Report Number: D60121P1

FCC PART 15 SUBPART C SECTION 15.231, RSS GEN, & RSS 210 TEST REPORT

for

HOME HEALTHCARE SIGNALING DEVICE W/ FALL DETECTION Model: 2GIG-F1-345

Prepared for

NORTEK SECURITY & CONTROL 1950 CAMINO VIDA ROBLE, SUITE 150 CARLSBAD, CA 92008

Prepared by:	
	TOREY OLIVER
Approved by:	
	MATT HARRISON

COMPATIBLE ELECTRONICS INC. 20621 PASCAL WAY LAKE FOREST, CALIFORNIA 92630 (949) 587-0400

DATE: JANUARY 21st, 2016

	REPORT	APPENDICES				TOTAL	
	BODY	A	В	С	D	E	
PAGES	18	2	2	2	11	17	52

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

Page 2 of 18

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	5
1. PURPOSE	6
2. ADMINISTRATIVE DATA	7
2.1 Location of Testing	7
2.2 Traceability Statement	7
2.3 Cognizant Personnel	7
2.4 Date Test Sample was Received2.5 Disposition of the Test Sample	7 7
2.5 Disposition of the Test Sample2.6 Abbreviations and Acronyms	7
3. APPLICABLE DOCUMENTS	8
4. DESCRIPTION OF TEST CONFIGURATION	9
4.1 Description of Test Configuration	9
4.1.1 Photograph Test Configuration	9
4.1.2 Cable Construction and Termination	10
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	11
5.1 EUT and Accessory List	11
5.2 EMI Test Equipment	12
6. TEST SITE DESCRIPTION	13
6.1 Test Facility Description	13
6.2 EUT Mounting, Bonding and Grounding	13
6.3 Facility Environmental Characteristics	13
7. CHARACTERISTICS OF THE TRANSMITTER	14
7.1 Channel Number and Frequencies7.2 Antenna	14 14
8. TEST PROCEDURES	15
8.1 RF Emissions8.1.1 Conducted Emissions Test	15 15
8.1.2 Radiated Emissions (Spurious and Harmonics) Test	16
8.1.3 Peak radiated EMI	17
8.1.4 Bandwidth of the Fundamental	18
8.1.5 Transmit Timeout	18
9. TEST PROCEDURE DEVIATIONS	19
10. CONCLUSIONS	19

Report Number: D60121P1

LIST OF APPENDICES

APPENDIX	TITLE			
A	Laboratory Accreditations and Recognitions			
В	Modifications to the EUT			
С	Additional Models Covered Under This Report			
D	Diagrams, Charts, and Photos			
	Test Setup Diagrams			
	Antenna and Amplifier Factors			
	Radiated Photos			
Е	Radiated Emissions Data Sheets			

LIST OF FIGURES

FIGURE	TITLE
1	Plot Map And Layout of Test Site Below 1GHz
2	Plot Map And Layout of Test Site Above 1GHz

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced in any form unless done so in full with the written permission of Compatible Electronics.

This report must not be used to claim product certification, approval or endorsement by NVLAP, NIST, or any agency of the federal government.

Device Tested: Home Healthcare Signaling Device W/ Fall Detection

Model: 2GIG-F1-345

S/N: None

Product Description: The Personal Help Button W/ Fall Detector Pendant (2GIG-F1-345) is a battery powered

pendant style transmitter, designed for use with compatible receivers in the 2GIG Go! Control and Numera product lines. The transmitter is small, lightweight, and water-resistant, and is supplied with an adjustable breakaway release lanyard intended for safe operation and comfortable wear. When a fall is detected, or when the pendant's button is pressed, a digitally

coded wireless signal is sent to the companion Console. The signal indicator on the

transmitter lights green when the unit is activated. When activated using the pendant's button,

the transmitter can send a signal for up to 30 seconds if held per activation.

Modifications: The EUT was not modified in order to comply with specifications.

