

Model Free Control: Monte Carlo Methods

Easwar Subramanian

TCS Innovation Labs, Hyderabad

Email: easwar.subramanian@tcs.com / cs5500.2020@iith.ac.in

September 30, 2021

Overview

- Review
- 2 Towards Model Free Control
- 3 Policy Evaluation : Action Value Function
- Monte Carlo Control
- **5** Exploration

Review

Policy Evaluation from Samples: A Recap

$$V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}(G_t|s_t = s)$$

$$= \mathbb{E}_{\pi}\left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|s_t = s\right)$$

$$= \mathbb{E}_{\pi}\left[r_{t+1} + \gamma V^{\pi}(s_{t+1})|s_t = s\right]$$

- ▶ Estimate expectation from experience;
 - ★ Using total discounted reward (MC)
 - ★ Using the recursive decomposition formulation of the value function (TD)

Eligibility Traces

▶ The eligibility trace of a state $s \in \mathcal{S}$ at time t is defined recursively by

$$e_0(s) = 0$$

$$e_t(s) = \begin{cases} (\lambda \gamma)e_{t-1}(s), & s_t \neq s \\ (\lambda \gamma)e_{t-1}(s) + 1, & s_t = s \end{cases}$$

Algorithm : $TD(\lambda)$

Algorithm $TD(\lambda)$: Algorithm

- 1: Initialize e(s) = 0 for all s, V(s) arbitrarily
- 2: **for** For each episode **do**
- 3: Let s be a start state for episode k
- 4: **for** For each step of the episode **do**
- 5: Take action a recommended by policy π from state s
- 6: Collect reward r and reach next state s'
- 7: Form the one-step TD error $\delta \leftarrow r + \gamma V(s') V(s)$
- 8: Increment eligibility trace of state $s, e(s) \leftarrow e(s) + 1$
- 9: for For all states $S \in \mathcal{S}$ do
- 10: Update V(S): $V(S) \leftarrow V(S) + \alpha e(S)\delta$
- 10: Update V(S): $V(S) \leftarrow V(S) + \alpha e(S) \delta$
- 11: Update eligibility trace: $e(S) \leftarrow \lambda \gamma e(S)$
- 12: end for
- 13: Move to next state: $s \leftarrow s'$
- 14: **end for**
- 15: **end for**

Towards Model Free Control

Problem and Motivation

- ▶ Goal : How can we learn a good policy?
- ▶ Motivation: Many real world applications can be modelled as MDP
 - ★ Games like Backgammon and Go
 - ★ Robot Locomotion
 - ★ Inventory or supply chain management
- ▶ For almost all these problems, model is unknown or computationally infeasible; but sampling experiences is possible
- ▶ Learning better policies through experiences is model free control

Towards Model Free Control

DP algorithms for control

- ▶ Value Iteration
- ▶ Policy Iteration

Question: How can we do model free control?

▶ Value iteration may not come in handy because it requires knowledge of model; so not suitable

$$V_{k+1}(s) \leftarrow \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \left(\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right) \right]$$

► How about policy iteration (PI) ?

PI is a two step provess

- ★ Policy evaluation
- ★ Policy improvement

Policy Iteration : Recap

On Policy Improvement From Samples

▶ (Greedy) Policy improvement

$$\pi(s) = \arg\max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$

- ightharpoonup Generally, model free control is not done with V as greedy policy improvement over V requires the knowledge of the model
- \triangleright (Greedy) policy improvement over Q is model free

$$\pi(s) = \arg\max_{a} Q^{\pi}(s, a)$$

▶ For model-free policy improvement, we use Q^{π} , not V^{π}

Core Idea behind Model Free Control

- ightharpoonup Initialize a policy π
- ► Repeat
 - \star Policy Evaluation : Find Q^{π}
 - \star Policy Improvement: Get an improved policy from evaluation of Q^{π}

Policy Evaluation : Action Value Function

Policy Evaluation: Action Value Function

- We now need to evaluate Q^{π} instead of V^{π}
- \triangleright Recall that the state-action value function of a policy π is given by,

$$Q^{\pi}(s, a) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}(G_t | s_t = s, a_t = a)$$

$$= \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, a_t = a \right)$$

$$= \mathbb{E}_{\pi}(r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) | s_t = s, a_t = a)$$

• We can use MC or TD methods to evaluate Q^{π} using samples

First Visit Monte Carlo: Action Value Function

- ▶ To evaluate $Q^{\pi}(s, a)$ for some given state s and action a, repeat over several episodes
 - \star The first time t that $s_t = s$ and $\pi(s) = a$ in the episode
 - 1. Increment counter for number of visits to s: $N(s,a) \leftarrow N(s,a) + 1$
 - 2. Increment running sum of total returns with return from current episode: $S(s,a) \leftarrow S(s,a) + G_t$
- ▶ Monte Carlo estimate of value function $Q(s, a) \leftarrow S(s, a)/N(s, a)$

The main drawback of this algorithm is

- ▶ Many state action pairs may never be visited
- ▶ If policy π is deterministic, things get even worse

Exploring Starts Assumption

Exploring Starts (ES) Assumption

- ▶ First step of each episode start at a state-action pair, and that every such pair has non-zero probability of being selected at start
- ► Guarantees that all state-action pairs will be visited an infinite number of times in the limit of an infinite number of episodes

Not a realistic assumption at all!! But let's assume it for a while

 \blacktriangleright With ES assumption, first or every visit MC algorithm will evaluate Q^{π}

Monte Carlo Control

Policy Iteration with Action Value Function

- ► Monte Carlo Policy Evaluation, $Q = Q^{\pi}$
- ▶ Greedy policy improvement , $\pi' = \arg \max_a Q^{\pi}(s, a)$

Monte Carlo Control with ES

Algorithm Monte Carlo Control with ES

- 1: Start with an initial policy π_1 ;
- 2: **for** $k = 1, 2, \dots, K$ **do**
- 3: Policy Evaluation Step: Evaluate Q^{π_k} using first or every visit MC
- 4: Policy Improvement Step:

$$\pi_{k+1} = \arg\max_{a} Q^{\pi_k}(s, a)$$

5: end for

- Convergence of policy evaluation to Q^{π} is assured only under the ES assumption
- ▶ Once ES assumption is made, to understand convergence to Q_* and π_* one can use the same kind of arguments as we had in the policy iteration algorithm in the DP setting

Policy Iteration with Action Value Function

- ▶ Is it good to be always greedy?
- ▶ Should we patiently wait until policy evaluation step converges?

