Formale Methoden der Informatik

Prof. Dr. Karsten Wolf

Teil I Semantik von Programmiersprachen

Prof. Dr. Karsten Wolf

Schwerpunkt: Programmiersprachen

- Syntax = Struktur von Sätzen der Sprache
 (Theoretische Grundlagen der Informatik II: Grammatiken, Automaten)
- Semantik = Bedeutung von Sätzen der Sprache
- Pragmatik = Verwendung der Sprachen (in den Anwendungsgebieten)

Wozu Semantik?

- Programme abarbeiten
- Programme erstellen
- Programme ändern/austauschen
- Programme übersetzen
- Programme mit Spezifikation vergleichen

Wozu formale Semantik?

- Programme automatisch abarbeiten
 - Interpreter
- Programme automatisch erstellen
 - Konstruktion
- Programme automatisch ändern/austauschen
 - Transformation, Substitution, Optimierung
- Programme automatisch übersetzen
 - Compiler
- Programme automatisch mit Spezifikation vergleichen
 - Verifikation

Außerdem

- Informale Semantiken (Standards, Reports, ...) sind
 - unvollständig
 - missverständlich
 - fehlerhaft
- Folgen:
 - Portabilität als Problem
 - Schwierigkeiten beim Ablösen veralteter Programmiersprachen
 - Unmöglichkeit seriöser Verifikation
 - **–** ...
- Formalisierung hat schon oft solche Probleme aufgedeckt

Nur mit formaler Semantik möglich:

- Beweisbar korrekte Interpreter/Compiler
- Beweisbar korrekte Programmoptimierung
- Konstruktion, Verifikation

Und schließlich...

Informatik = Syntax + Semantik + Pragmatik

Wir manipulieren Symbole, denken uns etwas dabei und verfolgen einen Zweck...

• Kapitel 1: Eine einfache Programmiersprache:

ermöglicht Vergleich verschiedener Semantikarten

• 2. Kapitel: Operationelle Semantik

Wie (in welchen Schritten) entsteht der Effekt eines Programms?

- Maschinensemantik
- Natürliche Semantik (Big-Step-Semantik)
- Strukturelle operationelle Semantik (Small-Step-Semantik)

Einsatz z.B.: Beweisbar korrekte Übersetzung

• 3. Kapitel: Denotationelle Semantik

Was ist der Effekt eines Programms?

Funktion, die Eingaben eine Ausgabe zuordnet

Einsatz z.B.: Programmoptimierung

Abstract Interpretation = Informationsbeschaffung zur Compilezeit

• 4. Kapitel: Axiomatische Semantik

Welche Aussagen kann ich über den Effekt eines Programms beweisen?

Logischer Kalkül

Einsatz z.B.: Programmverifikation

Kapitel 1

Eine einfache Programmiersprache

W

```
cmd seq = command | cmd seq ";" command.
               = "identifier" ":=" expression | "skip"
command
              | "while" expression "do" cmd seq "end"
              | "if" expression "then" cmd seq "end"
              | "if" expression "then" cmd seq "else"
                cmd seq "end".
expression = term | expression ("+" | "-" | "OR") term.
            = factor | term ("*" | "/" | "AND") factor.
term
factor
           = "NOT" factor | "number" | "identifier"
              | "true" | "false" | "(" expression ")"
              | expression ("<"|">"|">="|">="|"<>"|"=")
               expression
```

Abstrakte Syntax; Syntaxbaum

- = Ableitungsbaum mit einigen Vereinfachungen, z.B.
- Verzicht auf struktursichernde Elemente: (,),;, end...
- Vereinheitlichung, z.B.
 - if B then S end \rightarrow if B then S else skip end
- Operanden in den Wurzelknoten von Expressions
- Listenstrukturen (z.B. cmd_seq) einebnen
- Umbenennungen (z.B. Expression→Term→Faktor) überspringen

- ...

Beispiel: Ableitungsbaum (schon etwas vereinfacht)

Beispiel: Syntaxbaum

Ausdruckstypen

Typ einer Expression:

- integer
 - Variable
 - Number
 - Expression mit Kopf +,-,*,/
- boolean
 - true, false
 - Expression mit Kopf OR, AND, NOT,<,>,<=,>=,<>,=
- Vereinbarung (für Einfachheit): Typen von Bedingungen
- (IF, WHILE) sei boolean; Typ von Anweisung sei integer

Kapitel 2

Operationelle Semantik

Idee

• Bedeutung eines Programms wird angegeben durch Transformation in ein Programm einer anderen, als bekannt vorausgesetzten Sprache/Maschine

Varianten

- Maschinensemantik: Übersetzung in Code einer konkreten Maschine
 - Jeder Compiler; schwach wegen Maschinenbesonderheiten
- Abstrakte Maschinensemantik: Übersetzung in Code einer abstrakten Maschine
 - WAM (Prolog), JVM (Java), P-Code (Pascal), Lilith/M-Code (Modula-2), .NET,; Pragmatisch, für Portabilität, einige nur durch informale Standards festgelegt
- Selbstdefinition: Ein Interpreter f
 ür Sprache X, geschrieben in X
 LISP, PROLOG; informal ok, formal unbrauchbar
- Structural Operational Semantics: Übersetzung in ein Automatenmodell (Small step)
 - Zustand = Variablenbelegungen etc. Schritt = elementare Zustandstransformation durch Statement
- Natural Semantics: dasselbe (Big Step)
 - Zustand = Variablenbelegungen etc. Schritt = Zustandstransformation durch Statement

Vorbereitung: Betrachten W

Zustand: ein Wert f
ür jede Variable

- Typ: Semantik eines Typs t ist ein Wertebereich (Menge) WB(t)
 - WB(integer) := $\{0,1,-1,2,-2,3,-3,...\}$ WB(bool) := $\{tt,ff\}$
- Expression: wird interpretiert auf einem Zustand (liefert Wert), ändert Zustand selbst nicht
- Command: Ändert Zustand, liefert keinen Wert

Zustand in W

- Formal: Ein Zustand s ist eine Abbildung
 - Definitionsbereich ist V (Menge der Variablen des Programms)
 - Für v∈V ist s(v) aus WB(integer)

Abstrahiert von Implementationsdetails wie

- Speicheradresse
- Binärkodierung

Semantik einer Expression E

```
... ist eine Abbildung States → WB(typ(E))
```

In W: Zu einer arithmetischen Expression sei A [E], zu einer booleschen Expression sei B [E] ihre Semantik,

```
also: A: AExp \rightarrow (State \rightarrow WB(integer))
B: BExp \rightarrow (State \rightarrow WB(boolean))
```

Definition der Semantik: strukturelle Induktion über der Syntax einer Expression

Semantik einer Expression E

Sei s Zustand.

```
A [n] (s) = value(n), falls n number (vertiefen wir nicht weiter)
A \llbracket x \rrbracket (s) = s(x),
A [E1+E2] (s) = A [E1] (s) + A [E2] (s)
A [E1-E2] (s) = A [E1] (s) - A [E2] (s)
A [E1*E2] (s) = A [E1] (s) * A [E2] (s)
A [E1/E2] (s) = A [E1] (s) : A [E2] (s)
B [true] (s) = tt
B [false] (s) = ff
B [E1 OR E2] (s) = ff, falls B [E1] (s) = B [E2] (s) = ff, sonst tt
B [E1 AND E2] (s) = tt, falls B [E1] (s) = B [E2] (s) = tt, sonst ff
B [NOT E] (s) = tt, falls B [E] (s) = ff, sonst ff
B [E1<E2] (s) = tt, falls A [E1] (s) < A [E2] (s), sonst ff
analog: >, >=,<=, =, <>
```

2.1 Natural Semantics (NatS)

- Es geht nun um commands.
- Idee: Relation <S,s> → s'
 - "Gestartet in Zustand s, terminiert Command S und führt zu Zustand s"
- Formulierung der Definitionen
 - (a) Axiome, z.B. $\langle skip, s \rangle \rightarrow s$
 - (b) Regeln, z.B.

Bedingung

Prämisse(n)

<if b then S1 else S2 end,s> → s'

Natural Semantics für W

• $[skip_{NatS}]$ $\langle skip, s \rangle \rightarrow s$

$$s[x\rightarrow k](x) = k$$

 $s[x\rightarrow k](y) = s(y) \quad (y \neq x)$

- $[ass_{NatS}]$ $<\mathbf{x}:=\mathbf{E},s>\rightarrow s[x\rightarrow A \ [E]\ (s)]$
- [comp_{NatS}] $\langle s1,s \rangle \rightarrow s' \langle s2,s' \rangle \rightarrow s''$ $\langle s1;s2,s \rangle \rightarrow s''$
- [if1_{NatS}] $\langle s1,s \rangle \rightarrow s'$ falls B [b] (s) =tt $\langle if b then S1 else S2 end,s \rangle \rightarrow s'$
- [while1_{NatS}] $\langle S1, S \rangle \rightarrow S'$ $\langle while b do S1 end, S' \rangle \rightarrow S''$ falls B [b] (s) =tt $\langle while b do S1 end, S \rangle \rightarrow S''$
- [while2_{NatS}] <while b do S end,s> →s falls B [b] (s) = ff

Zielzustand ermitteln

- x:=x-y;y:=x+y;x:=y-x
- Startzustand: s(x) = 3, s(y) = 7
- ges: Zielzustand
- Weg: Folgerungsbaum aus Regel/Axiom-Instanzen

$$<\mathbf{x} := \mathbf{y} - \mathbf{x}, \{(x, -4), (y, 3) > \rightarrow \{(x, 7), (y, 3)\} \\
<\mathbf{y} := \mathbf{x} + \mathbf{y}, \{(x, -4), (y, 7)\} > \rightarrow \{(x, -4), (y, 3)\} \\
<\mathbf{y} := \mathbf{x} + \mathbf{y}; \mathbf{x} := \mathbf{y} - \mathbf{x}, \{(x, -4), (y, 7)\} > \rightarrow \{(x, 7), (y, 3)\} \\
<\mathbf{x} := \mathbf{x} - \mathbf{y}, \{(x, 3), (y, 7)\} > \rightarrow \{(x, -4), (y, 7)\} \\
<\mathbf{x} := \mathbf{x} - \mathbf{y}; \mathbf{y} := \mathbf{x} + \mathbf{y}; \mathbf{x} := \mathbf{y} - \mathbf{x}, \{(x, 3), (y, 7)\} > \rightarrow \{(x, 7), (y, 3)\} \\$$

Semantische Äquivalenz nachweisen

- wollen zeigen:
 - while b do S end ist semantisch äquivalent zu
 - if b then S; while b do S end else skip end
- Formal: Für alle s,s':
 - < while b do S end,s>→s' genau dann, wenn
 - < if b then S; while b do S end else skip end, $s>\rightarrow s'$

Beweis: Implikation

- Es gelte < while b do S end,s>→s'.
- Erster Fall: Es gelte B [b] (s) =tt.
 - \rightarrow [while1_{NatS}]: es gibt s" mit <S,s $>\rightarrow$ s" und <while b do S end,s" $>\rightarrow$ s'
 - \rightarrow [comp_{NatS}]: <**S**; while b do S end, s> \rightarrow s'
 - \rightarrow [if1_{NatS}]:<if b then S; while b do S end else skip end,s> \rightarrow s'
- Zweiter Fall: Es gelte B [b] (s) =ff.
 - →[while2_{NatS}]: s=s'
 - Gleiches Resultat liefert [skip_{NatS}]: <skip,s>→s und folglich

[if2_{NatS}]: <if b then S; while b do S end else skip end, $s>\rightarrow s$.

Beweis: Replikation

- Es gelte <if b then S; while b do S end else skip end,s>→s'.
- Erster Fall: Es gelte B [b] (s) =tt.
 - \rightarrow [if1_{NatS}]: <**S**; while b do S end, $s \rightarrow s$
 - \rightarrow [comp_{NatS}]: es gibt s" mit <S,s $>\rightarrow$ s" und <while b do S end,s" $>\rightarrow$ s'
 - \rightarrow [while1_{NatS}]: <while b do S end,s> \rightarrow s'
- Zweiter Fall: Es gelte B [b] (s) =ff.
 - \rightarrow [if2_{NatS}]: <**skip**,s> \rightarrow s', also s=s'
 - \rightarrow [while2_{NatS}]: < while b do S end,s> \rightarrow s'.

Terminierung

- Ausführung von S in s
 - terminiert, falls es ein s' gibt mit <S,s>→s'
 - kreist, falls es kein s' gibt mit <S,s>→s' (dann: kein endlicher Folgerungsbaum)
- Ausführung von S
 - terminiert immer, falls S in allen Zuständen s terminiert
 - kreist immer, falls S in allen Zuständen s kreist
- Beispiele:
 - Jedes while-freie Statement in W terminiert immer
 - while true do skip end kreist immer
 - while x > 1 do y:=0; while y < x do y:=y+2
 end; if x = y then x := x / 2 else x := 3 *
 x + 1 end end immer-Terminierung ungeklärt 32</pre>

Beweis: Jedes while-freie S terminiert immer

- (Induktion über Struktur desFolgerungsbaums)
- [skip_{NatS}], [ass_{NatS}]: Zu jedem s ex. s'; Baum hat Tiefe 0
- [if1_{NatS}], [if2_{NatS}]: Ind.-Voraussetzung liefert: es gibt ein ein s' mit <S1,s>→s' bzw. <S1,s>→s'
- [comp_{NatS}]:Ind.-Voraussetzung liefert: Es gibt ein s' mit
 <S1,s>→s' und es gibt ein s" mit <S2,s'>→s"

Beweis: while true do skip end kreist immer

Einzige anwendbare Regel: [while1_{NatS}]

- 2. Prämisse und Folgerung identisch
- → kein endlicher Ableitungsbaum generierbar

Determinismus

- Zu jedem Command S in W und jedem s gibt es max. ein s' mit
 <S,s>→s'
- Beweis: (Induktion über Struktur des Folgerungsbaums)
- [skip_{NatS}], [ass_{NatS}], [while2_{NatS}]: s' von s jeweils funktional abhängig
- [if1_{NatS}], [if2_{NatS}]: Ind.-Voraussetzung liefert: es gibt max. ein s' mit <S1,s>→s' bzw. <S1,s>→s'
- [comp_{NatS}]: Ind.-Voraussetzung liefert: Es gibt max. ein s' mit
 <S1,s>→s' und es gibt max. ein s" mit <S2,s'>→s"
- [while1_{NatS}]:Ind.-Voraussetzung liefert: Es gibt max. ein s' mit <S,s>→s' und max. ein s" mit <while b do S end,s'>→s"

Zum Vergleich mit anderen Semantiken

- definieren semantische Funktion
 S_{NatS}:Cmd→(State→State) wie folgt:
- $S_{NatS} [S] (s) := s', falls < S, s > \rightarrow s', und$ *n.def.*, sonst
- Rechtfertigung: Determiniertheit von W
- Bemerkung: Für Sprachen mit Nichtdeterminismus wäre S:Cmd→(State→℘(State))

Zusammenfassung: Natural Semantics

- Zu jedem Command: Zustandsüberführung
 - Ermittlung per Folgerungsbaum
- Können mittels Semantik
 - Werte von Zielzuständen ermitteln
 - semantische Äquivalenz von Konstrukten nachweisen
 - über Terminierung und Determiniertheit argumentieren

2.2 Structural Operational Semantics

- Idee: Semantik eines Commands ist *Folge* elementarer Zustandstransformationen
- Zum Vergleich: Natural Semantics liefert eine Zustandsüberführung für das *gesamte* Command, gerechtfertigt durch Überführungen (meist) einfacherer Commands

Notation

- <S,s> ⇒ <S',s'> : Um S in s auszuführen, muss man erst nach s' übergehen und dort S' ausführen
- <S,s> ⇒ s': Ausführung von S in s geht in s' über und terminiert dort

Structural Operational Semantics für W

• $[skip_{SOS}]$ < $skip,s> \Rightarrow s$

```
• [ass_{SOS}] \langle \mathbf{x} : = \mathbf{E}, \mathbf{s} \rangle \Rightarrow \mathbf{s}[\mathbf{x} \rightarrow \mathbf{A} \ [E] \ (\mathbf{s})]
• [comp1_{SOS}] \langle S1, S \rangle \Rightarrow S'
                               \langle S1; S2, S \rangle \Rightarrow \langle S2, S' \rangle
• [comp2_{SOS}] <$1,s> \Rightarrow <$1 \,s'>
                                 <S1;S2,S> ⇒ < S1 \;S2,S'>
• [if1<sub>SOS</sub>] <if b then S1 else S2 end,S> \Rightarrow <S1,S>
                                                                            falls B [b] (s) =tt
• [if2<sub>SOS</sub>] <if b then S1 else S2 end,S> \Rightarrow <S2,S>
                                                                            falls B [b] (s) =ff

    [while<sub>SOS</sub>] <while b do S end,s> ⇒ <if b then S;</li>
```

while b do S end else skip end, S>

Abarbeitungsssequenzen

• endlich, terminierend, z.B. (mit s(x) = a, s(y) = b)

```
- <x:=x-y;y:=x+y;x:=y-x,s> ⇒
  <y:=x+y;x:=y-x,s[x→a-b]>⇒
  <x:=y-x,s[x→a-b,y→a]>⇒
  s[x→b,y→a]
```

- unendlich, nicht terminierend, z.B.
 - <while true do skip end,S> ⇒
 <if true then skip;while true do skip end
 else skip end,S> ⇒
 <skip;while true do skip end,S> ⇒
 <while true do skip end,S> ⇒...
- endlich, verklemmend (endet in einem <S',s'> kommt in W nicht vor, aber in Erweiterungen)

Semantische Äquivalenz

• S1 und S2 sind semantisch äquivalent, falls folgende Bedingungen für alle s,s',S' gelten:

- <S1,s>⇒*s' gdw. <S2,s>⇒*s'
- Wenn <S1,s>⇒*<S',s'> (ohne Nachfolger) so gibt es ein
 S2' mit <S2,s>⇒*<S2',s"> (ohne Nachfolger)
- Wenn <S2,s>⇒*<S',s'> (ohne Nachfolger) so gibt es ein S1' mit <S1,s>⇒*<S1',s"> (ohne Nachfolger)
- Wenn <S1,s>⇒* (unendlich), so <S2,s>⇒* (unendlich).

