PATENT ABSTRACTS OF JAPAN

(11) Publication number: 05025058 A

(43) Date of publication of application: 02.02.93

(51) Int. Cl A61K 39/395 A61K 47/10

(21) Application number: 03204743

(22) Date of filing: 20.07.91

(71) Applicant: HAGIWARA YOSHIHIDE

(72) Inventor: HAGIWARA HIDEAKI

YUASA HIDEO

YAMAMOTO YASUNORI

(54) STABILIZED HUMAN MONOCLONAL ANTIBODY PREPARATION

(57) Abstract:

PURPOSE: To obtain the title preparation substantially improved in stability, in particular, stability to the flocculation or precipitation in its redissolution after lyophilization by formulating human monoclonal antibody with a specified small amount of mannitol.

CONSTITUTION: D-mannitol as stabilizer is introduced into a human monoclonal antibody preparation by

dialysis, pref. after replacement with a buffer solution suitable for the preparation through gel filtration technique for preparation manufacturing. The D-mannitol content of the preparation is pref. 1-20 (esp. 5-15) mg per mg of the human monoclonal antibody in the preparation. Combination of glycine with the D-mannitol will further improve the preparation's stability. The amount of the glycine to be used is 0.005-0.2 (pref. 0.1-0.15) mol per mg of the human monoclonal antibody.

COPYRIGHT: (C)1993,JPO&Japio

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平5-25058

(43)公開日 平成5年(1993)2月2日

(51) Int.Cl.⁵

(22)出願日

識別記号 庁内整理番号 技術表示箇所

A 6 1 K 39/395 47/10

M 8413-4C J 7329-4C

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号 特願平3-204743

平成3年(1991)7月20日

(71)出願人 000234074

萩原 義秀

兵庫県宝塚市平井山荘4番14号

(72)発明者 萩原 秀昭

兵庫県宝塚市平井山荘4-14

(72)発明者 湯浅 英雄

兵庫県加西市北条町古坂3-79

(72)発明者 山本 泰範

兵庫県加西市北条町北条溝川53 第5岩井

ハイツ721号室

(74)代理人 弁理士 小田島 平吉 (外1名)

(54) 【発明の名称】 安定化されたヒトモノクローナル抗体製剤

(57)【要約】

【構成】 ヒトモノクローナル抗体 $1 \operatorname{mg}$ あたり $1 \sim 20$ mgのD-マンニトールを含有する安定化されたヒトモノ クローナル抗体製剤。

【効果】 本製剤は溶液状態、凍結乾燥状態、凍結状 態、殊に凍結乾燥後再溶解時のヒトモノクローナル抗体 の凝集、沈殿に対する安定性に優れている。

1

【特許請求の範囲】

【請求項1】 ヒトモノクローナル抗体1mgあたり1~ 20mgのD-マンニトールを含有することを特徴とする 安定化されたヒトモノクローナル抗体製剤。

【発明の詳細な説明】

【0001】本発明は安定化されたヒトモノクローナル 抗体製剤に関し、さらに詳しくは、溶液状態、凍結乾燥 状態、凍結状態における安定性、殊に、凍結乾燥の再溶 解(復元)安定性に優れたヒトモノクローナル抗体製剤 に関する。

【0002】1975年にケーラーとミルスタインによ りモノクローナル抗体を遺伝子工学的に産生する方法が 提案されて [Koehler, G., Milstein, C, Nature 256, 495(1975)]以来、モノクローナル抗体が均質 な抗体として大量に供給される道がひらかれ、医学、生 物学の分野で広く利用されている。

【0003】近年、ヒトモノクローナル抗体がヒト臨床 試験に供されており、中でも抗腫瘍を目的とした医薬品 分野で注目されている。しかし、精製されたヒトモノク ローナル抗体は、溶液状態又は凍結乾燥後の再溶解(復 20 元) 時に凝集、沈殿しやすいという製剤上好ましくない 性質があり、そのような望ましくない性質をもたない安 定化されたモノクローナル抗体製剤の開発が望まれる。

【0004】一方、抗体(免疫グロブリン)の安定化法 として、従来、スルホン化免疫グロブリンに血清アルブ ミン又は血清アルブミンとグリシン及び/又はマンニト ールを添加する方法(特公昭62-20965号公 報) ; 比較的多量の多価アルコールを添加する方法(特 開昭63-88197号公報)、デキストランを添加す る方法 (特開昭63-225320号公報) 等が提案さ 30 れている。しかしながら、これらの従来提案されている 方法によつては、ヒトモノクローナル抗体製剤における 前記の如き望ましくない性質を充分に改良することはで きない。

