

What affects home insurance premiums?

By: Sydney Marino STA 9890





# Our Foundation The Data

#### **Raw Data**

N = 256,136

P = 65 Predictors

Target Variable = Last\_Ann\_Prem\_Gross



#### Source:

https://www.kaggle.com/ycanario/home-insurance#home insurance.csv



## **Reasons for Removing**

- 1. Predictor value would be known after the fact
- 2. Does not add additional info
- 3. Not enough data



## **Cleaning Data**

- 1. Removed rows that were incomplete
- 2. Binarized categorical data
- 3. Condensing Features
- 4. Standardizing Numeric Features



#### **Final Dataset**

N = 133,201

P = 44 Features (68 with Binarized)

Target Variable = Last\_Ann\_Prem\_Gross (Numeric)

Shape: Gaussian (After standardizing)



First Floor: Models and R Values





### 4 Models

1. Lasso  $\alpha = 0$ 

2. Ridge  $\alpha = 1$ 

3. Elastic  $\alpha = .5$ 

4. Random Forest Ntree = 25 Mtry = p/3





### **First Floor: CV Curve**



## **Summary**

Larger  $\lambda$  -> Higher Penalty

Lasso  $\rightarrow$  Highest  $\lambda$  Means More Variables Eliminated

Ridge and Elastic  $\rightarrow$  Lowest  $\lambda$ , very close to 0, keeps most features





 $\lambda = .0008868418$ 

#### **Second Floor: Residuals**







Lasso, Ridge, Elastic – Show a slightly decreasing line

RF – Shows a slightly increasing line



## **Second Floor: Feature Importance**



### **Most Important Var**

Lasso, Ridge, Elastic: HomeAgeCat102\_to\_104

**RF: Bedrooms** 





RF places importance on more variables than other modeling

At least 5 Variables considered important compared to others



## **Roof: Summary**

| Model         | Perf Time      | Comments                                                                                                                                                                                                  |
|---------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lasso         | 5 Mins or Less | <ul> <li>Best model compared to Elastic and Ridge</li> <li>Highest lambda compared to Elastic and Ridge – keeps more vars</li> <li>Residual Plot similar to Elastic and Ridge</li> </ul>                  |
| Elastic       | 5 Mins or Less | <ul> <li>Elastic and Ridge were practically the same</li> <li>Worst models</li> <li>Residual plot is decreasing linear, may want to do a first order regression instead of Lasso/Elastic/Ridge</li> </ul> |
| Ridge         | 5 Mins or Less |                                                                                                                                                                                                           |
| Random Forest | 1 Day          | <ul> <li>Very strenuous in computing power</li> <li>Favors more variables</li> <li>Most likely overfitted</li> <li>Better residual plot than others</li> </ul>                                            |

#### **Recommendation:**

- Research into boosted model, may work better
- Fit a first order linear regression, may perform better than others
  - All of these models are not the best

