A note on the L2-convergence rates of derivatives

Johan Sebastian Ohlendorff

johan.ohlendorff@sund.ku.dk University of Copenhagen

ABSTRACT

In this brief note, ...

1 Main section

Let the $L_2(\nu)$ -norm of a function $f \in L_2(\nu)$ be defined as

$$||f||_{\nu} = \sqrt{\int f^2 d\nu}.\tag{1}$$

Consider a sequence of estimators $\hat{P}_n(t\mid x)$ of $P(t\mid x)$ which are defined on $[0,\tau]$. We assume that $\hat{P}_n(0\mid x)=P(0\mid x)=0$. We let μ_0 denote an appropriate measure for the covariates x. These are assumed to have the $L_2(\mu_0)$ -convergence rate $n^{-\frac{1}{4}-\varepsilon}$ for Lebesgue almost all $t\in[0,\tau]$ for $\varepsilon>\frac{1}{12}$. This corresponds to a convergence rate of slightly better than $n^{-\frac{1}{3}}$. We are interested in constructing an estimator $p(t\mid x)=P'(t\mid x)$ of the derivative of $P(t\mid x)$ which also has the $L_2(\mu_0\otimes m)$ -convergence rate $n^{-\frac{1}{4}}$, where m is the Lebesgue measure on $[0,\tau]$. The precise statement is given in Theorem 1.1. This is useful if one wishes to obtain convergence rates for a hazard function which one has not explicitly considered, but only the cumulative hazard function, such as in a Cox regression.

Theorem 1.1: Let $\hat{P}_n(t\mid x)$ be a sequence of estimators of $P(t\mid x)$ defined on $[0,\tau]$ fulfilling that $\hat{P}_n(0\mid x) = P(0\mid x) = 0$. Suppose that $P(t\mid x) \in C^2([0,\tau])$ for μ_0 -almost all x and that there exists a constant K>0 such that $p'(t\mid x) \leq K$ for μ_0 -almost all x and $t\in [0,\tau]$. If $\left\|\hat{P}_n(t\mid \cdot) - P(t\mid \cdot)\right\|_{\mu_0} = o_P\left(n^{-\frac{1}{4}-\varepsilon}\right)$ for Lebesgue almost all $t\in [0,\tau]$ for $\varepsilon>\frac{1}{12}$, then there exists an estimator $\hat{p}_n(t\mid x)$ of $p(t\mid x) = P'(t\mid x)$ such that

$$\|\hat{p}_n - p\|_{\mu_0 \otimes m} = o_P(n^{-\frac{1}{4}}). \tag{2}$$

The estimator $\hat{p}_n(t\mid x)$ fulfills on a grid $0=t_1<\ldots< t_{K_n}=\tau$ with some mesh $b(n)=\max_{1\leq k\leq K_n}(t_k-t_{k-1})\to 0$ as $n\to\infty$ and $K_n\to\infty$ as $n\to\infty$ determined by ε such

$$\int_0^{t_k} \hat{p}_n(s \mid x) ds = \hat{P}_n(t_k \mid x). \tag{3}$$

Proof: Consider a partition $0=t_1<\ldots< t_{K_n}=t$ of [0,t] with mesh $b(K_n)=\max_{1\leq k\leq K_n}(t_k-t_{k-1})$. Choose $x_1>0$ and $x_2<0$ such that $0< x_1<\frac{3}{4}\varepsilon-\frac{1}{16}$ and $2(x_1-\varepsilon)< x_2<-\frac{2}{3}\varepsilon-\frac{1}{6}<0$. Here, we will let $K_n=\lfloor n^{x_1} \rceil$ and $b(K_n)=\lfloor n^{x_2} \rceil$. Then $K_n\to\infty$ as $n\to\infty$ because $\varepsilon>\frac{1}{12}$ and $b(K_n)\to0$ as $n\to\infty$ because $\varepsilon>0$. We will show the

theorem by constructing an explicit estimator $\hat{p}_n(t\mid x)$ by approximating the derivative via a secant. Let

$$\hat{p}_n(t\mid x) = \sum_{k=1}^{K_n} \mathbb{1}\{t\in(t_k,t_{k+1}]\} \frac{\hat{P}_n(t_{k+1}\mid x) - \hat{P}_n(t_k\mid x)}{t_{k+1} - t_k} \tag{4}$$

Then evidently, we have

$$\int_0^{t_k} \hat{p}_n(s\mid x) ds = \sum_{i=1}^{k-1} \frac{\hat{P}_n(t_{k+1}\mid x) - \hat{P}_n(t_k\mid x)}{t_{k+1} - t_k} (t_{k+1} - t_k) = \hat{P}_n(t_k\mid x). \tag{5}$$

