

=====

Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Fri Aug 03 11:25:30 EDT 2007

Reviewer Comments:

<210> 2

<211> 1209

<212> DNA

<213> Unknown

<220>

<223> environmental sample

<221> misc_feature

<222> 734

<223> n = A, T, C or G

<400> 2

atggtctggc tgcacggtgg gggctacact atcggcgca gctcgctgcc gccctacgt
60

ggagcagcct tcgcctcgcg ggatgttagtc ctggtgacgg tgaattaccg tcttggccat
120

ctcggcttt tcgcccattcc ggcgctggat gaagaaaaatc cagacggccc ggttcataat
180

ttcgcgcctt tagaccaaatt tgctgccctg aaatgggtgc aggaaaatat cgctgctttc
240

ggcggcgacg cgggaaatgt cacgctgttt ggcgagtctg ccggggcgcg tagcgtgctt
300

tcgctgctgg cgtcgccgct ggcgaaaaac ctttccaca aaggtattat acaaagcgcc
360

tacacgttgc cggatgtcga caggaagaaa gccctgaaac gtggcgttagc gctggccggt
420

cattacgggc tgcaaatgc cacagcggat gaactccgca ctctgcctgc ggatggctg
480

tgggcgcttg aaggccgct taacatttgtt ccaacgccaa tctccggcga cgtcggtcg
540
cctgagccga tgctggatat attcttcgcc gggcgtcagc accgcatgcc ctgtatggc
600
gggagcaaca gcgacgaggc aagcgtgctg agctacttcg gcatcgatcc tgccggcag
660
gtcgaactgc tgccgggggg agcggcggtt ccggactggg ggcttatcaa actgctgtat
720
tcccggagtg aaangggat gcccgaactc gggcgacagg tgtgccgcga tatggcttt
780
nccncgctgg gttttgttgt gatgcaggcc cagcagcggg tcaatcagcc ctgctggcgc
840

The above <222> response only indicates one "n" location (734); however, n's are also located at 781 and 784: please explain them.

(from Sequence 3)

<221> VARIANT

<222> 245, 260, 261

<223> Xaa = Any Amino Acid

<400> 3

Met	Val	Trp	Leu	His	Gly	Gly	Tyr	Thr	Ile	Gly	Ala	Gly	Ser	Leu	
1					5				10				15		
Pro	Pro	Tyr	Asp	Gly	Ala	Ala	Phe	Ala	Ser	Arg	Asp	Val	Val	Leu	Val
									25				30		
Thr	Val	Asn	Tyr	Arg	Leu	Gly	His	Leu	Gly	Phe	Phe	Ala	His	Pro	Ala
									35				45		
Leu	Asp	Glu	Glu	Asn	Pro	Asp	Gly	Pro	Val	His	Asn	Phe	Ala	Leu	Leu
									50				60		
Asp	Gln	Ile	Ala	Ala	Leu	Lys	Trp	Val	Gln	Glu	Asn	Ile	Ala	Ala	Phe
65									70				75		80
Gly	Gly	Asp	Ala	Gly	Asn	Val	Thr	Leu	Phe	Gly	Glu	Ser	Ala	Gly	Ala
									85				90		95
Arg	Ser	Val	Leu	Ser	Leu	Leu	Ala	Ser	Pro	Leu	Ala	Lys	Asn	Leu	Phe
									100				105		110
His	Lys	Gly	Ile	Ile	Gln	Ser	Ala	Tyr	Thr	Leu	Pro	Asp	Val	Asp	Arg
									115				120		125
Lys	Lys	Ala	Leu	Lys	Arg	Gly	Val	Ala	Leu	Ala	Gly	His	Tyr	Gly	Leu
									130				135		140
Gln	Asn	Ala	Thr	Ala	Asp	Glu	Leu	Arg	Ala	Leu	Pro	Ala	Asp	Gly	Leu

