

Participez à une compétition Kaggle GoDaddy — Microbusiness Density Forecasting

Parcours IML - OpenClassRooms - CentraleSupélec Tatiana Martinez

Sommaire

CONTEXTE

Objectif 01
Données

NETTOYAGE DES DONNÉES

Les étapes 02

03

MANIPULATIONS

Les étapes Visualisations FEATURE ENGINEERING

Création de nouvelles variables

EXPLORATION DES DONNÉES

05 Visualisations

MÉTHODES et OBJECTIFS

Of Preprocessing
Stratification
Models et Scores
Sample Submission

Perspectives et Questions

01 CONTEXTE

- Kaggle : une plateforme qui organise des compétitions en data science
- Compétition organisée par Go Daddy, une entreprise états-unienne de services pour les entrepreneurs
 - Les microentreprises aux USA n'apparaissent pas toujours dans les sources économiques classiques.
 - Les études Kaggle devront permettre aux décideurs de pouvoir les étudier et mieux comprendre les facteurs associées à celles-ci.

OBJECTIF

Prédire la densité des microentreprises aux USA par comté pour les périodes 01-11-2022 au 01-06-2023 grâce à des données de 01-08-2019 au 01-10-2022

Données

4 fichiers:

- Fichier train.scv qui fournit **l'activité mensuelle** des microentreprises par comté
- Fichier test.csv qui fournit les **références des microentreprises sur une période**
- Fichier census_starter.csv qui fournit des informations de recensement par comté avec 2 ans de "retard" par rapport aux données de densité des microentreprises
- Fichier sample submission qui fournit des valeurs exemples d'activités des microentreprises au format attendu pour la compétition

Indicateur à prédire :

Density microbusiness par mois par comté

*Population de 18 ans et plus du comté

X 100

Nombre brut de microentreprises actives dans le comté sur le mois

* les chiffres de population utilisés pour calculer la densité sont décalés de deux ans Les chiffres de densité de 2021 sont calculés à partir des chiffres de population de 2019

Métrique à réduire :

Symmetric Mean Absolute Percentage Error

$$ext{SMAPE} = rac{1}{n} \sum_{t=1}^n rac{|F_t - A_t|}{(A_t + F_t)/2}$$

where A_t is the actual value and F_t is the forecast value.

Aperçu des données

- Données de recensement par comté par an de 2017 à 2021
 - % des ménages ayant accès à Internet, haut débit
 - % de la population de + 25 ans avec Bac+4
 - % de la population né hors sol US
 - % des salariés employés dans l'industrie de l'information
 - Salaire médian des ménages

- Données de densité des microentreprises
 - Par comté
 - Par mois du 01/08/2019 au 01/10/2022
 - Le nombre brut de microentreprises dans le comté

Variable à prédire

La densité des microentreprises, est obtenue en divisant la population de 18 ans et plus par le nombre brut de microentreprises actives dans une zone géographique, et en multipliant par 100. Les chiffres de la population accusent un décalage de deux ans en raison du rythme de mise à jour fourni par le U.S. Census Bureau, qui fournit chaque année les données démographiques sous-jacentes. Les chiffres de densité de 2021 sont calculés à partir des chiffres de population de 2019, etc.

Code(s) déposé(s) sur kaggle par un candidat à la même compétition

https://www.kaggle.com/code/titericz/better-xgb-baseline

Commentaire Kaggle

NETTOYAGE DES DONNÉES

Census

Actions	Nombre	Taille du dataset	Commentaires
Complétion des missing values	12	26x3142	Données complétées avec celle du même comté pour l'année précédente

03

Manipulations

Actions	Nombre	Taille du dataset raw	Commentaires
Concat Train et Test et Création nouvelle variable, Istest		147345 rows × 8 columns	Train (122265 rows × 7 columns) et Test (25080 rows × 3 columns) Istest : 0/1 Dataframe avec des missings values
Missing values	25080 * 4	147345 rows × 8 columns	County, state, microbusiness, active
Complétion missing values	25080 * 2	147345 rows × 8 columns	County, state
Création de variables quantitatives discrètes (encodage)	5 variables	147345 rows × 13 columns	Year, Month, dcount, county_i, state_i

Actions	Nombre	Taille du dataset	Commentaires
Merge		147345x38	Raw merge census on cfips
Conserver 1 variable de recensement correspondant à l'année de l'observation	20 variables	147345x18	pct_bb, pct_college, pct_foreign, pct_workers, pct_inc (les données de density de l'année A sont calculées avec les données de recensement A-2 ans)
Creation dataframes	2 df	122265 × 18 25080x18	df_train_all df_test_all

df_train_all

18 variables

122265 observations

Actions	Nombre	Taille du dataset	Commentaires
Identification des outliers	7 variables	122265 × 18	'Microbusiness_density': 8746 'Active': 19183 'Pct_bb': 2456 'Pct_college': 2877 'Pct_foreign': 10097 'Pct_workers': 3572 'Pct_inc': 4851
Winsorising	7 variables	122265 × 18	Fonction qui remplace les outliers soit par la valeur upper ou par lower calculés grâce à la méthode IQR; pour chacune des 7 variables

