RF TEST REPORT

Report No.: CE_SL18040201-RIO-001 2.4GHz Rev_1.0 Supersede Report No.: CE_SL18040201-RIO-001 2.4GHz

Applicant	Resin.io				
Product Name	Raspberry Compute Module 3 Lite	Raspberry Compute Module 3 Lite			
Model No.	Balena Fin				
Test Standard	EN 300 328 V2.1.1 (2016-11)				
Test Method	EN 300 328 V2.1.1 (2016-11)				
Date of test	05/01/2018 - 06/14/2018				
Issue Date	12/30/2019				
Test Result	<u>Pass</u> Fail				
Equipment comp	olied with the specification	[x]			
Equipment did not comply with the specification		[]			
my Ch					
Benjamin Jing		Chen Ge			
	Test Engineer	Engineer Reviewer			
	This test report may be reproduced in full only Test result presented in this test report is applicable to the tested sample only				

Issued By:
SIEMIC Laboratories
775 Montague Expressway, Milpitas, 95035 CA

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	2 of 39

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Accordance for Commenting Accordance			
Country/Region	Accreditation Body	Scope	
USA	FCC, A2LA	EMC, RF/Wireless, Telecom	
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom	
Taiwan	BSMI, NCC, NIST	EMC, RF, Telecom, Safety	
Hong Kong	OFTA, NIST	RF/Wireless, Telecom	
Australia	NATA, NIST	EMC, RF, Telecom, Safety	
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety	
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom	
Mexico	NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom	
Europe	A2LA, NIST	EMC, RF, Telecom, Safety	
Israel	MOC, NIST	EMC, RF, Telecom, Safety	

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC, RF, Telecom
Canada	IC FCB, NIST	EMC, RF, Telecom
Singapore	iDA, NIST	EMC, RF, Telecom
EU	NB	EMC & R&TTE Directive
Japan	MIC (RCB 208)	RF, Telecom
Hong Kong	OFTA (US002)	RF, Telecom

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	3 of 39

CONTENTS

1	F	REPORT REVISION HISTORY	4
2	E	EXECUTIVE SUMMARY	5
3	(CUSTOMER INFORMATION	5
4	1	TEST SITE INFORMATION	5
5	N	MODIFICATION	5
6	E	EUT INFORMATION	6
	6.1	EUT Description	6
	6.2	Radio Description	6
	6.3	EUT Operational Condition	7
	6.4	Adaptive Equipment	7
	6.5	EUT test modes/configuration Description.	7
7	5	SUPPORTING EQUIPMENT/SOFTWARE AND CABLING DESCRIPTION	8
	7.1	Supporting Equipment	8
	7.2	Cabling Description	8
	7.3	Test Software Description	8
8	1	TEST SUMMARY	9
9	N	MEASUREMENT UNCERTAINTY	.10
	9.1	Radiated Emissions (30MHz to 1GHz)	.10
	9.2	Radiated Emissions (1GHz to 40GHz)	.10
	9.3	RF conducted measurement	11
10)	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	12
	10.1	1 RF Output Power	.12
	10.2	2 Power Spectral Density	.15
	10.3	3 Adaptivity	.17
	10.4	4 Occupied Channel Bandwidth	21
	10.5	5 TX Unwanted Emissions in the OOB domain	.24
	10.6	Radiated TX Unwanted Emissions in the spurious domain	27
	10.7	7 Radiated Receiver Spurious Emissions	32
	10.8	8 Receiver Blocking	.34
Α	NNE	X A. TEST INSTRUMENT	36
Α	NNE	X B. SIEMIC ACCREDITATION	37

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	4 of 39

Report Revision History

Report No.	Report Version	Description	Issue Date
CE_SL18040201-RIO-001_2.4GHz	None	Original	06/15/2018
CE_SL18040201-RIO-001_2.4GHz Rev_1.0	Rev_1.0	pAdd Adaptivity Data	12/30/2019

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	5 of 39

2 **Executive Summary**

The purpose of this test program was to demonstrate compliance of following product

Company: Resin.io

Product: Raspberry Compute Module 3 Lite

Model: Balena Fin

against the current Stipulated Standards. The specified model product stated above has demonstrated compliance with the Stipulated Standard listed on 1st page.

3 Customer information

Applicant Name	Resin.io
Applicant Address	One London Wall 6th floor London EC2Y 5EB United Kingdom
Manufacturer Name	Resin.io
Manufacturer Address	One London Wall 6th floor London EC2Y 5EB United Kingdom

4 Test site information

Lab performing tests	SIEMIC Laboratories	
Lab Address	775 Montague Expressway, Milpitas, CA 95035	
FCC Test Site No.	881796	
IC Test Site No.	4842D-2	
VCCI Test Site No.	A0133	

5 Modification

Index	Item	Description	Note
-	-	-	-

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	6 of 39

EUT Information

<u>6.1</u> **EUT Description**

Product Name	Raspberry Compute Module 3 Lite
Model No.	Balena Fin
Trade Name	Resin.io
Serial No.	N/A
Host Model No.	N/A
Input Power	220VAC/50Hz
Power Adapter Manu/Model	VEL36US120-US-JA
Power Adapter SN	E317867
Date of EUT received	04/15/2018
Equipment Class/ Category	DTS, UNII
Port/Connectors	1 X RJ45 Ethernet , 2 X USB, 1 X mini USB, 1 X HDMI

Radio Description 6.2

Radio Type	802.11b	802.11g	802.11n-20M	802.11n-40M		
Operating Frequency	2412-2462MHz	2412-2462MHz	2412-2462MHz	2422-2452MHz		
Modulation	DSSS (CCK, DQPSK, DBPSK)	OFDM-CCK (BPSK, QPSK, 16QAM, 64QAM, 256QAM)	OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)	OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM)		
Channel Spacing	5MHz	5MHz	5MHz	5MHz		
Number of Channels	11	11	11	7		
Antenna Type		External antenna : ¼ Dipole Omni Embedded antenna : SMT				
Antenna Gain (Peak)	External antenna : 2 dBi Embedded antenna : 1 dBi					
Antenna Connector Type	U.FL					

EUT Power Level Setting

Mode	Frequency (MHz)	Power setting
802.11-b	2412	14
802.11-b	2442	15
802.11-b	2472	15
802.11-g	2412	14
802.11-g	2442	15
802.11-g	2472	15
802.11-n-20	2412	14
802.11-n-20	2442	15
802.11-n-20	2472	15
802.11-n-40	2422	14
802.11-n-40	2442	14
802.11-n-40	2462	14

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	7 of 39

EUT Operational Condition

Item	Range		
Battery Voltage	N/A		
AC Adapter Voltage	220VAC		
Environmental Condition	Tnom = 25 °C		

6.4 Adaptive Equipment

			Adaptive Equipment			
\boxtimes	Adaptive Equipment without the possibility to switch to a non-adaptive mode:					
	\boxtimes	The	equipment has implemented an LBT based DAA mechanism			
			The equipment is Frame Based equipment			
		\boxtimes	The equipment is Load Based equipment			
			☐ The equipment can switch dynamically between Frame Based and Load Based equipment			
		The	equipment has implemented and non-LBT based DAA mechanism			
	☐ The equipment can operate in more than one adaptive mode					
	Adaptive Frequency Hopping using other forms of DAA (non-LBT based) / without Short Control Signaling Transmissions					
	☐ Adaptive Equipment which can also operate in a non-adaptive mode					