145	150	155	160
Trp Ala Leu Glu Gly Pro Leu Asn Ile Gly Pro Thr Pro Ile Ser Gly			
165	170	175	
Asp Val Val Leu Pro Glu Pro Met Leu Asp Ile Phe Phe Ala Gly Arg			
180	185	190	
Gln His Arg Met Pro Leu Met Val Gly Ser Asn Ser Asp Glu Ala Ser			
195	200	205	
Val Leu Ser Tyr Phe Gly Ile Asp Pro Ala Gly Gln Val Glu Leu Leu			
210	215	220	
Arg Arg Gly Ala Ala Phe Pro Asp Trp Gly Leu Ile Lys Leu Leu Tyr			
225	230	235	240
Ser Arg Ser Glu Xaa Gly Met Pro Glu Leu Gly Arg Gln Val Cys Arg			
245	250	255	
Asp Met Ala Phe Xaa Xaa Leu Gly Phe Val Val Met Gln Ala Gln Gln			
260	265	270	

The above <222> response is incorrect: while Xaa is located at 245, "Phe" is located at 260 (not Xaa). Xaa's are located at 261 and 262.

Application No: 10555587 Version No: 1.0

Input Set:

Output Set:

Started: 2007-08-01 10:04:38.617
Finished: 2007-08-01 10:04:39.579
Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 962 ms
Total Warnings: 3
Total Errors: 8
No. of SeqIDs Defined: 3
Actual SeqID Count: 3

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
E 342	'n' position not defined found at POS: 1926 SEQID(1)
E 342	'n' position not defined found at POS: 1973 SEQID(1)
E 342	'n' position not defined found at POS: 1976 SEQID(1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
E 342	'n' position not defined found at POS: 781 SEQID(2)
E 342	'n' position not defined found at POS: 784 SEQID(2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
E 341	'Xaa' position not defined SEQID (3) POS (245)
E 341	'Xaa' position not defined SEQID (3) POS (261)
E 341	'Xaa' position not defined SEQID (3) POS (262)

SEQUENCE LISTING

<110> Genencor International, Inc.

Jones, Brian E.

Grant, William D.

Heaphy, Shaun

Rees, Helen C.

Grant, Susan

<120> Novel Lipolytic Enzyme LIP1

<130> GC801-2-PCT

<140> 10555587

<141> 2007-08-01

<150> PCT/US04/014752

<151> 2004-05-12

<150> US 60/469,931

<151> 2003-05-12

<160> 3

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 4313

<212> DNA

<213> Unknown

<220>

<223> environmental sample

<221> misc_feature

<222> 1926, 1973, 1976

<223> n = A,T,C or G

<400> 1

tctatgagca acaaggcggt	tttagcgaag	cgcaggccga	ttagtttg	gccgaggcgc	60
tggaaacatt	ccgctggcac	cagcacgcaa	cgggtgacgc	cgaaaacctac	120
atgatgagca	ccggctgatc	gcccgtatgt	tctgcttccg	tggctgccac	180
tgaccccgcg	cacgctcgat	atcgaccgcg	tgcagtcgt	gatgccggaa	240
ccccaaaagc	cattatcgaa	ggggccgcgc	gccgcgagcg	cccgattttt	300
ccagctttaa	agcgctggaa	gagcctattt	tgttcggcgg	ttagcatcac	360
ccgcccgtt	cggcgaaata	gaacagcgcg	gcgtagcgct	gacgcccggaa	420
tgtacgacga	actgctgctg	ggggcgggca	acggcacgg	taatctcagc	480
atttacacga	agtgttcacc	gttccccgg	cagcgacgcg	ctgctgcgcc	540
ggcctatttc	cgctatcgtt	tgacgcccgt	tggcgaaatg	caccgccact	600
aggcgacgac	ccgcagctgc	ttatagaacg	cggctggctg	gtggcgcagc	660
tgaagatttc	ctcccggtca	gcccggcggg	tatttccag	tcaaaccctg	720
cgggcaacgg	cagcacggcc	atccagccc	cagcgagttt	gaacaggccc	780
ggttgcagac	gagttcgccc	tctatcagca	ggccgaggat	cgcagtaaac	840
tttgctgtaa	acgcgctacc	ctgctggagt	gtcagtaaca	aggaacagca	900
gttggtagcc	gttgcgtcagg	ggagactgag	cggcggtctt	caggggaaag	960

