EE210: HW-11

Date: 28/03/2019

Unless stated otherwise, the BJT in the problems given below has the following characteristics:

$$I_S=2.03\times 10^{-15}A;~\beta_F=100;~\beta_R=1;~V_A=\infty;~r_{bb}=200\Omega;~V_T=26mV$$
 $C_{jeo}=1pF;~C_{jco}=0.5pF;~C_{jso}=3pF;~m=0.5;~V_{bi}=0.85;~\tau_F=1ns$

(For simplicity, include r_{bb} only in high frequency analysis and ignore C_{is})

Q.1 Determine the efficiency of the amplifier shown in Fig. 1, when the input is a sinusoid of magnitude 1V.

- **Q.2** Design the amplifier shown in Fig. 2 to deliver a maximum power of 0.5W to the load. As part of the design, determine V_{CC} , R_E and maximum values of collector current, collector emitter voltage and power dissipated in the transistor.
- **Q.3** Design the amplifier shown below in Fig. 3 to deliver a maximum power of 2W to the load. As part of the design, determine V_{CC} and maximum values of collector current, collector emitter voltage and power dissipated in the transistor.

Q.4 Draw the complete schematic of class AB amplifier.