Argumentieren über Terminierung, Determiniertheit analog zu NatS

Unterschiede:

- SOS unterscheidet Terminierung und Verklemmung
- Argumentation durch Induktion über
 Abarbeitungssequenzen statt über Folgerungsbaum

Zum Vergleich mit anderen Semantiken

- definieren semantische Funktion
 S_{SOS}:Cmd→(State→State) wie folgt:
- S_{SOS} [S] (s) := s', falls $\langle S, s \rangle \Rightarrow^* s'$, und *n.def.*, sonst
- Rechtfertigung: Determiniertheit von W

Vergleich: SOS versus NatS

- Für jedes Command aus W gilt: S_{SOS} [S] = S_{NatS} [S]
- Zum Beweis: Zeigen
 - Wenn <S,s> →s' so <S,s>⇒*s'
 - Wenn <S,s>⇒*s' so <S,s> →s'

Beweis Teil 1

- per Induktion über dem Folgerungsbaum
- Es gelte <S,s>→s' (also ex. endlicher Folgerungsbaum)
- Fall [skip_{NatS}]: Also s'=s; SOS liefert <skip,s>⇒s
- Fall [ass_{NatS}]: Also s' = s[x $\rightarrow A$ [E] (s)]; SOS dito.
- Fall [comp_{NatS}]: Es gibt also s" mit <S1,s>→s" und <S2,s">→s'.
 Nach Ind.Vor: <S1,s>⇒*s" und <S2,s">⇒*s'. Aus <S1,s>⇒*s"
 kann man folgern: <S1;S2,s>⇒*<S2,s">. Also <S1;S2,s>⇒*s'
- Fall [if1_{NatS}]: Nach Ind.Vor: <S1,s>⇒*s'. SOS liefert also
 <if b then S1 else S2 end,s> ⇒ <S1,s> ⇒*s'.
- Fall [if2_{NatS}]: Analog.
- Fall [while1_{NatS}]: Nach Ind.Vor: <S,s>⇒*s" und <while b do S end,s">⇒*s'.
 Also <while b do S end,s> ⇒ <if b then S; while b do S end else skip end,s> ⇒ < S; while b do S end,s> ⇒ * <while b do S end,s">⇒*s'
- Fall [while2_{NatS}]: Also s=s'; SOS liefert <while b do S end,s> ⇒ <if b then S; while b do S end else skip end,s> ⇒ <skip,s> ⇒s.

Beweis Teil 2

- per Induktion über Abarbeitungssequenzen
- Es gelte <S,s>⇒*s' (also ex. endlicher Folgerungsbaum)
- Fall [skip_{SOS}], [ass_{SOS}]: leicht zu sehen
- Fall [comp1/2_{SOS}]: Man kann zeigen: Es gibt ein s" mit <S1;S2,s>⇒*s" und <S2,s">⇒*s'. <S1;S2,s>⇒*s" kann man folgern: <S1,s>⇒*s". Nach Ind.Vor: <S1,s>s →s" und <S2,s">→s'. Also: <S1;S2,s>→s'.
- Fall [if1_{SOS}]: <if b then S1 else S2 end,s>⇒<S1,s>⇒*s'.
 Nach Ind.Vor: <S1,s>⇒*s'. NatS liefert also <if b then S1 else S2 end,s> → s'.
- Fall [if2_{SOS}]: Analog.
- Fall [while_{SOS}]: <while b do S end,s> ⇒ <if b then S;
 while b do S end else skip end,s> ⇒* s'. Nach
 Ind.Vor: <if b then S; while b do S end else skip end,s> →s'. Wegen sem. Äquivalenz auch <while b do S end,s> →s'.

2.3 Erweiterungen von W: 1. Abort

- Neues command: abort.
- Semantik informal: Programm abbrechen, also *nicht fortsetzen*
- SOS/NatS von W mit abort = SOS/NatS von W ohne abort!
 (sprich: auf abort keine Regeln/Axiome anwendbar)
- Dadurch in beiden Semantiken: skip und abort nicht äquivalent
- SOS → Ausführung von abort führt zu Verklemmung
- NatS → Ausführung von abort = Es gibt keinen Folgerungsbaum
- In SOS sind abort und while true do skip end nicht äquivalent
- In NatS sind abort und while true do skip end aquivalent!

Erweiterungen von W: 2. Nichtdeterminismus

- Neues command: S1 or S2.
- Semantik informal: nichtdeterministische Wahl zw. S1 und S2
- [or1_{NatS}]: $\langle S1,s \rangle \rightarrow s'$ [or2_{NatS}]: $\langle S2,s \rangle \rightarrow s'$ $\langle S1 \text{ or } S2,s \rangle \rightarrow s'$
- $[or1_{SOS}]$: <S1 or S2,s> \Rightarrow <S1,s> $[or2_{SOS}]$: <S1 or S2,s> \Rightarrow <S2,s>
- Betrachten (while true do skip end) or x:x-y;y:=x+y;x:=x-y;
- NatS → Es gibt einen endlichen Folgerungsbaum
- SOS → Es gibt sowohl endliche als auch unendliche Abarbeitungssequenzen
- → NatS versteckt mögliches kreisendes Verhalten

Erweiterungen von W: 3. Nebenläufigkeit

- Neues command: S1 par S2.
- Semantik informal: nebenläufige Ausführung von S1 und S2

```
• [par1_{SOS}]: \langle S1, s \rangle \Rightarrow s' [par2_{SOS}]: \langle S2, s \rangle \Rightarrow s' \langle S1 par S2, s \rangle \Rightarrow \langle S2, s' \rangle \langle S1 par S2, s \rangle \Rightarrow \langle S1, s' \rangle [par3_{SOS}]: \langle S1, s \rangle \Rightarrow \langle S1', s' \rangle \langle S1 par S2, s \rangle \Rightarrow \langle S1' par S2, s' \rangle [par4_{SOS}]: \langle S2, s \rangle \Rightarrow \langle S2', s' \rangle \langle S1 par S2, s \rangle \Rightarrow \langle S1 par S2', s' \rangle
```

 In NatS nicht ausdrückbar, weil zu jedem Command ein atomarer Zustandsübergang definiert ist!

Erweiterungen von W: 4. Blöcke

- mit Variablendeklarationen (dürfen weiter außen bereits deklariert sein)
- Syntax:

```
command = ... | "begin" declaration cmd_seq "end"
```

 Verwendung eines Namens bezieht sich immer auf die innerste Deklaration.

Natural Semantics für W + Blöcke

- setzen voraus: Für declarationlist L sei dv(L) die Menge der in L deklarierten Variablen
- Deklaration selbst hat keine Wirkung auf den Zustand
- Nach Verlassen von block müssen Variablenwerte auf den Inhalt vor Betreten des Blocks zurückgesetzt werden

[block_{NatS}]:
$$\langle S,s \rangle \rightarrow s'$$

 $\langle begin DL S end,s \rangle \rightarrow s'[\{x \rightarrow s(x) | x \in dv(DL)\}]$

Erweiterungen von W: Prozeduren

Syntax:

- In Blockstrukturen können Bezeichner mehrfach deklariert sein. Es wird immer die innerste Deklaration/Definition verwendet. Unterscheiden:
- Statische/dynamische Scopes für
 - Prozeduren
 - Variablen
 - Statisch: Auswahl nach Einbettung von Blöcken im Quelltext
 - Dynamisch: Auswahl nach Einbettung in der Aufrufstruktur

Beispiel statisch/dynamisch

```
begin var x; x := 0;
  proc p is begin x := x * 2 end
  proc q is begin call p end
  begin var x; x := 5;
     proc p is x := x + 1;
     call q;
            y := x;
  end
end
         Proc statisch/Var statisch: y = 5
         Proc statisch/Var dynamisch: y = 10
         Proc dynamisch/Var dynamisch: y = 6
```

Prozedurumgebungen

- Brauchen: Zuordnung von Namen zu Blöcken:
 - env: Names → Commands
- Betreten von Blöcken = Aktualisierung von env:
 - upd(proc p is S; DL, env) = upd(DL,env[p \mapsto S])
 - $upd(\epsilon,env) = env$
- Alle Semantikregeln stehen im Kontext einer Umgebung env:
 - env + <skip,s> \rightarrow s

Natural Semantics für W mit Proz. (dyn. Scopes)

• $[skip_{NatS}]$ env $\vdash \langle skip, s \rangle \rightarrow s$

```
[ass<sub>NatS</sub>] env + < \mathbf{x} := \mathbf{E}, s > \rightarrow s[x \rightarrow A \parallel E \parallel (s)]
  [comp_{NatS}] env + < s1, s > \rightarrow s' env + < s2, s' > \rightarrow s''
                      env + < s1; s2, s > \rightarrow s"
• [if1_{NatS}] env + < s1, s> \rightarrow s' falls B [b] (s) =tt
                 env + < if b then S1 else S2 end, <math>s > \rightarrow s'
• [if2_{NatS}] env + < s2, s > \rightarrow s'
                                                                          falls B \[b\] (s) =ff
                env + < if b then S1 else S2 end, <math>s > \rightarrow s'
• [while 1_{NatS}] env + < s, s > \rightarrow s' env + < while b do S end, <math>s' > \rightarrow \underline{s}''
                                                                          falls B [b] (s) =tt
                    env \vdash <while b do S1 end,s> \rightarrows"

    [while2<sub>Nats</sub>] env + <while b do S end,s> →s falls B [b] (s) = ff

  [blockNatS] upd(DL,env) ⊢ <S,s> →s'
                  env + <begin DL S end,s> \rightarrows'[\{x\rightarrow s(x)|x\in dv(DL)\}]

    [call<sub>NatS</sub>] env ⊢ <S,s>→s<sup>*</sup>

                                                         falls env(p) = S
                                                                                        56
                   env ⊦ <call p,s> → s'
```

Natural Sem. für W mit Proz. (gemischte Scopes)

- müssen env verfeinern: brauchen Zuordnung von Namen zu Blöcken zum Zeitpunkt der Definition einer Prozedur:
 - env: Names → Commands x Environments
 - upd(proc p is S; DL, env) = upd(DL,env[p \mapsto (S,env)])
 - $upd(\epsilon,env) = env$

• $[call_{NatS}]$ $env'[p \mapsto (S,env')] \vdash \langle S,s \rangle \rightarrow s'$ $env \vdash \langle call p,s \rangle \rightarrow s'$ falls env(p) = (S,env')

Natural Sem. für W mit Proz. (static Scopes)

- müssen Konzept des Zustands verfeinern:
 - bisher: Variable verweist auf Wert. Hier:
 - Variable verweist auf Location (Env_V:Names →Loc)
 - Location verweist auf Wert
 - (Sto: Loc → WB(integer/boolean))
 - new: → Loc liefert eine bislang nicht verwendete Location
 - Assignments ändern Sto
 - Blöcke ändern Env
 - Ausdrucksauswertung bezieht Werte, indem von Namen über Env auf eine Location und von dieser über sto auf einen Wert verweisen wird:

```
s = sto o env<sub>\/</sub>
```

Variablendeklarationen

Variablendeklarationen definieren Variablenumgebungen:

[var_{NatS}]:
$$\frac{\langle DL, env_{\vee}[x \rightarrow new()] \rangle \rightarrow env_{\vee}}{\langle var \ x : type; \ DL \rangle \rightarrow env_{\vee}}$$

[none_{NatS}]:
$$\langle \epsilon, env_{\vee} \rangle \rightarrow env_{\vee}$$

 Prozedurdeklarationen aktualisieren Prozedurumgebungen:

```
upd(proc p is S;DL ,env<sub>V</sub>,env<sub>P</sub>)
= upd(DL,env<sub>V</sub>,env<sub>P</sub>[p \rightarrow (S,env<sub>V</sub>,env<sub>P</sub>)])
upd(\epsilon,env<sub>V</sub>,env<sub>P</sub>) = env<sub>P</sub>
```

Natural Semantics für W mit Proz. (st. Scopes)

[skip_{NatS}] env_V,env_P ⊢ <skip,sto> → sto

```
[ass2<sub>NatS</sub>] env<sub>V</sub>,env<sub>P</sub> \vdash \langle \mathbf{x} := \mathbf{E}, \text{sto} \rangle \rightarrow \text{sto}[\text{env}_{V}(\mathbf{x}) \rightarrow A [E] (\text{sto o env}_{V})]
    [comp_{NatS}] env_{V}, env_{P} \vdash \langle s1, sto \rangle \rightarrow sto' env_{V}, env_{P} \vdash \langle s2, sto' \rangle \rightarrow sto''
                              env_{V}, env_{P} + \langle S1; S2, sto \rangle \rightarrow sto
• [if1_{NatS}] env_{V},env_{P} \vdash \langle sto \rangle \rightarrow sto' falls B [b] (s) =tt
                env<sub>V</sub>,env<sub>P</sub> + <if b then S1 else S2 end,sto> →sto
• [if2<sub>NatS</sub>]
                      analog
• [while1<sub>NatS</sub>] analog
• [while2<sub>NatS</sub>] analog
   [blockNatS] <DL<sub>Var</sub>,env<sub>V</sub>>→env<sub>V</sub>'
                             upd(DL<sub>Proc</sub>,env<sub>V</sub>',env<sub>P</sub>) ⊦ <S,sto> →sto'
                           env<sub>V</sub>,env<sub>P</sub> + <begin DL S end,sto> →sto
• [call_{NatS}] env_V', env_P' + \langle S, sto \rangle \rightarrow sto' mit env_P(p) = \langle S, env_V', env_P' \rangle
                        env<sub>\/</sub>,env<sub>\p\</sub> + <call p,sto> → sto<sup>4</sup>
```

Lektionen aus Erweiterungen

SOS besser für Nichtdeterminismus und Parallelität

- NatS besser für Blockstrukturen
- Komplexe Sprachen erfordern angepasste Zustandsdefinitionen (env, Loc, Sto,...)

