

Application of Deep Learning to Text and Images

Module 2, Lab 4: Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are special types of networks that can capture the dynamics of sequences via repeating connections. In this exercise, you will learn how to use RNNs and apply them to a text classification problem.

You will learn:

- How to perform text transformation
- How to use pre-trained GloVe word embeddings
- How to set up a Recurrent Neural Network model
- · How to train and test a RNN model

This lab uses a dataset from a small sample of Amazon product reviews.

Review dataset schema:

- reviewText: Text of the review
- **summary:** Summary of the review
- **verified:** Whether the purchase was verified (True or False)
- time: UNIX timestamp for the review
- log_votes: Logarithm-adjusted votes log(1+votes)
- **isPositive:** Whether the review is positive or negative (1 or 0)

You will be presented with two kinds of exercises throughout the notebook: activities and challenges.

No coding is needed for an activity. You try to understand a concept, answer questions, or run a code cell.

Challenges are where you can practice your coding skills.

Important notes:

- One distinction between regular neural networks and recurrent neural networks
 (RNN) is that recurrent networks specialize in sequential data. With this dataset, you
 will use RNNs on the reviewText field. You will assume that the text is made of
 words or tokens that are placed in a grammatically logical order. The RNN will
 understand the associations between the words through the recurrent connections.
 Eventually, it will learn to classify the text correctly (up to a certain accuracy level).
- If you were interested in including the **summary** field, you would either have to append the summary to the review text or train a separate model. In this lab you will train a RNN using only the **reviewText** field so you can focus on learning the process and keep training time shorter.

Index

- Text Transformation
- Using pre-trained GloVe word embeddings
- Setting-up the Recurrent Neural Network model
- Training and testing the model

```
In [1]: # installing libraries
        !pip install -U -q -r requirements.txt
In [2]: import boto3, os, re, time
        import numpy as np
        import torch, torchtext
        import pandas as pd
        import matplotlib.pyplot as plt
        from d2l import torch as d2l
        from os import path
        from collections import Counter
        from torch import nn, optim
        from torch.nn import BCEWithLogitsLoss
        from torchtext.data.utils import get tokenizer
        from torchtext.vocab import vocab
        from torch.utils.data import TensorDataset, DataLoader
        from sklearn.model selection import train test split
        from sklearn.metrics import confusion matrix, classification report, accurac
        from torchtext.vocab import GloVe
        GloVe.url['6B'] = 'https://huggingface.co/stanfordnlp/glove/resolve/main/glo
        import sys
        sys.path.insert(1, '..')
        from MLUDTI EN M2 Lab4 quiz questions import *
        from MLUDTI EN M2 Lab4 rnn import RNN
        /home/ec2-user/anaconda3/envs/pytorch p310/lib/python3.10/site-packages/tor
        ch/cuda/__init__.py:551: UserWarning: Can't initialize NVML
```

warnings.warn("Can't initialize NVML")

Text Transformation

In this section, you will process the **reviewText** field and convert it into a form that works well with recurrent networks. To do this you will:

- Read the dataset, create train/validation split and fill-in the missing text fields.
- Create a vocabulary using the texts from the reviewText field.
 - This vocabulary has a unique integer value for each word in the vocabulary such as "car"->32, "house"->651, ...
- Transform the texts by replacing the words with their corresponding unique integer values.
 - For example: "Happy to own it" becomes [321, 6, 237, 8, 2].
- Use a fixed sequence length of 50 so that you can put the data into a memory efficient form and load it in batches.
 - Longer texts are cut short (to 50 tokens) and shorter ones are padded a special value (1) to complete to 50 token length. 0 is used for unknown words (assume the real-world scenarios involving unknown words).

Start by reading in the dataset and looking at the first five rows.

In [3]: df = pd.read_csv("data/NLP-REVIEW-DATA-CLASSIFICATION-TRAINING.csv")
 df.head()

Out[3]:		ID	reviewText	summary	verified	time	log_votes	isPositive
	0	65886	Purchased as a quick fix for a needed Server 2	Easy install, seamless migration	True	1458864000	0.000000	1
	1	19822	So far so good. Installation was simple. And r	Five Stars	True	1417478400	0.000000	1
	2	14558	Microsoft keeps making Visual Studio better. I	This is the best development tool I've ever used.	False	1252886400	0.000000	1
	3	39708	Very good product.	Very good product.	True	1458604800	0.000000	1
	4	8015	So very different from my last version and I a	from my last version and I am having a gre	True	1454716800	2.197225	0

Now, look at the range and distribution of the target column isPositive.

```
In [4]: df["isPositive"].value_counts()
```

```
Out[4]: isPositive

1 34954

0 21046

Name: count, dtype: int64
```

It is always important that you check the number of missing values for each column.

