## **ANALYSIS -I**

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

▶ To begin with we recall a few definitions from last lecture.

- ▶ To begin with we recall a few definitions from last lecture.
- Definition 5.1: Let A, B be two non-empty sets. Then B is said to be equipotent with A, if there exists a bijection f: A → B. Empty set is equipotent to only itself.

- ▶ To begin with we recall a few definitions from last lecture.
- Definition 5.1: Let A, B be two non-empty sets. Then B is said to be equipotent with A, if there exists a bijection f: A → B. Empty set is equipotent to only itself.
- ▶ Definition 5.3: A set A is said to be finite if it is equipotent with  $\{1, 2, ..., n\}$  for some  $n \in \mathbb{N}$  or it is empty. A set A is said to be infinite if it is not finite.
- ▶ Definition 5.6: A set A is said to be countable if it is equipotent with  $\mathbb{N}$  or if it is finite. It is said to be countably infinite if is countable and not finite. A set A is said to be uncountable if it is not countable.

- ▶ To begin with we recall a few definitions from last lecture.
- Definition 5.1: Let A, B be two non-empty sets. Then B is said to be equipotent with A, if there exists a bijection f: A → B. Empty set is equipotent to only itself.
- ▶ Definition 5.3: A set A is said to be finite if it is equipotent with  $\{1, 2, ..., n\}$  for some  $n \in \mathbb{N}$  or it is empty. A set A is said to be infinite if it is not finite.
- ▶ Definition 5.6: A set A is said to be countable if it is equipotent with  $\mathbb{N}$  or if it is finite. It is said to be countably infinite if is countable and not finite. A set A is said to be uncountable if it is not countable.
- ▶ We saw that  $\mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}$  are all countable.

- ▶ To begin with we recall a few definitions from last lecture.
- Definition 5.1: Let A, B be two non-empty sets. Then B is said to be equipotent with A, if there exists a bijection f: A → B. Empty set is equipotent to only itself.
- ▶ Definition 5.3: A set A is said to be finite if it is equipotent with  $\{1, 2, ..., n\}$  for some  $n \in \mathbb{N}$  or it is empty. A set A is said to be infinite if it is not finite.
- ▶ Definition 5.6: A set A is said to be countable if it is equipotent with  $\mathbb{N}$  or if it is finite. It is said to be countably infinite if is countable and not finite. A set A is said to be uncountable if it is not countable.
- ▶ We saw that  $\mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}$  are all countable.
- Now it is time to see some uncountable sets.

▶ Let  $\mathbb{B} = \{(w_1, w_2, w_3, ...) : w_j \in \{0, 1\}\}.$ 

- ▶ Let  $\mathbb{B} = \{(w_1, w_2, w_3, \ldots) : w_j \in \{0, 1\}\}.$
- ▶ Each  $w_j$  is either 0 or 1. We call  $(w_1, w_2,...)$  as a binary sequence.

- ▶ Let  $\mathbb{B} = \{(w_1, w_2, w_3, \ldots) : w_j \in \{0, 1\}\}.$
- ► Each  $w_j$  is either 0 or 1. We call  $(w_1, w_2, ...)$  as a binary sequence.
- $ightharpoonup \mathbb{B}$  is the set of all possible binary sequences. (Warning: This notation is not standard.)

- ▶ Let  $\mathbb{B} = \{(w_1, w_2, w_3, \ldots) : w_j \in \{0, 1\}\}.$
- ▶ Each  $w_j$  is either 0 or 1. We call  $(w_1, w_2,...)$  as a binary sequence.
- $ightharpoonup \mathbb{B}$  is the set of all possible binary sequences. (Warning: This notation is not standard.)
- ► Theorem 6.1: B is uncountable.

