Differential- und Integralrechnung, Wintersemester 2024-2025

2. Vorlesung

Reelle Zahlenfolgen

Definition

Sei $M \neq \emptyset$. Eine Funktion $f \colon \mathbb{N} \to M$ nennt man eine Folge in M. Die Funktionswerte der Folge nennt man Folgenglieder (Glieder der Folge) und verwendet die Bezeichnung $x_n := f(n), n \in \mathbb{N}$, für sie. Die Folge selbst wird mit $(x_n)_{n \in \mathbb{N}}$ oder $(x_n)_{n \geq 0}$ bezeichnet. Ist $M = \mathbb{R}$, so spricht man von einer reellen Zahlenfolge. Wir werden uns nur mit reellen Zahlenfolgen beschäftigen und werden sie einfach Zahlenfolgen nennen.

Reelle Zahlenfolgen

Bemerkungen

- 1) Die Nummerierung der Folgenglieder kann auch mit einer anderen natürlichen Zahl begonnen werden, z.B.:
 - ightharpoonupmit 1: $(x_n)_{n \in \mathbb{N}^*}$ oder $(x_n)_{n \geq 1}$; ightharpoonupmit einer festen Zahl $k \in \mathbb{N}$: $(x_n)_{n \geq k}$.
- 2) Folgen kann man

 $ightharpoonup \exp$ explizit mittels einer Formel für alle Folgenglieder (z.B.: $x_n = 3^n, \forall n \in \mathbb{N}$)

oder

ightharpoonup rekursiv (z.B. die Fibonaccifolge: $x_0 = x_1 = 1$,

$$x_{n+2} = x_{n+1} + x_n, \ \forall n \in \mathbb{N})$$

einführen.

Die Untersuchung des Verhaltens von Folgen

Definition

Die Zahlenfolge $(x_n)_{n\in\mathbb{N}}$ heißt

- wachsend, falls $x_n \leq x_{n+1}, \forall n \in \mathbb{N}$, ist;
- streng wachsend, falls $x_n < x_{n+1}$, $\forall n \in \mathbb{N}$, ist;
- fallend, falls $x_n \ge x_{n+1}$, $\forall n \in \mathbb{N}$, ist;
- streng fallend, falls $x_n > x_{n+1}$, $\forall n \in \mathbb{N}$, ist;
- monoton, falls sie wachsend oder fallend ist;
- streng monoton, falls sie streng wachsend oder streng fallend ist.
- \hookrightarrow Diese Begriffe beschreiben die Monotonie der Folge $(x_n)_{n\in\mathbb{N}}$.

Die Untersuchung des Verhaltens von Folgen

Definition

Seien $(x_n)_{n\in\mathbb{N}}$ eine Zahlenfolge und X die Menge gebildet aus allen Folgengliedern (d.h. $X=\{x_n\mid n\in\mathbb{N}\}$). Die Folge $(x_n)_{n\in\mathbb{N}}$ heißt

- nach unten beschränkt
- nach oben beschränkt
- beschränkt
- nach unten unbeschränkt
- nach oben unbeschränkt
- unbeschränkt.

wenn X die betreffende Eigenschaft hat.

 \hookrightarrow Diese Begriffe beschreiben die Beschränktheit der Folge $(x_n)_{n\in\mathbb{N}}$.

Die Untersuchung des Verhaltens von Folgen

Bemerkungen

- 1) Jede wachsende Folge ist nach unten beschränkt.
- 2) Jede fallende Folge ist nach oben beschränkt.
- 3) Die Zahlenfolge $(x_n)_{n\in\mathbb{N}}$ ist beschränkt $\Leftrightarrow \exists c>0$, so dass $|x_n|\leq c, \ \forall n\in\mathbb{N}.$

Th2 (Rechenregeln für konvergente Folgen)

Sind $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergente Folgen, dann gelten:

$$\lim_{n\to\infty} (a_n+b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n,$$

$$\lim_{n\to\infty} (t\cdot a_n) = t\cdot \lim_{n\to\infty} a_n, \ \forall \ t\in\mathbb{R},$$

$$\lim_{n\to\infty} (a_n\cdot b_n) = (\lim_{n\to\infty} a_n)\cdot (\lim_{n\to\infty} b_n),$$

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}, \ \text{falls} \ b_n \neq 0, \ \forall n\in\mathbb{N}, \ \text{und} \ \lim_{n\to\infty} b_n \neq 0.$$

Die Addition betreffend

- $\forall x \in \mathbb{R}$: $x + \infty = \infty + x = \infty$,
- $\forall x \in \mathbb{R}$: $x + (-\infty) = (-\infty) + x = -\infty$,
- $\infty + \infty = \infty$, $(-\infty) + (-\infty) = -\infty$.

$$\infty + (-\infty), \quad (-\infty) + \infty.$$

Die Multiplikation betreffend

•
$$x \cdot \infty = \infty \cdot x = \begin{cases} \infty, \text{ falls } x \in (0, \infty) \\ -\infty, \text{ falls } x \in (-\infty, 0), \end{cases}$$

•
$$x \cdot (-\infty) = (-\infty) \cdot x = \begin{cases} -\infty, \text{ falls } x \in (0, \infty) \\ \infty, \text{ falls } x \in (-\infty, 0), \end{cases}$$

•
$$\infty \cdot \infty = \infty$$
, $(-\infty) \cdot (-\infty) = \infty$,

•
$$\infty \cdot (-\infty) = (-\infty) \cdot \infty = -\infty$$
.

$$0 \cdot \infty$$
, $\infty \cdot 0$, $0 \cdot (-\infty)$, $(-\infty) \cdot 0$.

