

NV32F100x SIM 模块编程示例

第一章 库函数简介

1.1 库函数列表

void SIM Init(SIM ConfigType *pConfig)

通过结构体 SIM_ConfigType 初始化 SIM 模块

SIM_SetClockGating(uint32_t u32PeripheralMask, uint8_t u8GateOn)

SIM 系统时钟选通控制函数

uint32_t SIM_GetStatus(uint32_t u32StatusMask)

读取系统复位状态函数

uint8_t SIM_ReadID(IDType sID)

读取 ID 寄存器值函数

寄存器操作的内联函数,调用内联函数和直接操作寄存器的效率一样

void SIM_DelayETM2Trig2ADC(uint8_t u8Delay)

ETM2 触发延时

void SIM_EnableClockOutput(void)

使能总线时钟输出

void SIM DisableClockOutput(void)

禁止总线时钟输出

void SIM_SetClockOutputDivide(uint8_t u8Divide)

设置总线时钟输出分频

void SIM_EnableUART0RXDConnectETMOCH1(void)

UARTO_RX 输入信号连接到 UARTO 模块和 ETMO 通道 1

void SIM_EnableUART0Modulation(void)

UARTO TX 输出在映射到引出线前由 ETMO 通道 0 调制

void SIM_DisableUART0Modulation(void)

UARTO_TX 输出直接连接到输出引线

void SIM GenerateSoftwareTrig2ETM2(void)

生成 ETM2 模块的同步触发

void SIM_RemapETM2CH3Pin(void)

ETM2 CH3 通道输出映射到 PD1 上

void SIM_RemapETM2CH2Pin(void)

ETM2_CH2 通道输出映射到 PD0 上

void SIM_RemapETM0CH1Pin(void)

ETM0 CH1 通道输出映射到 PB3 上

void SIM_RemapETM1CH1Pin(void)

ETM1_CH1 通道映射到 PE7 上

void SIM_RemapETM0CH0Pin(void)

ETM0_CH0 通道映射到 PB2 上

void SIM RemapUART0Pin(void)

UARTO RX 和 UARTO TX 映射到 PA2 和 PA3 上

void SIM RemapSPI0Pin(void)

SPIO SCK、SPIO MOSI、SPIO MISO 和 SPIO PCS 映射到 PEO、PE1、PE2 和 PE3 上

void SIM RemapI2CPin(void)

I2C0_SCL 和 I2C0_SDA 分别映射到 PB7 和 PB6 上

void SIM_EnableUART0Filter(void)

RXD0 输入信号由 ACMP0 滤波, 然后注入 UART0

void SIM_DisableUART0Filter(void)

RXD0 输入信号直接连接到 UARTO 模块

void SIM TriggerADCByRTC(void)

用作 ADC 硬件触发的 RTC 溢出

void SIM_TriggerADCByPIT(void)

用作 ADC 硬件触发的 PIT 通道溢出

void SIM TriggerADCByETM2Init(void)

带 8 位可编程计数器延迟的 ETM2 初始触发

void SIM_TriggerADCByETM2Match(void)

带 8 位可编程计数器延迟的 ETM2 匹配触发

void SIM_EnableRTCCapture(void)

RTC 溢出连接到 ETM1 输入通道 1

void SIM_DisableRTCCapture(void)

RTC 溢出未连接到 ETM1 输入通道 1

void SIM_EnableACMP0InputCapture(void)

ACMP0 输出连接到 ETM1 输入通道 0

void SIM_DisableACMP0InputCapture(void)

ACMP0 输出未连接到 ETM1 输入通道 0

void SIM RemapRTCPin(void)

RTC0 映射到 PC5 上

www. navota. com 3 纳瓦特

void SIM SetBusDivide(uint8 t u8Divide)

设置总线时钟分频

void SIM_RemapETM2CH1Pin(void)

ETM2 CH1 通道输出映射到 PH1 上

void SIM_RemapETM2CH0Pin(void)

ETM2_CH0 通道输出映射到 PH0 上

void SIM RemapETM1CH0Pin(void)

ETM1 CH0 通道映射到 PH2 上

1.2 SIM 模块特性说明

- *复位状态和器件 ID 信息
- *系统互连配置和特殊引脚的启用
- *引脚再映射控制
- *系统时钟选通控制和时钟分频

1.3 SIM 模块使用说明

- *当使用某一模块时,系统时钟选通控制寄存器的对应为置 1, 默认状态下开启 SWD 和 FLASH 模块系统时钟
- *对引脚选通寄存器配置选择外设输出映射引脚,默认状态引脚选通寄存器每一位值都为0
- *设置系统选项寄存器,默认状态使能 SWD、RESET、NMI 引脚。
- *SIM 模块结构体在系统初始化函数中配置,主要是对系统选项寄存器的配置。

