Chemins spécifiques pour la classification dans les réseaux de neurones profonds

Elhouiti Chakib - Kezzoul Massili

Université de Montpellier

1^{er} juin 2021

Elhouiti, Kezzoul Chemins spécifiques 1^{er} juin 2021

Introduction

Les réseaux de neurones profonds Le jeu de données Problèmatique Solution proposée

- Organisation
- 6 Analyse des données
- 4 Développement de l'architecture
- 6 Analyse des résultats

Les réseaux de neurones profonds

Les réseaux de neurones profonds

MNIST

Problèmatique

Boite noire

Les réseaux de neurones semblent s'appliquer à la manière d'une boite noire. Aucune information n'est fournie sur ce qui les a conduits à atteindre leurs prédictions.

Objectifs

L'objectif est de comprendre le fonctionnement interne d'un réseau de neurones et de repérer des signatures d'activation de neurones en variant les données.

Questions qu'on se posent

Par exemple, si on entraîne un modèle à reconnaître des images de 1 et de 7

- À partir de quelle couche le modèle change de comportement pour reconnaître une image?
- Les signatures des images de 7, sont-elles différentes de ceux des 1?
- ▶ Si on passe une image de 3 au modèle, à quoi va ressembler sa signature?

Solution proposée

- Construire des réseaux de neurones.
- Récupérer, pour chaque donnée, la sortie des couches cachées.
- Extraire les signatures grâce à des algorithmes de *clustering*.
- ▶ Réaliser une interface de visualisation en utilisant différentes techniques.
- ► Analyser les résultats et répondre aux guestions.

- Introduction
- Organisation
- Analyse des données
- ① Développement de l'architecture
- 6 Analyse des résultats

Organisation du projet

- Introduction
- Organisation
- 3 Analyse des données

Découpage des données Prétraitement

- 4 Développement de l'architecture
- 6 Analyse des résultats

Importance de l'analyse

L'objectif de l'analyse des données, c'est de savoir comment sont nos données et comment on peut les utiliser.

Découpage des données

- ► Garder un nombre précis d'images pour un ensemble de chiffres définis.
- Faciliter la phase de développement.
- Pouvoir mieux visualiser les résultats sur un petit ensemble de données.

Scaling

Utilisation de la normalisation, qui consiste à mettre les valeurs des images entre 0 et 1 au lieu de 0 et 255.

Flattening

Aplatissement des images pour avoir un tableau à une seule dimension au lieu d'une matrice à deux dimensions.

Transformation des labels en un vecteur binaire contenant que des 0 et des 1.

- ► Taille du vecteur égale au nombre de labels uniques à garder.
 - Tri des labels à garder.
 - ▶ Mettre un 1 à la case du label correspendant et des 0 aux autres cases.
 - Ex : transformation en vecteur des images de 1, 3 et 7.
 - Pour un $1 \Longrightarrow [1,0,0]$.
 - Pour un $3 \implies [0,1,0]$.
 - Pour un $7 \implies [0,0,1]$.

- Introduction
- Organisation
- Analyse des données
- 4 Développement de l'architecture

Technologies utilisées Modèle d'apprentissage Signature et Clustering Interface de visualisation

6 Analyse des résultats

1er juin 2021

Jupyter notebook

Tensorflow, Keras

Voilà

Voilà permet de transformer un notebook jupyter en une application web autonome (standalone).

Voilà permet aussi de changer l'interface graphique de la page d'accueil grâce à des templates.

Modèle d'apprentissage

Types de réseau

Les types de réseau diffèrent par plusieurs paramètres :

- ▶ la topologie des connexions entre les neurones;
- la fonction d'agrégation utilisée;
- et bien d'autres paramètres.

hidden layer 1 hidden layer 2

Réseau de neurones à convolution

Signature

Définition

Soit un réseau à N couches cachées, La signature S d'une image qui travesent ce réseau, se définit ainsi : $S = (H_1, ..., H_N)$, avec H_i est le vecteur contenant les valeurs de chaque neurone de la couche i.

Clustering

K-means

K-means est algorithme de *clustering*. Il prend en paramètres les données et un certain K donnée par l'utilisateur, puis construit K clusters qui regroupent les données qui sont proches (en terme de distance euclidienne).

Score Silhouette

Choisir un K

Par contre, l'algorithme ne permet pas de trouver tout seul un K optimal. Mais il existe une méthode qui calcul la performance d'un *clustering*. La méthode *Silhouette*.

Score Silhouette

Concrétement, cette méthode consiste à calculer pour un clustering, la moyenne du score *Silhouette* de chaque point. $s(i) = \frac{b(i) - a(i)}{\max(a(i), b(i))}$.

Avec a(i) est la mesure de la similarité du point i avec son cluster et b(i) le mesure de dissemblance du point i par rapport aux autres clusters.

UMAP

UMAP

(Uniform Manifold Approximation and Projection) Utilise des algorithmes de mise en page graphique pour organiser les données dans un espace de faible dimension.

Diagramme de Sankey

Un diagramme de Sankey est un type de diagramme de flux 6 dans lequel la largeur des flèches est proportionnelle au flux représenté.

Application web

Page web

Transformation d'un Jupyter notebook contenant les différentes visualisations et faisant le lien entre eux.

Application web

Page d'accueil

Création d'une page d'accueil personnalisée présentant nos différentes expérimentations.

e site web a ete realise par requipe witc. Flus de details sur le projet sont disponibles sur

1er juin 2021

- Introduction
- Organisation
- Analyse des données
- 4 Développement de l'architecture
- **6** Analyse des résultats

Réponses aux questions Conclusion

Résultat

Afin d'illuster les résultats obtenu, nous prenons un exemple oû on entraine un modèle à deux couches cachées à reconnaitre des images de 1 et de 7.

Résultats

Changement de comportement

Notre modèle arrive, dès la première couche cachée, à reconnaître une image.

Différence de signatures

On observe que les signatures des 1 sont majoritairement différentes de celles des 7. Sauf pour quelques rares exceptions.

Figure – Les images de 7 ressemblant à des 1

Insertion d'anomalies

Figure - Insertion d'images de 4

Insertion d'anomalies

Figure – Insertion d'images de 3

Conclusion

Soit n attributs de A_1 à A_n . On cherche à entraîner un modèle à classifier ces données en deux classes C_1 et C_2 . Le modèle peut détecter des similarités entre les objets sur un attribut A_i qui indique qu'il existe peut-être *une corrélation*, mais pas forcément *une causalité*, avec les deux classes C_1 et C_2 . Ce qui mènera notre modèle à de possibles mauvaises classifications sur des données qu'il n'a jamais vues.

Merci pour votre attention.

