# Predicting **Prenatal** Health with Machine Learning

Ironhack final project - Alessia





### \*

## Introduction

- In 2015, 45% of under-5 mortality occurred during the neonatal period, primarily due to birth complications (35%), intrapartum events (25%), and infections like sepsis or meningitis (15%) Liu L. et al. Lancet (2016)
- Cardiotocography (CTG) is used to assess **fetal well-being** during pregnancy. It helps identify complications and ensures timely medical intervention to protect both mother and baby
- CTGs measure fetal heart rate (FHR), variability, accelerations, and decelerations and are classified as:
  - Normal
  - Suspect
  - Pathological







## Objective





Analysing CTGs and drawing conclusions is challenging, especially in underdeveloped countries due to a shortage of skilled medical professionals

#### AIM:

develop a machine learning model to accurately predict high risk fetuses based on CTG exams results





## **Data Overview**



#### **Dataset**

#### Fetal Health Classification (Kaggle):

- 2126 Rows and 22 columns
- No NaN
- 13 Duplicated values (dropped)
- All columns are Floats, including "Fetal Health"



### **Target**

#### "Fetal Health":

- 1 = Normal
- 2 = Suspect
- 3 = Pathological
- → Classification Problem









### **Project Workflow**



**Machine Learning** 

Classification models:

GradientBoost, XGBoost

KNN, AdABoost, RF,

## Data exploration & cleaning

- Removing duplicated values
- Conversion of target col into N,
   S, P for better visualization



# EDA Target and Features distributions

- ANOVA testing
- Feature importance

#### **Tableau visualization**

https://public.tableau.com/app/p rofile/urzi.alessia/viz/final\_proje ct\_Ironhack/Dashboard12?publi sh=yes



#### **Pre-modeling**

- Resampling
- Feature engineering
- Data Transformation







### **Tableau visualization**

• Tableau Dashboard: Link









### **Features Distribution**









- Most Features follow a normal distribution pattern (FHR max, FHR median, FHR mean, FHR mode, base FHR)
- However, some Features are highly skewed (fetal movements, accelerations, decelerations, FHR variance)







## **Machine Learning process**



#### **Imbalance**

**SMOTE** was used to resample the target column





#### **Transformation**

#### **Robust Scaler:**

- Presence of outliers
- Skewed distributions



#### Feature engineering

Conversion of target into numeric values with **Label Encoder (XGBoost)**, then decodified for interpretation









## **Machine Learning Models**

• A GridSearch was run to identify the best parameters for KNN, AdaBoost, GradientBoosting, RF, and XGBoost

| <ul> <li>The best parame<br/>Model</li> </ul> | eter <b>x vg.extecthary</b> app<br>(weighted) | olied <b>.tg. træinsa</b> ch N<br>(weighted) | /lodeAvg. Recall<br>(weighted) | Avg. F1 Score<br>(weighted) | Avg. Cohen's Kappa |
|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|--------------------------------|-----------------------------|--------------------|
| AdaBoost                                      | 0.90                                          | 0.93                                         | 0.90                           | 0.91                        | 0.75               |
| K-Nearest Neighbors                           | 0.92                                          | 0.93                                         | 0.92                           | 0.92                        | 0.80               |
| Gradient Boosting                             | 0.96                                          | 0.96                                         | 0.96                           | 0.96                        | 0.88               |
| Random Forest                                 | 0.96                                          | 0.96                                         | 0.96                           | 0.96                        | 0.88               |
| XGBoost                                       | 0.97                                          | 0.97                                         | 0.97                           | 0.97                        | 0.91               |







## Using XGBoost to predict fetal health

#### **XGB Classification report**

|              | Precision | Recall | F1-score | Support |
|--------------|-----------|--------|----------|---------|
| Normal       | 0.98      | 0.99   | 0.98     | 330     |
| Pathological | 0.94      | 0.94   | 0.94     | 35      |
| Suspect      | 0.93      | 0.86   | 0.89     | 58      |
| Weighted Avg | 0.97      | 0.97   | 0.97     |         |

| Accuracy | 0.97 |  |  |
|----------|------|--|--|

#### **Confusion Matrix**







### **XGBoost Train vs Test**

| Metric       | Avg. Accuracy (weighted) | Avg. Precision (weighted) | Avg. Recall (weighted) | Avg. F1 Score<br>(weighted) | Avg. Cohen's Kappa |
|--------------|--------------------------|---------------------------|------------------------|-----------------------------|--------------------|
| Training Set | 0.99                     | 0.99                      | 0.99                   | 0.99                        | 0.99               |
| Test set     | 0.97                     | 0.97                      | 0.97                   | 0.97                        | 0.91               |

• XGBoost Model is generalizing well on both training and test sets





### **XGBoost Feature Importance**

#### Feature ImportanceXGB



Importance





### **Features Correlation**

#### **Correlation Matrix**



#### **HIGHLY CORRELATED FEATURES (> 0.75):**

- baseline\_value\_FHR(BPM) and FHR\_median FHR\_width and FHR\_min
- FHR min and FHR width

0.75

0.50

0.25

0.00

-0.25

-0.50

- FHR\_mode and FHR\_mean
- FHR\_mode and FHR\_median
- FHR\_mean and FHR\_mode
- FHR\_mean and FHR\_median
- FHR\_median and baseline\_value\_FHR(BPM)
- FHR\_median and FHR\_mode
- FHR\_median and FHR\_mean

Highly correlated features could be removed to avoid redundancy



## **Future Improvements**



#### **Feature importance**

Keeping only most important Features



#### **Feature correlation**

Removing highly correlated features to reduce redundancy



#### **Re-Train XGBoost**

Re-train XGB Model with these implementations to further improve performance and clarity





## **Real Life application**

### Streamlit App demo: FetalHealth



This application is designed to assist in identifying high-risk fetuses, even without trained medical professionals.

By inputting values from a CTG examination below, you can obtain predictions regarding fetal health status.

Link to App:

https://aleurzi-final-project-ironhack-streamlitapp-ln2uq4.streamlit.app/







# Thank you!

• Kaggle Dataset: Link

• Tableau Dashboard: Link

• Streamlit App: Link

Ayres de Campos et al. (2000) J Matern Fetal Med 5:311-318

