Bibliography

- [Cox13] David A. Cox, *Primes of the form* $x^2 + ny^2$, second edition ed., Pure and Applied Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2013, Fermat, class field theory, and complex multiplication. MR 3236783
- [CS03] John H. Conway and Derek A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters, Ltd., Natick, MA, 2003. MR 1957212 (2004a:17002)
- [FR15] Sylvia Forman and Agnes M. Rash, *The whole truth about whole numbers*, Springer, Cham, 2015, An elementary introduction to number theory. MR 3309165
- [JJ98] Gareth A. Jones and J. Mary Jones, Elementary number theory, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 1998. MR 1610533
- [Mara] Kimball Martin, Number Theory I course notes (Fall 2009), http://www.math.ou.edu/~kmartin/nti/.
- [Marb] _____, Number Theory II course notes (Spring 2010), http://www.math.ou.edu/~kmartin/ntii/.
- [Rou91] G. Rousseau, On the quadratic reciprocity law, J. Austral. Math. Soc. Ser. A 51 (1991), no. 3, 423–425. MR 1125443
- [Ste09] William Stein, Elementary number theory: primes, congruences, and secrets, Undergraduate Texts in Mathematics, Springer, New York, 2009, A computational approach. MR 2464052
- [Sti03] John Stillwell, *Elements of number theory*, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 2003. MR 1944957

Index

$R^{\times}, 93$	common divisor, 67
U, 131	commutative, 27
$U^+, 131$	complex numbers, 25
$U_d, 131$	composition law, 106, 120, 127, 131
$U_d^+, 131$	congruence class, 36
\mathbb{C}^{\times} , 29	congruent, 36
GCD(a,b), 74	conjugate, 51, 126
N, 18	continued fraction, 140
$\mathbb{Q},25$	converge, 143
$\mathbb{Q}^{ imes},29$	coprime, 68, 79
\mathbb{R}^{\times} , 29	\cos et, 95
$\mathbb{Z},25$	CRT, 112
$\mathbb{Z}/n\mathbb{Z},37$	cyclic (finite) group, 99
ε_d , 136	cyclic subgroup, 98
$\varepsilon_d^+, 136$	cyclotomic field, 55
$\gcd(a,b), 67$	cyclotomic ring, 55
$\mu_n, 53$	
$\phi(n), 93$	decimal system, 19
$a \mid b, 16, 64$	descent, 23
$a \nmid b, 16, 64$	descent principle, 23
$n\mathbb{Z}+a,36$	dihedral group, 92
p-adic integers, 57	Diophantine equation, 86
p-adic numbers, 57	Diophantine equations, 5
	Dirichlet's approximation theorem, 133
abelian group, 91	divides, 64
absolute norm, 60	division property, 73
additive group, 91	division ring, 126
additive inverse, 30	divisor, 64
additive notation, 91	D:
algebraic integers, 81	Eisenstein integers, 56
associative, 27	equivalence class, 36
1 10	equivalence classes, 25
base b , 19	equivalence relation, 25
binary quadratic form, 119	equivalent, 36
binary operation, 27	Euclidean algorithm, 67
Chinese remainder theorem, 112	Euler phi (totient) function, 93
closed, 34	Euler's criterion, 115
Closed, 94	Euler's theorem, 99

extended Euclidean algorithm, 70	$\mod n, 36$
	multiplicative group, 91
Fermat descent, 23	multiplicative inverse, 30, 90
Fermat's last theorem, 146	multiplicative notation, 91
Fermat's little theorem, 98	-
Fermat's two square theorem, 108	natural numbers, 18
Fibonacci numbers, 144	non-square, 46
field, 30	noncommutative ring, 126
finite group, 91	norm, 51, 60, 126
first supplemental law, 114	1 01 00
floor, 140	order, 91, 98
fundamental + unit, 136	Peano axioms, 22
fundamental theorem of algebra, 26	Pell's equation, 130
fundamental theorem of arithmetic, 20, 59	
fundamental unit, 136	period, 142
	periodic (continued fraction), 142
Gauss's three square theorem, 123	pigeonhole principle, 133
Gaussian integers, 5, 49	prime, 64
Gaussian numbers, 49	prime divisor property, 64
$\gcd, 67, 70, 74$	prime factorization, 21
generator, 99	prime-power factorization, 21
golden ratio, 144	primitive Pythagorean triple, 109
greatest common divisor, 67, 74	Pythagorean triple, 109
greatest integer function, 140	quadratic field, 47
group, 90	quadratic form, 119
TT 11: 1 - 1 - 1 - 1 - 1 - 1	quadratic integers, 48
Hamilton's quaternions, 124	quadratic reciprocity, 116
hexadecimal, 20	quadratic reciprocity, 110 quadratic residue symbol, 113
Hurwitz integers, 128	quadratic ring, 47
identity 20	
identity, 28	quaternions, 124
imaginary quadratic, 47	rational numbers, 25
induction axiom, 22	real quadratic, 47
integers, 25	reduced form (of a rational), 25
inverse, 90	reducible, 62, 127
invertible, 90, 93	reduction mod m , 87
irreducible, 62, 127	relatively prime, 68, 79
Lagrange's four square theorem, 123	repeated squaring, 99
Lagrange's lemma, 107	ring, 30
Lagrange's theorem, 97	ring of integers, 82
law of quadratic reciprocity, 116	roots of unity, 53
Legendre's three square theorem 122	RSA, 102
Legendre's three square theorem, 123	second supplementary law, 121
Lipschitz integers, 128	skew field, 126
method of descent, 23	square, 46, 88
,	

```
squarefree, 81
subfield, 34
subgroup, 95
subring, 34
symmetric group, 92
tableau method, 70
trivial (sub)group, 96
trivial solution, 132, 146
unary, 20
unique factorization, 59, 64
unit, 61, 127
whole numbers, 19
Wilson's theorem, 107
zero ring, 33
```