

CY-Tech		Statistiques
2023 - 2024	TD 1 (Estimation ponctuelle)

Mathématiques **ING2-GSI**

Exercice 1. -

Soit X le temps d'attente avant d'être servi au RU. Une série d'observations journalières donne l'échantillon suivant (en min)

10	11	15	8	4	22	13	2	10	10	7	1	19	2	3	1
16	1	8	15	3	1	19	2	3	19	9	8	15	5	9	

On calcule la moyenne $\bar{x} = 9$ min et l'écart-type empirique $s^* = 6.3$ min.

- 1. Quelle loi suit X?
- 2. Comment déterminer le paramètre de cette loi à partir de l'échantillon?
- 3. En déduire la probabilité qu'un étudiant attende plus de 15 min avant d'être servi.

Exercice 2. -

Exercice 2. - Soit X une variable aléatoire dont la densité f est définie par $f(x) = \begin{cases} \frac{4x^3}{\theta^4} & \text{si } x \in [0, \theta] \\ 0 & \text{sinon} \end{cases}$

où θ est un paramètre strictement positif.

On se donne un n-échantillon de X, $(X_1, X_2, ..., X_n)$ et on définit l'estimateur T_n de θ par : $T_n = a_n(X_1 + X_2 + \dots + X_n).$

- 1. Vérifier que $E(X) = \frac{4\theta}{5}$ et que $V(X) = \frac{2\theta}{75}$
- 2. Calculer a_n pour que T_n soit sans biais, puis calculer son risque quadratique.

Exercice 3.

Pour estimer la proportion p d'individus d'une région atteints par une affection, deux médecins ont examinés respectivement $n_1 = 40$ et $n_2 = 60$ personnes choisies au hasard, de manière indépendante. Les proportions de personnes atteintes dans les deux échantillons sont notées $\overline{x_1}$ et $\overline{x_2}$.

- 1. Les proportions $\overline{x_1}$ et $\overline{x_2}$ sont des réalisations des variables aléatoires $\overline{X_1}$ et $\overline{X_2}$. $\overline{X_1}$ et $\overline{X_2}$ sont-ils des estimateurs sans biais de p? Sont-ils indépendants?
- 2. Les esti<u>ma</u>te<u>urs</u> suivants sont-ils sans biais?

•
$$T_3 = \frac{\overline{X_1 + X_2}}{2}$$
.
• $T_4 = \frac{2\overline{X_1 + 3X_2}}{5}$

- 3. Parmi les estimateurs suivants lequel a le plus faible risque quadratique?
 - $\bullet \ T_1 = \overline{X_1}.$ • $T_1 = \overline{X_1}$. • $T_2 = \overline{X_2}$. • $T_3 = \frac{\overline{X_1} + \overline{X_2}}{2}$. • $T_4 = \frac{2}{5}$
- 4. Si le premier médecin trouve 25 personnes atteintes (sur 40) et le second en trouve 38 (sur 60), quelle est la meilleure estimation de la proportion d'individus atteints dans la population?

1

Exercice 4. -

Soit X une variable aléatoire de densité :

$$f(x;\theta) = \begin{cases} \frac{2}{\theta} \left(1 - \frac{x}{\theta}\right) & \text{si } 0 \leq x \leq \theta \\ 0 & \text{sinon} \end{cases}$$

On peut vérifier que : $E(X) = \frac{\theta}{3}$ et $V(X) = \frac{\theta^2}{18}$. On cherche à estimer θ à partir d'un échantillon X_1 ,..., X_n de même loi que X. On utilise pour cela l'estimateur :

$$T_n = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$$

- 1. Calculer le biais de cet estimateur. Pouvez-vous éliminer ce biais?
- 2. Etablir la convergence en probabilité de T_n (modifié).
- 3. Déterminer le risque quadratique puis la convergence en moyenne quadratique.

Exercice 5. -

Soit $X_1, ..., X_n$ un échantillon de loi normale d'espérance θ et de variance $\theta(1-\theta)$ où $\theta \in]0,1[$ est un paramètre inconnu. On considère les estimateurs

$$T_1 = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 et $T_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$

- 1. Etude théorique des propriétés des estimateurs
 - (a) Les estimateurs sont-ils sans biais?
 - (b) Sont-ils convergents?
 - (c) Quel est le meilleur des deux?

N.B. On donne
$$V(X_i^2) = 2\theta^2 (1 - \theta^2)$$

- 2. Illustration des propriétés à l'aide du logiciel R
 - (a) Simuler un échantillon de taille n = 50 avec $\theta = 0.9$ (vérifier la simulation en calculant la moyenne, la variance et en traçant la distribution de l'échantillon). Calculer les valeurs de
 - T_1 et T_2 . Relancer la simulation et observer les valeurs obtenues pour les estimateurs (dans la fenêtre environment).
 - (b) Simuler 30 échantillons de taille n=50 (matrice à 30 lignes et 50 colonnes de réalisation de $\mathcal{N}(\theta, \theta(1-\theta)))$. Calculer les 30 valeurs de T_1 et T_2 . Comparer leur dispersion à l'aide d'un boxplot.
 - (c) Que se passe-t-il si $\theta = 0.05$?
 - (d) Que se passe-t-il si n = 5000?