Liouville's Theorem and Jarzynski Equality

平统讨论班

王准

2019年3月30日

北京大学

Overview

Liouville Theorem

Proof

Poincaré Reccurence Theorem

Jarzynski Equality

Introduction

Jarzynski Equality(JE)

Crooks Fluctuation Theorem(CFT)

The Second Law of

Thermodynamics

Experiment

JΕ

CFT

Liouville Theorem

Liouville 定理

Liouville 定理

系统按照满足哈密顿正则方程演化时, 微观态密度分布沿系统轨迹保持为常数, 即,

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = 0\tag{1.1}$$

哈密顿量
$$H = H(q, p) = H(x), x = (q, p)$$

$$\begin{cases} \dot{q}_{i} = \frac{\partial H}{\partial p_{i}} \\ \dot{p}_{i} = -\frac{\partial H}{\partial q_{i}} \end{cases} \Rightarrow \dot{x}_{\alpha} = \omega_{\alpha\beta} \frac{\partial H}{\partial x_{\beta}}$$

$$(1.2)$$

其中, $i = 1, 2, \ldots, n$, $\alpha = 1, 2, \ldots, 2n$,

$$[\omega_{\alpha\beta}] = \begin{pmatrix} I \\ -I \end{pmatrix} \quad \Rightarrow \quad \omega_{\alpha\beta} = -\omega_{\beta\alpha} \tag{1.3}$$

相空间中, 微观态的数量应该保持不变, 可以写出流和密度满足的守恒关系,

$$\frac{\partial \rho(\mathbf{x},t)}{\partial t} + \frac{\partial}{\partial x_{\alpha}} (\dot{x}_{\alpha} \rho(\mathbf{x},t)) = 0$$
 (1.4)

从而,

$$\frac{\mathrm{d}\rho(\mathbf{x}(t),t)}{\mathrm{d}t} = \frac{\partial\rho}{\partial t} + \dot{x}_{\alpha}\frac{\partial\rho}{\partial x_{\alpha}}$$

$$= -\rho \cdot \frac{\partial}{\partial x_{\alpha}}\dot{x}_{\alpha}$$

$$= -\rho \cdot \omega_{\alpha\beta}\frac{\partial^{2}H}{\partial x_{\alpha}\partial x_{\beta}}$$

$$= 0$$
(1.5)

从演化的角度考虑, 微观态数目不变可以表述为,

$$\rho(\mathbf{x}_t, t) d\mathbf{x}_t = \rho(\mathbf{x}_0, 0) d\mathbf{x}_0, \quad \mathbf{x}_t = \mathbf{x}(t)$$
(1.6)

其中, dx_t 表示体积元. 我们如果将时间演化视作一种变换,

$$\phi_{s \to t} : \mathbf{x}_s \mapsto \mathbf{x}_t, \quad \text{i.e. } \mathbf{x}_t = \phi_{s \to t}(\mathbf{x}_s)$$
 (1.7)

那体积元之间的关系就应该由 Jacobi 行列式决定,

$$dx_t = \det\left(\frac{\partial x_t}{\partial x_0}\right) dx_0 = J(t) dx_0$$
 (1.8)

求 J(t) 对时间的导数,

$$\frac{\mathrm{d}J}{\mathrm{d}t} = \sum_{\alpha} \det\left(\frac{\partial(\dots, \dot{x}_{t,\alpha}, \dots)}{\partial \mathbf{x}_{0}}\right)$$

$$= \sum_{\alpha} \det\left(\frac{\partial(\dots, \dot{x}_{t,\alpha}, \dots)}{\partial \mathbf{x}_{t}}\right) \cdot J(t)$$

$$= \sum_{\alpha} \frac{\partial \dot{x}_{t,\alpha}}{\partial x_{t,\alpha}} \cdot J$$

$$= \omega_{\alpha\beta} \frac{\partial^{2}H}{\partial x_{t,\alpha}\partial x_{t,\beta}} \cdot J$$

$$= 0$$

$$J \equiv 1 \quad \Rightarrow \quad \rho(\mathbf{x}_{t}, t) = \rho(\mathbf{x}_{0}, 0)$$
(1.9)

