MTH 309 Practice Exam 1

1. Let A be a matrix and \mathbf{v} be a vector given as follows:

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$$

- a) Determine if v is in Col(A), where Col(A) is the column space of A.
- **b)** Determine if v is in Nul(A), where Nul(A) is the null space of A.
- c) Find an explicit description of Nul(A) by listing vectors that span the null space.

2. Consider the following matrices:

$$A = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 2 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

For each algebraic expression given below decide if it is defined. If it is, compute it. If it is not, give a reason why.

a)
$$C^{T} + 3B$$
 b) $CB + B$ **c)** $A^{T}BA$ **d)** $A^{T}C^{-1}A$ **e)** CBC

b)
$$CB + B$$

c)
$$A^TBA$$

d)
$$A^{T}C^{-1}A^{T}$$

- 3. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which first reflects points through the line $x_1 = x_2$ and then reflects points through the x_1 -axis.
- **a)** Find the standard A matrix of T.
- **b)** Find all vectors $\mathbf{v} \in \mathbb{R}^2$ such that $\mathbf{v} \in \text{Nul}(A)$.

4. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that

$$T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}1\\2\end{bmatrix} \qquad T\left(\begin{bmatrix}2\\3\end{bmatrix}\right) = \begin{bmatrix}3\\6\end{bmatrix}$$

- a) Compute $T\left(\begin{bmatrix}3\\6\end{bmatrix}\right)$.
- b) Find a vector v such that $v \neq 0$ and T(v) = 0.

- **5.** For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A, B are matrices such that AB is defined and is a square matrix (i.e. it has the same number of rows and columns) then BA is also defined.
- **b)** If A is an 2×2 matrix such that $A\mathbf{v} = \mathbf{0}$ for some non-zero vector $\mathbf{v} \in \mathbb{R}^2$ then A cannot be invertible.
- c) If $\{v_1, v_2\}$ is a linearly independent set of vectors in \mathbb{R}^2 and $\mathcal{T} \colon \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation then the set $\{\mathcal{T}(v_1), \mathcal{T}(v_2)\}$ must be also linearly independent.
- d) If u, v, w are vectors in \mathbb{R}^2 such that u is in $\mathrm{Span}(v, w)$ then v must be in $\mathrm{Span}(u, w)$.