Linear Regression

Professor Jie Peng, PhD

Department of Statistics

University of California, Davis

Multiple Regression Model: Overview

Motivation

Often a number of variables affect the response variable in important and distinctive ways such that any single one wouldn't have provided an adequate description. E.g.,

- The weight of a person may be affected by height, gender, age, diet, etc.
- The income of a person may be affected by age, gender, years of education, etc.
- The body fat of a person may be associated with age, gender, weight, height, etc.

Multiple Regression Model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1} + \epsilon_i, \quad i = 1, \dots n$$

- \triangleright Y_i : value of the response variable in the *ith* case
- \triangleright $X_{i1}, \dots, X_{i,p-1}$: values of the X variables in the *ith* case
- $\triangleright \beta_0, \beta_1, \cdots, \beta_{p-1}$: regression coefficients
- \triangleright ϵ_i : random errors

$$E(\epsilon_i) = 0$$
, $Var(\epsilon_i) = \sigma^2$, $Cov(\epsilon_i, \epsilon_i) = 0$ for $i \neq j$

Response function (surface)/ mean response:

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_{p-1} X_{p-1}$$

First-Order (Additive) Models

 X_1, \dots, X_{p-1} represent p-1 **distinct** predictor variables.

- \blacktriangleright β_k indicates the change in mean response E(Y) with a unit increase in the predictor X_k , when all other predictors are held constant.
- This change is the same irrespective of the levels at which other predictors are held.
- ► The effects of the predictor variables are additive (without interactions).

Models with Interactions

Sometimes the effect of one predictor depends on the value(s) of the other predictor(s), i.e., the effects are **non-additive or interacting**.

- How education level affects income may depend on gender.
- Interactions are often represented by cross product terms among predictors.

Non-additive Model with Two Predictors

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \epsilon_i, \quad i = 1, \cdots, n.$$
Therefore
$$\widetilde{geoder}$$

$$\widetilde{geoder}$$

$$\widetilde{geoder}$$

$$\widetilde{geoder}$$

$$\widetilde{geoder}$$

$$\widetilde{geoder}$$

$$\widetilde{geoder}$$

- This model is in the form of the multiple regression model with p-1=3 by defining $X_{i3}:=X_{i1}X_{i2}$.
- The mean response $E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$ is linear in the parameters $\beta_0, \beta_1, \beta_2$, but is not linear in the original predictors X_1, X_2 .

Example

Brand-liking (Y) Moisture (X1) Sweetness (X2)
$$64.0 4.0 2.0$$

$$73.0 4.0 4.0$$

$$61.0 4.0 2.0$$

$$76.0 4.0 ... X_1 X_2$$

$$... X_1 X_2 X_3 X_2 ... X_n X_$$

Polynomial Regression Models

These models contain quadratic and/or higher-order terms of the predictor variable(s), making the response function curvilinear with respect to the predictor(s).

2nd-order polynomial regression model with one predictor:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i, \quad i = 1, \dots, n.$$

By defining, $X_{i1} := X_i, X_{i2} := X_i^2$, this model is in the form of the multiple regression model with p - 1 = 2.

p=3 p: # of regression

Example

y

X

Case Salary Experience

	•	•
1	71	26
2	69	19
3	73	22
4	69	17
5	65	13
6	75	25

Design matrix of a 2nd-order polynomial regression model:

$$\mathbf{X} = \begin{bmatrix} 1 & 26 & 26^2 \\ 1 & 19 & 19^2 \\ 1 & 22 & 22^2 \\ 1 & 17 & 17^2 \\ 1 & 13 & 13^2 \\ 1 & 25 & 25^2 \\ \vdots & \vdots & \vdots \end{bmatrix}$$

Models with Transformed Variables

Model with logarithm-transformed response variable:

$$\log Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1} + \epsilon_i, \quad i = 1, \dots n.$$

This model is in the form of the multiple regression model by defining $Y_i^* := \log Y_i$.

What Makes a LINEAR Regression Model?

The response function is linear in the regression coefficients:

 $\beta_0, \beta_1, \dots, \beta_{p-1}$. However, the response function does not need to be linear in the **original predictors**.

- In contrasts, nonlinear regression models are nonlinear in the parameters.
- ► The model below can not be expressed in the form of a linear regression model through transformations or introducing new *X* variables:

$$Y_i = \beta_0 \exp(\beta_1 X_i) + \epsilon_i, \quad i = 1, \dots n.$$

Multiple Regression: Example

Data

30 cases, one response variable and three predictor variables:

case	Y	X1	X 2	Х3
1	3.01	1.06	0.86	-1.23
2	-3.40	-0.30	-0.08	-0.48
3	2.74	1.05	0.22	-0.40
30	-1.42	2.12	-0.8	-0.62

- ► First examine each variable marginally: Variable type, summary statistics, histogram, boxplot, pie chart, missing values? outliers? etc.
- Then explore their relationships through pairwise scatter plots.

Scatter Plot Matrix

Figure: Pairwise scatter plots

All variables appear to be positively related. No obvious nonlinearity.

©Jie Peng 2022. This content is protected and may not be shared, uploaded, or distributed.

Model 1: First-order Model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, \quad i = 1, \cdots, 30.$$

Call:

lm(formula = Y ~ X1 + X2 + X3, data = data)

Coefficients:

```
Estimate Std. Error t value
                                Pr(>|t|)
(Intercept)
              1.2010
                         0.2541
                                   4.727
                                           6.91e-05 ***
X1
              1.1107
                         0.2672
                                    4.156
                                            0.000311 ***
X2
              1.7978
                         0.3287
                                    5.469
                                            9.78e-06 ***
                                    5.829
                                            3.83e-06 ***
X3
              1.9596
                         0.3362
```

Residual standard error: 1.299 on 26 degrees of freedom
Multiple R-squared: 0.8883, Adjusted R-squared: 0.8754

F-statistic: 68.93 on 3 and 26 DF, p-value: 1.667e-12

Figure: Model 1: residual plots

Residual vs. fitted value plot shows nonlinearity. Residual Q-Q plot shows heavy-tail. Residual boxplot shows range from -3 to 3.

