2018 TSTST #1

Tristan Shin

3 July 2018

As usual, let $\mathbb{Z}[x]$ denote the set of single-variable polynomials in x with integer coefficients. Find all functions $\theta: \mathbb{Z}[x] \to \mathbb{Z}$ such that for any polynomials $p, q \in \mathbb{Z}[x]$,

- $\theta(p+1) = \theta(p) + 1$, and
- if $\theta(p) \neq 0$ then $\theta(p)$ divides $\theta(p \cdot q)$.

The answer is $\theta(p) = p(c)$ for some constant c. It is easy to check that this works, as

$$\theta(p+1) = p(c) + 1 = \theta(p) + 1$$

and if $\theta(p) \neq 0$, equivalently $p(c) \neq 0$, then

$$\theta(p) = p(c) \mid p(c) q(c) = \theta(p \cdot q)$$
.

Now, let $\theta\left(x\right)=c$ and we prove that $\theta\left(p\right)=p\left(c\right)$ for all $p\in\mathbb{Z}\left[x\right]$ by induction on $\deg p$. First, we deal with constant. For $n\in\mathbb{Z}$, we have $\theta\left(n\right)=n+\theta\left(0\right)$ from $\theta\left(p+1\right)=\theta\left(p\right)+1$. Then

$$n + \theta(0) = \theta(n) \mid \theta(2n) = 2n + \theta(0)$$

so

$$n + \theta(0) \mid 2(n + \theta(0)) - (2n + \theta(0)) = \theta(0)$$

so $\theta(0) = 0$, so $\theta(n) = n$. Now, we prove the claim for linear polynomials. For $n \in \mathbb{Z}$, observe that

$$c + n = \theta(x) + n = \theta(x + n) \mid \theta(ax + an) = \theta(ax) + an$$

SO

$$c + n \mid (\theta(ax) + an) - a(c + n) = \theta(ax) - ac,$$

so $\theta\left(ax\right)=ac$. Then $\theta\left(ax+b\right)=ac+b$ and the claim is true for linear p. Now, assume that $\theta\left(p\right)=p\left(c\right)$ whenever $\deg p\leq k$ for some constant k. Let p be a polynomial of degree k+1. Then $\frac{p(x)-p(n)}{x-n}$ is a polynomial of degree k, so $\theta\left(\frac{p(x)-p(n)}{x-n}\right)=\frac{p(c)-p(n)}{c-n}$. Then

$$\frac{p\left(c\right)-p\left(n\right)}{c-n}=\theta\left(\frac{p\left(x\right)-p\left(n\right)}{x-n}\right)\mid\theta\left(p\left(x\right)-p\left(n\right)\right)=\theta\left(p\right)-p\left(n\right),$$

SO

$$\frac{p\left(c\right)-p\left(n\right)}{c-n}\mid\left(\theta\left(p\right)-p\left(n\right)\right)-\left(c-n\right)\left(\frac{p\left(c\right)-p\left(n\right)}{c-n}\right)=\theta\left(p\right)-p\left(c\right).$$

As $\left|\frac{p(c)-p(n)}{c-n}\right|$ grows arbitrarily large as n grows large, we have $\theta(p)=p(c)$, so the induction step is proven and hence the claim is true.