Angles under holomorphic maps

Arijit Ganguly

October 16, 2023

1. Orientation in a real inner product space

Let V be an $n \in \mathbb{N}$ dimensional real inner product space. Fix an orthonormal basis $\{e_1, \ldots, e_n\}$ and consider the determinant function with respect to this orthonormal basis. For any two ordered bases $\mathcal{B} \stackrel{\text{def}}{=} \{v_1, \ldots, v_n\}$ and $\mathcal{B}' \stackrel{\text{def}}{=} \{w_1, \ldots, w_n\}$ of V, denote by $T_{\mathcal{B},\mathcal{B}'}$ the unique linear operator on V such that $Tv_i = w_i$, for all $i = 1, \ldots, n$. If $\det T_{\mathcal{B},\mathcal{B}'} > 0$ (or < 0) then we say that the two ordered bases have same orientation (or opposite orientation respectively).

Theorem 1.1. For two ordered bases \mathcal{B} and \mathcal{B}' of V, define a relation '~' as follows:

$$\mathcal{B} \sim \mathcal{B}'$$
 if and only if \mathcal{B} and \mathcal{B}' have same orientation. (1.1)

Then the relation defined as above in (1.1) is an equivalence relation, and furthermore it has precisely two equivalence classes.

Proof. The proof of Theorem 1.1 is straightforward and hence, we leave it to the reader. \Box

We say that an order basis $\{v_1, \ldots, v_n\}$ of V is *positively oriented* if it has the same orientation with $\{e_1, \ldots, e_n\}$. Otherwise we say it is *negatively oriented*. It is clear that $\{v_1, \ldots, v_n\}$ has positive (or negative) orientation if and only if $\det(v_1, \ldots, v_n)$ is positive (or negative respectively). When $V = \mathbb{R}^n$, where $n \in \mathbb{N}$, the determinant function is always considered with respect to the standard basis unless otherwise mentioned. For n = 2, we can geometrically interpret positive and negative orientation as follows. An ordered basis $\{v_1, v_2\}$ has positive (or negative) orientation if v_1 can be brought to the line spanned by v_2 by applying a rotation by an angle less that 180 degrees in the anticlockwise (or clockwise respectively) direction.

- Let $T:V\longrightarrow V$ be an invertible linear operator. It is obvious that the following conditions are equivalent:
- (O.1) For any ordered basis $\{v_1, \dots, v_n\}$ of V, it has same orientation with $\{Tv_1, \dots, Tv_n\}$.
- (O.2) There exists an ordered basis $\{v_1, \dots, v_n\}$ of V which has same orientation with $\{Tv_1, \dots, Tv_n\}$.

(O.3) $\det T > 0$.

An invertible linear operator T on V satisfying at least one (equivalently, all) the conditions listed above in (O.1)-(O.3) is referred to as *orientation preserving*. It is easy to find the analogues of the equivalent statements listed above in (O.1)-(O.3) when T reverses the orientation.

2. Preservation of angles

We let V be as in §1. For $v, w \in V \setminus \{0\}$, the angle between v and w is defined by

$$\cos^{-1}\left(\frac{\langle v, w \rangle}{\|v\|\|w\|}\right). \tag{2.1}$$

Geometrically, one considers the plane $\text{Span}\{v, w\}$, provided they are linearly independent. Then (2.1) is the angle, with the smaller magnitude, formed by the vectors v and w in the plane $\text{Span}\{v, w\}$.

Remark 2.1. Recall that, if $V = \mathbb{R}^2 \equiv \mathbb{C}$ then $\langle v, w \rangle = \text{Re}(v\overline{w})$. So, for any two nonzero complex number v, w, if $\theta \in [0, \pi]$ is the angle between them then $\cos \theta = \frac{\text{Re}(v\overline{w})}{|v||w|}$.

