Instituut voor Middelbaar Economisch- en Administratief Onderwijs (IMEAO) NICKERIE, SGT, AVOND, IMEAO 1, 2, 3, 4 en 5					
Vak:	Regressie&Correlatie	Niveau:	N4		
Module:	1	Richtingenleerjaar:	MSTA-4		
Toets:	2	Tijd:	120 min		
Datum:	-jan-2017				

Opmerkingen:

Het werk bestaat uit 1 casus met 7 vragen op 2 pagina's.

Toegestane hulpmiddelen:werkblad,eigen schrijfgerei, verstrekte kladpapier, en calculator.Neem bij eventuele afwijkingen contact op met de surveillant.

Casus

Een autohandelaar onderzoekt de relatie tussen de prijs van een personenauto (Y) en de leeftijd van de auto's (X_1) en de kilometerstand van de auto's (X_2) . Voor 8 willekeurige personenauto'swaren de resultaten als volgt:

n=8	$\sum X_1 X_2 = 489,67$
$\sum X_1 = 68,4$	$\sum X_1 Y = 594,14$
$\sum X_2 = 57,1$	$\sum X_2 Y = 494$
$\sum Y = 69,85$	$\sum X_1^2 = 586,92$
$\sum X_2^2 = 413,93$	$\sum Y^2 = 617,54$

a. Bereken voor deze onderzoeksresultaten de correlatie-matrix. (afronden op 2 decimalen) (35 punt)

$$Matrix = \begin{pmatrix} & Y & X1 & X2 \\ Y & r_{YY} & r_{Y1} & r_{Y2} \\ X1 & r_{1Y} & r_{11} & r_{12} \\ X2 & r_{2Y} & r_{21} & r_{22} \end{pmatrix}$$

- b. Welke correlatie coëfficiënt geeft het sterksteverband? (5 pnt)
- c. Bereken de partiëlecorrelatie coëfficiënt $r_{V1.2}$ (afronden op 3 decimalen) (10pnt)
- d. Bereken de partiële correlatie coëfficiënt $r_{V2,1}$ (afronden op 3 decimalen)(10pnt)
- e. Welke conclusie kun je trekken over de invloed die X_1 heeft op X_2 ?(5 pnt)
- f. Bereken de determinatie-coëfficiënt R^2 als $b_0 = 21,809$, $b_1 = -1,154$ en $b_2 = -0,450$ (afronden op 3 decimalen) (15 pnt)
- g. Geef betekenis aan het antwoord in onderdeel f. (5 pnt)
- h. Geef de vergelijking van het meervoudige regressiemodel. (5pnt)

$$SSR = b_0 \sum Y + b_1 \sum X_1 Y + b_2 \sum X_2 Y - n(\overline{Y})^2$$

$$SSE = \sum Y^2 - b_0 \sum Y - b_1 \sum X_1 Y - b_2 \sum X_2 Y$$

$$SST = \sum Y^2 - n\overline{Y}^2$$

$$r_{y1} = \frac{n\sum YX_{1} - \sum Y\sum X_{1}}{\sqrt{\{n\sum Y^{2} - (\sum Y)^{2}\}\{n\sum X_{1}^{2} - (\sum X_{1})^{2}\}}}$$

$$r_{y1.2} = \frac{r_{y1} - r_{y2} \cdot r_{12}}{\sqrt{(1 - r_{y2}^{2})(1 - r_{12}^{2})}}$$

$$Cijfer = \frac{Score + 10}{10}$$

Succes!!

CORRECTIEMODEL M1-T2-2016/2017 Regressie en correlatie Msta 4

a. Correlatiematrix(35p)

	Y	<i>X</i> ₁	<i>X</i> ₂
Υ	1		
X_1	-0.77	1	
X_2	-0.65	0.40	1

b. Correlatiecoëfficiënt r_{y1} geeft het sterkste verband(5p)

c.
$$r_{Y1.2} = \frac{-0.77 - (-0.65*0.40)}{\sqrt{(1 - (-0.65)^2)(1 - 0.40^2)}} = -0.732 \text{ (10p)}$$

d.
$$r_{Y2.1} = \frac{-0.65 - (-0.77 * 0.40)}{\sqrt{(1 - (-0.77)^2)(1 - 0.40^2)}} = -0.585(10p)$$

e. Er bestaat een sterkere verband (of hogere correlatie) tussen Y (prijs van de personenauto) en X_2 (kilometerstand van de auto), na uitschakeling van de invloed van X_1 (leeftijd van de auto).(5p)

f.
$$R^2 = \frac{SSR}{SST}$$

 $\bar{Y} = \frac{69.85}{8} = 8.731$
 $SSR = 21.809*69.85 - 1.154*594.14-0.450*494 - 8*8.731^2 = 5.578$
 $SST = 617.54 - 8*8.731^2 = 7.697$
 $R^2 = 5.578/7.697 = 0.725$ (15p)

- g. 72.5% van de totale variantie van Y wordt verklaard door de variabelen X_1 en X_2 . (5p)
- h. $Y = 21.809 1.154X_1 0.450X_2(5p)$

$$Cijfer = \frac{score + 10}{10}$$