Math 462 Homework 6

a lipson

May 22, 2025

Problem 1. Let G = (V, E) be a bipartite graph with maximum degree d. Prove that G has a matching of size at least |E|/d.

Proof. Each vertex in any vertex cover can cover at most d edges due to the degree constraint, so we need at least |E|/d vertices to cover all the edges.

Since G is bipartite, then by Kőnig, the size of a maximum matching equals the size of a minimum vertex cover.

Let C be a minimum vertex cover. We will show that $|C| \ge |E|/d$.

Since C is a cover, then every edge in E is incident to some vertex in C.

For each vertex in C, we can assign up to $deg(v) \leq d$ edges from E.

So,

$$|E| \le \sum_{v \in C} \deg(v) \le \sum_{v \in C} d = |C| d.$$

Therefore the size of the minimum vertex cover is at least |E|/d. By Kőnig, this equals the size of the maximum matching in G.

Thus, there exists a matching of size at least |E|/d in G.

Problem 2. The distance d(x, y) between two vertices x, y of a graph is the number of edges in the shortest path between the two vertices.

The diameter of a graph is the maximum of d(x,y) over all pairs of vertices x,y.

Let G = (V, E) be a graph with $\kappa(G) = k > 0$ and diameter D.

- (a) Prove that $|V| \ge k(D-1) + 2$.
- (b) Prove that the largest independent set of G has size at least $\lceil (D+1)/2 \rceil$.
- (c) For each $k \ge 1$ and $D \ge 2$, construct a graph with connectivity k and diameter D for which equality holds simultaneously in (a) and (b).

Proof of (a). Since the diameter of G is D, then the distance between any two vertices is at most D. A path of distance D contains D-1 internal vertices.

Since G is k-connected, then by Menger, there exists a k-connector between any two vertices of G.

Since a k-connector in G consists of k pairwise internally disjoint paths of distance at most D, then it contains k(D-1) internal vertices.

Now, adding the two endpoints of this k-connector, we must have $|V| \ge k(D+1) + 2$, as desired.

a lipson May 22, 2025

Proof of (b). Since the diameter is D, then there exists a path connecting D+1 vertices.

We can construct an independent set by taking every other vertex of this path.

If these vertices were adjacent, then we could have constructed a path between the endpoints of distance less than D, a contradiction. So, these vertices form an independent set.

If D is even, then we have $\frac{D}{2} + 1$ independent vertices.

If D is odd, then we have $\frac{D+1}{2}$ independent vertices.

In both cases, we have $\left\lceil \frac{D+1}{2} \right\rceil$ vertices in the independent set.

Proof of (c). To start, consider a graph constructed by k parallel internally disjoint paths:

$$v_{i,1}, v_{i,2}, ..., v_{i,D-1}$$
 where $i \in [1, k]$,

of length D-1 each joined at both ends by two vertices.

This graph has exactly k(D-1)+2 vertices.

However, for k connectivity, each vertex must have degree at least k.

So, for each j in $v_{i,j}$, we can connect the vertices across all $i \in [1, k]$ to construct a copies of the complete graph K_k .

Since we still have k pairwise internally disjoint paths, then by Menger, this graph is k-connected.

As before, we can take alternating vertices in any of the k-connector paths to construct an independent set of size $\lceil (D+1)/2 \rceil$. Each vertex $v_{i,j}$ is connected to all other vertices $v_{i,j}$ at the same j level $\forall i, \tilde{\imath} \in [1, k]$, so we cannot obtain a larger independent set.

Therefore, a graph with D-1 copies of K_k all vertices connected in a line to their corresponding vertex in the adjacent copy with two additional vertices connected to the complete graph copies on ends will satisfy the requirements.