<u>6.5</u> **EUT test modes/configuration Description**

Test mode

Test Mode			
Pre_test_mode_1	Continuous Transmit	-	
Pre_test_mode_2	Normal Operation Mode (duty cycle transmit power)	-	

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	8 of 39

Supporting Equipment/Software and cabling Description

Supporting Equipment 7.1

Item	Supporting Equipment Description	Model	Serial Number	Manufacturer	Note
1	Laptop	LATITUDE 3550	N/A	Dell	-
2	Router	WNR2000	N/A	Netgear	

7.2 **Cabling Description**

Name	Connection Start		Connecti	on Stop	Length / shi	elding Info	Note
Name	From I/O Port		То	I/O Port	Length (m)	Shielding	Note
Ethernet	RJ-45	EUT	RJ-45	Laptop	Ethernet 1 m	no	Unshielded

Test Software Description 7.3

Test Item	Software	Description
RF Testing	Dut Labtool	Set the EUT to transmit continuously in different test modes and channels

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	9 of 39

Test Summary

Summary for 2.4GHz WLAN

Test Item		Test standard	Test Method/Procedure	Pass / Fail
	RF Output Power	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass
	Power Spectral Density	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass
Duty	Cycle, Tx-sequence, Tx-gap	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A
Dwell time,	Minimum Frequency Occupation & Hopping Sequence	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A
Нор	ping Frequency Separation	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A
Medium Utilisation		EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A
	Adaptivity	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass
Occ	cupied Channel Bandwidth	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass
TX Unwant	ted Emissions in the OOB domain	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass
TX Unwante	d Emissions in the spurious domain	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass
Re	ceiver spurious emissions	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass
Receiver Blocking		EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass
1. All measurement uncertainties do not take into consideration for all presented test results. Remark 2. The applicant shall ensure frequency stability by showing that an emission is maintained within the band of operation under all normal operating conditions as specified in the user's manual.				

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	10 of 39

Measurement Uncertainty

9.1 Radiated Emissions (30MHz to 1GHz)

The test is to measure the radiated emissions of the EUT. Some error sources that can contribute to the total uncertainty:

- Uncertainty of the receiver
- Uncertainty of the antenna
- Uncertainty of cables
- Uncertainty due to the mismatches
- NSA Calibration
- Etc., details see the below table

Source of Uncertainty	Value (dB)	Probability Distribution	Division	Sensitivity Coefficient	Expanded Uncertainty
Receiver Reading	0.12	Rectangular	1.732	1	0.069284
Cable Insertion Loss	0.21	Normal	2	1	0.105
Filter Insertion Loss	0.25	Normal	2	1	0.125
Antenna Factor	0.65	Normal	2	1	0.325
Receiver CW accuracy	0.5	Rectangular	1.732	1	0.2886836
Pulse Amplitude Response	1.5	Rectangular	1.732	1	0.86605081
PRF Response	1.5	Rectangular	1.732	1	0.86605081
Mismatch Filter - Receiver	0.25	U-Shape	1.414	1	0.1768033
NSA Calibration	4.0	U-Shape	1.414	1	2.8288543
Combined Standard Uncertaint	3.0059131				
Expanded Uncertainty (K=2)	6.0118262				

The total derived measurement uncertainty is +/- 6.00 dB.

9.2 Radiated Emissions (1GHz to 40GHz)

The test is to measure the radiated emissions of the EUT.

Some error sources that can contribute to the total uncertainty:

- Uncertainty of the receiver
- Uncertainty of the antenna
- Uncertainty of cables
- Uncertainty due to the mismatches
- VSWR Calibration
- Etc., details see the below table

Source of Uncertainty	Value	Probability	Division	Sensitivity	Expanded
Source of officertainty	(dB)	Distribution	DIVISION	Coefficient	Uncertainty
Receiver Reading	0.12	Rectangular	1.732	1	0.0692840
Cable Insertion Loss	0.21	Normal	2	1	0.1050000
Filter Insertion Loss	0.25	Normal	2	1	0.1250000
Antenna Factor	0.65	Normal	2	1	0.3250000
Receiver CW accuracy	0.5	Rectangular	1.732	1	0.2886836
Pulse Amplitude Response	1.5	Rectangular	1.732	1	0.8660508
PRF Response	1.5	Rectangular	1.732	1	0.8660508
Mismatch Filter - Receiver	0.25	U-Shape	1.414	1	0.1768033
VSWR Calibration	2.0	U-Shape	1.414	1	1.4144272
Combined Standard Uncertain	4.2363				
Expanded Uncertainty (K=2)	<u> </u>		<u> </u>	8.4726

The total derived measurement uncertainty is +/- 8.47 dB.

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	11 of 39

RF conducted measurement

The test is to measure the RF output power from the EUT.

Some error sources that can contribute to the total uncertainty:

- Uncertainty of the Reference Level Uncertainty
- Uncertainty of variable attenuators
- Uncertainty of cables
- Uncertainty due to the mismatches

	Value	Probability	Division	Sensitivity	Expanded
Source of Uncertainty	(dB)	Distribution		Coefficient	Uncertainty
Reference Level	0.12	Rectangular	1.732	1	0.069284
Cable Insertion Loss	0.21	Normal	2	1	0.105
Attenuator	0.25	Normal	2	1	0.125
Mismatch	0.25	U-Shape	1.414	1	0.1768033
Combined Standard Unce	0.476087				
Expanded Uncertainty ((=2)				0.952174

The total derived measurement uncertainty is +/- 0.95 dB.