Manufacturer: Nortek Security & Control

1950 Camino Vida Roble, Suite 150

Carlsbad, CA 92008

Test Dates: January 1st & 21st, 2016

March 8th, 2016

Test Specifications: EMI requirements

CFR Title 47, Part 15 Subpart C Sections 15.205, 15.207, 15.209 and 15.231

RSS GEN & RSS 210

Test Procedure: ANSI C63.4 & C63.10

Report Number: D60121P1

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz - 30 MHz.	The EUT is battery powered; therefore this test was deemed unnecessary and thus was not performed.
2	Radiated RF Emissions & Harmonics, 9 kHz – 4,000 MHz.	Complies with the limits of CFR Title 47, Part 15 Subpart C Section 15.209, 15.231, & RSS GEN.
3	-20 dB Occupied Bandwidth of the Emission	Complies with the limits of CFR Title 47, Part 15, Subpart C, section 15.231 & RSS 210.
4	Peak Radiated EMI	Complies with the limits of CFR Title 47, Part 15, Subpart C, section 15.231 & RSS 210.
5	Transmit Timeout	Complies with the limits of CFR Title 47, Part 15, Subpart C, section 15.231 & RSS 210.

TABLE 1 SIX HIGHEST RADIATED EMISSIONS READINGS

	Reading Type (PK / QP / AV)	Polarization (Vert / Horz)	Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Delta (dB)	Test Distance
1	QP	V	36.00	29.89	40.00	-10.11	3-Meter
2	QP	Н	36.00	28.80	40.00	-11.20	3-Meter
3	QP	Н	39.40	19.40	40.00	-20.60	3-Meter
4	QP	V	38.50	19.27	40.00	-20.73	3-Meter
5	QP	V	41.40	19.13	40.00	-20.87	3-Meter
6	QP	V	42.40	18.68	40.00	-21.32	3-Meter

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the Home Healthcare Signaling Device W/ Fall Detection Model: 2GIG-F1-345. The EMI measurements were performed according to the measurement procedure described in ANSI C63.10. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT (equipment under test) hereafter, are within the specification limits defined by the Code of Federal Regulations Title 47, Part 15 Subpart C sections 15.205, 15.207, 15.209. 15.231, RSS GEN, & RSS 210.

FCC Part 15 C Section 15.231, RSS GEN, & RSS 210 Test Report

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The tests described herein were performed at the test facility of Compatible Electronics, 20621 Pascal Way Lake Forest, California 92630.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Nortek

Josh Hansen Regulatory Engineer

Compatible Electronics, Inc.

Matt Harrison Lab Manager Torey Oliver Test Technician

2.4 Date Test Sample was Received

The test sample was received on December 30th, 2015.

2.5 Disposition of the Test Sample

The test sample remains at Compatible Electronics, Inc. as of the date of this test report.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency
EMI Electromagnetic In

EMI Electromagnetic Interference EUT Equipment Under Test

P/N Part Number S/N Serial Number HP Hewlett Packard

ITE Information Technology Equipment

CML Corrected Meter Limit

LISN Line Impedance Stabilization Network

NVLAP National Voluntary Laboratory Accreditation Program

CFR Code of Federal Regulations

PCB Printed Circuit Board

TX Transmit RX Receive

Report Number: D60121P1

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this Test Report.

SPEC	TITLE
CFR Title 47, Part 15	FCC Rules – Radio frequency devices (including digital devices)
ANSI C63.4 2014	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz.
ANSI C63.10: 2013	American National Standard for Testing Unlicensed Wireless Devices
RSS GEN	General Requirements for Compliance of Radio Apparatus
RSS 210	Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration

The Home Healthcare Signaling Device W/ Fall Detection Model: 2GIG-F1-345 (EUT) was setup in a tabletop configuration. The EUT was checked all 3 axis. The worst case was found to be the X-Axis. The EUT was continuously transmitting a data stream during the tests.

The EUT was tested with a new battery.

It was determined that the emissions were at their highest level when the EUT was transmitting in the configuration described above for Radiated Emissions. The final radiated data was taken in the above configuration. Please see Appendix E for the test data.

4.1.1 Photograph Test Configuration

4.1.2 Cable Construction and Termination

The EUT has no interconnecting cables.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

#	EQUIPMENT TYPE	MANU- FACTURER	MODEL	SERIAL NUMBER
1	HOME HEALTHCARE SIGNALING DEVICE W/ FALL DETECTION (EUT)	NORTEK	2GIG-F1-345	NONE

