数字逻辑设计

王鸿鹏

计算机科学与技术学院 wanghp@hit.edu.cn

利用触发器设计时序逻辑的方法

- 1)根据需求——>获得原始状态图、状态表
- 2) 最小化状态图、状态表
- 3) 状态编码(分配) ——>获得状态转移表

- 6) 电路实现 (7) 检查无关状态

利用触发器设计同步时序逻辑电路一自动售卖机

例:利用D触发器设计一个自动售卖机

- 只接收硬币: 0.5 ¥ , 1 ¥
- 每次投币只接收一枚硬币
- 机器收到1.5 ¥, 给出一瓶饮料
- 机器收到2.0 字,给出一瓶饮料,找回0.5 字

 $X_1 \longrightarrow$ 自动 Z $X_{0.5} \longrightarrow$ 售卖机 Y CP

 $X_1 X_{0.5} = 00: 0 \times$

 $X_1 X_{0.5} = 01: 0.5$

 $X_1 X_{0.5} = 10: 1$

Y=1/0:给/不给 饮料

Z=1/0: 找零/不找零

1. 原始状态图及状态表

① 状态设定

S₀—初始状态,无投币

S₁—机器收到0.5 ¥ S₂—机器收到1.0 ¥ (2个 0.5 ¥, or 1个1.0 ¥)

if (机器又收到1个0.5 Y)

解法1:

米里型电路

then Y=1,且 Z=0, 回到 S₀

Else If (机器又收到1个1 ¥)

then Y=1, 且Z=1,回到S₀

② 状态转换分析

③ Mealy 状态图

④ 状态表

现态		S ⁿ⁺¹ / Z					
Sn	$X_1X_{0.5}=00$	$X_1X_{0.5}=01$	X ₁ X _{0.5} =10	X ₁ X _{0.5} =11			
S ₀	S ₀ / 00	S ₁ / 00	S ₂ / 00	X/ XX			
S ₁	S ₁ / 00	S ₂ / 00	S ₀ / 10	X/XX			
S ₂	S ₂ / 00	S ₀ / 10	S ₀ / 11	X/XX			

利用触发器设计自动售卖机

④ 状态表

现态		S ⁿ⁺¹ / Z					
Sn	$X_1X_{0.5}=00$	$X_1X_{0.5}=01$	$X_1X_{0.5}=10$	$X_1X_{0.5}=11$			
S ₀	S ₀ / 00	S ₁ / 00	S ₂ / 00	X/ XX			
S ₁	S ₁ / 00	S ₂ / 00	S ₀ / 10	X/XX			
S ₂	S ₂ / 00	S ₀ / 10	S ₀ / 11	X/XX			

2. 状态化简

3. 状态分配

 $S_0 - 00$ $S_1 - 01$ $S_2 - 10$ $\begin{array}{c|cccc}
0 & 1 \\
0 & S_0 & S_1 \\
1 & S_2 &
\end{array}$

需要2个D触发器

4. 状态转换真值

ĺ	输	入	现	态	次	态	输	λ	输	出	
	X ₁	X _{0.5}	$\mathbf{Q_2}^{n}$	$\mathbf{Q_1}^{n}$	$\mathbf{Q}_{2}^{\text{n+1}}$	$\mathbf{Q_1}^{\text{n+1}}$	D_2	D ₁	Υ	Z	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	1	0	1	0	1	0	0	
	0	0	1	0	1	0	1	0	0	0	L
U	0	0	1	1	X	X	X	X	X	X	IJ
	0	1	0	0	0	1	0	1	0	0	
	0	1	0	1	1	0	1	0	0	0	
	0	1	1	0	0	0	0	0	1	0	
$\left(\right.$	0	1	1	1	X	X	X	X	X	X	
	1	0	0	0	1	0	1	0	0	0	Γ
	1	0	0	1	0	0	0	0	1	0	
	1	0	1	0	0	0	0	0	1	1	L
	1	0	1	1	X	X	X	X	X	X	\bigcup
1	1	1	0	0	Х	Х	X	Х	Х	Х	N
	1	1	0	1	X	X	X	X	Х	Х	
	1	1	1	0	X	X	X	X	X	Х	
	1	1	1	1	X	X	X	Х	X	X	IJ

