Тема. Минимизация булевых функций (БФ) используя Алгоритм Рота.

Теоретические основы метода минимизации булевых функций с использованием алгоритма Рота рассмотрены в учебном пособии (стр. 107 - 116).

Прежде чем выполнять практически задания необходимо познакомиться с этим материалом.

Рассмотрим пример минимизации булевой (логической) функции (БФ) представленной множеством 0-кубов (кубов нулевой размерности) методом Рота. Данная функция может быть получена, например, из таблицы истинности.

x_1	x_2	x_3	x_4	x_5	F
0	0	0	0	$\frac{x_5}{0}$	1
0	0	0	0	1	0
0 0 0	0	0 0 1	1 1 0	1 0 1 0	1
0	0	0	1	1	X
	0 0 0	1	0	0	1 0 1 x
0	0		0	1	0
0	0 0 0	1	0 1 1	1 0 1	X
0	0	1	1	1	X
0 0 0 0 0 0 0 0	1	0	0	0 1 0 1 0 1 0 1 0 1 0	0
0	1	0		1	0
0	1	0	1	0	0
0	1	0 0 1	1 1 0 0	1	0
0	1	1	0	0	0
0	1	1	0	1	1
0	1 1 0 0	1 1 1 0 0	1 1 0 0	0	0
0	1	1	1	1	X
1	0	0	0	0	0
1	0	0	0	1	0
1 1 1 1	0 0 0	0 0 1	1 1 0 0	0	1
1	0	0	1	1	0
1	0	1	0	0	0
1	0	1	0	1	0
1 1 1	0	1	1	0	1
1	0	1 1 1 0 0	1 1 0 0	1 0 1 0	0 x 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1	1	0	0	0	0
1	1	0	0	1	1
1	1	0	1	0	0
1	1	0	1	1	0
1	1	1	0	0	0
1	1	1	0	1	X
1	1	1	1	0	0
1	1	1	1	1	0

Исходное покрытие функции задано множествами кубов на которых функция принимает единичное значение — L (единичных) и множества кубов на которых функция не определена (не существует) — N (безразличных). Необходимо понимать, что Φ может быть задана кубами любой, и более высокой, размерности.

$$L = \begin{pmatrix} 00000 \\ 11001 \\ 00010 \\ 10010 \\ 10110 \\ 01101 \\ 00100 \end{pmatrix} \qquad N = \begin{pmatrix} 00011 \\ 00110 \\ 00111 \\ 01111 \\ 11101 \end{pmatrix}$$

Общий метод построения минимального покрытия называется алгоритмом извлечения и состоит в следующем:

- нахождении множества Z простых импликант;
- выделении L-экстремалей на множестве Z;
- применении алгоритма ветвления при отсутствии *L*-экстремалей;
- нахождении абсолютно минимального покрытия из некоторого множества избыточных покрытий.

Для понимания выполняемых действий и получаемых при этом результатов введем некоторые понятия. Множество C_i — множество кубов, к которым применяется операция * для образования кубов i+1 (и возможно более высокой) размерности. Множество A_i — множество новых кубов (i-ой и более высокой размерности) полученных на шаге $C_{i-1}*C_{i-1}$. Множество B_i — множество, получаемое из множества C_{i-1} удалением из него полученных на этом (i-1) шаге простых импликант Z_{i-1} . Множество Z_{i-1} — множество простых импликант, полученных в результате операции $C_{i-1}*C_{i-1}$. Итоговое множество простых импликант Z получается объединением всех множеств Z_0 ... Z_n , полученных на z на

Первый этап алгоритма Рота — нахождение множества простых импликант. Поиск простых импликант (т.е. таких импликант которые не порождают импликант более высокой размерности) производится с использованием операции умножения кубов (*). Для простоты понимания операцию * в алгоритме можно ассоциировать с операцией «склеивания». Вначале сформируем исходное покрытие C_0 заданное объединением множеств кубов L и N. Для выполнения операции $C_i * C_i$ используем таблицу. Операцию $C_i * C_i$ будем выполнять до тех пор, пока во множестве C_i будет содержаться более одного куба. Два и более кубов множества C_i могут породить новый куб большей размерности.