Jacobi 矩阵

Jacobi 矩阵实际上就是向量函数对于向量自变量的导数,

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_i}{\partial x_j} \end{bmatrix} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial y_n}{\partial x_2} & \cdots & \frac{\partial y_n}{\partial x_n} \end{pmatrix}$$
(1.10)

求导的链式法则也可以扩展到这个情形,

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x} \tag{1.11}$$

证明 2 实际上给了一种新的观点, ϕ 是一个保持体积元大小不变的映射, 那么 ϕ 就应该保持体积不变. 设 m 是相空间的 Lebesgue 测度 (实际上就是体积), 对于可测集 A,

$$m(A) = \int_A \mathrm{d}x \tag{1.12}$$

$$m(\phi(A)) = m(A) \tag{1.13}$$

利用这一点,我们可以将 Poincaré 定理运用到时间演化上.

Poincaré 定理

Poincaré 定理 (数学表述)

对于有限测度空间 (X, Σ, μ) , 若 f 是一个保测度的映射, 那么, $\forall E \in \Sigma$,

$$\mu(\{x \in E : \exists N, \forall n > N, f^n(x) \notin E\}) = 0$$
 (1.14)

即,几乎所有的点都会在有限步回到 E中.

证明思路

令
$$A_n = \bigcup_{k=n}^{\infty} f^{-k}E$$
, 表示了 E 中的点在 n 步以前的位置, 显然 $E \subset A_0, \ \mu(A_n) = \mu(A_m)$,

$$\mu(E - A_n) \le \mu(A_0 - A_n) = \mu(A_0) - \mu(A_n) = 0$$
 (1.15)

而 $\mu(E-\bigcap_{n=1}^{\infty}A_n)=\mu(\bigcup_{n=1}^{\infty}(E-A_n))=0$, 表示了在所有在有限步没有回到 E 中的点.

微正则系综中构造有限测度

微正则系综处于一个能壳 $E \sim E + dE$ 上, 取 dn 为法向的线元, 我们有

$$|\nabla E| \mathrm{d}n = \mathrm{d}E \tag{1.16}$$

而我们知道时间演化是保持体积元的,即 $\mathrm{d} S \mathrm{d} n == \frac{\mathrm{d} S}{|\nabla E|} \mathrm{d} E$ 在时间演化下不变,那么构造测度 μ ,

$$\mu(A) = \int_{A} \frac{\mathrm{d}S}{|\nabla E|} \tag{1.17}$$

由于能壳总面积有限,这是一个有限测度,所以可以应用 Poincaré 定理.即,一个集合内的态几乎总会在有限时间的演化后回到初始的集合内.

Poincaré 定理和各态历经

统计物理中一个很重要的假设是各态历经,它和 Poincaré 定理非常相似.

- 各态历经, 任意一个非零测度的集合 E, 全空间 X 中最终不会到达 E 的点的测度 为零.
- Poincaré, 任意一个非零测度的集合 E, 从 E 出发最终不会到达 E 的点的测度为零.

Jarzynski Equality

Jarzynski & Crooks

(a) Christopher Jarzynski

(b) Gavin E. Crooks

正则系综与自由能

当系统与一个温度为 T 的大热库有热接触时, 平衡态系综的微观态分布满足,

$$\rho(\mathbf{x}) = e^{\beta(F - H(\mathbf{x}))}, \quad \int_{\Gamma} d\mathbf{x} \ \rho(\mathbf{x}) = 1, \quad \beta = \frac{1}{k_B T}$$
 (2.1)

F 为自由能, 由归一化决定,

$$e^{-\beta F} = \int_{\Gamma} d\mathbf{x} \ e^{-\beta H(\mathbf{x})}$$
 (2.2)

更加普适的定义是,

$$F = \langle H \rangle - TS, \quad S = -\int_{\Gamma} d\mathbf{x} \, \rho(\mathbf{x}) \ln \rho(\mathbf{x})$$
 (2.3)

热力学第二定律

热力学第二定律,

$$dQ \leqslant TdS$$
 (2.4)

当系统和大热库始终处于热平衡的情况下, 从 $A \rightarrow B$,

$$F_B - F_A = \Delta F \leqslant W^F \tag{2.5}$$

统计解释,

$$\Delta F \leqslant \langle W^F \rangle = \int W \rho^F(W) dW$$
 (2.6)

