Inhalt

Vorlesung

Elektrische Systeme 2

Studiengang Technische Informatik Gehalten von Prof. Dr.-Ing. Heinz Linnemann

1. Einschwingvorgänge bei Schaltvorgängen mit Gleichspannung

- Elektrische Felder
- Kapazität
- Induktivität
- Systeme mit zwei Energiespeichern
- 2. Magnetische Felder
- 3. Ruhende elektrische Maschinen
- 4. Umlaufende (rotierende) elektrische Maschinen
 - Gleichstrommaschinen Generator Motor
 - Asynchronmaschinen Generator Motor

Elektrische Systeme 2

VL-ES2.ppt
Folie 1
Nur für Lehrzwecke

Literatur

Empfohlene Literatur:

Vorlesungsskripte von Wambach, R.:

Grundlagen der Elektrotechnik. TFH-Berlin Grundlagen der Elektrotechnik 3. TFH-Berlin (www.tfh-berlin.de/~msr)

Ergänzende Literatur:

Linse, H.; Fischer, R.: Elektrotechnik für Maschinenbauer. 12. Aufl.,

Teubner, 2005

(nicht vom Titel irritieren lassen!)

Weiterführende Literatur:

Albach, M.: Grundlagen der Elektrotechnik 1. Pearson

Studium, 2005

Dielektrizitätskonstante ε_r von Isolierstoffen

Stoff	Bezeichnung	ε _r	Anwendungsgebiete
./.	Vakuum Luft	1 ≈ 1	
Naturstoffe	Quarzglas Glimmer Weichgummi	4 4,2 4 8 2,7	Isolation für Hochfrequenzgeräte Normalkondensatoren Isolation von Leitungsdrähten
Keramische Stoffe	Steatit Hartporzellan	5,5 6,5 5,5 6,5	Hochfrequenz-Isolatoren Hoch-/Niederspannungs-Isolatoren
Papier	Pungetränkt Pgetränkt Preßspan Hartpapier	1,6 4,3 5 5 6	Isolierung von Fernmeldekabeln Metallpapierkondensatoren Nutauskleidung elektr. Maschinen Z.B. Pertinax für hohe Beanspruchung
Öle	Mineralöl Harzöl	2,2 2,5 2	Isolierung/Kühlung von Transformatoren Ausgießen von Kabelmuffen
Kunststoffe	Polysyrol Bakelit	2,4 5	Herstellung von Hartpapier und Hartgewebe

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt
Folie 3
Nur für Lehrzwecke

Praktische Ausführungsformen von Kondensatoren

Vielschichtkondensator

Alle inneren Platten tragen mit ihren beiden Oberflächen zur Kapazität bei.

Besteht jeder Kondensatoranschluss aus n Platten, so gilt:

$$C_{ges} = (2n-1) \cdot C$$
$$= (2n-1) \cdot \frac{\epsilon \cdot a \cdot b}{d}$$

Wickelkondensator

Bestehen z.B. aus zwei Metallfolien und zwei Kunststofffolien.

Infolge des Aufrollens wird die Kapazität etwa doppelt so groß. Bei der inneren und äußeren Windung trägt nur eine Seite der Folien zur Kapazität bei.

Quelle: Albach, M.: Grundlagen der Elektrotechnik 1. Pearson Studium, 2005

Elektrische Systeme 2

Ausführung eines Drehkondensators

In Abhängigkeit von der Rotorposition ändert sich die überdeckte Fläche A und somit auch die Kapazität.

Drehkondensatoren werden meist ohne Dielektrikum aufgebaut.

Durch spezielle Formgebung der Platten kann ein gewünschter Zusammenhang zwischen C und α erreicht werden, z.B. logarithmisch.

$$C_{ges} = (2n-1) \cdot \frac{\varepsilon_0 \cdot A}{d}$$

Quelle: Albach, M.: Grundlagen der Elektrotechnik 1. Pearson Studium, 2005

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt
Folie 5
Nur für Lehrzwecke

Aufladevorgang einer Kapazität

Entladevorgang einer Kapazität

$$i(t) = C \cdot \frac{du_C(t)}{dt}$$

$$T = R \cdot C$$

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt Folie 7 Nur für Lehrzwecke

Umladevorgang einer Kapazität

$$i(t) = C \cdot \frac{du_C(t)}{dt}$$
$$T = R \cdot C$$

$$T = R \cdot C$$

 $i_c(t) = \frac{U_0 - U_{C0}}{R} \cdot e^{-\frac{t}{T}} = -\frac{\Delta U}{R} \cdot e^{-\frac{t}{T}}$

