A derivation of the Conjugate Gradient Algorithm

Tyler Chen

INTRODUCTION

The CG method is well known by minimizing the A-norm of the error over successive Krylov subspaces, $\mathcal{K}_k(A, b)$.

This is the second piece in a series on Conjugate Gradient. The previous piece provides an Introduction to Krylov subspace methods.

Linear algebra review

Before we get into the details, let's define some notation and review a few key concepts from linear algebra which we will rely on when deriving the CG algorithm.

- Any inner product $\langle \cdot, \cdot \rangle$ induces a norm $\| \cdot \|$ defined by $\|x\|^2 = \langle x, x \rangle$.
- For the rest of this piece we will denote the standard (Euclidian) inner product by $\langle \cdot, \cdot \rangle$ and the induced norm by $\| \cdot \|$ or $\| \cdot \|_2$.
- A positive definite matrix A naturally induces the inner product $\langle \cdot, \cdot \rangle_A$ defined by $\langle x, y \rangle_A = \langle x, Ay \rangle = \langle Ax, y \rangle$. The associated norm, called the A-nor will be denoted by $\langle \cdot, \cdot \rangle_A$ and is defined by,

$$||x||_A^2 = \langle x, x \rangle_A = \langle x, Ax \rangle = ||A^{1/2}x||$$

- The point in a subspace V nearest to a point x is the projection of x onto V (where projection is done with the inner product and distance is measured with the induced norm.) Given an orthonormal basis for V, this amounts to summing the projection of x onto each of the basis vectors.
- The k-th Krylov subspace generated by A and b is,

$$\mathcal{K}_k(A,b) = \operatorname{span}\{b, Ab, \dots, A^{k-1}b\}$$

Minimizing the error

Now that we have that out of the way, let's begin our derivation. As stated above, we will minimize the A-norm of the error over sucessive Krylov subspaces

generated by A and b. That is to say x_k will be the point so that,

$$||x_k - x^*||_A = \min_{x \in \mathcal{K}_k(A,b)} ||x - x^*||_A, \quad x^* = A^{-1}b$$

Since we are minimizing with respect to the A-norm, it will be useful to have an A-orthonormal basis for $\mathcal{K}_k(A,b)$. That is, a basis which is orthonormal in the A-inner product. For now, let's just say we have such a basis, $\{p_0, p_1, \ldots, p_{k-1}\}$. Since $x_k \in \mathcal{K}_k(A,b)$ we can write x_k in terms of this basis,

$$x_k = a_0 p_0 + a_1 p_1 + \dots + a_{k-1} p_{k-1}$$

For convenience define $x_0 = 0$ and define $e_k = x^* - x_k$. Then,

$$e_k = e_0 - a_0 p_1 - a_1 p_1 - \dots - a_{k-1} p_{k-1}$$

Since the coefficients for x_k were chosen to minimize the A-norm of the error, $||e_k||_A$, over $\mathcal{K}_k(A,b)$, we know that e_k has zero component in each of the directions $\{p_0, p_1, \ldots, p_{k-1}\}$. In particular, that means that $a_j p_j$ cancels exactly with e_0 in the direction of p_j .

We now observe that since the coefficients $a'_0, a'_1, \ldots, a'_{k-2}$ of x_{k-1} were chosen in exactly the same way, so that $a_0 = a'_0, a_1 = a'_1, \ldots, a_{k-2} = a'_{k-2}$. Therefore,

$$x_k = x_{k-1} + a_{k-1}p_{k-1}$$

and

$$e_k = e_{k-1} - a_{k-1} p_{k-1}$$

Now that we have explicitly written x_k in terms of an update to x_{k-1} this is starting to look like an iterative method!

