

Цикл лекций по теме «Сети Петри» Лекция №1

автор – д.т.н., профессор Лисицына Л.С.

Введение

Сеть Петри (СП) — это математическая модель, отображающая структуру и динамику дискретных систем и используемая для исследования поведения системы с целью получения ее новых характеристик (свойств). СП предложил впервые в 1962 году немецкий математик **Карл Петри**.

Содержание

1. Понятие и структура СП

- 2. Классификация СП по структуре
- 3. Алгоритм преобразования СП в ординарную
- 4. Функционирование СП
- 5. Покрывающее дерево СП
- 6. Классификация СП по динамическим свойствам
- 7. Динамические свойства автоматных СП
- 8. Динамические свойства синхрографов
- 9. Метод анализа динамических свойств СП на основе покрывающих деревьев

Понятие и структура сети Петри

университет итмо

По структуре СП представляет собой ориентированный двудольный граф.

Система	СП	Обозначение
Событие	Переход	$T = \{t_1, \dots, t_m\}$
Условие	Позиция	$P = \{p_1,, p_n\}$
Предусловие	Входная функция	$I = \bigcup_{i=1}^{m} I(t_i)$
Постусловие	Выходная функция	$O = \bigcup_{i=1}^{m} O(t_i)$

O(ti)

Понятие и структура сети Петри

университет итмо

Сеть Петри — это четверка множеств <T, P, I, O >, задающая причинно-следственные связи между событиями и условиями в моделируемой системе.

Ёмкость k-ой позиции в СП — это целое неотрицательное число $\mu(p_k)$, которое характеризует выполнимость k-го условия в системе в данный момент времени.

Маркировка (разметка) СП — это процедура определения емкостей позиций в модели.

Начальная маркировка — это маркировка СП до начала исследования модели (в начальный момент времени).

$$C = \langle T, P, I, O, \stackrel{\rightarrow}{\mu}_0 \rangle$$

Содержание

1. Понятие и структура СП

2. Классификация СП по структуре

- 3. Алгоритм преобразования СП в ординарную
- 4. Функционирование СП
- 5. Покрывающее дерево СП
- 6. Классификация СП по динамическим свойствам
- 7. Динамические свойства автоматных СП
- 8. Динамические свойства синхрографов
- 9. Метод анализа динамических свойств СП на основе покрывающих деревьев

Классификация СП по структуре

университет итмо

В СП допускается наличие **кратных дуг**. Кратность является атрибутом дуги; они определяют следующие важные характеристики СП:

- $\#(p_k, I(t_i))$ кратность позиции p_k на входе перехода t_i ,
- $\#(p_k, O(t_i))$ кратность позиции p_k на выходе перехода t_i .

Если некоторая позиция p_k является одновременно и входной, и выходной для перехода t_i , то такой элемент структуры в СП называется **петлей.**

Чистая сеть Петри – это СП без петель.

Ординарная сеть Петри — это СП без кратных дуг.

Классификация СП по структуре

Автоматная сеть Петри — это ординарная СП, в которой *каждый переход* имеет ровно одну входную и ровно одну выходную позицию.

Синхрограф (маркированный граф) — это ординарная СП, в которой *каждая позиция* является входной и (или) выходной позицией только для одного перехода.

Пример №1 – «ГПМ в составе АСУТП»

университет итмо

Гипкий производственный модуль (ГПМ) включает в себя обрабатывающий центр (ОЦ), который обрабатывает одновременно 3 заготовки из магазина (30 заготовок), поступившего со склада. Обработанные заготовки (детали) поступают в контейнер (300 деталей), который после заполнения отправляется на склад.

№	Событие в системе	Переход в СП
1	Магазин поступил в ГПМ со склада	t1
2	ОЦ начал обработку заготовки	t2
3	ОЦ закончил обработку заготовки	t3
4	Деталь поступила в контейнер	t4
5	Контейнер отправлен на склад	t5

	· ·	
№	Условие в системе	Позиция в СП
1	Заготовка ждет обработки	p1
2	ОЦ свободен	p2
3	Заготовка обрабатывается в ОЦ	p3
4	Деталь получена	p4
5	Контейнер полностью заполнен	p5

Переход	$I(t_i)$	$O(t_i)$
t_1	{}	$\{p_1\}$
t 2	$\{p_1, p_2\}$	$\{p_{3}\}$
t 3	$\{p_{3}\}$	$\{p_2,p_4\}$
t ₄	$\{p_{4}\}$	$\{p_{5}\}$
t ₅	$\{p_{5}\}$	{}

Пример №2 – «Модуль ВС для параллельной обработки заданий»

университет итмо

Модуль вычислительной системы (BC) включает в себя два вычислительных устройства (ВУ) — ВУ1 и ВУ2, которые могут обрабатывать очередное задание и формируют отчет об обработке.

