GENERAL DESCRIPTION

The EM6128K800V is a 1,048,576-bit low power CMOS static random access memory organized as 131,072 words by 8 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.

The EM6128K800V is well designed for low power application, and particularly well suited for battery back-up nonvolatile memory application.

The EM6128K800V operates from a single power supply of $2.7V \sim 3.6V$ and all inputs and outputs are fully TTL compatible

FEATURES

- Fast access time: 35/55/70ns
- Low power consumption:
 Operating current:
 12/10/7mA (TYP.)

 Standby current: -L/-LL version
 20/1µA (TYP.)
- Single 2.7V ~ 3.6V power supply
- All inputs and outputs TTL compatible
- Fully static operation

- Tri-state output
- Data retention voltage: 1.5V (MIN.)
- Package:
 32-pin 450 mil SOP
 32-pin 600 mil P-DIP
 32-pin 8mm x 20mm TSOP-I
 32-pin 8mm x 13.4mm STSOP
 36-ball 6mm x 8mm TFBGA

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 - A16	Address Inputs
DQ0 – DQ7	Data Inputs/Outputs
CE#, CE2	Enable Input
WE#	Write Enable Input
OE#	Output Enable Input
Vcc	Power Supply
Vss	Ground

PIN CONFIGURATION

SOP/P-DIP

TSOP-I/STSOP

TFBGA

A B C D E F G H

A0	A 1	CE2	A3	A6	A8
DQ4	A2	WE#	A4	A7	DQ0
DQ5		NC	A5		DQ1
Vss					Vcc
Vcc					Vss
DQ6		NC	NC		DQ2
DQ7	OE#	CE#	A16	A15	DQ3
A9	A10	A11	A12	A13	A14
1	2	3	4	5	6

ABSOLUTE MAXIMUN RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Terminal Voltage with Respect to Vss	VTERM	-0.5 to 4.6	V
		0 to 70(C grade)	
Operating Temperature	TA	-20 to 80(E grade)	°C
		-40 to 85(I grade)	
Storage Temperature	Тѕтс	-65 to 150	°C
Power Dissipation	Pb	1	W
DC Output Current	Іоит	50	mA
Soldering Temperature (under 10 sec)	Tsolder	260	°C

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE#	OE#	WE#	I/O OPERATION	SUPPLY CURRENT
Standby	Н	Х	Х	High-Z	ISB,ISB1
Output Disable	L	Н	Н	High-Z	lcc,lcc1
Read	L	L	Н	D оит	lcc,lcc1
Write	L	Χ	L	Din	lcc,lcc1

Note: H = VIH, L = VIL, X = Don't care.

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP. *5	MAX.	UNIT	
Supply Voltage	Vcc			2.7	3.0	3.6	V
Input High Voltage	VIH*1			2.0	-	Vcc+ 0.3	V
Input Low Voltage	VIL*2			-0.2	-	0.6	V
Input Leakage Current	lц	$Vcc \ge Vin \ge Vss$		-1	-	+1	μA
Output Leakage Current	llo	$Vcc \ge Vout \ge Vss$, Output Disabled	-1	-	1	μA	
Output High Voltage	Vон	Iон = -1mA	2.2	2.7	ı	V	
Output Low Voltage	Vol	IoL = 2mA		-	-	0.4	V
Average Operating	Icc	Cycle time = Min.	-35	-	12	35	mA
Power supply		CE# = VIL , II/O = 0mA	-55	-	10	30	mA
Current			-70	-	7	25	mA
	Icc1	Cycle time = 1µs CE#≤0.2V and I _{VO} = 0mA other pins at 0.2V or Vcc-0.2V		-	1	5	mA
Standby Power	Isb	CE# = VIH		-	0.3	0.5	mA
Supply Current	ISB1	CE# V \geq Vcc - 0.2V	-L	-	20	80	μΑ
			-LL		1	10	μA

Notes:

- 1. VIH(max) = VCC + 3.0V for pulse width less than 10ns.
- 2. VIL(min) = VSS 3.0V for pulse width less than 10ns.
- Over/Undershoot specifications are characterized, not 100% tested.
- 4. $10\mu A$ for special request
- Typical values are included for reference only and are not guaranteed or tested.
 Typical valued are measured at VCC = VCC(TYP.) and TA = 25°C

CAPACITANCE (TA = 25° C, f = 1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
Input Capacitance	Cin	-	6	pF
Input/Output Capacitance	C _{I/O}	-	8	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0.2V to Vcc - 0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	C _L = 30pF + 1TTL, Ioн/Io _L = -1mA/2mA

AC ELECTRICAL CHARACTERISTICS

READ CYCLE

PARAMETER	SYM.	-3	-35 -55		70		UNIT	
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Read Cycle Time	trc	35	-	55	-	70	-	ns
Address Access Time	taa	-	35	-	55	-	70	ns
Chip Enable Access Time	tace	-	35	-	55	-	70	ns
Output Enable Access Time	toe	-	25	-	30	-	35	ns
Chip Enable to Output in Low-Z	tclz*	10	-	10	-	10	-	ns
Output Enable to Output in Low-Z	tolz*	5	-	5	-	5	-	ns
Chip Disable to Output in High-Z	tcHz*	-	15	-	20	-	25	ns
Output Disable to Output in High-Z	tonz*	-	15	-	20	-	25	ns
Output Hold from Address Change	tон	10	-	10	-	10	-	ns

