Lesson 25: Practice Problems - Orthogonal Trajectories

ODE 1 - Prof. Adi Ditkowski

Part A: Basic Orthogonal Trajectories (Problems 1-6)

- 1. Find the orthogonal trajectories of the family $y = cx^2$.
- 2. Find the orthogonal trajectories of $x^2 + y^2 = c$.
- 3. Find the orthogonal trajectories of $y = ce^{-x}$.
- 4. Find the orthogonal trajectories of xy = c.
- 5. Find the orthogonal trajectories of $y^2 = cx$.
- 6. Find the orthogonal trajectories of $y = c \sin x$.

Part B: Eliminating Parameters (Problems 7-11)

- 7. For the family $x^2 + y^2 = 2cx$:
 - (a) Eliminate c to find the differential equation
 - (b) Find the orthogonal trajectories
- 8. For the family $y = c(x-1)^2$:
 - (a) Find the differential equation of the family
 - (b) Determine the orthogonal trajectories
- 9. Given $(x-c)^2 + y^2 = c^2$, find orthogonal trajectories.
- 10. For $y^2 = c(x+c)$, eliminate c and find orthogonal curves.
- 11. The family $y = \tan(x + c)$ find its orthogonal trajectories.

Part C: Self-Orthogonal Families (Problems 12-14)

- 12. Show that the family of rectangular hyperbolas $x^2 y^2 = c$ is self-orthogonal.
- 13. Prove that confocal parabolas $y^2 = 4c(x+c)$ are self-orthogonal.
- 14. Find all self-orthogonal families of the form $ax^2 + by^2 = c$.

Part D: Physical Applications (Problems 15-19)

- 15. The equipotential lines in a 2D electric field are given by $x^2 y^2 = c$. Find the electric field lines.
- 16. Temperature distribution in a plate: $T = x^2 + y^2 = c$. Find the heat flow lines.
- 17. Stream function: $\psi = xy = c$. Find the velocity potential lines.
- 18. Given electric field lines $y = ce^x$, findtheequipotentials.
- 19. In a magnetic field, the flux lines are circles $x^2 + y^2 = c^2$. What are the constant magnetic potential curves?

Part E: Complex Orthogonal Trajectories (Problems 20-24)

- 20. Find orthogonal trajectories of $y = c(1 + x^2)$.
- 21. Find orthogonal trajectories of the family of curves $r = c \sin \theta$ in polar coordinates.
- 22. For the family $e^x \cos y = c$:
 - (a) Find the differential equation
 - (b) Determine orthogonal trajectories
- 23. Find orthogonal trajectories of $x^3 + 3xy^2 = c$.
- 24. The family of curves is given implicitly by $x^{2y} + xy^2 = c$. Find orthogonal trajectories.

Part F: Exam-Style Problems (Problems 25-30)

- 25. (Prof. Ditkowski 2023) Show that the families $x^2 + y^2 = ax$ and $x^2 + y^2 = by$ are orthogonal, where a and b are parameters.
- 26. Given that two families of curves are orthogonal: Family 1: y = f(x,c) Family 2: y = g(x,k) Prove that at any intersection point, $\frac{\partial f}{\partial x} \cdot \frac{\partial g}{\partial x} = -1$.
- 27. A family of curves satisfies the differential equation $\frac{dy}{dx} = \frac{2xy}{x^2 y^2}$.
 - (a) Find the orthogonal differential equation
 - (b) Show that both equations are exact
 - (c) Solve both and verify orthogonality
- 28. In complex analysis, $f(z) = z^3$.
 - (a) Find the families u(x,y) = c and v(x,y) = k

- (b) Verify they are orthogonal trajectories
- (c) Sketch several curves from each family
- 29. Find all functions F(x,y) such that the family F(x,y)=c is self-orthogonal.
- 30. Two families of curves in polar coordinates are given by: Family 1: $r = c(1 + \cos \theta)$ (cardioids) Family 2: $r = k(1 \cos \theta)$
 - (a) Are these families orthogonal?
 - (b) If not, find the orthogonal trajectories of Family 1

Solutions and Key Insights

Problem 1: $y = cx^2$ Differentiate: $\frac{dy}{dx} = 2cx$ Eliminate c: From $y = cx^2$, we get $c = \frac{y}{x^2}$ So $\frac{dy}{dx} = \frac{2y}{x}$ Orthogonal: $-\frac{dx}{dy} = \frac{2y}{x}$ or $\frac{dx}{dy} = -\frac{x}{2y}$ Solving: 2ydy = -xdx $y^2 = -\frac{x^2}{2} + C$ Result: $x^2 + 2y^2 = K$ (ellipses)

Problem 4: xy = c Differentiate: $y + x\frac{dy}{dx} = 0$ So $\frac{dy}{dx} = -\frac{y}{x}$ Orthogonal: $-\frac{dx}{dy} = -\frac{y}{x}$ or $\frac{dx}{dy} = \frac{y}{x}$ This gives xdx = ydy Result: $x^2 - y^2 = K$ (rectangular hyperbolas rotated 45°)

Problem 7: $x^2 + y^2 = 2cx$ Differentiate: $2x + 2y\frac{dy}{dx} = 2c$ From original: $c = \frac{x^2 + y^2}{2x}$ Substitute: $2x + 2y\frac{dy}{dx} = \frac{x^2 + y^2}{x}$ Simplify: $\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}$ Orthogonal: $\frac{dx}{dy} = \frac{2xy}{x^2 - y^2}$

Problem 15: Electric field lines are orthogonal to equipotentials. Given: $x^2 - y^2 = c$ Differentiate: $2x - 2y\frac{dy}{dx} = 0$ So $\frac{dy}{dx} = \frac{x}{y}$ Orthogonal (field lines): $\frac{dx}{dy} = -\frac{x}{y}$ Solving: $\frac{xdx}{ydy} = -1$, so xdx = -ydy Result: $x^2 + y^2 = K$ (circles - radial field!)

Key Strategy for Problem 12: For self-orthogonal, show that the orthogonal differential equation, when solved, gives the same family with different parameter.

Warning for Problem 28: For $f(z) = z^3 = (x + iy)^3$, expand carefully: $u + iv = x^3 - 3xy^2 + i(3x^{2y} - y^3)$ So $u = x^3 - 3xy^2$ and $v = 3x^{2y} - y^3$

Insight for Problem 25: These are circles passing through the origin. Use the fact that circles through origin with centers on perpendicular axes are orthogonal.