Rodina protokolů TCP/IP

ı. 2.7

Katedra softwarového inženýrství, Matematicko-fyzikální fakulta, Univerzita Karlova, Praha

Rodina protokolů TCP/IP, verze 2.7

Část 4: Systém DNS

Jiří Peterka, 2011

proč DNS?

- k jednoznačné identifikaci uzlů a pro fungování přenosových mechanismů stačí IP adresy
 - ale jsou málo mnemonické
 - v některých speciálních situacích a pro některé účely nepostačují
 - aliasy
 - dynamicky přidělované IP adresy
 - pro některé účely nejsou vhodné
 - když je potřeba "oslovit" poskytovatele určité služby, ne konkrétní uzel
 - pro flexibilní doručování elektronické pošty ("na doménu")
 - když hrozí přečíslování
 - nevypovídají nic o povaze/určení/umístění uzlu
 - 195.113.19.213 vs. ksi.ms.mff.cuni.cz

- DNS je řešení, které umožňuje používat symbolická jména místo číselných adres
 - DNS = Domain Name System
- zahrnuje:
 - pravidla pro tvorbu jmen a fungování celého systému
 - založená na principu domén
 - databázi symbolických jmen a jim odpovídající číselných adres
 - dnes i dalších údajů
 - převodní mechanismy
 - pro převod mezi symbolickými doménovými jmény a číselnými adresami
 -

původní řešení (před DNS)

- symbolická jména pro uzly se používala již v zárodečném ARPANETu
 - a zastupovala jejich číselné adresy
- řešení:
 - existovala centrální autorita, která vedla evidenci symbolických jmen a převodní tabulku
 - ve stylu: UCLA=193.34.56.78
 - zajišťovala všechny aktualizace
 - distribuovala tuto tabulku všem zájemcům
 - ve formě souboru HOSTS
 -

1981-1985

- symbolická jména mohla být "jednorozměrná"
 - nemusela být členěna na části/složky
- celé to mohlo fungovat pouze při velmi malém počtu uzlů a malé frekvenci změn.
- větší počet uzlů a větší frekvence změn vyžadují jiné řešení
 - nikoli centralizované
 - nikoli "jednorozměrné"
 - dostatečně škálovatelné !!!
- DNS začalo vznikat počátkem 80.
 / let
 - postupně začalo plnit i další funkce (např. v oblasti el. pošty)

koncepce DNS

- musí to být distribuované řešení
 - distribuované co do umístění dat
 - · objemy dat budou velké
 - data by měla být uchovávána co nejblíže místu kde vznikají a kde "žijí" (mění se)
 - distribuované co do pravomocí
 - aby různé subjekty mohly přijímat potřebná rozhodnutí a vykonávat potřebné úkony bez nutnosti koordinace s jinými subjekty
 - aby bylo možné přidělovat nová jména bez nutnosti ptát se, zda jsou již použita jinde
 - **–**

- distribuované co do fungování
 - kvůli spolehlivosti i kvůli vytížení to nesmí mít jeden centrální prvek
 - dotazy týkající se určitých dat se budou zodpovídat tam, kde se tato data nachází
- musí to fungovat efektivně
 - týká se to hlavně převodních mechanismů mezi symbolickými jmény a číselnými IP adresami
 - může to využívat "princip lokality"
 - dotazy nejčastěji směřují na "místní" uzly, nebo na stále stejná jména "cizích" uzlů
 - má smysl optimalizovat fungování pomocí vyrovnávacích pamětí (cache)

plochý vs. hierarchický prostor jmen

- Plochý jmenný prostor
 - všechna jména jsou "jednorozměrná"
 - např. ALPHA, Sun, PC1
 - je omezený počet "smysluplných" imen
 - jména se přidělují z jedné "množiny"
 - musí to být centrálně koordinováno
 - ten kdo chce nějaké jméno se musí ptát zda ještě nebylo použito
 - jména se přidělují pouze koncovým uzlům
- nevýhody:
 - je to nepružné, neškálovatelné, organizačně náročné

