ᲡᲐᲥᲐᲠᲗᲕᲔᲚᲝᲡ ᲢᲔᲥᲜᲘᲙᲣᲠᲘ ᲣᲜᲘᲕᲔᲠᲡᲘᲢᲔᲢᲘ

ᲛᲘᲮᲔᲘᲚ ᲨᲘᲚᲐᲙᲐᲫᲔ

ᲐᲛᲬᲔ-ᲡᲐᲢᲠᲐᲜᲡᲞᲝᲠᲢᲝ-ᲡᲐᲛᲨᲔᲜᲔᲑᲚᲝ-ᲡᲐᲒᲖᲐᲝ ᲛᲐᲜᲥᲐᲜᲔᲑᲘ ᲓᲐ ᲛᲔᲥᲐᲜᲘᲖᲛᲔᲑᲘ

(ᲨᲔᲡᲐᲒᲐᲚᲘ ᲡᲞᲔᲪᲘᲐᲚᲝᲑᲐᲨᲘ)

ወንዕምዐኔዐ 2017

წინამდებარე ნაშრომში მოცემულია სამშენებლო, საგზაო, ამწე-სატრანსპორტო მანქანებისა და მექანიკური მოწყობილობის ექსპლუატაციის საფუძვლები. ჩამოყალიბებულია ზოგადი მოთხოვნები ამ ტიპის მანქანა-მოწყობილობების მიმართ, განხილულია მათი კონსტრუქციულ-ექსპლუატაციური მახასიათებლები და სტრუქტურული აგებულება. მოხდენილია მანქანათა კლასიფიცირება. სათანადო ყურადღება აქვს დათმობილი გრუნტების დახასიათებას და მათ მაჩვენებლებს.

ზოგადად განხილულია მიწასათხრელი, მიწასათხრელ-სატრანსპორტო, ამწე-სატრანსპორტო, ბეტონისა, ხსნარების და სამსხვრევ-დამხარისხებელი მანქანები და მოწყობილობა, მოცემულია მათი მთავარი და ძირითადი პარამეტრები.

ნაშრომი განკუთვნილია, როგორც სახელმძღვანელო სამშენებლო მანქანების პროფილის I-II კურსის სტუდენტებისათვის, "შესავალი სპეციალობაში" სასწავლო კურსის შესასწავლად. აგრეთვე წარმოებაში მომუშავე ინჟინერ-ტექნიკური მუშაკებისა და არამექანიკური სპეციალობის სტუდენტებისათვის.

შ0655%60

- 1. შესავალი. სამშენებლო ტექნიკა ტექნოლოგიები
- 2. მოთხოვნები სამშენებლო და საგზაო მანქანათა მიმართ
- 3. კონსტრუქციულ-ექსპლუტაციური მახასიათებლები
- 4. სამშენებლო და საგზაო მანქანების კლასიფიკაცია
- 5. მანქანათა სტრუქტურული აგებულება. ამძრავები
- 6. გრუნტები და მათი კლასიფიკაცია დამუშავების სიძნელის მიხედვით
- 7. მიწასათხრელი მანქანები
 - 7.1. ექსკავატორები
- 8. მიწასათხრელ-სატრანსპორტო მანქანები
 - 8.1. ბულდოზერები
 - 8.2. სკრეპერები
 - 8.3. ავტოგრეიდერები
 - 8.4. ბულდოზერ-გამაფხვიერებლები
- 9. სამსხვრევ-დამხარისხებელი მოწყობილობა
 - 9.1. სამსხვრეველები
 - 9.2. ცხავები
- 10. ამწე-სატრანსპორტო მანქანები
- 11. საბურღ-ტვირთამწევი მანქანები
- 12. ბეტონისა და ხსნარების მოსამზადებელი მანქანები და მოწყობილობები
 - 12.1. ბეტონსარევები
 - 12.2. ხსნარების მოსამზადებელი შემრევები
- 13. სამშენებლო, საგზაო და ამწე-სატრანსპორტო მანქანების ინდექსაცია
 - 13.1. ერთციცხვიანი ექსკავატორების ინდექსაცია
 - 13.2. თვითმავალი ისრული ამწეების ინდექსაცია
- 14. ხიმინჯების ჩასასობი მოწყობილობა

ᲨᲔᲡᲐᲕᲐᲚ 0

1. სამშენებლო ტექნიკა და ტექნოლოგიები

სამშენებლო და საგზაო მანქანები ფაქტიურად თავისი არსებობის მხოლოდ 100 წელიწადს ითვლიან. საინჟინრო პრაქტიკაში ისინი მხოლოდ გასული საუკუნის გარიჟრაჟზე გამოჩნდნენ. ბუნებრივია, იგულისხმება ინდუსტრიული წარმოების ნიშნის მქონე მანქანები. დღეისათვის სამშენებლო და საგზაო მანქანათმშენებლობა საკმაოდ კარგად არის განვითარებული მსოფლიო მასშტაბით და იწარმოება განვითარებულ ქვეყნებში. ხოლო მათი ექსპლუატაცია და რემონტი პრაქტიკულად წარმოებს ყველა ქვეყანაში. ბუნებრივია, სახელმწიფოები იყენებენ მათ სამხედრო საქმეშიც.

სამშენებლო და საგზაო მანქანათმშენებლობის ინტენსიური განვითარება გულისხმობს კომპლექსური მექანიზაციის შექმნასა და გამოშვებას. ამასთან კომპლექსურ მექანიზაციად მიჩნეულია სამუშაოთა ორგანიზაციის ისეთი ფორმა. როდესაც ყველა ძირითადი და დამზმარე სამუშაოები (შრომატევადი) სრულდება ისეთი მანქანა—მოწყობილობებით, რომლებიც პასუხობენ მოწინავე ტექნიკის დონეს.

სამხედრო ობიექტების მშენებლობათა პროცესში კომპლექსური მექანიზაციის სტრუქტურა შეიძლება იყოს: მარტივი (მიმდევრობითი) და კომბინირებული(მიმდევრობით—პარალელური)—ნაზ.1.1. მიმდევრობითი სტრუქტურის დამაზასიათებელ ნიშანს წარმოადგენს კომპლექსის მწარმოებლურობის განსაზღვრულობა უმდაბლესი რგოლის (უმცირესი მწარმოებლობის მექანიზმის) მწარმოებლურობის მიხედვით, მაშინ როდესაც კომბინირებული სტრუქტურის შემთხვევაში ერთი რგოლის მწარმოებლურობის შეცვლა არ მოქმედებს მეორეზე და მთლიანად კომპლექსზე.

ნაზ. 1.1. კომპლექსური მექანიზაციის სტრუქტურები მშენებლობაში: α - მარტივი; b — კომბინირებული

ნაზ. 1.2. კომპლექტში მანქანათა ურთიერთქმედების სქემა: lpha - მიმდევრობითი შეერთება; f b — პარალელური შეერთება; f c — კომბინირებული შეერთება

ამასთან არჩევენ წამყვან, დამხმარე და სარეზერვო რგოლებს (კომპლექტებს). დამხმარე მანქანები ასრულებენ სამშენებლო პროცესის ურთიერთ დაკავშირებულ ოპერაციებს. წამყვანი ძირითადი მანქანები ხელს უწყობენ წამყვან მანქანებს ფუნქციის შესრულებაში მწარმოებლურობის გაზრდაში. ხოლო სარეზერვო მანქანები მოწოდებულნი არიან სამშენებლო საიმედოდ ფუნქციონირებისათვის. მანქანები თვით წამყვანი ერთი კომპლექტის შემადგენლობაში შეიძლება დაკავშირებულნი ერთმანეთთან იქნენ ასევე მიმდევრობით, პარალელურად და კომბინირებულად (ნახ.1.2) მიმდევრობითი შეერთების დროს ერთი მანქანის მოცდენა იწვევს მთელი კომპლექსის მოცდენას, ხოლო პარალელური შეერთების დროს მთელი კომპლექსის მოცდენას იწვევს მხოლოდ ყველა მანქანის გაჩერება. რაც შეეხება დამხმარე მანქანებს მიმართ შეიძლება იყვნენ როგორც მიმდევრობით, ისინი ძირითადის ასევე პარალელურად ღაკავშირებულნი.

ბუნებრივია, სამუშაოთა წარმოების ორგანიზაციის სტრუქტურების ოპტიმიზაციას პირველხარისხოვანი როლი ენიჭება სამხედრო ოპერაციების დაგეგმვის საქმეში.

2. მოთხოვნები სამშენებლო და საგზაო მანქანათა მიმართ

მანქანა-მექანიზმების გამოყენების ეფექტურობა ქვეყნის ნაციონალური მეურნეობის ყველა სფეროში, და კერძოდ, სამხედრო საქმის კონკრეტული და გლობალური ამოცანების გადასაწყვეტად თავისთავადი და ადვილად ასაზსნელი საკითხია. მანქანა-მექანიზმების და, კერძოდ, სამშენებლო და საგზაო მანქანების გამოყენება კონკრეტული სამხედრო ამოცანების გადაწყვეტის დროს საშუალებას გვაძლევს 10-ჯერ, 100-ჯერ, 1000-ჯერ გაგზარდოთ შრომის ნაყოფიერება ხელის შრომასთან შედარებით. შედეგად მშენებლობის ობიექტების თვითღირებულების შემცირებასთან ერთად მცირდება ობიექტის ამოქმედების ვადები, რაც განსაკუთრებით მნიშვნელოვანია სამხედრო საქმეში.

სამშენებლო და საგზაო მანქანა-მექანიზმებისადმი წაყენებული მოთხოვნების ჩამოყალიბებამდე ზოგადად განვმარტოთ თვით მანქანა-მექანიზმები.

მანქანას უწოდებენ ისეთ მოწყობილობას, რომელიც ასრულებს მექანიკურ მოძრაობას მასალების და ენერგიის გარდასაქმნელად ხელის შრომის გამორიხცვის ან შემსუბუქების მიზნით.

მექანიზმი სხეულთა ისეთი სისტემაა, რომელიც განკუთვნილია მყარი სხეულების მოძრაობის სახის შესაცვლელად — სხვა სახის მოძრაობად გარდასაქმნელად.

სამშენებლო და საგზაო მანქანებისადმი წაყენებული ზოგადი მოთხოვნები შეიძლება დაყოფილ იქნეს ისეთ ძირითად ჯგუფებად, როგორიცაა:

– სოციალური;

- ეკონომიკური;
- კონსტრუქციულ-ექსპლუატაციური.

სოციალურ მოთხოვნებში იგულისხმება სამუშაოს უსაფრთხო და ჯანმრთელობისათვის უვნებლად და ხელსაყრელ (ერგონომიულ) პირობებში წარმოება. ამასთან განასხვავებენ: აქტიურ, პასიურ და ავარიის შემდეგ მომყოლ უსაფრთხოებას.

აქტიურ უსაფრთზოებას მიჩნეულია განეკუთვნოს იმ ექსპლუატაციურ თვისებათა კომპლექსი, რომელიც უზრუნველყოფს საავარიო სიტუაციათა განმუზტვას. ასეთ თვისებებს განეკუთვნება დინამიკური და სამუზრუჭე თვისებები, მდგრადობა გადაყირავებისა და მოცურებისადმი, ზილვადობა, საავარიო სასიგნალიზაციო ხელსაწყოებით უზრუნველყოფა, საიმედოობა (იმ ელემენტებისა, რომელთა მწყობრიდან უეცარი გამოსვლა შეიძლება ავარიის მიზეზი გაზდეს), უსაფრთხოების ავტომატიკისა და ბლოკირების სისტემები და სხვა.

საავარიო სიტუაციის წარმოქმნის დროს **პასიური** უსაფრთხოების ღონისძიებანი უნდა გამორიცხავდეს ან ამცირებდეს ეკიპაჟის ტრავმატიზმს. აღნიშული მიიღწევა (ძირითადად) მანქანის კაბინის სიმტკიცისა და სიხისტის ხარჯზე, არამსხვრევადი მინების გამოყენებით და სხვა მსგავსი ღონისძიებებით.

ავარიის შემდგომი უსაფრთხოება ითვალისწინებს ნაავარიები მანქანიდან ეკიპაჟისა და ადამიანების სწრაფ ევაკუაციას. ამ მიზნით განხორციელებულ უმარტივეს ღონისძიებას წარმოადგენს კაბინის ჭერში სპეციალური ლუკის გათვალისწინება.

ერგონომიული თვისებები წარმოადგენს შემგუებლობის ისინ სოციალური მნიშვნელოვან საკითხს. ამასთან იგი უნდა ასახავდეს მანქანის კონსტრუქციის შესაბამისობას უნარის მემანქანის შრომის უნართან და სიცოცხლის ჰიგიენურ პირობებთან, ადამიანის შესაბამისობა ანთროპომეტრიულ, ფიზიოლოგიურ და ფსიქოფიზიკურ მონაცემებთან. ეև მნიშვნელოვან როლს თამაშობს ადამიანის მუშაობის უნარზე, მის ნაყოფიერებაზე და სამუშაოთა უსაფრთხო მიმდინარეობაზე. ადამიანის სხეულის ოპტიმალური მდგომარეობა მუშაობის პროცესში უნდა უზრუნველყოფდეს სამუშაოს სწრაფად, ზუსტად და ხარისხიანად შესრულებას ხანგრძლივი პერიოდის მანძილზე. აღნიშნულის გამო მემანქანის საერთო მდგომარეობა უნდა ახლოს იყოს მისი ფუნქციური დასვენების მდგომარეობასთან, ანუ ადამიანის მასა განაწილებული უნდა იყოს საყრდენ ზედაპირზე თანაბრად; საზურგე კარგად უნდა იყოს მორგებული წელზე და ხერხემალზე და უნდა რეგულირდებოდეს; მართვის ორგანოები (ბერკეტები) უნდა იყოს ოპერატორის მუშა ზონაში; სწრაფად, მხედველობითი კონტროლის გარეშე უნდა მყარდებოდეს კონტაქტი; სამუშაო ადგილის განათება უნდა უზრუნველყოფდეს ხელსაწყოთა დაფის ნორმალურ განათებულობას; მართვისათვის საჭირო ძალები და ზემოთ აღნიშნული პირობები უნდა ექვემდებარებოდეს შესაბამის ნორმებს.

კაბინაში ტემპერატურა, ტენიანობა, მტვერიანობა, მავნე ნივთერებათა კონცენტრაცია, გამოსხივებები, ხმაური, ვიბრაცია ასევე უნდა ექვემდრბარებოდეს შესაბამის ნორმებს, რომელებიც გათვალისწინებულია პოსტ-სსრკ-ში ეკონომიკურ სივრცეში ჯერ კიდევ მოქმედი სახელმწიფო, ისე შესაბამისი საერთაშორისო ნორმებით.

ეკონომიკური მოთხოვნები ზოგადად გულისხმობს იმას, რომ პროდუქციის თვითღირებულება უნდა იყოს მინიმალური. უკანასკნელის მიღწევა შესაძლებელია თუ:

- მცირეა მანქანის თვითღირებულება;
- მინიმალურია საექსპლუატაციო ხარჯები.

ზოგადი განმარტებისათვის აღვნიშნოთ, რომ ექსპლუატაციური მოთხოვნები ცალკე აღებული გარკვეულწილად აჯამებს ყველა მოთხოვნებს მანქანისადმი — აკეთებს დასკვნას სოციალურ, ეკონომიურ და კონსტრუქციულ მაჩვენებლებზე.

3. კონსტრუქციულ-ექსპლუატაციური მახასიათებლები

განვიზილოთ მოთზოვნების კონსტრუქციული და ექსპლუატაციური მაჩვენებლები. ძირითადად კონსტრუქციულ—ექსპლუატაციურ მაჩვენებლებს განეკუთვნებიან: მწარმოებლურობა, საიმედოობა,

ლითონტევადობა, ენერგოტევადობა, განმავლობა და მდგრადობა (დამახასიათებელია მხოლოდ მობილური მანქანებისათვის).

მწარმოებლურობა სამშენებლო და საგზაო მანქანათა უმნიშვნელოვანესი მაჩვენებელია. იგი ხასიათდება სამშენებლო პროდუქციის მოცულობით (q) დროის ერთეულში (სთ, წთ, ცვლა, თვე, წელიწადი). სამშენებლო და საგზაო მანქანებისათვის უფრო ხშირად სარგებლობენ დროის ერთეულით — სთ. ხოლო პროდუქციის მოცულობას მიწასათხრელი მანქანებისათვის გამოსახავენ ${\color{blue} 3}^3$ -ში, სამსხვრევ-სახარისხებელი მანქანებისათვის — ${\color{blue} 8}^3$ -ში ან ${\color{blue} 3}^3$ -ში; ქვის საჭრელი და დასამუშავებელი მანქანებისათვის ${\color{blue} 2}^2$.

განასხვავებენ მწარმოებლურობის 3 სახეს: კონსტრუქციულს, ტექნიკურს და ექსპლუატაციურს.

მწარმოებლურობის გაზრდისათვის პირველი რიგის ამოცანას წარმოადგენს: სამანქანო დროის არასაწარმოო შემდგენელის შემცირება, საიმედოობის გაზრდა, ძრავის სიმძლავრის ოპტიმალური გამოყენება და ა. შ. სხვ.

კონსტრუქციული მწარმოებლურობა ერთ საათში ციკლური მოქმედების სამშენებლო და საგზაო მანქანებისათვის გამოითვლება შემდეგი ფორმულით:

$$Q_{d} = 60qn, \tag{2.1}$$

სადაც $Q_{\mathcal{J}}$ კონსტრუქციული მწარმოებლურობაა, მ 3 /სთ; q - პროდუქციის მოცულობა ერთ ციკლზე. მაგალითად, ექსკავატორისათვის \mathbf{q} ციცხვის მოცულობაა; n — ციკლების რაოდენობა წთ-ში.

როდესაც სამშენებლო და საგზაო მანქანების ციკლის ხანგრძლივობა წმ-ით განისაზღვრება და მცირეა, უფრო მოხერხებულია ვისარგებლოთ შემდეგი გამოსახულებით:

$$Q_{\mathcal{J}} = 3600/t_{\mathcal{G}} \cdot q, \tag{2.2}$$

სადაც t_c ციკლის ხანგრძლივობა \mathfrak{F} მ-ში.

უწყვეტი მოქმედების სამშენებლო და საგზაო მანქანებისთვის, მაგალითად, ნაყარი მასალების ტრანსპორტირების მანქანებისთვის (ტრანსპორტიორებისათვის), როცა მწარმოებლობა პირდაპირპროპორციულია მასალის გასაშუალოებული განივკვეთის ფართობისა — S (θ^2) და მასალის გადაადგილების სიჩქარისა — V ($\theta/$ წმ), მწარმოებლურობის ფორმულას აქვს შემდეგი სახე:

$$Q_{J} = 3600 \text{ SV},$$
 (2.3)

ან

$$Q_{d} = 3600 \text{ SV}\gamma, \tag{2.4}$$

სადაც $\mathbf{Q}_{\mathbf{J}}$ კონსტრუქციული მწარმოებლურობაა, ტ /სთ; γ - მასალის სიმკვრივე, ტ / მ 3 .

მაგრამ სამშენებლო და საგზაო მანქანების მუშაობის რეალური პირობები საკმაოდ განსხვავდებიან საანგარიშოსაგან. ასე მაგალითად, საჭირო ხდება ისეთი ფაქტორების გათვალისწინება როგორიცაა: გრუნტების განსხვავებული კატეგორიები, ქვაბულის სიღრმე, განტვირთვის პირობები, ციცხვის შევსება და სხვ. შესაბამისად შემოღებულია ტექნიკური მწარმოებლობა.

ტექნიკურ მწარმოებლობად იწოდება მანქანის მაქსიმალურად შესაძლებელი მწარმოებლობა ერთი საათის სუფთა, უწყვეტი მუშაობის პირობებში და იგი განისაზღვრება

$$Q_{\mathcal{B}} = Q_{\mathcal{J}} \cdot K_{\mathcal{B}}, \tag{2.5}$$

სადაც $Q_{\not \partial}$ ტექნიკური მწარმოებლობაა, მ 3 /სთ; $K_{\not \partial}$ — ტექნიკური მწარმოებლურობის მაკორექტირებელი კოეფიციენტი. ექსკავატორისათვის $K_{\not \partial}$ -ს იღებენ მხოლოდ გრუნტის გაფხვიერებაზე და ციცხვის შევსებაზე დამოკიდებულს.

თუმცა სამშენებლო და საგზაო მანქანები პრაქტიკაში განუწყვეტლივ ვერასოდეს ვერ მუშაობენ. ამიტომ ნამდვილი, ექსპლუატაციური მწარმოებლურობა ყოველთვის ნაკლებია ვიდრე \mathbf{Q}_{ϕ} და მითუმეტეს ვიდრე \mathbf{Q}_{J} . ექსპლუატაციური მწარმოებლურობა \mathbf{Q}_{J} :

$$Q_{\mathcal{J}} = Q_{\mathcal{J}} \cdot K_{\mathcal{O}} \cdot K_{\mathcal{O}}, \qquad (2.6)$$

სადაც Q_3 ექსპლუატაციური მწარმოებლურობაა, მ 3 /სთ; $K_{\chi_{color}}$ ითვალისწინებს დროის დანაკარგებს რომელიც საჭიროა მანქანის გადაადგილებაზე ერთი პოზიციიდან მეორეზე, მანქანის საწვავით გაწყობაზე, პროფილაკტიკაზე, დანაკარგებს არა ხელსაყრელი მეტეოროლოგიური პირობების გამო, მემანქანის სუბიექტური და ბუნებრივი მოთხოვნილებების დაკმაყოფილებისათვის და სზვ.

სამშენებლო და საგზაო მანქანათა საიმედოობა ისეთი მოთხოვნაა, რომელიც კონსტრუქციული ექსპლუატაციური მოთხოვნებით არის განპირობებული. კერძოდ, მანქანის საიმედოობა ეფუძნება მანქანათა ისეთ მაჩვენებლებს როგორიცაა: უმტყუნებლობა, ხანგამძლეობა, რემონტვარგისიანობა, შენახვის და ტრანსპორტირების უნარი. ბუნებრივია, ასეთი მაჩვენებლები თავისთავად მჭიდროდ არიან დაკავშირებული მანქანის მწარმოებლურობასთან და სხვა კონსტრუქციულ-ექსპლუატაციურ მოთხოვნებთან.

ლითონტევადობა, კერძოდ ხვედრითი ლითონტევადობა გამოხატული კონსტრუქციული მოთხოვნაა და იგი წარმოადგენს მანქანის ლითონური მასის ფარდობას მის მთავარ, მუშა პარამეტრთან. ამასთან დავაზუსტოთ მანქანის ძირითადი და მთავარი პარამეტრის მცნებები.

მანქანის ძირითად პარამეტრებს განეკუთვნებიან: სიმძლავრე, წევის ძალა, ციცხვის მოცულობა, ფარის ზომები, ბურღვის მაქსიმალური დიამეტრი, გაბარიტები, მანქანის მასა, ხვედრითი დაწნევა გრუნტზე და სხვ. მაგრამ მანქანის ძირითად პარამეტრებს შორის გამოარჩევენ ერთ ძირითადს — მთავარს, რომელიც განსაზღვრავს მანქანის ექსპლუატაციურ მთავარ მაჩვენებელს. ასე მაგალითად, ბულდოზერისათვის მთავარი მაჩვენებელი წევის ძალაა (ისევე როგორც ტრაქტორისათვის), ერთციცხვიანი ექსკავატორისათვის კი — ციცხვის მოცულობა, ამწისათვის — მაქსიმალური ტვირთამწეობა და ა.შ.

ენერგოტევადობა, კერძოდ ხვედრითი ენერგოტევადობა ასევე კონსტრუქციული მოთხოვნაა და წარმოადგენს მანქანის ძრავების ჯამური სიმძლავრის ფარდობას მის მთავარ მუშა პარამეტრთან.

მობილური სამშენებლო და საგზაო მანქანებისათვის და ე.ი. სამხედრო მანქანებისათვის ერთერთ ძირითად მახასიათებლად არის მიჩნეული მანქანის განმავლობა და მდგრადობა.

მანქანის გამავლობა ეს არის მანქანის გადაადგილების უნარი სხვადასხვა საგზაო პირობებში. იგი დამოკიდებულია გზის პროფილზე და სახეზე, გრუნტზე დაწნევის დასაშვებ ხვედრით სიდიდეზე, გზის მოხვევის რადიუსზე და სიგანეზე. მანქანის განმავლობა დამოკიდებულია აგრეთვე მის ერთ-ერთ კონსტრუქციულ მახასიათებელზე — მანქანის კლირენსზე (მანძილი მანქანის კორპუსის ყველაზე დაბალი წერტილიდან გრუნტის ზედაპირამდე), აგრეთვე მანქანის ასვლის და ჩამოსვლის კუთხეებზე.

მანქანის მდგრადობა გადაყირავებაზე, ეს არის მანქანის უნარი შეინარჩუნოს წონასწორობა როგორც მუშა დატვირთვების პირობებში, ისე არამუშა მდგომარეობაში მუშა მოედნებზე. შესაბამისად განასხვავებენ მუშა და საკუთარი მდგრადობის მცნებებს.

ამასთან თუ მანქანაზე მოქმედი ძალები და მომენტები არ იცვლებიან დროში, განიხილება სტატიკური მდგრადობა, ხოლო თუ იცვლებიან — დინამიკური.

მდგრადობის დაკარგვის კრიტერიუმად მიჩნეულია ის მდგომარეობა, როცა საყრდენი ზედაპირის თუნდაც ერთი წერტილი მოშორდება გრუნტს.

4. სამშენებლო და საგზაო მანქანების კლასიფიკაცია

სამშენებლო და საგზაო მანქანების ყველაზე უფრო ზოგადი კლასიფიკაციის საფუძვლად ითვლება სამშენებლო სამუშაოთა საზეები. აქედან გამომდინარე სამშენებლო და საგზაო მანქანები შეიძლება და იყოფიან შემდეგ ძირითად კლასებად:

- ა) სატრანსპორტო, ამწე-სატრანსპორტო და სატვირთავ-გასატვირთავი მანქანები;
- ბ) მიწის სამუშაოების მანქანები;
- გ) ხიმინჯების ჩასასობი მოწყობილობები;
- დ) ქვის მასალების სამსხვრევ-დამხარისხებელი მოწყობილობები;
- ე) ბეტონისა და დუღაბის მომზადების და ტრანსპორტირების მანქანა-მოწყობილობები;
- ვ) მოსაპირკეთებელი მანქანები;
- ზ) ხელის მექანიზირებული ხელსაწყოები-ინსტრუმენტები.

მანქანათა კლასები იყოფიან თავის მხრივ ცალკე ჯგუფებად, ტიპებად ტექნოლოგიური დანიშნულებისა და მუშა პროცესის ხასიათის მიხედვით. ისინი იყოფიან აგრეთვე კონსტრუქციული გადაწყვეტისა და პარამეტრების მიხედვით.

ასე მაგალითად, მიწის სამუშაოების მანქანები დაყოფილია მუშა პროცესის ხასიათის მიწასათხრელი მიწის გადამაადგილებელი მიზედვით: მცირე მანძილზე მანქანები და (ექსკავატორები); მიწასათხრელი- სატრანსპორტო (ბულდოზერები, სკრეპერები, გრეიდერები); მიწის დამუშავების მანქანები მისი მოძრაობის და გარკვეულ მანძილზე ტრანსპორტირების დროს ექსკავატორები); მიწის (მრავალციც ხვიანი პიდრავლიკური დამუშავების (მიწასაწოვები, ჰიდრომონიტორები), საბურღი და მიწასატკეპნი მანქანები.

