

Focus for this lecture

Speech and Text

CNN Architecture

Convolution Layer to CNNs and DL

Agenda

- Intro to Deep Learning
- Revisit:
 - 1D Convolution
 - 2D Convolution
 - Terminologies and Utilities
- Convolutional Layer to CNNs
 - Typical architectures
 - Why simple depth is not enough
- Applications in different Modalities (Next Lecture)

History of Deep Learning

Evolution of Learning

Case Study

ImageNet ILSVRC

ImageNet ILSVRC

AlexNet (NIPS 2012)

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification Task:

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca Ilya Sutskever University of Toronto ilya@cs.utoronto.ca

Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca Previous Best: ~25% (CVPR-2011)

AlexNet: ~15 % (NIPS-2012)

ImageNet ILSVRC

- 1000 object classes
- Images:
 - 1.2M train
 - 100k test

Success of "Deep Learning": ImageNet Challenge

Top-5 Error on Imagenet Classification Challenge (1000 classes)

Method	Top-Error Rate
SIFT+FV [CVPR 2011]	~25.7%
AlexNet [NIPS 2012]	~15%
OverFeat[ICLR 2014]	~ 13%
ZeilerNet [ImageNet 2013]	~11%
Oxford-VGG [ICLR 2015]	~7%
GoogLeNet [CVPR 2015]	~6%, ~4.5%
ResNet [CVPR 16]	~3.5%
Human Performance	3 to 5 %

Mostly Deeper Networks Smaller Convolutions Many Specific Enhancements

Getting Deeper

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Blank Slide

Recap: Convolutions Layer in 1D and 2D

Convolution Layer and Feature Enrichment

Revisit: Convolution layer

Two such filters/weights (2 X 3 = 6!!)

Convolution layer: Different Possibilities

Channels:

- I/P =1
- O/P=1
- #Parameters = 3

Channels:

- I/P =1
- O/P=2
- #Parameters = 6

- I/P =2
- O/P=1
- #Parameters = 6

Channels:

- I/P =2
- O/P=2
- #Parameters =

Convolution layer: Different Possibilities

Channels:

- I/P =1
- O/P=1
- #Parameters = 3

Channels:

- I/P =1
- O/P=2
- #Parameters = 6

Channels:

- I/P =2
- O/P=1
- #Parameters = 6

Channels:

- I/P =2
- O/P=2
- #Parameters =12

We Know now ...

Channels:

- I/P = m
- O/P=n
- Filter size: k
- #Parameters = m*n*k

Key Words

- # Input Channels
- # Output channels
- Feature Maps/Channels
- Filters/Weights
- Filter Size/Window Size
- Stride
- Padding

What happens when you convolve?

Convolution Example (Recap)

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Repeat this for each filter

Two 4 x 4 images
Forming 2 x 4 x 4 matrix

Convolution layer

Fully connected layer

- Image of size 200 X 200 and 3 colours (RGB)
- #Hidden Units: 120,000 (= 200X200X3)
- #Params: 14.4 billion (= 120K X 120K)
- Need huge training data to prevent over-fitting!

Locally connected layer

- #Hidden Units: 120,000
- #Params: 3.2 Million (= 120K X 27)
- Useful when the image is highly registered

Convolution layer

Convolutional layer with a single feature map

- #Hidden Units: 120,000
- #Params: 27 x #Feature Maps
- Sharing parameters
- Exploits the stationarity property and preserves locality of pixel dependencies

 Convolutional layer with multiple feature maps

Revisit: Convolution layer

- Window size
- Stride
- Padding
- Pool

Window size: 3x3

Stride: 1

Padding: 0

Window size: 3x3

Stride: 1

Padding: 1

CNNs

• Strides reduces dimension

$$O = \frac{(W - K + 2P)}{S} + 1$$

Max Pool and Stride

- Window Size = 3
- Stride =1

Max pooling in 2-D

Pooling Layer

Pool Size:

2x2

Stride: 2

Type: Max

2	8	9	4			
3	6	5	7		8	9
3	1	6	4		5	7
2	5	7	3	Max pooling	Ţ	

- Role of an aggregator.
- Invariance to image transformation and increases compactness to representation.
- Pooling types: Max, Average, L2 etc.

Blank Slide

Couple of things to appreciate

- Convolution layer is much more "compact" compared to fully connected layers (FC) used in MLPs.
- Convolution layer has "multiple filters" and they act as "feature Detectors" or "Feature Extractors" for the raw data.
- This feature learning removes the need of "hand crafting" features. Also we can learn/use the features that works for the problem.

Deep Learnt Features

• It's deep if it has more than one stage of non-linear feature transformation.

Architectures from Blocks

Layer wise abstraction

1-D Convolution 2-D Convolution

The whole CNN

Smaller than the original image

The number of channels is the number of filters

Can repeat many times

NSE talent | IIIT Hyderabad

Flattening

Terminologies

- # Input Channels
- # Output channels
- Feature Maps/Channels
- Filters/Weights
- Filter Size/Window Size

- Stride
- Pooling (Max/Average)
- Fully Connected Layer
- Soft-Max
- Normalization
- Flattening
- Convolution Layer

Typical Architecture

A typical deep convolutional network

- Other layers
 - Pooling
 - Normalization
 - Fully connected
 - etc.

Softmax

```
Out[12]: array([ 6., 0., 5., 3., 8.])
In [8]:
            exp = (np.e)**(x)
            exp
          executed in 6ms, finished 01:47:23 2018-08-21
Out[8]: array([ 4.03428793e+02,
                                        1.00000000e+00,
                                                            1.48413159e+02,
                    2.00855369e+01,
                                        2.98095799e+03])
In [9]:
            sigma e = np.sum(exp)
            sigma e
          executed in 9ms, finished 01:47:25 2018-08-21
 Out[9]: 3553.8854765602264
In [11]:
            z = exp/sigma e
          executed in 8ms, finished 01:47:34 2018-08-21
Out[11]: array([ 1.13517669e-01,
                                        2.81382168e-04,
                                                            4.17608165e-02,
                    5.65171192e-03,
                                        8.38788421e-011)
```

- Normalizes the output.
- K is total number of classes

LeNet

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

AlexNet Architecture

Residual Net [CVPR2016]

Challenge with Depth

- Vanishing Gradients
 - Error signal don't reach (enough) the early layers
 - Multiplication of many small numbers (less than one) and become almost zero
- Exploding gradients
 - If gradients are large, product become too big and huge changes in weights

Problems with Simple Deep (cf: Resnet)

PlainNet Vs ResNet

Simple Argument

- Naïve solution
 - If extra layers are an identity mapping, then training errors do not increase

BLANK SLIDE

Residual Learning

If Identity is optimal, easy to set weights as zero.

If optimal mapping is close to identity, easier to find small fluctuations.

Let $\mathcal{H}(x)$ be the desired underlying mapping. Instead of learning it directly, fit a residual mapping of the form $\mathcal{F}(x) := \mathcal{H}(x) - x$.

CNNs: Summary

Thanks!!

Questions?