UNCLASSIFIED

AD NUMBER AD804735 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution: Further dissemination only as directed by Director, Supersonic Transport Development Federal Aviation Agency, Washington, DC 20553., 06 SEP 1966 or higher DoD authority. **AUTHORITY** FAA notice, 2 Jul 1973

FILE CUPY

PHASE III PROPOSAL

V4-B2707-4

SUPERSONIC TRANSPORT DIV

SEPTEMBER 6. 1966

HOTICES

When Government drawings, specifications, or other date are used for any purpose other than in connection with a definitely related Government procurement operation, the United Status Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

All distribution of this document is controlled. This document may be further distributed by any holder only with specific prior approval of:

Director of Supersonic Transport Development Federal Aviation Agency Washington, D. C. 20553

The distribution of this document is limited because it contains technology identifiable with items excluded from export by the Department of State (U. S. Export Control Act of 1949 as amended).

AIRPORT AND COMMUNITY NOISE PROGRAM,

PREPARED BY A. H. Sawkill APPROVED BY Himming L

Prepared for

FEDERAL AVIATION AGENCY

Office of Supersonic Transport Development Program

"THIS DOCUMENT CONTAINS SENSITIVE, COMPETITIVE, AND PROPRIETARY DATA, AND IS NOT TO SEE REPRODUCED OR MELEASED OUTSIDE OF YOUR ORGANIZATION OR USED FOR ANY PURPOSE OTHER THAN SUPERSONIC TRANSPORT EVALUATION WITHOUT THE WRITTEN PERMISSION OF SITHER THE PEDERAL AVIATION AGENCY, OFFICE OF SUPERSONIC TRANSPORT DEVELOPMENT, ATTENTION: 55-20, OR THE BORING COMPANY, SUPERSONIC TRANSPORT DEVISION, ATTENTION:

THE BOEING COMPANY SUPERSONIC TRANSPORT DIVISION

ISSUE NO.

JAN 1 3 1967

(402 097)

FOREWORD

ENGINE AND AIRPLANE PERFORMANCE DATA

The engine and airplane performance provided in the main body of this document is based on engine performance data received prior to 15 July 1966.

The RFP provides for firm technical engine data to be submitted on 8 August 1966. The predicted effect of this data is of interest to the readers of this document. Accordingly, an addendum summarizing the effect of the 8 August 1966 engine performance on the B-2707 SST has been inserted into the following documents:

V2-B2707-3	Aerodynamic Design Report
V2-B2707-12	Propulsion Report - Part A
V4-B2707-1	Operational Suitability Report
V4-B2707-4	Airport and Community Noise Program

The performance information contained in the Summary document, the Model Specification, and the Statement of Work is based upon the 8 August 1966 firm technical data.

CONTENTS

			Page
1.0	INTR	ODUCTION	1
2.0	B-27	07 NOISE CHARACTERISTICS	3
	2.1	TAKEOFF NOISE	4
	2.2	LANDING APPROACH	5 6
	2.3	GROUND OPERATIONS	6
	2.4	MAINTENANCE RUNUPS	6
3.0	SST I	engine noise characteristics	17
	3.1	UNSUPPRESSED ENGINE NOISE CHARACTERISTICS	17
	3.2	SUPPRESSED ENGINE NOISE CHARACTERISTICS	17
	3.3	ENGINE NOISE EXPOSURE CONTOURS	17
4.0	ENGI	NE NOISE SUPPRESSION DEVELOPMENT	23
	4.1	EXHAUST NOISE SUPPRESSION	23
	4.2	COMPRESSOR NOISE SUPPRESSION	25
	4.3	FAN NOISE SUPPRESSION	25
5.0	ACTI	VITIES PLAN	34
	5.1	NOISE SUPPRESSION DEVELOPMENT	34
	5.2		34
	5.3	SUBJECTIVE REACTION PROGRAM	35

1.0 INTRODUCTION

The Airport and Community Noise Program is called for by FAA Request for Proposal for Phase III of the SST Development Program. The Airport and Community Noise Program is part of Vol. IV, Systems Integration. The purpose of this document is:

- a. To present the airport and community noise characteristics of the B-2707 airplane with each of the offered engines installed.
- b. To present the airport and community noise characteristics of the B-2707 airplane with a Boeing jet suppressor installed on each of the offered engines.
- c. To present the Boeing predictions of the installed noise characteristics of the offered engines, together with the background and procedures used to arrive at these predictions. It will include a discussion of the effects of noise suppression devices on installed noise levels.
- d. To present an airport and community noise activities program, with detailed activities work plan tasks and schedules, to satisfy the RFP, Sec. 5-IV-A.2.d and e.

The excellent low-speed flight characteristics of the B-2707 together with the high thrust loading and noise suppression capabilities of the propulsion system, provide great flexibility to the operator in adapting to the various airport noise

restrictions. Specifically, the B-2707 will provide the flexibility to:

- a. Meet FAA objectives of 116PNdB at the airport and 105PNdB in the community during takeoff and climbout.
- b. Meet the FAA objective of 109PNdB in the community during landing approach.
- c. Maintain low noise levels during ramp and taxi operations.

Realizing the importance of further noise reductions Boeing is continuing an intensive research and development effort to provide more effective means of noise suppression. Some of the results of this program are covered in this document and a complete report on this work is included in Propulsion Report, V2-2707-13.

Additional airport and community noise discussions may be found in Aerodynamic Design Report, V2-B2707-3, Airplane Performance (GE), V2-B2707-4, Airplane Performance (P&WA), V2-B2707-5, and Operational Suitability, V4-B2707-1, in which operational techniques are integrated with engine noise characteristics, and in the Phase II-C study reports, Airport Compatibility Analysis, in which noise contours have been applied to specific airports. Noise alleviation by means of airplane design is discussed in System Engineering Report, V2-B2707-1.

2.0 B-2707 NOISE CHARACTERISTICS

The noise environment at the airport and the community during takeoff, departure, landing approach, ground operations, and maintenance has been predicted by combining GE4/J5P and P&WA JTF 17A-21B engine noise characteristics with the performance characteristics of the B-2707. The predicted noise characteristics of each engine have been based on two different

engine exhaust nozzle configurations: 1) The configuration offered by the engine contractor and 2) an advanced suppressor configuration to be made available by Boeing for the B-2707. In establishing the noise environment of the B-2707 Boeing has also included the inlet noise suppression achieved by use of the Boeing designed sonic inlet.

Table 2-A. Airport and Community Noise Levels with Engine Manufacturers Jet Suppression

TAKEOFF WEIGHT,	#EIGHT, -1,000 LB TEMP. TE	FIELD ALTITUDE,		NOISE, O	COMMUNITY NOISE, PNdB			
-1,000 LB			B-2707 P & WA	B-2707 (GE)	B-2707 P & WA	B-2707 (GE)		
	MAXIMUM AU	GMENTED TAKEOFF	· NOISE ABA	TEMENT CLIM	BOUT			
INTERNATIONAL 675	59°F	0	117.0	121.0	105.0	100.0		
675	86°F	0	116.5	120.5	112.0	107.0		
675	52°F	2,000	116.5	120.5	108.0	104.0		
675	45°F	4,000	120.0	112.5	108.0			
	*PART P	OWER TAKEOFF - N	DISE ABATEM	ENT CLIMBOL	IT			
DOMESTIC								
575	59°F	0	115.0	117.0	102.0	99.0		
575	86°F	0	114,5	116.5	107.0	105.0		
575	52°F	2,000	115.5	116.5	105.0	104.0		
575	45°F	4,000	114.0	116,0	108.0	108.0		

TAKEOFF WEIGHT	TEMP	FÆLD ALTITUDE	AIRPORT PN		COMMUNITY NOISE • PNdB			
-1,000 L8	,	FT	8-2707 (P&WA)	8-2/0/ (GE)	B-2707 (P&WA)	B-2707 (GE)		
Aut n	HAXIMUM AU	GHENTED TAKEOF	- NOISE AB	ATEMENT CLIN	BOUT			
INTERNATIONAL								
675	59*	0	113.0	112.0	103.5	98.0		
675	86°	0	112.5	111.5	110.0	105.0		
675	52° -∌	··· 2,000	112.5	111.5	106.0	- 102.0		
675	45°	4,000	112.0	111.0	. 111.0	106.0		
	*PART	OWER TAKEOFF -	HOISE ABATE	MENT CLIMBO	JT			
DOMESTIC								
575	59°	0	109.0	109.0	101.0	96.0		
575	86°	6	108.5	108.5	106.0	103.0		
575	52°	2,000	108.5	108.5	104.0	102.0		
575	45°	4,000	198.0	108.0	107.0	106.0		

