Asintotas

lineales a una curva

Una función $f: A \to B/y = f(x)$ tiene asíntota vertical, de ecuación x = a si se cumple:

$$\lim_{x\to a}f(x)=\infty$$

Aclaración: puede ser que el resultado del límite sea $+ \infty$ o $- \infty$. La expresión $x \to a$ puede ser por derecha o por izquierda y en ese caso hablamos de asíntota por derecha o izquierda

En este ejemplo tenemos

$$\lim_{x\to a} f(x) = +\infty$$

En este ejemplo

$$\lim_{x\to a^{-}}f(x)=+\infty$$

Por lo tanto x = a es asíntota vertical por izquierda

En este ejemplo

$$\lim_{x\to a^{-}}f(x)=+\infty$$

Por lo tanto x = a es asíntota vertical por izquierda (Notar la diferencia con la imagen anterior)

En este ejemplo

$$\lim_{x\to a^{-}}f(x)=+\infty$$

Por lo tanto x = a es asíntota vertical por izquierda (Notar la diferencia con la imagen anterior)

En este ejemplo

$$\lim_{x\to a^{-}}f(x)=+\infty$$

Por lo tanto x = a es asíntota vertical por izquierda (Notar la diferencia con la imagen anterior)

En este ejemplo

$$\lim_{x\to a}f(x)=\infty$$

Por lo tanto x = a es asíntota vertical

$$\lim_{x\to b}f(x)=+\infty$$

X = a y x = b asíntotas verticales

Asíntota Horizontal

Una función $f: A \to B/y = f(x)$ tiene asíntota horizontal, de ecuación y = b si se cumple:

$$\lim_{x\to\infty}f(x)=b$$

Aclaración: acá el infinito está tomado con doble signo $(\pm \infty)$. En algunos casos se pueden considerar por separado $x \to +\infty$ y $x \to -\infty$.

En este caso tenemos dos asíntotas horizontales distintas.

En este caso tenemos sólo asíntota por derecha.

En este caso también sólo asíntota por derecha

Ejemplo gráfico de asíntota horizontal

En este caso tenemos y = 0 AH (observar las intersecciones de la función con su asíntota)

Una función $f: A \to B/y = f(x)$ tiene **asíntota oblicua**, de ecuación y = m.x + b si se cumple: $\lim_{x \to \infty} [f(x) - (m.x + b)] = 0$ Para armar la A.O. debemos calcular su pendiente y la ordenada al origen.

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (m.x + b) = 0$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (m.x + b)$$

$$\lim_{x \to \infty} f(x) - \lim_{x \to \infty} (m.x) - b = 0$$

$$\lim_{x \to \infty} f(x) \cdot \lim_{x \to \infty} \frac{1}{x} = \lim_{x \to \infty} (m.x + b) \cdot \lim_{x \to \infty} \frac{1}{x}$$

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{(m.x + b)}{x}$$

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{(m.x + b)}{x}$$

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \left(\frac{m.x}{x} + \frac{b}{x}\right)$$

$$\lim_{x \to \infty} \frac{f(x)}{x} = m$$

<u>Aclaración:</u> acá el infinito está tomado con doble signo ($\pm \infty$). Puede ser en algunos casos que haya que considerar uno de los dos lados por separado

Ejemplo gráfico de asíntota oblicua

Una función $f: A \to B/y = f(x)$ tiene asíntota oblicua, de ecuación y = m.x + b si se cumple:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} \in R - \{0\}$$

$$b = \lim_{x \to \infty} [f(x) - m. x] \in R$$

Ejemplo de dos asíntotas oblicuas distintas

Ejemplo de una AO

Otro ejemplo

Otro ejemplo

Otro ejemplo

