Eletromagnetismo Computacional

Ricardo Adriano

rluiz@cpdee.ufmg.br

2 de setembro de 2015

Introdução

2 Alguns tópicos de cálculo

Sumário

Introdução

Alguns tópicos de cálculo

Introdução

Objetivos

- Apresentar a teoria geral do Eletromagnetismo
- Estudo da Eletrostática, Magnetostática e Eletrodinâmica
- Descrever o funcionamento de alguns métodos numéricos apresentando suas vantagens e desvantagens
- Aplicar os métodos numéricos na solução de problemas eletromagnéticos

Sumário

Introdução

2 Alguns tópicos de cálculo

Derivadas Vetoriais

O operador Nabla (∇)

Definiremos o operado diferencial vetorial nabla ou del por meio de sua expressão num sistema de coordenadas cartesianas ortogonais x, y e z.

$$\nabla \equiv \frac{\partial}{\partial x}\hat{x} + \frac{\partial}{\partial y}\hat{y} + \frac{\partial}{\partial z}\hat{z}$$
 (1)

O nabla é apenas um símbolo sem significado geométrico ou físico que pode ser aplicado a funções escalares e vetoriais.

Operações envolvendo o nabla

Podemos realizar as três operações vetoriais que envolvem dois elementos:

- o produto por um escalar ∇U
- ullet o produto escalar por um vetor $abla \cdot {f A}$
- ullet o produto vetorial por um vetor $abla \times {f A}$

Definição

Dada a função escalar U(x,y,z) com derivadas parciais $\frac{\partial U}{\partial x}$, $\frac{\partial U}{\partial y}$, $\frac{\partial U}{\partial z}$, O gradiente de U é definido por

$$\nabla U \equiv \frac{\partial U}{\partial x}\hat{x} + \frac{\partial U}{\partial y}\hat{y} + \frac{\partial U}{\partial z}\hat{z}$$
 (2)

Cálculo do diferencial de uma função escalar utilizando o gradiente

Dados dois pontos infinitesimalmente próximos M(x, y, z) e M'(x + dx, y + dy, z + dz) o diferencial de U(dU) pode ser escrito como:

$$dU = \frac{\partial U}{\partial x}dx + \frac{\partial U}{\partial y}dy + \frac{\partial U}{\partial z}dz = (\nabla U) \cdot \mathbf{dM}$$
 (3)

onde dM = M' - M

Deslocamento em uma superfície equipotencial

Assumindo que o deslocamento do ponto M ao ponto M' ocorra sobre uma superfície onde U(x,y,z)=const

$$dU = (\nabla U) \cdot \mathbf{dM} = 0 \tag{4}$$

onde as soluções possíveis são: abla U=0 (solução trivial) ou

$$\nabla U \perp \mathbf{dM}$$
 (5)

Direção de máxima variação

Assumindo que o deslocamento do ponto M ao ponto M' ocorra de modo a incrementar o valor de ${\sf U}$

$$dU = (\nabla U) \cdot \mathbf{dM} > 0 \tag{6}$$

Nesse caso, o ângulo entre ∇U e **dM** será agudo e a máxima variação de U ocorrerá quando ∇U e **dM** forem paralelos. Em outras palavras, O Gradiente aponta para a direção de máxima variação da função.

Exemplo

Seja a função distância

$$U(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$

$$\frac{\partial U}{\partial x} = \frac{x}{\sqrt{x^2 + y^2 + z^2}} = \frac{x}{r}$$
$$\frac{\partial U}{\partial y} = \frac{y}{r}; \frac{\partial U}{\partial z} = \frac{z}{r}$$

logo

$$\nabla U = \frac{1}{r} (x\hat{x} + y\hat{y} + z\hat{z})$$

Questão

Encontre o vetor normal unitário à superfície do elipsoide $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$

Definição de fluxo

Dado um campo vetorial $\mathbf{A} = A_x(x, y, z)\hat{x} + A_y(x, y, z)\hat{y} + A_z(x, y, z)\hat{z}$ e um elemento diferencial de superfície ds, conforme mostrado na figura

Definiremos:

$$\hat{n} = \frac{MN}{|MN|}$$

$$d\mathbf{s} = \hat{n}ds$$

$$d\Phi = \mathbf{A} \cdot d\mathbf{s} = Ads \cos \theta$$

onde $d\Phi$ é o fluxo "líquido" do vetor **A** que a travessa o elemento de superfície.