Since there are missing values in the text fields, specifically in the **reviewText** field, you need to fill-in the missing values with an empty string.

```
In [6]: df["reviewText"] = df["reviewText"].fillna("missing")
```

Now, split the dataset into training and validation.

```
In [7]: # This separates 10% of the entire dataset into validation dataset.
    train_text, val_text, train_label, val_label = train_test_split(
          df["reviewText"].tolist(),
          df["isPositive"].tolist(),
          test_size=0.10,
          shuffle=True,
          random_state=324,
)
```

Creating a vocabulary:

Once your dataset is ready, you need to create a vocabulary with the tokens from the text data. To do this, use a basic English tokenizer and then use these tokens to create the vocabulary. In this vocabulary, tokens will map to unique ids, such as "car"->32, "house"->651, ...

```
In [8]: tokenizer = get_tokenizer("basic_english")
    counter = Counter()
    for line in train_text:
        counter.update(tokenizer(line))
    vocab = vocab(counter, min_freq=2, specials=["<unk>"]) #min_freq>1 for skipp
    vocab.set_default_index(vocab['<unk>'])
```

To see what the data now looks like, print some examples.

```
In [9]: print(f"'home' -> {vocab['home']}")
print(f"'wash' -> {vocab['wash']}")
```

```
# unknown word (assume from test set)
print(f"'fhshbasdhb' -> {vocab['fhshbasdhb']}")

'home' -> 665
'wash' -> 17661
'fhshbasdhb' -> 0
```

Now, print the words for the first 25 indexes in the vocabulary.

- < unk > is reserved for unknown words
- < pad > is used for the padded tokens (more about this in the next section)

Out[11]:

Why do you need to convert words to tokens?

Tokens are numbers that can be manipulated mathematically.

Computers are better at processing numbers than words.

Tokens take up less storage space than words do.

Tokens represent words as well as their semantic context, so tokens communicate more information per value.

Submit

Text transformation with defined vocabulary

Now, you can use the vocabulary and map tokens in the text to unique ids of the tokens.

```
For example: ["this", "is", "a", "sentence"] -> [14, 12, 9, 2066]
```

```
In [12]: # Let's create a mapper to transform our text data
  text_transform_pipeline = lambda x: [vocab[token] for token in tokenizer(x)]
```

Once the mapping is complete, you can print some before and after examples.

```
In [13]: print(f"Before transform:\t{train_text[37]}")
print(f"After transform:\t{text_transform_pipeline(train_text[37])}")
```

Before transform: Happy to own it.

After transform: [817, 74, 47, 19, 23]

To make this process easier to use, create a function to do all the steps automatically.

Create the function to:

- Transform and pad (if necessary) the text data
- Cut the series of words at the point where it reaches a certain length
 - For this example, use max len=50
 - If the text is shorter than max_len, pad ones to the start of the sequence

```
In [14]:

def pad_features(reviews_split, seq_length):
    # Transform the text
    # use the dict to tokenize each review in reviews_split
    # store the tokenized reviews in reviews_ints
    reviews_ints = []
    for review in reviews_split:
        reviews_ints.append(text_transform_pipeline(review))

# getting the correct rows x cols shape
    features = np.ones((len(reviews_ints), seq_length), dtype=int)

# for each review, I grab that review
    for i, row in enumerate(reviews_ints):
        features[i, -len(row):] = np.array(row)[:seq_length]

return torch.tensor(features, dtype=torch.int64)
```

Let's look at two example sentences. Remember that 1 is used for each padded item and 0 is used for each unknown word in the text.

```
In [15]: for text in train_text[15:17]:
    print(f"Text: {text}\n")
    print(f"Original length of the text: {len(text)}\n")
    tt = pad_features([text], seq_length=50)
    print(f"Transformed text: \n{tt}\n")
    print(f"Shape of transformed text: {tt.shape}\n")
```

Text: Its just great as alwayes Been using for years and its getting better

Original length of the text: 69

```
Transformed text:
                      1, 1, 1, 1, 1, 1, 1, 1, 1,
tensor([[ 1.
             1.
                 1,
1,
         1,
             1,
                 1,
                      1,
                          1,
                              1,
                                  1,
                                      1,
                                           1,
                                               1,
                                                    1,
                                                        1,
                                                            1,
1,
         1,
             1,
                 1,
                      1,
                          1,
                              1,
                                  1, 1, 1, 212, 261, 2, 30,
0,
         7,
                 11, 15, 16, 212, 297, 332]])
```

Shape of transformed text: torch.Size([1, 50])

Text: By carefully selecting the options available, the latest Kindle for W indows on even a small laptop produces a very pleasant reading experience, even if your vision is not the best at your comfortable hands to eyes reading distance. It sure beats reading from a book whose font size is too small for comfort.