- Hierarchický jmenný prostor
 - existuje hierarchie (strom) dílčích jmenných prostorů,
 - těmto dílčím jmenným prostorům se říká domény
 - je třeba pojmenovávat jak koncové uzly, tak i tyto domény
 - "výsledná" jména (doménová jména)
 budou mít více složek
 - organizačně to je zařízeno tak, aby (dílčí, složková ..) jména domén či uzlů (anglicky: labels) bylo možné "čerpat" (v rámci nadřazených domén) nezávisle na ostatních doménách
 - tomu musí odpovídat i "sestavování, složek /jmen domén) jmen do větších celků (doménových jmen)

Rodina protokolů **TCP/IP** v. 2.7

představa hierarchického jmenného prostoru

symbolická doménová jména

plně kvalifikovaná symbolická doménová jména

syntaxe doménových jmen

- každé jméno (jméno domény či uzlu, anglicky: label) smí mít nejvýše 63 znaků
- mohou se používat pouze písmena, číslice a pomlčka
 - ne háčky a čárky!!
 - pomlčka nesmí být na začátku ani na konci
- velká a malá písmena se nerozlišují
 - pozor, neplatí pro celé URL!!
- celé doménové jméno musí mít max. 255 znaků

- v praxi lze používat i doménová jména, která nejsou plně kvalifikovaná
 - chybí jim něco "zprava"
 - může se doplnit automaticky
 - např. mailto:peterka@ksi se doplní na peterka@ksi.ms.mff.cuni.cz
 - ale jen v "působnosti" domény ms.mff.cuni.cz
 - přesný mechanismus "doplňování" je v kompetenci místní sítě
 - nemusí být přesně známo jak to dopadne
 - důsledek: nepoužívat 2-písmenná jména shodná se jmény TLD
 - nebylo by zřejmé, zda jde či nejde o plně kvalifikované jméno
 - např. peterka@ksi.ms ?????
 - .ms je TLD Montserratu

doménové jméno vs. jméno domény

- příklad (sdružení CZ.NIC):
 - definuje pravidla registrace doménových jmen pod ccTLD CZ
 - zajišťuje registraci doménových jmen druhé úrovně pod ccTLD CZ.
 - správně by mělo být: "jmen domén" (místo "doménových jmen")

princip delegace pravomoci

co je doména?

- prvek v rámci hierarchického členění jmenného prostoru
 - není apriorně stanovena ani hloubka, ani košatost hierarchie (stromu)!!
- "okruh působnosti" někoho, kdo má právo přidělovat symbolická iména
- čemu má doména odpovídat?
 - organizačnímu členění?
 - teritoriálnímu členění?
 - jinému členění?
 - NENÍ TO PŘEDEPSÁNO !!!
 - je to ponecháno na uvážení správce nadřazené domény

- výjimka: je předepsán charakter domén nejvyšší úrovně
 - tzv. TLD domén (Top Level Domén)
 - existují ccTLD (country code TLD),
 odpovídající státním útvarům, tvar
 dle normy ISO-3166, např.
 - cz pro ČR
 - sk pro Slovesko
 - us pro USA I
 - ru pro Rusko

přiděluje

IANA/ICANN

- existují gTLD (generic TLD),
 vyjadřující charakter subjektu
 - edu pro školské instituce
 - com pro komerční organizace
 - int, net, gov, mil, org, arpa
 - nově též: biz, info, name, eu

generické TLD

- původně:
 - vyjadřovaly charakter subjektu/uživatele
 - např. .edu (školská instituce), .com (komernčí), .int (mezinárodní)
 - bez ohledu na geografickou/státní lokalitu
 - ale myslelo se hlavně na uživatele v USA
- později:
 - rozšíření o další druhy (generických) domén
 - "sponzorované"
 - přidělené konkrétním subjektům, které rozhodují o jejich využití
 - · např. .mobi
 - pro mobilní Internet, požadavky na formátování stránek, tak aby byly čitelné i na mobilních zařízeních

