# $11a_{40} (K11a_{40})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$I_1^u = \langle -u^{45} - u^{44} + \dots + b + u, -u^{45} - u^{44} + \dots + a + 1, u^{46} + 2u^{45} + \dots - u + 1 \rangle$$
  
 $I_2^u = \langle b + 1, a + 2, u^2 + u - 1 \rangle$ 

\* 2 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 48 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{45} - u^{44} + \dots + b + u, \ -u^{45} - u^{44} + \dots + a + 1, \ u^{46} + 2u^{45} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u\\-u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{45} + u^{44} + \dots - 3u - 1\\u^{45} + u^{44} + \dots - 2u^{2} - u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1\\-u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2u^{45} + 2u^{44} + \dots - 6u^{3} - 3u\\u^{45} + u^{44} + \dots - 2u^{2} - 2u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{5} - 2u^{3} - u\\u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u\\u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{7} - 4u^{5} + 4u^{3}\\u^{9} - 5u^{7} + 7u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{38} + 21u^{36} + \dots - 2u - 1\\u^{45} + u^{44} + \dots - 3u^{2} - u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{38} + 21u^{36} + \dots - 2u - 1\\u^{45} + u^{44} + \dots - 3u^{2} - u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $4u^{45} + u^{44} + \cdots + 8u 1$

#### (iv) u-Polynomials at the component

| Crossings                | u-Polynomials at each crossing           |
|--------------------------|------------------------------------------|
| $c_1, c_4$               | $u^{46} - 3u^{45} + \dots - 4u + 1$      |
| $c_2$                    | $u^{46} + 25u^{45} + \dots + 4u + 1$     |
| $c_3, c_7$               | $u^{46} + u^{45} + \dots + 8u + 4$       |
| $c_5, c_6, c_9$ $c_{10}$ | $u^{46} + 2u^{45} + \dots - u + 1$       |
| c <sub>8</sub>           | $u^{46} - 15u^{45} + \dots - 232u + 16$  |
| $c_{11}$                 | $u^{46} - 14u^{45} + \dots - 885u + 207$ |