Выполняется операция ($C_0 * C_0$):

$C_0 * C_0$	00000	11001	00010	10010	10110	01101	00100	00011	00110	00111	01111	11101
00000	-											
11001		ı										
00010	000y0		ı									
10010			y0010	-								
10110				10y10	ı							
01101						-						
00100	00y00						-					
00011			0001y					-				
00110			00y10		y0110		001y0		-			
00111								00y11	0011y	-		
01111						011y1				0y111	-	
11101		11y01				y1101						-
	000x0						001x0	00x11	0011x	0x111		
A_1	00x00		0001x			x1101						
			00x10									

В таблице в пустых ячейках содержатся кубы с двумя и более координатами x, т.е. не являющиеся новыми кубами. Для простоты они не отражаются в таблице. Наряду с пустыми клетками в таблице содержатся ячейки с кубами одной из координат которых является y. Это показывает, что по этой координате произошло «склеивание». Понятно, что в этой таблице, и в последующих, новые кубы — это те, в которых есть только одна такая координата. В результирующем кубе (во множестве A_1) координата y заменяется на x.

В результате выполнения операции C_0*C_0 формируется два множества: множество новых кубов A_1 , образовавшихся в результате операции * (или склеивания) кубов из исходного множества C_0 , и множество кубов Z_0 , которые не образовали новых кубов на этом шаге операции *.

Как видно из таблицы на первом этапе в образовании новых кубов множества A_1 приняли участие все кубы исходного множества C_0 , поэтому нет кубов, которые следовало бы включить во множество Z_0 .

Для выполнения следующего шага (C_1*C_1) формирования множества простых импликант, необходимо сформировать $C_1 = A_1 \cup B_1$. Сформируем множество $B_1 = C_0 - Z_0 = C_0$. Далее в множестве C_0 выполняется операция поглощения

кубов меньшей размерности кубами большей размерности. В результате чего все кубы множества B_1 оказываются поглощенные кубами множества A_1 , таким образом множество $C_1 = A_1$

Следующий шаг — выполнение операции C_1*C_1 представлен в таблице: Из полученных новых кубов образуется множество A_2 , а из кубов, кото-

C_1*C_1	000x0	00x00	11x01	x0010	0001x	00x10	10x10	x0110	011x1	x1101	001x0	00x11	0011x	0x111
000x0	-													
00x00		-												
11x01			-											
x0010				-										
0001x					1									
00x10		00xy0				-								
10x10						y0x10	-							
x0110				x0y10				1						
011x1									-					
x1101										-				
001x0	00yx0										ı			
00x11						00x1y						-		
0011x					00y1x								-	
0x111														-
A_2	00xx0	00xx0		x0x10										
A 12						00x1x								

рые не участвовали в образовании новых – множество $Z_{1.}$

$$A_2 = \begin{cases} 00xx0 \\ x0x10 \\ 00x1x \end{cases}, \quad Z_1 = \begin{cases} 11x01 \\ 011x1 \\ x1101 \\ 0x111 \end{cases}.$$

Множество C_2 , формируется аналогично множеству C_1 как и на предыдущем шаге (из кубов множеств A_2 и B_2). Следующий этап — выполнение операции C_2*C_2 представлен в таблице:

C_2*C_2	00xx0	x0x10	00x1x
00xx0	ı		
x0x10		ı	
00x1x			-
A_3			

Из таблицы следует, что $A_3 = \emptyset$. Таким образом, новых кубов при выполнении операции $C_2 * C_2$ не было получено.

$$Z_2 = \begin{cases} 00xx0 \\ x0x10 \\ 00x1x \end{cases}, \qquad C_3 = A_3 \cup B_3 = \emptyset.$$

На этом процесс выявления простых импликант окончен. Таким образом, сформировано множество простых импликант Z:

$$Z = \bigcup_{i=0}^{2} Z_i = Z_0 \cup Z_1 \cup Z_2 = \begin{cases} 11x01\\011x1\\x1101\\0x111\\00xx0\\x0x10\\00x1x \end{cases}$$

Далее необходимо выяснить, не содержатся ли в этом множестве «лишние» простые импликанты — это такие, которые могут быть исключены из результирующей (минимальной) функции без нарушения ее корректности. Иначе говоря, это такие наборы, которые «дублируются» другими наборами минимальной функции. Для этого переходим к следующему этапу алгоритма.