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANUFACTURER	MODEL NUMBER			CAL. DUE DATE
Computer	Compatible Electronics	NONE	NONE	N/A	N/A
EMI Receiver	Rohde & Schwarz	ESIB40	100157	09/22/2015	09/22/2016
MXE Receiver	Keysight	N9038A	MY51210150	12/29/2015	12/29/2016
Antenna, Loop	Com Power	AL-130	121049	12/06/2014	12/06/2016
Antenna, CombiLog	Com Power	AC-220	003	05/21/2014	05/21/2016
Antenna, Horn 1- 18GHz	Com Power	AH-118	071225	07/01/2014	07/01/2016
Pre-Amp, 1-18GHz	Com Power	PAM-118	551033	04/24/2014	04/24/2016
Mast, Antenna Positioner	Sunol Science Corporation	TWR 95-4	020808-3	N/A	N/A
Antenna Mast	Sunol Science Corporation	TWR 95-4	020808-3	N/A	N/A
Turntable	Sunol Science Corporation	FM 2001	N/A	N/A	N/A
Mast and Turntable Controller	Sunol Science Corporation	SC104V	020808-1	N/A	N/A

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and the figures in Appendix D of this report for test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted 1.0 meter high on a non-conductive surface, which was placed above the ground plane.

For above 1GHz the EUT was mounted on a 1.5 meter high non-conductive tabletop, which was placed on the ground plane.

The EUT was not grounded.

6.3 Facility Environmental Characteristics

When applicable refer to the data sheets in Appendix E for the relative humidity, air temperature, and barometric pressure.

Page 14 of 18

7. CHARACTERISTICS OF THE TRANSMITTER

7.1 Channel Number and Frequencies

The EUT has one operating channel and the EUT has OOK modulation. The EUT has a fixed output power.

1 == 345 MHz

7.2 Antenna

The antenna is made up of a trace located on the PCB.

Page 15 of 18

8. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

8.1 RF Emissions

8.1.1 Conducted Emissions Test

The EUT is battery operated; therefore this test was deemed unnecessary and thus was not performed.

The EMI receiver was used as a measuring meter. A quasi-peak and/or average reading was taken only where indicated in the data sheets. The LISN output was measured using the EMI receiver. The output of the second LISN was terminated by a 50-ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding, and grounding of the EUT. The EUT received its power through the LISN, which was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI 63.4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the computer software.

8.1.2 Radiated Emissions (Spurious and Harmonics) Test

The EMI receiver was used as a measuring meter. The receiver was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the receiver records the highest measured reading over all the sweeps. Amplifiers were used to increase the sensitivity of the instrument. There was one Microwave Preamplifier used for frequencies above 1 GHz.

For spurious emissions the quasi-peak detector was used for frequencies below 1GHz and the average detector was used for frequencies above 1 GHz.

For the Fundamental & Harmonic emissions a duty cycle average was used.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE (MHz)	TRANSDUCER	EFFECTIVE MEASUREMENT BANDWIDTH
.009 to .150	Active Loop Antenna	200 Hz
.150 to 30	Active Loop Antenna	9 kHz
30 to 1000	Combilog Antenna	100 kHz
1000 to 4000	Horn Antenna	1 MHz

The TDK FAC-3 shielded test chamber of Compatible Electronics, Inc. was used for radiated emissions testing. This test site is in full compliance with ANSI C63.4 & ANSI C63.10. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters in both vertical and horizontal polarizations (for E field radiated field strength).

Test Results:

The EUT complies with the limits of CFR Title 47 Part 15 Subpart C sections 15.205, 15.209, 15.231, RSS GEN & RSS 210. The six highest emissions are listed in table 1.

Page 17 of 18

8.1.3 Peak radiated EMI

The EUT was tested at a 3-meter test distance to obtain the final test data. The final qualification data sheets are located in Appendix E. This data also shows compliance at the band edges.

Duty Cycle Correction Factor = -20.00dB

$$\delta(dB) = 20 \log \left[\sum_{x} (nt_1 + mt_2 + ... + \xi t_x) / T \right]$$

where

n is the number of pulses of duration t1 m is the number of pulses of duration t2 ξ is the number of pulses of duration txT is the period of the pulse train or 100 ms if the pulse train length is greater than 100 ms

Pulse Type $1 = 38 * 137.074148 \mu S = 5.208818 mS$

Pulse Type $2 = 1 * 401.803607 \mu S = 0.401803607 mS$

Pulse Type $3 = 13 * 269.539078 \mu S = 3.504008 mS$

Total On Time = 9.114629 mS

100 ms / 9.114629 = 0.0911

 $20 \log (0.0911) = -20.805 \text{ dB correction factor}$

Max Duty Cycle Correction Factor = -20dB

Test Results:

The EUT complies with Part 15, Subpart C, section 15.231 & RSS 210.