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	12 of 39

10 Measurements, Examination and Derived Results

10.1 RF Output Power

Spec	Item	Requirement			Applicable	
EN 300 328 V2.1.1 (2016-11)	4.3.1	The maximum RF outp	ut power for adaptive Frequency H n 20 dBm.	lopping equipment shall		
EN 300 328 V2.1.1 (2016-11)	4.3.1	shall be equal to or less	ne maximum RF output power for non-adaptive Frequency Hopping equipment, nall be equal to or less than the value declared by the supplier. This declared lue shall be equal to or less than 20 dBm.			
EN 300 328 V2.1.1 (2016-11)	4.3.2		or adaptive equipment using wide band modulations other than FHSS, the naximum RF output power shall be 20 dBm.			
EN 300 328 V2.1.1 (2016-11)	4.3.2	The maximum RF outports the supplier and shall n	ut power for non-adaptive equipment of exceed 20 dBm.	ent shall be declared by		
Test Setup		EUT Environmental Chamb	Fast Powe	er Meter		
Procedure	2. F - C ttl 3. F - C - T b - F	or conducted measurem Connect the power sensor nese stored samples in a or conducted measurem Connect one power sensor rigger the power sensors retween the samples of a or each instant in time, s tored samples in all follow	ents on devices with multiple trans or to each transmit port for a synch is so that they start sampling at the II sensors is less than half the time rum the power of the individual san	chain: ransmit signal and store the mit chains: ronous measurement on al same time. Make sure the between two samples.	l transmits ports. time difference	
	5. E tl 6. T 7. A 8. I - If	Between the start and stopnese P _{burst} values, as welche highest of all P _{burst} valued the (stated) antenna of applicable, add the add from than one antenna ain (G or G + Y) shall be	nes of each burst in the stored mean p times of each individual burst call I as the start and stop times for each lues (value "A" in dBm) will be use assembly gain "G" in dBi of the inditional beamforming gain "Y" in dB assembly is intended for this power used.	Iculate the RMS power over ch burst. d for maximum e.i.r.p. calculividual antenna. er setting, the maximum over	r the burst. Save	
Test Date	5. E tl 6. T 7. A 8. I - If	Between the start and stophese P _{burst} values, as welche highest of all P _{burst} valued the (stated) antenna of applicable, add the add formore than one antennaliain (G or G + Y) shall be the RF Output Power (P)	nes of each burst in the stored mean p times of each individual burst call I as the start and stop times for each Ilues (value "A" in dBm) will be use assembly gain "G" in dBi of the ind itional beamforming gain "Y" in dB assembly is intended for this power	Iculate the RMS power over ch burst. d for maximum e.i.r.p. calculividual antenna. er setting, the maximum over ula: P = A + G + Y Temperature Relative Humidity	r the burst. Save ulations. erall antenna 24 °C 42 %	
Test Date	5. Et tt 6. T 7. A 8. I 9. T 9. T	Between the start and stophese P _{burst} values, as welche highest of all P _{burst} valued the (stated) antenna of applicable, add the add formore than one antennaliain (G or G + Y) shall be the RF Output Power (P)	nes of each burst in the stored mean present the stored mean present the start and stop times for each lues (value "A" in dBm) will be use assembly gain "G" in dBi of the inditional beamforming gain "Y" in dB assembly is intended for this power used. Shall be calculated using the forming times of each present the store of each	Iculate the RMS power over ch burst. d for maximum e.i.r.p. calculividual antenna. cer setting, the maximum over ula: P = A + G + Y Temperature	r the burst. Save ulations. erall antenna 24 °C	
	5. E tt 6. T 7. A 8. I - If 9. T	Between the start and stopnese P _{burst} values, as welche highest of all P _{burst} valued the (stated) antenna of applicable, add the add from than one antennaliain (G or G + Y) shall be the RF Output Power (P)	nes of each burst in the stored mean present the stored mean present the start and stop times for each lues (value "A" in dBm) will be use assembly gain "G" in dBi of the inditional beamforming gain "Y" in dB assembly is intended for this power used. Shall be calculated using the forming times of each present the store of each	Iculate the RMS power over ch burst. d for maximum e.i.r.p. calculividual antenna. er setting, the maximum over ula: P = A + G + Y Temperature Relative Humidity	r the burst. Save ulations. erall antenna 24 °C 42 %	

Test was done by Benjamin Jing at radio test site .

Test Plot ☐ Yes (See below)

Visit us at: www.siemic.com; Follow us at:

 \boxtimes N/A

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	13 of 39

Test Results

802.11b Low CH: 2412 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	17.1	20
	Low Temp (-20 °C)	2	16.4	20
EIRP	Low Temp (-20 °C)	2	16.4	20
	High Temp (55°C)	2	17.8	20
	High Temp (55°C)	2	17.8	20

802.11b Mid CH: 2442 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	17.9	20
	Low Temp (-20 °C)	2	17.2	20
EIRP	Low Temp (-20 °C)	2	17.2	20
	High Temp (55°C)	2	18.3	20
	High Temp (55°C)	2	18.3	20

802.11b High CH: 2472 MHz

Type	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	17.3	20
	Low Temp (-20 °C)	2	16.5	20
EIRP	Low Temp (-20 °C)	2	16.5	20
	High Temp (55°C)	2	17.8	20
	High Temp (55°C)	2	17.8	20

802.11g Low CH: 2412 MHz

Туре	Condition	Directional Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	16.2	20
	Low Temp (-20 °C)	2	15.7	20
EIRP	Low Temp (-20 °C)	2	15.7	20
	High Temp (55°C)	2	16.9	20
	High Temp (55°C)	2	16.9	20

802.11g Mid CH: 2442 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	16.6	20
	Low Temp (-20 °C)	2	15.8	20
EIRP	Low Temp (-20 °C)	2	15.8	20
	High Temp (55°C)	2	17.2	20
	High Temp (55°C)	2	17.2	20

802.11g High CH: 2472 MHz

Type	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	16.4	20
	Low Temp (-20 °C)	2	15.5	20
EIRP	Low Temp (-20 °C)	2	15.5	20
	High Temp (55°C)	2	17.3	20
	High Temp (55°C)	2	17.3	20

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	14 of 39

802.11n-20 Low CH: 2412 MHz

Type	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	15.3	20
	Low Temp (-20 °C)	2	14.8	20
EIRP	Low Temp (-20 °C)	2	14.8	20
	High Temp (55°C)	2	15.9	20
	High Temp (55°C)	2	15.9	20

802.11n-20 Mid CH: 2442 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	15.7	20
	Low Temp (-20 °C)	2	15.1	20
EIRP	Low Temp (-20 °C)	2	15.1	20
	High Temp (55°C)	2	16.3	20
	High Temp (55°C)	2	16.3	20

802.11n-20 High CH: 2472 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	15.6	20
	Low Temp (-20 °C)	2	14.9	20
1EIRP	Low Temp (-20 °C)	2	14.9	20
	High Temp (55°C)	2	16.1	20
	High Temp (55°C)	2	16.1	20

802.11n-40M Low CH: 2422 MHz

Type	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	11.3	20
	Low Temp (-20 °C)	2	10.7	20
1EIRP	Low Temp (-20 °C)	2	10.7	20
	High Temp (55°C)	2	11.8	20
	High Temp (55°C)	2	11.8	20

802.11n-40M Mid CH: 2442 MHz

Туре	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	10.9	20
	Low Temp (-20 °C)	2	10.2	20
EIRP	Low Temp (-20 °C)	2	10.2	20
	High Temp (55°C)	2	11.4	20
	High Temp (55°C)	2	11.4	20

802.11n-40M High CH: 2462 MHz

Type	Condition	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	2	10.6	20
	Low Temp (-20 °C)	2	10.1	20
EIRP	Low Temp (-20 °C)	2	10.1	20
	High Temp (55°C)	2	11.2	20
	High Temp (55°C)	2	11.2	20

