21 октября 2024 г.

Задача 1.

Пусть $\Omega = \{1, 2, 3, 4\}$ и

$$\begin{split} \mathcal{F} &:= \{\emptyset, \{1\}, \{3\}, \{1,3\}, \{2,4\}, \{1,2,4\}, \{2,3,4\}, \{1,2,3,4\}\} \\ \mathcal{G} &:= \{\emptyset, \{1\}, \{2\}, \{1,3\}, \{3,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\}\} \\ \mathcal{H} &:= \{\emptyset, \{1\}, \{4\}, \{1,4\}, \{2,3\}, \{1,2,3\}, \{2,3,4\}, \{1,2,3,4\}\} \end{split}$$

- а) Определите, какие из семейств множеств \mathcal{F}, \mathcal{G} и/или \mathcal{H} являются σ -алгебрами, а какие нет.
- b) Пусть $f: \Omega \to \mathbb{R}$ определена следующим образом: $f(n) := (-1)^n$. Проверьте измеримость f по отношению к σ -алгебрами, определённым в п. а).

Решение

- а) \mathcal{F} и \mathcal{H} являются σ -алгебрами, а \mathcal{G} нет.
- b) f измерима по \mathcal{F} , но не по \mathcal{H} .

Задача 2.

Пусть X – стандартная нормальная случайная величина, $\mathcal{N}(0,1)$. Случайная величина Y задается на том же вероятностном пространстве, что и X, следующим образом:

$$Y(\omega) = egin{cases} X(\omega) & \text{ для } \omega: |X(\omega)| < 0.5 \ -X(\omega) & \text{ для } \omega: |X(\omega)| \geq 0.5. \end{cases}$$

- а) Найдите маржинальную плотность $f_Y(y)$ распределения Y.
- b) Является ли X + Y нормальной случайной величиной?

Решение

- а) Рассмотрим $\Pr(Y \leq y)$ для разных значений y.
 - Для $y \ge 0.5$: $\Pr(Y \le y) = \Pr(X \ge -y) = \Pr(X \le y) = \Phi(y)$. Равенство $\Pr(X \ge -y) = \Pr(X \le y)$ выполняется в силу симметрии стандартного нормального распределения относительно нуля, см. рис. 1.
 - Для $y \in (-0.5, 0.5)$: $\Pr(Y \le y) = \Pr(X \ge 0.5) + \Pr(X \in (-0.5, y]) = \Phi(-0.5) + \Phi(y) \Phi(-0.5) = \Phi(y)$, см. рис. 2.
 - Для $y \le -0.5$: $\Pr(Y \le y) = \Pr(X \ge -y) = \Pr(X \le y) = \Phi(y)$, см. рис. 3.

Рис. 1: $y \ge 0.5$; жёлтым цветом отмечены области значений X, для которых $Y \le y$

Рис. 2: $y \in (-0.5, 0.5)$; жёлтым цветом отмечены области значений X, для которых $Y \leq y$

Рис. 3: $y \le -0.5$; жёлтым цветом отмечены области значений X, для которых $Y \le y$

При всех возможных значениях y, численное значение кумулятивной функции распределения $F_Y(y)$ равно $\Phi(y)$, следовательно маржинальное распределение Y является стандартным нормальным, а его плотность равна $f_Y(y) = \frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}}, \ y \in \mathbb{R}.$

b) По построению, $|X+Y| \le 1$, следовательно X+Y не может являться нормальной случайной величиной. Сконструированные в этом примере случайные величины X и Y не являются совместно нормальными.

Задача 3.

Фирма A на собеседовании нанимает работника с вероятностью p, и платит трудоустроенным сотрудникам вознаграждение $Y \sim Exp(\lambda)$, а в случае отказа в приёме на работу, её расходы на организацию одного собеседования составляют a. Найдите среднее значение и дисперсию общих затрат, если планируется провести собеседования с k кандидатами, и решения о приёме на работу и размере оплаты каждого работника принимаются независимо.

