1 Carathéodory 延拓定理

我们先来定义一些新的集合系统.

Definition 1.1 (半环). 设 $A \subseteq \mathcal{P}(S)$, 称 A 是一个半环 (semi-ring), 如果

- 1. $\varnothing \in \mathcal{A}$
- 2. 对任意 $A, B \in \mathcal{A}, A \setminus B$ 可以写成 A 中有限个互不相交集合的并
- 3. A 对集合的有限交运算封闭.

Definition 1.2 (环). 设 $A \subseteq \mathcal{P}(S)$, 称 A 是一个环 (ring), 如果

- 1. $\varnothing \in \mathcal{A}$
- 2. 对任意 $A, B \in \mathcal{A}$, 有 $A \setminus B \in \mathcal{A}$.
- 3. A 对集合的有限并运算封闭.

Remark. 环也对集合的有限交运算封闭. 假设 A 是一个环, 那么对任意 $A, B \in A$, $A \cap B = A \setminus (A \setminus B) \in A$. 因此环一定是一个半环.

Example 1.3. $A = \{(a, b] : a \leq b, a, b \in \mathbb{R}\}$ 是 \mathbb{R} 上的一个半环, 但不是一个环.

Definition 1.4 (预测度). 设 $\mathcal{A} \subseteq \mathcal{P}(S)$, 称集合函数 $\mu: \mathcal{A} \to [0,\infty]$ 是一个预测度 (premeasure), 如果

- 1. A 是一个半环
- 2. $\mu(\emptyset) = 0$
- 3. σ -可加性: 对任意可数多个互不相交的集合 $A_1, A_2, \dots \in A$,

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i).$$

Definition 1.5. 设 $\mu: \mathcal{A} \to [0, \infty]$ 是半环 $\mathcal{A} \subseteq \mathcal{P}(S)$ 上的一个预测度. 称 μ 是

1. 有限的, 如果对任意 $A \in \mathcal{A}$, $\mu(A) < \infty$

2. σ -有限的, 如果存在可数多个集合 $A_1, A_2, \dots \in A$, 使得

$$S = \bigcup_{i=1}^{\infty} A_i,$$

并且对任意 $i \in \mathbb{Z}_+, \mu(A_i) < \infty$.

Definition 1.6 (测度). 设 $A \subseteq \mathcal{P}(S)$ 是一个半环. 集合函数 $\mu : A \to [0, +\infty]$ 称为一个测度, 如果 μ 是一个预测度并且 A 是一个 σ -代数. 当 μ 是 (S, A) 上的一个测度时, 三元组 (S, A, μ) 称为测度空间.

测度一定是一个预测度.

Proposition 1.7 (测度的连续性). 设 (S, A, μ) 是一个测度空间. 设 $A_1, A_2, \dots \in A$ 是一列趋 近 $A \in A$ 的增集, 即对任意 $i \in \mathbb{Z}_+$,

$$A_i \subseteq A_{i+1}$$
,

并且有

$$A = \bigcup_{i=1}^{\infty} A_i.$$

则

$$\mu(A) = \lim_{n \to \infty} \mu(A_i).$$

证明. 我们可以将 A 写成可数多个互不相交的集合的并, 记 $A_0 = \emptyset$,

$$A = \bigcup_{i=1}^{\infty} A_i = \bigsqcup_{i=1}^{\infty} (A_i \setminus A_{i-1}),$$

于是由测度的 σ-可加性,

$$\mu(A) = \mu(\bigsqcup_{i=1}^{\infty} (A_i \setminus A_{i-1}))$$

$$= \sum_{i=1}^{\infty} \mu(A_i \setminus A_{i-1})$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \mu(A_i \setminus A_{i-1})$$

$$= \lim_{n \to \infty} \mu(\bigsqcup_{i=1}^{n} (A_i \setminus A_{i-1}))$$

$$= \lim_{n \to \infty} \mu(A_n).$$

Lemma 1.8 (测度唯一性引理 (有限测度版本)). 设 \mathcal{F} 是一个 S 上的 π -系统, $\mathcal{A} = \sigma(\mathcal{F})$. 设 μ_1 和 μ_2 是 (S,\mathcal{A}) 上的测度, 并且满足 $\mu_1(S) = \mu_2(S) < \infty$ 以及

$$\mu_1 = \mu_2 \text{ on } \mathcal{F},$$

那么

$$\mu_1 = \mu_2$$
 on \mathcal{A} .

