Laboratory exercise no. 3: Radiation balance of the Earth

Aim: The aim of the laboratory is simulation of the global radiation budget of the Earth.

Laboratory programme:

- 1. Get acquainted with the simple Earth long-wave and short-wave radiation balance model.
- 2. Making a simple calculations of mean Earth temperature without atmosphere.
- 3. Writing of the programme code simulating the mean Earth temperature including the atmosphere effect.
- 4. Calculation of the relationship between mean temperature and solar constant optionally considering the glacial-interglacial transitions.

Set of energy balance equations (no atmosphere):

$$P_{Sl} = S \cdot \frac{Pow_Z}{4} \cdot (1 - A)$$

$$P_Z = \sigma \cdot T^4 \cdot Pow_Z$$

$$P_z = P_{st}$$

where:

P_{St} – Power of solar radiation arriving to the Earth (short wave radiation)

P_z – Power of radiation emitted from Earth (long wave radiation)

A - mean albedo of the Earth surface

S – solar constant

Pow₇ – area of the Earth

σ -Stefan-Boltzmann constant

Set of energy balance equations (with atmosphere):

$$(-t_a)(1-a_s)\frac{S}{4} + c(T_s - T_a) + \sigma T_s^4 (1-a_a) - \sigma T_a^4 = 0$$

$$-(1-a_a-t_a+a_st_a)\frac{S}{4}-c(T_s-T_a)-\sigma T_s^4(1-t_a-a_a)+2\sigma T_a^4=0$$

where:

t_a – transmission of the atmosphere for short wave radiation

a_a – albedo of the atmosphere for short wave radiation

a_s- surface albedo for short wave radiation

t_a'- transmission of the atmosphere for long wave radiation

a_a'- albedo of the atmosphere for long wave radiation

T_a- mean temperature of the atmosphere

T_s- mean Surface temperature

Input data:

for version 1:

A=0.3 S=1366 W/m²
$$\sigma$$
=5.67x10⁻⁸ W/m²K⁴

for version 2:

Short wave radiation	Long wave radiation
a _s =0.19 t _a =0.53 a _a =0.30	t _a '=0.06 a _a '=0.31
c=2.7 Wm ⁻² K ⁻¹ Solar constant range 0.8 to 1.2 S	

Laboratory outline:

- 1. Performing of simple calculation of mean Earth temperature assuming no atmosphere
- 2. Writing the programme code solving set of nonlinear equations.
- 3. Calculation of relationship between mean temperature and solar constant
- 4. Comparison of the results
- 5. Implementation of glaciations mechanism in the model (Surface albedo depend on the temperature).
- 6. Calculation of solar constant values associated with glacial-interglacial transition of the Earth system.
- 7. Computer programme can be written in any programming language or software environment. Recommended environment is MATLAB.
- 8. Programme code supplemented with appropriate comments should be included as a part of a report prepared in pdf format.
- 9. The report must include the conclusion.