Figure: Model 1: residual vs. interaction terms

Residual vs. X_1X_2 shows a clear linear pattern \rightarrow this term should be included in the model.

©Jie Peng 2022. This content is protected and may not be shared, uploaded, or distributed.

Model 2: Nonadditive Model with Interaction X_1X_2

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i1} X_{i2} + \epsilon_i, i = 1, \dots, 30.$$

Call: interaction

lm(formula = Y ~ X1 + X2 + X3 + X1:X2, data = data)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.8832 0.2153 4.103 0.00038 *** 6.587 6.69e-07 *** 0.2421 X1 1.5946 1.7091 0.2605 6.560 7.16e-07 *** X2 **X**3 2.1266 0.2687 7.916 2.85e-08 *** 1.0076 0.2467 X1:X2 4.084 0.00040 ***

Residual standard error: 1.026 on 25 degrees of freedom

Multiple R-squared: 0.933, Adjusted R-squared: 0.9223

F-statistic: 87.04 on 4 and 25 DF, p-value: 2.681e-14

Figure: Model 2: residual plots

Residual vs. fitted value plot shows no obvious nonlinearity.

Residual Q-Q plot shows no severe deviation from Normality.

Residual boxplot shows range from -2 to 2.

Islam be varying

Figure: Model 2: residual vs. interaction terms

None of these plots shows an obvious pattern \rightarrow Model 2 appears adequate.

Model 3: Nonadditive Model with All Two-way Interactions

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i1} X_{i2} + \beta_5 X_{i1} X_{i3} + \beta_6 X_{i2} X_{i3} + \epsilon_i, \quad i = 1, \dots, 30.$$

Call:

lm(formula = Y ~ X1 + X2 + X3 + X1:X2 + X1:X3 + X2:X3, data = data)

lose statistical

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)	0.8927	0.2278	3.920 0.000687 ***
X1	1.7179	0.2819	6.095 3.24e-06 ***
X2	1.5828	0.2925	5.411 1.69e-05 ***
Х3	1.9982	0.3041	6.571 1.05e-06 ***
X1:X2	1.1925	0.3368	3.541 0.001744 **
X1:X3	0.2227	0.4009	0.555 0.583989
X2:X3	-0.4403	0.3675	-1.198 0.243074

Modey 2. df=25

lose at!

(ode

SE.

Residual standard error: 1.038 on 23 degrees of freedom www.

Multiple R-squared: 0.937, Adjusted R-squared: 0.9205

F-statistic: 56.99 on 6 and 23 DF, p-value: 1.172e-12

Model 2 F larger , p smaller

Figure: Model 3: residual plots

Residual vs. fitted value plot shows no obvious nonlinearity.

Residual Q-Q plot shows no severe deviation from Normality.

Residual boxplot shows range from -2 to 2.

Figure: Model 3: residual vs. interaction terms

None of these plots shows an obvious pattern \rightarrow Model 3 appears adequate, but there is also no obvious improvement over Model 2.

Multiple Regression: Matrix Form

Model Equations

$$\mathbf{X}_{n \times p} := \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1,p-1} \\ 1 & X_{21} & X_{22} & \cdots & X_{2,p-1} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & X_{i1} & X_{i2} & \cdots & X_{i,p-1} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{n,p-1} \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix}.$$

Each row of **X** corresponds to a case and each column of *X* corresponds to an *X* variable.

Model Assumptions

$$\mathbf{E}\{\boldsymbol{\epsilon}\} = \mathbf{0}_n, \quad \boldsymbol{\sigma}^{\mathbf{2}}\{\boldsymbol{\epsilon}\} = \boldsymbol{\sigma}^{\mathbf{2}}\mathbf{I}_n.$$

In terms of the observations:

$$\mathbf{E}\{\mathbf{Y}\} = \mathbf{X}\boldsymbol{\beta}, \quad \boldsymbol{\sigma^2}\{\mathbf{Y}\} = \sigma^2 \mathbf{I}_n.$$

▶ Under the Normal error model, ϵ and \mathbf{Y} are vectors of independent normal random variables.

Least Squares Estimators SSE (new) = min a -- -

10: UL

Least squares criterion:

t squares criterion:
$$Q(\mathbf{b}) = \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_{i1} - \dots - b_{p-1} X_{i,p-1})^2$$

$$= (\mathbf{Y} - \mathbf{X}b)'(\mathbf{Y} - \mathbf{X}b), \quad \mathbf{b}_{p \times 1} = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{p-1} \end{bmatrix}.$$

where respect to b

Differentiate $Q(\cdot)$ and set the gradient to zero \Longrightarrow normal equation: X'Xb = X'Y.