- ▶ Let  $\mathbb{B} = \{(w_1, w_2, w_3, ...) : w_i \in \{0, 1\}\}.$
- ▶ Each  $w_j$  is either 0 or 1. We call  $(w_1, w_2,...)$  as a binary sequence.
- $ightharpoonup \mathbb{B}$  is the set of all possible binary sequences. (Warning: This notation is not standard.)
- ► Theorem 6.1: B is uncountable.
- ► The proof is by contradiction and the argument is known as Cantor's diagonal argument.

- ▶ Let  $\mathbb{B} = \{(w_1, w_2, w_3, \ldots) : w_j \in \{0, 1\}\}.$
- ▶ Each  $w_j$  is either 0 or 1. We call  $(w_1, w_2,...)$  as a binary sequence.
- $ightharpoonup \mathbb{B}$  is the set of all possible binary sequences. (Warning: This notation is not standard.)
- ► Theorem 6.1: B is uncountable.
- ► The proof is by contradiction and the argument is known as Cantor's diagonal argument.
- ▶ Proof: Suppose that there exists a bijection  $f : \mathbb{N} \to \mathbb{B}$ . In particular f is a surjection.

- ▶ Let  $\mathbb{B} = \{(w_1, w_2, w_3, \ldots) : w_j \in \{0, 1\}\}.$
- ▶ Each  $w_j$  is either 0 or 1. We call  $(w_1, w_2,...)$  as a binary sequence.
- $ightharpoonup \mathbb{B}$  is the set of all possible binary sequences. (Warning: This notation is not standard.)
- ► Theorem 6.1: B is uncountable.
- ► The proof is by contradiction and the argument is known as Cantor's diagonal argument.
- ▶ Proof: Suppose that there exists a bijection  $f : \mathbb{N} \to \mathbb{B}$ . In particular f is a surjection.
- ▶ Then for every  $i \in \mathbb{N}$ , f(i) is a binary sequence.

► Suppose  $f(i) = (w_{i1}, w_{i2}, w_{i3}, ...)$ 

- ► Suppose  $f(i) = (w_{i1}, w_{i2}, w_{i3}, ...)$
- ▶ Each  $w_{ij}$  is either 0 or 1.

- ► Suppose  $f(i) = (w_{i1}, w_{i2}, w_{i3}, ...)$
- ► Each  $w_{ij}$  is either 0 or 1.
- ► Look at the infinite matrix:

- ► Suppose  $f(i) = (w_{i1}, w_{i2}, w_{i3},...)$
- ► Each  $w_{ij}$  is either 0 or 1.
- ► Look at the infinite matrix:

• formed by writing down  $f(1), f(2), \ldots$  as rows.

- ► Suppose  $f(i) = (w_{i1}, w_{i2}, w_{i3}, ...)$
- ► Each  $w_{ij}$  is either 0 or 1.
- Look at the infinite matrix:

- formed by writing down  $f(1), f(2), \ldots$  as rows.
- Form a binary sequence using the diagonal entries:  $(w_{11}, w_{22}, w_{33}, ...)$ .

- ► Suppose  $f(i) = (w_{i1}, w_{i2}, w_{i3},...)$
- ightharpoonup Each  $w_{ij}$  is either 0 or 1.
- Look at the infinite matrix:

- formed by writing down  $f(1), f(2), \ldots$  as rows.
- Form a binary sequence using the diagonal entries:  $(w_{11}, w_{22}, w_{33},...)$ .
- We flip the entries to get a new binary sequence,  $v=(v_1,v_2,v_3,\ldots)$  where  $v_j=1-w_{jj}$  for every  $j\in\mathbb{N}$ . Now we claim that v is not in the range of f.

 $v \neq f(1)$  as  $v = (v_1, v_2, ...), f(1) = (w_{11}, w_{12}, ...)$  and  $v_1 = 1 - w_{11} \neq w_{11}$ . So the first entry does not match.

- $v \neq f(1)$  as  $v = (v_1, v_2, ...), f(1) = (w_{11}, w_{12}, ...)$  and  $v_1 = 1 w_{11} \neq w_{11}$ . So the first entry does not match.
- $v \neq f(2)$  as  $v = (v_1, v_2, ...), f(2) = (w_{21}, w_{22}, ...)$  and  $v_2 = 1 w_{22} \neq w_{22}$ . So the second entry does not match.

