#### 本节内容

# 最短路径

## Floyd算法

王道考研/CSKAOYAN.COM

## Robert W. Floyd



罗伯特·弗洛伊德 (1936-2001) Robert W. Floyd

1978年图灵奖得主

- Floyd算法(Floyd-Warshall算法)
- 堆排序算法



Floyd算法:求出每一对顶点之间的最短路径

使用动态规划思想,将问题的求解分为多个阶段

对于n个顶点的图G, 求任意一对顶点 Vi -> Vj 之间的最短路径可分为如下几个阶段:

#初始:不允许在其他顶点中转,最短路径是?

#0: 若允许在 V<sub>0</sub> 中转,最短路径是? #1: 若允许在 V<sub>0</sub>、V<sub>1</sub> 中转,最短路径是? #2: 若允许在 V<sub>0</sub>、V<sub>1</sub>、V<sub>2</sub> 中转,最短路径是?

• • •

#n-1: 若允许在 V<sub>0</sub>、V<sub>1</sub>、V<sub>2 .....</sub> V<sub>n-1</sub> 中转, 最短路径是?

王道考研/CSKAOYAN.COM







| Ž |    | V0 | V1 | V2 |
|---|----|----|----|----|
|   | V0 | 0  | 6  | 13 |
| = | V1 | 10 | 0  | 4  |
|   | V2 | 5  | ∞  | 0  |



|            | V0 | V1 | V2 |
|------------|----|----|----|
| V0         | -1 | -1 | -1 |
| <b>V</b> 1 | -1 | -1 | -1 |
| V2         | -1 | -1 | -1 |

#0: 若允许在 V₀ 中转,最短路径是? ——求 A(0) 和 path(0)

若  $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 

 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ 

 $path^{(k)}[i][j] = k$ 

否则  $A^{(k)}$ 和  $path^{(k)}$ 保持原值

$$\begin{split} &A^{(-1)}[2][I] > A^{(-1)}[2][\theta] + A^{(-1)}[\theta][I] = 11 \\ &A^{(\theta)}[2][I] = 11 \\ &path^{(\theta)}[2][I] = \theta; \end{split}$$

王道考研/CSKAOYAN.COM











|    | V0 | V1 | V2 |
|----|----|----|----|
| V0 | -1 | -1 | -1 |
| V1 | -1 | -1 | -1 |
| V2 | -1 | -1 | -1 |

#0: 若允许在 V₀ 中转, 最短路径是? ——求 A(0) 和 path(0)

若  $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 则  $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$  $path^{(k)}[i][j] = k$ 

否则  $A^{(k)}$ 和  $path^{(k)}$ 保持原值

|                    |    | V0 | V1 | V2 |
|--------------------|----|----|----|----|
| A (O)              | V0 | 0  | 6  | 13 |
| A <sup>(0)</sup> = | V1 | 10 | 0  | 4  |
|                    | V2 | 5  | 11 | 0  |

|                       |    | V0 | V1 | V2 |
|-----------------------|----|----|----|----|
| path <sup>(0)</sup> = | V0 | -1 | -1 | -1 |
| paulo =               | V1 | -1 | -1 | -1 |
|                       | V2 | -1 | 0  | -1 |







#1: 若允许在 Vo、V1中转,最短路径是? ——求 A<sup>(1)</sup>和 path<sup>(1)</sup>

若  $\mathsf{A}^{(k-1)}[i][j] {>} \mathsf{A}^{(k-1)}[i][k] {+} \; \mathsf{A}^{(k-1)}[k][j]$ 

 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$  $path^{(k)}[i][j] = k$ 

否则  $A^{(k)}$ 和  $path^{(k)}$ 保持原值

 $\mathsf{A}^{(0)}[\theta][2] > \mathsf{A}^{(0)}[\theta][{}^{\textcolor{red}{\boldsymbol{I}}}] + \mathsf{A}^{(0)}[{}^{\textcolor{red}{\boldsymbol{I}}}][2] = 10$  $A^{(1)}[0][2] = 10$ path(1)[0][2] = 1;

