Линейные операторы. Собственные векторы линейного оператора

Пусть V — линейное пространство.

Определение 1. Если задан закон f, по которому каждому вектору $\vec{x} \in V$ поставлен в соответствие единственный вектор $\vec{y} \in V$, то будем говорить, что задано **преобразование** (отображение, оператор) f пространства V в себя и записывать $f: V \to V$.

Вектор \vec{y} называется **образом** вектора \vec{x} , а вектор \vec{x} – **прообразом** вектора \vec{y} . Если преобразование f переводит вектор \vec{x} в вектор \vec{y} , то это будем записывать как $\vec{y} = f(\vec{x})$.

Определение2. Преобразование f называется **линейным**, если выполнены два условия:

- 1) $f(\vec{x}_1 + \vec{x}_2) = f(\vec{x}_1) + f(\vec{x}_2), \forall \vec{x}_1, \vec{x}_2 \in V;$
- 2) $f(\lambda \vec{x}) = \lambda f(\vec{x}), \forall \vec{x} \in V, \forall \alpha \in R$.

Пусть линейное преобразование f переводит базис $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ в векторы $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$, то есть $f(\vec{e}_i) = \vec{e}_i', i = 1, 2, ..., n$, при этом

$$\begin{cases} \vec{e}_1' = a_{11}\vec{e}_1 + a_{21}\vec{e}_2 + \dots + a_{n1}\vec{e}_n, \\ \vec{e}_2' = a_{12}\vec{e}_1 + a_{22}\vec{e}_2 + \dots + a_{n2}\vec{e}_n, \\ \dots \\ \vec{e}_n' = a_{1n}\vec{e}_1 + a_{2n}\vec{e}_2 + \dots + a_{nn}\vec{e}_n. \end{cases}$$

Определение 3. Матрица вида

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

называется **матрицей линейного преобразования** f в базисе $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$. Пусть вектор $\vec{x}(x_1; x_2; ...; x_n)$ в базисе $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$, то есть $\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + ... + x_n \vec{e}_n$. Найдем $f(\vec{x})$.

Предположим, что $f(\vec{x}) = (y_1, y_2, ..., y_n)$. Тогда $f(\vec{x}) = y_1 \vec{e}_1 + y_2 \vec{e}_2 + ... + y_n \vec{e}_n$.

С другой стороны

И

$$f(\vec{x}) = f(x_1\vec{e}_1 + x_2\vec{e}_2 + \ldots + x_n\vec{e}_n) = x_1f(\vec{e}_1) + x_2f(\vec{e}_2) + \ldots + x_nf(\vec{e}_n) =$$

$$= x_1(a_{11}\vec{e}_1 + a_{21}\vec{e}_2 + \ldots + a_{n1}\vec{e}_n) + x_2(a_{12}\vec{e}_1 + a_{22}\vec{e}_2 + \ldots + a_{n2}\vec{e}_n) + \ldots + x_n(a_{1n}\vec{e}_1 + a_{2n}\vec{e}_2 + \ldots + a_{nn}\vec{e}_n) =$$

$$= (a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n)\vec{e}_1 + (a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n)\vec{e}_2 + \ldots + (a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n)\vec{e}_n.$$
 Отсюда

$$\begin{cases} y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n, \\ y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n, \\ \dots \\ y_n = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n. \end{cases}$$

Обозначим
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, \ Y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}, \ A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
. Тогда система примет вид $Y = AX$.

Определение 4. Пусть в линейном пространстве V даны два базиса $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ и $\vec{e}'_1, \vec{e}'_2, ..., \vec{e}'_n$

$$\begin{cases} \vec{e}_1' = t_{11}\vec{e}_1 + t_{21}\vec{e}_2 + \dots + t_{n1}\vec{e}_n, \\ \vec{e}_2' = t_{12}\vec{e}_1 + t_{22}\vec{e}_2 + \dots + t_{n2}\vec{e}_n, \\ \dots \\ \vec{e}_n' = t_{1n}\vec{e}_1 + t_{2n}\vec{e}_2 + \dots + t_{nn}\vec{e}_n. \end{cases}$$

Матрица
$$T = \begin{pmatrix} t_{11} & t_{12} & \dots & t_{1n} \\ t_{21} & t_{22} & \dots & t_{2n} \\ \dots & \dots & \dots & \dots \\ t_{n1} & t_{n2} & \dots & t_{nn} \end{pmatrix}$$
 называется **матрицей перехода от базиса** $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$ **к**

базису $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$.

