Integrali indefiniti

immediati		immediati generalizzati
$\int k dx = k x + c$	dove k è una costante	un integrale generalizzato si ottiene da un integrale immediato sostituendo x con $f(x)$ e dx con $f'(x)$ dx
$\int x^n dx = \frac{x^{n+1}}{n+1} + c$	$n \neq -1$	$\int [f(x)]^n \cdot f'(x) dx = \frac{[f(x)]^{n+1}}{n+1} + c \qquad n \neq -1$
$\int \frac{1}{x} dx = \ln x + c$		$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$
$\int a^x dx = a^x lg_a e + c$		$\int a^{f(x)} \cdot f'(x) dx = a^{f(x)} lg_a e + c$
$\int e^x dx = e^x + c$		$\int e^{f(x)} \cdot f'(x) dx = e^{f(x)} + c$
$\int sen x dx = -\cos x + c$		$\int sen [f(x)] \cdot f'(x) dx = -\cos f(x) + c$
$\int \cos x dx = \sin x + c$		$\int \cos [f(x)] \cdot f'(x) dx = \sin f(x) + c$
$\int \frac{1}{\cos^2 x} dx = tg \; x + c$		$\int \frac{f'(x)}{\cos^2 [f(x)]} dx = tg f(x) + c$
$\int \frac{1}{sen^2x} dx = -\cot g \ x + c$		$\int \frac{f'(x)}{sen^2 [f(x)]} dx = -\cot g f(x) + c$
$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$		$\int \frac{f'(x)}{\sqrt{1 - [f(x)]^2}} dx = \arcsin f(x) + c$
$\int \frac{1}{1+x^2} dx = \operatorname{arctg} x + c$		$\int \frac{f'(x)}{1 + [f(x)]^2} dx = \operatorname{arctg} f(x) + c$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{ a } + c$		$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \arcsin \frac{f(x)}{ a } + c$
$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \operatorname{arct} g \frac{x}{a} + c$		$\int \frac{f'(x)}{a^2 + [f(x)]^2} dx = \frac{1}{a} \operatorname{arctg} \frac{f(x)}{a} + c$

in generale	
$\int f[g(x)] \cdot g'(x) dx = F[g(x)] + c$	l'integrale di una funzione composta $f[g(x)]$ moltiplicata per la derivata della funzione interna $g'(x)$ è uguale alla primitiva della funzione esterna $F[g(x)]$

alcuni metodi di integrazione		
$\int k \cdot f(x) \ dx = k \cdot \int f(x) \ dx$	prodotto di una costante k per una funzione	
$\int f(x) \pm g(x) \pm h(x) dx = \int f(x) dx \pm \int g(x) dx \pm \int h(x) dx$	metodo di decomposizione in somma	

Integrali indefiniti

esempi di alcuni integrali immediati

$\int k dx = k x + c$	$\int 3 dx = 3x + c$	$\int \frac{1}{2} dx = \frac{1}{2}x + c$	$\int \pi \ dx = \pi x + c$
$\int x^n dx = \frac{x^{n+1}}{1-x^n} + c$	$\int x dx = \frac{x^2}{2} + c$	$\int x^5 dx = \frac{x^6}{6} + c$	$\int x^{-4} dx = -\frac{x^{-3}}{3} + c$
	$\int \sqrt{x} dx = \int x^{\frac{1}{2}} dx =$	$\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + c = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + c$	$= \frac{2}{3} x^{\frac{3}{2}} + c = \frac{2}{3} \sqrt[2]{x^3} + c$
$\int a^x dx = a^x lg_a e + c$	$\int 2^x dx = 2^x lg_2 e + c$	$\int \left(\frac{1}{3}\right)^x dx$	$x = \left(\frac{1}{3}\right)^x lg_{\frac{1}{3}}e + c$

