

The Simulation of Three-Dimensional Flow by Using GPU-based MPS Method

Xiang Chen, Decheng Wan

State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering,

Shanghai Jiao Tong University

2017 SPHERIC International Workshop, Beijing, China

Beijing, China, Oct. 18-20, 2017: http://spheric-sph.org/index

Contents

- Backgrounds
- Numerical methods
 - **✓ Modified MPS**
 - **✓ MPSGPU-SJTU Solver**
- Numerical Simulation
 - **✓ Dam Break Flow**
 - **✓** Liquid Sloshing
- Conclusions and Ongoing Work

Difficulty of violent flow simulation:

> Dealing with large deformations and nonlinear fragmentation of free surface

Dam Break

Liquid Sloshing

Mesh Method

Meshfree Method

- > Mesh distortion because of large deformation.
- > Difficult to simulate nonlinear free surface.

- > Easily track free surfaces and moving boundaries.
- > Removing the difficulties of re-meshing.

	SPH	MPS	
Fluid	Compressible	Incompressible	
Pressure	Equation of State	Pressure Poisson Equation	
Time iteration	Explicit	Semi-implicit	

MPS SPH

Disadvantage of MPS Method

• High computational cost (Searching neighbor particles, Solving Pressure Poisson Equation).

Neighbor Particles

$$<\nabla^{2}P^{k+1}>_{i} = (1-\gamma)\frac{\rho}{\Delta t}\nabla\cdot\vec{V_{i}}^{*} - \gamma\frac{\rho}{\Delta t^{2}}\frac{< n^{*}>_{i} - n^{0}}{n^{0}}$$

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,i} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i,1} & \dots & a_{i,i} & \dots & a_{i,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,i} & \dots & a_{n,n} \end{pmatrix}\begin{pmatrix} x_{1} \\ \vdots \\ x_{i} \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} b \\ \vdots \\ b_{i} \\ \vdots \\ b_{n} \end{pmatrix}$$

PPE

CPU Parallel

Dynamic load balancing (Zhang, 2014)

Speed-up of different processor numbers

Refined Particles

CPU time between **OPT** and **Uni-Fine**

CPU time between Multi-MPS and Uni-MPS

COMPUTATIONAL FLUID DYNAMICS

APPLICATION	DESCRIPTION	SUPPORTED FEATURES	MULTI-GPU SUPPOR	
Altair - AcuSolve	General purpose CFD software	Linear equation solver	Yes	
ANSYS - Fluent	General purpose CFD software	Radiation heat transfer model, linear equation solver	Yes	
Autodesk - Moldflow	Plastic mold injection software	Linear equation solver	Single only	
CPFD Barracuda - VR and Barracuda	Fluidized bed modeling software	Linear equation solver, particle calculations	Single only	
DHI MIKE 21	2D hydrological modelling of coast and sea	g of coast and sea Hydrodynamics; Advection-dispersion; Sand and mud transport; coupled modelling; particle tracking; oil spill; ecological modelling; agent based modelling; various wave models		
DHI MIKE FLOOD	1D & 2D urban, coastal, and riverine flood modelling	Hydrodynamics	Yes	
FluiDyna aeroFluidX	Incompressible single-phase CFD software	Finite volume solver	Yes	
FluiDyna - Culises for OpenFOAM	Solver library for general purpose CFD software	Linear equation solvers	Yes	
FluiDyna nanoFluidX	General purpose CFD software	SPH solver	Yes	
FluiDyna ultraFluidX	General purpose CFD software	Lattice-Boltzmann solver	Yes	
midas NFX (CFD)	General purpose CFD software based on FEM	Linear equation solver(Iterative Solver and AMG Preconditioner)	Single only	
Prometech - Particleworks	Particle-based CFD software	Implicit and explicit solvers	Yes	
Turbostream Ltd.	CFD software for turbomachinery flows	Explicit solver	Yes	
Vratis Speed IT FLOW	Incompressible single-phase CFD software	Finite volume solver	Single only	
Vratis SpeedIT for OpenFOAM	Solver library for general purpose CFD software	Linear equation solvers	Yes	

GPU applications in fluid dynamics

OpenFOAM

ANSYS Fluent

Contents

- Backgrounds
- Numerical methods
 - **✓ Modified MPS**
 - **✓ MPSGPU-SJTU Solver**
- Numerical Simulation
 - **✓ Dam Break Flow**
 - **✓ Liquid Sloshing**
- Conclusions and Ongoing Work