关于引脚选通、系统时钟等控制具体参阅参考手册

第二章 模块初始化

在 SIM 初始化函数函数中,主要配置系统选项寄存器和使能 SWD、FLASH 模块的总线时钟。

2.1 SIM 系统选项寄存器(SIM_SOPT)

位	描述
31 - 24	ETM2 触发延迟
DELAY	指定将1写入ADHWT时从ETM2初始或匹配触发到ADC硬件触发的延迟。该8位模数
	值允许 0 到 255 的延迟,具体取决于 BUSREF 时钟设置。这是一个一次性计数器,当触
	发到达时开始计数,当计数器值达到所定义的模数值时停止计数。
23	ETM2 触发延迟有效
DLYACT	该只读字段指定有关 ETM2 初始或匹配延迟是否有效的状态。该字段在 ETM2 触发到达且

www. navota. com 4 纳瓦特

Y May	Ota NVOZI IOOX
	延迟计数器正在计数时置位,否则,该字段清零。
	0 延迟无效。
	1 延迟有效。
22 - 21	此字段为保留字段。
保留	此只读字段为保留字段且值始终为 0。
20	Flash Deep Sleep 使能控制
FLASHDP	0 Flash 在 STOP 模式下不进入 Deep Sleep
	1 Flash 在 STOP 模式下进入 Deep Sleep
19	总线时钟输出使能
CLKOE	0 总线时钟输出在 PTH2 上禁用。
	1 总线时钟输出在 PTH2 上使能。
18 - 16	总线时钟输出选择
BUSREF	通过可选预分频器使能总线时钟输出。
	000 总线
	001 总线 2 分频
	010 总线 4 分频
	011 总线 8 分频
	100 总线 16 分频
	101 总线 32 分频
	110 总线 64 分频
	111 总线 128 分频
15	UARTO_TX 调制选择
TXDME	使能由 ETM0 通道 0 调制的 UARTO_TX 输出。
	0 UARTO_TX 输出直接连接到引出线。
	1 UART0_TX 输出在映射到引出线前由 ETM0 通道 0 调制。
14	ETM2 同步选择
ETMSYNC	将 1 写入该字段时生成 ETM2 模块的 PWM 同步触发。
	0 未触发任何同步。
	1 生成 ETM2 模块的 PWM 同步触发。
13	UARTO RxD 滤波器选择
RXDFE	使能 UARTO RxD 输入由 ACMP 滤波。该功能使能时,任何具有 ACMP 输入标记的信号
	都可被视作 UARTO。
	0 RXD0 输入信号直接连接到 UART0 模块。
	1 RXD0 输入信号由 ACMP0 滤波,然后注入 UART0。
12	UARTO_RX 捕捉选择
RXDCE	使能 UART0_RX 由 ETM0 通道 1 捕捉。
	0 UARTO_RX 输入信号仅连接到 UARTO 模块。
	1 UARTO_RX 输入信号连接到 UARTO 模块和 ETMO 通道 1。
11	模拟比较器至输入捕捉使能
ACIC	将 ACMP0 的输出连接到 ETM1 输入通道 0。
	0 ACMP0 输出未连接到 ETM1 输入通道 0。
	1 ACMP0 输出连接到 ETM1 输入通道 0。
	实时计数器捕捉

