

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/01/2014	15:30

C05.570\R18\R01\R14\RE\E∋€
05.570\18\01\14\EX

Enganxeu en aquest espai una etiqueta identificativa amb el vostre codi personal Examen

Fitxa tècnica de l'examen

- Comprova que el codi i el nom de l'assignatura corresponen a l'assignatura en la qual estàs matriculat.
- Només has d'enganxar una etiqueta d'estudiant a l'espai corresponent d'aquest full.
- No es poden adjuntar fulls addicionals.
- No es pot realitzar la prova en llapis ni en retolador gruixut.
- Temps total: 2 h.
- En cas que els estudiants puguin consultar algun material durant l'examen, quin o quins materials poden consultar?
- Valor de cada pregunta:
- En cas que hi hagi preguntes tipus test: Descompten les respostes errònies? NO Quant?
- Indicacions específiques per a la realització d'aquest examen:

Enunciats

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/01/2014	15:30

Activitat 1 (15+ 15%)

- a) Formalitzeu utilitzant la lògica d'enunciats les frases següents. Feu servir els àtoms que s'indiquen.
 - L'hivern és agradable quan no fa fred i hi ha poca humitat ¬F∧H → A
 - 2) Perquè hi hagi poca humitat és necessari que bufi un vent suau $H \rightarrow B$ -||- $\neg B \rightarrow \neg H$
 - 3) Si bufa un vent suau, fa fred i hi ha poca humitat quan l'hivern és agradable $B \to (A \to F \land H)$

Àtoms:

- A: L'hivern és agradable
- F: Fa fred
- H: Hi ha poca humitat
- B: Bufa un vent suau
- b) Formalitzeu, utilitzant la lògica de predicats les frases següents. Feu servir els predicats que s'indiquen
 - 1) Tots els cotxes vells estan desgavellats $\forall x (C(x) \land V(x) \rightarrow D(x))$
 - 2) Els cotxes que són propietat d'un mecànic han estat restaurats. $\forall x [C(x) \land \exists y (M(y) \land T(y,x)) \rightarrow R(x)]$
 - 3) En Joe Manetes és un mecànic que no és propietari de tots els cotxes vells $M(a) \land \neg \forall x (C(x) \land V(x) \rightarrow T(a,x))$

Predicats:

- C(x): x és un cotxe
- V(x): x és vell
- D(x): x està desgavellat
- T(x,y): x és propietari de y (y és propietat de x)
- M(x): x és un mecànic
- R(x): x ha estat restaurat

Constants:

- a: Joe Manetes

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/01/2014	15:30

Activitat 2 (15+ 15%)

Demostreu, utilitzant la deducció natural, que els següents raonaments són correctes. No podeu fer servir equivalències deductives, només regles primitives.

a)
$$P \lor Q, \neg P :: Q$$

(1)	$P \vee Q$			P
(2)	$\neg P$			P
(3)		P		Н
(4)			$\neg Q$	Н
(5)			$\neg P$	It 2
(6)			P	It 3
(7)		$\neg \neg Q$		I - 4, 5, 6
(8)		Q		E → 7
(9)		Q		Н
(10)		Q		It 9
(11)	Q			Ev 1, 8, 10

b)
$$P \rightarrow Q \vee R, \, Q \rightarrow R, \, R \rightarrow S \, \therefore \, P \rightarrow S$$

(1)	$P \to Q \vee R$			P
(2)	$Q \rightarrow R$			P
(3)	$R \rightarrow S$			P
(4)		P		Н
(5)		$Q \vee R$		$E \rightarrow 1, 4$
(6)			Q	Н
(7)			R	$E\rightarrow 2, 6$
(8)			S	$E \rightarrow 3, 7$
(9)			R	Н
(10)			S	$E \rightarrow 3, 9$
(11)		S		$E \vee 5, 8, 10$
(12)	$P \rightarrow S$			$I \rightarrow 4, 11$

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/01/2014	15:30

Activitat 3 (30%)

 a) El raonament següent és vàlid, Utilitzeu el mètode de resolució lineal amb l'estratègia del conjunt de suport per a demostrar-ho. Si podeu aplicar la regla de subsumpció o la regla del literal pur, apliqueu-les i indiqueu-ho.

```
\begin{split} \neg M \land (X \rightarrow M), \\ (Q \rightarrow R) \land (R \rightarrow M) \\ & \therefore \neg M \lor R \rightarrow \neg (X \lor Q) \\ \end{split} FNC \ [ \ \neg M \land (X \rightarrow M) \ ] \ = \neg M \land (\neg X \lor M) \\ FNC \ [ \ (Q \rightarrow R) \land (R \rightarrow M)] \ = (\neg Q \lor R) \land (\neg R \lor M) \\ FNC \ \neg [ \neg M \lor R \rightarrow \neg (X \lor Q)] \ = (\neg M \lor R) \land (X \lor Q) \end{split}
```

