EXERCISE 2.1 PAGE NO: 9

Choose the correct answer from the given four options in the following questions:

- 1. If one of the zeroes of the quadratic polynomial $(k-1)x^2 + kx + 1$ is -3, then the value of k is
 - (A) 4/3

(B) -4/3

(C) 2/3

(D) -2/3

Solution:

(A) 4/3

Explanation:

According to the question,

-3 is one of the zeros of quadratic polynomial $(k-1)x^2+kx+1$

Substituting -3 in the given polynomial,

$$(k-1)(-3)^2+k(-3)+1=0$$

$$(k-1)9+k(-3)+1=0$$

$$9k-9-3k+1=0$$

6k-8=0

k = 8/6

Therefore, k=4/3

Hence, **option** (A) is the correct answer.

2. A quadratic polynomial, whose zeroes are -3 and 4, is

$$(A) x^2 - x + 12$$

(B)
$$x^2 + x + 12$$

(C)
$$(x^2/2)$$
- $(x/2)$ -6

(D)
$$2x^2 + 2x - 24$$

Solution:

(C)
$$(x^2/2)$$
- $(x/2)$ -6

Explanation:

Sum of zeroes, $\alpha + \beta = -3 + 4 = 1$

Product of Zeroes, $\alpha\beta = -3 \times 4 - 12$

Therefore, the quadratic polynomial becomes,

$$x^2$$
- (sum of zeroes) x +(product of zeroes)

$$= x^2 - (\alpha + \beta)x + (\alpha\beta)$$

$$= x^2 - (1)x + (-12)$$

$$= x^2 - x - 12$$

Hence, **option** (**C**) is the correct answer.

3. If the zeroes of the quadratic polynomial $x^2 + (a + 1)x + b$ are 2 and -3, then

(A)
$$a = -7$$
, $b = -1$

(B)
$$a = 5, b = -1$$

(C)
$$a = 2, b = -6$$

(D)
$$a = 0, b = -6$$

Solution:

(D)
$$a = 2$$
, $b = -6$

Explanation:

According to the question,

$$x^2 + (a+1)x + b$$

Given that, the zeroes of the polynomial = 2 and -3,

When x = 2

$$2^2 + (a+1)(2) + b = 0$$

$$4 + 2a + 2 + b = 0$$

$$6 + 2a + b = 0$$

$$2a+b = -6 - (1)$$

When x = -3,

$$(-3)^2 + (a+1)(-3) + b = 0$$

$$9 - 3a - 3 + b = 0$$

$$6 - 3a + b = 0$$

$$-3a+b = -6$$
 ---- (2)

Subtracting equation (2) from (1)

$$2a+b - (-3a+b) = -6-(-6)$$

$$2a+b+3a-b = -6+6$$

$$5a = 0$$

$$a = 0$$

Substituting the value of 'a' in equation (1), we get,

$$2a + b = -6$$

$$2(0) + b = -6$$

$$b = -6$$

Hence, **option** (**D**) is the correct answer.

4. The number of polynomials having zeroes as -2 and 5 is

$$(B)$$
 2

(D) more than 3

Solution:

(D) more than 3

Explanation:

According to the question,

The zeroes of the polynomials = -2 and 5

We know that the polynomial is of the form,

$$p(x) = ax^2 + bx + c.$$

Sum of the zeroes = - (coefficient of x) \div coefficient of x^2 i.e.

Sum of the zeroes = - b/a

$$-2 + 5 = -b/a$$

$$3 = - b/a$$

$$b = -3 \text{ and } a = 1$$

Product of the zeroes = constant term \div coefficient of x^2 i.e.

Product of zeroes = c/a

$$(-2)5 = c/a$$

$$-10 = c$$

Substituting the values of a, b and c in the polynomial $p(x) = ax^2 + bx + c$.

We get,
$$x^2 - 3x - 10$$

Therefore, we can conclude that x can take any value.

Hence, **option** (**D**) is the correct answer.

