# 1 Modelagem por programação linear

# 1.1 Definições

Considere as seguintes definições:

# Def. 1.1 Programação matemática

Programação matemática (ou teoria da otimização) é o ramo da matemática que lida com técnicas para maximizar ou minimizar uma função objetivo, sujeito a restrições lineares, não lineares e inteiras nas variáveis.

## Def. 1.2 Programação linear

A programação linear lida com a maximização ou a minimização de uma função objetivo linear nas variáveis, sujeito a equações e/ou inequações também lineares.

#### Def. 1.3 Modelo matemático

O **modelo matemático** de um sistema é um conjunto de relacionamentos matemáticos que caracterizam o conjunto de soluções factíveis do sistema.

Percebemos então que a **programação linear** é uma forma de programação matemática, em que a função a ser otimizada e restrições são todas lineares nas variáveis. O objeto principal de estudo da programação matemática são os **modelos matemáticos**. Um modelo matemático (no nosso caso, linear) representa uma situação/problema/sistema do mundo, por meio de relações matemáticas. O processo de observar o problema e transcrevê-lo em um modelo matemático é chamado de **modelagem**, como mostrado na Figura 1.



OBS: Nesta etapa não sabemos qual plano devemos seguir, somente representamos o problema formalmente por meio da matemática

Figura 1: Processo de modelagem matemática

O objetivo da modelagem não é encontrar uma solução para o problema, mas simplesmente representa-lo de uma forma rigorosa por meio da matemática.

## 1.2 Modelagem matemática

Existem diversas formas e metodologias para a modelagem de uma situação como um programa linear (PL), porém, em última instância, a prática é a nossa melhor aliada, e com o tempo começamos a nos acostumar com a "sintaxe" da modelagem.

O modelo de PL deve ser composto de duas grandes partes: **função objetivo** (fo), que deve ser maximizada ou minimizada, e o **conjunto de restrições**. Lembre-se que tanto a fo quanto as restrições devem ser lineares. Independente da forma e da ordem da modelagem, os seguintes passos sempre devem existir:

- 1. **Definição das variáveis de decisão:** como o nome já diz, uma variável é algo que muda. Em um modelo matemático as variáveis são as quantidades que queremos encontrar e otimizar (por exemplo, quantidade a ser produzida, % de tempo que cada máquina deve ficar produzindo, quantidade de dinheiro investido, etc...). Representamos as variáveis com letras e índices (por exemplo,  $x_1$ ,  $x_2$ , b, etc...).
- 2. **Definição dos parâmetros:** ao contrário das variáveis, os parâmetros de um modelo não mudam, são constantes ao longo de todo o processo. Podemos pensar nos parâmetros como as quantidades dadas do problema (por exemplo, preço pela produção de uma peça, quantidade disponível de matéria prima, custo por hora/máquina produzindo, etc...)
- 3. Definição das restrições e função objetivo: a função objetivo deve relacionar as variáveis de tal forma que ela quantifique a qualidade de uma solução, por exemplo, em um problema de produção de ração, podemos quantificar uma solução pelo custo da receita criada. Sempre devemos indicar o que queremos fazer com a fo, maximizar ou minimizar (no caso da ração, obviamente o objetivo deve ser minimizado). As restrições vão determinar quando uma solução é factível (respeita todas as restrições do sistema) ou não. Por exemplo, podemos ter uma quantidade limitada de matéria prima para a produção da ração, de forma que uma solução não pode ultrapassar essa quantidade.

Para um exemplo completo de modelagem matemática (o problema da dieta), veja o material, no tópico *Modelando um problema* (pg. 78 do arquivo pdf).

#### 1.3 Premissas da PL

De maneira um pouco mais formal, ao criarmos um modelo de PL precisamos garantir que algumas premissas sejam satisfeitas. Quando isso ocorre, podemos dizer que o modelo é de fato um PL. As premissas são as seguintes:

- 1. Premissa da proporcionalidade: Considerando o modelo da dieta, vista na introdução da disciplina. Se 1kg de banana fornece 7g de proteínas, a proporcionalidade afirma que 2kg de banana devem fornecer  $2 \cdot 7 = 14$ g de proteína.
- 2. **Premissa da aditividade:** Ainda considerando o modelo da dieta. 1kg de banana fornece 7g de proteínas, já 1kg de frango fornece 14. A premissa da *aditividade* afirma que, se usarmos 1kg de banana e 1kg de frango, a quantidade de proteína ingerida será de  $1 \cdot 7 + 1 \cdot 14 = 21$ .
- 3. Premissa da continuidade e não negatividade das variáveis: A premissa da continuidade implica que as variáveis podem assumir quaisquer valores reais. No problema da dieta por exemplo, podemos comprar 1kg, 0.5kg, 2.85kg, etc...dos alimentos. Já a não-negatividade implica que as variáveis só podem assumir valores positivos (não seria possível comprar -0.5kg de banana, por exemplo).