Einschaltvorgang einer Induktivität

$$u_{L}(t) = L \cdot \frac{di(t)}{dt}$$
$$T = \frac{L}{R}$$

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt Folie 9 Nur für Lehrzwecke

Ausschaltvorgang einer Induktivität

$$u_{L}(t) = L \cdot \frac{di(t)}{dt}$$
$$T = \frac{L}{R}$$

Quelle: Wambach, R.: Grundlagen der Elektrotechnik. TFH-Berlin

Schaltvorgänge an der Induktivität mit Freilaufdiode

Quelle: Wambach, R.: Grundlagen der Elektrotechnik. TFH-Berlin

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt
Folie 11
Nur für Lehrzwecke

Vergleich der Schaltvorgänge

Kapazität

$$i(t) = C \cdot \frac{du_C(t)}{dt}$$
$$T = R \cdot C$$

Induktivität

$$u_{L}(t) = L \cdot \frac{di(t)}{dt}$$
$$T = \frac{L}{R}$$

Aufladen

$$u_{c}(t) = U_{0} \cdot (1 - e^{-\frac{t}{T}})$$

$$u_L(t) = U_0 \cdot e^{-\frac{t}{T}}$$

$$i_c(t) = \frac{U_0}{R} \cdot e^{-\frac{t}{T}}$$

$$i(t) = \frac{U_0}{R} \cdot (1 - e^{-\frac{t}{T}})$$

Entladen

$$u_c(t) = U_{C0} \cdot e^{-\frac{t}{T}}$$

$$\mathsf{u}_\mathsf{L}(\mathsf{t}) = -\mathsf{U}_0 \cdot \mathsf{e}^{-\frac{\mathsf{t}}{\mathsf{T}}}$$

$$i_c(t) = -\frac{U_{C0}}{P} \cdot e^{-\frac{t}{T}}$$

$$i(t) = \frac{U_0}{R} \cdot e^{-\frac{t}{T}}$$

RLC - Reihenschwingkreis

$$\begin{split} s_{1,2} &= -\frac{R}{2 \cdot L} \pm \sqrt{\left(\frac{R}{2 \cdot L}\right)^2 - \frac{1}{L \cdot C}} \\ \omega_0 &= \frac{1}{\sqrt{L \cdot C}} \\ \delta &= \frac{R}{2 \cdot L} \end{split}$$

$$\cdot \frac{d^{2}i(t)}{dt^{2}} + \frac{R}{L} \cdot \frac{di(t)}{dt} + \frac{1}{L \cdot C} \cdot i(t) = 0$$

$$\textbf{S}_{1,2} = -\delta \pm \sqrt{\delta^2 - \omega_0^2}$$

 $\delta < \omega_0 \rightarrow \text{Wurzel imaginär} \rightarrow \text{periodisches Einschwingen}$

 $\delta > \omega_0 \to \text{Wurzel reell} \to \text{aperiodisches Einschwingen}$

 $\delta = \omega_0 \to \text{Wurzel Null} \to \text{aperiodischer Grenzfall}$

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt Folie 13 Nur für Lehrzwecke

Periodischer Einschwingvorgang RLC

Einschwingvorgang RLC-Glied

Quelle: Wambach, R.: Grundlagen elektrischer Systeme

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt Folie 15 Nur für Lehrzwecke

Übung: Einschwingvorgang RLC - Glied für R = 2,5 k Ω

Übung: Einschwingvorgang RLC - Glied für R = 600 Ω

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt
Folie 17
Nur für Lehrzwecke

Numerische Berechnung von Einschwingvorgängen

Quelle: Wambach, R.: Grundlagen elektrischer Systeme, S. 263 ff

Magnete

Kraftwirkungen zwischen Stabmagneten:

Verlauf der Feldlinien bei einem Stabmagneten:

Quelle: Albach, M.: Grundlagen der Elektrotechnik 1. Pearson Studium, 2005

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt Folie 19 Nur für Lehrzwecke

Kraft auf einen stromdurchflossenen Leiter

Quelle: Albach, M.: Grundlagen der Elektrotechnik 1. Pearson Studium, 2005

Kraft auf Linienstrom I₂ infolge des Linienstromes I₁

DIN 1357, Einheiten elektrischer Größen, 1967:

Zwei unendlich lange, parallele, gerade Leiter von vernachlässigbar kleinem Querschnitt sind im Vakuum im Abstand von 1 m voneinander angeordnet; sie werden von einem Gleichstrom durchflossen.