Definition 2.1. A linear operator $T: V \longrightarrow V$ is said to preserve angles if for any $v, w \in V \setminus \{0\}$, the angle between v and v equals to the angle between v and v, i.e.,

$$\frac{\langle v, w \rangle}{\|v\| \|w\|} = \frac{\langle Tv, Tw \rangle}{\|Tv\| \|Tw\|}.$$
(2.2)

Note that, in the above definition, it has been tacitly assumed that $Tv \neq 0$ if $v \neq 0$. Since V is finite dimensional, T must be invertible.

It is clear that any orthogonal operator on V is angle preserving. Since any nonzero scalar multiple of an angle preserving operator is angle preserving, any λT , where $\lambda \neq 0$ and $T: V \longrightarrow V$ is orthogonal, preserves angles. The following theorem shows that any angle preserving linear map has to be of this form.

Theorem 2.1. If $T: V \longrightarrow V$ is angle preserving then there exists $\lambda > 0$ such that λT is orthogonal.

Proof. Fix an orthonormal basis $\{e_1, \ldots, e_n\}$ of V. It is easy to see that, for any $i \neq j \in \{1, \ldots, n\}$, $\langle Te_i, Te_j \rangle = 0$ as $\langle e_i, e_j \rangle = 0$. So $\{Te_1, \ldots, Te_n\}$ is orthogonal. It follows that, for any $i, j = 1, \ldots, n$,

$$\langle T^*Te_i, e_j \rangle = \langle Te_i, Te_j \rangle = \begin{cases} ||Te_i||^2 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$
 (2.3)

Let $j \in \{2, ..., n\}$. Then, from (2.3), one has

$$\frac{\langle e_{1}, e_{1} + e_{j} \rangle}{\sqrt{2}} = \frac{\langle Te_{1}, T(e_{1} + e_{j}) \rangle}{\|Te_{1}\| \|T(e_{1} + e_{j})\|}$$

$$= \frac{\langle e_{1}, T^{*}T(e_{1} + e_{j}) \rangle}{\|Te_{1}\| \|T(e_{1} + e_{j})\|}$$

$$= \frac{\|Te_{1}\|^{2}}{\|Te_{1}\| \|T(e_{1} + e_{j})\|}$$

$$= \frac{\|Te_{1}\|}{\|Te_{1} + Te_{j}\|}.$$
(2.4)

As Te_1 and Te_j are orthogonal, we have $||Te_1 + Te_j|| = ||Te_1|| + ||Te_j||$. Hence, from (2.4), we obtain that, $\frac{1}{\sqrt{2}} = \frac{||Te_1||}{||Te_1|| + ||Te_j||}$, which implies $||Te_1||^2 = ||Te_j||^2$. Set $\alpha \stackrel{\text{def}}{=} ||Te_1||^2$. In view of (2.3),

it is now clear that $T^*T = \alpha I$, which shows that $\frac{T}{\sqrt{\alpha}}$ is orthogonal.

From the equivalent statements (O.1)-(O.3), one now concludes the following:

Corollary 2.1. Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be orientation preserving. If T also preserves angles then, the matrix of T with respect to the standard bases is of the following form:

$$\lambda \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix},\tag{2.5}$$

where $\lambda > 0$ and $\theta \in \mathbb{R}$.

Let $\{v_1, v_2\}$ be an ordered basis in \mathbb{R}^2 . The angle between v_1 and v_2 is said to be *positively (or negatively) oriented* if the ordered basis $\{v_1, v_2\}$ has the positive (or negative respectively) orientation. We say that a linear operator $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ preserves oriented angles if it is angle preserving and for every ordered basis $\{v_1, v_2\}$ of \mathbb{R}^2 , the angles between v_1 and v_2 and v_3 and v_4 have same orientation. In other words, v_4 preserves angle and orientation both. Corollary 2.1 yields that the matrix representation of any oriented angle preserving linear operator on the plane \mathbb{R}^2 with respect to the standard basis is given by (2.5).

