Notes

April 9, 2014

lesson 21

$$u = T(t)X(x)$$
 give $\frac{T''}{-T} = \frac{X''''}{X} = \lambda$

u=T(t)X(x) give $\frac{T''}{-T}=\frac{X''''}{X}=\lambda$ assume $\lambda>0$ ($\lambda\leq 0$ can be eliminated by using bc) Have $X''''-\omega^2X=0$ with characteristic roots $\pm\sqrt{\omega},\pm i\sqrt{\omega}$ and solutions:

$$= C\cos(\sqrt{\omega}x) + D\sin(\sqrt{\omega}x) + E\cosh(\sqrt{\omega}x + F\sinh(\sqrt{\omega}x))$$

$$X'' = \omega(-C\cos(\sqrt{\omega}x) - D\sin(\sqrt{\omega}x) + E\cosh(\sqrt{\omega}x + F\sinh(\sqrt{\omega}x))$$

$$x = 0 \to C = E = 0$$

$$x = 0 \to C = E = 0$$

$$x = 1 \to \begin{cases} D\sin(\sqrt{\omega}) + F\sinh(\sqrt{\omega}) = 0 \\ \omega(-D\sin(\sqrt{\omega}) + F\sinh(\sqrt{\omega})) = 0 \end{cases}$$

$$2F\sinh(\sqrt{\omega}) = 0 \implies F = 0$$

$$2D\sin(\sqrt{\omega}) = 0 \implies \text{nontrivial when } \sin(\sqrt{\omega}) = 0$$

$$2D\sin(\sqrt{\omega}) = 0 \implies \text{nontrivial when } \sin(\sqrt{\omega}) = 0$$

$$2D\sin(\sqrt{\omega}) = 0 \implies \text{nontrivial when } \sin(\sqrt{\omega}) = 0$$

Have $X_n(x) = \sin(n\pi x)$ for n = 1, 2, 3, ...

$$\frac{{T_n}''}{-T_n} = \omega_n^2 = (n\pi)^4$$

$$T_n'' + (n\pi)^4 T_n = 0$$

$$\cos((n\pi)^2 t), \sin((n\pi)^2 t)$$

Have $T_n X_n = a_n \sin((n\pi)^2 t) + b_n \cos((n\pi)^2 t)$ frequencies $\frac{n^2}{2}\pi$, $n = 1, 2, 3, \dots$ for pde and bc at t = 0

$$u(x,0) = f(x) = \sum_{n=1}^{\infty} b_n \sin(n\pi x) \to \text{use orthogonality}$$

 $u_t(x,0) = g(x) = \sum_{n=1}^{\infty} a_n (n\pi)^2 \sin(n\pi x)$

he will give us a homework problem that will look like this

BC IC

hopefully the previous problem will help us work out the homework problem

lesson 22

dimensional analysis

object moving through a fluid (air). question: frictional force actin on the object. expect the force to be related to velocity V. want drag force F_D in terms of V velocity of object. A is "characteristic" area associated with object (analysis should hold for similar objects). ρ is fluid density

$$F_D$$
 units $\left[rac{ ext{mass} \cdot ext{length}}{ ext{time}^2}
ight]$
 V units $\left[rac{ ext{length}}{ ext{time}}
ight]$
 A units $\left[ext{length}^2
ight]$
 ho units $\left[rac{ ext{mass}}{ ext{length}^3}
ight]$

we are looking for a dimensionless combination

$$\begin{split} \frac{F_D}{\rho} \text{ units } \left[\frac{\text{length}^4}{\text{time}^2}\right] \\ \frac{F_D}{\rho V^2} \text{ units } \left[\text{length}^2\right] \\ \frac{F_D}{\rho A V^2} = \text{dimensionless} \end{split}$$

 $F_D = C_D \cdot \rho A V^2$ where C_D is dimensionless constant to be measured by experiment

 V^2 -law for drag