Probability summary

```
Probability summary
    Week 1
        Introduction
           Probability
            Sampling
        Probability
           Axioms of Probability
            Extra rules
            Conditional Probability
            Bayes' rule
           Rest
    Week 2
        Discrete variables
           Mean (expected value) and Variance
            Function of Random Variables
        Properties of random variables
            Properties of Mean and Variance
            Independence of Random Variables
            Addition of random variables
        Distributions
    Week 3
        Continuous Random Variables
            Probability Density Function
```

Week 1

Introduction

Random experiment: An experiment that can result in different outcomes, even if repeated in the same manner.

Sample space: Set of all possible outcomes of a random experiment. Denoted as S.

- Example: $S=0\cup[2.5,4.0]$
- Can be discrete or continuous.

Event: Subset of the sample space of a random experiment.

- $E_1 = \{ \text{# of students} \ge 100 \}$
- You can do union, intersection and other set operations with them.
 - They act as sets, can use distributivity rule and De Morgan's laws.
- Mutually exclusive events: $E_1 \cap E_2 = \emptyset$
- Venn Diagrams are useful for visualization

Probability

Number of permutations of n different elements is n!.

Number of permutations of subsets of r elements selected from a set of n elements is $P_r^n = \frac{n!}{(n-r)!}$. Since there are n possibilities for the first element, n-1 for the second element and so forth, up to the $(n-r)^{\text{th}}$ element.

Number of subsets of r elements out of a set of n is called the number of combinations, given by: $C_r^n = \binom{n}{r} = \frac{n!}{r!(n-r)!}$

Sampling

Sampling with replacements: return element back to whole set. Sampling without replacement: remove element from the whole set.

Probability

Probability of event E, denoted by P(E), expresses the likelihood or chance of the occurrence of event E.

Axioms of Probability

- P(S) = 1
- $0 \le P(E) \le 1$
- For two events, E_1 and E_2 such that $E_1 \cap E_2 = \emptyset$, then $P(E_1 \cup E_2) = P(E_1) + P(E_2)$.

Extra rules

- P(A') = 1 P(A)
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Conditional Probability

The probability of event B given A. Assume P(A) > 0. Conditional probability is given as:

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$
, just check the Venn diagram.

Multiplication rule: $P(A \cap B) = P(B|A)P(A) = P(A|B)P(B)$

Total probability rule:
$$P(B) = P(B \cap A) + P(B \cap A') = P(B|A)P(A) + P(B|A')P(A')$$

For multiple events: Let A be an event, and let E_1, \ldots, E_k be k mutually exclusive events, i.e. such that $\bigcup_{i=1}^k E_k = S$ and $\forall i \neq j : E_i \cap E_j = \emptyset$, then we know that:

•
$$P(A)=P(A\cap E_1)+P(A\cap E_2)+\cdots+P(A\cap E_k)$$
 or $P(A)=P(A|E_1)P(E_1)+P(A|E_2)P(E_2)+\cdots+P(A|E_k)P(E_k)$

Independence of Events: Two events are independent if any of the following equivalent statements are true:

- P(A|B) = P(A), so the occurrence event B does not affect event A
- P(B|A) = P(B)
- $P(A \cap B) = P(A)P(B)$

Jointly independent: If $P(E_1 \cap E_2 \cap \cdots \cap E_k) = P(E_1)P(E_2) \cdots P(E_k)$

Bayes' rule

Bayes' rule we can measure what conditional probabilities are.

$$P(A|B) = rac{P(B|A)P(A)}{P(B)}$$

For multiple events: Let A be an event, and let E_1, \ldots, E_k be k mutually exclusive events, i.e. such that $\bigcup_{i=1}^k E_k = S$ and $\forall i \neq j : E_i \cap E_j = \emptyset$, then we know that:

$$P(E_1|A) = rac{P(A|E_1)P(E_1)}{P(A|E_1)P(E_1) + P(A|E_2)P(E_2) + \cdots + P(A|E_k)P(E_k)}$$

Rest

Random variable: A function that assigns a real number to each outcome in the sample space of a random experiment. Can be discrete or continuous.

- Capital letters are used for random variables, X
- Lower case letters are used for the observed value, x.

Week 2

Random variable: A random experiment whose outcome is a real number. E.g. the temperature of the room is \boldsymbol{X} (experiment), however, once we measure the value, it'll become \boldsymbol{x} (value).

Discrete variables

Probability Mass Function (p.m.f.): Given a discrete random variable X with possible values x_1, x_2, \ldots , the p.m.f. is $f: \{x_1, x_2, \ldots\} \rightarrow [0, 1]$ such that:

- $f(x_i) \geq 0$
- $\sum_{i=1}^{\infty} f(x_1) = 1$ $P(X = x_i) = f(x_i)$

Basically, the p.m.f. a function is a description of the probabilities associated with each possible outcome of \boldsymbol{X} .

Example

Let sample space S={Print, save, cancel} for possible requests in a GUI.

Identify each request with a number (0, 1 and 2 respectively).

Let \boldsymbol{X} be the random variable for this experiment.

