Revision

posterior probabilities

$$p(\theta|\text{data}) = \frac{p(\text{data}|\theta)p(\theta)}{p(\text{data})}$$

Sampling from the posterior

We interpret $p(\theta|\text{data})$ as the probability distribution of a random variable θ , from which we sample (via MCMC)

Why sample?

- 1. explore parameter space
- 2. samples can be useful
 - explore interventions, forecasts

MCMC: Sampling from a distribution

• We can calculate (in a deterministic model) $p(\theta|\text{data})$ given any θ – how do we sample?

MCMC: Sampling from a distribution

• We can calculate (in a deterministic model) $p(\theta|\text{data})$ given any θ – how do we sample?

Deterministic process models

$$p(\theta|\text{data}) \propto p(\text{data}|\theta)p(\theta)$$

Use MCMC to get samples from it: θ_1 , θ_2 , θ_3 , ...

Stochastic process models

Stochastic process models

- ightharpoonup one θ can lead to many possible outcomes X
- we can
 - 1. sample from $p(X|\theta)$ (via simulation)
 - 2. evaluate the trajectory likelihood $p(\text{data}|X,\theta)$
- we can't directly evaluate the likelihood $p(\text{data}|\theta)$

$$p(\text{data}|\theta) = \sum_{X} p(\text{data}|X,\theta)p(X|\theta)$$

- The number of possible trajectories X for one value of θ is large (usually infinite)
- We replace the sum with a Monte Carlo (random) sample

Sequential Monte Carlo (SMC) / Particle Filter I

We sample J trajectories $X_{J,1}$ from

$$p(X_{J,1}|\theta)$$

and average over

$$p(Y_1|X_{J,1},\theta)$$

Sequential Monte Carlo (SMC) / Particle Filter II

We then sample J trajectories $X_{J,2}$ from

$$p(X_{J,2}|Y_1,\theta)$$

and average over

$$p(Y_2|Y_1, X_{J,2}, \theta)$$

Sequential Monte Carlo (SMC) / Particle Filter III

The sum of all these (logged) values is

$$p(Y_{1:t}|\theta) \approx \prod tp(Y_t|Y_{1:(t-1)},\theta)$$

which is a sample estimate of the likelihood.

Sequential Monte Carlo (SMC) / Particle Filter IV

We can also retrieve filtered trajectories, that is samples from

$$p(X|\text{data})$$

by following the particles from the last point backwards.

pMCMC

- Once we can estimate $p(\text{data}|\theta)$, we can combine this with the prior to evaluate the posterior $p(\theta|\text{data})$ for any θ .
- ▶ We can then use MCMC to sample from this: pMCMC