Лабораторная работа № 5 Расширенная настройка HTTP-сервера Apache

Абд эль хай мохамад

Содержание

Цель работы	2
Выполнение лабораторной работы	
1. Конфигурирование HTTP-сервера для работы через протокол HTTPS	
2.Конфигурирование НТТР-сервера для работы с РНР	5
3.Внесение изменений в настройки внутреннего окружения	
виртуальной машины	6
Вывод:	6
Otherli na konthoululie bonnocli:	e

Цель работы

Приобретение практических навыков по расширенному конфигурированию HTTP-сервера Арасhе в части безопасности и возможности использования PHP

Выполнение лабораторной работы

1. Конфигурирование HTTP-сервера для работы через протокол HTTPS

Загружаю свою операционную систему и перехожу в рабочий каталог с проектом: Запускаю виртуальную машину server: make server

На виртуальной машине server вхожу под своим пользователем и открываю терминал. Перехожу в режим суперпользователя: sudo -i

Генерирую ключ для веб-сервера www.maabedelhay.net:

Сгенерированные ключи и сертификат появились в соответствующих подкаталогах в каталоге

Для перехода веб-сервера www.maabedelhay.net на функционирование через протокол HTTPS требуется изменить его конфирурационный файл. Перехожу в каталог с конфигурационными файлами: cd /etc/httpd/conf.d

Открываю на редактирование файл /etc/httpd/conf.d/www.maabedelhay.net.conf и заменяю его содержимое на следующее:

<VirtualHost *:80> Создать виртуальный хост на порту 80.

Здесь

мы используем звездочку вместо ір

адреса, это значит, что слушать соединения на всех адресах, как

веб-сервер будет слу на внешнем, так и на localhost

ServerAdmin webmaster@maabedelhay.net

Указывается электронный адрес администратора веб-сервера

DocumentRoot /var/www/html/www.maabedelhay.net

Указывается папка, в которой будут находиться данные сайта

ServerName www.maabedelhay.net Указывается домен

ServerAlias www.maabedelhav.net Указывается псевдоним домена

ErrorLog logs/www.maabedelhay.net-error log

Путь к каталогу для сохранения лог-файлов ошибок

CustomLog logs/www.maabedelhay.net-access log common

Путь к каталогу для сохранения лог-файлов доступа

RewriteEngine on Подключён модуль mod rewrite

RewriteRule ^(.*)\$ https://%{HTTP_HOST}\$1 [R=301,L]

Перенаправляем запросы к любой странице на сайт https://%{HTTP_HOST}, используя перенаправление 301.

</VirtualHost> Описание виртуального хоста начинается с

<VirtualHost> и заканчивается </VirtualHost>

<IfModule mod ssl.c> Весь код в этой секции будет выполнен

только в том случае, если активирован

модуль

mod ssl. Это нужно для

безопасности, чтобы если

модуль не

активирован, то код не вызывал ошибок

<VirtualHost *:443> Создать виртуальный хост на порту 443

SSLEngine on Подключена поддержка SSL

ServerAdmin webmaster@maabedelhay.net

Указывается электронный адрес

администратора веб-сервера

DocumentRoot /var/www/html/www.maabedelhay.net

Указывается папка, в которой будут

находиться данные сайта

ServerName www.maabedelhay.net Указывается домен

ServerAlias www.maabedelhay.net Указывается псевдоним домена

ErrorLog logs/www.maabedelhay.net-error_log

Указывается путь к каталогу для сохранения лог-файлов ошибок

CustomLog logs/www.maabedelhay.net-access log common

Указывается путь к каталогу для

сохранения лог-файлов доступа

SSLCertificateFile /etc/pki/tls/certs/www.maabedelhay.net.crt

Указывается путь к файлам сертификата

SSLCertificateKeyFile /etc/pki/tls/private/www.maabedelhay.net.key

Указывается путь к файлам приватного ключа

</VirtualHost> Конец описания виртуального хоста

/IfModule>

Вношу изменения в настройки межсетевого экрана на сервере, разрешив работу с https

Перезапускаю веб-сервер: systemctl restart httpd

На виртуальной машине client в строке браузера ввожу название веб-сервера www.maabedelhay.net. Происходит автоматическое переключение на работу по протоколу HTTPS.

На открывшейся странице с сообщением о незащищённости соединения нажимаю кнопку «Дополнительно», затем добавляю адрес сервера в постоянные исключения.

Затем просматриваю содержание сертификата (нажмите на значок с замком в адресной строке и кнопку «Подробнее»).

