

Лабораторная работа. Построение сети между коммутатором и маршрутизатором

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Основной шлюз
R1	G0/0	192.168.0.1	255.255.255.0	_
KI	G0/1	192.168.1.1	255.255.255.0	_
S1	VLAN 1	192.168.1.2	255.255.255.0	192.168.1.1
PC-A	NIC	192.168.1.3	255.255.255.0	192.168.1.1
РС-В	NIC	192.168.0.3	255.255.255.0	192.168.0.1

Цели

Часть 1. Настройка топологии и инициализация устройств

- Настройте оборудование в соответствии с топологией сети.
- Выполните инициализацию и перезагрузку маршрутизатора и коммутатора.

Часть 2. Настройка устройств и проверка подключения

- Присвойте интерфейсам ПК данные о статическом IP-адресе.
- Выполните настройку маршрутизатора и коммутатора.
- Проверьте подключение к сети.

Часть 3. Отображение сведений об устройстве

- Соберите с сетевых устройств данные об аппаратном и программном обеспечении.
- Интерпретируйте выходные данные таблицы маршрутизации.
- Выведите на маршрутизатор сведения об интерфейсе.
- Выведите на маршрутизатор и коммутатор сводный список интерфейсов.

Часть 4. Удаленный защищенный доступ к маршрутизатору

- Настройте имя домена IP и создайте ключи шифрования.
- Создайте пользователя SSH и настройте линии VTY, ограничив доступ протоколом SSH.
- Проверка реализации протокола SSH.

Общие сведения/сценарий

В этой лабораторной работе вы соедините оборудование кабелями в соответствии со схемой топологии. Затем вы настроите устройства согласно таблице адресации. После сохранения конфигурации вы проверите её, выполнив тестирование сетевого подключения.

После настройки устройств и проверки сетевого подключения вы, воспользовавшись командами IOS, получите с этих устройств сведения, необходимые для подготовки ответов на вопросы о сетевом оборудовании. Вам также следует настроить удаленный доступ к маршрутизатору по протоколу SSH.

Перед выполнением лабораторной работы убедитесь в том, что на всех устройствах отсутствуют сохраненные файлы конфигурации предыдущей версии. Обратитесь за помощью к инструктору.

В зависимости от модели устройства и версии Cisco IOS доступные команды и результаты их выполнения могут отличаться от тех, которые показаны в лабораторных работах.

Необходимое оборудование:

- 1 маршрутизатор (Cisco 1941 с операционной системой Cisco IOS версии 15.4(3), универсальный образ или аналогичный);
- 1 коммутатор (Cisco 2960 с ПО Cisco IOS версии 15.0(2) с образом lanbasek9 или аналогичная модель);
- 2 компьютера (Windows 10, Vista или XP, программа эмуляции терминала, например Tera Term);
- консольные кабели для настройки устройств Cisco IOS через консольные порты;
- кабели Ethernet, расположенные в соответствии с топологией.

Часть 1: Настройка топологии и инициализация устройств

- а. Подключите устройства в соответствии со схемой топологии и подсоедините соответствующие кабели.
- b. Включите все устройства в топологии.
- с. Обратитесь за помощью к инструктору в том случае, если на устройствах имеются сохраненные файлы конфигураций предыдущих версий.

Часть 2: Настройка устройств и проверка подключения

В части 2 вы настроите топологию сети и такие базовые параметры, как IP-адреса интерфейсов, доступ к устройствам и пароли. Имена и адреса устройств можно найти в топологии и таблице адресации в начале этой лабораторной работы.

Шаг 1: Присвойте интерфейсам ПК данные о статическом ІР-адресе.

- а. Настройте на компьютере РС-А IP-адрес, маску подсети и параметры основного шлюза.
- b. Настройте на компьютере PC-B IP-адрес, маску подсети и параметры основного шлюза.
- с. Выполните проверку связи с компьютером PC-В при помощи ping-запроса из окна командной строки компьютера PC-А. Объясните, почему команды проверки связи завершились неудачно.

Шаг 2: Настройте маршрутизатор.

а. Подключитесь к маршрутизатору с помощью консоли и активируйте привилегированный режим EXEC.

