Criptografia

- Introdução à criptografia simétrica moderna

Roadmap

- · Cenário básico
- O problema de distribuição de chaves
- Protocolo Diffie e Hellman
- O algoritmo DES
- O algoritmo AES

••••

- A **criptografia simétrica** é conhecida também por **criptografia de chave secreta**.
- Esse método de cifra utiliza a **mesma chave** para cifrar e decifrar uma mensagem.
- O emissor e o receptor concordam em utilizar uma determinada chave e então a compartilham entre eles.

Compartilhamento seguro

 $\bullet \bullet \bullet \bullet$

- O compartilhamento da chave precisa ser seguro, do contrário, todo o processo criptográfico seria em vão.
- Observe que é necessário um canal de comunicação para o compartilhamento da chave secreta diferente do canal utilizado para transmitir a mensagem criptografada.

• Assim, nasce um dos grandes problemas da criptografia, conhecido como o **problema da distribuição de chaves.**

Cenário básico

 Em geral, um processo de criptografia simétrica pode ser representado pelo cenário a seguir:

 Suponha que Alice deseja enviar uma mensagem confidencial a Bob.

 Alice sabe que o canal de comunicação não é seguro, portanto a mensagem a ser enviada será criptografada.

 Alice compartilha uma chave secreta com Bob.
Considere que a chave foi compartilhada em um momento anterior.

Cenário básico

 O esquema de criptografia simétrica utilizado por Alice e Bob precisa de quatro elementos básicos: (1) mensagem; (2) chave; (3) algoritmo de cifração, (4) algoritmo de decifração.

0000

O problema de distribuição de chaves

• Claramente, o grande desafio desse método é como **compartilhar** a chave secreta de forma segura entre o emissor e o receptor da mensagem.

 A maneira mais natural de compartilhar essa chave seria estabelecer uma comunicação utilizando um outro canal considerado seguro ou um encontro pessoal privado.

 Outra maneira é fazer uso de um centro de distribuição de chaves, com o qual os usuários compartilham sua chave secreta.

Distribuição de chave usando uma terceira parte confiável

0000

Distribuição de chave usando uma terceira parte confiável

 $\bullet \bullet \bullet \bullet$

- \bigcirc
- Suponha que Alice deseja enviar uma mensagem para Bob, então ela cifra a mensagem usando sua chave secreta e a envia ao centro de distribuição de chaves (CDC).

- 2
- O CDC, conhecendo todas as chaves secretas, decifra a mensagem usando a chave de Alice, e então a cifra novamente usando a chave de Bob e envia a mensagem cifrada com a nova chave para Bob.

O CDC passa a ter conhecimento de todas as mensagens secretas.

- (3)
- Agora, Bob decifra a mensagem usando sua chave secreta, que também é compartilhada com o CDC.

Protocolo Diffie e Hellman (DH)

- Para resolver o problema de distribuição de chave, Diffie e Hellman (1976) apresentaram um método no qual duas pessoas podem produzir uma chave secreta compartilhada através da troca de informações públicas.
- Esta técnica ficou conhecida como **protocolo de troca de chave Diffie-Hellmam**.

Observação

O protocolo não é em si um criptossistema, ele é utilizado para **gerar** e **compartilhar** a chave de modo seguro quando se pretende fazer uso de um sistema criptográfico simétrico.

Protocolo Diffie e Hellman (DH)

0000

- **1.** Alice e Bob concordam em usar um número primo $oldsymbol{p}$ e como base $oldsymbol{g}$. Tanto $oldsymbol{p}$ como $oldsymbol{g}$ são públicos.
- 2. Alice escolhe um inteiro secreto $x \in \mathbb{Z}_p$, e usa para calcular $X = g^x \mod p$. Então envia X para Bob.
- 3. Bob escolhe um inteiro secreto $y \in \mathbb{Z}_p$, e usa para calcular $Y = g^y \mod p$. Então envia Y para Alice.
- **4.** Alice calcula a chave secreta secreto $K_a = Y^x \mod p$
- 5. Bob calcula a chave secreta $K_h = X^y \mod p$

Protocolo Diffie e Hellman (DH)

Observe que Alice e Bob calculam uma chave secreta comum, $K_a = K_b$, como

$$K_a = (g^y)^x = (g^x)^y = g^{xy} \mod p = K_b$$

DES é um algoritmo de criptografia simétrica que foi desenvolvido na década de 1970 pelo projetado pela IBM para ser adotado como **padrão** nos EUA para informações comerciais.

