Doep Generalive Models

Deep Directed Networks-

If all notes are binary and all CPDs are logistic functions, this is called a sigmoid belief not.

 $p(\lambda_1, \lambda_2, \lambda_3, v | \Theta) = \prod_{k} \text{Ber}(v_i | \text{sign}(\lambda_1, v_0)) \prod_{k} \text{Ber}(\lambda_1, | \text{sign}(\lambda_2, v_1)).$ $\prod_{k} \text{Ber}(\lambda_2, k | \text{sign}(\lambda_3, v_2, v_2)) \prod_{k} \text{Ber}(\lambda_3, | w_3).$

Inference is intractable since the posterior on hidden nodes is correlated due to the explaining away.

Deep Boltemann Machines

Coretruit a deep undereded model by stacking a series of RB115 on top of each other.

g(h, h, h, h, v) = Lexp(\(\sigma\) voh; \(\lambda\); \(\frac{1}{jk}\) hidden-hidden interactions interactions

One can efficiently perform black Gibts sampling since all nodes in each layer are conditionally independent of each other given the layers above and below.

Doop Relief Notworks-

"Partially directed and partially undirected"

p(h1,h2,h3,v/d) = Ther(vi/sigm(h1,vi)) Ther(hij/sigm(h2,vsj)

Lo exp (Lo h2 h2 h3 h3 h3 h).

For a model of the form p(h,h,v/V).

 $p(h_3 v/W) = \sum_{k} p(h_2 h_3 v/W_1)$,

 \Rightarrow $p(h,,v/M) = \frac{1}{2a_0} exp(v^T W_1 h_2).$

This is equivalent to an RSM.

Thus, we can infer the poterior p(h,lv,h) in the DON exactly as in the RBM.

Near, p(h,/M) is the complementing prior.

=> p(h,v/W) = p(v/h) p(h,/M)

The fig-down inference in a PBN is not tradable, so DBNs are usually used in a fedforward manner.

Greedy layer-vise learning of PBNS -

- D Fit an RBM to learn M.
- 2) Unroll the RBM into a PBN with 2 hidden layers.
- 3) Freeze N, and let N be untild bearn p(h,/N) by filling a second RBM with inputs as activation of hidden units E(h,/V,N).
- if) Continue to ild more layers.

Following predy layer-wise training strategy, it is standard to "fine Rure" the weights using a technique called backfilling.

 λ — λ — λ