Если $\vec{x}(x_1;x_2;...;x_n)$ в базисе $\vec{e}_1,\vec{e}_2,...,\vec{e}_n$ и $\vec{x}(x_1';x_2';...;x_n')$ в базисе $\vec{e}_1',\vec{e}_2',...,\vec{e}_n'$, то X=TX',

где
$$X' = \begin{pmatrix} x_1' \\ x_2' \\ \dots \\ x_n' \end{pmatrix}$$
.

Зависимость между матрицами одного и того же оператора в различных базисах.

Теорема 1. Если $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ и $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$ – два базиса некоторого линейного пространства и A – матрица линейного оператора f в базисе $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$, то матрица B этого оператора в базисе $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$ имеет вид

$$B = T^{-1} \cdot A \cdot T , \qquad 1)$$

где T — матрица перехода от базиса $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ к базису $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$.

Следствие.

Если линейный оператор имеет в некотором базисе невырожденную матрицу, то и в любом другом базисе матрица этого оператора является невырожденной, то есть если A и B —матрицы линейного оператора в двух различных базисах $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ и $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$ соответственно и $\det A \neq 0$, то $\det A = \det B \neq 0$.

Замечание.

Если A и B —матрицы линейного оператора в двух различных базисах $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ и $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$ соответственно, то $A = T \cdot B \cdot T^{-1}$.

Характеристическое уравнение линейного оператора.

Теорема 2.

Если A и B —матрицы линейного оператора в двух различных базисах $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ и $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$ соответственно, то

$$\det(A - \lambda \cdot E) = \det(B - \lambda \cdot E),$$

где λ — произвольное число и E — единичная матрица порядка n .

Определение 5. Многочлен $\det(A - \lambda \cdot E)$ степени n относительно λ называется **характеристическим многочленом** матрицы A или линейного оператора f .

Определение 6. Характеристическим уравнением линейного оператора f называется уравнение вида

$$\det(A - \lambda \cdot E) = 0,$$

где A — матрица линейного оператора f в некотором базисе.

Определение 7. Корни характеристического уравнения (2) называются **характеристическими числами** матрицы A или линейного оператора f .

Замечание. При переходе от одного базиса к другому матрица линейного оператора меняется, а характеристический многочлен остается неизменным.

Пусть
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 — матрица линейного оператора f в некотором базисе. Тогда

характеристическое уравнение примет

$$\det(A - \lambda \cdot E) = 0 \Leftrightarrow \det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} - \lambda \cdot \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} = 0 \Leftrightarrow \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0.$$

Собственные векторы линейного оператора.

Определение 8. Вектор \vec{x} линейного пространства называется **собственным вектором линейного оператора** f, если этот вектор ненулевой и существует действительное число k такое, что

$$f(\vec{x}) = k \cdot \vec{x}.$$

Определение 9. Число k называется **собственным числом вектора** \vec{x} относительно линейного оператора f.

Равенство (3) можно записать в матричном виде

$$A \cdot X = k \cdot X \Leftrightarrow A \cdot X = k \cdot (E \cdot X) \Leftrightarrow A \cdot X = (k \cdot E) \cdot X \Leftrightarrow (A - k \cdot E) \cdot X = O$$

Равенство (3) можно записать в матричном виде
$$A \cdot X = k \cdot X \Leftrightarrow A \cdot X = k \cdot (E \cdot X) \Leftrightarrow A \cdot X = (k \cdot E) \cdot X \Leftrightarrow (A - k \cdot E) \cdot X = O,$$
 где
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} - \text{ матрица линейного оператора } f \text{ в некотором базисе,}$$

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$
 —матрица—столбец из координат вектора \vec{x} в том же базисе.

$$\det(A - \lambda \cdot E) = 0 \Leftrightarrow \det \begin{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} - \lambda \cdot \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} = 0 \Leftrightarrow \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0.$$

Теорема 3.

Для того, чтобы линейный оператор f имел собственный вектор \vec{x} с собственным значением k, необходимо и достаточно, чтобы число k являлось корнем характеристического уравнения этого оператора.

Теорема 4.

Пусть k — собственное число линейного оператора f с матрицей A n — мерного линейного пространства. Если ранг матрицы $A - k \cdot E$ равен r, то существует n - r линейно независимых собственных векторов линейного оператора f с собственным числом k .

