CLAIMS

5

15

20

The invention claimed is:

1. A surfactant composition comprising R_F - Q_s , wherein: R_F has a greater affinity for a first part of a system having at least two parts than Q_s ; Q_s has a greater affinity for a second part of the system than R_F ; and R_F comprises at least two -CF₃ groups and at least two hydrogens.

- $\mbox{2.} \qquad \mbox{The surfactant composition of claim 1 wherein R_F is hydrophobic relative to Q_s.}$
 - 3. The surfactant composition of claim 1 wherein Q_s is hydrophilic relative to R_F.
- 10 4. The surfactant composition of claim 1 wherein R_{F} is hydrophobic and Q_{s} is hydrophilic.
 - 5. The surfactant composition of claim 1 wherein R_F comprises at least one -CH₂- group.
 - 6. The surfactant composition of claim 1 wherein R_F comprises at least one cyclic group.
 - 7. The surfactant composition of claim 1 wherein R_F comprises at least one cyclic group.
 - 8. The surfactant composition of claim 7 wherein the cyclic group comprises an aromatic group.
 - 9. The surfactant composition of claim 1 wherein R_F comprises at least one $(CF_3)_2CF$ group.
 - 10. The surfactant composition of claim 1 wherein R_F comprises at least three CF_3 groups.
- 11. The surfactant composition of claim 1 wherein R_F comprises at least two (CF₃)₂CF- groups.
 - 12. The surfactant composition of claim 1 wherein R_F comprises at least four carbons and one of the four carbons comprises a -CH₂- group.

13. The surfactant composition of claim 1 wherein R_F-Q_s is

14. The surfactant composition of claim 1 wherein R_F-Q_s is

15. The surfactant composition of claim 1 wherein R_F-Q_s is

16. The surfactant composition of claim 1 wherein R_F - Q_s is

5

10

15

17. The surfactant composition of claim 1 wherein R_F-Q_s is

18. The surfactant composition of claim 1 wherein R_F-Q_s is

19. The surfactant composition of claim 1 wherein R_F-Q_s is

- 20. The surfactant composition of claim 1 wherein R_F-Q_s is F₃C F
- 21. The surfactant composition of claim 1 wherein R_F-Q_s is F₃C Qs.

22. The surfactant composition of claim 1 wherein R_F-Q_s is

23. The surfactant composition of claim 1 wherein R_F-Q_s is

24. The surfactant composition of claim 1 wherein R_F - Q_s is $_F$

25. The surfactant composition of claim 1 wherein R_F-Q_s is

26. The surfactant composition of claim 1 wherein R_F-Q_s is

27. The surfactant composition of claim 1 wherein R_F-Q_s is

28. The surfactant composition of claim 1 wherein R_F-Q_s is F₃C

29. The surfactant composition of claim 1 wherein R_F - Q_s is F_9 °C

30. The surfactant composition of claim 1 wherein R_F-Q_s is

15

5

10

5

10

15

20

31. The surfactant composition of claim 1 wherein R_F-Q_s is

32. The surfactant composition of claim 1 wherein R_F-Q_s is

$$F_3C$$
 F_3C
 F
 CF_3
 CF_3

33. The surfactant composition of claim 1 wherein R_F-Q_s is

34. The surfactant composition of claim 1 wherein R_F-Q_s is

35. The surfactant composition of claim 1 wherein R_F-Q_s is

$$F_3C$$
 F_3C
 F_3C

36. A detergent comprising a surfactant composition, the surfactant composition comprising R_F - Q_s , wherein:

 R_{F} has a greater affinity for a first part of a system having at least two parts than $Q_{\text{s}};$

Q_s has a greater affinity for a second part of the system than R_F; and

 $R_{\text{\tiny F}}$ comprises at least two -CF $_{\!3}$ groups and at least two hydrogens.

37. An emulsifier comprising a surfactant composition, the surfactant composition comprising R_F - Q_s , wherein:

 R_{F} has a greater affinity for a first part of a system having at least two parts than Q_{s} ;

 $Q_{s}% = A_{s}$ has a greater affinity for a second part of the system than $R_{F};$ and

 R_{F} comprises at least two -CF $_{\!3}$ groups and at least two hydrogens.

38. A paint comprising a surfactant composition, the surfactant composition comprising R_F-Q_s, wherein:

R_F has a greater affinity for a first part of a system having at least two parts than Q_s;

- Q_s has a greater affinity for a second part of the system than R_F; and
- R_F comprises at least two -CF₃ groups and at least two hydrogens.