Dieser hat die Stromstärke 1 A, wenn die elektrodynamisch verursachte Kraft zwischen beiden Leitern 2 · 10⁻⁷ N für jeden Abschnitt der Anordnung beträgt, der aus einander gegenüberstehenden Leiterteilen von 1 m Länge besteht.

Quelle: Albach, M.: Grundlagen der Elektrotechnik 1. Pearson Studium, 2005

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

 $= -\mathbf{e}_{\rho} \cdot \mathbf{I}_2 \cdot \mathbf{B}_1 \cdot \mathbf{I}$

Elektrische Systeme 2

VL-ES2.ppt Folie 21 Nur für Lehrzwecke

Beispiele für die Anwendung des Gesetzes von Oersted

Quelle: Wambach, R.: Grundlagen der Elektrotechnik. TFH-Berlin

Das Gesetz von Biot-Savart

Das magnetische Feld eines geschlossenen Stromkreises ergibt sich außerhalb des Leiters bei vernachlässigbarem Leiterquerschnitt bei µ = const. im Punkt P mit:

$$\underline{H}(\underline{r}_{p}) = \frac{1}{4 \cdot \pi} \oint_{C} d\underline{s} \times \frac{\underline{r}}{r^{3}}$$

wobei

$$\underline{\mathbf{r}} = \underline{\mathbf{r}}_{\mathsf{p}} - \underline{\mathbf{r}}_{\mathsf{q}}$$

$$r = |\underline{r}|$$

Biot (1774 - 1862) und Savart (1791 - 1841), französische Physiker

Quelle: Wambach, R.: Grundlagen der Elektrotechnik. TFH-Berlin

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt Folie 23 Nur für Lehrzwecke

Magnetische Feldstärke eines Massivleiters

Quelle: Wambach, R.: Grundlagen der Elektrotechnik. TFH-Berlin

Toroid und langgestreckte Zylinderspule

a) prinzipieller Wickelaufbau

b) Querschnitt durch dicht bewickelte Spule

Quelle: Albach, M.: Grundlagen der Elektrotechnik 1. Pearson Studium, 2005

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt Folie 25 Nur für Lehrzwecke

Relative Permeabilität

	μ,	Einfluss auf B-Feld	
Vakuum, Luft	1		
Diamagnetismus			
Aluminiumoxid	0,999 986	Geringfügige Schwächung $\mu_r \sim 1$	
Kupfer	0,999 990		
Wasser	0,999 991		
Paramagnetismus			
Aluminium	1,000 021	Geringfügige Stärkung	
Sauerstoff	1,000 001	µ _r ~ 1	
Ferromagnetismus			
Grauguss	~100	Starke Stärkung → Hysterese tritt auf µ _r >> 1	
Dynamoblech	1000 – 4000		
Eisen-Nickel-Kobalt-Legierungen, z.B. Permaloy 78,5 Ni, 3 Mo	6000 – 70000		
Selten Erden (Keramische Magnet- werkstoffe auf der Basis von Eisenoxid)	bis 10 ⁵		

Magnetisierungskennlinien

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt
Folie 27
Nur für Lehrzwecke

Magnetisierungskurve ferromagnetischer Materialien

Hart- und weichmagnetische Magnetisierungskennlinien

Elektrische Systeme 2

VL-ES2.ppt Folie 29 Nur für Lehrzwecke

Magnetischer Kreis mit Luftspalt

Quelle: Wambach, R.: Grundlagen der Elektrotechnik. TFH-Berlin

Analogie elektrischer und magnetischer Kreise

Größe des elektrischen	Stromkreises	Analoge Größe des magnetischen Kreises		
Spannung der Quelle	U	$\Theta = N \cdot I = \oint_{c} \underline{H} \cdot d\underline{s}$	Magnetische Durchflutung	
Elektrischer Strom	I=U/R	$\Phi = \bigoplus_{F} \underline{B} \cdot d\underline{A} = \Theta / R_{m}$	Magnetischer Fluß	
Elektrischer Widerstand	$R = \frac{1}{\kappa \cdot A}$	$R_m = \frac{1}{\mu \cdot A}$	Magnetischer Widerstand	

Quelle: Wambach, R.: Grundlagen der Elektrotechnik. TFH-Berlin

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt Folie 31 Nur für Lehrzwecke