Now we can construct the p.m.f. w.r.t. X: P(X = 0) = 0.2, P(X = 1) = 0.5 and P(X = 2) = 0.3.

Cumulative Distribution Function (c.m.f.): The c.m.f. of a random variable \boldsymbol{X} is denoted by $F(x): \mathbb{R} \to [0,1]$ and is given by:

- $F(x) = P(X \le x)$, where $x \in \mathbb{R}$
- This is extremely powerful and is properly defined for any random variable, unlike p.m.f.

More concretely, let X be a discrete random variable with p.m.f. given by f. For any $x \in \mathbb{R}$ we have that:

•
$$F(X) = P(X \le x) = \sum_{i:x_i \le x} f(x_i)$$

 $\implies 0 \le F(X) \le 1$
 $\implies (x \le y) \Rightarrow (F(x) \le F(y))$

Thus, it's non-decreasing.

Also, note that
$$P(a < X \le b) = F(b) - F(a)$$
.

Why is this useful? We are often interested in probabilities that is less or equal than a certain number, for example, that the number of customers in my shop is ≤ 50 .

Mean (expected value) and Variance

There are certain "summaries" of the distribution of a random variable that can give a lot of information about it.

Let X be a discrete random variable taking values in $\{x_1, x_2, \ldots\} \in \mathbb{R}$.

The **mean** or **expected value** of X is denoted by μ_X or $\mathbb{E}(x)$ and is defined as:

- $\mathbb{E}(X) = \sum_{x \in \{x_1, x_2, \ldots\}} x f(x)$
- ullet The weighted average of the possible values of $oldsymbol{X}$. The "center" of the distribution.

The **variance** of X is denoted by σ_X^2 or V(X) and is defined as:

- $\sigma^2(X) = V(X) = \sum_{x \in \{x_1, x_2, \ldots\}} (x \mu_X)^2 f(x)$
- ullet Alternatively: $\sigma^2(x) = (\sum_{x_1,x_2,\dots} x^2 f(x)) \mu_X^2$ [Easier by hand, harder numerically]
- ullet The dispersion of ${\it X}$ around the mean. If the variance is large, then ${\it X}$ varies a lot.
- Is always non-negative $V(X) \ge 0$.

Standard deviation: $\sqrt{V(X)}$

Function of Random Variables

Functions of random variables are also random variables!

Let X be a random variable, and let $h : \mathbb{R} \to \mathbb{R}$ be an arbitrary function.

Then Y = h(X) is also a random variable.

Law of Unconscious Statistician: If X is discrete and take values $\{x_1, x_2, \ldots\}$, then:

- $\mathbb{E}[Y] = \mathbb{E}[h(X)] = \sum_i h(x_i) f(x_i)$
- Basically, the probabilities stay the same, just instead of x_i we now multiply it with $h(x_i)$.

Notice that the variance is merely the expected value of $h(X) = (X - \mu_X)^2$.

Properties of random variables

Properties of Mean and Variance

Let X be a random variable and $a, b \in \mathbb{R}$, then:

1.
$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$

2.
$$V(X)=\mathbb{E}[(X-\mu_X)^2]=\mathbb{E}[X^2]-\mu_X^2$$

 \circ Easy way to remember variance formula: $V(X)=E[X^2]-E[X]^2$

3.
$$V(aX+b)=a^2V(X)$$

$$4. \ \sigma(aX+b) = |a|\sigma(X)$$

Warning: $\mathbb{E}[X^2]
eq \mathbb{E}[X]^2$ or $\mathbb{E}[\sqrt{X}]
eq \sqrt{\mathbb{E}[X]}$

Independence of Random Variables

Notation $P(\{X \in A\} \cap \{Y \in B\}) = P(X \in A, Y \in B)$

Let X and Y be two random variables. These are said to be **independent** if, for any set A and B, it holds that:

- $P(X \in A, Y \in B) = P(X \in A) \cdot P(Y \in B)$
- Jointly independent

Addition of random variables

Given random variables X_1, \ldots, X_{n_t} then it holds that:

•
$$\mathbb{E}[X_1 + \cdots + X_n] = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n]$$

Furthermore, if these are jointly independent, then:

•
$$\mathbb{V}[X_1 + \cdots + X_n] = \mathbb{V}[X_1] + \cdots + \mathbb{V}[X_n]$$

Distributions

I'm skipping this part of distributions due to time constraints.

Week 3

Skipping poisson distribution.

Continuous Random Variables

Let \boldsymbol{X} be a random continuous variable.

Example, let \boldsymbol{X} be the temperature of the room.

- P(X = 22) = 0, because the probability of it being exactly 22.000000 degrees is 0.
- $P(21 \le X \le 22)$ is essentially the same as computing the area under the graph.

Probability Density Function

So, it doesn't make sense to use the probability mass function for continuous variables as they cannot take exactly a specific value. Hence, Probability Density Function (p.d.f.):

For a continuous random variable X, the p.d.f. id a function f(x) such that:

- $f(x) \geq 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} f(x) dx = 1$
- $\forall a < b : P(a \le X \le b) = \int_a^b f(x) dx$

Also, we don't really have to be careful about the signs:

•
$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$$