Solutions to Homework #2

(Partially from William DeVries)

- 1. Proof using structural induction on the construction of L.
 - (1) If $L = \emptyset$, then End(L, a) is \emptyset , which is regular.
 - (2) If $L = \{\Lambda\}$, then End(L, a) is \emptyset , which is regular.
 - (3) If $L = \{b\}$, then End(L, a) is \emptyset , or it is a, both are regular.
- (4) If L_1 and L_2 are regular languages, and if $End(L_1, a)$ and $End(L_2, a)$ are regular languages, then,
- (4.1) if $L = L_1 \cup L_2$, $End(L, a) = End(L_1, a) \cup End(L_2, a)$. This is a regular language.
- (4.2) if $L = L_1L_2$, then we have two cases to consider. If $L_2 = \{\Lambda\}$, then $End(L, a) = End(L_1, a)$. If $L_2 \neq \{\Lambda\}$, then $End(L, a) = L_1End(L_2, a)$. Both cases give L is regular.
 - (4.3) if $L = L_1^*$, $End(L, a) = L_1^* End(L_1, a)$. This is a regular language.
- 2. $End(L,a) = \emptyset$, so the regular expression is \emptyset
- 3. Proof using structural induction on the construction of L. $L^r = x^r: x \in L$
 - (1) If $L = \emptyset$, then $L^r = \emptyset$, which is a regular language.
 - (2) If $L = {\lambda}$, then $L^r = {\lambda}$, which is a regular language.
 - (3) If $L = \{a\}$, then $L^r = \{a\}$, which is a regular language.
- (4) Let L_1 and L_2 be two regular languages, and if both L_1^r and L_2^r are regular languages, then
 - (4.1) if $L = L_1 \cup L_2$, $L^r = L_1^r \cup L_2^r$. Which is a regular language.
 - (4.2) if $L = L_1 L_2$, $L^r = L_2^r L_1^r$. Which is a regular language.
 - (4.3) if $L = L_1^*$, $L^r = (L_1^r)^*$ Which is a regular language.
- 4. $cb(c(aa+bbb)^*)^*$. Why? You may follow the recursive steps shown in the above problem.
- 5. The shortest words are b, c.
- 6. Here is mine solution: I design a function *shortestwords* that returns a finite set of words with input of a regular expression.

```
\label{eq:finite} \textbf{FiniteSetOfWords} \ shortestwords (\texttt{RegExp}\ r)
```

```
if r = \emptyset then return \emptyset;
if r = \{\Lambda\} then return \{\Lambda\};
if r = \{a\} for some symbol a then return \{a\};
```

```
if r = r_1 + r_2 for some regular expressions r_1 and r_2 then select all the shortest words from shortestwords(r_1) \cup shortestwords(r_2); return the selected words; if r = r_1 r_2 for some regular expressions r_1 and r_2 then return the concatenation shortestwords(r_1)shortestwords(r_2); if r = r_1^* for some regular expression r_1 then return \{\Lambda\};
```