Fluxo em coordenadas cartesianas

Como $d\mathbf{s}$ é um vetor, ele pode ser decomposto em suas coordenadas cartesianas. Consequentemente:

$$d\Phi = A_x dy dz + A_y dx dz + A_z dx dy$$

Teorema da divergência

Considere a superfície que delimita o retângulo de volume dv da figura. Assuma que o vetor normal é orientado para fora da superfície e que $\bf A$ possua apenas a componente A_z

Na superfície inferior PQRS

$$d\mathbf{s} = (0, 0, -dxdy) \quad (7)$$

E o fluxo que atravessa essa superfície será dado por

$$-A_{z_{inf}}dxdy \qquad \qquad (8)$$

Teorema da divergência

Para as superfícies laterais, $\bf A$ será perpendicular à $d\bf s$ (Campo tangencial à superfície). Consequentemente, os fluxos que atravessam essas superfícies serão nulos.

Na superfície superior P'Q'R'S'

$$d\mathbf{s} = (0, 0, dxdy) \qquad (9)$$

E o fluxo que atravessa essa superfície será dado por

$$A_{z_{sup}}dxdy$$
 (10)

Teorema da divergência

O fluxo líquido (que entra ou sai do volume dv) será obtido pela somas das equações (8) e (10)

$$d\Phi = \left(A_{z_{sup}} - A_{z_{inf}}\right) dx dy \tag{11}$$

Onde $A_{z_{sup}}$ pode ser escrito em função $A_{z_{inf}}$

$$A_{z_{sup}} = A_{z_{inf}} + dA_{z} = A_{z_{inf}} + \frac{\partial A_{z}}{\partial z} dz$$
 (12)

Substituindo (12) em (11)

$$d\Phi = \left[A_{z_{inf}} + \frac{\partial A_{z}}{\partial z} dz - A_{z_{inf}} \right] dxdy = \frac{\partial A_{z}}{\partial z} dxdydz = \frac{\partial A_{z}}{\partial z} dv \qquad (13)$$

Teorema da divergência

Assumindo $\mathbf{A} = (A_x, A_y, A_z)$ e calculando o fluxo sobre as superfícies laterais

$$d\Phi = \left[\frac{\partial A_{x}}{\partial x} + \frac{\partial A_{y}}{\partial y} + \frac{\partial A_{z}}{\partial z}\right] dv$$
$$d\Phi = (\nabla \cdot \mathbf{A}) dv \tag{14}$$

Em outras palavras, a divergência de um campo vetorial **A**, dá como resultado o fluxo líquido (fluxo que sai – fluxo que entra) por unidade de volume.

Por fim, integrando (14) obtemos o teorema da divergência

$$\Phi = \oint_{\mathbf{S}} \mathbf{A} \cdot d\mathbf{s} = \int_{V} (\nabla \cdot \mathbf{A}) \, dv \tag{15}$$

Fluxo conservativo

Se o fluxo é conservativo, o fluxo que entra em um volume é igual ao fluxo que deixa o volume de modo que o fluxo total é nulo.

$$\Phi_t = -\int_{s_1} A_1 ds_1 + \int_{s_2} A_2 ds_2 = \int_{v} (\nabla \cdot \mathbf{A}) dv$$

Resumo do conceito de divergente

Os resultados possíveis para o valor do fluxo são.

- **1** $\nabla \cdot \mathbf{A} > 0$ Exite uma fonte de **A**
- ② $\nabla \cdot \mathbf{A} < 0$ Exite um sumidouro de \mathbf{A}
- **3** $\nabla \cdot \mathbf{A} = 0$ Fluxo conservativo

Exemplo 1 - Divergente > 0

Encontrar o fluxo de um campo radial constante que atravessa uma esfera de raio ${\it R}$

$$\Phi = \int_{\mathbf{s}} \mathbf{A} \cdot d\mathbf{s} = 4\pi R^2 A$$

Exemplo 1 - Divergente = 0

Encontrar o fluxo do campo A sobre a superfície do cilindro

$$\Phi = \int_{s} \mathbf{A} \cdot d\mathbf{s} = 0$$

Definição

Definiremos o rotacional de um campo vetorial como:

$$rot \mathbf{A} = curl \mathbf{A} = \nabla \times \mathbf{A} = det \begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{bmatrix}$$

$$\nabla \times \mathbf{A} = \hat{\mathbf{i}} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{\mathbf{j}} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{\mathbf{k}} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$$

A circulação de um vetor

A circulação de ${\bf A}$ ao longo de um caminho L, entre os pontos P e Q é dada por:

$$C_{PQ} = \int_{P}^{Q} \mathbf{A} \cdot d\mathbf{I}$$

A circulação de um vetor

Se A for o gradiente de uma função escalar

$$C_{PQ} = \int_{P}^{Q} \mathbf{A} \cdot d\mathbf{I} = \int_{P}^{Q} (\nabla U) \cdot d\mathbf{I}$$
 (16)

Lembrando que

$$dU = (\nabla U) \cdot d\mathbf{I}$$

Eq. (16) se resume a

$$C_{PQ} = \int_{P}^{Q} dU = U_{Q} - U_{P}$$

Repare que, nesse caso, a circulação não depende do caminho!