图 1: 哈密顿量参数空间

热力学第二定理

我们考虑一下逆过程, $B \rightarrow A$,

$$F_A - F_B \leqslant \langle W^R \rangle = \int W \rho^R(W) dW$$
 (2.7)

把两个过程放在一起观察,

$$-\left\langle W^{R}\right\rangle \leqslant \Delta F \leqslant \left\langle W^{F}\right\rangle \tag{2.8}$$

热力学第二定理

我们考虑一下逆过程, $B \to A$,

$$F_A - F_B \leqslant \langle W^R \rangle = \int W \rho^R(W) dW$$
 (2.7)

把两个过程放在一起观察,

$$-\left\langle \mathit{W}^{R}\right\rangle \leqslant \Delta \mathit{F} \leqslant \left\langle \mathit{W}^{F}\right\rangle \tag{2.8}$$

图 2: 概率分布

主要结论

Jarzynski Equality(JE):

$$\left\langle e^{-\beta W}\right\rangle = e^{-\beta \Delta F}$$
 (2.9)

Crooks Fluctuation Theorrem(CFT):

$$\frac{P^F(\omega)}{P^R(-\omega)} = e^{\omega} \quad \Rightarrow \quad \frac{\rho^F(W)}{\rho^R(-W)} = e^{\beta(W-\Delta F)}$$
 (2.10)

Jarzynski Equality

将一个与温度为 T 的大热库热接触的系统, 改变系统的宏观参数, 从 $A \rightarrow B$, A 和 B 都是平衡态, 对于各种可能的做功, 我们有,

$$\left\langle \mathbf{e}^{-\beta W}\right\rangle = \mathbf{e}^{-\beta \Delta F}$$
 (2.11)

Jarzynski 在 1997 年的 PRL 中实际上只给出了一种特殊情形下的证明, 我们考虑一个系统, 刚开始时和大热库处于热平衡, 满足正则系综, 然后进行控制参数的改变, 改变过程中和热库之间没有热量交换, 也无需处于平衡态, 结束之后, 保持控制参数不变, 系统和热库接触, 回到温度 T.

哈密顿量 $H = H(\mathbf{x}, \lambda)$, 对于每一个参数 λ , 都可以得到一个自由能 F_{λ} ,

$$e^{-\beta F_{\lambda}} = \int d\mathbf{x} \ e^{-\beta H(\mathbf{x},\lambda)}$$
 (2.12)

系统哈密顿量变化,

$$dH = dQ + dW \quad \Leftrightarrow \quad dH(x(t), \lambda(t)) = dx \frac{\partial H}{\partial x} + d\lambda \frac{\partial H}{\partial \lambda}$$
 (2.13)

可以知道做功 W,

$$W = \int_0^{t_s} dt \, \dot{\lambda} \frac{\partial H}{\partial \lambda} = H(\mathbf{x}(t_s), B) - H(\mathbf{x}(0), A)$$
 (2.14)

W 与路径无关, $W = W((x_0))$,

$$\left\langle e^{-\beta W} \right\rangle = \int d\mathbf{x}(0) \; \frac{e^{-\beta H(\mathbf{x}(0),A)}}{Z_A} \cdot e^{H(\mathbf{x}(t_s),B) - H(\mathbf{x}(0),A)} = \int d\mathbf{x}(0) \; \frac{e^{-\beta H(\mathbf{x}(t_s),B)}}{Z_A}$$
 (2.15)

根据 Liouville 定理,

$$\left\langle e^{-\beta W} \right\rangle = \int d\mathbf{x}(t_s) \cdot \left| \frac{\partial \mathbf{x}(t_s)}{\partial \mathbf{x}(0)} \right|^{-1} \cdot \frac{e^{-\beta H(\mathbf{x}(t_s), B)}}{Z_A} = \frac{Z_B}{Z_A}$$

$$\Rightarrow \left\langle e^{-\beta W} \right\rangle = e^{-\beta \Delta F} \tag{2.16}$$

系统演化

之前从哈密顿正则方程出发的演化方式,相当于基于微正则系综.这种方式的计算显然是有局限性的.在之前的情形中,若要考虑热量交换,就必须考虑相互作用,

$$G(x,x') = H(x) + H'(x') + h_{int}(x,x')$$
(2.17)

事情变得非常复杂, 我们需要寻找新的角度来考察系统的演化.

