Answer Key for Calculus-Based Physics-1: Mechanics (PHYS150-01)

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy

December 13th, 2017

1 Conceptual Questions

1.1 Kinematics and Angular Kinematics

- 1. An object accelerates with constant acceleration. The displacement versus time curve is quadratic. The acceleration versus time plot should be _____ and the velocity versus time plot should be _____.
 - · quadratic, linear
 - · linear, flat
 - · flat, linear
 - · linear, quadratic
- 2. An object experiences constant *angular* acceleration. The net external torque is _____, and the angular velocity is a _____ function of time.
 - · zero, linear
 - · constant, linear
 - · zero, constant
 - · constant, constant
- 3. A battleship fires simultaneously two shells with the same speed at enemy ships (Fig. 1). If the shells follow the parabolic trajectories shown, which ship gets hit first?
 - A, because it has a smaller displacement from the cannon.
 - · A, because the overall distance travelled is less.
 - Both at the same time, because the initial projectile velocity is the same.
 - B, because the projectile does not have to travel as high in the air.
 - · B, because the initial velocity must be higher.

Figure 1: Which ship is hit first?

1.2 Forces and Torque

- 1. An elevator contains a person standing on a scale. The elevator accelerates downward, then moves at constant velocity, then comes to a stop. The scale reads a weight that is ______, then ______, and then ______ the person's actual weight.
 - · More than, equal to, less than
 - Less than, equal to, more than
 - · equal to, equal to
 - · More than, equal to, equal to

- 2. A crate is pushed across a floor at constant velocity against friction. The crate is flipped so that a side with less surface area is on the bottom. If the required force to push it increases, which of the following is the proper conclusion?
 - It's harder to push because there's more pressure now: pressure is force divided by area.
 - · It's harder to push because the new side must have a different coefficient of friction.
 - It's harder to push because the normal force has increased.
- 3. A man needs to pull a rusty lever to release a mechanism, but he can't. Which of the following will increase torque on the lever?
 - Tying a rope to the end of the lever, and pulling on the rope perpendicular to the lever.
 - · Bolting a metal rod to the lever, and pulling the rod perpendicular to the lever.
 - Tying a rope to the end of the lever, pulling the rope parallel to the lever.
 - Bolting a metal rod to the lever, and pulling the rod parallel to the lever.
- 4. An aircraft is in a banked turn, traveling in a circle. Which of the following is most correct?
 - The craft experiences centripetal acceleration, provided by a component of the lift force.
 - The craft experiences centripetal acceleration, provided by the thrust, which is tangent to the circle.
 - Moving at constant velocity, the craft experiences no acceleration.

1.3 Work and Energy

- 1. In which of the follow situations would energy not be conserved?
 - An object is dropped from some height and experiences free-fall, neglecting air-resistance.
 - An external force compresses a mass against an oscillator for a given displacement and then the mass is released.
 - A pendelum is pulled away from equilibrium and then released.
 - · A train skids to a halt, with the wheels sliding on the tracks.
- 2. A force does an amount of work W on an object with initial velocity v to stop it. How much work would have to be done on the object if the initial velocity were 2v?
 - 2W
 - 3W
 - 4W This one.

1.4 Linear and Angular Momentum

- 1. When a star undergoes a supernova, matter is blown away by a fusion reaction. The more significant effect for angular momentum is that the star shrinks in size. Suppose the radius decreases by a factor of 10^2 . By what factor does the angular velocity increase, if angular momentum is conserved? (Assume the mass doesn't change significantly).
 - 10³
 - 10^4 This one.
 - 10⁵
- 2. A mine cart holding two robbers is moving along a track at constant speed. They're being chased, so one robber dives out the back. The speed of the cart
 - · increases, because momentum is conserved and the jumper has momentum in the opposite direction.
 - decreases, because momentum is conserved and the mass of the cart has decreased.
 - remains constant, because there were only internal forces, not external forces.
- 3. If ball 1 in the arrangement shown in Fig. 2 is pulled back and then let go, ball 5 bounces forward. If balls 1 and 2 are pulled back and released, balls 4 and 5 bounce forward, and so on. The number of balls bouncing on each side is equal because
 - · of conservation of momentum.
 - the collisions are elastic.
 - the collisions are inelastic.
 - · neither of the above.

Figure 2: This object is known as a Newton's cradle.

2 Technical Questions

2.1 Kinematics and Angular Kinematics

1. A ball is kicked with an initial velocity of $\vec{v} = 3\hat{i} + 4\hat{j}$ m/s. (a) For how long does the ball remain in the air? (b) Where does the ball land? (g = 10 m/s²). ($\frac{1}{3}$ point for correct diagram, $\frac{2}{3}$ point for numerical answers).

The diagram is a concave-down parabola. (a) $v_y(t) = v_{y,i} - gt$. The total time is therefore $t = 2v_{y,i}/g = 4/5$ seconds. (b) $\Delta x = v_{x,i}t = 3(4)/5 = 12/5$ meters.

2.2 Forces and Torque

1. A 900 kg lunar probe hovers above the surface of the Moon. On the Moon, $g \approx 5/3 \, \text{m/s}^2$. An engine is pointed at a 30 degree angle from straight down, spraying propellant. What force does the engine produce to keep the probe from decreasing in height? ($\frac{1}{3}$ point for correct free-body diagram, $\frac{2}{3}$ point for answer).

The free body diagram contains two forces, the weight downward and the thrust upwards, 30 degrees from vertical. From the free-body diagram, we find to balance the forces, we need $T=w/\cos\theta=mg/\cos\theta=3000/\sqrt{3}$ N.

2.3 Work and Energy

1. A snowboarder descends a hill with a height of 25 meters (neglect friction). (a) What is her final speed? (b) After descending, she travels along a flat stretch of snow. She turns the board sideways, the coefficient of friction becomes relevant: $\mu = 0.5$. How far does she travel before stopping?

From energy conservation, we find $v=\sqrt{2gh}=\sqrt{500}=10\sqrt{5}$ m/s. (b) The acceleration is $a=\mu g$, so kinematically, $\Delta x=v^2/(2\mu g)=50$ meters.

2.4 Linear and Angular Momentum

1. Two objects each of mass m=0.2 kg rotate around the origin of a coordinate system, both at radius r=0.2 m. If the tangential velocity of each is v=2 m/s (p=mv), (a) what is $L=L_1+L_2=r_1p_1\sin\theta_1+r_2p_2\sin\theta_2$, the total angular momentum? (b) What is the value of the total moment of inertia, $I=2mr^2$, and the angular speed $\omega=v/r$ of the particles? (c) Show numerically that $I\omega=L$ from part (a).

(a) $L=2\frac{2}{10}\frac{2}{10}(1)=\frac{2}{25}$ J s (the two objects have the same angular momentum). (b) $I=2mr^2=2\frac{2}{10}\frac{4}{100}=\frac{16}{1000}$ kg m². $\omega=v/r=1/\frac{2}{10}=\frac{10}{2}$ rad/second. (c) Thus, $I\omega=\frac{16}{1000}\frac{10}{2}=\frac{2}{25}$ J s.