A circulação de um vetor

Se **A** for o gradiente de uma função escalar, o $\nabla \times \mathbf{A} = 0$

Prova

Sendo $\mathbf{A} = (\frac{\partial U}{\partial x}, \frac{\partial U}{\partial y}, \frac{\partial U}{\partial z})$, o $\nabla \times \mathbf{A}$ sera dado por:

$$\nabla \times \mathbf{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \hat{x} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \hat{y} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \hat{z} =$$

$$\left(\frac{\partial^2 U}{\partial y \partial z} - \frac{\partial^2 U}{\partial z \partial y}\right) \hat{x} + \left(\frac{\partial^2 U}{\partial z \partial x} - \frac{\partial^2 U}{\partial x \partial z}\right) \hat{y} + \left(\frac{\partial^2 U}{\partial x \partial y} - \frac{\partial^2 U}{\partial y \partial x}\right) \hat{z} = 0$$

Teorema de Stokes

Calcularemos a circulação de **A** ao longo do contorno que delimita o elemento de superfície $d\mathbf{s} = dxdy\hat{z}$ da figura

Integral entre os pontos P e Q

$$C_1 = \int_P^Q \mathbf{A} \cdot dx \hat{x} = A_x dx$$

Integral entre os pontos R e S

$$C_2 = -\int_R^S \mathbf{A} \cdot dx \hat{x} = -(A_x + dA_x) dx$$

$$C_2 = -(A_x + \frac{\partial A_x}{\partial y} dy) dx$$

Somando C_1 e C_2

$$C_{1,2} = -\frac{\partial A_x}{\partial y} dx dy$$

Teorema de Stokes

De maneira análoga, a soma da circulação dos caminhos SP e QR resultará em $C_{3,4}=\frac{\partial A_y}{\partial x}dxdy$

Circulação total PQRS

$$C_z = \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) dx dy$$

Repare que o termo entre parênteses é a componente z do $\nabla \times \mathbf{A}$

Teorema de Stokes

O resultado anterior foi obtido para uma superfície orientada na direção \hat{z} . Estendendo o resultado para superfícies orientadas nas direções \hat{x} e \hat{y} obteremos:

$$C_x = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) dxdy \ e \ C_y = \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) dxdy$$

Forma geral

$$C = C_x + C_y + C_z = \int_{s}
abla imes \mathbf{A} \cdot d\mathbf{s}$$

$$\oint_{\mathbf{I}} \mathbf{A} \cdot d\mathbf{I} = \int_{\mathbf{S}} \nabla \times \mathbf{A} \cdot d\mathbf{S}$$

Teorema de Stokes

O rotacional de um campo vetorial \mathbf{A} ($\nabla \times \mathbf{A}$) dá como resultado um vetor cujos componentes x,y e z dão a circulação desse campo vetorial por unidade de área respectivamente nos planos normais a esses componentes. A circulação do campo ao longo do caminho obedece a regra da mão direita.

Exemplo

Rotacional diferente de zero: $\oint_L \mathbf{A} \cdot d\mathbf{I} = 2\pi RA$

Exemplo

Rotacional igual a zero.

O Campo é perpendicular a dI

Classificação dos campos vetoriais

Um campo vetorial é completamente caracterizado quando são definidos seu divergente e rotacional.

- Um campo é dito solenoidal se $\nabla \cdot \mathbf{A} = 0$ (sem fonte ou sorvedouro)
- Um campo é dito potencial se $\nabla \times \mathbf{A} = 0$ (campo conservativo)

$$\nabla \cdot \vec{A} = 0 \quad \text{e} \quad \nabla \times \vec{A} = 0$$

$$\nabla \cdot \vec{A} \neq 0$$
 e $\nabla \times \vec{A} = 0$

$$\nabla \cdot \vec{A} = 0$$
 e $\nabla \times \vec{A} \neq 0$

$$\nabla \cdot \vec{A} \neq 0$$
 e $\nabla \times \vec{A} \neq 0$

Operadores de segunda ordem

Operações sobre *U* ou **A**

$$\nabla \cdot (\nabla U)$$

$$\nabla \times (\nabla U) = 0$$

$$\nabla (\nabla \cdot \mathbf{A})$$

$$\nabla \cdot (\nabla \times \mathbf{A}) = 0$$

$$\nabla \times (\nabla \times \mathbf{A})$$

Operador Laplaciano

$$\nabla^2 = \frac{\partial^2}{dx^2} + \frac{\partial^2}{dy^2} + \frac{\partial^2}{dz^2}$$
$$\nabla^2 U = \nabla \cdot (\nabla U)$$