WRITE CYCLE

PARAMETER	SYM.	-3	35	-5	55	70		UNIT
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Write Cycle Time	twc	35	-	55	-	70	-	ns
Address Valid to End of Write	taw	30	-	50	-	60	-	ns
Chip Enable to End of Write	tcw	30	-	50	-	60	-	ns
Address Set-up Time	tas	0	-	0	-	0	-	ns
Write Pulse Width	twp	25	-	45	-	55	-	ns
Write Recovery Time	twr	0	-	0	-	0	-	ns
Data to Write Time Overlap	tow	20	-	25	-	30	-	ns
Data Hold from End of Write Time	tон	0	-	0	-	0	-	ns
Output Active from End of Write	tow*	5	-	5	-	5	-	ns
Write to Output in High-Z	twHz*	-	15	-	20	-	25	ns

^{*}These parameters are guaranteed by device characterization, but not production tested.

TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2)

READ CYCLE 2 (CE#, CE2 and OE# controlled) (1,3,4,5)

Notes:

- 1.WE# is high for read cycle.
- 2.Device is continuously selected OE# = low, CE# = low, CE2 = high.
- 3.Address must be valid prior to or coincident with CE# = low, CE2 = high; otherwise tAA is the limiting parameter.
- 4.tCLZ, tOLZ, tCHZ and tOHZ are specified with CL = 5pF. Transition is measured ±500mV from steady state. 5.At any given temperature and voltage condition, tCHZ is less than tCLZ, tOHZ is less than tOLZ.

WRITE CYCLE 1 (WE# Controlled) (1,2,3,5,6)

WRITE CYCLE 2 (CE# Controlled) (1,2,5,6)

- 1. WE#, CE# must be high during all address transitions.
- WE#, OE# must be high during all address transitions.
 A write occurs during the overlap of a low CE#, low WE#.
 During a WE# controlled write cycle with OE# low, tWP must be greater than tWHZ + tDW to allow the drivers to turn off and data to be placed on the bus.
- 4. During this period, I/O pins are in the output state, and input signals must not be applied.
- 5. If the CE# low transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state.

 6. tOW and tWHZ are specified with CL = 5pF. Transition is measured ±500mV from steady state.

DATA RETENTION CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Vcc for Data	VDR	CE# V ≧ Vcc - 0.2V		1.5	-	3.6	V
Retention							
Data Retention	Idr	Vcc = 1.5V	ا ـا	-	1	50	μΑ
Current		CE# V \geq Vcc - 0.2V	-LL	-	0.5	5	μΑ
			-LLE		0.5	10	μΑ
			-LLI				
Chip Disable to Data	tcdr	See Data Retention		0	-	-	ns
Retention Time		Waveforms (below)					
Recovery Time	t R			t RC*	-	-	ns

tRC* = Read Cycle Time

DATA RETENTION WAVEFORM

Low Vcc Data Retention Waveform (1) (CE# controlled)

Low Vcc Data Retention Waveform (2) (CE2 controlled)

PACKAGE OUTLINE DIMENSION

32 pin 450 mil SOP Package Outline Dimension

32 pin 600 mil P-DIP Package Outline Dimension

32 pin 8mm x 20mm TSOP-I Package Outline Dimension

32 pin 8mm x 13.4mm STSOP Package Outline Dimension

	Dimen	sion in	Inches	Dimension in mm			
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.	
Α			0.047			1.20	
A 1	0.002		0.006	0.05		0.15	
A 2	0.035	0.040	0.041	0.95	1.00	1.05	
b	0.007	0.009	0.010	0.17	0.22	0.27	
С	0.004		0.008	0.10		0.21	
D		0.488			12.40		
Е		0.315			8.00		
H□		0.551			14.00		
е		0.020			0.50		
L	0.020	0.024	0.028	0.50	0.60	0.70	
L1		0.031			0.80		
Υ	0.000		0.004	0.00		0.10	
θ	0	3	5	0	3	5	

36-ball 6mm × 8mm TFBGA Package Outline Dimension

Product ID Information

^{*} Product ID example

©COPYRIGHT 2004 EOREX CORPORATION

Printed in Canada

The information in this document is subject to change without notice.

EOREX makes no commitment to update or keep current the information contained in this document. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of EOREX.

EOREX subjects its products to normal quality control sampling techniques which are intended to provide an assurance of high quality products suitable for usual commercial applications.

EOREX CORPORATION

http://www.eorex.com sales@eorex.com

2F., No. 301-3, Guang-Ming 6th Rd., Chu-Pei City, Hsinchu County, Taiwan 302, ROC

TEL: +886-3-5585138 FAX: +886-3-5585139