Les fonctions en mathematique

Mendy Fatnassi

10 décembre 2020

Table des matières

1	\mathbf{Les}	Fonctions
	1.1	Notion de fonction
	1.2	Fonction affine polynome du 2nd degré
		1.2.1 Fonction affine
		1.2.2 Fonction du 2nd degré
	1.3	limite de fonction
		dérivée de fonction
	1.5	signes & variation
	1.6	Equation de la tangeante
	1.7	Primitive
	1.8	Integrale

Chapitre 1: Les Fonctions

1.1 Notion de fonction

Une fonction f(x) possede une image et un antecedant .L'image seras le resultat de x a travers f(x) et l'antecedant seras pour quelle x on obtient un resultat y, f(?)=y.

Par exemple f(5):->25 , l'image de f(5) est 25 et l'antecedant de 25 est f(5).

On peux aussi resoudre une equation graphiquement , par exemple : $f(x)=5x-x^2$, on cherche f(2) donc $f(x)=2=>5x-x^2=2$:

1.2 Fonction affine polynome du 2nd degré

1.2.1 Fonction affine

Une fonction f définie sur R est une fonction affine si elle peut s'écrire sous la forme f(x) = ax + b avec a et b réels.

avec a : le coef. directeur et b : l'ordonnée a l'origine.

Une fonction affine est graphiquement representer par une droite qui n'est pas parrallele a l'axe des ordonné. Il y a deux cas particuliers importants de fonctions affines : f(x) = ax + b

Si b = 0, c'est-à-dire, f(x) = ax ; alors f est appelée fonction linéaire.

Si a = 0, c'est-à-dire, f(x) = b; alors f est une fonction constante.

1.2.2 Fonction du 2nd degré

Si la fonction possede 3 coef. a,b et c on parleras d'equation du second degré .Ces fonctions sont representer graphiquement par une parabole .

Pour calculer un polynome du 2nd degré on applique la formule : $\Delta = b^2 - 4ac$:

- Si $\Delta>0$ alors 2 solution : $x1=\frac{-b-\Delta}{2a}$ et $x2=\frac{-b+\Delta}{2a}$
- Si $\Delta = 0$ alors 1 solution : $x1 = \frac{-b}{2a}$
- Si $\Delta < 0$ alors il n'y a pas de solution réel.

5

1.3 limite de fonction

Si on veux trouver la limite pour un x donnée , $\lim_{x \to 4} 2x - 7$ et bien on remplace le x de la fonction par 4 (ce quoi il tend):

 $\lim_{x\to 4}2x-7=2\times 4-7=1$ on dit que la limite de la fonction 2x-7 quand x tend vers 4 est 1 .

Pour les limite en $+/-\infty$ on ne remplace pas x par ∞ car cela n'est pas possible .On vas donc regarder :

$$\lim_{x \to 0+} f(x) = +\infty \text{ et } \lim_{x \to 0-} f(x) = -\infty$$

Forme Indeterminé:

Parfois on fait face a des formes indeterminé que l'on note F.I. On est dans ce cas quand on a par exemple une somme de fonctions, l'une tendant vers $+\infty$, l'autre vers $-\infty$.

Il y a 4 formes indeterminé en tout :

$$+\infty - \infty$$
, $0 \times \infty$, $\frac{\infty}{\infty}$ et $\frac{0}{0}$

Quand on a des polynômes, on peut tomber sur des F.I. Dans ce cas on utilise le **TH** du plus haut degrés (seulement si x tend vers $+/-\infty$).

Exemple:

- $\begin{array}{l} -\lim\limits_{x\to +\infty} x^2 x = +\infty \infty = F.I \\ -\lim\limits_{x\to +\infty} x^2 x = \lim\limits_{x\to +\infty} x^2 \\ -\lim\limits_{x\to +\infty} \frac{x^2 x}{9x^5 6x^2 + 7} = \lim\limits_{x\to +\infty} \frac{x^2}{9x^5} = \lim\limits_{x\to +\infty} \frac{1}{9x^3} = 0 \end{array}$

Grace aux limites on pourras completer le tableau de signe d'une fonction en y ajoutant les limites de x en $+/-\infty$.

Pour $x^2 - 4x + 3$ on a:

$$-\lim_{x \to -1} x^2 - 4x + 3 = +\infty$$

$$-\lim_{x \to +\infty} x^2 - 4x + 3 = +\infty$$
$$-\lim_{x \to -\infty} x^2 - 4x + 3 = +\infty$$

X	-∞	2	+∞
f	+80	<u></u>	→ +∞

6

1.4 dérivée de fonction

Quand on a une fonction f, on peut calculer une autre fonction que l'on note f' (f prime) et qu'on appelle la dérivée de f .