"nesponzorované"	.biz .com .edu .gov .info .int .mil .name .net .org
"sponzorované"	.aero .cat .coop .jobs .mobi .museum .pro .tel .travel
infrastrukturní	.arpa .root
navrhované	.asia .berlin .bzh .cym .gal .geo .kid .kids .mail .nyc .post .sco .web .xxx
zrušené	.nato
pseudo-domény	.bitnet .csnet .local .onion .uucp

- infrastrukturní
 - např. .arpa (Address and Routing Parameter Area)
 - pro potřeby "reverzních" převodů
- pseudo ..
 - umožňují "vnořit" jiné adresové prostory
 - např. umkjp@csearn.bitnet

jak má být doména "velká"?

- není apriorně stanoveno
 - to co komu vyhovuje, co do velikosti i logice členění
- "příliš velká" doména
 - není smysluplné, aby se přímo v této doméně přidělovala jména uzlům spadajícím do domény
 - např. z organizačních důvodů
 - řeší se "delegováním pravomoci" (parcelací "okruhu působnosti")
 - vytváří se dceřinné domény

- "vhodně velká" doména
 - s takovým počtem uzlů, aby se nevyčerpala smysluplná/požadovaná jména
 - netýká se to až tak správy domény !!
- příklady:
 - pro malou organizaci bývá
 "vhodně velká" doména
 druhé úrovně
 - pro velkou organizaci je vhodnější víceúrovňové členění
 - např. UK (cuni.cz)

autorita nad doménou

- autorita = právo provádět změny
 - přidělovat nová jména, měnit je
 - zřizovat dceřinné domény
- obecně: ten kdo má autoritu nad doménou, má autoritu i nad jejími dceřinnými doménami
 - získává ji při vytvoření dceřinné domény
- ale může se jí vzdát, resp. delegovat ji na jiný subjekt !!!
 - skrze vytvoření nové zóny
 - příklad:
 - provider má autoritu nad doménami některých svých zákazníků
 - kterým spravuje jejich domény,
 - nemá autoritu nad doménami jiných svých zákazníků

zóny

zóna

- oblast tvořená skupinou domén, nad kterou má někdo konkrétní (jeden subjekt) autoritu
 - zóny se "zvětšují" vytvářením dceřinných domén
 - zóny se "zmenšují" delegováním pravomoci (autority) nad dceřinnými doménami
 - dohází k "vykousnutí" celých podstromů domén ze stávající zóny a ke vzniku nové zóny

zone file

- všechny údaje týkající se domén nad kterými má někdo autoritu (týkající se jedné zóny) jsou uchovávány na jednom místě
 - v jedné databázi, resp. jednom souboru, tzv. zone file
 - tam kde "žijí" a kde s nimi správce pracuje

name servery vs. domény

- v rámci každé domény se "pamatují" určité informace
 - např.:
 - počítač se jménem X má IP adresu 193.194.195.196
 - poštu pro doménu doručuj na uzel X.domena.cz
 - slouží jako podklad k zodpovídání dotazů
 - typu" jako IP adresu má počítač X?
- tyto informace nejsou uchovávány centrálně, ale jsou distribuovány
 - a také se s nimi pracuje tam, kde se nachází

- name server
 - vždy přísluší k nějaké konkrétní doméně
 - je to server (uzel) který má k dispozici data příslušné domény a odpovídá na dotazy které se jich týkají
- představa:
 - každá doména má svůj name server
 - poskytuje službu spočívající v převodu jmen na IP adresy
 - 1 počítač může plnit roli name serveru pro více domén
 - 1 zóna = 1 uzel který dělá name server pro všechny domény v zóně

struktura name serverů

- struktura name serverů logicky odpovídá struktuře domén
 - každá doména má svůj name server
 - existuje tzv. kořenový (root) name server, který "zná" name servery všech TLD (domén nejvyšší úrovně)
- fyzicky jsou name servery členěny jinak
 - 1 zóna má 1 name server
 - kvůli dostupnosti jsou name servery nejméně zdvojeny

name server

doména

princip překladu

skutečný průběh překladu (rekurzivní dotaz)

skutečný průběh překladu (iterativní dotaz)

primární a sekundární name servery

- každá doména musí mít (hlavní) name server, který je tzv. primární (master)
 - primární name server má přímo k dispozici relevantní data o doméně
 - svůj zone file získává z místního disku
 - kromě toho by měla mít nejméně jeden (záložní) name server, tzv.

