XGBoost

Jakub Tyrek

16 maja 2018

XGBoost - co to jest?

XGBoost - extreme gradient boosting - to bibiloteka (algorytm + implementacja) służąca do klasyfikacji / predykcji.

- boosting metoda składania słabych klasyfikatorów w jeden silny.
- gradient boosting metoda składania słabych klasyfikatorów w jeden silny z wykorzystaniem gradientu funckji kosztu.
- extreme obliczeniowe sztuczki implementacyjne.

Drzewo decyzyjne

Słabym klasyfikatorem w XGBoost jest drzewo decyzyjne.

Boosting - ogólna idea

- ▶ Dana jest procedura tworzenia słabego klasyfikatora (f_k) (np. drzewo decyzyjne).
- ▶ Silny klasyfikator (ϕ_k) tworzony jest iteracyjnie.
- W pierwszej iteracji silny klasyfikator jest słabym klasyfikatorem.
- ▶ W kolejnych iteracjach silny klasyfikator jest poprawiany słabym klasyfikatorem $\phi_{k+1} = \phi_k + \alpha_k f_k$.
- Silny klasyfikator jest sumą słabych klasyfikatorów $\phi_K = \sum_{k=1}^K f_k$.

Sformułowanie zadania

Dany jest dataset $D = \{(x_i, y_i)\}, x_i \in \mathbb{R}^m, y_i \in \mathbb{R}, |D| = n.$ Zdefiniujmy $F = \{f(x) = w_{a(x)}\}$ - przestrzeń drzew decyzyjnych, gdzie T to liczba liści drzewa, $g: \mathbb{R}^m \to [T]$ funkcja przyporządkowująca przykładowi odpowiedni liść, a $w \in \mathbb{R}^T$ to wartość liścia. Predykcja \hat{y}_i zadana jest wzorem $\hat{y}_i = \phi(x_i) = \sum_{k=1}^{K} f_k(x_i), f_k \in F.$ Prócz tego dana jest zregularyzowana funkcja kosztu $L(\phi) = \sum_{i} I(\hat{y}_{i}, y_{i}) + \sum_{k} \Omega(f_{k}),$ gdzie I to różniczkowalna, wypukła funkcja kosztu, a $\Omega(f_t) = \gamma T + \frac{1}{2}\lambda \sum_i w_i^2$ to czynnik regularyzujący. Naszym zadaniem jest znalezienie ϕ , które minimalizuje L.

Oznaczenia

- ▶ $x_i \in \mathbb{R}^m$ i ty przykład w datasecie
- $ightharpoonup y_i \in \mathbb{R}$ wartość / klasa i tego przykładu
- $D = \{(x_i, y_i)\} \mathsf{dataset}$
- ightharpoonup n = |D| liczba przykładów
- $ightharpoonup \hat{y}_i$ predykcja dla i tego przykładu
- $q: \mathbb{R}^m o [T]$ funkcja wyboru liścia
- ▶ w_i wartość w j tym liściu
- ► F przestrzeń słabych klasyfikatorów
- ▶ f_k k ty słaby klasyfikator
- lacktriangledown ϕ silny klasyfikator
- I funkcja kosztu
- Ω czynnik regularyzujący
- L zregularyzowana funkcja kosztu

Załóżmy, że wykonano już t-1 iteracji. Niech $\hat{y}_i^{(t)} = \phi_t(x_i)$. Naszym zadaniem jest znalezienie f_t minimalizującego

$$L^{(t)} = \sum_{i=1}^{n} I(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)) + \Omega(f_t).$$

Wprowadźmy $g_i = \frac{\partial l(y_i, \hat{y}^{(t-1)})}{\partial \hat{y}^{(t-1)}}$, $h_i = \frac{\partial g_i}{\partial \hat{y}^{(t-1)}}$. Przybliżmy $L^{(t)}$ przez szereg Taylora

$$L^{(t)} \approx \sum_{i=1}^{n} \left(I(y_i, \hat{y}^{(t-1)}) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right) + \Omega(f_t).$$

Po opuszczeniu tego, co nie zależy od f_t

$$\widetilde{L}^{(t)} = \sum_{i=1}^{n} \left(g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right) + \Omega(f_t).$$

Szukamy f_t , który minimalizuje $\widetilde{L}^{(t)}$.

Niech $I_j = \{i : q(x_i) = j\}$ będzie zbiorem indeksów tych przykładów, które wpadają w j - ty liść. Przepiszmy

$$\widetilde{L}^{(t)} = \sum_{i=1}^{n} \left(g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right) + \gamma T + \frac{1}{2} \lambda \sum_{j=1}^{n} T w_j^2$$

$$= \sum_{j=1}^{T} \left(\left(\sum_{i \in I_j} g_i \right) w_j + \frac{1}{2} \left(\sum_{i \in I_j} h_i + \lambda \right) w_j^2 \right) + \gamma T.$$

Wybranie optymalnego f_t to wybranie odpowiednich splitów i w_j . $\widetilde{L}^{(t)}$ to funkcja kwadratowa od w_j . Stąd dla ustalonych splitów możemy wybrać optymalne wartości w_j^*

$$w_j^* = -\frac{\sum_{i \in I_j} g_i}{\sum_{i \in I_j} h_i + \lambda}.$$

Po podstawieniu dostajemy

$$\widetilde{L}^{(t)} = -\frac{1}{2} \sum_{j=1}^{T} \frac{\left(\sum_{i \in I_j} g_i\right)^2}{\sum_{i \in I_j} h_i + \lambda} + \gamma T.$$