王道考研/CSKAOYAN.COM



目前来看,各

顶点间的最短

路径长度

 $A^{(0)} =$ 





| 若  | $\mathbf{A}^{(k-1)}[i][j]{>}\mathbf{A}^{(k-1)}[i][k]{+}\ \mathbf{A}^{(k-1)}[k][j]$ |
|----|------------------------------------------------------------------------------------|
| 则  | $\mathbf{A}^{(k)}[i][j] = \mathbf{A}^{(k-1)}[i][k] + \mathbf{A}^{(k-1)}[k][j];$    |
|    | $path^{(k)}[i][j] = k$                                                             |
| 否则 | A(k)和 path(k)保持原值                                                                  |

V0 V1 V2 V0 10 0 6  $A^{(1)} =$ **V1** 10 0 4 5 11 0 **V2** 

VO

0 6

10 0

5 11

V0

**V**1



#1: 若允许在 V₀、 V₁中转,最短路径是? ——求 A(¹) 和 path(¹)

13

4









#2: 若允许在 Vo、V1、V2 中转,最短路径是? ——求 A<sup>(2)</sup> 和 path<sup>(2)</sup>

若  $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$  则  $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ 

 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$  $path^{(k)}[i][j] = k$ 

否则 *A*<sup>(k)</sup> 和 *path*<sup>(k)</sup> 保持原值

 $A^{(1)}[I][0] > A^{(1)}[I][2] + A^{(1)}[2][0] = 9$   $A^{(2)}[I][0] = 9$  $path^{(2)}[I][0] = 2;$ 

王道考研/CSKAOYAN.COM











#2: 若允许在 V<sub>0</sub>、V<sub>1</sub>、V<sub>2</sub>中转,最短路径是? ——求 A<sup>(2)</sup>和 path<sup>(2)</sup>

|                    |    | V0 | V1 | V2 |
|--------------------|----|----|----|----|
| A (2)              | VO | 0  | 6  | 10 |
| A <sup>(2)</sup> = | V1 | 9  | 0  | 4  |
|                    | V2 | 5  | 11 | 0  |

|                       |    | V0 | V1 | V2 |
|-----------------------|----|----|----|----|
| <b>- 1</b>  - (2)     | V0 | -1 | -1 | 1  |
| path <sup>(2)</sup> = | V1 | 2  | -1 | -1 |
|                       | V2 | -1 | 0  | -1 |



若  $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$  则  $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ 

 $path^{(k)}[i][j] = k$ 

否则  $A^{(k)}$ 和  $path^{(k)}$ 保持原值



从A<sup>(-1)</sup>和 path<sup>(-1)</sup>开始,经过 n 轮递推,得到 A<sup>(n-1)</sup>和 path<sup>(n-1)</sup>

根据 A<sup>(2)</sup> 可知,V1到V2 最短路径长度为 4, 根据 path<sup>(2)</sup> 可知,完整路径信息为 V1\_V2

根据 A<sup>(2)</sup> 可知,V0到V2 最短路径长度为 10, 根据 path<sup>(2)</sup> 可知,完整路径信息为 V0\_V1\_V2

根据 A<sup>(2)</sup> 可知,V1到V0 最短路径长度为 9, 根据 path<sup>(2)</sup> 可知,完整路径信息为 V1\_V2\_V0

王道考研/CSKAOYAN.COM

VO

-1 -1 1

2 -1 -1

-1 0 -1

#### Floyd算法核心代码



若  $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$  则  $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$  path(k)[i][j] = k

否则 *A*<sup>(k)</sup> 和 *path*<sup>(k)</sup> 保持原值

|    |    | V0 | V1 | V2 |
|----|----|----|----|----|
| A= | V0 | 0  | 6  | 13 |
| A= | V1 | 10 | 0  | 4  |
|    | V2 | 5  | ∞  | 0  |



path<sup>(-1)</sup> = 
$$\begin{bmatrix} v_0 & -1 & -1 & -1 & -1 & -1 \\ v_1 & -1 & -1 & -1 & -1 & -1 \\ v_2 & -1 & -1 & -1 & -1 & -1 \\ v_3 & -1 & -1 & -1 & -1 & -1 \\ v_4 & -1 & -1 & -1 & -1 & -1 \end{bmatrix}$$

#初始:不允许在其他顶点中转,最短路径是?

