

清华大学电子工程系

最优化方法作业 2

作者: 罗雁天

学号: 2018310742

日期: 2018年10月7日

$$\therefore \begin{cases} A_i \chi^{(i)} = b_i \\ A_i \chi^{(i)} = b_i \end{cases}$$
 只由于 A, 是可逆的.

$$\int_{1}^{1} \chi^{(2)} = A_{1}^{-1} b_{1} \qquad \qquad \chi \quad A_{1} \chi^{(0)} = b_{1} \quad \chi^{(0)} = A_{1}^{-1} b_{1}$$

$$\chi^{(2)} = A_{1}^{-1} b_{1}$$

再证以意性: 作员 A可以分解为 $\begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$, b可以分解为 $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$. $A_1 \chi^{(0)} = b_1$. $A_2 \chi^{(0)} > b_2$. 作员 $A_1 \chi^{(0)} = b_1$. $A_1 \chi^{(0)} = b_2$. 有所 由于 $\hat{A}_1 \chi^{(0)} = b_1$. 可 $\hat{A}_1 \chi^{(0)} = b_2$. 由于 $\hat{A}_1 \chi^{(0)} = b_2$. 可 $\hat{A}_1 \chi^{(0)} = b_3$. 可 $\hat{A}_1 \chi^{(0)} = b_4$. 可 $\hat{A}_1 \chi^{(0)} = b_4$. 可 $\hat{A}_1 \chi^{(0)} = b_4$.

不好设 A的前船到线性 A, A = [B N] ,其 B 可连

$$\frac{\partial^2 x}{\partial x} = \begin{bmatrix} x_6 \\ x_M \end{bmatrix} \quad \therefore \quad Bx_6 + Nx_N = \hat{b_1} \\
B_1 \quad x_6 = B^{-1} \hat{b_1} - B^{-1} N x_N \quad \therefore \quad x = \begin{bmatrix} B^{-1} \hat{b_1} - B^{-1} N x_N \end{bmatrix} \\
\therefore \quad \chi^{(0)} = \begin{bmatrix} \lambda^{(0)} \\ \lambda^{(0)} \end{bmatrix} = \begin{bmatrix} \lambda^{(0)} \\ \lambda^{(0)} \end{bmatrix} \quad \chi^{(0)} = \begin{bmatrix} \lambda^{(0)} \\ \lambda^{(0)} \end{bmatrix}$$

由于 $A_2 \chi^{(0)} > b_2$. FFW 标在 $\chi^{(0)}$ 的 S 介 较 $N_8 (\chi^{(0)})$ 当 $\chi_N \in N_8 (\chi^{(0)})$ 时,醉 (1) 满足 $A_1 \chi = b_1$. $A_2 \chi > b_2$ 在过 $\chi^{(0)}$ 的直线上平不同上 $\chi^{(0)}$, $\chi^{(0)}$ $\in N_8 (\chi^{(0)})$ 有

$$X_{(0)} = \begin{bmatrix} B_{-1} P_{1} - B_{-1} N X_{0} \\ Y X_{0}^{(n)} + (1-Y) X_{0}^{(n)} - B_{-1} N X_{0}^{(n)} \end{bmatrix} + (34) \begin{bmatrix} B_{-1} P_{1} - B_{-1} N X_{0}^{(n)} \\ Y X_{0}^{(n)} + (1-Y) X_{0}^{(n)} \end{bmatrix} + (34) \begin{bmatrix} B_{-1} P_{1} - B_{-1} N X_{0}^{(n)} \\ Y X_{0}^{(n)} + (1-Y) X_{0}^{(n)} \end{bmatrix} + (34) \begin{bmatrix} B_{-1} P_{1} - B_{-1} N X_{0}^{(n)} \\ Y X_{0}^{(n)} + (1-Y) X_{0}^{(n)} \end{bmatrix} + (34) \begin{bmatrix} B_{-1} P_{1} - B_{-1} N X_{0}^{(n)} \\ Y X_{0}^{(n)} + (1-Y) X_{0}^{(n)} \end{bmatrix} + (34) \begin{bmatrix} B_{-1} P_{1} - B_{-1} N X_{0}^{(n)} \\ Y X_{0}^{(n)} + (1-Y) X_{0}^{(n)} \end{bmatrix}$$

故 χιο) 程 S 的 拟点, 矛盾 所以 rank (Aι) = n Z. 证明: 不好沒 A是 mxn 的失时.

$$A = \begin{bmatrix} P_1 & P_2 & \cdots & P_m & P_{m+1} & \cdots & P_n \end{bmatrix} = \begin{bmatrix} B & P_{m+1} & \cdots & P_n \end{bmatrix}$$

$$Ad = \begin{bmatrix} B & P_{m+1} & \cdots & P_n \end{bmatrix} \begin{bmatrix} -B^T P_j \\ 0 & \vdots \\ 0 & \vdots \end{bmatrix} = P_j + P_j = 0$$

$$Ad = \begin{bmatrix} B & P_{m+1} & \cdots & P_n \end{bmatrix} \begin{bmatrix} -B^T P_j \\ 0 & \vdots \\ 0 & \vdots \end{bmatrix} = P_j + P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \alpha_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{(U)} = 0 \Rightarrow Bd^{(U)}_{B} + \beta_j P_j = 0$$

$$Ad^{($$

s.t.
$$\chi_1 + \chi_2 + \chi_3 + \chi_5 = 4$$

 $4\chi_1 - \chi_1 + \chi_3 + 2\chi_4 + \chi_6 = 6$
 $-\chi_1 + \chi_2 + 2\chi_3 + 3\chi_4 + \chi_7 = 12$

	X1	1/2	X	X4	Xr	X 6	X7	5 9
Xr	1	(1)		0	1	0	0	4
26	4	-1		2	0	1	0	6
1/4	-1	. 1	4	3	0	0	1	12
4.,	-3	7	2	1	0	0	0	0
X1	1	1	1	0	. 1	D	0	4
χ6	1	0	2	2	ı	1	0	10
Χ 7	-2	0	1	3	-1	0	- 1	8
1	-8	0	-3		-5	0	0	-20
Xx	11	1	1	0	1	0	0	4
26	19	0	4 3	0	3	1	0 2 - 1	14/3
74		0	1	1	$-\frac{1}{3}$	0	1/3	8
1	-3	0	- <u>10</u>	0	- <u>14</u>	0		-62

所以最优解: $\bar{\chi} = (0,4,0.3,0.4,0)$, 最优值: $f_{min} = -\frac{68}{3}$

(2) 引入松弛变量化为标准形式为

min
$$-3x_1 - x_1$$

s.t. $3x_1 + 3x_2 + x_3 = 30$
 $4x_1 - 4x_2 + x_4 = 16$
 $2x_1 - x_2 + x_5 = 12$

	χ,	X 1	1 /3	X 4	χ_{s}	
X3	3	3	1	0	0	30
7/4	4	-4	0	1	D	16
χς	2		0	0	1	12
	3	1	0	0	0	0
1/2	1	1	1343	0	0	10
X4	8	0	4 3	- 1	0	1 36
X5	3	0	1/3	0	1	22
	2	0	- ‡	0	0	-10
1/2	Ö	1	1/6	- !	0	3
71	1	0	1/6	1/8	0	17
Xs	0	0	- 6	$-\frac{3}{8}$	1	* 1
	0	0	- 3	-4	0	-24

所以最优解: 及=(7,3,0,0,1), 最优值: fmin=-24