Y nav	IULA NYJZTIUUX
10	允许实时计数器(RTC)溢出由 ETM1 通道 1 捕捉。
RTCC	0 RTC 溢出未连接到 ETM1 输入通道 1。
	1 RTC 溢出连接到 ETM1 输入通道 1。
9 - 8	ADC 硬件触发源
ADHWT	选择 ADC 硬件触发源,所有触发源都是在上升沿开始 ADC 转换。
	00 用作 ADC 硬件触发的 RTC 溢出
	01 用作 ADC 硬件触发的 PIT 通道溢出
	10 带 8 位可编程计数器延迟的 ETM2 初始触发
	11 带 8 位可编程计数器延迟的 ETM2 匹配触发
7-4	此字段为保留字段。
保留	
3	单线调试端口引脚使能
SWDE	使能 PA4/ACMP0_OUT/SWD_DIO 引脚用作 SWD_DIO,使能
	PC4/RTC_CLKOUT/ETM1_CH0/ACMP0_IN2/SWD_CLK 引脚用作 SWD_CLK。清零时,
	两个引脚用作 PA4 和 PC4。该引脚在任何 MCU 复位之后默认用作 SWD_DIO 和
	SWD_CLK.
	0 PA4/ACMP0_OUT/SWD_DIO 作为 PA4 或 ACMP0_OUT 功能,
	PC4/RTC_CLKOUT/ETM1_CH0/ACMP0_IN2/SWD_CLK 用作 PC4、RTC_CLKOUT、
	ETM1_CH0、OR ACMP0_IN2 功能。
	1 PA4/ACMP0_OUT/SWD_DIO 用作 SWD_DIO 功能,
	PC4/RTC_CLKOUT/ETM1_CH0/ACMP0_IN2/SWD_CLK 用作 SWD_CLK 功能。
2	RESET 引脚使能
RSTPE	在任何复位后都可对该一次性写入字段进行写操作。RSTPE置位时,
	PA5/IRQ/TCLK0/RESET引脚用作RESET。清零时,该引脚用作备用功能之一。该引脚在
	MCU POR 之后默认用作RESET。其他复位不会影响该字段。RSTPE 置位时,RESET上的
	内部上拉器件使能。
	0 PA5/IRQ/TCLK0/RESET引脚用作 PA5/IRQ/TCLK0。
	1 PA5/IRQ/TCLK0/RESET引脚用作RESET。
1	NMI引脚使能
NMIE	在任何复位后都可对该一次性写入字段进行写操作。NMI置位时,
	PB4/ETM2_CH4/SPI0_MISO/ACMP1_IN2/NMI引脚用作NMI。清零时,该引脚用作备用功
	能之一。该引脚在 MCU POR 之后默认用作NMI。其他复位不会影响该位。NMI置位时,
	NMI上的内部上拉器件使能。
	0 PB4/ETM2_CH4/SPI0_MISO/ACMP1_IN2/NMI引脚用作 PB4、ETM2_CH4、SPI0_MISO 或 ACMP1 IN2。
	_
0	1 PB4/ETM2_CH4/SPI0_MISO/ACMP1_IN2/NMI引脚用作NMI。 此字段为保留字段。
保留	此子校为保留子校。
水田	

2.2 系统时钟选通控制寄存器(SIM_SCGC)

系统选通寄存器完整信息请参看参考手册

www. navota. com 6 纳瓦特

47 1131 2 3 3 3	
17	I2C 时钟选通控制
I2C	控制 I2C 模块的时钟选通。
	0 I2C 模块的总线时钟禁用。
	1 I2C 模块的总线时钟使能。
16-14	此字段为保留字段。
保留	此只读字段为保留字段且值始终为 0。
13	SWD(单线调试器)时钟选通控制
SWD	控制 SWD 模块的时钟选通。
	0 SWD 模块的总线时钟禁用。
	1 SWD 模块的总线时钟使能。
12	Flash 时钟选通控制
FLASH	控制 Flash 模块的时钟选通。
	0 Flash 模块的总线时钟禁用。
	1 Flash 模块的总线时钟使能。
•	

2.3 系统引脚寄存器(SIM_PINSEL)

引脚选择寄存器完整信息请参看参考手册

5	I2C0 端口引脚选择	
I2C0PS	选择 I2C0 端口引脚。	
	0 I2C0_SCL 和 I2C0_SDA 分别映射到 PA3 和 PA2 上。	
	1 I2C0_SCL 和 I2C0_SDA 分别映射到 PB7 和 PB6 上。	

