

Machine Learning

第11讲深度学习 Deep Learning

刘峤

电子科技大学计算机科学与工程学院

11.1 Perceptron

感知机

- 美国学者Rosenblatt在1957年首次提出感知机概念
 - ※ 感知机学习算法是Rosenblatt在1958年提出的
- IEEE设立IEEE Frank Rosenblatt Award¹
- 感知机模型
 - ※ 包含一个突触权值可调的神经元
 - ※ 属于前向神经网络类型
 - ※ 只能区分线性可分的模式,属于线性分类模型
 - 1. https://www.ieee.org/about/awards/tfas/rosenblatt.html

单层感知机

- 单层感知机: Perceptron Learning Algorithm (PLA)
 - ※ 是具有单层处理单元的神经网络
 - ※ 模拟神经元接受环境信息,通过神经冲动(激活函数)进行信息传递
 - ※ 用于求解输入空间的二分类问题: 求解分类超平面
- 设输入向量 $\mathbf{x} \in \mathbb{R}^n$, 类别标记 $y \in \{-1, +1\}$, 则感知机模型表示为:

$$f(\mathbf{x}) = sign(\mathbf{w} \cdot \mathbf{x} + b)$$

- 思考: $\mathbf{w} \cdot \mathbf{x} + b = 0$ 的几何意义是什么?
- 思考: w 的几何意义是什么?
- 思考: 感知机与逻辑斯蒂回归的联系与区别在哪里?

Logistic Regression

• Let's write $p(X) = \Pr(Y = 1|X)$ for short and consider using balance to predict default. Logistic regression uses the form

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

(e ≈ 2.71828 is a mathematical constant [Euler's number.])

- It is easy to see that no matter what values β_0, β_1 or X take, β_0, β_1 will have values between 0 and 1.
- A bit of rearrangement gives

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

ullet This monotone transformation is called the $oldsymbol{log}$ odds or $oldsymbol{logit}$ transformation of p(X)

单层感知机的求解

● 思考: 若发生误分类的情况, 误分类点到超平面的距离是?

$$d = -\frac{1}{\|\mathbf{w}\|_2} y^i (\mathbf{w} \cdot \mathbf{x}^i + b)$$

● 思考: 若发生误分类的情况, 误分类点到超平面的距离总和是?

$$\mathcal{L}(\mathbf{w}, b) = -\sum_{\mathbf{x}^i \in D'} y^i (\mathbf{w} \cdot \mathbf{x}^i + b)$$

- 其中: D'表示模型当前误分类的点的集合
- 思考:如何最小化该损失函数?

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b) = -\sum_{\mathbf{x}^i \in D'} y^i \mathbf{x}^i$$
 $\mathbf{w} = \mathbf{w} + \eta \sum_{\mathbf{x}^i \in D'} y^i \mathbf{x}^i$

$$\nabla_b \mathcal{L}(\mathbf{w}, b) = -\sum_{\mathbf{x}^i \in D'} y^i$$
 $b = b + \eta \sum_{\mathbf{x}^i \in D'} y^i$

Batch Gradient Descent

单层感知机的求解

随机梯度下降 (Stochastic Gradient Descent)

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \eta y^i \mathbf{x}^i \qquad b_{t+1} = b_t + \eta y^i$$

Practical Implementation of PLA

- Start from some w_o (say, o), and 'correct' its mistakes on D
- For t = 0, 1, ...
- find the next mistake of w_t called (x_t, y_t)

$$sign(\mathbf{w}_t \cdot \mathbf{x}_t + b) \neq y_t$$

correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_t \mathbf{x}_t$$

• ... until a full cycle of not encountering mistakes

11.2 Deep Learning

Ups and downs of Deep Learning

- 1958: Perceptron (linear model)
- 1969: Perceptron has limitation
- 1980s: Multi-layer perceptron
 - Do not have significant difference from DNN today
- 1986: Backpropagation
 - * Usually more than 3 hidden layers is not helpful
- 1989: 1 hidden layer is "good enough", why deep?
- 2006: RBM initialization (breakthrough)
- 2009: GPU
- 2011: Start to be popular in speech recognition
- 2012: win ILSVRC image competition

Three Steps for Deep Learning

• Deep Learning is so simple

Neural Network

• Neural Network: Different connection leads to different network structures

• Network parameter θ : all the weights and biases in the "neurons"

This is a function: Input vector, output vector

Given network structure, define a function set

$$f\left(\begin{bmatrix} 1\\ -1 \end{bmatrix}\right) = \begin{bmatrix} 0.62\\ 0.83 \end{bmatrix}$$
$$f\left(\begin{bmatrix} 0\\ 0 \end{bmatrix}\right) = \begin{bmatrix} 0.51\\ 0.85 \end{bmatrix}$$

Matrix Operation

Output Layer

Feature extractor replacing feature engineering

0.2

is 2

is 0

Each dimension represents the confidence of a digit.

FAQ

- Q: How many layers? How many neurons for each layer?
 - **X** Trial and Error + Intuition
- Q: Can the structure be automatically determined?
 - **XE.g.** Evolutionary Artificial Neural Networks
- Q: Can we design the network structure?

Three Steps for Deep Learning

• Deep Learning is so simple

11.3 The Loss Function

Loss for an Example

Total Loss

• For all training data ...

