NOTAS PARA MARCAÇÃO DA BORDA-LIVRE NACIONAL (NAVEGAÇÃO INTERIOR)

NORMAM 02

ANEXO 6-B

ENGENHEIRO NAVAL: DENIS NASCIMENTO

NOME DA EMBARCAÇÃO: ベビーメタル (Baby Metal)

ARMADOR: Kao 先生 (Professor Kao) PORTO DE INSCRIÇÃO: ____

AROUEAÇÃO BRUTA: 1551

INDICATIVO DE CHAMADA: 0000

TIPO DE SERVIÇO: TRANSPORTE DE PASSAGEIROS E DE CARGA

1 - CARACTERIZAÇÃO DA ÁREA DE NAVEGAÇÃO

DESCRIÇÃO DA ÁREA DE OPERAÇÃO: A embarcação operará em uma rota que em quase toda a sua parte é de área 1, contudo em alguns pequenos trechos ela navegará em área 2.

AREA DE NAVEGAÇÃO: ()1 (X)2

2 - CARACTERIZAÇÃO DO TIPO DE EMBARCAÇÃO

DESCRIÇÃO DO TIPO DE EMBARCAÇÃO: A embarcação possui $60\,\mathrm{m}$ de comprimento, e seu objetivo é transportar passageiros e transportar cagas (geral e frigorificada). Ademais, ela possui 3 conveses e 16 tripulantes.

TIPO DE EMBARCAÇÃO: ()A (X)B ()C ()D ()E

3 - DETERMINAÇÃO DO FATOR DE FLUTUABILIDADE (f)

Comprimento de Regra $(L) = 58,76 \, \mathrm{m}$ Fator de Flutuabilidade (r) = 0,2027

4 - CARACTERIZAÇÃO DAS SUPERESTRUTURAS FECHADAS

a) SUPERESTRUTURA 1:

Descrição: Superestrutura do Convés Superior Comprimento Real da Superestrutura (S): 46,43 m Boca da Embarcação (na metade do comp. S) (Bs): 12,00 m Largura da Superestrutura (na metade do comp. S) (b): 11,87 m Comp. Efetivo da Superestrutura (E) = (b/B) \times S: 45,93 m Altura da Superestrutura (he): 2,10 m he²/Hn (caso (he²/Hn) > he, assumir (he²/Hn) = he): 2,10 m (he²/Hn) \times (E/L) = 1,6414 m

b) SUPERESTRUTURA 2:

Descrição: Superestrutura do Convés do Passadiço Comprimento Real da Superestrutura (S): $26.05 \, \mathrm{m}$

Boca da Embarcação (na metade do comp. S) (Bs): 12,00 m Largura da Superestrutura (na metade do comp. S) (b): 11,74 m Comp. Efetivo da Superestrutura (E) = (b/B) \times S: 25,49 m Altura da Superestrutura (he): 2,10 m he²/Hn (caso (he²/Hn) > he, assumir (he²/Hn) = he): 2,10 m (he²/Hn) \times (E/L) = 0,91 m

5 - DETERMINAÇÃO DO PONTAL PARA BORDA-LIVRE (D)

Pontal Moldado $(P) =$		3,25 m
Espessura do Trincaniz	(e) =	0,00 m
D = P + e =		3,25 m

Obs.: Caso a embarcação possua trincaniz arredondado de raio superior a 4% da boca, o pontal para borda-livre deverá ser corrigido de acordo com o estabelecido no Artigo $0614\;b)$ das Regras.

6 - CÁLCULO DA ALTURA EQUIVALENTE DE SUPERESTRUTURA (hs)

$\sum [(he^2/Hn) \times (E/L)] =$	2,5514 m
$550 \times r \times D =$	362,33 m
$hs = 500 \times \sum [(he^2/Hn) \times (E/L)] =$	1275,7 mm

- (X) valor calculado menor ou igual a $550 \times r \times D$; usar valor calculado.
- () valor calculado maior que $550 \times r \times D$; adotar $hs = 550 \times r \times D$.

7 - CÁLCULO DO TOSAMENTO MÉDIO (Ym)

POSIÇÃO	ORDENADA DO TOSAMENTO (mm)	FATOR DE MULTIPLICAÇÃO	PRODUTO (mm)
L/2 AR da MN	0	1	0
L/3 AR da MN	0	4	0
L/6 AR da MN	0	2	0
MN	0	4	0
L/6 AR da MN	0	2	0
L/3 AR da MN	0	4	0
L/2 AR da MN	0	1	0

$$Ym = (\sum produto)/18 = 0,0 mm$$

$$350 \times r \times D = 230,57 mm$$

⁽X) valor calculado para Ym menor ou igual a $350\times r\times D;$ usar valor calculado.