Original length of the text: 307

```
Transformed text:

tensor([[333, 334, 335, 21, 336, 337, 49, 21, 76, 338, 11, 103, 154, 1
34,
66, 339, 340, 341, 66, 247, 342, 343, 344, 49, 134, 293, 28, 3
45,
60, 63, 21, 346, 12, 28, 347, 348, 74, 349, 343, 350, 23,
19,
351, 352, 343, 20, 66, 353, 354, 355]])
```

Shape of transformed text: torch.Size([1, 50])

Use the pad_features() function and create the data loaders and use max_len=50 to consider only the first 50 words in the text.

```
batch_size=batch_size,
drop_last=True)
```

Using pre-trained GloVe word embeddings

In this example, you will use GloVe word vectors name="6B" with dim=300. This gives 6 billion words/phrases vectors. Each word vector has 300 numbers.

The following code shows how to get the word vectors and create an embedding matrix from them. You will connect your vocabulary indexes to the GloVe embedding with the get_vecs_by_tokens() function.

```
In [17]: glove = GloVe(name="6B", dim=300)
  embedding_matrix = glove.get_vecs_by_tokens(vocab.get_itos())
```

Now you need to set your parameters such as number of epochs and the vocabulary size.

```
In [18]: # Size of the state vectors
hidden_size = 128

# General NN training parameters
learning_rate = 0.001
num_epochs = 35

# Embedding vector and vocabulary sizes
embed_size = 300 # glove.6B.300d.txt
vocab_size = len(vocab.get_itos())
```

We need to put our data into correct format before the process.

Recurrent Neural Networks

Interact with the basic word-level RNN below. Each sequence in the RNN is predicted from information in the previous hidden layer, as well as the previous word in the sequence:

```
In [19]: RNN()
```

Out[19]: Basic word-level RNN:

Input: I like machine learning

Setting-up the Recurrent Neural Network model

The model is made of these layers:

- Embedding layer:
 - Words/tokens are mapped to word vectors
- RNN layer:
 - A simple RNN model
 - Stack 2 RNN layers
 - For more details about the RNN read the PyTorch RNN documentation
- Linear layer:
 - A linear layer with two neurons (for two output classes) is used to output the isPositive prediction

```
In [20]:
    def __init__(self, vocab_size, embed_size, hidden_size, num_classes, num
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size, padding_idx=1)
        self.rnn = nn.RNN(
            embed_size, hidden_size, num_layers=num_layers, batch_first=True
    )
    self.linear = nn.Linear(hidden_size, num_classes)
```

```
def forward(self, inputs):
        embeddings = self.embedding(inputs)
        # Call the RNN layer
        outputs, _ = self.rnn(embeddings)
       # Output shape after RNN: (batch size, max len, hidden size)
       # Get the output from the last time step with outputs[:, -1, :] below
       # The output shape becomes: (batch_size, 1, hidden_size)
       # Send it through the linear layer
        return self.linear(outputs[:, -1, :])
# Initialize the weights
def init weights(m):
   if type(m) == nn.Linear:
        nn.init.xavier uniform (m.weight)
   if type(m) == nn.RNN:
        for param in m._flat_weights_names:
            if "weight" in param:
                nn.init.xavier uniform (m. parameters[param])
```

Now you can initialize the network and then make the embedding layer use the GloVe word vectors.

Training and testing the model

You are now ready to train the model. To do this, first define the evaluation and training functions.

```
In [22]:
    def accuracy(y_hat, y):
        """Compute the number of correct predictions."""
        pred = torch.argmax(y_hat, axis=1)
        return torch.sum(pred == y)

def eval_accuracy(net, data_loader):
    # Use accumulator to keep track of metrics: correct predictions, num of metric = d2l.Accumulator(2)

    net.eval()
    for X, y in data_loader:
        y_hat = net(X)
        metric.add(accuracy(y_hat, y), y.numel())

    return metric[0] / metric[1]
```

```
print("Classification Accuracy:", eval_accuracy(model, val_loader))
```

Classification Accuracy: 0.514367816091954

Finally! It is time to start the training process!