5. Given that one of the zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$ is zero, the product of the other two zeroes is

$$(\mathbf{D}) (-\mathbf{b/a})$$

Solution:

Explanation:

According to the question,

We have the polynomial,

$$ax^3 + bx^2 + cx + d$$

We know that,

Sum of product of roots of a cubic equation is given by c/a

It is given that one root = 0

Now, let the other roots be α , β

So, we get,

$$\alpha\beta + \beta(0) + (0)\alpha = c/a$$

$$\alpha\beta = c/a$$

Hence the product of other two roots is c/a

Hence, option (B) is the correct answer

EXERCISE 2.2 PAGE NO: 11

1. Answer the following and justify:

(i) Can $x^2 - 1$ be the quotient on division of $x^6 + 2x^3 + x - 1$ by a polynomial in x of degree 5? Solution:

No, x^2 - 1 cannot be the quotient on division of $x^6 + 2x^3 + x$ - 1 by a polynomial in x of degree 5.

Justification:

When a degree 6 polynomial is divided by degree 5 polynomial,

The quotient will be of degree 1.

Assume that $(x^2 - 1)$ divides the degree 6 polynomial with and the quotient obtained is degree 5 polynomial (1)

According to our assumption,

(degree 6 polynomial) = $(x^2 - 1)$ (degree 5 polynomial) + r(x) [Since, (a = bq + r)]

= (degree 7 polynomial) + r(x) [Since, (x^2 term $\times x^5$ term = x^7 term)]

= (degree 7 polynomial)

From the above equation, it is clear that, our assumption is contradicted.

 x^2 - 1 cannot be the quotient on division of $x^6 + 2x^3 + x$ - 1 by a polynomial in x of degree 5 Hence Proved.

(ii) What will the quotient and remainder be on division of $ax^2 + bx + c$ by $px^3 + qx^2 + rx + s$, $p \ne 0$? Solution:

Degree of the polynomial $px^3 + qx^2 + rx + s$ is 3

Degree of the polynomial $ax^2 + bx + c$ is 2

Here, degree of $px^3 + qx^2 + rx + s$ is greater than degree of the $ax^2 + bx + c$

Therefore, the quotient would be zero,

And the remainder would be the dividend = $ax^2 + bx + c$.

(iii) If on division of a polynomial p(x) by a polynomial g(x), the quotient is zero, what is the relation between the degrees of p(x) and g(x)? Solution:

We know that,

 $p(x) = g(x) \times q(x) + r(x)$

According to the question,

q(x) = 0

When q(x)=0, then r(x) is also =0

So, now when we divide p(x) by g(x),

Then p(x) should be equal to zero

Hence, the relation between the degrees of p (x) and g (x) is the degree p(x)<degree g(x)

(iv) If on division of a non-zero polynomial p(x) by a polynomial g(x), the remainder is zero, what is the relation between the degrees of p(x) and g(x)? Solution:

In order to divide p(x) by g(x)

We know that,

Degree of p(x) > degree of g(x)

or

Degree of p(x)= degree of g(x)

Therefore, we can say that,

The relation between the degrees of p(x) and g(x) is degree of $p(x) \ge$ degree of g(x)

(v) Can the quadratic polynomial $x^2 + kx + k$ have equal zeroes for some odd integer k > 1? Solution:

A Quadratic Equation will have equal roots if it satisfies the condition:

$$b^2 - 4ac = 0$$

Given equation is $x^2 + kx + k = 0$

$$a = 1, b = k, x = k$$

Substituting in the equation we get,

$$k^2 - 4(1)(k) = 0$$

$$k^2 - 4k = 0$$

$$k(k-4) = 0$$

$$k = 0$$
, $k = 4$

But in the question, it is given that k is greater than 1.

Hence the value of k is 4 if the equation has common roots.

Hence if the value of k = 4, then the equation $(x^2 + kx + k)$ will have equal roots.

EXERCISE 2.3

PAGE NO: 12

Find the zeroes of the following polynomials by factorisation method.

