed plots, for example:
 ```{r pressure, echo=FALSE}
plot(pressure)
Note that the 'echo = FALSE' parameter was added to the code chunk t
```

## Example Rmarkdown

MMF 29/9/2020

#### R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```
speed dist
Min. : 4.0 Min. : 2.00
1st Qu.:12.0 1st Qu.: 26.00
Median: 15.0 Median: 36.00
Mean : 15.4 Mean : 42.98
3rd Qu.:19.0 3rd Qu.: 56.00
Max. : 25.0 Max. : 120.00
```

#### **Including Plots**

You can also embed plots, for example:





# **Descriptive Statistics: Summaries and Graphs**

Basic Statistics with R for Biomedical Research

UEB - VHIR

Miriam Mota-Foix and Santiago Pérez-Hoyos Miriam.mota@vhir.org santi.perezhoyos@vhir.org



















### Index

- 1. INTRODUCTION. ANALYSIS STRATEGY
- 2. VARIABLES CLASSIFICATION
- 3. SUMMARY MEASURES
  - 1. Measures of location/central tendency
  - 2. Measures of variability/dispersion
- 4. SUMMARY OF VARIABLES
  - 1. Contingency Tables
  - 2. Graphs
- 5. Examples & exercises





## Index

- 1. INTRODUCTION. ANALYSIS STRATEGY
- 2. VARIABLES CLASSIFICATION
- 3. SUMMARY MEASURES
  - 1. Measures of location/central tendency
  - 2. Measures of variability/dispersion
- 4. SUMMARY OF VARIABLES
  - 1. Contingency Tables
  - 2. Graphs
- 5. Examples & exercises



### GENERAL CONCEPTS



- Population: It represents the largest group of individuals who want to study and generally usually inaccessible.
- Sample: Subset of the population in which measurements are done. This sample should be representative of the original population (any individual has equal opportunity to be selected).
- Variable: Feature measurable and observable that represents a concept of study
- **Measure:** Procedure for assign quantitative or qualitative values to the characteristics of objects, people or events. If these procedures are not well measured the validity of the results is not guaranteed.





### STEPS IN A STATISTICAL STUDY ANALSYIS

#### 1. Make hypothesis about a population

#### 2. Decide which data collect (Experimental design)

- Which individuals will be part of the study (samples)
- Which data must be collected for each individual (variables)

#### 3. Collect Data

#### 4. Describe (summarize) collected data

- Summary measures and graphs
- Point estimations and confidence intervals

#### 5. Establish relations between two variables

- Set up Statistical Hypothesis test
- Check application conditions
- Calculate intensity relationship measures

#### 6. Multivariable analysis . Modelling

- Consider effects of several variables on an outcome
- Regression models
- More complex models





## Index

- 1. INTRODUCTION. ANALYSIS STRATEGY
- 2. VARIABLES CLASSIFICATION
- 3. SUMMARY MEASURES
  - 1. Measures of location/central tendency
  - 2. Measures of variability/dispersion
- 4. SUMMARY OF VARIABLES
  - 1. Contingency Tables
  - 2. Graphs
- 5. Examples & exercicis







# **QUALITATIVE NOMINAL**

Event of interest

**Conceptual** definition

**Operational Definition** 

Measure qualities of an individual

**Examples: Sex, Treatment, Disease** 

#### **ORDINAL**

Measure qualities but they are ordered

**Examples: Educational level, Stage, Severity** 

#### **QUANTITATIVE**

#### DISCRETE

Take only a finite possible values

**Examples:** No of admissions, No of programmed visits

#### **CONTINOUS**

Can take an infinite number of values. Between two measures always can be another

**Example: Stay time, Age, Cholesterol level** 





## Variable classification in a Study

### Response, dependent or outcome variable

One that answer the research question

### • Explain, independent or exposure variables

 They are those that are related to the causes of the events we want to study

#### Confounding or effect modifier variables

 Are those that can affect the relation between exposure and outcome variables

#### Universal variables

 Are those that can be exposures or confounders that always have to be considered. For example: sex, age, residence location, ethnic, etc.





## Descriptive analysis

- Data have to be organized to be useful (frequency or contingency tables)
- Graph data before calculating summary measures
- This actions can help to:
  - Select the **best summary** measure
  - Transform variables
  - Detect outliers





## Index

- 1. INTRODUCTION. ANALYSIS STRATEGY
- 2. VARIABLES CLASSIFICATION
- 3. SUMMARY MEASURES
  - 1. Measures of location/central tendency
  - 2. Measures of variability/dispersion
- 4. SUMMARY OF VARIABLES
  - 1. Contingency Tables
  - 2. Graphs
- 5. Examples & exercises





## Quantitative Variables

- We have a new variable (i.e. a biomarker and we want to summarize information)
  - Around which values is the variable?
  - Values vary greatly between different individuals
  - Data are grouped or not





## Summary Measures

- Location
  - Mean
  - Median
  - Mode
- Dispersion
  - Range (Maximum-Minimum)
  - Variance
  - Standard Deviation
  - Variation Coefficient
  - Percentile
  - Interquartile range (IQR) or Interquartile interval
- Shape
  - Asymmetry
  - Kurtosis







