Probability and Stastics

P.Anurag

November 18, 2017

Contents

1	Tables	2
1	Tables	
1.	1 Distribution Tables	

Table 1: Properties of Discrete Distribution

Distribution	Probability Mass Function	Probability Generating Function	Moment Generating Function	Characteristic Function
Bernoulli	$p^x(1-p)^{1-x}$	q + pz	$q + pe^t$	$q + pe^{it}$
Binomial	$\binom{n}{k} p^k (1-p)^{n-k}$	$[(1-p)+pz]^n$	$[(1-p)+pe^t]^n$	$[(1-p)+pe^{it}]^n$
Geometric	$(1-p)^{k-1}p$	$\frac{pt}{1 - (1 - p)t}$	$\frac{pe^t}{1 - (1 - p)e^t}$	$\frac{pe^{it}}{1 - (1 - p)e^{it}}$
Negative Binomial	$\left(\begin{array}{c} k-r+1\\ k \end{array}\right) (1-p)^r p^k$	$\left(\frac{1-p}{1-pz}\right)^r$	$\left(\frac{1-p}{1-pe^t}\right)^r$	$\left(\frac{1-p}{1-pe^{it}}\right)^r$
Poisson	$\frac{\lambda^k e^{-\lambda}}{k!}$	$e^{\lambda(z-1)}$	$e^{\lambda(e^t-1)}$	$e^{\lambda(e^{it}-1)}$

Table 2: Properties of Continous Distribution

Distribution	Probability Density Function	Probability Generating Function	Moment Generating Function	Characteristic Function
Exponential	$\lambda e^{-\lambda x}$	$\frac{\lambda}{\lambda - logt}$	$\frac{\lambda}{\lambda - t}$	$\frac{\lambda}{\lambda - it}$
Gamma	$\frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-\frac{x}{\theta}}$	$(1 - \theta log t)^{-k}$	$(1-\theta t)^{-k}$	$(1 - \theta it)^{-k}$
Normal	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$		$e^{\mu t + \frac{1}{2}\sigma^2 t^2}$	$e^{\mu t - \frac{1}{2}\sigma^2 t^2}$
Log-Normal	$\frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{\ln(x-\mu)^2}{2\sigma^2}}$		$e^{n\mu+n^2\frac{\sigma^2}{2}}$	$\sum_{n=0}^{\infty} \frac{(it)^n}{n!} e^{n\mu + n^2 \frac{\sigma^2}{2}}$
Weibull	$\frac{k}{\lambda} (\frac{x}{k})^{k-1} e^{-(\frac{x}{\lambda})^k} \text{for } x \ge 0$		$\sum_{n=0}^{\infty} \frac{t^n \lambda^n}{n!} \Gamma(1 + \frac{n}{k})$	$\sum_{n=0}^{\infty} \frac{(it)^n \lambda^n}{n!} \Gamma(1 + \frac{n}{k})$

1.2 Regression Tables

1.2.1 Values of ϕ in Orthogonal Regression Table for n=7

- 1. $\phi_0 = 1$
- 2. $\phi_1 = \xi_i$
- 3. $\phi_2 = \xi_i^2 4$
- 4. $\phi_3 = \xi_i(\xi_i^2 7)$
- 5. $\phi_4 = 7\xi_i^4 67\xi_i^2 + 72$
- 6. $\phi_5 = \xi_i (21\xi_i^4 245\xi_i^2 + 2096)$
- 7. $\phi_6 = 77\xi_i^6 1015\xi_i^4 + 3038\xi_i^2 1200$

Table 3: Orthogonal Regression Table for n=7

ξ_i	ϕ_0	ϕ_1	ϕ_2	ϕ_3	ϕ_4	ϕ_5	ϕ_6
-3	1	-3	5	-1	3	-1	1
-2	1	-2	0	1	-7	4	-6
-1	1	-1	-3	1	1	-5	15
0	1	0	-4	0	6	0	-20
1	1	1	-3	-1	1	5	5
2	1	2	0	-1	-7	-4	-6
3	1	3	5	6	3	1	1
λ^2	6	28	84	6	154	84	924

 $\frac{\text{Table 4: Orthogonal Regression Table for n=8}}{\parallel \xi_i \parallel \phi_0 = 1 \parallel \phi_1 = \xi_i \parallel \phi_2 \parallel \phi_3 \parallel \phi_4 \parallel \phi_5 \parallel \phi_6 \parallel \phi_7 \parallel}$