1.
$$4x^2 - 3x - 1$$

Solution:

$$4x^2 - 3x - 1$$

Splitting the middle term, we get,

$$4x^2-4x+1x-1$$

Taking the common factors out, we get,

$$4x(x-1) + 1(x-1)$$

On grouping, we get,

$$(4x+1)(x-1)$$

So, the zeroes are,

$$4x+1=0 \Rightarrow 4x=-1 \Rightarrow x=(-1/4)$$

$$(x-1) = 0 \Rightarrow x=1$$

Therefore, zeroes are (-1/4) and 1

Verification:

Sum of the zeroes = - (coefficient of x) \div coefficient of x^2

$$\alpha + \beta = - b/a$$

$$1 - 1/4 = -(-3)/4 = \frac{3}{4}$$

Product of the zeroes = constant term \div coefficient of x^2

$$\alpha \beta = c/a$$

$$1(-1/4) = -\frac{1}{4}$$

$$-1/4 = -1/4$$

2. $3x^2 + 4x - 4$

Solution:

$$3x^2 + 4x - 4$$

Splitting the middle term, we get,

$$3x^2 + 6x - 2x - 4$$

Taking the common factors out, we get,

$$3x(x+2) - 2(x+2)$$

On grouping, we get,

$$(x+2)(3x-2)$$

So, the zeroes are,

$$x+2=0 \Rightarrow x=-2$$

$$3x-2=0 \Rightarrow 3x=2 \Rightarrow x=2/3$$

Therefore, zeroes are (2/3) and -2

Verification:

Sum of the zeroes = - (coefficient of x) \div coefficient of x^2

$$\alpha + \beta = - b/a$$

$$-2 + (2/3) = -(4)/3$$

$$= -4/3 = -4/3$$

Product of the zeroes = constant term \div coefficient of x^2

$$\alpha \beta = c/a$$

Product of the zeroes = (-2) (2/3) = -4/3

$3.\ 5t^2 + 12t + 7$

Solution:

$$5t^2 + 12t + 7$$

Splitting the middle term, we get,
 $5t^2 + 5t + 7t + 7$
Taking the common factors out, we get,
 $5t (t+1) + 7(t+1)$
On grouping, we get,
 $(t+1)(5t+7)$
So, the zeroes are,
 $t+1=0 \Rightarrow y=-1$
 $5t+7=0 \Rightarrow 5t=-7\Rightarrow t=-7/5$
Therefore, zeroes are $(-7/5)$ and -1
Verification:
Sum of the zeroes = - (coefficient of x) ÷ coefficient of x^2
 $\alpha + \beta = -b/a$
 $(-1) + (-7/5) = -(12)/5$
 $= -12/5 = -12/5$

4. $t^3 - 2t^2 - 15t$

 $\alpha \beta = c/a$

(-1)(-7/5) = -7/5-7/5 = -7/5

Solution:

Taking t common, we get,
t (t²-2t-15)
Splitting the middle term of the equation t²-2t-15, we get,
t (t²-5t+3t-15)
Taking the common factors out, we get,
t (t (t-5) +3(t-5)
On grouping, we get,
t (t+3)(t-5)
So, the zeroes are,
t=0
t+3=0
$$\Rightarrow$$
 t=-3
t-5=0 \Rightarrow t=5
Therefore, zeroes are 0, 5 and -3
Verification:
Sum of the zeroes = - (coefficient of x²) \div coefficient of x³
 $\alpha + \beta + \gamma = -$ b/a

Product of the zeroes = constant term \div coefficient of x^2

$$(0) + (-3) + (5) = -(-2)/1$$

= 2 = 2

Sum of the products of two zeroes at a time = coefficient of $x \div coefficient$ of x^3

$$\alpha\beta+\beta\gamma+\alpha\gamma=c/a$$

$$(0)(-3) + (-3)(5) + (0)(5) = -15/1$$

Product of all the zeroes = - (constant term) \div coefficient of x^3

$$\alpha\beta\gamma = -d/a$$

$$(0)(-3)(5) = 0$$

$$0 = 0$$

5. $2x^2 + (7/2)x + 3/4$

Solution:

$$2x^2 + (7/2)x + 3/4$$

The equation can also be written as,

$$8x^2 + 14x + 3$$

Splitting the middle term, we get,

$$8x^2+12x+2x+3$$

Taking the common factors out, we get,

$$4x(2x+3)+1(2x+3)$$

On grouping, we get,

$$(4x+1)(2x+3)$$

So, the zeroes are,

$$4x+1=0 \Rightarrow x = -1/4$$

$$2x+3=0 \Rightarrow x = -3/2$$

Therefore, zeroes are -1/4 and -3/2

Verification:

