

Chapter 6 Stationary Processes

School of Sciences, BUPT R

Stationary Processes

Many important processes have the property that their finite-dimensional distributions are invariant under time shifts (or space shifts). These processes are called strict-sense stationary processes.

Another kind of stationary is *wide-sense stationary* while it has constant mean and its autocorrelation function is invariant under time shifts.

$$\frac{i}{k} \frac{i}{k}.$$

$$\begin{cases}
\mu_{X}(t) = E(X_{t}) = \dots = C. \text{ is constant.} \\
R_{X}(t, t+\tau) = E(X_{t}, X_{t+\tau}) = \dots = R_{X}(\tau)
\end{cases}$$

Contents

depends only on T.

1 Strict Stationary Processes

2 Wide Stationary Processes

3 Ergodicity of Stationary Processes

Definition

A strict-sense stationary process (SSS) is a stochastic process $\{X_t\}_{t\in T}$ with the property that for any constant h, for any positive integer n, for any $t_1, \dots, t_n \in T$ and for any $t_1 + h, \dots, t_n + h \in T$,

$$(X_{t_1}, X_{t_2}, \cdots, X_{t_n})$$

and

$$(X_{t_1+h}, X_{t_2+h}, \cdots, X_{t_n+h})$$

have the same nth-order probability distribution function, i.e.,

$$F_X(x_1, \dots, x_n; t_1, \dots, t_n) = F_X(x_1, \dots, x_n; t_1 + h, \dots, t_n + h)$$

for all $x_1, \dots, x_n \in \mathbb{R}$.

$$d=1. \quad X + \frac{d}{2} = X + h \quad \text{Minimize} = E(X_0) = CM$$

$$esp. \quad h = -t. \quad X + \frac{d}{2} = X_0, \forall t.$$

Remark

For a SSS process, the first-order distribution is independent of t. To see this, note that from the definition of stationarity, for any t, the distribution of X(t) is as same as X(t+h).

The second-order distribution — the distribution of any two r.v.s X(s) and X(t) depends only on $\tau = t - s$. To see this, take h = -s, the joint distribution of X(s) and X(t) is the same as the joint distribution of X(0) and X(t - s).

$$d=2. \quad (X+, X+t) \stackrel{d.}{=} (X+t, X+t+t) = R_{X}(t, t+t) = R_{X}(t) = R_{X}(t$$

二門根建程

Definition

A process $\{X_t\}_{t\in T}$ is said to be of second order if

$$E(X_t^2) < \infty$$
 for all $t \in T$.

$$E(\chi_s \chi_t)^2 \leq E(\chi_s^2) \cdot E(\chi_t)$$

Theorem

Suppose that the process $\{X_t\}_{t\in T}$ is strict-sense stationary and of second order. Then

- (i) for all $t \in T$, $\mu_X(t) = E(X_t) = constant$;
- (ii) $R_X(s,t) = E(X_s X_t)$ depends only on the time difference t-s for all $t, s \in T$.

Proof. (i) By the Cauchy-Schwarz inequality, we have

$$[E(X_t)]^2 \leqslant E(X_t^2) < +\infty,$$

thus $E(X_t)$ exists.

If we let h = -t in the definition of strict-sense stationary process, then we conclude that X_t and X_0 have the same distribution function. Hence,

$$\mu_X(t) = E(X_t) = E(X_{t-t}) = E(X_0)$$

is a constant.

(ii) By the Cauchy-Schwarz inequality, we have

$$[E(X_s X_t)]^2 \leq E(X_s^2) E(X_t^2) < +\infty.$$

Thus $E(X_sX_t)$ exists.