sekundární (slave)

- sekundární name server by měl být umístěn v jiné síti
 - nejčastěji u (nadřazeného) providera
- sekundární name server "seřizuje svůj obsah" sám a automaticky podle obsahu primárního name serveru
 - vyžádá si tzv. zone transfer

zone transfer

- přenos obsahu zóny
 - z autoritativního zdroje
 (primárního/master serveru) na sekundární/slave
- zahajuje se z iniciativy sekundárního DNS serveru:
 - po uplynutí doby pro Refresh
 - při předchozím získání obsahu zóny se dozví, za jak dlouho má udělat Refresh
 - default 15 minut
 - pokud je upozorněn na změnu obsahu zóny
 - dostane zprávu DNS NOTIFY od primárního serveru
 - zkontroluje změnu "serial number"
 - po zapnutí

DNS RR SOA (Start of Authority)

```
; name TTL class rr Nameserver
mojedomena.cz 14400 IN SOA ns.mojeDNS.cz (
2004123001 ; Serial number
86000 ; Refresh rate in seconds
7200 ; Update Retry in seconds
3600000 ; Expiry in seconds
600 ; minimum in seconds)
```

- po uplynuti Refresh se slave ptá master serveru na změnu zóny
 - vyžádá si aktuální SOA záznam
 - z hodnoty serial number odvozuje, zda došlo ke změně
 - serial number se při každé změně zóny musí změnit
 - pokud se zone transfer nepodaří, slave zkouší znovu za dobu Retry
- sekundární/slave server odpovídá na DNS dotazy až do uplynutí doby Expiry
 - měla by být nastavena jako větší než doba Refresh

zone transfer

- když sekundární/slave DNS server usoudí, že potřebuje provést zone transfer, má na výběr:
 - "all zone" transfer
 - příkaz AXFR
 - přenáší se aktuální obsah celé zóny
 - "incremental" zone trasfer
 - příkaz IXFR
 - přenáší se pouze změny od poslední aktualizace
 - sekundární/slave server určí poslední aktualizaci zasláním jejího čísla serial number

DNS servery a resolvery

- DNS má architekturu klient/server
 - name server odpovídá na dotazy
 - plní roli serveru
 - resolver pokládá dotazy name serverům
 - · plní roli klienta
- na uzlu který plní roli name serveru musí být implementovány obě složky
 - i name server se ptá jiných name serverů, k tomu potřebuje resolver
- na ostatních uzlech stačí jen resolver

optimalizace fungování DNS

- replikace
 - name servery domén jsou replikovány
 - jako primární a alespoň jeden sekundární
 - v praxi bývá i více záložních name serverů
 - replikovány jsou i kořenové name servery
 - všechny jsou primární
 - slouží i k rozložení zátěže

- cache-ování
 - odpovědi autoritativních name serverů si ostatní servery ukládají do svých cache pamětí
 - a pak je používají pro přímou (neautoritativní) odpověď)
- cacheování přináší největší optimalizaci!!