- $v \neq f(1)$  as  $v = (v_1, v_2, ...), f(1) = (w_{11}, w_{12}, ...)$  and  $v_1 = 1 w_{11} \neq w_{11}$ . So the first entry does not match.
- $v \neq f(2)$  as  $v = (v_1, v_2, ...), f(2) = (w_{21}, w_{22}, ...)$  and  $v_2 = 1 w_{22} \neq w_{22}$ . So the second entry does not match.
- ▶ In fact, for every  $i \in \mathbb{N}$ ,  $f(i) \neq v$  as  $v_i \neq w_{ii}$ . Here  $i^{th}$  entry does not match.

- $v \neq f(1)$  as  $v = (v_1, v_2, ...), f(1) = (w_{11}, w_{12}, ...)$  and  $v_1 = 1 w_{11} \neq w_{11}$ . So the first entry does not match.
- $v \neq f(2)$  as  $v = (v_1, v_2, ...), f(2) = (w_{21}, w_{22}, ...)$  and  $v_2 = 1 w_{22} \neq w_{22}$ . So the second entry does not match.
- ▶ In fact, for every  $i \in \mathbb{N}$ ,  $f(i) \neq v$  as  $v_i \neq w_{ii}$ . Here  $i^{th}$  entry does not match.
- ▶ Therefore v is not in the range of f.

- $v \neq f(1)$  as  $v = (v_1, v_2, ...), f(1) = (w_{11}, w_{12}, ...)$  and  $v_1 = 1 w_{11} \neq w_{11}$ . So the first entry does not match.
- $v \neq f(2)$  as  $v = (v_1, v_2,...), f(2) = (w_{21}, w_{22},...)$  and  $v_2 = 1 w_{22} \neq w_{22}$ . So the second entry does not match.
- ▶ In fact, for every  $i \in \mathbb{N}$ ,  $f(i) \neq v$  as  $v_i \neq w_{ii}$ . Here  $i^{th}$  entry does not match.
- ▶ Therefore v is not in the range of f.
- ▶ Actually, we have shown that no function  $f : \mathbb{N} \to \mathbb{B}$  can be surjective.

- $v \neq f(1)$  as  $v = (v_1, v_2, ...), f(1) = (w_{11}, w_{12}, ...)$  and  $v_1 = 1 w_{11} \neq w_{11}$ . So the first entry does not match.
- $v \neq f(2)$  as  $v = (v_1, v_2,...), f(2) = (w_{21}, w_{22},...)$  and  $v_2 = 1 w_{22} \neq w_{22}$ . So the second entry does not match.
- ▶ In fact, for every  $i \in \mathbb{N}$ ,  $f(i) \neq v$  as  $v_i \neq w_{ii}$ . Here  $i^{th}$  entry does not match.
- ▶ Therefore v is not in the range of f.
- Actually, we have shown that no function  $f : \mathbb{N} \to \mathbb{B}$  can be surjective.
- ► In particular B is not countable.

$$P(A) = \{B : B \subseteq A\}.$$

▶ Definition 6.2: Let A be any set. Then the power set of A is defined as

$$P(A) = \{B : B \subseteq A\}.$$

▶ In other words, the power set of A is the set of all subsets of A.

$$P(A) = \{B : B \subseteq A\}.$$

- ▶ In other words, the power set of A is the set of all subsets of A.
- ▶ If  $A = \emptyset$ , then  $P(A) = {\emptyset}$ .

$$P(A) = \{B : B \subseteq A\}.$$

- ▶ In other words, the power set of A is the set of all subsets of A.
- ▶ If  $A = \emptyset$ , then  $P(A) = \{\emptyset\}$ .
- ▶ If  $A = \{1\}$ , then  $P(A) = \{\emptyset, \{1\}\}$ .

