HT 2022

B1.1 Logic

Jiaming (George) Yu jiaming.yu@jesus.ox.ac.uk

October 16, 2023

Contents

I	Propositional Calculus 2					
1	Syntax of Propositional Calculus 2					
2	Valuations 3					
2.1	Truth Tables 3					
2.2	Logical Consequence and Logical Validity 4					
3	Logical Equivalence and Adequacy 4					
3.1	Adequacy 5					
4	Deductive System for Propositional Calculus 7					
4.1	The Deduction Theorem for \mathcal{L}_0 7					
5	Consistency, Completeness, and Compactness 7					
5.1	Consistency 7					
5.2	Completeness 8					
5.3	Compactness 8					
II	Predicate Calculus 9					
6	Substitution 9					

Part I

Propositional Calculus

1 Syntax of Propositional Calculus

Definition 1.1 (Alphabet of propositional calculus)

The alphabet of propositional calculus, denoted by \mathcal{L}_{prop} , consists of the following symbols:

- propositional variables: p_0, p_1, \dots
- negation: ¬
- binary connectives: \land , \lor , \rightarrow , \leftrightarrow
- punctuation marks: (and)

Once we have the alphabet, we introduce the notion of strings, then formulas (which are the 'grammatical' strings).

Definition 1.2 (String)

A <u>string</u> (of \mathcal{L}_{prop}) is any finite sequence of symbols from \mathcal{L}_{prop} . The <u>length</u> of a string is the number of symbols it has.

¹ There must be no gaps between the symbols.

Definition 1.3 (Formula)

A <u>formula</u> (of \mathcal{L}_{prop}) is defined recursively by the following rules:

- 1. Every propositional variable is a formula
- 2. If the string ϕ is a formula, then so is $\neg \phi$
- 3. If the strings ϕ , χ are both formulas, then so are the following:²

² Note the parentheses!

$$(\phi \land \chi)$$
 $(\phi \lor \chi)$ $(\phi \to \chi)$ $(\phi \leftrightarrow \chi)$

4. Nothing else is a formula

We denote the set of all formulas of \mathcal{L}_{prop} by $Form(\mathcal{L}_{prop})$.

When we want to prove a result about a formula, it often is useful to use induction, as demonstrated by the following lemma.

Lemma 1.1

If ϕ is a formula, then exactly one of the following statements is true:

- ϕ is a propositional variable
- the first symbol of ϕ is \neg
- the first symbol of ϕ is (

Theorem 1.2 (Unique readability theorem)

A formula can be constructed in only one way. In other words, if ϕ is a formula, then, exactly one of the following holds:

- (i) ϕ is p_i for some i
- (ii) ϕ is $\neg \psi$ for some unique formula ψ
- (iii) ϕ is $(\psi * \chi)$ for some unique formulas ψ, χ and a unique binary connective $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.

2 Valuations

Valuation concerns the determination of truth values of formulas.

Definition 2.1 (Valuation)

A *valuation* v is a function $v : \{p_0, p_1, \dots\} \rightarrow \{T, F\}$.

However, a valuation alone does not provide much power, as we can only determine the truth value of variables and not of complex formulas. To achieve the latter, we need to extend a valuation to all formulas.

2.1 Truth Tables

Given a valuation v, we can extend it uniquely to a function \tilde{v} : Form(\mathcal{L}_{prop}) \rightarrow {T, F}.

$$egin{array}{c|c} \psi & \neg \psi \\ \hline T & F \\ F & T \\ \hline \end{array}$$

ψ	χ	$\psi \wedge \chi$	$\psi \vee \chi$	$\psi \to \chi$	$\psi \leftrightarrow \chi$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	F	T	T	F
F	F	F	F	T	T

2.2 Logical Consequence and Logical Validity

Definition 2.2 (Satisfiability)

Let ϕ be a formula and v be a valuation. If $\tilde{v}(\phi) = T$, we say v <u>satisfies</u> ϕ . If ϕ is satisfied by some valuation, then it is <u>satisfiable</u>.

Definition 2.3 (Tautology)

Let ϕ be a formula. If ϕ is satisfied by every valuation, then we say ϕ is a *tautology* (or *logically valid*), denoted as $\models \phi$.