Пример 1. Выясните, являются ли линейными операторы $f: \mathbb{R}^3 \to \mathbb{R}^3$, заданные условиями: a) $f(\vec{x}) = (x_1 - x_3; x_2^2; x_1 + 2x_2 + 3x_3), \vec{x}(x_1; x_2; x_3) \in \mathbb{R}^3$. 6) $f(\vec{x}) = [\vec{x}, \vec{a}], \vec{a} = 2\vec{i} - \vec{j} + 5\vec{k}, \vec{x}(x_1; x_2; x_3) \in \mathbb{R}^3$. В случае положительного ответа найдите матрицу линейного оператора f в базисе \vec{i} , \vec{j} , \vec{k} .

Решение.

а) Проверим первое условие из определения линейного оператора. Найдем $f(\vec{x} + \vec{y})$ и $f(\vec{x}) + f(\vec{y})$. Учитывая, что $\vec{x} + \vec{y} = (x_1 + y_1; x_2 + y_2; x_3 + y_3)$, получим

$$f(\vec{x} + \vec{y}) = ((x_1 + y_1) - (x_3 + y_3); (x_2 + y_2)^2; (x_1 + y_1) + 2(x_2 + y_2) + 3(x_3 + y_3)) =$$

$$= (x_1 + y_1 - x_3 - y_3; x_2^2 + y_2^2 + 2x_2y_2; x_1 + y_1 + 2x_2 + 2y_2 + 3x_3 + 3y_3),$$

$$f(\vec{x}) + f(\vec{y}) = (x_1 - x_3; x_2^2; x_1 + 2x_2 + 3x_3) + (y_1 - y_3; y_2^2; y_1 + 2y_2 + 3y_3) =$$

$$= (x_1 - x_3 + y_1 - y_3; x_2^2 + y_2^2; x_1 + 2x_2 + 3x_3 + y_1 + 2y_2 + 3y_3).$$

Сравнивая покоординатно векторы $f(\vec{x}+\vec{y})$ и $f(\vec{x})+f(\vec{y})$, получаем, что их первые и третьи координаты совпадают, тогда как вторые различны: $x_2^2+y_2^2+2x_2y_2\neq x_2^2+y_2^2$, если $x_2y_2\neq 0$.

Таким образом, равенство $f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$ выполняется не для всех векторов $\vec{x}, \vec{y} \in R^3$. Значит, оператор f не является линейным.

б) В силу свойств векторного произведения векторов получим

$$f(\vec{x} + \vec{y}) = [\vec{x} + \vec{y}, \vec{a}] = [\vec{x}, \vec{a}] + [\vec{y}, \vec{a}] = f(\vec{x}) + f(\vec{y}); \ f(\lambda \vec{x}) = [\lambda \vec{x}, \vec{a}] = \lambda [\vec{x}, \vec{a}] = \lambda f(\vec{x}).$$

Значит, оператор $f(\vec{x}) = [\vec{x}, \vec{a}]$ является линейным для любого вектора \vec{a} .

Составим матрицу оператора f в базисе \vec{i} , \vec{j} , \vec{k} . Для этого найдем $f(\vec{i})$, $f(\vec{j})$, $f(\vec{k})$. Получим

$$f(\vec{i}) = [\vec{i}, \vec{a}] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & 0 \\ 2 & -1 & 5 \end{vmatrix} = (0; -5; -1); f(\vec{j}) = [\vec{j}, \vec{a}] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 1 & 0 \\ 2 & -1 & 5 \end{vmatrix} = (5; 0; -2);$$

$$f(\vec{k}) = [\vec{k}, \vec{a}] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 0 & 1 \\ 2 & -1 & 5 \end{vmatrix} = (1; 2; 0).$$

Столбцами матрицы A этого оператора в базисе \vec{i} , \vec{j} , \vec{k} являются координаты образов базисных векторов $f(\vec{i})$, $f(\vec{j})$, $f(\vec{k})$: $A = \begin{pmatrix} 0 & 5 & 1 \\ -5 & 0 & 2 \\ -1 & -2 & 0 \end{pmatrix}$.

Пример 2.

Найдите собственные значения и собственные векторы линейного оператора, заданного в некотором базисе матрицей $A = \begin{pmatrix} 4 & -1 & -1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$.

Решение.