$$P(A) = \{B : B \subseteq A\}.$$

- ▶ In other words, the power set of A is the set of all subsets of A.
- ▶ If  $A = \emptyset$ , then  $P(A) = \{\emptyset\}$ .
- ▶ If  $A = \{1\}$ , then  $P(A) = \{\emptyset, \{1\}\}$ .
- ▶ If  $A = \{1, 2\}$ , then  $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$ .

$$P(A) = \{B : B \subseteq A\}.$$

- ▶ In other words, the power set of A is the set of all subsets of A.
- ▶ If  $A = \emptyset$ , then  $P(A) = \{\emptyset\}$ .
- ▶ If  $A = \{1\}$ , then  $P(A) = \{\emptyset, \{1\}\}$ .
- ▶ If  $A = \{1, 2\}$ , then  $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$ .
- ▶ If  $A = \{1, 2, 3\}$ , then  $P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ .

$$P(A) = \{B : B \subseteq A\}.$$

- ▶ In other words, the power set of A is the set of all subsets of A.
- ▶ If  $A = \emptyset$ , then  $P(A) = \{\emptyset\}$ .
- ▶ If  $A = \{1\}$ , then  $P(A) = \{\emptyset, \{1\}\}$ .
- ▶ If  $A = \{1, 2\}$ , then  $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$ .
- ▶ If  $A = \{1, 2, 3\}$ , then  $P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ .
- Exercise: If A is a finite set with n elements, show that P(A) has  $2^n$  elements.

$$P(A) = \{B : B \subseteq A\}.$$

- ▶ In other words, the power set of A is the set of all subsets of A.
- ▶ If  $A = \emptyset$ , then  $P(A) = \{\emptyset\}$ .
- ▶ If  $A = \{1\}$ , then  $P(A) = \{\emptyset, \{1\}\}$ .
- ▶ If  $A = \{1, 2\}$ , then  $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$ .
- ▶ If  $A = \{1, 2, 3\}$ , then  $P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$ .
- Exercise: If A is a finite set with n elements, show that P(A) has  $2^n$  elements.
- $\blacktriangleright$  We guess that P(A) should be having 'more' elements than A.

#### Power sets -continued

▶ Theorem 6.3: Let A be a non-empty set. Let  $f: A \rightarrow P(A)$  be a function. Then f is not surjective.

#### Power sets -continued

- ▶ Theorem 6.3: Let A be a non-empty set. Let  $f: A \to P(A)$  be a function. Then f is not surjective.
- ▶ This is really a way of saying "P(A) has 'more' elements than A".

#### Power sets -continued

- ▶ Theorem 6.3: Let A be a non-empty set. Let  $f: A \rightarrow P(A)$  be a function. Then f is not surjective.
- ▶ This is really a way of saying "P(A) has 'more' elements than A".
- **Proof**: Given that  $f: A \rightarrow P(A)$  is a function.

- ▶ Theorem 6.3: Let A be a non-empty set. Let  $f: A \rightarrow P(A)$  be a function. Then f is not surjective.
- ▶ This is really a way of saying "P(A) has 'more' elements than A".
- **Proof**: Given that  $f: A \rightarrow P(A)$  is a function.
- Note that for every  $a \in A$ , f(a) is a subset of A.

- ▶ Theorem 6.3: Let A be a non-empty set. Let  $f: A \rightarrow P(A)$  be a function. Then f is not surjective.
- ▶ This is really a way of saying "P(A) has 'more' elements than A".
- **Proof**: Given that  $f: A \rightarrow P(A)$  is a function.
- Note that for every  $a \in A$ , f(a) is a subset of A.
- It is possible that a is an element of f(a) and it is also possible that a is not an element of f(a).