2.1 TAKEOFF NOISE

The noise levels predicted for the airport and community during takeoff and climbout of the B-2707 International (675,000 lb gross weight) and the B-2707 Domestic (575,000 lb gross weight), for a number of airport altitudes and ambient temperature conditions are given in Table 2-A with the engine manufacturers nozzles and in Table 2-B for the Boeing suppressors. The community noise levels shown are based on a maximum augmented thrust takeoff with a thrust reduction that results in an unaccelerated rate of climb of 500 fpm at a point one statute mile beyond the departure end of the runway. The thrust reduction is smooth beginning several seconds before reaching the three mile point, thus achieving

the thrust required for 500 fpm rate of climb as the airplane passes over the three mile point. The resulting altitude and engine thrust requirement produce a noise level in the community at the three mile point of 100PNdB (GE Suppression) and 98PNdB (Boeing Suppression) for the B-2707 (GE) International airplane at 675,000 pounds takeoff gross weight and 105 PNdB (P&WA Sunpression) and 104 PNdB (Boeing Suppression) for the B-2707 (P&WA) International airplane at the same gross weight. The decrease in airport noise with increase in ambient temperature and airport altitude is the result of changes in two jet engine parameters: 1) jet velocity and 2) jet density. The increase in community noise with increase in ambient temperature and airport altitude is the result of changes in 1) engine jet

velocity and density and 2) reduced climb-out rate and therefore reduced altitude over the community.

0

The changes in airport and community noise levels as functions of takeoff power and airplane gross weight are shown in Figs. 2-1, and 2-2, for the airplane equipped with jet suppressors as provided by the engine manufacturer and in Figs. 2-3 and 2-4, for the airplane equipped with Boeing jet suppressors. The large reductions in both airport and the community noise levels afforded by the Boeing jet suppressor are readily apparent.

The noise exposure contours below and to the side of the airplane takeoff flight path resulting from standard noise abatement techniques on a standard day are presented in Figs. 2-5 through 2-12. The predicted noise levels are in units of both PNdB (Figs. 2-5 through 2-8) and PNdB seconds (Figs. 2-9 through 2-12). Units of PNdB are based on the maximum noise heard by the observer regardless of time or direction of the noise. Units of PNdB seconds are based on the maximum instantaneous PNL with correction factors for time

duration of the noise and for the presence of discrete frequency noise in the total noise spoctrum. The method used in calculating PNdB seconds is given in Ref 1. Use of a sonic inlet, and fan duct acoustic lining in the case of the turbofan engine, reduces the discrete frequency content of the noise; climbout at increased speed minimizes the effect of time duration. As a consequence, the noise exposure contours calculated in PNdB seconds are not appreciably different from noise contours calculated in PNdB directly under the flight path. However, sideline noise does increase when measured in PNdB seconds because of the correction factor for time duration. The predicted noise level contours (PNdB) for the B-2707 (GE) and B-2707 (P&WA) International airplanes equipped with Boeing suppressors arc presented in Figs. 2-13 and 2-14. The reduction in lateral spread of the noise as well as the absolute noise level is apparent.

2.2 LANDING APPROACH

Approach noise one mile from the end of the runway with the airplane flying a 3-deg glide slope ILS approach is tabulated in Table 2-C. For a

Table 2-C. Landing Noise Levels

	LANDING	COMMUNITY NOISE O, PNdB											
AIRPLANE	WEIGHT 1000 LB	SEA LEVEL 59°F	SEA LEVEL 86°F	2,000 FT ALT 52°F	4,000 FT ALT 45°F								
B-2707 (P&W)	* 420	111	112	112	113								
	** 420	115	116	116	117								
	* 400	111	112	112	113								
	** 400	115	116	116	117								
B-2707 (GE)	* 430	108	109	109	110								
	** 430	112	113	113	114								
	* 410	108	109	109	110								
	** 410	112	113	113	114								

* DECELERATING APPROACH

** CONSTANT SPEED

standard day at maximum landing weight, the PNL is predicted to be 112 PNdB and 115 PNdB for the P-2707 (GE) and B-2707 (P&WA) airplanes respectively. The use of a sonic inlet and treated duct lining lowers the PNL and reduces the annoyance factor commonly connected with the presence of pure tone (whins) in the landing noise spectrum. By scheduling a maximum nozzle throat area at landing the jet velocity is lowered, thus reducing the low frequency noise to a level where it will not be a problem.

The noise levels below and to the side of the airplane landing approach path for a 3 deg glide slope are shown in Figs. 2-15 through 2-18 for both airplanes. Noise contours in units of PNdB (Figs. 2-15 and 2-16) and PNdB seconds (Figs. 2-17 and 2-18) are shown. Because of the short time duration during landing approach fly-over, the maximum PNdB seconds noise level directly ander the flight path is less than the noise calculated in units of PNdB. Also shown, at two points in the community, are noise levels that would be experienced if the engines were not suppressed. Substantial improvement has been made through a pression not only in the maximum level but in the spread of noise to the side of the flight path.

2.3 Cround Operations

Noise savels resulting from ground operations near airport terminals (taxi, etc.) are comparable with those presently experienced with largo Jubsonic jet transport operations. Maximum PNL's along a line 100 ft distant from the sixplane's line of taxi will no endeed 1:2 PNois for either the

B-2707 (GE) or B-2707 (P&WA) sirplane (see Fig. 2-19). These low noise levels are the result of mear sonic conditions in the inlet, acoustic treatment in the fan discharge duct, and reduced jet velocities from the engine tailpipes. With variablearea inlets in the minimum-throat position, which is the normal case for ground operations, the engines' air demand for tax: thrust raises the inlet throat Mach number to about 0.8. Although this is below sonic flow, tests have shown that inlet noise is attenuated 10dB or more at these velocities (Par. 4.2 and Ref. 2). Jet velocities are low because of the open tallpipe concept used on both engines at reduced power. The taxi noise levels are based on a taxi thrust requirement of 3 percent of the gross weight of the airplane.

2.4 MAINTENANCE RUNUPS

It is expected that at some maintenance bases. ground-runup suppressors will be used for extended maintenance testing at high power. Ground runup suppressors offering 25dB noise reductions will be available. With their use, the maximum PNL that will be experienced at a distance of 1,500 ft from the engine during maximum augmentation will be 99 PNdB with the GE 4/J5P engine and 97 PNdB with the P&WA JTF17A-21B engine Maintenance personnel stationed at necessary positions near the airplane during such runups will not be subjected to overall sound pressure levels (SPL) in excess of 140dB nor to speech interference levels (SIL) above 130dB. A plot of the suppressed noise levels for both engines is shown in Fig. 2-20. The predicted spectra for 1,500 ft and for the near field are shown in Fig. 2-21.

B

18 Sept. 18

Figure 2—1. Airport — Community Noise To das B-2707 (GE)
With Engine Manufacturers Jes Suppression

Figure 2–2. Airport – Community Noise Trades B.—2707 (P&WA)
With Engine Manufacturers Jet Suppression

Figure 2-4. Airport - Community Noise Trades B-2707 (P&WA) with Boeing Jet Suppression

8

0

0

Carried St.