Markov Chain

有一列随机变量 $\{X_0, X_1, X_2, \dots\}$, 若满足下式, 则称之为 Markov 链

$$\Pr(X_{n+1} = a_{n+1} | X_n = a_n, X_{n-1} = a_{n-1}, \ldots) = \Pr(X_{n+1} = a_{n+1} | X_n = a_n)$$
 (2.18)

对于离散变量空间和离散时间的情形,我们只需要知道每一步的转移矩阵 M_n ,就知道系统的演化,

$$M_{n,ij} = \Pr(X_{n+1} = x_i | X_n = x_j), \sum_i M_{n,ij} = 1$$
 (2.19)

若 X_n 的概率分布是 $\pi^{(n)} = [\pi_1^{(n)}, \pi_2^{(n)}, \dots]^T$, 那么,

$$\boldsymbol{\pi}^{(n+1)} = M_n \boldsymbol{\pi}^{(n)} = M_n M_{n-1} \cdots M_0 \boldsymbol{\pi}^{(0)}$$
 (2.20)

对于连续变量和连续时间的情形,

$$\rho(\mathbf{x},t) = \int p(\mathbf{x},t;\mathbf{x}',t')\rho(\mathbf{x}',t')d\mathbf{x}'$$
(2.21)

如果一个演化方式和初始时间无关, 只和时间差有关, 我们称这样的 Markov 链是时 齐的 (time homogeneous).

$$p(\mathbf{x}, t; \mathbf{x}', t') = p(\mathbf{x}' \to \mathbf{x}, \Delta t)$$
 (2.22)

如果有一个分布在演化下保持不变, 这就是平衡态, 他应该满足,

$$\rho(\mathbf{x}) = \int p(\mathbf{x}' \to \mathbf{x}, t) \rho(\mathbf{x}') d\mathbf{x}', \quad \forall t > 0$$
(2.23)

显然平衡态对于转移概率 $p(x' \to x, t)$ 的约束在数学上并不那么强, 我们基于物理的 考虑给他赋予一些新的性质.

Detailed Balance

$$\rho(\hat{\mathbf{x}})p(\hat{\mathbf{x}} \to \hat{\mathbf{x}}', t) = \rho(\mathbf{x}')p(\mathbf{x}' \to \mathbf{x}, t)$$
 (2.24)

 \hat{x} 表示时间反演, i.e. $q \to q, p \to -p$.(这也被称为微观可逆性)

对于不同的情况,

	微正则	正则	特殊 (p,T 确定)
$\frac{p(\hat{\mathbf{x}} \to \hat{\mathbf{x}}', t)}{p(\mathbf{x}' \to \mathbf{x}, t)}$	1	$e^{-\beta(H(\mathbf{x}')-H(\hat{\mathbf{x}}))}$	$e^{-\beta(\Delta H + p\Delta V)}$

概率密度

最后介绍一个求概率密度的公式,现在有一个变量 x 的概率分布为 f(x),对于一个新的变量 $\omega=\omega(x)$,它满足概率分布 $\rho(\omega)$,

$$\rho(\omega) = \int \delta(\omega(x) - \omega) f(x) dx$$
 (2.25)

Crooks Fluctuation Theorem

$$\frac{P^F(\omega)}{P^R(-\omega)} = e^{\omega} \tag{2.26}$$

系统和温度为 T 的大热库接触, ω 是一个确定参数变化过程 $\lambda(t)$)($t \in [0, \tau]$) 中整个体系的熵产生, P^F , P^R 是正过程和逆过程的熵产生分布函数.