Tableau de derivée :

f	f'
constante	0
x	1
x^2	2x
x^3	$3x^2$
x^n	$n \times x^{n-1}$
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$

Exemple:

 $f(x) = 7x^9 - 8x^3 + 5$ on vas alors dérivée chacun des termes et les constantes multiplicative sont simplement réecrites dans l'équation, ce qui donne :

$$f'(x) = 7 \times 9x^8 - 8 \times 3x^2 + 0 \Rightarrow f'(x) = 63x^8 - 24x^2$$

Par contre si on a des produits ou quotient de fonctions par exemple 2 fonctions u et v (cf. Tableau de derivee complexe).

$$(u \times v)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

Exemple:

 $f(x) = (2x+1) \times (x^2-9)$ pour trouver la dérivée il est conseiller de faire comme suite :

$$u = 2x + 1etu' = 2$$
$$v = x^2 - 9etv' = 2x$$

Ensuite on remplace les formules dans l'expression de la fonction :

$$f'(x) = u'v + uv' = (2) \times (x^2 - 9) + (2x + 1) \times (2x)$$

$$f'(x) = 2x^2 - 18 + 4x^2 + 2x$$

$$f'(x) = 6x^2 + 2x - 18$$

On appelle cela des fonction composé , elles sont de la forme $f(x) = \sqrt{8x^2 - 5x + 4}$ ou $f(x) = \frac{1}{8x^6 + 4x^7 - 6x}$ en generale ces fonction sont noté u , \sqrt{u} ou $\frac{1}{u}$.

7

Pour derivée ce genre de fonction on derivee le u comme si il s'agissait d'un réel x et on multiplie par u'.

Tableau de derivee complexe :

f	f'
u^2	$2u \times u'$
u^3	$3u^2 \times u'$
u^n	$n \times u^{n-1} \times u'$
$\frac{1}{u}$	$-\frac{1}{u^2} \times u'$
\sqrt{u}	$\frac{1}{2\sqrt{u}} \times u'$
$\sin(x)$	$\cos(x) \times u'$
$\cos(x)$	$-\sin(x) \times u'$

$\underline{\text{Interet}}$:

f' sert a trouver les signes/variations de f.

- $\sin f' > = 0$, alors f est croissante
- si f'<=0, alors f est décroissante

1.5 signes & variation

On cherche le tableau de signes de f' pour trouver le tableau de variation de f (ne pas melanger f et f'), pour cela on calcule d'abord f'.

$$f(x) = x^2 - 6x + 4$$
$$f'(x) = 2x - 6$$

f' est de la forme ax+b , il suffit donc de savoir quand f' s'annule . $2x-6=0\Rightarrow 2x=6\Rightarrow x=3$.

1.6 Equation de la tangeante

Une tangeante c'est une droite, elle est donc de la forme y=ax+b . Ensuite, cette droite longe la courbe de la fonction sans la traverser.

Voici la formule : y = f'(a)(x - a) + f(a)

1.7 Primitive

Pour faire simple, une primitive c'est l'inverse de la dérivée F'(x) = f(x)

F est la primitive de f et f la dérivee de F.Si on dérive f(x) on obtient f'(x), si on derivee la primitive c-a-d F'(x) on obtient f(x).

Tableau de primitive :

f	F
0	constante
x	$\frac{x^2}{2}$
$\begin{array}{c c} x \\ \hline x^2 \\ \hline x^3 \end{array}$	$ \begin{array}{c} \frac{x^2}{2} \\ \frac{x^3}{3} \\ x^4 \end{array} $
	$\frac{x^4}{4}$
x^n	$\frac{\frac{x}{4}}{\frac{x^{n+1}}{n+1}}$
x^{-1}	ln(x)
$\frac{1}{x}$	$\ln x$
$\frac{\frac{1}{x^2}}{1}$	$\frac{-1}{x}$
0 /	\sqrt{x}
e^x	e^x
$\sin(x)$	$-\cos(x)$
$\cos(x)$	$\sin(x)$

Tableau de primitive complexe :

f	F (LA PRIMITIVE)
$u' \times u$	$\frac{u^2}{2}$
$u' \times u^2$	$\frac{u^3}{3}$
$u' \times u^3$	$\frac{u^4}{4}$
$u' \times u^n$	$\frac{u^{n+1}}{n+1}$
$\frac{u'}{u}$	ln(u)
$\frac{u'}{u^2}$	$-\frac{1}{u}$
$\frac{u'}{u^n} = u' \times u^{-n}$	$\frac{u^{-n+1}}{-n+1} = \frac{1}{(-n+1) \times u^{n-1}}$
$\frac{u'}{2 \times \sqrt{u}}$	\sqrt{u}
$u' \times e^u$	e^u
$u' \times sin(u)$	$-\cos(u)$
$u' \times cos(u)$	sin(u)

1.8. INTEGRALE

9

Integrale 1.8

Une intégrale c'est l'aire sous la courbe d'une fonction, entre deux points d'abscisses a et b.

Calcule d'une integrale :

Soient [a, b] un intervalle de R , une fonction continue sur [a, b] et F une primitive de f , on a :

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Exemple:

Si on veux integrer la fonction $f(x)=\frac{3}{x^2}$ sur l'intervale [1;4] il faut trouver une primitive de f(x) , or $\frac{3}{x^2}$ n'a pas de primitive on peux donc modifier un peux l'ecriture de celle ci $f(x)=3\times\frac{1}{x^2}$

Donc
$$F(x) = 3 \times -\frac{1}{x} = -\frac{3}{x}$$

$$\int_{1}^{4} \frac{3}{x^{2}} = \left[-\frac{3}{x} \right]_{1}^{4} = -\frac{3}{4} - \left(-\frac{3}{1} \right) = -\frac{3}{4} + \frac{12}{4} = \frac{9}{4}$$