1.1 Regression Task

- (a) Forward the data through the model
 - Compute loss
 - Zero gradients
 - Step in the opposite direction of the gradient
- (b) Forward pass. Given f is ReLU and g is the identity function.

Layer	Input	Output
$Linear_1$	x	$W^{(1)}x + b^{(1)}$
f	$W^{(1)}x + b^{(1)}$	$\left[W^{(1)}x + b^{(1)}\right]^+$
Linear ₂	$\left[W^{(1)}x + b^{(1)}\right]^+$	$W^{(2)} \left[W^{(1)} x + b^{(1)} \right]^+ + b^{(2)}$
g	$W^{(2)} \left[W^{(1)} x + b^{(1)} \right]^+ + b^{(2)}$	$W^{(2)} \left[W^{(1)} x + b^{(1)} \right]^+ + b^{(2)}$
Loss	$W^{(2)} [W^{(1)}x + b^{(1)}]^+ + b^{(2)}, y$	$\frac{1}{2} \left(W^{(2)} \left[W^{(1)} x + b^{(1)} \right]^+ + b^{(2)} - y \right)^2$

(c) Backward pass.

Parameter	Gradient
$W^{(1)}$	$\frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} W^{(2)} \frac{\partial z_2}{\partial z_1} x$
$b^{(1)}$	$\frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} W^{(2)} \frac{\partial z_2}{\partial z_1}$
$W^{(2)}$	$\frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} z_2 = \frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \left[W^{(1)} x + b^{(1)} \right]^+$
$b^{(2)}$	$rac{\partial l}{\partial \hat{y}}rac{\partial \hat{y}}{\partial z_3}$

(d)
$$\frac{\partial z_2}{\partial z_1} = \begin{cases} 1, & \text{if } z_1 > 0 \\ 0, & \text{otherwise} \end{cases}$$

$$\frac{\partial \hat{y}}{\partial z_3} = 1$$

$$\frac{\partial \hat{y}}{\partial z_3} = 1$$
$$\frac{\partial l}{\partial \hat{y}} = \hat{y} - y$$

1.2 Classification Task

(a) Forward Pass

Layer	Input	Output
Linear ₁	x	$W^{(1)}x + b^{(1)}$
f	$W^{(1)}x + b^{(1)}$	$\left[1 + \exp\left(-W^{(1)}x - b^{(1)}\right)\right]^{-1}$
Linear ₂	$\left[1 + \exp\left(-W^{(1)}x - b^{(1)}\right)\right]^{-1}$	$W^{(2)} \left[1 + \exp\left(-W^{(1)}x - b^{(1)} \right) \right]^{-1} + b^{(2)}$
g	$W^{(2)} \left[1 + \exp\left(-W^{(1)}x - b^{(1)} \right) \right]^{-1} + b^{(2)}$	$\left[1 + \exp\left(-W^{(2)}\left[1 + \exp\left(-W^{(1)}x - b^{(1)}\right)\right]^{-1} - b^{(2)}\right)\right]^{-1}$
Loss	$\left[1 + \exp\left(-W^{(2)}\left[1 + \exp\left(-W^{(1)}x - b^{(1)}\right)\right]^{-1} - b^{(2)}\right)\right]^{-1}, y$	$ \frac{1}{2} \left(\left[1 + \exp\left(-W^{(2)} \left[1 + \exp\left(-W^{(1)} x - b^{(1)} \right) \right]^{-1} - b^{(2)} \right) \right]^{-1} - y \right)^{2} $

Backward Pass (Need to change $W^{(2)}$)

Parameter	Gradient	
$W^{(1)}$	$\frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} W^{(2)} \frac{\partial z_2}{\partial z_1} x$	
$b^{(1)}$	$\frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} W^{(2)} \frac{\partial z_2}{\partial z_1}$	
$W^{(2)}$	$\frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \left[1 + \exp\left(-W^{(1)}x - b^{(1)}\right) \right]^{-1}$	
$b^{(2)}$	$\frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3}$	

