ERRATA ET ADDENDA

(Liste 2)

A) Erreurs typographiques

- (0₁, 3.2.1) Ligne 2 de la p. 27, remplacer X par U.
- $(0_1, 3.2.6)$ Ligne 1 du bas de la p. 27 et ligne 1 de la p. 28, remplacer (3 fois) \mathfrak{H}_{λ} par \mathscr{H}_{λ} .
 - (01, 3.4.5) Ajouter une parenthèse devant 3.4.5).
 - $(\mathbf{0}_{1}, \mathbf{4.2.1})$ Ligne 10 de la p. 39, remplacer $\psi_{\bullet}(A)$ par $\psi_{\bullet}(\mathscr{A})$.
 - $(0_1, 5.1.3)$ Ligne 16 de la p. 45, remplacer $\mathcal{F}|V$ par $\mathcal{F}|U$.
- $(0_1, 5.3.9)$ Ligne 12 de la p. 48, avant « telle que », ajouter : au-dessus d'un voisinage ouvert U de x.
 - $(\mathbf{0}_{\mathrm{I}}, \mathbf{7.6.9})$ Ligne 3 du bas de la p. 73, remplacer J_{λ} par \mathfrak{J}_{λ} .
 - (I, 1.1.15) Ligne 3 de la p. 83, remplacer \mathfrak{a} par $\mathfrak{a} \neq A$.
 - (I, 1.4.1) Ligne 2 du bas de la p. 90, remplacer \widetilde{N} par N.
 - (I, 2.3.1) Ligne 3 de la p. 101, remplacer (0, 4.1.6) par (0, 4.1.7).
 - (I, 2.3.2) Ligne 11 de la p. 101, remplacer B par B_s et C par C_t .
 - (I, 2.5.5) Ligne 19 de la p. 104, remplacer S-morphisme par S-préschéma.
 - (I, 3.3.7) Ligne 17 de la p. 109, remplacer $Y_{(S)}$ par $Y_{(S')}$.
 - (I, 3.4.5) Ligne 9 de la p. 113, remplacer s par s.
 - (I, 3.4.8) Ligne 4 de la p. 114, remplacer p(x) par f(x).
 - (I, 3.5.1) Ligne 3 de la p. 115, remplacer $I_X \times g$ par $I_{X'} \times g$.
 - (I, 3.7.2) Ligne 8 de la p. 119, remplacer le premier X par X'.
- (I, 4.2.2) Ligne 8 de la p. 123, dans la flèche verticale de gauche du diagramme, remplacer $\alpha_{\psi(y)}$ par $\rho_{\psi(y)}$.
 - (I, 4.4.3) Ligne 16 de la p. 126, remplacer isomorphee par isomorphes.
 - (I, 4.5.5) Ligne 17 du bas de la p. 127, remplacer (4.2.4) par (4.2.5).
 - (I, 5.1.4) Ligne 14 du bas de la p. 128, remplacer (2.1.7) par (2.1.8).
 - (I, 5.3.13) Ligne 20 de la p. 134, remplacer (4.2.4) par (4.2.5).
- (I, 6.4.2) Ligne 1 du bas de la p. 147, remplacer recouvrement par recouvrement fini.
 - (I, 9.1.13) Ligne 15 de la p. 171, remplacer $p^{-1}(\mathcal{F})$ par $p^*(\mathcal{F})$.
 - (I, 9.5.11) Ligne 7 de la p. 179, remplacer Y par Y'.
 - (I, 9.6.5) Ligne 17 du bas de la p. 180, remplacer (0, 4.1.4) par (0, 4.1.3).
 - (I, 10.12.2) Ligne 14 du bas de la p. 206, remplacer $(X_n)_{(S_n)}$ par $(X_n)_{(S_m)}$.

