Bank Marketing

Neal Drakos

Dataset - Background & Context

-The results of a direct marketing campaign of a Portuguese banking institution.

- -The campaigns accessed whether the client would subscribe to the product (bank term deposits). Based on a ('yes') or ('no') response to a term deposit subscription with the bank.
- A Binary Classification problem.

Overview & Approach

- Business Understanding
- Data Acquisition
- Data Exploration
- Data Preparation
- Model Creation
- Evaluation

Business Understanding

Target Variable: Term Deposit

A term deposit (or CD) is a cash investment held at a financial institution. Your money is invested for an agreed rate of interest over a fixed amount of time, or (term)

Term deposits are considered an extremely safe investment and are therefore very appealing to conservative, low-risk investors

The marketing campaigns were based on phone calls.

Data Exploration

Inspecting the target variable:

NO	YES		
36,548	4,640		

Data Exploration

-Dimensions: 41,188 observations made up of 21 features.

	#Last contact data	#Other attributes	#Social&Economic
age	type of contact	num_of_contacts	Employment var_rate
job	month	days_passed	consumer_price_indx
marital status	day_of_week	previous_campaigns	consumer_confidence_indx
education	duration	previous_outcomes	3m_euribor_rate
in credit default?			nr_employed
housing loan?			

Data Exploration

- -Check distributions
- -No Missingness?
- -Imputing 'Unknown' missingness

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41188 entries, 0 to 41187
Data columns (total 21 columns):
                  41188 non-null int64
age
job
                  41188 non-null object
marital
                  41188 non-null object
                  41188 non-null object
education
                  41188 non-null object
default.
housing
                  41188 non-null object
loan
                  41188 non-null object
                  41188 non-null object
contact
                  41188 non-null object
month
day of week
                  41188 non-null object
duration
                  41188 non-null int64
campaign
                  41188 non-null int64
                  41188 non-null int64
pdays
previous
                  41188 non-null int64
                  41188 non-null object
poutcome
                  41188 non-null float64
emp.var.rate
cons.price.idx
                  41188 non-null float64
cons.conf.idx
                  41188 non-null float64
euribor3m
                  41188 non-null float64
nr.employed
                  41188 non-null float64
                  41188 non-null object
y
dtypes: float64(5), int64(5), object(11)
memory usage: 6.6+ MB
```

Data Preparation

- -Drop features
- -One hot encoding for categorical features
- -Standardize & scale with standard scalar

```
# Separate out the numerical features (minus the target) and categorical features
y = data.y
categorical_features = data.select_dtypes(include = ["object"]).columns
numerical_features = data.select_dtypes(exclude = ["object"]).columns
numerical_features = numerical_features.drop("y")
print("Numerical features: " + str(len(numerical_features)))
print("Categorical features: " + str(len(categorical_features)))
data_num = data[numerical_features]
data_cat = data[categorical_features]
Numerical features: 10
Categorical features: 9
```

Model Creation

-Type of problem: Binary Classification

- Models used:
 - Logistic Regression

Random Forest

• Gradient Boosting

Model Creation

Methodology:

Assess training / test errors

Model Selection using grid search with best params

Model tuning with feature importance/selection

Evaluation - Logistic Regression

Training Classification Report:

print (class	sification_re	port(y_tr	ain, lr_pro	ed_train,	<pre>target_names = target_names))</pre>
	precision	recall	f1-score	support	
class No class Yes	0.93 0.66	0.97 0.41	0.95 0.51	27409 3482	
avg / total	0.90	0.91	0.90	30891	

Test Classification Report:

<pre>print (class</pre>	ification_rep	port(y_te	st, lr_pred	d_Test, targ	<pre>get_names = target_names))</pre>
	precision	recall	f1-score	support	
class No class Yes	0.93 0.67	0.97 0.44	0.95 0.53	9139 1158	
avg / total	0.90	0.91	0.90	10297	

Evaluation - Random Forest

Training Classification Report:

print (class	ification_re	port(y_tr	ain,rf_pred	l_train, t	arget_names=target_names))
	precision	recall	f1-score	support	
Class_No Class_Yes	0.94 0.61	0.96 0.50	0.95 0.55	27410 3481	
avg / total	0.90	0.91	0.90	30891	

Test Classification Report:

print (class	sification_re	port(y_te	st,rf_pred	_Test, targe	t_names = target_names	3))
	precision	recall	f1-score	support		
Class_No Class_Yes	0.93 0.58	0.96 0.47	0.95 0.52	9138 1159		
avg / total	0.89	0.90	0.90	10297		

Evaluation- Gradient Boosting

Training Classification Report:

print (class	sification_re	port(y_tr	ain,gbt_pro	ed_train,	<pre>target_names = target_names))</pre>
	precision	recall	f1-score	support	
class No class Yes	0.95 0.73	0.97 0.60	0.96 0.66	27369 3522	
avg / total	0.93	0.93	0.93	30891	

Testing Classification Report:

print (class	sification_re	port(y_te	st,gbt_pre	d_Test, tar	get_names = target_names))
	precision	recall	f1-score	support	
class No class Yes	0.95 0.65	0.96 0.55	0.95 0.60	9179 1118	
avg / total	0.91	0.92	0.92	10297	