Tutorial 3

Star-Delta and Delta-Star Transformation

1. A network is arranged as shown in Figure 1. Using star-delta transformation, calculate the equivalent resistance between A and C.

Ans: 2.86 Ω

2. Referring to the circuit shown in Figure 2, perform the delta-star conversion on the 500Ω , 2500Ω , 100Ω branches and hence, find the current I in the 50 ohm resistor.

Ans: 1.32 mA

3. Convert the three impedances forming a Δ in Figure 3 into an equivalent Y. Hence find an overall Y-equivalent.

Ans: $(11 + j2) \Omega$; $(4 - j1) \Omega$; $(1 + j2) \Omega$

4. The three-terminal network shown in Figure 4 contains a balanced delta in parallel with a balanced Y. Obtain the Y-connected equivalent.

Ans: $2.28 \angle -3.54^{\circ} \Omega$ (balanced)

5. By converting the star-connected resistors of 2Ω , 4Ω and 6Ω (shown in the dotted box) into an equivalent delta connection, calculate the effective resistance between the terminals A and B of the circuit shown in Figure 5.

Ans: 22 Ω ; 11 Ω ; 7.33 Ω ; $R_{AB} = 4.09 \Omega$.

6. Simplify the circuit shown in Figure 6 to prove that the equivalent resistance at the terminals AB is $R_{AB} = 4.87 \Omega$ using star to delta transformation for the 6 Ω star connected resistances connected to the terminals ABC.

Ans: $R_{\Delta} = 18 \Omega$; $R_{AB} = 4.87 \Omega$.

Figure: 6