Mathematical Statistics I

Chapter 3: Joint Distributions

Jesse Wheeler

Outline

1. Introduction

2. Discrete Random Variables

3. Continuous Random Variables

Introduction

Introduction

- This material is based on the textbook by Rice (2007, Chapter 3).
- Our goal is to better understand the joint probability structure of more than one random variable, defined on the same sample space.
- One reason that studying joint probabilities is an important topic is that it enables us to use what we know about one variable to study another.

Joint cdf

 Just like the univariate case, the joint behavior of two random variables, X and Y, is determined by the cumulative distribution function

$$F(x,y) = P(X \le x, Y \le y).$$

- This is true for both discrete and continuous random variables.
- The any set $A \subset \mathbb{R}^2$, the joint cdf can give $P((X,Y) \in A)$.

Joint cdf II

- For example, let A be the rectangle defined by $x_1 < X < x_2$, and $y_1 < Y < y_2$. (It helps to draw a picture...)
- $F(x_2, y_2)$ gives $P(X < x_2, Y < y_2)$, an area that is too big, so we subtract off pieces
 - $F(x_2, y_1) = P(X < x_2, Y < y_1)$ (we already have the area $X < x_2$, but now subtract away the area $Y < y_1$).
 - $F(x_1, y_2) = P(X < x_1, Y < y_2)$ (Now subtracting the area $X < x_1$)
 - We have "double subtracted" the area $\{X < x_1, Y < y_1\}$, so we add it back.

$$P((X,Y) \in A) = F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1).$$

Joint cdf III

- The definition also applies to more than two random variables.
- Let X_1, \ldots, X_n be jointly distributed random variables defined on the same sample space. Then

$$F(x_1, x_2, \dots, x_n) = P(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n).$$

 Like the univariate case, we can also define the pmf and pdf of jointly distributed random variables as well.

Discrete Random Variables

Discrete Random Variables

Definition: Joint pmf

Let X and Y be discrete random variables define on the same sample space, and take on values x_1, x_2, \ldots and y_1, y_2, \ldots , respectively. The joint pmf (or joint frequency function), is

$$p(x_i, y_j) = P(X = x_i, Y = y_j).$$

 For discrete RVs, it's often useful to describe the joint pmf as a frequency table.

Discrete Random Variables II

- Suppose a fair coin is tossed 3 times. Let X denote the number of heads on the first toss, and Y the total number of heads.
- The sample space is

$$\Omega = \{hhh, hht, hth, thh, htt, tht, tth, ttt\}.$$

 The joint pmf can be expressed as the frequency table below (Table 1).

Discrete Random Variables III

	y			
\overline{x}	0	1	2	3
0	$\frac{1}{8}$	$\frac{2}{8}$	$\frac{1}{8}$	0
1	0	$\frac{1}{8}$	$\frac{1}{8}$ $\frac{2}{8}$	$\frac{1}{8}$

Table 1: Frequency table for X and Y, flipping a fair coin three times.

- Note that the probabilities in Table 1 sum to one.
- Using the probability laws we have already learned, we can calculate marginal probabilities.

Discrete Random Variables IV

$$p_Y(0) = P(Y = 0)$$

$$= P(Y = 0, X = 0) + P(Y = 0, X = 1)$$

$$= \frac{1}{8} + 0 = \frac{1}{8}$$

$$p_Y(1) = P(Y = 1)$$

$$= P(Y = 1, X = 0) + P(Y = 1, X = 1)$$

$$= \frac{2}{8} + \frac{1}{8} = \frac{3}{8}.$$

Discrete Random Variables V

- In general, to find the frequency function for Y and X, we just need to sum the appropriate columns or rows, respectively.
- $p_X(x) = \sum_i P(x, y_i)$ and $p_Y(y) = \sum_j P(x_j, y)$.
- The case with multiple random variables is similar:

$$p_{X_i}(x_i) = \sum_{x_j: j \neq i} p(x_1, x_2, \dots, x_n).$$

 We can also get marginal frequencies for more than one variable:

$$p_{X_i X_j}(x_i, x_j) = \sum_{x_k : k \notin \{i, j\}} p(x_1, x_2, \dots, x_n).$$

Example: Multinomial Distribution

- The multinomial distribution is a generalization of the binomial distribution.
- Suppose there are n independent trials, each with r possible outcomes, with probabilities p_1, p_2, \ldots, p_r , respectively.
- Let N_i be the total number of outcomes of type i in the n trials, with $i \in \{1, 2, \dots, r\}$.
- The probability of any particular sequence

$$(N_1, N_2, \dots, N_r) = (n_1, n_2, \dots, n_r)$$
 is

$$p_1^{n_1}p_2^{n_2}\cdots p_r^{n_r}$$

Example: Multinomial Distribution II

• The total number of ways to do this was an identity from Chapter 1 (Proposition 1.3):

$$\binom{n}{n_1 \cdots n_r}$$
.