2.4 Eine beweisbar korrekte Implementation

- Brauchen:
 - Maschine
 - Formale Semantik dieser Maschine
 - Übersetzung von W in die Sprache der Maschine
 - Beweis der Übereinstimmung der Semantik eines
 W-Programms mit der seiner Übersetzung

Die Maschine AM

Besitzt:

- einen Programmspeicher für eine Anweisungssequenz
- einen Kellerspeicher für die Ausdrucksauswertung Eine Kellerkonfiguration ist Element von (WB(integer)∪WB(boolean))*
- einen allgemeinen Speicher für Variablenwerte s∈State

Anweisungen von AM

- PUSH n: Konstante n auf Keller schreiben
- TRUE, FALSE: analog
- ADD: oberste Kellersymbole entnehmen, addieren, Ergebnis auf Keller schreiben
- MULT, SUB, DIV, OR, NEG, EQ, NEQ, LE, GE, LT, GT: analog
- FETCH x: Variablenwert aus allgemeinem Speicher lesen und auf Keller schreiben
- STORE x: oberstes Kellersymbol entfernen und als Wert in Variable x speichern
- NOOP: nix tun
- BRANCH (c1,c2): oberstes Kellersymbol (bool) entfernen und abhängig vom Wahrheitswert c1 oder c2 ausführen
- LOOP(c1,c2): c1 ausführen, oberstes Kellersymbol (bool) entfernen, bei ff beenden, sonst c2 ausführen und von vorn
- c1 : c2: Hintereinanderausführung

Operationelle Semantik für AM

- Zustand (Konfiguration) besteht aus
 - verbleibender Anweisungssequenz
 - Stackkonfiguration
 - Zustand (Variablenwerte)

Operationelle Semantik für AM

- <PUSH *n*:c,e,s> > <c, n e, s>
- analog: TRUE, FALSE
- <ADD:c,x y e,s>
 <c, (x+y) e, s>
- analog: SUB MULT DIV AND OR NEG EQ NEQ LT GT LE GE
- <FETCH x:c,e,s> \Rightarrow <c, s(x) e, s>
- <STORE x:c,y e,s> \Rightarrow <c, e, s[x \Rightarrow y]>
- <NOOP:c,e,s>
 <c,e,s>
- $\langle BRANCH(c1,c2):c,x e,s \rangle \rangle \langle c1:c,e,s \rangle$, falls x = tt
- $\langle BRANCH(c1,c2):c,x e,s \rangle \rangle \langle c2:c,e,s \rangle$, falls x = ff
- <LOOP(c1,c2):c,e,s><c1:BRANCH(c2:LOOP(c1,c2),NOOP):c,e,s>

Beispiel

 Ausführung von PUSH 1:FETCH x:ADD:STORE x bei leerem Stack und Initialzustand x = 3:

```
< PUSH 1:FETCH x:ADD:STORE x,ε,s> ▷
```

$$< \varepsilon, \varepsilon, s[x\rightarrow 4] >$$

(Terminierung)

Die Übersetzung: Expressions

- Ziel: expression $E \rightarrow$ Anweisungssequenz C(E) mit:
 - $< C(E), e, s > > * < \epsilon, A/B [E] (s) e, s >$
- C(x) = FETCH x
- C(n) = PUSH n
- C(true) = TRUE, C(false) = FALSE
- C(E1 + E2) = C(E2):C(E1):ADD; andere Operationen analog

Die Übersetzung: Statements

- C(x := E) = C(E): STORE x
- C(skip) = NOOP
- C(S1;S2) = C(S1):C(S2)
- C(if b then S1 else S2 end) = C(b):BRANCH(C(S1), C(S2))
- C(while b do S end) = LOOP(C(b), C(S))

Beispiel

```
C(y:=1;while NOT (x=1) do y:=y*x;x:=x-1 END)
```

PUSH 1: STORE y:

LOOP(PUSH 1:FETCH x:EQ:NEG,

FETCH x:FETCH y:MULT:STORE y:

PUSH 1:FETCH x:SUB:STORE x)

Korrektheitsbeweis: Plan

- Zeigen für beliebige Expressions von W:
 < C(E),e,s> ▷* <ε,A/B [E] (s) e,s>
 (und Zwischenkonfigurationen haben Stack der Form w e)
- Zeigen für beliebige Commands:
 S_{NatS} [S] =S_{AM} [S] für alle S aus W.
 2.1 Wenn <S,s>→s', so <C(S),ε,s> ▷*<ε,ε,s'>
 2.2 Wenn <C(S),ε,s> ▷*<ε,e,s'>, so <S,s>→s' und e=ε

Korrektheit der Expressions

- z.Z.: <C(E),e,s> >* <ε,A/B [E] (s) e,s>
- Induktion über Struktur von E:

```
- <C(n),e,s>=<PUSH n,e,s> (nach Semantik AM) <ε,n=A \llbracket n \rrbracket (s) e,s>
```

- < C(E1+E2),e,s>=< C(E2): C(E1):ADD,e,s> ▷* (nach IVor) < C(E1):ADD, A [E2] (s) e,s> ▷* (nach IVor) < ADD, A [E1] (s) A [E2] (s) e,s> ▷ (nach Sem. AM) < ε, A [E1] (s) + A [E2] (s) = A [E1+E2] (s) e,s>
- andere Operationen analog
- Außerdem: Zwischenkonfigurationen haben Stack w e mit w≠ε

Korrektheit der Statements I

```
    z.Z.: Wenn <S,s>→s', so <C(S),ε,s> ▷*<ε,ε,s'>

    Induktion über Folgerungsbaum:
     - Sei <x:=E,s>→s'. <C(x:=E),ε,s>= <C(E):STORE x,ε,s>
         >* <STORE x, A [E] (s),s> (wg. Korrektheit Expressions)
         \triangleright < \epsilon, \epsilon, s[x \rightarrow A [E] (s) >  (nach Semantik STORE)
     − Sei <skip,s>→s', also s=s'. <C(skip),ε,s>= <NOOP,ε,s> =<ε,ε,s>

    Sei <S1;S2,s>→s'. Also ex. s" mit <S1,s>→s" und <S2,s">→s'.

         \langle C(S1;S2), \varepsilon, s \rangle = \langle C(S1); C(S2), \varepsilon, s \rangle \Rightarrow \langle C(S2), \varepsilon, s'' \rangle (nach IVor)
         \triangleright* <\epsilon,\epsilon,s'> (nach IVor)

 Sei <if b then S1 else S2 end,s> → s'.

    1. Fall: B [b] (s)(b) = tt, also <S1,s> →s'.

            < C(if b then S1 else S2 end), \epsilon, s> = < C(b):BRANCH(C(S1), C(S2)), \epsilon, s>
         \triangleright* <BRANCH(\mathcal{C}(S1),\mathcal{C}(S2)), B [b] (s)=tt,s> (wg. Korrektheit Exp.)
         \triangleright \langle C(S1), \epsilon, s \rangle (wg. Semantik BRANCH)
         \triangleright < \varepsilon, \varepsilon,s'> (IVor); 2. Fall analog.

 Sei <while b do S end,s> → s'.

    1. Fall: B [b] (s)(b) = tt, also <S,s> →s" und <while b do S end,s">→s'.

            < C(\text{while b do S end}), \epsilon, s> = < LOOP(C(b), C(S)), \epsilon, s>
         \triangleright \langle C(b):BRANCH(C(S):LOOP(C(b),C(S)),NOOP), \epsilon,s \rangle (Semantik LOOP)
         \triangleright^* < BRANCH(C(S):LOOP(C(b),C(S)),NOOP), B [b] (s)=tt,s> (Korrektheit Exp.)
         \triangleright \langle C(S):LOOP(C(b),C(S)), \epsilon,s \rangle (Semantik BRANCH)
         \triangleright^* < LOOP(C(b), C(S)), \ \epsilon, s'' > \triangleright^* < \epsilon, \ \epsilon, s' > (IVor) ; 2. Fall einfach.
```

Korrektheit der Statements II

- z.Z.: Wenn $\langle C(S), \varepsilon, s \rangle > * \langle \varepsilon, e, s' \rangle$, so $\langle S, s \rangle \rightarrow s'$ und $e = \varepsilon$
- Induktion über Länge der Maschinenbefehlssequenz:
 - Sei <C(x:=E),ε,s>= <C(E):STORE x,ε,s> ▷* <ε, ε,s'>
 <C(E),ε,s> ▷* <ε, A [E] (s),s> (Nach IVor, Korrektheit Exp.)
 - \rightarrow s' = s[x \rightarrow A [E] (s)] (Semantik STORE), also <x:=E,s> \rightarrow s'.
 - Skip: einfach
 - Sei <C(S1;S2), ε,s> = <C(S1):C(S2),ε,s> ▷* <ε, ε,s'>. Zerlegen Abarbeitungsfolge: <C(S1):C(S2),ε,s> ▷* <C(S2),e,s"> ▷* <ε, ε,s'>. Nach IVor: e=ε, <S1,s>→s" und (wg. IVor) <S2,s">→ s'. Also <S1;S2,s>→s'.
 - Sei <C(if b then S1 else S2 end),ε,s>= <C(b):BRANCH(C(S1),C(S2)),ε,s> ▷* <ε, ε,s'>.

Nach IVor, Korrektheit Exp.: $\langle C(b), \varepsilon, s \rangle >^* \langle \varepsilon, B [b] (s), s \rangle$

1. Fall: B [b] (s)(b) = tt.

Dann $\langle BRANCH(C(S1),C(S2)), B [b] (s),s \rangle \rangle \langle C(S1), \epsilon,s \rangle \rangle^* \langle \epsilon, \epsilon,s' \rangle$.

Nach IVor <S1,s>→s', also <if b then S1 else S2 end,s> →s'. 2. Fall analog.

- Sei <C(while b do S end),ε,s>>
 <C(b):BRANCH(C(S):LOOP(C(b),C(S)),NOOP),ε,s>>*<ε, ε,s'>. Nach IVor, Korrektheit Exp.: <C(b),ε,s> >* <ε, B [b] (s),s>.
 - 1. Fall: B [E] (s)(b) = tt, also <C(S):LOOP(C(b),C(S)),ε,s>⊳*
 . <LOOP(C(b),C(S)),e,s">>>*<ε, ε,s'>

Nach IVor: $e=\varepsilon$ und $\langle S,s \rangle \rightarrow s'$ und $\langle while b do S end,s'' \rangle \rightarrow s'$.

Also <while b do S end,s> \rightarrow s'. 2. Fall einfach.

Zusammenfassung Kapitel 2

- Formale operationelle Semantik abstrahiert so weit wie möglich von technischen Rahmenbedingungen (Wertkodierung, Speicheradressen, ...) -> verbleibende Flexibilität bei Implementierung
- Formale operationelle Semantik ermöglicht Argumentation über
 - Terminierung
 - semantische Äquivalenz
 - Determiniertheit
 - Korrektheit einer Übersetzung

Kapitel 3

Denotationelle Semantik

Idee

- Hatten aus operationeller Semantik gewonnen:
 - S: Command → (State → State)
 - Zur Bestimmung von S: Folgerungsbaum bzw.
 Abarbeitungssequenzen
- Ziel nun: Definition von S ohne Umwege, induktiv über Struktur eines Commands.
- Insbesondere: S(C) soll definierbar sein allein aus den Werten von S für die unmittelbaren Teilstrukturen von C

"Kompositionalität"

3.1 Direct-Style Semantik für W

- S_{ds} [x:=E] (s) = s[x $\rightarrow A$ [E] (s)]
- S_{ds} [skip] = id
- $S_{ds} [S1;S2] = S_{ds} [S2] \circ S_{ds} [S1]$
- S_{ds} [if b then S1 else S2 end] = cond(B [b], S_{ds} [S1], S_{ds} [S2])
- S_{ds} [while b do S end] = FIX(F)
 mit F(g) = cond(B [b], g o S_{ds} [S], id)

Bedingte Anweisungen

cond: (State → {tt,ff}) x (State → State) x (State → State)
 → (State → State)

• cond(p,g1,g2) (s) =
$$\begin{cases} g1(s), \text{ falls } p(s) = tt \\ g2(s), \text{ falls } p(s) = ff \end{cases}$$

Bleibt: Semantik der While-Anweisung

- S_{ds} [while b do S end] = FIX(F)
 mit F(g) = cond(B [b], g o S_{ds} [S], id)
- FIX(F) ("Fixpunkt von F") ist Lösung der Gleichung X = F(X).
 FIX: ((State→State)→(State→State)) →(State→State)
- Wieso?
 - Sinnvoll: S_{ds} [while b do S end] = S_{ds} [if b then S; while b do S end else skip end] = cond(B [b], S_{ds} [while b do S end] o S_{ds} [S], id)

```
also: S_{ds} [while b do S end ] ist (eine!) Lösung von X = F(X)
```

Beispiel für Fixpunkt

Betrachten S = while x<>0 do skip end

•
$$F_S(g)(s) = \begin{cases} g(s), \text{ falls } s(x) \neq 0 \\ s, \text{ falls } s(x) = 0 \end{cases}$$

• g1 mit g1(s) =
$$\begin{cases} \text{undef, s(x)} \neq 0 \\ \text{s, s(x)=0} \end{cases}$$
 ist Fixpunkt:

Falls s(x) = 0, so F(g1)(s) = s = g1(s)Falls $s(x) \neq 0$, so F(g1)(s) = g1(s) (= undef)

g2 mit g2(s) = undef (für alle s) ist kein Fixpunkt.
 Für s mit s(x) = 0: F(g2)(s) = s ≠ g2(s) = undef

Probleme:

1. Es gibt Funktionale, die keinen Fixpunkt haben, z.B.

$$F(g) = \begin{cases} g1, \text{ falls } g = g2 \\ g2, \text{ falls } g \neq g2 \end{cases}$$

Lösung: Werden zeigen, dass die in der Semantik von W verwendeten Funktionale Fixpunkte besitzen

Es gibt Funktionale, die mehr als einen Fixpunkt besitzen,
 z.B. ist jede Funktion g* mit g*(s) = s, falls s(x) = 0, ein
 Fixpunkt des Funktionals der vorigen Folie

Lösung: Werden Bedingungen erarbeiten, die von genau einem Fixpunkt eines verwendeten Funktionals erfüllt sind.

Welcher Fixpunkt

- Betrachten while b do S end, gestartet in s0.
- Fall A: terminiert
- Fall B: terminiert nicht, weil ein Untercommand nicht terminiert
- Fall C: terminiert nicht, weil Schleife selbst nicht abbricht
- Fall A: Terminiert → ex. s1,...,sn mit
 - B [b] (s1)= ...= B [b] (sn-1)= tt, B [b] (sn)= ff.
 - S_{ds} [S] (si) = si+1 für i<n
 - Sei g0 Fixpunkt. → (für i<n) g0(si) = F(g0)(si)
 - = cond(B [b] (si), g0 o S_{ds} [S] (si),id)
 - = $g0 \circ S_{ds} [S] (si) = g0(si+1)$.
 - Für i = n: g0(sn) = F(g0)(sn)
 - = cond(B [b] (sn), g0 o S_{ds} [S] (sn),id)
 - = id(sn) = sn Also: g0(s0) = sn. Das ist, was wir w@llen.

Welcher Fixpunkt

- Fall B: terminiert nicht, weil ein Untercommand nicht terminiert
- ex. s1,...,sn mit
 - B [b] (s1)= ...= B [b] (sn)= tt,
 - S_{ds} [S] (si) = si+1 für i<n
 - $-S_{ds}$ [S] (sn) = undef
 - Sei g0 Fixpunkt. \rightarrow (für i<n) g0(si) = g0(si+1) (wie vorher).
 - Für i = n: g0(sn) = F(g0)(sn)
 - = cond(B $\llbracket b \rrbracket$ (sn), g0 o S_{ds} $\llbracket S \rrbracket$ (sn), id)
 - = undef Also: g0(s0) = undef. Das ist, was wir wollen.

Welcher Fixpunkt

- Fall C: terminiert nicht, weil Schleife selbst nicht abbricht.
- ex. s1,...,sn,... mit
 - B [b] (s1)= ...= B [b] (sn) = ... = tt,
 - S_{ds} [S] (si) = si+1 für i<n
 - Sei g0 Fixpunkt. \rightarrow (für alle i) g0(si) = g0(si+1).
 - Aus diesen Gleichungen lässt sich kein Wert für g0(s0) ermitteln!

Welcher Fixpunkt: Zusammenfassung

- Fall A und B: Jeder Fixpunkt liefert das gewünschte Ergebnis
- Fall C: Betrachten while x<>0 do skip end
 - vorige Folie: jedes g Fixpunkt, das g(s) = s für alle s mit s(x)= 0 hat.

- intuitiv:
$$S_{ds}$$
 [while x<>0 do skip end] (s0) =
$$\begin{cases} undef,s0(x)\neq 0 \\ s0, s0(x)=0 \end{cases}$$

Dies ist der kleinste Fixpunkt g0 im folgenden Sinn: Wenn g0(s) = s' (also definiert), so für alle anderen Fixpunkte g: g(s) = s'.