სამშენებლო და საგზაო მანქანების რიგი ჯგუფები იყოფიან მანქანათა ტიპების მიხედვით. ასე მაგალითად, ექსკავატორები (ერთციცხვიანი) იყოფიან: ბაგირულ და ჰიდრავლიკურ, აგრეთვე კარიერულ და სამშენებლო ექსკავატორებად. თავის მხრივ მანქანათა ტიპების უმრავლესობა იყოფა ტიპ-ზომებად მთავარი პარამეტრის მიხედვით. ასე მაგალითად, ციცხვის მოცულობის, წევის ძალის (კლასის), max-ური ტვირთამწეობის, მასის და ა.შ. სხვა პარამეტრების მიხედვით. შესაბამისად არსებობს:

ერთციცხვიანი ექსკავატორის ტიპ-ზომები ციცხვის მოცულობის მიხედვით: $\mathbf{q}=0.25;\ 0.4;\ 0.63;\ 1.0;\ 1.6;\ 2.5.$

ბულდოზერების კლასები წევის ძალის მიხედვით: მსუბუქი; საშუალო; მძიმე; ზემძიმე. მობილური ისრიანი ამწეების ტიპ-ზომები \max -ური ტვირთამწეობის მიხედვით: Q=4ტ; 6ტ; 10ტ; 16ტ; 25ტ; 40ტ; 60ტ; 100ტ; 160ტ; 250ტ.

ამ ნიშნების გარდა სამშენებლო და საგზაო მანქანათა დაყოფა ხდება სამუშაო პროცესის რეჟიმის მიხედვით. ამასთან მიღებულია დაყოფის ორი დიდი კლასი: ციკლური მოქმედების და უწყვეტი მოქმედების. ასე მაგალითად, ერთციცხვიანი ექსკავატორები მიეკუთვნებიან ციკლური მოქმედების მანქანებს, სადაც უშუალო მიწის თხრის პროცესი მთელი მუშა ციკლის არაუმეტეს 25...30% შეადგენს. მაშინ როდესაც მრავალციცხვიანი ექსკავატორი უწყვეტლივ ამუშავებს გრუნტს და იმავდროულად ეწევა მის ტრანსპორტირებას. აღნიშნულიდან გამომდინარე: უწყვეტი მოქმედების მანქანების უპირატესობაა — მაღალი მწარმოებლურობა და უკეთესი ტექნიკო-ეკონომიური მაჩვენებლები სათანადო სამუშაო პირობებში. ხოლო ციკლური მოქმედების უპირატესობაა უნივერსალურობა ყველანაირ სამუშაო პირობებში.

სამშენებლო და საგზაო მანქანების დიდ უმრავლესობას (90%) აქვს საკუთარი სავალი მოწყობილობა. სამშენებლო და საგზაო მანქანები სავალი მოწყობილობის მიხედვით იყოფიან: მუხლუხა, პნევმობორბლებიან, სალიანდაგო და მაბიჯ მანქანებად.

სამშენებლო და საგზაო მანქანები იყოფიან აგრეთვე უნივერსალურ და სპეციალურ მანქანებად. უნივერსალურ მანქანებს აქვს შესაძლებლობა სწრაფად შეიცვალოს მუშა ორგანო და შესაბამისად შეასრულოს სხვადასხვა სამუშაო. სპეციალური მანქანები განკუთვნილნი არიან ერთი რომელიმე სამუშაო პირობებისათვის და ახასიათებთ მაღალი ტექნიკო-ეკონომიური მაჩვენებლები.

გამოყენებული ენერგიის გვარობის მიხედვით სამშენებლო და საგზაო მანქანები ძირითადად იყოფიან: ელექტრულ და შიგაწვის ძრავებზე მომუშავე მანქანებად.

5. მანქანათა სტრუქტურული აგებულება. ამძრავები

სამშენებლო და საგზაო მანქანების ძირითადი კვანძები და აგრეგატებია: ამძრავი, მუშა ორგანო, სავალი ნაწილი, მზიდი ჩარჩო, მართვის სისტემა. სამანქანათმშენებლო პრაქტიკაში განზოგადოებულია თითოეული მათგანის ძირითადი ტიპები და მაზასიათებლები და მათ დაწვრილებით აღწერაზე არ შევჩერდებით. განვიხილოთ მხოლოდ ამძრავები, კერძოდ მათი ძალოვანი დანადგარები და ტრანსმისიები.

ამძრავი წარმოადგენს ძალური დანადგარის (ან დანადგარების), ტრანსმისიის და მართვის სისტემის (ამძრავის) ერთობლიობას. ზოგჯერ მას მიაკუთვნებენ დატვირთვების მზიდ ჩარჩოებსაც.

სამშენებლო და საგზაო მანქანათა ამძრავები შეიძლება იყოს ერთძრავიანი, მრავალძრავიანი და კომბინირებული (დიზელ-ელექტრული, დიზელ-ჰიდრავლიკური, დიზელ-პნევმატიური). თითოეულს აქვს თავისი დადებითი და უარყოფითი მხარეები.

ერთძრავიანი ამძრავის შემთხვევაში ყველა მექანიზმის ამოქმედება ხდება ერთი ძრავიდან სხვადასხვა მექანიზმების (გადაცემების), ქუროების, მუხრუჭების ამოქმედების მეშვეობით. ასეთი ამძრავების უპირატესობაა: აქვს ერთი ძრავი.

მრავალძრავიანი ამძრავის შემთხვევაში თითოეული მუშა ორგანო მოძრაობაში მოდის ინდივიდუალური ელექტრო ან ჰიდრო ან ანევმო ძრავების მეშვეობით. ბუნებრივია, ინდივიდუალური ძრავების გამოყენება უზრუნველყოფს ამძრავთა მაღალ მ.ქ.კ., სიმარტივეს, ექსპლუატაციის და რემონტის უკეთეს პირობებს სამშენებლო და საგზაო მანქანებისათვის.

ზოგადი მოთხოვნები, რომლებიც წაეყენება სამშენებლო და საგზაო მანქანების ამძრავებს:

- ენერგიის გარე ქსელიდან, წყაროდან ძალოვანი დანადგარის ავტონომიურობა;
- მინიმალური გაბარიტების და მასის უზრუნველყოფა;
- მაღალი საიმედოობა და მზადყოფნა მუშაობის დაწყებისათვის;
- მაღალ მ.ქ.კ.;
- მექანიზმების რევერსირების, სიჩქარეთა და მუშა ძალების რეგულირების სიმარტივე;
- მუშა მოძრაობების დამოუკიდებლობა მათი შეთავსების შესაძლებლობით;
- ამძრავთა ელემენტების აგრეგატული პრინციპი.

დამატებითი მოთხოვნები სამშენებლო და საგზაო მანქანების ამძრავთა მიმართ განისაზღვრება ძირითადად მიხედვით, რომელიც თავის მხრივ მანქანის მუშაობის რეჟიმის მაქსიმალური მაბრუნი მომენტების (დატვირთვების) ფარდობით საშუალოსთან – Tmax/Tm; ამძრავის ჩართვის ხანგრძლივობით პროცენტებში მანქანის მუშაობის მთელ დროსთან (ΠB) ; ერთ საათში ჩართვათა რაოდენობით (KB). სამშენებლო და საგზაო მანქანათა უმრავლესობისათვის ეს პარამეტრები ზღვრებში: Tmax/Tm=1,1...3,0;იცვლება შემდეგ $\Pi B = 15...100\%$; KB = 10...600. ამ პარამეტრების მიხედვით მანქანათა, ანუ მათ ამძრავთა მუშაობის რეჟიმები პირობითად იყოფა: მსუბუქ, საშუალო, მძიმე და ზემძიმე რეჟიმებად.

ამ პირობიდან გამომდინარე სამშენებლო და საგზაო მანქანათა დიდი უმრავლესობისათვის საჭიროა მათ ამძრავებს ჰქონდეთ: მაღალი გადატვირთვის უნარი, ანუ გაუძლონ მცირე ხნით საანგარიშოზე მაღალ დატვირთვებს; რბილი მექანიკური მაზასიათებელი (დატვირთვის შემცირებით მნიშვნელოვნად იზრდება კუთხური სიჩქარე).

ამძრავის სიმძლავრე, რომელიც საჭიროა მუშა ოპერაციის შესასრულებლად განისაზღვრება დამოკიდებულებით, ვტ (კვტ)

$$P = FV, (5.1)$$

ან

$$P = T\omega, \tag{5.2}$$

სადაც P სიმძლავრეა, ვტ (კვტ); F — წრიული ძალა, ნ (კნ); V — წრიული სიჩქარე, მ/წმ; T — მაბრუნი მომენტი, ნ.მ; ω — კუთხური სიჩქარე რად/წმ.

ძალოვანი დანადგარები. სამშენებლო და საგზაო მანქანებზე ძალოვან დანადგარებად ყველაზე ზშირად, უფრო ზუსტად უმეტესად გამოიყენება შიგაწვის ძრავები. ამასთან ფართოდ იყენებენ დიზელის ძრავებს, უფრო იშვიათად — კარბიურატორულს. დიზელური ძრავების სიმძლავრე სამშენებლო და საგზაო მანქანებისათვის ზოგჯერ 1000...1200კვტ აღწევს. აქვე უნდა აღინიშნოს დიზელის ძრავებისათვის დამაზასიათებელი უპირატესობანი: მაღალი მ.ქ.კ. — 30...37%, შედარებით დაბალი ლითონტევადობა — 3...4 კგ/კვტ-ზე, და საწვავის მცირე ზარჯი — 0.2...0.25 კგ/კვტ.სთ. დიზელთა ზანგამძლეობა მათი ნორმალური ექსპლუატაციის პირობებში აღწევს 6000...8000 სთ. დიზელების უარყოფით მზარეებს განეკუთვნებიან: სირთულეები დაბალ ტემპერატურებზე მათი ექსპლუატაციის დროს; დიდი მგრძნობელობა გადატვირთვებისადმი, რაც განპირობებულია დიზელთა ზისტი მექანიკური მაზასიათებლით.

მანქანებში (უმეტესად სტაციონალურ მანქანებში), რომლებსაც არ მოეთხოვება ავტონომიურობა გარე ქსელის მიმართ, ძალურ დანადგარებად მიზანშეწონილია და გამოიყენება ცვლადი და მუდმივი დენის ელექტროძრავები.

ცვლადი დენის ელექტროძრავები, რომლებიც იკვებებიან ჩვეულებრივ 220...380 ვ ძაბვის ელექტროქსელიდან, კონსტრუქციულად არიან მარტივნი, იაფნი, მოხერხებულნი და საიმედონი ექსპლუატაციაში. აღნიშნულის გამო ცვლადი დენის ელექტროძრავები ფართოდ გამოიყენება ძალურ დანადგარებად სამშენებლო და საგზაო მანქანებში.

სამშენებლო და საგზაო მანქანებში ფართოდ გამოყენებული ასინქრონული ძრავები ხასიათდებიან დიდი მდგრადობით გადატვირთვებისადმი, რომელიც განისაზღვრება მომენტის (მაბრუნი)

ფარდობით ნომინალურთან. ამასთან ზოგადი დანიშნულების ასინქრონული ელექტროძრავებისათვის = 1,8...2,2, ხოლო სპეციალური დანიშნულების ელექტრო ძრავებისათვის, მაგალითად ამწეებისათვის -=2,5...4.

ასინქრონული ელექტრული ძრავების უარყოფით მხარედ მიჩნეულია მაღალი მგრძნობელობა ელექტრული ქსელის ძაბვის მერყეობაზე, რასაც ხშირად აქვს ადგილი საველე პირობებში. გარდა ამისა მათ აქვთ შედარებით ხისტი მახასიათებელი.

მუდმივი დენის ელექტროძრავებს ახასიათებს მექანიზმების გაშვებისა და დამუხრუჭების მეტი სიმდოვრე ცვლადი დენის ძრავებთან შედარებით. ამასთან ძრავებს მიმდევრობითი აღგზნებით აქვთ რბილი მექანიკური მახასიათებელი, ხოლო ძრავებს პარალელური აღგზნებით — ხისტი. მაგრამ ასეთ ძრავებს ასინქრონულთან შედარებით აქვთ დიდი ლითონტევადობა და საველე პირობებში მუშაობა შეუძლიათ ძირითადად მუდმივი დენის გენერატორის მეშვეობით ან ტირისტორული გარდამქმნელებით. შესაბამისად მათი ფართო გამოყენება საველე პირობებში განსაზღვრულია.

სამშენებლო და საგზაო მანქანების ძალურ დანადგარებში გარდა შიგაწვის და ელექტროძრავებისა ხშირად იყენებენ კომბინირებულ ძალურ დანადგარებს: შიგაწვის ძრავა პლუს ელექტროგენერატორი; შიგაწვის (ან ელექტრო) ძრავა პლუს ჰიდროტუმბო; შიგაწვის (ან ელექტრო) ძრავა პლუს კომპრესორი. თითოეულ შემთხვევაში ხდება მექანიზმის ავტონომიური ძრავის ამოქმედება. პირველ შემთხვევაში ეს ელექტროძრავია, მეორეში — ჰიდრო ძრავი და მესამეში — პნევმოძრავი.

ასეთ ამძრავებში ახალ და განსაკუთრებულ ელემენტებად აღიქმებიან: ჰიდროტუმბოები და კომპრესორები. ჰიდროტუმბოები სითხის მიწოდების მეთოდის მიხედვით შეიძლება იყოს: კბილანური, აქსიალურ-დგუშოვანი და ფრთებიანი (ნახ. $5.1.\ a,\ \delta,\ \epsilon$).

ნახ. 5.1. ტუმბოები: a — კბილანური; b _ aqsialur-dguSovani; в – frTebianmi.кЕуишфт шю

კბილანური ტუმბოები (მოქმედების პრინციპის აღსაქმელად იხ. ნახ. 4.1- a) მოქმედებენ სითხის მუდმივი მიწოდების პირობებში და მუშაობენ უმეტესად 500...2500 წთ⁻¹ ბრუნთა სიხშირის ღიაპაზონში. მათი მ.ქ.კ. დამოკიდებულია დაწნევის სიდიდეზე, სითხის სიბლანტეზე და ბრუნთა სიხშირეზე და ცვალებადობს ზღვრებში 0,65...0,85. ასეთი ტიპის ტუმბოები გამოიყენებიან ძირითადად 10 მპა დაწნევამდე და 30...40კვტ სიმძლავრემდე.

კბილანური ტიპის ტუმბოს მოქმედების პრინციპი მდგომარეობს იმაში, რომ ერთ კორპუსში ჩასმით ჩადგმულია ერთი და იგივე პარამეტრების მქონე კბილანური წყვილი, რომელიც საერთო სიგრძეს ყოფს შემწოვ და დამწნევ არეებად. კბილანური წყვილის მოძრაობის შედეგად პირველ არეში წარმოიქმნება ვაკუუმი, ხოლო მეორეში მუშა სითხე იწნეხება, საიდანაც მიეწოდება მომხმარებელ.

მწარმოებლურობა (მიწოდება) კბილანური ტუმბოების

$$Q = 2\pi z m^2 b n , \qquad (5.3)$$

სადაც Q კბილანური ტუმბოს მწარმოებლურობაა, სმ 3 /წთ; z — კბილანას კბილთა რიცხვი; m — კბილანური გადაცემის მოდული; b — კბილანის სიგანე, სმ; n — ბრუნვის სიხშირე კბილანის, წთ $^{-1}$.

აქსიალურ-დგუშოვანი ტუმბოს კონსტრუქცია უზრუნველყოფს სამშენებლო და საგზაო მანქანების ამძრავის კომპაქტურობას (ნაზ.4.1- δ). ამ ტიპის ტუმბოს მოქმედების ძირითადი პრინციპი მდგომარეობს იმაში, რომ დანადგარის ცილინდრებში დაწნევის და შეწოვის არეები 7 გამანაწილებელის მეშვეობით შესაბამისი თანმიმდევრობით უერთდება ზან დაწნევის და ზან შეწოვის არხებს.

მწარმოებლურობა აქსიალურ-დგუშოვანი ტუმბოები განისაზღვრება შემდეგი დამოკიდებულებიდან

$$Q = 0,785 d^2 i Dntg \gamma, \tag{5.4}$$

სადაც Q მწარმოებლურობაა, სმ 3 /წთ; d — ცილინდრის დიამეტრი, სმ; i — ცილინდრების რიცხვი; D — წრის დიამეტრი, რომელზეც განლაგებულია ცილინდრები, სმ; n — ლილვის ბრუნთა სიხშირე, წთ $^{-1}$; γ — მუშა დისკოს დახრის კუთხე ცილინდრების ტორსული ზედაპირის მიმართ. γ კუთხე შეიძლება რეგულირებადი იყოს და ბუნებრივია, რომ როცა γ = 0, მაშინ Q = 0.

რეგულირებადი ჰიდროტუმბოს მექანიკური მაზასიათებელი არარეგულირებადისაგან განსხვავებით უზრუნველყოფს მუშა რეჟიმებზე მრავის მთელი სიმძლავრის გამოყენებას.

აქსიალურ-დგუშოვანი ტუმბოები მუშაობენ 40...50 მპა წნევამდე. ამასთან აქვთ მწარმოებლურობა 750 ლ/წთ-მდე, ხოლო ლილვის ბრუნვის სიხშირის დიაპაზონი 1000...3000 წთ $^{-1}$. მ.ქ.კ. მერყეობს ზღვრებში 0.85...0.9.

ფრთებიან ტუმბოში (ნახ. 5.1. δ) მოძრავ ფრთებიანი როტორი ექსცენტრიულად არის კორპუსში ჩასმული. ამასთან რაც მეტია ექსცენტრისიტეტი e, მით მეტია გადატუმბული სითხე. მოქმედების ძირითადი პრინციპი: როტორის ბრუნვის შედეგად სითხე ვაკუუმის ხარჯზე შეიწოვება B არიდან და დაიწნევება H არეში.

ფრთებიანი ტუმბოს მწარმოებლურობა

$$Q = 2\pi n b (r_1^2 - r_2^2), (5.5)$$

სადაც Q ფრთებიანი ტუმბოს მწარმოებლურობაა, სმ 3 /წთ; n - როტორის ბრუნვის სიხშირე, წთ $^{-1}$; b — მოძრავი ფრთების სიგანე, სმ; r_1 , r_2 — სტატორის და როტორის რადიუსები, სმ.

ფრთებიანი ტუმბოები მუშაობენ 16...18 მპა წნევაზე; მ.ქ.კ. η =0,8....0,85.

კომპრესორები მშენებლობაში და კერძოდ საველე მშენებლობაში ძირითადად გამოიყენება ხელის მანქანების პნევმოძრავებისათვის, სალებავების გაფრქვევისათვის და ზოგჯერ მანქანების მართვის პნევმოსისტემების კვებისათვის. ამ ამოცანების შესრულებისათვის საჭირო ხდება საკომპრესორო დანადგარის (ან კომპრესორული სადგურის) შექმნა, რომელიც თავის მხრივ წარმოადგენს ამძრავი ძრავისა და ჰაერის მოსამზადებელი სისტემის ერთობლიობას (ნახ. 5.2).

ნახ. 5.2. კომპრესორული დანადგარის (სადგურის) საერთო სქემა

კომპრესორული დანადგარის მოქმედების პრინციპი: ჰაერის მოსამზადებელი სისტემა ითვალისწინებს ატმოსფერული ჰაერის ფილტრ-ჰაერგამწმენდის 1 გავლას. შემდეგ შემწოვი მილსადენი 2 შედის კომპრესორში 14. კომპრესორში გაცხელებულ შეკუმშულ ჰაერს აცივებენ ტუმბოდან 4 გამომავალი და მილგაყვანილობაში 3 გატარებული ცივი ზეთის შეფრქვევით. გაცივებული ზეთისა და ჰაერის ნარევი ღია უკუსარქველით 13 და დამწნევი მილსადენით 12 შედის ჰაერის შემკრებში 5. ჰაერშემკრებში ზეთისა და ჰაერის ნარევი გაივლის ზეთისა და ნესტის გამაცალკავებელს 11 და მაკონტროლებელ სარქველს 6, რომელიც არეგულირებს მინიმალურ წნევას. შემდეგ სუფთა ჰაერი ხვდება გამანაწილებელში 9 და ვენტილით 8 მომხმარებელთან. ამასთან ქსელი აღჭურვილია სარქვლით 7 ჰაერის ნელ-ნელა გამოშვებისვის.

ნახ. 5.3. როტაციული კომპრესორის მუშაობის სქემა

საველე მშენებლობისათვის ცნობილია საკომპრესორო სადგურების სამი ტიპი: გადასატანი, მისაბმელი და თვითმავალი. თვით კომპრესორები მათი მოქმედების პრინციპის მიხედვით შეიძლება იყოს: დგუშიანი, როტაციული და ხრახნული. თითოეულ მათგანს აქვს თავისი უარყოფითი და დადებითი მხარეები. ნახ.5.3 მოცემულია როტაციული კომპრესორის მუშაობის სქემა.

ყველა ჩამოთვლილი ტიპის კომპრესორები, რომლებიც გამოიყენებიან სხვადასხვა ობიექტების მშენებლობაზე, კერძოდ საველე სამხედრო ობიექტებზე უნდა აკმაყოფილებდნენ პირობებს: მწარმოებლობა $-10~ {\rm a}^{3}/{\rm F}$ თ; ${\rm F}$ ნევა $-0.8~ {\rm a}$ 3ა.

ტრანსმისია. ეს ის მოწყობილობაა, რომელიც უზრუნველყოფს მოძრაობის გადაცემას ძალოვანი დანადგარიდან მუშა ორგანომდე. ამასთან ტრანსმისიების დანიშნულებაა მანქანის ელემენტების სიჩქარეთა ცვლილება როგორც სიდიდით, ისე მიმართულებით მაბრუნი მომენტისა და წრიული ძალის ცვლილებასთან ერთად. ენერგიის გადაცემის მეთოდის მიხედვით განასხვავებენ შემდეგი სახის ტრანსმისიებს: მექანიკურს, ელექტრულ, ჰიდრავლიკურ, პნევმატიკურ და კომბინირებულს. სამშენებლო და საგზაო მანქანებში, და საერთოდაც ყველაზე ფართოდ გამოიყენება მექანიკური, ჰიდრავლიკური და კომბინირებული ტრანსმისიები.

ტრანსმისიების ეფექტური მუშაობის ძირითადი მაჩვენებელია მათი მ.ქ.კ. და გადაცემის რიცხვი. ამასთან მ.ქ.კ. განისაზღვრება, როგორც მუშა ორგანოსა და ძალოვანი დანადგარის სიმძლავრეთა ფარდობა ანუ

$$\eta = P_2/P_1. \tag{5.6}$$

სადაც η ტრანსმისიის მ.ქ.კ.; P_1 — ძალოვანი დანადგარის სიმძლავრე; P_2 — მუშა ორგანოზე გადაცემული სიმძლავრე.

ხოლო გადაცემის როცხვი განისაზღვრება როგორც ძალოვანი დანადგარისა და მუშა ორგანოს კუთხურ სიჩქარეთა ფარდობა:

$$U = \omega_1/\omega_2 \tag{5.7}$$

სადაც U გადაცემის როცხვია; ω $_1$ - ძალოვანი დანადგარის ლილვის კუთხური სიჩქარე; ω $_2$ — მუშა ორგანოს ამძრავი მექანიზმის კუთხური სიჩქარე.

ტრანსმისიების ყველაზე გავრცელებულ სახეს წარმოადგენს მექანიკური ტრანსმისიები, რომლებიც თავის მხრივ გულისხმობს: მექანიკურ გადაცემებს, ქუროებს, მუხრუჭებს, საკისრებს და სხვა ელემენტებს, რომლებიც უზრუნველყოფენ მოძრაობის გადაცემას.

მექანიკური გაღაცემების ძირითად ჯგუფებს მიეკუთვნებიან: ფრაქციული (ნახ.5.4), ღვედური (ნახ.5.5, 5.6), ჯაჭვური (ნახ.5.8), კბილანური (ნახ.5.7). თითოეულ მათგანს აქვს მკვეთრად გამოხატული დადებითი და უარყოფითი მხარეები და იმდენად გამოკვეთილი, რომ უმეტესად ერთის მეორით შეცვლა არარეკომენდირებულია და ზოგჯერ შეუძლებელიც.

ნახ. 5.4. ფრიქციული გადაცემა

ნახ. 5.5. ღვედური გადაცემა

ნახ. 5.6. ღვედური გადაცემის სქემები

ნახ. 5.7. კბილანურ გადაცემათა სახეები:

a - სწორკბილებიანი ცილინდრული; δ - დახრილკბილებიანი ცილინდრული; ϵ – შევრონული ცილინდრული; 2 — სწორკბილებიანი კონუსური; δ — წრიულკბილებიანი კონუსური; ϵ — ხრაზნული; ϵ — შიგა მოდებით; ϵ — ლარტყული მოდებით.

ნახ. 5.8. ჯაჭვური გადაცემის

ნახ.5.9. კონუსურ-კბილანური გადაცემა

მექანიკური გადაცემების თეორიულ და პრაქტიკულ საკითხებს, კერძოდ პროექტირების და ექსპლუატაციის პრობლემებს შეისწავლის ზოგადი დისციპლინა — მანქანათა ნაწილები.

ძალიან მოკლედ დავაზასიათოთ მექანიკური გადაცემების ყველაზე ფართოდ გავრცელებული სახე — კბილანური გადაცემა.

კბილანური გაღაცემების ძირითადი სახეებია: ცილინდრულ-კბილანური (გამოიყენება როდესაც ლილვები ურთიერთ პარალელურია) — ნახ. 5.7. a, 6, e; კონუსურ-კბილანური (ლილვები ერთ სიბრტყეში არიან განლაგებულნი და ერთმანეთის მიმართ გარკვეულ კუთხეს შეადგენენ, უფრო ხშირად — 90^0)— ნახ. 5.9; ჭია ხრახნული (ლილვები ერთ სიბრტყეში არ მდებარეობენ, მათი ღერძების პროექციები ერთმანეთის მიმართ 90^0 შეადგენენ)— ნახ. 5.10.

ნახ. 5.10. ჭია-ხრახნული გადაცემა

კბილანური გადაცემების უმთავრესი პარამეტრები სტანდარტიზირებულია სახელმწიფოთა და საერთაშორისო სტანდარტებით. სწორკბილებიანი ცილინდრული გადაცემებისათვის ეს პარამეტრებია: კბილანური გადაცემის მოდული — m; ცენტრთაშორისი მანძილი α_{ω} ; კბილანისა და კბილათვლის გამყოფი წრის დიამეტრები d_1 და d_2 ; კბილანისა და კბილათვლის კბილთა რიცხვები z_1 და z_2 . ანალიზური დამოკიდებულებები მათ შორის ასევე სტანდარტიზირებულია და სწორკბილებიანი ცილინდრული გადაცემისათვის აქვს შემდეგი სახე:

$$d_1 = m z_1; d_2 = m z_2; \alpha_{(1)} = 0.5(z_1 + z_2)m.$$
 (5.8)

ირიბკბილებიანი ცილინდრული გადაცემისათვის:

ამასთან

$$a_{\omega} = a_{\omega} = 0.5(z_1 + z_2)m_{n \cos\beta}$$
 66 (5.169)

სადაც m_n ირიბკბილებიანი ცილინდრული გადაცემის ნორმალური მოდულია; eta — კბილის დახრის კუთხე.

