Inferência bayesiana de dados fonéticos

Webinário 2022

Ronaldo Lima Jr.

ronaldojr@letras.ufc.br
ronaldolimajr.github.io

Universidade Federal do Ceará

Roteiro

1. Dados Individuais x Agrupados

2. Sugestão 1: efeitos mistos/aleatórios

3. Sugestão 2: modelos bayesianos

Possível caminho de progressão

- Testes de hipótese (valor de p)
- Testes de hipótese (com intervalos de confiança, tamanho de efeito, análise de poder)
- Modelos de regressão
- Modelos de regressão com efeitos mistos
- Modelos bayesianos (de efeitos mistos)

Terminologia

- Modelo de efeitos mistos
- Modelo misto
- Modelo com efeitos aleatórios
- Modelo hierárquico
- Modelo multinível

Dados Individuais x Agrupados

Dados individuais

Dados individuais

Dados individuais

→ 10 falantes!

→ Muito difícil de chegar a generalizações (análise qualitativa de dados numéricos)

Dados agrupados

→ Distância (euclidiana) entre as (médias das) vogais de cada par, por falante, em cada gravação

Dados agrupados de [i 1]

$$\rightarrow f(3) = 0.035; p = 0.991$$

Porém...

Dados agrupados de [ε ae]

ightarrow f(3)=3.234;~p=0.0335, mas sem valores de p significativos em teste pareado post-hoc Tukey HSD

Porém...

Dados agrupados de [u v]

$$\rightarrow f(3) = 0.907; p = 0.447$$

Porém...

Linha reta?

Linha reta?

[u ʊ]

Sugestão 1: efeitos

mistos/aleatórios

Efeitos mistos/aleatórios

https://xkcd.com/2533/

Soma das distância euclidianas

→ Adicionar os efeitos variáveis alterou a linha?
Não, mas mudou a confiança do modelo sobre a linha:

Soma das distância euclidianas

→ Adicionar os efeitos variáveis alterou a linha?
Não, mas mudou a confiança do modelo sobre a linha:

```
1 > fit 1 = lm(sum ~ recording) 1 > fit2 = lmer(sum ~ recording + (recording | speaker))
2 > summary(fit1) 2 > summary(fit2)

3 Coefficients: 3 Fixed effects: Estimate Std. Error t value 4 Estimate Std. Error df t value 5 (Intercept) 1.1605 0.2767 4.195 5 (Intercept) 1.16050 0.12993 15.49896 8.932 6 recording 0.1439 0.1010 1.424 6 recording 0.14390 0.07027 9.81783 2.048
```

→ Consequentemente:

Predictors	Estimates	CI	р	Estimates	CI	р
Intercept	1.16	0.60 - 1.72	< 0.001	1.16	0.90 - 1.42	< 0.001
recording	0.14	-0.06 - 0.35	0.162	0.14	0.00 - 0.29	0.048

Observações sobre valores de p

- Definição do valor de p (probabilidade dos dados vs probabilidade das hipóteses)
- Problemas/limitações
 - O valor de *p* não diz nada sobre a hipótese de trabalho (alternativa)
 - O valor de p não diz nada sobre o tamanho do efeito
 - Limiar arbitrário
 - Decisão categórica sobre os dados (porém, comumente utilizada com gradiência de acordo com a intenção do pesquisador?)
 - É possível obter um valor de *p* baixo com baixo poder estatístico e/ou com pequeno pequeno tamanho de efeito
 - p-hacking
- Modelos com efeitos mistos n\u00e3o geram valores de p (Bates), e diferentes aproxima\u00f3\u00f3\u00e3es geram valores diferentes (e.g. lmerTest vs sjPlot)

Observações sobre valores de p

```
1 | lmertTest::fit2 = lmer(sum ~ recording + (recording|speaker))
2 | summary(fit2)
```

Predictors	Estimates	р
Intercept	1.16	< 0.001
recording	0.14	0.068

- 1. Satterthwaite's method
- 2. t-statistics and the normal distribution function
- 3. conditional F-test with Kenward-Roger approximation

Predictors	Estimates	р	
Intercept	1.16	< 0.001	
recording	0.14	0.048	

Predictors	Estimates	р
Intercept	1.16	< 0.001
recording	0.14	0.071

Intercepts e slopes variáveis

→Modelos de efeitos mistos podem prever valores para participantes individuais

Sugestão 2: modelos bayesianos

Por que um modelo bayesiano?

- \rightarrow Probabilidade dos parâmetros (hipóteses) diante dos dados (em vez de probabilidade dos dados diante da H_0)
- → Distribuições de probabilidades dos coeficientes (em vez de point estimates)
- → Intervalos de credibilidade (em vez de intervalos de confiança)
- → Informação/conhecimento prévios no modelo
 (em vez de todos os possíveis valores de coeficientes terem a mesma probabilidade a priori)

Modelo bayesiano de efeitos mistos

Predictors	Estimates	50% CI	95% CI
Intercept	1.16	1.07 - 1.26	0.86 - 1.47
Recording	0.14	0.09 - 0.20	-0.04 - 0.31

Modelo bayesiano de efeitos mistos

- → 6% da área sob a curva (AUC – area under the curve) abaixo de 0
- → Este tipo de análise adiciona incerteza bem-vinda ao inferir valores (parâmetros) da população com base em uma amostra limitada

Mais exemplos

- Alerrandro - Felipe - Pablo - Many Speech Analysis

Modelo bayesiano de efeitos mistos: valores previstos

Modelo bayesiano de efeitos mistos

→Várias linhas prováveis (neste caso, 100) previstas pelo modelo amostradas da distribuição a posteriori (em vez de uma única linha)

Não precisam ser linhas retas

Não precisam ser linhas retas

- "linear" em matemática não significa ter uma relação 1:1, nem ser uma linha reta
- → Significa adição de termos
 - Há modelos de regressão (linear) que preveem curvas ao somar termos específicos à fórmula de regressão. E.g.:
 - Regressões polinomiais (quadrática, cúbica, etc.)
 - Splines
 - Modelos aditivos generalizados (GAMs Generalized Additive Models)

Não precisam ser linhas retas

Finalizando

- Desvantagens de modelos bayesianos:
 - Curva de aprendizagem
 - Demanda computacional
- Onde aprender?
 - McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan. Chapman and Hall/CRC.
 - → https://youtube.com/playlist?list= PLDcUM9US4XdMROZ57-OIRtIKOaOynbgZN
 - Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan.

 Lima Jr, R. M., & Garcia, G. D. (2021). Diferentes análises estatísticas podem levar a conclusões categoricamente distintas. Revista Da ABRALIN, 20(1), 1-19. https://doi.org/10.25189/rabralin.v20i1.1790

Garcia, G. D., & Lima Jr, R. M. (2021). Introdução à estatística bayesiana aplicada à linguística. Revista Da ABRALIN, 20(2), 1-24.
 https://doi.org/10.25189/rabralin.v20i2.1914

Perguntas?