If we let h = -s, then (X_s, X_t) and (X_0, X_{t-s}) have the same distribution function. It follows that

$$E(X_s X_t) = E(X_0 X_{t-s}),$$

that is,

$$R_X(s, s + \tau) = E(X_0 X_\tau) = R_X(\tau),$$

where $\tau = t - s$. Therefore, $R_X(s,t)$ depends only on the time difference t - s.

$$G_{V}(X,Y)=E(XY)-\mu_{X}.\mu_{Y}$$

Furthermore,

$$C_X(t, t+\tau) = E[(X_t - \mu_X)(X_{t+\tau} - \mu_X)]$$

$$= E(X_t X_{t+\tau}) - E(X_t \mu_X) - E(\mu_X X_{t+\tau}) + E(\mu_X^2)$$

$$= R_X(\tau) - \mu_X^2 = C_X(\tau)$$

depends only on τ and

$$\sigma_X^2(t) = C_X(0) = R_X(0) - \mu_X^2$$

is a constant.

$$R_{X}(\tau) = E(X_{t} \cdot X_{t+\tau})^{2}$$

$$C-S. Ineq.$$

$$= E(X_{t}^{2}) \cdot E(X_{t+\tau})$$

$$= R_{X}(0) \cdot R_{X}(0)$$

$$= f^{2}J_{X} \cdot f^{2}J_{X} \cdot f^{2}J_{X}$$

$$= R_{X}(\tau) = f^{2}J_{X} \cdot f^{2}J_{X}$$

$$R_{X}(\tau) = g^{2}J_{X} \cdot f^{2}J_{X} \cdot f^{2}J_{X}$$

Example

Suppose that $\{X_n\}_{n\geqslant 0}$ are IID random sequences, each of which has a uniform distribution in the interval (0,1). Is $\{X_n\}_{n\geqslant 0}$ a stationary process in the strict sense? Determine the value $E(X_n)$ and $E(X_nX_m), n, m = 0, 1, 2, \cdots$.

Solution. Suppose that the distribution function of X_n is F(x). Then for all $k, h \in \mathbb{N}$ and $0 < n_1 < n_2 < \cdots < n_k$, the joint distribution functions of $(X_{n_1}, X_{n_2}, \dots, X_{n_k})$ and $(X_{n_1+h}, X_{n_2+h}, \dots, X_{n_k+h})$ are both

$$F(x_1, x_2, \dots, x_k) = P(X_{n_1} \le x_1, X_{n_2} \le x_2, \dots, X_{n_k} \le x_k)$$

$$= P(X_{n_1} \le x_1) P(X_{n_2} \le x_2) \dots P(X_{n_k} \le x_k)$$

$$= F(x_1) F(x_2) \dots F(x_k).$$

Thus $\{X_n\}_{n\geqslant 0}$ is a strict-sense stationary process.

Since $\{X_n\}_{n\geq 0}$ are IID random sequences, each of which has a uniform distribution in the interval (0,1), we get $E(X_n) = \frac{1}{2}$,

$$E(X_n X_m) = E(X_n)E(X_m) = \frac{1}{4}$$
 for $m \neq n$,

and

$$E(X_n X_m) = E(X_n^2) = \frac{1}{12} + \frac{1}{4} = \frac{1}{3}$$
 for $m = n$.

Thus,

$$E(X_n X_m) = \begin{cases} \frac{1}{3}, & \text{for } m = n, \\ \frac{1}{4}, & \text{for } m \neq n. \end{cases}$$

Contents

1 Strict Stationary Processes

3 Ergodicity of Stationary Processes

A weaker form of stationarity exists which does not directly constrain the *n*th-order probability density functions, but rather just the first- and second-order moments. This property, which is easier to check, is called wide-sense stationarity and will be quite useful.

Test.

Definition

A process $\{X_t\}_{t\in T}$ is said to be **wide-sense stationary** (WSS), if it is of second order and satisfies

- (i) for all $t \in T$, $\mu_X(t) = E(X_t) = constant$;
- (ii) for all $t, t + \tau \in T$, $R_X(t, t + \tau) = R_X(\tau)$ depends only on the time difference τ .

In particular, a random sequence $\{X_n\}_{n\geqslant 0}$ is said to be a stationary random sequence (or time sequence) in the wide sense if it is of second order and satisfies

- (i) for all $n \ge 0$, $E(X_n) = constant$,
- (ii) for all $m, n \ge 0, R_X(n, n+m) = R_X(m)$ depends only on m.

Clearly if SSS is of second order, it must imply WSS. The converse is not necessarily true.