0

districts

QD W/ream

1

Figure 2-5. Perceived Noise Level Contours for Takeoff, B-2707 (GE) International Mission

Figure 2-6. Perceived Noise Level Contours for Takeoff B-2707 (P&WA) International Mission

Figure 2-7. Perceived Noise Contours for Teknoff, B-2707 (GE) Domestic Mission

Figure 2—8. Perceived Noise Level Contours for Takeoff B—2707 (P&WA) Demestic Mission

All information and production of the control of th

V4-B2707-4

APP NOW

0

THE SALE

Figure 2–11. Naise Contours for Takeoff, B–2707 (GE) Domestic Mission

Figure 2–12. Noise Exposure Contours for Takeoff, 8–2707 (P&WA) Domestic Mission

Figure 2-13. Perceived Noise Level Contours for Takeoff, B-2707 (GE)
International — Boeing! Jet Suppression

Figure 2-14. Perceived Noise Level Contours for Takeoff, B-2707 (P&WA)
International -- Boeing Jet Suppression

Figure 2-15. Perceived Hoise Level Contours for Landing Approach B-2707 (GE) International

Figure 2-16. Perceived Noise Level Contours for Landing Approach B-2707 (P&WA) Airplana

B100

Dines

U

Mary-Server

0

Figure 2–17. Noise Exposure Contours for Lending Approach, for B-2707 (GE) International

Figure 2—18. Noise Expasure Contours for Landing Approach
B-2707 (P&WA) International

Figure 2-19 Taxi Naise Levels

Figure 2-20. Ground Runup Noise Suppression

Figure 2-21. Effect Of Ground Runup Suppressor on Noise Sp

3.0 SST ENGINE NOISE CHARACTERISTICS

3.1 UNSUPPRESSED ENGINE NOISE CHARACTERISTICS

Manage

a de la composition della comp

经主题

The unsuppressed noise levels predicted for the GE 4/J5P and the P&WA JTF17A-21B engines are presented in Figs. 3-1 and 3-2 for points directly beneath the flight path as a function of inflight thrust setting. Also shown are the predicted suppressed noise levels discussed in Par. 2.2. Two altitudes are shown. The 400-ft altitude is a direct result of applying the SAE noise prediction procedures. The 1,500-ft altitude noise data allows interpolation of noise levels at other flight altitudes.

Figures 3-3 and 3-4 show ground noise for points 1,500 ft to the side of the runway as a function of ground thrust setting. Tables 3-A and 3-B show noise spectra predicted for seven specific engine operations: 1) maximum augmentation, 2) maximum dry power for the GE 4/J5P. 3) 130 percent of maximum dry power for the P&WA JTF17A-21B engine, 4) noise abatement cutback thrust for the 675,000 lb International B-2707, 5) noise abatement cutback thrust for the 575,000 lb domestic B-2707, 6) landing approach thrust, and 7) taxi thrust. The engine operating conditions were chosen because of their significance in airplane operations.

The noise levels presented in Figs. 3-1 through 3-4 and Tables 3-A and 3-B have been predicted using 1) the standard SAE procedures outlined in Ref 3 for jet noise calculation and 2) the procedures outlined in Ref 4 for compressor or fan noise calculations. Figure 3-5 is a reproduction of a curve from Ref 4 showing the relationship between engine compressor or fan parameters and noise level of the fundamental discrete frequency generated by the compressor or fan. The method of Ref 4 is identical with that used by Pratt & Whitney. The General Electric method requires engine compressor data not available at Boeing.

3.2 SUPPRESSED ENGINE NOISE CHARACTERISTICS

The effects of compressor, fan, and jet noise suppression devices on predicted engine noise levels are shown in Figs. 3-1 through 3-4 and

Tables 3-A and 3-B. A discussion of the means for obtaining the compressor and fan noise suppression contributing to the total PNL reductions shown are discussed in Sec 4.0 of this book.

The suppression included in Figs. 3-1 through 3-4 is the Boeing prediction for the engine and nozzles supplied by the two engine manufacturers as well as the predicted suppression for the jet suppressor Boeing will have available for the B-2707 production airplane. The inlet noise suppression achieved by use of a sonic throat in the Boeing propulsion air inlet is also included. (The increased sound suppression with the new GE, two-stage ejector nozzle is not included). This amount of suppression is consistent with the installed propulsion performance and weight used in the B-2707 performance.

3.3 ENGINE NOISE EXPOSURE CONTOURS The noise environment around the airport and in the community during takeoff, climbout and landing approach maneuvers has been predicted for the B-2707 (GE) and B-2707 (P&WA) airplanes. This noise environment was predicted using the following procedures: Maximum noise levels at points on the ground below and to the side of the flight path were calculated according to the standard procedures in Refs 3, 4, 5, and 6. The calculation procedure assumes a gradual change in noise attenuation with distance when going from ground-to-ground propagation to air-to-ground propagation. The effect of four engines and their orientation with respect to the listener as the aircraft takes off is also included. This is done by adding 3 dB to the single engine's noise during ground roll and gradually increasing the increment to 6 dB as the airplane elevation angle increases. These transition effects are assumed to be complete by the time the angle from aircraft to listener has increased to 20 deg with respect to the ground. When several noise sources contribute to the noise level at a point on the ground, as shown schematically in Fig. 3-6 a composite spectrum is determined according to Ref 3. This composite spectrum is then used to compute the maximum perceived noise level contours corresponding to given engine parameters and flight path variations.

Table 3-A. Noise Spectra for GE 4/JSP Engine

Committee Constitution	*****	1		J	***	5	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E (48J		8	P CENE
C-Court STREETS = 1360 MBS	(100)	275	300	302	J472	491	872	com	382	0000	267	COMP	(760)
	119.5	117	1113	124	140	103	93	75	79	74	44	62	300,0
(MARTERIA)	118.9	233	114	133	206	300	*	775	10	*	61	62	191.0
AL DI - Destriction	117.0	120	323	112	106	300	90	73	16	76	62	Ğ2	118.0
	125.0	100	121	220	164	90	. 38	75	14	7	60	62	337.0
make (posts) to 1 to past		4	_							-			
THE PERSON NO.	105.0	85	65	82	80	75	Sor	201	671	100	der	100	220,5
CAT PRODUCE	97.0	85	8	De	80	75	Big	91	892	98	. 070	90	111.0
FLECORY (0.34) - 1500 PT ALE								-				-	
NAME OF THE PERSONS O	175.5	234	119	121	239	115	105	87	99	86	77	75	130.5
#United States	124,5	ži3	¥118	180	115	126	107	87	gh	85	76	7%	429.5
MAX (A)" - VANCONIANO	122.0	مدد	736	217	235	112	304	87	90	86	73	74	126.5
* Constitution	120.0	106	.116	115	113	109	Ma	87	88	- 86	71	74	224.5
16,500ma - UNICHMENTED	99.0	93	ÿb.	93	69	83	75	86	61	89	44	75	107.0
FULL PARTS	98.0	92	94	23	95	82	74	61	40	60	13	20	101.0
25,700fffa - immorrhanne	96.0	90	91.	90	- 85	80	72			B1		68	105.0
ALT THE SALES	95	89	90	195		(10	-1	57	57	- 56	100	43	98:0
1AMOTHG (0,23H) - 326 PT ALZ										-	7	~	2014
TO THE PERSON OF	-111	- 99	100	29	- 95	- 93 - 1	872	102	919	100	912	104	125
SUPPRESS	105	98	99	97	94	90	872	77		83	915	79	222.5

.T - Turbine Hotos

Table 3-B. Noise Spectra for P&WA JTF 17A-21B

	r '															
OPERATING CONCETTORS (A ENGINES)	OVZRALL.	1	i.e	1_3_		VE S	ino s	oues :	Pacest:	RE LE	VSL -	(da)		. a		PER- CEIVE ROISE
	(40)	377	JET		JET	_	_	KAN	PAN	J.	PAN	TAN	JET		PAS.	LEVEL
MAY AUG - UNDERSTORMED	118.0	110	111	113	108	rćs	91	79	73	17	83	61	60	89	69	121.0
\$0779163ED	114.0	106	170	109	104	.98	87	60	75	73.5	81	BL	56	69	69	117.0
1305 HAX DRY - UNSUPPRESED	114.0	107	110.5	109	104	98	88	73	15	74	82.5	82.5	52.5	69	69	217-5
SUPPRESED.	120.0	103	106.5	105	100	94	84	60	75	70	81.5	62.5	55	69	69	114.0
TAXI (5000# Fp) -200 PRET														Ι.		Γ
UBSUPPRESSED	106.5	- 83	61	81	81,	881	73	104	104	65	100	100 .	55	96	96	118.5
SUPPRESERD	98.5	83	81	81	87	982	73	19	94	65	85	90	55	81	86	212.0
FLIGHT (0.3H) - 1500 FT ALT				Π		Г			1					Т		
MAX AUG - UNSUPPRESSED	124.0	111	117	120	118	115	108	92	92	94	93	95	76	82	82	130.0
Suppr e sel	120.0	107	113	115	124	111	204	777	92	90	78	93	72	67	95	127.0
130% M., DRY - (MEUPPRESED)	122.0	109	115	118	116	113	106	95	92	92	93	93	74.5	32	82	126.0
\$ GPTRESS ED	115.0	105	111	114	112	111	102	77	92'	88	78	93	70.5	67	82	124.0
18.5630 Pa - (GEOPPRESED	101.0	93	96	96	92	88	8o	92	92	66	91	91	b9	79	79	112.0
SUPPRISEZO	100.0	92	95	95	91	87	79	77	6?	65	76	66	48	64	54.	105.0
15,7000 Pm - VESUPPRESSED	98.0	92	93	91	87	81	70	87	37	55	86	86	30	74	74	110.0
SUPPRESED	97.0	92	93	91	87	81	τc	12	52	55	71	61	30	59	1.9	101.5
LANDING (0.230) - 326 PT SIT																
LEGUPPRESE D	1113	99	100	100	98	93	87	104	104	82	110	110	75	106	106	127.5
Suppresed	106	99	100	700	98	93	87	89	80	82	95	86	75	93	82	115

f - Fee Wolse

Figure 3-1. Inflight Noise Characteristics of GE 4/JSP Engine

Figure 3-2. Inflight Noise Characteristics of P&WA JTF 17A - 21B Engines

Figure 3-3. Noise Characteristics Of GE4/J5P Engines For Static Ground Operations