Wiemy już jak dobrać w_j . Teraz czas na splity. Struktura drzewa decyzyjnego powstaje iteracyjnie. Zaczynamy od pojedynczego liścia i możemy dokonywać splitów w sposób zachłanny. Niech $I=I_L\sqcup I_R$, I_L - indeksy, które trafiają po splicie do lewego liścia, I_R - analogicznie. Do oceny splitu wykorzystujemy poprzednie równianie. Spadek $\widetilde{L}^{(t)}$ po splicie to

$$L_{split} = \frac{1}{2} \Big(\frac{(\sum_{i \in I_L} g_i)^2}{\sum_{i \in I_L} h_i + \lambda} + \frac{(\sum_{i \in I_R} g_i)^2}{\sum_{i \in I_R} h_i + \lambda} - \frac{(\sum_{i \in I} g_i)^2}{\sum_{i \in I} h_i + \lambda} \Big) - \gamma.$$

Inne techniki regularyzacyjne

Prócz regularyzacji za pomocą wymienionych wcześniej, korzysta się jescze z dwóch technik.

- Shrinkage skalowanie k tego słabego klasyfikatora przez η^k , czyli $\phi = \sum_{k=1}^K \eta^k f_k$.
- Column subsampling losujemy kolumny, które będą brane pod uwagę przy splitach.

Tworzenie splitów

Mamy trzy sposoby na budowanie drzewa:

- Splity dokładne
- Splity przybliżone
- Histogram

Splity dokładne

Powyższe pozwala nam sformułować dokładny sposób tworzenia drzewa.

- Dla każdej rozpatrywanej kolumny i dla każdej wartości w tej kolumnie liczymy wartość L_{split}.
- Dokonujemy podziału dla kolumny i wartości maksymalizującej L_{split}.
- Dokonujemy splitów dopóki nie osiągniemy maksymalnej głębokości.
- ightharpoonup Dokonujemy pruningu splitów, dla których $L_{split} < 0$.
- Wartości NA kierowane są do tego liścia, który daje większy L_{split}.

Splity przybliżone

Poprzedni sposób działania wymagał sprawdzenia każdej wartości. Zamiast tego, można rozpatrywać tylko splity w wartościach pewnych percentyli. Ściślej niech $D_k = \{(x_{1k}, h_1), \ldots, (x_{nk}, h_n)\}$ będzie multi-zbiorem k - tej cechy. Definiujemy ważony kwantyl $r_k : \mathbb{R} \to [0, +\infty)$ wzorem

$$r_k(z) = \frac{1}{\sum_{(x,h)\in D_k} h} \sum_{(x,h)\in D_k, x$$

Splity przybliżone

Dlaczego ważymy h? Inspiracja pochodzi z innej formy $\widetilde{L}^{(t)}$:

$$\widetilde{L}^{(t)} = \frac{1}{2} \sum_{i=1}^n h_i \Big(f_t(x_i) - \frac{g_i}{h_i} \Big)^2 + \Omega(f_t) + const.$$

Kandydatami na wartości splitu są te liczby $\{s_{k1},\ldots,s_{kl}\}$, które spełniają

$$|r_k(s_{k,j}) - r_k(s_{k,j+1})| < \epsilon, \ s_{k1} = \min_i x_{ik}, \ s_{kl} = \max_i x_{ik}.$$

Od parametru ϵ zależy liczba kandydatów na wartości. Ta metoda generowania splitów generuje nowych kandydatów w każdej iteracji. Splity wybieramy jak w poprzedniej metodzie.

Histogram

Trzecią metodą wybierania splitów jest histogram. Jest on bardzo podobny do splitów przybliżonych. Zamiast generowania kandydatów co iterację, każdy feature jest dyskretyzowany przed treningiem.

Parametry

- eta η parametr shrinkage.
- \blacktriangleright gamma γ parametr stojący przy liczbie liści w czynniku regularyzacyjnym.
- max_depth maksymalna głębokość drzewa.
- min_child_weight minimalna wartość sumy h_i w liściu potrzebna do przeprowadzenia splitu.
- max_delta_step maksymalna wartość absolutna wartości w liściu.

Parametry

- subsample jaka część przykładów jest wybierana do treningu.
- colsample_bytree jaka część kolumn jest wybierana do treningu pojedynczego drzewa.
- colsample_bylevel jaka część kolumn jest wybierana do pojedynczego splitu.
- ▶ lambda λ w czynniku regularyzacyjnym $\Omega(f_t) = \gamma T + \frac{1}{2} \lambda \sum_j w_j^2 + \alpha \sum_j |w_j|$ przy normie L2.
- lacktriangle alpha lpha w czynniku Iregularyzacyjnym przy normie L1.

Parametry

- tree_method sposób tworzenia splitów
 - 'exact', 'gpu_exact' splity dokładne.
 - 'approx' splity przybliżone.
 - ▶ 'hist, 'gpu_hist' histogram.
 - 'auto' heurystyka wybierająca jedno z powyższych.
- lacktriangle sketch_eps ϵ używany tylko przy splitach przybliżonych
- scale_pos_weight liczba przez jaką są mnożone wagi przykładów pozytywnych.
- grow_policy używany w przypadku histogramu w jakiej kolejności budować drzewo
 - 'depthwise' dziel od korzenia w dół
 - 'lossguide' dziel tam, gdzie największy L_{split}.
- max_leaves maksymalna liczba liści.
- max_bin maksymalna liczba binów w histogramie.