Example

Suppose that $\{X_n\}_{n\geqslant 1}$ are IID random sequences, each of which has a standard normal distribution, and $\{Y_n\}_{n\geqslant 1}$ are also IID random sequences, while each of which has a uniform distribution in the interval $(-\sqrt{3}, \sqrt{3})$. Suppose that $\{X_n\}_{n\geqslant 1}$ and $\{Y_n\}_{n\geqslant 1}$ are independent. Let

$$Z_n = \begin{cases} X_n & \text{if n is odd,} \\ Y_n & \text{if n is even.} \end{cases}$$

Prove $\{Z_n\}_{n\geqslant 1}$ is WSS, but not SSS.

Let X_t be a WSS process and relabel $R_X(t, t + \tau)$ as $R_X(\tau)$. We can see $R_X(\tau)$ has the following properties.

Proposition

- (i) $R_X(\tau)$ is even, i.e., $R_X(-\tau) = R_X(\tau)$ for all τ .

(ii)
$$R_X(0) \ge 0$$
.
(iii) $|R_X(\tau)| \le R_X(0)$. (CS) $R_X(0) = \mathbb{E}(X_{\mathbf{t}})$

(iv) If X_t is a periodic process with period T (i.e., X(t+T) =X(t)), then its autocorrelation function is also periodic with period T. That is, $R_X(\tau+T)=R_X(\tau)$.

The above properties of $R_X(\tau)$ are necessary but not sufficient for a function to qualify as an autocorrelation function for a WSS process.

Proposition

The necessary and sufficient condition for a function $R_X(\tau)$ to be an autocorrelation function for a WSS process is that it be even and nonnegative definite, that is, for any $n \in \mathbb{N}$, for any $t_1 < t_2 < \cdots < t_n$, and for any real vector (a_1, a_2, \ldots, a_n) , we have

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j R_X(t_j - t_i) \geqslant 0.$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j R_X(t_j - t_i) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j E(X_{t_i} X_{t_j}) = E\left[\left(\sum_{i=1}^{n} a_i X_{t_i}\right)^2\right]$$

Example

Suppose that $\{X_n, n = 0, \pm 1, \pm 2, ...\}$ is a pairwisely uncorrelated time sequence (i.e., $C_X(n, m) = 0$ for any $n \neq m$) and $E(X_n) = 0$, $Var(X_n) = \sigma^2 > 0$. Then $\{X_n\}$ is wide-sense stationary.

Solution. Since $E(X_n) = 0$ and

$$E(X_m X_n) = \begin{cases} \sigma^2 & \text{for } m = n, \\ 0 & \text{for } m \neq n, \end{cases}$$

 $\{X_n\}$ is a wide-sense stationary time sequence.

We call a random process $\{X_t\}$ a uncorrelated process if $C_X(s,t) = 0$ for any $s \neq t$.

Example

Let X_t be strict-sense stationary with finite second moment, and let $Y_t = a + bt + X_t$, $W_t = t[X_t - E(X_t)]$ and

$$Z_t = \begin{cases} \alpha + X_t & \text{if } t \leq t_0, \\ \beta + X_t & \text{if } t > t_0. \end{cases}$$

Are Y_t , W_t and Z_t stationary?

Recall a sinusoid with random phase $X_t = a \sin(\omega t + \Theta)$, the mean and the autocorrelation function of X_t are $\mu_X(t) = 0$ and $R_X(t, t + \tau) = \frac{a^2}{2} \cos \tau$ respectively. Thus X_t is wide-sense stationary. In fact we have a general results as follows.

Example

Suppose that S_t is a deterministic function with period T and the random variable Θ has a uniform distribution in the interval (0,T). Let $X_t = S_{t+\Theta}$. Discuss the stationarity of X_t .