Figure 3-4. Noise Characteristics Of P&WA JTF17A-21B Engines For Static Ground Operations

A Comment

ALLE ALLE AND A TOTAL

The state of the s

Figure 3-5. Fan and Compressor Noise Level

Figure 3-6. Engine Noise Propagation During Airplane Flyover

4.0 ENGINE NOISE SUPPRESSION DEVELOPMENT

The noise suppression characteristics applied to the GE 4/J5P and P&WA JTF17A-21B engines have been determined by many acoustic tests run on J-75, JT8D, and JT3D engines and on the one-eighth scale models of the exhaust nozzles of the two proposed engines. (The increased noise suppression with the new GE, two-stage nozzle ejector is not included.)

4.1 EXHAUST NOISE SUPPRESSION

4.1.1 Engine Manufacturers' Exhaust Nozzles The exhaust noise characteristics of the GE 4/J5P and P&WA JTF17A-21B engines were determined by means of tests in the Boeing acoustic model jet facility. One-eighth scale models of the two engine exhaust nozzle configurations were built and tested at several design operating conditions, including after burning. The nozzle configurations tested are shown in Figs. 4-1 and 4-2. The noise suppression resulting from these nozzle-ejector combinations was determined from comparison with results from standard round nozzles as required by the procedures established in Ref 3. The jet noise suppression obtained with the P&WA JTF17A-21B nozzle configuration was 4 PNdB at maximum augmentation and 3 PNdB at maximum dry thrust. The jet noise suppression obtained with the GE 4/J5P nozzle configuration was 1 PNdB at maximum augmentation and 2 PNdB at maximum dry thrust condition. The jet noise suppression Boeing has used to predict the suppressed noise levels of the B-2707 airplane is shown in Fig. 4-3. The suppression for the August submittal by General Electric with the new two-stage ejector nozzle, may be found in the Appendix. Further discussion of engine manufacturers' suppression objectives may be found in Engine Airframe Technical Agreement, D6A10193-1 (GE), and D6A10199-1 (P&WA).

4.1.2 Boeing Exhaust Nozzles
In addition to the noise suppression studies carried out on the nozzle-ejector combinations offered by the engine manufacturers, Boeing has also conducted an intensive noise suppression research and development program to define methods of further improving the noise charac-

teristics of the B-2707 with either of the offered engines. This program, based on 15 years of noise suppression research and development, has yielded significant new information for suppression of augmented propulsion systems.

A number of jet wake noise suppression configurations have been studied and have been tested model scale. One configuration tested yields up to 8 PNdB reduction. This configuration can be installed in the divergent portion of the ejector shroud of the exhaust nozzle. The reduction in airport-community noise exposure afforded by this suppressor is shown in Figs. 4-4 and 4-5. Pictures of the scale model suppressor configurations adapted to the GE4/J5P and P&WA JTF17A-21B engines are shown in Figs. 4-6 and 4-7. The suppression characteristics of this suppressor are given in Figs. 4-8 and 4-9.

More advanced suppression concepts developed by Boeing have demonstrated the potential to reduce noise levels by as much as 15 to 20 PNdB. Suppressors incorporating these concepts will require more extensive treatment of the primary engine and nozzle system. This study is being conducted in a company-funded research program. Figures 4-4 and 4-5 show the reductions in airport and community noise levels that would result from use of such suppressors.

As a result of the above suppression studies, Boeing feels that a jet suppressor yielding 10 PNdB suppression at maximum augmented thrust on the GE Turbojet and 8 PNdB on the P&WA turbofan, is feasible for the B-2707 production airplane. Boeing will work closely with the engine contractor to develop this suppressor and insure its compatability with the engineairplane configuration. The predicted airport and community noise reduction for this suppressor is also illustrated on Fig. 4-4 and 4-5. Adjustments in thrust and weight have been included in the performance of the B-2707 in order to determine the correct altitudes and thrust for noise prediction in the community.

To said with the said of

walke.

Figure 4-1 GE 4/JSP Model Hozzle Configuration

Figure 4-2. P&WA JTF 17A - 21B Model Nozzle Configuration

Propulsion Report, V2-2707-12, and Refs 7 and 8 contain a more detailed report of the Boeing noise suppression program.

4.2 COMPRESSOR NOISE SUPPRESSION Inlet noise suppression on the B-2707 is accomplished by producing a sonic throat in the inlet during operations in which compressor or fan noise radiating from the inlet is likely to contribute to the overall noise level. The sonic throat is obtained by expanding the centerbody to a point where air flow through the inlet reaches sonic velocity. Boeing has demonstrated the compressor noise suppression afforded through application of the sonic throat principle in the inlet of a J-75 turbojet engine (Fig. 4-10 and Ref. 9). In this test the J-75 was fitted with a SST-type inlet complete with simulated expanded centerbody. The effect of the sonic throat on the discrete frequency compressor noise generated by the J-75 engine is shown in Fig. 4-11. Predicted unsuppressed GE4/J5P and P&WA JTF17A-21B inlet noise spectra has been superimposed on the J-75 spectra to indicate the predicted change in noise level between the SST engines and the J-75. Elimination of the discrete frequency spikes present in the SST engine spectra will result in a possible 30-dB reduction in the peak noise level.

Additional testing has been conducted at Boeing on a 5-in. diameter model inlet to examine near sonic as well as sonic conditions under both simulated flight and static conditions. Figure 4-12 shows the effect of inlet mach number on the suppression as determined from this test. The sonic condition shows a reduction in noise level of 40 dB. Simulated airplane speed had no measurable effect on the suppression achieved by the sonic throat. A detailed report of the test and the results may be found in Ref 2.

4.3 FAN NOISE SUPPRESSION The noise generated in the fan section of a turbofan engine and propagated rearward through the fan discharge duct has the same noise intensity as that propagated forward through the inlet. Suppression of this noise is therefore essential if substantial total noise reduction is to be achieved.

Figure 4-3. Predicted Jet Noise Suppression

Boeing has conducted tests on fan engines to determine the feasibility of acoustically treating fan discharge ducts to attenuate discrete frequency noise. Results of tests on a JT8D engine (Fig. 4-13) show large attenuations of discrete frequencies. As much as 20-dB reduction was obtained with 50 in. of treatment on one side of the duct (Fig. 4-14). A more detailed report of the test and the results may be found in Ref. 10.

Subsequent tests, made on a JT3D engine with lined fan discharge ducts, showed substantial attenuation due to the liner (Fig. 4-15 and Ref. 11).

It would appear from these tests that discrete frequency noise from the fan can be attenuated 10 to 15 dB by use of acoustical absorptive material fitted within the present design of the JTF17A-21B engine. Additional suppression should also be possible through proper fan design.

Pratt and Whitney has guaranteed a 15 dB reduction from the predicted fan discharge noise levels produced by the unsuppressed JTF17A-21B engine. It is expected that this suppression will be achieved by (1) proper fan design for minimum noise generation and (2) acoustic treatment of the fan discharge duct wall to attenuate the discrete frequency fan noise as it is propagated through the duct. This reduction has been used in the calculation of the B-2707 (P&WA) airplane noise levels.

Figure 4-4. Effect of Jet Suppressors on Airport - Community Noise Exposure
B-2707 (GE) International Mission

Figure 4-5. Effect of Jet Suppressors on Airport - Community Noise Exposure for B-2707 (P&WA) International Mission

Figure 4-6. Bosing Jet Suppressor, Turbojet Scale Model

Figure 4.7. Booing Jet Suppressor, Turbalan Scale Madel

Figure 4-8. Basing Jet Noise Suppression For Turbojet Engine Figure 4-9. Basing Jet Noise Suppression For Turbofan Engine

12. W W.

diam'r.

