

Qregularity and tensor products of vector bundles on smooth quadric hypersurfaces

Edoardo Ballico and Francesco Malaspina

Università di Trento
38050 Povo (TN), Italy
e-mail: ballico@science.unitn.it

Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
e-mail: francesco.malaspina@polito.it

Abstract

Let $\mathcal{Q}_n \subset \mathbb{P}^{n+1}$ be a smooth quadric hypersurface. Here we prove that the tensor product of an m -Qregular sheaf on \mathcal{Q}_n and an l -Qregular vector bundle on \mathcal{Q}_n is $(m+l)$ -Qregular.

1 Introduction

Let $\mathcal{Q}_n \subset \mathbb{P}^{n+1}$ be a smooth quadric hypersurface. We use the unified notation Σ_* meaning that for even n both the spinor bundles Σ_1 and Σ_2 are considered, while $\Sigma_* = \Sigma$ if n is odd. We recall the definition of Qregularity for a coherent sheaf on \mathcal{Q}_n given in [2]:

Definition 1.1. A coherent sheaf F on \mathcal{Q}_n ($n \geq 2$) is said to be m -Qregular if one of the following equivalent conditions are satisfied:

1. $H^i(F(m-i)) = 0$ for $i = 1, \dots, n-1$, and $H^n(F(m) \otimes \Sigma_*(-n)) = 0$.
2. $H^i(F(m-i)) = 0$ for $i = 1, \dots, n-1$, $H^{n-1}(F(m) \otimes \Sigma_*(-n+1)) = 0$, and $H^n(F(m-n+1)) = 0$.

In [2] we defined the Qregularity of F , $Qreg(F)$, as the least integer m such that F is m -Qregular. We set $Qreg(F) = -\infty$ if there is no such an integer.

Here we prove the following property of Qregularity.

Theorem 1.2. Let F and G be m -Qregular and l -Qregular coherent sheaves such that $Tor_i(F, G) = 0$ for $i > 0$. Then $F \otimes G$ is $(m+l)$ -Qregular. In particular this holds if one of them is locally free.

Mathematics Subject Classification 2000: 14F05, 14J60.
keywords: Spinor bundles; coherent sheaves on quadric hypersurfaces; Castelnuovo-Mumford regularity.

The corresponding result is true taking as regularity either the Castelnuovo-Mumford regularity or (for sheaves on a Grassmannian) the Grassmann regularity defined by J. V. Chipalkatti ([3], Theorem 1.9). The corresponding result is not true (not even if G is a line bundle) on many varieties with respect to geometric collections or n -block collections (very general and very important definitions of regularity discovered by L. Costa and R.-M. Miró-Roig) ([4], [5], [6]). Our definition of Qregularity on smooth quadric hypersurfaces was taylor-made to get splitting theorems and to be well-behaved with respect to smooth hyperplane sections. Theorem 1.2 gives another good property of it. To get Theorem 1.2 we easily adapt Chicalpatti's proof of [3], Theorem 1.9, except that we found that in our set-up we need one more vanishing. Our proof of this vanishing shows that on smooth quadric hypersurfaces our definition of Qregularity easily gives splitting results (see Lemma 2.2).

2 The proof

Set $\mathcal{O} := \mathcal{O}_{\mathcal{Q}_n}$.

Lemma 2.1. *Let F be a 0-Qregular coherent sheaf on \mathcal{Q}_n . Then F admits a finite locally free resolution of the form:*

$$0 \rightarrow K^n \rightarrow \cdots \rightarrow K^0 \rightarrow F \rightarrow 0,$$

where K^j ($0 \leq j < n$) is a finite direct sum of line bundles $\mathcal{O}(-j)$ and K^n is an n -Qregular locally free sheaf.