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	15 of 39

Spec Power Spec	Item	Requirement			Applicable
Spec	item	Requirement			Applicable
EN 300 328 V2.1.1 (2016-11	4.3.2	For equipment using wide bar Spectral Density is limited to	nd modulations other than FHS 10 dBm per MHz	S, the maximum Power	\boxtimes
Test Setup		EUT	Spectrum A	nalyzer	
Procedure	2 3 4 5 6 7	- Start Frequency: 2 400 M - Stop Frequency: 2 483,5 - Resolution BW: 10 kHz - Video BW: 30 kHz - Sweep Points: > 8 350 - Detector: RMS - Trace Mode: Max Hold - Sweep time: Auto For non-continuous signals, For conducted measuremer clause 5.1.3.2), repeat the r up the amplitude (power) va Add up the values for ampli Normalize the individual val (e.i.r.p.) measured. Starting from the first sampl representing a 1 MHz segm This is the Power Spectral I Shift the start point of the sa (i.e. sample #2 to #101). Repeat step 6 until the end each of the 1 MHz segment From all the recorded results	wait for the trace to be comple onts on smart antenna systems to measurement for each of the tracelues for the different transmit of tude (power) for all the samples ues for amplitude so that the subset of the file (lowest frequency), then the file (lowest frequency), the first 1 M amples added up in step 5 by 1 of the data set and record the record the file (lowest frequency).	ted. Save the (trace) data susing either operating modernsmit ports. For each frequencians and use this as the nast in the file. In is equal to the RF Output add up the power of the follower and position (i.e. samult segment which shall be sample and repeat the progradiated Power Spectral Demonstrated Power	e 2 or 3 (see uency point, add lew data set. ut Power llowing samples aple #1 to #100). recorded. locedure in step 5 ensity values for ity for the UUT.
Test Date	05/23/	2018	Environmental condition	Temperature Relative Humidity Atmospheric Pressure	23 ℃ 42 % 1019 mbar
Remark	NONE				
Result	⊠ Pa	ss 🗆 Fail			
Test Data ⊠ Ye	es (See b	elow) \square N/A			
Test Plot 🗆 Ye	s (See b	elow) 🖂 N/A			

Test was done by Benjamin Jing at radio test site .

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	16 of 39

PSD measurement results

Туре	Freq (MHz)	Test mode	СН	Measured PSD (dBm/1MHz) (E.I.R.P)	Limit (dBm/1MHz) (E.I.R.P)	Result
Maximum PSD	2412	802.11b	Low	9.15	≤10	Pass
Maximum PSD	2442	802.11b	Mid	9.30	≤10	Pass
Maximum PSD	2472	802.11b	High	9.41	≤10	Pass
Maximum PSD	2412	802.11g	Low	7.62	≤10	Pass
Maximum PSD	2442	802.11g	Mid	8.96	≤10	Pass
Maximum PSD	2472	802.11g	High	8.83	≤10	Pass
Maximum PSD	2412	802.11n-20M	Low	7.49	≤10	Pass
Maximum PSD	2442	802.11n-20M	Mid	7.98	≤10	Pass
Maximum PSD	2472	802.11n-20M	High	8.46	≤10	Pass
Maximum PSD	2422	802.11n-40M	Low	5.71	≤10	Pass
Maximum PSD	2442	802.11n-40M	Mid	6.32	≤10	Pass
Maximum PSD	2462	802.11n-40M	High	5.14	≤10	Pass

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	17 of 39

10.3 Adaptivity

Requirement(s):

	Item	Requirement				Applica
EN 300 328 V2.1.1 (2016-11)	4.3.2.6.3	LBT based Detect and Avoid	- LBT ba IEEE \$ 802.11	ipment with spectrum sha ased spectrum sharing me Std. 802.11-2207 clauses In-2009, clause 20 or in IE tion Level = - 70 dBm/MHz	echanism may implemen 15, 17, 18 or 19, in IEEE EEE Std. 802.15.4-2006	t E Std. ⊠
EN 300 328 V2.1.1 (2016-11)	4.3.2.6.4	Short Control Signaling Transmissions - If implemented, Short Control Signalling Transmissions of adaptive equipment using wide band modulations other than FHSS shall have a maximum TxOn / (TxOn + TxOff) ratio of 10 % within any observation period of 50 ms.				
		Wanted sign from comp	Table 11: Un nal mean power panion device	wanted Signal param Unwanted signal frequency (MHz)	Unwanted signal power (dBm)	
EN 300 328 V2.1.1 (2016-11)	4.3.2.6.3	NOTE 1: T C IC NOTE 2: A NOTE 3: T	hannels within the owest frequency shithin the range 2 4 typical value which he level specified	2 395 or 2 488,5 (see note 1) ncy shall be used for testi range 2 400 MHz to 2 44 all be used for testing op 42 MHz to 2 483,5 MHz. ch can be used in most ca is the level in front of the urements, this level has to embly gain.	2 MHz, while the erating channels See clause 5.4.6.1. uses is -50 dBm/MHz. UUT antenna. In case	
Test Setup		UUТ	Splitter/ Combiner e 5: Test set-up for v	Spectrum Analyzer Direct. Coupler ATT. Splitter/ Combiner Perifying the adaptivity of an	Companion Device Interference Signal Generator Unwanted Signal Generator equipment	
	Refer to Clause 5.4.6 of ETSI EN 300 328 V2.1.1 (2016-11)					
Procedure	Refer to C	lause 5.4.6 of ETSI EIN	300 328 VZ.1.1 (2	016-11)		
Procedure Remark	Interfer shall be Occupi Occupi Interfer shall be Occupi	ence signal: A 100 % due a band limited noise signed Channel Bandwidth ced Channel Bandwidth.	uty cycle interferer gnal with a flat Po of the UUT. The m	nce signal is injected cen wer Spectral Density, an aximum ripple of this inte	d shall have a bandwid erfering signal shall be	th greater than t ±1.5 dB within tl

Test was done by Shuo Zhang at RF test site.

Test Plot ⊠ Yes (See below)

 \square N/A

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	18 of 39

Test Result for Adaptivity

Test Mode	Frequency (MHz)	Adaptivity	Unwanted Signal
802.11b	2412	Pass	Pass
802.11b	2472	Pass	Pass

Note:

Actual Adaptivity Detection Threshold Level (dBm) = -70 dBm Unwanted Signal Level (dBm) = - 35 dBm

Test Result for Short Control Signaling Transmissions

Test Mode	Frequency (MHz)	Short Control Signaling Transmissions (ms)	Limit (mS)	Result
802.11b	2412	0	≤5	Pass
802.11b	2472	0	≤5	Pass

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	19 of 39

Test Plots

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	20 of 39

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	21 of 39

10.4 Occupied Channel Bandwidth

Spec	Item	Requirement			Applicable	
EN 300 328 V1.9.1 (2015-02)	4.3.2	MHz.				
EN 300 328 V1.9.1 (2015-02)	4.3.2		or non-adaptive systems using wide band modulations other than FHSS and with e.i.r.p reater than 10 dBm, the occupied channel bandwidth shall be less than 20 MHz			
Test Setup		Spectrum Analyzer EUT				
Procedure	1. Connect the UUT to the spectrum analyser and use the following settings: - Centre Frequency: The centre frequency of the channel under test - Resolution BW: ~ 1 % of the span without going below 1 % - Video BW: 3 × RBW - Frequency Span: 2 × Occupied Channel Bandwidth (e.g. 40 MHz for a 20 MHz channel) - Detector Mode: RMS 2. Wait until the trace is completed. Find the peak value of the trace and place the analyser marker on this peak. 3. Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded. NOTE: Make sure that the power envelope is sufficiently above the noise floor of the analyzer to avoid the noise signals left and right from the power envelope being taken into account by this measurement.					
Test Date	05/17/2	018 –06/12/2018/	Environmental condition	Relative Humidity 40	· °C) %)19 mbar	
Remark	None					
Result	⊠ Pas	s 🗆 Fail				

Test Data		□ N/A
Test Plot	⊠ Yes	□ N/A

Test was done by Benjamin Jing at radio test site .

