

CALCULO DIFERENCIAL E INTEGRAL
GR2
SEMESTRE: 2020-A

HOJA DE TRABAJO N° 2

TEMA: Introducción a los límites de funciones reales

FECHA DE ENTREGA: 19 /12/2020

Ejercicio 1

Utilizando el siguiente gráfico de f:

conjeture un valor adecuado para los siguientes límites:

a)
$$\lim_{x \to -3} f(x)$$

$$b) \lim_{x \to 1} f(x)$$

c)
$$\lim_{x\to 2} f(x)$$

CALCULO DIFERENCIAL E INTEGRAL

GR2 SEMESTRE: 2020-A

Ejercicio 2.

Utilizando el siguiente gráfico de f:

Conjeture un valor adecuado para los siguientes límites:

- a) $\lim_{x\to 2} f(x)$
- b) $\lim_{x\to 3} f(x)$

0) lim ×→2	f(x)	72	El limite	si existe
lim ×-2-	F(x)	=	Ч	11m f(x) = 4/1
b) 11m X = 3	f(x)	=		
IIM	f(x)	7	1	lim f(x) = 1 //

Ejercicio 3.

Bosqueje la gráfica de

$$f(x) = \begin{cases} -x & \text{si } x < 0 \\ x & \text{si } 0 \le x < 1 \\ 1 + x & \text{si } x \ge 1 \end{cases}$$

Luego determine cada uno de los siguientes o establezca que no existen.

(a) $\lim_{x\to 0} f(x)$

(b) $\lim_{x \to 1} f(x)$

(c) f(1)

(d) $\lim_{x \to 1^+} f(x)$

CALCULO DIFERENCIAL E INTEGRAL

GR2

SEMESTRE: 2020-A

Ejercicio 4

3osqueje la gráfica de

$$g(x) = \begin{cases} -x + 1 & \text{si } x < 1 \\ x - 1 & \text{si } 1 < x < 2 \\ 5 - x^2 & \text{si } x \ge 2 \end{cases}$$

Después determine cada uno de los siguientes o establezca que no existen.

(a)
$$\lim_{x \to 1} g(x)$$

(c)
$$\lim_{x \to 2} g(x)$$

(d)
$$\lim_{x \to 2^+} g(x)$$

CALCULO DIFERENCIAL E INTEGRAL GR2 SEMESTRE: 2020-A

Ejercicio 5

En los siguientes problemas encuentre el límite mediante una tabla de valores

1.
$$\lim_{x \to 3} (x - 5)$$

2.
$$\lim_{t \to -1} (1 - 2t)$$

1) Lim (>-5)	× f	(×)
(x-3)	2,99	2, 1
(1m) $(x-5)=(3-5)=-2$	2,95 -2	,,05
(1m) $(x-5) = (3+-5)=-2$	2,999 -2,	001
l_{1m} (x-5) = -2//	3,0011 -1	1,999
×-13	3,050 -1	195
2) Lim (1-2+) +1	×	f(x)
$\lim_{t \to -1} (1 - 2(-1)) = 3$	-3,1	3,2
$(1-2t) = (1-2(-1)^{1}) = 3$	-1,05	3,1
+-1-1	-1,001	3,002
Um (1-2+)=3	119	2399
	1,999	-2,998
	1,95	-2,9
	1,90	-2,8