^() valor calculado maior que $350\times r\times D;$ adotar $Ym=350\times r\times D.$

8 - CÁLCULO DA BORDA-LIVRE

Coeficiente K (Área 1):
$$0 \text{ mm}$$
Coeficiente K (Área 2): 100 mm
 $hs + Ym = 1275,7 \text{ m}$
 $750 \times r \times D = 494,1 \text{ m}$

- () valor calculado para hs+Ym menor ou igual a $750 \times r \times D$; usar valor calculado.
- (X) valor calculado maior que $750 \times r \times D$; adotar $Ym = 750 \times r \times D$.
 - a) Área de Navegação 1:

$$BL = \left[\left((1000 \times r \times D) - (hs + Ym)/(1 + r)\right)\right] + K = 136,92 \text{ mm}$$
 Correção para Embarcações Tanque $(25\% \text{ BL}) = 0 \text{ mm}$
$$BL_1(\text{Área 1}) = 136,92 \text{ mm}$$

- (X) valor calculado para BL_{1} maior ou igual a $50\;mm\,;$ usar esse valor.
- () valor calculado para BL_1 menor que $50\;mm\,\text{;}$ adotar $BL_1=50\;mm\,\text{.}$
 - b) Área de Navegação 2:

$$BL = \left[\left((1000 \times r \times D) - (hs + Ym)/(1 + r)\right)\right] + K = 236,92 \text{ mm}$$
 Correção para Embarcações Tanque $(25\% \text{ BL}) = 0 \text{ mm}$
$$BL_2(\text{Área 2}) = 236,92 \text{ mm}$$

- (X) valor calculado para BL_2 maior ou igual a $50\;mm\,\textsc{;}$ usar esse valor.
- () valor calculado para BL_2 menor que $50\;mm\,;$ adotar $BL_2=50\;mm\,.$

9 - VERIFICAÇÃO DO CALADO MÁXIMO ATRIBUÍDO PARA A ÁREA 1

Calado máximo na borda-livre calculada para a Área 1 = $D-BL_1=3,113\;m$.

Calado máximo permissível que a embarcação pode navegar em função de limitações de resistência estrutural, estabilidade intacta ou quaisquer outras restrições estabelecidas pelo projetista: 2,00 m;

Calado máximo permissível em função da posição das aberturas existentes no costado, de acordo com o estabelecido nos itens $0611\ c)$ e $0612\ d)$: $xx\,m$;

Calado máximo (H); equivalente ao menor calado entre os quatro calados apresentados acima: $2.00\,\mathrm{m}$; e

$$BL_1 = D - H = 1,25 \text{ m} = 1250 \text{ mm}$$
.

10 - VERIFICAÇÃO DO CALADO MÁXIMO ATRIBUÍDO PARA A ÁREA 2

Calado máximo na borda-livre calculada para a Área 2 = $D-BL_2=3{,}013\;m\,.$

Calado máximo permissível que a embarcação pode navegar em função de limitações de resistência estrutural, estabilidade intacta ou quaisquer outras restrições estabelecidas pelo projetista: $2,00\,\mathrm{m}$;

Calado máximo permissível em função da posição das aberturas existentes no costado, de acordo com o estabelecido no item $0.612 \, d)$: $xx \, m$;

Calado máximo permissível para as embarcações dos Tipos B ou D que operam na Área 2, de acordo com o estabelecido nos itens 0612 i) = 0612 j): xx m;

Calado máximo (H); equivalente ao menor calado entre os quatro calados apresentados acima: $xx\,m$; e

$$BL_2 = D - H = 1,25 \text{ m} = 1250 \text{ mm}$$
.

11 - ACRÉSCIMO PARA NAVEGAÇÃO EM ÁGUA SALGADA (AS)

$$AS = \frac{D - BL}{48} = 41,67 \text{ mm}$$

Obs.: Caso a embarcação opere nas duas Áreas de Navegação (1 e 2) deverá ser utilizado na expressão acima o valor de BL calculado para a Área 2.

12 - CORREÇÃO PARA A POSIÇÃO DA LINHA DE CONVÉS

Obs.: Esta correção só é aplicável quando não for possível ficar a marca da linha do convés na posição regulamentar.

A distância vertical da margem superior da linha do convés até a interseção dos prolongamentos da face superior do Convés de Borda-Livre e da face externa do chapeamento do costado $= xx \ mm$.

Correção = xx mm.

(Conveção de sinais: positivo quando a margem superior da linha do convés se encontrar acima da interseção; negativo quando a margem superior da linha de convés se encontrar abaixo).

 $BL_1 = xx mm$

 $BL_2 = xx mm$

13 - POSIÇÃO LONGITUDINAL DAS MARCAS DE BORDA-LIVRE

O centro do disco de Plimsoll deverá ser fixado a xx mm do pico de proa da embarcação.

14 - INFORMAÇÕES ADICIONAIS

Informar qualquer aspecto relevante considerado durante o cálculo de borda-livre.

No item 4 deste documento só foram consideradas as superestruturas do convés superior e do convés do passadiço, uma vez que no convés principal não há uma superestrutura fechada, segundo o item 0608 da NORMAM 02.

Data: 10/01/2020

DENIS NASCIMENTO

Nome e assinatura do responsável pelos cálculos