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	22 of 39

Test Result:

Туре	Freq (MHz)	Test mode	99% Bandwidth (MHz)	F∟ at 99% Bandwidth (MHz)	Fн at 99% Bandwidth (MHz)	Limit (FL/FH) (MHz)
99%OBW	2412	802.11b	13.3	2405.3	2418.7	2400.0
99%OBW	2472	802.11b	13.3	2465.3	2478.7	2483.5
99%OBW	2412	802.11g	16.4	2403.8	2420.2	2400.0
99%OBW	2472	802.11g	16.7	2463.6	2480.4	2483.5
99%OBW	2412	802.11n-20M	17.1	2403.4	2420.6	2400.0
99%OBW	2472	802.11n-20M	17.1	2463.4	2480.6	2483.5
99%OBW	2422	802.11n-40M	35.4	2404.3	2439.7	2400.0
99%OBW	2462	802.11n-40M	36.4	2443.8	2480.2	2483.5

Test Plots

Test report No. CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page 23 of 39

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	24 of 39

10.5 TX Unwanted Emissions in the OOB domain

Spec	Item	Requirement	Applicable
Орес		The transmitter unwanted emissions in the out-of-band domain but outside the allocat band, shall not exceed the values provided by the mask in figure at below,	ed
		Spurious Domain Out Of Band Domain (OOB) Allocated Band Out Of Band Domain (OOB) Spurious Do	omain
EN 300 328 V1.9.1 (2015- 02)	4.3.1, 4.3.2	В	\boxtimes
		2 400 MHz - 2BW 2 400 MHz - BW 2 400 MHz 2 483,5 MHz 2 483,5 MHz + BW 2 483,5 MHz + 2BW A: -10 dBm/MHz e.i.r.p.	→
		A: -10 definition = E.f.p. B: -20 definition = E.f.p. BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is gri C: Spurious Domain limits	əater
Test Setup		EUT Spectrum Analyzer	
Procedure	2.	- Centre Frequency: 2 484 MHz - Span: 0 Hz - Resolution BW: 1 MHz - Filter mode: Channel filter - Video BW: 3 MHz - Detector Mode: RMS - Trace Mode: Clear / Write - Sweep Mode: Continuous - Sweep Points: 5 000 - Trigger Mode: Video trigger - Sweep Time: Suitable to capture one transmission burst	ver level shall be d in which the RMS which is the RMS lue with the every 1 MHz cy of the last 1 MHz

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	25 of 39

- 3. (segment 2 483,5 MHz + BW to 2 483,5 MHz + 2BW)
- Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW 0,5 MHz.
- 4. (segment 2 400 MHz BW to 2 400 MHz)
- Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz 2BW + 0,5 MHz.
- 5. (segment 2 400 MHz 2BW to 2 400 MHz BW)
- Change the centre frequency of the analyser to 2 399,5 MHz BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz 2BW to 2 400 MHz BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz 2BW + 0,5 MHz.
- 6. In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain "G" in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figures 1 or 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.
- 7. In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements need to be repeated for each of the active transmit chains. The declared antenna assembly gain "G" in dBi for a single antenna shall be added to these results. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered. Comparison with the applicable limits shall be done using any of the options given below:
- Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added. The additional beamforming gain "Y" in dB shall be added as well and the resulting values compared with the limits provided by the mask given in figures 1 or 3.
- Option 2: the limits provided by the mask given in figures 1 or 3 shall be reduced by 10 x log10(Ach) and the additional beamforming gain "Y" in dB. The results for each of the transmit chains shall be individually compared with these reduced limits.

NOTE 2: Ach refers to the number of active transmit chains.

Test Date	05/24/2018		05/24/2018		Environmental condition	Temperature Relative Humidity Atmospheric Pressure	24 °C 40 % 1019 mbar
Remark	None						
Result	⊠ Pass	☐ Fail					

Test Data		□ N/A
Test Plot	☐ Yes (See below)	⊠ N/A

Test was done by Benjamin Jing at RF test site.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	26 of 39

Туре	Frequency (MHz)	Mode	OOB Frequency (MHz)	OOB Emission level (dBm)	Limit (dBm)	Result
OOB	2412	802.11b	2398.4	-28.725	-10	Pass
OOB	2472	802.11b	2484.2	-32.338	-10	Pass
OOB	2412	802.11g	2399.7	-14.505	-10	Pass
OOB	2472	802.11g	2484.5	-14.574	-10	Pass
OOB	2412	802.11n-20	2391.4	-13.733	-10	Pass
OOB	2472	802.11n-20	2484.3	-13.050	-10	Pass
OOB	2422	802.11n-40	2393.7	-15.229	-10	Pass
OOB	2462	802.11n-40	2484.2	-13.952	-10	Pass

Note: The results above show only the worst case.

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	27 of 39

10.6 Radiated TX Unwanted Emissions in the spurious domain

Spec Radiated	Item Requirement		Applicable
EN 300 328 V2.1.1 (2016-11)	The spurious emissions of the transmitter shall not exceed the values in the table in the indicated bands. Transmitter limits for narrowband spurious emissions Frequency range Maximum power Bandw 30 MHz to 47 MHz -36 dBm 100 M 47 MHz to 74 MHz -54 dBm 100 M 74 MHz to 87.5 MHz -36 dBm 100 M 87.5 MHz to 118 MHz -54 dBm 100 M 118 MHz to 174 MHz -36 dBm 100 M 118 MHz to 174 MHz -36 dBm 100 M 230 MHz to 470 MHz -54 dBm 100 M 230 MHz to 470 MHz -36 dBm 100 M 470 MHz to 862 MHz -54 dBm 100 M 862 MHz to 1 GHz -36 dBm 100 M 1 GHz to 12.75 GHz -30 dBm 1 M	width KHz KHz KHz KHz KHz KHz KHz KHz	
Test Setup Below 1GHz	Semi Anechoic Chamber Radio Absorbing Material But 1.5m Antenna Ground Plane	Spectrum Analy	Zef
Test Setup Above 1GHz	Semi Anechoic Chamber Radio Absorbing Material The semi Anechoic Chamber Antenna Ground Plane	Spectrum Anal	yzer
Procedure	Refer to Clause 5.3.10.2.2 of EN 300 328 V2.1.1 (2016-11)		
Remark	Both horizontal and vertical polarities were investigated. The results show only the wors	t case	
Result	⊠ Pass □ Fail		

Test Data \boxtimes Yes (See below) \square N/ATest Plot \square Yes (See below) \boxtimes N/A

Test was done by Benjamin Jing at 10m Chamber.