Total Loss:

$$L = \sum_{n=1}^{N} C^n$$

Find a function in function set that minimizes total loss L

Find the network parameters *θ** that minimize total loss L

Three Steps for Deep Learning

• Deep Learning is so simple

Neural Network

Gradient Descent

Gradient Descent

Universality Theorem

• Any continuous function f

$$f: \mathbb{R}^N \Rightarrow \mathbb{R}^M$$

- Can be realized by a network with one hidden layer
 - given enough hidden neurons

- Reference for the reason:
 - * http://neuralnetworksanddeeplearning.com/chap4.html

11.4 Backpropagation

Gradient Descent

• Network parameters: $\theta = \{w_1, w_2, \cdots, b_1, b_2, \cdots\}$

• Starting Parameters: $\theta^0 \to \theta^1 \to \theta^2 \to \cdots$

$$\nabla L(\theta) = \begin{bmatrix} \partial L(\theta)/\partial w_1 \\ \partial L(\theta)/\partial w_2 \\ \vdots \\ \partial L(\theta)/\partial b_1 \\ \partial L(\theta)/\partial b_2 \\ \vdots \end{bmatrix}$$

$$Compute \nabla L(\theta^0)$$

$$Compute \nabla L(\theta^1)$$

$$\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$Compute \nabla L(\theta^1)$$

$$\theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$

$$Millions of parameters$$

$$To compute the gradients efficiently, we use: backpropagation$$

Compute
$$\nabla L(\theta^0)$$
 $\theta^1 = \theta^0$

Compute
$$\nabla L(\theta^1)$$

$$\theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$

To compute the gradients efficiently, we use:

backpropagation.

Chain Rule

• Case 1: y = g(x), z = h(y)

$$\Delta x \to \Delta y \to \Delta z$$
 $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$

• Case 2: x = g(s), y = h(s), z = k(x, y)

$$\Delta s = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

Backpropagation

$$L(\theta) = \sum_{n=1}^{N} C^{n}(\theta) \longrightarrow \frac{\partial L(\theta)}{\partial w} = \sum_{n=1}^{N} \frac{\partial C^{n}(\theta)}{\partial w}$$

Backpropagation

- Forward pass:
 - \times Compute $\partial z/\partial w$ for all parameters

 $\frac{\partial C}{\partial w} = ?$ $\frac{\partial z}{\partial w} \frac{\partial C}{\partial z}$

(Chain rule)

- Backward pass:
 - \times Compute $\partial C/\partial z$ for all activation function inputs z

Backpropagation – Forward pass

• Compute $\partial z/\partial w$ for all parameters

$$\frac{\partial z}{\partial w_1} = ? \quad x_1$$

$$\frac{\partial z}{\partial w_2} = ? \quad x_2$$
The value of the input connected by the weight

Backpropagation – Forward pass

• Compute $\partial z/\partial w$ for all parameters

• Compute $\partial C/\partial z$ for all activation function inputs z

• Compute $\partial C/\partial z$ for all activation function inputs z

$$\frac{\partial C}{\partial z} = \sigma'(z) \left[w_3 \frac{\partial C}{\partial z'} + w_4 \frac{\partial C}{\partial z''} \right]$$

$$\sigma'(z) = \frac{\partial a}{\partial z}$$

• Compute $\partial C/\partial z$ for all activation function inputs z

• $\sigma'(z)$ is a constant because z is already determined in the forward pass.

$$\frac{\partial C}{\partial z} = \sigma'(z) \left[w_3 \frac{\partial C}{\partial z'} + w_4 \frac{\partial C}{\partial z''} \right]$$

• Compute $\partial C/\partial z$ for all activation function inputs z

• Case 1. Output Layer $\frac{\partial C}{\partial z} = \sigma'(z) \left[w_3 \frac{\partial C}{\partial z'} + w_4 \frac{\partial C}{\partial z''} \right]$

$$\frac{\partial C}{\partial z'} = \frac{\partial y_1}{\partial z'} \frac{\partial C}{\partial y_1} \qquad \frac{\partial C}{\partial z''} = \frac{\partial y_2}{\partial z''} \frac{\partial C}{\partial y_2} \qquad \text{Done!}$$

- Compute $\partial C/\partial z$ for all activation function inputs z
- Case 2. Not Output Layer

$$\frac{\partial C}{\partial z} = \sigma'(z) \left[w_3 \frac{\partial C}{\partial z'} + w_4 \frac{\partial C}{\partial z''} \right]$$

- Compute $\partial C/\partial z$ for all activation function inputs z
- Case 2. Not Output Layer

- Compute $\partial C/\partial z$ recursively
 - * Until we reach the output layer

- Compute $\partial C/\partial z$ for all activation function inputs z
- Compute $\partial C/\partial z$ from the output layer

- Compute $\partial C/\partial z$ for all activation function inputs z
- Compute $\partial C/\partial z$ from the output layer

$$\frac{\partial C}{\partial z} = \sigma'(z) \left[w_3 \frac{\partial C}{\partial z'} + w_4 \frac{\partial C}{\partial z''} \right]$$

Backpropagation – Summary

Forward Pass

Backward Pass

References

- 《 Neural Networks and Deep Learning 》
 - written by Michael Nielsen
 - * http://neuralnetworksanddeeplearning.com/
- 《 Deep Learning 》
 - * written by Yoshua Bengio, Ian J. Goodfellow and Aaron Courville
 - * http://www.deeplearningbook.org
- 《 Machine learning 》
 - * https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php

Next chapter: Reinforcement Learning