Definition 2.4 (Logical consequence)

Let ψ , ϕ be formulas. Then we say ϕ is a <u>logical consequence</u> of ψ , denoted $\psi \models \phi$, if for every valuation v,

if
$$\widetilde{v}(\psi) = T$$
 then $\widetilde{v}(\phi) = T$

Let Γ be a (possibly infinite) set of formulas and ϕ be a formula. Then we say ϕ is a *logical consequence* of Γ , denoted $\Gamma \models \phi$, if for every valuation v,

if
$$\widetilde{v}(\psi) = T$$
 for all $\psi \in \Gamma$, then $\widetilde{v}(\phi) = T$

Lemma 2.1

Let ψ , ϕ be formulas. Then $\psi \models \phi$ if and only if $\models (\psi \rightarrow \phi)$.

Proof. (\Rightarrow) Assume $\psi \models \phi$. Let v be any valuation. Whenever $\widetilde{v}(\psi) = T$, we have $\widetilde{v}(\phi) = T$ by definition. Hence, $\widetilde{v}((\psi \to \phi)) = T$ by truth table³. On the other hand, if $\widetilde{v}(\psi) = F$ then $\widetilde{v}((\psi \to \phi)) = T$ by TT \to . Therefore, $(\psi \to \phi)$ is satisfied by every valuation, so $\models (\psi \to \phi)$.

(\Leftarrow) Assume $\models (\psi \to \phi)$. Let v be any valuation such that $\widetilde{v}(\psi) = T$. We also have $\widetilde{v}((\psi \to \phi)) = T$, so $\widetilde{v}(\phi) = T$ by $TT \to$. Therefore, $\psi \models \phi$.

³ We often abbreviate 'the truth table of the connective *' by 'TT *'

Lemma 2.2

Let Γ be a set of formulas and ψ , ϕ be formulas. Then $\Gamma \cup \{\psi\} \models \phi$ if and only if $\Gamma \models (\psi \rightarrow \phi)$.

3 Logical Equivalence and Adequacy

Definition 3.1 (Logical equivalence)

Two formulas ϕ and ψ are <u>logically equivalent</u>, denoted as $\phi \models \psi$, if $\phi \models \psi$ and $\psi \models \phi$.⁴

Lemma 3.1

Let ϕ , ψ be formulas, then $(\phi \lor \psi) \models \neg (\neg \phi \land \neg \psi)$.

⁴ Logical equivalence is what permits us to drop parentheses in some cases, for example chaining ∧ or ∨.

Proof. Let v be a valuation. Then,

$$\begin{split} \widetilde{v}(\neg(\neg\phi\wedge\neg\psi)) &= F\\ \text{iff} \quad \widetilde{v}((\neg\phi\wedge\neg\psi)) &= T \quad \text{ by TT } \neg\\ \text{iff} \quad \widetilde{v}(\neg\phi) &= \widetilde{v}(\neg\psi) &= T \quad \text{ by TT } \wedge\\ \text{iff} \quad \widetilde{v}(\phi) &= \widetilde{v}(\psi) &= F \quad \text{ by TT } \neg\\ \text{iff} \quad \widetilde{v}((\phi\vee\psi)) &= F \quad \text{ by TT } \vee \end{split}$$

The result then follows.

Below are some more logical equivalences:

Proposition 3.2

•
$$\neg \bigvee_{i=1}^{n} \phi_{i} \models \bigcap_{i=1}^{n} \neg \phi_{i}$$
 and $\neg \bigwedge_{i=1}^{n} \phi_{i} \models \bigvee_{i=1}^{n} \neg \phi_{i}$ (De Morgan's)
• $(\phi \to \psi) \models (\neg \phi \lor \psi)$

- $(\phi \lor \psi) \models ((\phi \to \psi) \to \psi)$

3.1 Adequacy

Definition 3.2 (Truth function)

The set of partial valuations V_n contains all functions $v: \{p_0, \ldots, p_{n-1}\} \rightarrow$ $\{T,F\}$. Then, an <u>n-ary truth function</u> is a function $J:V_n \to \{T,F\}$.

Note that by definition, V_n contains 2^n functions, and thus the number of all n-ary truth functions is 2^{2^n} .