კონუსურ-კბილანური გადაცემის ძირითადი კონსტრუქციული პარამეტრებია:

კბილანისა და კბილათვლის გარე გამყოფი წრის დიამეტრები — d_{e_1} , d_{e_2} ; საშუალო გამყოფი წრის დიამეტრები — d_1 , d_2 ; გარე და საშუალო საკონუსო მანძილები — R_e , R; კონუსთა ნახევარკუთხეები — δ_1 , δ_2 ; კბილანების გვირგვინის სიგანე — b; საშუალო მოდული — m.

$$d_1 = m z_1; d_2 = m z_2; \delta_2 = arctgu; R = R_e - 0.5b.$$
 (5.10)

ჭია ხრახნული გაღაცემის ძირითადი კონსტრუქციული პარამეტრებია: ჭია ხრახნის გამყოფი წრის დიამეტრები d_1 , ჭია თვლის გამყოფი წრის დიამეტრი — d_2 ; ცენტრთაშორისი მანძილი α_0 ; გადაცემის მოდული — m; ხვიათა რაოდენობა ჭია ხრახნზე — z_1 ; ჭია კბილათვლის კბილთა რაოდენობა — z_2 ; ხვიის ასვლის კუთხე — γ ; ჭია ხრახნის დიამეტრის კოეფიციენტი — q.

$$d_1 = qm; d_2 = m z_2;$$
 (5.11)

ნახ. 5.11. ლილვებისა და ღერძების ძირითადი სახეები

ლილვებსა და ღერძებს აქვთ ანალოგიური ფორმები და განკუთვნილნი არიან მოძრავი დეტალების დასამაგრებლად მანქანაში. ლილვები ღერძებისაგან განსხვავებით გადასცემენ მაბრუნ მომენტებს და შესაბამისად გაიანგარიშებიან მაბრუნი მომენტების მიხედვით. ხოლო ღერძები გაანგარიშდება მხოლოდ ღუნვაზე. ლილვებისა და ღერძების ტიპიური ფორმები იხ. ნახაზზე (ნახ. 5.11).

მსუბუქად დატვირთული ლილვები, რომლებიც თერმიულად არ მუშავდებიან მზადდებიან ფოლადებისაგან: Cm.5, Cm.6.

ლილვებისა და ღერძებისათვის, ხშირად სარგებლობენ ფოლადებით: 45, 40X, რომლებიც კარგად ექვემდებარებიან თერმული დამუშავებას სისალის შემდეგ დონემდე HRC – 45...47.

მძიმედ დატვირთული ლილვებისათვის, სადაც ლიმიტირებულია მათი მასა და გაბარიტები იყენებენ ლეგირებულ ფოლადებს: 40XH, 40XH2MA, 30XFCA და სხვა. ლილვებს ამ მასალებისაგან აწრთობენ მაღალი მოშვებით ან აწრთობენ ზედაპირულად მაღალი სიხშირის დენებით და დაბალი მოშვებით.

საინჟინრო პრაქტიკაში ხშირად გვხვდება ლილვისა და კბილანის შერწყმა, რაც ლილვკბილანად იწოდება და მზადღება ცემენტირებული (საჭიროებენ ცემენტირებას) ფოლადებისაგან: 20X, 12XH3A, 18XГT ან აზოტირებული ფოლადისაგან 38X2MЮ წრთობით მაღალ სისალემდე.

ლილვები და ღერძები გაანგარიშდება, როგორც საყრდენებზე დადებული ძელი. ამასთან საყრდენებად განიხილება სრიალის ან გორვის საკისრები.

ლილვებისა და ღერძების ზუსტი და მიახლოებით გაანგარიშების გარდა არსებობს წინასწარი ანგარიშიც, რომლის მიხედვით ლილვის დიამეტრი, მ:

$$d_l = \sqrt[3]{\frac{T}{0.2 \, \sigma_p}} \,\,\,\,(5.12)$$

სადაც $d_{\mathbb{C}}$ ლილვის დიამეტრია, მ; T - მაბრუნი მომენტი, მნ.ნ. σ_p — დასაშვები ძაბვა ნახშირბადიანი ფოლადის ლილვებისათვის — 25 მპა.

ხშირად ლილვებს ამოწმებენ აგრეთვე სიხისტეზე. ამასთან მაქსიმალური ჩაღუნვა ლიმიტირებულია ფარდობითი ჩაღუნვით f/m=0,0003, ზოლო კბილანის დაყენების ადგილას -f/m=0,03 სიდიდით.

საკისრები განკუთვნილნი არიან მბრუნავი დეტალების, კერძოდ ლილვებისა და ღერძების საყრდენებად. ამასთან მანქანებში ისინი იღებენ თავის თავზე მანქანაში აღმოცენებულ დატვირთვებს.

ხახუნის სახის მიხედვით მანქანებში გამოიყენებიან როგორც სრიალის (ნახ.5.12), ისე გორვის საკისრები (ნახ.5.13).

სრიალის საკისრები გამოიყენებიან იმ შემთხვევაში, როცა დიდია რადიალური დატვირთვები, ხოლო გორვის საკისრების დიდი უპირატესობაა მაღალი მ.ქ.კ. და ე.ი. მცირე დანაკარგები ხახუნზე, მცირე ღრეჩო, დიდი ხანგამძლეობა (10 000 სთ-მდე).

საკისრების ღიდი უმრავლესობა სტანდარტიზირებულია. გორვის საკისრები შეირჩევა სტანდარტებიდან და მოწმდება ანგარიშით მისი მუშაობის უნარიანობა.

სრიალის საკისრები აუცილებლად უნდა იქნენ გაანგარიშებულნი. ანგარიშობენ მის მზიდუნარიანობას კონტაქტურ ძაბვებზე და მაქსიმალურ ტემპერატურას მუშა ზონებში სათანადო შეფასებით.

ნახ. 5.12. სრიალის საკისარი გახსნილი კორპუსით.

ნახ. 5.13. გორვის საკისრები

სამშენებლო და საგზაო მანქანების და საერთოდ მექანიკური მოწყობილობის უმნიშვნელოვანეს კვანძებს წარმოადგენენ აგრეთვე **ქუროები**. სამანქანათმშენებლო პრაქტიკაში გვხვდება სხვადასხვა ტიპის და დანიშნულების ქუროები. თითოეულს აქვს თავისი უპირატესობანი და ნაკლი (ნახ.5.14).

სამშენებლო და საგზაო მანქანებში ფართოდ გამოიყენება ბაგირული გადაცემები და მართვა, როგორც ერთ-ერთი ყველაზე უფრო საიმედო სატრანსმისიო საშუალება.

ასეთ მანქანებში როგორც წესი გამოიყენება ფოლადის მავთულოვანი ბაგირები. ფოლადის ბაგირები მზადდება მაღალი სიმტკიცის ფოლადოვანი მავთულებისაგან, რომლებიც მზადდება ცივი გაწელვის მეთოდით. დამზადებისა და დანიშნულების მიხედვით ცნობილია სხვადასხვა ტიპის ბაგირები (ნახ.4.15), რომლებიც სტანდარტიზირებულია. სტანდარტიზირებულია და ნორმალიზირებული აგრეთვე ბაგირების დამაგრების და ფიქსირების საშუალებები (ნახ.5.16).

ნახ.5.14. არაგამთიშველი ქუროები

ნაზ. 5.16. ბაგირების დამაგრების კონსტრუქციები

თითქმის ყველა ტიპის სამშენებლო და საგზაო მანქანები და მოწყობილობა აღჭურვილია რედუქტორით ან გადაცემის კოლოფით. ამასთან მცირე გადაცემის რიცხვის განხორციელებისათვის $(U=4...8-3c_{0})$ იყენებენ ერთსაფეხურიან ცილინდრულ ან კონუსურ რედუქტორებს, უზრუნველყოფს გადაცემის უმცირეს გაბარიტებს (ნაზ.5.17-a). სამშენებლო და საგზაო მანქანებში უფრო ხშირად იყენებენ ორსაფეხურიან რედუქტორებს გადაცემის რიცხვით U=8....50 (ნაზ.5.17ერთსაფეზურიან ჭიახრახნულ რედუქტორებს (განსაკუთრებულ მოსაბრუნებელ მექანიზმებში) — ნაზ. 5.17- e. უფრო დიდი გადაცემის რიცზვებისათვის იყენებენ სამსაფეზურიან რედუქტორებს. სამშენებლო და საგზაო მანქანების ჰიდროტრანსმისიებში გამოყენებულ ელემენტებს მიეკუთვნებიან: ჰიდროქუროები, ჰიდროცილინდრები, ჰიდროტრანსფორმატორები, ჰიდროგამანაწილებლები, უკუსარქველები, ჰიდროდროსელები, ჰიდროაკუმულატორები და სხვ.

ნახ. 5.17. რედუქტორების სქემები

6. გრუნტები და მათი კლასიფიკაცია დამუშავების სიძნელის მიხედვით

საინჟინრო საქმეში ნიადაგები და ყველა სამთო ქანები პირობითად გრუნტებად იწოდება.

გრუნტები, მათ შემადგენელ ელემენტებს შორის კავშირის მიხედვით შეიძლება იყოს: ფხვიერი (ქვიშა, ხრეში, კენჭნარი), შეჭიდული (თიხა, თიხნარი, ბოქსიტი), მაგარი (კლდოვანი, ნახევარკლდოვანი) და ხისტი, მაგრამ დრეკადი კავშირებით ელემენტებს შორის (ქვიშოვანი, კირქვა, ცემენტირებული კენჭნარი).

იმის გამო, რომ სამხედრო საინჟინრო მანქანა-მექანიზმების მუშა პროცესების წარმოება დაკავშირებულია გრუნტების გადამუშავებასთან, მიზანშეწონილია განვიხილოთ მათი ზოგიერთი ფიზიკო-მექანიკური თვისება, რომლებიც უშუალოდაა დაკავშირებულნი საინჟინრო მანქანების მუშა გარემოსთან. მათ უმთავრეს თვისებებს მიეკუთვნებიან: მოცულობითი მასა, ფორიანობა, შეჭიდულობა, სიმტკიცე, წინააღმდეგობა ჩაღრმავებაზე, გაფხვიერების უნარი, შიგა ხახუნის კუთხე, დაბზარულობა, პლასტიკურობა, აბრაზიულობა, სინოტივე, გაყინვა, ძვრის წინააღმდეგობა, გრანულომეტრიული შემადგენლობა.

გრუნტების კლასიფიკაცია საინჟინრო საქმის თვალსაზრისით განისაზღვრება შვიდი კატეგორიით (I-VII). ეს დაყოფა ეფუძნება გრუნტების წარმოქმნის ბუნებას, გრანულომეტრიულ შემადგენლობას და არ ასახავენ რეალურად გრუნტების დამუშავების სიძნელის მახასიათებლებს და მის მდგომარეობას — სინოტივეს, ტემპერატურას. ამასთან

k ć	61	م هرسات ه ما مار	,	า	Sand many manage	Jakamaam
(300).	0.1	გოუსტების	კლასიფიკაცია	υ.	პროტოდიაკონოვის	იიიედვით

კატეგორია	სიმაგრის ხარისხი	გრუნტის სახე	სიმაგრის კოეფიციენტი
I	უმაღლესი სიმკვრივის	ყველაზე მაგარი, მკვრივი და ბლანტი კვარციტები და ბაზალტები	20
II	ძალიან მაგარი	ძალიან მაგარი გრანიტების სახეები და გრანიტები და კვარცპორფირები	15
III	მაგარი	მაგარი გრანიტები და გრანიტების სახეები, ქვაქვიშები და კირქვები, კონგლომერატები, რკინის მაღანი	10
III-a	,,	რბილი გრანიტი, მარმარილოები, დოლომიტი, კოლჩედანი	8
IV	საკმაოდ მაგარი	ჩვეულებრივი ქვაქვიშა და რკინის მადანი	6
IV-a	,,	ქვიშოვანი ფიქლები, ფიქლოვანი ქვაქვიშა	5
V	საშუალო სიმაგრის	მაგარი თიხოვანი ფიქალი, არამაგარი ქვაქვიშა და კირქვა, რბილი კონგლომერატი	4
V-a	,,	სხვადასხვა რბილი ფიქალები, მკვრივი მერგელი	3
VI	საკმარისად რბილი	რბილი ფიქალი, ძალიან რბილი კირქვა, ცარცი, ქვამარილი, თაბაშირი, გაყინული გრუნტი, ანტრაციტი, მერგელი	2
VI-a	,,	ღორღოვანი გრუნტი, მორღვეული ფიქალი, მაგარი ქვანახშირი, გაქვავებული თიხა	1,5
VII	რბილი	მკვრივი თიზა, რბილი ქვანაზშირი, მაგარი ნაყარი	1,0
VII-a	,,	მსუბუქი ქვიშიანი თიხა, ხრეში, ლიოსი	0,8
VIII	მიწიანი	მცენარეული მიწა, ტორფი, მსუბუქი თიხნარი, სველი ქვიშა	0,6
IX	ფხვიერი	ქვიშა, წვრილი ხრეში, ნაყარი მიწა, მოპოვებული ნახშირი	0,5
X	მცურავი	ჭაობიანი გრუნტი, გაჯიჯგვებული ლიოსი და სხვა გრუნტები	0,3

ცნობილია, რომ გრუნტების დამუშავების სიძნელის მაზასიათებლები საინჟინრო მანქანებისათვის იცვლება ძალიან ფართო ზღვრებში (2...100-ჯერ).

ამის გამო, შემოღებული იქნა მ. პროტოდიაკონოვის მიერ სკალა დამუშავების სიძნელის მიხედვით (ცხრ. 6.1). მაგრამ იგი უფრო გრუნტების ბურღვით დამუშავებას ეხება და ნაკლებად ზუსტია სხვა მეთოდით გრუნტების დამუშავების დროს. ამ სკალით სარგებლობის დროს აუცილებელია სიმაგრის კოეფიციენტის დადგენა, რომელიც შეიძლება განისაზღვროს აგრეთვე დამოკიდებულებიდან

$$f = \frac{\sigma}{10},\tag{6.1}$$

სადაც f სიმაგრის კოეფიციენტია, σ — გრუნტის სიმტკიცის ზღვარი კუმშვაზე, მპა (ცზრ. 6.3). f კოეფიციენტის ერთეულად მიღებულია ისეთი გრუნტი, რომლისთვისაც σ = 10 მპა.

fგანსაზღვრისათვის უფრო ხშირად სარგებლობენ დაზუსტებული ფორმულით

$$f = \frac{\sigma}{30} + \sqrt{\frac{\sigma}{30}} \,. \tag{6.2}$$

f მნიშვნელობები პირობითია და მიახლოებითი, ამასთან სხვადასხვა ავტორის მიერ მიღებული, ამიტომ ცხრილური და ფორმულით მიღებული მაჩვენებლები ზუსტად არ ემთხვევიან ერთმანეთს. პრაქტიკულ ანგარიშებში უპირატესობა ცხრილს ენიჭება.

გრუნტის კონკრეტული მდგომარეობის (სინესტე, ტემპერატურა) მახასიათებლების აღვილად დადგენა საველე პირობებში შესაძლებელია ნაყვის მეთოდზე დაფუძნებული ფორმულით [4].

$$f = \frac{20n}{l} \tag{6.3}$$

სადაც n საწონის დაცემათა რიცხვია; l- გრუნტის მტვერის სვეტის სიგრძეა [4].

მოცემული ფორმულები ძირითადად გამოსადეგია ბურღვის პროცესებისათვის, რომელთა მუშა ორგანოს მოქმედება დაფუძნებულია დარტყმით და დარტყმა — ბრუნვით მეთოდებზე და ნაკლებად გამოსადეგარია სოლისებრი და იმ მუშა ორგანოებისათვის, რომლებიც იწვევენ ქანების რღვევას გადაღუნვით, გაცვეთით და გაჭყლეტვით.

პროფ. ნ. დომბროვსკის ხელმძღვანელობით ჩატარებული მრავალმხრივი გამოკვლევების საფუძველზე რეკომენდირებული მასალები კი, რომლებიც განკუთვნილია სოლისებრი ტიპის მუშა ორგანოებისათვის, ფართოდ გამოიყენება მიწასათხრელი ტექნიკის პროექტირებისა და ექსპლუატაციის დროს.

მაგრამ რიგ შემთხვევებში ეს ღონისძიებებიც არ არიან საკმარისნი გრუნტის თხრის წინააღმდეგობის ტექნიკურად ზუსტად დასაბუთებული ნორმის სწრაფად დადგენისათვის. რამეთუ მოხსენიებული გრუნტის თხრის საცდელ-საკონტროლო აპარატურის ფუნქციონირების პროცესი გარკვეულ დროს საჭიროებს და საკმარისად რთულია ამ ამოცანის გადაწყვეტისათვის და რაც მთავარია, აქ რეკომენდაციებში (ცხრ. 6.2) თხრაზე ხვედრითი წინააღმდეგობით განსაზღვრულია ღამუშავების სიძნელე, რომელიც შეიძლება გამოყენებული იქნეს მექანიზირებული გამომუშავების ნორმების დადგენისათვის. დამუშავების სიძნელით, კონკრეტული მანქანის ტიპისათვის და გრუნტის სიმკვრივით ბუნებრივ მდგომარეობაში განისაზღვრება გრუნტის კატეგორია. შესაბამისად ასეთი კლასიფიკაციით ერთი და იგივე გრუნტი შესაძლებელია განეკუთვნოს სხვადასხვა ჯგუფს, იმის მიხედვით თუ რომელი სამშენებლო მანქანით ხდება მისი დამუშავება. ბუნებრივია, აღნიშნული გარემოება ართულებს მექანიზაციის გამოყენების ეფექტურობის შეფასებას, როცა განსხვავებულია გრუნტის დამუშავების მეთოდი და სამშენებლო მანქანების ტიპები.

აღნიშნულ სფეროში პრაგმატულ საშუალებად არის მიჩნეული ა. ზელენინის შემოთავაზება — გამოყენებული იქნეს DopHUИ-ის საცემელა. უკანასკნელის მეშვეობით სწრაფად და აღვილად ხდება გრუნტის დამუშავების სიძნელის (კატეგორიის) შეფასება. ამასთან ხელსაწყო გამოირჩევა სიმარტივით. იგი წარმოადგენს ფოლადის ф10 ღეროს 2,5 კგ მასის ტვირთით და 40 სმ

სიმაღლიდან დაცემის შესაძლებლობით. შესაბამისად ტვირთის ერთი დარტყმის შედეგად შესრულებული მუშაობა შეადგენს 1კგ.მ. დარტყმების

ცხრილი. 6.2 გრუნტების მახასიათებლები (ნ. დომბროვსკი-ა. ზელენინით)

		, 0 00	0 10		0 10		
კატეგორია	გრუნტის სახე		გაფხვიერების	ჭრის ხვედრითი წინააღმდეგობა,	თხრის ხვედრითი წინააღმდეგობა, მპა		
0 000		<u></u> გ/მ ³	კოეფ-ტი	- 33s	ნიჩბით	დრაგლაინით	
Ι	ქვიშა, ქვიშნარი რბილი თიზნარი	1,21,5	1,081,17	0,0120,065	0,0180,08	0,0300,120	
II	თიხნარი, წვრილი და საშუალო ხრეში რბილი თიხა (ნესტიანი ან გაფხვიერებული)	1,41,9	1,141,28	0,0580,130	0,0700,180	0,1200,250	
III	მაგარი თიხნარი, თიხა (ნესტიანი ან გაფხვიერებული)	1,62	1,241,3	0,1200,200	0,1600,280	0,2200,400	
IV	მაგარი თიხნარი ხრეშით, მაგარი და ძალიან მაგარი თიხა, ფიქალები, კონგლომერატები	1,92,2	1,261,37	0,1800,380	0,2200,400	0,2800,490	
V	ფიქალები, კონგლო- მერატები, გაქვავე- ბული თიხა და ლიოსი, ცარცი, თაბაშირი, ქვაქვიშა, ქვანახშირი, ძალიან რბილი კირქვა, აფეთქებული კლდოვანი ქანები		1,31,42	0,2800,500	0,3300,650	0,4000,750	
VI	ნიჟარქვა და კონგლომერატები, მაგარი ფიქალები კირქვები, საშუალო სიმაგრის ქვაქვიშა, მაგარი ცარცი, თაბაშირი და მერგელი	2,22,6	1,41,45	0,4000,800	0,4500,950	0,5501,0	
VII	საშუალო სიმაგრის კირქვა და გაყინუ- ლი გრუნტი,ძალიან მაგარი ქვანაზშირი	2,32,6	1,41,45	1,03,5	1,24,0	1,44,5	
VIII	ძალიან კარგად აფეთქებული კლდო- ვანი და გაყინული ქანები(ნატეხები≤0,3	2,32,0	1,41,6		0,220,25	0,230,31	

ციცხვის სიგანის)			

ცხრილი 6.3 გრუნტების (მთის ქანების) სიმტკიცის ზღვრული მნიშვნელობები ბურღვის მექანიკური მეთოდით სარგებლობისას რ. პოდერნით [6]

მთის ქანი	სიმკვრივე გ∕მ ³	სიმაგრის კოეფიციენტი	სიმტკიცის ზღვარი კუმშვაზე, მპა
ცარცი, ქვამარილი, თაბაშირი, ჩვეულებრივი მერგელი, ქვანახშირი	2,282,65	25	3480
ქვაქვიშა, კონგლომერატები, მკვრივი მერგელი, კირქვები	2,652,72	46	80100
რკინის მაღანი, ქვაქვიშოვანი ფიქალები, ფიქალოვანი მაგარი ქვაქვიშები	2,722,84	610	100140
გრანიტი, მარმარილო, დოლომიტი, კოლჩედანი, პორფირი	2,842,89	1012	140180
მკვრივი გრანიტი, რქაქანი	2,892,95	1214	180243
მაგარი გრანიტი, კვარციტები, ძალიან მაგარი ქვაქვიშები და კირქვები	2,953	1416	243272
ბაზალტები, დიაბაზები	33,21	1620	272343

რიცხვი, რომელიც საჭიროა გრუნტში ღეროს 10 სმ ჩაღრმავებისათვის პროპორციულია გრუნტის დამუშავების სიძნელის (ცხრ.6.4).

ცხრილი 6.4. გრუნტების კატეგორიები ა. ზელენინით

	ყველაზე დამახასიათებელი გრუნტები	ღაცემათა რიცხვი,
გრუნტის კატეგორია		ერთეული
I	ქვიშა, მცენარეული გრუნტი, რბილი	14
II	თიხნარი, თიხნარი, გაფხვიერებული თიხა	58
III	საშუალო სიმაგრის თიხა,	915
IV	მაგარი თიზნარი, მაგარი თიზა	1634
V	გაქვავებული თიხა,	3570
VI	მაგარი ფიქალები,	71140
VII	საშუალო კირქვა, გაყინული გრუნტი	141280
VIII	გრანიტი, ბაზალტი	281550

მეთოდი განსაკუთრებით კარგ შედეგებს იძლევა და რეკომენდირებელია I-IV კატეგორიის გრუნტებისათვის, რომელთა დამუშავება წინასწარი გაფხვიერების გარეშე ხდება.

ცნობილია აგრეთვე კორელაციური დამოკიდებულება (მ. ანდრიუცე) თხრაზე ხვედრითი წინააღმდეგობისა და ძვრის წინააღმდეგობის განსაზღვრის ხელსაწყოს მაჩვენებელს შორის ექსკავატორის ციცხვით მუშაობის დროს:

$$K_1 = 0.89 \,\mathrm{C}_0 + 0.52$$
,

სადაც K_1 ექსკავატორის ციცხვით თხრის ხვედრითი წინააღმდეგობაა, კგ/სმ 2 ; C_0 — ძვრის წინააღმდეგობის ხელსაწყოს მაჩვენებელი, კგ/სმ 2 .

ეს მეთოდი გამოიყენება გრუნტებისათვის, რომელთა ძვრის წინააღმდეგობა არ აღემატება $50_{33}/\mathrm{lg}^2$.

7. მიწასათხრელი მანქანები

მიწის სამუშაოები სამზედრო თუ სამოქალაქო ობიექტების მშენებლობის პროცესის ერთ-ერთი ძირითადი შემადგენელი ნაწილია, რომელიც თავის მხრივ შეიცავს ტრანშეების, მიწაყრილების, ქვაბულების, შახტების, გვირაბების, ვერტიკალური და დახრილი ჭაბურღილების, საავტომობილო და სარკინიგზო ვაკისების მოწყობას. ამასთან სამხედრო პოზიციებზე ფორტიფიკაციული ნაგებობის მოწყობისათვის ფართოდ შეიძლება გამოყენებული იქნეს სახალხო მეურნეობის მიწასათხრელი ტექნიკა — ექსკავატორები, ბულდოზერები და ა.შ.

მიწის დამუშავების პროცესის ერთ-ერთ ძირითად სახეს წარმოადგენს გრუნტის გამოყოფა მასივისაგან მექანიკური წესით (შეადგენს მთელი მიწის სამუშაოების 85%-ს). ამასთან გრუნტის მოჭრა მასივიდან ხდება მუშა ორგანოს მეშვეობით კონტაქტური ძალური ზემოქმედებით. ენერგოტევადობა ასეთი მეთოდისა შეადგენს 0,05....0,6 კვტ.სთ/მ 3 ენერგიას. მიწის სამუშაოების ჩატარება ჰიდრომექანიკური მეთოდით მიწის სამუშაოების მხოლოდ 12% შეადგენს. ენერგოტევადობა კი ასეთი მეთოდისა 0,15....2 კვტ.სთ/მ 3 .

როგორც ზემოთ აღინიშნა, დამუშავების სირთულის მიხედვით გრუნტები დაყოფილია კატეგორიებად. ამასთან არსებობს განსხვავებული კლასიფიკაციები. თუმცა დღეისათვის ძირითადად მიღებულია გრუნტების დაყოფა კატეგორიებად I-დან VIII-მდე.

მიწასათხრელი მანქანების მუშა პროცესი გამოიხატება იმაში, რომ მიწის მთელ მასივს შორდება მისი გარკვეული ნაწილი და გადაადგილდება რაღაც მანძილზე. მანქანის ტიპის მიხედვით მიმდინარეობს. ექსკავატორები, პროცესი განსხვავებულად გრეიდერ-ელევატორები, ამუშავებენ ბულდოზერები, სკრეპერები სხვადასხვაგვარად და გადაადგილებენ განსხვავდება მოჭრილი გრუნტის მუშა ორგანოში მოგროვების განსაკუთრებით განტვირთვის ადგილამდე გადაადგილების პროცესი. საერთო (ისიც შედარებით) რაც გააჩნიათ მიწასათხრელ მანქანებს ეს არის მიწის მასივიდან მოჭრის პროცესი.

ძალიან მოკლედ განვიზილოთ ამ პროცესების განმსაზღვრელი რამდენიმე თეორიული დებულება.

გრუნტის მასივიდან მოჭრა, მოცილება იწოდება მიწის **ჭრის** პროცესად. ბუნებრივია "სუფთა" ჭრის პროცესს თან ახლავს მოჭრილი მიწის მასის გადაადგილება მუშა ორგანოზე ან ორგანოს გადაადგილება მიწის მასაზე. აღნიშნულის ერთობლიობა ჭრის პროცესთან იწოდება **თხრის** პროცესად. საცნობარო ლიტერატურაში მოცემულია გრუნტის ხვედრითი წინააღმდეგობის კოეფიციენტების მნიშვნელობები მიწის ჭრაზე და თხრაზე გრუნტის კატეგორიების და მიწასათხრელი მანქანების მუშა ორგანოების მიხედვით. ამასთან თხრის ხვედრითი წინააღმდეგობის კოეფიციენტი ხშირად 30...35%-ით აღემატება ჭრისას (ცხრ. 6.2).

ზოგადად მიწასათხრელი მანქანის მუშა ორგანოზე მოდებული რეაქციული ტანგენციალური ძალა განისაზღვრება ცნობილი გამოსახულებით:

$$F_t = K \cdot \alpha \cdot b, \tag{7.1}$$

სადაც F_t მუშა ორგანოზე მოდებული რეაქციული ტანგენციალური ძალაა; K თხრის ხვედრითი წინააღმდეგობა და გრუნტების კატეგორიების მიხედვით მოცემულია საცნობარე ლიტერატურაში; α , b- მოჭრილი პლასტის განივკვეთის ზომებია.

ხოლო მუშა ორგანოზე მოდებული ნორმალური რეაქცია:

$$F_n \approx (0,1....0,15) F_t$$
 (7.2)

ზოგჯერ (განსაკუთრებით მჭრელი დანის მნიშვნელოვნად დაბლაგვების დროს) იგი შეიძლება (2..3)-ჯერ და უფრო მეტადაც გაიზარდოს.