LS estimators are solutions of the normal equation:

$$\hat{\beta} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_{p-1} \end{bmatrix} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{Y}.$$

$$\hat{\beta}_{p-1} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{Y}.$$

 \triangleright $\hat{\beta}$ is an unbiased estimator for β : $\vdash (\gamma) = \gamma \vdash$

$$\mathbf{E}\{\hat{\boldsymbol{\beta}}\} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{E}\{\mathbf{Y}\} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \boldsymbol{\beta}.$$

Variance-covariance matrix of $\hat{\beta}$: $\begin{cases} 3 \\ 4 \\ 4 \end{cases} = 5 \cdot I_h$ $= (x^T x)^{-1} \cdot x^T \cdot (x^T x)^{-1} = 5^T \cdot (x^T x)^{-1}$ $\sigma^2\{\boldsymbol{\beta}\} = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}.$

Fitted Values and Residuals

$$\begin{split} \widehat{\mathbf{Y}}_1 &:= \begin{bmatrix} \widehat{\mathbf{Y}}_1 \\ \widehat{\mathbf{Y}}_2 \\ \vdots \\ \widehat{\mathbf{Y}}_n \end{bmatrix} = \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{Y} = \mathbf{H} \mathbf{Y}, \quad \mathbf{e}_{n \times 1} := \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{bmatrix} = \mathbf{Y} - \widehat{\mathbf{Y}} = (\mathbf{I}_n - \mathbf{H}) \mathbf{Y}. \\ \mathbf{E} \{ \widehat{\mathbf{Y}} \} = \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{E} \{ \mathbf{Y} \}, \quad \sigma^2 \{ \widehat{\mathbf{Y}} \} = \sigma^2 \mathbf{H}. \\ \mathbf{E} \{ \mathbf{e} \} = \mathbf{E} \{ \mathbf{Y} \} - \mathbf{E} \{ \widehat{\mathbf{Y}} \} = \mathbf{0}_n, \quad \sigma^2 \{ \mathbf{e} \} = \sigma^2 (\mathbf{I}_n - \mathbf{H}). \end{split}$$

- Linear transformations of the observations vector Y
- Under the Normal error model, they are normally distributed

Hat Matrix

$$\mathbf{H}_{n\times n} := \underset{n\times p}{\mathbf{X}} (\mathbf{X}'\mathbf{X})^{-1} \underset{p\times p}{\mathbf{X}'}.$$

$$\mathbf{H} := \underset{n \times p}{\mathbf{X}} (\mathbf{X}'\mathbf{X})^{-1} \underset{p \times p}{\mathbf{X}'}.$$

$$= \underset{n \times p}{\mathbf{T}} (\chi^{\mathsf{T}} \chi)^{\mathsf{T}} \chi^{\mathsf{T}} \chi^{\mathsf$$

H and $I_n - H$ are projection matrices: symmetric and idempotent.

- rank(\mathbf{H}) = p, rank($\mathbf{I}_n \mathbf{H}$) = n p.
- ightharpoonup H is the projection matrix to col(X):
 - Fitted value vector $\widehat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$ is the projection of the observations vector \mathbf{Y} to col(X).
 - ▶ Residual vector $\mathbf{e} = (\mathbf{I}_n \mathbf{H})\mathbf{Y}$ is orthogonal to $\operatorname{col}(\mathbf{X})$.

Multiple Regression: ANOVA

Decomposition of Total Variation

$$SSTO = SSE + SSR$$

► Total sum of squares: Jn: van of 1

$$SSTO = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \mathbf{Y}' \left(\mathbf{I}_n - \frac{1}{n} \mathbf{J}_n \right) \mathbf{Y}, \quad d.f.(SSTO) = rank(\mathbf{I}_n - \frac{1}{n} \mathbf{J}_n) = n - 1.$$

Error sum of squares:

$$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 = \mathbf{Y}'(\mathbf{I}_n - \mathbf{H})\mathbf{Y}, \quad d.f.(SSE) = rank(\mathbf{I}_n - \mathbf{H}) = n - p.$$

Regression sum of squares:

$$SSR = \sum_{i=1}^{n} (\widehat{Y}_{i} - \overline{Y})^{2} = \mathbf{Y}'(\mathbf{H} - \frac{1}{n}\mathbf{J}_{n})\mathbf{Y}, \quad d.f.(SSR) = rank(\mathbf{H} - \frac{1}{n}\mathbf{J}_{n}) = p - 1.$$

$$= T_{r}(\mathbf{H} - \frac{1}{n}\mathbf{J}_{n}) = p - 1.$$

Sampling Distributions of Sums of Squares

under Ho:

SSR ~ X2 (p-1)

Under the Normal error model:

resculed x2 dutr.

►
$$SSE \sim \sigma^2 \chi^2_{(n-p)}$$

$$\frac{SSR}{6^{2}(p-1)} = \frac{MSR}{SSE}$$

$$\frac{SSE}{S^{2}(n-p)}$$

• If
$$\beta_1 = \cdots = \beta_{p-1} = 0$$
, then $SSR \sim \sigma^2 \chi^2_{(p-1)}$.

Mean Squares

$$E(SSE) = (N-P) \delta^{2}$$
we Tr

▶ MSE: an unbiased estimator of the error variance σ^2

$$MSE = \frac{SSE}{n-p}, E(MSE) = \sigma^2.$$

 $MSR = \frac{SSR}{p-1} :$

$$E(MSR) = \begin{cases} \sigma^2 & \text{if} \quad \beta_1 = \dots = \beta_{p-1} = 0 \\ > \sigma^2 & \text{if} \quad \text{otherwise} \end{cases}$$

F Test for Regression Relation

Test whether the response variable and the set of *X* variables are related:

- $ightharpoonup H_0: eta_1 = \cdots = eta_{p-1} = 0 \text{ vs. } H_a: \text{ not all } \beta_k \text{s equal to zero}$
- F ratio and its null distribution:

full distribution:

$$F^* = \frac{MSR}{MSE}, \quad F^* \sim_{H_0} F_{p-1,n-p},$$

where $F_{p-1,n-p}$ denotes the F distribution with (p-1,n-p) degrees of freedom.

▶ Decision rule at level α : reject H_0 if $F^* > F(1 - \alpha; p - 1, n - p)$.