确定D₂: 看Q₂n+1 确定D₁: 看Q₁n+1

5. 卡诺图化简

$$\mathbf{D}_2 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_2^{n} + \mathbf{Q}_1^{n} \mathbf{X}_{0.5} + \mathbf{X}_1 \overline{\mathbf{Q}}_1^{n} \overline{\mathbf{Q}}_2^{n}$$

$$D_1 = \overline{X}_1 \overline{X}_{0.5} Q_1^n + X_{0.5} \overline{Q}_1^n \overline{Q}_2^n$$

$$Y = Q_2^n X_{0.5} + Q_2^n X_1 + X_1 Q_1^n$$

Q_2	n Q ₁n			
$X_1 X_{0.5}$	ⁿ Q₁ ⁿ 00	01	11	10
00	0	0	Х	0
01	0	0	Х	0
11	Х	X	Х	X
10	0	0	Х	1

$$Z = X_1Q_2^n$$

6. 电路实现

! 电路需要预置

7. 检查无关项

无关状态: Q₂ⁿQ₁ⁿ =11 X₁X₀₅分别为 00,01,10时,带入计算 $\bigcap_{\mathbf{Q}_{2}^{n+1}} = \mathbf{D}_{2} = \overline{\mathbf{X}}_{1} \overline{\mathbf{X}}_{0.5} \mathbf{Q}_{1}^{n} + \mathbf{Q}_{1} \mathbf{X}_{0.5} + \mathbf{X}_{1} \overline{\mathbf{Q}}_{1}^{n} \overline{\mathbf{Q}}_{2}^{n}$ $(\mathbf{Q}_1^{n+1} = \mathbf{D}_1 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_2^{n} + \mathbf{X}_{0.5} \overline{\mathbf{Q}}_1^{n} \overline{\mathbf{Q}}_2^{n})$ $Y = Q_2^n X_{0.5} + Q_2^n X_1 + X_1 Q_1^n$ $Z = X_1Q_2^n$ $X_1X_{0.5}/YZ$ 01/00 00/00 00 _10/10 非自 10/00 01/10 01/00 启动 10/1 01110 00/00 00/00

解法2:摩尔型电路

1. 原始状态图及状态表

① 状态设定(标记收到的钱数)

 S_0 —初始状态,机器收到0 Y

S₁—机器收到0.5 ¥

S₂—机器收到1.0 ¥

S3—机器收到1.5 ¥

S₄—机器收到2.0 ¥

② Moor 状态图

③ 状态表

现态		输出		
S _n	$X_1X_2=00$	$X_1 X_2 = 01$	$X_1 X_2 = 10$	YZ
S ₀	S ₀	S ₁	S ₂	00
S ₁	S ₁	S_2	S ₃	00
S ₂	S ₂	S_3	S ₄	00
S ₃	S ₀	S ₁	S ₂	10
S ₄	S ₀	S₁	S ₂	11

2. 状态化简

3. 状态分配

Q_2	nQ₁n			
Q_3^n	00	01	11	10
0	S ₀	S ₃		S ₁
1	S ₄			S ₂

需要3个D触	发器
--------	----

S ₀ -	000
S ₁ -	010
S ₂ -	110
S ₃ -	001
S ₃ -	001 100

4. 状态转换真值表

辅	人们		现	态		次态		输.	λ		输出	出
X_1	$X_{0.5}$	Q_3^n	$\mathbf{Q_2}^n$	$\mathbf{Q_1}^{\mathbf{n}}$	Q_3^{n+1}	\mathbf{Q}_{2}^{n+1}	Q_1^{n+1}	D_3	D_2	D_1	Υ	Z
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	1	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	1	1	0	1	1	0	1	1	0	0	0
0	1	1	1	0	0	0	1	0	0	1	0	0
0	1	0	0	0	0	1	0	0	1	0	0	0
0	1	0	1	0	1	1	0	1	1	0	0	0
0	1	0	0	1	0	1	0	0	1	0	1	0
0	1	1	0	0	0	1	0	0	1	0	1	1
1	0	0	0	0	1	1	0	1	1	0	0	0
1	0	0	1	0	0	0	1	0	0	1	0	0
1	0	1	1	0	1	0	0	1	0	0	0	0
1	0	0	0	1	1	1	0	1	1	0	1	0
1	0	1	0	0	1	1	0	1	1	0	1	1
1	1	X	X	X	X	X	X	X	X	X	X	X

5. 卡诺图化简

$$D_3 = \overline{X}_{0.5}Q_3^nQ_2^n + \overline{Q}_3^n X_{0.5}Q_2^n + X_1\overline{Q}_2^n$$

$$\mathbf{D}_2 = \overline{\mathbf{X}}_{0.5} \mathbf{Q}_3^{n} + \overline{\mathbf{Q}}_2^{n} \mathbf{X}_{0.5} + \mathbf{X}_1 \overline{\mathbf{Q}}_2^{n} + \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_2^{n}$$

$$D_1 = X_{0.5}Q_3^nQ_2^n + \overline{Q}_3^n X_1Q_2^n$$

$$Y = \overline{Q}_2^n Q_3^n + Q_1^n$$

$$Z = \overline{Q}_2^n Q_3^n$$

$$\begin{aligned}
& D_3 = \overline{X}_{0.5} Q_3^n Q_2^n + \overline{Q}_3^n X_{0.5} Q_2^n + X_1 \overline{Q}_2^n \\
& D_2 = \overline{X}_{0.5} Q_3^n + \overline{Q}_2^n X_{0.5} + X_1 \overline{Q}_2^n + \overline{X}_1 \overline{X}_{0.5} Q_2^n \\
& D_1 = X_{0.5} Q_3^n Q_2^n + \overline{Q}_3^n X_1 Q_2^n \\
& Y = \overline{Q}_2^n Q_3^n + Q_1^n \\
& Z = \overline{Q}_2^n Q_3^n
\end{aligned}$$