 F_t და F_n სიდიდეები არიან პირველადი, საწყისი არგუმენტები სამშენებლო და საგზაო მანქანების პროექტირებისათვის.

7.1. ექსკავატორები

მიწის სამუშაოების მექანიზირებული წესით შესრულების ძირითად საშუალებას წარმოადგენს ექსკავატორები. მათ წილზე მოდის მიწის სამუშაოების 80%. მათ შორის 60...65% ერთციცხვიან ექსკავატორზე და მხოლოდ 10...15% მრავალციცხვიანზე.

განსხვავება ამ ექსკავატორებს შორის გამოიხატება მათ მიერ სამუშაოს შესრულების პროცესების თავისებურებებში. ერთციცხვიანი ექსკავატორების მუშაობა სრულდება პერიოდული ციკლებით, რომლებიც სხვადასხვა ოპერაციებისაგან შედგება: მიწის მოჭრა და ციცხვის ავსება, გადაადგილება, განტვირთვა, ციცხვის პირვანდელ მდგომარეობაში დაბრუნება.

მრავალციცხვიანის შემთხვევაში, რამდენიმე ციცხვის არსებობის გამო, ციცხვები რიგრიგობით ასრულებენ ოპერაციებს და დროის ერთი და იგივე მონაკვეთში სხვადასხვა ციცხვი სხვადასხვა ოპერაციას ასრულებს. შედეგად მრავალციცხვიანის ექსკავატორის მუშაობა უახლოვდება უწყვეტი მუშაობის პრინციპს, ისე რომ თითოეული ციცხვი ციკლური პრინციპით მუშაობს.

ნახ. 7.1. ექსკავატორის მუშა ორგანოების სახეები

ნაზ. 7.2. ერთციცზვიანი ექსკავატორი პირდაპირი ნიჩბით

ნაზ. 7.3. ჰიდრავლიკური ექსკავატორი პირდაპირი ნიჩბით

ნაზ. 7.4. ერთციცზვიანი ექსკავატორი უკუნიჩბით

ნაზ. 7.5. ჰიდრავლიკური ექსკავატორი უკუნიჩნით

ერთნაირი წარმადობის მქონე ერთციცხვიანი ექსკავატორის ციცხვის მოცულობა (20-30)-ჯერ აღემატება მრავალციცხვიანის ციცხვის მოცულობას, რაც განაპირობებს იმას, რომ უკანასკნელის ზომები ≈ 3-ჯერ ნაკლებია პირველზე. ერთციცხვიანის უპირატესობა უდავოა არაერთგვაროვანი გრუნტების დამუშავების დროს, რაც თითქმის შეუძლებელი ხდება მრავალციცხვიანის პირობებში.

მკვრივი ჩანართების ზომები ყველა სახის ექსკავატორის ნორმალური მუშაობისათვის არ უნდა აღემატებოდეს მჭრელი პირის 0,2.....0,25. ამის გამო, ბუნებრივია, ერთციცხვიანის შესაძლებლობები მნიშვნელოვნად მეტია.

მიუხედავად ზემოთ ჩამოთვლილისა შესაბამისი პირობების დროს (ერთგვაროვანი და რბილი გრუნტი, ხანგრძლივი ექსპლუატაცია ერთ ადგილზე) მრავალციცხვიანი ექსკავატორების გამოყენება მნიშვნელოვან ეფექტს იძლევა: 75...85%-ით მცირდება ენერგოდანაკარგები, მნიშვნელოვნად მცირდება პროდუქციის ღირებულება.

მოცემულ ნაშრომში ქვემოთ განიხილება მიწასათხრელი ტექნიკის მხოლოდ ძირითადი წარმომადგენელი — ერთციცხვიანი ექსკავატორები.

ერთციცხვიანი ექსკავატორები მიეკუთვნებიან ციკლური მოქმედების მიწასათხრელ მანქანებს. ერთციცხვიანი ექსკავატორები დანიშნულების მიხედვით იყოფიან ორ ძირითად ჯგუფად: სამშენებლო და საკარიერო ექსკავატორებად. თუმცა არსებობენ აგრეთვე სხვა დანიშნულების ექსკავატორებიც: გადამხსნელი, საშახტე, გვირაბის გამყვანი და სხვა.

სამშენებლო ერთციცხვიანი ექსკავატორები მათი ეფექტურად გამოყენების მიზნით მზადდებიან უნივერსალური სახით ნახ. 5.1. კერძოდ, საცვლელი მოწყობილობის მიხედვით ისინი შეიძლება დაკომპლექტებული და აწყობილი იქნენ შემდეგი სახით (ნახ. 5.1): პირდაპირი ნიჩბით - 8; უკუნიჩბით - 9; გრეიფერის მოწყობილობით -10; საშანდაკებელი მოწყობილობით - 11; დრაგლაინის მოწყობილობით -12; ხიმინჯსასობი ურნალით; ამწის მოწყობილობით; სატკეპნი მოწყობილობით და სხვა.

სამშენებლო ერთციცხვიანი ექსკავატორები შეიძლება იყოს როგორც ბაგირული, ისე ჰიდრავლიკური მართვით. ამასთან სავალი ნაწილი სრულდება როფორც პნევმატიური თვლებით, ისე მუხლუხა სვლით. ხოლო საკარიერო ექსკავატორები როგორც წესი მძიმე მანქანებია და მხოლოდ პირდაპირი ნიჩბით და მუხლუხა სავალი ნაწილით მზადდება.

ერთციცზვიანი ექსკავატორები განკუთვნილნი არიან წინასწარ დაუმუშავებელ m Vკატეგორიამდე გრუნტებში სამუშაოდ.

პირდაპირი ნიჩაბის მუშა მოწყობილობა განკუთვნილია ისეთი სანგრევის დამუშავებისათვის, რომელიც მანქანის დგომის ნიშნულის ზემოთაა. ექსკავაციის მიმართულებაა — "თავისგან"

(ნახ.5.2). სამშენებლო ერთციცხვიანი ექსკავატორები ასეთი მოწყობილობით კომპლექტდება $3,23^3$ -მდე ციცხვის მოცულობით, ბაგირული მართვის შემთხვევაში და $1,63^3$ -მდე ციცხვის მოცულობით, ჰიდრავლიკური მართვის შემთხვევაში. ხოლო კარიერული და გადამხსნელი ექსკავატორები — 203^3 -მდე ციცხვით.

ექსკავატორის მუშა მოწყობილობა (ორგანო) შეიცავს: ისარს, სახელურს და ციცხვს. განსახილველ ბაგირულ ერთციცხვიან ექსკავატორებში (ნახ.7.2) ისარი 13 თავის ქვედა ნაწილით (ქუსლით) და ცილინდრული სახსრით შეერთებულია საბრუნი ბაქნის 1 წინა ნაწილთან, ხოლო ისრის ზედა ნაწილი — ისრისამწევი ჯალამბრის 2 ბაგირით 4 ორფეხა დგართან 3. ისრისამწევი ჯალამბრის მეშვეობით იცვლება ისრის დახრის კუთზე ექსკავატორის საყრდენი ზედაპირის მიმართ დიაპაზონში $45...60^{\circ}$. სახელური 10 მასზე დამაგრებული ციცხვით 7 უნაგირა საკისრის 11 მეშვეობით ეყრდნობა ისარს. უნაგირა საკისრის მეშვეობით შესაძლებელი ხდება სახელურის გადაწვდომის სიდიდის შეცვლა და შემობრუნება ისრის მიმართ მისსავე სიბრტყეში.

ბაგირული ერთციცხვიანი ექსკავატორების მუშა მოძრაობები ექსკავაციის რეჟიმში უზრუნველყოფილია შემდეგი მექანიზმებით: ციცხვის აწევის, დაწნევის, მობრუნების და ციცხვის ფსკერის გახსნის. ამას ემატება თვით ექსკავატორის გადაადგილების მექანიზმი და ისრის ამწევი მექანიზმი.

ნახაზზე 7.3 გამოსახულია ჰიდრავლიკური ერთციცხვიანი ექსკავატორები პირდაპირი ნიჩბით.

უკუნიჩაბი. ერთციცზვიანი ექსკავატორები უკუნიჩბით განკუთვნილნი არიან გრუნტის დამუშავებისათვის ექსკავატორის დგომის ნიშნულის ქვემოთ. ექსკავაციის მიმართულებაა — "თავისკენ". ასეთი ექსკავატორები ძირითადად სამშენებლო მიზნებისთვისაა განკუთვნილი. თუმცა უკვე იქმნება ამ სახის საკარიერო ექსკავატორებიც.

უკუნიჩბის მუშა მოწყობილობა (ნახ. 7.4) შეიცავს: ისარს, სახელურს, ციცხვს. სახელური 5 ბაგირული ერთციცხვიანი ექსკავატორების შემთხვევაში შეერთებულია სახსრულად ისართან 9. სახელურზე დამაგრებულია ციცხვი 6, რომელზეც ძირითად კბილებთან ერთად დაყენებულია გვერდითი კბილები და რომლებიც ტრანშეის გაყვანის დროს ჩამოჭრიან გვერდით კედლებს, რაც თავის მხრივ გამორიცხავენ ციცხვის ჩაჭედვას და ნაკლებ წინააღმდეგობას მოძრაობის დროს.

II - IV - ზომა - ჯგუფის უკუნიჩბებიანი ექსკავატორებისათვის ($q = 0.25....0.43^3 -$ სამშენებლო საქმის საინჟინრო პრაქტიკაში ყველაზე გავრცელებული ზომებია) ჰიდრავლიკური ექსკავატორები წარმოადგენენ მუშა ორგანოს ძირითად სახეს. ასეთი ექსკავატორების ისარს ამზადებენ ორი სექციით: ძირითადით 2 და დამაგრძელებელით 4 (6აზ. 5.5), რომლებიც დაკავშირებულნი არიან ერთმანეთთან სახსრულად და წევით 3, რომლებიც ისრის სიგრძის შეცვლის მიზნით ფიქსირდება I, II, III ნაზვრეტებით. სახელურის შეერთება ისართან და ციცხვთან 10 სახსრულია, პირდაპირნიჩბიანთან განსხვავებით. ისრის, სახელურის და ციცხვის მობრუნება ხორციელდება 1, 1, 10 პიდროცილინდრების მეშვეობით. ამასთან ჰიდროცილინდრი 10 ახდენს ციცხვის მობრუნებას 10 და 110 სახსრულია, პირდაპირნიჩბიანთან განსხვავებით. ისრის, სახელურის და ციცხვის მობრუნება

დრაგლაინი. ექსკავატორები დრაგლაინის მუშა ორგანოთი გამოიყენება გრუნტის დამუშავებისათვის მანქანის დგომის ნიშნულის ქვემოთ. დრაგლაინები უმეტესად გამოიყენება დიდი ქვაბულებისა და ტრანშეების ამოსაღებად, რაც განპირობებულია ისრის დიდი სიგრძით. დიდ და მძლავრ დრაგლაინებს იყენებენ (მაბიჯ დრაგლაინებს) სასარგებლო წიაღისეულის მოპოვებისათვის და გადასახსნელი სახის სამუშაოებისათვის. ყოფილ სსრკ-ს სივრცეში მზადღებოდა დრაგლაინის მუშა ორგანო ციცხვის მოცულობით $0,3....36^3$ — სამშენებლო საქმეში და 5,45....100 მ 3 — კარიერებისათვის (მაბიჯი დრაგლაინები).

ნაზ. 7.6. დრაგლაინი

დრაგლაინის მუშა ორგანო (ნახ.7.6) შეიცავს ფერმულ ისარს 5, ციცხვს 7, წევის 8 და ამწევ 4 ბაგირებს. უკანასკნელი ჭაღ 6-ზე გადახვევის შემდეგ ეხვევა ამწევ ჯალამბრს 2. ხოლო წევის ბაგირი გორგოლაჭთა სისტემის 1 გავლით ეხვევა წევის ჯალამბრს 3. ციცხვი ერთის მხრივ დაკავშირებულია ჯაჭვით 9 წევის ბაგირთან, ხოლო მეორეს მხრივ ამწევ ბაგირთან ჯაჭვით 13. ციცხვზე აყენებენ განმტვირთველ ბაგირს 10, რომლის ერთი ბოლო ციცხვის თაღზეა დამაგრებული, ხოლო მეორე წევის ბაგირისა და ჯაჭვის შეერთების კვანძთან. ამასთან იგი ჭაღი 11 მეშვეობით დაკავშირებულია ამწევ ჯაჭვებისა და ბაგირის კვანძთან.

გრეიფერი. გრეიფერული მუშა მოწყობილობა გამოიყენება ღრმა ქვაბულების ამოსაღებად, წყალსატევის ფსკერის გასაწმენდად. აგრეთვე ფხვიერი მასალების დატვირთვისა და განტვირთვის სამუშაოებისათვის. გრეიფერული მუშა ორგანო შეიძლება შესრულდეს, როგორც ბაგირული, ისე ჰიდრავლიკური მართვით (ნახ. 7.7- a, δ).

გრეიფერული მოწყობილობას ბაგირული მართვით აყენებენ დრაგლაინის ისარზე 3. ამასთან ყბებიანი ციცზვი 6 ჩამოკიდებულია დამჭერ 4 და ჩამკეტ 5 ბაგირებზე. ბაგირების გადაგრეზვის თავიდან აცილებისათვის ბრუნვითი მოძრაობის და ციცზვის ქანაობის დროს იყენებენ გამჭიმავ ბაგირს 7, რომელიც გადადის ჭაღზე 2 და შეერთებულია თავისუფლად მოძრავ ტვირთთან 1. ციცზვი შედგება ორი ყბისაგან 12, რომლებიც სახსრულად არიან შეერთებული ქვედა თავში 11. ყბები ჩამოკიდებულია ზედა თავზე 8 წევებით 9. დამჭერი ბაგირი დამაგრებულია ზედა თავზე, ხოლო ჩამკეტი ქმნის პოლისპასტს 10, რომლის გარსაკრები შესაბამისად დამაგრებულია ზედა და ქვედა თავებზე.

მუშაობის პროცესში ციცხვი ჩამოკიდებულია ან დამჭერ ბაგირზე ან ჩამკეტზე. პირველ შემთხვევაში ყბები იხსნება, მეორე შემთხვევაში იკეტება.

ნახ. 7.7. გრეიფერი

ჰიდრავლიკურ ვარიანტში (ნახ. 7.7- δ) კინემატიკა უფრო მარტივია.

ქვემოთ მოცემულ საცნობარე მასალებში განხილულია II - VI ექსკავატორთა ჯგუფები, რომლებიც ყველაზე უფრო არიან გავრცელებული მშენებლობაში. მათი ძირითადი ტექნიკური დახასიათება მოცემულია ცხრილში 7.1

პოსტ სსრკ-ს სივრცეში პირველი ჯგუფის ექსკავატორები არ იწარმოება. შესაბამისად იგი მოცემულ ცხრილში არ არის მოყვანილი. ასევე არ არის ცხრილებში მოყვანილი ჰიდრავლიკური ექსკავატორების მეშვიდე ჯგუფი, რომლებიც არ არიან სტანდარტიზირებულნი და ინდექსაციის სქემებში მოყვანილია მხოლოდ პირობითად.

7.1. ერთციცხვიანი სამშენებლო ექსკავატორების ზოგადი ტექნიკური მახასიათებლები

0.0.5	ჰიდრავლიკური ექსკავატორები								
მაჩვენებლები	ЭО-2621В-2 (ЭО-2621В-3)	ЭО-3323	ЭО-3122	ЭО-3221	ЭО-4321 Б	ЭО-4124	ЭО-4125		
ექსპლუატაციური მასა შებრუნებული ნიჩბით, ტ	5,9 (6,1)	14,0	14,3	14,0	19,5	25,0	25,6		
შებრუნებული ნიჩბის ძირითადი ციცხვის მოცულობა, მ ³	0,25		0,63		0,8	1,	0		
საცვლელი ციცხვების მოცუ- ლობა, მ ³	0,150,5	0,23	51,2	0,250,8	0,51,25	0,35.	2,0		
ძრავის მარკა	Д-65)	Д-240, Д-240	Л	СМД- 17H	A-01M,	A-01MC		
ძრავის სიმძლავრე, კვტ	44		55,0		73,6	95	5,6		
ძრავის ლილვის ბრუნვის სიხშირე, წთ ⁻¹	1750		2200		1800	1700			
გადაადგილების სიჩქარე, კმ/სთ, არაუმეტეს	19,0	19,4 3,0		20,0	2,5				
საბრუნი ბაქნის ბრუნვის სიხშირე, წთ ⁻¹ , არაუმეტეს	_	7,4		8,75	11,5	5,6	6,0		
უდიდესი აწევის კუთხე, ⁰	13,0	_		22		22			
ძირითადი მექანიზმების მართვა			ჰი დ რ	ავლიკუ	უ რ ი				
უკანა ნაწილის მობრუნების რადიუსი A, მმ	1	2	450	3060	2840	3150	3280		
პლატფორმის სიგანე B,მმ	2100	2500	2490	2500		3000			
გაბარიტული სიმაღლე H ₂ , მმ	2160	3300	3665	3500	3250	3060	3290		
საბრუნი პლატფორმის ქვეშა საშუქი, მმ	-	1313	1160	14	05	990	1085		
ისრის ქუსლის სიმაღლე D,მმ	_	1890	1710	1625	2310	2070	1825		
მანძილი E ისრის ქუსლიდან ბრუნვის ღერძამღე, მმ	_	425	360	360	100	520	315		
მუხლუხა სავალის ზომები: სიგრძე Ж მთლიანი სიგანე 3 მუხლუხა ლენტის სიგანე И ბაზა Б	- - -	- 3650 4500 - 2650 3300 - 500 (600) 1000 - 2850 3700		- - - -	3870 2950 600 2350 3000				
პნევმოთვლიანი სავალი: ბაზა B, მმ მთლიანი სიგანე M, მმ	2450 1884	2600 2500	- -	- -	2800 2774	- -	_ _		

მაჩვენებლები		ელიკური ატორები	ბაგირული ექსკავატორები			
	ЭО-5124 (ЭО-5124-2)	ЭО-6123 (ЭО-6123-1)	ЭО-3311Е	ЭО-3211Е	ЭO-4112 (ЭO-4111 Γ)	ЭО-5111 Б
ექსპლუატაციური მასა შებრუნებული ნიჩბით, ტ	39,0 (38,0)	67,5 (61,2)	12,4 12,7		24,5 (22,3)	32,0
შებრუნებული ნიჩბის ძირითადი ციცხვის მოცულობა, მ ³	1,6	2,5	0	,4	0,65	1,0
საცვლელი ციცხვების მოცუ- ლობა, მ ³	1,03,0	1,65,0	0	,4	0,8	1,0
ძრავის მარკა	ЯМЗ-238 Г	4А280Ѕ6У3	Д-65	5 ЛС	Д-160	Д-160 Б-6
ძრავის სიმძლავრე, კვტ	125	75 x 2	36	5,8	60	103
ძრავის ლილვის ბრუნვის სიხშირე, წთ ⁻¹	1700	_	16	00	875	1070
გადაადგილების სიჩქარე, კმ/სთ, არაუმეტეს	2,2	1,5	16,9	2,92	4,3 (3,7)	2,0
საბრუნი ბაქნის ბრუნვის სიხშირე, წთ ⁻¹ , არაუმეტეს	5,5	4,9	6,91 6,26		5,89	7,15
უდიდესი აწევის კუთხე, ⁰	20	20		22		20
ძირითადი მექანიზმების მართვა	ჰიდრავ	ლიკური				
უკანა ნაწილის მობრუნების რადიუსი A, მმ	3150	3800	2910	3000	2900	3500
პლატფორმის სიგანე B, მმ	3000	3180	2920	2500	2780	3100
გაბარიტული სიმაღლე H ₂ , მმ	3172	3860	3030	3150	3450 (3550)	3850
საბრუნი პლატფორმის ქვეშა საშუქი, მმ	1084	1500	1340	9 75	1043 (1000)	1010
ისრის ქუსლის სიმაღლე D,მმ	2100	2770 (2600)	1358	1378	1552 (1510)	1570
მანძილი E ისრის ქუსლიდან ბრუნვის ღერძანდე, მმ	645	770	705	650	1000	1150
მუხლუხა სავალის ზომები: სიგრძე Ж მთლიანი სიგანე 3 მუხლუხა ლენტის სიგანე И ბაზა Б	4130 3140 630 3180	5010 3900 700 3890	- - -	4330 3140 840 3580	3820 (3650) 2960 (2940) 600 (580)	3980 3000 600 –
პნევმოთვლიანი სავალი: ბაზა B, მმ მთლიანი სიგანე M, მმ	_ _	_ _	2800 2790	_ _	_ _	_ _

7.2. უკუნიჩბიანი ექსკავატორების ტექნიკური მახასიათებლები

		მუშა მოწყობილობის ხისტი დაკიდებით									მუშა მოწყობილობის დრეკადი დაკიდებით			
მაჩვენებელი	30-2621B-2 (30-2621B-3)	30-3323	30-3122	30-3221	30-4321 B	30-4125 (30-4124)	30-5124 (30-5124-2)	30-6123 (30-6123-1)	30-3311E	30-3211E	30-4112 (30-4111 F)	30-5111 B		
ციცხვის მოცულობა, მ ³	0,25		0,63		0,80	1,0	1,6	2,5	0,4	0,4	0,65	1,0		
თხრის რადიუსი $R_{ m K}$, მ	5,3	7,75	7,75	7,9	8,85	9,3 (9,1)	10,0	11,6	7,8	8,2	10,16	10,9		
განტვირთვის მაქსიმალური სიმაღლე H _B , მ	3,2 (3,5)	4,7	4,5	5,02	5,5	5,15 (5,0)	5,5	5,8	5,6	5,4	5,3 (6,1)	4,2		
თხრის მაქსიმალური სიღრმე H_{K} , მ	4,15 (4,25)	4,5	4,8	4,5	5,5	6,0 (5,7)	6,5	7,2 (7,35)	4,3	4,2	6,9	6,9		
ექსკავატორის ექსპლუატაციუ რი მასა, ტ	5,9 (6,1)	14,0	14,3	13,8	19,5	25,6 (25,0)	39,0 (38,0)	67,5 (61,2)	12,4	12,7	24,5 (22,3)	32,0		
მუშა ციკლის ხანგრძლივობა (მობრუნების კუთხე,- 90 ⁰ , ნებისმიერი ნაყარით), წმ	16,5 (16,0)	16,5	16,3	17,0	19,6	18,5 (19,0)	25,0	28,0	15,0	15,7	18,5 (20,0)	23,0		

7.3. პირდაპირნიჩბიანი ექსკავატორების ტექნიკური მახასიათებლები

		მუშა	მოწყობი	ილობის 1	ხისტი და ₍	კიდებით		_	მოწყობი კადი დაკი	,
მაჩვენებელი	30-2621B-2 (30-2621B-3)	30-3323	30-3122	30-4321 B	30-4125 (30- 4124)	30-5124 (30-5124-2)	30-6123 (30-6123-1)	30-3311E	30-4112 (30-4111 F)	30-5111 B
ციცხვის მოცულობა, მ ³	0,25	0,63	0,63	1,0	1,0	1,6 (2,0)	3,2	0,40	0,65	1,0
თხრის მაქსიმალური რადიუსი $R_{ m K}$, მ	5,0	6,8	6,8	7,8	7,9 (7,1)	8,9	10,2	5,9	7,8 (7,9)	9,2
განტვირთვის მაქსიმალური სიმაღლე H _B , მ	2,50	4,2	4,1	4,7	5,5 (5,05)	5,1	5,9 5 (6,1)	4,3	5,6	6,1
თხრის მაქსიმალური სიმაღლე H, მ	2,85	7,66	7,3	7,9	8,33 (7,3)	9,6	10,7 (10,85)	6,2	7,9	8,2
თხრის სიმაღლე H_{K} , მ	0,4	1,54	2,4	3,15	3,7	4,41	4,18 (4,35)	_	1,5	1,8
დგომის დონეზე თხრის რადიუსი R_{KC} , მ	I	I	I	I	4,3 (4,05)	-	-	I	4,7	5,0
ექსკავატორის ექსპლუატაცი- ური მასა, ტ	5,9	13,6	14,0	19,5	25,5 (25,0)	38,6 (37,5)	67,5 (61,4)	12,4	25,0 (23,0)	33,5
მუშა ციკლის ხანგრძლივობა (მობრუნების კუთხე,-900, ნებისმიერი	15,0	15,9	16,0	17,0	18,0 (17,0)	20,0	23,0	15,0	15,0	17,0

7.4. ექსკავატორის ტექნიკური მახასიათებლები გრეიფერული მოწყობილობით

		მუშ	Jა მოწყო	ბილობის ხ	ისტი დაკი	ღებით		მუშა	მოწყო დ	ბილობ აკიდებ		ეკადი
მაჩვენებელი	30-2621B-2 (30-2621B-3)	30-3323	30-3122	30-3221	30-4321 B	30-4125 (30-4124)	30-5124 (30-5124-2)		ЭО-5111 Б			
ციცხვის მოცულობა,მ ³	0,25; 0,32	0,50	0,32	0,50	0,63	0,6	1,00			1,00		
ისრის სიგრძე \mathbf{l}_{C} , მ	-	_	_	-	_	_	_		12,5		15,	,0
ისრის დახრის კუთხე α, ⁰	-	-	-	-	_	-	_	30	45	70	45	70
გადაწვდომა ბრუნ- ვის ღერძიდან L, მ	-	_	_	-	_	_	_	12,2	10,2	5,6	12,0	6,5
განტვირთვის მაქ- სიმალური სიმა- ღლე H _B , მ	3,0	3,89	3,74	3,8	3,3	3,0	3,25	4,3	6,9	8,3	8,7	10,7
თხრის მაქსიმალუ- რი სიღრმე \mathbf{H}_{K} , მ	0,4	5,40	5,55	5,7	7,3	7,85	8,65	6,0	3,3	1,5	6,0	2,5
ექსკავატორის ექსპლუატაციური მასა, ტ	6,1	14,3	14,5	13,8	19,5	26,0 (26,4)	39,4 (38,3)		35,0		35	,2
მუშა ციკლის ხან- გრძლივობა (მობ- რუნების კუთხე, - 90 ⁰), წმ	-	-	_	-	_	22,5	_			_		

7.5. ექსკავატორის ტექნიკური მახასიათებლები სატვირთავის მოწყობილობით

მაჩვენებელი	ЭО-3323	ЭО-3122	ЭО-4125 (ЭО-4124)	ЭО-5124 (ЭО-5124-2)	ЭО-6123 (ЭО-6123-1)
ციცხვის მოცულობა, მ ³	1,2	1,2	1,45 (1,4)	3,0	5,0
მოსწორებული უბნის სიგრძე A, მ	2,90	2,9	3,2 (2,2)	4,0	3,7
მოსწორებული უბნის რადიუსი R, მ	6,4	6,6	7,5 (6,7)	8,50	9,7
განტვირთვის მაქსიბალური სიმაღლე H _B , მ	4,25	4,0	5,5 (3,85)	5,1	6,1
ექსკავატორის ექსპლუატაციური მასა, ტ	14,1	14,1	25,5 (25,0)	38,7 (37,6)	68,5 (63,0)
მუშა ციკლის ხანგრ- ძლივობა (მობრუნების კუთხე - 90 ⁰ , ნებისმიერი ნაყარი, IIჯგ. გრუნტი),წმ	18	18	17	25	28

7.6 ექსკავატორის ტექნიკური მახასიათებლები დრაგლაინის მოწყობილობით

მაჩვენებელი	30-3311E	30-3211E			4112 -111 Γ)	ı	ЭО-5111 Б			
ციცხვის მოცულობა, მ ³	(),4		0	,8			1,	,0	
ისრის სიგრძე $l_{ m C}$, მ	1	0,5	1	0	1	3	12	2,5	15	,0
ისრის დახრის კუთხე α_{*}^{0}	_	3045	30	45	30	45	30	45	30	45
თხრის მაქსიმალური რადიუსი R_{K} , მ	11,0	10,2	11,0	10,2	14,3	13,2	13,5	12,0	16,0	14,0
განტვირთვის მაქსიმა- ლური სიმაღლე H _B , მ	(5,3	3,5	5,5	5,3	8,0	4,1	6,6	5,3	8,4
განტვირთვის მაქსიმა- ლური რადიუსი R _B , მ	10,0	8,3	10	8,3	12,5	10,4	12,2	10,2	14,4	12,0
თხრის სიმაღლე, მ	Ţ.	7,6	7,3	5,6	10,0	7,8	9,4	7,4	10,0	9,2
ექსკავატორის ექსპლუ- ატაციური მასა, ტ	12,2	12,7		2,1 ,9)	25 (22		30),5	33	3,3
ბაგირის სიჩქარე, მ/წმ					,				,	
წევის	0,98	0,98		0,	98			1,	12	
აწევის	1,31	1,30		1,	08			1,3	38	
მუშა ციკლის ხანგრძლი- ვობა (მობრუნების კუთხე - 135 ⁰ , ნებისმიერი ნაყარი, IIIჯგ. გრუნტი)	19 17,3			21			23			

7.7. ექსკავატორის ტექნიკური მახასიათებლები ამწის მოწყობილობით

მაჩვენებელი			ЭО-	-3211E				ЭΟ-4112 (ЭО-4111 Г)					ЭО-5111 Б			
ისრის სიგრძე	7,	,5	1	2	1	.5	1	0	18	8	1	.8	12	,5	17	7,5
l _C , ∂		_		_				_		_		_		_		
ტვირთამწეობა,	6,3	1,6	3	0,95	2	0,45	10	2,2	7,5	1,0	2,5	0,5	16	3,9	10,5	2,2
ල																
გადაწვდომა	2,8	7	4	9,0	5	11,0	3,7	10	4,3	17	6,5	12,5	3,92	12,0	5,09	16,35
L, 3																
კავის აწევის	7,5	4,5	12,0	9,0	14,8	11,3	9,2	3,7	17,2	7,6	18,0	15,0	9,5	5,8	15,0	8,0
სიმაღლე H, მ																
ტვირთის აწ.	0,	33		0,4	49		0,2	27	0,	4	-	_	0,2	28	0,	.37
სიჩქარე, მ/წმ																
ტვირთის ღაშვ.	0,	44		0,0	66				0,12.	0,27					_	
სიჩქარე, მ/წმ																
ბრუნვის სიხ-			2,7	75,7					2,54.	3,33				1	.,5	
შირე, წთ ⁻¹			-						-						_	
მასა, ტ	12,	837	13,	012	13,	136		3,2	24	,2		1,4	34	,5	34	,95
							(21	,2)	(22	,2)	(22	2,4)				

8. მიწასათზრელ-სატრანსპორტო მანქანები

ეს ისეთი ტიპის მანქანებია, რომლებიც თავისი წევის ხარჯზე ფენობრივად აჭრიან გრუნტს მთლიან მასივს და გადაადგილებენ მას თავისთან ერთად. ამასთან განტვირთვასთან ერთად ახდენენ მის დამუშავებას-მოსწორებას. მუშაობის რეჟიმის მიხედვით ისინი განეკუთვნებიან ციკლური მოქმედების მანქანებს. ამ ჯგუფში შედიან: ბულდოზერები, სკრეპერები, გრეიდერები. შესაძლებელია მივაკუთვნოთ აგრეთვე ბულდოზერ-გამაფხვიერებლები.