8.1.4 Bandwidth of the Fundamental

The -20 dB bandwidth was checked using the MXE Receiver to see that the emissions were wholly within the 0.25% of the operating frequency centered on the fundamental frequency. The RBW was set to 1-5% of the occupied bandwidth and the VBW was set to approximately three times the RBW. The span was to between two and five times the occupied bandwidth.. A Plot of the -20 dB bandwidth is located in Appendix E.

Test Results:

The EUT complies with the requirements of CFR Title 47, Part 15, Subpart C, section 15.231 (c) for the -20 dB bandwidth of the fundamental. The EUT has a -20 dB bandwidth that is lies wholly within the 0.25% of the operating frequency centered on the fundamental frequency.

8.1.5 Occupied Bandwidth

The occupied bandwidth was checked using the 99% Bandwidth function on the MXE Receiver. The RBW was set to 1-5% of the occupied bandwidth and the VBW was set to approximately three times the RBW. The span was to between two and five times the occupied bandwidth. A Plot of the Occupied Bandwidth is located in Appendix E.

Test Results:

The EUT complies with the requirements of RSS GEN for the -20 dB bandwidth of the fundamental. The EUT has a -20 dB bandwidth that is lies wholly within the 0.25% of the operating frequency centered on the fundamental frequency.

8.1.6 Transmit Timeout

The Transmit timeout test was performed using the EMI Receiver to make sure the transmission coming from the transmitter would cease within 5 seconds after the activation. A Plot of the transmission duration is located in Appendix E.

Test Results:

The EUT complies with the requirements of CFR Title 47, Part 15, Subpart C, section 15.231 (c) & RSS 210 for Transmit Timeout less than 5 seconds.

Page 19 of 18

9. TEST PROCEDURE DEVIATIONS

The test procedures were not deviated from throughout all tests.

10. CONCLUSIONS

The Home Healthcare Signaling Device W/ Fall Detection Model: 2GIG-F1-345 meets all of the relevant specification requirements defined in the Code of Federal Regulations Title 47, Part 15 Subpart C sections 15.205, 15.207, 15.209, 15.231, RSS GEN, & RSS 210.

APPENDIX A

LABORATORY ACCREDITATIONS AND RECOGNITIONS

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Taiwan and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025 an ISO 9002 equivalent. Please follow the link to the NIST site for each of our facilities NVLAP certificate and scope of accreditation.

NVLAP listing links

Agoura Division - http://ts.nist.gov/Standards/scopes/200630.htm
Brea Division - http://ts.nist.gov/Standards/scopes/2005280.htm
Silverado/Lake Forest Division - http://ts.nist.gov/Standards/scopes/2005270.htm

ANSI listing

CETCB

https://www.ansica.org/wwwversion2/outside/ALL directory Details.asp? menuID = 1 & prgID = 3 & orgID = 123 & status = 4 + 128 & status = 4 + 128

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for EMC under the US/EU Mutual Recognition Agreement (MRA).

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for Taiwan/BSMI under the US/APEC (Asia-Pacific Economic Cooperation) Mutual Recognition Agreement (MRA).

We are also certified/listed for IT products by the following country/agency:

VCCI Listing, from VCCI site

Enter "Compatible" in search form http://www.vcci.or.jp/vcci_e/activity/registration/setsubi.html

FCC Listing, from FCC OET site

FCC test lab search https://fjallfoss.fcc.gov/oetcf/eas/reports/TestFirmSearch.cfm

Compatible Electronics IC listing can be found at: http://www.ic.gc.ca/eic/site/ic1.nsf/eng/home

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

There were no modifications were made during testing.

APPENDIX C

ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST DETECTION

HOME HEALTHCARE SIGNALING DEVICE W/ FALL

Report Number: D60121P1

Model: 2GIG-F1-345

S/N: None

No additional models were tested.