cccgccggatcc ccctttgccc ctccgcgggt gggtaactg cgctggcggg cacctcgcc
ccccggcgcac tggcagggtt tccgcccaggc ggatacattt gcgcctgcatt gctggcaaaag
cctcgaatac tgcaaagcgg ttggcggcgg cgatcccggc cagtttctg aagattgcct
gtatctcaat atctggaccc cggccccggc ggatgcggag cgcgtccggg ttatggctgt
gctgcacgggt gggggctaca ctatcggcgc aggctcgctg cgcgcctacg atggagcagc
cttcgcctcg cgggatgttag tcctggtgc ggtgaattac cgtcttggcc atctcggctt
tttcgcctat ccggcgctgg atgaagaaaa tccagacggc cgggttcata atttcgcgt
tttagaccaa attgtctgcc tgaaatgggt gcaggaaaat atcgtctgtt tcggcggcga
cgcggggaaat gtcacgctgt ttggcggagtc tgccggggcg cgtagcgtgc ttgcgtctgt
ggcgtcggcg ctggcggaaa acctttcca caaaggattt atacaaaagcg cctacacgtt
gccggatgtc gacagggaaa aagccctgaa acgtggcgta gcgcgtggccg gtcattacgg
gctgcaaaat gccacagcgg atgaactccg cgctctgcct gcggatgggc tggggcgct
tgaaggggccg cttAACATTG gtccaaacgc aatctccggc gacgtcggtc tgccctgagcc
gtatgtggat atattctcg ccggcgctca gcaccgcatt ccttgcgtatgg tcgggagcaa
cagcgacgag gcaagcgtgc tgagctactt cggcatcgat cctgcggggc aggtcgaact
gctgcgcggg ggagcggcg ttcggactg gggcttatac aaactgctgtt atcccgag
tgaaangggg atgcccgaac tcggggcgaca ggtgtgcgc gatatggctt ttncncgt
gggttttgtt gtatgtcagg cccagcagcg ggtcaatcag ccctgtctggc gctactat
tgattatgtg gggaggcgaa aacgtaaaat ctatgccaac ggcacctggc acggcaacga
agtgcgtat gttttgaca cgtaaagtct gacgccaccc gcaagtgaat acgtcaacca
aaacgatctc acgtttgccc ggcaaaattt tgactactgg acccgtttgc cccgcagcgc
cggtccccac agtaaagcga taccggggcc gctaagctgg cctgcctgcg ttgcggca
ggaccgaacg atgcggtag ggcgttactc gggcgccggg ttcaaagtgg aaaaccgctt
tatgcgcattt agaatgcagg tgtttaagcg ggtcatgaag catcagtc gcttgcactg
agcaactcat ggcaaaatgc ttcaagccc gcccgtgtc cgctgcggg tttaaccggc
agacggtagc cgcacccggt ttttacactg cgatcaaacg gctgaccag cggccggta
cgaatatctt ctggcaccag cgtttcatcg gcatggcga tcccaaaccc ctgaatagcg
gctgcgtatgg cgagatccat agtgcggaaa tgctgattt tactcattgc tgccagggg
gcaagaaaac cgggtctgc cagaagtgc cagtcgggtc ggtcccggt tgggtgcaaaa
aatgtcagtc tttcccgcc gctatctt tttggcagca ggctctggc tacaaccggc
gtcagcgcct cctcgaacaa cagcgtccgg gtttgcggc actgcccää aacaattggc
gctcaaaacg gtcattttt gaagttcagc cctgtctcaa cggtcgtgt cagcgcacacc
tgtagctccg gcatgcgttg ttcaagctga atcaagcttgc caccagcga ggcattcgc
caggttggcg cttaagacg aataatttgc ggctgtggc aggccgggtc ggctacgtcc
agcagattat tgaacgcgt ttgtattcc gggagcaggc cgctgcctt tggcgttaagg
cgccagccgc ggcgtggcg ttcaaaaacg gcaagccaa gcaactgttc gagggcggca
attttgcggc tgacggcgc ccgggtgagg caaagtttgc tgcggccctt gtcagggttc
aggtgcctgg cgggtgacga gaaaagcgtc cagagtattt agggaaaat tgcggccgt
catgatgttc tccgttgc gtcattttt ttgcattggcattatgacaa caattcgatt
gtcgtggca tcgcattccgg attgaatagt tatgcatttc gcatattttt caggagcggc
tatggccatg caaaccggc tgcaacatcg ttcaaaactg ccggatgttag gaaccaccat
atttacgggtt atcggtcage tttccggccca acataaggcg atcaaccattt ctcaaggccgc
gcccacattt cccgttgacc cgcagcttgc tgcggagtc accaggccaa tgcaggagg
gcataaccag tatgcgttca tgaccggact tgcgtcgctg aaaaatctt ttgctaaaa
agtgcggcg cttaacgggtt caacctacga tccggccggat gaagtgcgtt ttaccggcc
cgccagccggaa gggctgtatt cgcgtatccg cggactggta caccggccggc acgaagttat
ctatccggaa cccttttgc acagctacgc gccgattttt cggctccagg ggcacacgc
ggttgcctt aagctcggcc tgcgtactt caccattaaac tggatgaag tgcgcgtgc
cataacgcggc cgtacccgcg tgattattgt caacacgcggc cataacccaa gcccggcagg
gttcagcgtt catgatctcg aaatgtggc ggcgttacc cgtatgcggg aaaaagcatc acggcatggc
caccgcacccg cagcttgcggc agcgttagcgt tatgtttca tgcgttggc aaccccttcca
tggttaccggc tggcgtgg ggtactgc ggcgttacc cgtatgcggg aaaaagcatc acggcatggc
caaggtgcatt cagttccgtt tggttccgcg cgtatgcggc atgcagcaccg ctttgcgtt
ttacatgagc gatccgcggaa cttatcttc gctggcggc ctttaccagg gcaagcgtt
ttaatgcag tctctgtgg cggagtcggc attcgagctg tgcggcggc cgg