- forwarding name server
 - přijímá rekurzivní dotazy, ale neřeší je, nýbrž pouze předává (forwarduje) jinému name serveru
 - obvykle kvůli snazší konfiguraci klientů

neautoritativní odpovědi

autoritativní pro konkrétní doménu jsou její primární a sekundární server

- kvůli optimalizaci fungování jsou získané odpovědi ukládány do vyrovnávací paměti (cache paměti)
 - pouze po určitou dobu
 - TTL je atributem odpovědi
 - další odpovědi na stejné dotazy jsou pak zodpovídány z vyrovnávací paměti
- odpověď z cache paměti má jiný statut než odpověď od autoritativního name serveru
 - je tzv. **neautoritativní**, neboť pochází od někoho kdo nemá autoritu hovořit za příslušnou doménu
 - tazatel to z odpovědi pozná a může si vyžádat pouze autoritativní odpověď
- existují "caching only" name servery
 - které pouze cache-ují, ale nejsou pro žádnou doménu autoritativní

kořenové name servery

name	org	city
а	InterNIC	Herndon,VA, US
b	ISI	Marina del Rey,CA, US
С	PSInet	Herndon,VA, US
d	UMD	College Park,MD, US
е	NASA	Mt View, CA, US
f	ISC	Palo Alto, CA, US
g	DISA	Vienna, VA, US
h	ARL	Aberdeen, MD, US
i	NORDUnet	Stockholm, SE
j	(TBD)	(colo w/ A)
k	RIPE	London, UK
l	ICANN	Marina del Rey,CA, US
m	WIDE	Tokyo, JP

celkem 13 po celém světě

- na 7 různýchHWplatformách
- na 8 různých variantách OS (Unix)

kořenové name servery

RR - Resource Records

- DNS je distribuovaná databáze
 - logicky členěná podle domén
- data jsou v ní uložena ve formě vět
 - tzv. RR Resource Records
 - např. údaj o IP adrese uzlu s konkrétním jménem

RR – Resource Records (příklady)

Тур	anglický název	význam pole RDATA
SOA	Start of Authority	popis zóny
Α	A host address	IP adresa uzlu
NS	Authoritative name server	doménové jméno name serveru, který je autoritativní pro danou doménu
CNAME	Cannonical name	kanonické synonymum k NAME
HINFO	Host INFO	popis HW s SW
MX	Mail eXchange	kam má být doručována el. pošta pro doménu
AAA	IPv6 address	128-bitová adresa dle IP verze 6
		••••

příklady

Name=ksi.ms.mff.cuni.cz

RDATA

Type=A, Class=1, TTL=86400 (1 Day), RDLENGTH=4 IP Address=195.113.19.213

Name=kki.ms.mff.cuni.cz

Type=CNAME, Class=1, TTL=86400 (1 Day), RDLENGTH=20

CNAME=ksi.ms.mff.cuni.cz

Name=peterka.cz

Type=MX, Class=1, TTL=86400 (1 Day), RDLENGTH=18

Preference=10, Mail Exchange=mail.czech.net

Name=peterka.cz

Type=MX, Class=1, TTL=86400 (1 Day), RDLENGTH=11

Preference=100, Mail Exchange=mspool.czech.net

DNS protokol

- DNS klient a server spolu komunikují pomocí jednoduchého aplikačního protokolu
 - protokolu DNS
- pro transport je nejčastěji využíván protokol UDP
 - ale může být použit i TCP
 - pro dotazy na překlad jména je preferován protokol UDP
- DNS server "poslouchá" na portu 53
 - přes TCP i UDP

 DNS protokol používá stejný formát paketu (DNS QUERY) pro dotaz i odpověď

HEADER

QUESTION

ANSWER

AUTHORITY

ADDITIONAL

příklad DNS QUERY (1. část)

Header:

ID=1282, QR=Query, Opcode=QUERY, RCODE=NO ERROR Authoritative Answer=Yes, Truncation=No Recursion Desired=Yes, Recursion Available=Yes QDCOUNT=1, ANCOUNT=2, NSCOUNT=2, ARCOUNT=3

Question:

Name=peterka.cz, QTYPE=MX, QCLASS=1

Answer Section:

- Name=peterka.cz
 Type=MX, Class=1, TTL=86400 (1 Day), RDLENGTH=18
 Preference=10, Mail Exchange=mail.czech.net
- Name=peterka.cz
 Type=MX, Class=1, TTL=86400 (1 Day), RDLENGTH=11
 Preference=100, Mail Exchange=mspool.czech.net

příklad DNS QUERY (2. část)