Furthermore, let

$$\tilde{p}_n(t\mid x) = \sum_{k=1}^{K_n} \mathbb{1}\big\{t \in \big(t_k, t_{k+1}\big]\big\} \frac{P(t_{k+1}\mid x) - P(t_k\mid x)}{t_{k+1} - t_k}. \tag{6}$$

By the triangle inequality, we have

$$\left\|\hat{p}_n - p\right\|_{\mu_0 \otimes m} \leq \left\|\hat{p}_n - \tilde{p}_n\right\|_{\mu_0 \otimes m} + \left\|\tilde{p}_n - p\right\|_{\mu_0 \otimes m}. \tag{7}$$

We start with the first term on the right-hand side.

$$\begin{split} \|\hat{p}_{n} - \tilde{p}_{n}\|_{\mu_{0} \otimes m} &= \left\| \sum_{k=1}^{K_{n}} \mathbb{1}\{\cdot \in (t_{k}, t_{k+1}]\} \frac{\left(\hat{P}_{n}(t_{k+1} \mid \cdot) - P(t_{k+1} \mid \cdot)\right) - \left(\hat{P}_{n}(t_{k} \mid \cdot) - P(t_{k} \mid \cdot)\right)}{t_{k+1} - t_{k}} \right\|_{\mu_{0} \otimes m} \\ &\leq \sum_{k=1}^{K_{n}} \left\| \mathbb{1}\{\cdot \in (t_{k}, t_{k+1}]\} \frac{\hat{P}_{n}(t_{k+1} \mid \cdot) - P(t_{k+1} \mid \cdot) - \left(\hat{P}_{n}(t_{k} \mid \cdot) - P(t_{k} \mid \cdot)\right)}{t_{k+1} - t_{k}} \right\|_{\mu_{0} \otimes m} \\ &\leq \sum_{k=1}^{K_{n}} \frac{1}{\sqrt{t_{k+1} - t_{k}}} \left(\left\|\hat{P}_{n}(t_{k+1} \mid \cdot) - P(t_{k+1} \mid \cdot)\right\|_{\mu_{0}} + \left\|\hat{P}_{n}(t_{k} \mid \cdot) - P(t_{k} \mid \cdot)\right\|_{\mu_{0}} \right) \\ &= o\left(n^{x_{1} - \frac{1}{2}x_{2}}\right) o_{P}\left(n^{-\frac{1}{4} - \varepsilon}\right) = o_{P}\left(n^{\varepsilon - \frac{1}{4} - \varepsilon}\right) = o_{P}\left(n^{-\frac{1}{4}}\right). \end{split}$$

There exists by the mean value theorem a $\xi_{k,x} \in (t_k,t_{k+1})$ such that $\frac{P(t_{k+1}\mid x)-P(t_k\mid x)}{t_{k+1}-t_k} = p\left(\xi_{k,x}\mid x\right)$ for μ_0 -almost all x. Furthermore, there exists also a $\xi'_{k,t,x}$ between t and $\xi_{k,x}$ such that $p(t\mid x)-p\left(\xi_{k,x}\mid x\right)=\left(t-\xi_{k,x}\right)p'\left(\xi'_{k,t,x}\mid x\right)$. This implies that we can bound the second term on the right-hand side as

$$\begin{split} \|\tilde{p}_{n} - p\|_{\mu_{0} \otimes m} &= \left\| \sum_{k=1}^{K_{n}} \mathbb{1}\{\cdot \in (t_{k}, t_{k+1}]\} p(\xi_{k, \cdot} | \cdot) - p(\cdot | \cdot) \right\|_{\mu_{0} \otimes m} \\ &= \left\| \sum_{k=1}^{K_{n}} \mathbb{1}\{\cdot \in (t_{k}, t_{k+1}]\} (p(\xi_{k, \cdot} | \cdot) - p(\cdot | \cdot)) \right\|_{\mu_{0} \otimes m} \\ &= \left\| \sum_{k=1}^{K_{n}} \mathbb{1}\{\cdot \in (t_{k}, t_{k+1}]\} (\cdot - \xi_{k, \cdot}) p'(\xi'_{k, \cdot, \cdot} | \cdot) \right\|_{\mu_{0} \otimes m} \\ &\leq K \sum_{k=1}^{K_{n}} (t_{k+1} - t_{k}) \sqrt{t_{k+1} - t_{k}} \\ &= K \sum_{k=1}^{K_{n}} (b(k))^{\frac{3}{2}} = o(n^{x_{1} + \frac{3}{2}x_{2}}) = o(n^{-\frac{1}{4}}). \end{split}$$

so that we have

$$\|\hat{p}_n - p\|_{\mu_0 \otimes m} = o_P\left(n^{-\frac{1}{4}}\right). \tag{10}$$