Решение

Используем обозначения: X_i – расходы фирмы на i-го кандидата; $\mathbb{1}_i$ – индикатор, что i-го кандидата взяли на работу. Тогда общие затраты фирмы равны $S = \sum_{i=1}^k X_i$, и для нахождения $\mathbb{E}S$ и $\mathbb{V}S$ удобно использовать закон повторных матожиданий:

$$\mathbb{E}S = k\mathbb{E}(X_i) = k\mathbb{E}\left[\mathbb{E}(X_i \mid \mathbb{1}_i)\right] = k\left[\mathbb{E}(X_i \mid \mathbb{1}_i = 1) \cdot \Pr(\mathbb{1}_i = 1) + \mathbb{E}(X_i \mid \mathbb{1}_i = 0) \cdot \Pr(\mathbb{1}_i = 0)\right] =$$

$$= k\left[\frac{p}{\lambda} + a(1-p)\right].$$

$$\mathbb{V}S = k\mathbb{V}X_i, \quad \mathbb{E}X_i^2 = \mathbb{E}\left[\mathbb{E}(X_i^2 \mid \mathbb{1}_i)\right] = \mathbb{E}(X_i^2 \mid \mathbb{1}_i = 1) \cdot \Pr(\mathbb{1}_i = 1) + \mathbb{E}(X_i^2 \mid \mathbb{1}_i = 0) \cdot \Pr(\mathbb{1}_i = 0) =$$

$$= \frac{2p}{\lambda^2} + a^2(1-p) \Rightarrow \mathbb{V}X_i = \frac{2p}{\lambda^2} + a^2(1-p) - \left(\frac{p}{\lambda} + a(1-p)\right)^2, \quad \mathbb{V}S = k\left[\frac{2p}{\lambda^2} + a^2(1-p) - \left(\frac{p}{\lambda} + a(1-p)\right)^2\right].$$

Задача 4.

Случайная величина X имеет равномерное распределение на отрезке [-1,1]. Вычислите $\mathbb{E}(X\mid X^2)$.

Решение

Можно ввести случайную величину $\xi = \mathrm{sign}(X)$ и воспользоваться расширенной версией закона повторного матожидания:

$$\mathbb{E}(X\mid X^2) = \mathbb{E}\left[\mathbb{E}(X\mid X^2,\xi)\mid X^2\right] = \mathbb{E}\left[\sqrt{X^2}\xi\mid X^2\right] = \sqrt{X^2}\mathbb{E}(\xi\mid X^2) = \sqrt{X^2}\mathbb{E}\xi = 0. \tag{1}$$

Переход от $\mathbb{E}(X\mid X^2,\xi)$ к $\sqrt{X^2}\xi$ объясняется тем, что если мы знаем значение квадрата и знак случайной величины, то этой информации достаточно, чтобы восстановить её точное значение. При этом, условное матожидание $\mathbb{E}(X\mid X^2,\xi)$ является случайной величиной, измеримой по $\sigma(X^2,\xi)$ — то есть, фактически, должно выражаться как функция от X^2 и ξ , — поэтому X здесь записана как $\sqrt{X^2}\xi$. Переход в (1) от условного матожидания $\mathbb{E}(\xi\mid X^2)$ к безусловному $\mathbb{E}\xi$ объясняется независимостью ξ и X^2 , — для доказательства независимости рассмотрим совместную функцию распределения:

$$\forall x \in [0,1], \ \Pr(\{\xi = 1\} \cap \{X^2 \le x\}) = \Pr(X \in [0,\sqrt{x}]) = \frac{\sqrt{x}}{2} = \Pr(\xi = 1) \Pr(X^2 \le x).$$

Рассуждения, подобные вышеприведённому, часто называют формулой полного матожидания (по аналогии с формулой полной вероятности). Сравните (1) со следующей записью:

$$\mathbb{E}(X \mid X^2) = \mathbb{E}(X \mid X^2, X \ge 0) \cdot \Pr(X \ge 0 \mid X^2) + \mathbb{E}(X \mid X^2, X < 0) \cdot \Pr(X < 0 \mid X^2) = \frac{X}{2} + \frac{-X}{2} = 0.$$

¹Поскольку ξ – дискретная, её распределение удобнее описывать с помощью функции масс $p_{\xi}(z) = \Pr(\xi = z)$, а её совместное распределение с непрерывной X^2 – с помощью функции распределения $p_{\xi,X^2}(z,x) = \Pr(\{\xi = z\} \cap \{X^2 \le x\})$. В этом случае условие $\forall x,z \in \mathbb{R}$ $p_{\xi,X^2}(z,x) = p_{\xi}(z)F_{X^2}(x)$ является необходимым и достаточным для независимости ξ и X^2 .