Sum of the zeroes = - (coefficient of x) \div coefficient of x^2

$$\alpha + \beta = -b/a$$

$$(-3/2) + (-1/4) = -(7)/4$$

$$= -7/4 = -7/4$$

Product of the zeroes = constant term \div coefficient of x^2

$$\alpha \beta = c/a$$

$$(-3/2)(-1/4) = (3/4)/2$$

$$3/8 = 3/8$$

EXERCISE 2.4

PAGE NO: 14

1. For each of the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.

- (i) (-8/3), 4/3
- (ii) 21/8, 5/16
- (iii) $-2\sqrt{3}$, -9
- (iv) $(-3/(2\sqrt{5}))$, -1/2

Solution:

(i) Sum of the zeroes = -8/3

Product of the zeroes = 4/3

 $P(x) = x^2$ - (sum of the zeroes) + (product of the zeroes)

Then, $P(x) = x^2 - 8x/3 + 4/3$

 $P(x) = 3x^2 - 8x + 4$

Using splitting the middle term method,

$$3x^2 - 8x + 4 = 0$$

$$3x^2 - (6x + 2x) + 4 = 0$$

$$3x^2 - 6x - 2x + 4 = 0$$

$$3x(x-2) - 2(x-2) = 0$$

$$(x - 2)(3x - 2) = 0$$

$$\Rightarrow$$
 x = 2, 2/3

(ii) Sum of the zeroes = 21/8

Product of the zeroes = 5/16

 $P(x) = x^2$ - (sum of the zeroes) + (product of the zeroes)

Then,
$$P(x) = x^2 - 21x/8 + 5/16$$

$$P(x) = 16x^2 - 42x + 5$$

Using splitting the middle term method,

$$16x^2 - 42x + 5 = 0$$

$$16x^2 - (2x + 40x) + 5 = 0$$

$$16x^2 - 2x - 40x + 5 = 0$$

$$2x (8x - 1) - 5(8x - 1) = 0$$

$$(8x - 1)(2x - 5) = 0$$

$$\Rightarrow$$
 x = 1/8, 5/2

(iii) Sum of the zeroes = $-2\sqrt{3}$

Product of the zeroes = -9

$$P(x) = x^2$$
 - (sum of the zeroes) + (product of the zeroes)

Then,
$$P(x) = x^2 - 2\sqrt{3}x - 9$$

Using splitting the middle term method,

$$x^2 - 2\sqrt{3}x - 9 = 0$$

$$x^2 - (-\sqrt{3}x + 3\sqrt{3}x) - 9 = 0$$

$$x^2 + \sqrt{3}x - 3\sqrt{3}x - 9 = 0$$

$$x(x + \sqrt{3}) - 3\sqrt{3}(x + \sqrt{3}) = 0$$

$$(x + \sqrt{3})(x - 3\sqrt{3}) = 0$$

$$\Rightarrow$$
 x = - $\sqrt{3}$, $3\sqrt{3}$

(iv) Sum of the zeroes = $-3/2\sqrt{5}x$ Product of the zeroes = $-\frac{1}{2}$ P(x) = x^2 - (sum of the zeroes) + (product of the zeroes) Then, P(x)= x^2 - $3/2\sqrt{5}x$ - $\frac{1}{2}$ P(x)= $2\sqrt{5}x^2$ - 3x - $\sqrt{5}$ Using splitting the middle term method, $2\sqrt{5}x^2$ - 3x - $\sqrt{5}$ = 0 $2\sqrt{5}x^2$ - (5x - 2x) - $\sqrt{5}$ = 0 $2\sqrt{5}x^2$ - 5x + 2x - $\sqrt{5}$ = 0 $\sqrt{5}x$ (2x - $\sqrt{5}$) - (2x - $\sqrt{5}$) = 0 (2x - $\sqrt{5}$)($\sqrt{5}$ - 1) = 0 $\Rightarrow x$ = - $1/\sqrt{5}$, $\sqrt{5}/2$