```
days19 <- c(3, 4, 6, 9, 12)
days19
days20 <- c(3, 4, 6, 9, 20)
days20</pre>
```

```
> days19 <- c(3, 4, 6, 9, 12)
> days19
[1] 3 4 6 9 12
> days20 <- c(3, 4, 6, 9, 20)
> days20
[1] 3 4 6 9 20
```





## Location measures



Mean

Median

Mode

## Mean



μ

- Useful to locate data.
- •Is the **sum** of observed values **over sample size**
- Can be altered by extreme values

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

## **Example Stay days**



### Median



- Is the point that divied in two parts the observations
- Observations are ordered from lowest to highest and median is the central point
- It is not altered by extreme observations







## Example: Location measures

#### CODE:

mean (days19)

mean (days20)

median (days19)

median (days20)

#### RESULT:

```
> mean(days19)
[1] 6.8
> mean(days20)
[1] 8.4
> median(days19)
[1] 6
> median(days20)
[1] 6
```

Vall d'Hebron Transplant study: Mean or Median





### Mode



- The most frequent value
- May be not unique
- In a quantitative variable is the maximum values of an histogram



Determinaciones de socio





# Dispersion or variability measures



Range (Maximum-Minimum)

Variance

Standard Deviation

Variation Coefficient

Percentile

Interquartile Range (IQR)



## Range



- Simplest measure of dispersion
- Is the difference between maximum and minimum value of the observations





### Variance



 Mean difference of observations from mean in squared scale





## Standard Deviation



- Squared root of the variance
- It is measured in the same units than the variable

#### **Example Stay days**

3, 4, 6, 9, 12 Variance =10.96

**Std. Dev.=3.31** 

3, 4, 6, 9, 20 Variance= 37.84

**Std. Dev.= 6.15** 





# Same mean, different variances







# Same variances, different means







## Coefficient of Variation (CV)

- It is the ratio between standard deviation and mean
- Allows to compare the variability of variables measured in different scales

#### **Example Stay Days**

3, 4, 6, 9, 12 Std. Dev.= 3.31

Mean = 6.8

**Variation Coef.= 0.49** 

3, 4, 6, 9, 20 Std. Dev. = 6.15

**Mean = 8.4** 

**Variation Coef.= 0.73** 



### Percentiles



- Observations are ranked from minimum to maximum and the point that leaves below p% of observations is selected
- There are some special percentiles
  - Deciles are percentiles 10, 20, 30, 40, 50, 60, 70, 80, 90
  - Quartiles are percentiles 25, 50, 75
  - Quintiles are percentiles 20,40, 60,80
  - They are not affected by extreme observations
  - Interquartile range is difference between 25 and 75 percentile





# Example: Variability measures

#### CODE:

var (days19)

var (days20)

sd (days19)

sd (days20)

sd(days19)/mean(days19)

sd(days20)/mean(days20)

quantile (days19)

quantile (days20)

#### RESULT:

