Total No. of Questions—8]

[Total No. of Printed Pages—4

Seat	
No.	20

[5352]-133

S.E. (E&TC/ELECTRONICS) (I Sem.) EXAMINATION, 2018 NETWORK THEORY

(2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, *N.B.* :— Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - Figures to the right indicate full marks. (ii)
 - (iii)Assume suitable data, if necessary.
- For the network shown below, find current through 7 Ω 1. (a) resistor using superposition theorem. [6]

- Explain the following terms with example:

 (i) Oriented graph

 (ii) Rank of graph

 (iii) CoTree

 (iv) Twig. [6] (*b*)

2. (a) Obtain Thevenin's equivalent circuit w.r.t. points A & B for the circuit below . [6]

(b) Find the maximum possible number of trees for the network shown in Fig. [6]

3. (a) The switch is closed at t = 0. Find value of i, $\frac{di}{dt}$, $\frac{d^2i}{dt^2}$ at $t = 0^+$. Assume initial current of inductor to be zero. [6]

- (b) An inductive coil having resistance of 50 Ω and inductance of 0.05 H is connected in series with 0.02 μF capacitor. Find :
 - (i) Q factor of coil
 - (ii) Resonant frequency
 - (iii) Half power frequency.

Or

4. (a) In Fig., the switch 'S' is opened at t=0. Find the expression for voltage across C for t>0. Also find voltage at t=0.036 sec. [6]

- (b) Define Q-factor and derive equations for Q-factor of L&C.
- 5. (a) For any symmetrical network, prove that the characteristic impedance z_0 is the geometric mean of open and short circuit impedances. [6]
 - (b) Design constant K-HPF having cut-off frequency 5500 Hz and design impedance of 750 Ω . Draw : [7]
 - (i) T-section
 - (*ii*) π -section.

- Design a symmetrical π attenuator to work into 600 Ω and 6. (a) provide a loss of 20 dB. [6]
 - (*b*) What are the limitations of prototype filters? How these limitations are overcomed using m-derived filters? Explain composite filters with its block diagram. $\lceil 7 \rceil$
- Derive the condition of reciprocity and symmetry for 7. (a) z parameters. [6]
 - Determine the transmission parameters for the network shown (*b*) in Fig. [7]

Current I₁ and I₂ entering at port 1 and port 2 respective 8. (a) of two port network are given by the following equations:

$$\begin{split} & I_1 &= 0.5 V_1 - 0.2 V_2 \\ & I_2 &= 0.2 V_1 + V_2. \end{split}$$

Find z parameters.

[7]

Write a short note on : Pole-zeros of network functions and stability. (*b*)