王道考研/CSKAOYAN.COM

#### Floyd算法实例



- 若  $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$
- 则  $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$  $path^{(k)}[i][j] = k$
- 否则 A(k) 和 path(k) 保持原值

$$A^{(-1)} = \begin{cases} 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0$$

$$path^{(-1)} = \begin{bmatrix} v_0 & -1 & -1 & -1 & -1 & -1 \\ v_1 & -1 & -1 & -1 & -1 & -1 \\ v_2 & -1 & -1 & -1 & -1 & -1 \\ v_3 & -1 & -1 & -1 & -1 & -1 \\ v_4 & -1 & -1 & -1 & -1 & -1 & -1 \end{bmatrix}$$

#0: 若允许在 Vo 中转, 最短路径是? ——求 A<sup>(0)</sup> 和 path<sup>(0)</sup>



若  $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$  则  $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ 

path<sup>(k)</sup>[i][j] = k否则  $A^{(k)}$ 和  $path^{(k)}$ 保持原值



#0: 若允许在 V₀ 中转,最短路径是? ——求 A<sup>(0)</sup> 和 path<sup>(0)</sup>

$$\mathbf{A}^{(0)} = \begin{array}{c|cccc} & \mathbf{V0} & \mathbf{V1} & \mathbf{V2} & \mathbf{V3} & \mathbf{V4} \\ \mathbf{V0} & 0 & \infty & 1 & \infty & 10 \\ \hline \mathbf{V1} & \infty & 0 & \infty & 1 & 5 \\ \mathbf{V2} & \infty & 1 & 0 & \infty & 7 \\ \hline \mathbf{V3} & \infty & \infty & \infty & 0 & 1 \\ \hline \mathbf{V4} & \infty & \infty & \infty & \infty & 0 \end{array}$$



王道考研/CSKAOYAN.COM

#### Floyd算法实例



若  $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 

则  $\mathbf{A}^{(k)}[i][j] = \mathbf{A}^{(k-1)}[i][k] + \mathbf{A}^{(k-1)}[k][j];$   $\mathsf{path}^{(k)}[i][j] = k$ 

否则 *A*<sup>(k)</sup> 和 *path*<sup>(k)</sup> 保持原值

|                           |            | V0 | V1 | V2 | V3 | <b>V</b> 4 |
|---------------------------|------------|----|----|----|----|------------|
| <b>A</b> <sup>(0)</sup> = | V0         | 0  | ∞  | 1  | ∞  | 10         |
|                           | V1         |    |    |    |    |            |
|                           | V2         | ∞  | 1  | 0  | ∞  | 7          |
|                           | V3         | ∞  | ∞  | ∞  | 0  | 1          |
|                           | <b>V</b> 4 | ∞  | ∞  | ∞  | ∞  | 0          |

$$path^{(0)} = \begin{bmatrix} v_0 & v_1 & v_2 & v_3 & v_4 \\ v_0 & -1 & -1 & -1 & -1 & -1 \\ v_1 & -1 & -1 & -1 & -1 & -1 \\ v_2 & -1 & -1 & -1 & -1 & -1 \\ v_3 & -1 & -1 & -1 & -1 & -1 \\ v_4 & -1 & -1 & -1 & -1 & -1 \end{bmatrix}$$

#1: 若允许在 V<sub>0</sub>、 V<sub>1</sub>中转,最短路径是? ——求 A<sup>(1)</sup> 和 path<sup>(1)</sup>



 $\mathsf{A}^{(k-1)}[i][j] {>} \mathsf{A}^{(k-1)}[i][k] {+} \; \mathsf{A}^{(k-1)}[k][j]$ 若