8.1 ბულდოზერები

ბულდოზერები განკუთვნილნი არიან სპეციალური ფარით გრუნტის ფენობრივი დამუშავებისათვის და მათი ტრანსპორტირებისათვის მცირე მანძილზე — 15......100მ-ზე.

ბულდოზერები ყველაზე უფრო გავრცელებულ მიწასათხრელ-სატრანსპორტო მანქანათა რიცხვს მიეკუთვნება. მათი მეშვეობით ხდება: რელიეფის გასწორება, ღრმულებისა და თხრილების ამოვსება, ფხვიერი გრუნტის და საცალო ტვირთის ტრანსპორტირება, მიწის ნაყარის მოსწორება ექსკავატორებისა და მიწის მზიდების მუშაობის პროცესში, ტერასების მოწყობა ფერდობებზე, მოსამზადებელი სამუშაოების ჩატარება ხეებისა და ბუჩქების ამოძირკვით და ა.შ.

ბულდოზერების ეფექტური მუშაობა მნიშვნელოვნად არის დამოკიდებული საბაზო ტრაქტორის წევისა და ჩაკიდების მახასიათებლებზე.

ბულდოზერები წარმოადგენს საკიდ მოწყობილობას საბაზო ტრაქტორთან ერთად, რომელიც შეიძლება იყოს როგორც პნევმოთვლებიანი, ისე მუხლუხა სავალი ნაწილით (ნახ. 8.1). საბაზო ტრაქტორზე 8 მბიძგავი ძელების 2 მეშვეობით (ნახ. 8.1 - δ) ან უნივერსალური ჩარჩოს მეშვეობით 3 (ნახ. 8.1 - ϵ), რომლებსაც აქვთ სახსრული შეერთება 1 სავალი ურიკის განივ ძელებთან, ჩამოკიდებულია ბულდოზერის ფარი 5, რომელიც თავის მხრივ აღჭურვილია დანებით 4. ფარი, მბიძგავ ძელთან და ირიბანასთან 6 ერთად ჰქმნიან ხისტ სისტემას, რომელიც 7 ჰიდროცილინდრების (ან ჰიდროცილინდრის) მეშვეობით შეიძლება აიწიოს ზევით, დაიწიოს ქვევით ან მობრუნდეს ვერტიკალურ სიბრტყეში. ამასთან დანების მჭრელი წიბო ყოველთვის რჩება მანქანის გრძივი ღერძის მართობი.

მეორე სქემით მოცემულია (ნახ. 8.1- ϵ) ბულდოზერის ფარის მობრუნების კინემატიკა ჰორიზონტალურ სიბრტყეში.

ნაზ. 8.1. ბულდოზერი: $a, \, \delta, \, s, c$ — შესრულების ვარიანტები; a - საცვლელი მუშა ორგანოები

ბულდოზერების მუშა პროცესი შედგება ოპერაციებისაგან: გრუნტის თხრა, გადაადგილება, მოსწორება. თხრის დროს ფარის მჭრელი ნაწილი მიწაში არის ჩარჭობილი და ამავე დროს წინ მოძრაობს. მოჭრილი გრუნტის ფენა თავს იყრის ფარის წინ. ამ მასას ვუწოდებთ გრუნტის წინთრევის პრიზმას. როდესაც პრიზმის სიმაღლე ფარის სიმაღლეს გაუტოლდება, იგი ზემოთ

ამოიწევა და ბულდოზერი განაგრძობს მოძრაობას საჭირო მიმართულებით. დანიშნულების ადგილზე მისვლის შემდეგ ფრთას შეუჩერებლივ ოდნავ ზემოთ წევენ და განაგრძობენ მოძრაობას მიწის მოსწორებით. მიწის მოსწორება შესაძლებელია ბულდოზერების უკან სვლის დროსაც.

ამასთან წევის ძალათ მიიჩნევა ის ძალა, რომლის რეალიზირებაც შეიძლება, როცა სრიალი არ აღემატება 7% (მუხლუხათვლიანისათვის) და 20% (პნევმატურთვლიანისათვის).

მსოფლიო პრაქტიკაში შეინიშნება სიმძლავრისა და წევის ძალის ზრდის ტრადიცია.

ნაზ. 8.2. ბულდოზერის მუშა ციკლის ოპერაციები ბულდოზერთა კლასიფიკაცია სიმძლავრით

მართვის სისტემის მიხედვით არსებობენ: ჰიდრავლიკური და ბაგირული (ბოლო ხანს ნაკლებად გამოიყენება). ჰიდრავლიკურის შემთხვევაში ფარის ჩაღრმავება გრუნტში ჰიდროცილინდრის ძალით ხდება. ბაგირულის შემთხვევაში მხოლოდ სიმძიმის ძალით. ჰიდროსისტემა და დოლი ტრაქტორის უკანა ნაწილშია განთავსებული. ჰიდროსისტემაში წნევის მნიშვნელობა -16 მპა.

ცხრილი 8.1. ბულდოზერებისა და ბულდოზერ-გამაფხვიერებელის ინდექსაცია (წევის კლასი -10)

საბაზო ტრაქტორი	Т-130МГ-1	T-170.01	T-170.00	T-170.41	T-170.40
ბულდოზერი არასაბრუნი ფარით	D3-110B	D3-171.1	D3-171.1-03	D3-171.1-02	D3-171.1-04
ბულდოზერი საბრუნი ფარით	D3-109Б	D3-171.1-05	D3-171.1-07	D3-171.1-06	D3-171.1-08
ბულდოზერი არასაბრუნი ფარით და "კოპირ-ავტოპლა- ნის" სისტემით	D3-110B-1	D3-171.5	D3-171.5-03	D3-171.5-02	D3-171.5-08
ბულდოზერი საბრუნი ფარით და "კოპირ-ავტოპლანის"	D3-109Б-1	D3-171.5-05	D3-171.5-07	D3-171.5-06	D3-171.3-04

სისტემით					
ბულდოზერი არასაბრუნი ფარით და გამაფზვიერებლით	D3-116B	D3-171.3	D3-171.3-03	D3-171.3-02	D3-171.3-04
ბულდოზერი საბრუნი ფარით და გამაფხვიერებლით	D3-117A	D3-171.3-05	D3-171.3-07	D3-171.3-06	D3-171.3-08

ცხრილი 8.2. 1,4 კლასის ბულდოზერ-სატვირთველის ტექნიკური მახასიათებლები

მაჩვენებლების დასახელება	D3 - 133	D3 - 160				
საბაზო ტრაქტორი (თვლიანი)	MT3 - 80/82	MT3 - 82				
ძრავის სიმძლავრე, კვტ	55,2	55,2				
სატრანსპორტო სიჩქარე, კმ/სთ ტვირთით უტვირთოდ	8 16	8 33,39				
წნევა საბურავებში, მპა წინა თვლებში უკანა თვლებში მუშა მოწყობილობა:	0,24 0,17	0,21 0,14				
ფარი, მმ: სიგანე სიმაღლე	2100 650	2100 650				
ქვემოთ დაშვება საყრდენი ზედაპირის მიმართ ციცზვი:	200	200				
მოცულობა, მ ³ სიგანე, მმ	0,38 1600	0,5 1600				
განტვირთვის სიმაღლე	2600	2600				
გადაწვდომა განტვირთვის მაქსიმალურ სიმაღლეზე, მმ	585	585				
კონსტრუქციული მასა, კგ						
ბულდოზერის ფარით ციცხვით	4410 4360	4000 4033				
დამატებითი მოწყობილობა	გადიდებული ციცხვი 0,5მ ³ ციცხვი თოვლისათვის 0,75მ3	შემცირებული ციცხვი 0,38 მ ³ ციცხვი თოვლისათვის 0,75 მ ³				
დამამზადებელი	მინსკის გაერთიანება "დორმაშ"–ი					

ცხრილი 8.3. მე-3 და მე-4 კლასის ბულდოზერების ტექნიკური მახასიათებლები

მაჩვენებლების დასახელება	D3-42	D3-42Γ	D3-42Γ-1	D3-101A
საბაზო ტრაქტორი (მუხლუხა)	DT-75MP-C2	D3-75MP-C2	DT-75HP-C2	Т-4АП2-С1
ძრავის სიმძლავრე, კვტ	66	66	66	96
წევის კლასი	3	3	3	4
სიჩქარე, კმ/სთ		1	I	
წიб		5,311,18		2,229,32
უკან		4,54		3,396,1
ფარი:		პირდა	პირი	
სიგანე, მმ	2560	25	20	2860
სიმაღლე უქუდოდ, მმ	804	80	00	990
ქვემოთ დაშვება საყრდენი ზედაპირის მიმართ, მმ	300	43	10	435
ზემოთ აწევა საყრდენი ზედაპირის ზემოთ, მმ	600	83	30	860
გაბარიტები სატრანსპორტო მდგომა- რეობაში, მმ				
სიგრძე	4650	49	80	5029
სიგანე	2560	25	20	2860
სიმაღლე	2300	26	550	2565
დამამზადებელი	ბერდიანის საგ-	ბერდიანის და	0 10	ის საგზაო
	ზაო მანქანების	მინგეჩაურის		ბის ქ-ნა
	ქ-ნა	საგზაო მანქა	-	
		ნების ქ-ნა		

ცხრილი 8.4. მუხლუხა ბულდოზერების (არასაბრუნი ფარით) ტექნიკური მახასიათებლები

მაჩვენებლები	D3-54	D3-27C	D3-110A	D3-35Б	D3-118	D3-59	D3-124XЛ
საბაზო ტრაქტორი	T-100M3	T-130	T-130	T-180KC	DЭТ- 250М	T-330	T-330
ტრაქტორის კლასი	10	10	10	15	25	25	25
ფარი, მმ:							
სიგრძე სიმაღლე აწევა დაშვება გადახრის კუთხე ძრავის სიმძლავრე, კვტ	3220 1100 850 370 ±4	3220 1100 890 335 ±4 118	3220 1180 950 465 ±12 118	3640 1200 1130 400 ±6	4310 1370 1350 700 ±12 243	3600 1200 1550 800 ±6 250	4730 1550 1350 700 ±12 250
მასა, კგ ბულდოზერის მოწყო- ბილობა საერთო	1710 13710	1850 13350	2020 16050	3450 20290	4870 34800	6500 44000	7750 46500

ცხრილი 8.5. საზღვარგარეთული, მუხლუხა, მძიმე ბულდოზერების ტექნიკური მახასიათებლები

	"კატერ.	პილერ ტრ	აქტორ"	"ინტერნეიშილ-	,,ფი	იატ–ალლ	ლის"		"კომაცუ" (იაპონია)	
მაჩვენებლები		(668)		ღრესსერ" (აშშ)	(১৪)	შ – იტაღ	ღია)				
	8S	9S	10S	25- D-2	21 C	31	41B	D150A-11	D155A-1	D355A-3	D455A
საბაზო ტრაქტორი	D8	D9	D10	TD25C	HD21C	HD31	HD41B	D150B-	D155B-1	D355B-3	D455B
ფარი, მმ:	4170	4580	5490	3980	3975	4860	5180	11	4130	4315	4800
სიგრძე	1760	1980	2240	1470	1524	1900	2160	4130	1590	1875	2135
სიმაღლე	1290	1435	1500	1420	1410	1516	1550	1590	1560	1545	1740
აწევა	614	628	686	510	514	546	610	1560	560	700	800
ჩაშვება								560			
ჭრის კუთხის რეგუ-											
ლირების	68	8	8	10	10	10	10		10	10	10
დიაპაზონი, 0								10			
გაბარიტები, მმ	6230	6990	7820	6680	6170	7240	7480		6560	7125	8085
სიგრძე	4170	4540	5490	3980	3975	4860	5180	6560	4130	4315	4800
სიგანე	37479	52007	86320	30552	34580	53616	63660	4130	33690	45430	68420
საერთო მასა, კგ								33690			

8.2 სკრეპერები

სკრეპერები ასევე მიეკუთვნება მიწასათხრელ - სატრანსპორტო მანქანათა რიცხვს და განკუთვნილია გრუნტის ფენოვანი დამუშავებისათვის შემდგომი ტრანსპორტირებით და განფენით 500......800 მ-მდე. ხოლო თვითმავალი სკრეპერის შემთხვევაში 5 კმ-მდე. სკრეპერის კონსტრუქციული მოწყობილობა საშუალებას გვაძლევს მისი განტვირთვის ოპერაცია შეთავსებული იქნეს გრუნტის მოსწორებასთან. ამიტომ სკრეპერების მუშაობის დროს მოსწორების საშუალებათა გამოყენება საჭირო არ არის.

სკრეპერები უკვე III — IV კატეგორიის გრუნტებს (ზელენინით საშუალო და ძლიერ მტკიცე თიხები) წინასწარი დამუშავების-გაფხვიერების გარეშე ვერ ამუშავებენ და მხოლოდ I — II კატეგორიის გრუნტებისათვის არის განკუთვნილნი.

სკრეპერები ფართოდ გამოიყენება მშენებლობის სხვადასხვა სფეროში: სატრანსპორტო, ჰიდროტექნიკურ, სამრეწველო მშენებლობებზე, ვერტიკალური პლანირებისათვის, დამბებისათვის, ყრილებისათვის, ქვაბულებისათვის (არაღრმა), გზათა ვაკისების მოწყობისათვის და ა.შ.

სკრეპერები კონსტრუქციულად შეიძლება იყოს ნახევრად მისაბმელი — ერთღერძა (ნახ.8.3-6, e), მისაბმელი — ორღერძა (ნახ. $8.3-\epsilon$). ამასთან ნახევრად მისაბმელი — ერთღერძა, თუ დაკომპლექტებულია სპეციალური დანიშნულების საწევარათი იწოდება თვითმავალ სკრეპერად (ნახ.8.3-a, e).

ნაზ. 8.3. თვითმავალი სკრეპერი: δ , ϵ , ϵ , δ — საწევართან მიერთების სქემები; ϵ — სკრეპერი ხვეტია ელევატორით

ციცხვის მოცულობის მიხედვით სკრეპერები შეიძლება იყოს: - მცირე მოცულობის - 5 მ 3 -მდე;

- საშუალო მოცულობის 6...15 მ 3 ;
- დიდი მოცულობის $> 15 \, a^3$.

არსებობს მსოფლიოში ციცხვების გაზრდის ტენდენცია — 40-50 და $80~\text{d}^3\text{-}$ მდეც კი.

მისაბმელი სკრეპერი მუშაობს ტრაქტორთან ან ორღერძიან საწევართან. ნახევრადმისაბმელი, განსხვავებით მისაბმელიდან, კეთდება ერთღერძიანი და თავის წონის ნაწილს გადასცემს წევარას და როცა ისიც ერთღერძიანია ამით იზრდება მისი შეჭიდულობა ნიადაგთან. ნახევრადმისაბმელი სკრეპერები მობილურია, ახასიათებს კარგი მანევრირება, მოძრაობს დიდი სიჩქარით. ამიტომ ისინი ყველაზე უფრო გავრცელებულნი არიან.

nax. 8.4. skreperis cicxvis Sevsebis sqema

თვითმავალი სკრეპერის საწევარი ცალკე არ გამოიყენება.

ციცხვის ავსება ძირითადად ხდება მოჭრილი გრუნტის მასში დაწნევით (ნახ.8.4) ან სპეციალური ხვეტია (სახაპავი) კონვეიერის მეშვეობით, რომელიც ციცხვის წინა ნაწილში ყენდება. ამ დროს სკრეპერის წევის ძალა შესაძლებელია 20...25%-ით შემცირდეს.

სკრეპერებით ძლიერ დანესტიანებული გრუნტების დამუშავება ვერ ხერხდება, ხოლო ძლიერ მშრალის შემთხვევაში ციცხვი მხოლოდ 60...70%-ით ივსება.

ციცხვის განტვირთვის მიხედვით სკრეპერები შეიძლება იყოს: იძულებითი, ნახევრადიძულებითი და თავისუფალი განტვირთვით.

პირველ შემთზვევაში — გრუნტი გადაიყრება უკანა კედლის წინ გადაადგილებით. ციცზვი კარგად განიტვირთება, მაგრამ ბევრი ენერგია იხარჯება პროცესზე. მეთოდი ფართოდ არის გავრცელებული.

მეორე შემთხვევაში — ფსკერი უკანა კედელთან ერთად მომრაობს წინა ნაწილისა და გვერდითი ზედაპირების მიმართ. დამახასიათებელია — გვერდითი კედლები კარგად სუფთავდება, მაგრამ ფსკერი და უკანა კედელი ცუდად.

მესამე შემთხვევაში — ციცხვი ყირავდება და იგი განტვირთვისათვის ყველაზე ცუდი პირობებია და გამოიყენება მხოლოდ მაშინ, როცა ციცხვის მოცულობა q < 2...3 მ 3 .

მართვა ძირითადად პიდრავლიკურია. ბაგირული თითქმის აღარ გამოიყენება.

ციცხვის შევსების პროცესი მრავალ ფაქტორზეა დამყარებული, რომელთაგანაც ძირითადია გრუნტის ფიზიკო-მექანიკური თვისებები, ციცხვის ზომების თანაფარდობა, ციცხვის ფორმა, ციცხვის წინა საკიდის კონსტრუქცია და მაინც უმთავრეს პარამეტრებს განეკუთვნება ციცხვის სიგანე, სიმაღლე და სიგრძე.

სკრეპერების მუშაობის პროცესში ყველაზე დიდი წინააღმდეგობა ვითარდება ციცზვის შევსების ბოლო მომენტში (III ფაზა). მინიმალური — როცა სკრეპერები ცარიელი ბრუნდება სამუშაო ადგილზე. შესაბამისად ძალიან დიდია სხვაობა საჭირო სიმძლავრეთა შორის და ბუნებრივია დაბალია ძრავის გამოყენების კოეფიციენტი.

არსებობს ასეთი დიდი პიკური დატვირთვების თავიდან აცილების მეთოდები:

- 1. ტრაქტორ-საწევარის გამოყენება საწევარაში. ერთი ტრაქტორი ემსახურება რამდენიმე სკრეპერს ექსტრემალურ მომენტში;
- 2. სკრეპერის უკანა ღერძი აღჭურვილია დამატებითი ძრავით, რომლის სიმძლავრე ძირითადი ძრავის 50.....60%;
- 3. სპეციალური სახაპავი (ხვეტია) კონვეიერით აღჭურვა. ნაკლი სირთულე, სიძვირე.
- 4. თვითმავალი სკრეპერების მომზადება ურთიერთ გადაბმის შესაძლებლობით. ანუ სკრეპერების მატარებლის შექმნა: ჯერ ივსება წინა, შემდეგ უკანა. ნაკლი შეპირაპირების კვანძის შექმნა.

8.3. ავტოგრეიდერები

ავტოგრეიდერები მიეკუთვნება ყველაზე უფრო გავრცელებულ საგზაო მანქანათა რიცხვს. გამოიყენება გზათა როგორც მშენებლობის, ისე ექსპლუატაციის დროს. ავტოგრეიდერებს იყენებენ აგრეთვე აეროდრომების მშენებლობის დროს.

ავტოგრეიდერებით შესაძლებელია: მიწის ვაკისის პროფილირება, ნაყართა, ღრმულების და გვერდულების ზედაპირების გასწორება, კიუვეტებისა და თხრილების გაწმენდა, გზების გაწმენდა შემთხვევითი საგნებისაგან და თოვლისაგან, გზების (გრუნტის) და მოედნების მოსწორება და ა.შ.

nax. 8.5. avtogreideri

ავტოგრეიდერები თვითმავალი მანქანებია. მათ შეცვალეს გრეიდერები, რომლებიც მისაბმელი მანქანები არიან და ამასთან მნიშვნელოვნად იაფნი ვიდრე ავტოგრეიდერები. გრეიდერები დღეს

მაინც იშვიათად გამოიყენებიან და ისიც მხოლოდ ტრაქტორთან ერთად სასოფლო-სამეურნეო გზების მოსასწორებლად, დაპროფილებისათვის.

	აეტოგრეიდერების კლასიფიკაცია											
<i>ტიპი</i>	კლასი	მასა, ტ.	ძრავის სიმძლავრე, კვტ.									
მსუბუქი	I	7-9	45-55									
bs შუsლო	II	10-12	65-75									
მძიმე	III	13-15	120-130									
<i>ზემძიმე</i>	IV-V	17-23	270-320									

ავტოგრეიდერების მუშა ორგანოს წარმოადგენს ფარი 7 (ნახ. 6.5), რომელიც კრონშტეინ 5 და საბრუნი წრის 8 მეშვეობით დამაგრებულია წევის ჩარჩოზე 9. უკანასკნელი მოთავსებულია "ქედისებური" ჩარჩოს ქვემოთ და ერთი წინა ნაწილით შეერთებულია უნივერსალურ სახსართან 10, ხოლო მეორე უკანა ნაწილით ჩამოკიდებულია "ქედისებურ" ჩარჩოზე 14 და 15 ჰიდროცილინდრებით, რომლებიც უზრუნველყოფენ წევის ჩარჩოს გადადგილებებს. კერძოდ, ჰიდროცილინდრი 14 უზრუნველყოფს წევის ჩარჩოს აწევას და გადახრებს, ხოლო 15 მუშა ორგანოს მანქანის ღერძის გარეთ გატანას. საბრუნი წრის 8 ბრუნვით უზრუნველყოფილია ავტოგრეიდერების ფარის ბრუნვა ჰორიზონტალურ სიბრტყეში.

მუშა ორგანოს ქვედა ნაწილში ხშირად დამაგრებული აქვს მჭრელი დანები. ფარის გარდა ავტოგრეიდერებს უკეთებენ საფხვიერებელს 12, რომელიც განკუთვნილია ძველი საფარის (გზის) დასანგრევად, გასაფხვიერებლად.

ავტოგრეიდერების სავალი ნაწილი შედგება ოთხი უკანა წამყვანი პნევმოთვლებისაგან 1 და ორი წინა არაწამყვანი (ზოგჯერ წამყვანი) თვლებისაგან 11. დახრილ ფერდობებზე მუშაობის დროს ავტოგრეიდერების წინა თვლები შეიძლება დავხაროთ ღერძის მიმართ (ნახ. 8.5).

ცხრილი 8.7. ავტოგრეიდერების ტექნიკური მახასიათებლები

θιβηδηδης ο	D3-99A	D3-143	D3-122A	D3-98A	D3-140
სიმძლავრე, კვტ	62,2	99,4	99,4	184	220
გრეიდერის ფარის ზომები, მმ					
სივრძე, მმ	3040	3740	3740	4250	4830
სიმაღლე, მმ	500	620	620	720	800
სატრანსპორტო სიჩქარე, კმ/სთ					
Fob	35	43	43	40	40
	38,1	36,2			
უკან	20	25,2	25,2	47	24
	16,4	15,6			
გაბარიტული ზომები, მმ					
სიგრძე	8650	9760	9450	10300	11500
სიგანე	2300	2500	2500	2800	3220
სიმაღლე	2985	3200	3250	3920	3955
მასა, კვ.	9500	13500	14370	19500	25000

ავტოგრეიდერების სიჩქარე შეიძლება ვცვალოთ 2-3-დან 45 კმ/სთ-მდე. ფარის დახრის კუთხე ჰორიზონტალურ სიბრტყეში მანქანის ღერძის მიმართ იღება $30....60^{0}$.

ავტოგრეიდერები კლასიფიცირდება მასისა და ძრავის სიმძლავრის მიხედვით. მასის მიხედვით კლასიფიცირება მნიშვნელოვანწილად განსაზღვრავს ავტოგრეიდერების ძირითად ექსპლუატაციურ მაჩვენებელსაც — წევის ძალას.

მსუბუქი ავტოგრეიდერები გამოიყენება გზების შენახვისა და მიმდინარე რემონტისათვის. საშუალო — გზების მშენებლობისა და რემონტისათვის, როცა გრუნტის კატეგორია არ აღემატება — III. მძიმე ტიპები გამოიყენება დიდი მოცულობისა და მძიმე გრუნტების პირობებში (IV კატეგორია).

ავტოგრეიდერების ფარის სიგრძე იცვლება ზღვრებში 3000....4300 მ.

8.4 ბულდოზერ — გამაფხვიერებლები

ბულდოზერ — გამაფხვიერებლები გამოიყენებიან გრუნტის გაფხვიერებისათვის დიდ მოედნებზე და ფართობზე. გარდა ამისა გრუნტიდან დიდი ზომის ქვების ამოყრისათვის, არსებული გზის საფარის დამტვრევისათვის, აგრეთვე გაყინული გრუნტის დამუშავებისათვის.

