Solutions to Problem Set 22

Problem 1: Applying elementary rows operations to the matrix augmented by I_2 , we obtain

$$\begin{pmatrix}
3 & 2 & 1 & 0 \\
5 & 3 & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 2/3 & 1/3 & 0 \\
5 & 3 & 0 & 1
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & 2/3 & 1/3 & 0 \\
0 & -1/3 & -5/3 & 1
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & 0 & -3 & 2 \\
0 & -1/3 & -5/3 & 1
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & 0 & -3 & 2 \\
0 & 1 & 5 & -3
\end{pmatrix}$$

$$((1/3) \cdot R_1)$$

$$(-5R_1 + R_2)$$

$$(2R_2 + R_1)$$

$$((-3) \cdot R_2).$$

Therefore, our matrix is invertible and we have

$$\begin{pmatrix} 3 & 2 \\ 5 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} -3 & 2 \\ 5 & -3 \end{pmatrix}.$$

Problem 2: We know that $\dim(\mathcal{P}_4) = 5$ because $(1, x, x^2, x^3, x^4)$ is a basis of \mathcal{P}_4 . We also know that $\dim(V) = 4$ because

$$\left(\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&1\\0&0\end{pmatrix},\begin{pmatrix}0&0\\1&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix}\right)$$

is a basis of V. Since $\dim(\mathcal{P}_4) > \dim(V)$, we can use Corollary 5.2.15 to immediately conclude that there is no injective linear transformation $T \colon \mathcal{P}_4 \to V$.

Problem 3a: Applying elementary rows operations to the matrix augmented by I_3 , we obtain

$$\begin{pmatrix} 1 & 1 & 3 & 1 & 0 & 0 \\ 0 & 2 & 4 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & 0 \\ 0 & 2 & 4 & 0 & 1 & 0 \\ 0 & 2 & 3 & 1 & 0 & 1 \end{pmatrix} \qquad (R_1 + R_3)$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & 0 \\ 0 & 2 & 4 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & -1 & 1 \end{pmatrix} \qquad (-R_2 + R_3)$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & 0 \\ 0 & 2 & 4 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 & -1 \end{pmatrix} \qquad ((-1) \cdot R_3)$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 0 & 4 & -3 & 3 \\ 0 & 2 & 0 & 4 & -3 & 4 \\ 0 & 0 & 1 & -1 & 1 & -1 \end{pmatrix} \qquad (-4R_3 + R_2)$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 0 & 4 & -3 & 3 \\ 0 & 1 & 0 & 2 & -3/2 & 2 \\ 0 & 0 & 1 & -1 & 1 & -1 \end{pmatrix} \qquad (-R_2 + R_1).$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 & -3/2 & 1 \\ 0 & 1 & 0 & 2 & -3/2 & 2 \\ 0 & 0 & 1 & -1 & 1 & -1 \end{pmatrix} \qquad (-R_2 + R_1).$$

Therefore, our matrix is invertible and we have

$$\begin{pmatrix} 1 & 1 & 3 \\ 0 & 2 & 4 \\ -1 & 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -3/2 & 1 \\ 2 & -3/2 & 2 \\ -1 & 1 & -1 \end{pmatrix}.$$

Problem 3b: Applying elementary rows operations to the matrix augmented by I_3 , we obtain

$$\begin{pmatrix} 0 & 4 & 4 & 1 & 0 & 0 \\ 1 & -2 & 0 & 0 & 1 & 0 \\ 3 & -4 & 2 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 0 & 0 & 1 & 0 \\ 0 & 4 & 4 & 1 & 0 & 0 \\ 3 & -4 & 2 & 0 & 0 & 1 \end{pmatrix} \qquad (R_1 \leftrightarrow R_2)$$

$$\rightarrow \begin{pmatrix} 1 & -2 & 0 & 0 & 1 & 0 \\ 0 & 4 & 4 & 1 & 0 & 0 \\ 0 & 2 & 2 & 0 & -3 & 1 \end{pmatrix} \qquad (-3R_1 + R_3)$$

$$\rightarrow \begin{pmatrix} 1 & -2 & 0 & 0 & 1 & 0 \\ 0 & 2 & 2 & 0 & -3 & 1 \\ 0 & 4 & 4 & 1 & 0 & 0 \end{pmatrix} \qquad (R_2 \leftrightarrow R_3)$$

$$\rightarrow \begin{pmatrix} 1 & -2 & 0 & 0 & 1 & 0 \\ 0 & 2 & 2 & 0 & -3 & 1 \\ 0 & 0 & 0 & 1 & 6 & -2 \end{pmatrix} \qquad (-2R_2 + R_3).$$

Since the 3×3 matrix on the left is in echelon form but does not have a leading entry in each row, we conclude that our matrix

 $\begin{pmatrix} 0 & 4 & 4 \\ 1 & -2 & 0 \\ 3 & -4 & 2 \end{pmatrix}$

is not invertible.

