- 1. Consider an electron of effective mass m*= 0.067mo in an infinite potential well of width W=4 nm.
 - @ Find out the first two bound states E, and E2 and the consoponding wave functions 4, and 42. Compane your roults with the analytical values.
 - (b) Repeat your exercise for W = 2 nm.
- 2. Consider a finite bownier potential well inaGraAs system Alx Gal-xAs Gal-x As

 Gal-xAs Gal-x As

 20nm

 20nm $m_e(G_0A_5) = 0.067$, $E_g(G_0A_5) = 1.41$ $m_e(A_1A_5) = 0.150$ $E_g(A_1A_5) = 2.24$
 - m*(AlzGal-xAs) = 2 + 1-2 m*(ALAs) + m* (GaAs)
 - Eg (AlxGran-xAs) = x Eg (Al As) + (1-x) Eg (GraAs) AEC= 0.6 DEG
- @ Find out the first bound state for dectrons and corresponding wave function.
- (DRepeat the exercise for holes.) Find out the effective mass from book on literature.
- @ Assume Ex = Ec [GaAs] and flat. Find out the electron and hale profile in the borrier and the well. Label all the important features appropriately.
- Separations (Eit-Ei) = AEi, i=1+05, Assume, m=1

 W=20units

 Dev

 Y=x