Homework

Chapter 2: Mathematical Models of Systems

P2.1 The suspension system for wheels of an old-fashioned pickup truck is illustrated in Fig. P2.1. The mass of the vehicle is m_1 and the mass of the wheel is m_2 . The suspension spring has a spring constant k_1 , and the tire has a spring constant k_2 . The damping constant of the shock absorber is b. Obtain the differential equations describing the system, and determine the transfer function $Y_1(s)/X(s)$ which represents the vehicle response to bumps in the road.

P2.2 Determine the transfer function $V_o(s)/V(s)$ for the op-amp circuit shown below. Let $R_1 = 167$ kΩ, $R_2 = 240$ kΩ, $R_3 = 1$ kΩ, $R_4 = 100$ kΩ, and C = 1 μF. Assume an ideal op-amp.

P2.3 Obtain the transfer function C(s)/R(s) of the following block diagram.

P2.4 Simplify the following block diagram by at least two different methods from the one given in Example 2.6.1 of the lecture note.

P2.5 Consider the feedback control system in the following figure,

- (a) Using MATLAB, determine the closed-loop transfer function.
- (b) Obtain the pole-zero map using the "**pzmap**" function. Where are the closed-loop system poles and zeros?
- (c) Are there any pole-zero cancellations? If so, use the "**mineral**" function to cancel common poles and zeros in the closed-loop transfer function.
- (d) Why is it important to cancel common poles and zeros in the transfer function?

科目:) 清华大学数学作业纸

9.9

编号: 2018 28035 班级:

姓名: ZHANC NAIFY 第

页

P2. DEs:

$$m_2 \dot{y}_2 = k_2 (x-y_2) k_1(y_1-y_2) + b(y_1-y_2) - k_2(y_2-x)$$
 $m_1 \dot{y}_1 = -k_1 (y_1-y_2) - b(y_1-y_2)$

Simply Simplifying:

$$m_2\ddot{y}_2 + k_1\dot{y}_2 + b\dot{y}_2 + k_2\dot{y}_2 = k_1\dot{y}_1 + b\dot{y}_1 + k_2\dot{x}$$

 $m_1\ddot{y}_1 + k_1\dot{y}_1 + b\dot{y}_1 = k_1\dot{y}_2 + b\dot{y}_2$

Take L transform:

$$(m_2S^2 + 2k_1 + bS + k_1 + k_2) Y_2(S) = (bS + k_1) Y_1(S) + k_2 XG)$$

 $(m_1S^2 + bS + k_1) Y_1(G) = (bS + k_1) Y_2(S)$

$$Y_{2}(s) = \frac{m_{1}s^{2} + bs + k_{1}}{bs + k_{1}} Y_{1}(s)$$

$$= \left(\frac{m_{1}s^{2}}{bs + k_{1}} + 1\right) Y_{1}(s)$$

$$(m_2s^2 + bs + k_1 + k_2) \left(\frac{m_1s^2}{bs + k_1} + 1\right) Y_1(s) = (bs + k_1) Y_1(s) + k_2X(s)$$

 $Y_1(s)$
 $k_2(bs + k_1)$

$$\frac{Y_{1}(s)}{X(s)} = \frac{k_{2} \left(bs + k_{1}\right)}{m_{1}m_{2}s^{4} + \left(m_{1} + m_{2}\right)bs^{3} + \left(k_{1} + k_{2}\right)m_{1}s^{2} + k_{1}m_{2}s^{2} + k_{2}bs + k_{1}k_{2}}$$

(科目: 「2.2) 清华大学数学作业纸

编号: 2018 280 35 | 班级:

姓名:

页

First consider without the inverter

$$\langle = \rangle$$

$$E_{1}(S)$$

$$E_{2}(S)$$

$$E_{3}(S)$$

$$E_{4}(S)$$

$$E_{5}(S)$$

$$Z_{1}(s) = \frac{R_{1} + \frac{1}{C_{s}}}{R_{1} + \frac{1}{C_{s}}} = \frac{R_{1}}{R_{c}s+1}$$

$$Z_{2}(s) = R_{2}$$

$$\frac{E_{2}(s)}{E_{1}(s)} = -\frac{Z_{2}(s)}{Z_{1}(s)} = -\frac{R_{2}(R_{1}(s+1))}{R_{1}(s+1)}$$

$$\frac{E_{o}(s)}{E_{2}(s)} = -\frac{Z_{2}(s)}{Z_{3}(s)} = -\frac{R_{0}}{R_{3}}$$

Together $E_{o}(S)$ = $E_{o}(S$

(科目: 72.3) 清华大学数学作业纸

编号: 20/8 280 35/ 班级:

姓名:

第多页

科目: 『2.4》 清华大学数学作业纸

30 (500)

(科目: 25) 清华大学数学作业纸

(a)
$$TF = \frac{s^2 + 2s + 1}{s^2 + 4s + 3}$$

(b)
$$P = \begin{pmatrix} -3 \\ -1 \end{pmatrix}$$
 $R = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$

(c)
$$TF \text{ minreal} = \frac{s+1}{s+3}$$

(d) In stability analysis, poles in the right-half-plane poles correspond to locations of instability. If we don't concel Common poles & zeroes, the common poles would lead to wong stability analysis.

It also does not make sense the TF is both 0 & infinite at the same location of we don't cancel.

```
sysg=tf([1,1],[1,2]);
sysh=tf(1,[1,1]);
[num, den] = feedback([1,1],[1,2],[1],[1,1]);
printsys(num,den);
sys = tf(num, den);
p = pole(sys);
z = zero(sys);
[p,z] = pzmap(sys)
sysmin = minreal(sys)
 num/den =
    s^2 + 2 s + 1
    s^2 + 4 s + 3
 p =
     -3
 z =
     -1
     -1
 sysmin =
   s + 1
   s + 3
 Continuous-time transfer function.
```