#### (v) Riley Polynomials at the component

| Crossings                | Riley Polynomials at each crossing            |
|--------------------------|-----------------------------------------------|
| $c_1, c_4$               | $y^{46} - 25y^{45} + \dots - 4y + 1$          |
| $c_2$                    | $y^{46} - 5y^{45} + \dots - 44y + 1$          |
| $c_{3}, c_{7}$           | $y^{46} - 15y^{45} + \dots - 232y + 16$       |
| $c_5, c_6, c_9$ $c_{10}$ | $y^{46} - 54y^{45} + \dots - 9y + 1$          |
| <i>C</i> <sub>8</sub>    | $y^{46} + 29y^{45} + \dots - 9760y + 256$     |
| $c_{11}$                 | $y^{46} - 18y^{45} + \dots - 704565y + 42849$ |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = -0.869521 + 0.344145I |                                       |                      |
| a = 1.50416 + 0.73434I    | -4.45409 - 3.41461I                   | -10.48322 + 2.63232I |
| b = 1.129120 + 0.456816I  |                                       |                      |
| u = -0.869521 - 0.344145I |                                       |                      |
| a = 1.50416 - 0.73434I    | -4.45409 + 3.41461I                   | -10.48322 - 2.63232I |
| b = 1.129120 - 0.456816I  |                                       |                      |
| u = 0.755545 + 0.498860I  |                                       |                      |
| a = 1.99178 - 1.61778I    | -3.31037 - 10.45050I                  | -8.69927 + 9.35917I  |
| b = 1.180690 + 0.538180I  |                                       |                      |
| u = 0.755545 - 0.498860I  |                                       |                      |
| a = 1.99178 + 1.61778I    | -3.31037 + 10.45050I                  | -8.69927 - 9.35917I  |
| b = 1.180690 - 0.538180I  |                                       |                      |
| u = 0.711638 + 0.469005I  |                                       |                      |
| a = -0.763674 - 0.318200I | -0.41848 - 5.45501I                   | -5.35190 + 6.48052I  |
| b = 0.203438 - 0.815815I  |                                       |                      |
| u = 0.711638 - 0.469005I  |                                       |                      |
| a = -0.763674 + 0.318200I | -0.41848 + 5.45501I                   | -5.35190 - 6.48052I  |
| b = 0.203438 + 0.815815I  |                                       |                      |
| u = -0.735390 + 0.424801I |                                       |                      |
| a = -2.02595 - 2.04160I   | -4.51433 + 4.40744I                   | -10.64051 - 5.57891I |
| b = -1.135150 + 0.447303I |                                       |                      |
| u = -0.735390 - 0.424801I |                                       |                      |
| a = -2.02595 + 2.04160I   | -4.51433 - 4.40744I                   | -10.64051 + 5.57891I |
| b = -1.135150 - 0.447303I |                                       |                      |
| u = 0.745322 + 0.383218I  |                                       |                      |
| a = -1.65094 + 0.77106I   | -4.79298 - 1.73712I                   | -11.07336 + 4.61384I |
| b = -1.213930 + 0.324837I |                                       |                      |
| u = 0.745322 - 0.383218I  |                                       |                      |
| a = -1.65094 - 0.77106I   | -4.79298 + 1.73712I                   | -11.07336 - 4.61384I |
| b = -1.213930 - 0.324837I |                                       |                      |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape            |
|---------------------------|---------------------------------------|-----------------------|
| u = -0.789174             |                                       |                       |
| a = 1.29622               | -1.45882                              | -5.44130              |
| b = 0.519026              |                                       |                       |
| u = -0.727976 + 0.286689I |                                       |                       |
| a = 0.947922 - 0.230896I  | -1.56660 + 0.49532I                   | -7.68115 - 1.36018I   |
| b = -0.010899 - 0.557387I |                                       |                       |
| u = -0.727976 - 0.286689I |                                       |                       |
| a = 0.947922 + 0.230896I  | -1.56660 - 0.49532I                   | -7.68115 + 1.36018I   |
| b = -0.010899 + 0.557387I |                                       |                       |
| u = 0.508676 + 0.507354I  |                                       |                       |
| a = 0.77267 - 1.48119I    | 2.79032 - 4.13635I                    | -1.98154 + 7.56914I   |
| b = 0.827592 + 0.600489I  |                                       |                       |
| u = 0.508676 - 0.507354I  |                                       |                       |
| a = 0.77267 + 1.48119I    | 2.79032 + 4.13635I                    | -1.98154 - 7.56914I   |
| b = 0.827592 - 0.600489I  |                                       |                       |
| u = 0.393201 + 0.514206I  |                                       |                       |
| a = -0.490341 + 0.227249I | 3.12084 + 0.58749I                    | -0.262566 + 0.327262I |
| b = 0.712026 - 0.604892I  |                                       |                       |
| u = 0.393201 - 0.514206I  |                                       |                       |
| a = -0.490341 - 0.227249I | 3.12084 - 0.58749I                    | -0.262566 - 0.327262I |
| b = 0.712026 + 0.604892I  |                                       |                       |
| u = 0.109343 + 0.629269I  |                                       |                       |
| a = 0.371133 + 0.758125I  | -1.40155 + 6.64307I                   | -5.04471 - 5.15805I   |
| b = 1.143360 - 0.519855I  |                                       |                       |
| u = 0.109343 - 0.629269I  |                                       |                       |
| a = 0.371133 - 0.758125I  | -1.40155 - 6.64307I                   | -5.04471 + 5.15805I   |
| b = 1.143360 + 0.519855I  |                                       |                       |
| u = 0.147821 + 0.548345I  |                                       |                       |
| a = 0.106291 - 0.656538I  | 1.22062 + 1.95597I                    | -0.98131 - 1.36818I   |
| b = 0.241472 + 0.712682I  |                                       |                       |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.147821 - 0.548345I  |                                       |                     |