1-A COMPLETE INSTALLATION WITH BELLMOUTH

1-B BELLMOUTH REMOVED SHOWING EXPANDED POSITION SPIKE

Figure 4-10 J-75 Installation For Acoustic Evaluation of Sonic Throat

Figure 4-11. Effect of Sonic Throat on Discrete Frequency Compressor Noise Propagation

Figure 4-12. Effect of Inlet Mach. No. on Compressor Discrete Frequency Noise

Figure 4—13. JT8D Fan Discharge Noise Suppression

2-A OUTER COWLING REMOVED

2-B OUTER COWLING IN PLACE

Figure 4-14- JT8D Turbofan Engine With Acoustically Treated Extension To Fan Duct

1558/8-3672

Spatters:

7

建筑建筑

Figure 4-15. JT3D Fan Discharge Noise Suppression

5.0 ACTIVITIES PLAN

The airport and community noise activities plan has as its objective the acceptance of the B-2707 into its airport environment from a noise standpoint. To achieve this objective the activities plan includes:

- a. Continuation of compressor, fan, and jet noise supression studies.
- b. Evaluation of suppression techniques proposed by the engine contractor.
- c. Evaluation of engine noise data supplied by the engine contractor.
- d. Application of proven suppression techniques to the SST.
- e. Analysis of noise from the Prototype and Production Engines.
- f. Analysis of noise from inflight operations of the Prototype and Production Airplane.
- g. Development and evaluation of noise contours for airports.
- h. Examination of methods of airplane operation to reduce noise levels.
- i. Examination of the human response to aircraft noise.

The responsibility for these activities is assigned to the Acoustics Unit of the Electrodynamics Staff reporting to the Chief of SST, Technology, Boeing SST Division, with support from the Propulsion Staff, the Aerodynamics Staff, and Flight Test. (Refer to Program Management, V5-B2707-8.) The airport and community noise activities plans will be executed in accordance with the program schedule shown in Fig. 5-1.

Further work plans are contained in the Detail Work Plan, V5-B2707-4. Control of the program will be maintained through the use of detailed and summary PERT networks and periodic status reporting. These activities are consistent with Integrated Test Program, V4-B2707-11.

- 5.1 NOISE SUPPRESSION DEVELOPMENT Boeing's noise suppression development will be continuous through Phases III, IV, and V to ensure airport compatibility of all versions of the B-2707 with all airports from which it will operate.
- 5.1.1 Jet Noise Suppression
 Jet noise suppression will include analysis of jet
 noise generation and suppression. Model and full
 scale testing of various nozzle and ejector shapes
 will be conducted. The objective of these studies
 will be to establish suppressor optimization rules
 by which suppressors can be designed to give
 maximum sound reduction for the least thrust loss
 and weight penalty. This effort will be integrated
 with the engine contractor's studies to obtain the
 optimum jet suppression on the engine.
- 5.1.2 Compressor Noise Suppression
 Compressor noise suppression studies will be
 directed primarily to the optimization of suppression through control of airflow through the inlet.
 Sonic and near sonic flow conditions created
 through expansion of the inlet centerbody will be
 examined to assure maximum compressor inlet
 noise attenuation for all ground and flight
 operations.
- 5. 1. 3 Fan Noise Suppression
 Fan noise suppression studies will include inlet
 airflow control investigations as described in
 Par. 5. 1. 2 with additional studies on suppression
 of discrete frequency noise generated by the fan and
 propagated down the fan discharge duct. Absorptive studies will continue in conjunction with the
 engine contractor's noise studies to help design
 absorptive linings and acoustic impedance mismatch devices for reducing downstream noise
 propagation.
- 5. 2 AIRPORT NOISE STUDY
 The airport noise study currently being conducted will be expanded to include other airports, both domestic and foreign. B-2707 engine-airplane noise characteristics will be monitored continuously. The pattern of noise complaints in airplane-noise sensitive areas near airports will be studied. Methods of reducing the noise problems through noise suppression and noise abatement techniques

on the engine and airplane will be investigated. These methods will be recommended to the FAA, the airlines, and the airport operators when their use could result in alleviation of noise. Airport and community noise report will be prepared in accordance with the data list.

- 5.3 SUBJECTIVE REACTION PROGRAM
 A current Boeing research program to study the subjective effects of noise is divided into three concurrent efforts:
- a. Studies of psycho-acoustical perception and scaling, Emphasis is on the relationship between subject judgements and the physical variables of sounds (e.g. octave band spectrum, discrete frequency components, duration, and doppler effects).

b. Examination of jet aircraft noise as potential interference with present modes of living

and working. These studies will explore the effects of noise on sleeping, reading, communications, concentration, task performance etc.

c. Derivation of relationships between community complaints and past aircraft noise exposures. These studies will identify significant correlation between aircraft type, flight procedures, noise characteristics, weather, season, time of day, airport topography, etc., and relevent community complaint data.

5.4 TEST SCHEDULE

The test schedule planned to ensure B-2707 compliance with airport and community noise guarantee includes:

a. Tests on model scale jets to develop jet noise suppressors.

Figure 5-1. Program Schedule

- b. Ground Tests on large scale and full scale engines to provide verification of model scale test results.
- c. Large scale tests of the sonic throat principle.
- d. Large scale tests of fan discharge acoustic liners for discrete frequency attenuation.
- e. Flight tests to ensure adequate noise suppression of selected noise suppression devices during low-speed flight operations.

Technical knowledge gained by the Boeing Company in making community noise measurements of its family of jet transports will be utilized in establishing procedures for testing and for data analysis of the B-2707.

The prototype will be used to determine the ground and flight noise characteristics of the B-2707 engine-airplane configurations with noise suppression devices developed to that time. The first production B-2707 will be used to show compliance with guaranteed noise levels for both ground and flight operations. These noise levels will be determined through a series of takeoff, flyby, landing approach, and static ground operations of the B-2707. Measurements will be made around the engine, under the flight path, and at specific distances to the side of the flight path to ensure that no significant data points are missed. Extensive use will be made of computerized data reduction and analysis techniques. FAA recommended procedures will be used for instrumentation calibration, data acquisition, and data analysis when such procedures are appropriate.

All test results obtained during the course of the Activities Program will be documented as each series of tests is completed. All documentation will be made available to the FAA, the airlines, and the airport operators.

REFERENCES

The following references are available at The Boeing Company, SST Division:

- FAA letter to Mr. J. J. Werts from General J. C. Maxwell, "Interpretation of Exposure (PNdB Seconds) in the Request for Proposals Dated June 30, 1966," July 20, 1966
- R. H. Sawhill <u>Investigation of Inlet Airflow Choking As a Means of Suppressing Compressor Noise 5" Inlet Model</u>, D6A10155-1, The Boeing Company, June 1966
- SAE Aerospace Information Report 876, <u>Jet Noise Prediction</u>, July 1965
- C. F. Wintermeyer, <u>Jet Engine Compressor and Fan Noise Prediction</u>, D6A10334-1, The Boeing Company, August 1966
- 5. SAE Aerospace Recommended Practice Report 866, Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity for Use in Evaluating Aircraft Flyover Noise, August 1964
- 6. SAE Aerospace Information Report 923, Extra Ground Attenuation of Sound, March 1966
- J. V. O'Keefe, <u>SST</u> Engine Noise Suppression Study-Model Scale Test, Boeing Test Report T6A10341-1, August 1966
- M. B. McKaig, <u>Acoustic Test of High-Suppression Multitube Noszle</u> <u>FS-1001 and Lined Shroud on J-75 Engine</u>, Boeing Test Report T8-3599, August 6, 1966
- 9. M. B. McKaig, J-75 <u>Inlet Noise Suppression Test</u>, Boeing Test Report T6-3173, October 1964
- M. B. McKaig, Fan-Discharge Noise Suppression Test on JTSD Engine, Boeing Test Report T6-3166, October 1964
- 11, A. J. Bohn, Internal Suppression of Compressor Noise of the JT3D-3B Engine With 3/4 Length Fan Ducts, Boeing Test Report T6-3498, March 1966