Laplaciano Vetorial

$$\nabla^{2}\mathbf{A} = \nabla^{2}A_{x}\hat{x} + \nabla^{2}A_{y}\hat{y} + \nabla^{2}A_{z}\hat{z}$$
$$\nabla^{2}\mathbf{A} = \nabla(\nabla \cdot \mathbf{A}) - \nabla \times (\nabla \times \mathbf{A})$$

Operadores com mais de uma função

$$\nabla(UQ) = U(\nabla Q) + Q(\nabla U)$$

$$\nabla \cdot (U\mathbf{A}) = U(\nabla \cdot \mathbf{A}) + (\nabla U) \cdot \mathbf{A}$$

$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = -\mathbf{A} \cdot (\nabla \times \mathbf{B}) + (\nabla \times \mathbf{A}) \cdot \mathbf{B}$$

$$\nabla \times (U\mathbf{A}) = U(\nabla \times \mathbf{A}) + (\nabla U) \times \mathbf{A}$$

Coordenadas cilíndricas e esféricas

Coordenadas cilíndricas

$$\nabla U = \hat{\mathbf{r}} \frac{\partial U}{\partial r} + \hat{\mathbf{\phi}} \frac{1}{r} \frac{\partial U}{\partial \phi} + \hat{\mathbf{z}} \frac{\partial U}{\partial z}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \mathbf{A} = \hat{\mathbf{r}} \left(\frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \right) + \hat{\phi} \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \right) + \hat{\mathbf{z}} \left(\frac{1}{r} \frac{\partial (rA_{\phi})}{\partial r} - \frac{1}{r} \frac{\partial A_r}{\partial \phi} \right)$$

$$\nabla^2 U = \frac{\partial^2 U}{\partial r^2} + \frac{1}{r} \frac{\partial U}{\partial r} + \frac{1}{r^2} \frac{\partial^2 U}{\partial \phi^2} + \frac{\partial^2 U}{\partial z^2}$$

Coordenadas cilíndricas e esféricas

Coordenadas esféricas

$$\nabla U = \hat{\mathbf{R}} \frac{\partial U}{\partial R} + \hat{\mathbf{\theta}} \frac{1}{R} \frac{\partial U}{\partial \theta} + \hat{\mathbf{\phi}} \frac{1}{R \sin \theta} \frac{\partial U}{\partial \phi}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{R^2} \frac{\partial}{\partial R} (R^2 A_R) + \frac{1}{R \sin \theta} \frac{\partial}{\partial \theta} (A_{\theta} \sin \theta) + \frac{1}{R \sin \theta} \frac{\partial A_{\phi}}{\partial \phi}$$

$$\begin{split} \nabla \times \mathbf{A} &= \widehat{\mathbf{R}} \; \frac{1}{R sin\theta} \left(\frac{\partial}{\partial \theta} (A_{\phi} sin\theta) - \frac{\partial A_{\theta}}{\partial \phi} \right) + \widehat{\theta} \; \frac{1}{R} \left(\frac{1}{sin\theta} \; \frac{\partial A_{R}}{\partial \phi} - \frac{\partial}{\partial R} \left(RA_{\phi} \right) \right) \\ &+ \widehat{\phi} \; \frac{1}{R} \left(\frac{\partial}{\partial R} (RA_{\theta}) - \frac{\partial A_{R}}{\partial \theta} \right) \end{split}$$

$$\nabla^2 U = \frac{1}{R} \frac{\partial^2 (RU)}{\partial R^2} + \frac{1}{R^2 sin^2 \theta} \frac{\partial^2 U}{\partial \phi^2} + \frac{1}{R^2 sin \theta} \frac{\partial}{\partial \theta} \left(sin \theta \frac{\partial U}{\partial \theta} \right)$$

Coordenadas cilíndricas e esféricas

Questões

- a) Dado o campo vetorial $\mathbf{A} = xy\hat{x} + y^2\hat{y}$, avalie em coordenadas cartesianas e cilíndricas a circulação deste campo ao longo do percurso fechado C mostrado abaixo.
- b) Dado o campo vetorial $\mathbf{B}=(y+z)\hat{y}+xy\hat{z}$, avalie em coordenadas retangulares o fluxo que atravessa a superfície triangular no plano xz definida pelas retas x=0, z=0, x=1- z, mostrado na figura a seguir.

