Data Mining and Analysis Clustering 2

CSCE 676:: Fall 2019
Texas A&M University
Department of Computer Science & Engineering
Prof. James Caverlee

Clustering

Given a **set of points**, with a notion of **distance** between points, **group the points** into some number of clusters, so that

Members of a cluster are close/similar to each other

Members of different clusters are dissimilar Usually:

Points are in a high-dimensional space

Similarity is defined using a distance measure

Euclidean, Cosine, Jaccard, edit distance, ...

Typical applications

As a **stand-alone tool** to get insight into data distribution

As a preprocessing step for other algorithms

Clustering: Examples

Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species

Information retrieval: document clustering

Land use: Identification of areas of similar land use in an earth observation database

Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs

City-planning: Identifying groups of houses according to their house type, value, and geographical location

Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults

Climate: understanding earth climate, find patterns of atmospheric and ocean

Economic Science: market research

scikit-learn: lots of options

Hierarchical Clustering

Hierarchical Clustering

Dendrograms

Divisive (Top-Down) Approach: Bisecting K-means

For I=1 to k-1 do

Pick a leaf cluster C to split

For J=1 to ITER do

Use K-means to split C into two sub-clusters, C1 and C2

Choose the best of the above splits and make it permanent

Hierarchical (Bottom Up) Clustering

Key operation: Repeatedly combine two nearest clusters

Three important questions:

- 1) How do you represent a cluster of more than one point?
- 2) How do you determine the "nearness" of clusters?
- 3) When to stop combining clusters?

1. How to Represent a Cluster of Many Points?

Key problem: As you merge clusters, how do you represent the "location" of each cluster, to tell which pair of clusters is closest?

Euclidean case: each cluster has a centroid = average of its (data)points

Example

Data:

o ... data point

x ... centroid

Dendrogram

1. How to Represent a Cluster of Many Points?

Non-Euclidean Case

The only "locations" we can talk about are the points themselves

i.e., there is no "average" of two points

1. How to Represent a Cluster of Many Points?

Non-Euclidean Case

The only "locations" we can talk about are the points themselves

i.e., there is no "average" of two points

2. Nearness of Clusters?

Single-link

Similarity of the most similar (single-link) ponts

Complete-link

Similarity of the "furthest" points, the least similar

Centroid

Clusters whose centroids (centers of gravity) are the most similar

Average-link

Average similarity between pairs of elements

Example: Single Link

Use maximum similarity of pairs:

$$sim(c_i,c_j) = \max_{x \in c_i, y \in c_j} sim(x,y)$$

Can result in "straggly" (long and thin) clusters due to chaining effect

After merging two clusters, the similarity of the resulting cluster to another cluster is:

$$sim((c_i \cup c_j), c_k) = \max(sim(c_i, c_k), sim(c_j, c_k))$$

Sec. 17.2

Single Link Example

Single-link: Chaining

Single-link clustering often produces long, straggly clusters. For most applications, these are undesirable

Complete Link Clustering

Use minimum similarity of pairs:

$$sim(c_i,c_j) = \min_{x \in c_i, y \in c_j} sim(x,y)$$

Makes "tighter" spherical clusters that are typically preferable

After merging two clusters, the similarity of the resulting cluster to another cluster is:

$$sim((c_i \cup c_j), c_k) = \min(sim(c_i, c_k), sim(c_j, c_k))$$

Complete Link Example

Complete-link: Sensitivity to outliers

1+2e, 4, 5+2e, 6, 7-e

A single outlier can have a large effect on the final outcome of complete-link clustering

Single vs. Complete Link

3. When to Stop Combining Clusters?

Ideas ...

Computational Complexity

In the first iteration, need to compute similarity of all pairs of N initial instances, which is O(N²).

In each of the subsequent N–2 merging iterations, compute the distance between the most recently created cluster and all other existing clusters.

In order to maintain an overall O(N²) performance, computing similarity to each other cluster must be done in constant time.

Often O(N³) if done naively or O(N² log N) if done more cleverly

Still too expensive for really big datasets that do not fit in memory

Flat or hierarchical clustering

For high efficiency, use flat clustering (or perhaps bisecting k-means)

For deterministic results: HAC

When a hierarchical structure is desired: hierarchical algorithm

HAC also can be applied if K cannot be predetermined (can start without knowing K)

BFR: K-Means on Large Datasets

BFR Algorithm

BFR [Bradley-Fayyad-Reina] is a 30 -20 -0 0 0214 00135 1359 3413 3413 1359 variant of k-means designed to

 $f_a(x)$

Gaussian or "normal" distribution

variant of k-means designed to handle very large (disk-resident) data sets

Assumes that clusters are normally distributed around a centroid in a Euclidean space