Proof. Since F is globally generated ([2], proposition 2.5), there is a surjective map

$$H^0(F) \otimes \mathcal{O} \rightarrow F.$$

The kernel K is a coherent sheaf and we have the exact sequence

$$0 \rightarrow K \rightarrow H^0(F) \otimes \mathcal{O} \rightarrow F \rightarrow 0.$$

Since the evaluation map $H^0(F) \otimes \mathcal{O} \rightarrow F \rightarrow 0$ induces a bijection of global sections, $H^1(K) = 0$. From the sequences

$$H^{i-1}(F(-i+1)) \rightarrow H^i(K(-i+1)) \rightarrow H^0(F) \otimes H^i(\mathcal{O}(-i+1)) \rightarrow 0,$$

we see that $H^i(K(-i+1)) = 0$ for any i ($1 < i < n$).

From the sequences

$$H^{n-1}(F) \otimes \Sigma_*(-n+1) \rightarrow H^n(K(1) \otimes \Sigma_*(-n)) \rightarrow H^0(F) \otimes H^n(\Sigma_*(-n+1)) \rightarrow 0,$$

we see that $H^n(K(1) \otimes \Sigma_*(-n)) = 0$. We conclude that K is 1-Qregular.

We apply the same argument to K and we obtain a surjective map

$$H^0(K(1)) \otimes \mathcal{O}(-1) \rightarrow K$$

with a 2-Qregular kernel. By the syzygies Theorem we obtain the claimed resolution. \square

Lemma 2.2. *Let G an m -Qregular coherent sheaf on \mathcal{Q}_n such that $h^n(G(-m-n)) \neq 0$. Then G has $\mathcal{O}(-m)$ as a direct factor.*

Proof. Since $h^n(G(-m - n)) \neq 0$, $h^0(G^*(m)) \neq 0$ ([1], theorem at page 1). Hence there is a non-zero map $\tau : G(m) \rightarrow \mathcal{O}$. Since $G(m)$ is 0-Qregular, it is spanned ([2], proposition 2.5), i.e. there are an integer $N > 0$ and a surjection $u : \mathcal{O}^N \rightarrow G(m)$. Every non-zero map $\mathcal{O} \rightarrow \mathcal{O}$ is an isomorphism. Hence $\tau \circ u$ is surjective and there is $v : \mathcal{O} \rightarrow \mathcal{O}^N$ such that $(\tau \circ u) \circ v$ is the identity map of \mathcal{O} . Hence the maps τ and $v \circ u : \mathcal{O} \rightarrow G(m)$ show that $G(m) \cong \mathcal{O} \oplus G'$ with $G' \cong \text{Ker}(\tau)$. \square

Proof of Theorem 1.2. We first reduce to the case in which G is indecomposable. Indeed, if $G \cong G_1 \oplus G_2$ where G_1 is l -Qregular and G_2 is l' -Qregular ($l' \leq l$), then $F \otimes G_1$ is $(l+m)$ -Qregular and $F \otimes G_2$ is $(l'+m)$ -Qregular ($l'+m \leq l+m$) so $F \otimes G \cong (F \otimes G_1) \oplus (F \otimes G_2)$ is $(l+m)$ -Qregular.

We can assume that G is not $\mathcal{O}(-l)$, because the statement is obviously true in this case. Hence by Lemma 2.2 we may assume $H^n(G(l-n)) = 0$. Let us tensorize by $G(l)$ the resolution of $F(m)$. We obtain the following resolution of $F \otimes G$:

$$0 \rightarrow K^n \otimes G(l) \rightarrow \cdots \rightarrow K^0 \otimes G(l) \rightarrow F \otimes G(m+l) \rightarrow 0,$$

where K^j ($0 \leq j < n$) is a finite direct sum of line bundles $\mathcal{O}(-j)$ and K^n is a n -Qregular locally free sheaf.

Since

$$H^n(G(l-n)) = \cdots = H^1(G(l-1)) = 0,$$

we have $H^1(F \otimes G(m+l-1)) = 0$.

Since

$$H^n(G(l-n)) = \cdots = H^2(G(l-2)) = 0,$$

we have $H^2(F \otimes G(m+l-2)) = 0$ and so on.