5

10

15

20

25

30

39. An adhesive comprising a surfactant composition, the surfactant composition comprising R_F - Q_s , wherein:

R_F has a greater affinity for a first part of a system having at least two parts than Q_s;

Q_s has a greater affinity for a second part of the system than R_F; and

R_F comprises at least two -CF₃ groups and at least two hydrogens.

40. An ink comprising a surfactant composition, the surfactant composition comprising R_F - Q_s , wherein:

R_F has a greater affinity for a first part of a system having at least two parts than Q_s;

Q_s has a greater affinity for a second part of the system than R_F; and

R_F comprises at least two -CF₃ groups and at least two hydrogens.

41. A wetting agent comprising a surfactant composition, the surfactant composition comprising R_{F} - Q_{s} , wherein:

R_F has a greater affinity for a first part of a system having at least two parts than Q_s;

Q_s has a greater affinity for a second part of the system than R_F; and

R_F comprises at least two -CF₃ groups and at least two hydrogens.

42. A foamer comprising a surfactant composition, the surfactant composition comprising R_F - Q_s , wherein:

R_F has a greater affinity for a first part of a system having at least two parts than Q_s;

Q_s has a greater affinity for a second part of the system than R_F; and

R_F comprises at least two -CF₃ groups and at least two hydrogens.

43. A defoamer comprising a surfactant composition, the surfactant comprising R_F-Q_s, wherein:

R_F has a greater affinity for a first part of a system having at least two parts than Q_s;

Q_s has a greater affinity for a second part of the system than R_F; and

R_F comprises at least two -CF₃ groups and at least two hydrogens.

44. A production process comprising:

5

10

20

providing a first compound, the first compound comprising at least two -CF $_3$ groups and two hydrogens, a portion of the first compound representing R_F of an R_F - Q_s surfactant, wherein:

 R_{F} has a greater affinity for a first part of a system having at least two parts than Q_{s} :

 Q_s has a greater affinity for a second part of the system than R_F ; and R_F comprises the two -CF₃ groups and the two hydrogens; and adding Q_s to R_F to form the R_F - Q_s surfactant.

- 45. The production process of claim 44 wherein R_F is hydrophobic relative to Q_s.
 - 46. The production process of claim 44 wherein Q_s is hydrophilic relative to R_F .
- 47. The production process of claim 44 wherein R_{F} is hydrophobic and Q_{s} is hydrophilic
- 48. The production process of claim 44 wherein R_F comprises at least one -CH₂- group.
 - 49. The production process of claim 44 wherein R_F comprises at least one cyclic group.
 - 50. The production process of claim 49 wherein the cyclic group comprises an aromatic group.
 - 51. The production process of claim 44 wherein R_F comprises at least one $(CF_3)_2CF$ group.
 - 52. The production process of claim 44 wherein R_F comprises at least three - CF_3 groups.
- 53. The production process of claim 44 wherein R_F comprises at least two $(CF_3)_2CF$ groups.
 - 54. The production process of claim 44 wherein R_F comprises at least four carbons and one of the four carbons comprises a -CH₂- group.

55. A process for altering a surface tension of a part of a system having at least two parts, comprising adding a surfactant composition comprising R_F - Q_s to a portion of the system, wherein:

R_F has a greater affinity for one part of the system than Q_s;

5

- Q_s has a greater affinity for another part of the system than R_F ; and R_F comprises at least two -CF₃ groups and at least two hydrogens.
- 56. The process of claim 55 wherein R_F is hydrophobic relative to Q_s.
- 57. The process of claim 55 wherein Q_s is hydrophilic relative to R_F.
- 58. The process of claim 55 wherein R_F is hydrophobic and Q_s is hydrophilic.
- 10 59. The process of claim 55 wherein R_F comprises at least one -CH₂- group.
 - 60. The process of claim 55 wherein R_F comprises at least one cyclic group.
 - 61. The process of claim 60 wherein the cyclic group comprises an aromatic group.
 - 62. The process of claim 55 wherein R_F comprises at least one (CF₃)₂CF- group.
- 15 63. The process of claim 55 wherein R_F comprises at least three -CF₃ groups.
 - 64. The process of claim 55 wherein R_F comprises at least two (CF₃)₂CF- groups.