ANOVA Table

Source of Variation	SS	d.f.	MS	F *
Regression	$SSR = \mathbf{Y}'(\mathbf{H} - \frac{1}{n}\mathbf{J}_n)\mathbf{Y}$	p – 1	$MSR = \frac{SSR}{p-1}$	$F^* = \frac{MSR}{MSE}$
Error	$SSE = \mathbf{Y}'(\mathbf{I}_n - \mathbf{H})\mathbf{Y}$	n – p	$MSE = \frac{SSE}{n-p}$	
Total	$SSTO = \mathbf{Y}' \left(\mathbf{I}_n - \frac{1}{n} \mathbf{J}_n \right) \mathbf{Y}$	n – 1		

Example: Model 2

$$h=30$$

$$p=5$$

Source of Variation	SS	d.f.	MS	F*	
Regression	SSR = 366.4846	4	MSR = 91.62116	$F^* = 87.03703$	(arge!
Error	SSE = 26.31672	25	MSE = 1.052669		
Total	<i>SSTO</i> = 392.8013	29			

Pvalue = $P(F_{4,25} > 87.037) \approx 0$, so there is a significant

regression relation between Y and X_1, X_2, X_3, X_1X_2 .

Multiple Regression: Coefficient of Multiple Determination

Coefficient of Multiple Determination

$$R^2 := \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}$$

- $ightharpoonup R^2$ is the proportion of total variation in Y that may be explained by the X variables. $\frac{25R}{20}$ $\frac{25R}{20}$ $\frac{20}{20}$ $\frac{20}{20$
- $ightharpoonup 0 < R^2 < 1$
- ightharpoonup Adding more X variables to the model will never decrease R^2 :
 - (i) SSTO remains the same. SSTO= & (Yi-T)2
 - (ii) SSE will not increase $\leftrightarrow SSR$ will not decrease.

Use As Many X Variables As Possible?

but less likely to generalize to one data

- ► With more X variables, the model does fit the observed data better, indicated by smaller SSE.

 | Solvers of fit (one data only) |
- ► However, a model with many X variables that are unrelated to the response variable and/or are highly correlated with each other
 - tends to overfit the observed data and often do a poor job for prediction due to increased sampling variability.
 - makes interpretation more difficult.
 - makes model maintenance more costly.

Adjusted Coefficient of Multiple Determination

Adjust for the number of *X* variables in the model:

$$R_a^2 = 1 - \frac{MSE}{MSTO} = 1 - \frac{n-1}{n-p} \frac{SSE}{SSTO}$$

replace SS by MS

MSTO = $\frac{SSTO}{N-1}$

- $ightharpoonup R_a^2 \le R^2$
- It's possible for R_a^2 to decrease when adding more X variables into the model:
 - decrease in SSE may be more than offset by the loss of degrees of freedom in SSE.

Example

► Model 1: $Y \sim X_1, X_2, X_3$

$$R^2 = 0.8883, \quad R_a^2 = 0.8754$$

► Model 2 : $Y \sim X_1, X_2, X_3, X_1 X_2$ where

$$R^2 = 0.933, \quad R_a^2 = 0.9223$$

► Model 3: $Y \sim X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3$

$$R^2 = 0.937, \quad R_a^2 = 0.9205$$

Multiple Regression: Inference of Regression Coefficients

LS Estimator: Standard Error

$$\hat{\boldsymbol{\beta}}_{p\times 1} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_{p-1} \end{bmatrix} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{Y}_{p\times n} \mathbf{X}' \mathbf{Y}_{n\times 1}.$$

$$\hat{\boldsymbol{\beta}}_{p-1} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{Y}_{p\times n} \mathbf{X}' \mathbf{Y}_{n\times 1}.$$

$$\hat{\boldsymbol{\beta}}_{p-1} = \boldsymbol{\beta}, \quad \boldsymbol{\sigma}^2 \{\hat{\boldsymbol{\beta}}\} = \boldsymbol{\sigma}^2 (\mathbf{X}'\mathbf{X})^{-1}.$$

$$\hat{\boldsymbol{\beta}}_{p\times 1} = \boldsymbol{\beta}, \quad \boldsymbol{\sigma}^2 \{\hat{\boldsymbol{\beta}}\} = \boldsymbol{\sigma}^2 (\mathbf{X}'\mathbf{X})^{-1}.$$

 $s(\hat{\beta}_k)$ – the standard error of $\hat{\beta}_k$ – is the positive square-root of the (k+1)th diagonal element of $MSE(\mathbf{X}'\mathbf{X})^{-1}$.

Under Normal error model:

▶ $(1 - \alpha)100\%$ -confidence interval of β_k :

$$\hat{\beta}_k \pm t(1-\alpha/2; (n-p))s\{\hat{\beta}_k\}.$$

T statistic:

$$T^* = rac{\hat{eta}_k - eta_k^0}{s\{\hat{eta}_k\}} \underset{H_0}{\sim} t_{(n-p)}.$$

► Two-sided T-Test: $H_0: \beta_k = \beta_k^0$ vs. $H_a: \beta_k \neq \beta_k^0$.

At level α , the decision rule is to reject H_0 if and only if

$$|T^*| > t(1 - \alpha/2; (n - p)).$$

model 2

Example: Nonadditive Model with Interaction X_1X_2

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i1} X_{i2} + \epsilon_i, i = 1, \dots, 30.$$

Call:

lm(formula = Y ~ X1 + X2 + X3 + X1:X2, data = data)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)	0.8832	0.2153	4.103 0.00038 ***
X1	1.5946	0.2421	6.587 6.69e- 0 7 ***
X2	1.7091	0.2605	6.560 7.16e-07 ***
Х3	2.1266	0.2687	7.916 2.85e-08 ***
X1:X2	1.0076	0.2467	4.084 0.00040 ***
		Ba	SE(2) T = 34-0

JUSE

Residual standard error: 1.026 on 25 degrees of freedom
Multiple R-squared: 0.933, Adjusted R-squared: 0.9223

F-statistic: 87.04 on 4 and 25 DF, p-value: 2.681e-14

2-sided p-value

Test whether there is an interaction between X_1 and X_2 at significance level 0.01.