<210> 2
<211> 1209
<212> DNA
<213> Unknown

<220>
<223> environmental sample

<221> misc_feature
<222> 734
<223> n = A,T,C or G

<400> 2

atggctctggc	tgcacggtgg	gggctacact	atcgccgcag	gctcgctgcc	gccctacgat	60
ggagcagcct	tcgcctcgcg	ggatgttagtc	ctggtgacgg	tgaattaccg	tcttggccat	120
ctcggtttt	tcgcccattcc	ggcgctggat	gaagaaaatc	cagacggccc	ggttcataat	180
ttcgcgttt	tagaccaaatt	tgcgtccctg	aatgggtgc	aggaaaatat	cgctgcttc	240
ggcggcgacg	cggggaaatgt	cacgctgttt	ggcgagtctg	ccggggcgcg	tagcgtgctt	300
tcgctgtgg	cgtcgccgct	ggcgaaaaac	ctttccaca	aaggtattat	acaaagcgcc	360
tacacgttgc	cggatgtcga	caggaagaaa	gccctgaaac	gtggcgttagc	gctggccggt	420
cattacgggc	tgcaaaatgc	cacagcgat	gaactcccg	ctctgcctgc	ggatgggtcg	480
tgggcgttg	aaggcccgt	taacatttgt	ccaacgcca	tctccggcga	cgtcgtgctg	540
cctgagccga	tgctggatat	attttcgcc	gggcgtcagc	accgcattgc	cttgcgtggc	600
gggagcaaca	gcgacgaggc	aagcgtgctg	agctacttcg	gcatcgatcc	tgccgggcag	660
gtcgaactgc	tgcgcgggg	agcggcggtt	ccggactggg	ggcttatcaa	actgctgtat	720
tcccgagtg	aaangggat	gcccgaactc	gggcgcacagg	tgtgcgcga	tatggcttt	780
ncncgctgg	gttttgtgt	gatgcaggcc	cagcagcggg	tcaatcagcc	ctgctggcgc	840
tactatttt	attatgtggg	ggagggcgaa	cgtaaaatct	atgccaacgg	cacctggcac	900
ggcaacgaag	tgccgtatgt	tttgacacg	ttaagtcgt	cgccacccgc	aagtgaatac	960
gtcaaccaaa	acgatctcac	gtttgcggg	caaatttgt	actactggac	ccgtttgcc	1020
cgcagcgccc	gtccccacag	taaagcgata	ccgggcccgc	taagctggcc	tgcctgcgtt	1080
cgcggcaagg	accgaacgat	gcggtaggc	gttcactcgc	gggcgcgg	caaagtggaa	1140
aaccgctta	tgcgcgttag	aatgcagctg	tttaagcggg	tcatgaagca	tcacgtcagc	1200
cttgactga						1209

