

Esercitazione su sub-netting/super-netting

La rete *IP* rappresentata in figura è costituita da 6 LAN interconnesse mediante varie tecnologie (*Ethernet*, *Fast Ethernet* e collegamenti punto punto).

Di ciascuna LAN è noto il numero di *host* (comprensivo del *router* o dei *router* che appartengono alla LAN stessa).

Si dispone dei blocchi di indirizzi contigui da 200.0.0.0/24 a 200.0.7.0/24 (8 blocchi di indirizzi in classe C).

Si chiede di:

- •indirizzare tutte le sottoreti;
- calcolare le maschere relative;
- •assegnare gli indirizzi alle interfacce dei *router*.

Ipotesi di lavoro

Le ipotesi di lavoro sono:

- impiego di maschere di sub-netting e super-netting di lunghezza variabile (VLSM);
- divieto di utilizzo delle sottoreti indirizzate con tutti 1 e di quelle indirizzate con tutti 0.

Soluzione (1)

Utilizzando la notazione *classeless* il blocco di indirizzi contigui a disposizione si può identificare col la *supernet* 200.0.0.0/21, che include 2048 indirizzi da 200.0.0.0 a 200.0.7.255.

La suddivisione di questo spazio di indirizzi va effettuato fra le LAN ed i collegamenti punto-punto fra i *router*, conformemente al numero di *host* ed interfacce presenti.

LAN	Net ID / mask-bit	Netmask	Numero Massimo <i>Host</i>
LAN A	200.0.0.0/22	255.255.252.0	1022
LAN B	200.0.4.0/23	255.255.254.0	510
LAN C	200.0.7.192/27	255.255.255.224	30
LAN D	200.0.7.128/26	255.255.255.192	62
LAN E	200.0.7.0/25	255.255.255.128	126
LAN F	200.0.6.0/24	255.255.255.0	254

Soluzione (2)

Da questa suddivisione rimangono liberi 30 indirizzi che possono essere utilizzati per le interfacce dei *router* sui collegamenti punto-punto. In questo caso è consigliabile creare una sottorete da 2 *host* per ciascun collegamento punto-punto, ossia per ciascuna rete WAN. Si potrebbe quindi procedere in questo modo:

WAN	Net ID / mask-bit	Netmask	Indirizzi delle interfacce
WAN G	200.0.7.224/30	255.255.255.252	200.0.7.225 200.0.7.226
WAN H	200.0.7.228/30	255.255.252	200.0.7.229 200.0.7.230
WAN I	200.0.7.232/30	255.255.255.252	200.0.7.233 200.0.7.234

Soluzione (3)

Per quanto riguarda gli indirizzi alle interfacce dei *router* verso le reti LAN, per convenzione si utilizzano gli indirizzi *IP* di valore più alto, ossia quelli immediatamente precedenti all'indirizzo di *broadcast* avente tutti i *bit* a 1 nella parte *host*.

L'assegnazione risulta quindi la seguente:

Router	Interfaccia	Indirizzo
	LAN A	200.0.3.254
R1	LAN B	200.0.5.254
	WAN G	200.0.7.225
	LAN B	200.0.5.253
R2	WAN H	200.0.7.229
	WAN I	200.0.7.233
R3	LAN D	200.0.7.190
Ko	WAN H	200.0.7.230
R4	LAN C	200.0.7.222
K4	WAN I	200.0.0.234
	LAN E	200.0.7.126
R5	LAN F	200.0.6.254
	WAN G	200.0.7.226