ISE 870 – TEACHING COLLEGE SCIENCE Spring 2018

Instructor: Dr. Joyce Parker

884-3469

119 N Kedzie Labs parker13@msu.edu

Office Hours by Appointment

General Course Goal

To introduce participants to the theory and practice of student-centered college teaching. Students will be able to use an understanding of how people learn, the basics of curriculum design, and a range of teaching and assessment strategies and instructional technology to plan for, teach, and analyze effective science teaching. In addition, students will discuss the roles and responsibilities of teaching within the university setting.

Tentative Schedule and Session Objectives - Revised January 27, 2018

Note: bullets are objectives for each day

Date	Topic	Homework due
Jan 8	Introduction: Student-centered teaching and	Bring sample syllabus
	backward design	
	 clarify objectives and expectations of course 	
	 identify the range of syllabus components and 	
	the role of each	
	In class reading – Code of Teaching Responsibility	
Jan 15	No class – Martin Luther King Holiday	
Jan 22	How people learn and implications for teaching	Read
	 explain how people learn – what goes on in 	Rutherford & Alhgren –
	the mind of a learner	Chpt 13
		Bodner
		 Complex Cognition – chpt3
		Redish Sec 2 − 4
		 Kahneman

lan 20	Objectives and assessment in healthward design	Pood:
Jan 29	Objectives and assessment in backward design	Read:
	analyze and write course objectives and associated	Wiggins &
	assessment and big ideas that combine content and	McTighe
	scientific practices and take into account discipline,	Angelo & Cross
	departmental, university, and national standards	
Feb 5	In class reading – Bloom	Mrita campla ahi 0
reb 5	analyze and write course and content objectives and	Write sample obj & assessment
	associated assessment	Read:
	In-class reading: Woodin et al.; Brownell et al.; ACS Program	
	Recommendations; A Framework for K12 Science Education	Bransford et al.
	Teaching strategies	
	plan for effective information presentation	
Feb 12	Mini-lecture I – presenting information	Mini-lecture
	plan, deliver, and analyze lectures	Lesson plan
- 1 - 2	Useful reference – NRC Science Teaching Reconsidered	
Feb 19	Textbooks & helping students read	bring textbook &
	evaluate a textbook from multiple perspectives	completed
	design activities that support use of reading material	evaluation,
	in flipped classrooms	
	In-class readings: Helping College Students Read	Daniel
	Class structures	Read:
	develop class structures that support student learning	Eddy et al.
Feb 26	Student-centered teaching and active learning	Report on
	(PBL, case studies, clickers, etc.)	classroom
	observe and analyze active learning situations and	observations
	materials	Bring sample of an
		in-class activity
		Read:
		Gijbels et al.
		Linton et al.
Mar 5	Spring Break	
Mar 12	Labs – Science-specific group work	Read:
	 identify multiple purposes of lab and demos 	Herman
	 develop laboratory materials for investigations 	
	Teaching Philosophies	
	In class – Montell; Types of Laboratory & Inquiry Experiences	
Mar 19	Science-specific teaching strategies and instructional	Read:
	technology	 USDeptofEd –
	Guest Speaker – Dr. Stephen Thomas	Means et al.
	 observe and analyze active learning situations 	
	involving instructional technology	
	In class – Types of Labs, NSES Inquiry	

Mar 26	Group work in large classes	Read:
	Guest Speaker – Dr. Andrea Bierma	 Johnson et al.
	 articulate principles for designing and managing 	Beichner et al.
	group work	 Smith and
	3 purposes of assessment	Tanner
	 analyze student work for the purpose of giving 	 Smith et al.
	feedback to students	Kracjik &
	 use assessment data to modify instruction 	McNeill
	 write a rubric for grading an open-ended assignment 	
Apr 2	MOOCs, Hybrid and online courses	Read:
	Guest Speaker – Dr. Stephen Thomas	 NY Times article
	 Analyze the pros and cons of MOOCs, hybrid, and 	on MOOCs
	online classes	AFT on MOOCs
		 Griffiths et al.
Apr 9	Mini-lecture II – active learning	Mini-lecture
	 plan, deliver, and analyze active learning tasks 	Lesson plan
Apr 16	r 16 Multiple responsibilities of university instructors and	
	students	
	 guest speaker, MSU Ombudsman 	
	Equity issues	
	 develop solutions to scenarios involving equity issues 	
Apr 23	Presentations	Presentations
	 develop and implement instructional materials based 	Written projects
	on sound educational principles	due May 4
May 3	Presentations 12:45pm - 2:45pm	Presentations
Thurs	 develop and implement instructional materials based 	Portfolios due May
	on sound educational principles	4

Readings

Readings listed below without urls are available on the D2L course site.

For observing interactive classrooms

Wieman & Gilbert. (2014). The Teaching Practices Inventory: A New Tool for Characterizing College and University Teaching in Mathematics and Science. CBE—Life Sciences Education Vol. 13, 552–569, Fall.

Sawada, Piburn, Judson, Turley, et al. (2002) Measuring reform practices in science and mathematics classrooms: The reformed teaching observation protocol. School Science and Mathematics Oct, 102, 6, 245.

Jan 8

Code of Teaching Responsibility from MSU Faculty Handbook.

Jan 22

Rutherford & Ahlgren (1990) Science for All Americans. Chpt. 13 Effective Learning & Teaching. Washington: Oxford Press. http://www.project2061.org/tools/sfaaol/Chap13.htm

Bodner (1986) Constructivism: A Theory of Knowledge, J. Chem. Ed 63. pp. 873-878.

