Feedback — VI. Logistic Regression

You submitted this quiz on **Sat 11 May 2013 2:56 PM PDT -0700**. You got a score of **5.00** out of **5.00**.

Question 1

Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.2. This means (check all that apply):

Your Answer		Score	Explanation
\square Our estimate for $P(y=0 x; heta)$ is 0.2.	V	0.25	$h_{ heta}(x)$ is $P(y=1 x; heta)$, not $P(y=0 x; heta)$.
\square Our estimate for $P(y=1 x; heta)$ is 0.8.	~	0.25	$h_{ heta}(x)$ gives $P(y=1 x; heta)$, not $1-P(y=1 x; heta)$.
ightharpoonup Our estimate for $P(y=1 x; heta)$ is 0.2.	✓	0.25	$h_{ heta}(x)$ is precisely $P(y=1 x; heta)$, so each is 0.2
ightharpoonup Our estimate for $P(y=0 x; heta)$ is 0.8.	~	0.25	Since we must have $P(y=0 x;\theta)=1-P(y=1 x;\theta) \text{, the former is 1 - 0.2 = 0.8.}$
Total		1.00 / 1.00	

Question 2

Suppose you train a logistic classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$. Suppose $\theta_0=6, \theta_1=0, \theta_2=-1$. Which of the following figures represents the decision boundary found by your classifier?

Your Score Explanation Answer

1.00

In this figure, we transition from negative to positive when x_2 goes from above 6 to below 6 which is true for the given values of θ .

Total

1.00 /

1.00

Question 3

Suppose you have the following training set, and fit a logistic regression classifier

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2).$$

x_1	x_2	y
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

Your Answer		Score	Explanation
The positive and negative examples cannot be separated using a straight line. So, gradient descent will fail to converge.	•	0.25	While it is true they cannot be separated, gradient descent will still converge to the optimal fit. Some examples will remain misclassified at the optimum.
Because the positive and negative examples cannot be separated using a straight line, linear regression will perform as well as logistic regression on this data.	~	0.25	While it is true they cannot be separated, logistic regression will outperform linear regression since its cost function focuses on classification, not prediction.
$ ightharpoonup$ At the optimal value of $ heta$ (e.g., found by fminunc), we will have $J(heta) \geq 0$.	~	0.25	The cost function $J(\theta)$ is always non-negative for logistic regression.
$ oldsymbol{V} J(\theta)$ will be a convex function, so gradient descent should converge to the global minimum.	•	0.25	The cost function $J(\theta)$ is guaranteed to be convex for logistic regression.
Total		1.00 / 1.00	

Question 4

For logistic regression, the gradient is given by $rac{\partial}{\partial heta_j} J(heta) = \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$.

Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

Your Answer		Score	Explanation
$egin{aligned} & \square \ heta_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m ig(h_ heta(x^{(i)}) - y^{(i)}ig) x^{(i)} \ ext{(simultaneously update for all } j). \end{aligned}$	~	0.25	This incorrectly multiplies by the vector $\boldsymbol{x}^{(i)}$ in the summation rather than just $\boldsymbol{x}_j^{(i)}$.
$\square \theta_j := \theta_j - \alpha \tfrac{1}{m} \sum_{i=1}^m \Big(\theta^T x - y^{(i)} \Big) x_j^{(i)}$ (simultaneously update for all j).	~	0.25	This uses the linear regression hypothesis $\theta^T x$ instead of that for

Quiz i occidenți inde		J	logistic regression.
$ heta:= heta-lpharac{1}{m}\sum_{i=1}^migg(rac{1}{1+e^{- heta^Tx^{(i)}}}-y^{(i)}igg)x^{(i)}$	✓	0.25	This is a vectorized version of gradient descent that substitues in the exact form of $h_{\theta}(x^{(i)})$ used by logistic regression.
$ heta_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) x_j^{(i)}$ (simultaneously update for all j).	V	0.25	This is a direct substitution of $\frac{\partial}{\partial \theta_j} J(\theta)$ into the gradient descent update.
Total		1.00 / 1.00	

Question 5

Which of the following statements are true? Check all that apply.

Your Answer		Score	Explanation
Since we train one classifier when there are two classes, we train two classifiers when there are three classes (and we do one-vs-all classification).	•	0.25	We need to train three classifiers if there are three classes; each one treats one of the three classes as the $y=1$ examples and the rest as the $y=0$ examples.
The sigmoid function $g(z)=rac{1}{1+e^{-z}}$ is never greater than one (>1).	~	0.25	The denomiator ranges from ∞ to 1 as z grows, so the result is always in $(0,1)$.
The one-vs-all technique allows you to use logistic regression for problems in which each $y^{(i)}$ comes from a fixed, discrete set of values.	~	0.25	If each $y^{(i)}$ is one of k different values, we can give a label to each $y^{(i)} \in \{1,2,\ldots,k\}$ and use one vs-all as described in the lecture.
Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.	V	0.25	As demonstrated in the lecture, linear regression often classifies poorly since its training producedure focuses on predicting real-valued outputs, not classification.

Total 1.00 / 1.00