A Note on Decidable Separability by Piecewise Testable Languages

Wojciech Czerwiński

Wim Martens

Lorijn van Rooijen

Marc Zeitoun

S separates K and L

S separates K and L

K and L are separable by family F if some S from F separates them

Given: two languages K and L from family F

Given: two languages K and L from family F

Question: are K and L separable by some language from family F₂

Given: two languages K and L from family F

Question: are K and L separable by some language from family F₂

Separability of F₁ by F₂

Given: two languages K and L from family F

Question: are K and L separable by some language from family F₂

Separability of F₁ by F₂

If F_I effectively closed under complement - generalization of membership

Given: context-free grammars for languages K and L

Given: context-free grammars for languages K and L

Question: are K and L separable by piecewise testable languages (PTL)?

Given: context-free grammars for languages K and L

Question: are K and L separable by piecewise testable languages (PTL)?

piece language

Given: context-free grammars for languages K and L

Question: are K and L separable by piecewise testable languages (PTL)?

piece language

$$\Sigma^* a_1 \Sigma^* a_2 \Sigma^* ... \Sigma^* a_n \Sigma^*$$

Given: context-free grammars for languages K and L

Question: are K and L separable by piecewise testable languages (PTL)?

piece language

$$\Sigma^* a_1 \Sigma^* a_2 \Sigma^* ... \Sigma^* a_n \Sigma^*$$

piecewise testable language

Given: context-free grammars for languages K and L

Question: are K and L separable by piecewise testable languages (PTL)?

piece language

$$\Sigma^* a_1 \Sigma^* a_2 \Sigma^* ... \Sigma^* a_n \Sigma^*$$

piecewise testable language

bool. comb. of pieces

Separability of CFL by

Separability of CFL by

• CFL - undecidable (intersection problem)

Separability of CFL by

- CFL undecidable (intersection problem)
- regular languages undecidable

Separability of CFL by

- CFL undecidable (intersection problem)
- regular languages undecidable
- any family containing $w\Sigma^*$ and closed under boolean combination undecidable

Our main result

Our main result

Theorem:

Separability of context free languages by piecewise testable languages is decidable

something nontrivial possible for separability of CFL

- something nontrivial possible for separability of CFL
- no algebra needed

- something nontrivial possible for separability of CFL
- no algebra needed
- piecewise testable languages are special

- something nontrivial possible for separability of CFL
- no algebra needed
- piecewise testable languages are special
- separability problem is special (deciding whether CFL is a PTL is undecidable)

Two semi-procedures

Two semi-procedures

One tries to show separability

Two semi-procedures

One tries to show separability

One tries to show non-separability

Two semi-procedures

One tries to show separability

One tries to show non-separability

Enumerates all piecewise testable languages and test them

Two semi-procedures

One tries to show separability

One tries to show non-separability

Enumerates all piecewise testable languages and test them

Enumerates all patterns and test them

Second main result

Second main result

Theorem

Languages K and L are non-separable by PTL if and only if there exists a pattern p, that fits both to K and L

Second main result

Theorem

Languages K and L are non-separable by PTL if and only if there exists a pattern p, that fits both to K and L

It is decidable whether pattern p fits to CFL L

Pattern p over Σ consists of:

Pattern p over Σ consists of:

words $w_0, w_1, ..., w_n$ in Σ^*

Pattern p over Σ consists of: words $w_0, w_1, ..., w_n$ in Σ^*

subalphabets $B_1, ..., B_n$ of Σ

Pattern p over Σ consists of: words $w_0, w_1, ..., w_n$ in Σ^* subalphabets $B_1, ..., B_n$ of Σ

 B^{\otimes} = words from B^{*} that contain all the letters from B

Pattern p over Σ consists of: words $w_0, w_1, ..., w_n$ in Σ^* subalphabets $B_1, ..., B_n$ of Σ

 B^{\otimes} = words from B^{*} that contain all the letters from B

Pattern p fits to a language L if for all $k \ge 0$ intersection of L and $w_0 (B_1^{\otimes})^k w_1 ... w_{n-1} (B_n^{\otimes})^k w_n$ is nonempty

The same construction works for separating:

The same construction works for separating:

languages of Petri Nets

The same construction works for separating:

- languages of Petri Nets
- languages of Higher Order Pushdown
 Automata of order 2

The same construction works for separating:

- languages of Petri Nets
- languages of Higher Order Pushdown
 Automata of order 2
- every well-behaving family of languages

Family of languages over Σ is a full-trio if it is effectively closed under:

Family of languages over Σ is a full-trio if it is effectively closed under:

• removing letters from subalphabet $B \subseteq \Sigma$

Family of languages over Σ is a full-trio if it is effectively closed under:

- removing letters from subalphabet $B \subseteq \Sigma$
- adding letters from subalphabet $B \subseteq \Sigma$

Family of languages over Σ is a full-trio if it is effectively closed under:

- removing letters from subalphabet $B \subseteq \Sigma$
- adding letters from subalphabet $B \subseteq \Sigma$
- intersection with regular languages

Diagonal problem

Diagonal problem

Given: word language L over alphabet Σ

Diagonal problem

Given: word language L over alphabet Σ

Question: does there exists for every n a word in L containing each letter from Σ at least n times?

Generalized theorem

Generalized theorem

Theorem:

For every full-trio F with decidable diagonal problem separability of F by PTL is decidable

complexity of separability of CFL by PTL

- complexity of separability of CFL by PTL
- is separability of CFL by some other nontrivial family decidable?

- complexity of separability of CFL by PTL
- is separability of CFL by some other nontrivial family decidable?
 - group languages?

- complexity of separability of CFL by PTL
- is separability of CFL by some other nontrivial family decidable?
 - group languages?
 - solvable group languages?

- complexity of separability of CFL by PTL
- is separability of CFL by some other nontrivial family decidable?
 - group languages?
 - solvable group languages?
- connections with other problems

Thank you!