Eine Woche, ein Beispiel 12.26 "Average Resistance" z(17)

Goal: compute parameters in [Cin]:https://arxiv.org/pdf/0901.3945.pdf [BF]:https://arxiv.org/pdf/math/0407428.pdf [BR]:https://arxiv.org/pdf/math/0407427.pdf

and think of their physical meaning (I need your help!)
If possible, find a way to explain the Cinkir's bound [Cin, Thm 5.21].

We begin with an undirected weighted connected graph 17. (weight is always positive, and can be thought as the length; I have at lease 1 edge)

E.g.		v, e, v,	v €	N, e, 1
	Vertices V= V(□)	۶۷, , V≥}	ખિ	{U, U2}
	Edges E=E(P)	se.z	sez.	fe., e., e, }
	total length (=((17)	1	L	3
	genus g=g(P)	0	1	2

You can think a graph Γ as some electrical wives with given length and constant resistivity $1\Omega/m$. Then we can compute the resistance between two points $p,q\in\Gamma$, and denote it by r(p,q). Γ can be points on edges

E.g. In Fig 1, $r(v_1,v_2) = \frac{1}{3}\Omega$, $r(x_1,x_2) = \frac{1}{2}\Omega$ $\sqrt{\frac{1}{2}} \times \frac{1}{2} \times \frac{1}{2$

Thm. There exists a unique real signal Borel measure μ_{can} on Γ , satisfying:

(i) $\mu(\Gamma) = 1$, $\mu_{can} | \Gamma | < \infty$ (ii) The expression $(x,y \in \Gamma)$ $\frac{1}{2} \int_{\Gamma} r(x,y) d\mu_{can}(y)$

is independent of the variant \times . We denote $\tau = \tau(\Gamma) = \frac{1}{2} \int_{\Gamma} r(x,y) \, d\mu_{con}(y)$, and call it the "average resistance."

Actually this quantity is more weind then what I thought.

_			
-		n	
ᆫ	٠	ч	

	1 N, e, v,	v €	N, e, 1
Mcan	= Sv. + = Sv2	≟ d×	-=====================================
て=て(^)	-14	<u> </u>	7

Ex. Verify the value of $z(\Gamma)$ in the tables. (assuming that μ can is already known). Q: Do we have any physical explanation for I(1)?

Actually we can write down Man explicitly. For doing so we have to introduce Some new concepts.

Def. $(L_i, r_i, j_i(x,y), j_{e_i,i}, j_{e_i,s}(i), j_{e_i,t}(i))$

$$x = s(e_i)$$
 $(i = f(e_i))$ $y = f(e_i)$ (e_i) (e_i) (e_i)

Reality check: $\Theta \frac{1}{r(x,y)} = \frac{1}{l_1} + \frac{1}{r_2}$

$$O v(x,y) = j_x(y,\xi) + j_y(\xi,x)$$

$$Y_{i}(x,y) = j_{i,s}(\S) + j_{i,t}(\S)$$

①
$$v(x,y) = j_x(y,\xi) + j_y(\xi,x)$$
 $r_i(x,y) = j_{i,s}(\xi) + j_{i,t}(\xi)$
② $j_x(y,\xi) = \frac{l_i \cdot j_{i,s}(\xi)}{l_i + r_i}$ $j_y(\xi,x) = \frac{l_i \cdot j_{i,t}(\xi)}{l_i + r_i}$

$$j_y(\S,x) = \frac{\lim_{t \to y_{i,t}(\S)}}{\lim_{t \to y_{i}}}$$

$$J_{\varsigma}(x,y) = J_{i,\varsigma} + \frac{J_{i,\varsigma}(\varsigma) \cdot J_{i,t}(\varsigma)}{J_{i,\varsigma}(\varsigma)}$$

E.g.

	× e _i y	xy to ei	x ei y
r(x,y)	1	0	1 3
r _i	∞	0	1 2
j, (×,y)	o	t + (1-t)	₹ t(1-t)
i., ş	error ({ 6 e;)	error	- t (1-t)
1 1.5 (})	error	error	1/2 t
j _{ist} (§)	error	error	½ (1-t)

Def Let $p \in |\Gamma|$. $\nu(p) = \# \text{ Fhalf edges end at } p$

e.g

N(p)=5

Thm [(14.1), BR]
$$\mu_{can}(x) = \sum_{p \in |P|} (1 - \frac{1}{2} \nu(p)) \delta_p(x) + \sum_{e \in E} \frac{dx}{(i + i)}$$

Thm.
$$T(\Gamma) = \frac{1}{2} \int_{\Gamma} r(x,y) d\mu_{can}(x)$$

 $= \frac{1}{4} \int_{\Gamma} \left(\frac{dr}{dx} (x,y) \right)^{2} dx$
 $= \frac{1}{12} \sum_{e_{i} \in E} \frac{l_{i}^{3} + 3 l_{i} \left(j_{i,s}(s) - j_{i,t}(s) \right)^{2}}{\left(l_{i} + r_{i} \right)^{2}}$
 $= \frac{l(\Gamma)}{12} - \frac{1}{6} \sum_{e_{i} \in \Gamma} b(q) - 2 r(s,q) + \frac{1}{3} \sum_{e_{i} \in \Gamma} \frac{l_{i}}{l_{i} + r_{i}} j_{i,s}$

 Δ , g on graphs.