 Combining this gives us the pmf of the multinomial distribution:

Multinomial Distribution

Let N_1, N_2, \ldots, N_r be random variables that follow a multinomial distribution with parameters N and (p_1, \ldots, p_r) . The joint pmf is

$$p(n_1, n_2, \dots, n_r) = \binom{n}{n_1 \cdots n_r} p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$$

Example: Multinomial Distribution III

- The marginal distribution for any N_i can be found by summing the joint frequency function over the other n_j .
- While possible, this is a non-trivial algebraic exercise.
- The simple alternative is to reframe the problem: Let N_i be the number of successes in n trials, and $\tilde{N}_i = \sum_{j \neq i} N_j$ be the number of failures. The probability of success is still p_i , leaving the probability of failure to be $1 p_i$.
- Thus, we see that the marginal distribution for N_i must follow a binomial distribution:

$$p_{N_i}(n_i) = \sum_{n_j: j \neq i} \binom{n}{n_1 \cdots n_r} p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$$
$$= \binom{n}{n_i} p_i^{n_i} (1 - p_i)^{n - n_i}$$

Continuous Random Variables

Continuous Random Variables

- Let X,Y be continuous random variables with joint cdf F(x,y).
- Their joint density function is a piecewise continuous function of two variables, f(x,y).
- A few properties:
 - $f(x,y) \ge 0$ for all $(x,y) \in \mathbb{R}$ (or the support).
 - $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1.$
 - For any "measureable set" $A \subset \mathbb{R}^2$, $P((X,Y) \in A) = \int \int_A f(x,y) dx dy$
 - In particular, $F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$.

Continuous Random Variables II

From the fundamental theorem of multivariable calculus, it follows that

$$f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y),$$

wherever the derivative is defined.

Continuous Random Variables III

Finding joint probabilities

Let X, Y be jointly defined RVs with pdf

$$f(x,y) = \frac{12}{7}(x^2 + xy), \quad 0 \le x \le 1, \quad 0 \le y \le 1.$$

Find P(X > y).

Solution:

Marginal cdf

The marginal cdf of X, denoted F_X , is

$$F_X(x) = P(X \le x)$$

$$= P(X \le x \cap Y \in \mathbb{R}) = P(X \le x \cap Y < \infty)$$

$$= \lim_{y \to \infty} F(x, y)$$

$$= \int_{-\infty}^x \int_{-\infty}^\infty f(u, y) dy du.$$

By taking the derivative of both sides of the equation, we get the marginal density of X:

$$f_X(x) = F'_X(x) = \int_{-\infty}^{\infty} f(x, y) dy.$$

Marginal cdf II

Calculating Marginal Densities

Using the same joint distribution as the previous example, find the marginal density of X:

$$f_X(x) = \int_Y f(x, y) dy$$

$$= \frac{12}{7} \int_0^1 (x^2 + xy) dy$$

$$= \frac{12}{7} \left(x^2 y + \frac{x}{2} y^2 \right) \Big|_0^1$$

$$= \frac{12}{7} \left(x^2 + \frac{x}{2} \right)$$

More than two random variables

- For several jointly continuous random variables, we can make the obvious generalizations.
- That is, to find the marginal densities, we need to "marginalize-" or "integrate-" out the nusaince variables.
- This means integrating out any combination of variables that we want.
- Example: Let X, Y, and Z be jointly continuous RVs with pdf f(x,y,z). Then the two-dimensional marginal distribution of X and Z is:

$$f_{XZ}(x,z) = \int_{-\infty}^{\infty} f(x,y,z)dy.$$

Example: constructing bivariate cdfs

- Suppose that F(x) and G(y) are cdfs for random variables X and Y, resp.
- It can be shown that the following function, H(x,y), is always a bivariate cdf for all $-1 < \alpha < 1$:

$$H(x,y) = F(x)G(y)(1 + \alpha(1 - F(x))(1 - G(y))).$$

• Because $\lim_{x\to\infty} F(x) = \lim_{y\to\infty} G(x) = 1$, the marginal distributions are:

$$\lim_{y \to \infty} H(x, y) = F(x)$$
$$\lim_{x \to \infty} H(x, y) = G(y)$$

Example: constructing bivariate cdfs II

 Thus, we can use this approach to build an infinite number of biviariate distributions that have a particular marginal distribution.

Example: constructing bivariate cdfs III

- One important example is when the marginal distributions are uniformly distributed.
- Let $F(x) = x, 0 \le x \le 1$, and $G(y) = y, 0 \le y \le 1$.
- By selecting $\alpha = -1$, we have

$$H(x,y) = xy[1 - (1-x)(1-y)]$$

= $x^2y + y^2x - x^2y^2$, $0 \le x, y \le 1$.