- Standard deviations in different dimensions may vary
 - Clusters are axis-aligned ellipses
- Efficient way to summarize clusters (want memory required O(clusters) and not O(data))

BFR Algorithm

- Points are read from disk one mainmemory-full at a time
- Most points from previous memory loads are summarized by simple statistics
- To begin, from the initial load we select the initial *k* centroids by some sensible approach:
 - Take k random points
 - Take a small random sample and cluster optimally
 - Take a sample; pick a random point, and then
 k-1 more points, each as far from the previously selected points as possible

Three Classes of Points

3 sets of points which we keep track of:

- Discard set (DS):
 - Points close enough to a centroid to be summarized
- Compression set (CS):
 - Groups of points that are close together but not close to any existing centroid
 - These points are summarized, but not assigned to a cluster
- Retained set (RS):
 - Isolated points waiting to be assigned to a compression set

BFR: "Galaxies" Picture

Discard set (DS): Close enough to a centroid to be summarized **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

Summarizing Sets of Points

For each cluster, the discard set (DS) is summarized by:

- The number of points, N
- The vector SUM, whose i^{th} component is the sum of the coordinates of the points in the i^{th} dimension
- The vector SUMSQ: ith component = sum of squares of coordinates in ith dimension

Summarizing Points: Comments

- 2d + 1 values represent any size cluster
 - \mathbf{d} = number of dimensions
- Average in each dimension (the centroid) can be calculated as SUM_i / N
 - $SUM_i = i^{th}$ component of SUM
- Variance of a cluster's discard set in dimension i is: (SUMSQ_i / N) - (SUM_i / N)²
 - And standard deviation is the square root of that
- Next step: Actual clustering

Note: Dropping the "axis-aligned" clusters assumption would require storing full covariance matrix to summarize the cluster. So, instead of **SUMSQ** being a **d**-dim vector, it would be a **d x d** matrix, which is too big!

The "Memory-Load" of Points

Processing the "Memory-Load" of points (1):

- 1) Find those points that are "sufficiently close" to a cluster centroid and add those points to that cluster and the DS
 - These points are so close to the centroid that they can be summarized and then discarded
- 2) Use any main-memory clustering algorithm to cluster the remaining points and the old RS
 - Clusters go to the CS; outlying points to the RS

Discard set (DS): Close enough to a centroid to be summarized. **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

The "Memory-Load" of Points

Processing the "Memory-Load" of points (2):

- 3) DS set: Adjust statistics of the clusters to account for the new points
 - Add Ns, SUMs, SUMSQs
- 4) Consider merging compressed sets in theCS
- 5) If this is the last round, merge all compressed sets in the CS and all RS points into their nearest cluster

Discard set (DS): Close enough to a centroid to be summarized. **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

BFR: "Galaxies" Picture

Discard set (DS): Close enough to a centroid to be summarized **Compression set (CS):** Summarized, but not assigned to a cluster **Retained set (RS):** Isolated points

A Few Details...

- Q1) How do we decide if a point is "close enough" to a cluster that we will add the point to that cluster?
- Q2) How do we decide whether two compressed sets (CS) deserve to be combined into one?

How Close is Close Enough?

- Q1) We need a way to decide whether to put a new point into a cluster (and discard)
- BFR suggests two ways:
 - The Mahalanobis distance is less than a threshold
 - High likelihood of the point belonging to

currently nearest centroid

Mahalanobis Distance

- Normalized Euclidean distance from centroid
- For point $(x_1, ..., x_d)$ and centroid $(c_1, ..., c_d)$
 - 1. Normalize in each dimension: $y_i = (x_i c_i) / \sigma_i$
 - 2. Take sum of the squares of the y_i
 - 3. Take the square root

$$d(x,c) = \sqrt{\sum_{i=1}^{d} \left(\frac{x_i - c_i}{\sigma_i}\right)^2}$$

 σ_i ... standard deviation of points in the cluster in the ith dimension

Mahalanobis Distance

- If clusters are normally distributed in d dimensions, then after transformation, one standard deviation = \sqrt{d}
 - i.e., 68% of the points of the cluster will have a Mahalanobis distance $<\sqrt{d}$
- Accept a point for a cluster if its M.D. is < some threshold, e.g. 2 standard deviations

Picture: Equal M.D. Regions

Euclidean vs. Mahalanobis distance

Contours of equidistant points from the origin

Uniformly distributed points, Euclidean distance

Normally distributed points, Euclidean distance

Normally distributed points, Mahalanobis distance

Should 2 CS clusters be combined?

Q2) Should 2 CS subclusters be combined?

- Compute the variance of the combined subcluster
 - N, SUM, and SUMSQ allow us to make that calculation quickly

Combine if the combined variance is below some threshold

Many alternatives: Treat dimensions differently, consider density