Практикум по ЭВМ

Отчёт

Выполнила студентка 422 группы Резанова Анфиса Сергеевна

Содержание

1	Задача 1					
	1.1 Машинное эпсилон	2				
	1.2 $X = X + 1$	2				
	1.3 $Y = 10^{20} + Y$					
2	Задача 2	3				
	2.1 Прямое рекуррентное соотношение	3				
	2.2 Обратное рекуррентное соотношение	3				
	2.3 Интегральная сумма					
3	Метод Эйлера	4				
4	Задача 4	5				
	$4.1 y = x^2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	5				
	4.2 функция из 3 задачи					
5	Метод Эйлера использовать нельзя	9				
6	6 Метод Рунге-Кутта					
7	7 Выбор шага					
8	Основная задача	12				

1 Задача 1

На прямой континуум чисел, а в ЭВМ их конечное число (как минимум из-за конечной памяти). Вероятность попадания конкретного числа из множества мощности континуум в конечное множество чисел нулевая, потому что точка множество нулевой меры. Поэтому чтобы как-либо работать с числами в ЭВМ есть "сетка": если два числа расположены в одной ячейке сетки, то они неразличимы. Равномерная сетка неудобна, потому что в таком случае очень большие при этом числа будут различаться довольно точно, но меньшие по модулю и при этом более популярные числа из окрестности нуля будут различаться с той же погрешностью, поэтому вводится относительная погрешность, а именно вблизи нуля самая мелкая сетка с размером — машинным эпсилон, и чем дальше от нуля, тем крупнее сетка.

1.1 Машинное эпсилон

while
$$(1+eps>1) \{eps/=1.1;\}$$

Для типа double машинное эпсилон $\epsilon = 5.14054 \cdot 10^{-20}$

1.2 X = X + 1

Минимальное X, такое что X = X + 1:

while
$$((1+x) != x) \{x *=k;\}$$

$$\begin{array}{c|cccc} k & X & t,c \\ \hline 1.1 & 1.94532 \cdot 10^{19} & 0.063 \\ 2 & 1.84467 \cdot 10^{19} & 0,047 \\ \end{array}$$

1.3
$$Y = 10^{20} + Y$$

Минимальное Y, такое что $Y = 10^{20} + Y$:

while((pow(10,20)+y)
$$!= y)\{y *=k; \}$$

$$\begin{array}{c|cccc} k & Y & t, c \\ \hline 1.1 & 2.80046 \cdot 10^{39} & 0.063 \\ 2 & 2.72226 \cdot 10^{19} & 0,047 \\ \end{array}$$

В таблицах k - коэффициент при умножении в цикле поиска X, t - время работы программы.

2 Задача 2

Вычисление интеграла на отрезке [0,1] от функции

$$f(x) = \frac{x^n}{x+6}.$$

2.1 Прямое рекуррентное соотношение

$$I_n = \frac{1}{n} - 6I_{n-1}$$

 $n = 31: I_{31} = -7.09911 \cdot 10^7$

2.2 Обратное рекуррентное соотношение

$$I_{n-1} = \frac{1}{6n} - \frac{I_n}{6}$$

Положим $I_{62}=0$, тогда $I_{31}=0.00462905$

2.3 Интегральная сумма

$$n = 1000, \delta = \frac{1}{n}, x = i\delta$$

$$S_n = \delta \sum_{i=1}^n f(x),$$

 $I_{31} = 0.00448359$

3 Метод Эйлера

$$f(x) = 5\cos(8x) + e^{3x^2} + \frac{1}{\cos(\cos(x))}$$

Отрезок $[0,1], x_0 = 1$

$$f'(x) = -40\sin(2x) + 6x \cdot e^{3x^2} - \frac{\sin(x) \cdot tg(\cos(x))}{\cos(\cos(x))},$$

$$R_1 = |f'(x_0) - \frac{f(x_0 + h) - f(x_0)}{h}|,$$

$$R_2 = \frac{h}{2} + 2\frac{\epsilon}{h}, \epsilon = 10^{-8}.$$

h	R_1	R_2
1	162647	0.5
0.1	58.9043	0.0500002
0.01	1.40638	0.005002
0.001	2.75533	0.00052
0.0001	3.15786	0.00025
1e-05	3.19798	0.002005
1e-06	3.20199	0.0200005
1e-07	3.20239	0.2
1e-08	3.20243	2
1e-09	3.20242	20
1e-10	3.20241	200
1e-11	3.20226	2000
1e-12	3.19577	20000
1e-13	3.28009	200000
1e-14	3.09296	2e + 06
1e-15	6.94953	2e+07
1e-16	66.7086	2e+08
1e-17	84.8889	2e+09
1e-18	1600.86	2e+10
1e-19	16760.6	2e+11
1e-20	168358	2e+12

