Secretary Hiring Problems & A* Algorithm

Buy one share at the lowest price

■ Which one to buy?

The Secretary Problem

- □ Suppose there are *n* secretaries that are interviewed one at a time. The hiring decision has to be made right after an interview is done. After we interview a candidate, we know how this candidate ranks in comparison to the earlier interviewed candidates. However, we have no information about the upcoming candidates.
- □ Design a strategy to hire the best candidate?

The Secretary Problem

- $lue{}$ Each secretary i has an inherent rating v_i
- But we do not know what is the maximum possible rating
- Secretaries interview in an unknown order

raise your hand if you will hire the secretary

- \Box 1. vi = 10
- \Box 2. vi = 21
- \Box 3. vi = 1
- \Box 4. vi = 5
- \Box 5. vi = 15
- \Box 6. vi = 45
- \Box 7. vi = 11
- \Box 8. vi = 3
- \bigcirc 9. vi = 2
- \Box 10. vi = 9

raise your hand if you will hire the secretary

- \Box 1. vi = 21
- \Box 2. vi = 34
- \Box 3. vi = 45
- \Box 4. vi = 5
- \Box 5. vi = 19
- \Box 6. vi = 3
- \Box 7. vi = 32
- \Box 8. vi = 4
- \bigcirc 9. vi = 55
- \Box 10. vi = 7

raise your hand if you will hire the secretary

- \Box 1. vi = 45
- \Box 2. vi = 4
- \Box 3. vi = 5
- \Box 4. vi = 6
- \Box 5. vi = 7
- \Box 6. vi = 8
- \Box 7. vi = 9
- \bigcirc 9. vi = 1
- \Box 10. vi = 46

- \square Observe the first n/2 secretaries but don't hire anyone
- \square Let *i* be the best of the first n/2 secretaries
- \square After observing the first n/2 secretaries, hire the first secretary that is better than i
- □ If none of the remaining are better than *i*, then hire the last one

- Worst-Case Analysis
- □ Hopeless. The worst case is when the secretaries appear in a descending order of their rank. The algorithm is arbitrarily bad. In fact, any deterministic algorithm is arbitrarily bad.

The Secretary Problem

□ Suppose there are n secretaries that are interviewed one at a time. The hiring decision has to be made right after an interview is done. After we interview a candidate, we know how this candidate ranks in comparison to the earlier interviewed candidates. However, we have no information about the upcoming candidates.

□ Design a strategy to maximize the probability of hiring the best candidate assuming they appear in a uniformly at random order?

Results

□ If the number of secretaries tends to infinity, the optimal rule is to observe the first n/e secretaries, and then pick the first secretary better than the best in the first n/e secretaries

- \square Observe the first n/2 secretaries but don't hire anyone
- \square Let *i* be the best of the first n/2 secretaries
- \square After observing the first n/2 secretaries, hire the first secretary that is better than i
- □ If none of the remaining are better than *i*, then hire the last one

□ Expected case analysis? Can we compute the probability of picking the best candidate?

- □ Observe the first r-1 secretaries but don't hire anyone
- \square Let *i* be the best of the first *r* -1 secretaries
- ightharpoonup After observing the first r-1 secretaries, hire the first secretary that is better than i
- □ If none of the remaining are better than *i*, then hire the last one

- □ Observe the first r-1 secretaries but don't hire anyone
- \square Let i be the best of the first r-1 secretaries
- ightharpoonup After observing the first r-1 secretaries, hire the first secretary that is better than i
- □ If none of the remaining are better than *i*, then hire the last one

□ Optimal strategy:

- Best strategy is to observe the first ~37% candidates and then hire the first one better than the 37%
- □ Probability of picking the best candidate ~= 37%

Resources

□ Primary: Ferguson, Thomas S. "Who solved the secretary problem?." Statistical science (1989): 282-289.