- ▶ Theorem 6.3: Let A be a non-empty set. Let  $f: A \rightarrow P(A)$  be a function. Then f is not surjective.
- ▶ This is really a way of saying "P(A) has 'more' elements than A".
- **Proof**: Given that  $f: A \rightarrow P(A)$  is a function.
- Note that for every  $a \in A$ , f(a) is a subset of A.
- It is possible that a is an element of f(a) and it is also possible that a is not an element of f(a).
- ▶ Define a set *D* by

$$D = \{a \in A : a \notin f(a)\}.$$



- ▶ Theorem 6.3: Let A be a non-empty set. Let  $f: A \rightarrow P(A)$  be a function. Then f is not surjective.
- ▶ This is really a way of saying "P(A) has 'more' elements than A".
- **Proof**: Given that  $f: A \rightarrow P(A)$  is a function.
- Note that for every  $a \in A$ , f(a) is a subset of A.
- It is possible that a is an element of f(a) and it is also possible that a is not an element of f(a).
- Define a set D by

$$D = \{a \in A : a \notin f(a)\}.$$

▶ Clearly D is a subset of A, and hence it is an element of P(A).

- ▶ Theorem 6.3: Let A be a non-empty set. Let  $f: A \rightarrow P(A)$  be a function. Then f is not surjective.
- ▶ This is really a way of saying "P(A) has 'more' elements than A".
- **Proof**: Given that  $f: A \rightarrow P(A)$  is a function.
- Note that for every  $a \in A$ , f(a) is a subset of A.
- It is possible that a is an element of f(a) and it is also possible that a is not an element of f(a).
- Define a set D by

$$D = \{a \in A : a \notin f(a)\}.$$

- ▶ Clearly D is a subset of A, and hence it is an element of P(A).
- ▶ We claim that D is not in the range of f. That would show that f is not surjective.



- ▶ Recall:  $D = \{a \in A : a \notin f(a)\}.$
- ightharpoonup Assume that D is in the range of f.

- ▶ Recall:  $D = \{a \in A : a \notin f(a)\}.$
- ightharpoonup Assume that D is in the range of f.
- ▶ So  $D = f(a_0)$  for some  $a_0 \in A$ .

- ▶ Recall:  $D = \{a \in A : a \notin f(a)\}.$
- Assume that D is in the range of f.
- ▶ So  $D = f(a_0)$  for some  $a_0 \in A$ .
- Now either  $a_0 \in D$  or  $a_0 \notin D$ .

- Assume that D is in the range of f.
- ▶ So  $D = f(a_0)$  for some  $a_0 \in A$ .
- Now either  $a_0 \in D$  or  $a_0 \notin D$ .
- ▶ If  $a_0 \in D$ , then by the definition of D,

$$a_0 \notin f(a_0)$$
.

- Assume that D is in the range of f.
- ▶ So  $D = f(a_0)$  for some  $a_0 \in A$ .
- Now either  $a_0 \in D$  or  $a_0 \notin D$ .
- ▶ If  $a_0 \in D$ , then by the definition of D,

$$a_0 \notin f(a_0)$$
.

▶ But  $f(a_0) = D$ . Hence  $a_0 \notin D$ . This contradicts  $a_0 \in D$ .



- Assume that D is in the range of f.
- ▶ So  $D = f(a_0)$  for some  $a_0 \in A$ .
- Now either  $a_0 \in D$  or  $a_0 \notin D$ .
- ▶ If  $a_0 \in D$ , then by the definition of D,

$$a_0 \notin f(a_0)$$
.

- ▶ But  $f(a_0) = D$ . Hence  $a_0 \notin D$ . This contradicts  $a_0 \in D$ .
- ▶ On the other hand, if  $a_0$  is not in D, as  $D = f(a_0)$ ,  $a_0$  is not in  $f(a_0)$ . Then by the definition of D,  $a_0$  is in D. Once again we have a contradiction.

- Assume that D is in the range of f.
- ▶ So  $D = f(a_0)$  for some  $a_0 \in A$ .
- Now either  $a_0 \in D$  or  $a_0 \notin D$ .
- ▶ If  $a_0 \in D$ , then by the definition of D,

$$a_0 \notin f(a_0)$$
.