Problem 3c: Applying elementary rows operations to the matrix augmented by I_3 , we obtain

$$\begin{pmatrix} 0 & 1 & 5 & 1 & 0 & 0 \\ 0 & -2 & 4 & 0 & 1 & 0 \\ 2 & 3 & -2 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 3 & -2 & 0 & 0 & 1 \\ 0 & -2 & 4 & 0 & 1 & 0 \\ 0 & 1 & 5 & 1 & 0 & 0 \end{pmatrix} \qquad (R_1 \leftrightarrow R_3)$$

$$\rightarrow \begin{pmatrix} 1 & 3/2 & -1 & 0 & 0 & 1/2 \\ 0 & 1 & -2 & 0 & -1/2 & 0 \\ 0 & 1 & 5 & 1 & 0 & 0 \end{pmatrix} \qquad ((1/2) \cdot R_1)$$

$$\rightarrow \begin{pmatrix} 1 & 3/2 & -1 & 0 & 0 & 1/2 \\ 0 & 1 & -2 & 0 & -1/2 & 0 \\ 0 & 0 & 7 & 1 & 1/2 & 0 \end{pmatrix} \qquad (-R_2 + R_3)$$

$$\rightarrow \begin{pmatrix} 1 & 3/2 & -1 & 0 & 0 & 1/2 \\ 0 & 1 & -2 & 0 & -1/2 & 0 \\ 0 & 0 & 1 & 1/7 & 1/14 & 0 \end{pmatrix} \qquad ((1/3) \cdot R_3)$$

$$\rightarrow \begin{pmatrix} 1 & 3/2 & 0 & 1/7 & 1/14 & 1/2 \\ 0 & 1 & 0 & 2/7 & -5/14 & 0 \\ 0 & 0 & 1 & 1/7 & 1/14 & 0 \end{pmatrix} \qquad (R_3 + R_1)$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & -2/7 & 17/28 & 1/2 \\ 0 & 1 & 0 & 2/7 & -5/14 & 0 \\ 0 & 0 & 1 & 1/7 & 1/14 & 0 \end{pmatrix} \qquad ((-3/2) \cdot R_2 + R_1).$$

Therefore, our matrix is invertible and we have

$$\begin{pmatrix} 0 & 1 & 5 \\ 0 & -2 & 4 \\ 2 & 3 & -2 \end{pmatrix}^{-1} = \begin{pmatrix} -2/7 & 17/28 & 1/2 \\ 2/7 & -5/14 & 0 \\ 1/7 & 1/14 & 0 \end{pmatrix} = \frac{1}{28} \cdot \begin{pmatrix} -8 & 17 & 14 \\ 8 & -10 & 0 \\ 4 & 2 & 0 \end{pmatrix}.$$

Problem 4: We provide a counterexample. Let

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.

Notice that $A \cdot A = I_2$ and $B \cdot B = I_2$, so both A an B are invertible. However, we have

$$A + B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, = 0$$

which is not invertible because $C \cdot 0 = 0 \neq I_2$ for all 2×2 matrices C.

Problem 5a: Notice that A is a 2×3 matrix. Since 3 > 2, we can use Corollary 5.2.18 to immediately conclude that A does not have a left inverse. Alternatively, we can attack this problem directly. Suppose that $a, b, c, d, e, f \in \mathbb{R}$ are such that

$$\begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

We then have

$$\begin{pmatrix} a & b & a \\ c & d & c \\ e & f & e \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Looking at the first row alone, we see that we must have both a = 1 and a = 0. This is a contradiction, so

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

does not have a left inverse.

Problem 5b: Notice that for any $a \in \mathbb{R}$, we have

$$\begin{pmatrix}1&0&1\\0&1&0\end{pmatrix}\begin{pmatrix}a&0\\0&1\\1-a&0\end{pmatrix}=\begin{pmatrix}1&0\\0&1\end{pmatrix}.$$

Since there are infinitely many $a \in \mathbb{R}$, the matrix

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

has infinitely many right inverses.