ამჟამად გამაფზვიერებლები გამოიყენება ძირითადად ტრაქტორთან კომპლექტში, რომლის უკანა ნაწილზე ჩამოიკიდება საკიდი გამაფზვიერებლები და რომელიც ბულდოზერულ მოწყობილებასთან ერთად იწოდება ბულდოზერ — გამაფზვიერებლად. ამ სახის გამაფზვიერებლები ყველაზე მოზერზებულად გამოიყენება მრავალწლიანი ნაყინი გრუნტების და ფენოვანი და მცირე სიმტკიცის სამთო ქანების დამუშავებისათვის.

ნახ. 8.6. ბულდოზერ-გამაფზვიერებელი

გამაფზვიერებლები, მათ შორის ბულდოზერული აღიჭურვება ერთი ან რამდენიმე კბილით 6 (ნახ. 8.6), რომელიც დგება ძელზე 2 ხისტად ან კუთხური გადაადგილების მცირე შესაძლებლობით ჰორიზონტალურ სიბრტყეში სახსრულად შეერთებული კრონშტეინ 5 მეშვეობით. კბილები განივი ძელით ჩამოკიდებულია საბაზო ტრაქტორის დგარზე 3 სამწერტილოვანი ან ოთხწერტილოვანი-პარალელოგრამული სქემით (ნახ. 6.6- δ). ამასთან კბილის ჩაღრმავება გრუნტში რეგულირდება ერთი ან ორი ჰიდროცილინდრით 4. პარალელოგრამული საკიდი უზრუნველყოფს ჭრის კუთხის მუდმივობას კბილის გრუნტში ჩაღრმავების მიუხედავად, რაც თავის მხრივ უზრუნველყოფს გამაფზვიერებლის ეფექტურ მუშაობას, საიმედოობას.

გამაფხვიერებლ–ბულდოზერის ტექნიკური მწარმოებლობა გამოითვლება:

$$Q_t = \frac{3600}{t_c} \cdot Bh_{ef} L , \qquad (8.1)$$

სადაც $Q_{\mathcal{B}}$ ტექნიკური მწარმოებლობაა, მ 3 /სთ; B - გაფხვიერების საშუალო სიგანე ერთი გასვლით რამდენიმე კბილით დამუშავების დროს ან ორ მეზობელ გავლას შორის ერთკბილიანი გამაფხვიერებლის დროს, მ; h ეფ. — გაფხვიერების ეფექტური სიღრმე, მ; L — გაფხვიერების სიგრმე ერთი ციკლის შემთხვევაში, მ; t $_{\mathfrak{F}}$. — ციკლის ხანგრძლივობა, \mathfrak{F} მ.

ცხრილი 8.8. მუხლუხა ბულდოზერ-გამაფხვიერებლების ტექნიკური მახასიათებლები (10...75 წევის კლასი)

მაჩვენებელი	D3-116B (D 3-171.3)	D3-117A (D 3-171.3-05)	D3-126A	D3-126B-1/2
საბაზო ტრაქტორი (მუხლუხა)	T-130MΓ-1 (T-170.01)		DЭT-250M	DЭT-250M2
სიმძლავრე, კვტ	117,6			243
წევის კლასი		10		25
სიჩქარე, კმ/სთ				
წ ინ	2,3	7510,5	1,1419	0,9815,73
უკან	3,32	2512,6	1,1419	0,9815,73
ბულდოზერი (ინდექსი)	D3-110B	D3-109Б	D3-118	D3-132-2
ფარის სიგანე, მმ	3220	4120	4310	4590
ფარის სიმაღლე, მმ	1300	1140	1550	1700
გამაფხვიერებლის სახე		ოთ ზ რ გ	ვოლიანი	
გამაფხვიერებლის მაქსიმალური სიღრმე, მმ		515	1	265
კბილების რიცხვი		1		1
გამაფხვიერებლის მასა, კგ.	1	400	3975	3914
მანქანის გაბარიტები, მმ				
სიგრძე	6140	6570	9215	8940
სიგანე	3220	4120	4310	4590
სიმაღლე	3176	3176	3240	3275
ექსპლუატაციური მასა, კგ	17740	18000	38781	40810
დამამზადებელი		ი ჩელიაბინსკის საგმ	 ხაო მანქანების ქარხანა	

ცხრილი 8.8. გაგრძელება

					020.000.000	0 10
მაჩვენებელი	D3-158-	D3-158-	D3-94C/	D3-129XЛ	D3-141XЛ	D3-159
	DП-34-1	2П-34-2	D3-94C-1			DΠ -35
საბაზო ტრაქტორი						
(მუხლუხა)	T-25.01		T-330	T-330	T-500	T-800
სიმძლავრე, კვტ. (ცხ.ძ.)	250	(340)	250	(340)	368 (500)	603 (820)
წევის კლასი	2	5	3	35	35	75
სიჩქარე, კმ/სთ						
Боб	0	11,3	0.	.13	013	012
უკან	01	13,4	0	10,8	011,1	015
ბულდოზერი (ინდექსი)	D3-	158	D3-59 XЛ	D3-124 XЛ	_	D3-159
ფარის სიგანე, მმ	42	00	4730	4860	4800	5500
ფარის სიმაღლე, მმ	1700		1750	1880	200	2300
გამაფხვიერებელი, სახე	ოთხრგ	ოთხრგოლიანი		ხუთრგოლიანი	ოთხრგოლიანი	ოთზრგოლიანი
გამაფხვიერებლის						
მაქსიმალური სიღრმე, მმ	1250	850	780	1480	1380	1645
კბილების რიცხვი	1	3	13/1	1	1	1
კბილების ბიჯი, მმ	-	900	960	-	-	_
მანქანის გაბარიტები, მმ						
სიგრძე	8210	8210	8700/8700	9830	9500	11800
სიგანე	4200	4200	4762/4540	4530	4800	5500
სიმაღლე	4025	4025	4265/4265	4265	4260	4820
ექსპლუატაციური მასა, კგ	41800	42455	53276/50725	53532	61350	100975
დამამზადებელი ქარხნები	ჩელიაბინს _ა მანქა	ვის საგზაო ნების		თვითმავალი ღი მანქანების	სტერლიტამაკის სამშენებლო მანქანების	ჩელიაბინსკის საგზაო მანქანები

9. სამსხვრევ-დამხარისხებელი მოწყობილობა

9.1. სამსხვრეველები

ღორღი ბეტონის უმნიშვნელოვანესი ინერტული კომპონენტია და ძირითადად სწორედ მისთვის გამოიყენება. ღორღი ბეტონისათვის საჭირო სხვა კომპონენტებისაგან განსხვავებით მიიღება ქვების და კლდოვანი ქანების მსხვრევის გზით და იგი მხოლოდ მისი შემდგომი დახარისხება-გარეცხვის შემდეგ მიეწოდება ბეტონის მომზადების წარმოებას.

ლორღის ხარისხს მნიშვნელოვანწილად განსაზღვრავს მისი მარცვლოვანობის შემადგენლობა. შესაბამისად საინჟინრო პრაქტიკაში არჩევენ ღორღის შემდეგ ფრაქციებს: 5...10; 10...20; 20...40; 40...70 მმ. საგზაო მშენებლობაში დასაშვებია 9...10; 10...15; 15...20 მმ-იანი ფრაქციებიც. ხოლო რკინიგზის საბალასტო ფენისათვის — 25...50 მმ. მასიური თავდაცვის და სხვა ნაგებობისათვის ღორღი ნატეხების სიდიდე შეიძლება 120...150 მმ-იც იყოს.

ქვის სამსხვრეველებზე გადამუშავებული მთის ქანების სიმტკიცის ზღვარი შეიძლება იყოს: 30...80 მპა (დაბალი სიმტკიცის), 80...150 მპა (საშუალო სიმტკიცის) და 150 მპა-ზე მეტი (მაღალი სიმტკიცის).

ქვის სამსხვრეველებში მათი მუშაობის პრინციპის შესაბამისად ხდება ქვის ან გახეთქვა, ან გაჭყლეტვა, ან დამსხვრევა დარტყმით, ან დაფქვა (ნახ. 9.1.).

ნახ. 9.1. ქვის მსხვრევის და დაქუცმაცების სქემები ა) გაჭყლეტვით; ბ) გახეთქვით; გ) დარტყმით; დ) ცვეთით

ქვის სამსხვრეველების უმნიშვნელოვანესი მაჩვენებელი — მსხვრევის ხარისხი (i) არის ყველაზე მსხვილი ნატეხის (რომელიც ჩაიტვირთება მანქანაში) და მზა პროდუქტში მაქსიმალური მარცვლის ზომების ფარდობა.

$$i = D/d, (9.1)$$

სადაც D დასამსხვრევი პროდუქტის ზომაა; d- მიღებული პროდუქტის ზომაა.

პრაქტიკაში ფუნქციერებადი მანქანებისათვის სამსხვრევი ნატეხების მიხედვით მსხვრევის ხარისხი შეიძლება იცვლებოდეს ზღვრებში 4..15. ზოგჯერ — 20...30-მდე (წისქვილები).

მაღალი და საშუალო სიმტკიცის ქანების მსხვრევა ხორციელდება გახეთქვით, გაჭყლეტვით და დარტყმით, ხოლო დაფქვა — ხერხვით და დარტყმით.

მსხვრევის ხარისხის მიხეღვით განასხვავებენ მანქანების ორ ძირითად ტიპს: სამსხვრეველებს და წისქვილებს. ამასთან ზოგიერთი მანქანა შეიძლება მუშაობდეს როგორც სამსხვრეველა, ისე წისქვილი. ასეთ მანქანებს განეკუთვნებიან: ვალცებიანი სამსხვრეველები და რბიები.

კონსტრუქციული გადაწყვეტილების და მოქმედების პრინციპის შესაბამისად სამსხვრეველების სახეებია: ყბებიანი, კონუსური, ვალცებიანი, ჩაქუჩებიანი და როტორული. ხოლო წისქვილების — დოლებიანი, ბურთულებიანი, მორბედი და ვიბრაციული.

თითოეული ტიპის სამსხვრეველაზე შესაძლებელია მისთვის დასაშვები და მიღწევადი მსხვრევადობის ხარისხის მიღება:

ყბებიანზე -2...8;

ვალცებიანზე -1,5...10;

კონუსურზე – 3...8;

ჩაქუჩებიანზე -5...30;

წისქვილებზე -10...20.

სამსხვრეველების ტიპის შერჩევა საინჟინრო პრაქტიკაში ხორციელდება მიღებული კრიტერიუმებით: საჭირო მწარმოებლურობა, საწყისი პროდუქტის მაქსიმალური ზომა და მასალის სიმტკიცის მაჩვენებელი.

სამსხვრეველების გამოყენების ტექნოლოგიური პროცესი საინჟინრო პრაქტიკაში ხშირად გულისხმობს ღორღის მიღებას რამდენიმე სტადიით, რამდენიმე გადამუშავებით. სტადიური გადამუშავების (არაუმეტეს 2...3 სტადია) მიზანშეწონილ მიმართულებად მიჩნეულია გადამუშავება სხვადასხვა ტიპის სამსხვრეველებზე. ამასთან თითოეულ სტადიაზე მიიღება რომელიმე წინასწარ განსაზღვრული პარამეტრების მქონე პროდუქტი. ღორღის მომზადების ტექნოლოგიური სქემა უმრავლეს შემთხვევაში გულისხმობს სამსხვრეველას წინ ცხავის დაყენებას შესაბამისი ფუნქციის შესრულებით. ხოლო ბოლო, დამამთავრებელი სტადიის სამსხვრეველები (ხშირად ეს შეიძლება

იყოს ვალცებიანი), როგორც წესი მუშაობენ ჩაკეტილი ციკლით ვიბროცხავებთან კომპლექსში და უზრუნველყოფენ საჭირო ზომაზე დიდი ნატეხების დაბრუნებას იმავე სამსხვრეველაში (ნახ.9.2).

მთის ქანების მსხვრევა ერთი სტადიით, ნაკლებ ეფექტური ტექნოლოგიური სქემაა. ამ შემთხვევაში მუშა ორგანოში ერთად იყრიან თავს მსხვილი და წვრილი ფრაქციები, წვრილი ფრაქციები ავსებენ მსხვილ ფრაქციებს შორის სივრცეს. შესაბამისად ხდება წვრილი ფრაქციის დამატებითი, არამიზნობრივი მსხვრევა, დაქუცმაცება, რაც ასევე ზედმეტი ელექტროენერგიის ხარჯვაა.

სამსხვრეველების მუშაობის ძირითადი მაჩვენებლებია: მსხვრევის პროდუქტის მაქსიმალური ზომები (მთავარი პარამეტრია!), ენერგიის ხვედრითი ხარჯი (კვტ.სთ/მ 3), მწარმოებლურობა (მ 3 /სთ ან გ/სთ).

მოვიყვანოთ და განვიხილოთ სამსხვრეველების ზოგიერთი სახე.

ყბებიანი სამსხვრეველები ძირითადად გამოიყენებიან მაგარი და საშუალო სიმტკიცის ქანების მსხვილად და ზოგჯერ საშუალოდ მსხვრევისათვის. ამასთან, როგორც წესი მსხვრევითი პროცესის პირველ და მეორე სტადიებზე.

მასალის მსხვრევა ყბებიან სამსხვრეველებში ხდება ორ მართკუთხოვან ფილებს — ყბებს შორის მოხვედრით, რომელთა შორის ერთი ასრულებს რხევით მოძრაობას. ყბების მოძრაობის ხასიათის მიხედვით ამ ტიპის სამსხვრეველები შეიძლება იყოს ყბის მარტივი ან რთული მოძრაობით.

ნახ. 9.2. სამსხვრევ-დამხარისხებელი მოწყობილობის ტიპიური სქემა:
1 — ტრანსპორტი; 2 — ფირფიტოვანი კონვეიერი; 3 — ცხავი; 4 — ყბებიანი სამსხვრეველა; 5,7 — ვიბროცხავები; 6 — ვალცებიანი სამსხვრეველა; 8 — ქვიშისა და მტვერის ბუნკერი;
9 — სახარჯო ბუნკერი; 10 — სასაქონლო ღორღის საწყობი

ცხრილი 9.1. სამსხვრეველების ძირითადი ტიპების კლასიფიკაცია

სამსვრეველას ტიპი	დანიშნულება	საწყისი მასალის	მწარმოებლურობა,
		ზომა, მმ	$\partial^3/$ სთ
ყბებიანი, მარტივი მოძრაობით	მტკიცე და აბრაზიული	7501300	180600
	მასალების მსხვილი და საშუალო მსხვრევა	750	180
ყბებიანი, რთული მოძრაობით	მტკიცე და საშუალო სიმტკიცის მასალების მსხვილი და საშუალო მსხვრევა	210510	775
კონუსური, საშუალო და წვრილი მსხვრევით	მტკიცე და აბრაზიული მასალების საშუალო და წმინდა მსხვრევა	40500	121100
როტორული, ჩაქუჩებიანი	მცირეაბრაზიული მასალების მსხვილი, საშუალო და წმინდა მსხვრევა	1001100	101200
ყბებიანი მარტივი მოძრაობით	ყბებიანი რთული მოძრაობით	კონუსური	როტორული, ჩაქუჩებიანი

მოძრავი ყბის წერტილები მარტივი ქანაობის დროს ასრულებენ წინსვლით-უკუქცევით მოძრაობას წრეწირის რკალზე, ხოლო რთული ქანაობის დროს ელიპტიკურ ტერიტორიაზე. ამასთან მარტივი მოძრაობა მიიღწევა მოძრავი ყბის ღერძზე დაკიდებით, ხოლო რთული — მოძრავი ყბის ექსცენტრიკულ ლილვზე დასმით (ცხრილი 9.1 სქემები).

ყბებიანი სამსხვრეველას მუშა ორგანოს კინემატიკური პარამეტრების დადგენა მნიშვნელოვანი საკითხია მანქანის ეფექტური ფუნქციონირებისათვის, კერძოდ, მოძრავი ყბის ზედა და ქვედა ნაწილების სვლათა თანაფარდობა. ყბებიან სამსხვრეველაში ყბის რთული მოძრაობით მოძრავი ყბის ზედა ნაწილის სვლა მეტია, ვიდრე ქვედასი, ხოლო მანქანაში ყბის მარტივი მოძრაობით — ყველაფერი პირიქითაა. ეს გარემოება ყბებიან სამსხვრეველებში მოძრავი ყბის რთული ქანაობით უზრუნველყოფს მასალის ეფექტურ მსხვრევას ზედა ზონებში და შესაბამისად მწარმოებლურობის ზრდას. მაგრამ სამაგიეროდ ამ ტიპის სამსხვრეველებში მოძრავი ყბის სვლის ვერტიკალური შემდგენი მნიშვნელოვნად მეტია, ვიდრე სამსხვრეველებში ყბის მარტივი მოძრაობით, რაც იწვევს მუშა ყბის ინტენსიურ ცვეთას დატვირთვის ერთნაირ პირობებში. აღნიშნულის გამო ყბებიანი სამსხვრეველები ყბის მარტივი ქანაობით ძირითადად გამოიყენება მაგარი და აბრაზიული ქანების დამსხვრევისათვის, ხოლო სამსხვრეველები ყბის რთული მოძრაობით - საშუალო სიმაგრის და აბრაზიული ქანების მსხვრევისათვის. ყბებიან სამსხვრეველები მასა და გაბარიტები.

ყბებიან სამსხვრეველებში თუ საწყისი მასალა D=800...1000 მმ-ია მსხვრევის ხარისხი მიიღება ზღვრებში i=4...5, თუ D=340...550 მმ-ია -i=7,5...8,5 და თუ D=200...300 მმ-ია -i=10,5...13.

ნაზ. 9.3. ყბებიანი სამსხვრეველა ყბის მარტივი მოძრაობით

ნაზ. 9.4. ყბებიანი სამსხვრეველა ყბის რთული მოძრაობით

ცხრილი 9.2. ყბებიანი სამსხვრეველების ტექნიკური დახასიათება

	ებ	ყბის მარტივი მოძრაობით ყბის რთული მოძრაობით						
მაჩვენებლები	СМД-111А	СМД-184	СМД-118А	СМД-117А	СМД-116	СМД-108А	СМД-109А	СМД-110А
მიმღები ნახვრეტის ზომები, BxL, მმ	900x	1200	1200x1200	1500x2100	250x400	250x900	400x900	600x900
მწარმოებლობა, მ ³ /სთ	180		310	600	7,0	18,0	35	75
ნატეხის მაქსიმალური ზომა,მმ	750		1100	1300	210		340	510
გამომავალი ჭრილის სიგანე, b, მმ	13	30	155	180	40		60	100
b-ს რეგულირების დიაპაზონი, მმ	±35	+65 -35	±40	±45	±2	20	+30 -20	+40 -25
ძირითადი ძრავის სიმძლავრე, კვტ	110	55x2	160	250	17	45	55	75
გაბარიტული ზომები, მმ სიგრძე სიგანე სიმაღლე	5300 6000 4000	3960 4570 3450	6400 6800 5000	7500 7000 6000	1400 1300 1500	2500 2400 1900	2500 2400 2200	3000 2500 2600
მასა, ტ	63,2	63,3	123	250	3,0	8,4	10,85	18,5,,

ცხრილი 9.3. კონუსური მსხვრევარების ტექნიკური დახასიათება მსხვილი (წმინდა) მსხვრევითი შესრულებით

მაჩვენებლები	КСД-600	КСД-900	КСД-1200	КСД-1750	КСД-2200	КСД-3000	КМД-1200	КМД-1750	КМД-2200	КМД-3000
მსხვრეველი კონუსის ფუძის დიამეტრი, მმ	600	900	1200	1750	2200	3000	1200	1750	2200	3000
მიმღები ღიობის სიგანე, მმ	75	130	185 (125)	250 (200)	350 (275)	600 (475)	100 (50)	130 (80)	140 (100)	220 (120)
	1235	1540	2025	2560	3060	5080	515	920	1020	1525
გამომავალი ღიობის სიგანის რეგულირების დიაპაზონი,მმ			(1025)	(1530)	(1530)	(2550)	(312)	(515)	(515)	(620)
	60	105	150	200	300	500	80	100	100	180
საწყისი მასალის მაქსიმალური ზომა, მმ			(100)	(160)	(250)	(380)	(40)	(70)	(85)	(100)
03/10/03/29/19/07/03, 00	1240	3070	77115	170320	360610	7001100	45	95130	220260	330520
მწარმოებლურობა			(4295)			(425850)		(85110)		(320440)
საშუალო სიმტკიცის მასალაზე, მ ³ /სთ										
0303(030), 0 / 00	30	55	75	160	250	500	75	160	250	500
ძრავის სიმძლავრე, კვტ							-			
გაბარიტული ზომები, მმ	1800	2500	3500	4400	5500	7000	3500	4400	5500	7000
სიგრძე	1600	2000	2500	3400	4300	5500	2500	3400	4300	5500
სიგანე	1600	2400	3100	4400	5100	6500	3100	4400	5700	7100
სიმაღლე					100	2.50				
	5,0	12,5	22	55	100	250	22	55	100	250

მასა, ტ

ცხრილი	9.4.	ვალცებიანი	სამსხვრეველების	ტექნიკური	მახასიათებლები*
0		0-200		000-000-	

მაჩვენებლები	DP – 400x250 DΓP– 400x250	DP- 600x400 DΓP- 600x400	DΓ- 800x500	DΓ- 1000x550	DΓ- 1500x600	DЧГ— 900x700
ვალცების ზომები DxL, მმ	400 x 250	600 x 400	800 x 500	1000 x 550	1500 x 600	900 x 700
ვალცებს შორის ჭრილის სიგანე,მმ	5 - 20	10 - 30	4 - 26	4 - 18	4 - 20	10 -40; 2 - 10
მწარმოებლურობა, მ ³ /სთ	5,6 - 24	18 - 54	10,8 - 43	11,9 - 53,5	13 - 65	120
ნატეხის მაქსიმა- ლური ზომა,მმ	40	60	40	50	75	40
ვალცის 1 სმ-ზე მოსული ძალა, კნ	15 - 30	9 - 20	15 - 30	17 – 35	20 - 40	3,5
ბრუნვის სიხშირე, წმ ⁻¹	120; 180; 240	100; 130; 160	100; 145; 172	57; 90; 115	38; 60; 76	115; 180
ელ. ძრავის სიმ- ძლავრე, კვტ	8	22	30	45	55	40
მასა, ტ.	1,7	5	7,8	13,3	33	35

* DΓ – ორვალციანი სამსხვრეველა გლუვი ვალცებით; DP – იგივე დაღარული ვალცებით; DΓP – იგივე გლუვი და დაღარული ვალცებით; DЧГ – ოთხვალციანი სამსხვრეველა გლუვი ვალცებით.

თუ სამსხვრეველას მთავარ პარამეტრს, ჩატვირთვის ღიობს ავღნიშნავთ ზომებით BxL, მაშინ $B\approx(1,18...1,25)D$, L=(1,4...3,3)B, სადაც D საწყისი მასალის დიამეტრია. ამასთან დიდი ზომები მცირე ზომის სამსხვრელებისთვისაა განკუთვნილი (ცხრილი 9.2).

სამსხვრევები ყბის რთული ქანაობით მუშაობენ ქანის გაჭყლეტვის და ნაწილობრივ მისი გახეხვის პრინციპით. ამის გამო სამსხვრეველას ყბები აღჭურვილია წიბოებიანი ფილებით მაღალმანგანუმიანი (12...14%Mn) ფოლადისაგან. ამასთან შეუღლებული ერთი ფილას წიბო ეთანადება მეორის ღრმულს. უკანასკნელი უზრუნველყოფს მასალაზე მღუნავ მომენტს, რაც ყველაზე ეფექტურად რეალიზდება სამთო ქანების მსხვრევის პროცესში.

კონუსური სამსხვრეველები (ნახ. 9.5). აღნიშნული ტიპის სამსხვრეველები გამოიყენებიან ქანების საშუალო და წვრილი მსხვრევისათვის და იშვიათად მაგარი და საშუალო ქანების (f=3...10 პროტოდიაკონოვით) მსხვილი მსხვრევისათვის. კონუსური სამსხვრეველები ყბებიანებთან შედარებით, არიან უფრო მწარმოებლურები, მაგრამ გამოირჩევიან კონსტრუქციული სირთულით და დიდი გაბარიტებით სიმაღლეში.

კონუსური სამსხვრეველების მუშა ორგანოს შეადგენენ: უძრავი გარე და შიდა მოძრავი წაკვეთილი კონუსები. ორივე მათგანი ბრონირებულია ცვეთამედეგი ფილებით.

მსხვრევა კონუსურ სამსხვრეველებში ხორციელდება ორ წაკვეთილ კონუსში ქანების მოხვედრის შემდეგ. მსხვრევა წარმოებს უწყვეტად შიდა კონუსის ექსცენტრიულად მოძრაობის შედეგად, რის გამოც მსხვრევის კამერაში ერთდროულად წარმოიშვება კონუსების მიახლოების (მსხვრევის) და დაშორების (განტვირთვის) ზონები. ორივე ზონა ერთმანეთის პირდაპირ არიან განლაგებულნი და უწყვეტად გადაადგილდებიან წრეწირზე.

მსხვრევის საკანის რგოლური ღიობი იწოდება მიმღებ ფანჯარად, ხოლო დაბალი — გამომავალ ჭრილად. ამასთან გამომავალ ჭრილად მიჩნეულია არათანაბარი რგოლის მინიმალური მნიშვნელობა, ანუ კონუსების ერთმანეთთან მიახლოების ადგილი.

კონუსური სამსხვრეველების მთავარ პარამეტრად მიჩნეულია მმსხვრეველი კონუსის ფუძის ზომები.

კონუსური სამსხვრეველები კლასიფიცირებულია მისი ზომებით: მსხვილი (KKD), საშუალო (KCD), პატარა (KMD). აგრეთვე გამომუშავებული პროდუქციის ზომებით: უხეში (Гр) და წვრილი (T). მათი ტექნიკური მახასიათებლები მოცემულია ქვემოთ (ცხრილი 9.3).

ნახ. 9.5. კონუსური სამსხვრეველა: 1 — უძრავი კონუსი; 2 — მოძრავი კონუსი; 3 — ლილვი

ნახ. 9.6. ვალცებიანი სამსხვრეველას სქემა: 1- სადგარი; 2,4- ვალცები; 3,6- საკისრები; 5- საყრდენი ზამბარა

ვალცებიანი სამსხვრეველები ძირითადად გამოიყენებიან რბილი და საშუალო სიმაგრის ქანების (პროტოდიაკონოვით f=1...8) საშუალო და წვრილი მსხვრევისათვის. ასეთი სამსხვრეველების მუშა ორგანოების კონსტრუქციული სქემები გამოირჩევა დიდი მრავალფეროვნებით: სამსხვრეველები მაგარი ან რბილი ქანებისათვის, სამსხვრეველები გლუვი, წიბოებიანი, კბილებიანი, ნახვრეტებიანი და ა.შ. ვალცებით.

ნახ. 9.7. როტორული სამსხვრეველა: 1 — როტორი; 2 — მუშა ელემენტი; 3 — კორპუსი; 4,7 — საკისრები; 5,6 — მარეგულირებელი ზამბარები

გლუვი ვალცების დიამეტრი 15...20-ჯერ მეტია საწყისი ნატეხის ზომებზე. შესაბამისად ყველაზე დიდი ვალცებისათვის (1500 მმ) ყველაზე დიდი საწყისი დიამეტრი არ შეიძლება 100 მმ-ზე მეტი იყოს. ხოლო დაღარულ ვალცებზე ეს მაჩვენებელი შეიძლება გაიზარდოს 1,5...2-ჯერ. სხვა სიტყვებით, საწყისი ნატეხების მაქსიმალური ზომები ასეთი სამსხვრეველების გამოყენების შემთხვევაში მნიშვნელოვნად მცირეა ვიდრე ყბებიანი სამსხვრეველებით მუშაობის დროს.