Fixpunkttheorie

- Mathematik, die sich mit Fixpunkten beschäftigt
- Ziel: Handwerkszeug, um Existenz und Eindeutigkeit der in der Semantik von W vorkommenden Fixpunkte zu zeigen
- Reden über Halbordnungen
- - ist reflexiv: für alle g: g ⊑ g
 - ist transitiv: für alle g1,g2,g3:Wenn g1 ⊑ g2 und g2 ⊑ g3, so
 g1 ⊑ g3

 - ⊑ entspricht der Relation ⊆ auf der Menge der zu g gehörenden geordneten Paare.

Beispiel

- g1(s) = s für alle s
- g2(s) = s, falls $s(x) \ge 0$, undef sonst
- g3(s) = s, falls s(x) = 0, undef sonst
- g4(s) = s, falls $s(x) \le 0$, undef sonst

Begriffe für Halbordnungen

- x heißt Minimum einer Halbordnung, falls für alle y: x⊑y
- Wenn eine Halbordnung ein Minimum besitzt, ist es eindeutig.
- In der Halbordnung
 □ auf der Menge (State
 → State) ist
 ⊥(s) = undef (für alle s) das Minimum
- M heißt Kette, falls für alle x,y∈M: x ⊑y oder y⊑x
 s, falls s(x) < i
 z.B.: Wenn gi(s) =

 undef, sonst,

 so {gi| i>0} unendliche Kette

Begriffe für Halbordnungen II

- x heißt obere Schranke einer Menge M, falls für alle y∈M:y⊑x.
- x heißt kleinste obere Schranke von M, falls für alle Schranken x' von M gilt: x⊑x'.
- Falls M eine kleinste obere Schranke hat, so ist sie eindeutig bestimmt. Schreiben: ⊔M
- ⊑ ist kettenvollständig, d.h., jede Kette M besitzt eine kleinste obere Schranke, nämlich
 □M(s) = undef. sonst

(≤ auf N ist nicht kettenvollständig – N hat keine obere Schranke)

Begriffe für Halbordnungen III

- Jede kettenvollständige Halbordnung hat ein kleinstes Element \bot , nämlich $\bot = \bot\varnothing$ (Jedes Element ist ob. Schranke von \varnothing)
- Sei F: (State → State) → (State → State)
- F heißt monoton, falls: Wenn g1⊑g2, so F(g1) ⊑F(g2)
- Wenn F1, F2 monoton, so auch F1 o F2
- Wenn M Kette und F monoton, so {F(x) | x∈ M} Kette
 und ⊔{F(x) | x∈ M} ⊑ F(⊔M)
- F (monoton) heißt stetig, falls für alle nichtleeren Ketten M:
 ⊔{F(x) | x∈ M} = F(⊔M) und strikt, falls ⊔∅= F(⊔∅)

Ein Fixpunkttheorem

Sei F eine stetige (also auch monotone) Funktion in einer kettenvollständigen Halbordnung. Dann ist
 FIX F = ⊔{⊥,F(⊥),F(F(⊥)),..., Fⁱ(⊥),...} der kleinste Fixpunkt von F.

Beweis:

- $\{\bot,F(\bot),F(F(\bot)),...,F^{i}(\bot),...\}$ ist Kette, weil $\bot \sqsubseteq F(\bot)$, also $F^{i}(\bot) \sqsubseteq F^{i+1}(\bot)$ (Monotonie), also $F^{i}(\bot) \sqsubseteq F^{i+j}(\bot)$ (Transitivität). Also ist $\sqcup \{\bot,F(\bot),F(F(\bot)),...,F^{i}(\bot),...\}$ wohldefiniert.
- FIX F ist Fixpunkt, weil F(FIX F)=F($\sqcup\{\bot,F(\bot),F(F(\bot)),...,F^i(\bot),...\}$) = \sqcup ({F(\bot),F(F(\bot)),..., F(Fⁱ(\bot)),...}) (F stetig) = \sqcup ({ \bot ,F(\bot),F(F(\bot)),..., F(Fⁱ(\bot)),...}) (\bot ist Minimum) = FIX F.
- FIX F ist kleinster Fixpunkt, denn für anderen Fixpunkt d gilt:
 ⊥⊑d (Minimum), also Fⁿ(⊥)⊑Fⁿ(d) (Monotonie), also Fⁿ(⊥)⊑d (d Fixp.), also d obere Schranke von {⊥,F(⊥),F(F(⊥)),..., Fⁱ(⊥),...}, also FIX F⊑d.

Schlussfolgerung

• Zur Korrektheit der Semantikdefinition für W reicht es zu zeigen, dass die der Fixpunktbildung zugrundeliegenden Funktionale monoton und stetig sind.

Stetigkeit der Funktionale in der Direct-Style-Semantik

• F in der Def. der Direct-Style-Semantik:

```
- F(g) = cond(B [b], g \circ S_{ds} [S], id)

= F1(F2(g)) mit

F1(g) = cond(B [b], g, id)

F2(g) = g \circ S_{ds} [S]
```

Zeigen

- 1. F1 stetig
- 2. F2 stetig
- 3. Wenn F1, F2 stetig, so auch F1 o F2

Stetigkeit von F1

Für beliebige g0: State→State und p:State →{tt,ff} ist F1(g) = cond(p,g,g0) stetig.

Beweis:

- (1) Zeigen: F1 monoton. Sei g1⊑g2, z.Z. F1(g1) ⊑F1(g2)Sei F1(g1)(s) = s'.
- Fall: p(s) = tt. Dann F1(g1)(s) = g1(s) = s' = g2(s) = F1(g2)(s).
- Fall: p(s) = ff. Dann F1(g1)(s) = g0(s) = F1(g2)(s).
- (2) Zeigen: F1 stetig. Sei Y nichtleere Kette.
- z.Z. $F1(\sqcup Y) \sqsubseteq \sqcup \{F1(y)|y \in Y\} (\supseteq gilt immer)$

Sei F1(\sqcup Y) (s) = s'. Zeigen: es gibt ein g \in Y mit F1(g)(s)=s':

- Fall: p(s) = tt, dann F1(⊔Y) (s) = (⊔Y) (s), also muss es ein g∈Y geben mit g(s) = s'.
- Fall: p(s) = ff, dann F1(⊔Y) (s) = g0(s) = F1(g)(s) für bel.g∈Y

Wenn es ein $g \in Y$ mit F1(g)(s)=s' gibt, ist aber $\sqcup \{F1(y)|y \in Y\}(s)=s'$.

Stetigkeit von F2

Sei g0: State →State und F2(g) = g o g0. Dann ist F2 stetig.

Beweis:

(1) Zeigen: F2 monoton.

Sei g1 \sqsubseteq g2 und F2(g1)(s) = s'. Also ex. s'' mit g0(s) = s'', g1(s'')=s'. Wegen g1 \sqsubseteq g2 ist g2(s'')=s', also F2(g2)(s) = g2(g0(s)) = s'.

(2) Zeigen: F2 stetig. Sei Y nichtleere Kette und F2(\sqcup Y)(s) = s'. Also \sqcup Y(g0(s)) = s'. Also ex. g∈Y mit g(g0(s)) = s'. Also \sqcup {F2(y)|y∈Y}(s) = s'.

Stetigkeit der Verkettung

Seien F1, F2 stetig. Dann F1oF2 stetig.

Beweis:

(1) Da F1,F2 monoton, so auch F1oF2.

(2) Zeigen: F1oF2 stetig.

Sei Y nichtleere Kette.

Weil F2 stetig: $F2(\sqcup Y) = \sqcup \{F2(y)|y \in Y\}$

Weil F1 stetig: $F1(\sqcup \{F2(y)|y\in Y\}) = \sqcup \{F1(F2(y))|y\in Y\}.$

Also F1oF2($\sqcup Y$) = $\sqcup \{F1oF2(y)|y\in Y\}$.

Zusammenfassung Direct-Style-Semantik

- kompositional: Semantik eines Konstrukts allein auf der Basis seiner Teilkonstrukte definiert
- Kleinste Fixpunkte werden zur Definition der Semantik von Schleifen verwendet
- Fixpunkttheorie liefert Existenz solcher Fixpunkte
- ohne Beweis: Für alle Commands S von W ist $S_{ds} [S] = S_{SOS} [S]$

3.2 Erweiterung: Prozeduren

- Am Beispiel statischer Scopes
- Verwenden (z.T. erneut) die Konzepte
 - Loc: Menge von Locations (= Menge der ganzen Zahlen)
 - new: Loc→Loc (new(x) := x+1) /* Ordnet einer Location die n\u00e4chste zu */
 - Store:Loc ∪{next} →Z /* Speicher; next speichert Adresse der 1. bislang unbenutzen Location */
 - Env_∨ :Var→Loc
 - Env_P: Pnames → (Store → Store)
 - Funktion lookup: Env_√ x Store → State; lookup(env,sto)(x)
 = sto(env(x)) /* Transformiert env + sto in state */

Direct-Style Semantik für W mit Env, Sto

- S'_{ds} [x:=E] $(env_{\lor})(env_{P})(sto) = sto[env_{\lor}(x) \rightarrow A$ [E] $(lookup (env_{\lor}, sto))$]
- S'_{ds} [skip] (env_V)(env_P)= id
- S'_{ds} [S1;S2] $(env_V)(env_P) = (S'_{ds}$ [S2] $(env_V)(env_P))$ o $(S'_{ds}$ [S1] $(env_V)(env_P))$
- S'_{ds} [if b then S1 else S2 end] $(env_V)(env_P) = cond(B [b] o lookup(env_V,.), <math>S'_{ds}$ [S1] $(env_V)(env_P), S'_{ds}$ [S2] $(env_V)(env_P)$)
- S'_{ds} [while b do S end] $(env_V)(env_P) = FIX(F)$ mit $F(g) = cond(B [b] o lookup(env_V,.), g o <math>S'_{ds}$ [S] $(env_V)(env_P)$, id)

Deklarationen

Effekt einer Variablendeklaration = Änderung von env_V ... DV Effekt einer Prozedurdeklaration = Änderung von env_P ... DP

```
DV [e] = id
DV [var x ; decl] (env_{\lor}, sto) = DV [decl]
   (env_{V}[x\rightarrow I], sto(I\rightarrow 0, next\rightarrow new I]) mit I = sto(next)
   (0 = Initialwert für x)
DP [e] (env<sub>v</sub>) = id
DP [proc p is S; decl] (env_{V}, env_{P}) =
         DP [decl] (env_V, env_D[p \rightarrow S'_{ds} [S] (env_V)(env_P)])
```

Blöcke, Prozedurrufe

```
    S'<sub>ds</sub> [begin Dec<sub>V</sub> Dec<sub>P</sub> S end] (env<sub>V</sub>)(env<sub>P</sub>)(sto) = S'<sub>ds</sub> [S] (env'<sub>V</sub>)(env'<sub>P</sub>)(sto') mit
    DV [Dec<sub>V</sub>] (env<sub>V</sub>,sto) = (env'<sub>V</sub>,sto') und
    DP [Dec<sub>P</sub>] (env'<sub>V</sub>,env<sub>P</sub>) = env'<sub>P</sub>
```

• S'_{ds} [call p] $(env_V)(env_P) = env_P(p)$

3.3 Continuation-Style Semantik

Am Beispiel einer Erweiterung von W: Exceptions

```
command = ...| begin S1 catch e: S2 end| throw e
```

Continuation

- beschreibt den Effekt der Ausführung des restlichen Programms
- c: State

 State
- Continuation-style semantics:
- S_{cs} : Commands \rightarrow (Cont \rightarrow Cont)
-; S; ... (c)
- →; S; ... (c')

CS-Semantik für W (ohne Exceptions)

- S_{cs} [x:=E] (c)(s) = c (s[x $\rightarrow A$ [E] (s)])
- S_{cs} [skip] = id
- S_{cs} [S1;S2] = S_{cs} [S1] oS_{cs} [S2]
- S_{cs} [if b then S1 else S2 end] (c) =

cond(B
$$[b]$$
, S_{cs} $[S1]$ (c), S_{cs} $[S2]$ (c))

S_{cs} [while b do S end] = FIX G
 wobei G(g)(c) = cond(B [b], S_{cs} [S] (g(c)), c)

Mit den bekannten Techniken kann man Existenz der Fixpunkte und Äquivalenz zu anderen Semantiken nachweisen: Für alle Commands S und Continuations c gilt:

• $S_{cs} [S] (c) = co S_{ds} [S]$

Exceptions

- Brauchen Information, welcher Handler (catch-Block) zur welcher Exception gehört:
- Env_F: Exception → Cont
- S_{cs} : (Command x Env_E) \rightarrow (Cont \rightarrow Cont)

CS-Semantik für W (mit Exceptions)

S_{cs}' [x:=E] (env)(c)(s) = c (s[x→A/B [E] (s)])
 S_{cs}' [skip] (env)= id
 S_{cs}' [S1;S2] (env) = S_{cs}' [S1] (env) o S_{cs}' [S2] (env)
 S_{cs}' [if b then S1 else S2 end] (env)(c) = cond(B [b], S_{cs}' [S1] (env)(c), S_{cs}' [S1] (env)(c))
 S_{cs}' [while b do S end] (env) = FIX G wobei G(g)(c) = cond(B [b], S_{cs}' [S] (env)(g(c)), c)
 S_{cs}' [begin S1 catch e: S2 end] (env)(c) = S_{cs}' [S1] (env[e→S_{cs}' [S2] (env)(c)])

Mit den bekannten Techniken kann man Existenz der Fixpunkte und Äquivalenz zu anderen Semantiken nachweisen

• S_{cs} [throw E] (env)(c) = env(e)

3.3 Statische Programmanalyse

- Ziel: Information über die Semantik eines Programms ohne Ausführung
- Anwendung
 - Programmcodeoptimierung
 - Programmverifikation
- Rahmenbedingungen
 - muss immer (und relativ schnell) terminieren (auch bei nicht terminierenden Programmen)
 - darf unscharfe ("weiss nicht"), aber nie falsche Ergebnisse liefern

Beispiele

Expressions

- Konstantenpropagation (Konstante Teilausdrücke gleich im Compiler ausrechnen)
- Vorzeichenanalyse (vereinfacht z.B. Typkonvertierung,
 Ausnahmebehandlung bei Division durch 0)
- Feldgrenzenüberwachung

Daten

- Pointeranalyse (may point to/must point to; Vereinfachung von Zugriffen)
- Referenzanalyse (Wieviele Pointer zeigen auf mich?; Garbage collection

Kontrollfluss

- Very busy expressions (Werte, die in jedem Kontrollzweig noch einmal verwendet werden)
- Tote Zweige
- und viele andere mehr

Anwendungsbeispiel

- Übersetzung eines ALGOL (Pascal)-Arrays in ein C-Array
- Algol (Pascal):
 - A: array [0:n,0:m] of integer
 - Zugriff: A[i,j]
- C:
 - int * A
 - Zugriff: * (A + i * (m+1) + j)

Brute-Force-Übersetzung ALGOL-C

```
ALGOL:
i := 0;
                                        i = 0;
                                        while(i <=n) {</pre>
while i <= n do
   i := 0;
                                            j = 0;
   while j <= m do
                                            while(j <=m) {</pre>
                                                  tmp = A + i * (m+1) + j;
         A[i,j] := B[i,j] + C[i,j];
         j := j + 1;
                                                  *tmp = *(B + i * (m+1)+j)
                                                        + *(C + i*(m+1)+j);
   end
   i := i + 1;
                                                  j = j + 1;
end
                                            i = i + 1;
                                                                           111
```

Analyse: Available Expressions Ziel: Common Subexpression elimination

```
C neu:
C alt:
i = 0;
                                              i = 0;
while(i <=n) {</pre>
                                              while(i <=n) {</pre>
                erste Berechnung
   i = 0;
                                                  j = 0;
   while(j <=m) {</pre>
                                                  while(j <=m) {</pre>
         tmp = A + i * (m+1) + j;
                                                        t1 = i * (m+1)+j;
         *tmp = *(B + i * (m+1)+j)
                                                        tmp = A + t1;
              + *(C + i*(m+1)+j);
                                                        *tmp = *(B + t1)
        i = i + 1;
                                                             + *(C + t1);
                                                       j = j + 1;
                   Folgeberechnung
   i = i + 1:
                                                  i = i + 1;
```