3. Angles under differentiable maps

Let $\mathbf{x}_0 \in U \subseteq_{open} \mathbb{R}^n$, where $n \in \mathbb{N}$. Suppose that $\gamma_1 : [a_1, b_1] \longrightarrow U$ and $\gamma_2 : [a_2, b_2] \longrightarrow U$ are two curves *intersecting at* \mathbf{x}_0 , i.e., say $\gamma_1(t_1) = \gamma_2(t_2) = \mathbf{x}_0$, where $t_1 \in [a_1, b_1]$ and $t_2 \in [a_2, b_2]$. Assume that γ_i is differentiable at t_i and the tangent vector $\gamma_i'(t_i)$ at \mathbf{x}_0 is nonzero, for i = 1, 2. Then the angle between the curves γ_1 and γ_2 at \mathbf{x}_0 is defined to be the angle between $\gamma_1'(t_1)$ and $\gamma_2'(t_2)$. Let $f: U \longrightarrow \mathbb{R}^n$ be differentiable at \mathbf{x}_0 .

Definition 3.1. We say that f preserves angles at \mathbf{x}_0 if, the angle between the curves $f \circ \gamma_1$ and $f \circ \gamma_2$ at $f(\mathbf{x}_0)$ equals to that of γ_1 and γ_2 at \mathbf{x}_0 , for any curves γ_1 and γ_2 in U intersecting at \mathbf{x}_0 .

In addition, when n=2, if whenever the angle between γ_1 and γ_2 at \mathbf{x}_0 has an orientation, the angle between $f \circ \gamma_1$ and $f \circ \gamma_2$ at $f(\mathbf{x}_0)$ also has the same orientation, we then call f an oriented angle preserving map

Note: 1. It has been assumed in the above definition that the tangent vectors of γ_1 and γ_2 at \mathbf{x}_0 and $f \circ \gamma_1$ and $f \circ \gamma_2$ at $f(\mathbf{x}_0)$ are all nonzero.

2. When n = 2, we have also assumed that, if tangent vectors of γ_1 and γ_2 at \mathbf{x}_0 constitutes an ordered basis of \mathbb{R}^2 , tangent vectors of $f \circ \gamma_1$ and $f \circ \gamma_2$ at $f(\mathbf{x}_0)$ will also form an ordered basis, and the latter has the same orientation with the former.

Proposition 3.1. Let U and \mathbf{x}_0 be as above. Then, for every $\mathbf{v} \in \mathbb{R}^n$, there exists a differentiable curve γ in U defined on an interval $[-\varepsilon, \varepsilon]$, where $\varepsilon > 0$, such that $\gamma(0) = \mathbf{x}_0$ and $\gamma'(0) = \mathbf{v}$.

Proof. If $\mathbf{v} = \mathbf{0}$, the constant curve \mathbf{x}_0 works. So let us assume $\mathbf{v} \neq \mathbf{0}$. Choose r > 0 such that $B(\mathbf{x}_0; r) \subseteq U$. Consider the curve

$$\gamma: \left[-\frac{r}{2||\mathbf{v}||}, \frac{r}{2||\mathbf{v}||}\right] \longrightarrow \mathbb{R}^n, \ \gamma(t) \stackrel{\text{def}}{=} \mathbf{x}_0 + t\mathbf{v}.$$

Clearly $\gamma^* \subseteq B(\mathbf{x}_0; r) \subseteq U$ and $\gamma'(0) = \mathbf{v}$.