- ▶ But  $f(a_0) = D$ . Hence  $a_0 \notin D$ . This contradicts  $a_0 \in D$ .
- ▶ On the other hand, if  $a_0$  is not in D, as  $D = f(a_0)$ ,  $a_0$  is not in  $f(a_0)$ . Then by the definition of D,  $a_0$  is in D. Once again we have a contradiction.
- ► Therefore our assumption that *D* is in the range of *f* must be wrong. Consequently *f* is not surjective.

▶ The proof of the previous theorem is reminiscent of Russel's paradox. However, here there is no paradox. The conclusion that *D* is not in the range of *f* resolves everything.

- ▶ The proof of the previous theorem is reminiscent of Russel's paradox. However, here there is no paradox. The conclusion that *D* is not in the range of *f* resolves everything.
- ▶ Consider the case  $A = \mathbb{N}$ .

- ▶ The proof of the previous theorem is reminiscent of Russel's paradox. However, here there is no paradox. The conclusion that *D* is not in the range of *f* resolves everything.
- ▶ Consider the case  $A = \mathbb{N}$ .
- ▶ Show that the power set of  $\mathbb N$  is equipotent with the set  $\mathbb B$  of binary sequences.

- ▶ The proof of the previous theorem is reminiscent of Russel's paradox. However, here there is no paradox. The conclusion that *D* is not in the range of *f* resolves everything.
- ightharpoonup Consider the case  $A = \mathbb{N}$ .
- ▶ Show that the power set of  $\mathbb N$  is equipotent with the set  $\mathbb B$  of binary sequences.
- ▶ If C is a subset of  $\mathbb{N}$ , map it to the binary sequence  $c = (c_1, c_2, \ldots)$ , where  $c_j = 1$  if  $j \in C$  and  $c_j = 0$  if  $j \notin C$ .

- ▶ The proof of the previous theorem is reminiscent of Russel's paradox. However, here there is no paradox. The conclusion that *D* is not in the range of *f* resolves everything.
- ▶ Consider the case  $A = \mathbb{N}$ .
- ▶ Show that the power set of  $\mathbb N$  is equipotent with the set  $\mathbb B$  of binary sequences.
- ▶ If C is a subset of  $\mathbb{N}$ , map it to the binary sequence  $c = (c_1, c_2, \ldots)$ , where  $c_j = 1$  if  $j \in C$  and  $c_j = 0$  if  $j \notin C$ .
- ▶ In other words,  $c(j) := c_j$ , is just the 'indicator function' of the set C.

- ▶ The proof of the previous theorem is reminiscent of Russel's paradox. However, here there is no paradox. The conclusion that *D* is not in the range of *f* resolves everything.
- ▶ Consider the case  $A = \mathbb{N}$ .
- ▶ Show that the power set of  $\mathbb N$  is equipotent with the set  $\mathbb B$  of binary sequences.
- ▶ If C is a subset of  $\mathbb{N}$ , map it to the binary sequence  $c = (c_1, c_2, ...)$ , where  $c_j = 1$  if  $j \in C$  and  $c_j = 0$  if  $j \notin C$ .
- ▶ In other words,  $c(j) := c_j$ , is just the 'indicator function' of the set C.
- Now go back and see that the proof of last theorem and that of uncountability of  $\mathbb{B}$  use the same idea!

▶ We have seen that  $P(\mathbb{N})$  is bigger than  $\mathbb{N}$  in the sense that there is no surjective function from  $\mathbb{N}$  to  $P(\mathbb{N})$ . [There are of course, surjective functions from  $P(\mathbb{N})$  to  $\mathbb{N}$ . (Why?).]

- ▶ We have seen that  $P(\mathbb{N})$  is bigger than  $\mathbb{N}$  in the sense that there is no surjective function from  $\mathbb{N}$  to  $P(\mathbb{N})$ . [There are of course, surjective functions from  $P(\mathbb{N})$  to  $\mathbb{N}$ . (Why?).]
- Now by the previous theorem  $P(P(\mathbb{N}))$  is even bigger than  $P(\mathbb{N})$ .