Authority Records Section:

```
- Name=peterka.cz
```

```
Type=NS, Class=1, TTL=86400 (1 Day), RDLENGTH=5
Name Server=ns.czech.net
```

- Name=peterka.cz

Type=NS, Class=1, TTL=86400 (1 Day), RDLENGTH=11

Name Server=scretchy.czech.net

Additional Records Section:

- Name=mail.czech.net

```
Type=A, Class=1, TTL=86400 (1 Day), RDLENGTH=4 IP Address=194.213.224.6
```

- Name=ns.czech.net

```
Type=A, Class=1, TTL=86400 (1 Day), RDLENGTH=4 IP Address=194.213.224.1
```

- Name=scretchy.czech.net

Type=A, Class=1, TTL=86400 (1 Day), RDLENGTH=4 IP Address=194.213.224.2

domény a diakritika

- standardně:
 - diakritika není přípustná, jen čisté
 ASCII
- snaha:
 - připustit také použití znaků národních abeced ve jménech domén
 - v ČR: s háčky&čárkami, např. žluťoučký.kůň.cz
 - motivace:
 - rozšíření jmenného prostoru, více možných registrací
 - možnost registrovat takové domény, jaké dnes neexistují

IDN (Internationalized Domain Names)

- řešení dle RFC 3490-2 (2003)
- ve jménech lze použít
 (podmnožinu) UNICODE 3.2
- princip řešení:
 - bude to fungovat jako
 "nadstavba" nad současným
 DNS
 - fungování DNS jako takového se nemění !!!!
- "překlad" z ne-ASCII do ASCII tvaru a naopak zajišťuje klientská aplikace!!!

představa fungování

(v rámci aplikace jako je browser, poštovní klient)

37

překlad

- musí být definován "překlad" jmen z UNICODE do ASCII a opačně
 - nejprve se dělá "nameprep"
 - sjednocují se různé varianty možného zápisu (např. velká a malá písmena), vzniká "kanonický tvar"
 - pak se dělá vlastní překlad
 - fakticky: zakódování do čistého
 ASCII
 - tzv. punycode
 - musí existovat i opačný překlad
 - z ASCII do UNICODE

co se musí stát – aby to mohlo fungovat?

- správce TLD musí začít registrovat domény typu "xn--...."
 - například pro "kůň.cz" musí fakticky zaregistrovat doménu xn--k-qla0j.cz
- již probíhá
 - např. v .pl, .de,
 - v asijským zemích
 - v ČR: (zatím) nebude
 - CZ.NIC koncem roku 2006 (znovu) rozhodl prozatím neimplementovat, kvůli malému zájmu uživatelů

- uživatelé musí používat takové aplikace, které podporují IDN
 - browsery, poštovní klienty
 - možnost platí i pro mailové adresy
- podpora IDN (3/2003):
 - MS IE, MS Outlook a OE:
 - jen s plug-inem
 - např. i-NAV od Verisign
 - Netscape 7.1/Mozilla 1.4,
 Opera 7.20, Konqueror (Linux with KDE 3.2)
 - ano, nativně

příklad – když to funguje

böhm.de

xn--bhm-sna.de

(Internet Explorer s instalovaným plug-inem i-NAV)

příklad – když to nefunguje

böhm.de

www.b%C3%B6hm.de/

(nejde o překlad do punycode)

(Internet Explorer (MyIE2) bez podpory IDN)

úskalí IDN

- registrace "oháčkovaných" domén
 - měl by si vlastník stávající domény registrovat všechny "další" tvary, které vznikají aplikací diakritiky?
 - vlada.cz vs.
 vláda.cz,vláďa.cz
 - nebo by na to snad měl mít (přednostní) právo?
 - nevzniká tím jen větší prostor pro spekulativní registrace
 - nejde jen o větší "kšeft" pro registrátory domén?