Analyse: Schleifeninvarianten Ziel: Verschiebung von Code aus Schleife

```
i = 0;
while(i <=n) {
                 Invariant!
   j = 0;
   while(j <=m) {
         t1 = i * (m+1)+j;
         tmp = A + t1;
        *tmp = *(B + t1)
              + *(C + t1);
        j = j + 1;
   i = i + 1;
```

C alt:

C neu:

```
i = 0;
while(i <=n) {</pre>
   j = 0;
   t2 = i * (m+1);
   while(j <=m) {</pre>
          t1 = t2+j;
         tmp = A + t1;
          *tmp = *(B + t1)
                +*(C + t1);
         j = j + 1;
   i = i + 1;
```

113

Analyse: Induktive Variablen Ziel: Komplexitätsreduktion

C alt:

```
i = 0; ←
while(i <=n) {
                Induktion
   t2 = i * (m+1);
   while(j <=m) {
         t1 = t2 + i
        tmp = A/+ t1;
```

C neu:

```
i = 0;
t3 = 0;
while(i <=n) {</pre>
    j = 0;
   t2 = t3;
    while(j <=m) {</pre>
          t1 = t2+j;
          tmp = A + t1;
          *tmp = *(B + t1)
               +*(C+t1);
          j = j + 1;
    i = i + 1;
   t3 = t3 + m + 1;
```

Analyse: Equivalent expressions Ziel: Copy propagation

```
C alt:
i = 0;
t3 = 0;
                  äquivalent
while(i <=n) {
   j = 0;
   t2 = t3;
   while(j <=m)
         t1 = t2+j;
         tmp = A + t1;
         *tmp = *(B + t1)
              +*(C+t1);
         j = j + 1;
   i = i + 1;
   t3 = t3 + m + 1;
```

```
C neu:
i = 0;
t3 = 0;
while(i <=n) {</pre>
   j = 0;
   t2 = t3;
    while(j <=m) {</pre>
          t1 = t3+j;
          tmp = A + t1;
          *tmp = *(B + t1)
               +*(C+t1);
          j = j + 1;
    i = i + 1;
   t3 = t3 + m + 1;
```

Analyse: Live variables Ziel: dead code elimination

C neu:

```
C alt:
i = 0;
t3 = 0;
                   not live
while(i <=n)
   j = 0:
   t2 = t3;
   while(j <=m) {</pre>
         t1 = t3+j;
          tmp = A + t1;
          *tmp = *(B + t1)
              +*(C+t1);
         j = j + 1;
   i = i + 1;
   t3 = t3 + m + 1;
```

```
i = 0;
t3 = 0;
while(i <=n) {</pre>
    j = 0;
    while(j <=m) {</pre>
          t1 = t3+j;
          tmp = A + t1;
          *tmp = *(B + t1)
               +*(C+t1);
          j = j + 1;
    i = i + 1;
   t3 = t3 + m + 1;
```

Fazit des Beispiels

 Optimierungspotential kann auch ohne "Verschulden" eines Programmierers entstehen

weitere Beispiele:

- Feldgrenzenüberwachung
- Garbage collection
- Virtuelle/Abstrakte Methoden
- **–** ...
- Optimierung setzt Analyse voraus
 - korrekt (was behauptet wird, muss stimmen)
 - nicht notwendig exakt (manches stimmt, wird aber nicht behauptet) – Preis: weniger Optimierung
 - effizient

Eine Analyse im Detail: Abhängigkeitsanalyse

- Einige Variablen werden als "in", andere als "out" deklariert.
- Frage: Hängt der Wert der "out"-Variablen nach Ausführung des Programms funktional von den Werten den "in"-Variablen vor Ausführung ab?
- $y = x^*z + 25$, $y \in out$
 - ok, falls x,z∈in
 - D? sonst (dubios = möglicherweise nicht ok)
- y := 1; while x<>1 do y:= y*x;x:=x-1, x∈in, y∈out
 - ok
 - ohne Initialisierung von y: D?, weil y∉in und Endwert von y vom Anfangswert von y abhängt

Lösung: Nichtstandardsemantik

 Zustand s → Abstrakter Zustand p; pro Variable (statt Wert)Eigenschaft mit Werten ...

```
... z.B. 0,1,2,3, viele, irgendein (Referenzanalyse)
```

$$\dots$$
 z.B. <0,<=0,=0,>=0,>0,beliebig (Vorzeichenanalyse)

... z.B. 0,1,2,3,...,variabel (Konstantenpropagation)

... z.B. OK,D? (Abhängigkeitsanalyse)

Allen Wertebereichen gemeinsam: bilden kettenvollständige Halbordnungen

Grund: Wollen/Müssen Fixpunkte ausrechnen

Rechnen mit OK und D?

- OK ⊑ D?
- (x ⊔ y meint ⊔{x,y})
- OK ⊔ OK = OK
- OK u D? = D? u OK = D? u D? = D?

Abstrakter Zustand

- p : $V \cup \{control\} \rightarrow \{OK,D?\}$
- control Bestandteil eines abstrakten Zustandes z.B. wegen
- if x = 1 then y := 1 else y := 2
- p(x) = D?, alle anderen ok
- Kontrollfluss hängt möglicherweise nicht von "in" ab, also auch Wert von y möglicherweise nicht.

Halbordnung auf abstrakten Zuständen

- Haben: Halbordnung

 auf {OK,D?}
- Def.: Halbordnung auf abstrakten Zuständen:
 - p \sqsubseteq p' falls für alle x∈V∪{control}: p(x) \sqsubseteq p'(x)
 - Ist Halbordnung
 - ist kettenvollständig und ⊔M ist derjenige abstrakte
 Zustand mit ⊔M (x) = ⊔{p(x) | p ∈M}

Beweis

z.Z.:

 ist kettenvollständig und

 M ist derjenige abstrakte
 Zustand mit

 M (x) =
 U{p(x) | p ∈ M}

```
(Wohldefiniertheit) Sei M Kette.
Nach Def. ⊑ ist für jedes x {p(x) | p∈M} Kette.
Da ⊑ auf {OK,D?} kettenvollständig, ex. ⊔{p(x) | p∈M} .
```

(Obere Schranke) Sei $p \in M$. Weil \sqcup kleinste obere Schranke von $\{p(x) \mid p \in M\}$, ist $p(x) \sqsubseteq \sqcup \{p(x) \mid p \in M\}$ für alle x.

(Kleinste obere Schranke). Sei p* obere Schranke von M. Zeigen: ⊔M ⊑ p*. Weil p* obere Schranke von M, ist für alle p∈M: p ⊑ p*. Also für alle x: p(x) ⊑ p*(x). Also ⊔{p(x) | p∈M} ⊑ p*(x).

Also: $\sqcup M \sqsubseteq p^*$.

Die Analyse: Ausdrücke

- PA: Arithm. Expressions \rightarrow (Abstr. State \rightarrow {OK, D?})
- PA [n] (p) = OK, falls p(control) = OK, sonst D?
- PA [x] (p) = p(x), falls p(control) = OK, sonst D?
- PA [E1+E2] (p) = PA [E1] (p) □ PA [E2] (p) (-*/ analog)
- PB: Bool.Expressions → (Abstr.State → {OK,D?})
- analog

Die Analyse: Commands

PS: Commands → (Abstr.State → Abstr.State)

H(g) = cnd(PB(b), goPS [S], id)

```
PS [x:=E] (p) = p[x→PA/PB(E)(p)]
PS [skip] = id
PS [S1;S2] = PS [S2] o PS [S1]
PS [if b then S1 else S2 end] = cnd(PB(b), PS [S1], PS [S2])
cnd(f,h1,h2) (p) = h1(p)⊔h2(p), falls f(p) = OK, sonst LOST.
LOST(p)(x) = D? für alle x (einschließlich control)
PS [while b do S end] = FIX H mit
```

Beispiele

```
    y := x
    p(x) = OK, p(y) = D?, p(control) = OK
    PS [y:=x] (p)(x) = PS [y:=x] (p)(y) =
    PS [y:=x] (p)(control) = OK
    p(x) = D?, p(y) = OK, p(control) = OK
    → PS [y:=x] (p)(x) = PS [y:=x] (p)(y) = D?,
    PS [y:=x] (p)(control) = OK
```

```
    if x=x then z:= y else y := z
    - p(x) = p(y) = OK, p(z) = D?
    → PS [ if x=x then z:= y else y := z ] (p)(z) = D?
    - p(x) = D?, p(y) = p(z) = OK
    → PS [ if x=x then z:= y else y := z ] (p)(x,y,z,control) = D?
```

Beispiele

```
    y := 1; while x <> 1 do y:= y*x;x:=x-1 end

    - p(x) = OK, p(y) = D?, p(control) = OK
       ... müssen Fixpunkt berechnen:
      FIX H mit
       H(g) = cnd(PB [x <> 1], goPS [y := y * x ; x := x - 1], id),
    also H(g)(p) = LOST, falls p(control) = D? oder p(x) = D?, sonst g(p) \sqcup p
     1. \perp(p) = INIT für alle p (INIT ordnet allen Variablen OK zu)
      2. H(\perp)(p) = LOST, falls p(control) = D? oder p(x) = D?, sonst p
       3. H(H(\perp))(p) = LOST, falls p(control) = D? oder p(x) = D?, sonst p(x) = D?
         \rightarrow FIX H = H(\perp)
    \rightarrow PS [y := 1; while x <> 1 do y:= y*x;x:=x-1 end ] (p)(x)
       = PS [y:=x] (p)(x,y,control) = OK
```

Aussagen

- 1. Diese Analyse ist wohldefiniert
 - Technik: Fixpunkttheorie
- 2. Diese Analyse ist sicher: Wenn die Analyse für eine Variable OK ergibt, ist diese funktional abhängig von den Inputs.
 - Def.: s ≡_p s', falls: Wenn p(control) und p(x) = ok, so s(x) = s'(x)
 - Satz: Für alle S: Wenn s ≡_p s', so kreist S sowohl in s als auch s', oder S_{ds} [s] ≡_{PS [S]} S_{ds} [s']

Terminierung der Analyse

1. Aussage (leicht zu sehen, aber schlecht geschätzt):
 Fixpunkt für while b do S end ist

$$\sqcup \{\bot, \mathsf{F}(\bot), \mathsf{F}(\mathsf{F}(\bot)), \dots, \; \mathsf{F}^{(2m+1)2(m+1)}(\bot)\} = \mathsf{F}^{(2m+1)2(m+1)}(\bot)$$

wobei m die Zahl der in b und S vorkommenden Variablen ist

Gründe:

- nicht vorkommende Variablen irrelevant
- für vorkommende Variablen + control: 2^{m+1} Zustände
- für vorkommende Variablen + control: $(2^{m+1})^{2^{(m+1)}}$ Funktionen
- 2. Aussage (besser geschätzt, aber mit detaillierter Analyse): (m+1)² Iterationen reichen.

Andere Analysen

- Nutzen: Flussgraph
 - Knoten für Zuweisungen und Tests
 - Kanten x→y für "nach x kann möglicherweise y ausgeführt werden
- , ohne semantikfreie (d.h. rein struktursichernde Elemente

Flussgraph: Beispiel

```
y := x;
z := 1;
while y > 0 do
z := z * y;
y := y - 1;
end
y := 0;
```


Allgemein für Sprache W

Für Statement S Knotenmengen

nodes(S) – alle Knoten

init(S) – ein Element, Startknoten

– final(S) – Endknoten

- Kantenmenge
 - flow(S) alle Kanten

Induktive Definition

- für S = x = F
 - k := new node(x := E') k := new node(b')
 - {**k**}
 - flow(S) = Ø
- für S = skip analog
- für S = S1;S2
 - nodes(S) = nodes(S1) U nodes(S2)
 - init(S) = init(S1)
 - final(S) = final(S2)
 - flow(S) = flow(S1) \cup flow(S2) U final(S1) x init(S2)

- für S = if b then S1 else S2 end
- nodes(S)=init(S)=final(S) = − nodes(S) = nodes(S1) ∪ nodes(S2) U {k}
 - $init(S) = \{k\}$
 - final(S) = final(S1) ∪ final(S2)
 - $flow(S) = flow(S1) \cup flow(S2) \cup \{k\} x$ $(init(S1) \cup init(S2))$
 - für S = while b do S1 end
 - k = new node(,b)
 - $nodes(S) = nodes(S1) \cup \{k\}$
 - init(S) = final(S) = $\{k\}$
 - $flow(S) = flow(S1) \cup \{k\} \times init(S1) \cup \{k\} \times init(S1)$ final(S1) x {k}

Analyse 1: Available Expressions

- Zu einem Knoten des Flussgraphen, bestimme alle Expressions, die auf allen Pfaden
 - bereits berechnet sind
 - seitdem nicht modifiziert wurden
- Beispiel

$$x := a+b$$
; $y := a*b$; while $y > a+b$ do $a := a +1$; $x := a+b$; end

kann ggf umgeformt werden zu

$$x := a+b$$
; $y := a*b$; while $y > x$ do $a := a +1$; $x := a+b$; end

Available Expressions: Idee

Available Expressions: Ausführung

```
kill(x := E) = { E' ∈EXP | x \sqsubseteqE'}
kill(skip) = Ø
kill(b) = Ø
gen(x := E) = {E' | E' \sqsubseteqE, !x \sqsubseteqE'}
gen(skip) = Ø
qen(b) = {E' | E' \sqsubseteqb}
```

Bestimmung der Available Expressions mittels Lösung von Datenflussgleichungen

- Pro Knoten k Variable k_{entry}, k_{exit}
- Gleichungen
 - •k_{entry}=Ø für k∈ init(S)
 - •k_{entry}= ∩_{(k',k)∈flow(S)} k'_{exit} für k∉ init(S)
 - •k_{exit}= (k_{entry} \ kill(k))U gen(k)

Beispiel: kill, gen

x := a+b; y := a*b; while y > a+b do a := a +1; x := a+b; end

Beispiel: Gleichungen

x := a+b; y := a*b; while y > a+b do a := a +1; x := a+b; end entry = Ø $exit = entry \cup \{a+b\}$ x:=a+b entry = exit exit = entry \cup {a*b} y:=a*b →entry = exit ∩ exit exit = entry U{a+b} y>a+b entry = exit exit = entry $\ a+b,a*b,a+1$ a := a + 1exit = entry U {a+b} ₁₃₈ entry = exit x:=a+b)

Beispiel:

Lösung = größte Lösung der Gleichungen

x := a+b; y := a*b; while y > a+b do a := a +1; x := a+b; end

Bestimmung der größten Lösung

- Setze alle Variablen auf Menge aller Epressions
- REPEAT
 - für alle Gleichungen parallel
 - linke Seite := rechte Seite
 - UNTIL nothing changes

Beispiel: Start

entry =
$$\varnothing$$

 $a+b,a*b,a+1$

entry = exit
 $a+b,a*b,a+1$

exit = entry $\cup \{a+b\}$
 $a+b,a*b,a+1$

entry = exit \cap exit
 $a+b,a*b,a+1$

exit = entry $\cup \{a+b\}$
 $a+b,a*b,a+1$

Beispiel: 1. Iteration

```
entry = Ø
                            exit = entry \cup \{a+b\}
                             a+b,a*b,a+1
a+b,a*b,a+1
entry = exit
a+b,a*b,a+1
                            exit = entry \cup{a*b}
                             a+b,a*b,a+1
entry = exit ∩ exit
                            exit = entry \cup{a+b}
                            a+b,a*b,a+1
 a+b,a*b,a+1
                          exit = entry \ {a+b,a*b,a+1}

<del>a+b,a*b,a+1</del>
entry = exit
a+b,a*b,a+1
                          exit = entry U {a+b} a+b.a*b.a+1
entry = exit
a+b,a*b,a+1
```

Beispiel: 2. Iteration

entry =
$$\emptyset$$
 exit = entry \cup {a+b}
a+b,a*b,a+1

entry = exit
a+b,a*b,a+1

entry = exit \cap exit
a+b,a*b,a+1

exit = entry \cup {a*b}
a+b,a*b,a+1

exit = entry \cup {a+b}
a+b,a*b,a+1

exit = entry \cup {a+b}
a+b,a*b,a+1

exit = entry \cup {a+b,a*b,a+1}

exit = entry \cup {a+b}
a+b,a*b,a+1

Beispiel: 3. Iteration

entry =
$$\emptyset$$
 exit = entry $\cup \{a+b\}$
entry = exit
 $a+b, a*b, a+1$ exit = entry $\cup \{a*b\}$
 $a+b, a*b, a+1$ exit = entry $\cup \{a+b\}$
 $a+b, a*b, a+1$ exit = entry $\cup \{a+b\}$
 $a+b, a*b, a+1$ exit = entry $\cup \{a+b, a*b, a+1\}$
entry = exit
 $a+b, a*b, a+1$ exit = entry $\cup \{a+b, a*b, a+1\}$
entry = exit
 $a+b, a*b, a+1$