Elektrische Maschinen

Historischer Überblick

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt
Folie 33
Nur für Lehrzwecke

Transformator

Schaltzeichen und Schaltkurzzeichen (DIN 40714)

Kerntransformator

Manteltransformator

Drehstromtransformator

Drehbare Spule im homogenen Magnetfeld

Quelle: Wambach, R.: Grundlagen der Elektrotechnik 3. TFH-Berlin

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt Folie 35 Nur für Lehrzwecke

Drehbare Spule im radialen Magnetfeld

Quelle: Wambach, R.: Grundlagen der Elektrotechnik 3. TFH-Berlin

Krafterzeugung: Drehbare Spule im radialen Magnetfeld

Quelle: Wambach, R.: Grundlagen der Elektrotechnik 3. TFH-Berlin

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt
Folie 37
Nur für Lehrzwecke

Wirkprinzip eines Gleichstrommotors

Quelle: Roskam, R.: Elektrische Antriebs- und Steuerungstechnik. FH-Wolfenbüttel, 2008

Prinzip der Kommutierung (Stromwendung)

Quelle: Höger W.: El. Maschinen u. Antriebe 1, FH München, 2008

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt
Folie 39
Nur für Lehrzwecke

Gleichstrommotor: Polpaare

Ein Polpaar (p = 1)

Zwei Polpaare (p = 2)

Quelle: Böcker, J.: Elektrische Antriebstechnik, Uni Paderborn, 2008

Zerlegter Gleichstrommotor, Bauform B3, eigengekühlt

Quelle: Höger W.: El. Maschinen u. Antriebe 1, FH München, 2008

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt Folie 41 Nur für Lehrzwecke

Aufbau einer Gleichstrommaschine

- 1 Erregerwicklung
- 2 Kompensationswicklung
- 3 Polschuh des Hauptpols
- 4 Joch
- 5 Anker mit Ankerwicklung
- 6 Wendepole, Kompensat.
- 7 Kollektor mit Bürsten

Quelle: Wambach, R.: Grundlagen der Elektrotechnik 3. TFH-Berlin

Ausgeführter Gleichstrommotor

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt Folie 43 Nur für Lehrzwecke

Permanenterregter Gleichstrommotor

Prinzip: Permanenterregte Gleichstrommaschine

Beuth

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt
Folie 45
Nur für Lehrzwecke

Fremderregter Gleichstrommotor

A1 - A2 = Ankerwicklung

B1 - B2 = Wendpolwicklung

F1 - F2 = Erregerwicklung Fremderregung

- Ankerspannung und Erregerspannung unabhängig einstellbar
- Sonderfall: Erregerspannung durch Dauermagnet (kleine Motoren)
- Anwendung: Drehzahlveränderbare Antriebe
 - Servomotore,
 Maschinensteuerung,
 Automatisierung,
 Hebewerkzeuge,
 Walzwerke.
 1 kW bis 10 MW
- Harte Drehzahlkennlinie n = f(M), Absinken der Drehzahl etwa 3 – 10% bei Nennlast

Gleichstrom - Nebenschlussmotor

A1 - A2 = Ankerwicklung

B1 - B2 = Wendpolwicklung

E1 - E2 = Erregerwicklung Nebenschluss

- Sonderfall des fremderregten Motors (d.h. gleiches Verhalten)
- ➤ Erregerwicklung liegt parallel zum Anker → wird also von der Ankerspannung gespeist
- Anwendung: Drehzahlveränderbare Antriebe
 - Servomotore,
 Maschinensteuerung,
 Automatisierung
- Harte Drehzahlkennlinie n = f(M), Absinken der Drehzahl etwa 3 – 10% bei Nennlast

Elektrische Systeme 2

VL-ES2.ppt
Folie 47
Nur für Lehrzwecke

Prinzip: Gleichstrom - Nebenschlussmotor

Quelle: www.mkDoc.de. Juni 2008

Gleichstrom - Reihenschlussmotor

A1 - A2 = Ankerwicklung

B1 - B2 = Wendpolwicklung

D1 – D2 = Erregerwicklung Reihenschluss

- Erregerwicklung und Ankerwicklung in Reihe
- ➤ Erregerwicklung liegt parallel zum Anker
 → wird von der Ankerspannung gespeist
- Niedrige Drehzahl → großes Moment Hohe Drehzahl → kleines Moment Unempfindlich gegen Überlast
- > Anwendung: Fahrzeugantriebe
 - Bahnen,
 Hebezeuge,
 Anlasser in LKW, PKW.
 300 W bis 500 kW
- Weiche Drehzahlkennlinie n = f(M),
 M muss ≠ 0 sein, sonst n → ∞
 "Durchgehen" !!!

