# **Problem Set 7**

## D. Zack Garza

October 26, 2019

## **Contents**

| 1 | Regular Problems |          |         |       |            |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |      |  |   |
|---|------------------|----------|---------|-------|------------|--|--|--|--|--|--|--|--|--|---|--|--|--|--|--|------|--|---|
|   | 1.1              | Proble   | m 1     |       |            |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  | <br> |  | 1 |
|   |                  | 1.1.1    | Case 1: | p = q | Į          |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  | <br> |  | 2 |
|   |                  | 1.1.2    | Case 2: | p > q | Į          |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |      |  | 2 |
|   |                  | 1.1.3    | Case 3: | q > p | ) <b>.</b> |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  | <br> |  | 2 |
|   | 1.2              | Proble   | m 2     |       |            |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |      |  | 2 |
| 2 | 0                | I Proble |         |       |            |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |      |  | 2 |
|   |                  |          |         |       |            |  |  |  |  |  |  |  |  |  |   |  |  |  |  |  |      |  |   |

## 1 Regular Problems

## 1.1 Problem 1

Note that if either p=1 or q=1, G is a p-group, which is a nontrivial center that is always normal. So assume  $p \neq 1$  and  $q \neq 1$ .

We want to show that G has a non-trivial normal subgroup. Noting that  $\#G = p^2q$ , we will proceed by showing that either  $n_p$  or  $n_q$  must be 1.

We immediately note that

$$n_p \equiv 1 \mod p$$
 
$$n_q \equiv 1 \mod q$$
 
$$n_p \mid q \qquad \qquad n_q \mid p^2,$$

which forces

$$n_p \in \{1, q\}, \quad n_1 \in \{1, p, p^2\}.$$

If either  $n_p = 1$  or  $n_q = 1$ , we are done, so suppose  $n_p \neq 1$  and  $n_1 \neq 1$ . This forces  $n_p = q$ , and we proceed by cases:

#### **1.1.1** Case 1: p = q.

Then  $\#G = p^3$  and G is a p-group. But every p-group has a non-trivial center  $Z(G) \leq G$ , and the center is always a normal subgroup.

#### **1.1.2** Case 2: p > q.

Here, since  $n_p \mid q$ , we must have  $n_p < q$ . But if  $n_p < q < p$  and  $n_p = 1 \mod p$ , then  $n_p = 1$ .

#### **1.1.3** Case 3: q > p.

Since  $n_p \neq 1$  by assumption, we must have  $n_p = q$ . Now consider sub-cases for  $n_q$ :

- $n_q = p$ : If  $n_q = p = 1 \mod q$  and p < q, this forces p = 1.
- $n_q = p^2$ : We will reach a contradiction by showing that this forces

$$\left| P := \bigcup_{S_p \in \operatorname{Syl}(p,G)} S_p \setminus \{e\} \right| + \left| Q := \bigcup_{S_q \in \operatorname{Syl}(q,G)} S_q \setminus \{e\} \right| + |\{e\}| > |G|.$$

We have

$$\begin{aligned} |P| + |Q| + |\{e\}| &= n_p(q-1) + n_q(p^2 - 1) + 1 \\ &= p^2(q-1) + q(p^2 - 1) + 1 \\ &= p^2(q-1) + 1(p^2 - 1) + (q-1)(p^2 - 1) + 1 \\ &= (p^2q - p^2) + (p^2 - 1) + (q-1)(p^2 - 1) + 1 \\ &= p^2q + (q-1)(p^2 - 1) \\ &\geq p^2q + (2-1)(2^2 - 1) \qquad \text{(since } p, q \ge 2) \\ &= p^2q + 3 \\ &> p^2q = |G|, \end{aligned}$$

which is a contradiction.  $\Box$ 

#### 1.2 Problem 2

We'll use the fact that  $H \leq N(H)$  for any subgroup H (following directly from the closure axioms for a subgroup), and thus

$$P \leq N(P)$$
 and  $N(P) \leq N^2(P)$ .

Since it is then clear that  $N(P) \subseteq N^2(P)$ , it remains to show that  $N^2(P) \subseteq N(P)$ .

So if we let  $x \in N^2(P)$ , so x normalizes N(P), we need to show that x normalizes P as well, i.e.  $xPx^{-1} = P$ .

## 2 Qual Problems