# A New Industrial Revolution for a Sustainable Energy Future

## PERSPECTIVE

doi:10.1038/nature11475

# Opportunities and challenges for a sustainable energy future

Steven Chu1 & Arun Majumdar1

Nature, Vol. 488, pp. 294-303 (2012)

## **Industrial Revolution: Horse Power to Horsepower**



304 Horsepower





10,000 Horsepower



100,000 Horsepower







## **World Population**





**Source: United Nations** 

## Oil & Gas Reserves

#### **Global Oil Reserves**



#### Global Gas Reserves w/o US Shale



BP Statistical Review of World Energy (2012)

# **Averages & Extremes**



http://www.nasa.gov/multimedia/videogallery/index.html?media\_id=149932291

Hansen, Sato, Ruedy, "Perception of climate change," PNAS, Aug. 6 (2012)

## Cumulative CO<sub>2</sub> emissions since Industrial Revolution 1,100 Billion Tons

How much more CO<sub>2</sub> can we emit based on known fossil fuel reserves?

About 3,000 Billion Tons

75-100 years
Worth \$10s of Trillion!!

## The Stone Age did not end because we ran out stones

Sheikh Ahmed Yamani, former Oil Minister of Saudi Arabia

We transitioned to better solutions

# **Energy Systems**



#### Low-Cost Long-Term Capital (>20 years) <\$10M \$10-100M Project Size \$100M-1B (2-5 yrs)(5-10 yrs) >\$1-10B & Time (>10 yrs) arpa @ **R&D** for Breakthrough **Technologies to Create** New Learning Curves **Technology** Cost **Innovations US Markets** (\$)/Performand Manufacturing/Scaling Innovations **Businesses** R&Q from Deployment Consumers DOE US Gov't **Applied Current Learning Curve** Energy Global (Assured Path) **Programs Markets**

Scale in Size or Volume

# Shale Gas: Which Countries?







Over 44,300 TCF - Gas in Place

Over ~11,000 TCF – Technically Recoverable

Numbers represent TCF of unconventional gas

Tight Gas
Shale Gas

Coalbed Gas

~ 70 Years at Current Consumption Levels





# Clean and Inexpensive Electricity Subsidy Free



# **Solar PV System Cost**



## **Solar Cell Efficiency**

$$\frac{\$}{Watt} \cup \frac{Panel + Balance of System Cost}{Efficiency}$$



III-V Based 28% efficient solar cells on plastic substrate



Alta Devces

# Grid-Scale Storage (GWh Scale)











## **Power Electronics**

#### **GRID**



#### **INDUSTRIAL MOTORS**



- Power Electronic Switches (ω, Power)
- Inductors (Z =  $j\omega L$ )
- Capacitors (Z =  $1/j\omega$ C)
- Circuits

#### **AUTOMOTIVE**



#### **LIGHTING**





## **Power Electronics**

**SOFT MAGNETS** 

#### **ELECTRONIC SWITCHES**











## **Power Electronics**





8000 lbs, 60 Hz Distribution Transformer

Average Age: 42 years, 2 years beyond projected lifespan

Silicon Carbide IGBT; 15 kV, 100 A; 50 kHz from Cree Inc.

Potentially 100 lbs transformer

# **Delivering Electricity** Load **New England Independent System Operator (NE-ISO)** Energy Dispatch (Day Ahead): 12,985 MW Energy Dispatch (Real-Time [includes Day Ahead]): 14,937 Thirty Minute Operating Reserve: 5785 MW

Ten Minute Spinning Reserve: 725 MW

Ten Minute Non-Spinning Reserve: 1519 MW; Frequency Regulation: 100-200 MW





## **Designing Power Flow**



## **Controlling Power Flow**

#### **Example**

ISO-NE: 689 generators, 2209 loads, 4500 bus, 6600 binary variables

Topology control (DC-OPF approx):

82 hrs [CPLEX on dual-core. 3.4GHz, 1GB RAM]

to optimize state only 4 transmission lines

savings +5% for summer peak conditions(\$)/+7% for a medium load summer condition (\$)

Hedman, K. W., O'Neill, R. P., Fisher, E. B., and Oren, S. S. (2011), "Smart flexible just-in-time transmission and flowgate bidding," IEEE Transactions on Power Systems, Feb 2011.

#### What kind of control?

- Linear vs. Non-linear [Generators deliver Power = I\*V]
- Deterministic vs. Stochastic [Can't predict when a load comes on-line]
- Time-invariant vs. Time-varying [Impedances change]
- Continuous-time vs. Discrete-time





## **Green Electricity Network Integration (GENI)**

#### **Today: Uncontrolled Flows**

**Power Routing** 



•Power flow control to route power along underutilized paths, 80% less transmission infrastructure required

GA Tech study of simplified IEEE 39 Bus system with 4 control areas, operation simulated for 20 years, 20% RPS phased in over 20 years, sufficient transmission capacity added each year to eliminate curtailment of renewable generation





### **Control Infrastructure**

#### **Improved Sensing**

#### A PMU measures

- Current (Hall sensor)
- Frequency (LC Circuit)
- Time (GPS)
- Voltage
- Relative Phase
- Sample 30 msec
- Petabyte-scale data



#### **Improved Communications**

#### **Grid Connected Router**

- Low-latency
- MPLS
- Cyber security
- 100-600 μs for crypto





- Fast
- Secure
- Resilient



Improved Computation

## Population Density







#### Human Development Index versus Annual Per Capita Electricity Use



Alan Pasternak, "Global Energy Futures and Human Development: A Framework for Analysis," LLNL Report (UCRL-ID-140773), October 2000.

## Scaling

#### Access to services in sub-Saharan Africa



### Perfect storm of technology and economics



Mobile penetration Subscriptions per capita



#### **Perfect Storm:**

- Affordable electricity
- Local/distributed generation independent of utility
- Modern power electronics
- Access to communication
- Increasing demand



WBG Power Electronics 300x size reduction in 25W AC-DC SSL Driver



Rethinking the grid for the 21st century