Второй этап алгоритма Рота — определение L-экстремалей (обязательных простых импликант). Для определения L-экстремалей выполняется операция вычитания (#) кубов, результат представлен в таблице:

z#(Z-z)	11x01	011x1	x1101	0x111	00xx0	x0x10	00x1x
11x01	_	yzz1z	0zzzz	y0zyz	yyz1y	0yzyy	yyzy0
11201		011x1	01101	0x111	00xx0	x0x10	00x1x
011x1	yz0zz		ZZZZZ	z0zzz	zy0zy	1y0zy	zy0z0
UTIXI	11x01	_	Ø	00111	00xx0	x0x10	00x1x
x1101	zz0zz	zzz1z		zyzyz	zy01y	zy0yy	zy0y0
XIIUI	11001	01111	_	00111	00xx0	x0x10	00x1x
	X10X1X10	77777			zz00y	1z0zy	zz0z0
0x111	yzyyz 11001	Ø		-	00xx0	x0x10	0001x
	11001	Ø			UUXXU	AUATU	00x10
							zzzz1
00xx0	yyzzy			zzzzy		1zzzz	00011
UUXXU	11001			00111	_	10x10	ZZZZZ
							Ø
x0x10	zyzyy			zzzzy	zzz0z		zzzzy
AUXIU	11001			00111	00x00	_	00011
00x1x	yyzyz			ZZZZZ	zzzyz	yzzzz	
UUXIX	11001			ø	00x00	10x10	-
Остаток	11001	Ø	Ø	Ø	00x00	10x10	00011

Если после последовательного вычитания из некоторой простой импликанты всех остальных получаем в качестве остатка не пустой куб, то это означает, что только этот исходный (уменьшаемый) куб покрывает этот остаток (куб). Далее если этот остаток еще и содержит единичный набор из множества L, то данная (исходная) простая импликанта будет обязательной или L-экстремалью. Проверим, принадлежат ли остатки множеству L с помощью операции пересечения кубов (\cap). Результат представлен в таблице:

$z\#(Z-z)\cap L$	00000	11001	00010	10010	10110	01101	00100
11001	Ø	11001	Ø	Ø	Ø	Ø	Ø
00x00	00000	Ø	Ø	Ø	Ø	Ø	00100
10x10	Ø	Ø	Ø	10010	10110	Ø	Ø
00011	Ø	Ø	Ø	Ø	Ø	Ø	Ø

Из таблицы следует, что в остатках 11001, 00x00 и 10x10 содержатся наборы из множества L единичных наборов функции. Это значит, что простые импликанты 11x01, 00xx0 и x0x10 являются L-экстремалями, а куб 00011 не пересекается с кубами комплекса L, и значит соответствующая ему простая импликанта 00x1x не является L-экстремалью. Таким образом, получено множество L-экстремалей:

$$E = \begin{cases} 11x01\\00xx0\\x0x10 \end{cases}.$$

Итак, обязательная часть минимального покрытия исходной функции получена. Далее, необходимо выяснить, какие из вершин исходного комплекса кубов L не покрываются кубами из множества E (L-экстремалями). Все кубы из исходного комплекса L должны быть обязательно покрыты. Для этого из каждого куба комплекса L вычтем (#) элементы множества E. В результате вычитания получим $L_1 = L \# E$. Результат вычитания представлен в таблице:

L#E	00000	11001	00010	10010	10110	10110	01101	00100
11x01	yyzyy 00000	ZZZZZ Ø	ууzуу 00010	zyzyy 10010	zyzyy 10110	zyzyy 10110	yzzzz 01101	yyzyz 00100
00xx0	ZZZZZ Ø		ZZZZZ Ø	yzzzz 10010	yzzzz 10110	yzzzz 10110	zyzzy 01101	ZZZZZ Ø
x0x10				ZZZZZ Ø	ZZZZZ Ø	ZZZZZ Ø	zyzyy <mark>01101</mark>	

Из таблицы видно, что не покрывается L-экстремалями куб $L_1 = \{01101\}$. Этот куб необходимо покрыть какими либо простыми импликантами, которые не стали L-экстремалями.

$$\hat{Z} = Z \setminus E = \begin{cases} 11x01\\011x1\\x1101\\0x111\\00xx0\\x0x10\\00x1x \end{cases} \setminus \begin{cases} 11x01\\00xx0\\x0x10 \end{cases} = \begin{cases} 011x1\\x1101\\0x111\\00x1x \end{cases}$$

Теперь из полученного множества \hat{Z} надо выбрать куб с минимальной ценой (максимальной размерностью), чтобы покрыть набор $L_1 = \{01101\}$. Для этого выполним пересечение набора из множества L_1 с кубами из \hat{Z} . Результат пересечения приведен в таблице:

	$\hat{\mathbf{Z}} \cap L_1$	01101
a	011x1	01101
b	x1101	01101
С	0x111	Ø
d	00x1x	Ø

Из таблицы видно, что кубы 0x111 и 00x1x не пересекаются с кубом 01101. Следовательно остаются два куба 011x1 и x1101 которые одинаково пересекаются (покрывают) оставшийся (непокрытый) куб 01101. Цена у обоих кубов одинаковая (это оба куба первой размерности). В противном случае необходимо выбрать куб (кубы) максимальной размерности (с большим числом свободных координат \mathbf{x}).