- $H_0: \beta_4 = 0$, vs., $H_a: \beta_4 \neq 0$.
- $T^* = \frac{1.0076-0}{0.2467} = 4.084.$
- ightharpoonup n = 30, p = 5, t(0.995; 25) = 2.787.
- Since |4.084| > 2.787, reject the null hypothesis and conclude that there is a significant interaction effect between X_1 and X_2 .
- ► Alternatively, pvalue= $P(|t_{(25)}| > |4.084|) = 0.00040 < 0.01$, so reject H_0 .

Multiple Regression: Estimation of Mean Response

Mean Response

For a given set of *X* values:

$$\mathbf{X}_h = \begin{bmatrix} \mathbf{1} \\ X_{h1} \\ \vdots \\ X_{h,p-1} \end{bmatrix},$$

the corresponding mean response is:

$$E(Y_h) = X'_h \beta = \beta_0 + \beta_1 X_{h1} + \cdots + \beta_{p-1} X_{h,p-1}.$$

 $ightharpoonup \widehat{Y}_h := \mathbf{X}_h' \hat{\boldsymbol{\beta}}$ is an unbiased estimator of $E(Y_h)$:

$$E(\widehat{Y}_h) = E(X_h'\hat{\beta}) = X_h'E\{\hat{\beta}\} = X_h'\beta = E(Y_h)$$

$$\sigma^{2}\{\widehat{\mathbf{Y}}_{h}\} = \mathbf{X}'_{h}\sigma^{2}\{\widehat{\boldsymbol{\beta}}\}\mathbf{X}_{h} = \sigma^{2}\left(\mathbf{X}'_{h}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_{h}\right)$$

Standard error of \widehat{Y}_h :

$$s(\widehat{Y}_h) = \sqrt{MSE(\mathbf{X}'_h(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h)}$$

▶ $(1 - \alpha)100\%$ -confidence interval of $E(Y_h)$:

$$\widehat{Y}_h \pm t(1-\alpha/2; n-p)s(\widehat{Y}_h)$$

Example: Nonadditive Model with Interaction X_1X_2

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i1} X_{i2} + \epsilon_i, i = 1, \dots, 30.$$

Call:

 $lm(formula = Y \sim X1 + X2 + X3 + X1:X2, data = data)$

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)	0.8832	0.2153	4.103	0.00038	***
X1	1.5946	0.2421	6.587	6.69e-07	***
X2	1.7091	0.2605	6.560	7.16e-07	***
Х3	2.1266	0.2687	7.916	2.85e-08	***
X1:X2	1.0076	0.2467	4.084	0.00040	***

Residual standard error: 1.026 on 25 degrees of freedom

Multiple R-squared: 0.933, Adjusted R-squared: 0.9223

F-statistic: 87.04 on 4 and 25 DF, p-value: 2.681e-14

Estimate the mean response when $X_1 = 0.8, X_2 = 0.5, X_3 = -1$:

• Estimator $\widehat{Y}_h = \mathbf{X}'_h \hat{\boldsymbol{\beta}} = 1.290$:

$$\mathbf{X}'_h(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h = 0.170, \quad \sqrt{MSE} = 1.026$$

$$s(\widehat{Y}_h) = 1.026 \times \sqrt{0.170} = 0.423$$

- ightharpoonup n = 30, p = 5: t(0.995; 25) = 2.787
- ► A 99%-confidence interval of $E(Y_h)$:

$$1.290 \pm 2.787 \times 0.423 = [0.111, 2.469]$$

Multiple Regression: Prediction

Prediction of a New Observation

- $Y_{h(new)} = X'_h \beta + \epsilon_h$: independent with the observations Y_i s.
- Predicted value: $\widehat{Y}_h := \mathbf{X}'_h \hat{\boldsymbol{\beta}}$

$$\sigma^2\{\text{pred}_h\} := \text{Var}(\widehat{Y}_h - Y_{h(\text{new})}) = \sigma^2\{\widehat{Y}_h\} + \sigma^2\{Y_{h(\text{new})}\} = \sigma^2 X_h' (X'X)^{-1} X_h + \sigma^2.$$

Standard error of prediction:

$$s(pred_h) = \sqrt{MSE\left[1 + \mathbf{X}'_h(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h\right]}.$$

▶ $(1 - \alpha)100\%$ -prediction interval of $Y_{h(new)}$:

$$\widehat{Y}_h \pm t(1-\alpha/2; n-p)s(pred_h).$$

Example: Nonadditive Model with Interaction X_1X_2

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i1} X_{i2} + \epsilon_i, i = 1, \dots, 30.$$

Call:

 $lm(formula = Y \sim X1 + X2 + X3 + X1:X2, data = data)$

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)	0.8832	0.2153	4.103	0.00038	***
X1	1.5946	0.2421	6.587	6.69e-07	***
X2	1.7091	0.2605	6.560	7.16e-07	***
Х3	2.1266	0.2687	7.916	2.85e-08	***
X1:X2	1.0076	0.2467	4.084	0.00040	***

Residual standard error: 1.026 on 25 degrees of freedom

Multiple R-squared: 0.933, Adjusted R-squared: 0.9223

F-statistic: 87.04 on 4 and 25 DF, p-value: 2.681e-14

Predict a new observation when $X_1 = 0.8, X_2 = 0.5, X_3 = -1$:

Predicted value $\widehat{Y}_h = \mathbf{X}'_h \hat{\boldsymbol{\beta}} = 1.290$:

$$\mathbf{X}'_h(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}_h = 0.170, \quad \sqrt{MSE} = 1.026$$

$$s(pred) = 1.026 \times \sqrt{1 + 0.170} = 1.1098$$

► A 99%-prediction interval of Y_{hnew} :

$$1.290 \pm 2.787 \times 1.1098 = [-1.803, 4.383]$$

Hidden Extrapolations

- Extrapolation occurs when predicting the response variable for values of the *X* variable(s) lying outside the range of the observed data.
- With more than one X variables, the levels of all X variables jointly define the region of the observations.

