Задачи оценивания параметров модели IRT

Черниговская Мария Александровна, гр. 422

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Коробейников А.И. Рецензент: ассистент Шлемов А.Ю.

Санкт-Петербург 2016г

Введение

Ability (способность) — скрытое качество человека.

На практике ставится задача оценивать способности людей. Подход IRT: анализ ответов на тестовые вопросы.

Модель Rasch (Rasch, 1961) — базовая модель:

- Способности людей и сложности вопросов оцениваемые параметры.
- Постулируется модель для вероятности правильного ответа человека с конкретной способностью на вопрос конкретной сложности.

Проблема: число параметров растет с увеличением объема выборки. \Rightarrow Стандартные методы оценивания неприменимы.

Идея: отказаться от одновременного оценивания параметров сложности и способности и модифицировать модель.

Модель эксперимента (Bock, Lieberman 1970)

Предположение: существует популяционное распределение способностей людей \mathcal{P}_{α} , известное с точностью до параметра α .

Параметры:

- ullet вопросов, n человек: $k \ll n$, k и n известны.
- $\mathbf{B} = \{\beta_j\}_{j=1}^k$, β_j сложность j-го вопроса.
- ullet α параметр популяционного распределения.

$$\{x_{ij}\}_{i=1j=1}^{nk}$$
 — c.b., $x_{ij} \in \{0,1\}$:

- ullet $X_i = (x_{i1}, \dots, x_{ik}), \ i \in \{1, \dots, n\}$ независимы.
- ullet $\{artheta_i\}_{i=1}^n$ —повторная независимая выборка из распределения $\mathcal{P}_lpha.$
- ullet x_{i1},\ldots,x_{ik} условно независимы при условии $artheta_i=artheta$, при этом

$$P(x_{ij} = \delta \mid \vartheta_i = \vartheta) = \frac{\exp(\delta(\vartheta - \beta_j))}{1 + \exp(\vartheta - \beta_j)}, \ \delta \in \{0, 1\}.$$

MML оценки (Bock, Lieberman 1970)

Задача: по выборке $\{x_{ij}\}_{i=1,j=1}^{n,k}$ оценить параметр сложности ${\bf B}$ и параметр популяционного распределения $\alpha.$

Функция правдоподобия в рамках модели:

$$\mathbf{L}(\mathbf{B}, \alpha \mid X_1, \dots, X_n) = \prod_{i=1}^n \left(\int_{\mathbb{R}} \prod_{j=1}^k \frac{\exp(x_{ij}(\vartheta - \beta_j))}{1 + \exp(\vartheta - \beta_j)} \, \mathcal{P}_{\alpha}(d\vartheta) \right) .$$

MML оценка (ОМП в рамках модели):

$$(\hat{\mathbf{B}}, \hat{\alpha}) = \underset{\mathbf{B}, \alpha}{\operatorname{argmax}} \mathbf{L}(\mathbf{B}, \alpha \mid X_1, \dots, X_n) .$$

Проблема: сложная структура функции правдоподобия.

Дискретный случай (Hanson, 1998)

$$\mathcal{P}_{\alpha}: \begin{pmatrix} t_{1} & t_{2} & \dots & t_{m} \\ p_{1} & p_{2} & \dots & p_{m} \end{pmatrix}; \quad p_{s} > 0, \sum_{s=1}^{m} p_{s} = 1,$$

 $\{t_s\}_{s=1}^m$ — известные градации, $\mathsf{P} = \{p_s\}_{s=1}^{m-1}$ — параметры.

$$\mathbf{L}(\mathbf{B}, \mathsf{P} \mid X_1, \dots, X_n) = \prod_{i=1}^n \left(\sum_{s=1}^m \prod_{j=1}^k \frac{\exp(x_{ij}(t_s - \beta_j))}{1 + \exp(t_s - \beta_j)} p_s \right) .$$

$$(\hat{\mathbf{B}}, \hat{\mathsf{P}}) = \underset{\mathbf{B}, \mathsf{P}}{\operatorname{argmax}} \mathbf{L}(\mathbf{B}, \mathsf{P} \mid X_1, \dots, X_n) .$$

Решение: ЕМ-алгоритм (Hanson, 1998).

Преимущество: оптимизация функции многих переменных $\mathbf{L} ig(\mathbf{B}, \mathsf{P} \mid X_1, \dots, X_n ig)$ сводится к оптимизациям нескольких функций одной переменной.

Непрерывный случай

Проблема: вычисление функции $\mathbf{L}(\mathbf{B}, \alpha \,|\, X_1, \dots, X_n)$.

Известные решения:

- Замена интегралов на квадратурные формулы. Применение алгоритма Ньютона–Рапсона. (Bock, Lieberman 1970)
- MCMC (Patz, Junker 1999)
- Сведение задачи к дискретной, с помощью аппроксимации \mathcal{P}_{α} дискретным распределением с известными градациями. Применение алгоритма Hanson. (Bock, Aitkin 1981)

Проблема: выбор градаций должен зависеть от неизвестного параметра популяционного распределения α .

