Optimisation et optimisation numérique TD2

Lucie Le Briquer

16 janvier 2018

Exercice 1 (condition suffisante d'ordre 2)

 $J: U \subset E \longrightarrow \mathbb{R}$ dérivable en x telle que J'(x) = 0.

1. Supposons que J''(x) existe et qu'il existe $\alpha > 0$ tel que $J''(x)(v,v) \geqslant \alpha |v|^2 \ \forall v \in E$.

$$J(x+v) = J(x) + J''(x)(v,v) + |v|^2 \varepsilon(v) \geqslant J(x) + \left(\frac{1}{2}\alpha + \varepsilon(v)\right) |v|^2$$

 $\exists r > 0$, tel que pour $v \in \mathcal{B}(0,r) : \frac{1}{2}\alpha + \varepsilon(v) > 0$.

2. Soit C une boule ouverte de centre x telle que $C \subset B$. Soit $y \in C$. Posons :

$$\varphi \colon \left\{ \begin{array}{ccc} [0,1] & \longrightarrow & \mathbb{R} \\ t & \longmapsto & J((1-t)x + ty) \end{array} \right.$$

$$J(y) = \varphi(1) = \varphi(0) + \varphi'(0) + \int_0^1 (1-t)\varphi''(t)dt$$

$$\varphi'(t) = J'((1-t)x + ty)(y-x) \qquad \varphi''(t) = J''((1-t)x + ty)(y-x, y-x)$$

Donc $J(y)=J(x)+\int_0^1(1-t)J''((1-t)x+ty)(y-x,y-x)dt\geqslant J(x)$ car $\forall t\in[0,1],\ (1-t)x+ty\in C$ puisque C est convexe.

Exercice 2 (minima d'une fonction convexe)

1. Soient $x_1, x_2 \in S$ et $t \in [0, 1]$.

$$J(tx_1 + (1-t)x_2) \le tJ(x_1) + (1-t)J(x_2) = \inf J$$

donc $x_0 = tx_1 + (1-t)x_2$ est un minimum global de J, i.e. $x_0 \in S$. S est donc convexe.

Montrons que $x_* \in S$. Par l'absurde, si $x_* \notin S$, il existe $y_* \in C$ tel que $J(y_*) < J(x_*)$. Alors $\forall t \in]0,1[$,

$$J(tx_* + (1-t)y_*) \le tJ(x_*) + (1-t)J(y_*) < J(x_*)$$

Pour t suffisamment petit, on obtient un voisinage de x_* tel que J prenne une valeur strictement inférieure à $J(x_*)$. Absurde.

2. Par l'absurde, supposons qu'il existe $y_* \in S$ avec $y_* \neq x_*$. Par convexité de S, on a $[x_*, y_*] \subset S$, donc J est constante sur ce segment. Absurde par stricte convexité.

Exercice 3 (normes matricielles)

1.

$$\begin{split} \|A\|_1 &= \sup_{v, \|v\|_1 = 1} \|Av\|_1 = \sup_{v, \sum |v_k| = 1} \sum_{i=1}^n \left| \sum_{j=1}^n a_{ij} v_j \right| \\ \|A\|_1 &\leqslant \sup_{v, \sum |v_k| = 1} \sum_{i=1}^n \sum_{i=1}^n |a_{i,j}| |v_j| \leqslant \sup_{v, \|v\| = 1} \sum_{j=1}^n |v_j| \sum_{i=1}^n |a_{i,j}| \\ &\leqslant \sup_{v, \|v\| = 1} \sum_{j=1}^n |v_j| \max_j \left(\sum_{i=1}^n |a_{i,j}| \right) = \max_j \sum_{i=1}^n |a_{i,j}| \end{split}$$

On atteint le maximum pour $v = (v_j)_{1 \leq j \leq n}$ avec :

$$v_j = \mathbb{1}_{j = \operatorname{argmin}_i \sum_{k=1}^n |a_{i,k}|}$$

2. On a $\langle Av,Av\rangle=\bar{v}^TA^*Av$ avec A^*A symétrique réelle donc diagonalisable dans une b.o.n. Ainsi :

$$||A||_2^2 = \sup_{v \in \mathcal{C}, ||v||_2 = 1} \bar{v}^T D v = \sup_{v, ||v||_2 = 1} \sum_i \lambda_i |v_i|^2$$

Donc $||A||_2^2 \leqslant \sup_i \lambda_i = \rho(A^*A)$. Et pour $v = (v_i)_{1 \leqslant i \leqslant n}$ avec :

$$v_i = \mathbb{1}_{i = \operatorname{argmin}_j \sup \lambda_i}$$

on atteint cette borne.

- 3. À faire.
- 4. $U \in O_n(\mathbb{C})$ i.e. $U^*U = I$. Alors:

$$||A||_2 = \sup_{x \in \mathbb{C}} \frac{||AUx||}{||Ux||} = \sup_{x \in \mathbb{C}} \frac{||Ax||}{||x||} = ||A||_2$$

- 5. À faire.
- 6. Soit $\lambda \in \operatorname{Sp}(A)$ et $v \in E_{\lambda}(A)$.

$$\frac{\|Av\|}{\|v\|} = |\lambda| \leqslant \operatorname{Sp}(A)$$

En particulier pour $|\lambda| = \rho(A)$. Donc $\rho(A) \leq ||A||$.

Exercice 4 (conditionnement de systèmes linéaires)

On a b = Au, $\delta b = A\delta u$, $A^{-1}\delta b = \delta u$. Ainsi :

$$||b|| \le ||A|| ||u||$$
 $||\delta u|| \le ||A^{-1}|| ||\delta b||$

Ainsi:

$$\frac{\|\delta u\|}{\|u\|} \leqslant \frac{\|\delta u\| \|A\|}{\|b\|} \leqslant \operatorname{cond}(A) \frac{\|\delta b\|}{\|b\|}$$