With two *X* variables, we can look at their scatter plot to determine the region of observations.

Multiple Regression: Extra Sum of Squares

Notation

- ► I: an index set
- $X_I := \{X_i : i \in I\}$

- eg.]= {1,2}]= {2,3,5}
 - $\chi_1 = \{\chi_1, \chi_2\}$ $\chi_2 = \{\chi_2, \chi_3, \chi_5\}$
- Example: $I = \{2,3\}, X_I = \{X_2, X_3\}$ SST (X2): SST when regressly to Till X2
- SSE(X_I) and SSR(X_I) denote the error sum of squares and regression sum of squares, respectively, under the regression model with $X_I := \{X_i : i \in I\}$ being the set of X variables.

SSEXSSR when regressing y to XI = X EL

Extra Sum of Squares

$$SSR(X_{\mathcal{J}}|X_{\mathcal{I}}) := SSE(X_{\mathcal{I}}) - SSE(X_{\mathcal{I}}, X_{\mathcal{J}}), = \frac{SSR(X_{\mathcal{I}}, X_{\mathcal{J}})}{-SSR(X_{\mathcal{I}})}$$

where I and \mathcal{J} are two **non-overlapping** index sets.

- It is the reduction in error sum of squares by adding $X_{\mathcal{J}}$ to the model where $X_{\mathcal{I}}$ is the set of X variables.
- being added: $d.f.(SSR(X_{\mathcal{J}}|X_{\mathcal{I}})) = |\mathcal{J}|$
- Mean squares:

$$MSR(X_{\mathcal{J}}|X_{\mathcal{I}}) := \frac{SSR(X_{\mathcal{J}}|X_{\mathcal{I}})}{d.f.(SSR(X_{\mathcal{J}}|X_{\mathcal{I}}))}$$

decrease in ssR

Properties

- ► $SSR(X_{\mathcal{I}}|X_{\mathcal{I}}) \ge 0$
- ► In general, $SSR(X_{\mathcal{J}}|X_{\mathcal{I}}) \neq SSR(X_{\mathcal{I}}|X_{\mathcal{J}})$
- ► $SSR(X_{\mathcal{J}}|X_{\mathcal{I}}) = SSR(X_{\mathcal{I}}, X_{\mathcal{J}}) SSR(X_{\mathcal{I}})$, so it is also the marginal increase of the regression sum of squares by adding $X_{\mathcal{J}}$ to the model.

Multiple Regression: ESS Examples

Body Fat

A researcher measured the amount of body fat (Y) of 20 healthy females 25 to 34 years old, together with three (potential) predictor variables, triceps skinfolds thickness (X_1) , thigh circumference (X_2) , and midarm circumference (X_3) . The amount of body fat was obtained by a cumbersome and expensive procedure requiring immersion of the person in water. Thus it would be helpful if a regression model with some or all of these predictors could provide reliable estimates of body fat as these predictors are easy to measure.

A snapshot of the data.

case	X1	X2	X 3	Y
Tricep	s Thig	gh Mid	Arm Body	Fat
1	19.5	43.1	29.1	11.9
2	24.7	49.8	28.2	22.8
3	30.7	51.9	37.0	18.7
4	29.8	54.3	31.1	20.1
5	19.1	42.2	30.9	12.9
6	25.6	53.9	23.7	21.7

Figure: Scatter plot matrix

No obvious nonlinearity

Correlation matrix

 X1
 X2
 X3
 Y

 X1
 1.00000000
 0.9238425
 0.4577772
 0.8432654

 X2
 0.9238425
 1.00000000
 0.0846675
 0.8780896

 X3
 0.4577772
 0.0846675
 1.00000000
 0.1424440

 Y
 0.8432654
 0.8780896
 0.1424440
 1.0000000

 X_1 and X_2 are strongly correlated, X_1 and X_3 are moderately correlated, X_2 and X_3 are weakly correlated. Moreover, X_1 , X_2 are strongly correlated with Y and X_3 is weakly correlated with Y.

▶ Model 1: regression of Y on X₁

$$Y_i = \beta_0 + \beta_1 X_{i1} + \epsilon_i, i = 1, \dots, 20.$$

ightharpoonup Model 2: regression of Y on X_2

$$Y_i = \beta_0 + \beta_2 X_{i2} + \epsilon_i, i = 1, \dots, 20.$$

▶ Model 3: regression of Y on X_1 and X_2

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i, \quad i = 1, \dots, 20.$$

► Model 4: regression of Y on X_1, X_2 and X_3

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, i = 1, \dots, 20.$$

Boy Fat: Model 1

```
Call:
lm(formula = Y ~ X1, data = fat)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.4961
                        3.3192 -0.451
                                          0.658
             0.8572
                        0.1288 6.656 3.02e-06 ***
X1
Residual standard error: 2.82 on 18 degrees of freedom
Multiple R-squared: 0.7111,
                               Adjusted R-squared: 0.695
F-statistic: 44.3 on 1 and 18 DF, p-value: 3.024e-06
Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value
                            Pr(>F)
          1 352.27 352.27 44.305 3.024e-06 ***
X1
Residuals 18 143.12
                      7.95
```

Boy Fat: Model 2

```
Call:
lm(formula = Y ~ X2, data = fat)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -23.6345
                        5.6574 -4.178 0.000566 ***
              0.8565
                                 7.786 3.6e-07 ***
X2
                        0.1100
Residual standard error: 2.51 on 18 degrees of freedom
Multiple R-squared: 0.771,
                               Adjusted R-squared: 0.7583
F-statistic: 60.62 on 1 and 18 DF, p-value: 3.6e-07
Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value Pr(>F)
X2
           1 381.97 381.97 60.617 3.6e-07 ***
Residuals 18 113.42
                      6.30
```