【0005】今回、本発明者らは、ヒトモノクローナル 抗体に対して特定少量のマンニトールを配合することに よつて、ヒトモノクローナル抗体製剤の安定性、殊に、 ヒトモノクローナル抗体の凍結乾燥後再溶解する時の凝 集、沈殿に対する安定性が著るしく向上することを見い 出し、本発明を完成するに至った。

【0006】かくして、本発明によれば、ヒトモノクロ ーナル抗体1mgあたり1~20mgのD-マンニトールを 含有することを特徴とする安定化されたヒトモノクロー ナル抗体製剤が提供される。

【0007】本発明に従つて安定化可能なヒトモノクロ ーナル抗体には特に制限はなく、各種のヒトモノクロー ナル抗体を使用することができる。例えば、CLN-I gG, SLN-IgG, CoLN-IgA, TOS/H 8-IgM [萩原秀昭:BIOINDUSTRY, 4, 730(1987)] 等を代表例として例示することが 50 e, fastflow, フアルマシア)に吸着させた。カラム吸着物

できる。

【0008】このようなヒトモノクローナル抗体は、医 薬品等として実用化するために製剤化されるが、その製 剤化の方法としては、例えば精製されたヒトモノクロー ナル抗体を必要に応じて限外濾過、硫安分画等により濃 縮し、ゲル濾過法により製剤に適した緩衝液と置換し、 場合によつてはさらに濃度を調製した後、濾過滅菌処理 を行ない、凍結乾燥する方法が挙げられる。

2

【0009】本発明の安定化されたヒトモノクローナル 10 抗体製剤を調製するにあたつて、安定化剤としてのD-マンニトールは、上記製剤化の任意の段階で配合するこ とができるが、一般には、ゲル濾過法により製剤に適し た緩衝液と置換した後に透析法によつてヒトモノクロー ナル抗体製剤に導入するようにするのが好適である。D -マンニトールの含有量は、製剤中のヒトモノクローナ ル抗体 $1 \operatorname{mg}$ あたり $1 \sim 20 \operatorname{mg}$ 、好ましくは $5 \sim 15 \operatorname{mg}$ の 範囲内とすることができる。D-マンニトールの含有量 が1mgより少ないと、所期とする充分な安定化効果が得 られず、また20 mgよりも多いと、逆に抗体の凝集がみ られるようになる。

【0010】さらに、D-マンニトールに加えてグリシ ンを併用することにより、製剤の安定性がさらに向上す ることが判明した。その際のグリシンの使用量は厳密に 制限されないが、一般に、ヒトモノクローナル抗体1mg あたり $0.005\sim0.2$ モル、好ましくは $0.1\sim0.1$ 5 モル範囲内が適当である。

【0011】グリシンの本発明の製剤への導入は、D-マンニトールの導入と同時期に行なうことができる。

【0012】本発明の製剤には、さらに必要に応じて、 pHを調整するための適当量のリン酸塩等を配合するこ とができる。

【0013】次に実施例により本発明をさらに具体的に 説明する。

[0014]

【実施例】参考例1:ヒトモノクローナル抗体の調製 抗体産性細胞(ヒト×ヒトハイブリドーマ=CLN H 11)の凍結細胞を融解し、基礎培地にて洗浄した後、 10%ウシ胎児血清を含んだ基礎培地を用いて培養し た。培養後、この培養液から細胞を分取し、無血清培地 (Hybrity-II、HIHバイオセンター社製) にて再び 培養を行った後、さらに同じ培地で回分培養にてスケー ルアツプさせた。得られた無血清培養液40リツトルか ら細胞を取り除き、限外濾過(PROSTAK™、ミリ ポア社製)により、約5リツトルまで濃縮した。

【0015】これに硫酸アンモニウムを添加し、最終飽 和溶液が70%になる様に塩析し、硫安沈殿物を得た。

【0016】この硫安沈殿物を10mM燐酸緩衝液(以 下PBとする) にて20リツトル×2回、のベ24時 間、透析を行った後、陽イオン交換カラム(S-Sepharos

を10mM PBでよく洗浄後、10mM PB中、0か ら0.5M MaClの濃度勾配により溶出し、IgG の粗分画を得た。

【0017】これをProtein Aカラムに吸着させ、10 mM PB+1M NaClでよく洗浄後、0.1Mグリ シン-塩酸+1M NaCl (pH3.0) で溶出し

【0018】得られたIgGを硫安分画(飽和濃度50 %) で濃縮し、10 mM燐酸緩衝生理食塩水 (以下 P B よりゲル濾過を行い、精製IgGとした。

【0019】参考例2:安定化剤等の調製

(1) リン酸緩衝生理食塩水 (PBS) は、1.15g のNa₂HPO₄ (無水)、8.0gのNaC1、0.2g のKH₂PO₄、0.2gのKClを約900mlの蒸留水 に溶解後、pHを7.2-7.4に調整し、全量を1.0 gとした。