2. Конфигурирование НТТР-сервера для работы с РНР

Устанавливаю пакеты для работы с PHP: dnf -y install php

В каталоге /var/www/html/www.maabedelhay.net заменяю файл index.html на index.php следующего содержания:

```
<?php
phpinfo();
?>
```

Корректирую права доступа в каталог с веб-контентом: chown -R apache:apache /var/www Восстанавливаю контекст безопасности в SELinux:

restorecon -vR /etc restorecon -vR /var/www Перезапускаю HTTP-сервер: systemctl restart httpd

На виртуальной машине client в строке браузера ввожу название веб-сервера www.maabedelhay.net . Выведена страница с информацией об используемой на веб-сервере версии PHP.

3.Внесение изменений в настройки внутреннего окружения виртуальной машины

На виртуальной машине server перехожу в каталог для внесение изменений в настройки внутреннего окружения /vagrant/provision/server/http и в соответствующие каталоги копирую конфигурационные файлы:

В имеющийся скрипт /vagrant/provision/server/http.sh вношу изменения, добавив установку РНР и настройку межсетевого экрана, разрешающую работать с https.

```
⊞
                                      root@server:/vagrant/provision/server
  root@server:/vagrant/provision/s... ×
                                             root@server:~
                                                                              root@server:/
  GNU nano 5.6.1
                                                                                            Modified
                                                   http.sh
 cho "Provisioning script $0"
cho "Install needed packages"
dnf -y groupinstall "Basic Web Server"
dnf -y install php
echo "Copy configuration files"
 p -R /vagrant/provision/server/http/etc/httpd/* /etc/httpd
   -R /vagrant/provision/server/http/var/www/* /var/www
    m -R apache:apache /var/www
restorecon -vR /etc
restorecon -vR /var/www
 cho "Configure firewall"
firewall-cmd --add-service=http
firewall-cmd --add-service=http --permanent
firewall-cmd --add-service=https
firewall-cmd --add-service=https --permanent
systemctl enable httpd
systemctl start httpd
                                  ^W Where Is
^G Help
                    Write Out
                                                     Cut
                                                                      Execute
                                                                                      Location
                    Read File
                                    Replace
   Exit
                                                     Paste
                                                                      Justify
                                                                                      Go To Line
                                                                             Dight Ctrl
```

Вывод:

Я приобрел практические навыки по расширенному конфигурированию HTTP-сервера Арасhе в части безопасности и возможности использования PHP.

Ответы на контрольные вопросы:

1.В чём отличие HTTPom HTTPS?

НТТР — прикладной протокол передачи данный, используемый для получения информации с веб-сайтов.

HTTPS — расширение протокола HTTP, поддерживающее шифрование по протоколам SSL и TLS.

HTTPS — не самостоятельный протокол передачи данных, а HTTP с надстройкой шифрования. В этом ключевое и единственное отличие. Если по протоколу HTTP данные передаются незащищенными, то HTTPS обеспечит криптографическую защиту.

2.Каким образом обеспечивается безопасность контента веб-сервера при работе через HTTPS?

Для шифрования может применяться протокол **SSL** (Secure Sockets Layer) или протокол **TLC** (Transport Layer Security). Оба протокола используют асимметричное шифрование для аутентификации, симметричное шифрование для конфиденциальности и коды аутентичности сообщений для сохранения целостности сообщений.

Симметричное шифрование — способ шифрования, в котором для шифрования и

дешифровывания данных применяется один и тот же криптографический ключ.

Ассимметричное шифрование — способ шифрования, в котором для шифрования и дешифровывания данных применяется пара ключей—открытый и закрытый.

Открытый ключ известен, передаётся по открытому каналу и используется для аутентификации пользователей и собственно для шифрования передаваемых данных.

Закрытый ключ должен быть сохранён в тайне и находиться на стороне получателя шифрованного сообщения. При помощи закрытого ключа сообщение дешифруется и таким образом подтверждается подлинность отправителя сообщения.

Криптографический ключ — секретная информация, используемая криптографическим алгоритмом при шифровании/дешифровании данных.

Основной характеристикой криптостойкости криптографического ключа является его длина, измеряемая как правило в битах. Для симметричных алгоритмов шифрования рекомендуемая минимальная длина ключа — 128 бит, для ассиметричных алгоритмов — 1024 бит.

Сертификат открытый ключа— документ (электронный или бумажный), содержащий как сам открытый ключ, так и информацию о его владельце и области применения. Сертификат подписывается выдавшим его сертификационным центром, который подтверждает принадлежность открытого ключа владельцу

3. Что такое сертификационный центр? Приведите пример

Сертификационный центр (Certification authority, CA) представляет собой компонент глобальной службы каталогов, отвечающий за управление криптографическими ключами пользователей. Его открытый ключ широко известен общественности и не вызывает сомнений в подлинности.

Задача центра сертификации — подтверждать подлинность ключей шифрования с помощью сертификатов электронной подписи.

Совет безопасности центра сертификации (CASC) включает в себя крупнейшие центры сертификации, такие как Comodo, DigiCert, Entrust, GlobalSign, GoDaddy, Symantec и Trend Micro.