证明. 首先由 Dynkin π - λ 定理 (??), 我们有

$$\mathcal{A} = \sigma(\mathcal{F}) = \lambda(\mathcal{F}).$$

定义

$$\mathcal{C} = \{ A \in \mathcal{A} : \mu_1(A) = \mu_2(A) \},$$

我们只要证明了 \mathcal{C} 是 λ -系统,结合引理中的条件 $\mathcal{F}\subseteq\mathcal{C}$,由 $\mathcal{A}=\lambda(\mathcal{F})$ 是包含 \mathcal{F} 的最小 λ -系统可知

$$A \subseteq C$$
,

即完成了证明. 下面证明 \mathcal{C} 是 λ -系统.(1) 由引理的条件 $\mu_1(S) = \mu_2(S)$, 并且 $S \in \mathcal{A}$, 因此 $S \in \mathcal{C}$. (2) 设 $A, B \in \mathcal{C}$ 且 $A \subseteq B$, 由于 $B = A \sqcup (B \setminus A)$, 我们有

$$\mu_1(B \setminus A) = \mu_1(B) - \mu_1(A) = \mu_2(B) - \mu_2(A) = \mu_2(B \setminus A),$$

因此 $B \setminus A \in \mathcal{C}$. (3) 设 $A_1, A_2 \cdots \in \mathcal{C}$ 是可数多个互不相交的集合, 则

$$\mu_1(\bigsqcup_i A_i) = \sum_i \mu_1(A_i) = \sum_i \mu_2(A_i) = \mu_2(\bigsqcup_i A_i),$$

因此 $| \cdot |_i A_i \in \mathcal{C}$. 从而 \mathcal{C} 是 λ -系统.

注意上述引理中的条件 $\mu_1(S) = \mu_2(S)$ 必不可少, 如果 $\mu_1(S) \neq \mu_2(S)$, 由于 $S \in \mathcal{A}$, 那么 μ_1 和 μ_2 在 \mathcal{A} 上自然就不完全一致.

Lemma 1.9 (测度唯一性引理 (σ -有限测度版本)). 设 \mathcal{F} 是一个 S 上的 π -系统, $\mathcal{A} = \sigma(\mathcal{F})$. 设 μ_1 和 μ_2 是 (S, \mathcal{A}) 上的 σ -有限测度, 并且存在可数多个 $F_1, F_2, \dots \in \mathcal{F}$ 使得

$$S = \bigcup_{i} F_{i}$$

以及 $\mu_1(F_i) = \mu_2(F_i) < \infty$. 如果

$$\mu_1 = \mu_2 \text{ on } \mathcal{F},$$

那么

$$\mu_1 = \mu_2 \text{ on } \mathcal{A}.$$

证明. 取 $F \in \mathcal{F}$ 使得 $\mu_1(F) = \mu_2(F) < \infty$, 定义

$$\mathcal{C}(F) = \{ A \in \mathcal{A} : \mu_1(A \cap F) = \mu_2(A \cap F) \},$$