Составим характеристическое уравнение $\det(A - \lambda \cdot E) = 0$, корнями которого являются собственные значения λ матрицы A:

$$\det(A - \lambda \cdot E) = 0 \Leftrightarrow \begin{vmatrix} 4 - \lambda & -1 & -1 \\ 1 & 2 - \lambda & -1 \\ 1 & -1 & 2 - \lambda \end{vmatrix} = 0 \Leftrightarrow (4 - \lambda) \cdot ((2 - \lambda)^2 - 1) + (2 - \lambda + 1) - (-1 - (2 - \lambda)) = 0 \Leftrightarrow$$

$$\Leftrightarrow (4-\lambda)\cdot \left(\lambda^2 - 4\lambda + 3\right) + 6 - 2\lambda = 0 \Leftrightarrow (\lambda - 3)^2 (2 - \lambda) = 0 \Leftrightarrow \begin{bmatrix} \lambda = 2, \\ \lambda = 3. \end{bmatrix}$$

Для каждого собственного значения λ составим и решим однородную систему уравнений $(A-\lambda\cdot E)\cdot \vec x=\vec 0$:

$$(A - \lambda \cdot E) \cdot \vec{x} = \vec{0} \Leftrightarrow \begin{pmatrix} 4 - \lambda & -1 & -1 \\ 1 & 2 - \lambda & -1 \\ 1 & -1 & 2 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

решениями которой являются собственные векторы матрицы A с собственным значением λ .

Для $\lambda_1 = 2$ указанная система примет вид

$$\begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} 2x_1 - x_2 - x_3 = 0, \\ x_1 - x_3 = 0, \\ x_1 - x_2 = 0. \end{cases}$$

Решим систему методом Гаусса:

$$\begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \xrightarrow{S_1 \leftrightarrow S_2} \begin{pmatrix} 1 & 0 & -1 \\ 2 & -1 & -1 \\ 1 & -1 & 0 \end{pmatrix} \xrightarrow{S_2 + (-2)S_1} \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{pmatrix} \xrightarrow{S_3 + (-1)S_2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Последней матрице соответствует однородная система $\begin{cases} x_1 - x_3 = 0, \\ -x_2 + x_3 = 0. \end{cases}$

Выберем базисными переменными x_1 и x_2 , а свободной неизвестной — x_3 . Тогда $x_1=x_3$, $x_2=x_3$. Полагая $x_3=c_3\neq 0$, получим собственные векторы \vec{X}_1 , соответствующие собственному значению $\lambda_1=2$:

$$\vec{X}_1 = \begin{pmatrix} c_3 \\ c_3 \\ c_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot c_3,$$

где c_3 –произвольное число, отличное от нуля.

Для $\lambda_2 = 3$ указанная система примет вид

Выберем x_1 базисной переменной, а x_2 , x_3 – свободными неизвестными. Тогда $x_1=x_2+x_3$. Полагая $x_2=c_2$, $x_3=c_3$, получим собственные векторы \vec{X}_2 , соответствующие собственному значению $\lambda_2=3$:

$$\vec{X}_{2} = \begin{pmatrix} c_{2} + c_{3} \\ c_{2} \\ c_{3} \end{pmatrix} = c_{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + c_{3} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix},$$

где c_2, c_3 —произвольные числа, не равные нулю одновременно, что равносильно условию ${c_2}^2 + {c_3}^2 \neq 0$.

Запаци

- **1.** Выясните, являются ли линейными операторы $f: \mathbb{R}^3 \to \mathbb{R}^3$. В случае положительного ответа найдите:
 - а) матрицу линейного оператора f в базисе \vec{i} , \vec{j} , \vec{k} ;
 - **б)** ядро и область значений оператора f;
 - в) собственные векторы оператора $\,f\,$.

1.1.
$$f(\vec{x}) = (2x_1 + x_2 - 3x_3; 1; x_1 + x_3), \vec{x} = (x_1; x_2; x_3) \in \mathbb{R}^3;$$

1.2.
$$f(\vec{x}) = (\vec{i}, \vec{x}) \cdot \vec{j}, \ \vec{x} = (x_1; x_2; x_3) \in \mathbb{R}^3;$$

1.3. f – оператор поворота векторов пространства R^3 относительно оси Oz в положительном направлении на угол $\frac{\pi}{2}$;

1.4. f – оператор ортогонального проектирования векторов пространства R^3 на плоскость $y+\sqrt{3}z=0$. Воспользуйтесь формулой $f(\vec{e})=\vec{e}-proj_{\vec{n}}\vec{e}\cdot\frac{\vec{n}}{|\vec{n}|}=\vec{e}-\frac{(\vec{n},\vec{e})}{|\vec{n}|^2}\cdot\vec{n}$.