| a = 0.106291 + 0.656538I  | 1.22062 - 1.95597I                    | -0.98131 + 1.36818I |
| b = 0.241472 - 0.712682I  |                                       |                     |
| u = -1.48057 + 0.06828I   |                                       |                     |
| a = 0.242649 + 0.138771I  | -2.87293 + 1.27541I                   | 0                   |
| b = 0.572969 + 0.701430I  |                                       |                     |
| u = -1.48057 - 0.06828I   |                                       |                     |
| a = 0.242649 - 0.138771I  | -2.87293 - 1.27541I                   | 0                   |
| b = 0.572969 - 0.701430I  |                                       |                     |
| u = -0.045501 + 0.511745I |                                       |                     |
| a = -0.354500 + 1.284150I | -2.55505 - 1.20262I                   | -6.54006 + 0.40776I |
| b = -1.113980 - 0.361295I |                                       |                     |
| u = -0.045501 - 0.511745I |                                       |                     |
| a = -0.354500 - 1.284150I | -2.55505 + 1.20262I                   | -6.54006 - 0.40776I |
| b = -1.113980 + 0.361295I |                                       |                     |
| u = -0.410393 + 0.283942I |                                       |                     |
| a = 0.89569 - 1.72849I    | -0.893062 + 1.082040I                 | -6.48995 - 6.28251I |
| b = -0.678138 + 0.225871I |                                       |                     |
| u = -0.410393 - 0.283942I |                                       |                     |
| a = 0.89569 + 1.72849I    | -0.893062 - 1.082040I                 | -6.48995 + 6.28251I |
| b = -0.678138 - 0.225871I |                                       |                     |
| u = -1.51614 + 0.11587I   |                                       |                     |
| a = 1.35148 + 0.70752I    | -3.88727 + 6.30351I                   | 0                   |
| b = 0.929112 - 0.623725I  |                                       |                     |
| u = -1.51614 - 0.11587I   |                                       |                     |
| a = 1.35148 - 0.70752I    | -3.88727 - 6.30351I                   | 0                   |
| b = 0.929112 + 0.623725I  |                                       |                     |
| u = 1.53678 + 0.03338I    |                                       |                     |
| a = -0.343145 + 1.028020I | -7.50480 - 1.94811I                   | 0                   |
| b = -0.766719 - 0.461059I |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = 1.53678 - 0.03338I    |                                       |            |
| a = -0.343145 - 1.028020I | -7.50480 + 1.94811I                   | 0          |
| b = -0.766719 + 0.461059I |                                       |            |
| u = -1.55032              |                                       |            |
| a = -2.37917              | -8.97468                              | 0          |
| b = -1.24159              |                                       |            |
| u = 0.401298              |                                       |            |
| a = -2.88943              | -2.16597                              | 1.80760    |
| b = -1.09496              |                                       |            |
| u = 1.61177 + 0.09154I    |                                       |            |
| a = 0.560766 + 0.507385I  | -9.57946 - 1.98178I                   | 0          |
| b = -0.121683 + 0.704360I |                                       |            |
| u = 1.61177 - 0.09154I    |                                       |            |
| a = 0.560766 - 0.507385I  | -9.57946 + 1.98178I                   | 0          |
| b = -0.121683 - 0.704360I |                                       |            |
| u = -1.61019 + 0.13498I   |                                       |            |
| a = -0.394457 + 0.716202I | -8.32029 + 7.70926I                   | 0          |
| b = 0.178478 + 0.876402I  |                                       |            |
| u = -1.61019 - 0.13498I   |                                       |            |
| a = -0.394457 - 0.716202I | -8.32029 - 7.70926I                   | 0          |
| b = 0.178478 - 0.876402I  |                                       |            |
| u = 1.61725 + 0.12164I    |                                       |            |
| a = -2.39412 + 1.22565I   | -12.55170 - 6.46011I                  | 0          |
| b = -1.163660 - 0.487582I |                                       |            |
| u = 1.61725 - 0.12164I    |                                       |            |
| a = -2.39412 - 1.22565I   | -12.55170 + 6.46011I                  | 0          |
| b = -1.163660 + 0.487582I |                                       |            |
| u = -1.61885 + 0.11009I   |                                       |            |
| a = -2.28924 - 0.54856I   | -12.88440 + 3.59966I                  | 0          |
| b = -1.267550 - 0.341014I |                                       |            |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = -1.61885 - 0.11009I   |                                       |            |
| a = -2.28924 + 0.54856I   | -12.88440 - 3.59966I                  | 0          |
| b = -1.267550 + 0.341014I |                                       |            |
| u = -1.62455 + 0.14574I   |                                       |            |
| a = 2.45895 + 0.92240I    | -11.4148 + 12.8867I                   | 0          |
| b = 1.209800 - 0.545440I  |                                       |            |
| u = -1.62455 - 0.14574I   |                                       |            |
| a = 2.45895 - 0.92240I    | -11.4148 - 12.8867I                   | 0          |
| b = 1.209800 + 0.545440I  |                                       |            |
| u = 1.64237               |                                       |            |
| a = 1.72270               | -9.96538                              | 0          |
| b = 0.784410              |                                       |            |
| u = 1.64966 + 0.08726I    |                                       |            |
| a = 2.12772 - 0.58397I    | -13.13770 + 1.79965I                  | 0          |
| b = 1.160220 - 0.405425I  |                                       |            |
| u = 1.64966 - 0.08726I    |                                       |            |
| a = 2.12772 + 0.58397I    | -13.13770 - 1.79965I                  | 0          |
| b = 1.160220 + 0.405425I  |                                       |            |

