

class: middle, inverse

Week 3: Quarto & Plotting

m EMSE 6035: Marketing Analytics for Design Decisions

2 John Paul Helveston

September 13, 2023

Week 3: Quarto & Plotting

m EMSE 6035: Marketing Analytics for Design Decisions

Week 3: Quarto & Plotting

1. Intro to Quarto

QUIZ 1

- 2. Intro to ggplot2
- 3. Project attributes & levels

Week 3: Quarto & Plotting

1. Intro to Quarto

QUIZ 1

- 2. Intro to ggplot2
- 3. Project attributes & levels

"Literate programming"

Treat programs as a "literature" understandable to **human beings**

Donald E. Knuth

Quick demo

- 1. Open quarto_demo.qmd
- 2. Click "Render"

Anatomy of a .qmd file

Header

Markdown text

R code

Define overall document options in header

Basic html page

```
title: Your title
author: Author name
format: html
---
```

Add table of contents, change theme

```
title: Your title
author: Author name
toc: true
format:
  html:
  theme: united
---
```

More on themes at

https://quarto.org/docs/outputformats/html-themes.html

Render to multiple outputs

PDF uses LaTeX

--title: Your title author: Author name format: pdf ---

If you don't have LaTeX on your computer, install tinytex in R:

```
tinytex::install_tinytex()
```

Microsoft Word

```
---
title: Your title
author: Author name
format: docx
---
```

Anatomy of a .qmd file

Header

Markdown text

R code

Right now, bookmark this!

https://commonmark.org/help/

(When you have 10 minutes, do this! $\frac{1}{2}$)

https://commonmark.org/help/tutorial/

Headers

```
# HEADER 1

## HEADER 2

### HEADER 3

#### HEADER 4

##### HEADER 5

###### HEADER 6
```

HEADER 1

HEADER 2

HEADER 3

HEADER 4

HEADER 5

HEADER 6

Basic Text Formatting

Type this...

- normal text
- _italic text_
- *italic text*
- **bold text**
- ***bold italic text***
- ~~strikethrough~~
- `code text`

..to get this

- normal text
- italic text
- italic text
- bold text
- bold italic text
- strikethrough
- code text

Lists

Bullet list:

- first item
- second item
- third item
- first item
- second item
- third item

Numbered list:

- 1. first item
- 2. second item
- 3. third item
- 1. first item
- 2. second item
- 3. third item

Links

Simple **url link** to another site:

```
[Download R](http://www.r-project.org/)
```

Download R

Don't want to use Markdown?

Use Visual Mode!

Anatomy of a .qmd file

Header (think of this as the "settings")

Markdown text

R code

R Code

Inline code

Code chunks

`r insert code here`

```
```{r}
insert code here
insert more code here
```
```

Inline R code

```
The sum of 3 and 4 is r 3 + 4
```

Produces this:

The sum of 3 and 4 is 7

R Code chunks

This code chunk...

```
```{r}
library(palmerpenguins)
head(penguins)
```
```

...will produce this when compiled:

```
library(palmerpenguins)
head(penguins)
```

```
#> # A tibble: 6 × 8
                      bill length mm
#> species island
bill_depth_mm flipper_length_mm
body_mass_g sex     year
#> <fct> <fct>
                               <dbl>
<dbl>
                 <int>
                             <int> <fct>
<int>
#> 1 Adelie Torgersen
                                39.1
18.7
                  181
                             3750 male
2007
#> 2 Adelie Torgersen
                                39.5
17.4
                  186
                             3800 female
2007
#> 3 Adalia Torgarcan
```

Chunk options

Control what chunks output using options

All options here

| option | default | effect |
|------------|----------|---|
| eval | TRUE | Whether to evaluate the code and include its results |
| echo | TRUE | Whether to display code along with its results |
| warning | TRUE | Whether to display warnings |
| error | FALSE | Whether to display errors |
| message | TRUE | Whether to display messages |
| tidy | FALSE | Whether to reformat code in a tidy way when displaying it |
| results | "markup" | "markup", "asis", "hold", or "hide" |
| cache | FALSE | Whether to cache results for future renders |
| comment | "##" | Comment character to preface results with |
| fig.width | 7 | Width in inches for plots created in chunk |
| fig.height | 7 | Height in inches for plots created in chunk |

Chunk output options

By default, code chunks print code + output

```
'``{r}
#| echo: false
cat('hello world!')
```
```

```
```{r}
#| eval: false
cat('hello world!')
```
```

```
```{r}
#| include: false
cat('hello world!')
```
```

Prints only **output** (doesn't show code)

Prints only **code** (doesn't run the code)

Runs, but doesn't print anything

```
#> hello world!
```

```
cat('hello world!')
```

## message / warning



## message / warning

Drop messages and warnings in chunk settings

```
```{r}
#| message: false
#| warning: false
library(tidyverse)
```
```

## A global setup chunk 🜍

```
```{r}
  label: setup
  include: false
knitr::opts_chunk$set(
    warning = FALSE,
    message = FALSE,
    fig.path = "figs/",
    fig.width = 7.252,
    fig.height = 4,
    comment = "#>",
    fig.retina = 3
, , ,
```

- Typically the first chunk
- All following chunks will use these options (i.e., sets global chunk options)
- You can (and should) use individual chunk options too
- Often where I load libraries, etc.

Your turn

- 1) Open the bears qmd file, and title it "Bears Analysis"
- 2) Create a "setup" code chunk to read in the bear_killings.csv data file (HINT: You might want to look back at the quarto_demo.qmd file!).
- 3) Use text and code to find answers each of the following questions show your code and results to justify each answer:
 - Which months have the highest frequency of bear killings?
 - Who has been killed more often by bears: hunters or hikers?
 - How do the the number of bear attacks on men vs women compare?

