Отчет о выполнении лабораторной работы 2

Операционные системы

Пестова Ева Константиновна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	18

Список иллюстраций

3.1	Установка git	7
3.2	Установка git	7
3.3	Установка gh	8
3.4	Базовая настройка git	8
3.5	Создание ключа по алгоритму rsa	9
3.6	Создание ключа по алгоритму ed25519	9
3.7	Генерация ключа	9
3.8	Заполнение данных	10
3.9	Создание защитного пароля	10
3.10	Аккаунт на github	11
	Список ключей	11
3.12	Отпечаток ключа	12
3.13	Добавление ключа	12
3.14	Ключ добавился	12
3.15	Настройка подписей	13
3.16	Настройка gh	13
	Активация по коду	14
3.18	Результат	15
3.19	Создание каталога	15
3.20	Каталог создался	15
3.21	Создание репозитория	16
3.22	Создание репозитория	16
3.23	Настройка каталога круса	16
	Отправление файлов на github	17

Список таблиц

1 Цель работы

- 1. Изучить идеологию и применение средств контроля версий.
- 2. Освоить умения по работе c git.

2 Задание

- 1. Создать базовую конфигурацию для работы с git.
- 2. Создать ключ SSH.
- 3. Создать ключ PGP.
- 4. Настроить подписи git.
- 5. Зарегистрироваться на Github.
- 6. Создать локальный каталог для выполнения заданий по предмету

3 Выполнение лабораторной работы

1. Создание базовой конфигурации для работы с git.

Первым делом я устанавливаю git (рис. 3.1), (рис. 3.2).

```
(ekpestova kali)-[~]
$ sudo apt-get update
Get:1 http://kali.download/kali kali-rolling InRelease [
41.5 kB]
Get:2 http://kali.download/kali kali-rolling/main amd64
Packages [19.8 MB]
Get:3 http://kali.download/kali kali-rolling/main amd64
Contents (deb) [47.2 MB]
Fetched 67.1 MB in 17s (4064 kB/s)
Reading package lists... Done

(ekpestova kali)-[~]
$ sudo apt install git
```

Рис. 3.1: Установка git

```
(ekpestova⊕ kali)-[~]
$ sudo apt-get update
Hit:1 http://kali.download/kali kali-rolling InRelease
Reading package lists... ∬one

(ekpestova⊕ kali)-[~]
$ sudo apt install git-all
```

Рис. 3.2: Установка git

Далее я устанаваливаю gh (рис. 3.3).

```
(ekpestova⊗ kali)-[~]
$ sudo apt install gh
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following NEW packages will be installed:
gh
0 upgraded, 1 newly installed, 0 to remove and 2 not upg
raded.
Need to get 7982 kB of archives.
After this operation, 45.3 MB of additional disk space w
ill be used.
Get:1 http://kali.download/kali kali-rolling/main amd64
gh amd64 2.44.1-1 [7982 kB]
Fetched 7982 kB in 2s (4962 kB/s)
```

Рис. 3.3: Установка gh

Затем, провожу базовую настройку git: задаю имя и email владельца репозитория, настраиваю utf-8 в выводе сообщений git, задаю имя начальной ветки, настраиваю параметры autocrlf и safecrlf (рис. 3.4).

Рис. 3.4: Базовая настройка git

2. Создание ключей SSH

Я создаю ключи SSH по алгоритмам rsa и ed25519 (рис. 3.5), (рис. 3.6).

```
(ekpestova⊕ kali)-[~]
$ ssh-keygen -t rsa -b 4096
Generating public/private rsa key pair.
Enter file in which to save the key (/home/ekpestova/.ss h/id_rsa):
Created directory '/home/ekpestova/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
```

Рис. 3.5: Создание ключа по алгоритму rsa

Рис. 3.6: Создание ключа по алгоритму ed25519

3. Создание ключей рдр

Следующим шагом я генерирую pgp ключ, выбираю нужные опции и ввожу необходимые данные: тип RSA and RSA, размер 4096, срок действия не истекает никогда, ввожу имя и свою почту (рис. 3.7), (рис. 3.8).

```
(ekpestova⊛ kali)-[~]
  -$ gpg -- full-generate-key
gpg (GnuPG) 2.2.40; Copyright (C) 2022 g10 Code GmbH
This is free software: you are free to change and redist
ribute it.
There is NO WARRANTY, to the extent permitted by law.
gpg: keybox '/home/ekpestova/.gnupg/pubring.kbx' created
Please select what kind of key you want:
   (1) RSA and RSA (default)
   (2) DSA and Elgamal
   (3) DSA (sign only)
   (4) RSA (sign only)
(14) Existing key from card
Your selection? RSA
Invalid selection.
Your selection? 1
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (3072) 4096
```

Рис. 3.7: Генерация ключа

```
Key is valid for? (0)
Key does not expire at all
Is this correct? (y/N) y

GnuPG needs to construct a user ID to identify your key.

Real name: ekpestova
Email address: 1132236053@pfur.ru
Comment:
You selected this USER-ID:
    "ekpestova <1132236053@pfur.ru>"
```

Рис. 3.8: Заполнение данных

Далее я придумываю пароль для защиты нового ключа (рис. 3.9).

Рис. 3.9: Создание защитного пароля

4. Регистрация на github

Так как у меня уже есть аккаунт на github, я просто вхожу в него (рис. 3.10).