类似引理 1.8 的证明, C(F) 是一个 λ -系统, 并且 $F \subseteq C(F)$. 而 $A = \sigma(F) = \lambda(F)$, 由 $\lambda(F)$ 的 最小性得 $A = \lambda(F) \subseteq C(F) \subseteq A$, 从而 A = C(F). 于是对条件中的任意 F_i , 对任意 $A \in A$, 有

$$\mu_1(F_i \cap A) = \mu_2(F_i \cap A).$$

下面我们将构造逼近 A 的一列增集来证明 $\mu_1(A) = \mu_2(A)$. 记 $E_1 = F_1$, $E_2 = F_2 \setminus F_1$, $E_k = F_k \setminus (\bigcup_{i=1}^{k-1} F_i) = F_k \cap (\bigcup_{i=1}^{k-1} F_i)^c$, 则 E_1, E_2, \cdots 互不相交, 并且

$$S = \bigcup_{i=1}^{\infty} F_i = \bigsqcup_{k=1}^{\infty} E_k,$$

即 $\bigsqcup_{k=1}^{n} E_k$, $n=1,2,\cdots$ 是一列趋近 S 的增集. 对任意 $A \in \mathcal{A}$,

$$\mu_1(A \cap (\bigsqcup_{k=1}^n E_k)) = \mu_1(\bigsqcup_{k=1}^n (A \cap E_k))$$

$$= \sum_{k=1}^n \mu_1([A \cap (\bigcup_{i=1}^{k-1} F_i)^c] \cap F_k)$$

$$= \sum_{k=1}^n \mu_2([A \cap (\bigcup_{i=1}^{k-1} F_i)^c] \cap F_k) = \mu_2(A \cap (\bigsqcup_{k=1}^n E_k))$$

因为 $A \cap (\bigsqcup_{k=1}^n E_k)$ 是一列趋近 A 的增集, 由测度的连续性,

$$\mu_1(A) = \lim_{n \to \infty} \mu_1(A \cap (\bigsqcup_{k=1}^n E_k)) = \lim_{n \to \infty} \mu_2(A \cap (\bigsqcup_{k=1}^n E_k)) = \mu_2(A).$$

Theorem 1.10 (Carathéodory 延拓定理). 设 $A \subseteq \mathcal{P}(S)$ 是一个环, 集合函数 $\mu: A \to [0, \infty]$ 是一个 σ-有限的预测度. 则存在唯一的测度 $\bar{\mu}: \sigma(A) \to [0, \infty]$ 使得

$$\bar{\mu} = \mu$$
 on \mathcal{A} ,

并且 $\bar{\mu}$ 也是 σ -有限的.

证明. 思路:

- 1. 从预测度 μ : A → $[0, \infty]$ 出发构造 $\mathcal{P}(S)$ 上的集合函数 μ^* : $\mathcal{P}(S)$ → $[0, \infty]$, 我们称其为外测度, 并且 μ^* 是 μ 的一个延拓.
- 2. 利用外测度构造 μ^* -可测集, 并将所有 μ^* -可测集记为 \mathcal{M} .
- 3. 证明 \mathcal{M} 是 σ -代数
- 4. 证明 μ^* : $\mathcal{M} \to [0, \infty]$ 是 σ -有限测度.
- 5. 证明 \mathcal{M} 包含 \mathcal{A} , 从而 $\sigma(\mathcal{A}) \subseteq \mathcal{M}$, 于是 $\mu^* : \sigma(\mathcal{A}) \to [0, \infty]$ 就是我们想要构造的测度. 存在性得证.
- 6. 因为环也是一个 π-系统, 唯一性由引理 1.9 直接得到.

下面依次来证明上面的结论.

1. 构造外测度 μ^* : $\mathcal{P}(S)$ → $[0, \infty]$.

◀ 对任意 $A \in \mathcal{P}(S)$, 定义

$$\mathrm{Cover}(A) = \{ \mathcal{F} \subseteq \mathcal{A} : \mathcal{F} \, \, \Xi \mathbf{3} \, \overline{\mathrm{g}} \, \underline{\mathrm{g}}, A \subseteq \bigcup_{F \in \mathcal{F}} F \}$$

定义

$$\mu^*(A) = \inf\{\sum_{F \in \mathcal{F}} \mu(F) : \mathcal{F} \in \text{Cover}(A)\}$$

如果 $Cover(A) = \emptyset$, 我们定义 $\mu^*(A) = \inf \emptyset = \infty$. 于是 μ^* 是定义在 $\mathcal{P}(S)$ 上的集合函数, 我们称其为外测度. 下面证明 μ^* 的一些有用的性质.

