## タンパク質構造予測とHPモデル



構造予測

実際のタンパク質



複雜、困難



簡略化



有用なアルゴリズム

HPモデル





# タンパク質を構成するアミノ酸

| グリシン     | Gly | バリン     | Val |
|----------|-----|---------|-----|
| セリン      | Ser | システイン   | Cys |
| グルタミン    | Gln | イソロイシン  | lle |
| フェニルアラニン | Phe | トリプトファン | Trp |
| グルタミン酸   | Glu | リジン     | Lys |
| アラニン     | Ala | ロイシン    | Leu |
| スレオニン    | Thr | アスパラギン  | Asn |
| チロシン     | Tyr | メチオニン   | Met |
| プロリン     | Pro | アスパラギン酸 | Asp |
| ヒスチジン    | His | アルギニン   | Arg |

: 親水性



疎水性

#### HPモデルのルール



- アミノ酸をH(hydrophobic,疎水性、非極性アミノ酸)とP(polar,親水性、極性アミノ酸)のいずれかに分ける。
- Hは、水を嫌い、互いに引き付けあう
- HとHが隣り合うと、HH結合が生まれる。H H結合はより低いエネルギーを取る。よってH H結合が最も多い構造を最良とする。これをエ ネルギー最小化法という。

### タンパク質→HPモデル



例:

タンパク質: Lys-Val-Arg-Leu- Ile- Asp-Glu-Phe

 $\downarrow$ 

**HPモデル: H-P-H-P-P-H-H-P** 

### HPモデル二次元格子構造の例



H-P-H-P-P-H-H-P-H-P-H-H-P-P-H-P-H



左図では、HH結 合は9個なので、

9点

点数が高い方が

良い結果である。

### 実験設定



- ・ 配列は長さの違う11種類を用意する。
- 配列は全て最適解が既知のものである。
- GA, GP, ACO, NNなどを用いる。
  - PERM (Pruned Enriched Rosenbluth Method)

### 実験結果

| 長さ | 最適解 |
|----|-----|
| 20 | 9   |
| 24 | 9   |
| 25 | 8   |
| 36 | 14  |
| 48 | 23  |
| 50 | 21  |
| 60 | 36  |
| 64 | 42  |

| 長さ  | 最適解 |  |  |
|-----|-----|--|--|
| 85  | 53  |  |  |
| 99  | 48  |  |  |
| 100 | 50  |  |  |

### http://www.cs.ubc.ca/~hoos/Publ/ShmHoo03.pdf

に問題の記述がある (ACOによる解法例の論文)

| Seq. No. | Length | $E^*$ | Protein Sequence                                                     |
|----------|--------|-------|----------------------------------------------------------------------|
| 1        | 20     | -9    | $(HP)_2PH_2PHP_2HPH_2P_2HPH$                                         |
| 2        | 24     | -9    | $H_2P_2(HP_2)_6H_2$                                                  |
| 3        | 25     | -8    | $P_2HP_2H_2P_4H_2P_4H_2$                                             |
| 4        | 36     | -14   | $P_3H_2P_2H_2P_5H_7P_2H_2P_4H_2P_2HP_2$                              |
| 5        | 48     | -23   | $P_2HP_2H_2P_2H_2P_5H_{10}P_6H_2P_2H_2P_2HP_2H_5$                    |
| 6        | 50     | -21   | $H_2(PH)_3PH_4PHP_3HP_3HP_4HP_3HP_3HPH_4(PH)_3PH_2$                  |
| 7        | 60     | -36   | $P_2H_3PH_8P_3H_{10}PHP_3H_{12}P_4H_6PH_2PHP$                        |
| 8        | 64     | -42   | $H_{12}(PH)_2(P_2H_2)_2P_2H(P_2H_2)_2P_2H(P_2H_2)_2P_2HPHPH_{12}$    |
| 9        | 85     | -53   | $H_4P_4H_{12}P_6(H_{12}P_3)_3HP_2(H_2P_2)_2HPH$                      |
| 10       | 100    | -50   | $P_3H_2P_2H_4P_2H_3(PH_2)_3H_2P_8H_6P_2H_6P_9HPH_2PH_{11}P_2H_3PH_2$ |
|          |        |       | $PHP_2HPH_3P_6H_3$                                                   |
| 11       | 100    | -48   | $P_6HPH_2P_5H_3PH_5PH_2(P_2H_2)_2PH_5PH_{10}PH_2PH_7P_{11}H_7P_2H$   |
|          |        |       | $PH_3P_6HPHP_2$                                                      |

**Table 1.** Benchmark instances for the 2D HP Protein Folding Problem used in this study with optimal or best known energy values  $E^*$ . ( $E^*$  values printed in bold-face are provably optimal.) The first eight instances can also be found at http://www.cs.sandia.gov/tech\_reports/compbio/tortilla-hp-benchmarks.html, Sequence 9 is taken from [10], and the last two instances are taken from [14]. ( $H_i$ ,  $P_i$ , and (...) indicate i-fold repetitions of the respective symbol or subsequence.)

### 実験結果



| 長さ  | 最適解 | GP | GA | ACO | EMC | PERM |
|-----|-----|----|----|-----|-----|------|
| 85  | 53  | 52 |    | 51  | 52  | 53   |
| 99  | 48  |    |    | 47  |     | 48   |
| 100 | 50  |    |    | 47  |     | 50   |

ACO (Ant Colony Optimization)

GA (Genetic Algorithm)

**EMC** (Evolutionary Monte Carlo)

PERM (Pruned Enriched Rosenbluth Method)



1世代目(30点)



8世代目 (34点)



16代目(42点、最適解)