Boy Fat: Model 3

```
Call:
lm(formula = Y ~ X1 + X2, data = fat)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -19.1742
                        8.3606 -2.293
                                         0.0348 *
X1
             0.2224
                        0.3034
                                 0.733
                                         0.4737
X2
              0.6594
                         0.2912
                                 2.265
                                         0.0369 *
Residual standard error: 2.543 on 17 degrees of freedom
Multiple R-squared: 0.7781,
                               Adjusted R-squared: 0.7519
F-statistic: 29.8 on 2 and 17 DF, p-value: 2.774e-06
Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value
                            Pr(>F)
X1
           1 352.27 352.27 54.4661 1.075e-06 ***
                     33.17 5.1284
X2
          1 33.17
                                      0.0369 *
Residuals 17 109.95
                      6.47
```

Boy Fat: Model 4

```
lm(formula = Y ~ X1 + X2 + X3, data = fat)
```

Coefficients:

Estimate Std. Error t value Pr(>|t|)

```
1.173
(Intercept) 117.085
                         99.782
                                           0.258
X1
               4.334
                          3.016
                                  1.437
                                           0.170
                          2.582 -1.106
X2
              -2.857
                                           0.285
X3
              -2.186
                          1.595 -1.370
                                           0.190
```

Residual standard error: 2.48 on 16 degrees of freedom

Multiple R-squared: 0.8014, Adjusted R-squared: 0.7641

F-statistic: 21.52 on 3 and 16 DF, p-value: 7.343e-06

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

X1 1 352.27 352.27 57.2768 1.131e-06 ***

X2 1 33.17 33.17 5.3931 0.03373 *

X3 1 11.55 11.55 1.8773 0.18956

Residuals 16 98.40 6.15

©Jie Peng 2022. This content is protected and may not be shared, uploaded, or distributed.

Body Fat: ESS

From Model 1, $SSE(X_1) = 143.12$ and from Model 3, $SSE(X_1, X_2) = 109.95$:

$$SSR(X_2|X_1) = SSE(X_1) - SSE(X_1, X_2) = 143.12 - 109.95 = 33.17$$

From Model 2, $SSE(X_2) = 113.42$:

$$SSR(X_1|X_2) = SSE(X_2) - SSE(X_1, X_2) = 113.42 - 109.95 = 3.47$$

The reduction of SSE by adding X_2 to the model with X_1 is much more than the reduction of SSE by adding X_1 to the model with X_2 .

From Model 4, $SSE(X_1, X_2, X_3) = 98.40$:

$$SSR(X_3|X_1, X_2) = SSE(X_1, X_2) - SSE(X_1, X_2, X_3)$$

= 109.95 - 98.40 = 11.55

Moreover,

$$SSR(X_2, X_3|X_1) = SSE(X_1) - SSE(X_1, X_2, X_3) = 143.12 - 98.40 = 44.72,$$

 $SSR(X_1, X_3|X_2) = SSE(X_2) - SSE(X_1, X_2, X_3) = 113.42 - 98.40 = 15.02.$

These two extra sums of squares have degrees of freedom 2:

$$MSR(X_2, X_3|X_1) = 44.72/2 = 22.36,$$

 $MSR(X_1, X_3|X_2) = 15.02/2 = 7.51$

Multiple Regression: Decomposition of SSR

Decomposition of SSR into ESS

For a model with multiple *X* variables, the regression sum of squares (SSR) can be expressed as the sum of several extra sums of squares.

- ► $SSR(X_1, X_2) = SSR(X_1) + SSR(X_2|X_1)$: $SSR(X_1)$ measures the contribution by having X_1 alone in the model, whereas $SSR(X_2|X_1)$ measures the additional contribution when X_2 is added, given that X_1 is already in the model.
- ► However, such decomposition is usually not unique: $SSR(X_1, X_2) = SSR(X_2) + SSR(X_1|X_2).$

- More X variables, more decompositions.
- For example, with three *X* variables:

$$SSR(X_1, X_2, X_3) = SSR(X_1) + SSR(X_2|X_1) + SSR(X_3|X_1, X_2)$$

 $SSR(X_1, X_2, X_3) = SSR(X_2) + SSR(X_1|X_2) + SSR(X_3|X_1, X_2)$
 $SSR(X_1, X_2, X_3) = SSR(X_1) + SSR(X_2, X_3|X_1), \dots, \dots$

Body Fat

From Model 1, $SSR(X_1) = 352.27$; Also $SSR(X_2|X_1) = 33.17$ and $SSR(X_3|X_1,X_2) = 11.55$. So

$$SSR(X_1, X_2, X_3) = 352.27 + 33.17 + 11.55 = 396.99.$$

From Model 2, $SSR(X_2) = 381.97$; Also $SSR(X_1|X_2) = 3.47$. So

$$SSR(X_1, X_2, X_3) = 381.97 + 3.47 + 11.55 = 396.99.$$

R output: anova()

```
lm(formula = Y ~ X1 + X2 + X3, data = fat)
> anova(fit4)
Analysis of Variance Table
Df Sum Sq Mean Sq F value
                            Pr(>F)
           1 352.27 352.27 57.2768 1.131e-06 ***
X1
X2
           1 33.17
                      33.17 5.3931
                                     0.03373 *
                     11.55 1.8773
X3
           1 11.55
                                     0.18956
Residuals 16 98.40
                       6.15
```

Decomposition of *SSR* into single d.f. ESS, by order of the *X* variables entering the model:

