Shanghai Normal University Tutorial (T04) - Compaction

Daniel Barreto

May 2025

- 1. The natural water content of a soil is 10%. Assuming 2100 g of wet soil is used for laboratory compaction tests, calculate how much water is to be added to other 2100 g samples to bring their water contents up to 13, 17, 20 and 24%.
- 2. The following results were obtained from a standard compaction test on a soil. The value of G_s is 2.67. Plot the dry density-water content curve, and

Mass (g)		2092			
Water content (%)	12.8	14.5	15.6	16.8	19.2

give the optimum water content and maximum dry density. The volume of the mould is $1000~{\rm cm}^3$.

- 3. For the data given below $(G_s = 2.64)$:
 - a) Plot the compaction curves.
 - b) Establish the maximum dry density and optimum water content for each test.
 - c) Plot the zero air voids line. Also plot the 70, 80 and 90% saturation curves.
 - d) Plot the line of optimums.

Heavy compaction		Standard compaction		
Dry density	w (%)	Dry density	w (%)	
1.873	9.3	1.691	9.3	
1.91	12.8	1.715	11.8	
1.803	15.5	1.755	14.3	
1.699	18.7	1.747	17.6	
1.641	21.1	1.685	20.8	
		1.619	23	