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	28 of 39

802.11b - Low CH 2412 MHz

In	dicated		Test A	Antenna			Su	bstituted			
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
189.63	-48.27	275	110	V	189.63	-73.45	0	1.28	-72.17	-54	-18.17
189.63	-44.46	96	229	Н	189.63	-65.41	0	1.28	-64.13	-54	-10.13
4824	-65.13	236	165	V	4804	-42.05	10.54	4.32	-48.27	-30	-18.27
4824	-67.24	167	176	Н	4804	-44.16	10.54	4.32	-50.38	-30	-20.38
7206	-78.16	264	168	V	7206	-46.86	10.13	4.36	-52.63	-30	-22.63
7206	-80.25	252	162	Н	7206	-48.95	10.13	4.36	-54.72	-30	-24.72

802.11b - High CH 2472 MHz

Ir	ndicated		Test A	Antenna	Substituted								
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
206.12	-46.52	70	130	V	206.12	-67.17	0	1.31	-65.86	-54	-11.86		
206.12	-40.48	142	220	Н	206.12	-64.56	0	1.31	-63.25	-54	-9.25		
4944	-66.34	236	165	V	4960	-43.26	10.52	4.35	-49.43	-30	-19.43		
4944	-68.02	167	176	Н	4960	-44.94	10.52	4.35	-51.11	-30	-21.11		
7440	-78.64	264	168	V	7440	-47.34	10.67	4.38	-53.63	-30	-23.63		
7440	-80.48	252	162	Н	7440	-49.18	10.67	4.38	-55.47	-30	-25.47		

802.11g - Low CH 2412 MHz

In	dicated		Test A	Antenna	Substituted								
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
4824	-66.93	236	165	V	4804	-43.85	10.54	4.32	-50.07	-30	-20.07		
4824	-68.22	167	176	Н	4804	-45.14	10.54	4.32	-51.36	-30	-21.36		
7206	-78.45	264	168	V	7206	-47.15	10.13	4.36	-52.92	-30	-22.92		
7206	-80.32	252	162	Н	7206	-49.02	10.13	4.36	-54.79	-30	-24.79		

802.11a - High CH 2472 MHz

In	dicated		Test A	Antenna	Substituted								
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
4944	-66.24	236	165	V	4960	-43.16	10.52	4.35	-49.33	-30	-19.33		
4944	-68.45	167	176	Н	4960	-45.37	10.52	4.35	-51.54	-30	-21.54		
7440	-78.27	264	168	V	7440	-46.97	10.67	4.38	-53.26	-30	-23.26		
7440	-79.13	252	162	Н	7440	-47.83	10.67	4.38	-54.12	-30	-24.12		

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	29 of 39

802.11n20 - Low CH 2412 MHz

In	dicated		Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
4824	-65.13	236	165	V	4804	-42.05	10.54	4.32	-48.27	-30	-18.27	
4824	-67.24	167	176	Н	4804	-44.16	10.54	4.32	-50.38	-30	-20.38	
7206	-78.16	264	168	V	7206	-46.86	10.13	4.36	-52.63	-30	-22.63	
7206	-80.25	252	162	Н	7206	-48.95	10.13	4.36	-54.72	-30	-24.72	

802.11n20 - High CH 2472MHz

In	dicated		Test A	Antenna	Substituted								
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
4944	-66.34	236	165	V	4960	-43.26	10.52	4.35	-49.43	-30	-19.43		
4944	-68.02	167	176	Н	4960	-44.94	10.52	4.35	-51.11	-30	-21.11		
7440	-78.64	264	168	V	7440	-47.34	10.67	4.38	-53.63	-30	-23.63		
7440	-80.48	252	162	Н	7440	-49.18	10.67	4.38	-55.47	-30	-25.47		

802.11n40 - Low CH 2422 MHz

			Test A	Antenna	Substituted								
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
206.12	-46.52	70	130	V	206.12	-67.17	0	1.31	-65.86	-54	-11.86		
206.12	-40.48	142	220	Н	206.12	-64.56	0	1.31	-63.25	-54	-9.25		
4844	-66.93	236	165	V	4804	-43.85	10.54	4.32	-50.07	-30	-20.07		
4844	-68.22	167	176	Н	4804	-45.14	10.54	4.32	-51.36	-30	-21.36		

802 11n/0 - High CH 2/62 MHz

802.11n40 - F	02.11n40 - High CH 2462 MHZ												
In	dicated		Test A	Antenna	Substituted								
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
207.03	-46.52	66	100	V	207.03	-68.17	0	1.31	-66.86	-54	-12.86		
207.03	-40.48	138	229	Н	207.03	-62.56	0	1.31	-61.25	-54	-7.25		
4924	-66.24	236	165	V	4960	-43.16	10.52	4.35	-49.33	-30	-19.33		
4924	-68.45	167	176	Н	4960	-45.37	10.52	4.35	-51.54	-30	-21.54		

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	30 of 39

Embedded Antenna

802.11b - Low CH 2412 MHz

In	dicated		Test A	Antenna	Substituted								
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
227.03	-41.59	353	143	V	227.03	-63.29	0	1.35	-61.94	-54	-7.94		
227.03	-35.63	116	159	Н	227.03	-58.33	0	1.35	-56.98	-54	-2.98		
4824	-65.13	236	165	V	4804	-42.05	10.54	4.32	-48.27	-30	-18.27		
4824	-67.24	167	176	Н	4804	-44.16	10.54	4.32	-50.38	-30	-20.38		
7206	-78.16	264	168	V	7206	-46.86	10.13	4.36	-52.63	-30	-22.63		
7206	-80.25	252	162	Н	7206	-48.95	10.13	4.36	-54.72	-30	-24.72		

802.11b - High CH 2472 MHz

Ir	ndicated		Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
206.12	-46.52	70	130	V	206.12	-67.17	0	1.31	-65.86	-54	-11.86	
206.12	-40.48	142	220	Н	206.12	-64.56	0	1.31	-63.25	-54	-9.25	
4944	-66.34	236	165	V	4960	-43.26	10.52	4.35	-49.43	-30	-19.43	
4944	-68.02	167	176	Н	4960	-44.94	10.52	4.35	-51.11	-30	-21.11	
7440	-78.64	264	168	V	7440	-47.34	10.67	4.38	-53.63	-30	-23.63	
7440	-80.48	252	162	Н	7440	-49.18	10.67	4.38	-55.47	-30	-25.47	

802.11g - Low CH 2412 MHz

In	dicated		Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
4824	-66.93	236	165	V	4804	-43.85	10.54	4.32	-50.07	-30	-20.07	
4824	-68.22	167	176	Н	4804	-45.14	10.54	4.32	-51.36	-30	-21.36	
7206	-78.45	264	168	V	7206	-47.15	10.13	4.36	-52.92	-30	-22.92	
7206	-80.32	252	162	Н	7206	-49.02	10.13	4.36	-54.79	-30	-24.79	

802.11a - High CH 2472 MHz

In	dicated		Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
4944	-66.24	236	165	V	4960	-43.16	10.52	4.35	-49.33	-30	-19.33	
4944	-68.45	167	176	Н	4960	-45.37	10.52	4.35	-51.54	-30	-21.54	
7440	-78.27	264	168	V	7440	-46.97	10.67	4.38	-53.26	-30	-23.26	
7440	-79.13	252	162	Н	7440	-47.83	10.67	4.38	-54.12	-30	-24.12	