APPENDIX D

DIAGRAMS, CHARTS, AND PHOTOS

FIGURE 1: PLOT MAP AND LAYOUT OF TEST SITE BELOW 1GHZ

FIGURE 2: PLOT MAP AND LAYOUT OF TEST SITE ABOVE 1GHZ

COM-POWER AL-130

LOOP ANTENNA

S/N: 121049

CALIBRATION DUE: DECEMBER 6, 2016

FREQUENCY (MHz)	MAGNETIC (dB/m)	ELECTRIC (dB/m)	FREQUENCY (MHz)	MAGNETIC (dB/m)	ELECTRIC (dB/m)
0.009	-34.64	16.86	0.8	-36.32	15.18
0.01	-34.78	16.72	0.9	-36.22	15.28
0.02	-35.91	15.59	1.0	-36.22	15.28
0.03	-35.48	16.02	2.0	-35.91	15.59
0.04	-35.82	15.68	3.0	-35.91	15.59
0.05	-36.49	15.01	4.0	-36.01	15.49
0.06	-36.30	15.20	5.0	-35.80	15.70
0.07	-36.43	15.07	6.0	-36.00	15.50
0.08	-36.30	15.20	7.0	-35.90	15.60
0.09	-36.39	15.11	8.0	-35.70	15.80
0.1	-36.41	15.09	9.0	-35.70	15.80
0.2	-36.61	14.89	10.0	-35.60	15.90
0.3	-36.63	14.87	15.0	-36.52	14.98
0.4	-36.52	14.99	20.0	-35.75	15.75
0.5	-36.63	14.87	25.0	-37.78	13.72
0.6	-36.62	14.88	30.0	-38.62	12.88
0.7	-36.53	14.97			

COM-POWER AC-220

LAB P - COMBILOG ANTENNA

S/N: 003

CALIBRATION DUE: MAY 21, 2016

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	22.90	160	15.20
35	22.80	180	14.40
40	23.50	200	14.10
45	21.90	250	15.90
50	22.00	300	18.20
60	18.10	400	19.40
70	12.80	500	21.50
80	12.10	600	22.00
90	12.70	700	23.90
100	13.00	800	25.80
120	15.50	900	27.00
140	14.40	1000	27.90

COM-POWER AH-118

HORN ANTENNA

S/N: 071225

CALIBRATION DUE: JULY 1, 2016

FREQUENCY (MHz)	FACTOR	FREQUENCY (MHz)	FACTOR
	(dB)	, ,	(dB)
1000	30.2	9500	43.86
1500	29.46	10000	43.85
2000	31.81	10500	43.54
2500	35.95	11000	45.28
3000	33.6	11500	45.18
3500	36.43	12000	45.03
4000	35.85	12500	44.33
4500	36.32	13000	45.71
5000	40.11	13500	46.89
5500	38.7	14000	46.88
6000	39.33	14500	45.89
6500	40.08	15000	49.59
7000	41.17	15500	46.49
7500	43.58	16000	45.01
8000	41.55	16500	44.57
8500	42.63	17000	48.28
9000	43.5	17500	49.88
		18000	49.94

COM-POWER PAM-118A

1-18GHz - PREAMPLIFIER

S/N: 551033

CALIBRATION DUE: FEBRUARY 5, 2016

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
500	36.57	5500	40.23
1000	38.49	6000	38.68
1100	38.83	6500	39.16
1200	39.05	7000	35.30
1300	39.06	7500	36.25
1400	38.83	8000	36.08
1500	38.52	8500	36.03
1600	38.69	9000	36.9
1700	39.54	9500	37.29
1800	39.66	10000	37.56
1900	40.49	11000	37.23
2000	40.03	12000	37.05
2500	39.30	13000	36.15
3000	41.29	14000	33.80
3500	40.61	15000	37.41
4000	41.49	16000	37.98
4500	41.51	17000	35.82
5000	40.41	18000	32.01

FRONT VIEW

NORTEK HOME HEALTHCARE SIGNALING DEVICE W/ FALL DETECTION Model: 2GIG-F1-345 FCC SUBPART C - RADIATED EMISSIONS < 1GHz

REAR VIEW

NORTEK HOME HEALTHCARE SIGNALING DEVICE W/ FALL DETECTION Model: 2GIG-F1-345 FCC SUBPART C - RADIATED EMISSIONS < 1GHz

FRONT VIEW

NORTEK
HOME HEALTHCARE SIGNALING DEVICE W/ FALL DETECTION
Model: 2GIG-F1-345
FCC SUBPART C - RADIATED EMISSIONS > 1GHz

REAR VIEW

NORTEK HOME HEALTHCARE SIGNALING DEVICE W/ FALL DETECTION Model: 2GIG-F1-345 FCC SUBPART C - RADIATED EMISSIONS > 1GHz

Page E1

APPENDIX E

RADIATED EMISSIONS DATA SHEETS

FCC Part 15 C Section 15.231, RSS GEN, & RSS 210 Test Report

Title: FCC 15.209 1/21/2016 9:03:00 AM File: Radiated Pre-Scan 30-1000Mhz Sequence: Preliminary Scan

Operator: Matt Harrison EUT Type: 2GIG-F1-345.