Solution. Since the p.d.f. of Θ is

$$f(\theta) = \begin{cases} \frac{1}{T} & \text{for } 0 < \theta < T, \\ 0 & \text{otherwise,} \end{cases}$$

we have

$$E(X_t) = E(S_{t+\Theta}) = \frac{1}{T} \int_0^T S_{t+\theta} d\theta = \frac{1}{T} \int_t^{t+T} S_{\phi} d\phi$$
$$= \frac{1}{T} \int_0^T S_{\phi} d\phi = \text{constant},$$

and

$$R_X(t, t + \tau) = E[S_{t+\Theta} \cdot S_{t+\tau+\Theta}]$$

$$= \frac{1}{T} \int_0^T S_{t+\theta} S_{t+\tau+\theta} d\theta$$

$$= \frac{1}{T} \int_t^{t+T} S_{\phi} S_{\tau+\phi} d\phi.$$

It follows from the periodicity of $S_{\phi}S_{\tau+\phi}$ (with respect to ϕ) that

$$R_X(t, t + \tau) = \frac{1}{T} \int_0^T S_{\phi} S_{\tau + \phi} d\phi$$

depends only on τ . Thus X_t is a wide-sense stationary process.

Example

Suppose $\{X_t\}$ is a stationary process and

$$Y_t = X_t \cos(\omega_0 t + \Theta),$$

where X_t and Θ are independent, $\Theta \sim U(0, 2\pi)$, and ω_0 is a constant. Prove that Y_t is stationary.

Pf. Let
$$\mu_x = E(X_t) = \omega_{1}st$$
.

 $R_{x}(T) = E(X_t) = \omega_{1}st$.

on T .

Then.
$$M_{Y}(t) = E(Y_t)$$

$$= E(X_t) \cdot Cos(\omega_s t + \Omega)$$

$$= E(X_t) \cdot E(\cos(\omega_s t + \Omega))$$

$$= M_{X} \cdot \int_{0}^{2\pi} cos(\omega_s t + \Omega)$$

$$= O$$

$$\therefore M_{Y}(t) = E(Y_t) \cdot Y_{t+\tau}$$

$$= E(X_t) \cdot Y_{t+\tau}$$

$$= E(X_t) \cdot X_{t+\tau} \cdot Cos(\omega_s t + \Omega) \cdot X_{t+\tau} \cdot Cos(\omega_s t + \tau) + \Omega$$

$$= E(X_t) \cdot X_{t+\tau} \cdot E(Cos(\omega_s t + \Omega) \cdot Cos(\omega_s t + \tau) + \Omega)$$

$$= R_{X}(\tau) \cdot \frac{1}{2} cos(\omega_s \tau)$$

$$= R_{X}(\tau) \cdot \frac{1}{2} cos(\omega_s \tau)$$

$$= R_{X}(\tau) \cdot \frac{1}{2} cos(\omega_s \tau)$$

$$= Cos(\omega_s \tau$$

Contents

1 Strict Stationary Processes

2 Wide Stationary Processes

3 Ergodicity of Stationary Processes

Stochastic Analysis

Definition

(Continuity in Mean) A stochastic process X_t is **continuous in** mean square at t_0 if

$$\lim_{\varepsilon \to 0} E\left[(X_{t_0 + \varepsilon} - X_{t_0})^2 \right] = 0$$

Denote it by

$$1.i.m._{t\to t_0}X_t = X_{t_0},$$

where l.i.m. denotes limit in mean. The stochastic process $\{X_t\}$ is called a mean square continuous process if it is continuous in mean square for all t.

Stochastic Analysis

Definition

A mean square integral of a random process X_t is defined by

$$Y_t = \int_{t_0}^t X_s ds = \text{l.i.m.}_{\Delta s_i \to 0} \sum_i X(s_i) \Delta s_i,$$

where $t_0 < s_1 < \cdots < t$ and $\triangle s_i = s_{i+1} - s_i$.

Definition

The time average of a WSS stochastic process $\{X_t\}_{t\in\mathbb{R}}$ is defined by

$$\langle X_t \rangle = \text{l.i.m.}_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} X_t dt.$$

Definition

The time correlation function of a WSS stochastic process $\{X_t\}_{t\in\mathbb{R}}$ is defined by

$$\langle X_t X_{t+\tau} \rangle = \text{l.i.m.}_{T \to +\infty} \frac{1}{2T} \int_{-T}^T X_t X_{t+\tau} dt.$$

Definition

A WSS stochastic process $\{X_t\}_{t\in\mathbb{R}}$ is ergodic in the mean if the time average converges to the ensemble average μ_X , that is,

$$\lim_{T \to \infty} E\left[\left(\frac{1}{2T} \int_{-T}^{T} X_t dt - \mu_X\right)^2\right] = 0.$$
 (1)

Definition

A WSS stochastic process $\{X_t\}_{t\in\mathbb{R}}$ is ergodic in correlation for shift (lag) τ if

$$\lim_{T \to \infty} E\left[\left(\frac{1}{2T} \int_{-T}^{T} X_t X_{t+\tau} dt - R_X(\tau)\right)^2\right] = 0.$$
 (2)

If this condition is true for all τ , we say X_t is ergodic in correlation.