ILLUSTRATIONS

No.	Title	Page
2-1	Airport-Community Noise Trades, B-2707 (GE) with Engine Manufacturers' Jet Suppression	7
2-2	Airport-Community Noise Trades, B-2707 (P&WA) with Engine Manufacturers' Jet Suppression	7
2-3	Airport-Community Noise Trades, B-2707 (GE) with Boeing Jet Suppression	8
2-4	Airport-Community Noise Trades, B-2707 (P&WA) with Boeing Jet Suppression	8
2-5	Perceived Noise Level Contours for Takeoff, B-2707 (GE) International Mission	9
2-6	Perceived Noise Level Contours for Takeoff, B-2707 (P&WA) International Mission	9
2-7	Perceived Noise Level Contours for Takeoff, B-2707 (GE) Domestic Mission	10
2-8	Perceived Noise Level Contours for Takeoff, B-2707 (P&WA) Domestic Mission	10
2-9	Noise Exposure Contours for Takcoff, B-2707 (GE) International Mission	11
2-10	Noise Exposure Contours for Takeoff, B-2707 (P&WA) International Mission	11
2-11	Noise Exposure Contours for Takeoff, B-2707 (GE) Domestic Mission	12
2-12	Noise Exposure Contours for Takeoff, B-2707 (P&WA) Domestic Mission	12
2-13	Perceived Noise Level Contours for Takcoff, B-2707 (GE) International, Boeing Jet Suppression	13
2-14	Perceived Noise Level Contours for Takeoff, B-2707 (P&WA) International, Boeing Jet Suppression	13
2-15	Perceived Noise Level Contours for Landing Approach, B-2707 (GE) International	14
2-16	Perceived Noise Level Contours for Landing Approach, B-2707 (P&WA) International	14
2-17	Noise Exposure Contours for Landing Approach, B-2707 (GE) International	15
2-18	Noise Exposure Contours for Landing Approach, B-2707 (P&WA) International	15
2-19	Taxi Noise Levels	16
2-20	Ground Runup Noise Suppression	16
2-21	Effect of Ground Runup Suppressor on Noise Spectra	16
3-1	Inflight Noise Characteristics of GE 4/J5P Engine	19
3-2	Inflight Noise Characteristics of P&WA JTF17A-21B Engine	19
3-3	Noise Characteristics of GE 4/J5P Engines for Static Ground Operations	20
3-4	Noise Characteristics of P&WA JTF17A-21B Engines for Static Ground Operations	20
3-5	Fan and Compressor Noise Level	21
3-6	Engine Noise Propagation During Airplane Flyover	21

	ILLUSTRATIONS (Cont.)	
No.	Title	Page
4-1	GE 4/J5P Model Nozzle Configuration	24
4-2	P&WA JTF17A-21B Model Nozzle Configuration	24
4-3	Predicted Jet Noise Suppression	25
4-4	Effect of Jet Suppressors on Airport-Community Noise Exposure for B-2707 (GE) International Mission	26
4-5	Effect of Jet Suppressors on Airport-Community Noise Exposure for B-2707 (P&WA) International Mission	26
4-6	Boeing Jet Suppressor, Turbojet Scale Model	27
4-7	Boeing Jet Suppressor, Turbofan Scale Model	27
4-8	Boeing Jet Noise Suppression for Turbojet Engine	28
4-9	Boeing Jet Noise Suppression for Turbofan Engine	28
4-10	J-75 Installation for Acoustic Evaluation of Sonic Throat	29
4-11	Effect of Sonic Throat on Discrete Frequency Compressor Noise Propagation	30
4-12	Effect of Inlet Mach No. on Compressor Discrete Frequency Noise	31
4-13	JT8D Fan Discharge Noise Suppression	31
4-14	JT8D Turbofan Engine with Acoustically Treated Extension to Fan Duct	32
4-15	JT3D Fan Discharge Noise Suppression	33
5-1	Program Schedule	35
	TABLES	
2-A	Airport and Community Noise Levels with Engine Manufacturers' Jet Suppression	3
2-B	Airport and Community Noise Levels with Boeing Jet Suppression	4
2-C	Landing Approach Noise Levels	5
3-A	Noise Spectra for GE 4/J5P Engine	18
3-B	Noise Spectra for P&WA JTF17A-21B Engine	18

Minner en

T TO SERVE

Caracteria

1

Services.

ADDENDUM

SUMMARY REPORT - 8 AUGUST 1966 ENGINE PERFORMANCE DATA

The foregoing document is based upon engine performance data received prior to 15 July 1966.

Because there was insufficient time available to completely revise the B-2707 performance after receiving the 8 August 1966 firm technical engine data, the following summary is provided to show the major effect of the firm data on the airplane performance shown in the Phase III proposal documents. Only the most important figures have been provided herein.

If additional or supplemental data is needed, a request to The Boeing Company, SST Division, will receive immediate attention.

ADDENDUM

TAKE PARTY

1000

AIRPORT AND COMMUNITY NOISE

CONTENTS

Walter A.				Page
Control of the space of the state of the sta	1.0	INTROD	UCTION AND SUMMARY	1
Total	en e	1.1 1.2	ENGINE DIFFERENCES AIRPLANE PERFORMANCE	1 2
	2.0	ENGINE	CHANGES	5
		2.1 2.2 2.3	PER FORMANCE INSTALLATION NOISE	5 5 5
	3.0	AIRPLA	NE WEIGHT EFFECTS	13
	4.0	AIRPLA	NE PERFORMANCE	15

K

SE NON 1.0 INTRODUCTION AND SUMMARY

The Boeing SST Proposal is prepared on the basis of engine manufacturer technical data received prior to July 15, 1966. On August 8, 1966, firm technical data was received from General Electric and Pratt & Whitney Aircraft which differed in some respects from the data received prior to July 15, 1966. The purpose of this addendum is to describe the significant differences and to summarize effects on performance of the Boeing Model 2707 airplane.

All information in the proposal is based on the July 15, 1966 engine data with the exception of the Phase III Proposal Summary, V1-B2707-1, Propulsion Report - Part C, Engine Evaluation, V2-B2707-14, and this addendum. These documents are based on engine data received from the engine manufacturers as of August 8, 1966.

1.1 ENGINE DIFFERENCES

The General Electric GE4/J5P engine data received on August 8, 1966, provided lower airport and community noise levels for all engine operating conditions. These lower noise levels were the result of redesign of the exhaust nozzle and noise suppression data obtained from J-93 engine testing. Acoustic data provided by General Electric also indicated reduced turbine noise from that being predicted by Boeing for the GE4/J5P engine. These changes provide significantly improved takeoff and approach noise for the B-2707 (GE). An improvement in transonic thrust was also provided. Updated installed engine weight, including optional equipment has resulted in a 112-lb weight increase for the GE4/J5P engine installation. Engine changes have not affected the installed pod configuration.

In the case of Pratt & Whitney Aircraft JTF17A-21B engine, a 2-percent reduction in specific fuel consumption (SFC) at essentially all operating conditions was the principal change. This improvement reduces B-2707 (P&WA) fuel consumed over the design mission and lowers the reserve fuel requirements. Updated installed engine weight including optional equipment has resulted in a 190-lb weight increase for the JTF17A-21B engine installation. Engine changes have not affected the installed pod configuration.

1.2 AIRPLANE PERFORMANCE

The major effects of these engine changes on airplane performance are summarized in Table 1-A for the international B-2707 with a maximum design taxi weight of 675, 000 lb and in Table 1-B for the domestic airplane with a maximum design taxi weight of 575, 000 lb. The improved hot day range capability and noise characteristics of the B-2707 (GE) are apparent, as is the improved range capability of the B-2707 (P&WA).

