EEL7030 - Microprocessadores

Laboratório de Comunicações e Sistemas Embarcados

Prof. Raimes Moraes
EEL - UFSC

- □ Objetivo
 - Mostrar uso de pino de entrada e saída no STM32CubeMX
 - Mostrar geração de código no CubeMX e uso das funções HAL

- Crie projeto no STMCubeMX:
 - 1. New Project
 - 2. No MCU Selector: STM32F4 (series); STM32F429/439 (lines); LQFP144 (package); selecione: STM32F429ZITx

- ☐ Configuração do clock dos diferentes barramentos e periféricos:
 - 3. Selecionar RCC (*Reset and Clock Control*) e especificar *Crystal* como fonte de clock HSE (*High Speed External oscillators*)

- ☐ Configuração do clock dos diferentes barramentos e periféricos:
 - 4. TAB -> Clock Configuration
 - 5. Substituir cristal de 25 MHz por 8 MHz e seguir esquema abaixo:

☐ Configurar pino ao qual o LED está conectado (PG14) como pino de saída: GPIO_Output

6. Em TAB -> Pinout, clicar no pino e selecionar a opção como abaixo:

Conexão dos leds aos pinos

- ☐ Configurar pino de saída:
 - 7. TAB->Configuration->System->GPIO

8. Configurar pino de saída:

- GPIO mode: Push Pull
- No pull-up and pulldown
- Output speed: HIGH
- Clique OK

- ☐ Configuração da velocidade (*Output speed*) de alteração do estado do pino de saída (*rising* e *falling*)
 - Maior velocidade => maior ruído EMI e maior consumo do STM32;
 - Deve-se ajustar velocidade em função do periférico (para SPI a 45MHz, velocidade deve ser alta)

- 9. Para permitir depuração, configure pinos relacionados ao SWD (única opção no kit):
 - Configuração a ser realizada, usando: TAB->Pinout->SYS
 - Escolher SWD;

Forneça dados para geração do código:

- Menu -> Project -> Project Settings
- Digite Project name
- Digite Project location
- Escolha toolchain (MDK-ARM V5)
- Clique em Ok
- 11. Gere template para código:
 - Menu -> Project -> Generate Code
 - Open Project

Código Gerado

HAL_Init(): Função para inicialização da biblioteca HAL. Deve ser a primeira instrução a ser executada no programa: configura *prefetch* da Flash e memória cache para instruções e dados.

- 12. Abra o projeto no Keil
- 13. Deve-se inserir funções em main.c (em Application User)

/* USER CODE END 3 */

• Entre os rótulos/* USER CODE BEGIN 3 */ e /* USER CODE END 3 */, dentro do loop infinito while(1){ }, inserir as funções:

```
HAL_Delay // para inserir atraso

HAL_GPIO_WritePin // ou HAL_GPIO_TogglePin para piscar o led

/* USER CODE BEGIN 3 */
   /* Infinite loop */
while (1)
{
   HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14, GPIO_PIN_SET);
   HAL_Delay(500);

HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14, GPIO_PIN_RESET);
   HAL_Delay(500);
```

☐ Outra opção:

```
/* USER CODE BEGIN 3 */
  /* Infinite loop */
  while (1)
{
    HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);
    HAL_Delay(500);
}
/* USER CODE END 3 */
```

14. Para fazer o download do código no kit, pressione ALT+F7 e selecione o tab Debug:

☐ Clique em Settings e....

15. Verifique os campos abaixo:

e pressione o botão de reset do kit