ცხრილი 9.5. ერთროტორიანი სამსხვრეველების ტექნიკური მახასიათებლები

	საშუალო დ მსხვრ	მსხვილი მსხვრევის				
მაჩვენებლები	СМД-75А	СМД-94	СМД-85А	СМД-86А	СМД-95	СМД-87
როტორის ზომები, მმ: დიამეტრი სიგრძე	1000 1000	1250 1250	800 630	1250 1000	1600 1250	2000 1600
მწარმოებლობა, მ ³ /სთ	135	200	60	135	200	370
მიმღები ღიობის ზომები, მმ გრძივი განივი საწყისი მასალის მაქსიმალური ზომა, მმ	1000 500 300	1250 600 375	630 550 400	1000 875 600	1250 1100 800	1600 1400 1100

სიმძლავრე, კვტ	125	200	40	100	160	250
გაბარიტული ზომები, მმ						
სიგრძე	2700	3400	2500	3200	4200	5600
სიგანე	2800	3200	1700	2350	2900	3600
სიმაღლე	2100	2800	2150	2800	3500	4400
მასა, ტ.	10,0	18	6,0	15	30	68

როტორული სამსხვრეველები განსაზღვრულია ისეთი საშუალო სიმაგრის მცირე აბრაზიული მთის ქანების მსხვრევისათვის როგორიცაა: კირქვა, დოლომიტი, მერგელი, თაბაშირი და ა.შ.

კონუსურებთან უფრო როტორული სამსხვრეველები ყბებიან და მაღალმწარმოებლურია, აქვთ მცირე მასა და გაბარიტები, მარტივია დასამზადებლად, ნაკლებად მგრძნობიარენი არიან არამსხვრევადი საგნების მიმართ, მიღებული პროდუქტის გეომეტრიულად უფრო მოწესრიგებულია (მეტია კუბის ფორმის ნატეხები). ნაკლოვანი მხარეა: დაბალი საიმედობა, მცირე რესურსი.

როტორული სამსხვრეველების მთავარი პარამეტრებია: როტორის დიამეტრი და სიგრძე. რიგი როტორული სამსხვრეველების ტექნიკური დახასიათებები მოცემულია ცხრილში 9.5.

9.2. ცხავები

ცხავების საშუალებით, როგორც ცნობილია ხდება ინერტული მასალების მასის განცალკევება მათი სიმსხოს ნიშნით, ცალ-ცალკე ფრაქციებად.

თავისი კონსტრუქციული შესრულების და ამძრავის მიხედვით არსებობენ შემდეგი ტიპის ცხავები:

უძრავი ცეცხლრიკოვანი, დოლისებრი, ექსცენტრიკული, ინერციული ვიბროცხავები.

უძრავი ცეცხლრიკოვანი ცხავები წარმოადგენს ცეცხლრიკოვან გისოსს ცვეთამედეგი ფოლადისაგან, რომელიც ჰორიზონტისადმი გარკვეულ კუთხით იდგმება. პროდუქტი გისოსის ზედა წერტილიდან სიმძიმის ძალით მოძრაობს ქვევით. ისინი გამოიყენებიან პროდუქციის წინასწარი გაცხავებისათვის.

დოლისებრი ცხავები წარმოადგენს მბრუნავ დოლს, რომელიც დახრილია $5...7^0$ -ით, რომლის გვერდითი ზედაპირები დამზადებულია პერფორირებული ფოლადის ფურცლებისაგან. ბრუნვის სიხშირე ასეთი ცხავებისა დამოკიდებულია მის დიამეტრზე და შეადგენს 15....20 წთ $^{-1}$. მწარმოებლობა ასეთი ცხავებისა იცვლება ზღვრებში 10...45 მ 3 /სთ 1,7...4,5 კვტ სიმძლავრის შემთხვევაში.

ექსცენტრიული ცხავები წარმოადგენენ $15...25^0$ -ით დახრილი კოლოფის ფორმის ჭურჭელს, რომელიც სახსრულადაა შეერთებული ამძრავის ექსცენტრიულ ლილვთან. ასეთი შეერთების გამო მასალა იღებს წრიულ რხევებს მუდმივი ამპლიტუდით (4...5 მმ). რხევების სიხშირე არის 800...1400 რხევა წთ-ში.

ინერციული ვიბროცხავები არსებობენ დახრილი (10...25⁰) ან ჰორიზონტალური. მათ ამძრავ მექანიზმს წარმოადგენს ლილვი დებალანსებით. ამასთან რხევის ამპლიტუდის რეგულირება ხდება საცვლელი დებალანსებით. ასეთი ცხავები გამოიყენება მუშაობის მძიმე პირობებში სასაქონლო გაცხავების დროს.

ლილვის ბრუნვის სიხშირე დახრილი ინერციული ვიბროცხავის შემთხვევაში შეადგენს $800\,$ წთ $^{-1}$, ამპლიტუდით 3,7...4,5 მმ. ჰორიზონტალურის შემთხვევაში რხევის სიხშირე შეადგენს 500...700-ს წუთში, ამპლიტუდით 8...12 მმ.

ჰორიზონტალური ვიბროცხავები დახრილთან შედარებით უზრუნველყოფენ უფრო მაღალ ხვედრით მწარმოებლობას და განცხავების უკეთეს ხარისხს.

ნახ. 9.8. ბრტყელი ცხავების სქემები: 1 – ექსცენტრიული; 2 – დახრილი ინერციული; 3,4 – ჰორიზონტალური ინერციული

10. ამ ∇ ე-სატრანსპორტო მანქანები

ამწე-სატრანსპორტო მანქანები სამშენებლო საქმეში გამოიყენება სამშენებლო მასალებისა და კონსტრუქციების გადასაადგილებლად და სამონტაჟოდ, აგრეთვე ტექნოლოგიური მოწყობილობის მომსახურეობისათვის და მათ დასამონტაჟებლად.

ამწე-სატრანსპორტო მანქანები მუშაობის ხასიათის მიხედვით მიეკუთვნებიან ციკლური მოქმედების მანქანებს. ამასთან მათ მთავარ პარამეტრად მიჩნეულია: ტვირთამწეობა. ტვირთამწეობად იგულისხმება ტვირთის (სასარგებლო) მაქსიმალურად დასაშვები მასა, რომელზეც ის არის გაანგარიშებული. შესაბამისად ტვირთამწეობა გამოისახება მასის ერთეულებში: კგ, ტონა.

ამწე-სატრანსპორტო მანქანები ხასიათღებიან შემდეგი მახასიათებლებით: გადაწვდომა (მალი), ტვირთის აწევის სიმაღლე, მუშა მოძრაობების სიჩქარეები, მასა, მოხმარებული სიმძლავრე, დატვირთვა საყრდენ კვანძებზე.

ზოგიერთი ამწე - სატრანსპორტო მანქანების ტვირთამწეობა იცვლება გადაწვდომის მიხედვით (ისრული ამწეები). გადაწვდომად მიიჩნევა მანძილი ისრის ბრუნვის ღერძიდან ტვირთამწევი ორგანოს ცენტრამდე. ამიტომ ასეთი ამწეები ხასიათდებიან სატვირთო მომენტით (ტ.მ), ანუ იგი წარმოადგენს ტვირთის მასის ნამრავლს გადაწვდომაზე (მ), რაც დაახლოებით მუდმივ სიდიდეს წარმოადგენს.

დანიშნულების მიხედვით ამწე-სატრანსპორტო მანქანები მოცემულ ნაშრომში დაყოფილია შემდეგ ჯგუფებად: დამხმარე ამწე - სატრანსპორტო მანქანები, სამშენებლო საწეველები, სამშენებლო ამწეები, სპეციალური ამწე-მილჩამწყობები.

დამზმარე ამწე-სატრანსპორტო მანქანები. ამწე-სატრანსპორტო მანქანების ამ ჯგუფს მიეკუთვნებიან: დომკრატები, სამშენებლო ჯალამბრები, საკიდი ჯალამბრები (ტალღები, ელექტროტალღები) ისინი ძირითადად შეიცავენ მხოლოდ ერთ მექანიზმს და ახორციელებენ ტვირთის გადაადგილებას ვერტიკალურად (დომკრატები, სამშენებლო ჯალამბრები, ტალღები) ან ჰორიზონტალურად (წევის ჯალამბრები) ლიანდაგზე ან მიმართველებზე.

ნახ. 10.1. ლარტყული დომკრატი: a - საერთო ხედი; δ - მუხრუჭი

დომკრატები (ნახ.10.1, 10.2, 10.3) მშენებლობაში გამოიყენებიან სამონტაჟო და სარემონტო სამუშაოების დროს ტვირთის მცირე სიმაღლეზე აწევისათვის. ამასთან ისინი ტვირთზე მოქმედებენ ქვევიდან.

ნაზ. 10.2. ხრახნული დომკრატი: a - საერთო ხედი; δ - სახელური

ნაზ. 10.3. ჰიდრავლიკული დომკრატი: a - ხელის ამძრავით; δ - ღერძის გასაჭიმი მოწყობილობა

დომკრატების ყველაზე გავრცელებული სახეებია: ლარტყული, ხრახნული და ჰიდრავლიკური. სამშენებლო ჯალამბრები (ნახ.10.4) გამოიყენება სამშენებლო კონსტრუქციების თუ სხვა მძიმე ტვირთების გადასაადგილებლად სხვადასხვა პირობებში.

ნაზ.10.4. ჯალამბრის კინემატიკური სქემები

სამშენებლო საწეველები გადაადგილებენ ტვირთებს (სატვირთო საწეველები) ან ადამიანებს (სამგზავრო) მკაცრად განსაზღვრული მიმართულებით.

სამშენებლო საწეველები (ნახ.10.5) განკუთვნილნი არიან იმისათვის, რომ ასწიონ ტვირთები ან ადამიანები სხვადასხვა სამშენებლო თუ სხვა სამუშაოების შესრულების დროს ნაგებობის სხვადასხვა სიმაღლეზე. ამასთან ტვირთები თავსდება ან ციცხვებში, ან კაბინებში, ან ბაქაბზე. გადაადგილება ხდება ვერტიკალურად! (უკიდურეს შემთხვევაში ვერტიკალურ მიმართულებასთან ახლოს).

სამშენებლო ამწეები ყველაზე უფრო რთული და უნივერსალური მანქანები არიან. ისინი განკუთვნილნი არიან საცალო ტვირთები გადაადგილებისათვის სივრცული ტრაექტორიით სხვადასხვა მანძილზე და სხვადასხვა კონფიგურაციით.

ნახ.10.5. სატვირთო სამშენებლო საწეველა

ისინი განსხვავდებიან ერთმანეთისაგან კონსტრუქციული გადაწყვეტით. ასე მაგალითად: კონსოლური (ისრული) და მალური (ხიდური); სტაციონალური და გადასაადგილებელი.

კონსოლურ ამწეებს მიეკუთვნება: სტაციონალური ანძური, კოშკური, ისრული თვითმავალი, სპეციალური მილჩამწყობი.

მალურს მიეკუთვნება: ხიდური, ხარიხა, და კაბელური ამწეები.

ამწეების ამძრავებისათვის გამოიყენება შემდეგი ტიპის ძრავები: შიგა წვის ძრავები, ჰიდრავლიკური, ელექტრული (ცვლადი და მუდმივი).

ამწეების ტიპიური მექანიზმებია: ტვირთამწევი, გადამაადგილებელი, მათ შორის მისი რომელიმე ნაწილის (ურიკის), მოსაბრუნებელი, გადაწვდომის ცვლილების.

კოშკური ამწე ერთ-ერთი ყველაზე გავრცელებული სახეა სამშენებლო საქმეში (ნახ.10.6).

კოშკური ამწის მთავარი პარამეტრებია ტვირთამწეობა ანუ ტვირთის მაქსიმალური მასა მის შესაბამის გადაწვდომაზე. მაგრამ რადგანაც ისრული ამწეების ტვირთამწეობა ცვლადია უფრო უპრიანია კოშკური ამწის მთავარ პარამეტრად მივიჩნიოთ სატვირთო მომენტი. ამასთან ძირითად პარამეტრებად მიჩნეულია: კავის აწევის მაქსიმალური სიმაღლე, ნულოვანი წერტილიდან დაბლა დაწევის სიღრმე, max და min-ური გადაწვდომები, მუშა სიჩქარეები, მასა, გაბარიტები, სიმძლავრის და საყრდენი დატვირთვების მაჩვენებლები.

კოშკებს ტიპების მიხედვით განასხვავებენ: კოშკურ ამწეებს საბრუნი კოშკით და არასაბრუნი კოშკით.

ზოგადად კოშკურ ამწეებს ყოფენ: გადასაადგილებელ ამწეებად (ლიანდაგზე) და სტაციონალურად (მისადგმელი). აგრეთვე ცნობილია და ბოლო დროს ფართოდ გამიოყენება თვითამწევი ამწეები.

nax.10.6. koSkuri amwe mosabrunebeli koSkiT

ისრული თვითმავალი ამწეები ფართოდ გამიოყენება როგორც სამონტაჟო სამუშაოების დროს, ასევე დატვირთვა-გადმოტვირთვის პროცესებში (ნაზ.10.7), ასეთი ამწეების ძირითადი ღირსებაა: მისი ამძრავის ავტონომიურობა და მობილურობა.

nax. 10.7. saavtomobilo amwe

ისრული თვითმავალი ამწის მთავარი პარამეტრი — ტვირთამწეობა რეალიზღება მხოლოდ აუტრიგერების გამოყენებით. ყოფილ საბჭოთა კავშირში ფართოდ გამიოყენებოდა ისრული თვითმავალი ამწის ინღექსაციის Минстройдормаш-ის სისტემა (იხ. მე-13 თავი).

ისრული თვითმავალი ამწეების ერთ-ერთი ყველაზე პოპულარული სახეა საავტომობილო ამწეები, რომლებიც მოიხმარება შემდეგი ტვირთამწეობით: 4; 6,3; 10; 16 ტ. ფართოდ გამოიყენება აგრეთვე საავტომობილო ტიპის ამწე სპეციალურ ტიპის შასიზე ტვირთამწეობით: 25, 40, 63, 100, 250ტ. ყოფილი სსრკ-ს ეკონომიკურ სივრცეში პერსპექტივაშია 40 ტონიანი ტვირთამწეობის ყველგანმავალი შასიზე დამონტაჟებული ამწის გამოშვება.

საჯარისო და სახალხო მეურნეობაში გამოყენებული მხოლოდ ზოგიერთი საავტომობილო ამწეების მახასიათებლები მოცემულია მე-14 თავში (ცხ. 14.4).

ნაზ. 10.8. მილჩამწყობი ამწე

სპეციალური მილჩამწყობი ამწეები გამოიყენება ნავთობ და გაზსადენი მაგისტრალების მშენებლობის დროს მილების ჩაწყობისათვის (ნახ.10.8). აგრეთვე ამ პროცესში გამოყენებული მოწყობილობის მომსახურეობისათვის. ძირითადი კონსტრუქციული გადაწყვეტილება: ისარი დამონტაჟებულია ტრაქტორის გვერდით მხარეს. ტრაქტორი გადაადგილდება თხრილის გასწვრივ.

11. საბურღ-ტვირთამწევი მანქანები

საბურღ-ტვირთამწევი მანქანები მონტაჟდება ავტომობილებზე, მუხლუხა და პნევმოთვლიან ტრაქტორებზე და განკუთვნილნი არიან 0,3.....0,8 მ დიამეტრის ორმოების ამოღებისათვის სიღრმით 3 მ-მდე (ტრაქტორის ბაზაზე) და 8 მ-მდე (ავტომობილის ბაზაზე) ელექტრო და კავშირგაბმულობის ბომების ჩადების, გადაღობვების დგარების ჩამაგრებისა და სხვა სამუშაოებისათვის. სხვადასხვა დიამეტრების ღრმულების მისაღებად მანქანები კომპლექტდებიან საცვლელი ბურღებით.

ნახ. 11.1. საბურღ-ტვირთამწევი მანქანის მუშა მოწყობილობა: 1 — ჰიდროცილინდრი; 2 — ანძა; 3 — მაბრუნ-რედუქტორი; 4 — წახნაგოვანი შტანგა; 5 — მთხრელი ნიჩბები;

6 — წინაბურღი; 7 — დოლი; 8 — სატვირთე დოლი; 9 — მენჯი; 10 — ჰიდროცილინდრები; 11 — ვაზნა

ქვემოთ საცნობარე მასალებში მოცემულია მხოლოდ მსუბუქი საბურღ - ტვირთამწევი მანქანები. ამასთან EM-205E, EM-305A, EM-302E და EKMA-1/3,5 განეკუთვნებიან ციკლური მოქმედების მანქანებს, ზოლო EKM-2/1,25 და EKM-2,5/2 — უწყვეტი მოქმედების მანქანებს. ყველა მათგანი განსაზღვრულია I-V კატეგორიის გრუნტებში სამუშაოდ.

საბურღ - ტვირთამწევი მანქანების მახასიათებ
--

მაჩვენებებლი	БМ-205Б	БМ-305А	БМ-302Б	БКМ-2/1,25	БКМ-2,5/2	БКМА-1/3,5
ბურღვის სიღრმე, მ	2	3	3	2	2,5	3,5
ღრმულის დიამეტრი, მ		0,35; 0,5; 0,63; 0	0,8	0,36;	0,45	0,3; 0,6
ბურღვის კუთხე, ⁰	60102	6295	6296	7595	7595	6098
ამწის ტვირთამწეობა, ტ	1,25	1,25	1,25	1,25	2	2
კავია აწევის მაქსიმალური სიმაღლე, მ	5,4	6,6	6,3	6	7,2	6,8
მაქსიმალური საპრუნი მომენტი, კნ.მ.	4,9	5,38	4,9	4,5	4,5	8,36
ბრუნვის სიხშირე,წმ ¹	3,3	3,01	3,03	1,21	1,21	3,0
ამძრავის ტიპი			ду ქ ѕ б	0 J 7 K 0		
საპურდი ინსტრუმენტის ტიპი		<i>โลหิช้ลงโล</i>		<i>36</i> ე	კური	<i>โดหิชัดรโด</i>
ტექნიკური მწარმოებლობა, მ/სთ	4,35	4,47	3,61	4,4	3,03	4,0
მასა, ტ	5,46	8,7	5,3	5,5	9,3	7,3
მანქანის ბაზა	<i>ტრაქტორი</i>	<i>ზრაქ</i> ზორი	ავტომობილი ΓΑ3-66	<i>ტრაქტორი</i>	<i>ზრაქ</i> გორი	ავტოд. ЗИЛ-130

12. ბეტონის და ხსნარების მოსამზადებელი მანქანები და მოწყობილობები

ბეტონის და ხსნარების მომზადების პროცესი შედგება ორი ძირითადი ოპერაციისაგან: კომპონენტების დოზირებისა და შერევისაგან. მასალების შერევა ხდება სხვადასხვა ტიპის შემრევების საშუალებებით.

12.1. ბეტონსარევები

დოზირებებული კომპონენტებით (შემკვრელი მასალა, წყალი, ინერტული შემავსებელი, ქიმიური დანამატები) ბეტონის ხსნარების მომზადებისათვის იყენებენ სხვადასხვა ტიპის და დანიშნულების ბეტონსარევებს. მათი კლასიფიცირება ძირითადად ხდება სამი ნიშნით: ექსპლუატაციის პირობებით, მუშაობის რეჟიმით და შერევის მეთოდით.

ე ქ ს პ ლ უ ა ტ ა ც ი ი ს პ ი რ ო ბ ე ბ ი ს მიხედვით არსებობენ გადასაადგილებელი და სტაციონალური ბეტონსარევები.

გადასაადგილებელი ბეტონსარევები გამოიყენება განცალკევებულ ობიექტებზე მცირე მოცულობის და სარემონტო სამუშაოების ჩატარების დროს.

სტაციონალური ბეტონსარევები გამოიყენება ბეტონსარევი ტექნოლოგიური მოწყობილობის და საშუალო და დიდი მწარმოებლობის ქარხნების დაკომპლექტებისათვის.

მ უ შ ა ო ბ ი ს რ ე ჟ ი მ ი ს მიხედვით ბეტონსარევი მანქანები შეიძლება იყოს: ციკლური და უწყვეტი მოქმედების. ციკლური მოქმედების ბეტონსარევებში ბეტონს ხსნარის მომზადება სწარმოებს შემდეგი ოპერაციებით: ჩატვირთვა, შერევა და მზა პროდუქციის განტვირთვა. დიზირებული კომპონენტების შემდეგი პორცია შემრევ მოწყობილობას მიეწოდება მხოლოდ მზა ნარევის განტვირთვის შემდეგ.

ციკლური ქმედების ბეტონსარევის მუშა ორგანოები მუშაობენ ხანმოკლე განმეორებად რეჟიმებში, რაც ბუნებრივია, უარყოფითად მოქმედებს მანქანისა და მისი კვანძების ხანგამძლეობაზე.

ციკლური ქმედების ბეტონსარევის მთავარ პარამეტრს წარმოადგენს დოლის სასარგებლო ტევადობა, ანუ მზა ნარევის მოცულობა ლიტრებში ერთ ციკლზე, აგრეთვე ჩასატვირთი ფხვიერი კომპონენტების მოცულობა.

უწყვეტი ქმედების ბეტონსარევში ბეტონს ნარევის კომპონენტები უწყვეტად მიეწოდებიან ლენტური მკვებავით ან ლენტური კონვეიერით. ამასთან კომპონენტები მიეწოდებიან ერთდროულად ლენტზე ერთ ფენად (ცემენტი, ქვიშა, ღორღი). შემრევ დოლს ასევე უწყვეტად მიეწოდება წყლის ჭავლი. შერევის პროცესი მიმდინარეობს მზა ნარევის განმტვირთავ ღიობისკენ გადაადგილებით, საიდანაც მიეწოდება სატრანსპორტო საშუალებას.

უწყვეტი ქმედების ბეტონსარევის მთავარ პარამეტრს წარმოადგენს მისი მწარმოებლობა (მ³/სთ). უწყვეტი ქმედების შემრევი ყველაზე ხშირად გამოიყენება იმ პირობებში, როცა არ არის საჭირო კომპონენტების ხშირი ცვლილება, რაც თავის მხრივ საჭიროებს დოზატორების გადაწყობას სხვა პარამეტრზე.

შერევი ს მეთოდი ს მიხედვით განასხვავებენ გრავიტაციულ და იძულებითი არევის ბეტონსარევებს.

გრავიტაციული ბეტონსარევის მუშა ორგანოს წარმოადგენს მბრუნავი დოლი, რომლის შიგა ზედაპირზე დამაგრებულია მუშა ფრთები. დოლის შესაბამისი სიხშირით საშუალებით ფრთების აიტაცება ზევით მდგომარეობამდე, კომპონენგზები იმ გრავიტაციული ძალებით დაბლა ეცემიან და შეერევიან ქვედა ფენებს. უკანასკნელნი შემდგომ თავადაც აიტაცებიან ზემოთ და ა.შ. ასე ხდება ნარევის მომზადება. ასეთი შემრევები კარგად ამზადებენ მოძრავ და საშუალოდ მოძრავ ბეტონის ნარევებს და ნაკლებად ეფექტურნი არიან ხისტი ბეტონის ნარევის დამზადებისათვის, რაც ტექნოლოგიური პროცესის მოძრავი და ნელა თავისებურებებით აიზსნება.

იძულებითი არევის შემრევებში კომპონენტების შერევა ხდება ფრთებით, რომლებიც ბრუნავენ ბეტონსარევის კორპუსში. ამასთან, შემრევის კორპუსი წარმოადგენს ან ვარცლისებრ ფორმის ჭურჭელს, რომელშიც მოთავსებულია ჰორიზონტალური ფრთებიანი ლილვები, ან ავზის სახის კორპუსს სწრაფად მბრუნავი როტორით, ან ჯამისებრ ჭურჭელს რომელშიც ფრთებიანი ლილვი ბრუნავს.

ასეთ შემრევებში შესაძლებელია ხისტი და ნელა მოძრავი ბეტონის ნარევების მომზადება. მაგრამ ასეთი შემრევები საჭიროებენ დიდი სიმძლავრის ამძრავებს და ახასიათებთ კორპუსისა და ფრთების ინტენსიური ცვეთა. ასეთი შემრევების ნაკლოვანებად ითვლება აგრეთვე ის, რომ მასში ჩასატვირთი კომპონენტების მაქსიმალური ზომა გრავიტაციულთან შედარებით შეზღუდულია.

პოსტ საბჭოთა კავშირის ეკონომიკურ სივრცეში ფართო გამოყენებას პოულობს სახელმწიფო სტანდარტებით გათვალისწინებული ციკლიური, გრავიტაციული ბეტონსარევების 13 ტიპ-ზომა მზა ნარევების მომზადების შემდეგი მოცულობებით: 33, 65, 165, 250, 330, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000 ლ.

ნახაზზე 12.1 მოცემულია გრავიტაციული ბეტონსარევი, რომელიც განკუთვნილია ბეტონის ნარევის მოსამზადებლად შემავსებლის მაქსიმალური ზომისათვის 120 მმ-მდე. ხშირად ეს შემრევები გამოიყენება ბეტონის ქარზნებისა რკინა-ბეტონის ტექნოლოგიური ხაზებისა და მოწყობილობების მაკომპლექტებელ ნაკეთობად.

ცხრილი 12.1. ციკლიური გრავიტაციული ქმედების ბეტონსარევების ტექნიკური მაჩვენებლები

მაჩვენებლები	СБ-174	СБ-30Г	СБ-16Г	СБ-91Б	СБ-153А	СБ-162
ბეტონის მზა ნარევის მოცულობა, ლ	65	165	330	500	1000	3000
ჩატვირთვის მოცულობა მშრალი შემავსებლით, ლ	100	250	500	750	1500	4500
ციკლთა რიცხვი სთ-ში	26	30	32	30	22	20
შემავსებლის მაქსიმალური ზომა, მმ	40	70	70	70	120	150
დოლის ბრუნვის სიხშირე, წთ ⁻¹	25	20	18	18	17,6	13
ამძრავის სიმძლავრე კვტ	0,5	2,2	4	4	15	30
გაბარიტული ზომები, მმ						
სიგრძე	1760	1915	2550	1850	2600	3530
სიგანე	1100	1690	2020	1800	2520	3500
სიმაღლე	1400	2260	2850	2000	2300	3260
მასა, კგ	150	700	1900	970	2700	8700

ნახ. 12.1. ციკლიური გრვიტაციული ქმედების ბეტონსარევის საერთო ხედი: 1 — ცილინდრული რკალი; 2 — შემრევი დოლი; 3 — ელექტროძრავი; 4 — ჰიდროცილინდრი; 5 — საყრდენი დგარი.

ამ ტიპის ბეტონსარევების (ნახ.12.1.) ძირითად ასაწყობ ერთეულებს შეადგენს: საყრდენი დგარი (5), შემრევი დოლი (2), რომლის შიდა ზედაპირზე განლაგებულია ფრთები, ელექტრული ძრავი (3), დოლის გადაყირავების პნევმოცილინდრი (4) და ცილინდრული გარე რკალი (1), რომლის შიდა ზედაპირი გამოიკვრება საცვლელი ცვეთამედეგი ფოლადის ფურცლებით.

ციკლური იძულებითი ქმედების როტორული ტიპის ბეტონსარევის 11 ტიპ-ზომა პოსტ საბჭოთა კავშირის ეკონომიკურ სივრცეში რეკომენდირებული იყო სახელმწიფო სტანდარტით. მათი მთავარი პარამეტრის — მზა ნარევის მოცულობა შეადგენს: 33, 65, 165, 250, 330, 500, 750, 1000, 2000, 3000, 4000ლ.

ციკლური იძულებითი ქმედების ბეტონსარევის კინემატიკური სქემა: 1 — ამძრავი აგრეგატი; 2 — ქურო; 3 — მაყუჩი; 4 — ჰაერგამანაწილებელი; 5 — ვენტილი; 6 — პნევმატური ცილინდრი; 7 — როტორი.