```
> var(days20)
[1] 47.3
> sd(days19)
[1] 3.701351
> sd(days20)
[1] 6.8775
> sd(days19)/mean(days19)
[1] 0.5443163
> sd(days20)/mean(days20)
[1] 0.8187499
> quantile(days19)
 0%
 50%
 75% 100%
 12
> quantile(days20)
 25%
 50% 75% 100%
 6
 20
```





# Summary measures in R

CODE:

summary(days19)

summary(days20)

RESULT:

```
> summary(days19)
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.0 4.0 6.0 6.8 9.0 12.0
> summary(days20)
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.0 4.0 6.0 8.4 9.0 20.0
```





## Syllabus

- 1. INTRODUCTION. ANALYSIS STRATEGY
- 2. VARIABLES CLASSIFICATION
- 3. SUMMARY MEASURES
  - 1. Measures of location/central tendency
  - 2. Measures of variability/dispersion
- 4. SUMMARY OF VARIABLES
  - 1. Contingency Tables
  - 2. Graphs
- 5. Examples & exercises





# Summary of variables

Frequency tables and graphs are two equivalent ways to present information. Both expose in an ordered way the collected data.a.



Género	Frec.
Hombre	4
Mujer	6







## Frequency table



### NÚMERO DE HIJOS ENTRE MUJERES DE 20 Y 30 AÑOS

NÚMERO DE HIJOS	Frecuencia Absoluta (f <sub>i</sub> )	Frecuencia Relativa (fr <sub>i</sub> )	Frecuencia Acumulada (F <sub>i</sub> )	Frecuencia Relativa Acumulada (Fr <sub>i</sub> )
0	175	0'35	175	0'35
1	225	0'45	400	0'80
2	75	0'15	475	0'95
3 o más	25	0'05	500	1'00
TOTAL	500	1'00	500	1'00





Cate go ries

#### NÚMERO DE HIJOS ENTRE MUJERES DE 20 Y 30 AÑOS

NÚMERO DE HIJOS	Frecuencia Absoluta (f <sub>i</sub> )	Frecuencia Relativa (fr <sub>i</sub> )	Frecuencia Acumulada (F <sub>i</sub> )	Frecuencia Relativa Acumulada (Fr <sub>i</sub> )
0	175	0'35	175	0'35
1	225	0'45	400	0'80
2	75	0'15	475	0'95
3 o más	25	0'05	500	1'00
TOTAL	500	1'00	500	1'00



## Taula de Frequencia



No of subjects by category

RE MUJERES DE 20 Y 30 AÑOS

Cate go ries

NÚMERO DE HIJOS	Frecuencia Absoluta (f <sub>i</sub> )	Frecuencia Relativa (fr <sub>i</sub> )	Frecuencia Acumulada (F <sub>i</sub> )	Frecuencia Relativa Acumulada (Fr <sub>i</sub> )
0	175	0'35	175	0'35
1	225	0'45	400	0'80
2	75	0'15	475	0'95
3 o más	25	0'05	500	1'00
TOTAL	500	1'00	500	1'00





Percentage of subjects Freq /Total

No of subjects by category

RE MUJERES DE 20 Y 30 AÑOS

Cate go ries

NÚMERO DE HIJOS	Frecuencia Absoluta (fi)	Frecuencia Relativa (fr <sub>i</sub> )	Frecuencia Acumulada (F <sub>i</sub> )	Frecuencia Relativa Acumulada (Fr <sub>i</sub> )
0	175	0'35	175	0'35
1	225	0'45	400	0'80
2	75	0'15	475	0'95
3 o más	25	0'05	500	1'00
TOTAL	500	1'00	500	1'00



UNITAT D'ESTADÍSTICA I BIOINFORMÀTICA

Percentage of subjects Freq /Total

Nº of subjects by category

RE MUJERES DE 20 Y 30 AÑOS

Cate go ries

NÚMERO DE	Frecuencia	Frecuencia	Frecuencia	Frecuencia
HIJOS	Absoluta (f;)	Relativa (fr <sub>i</sub> )	Acumulada (F <sub>i</sub> )	Relativa Acumulada (Fr <sub>i</sub> )
<u>-</u>				, ,
0	175	0'35	175	0'35
1	225	0'45	400	0'80
2	75	0'15	475	0'95
3 o más	Nº accumulated subects up to category (Only ordinal or discrete variables)		500	1'00
TOTAL			500	1'00





Percentage of subjects Freq /Total

Nº of subjects by category

RE MUJERES DE 20 Y 30 AÑOS

Cate (go ries

NÚMERO DE HIJOS	Frecuencia Absoluta	Frecuencia Relativa	Frecuencia Acumulada	Frecuencia Relativa
	<b>(f</b> )	(fr <sub>i</sub> )	(F <sub>i</sub> )	Acumulada (Fr <sub>i</sub> )
0	175	0'35	175	0'35
1	225	0'45	400 °	080
2	75	0'15	<del>2</del> 475	0,80

3 o más

TOTAL

Nº accumulated subects up to category (Only ordinal or discrete variables)

500

500

Accumulated Frequency up to category Freq Abs/Total



# Example: Frequency table