El conjunt de clàusules que s'obté és:

 $S = \{\neg M, \neg X \lor M, \neg Q \lor R, \neg R \lor M, \neg M \lor R, X \lor Q\}$ Les dues darreres (negreta) són el conjunt de suport. La clàusula $\neg M$ subsumeix $\neg M \lor R$ amb la qual cosa el conjunt de clàusules potencialment útils es redueix a $S' = \{\neg M, \neg X \lor M, \neg Q \lor R, \neg R \lor M, X \lor Q\}$

No es pot aplicar la regla del literal pur

Troncals	Laterals
X√Q	$\neg Q \lor R$
X∨R	¬R∨M
X∨M	¬M
X	¬X∨M
M	¬M

b) El següent raonament no és vàlid. Trobeu-ne el conjunt de clàusules corresponent i raoneu la impossibilitat d'obtenir la clàusula buida (

)

```
\forall x[T(x) \rightarrow \exists yS(x,y)],
\exists y \forall x \neg S(x,y)
\therefore \exists x \neg T(x)
```

La FNS de $\forall x[T(x)\rightarrow \exists yS(x,y)]$ és $\forall x[\neg T(x)\lor S(x,f(x))]$ La FNS de $\exists y\forall x\neg S(x,y)$ és $\forall x\neg S(x,a)$ La FNS de $\neg\exists x\neg T(x)$ és $\forall xT(x)$

El conjunto de clàusules corresponent és

 $S = \{T(x) \lor S(x,f(x)), \neg S(x,a), T(x)\}$

Es pot observar que el literal S(x,f(x)) de la clàusula $T(x) \lor S(x,f(x))$ no podrà ser eliminat mai perquè no es pot resoldre contra $\neg S(x,a)$ atès que la discrepància f(x)/a no es pot solucionar Això redueix el conjunt de clàusules potencialment útils a

 $S' = {\neg S(x,a), T(x)}$

És obvi que d'aquest conjunt no se'n pot obtenir la clàusula buida.

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/01/2014	15:30

Activitat 4 (10%)

Considereu el següent raonament (incorrecte)

$$\forall x[T(x) \rightarrow \exists yS(x,y)] \\ \exists x\exists y\neg S(x,y) \\ \therefore \forall x\neg T(x)$$

Doneu una interpretació en el domini {1,2} que en sigui un contraexemple.

Un contraexemple ha de fer certes les premisses i falsa la conclusió. En el domini $\{1,2\}$ la conclusió és equivalent $\neg T(1) \land \neg T(2)$. Existeixen diferents opcions que fan fals l'enunciat $\neg T(1) \land \neg T(2)$. Una d'elles és T(1) = F i T(2) = V

La primera premissa és equivalent a $[T(1) \to \exists yS(1,y)] \land [T(2) \to \exists yS(2,y)]$. Amb T(1) = F i T(2) = V això és equivalent $[F \to \exists yS(1,y)] \land [V \to \exists yS(2,y)] = V \land [V \to \exists yS(2,y)] = [V \to \exists yS(2,y)] = \exists yS(2,y)$. Aquesta fórmula és, en aquest domini, equivalent a $S(2,1) \lor S(2,2)$. Si volen que sigui certa n'hi ha prou amb fer cert qualsevol dels dos disjuntands. Posem que S(2,1) = V.

La segona premissa és equivalent a $\neg S(1,1) \lor \neg S(1,2) \lor \neg S(2,1) \lor \neg S(2,2)$. Perquè aquest enunciat sigui cert n'hi ha prou amb que ho sigui un dels seus disjuntands. Posem que sigui S(1,1)=F

Així, una interpretació que és un contraexemple és

<{1,2},{T(1)=F, T(2)=V, S(1,1)=F, S(1,2)=V, S(2,1)=V, S(2,2)=V}, \varnothing >

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/01/2014	15:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/01/2014	15:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/01/2014	15:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/01/2014	15:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/01/2014	15:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/01/2014	15:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	18/01/2014	15:30