- ▶ We have seen that  $P(\mathbb{N})$  is bigger than  $\mathbb{N}$  in the sense that there is no surjective function from  $\mathbb{N}$  to  $P(\mathbb{N})$ . [There are of course, surjective functions from  $P(\mathbb{N})$  to  $\mathbb{N}$ . (Why?).]
- Now by the previous theorem  $P(P(\mathbb{N}))$  is even bigger than  $P(\mathbb{N})$ .
- ▶ We can go on.

- ▶ We have seen that  $P(\mathbb{N})$  is bigger than  $\mathbb{N}$  in the sense that there is no surjective function from  $\mathbb{N}$  to  $P(\mathbb{N})$ . [There are of course, surjective functions from  $P(\mathbb{N})$  to  $\mathbb{N}$ . (Why?).]
- Now by the previous theorem  $P(P(\mathbb{N}))$  is even bigger than  $P(\mathbb{N})$ .
- ▶ We can go on.
- So there are bigger and bigger infinities.

Let A, B be non-empty sets. Let  $B^A$  denote the set of all functions from A to B.

- ► Let *A*, *B* be non-empty sets. Let *B*<sup>A</sup> denote the set of all functions from *A* to *B*.
- ▶ For  $n \in \mathbb{N}$ , if  $A = \{1, 2, ..., n\}$  and  $B = \{0, 1\}$ , then observe that  $B^A$  has  $2^n$  elements.

- ► Let *A*, *B* be non-empty sets. Let *B*<sup>A</sup> denote the set of all functions from *A* to *B*.
- ▶ For  $n \in \mathbb{N}$ , if  $A = \{1, 2, ..., n\}$  and  $B = \{0, 1\}$ , then observe that  $B^A$  has  $2^n$  elements.
- More generally, if A, B are non-empty finite sets, A has n elements and B has m elements, then  $B^A$  has  $m^n$  elements.

- Let A, B be non-empty sets. Let  $B^A$  denote the set of all functions from A to B.
- ▶ For  $n \in \mathbb{N}$ , if  $A = \{1, 2, ..., n\}$  and  $B = \{0, 1\}$ , then observe that  $B^A$  has  $2^n$  elements.
- More generally, if A, B are non-empty finite sets, A has n elements and B has m elements, then  $B^A$  has  $m^n$  elements.
- ▶ Observe that for any non-empty set A, if  $B = \{0, 1\}$  then  $B^A$  is equipotent with the power set of A.

- ► Let *A*, *B* be non-empty sets. Let *B*<sup>*A*</sup> denote the set of all functions from *A* to *B*.
- ▶ For  $n \in \mathbb{N}$ , if  $A = \{1, 2, ..., n\}$  and  $B = \{0, 1\}$ , then observe that  $B^A$  has  $2^n$  elements.
- More generally, if A, B are non-empty finite sets, A has n elements and B has m elements, then  $B^A$  has  $m^n$  elements.
- ▶ Observe that for any non-empty set A, if  $B = \{0, 1\}$  then  $B^A$  is equipotent with the power set of A.
- ▶ Observe that  $B^{\mathbb{N}}$  is same as the space of sequences with elements from B. In particular, if  $B = \{0, 1\}$ , then  $B^{\mathbb{N}}$  is same as the space of binary sequences.

## Hilbert's hotel

► Link 1:

https://youtu.be/OxGsU8oIWjY

## Hilbert's hotel

► Link 1:

https://youtu.be/OxGsU8oIWjY

► Link 2:

 $https: //youtu.be/Uj3_KqkI9Zo$ 

## Hilbert's hotel

▶ Link 1:

https://youtu.be/OxGsU8oIWjY

► Link 2:

 $https: //youtu.be/Uj3_KqkI9Zo$ 

► END OF LECTURE 6