Let's compute an explicit representation of the coefficient a_{k-1} . As previously noted, we have chosen x_k to minimize $||e_k||_A$ over $\mathcal{K}_k(A,b)$. Therefore, the component of e_k in each of the directions $p_0, p_1, \ldots, p_{k-1}$ must be zero. That is, $\langle e_k, p_j \rangle = 0$ for all $i = 0, 1, \ldots, k-1$.

$$0 = \langle e_k, p_{k-1} \rangle_A = \langle e_{k-1}, p_{k-1} \rangle - a_{k-1} \langle p_{k-1}, p_{k-1} \rangle_A$$

Thus

$$a_{k-1} = \frac{\langle e_{k-1}, p_{k-1} \rangle_A}{\langle p_{k-1}, p_{k-1} \rangle_A}$$

This expression might look like a bit of a roadbock, since if we knew the initial error $e_0 = x^* - 0$ then we would know the solution to the original system! However, we have been working with the A-inner product so we can write,

$$Ae_{k-1} = A(x^* - x_{k-1}) = b - Ax_{k-1} = r_{k-1}$$

Therefore, we can compute a_{k-1} as,

$$a_{k-1} = \frac{\langle r_{k-1}, p_{k-1} \rangle}{\langle p_{k-1}, Ap_{k-1} \rangle}$$

Finding the Search Directions

At this point we are almost done. The last thing to do is understand how to update p_k . The first thing we might try would be to do something like Gram-Schmidt on $\{b, Ab, A^2b, \ldots\}$ to get the p_k , i.e. Arnoldi iteration in the inner product induced by A. This will work fine if you take some care with the exact implementation. However, since A is symmetric we might hope to be able to use some short recurrence, which turns out to be the case.

Since $r_k = b - Ax_k$ and $x_k \in \mathcal{K}_k(A, b)$, then $r_k \in \mathcal{K}_{k+1}(A, b)$. Thus, we can obtain p_k by A-orthogonalizing r_k against $\{p_0, p_1, \ldots, p_{k-1}\}$.

Recall that e_k is A-orthogonal to $\mathcal{K}_k(A, b)$. That is,

$$\langle e_k, A^j b \rangle_A = 0, \quad j = 0, 1, \dots, k - 1$$

Therefore, noting that $Ae_k = r_k$,

$$\langle r_k, A^j b \rangle_A = 0, \quad j = 0, 1, \dots, k - 2$$

That is, r_k is A-orthogonal to $\mathcal{K}_{k-1}(A,b)$. In particular, this means that,

$$\langle r_k, p_j \rangle_A = 0, \quad j = 0, 1, \dots, k-2$$

That means that to obtain p_k we really only need to A-orthogonalize r_k against p_{k-1} ! That is,

$$p_k = r_k + b_k p_{k-1}, \quad b_k = -\frac{\langle r_k, p_{k-1} \rangle_A}{\langle p_{k-1}, p_{k-1} \rangle_A}$$

The immediate consequence is that we do not need to save the entire basis $\{p_0, p_1, \dots, p_{k-1}\}$, but instead can just keep x_k, r_k , and p_{k-1} . **expand on this!**!

Putting it all together

We are now essentially done! In practice, people generally use the following equivalent formulas for a_{k-1} and b_k ,

$$a_{k-1} = \frac{\langle r_{k-1}, r_{k-1} \rangle}{\langle p_{k-1}, Ap_{k-1} \rangle}, \quad b_k = \frac{\langle r_k, r_k \rangle}{\langle r_{k-1}, r_{k-1} \rangle}$$

We can now put everything together and implement it in numpy. Note that we use f for the right hand side vector to avoid conflict with the coefficient b.

```
import numpy as np

def cg(A,f,max_iter):
    x = np.zeros(len(f)); r = np.copy(f); p = np.copy(r); s=A@p
    nu = r @ r; a = nu/(p@s); b = 0
    for k in range(1,max_iter):
        x += a*p
        r -= a*s

        nu_ = nu
        nu = r@r
        b = nu/nu_

        p = r + b*p
        s = A@p

        a = nu/(p@s)
```

return x