Modified MPS

Original

Modified

$$W(r) = \begin{cases} \frac{r_e}{r} - 1 & 0 \le r < r_e \\ 0 & r_e \le r \end{cases}$$

$$\int_{-\infty}^{\infty} r_e$$

$$0 r_e \le r$$

$$W(r) = \begin{cases} \frac{r_e}{0.85r + 0.15r_e} - 1 & 0 \le r < r_e \\ 0 & r_e \le r \end{cases}$$

$$+0.15r_{e}$$

$$<\nabla^2 P^{k+1}>_i = -\frac{\rho}{\Delta t^2} \frac{< n^*>_i - n^0}{n^0}$$

$$>_{i} = -\frac{\rho}{\Delta t^{2}} \frac{\langle n \rangle_{i} n}{n^{0}}$$

$$-\gamma \frac{\rho}{\Delta t^2} \frac{\langle n^* \rangle_i - n^0}{n^0}$$

$$\langle \mathbf{F} \rangle_i = \frac{D}{n^0} \sum_{i \neq i} \frac{1}{|\mathbf{r}_i - \mathbf{r}_i|} (\mathbf{r}_i - \mathbf{r}_j) W(\mathbf{r}_{ij})$$

$$\langle n \rangle_{i}^{*} \langle \beta \cdot n^{0} \rangle$$

 $|<|F|>_{i} > 0.9|F|^{0}$

MPSGPU-SJTU Solver

Advantages of GPU

- · Possess more calculation threads to process data simultaneously.
- High FLOPS.
- Available on personal computers.

MPSGPU-SJTU Solver

Features of CUDA:

- ✓ Applicable to NVIDIA gpus
- **✓** Based on C Language
- ✓ Easy to learn
- **✓** Abundant libraries
- **✓** Improved constantly

Framework of CUDA

MPSGPU-SJTU Solver

Contents

- Backgrounds
- Numerical methods
 - ✓ Modified MPS
 - ✓ MPSGPU-SJTU Solver
- Numerical Simulation
 - **✓ Dam Break Flow**
 - **✓** Liquid Sloshing
- Conclusions and Ongoing Work

Numerical Simulation

Computational environment of CPU and CPU

	HPC	GPU	
Card	Intel(R) Xeon(R) E5-2680 v2, 2.80 GHz	Tesla K40M	
Memory	DDR3 1600, 16GB	12GB	
Max Core	10	2880	
Programming Language	C++	CUDA C/C++	
Compiler	gcc, MVAPICH	CUDA 7.0 Cusp v0.5.1	

G. Colicchio, A. Colagrossi, M. Greco, and M. Landrini. "Free surface flow after a dam break a comparative study," 4th Numerical Towing Tank Symposium, Germany, September 2001.

Parameters	Values	
Fluid density	1000(kg/m ³)	
Kinematic viscosity	$1 \times 10^{-6} (\text{m}^2/\text{s})$	
Gravitational acceleration	9.81(m/s ²)	
Particle spacing	0.01(m)	
Fluid number	712800	
Total number	1199205	
Time Step	0.00025(s)	

	H1	P1	
X(m)	2.228	3.22	
Y(m)	0	0.5	
Z(m)	0 0.16		

Arrangements of Probes

Computational Parameters

Exp.

SPH

GPU

The water-front of GPU, CPU experiment, SPH and BEM

Exp.

SPH

GPU

Wave height

	Step 1 (s)	Step 2-3	Step 4-5	Step 6 (s)	Step 7-8
		(s)	(s)		(s)
CPU 1core	6.886	2.870	0.562	40.258	0.825
CPU 2cores	3.096	1.437	0.245	24.609	0.423
CPU 4cores	1.641	0.754	0.140	14.277	0.257
CPU 8cores	0.944	0.436	0.087	9.494	0.213
GPU	0.004	0.202	0.101	2.433	0.089

Y. K. Song, K. A. Chang, Y. Ryu, and S. H. Kwon. "Experimental study on flow kinematics and impact pressure in liquid sloshing," Experiments in Fluids, vol. 54, pp.1–20, September 2013.

Parameters	Values	
Surge Amplitude	0.0575(m)	
Filling Ratio	30%	
Excited Frequency	4.49(rad/s)	
Particle spacing	0.005(m)	
Fluid number	432535	
Total number	678373	
Time Step	0.0002(s)	

	P1	P2	
X(m)	0.395 0.395		
Y(m)	0	0	
Z(m)	0.1 0.12		

Arrangements of Probes

Computational Parameters

CPU GPU

1200 1600

The Variation of Pressure on P1 and P2

	Step 1 (s)	Step 2-3 (s)	Step 4-5 (s)	Step 6 (s)	Step 7-8 (s)
CPU 1core	4.257	1.735	0.341	59.037	0.498
CPU 2cores	1.990	0.880	0.162	34.365	0.276
CPU 4cores	1.108	0.513	0.094	19.890	0.179
CPU 8cores	0.637	0.328	0.058	13.166	0.185
GPU	0.003	0.126	0.062	1.622	0.058

Contents

- Backgrounds
- Numerical methods
 - ✓ Modified MPS
 - ✓ MPSGPU-SJTU Solver
- Numerical Simulation
 - **✓ Dam Break Flow**
 - **✓ Liquid Sloshing**
- © Conclusions and Ongoing Work

Conclusions

- ➤ MPSGPU-SJTU, an in-house solver based on GPU acceleration technique is developed to simulate the three-dimensional violent flows such as dam break and sloshing.
- The numerical results of GPU simulation shows a good agreement with CPU calculation, SPH, BEM and experiment.
- ➤ The speedup of every calculation step between GPU and CPU solvers is up to 35.

Ongoing Work

> Develop the module of fluid-structure interaction in GPU code.

Thank You!