$$k_B = 1$$

对于相空间中某一条路径 x(t), 我们考虑沿这条路径的概率,

$$F: x(0) \xrightarrow{\lambda(t_1)} x(t_1) \xrightarrow{\lambda(t_2)} x(t_2) \cdots \xrightarrow{\lambda(\tau)} x(\tau)$$

$$R: \hat{x}(0) \xleftarrow{\lambda(t_1)} \hat{x}(t_1) \xleftarrow{\lambda(t_2)} \hat{x}(t_2) \cdots \xleftarrow{\lambda(\tau)} \hat{x}(\tau)$$

$$\mathcal{P}^F[\mathbf{x}(t)] d\mathbf{x}_0 d\mathbf{x}_1 \cdots d\mathbf{x}_{\tau} \approx \rho_0^F(\mathbf{x}_0) d\mathbf{x}_0 p_1(\mathbf{x}_0 \to \mathbf{x}_1, t_1) d\mathbf{x}_1 \cdots p_n(\mathbf{x}_{n-1} \to \mathbf{x}_{\tau}, \tau - t_{n-1}) d\mathbf{x}_{\tau}$$

$$\mathcal{P}^R[\hat{\mathbf{x}}(\tau - t)] d\mathbf{x}_0 d\mathbf{x}_1 \cdots d\mathbf{x}_{\tau} \approx d\mathbf{x}_0 p_1(\hat{\mathbf{x}}_0 \leftarrow \hat{\mathbf{x}}_1, t_1) d\mathbf{x}_1 \cdots p_n(\hat{\mathbf{x}}_{n-1} \leftarrow \hat{\mathbf{x}}_{\tau}, \tau - t_{n-1}) d\mathbf{x}_{\tau} \rho_{\tau}^R(\hat{\mathbf{x}}_{\tau})$$

$$(2.27)$$

 p_i 表示在 $\lambda(t_i)$ 的条件下进行演化. 利用之前的对于细致平衡的讨论,

$$\frac{p(\hat{\mathbf{x}} \to \hat{\mathbf{x}}', t)}{p(\mathbf{x}' \to \mathbf{x}, t)} = e^{-\beta(H(\mathbf{x}') - H(\hat{\mathbf{x}}))}$$

可以得到微观可逆性条件,

$$\frac{\mathcal{P}^{F}[\mathbf{x}(t)]}{\mathcal{P}^{R}[\hat{\mathbf{x}}(\tau - t)]} = \frac{\rho_{0}^{F}(\mathbf{x}_{0})}{\rho_{\tau}^{R}(\hat{\mathbf{x}}_{\tau})} \exp\left(-\beta \sum_{i} [H(\mathbf{x}_{i}, \lambda_{i}) - H(\mathbf{x}_{i-1}, \lambda_{i})]\right)$$

$$= \frac{\rho_{0}^{F}(\mathbf{x}_{0})}{\rho_{\tau}^{R}(\hat{\mathbf{x}}_{\tau})} \exp\left(-\beta \int dt \, \dot{\mathbf{x}} \frac{\partial H(\mathbf{x}, \lambda)}{\partial \mathbf{x}}\right)$$

$$= \frac{\rho_{0}^{F}(\mathbf{x}_{0})}{\rho_{\tau}^{R}(\hat{\mathbf{x}}_{\tau})} \exp(-\beta Q)$$
(2.28)

我们认为 $S = \sum_{\mathbf{x}} -\rho(\mathbf{x}) \ln \rho(\mathbf{x})$, 正向熵产生 ω^F ,

$$\omega^F = \ln \rho_0^F(\mathbf{x}(0)) - \ln \rho_\tau^F(\mathbf{x}(\tau)) - \beta Q$$
 (2.29)

从而,

$$e^{\omega^F} = \frac{\rho_{\tau}^R(\hat{\mathbf{x}}(\tau))}{\rho_{\tau}^F(\mathbf{x}(\tau))} \cdot \frac{\mathcal{P}^F[\mathbf{x}(t)]}{\mathcal{P}^R[\hat{\mathbf{x}}(\tau-t)]} = \frac{\mathcal{P}^F[\mathbf{x}(t)]}{\mathcal{P}^R[\hat{\mathbf{x}}(\tau-t)]}$$
(2.30)