EUT Condition: Transmitting @ 345MHz.

Comments: Temp: 65f Hum: 45%

Battery Operated

Compatible Electronics, Inc. FAC-3 (Lab P)

There were no radiated emissions other than harmonics found below 30 MHz or above 1GHz. This is the worst case mode.

FCC ID: WDQ-F1345 FCC Part 15 C Section 15.231, RSS GEN, & RSS 210 Test Report

Report Number: D60121P1

Title: FCC 15.209 1/21/2016 9:25:39 AM

File: Radiated Final 30-1000Mhz Sequence: Final Measurements

Operator: Matt Harrison EUT Type: 2GIG-F1-345.

EUT Condition: Transmitting @ 345MHz.

Comments: Temp: 65f Hum: 45%

Battery Operated

Compatible Electronics, Inc. FAC-3 (Lab P)

Freq (MHz)	(QP) Margin (dB)	(QP) EMI (dBµV/m)	(PEAK) EMI (dBµV/m)	Limit (dBµV/m)	Pol	Ttbl Agl (deg)	Twr Ht (cm)	Transducer(dB)	Cable(dB)
36.00	-11.20	28.80	31.07	40.00	Н	356.25	194.05	22.95	0.44
36.00	-10.11	29.89	32.43	40.00	V	266.25	165.23	22.95	0.44
38.50	-20.73	19.27	24.96	40.00	V	229.25	241.70	23.30	0.48
39.40	-20.60	19.40	24.83	40.00	Н	360.00	305.88	23.41	0.49
41.40	-20.87	19.13	24.38	40.00	V	257.25	115.11	23.07	0.48
42.40	-21.32	18.68	24.35	40.00	V	317.75	156.41	22.72	0.47

There were no radiated emissions other than harmonics found below 30 MHz or above 1GHz. This is the worst case mode.

Page E4

FUNDAMENTAL & HARMONICS

DATA SHEETS

FUNDAMENTAL FIELD STRENGTH

FCC 15.231

Company: Date: 1/21/2016

Home Healthcare Signaling
EUT: Device W/ Fall Detection

EUT: Device W/ Fall Detection Lab: P
Model: 2GIG-F1-345 Tested By: Matt H.

Duty Cycle Correction Factor: -20.00

Compatible Electronics, Inc. FAC-3

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table	Tower	Comments
345.00	87.81	Н	97.26	-9.45	Peak	90.00	1.00	
345.00	67.81	Н	77.26	-9.45	Avg	90.00	1.00	
345.00	71.34	V	97.26	-25.92	Peak	160.00	1.00	
345.00	51.34	V	77.26	-25.92	Avg	160.00	1.00	

Test distance

3 meter

HARMONICS HORIZONTAL

FCC 15.231

Company: Nortek Date: 1/21/2016

EUT: Home Healthcare Signaling Device W/ Fall Detection Lab: P

Model: 2GIG-F1-345 Tested By: Matt Harrison

Duty Cycle Correction Factor: -20.00

Freq.	Level				Peak / QP /	Ant. Height	Table Angle	
(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
690.00	40.80	Н	77.26	-36.46	Peak	1.00	340	
690.00	20.80	Н	57.26	-36.46	Avg	1.00	340	
1035.00	35.62	Н	73.98	-38.36	Peak	4.00	288	
1035.00	15.62	Н	53.98	-38.36	Avg	4.00	288	
1380.00	35.73	Н	73.98	-38.25	Peak	1.08	1.48	
1380.00	15.73	H /	53.98	-38.25	Avg	1.08	1.48	
1725.00	41.38	Н	77.26	-35.88	Peak	2.64	317	
1725.00	21.38	Н	57.26	-35.88	Avg	2.64	317	
2070.00	54.57	Н	77.26	-22.69	Peak	1.73	341	
2070.00	34.57	Н	57.26	-22.69	Avg	1.73	341	
		\ \						
2415.00	51.27	Н	77.26	-25.99	Peak	1.55	319	
2415.00	31.27	Н	57.26	-25.99	Avg	1.55	319	
2760.00	62.25	Н	73.98	-11.73	Peak	2.20	156	
2760.00	42.25	Н	53.98	-11.73	Avg	2.20	156	
3105.00	63.43	Н	77.26	-13.83	Peak	1.75	134	
3105.00	43.43	Н	57.26	-13.83	Avg	1.75	134	
3450.00	60.11	Н	77.26	-17.15	Peak	1.49	141	
3450.00	40.11	Н	57.26	-17.15	Avg	1.49	141	

