10 % DISCOUNT

- Which of the following relations is correct
 - (a) $\sin 1 < \sin 1^{\circ}$
- (b) $\sin 1 > \sin 1^{\circ}$
- (c) $\sin 1 = \sin 1^{\circ}$ (d)
- $\frac{\pi}{180}\sin 1 = \sin 1^{\circ}$
- If $\sin\theta + \csc\theta = 2$, the value of $\sin^{10}\theta + \csc^{10}\theta$ is

 - (a) 10 (b) 2^{10} (c) 2^9 (d) 2
- If $\sin\theta + \cos\theta = m$ and $\sec\theta + \csc\theta = n$, the n(m+1)(m-1) = m

- (a) m (b) n (c) 2m (d) 2n
- 4. If $\sin\theta + \cos\theta = 1$, then $\sin\theta\cos\theta =$
- (a) 0 (b) 1 (c) 2 (d) 1/2
- 5. If $\sin\theta = \frac{24}{25}$ and θ lies in the second quadrant, then $\sec\theta + \tan\theta =$

 - (a) 3 (b) 5 (c) 7
- (d) 9
- $\operatorname{cosec} A + \cot A = \frac{11}{2}, \text{ then } \tan A =$
- (a) $\frac{21}{22}$ (b) $\frac{15}{16}$ (c) $\frac{44}{117}$
- 7. If $5 \tan \theta = 4$, then $\frac{5 \sin \theta 3 \cos \theta}{5 \sin \theta + 2 \cos \theta}$
- (a) 0 (b) 1 (c) 1/6 (d) 6

- (a) $\pm \frac{20}{41}$ (b) $\pm \frac{1}{21}$ (c) $\pm \frac{21}{29}$ (d) $\pm \frac{20}{21}$
- $\sin x = \frac{-24}{25},$ then the value of $\tan x$ is

- (a) $\frac{24}{25}$ (b) $\frac{-24}{7}$ (c) $\frac{25}{24}$ (d) None of these
- $\tan \theta = \frac{-4}{3}, \text{ then } \sin \theta =$
 - (a) 4/5 but not 4/5 (b) 4/5 or 4/5
 - (c) 4/5 but not 4/5 (d) None of these

10 % DISCOUNT

 $\sin\theta = -\frac{1}{\sqrt{2}}$ and $\tan\theta = 1$, then θ lies in which quadrant

- (a) First
- (b) Second

(c) Third

(d)

Fourth

 $\sin(\alpha - \beta) = \frac{1}{2}$ and $\cos(\alpha + \beta) = \frac{1}{2}$, where α and β are positive acute angles, then

- (a) $\alpha = 45^{\circ}, \beta = 15^{\circ}$ (b) $\alpha = 15^{\circ}, \beta = 45^{\circ}$
- (c) $\alpha = 60^{\circ}, \beta = 15^{\circ}$
- (d) None of these

 $\tan \theta = -\frac{1}{\sqrt{10}}$ and θ lies in the fourth quadrant, then $\cos \theta =$

- (a) $1/\sqrt{11}$ (b) $-1/\sqrt{11}$ (c) $\sqrt{\frac{10}{11}}$ (d) $-\sqrt{\frac{10}{11}}$

 $\frac{\sin\theta}{1-\cot\theta} + \frac{\cos\theta}{1-\tan\theta} =$

- (a) 0 (b) 1 (c) $\cos\theta \sin\theta$ (d) $\cos\theta + \sin\theta$

15. If $x = \sec \theta + \tan \theta$, then $x + \frac{1}{x} = \frac{1}{x}$

- (a) 1 (b) $^{2\sec\theta}$ (c) 2 (d) $^{2\tan\theta}$

16. If $p = \frac{2\sin\theta}{1 + \cos\theta + \sin\theta}$, and $q = \frac{\cos\theta}{1 + \sin\theta}$, then

- (a) pq = 1 (b) q = 1 (c) q p = 1 (d) q + p = 1

If $\tan \theta + \sin \theta = m$ and $\tan \theta - \sin \theta = n$, then 17.

- (a) $m^2 n^2 = 4mn$ (b) $m^2 + n^2 = 4mn$
- (c) $m^2 n^2 = m^2 + n^2$ (d) $m^2 n^2 = 4\sqrt{mn}$

18. If $x = a\cos^3\theta$, $y = b\sin^3\theta$, then

- (a) $\left(\frac{a}{x}\right)^{2/3} + \left(\frac{b}{y}\right)^{2/3} = 1$ (b) $\left(\frac{b}{x}\right)^{2/3} + \left(\frac{a}{y}\right)^{2/3} = 1$
- (c) $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} = 1$ (d) $\left(\frac{x}{b}\right)^{2/3} + \left(\frac{y}{a}\right)^{2/3} = 1$

10 % DISCOUNT

19. If $\cot \theta + \tan \theta = m$ and $\sec \theta - \cos \theta = n$, then which of the following is correct

(a) $m(mn^2)^{1/3} - n(nm^2)^{1/3} = 1$ (b) $m(m^2n)^{1/3} - n(mn^2)^{1/3} = 1$

(b)
$$m(m^2n)^{1/3} - n(mn^2)^{1/3} = 1$$

(c)
$$n(mn^2)^{1/3} - m(nm^2)^{1/3} = 1$$
 (d) $n(m^2n)^{1/3} - m(mn^2)^{1/3} = 1$

20. $\sin^6 \theta + \cos^6 \theta + 3\sin^2 \theta \cos^2 \theta =$

(a) 0 (b) -1 (c) 1 (d) None of these

21. The value of $2(\sin^6 \theta + \cos^6 \theta) - 3(\sin^4 \theta + \cos^4 \theta) + 1$ is

(a) 2

(b) 0 (c) 4 (d) 6

22. If $\sin x + \sin^2 x = 1$, then the value of

 $\cos^{12} x + 3\cos^{10} x + 3\cos^8 x + \cos^6 x - 2$ is equal to

(a) 0

(b) 1

(c) - 1

(d) 2

23. If $\sin\theta_1 + \sin\theta_2 + \sin\theta_3 = 3$, then $\cos\theta_1 + \cos\theta_2 + \cos\theta_3 = 3$

(a) 3

(b) 2

(c) 1

(d) 0

24. If $\tan \theta - \cot \theta = a$ and $\sin \theta + \cos \theta = b$, then $(b^2 - 1)^2 (a^2 + 4)$ is equal to

(a) 2

(b) - 4 (c) \pm 4

25. $\cos 1^{\circ} \cdot \cos 2^{\circ} \cdot \cos 3^{\circ} \cdot \cos 179^{\circ} =$

(a) 0

(c) 2

1b 2d 3 c 4 a 5 c 6 c 7c 8 c 9 b 10 b 11 c 12 a 13 c 14 d 15 b 16 d 17 d 18 c 19 a 20 c 21 b 22 c 23d 24 c 25 c