- (I), Index terminologique: Ligne 6 du bas de la p. 219, remplacer 0, 4.1.4 par 0, 4.1.5. Lignes 16, 17, 18 du bas de la p. 222, remplacer I, 2.1.7 par I, 2.1.8; ligne 19 du bas de la p. 222, remplacer I, 2.1.8 par I, 2.1.7.
- (II, 1.5.2) Ligne 17 de la p. 12, insérer un f à côté de la flèche verticale de gauche du diagramme.
 - (II, 4.2.7) Ligne 16 du bas de la p. 75, remplacer (III, 2.1.14) par (III, 2.1.13).
- (II, 5.2.1) Ligne 16 du bas de la p. 97, remplacer X-U par U. Ligne 8 du bas de la p. 97, remplacer X^{i} par X_{i} .
 - (II, 5.3.6) Ligne 16 de la p. 100, remplacer (4.6.18) par (4.6.17).
 - (II, 6.2.7) Ligne 9 du bas de la p. 116, remplacer chap. V par chap. IV.
 - (II, 6.6.5) Ligne 15 du bas de la p. 132, remplacer chap. V par chap. IV.
 - (II, 7.4.12) Ligne 1 de la p. 151, remplacer chap. V par chap. III.
 - (II, 8.1.4) Ligne 15 de la p. 154, remplacer (III, 2.3.8) par (III, 2.3.7).
 - (II, 8.10.5) Ligne 17 du bas de la p. 187, remplacer $g_{(i)x}$ par $g_{i(x)}$.
- $(0_{III}, 10.2.7)$ Ligne I de la p. 20, remplacer u-adique par n-adique. Ligne 13 du bas de la p. 20, remplacer k par k_i .
 - $(\mathbf{0}_{\mathrm{III}},\,\mathbf{11.1.1})$ Ligne 18 de la p. 23, remplacer $\mathrm{Im}(d_r^{p+r,\,q-r+1})$ par $\mathrm{Im}(d_r^{p-r,\,q+r-1})$.
 - (0_{III} , 11.8.6) Ligne 14 du bas de la p. 45, remplacer les flèches \rightarrow par \rightarrow (4 fois).
 - $(0_{III}, 12.3.4)$ Ligne 4 de la p. 61, remplacer \cong par \rightarrow .
 - $(0_{III}, 13.2.4)$ Ligne 2 du bas de la p. 67, remplacer $\lim_{n \to \infty} par \lim_{n \to \infty} (2 \text{ fois})$.
 - (III, 1.1.7) Ligne 15 de la p. 85, remplacer A^r par $\wedge (A^r)$ (2 fois).
- (III, 1.2.4) Ligne 7 de la p. 87, remplacer $\Gamma(U, \mathscr{F})$ par $\Gamma(U, \mathscr{O}_X)$ et remplacer \mathscr{G} par \mathscr{F} . Ligne 8 de la p. 87, remplacer $H^p(\mathfrak{U}, \mathscr{G})$ par $H^p(\mathfrak{U}, \mathscr{F})$.
- (III, 2.5.3.1) Ligne 3 de la p. 111, remplacer n>0 par $n\geqslant 0$. Ligne 8 de la p. 111, remplacer $-r\leqslant n\leqslant 0$ par $-r\leqslant n\leqslant 0$.
 - (III, 3.1.2) Ligne 13 de la p. 116, remplacer \mathscr{G} par $\mathscr{G} \in K'$.
- (III, 4.3.6) Ligne 7 de la p. 133, remplacer $K' = K \otimes_A \hat{A}$ par $K' \supset K \otimes_A \hat{A}$. Ligne 16 de la p. 133, remplacer R(X) par R(Y).
 - (III, 4.4.12) Ligne 10 de la p. 138, remplacer chap. V par chap. IV.
- (III, 4.6.6) Ligne 19 de la p. 142, remplacer « chap. V » par « dans un paragraphe ultérieur ».

B) Modifications de texte (1)

- (**Err**_{III}, 1) Dans ($\mathbf{0}_1$, 5.1.3), ligne 18 de la p. 45, remplacer « somme directe » par « somme directe finie ».
- (Err_{III}, 2) Dans (0_I, 5.4.3), lignes 8 à 4 du bas de la p. 49, remplacer depuis « Dans le cas général... » par le texte suivant :

Dans le cas général où X est un espace annelé tel que \mathcal{O}_x soit un anneau local pour

⁽¹) Pour faciliter la recherche des références, les modifications appartenant à la liste d'errata insérée dans le chapitre N seront désormais désignées par **Err**_N suivi d'un numéro.