Many, many versions

- □ minimize the expected rank
- maximize expected rating
- □ ratings decay over time
- multi-choice (k choice) hiring
- submodular ratings
- matroidal constraints
- knapsack constraints
- unknown n
- □ sliding windows
- ...

Many, many versions

- minimize the expected rank
- maximize expected rating
- □ ratings decay over time
- □ multi-choice (k choice) hiring
- submodular ratings
- matroidal constraints
- knapsack constraints
- unknown n
- □ sliding windows
- ...

Maximize the expected rating

- □ Suppose there are n secretaries that are interviewed one at a time. The hiring decision has to be made right after an interview is done. After we interview a candidate, we know how this candidate ranks in comparison to the earlier interviewed candidates. However, we have no information about the upcoming candidates.
- Design a strategy to maximize the expected rating of the hired candidate assuming that the ratings are drawn from an unknown distribution.

Thoughts?

Maximize the expected rating

- □ Same strategy (Secretary Algorithm v.2)
- □ In the limit, the probability of picking the best candidate is 1/e
- □ Therefore, the expected rating of the hired candidate is 1/e times the highest rating
- □ This is also the optimal algorithm!

Babaioff, Moshe, et al. "Online auctions and generalized secretary problems." ACM SIGecom Exchanges 7.2 (2008): 7.

Multiple Choice Secretary Problem

□ Suppose there are n secretaries that are interviewed one at a time. We wish to *hire at most k* secretaries. The hiring decision has to be made right after an interview is done. Each candidate has a *rating vi that is revealed* to us after we interview the candidate i. We have no information about the upcoming candidates.

Design a strategy to maximize the expected sum of ratings of the hired candidates.

Ideas?

Build on the k=1 algorithm

- Observe the first n/e 1 secretaries but don't hire anyone
- □ Let $R = \{v_1, v_2, ..., v_k\}$ be the k best ratings observed
- □ After observing the first n/e 1 secretaries, if a secretary has rating better than the worst rating in R, then
 - hire this secretary; and
 - remove the lowest rating in R

Build on the k=1 algorithm

□ The previous algorithm achieves an expected rating of 1/e times the sum of the k largest ratings, in the limit that n tends to infinity.

Babaioff, Moshe, et al. "A knapsack secretary problem with applications." Approximation, randomization, and combinatorial optimization. Algorithms and techniques (2007): 16-28.

Revisit Dijkstra

A* Algorithm

Open and Closed Lists

- □ Think of open lists as frontiers of expansion
- $lue{}$ We start with x_o and expand neighbors until we reach x_G
 - Dijkstra: expand frontier that is closest to x_o

A*

- □ Open list $O = \{x_o\}$, closed list $C = \{\}$
- $\square V(x_o) = 0, V(x_i) = \infty$
- \square repeat until x_G is in C
 - x_i: vertex in O with lowest cost-to-come + heuristic
 - remove it from O and store it in C, closed list
 - for each neighbor x_i of x_i not already in C
 - compute $V_{new} = C(x_j, x_i) + V(x_j)$
 - update $V(x_i)$ if it is more than V_{new}
 - if not in O, then add to O

Open and Closed Lists

- □ Think of open lists as frontiers of expansion
- $lue{}$ We start with x_o and expand neighbors until we reach x_G
 - A*: expand frontier that our heuristic says will lead to minimum cost path

What's a good heuristic?

- \square heuristic gives an overestimate of actual $V(x_G)$
 - $h(x_i) > minimum cost to reach x_G from x_i$
- \square heuristic gives an underestimate of actual $V(x_G)$
 - $h(x_i) >= minimum cost to reach x_G from x_i$

Admissible Heuristic

□ A heuristic, $h(x_j)$, is called as admissible heuristic if and only if $h(x_j)$ <= minimum cost to reach x_G from x_j for all x_j

- □ A* will find the optimal solution as long as you have an admissible heuristic.
 - Actually, it also needs to be consistent (satisfy triangle inequality)
 - $h(x_i) \le C(x_i, x_i) + h(x_i)$; $h(x_G) = 0$

Good Heuristics

Needs to be an underestimate & satisfy triangle inequality to guarantee we find optimal path

- □ The closer your heuristic is to actual estimate, the faster you will find the optimal path
 - need fewer expansions

- The closer your heuristic is to 0, the slower your algorithm
 - approaches Dijkstra; more expansions

Admissible Heuristic

$$h(x_i) = 0$$
 (Dijkstra)
 $h(x_i) = \text{Euclidean distance from } x_i \text{ to } x_G$
...?