ნახაზზე 12.2. მოცემულია ციკლური იძულებითი ქმედების ბეტონსარევის კინემატიკური სქემა. ამ ტიპის ბეტონსარევები განკუთვნილია ხისტი და მოძრავი ბეტონის ნარევების მომზადებისათვის ბეტონის ქარხნებისა და მოწყობილობების ტექნოლოგიურ ხაზებში. შერევის ამძრავი (1) შეიცავს ელექტროძრავს და რედუქტორს, რომლის გამომავალი ლილვი მილისურ-თითა ბრუნვას როტორს (7), რომელიც ორ გორგოლაჭიან გორვის საკისრებზეა გადასცემს ბაზირებული. როტორზე ხისტად არის დამაგრებული საფხეკი და ორი ფრთა ზედა ფენების არევისათვის, ხოლო ფსკერის ფრთები და გარეთა საფხეკი ფრთა აღჭურვილია ამორტიზატორებით, რომლებიც გამორიცხავენ ფრთების მოტეხვას და გაჭედვას შემრევში შემავსებლის მსხვილი ნატეხის მოხვედრის შემთხვევაში. შემრევში ჩატვირთვა ხორციელდება, სახურავში ჩადგმული მილყელით, ხოლო მზა ნარევის განტვირთვა ხდება ფსკერში არსებული ღიობიდან, რომელიც ბრტყელი სექტორული საკეტით. საკეტის ამძრავად გამოიყენება პნევმატური აღჭურვილია ცილინდრი (6), რომელსაც ვენტილისა (5) და ჰაერგამანაწილებელის (4) გავლით მიეწოდება შეკუმშული ჰაერი. ხმაურის შემცირების მიზნით ნაკეთობა აღჭურვილია მაყუჩით (3).

ბატონსარევის სწორი ექსპლუატაციის აუცილებელი პირობაა — მასში საწყისი კომპონენტების ჩატვირთვა განხორციელდეს როტორის ბრუნვის დროს.

უწყვეტი ქმედების ორლილვა ბეტონსარევი კომპონენტების იძულებითი შერევით (ნახ. 12.3) შეიცავს ამძრავს, კორპუსს და ორ ფრთებიან ლილვს. ამძრავი გულისხმობს ელექტროძრავას (1), სოლღვედურ გადაცემას (2), რედუქტორს (3), გამთანაბრებელ ქუროს (4) და კბილანურ გადაცემას (5). ამასთან კორპუსი წარმოადგენს ვარცლისებურ ჭურჭელს. ბეტონსარევის მუშა

ორგანოებია ორი ლილვი (10), რომელზეც დამაგრებულია ფრთები (7) საცვლელი ნიჩბებით (8).

უწყვეტი ქმედების ორლილვა ბეტონსარევი:

1-ელექტროძრავი; 2- სოლღვედური გადაცემა; 3- რედუქტორი; 4- გამთანე- ბრებელი ქურო; 5- კბილანური გადაცემა; 6- კორპუსი; 7- ფრთები; 8- საცვლელი ნიჩბები; 9- გამბრჯენი მილისები; 10- ლილვები; 11,12- საკისრები.

ამასთან ნიჩბები მობრუნებულია იმგვარად, რომ ლილვის ღერძთან შეადგენენ 45^{0} -ს. ფრთები ფიქსირებულია ლილვზე გამბრჯენი მილისების მეშვეობით. მილიანად ფრთები ნიჩბებთან ერთად ლილვებზე წარმოქმნიან ხრაზნულ წყვეტილ ზედაპირს. ლილვები ბაზირებულია საკისრებში (11,12) ტექნოლოგიურ პროცესში წარმოქმნილი ღერძული ძალების გაწონასწორებისათვის გათვალისწინებულია საყრდენი საკისრები. კინემატიკურ სქემაში კბილანური გადაცემის (5) საშუალებით მიღწეულია ლილვების ურთიერთსაწინააღმდეგო, სინქრონული ბრუნვა. შემრევი კომპონენტების ჩატვირთვა ხდება მილყელიდან (6).

შემრევის ფრთები იმგვარადაა განლაგებული, რომ ასარევი მასის შემხვედრი ნაკადები განივ კვეთში ინტენსიურად გადაადგილდებიან, ხოლო სიგრძეზე — შედარებით ნელა. შედეგად შერევის ეფექტი იზრდება და შესაბამისად მიიღწევა პროდუქციის ერთგვაროვნება.

უწყვეტი იძულებითი ქმედების ბეტონსარევები გამოიყენებიან ზისტი და მოძრავი ზსნარების მოსამზადებლად, როცა შემავსებლის ნატეზის ზომა 40-70 მმ ფარგლებშია.

ფართოდ არის გამოყენებული ღარული ორლილვა ბეტონსარევები პოსტ საბჭოთა კავშირის სივრცეში. მათგან ერთ-ერთი გავრცელებული მარკაა ${
m CE-163}$ მზა ნარევის მოცულობით 1000 ლ (${
m 6ab.12.4}$).

ამ სახის შემრევები როტორული ტიპის ბეტონსარევებთან შედარებით კარგ შესაძლებლობას იძლევა შემცირდეს რიგი ხვედრითი მაჩვენებლები. კერძოდ, ენერგოტევადობა $1\ \mathrm{d}^3$ პროდუქციაზე 20%-ით, ხოლო ცემენტის ხარჯი — 10%-ით.

ქვემოთ მოყვანილია ერთ-ერთი ასეთი სახის შემრევის მახასიათებლები.

СБ-163 ბეტონსარევის ტექნიკური მახასიათებლები:

ბეტონის მზა ნარევის მოცულობა, ლ	1000
ჩატვირთვის მოცულობა მშრალი შემავსებლებით, ლ	1500
შემავსებლის მაქსიმალური ზომა, მმ	70

ლილვების ბრუნვის სიხშირე, წთ ⁻¹	32
ამძრავის სიმძლავრე, კვტ	30
გაბარიტული ზომები, მმ	
სიგრძე	3450
სიგანე	2000
სიმაღლე	1640
მასა, კგ	4800

ნაზ. 12.4. ღარული ორლილვა ბეტონსარევი

ბეტონსარევის სტრუქტურული აგებულება და ლილვების მოძრაობის კინემატიკა ზემოთ განხილული ნაკეთობის ანალოგიურია. ამასთან განსხვავებულია განტვირთვის ციკლური მექანიზმი, რომელიც ხორციელდება ორმაგი მოქმედების პნევმოცილინდრით. უკანასკნელი, ორი კორპუსის ერთმანეთის მიმართ მდებარეობის შეცვლით წარმოქმნის ღიობს განტვირთვისათვის. ამასთან განტვირთვა სწარმოებს ლილვების ბრუნვის შეუჩერებლივ.

ნახ. 12.5.

უწყვეტი გრავიტაციული ქმედების ბეტონსარევი: 1 — ჩასატვირთი ბუნკერი; 2 — შემრევი დოლი; 3 — სადგარი; 4 — გორგოლაჭები; 5 — განმტვირთავი ბუნკერი; 6 — მანები; 7 — ლილვი; 8 — რედუქტორი; 9 — გარსაცმი; 10 — ბრტყელი ნიჩბები.

უწყვეტი გრავიტაციული ქმედების ბეტონსარევის (ნახ.12.5) შემთხვევაში მუშა ორგანო წარმოადგენს შემრევ ღოლს (2), რომელიც ეყრდნობა გორგოლაჭებს (4). მასალები ბეტონსარევს

მიეწოდება ერთი ბოლოდან — ჩასატვირთი ბუნკერიდან (1) ხოლო მეორე ბოლოდან — განმტვირთავი ბუნკერიდან (5) ხდება მისი ნაწარმის გაცემა უწყვეტად.

ბეტონსარევის შემრევი დოლი მოძრაობაში მოიყვანება შესაბამისი ამძრავით რედუქტორის (8) და ლილვის (7) მეშვეობით, რომელიც შეერთებულია დოლთან სამი მანით (6) შემრევი დოლი წარმოადგენს ფოლადის ფურცლებისაგან შედუღებულ ცილინდრულ რგოლს, რომლის შიდა ზედაპირი ამოგებულია ცალკეული ცვეთამედაგი მასალებით. დოლი შიდა ზედაპირზე გარკვეული კუთხით მიმაგრებულია საცვლელი ბრტყელი ნიჩბები (10). განტვირთვის სივრცე დაცულია უსაფრთხოების გარსაცმით (9).

უწყვეტი გრავიტაციული ქმედების ბეტონსარევის ტექნიკური დახასიათება:

მწარმოებლობა, მ 3 /სთ	120150
შემავსებლის მაქსიმალური ზომა, მმ	150
შემრევი დოლი ბრუნვის სიხშირე, წთ ⁻¹	18
ამძრავის სიმძლავრე, კვტ	40
შემრევი დოლის გაბარიტები, მმ	
დიამეტრი	1600
სიგრძე	4330
გაბარიტული ზომები, მმ	
სიგრძე	7850
სიგანე	2700
სიმაღლე	3030
მასა, კგ	7400
	n n n 10 5 1

ასეთი კონსტრუქციის უპირატესობას სხვა უწყვეტი ქმედების ბეტონსარევთან შედარებით წარმოადგენს ინერტული შემავსებლის მაქსიმალური ზომის დიდი მნიშვნელობა — 150 მმ.

12.2. ხსნარების მოსამზადებელი შემრევები

ხსნარების მოსამზადებელი შემრევები განკუთვნილნი არიან ცემენტის, კირის, თაბაშირის და სხვა ხსნარების მოსამზადებლად. კონსტრუქციულად ისინი პერიოდული ქმედების შემრევი მანქანებია მუშა ორგანოს (ფრთების) ზემოქმედებით პროდუქტზე. ბუნებრივია, ფრთების მდებარეობა ლილვის მიმართ დამოკიდებულია პროდუქტის რაობაზე და მის პარამეტრებზე.

ხსნარების მოსამზადებელი შემრევები პრაქტიკაში გვხვდება შემდეგი სახით: ფრთებიანი ლილვის ჰორიზონტალური და ვერტიკალური მდებარეობით და ტურბულენტური.

პირველი ორი შემრევის შემთხვევაში პროდუქტის შერევა ხდება ფრთების მეშვეობით. ლილვები, ისევე როგორც ბეტონსარევების შემთხვევაში ნელა ბრუნავენ. ტურბულენტურ შემრევებში ასარევი პროდუქტის ნაკადი წარმოიქმნება სწრაფად მბრუნავი (10..15-ჯერ უფრო სწრაფად ბრუნავენ ვიდრე ფრთებიანი შემრევის ლილვები) როტორით, ამასთან როტორის დიამეტრი 2–2,5 ნაკლებია, ვიდრე შემრევის კორპუსის შიდა დიამეტრი. შედეგად ასარევ მასაში წარმოიქმნება ცენტრიდანული ძალები, რომლებიც წარმოქმნიან ინტენსიურ ნაკადებს და ამის მეშვეობით მოძრაობაში მოყავთ ასარევი მასალების მთელი მოცულობა.

ხსნარის მოსამზაღებელი გაღასააღგილებელი შემრევები გვზვღება შემღეგი მთავარი პარამეტრით — 30, 65, 125, 250ლ, ხოლო სტაციონალური — 400, 800 და 1200ლ მზა ნარევის მოცულობით.

ხსნარის მოსამზადებელი სტაციონალური შემრევებით კომპლექტდება ავტომატიზირებული შემრევი კვანძები და ქარხნები. გადასაადგილებელი და მითუმეტეს სტაციონალური შემრევები, ბუნებრივია, კომპლექტდებიან მადოზირებელი მოწყობილობებით. გამონაკლისს წარმოადგენენ 30 და 65ლ-იანი შემრევები. ამიტომ მათი გამოყენება განსაკუთრებით ეფექტურია მშრალი ნარევებით სარგებლობის შემთხვევაში.

ხსნარის მოსამზაღებელი პერიოღული ქმედების შემრევი ჰორიზონტალური ლილვით (ნახ.12.6) დაყენებულია ურიკაზე (1) და შეიცავს დოლს (5), რომელიც ეყრდნობა დგარებს (2). ბრუნვითი მოძრაობა დოლს გადაეცემა ელექტროძრავიდან (9) რედუქტორის (8) გავლით. მბრუნავი ფრთებიანი ლილვი (4) ბაზირებულია საკისრებში (3), რომლებიც თავის მხრივ ჩაყენებულია დგარებში (2). შემრევის მექანიკური მართვა, ხორციელდება სახელურით (7). ჩასატვირთი ღიობი დაცულია უსაფრთხოების ბადით.

ნახ. 12.6. ხსნარის მოსამზადებელი პერიოდული ქმედების შემრევი (ჰორიზონტალური ლილვით):

1 — ურიკა; 2 — საღგარი; 3 — საკისარი; 4 — ლილვი; 5 — დოლი; 6 — დამცავი ბაღე; 7 — სახელური; 8 — რედუქტორი; 9 — ელექტრომრავი.

ხსნარის მოსამზადებელი პერიოდული ქმედების შემრევი ვერტიკალური ფრთებიანი ლილვით (ნახ. 12.7) განკუთვნილია ასევე საბათქაშე სამუშაოებისათვის. იგი გადასაადგილებელი მანქანაა და მისი კონსტრუქციული განსაკუთრებულობა იმაშია, რომ ფრთებიანი ტრავერსა (3) გადასახსნელ-საგდებია, რომლის ჩარჩოზე დაყენებულია ელექტროძრავი (4). ხსნარი მზადღება ცილინდრულ კურკელში — ბუნკერში (2) და იგი მთელ დანადგართან ერთად დაყენებულია მაზიდაზე, რისი მეშვეობითაც ხსნარი ტრანსპორტირდება სამუშაო ადგილამდე.

ნახ. 12.7. ხსნარის მოსამზადებელი პერიოდული ქმედების შემრევი (ვერტიკალური ლილვით): 1 - 3აზიდა; 2 - 3აუნკერი; 3 - 3უშა ტრავერსა; 4 - 3ელექტროძრავი.

ნახ. 12.8. ხსნარის მოსამზადებელი ტურბულენტური შემრევი: 1- ავზი; 2- ელექტროძრავი; 3- პლატფორმა; 4- განმტვირთავი ლიუკი; 5- საკეტი

ტურბულენტური ქმედების ხსნარის მოსამზადებელი შემრევი (ნახ. 12.8) წარმოადგენს გადასაადგილებელ ციკლურ მანქანას და განკუთვნილია ისეთი ბეტონის ხსნარის მომზადებისათვის, რომლის კონუსის ჩაჯდომა შეადგენს 3 სმ-ს და ისეთი სამშენებლო ხსნარის მომზადებისათვის, რომლის შესაბამისი პარამეტრი 4 სმ-ია. შემრევის ძირითადი კვანძებია: როტორი, უძრავი ავზი, განმტვირთავი მოწყობილობა და ელექტროძრავი.

ბრუნვა ელექტროძრავიდან (2) გადაეცემა როტორს, რომელიც ფრთების მეშვეობით გადაისვრის ნარევს ავზის (1) კონუსური ნაწილისაკენ. ორი ფრთა, რომლებიც დაყენებულია ავზის შიდა ზედაპირზე ამუხრუჭებენ ნარევს წრეწირზე და წარმართავენ მას ზემოთ სპირალურად, საიდანაც იგი ეცემა როტორს და შემდეგ ისევ ექვემდებარება იმავე მოძრაობას. შემრევის განტვირთვა ზდება ხელის ბერკეტის მეშვეობით.

შემრევის ჩატვირთვა ხდება ძრავის ჩართვის შემდეგ. ამასთან მკაცრი თანმიმდევრობით: წყალი, ცემენტი, შემრევები.

ტურბულენტური შემრევის СБ-133A ტექნიკური მახასიათებლები:

00 00 00 00 00	2 0 m
მზა ნარევის მოცულობა, ლ	65
ჩატვირთვის მოცულობა მშრალი შემავსებლებით, ლ	100
ციკლების რიცხვი საათში	
ბეტონის ხსნარისათვის	45
სამშენებლო ხსნარებისათვის	60
შერევის ხანგრძლივობა, წმ	
ბეტონის ხსნარისათვის	72
სამშენებლო ხსნარებისათვის	48
შემავსებლის მაქსიმალური ზომა, მმ	40
ძრავის სიმძლავრე, კვტ	4
გაბარიტული ზომები, მმ	
სიგრძე	1000
სიგანე	660
სიმაღლე	1000
მასა, კგ	155

პოსტ საბჭოთა კავშირის ეკონომიკურ სივრცეში ბეტონსარევებისა და ხსნარების შემრევი მანქანების ძირითადი დამამზადებლებია: ნოვოსიბირსკი, სლავიანსკის და ტიუმენის სამშენებლო მანქანების ქარხნები.

13. სამშენებლო, საგზაო და ამწე-სატრანსპორტო მანქანათა ინდექსაცია (მარკირება)

სამშენებლო, საგზაო და ამწე-სატრანსპორტო მანქანათა თითოეული ჯგუფის ფართო სპექტრი არ იძლევა მათი ზოგადი, საერთო მასშტაბით ინდექსირების საშუალებას. შესაბამისად აღნიშნული მანქანათა ჯგუფების განზოგადებული ინდექსირება განზორციელებულია მზოლოდ ზოგიერთ ქვეყანაში და ისიც მზოლოდ ზოგიერთი ჯგუფებისათვის, სადაც ინდექსი მოიცავს საკმაოდ მნიშვნელოვან ინფორმაციას მანქანის ძირითადი მახასიათებლების შესახებ. ასე მაგალითად, ყოფილ სსრკ-ს ეკონომიკურ სივრცეში გასული საუკუნის 80-იან წლებში შემოღებული იქნა სამშენებლო მანქანების მარკირების აზალი სისტემა, რომელიც ძველისაგან განსხვავებით, რომლის მარკა უკეთეს შემთხვევაში შეიცავდა მანქანის მზოლოდ ერთი პარამეტრის მნიშვნელობას (ან სიმძლავრეს, ან ტვირთამწეობას, ან ციცხვის მოცულობას და ა.შ.) მოიცავს მანქანის რამდენიმე ძირითად მაჩვენებელს.

ქვემოთ მოყვანილია სამშენებლო მანქანებს შორის ყველაზე გავრცელებული ჯგუფების — ერთციცხვიანი ექსკავატორებისა და მობილური ამწეების ინდექსაციის სისტემა, რომელიც ფუნქციონირებდა და ფუნქციონირებს დღესაც პოსტ სსრკ-ს სივრცეში, და ბუნებრივია, ჩვენს ქვეყანაში.

13.1 ერთციცხვიანი ექსკავატორების ინდექსაცია

1986 წლამდე სსრკ-ში გამოშვებულ ექსკავატორებში მითითებული იყო ციცხვის მოცულობის უმცირესი მნიშვნელობა, რიგითი ნომერი და ასოითი ინდექსი "Э". ასეთი ინდექსი არ შეიცავდა ინფორმაციის მუშა ორგანოს შესრულების პრინციპზე, სავალი ნაწილის მოწყობილობაზე და ექსპლუატაციურ შესაძლებლობებზე. მოცემული ინდექსი (ნახ. 13.1) შედგება ოთხი ციფრისაგან, რომლებიც შესაბამისი მიმდევრობით აღნიშნავენ: მანქანის რიგით ჯგუფს, სავალი მოწყობილობის ტიპს, მუშა ორგანოს კონსტრუქციულ შესრულებას, ტიპ-ზომის რიგით ნომერს. გარდა ამისა, გამოიყენება რიგითი მოდერნიზაციის დამატებითი ასოითი (რუსული) და კლიმატური შესრულების აღნიშვნა. ორი უკანასკნელი იწერება ოთხი ციფრის შემდეგ. თუ მანქანა ჩვეულებრივი შესრულებისაა და არ არის მოდერნიზებული ისინი არ იწერებიან. ასე მაგალითად, ინდექსი ЭО - 3322 აღნიშნავს მესამე ზომის ერთციცხვიან ექსკავატორს, პნევმობორბლიანი სავალი ნაწილით, მუშა ორგანოს ხისტი დაკიდებით და რიგით მეორე მოდელს ჩვეულებრივი შესრულებით.

ინდექსი Θ O - 5113 $EX\Pi$ — მეხუთე ზომითი ჯგუფის ერთციცხვიან ექსკავატორს მუხლუხა სავალი ნაწილით მუშა ორგანოს დრეკადი (ბაგირული) დაკიდებით და რიგით მესამე მოდელის, რომელმაც გაიარა მეორე მოდერნიზაცია ცივი კლიმატური რაიონებისათვის.

13.2 თვითმავალი ისრული ამწეები

ამ ტიპის ამწეები აღინიშნებოდნენ და ხშირად ეხლაც აღინიშნებიან ინდექსით, რომელიც შედგება ასოითი და ციფრობრივი ნაწილებისაგან. ასოები, რომლებიც ციფრების წინ დგანან აღნიშნავენ დანიშნულების და კონსტრუქციულ თავისებურებებს. ასე მაგალითად, AK — საავტომობილო, $MK\Gamma$ — სამონტაჟო მუხლუხა, $MK\Pi$ — სამონტაჟო ანევმოთვლებიანი, MKA — სამონტაჟო საავტომობილო, D9K — დიზელ-ელექტრული, $CK\Gamma$ — სპეციალური მუხლუხა, CMK — სპეციალური სამონტაჟო. ციფრული ნაწილი აღნიშნავს ამწის ტვირთამწეობას და მოდელის რიგით ნომერს. ციფრების შემდეგ მდგომი ასოები — მოდერნიზაციას და კლიმატურ შესრულებას.

უფრო მოხერხებულად და თანამედროვედ გამოიყურება Минстройдормаш—ის მიერ მისივე პროდუქციისათვის გამოყენებული ინდექსაცია (ნახ. 13.2), რომელიც ჩვეულებრივი შესრულების პირობებში შედგება ორი ასოსაგან КС და ოთხი ციფრისაგან. ციფრული ნაწილი, რომელიც იწერება ასოების შემდეგ დეფისით აღნიშნავს ამწის ძირითად მონაცემებს შემდეგი თანმიმდევრობით: ზომით ჯგუფს, სავალი ნაწილის მოწყობილობას, ისრის დაკიდების სახეს და ამწის მოდელის რიგით ნომერს.

ნახ. 13.1 ერთციცხვიანი სამშენებლო ექსკავატორების ინდექსების სტრუქტურა

ამწის მოღერნიზაციის და სპეციალური შესრულების შემთხვევაში აქაც იწერება $A,\,B,\,F,\,...$ და კლიმატური შესრულების აღმნიშვნელი ასოები $-\,XII,\,T,\,TB$.

ასე მაგალითად, ჩვეულებრივი შესრულების შემთხვევაში მერვე ზომის ჯგუფის ამწე (100ტ) მუხლუხა სავალი ნაწილით და ისრის დრეკადი (ბაგირული) დაკიდებით და რიგით პირველი მოდელი აღინიშნება - KC-8161.

ნაზ. 13.2. ზოგადი დანიშნულების თვითმავალი ისრული ამწის ინდექსაცია KC- ზოგადი დანიშნულების თვითმავალი ისრული ამწე; XI- ცივი კლიმატის რაიონებისათვის; I- ტროპიკული; IB- ნესტიანი ტროპიკული კლიმატისათვის; I- მუზლუზა სავალი მოწყობილობით; IV- გაფართოებული მუზლუზა სავალი მოწყობილობით; II- ანევმობორბლიანი სავალი ნაწილით; II- საეციალური შასი (საავტომობილო ტიპის); II- სატვირთო ავტომობილის შასი; IIV- ტრაქტორი; IIV- მისაბმელის სავალი მოწყობილობა; IIV- მოკლებაზური შასი; IIV- ტრაქტორი; IIV- მისაბმელის სავალი მოწყობილობა; IIV- მოკლებაზური შასი;

14. ხიმინჯების ჩასასობი მოწყობილობები

ხიმინჯების ჩასასობი მოწყობილობის დანიშნულებას წარმოადგენს ხიმინჯების ან სხვა კონსტრუქციული ელემენტების გრუნტში ჩასობა. იგი შედგება შემდეგი აგრეგატებისაგან: ურნალი, მუშა ორგანო და დამხმარე მოწყობილობა. ამასთან მუშა ორგანო შეიძლება იყოს: დიზელ-ურო, ვიბრო-ური, ვიბრო-ჩამფლელი.

ხიმინჯების ჩასასობი მოწყობილობები მზადდებიან ტრაქტორის, ექსკავატორის, ავტომობილის და სარელსო ტრანსპორტის ბაზაზე. იშვიათად, მაგრამ გვხვდება არათვითმავალი სახიმინჯე მოწყობილობა.

ერთ-ერთი ყველაზე გავრცელებულ და სამზედრო საქმეში გამოყენებულ ურნალების რიცხვს განეკუთვნებიან ურნალები ტრაქტორების ბაზაზე. მათ ძირითად უპირატესობას წარმოადგენს: ენერგეტიკული ავტონომიურობა, სიმარტივე და საიმედოობა, მცირე დრო მონტაჟზე, დამონტაჟზე და გადაბაზირებაზე. უკანასკნელნი ფრიად მნიშვნელოვანი არგუმენტებია სამზედრო საქმეში.

ტრაქტორზე ბაზირებული ურნალების ტექნიკური მახასიათებლები

მაჩვენებე y ლი	БМ-205 Б	БМ-305А	БМ-302Б	БКМ-2/1,25	БКМ-2,5/2	БКМА-1/3,5
ბურღვის სიღრმე, მ	2	3	3	2	2,5	3,5
ღრმულის დიამეტრი, მ	0,35; 0,5; 0,63; 0,8			0,36; 0,45		0,3; 0,6
ბურღვის კუთხე, ⁰	60102	6295	6296	7595	7595	6098
ამწის ტვირთამწეობა, ტ	1,25	1,25	1,25	1,25	2	2
კავია აწევის მაქსიმალური სიმაღლე, მ	5,4	6,6	6,3	6	7,2	6,8
მაქსიმალური საბრუნი მომენტი, კნ.მ.	4,9	5,38	4,9	4,5	4,5	8,36
ბრუნვის სიხშირე,წმ ^I	3,3	3,01	3,03	1,21	1,21	3,0
ამძრავის	θη ქანიკურ ο					
საბურლი ინსტრუძენტის ტიპი	ნიჩბიანი			შნეკური		ნიჩბიანი
ტექნიკური მწარმოებლობა, მ/სთ	4,35	4,47	3,61	4,4	3,03	4,0
მასა, ტ	5,46	8,7	5,3	5,5	9,3	7,3
მანქანის ბაზა	<i>ტრაქტორი</i>	<i>ზრაქ</i> გორი	ავტომობილი ΓΑ3-66	<i>ტრაქტორი</i>	<i>ზრაქ</i> გორი	ავტომ. ЗИЛ-130

ᲒᲐᲛᲝᲧᲔᲜᲔᲑᲣᲚᲘ ᲚᲘᲢᲔᲠᲐᲢᲣᲠᲐ

- 1. Белецкий Б. Ф. Строительеные машины и оборудование. Ростов-на-Дону: Феникс, 2002.
- 2. Гальперин М.И., Домбровский Н.Г. Строительные машины. М: Высшая школа, 1980.
- 3. Волков Д.П. Строительные машины. М: Высшая школа, 1988.
- 4. Домбровский Н.Г., Картвелишвили Ю.Л., Гальперин М.И. Строительные машины. М: Машинострение, 1976.
- 5. Кузин Э.Н. Строительные машины. Справочник в 2-х томах. М: Машинострение. 1991.
- 6. Петров В.А., Андреев Е.Е., Биленко Л.Ф. Дробление, измельчение и грохочение полензных ископаемых. М: Недра, 1990.
- 7. Подэнри Р.Ю. Горные машины и комплексы для открытых работ. М: Недра, 1985.
- 8. შილაკაძე მ. სამშენებლო მანქანების საიმედოობის საფუძვლები. თბილისი: სტუ, 1998.