Microbusiness density

Distribution avant application Winsorising

122265.000000 3.817671 4.991087 0.000000 25% 1.639344 50% 2.586543 75% 4.519231 284.340030

Name: microbusiness density, dtype: float64

Distribution après application Winsorising

- Asymétrie à droite (positive)
- Données comprises entre 1.6 et 4.5 à 50%

Heatmap correlation

Obtenu avec les données lissées par winsorising

Microbusiness density

Obtenus avec les données lissées par winsorising

04 FEATURE ENGINEERING

Création de variables

Df_train_smoothy trié par date décroissante :

density_shift_n avec n allant de 1 à 11	11	Obtenues par un shift de n des valeurs de la variable microbusiness density
dif_n avec n allant de 1 à 11	11	Obtenues par différence de la microbusiness à M avec density_shift_n

Complétion des missing values

Missing values density_shift_n

3142*∑n

Valeurs complétées par la médiane des density_shift par county

122265 obs

observations

DES DONNÉES

Distribution density shift

Indicateurs de distribution 122265.000000 count 3.375462 mean std 2.348568 0.000000 1.638081 25% 2.584071 4.516003 75% 8.839061

Name: density_shift_1, dtype: float64

Distribution dif et log dif

Indicate	ırs	de	di	str	ibu	t
count	122	2265	.0	000	00	
mean		-(0.0	026	82	
std		(.1	792	33	
min		-7	7.8	055	76	
25%		-(0.0	232	14	
50%		(0.0	000	00	
75%		(0.0	175	31	
max		- 7	7.7	978	28	

Name: dif 1, dtype: float64

Visualisation de la variable log dif 1

Indicateurs de distribution

count	6.835700e+04
mean	-inf
std	NaN
min	-inf
25%	NaN
50%	-4.265204e+00
75%	-3.276296e+00
max	2.053845e+00

Name: log dif 1, dtype: float64

Heatmap correlation

Variables retenues

df_pred_density

Type de variable	Noms des variables
Période - variables encodées	Year, month
Données géographique du comté	county_i, state_i, dcount
Données de recensement en % (revenu en US dollar ajusté à l'inflation)	pct_bb, pct_college, pct_foreign,pct_workers, pct_inc
Données de densité des microentreprises "shiftées"	Density_shift_n n allant de 1 à 11

Méthodologie et Objectifs

Méthodologie et Objectifs

Predictions:

Métrique à minimiser :

Microbusiness density mensuel par comté du 01-11-2022 au 01-06-2023

PREPROCESSING

df_pred_density

18

variables

122265

observations

Uniquement sur les **features** non encodées ie les variables de recensement

Preprocessing testé

RobustScaler

Après concat avec les autres features non normalisées :

df_X_density_rs

StandardScaler

df_X_density_Sts

STRATIFICATION

df_pred_density

18

variables

122265

observations

df_X_density_rs

Découpage à la main pour conserver une information continue sur plus d'un an pour tous les comtés (données les plus anciennes)

Split data

Train

X_density_shift_train
y density shift train

Test

X_density_shift_test
y_density_shift_test

MODELS & METRICS

Modèle Prédiction microbusiness density

	SMAPE	Durée
RANDOMFOREST	1.70	1min9s
GRADIENT BOOSTING	1.72	3min50s
LINEAR REGRESSION	1.58	134 ms

Modèle Prédiction microbusiness density grid search cv

SMAPE

'bootstrap': True,

RANDOMFOREST 1.70 'max_depth': 80, 'max_features': 'auto'

GRADIENT BOOSTING 1.72 N_estimators : 100
Learning_rate: 0.1

Sample submission

Sample submission

Prédictions de densité des microentreprises du 01-11-2022 au 01-06-2023 :

La prédiction pour un mois, M:

- 1. Dataset test avec les infos des comtés pour le mois, M
- 2. Créer les variables density_shift_n, M-1 à M-11, grâce aux densités des microentreprises :
 - du dataset df_train_new_feat_smooth (normalisées avec Robuscaler + winsorising)
 - du dataset issu du/des prédict.s précédent.s
- 3. Concaténer le dataset du point 2 avec le résultat du point 1
- 4. Faire la prédiction avec le modèle de ML de régression linéaire

Concaténer toutes les prédictions des densités des microentreprises 01-11-2022 au 01-06-2023

Mettre les données au format attendu (row_id et microbusiness_density)

DÉPÔT DU CODE SUR GITHUB

https://github.com/tatiana-martinez/OPC_8_Competition-Kaggle-Density-Prediction

Perspectives

- Apprentissage (fit) par comté, grâce aux features & microbusiness density
- Intégrer les données de population de plus de 18 ans par comté des USA
- Créer un fichier d'entrainement en supprimant les missing values des variables density shift (au lieu de les remplacer par les médianes)
- Tester l'apprentissage sans les données blacklistées présentes dans le Kernel

MERCI!

Avez-vous des questions?