A*: Backtracking optimal path

$$O = \{x_O\}, C = \{\}$$
 $V(x_O) = 0, V(x_i) = \infty, B(x_i)$

repeat until x_G is in C

- x_i : vertex in O with lowest cost-to-come + heuristic
 - remove it from *O* and store it in *C*, closed list
- for each neighbor x_i of x_j not already in C
 - compute $V_{new} = C(x_i, x_i) + V(x_i)$
 - update $V(x_i)$ if it is more than V_{new} and set $B(x_i) = x_j$
 - if not in *O*, then add to *O*

Analyzing Algorithms

1. Completeness

2. Optimality

3. Efficiency

Analyzing Algorithms

1. Completeness: Algorithm is complete if it finds the optimal solution in finite time, if a solution exists. Else, it declares failure in finite time.

2. Optimality: Algorithm that finds a solution whose cost is the minimum (or maximum) possible cost.

3. Efficiency: An algorithm is efficient if it finds the solution in the least possible time (for all inputs).

Analyzing Algorithms

1. Completeness: DP, Dijkstra, A* are complete

2. Optimality: DP, Dijkstra, A* are optimal.

- 3. Efficiency:
 - DP is NOT efficient.
 - Dijkstra (and A*) is efficient if no heuristic.
 - A* is efficient (and Dijkstra is not) with any admissible heuristic.

Optimality vs. Efficiency

- Sometimes you want a "good-enough" solution as fast as possible.
- ▶ Can we trade-off optimality and efficiency?

Weighted A*

- Dijkstra
 - expand based on lowest $V(x_i)$
- ► A*
 - expand based on lowest $V(x_i) + h(x_i)$
- $ightharpoonup \epsilon$ Weighted A*
 - expand based on lowest ???

Dijkstra

• expand based on lowest $V(x_i)$

► **A***

• expand based on lowest $V(x_i) + h(x_i)$

ϵ Weighted A*

- expand based on lowest $V(x_i) + \epsilon h(x_i)$
- $\epsilon >= 1$

Weighted A*

 $\Box \epsilon >= 1$

- □ Expand based on inflated heuristic
 - $V(x_i) + \epsilon h(x_i)$

□ Can we guarantee optimality?

- $\epsilon >= 1$
- Expand based on inflated heuristic
 - $V(x_i) + \epsilon h(x_i)$
- ▶ Can we guarantee optimality?
 - No!
 - However, we can guarantee that it will find a path whose cost is no more than ϵ times the minimum cost path.
 - $V'(x_G) <= \epsilon V^*(x_G)$

- $\epsilon >= 1$
- In practice, faster than A^* . In fact, the higher we set ϵ to be, the faster we find the solution.

Anytime Algorithm

- If we stop the algorithm at any point in time, we should be able to return a good solution.
- More time we give an algorithm, the closer to optimal the returned solution should be.

▶ *Are DP, Dijkstra, A* anytime algorithms?*

Anytime Algorithm

If we stop the algorithm at any point in time, we should be able to return a good solution.

More time we give an algorithm, the closer to optimal the returned solution should be.

Are DP, Dijkstra, A anytime algorithms?*

• NO! We find the optimal path only at the last iteration.

An anytime algorithm using weighted A*?

- set ϵ = very high number
- repeat until stopped
 - find path using weighted A*
 - $\epsilon = \epsilon/2$

Works but we need to recompute path from scratch in every iteration. Speed up?