Test distance

3 meter

HARMONICS VERTICAL

FCC 15.231

Company: Nortek Date: 1/21/2016

EUT: Home Healthcare Signaling Device W/ Fall Detection Lab: P

Model: 2GIG-F1-345 Tested By: Matt Harrison

Duty Cycle Correction Factor: -20.00

Freq.	Level				Peak / QP /	Ant. Height	Table Angle	
(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
690.00	42.68	V	77.26	-34.58	Peak	1.00	220	
690.00	22.68	V	57.26	-34.58	Avg	1.00	220	
1035.00	43.11	V	73.98	-30.87	Peak	1.91	36	
1035.00	23.11	V	53.98	-30.87	Avg	1.91	36	
1380.00	44.68	V	73.98	-29.30	Peak	2.02	34	
1380.00	24.68	V	53.98	-29.30	Avg	2.02	34	
1725.00	52.37	V	77.26	-24.89	Peak	1.31	235	
1725.00	32.37	V	57.26	-24.89	Avg	1.31	235	
2070.00	54.57	V	77.26	-22.69	Peak	2.26	72	
2070.00	34.57	V	57.26	-22.69	Avg	2.26	72	
		\ \						
2415.00	52.52	V	77.26	-24.74	Peak	2.02	42	
2415.00	32.52	V	57.26	-24.74	Avg	2.02	42	
2760.00	62.00	V	73.98	-11.98	Peak	1.62	257	
2760.00	42.00	V	53.98	-11.98	Avg	1.62	257	
3105.00	61.99	V	77.26	-15.27	Peak	1.81	212	
3105.00	41.99	V	57.26	-15.27	Avg	1.81	212	
3450.00	60.72	V	77.26	-16.54	Peak	1.11	68	
3450.00	40.72	V	57.26	-16.54	Avg	1.11	68	

Test distance

3 meter

DUTY CYCLE PLOTS

Title: 2GIG-F1-345

Time of Pulse Type 1 = 137.074148 μS

Title: 2GIG-F1-345

Time of Pulse Type $2 = 401.803607 \mu S$

Title: 2GIG-F1-345

Time of Pulse Type $3 = 269.539078 \mu S$

Title: 2GIG-F1-345

Total On Time in a 100 ms Span = 9.114629245 mS

Duty Cycle

Title: 2GIG-F1-345

Number of Pulses in Worst Case 100 mS = 52

Pulse Type 1 On Time = 137.074148 μ S *38 = 5.208818 mS Pulse Type 2 On Time = 401.803607 μ S *1 = 0.4018036 mS Pulse Type 3 On Time = 269.839078 μ S *13 = 3.504008 mS Duty Cycle = 9.114629 mS / 100 mS = 0.0911 The Peak to Average Duty Cycle Correction = -20.805dB Max Duty Cycle Correction Factor = -20.00dB

TRANSMIT TIMEOUT DATA

FCC Part 15 C Section 15.231, RSS GEN, & RSS 210 Test Report

TRANSMIT TIMEOUT

DURATION TIME

FCC 15.231

Company: Nortek Date: 1/21/2016

EUT: Home Healthcare Signaling Device W/ Fall Detection Lab: P

Model: 2GIG-F1-345 Tested By: Matt H.

Freq. (MHz)	Time (S)	Limit (S)	Margin	Comment s
345.00	3.92	5.00	-1.08	

Page E16

15.231 -20 dB Bandwidth & RSS210 Occupied Bandwidth **DATA**

-20dB and Occupied Bandwidth

FCC 15.231

Company: Nortek Date: 1/21/2016

Home Healthcare Signaling

EUT: Device W/ Fall Detection Lab: P
Model: 2GIG-F1-345 Tested By: Matt H.

Compatible Electronics, Inc. FAC-3

Freq. (MHz)	20dB Bandwidth	Limit (kHz)	Margin (kHz)	Occupied Bandwidth
345.00	41.57	862.50	-820.93	142.22kHz

