

GEOMETRÍA RETROALIMENTA CIÓN

TOMO 2

1. En el gráfico, halle AB.

• Teorema de la bisectriz

△ Aproximado (37° - 53°)

AB = 15

2. En un triángulo ABC, donde la m \neq BCA = 35°, la mediatriz de \overline{AC} intersecta a \overline{BC} en P, tal que AB = PC.

Halle la m&ABP. Teorema de la mediatriz. **70°** APAB: Isósceles 35° 35° $x = 70^{\circ}$

3. En el gráfico, halle el valor de

4. En un triángulo rectángulo ABC recto en B, en \overline{AC} y \overline{BC} se ubican los puntos D y E respectivamente, tal que: AD = DC = 7 y m \angle BAD = m \angle BED = α , halle el mínimo valor que puede tomar \overline{BE} .

5. En un trapecio ABCD donde $\overline{BC}/\overline{AD}$, m $\angle BCD = 2 \text{ (m} \angle BAD)$ y CD = 6. Halle la longitud del segmento que une los puntos medios de sus diagonales.

6. En un rombo ABCD, en AC se ubica el punto E, tal que m∢BEC=53°, AE=9 y EC = 21. Calcular el perímetro de dicha figura.

7. En la figura, ABCD es un rectángulo. Halle el valor de

8. En la figura, halle el valor de X.

9. Desde un punto P, exterior a una circunferencia, se trazan las tangentes PA y PC. Luego en el menor AC se ubica el punto B, tal

que m∢ABC = 7x y m∢APC = 4x. Halle el valor de x.

