Spatial Transformer Layer

2021年4月1日 18:5

CNN is not invariant to scaling and rotation.

这个layer 也是一个nn 这个nn 和cnn 一起 train, 也可以 transoform cnn所有layer

· How to transform an image/feature map

Layer l-1 a_{11}^{l-1} a_{12}^{l-1} a_{13}^{l-1} a_{21}^{l-1} a_{22}^{l-1} a_{33}^{l-1} a_{32}^{l-1} a_{33}^{l-1}

Layer l			
a_{11}^l	a_{12}^l	a_{13}^l	
a_{21}^l		a_{23}^l	
a_{31}^l	a_{32}^l	a_{33}^l	

General layer:
$$a_{nm}^l = \sum_{i=1}^s \sum_{j=1}^s w_{nm,ij}^l a_{ij}^{l-1}$$

If we want translate as above: $a_{nm}^l = a_{(n-1)m}^{l-1}$

给weight做不同的设计,可以达到旋转缩放平移

• How to transform an image/feature map

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} e \\ f \end{bmatrix}$$
 6 parameters to describe the affine transformation

先做一个线性变换(找到要识别的图像)再继续运算

<u>产生问题:每个图片的参数都应该是不同的,这是怎么达到的</u> <u>呢</u>

Spatial Transformer Layer

得到没有的index怎么办:取一个最近的。

what 's the problem?

可以用gradient descent解吗? 不可以的, Gradient is always 0. Have no way to train the NN.

So how to solve it?

Interpolation

6 parameters to describe the affine transformation

a_{11}^l	a_{12}^l	a_{13}^l	
a_{21}^l	a_{22}^l	a_{23}^l	Layer I
a_{31}^l	a_{32}^l	a_{33}^l	

这样就可以微分啦!

原始paper

Localisation net 就是前面提到的6 个参数的NN

