2.向量

可扩充向量 分摊

...在他的心理上,他总以为北平是天底下最可靠的大城,不管有什么灾难,到三个月必定灾消难满,而后诸事大吉。北平的灾难恰似一个人免不了有些头疼脑热,过几天自然会好了的。

邓俊辉

deng@tsinghua.edu.cn

容量递增策略

- ❖ T* oldElem = _elem; _elem = new T[_capacity += INCREMENT]; //追加固定增量
- ❖最坏情况:在初始容量 0的空向量中,连续插入n = m*I >> 2个元素...
- **❖于是,在第1、I+1、2I+1、3I+1、...次插入时**,都需扩容
- ❖ 即便不计申请空间操作,各次扩容过程中复制原向量的时间成本依次为

```
0, I, 2I, ..., (m-1)*I
```

//算术级数

总体耗时 = I * (m-1) * m/2 = O(n²),每次扩容的分摊成本为O(n)

容量加倍策略

- ❖ T* oldElem = _elem; _elem = new T[_capacity <<= 1]; //容量加倍
- ❖ 最坏情况:在初始容量 1 的 满 向量中,连续插入n = 2^m >> 2个元素...
- ❖ 于是,在第1、2、4、8、16、...次插入时都需扩容
- ❖ 各次扩容过程中复制原向量的时间成本依次为

1, 2, 4, 8, ...,
$$2^m = n$$

//几何级数

总体耗时 = O(n),每次扩容的分摊成本为O(1)

- ļ
- 2 4
- 1 2
- 0 1

对比

	递增策略	倍增策略
累计 增容时间	0(n ²)	Ø(n)
分摊 增容时间	Ø(n)	0(1)
装填因子	≈ 100 %	> 50%

平均分析 vs. 分摊分析

- ❖ 平均复杂度 或 期望复杂度 (average/expected complexity) 根据数据结构各种操作出现概率的分布,将对应的成本加权平均各种可能的操作,作为独立事件分别考查 割裂了操作之间的相关性和连贯性 往往不能准确 地评判数据结构和算法的真实性能
- ❖ 分摊复杂度 (amortized complexity)

对数据结构 连续 地实施 足够多 次操作,所需 总体 成本分摊至 单次 操作 从实际可行的角度,对一系列操作做整体的考量

更加忠实地刻画了可能出现的操作序列

更为精准地评判数据结构和算法的真实性能

❖ 后面将看到更多、更复杂的例子