4 Задача 4

$$y_K = y_0 + hy'(t_k), [t_0, T]$$

4.1
$$y = x^2$$

$$y=x^2, [t_0,T]=[0,10] \ h=0.1,$$
 ошибка $|y_k-T^2|=1$

4.2 функция из 3 задачи

$$f(x) = 5\cos(8x) + e^{3x^2} + \frac{1}{\cos(\cos(x))}$$

 $[t_0,T]=[0;2.5]$ о о.5 1 1.5 $h=0.1, \text{ ошибка } |y_k-f(T)|=7.85597\cdot 10^7$

5 Метод Эйлера использовать нельзя

Τ	h	$ \widetilde{x}(T) - x(T) $	$ \widetilde{z}(T) - z(T) $	
1π	0.1	0.0560329	2.17124	_
1π	0.01	0.00843405	2.01584	
1π	0.001	0.000406938	2.00157	
10π	0.1	0.097298	3.79211	
10π	0.01	0.00354095	0.170098	
10π	0.001	6.39894e-05	0.015832	
100π	0.1	$5.17628e{+06}$	3.32102e+06	
100π	0.01	0.0468341	3.80989	
100π	0.001	0.000737064	0.170089	
1000π	0.1	$6.29136\mathrm{e}{+67}$	4.24262e+67	Графики z(x)
1000π	0.01	644590	$6.59925\mathrm{e}{+06}$	
1000π	0.001	0.00337112	3.81047	
10000π	0.1	nan	nan	
10000π	0.01	$1.41924\mathrm{e}{+68}$	8.26089e+67	
10000π	0.001	66406.8	$6.63524e{+06}$	
100000π	0.1	nan	nan	
100000π	0.01	nan	nan	
100000π	0.001	$1.71934\mathrm{e}{+67}$	$1.64599e{+68}$	
1000000π	0.01	nan	nan	
1000000π	0.001	nan	nan	

 $T=10\pi, h=0.01$ Ошибка $|\widetilde{x}(T)-x(T)|=0.00354095, |\widetilde{z}(T)-z(T)|=0.170098$

$$T=10\pi, h=0.01$$
 Ошибка $|\widetilde{x}(T)-x(T)|=5.17628\cdot 10^6, |\widetilde{z}(T)-z(T)|=3.32102\cdot 10^6$

for
(int n=0;
$$n < w\pi/h; n + +$$
){
 $x_K = x + h \cdot z;$
 $z_K = z - h \cdot x;$
 $x = x_K;$
 $z = z_K;$
}

6 Метод Рунге-Кутта

```
Task 4
f(0) = 7.85082
  t k = 10
        Error for step h = 0.1: 1
        Error for step h = 0.01: 0.1
        Error for step h = 0.001: 0.01
   = 0y_0 = 7.85082
                 h = 0.1;
   t_k = 1;
                                  D = 25.9847
B) t_k = 1;
                 h = 0.01;
                                  D = 23.0052
                 h = 0.001;
B) t_k = 1;
                                  D = 22.6371
Task 6a
                                  D = 48.0619
        x = 1;
                 h = 0.1;
                 h = 0.01;
        x = 1;
                                  D = 754.635
                 h = 0.001;
                                  D = 7820.37
Task 6b
delta x 0.0287534 : delta z -3.82917
                x = -0.0280188 z = 4.82917
h = 0.001:
```

Сравнение метода погрешности для метода Эйлераи Рунге-Кутта 6 порядка

Полученный результат в задаче 6 б).

7 Выбор шага

8 Основная задача

Список литературы

[1] Hajrer E., Nyorsett S., Vanner G. Решение обыкновенных дифференциальных уравнений. Нежёсткие задачи - 1990 - 512c.