- 6. 电路实现(略)
- 7. 检查无关项(略)

Moore型电路与Mealy型电路比较

- ➤ Moore型电路中的状态总数相对要多一些,需要使用较多的触发器资源。
- ▶ Moore型电路的输出只与状态有关, 输出没有毛刺。

例:用D触发器设计一个串行输入8421BCD码误码检测器。要求:

- 8421BCD码低位在前、高位在后串行地加到检测器的输入端。
- 电路每接收一组代码,即在收到第4位代码时判断。若是错误代码,则输出为1,否则输出为0,电路又回到初始状态并开始接收下一组代码。

1. 原始状态图及状态表

现态	Qn+1/ Z		
Qn	X=0	X=1	
Α	B/0	B / 0	
В	D / 0	E/0	
D	H/0	1/0	
Е	1/0	1/0	
Н	A/0	A/0	
İ	A / 0	A / 1	

现态	Q ⁿ⁺¹ / Z		
Q n	X=0	X=1	
Α	B/0	C / 0	
В	640	E/0	
C	D/0	E/0	
D	H/0	1/0	
E	1/0	1/0	
Н	A/0	A/0	
Ī	A / 0	A / 1	

2. 状态化简

现态	Qn+1/Z		
Q n	X=0	X=1	
Α	B/0	B / 0	
В	D / 0	E/0	
D	H/0	1/0	
Е	1/0	1/0	
Н	A/0	A/0	
I	A / 0	A / 1	

3. 状态分配

规则1: 次态相同,现态编码应相邻

HI, DE 应相邻

规则2: 同一现态对应的次态应给予相邻编码

DE, HI 应相邻

规则3:输出相同,现态编码应相邻

ABDEH应相邻

A: 000; B: 001 D: 011; I: 010

E: 111; H: 110

4. 状态转换真值表

确定D₃: 看Q₃ⁿ⁺¹ 确定D₂: 看Q₂ⁿ⁺¹

$m \sim 2$.	= $=$ $=$ $=$
角定D₁:	看Q ₄ n+1

Q_2^{0}	ⁿ Q ₁ ⁿ 00	01	11	10	
° 0	Α	В	D	I	
1			Е	Н	

	MILE I - EQ									
3	输入	及现る	<u> </u>		次态		<i>\</i>	输入_	输	出
X	$\mathbf{Q_3}^{n}$	$\mathbf{Q_2}^{n}$	$\mathbf{Q_1}^{\mathbf{n}}$	Q_3^{n+1}	$\mathbf{Q_2}^{n+1}$	Q_1^{n+1}	D_3	D_2	D_1	Z
0	0	0	0	0	0	1	0	0	1	0
0	0	0	1	0	1	1	0	1	1	0
0	0	1	0	0	0	0	0	0	0	0
0	0	1	1	1	1	0	1	1	0	0
0	1	0	0	X	X	X	X	X	X	X
0	1	0	1	X	X	X	X	X	X	X
0	1	1	0	0	0	0	0	0	0	0
0	1	1	1	0	1	0	0	1	0	0
1	0	0	0	0	0	1	0	0	1	0
1	0	0	1	1	1	1	1	1	1	0
1	0	1	0	0	0	0	0	0	0	1
1	0	1	1	0	1	0	0	1	0	0
1	1	0	0	X	X	X	X	X	X	X
1	1	0	1	X	X	X	X	X	X	X
1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0	1	0	0	1	0	0

现态	Qn+1/ Z		
Qn	X=0	X=1	
Α	B/0	B / 0	
В	D / 0	E/0	
D	H/ 0	1/0	
Е	1/0	1/0	
Н	A/0	A/0	
I	A / 0	A / 1	

5. 卡诺图化简

$$D_1 = \overline{Q_2^n}$$

$$Z = X \overline{Q_3^n} Q_2^n \overline{Q_1^n}$$

6. 电路实现

7. 无关项检查

电路可以自启动

将无关状态 $Q_3^nQ_2^nQ_1^n=101和100分别代入次态方程和输出方程计算$

