清華大学物理实验报告

班级:软件 71姓名:骆炳君学号:2017013573日期:2019-3-18

实验名称: 塞曼效应实验

目 录

— 、	实验目的	2
二、	实验原理·····	2
	1. 塞曼效应的原理 · · · · · · · · · · · · · · · · · · ·	. 2
	2. 赛曼能级选择定则 · · · · · · · · · · · · · · · · · · ·	. 2
	3. 汞 546.1mm 谱线在磁场中的分裂 · · · · · · · · · ·	. 2
	4. 塞曼效应的测量公式 · · · · · · · · · · · · · · · · · · ·	. 3
三、	实验仪器·····	3
四、	实验步骤·····	3
	1. 调节光路 · · · · · · · · · · · · · · · · · · ·	. 3
	2. 观测图像 · · · · · · · · · · · · · · · · · · ·	. 4
	3. 测量·····	. 4
	4. 实验注意事项	. 4
五、	数据处理	4
六、	误差分析·····	5
七、	思考题·····	5
八、	实验小结	6
九、	原始数据表格	7

一、 实验目的

- (1) 学习塞曼效应的基本原理.
- (2) 学习使用 F-P 标准具观测汞 546.1mm 谱线的塞曼效应的方法
- (3) 学习测量赛曼分裂谱线裂距并计算某一励磁电流下磁感应强度 B 的方法,并与理论值比较.

二、 实验原理

1. 塞曼效应的原理

原子中电子具有的轨道磁矩 μ_L 和轨道角动量 P_L 、自旋磁矩 μ_S 和自旋角动量 P_S ,存在以下关系:

$$\mu_L = \frac{e}{2m} P_L, \ P_L = \sqrt{L(L+1)} \frac{h}{2\pi}, \ \mu_S = \frac{e}{m} P_S, \ P_S = \sqrt{S(S+1)} \frac{h}{2\pi}$$

将两者合成总角动量 P_J , 总磁矩 μ_J , 可得:

$$\mu_J = -gP_J \frac{e}{2m}, \ g = 1 + \frac{J(J+1) - L(L+1) + S(S+1)}{2J(J+1)}$$

处于外磁场时,原子总磁矩会受到力矩的作用,从而绕外磁场的方向旋进,使原子获得附加能量:

$$\Delta E = -\mu_J B \cos\alpha = g \frac{e}{2m} P_J B \cos\beta$$

由于 μ_J 和 P_J 在外磁场中的取向是量子化的, $P_JBcos\beta$ 的取向也是量子化的,满足:

$$P_J cos \beta = M \frac{h}{2\pi}, \ (M = \pm J, \cdots, \pm 1, 0)$$

两式联立得:

$$\Delta E = Mg \frac{eh}{4\pi m} B$$

这说明,无外磁场时的一个能级,在外磁场作用下会分裂成 (2J+1) 个子能级,每个能级都具有特定的附加能量.

2. 赛曼能级选择定则

由能级跃迁公式可推出, 分裂谱线的波数差

$$\Delta \tilde{v} = (M_2 g_2 - M_1 g_1) \frac{e}{4\pi mc} B = (M_2 g_2 - M_1 g_1) L, \ L = 0.467 B$$

选择定则为 $\Delta M=0,\pm 1$. 当 $\Delta M=0$ 时,垂直磁场观察时产生线偏振光,振动方向平行于磁场,称为 π 线. 当 $\Delta M=\pm 1$ 时,垂直于磁场观察时产生线偏振光,振动方向垂直于磁场,称为 σ 线;平行于磁场观察时产生圆偏振光.

3. 汞 546.1mm 谱线在磁场中的分裂

波长为 546.1mm 的谱线是汞原子从 $\{6s7s\}^3S_1$ 到 $\{6s6p\}^3P_2$ 能级跃迁时产生的. 汞 546.1mm 谱线在磁场中分裂成 9 条线(反常塞曼效应),相邻谱线的裂距为 $\frac{1}{2}$.

4. 塞曼效应的测量公式

用透镜把 F-P 标准具的干涉圆环(圆环直径为 D)成像在焦平面上,有 $\frac{D}{2}=ftan\phi$. 又由 F-P 标准具产生干涉极大条纹的条件 $2dcos\phi=k\lambda$ 得:

姓名: 骆炳君

$$2d(1 - \frac{D^2}{8f^2}) = k\lambda$$

可得,干涉级次 k 与 D 成线性关系,随着直径的增大,圆环将越来越密. 对于同一波长相邻级次 k 和 k-1 圆环,其直径平方差

$$\Delta D^2 = D_{k-1}^2 - D_k^2 = \frac{4\lambda f^2}{d}$$

对于同一级次有微小波长差的不同波长 λ_a 、 λ_b ,有

$$\Delta \lambda_{ab} = \frac{\lambda^2}{2d} \frac{D_b^2 - D_a^2}{D_{k-1}^2 - D_k^2}$$

即

$$\Delta \tilde{v} = \tilde{v_b} - \tilde{v_a} = \frac{\Delta D_{ab}^2}{2d\Delta D^2}$$

三、 实验仪器

笔形汞灯置于电磁铁中心气隙中,沿光路依次通过聚光透镜、偏振片、546mm 滤光片、F-P 标准具,此外还有导轨和稳压稳流电源.

