

## Project 2: Iowa Housing

By Tanupong Rattanasawatesun

## Overview

## Overview: Aimes Iowa housing

Aimes lowa Housing datasets contain 2051 row of datapoints. While each row represents a house sold from 2006 to 2010, each columns contain features or characteristics of that house.

**Linear Regression** model is used to predict the sale price from those features. The model is optimized by feature engineering and subset feature selection. The model is evaluated and analyzed to give the factor that affect the housing price both positively and negatively.

This model can be utilized in many ways such as to predict the price of the house or to find a best way to spend money in house investment.

## Problem statement:

For customers who want to sell their house, what is an estimated current sale price?

And what should be any improvements that can raise the price up?

# Exploratory Data Analysis

## Distribution of Sale Price

The range of sale price is from around 10000 USD to 600000 USD.

The average sale price is about 181000 USD.



## SalePrice vs Year built

The house built before year 2000 usually has the price in between 100000 – 300000 USD





## Time of the house-selling in 2006-2010

There is a peak in around May-August of each year. People tend to buy/sell houses in the middle of the year

# Data Modeling

## How to choose features



Numerical Features



**Categorical Features** 

## Features selection

#### **Numerical Features**

Total Area in Sq.Ft.

Year Built

**Overall Qualty** 

Basement finished area in Sq.Ft.

Above grade (ground) living area

in Sq.Ft.

Total Floor Area in Sq.Ft.

Masonry veneer area in Sq.Ft.

**Overall Condition** 

Garage Area in Sq.Ft.

Lot Area in Sq.Ft.

**Exterior Quality** 

Kitchen Quality

has garage

#### Categorical features

Neighborhood

MS Zoning

MS Subclass

Exterior covering on house

Masonry veneer type

Roof Style

Roof material

Bldg Type

Heating

**Basement Exposure** 

Rating of basement finished area

Garage Finish

**Home Functionality** 

Flatness of the property

Lot configuration

Proximity to various conditions

# Result & Conclusion

## Model Evaluation

#### **Model Performance**

**Training data** 

R2 Score:

Root Mean Square Error:

Cross validation (Prediction on unseen data)

R2 Score:

Root Mean Square Error:

#### **Interpretation:**

From the above metrics, we can see that model perform better on training data than on unseen data which can be interpreted that model is **slightly overfit or having high variance**. The predict price can have the error interval of +/- 23734 USD which indicates the **low bias** of this model



### Neighborhood



## Building Class



## Building Type



### Roof Material



# Proximity to main road or railroad



## Basement Exposure



# Exterior covering on house



# Area/Quality of the house

| #  | Features                         | High positive impact                            | High Negative Impact                                |
|----|----------------------------------|-------------------------------------------------|-----------------------------------------------------|
| 1  | Neighborhood                     | Green Hills, Stone Brook and Northridge Heights | Sawyer West, Timberland, Edwards and College Creek  |
| 2  | MS Zoning                        | Floating Village Residential                    | Commercial Zoning                                   |
| 3  | MS Subclass                      | 1-story/1945&older, 2-1/2 story/all ages        | duplex-all styles and ages, 2-story pud- 1946&newer |
| 4  | Exterior covering on house       | Brick Face                                      | Brick Common                                        |
| 5  | Masonry veneer type              | Stone                                           | Brick Face                                          |
| 6  | Roof Style                       | Hip                                             | Mansard                                             |
| 7  | Roof material                    | Wood Shingles                                   | Gravel & Tar                                        |
| 8  | Bldg Type                        | Two-family Conversion                           | Duplex                                              |
| 9  | Heating                          | Wall Furnace                                    | Hot water or steam heat other than gas              |
| 10 | Basement Exposure                | Good Exposure                                   | No Exposure                                         |
| 11 | Rating of basement finished area | No Basement                                     | Average Rec Room                                    |
| 12 | Garage Finish                    | No garage                                       | Rough Finished                                      |
| 13 | Home Functionality               | Typical Functionality                           | Severely damaged house                              |
| 14 | Flatness of the property         | Hillside                                        | Depression                                          |
| 15 | Lot configuration                | Cul-de-sac                                      | Frontage on 3 sides of property                     |
| 16 | Proximity to various conditions  | Adjacent to postive off-site feature            | Adjacent to East-West Railroad                      |

| Positive/Negative Impact | Features                                   | #  |
|--------------------------|--------------------------------------------|----|
| Positive                 | Total Area in Sq.Ft.                       | 1  |
| Positive                 | Year Built                                 | 2  |
| Positive                 | Overall Qualty                             | 3  |
| Positive                 | Basement finished area in Sq.Ft.           | 4  |
| Positive                 | Above grade (ground) living area in Sq.Ft. | 5  |
| Positive                 | Total Floor Area in Sq.Ft.                 | 6  |
| Positive                 | Masonry veneer area in Sq.Ft.              | 7  |
| Positive                 | Overall Condition                          | 8  |
| Positive                 | Garage Area in Sq.Ft.                      | 9  |
| Positive                 | Lot Area in Sq.Ft.                         | 10 |
| Positive                 | Exterior Quality                           | 11 |
| Positive                 | Kitchen Quality                            | 12 |
| Negative                 | has garage                                 | 13 |
|                          |                                            |    |

## Conclusion

Based on our problem statement, we found that

- 1. **Neighborhood and the location** of the house is really matter. If sellers doesn't have the house in particular area, it is hard to rise the price above others house.
- 2. Using the **right material** and the **right style** can impact your housing price. Wood Shingles as your roof material and if your exterior covering is Brick Face can highly increase the price sold.
- 3. Make sure that house can **function properly** that basement has good exposure, or electricity is good. If not, the price can be a lot lower.
- 4. You don't need to build garage if you didn't have one. Surprisingly having garage in lowa can decrease the price!.

## Conclusion

#### Limitation of our prediction

- 1. The dataset used for train contains only about 2000 data points where the sale price only cover from 12789 USD to 611657 USD. Model will perform badly if the expecting price is out of range.
- 2. The dataset only contains housing price data in IOWA. If the model is going to be used in other states on country, it can perform badly as well.
- 3. Now, the model is slightly overfit and the predicted price doesn't not represent the correct price of the house. It can be lower or higher, please use the model wisely.

# THANK YOU