

Autonomous Vehicle Simulation (AVS) Laboratory

Basilisk Technical Memorandum

Document ID: Basilisk-ThrusterForces

ALGORITHMS TO MAP DESIRED TORQUE VECTOR ONTO A SET OF THRUSTERS

Prepared by	H. Schaub
-------------	-----------

Status: Draft

Scope/Contents

Include a short summary of what this system engineering report is about. Should be 300 words or less.

Rev:	Change Description	Ву
v0.01	Updated the thruster force evaluation to account for center of mass	H. Schaub
	offsets	

Contents

1	Introduction	1
	Simple Thruster Force Algorithm for a Thruster Configuration with Full Torque Controllability	2
	Module Parameters	3
	3.1 ϵ Parameter	3
	3.2 $[C]$ matrix	4
	3.3 thrForceSign Parameter	4

Fig. 1: Illustration of the Spacecraft Thruster Notation

1 Introduction

This technical note describes a general algorithm that maps a desired ADCS external control torque L_r onto force commands for a cluster of thrusters. Let \hat{c}_j be the axis about which the thrusters are to produce the desired torque. The module can accept up to 3 orthogonal control axis \hat{c}_j . The j^{th} component of L_r is given by

$$L_{r,j} = \mathbf{L}_r \cdot \hat{\mathbf{c}}_j \tag{1}$$

The i^{th} thruster location relative to the spacecraft point B is given by r_i as illustrated in Figure 1. The unit direction vector of the thruster force is \hat{g}_{t_i} , while the thruster force is given by

$$\mathbf{F}_i = F_i \hat{\mathbf{g}}_{t_i} \tag{2}$$

The toque vector produced by each thruster about the body fixed point B is thus

$$\tau_i = (r_i - r_{\mathsf{COM}}) \times F_i \hat{g}_{t_i} \tag{3}$$

The total torque onto the spacecraft about the body fixed axis \hat{c}_j , due to a cluster of N thrusters, is

$$\tau_j = \sum_{i=1}^N \boldsymbol{\tau}_i \cdot \hat{\boldsymbol{c}}_j = \sum_{i=1}^N ((\boldsymbol{r}_i - \boldsymbol{r}_{\mathsf{COM}}) \times \hat{\boldsymbol{g}}_{t_i}) \cdot \hat{\boldsymbol{c}}_j F_i = \sum_{i=1}^N d_i F_i$$
 (4)

where

$$d_i = ((\mathbf{r}_i - \mathbf{r}_{COM}) \times \hat{\mathbf{g}}_{t_i}) \cdot \hat{\mathbf{c}}_i \tag{5}$$

In matrix form, the net spacecraft torque about the j^{th} axis is written compactly as

$$\tau_{j} = \begin{bmatrix} d_{1} \cdots d_{N} \end{bmatrix} \begin{bmatrix} F_{1} \\ \vdots \\ F_{N} \end{bmatrix} = [D] \mathbf{F}$$
(6)

where [D] is a $1 \times N$ matrix that maps the thruster forces F_i to the spacecraft torque τ .

2 Simple Thruster Force Algorithm for a Thruster Configuration with Full Torque Controllability

The goal of the thruster force algorithm is to determine a set of thruster forces F such that the net force onto the spacecraft is

$$\tau_j = L_r \cdot \hat{c}_j = [D] F_j \tag{7}$$

without bleeding torque onto the un-controlled axes.

The following algorithm is applied individually to control the desired torque about each \hat{c}_j axis. The first step to determine which thruster forces F_i are contributing with the desired sign. If on-pulsing is used for attitude control, then only positive forces are sought. In contrast, if off-pulsing is used to achieve the required control torque, then negative thruster force solutions are sought. Each thruster can only produce a positive force. With off-pulsing, the nominal thrust force plus the negative correction must still yield a non-negative thrust force. The module parameter thrForceSign is either +1 or -1 to account for the desired force sign. The value of this parameter is represented through s_F .

Using a minimum norm inverse of Eq. (7) yields

$$\mathbf{F}_{j} = [D]^{T} ([D][D]^{T})^{-1} \mathbf{L}_{r} \cdot \hat{\mathbf{c}}_{j}$$
(8)

This minimum norm inverse only requires inverting a 1×1 matrix. Using the SVD inverse technique, the value of this 1×1 matrix is the singular value. Thus, if this singular value is below a specified threshold ϵ , the thruster configuration is not contributing to a torque about the \hat{c}_j axis. In this case the inverse of this matrix is set to zero, and not thruster forces contribute to the desired torque about this axis.

Note that this force stack F contains both positive and negative force values. Another step is required to ensure that the thrusters can only produce the desired force sign. Assume there are M force values in F_j with a sign that matches s_F . The locations of these values is provided in the N-dimensional array $t_{\rm used}$ which contains either 0 or 1 values. For example, consider N=8 and only thrusters 2 and 6 produce forces of the desired sign. In this case we find

$$t_{\text{used}} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \tag{9}$$

This reduces the thruster force search to a subset of M thrusters. Let \bar{F}_j be a $M\times 1$ matrix of to be determined thruster forces. The corresponding $3\times M$ mapping matrix $[\bar{D}]$ that projects \bar{F}_j onto a net body torque about point B is defined as:

$$[\bar{D}] = \begin{bmatrix} \bar{d}_1 & \cdots & \bar{d}_M \end{bmatrix} \tag{10}$$

with

$$\bar{d}_i = (r_i - r_{\mathsf{COM}}) \times \hat{g}_i \tag{11}$$

The net torque due to $ar{F}_j$ is

$$\bar{\tau}_j = [\bar{D}]\bar{F}_j \tag{12}$$

To enforce that \bar{F}_j only produces the desired torque about the \hat{c}_j axis, and not any torque about other axes, the following condition is established:

$$(\hat{\boldsymbol{c}}_j \cdot \boldsymbol{L}_r)\hat{\boldsymbol{c}}_j = [\bar{D}]\bar{\boldsymbol{F}}_j \tag{13}$$