Table 1-A	Parlamanca: Ch	anges Internationa	l Missian
i GDIR I -A.	remover us	unoes invernutions	1 18/33/00

		B-270	7 (GE)	B-2707	(P&VA)
Maximum Tax	i Gross Weight = 675, 000 lb	July 15, 1966 Basis	Aug. 8, 1966 Basis	July 15, 1966 Basis	Aug. 8, 1966 Basis
Operational E	mpty Weight lb	287,500	287,500	285, 000	285,760
Range with 50.	000 lb Payload	# 1 ## ## ## ## ## ## ## ## ## ## ## ##			
ΔP _{max} =	2.5 psf				And the second
Standard Day,	n mi	3,819	3, 819	3,738	3,808
Standard Day		3,471	3,580	3,470	3,547
M _{MO} Clim	ab - The state of the state				a Charles
Standard Day,	nmi	3,950	3, 928	3,882	3,970
M = 0.85 (Standard Day,		3,286	3, 286	3,870	3,950
Takeoff Noise	PNdb			- 1 Am	
Maximum Aug	mented Thrust				
Standard	Airport Noise	121	117	117	117
Day	Community Noise cg at 0.595 C _R cg at 0.615 C _R	100 99	96 95	105 104	105 1 04
Standard	Airport Noise	121	117	117	117
Day + 15°C	Community Noise eg at 0.595 C _R	105	102	110	110
Landing Appro	ach Noise, PNdB				
Landing Weigh	it, 1b	430,000	430,000	420,000	420,000
20°/40°	cg at 0.595 Cg	112	105	115	115
Flaps	og at 0.615 Cg	111	103	114	114
30 ⁰ /50 ⁰ Flaps	cg at 0.615 CR	113	107	116	116
Decelerating A	Approach	108	98	111	111

Table 1-B. Performance Changes, Domestic Mission

		1	nestic 07 (GE)	Domestic B-2707 (P&WA)		
Maximum Ta	xi Gross Weight = 575,000 lb	July 15, 1966 Basis	Aug. 8, 1966 Basis	July 15, 1966 Basis	Aug. 8, 1966 Basis	
Operational I	Empty Weight 1b	275,500	275,500	273,000	273,760	
Range with 5	0,000 lb Payload					
ΔP max	= 2.0 psf Climb; 1.5 psf Cruise					
Standard Day	, nmi	2,450	2,465	2,442	2,493	
Standard Day	+ 10°C, nmi	2,295	2,368	2,268	2,307	
M=0.85	Cruise			•		
Standard Day	, nmi	2,571	2,571	3,042	3,100	
Takeoff Nois	e, PNdb	Maximum	Dry Thrust	-	laximum Thrust	
Standard	Airport Noise	117	115	114	114	
Day	Community Noise cg at 0.595 CR cg at 0.615 CR	99 98	93 92	103 102	103 102	
Standard	Airport Noise	116	114	114	114	
Day + 15 ⁰ C	Day Community Noise cg at 0.595 CR		99	108	108	
Landing Approach Noise, PNdB Standard Day						
Landing Wei	ght, lb	410,000	410,000	400,000	400,000	
20°/40°	cg at 0.595 C _R	112	104	115	115	
Flaps	cg at 0.615 C _R	110	102	114	114	
30 ⁰ /50 ⁰ Flaps	cg at 0.615 C _R	112	106	116	116	
Decelerating	g Approach	108	98	111	111	

SECTION 2.0 ENGINE CHANGES

2.1 PERFORMANCE

2.1.1 General Electric GE4/J5P Engine

A 6-percent improvement in transonic thrust was provided as well as increased transonic hot day thrust by means of higher engine rpm and increased airflow for an incremental 50-lb weight increase. Figure 2-1 shows the change in hot day transonic thrust for a 2.5 PSF sonic boom overpressure climb path. Reduced transonic inlet drag due to lower bypass airflow is also shown.

2.1.2 Pratt & Whitney Aircraft JTF17A-21B Engine

The two percent SFC reduction for the JTF17A-21B engine at all power settings except idle power is listed in Table 2-A for important B-2707 operating points. This improvement is provided as a result of increased component efficiencies demonstrated in primary burner, duct burner, and nozzle component development programs.

2.2 INSTALLATION

Pod configuration and external contours for both engine installations are unchanged. The final installed pod weights for both engines including added weight for optional equipment are listed in Table 2-B.

2.3 NOISE

The noise characteristics of the JTF17A-21B remain unchanged from the decade data presented in the body of the Boeing SST proposal. The remains of the discussion concerns the GE4/J5P engine.

2.3.1 Engine Noise Characteristics GE4/J5P

The engine noise characteristics of the GE4/J5P engine have been predicted from the engine data and jet noise suppression as supplied by General Electric. Additional engine noise suppression achieved through inlet choking by use of the sonic throat principle as described in the Airport and Community Noise Program report, V4-B2707-4, has also been included. The jet noise suppression values used in the calculation of noise levels for the GE4/J5P engine are shown in Fig. 2-2. These values have been determined by General Electric through acoustic tests that have been conducted on a J-93 engine.

Figure 2-1. GE4/JSP Climb Performance, Spandard Day + 16°C

Table 2-A. JTF17A-21B Performance Summary

We about

alignes do

Pressure Altitude ft	Temperature	Mach No	Net Thrust	July -1966 SFC lb/hr/lb	August-1966 SFC lb/hr/lb
		e e e e e e e e e e e e e e e e e e e		Control of the second of the s	San
U		0	56,740	1.86	1, 83
0	Std	0	35,490	0,77	0.76
			9.5		
45,000	Std	1.2	19,630	1.94	1. 90
. '-		Sty.		e verber Verber	
45, 000	Std + 10°C	1.2	18, 140	2.00	1.96
		e de la companya de l		L) con	
65,000	Std	2.7	15,000	1.57	1.54
				•	
65, 000	Std + 10 ⁰ C	2.61	. ³ 15, 000	1.66	1.63
			,		ana 1., 1.,
36, 150	. Std	0.85	5, 000	1.07	- 106
,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	
15,000	Std	0.5	5 000	1 10	1. 08
	0 0 45,000 45,000	Altitude Temperature 0 Std 0 Std 45,000 Std + 10°C 65,000 Std + 10°C 36,150 Std	Altitude Temperature No 0 Std 0 0 Std 0 45,000 Std 1.2 45,000 Std + 10°C 1.2 65,000 Std 2.7 65,000 Std + 10°C 2.61 36,150 Std 0.85	Altitude Temperature No Thrust 0 Std 0 56,740 0 Std 0 35,490 45,000 Std 1.2 19,630 45,000 Std 1.2 18,140 65,000 Std 2.7 15,000 65,000 Std + 10°C 2.61 15,000 36,150 Std 0.85 5,000	Altitude Temperature No Thrust SFC 1b / lb /

2.3.1 (Continued)

The unsuppressed noise levels for the GE4/J5P engine for ground and flight operations are shown in Figs. 2-3 and 2-4. Also shown in these figures are the predicted noise levels with all suppression included. The effect of the open-nozzle concept wherein the nozzle throat area is maintained on a maximum area schedule is included in the suppressed noise level predictions. The predicted noise spectra for a series of engine operating conditions have also been predicted and are presented in Table 2-C.

Noise levels beneath and to the side of the airplane flight path have been determined from the revised noise data. These levels have been integrated into contours of Perceived Noise Level for takeoff. These contours are shown for the B-2707 (GE) international airplane in Fig. 4-12 and the B-2707 (GE) domestic airplane in Fig. 4-14.

The landing noise characteristics of the B-2707 (GE) have changed significantly due to the noise data presented on August 8, 1966. These data indicated that turbine noise would not contribute significantly to the total noise from the airplane even at landing approach power settings. Boeing had been predicting very significant noise increases due to turbine noise contribution. The predictions were based on the J-75 engine acoustic test results. Since the GE data were obtained on an engine more closely resembling the SST turbojet offering, these data should be more representative of the noise characteristics of the SST engine. Therefore the B-2707 landing noise levels have been revised to conform to the August 8, 1966 data inputs. The results of these revisions are shown in Figs. 4-17 and 4-18.

Tuble 2-B. Installed Pod Weight

	B-2707 (GE)	B-2707 (P&WA)
ngine weight	11,125	9, 910
ptional equipment	112	780
Total	11,237	10,640
ilet	2,070	2,485
owl panels		
Forward	325	225
Aft	150	
tructure	495	480
fiscellaneous	35	35
Total	14, 312	13, 865
7		
•		I
• • • • • • • • • • • • • • • • • • • •	MAX DRY-	
2		AUG-/
' 		
10 15 20 25 1	30 35 40 45 E	so 65 GO

Figure 2-2. Predicted GE4/J5P Jet Noise Suppression

NET THRUST PER ENGINE, IOCOLB Figure 2-3. Inflight Noise Characteristics of GE4/J5P Engines

Figure 2-4. Noise Characteristics of GE4/J5P Engines For Static Ground Operations

