Übungsblatt 13 zur Algebra I

Abgabe bis 15. Juli 2013, 17:00 Uhr

Aufgabe 2. Fermatsche und Mersennesche Primzahlen

- a) Zeige für alle natürlichen Zahlen $n \geq 0$: $F_{n+1} = 2 + F_n F_{n-1} \cdots F_0$.
- b) Zeige, dass F_m und F_n für $m \neq n$ teilerfremd sind. Folgere daraus, dass es unendlich viele Primzahlen gibt.
- c) Eine Mersennesche Zahl ist eine Zahl der Form $M_n = 2^n 1$. Zeige, dass M_n höchstens dann eine Primzahl ist, wenn n eine Primzahl ist.
- d) Zeige allgemeiner, dass M_n von M_d geteilt wird, wenn d ein positiver Teiler von n ist.

Lösung.

a) Wir zeigen: Ist n eine zusammengesetzte Zahl, so auch M_n . Sei dazu $n = a \cdot b$ eine Zerlegung mit $a, b \geq 2$. Dann folgt

$$M_n = 2^n - 1 = 2^{ab} - 1 = (2^a)^b - 1$$

= $(2^a - 1) \cdot (1 + 2^a + (2^a)^2 + \dots + (2^a)^{b-1}).$

Da $a, b \ge 2$, folgt $2^a - 1 \ge 2^2 - 1 = 3$ und (hinterer Faktor) $\ge 1 + 2^a \ge 1 + 2^2 = 5$, also ist diese Zerlegung von M_n eine echte und M_n somit zusammengesetzt.

Bemerkung: Man hatte eine Zahl lang vermutet, dass alle Mersenneschen Zahlen Primzahlen sind. Das stimmt aber nicht, etwa ist $M_{11} = 2047 = 23 \cdot 89$ keine Primzahl. Tatsächlich sind die Primzahlen unter den Mersenneschen Zahlen recht dünn gesäht.

b) Gelte $n = d \cdot \ell$. Dann folgt völlig analog (sogar identisch!)

$$M_n = 2^n - 1 = 2^{d\ell} - 1 = (2^d)^{\ell} - 1$$

= $(2^d - 1) \cdot (1 + 2^d + (2^d)^2 + \dots + (2^d)^{\ell-1}),$

also ist $M_d = 2^d - 1$ ein Teiler von M_n .