EXAMEN DE ESTRUCTURAS ALGEBRAICAS

2° Ingeniería Informática

11 de Junio de 2007

TIEMPO: 3 horas

Dar respuestas breves pero razonadas a las siguientes preguntas:

[1].- (1.5 puntos).

- (a) Encontrar enteros p y q tales que 1 = 13p + 55q.
- (b) Definir un isomorfismo de grupos $\phi: \mathbb{Z}_{13} \times \mathbb{Z}_{55} \to \mathbb{Z}_{715}$, indicando explícitamente la imagen de un par (a,b).

[2].- (2 puntos).

Se considera le grupo multiplicativo \mathbb{Z}_{20}^* formado por los elementos del anillo \mathbb{Z}_{20} que admiten un inverso para el producto.

- (a) ¿Cúal es el orden de este grupo?
- (b) Dar una lista de las clases de isomorfía de los grupos abelianos de ese orden, indicando los coeficientes de torsión y los divisores elementales correspondientes a cada clase.
- (c) ¿Cúal de los elementos de esa lista es isomorfo a \mathbb{Z}_{20}^* ?.

[3].- (2. puntos).

Demostrar que el conjunto G formado por las siguientes matrices,

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}, C = \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix}, D = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}, E = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix},$$

es un grupo con el producto de matrices. ¿Es G cíclico? ¿Es G abeliano? Encontrar si lo hubiera un subgrupo de G con k elementos, en los casos k = 2, 3, 4.

[4].- (1.5 puntos).

En $\mathbb{Q}[x]$ consideramos los polinomios

$$F = x^4 + 5x^3 + 7x^2 + 5x + 6$$
, $G = x^4 - 1$.

- (a) Hallar un generador del ideal I = (F, G) en $\mathbb{Q}[x]$.
- (b) Estudiar si $\mathbb{Q}[x]/I$ es un cuerpo.

[5].- (3 puntos).

Sea
$$P = x^3 - x + 1 \in \mathbb{Z}_3[x], L = \mathbb{Z}_3[x]/(P)$$
 y $\alpha = \bar{x} \in L$.

- (a) Probar que L es un cuerpo. Indicar su característica y su cardinal. Dar una base de L como espacio vectorial sobre \mathbb{Z}_3 .
- (b) Indicar los órdenes posibles de los elementos del grupo multiplicativo (L^*,\cdot) .
- (c) Calcular el orden de α en el grupo (L^*, \cdot) .
- (d) Mostrar que la clase del polinomio $x^6 x^3 + x 1$ en L es un elemento del grupo multiplicativo L^* y calcular su inverso.
- (e) Consideramos ahora el anillo de polinomios L[y] con coeficientes en el cuerpo L. Probar que el anillo cociente $L[y]/(y^2+1)$ es un cuerpo. Sugerencia: utilizar los resultados del apartado (b).