Exploration

On Greedy Action Selection

- ➤ There are two doors in front of you
- ▶ You open the left door and get reward 0 i.e. V(left) = 0
- ▶ You open the right door and get reward 1 V(right) = 1
- ▶ You open the right door and get reward 3 V(right) = 2
- You open the right door and get reward 2 V(right) = 3
- ▶ Are we sure that right door is the best door?

$\varepsilon\text{-Greedy Exploration}$

- ► Simplest idea for ensuring continual exploration
- ▶ All m actions are tried with non-zero probability every time
 - \star With probability 1ε , choose the greedy action
 - \star With probability ε , choose an action uniformly at random

$$\pi(a|s) = \frac{\varepsilon}{m} + 1 - \varepsilon$$
, if $a = \underset{a'}{\operatorname{arg\,max}} Q(s, a')$,
= $\frac{\varepsilon}{m}$, otherwise

ε -Greedy Policy Improvement

For any policy ε -greedy policy π , the ε -greedy policy π' w.r.t. Q^{π} is an improvement over π , that is, $V^{\pi'}(s) \geq V^{\pi}(s)$

ε — Greedy Policy Improvement

$$\begin{split} Q^{\pi}(s,\pi'(s)) &= \sum_{a\in\mathcal{A}} \pi'(a|s)Q^{\pi}(s,a) \\ &= \frac{\varepsilon}{m} \sum_{a\in\mathcal{A}} Q^{\pi}(s,a) + (1-\varepsilon) \max_{a} Q^{\pi}(s,a) \\ &= \frac{\varepsilon}{m} \sum_{a\in\mathcal{A}} Q^{\pi}(s,a) + (1-\varepsilon) \frac{1-\varepsilon}{1-\varepsilon} \max_{a} Q^{\pi}(s,a) \\ &= \frac{\varepsilon}{m} \sum_{a\in\mathcal{A}} Q^{\pi}(s,a) + (1-\varepsilon) \sum_{a} \frac{\pi(a|s) - \frac{\varepsilon}{m}}{1-\varepsilon} \max_{a} Q^{\pi}(s,a) \\ &\geq \frac{\varepsilon}{m} \sum_{a\in\mathcal{A}} Q^{\pi}(s,a) + (1-\varepsilon) \sum_{a} \frac{\pi(a|s) - \frac{\varepsilon}{m}}{1-\varepsilon} Q^{\pi}(s,a) \\ &= \sum_{a\in\mathcal{A}} \pi(a|s)Q^{\pi}(s,a) = V^{\pi}(s) \end{split}$$

Therefore, $V^{\pi'}(s) \geq V^{\pi}(s)$ from the policy improvement theorem

(1)

Policy Iteration with Action Value Function

- ▶ Monte Carlo Policy Evaluation, $Q = Q^{\pi}$
- **ε**-Greedy policy improvement

Policy Iteration Revisited

▶ Should we patiently wait until policy evaluation step converges?

Optimistic Policy Iteration

We can cut short the evaluation process!

- ▶ Monte Carlo Policy Evaluation, $Q \approx Q^{\pi}$
- \triangleright ε -Greedy policy improvement

Definition

Greedy in the Limit with Infinite Exploration

- ▶ All state-action pairs are visited infinitely often
- ▶ The policy converges to a purely greedy policy

$$\lim_{k \to \infty} \pi_k(a|s) = \mathbf{1}_{a = \arg\max_{a'} Q_k(s,a)}$$

 \triangleright ε -greedy is GLIE if ε decays to 0 asymptotically, for example,

$$\varepsilon_k = \frac{1}{k}$$

Optimistic GLIE Policy Iteration

Every episode

- ▶ Monte Carlo Policy Evaluation $Q \approx Q^{\pi}$
- ▶ Policy improvement using ϵ greedy with ε decay

GLIE Monte Carlo Control

Algorithm Monte Carlo Control: GLIE

- 1: Initalize Q(s,a) = 0, set $\varepsilon = 1$;
- 2: Create an ε -greedy initial policy π_1 ;
- 3: **for** $k = 1, 2, \dots, K$ **do**
- 4: Sample a trajectory from policy π_k
- 5: for For each state action (s_t, a_t) pair in the trajectory do
- 6: Compute the total discounted return G_t starting from (s_t, a_t)
- 7:

$$N(s_t, a_t) = N(s_t, a_t) + 1$$

8:

$$Q(s_t, a_t) = Q(s_t, a_t) + \frac{1}{N(s_t, a_t)} (G_t - Q(s_t, a_t))$$

- 9: end for
- 10: Set $\epsilon \leftarrow \frac{1}{k}$ and perform the policy improvement step as

$$\pi_{k+1} = \epsilon$$
-greedy (π_k)

11: end for

Monte Carlo Control

- ▶ Model free control algorithms interleave policy evaluation and policy improvement
- ▶ GLIE Monte-Carlo control converges to the optimal action-value function