Следовательно, могут быть получены две тупиковые формы:

$$\begin{split} f_{\text{МДНФ}}^1 &= \{\ 11x01,\ 00xx0,\ x0x10,\ 011x1\}, \\ f_{\text{МДНФ}}^2 &= \{\ 11x01,\ 00xx0,\ x0x10,\ x1101\}. \\ f_{\text{МДНФ}}^1 &= x_1x_2\overline{x}_4x_5 \lor \overline{x}_1\overline{x}_2\overline{x}_5 \lor \overline{x}_2x_4\overline{x}_5 \lor \overline{x}_1x_2x_3x_5 \\ f_{\text{МДНФ}}^1 &= x_1x_2\overline{x}_4x_5 \lor \overline{x}_1\overline{x}_2\overline{x}_5 \lor \overline{x}_2x_4\overline{x}_5 \lor x_2x_3\overline{x}_4x_5 \end{split}$$

Функциональные схемы для полученных тупиковых форм предлагается построить самостоятельно. При этом желательно попрактиковаться в построении этих схем не только в традиционном базисе: И, ИЛИ, НЕ, но и в других функционально полных базисах [стр.85-86 учебного пособия]:

1. И-НЕ; элемент И с инверсным выходом.

2. И, HE; {∧, не}.

3. XOR, ИЛИ, 1(const 1); $\{v, \oplus, 1\}$.

4. ИЛИ-НЕ; элемент ИЛИ с инверсным выходом.

• • •

Рассмотрим еще один пример минимизации БФ представленной множеством 0-кубов методом Рота. Исходное покрытие функции задано множествами единичных кубов — L, множество кубов на которых функция не определена — N пусто.

$$L = \begin{pmatrix} 0000 \\ 0001 \\ 0101 \\ 1100 \\ 1101 \\ 1000 \end{pmatrix} \qquad N = \emptyset$$

Вначале (как и в предыдущем примере) сформируем множество кубов C_0 =L U N =L.

Первый этап алгоритма Рота — нахождение множества простых импликант. Выполняется операция C_0*C_0 , результаты выполнения которой показаны в таблице:

C_0*C_0	0000	0001	0101	1100	1101	1000
0000	-					
0001		-				
0101			-			
1100				-		
1101					-	
1000						-
A_1						

В отличие от предыдущего примера таблица небольшая и заполнена без пустых клеток (для лучшего понимания ее формирования). Выделенные желтым цветом наборы — новые импликанты (кубы первой размерности). Как и ранее в результирующем кубе координата у заменяется на х.

В результате выполнения операции C_0*C_0 формируется два множества: множество новых кубов A_1 , образовавшихся в результате операции *, и множество кубов Z_0 , которые не образовали новых кубов на этом шаге операции *.

Далее сформируем множество $C_1 = A_1 \cup B_1$. Как и ранее $B_1 = C_0 - Z_0 = C_0$. После выполнения операции поглощения кубов меньшей размерности кубами большей размерности в множестве C_0 получим, что множество $C_1 = A_1$.

Следующий шаг — выполнение операции $C_1 * C_1$ представлен в таблице:

C_1*C_1	000x	x000	0x01	x101	110x	1x00
000x	-					
x000		-				
0x01			ı			
x101				-		
110x					1	
1x00						1
A_2						

Из таблицы видно, что при выполнении второго шага (C_1*C_1) новых кубов (второй размерности) не было получено. Следовательно:

$$A_{2} = \emptyset \qquad Z_{1} = \begin{pmatrix} 000x \\ x000 \\ 0x01 \\ x101 \\ 110x \\ 1x00 \end{pmatrix}$$

На этом процесс выявления простых импликант окончен. Таким образом сформировано множество простых импликант Z:

$$Z = \bigcup_{i=0}^{1} Z_i = Z_0 \cup Z_1 = \begin{pmatrix} 000x \\ x000 \\ 0x01 \\ x101 \\ 110x \\ 1x00 \end{pmatrix}$$

Как и в предыдущем примере для формированим минимальной ДНФ БФ проверим, не содержатся ли в множестве Z «лишние» простые импликанты. Переходим к следующему этапу алгоритма.