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt Folie 49 Nur für Lehrzwecke

Prinzip: Gleichstrom - Reihenschlussmotor

Quelle: www.mkDoc.de. Juni 2008

Gleichstrom - Doppelschlussmotor

Elektrische Systeme 2

VL-ES2.ppt Folie 51 Nur für Lehrzwecke

Vierquadrantenbetrieb der Gleichstrommaschine

Magnet. Fluß zu verschiedenen Zeitpunkten (Winkeln)

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt Folie 53 Nur für Lehrzwecke

Das Drehfeld

Beispiel einer vierpoligen Ständerwicklung

Angelehnt an: Wambach, R.: Grundlagen der Elektrotechnik 3. TFH-Berlin

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt Folie 55 Nur für Lehrzwecke

Beispiel einer zweipoligen Ständerwicklung

Asynchronmotor

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt
Folie 57
Nur für Lehrzwecke

Ständer / Stator

Rotor

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt
Folie 59
Nur für Lehrzwecke

Schleifringläufer

→ Drehzahlsteuerung (z.B. Servomotoren)

→ Anlassen des Motors

Verringern der Einschaltstromstärke
 (5 bis 7 - faches des Nennstroms)

 Meist sind ab 5 kW Anlasshilfen (Sterndreieck oder Anlasswiderstände) vorgeschrieben

- Weiches Anfahren (z.B. Aufzüge)

Volllastanlauf bei größeren Leistungen
 M_{anl} = 2,5 M_{Nenn}
 Große Schwungmassen (z.B. Zentrifugen)

Stern- und Dreieckschaltung der Ständerwicklung

Quelle: Wambach, R.: Grundlagen der Elektrotechnik 3. TFH-Berlin

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt Folie 61 Nur für Lehrzwecke

Leistungsbilanz der Asynchronmaschine

Sankey - Diagramm:

Drehmoment- und Strom- Kennlinien

Drehmoment-Drehzahl-Kennlinien für verschieden Rotortypen

Quelle: Hanitsch, R.: TU Berlin - Institut für Energie- und Automatisierungstechnik. Grundlagen der Elektrotechnik III

Betriebsarten der Asynchronmaschine

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt
Folie 65
Nur für Lehrzwecke

Anlassen von Asynchronmaschinen

Forderungen an den Anlauf/Hochlauf:

- Zulässige Ströme dürfen nicht überschritten werden (Anlassen meist ab 5 kW vom Versorger vorgeschrieben)
- Das Drehmoment muss vom Stillstand bis zum Arbeitspunkt größer als das Lastmoment sein

Käfigläufer

- → Stern-Dreieck-Anlauf
- → Anlasstransformator

Aber: $P_Y / P_\Delta = M_Y / M_\Delta = I_Y / I_\Delta = 1 / 3$

Schleifringläufer

→ Anlasswiderstände

Schleifringläufer mit verschiedenen Anlasswiderständen

Linnemann, SoSe 2015

Nur für Lehrzwecke

Drehzahl-Drehmomentkennlinie bei variabler Spannung

Betriebskennlinie bei Frequenzänderung

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt Folie 69 Nur für Lehrzwecke

Drehzahlkennlinie bei Frequenzsteuerung

Quelle: Wambach, R.: Grundlagen der Elektrotechnik 3. TFH-Berlin

Prinzip eines dreiphasigen Wechselrichters

 \sim

Beuth Hochschule für Technik Berlin Fachbereich VI - Informatik und Medien Linnemann, SoSe 2015

Elektrische Systeme 2

VL-ES2.ppt
Folie 71
Nur für Lehrzwecke

Blockschaltbild eines dreiphasigen Frequenzumrichters

Quelle: Landesumweltamt Nordrhein-Westfalen

Dahlanderschaltung

Hohe Polzahl

| Comparison of the content of the co

Mit 1/2/3/4 Polpaaren → 3000/1500/1000/750 min-1

Meist nur 2-stufig ausgeführt, heute eher weniger verwendet.

Elektrische Systeme 2

VL-ES2.ppt
Folie 73
Nur für Lehrzwecke

Weiterentwicklung im Elektromaschinenbau