We write $\operatorname{Form}_n(\mathcal{L}_{\operatorname{prop}}) \subset \operatorname{Form}(\mathcal{L}_{\operatorname{prop}})$ for the set of formulas of $\mathcal{L}_{\operatorname{prop}}$ which only contain variables from $\{p_0, \ldots, p_{n-1}\}$. Let $\phi \in \text{Form}_n(\mathcal{L}_{\text{prop}})$, then it uniquely determines an n-ary truth function J_{ϕ} by

$$J_{\phi}: V_n \to \{T, F\}$$
$$v \mapsto \widetilde{v}(\phi)$$

Intuitively, the evaluation of ϕ on a valuation is essentially a truth function. Hence, J_{ϕ} is given by the truth table for ϕ .

Definition 3.3 (Adequacy)

A language \mathcal{L}_{prop} is <u>adequate</u> if for every $n \ge 1$ and every truth function $J: V_n \to \{T, F\}$, there is some $\phi \in \text{Form}_n(\mathcal{L}_{\text{prop}})$ such that $J_{\phi} = J^6$.

Theorem 3.3

The language \mathcal{L}_{prop} is adequate. Moreover, the subset of \mathcal{L}_{prop} which only uses the connectives \neg , \land , \lor is already adequate (i.e. \rightarrow and \leftrightarrow does not add to the expressive power of \mathcal{L}_{prop}).

⁵ Intuitively, a truth function 'evaluates' a certain valuation of variables, similar to how a row in a truth table evaluates the input truth values.

⁶ As a counterexample, if a language only contains ∧, then no formulas can 'replicate' the case where $v(p_0) = F$, but I(v) = T.

Proof. We will prove the stronger statement, as the weaker one follows trivially. The idea of the proof is to construct a formula to explicitly describe each 'true' row of the truth table as a possible case, and connect the cases with disjunction.

Let $n \in \mathbb{N}$ and $J: V_n \to \{T, F\}$ be any *n*-ary truth function.

If J(v) = F for all $v \in V_n$ (a contradiction), then take $\phi := (p_0 \land \neg p_0)$. Then for each $n \in V_n$ we have $J_{\phi}(v) = \widetilde{v}(p_0 \land \neg p_0) = F = J(v)$.

Otherwise, define $U := \{v \in V_n : J(v) = T\}$ which is nonempty. For each $v \in U$ and i < n, define ψ_i^v as follows:

$$\psi_i^v \coloneqq egin{cases} p_i & ext{if } v(p_i) = T \
eg p_i & ext{if } v(p_i) = F \end{cases}$$

Finally, let $\psi^v := \bigwedge_{i=0}^{n-1} \psi_i^v$ and $\phi := \bigvee_{v \in U} \psi_v$.

Note, for any valuation $w \in V_n$, the following equivalence holds

$$\widetilde{w}(\psi^v) = T$$
 iff $\widetilde{w}(\psi^v_i) = T$ for all $i < n$ by TT \wedge iff $w = v$ by definition of ψ^v_i

Therefore,

$$\widetilde{w}(\phi) = J_{\phi}(w) = T$$

iff $\widetilde{w}(\psi^v) = T$ for some $v \in U$ by TT \vee

iff $w = v$ for some $v \in U$ by the above iff $w \in U$ as $v \in U$

iff $J(w) = T$ by def. of U

We have now shown that $J_{\phi}(w) = J(w)$ for any $w \in V_n$, so $J_{\phi} = J$.

In this proof, we come across a useful concept.

Definition 3.4 (Disjunctive normal form)

A *conjunctive clause* is a conjunction of only atoms (i.e. p_i 's and $\neg p_i$'s).

A formula is in *disjunctive normal form* (DNF) if it is the disjunction of conjunctive clauses.

Corollary 3.4

Every formula in $\mathcal{L}_{\text{prop}}$ is logically equivalent to one in DNF.

Definition 3.5 (Connective adequacy)

Let S be a set of (truth-functional⁷) connectives. We write $\mathcal{L}_{prop}[S]$ for the language with connectives S (all else is equal). We say S is <u>adequate</u> (or <u>truth-functionally complete</u>) if $\mathcal{L}_{prop}[S]$ is adequate.