tout $x \in X$, si \mathscr{L} est un \mathscr{O}_X -Module de type fini tel qu'il existe un \mathscr{O}_X -Module \mathscr{F} pour lequel $\mathscr{L} \otimes_{\mathscr{O}_X} \mathscr{F}$ soit isomorphe à \mathscr{O}_X , le raisonnement précédent montre que pour tout $x \in X$, \mathscr{L}_x est isomorphe à \mathscr{O}_x . On en déduit que \mathscr{L} est alors inversible. En effet, pour tout $x \in X$, soient U un voisinage ouvert de x tel que $\mathscr{L} \mid U$ soit engendré par n sections s_i ($1 \le i \le n$) au-dessus de U (5.2.1). On peut supposer par exemple que $s = s_1$ est telle que $s_x \ne o$, et comme \mathscr{L}_x est isomorphe à \mathscr{O}_x , il existe pour chaque i une section t_i de \mathscr{O}_X au-dessus d'un voisinage ouvert $V_i \subset U$ de x telle que $(t_i)_x s_x = (s_i)_x$.

Il y a par suite un voisinage ouvert $V \subset \bigcap_{i=1}^{n} V_i$ de x tel que $t_i s = s_i$ dans V, autrement dit $\mathcal{L}|V$ est engendré par l'unique section s|V. En outre, si z est une section au-dessus d'un ouvert $W \subset V$ du noyau de l'homomorphisme $\mathcal{O}_X | V \to \mathcal{L}|V$ defini par s (5.1.1), z_y annule \mathcal{L}_y pour tout $y \in W$, donc $z_y = 0$ par hypothèse et par suite z = 0, ce qui achève de prouver notre assertion. De plus, la considération du produit tensoriel $\mathcal{L}^{-1} \otimes \mathcal{L} \otimes \mathcal{F}$ montre aussitôt que \mathcal{F} est isomorphe à \mathcal{L}^{-1} .

(**Err**_{III}, 3) Dans ($\mathbf{0}_1$, 7.2.4), il faut imposer la condition que les puissances \mathfrak{J}^n sont des idéaux fermés dans l'anneau admissible A pour que la proposition soit exacte. La démonstration donnée est incorrecte, et l'énoncé rectifié résulte de Bourbaki, Top. gén., chap. III, 3° éd., \S 3, n° 5, cor. 1 de la prop. 9. Il faut de même supposer les \mathfrak{J}^n fermés dans A dans les énoncés ($\mathbf{0}_1$, 7.2.5) et ($\mathbf{0}_1$, 7.2.6).

(**Err**_{III}, 4) Après la proposition (**I**, 2.2.5), ajouter : avec les notations de (**I**, 2.2.5), si \mathfrak{J} est un idéal de A, on note \mathfrak{JF} le sous- \mathcal{O}_{X} -Module \mathfrak{JF} défini dans (**0**, 4.3.5).

(Err_{III}, 5) Dans (I, 3.4.5), ligne I du bas de la p. 112, remplacer « un corps K » par « un corps algébriquement clos K ». Ligne I de la p. 113, remplacer « extension » par « extension algébriquement close ». Lignes I à 4 de la p. 113, remplacer depuis « K sera appelé... » par le texte suivant :

Pour tout point de X à valeurs dans un corps K, K sera appelé le corps des valeurs du point correspondant, et si x est la localité de ce point on dit encore que ce dernier est localisé en x. On définit ainsi une application $X(K) \rightarrow X$, faisant correspondre à un point à valeurs dans K sa localité.

Lignes 7 et 16 de la p. 113, supprimer « géométrique »; lignes 10 et 13 de la p. 113, supprimer « géométriques ». Lignes 10 et 11 du bas de la p. 115, supprimer « géométrique ».

(Err_{III}, 6) A la fin de la démonstration de (I, 3.6.1), ligne 12 du bas de la p. 117, ajouter: Si l'on pose $X' = X \times_Y \operatorname{Spec}(\mathcal{O}_y/\mathfrak{q}_y)$, alors, pour tout point $x \in X'$, identifié par p à un point de X, on a $\mathcal{O}_{X',x} = \mathcal{O}_{X,x}/\mathfrak{q}_y \mathcal{O}_{X,x}$. La question étant en effet locale sur X et Y, on peut supposer que $X = \operatorname{Spec}(B)$, $Y = \operatorname{Spec}(A)$, et l'on a $(B/\mathfrak{q}_y B)_x = B_x/\mathfrak{q}_y B_x$ par platitude (0, 1.3.2).