- ⇒ Нужно использовать переменные градации.
- \Rightarrow В бакалаврской работе была предложена модификация алгоритма Hanson.

Модификация алгоритма Hanson

 ℓ -я итерация алгоритма:

- $lacksymbol{0}$ Вход: \mathbf{B}^ℓ , α^ℓ (\mathbf{B}^0 , α^0 начальные данные)
- ② $H^\ell :=$ аппроксимация \mathcal{P}_{lpha^ℓ} дискретным распределением
- f 8 K дискретному распределению H^ℓ применяется одна итерация алгоритма Hanson \Rightarrow ${f B}^{\ell+1}$

$$\bullet \alpha^{\ell+1} := \underset{\alpha}{\operatorname{argmax}} \mathbf{L}(\alpha; \mathbf{B}^{\ell+1} \mid X_1, \dots, X_n)$$

Проблема: как выбрать аппроксимацию $\mathcal{P}_{\alpha^{\ell}}$?

В бакалаврской работе были предложены следующие способы дискретизации:

- с помощью ОМП способностей
- разбивание по квантилям
- с помощью корней многочлена Эрмита (для нормального популяционного распределения)

Проверка метода оценивания на модельных данных

5 вопросов: $\mathbf{B} = (-1, \, -0.5, \, 0, \, 0.5, \, 1).$ Число человек $n: \, 64, \, 128, \, \dots, \, 8192.$

Популяционное распределение:

- $\mathcal{P}_{\alpha} = \mathcal{N}(\alpha, 1)$ параметр сдвига, $\alpha_0 = 0.5$.
- $\mathcal{P}_{lpha} = \mathcal{N}(0, lpha^2)$ параметр масштаба, $lpha_0 = 0.7$.

Вопрос: Как выбрать параметры дискретизации?

- Максимальное правдоподобие
 - градации := MLE оценки способностей
 - градации := MLE оценки способностей с коррекцией смещения (Hoijtink, Boomsma 1995)
- Квантили
 - фиксированное число градаций
 - ullet $\lceil \log_2(n) \rceil$ градаций
 - ullet $\lceil \sqrt{n} \,
 ceil$ градаций
 - \bullet $\lceil n/4 \rceil$ градаций
- Корни многочлена Эрмита
 Разное число фиксированных и «плавающих» градаций.

Способ ОМП

Рис.: Параметр сдвига, $\beta_3=0$

Рис.: Параметр масштаба, $\beta_3=0$

Вывод:

- MLE оценки с коррекцией смещения подходят в случае параметра сдвига.
- При оценивании популяционного распределения с помощью ОМП способностей в случае параметра масштаба оценки сложностей вопросов В несостоятельны.

MLE с коррекцией смещения: другие способы назначить вероятности

Рис.: Среднеквадратическое отклонение оценок.

Хорошее качество оценок либо для параметра сдвига, либо для параметра масштаба. \Rightarrow Способ ОМП даёт неудовлетворительные оценки сложностей вопросов ${\bf B}$.

Способ квантилей

Рис.: Параметр сдвига, $\beta_1=-1$

Рис.: Параметр масштаба, $\beta_1 = -1$

Вывод:

- ullet Число градаций должно увеличиваться с ростом n.
- ullet Параметр сдвига: лучшая оценка с помощью n/4 градаций.
- Параметр масштаба: нельзя сделать вывод, о наилучшем числе градаций.

Способ квантилей

Среднекв-е отклонение для вопросов $\beta_1 = -1$, $\beta_2 = -0.5$, $\beta_3 = 0$.

0.092 Question 8:838 0.025 B3 0.011 0.008 MSE 0.005 0.004 0.003 0.002 0.001 512 64 128 256 2048

Рис.: Параметр сдвига

Рис.: Параметр масштаба

Чем меньше модуль сложности вопроса, тем лучше качество оценки.

Способ корней многочлена Эрмита

Рис.: Параметр сдвига, $\beta_1 = -1$

Рис.: Параметр масштаба, $\beta_1=-1$

Вывод:

- Нельзя сделать вывод, что увеличение числа градаций улучшает оценки сложностей В.
- В случае параметра масштаба нельзя сказать, что «плавающие» градации улучшают оценки сложностей.

Заключение

Результаты:

- В работе предложен новый способ вычисления ММL-оценок, основанный на модификации ЕМ-алгоритма для дискретного распределения.
- Применимость нового способа проверена на модельных данных.
- Показано, что способ ОМП для аппроксимации распределения способностей в текущем виде неприменим.
- Если в качестве градаций используются квантили, то необходимо увеличивать число градаций с увеличением числа человек. Показано, что качество оценок ухудшается с увеличением модуля сложности вопросов.
- В случае нормального популяционного распределения способностей предлагается использовать градации, построенные с помощью «плавающих» корней многочлена Эрмита.

Открытые вопросы:

- Сравнение оценок с оценками, полученными известными методами.
- Свойства оценок для реальных данных.
 - . . .