If the mapping matrix $[\bar{D}]$ has rank 3, then a minimum norm inverse can be used to determine the smallest set of thruster forces that satisfy Eq. (13).

$$\bar{\mathbf{F}}_j = [\bar{D}]^T ([\bar{D}][\bar{D}]^T)^{-1} \hat{\mathbf{c}}_j (\hat{\mathbf{c}}_j \cdot \mathbf{L}_r)$$
(14)

The rank condition can easily be checked by computing if the determinant of $[\bar{D}][\bar{D}]^T$ is greater than zero. If yes, a minimum norm inverse can be taken without numerical difficulties.

If the determinant of $[\bar{D}][\bar{D}]^T$ is near zero, then \bar{F}_j cannot generate a general 3D torque vector. As the spacecraft is setup with pairs of thrusters to produce the control torques, in this case the rank of $[\bar{D}]$ is 2, and not all body axis are influenced by \bar{F}_j . In this case the thruster forces are determined through a least-squares inverse that selects \bar{F}_j such that the controllable axes satisfy the condition in Eq. (13).

$$\bar{\mathbf{F}}_j = ([\bar{D}]^T [\bar{D}])^{-1} [\bar{D}]^T \hat{\mathbf{c}}_j (\hat{\mathbf{c}}_j \cdot \mathbf{L}_r)$$
(15)

The final step is to sum the individual \bar{F}_j thruster solutions to the yield the net set of thruster forces required to produce L_r . This is done using the t_{used} matrix to determine which thrusters have non-zero contributions.

If the thruster cluster configuration is such that pairs of thrusters produce full controllabilty, then the minimum norm solution to produce the desired L_r will also result in a thruster solution that produces a net 0 force onto the spacecraft. Using the super-particle theorem, ¹ the total thruster force is given by

$$\mathbf{F}_{T,j} = [G_t]\mathbf{F}_j = [G_t][D]^T([D][D])^{-1}\mathbf{L}_r \cdot \hat{\mathbf{c}}_j = \mathbf{0}$$
 (16)

With a pure-couple thruster configuration the expression satisfies $[G_t][D]^T = \mathbf{0}$.

3 Module Parameters

3.1 ϵ Parameter

The minimum norm inverse in Eq. (8) requires a non-zero value of $[D][D]^T$. For this setup, this matrix is a scalar value

$$D_2 = [D][D]^T \tag{17}$$

The d_i matrix components are given in Eq. (5). Using the robust SVD inverse technique, $D_2 > \epsilon$, then the $1/D_2$ math is evaluated as normal. However, if $D_2 < \epsilon$, then the inverse $1/D_2$ is set to zero. In the latter case there is no control authority about the current axis of interest. To set this epsilon parameter, not the definition of the [D] matrix components $d_i = (\boldsymbol{r}_i \times \hat{\boldsymbol{g}}_{t_i}) \cdot \hat{\boldsymbol{c}}_j$. Note that $\boldsymbol{r}_i \times \hat{\boldsymbol{g}}_{t_i}$ is a scaled axis along which the i^{th} thruster can produce a torque. The value d_i will be near zero if the dot product of this axis with the current control axis $\hat{\boldsymbol{c}}_j$ is small.

To determine an appropriate ϵ value, let α be the minimum desired angle to avoid the control axis \hat{c}_j and the scaled thruster torque axis $r_i \times \hat{g}_{t_i}$ being orthogonal. If \bar{r} is a mean distance of the thrusters to the spacecraft center of mass, then the d_i values must satisfy

$$\frac{d_i}{\bar{r}} > \cos(90^\circ - \alpha) = \sin \alpha \tag{18}$$

Thus, to estimate a good value of ϵ , the following formula can be used

$$\epsilon \approx d_i^2 = \sin^2 \alpha \ \bar{r}^2 \tag{19}$$

For example, if $\bar{r}=1.3$ meters, and we want α to be at least 1°, then we would set $\epsilon=0.000515$.

3.2 [C] matrix

The module requires control axis matrix [C] to be defined. Up to 3 orthogonal control axes can be selected. Let M be the number of control axes. The $M \times 3$ [C] matrix is then defined as

$$[C] = \begin{bmatrix} \hat{c}_1 \\ \vdots \end{bmatrix} \tag{20}$$

Not that in python the matrix is given in a 1D form by defining controlAxes_B. Thus, the \hat{c}_j axes are concatenated to produce the input matrix [C].

3.3 thrForceSign Parameter

Before this module can be run, the parameter thrForceSign must be set to either +1 (on-pulsing) or -1 (off-pulsing.

REFERENCES

[1] Hanspeter Schaub and John L. Junkins. *Analytical Mechanics of Space Systems*. AIAA Education Series, Reston, VA, 3rd edition, 2014.