```
CODE:
grupo <- factor(c("A",</pre>
"A", "B", "B", "A", "C", "C",
"A", "B"))
table (grupo)
library (gmodels)
CrossTable (grupo)
```

#### RESULT:

```
> table(grupo)
grupo
A B C
4 3 2
> library(gmodels)
> CrossTable(grupo)

Cell Contents
|------|
| N |
| N / Table Total |
|-----|
| Total Observations in Table: 9

| A | B | C |
|-----|
| 4 | 3 | 2 |
| 0.444 | 0.333 | 0.222 |
```

D'ESTADÍSTICA I BIOINFORMÀTICA





### Dataset osteoporosis

osteo <- read.delim2("/osteoporosis.csv")</pre>



#All dataset summary(osteo)

# quantitative variable
mean(osteo\$edad)
sd(osteo\$edad)
median(osteo\$edad)
IQR(osteo\$edad)

# qualitative variable
library(gmodels)
CrossTable(osteo\$grupedad)





## Bar Graph

- Categorys are representened in X axis and frequencies in Y axis
- For comparing two population better use relative frequencies







## Example. Bar Graph

```
CODE:
```

```
require(ggplot2)
ggplot(data = osteo) +
```

geom\_bar(mapping = aes(x = nivel\_ed))

#### RESULT:





# Histogram









#### CODE:

$$geom_histogram(mapping = aes(x = peso))$$





# Boxplot



It is graphically represented the "five numbers": box are 25th and 75th percentiles, the middle line is the median (50th percentile) and the ends are the minimum and maximum values.







#### CODE:

geom\_boxplot()

**RESULT:** 







### Index

- 1. INTRODUCTION. ANALYSIS STRATEGY
- 2. VARIABLES CLASSIFICATION
- 3. SUMMARY MEASURES
  - 1. Measures of location/central tendency
  - 2. Measures of variability/dispersion
- 4. SUMMARY OF VARIABLES
  - 1. Contingency Tables
  - 2. Graphs
- 5. Examples & exercises



#### Exercise



#### - Import diabetes.sav

BMI (Body mass index) of 149 patients ->

 $SD_{BMI} =$   $SD_{BMI} =$   $SD_{SPB} =$ 

SPB(Diastolic Pression Blood) of 149 patients →

Which variable have more variation? BMI or SPB

Calculate CV 
$$\begin{cases} CV_{BMI} = \% \\ CV_{SPB} = \% \end{cases}$$

- Create a boxplot with BMI
- Resume "MORT" variable. Create a frequency table and a barplot.