(**Err**_{III}, 7) Dans (**I**, 5.1.1), ligne 3 du bas de la p. 127, remplacer « \mathcal{O}_X -Module quasi-cohérent » par « Idéal quasi-cohérent de \mathscr{B} ».

(Err_{III}, 8) Après (I, 5.1.10), ligne 16 de la p. 131, ajouter :

Remarque (5.1.11). — Une légère adaptation du raisonnement fait dans (5.1.9) montre que la conclusion reste valable sans supposer a priori que X soit un préschéma, mais

en supposant seulement que (X, \mathcal{O}_X) soit un espace annelé en anneaux locaux, \mathcal{J} un Idéal de \mathcal{O}_X tel que $\mathcal{J}^n = 0$, que l'espace annelé $X_0 = (X, \mathcal{O}_X/\mathcal{J})$ soit un schéma affine et enfin que les Idéaux $\mathcal{J}^k/\mathcal{J}^{k+1}$ soient des \mathcal{O}_{X_0} -Modules quasi-cohérents. Il suffit en effet d'utiliser (1.8.1) (cf. (**Err**_{II})) au lieu de (2.2.4) dans le raisonnement.

(**Err**_{III}, **9**) Dans (**I**, 5.3.1), ligne 11 de la p. 132, insérer, après « ou Δ_X », « ou Δ_{ϕ} si $\phi: X \rightarrow S$ est le morphisme structural ».

(**Err**_{III}, **10**) Dans (**I**, 5.3.9), la démonstration est insuffisante, car elle ne prouve pas que $\Delta_X(X)$ soit localement fermé dans $X \times_S X$. Pour avoir une démonstration correcte, il suffit d'utiliser (4.2.4, a)): pour tout $x \in X$ et tout voisinage affine U de x dans X, $U \times_S U$ est un voisinage affine de $\Delta_X(x)$; compte tenu de (5.3.16) (dont la démonstration n'utilise que la définition (5.3.1.1)), on est ramené à démontrer (5.3.9) lorsque $S = \operatorname{Spec}(B)$ et $X = \operatorname{Spec}(A)$ sont des schémas affines; il est clair alors en vertu de (5.3.1.1) que Δ_X correspond à l'homomorphisme canonique $A \otimes_B A \to A$ qui transforme $x \otimes y$ en xy; cet homomorphisme étant surjectif, Δ_X est dans ce cas une immersion fermée (4.2.3), ce qui achève la démonstration.

(Err_{III}, 11) Dans (I, 7.1.15) et (I, 7.1.16), lignes 7 et 15 du bas de la p. 158, supprimer « géométriques ».

(Err_{III}, 12) Remplacer (I, 7.4.7) par : On étend (par abus de langage) les définitions de (7.4.1) au cas où X est un préschéma réduit dont tout point admet un voisinage ouvert n'ayant qu'un nombre fini de composantes irréductibles; il résulte alors de (7.3.4) et (7.4.6) que, pour un \mathcal{O}_X -Module quasi-cohérent de type fini \mathscr{F} , dire que F est un faisceau de torsion équivaut à dire que $\operatorname{Supp}(\mathscr{F})$ ne contient aucune composante irréductible de X.

(Err_{III}, 13) Dans (I, 10.11.7), lignes 17 à 23 de la p. 205, la fin de la démonstration depuis « Reste à prouver... » est inutile en vertu de (10.11.6), les faisceaux considérés étant cohérents par (0, 5.3.5).

(**Err**_{III}, **14**) Dans (**II**, 1.7.8), après la ligne 10 du bas de la p. 16, ajouter : lorsque $\mathscr{E} = \mathscr{O}_S^n$, on écrit aussi \mathbf{V}_S^n au lieu de $\mathbf{V}(\mathscr{E})$; si en outre $S = \operatorname{Spec}(A)$ est affine, on écrit \mathbf{V}_A^n au lieu de \mathbf{V}_S^n ; on a $\mathbf{V}_A^n = \operatorname{Spec}(A[T_1, \ldots, T_n])$ où les T_i sont des indéterminées.

