Multivariable Calculus Practice Set III

Paul Beggs

March 17, 2025

1. (3 points) Determine the absolute extrema for the function $f(x,y) = x^2 + 3y^2 - 2x - y - xy$ on the triangular region with vertices (0,0), (2,0), and (0,1).

Solution. We first find the critical points of the function. We have that

$$\nabla f(x,y) = \langle 2x - 2 - y, 6y - 1 - x \rangle = \mathbf{0}$$

$$\implies y = 2x - 2 \quad \text{and} \quad x = 6(2x - 2) - 1 - x = 0$$

$$\implies y = 0$$

- 2. (1 point each) Convert each as indicated; leave each answer as exact:
 - (a) Convert the rectangular point (-5,1) to polar coordinates.
 - (b) Convert the cylindrical point $(5, \frac{7\pi}{6}, 2)$ to rectangular.
 - (c) Convert the rectangular point (-2, 4, -1) to spherical.
 - (d) Convert the spherical point $(4, \frac{11\pi}{6}, \frac{3\pi}{4})$ to cylindrical.
- 3. (3 points) Determine the value of each given integral. You need to do the work here by hand, but of course can check any answers with technology.
- 4. (3 points) Find the volume of the solid described by $x^2 + y^2 \le 1$, $x \ge 0$, $0 \le z \le 4 y$.
- 5. (3 points) Find the average value of the function $f(x,y) = x \sin(y)$ over the region enclosed by y = 0, $y = x^2$, and x = 1.
- 6. (3 points) Find the volume of the solid that lives within both the cylinder $x^2 + y^2 = 1$ and sphere $x^2 + y^2 + z^2 = 9$.

Solution. Use cylindrical coordinates.