 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$ 

 $path^{(k)}[i][j] = k$ 

否则 A(k) 和 path(k) 保持原值

|                    |            | VO | V1 | <b>V2</b> | <b>V</b> 3 | V4 |
|--------------------|------------|----|----|-----------|------------|----|
|                    | V0         | 0  | ∞  | 1         | ∞          | 10 |
| $A^{(0)} =$        | V1         | ∞  | 0  | ∞         | 1          | 5  |
| A <sup>(0)</sup> = | V2         | ∞  | 1  | 0         | ∞          | 7  |
|                    | V3         | ∞  | ∞  | ∞         | 0          | 1  |
|                    | <b>V</b> 4 | ∞  | ∞  | ∞         | ∞          | 0  |

#1: 若允许在 V<sub>0</sub>、V<sub>1</sub>中转,最短路径是? ——求 A<sup>(1)</sup>和 path<sup>(1)</sup>

 $A^{(0)}[2][3] > A^{(0)}[2][1] + A^{(0)}[1][3] = 2$ 

 $A^{(1)}[2][3] = 2$ 

path(1)[2][3] = 1;

 $A^{(0)}[2][4] > A^{(0)}[2][1] + A^{(0)}[1][4] = 6$ 

 $A^{(1)}[2][4] = 6$ 

path(1)[2][4] = 1;

王道考研/CSKAOYAN.COM

### Floyd算法实例



若

 $path^{(k)}[i][j] = k$ 否则 A(k) 和 path(k) 保持原值

 $\mathbf{A}^{(k-1)}[i][j]{>}\mathbf{A}^{(k-1)}[i][k]{+}\;\mathbf{A}^{(k-1)}[k][j]$  $\mathbf{A}^{(k)}[i][j] = \mathbf{A}^{(k-1)}[i][k] + \mathbf{A}^{(k-1)}[k][j];$ 

0 ∞ 1  $A^{(0)} =$ 

V0 V1 V2 V3 V4 V0 -1 -1 -1 -1 -1 V1 -1 -1 -1 -1 -1 path<sup>(0)</sup> = V2 -1 -1 -1 -1 -1 V3 -1 -1 -1 -1 -1 V4 -1 -1 -1 -1 -1

#1: 若允许在 V₀、 V₁中转,最短路径是? ——求 A(¹) 和 path(¹)

V0 V1 V2 V3 V4 V0 0 ∞ 1 ∞ 10 V1 ∞ 0 ∞ 1 5  $A^{(1)} =$ V2 ∞ 1 0 <mark>2 6</mark> ∞ ∞ ∞ 0 1

V0 V1 V2 V3 V4 V0 -1 -1 -1 -1 -1 V1 -1 -1 -1 -1 -1 path(1) = V2 -1 -1 -1 1 1 V3 -1 -1 -1 -1 -1 V4 -1 -1 -1 -1 -1



若  $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 

 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$   $path^{(k)}[i][j] = k$ 

否则 A(k) 和 path(k) 保持原值



#2: 若允许在 V<sub>0</sub>、V<sub>1</sub>、V₂中转,最短路径是? ——求 A<sup>(2)</sup>和 path<sup>(2)</sup>

王道考研/CSKAOYAN.COM

#### Floyd算法实例



若  $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 

则  $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$  $path^{(k)}[i][j] = k$ 

否则 *A*<sup>(k)</sup> 和 *path*<sup>(k)</sup> 保持原值

 $A^{(1)} = \begin{array}{c|cccc} V0 & V1 & V2 & V3 & V4 \\ \hline V0 & 0 & \infty & 1 & \infty & 10 \\ \hline V1 & \infty & 0 & \infty & 1 & 5 \\ \hline V2 & \infty & 1 & 0 & 2 & 6 \\ \hline V3 & \infty & \infty & \infty & 0 & 1 \\ \hline V4 & \infty & \infty & \infty & \infty & 0 \end{array}$ 

path(1) = | V0 | V1 | V2 | V3 | V4 |
| V0 | -1 | -1 | -1 | -1 | -1 |
| V1 | -1 | -1 | -1 | -1 |
| V2 | -1 | -1 | -1 | 1 |
| V3 | -1 | -1 | -1 | -1 |
| V4 | -1 | -1 | -1 | -1 | -1 |