(Err_{III}, 15) Dans (II, 1.7.10), ligne 10 de la p. 17, supprimer « géométriques »; lignes 12 et 16-17 de la p. 17, supprimer « géométrique ».

(Err_{III}, 16) Dans (II, 1.7.12), ajouter : On pose de même :

$$\mathbf{V}(\mathcal{O}_{\mathbf{S}}^n) = \mathbf{V}_{\mathbf{S}}^n = \mathbf{S}[\mathbf{T}_1, \ldots, \mathbf{T}_n].$$

(Err_{III}, 17) Dans (II, 4.2.6), ligne 7 de la p. 75, supprimer « géométriques »; ligne 8 de la p. 75, supprimer « géométrique ».

(Err_{III}, 18) Dans (II, 4.6.13), ligne 7 de la p. 92, le raisonnement doit être précisé, car avec les notations de (4.4.10), il faut ici prouver que l'immersion Γ_f est quasi-compacte, afin d'appliquer (i bis). En vertu de (4.6.4), pour prouver que $\mathscr L$ est ample relativement à f, on peut se borner au cas où Y est affine. Notons d'autre part que dans chacune des hypothèses de (v), f est quasi-compact (I, 6.6.4). D'autre part, si g est

séparé, Γ_f est une immersion fermée (**I**, 5.4.3) donc quasi-compacte (**I**, 6.6.4). Si au contraire X est localement noethérien, comme Y est affine et f quasi-compact, l'espace sous-jacent à X est quasi-compact, donc noethérien, et on peut de nouveau appliquer (**I**, 6.6.4) pour prouver que Γ_f est quasi-compacte.

(Err_{III}, 19) L'énoncé de (II, 5.2.2) est incorrect, les conditions b), c) et c') n'étant pas locales sur Y lorsqu'on ne sait pas si pour un ouvert U de Y, un $(\mathcal{O}_X|f^{-1}(U))$ -Module quasi-cohérent est restriction à $f^{-1}(U)$ d'un \mathcal{O}_X -Module quasi-cohérent. Il faut donc remplacer dans la ligne 16 de la p. 98 « Soit $f: X \to Y$ un morphisme séparé quasi-compact » par : « Soient X, Y deux préschémas tels que X soit un schéma ou que l'espace sous-jacent à X soit localement noethérien, et soit $f: X \to Y$ un morphisme quasi-compact. » Dans la démonstration, on observera que les hypothèses entraînent que f est séparé lorsqu'on suppose que X est un schéma, en vertu de (I, 5.5.5 et 5.5.8); on peut donc appliquer (I, 9.2.2) dans les deux cas.

(Err_{III}, 20) Dans (II, 6.2.3), ajouter, après la ligne 18 du bas de la p. 115 : On dit qu'un morphisme $f: X \rightarrow Y$ est quasi-fini en un point $x \in X$ s'il existe un voisinage ouvert affine V de y = f(x) et un voisinage ouvert affine V de y = f(x) et un voisinage ouvert affine V de y = f(x) et un voisinage ouvert affine V de y = f(x) et un voisinage ouvert affine V de y = f(x) et un voisinage ouvert affine V de y = f(x) est quasi-fini. On dit qu'un morphisme y = f(x) est localement quasi-fini s'il est quasi-fini en tout point de y = f(x).

(Err_{III}, 21) Dans (II, 6.4.3), la démonstration est incorrecte, les éléments d'un sous-A-module de type fini de K n'étant pas nécessairement entiers sur A. Remplacer les 9 dernières lignes de la p. 121 par le texte suivant : Comme on peut supposer que E est sans torsion, donc fidèle, E est aussi un A[u]-module fidèle (A étant plongé dans l'anneau des endomorphismes de E). Comme E est un A-module de type fini, il en résulte que u est entier sur A (Bourbaki, Alg. comm., chap. V, § 1, n° 1, lemme 1). On en conclut immédiatement que les valeurs propres de $u \otimes 1$ (dans une clôture algébrique de K) sont des éléments entiers sur A, et il en est donc de même des $\sigma_i(u)$.