№	Событие в системе	Переход в СП
1	ВУ1 начало обработку задания	t1
2	ВУ1 закончило обработку задания	t2
3	ВУ2 начало обработку задания	t3
4	ВУ2 закончило обработку задания	t4

 $\mu_0 = (0,1,0,1,0,0)$

T₅MOre than a

	Условие в системе	Позиция в СП
1	Задание поступило на обработку	p1
2	ВУ1 свободно	p2
3	ВУ1 обрабатывает задание	р3
4	ВУ2 свободно	p4
5	ВУ2 обрабатывает задание	p5
6	Сформирован отчет об обработке задания	рб

Переход	$I(t_i)$	$O(t_i)$
t ₁	$\{p_1,p_2\}$	$\{p_{3}\}$
t_2	$\{p_{3}\}$	$\{p_2,p_6\}$
t ₃	$\{p_1,p_4\}$	$\{p_{5}\}$
<i>t</i> ₄	$\{p_{5}\}$	$\{p_4,p_6\}$

Содержание

- 1. Понятие и структура СП
- 2. Классификация СП по структуре

3. Алгоритм преобразования СП в ординарную

- 4. Функционирование СП
- 5. Покрывающее дерево СП
- 6. Классификация СП по динамическим свойствам
- 7. Динамические свойства автоматных СП
- 8. Динамические свойства синхрографов
- 9. Метод анализа динамических свойств СП на основе покрывающих деревьев

УНИВЕРСИТЕТ ИТМО

1. Для всех позиций $p_k \in P$ <u>исходной</u> СП подсчитывается следующая

характеристика:
$$n(p_k) = \max_{i=1}^{m} (\#(p_k, I(t_i)) + \#(p_k, O(t_i))).$$

Пример

$$n(p_1) = \max_{i=1}^{3} (\#(p_1, I(t_i)) + \#(p_1, O(t_i))) = \max(1 + 0.1 + 0.0 + 2) = 2$$

$$n(p_2) = \max_{i=1}^{3} (\#(p_2, I(t_i)) + \#(p_2, O(t_i))) = \max(0 + 1, 1 + 0, 0 + 0) = 1$$

$$n(p_3) = \max_{i=1}^{3} (\#(p_3, I(t_i)) + \#(p_3, O(t_i))) = \max(0 + 0.0 + 3.1 + 0) = 3$$

2. Если $n(p_k) > 1$, то для этой позиции определяется множество дополнительных позиций $\{p_{k1},...,p_{kn(p_k)}\}$.

Пример

Т.к. $n(p_1)=2$, то определим для нее множество дополнительных позиций $\{p_{11},p_{12}\}$.

Т.к. $n(p_3)=3$, то определим для нее множество дополнительных позиций $\{p_{31},p_{32},p_{33}\}$.

3. Переходы исходной СП $T = \{t_1, ..., t_m\}$ объявляются нормальными переходами.

Пример

4. Если $n(p_k) > 1$, то для этой позиции определяется множество кольцевых переходов $\{r_{k1},...,r_{kn(p_k)}\}$.

Пример

Т.к. $n(p_1) = 2$, то определим для нее множество кольцевых переходов $\{r_{11}, r_{12}\}$.

Т.к. $n(p_3)=3$, то определим для нее множество кольцевых переходов $\{r_{31},r_{32},r_{33}\}$.

5. Если $n(p_k) > 1$, то для этой позиции строится кольцевая подсеть на множествах $\{p_{k1},...,p_{kn(p_k)}\}$ и $\{r_{k1},...,r_{kn(p_k)}\}$, представляющая собой простой контур, в котором чередуются дополнительные позиции и кольцевые переходы этой позиции. Направление дуг в контуре может быть как по часовой стрелки (см. рисунок ниже), так и против часовой стрелки.

Пример

Т.к. $n(p_1) = 2$, то строим для этой позиции кольцевую подсеть (рис. слева).

Т.к. $n(p_3) = 3$, то строим для этой позиции кольцевую подсеть (рис. справа).

- Строится новая структура СП, в которой каждая позиция исходной сети с характеристикой n(p_k) > 1 заменяется на ее кольцевую подсеть. При этом дуги, соединяющие дополнительные позиции подсети с нормальными переходами, строятся так, чтобы не было кратности.
- 7. Производится начальная разметка в преобразованной СП по следующему правилу.
 - Если $n(p_k) = 1$, то ёмкость этой позиции сохраняется.
 - Если $n(p_k) > 1$, то все фишки этой позиции переходят в первую по счету дополнительную позицию ее кольцевой подсети, т.е. $\mu(p_{k1}) = \mu(p_k)$, а ёмкости остальных ее дополнительных позиций обнуляются.

Пример

$$m = 3$$
 $n = 3$
 $\mu_0 = (2,0,0)$

$$m' = 8$$
 $n' = 6$
 $\mu_0' = (2,0,0,0,0,0)$

$$m' = m + \sum_{k=1}^{n} n(p_k)$$

$$n' = n + \sum_{k=1}^{n} (n(p_k) - 1)$$