HINT: Use bears %>% count(variable) to count how many rows are in the data for each unique value of variable

Quiz 1

Download the template from the #class channel

Make sure you unzip it!

When done, submit your quiz1 qmd on Blackboard

10:00

Week 3: Quarto & Plotting

1. Intro to Quarto

QUIZ 1

- 2. Intro to ggplot2
- 3. Project attributes & levels

MAKING A GRAPH WITH GGPLOT2 Customise the look of your plot with themes (pre-made or your own!): + theme bw() Heavy birds have longer wings Add labels and titles: + labs(x = "Body weight (g)", y = "Wingspan (cm)", title = "Heavy birds have longer wings") Specify the type of graph and the variables to use: + geom_point(aes(x = body,weight, y = wingspan)) Plot the device containing your data: ggplot(data = birds) Heavy birds have longer wings Body weight (g)

"Grammar of Graphics"

Concept developed by Leland Wilkinson (1999)

ggplot2 package developed by Hadley Wickham (2005)

Making plot layers with ggplot2

- 1. The data
- 2. The aesthetic mapping (what goes on the axes?)
- 3. The geometries (points? bars? etc.)
- 4. The annotations / labels
- 5. The theme

Layer 1: The data

head(mpg)

```
#> # A tibble: 6 × 11
     manufacturer model displ year
                                        cyl trans
                                                       drv
                                                                cty
                                                                      hwy fl
                                                                                 class
#>
     <chr>
                   <chr> <dbl> <int> <int> <chr>
                                                        <chr> <int> <int> <chr>
                                                                                 <chr>
#> 1 audi
                           1.8
                                1999
                                          4 auto(15)
                                                                 18
                                                                        29
                   a4
                                                                                 compact
                                1999
                                          4 manual(m5) f
                                                                        29
#> 2 audi
                   a4
                           1.8
                                                                                 compact
                                          4 manual(m6) f
#> 3 audi
                   a4
                                2008
                                                                 20
                                                                        31 p
                                                                                 compact
                                          4 auto(av)
  4 audi
                   a4
                                2008
                                                                 21
                                                                        30
                                                                                 compact
                                          6 auto(15)
                                1999
                                                                        26 p
#> 5 audi
                   a4
                           2.8
                                                                 16
                                                                                 compact
                                1999
                                          6 manual(m5) f
                                                                        26 p
#> 6 audi
                           2.8
                                                                 18
                                                                                 compact
                   a4
```

Layer 1: The data

The ggplot() function initializes the plot with whatever data you're using

```
mpg %>%
ggplot()
```

Layer 2: The aesthetic mapping

The aes () function determines which variables will be *mapped* to the geometries (e.g. the axes)

```
mpg %>%
  ggplot(aes(x = displ, y = hwy))
```


Layer 3: The geometries

Use + to add geometries, e.g. geom_points() for points

```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point()
```


Layer 4: The annotations / labels

Use labs() to modify most labels

```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point() +
  labs(
    x = "Engine displacement (liters)",
    y = "Highway fuel economy (mpg)",
    title = "Most larger engine vehicles
are less fuel efficient"
  )
```


Layer 5: The theme

```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point() +
  labs(
    x = "Engine displacement (liters)",
    y = "Highway fuel economy (mpg)",
    title = "Most larger engine vehicles
are less fuel efficient"
  ) +
  theme_bw()
```


Common themes

theme_bw()

```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point() +
  theme_bw()
```

20 - 2 3 4 5 6 7

theme_minimal()

```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point() +
  theme_minimal()
```


Common themes

theme_classic()

```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point() +
  theme_classic()
```

20-20-20 displ

theme_void()

```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point() +
  theme_void()
```


Other themes: hrbrthemes

```
remotes::install_github("hrbrmstr/hrbrthemes")
```

```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point() +
  hrbrthemes::theme_ipsum()
```

```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point() +
  hrbrthemes::theme_ft_rc()
```


Other themes: ggthemes

```
install.packages('ggthemes', dependencies = TRUE)
```

```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point() +
  ggthemes::theme_economist()
```

```
mpg %>%
  ggplot(aes(x = displ, y = hwy)) +
  geom_point() +
  ggthemes::theme_economist_white()
```


More practice Open ggplot2 qmd

Your turn

Open practice.qmd

Use the mpg data frame and ggplot to create these charts

Extra practice

Week 3: Quarto & Plotting

1. Intro to Quarto

QUIZ 1

- 2. Intro to ggplot2
- 3. Project attributes & levels

Model Relationships Table (example)

		Features			Competitors	
		Range	Units	Demand	Aims Solar Panel	SUAOKI Solar Charger
Product Attributes	Price	\$60 - \$225	USD / kW	-	225	160
	Weight	1 - 3	kg	-	2.6	2.06
	Power Output	100 - 500	W	+	120	60
	Durability	12 - 60	months	+	60	12
	Portability	200 - 2800	cm^3	+	20.6"x11"x 1.2"	11.5"x7.1"x2.9"

Start defining attribute levels

Defining attribute levels

Continuous

• **Price**: 1, 2, 3, 4, 5 (\$)

• Power Output: 60, 80, 120 (Watts)

Discrete

• Color: Red, Blue, Yellow

• Material: Plastic, Aluminum, Glass

- Look at competitors
- Search web for values that cover the full set of values available today (and maybe some into the future)