【结果】

1. 记录数据

试管编号	标准曲线						IgG 溶液	稀释十倍 的血清
	0	1	2	3	4	5	6	7
蛋白质含量/mg	0	1.0	2.0	3.0	4.0	5.0	_	_
A540nm (1)	0.086	0.188	0.288	0.39	0.48	0.562	0.319	0.312
$A^{540\mathrm{nm}}$ (2)	0.086	0.188	0.293	0.401	0.481	0.578	0.33	0.31
A540nm 平均值	0.086	0.188	0.2905	0.3955	0.4805	0.57	0.3245	0.311

2. 绘制标准曲线

由于编号3的试管平行性较差,舍去该点,绘制标准曲线如下图:

3. 计算血清和 IgG 溶液的蛋白质浓度:

血清蛋白浓度: 0.5mL 稀释 10 倍血清中的蛋白质含量为: $\frac{0.311-0.0907}{0.0968} = 2.2758$ mg

血清蛋白浓度为: $\frac{2.2758}{0.5} \times 10 = 45.516$ mg/mL

IgG 溶液的蛋白质浓度: 0.2mL IgG 溶液中的蛋白质含量为: $\frac{0.3245-0.0907}{0.0968}$ =2.4153mg

IgG 溶液的蛋白质浓度为: $\frac{2.4153}{0.5}$ =4.8306mg/mL

4. 计算实验所用血清的总蛋白质量和获得的 IgG 样品总质量:

血清总蛋白: 45.516*5=227.58mg lgG 总质量: 4.8306*5=24.153mg

【讨论题目】

过多

- 1. 若将称取的硫酸铵粉末一次性倒入样品溶液中,这种操作会对实验造成什么影响? 局部基析,1大量 面B。 局部高減度(MH4),504导致局部监析,使得大量百蛋白沉淀,使所得1gG粗制品所含压蛋白
- 2. 两次离心后保留部分上清澈的意义是什么? 【新闻样品法便后他分【析 (本get 目标并物时方便分析) 未获得目标样品时可以通过分析上清得知 损失发生在哪一步骤
- 1. 试分析可能造成标准曲线线性差的原因。 ①操作错误:如移液器使用码,液体体机加铝.漏加减剂等 ②双缩脉试剂反应时间~同
- 2. 请分析设置平行样品的必要性。 两个平行样品 取平均值 呱 降低 随机误差 并且在一个样品失误后,可以夸张,选择另一个选择另一个样品的测定值
- 3. 测定血清蛋白质浓度为何先对样品进行稀释?若未提供稀释比例,如何设计实验方案? ①原因:样品所含蛋白质浓度较高,超出标准曲片范围,若不稀释,将无法测出血清蛋质浓度
- ②读:梯度稀释 重复 新释话、写信、印信等、每级彩门次,测定超吸光值,选择落在曲柱中配点,计算蛋白质浓度 115
- 1.什么是盐析作用? 同蛋白饭溶液中加入高浓度中性监如land,SO4.Macl等,可以使蛋白质去水化层,溶解度下降 从溶液中沉淀析出
- 2. 双缩脲法测定蛋白质溶液浓度的原理是什么?溶 肽键 传钩与双缩服 结构类似,症状碱性凝液中与Cu^{1†}(站, 生或复杂的紫胶色络)物

【应用与拓展】

1. 什么是光吸收? 什么是吸收光谱?

老成长: 光通过排料时,与材料发生相至作用, 电磁辐射能量被部分地 变化为其他能量形式 a 物理过程

收收先落:物质吸收先子,从低能级跃迁到高能级而产的为资

2. 紫外吸收法测定蛋白质含量的原理是什么? R蛋白医中的等考查或 aa Tyr. Tip. Phe 在 280m 左右存最大吸収場 时大勢なPr中芳香族aa余量差別以,故可以通过测量 ag 在280m处の 吸洗度来 現算かの含量