- (a) OBS1: Quando as variáveis precisam ser inteiras, temos um modelo de *programação* inteira (e não um PL), que é muito mais difícil de se resolver.
- (b) OBS2: Em alguns modelos pode ser necessário assumir variáveis com valores negativos. É muito fácil transformar esse modelo em um PL equivalente.
- (c) OBS3: As premissas de proporcionalidade e aditividade automaticamente garantem que as restrições são equações ou inequações lineares. Elas também implicam que a função objetivo é linear.

#### 1.4 Exercícios

Para cada um dos problemas abaixo, faça o que se pede:

- Encontre o modelo de PL que descreve o problema.
- Identifique os parâmetros do modelo.
- Encontre a solução ótima dos modelos, usando o software GUSEK. Para um tutorial de como baixar e usar o software clique aqui (Solver GUSEK).
- 1. Uma indústria de móveis produz 4 tipos de mesas. Cada mesa passa por dois processos, carpintaria e finalização. O número de horas/homem necessário em cada etapa é mostrado na Tabela 1, bem como a disponibilidade. A tabela também aponta o lucro pela venda de cada unidade de mesa.

|                 | Mesa 1 | Mesa 2 | Mesa 3 | Mesa 4 | Disponibilidade |
|-----------------|--------|--------|--------|--------|-----------------|
| Carpintaria     | 4      | 9      | 7      | 10     | 6000            |
| Finalização     | 1      | 1      | 3      | 40     | 4000            |
| Lucro (R\$/un.) | 12     | 20     | 18     | 40     |                 |

Tabela 1: Horas/homem necessárias para produção das mesas em cada operação

2. (O problema do transporte) Uma empresa possui 2 fábricas (I e II) e 3 depósitos (A,B e C). Cada fábrica possui uma capacidade de produção e cada depósito uma demanda de consumo. Existe uma distância entre cada fábrica e cada depósito, de forma que há um custo associado a cada unidade de produto transportado de uma fábrica a um depósito. A empresa precisa atender às demandas dos depósitos, sem exceder as capacidades produtivas das fábricas. Os dados de demandas, capacidades e custos de transporte são mostrados na Tabela 2.

|                      | Depósitos |     | os  |                        |
|----------------------|-----------|-----|-----|------------------------|
| Fábricas             | A         | В   | С   | Capacidades (fábricas) |
| I                    | 2.5       | 1.7 | 1.8 | 350                    |
| II                   | 2.5       | 1.8 | 1.4 | 650                    |
| Demandas (depósitos) | 300       | 300 | 300 |                        |

Tabela 2: Dados do transporte

Por exemplo, a capacidade da fábrica 1 é de 350, o custo para se transportar uma unidade da fábrica I ao depósito B é de 1.7.

3. (Problema de mistura) Uma agroindústria deve produzir um tipo de ração para determinado animal. Essa ração é produzida pela mistura de farinhas de 3 ingredientes básicos: osso, soja e resto de peixe. Cada um desses 3 ingredientes contém quantidades de dois nutrientes necessários a uma dieta nutricional balanceada: proteína e cálcio. O nutricionista especifica as necessidades mínimas destes nutrientes em 1kg de ração. Cada ingrediente é adquirido a um certo custo unitário (R\$/kg). Os dados são apresentados na Tabela 3:

|                  | Ingredientes |      |       |       |  |  |
|------------------|--------------|------|-------|-------|--|--|
| Nutrientes       | Osso         | Soja | Peixe | Ração |  |  |
| Proteína         | 0.2          | 0.5  | 0.4   | 0.3   |  |  |
| Cálcio           | 0.6          | 0.4  | 0.4   | 0.5   |  |  |
| Custo $(R\$/kg)$ | 0.56         | 0.81 | 0.46  |       |  |  |

Tabela 3: Dados para o problema da ração

Por exemplo, em 1kg de osso existe 20% de proteína e 60% de cálcio, a um custo de 0.56. 1kg de ração demanda  $pelo\ menos\ 30\%$  de proteína e 50% de cálcio.

4. (**Problema multi-período**) Um depósito compra e armazena um item para vender depois. O depósito consegue armazenar somente 100 unidades do item, a um custo de R\$1.00/unidade por trimestre. Em cada trimestre o preço de compra é igual ao de venda. Esses preços variam de trimestre para trimestre como mostrado na Tabela 4.

| Trimestre | Preço |  |  |
|-----------|-------|--|--|
| 1         | 10    |  |  |
| 2         | 12    |  |  |
| 3         | 8     |  |  |
| 4         | 9     |  |  |

Tabela 4: Preços de compra e venda por trimestre