Moreover, $H^n(G(l) \otimes \Sigma_*(-n)) = 0$ implies $H^n(F \otimes G(m+l) \otimes \Sigma_*(-n)) = 0$. Thus $F \otimes G$ is $(m+l)$ -Qregular. \square

Proposition 2.3. *Let F and G be m -Qregular and l -Qregular vector bundles on \mathcal{Q}_n . If F is not $(m-1)$ -Qregular and G is not $(l-1)$ -Qregular then $F \otimes G$ is not $(m+l-1)$ -Qregular. In particular $Qreg(F) = Qreg(G) = 0$ implies $Qreg(F \otimes G) = 0$.*

Proof. By the above argument we can prove the result just for F and G indecomposable. Let us assume that G is not $(l-1)$ -Qregular. We can assume that G is not $\mathcal{O}(-l)$, because the statement is obviously true in this case. Hence by Lemma 2.2 we may assume $H^n(G(l-n)) = 0$.

If $H^i(G(l-i-1)) \neq 0$ for some i ($0 > i > n$), and

$$H^{i+1}(G(l-1-i-1)) = \cdots = H^n(G(l-n)) = 0,$$

we have an injective map

$$H^i(G(l-i-1)) \rightarrow H^i(F \otimes G(m+l-i-1))$$

and so $H^i(F \otimes G(m+l-i-1)) \neq 0$. This means that $F \otimes G$ is not $(m+l-1)$ -Qregular. If $H^i(G(l-i-1)) = 0$ for any i ($0 > i > n$) but $H^{n-1}(G \otimes \Sigma_*(-n)) = 0$ by [2] Proof of Theorem 1.2., we have that $G \cong \Sigma_*(-l)$. By a symmetric argument we may assume that $F \cong \Sigma_*(-m)$. Now we only need to show that $\Sigma_*(-m) \otimes \Sigma_*(-l)$ is not $(m+l-1)$ -Qregular. Indeed since $h^0(\Sigma_* \otimes \Sigma_*(-1)) = 0$, [2] Proposition 2.5 implies that $\Sigma_* \otimes \Sigma_*$ is not (-1) -Qregular. \square

Remark 2.4. On \mathbb{P}^n if F is a regular coherent sheaf according Castelnuovo-Mumford, then it admits a finite locally free resolution of the form:

$$0 \rightarrow K^n \rightarrow \cdots \rightarrow K^0 \rightarrow F \rightarrow 0,$$

where K^j ($0 \leq j < n$) is a finite direct sum of line bundles $\mathcal{O}(-j)$ and K^n is an n -regular locally free sheaf. Now arguing as above we can deduce that Theorem 1.2 and Proposition 2.3 hold also on \mathbb{P}^n for Castelnuovo-Mumford regularity.

References

- [1] A. ALTMAN AND S. KLEIMAN, *Introduction to Grothendieck duality theory*, Lect. Notes in Mathematics 146, Springer, Berlin, 1970.
- [2] E. BALlico AND F. MALASPINA, *Qregularity and an extension of Evans-Griffiths Criterion to vector bBundles on quadrics*, J. Pure Appl Algebra 213 (2009), 194-202.
- [3] J. V. CHIPALKATTI, *A generalization of Castelnuovo regularity to Grassmann varieties*, Manuscripta Math. 102 (2000), no. 4, 447–464.
- [4] L. COSTA AND R. M. MIRÓ-ROIG, *Geometric collections and Castelnuovo-Mumford regularity*, Math. Proc. Cambridge Phil. Soc. 143 (2007), no. 3, 557–578.
- [5] L. COSTA AND R. M. MIRÓ-ROIG, *m-blocks collections and Castelnuovo-Mumford regularity in multiprojective spaces*, Nagoya Math. J. 186 (2007), 119–155.
- [6] L. COSTA AND R.M. MIRÓ-ROIG, *Monads and regularity of vector bundles on projective varieties*, Michigan Math. J. 55 (2007), no. 2, 417–436.