- (1) $\mu^*(\emptyset) = 0$. 因为 $\emptyset \subseteq \emptyset$, 所以 $\{\emptyset\} \in \text{Cover}(\emptyset)$, 因此 $\mu^*(\emptyset) = \mu(\emptyset) = 0$.
- (2) μ^* 是单调的, 即如果 $A \subseteq B$, 则 $\mu^*(A) \le \mu^*(B)$ 如果 $A \subseteq B$, 那么 $Cover(A) \supseteq Cover(B)$ (能覆盖 B 的集族一定能覆盖 A), 从而

$$\{\sum_{F\in\mathcal{F}}\mu(F):\mathcal{F}\in\operatorname{Cover}(B)\}\subseteq\{\sum_{F\in\mathcal{F}}\mu(F):\mathcal{F}\in\operatorname{Cover}(A)\},$$

由 inf 的性质有

$$\inf\{\sum_{F\in\mathcal{F}}\mu(F):\mathcal{F}\in\operatorname{Cover}(B)\}\geq\inf\{\sum_{F\in\mathcal{F}}\mu(F):\mathcal{F}\in\operatorname{Cover}(A)\},$$

即 $\mu^*(A) \le \mu^*(B)$.

(3) μ^* 是 σ -次可加的, 即如果存在集合 A 以及可数个集合 A_i 使得 $A \subseteq \bigcup_i A_i$, 则

$$\mu^*(A) \le \sum_{i=1}^{\infty} \mu^*(A_i).$$

不妨设对任意 $i \in \mathbb{Z}_+$,有 $\mu^*(A_i) < \infty$ (不然结论显然),因此 $\mathrm{Cover}(A_i) \neq \varnothing$. 固定 $\varepsilon > 0$,对 任意 $i \in \mathbb{Z}_+$,由于 $\mu^*(A_i)$ 是下确界,即最大的下界,因此比 $\mu^*(A_i)$ 大一点的数将不再是下界,即存在 $\mathcal{F}_i \in \mathrm{Cover}(A_i)$ 使得

$$\sum_{F \in \mathcal{F}_i} \mu(F) \le \mu^*(A_i) + \frac{\varepsilon}{2^i},$$

$$\mu^*(A) \le \sum_{F \in \mathcal{F}} \mu(F) \le \sum_{i=1}^{\infty} \sum_{F \in \mathcal{F}} \mu(F) \le \sum_{i=1}^{\infty} \mu^*(A_i) + \varepsilon \sum_{i=1}^{\infty} \frac{1}{2^i} = \sum_{i=1}^{\infty} \mu^*(A_i) + \varepsilon,$$

(4) μ^* 是 μ 的延拓, 即对任意 $A \in \mathcal{A}$, $\mu^*(A) = \mu(A)$. 由于 $A \in \mathcal{A}$, 我们有 $\{A\} \in \text{Cover}(A)$, 从而 $\mu^*(A) \leq \mu(A)$ (因为 $\mu^*(A)$ 是一个下界). 并且对任意 $\mathcal{F} \in \text{Cover}(A)$, 由 μ 的 σ -次可加性 (σ -可加性可以推出 σ -次可加性),

$$\mu(A) \le \sum_{F \in \mathcal{F}} \mu(F),$$

即 $\mu(A)$ 也是一个下界, 而 $\mu^*(A)$ 是所有下界中的最大的一个, 于是 $\mu(A) \leq \mu^*(A)$.