Source of Variation	SS	d.f.	MS
Regression	396.99	3	132.33
<i>X</i> ₁	352.27	1	352.27
$X_2 X_1$	33.17	1	33.17
$X_3 X_1, X_2$	11.55	1	11.55
Error	98.40	16	6.15
Total	495.39	19	

- SSR $(X_2, X_3|X_1) = SSR(X_2|X_1) + SSR(X_3|X_1, X_2) =$ 33.17 + 11.55 = 44.72.
- ► How to get $SSR(X_2|X_1, X_3)$ from the R output? Enter the X variables in a different order, i.e., X_1, X_3, X_2 :

```
lm(formula = Y ~ X1 + X3 + X2, data = fat)
> anova(fit4.alt2)
Analysis of Variance Table
Df Sum Sq Mean Sq F value
                            Pr(>F)
          1 352.27 352.27 57.2768 1.131e-06 ***
X1
X3
                     37.19 6.0461
          1 37.19
                                    0.02571 *
          1 7.53
                      7.53 1.2242
                                    0.28489
X2
Residuals 16 98.40
                      6.15
```

 \triangleright $SSR(X_2|X_1,X_3) = 7.53$

Multiple Regression: General Linear Tests

General Linear Tests

 \mathcal{I} and \mathcal{J} are two non-overlapping index sets:

- ▶ **Full model**: with both $X_{\mathcal{I}}$ and $X_{\mathcal{J}}$
- **Reduced model**: with only X_I
- ▶ Test whether $X_{\mathcal{J}}$ may be dropped out of the full model:

$$H_0: \beta_j = 0$$
, for **all** $j \in \mathcal{J}$ vs. $H_a:$ not all $\beta_j: j \in \mathcal{J}$ is zero

 $ightharpoonup H_0$ corresponds to the reduced model with only X_I .

F Test

Compare SSE under the full model with SSE under the reduced model by an F ratio:

$$F^* = \frac{\frac{SSE(R) - SSE(F)}{df_R - df_F}}{\frac{SSE(F)}{df_F}} = \frac{MSR(X_{\mathcal{J}}|X_{\mathcal{I}})}{MSE(F)}$$

▶ Under H_0 (i.e., the reduced model):

$$F^* \sim_{H_0} F_{df_R - df_F, df_F}$$

ightharpoonup Reject H_0 at level α iff the observed

$$F^* > F(1 - \alpha; df_R - df_F, df_F).$$

Multiple Regression: General Linear Tests Examples

F-test for Regression Relation

Full model with X_1, \dots, X_{p-1} :

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1} + \epsilon_i, \quad i = 1, \dots n$$

Reduced model with no X variable:

$$Y_i = \beta_0 + \epsilon_i$$
, $i = 1, \dots, n$, $SSE(R) = SSTO$, $df_R = n - 1$

- ► SSE(R) SSE(F) = SSTO SSE(F) = SSR(F), and $df_R df_F = (n-1) (n-p) = p-1 = d.f.(SSR(F))$
- $F^* = \frac{SSR(F)/(p-1)}{SSE(F)/(n-p)} = \frac{MSR(F)}{MSE(F)}$

Test whether a Single $\beta_k = 0$

Body Fat: for the model with all three predictors, test whether the midarm circumference (X_3) can be dropped.

► Full model: SSE(F) = 98.40 with d.f. 16:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, i = 1, \dots, 20.$$

▶ Reduced model: SSE(R) = 109.95 with d.f. 17:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i, \quad i = 1, \dots, 20.$$

►
$$F^* = \frac{11.55/1}{98.40/16} = 1.88$$
; Pvalue= $P(F_{1,16} > 1.88) = 0.189$, so X_3 can be dropped.

Equivalence between F-test and T-test

- $ightharpoonup H_0: \beta_k = 0$ vs. $H_a: \beta_k \neq 0$
- T-test:

$$T^* = rac{\hat{eta}_k}{s\{\hat{eta}_k\}} \stackrel{\sim}{\sim} t_{(n-p)},$$

where $\hat{\beta}_k$ is the LS estimator of β_k and $s\{\hat{\beta}_k\}$ is its standard error. At level α , reject H_0 when $|T^*| > t(1 - \alpha/2; n - p)$.

► $F^* = (T^*)^2$ and $F(1 - \alpha; 1, n - p) = (t(1 - \alpha/2; n - p))^2 \rightarrow F$ -test and two-sided T-test are equivalent.

For one-sided alternatives, we still need the T-tests.

Test whether Several $\beta_k = 0$

Body Fat: Test whether both X_2 and X_3 can be dropped from the model with all three predictors:

► Full model: SSE(F) = 98.40 with d.f. 16:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i, i = 1, \dots, 20.$$

▶ Reduced model: SSE(R) = 143.12 with d.f. 18:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \epsilon_i, i = 1, \cdots, 20.$$

$$F^* = \frac{44.72/2}{98.40/16} = 3.635$$
; Pvalue= $P(F_{2,16} > 3.635) = 0.0499$

Test Equality of Several β_k s

- ► Full model: $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \cdots + \beta_{p-1} X_{i,p-1} + \epsilon_i$
- For $q \le p-1$: $H_0: \beta_1 = \cdots = \beta_q \text{ vs. } H_a: \beta_1, \cdots, \beta_q \text{ are not all equal}$
- ▶ Reduced model: $Y_i = \beta_0 + \beta_c(X_{i1} + \cdots + X_{iq}) + \cdots + \beta_{p-1}X_{i,p-1} + \epsilon_i$
- ho_c denotes the common value of β_1, \dots, β_q under H_0 , and $X_1 + \dots + X_q$ is the corresponding (new) X variable. SSE(R) has d.f. n (p q + 1).
- $F^* = \frac{(SSE(R) SSE(F))/(q-1)}{SSE(F)/(n-p)} \underset{H_0}{\sim} F_{q-1,n-p}$