函数名 SIM Init 函数原形 SIM_Init(SIM_ConfigType *pConfig) 功能描述 配置结构体 pConfig 来初始化 SIM 输入参数 配置结构体 SIM_ConfigType 输出参数 无 返回值 无 先决条件 无 函数使用实例 先设置配置结构体, SIM_Init(&sSIMConfig);


```
uint32 t
              u32Sopt;
      uint32 t
             u32PinSel;
      uint32 t u32Scgc;
      uint32 t u32BusDiv;
      /* 初始化 SIM 寄存器,设置写入引脚选通寄存器的数值来控制引脚映射,设置写入系统时钟选通
寄存器的值来控制各模块的时钟选通。在系统初始化函数中设置 SIM 结构体,实现对系统选项寄存器配值 */
                                       /* 使能 SWD、RESET、NMI 引脚 */
              = 0x0010000E;
      u32Sopt
      u32PinSel = 0;
                                       /* 使能 SWD、FLASH 模块的总线时钟 */
      u32Scgc
              = 0x00003000;
      u32BusDiv = 0;
      u32BusDiv = pConfig->sBits.bBusDiv; /*总线时钟分频值*/
      if(pConfig->sBits.bDisableNMI)
                              /*禁用 NMI 引脚*/
      {
         u32Sopt &= ~SIM_SOPT_NMIE_MASK;
      }
      if(pConfig->sBits.bDisableRESET) /*禁用 RSTPE 引脚*/
         u32Sopt &= ~SIM SOPT RSTPE MASK;
      if(pConfig->sBits.bDisableSWD) /*禁用 SWDE 引脚*/
         u32Sopt &= ~SIM SOPT SWDE MASK;
      if(pConfig->sBits.bEnableCLKOUT) /*使能总线时钟输出*/
         u32Sopt |= SIM_SOPT_CLKOE_MASK;
      if(pConfig->sBits.bETMSYNC) /*ETM2 同步选择*/
         u32Sopt |= SIM_SOPT_ETMSYNC_MASK; /*生成 ETM2 模块的 PWM 同步触发*/
      if(pConfig->sBits.bRXDCE)
                                  /*UAT0 RX 捕捉选择*/
      {
        /*UAT0_RX 输入信号接到 UART0 模块和 ETM0 通道 1*/
         u32Sopt |= SIM_SOPT_RXDCE_MASK;
      if(pConfig->sBits.bTXDME)
                                   /*URAT0 TX 捕捉选择*/
         /*URAT0_TX 输出映射到引出线前由 ETM0 通道调制*/
         u32Sopt |= SIM_SOPT_TXDME_MASK;
                                 /*模拟比较器至输入捕获使能*/
      if(pConfig->sBits.bACIC)
```



```
/* ACMP0 输出连接到 ETM1 输出通道 0*/
       u32Sopt |= SIM SOPT ACIC MASK;
   }
       if(pConfig->sBits.bRTCC)
   {
       u32Sopt |= SIM_SOPT_RTCC_MASK; /*RTC 溢出连接到 ETM1 输入通道*/
   }
       if(pConfig->sBits.bRXDFE)
                                     /*URT0 RxD 滤波器选择*/
     /*RXD0 输入信号由 ACMP0 滤波, 然后注入 UARTO*/
       u32Sopt |= SIM SOPT RXDFE MASK;
   u32Sopt |= ((pConfig->u8BusRef & 0x07) << 16); /*总线时钟 128 分频*/
   u32Sopt = ((pConfig->u8Delay) << 24);
                                        /*ETM2 延迟触发*/
  /*ADC 的触发源为带 8 位可编程计数延迟的 ETM2 匹配触发*/
   u32Sopt = ((pConfig->sBits.u8ADHWT & 0x03) << 8);
   u32PinSel = pConfig->u32PinSel;
   u32Scgc = pConfig->u32SCGC;
  /*写数据到 SIM 寄存器*/
   SIM->SOPT = u32Sopt;
   SIM->PINSEL = u32PinSel;
   SIM->SCGC = u32Scgc;
   SIM->BUSDIV = u32BusDiv;
}
```

注:

- 1. SIM 模块结构体在系统初始化函数中配置,对系统选项寄存器配置,在系统初始化函数中进行。详细内容请参看系统初始化函数。
- 2. SIM 初始化函数中,只控制了 SWD 和 FLASH 两个模块的时钟选通,其他模块的总线时钟没有选通。如果要选通其他模块的总线时钟有三种方法;

方法 1:: 更改写入时钟选通寄存器数值, 模块对应位写 1, 可参看 SWD 和 FLASH 模块时钟选通控制。

方法 2: 直接调用 SIM 系统时钟选通控制函数。

方法 3: 在对应 模块初始化时直接对时钟选通寄存器进行操作。向寄存器中该模块的对应位写 1 (常用方法)

例:使用方法 3 使能 I2C 总线时钟,只需在 I2C 初始化函数中加入;

```
SIM->SCGC |= SIM_SCGC_IIC_MASK;
```

3. SIM 初始化函数中,对引脚寄存器每一位写入的数值均为 0,要改变模块的引脚输出映射有三种方法:

方法 1: 在 SIM 初始化函数中更该写入引脚寄存器的值,

方法 2: 调用对应内联函数

方法 3: 直接操作引脚选择寄存器;

例:使用方法 3 选择 I2C 引脚输出,当系统初始化后 I2C 的 I2C0_SCL 和 I2C0_SDA 分别映射到 PA3 和 PA2 上,当要使 I2C0_SCL 和 I2C0_SDA 分别映射到 PB7 和 PB6 上,只需要在引脚控制寄存器对应为写 1。 SIM->PINSEL |=SIM_PINSEL_IICPS_MASK