【0020】(2)注射用生理食塩水は、(株)大塚製 薬工場製を用いた。

品工場製の20% (w/v) D-マンニトール注射液を 蒸留水にて、それぞれ1%、5%、10%の濃度に希釈 した。

【0022】(4)1%マンニトール+注射用生理食塩 水は、D-マンニトールを注射用生理食塩水にて1% (w/v) になるように溶解した。

【0023】(5)グリシン-マンニトール溶液は、グ リシン22.5g、20%D-マンニトール溶液50m 1、NaH2PO4・2H2O 1.56gを約900mlの水 に溶解し、pHを7.2-7.4に調整した。 * 30

*【0024】実施例1:ヒトモノクローナル抗体の凍結 乾燥剤の調製及びその安定性(1)

参考例2で作成した各々の溶液に対して参考例1で調製 したヒトモノクローナル抗体溶液を透析した。得られた 各々のヒトモノクローナル抗体溶液を1.0、2.5、 5.0mg/mlの濃度に調整した。 $0.22\mu m$ のメンブラ ンフイルターを通し、1mlずつバイヤルに分注した。ア メリカ、ラブコンコ社製のトレードライヤーを用いて凍 結乾燥を行った。凍結乾燥は、棚温−30℃でサンプル Sとする)で平衡化したSephacryl S-300カラムに 10 を凍結させるために約1時間置き、サンプルが完全に凍 結した後、吸引ポンプを動かし、乾燥を開始した。棚温 を0℃まで上昇させ約20時間後凍結乾燥を終了した。

【0025】各バイヤルに1mlの蒸留水を加え、凍結乾 燥粉末を溶解し、各々の溶解度を通常バクテリア等の培 養液の濁度を測定する際に用いられる〇D600の値によ り比較した。抗体の凝集などの結果、不溶性粒子が生じ た場合、〇D600の値は上昇する。その結果、下記表1 に示すとおり、1%マンニトール溶液及びグリシン-マ ンニトール溶液が、ヒトモノクローナル抗体の凍結乾燥 【0021】(3)マンニトール溶液は、(株)人塚製 20 後の溶解度という点で最もすぐれていることがわかつ た。また、マンニトールのみの溶液でも5%、10%と 濃度が高い溶液では溶解度は悪くなつた。また、マンニ トールの濃度が1%であつても、1%マンニトール+注 射用生理食塩水の結果にみられるように、0.9%程度 のNaClが存在すると溶解度が悪くなつた。

> 【0026】表1. 各安定化剤におけるヒトモノクロー ナル抗体の凍結乾燥後の溶解度

 (OD_{600})

[0027]

【表1】

安定化剤	l バイアル中の抗体量(m g)			
	0	1.0	2.5	5.0
PBS	0.019	0.194	0. 311	0.427
注射用生理食塩水	0.001	0.220	0.582	0.952
1%マンニトール	0.001	0.014	0.035	
5%マンニトール	0.000	0.194	0.270	-
10%マンニトール	0.001	0.246	0.317	
1%マンニトール+ 注射用	0.001	0.193	. 0.228	_
生理食塩水			ν.	
う^ リンンーマンニトール	0.010	0.042		0.115

【0028】実施例2:ヒトモノクローナル抗体の凍結 乾燥剤の調製及びその安定性(2)

実施例1に記載の方法に準じて、1バイアル中のD-マ ンニトールの量が1、2、5、10、15、20、50 又は100㎏及びモノクローナル抗体の量が1、2.5又 は 5 mgを含む凍結乾燥剤を調製し、その溶解度を比較し 50 クローナル抗体の凍結乾燥後の溶解度

た。その結果を表2に示す。

【0029】その結果、凍結乾燥後のD-マンニトール 量が抗体 $1 \operatorname{mg}$ あたり $1 \sim 2 \operatorname{0} \operatorname{mg}$ の範囲内にあれば、充分 な溶解度が得られることがわかる。

【0030】表2. D-マンニトールにおけるヒトモノ

6

5

【表2】

 (OD_{600}) [0031]

1バイアル中の	1バイアル中の抗体量(mg)			
D-マンニトール				
の量(mg)	1 mg	2.5 mg	5 mg	
1	0. 007	0. 008	0. 008	
2	0. 005	0. 004	0. 013	
5	0. 003	0.003	0. 002	
10	0. 001	0. 004	0. 008	
15	0. 002	0. 002	0. 005	
20	0. 005	0. 012	0. 006	
50	0. 194	0. 022	0. 024	
100	0. 246	0. 127	0. 031	