- 2. 构造 μ*-可测集.
- ▼ 称集合 $A \in \mathcal{P}$ 是 μ^* -可测的, 如果对任意 $E \in \mathcal{P}(S)$, 有

$$\mu^*(E) = \mu^*(A \cap E) + \mu^*(A^c \cap E),$$

定义 $\mathcal{M} = \{A \in \mathcal{P}(S) : A \not\in \mu^*$ -可测集}. 由次可加性

$$\mu^*(E) = \mu^*((A \cap E) \cup (A^c \cap E)) \le \mu^*(A \cap E) + \mu^*(A^c \cap E)$$

恒成立, 因此 $A \in \mathcal{P}(S)$ 是 μ^* -可测的当且仅当

$$\mu^*(E) \ge \mu^*(A \cap E) + \mu^*(A^c \cap E).$$

- 3. 证明 M 是 σ -代数.
- ◀ 思路是证明 M 是 π -系统和 λ -系统, 再利用引理 ?? 即完成了证明.
- (1) 证明 M 是 π -系统.

设 $A_1, A_2 \in \mathcal{M}$, 则对任意 $E \in \mathcal{P}(S)$,

$$\mu^{*}(E) = \mu^{*}(A_{1} \cap E) + \mu^{*}(A_{1}^{c} \cap E)$$

$$= \mu^{*}((A_{1} \cap E) \cap A_{2}) + \mu^{*}((A_{1} \cap E) \cap A_{2}^{c}) + \mu^{*}((A_{1}^{c} \cap E) \cap A_{2}) + \mu^{*}((A_{1}^{c} \cap E) \cap A_{2}^{c})$$

$$\geq \mu^{*}((A_{1} \cap A_{2}) \cap E) + \mu^{*}[(A_{1} \cap E \cap A_{2}^{c}) \cup (A_{1}^{c} \cap E \cap A_{2}) \cup (A_{1}^{c} \cap E \cap A_{2}^{c})]$$

$$= \mu^{*}((A_{1} \cap A_{2}) \cap E) + \mu^{*}((A_{1} \cap A_{2})^{c} \cap E)$$

因此 $A_1 \cap A_2 \in \mathcal{M}$.

(2) 证明 \mathcal{M} 是 λ -系统. 首先 $S \in \mathcal{M}$, 这是因为对任意 $E \in \mathcal{P}(S)$,

$$\mu^*(S \cap E) + \mu^*(\varnothing \cap E) = \mu^*(E) + \mu^*(\varnothing) = \mu^*(E).$$

然后 \mathcal{M} 对补运算封闭, 这是因为对任意 $A \in \mathcal{M}$, $E \in \mathcal{P}(S)$,

$$\mu^*(E) = \mu^*(A \cap E) + \mu^*(A^c \cap E) = \mu^*((A^c)^c \cap E) + \mu^*(A^c \cap E),$$

因此 $A^c \in \mathcal{M}$. 从而对任意 $A, B \in \mathcal{M}$ 且 $A \subseteq B$, 有 $B \setminus A = B \cap A^c \in \mathcal{M}$. 最后设 $A_i \in \mathcal{M}$ 是可数个互不相交的集合, 定义 $A = \bigsqcup_i A_i$, 我们需要证明 $A \in \mathcal{M}$. 令 $B_n = \bigsqcup_{i=1}^n A_i$, 由于 \mathcal{M} 对有限交以及补运算封闭, \mathcal{M} 也对有限并运算封闭, 因此 $B_n \in \mathcal{M}$. 于是对任意 $E \in \mathcal{P}(S)$ 以及任意 n > 2 有

$$\mu^*(E \cap B_n) = \mu^*((E \cap B_n) \cap B_{n-1}) + \mu^*((E \cap B_n) \cap B_{n-1}^c) = \mu^*(E \cap B_{n-1}) + \mu^*(E \cap A_n),$$