1.5.
$$f(\vec{x}) = 3 \cdot (\vec{a}, \vec{x}) \cdot \frac{\vec{a}}{|\vec{a}|} - 2\vec{x}, \ \vec{x} = (x_1; x_2; x_3) \in \mathbb{R}^3, \ \vec{a} = (1; 2; -2);$$

1.6.
$$f(\vec{x}) = (x_1 + x_2 - 4x_3; x_2 + 3x_3; x_3^2), \vec{x} = (x_1; x_2; x_3) \in \mathbb{R}^3.$$

Ответы:

1.1. не является;

1.2.
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \vec{X}_1 = \begin{pmatrix} 0 \\ c_2 \\ c_3 \end{pmatrix}, \forall c_2, c_3 \in R, c_2^2 + c_3^2 \neq 0, \lambda_1 = 0;$$

1.3.
$$A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \vec{X}_1 = \begin{pmatrix} 0 \\ 0 \\ c_3 \end{pmatrix}, c_3 \in R, c_3 \neq 0, \lambda_1 = 1;$$

1.4.
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{3}{4} & -\frac{\sqrt{3}}{4} \\ 0 & -\frac{\sqrt{3}}{4} & \frac{1}{4} \end{pmatrix}, \vec{X}_1 = \begin{pmatrix} c_1 \\ -\sqrt{3}c_3 \\ c_3 \end{pmatrix}, \forall c_1, c_3 \in R, c_1^2 + c_3^2 \neq 0, \lambda_1 = 1;$$

$$\vec{X}_2 = \begin{pmatrix} 0 \\ c_2 \\ \sqrt{3}c_2 \end{pmatrix}, \forall c_2 \in R, c_2 \neq 0, \lambda_2 = 0;$$

1.5.
$$A = \begin{pmatrix} -1 & 2 & -2 \\ 2 & 2 & -4 \\ -2 & -4 & 2 \end{pmatrix}, \vec{X}_1 = \begin{pmatrix} -2c_2 + 2c_3 \\ c_2 \\ c_3 \end{pmatrix}, \forall c_2, c_3 \in R, c_2^2 + c_3^2 \neq 0, \lambda_1 = 2;$$

$$\vec{X}_2 = \begin{pmatrix} -\frac{c_3}{2} \\ -c_3 \\ c_3 \end{pmatrix}, \forall c_3 \in R, c_3 \neq 0, \lambda_2 = 7.$$

1.6. не является.

2. Даны координаты вектора \vec{x} и матрица A линейного оператора в базисе $\vec{e}_1, \vec{e}_2, \vec{e}_3$. Найдите координаты вектора $f(\vec{x})$ в этом базисе.

2.1.
$$\vec{x} = (2;-1;3), A = \begin{pmatrix} 1 & -2 & 0 \\ 2 & 3 & 1 \\ 0 & 1 & -1 \end{pmatrix};$$
 2.2. $\vec{x} = (1;1;-1), A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$

Ответы:

2.1.
$$f(\vec{x}) = (4;4;-4)$$
; **2.2.** $f(\vec{x}) = (0;2;0)$.

3. Даны два базиса $\vec{e}_1, \vec{e}_2, \vec{e}_3$ и $\vec{e}_1', \vec{e}_2', \vec{e}_3'$ и матрица A линейного оператора в базисе $\vec{e}_1, \vec{e}_2, \vec{e}_3$. Найдите матрицу этого оператора в базисе $\vec{e}_1', \vec{e}_2', \vec{e}_3'$, если

3.1.
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 3 & 1 \end{pmatrix}, \vec{e}'_1 = \vec{e}_1 + \vec{e}_2, \vec{e}'_2 = \vec{e}_1 + \vec{e}_3, \vec{e}'_3 = \vec{e}_2 + \vec{e}_3$$

3.1.
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 3 & 1 \end{pmatrix}$$
, $\vec{e}'_1 = \vec{e}_1 + \vec{e}_2$, $\vec{e}'_2 = \vec{e}_1 + \vec{e}_3$, $\vec{e}'_3 = \vec{e}_2 + \vec{e}_3$;
3.2. $A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 1 & 1 \\ 0 & 2 & 5 \end{pmatrix}$, $\vec{e}'_1 = \vec{e}_1 + 2\vec{e}_2$, $\vec{e}'_2 = 2\vec{e}_1 - \vec{e}_2$, $\vec{e}'_3 = -\vec{e}_1 + \vec{e}_2 - \vec{e}_3$.

Ответы: 3.1.
$$B = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & -1 \\ \frac{3}{2} & -\frac{1}{2} & 0 \\ \frac{3}{2} & \frac{3}{2} & 4 \end{pmatrix}$$
; **3.2.** $B = \begin{pmatrix} \frac{10}{3} & \frac{5}{3} & -3 \\ -\frac{1}{3} & \frac{13}{3} & -2 \\ \frac{8}{3} & \frac{16}{3} & -3 \end{pmatrix}$.