Odhad priemernej spotreby paliva v automobile

Výrobca automobilu udáva, že priemerná spotreba paliva so 40% podielom diaľnice je 12,5 l/100km.

Testovací jazdec podrobil 14 automobilov meraniu spotreby v rôznych podmienkach. Nameraná spotreba je v nasledovnej tabuľke:

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14
I/100 km	12,8	13,5	14,2	13,6	14,1	14,5	13,6	13,9	14,3	15,1	13,7	13,4	13,9	14,2

1. Bodový odhad strednej hodnoty

Nevychýleným odhadom strednej hodnoty je aritmetický priemer:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{194.8}{14} = 13,91429 \text{ (I/100km)}$$

2. Bodový odhad rozptylu (disperzie)

Nevychýleným odhadom rozptylu je výberový rozptyl (disperzia)

$$S_x^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2 = \frac{4,017}{13} = 0,309$$

Výberová smerodajná odchýlka – odmocnina z rozptylu

$$S_x = \sqrt{S_x^2} = 0.55588$$

3. Intervalový odhad strednej hodnoty

Keďže poznáme iba odhad rozptylu základného súboru, použijeme vzťah

$$\begin{split} P\big(\overline{x} - \delta_x &\leq \mu_x \leq \overline{x} + \delta_x\big) = 1 - \alpha \\ \text{kde} \qquad \delta_x &= \frac{S_x}{\sqrt{N}} t_{\frac{1 - \alpha}{2}} \end{split}$$

t je kvantil Studentovho rozdelenia s N-1 stupňami voľnosti.

Pre hladinu významnosti α =0,05 $t_{1-\frac{\alpha}{2}}=2,160369$

$$\delta_{x} = \frac{S_{x}}{\sqrt{N}} t_{1-\frac{\alpha}{2}} = \frac{\sqrt{0,309}}{\sqrt{14}} 2,16 = 0,320954$$

S pravdepodobnosťou 95% sa skutočná priemerná spotreba automobilu bude pohybovať v intervale

$$\left\langle \overline{x}-\delta_{x};\overline{x}+\delta_{x}\right\rangle =\left\langle 13{,}59333\text{ ; }14{,}23524\right\rangle$$

Čo vplýva na veľkosť intervalu?

Hladina významnosti α (hodnota kvantilu)

$$\begin{array}{ll} \text{pre } \alpha = \!\! 0,\! 1 & \left\langle \overline{x} - \delta_x; \overline{x} + \delta_x \right\rangle = \left\langle \!\! 13,\!65118 \right.; 14,\!17739 \right\rangle \\ \text{pre } \alpha = \!\! 0,\! 05 & \left\langle \overline{x} - \delta_x; \overline{x} + \delta_x \right\rangle = \left\langle \!\! 13,\!59333 \right.; 14,\!23524 \right\rangle \\ \text{pre } \alpha = \!\! 0,\! 01 & \left\langle \overline{x} - \delta_x; \overline{x} + \delta_x \right\rangle = \left\langle \!\! 13,\!46676 \right.; 14,\!36181 \! \right\rangle \end{array}$$

Nižšie α znamená širší interval – pri nižšej hodnote α sa musí do intervalu "vojsť" viac hodnôt. Hodnota α korešponduje s percentom hodnôt mimo intervalu.

Rozptyl nameraných údajov S_x²

Vyšší rozptyl znamená väčšiu šírku intervalu – čím je menší rozptyl v údajoch, tým presnejšie môžeme odhadovať strednú hodnotu.

Počet nameraných údajov N

S rastúcim N sa interval zužuje – máme viac údajov a teda presnejšiu informáciu.

4. Testovanie hypotézy (t-test)

Testujeme hypotézu, že priemerná spotreba paliva so 40% podielom diaľnice je 12,5 l/100km, ako udáva výrobca.

Nulová hypotéza: H_0 : $\mu = \mu_0$, kde $\mu_0 = 12,5$ (I/100km).

Nulovú hypotézu H_0 prijímame, ak bude platiť nerovnosť $\left|t\right| \leq t_{_{1-\underline{\alpha}}}$,

$$kde \hspace{1cm} t = \frac{\overline{x} - \mu_x}{S_x} \sqrt{N} \in St \big(N-1\big).$$

Z údajov výberového súboru vypočítame $t = \frac{13,91429-12,5}{0,5558} \sqrt{14} = 9,52103 \,.$ Keďže $t_{1-\frac{\alpha}{2}} = 2,160369 \qquad \Rightarrow \qquad \boxed{|t| > t_{1-\frac{\alpha}{2}}}$

Keďže
$$t_{1-\frac{\alpha}{2}}=2,160369$$
 \Rightarrow $|t|>t_{1-\frac{\alpha}{2}}$

Na hladine významnosti 5% zamietame hypotézu o priemernej spotrebe 12,5 I/100km.

MATLAB:

funkcia *ttest* (Statistics and Machine Learning Toolbox)

h=ttest(x) Returns a test decision for the null hypothesis that the data in x comes from a normal distribution with mean equal to zero and unknown variance.

h = 1The result h is 1 if the test rejects the null hypothesis at the 5% significance level, and 0 otherwise.

Na hladine významnosti 5% zamietame hypotézu o nulovej strednej hodnote.

h=ttest(x, 12.5) Returns a test decision for the null hypothesis that the data in x comes from a normal distribution with mean 12.5 and unknown variance.

h = 1 Na hladine významnosti 5% zamietame hypotézu o priemernej

spotrebe 12,5 l/100km.

h=ttest(x, 13.8)

h = 0

Na hladine významnosti 5% prijímame hypotézu o priemernej spotrebe 13,8 l/100km.