To help see what is happening, after each epoch the cross-entropy loss will be printed.

```
In [23]: # Train the network
         def train_net(net, train_loader, test_loader, num_epochs=1, lr=0.001):
             net.apply(init_weights)
             loss = nn.CrossEntropyLoss()
             trainer = torch.optim.SGD(net.parameters(), lr=lr)
             # Collect training times for each epoch
             train times = []
             # Collect train losses after each epoch
             train losses = []
             # Collect train and test accuracy
             train_accs, test_accs = [], []
             net.train()
             for epoch in range(num_epochs):
                 train_loss = 0
                 metric = d2l.Accumulator(3)
                 timer = d2l.Timer()
                 timer.start()
                 # Training loop
                 for X, y in train_loader:
                     # Compute gradients and update parameters
                     y_hat = net(X)
                     l = loss(y_hat, y)
                     trainer.zero_grad()
                     l.backward()
                     trainer.step()
                     metric.add(l.item() * len(y), accuracy(y_hat, y), y.numel())
                     train loss, train acc = metric[0]/metric[2], metric[1]/metric[2]
                 timer.stop()
                 # Store training times
                 train times.append(timer.sum())
                 # Store the loss after one epoch of training
                 train losses.append(train loss)
                 # Store the train accuracy
                 train_accs.append(train_acc)
                 # Compute the test accuracy after one epoch
                 test_acc = eval_accuracy(net, test_loader)
                 test accs.append(test acc)
                 print(f'epoch {epoch+1}, Train loss {train_loss:.4f}, Train accuracy
             return train_losses, train_accs, test_accs
```

To add clarity, define a function to plot the losses and accuracies.

```
In [24]: # Plot the training losses
         def plot_losses(train_losses, train_accs, test_accs):
             plt.plot(train losses, label="Training Loss")
             plt.title("Loss values")
             plt.xlabel("Epoch")
             plt.ylabel("Loss")
             plt.legend()
             plt.show()
             plt.plot(train_accs, "g", label="Train Accuracy")
             plt.plot(test_accs, "red", label="Validation Accuracy")
             plt.title("Accuracy values")
             plt.xlabel("Epoch")
             plt.ylabel("Accuracy")
             plt.legend()
             plt.show()
```

Now you can use the plotting function to display the results.

```
In []: %%time
        train_losses, train_accs, val_accs = train_net(model, train_loader,
                                                        val loader, num epochs=num er
                                                        lr=learning rate)
        plot losses(train losses, train accs, val accs)
        epoch 1, Train loss 0.6894, Train accuracy 0.5871, Val accuracy 0.6187,
        aining time (s) 25.7984
        epoch 2, Train loss 0.6456, Train accuracy 0.6177, Val accuracy 0.6254,
        aining time (s) 26.8778
        epoch 3, Train loss 0.6293, Train accuracy 0.6320, Val accuracy 0.6370,
        aining time (s) 27.0405
        epoch 4, Train loss 0.6133, Train accuracy 0.6493, Val accuracy 0.6631,
        aining time (s) 28.2596
        epoch 5, Train loss 0.5860, Train accuracy 0.6839, Val accuracy 0.6970,
        aining time (s) 29.8877
        epoch 6, Train loss 0.5677, Train accuracy 0.7024, Val accuracy 0.7099,
        aining time (s) 25.7034
        epoch 7, Train loss 0.5544, Train accuracy 0.7130, Val accuracy 0.7166,
        aining time (s) 27.5062
        epoch 8, Train loss 0.5445, Train accuracy 0.7202, Val accuracy 0.7216, Tr
        aining time (s) 31.1070
        epoch 9, Train loss 0.5341, Train accuracy 0.7263, Val accuracy 0.7263, Tr
        aining time (s) 29.1472
        Finally, you can use the eval_accuracy() function to calculate validation set
        performance.
In [ ]: print("Classification Accuracy on Validation set:", eval_accuracy(model, val
```

When you look at the plots, you probably noticed that the model hasn't reached a plateau for the validation set. This indicates that your model has not train long enough. With this setup, the way to have your model train longer is to increase the number of epochs it trains.

The number of epochs is set in the Using pre-trained GloVe word embeddings section.

Try it Yourself!

Challenge

Increase the num_epochs parameter to a larger value (25, 30, ...)

Then, re-run the notebook

Did your Validation accuracy improve?

Conclusion

RNN's are a very important tools, especially for problems involving sequential data. You have learned how to build a simple RNN and use it to solve a sample problem. If you are further interested in improving your model, you can try the following:

- Change your hyper-parameters: Learning rate, batch size, and hidden size
- Increase the number of layers: num_layers
- Switch to Gated Recurrent Units and Long Sort-term Memory Networks.

More epochs allow deeper learning, but too many can cause overfitting. Monitor training and validation loss – if training loss drops while validation accuracy worsens, the model is memorizing instead of generalizing. Fine-tuning hyperparameters (learning rate, batch size, etc.) can help balance training efficiency and accuracy.

Next Lab: Finetuning the BERT model

Transformers have been extremely popular and successful models in Natural Language Processing problems. In the next lab you will learn how to use a previously trained transformer model called **"BERT"** to solve a text classification problem.

End Of Lab

In []: