Astigmatic Method and Applications

Astigmatic Method and Applications

Optical Layout

Microscopy with Astigmatic optical system enables autofocusing

Modeling based on Geometrical Optics

(No Gaussian Beam Considered)

The scheme of equilivent optical layout for an astigmatic automatic focus system

 f_0 : objective's focal length,

l: distance between the objective & the astigmatic lens,

 f_t : tangential focal length of the astigmatic lens,

 f_s : sagittal focal length of the astigmatic lens $(f_t > f_s)$,

 D_a : the diameter of the collimated laser beam

d: the distance between the astigmatic lens and the four quadrant photodiode.

FES(focus error signal) determined by using signal of Quadrant Photodiode

FES =
$$\frac{(Q_A + Q_C) - (Q_B + Q_D)}{Q_A + Q_B + Q_C + Q_D}$$

$$FES = \begin{cases} < 0, Too close \\ = 0, In Focus \\ > 0, Too Far \end{cases}$$

Spot Analysis

spot area relationship on the fourquadrant photodiode plane

FES(focus error signal) is defined to be

FES =
$$\frac{(Q_A + Q_C) - (Q_B + Q_D)}{Q_A + Q_B + Q_C + Q_D}$$

$$\Rightarrow \text{FES} = \frac{2(A_1 - A_2)}{\pi wh} \text{ Area of Ellipse}$$

$$\Rightarrow FES = \frac{4}{\pi} \tan^{-1} \frac{h}{w} - 1$$

Case 1.
$$h = 0 \Longrightarrow FES = -1$$

⇒ Ellipse become a horizontal line

Case 2.
$$w = 0 \Longrightarrow FES = 1$$
,

⇒ Ellipse become a vertical line

Case 3.
$$h = w \Longrightarrow FES = 0$$

⇒ Ellipse become a circe

Geometrical Optics Modeling

The sample defocus distance Δz is half of the point light source distance δ

Mapping Light Source to imaging Plan

$$S_{S} = \frac{f_{S}(l - f_{o})\delta - f_{o}^{2}f_{S}}{(l - f_{o} - f_{S})\delta - f_{o}^{2}} \qquad \qquad w = \left|\frac{S_{S} - d}{S_{S}}\right| \frac{D_{a}}{2}$$

$$\Rightarrow \qquad \qquad \Rightarrow \qquad \qquad S_{t} = \frac{f_{t}(l - f_{o})\delta - f_{o}^{2}f_{t}}{(l - f_{o} - f_{t})\delta - f_{o}^{2}} \qquad \qquad h = \left|\frac{S_{t} - d}{S_{t}}\right| \frac{D_{a}}{2}$$

To form a circular spot on the four-quadrant photodiode with a point light source located at the objective's focal point (δ = 0), the position of the photodiode is defined to be

$$d = \frac{2f_t f_s}{f_t + f_s}$$

Considering
$$S_t = S_s = d$$

$$\Rightarrow \delta_t = \frac{f_0^2(f_t - f_s)}{(1 - f_0)(f_t - f_s) + 2f_t f_s} = \frac{f_0^2}{(1 - f_0) + e}$$

$$\delta_s = \frac{f_0^2(f_t - f_s)}{(1 - f_0)(f_t - f_s) - 2f_t f_s} = \frac{f_0^2}{(1 - f_0) - e}$$

Where

$$e = \frac{2f_t f_s}{f_t - f_s}$$

$$f_t = \frac{ed}{e - d}; f_s = \frac{ed}{e + d}$$

Simulation of FES

Wavelength range 480, 1800 nm

Objective Lens: Magnificent Possible Working Range

Astigmatic Lens Method for Autofocusing System

Microscope objective	FES sensitivity at focus position	FES at focus position	Depth of focus	Focusing window
20× 10× 5×	$18.40 \times 10^{-3} \ \mu\text{m}^{-1}$ $3.58 \times 10^{-3} \ \mu\text{m}^{-1}$ $0.87 \times 10^{-3} \ \mu\text{m}^{-1}$	0.004 -0.082 -0.023	$1.7~\mu{ m m}$ $4.1~\mu{ m m}$ $14.0~\mu{ m m}$	0.004 ± 0.016 -0.082 ± 0.08 -0.023 ± 0.06

For Displacement Measurement

StagesControlling Displacement

ObjectiveLens

Capacitive Sensor

Fiber Laser

Integrated System
Including Optical Head &
Circuit for Photodical

Objective Lens:

Mitutoyo, MPlan Apo NIR 5X

Focal Length: 40 mm

WD: 35 mm

d = 50 mm

Define $\delta_i = \delta @ FES = i$, $FES \in [-1,1]$

Working Range: $200 \mu m$ (FES- δ curve is Linear)

 $\Rightarrow \delta_1 = 215 \mu m$ for design

 \Rightarrow $(f_s, f_t) = (49.321 \text{ mm}, 50.699 \text{ mm})$

System Development

Methodical Model for Optical Surface

$$z = \frac{x^2 / R_s + y^2 / R_t}{1 + \sqrt{1 - (x/R_s)^2 - (y/R_t)^2}}$$

Design Analysis Results

$$(f_s, f_t) = (49.321 \text{ mm}, 50.699 \text{ mm})$$

By using PMMA, n=1.49

$$\Rightarrow R_s = 24.167 \ mm; \ R_t = 24.842 \ mm$$

Parameters	Spec.	
Displ. Range	$\pm 100 \mu m$	
Meas. Sensitivity	3.35×10^{-3} (a. u./ μm)	
Accuracy	$\leq 0.6 \mu m$	
Working Range	37.5 mm	

Calibration

Fitting Displacement with FES by

$$Disp = \sum_{i=0}^{3} a_i \times FES^i$$

$$\Rightarrow [a_i] = [0.43,312.13,18.39,289.60]$$

Vibration measurement

objective lens, f_o =10mm Diode Laser, 637 nm f_t = 53.979 mm; f_s = 46.566 mm QPD is 49.7 mm away from astigmatic lens

FES(d) = 0.0158d + 0.0152

Comparing with Capacitor Displacement Sensor

Application of DVD pickup heads

Scanning Vertically in Constant Velocity