Recall that, if $\gamma : [a, b] \longrightarrow U$ is differentiable at $t_0 \in [a, b]$ and $\gamma(t_0) = \mathbf{x}_0$, then the tangent vector to the curve $f \circ \gamma$ at the point $f(\mathbf{x}_0)$ is $f'(\mathbf{x}_0)\gamma'(t_0)$, by the chain rule. Hence in view of Proposition 3.1, it is easy to see that f preserves angles at \mathbf{x}_0 if and only if the linear operator $f'(\mathbf{x}_0)$ is angle preserving. Furthermore, in the case n = 2, saying that f preserves oriented angles at \mathbf{x}_0 is same as saying that $f'(\mathbf{x}_0)$ is both orientation and angle preserving. Consequently, matrix representation of $f'(\mathbf{x}_0)$ with respect to the standard basis will be given by (2.5).

4. Preservation of angles by holomorphic maps

Let $z_0 \stackrel{\text{def}}{=} x_0 + iy_0 \in U \subseteq_{open} \mathbb{C}$ and $f: U \longrightarrow \mathbb{C}$. Assume that f is holomorphic at z_0 and $f'(z_0) \neq 0$. Consider two differentiable curves $\gamma_1: [a_1,b_1] \longrightarrow U$ and $\gamma_2: [a_2,b_2] \longrightarrow U$ such that $\gamma_1(t_1) = \gamma_2(t_2) = z_0$, where $t_1 \in [a_1,b_1]$ and $t_2 \in [a_2,b_2]$. Assume that $\gamma'(t_i) \neq 0$, for i = 1,2. It is then easy to see that,

$$\begin{split} \frac{\operatorname{Re}\left((f\circ\gamma_{1})'(t_{1})\overline{(f\circ\gamma_{2})'(t_{2})}\right)}{|(f\circ\gamma_{1})'(t_{1})||(f\circ\gamma_{2})'(t_{2})|} &= \frac{\operatorname{Re}\left(f'(z_{0})\gamma_{1}'(t_{1})\overline{f'(z_{0})\gamma_{2}'(t_{2})}\right)}{|f'(z_{0})\gamma_{1}'(t_{1})||f'(z_{0})\gamma_{2}'(t_{2})|} \\ &= \frac{\operatorname{Re}\left(|f'(z_{0})|^{2}\gamma_{1}'(t_{1})\overline{\gamma_{2}'(t_{2})}\right)}{|f'(z_{0})\gamma_{1}'(t_{1})||f'(z_{0})\gamma_{2}'(t_{2})|} \\ &= \frac{\operatorname{Re}\left(\gamma_{1}'(t_{1})\overline{\gamma_{2}'(t_{2})}\right)}{|\gamma_{1}'(t_{1})||\gamma_{2}'(t_{2})|}. \end{split}$$

Hence f preserves angles at z_0 . Furthermore, since $\det f'(x_0, y_0) = |f'(z_0)|^2 > 0$, one obtains that f preserves oriented angles.

Conversely, if f is differentiable at (x_0, y_0) and it preserves oriented angles, then from the matrix representation of $f'(x_0, y_0)$ with respect to the standard basis, as given in (2.5), it is clear that Cauchy-Riemann equations are satisfied. This implies that f is holomorphic at z_0 . Further to that, one has $f'(z_0) \neq 0$ as det $f'(x_0, y_0) > 0$. Thus we prove the following:

Theorem 4.1. Let $z_0 \stackrel{\text{def}}{=} x_0 + iy_0 \in U \subseteq_{open} \mathbb{C}$ and $f: U \longrightarrow \mathbb{C}$. Then the following are equivalent:

- (C.1) f is holomorphic at z_0 and $f'(z_0) \neq 0$.
- (C.2) f is differentiable at (x_0, y_0) and it preserves oriented angles.

Recall that, $f:U(\subseteq_{open}\mathbb{C}) \longrightarrow \mathbb{C}$ is said to be *conformal* if it is holomorphic and f' does not vanish anywhere in U. The following necessary and sufficient condition for conformality is an imemdiate consequence of Theorem 4.1:

Corollary 4.1. Let $U \subseteq_{open} \mathbb{C}$ and $f: U \longrightarrow \mathbb{C}$ be differentiable. Then f is conformal if and only if it preserves oriented angles at every point of U.