Die Division betreffend

- $\forall x \in \mathbb{R}$: $\frac{x}{\infty} = \frac{x}{-\infty} = 0$,
- $\frac{1}{0+} = \infty$, $\frac{1}{0-} = -\infty$.

$$\frac{\infty}{\infty}$$
, $\frac{-\infty}{-\infty}$, $\frac{\infty}{-\infty}$, $\frac{-\infty}{\infty}$

Potenzen betreffend

•
$$x^{\infty} = \begin{cases} \infty, \text{ falls } x \in (1, \infty) \\ 0, \text{ falls } x \in [0, 1), \end{cases}$$

•
$$x^{-\infty} = \begin{cases} 0, \text{ falls } x \in (1, \infty) \\ \infty, \text{ falls } x \in (0, 1), \end{cases}$$

•
$$(\infty)^x = \begin{cases} \infty, \text{ falls } x \in (0, \infty) \\ 0, \text{ falls } x \in (-\infty, 0), \end{cases}$$

•
$$\infty^{\infty} = \infty$$
. $\infty^{-\infty} = 0$.

$$1^{\infty}$$
, 0^0 , ∞^0 , $1^{-\infty}$.

Ein wichtiges Ergebnis

Th3

Sei $(x_n)_{n\in\mathbb{N}}$ eine Zahlenfolge und $x\in\mathbb{R}$. Dann gilt

$$\lim_{n\to\infty} x_n = x \Leftrightarrow \lim_{n\to\infty} |x_n - x| = 0.$$

Insbesondere ist

$$\lim_{n\to\infty}x_n=0\Leftrightarrow\lim_{n\to\infty}|x_n|=0.$$

Teilfolgen

Def.: Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge. Ist $(n_k)_{k\in\mathbb{N}}$ eine streng wachsende Folge natürlicher Zahlen (d.h. $n_0 < n_1 < \cdots < n_k < \cdots$), dann nennt man $(x_{n_k})_{k\in\mathbb{N}}$ eine *Teilfolge* von $(x_n)_{n\in\mathbb{N}}$.

Bsp.: $(x_{2n})_{n\in\mathbb{N}}=(x_0,x_2,x_4,\dots)$ ist die Teilfolge von $(x_n)_{n\in\mathbb{N}}$, die den geraden Indizes, und $(x_{2n+1})_{n\in\mathbb{N}}=(x_1,x_3,x_5,\dots)$ die Teilfolge, die den ungeraden Indizes entspricht.

Th4 (Teilfolgen und Grenzwerte)

Hat die Zahlenfolge $(x_n)_{n\in\mathbb{N}}$ den Grenzwert $x\in\overline{\mathbb{R}}$, so hat auch jede Teilfolge von $(x_n)_{n\in\mathbb{N}}$ den Grenzwert x.

Bem.: **Th4** kann verwendet werden, um zu begründen, dass bestimmte Folgen keinen Grenzwert haben. Z. B.: $((-1)^n)_{n\in\mathbb{N}}$ hat keinen Grenzwert, weil die Teilfolgen $((-1)^{2n})_{n\in\mathbb{N}}$ und $((-1)^{2n+1})_{n\in\mathbb{N}}$ verschiedene Grenzwerte haben.

Ein Beispiel

Sei $q \in \mathbb{R}$. Dann gilt für den Grenzwert der Folge $(q^n)_{n \in \mathbb{N}^*}$

$$\lim_{n\to\infty}q^n\left\{ \begin{array}{ll} =\infty, & \text{falls} & q>1\\ =1, & \text{falls} & q=1\\ =0, & \text{falls} & q\in(-1,1)\\ \not\exists, & \text{falls} & q\leq-1. \end{array} \right.$$

Bew.: Zur Erinnerung

(1)
$$x^{\infty} = \left\{ \begin{array}{l} \infty, \text{ falls } x \in (1, \infty) \\ 0, \text{ falls } x \in [0, 1). \end{array} \right.$$

- **1. Fall:** q > 1. Aus $(1) \Rightarrow \lim_{n \to \infty} q^n = \infty$.
- **2. Fall:** q = 1. $\Rightarrow q^n = 1$, $\forall n \in \mathbb{N}^* \Rightarrow \lim_{n \to \infty} q^n = 1$.

(1)
$$x^{\infty} = \begin{cases} \infty, \text{ falls } x \in (1, \infty) \\ 0, \text{ falls } x \in [0, 1). \end{cases}$$

- **3. Fall:** $q \in (-1,1)$. $\Rightarrow |q| \in [0,1)$. Aus $(1) \Rightarrow \lim_{n \to \infty} |q|^n = 0$. Da $|q^n| = |q|^n$, $\forall n \in \mathbb{N}^* \Rightarrow \lim_{n \to \infty} |q^n| = 0$. Aus **Th3** $\Rightarrow \lim_{n \to \infty} q^n = 0$.
- **4. Fall:** q = -1. \hookrightarrow wurde in der obigen Bemerkung behandelt.
- **5. Fall:** q < -1. $\Rightarrow q^2 > 1$. Aus $(1) \Rightarrow$

$$\lim_{n\to\infty}q^{2n}=\lim_{n\to\infty}(q^2)^n=\infty,\ \lim_{n\to\infty}q^{2n+1}=\lim_{n\to\infty}q\cdot q^{2n}=-\infty.$$

Aus **Th4**
$$\Rightarrow \angle \lim_{n\to\infty} q^n$$
. \square