1-1.9-6

EE24BTECH11005 - Arjun Pavanje

Question:

If
$$\mathbf{Q} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 is equidistant from $\mathbf{P} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$ and $\mathbf{R} = \begin{pmatrix} x \\ 6 \end{pmatrix}$, find the value of x . **Solution:**

Variable	Description
Q	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ point
P	$\begin{pmatrix} 5 \\ -3 \end{pmatrix}$ point
R	$\begin{pmatrix} x \\ 6 \end{pmatrix}$ point
X	value to be found

TABLE I: Variables Used

As, Q is equidistant from P, R

$$||Q - P|| = ||Q - R|| \tag{1}$$

$$||Q - P|| = ||Q - R||$$

$$\sqrt{(Q - P)^{T} (Q - P)} = \sqrt{(Q - R)^{T} (Q - R)}$$
(2)

$$(Q-P) = \begin{pmatrix} -5\\4 \end{pmatrix}, (Q-R) = \begin{pmatrix} -x\\-5 \end{pmatrix}$$

Putting values into equation (2) and squaring,

$$25 + 16 = x^2 + 25 \tag{3}$$

$$x^2 = 16 \tag{4}$$

$$x = \pm 4 \tag{5}$$

The required values of x are +4, -4

Fig. 1: Plot of P,Q,R