Assignment 3

<u>Carlos Sanchez</u> <u>ID: 21111910</u>

Question 2

<u> Part 1</u>

If we calculate the distances of all points to the clusters. We get the following:

Point	Distance to Cluster 1	Distance to Cluster 2
X1	$\sqrt{(0-0)^2+(1-0)^2}=1$	$\sqrt{(0-2)^2 + (1-1)^2} = 2$
X2	$\sqrt{(3-0)^2+(3-0)^2}=4.24$	$\sqrt{(3-2)^2+(3-1)^2}=2.23$
X3	$\sqrt{(1-0)^2+(1-0)^2}=1.41$	$\sqrt{(1-2)^2+(1-1)^2}=1$
X4	$\sqrt{(2-0)^2 + (3-0)^2} = 3.6$	$\sqrt{(2-2)^2+(3-1)^2}=2$
X5	$\sqrt{(1-0)^2+(0-0)^2}=1$	$\sqrt{(1-2)^2+(0-1)^2}=1.41$
X6	$\sqrt{(0-0)^2+(0-0)^2}=0$	$\sqrt{(0-2)^2+(0-1)^2}=2.23$
X7	$\sqrt{(3-0)^2+(2-0)^2}=3.6$	$\sqrt{(3-2)^2+(2-1)^2}=1.41$
X8	$\sqrt{(2-0)^2+(2-0)^2}=2.82$	$\sqrt{(2-2)^2 + (2-1)^2} = 1$

With all the distances calculated, the new values of the clusters are calculated from the points associated with them. The new values are:

$$C1 = \left(\frac{0+1+0}{3}, \frac{1+0+0}{3}\right) = \left(\frac{1}{3}, \frac{1}{3}\right)$$

$$C2 = \left(\frac{3+1+2+3+2}{5}, \frac{3+1+3+2+2}{5}\right) = \left(\frac{11}{5}, \frac{11}{5}\right)$$

We calculate again all distances for the different points with the new clusters:

Point	Distance to Cluster 1	Distance to Cluster 2
X1	$\sqrt{\left(0 - \frac{1}{3}\right)^2 + \left(1 - \frac{1}{3}\right)^2} = 0.74$	$\sqrt{\left(0 - \frac{11}{5}\right)^2 + \left(1 - \frac{11}{5}\right)^2} = 2.5$
X2	$\sqrt{\left(3 - \frac{1}{3}\right)^2 + \left(3 - \frac{1}{3}\right)^2} = 3.77$	$\sqrt{\left(3 - \frac{11}{5}\right)^2 + \left(3 - \frac{11}{5}\right)^2} = 1.13$
X3	$\sqrt{\left(1 - \frac{1}{3}\right)^2 + \left(1 - \frac{1}{3}\right)^2} = 0.94$	$\sqrt{\left(1 - \frac{11}{5}\right)^2 + \left(1 - \frac{11}{5}\right)^2} = 1.69$

$$\frac{X4}{\sqrt{(2-\frac{1}{3})^2 + (3-\frac{1}{3})^2}} = 3.14 \frac{\sqrt{(2-\frac{11}{5})^2 + (3-\frac{11}{5})^2}}{\sqrt{(1-\frac{1}{3})^2 + (0-\frac{1}{3})^2}} = 0.82$$

$$\frac{X5}{\sqrt{(1-\frac{1}{3})^2 + (0-\frac{1}{3})^2}} = 0.7 \frac{\sqrt{(1-\frac{11}{5})^2 + (0-\frac{11}{5})^2}}{\sqrt{(0-\frac{1}{3})^2 + (0-\frac{1}{3})^2}} = 2.5$$

$$\frac{X6}{\sqrt{(0-\frac{1}{3})^2 + (0-\frac{1}{3})^2}} = 0.4 \frac{\sqrt{(0-\frac{11}{5})^2 + (0-\frac{11}{5})^2}}{\sqrt{(3-\frac{1}{3})^2 + (2-\frac{1}{3})^2}} = 3.11$$

$$\frac{X7}{\sqrt{(3-\frac{1}{3})^2 + (2-\frac{1}{3})^2}} = 3.1 \frac{\sqrt{(3-\frac{11}{5})^2 + (2-\frac{11}{5})^2}} = 0.82$$

$$\frac{X8}{\sqrt{(2-\frac{1}{3})^2 + (2-\frac{1}{3})^2}} = 2.35 \frac{\sqrt{(2-\frac{11}{5})^2 + (2-\frac{11}{5})^2}} = 0.28$$

The points associated to each cluster has now changed, so we need to calculate new values for the clusters:

$$C1 = \left(\frac{0+1+1+0}{4}, \frac{1+1+0+0}{4}\right) = (0.5, 0.5)$$

$$C2 = \left(\frac{3+2+3+2}{4}, \frac{3+3+2+2}{4}\right) = \left(\frac{10}{4}, \frac{10}{4}\right)$$

We calculate again all distances for the different points with the new clusters:

<u>Point</u>	Distance to Cluster 1	Distance to Cluster 2
X1	$\sqrt{(0-0.5)^2+(1-0.5)^2}=0.7$	$\sqrt{\left(0 - \frac{10}{4}\right)^2 + \left(1 - \frac{10}{4}\right)^2} = 2.91$
X2	$\sqrt{(3-0.5)^2+(3-0.5)^2}=3.53$	$\sqrt{\left(3 - \frac{10}{4}\right)^2 + \left(3 - \frac{10}{4}\right)^2} = 0.7$
X3	$\sqrt{(1-0.5)^2+(1-0.5)^2}=0.7$	$\sqrt{\left(1 - \frac{10}{4}\right)^2 + \left(1 - \frac{10}{4}\right)^2} = 2.12$
X4	$\sqrt{(2-0.5)^2+(3-0.5)^2}=2.91$	$\sqrt{\left(2 - \frac{10}{4}\right)^2 + \left(3 - \frac{10}{4}\right)^2} = 0.7$
X5	$\sqrt{(1-0.5)^2+(0-0.5)^2}=0.7$	$\sqrt{\left(1 - \frac{10}{4}\right)^2 + \left(0 - \frac{10}{4}\right)^2} = 2.9$
X6	$\sqrt{(0-0.5)^2+(0-0.5)^2}=0.7$	$\sqrt{\left(0 - \frac{10}{4}\right)^2 + \left(0 - \frac{10}{4}\right)^2} = 3.53$
X7	$\sqrt{(3-0.5)^2+(2-0.5)^2}=2.91$	$\sqrt{\left(3 - \frac{10}{4}\right)^2 + \left(2 - \frac{10}{4}\right)^2} = 0.7$
X8	$\sqrt{(2-0.5)^2+(2-0.5)^2}=2.12$	$\sqrt{\left(2 - \frac{10}{4}\right)^2 + \left(2 - \frac{10}{4}\right)^2} = 0.7$

All points are associated now the same way as they were in the previous round, so the previous values of the clusters are the most accurate for the given points.