In the Claims:

12

13

14

15

Please add new claims 31-36, and amend the pending claims as follows:

Claim 3, line 2, delete "or 2".

1	Claim 8	(Amended)	A method	for /	the	formation	of	an embedded
2	electroconductive layer, co	omprising the s	eps of:					
_			_	./				

forming an opening part or a depressed part in an insulating layer;

forming a barrier layer for covering one of said opening part [or] and said depressed part, said barrier layer being formed of a material selected from the group consisting of TiSiN, WN, TaN, TiN, and Al₂O₃;

forming on said barrier layer a growth promoting [TiN] layer containing oxygen at a lower concentration than said barrier layer;

depositing [aCu] an electroconductive layer on and in contact with said growth promoting [TiN] layer by the use of a chemical vapor [growth] deposition method and embedding said electroconductive [Cu]layer in one of said opening part [or] and said depressed part; and

removing the unwanted parts of said barrier layer, said growth promoting [TiN] layer [of a low oxygen concentration], and said electroconductive [Cu] layer [by chemical mechanical polishing].

		Claim 10, line 1, delete "9" and insert8				
		Claim 12, line 2 delete "Ti" and insertTiN				
	1	Claim 15 (Amended) The method according to claim 8, wherein said				
	2	growth promoting [TiN] layer containing oxygen at a lower concentration than said barrier				
	3	layer is deposited by a chemical vapor [growth] deposition method.				
b						
ς,	1	Claim 16 (Amended) The method according to claim 8, wherein said				
	2	growth promoting [TiN] layer containing oxygen at a lower concentration than said barrier				
	3	layer is deposited by a collimation sputtering method or long throw sputtering method				
		interposing an interval of not less than 10 cm between a target and a substrate under				
	5	treatment.				
	i					
		Claim 31 (New) The method according to claim 8, wherein said step of				
		removing the unwanted parts is conducted using a chemical mechanical polishing method.				
λ	·=0					
)	1	Claim 32 (New) The method according to claim 8, wherein said growth				
	2	promoting layer is made of TiN.				
	1	Claim 33 (New) The method according to claim 8, wherein said				
	2	electroconductive layer is made of a material selected from the group of Cu, Al and Al alloy.				
		•				

1	claim 51 (110W) 11 method for jile formation of an embedded			
2	electroconductive layer, comprising the steps of:			
3	forming an opening part or a depressed part in an insulating layer;			
4	forming a barrier layer for covering said opening part or said depressed part			
5	by the use of a physical vapor deposition method;			
1 6	forming on said barrier layer a growth promoting layer by the use of a chemical			
7	vapor deposition method;			
8	depositing said electroconductive layer on said growth promoting layer to			
9	embed said electroconductive layer in said opening part or said depressed part; and			
0	removing the unwanted parts of said barrier layer, said growth promoting layer			
	of a lower oxygen concentration, and aid electroconductive layer.			
	Claim 34 (New) A method for the formation of an embedded			
2	electroconductive layer, comprising the steps of:			
3	forming an opening part or a depressed part in an insulating layer;			
4	forming a barrier layer for covering said opening part or said depressed part			
5	by the use of a physical vapor deposition method, said barrier layer being formed of a			
6	material selected from the group consisting of TiSiN, WN, TaN, TiN, and Al ₂ O ₃ ;			

7	forming on said barrier layer a growth promoting layer by the use of a chemical
8	vapor deposition method;
9	depositing said electroconductive layer on said growth promoting layer to
i 10	embed said electroconductive layer in said opening part or said depressed part; and
11	removing the unwanted parts of said barrier layer, said growth promoting layer
12	of a lower oxygen concentration, and said electroconductive layer.
	76
\mathcal{Y}_1	Claim 35 (New) A method for the formation of an embedded
2	electroconductive layer, comprising the steps of:
Chillen Alt. D. II GII FAII	forming at least one of an opening part and a depressed part in an insulating
4	layer;
5	forming a barrier layer for covering said at least one opening part and
6	depressed part, said barrier layer being formed of a material selected from the group
7	consisting of TiSiN, WN, TaN, TiN, and Al ₂ O ₃ ;
8	forming on said barrier layer a growth promoting layer containing oxygen at
9	a lower concentration than said barrier layer;
10	depositing said electroconductive layer on and in contact with said growth
11	promoting layer and embedding said electroconductive layer in said at least one opening part
12	and dangers and

of a lower oxygen concentration, and said electroconductive layer.

13