以此类推我们有

$$\mu^*(E \cap B_n) = \sum_{i=1}^n \mu^*(E \cap A_i),$$

从而

$$\mu^{*}(E) = \mu^{*}(E \cap B_{n}) + \mu^{*}(E \cap B_{n}^{c})$$

$$\geq \mu^{*}(E \cap B_{n}) + \mu^{*}(E \cap A^{c}) \quad (因为 B_{n} \subseteq A, 从而 E \cap A^{c} \subseteq E \cap B_{n}^{c})$$

$$= \sum_{i=1}^{n} \mu^{*}(E \cap A_{i}) + \mu^{*}(E \cap A^{c})$$

$$\mu^*(E) \ge \sum_{i=1}^{\infty} \mu^*(E \cap A_i) + \mu^*(E \cap A^c),$$

由于 $E \cap A = \bigcup_i (E \cap A_i)$, 结合 μ^* 的 σ-次可加性有

$$\mu^*(E \cap A) \le \sum_{i=1}^{\infty} \mu^*(E \cap A_i),$$

从而 $\mu^*(E \cap A) + \mu^*(E \cap A^c) \le \mu^*(E)$, 即 $A \in \mathcal{M}$. 于是 \mathcal{M} 是一个 λ -系统. \blacktriangleright

4. 证明 μ^* : $\mathcal{M} \to [0,\infty]$ 是 σ-有限测度.

■ 由于我们已经证明了 \mathcal{M} 是 σ -代数, 并且 $\mu^*(\emptyset) = 0$, 我们只需要证明 μ^* 是 σ -可加的即可. 首先 μ^* 是有限可加的. 设 $A, B \in \mathcal{M}$ 且 $A \cap B = \emptyset$, 则

$$\mu^*(A \cup B) = \mu^*((A \cup B) \cap A) + \mu^*((A \cup B) \cap A^c) = \mu^*(A) + \mu^*(B).$$

设 $A \in \mathcal{M}$, 并且存在一列互不相交的集合 $A_i \in \mathcal{M}$, 使得 $A = \bigcup_i A_i$, 则对任意 $n \in \mathbb{Z}_+$,

$$\bigsqcup_{i=1}^{m} A_i \subseteq \bigsqcup_{i=1}^{\infty} A_i = A,$$

由 μ* 的单调性和有限可加性有

$$\sum_{i=1}^{m} \mu^*(A_i) = \mu^*(\bigsqcup_{i=1}^{m} A_i) \le \mu^*(A),$$

<math> <math>

$$\sum_{i=1}^{\infty} \mu^*(A_i) \le \mu^*(A),$$

结合 μ^* 的 σ -次可加性

$$\mu^*(A) \le \sum_{i=1}^{\infty} \mu^*(A_i),$$

即证明了 μ^* 的 σ -可加性, 从而 $\mu^*: \mathcal{M} \to [0,\infty]$ 是一个测度. μ^* 的 σ -有限性直接由 μ 的 σ -有限性得到. \blacktriangleright

- 5. 证明 *M* 包含 *A*.
- **◄** 设 $A \in A$, 我们只要证明 $A \in M$ 即可, 由步骤 2 可知只用证明对任意 $E \in \mathcal{P}(S)$ 有

$$\mu^*(E) \ge \mu^*(A \cap E) + \mu^*(A^c \cap E).$$

不妨设 $\mu^*(E) < \infty$ (否则不等式直接成立), 则 $Cover(E) \neq \emptyset$, 对任意 $\varepsilon > 0$, 由 $\mu^*(E)$ 的定义, 存在 $\mathcal{F} = \{F_1, F_2, \dots\} \in Cover(E)$ 使得

$$\sum_{F \in \mathcal{F}} \mu(F) \le \mu^*(E) + \varepsilon.$$

并且我们有

$$\{A \cap F : F \in \mathcal{F}\} \in \operatorname{Cover}(A \cap E), \quad \{A^c \cap F = F \setminus A : F \in \mathcal{F}\} \in \operatorname{Cover}(A^c \cap E)$$

这里利用了 A 是一个环. 因此

$$\mu^*(A \cap E) + \mu^*(A^c \cap E) \le \sum_{F \in \mathcal{F}} \mu(A \cap F) + \sum_{F \in \mathcal{F}} \mu(A^c \cap F) = \sum_{F \in \mathcal{F}} \mu(F) \le \mu^*(E) + \varepsilon,$$

最后一个等号利用了 μ 是 A 上的预测度. 令 $\varepsilon \to 0$ 即有

$$\mu^*(A \cap E) + \mu^*(A^c \cap E) \le \mu^*(E).$$

因此 $A \in \mathcal{M}, A \subseteq \mathcal{M}$.