2. Given that the zeroes of the cubic polynomial $x^3 - 6x^2 + 3x + 10$ are of the form a, a + b, a + 2b for some real numbers a and b, find the values of a and b as well as the zeroes of the given polynomial. Solution:

Given that a, a+b, a+2b are roots of given polynomial $x^3-6x^2+3x+10$ Sum of the roots $\Rightarrow a+2b+a+a+b = -\text{coefficient of } x^2/\text{ coefficient of } x^3$ $\Rightarrow 3a+3b = -(-6)/1 = 6$ $\Rightarrow 3(a+b) = 6$ $\Rightarrow a+b = 2$ ------ (1) b = 2-a

Product of roots \Rightarrow (a+2b)(a+b)a = -constant/coefficient of x^3 \Rightarrow (a+b+b)(a+b)a = -10/1

Substituting the value of a+b=2 in it

⇒
$$(2+b)(2)a = -10$$

⇒ $(2+b)2a = -10$
⇒ $(2+2-a)2a = -10$
⇒ $(4-a)2a = -10$
⇒ $(4-a)2a = -10$
⇒ $4a-a^2 = -5$
⇒ $a^2-4a-5 = 0$
⇒ $a^2-5a+a-5 = 0$
⇒ $(a-5)(a+1) = 0$
 $a-5 = 0$ or $a+1 = 0$
 $a = 5$ $a = -1$
 $a = 5$, -1 in (1) $a+b = 2$
When $a = 5$, $5+b=2$ ⇒ $b=-3$
 $a = -1$, $-1+b=2$ ⇒ $b=3$

 \therefore If a=5 then b= -3

or
If a= -1 then b=3

3. Given that $\sqrt{2}$ is a zero of the cubic polynomial $6x^3 + \sqrt{2}x^2 - 10x - 4\sqrt{2}$, find its other two zeroes. Solution:

Given, $\sqrt{2}$ is one of the zero of the cubic polynomial.

Then, $(x-\sqrt{2})$ is one of the factor of the given polynomial $p(x) = 6x^3 + \sqrt{2}x^2 - 10x - 4\sqrt{2}$. So, by dividing p(x) by $x-\sqrt{2}$

$$6x^{2} + 7\sqrt{2}x + 4$$

$$(x - \sqrt{2}) \overline{)6x^{3} + \sqrt{2}x^{2} - 10x - 4\sqrt{2}}$$

$$6x^{3} - 6\sqrt{2}x^{2}$$

$$- +$$

$$7\sqrt{2}x^{2} - 10x - 4\sqrt{2}$$

$$7\sqrt{2}x^{2} - 14x$$

$$- +$$

$$4x - 4\sqrt{2}$$

$$4x - 4\sqrt{2}$$

$$0$$

 $6x^3 + \sqrt{2}x^2 - 10x - 4\sqrt{2} = (x - \sqrt{2})(6x^2 + 7\sqrt{2}x + 4)$

By splitting the middle term,

We get,

$$(x-\sqrt{2}) (6x^2 + 4\sqrt{2}x + 3\sqrt{2}x + 4)$$

= $(x-\sqrt{2}) [2x(3x+2\sqrt{2}) + \sqrt{2}(3x+2\sqrt{2})]$

 $=(x-\sqrt{2})(2x+\sqrt{2})(3x+2\sqrt{2})$

To get the zeroes of p(x),

Substitute p(x) = 0 $(x-\sqrt{2}) (2x+\sqrt{2}) (3x+2\sqrt{2}) = 0$

 $x = \sqrt{2}$, $x = -\sqrt{2/2}$, $x = -2\sqrt{2/3}$

which is equal to,

 $x = \sqrt{2}$, $x = -1/\sqrt{2}$, $x = -2\sqrt{2}/3$ [Rationalising second zero]

Hence, the other two zeroes of p(x) are $-1/\sqrt{2}$ and $-2\sqrt{2}/3$