最后一个等号我们假设有一个时间反演对称性,

$$\rho^F(\mathbf{x}) = \rho^R(\hat{\mathbf{x}}) \tag{2.31}$$

也可以得到 $\omega^R = -\omega^F$

至此, 我们可以求出 $P^F(\omega)$,

$$P^{F}(\omega) = \int \delta(\omega - \omega^{F}) \mathcal{P}^{F}[\mathbf{x}(t)] \mathcal{D}[\mathbf{x}(t)]$$

$$= e^{\omega} \int \delta(\omega + \omega^{R}) \mathcal{P}^{R}[\hat{\mathbf{x}}(\tau - t)] \mathcal{D}[\mathbf{x}(t)]$$

$$= e^{\omega} P^{R}(-\omega)$$
(2.32)

CFT→**JE**

对于初末态是正则系综平衡态的情形,

$$\rho_0^F(\mathbf{x}) = e^{\beta(F_A - H(\mathbf{x}, A))}, \quad \rho_\tau^F(\mathbf{x}) = e^{\beta(F_B - H(\mathbf{x}, B))}$$
(2.33)

从而, 熵产生为,

$$\omega^{F} = \ln \rho_{0}^{F}(\mathbf{x}(0)) - \ln \rho_{\tau}^{F}(\mathbf{x}(\tau)) - \beta Q$$

$$= \beta (H(\mathbf{x}(0), B) - H(\mathbf{x}(\tau), A) - Q) - \beta (F_{B} - F_{A})$$

$$= \beta (W - \Delta F)$$
(2.34)

因此可以知道,

$$\frac{P^F(\omega)}{P^R(-\omega)} = e^{\omega} \quad \Rightarrow \quad \frac{\rho^F(W)}{\rho^R(-W)} = e^{\beta(W-\Delta F)}$$
 (2.35)

CFT→**JE**

$$\left\langle e^{\beta(-W+\Delta F)} \right\rangle_F = \int dW \rho^F(W) e^{\beta(-W+\Delta F)} = \int dW \rho^R(-W) = 1$$
 (2.36)

CFT→**JE**

$$\left\langle e^{\beta(-W+\Delta F)} \right\rangle_F = \int dW \rho^F(W) e^{\beta(-W+\Delta F)} = \int dW \rho^R(-W) = 1$$
 (2.36)

热力学第二定律

热力学第二定理统计解释,

$$\langle e^{-\omega} \rangle = \int d\omega P^F(\omega) e^{-\omega} = \int d\omega P^R(-\omega) = 1$$
 (2.37)

利用 Jensen 不等式,

$$1 = \langle e^{-\omega} \rangle \geqslant e^{-\langle \omega \rangle} \quad \Rightarrow \quad \langle \omega \rangle \geqslant 0$$
 (2.38)

Experiment

References

- [1] D. Collin et al. "Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies". In: *Nature* 437.7056 (2005), pp. 231–234. ISSN: 1476-4687. DOI: 10.1038/nature04061. URL: https://doi.org/10.1038/nature04061.
- [2] Gavin E. Crooks. "Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences". In: *Phys. Rev. E* 60 (3 1999-09), pp. 2721–2726. DOI: 10.1103/PhysRevE.60.2721. URL: https://link.aps.org/doi/10.1103/PhysRevE.60.2721.

References ii

- [3] Gavin Earl Crooks. "Excursions in statistical dynamics". PhD thesis. Citeseer, 1999.
- [4] C. Jarzynski. "Nonequilibrium Equality for Free Energy Differences". In: *Phys. Rev. Lett.* 78 (14 1997-04), pp. 2690–2693. DOI: 10.1103/PhysRevLett.78.2690. URL: https://link.aps.org/doi/10.1103/PhysRevLett.78.2690.

References iii

- [5] Jan Liphardt et al. "Equilibrium Information from Nonequilibrium Measurements in an Experimental Test of Jarzynski' s Equality". In: Science 296.5574 (2002), pp. 1832–1835. ISSN: 0036-8075. DOI: 10.1126/science.1071152. eprint: http://science.sciencemag.org/content/296/5574/1832.full.pdf. URL: http://science.sciencemag.org/content/296/5574/1832.
- [6] Colin J Thompson. *Mathematical statistical mechanics*. Princeton University Press, 2015, pp. 16–20, 211–213.
- [7] Mark C Williams. "Optical tweezers: measuring piconewton forces". In: *Biophysics Textbook Online: http://www. biophysics. org/btol* (2002).