四、 实验步骤

1. 调节光路

- (1) 打开汞灯开关,调节稳压稳流电源.
- (2) 放下干涉滤光片,调节透镜的高度、位置和角度.
- (3) 放置干涉滤光片, 使干涉光斑充满干涉滤光片孔径.
- (4) 调节聚光镜、滤光片、标准具和光源大致共轴.
- (5) 调整测量望远镜的方向、高度和位置,使能看到清晰的同心干涉圆环图像.

2. 观测图像

- (1) 观察零场花样(不加磁场); 打开稳流稳压电源,并逐步增加电流至 3.5A 左右,观察此时的塞曼效应图象.
 - (2) 装上偏振片并固定,转动偏振片,分别记录观察到 3条 π线和 6条 σ线时的偏振片角度.

3. 测量

- (1) 取下偏振片,调节 I = 3.50A,测量记录 k 级第 3 圆环和 (k-1) 级第 3、5 圆环的位置,各 5 组数据.
 - (2) 调节 I = 2.50, 3.00, 4.00A,各测量记录 1 组数据.

4. 实验注意事项

- (1) F-P 标准具、干涉滤光片是精密光学元件,严禁触摸光学面,切勿摔磕.
- (2) 磁铁电源开启前必须使电流调节旋钮反时针转到头,实验结束前必须先使电流调到零之后再关闭开关.

五、 数据处理

偏振片的角度: 3 条线: 平行磁场方向 6 条线: 垂直磁场方向 当 I = 3.50A 时,测得数据如下表:

	1	2	3	4	5	平均值
D_k	5.485	5.556	5.600	5.655	5.764	5.612
D_{k-1}	8.656	8.680	8.710	8.752	8.640	8.688
D_a	6.245	6.270	6.347	6.359	6.480	6.340
D_b	5.485	5.556	5.600	5.655	5.764	5.612

磁感应强度

$$B = \frac{D_b^2 - D_a^2}{2d(D_{k-1}^2 - D_k^2)} \times \frac{1}{0.467(M_2 g_2 - M_1 g_1)} = 1.039(T)$$

当 I = 2.50, 3.00, 4.00A 时, 测得数据和计算结果如下表:

Ι	2.50A	3.00A	4.00A
D_k	5.888	5.888	5.826
D_{k-1}	8.868	8.868	8.853
D_a	6.489	6.533	6.557
D_b	5.888	5.888	5.826
В	0.906T	0.975T	1.070T

数据分析 电磁铁是软磁性材料,其 B = I 的关系是非线性的. 由于仅有 4 个数据点,通过描绘 $B \sim I$ 曲线,仅可看出 B = I 呈正相关关系,且当 I < 3.50A 时,B 随 I 的增大近似线性增长;当 I > 3.50A 时,B 的上升速率趋于平缓,接近饱和状态.

六、 误差分析

- (1) 调节过程精密光学仪器易受外界因素影响,观察测量时人眼视觉疲劳,产生较大的随机误差.
- (2) 实验过程中流过电磁铁的电流可能产生变化,建议在测量前后分别记录一次电流,在计算时取平均值.

七、 思考题

1.

缓慢转动偏振片,观察到三条圆环的是 π 成分,观察到六条圆环的是 σ 成分.

 $\Delta M = +1$ 时,谱线的频率增加,波长减小,由 $2dcos\phi = k\lambda$ 可得,随 λ 减小, $cos\phi$ 减小, ϕ 增大,故外侧三条圆环为左旋光. 同理可得,内侧三条圆环 $\Delta M = -1$,为右旋光.

沿着磁场方向观测时, $\Delta M = +1$ 为左旋光, 其频率增加, $\Delta M = -1$ 为右旋光, 其频率减小.

2.

在常温范围内, 随气压 p 增大, 空气折射率 n 增大.

由干涉极大条件 $2ndcos\phi=k\lambda$ 可知,相同级次 k 的圆环的入射角 ϕ 增大,半径增大,可观察到圆环逐渐扩大.

相邻两组圆环的角间距 $\Delta \phi = \frac{\lambda}{2ndsin\phi}$,随 n 增大而减小,可观察到相邻两组圆环间距减小,圆环变密.

3.

(1) 反推能级结构:本实验利用汞 546.1mm 谱线的上下能级结构推出了其塞曼效应图象,同时也可以通过塞曼效应图象反推并验证原子的能级结构.

(2) 计算朗德因子: 由公式 $\Delta \tilde{v} = (M_2 g_2 - M_1 g_1) \frac{e}{4\pi m c} B = (M_2 g_2 - M_1 g_1) L$ 和 $\Delta \tilde{v} = \tilde{v_b} - \tilde{v_a} = \frac{\Delta D_{ab}^2}{2d\Delta D^2}$,可通过塞曼效应测得的 B、 D_k 、 D_{k-1} 、 D_a 、 D_b 来计算对应能级的朗德因子 g.

八、 实验小结

本次实验的对观察读数的要求比较高,测量得到的数据也比较多,但数据处理相对比较简单. 光学 仪器都属于比较精密的仪器,需要我们耐心细致地进行调节,完全按照要求进行操作,学会熟练使用测 微目镜. 在实验中我遇到的较大问题就是对测微目镜的使用不熟悉,没有搞清应该对准刻度线的哪个位置进行读数. 再次感谢助教的悉心指导!

九、 原始数据表格