Elements of $\frac{\partial l}{\partial \hat{y}}$, $\frac{\partial \hat{y}}{\partial z_3}$, $\frac{\partial z_2}{\partial z_1}$

$$\frac{\partial l}{\partial \hat{y}} = \hat{y} - y \qquad \text{(Same as 1.1)}$$

$$\frac{\partial \hat{y}}{\partial z_3} = \frac{e^{-z_3}}{\left(1 + e^{(-z_3)}\right)^2}$$

$$\frac{\partial z_2}{\partial z_1} = \frac{e^{-z_1}}{(1 + e^{(-z_1)})^2}$$

(b) Forward Pass

Layer	Input	Output
Linear ₁	x	$W^{(1)}x + b^{(1)}$
f	$W^{(1)}x + b^{(1)}$	$\left[1 + \exp\left(-W^{(1)}x - b^{(1)}\right)\right]^{-1}$
Linear ₂	$\left[1 + \exp\left(-W^{(1)}x - b^{(1)}\right)\right]^{-1}$	$W^{(2)} \left[1 + \exp\left(-W^{(1)}x - b^{(1)} \right) \right]^{-1} + b^{(2)}$
g	$W^{(2)} \left[1 + \exp\left(-W^{(1)}x - b^{(1)} \right) \right]^{-1} + b^{(2)}$	$\left[1 + \exp\left(-W^{(2)}\left[1 + \exp\left(-W^{(1)}x - b^{(1)}\right)\right]^{-1} - b^{(2)}\right)\right]^{-1}$
Loss	$\left[1 + \exp\left(-W^{(2)}\left[1 + \exp\left(-W^{(1)}x - b^{(1)}\right)\right]^{-1} - b^{(2)}\right)\right]^{-1}, y$	$-y \log \left(\left[1 + \exp\left(-W^{(2)} \left[1 + \exp\left(-W^{(1)} x - b^{(1)} \right) \right]^{-1} - b^{(2)} \right) \right]^{-1} \right)$ $-(1 - y) \log \left(1 - \left[1 + \exp\left(-W^{(2)} \left[1 + \exp\left(-W^{(1)} x - b^{(1)} \right) \right]^{-1} - b^{(2)} \right) \right]^{-1} \right)$

Backward Pass

Parameter	Gradient	
$W^{(1)}$	$\frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} W^{(2)} \frac{\partial z_2}{\partial z_1} x$	
$b^{(1)}$	$\frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} W^{(2)} \frac{\partial z_2}{\partial z_1}$	
$W^{(2)}$	$\frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_3} \left[1 + \exp\left(-W^{(1)}x - b^{(1)}\right) \right]^{-1}$	
$b^{(2)}$	$rac{\partial l}{\partial \hat{y}}rac{\partial \hat{y}}{\partial z_3}$	

Elements of $\frac{\partial l}{\partial \hat{y}}$, $\frac{\partial \hat{y}}{\partial z_3}$, $\frac{\partial z_2}{\partial z_1}$

$$\frac{\partial l}{\partial \hat{y}} = -\left[\frac{y}{\hat{y}} + \left(-\frac{1-y}{1-\hat{y}}\right)\right] = \frac{1-y}{1-\hat{y}} - \frac{y}{\hat{y}} = \frac{\hat{y}-y}{\hat{y}(1-\hat{y})}$$
$$\frac{\partial \hat{y}}{\partial z_3} = \frac{e^{-z_3}}{\left(1 + e^{(-z_3)}\right)^2} \qquad \text{(Same as 1.2 (a))}$$

NetID: lw2350 name: Lizhong Wang

Homework 1

DS-GA 1008 Deep Learning October 2, 2020

$$\frac{\partial z_2}{\partial z_1} = \frac{e^{-z_1}}{(1 + e^{(-z_1)})^2}$$
 (Same as 1.2 (a))

- (c) Benefites of using ReLU:
 - Using ReLU can prevent the problem of vanishing gradients, which can happen if using Sigmoid.
 - Gradient of ReLU is easier to interpret and faster to compute than the gradient of Sigmoid.