Лабораторная работа. Построение сети между коммутатором и маршрутизатором

- b. Войдите в режим конфигурации.
- с. Присвойте маршрутизатору имя устройства в соответствии с таблицей адресации.
- d. Назначьте class в качестве зашифрованного пароля привилегированного режима EXEC.
- e. Назначьте cisco в качестве пароля консоли и включите запрос пароля при включении.
- f. Зашифруйте открытые пароли.
- д. Создайте баннер с предупреждением о запрете несанкционированного доступа к устройству.
- h. Настройте IP-адреса в соответствии с адресной таблицей и активируйте оба интерфейса Ethernet на маршрутизаторе.
- і. Сохраните текущую конфигурацию в файл загрузочной конфигурации.

Примечание. Вопросительный знак (?) позволяет открыть справку с правильной последовательностью параметров, необходимых для выполнения этой команды.

Успешно ли выполнена проверка связи? Дайте пояснение.

Шаг 3: Настройте коммутатор.

- а. Подключитесь к коммутатору с помощью консольного подключения и активируйте привилегированный режим EXEC.
- b. Войдите в режим конфигурации.
- с. Назначьте маршрутизатору имя устройства.
- d. Назначьте class в качестве зашифрованного пароля привилегированного режима EXEC.
- e. Назначьте cisco в качестве пароля консоли и включите запрос пароля при включении.
- f. Зашифруйте открытые пароли.
- g. Создайте баннер с предупреждением о запрете несанкционированного доступа к устройству.
- h. Настройте IP-адрес SVI для сети VLAN 1 в соответствии с таблицей адресации и активируйте интерфейс.
- і. Настройте основной шлюз в соответствии с таблицей адресации.
- ј. Сохраните текущую конфигурацию в файл загрузочной конфигурации.

Часть 3: Отображение сведений об устройстве

Шаг 1: Соберите с сетевых устройств данные об аппаратном и программном обеспечении.

- а. Выполните команду **show version**, чтобы ответить на следующие вопросы о маршрутизаторе.
- b. Как называется образ IOS, под управлением которой работает маршрутизатор?

с. С помощью команды **show version** ответьте на следующие вопросы о коммутаторе.

Как называется образ IOS, под управлением которой работает коммутатор?

Шаг 2: Отобразите таблицу маршрутизации на маршрутизаторе.

Выполните команду **show ip route** на маршрутизаторе, чтобы ответить на следующие вопросы. Какой код используется в таблице маршрутизации для обозначения сети с прямым подключением?

Шаг 3: Выведите на маршрутизатор сведения об интерфейсе.

С помощью команды show interface g0/1 ответьте на следующие вопросы.

Опишите работоспособное состояние интерфейса G0/1.

Назовите MAC-адрес интерфейса G0/1.

Каким образом в этой команде отображается адрес в Интернете?

Шаг 4: Выведите на маршрутизатор и коммутатор сводный список интерфейсов.

Для проверки конфигурации интерфейса можно использовать несколько команд. Одна из наиболее удобных — команда **show ip interface brief**. Выходные данные команды содержат сводный список интерфейсов устройства с указанием статуса каждого интерфейса.

а. Введите команду **show ip interface brief** на маршрутизаторе.

R1# show ip interface brief

Interface	IP-Address	OK? Method Status	Protocol
Embedded-Service-Engine(/0 unassigned	YES unset administratively down	n down
GigabitEthernet0/0	192.168.0.1	YES manual up	up
GigabitEthernet0/1	192.168.1.1	YES manual up	up
Serial0/0/0	nassigned YES	S unset administratively down down	n .
Serial0/0/1	unassigned	YES unset administratively down	n down
R1#			

b. Введите команду **show ip interface brief** на коммутаторе.

S1# show ip interface brief

Interface	IP-Address		OK? Me	thod Status	Protocol
Vlan1	192.168.1.2	YES	manual	up	up
FastEthernet0/1	unassigned	YES	unset	down	down
FastEthernet0/2	unassigned	YES	unset	down	down
FastEthernet0/3	unassigned	YES	unset	down	down
FastEthernet0/4	unassigned	YES	unset	down	down
FastEthernet0/5	unassigned	YES	unset	up	up
FastEthernet0/6	unassigned	YES	unset	up	up

