

Кафедра математического моделирования и анализа данных

КРАТКОСРОЧНОЕ ПРОГНОЗИРОВАНИЕ И НАУКАСТИНГ МАКРОЭКОНОМИЧЕСКИХ ВРЕМЕННЫХ РЯДОВ НА ОСНОВЕ ВЕКТОРНЫХ МОДЕЛЕЙ АВТОРЕГРЕССИИ ПО СМЕШАННЫМ ДАННЫМ

Бовт Тимофей Анатольевич

Научный руководитель:

кандидат физико-математических наук, доктор экономических наук, профессор, заведующий кафедрой математического моделирования и анализа данных Малюгин Владимир Ильич

Цель данной дипломной работы - разработка модельного и алгоритмического инструментария для краткосрочного прогнозирования и наукастинга, а также оценка точности прогнозов на основе многомерных эконометрических моделей по смешанным данным.

Для достижения цели решаются следующие задачи:

- 1. подготовка обзора основных подходов и методов, применяемых для краткосрочного прогнозирования и наукастинга;
- 2. подготовка описания эконометрических моделей и методов, применяемых для прогнозирования простора ВВП Республики Беларусь;
- 3. разработка алгоритмического инструментария и программного обеспечения на основе метода расширяющегося окна для краткосрочного прогнозирования по моделям векторной авторегрессии по смешанным данным;
- 4. проведение сравнительного анализа моделей по смешанным данным с моделями по агрегированным данным.

Оценки валового внутреннего продукта (ВВП) формируются Национальным Статистическим Комитетом (НСК) Республики Беларусь на квартальной и годовой частоте. В то же время отдельные отраслевые показатели, по которым формируется оценка ВВП, публикуются на месячной частоте. В связи с этим становится актуальным вопрос об использовании более оперативной информации при прогнозировании показателя ВВП. Эта задача называется задачей макроэкономического моделирования реального ВВП по данным смешанной частоты.

Для решения этой задачи в одномерном случае используются следующие подходы:

- построение авторегрессионных моделей с агрегированием данных высокой частоты к низкой частоте;
- построение авторегрессионных моделей с интерполированием данных низкой частоты к высокой частоте;
- построение авторегрессионных моделей MIDAS по данным смешанной частоты.

В рамках данной дипломной работы интерес представляют подходы, используемые в многомерном случае.

Официальные значения ВВП, которые публикует НСК, впоследствии уточняются и величина этих пересмотров может оказаться значительной. В связи с этим оценка динамики ВВП в текущем квартале представляет самостоятельный исследовательский вопрос в теме прогнозирования. Вид прогнозирования ВВП на предыдущий, текущий и следующий квартал в эконометрическом анализе принято называть наукастингом.

	ВВП производ	ственным	ВВП мет	одом кон	нечного	ВВП	по	источ	никам
	методом		использо	вания		доходо	В		
Квартальные	на 90 ден	в после	на 90	день	после	на 9	0	день	после
данные (первая оценка)	квартального п	ериода	квартальн	юго пери	ода	квартал	тьног	го пери	ода
Квартальные	декабрь года, с.	педующего	декабрь го	ода, след	ующего	декабр	ь год	а, следу	ующего
данные	за отчетным		за отчетні	ЫМ		за отче	тным	I	
(корректировка)									

МОДЕЛЬ MIXED FREQUENCY VECTOR AUTOREGRESSION (MF-VAR)

Пусть задан временной ряд $\{y_t^Q\}$ на квартальной частоте и $\{x_t^M\}$ на месячной частоте, $t \in T$. В соответствии с U-MIDAS подходом, раскладывая временной ряд $\{x_t^M\}$ месячной частоты на три временных ряда квартальной частоты $\{x_t^{M_1}\}$, $\{x_t^{M_2}\}$, $\{x_t^{M_3}\}$, мы можем построить **MF-VAR**(**p**) модель

$$\begin{split} y_t^Q &= \mu_1 + \sum_{j=1}^p \beta_j^{1,1} x_{t-j}^{M_1} + \sum_{j=1}^p \beta_j^{1,2} x_{t-j}^{M_2} + \sum_{j=1}^p \beta_j^{1,3} x_{t-j}^{M_3} + \sum_{j=1}^p \beta_j^{1,4} y_{t-j}^Q + \varepsilon_{t,1}^Q, \\ x_t^{M_1} &= \mu_2 + \sum_{j=1}^p \beta_j^{2,1} x_{t-j}^{M_1} + \sum_{j=1}^p \beta_j^{2,2} x_{t-j}^{M_2} + \sum_{j=1}^p \beta_j^{2,3} x_{t-j}^{M_3} + \sum_{j=1}^p \beta_j^{2,4} y_{t-j}^Q + \varepsilon_{t,2}^Q, \\ x_t^{M_2} &= \mu_3 + \sum_{j=1}^p \beta_j^{3,1} x_{t-j}^{M_1} + \sum_{j=1}^p \beta_j^{3,2} x_{t-j}^{M_2} + \sum_{j=1}^p \beta_j^{3,3} x_{t-j}^{M_3} + \sum_{j=1}^p \beta_j^{3,4} y_{t-j}^Q + \varepsilon_{t,3}^Q, \\ x_t^{M_3} &= \mu_4 + \sum_{j=1}^p \beta_j^{4,1} x_{t-j}^{M_1} + \sum_{j=1}^p \beta_j^{4,2} x_{t-j}^{M_2} + \sum_{j=1}^p \beta_j^{4,3} x_{t-j}^{M_3} + \sum_{j=1}^p \beta_j^{4,4} y_{t-j}^Q + \varepsilon_{t,4}^Q, \end{split}$$

где $\mu_i \in R$, $\varepsilon_{t,i}^Q \sim WN(0,\sigma^2)$, i=1,2,3,4.

ПРИЧИННОСТЬ ПО ГРЕЙНДЖЕРУ

Пусть $\{y_t\}$, $\{x_t\}$, $t \in T$ — это временные ряды одной частоты. Построим для них VAR(p) модель

$$x_{t} = \mu_{1} + \sum_{j=1}^{p} \alpha_{j} x_{t-j} + \sum_{j=1}^{p} \beta_{j} y_{t-j} + u_{t}$$

$$y_{t} = \mu_{2} + \sum_{j=1}^{p} \gamma_{j} x_{t-j} + \sum_{j=1}^{p} \delta_{j} y_{t-j} + v_{t},$$

где $u_t, v_t \sim WN(0, \sigma^2)$, а $\alpha_j, \beta_j, \gamma_j, \delta_j \in R$ — это некоторые коэффициенты, которые определяются по методу наименьших квадратов. Для этой модели тестируются две гипотезы

$$H_0': \beta_1 = ... = \beta_p = 0,$$

$$H_0^{"}: \gamma_1 = ... = \gamma_p = 0.$$

Тогда x_t является причиной по Грейнджеру для y_t , если H_0' не отвергается, а H_0'' отвергается. И наоборот, y_t является причиной по Гренджейру для x_t , если H_0'' не отвергается, а H_0' отвергается.

ФУНКЦИИ ИМПУЛЬСНЫХ ОТКЛИКОВ

В общем случае коэффициенты VAR модели не имеют экономической интерпретации. Вследствие этого принято рассматривать **функции импульсных откликов** (impulse response function, IRF) как описание влияния экзогенного шока на показатели. Функция импульсного отклика задает траекторию по h, которую описывает y_t , инициированная единичным шоком ε_t .

Формально функция импульсного отклика для VAR модели — это матричная функция от h = 0,1,2,... которая задается как

$$\frac{\partial \mathbf{y}_{t+h}}{\partial \varepsilon_t} = \left(\frac{\partial y_{i,t+h}}{\partial \varepsilon_{j,t}}\right)_{p \times p}$$

Таким образом, элемент (i,j) этой матричной функции отражает реакцию переменной y_i на единичное изменение шока в переменной y_j в момент времени t+h. В итоге функция импульсного отклика для конкретной переменной y_i на шок в переменной y_j задается последовательностью

$$\frac{\partial y_{i,t}}{\partial \varepsilon_{j,t}}, \frac{\partial y_{i,t+1}}{\partial \varepsilon_{j,t}}, \ldots, \frac{\partial y_{i,t+h}}{\partial \varepsilon_{j,t}}, \ldots$$

Переменная	Обработка	Календарь выхода
i y_t^Q	Сезонная корректировка, темпы прироста год к году в логарифмах	Задержка 90 дней после квартального периода + корректировка в декабре года, следующего за отчетным
i ip_t^{Mst}	Сезонная корректировка, темпы прироста месяц к месяцу в логарифмах	Задержка 17 дней после месячного периода
i rt_t^{Mst}	Сезонная корректировка, темпы прироста месяц к месяцу в логарифмах	Задержка 18 дней после месячного периода
i inv_t^{Mst}	Сезонная корректировка, темпы прироста месяц к месяцу в логарифмах	Задержка 24 дня после месячного периода
i $agro_t^{M*}$	Сезонная корректировка, темпы прироста месяц к месяцу в логарифмах	Задержка 19 дней после месячного периода
i bi bld_t^{Mst}	Сезонная корректировка, темпы прироста месяц к месяцу в логарифмах	Задержка 21 день после месячного периода
i bi inc_t^{Mst}	Сезонная корректировка, темпы прироста месяц к месяцу в логарифмах	Задержка 30 дней после месячного периода
$CESI_t^{M*}$	Сезонная корректировка	Задержка 4 дня после месячного периода

Рисунок 1 - График і y_t^Q

Рисунок 5 - График і $agro_t^Q$

Рисунок 2 - График і ip_t^{M*}

Рисунок 6 - График і bi bld_t^{M*}

Рисунок 3 - График і rt_t^Q

Рисунок 7 – График і bi inc_t^Q

Рисунок 4 - График і inv_t^{M*}

Рисунок 8 - График CESI_t^{M*}

СХЕМА МАКРОЭКОНОМИЧЕСКОЙ МОДЕЛИ

Рисунок 9 — Схема теоретических связей в макроэкономической модели ВВП

В процессе исследования для сравнительного анализа были построены две модели MF-VAR, а также две модели VAR с агрегированием. Построенные модели имеют следующие спецификации:

- VAR₁(1) это VAR модель с 1 лагом по агрегированным переменным і ip_t^{M*} , і rt_t^{M*} , і inv_t^{M*} , і $agro_t^{M*}$, і bі bld_t^{M*} , і bі inc_t^{M*} , $CESI_t^{M*}$;
- VAR $_2(2)$ это VAR модель с 2 лагами по агрегированной переменной **i** ip_t^{M*} ; она обладает наилучшими значениями метрик на вневыборочных прогнозах;
- MF-VAR₁(1) это MF-VAR модель с 1 лагом по переменным і ip_t^{M*} , і rt_t^{M*} , і inv_t^{M*} , і $agro_t^{M*}$, і $bi\ bld_t^{M*}$, і $bi\ inc_t^{M*}$, $CESI_t^{M*}$;
- MF-VAR $_2$ (2) это MF-VAR модель с 2 лагами по переменным **i** ip_t^{M*} , **i** rt_t^{M*} , $CESI_t^{M*}$; она обладает наилучшими значениями метрик на вневыборочных прогнозах;

Наилучшая модель MF-VAR₂(2) включает 10 уравнений и требует оценки 220 коэффициентов.

MF-VAR МОДЕЛЬ В ВИДЕ УРАВНЕНИЙ (1)

$$\begin{split} \mathrm{i}\,y_t^Q &= c^1 + c_1^1\,\mathrm{dum}2022\mathrm{q}2_t + \sum_{k=1}^2\sum_{j=1}^3\alpha_k^{1,j}\,\mathrm{i}\,ip_{t-k}^{M_j*} + \\ &+ \sum_{k=1}^2\sum_{j=1}^3\beta_k^{1,j}\,\mathrm{i}\,rt_{t-k}^{M_j*} + \sum_{k=1}^2\sum_{j=1}^3\gamma_k^{1,j}CESI_{t-k}^{M_j*} + \sum_{k=1}^2\delta_k^1\,\mathrm{i}\,y_{t-k}^Q, \end{split}$$

$$\begin{split} \mathrm{i}\,rt_t^{M_1*} &= c^2 + c_1^2\,\mathrm{dum}2022\mathrm{q}2_t + \sum_{k=1}^2\sum_{j=1}^3\alpha_k^{2,j}\,\mathrm{i}\,ip_{t-k}^{M_j*} + \\ &+ \sum_{k=1}^2\sum_{j=1}^3\beta_k^{2,j}\,\mathrm{i}\,rt_{t-k}^{M_j*} + \sum_{k=1}^2\sum_{j=1}^3\gamma_k^{2,j}CESI_{t-k}^{M_j*} + \sum_{k=1}^2\delta_k^2\,\mathrm{i}\,y_{t-k}^Q, \end{split}$$

$$\begin{split} \mathrm{i}\,rt_t^{M_2*} &= c^3 + c_1^3\,\mathrm{dum}2022\mathrm{q}2_t + \sum_{k=1}^2\sum_{j=1}^3\alpha_k^{3,j}\,\mathrm{i}\,ip_{t-k}^{M_j*} + \\ &+ \sum_{k=1}^2\sum_{j=1}^3\beta_k^{3,j}\,\mathrm{i}\,rt_{t-k}^{M_j*} + \sum_{k=1}^2\sum_{j=1}^3\gamma_k^{3,j}CESI_{t-k}^{M_j*} + \sum_{k=1}^2\delta_k^3\,\mathrm{i}\,y_{t-k}^Q, \end{split}$$

MF-VAR МОДЕЛЬ В ВИДЕ УРАВНЕНИЙ (2)

$$\begin{split} \mathrm{i}\,rt_t^{M_3*} &= c^4 + c_1^4\,\mathrm{dum}2022\mathrm{q}2_t + \sum_{k=1}^2\sum_{j=1}^3\alpha_k^{4,j}\,\mathrm{i}\,ip_{t-k}^{M_j*} + \\ &+ \sum_{k=1}^2\sum_{j=1}^3\beta_k^{4,j}\,\mathrm{i}\,rt_{t-k}^{M_j*} + \sum_{k=1}^2\sum_{j=1}^3\gamma_k^{4,j}CESI_{t-k}^{M_j*} + \sum_{k=1}^2\delta_k^4\,\mathrm{i}\,y_{t-k}^Q, \end{split}$$

MF-VAR МОДЕЛЬ В ВИДЕ УРАВНЕНИЙ (3)

$$\begin{split} \mathrm{i}\,ip_t^{M_3*} &= c^7 + c_1^7\,\mathrm{dum}2022\mathrm{q}2_t + \sum_{k=1}^2\sum_{j=1}^3\alpha_k^{7,j}\,\mathrm{i}\,ip_{t-k}^{M_j*} + \\ &+ \sum_{k=1}^2\sum_{j=1}^3\beta_k^{7,j}\,\mathrm{i}\,rt_{t-k}^{M_j*} + \sum_{k=1}^2\sum_{j=1}^3\gamma_k^{7,j}CESI_{t-k}^{M_j*} + \sum_{k=1}^2\delta_k^7\,\mathrm{i}\,y_{t-k}^Q, \end{split}$$

MF-VAR МОДЕЛЬ В ВИДЕ УРАВНЕНИЙ (4)

$$\begin{split} CESI_{t}^{M_{3}*} &= c^{10} + c_{1}^{10} \operatorname{dum} 2022 \neq 2_{t} + \sum_{k=1}^{2} \sum_{j=1}^{3} \alpha_{k}^{10,j} \operatorname{i} ip_{t-k}^{M_{j}*} + \\ &+ \sum_{k=1}^{2} \sum_{j=1}^{3} \beta_{k}^{10,j} \operatorname{i} rt_{t-k}^{M_{j}*} + \sum_{k=1}^{2} \sum_{j=1}^{3} \gamma_{k}^{10,j} CESI_{t-k}^{M_{j}*} + \sum_{k=1}^{2} \delta_{k}^{10} \operatorname{i} y_{t-k}^{Q}, \end{split}$$

где c^i , c^i_1 , $\alpha^{i,j}_k$, $\beta^{i,j}_k$, $\gamma^{i,j}_k$, $\delta^{i,j}_k \in R$, $i=1,\ldots,10$ — коэффициенты, определяемые по методу наименьших квадратов.

КРИТЕРИИ ОЦЕНКИ ТОЧНОСТИ ПРОГНОЗОВ

Для оценки качества прогнозов эконометрических моделей наиболее популярными являются два следующих критерия:

• MAE (Mean Absolute Error)

$$MAE = \frac{1}{T} \sum_{t=1}^{T} |y_t - \hat{y}_t|$$

• RMSE (Root Mean Squared Error)

$$RMSE = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (y_t - \hat{y}_t)^2}$$

где

- y_t фактическое значение эндогенной переменной в период t;
- \hat{y}_t спрогнозированное с помощью модели значение эндогенной переменной в период t;
- T количество периодов, на которых тестируется модель.

МЕТОД РАСШИРЯЮЩЕГОСЯ ОКНА

Для решения задачи краткосрочного прогнозирования используется подход расширяющегося окна.

- 1. Вся выборка данных первоначально делится на две части обучающую и тестируемую. В результате в обучающую выборку входят наблюдения y_1, \dots, y_t , а в тестируемую наблюдения y_{t+1}, \dots, y_T .
- 2. Основываясь на фактических временных рядах обучающей выборки осуществляется оценка параметров модели.
- 3. С помощью оцененной модели производится прогноз \hat{y}_{t+1} на один квартал вперед.
- 4. Увеличивается длина обучающей выборки на один квартал, то есть теперь в нее входят наблюдения $y_1, ..., y_t, y_{t+1}, u$ заново оцениваются параметры модели.
- 5. Используя переоцененную модель с учетом увеличенной выборки, производится прогноз \hat{y}_{t+2} на один квартал вперед.
- 6. Далее аналогично шагам 4 и 5 последовательно увеличивается выборка, переоценивается модель и строится прогноз на один квартал вперед до тех пор, пока выборка не будет включать все наблюдения y_1, \dots, y_T .
- 7. В результате получены точечные прогнозы $\hat{y}_{t+1},...,\hat{y}_T$ темпов прироста реального ВВП, которые сравниваются с фактическими данными и рассчитываются метрики качества модели:

$$MAE = \frac{1}{T - t - 1} \sum_{i=t+1}^{T} |y_i - \hat{y}_i|, \qquad RMSE = \sqrt{\frac{1}{T - t - 1} \sum_{i=t+1}^{T} (y_i - \hat{y}_i)^2}$$

КРАТКОСРОЧНОЕ ПРОГНОЗИРОВАНИЕ ПО MF-VAR МОДЕЛЯМ

Рисунок 10 - Ретроспективный прогноз MF-VAR₂(2)

Рисунок 11 - Вневыборочный прогноз $MF\text{-VAR}_2(2)$

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПРОГНОЗОВ

Модель	RMSE	MAE				
Прогнозный период 2022Q3-2024Q4 (ретроспективные прогнозы)						
VAR ₁ (1)	2.1391	1.6827				
$VAR_2(2)$	1.7437	1.2460				
$MF-VAR_1(1)$	1.8983	1.3382				
$MF-VAR_2(2)$	1.2306*	0.8253*				
Прогнозный период 2022Q3-2024Q4 (вневыборочные прогнозы)						
$VAR_1(1)$	2.4954	1.8776				
$\overline{\mathrm{VAR}_{2}(2)}$	2.1128	1.4246				
$MF-VAR_1(1)$	3.1069	2.3759				
$MF-VAR_2(2)$	1.8467*	1.2564*				

- сравнивая значения метрик на ретроспективных и вневыборочных прогнозах, заметим, что значения метрик на вневыборочных прогнозах не слишком сильно отклоняются от ретроспективных, что свидетельствует об устойчивости построенных моделей;
- по итогам сравнительного анализа построенных моделей было заключено, что модель **MF-VAR**₂(2) **обладает наилучшими прогностическими способностями** в классе рассматриваемых векторных авторегрессионных моделей в смысле RMSE и MAE метрик как на ретроспективных, так и на вневыборочных прогнозах.

ТЕСТ НА ПРИЧИННОСТЬ ПО ГРЕЙНДЖЕРУ

Показатель	χ2статистика	Р-значение	Решение	
PC_LRPP_M_SA_1	10.28057	0.0059	является причиной	
PC_LRPP_M_SA_2	9.796988	0.0075	является причиной	
PC_LRPP_M_SA_3	7.762518	0.0206	является причиной	
PC_LRRET_M_SA_1	12.94955	0.0015	является причиной	
PC_LRRET_M_SA_2	7.665317	0.0217	является причиной	
PC_LRRET_M_SA_3	7.001314	0.0302	является причиной	
CESI_M_SA_1	8.863230	0.0119	является причиной	
CESI_M_SA_2	9.342520	0.0094	является причиной	
CESI_M_SA_3	2.445332	0.2944	не является причиной	

По результатам тестирования на причинность по Грейнджеру, приведенным в таблице 3.8, можно заключить, что все все показатели, кроме 3-его месяца СИЭН являются причиной по Грейнджеру для прироста ВВП. Несмотря на это 1-ый и 2-ой месяцы СИЭН объясняют прирост ВВП в квартале, поэтому мы заключаем, что все 3 высокочастотные переменные объясняют прирост ВВП в текущем квартале.

ФУНКЦИИ ИМПУЛЬСНЫХ ОТКЛИКОВ

Рисунок 18 — Графики откликов прироста ВВП на импульсы каждого показателя для модели ВВП на основе MFVAR $_2$ (2)

Из графиков функций импульсных откликов следует, что ВВП имеет положительные статистически значимые отклики на импульсы каждого из включенных в эту модель показателей. Это свойство позволяет установить соответствие с экономическим смыслом модели.

Из всех построенных графиков импульсных откликов также заметно, что отклики значимы на относительно коротких промежутках: не 1-2 периодов. Следовательно, больше каждый показатель оказывает лишь краткосрочный эффект на темпы прироста ВВП. Это подкрепляет теоретические предположения о том, что построенная модель MF-VAR показывает себя лучше именно в задачах краткосрочного прогнозирования.

В качестве итогового эксперимента был произведен **наукастинг** при помощи модели MF-VAR $_2$ (2). Алгоритм эксперимента был следующим

- во всех временных рядах месячной частоты каждый 2ой и 3-ий месяц квартала были заменены на 1-ый месяц квартала; с помощью расширяющегося окна были построены прогнозы;
- в каждый временной ряд был возвращен 2-ой месяц квартала, а 3-ий месяц был заменен на 2-ой месяц квартала; снова строились прогнозы;
- в каждый временной ряд был возвращен 3-ий месяц квартала; снова строились прогнозы.

Рисунок 19 — Вневыборочный прогноз для модели MFVAR₂ (2)

Дата	RMSE			MAE			
	1 месяц	2 месяца	3 месяца	1 месяц	2 месяца	3 месяца	
2022Q3	41.73699	84.39614	0.04388	6.460418	9.186737	0.209475	
2022Q4	106.8192	12.6813	0.789954	10.33534	3.561081	0.888794	
2023Q1	5.882098	8.950058	0.041751	2.425304	2.991665	0.204331	
2023Q2	27.44998	23.39465	21.96949	5.239273	4.836802	4.687163	
2023Q3	47.03265	1.328504	4.930977	6.858035	1.152607	2.220582	
2023Q4	90.0033	1.448812	0.751676	9.487007	1.203666	0.866993	
2024Q1	7.898813	5.846431	3.230362	2.810428	2.417939	1.797321	
2024Q2	2.846819	1.075519	2.332993	1.687252	1.037027	1.527414	
2024Q3	2.510508	9.02388	0.006636	1.584316	1.97556	0.081463	
2024Q4	0.204018	1.448143	0.006425	0.451684	1.203388	0.080155	

Из графика и таблицы можно заключить, что модель более устойчива в наукастинге на спокойных периодах, как, например, в 2024-ом году. На этом периоде прогнозы близки друг к другу. На нестабильных периодах, как в 2022-ом году, прогнозы по 1-ому и 2-ому месяцам очень сильно отклоняются как от прогноза по 3-м месяцам, так и от реального значения временного ряда.

В дипломной работе получены следующие основные результаты:

- 1) сформулирован и подготовлен обзор основных подходов и методов, применяемых для краткосрочного прогнозирования и наукастинга;
- 2) подготовлено описание эконометрических моделей и методов, применяемых для прогнозирования прироста ВВП Республики Беларусь;
- 3) разработан алгоритмический инструментарий и программное обеспечение на основе метода расширяющегося окна для краткосрочного прогнозирования по моделям векторной авторегрессии по смешанным данным;
- 4) проведен сравнительный анализ моделей по смешанным данным с моделями по агрегированным данным.

На основе полученных результатов можно сделать следующие выводы:

- модель MF-VAR по данным смешанной частоты при наилучшем подборе высокочастотных переменных способна строить более точные прогнозы по сравнению с моделью VAR по агрегированным данным в режиме краткосрочного прогнозирования;
- на значения реального ВВП белорусской экономики в краткосрочной перспективе наибольшее влияние оказывают такие макроэкономическими показателями, как объем промышленного производства, объем розничного товарооборота и индекс экономических настроений СИЭН;
- модель MF-VAR по данным смешанной частоты способна проводить качественный наукастинг в спокойных для экономики Беларуси периодах.

Таким образом, данное исследование вносит вклад в развитие эконометрических методов анализа временных рядов по данным смешанной частоты. По результатам исследования можно утверждать, что **MF-VAR модель применима к белорусской экономике для краткосрочного прогнозирования и наукастинга с целью корректировки оценки ВВП**.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Малюгин В. И. Краткосрочное прогнозирование и наукастинг темпов роста инфляции на основе моделей по смешанным данным Журнал «Банковский вестник» №1/726 С. 23-36.
- 2. Макеева, Н.М. Наукастинг элементов использования ВВП России / Н.М. Макеева, И.П. Станкевич Статья 2022/10, Экономический журнал ВШЭ.
- 3. Макеева, Н.М. Наукастинг макроэкономических показателей экономики России на основе анализа новостного фона и регулярных данных Росстата / Н. М. Макеева, И. П. Станкевич

Кафедра математического моделирования и анализа данных

СПАСИБО ЗА ВНИМАНИЕ