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	31 of 39

802.11n20 - Low CH 2412 MHz

In	Indicated Test Antenna					Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
4824	-65.13	236	165	V	4804	-42.05	10.54	4.32	-48.27	-30	-18.27		
4824	-67.24	167	176	Н	4804	-44.16	10.54	4.32	-50.38	-30	-20.38		
7206	-78.16	264	168	V	7206	-46.86	10.13	4.36	-52.63	-30	-22.63		
7206	-80.25	252	162	Н	7206	-48.95	10.13	4.36	-54.72	-30	-24.72		

802.11n20 - High CH 2472MHz

In	dicated		Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
4944	-66.34	236	165	V	4960	-43.26	10.52	4.35	-49.43	-30	-19.43	
4944	-68.02	167	176	Н	4960	-44.94	10.52	4.35	-51.11	-30	-21.11	
7440	-78.64	264	168	V	7440	-47.34	10.67	4.38	-53.63	-30	-23.63	
7440	-80.48	252	162	Н	7440	-49.18	10.67	4.38	-55.47	-30	-25.47	

802.11n40 - Low CH 2422 MHz

			Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
206.12	-46.52	70	130	V	206.12	-67.17	0	1.31	-65.86	-54	-11.86	
206.12	-40.48	142	220	Н	206.12	-64.56	0	1.31	-63.25	-54	-9.25	
4844	-66.93	236	165	V	4804	-43.85	10.54	4.32	-50.07	-30	-20.07	
4844	-68.22	167	176	Н	4804	-45.14	10.54	4.32	-51.36	-30	-21.36	

802.11n40 - High CH 2462 MHz

In	dicated		Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
207.03	-46.52	66	100	V	207.03	-68.17	0	1.31	-66.86	-54	-12.86	
207.03	-40.48	138	229	Н	207.03	-62.56	0	1.31	-61.25	-54	-7.25	
4924	-66.24	236	165	V	4960	-43.16	10.52	4.35	-49.33	-30	-19.33	
4924	-68.45	167	176	Н	4960	-45.37	10.52	4.35	-51.54	-30	-21.54	

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	32 of 39

10.7 Radiated Receiver Spurious Emissions

Requirement(s):

Spec	Item	Requirement			Applicable
		Receiver spurious emissions are received mode.			
EN 300 328 V2.1.1 (2016-	4.3.2.9	The spurious emissions of the rethe indicated bands.	ceiver shall not exceed the val	ues in the tables below in	\boxtimes
11)	4.3.2.3	Frequency range 30 MHz to 1GHz 1 GHz to 12.75 GHz	Maximum power -57 dBm -47 dBm	Bandwidth 100 KHz 1 MHz	
Test Setup Below 1GHz		Radio Absorbing Material	3m Antenna Ground Plane	1-4m Spectrum Analy	The state of the s
Test Setup Above 1GHz		Radio Absorbing Material EUT 1.5m	3m Ground Plane	1-4m Spectrum Anal	yzer
Procedure	Refer to	Clause 5.3.11.2.1 of EN 300 328 \	/2.1.1 (2016-11)		
Remark	NONE				
Result	⊠ Pass	□ Fail			
Test Data ⊠ Y	'es (See b	elow) □ N/A			
Test Plot □ Y	es (See be	elow) 🖾 N/A			

Test was done by Benjamin at 10m chamber.

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	33 of 39

RX at 2412 MHz

In	Indicated Test Antenna					Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
207.5	-46.55	66	100	V	207.025	-68.42	0	1.31	-67.11	-57	-10.11		
207.5	-40.47	138	229	Н	207.025	-62.58	0	1.31	-61.27	-57	-4.27		
1632	-79.27	264	150	V	1632	-68.53	10.08	1.78	-76.83	-47	-29.83		
1632	-79.38	252	150	Н	1632	-68.64	10.08	1.78	-76.94	-47	-29.94		

RX at 2472 MHz

In	Indicated Test Antenna			Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
190.6	-48.14	280	100	V	190.656	-73.14	0	1.28	-71.86	-57	-14.86
190.6	-44.26	93	230	Н	190.656	-66.27	0	1.28	-64.99	-57	-7.99
1952	-79.43	236	150	V	1952	-66.65	10.25	2.08	-74.82	-47	-27.82
1952	-79.76	167	150	Н	1952	-66.98	10.25	2.08	-75.15	-47	-28.15

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case.

Embedded Antenna

RX at 2412 MHz

In	Indicated Test Antenna			Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
227.1	-41.18	353	143	V	227.031	-63.27	0	1.35	-61.92	-57	-4.92
227.1	-38.29	116	159	Н	227.031	-61.31	0	1.35	-59.96	-57	-2.96
1632	-79.27	264	150	V	1632	-68.53	10.08	1.78	-76.83	-47	-29.83
1632	-79.38	252	150	Н	1632	-68.64	10.08	1.78	-76.94	-47	-29.94

RX at 2472 MHz

In	dicated	Test Antenna			Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
227.3	-41.18	353	143	V	227.031	-63.27	0	1.35	-61.92	-57	-4.92
227.3	-38.29	116	159	Н	227.031	-61.31	0	1.35	-59.96	-57	-2.96
1952	-79.43	236	150	V	1952	-66.65	10.25	2.08	-74.82	-47	-27.82
1952	-79.76	167	150	Н	1952	-66.98	10.25	2.08	-75.15	-47	-28.15

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	34 of 39

10.8 Receiver Blocking

Requirement(s):

Spec	Item	Requirement					Applicable							
		4.3.2.11.4.2 Table 14 conta	Receiver Categorius the Receiver Blocking p	arameters for Receiver										
		Table 14: Receiver Bloc Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal									
EN 300			P _{min} + 6 dB	2 380 2 503,5	-53	CW								
328 V2.1.1	4.3.2.11		P _{min} + 6 dB	2 300 2 330 2 360	-47	CW	X							
(2016-11)			P _{min} + 6 dB	2 523,5 2 553,5 2 583,5 2 613,5 2 643,5 2 643,5 2 673,5	-47	cw								
			NOTE 1: P _{min} is the minim	um level of the wanted										
			any blocking sign NOTE 2: The levels specifi	ied are levels in front of urements, the levels hav	the UUT antenna	. In case of								
		4.3.2.11.4.3	Receiver Catego	ry 2										
		Table 15 contai	ns the Receiver Blocking pa											
EN 300 328		Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal									
V2.1.1	4.3.2.11	4.3.2.11	4.3.2.11	4.3.2.11	4.3.2.11	4.3.2.11	4.3.2.11	4.3.2.11		P _{min} + 6 dB	2 380 2 503,5	-57	CW	
(2016-11)														
			any blocking signa NOTE 2: The levels specific	ance criteria as defined al. ed are levels in front of t rements, the levels have	in clause 4.3.2.11 the UUT antenna.	I.3 in the absence of In case of								
		Signallin or Compa	./			Performance Monitoring Device								
Test Setup		Devii Blocking Sour	Signal Spl	Direct. Coupler biner	ATT.	UUT								
			Figure 6: Te	Analyzer sst Set-up for receiver	Optional									
Procedure	Refer to (Clause 5.4.11 of FTS	SI EN 300 328 V2.1.1		- 2700killy									
	-		71 LIN 000 020 VZ. I. I	(2010-11)										
Result	□ Pass	☐ Fail												

Test Plot ☐ Yes (See below) ▼ N/A Test was done by Rachana Khanduri at RF test site.