⁷ each is given by some truth table

We have shown $\{\neg, \land, \lor\}$ is adequate in Theorem 3.3. Hence by De

Morgan's, both $\{\neg, \land\}$ and $\{\neg, \lor\}$ are adequate. But \lor can be expressed with \to (Proposition 3.2), so $\{\neg, \to\}$ is also adequate.

4 Deductive System for Propositional Calculus

In this section, we aim to prove any logical consequences.

Definition 4.1 (Proof)

A <u>proof</u> of ϕ from a set of premises Γ is a finite sequence of statements ϕ_1, \ldots, ϕ_n such that $\phi_n = \phi$ and for each ϕ_i , one of the following holds:

- $\phi_i \in \Gamma$; or
- ϕ_i is an axiom; or
- ϕ_i follows from previous statements by some rule of inference

Definition 4.2 (The deductive language \mathcal{L}_0)

Define the language $\mathcal{L}_0 := \mathcal{L}_{prop}[\{\neg, \rightarrow\}].$

The axioms for \mathcal{L}_0 are, for any $\alpha, \beta, \gamma \in \text{Form}(\mathcal{L}_0)$:

1.
$$(\alpha \rightarrow (\beta \rightarrow \alpha))$$

2.
$$\left(\left(\alpha \to (\beta \to \gamma)\right) \to \left((\alpha \to \beta) \to (\alpha \to \gamma)\right)\right)$$

3.
$$((\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta))$$

The single rule of inference for \mathcal{L}_0 is *modus ponens*:

MP From α and $(\alpha \rightarrow \beta)$ infer β .

4.1 The Deduction Theorem for \mathcal{L}_0

Theorem 4.1 (Deduction theorem for \mathcal{L}_0)

For any $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ and $\alpha, \beta \in \text{Form}(\mathcal{L}_0)$, if $\Gamma \cup \{\alpha\} \vdash \beta$, then $\Gamma \vdash (\alpha \to \beta)$.

5 Consistency, Completeness, and Compactness

5.1 Consistency

Definition 5.1 (Consistency)

Let $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$. Γ is <u>consistent</u> (specifically, \mathcal{L}_0 -consistent) if there does not exist a formula α such that $\Gamma \vdash \alpha$ and $\Gamma \vdash \neg \alpha$. Γ is <u>inconsistent</u> otherwise.

Definition 5.2 (Maximal consistency)

Let $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$. Γ is <u>maximal consistent</u> if Γ is consistent, and for each $\phi \in \text{Form}(\mathcal{L}_0)$, either $\Gamma \vdash \phi$ or $\Gamma \vdash \neg \phi$. Equivalently, Γ is maximal consistent if for each $\phi \in \text{Form}(\mathcal{L}_0)$, if $\Gamma \cup \{\phi\}$ is consistent, then $\Gamma \vdash \phi$.⁸

⁸ Γ is maximal in the sense that any formula which is not inconsistent with Γ is provable from Γ .

5.2 Completeness

Theorem 5.1 (The completeness theorem)

Let $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ and $\phi \in \text{Form}(\mathcal{L}_0)$. If $\Gamma \models \phi$ then $\Gamma \models \phi$.

5.3 Compactness

Theorem 5.2 (The compactness theorem for $\mathcal{L}_0)$

Let $\Gamma \subseteq Form(\mathcal{L}_0)$. Γ is satisfiable if and only if every finite subset of Γ is also satisfiable.

Part II

Predicate Calculus

6 Substitution

Definition 6.1

For any formula $\phi \in \text{Form}(\mathcal{L}_{\text{prop}})$, variable x_i (not necessarily free in ϕ), and term $t \in \text{Term}(\mathcal{L}_{\text{prop}})$, we say t is *free for* x_i *in* ϕ if any of the following holds:

- (i) ϕ is atomic; or
- (ii) $\phi = \neg \psi$, and t is free for x_i in ψ ; or
- (iii) $\phi = (\psi \rightarrow \chi)$, and t is free for x_i in both ψ and χ ; or
- (iv) $\phi = \forall x_i \psi$; or
- (v) $\phi = \forall x_j \psi, j \neq i$, and x_j does not occur in t, and t is free for x_i in ψ .

Definition 6.2

For any formula $\phi \in \text{Form}(\mathcal{L}_{\text{prop}})$, variable x_i , and term $t \in \text{Term}(\mathcal{L}_{\text{prop}})$