到这里我们就完成了定理的全部证明.

实际上定理 1.10条件中的环换成半环后仍然成立.

Theorem 1.11 (Carathéodory 延拓定理的强化版本). 设 $A \subseteq \mathcal{P}(S)$ 是一个半环,集合函数 $\mu: A \to [0,\infty]$ 是一个 σ-有限的预测度. 则存在唯一的测度 $\bar{\mu}: \sigma(A) \to [0,\infty]$ 使得

$$\bar{\mu} = \mu$$
 on \mathcal{A} ,

并且 $\bar{\mu}$ 也是 σ -有限的.

证明. 我们只需要改动定理 1.10 证明中的步骤 5 即可. 即证明 $A \subseteq M$ 对半环 A 也成立. 设

 $A \in \mathcal{A}$, 我们的目的是证明对任意 $E \in \mathcal{P}(S)$,

$$\mu^*(A \cap E) + \mu^*(A^c \cap E) \le \mu^*(E).$$

不妨令 $\mu^*(E) < \infty$. 由外测度的定义可知, 对任意 $\varepsilon > 0$, 存在 $\{F_n : n \ge 1\} \in \text{Cover}(E)$ (由定义 $F_n \in \mathcal{A}$, 并且 $E \subseteq \bigcup_n F_n$) 使得

$$\sum_{n=1}^{\infty} \mu(F_n) \le \mu^*(E) + \varepsilon.$$

令 $B_n=A\cap F_n\in\mathcal{A}$ (半环对有限交运算封闭), 则存在有限个集合 $C_1^n,C_2^n,\cdots,C_{m_n}^n\in\mathcal{A}$, 使得

$$F_n \setminus A = F_n \setminus B_n = \bigsqcup_{k=1}^{m_n} C_k^n.$$

于是

$$A \cap E \subseteq \bigcup_{n=1}^{\infty} A \cap F_n = \bigcup_{n=1}^{\infty} B_n, \quad A^c \cap E \subseteq \bigcup_{n=1}^{\infty} A^c \cap F_n = \bigcup_{n=1}^{\infty} F_n \setminus A = \bigcup_{n=1}^{\infty} \bigsqcup_{k=1}^{m_n} C_k^n,$$

以及

$$F_n = B_n \sqcup (F_n \setminus B_n) = B_n \sqcup \bigsqcup_{k=1}^{m_n} C_k^n.$$

因此由外测度的 σ -次可加性, 我们有

$$\mu^*(A \cap E) + \mu^*(A^c \cap E) \leq \sum_{n=1}^{\infty} \mu^*(B_n) + \sum_{n=1}^{\infty} \mu^*(\bigsqcup_{k=1}^{m_n} C_k^n)$$

$$\leq \sum_{n=1}^{\infty} \mu^*(B_n) + \sum_{n=1}^{\infty} \sum_{k=1}^{m_n} \mu^*(C_k^n)$$

$$= \sum_{n=1}^{\infty} \left(\mu(B_n) + \sum_{k=1}^{m_n} \mu(C_k^n)\right) \qquad (因为 \mu^* = \mu \text{ on } \mathcal{A})$$

$$= \sum_{n=1}^{\infty} \mu(F_n) \qquad (因为预测度 \mu 具有有限可加性)$$

$$\leq \mu^*(E) + \varepsilon,$$

由于 ε 的任意性, 我们得到

$$\mu^*(A \cap E) + \mu^*(A^c \cap E) \le \mu^*(E),$$

因此
$$A \in \mathcal{M}, A \subseteq \mathcal{M}.$$