Test Data ⊠ Yes (See below)

 \square N/A

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	35 of 39

Test Result for Receiver Blocking

WLAN:

802.11b Low CH: 2412 MHz

Туре	Frequency (MHz)	Level (dBm)	Туре	Result
	2380	-53		Pass
	2503.5	-55		Pass
	2300			Pass
	2330	-47		Pass
Doggiyar	2360			Pass
Receiver Blocking	2523.5		CW	Pass
Diocking	2553.5			Pass
	2583.5	-47		Pass
	2613.5	-4 7		Pass
	2643.5			Pass
	2673.5			Pass

802.11b Mid CH: 2442 MHz

Туре	Frequency (MHz)	Level (dBm)	Туре	Result
	2380	-53		Pass
	2503.5	-55		Pass
	2300			Pass
	2330 2360	-47		Pass
Receiver				Pass
Blocking	2523.5		CW	Pass
Diocking	2553.5			Pass
	2583.5	-47		Pass
	2613.5	-41		Pass
	2643.5			Pass
	2673.5			Pass

802.11b High CH: 2472 MHz

	TOTIL ETTE WITTE			
Туре	Frequency (MHz)	Level (dBm)	Туре	Result
	2380	-53		Pass
	2503.5	-55		Pass
	2300			Pass
	2330	-47		Pass
Dessiver	2360			Pass
Receiver Blocking	2523.5		CW	Pass
Blocking	2553.5			Pass
	2583.5	47		Pass
	2613.5	-47		Pass
	2643.5			Pass
	2673.5			Pass

Note: The EUT is category 1 receiver

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	36 of 39

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Cycle	Cal Due	In use
Radiated Emissions						
Keysight EXA 44GHz Spectrum Analyzer	N9010A	MY51440112	08/02/2017	1 Year	08/02/2018	\
Keysight Signal Generator	MXG N5182A	MY47071065	04/12/2018	1 Year	04/12/2019	•
Pre-Amplifier (1 - 40GHz)	SAS-474	579	04/04/2018	1 Year	04/04/2019	\
RF Preamplifier (100KHz-7GHz)	LPA-6-30	11170602	02/09/2018	1 Year	02/09/2019	•
Bi-Log antenna (30MHz~2GHz)	JB1	A030702	01/13/2018	1 Year	01/13/2019	>
Horn Antenna (1-26.5GHz)	3115	10SL0059	08/11/2017	1 Year	08/11/2018	\
Horn Antenna (700MHz-18GHz)	SAS-571	411	04/13/2018	1 Year	04/13/2019	<
Tuned Dipole Antenna 30 - 1000 MHz (4pcs set)	AD-100	40133	03/08/2018	1 Year	03/08/2019	<u>\</u>
3 Meters SAC	3M	N/A	09/09/2017	1 Year	09/09/2018	
10 Meters SAC	10M	N/A	10/06/2017	1 Year	10/06/2018	•
RF Conducted Measurement						
Agilent Spectrum Analyzer	N9010A	10SL0219	11/16/2017	1 Year	11/16/2018	~
Test Equity Environment Chamber	1007H	61201	07/21/2017	1 Year	07/21/2018	\
ETS-Lingren USB RF Power Sensor	7002-006	10SL0190	11/15/2017	1 Year	11/15/2018	•
Receiver Blocking						
R & S Wideband Communication Tester	CMW500	108852	07/28/2017	1 Year	07/28/2018	•

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	37 of 39

Annex B. SIEMIC Accreditation

ccreditations	Document	Scope / Remark
ISO 17025 (A2LA)		Please see the documents for the detailed scope
ISO Guide 65 (A2LA)		Please see the documents for the detailed scope
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C
FCC DoC Accreditation	7	FCC Declaration of Conformity Accreditation
FCC Site Registration	7	3 meter site
FCC Site Registration	7	10 meter site
IC Site Registration		3 meter site
IC Site Registration		10 meter site
EU NB	₽	Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025
	囥	Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025
Singapore iDA CB(Certification Body)	包包	Phase I, Phase II
Vietnam MIC CAB Accreditation	₩.	Please see the document for the detailed scope
Hong Kong OFCA	7	(Phase II) OFCA Foreign Certification Body for Radio and Telecom
	7	(Phase I) Conformity Assessment Body for Radio and Telecom
Industry Canada CAB		Radio: Scope A – All Radio Standard Specification in Category I
		Telecom: CS-03 Part I, II, V, VI, VII, VIII

ccreditations	Document	Scope / Remark
ISO 17025 (A2LA)	Z	Please see the documents for the detailed scope
ISO Guide 65 (A2LA)	Z	Please see the documents for the detailed scope
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C
FCC DoC Accreditation	Z	FCC Declaration of Conformity Accreditation

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	38 of 39

A Bureau Veritas Group Company		
FCC Site Registration		3 meter site
FCC Site Registration	7	10 meter site
IC Site Registration	Z	3 meter site
IC Site Registration	Z	10 meter site
EU NB		Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025
		Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025
Singapore iDA CB(Certification Body)	包包	Phase I, Phase II
Vietnam MIC CAB Accreditation		Please see the document for the detailed scope
Hong Kong OFCA		(Phase II) OFCA Foreign Certification Body for Radio and Telecom
		(Phase I) Conformity Assessment Body for Radio and Telecom
Industry Canada CAB		Radio: Scope A – All Radio Standard Specification in Category I
		Telecom: CS-03 Part I, II, V, VI, VII, VIII

Japan Recognized Certification Body Designation	刮包	Radio: A1. Terminal equipment for purpose of calling Telecom: B1. Specified radio equipment specified in Article 38-2, Paragraph 1, Item 1 of the Radio Law
Korea CAB Accreditation		EMI: KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI KN22: Test Method for EMI EMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EMS KN24, KN61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS Radio: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80, RRL Notice 2004-68
		Telecom: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with attachments 1, 3, 5, 6; President Notice 20664, RRL Notice 2008-7 with attachment 4
Taiwan NCC CAB Recognition	7	LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS14336, PLMN07, PLMN01, PLMN08

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_SL18040201-RIO-001_2.4GHz Rev_1.0
Page	39 of 39

Taiwan BSMI CAB Recognition	7	CNS 13438
Japan VCCI	B	R-3083: Radiation 3 meter site C-3421: Main Ports Conducted Interference Measurement T-1597: Telecommunication Ports Conducted Interference Measuremet
Australia CAB Regocnition	1	EMC: AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR22, AS/NZS 61000.6.3, AS/NZS 61000.6.4 Radiocommunications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771
		Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06 AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/ACIF S60950.1
Australia NATA Recognition	B	AS/ACIF S002, AS/ACIF S003, AS/ACIF S004, AS/ACIF S006, AS/ACIF S016,AS/ACIF S031, AS/ACIF S038, AS/ACIF S040, AS/ACIF S041, AS/ACIF S043.2