#2: 若允许在 V<sub>0、</sub>V<sub>1、</sub>V<sub>2</sub>中转,最短路径是?——求 A<sup>(2)</sup>和 path<sup>(2)</sup>

 $A^{(1)}[0][I] > A^{(1)}[0][2] + A^{(1)}[2][I] = 2$  $A^{(2)}[0][I] = 2$ ; path<sup>(2)</sup>[0][I] = 2;

 $A^{(1)}[\theta][3] > A^{(1)}[\theta][2] + A^{(1)}[2][3] = 3$ 

 $A^{(2)}[\theta][3] = 3$ ; path $^{(2)}[\theta][3] = 2$ ;

 $A^{(1)}[0][4] > A^{(1)}[0][2] + A^{(1)}[2][4] = 7$  $A^{(2)}[0][4] = 7$ ; path<sup>(2)</sup>[0][4] = 2;



若  $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 

 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$  $path^{(k)}[i][j] = k$ 

否则 *A*<sup>(k)</sup> 和 *path*<sup>(k)</sup> 保持原值

#2: 若允许在 V<sub>0</sub>、V<sub>1</sub>、V₂中转,最短路径是? ——求 A<sup>(2)</sup>和 path<sup>(2)</sup>





王道考研/CSKAOYAN.COM

#### Floyd算法实例



若  $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 

则  $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$  $path^{(k)}[i][j] = k$ 

否则 *A*<sup>(k)</sup> 和 *path*<sup>(k)</sup> 保持原值



#3: 若允许在 V<sub>0</sub>、V<sub>1</sub>、V<sub>2</sub>、V<sub>3</sub>中转,最短路径是? ——求 A<sup>(3)</sup> 和 path<sup>(3)</sup>



若  $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 

 $\mathbf{A}^{(k)}[i][j] = \mathbf{A}^{(k-1)}[i][k] + \mathbf{A}^{(k-1)}[k][j];$ 

 $path^{(k)}[i][j] = k$ 

否则 A(k) 和 path(k) 保持原值

|                           |            | V0 | V1 | V2 | <b>V</b> 3 | <b>V</b> 4 |
|---------------------------|------------|----|----|----|------------|------------|
| <b>A</b> <sup>(2)</sup> = | V0         | 0  | 2  | 1  | 3          | 7          |
| <b>A</b> (2) =            | V1         | ∞  | 0  | ∞  | 1          | 5          |
|                           | V2         | ∞  | 1  | 0  | 2          | 6          |
|                           | V3         | ∞  | ∞  | ∞  | 0          | 1          |
|                           | <b>V</b> 4 | ∞  | ∞  | ∞  | ∞          | 0          |

#3: 若允许在  $V_0$ 、 $V_1$ 、 $V_2$ 、 $V_3$ 中转,最短路径是? ——求  $A^{(3)}$ 和  $path^{(3)}$ 

 $A^{(2)}[0][4] > A^{(2)}[0][3] + A^{(2)}[3][4] = 4$  $A^{(3)}[0][4] = 4$ ; path<sup>(3)</sup>[0][4] = 3;

 $A^{(2)}[1][4] > A^{(2)}[1][3] + A^{(2)}[3][4] = 2$ 

 $A^{(3)}[1][4] = 2$ ; path $^{(3)}[1][4] = 3$ ;

 $A^{(2)}[2][4] > A^{(2)}[2][3] + A^{(2)}[3][4] = 3$  $A^{(3)}[2][4] = 3$ ; path<sup>(3)</sup>[2][4] = 3;

王道考研/CSKAOYAN.COM

### Floyd算法实例



若  $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 

则  $\mathbf{A}^{(k)}[i][j] = \mathbf{A}^{(k-1)}[i][k] + \mathbf{A}^{(k-1)}[k][j];$   $\mathsf{path}^{(k)}[i][j] = k$ 