- možnost zadávat "národní" znaky
 - ne všude existuje možnost zadat z klávesnice speciální (národní) znaky
 - jinak musí uživatel psát adresy typu "xn--k-qla0j.cz"
- absence podpory v SW
 - vždy budou existovat uživatelé používající SW který nepodporuje IDN
 - překlad UNICODE to ASCII

IRI,

Internationalized Resource Indicators

- koncept IDN se týká pouze doménových jmen
 - nikoli celých URL adres
 - neřeší přístupové cesty, jména (a přípony) objektů a další součásti URL
- "celé URL" bude řešit až koncept IRI
 - Internationalized Resource Indicators
 - IDN bude jeho součástí
 - ještě není hotov !!!

- přístup firmy Microsoft k IDN:
 - sledujeme a zvažujeme implementaci
- domněnka:
 - čekají na IRI, až bude mít definitivní podobu:

http://žluťoučký.kůň.cz/stáj/podestýlka/seno.htm

alternativní DNS

- nahrazují oficiální "DNS root servery" svými vlastními
 - díky tomu si mohou vytvářet vlastní TLD
 - podmínka fungování:
 - DNS servery uživatelů se nesmí "ptát" oficiálních DNS root serverů, ale musí být "nastaveny" na alternativní

dynamické DNS

- klasické DNS je statické
 - nepředpokládá, že IP adresa konkrétních uzlů se mění
 - moc často, např. každý den či hodinu
 - v praxi ovšem hodně uzlů dostává
 IP adresu přidělovanou
 dynamickým způsobem
 - např. na dial-upu, ADSL, kabel

 - důsledek: takovéto uzly nemohou mít přidělené (vlastní, stabilní) symbolické doménové jméno
 - DNS by se nestačilo pokaždé aktualizovat

- dynamické DNS
 - takové řešení, kdy dochází k aktualizaci DNS zóny tak často, jak je potřeba
 - princip: na uzlu běží malý
 "DNS klient", který průběžně informuje (dynamický) DNS server o aktuální IP adrese
 - dynamický DNS server se aktualizuje podle potřeby
- typické řešení:
 - jde o placenou službu

reverzní domény – překlad z IP do CNAME

jaké je CNAME k IP 169.254.16.200?

16.254.169.in-addr.arpa

- řeší se přes doménu in-addr.arpa
 - další (nižší) subdomény odpovídají přiděleným IP adresám, po jednotlivých bytech
 - v obráceném pořadí!!!
 - držitel IP adresy má ve správě příslušnou "reverzní doménu"

ENUM

- jde o snahu provázat DNS a telefonní čísla
- cíl: umožnit, aby se k telefonním číslům mohly přiřazovat "další informace", stejně jako k doménovým jménům
 - například o přesměrování hovoru
 - účastník má jedno tel. číslo a skrze DNS si volí, zda chce přijímat na hlasový telefon, nebo na jiné zařízení (na které)
 - například o typu koncového zařízení a jeho schopnostech
 - vhodné zejména pro IP telefonii
- další cíle:
 - aby se místo WWW adres dala používat telefonní čísla
 - aby mobilní terminály nemusely zadávat adresy WWW stránek (WAP stránek atd.), ale stačila jen telefonní čísla
 - aby se např. daly posílat maily na telefonní čísla
 - obecně: aby tel. číslo mohlo sloužit jako jednotná adresa účastníka
- jde o projekt "světa spojů", nikoli "světa Internetu"
 - angažuje se hlavně ITU-T

ENUM – představa fungování

- tel. číslo +420 123 456 789
 - formát určuje direktiva ITU E.164
- odstraní se vše kromě číslic, obrátí se pořadí, oddělí se tečkami
 - -9.8.7.6.5.4.3.2.1.0.2.4
- přidá se "koncovka" .e164.arpa
 - 9.8.7.6.5.4.3.2.1.0.2.4.e164.arpa
- již jde o plně kvalifikované jméno, se kterým mohou být spojeny (v rámci DNS) další informace
 - záznamy NAPTR
 - Naming Authority Pointer Resource Record