

Dayananda Sagar University School of Engineering

Devarakaggalahalli, Harohalli, Kanakapura Road, Ramanagara Dt., Bengaluru - 562 112

Department of Computer Science & Technology

CERTIFICATE

This is to certify that the work titled "Innovation in Medicine: ML model to detect fracture in bone" is carried out by D Gnana Prasoona (ENG22CT0028), Yamuna V (ENG22CT0052), Pushyami B (ENG22CT0045), Zeenathunnisa (ENG22CT0023), Vishishta H E (ENG22CT0022) Bonafide students of Bachelor of Technology in Computer Science and Technology at the School of Engineering, Dayananda Sagar University, Bangalore in partial fulfillment for the award of degree in Bachelor of Technology in Computer Science and Technology, during the year 2024-2025.

Dr. Danthuluri SudhaAssociate Professor, Dept. of CST,
School of Engineering,
Dayananda Sagar University.

Dr. M Shahina ParveenChairperson CST,
School of Engineering,
Dayananda Sagar University.

Dont of CCT

Dept of CST

Dayananda Sagar University School of Engineering

Devarakaggalahalli, Harohalli, Kanakapura Road, Ramanagara Dt., Bengaluru - 562 112

Department of Computer Science & Technology DECLARATION

We, D Gnana Prasoona (ENG22CT0028), Yamuna V (ENG22CT0052), Pushyami(ENG22CT0045), Zeenathunnisa (ENG22CT0023), Vishishta H E (ENG22CT0022), are students of the fifth semester B.Tech in Computer Science and Technology, at School of Engineering, Dayananda Sagar University, hereby declare that the mini project titled "Innovations in Medicine: ML model to detect fracture in" has been carried out by us and submitted in partial fulfillment for the award of degree in Bachelor of Technology in Computer Science and Technology during the academic year 2023-2024.

Student Signature

Name1: D Gnana Prasoona

USN: ENG22CT0028

Name2: Yamuna V

USN: ENG22CT0052

Name3: Pushyami B

USN: ENG22CT0045

Name4: Zeenathunnisa

USN: ENG22CT0023

Name5: Vishishta H E

USN: ENG22CT0022

Place: Bangalore

Date:

Dept of CST

ABSTRACT

Many times, it is difficult and time consuming to find out the location of fracture in the patient who is suffering from pain. Today medical imaging technique played the significant role in research and diagnosis field. X-ray imaging technique is used to diagnose and also used to represent anatomical structures such as bones, in human beings. X-ray imaging technique which is further used to detect bone fractures and then the obtained image is processed by different image processing methods such as Computer Aided Diagnosis, Edge Detection, segmentation which are beneficial for technicians.

To help doctors and hospitals better care for their patients, a lot of innovative technical resources have been developed, because the typical scanner for X-ray produces a fuzzy picture of the bone component in issue, surgeons risk making an inaccurate diagnosis of bone fracture when they utilize it. Various stages such as pre-processing, edge detection, feature extraction and machine learning classifications, constitute the backbone of this system.

several machine learning algorithms, such as Naïve Bayes, Decision Tree, Nearest Neighbors, Random Forest, and SVM, have been used specifically for handling bone fracture detection on a dataset with 270 x-ray images. Accuracy measures for the various algorithms employed in the study range from 0.64 to 0.92,

Keywords: Medical Imaging, X-ray imaging, Bone fractures, Diagnosis, Image Processing, Computer -Aided Diagnosis (CAD), Edge Detection, Segmentation, Anatomical structures, Medical Technicians.

D. 4. COST

Innovation in Medicine: ML model to detect fracture in X-ray images

LIST OF FIGURES

Figure 1: Ima	ge processing Steps	2
Figure 2: Syst	tem Architecture	8
Figure 3: Imp	lementation	
3.2: 3.3: 3.4: 3.5: 3.6: 3.7: 3.8: 3.9: 3.10 3.11 3.12	Loading images and labels Visualizing data Resizing the training images Resizing the test and validation images Fix label format Resizing train, test and valid labels Normalize images and labels Cleaning empty labels Validate yolo labels Validate yolo labels Check bounding boxes Fix invalid classes Remove images with invalid labels Training the Model	11 2 3 4 15 16 17 18 19 20 - 21 22 - 23
Figure 4: Res	ults	
	Pair Plot	25
4.3 :	Bounding Box Characteristics (Scatter Plot)	27
	Batch Images	

Innovation in Medicine: ML model to detect fracture in X-ray images

LIST OF TABLES

Table 1: Dataset distribution for training and testing	34
Table 2: Hyperparameters used for training and the model	. 34
Table 3: Comparison table	. 04

LIST OF ABBREVATIONS

AI - Artificial Intelligence

CNN- Convolutional Neural Network

CT – Computed Tomography

DICOM – Digital Imaging and Communications in Medicine

ML – Machine Learning

YOLO - You Only Look Once

Dept of CST

TABLE OF CONTENTS

Page No.

Certificate	i
Declaration	ii
Abstract	iii
List of Figures	iv
List of Tables	v
List of Abbreviations	v
1. Introduction	
1.1. Basic Information.	01 - 02
1.2. Steps involved in the model working.	
2. Literature Survey	03 - 04
3. Project Requirement Specification	05 - 06
4. Problem Definition	
4.1 Problem Statement	07 - 08
4.2 Relevance of the Problem	
5. System Architecture	09
6. Implementation	10 - 35
7. Conclusion	36
8. References	37 - 38