esempi di alcuni integrali immediati generalizzati

$\int [f(x)]^n \cdot f'(x) \ dx = \frac{[f(x)]^{n+1}}{n+1} + c$	$\int (x^2 + x)^7 \cdot (2x + 1) dx = \frac{(x^2 + x)^8}{8} + c$
$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$	$\int \frac{6x - 1}{3x^2 - x + 1} dx = \ln 3x^2 - x + 1 + c$
$\int e^{f(x)} \cdot f'(x) \ dx = e^{f(x)} + c$	$\int e^{4x-2} dx = \frac{1}{4} \cdot \int e^{4x-2} \cdot 4 \ dx = \frac{1}{4} \cdot e^{4x-2} + c$
$\int sen [f(x)] \cdot f'(x) dx = -cos f(x) + c$	$\int 4x^3 \operatorname{sen} x^4 dx = \int \operatorname{sen} x^4 \cdot 4x^3 dx = -\cos x^4 + c$
$\int \cos [f(x)] \cdot f'(x) dx = \operatorname{sen} f(x) + c$	$\int \frac{\cos \ln x}{x} dx = \int \cos[\ln x] \cdot \frac{1}{x} dx = \sin \ln x + c$
$\int \frac{f'(x)}{\cos^2 [f(x)]} dx = tg f(x) + c$	$\int \frac{x^2}{\cos^2 x^3} dx = \frac{1}{3} \int \frac{3 \cdot x^2}{\cos^2 [x^3]} dx = \frac{1}{3} tg x^3 + c$
$\int \frac{f'(x)}{\sqrt{1-[f(x)]^2}} dx = \arcsin f(x) + c$	$\int \frac{1}{\sqrt{1 - 16x^2}} dx = \frac{1}{4} \int \frac{4}{\sqrt{1 - [4x]^2}} dx = \frac{1}{4} \arcsin 4x + c$
$\int \frac{f'(x)}{1+[f(x)]^2} dx = \operatorname{arctg} f(x) + c$	$\int \frac{4x^3}{1+x^8} dx = \int \frac{4x^3}{1+[x^4]^2} dx = \arctan x^4 + c$

per verificare la correttezza del risultato dell'integrale basta confrontare la derivata del risultato con l'integrando. Se sono uguali, allora il risultato è corretto. Ad esempio, in riferimento all'ultimo esercizio:

$$D(arctg\ x^4+c) = D(arctg\ x^4) + D(c) = \frac{1}{1+[x^4]^2} \cdot 4x^3 + 0 = \frac{4x^3}{1+x^8}$$
 cioè uguale alla funzione integranda

Integrali indefiniti

esempi di alcuni metodi di integrazione

prodotto di una costante per una funzione $\int k \cdot f(x) \ dx = k \cdot \int f(x) \ dx$

$$\int 3 \cdot \cos x \, dx = 3 \sin x + c$$

$$\int 5 \cdot x^3 \, dx = \frac{5}{4} x^4 + c$$

metodo di decomposizione in somma $\int f(x) \pm g(x) \pm h(x) dx = \int f(x) dx \pm \int g(x) dx \pm \int h(x) dx$		
$\int \left(7x^3 + x^{\frac{1}{2}}\right) dx =$	risolviamo il seguente integrale	
$7 \cdot \int x^3 dx + \int x^{\frac{1}{2}} dx =$	decomponiamo l'integrale in due integrali	
$\frac{7}{4}x^4 + \frac{2}{3}x^{\frac{3}{2}} + c$	risolviamo singolarmente i due integrali ed otteniamo il risultato	

metodo per parti $\int f(x) \cdot g(x) \ dx = F(x) \cdot g(x) - \int F(x) \cdot g'(x) \ dx$		
$\int x \cdot senx \ dx =$	risolviamo il seguente integrale	
$(-\cos x) \cdot x - \int (-\cos x) \cdot 1 dx =$	integriamo la funzione $sen x$ deriviamo la funzione x	
$-x\cos x + \int \cos x dx =$	svolgiamo i calcoli	
$-x \cos x + \sin x + c$	risolviamo il secondo integrale ed otteniamo il risultato	
$\int e^x \cdot x^2 dx =$	risolviamo il seguente integrale	
$e^x \cdot x^2 - \int e^x \cdot 2x dx =$	integriamo la funzione e^x deriviamo la funzione x^2	
$e^x \cdot x^2 - 2 \int e^x \cdot x dx =$	portiamo la costante fuori dal secondo integrale e applichiamo di nuovo il metodo per parti	
$\left[e^x \cdot x^2 - 2 \cdot \left[e^x \cdot x - \int e^x dx\right] = \right]$	integriamo la funzione e^x deriviamo la funzione x	
$e^x \cdot x^2 - 2 \cdot [e^x \cdot x - e^x] =$	risolviamo l'integrale	
$e^x \cdot x^2 - 2e^x \cdot x - 2e^x + c$	svolgiamo i calcoli ed otteniamo il risultato	