II. 
$$I_2^u = \langle b+1, \ a+2, \ u^2+u-1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u+1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -17

#### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing |
|-----------------------|--------------------------------|
| $c_1$                 | $(u-1)^2$                      |
| $c_2, c_4$            | $(u+1)^2$                      |
| $c_3, c_7, c_8$       | $u^2$                          |
| $c_5, c_6$            | $u^2 + u - 1$                  |
| $c_9, c_{10}, c_{11}$ | $u^2 - u - 1$                  |

## (v) Riley Polynomials at the component

| Crossings                        | Riley Polynomials at each crossing |
|----------------------------------|------------------------------------|
| $c_1, c_2, c_4$                  | $(y-1)^2$                          |
| $c_3, c_7, c_8$                  | $y^2$                              |
| $c_5, c_6, c_9$ $c_{10}, c_{11}$ | $y^2 - 3y + 1$                     |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$ | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|----------------------|---------------------------------------|------------|
| u = 0.618034         |                                       |            |
| a = -2.00000         | -2.63189                              | -17.0000   |
| b = -1.00000         |                                       |            |
| u = -1.61803         |                                       |            |
| a = -2.00000         | -10.5276                              | -17.0000   |
| b = -1.00000         |                                       |            |

III. u-Polynomials

| Crossings      | u-Polynomials at each crossing                          |
|----------------|---------------------------------------------------------|
| $c_1$          | $((u-1)^2)(u^{46}-3u^{45}+\cdots-4u+1)$                 |
| $c_2$          | $((u+1)^2)(u^{46} + 25u^{45} + \dots + 4u + 1)$         |
| $c_3, c_7$     | $u^2(u^{46} + u^{45} + \dots + 8u + 4)$                 |
| $c_4$          | $((u+1)^2)(u^{46} - 3u^{45} + \dots - 4u + 1)$          |
| $c_5, c_6$     | $(u^2 + u - 1)(u^{46} + 2u^{45} + \dots - u + 1)$       |
| c <sub>8</sub> | $u^2(u^{46} - 15u^{45} + \dots - 232u + 16)$            |
| $c_9, c_{10}$  | $(u^2 - u - 1)(u^{46} + 2u^{45} + \dots - u + 1)$       |
| $c_{11}$       | $(u^2 - u - 1)(u^{46} - 14u^{45} + \dots - 885u + 207)$ |

IV. Riley Polynomials

| Crossings                | Riley Polynomials at each crossing                            |
|--------------------------|---------------------------------------------------------------|
| $c_1, c_4$               | $((y-1)^2)(y^{46}-25y^{45}+\cdots-4y+1)$                      |
| $c_2$                    | $((y-1)^2)(y^{46} - 5y^{45} + \dots - 44y + 1)$               |
| $c_3, c_7$               | $y^2(y^{46} - 15y^{45} + \dots - 232y + 16)$                  |
| $c_5, c_6, c_9$ $c_{10}$ | $(y^2 - 3y + 1)(y^{46} - 54y^{45} + \dots - 9y + 1)$          |
| c <sub>8</sub>           | $y^2(y^{46} + 29y^{45} + \dots - 9760y + 256)$                |
| $c_{11}$                 | $(y^2 - 3y + 1)(y^{46} - 18y^{45} + \dots - 704565y + 42849)$ |