否则  $A^{(k)}$ 和  $path^{(k)}$ 保持原值

|                |            | VO | V1 | V2 | <b>V</b> 3 | V4 |
|----------------|------------|----|----|----|------------|----|
|                | V0         | 0  | 2  | 1  | 3          | 7  |
| <b>A</b> (2) = | V1         | ∞  | 0  | ∞  | 1          | 5  |
|                | V2         | ∞  | 1  | 0  | 2          | 6  |
|                | V3         | ∞  | ∞  | ∞  | 0          | 1  |
|                | <b>V</b> 4 | ∞  | ∞  | ∞  | ∞          | 0  |

#3: 若允许在  $V_0$ 、 $V_1$ 、 $V_2$ 、 $V_3$ 中转,最短路径是? ——求  $A^{(3)}$ 和  $path^{(3)}$ 

$$path^{(3)} = \begin{bmatrix} v_0 & v_1 & v_2 & v_3 & v_4 \\ v_0 & -1 & 2 & -1 & 2 & 3 \\ v_1 & -1 & -1 & -1 & -1 & 3 \\ v_2 & -1 & -1 & -1 & 1 & 3 \\ v_3 & -1 & -1 & -1 & -1 & -1 \\ v_4 & -1 & -1 & -1 & -1 & -1 \end{bmatrix}$$



若  $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 

 $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$  $path^{(k)}[i][j] = k$ 

否则 A(k) 和 path(k) 保持原值



V0 V1 V2 V3 V4

#4: 若允许在 V<sub>0、</sub>V<sub>1、</sub>V<sub>2、</sub>V<sub>3、</sub>V<sub>4</sub>中转,最短路径是?——求A<sup>(4)</sup>和 path<sup>(4)</sup>

王道考研/CSKAOYAN.COM

### Floyd算法实例



若  $A^{(k-1)}[i][j] > A^{(k-1)}[i][k] + A^{(k-1)}[k][j]$ 

则  $A^{(k)}[i][j] = A^{(k-1)}[i][k] + A^{(k-1)}[k][j];$   $path^{(k)}[i][j] = k$ 

否则 *A*<sup>(k)</sup> 和 *path*<sup>(k)</sup> 保持原值

|                           |            | VU | V٦ | V2 | V3 | V4 |
|---------------------------|------------|----|----|----|----|----|
| <b>A</b> <sup>(3)</sup> = | V0         | 0  | 2  | 1  | 3  | 4  |
|                           | V1         | ∞  | 0  | ∞  | 1  | 2  |
|                           | V2         | ∞  | 1  | 0  | 2  | 3  |
|                           | <b>V</b> 3 | ∞  | ∞  | ∞  | 0  | 1  |
|                           | V4         | ~  | ~  | ~  | ~  | Λ  |

10 14 10 10 1

#4: 若允许在 V<sub>0、</sub>V<sub>1、</sub>V<sub>2、</sub>V<sub>3、</sub>V<sub>4</sub>中转,最短路径是?——求 A<sup>(4)</sup> 和 path<sup>(4)</sup>





## 不能解决的问题



Floyd 算法不能解决带有"负权回路"的图(有负权值的边组成回路),这种图有可能没有最短路径

王道考研/CSKAOYAN.COM

## 知识点回顾与重要考点

|         | BFS 算法             | Dijkstra 算法          | Floyd 算法             |
|---------|--------------------|----------------------|----------------------|
| 无权图     | ✓                  | <b>✓</b>             | <b>✓</b>             |
| 带权图     | ×                  | ✓                    | ✓                    |
| 带负权值的图  | ×                  | ×                    | ✓                    |
| 带负权回路的图 | ×                  | ×                    | ×                    |
| 时间复杂度   | O( V ²)或O( V + E ) | O( V  <sup>2</sup> ) | O( V  <sup>3</sup> ) |
| 通常用于    |                    | 求带权图的单源最<br>短路径      | 求带权图中各顶点<br>间的最短路径   |

注:也可用 Dijkstra 算法求所有顶点间的最短路径,重复 |V| 次即可,总的时间复杂度也是O(|V|3)







@王道论坛



@王道计算机考研备考 @王道咸鱼老师-计算机考研 @王道楼楼老师-计算机考研



@王道计算机考研

知乎

※ 微信视频号



@王道计算机考研

@王道计算机考研

@王道在线