```
1, ring_scan
2, C_{\ell} and \Gamma_{m}
2.1 \Gamma_{m} from theory
2.2 Cosmic variance of \Gamma_{m}
2.3 \Gamma_{m} from scanning data
3, Appendix
```

1, ring_scan

The code for circular scan is in scan_ring.py, one can get the pixel index of the scan track after running the code by (shown in fig1)

```
1 python scan_ring.py
```

and save it as pix_theta_x_deg .

```
pix = hp.ang2pix(nside=nside, theta=ra, phi=dec, lonlat=True)
np.save('pix_theta_'+str(st.theta)+'_deg', pix)
```


(fig 1, An example of trace of the ring scanning)

$2, C_\ell$ and Γ_m

2.1 Γ_m from theory

For C_{ℓ} from theory (e.g., by running CAMB), Γ_m can be given by

$$\Gamma_m = \sum_{\ell=|m|}^{\infty} C_{\ell} B_{\ell}^2 \mathcal{P}_{\ell m}^2(\theta_0)$$

$$= M_{m \times \ell} C_{\ell}$$
(1)

where B_ℓ is beam function and $\mathcal{P}_{\ell m}(\theta_0) = (-1)^m \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_\ell^m(\cos\theta_0)$, P_ℓ^m is Legendre polynomial , θ_0 is elevation angle. As

 $M_{m imes \ell}$ could be a singular matrix , when computing Γ_m from C_ℓ , bin matrix B is introduced:

$$C_{\ell} \simeq B(MB)^{-1}\Gamma_{m}. \tag{2}$$

Bin_size for i^{th} element is defined as :

$$b_i = round(a \times b^i), \tag{3}$$

where \boldsymbol{a} and \boldsymbol{b} are two free parameters.

By running Cl_Gamma_theory.py, we have fig 2 and fig3

 $C_{\ell}to\Gamma_{m}$

fig2 Γ_m from C_ℓ

fig3 D_{ℓ} from CAMB(blue) and by reversing Γ_m (dotted-line, after bin)

2.2 Cosmic variance of Γ_m

$$\Delta\Gamma_m = M_{m \times \ell} \Delta C_{\ell} = M_{m \times \ell} \sqrt{\frac{2}{2\ell + 1}} C_{\ell}. \tag{4}$$

fig4 Cosmic variance of $\emph{\textbf{C}}_{\emph{\ell}}$

fig5 Cosmic variance of Γ_m

2.3 Γ_m from scanning data

There are two ways to get TOD (time-ordered data) for ring scanning.

Way 1: Read data along the latitude. Since Healpy sorts pixels from top to bottom when pixelating, a simple way to read the TOD of CMB is along the latitude of the coordinate system (shown in fig6). (It can be considered as coordinate transformation of the scanning track).

After reading rings from multiple simulated CMB maps, Γ_m can be calculated by Fourier transform of TODs and C_ℓ can be calculated from Γ_m .

fig6, Read data along the latitude in the map (e.g., 45 deg)

After running Cl_Gamma_along_latitude_scan.py , we can get fig 7 and fig 8 (Only 50 rings are considered here, for more precise, one can run more rings)

fig 7, $\pmb{\Gamma_{\textit{m}}}$ from ring data (blue) and $\textit{\textbf{C}}_{\textit{\textbf{\ell}}}$ (red)

fig 8, $\emph{\textbf{D}}_{\emph{\textbf{l}}}$ from CAMB (blue) and $\emph{\textbf{\Gamma}}_{\emph{\textbf{m}}}$ (dotted-line)

Way 2: For real ring scanning: Since there is only one universe, which means we only have one CMB map. To be more realistic, the ring scanning is from scan strategy in the horizontal coordinate system (as shown in fig1), and the index of the trace can be obtained by running scan_ring.py (In the case, Nside need to be higher for accuracy because of the limitation of pixel numbers by Healpy, e.g., Nside=4096). After getting the TODs of CMB by scanning map, C_{ℓ} can be calculated from Γ_{m} by running C1_Gamma_from_real_scan.py

3, Appendix

Although the above description is for temperature, the codes also can be used for polarization, but change I to Q and U.