FastEthernet0/7	unassigned	YES unset	down	down
FastEthernet0/8	unassigned	YES unset	down	down
FastEthernet0/9	unassigned	YES unset	down	down
FastEthernet0/10	unassigned	YES unset	down	down
FastEthernet0/11	unassigned	YES unset	down	down
FastEthernet0/12	unassigned	YES unset	down	down
FastEthernet0/13	unassigned	YES unset	down	down
FastEthernet0/14	unassigned	YES unset	down	down
FastEthernet0/15	unassigned	YES unset	down	down
FastEthernet0/16	unassigned	YES unset	down	down
FastEthernet0/17	unassigned	YES unset	down	down
FastEthernet0/18	unassigned	YES unset	down	down
FastEthernet0/19	unassigned	YES unset	down	down
FastEthernet0/20	unassigned	YES unset	down	down
FastEthernet0/21	unassigned	YES unset	down	down
FastEthernet0/22	unassigned	YES unset	down	down
FastEthernet0/23	unassigned	YES unset	down	down
FastEthernet0/24	unassigned	YES unset	down	down
GigabitEthernet0/1	unassigned	YES unset	down	down
GigabitEthernet0/2	unassigned	YES unset	down	down
S1#				

Часть 4: Защищенный удаленный доступ к маршрутизатору

Шаг 1: Настройте имя домена IP и создайте ключи шифрования.

а. Присвойте маршрутизатору R1 доменное имя academy.net.

```
R1(config) # ip domain-name academy.net
```

b. Создайте ключи RSA длиной 1024 бита.

```
R1(config)# crypto key generate rsa modulus 1024
The name for the keys will be: R1.academy.net
% The key modulus size is 1024 bits
% Generating 1024 bit RSA keys, keys will be non-exportable...
[OK] (elapsed time was 2 seconds)

*Jun 26 04:58:35.679: %SSH-5-ENABLED: SSH 1.99 has been enabled
```

Шаг 2: Создайте пользователя SSH и настройте линии VTY, ограничив доступ протоколом SSH.

а. Создайте учетную запись с именем пользователя **SSHuser** и секретным паролем **cisco**.

```
R1(config) # username SSHuser secret cisco
```

b. Настройте линии VTY для использования учетных данных в локальной базе данных имен пользователей.

```
R1(config)# line vty 0 4
R1(config-line)# login local
```

с. Линии VTY должны предоставлять удаленный доступ только по протоколу SSH.

R1(config-line) # transport input ssh

Шаг 3: Проверка реализации протокола SSH.

- а. На компьютере РС-А нажмите **Пуск** и введите **Tera Term**. Выберите **Tera Term** в списке результатов поиска.
- b. Введите значение 192.168.1.1 в поле «Хост». Для продолжения нажмите ОК.

с. Щелкните **Продолжить** в диалоговом окне предупреждения системы безопасности. Введите имя пользователя **SSHuser** и пароль **cisco**. Для продолжения нажмите **OK**.

Что отображается в окне сообщения?

Вы должны находиться в командной строке маршрутизатора R1. Если вам это не удалось, проверьте правильность настроек и введенных учетных данных. Для получения дальнейших указаний обратитесь к инструктору.

Вопросы для повторения

1.	. Если интерфейс G0/1 выключен администратором, ка	акая команда конфигурации интерфейса позволи
	его включить?	

2.	Что произойдет в случае неправильной конфигурации интерфейса G0/1 на маршрутизаторе с IP-адресом 192.168.1.2?

Сводная таблица по интерфейсам маршрутизаторов

Сводная таблица по интерфейсам маршрутизаторов					
Модель маршрутизатора	Интерфейс Ethernet № 1	Интерфейс Ethernet № 2	Последовательный интерфейс № 1	Последовательный интерфейс № 2	
1800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)	
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)	
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)	
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)	
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)	

Примечание. Чтобы узнать, как настроен маршрутизатор, посмотрите на интерфейсы и определите тип маршрутизатора и количество имеющихся у него интерфейсов. Перечислить все комбинации конфигураций для каждого класса маршрутизаторов невозможно. Эта таблица содержит идентификаторы для возможных комбинаций интерфейсов Ethernet и последовательных интерфейсов на устройстве. Другие типы интерфейсов в таблице не представлены, хотя они могут присутствовать в данном конкретном маршрутизаторе. В качестве примера можно привести интерфейс ISDN BRI. Строка в скобках — это официальное сокращение, которое можно использовать в командах Cisco IOS для обозначения интерфейса.