Table 2-C. Noize Spectra For GE4/15P Engine

											•		
	Overall			Ö	Octave Band Sound Pressure Level	os pu	pund	Press	re Le	٠ ا	(<u>1</u> 2)	· · · · ·	Per-
	SPL	-1	2	က	4	5	9			į			Noise
	(dB)	Jet	Jet	Jet	Jet	Jet	Jet	Comp	Jet	Comp	Jet	Comp	(PNdB)
		-	ies,		i	. u. t.:							
	118.5	113	115	£113	109	102	92	75	78	44	61	62	121.0
l	114.5	109	111	601	105	86	88	75	74	7.4	57	62	117.0
	117.0	111	113	111	107	100	8	75	92	74	60	62	119.0
	113.0	107	109	106	103	86	98	7.5	22	74	56	62	114.5
-	106.0	82	82	82	2	75	7.0	101	65	102	60	100	119.0
	97.0	85	82	8	80	75	70	91	65	92	99	96	111.0
												- 1	
=	125.5	113	118	121	118	114	108	87	ક્ષ	98	77	74	130
	121.0	109	114	117	114	110	102	37	91	98	73	7.4	126
-	122.0	110	116	117	115	111	104	87	8	98	73	74	126.5
pod	118.0	106	112	112	111	107	100	87	98	98	69	74	112.0
f	99.0	93	\$	93	68	83	75	· 98	61	85	4	7.5	107
1	95.0	68	90	68	8	78	20	19	61	09	43	20	97
	96.0	06	16	90	38	80	22	82	58	81	41	89	105
	92.5	98	87	98	18	92	89	57	25	56	37	43	8,
- 1												**************************************	
- 1	111.5	101	100	86	24	68	20	101	79	107	7.4	103	124
~	101.5	97	96	94	96	85	98	7.7	75	82	22	78	105
										_	_		

SECTION 3.0 AIRPLANE WEIGHT EFFECTS

The Airframe Design Report - Part A, Weight and Balance, gives an Operating Empty Weight breakdown of the GE and P&WA powered airplanes. Table 3-A lists these comparative weights as they are modified by the August 8, 1966 engine data and other related airplane changes.

The 760-lb weight change in the P&WA powered airplane increases the Manufacturer's Empty Weight, Operating Empty Weight and Zero Fuel Weight of the following P&WA powered airplanes:

- a. 635,000-lb gross weight design point airplane
- b. 675, 000-lb gross weight production international airplane
- c. 635,000-lb gross weight prototype airplane
- d. 575,000-lb gross weight production domestic airplane

TABLE 3-A
OPERATING EMPTY WEIGHT

GROUP	GE	P&WA
Engines	44, 950	42,560
Nacelle	12,300	12,900
Horizontal Tail	20,400	20,460
Engine Accessories - ADS	1,100	1,160
Anti-Icing and Anti-Fogging	280	330
Starting System	400	430
Fuel System	7,406	7,510
Hydraulic System	3,600 ⁽¹⁾	3,429
Body Structure	47,300	47,220
Other	149,770	149,770
Operational Empty Weight (Max. design taxi weight 675,000 lb)	287,500	285,760
Original Operating Empty Weight	287,500	285,000
Weight Change	0	+760 lb

⁽¹⁾ Includes effect of ram air turbine - B-2707 (GE) only

SECTION 4.0 AIRPLANE PERFORMANCE

The effect of the changes in engine data on the standard day payload-range capability are illustrated in Fig. 4-1 for the international B-2707 and Fig. 4-2 for the domestic airplane. As noted, there is no significant effect on the standard day range of the B-2707 (GE). The improved specific fuel consumption of the Pratt & Whitney Aircraft engine results in slightly less than 2 percent increase in range. The effect of temperature changes from standard day on range are shown in Fig. 4-3 for the B-2707 (GE) and Fig. 4-4 for the B2707 (P&WA). There is no change for the B-2707 (P&WA) curve since the effect of temperature on the engine data did not change.

Figures 4-5 and 4-6 show the off-loaded supersonic range capability and corresponding transonic thrust margins for the airplanes. The range performance with a mixed subsonic and supersonic mission is shown in Fig. 4-7. Figures 4-8 and 4-9 show fuel, time, and distance breakdowns for a nominal, standard day, intercontinental mission at a maximum sonic-boom overpressure of 2.5 psf for both airplanes.

Summaries of takeoff performance, using maximum augmented thrust, are shown in Figs. 4-10 and 4-11. The significant change in takeoff performance is in the airport and community noise of the B-2707 (GE). The changes in noise characteristics are shown in more detail by the noise contours around the airport in Figs. 4-12 through 4-15.

The noise data shown on the preceding curves are based on the engines as proposed by the engine contractors with the use of a sonic throat in the inlet at reduced powers. With the Boeing noise suppressor, the August 8, 1966 General Electric engine data have resulted in an additional 1 PNdb reduction in the airplane's noise characteristics at maximum augmented thrust. Noise contours with the Boeing jet suppressor are compared in Fig. 4-16 for the B-2707 (GE).

The only change in landing performance for the airplanes caused by the changed engine data is in the approach noise for the B-2707 (GE) as shown in Figs. 4-17 and 4-18. Figure 4-19 shows the B-2707 (P&W) landing performance.

Figure 4-1. Payload-Range, International Model B-2707

Figure 4-2. Payload-Range, Domestic Model B-2707

Figure 4-3. Effect of Temperature Change on Range Model B-2707 (GE)

Figure 4-4. Effect of Temperature Change on Range Model B-2707 (P&WA)

Figure 4-5. Off-Loaded Airplane Performance Model B-2707 (GE)

Figure 4-6. Off-Loaded Airplane Performance Model B-2707 (P&WA)

Figure 4-7. Operational Versatility Model B-2707

Fuel burned not included in mission fuel; for D.O.C. only

Figure 4-8 R-2707 (GE) International Supersonic Cruise Mission

Tab OE Pay Wh Eng Wa Std Pha Blo	Jond 50,000 lb ng Aren 9,000 sq ft gine PWAJTF17A-21B = 687 lb/sec Dny, Zero Wind use III Rules ck Time 3.400 hr	ALT = 61,000 FT CLIMB A PMAX = 2.5 PSF 4 • 1 2 3	M = 2.7 6 CRUISE Description A PMAX =	CLIMB	ALT = 68 DESCE A PMA PMA 10	NT
F3 F 0	ek Fuel 297, 890 lb	Fuel Burned (lb)	Fuel Remaining (lb)	Weight At End of Operation (lb)	Time (hr)	Distance (nmi)
t.	Taxi-out	2,880	336,360	672,120	0.167	
2.	Takeoff (Sea level to 35 ft)	4,385	331,975	667,735	0.010	
3.	Acceleration to climb speed	4,880	327,095	662,855	0. ษา๋3	10
4.	Departure air maneuver allowane (250 kts EAS & 5,000 ft)	e 3,160	323,935	659,695	0.067	
5.	Acceleration and climb	95,400	228,535	564, 295	0.570	422
6.	Supersonic cruise climb	181,626	46,909	382,669	2.051	3,180
7.	K N. Deceleration and descent (cruise altitude to 1,500 ft)	2,070	44,839	380, 599	0.326	196
n.	Destination air maneuver (Approach & Landing Allow- ance, 250 km EAS at 5,000 ft) WT ~ WT at (8) ~ 5% block fuel	2,234	42,605	378,365	0.083	
10,	Tuxi-in	(1, 255)*			0.083	
	TOTAL MINNION	296,635			3.400	3,808
lto	NOT Y COM					
A .	5 percent block fuel	14,895		363,470		
11 ,	Mesocial approach (climb received to 1,500 ft)	2, 200		361,270		
C.	s in the front 1,500 ft nubeonic weight, deacend to sen level at alth (800 st mi)	17,670		343,600		
Ð.	20 min hold at 15,000 ft over alternate	7, H40		335,760		
ŢC	YTAL RESERVES	42,605				
TO	TAL FUEL	339, 240				

• Fuel burned not included in mission fuel; for D.O.C. only

Figure 4-9 B-2707 (P&WA) International Supersonic Cruisa Mission

Figure 4-10. Takeoff Performance Model B-2707 (GE)

Figure 4-11. Takeoff Performance Model B-2707(P&WA)

Figure 4-12. Noise Contours, International Mission, Standard Day Model B-2707 (GE)

Noise Contours, International Mission, Standard Day Model B-2707 (P&WA) Figure 4-13.

Figure 4-14. Noise Contours, Domestic Mission, Standard Day Model B-2707 (GE)

Figure 4-15. Noise Contours, Domestic Mission Standard Day Model B-2707 (P & WA)

李本本

歴史学

Figure 4-16. Noise Contours, Boeing Jet Suppressor, Model B-2707 (GE)

Figure 4-17. Landing Performance Model B-2707 (GE)

Figure 4-18. Landing Noise Contours, International Mission B-2707 (GE)

Figure 4-19. Landing Performance Model B-2707 (P&WA)