Beispiel: 4. Iteration

entry =
$$\emptyset$$
 exit = entry $\cup \{a+b\}$
entry = exit $a+b$ exit = entry $\cup \{a+b\}$
 $a+b,a*b,a+1$ exit = entry $\cup \{a+b\}$
 $a+b,a*b,a+1$ exit = entry $\cup \{a+b\}$
 $a+b,a*b,a+1$ exit = entry $\cup \{a+b,a*b,a+1\}$
entry = exit $a+b,a*b,a+1$ exit = entry $\cup \{a+b\}$
 $a+b$ exit = entry $\cup \{a+b\}$
 $a+b$ exit = entry $\cup \{a+b\}$

Beispiel: 5. Iteration

entry =
$$\emptyset$$
 exit = entry $\cup \{a+b\}$
entry = exit exit = entry $\cup \{a+b\}$
 $a+b$ entry = exit \cap exit exit = entry $\cup \{a+b\}$
 $a+b$ exit = entry $\cup \{a+b\}$
 $a+b,a*b,a+1$ exit = entry $\cup \{a+b,a*b,a+1\}$
entry = exit exit exit = entry $\cup \{a+b\}$
 $a+b$ exit = entry $\cup \{a+b\}$
 $a+b$ exit = entry $\cup \{a+b\}$

Beispiel: 6. Iteration

entry =
$$\emptyset$$
 exit = entry $\cup \{a+b\}$
entry = exit exit = entry $\cup \{a+b\}$
 $a+b$ entry = exit \cap exit exit = entry $\cup \{a+b\}$
 $a+b$ exit = entry $\cup \{a+b\}$
 $a+b$ exit = entry $\cup \{a+b,a*b,a+1\}$
entry = exit exit exit = entry $\cup \{a+b\}$
 $a+b$ exit = entry $\cup \{a+b\}$
 $a+b$ exit = entry $\cup \{a+b\}$

Beispiel: 7. Iteration = no change

Analyse: Reaching definitions

 Für einen Knoten k: Welche Zuweisungen sind auf mind. einem Pfad zu k noch nicht überschrieben?

Beispiel

x := 5; y := 1; while x > 1 do y := x*y; x := x - 1 end

Reaching definitions: Idee X2 X1UX2 "kill" x:=E $X = (N \setminus \{(x,k') \mid k' \in nodes(S) \cup \{?\}\}) \cup \{(x,k)\}$ "Gen"

Reaching definitions: Ausführung

```
kill(x := E) = { (x,k) | (k ∈ nodes(S) \cup {?}}
kill(skip) = Ø
kill(b) = Ø
gen(x := E) = {(x,this)}
gen(skip) = Ø
gen(b) = Ø
```

Bestimmung der reaching definitions mittels Lösung von Datenflussgleichungen

- Pro Knoten k Variable k_{entry}, k_{exit}
- Gleichungen
 - • k_{entry} = {(x,?) | x \in VAR} für k \in init(S)
 - •k_{entry}= U_{(k',k)∈flow(S)} k'_{exit} für k∉ init(S)
 - •k_{exit}= (k_{entry} \ kill(k))U gen(k)

Beispiel: kill, gen

x := 5; y := 1; while x > 1 do y := x*y; x := x-1; end

Beispiel: Gleichungen

```
x := 5; y := 1; while x > 1 do yx := x*y; x := x-1; end
                        entry = \{(x,?),(y,?)\}
          x := 5
                        exit = entry \ \{(x,?),(x,o),(x,o)\} \cup \{(x,o)\}
                         entry = exit
                         exit = entry \ \{(y,?),(y,o),(y,o)\} \cup \{(y,o)\}
                       →entry = exit ∪ exit
          x>1
                         exit = entry
                         entry = exit
                         exit = entry \ \{(y,?),(y,o),(y,o)\} \cup \{(y,o)\}
                         entry = exit
         x := x - 1
                                                                           153
                         exit = entry \ \{(x,?),(x,o),(x,o)\} \cup \{(x,o)\}
```

Beispiel: Lösung = kleinste Lösung

x := 5; y := 1; while x > 1 do yx := x*y; x := x-1; end

Analyse: Very busy expressions

 Expression ist very busy an einem Knoten, falls ihr Wert auf jedem Kontrollpfad noch einmal benutzt wird (ohne dass vorkommende Variablen ihren Wert ändern)

Ziel: Very busy expressions können gleich berechnet werden

```
Beispiel:

very busy: b-a, a-b

if a>b then x:= b-a ;y := a-b else y:= b-a ;x:= a-b ends
```

Very busy expressions: Idee

Very busy expressions: Ausführung

```
kill(x := E) = { E' | (x\sqsubseteq E')
kill(skip) = Ø
kill(b) = Ø
gen(x := E) = { E' | E'\sqsubseteq E}
gen(skip) = Ø
gen(b) = { E' | E'\sqsubseteq b}
```

Bestimmung der Very busy Expressions mittels Lösung von Datenflussgleichungen

- •k_{exit}=Ø für k∈ final(S)
- •k_{exit}= ∩_{(k,k')∈flow(S)} k'_{entry} für k∉ final(S)
- •k_{entry}= (k_{exit}\ kill(k))U gen(k)

Beispiel: kill, gen

if a>b then x:= b-a ;y := a-b else y:= b-a ;x:= a-b end

Beispiel: Gleichungen

if a>b then x:= b-a ;y := a-b else y:= b-a ;x:= a-b end

```
entry = exit
       a>b
                           exit = entry \( \cdot \) entry
                           entry = exit U {b-a}
x:=b-a
                           exit = entry
                          entry = exit ∪ {b-a}
              v:=b-a
                          exit = entry
                           entry = exit ∪ {a-b}
                           exit = \emptyset
                           entry = exit U {a-b}
             x:=a-b
                           exit = \emptyset
```

Beispiel: Lösung = größter Fixpunkt

if a>b then x:= b-a ;y := a-b else y:= b-a ;x:= a-b end

Analyse: Live variables

 Variable ist live an einem Knoten, falls ihr Wert auf mindestens einem Kontrollpfad noch einmal benutzt wird (ohne dass ihr Wert überschrieben wurde)

Ziel: Zuweisungen an Variablen, die nicht live sind, können gestrichen werden

Beispiel:

```
\\ x:=2;y:=4;x:=1;if y>x then z:=y else z:=y*y end; x := z;
```

erlaubt Transformation zu:

```
y:=4;x:=1;if y>x then z:=y else z:=y*y end; x:=z;
```

Live variables: Idee

Live variables: Ausführung

kill(x := E) = {x}
kill(skip) = Ø
kill(b) = Ø
gen(x := E) = { y | y
$$\subseteq$$
 E}
gen(skip) = Ø
gen(b) = { y | y \subseteq b}

Bestimmung der Live variables mittels Lösung von Datenflussgleichungen

- •k_{exit}=Ø für k∈ final(S)
- •k_{exit}= U_{(k,k')∈flow(S)} k'_{entry} für k∉ final(S)
- •k_{entry}= (k_{exit}\ kill(k))U gen(k)

Beispiel: kill, gen

x:=2;y:=4;x:=1;if y>x then z:=y else z:=y*y end; x:=z;x:=2kill: {x} gen: Ø kill: {y} gen: Ø y:=4 x := 1kill: {x} gen: Ø kill: Ø gen: {x,y} y>x z:=y*y kill: {z} gen: {y} **z**:=y kill: {z} gen: {y} x := zkill: {x} gen: {z}

Beispiel: Gleichungen

```
x:=2;y:=4;x:=1;if y>x then z:=y else z:=y*y end; x:=z;
                             entry = exit(x)
                             exit = entry
                             entry = exit\{y}
                             exit = entry
                             entry = exit(x)
         x:=1
                             exit = entry
                             entry = exit \cup \{x,y\}
                             exit = entry U entry
          y>x
                             entry = exit(z)U(y)
               z:=y^*y
                             exit = entry
    z := y
                              entry = exit(z)U(y)
                             exit = entry
          x := z
                             entry = exit(x)U(z)
                             exit = \emptyset
```

Beispiel: Lösung (kleinste)

x:=2;y:=4;x:=1;if y>x then z:=y else z:=y*y end; x:=z;

Fazit bis hier

May-Analyse (U) Must-Analyse (∩) (auf mind. einem Pfad...) (auf allen Pfaden ...) z.B reaching definitions z.B. available expressions Vorwärtsanalyse Rückwärtsanalyse z.B. Live variables z.B. very busy expressions größte Fixpunkte kleinste Fixpunkte 167

Konstantenpropagation

 Für einen Knoten k und eine Variable x soll festgestellt werden,

ob x in k stets den gleichen Wert liefert (wenn ja welchen)

Ziel: Ersetzung der Variable durch Konstante

Beispiel:

x := 6; y := 3; while x > y do x := x-1; z := y*y end

erlaubt Transformation

Konstantenpropagation

- Idee: Für jede Variable x, für jeden Punkt im Kontrollfluss
 - ⊥ ... keine Information über x verfügbar
 - n∈Z x hat hier immer Wert n
 - − ⊤ ... x könnte hier verschiedene Werte haben

```
⊥⊑n, n⊑⊤ n ≠n' ⇒ n⊈n' x ⊔ y = kleinste obere Schranke von x,y
```

- Zustand: s: VAR →Z∪{⊤,⊥}
- s ⊔ s' definiert durch s ⊔ s' (x) = s(x) ⊔ s'(x) für alle x∈
 VAR

Konstantenpropagation

... ist Vorwärtsanalyse

Kapitel 4

Axiomatische Semantik

Idee

Statt:

- Wie kommt der Effekt eines Programms zustande (operationell)
- Was ist der Effekt eines Programms? (denotationell)

Nun:

 Was kann ich über den Effekt eines Programms aussagen?

Mittel: Hoare-Tripel

{**P**} S {**Q**}

Precondition

Postcondition

bedeutet:

Wenn S terminiert und vor Abarbeitung von S die Aussage P gilt, so gilt nach Abarbeitung von S die Aussage Q partielle Korrektheit

{**P**} S {↓ Q}

bedeutet:

Wenn vor Abarbeitung von S die Aussage P gilt, dann terminiert S und nach seiner Abarbeitung gilt die Aussage Q totale Korrektheit

Pre- und Postconditions

- P,Q sind Prädikate: Ordnen Variablen(belegung) einen Wahrheitswert zu
- Beispiele: x < y, x > 0, usw.
- Variable: zwei Sorten
 - Programmvariablen: Wert ändert sich durch die Programmausführung
 - logische Variablen: Wert ändert sich nicht durch die Programmausführung ("symbolische Konstanten")
- Bsp: $\{x = n\}$ y:=1;while x<>1 do y:=x*y;x:=x-1 end $\{y = n!\}$

4.1 Die axiomatische Semantik von W (partielle Korrektheit)

```
• [ass]_{par}: \{P[x \rightarrow A [E]]\} x := E \{P\}
• [skip]<sub>par</sub>: {P} skip {P}
• [comp]<sub>par</sub>: {P} S1 {Q} , {Q} S2 {R}
                       {P} S1; S2 {R}

    [if]<sub>par</sub>: {P∧B [b] } S1 {Q} , {P∧¬B [b] } S2 {Q}

                     {P} if b then S1 else S2 end {Q}
• [while]_{par}: \{P \land B [b] \} S \{P\}
                 \{P\} while b do S end \{P \land \neg B \ [b]\}

    [cons]<sub>par</sub>: {P} S {Q} falls P'⇒P ∧ Q⇒Q'

                 {P'} S {Q'}
```

Weiteres Vorgehen

 Anwendung in der Programmverifikation, Erweiterungen

• Theorie: Widerspruchsfreiheit und Vollständigkeit

Beispiel: Fakultätsberechnung

```
Def Fakultät (induktiv): 0! = 1; (n+1)! = (n+1) n!
Ziel: \{x=n\} y:=1; while x <> 1 do y:=y*x;x:=x-1 end \{n>0 \land y=n!\}
Beweis:
I := x > 0 \Rightarrow (y*x! = n! \land n \ge x) "Es folgt:
wegen [ass]<sub>nar</sub>: \{I[x\rightarrow x-1]\}\ x:=x-1\ \{I\}\ und
                     \{|[y \rightarrow y^*x, x \rightarrow x-1]\} y := y^*x \{|[x \rightarrow x-1]\}\}
wegen [comp]<sub>par</sub>: {I[y \rightarrow y^*x, x \rightarrow x-1]} y:=y^*x; x:=x-1 {I};
Es gilt: I \land x<>1 \Rightarrow I[y\rightarrowy*x,x\rightarrowx-1], also
wegen [cons]<sub>par</sub>: {I \land x<>1} y:=y*x;x:=x-1 {I};
wegen [while]<sub>nar</sub>: {I} while x <> 1 do y:=y*x;x:=x-1 end {I \land x=1};
Es gilt: I \wedge x=1 \Rightarrow (y = n! \wedge n > 0), also
wegen [cons]<sub>par</sub>: {I} while x <> 1 do y := y*x; x := x-1 end {y = n! \land n > 0};
wegen [ass]<sub>par</sub>: \{I[y\rightarrow 1]\}\ y:=1\ \{I\};
Es gilt: x=n \Rightarrow I[y \rightarrow 1]; also
wegen [cons]<sub>par</sub>: \{x=n\} y:= 1 \{I\} und
wegen [comp]<sub>par</sub>: \{x=n\} y:=1; while x <> 1 do y:=y*x;x:=x-1 end \{n>0 \land y=n!\}
```

Beispiel: ggt-Berechnung

```
Zeigen: {x=a\y=b\a>0\b>0}
        while x<>y do
           if x>y then
               x := x - y
           else
               y := y - x
           end
        end
        \{ x = ggt(a,b) \}
```

$$I = x>0 \land y>0 \land ggt(x,y) = ggt(a,b)$$
"

Beispiel: ggt-Berechnung

```
\{x=a\wedge y=b\wedge a>0\wedge b>0\}
{I}
while x<>y do
  if x>y then
        x := x - y
   else
        y := y - x
   end
end
```

$$I = x>0 \land y>0 \land ggt(x,y) = ggt(a,b)$$
"

Beispiel: ggt-Berechnung

```
\{x=a\wedge y=b\wedge a>0\wedge b>0\}
{I}
while x<>y do
   \{I \land x <> y\}
   if x>y then
        x := x - y
   else
         y := y - x
   end
end
```

Beispiel: ggt-Berechnung

```
\{x=a\wedge y=b\wedge a>0\wedge b>0\}
{I}
while x<>y do
    \{ | \land x <> y \}
    if x>y then
           \{I \land x <> y \land x > y\} \Rightarrow \{x-y>0 \land y>0 \land ggt(x-y,y)=ggt(a,b)\}
           x := x - y
    else
          \{I \land x \le y \land x \le y\} \Rightarrow \{I \land x \le y\} \Rightarrow \{y-x \ge 0 \land x \ge 0 \land ggt(x,y-x) = ggt(a,b)\}
           y := y - x
    end
end
```

Beispiel: ggt-Berechnung

```
\{x=a\wedge y=b\wedge a>0\wedge b>0\}
             {|}
             while x<>y do
                 \{| \land x <> y\}
                 if x>y then
                        \{I \land x <> y \land x > y\} \Rightarrow \{x-y>0 \land y>0 \land ggt(x-y,y)=ggt(a,b)\}
                        x := x - y
                        {I}
                 else
                       \{I \land x \le y \land x \le y\} \Rightarrow \{I \land x \le y\} \Rightarrow \{y-x \ge 0 \land x \ge 0 \land ggt(x,y-x) = ggt(a,b)\}
                        y := y - x
                 end
                 {I}
             end
             \{I \land x = y\} \Rightarrow \{x = ggt(a,b)\}
I = x>0 \land y>0 \land ggt(x,y) = ggt(a,b)
```

Hilfssatz: ggt(x,y) = ggt(x-y,y)