(Err_{III}, 22) Dans (0_{III}, 9.1.1), ligne 18 du bas de la p. 12, supprimer « ouverte ». (Err_{III}, 23) Dans (0_{III}, 11.7.3), ligne 10 de la p. 43, après C'', ajouter : tel que pour tout objet projectif P de C (resp. tout objet projectif P' de C') le foncteur A'→T(P, A')(resp. A→T(A, P')) soit exact dans C' (resp. C).

(Err_{III}, 24) L'énoncé de ($\mathbf{0}_{III}$, 13.7.7) est inexact, et doit être modifié comme suit : ligne 6 de la p. 78, supprimer « et $(\mathbf{R}^{n+1}\mathbf{T}(\mathbf{A}_k))_{k\in\mathbf{Z}}$ »; ligne 7 de la p. 78, remplacer « $\mathbf{R}'^n\mathbf{T}(\mathbf{A})$ est un S-module de type fini » par « $\mathbf{R}'^n\mathbf{T}(\mathbf{A})$ et $\mathbf{R}'^{n+1}\mathbf{T}(\mathbf{A})$ sont des S-modules de type fini »; lignes 12-13 de la p. 78, supprimer « et p+q=n+1 ». Dans la démonstration, ligne 23 de la p. 78, supprimer « et pour n+1 ».

(Err_{III}, 25) Dans (III, 1.4.15), ligne 6 du bas de la p. 92, remplacer « de type fini » par « quasi-compact ».

(Err_{III}, 26) Dans (III, 2.2.4), ligne 1 de la p. 102, remplacer « que les supports de \mathscr{F} et de \mathscr{H} soient propres sur Y » par « que le support de $\operatorname{Im}(\mathscr{F} \to \mathscr{G})$ soit propre sur Y ». Dans la démonstration, remplacer le texte des lignes 10 à 16, depuis « Cela étant... », par :

Posons $\mathcal{G}_1 = \operatorname{Im}(\mathcal{F} \to \mathcal{G}) = \operatorname{Ker}(\mathcal{G} \to \mathcal{H})$, qui est cohérent. Comme on a la suite exacte $o \to \mathcal{G}_1(n) \to \mathcal{G}(n) \to \mathcal{H}(n)$ et que le foncteur f_* est exact à gauche, la suite $o \to f_*(\mathcal{G}_1(n)) \to f_*(\mathcal{G}(n)) \to f_*(\mathcal{H}(n))$ est exacte pour tout n, et il suffit donc de montrer que, pour n assez grand, la suite $f_*(\mathcal{F}(n)) \to f_*(\mathcal{G}_1(n)) \to o$ est exacte. Autrement dit, on peut se borner au cas où $\mathcal{H} = o$ et où le support de \mathcal{G} est propre sur Y, donc fermé dans Z (\mathbf{II} , 5.4.10); $\mathcal{G}' = i_*(\mathcal{G})$ est par suite un \mathcal{O}_Z -Module cohérent tel que $\mathcal{G}' | X = \mathcal{G}$. On sait (\mathbf{I} , 9.4.3) qu'il existe un \mathcal{O}_Z -Module cohérent \mathcal{F}' tel que $\mathcal{F}' | X = \mathcal{F}$. En outre, comme X est ouvert dans Z et $\operatorname{Supp}(\mathcal{G}) \subset X$ fermé dans Z, il est immédiat que l'on définit un homomorphisme surjectif $u': \mathcal{F}' \to \mathcal{G}'$ de faisceaux tel que u' | X soit l'homomorphisme surjectif donné $u: \mathcal{F} \to \mathcal{G}$, en prenant u' | U = o pour tout ouvert $U \to X$. Cela étant, on voit comme au début de la démonstration de (2.2.2) que l'on peut se borner au cas où Y est affine, et il s'agit donc de montrer que, pour n assez grand, l'homomorphisme $\Gamma(u): \Gamma(X, \mathcal{F}(n)) \to \Gamma(X, \mathcal{G}(n))$ est surjectif. Or, on a le diagramme commutatif

où v et w sont les homomorphismes de restriction. La définition de \mathscr{G}' montre en outre que w est bijectif; par ailleurs, en vertu de (2.2.3), $\Gamma(u')$ est surjectif pour n assez grand, donc il en est de même de $\Gamma(u)$.