<210> 3
<211> 402
<212> PRT
<213> Unknown

<220>
<223> environmental sample

<221> VARIANT
<222> 245, 260, 261
<223> Xaa = Any Amino Acid

<400> 3

Met	Val	Trp	Leu	His	Gly	Gly	Tyr	Thr	Ile	Gly	Ala	Gly	Ser	Leu	
1					5			10			15				
Pro	Pro	Tyr	Asp	Gly	Ala	Ala	Phe	Ala	Ser	Arg	Asp	Val	Val	Leu	Val
							20			25			30		
Thr	Val	Asn	Tyr	Arg	Leu	Gly	His	Leu	Gly	Phe	Phe	Ala	His	Pro	Ala
							35			40			45		
Leu	Asp	Glu	Glu	Asn	Pro	Asp	Gly	Pro	Val	His	Asn	Phe	Ala	Leu	Leu
							50			55			60		
Asp	Gln	Ile	Ala	Ala	Leu	Lys	Trp	Val	Gln	Glu	Asn	Ile	Ala	Ala	Phe

65	70	75	80
Gly Gly Asp Ala Gly Asn Val Thr Leu Phe Gly Glu Ser Ala Gly Ala			
	85	90	95
Arg Ser Val Leu Ser Leu Leu Ala Ser Pro Leu Ala Lys Asn Leu Phe			
	100	105	110
His Lys Gly Ile Ile Gln Ser Ala Tyr Thr Leu Pro Asp Val Asp Arg			
	115	120	125
Lys Lys Ala Leu Lys Arg Gly Val Ala Leu Ala Gly His Tyr Gly Leu			
	130	135	140
Gln Asn Ala Thr Ala Asp Glu Leu Arg Ala Leu Pro Ala Asp Gly Leu			
	145	150	155
Trp Ala Leu Glu Gly Pro Leu Asn Ile Gly Pro Thr Pro Ile Ser Gly			
	165	170	175
Asp Val Val Leu Pro Glu Pro Met Leu Asp Ile Phe Phe Ala Gly Arg			
	180	185	190
Gln His Arg Met Pro Leu Met Val Gly Ser Asn Ser Asp Glu Ala Ser			
	195	200	205
Val Leu Ser Tyr Phe Gly Ile Asp Pro Ala Gly Gln Val Glu Leu Leu			
	210	215	220
Arg Arg Gly Ala Ala Phe Pro Asp Trp Gly Leu Ile Lys Leu Leu Tyr			
	225	230	240
Ser Arg Ser Glu Xaa Gly Met Pro Glu Leu Gly Arg Gln Val Cys Arg			
	245	250	255
Asp Met Ala Phe Xaa Xaa Leu Gly Phe Val Val Met Gln Ala Gln Gln			
	260	265	270
Arg Val Asn Gln Pro Cys Trp Arg Tyr Tyr Phe Asp Tyr Val Gly Glu			
	275	280	285
Ala Glu Arg Lys Ile Tyr Ala Asn Gly Thr Trp His Gly Asn Glu Val			
	290	295	300
Pro Tyr Val Phe Asp Thr Leu Ser Leu Thr Pro Pro Ala Ser Glu Tyr			
	305	310	320
Val Asn Gln Asn Asp Leu Thr Phe Ala Gly Gln Ile Cys Asp Tyr Trp			
	325	330	335
Thr Arg Phe Ala Arg Ser Ala Gly Pro His Ser Lys Ala Ile Pro Gly			
	340	345	350
Pro Leu Ser Trp Pro Ala Cys Val Arg Gly Lys Asp Arg Thr Met Arg			
	355	360	365
Leu Gly Val His Ser Arg Ala Arg Phe Lys Val Glu Asn Arg Phe Met			
	370	375	380
Arg Met Arg Met Gln Leu Phe Lys Arg Val Met Lys His His Val Ser			
	385	390	395
Leu Asp			