- Vor: x>0, y>0, x-y>0
- ggt(x,y) teilt x, ggt(x,y) teilt y, also ggt(x,y) teilt x-y.
- Also ggt(x,y) ist gemeinsamer Teiler von x-y und y
- Also ggt(x,y) ≤ggt(x-y,y)
- ggt(x-y,y) teilt x-y, ggt(x-y,y) teilt y, also ggt(x-y,y) teilt y+(x-y)=x
- Also ggt(x-y,y) ist gemeinsamer Teiler von x und y
- Also ggt(x-y,y) ≤ggt(x,y)
- Also: ggt(x,y) = ggt(x-y,y)

Arrays

- Hatten: $[ass1]_{par}$: $\{P[x \rightarrow A [E]]\} x := E \{P\}$
- Naiv: $\{a[3] = 1\}$ $a[i] := 4 \{a[3] = 1\}$
 - nur richtig für i≠3
- Problemanalyse: Verschiedene Zugriffe auf ein und dasselbe Element: a[3] a[i] (i=3) ...
- Lösung: Array als ganzheitliche Variable auffassen
- a'=write(a,i,n) ist ein Array mit a'[j] = n, falls j=i, a'[j]=a[j], sonst.
- Also:
- [arr1]_{par}: {P[a→write(a,A [i], A [E])} a[i] := E {P}

```
Zeigen: {n>0}
          i := 0;
          m := a[0];
          while i<n do
                 i := i+1;
                 if a[i] > m then
                       m := a[i]
                 else
                       skip
                 end
           end
           {m = max \{a[0],...a[n]\}}
```

```
Zeigen: {n≥0}
             i := 0;
             {n≥i∧i=0}
             m := a[0];
      \{m = a[0] \land i = 0\} \Rightarrow \{i \le n \land f \text{ if } alle x: x \le i \Rightarrow a[x] \le m \land es gibt ein y: y \le i \Rightarrow a[y] = m\}
             while i<n do
                           i := i+1;
                       if a[i] > m then
                               m := a[i]
                       else
                               skip
                       end
               end
              {m = max \{a[0],...a[n]\}}
```

```
Zeigen: {n≥0}
              i := 0;
              {n≥i∧i=0}
              m := a[0];
       \{m = a[0] \land i = 0\} \Rightarrow \{i \le n \land f \text{ if } alle x: x \le i \Rightarrow a[x] \le m \land es gibt ein y: y \le i \Rightarrow a[y] = m\}
              while i<n do
               \{i < n \land f \text{ ii} = x: x \le i \Rightarrow a[x] \le m \land es gibt ein y: y \le i \Rightarrow a[y] = m\}
                             i := i+1;
                         if a[i] > m then
                                  m := a[i]
                         else
                                  skip
                         end
                end
                {m = max \{a[0],...a[n]\}}
```

```
Zeigen: {n≥0}
              i := 0;
              {n≥i∧i=0}
              m := a[0];
      \{m = a[0] \land i = 0\} \Rightarrow \{i \le n \land f \text{ if } alle x: x \le i \Rightarrow a[x] \le m \land es gibt ein y: y \le i \Rightarrow a[y] = m\}
              while i<n do
              \{i < n \land f \text{ ii} = x: x ≤ i ⇒ a[x] ≤ m \land es gibt ein y: y ≤ i ⇒ a[y] = m\}
                            i := i+1;
                        \{i \le n \land f \text{ ur alle } x: x < i ⇒ a[x] \le m \land es gibt ein y: y < i ⇒ a[y] = m\}
                        if a[i] > m then
                                m := a[i]
                        else
                                skip
                        end
               end
                                                                                                            188
               {m = max \{a[0],...a[n]\}}
```

```
Zeigen: {n≥0}
                i := 0:
                {n≥i∧i=0}
                m := a[0];
       \{m = a[0] \land i = 0\} \Rightarrow \{i \le n \land f \text{ if } x: x \le i \Rightarrow a[x] \le m \land es gibt ein y: y \le i \Rightarrow a[y] = m\}
                while i<n do
                \{i < n \land f \text{ if } x: x \le i \Rightarrow a[x] \le m \land es gibt ein y: y \le i \Rightarrow a[y] = m\}
                                   i := i+1:
                           \{i \le n \land f \text{ if } x: x < i \Rightarrow a[x] \le m \land es gibt ein y: y < i \Rightarrow a[y] = m\}
                           if a[i] > m then
                       \{a[i]>m \land i \leq n \land f \text{ if } x: x < i \Rightarrow a[x] \leq m \land es gibt ein y: y < i \Rightarrow a[y] = m\}
                                    m := a[i]
                            else
                    \{a[i] \le m \land i \le n \land f "u" alle x: x < i \Rightarrow a[x] \le m \land es gibt ein y: y < i \Rightarrow a[y] = m\}
                                     skip
                           end
                 end
                 {m = max \{a[0],...a[n]\}}
```

```
Zeigen: {n≥0}
                i := 0:
                {n≥i∧i=0}
                m := a[0];
       \{m = a[0] \land i = 0\} \Rightarrow \{i \le n \land f \text{ ii} = x: x \le i \Rightarrow a[x] \le m \land es gibt ein y: y \le i \Rightarrow a[y] = m\}
                while i<n do
                {i<n\landfür alle x: x≤i \Rightarrowa[x] ≤m\landes gibt ein y: y≤i \Rightarrowa[y] = m}
                                       i := i+1:
                           \{i \le n \land f \text{ if } x: x < i \Rightarrow a[x] \le m \land es gibt ein y: y < i \Rightarrow a[y] = m\}
                           if a[i] > m then
                        \{a[i]>m \land i \leq n \land f ur alle x: x \leq i \Rightarrow a[x] \leq m \land es gibt ein y: y \leq i \Rightarrow a[y] = m\}
               ⇒ \{i \le n \land f \text{ ii} = x: x \le i \Rightarrow a[x] \le a[i] \land es gibt ein y: y \le i \Rightarrow a[y] = a[i]\}
                                     m := a[i]
                    \{i \le n \land f \text{ if } x: x \le i \Rightarrow a[x] \le m \land es gibt ein y: y \le i \Rightarrow a[y] = m\}
                           else
                    \{a[i] \le m \land i \le n \land f \ddot{u} = x: x < i \Rightarrow a[x] \le m \land es gibt ein y: y < i \Rightarrow a[y] = m\}
                                     skip
                    \{a[i] \le m \land i \le n \land f \ \text{ii} = m \land i \le n \land f \ \text{ii} = m \}
                 \Rightarrow{i \le n\\text{für alle } x: x\le i \righta a[x] \le m\\\text{es gibt ein } y: y\le i \righta a[y] = m}
                           end
                 end
                 \{m = \max \{a[0],...a[n]\}
```

```
Zeigen: {n≥0}
              i := 0:
               {n≥i∧i=0}
               m := a[0];
      \{m = a[0] \land i = 0\} \Rightarrow \{i \le n \land f \text{ if } x : x \le i \Rightarrow a[x] \le m \land es gibt ein y : y \le i \land a[y] = m\}
               while i<n do
               {i<n\landfür alle x: x≤i \Rightarrowa[x] ≤m\landes gibt ein y: y≤i \Rightarrowa[y] = m}
                                    i := i+1;
                         \{i \le n \land f \text{ if } x: x < i \Rightarrow a[x] \le m \land es gibt ein y: y < i \Rightarrow a[y] = m\}
                         if a[i] > m then
                      \{a[i]>m \land i \leq n \land f ur alle x: x \leq i \Rightarrow a[x] \leq m \land es gibt ein y: y \leq i \Rightarrow a[y] = m\}
             ⇒ \{i \le n \land f \text{ ii} = x: x \le i \Rightarrow a[x] \le a[i] \land es gibt ein y: y \le i \Rightarrow a[y] = a[i]\}
                                  m := a[i]
                   \{i \le n \land f \text{ if } x: x \le i \Rightarrow a[x] \le m \land es gibt ein y: y \le i \Rightarrow a[y] = m\}
                         else
                   \{a[i] \le m \land i \le n \land f \ \text{ii} = m \}
                                  skip
                   \{a[i] \le m \land i \le n \land f \ u = m \}
                \Rightarrow{i \le n\text{f\text{u}} alle x: x\le i \righta a[x] \le m\text{nes gibt ein y: y\le i \righta a[y] = m}
                         end
                    \{i \le n \land f \text{ ii} = x: x \le i \Rightarrow a[x] \le m \land es gibt ein y: y \le i \Rightarrow a[y] = m\}
               end
               \{m = \max \{a[0],...a[n]\}
```

```
Zeigen: {n≥0}
              i := 0:
               {n≥i∧i=0}
              m := a[0];
      \{m = a[0] \land i = 0\} \Rightarrow \{i \le n \land f \text{ ii} = x: x \le i \Rightarrow a[x] \le m \land es gibt ein y: y \le i \Rightarrow a[y] = m\}
              while i<n do
              {i<n\landfür alle x: x≤i \Rightarrowa[x] ≤m\landes gibt ein y: y≤i \Rightarrowa[y] = m}
                                   i := i+1:
                        \{i \le n \land f \text{ if } x: x < i \Rightarrow a[x] \le m \land es gibt ein y: y < i \Rightarrow a[y] = m\}
                        if a[i] > m then
                     \{a[i]>m \land i \leq n \land f ur alle x: x < i \Rightarrow a[x] \leq m \land es gibt ein y: y < i \Rightarrow a[y] = m\}
                  m := a[i]
                  \{i \le n \land f \text{ if } x: x \le i \Rightarrow a[x] \le m \land es gibt ein y: y \le i \Rightarrow a[y] = m\}
                        else
                  \{a[i] \le m \land i \le n \land f \ \text{ii} = m \}
                                 skip
                  \{a[i] \le m \land i \le n \land f \ u = m \le x : x < i \Rightarrow a[x] \le m \land e s gibt ein y : y < i \Rightarrow a[y] = m\}
               end
                   \{i \le n \land f \text{ if } x: x \le i \Rightarrow a[x] \le m \land es gibt ein y: y \le i \Rightarrow a[y] = m\}
               end
               \{i \ge n \land i \le n \land f \text{ if } x: x \le i \Rightarrow a[x] \le m \land es gibt ein y: y \le i \Rightarrow a[y] = m\}
               \Rightarrow{m = max {a[0],...a[n]}
```

Beispiel: Array-Elemente tauschen

```
{a[i] = a \land a[j] = b}
h := a[i];
\{h = a \land a[i] = b\}
a[i] := a[i];
\{a[i] = b \wedge h = a\}
a[j] := h;
{a[i] = b \land a[j] = a}
funktioniert auch, wenn i = j!
```

Beispiel: Dutch National Flag

- Problem:
- geg: Array a[0 .. n] mit a[i]∈{blau,weiss,rot}

Ziel: Array umsortieren (allein durch Swap-Operationen) derart, dass alle blau-Einträge vor allen weiss-Einträgen, und diese vor allen rot-Einträgen liegen.

Algorithmus

```
b := 0; w := 0; r := n;
while w \le r do
       case a[w]
         blau:
                swap(a[b],a[w]);
                  w := w+1; b:= b+1;
         weiss: w:=w+1;
                 swap(a[w],a[r]);
         rot:
                  r := r-1;
       end
end
```

Abschweifung: Hoare-Logik im Programmieralltag

- C, JAVA, EIFFEL ... unterstützen Assertions
- Schleifeninvarianten nach eigener Erfahrung extrem hilfreich
- Datenstruktur-Invarianten essentiell, um komplexe Strukturen zu beherrschen
- "Design by contract" "Rely-Guarantee-Paradigm":
 {P} S {Q} = "sicherst Du mir P zu, garantiere ich Dir Q"

Weitere Beispiele

- Zeigen: Frühes Überlegen von Schleifeninvarianten hilft bei der Problemlösung
- Schleifeninvarianten kondensieren algorithmische Ideen

Sattelsuche

- Gegeben Matrix von Zahlen
- Zeilen enthalten aufsteigende Werte
- Spalten enthalten aufsteigende Werte
- Wissen: k kommt irgendwo in der Matrix vor
- Frage: Wo?
- Beispiel: 1 3 4 5 7 10

2 5 8 10 13 20

5 6 8 10 20 42

Sattelsuche

Beispiel: 1 3 4 5 7 10

2 5 8 10 13 20

5 6 8 10 20 42

8 9 10 10 100 200

Zeilen: 0 .. m-1

Spalten: 0 .. n-1

Gesuchter Wert k bei [i,j]

Start: 0≤i<m und 0≤j<n

Idee: Suchraum eingrenzen

Start mit iu := 0, io := m, ju := 0, jo := n

Ziel: io = iu +1, jo = ju+1

Beispiel: 1 3 4 5 7 10

2 5 8 10 13 20

5 6 8 10 20 42

- Ein Element abfragen; welches?
- a) irgendwo in der Mitte a[i,j] > k a[i,j] < k

Beispiel: 1 3 4 5 7 10

2 5 8 10 13 20

5 6 8 10 20 42

- Ein Element abfragen; welches?
- a) irgendwo in der Mitte a[i,j] > k a[i,j] < k
- b) irgendwo am Rand

Beispiel: 1 3 4 5 7 10

2 5 8 10 13 20

5 6 8 10 20 42

- Ein Element abfragen; welches?
- a) irgendwo in der Mitte a[i,j] > k a[i,j] < k
- b) irgendwo am Rand
- c) Ecke links oben oder rechts unten

Beispiel: 1 3 4 5 7 10

2 5 8 10 13 20

5 6 8 10 20 42

- Ein Element abfragen; welches?
- a) irgendwo in der Mitte a[i,j] > k a[i,j] < k
- b) irgendwo am Rand
- c) Ecke links oben oder rechts unten
- d) Ecke links unten oder rechts oben

Algorithmus+Beweis

```
{k kommt in a vor}
iu := 0; io := m; ju := 0; jo := n;
{es gibt i,j mit iu≤i<io und ju≤j<jo und a[i,j] = k}
while io – iu > 1 OR jo – ju > 1 do
  case a[io-1,ju]
    = k: iu := io - 1; jo := ju+1;
    < k: ju := ju + 1;
    > k: io := io - 1;
  end
end
```

Größtes True-Quadrat

Geg: Matrix aus Booleans

Ges: Größe einer größten quadratischen Teilmatrix, die

nur TRUE-Einträge hat

Größtes True-Quadrat

Idee: Zahlenmatrix, die für jeden Matrixeintrag i,j die Größe des größten True-Quadrates mit i,j als rechter unterer Ecke angibt Warum?