Второй этап алгоритма Рота — определение L-экстремалей. Выполним операцию вычитания (#) кубов, результат вычитания представлен в таблице:

z#(Z-z)	000x	x000	0x01	x101	110x	1x00
000x	-					
x000		-				
0x01			-			
x101				-		
110x					-	
1x00						-
Остаток						

Как видно из таблицы в результате выполнения операции z#(Z-z) не выявлено ни одного обязательного куба (L-экстремали). В отличие от предыдущего примера операцию $z\#(Z-z)\cap L$ выполнять не требуется. Это справедливо во-первых потому, что множество N — пусто, и во-вторых так как нечего пересекать (остатки отсутствуют). В этом случае необходимо применить алгоритм «ветвления». Он состоит в ледующем: если L-экстремали не выявлены , то любой куб (не куб из множества N) принадлежащий множеству Z либо вводится в множество E и далее по алгоритму Рота, либо один из кубов исключается из множества Z и повторяется операция z#(Z-z) (до тех пор пока не будут получены остатки). Выполним первый вариант алгоритма ветвления. Введел в множество E куб, например, 110х.

$$E = (110x).$$

Обязательная часть минимального покрытия исходной Б Φ сформирована. Определим, какие из вершин исходного комплекса кубов L не покрыва-

ются кубами из множества E. Как и ранее (в предыдущем примере) из каждого куба комплекса L вычтем (#) элементы множества E. В результате вычитания получим $L_1 = L \# E$. Результат вычитания представлен в таблице:

L#E	0000	0001	0101	1100	1101	1000
110x						

Из таблицы видно, что не покрывается L-экстремалями кубы:

$$L_1 = \begin{pmatrix} 0000 \\ 0001 \\ 0101 \\ 1000 \end{pmatrix}.$$

Эти кубы необходимо покрыть какими либо простыми импликантами, которые не стали L-экстремалями.

$$\hat{Z} = Z \setminus E = \begin{cases} 000x \\ x000 \\ 0x01 \\ x101 \\ 110x \\ 1x00 \end{cases} \setminus \{110x\} = \begin{cases} 000x \\ x000 \\ 0x01 \\ x101 \\ 1x00 \end{cases}$$

Теперь из полученного множества \hat{Z} надо выбрать куб с минимальной ценой (максимальной размерностью), чтобы покрыть наборы (кубы) из множества L_1 . Для этого выполним пересечение набора из множества L_1 с кубами из \hat{Z} . Результат пересечения приведен в таблице:

	$\hat{\mathbb{Z}} \cap L_1$	0000	0001	0101	1000
а	000x	0000	0001	Ø	Ø
b	x000	0000	Ø	Ø	1000
с	0x01	Ø	0001	0101	Ø
d	x101	Ø	Ø	0101	Ø
e	1x00	ø	Ø	Ø	1000

Из таблицы видно, что кубы x000 и 0x01 максимально пересекаются с кубами из множества L_1 и следовательно их покрывают (реализуют). Следовательно, эти два куба добавляются в минимальное покрытие..

Таким образом, может быть получена тупиковая (минимальная) форма ${\rm Б}\Phi$:

$$f_{\text{МДН}\Phi} = \{ 110x, x000, 0x01 \},$$

$$f_{\text{МДН}\Phi} = x_1 x_2 \overline{x}_3 \lor \overline{x}_2 \overline{x}_3 \overline{x}_4 \lor \overline{x}_1 \overline{x}_3 x_4$$

Функциональные схемы для полученных тупиковых предлагается построить, как и в предыдущем примере, самостоятельно.

Практические задания.

Используя алгоритм Рота получить минимальную форму булевой функции, исходное покрытие которой задано множествами кубов L (единичных) и N безразличных):

$$L = \begin{pmatrix} 01100 \\ 01110 \\ 10001 \\ 11000 \\ 11011 \\ 01110 \end{pmatrix} \quad N = \begin{pmatrix} 01000 \\ 10011 \\ 11000 \\ 10111 \end{pmatrix} \quad L = \begin{pmatrix} 0000 \\ 0010 \\ 0110 \\ 1101 \\ 1001 \end{pmatrix} \quad N = \emptyset$$

$$a) \qquad \qquad 6)$$

$$L = \begin{pmatrix} 110x \\ 0x01 \\ 0x01 \\ 0010 \\ 1010 \end{pmatrix} \quad N = \begin{pmatrix} 0x11 \\ 1000 \\ x111 \end{pmatrix} \quad L = \begin{pmatrix} 0001 \\ 0100 \\ 1100 \\ 1101 \\ 1010 \\ 0010 \end{pmatrix} \quad N = \begin{pmatrix} 0101 \\ 0111 \\ 0110 \\ 0010 \end{pmatrix}$$

$$B) \qquad \qquad \Gamma)$$