(Err_{III}, 27) Dans (III, 2.2.5), après la ligne 7 du bas de la p. 102, ajouter :

- (iii) Sous les hypothèses de (2.2.4) concernant X, Y, f et \mathscr{L} , il est immédiat que si \mathscr{H} est un \mathscr{O}_X -Module cohérent dont le support est propre sur Y, un raisonnement analogue à celui de (2.2.4) montre qu'il existe un entier N tel que pour $n \geqslant N$, on ait $R^if_*(\mathscr{H}(n)) = 0$ pour tout i > 0. On en conclut, par la suite exacte de cohomologie, que si $u : \mathscr{F} \to \mathscr{G}$ est un homomorphisme de \mathscr{O}_X -Modules cohérents tel que $\operatorname{Ker}(u)$ et $\operatorname{Coker}(u)$ aient leurs supports propres sur Y, alors il existe N tel que pour $n \geqslant N$, l'homomorphisme correspondant $R^if_*(\mathscr{F}(n)) \to R^if_*(\mathscr{G}(n))$ soit bijectif pour tout i > 0.
- (Err_{III}, 28) Dans (III, 4.4.9), ligne 17 du bas de la p. 137, remplacer « Soient Y un préschéma intègre localement noethérien» par « Soient X et Y deux préschémas intègres localement noethériens»; ligne 16 du bas de la p. 137, remplacer « de type fini » par « localement de type fini ». La démonstration est essentiellement inchangée, $f^{-1}(y)$ étant localement de type fini sur k(y), donc encore discret.

(Err_{III}, 29) dans (I, 9.3.4), ligne 19 du bas de la p. 173, remplacer « noethérien » par « quasi-compact »; lignes 18 et 19 du bas de la p. 173, remplacer « cohérent » par « quasi-

cohérent de type fini ». Dans la démonstration, on se ramène au cas où $X = \operatorname{Spec}(A)$, $\mathscr{F} = \widetilde{M}$, où M est un A-module de type fini, $\mathscr{J} = \widetilde{\mathfrak{J}}$, où \mathfrak{J} est un idéal de type fini de A; le reste du raisonnement est alors inchangé.

(**Err**_{III}, 30) Dans (I, 9.3.5), remplacer les lignes 1 à 7 du bas de la p. 173 par le texte suivant :

Proposition (9.3.5). — Soient X un préschéma, \mathscr{F} un \mathscr{O}_X -Module quasi-cohérent de type fini. Alors il existe un sous-préschéma fermé Y de X, dont l'espace sous-jacent est égal à $\operatorname{Supp}(\mathscr{F})$, et un \mathscr{O}_X -Module quasi-cohérent de type fini \mathscr{G} tels que, si $j:Y\to X$ est l'injection canonique, \mathscr{F} soit isomorphe à j (\mathscr{G}).

Il suffira de montrer que l'Idéal \mathscr{J} de \mathscr{O}_X , annulateur de \mathscr{F} , est quasi-cohérent; on prendra alors pour Y le sous-préschéma fermé de X défini par \mathscr{J} (\mathbf{I} , 4.1.2), et comme $\mathscr{J}\mathscr{F}=0$, \mathscr{F} est un $(\mathscr{O}_X/\mathscr{J})$ -Module et on répondra à la question en prenant $\mathscr{G}=j^*(\mathscr{F})$. Pour voir que \mathscr{J} est quasi-cohérent, on peut (la question étant locale) se borner au cas où $X=\operatorname{Spec}(A)$, $\mathscr{F}=\widetilde{M}$, où M est un A-module engendré par un nombre fini d'éléments x_i ($1 \le i \le r$); l'Idéal \mathscr{J} est alors l'intersection des annulateurs des x_i . Mais l'annulateur de x_i est le noyau de l'homomorphisme $\mathscr{O}_X \to \mathscr{F}$ correspondant à l'homomorphisme $s \to s x_i$ de A dans M; c'est donc bien un Idéal quasi-cohérent (\mathbf{I} , 4.1.1) et toute intersection finie de tels Idéaux est aussi un Idéal quasi-cohérent (\mathbf{I} , 1.3.10).