• The density is

$$h(x,y) = \frac{\partial^2}{\partial x \partial y} H(x,y)$$
$$= 2x + 2y - 4xy, \quad 0 \le x, y \le 1.$$

• Here is a link to a 3D rendering of this function.

Example: constructing bivariate cdfs IV

• Now, let's select $\alpha = 1/2$:

$$H(x,y) = xy \left(1 + \frac{1}{2} (1 - F(x)) (1 - G(y)) \right)$$
$$= \frac{1}{2} x^2 y^2 - \frac{1}{2} x^2 y - \frac{1}{2} x y^2 + \frac{3}{2} x y.$$

• Taking the derivative, we get:

$$h(x,y) = \frac{\partial^2}{\partial x \partial y} H(x,y)$$
$$= 2xy - x - y + \frac{3}{2}, \quad 0 \le x, y \le 1.$$

• Here is a link to a 3D rendering of this function.

Example: constructing bivariate cdfs V

• The last two joint cdfs were examples of a copula.

Definition: Copulas

A copula is a joint cdf that has uniform marginal distributions.

• Let C(u,v) be a copula. One immediate consequence of the definition is that if U and V are uniform random variables, then $P(U \le u) = C(u,1) = u$, and $P(V \le v) = C(1,v) = v$.

Example: constructing bivariate cdfs VI

- Let C(u,v) be a copula, we will restrict ourselves to the case where it is twice differentiable, such that $c(u,v) = \frac{\partial^2}{\partial u \partial v} C(u,v) \geq 0$.
- let F_X and F_Y be the cdfs of X and Y, resp.
- Now define $U = F_X(X)$, and $V = F_Y(Y)$. From Proposition 2.2, U and V are uniformly distributed.
- Now consider the function $H(x,y) = C(u,v) = C((F_X(x),F_Y(y)).$

Example: constructing bivariate cdfs VII

• Thus, by the property that C(u,1)=u and C(1,v)=v, we have

$$C(F_X(x), 1) = F_X(x)$$

$$C(1, F_Y(y)) = F_Y(y).$$

Therefore by definition, $F_{XY}(x, y) = H(x, y) = C((F_X(x), F_Y(y)).$

• Using the chain rule, we can differentiate to obtain

$$f_{XY}(x,y) = c(F_X(x), F_Y(y))f_X(x)f_Y(y).$$

Example: constructing bivariate cdfs VIII

- Takeaway: We took arbitrary marginal distributions F_X and F_Y , and created a family of joint density functions, defined by any copula. Thus: the marginal distributions do not determine the joint distribution.
- There is a Theorem known as Sklar's Theorem (Wikipedia contributors, 2025) that generalizes this statement: All joint distributions can be expressed using a copula and marginal distributions, and the representation is unique.
- That is, the copula can be thought of as a way to describe the dependence between the variables in any joint distribution.

Uniform on specific region

- So far when we have talked about *uniform distributions*, we think about being uniform over [0,1], or a higher dimensional box: $[a,b]^d$.
- It's often useful to have a uniform distribution for other regions of space.
- Let $R \subset \mathbb{R}^2$ be any region of interest. The two-dimensional uniform distribution over R is defined by the probability

$$P((X,Y) \in A) = \frac{|A|}{|R|},$$

where || denotes the measure of the area.

Uniform on specific region II

- Example: Suppose a point is chosen randomly in a disk of radius 1.
- The area of the disk is $\pi r^2 = \pi$, and therefore the joint pdf for the location (X,Y) is

$$f(x,y) = \begin{cases} \frac{1}{\pi} & x^2 + y^2 \le 1\\ 0 & \text{otherwise} \end{cases}$$

 Now let R be the random variable denoting the distance of the point from the origin.

Uniform on specific region III

• Note that $R \le r$ if and only if the point lies in a disk of radius r. This disk has area πr^2 , and therefore the joint probability is

$$P(R \le r) = \frac{\pi r^2}{\pi} = r^2, \quad 0 \le r \le 1.$$

Taking a derivative, the corresponding density function is

$$f_R(r) = 2r, \quad 0 \le r \le 1.$$

Uniform on specific region IV

ullet Now let us compute the marginal density of the x coordinate:

References and Acknowledgements

- Compiled on August 18, 2025 using R version 4.5.1.
- Licensed under the Creative Commons Attribution-NonCommercial license. Please share and remix non-commercially, mentioning its origin.
- We acknowledge students and instructors for previous versions of this course / slides.

References and Acknowledgements II

Rice JA (2007). *Mathematical statistics and data analysis*, volume 371. 3 edition. Thomson/Brooks/Cole Belmont, CA.

Wikipedia contributors (2025). "Copula (statistics)#Sklar's Theorem: Wikipedia, The Free Encyclopedia." [Online; accessed 18-August-2025], URL https://en.wikipedia.org/w/index.php?title=Copula_(statistics)&oldid=1303484991.