Рис. 3.10: Аккаунт на github

5. Добавление pgp ключа в github

Вывожу список ключей (рис. 3.11).

```
ekpestova@kali: ~
                                                   _ D X
     Actions Edit View Help
      rsa4096 2024-02-25 [E]
spg --list-secret-keys --keyid-format LONG
gpg: checking the trustdb
gpg: marginals needed: 3 completes needed: 1 trust mod
el: pgp
gpg: depth: 0 valid: 1 signed:
                                     0 trust: 0-, 0q, 0
n, 0m, 0f, 1u
/home/ekpestova/.gnupg/pubring.kbx
      rsa4096/4784841AE8B9241B 2024-02-25 [SC]
      EA53FD06983F2C89F7FB101C4784841AE8B9241B
                    [ultimate] ekpestova <1132236053@pfu
uid
r.ru>
      rsa4096/FC10D47D3A0EF9D1 2024-02-25 [E]
ssb
```

Рис. 3.11: Список ключей

Копирую отпечаток приватного ключа (рис. 3.12).

```
(ekpestova⊕ kali)-[~]
$ gpg --armor --export 4784841AE8B9241B | xclip -sel c
```

Рис. 3.12: Отпечаток ключа

Добавляю новый gpg ключ на github (рис. 3.13).

Add new GPG key Title Key ----BEGIN PGP PUBLIC KEY BLOCK--- mQINBGXbRxIBEADITC/COFSXE0qH /8+Zd48JZwNFCh7VppMwtfX50vZAcSPJ/v+ rQf/IjqR4ZAqWFgKjory

Рис. 3.13: Добавление ключа

Мы видим, что добавился наш ключ: появились subkeys и ID ключа (рис. 3.14).

Рис. 3.14: Ключ добавился

6. Настройка подписей git

Далее, я настраиваю автоматические подписи коммитов git (рис. 3.15).

```
(ekpestova@ kali)-[~]
$ git config --global user.signingkey 4784841AE8B9241B

(ekpestova@ kali)-[~]
$ git config --global commit.gpgsign true

(ekpestova@ kali)-[~]
$ git config --global gpg.program $ [which gpg2]
```

Рис. 3.15: Настройка подписей

7. Настройка gh

Я авторизуюсь и копирую код (рис. 3.16).

```
(ekpestova® kali)-[~]
$ gh auth login
? What account do you want to log into? GitHub.com
? What is your preferred protocol for Git operations on t
his host? HTTPS
? Authenticate Git with your GitHub credentials? Yes
? How would you like to authenticate GitHub CLI? Login wi
th a web browser
! First copy your one-time code: 8149-F73B?
Press Enter to open github.com in your browser...
```

Рис. 3.16: Настройка gh

Ввожу код на странице github, которая открылась автоматически (рис. 3.17).

Рис. 3.17: Активация по коду

Как мы видим, нам удалось авторизоваться (рис. 3.18).

Рис. 3.18: Результат

8. Создание репозитория круса на основе шаблона

Сначала я создаю каталог в домашней папке (рис. 3.19), (рис. 3.20).

Рис. 3.19: Создание каталога

Рис. 3.20: Каталог создался

Перехожу в него и создаю такой же репозиторий на github (рис. 3.21), (рис. 3.22).

```
(ekpestova⊕ kali)-[~]
$ cd ~work/study/2023-2024/"Операционные системы"

— (ekpestova⊕ kali)-[~/~work/study/2023-2024/Операционные е системы]

$ gh repo create study_2023-2024_os-intro --template=yamadharma/course-directory-student-template --public ∨ Created repository 1132236053/study_2023-2024_os-intro on GitHub

https://github.com/1132236053/study_2023-2024_os-intro
```

Рис. 3.21: Создание репозитория

```
(ekpestova⊗ kali)-[~/~work/study/2023-2024/Операционны е системы]

$ git clone — recursive https://github.com/1132236053/s
tudy_2023-2024_os-intro os-intro
```

Рис. 3.22: Создание репозитория

Далее, я настраиваю каталог курса: удаляю лишние файлы и создаю необходимые каталоги (рис. 3.23).

```
(ekpestova® kali)-[~]
$ cd ~work/study/2023-2024/"Операционные системы"/os-in tro

(ekpestova® kali)-[~/.../study/2023-2024/Операционные системы/os-intro]
$ rm package.json

(ekpestova® kali)-[~/.../study/2023-2024/Операционные системы/os-intro]
$ echo os-intro > COURSE

(ekpestova® kali)-[~/.../study/2023-2024/Операционные системы/os-intro]
$ make
```

Рис. 3.23: Настройка каталога круса

В конце лабораторной работы я отправляю файлы на сервер (рис. 3.24).

```
(ekpestova⊕ kali)-[~/.../study/2023-2024/Операционные си стемы/os-intro]
$ git add .

—(ekpestova⊕ kali)-[~/.../study/2023-2024/Операционные си стемы/os-intro]
$ git commit -am 'feat(main): make course structure'
[master a5dc1fc] feat(main): make course structure
2 files changed, 1 insertion(+), 14 deletions(-)
delete mode 100644 package.json

—(ekpestova⊕ kali)-[~/.../study/2023-2024/Операционные си стемы/os-intro]
$ git push
```

Рис. 3.24: Отправление файлов на github

4 Выводы

Мне удалось изучить идеологию и применение средств контроля версий, а также Освоить умения по работе с git.