Theorem

A mean-square continuous and WSS stochastic process X_t is ergodic in the mean iff its covariance function, that is, $R_X(\tau) - \mu_X^2$ satisfies

$$\lim_{T \to +\infty} \frac{1}{T} \int_0^{2T} \left(1 - \frac{\tau}{2T} \right) \left[R_X(\tau) - \mu_X^2 \right] d\tau = 0. \tag{3}$$

Corralary

A mean-square continuous and WSS stochastic process $\{X_t\}$ is ergodic in the mean iff

$$\lim_{T \to +\infty} \frac{1}{T} \int_0^{2T} (1 - \frac{\tau}{2T}) R_X(\tau) d\tau = \mu_X^2.$$

Theorem

Suppose that $\{X_t\}$ is a mean-square continuous and WSS stochastic process, and for each τ , $\{X_tX_{t+\tau}\}$ is also a mean-square continuous and WSS stochastic process. Then $\{X_t\}$ is ergodic in correlation iff

$$\lim_{T \to +\infty} \frac{1}{T} \int_0^{2T} \left(1 - \frac{\tau_1}{2T} \right) \left[B(\tau_1) - R_X^2(\tau) \right] d\tau_1 = 0,$$

where $B(\tau_1) = E(X_t X_{t+\tau} X_{t+\tau_1} X_{t+\tau+\tau_1})$.

Definition

Suppose that $\{X_t\}_{t\in\mathbb{R}}$ is a WSS process. If it is ergodic in the mean and the correlation, then we say it is an ergodic process.

Example

Consider the WSS process

$$X_t = \sin(\omega_0 t + \Theta), \ t \in (-\infty, +\infty),$$

where ω_0 is a constant and $\Theta \sim U(0, 2\pi)$. Discuss the ergodicity of this process.

Solution. We have known that $E(X_t) = \mu_X = 0$ and $R_X(\tau) = \frac{1}{2}\cos\tau$. On the other hand,

$$\langle X_t \rangle = \text{l.i.m.}_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} \sin(\omega_0 t + \Theta) dt$$
$$= \text{l.i.m.}_{T \to +\infty} \frac{\sin(\omega_0 T) \sin \Theta}{T \omega_0} = 0 = \mu_X.$$

Thus $\{X_t\}$ is ergodic in the mean. Furthermore,

$$\langle X_t X_{t+\tau} \rangle = 1.i.m._{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} \sin(\omega_0 t + \Theta) \sin[\omega_0 (t+\tau) + \Theta] dt$$
$$= \frac{1}{2} \cos \omega_0 \tau = R_X(\tau).$$

That means, $\{X_t\}$ is ergodic in correlation. Hence, $\{X_t\}$ is an ergodic process.

$$\mu_X = \mu_X(t) = \int_{-\infty}^{\infty} x f(x, t) dx = \int_{-\infty}^{\infty} x f(x) dx,$$

$$R_X(\tau) = R_X(t, t + \tau) = \iint_{\mathbb{R}^2} x y f(x, y; t, t + \tau) dx dy$$

$$= \iint_{\mathbb{R}^2} x y f(x, y; \tau) dx dy.$$

$$\mu_X \approx \frac{1}{N} \sum_{k=1}^n x_t^{(k)}$$
 and $R_X(\tau) \approx \frac{1}{N} \sum_{k=1}^n x_t^{(k)} x_{t+\tau}^{(k)}$,

What we usually use is the time average

$$\frac{1}{2T} \int_{-T}^{T} x(t)dt \quad \text{and} \quad \frac{1}{2T} \int_{-T}^{T} x(t)x(t+\tau)dt.$$

Thank you for your patience!