APLICACIONES ORTOGONALES EN R^N

$$f: R^n \to R^n$$
, $f(x) = Ax$, $AA^t = A^tA = I$

APLICACIONES ORTOGONALES EN R²

MATRIZ SIMÉTRICA: A = A ^T					
Autovalores	En una base ortonormal B= $\{u_1,\;u_2\}$ adecuada	Traza (A)	Tipo de aplicación ortogonal	Elementos principales	
1, 1	$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	2	Identidad		
1 , -1	$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	0	Simetría o reflexión respecto a $\langle u_1 \rangle$	El eje de simetría es el autoespacio de autovalor 1	
-1 , -1	$A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	-2	Simetría respecto al origen o giro de 180º		

MATRIZ NO SIMÉTRICA				
	$A = \begin{pmatrix} \cos \alpha & -sen \ \alpha \\ sen \ \alpha & \cos \alpha \end{pmatrix}$ $\alpha \neq 0 , \ \alpha \neq \pi$	$2\cos\alpha$	Giro o rotación de ángulo α	Ángulo de giro α en sentido positivo

APLICACIONES ORTOGONALES EN R³

MATRIZ SIMÉTRICA : A = A ^T						
Autovalores	En una base ortonormal B= $\{u_1$, $\ u_2$, $\ u_3\}$ adecuada	Traza (A)	Tipo de aplicación ortogonal	Elementos principales		
1, 1,1	$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	3	Identidad			
1, 1, -1	$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	1	Simetría o reflexión respecto a $\langle u_1 \ , \ u_2 \rangle$	El plano de simetría es el autoespacio de autovalor 1		
1, -1 , -1	$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	-1	Simetría o reflexión respecto a $\langle u_1 \rangle$ o giro de 180º	El eje de simetría es el autoespacio de autovalor 1		
-1, -1 , -1	$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$	-3	Simetría con respecto al origen			

MATRIZ NO SIMÉTRICA					
	En una base ortonormal	Traza (A)	Tipo de aplicación ortogonal	Elementos principales	
A = 1	$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \\ \alpha \neq 0 , & \alpha \neq \pi \end{pmatrix}$	$1 + 2 \cos \alpha$ (sen $\alpha = \langle Au_2, u_3 \rangle$)	Rotación o giro respecto a $\langle u_1 angle$	El eje de giro es el autoespacio de autovalor 1	
A =-1	$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$ $\alpha \neq 0 , \alpha \neq \pi$	$-1 + 2 \cos \alpha$ (sen $\alpha = \langle Au_2, u_3 \rangle$)	Antirrotación de eje $\langle u_1 angle$	El eje de giro es el autoespacio de autovalor -1. El plano de simetría es perpendicular al eje de giro	