- Foi um avanço científico significativo no sentido de ter sido o **primeiro** criptossistema cujo conhecimento se tornou público: até então todos os algoritmos eram **secretos**.
- Ou seja, a segurança do DES não se baseia no conhecimento do algoritmo mas apenas no **conhecimento da chave secreta.**

• O DES processa um texto claro de 64 bits e cria um texto cifrado de 64 bits.

• A função espera uma **chave de 64 bits** como entrada. No entanto, **apenas 56 desses bits** são

usados.

- O processo acontece em três etapas:
 - Permutação inicial
 - Rodadas
 - Permutação final

Permutação inicial

• A tabela de permutação inicial (IP) do algoritmo DES é uma permutação dos 64 bits do bloco de dados de entrada, que reorganiza os bits de acordo com um esquema pré-determinado.

j-sai	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
j-ent	58	50	42	34	26	18	10	2	60	52	44	36	28	20	12	8
j-sai	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
j-ent	62	54	46	38	30	22	14	6	64	56	48	40	32	24	16	8
j-sai	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
j-ent	57	49	41	33	25	17	9	1	59	51	43	35	27	19	11	3
j-sai	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
j-ent	61	53	45	37	29	21	13	5	63	55	47	39	31	23	15	7

Na tabela, **j-ent** representa a posição do j-ésimo bit no bloco de entrada, e **j-sai** representa a posição do j-ésimo bit no bloco de saída.

 São 16 rodadas da mesmo função. A saída da décima sexta rodada consiste em 64 bits em que as metades esquerda e direita da saída são trocadas para produzir a pré-saída.

Função DES

- A função DES aplica uma chave de 48 bits aos 32 mais à direita para produzir uma saída de 32 bits.
- Essa função é composta por quatro seções:
 - Uma caixa-P de expansão,
 - Uma função que adiciona a chave da rodada
 - Um grupo de caixas-S
 - Uma caixa-P simples

Geração de subchaves

- O gerador de chaves de rodada cria 16 chaves de 48 bits a partir de uma chave de 56 bits.
- No entanto, a chave da cifra é normalmente fornecida como uma chave de 64 bits na qual os 8 bits adicionais são descartados antes do início do processo de geração de chaves.

Subchave K_1

- Para consultar as tabelas do DES consulte:
 - TERADA, Routo. **Segurança de dados.** Editora Blucher, 2008. E-book. ISBN 9788521215400. Disponível em:

https://app.minhabiblioteca.com.br/#/books/9788521215400/

••••

- Em 1997, o *National Institute for Standards e Technology* (**NIST**), dos Estados Unidos, fez uma chamada pública para um substituto do algoritmo DES.
- O AES é uma cifra de blocos que opera sobre blocos de 128 bits.
- Foi concebido para ser usado com chaves de **128**, **192** ou **256** bits de comprimento, com cifras conhecidas como:
 - AES 128, AES 192 e AES 256.
- No inicio de 2010, o **AES-256** foi amplamente considerado como a melhor escolha para um criptossistema simétrico de proposito geral.

Rodadas AES

• • • •

- O processo de cifração AES é feita em 10 rodadas.
- Cada rodada executa uma transformação em um *array* de 128 bits, chamado **estado**.
- O estado inicial X_0 é o XOR do texto puro P com uma chave K:

$$X_0 = P \oplus K$$

A rodada i recebe o estado X_{i-1} como entrada e produz o estado X_i . O texto cifrado C é a saída da rodada final: $C = X_{10}$.

Rodadas AES

Cada rodada é construída com quatro passos básicos:

- 1. Um passo de substituição S-box
- 2. Um passo de permutação
- 3. Um passo de multiplicação de matriz.
- 4. Um passo XOR com uma chave de rodada derivada da chave de cifração de 128 bits

AES simplificado

••••

O Professor Edward Schaefer da Universidade de Santa Clara (EUA) construiu uma versão **didática** e **simplificada** do AES chamada S-AES.

Ela é útil para uma melhor compreensão do AES.

Para detalhes veja URL:

http://www.rose-hulman.edu/~holden/Preprints/s-aes.pdf

Fim!

[Aula 07] Introdução à criptografia simétrica moderna