Größtes True-Quadrat

```
Algorithmus und Beweis:
(Der Einfachheit halber Annahme: b[x,y] = 0 für x<0 oder y<0)
z := 0; s := 0;
{Für alle [i,j] mit i<z oder i=z und j<s ist b[i,j] die Größe des
 größten True-Quadrates mit [i,j] als rechter unterer Ecke }
while z < m do
    while s < n do
         case a[z,s]
             F: b[z,s] := 0;
             T: b[z,s] := MIN(b[z-1,s],b[z-1,s-1],b[z,s-1])+1
         end;
          s := s + 1;
     end
     z := z + 1; s := 0;
                                                             207
end
```

Erweiterung: Prozeduren

nichtrekursiv:

rekursiv:

Beispiel: Quicksort

```
qs(0,n);
qs(von,bis) is
   b := von; w := von+1; r := bis;
   p := a[b];
  while w \le r do
       case
         a[w] < p: swap(a[b],a[w]);
                 w := w+1; b:= b+1;
          a[w] = p: w:=w+1;
         a[w] > p: swap(a[w],a[r]);
                     r := r-1;
       end
  end
  if von < b-1 then qs(von,b-1) end;
  if r+1 < bis then qs(r+1,bis) end;
end
```

```
Dutch National Flag
blau := <p
weiss := =p
rot := >p
```

Beweis: Quicksort

```
\{0 < n\}
qs(0,n);
{von < bis}
qs(von,bis) is
  b := von; w := von+1; r := bis;
     \{b < w \le r+1\}
      p := a[b];
   while w \le r do
          case
              a[w] < p: swap(a[b],a[w]);
                           w := w+1: b := b+1:
               a[w] = p: w:=w+1;
              a[w] > p: swap(a[w],a[r]);
                                r := r-1:
          end
   end
   \{b < w \le r + 1 \land f \ddot{u} r \text{ alle } i : (i < b \Rightarrow a[i] < p) \land (i \ge b \land i < w \Rightarrow a[i] = p) \land (i > r \Rightarrow a[i] > p)\}
   if von < b-1 then qs(von,b-1) end;
   \{b < w \le r + 1 \land f \ u = i : (i < b \Rightarrow a[i] < p) \land (i \ge b \land i < w \Rightarrow a[i] = p) \land (i > r \Rightarrow a[i] > p) \land sortiert(von, b-1) \}
   if r+1 < bis then qs(r+1,bis) end;
   \{b < w \le r + 1 \land f \text{ ii } r = i : (i < b \Rightarrow a[i] < p) \land (i \ge b \land i < w \Rightarrow a[i] = p) \land (i > r \Rightarrow a[i] > p) \land sortiert(von, b-1) \land sortiert(r+1, bis) \}
  ⇒ {sortiert(von,bis)}
end
{sortiert(von,bis)}
```

4.2 Axiomatische Semantik von W (totale Korrektheit)

```
    [ass1]<sub>tot</sub>: {P[x→A [E]]} x := E {UP} falls x Int-Variable

• [ass2]_{tot}: \{P[x \rightarrow B [E]]\} x := E \{ \forall P \} falls x Bool-Variable

    [skip]<sub>tot</sub>: {P} skip {↓P}

• [comp]<sub>tot</sub>: {P} S1 {UQ} , {Q} S2 {UR}
                         {P} S1; S2 {↓R}

    [if]<sub>tot</sub>: {P∧B [b] } S1 {UQ}, {P∧¬B [b] } S2 {UQ}

                       {P} if b then S1 else S2 end {↓Q}
• [while]<sub>tot</sub>: \{P(z+1)\}\ S\ \{ \forall P(z) \}\ (z \in N)
        {ex. z: P(z)} while b do S end {\forall P(0)}
          wobei P(z+1) \Rightarrow B [b], P(0) \Rightarrow \neg B [b]
• [cons]_{tot}: \{P\} S \{ \Downarrow Q \} falls P' \Rightarrow P \land Q \Rightarrow Q'
                                                                               211
                  {P'} S {\$\Q'$}
```

Liberaleres Konzept: Abstiegsfunktion

 Zu jeder While-Schleife Term t mit nat. Zahl als Wert und

$$- \{t = k\} S \{t < k\}$$

$$- t = 0 \Rightarrow \neg B [b]$$

Dann terminiert while b do S end

Terminierung: Fakultätsberechnung

```
y:=1; while x <> 1 do y:=y*x;x:=x-1 end \{n>0\land y=n!\}
```

Abstiegsfunktion: x - 1 (Voraussetzung: x > 0)

Terminierung: ggt-Berechnung

```
while x<>y do
    if x>y then
        x := x -y
    else
        y := y - x
    end
end
```

Abstiegsfunktion: |x - y|

Terminierung: Maximum-Berechnung

```
i := 0;
          m := a[0];
          while i<n do
                 i := i+1;
                 if a[i] > m then
                       m := a[i]
                 else
                       skip
                 end
           end
```

Abstiegsfunktion: n - i

Terminierung: Dutch National Flag

```
b := 0; w := 0; r := n;
while w \le r do
       case a[w]
         blau: swap(a[b],a[w]);
                 w := w+1; b:= b+1;
         weiss: w:=w+1;
         rot: swap(a[w],a[r]);
                 r := r-1;
       end
end
  Abstiegsfunktion: r + 1 – w
```

Terminierung: Sattelsuche

```
iu := 0; io := m; ju := 0; jo := n;
while io – iu > 1 OR jo – ju > 1 do
  case a[io-1,ju]
   = k: iu := io - 1; jo := ju+1;
   < k: ju := ju + 1;
   > k: io := io - 1;
  end
end
Abstiegsfunktion: (io-iu) +(jo-ju)
```

Terminierung: Größtes True-Quadrat

```
z := 0; s := 0;
while z < m do
    while s < n do
         case a[i,j]
              F: b[i,j] := 0;
              T: b[i,i] := MIN(b[i-1,j],b[i-1,j-1],b[i,j-1])+1
          end;
           s := s + 1;
     end
     z := z + 1; s := 0;
end
```

Abstiegsfunktion: mn – nz - s

Terminierung: Prozeduren

nichtrekursiv:

```
    [call1]<sub>par</sub>: {P} S {↓Q}
    {P} call p {↓Q} (proc p is S)
```

- rekursiv:
- $[call2]_{par}$: $\{P(z)\}$ call $p \{ \Downarrow Q \} \vdash \{P(z+1)\} S \{ \Downarrow Q \}$ $\{ex. z: P(z)\}$ call $p \{ \Downarrow Q \}$ wobei $\neg P(0)$ (proc p is S, WB(z) = N)

Beispiel: Quicksort

```
qs(0,n);
qs(von,bis) is
   b := von; w := von; r := bis;
   p := a[b];
  while w \le r do
       case
         a[w] < p: swap(a[b],a[w]);
                  w := w+1; b:= b+1;
          a[w] = p: w:=w+1;
         a[w] > p: swap(a[w],a[r]);
                     r := r-1;
       end
  end
  if von < b-1 then qs(von,b-1) end;
  if r+1 < bis then qs(r+1,bis) end;
end
```

Abstiegsfunktion: bis - von

4.3 Korrektheit und Vollständigkeit

- stellen Beziehung her zwischen partieller Korrektheit und Natural Semantics:
- ► {P} S {Q} falls für alle Zustände s gilt:
 Wenn P(s) und <S,s>→s', so Q(s')

"{P} S {Q} ist richtig"

- Zum Vergleich:
- + {P} S {Q} falls sich diese Aussage mittels der Axiome und Regeln der partiellen Korrektheit herleiten lässt

Korrektheit und Vollständigkeit

Korrektheit: "Alles, was sich beweisen lässt, ist richtig"

Für alle P,Q,S: Wenn \vdash {P} S {Q}, so \models {P} S {Q}

Vollständigkeit: "Alles, was richtig ist, lässt sich beweisen"

Für alle P,Q,S: Wenn \models {P} S {Q}, so \vdash {P} S {Q}

Korrektheit: Wenn \vdash {P} S {Q}, so \models {P} S {Q}

- Beweis durch Induktion über der Struktur einer Ableitung gemäß der Axiome und Regeln der partiellen Korrektheit:
- Anfang 1: Sei S = x := E und <S,s>→s'. Also s' = s[x→A [E]]
 (s)]. Wenn nun P[x→A [E]](s), so gilt also auch P(s').
- Anfang 2: Sei S = skip -- trivial
- Schritt 1: Sei S = S1;S2 und <S1;S2,s>→s'. Also ex. s" mit <S1,s>→s" und <S2,s">→s". Sei nun ⊦{P} S1 {Q} und ⊦ {Q} S2 {R}. Nach IV: ⊨{P} S1 {Q} (*) und ⊨{Q} S2 {R} (**). Wenn nun P(s) gilt, so ist wegen (*) Q(s") und wegen (**) R(s').

Forts. Korrektheit: Wenn + {P} S {Q}, so ⊨ {P} S {Q}

- Schritt 2: Sei S = if b then S1 else S2 end und <S,s>→s'.
 1. Fall: B [b] (s) = true. Also gilt (P∧ B [b])(s).
 Nach IV: ⊨ {P∧ B [b] } S1 {Q} Also Q(s').
 - 2. Fall analog
- Schritt 3: Sei S = while b do S' end und <S,s> → s'
 Zeigen per Induktion über Tiefe der Ableitung für <S,s>→s':
 (P∧¬B [b])(s').
 - Anfang (Tiefe 0): Dann: B $\llbracket b \rrbracket$ (s) = false. Also ist s = s', also $(P \land \neg B \llbracket b \rrbracket)(s')$.
 - Schritt: (Tiefe > 0) Dann: B [b] (s) = true. Also (PA B [b])(s). Dann gibt es
 - s" mit $\langle S', s \rangle \rightarrow s$ " und $\langle S, s'' \rangle \rightarrow s$ '. Es gilt P(s"). Nach IV folgt (P $\land \neg B \ [b] \)(s')$.
- Schritt 4 (Konsequenzregel) kein Problem.

Betrachten folgende Assertions:

```
    - {x = 2} x := x + 1 {x ungerade}
    - {x = 28} x := x + 1 {x ungerade}
    - {x durch 4 teilbar} x := x + 1 {x ungerade}
    - {x gerade} x := x + 1 {x ungerade}
```

Alle richtig. Die letzte wohl am wertvollsten.

wpr(S,Q), die *schwächste Vorbedingung* für S und Q, ist dasjenige Prädikat P, wo P(s) gdw. für alle s' mit <S,s>→s': Q(s').

Aussagen über wpr

Für alle S,Q: ⊨{wpr(S,Q)} S {Q}

Beweis: Wenn wpr(S,Q)(s) und $\langle S,s \rangle \rightarrow s'$, so per Def. von wpr: Q(s').

Für alle P,S,Q: Wenn ⊨{P} S {Q}, so P ⇒ wpr{S,Q}

Beweis: Sei s Zst. mit P(s) und $\langle S,s \rangle \rightarrow s'$. Wegen $\models \{P\} S \{Q\} \text{ ist } Q(s'). \text{ Also wpr}(S,Q)(s). \text{ Also } P \Rightarrow \text{wpr}\{S,Q\}$

- Wir zeigen für alle S,Q: ⊢ {wpr(S,Q)} S {Q}. Originalaussage folgt dann mit den Aussagen der vorigen Folie
- Fall x := E. Offenbar wpr(x:=E,Q) = Q[x→A [E]]
- Fall skip: Offenbar wpr(skip,Q) = Q.
- Fall S = S1;S2. Nach IV: ⊢ {wpr(S2,Q)} S2 {Q} und
- ⊢ {wpr(S1,wpr(S2,Q))} S1 {wpr(S2,Q)}. Damit ist
- ⊢ {wpr(S1,wpr(S2,Q))} S1;S2 {Q} Bleibt z.Z:

```
wpr(S1;S2,Q) \Rightarrow wpr(S1,wpr(S2,Q))
```

Betrachten s mit wpr(S1;S2,Q)(s)

Sei <S1,s> →s" und <S2,s">→s' (wenn es s' bzw. s" nicht gibt, wird die Aussage trivial). Also Q(s'). Also wpr(S2,Q)(s"). Also

wpr(S1, wpr(S2, Q))(s).

Wir zeigen für alle S,Q: ⊢ {wpr(S,Q)} S {Q}.

```
Fall S = if b then S1 else S2 end.
Mit IV: ⊢ {wpr(S1,Q)} S1 {Q} und ⊢ {wpr(S2,Q)} S2 {Q}.
Sei P = (B [b] ∧ wpr(S1,Q)) v(¬B [b] ∧ wpr(S2,Q))
Mit [cons]<sub>P</sub>: ⊢ {B [b] ∧ P} S1 {Q} und ⊢ {¬B [b] ∧ P} S2 {Q}.
Also mit [if]<sub>P</sub>: {P} if b then S1 else S2 end {Q}. Bleibt z.Z.:
wpr(if b then S1 else S2 end,Q) ⇒ P.
Sei <S,s>→s' mit Q(s'). 1. Fall: B [b] (s). Also gilt linke
Alternative in P. 2. Fall analog.
```

- Wir zeigen für alle S,Q: ⊢ {wpr(S,Q} S {Q}.
- Fall S = while b do S' end. Sei P = wpr(while b do S' end,Q).
 - 1. Zeigen: $\neg B \ [b] \land P \Rightarrow Q$ Sei s Zst. mit $(\neg B \ [b] \land P)(s)$. Also <while b do S' end,s> \rightarrow s, also Q(s).
 - 2. Zeigen: B $\llbracket b \rrbracket \land P \Rightarrow wpr(S',P)$ Sei Sei s Zst. mit (B $\llbracket b \rrbracket \land P)(s)$. Sei $\langle S',s \rangle \rightarrow s'$. (Wenn s' nicht ex., ist Aussage trivial). Zeigen: P(s')
 - Fall: Es gibt ein s" mit <while b so S' end,s'>→s".
 Dann gilt auch <while b do S' end,s>→s", und wegen Wahl von P auch Q(s"). Damit muss aber auch P(s') gelten
 - 2. Fall: Es gibt kein s" mit <while b do S' end,s'> →s". Dann gilt P(s') trivialerweise.

```
Mit IV: \vdash{wpr(S',P)} S' {P}. Mit (2): \vdash{P\land B [b] } S' {P}. Mit [while]<sub>P</sub>: \vdash{P} while b do S' end {¬B [b] \land P}. Mit [cons] und (1): \vdash{P} while b do S' end {Q}.
```

Gödelscher Unvollständigkeitssatz

"In jedem hinreichend ausdrucksstarken formalen System gibt es Aussagen, die richtig, aber nicht beweisbar sind"

hinreichend ausdrucksstark: im wesentlichen Rechnen mit natürlichen Zahlen und etwas Logik

Formales System = Aussagen formulieren mittels Sprache; Beweisschritte mittels Ersetzungsregeln

Gödels Beweisidee 1: Übersetzung in Zahlentheorie

Aussagen der Sprache übersetzen in Zahlen:

Sprache hat Alphabet: Zeichen → Zahl

Satz der Sprach ist Folge von Zeichen.

Kodierung: 2erster Bu. 3zweiter Bu 5dritter Bu

Anwendung einer Regel: Rechnen mit Zahlen

Gödels Beweisidee 2: Selbstaussage

- Lügnerparadoxon: Ein Kreter sagt: "Alle Kreter lügen"
- Gödels Selbstaussage:
- H = "H ist nicht beweisbar"
 - 1. Fall: beweisbar, dann falsch, also System nicht korrekt
 - 2. Fall: nicht beweisbar, dann aber richtig!

Gödels Argument trägt nicht in unserem Setting

- Grund: Lassen beliebige Prädikate zu.
- Haben: Abzählbar viele Variablen
- →überabzählbar viele Prädikate
- →es können nicht alle Prädikate in einer Sprache formuliert werden
- Voraussetzung für Gödels Satz treffen nicht zu

- Drei Konzepte, entsprechen drei grundlegenden Herangehensweisen an Modellbildung in der Informatik
 - Operationell: Nutzen abstrakte Maschinenmodelle; im Mittelpunkt steht der Schritt
 - Denotationell: Nutzen mathematische Formalismen wie Funktionen, Relationen, Gleichungen
 - Logisch: Nutzen logische Aussagen und Beweiskalküle

- All diese Konzepte finden sich auch in Ansätzen zur (semi-) formalen Spezifikation
 - Operationell: State Charts, Activity diagrams, Petrinetze,
 Message sequence diagrams, ...
 - Denotationell: Z, μ-Kalkül
 - Logisch: Larch, temporale Logik

- Operationelle Semantik:
 - relativ leicht zu definieren
 - relativ schwer auszuwerten
 - momentan Hauptmethode für verteilte bzw. interaktive
 Systeme (Protokolle, verteilte Algorithmen, GUI,...)
 - Anwendung: Vergleich von Systemen, Model Checking

- Denotationelle Semantik:
 - relativ schwer zu definieren
 - reichhaltige Auswertungsmöglichkeiten
 - verlangt mathematische Fertigkeiten
 - Anwendung: Statische Analyse
 - kompositional

- Axiomatische Semantik:
 - mittelschwer zu definieren
 - leichte Auswertung
 - verlangt logische Fertigkeiten
 - Anwendung: Programmverifikation
 - kompositional

Modellbildung in der Informatik

- Informatik = Übergang von informalen Ideen zu formalen Konstrukten
- vernünftiger Zwischenschritt: Modelle
- konsequente Umsetzung: Modellbasierte Softwareentwicklung
- State of the art: Informelle/semiformelle
 Modellierungskonzepte (vornehmlich UML)

Vorteile formaler Semantik/formaler Modelle

- Missverständnisarm
- Möglichkeit bedeutungstreuer Übersetzung
- Verfügbarkeit z.T. automatisierter Methoden zur Auswertung, zur Fehlererkennung
- Konstruktionsmethodik ("correct by construction")
- Proof-carrying code
- tieferes Verständnis

Nachteile formaler Modelle

- Erstellungsaufwand
- Schwer lesbar für Quereinsteiger
- Aber:
 - Aufwand zahlt sich oft aus
 - Tools verstecken Teil der Schwierigkeiten
 - sichere Jobs für Experten
 - aktuelle Forschung: Komplexitätsreduktion