Math 582 HW3

Rohan Mukherjee

January 31, 2025

1. Look at the n-simplex $\{e_1, \ldots, e_n\}$ in n-dimensional space. This convex hull is an n-1 dimensional shape, which we can draw the n-1 dimensional sphere around. In this new affine subspace, call the vectors $\{v_1, \ldots, v_n\}$. For the function $\sum_i \langle v_i, x \rangle^2 = x^T \sum_i v_i v_i^T x$. This projects x onto the v_i 's, takes a sum, and then calculates an inner product. Since the shape is symmetrical, and by rotational symmetry of the sphere, any rotation of the v_i 's will yield the same value of the function for all x's. Again by symmetry, the function on $f(v_i)$ for each i will be the same. Finally, it is proportional to $|x|^2$, if we call the common value of $f(v_i) = C$, then $f(x_i) = C|x_i|^2$. This is a tight frame by lots of symmetry. I am unfortunately not sure how to get the exact coordinates of these v_i , but many symmetries shows it is a tight frame.

I didn't realize that this was only for 2-dimensions inintially, but now I have. Let's use the vectors $(\cos(2\pi k/n), \sin(2\pi k/n))$ for k = 1, ..., n. Then the function becomes $\sum x_1^2 \cos^2(2\pi k/n) + x_2^2 \sin(2\pi k/n) + x_1 x_2 \cos(2\pi k/n) \sin(2\pi k/n).$

Now, notice that:

$$\sum_{i=1}^{n} \cos^2(2\pi k/n) = \frac{n}{2} + \frac{1}{2} \sum_{i=1}^{n} \cos(4\pi i/n)$$

Let $\zeta = e^{4\pi i/n}$. For odd n, ζ generates the group of nth roots of unity, so the sum will certainly be 0 (by the factorization $x^n - 1 = (x - 1)(x^{n-1} + \dots + 1)$). For even n, ζ , ..., $\zeta^n = 1$ goes twice through the n/2 roots of unity, so by applying this fact about the sum of the odd ones, we get that this eventually equals 0 too. In any case, the sum on the rightmost side is just 0, so $\sum_{i=1}^n \cos^2(2\pi k/n) = n/2$. Similarly, since $\cos^2(x) + \sin^2(x) = 1$, we get

that $\sum_{i=1}^n \sin^2(2\pi k/n) = n/2$. Finally, $\sum_{i=1}^n \cos(2\pi k/n) \sin(2\pi k/n) = \frac{1}{2} \sum_{i=1}^n \sin(4\pi k/n) = 0$ by the same reason. So the function is just $n|x|^2/2$.

2. If $\|\cdot\|_1$ and $\|\cdot\|_2$ have the same unit ball, this means that $\|\cdot\|_1 = 1$ iff $\|\cdot\|_2 = 1$. For arbitrary $x \in \mathbb{R}^n$, we know that $\|x/\|x\|_1\|_1 = 1$, so $\|x/\|x\|_1\|_2 = 1$, which says that $\|x\|_1 = \|x\|_2$ for all $x \in \mathbb{R}^n$.

With the assumption that ||x|| = 0 iff x = 0 (I believe you would need some more conditions on B to ensure this is true always. Like, you could take just the set $\{0\}$ or a line through the origin and this definition would break down as the norm would be infinite). Then, $||\eta x|| = \inf \{\lambda > 0 \mid \eta x \in \lambda B\} = \{\lambda > 0 \mid x \in \lambda/\eta B\} = \{\eta \lambda \mid x \in \lambda B\} = \eta ||x||$. Since B is convex, $||x||B \subset B$, so $x \in B$. On the other hand, if $x \in B$, then $\inf \{\lambda > 0 \mid x \in \lambda B\} \le 1$ (since 1 works), which shows the other inclusion.

I now claim that $B = \{x \mid ||x|| \le 1\}$. Clearly, $\{x \mid ||x|| < 1\} \subset B$, since if ||x|| < 1, then $||x|| < 1 - \eta$ for some small η , and then $x \in (1 - \eta)B \subset B$. Since the interior of $\{x \mid ||x|| \le 1\}$ is just $\{x \mid ||x|| < 1\}$, (this follows since all norms are equivalent to ℓ^2), and we shown that the second set is contained in B, we know that the closure of it is contained in B (assuming that B is closed, which we can just replace it with if not), so B contains its closure too. The reverse inclusion is clear.

Finally, let $x, y \in \mathbb{R}^n$ and consider u = x/||x|| and v = y/||y||. Then since B is convex, and $u, v \in B$, we know that:

$$\frac{||x||u}{||x|| + ||y||} + \frac{||y||v}{||x|| + ||y||} \in B$$

This says that $\|\frac{\|x\|\|u}{\|x\| + \|y\|} + \frac{\|y\|\|v}{\|x\| + \|y\|}\| \le 1$, so $\|x + y\| \le \|x\| + \|y\|$, which shows that it is a norm.

3. Plugging in y = x/||x||, we get that $\sup_{\|y\|=1} \langle x, y \rangle \ge \langle x, x/||x|| \rangle = ||x||$. On the other hand, if ||x|| = 1, by the simple inequality $2ab \le a^2 + b^2$,

$$\langle x, y \rangle = \sum_{i} x_{i} y_{i} \le \frac{1}{2} \sum_{i} x_{i}^{2} + y_{i}^{2} = 1$$

And otherwise, $\langle x, y \rangle = ||x|| \langle x/||x||, y \rangle \le ||x||$ by above. This completes the proof.

4. We need only show that B° is centrally symmetric and convex. It is clearly centrally

symmetric, since $\sup_{x \in B} |\langle x, y \rangle| \le 1$ is invariant under $y \mapsto -y$. Let $x, y \in B^{\circ}$ and $t \in [0, 1]$. Then $\sup_{z \in B} |\langle tx + (1-t)y, z \rangle| = \sup_{z \in B} |t\langle x, y \rangle + (1-t)\langle y, z \rangle| \le t \sup_{z \in B} |\langle x, z \rangle| + (1-t) \sup_{z \in B} |\langle y, z \rangle| \le 1$. So $tx + (1-t)y \in B^{\circ}$, showing that B° is centrally symmetric and convex, so it induces a norm.

5. Let $y = ||y||_{B^{\circ}} \zeta$ for $\zeta \in B^{\circ}$ (taking $\zeta = y/||y||_{B^{\circ}}$, we by a previous question that $\zeta \in B^{\circ}$). Then by definition of B° , we have $\sup_{a \in B} |\langle a, \zeta \rangle| \leq 1$. Then again $x/||x||_{B} \in B$ by the previous question again, so $|\langle x/||x||_{B}, \zeta \rangle| \leq 1$, which shows after multiplying both sides by $||x||_{B}||y||_{B^{\circ}}$ that $|\langle x, y \rangle| \leq ||x||_{B}||y||_{B^{\circ}}$.