Statistics - Math 2606

Kevin Chen, William Gantt, Nick Barnes

1 Experiment

2 Results

Our estimates for the standard deviation of the measurements, up to an order of magnitude, are as follows:

 $\sigma_{h_1} = 1 \text{cm}$

 $\sigma_{d_1} = 1 \mathrm{dm}$

 $\sigma_{d_2}=1\mathrm{m}$

Measurement #	h_1	d_1	d_2	h_2
1	1.78	1.12	10.86	17.26
2	1.77	1.2	11.04	16.28
3	1.76	1.25	11.57	16.29
4	1.77	1.41	12.41	15.58
5	1.77	1.46	13.49	16.35
6	1.77	1.66	14.76	15.74
7	1.76	1.69	16.18	16.85
8	1.77	1.84	17.72	17.05
9	1.78	1.87	19.34	18.41
10	1.77	2.25	21.02	16.54
mean	1.77	1.575	14.839	16.635

Figure 1: Measurements for iris height (h_1) , the distance from the mirror to Will (d_1) , the distance from Searles to the mirror (d_2) , and the resultant estimate of the height of Searles (h_2) . All units are in meters.