Sterberg & Ben-Zeev (2001) *Complex Cognition: The psychology of Human Thought.* New York: Oxford Press. Pp. 31–57.

Redish (2003) A Theoretical Framework for Physics Education Research: Modeling Student Thinking. The Proceedings of the Enrico Fermi Summer School in Physics, Course CLVI (Italian Physical Society, 2004). Concentrate on sections 2–4.

Kahneman (2011) Thinking Fast and Slow. New York, NY: Farrar, Straus and Giroux.

Jan 29

Wiggins & McTighe (1998) *Understanding by Design.* Alexandria, VA: Assoc. for Supervision & Curric. Dev. pp. 9–13, 18.

Angelo & Cross (1993) Classroom Assessment Techniques: A Handbook for College Teachers. San Francisco, CA: Jossey-Bass, Inc.

Jan 29 (in class)

Bloom (1954) Taxonomy of Educational Objectives. NYC, NY: Longman.

Feb 5

Bransford *et al.* (2000) *How People Learn: Brain, Mind, Experience, and School.* Washington: National Academy Press. Chpt 3, p. 51.

http://www.nap.edu/openbook.php?record_id=9853&page=R1

Feb 5 (In class)

Woodin et al. (2010) Vision and Change in Biology Undergraduate Education, A Call for Action—Initial Responses. CBE—Life Sciences Education. Vol. 9, 71–73.

Brownell, Freeman, Wenderoth, & Crowe. (2014) *BioCore Guide: A Tool for Interpreting the Core Concepts of Vision and Change for Biology Majors*. CBE—Life Sciences Education Vol. 13, 200–211, Summer.

ACS Program Recommendations (2008)

A Framework for K12 Science Education. (2011) NRC. Chpt 4 + Core concepts of your discipline.

Feb 12 (Reference)

National Research Council, Committee on Undergraduate Science Education (1997) *Science Teaching Reconsidered*. Chpt. 2 How Teachers Teach, Specific Methods – Lectures. Washington, DC: National Academy Press.

http://www.nap.edu/catalog.php?record id=5287

Feb 19 - Evaluation of College Textbooks.

Eddy & Hogan. (2014) Getting Under the Hood: How and for Whom Does *Increasing Course Structure Work?* CBE—Life Sciences Education Vol. 13, 453–468, Fall.

Feb 19 (In class)

Definitions of critical thinking

- http://www.criticalthinking.org/pages/defining-critical-thinking/410
- http://en.wikipedia.org/wiki/Critical_thinking
- http://www.criticalthinking.net/definition.html
- Helping College Students Read

Feb 26

Gijbels, Dochy, & Van den Bossche (2005) Effects of Problem-Based Learning: A Meta-Analysis From the Angle of Assessment. Review of Educational Research, Vol. 75, No. 1, pp. 27–6. Linton, Farmer, & Peterson (2014) Is Peer Interaction Necessary for Optimal Active Learning? CBE—Life Sciences Education Vol. 13, 243–252, Summer.

Mar 12

Herman (1998) Inserting an Investigative Dimension into Introductory Laboratory Courses. J Chem Ed $\underline{75}$, (1) pp. 70–72

Mar 12 (In class)

Montell (2003) *How to Write a statement of Teaching Philosophy*. Chronicle of Higher Education. 3/27/2003.

NRC. (1996) Essential Features of Classroom Inquiry from Inquiry in *Inquiry in the National Science Education Standards*

Types of Laboratory and Inquiry Experiences.

Mar 19

US Department of Education. (2010) Evaluation of Evidence-Based Practices in Online Learning A Meta-Analysis and Review of Online Learning Studies, Means et al.

Mar 26

Johnson, Johnson, & Smith (2000) Cooperative Learning.

Beichner & Saul (2003) Introduction to the SCALE-UP (Student-Centered. *Activities for Large Enrollment Undergraduate Programs) Project*. Proceedings of the International School of Physics - Enrico Fermi, Varenna, Italy, (July 2003).

Smith & Tanner (2010) The Problem of Revealing How Students Think: Concept Inventories and Beyond. CBE Life Sci Educ 9(1): 1-5.

Smith, Trujillo, & Su. (2011) *The Benefits of Clickers in Small-enrollment Seminar-style Biology Courses.* CBE—Life Sciences Education, Vol. 10, 14–17.

Kracjik & McNeill. (2007) *Instructional Model for Scientific Explanations*. NSTA Journal, March 30.

Apr 2

Tamar Lewin. (2013) After setbacks, online courses are rethought.

http://www.nytimes.com/2013/12/11/us/after-setbacks-online-courses-are-rethought.html?nl=todaysheadlines&emc=edit th 20131211& r=0

AFT on MOOCs. (2014) pp. 1-18.

Griffiths et al. (2014) Interactive Online Learning on Campus: Testing MOOCs and Other Platforms in Hybrid Formats in the University System of Maryland. ITHAKA S+R.

Means et al. (2010) Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies. Report for U.S. Department of Education.

Useful resources

MSU Handbook for Teaching Assistants,

http://www.msu.edu/~taprog/resources/handbook2002/

NRC. (2015) Reaching Students: What Research Says About Effective Instruction in Undergraduate Science and Engineering. http://www.nap.edu/catalog/18687/reaching-students-what-research-says-about-effective-instruction-in-undergraduate

Final Project

You will work with a partner to write a syllabus for a course. In addition, each of you will write a lesson plan for the same course. You will teach a portion of one of the lesson plans to the class on April 23 or May 3. The written project is due May 3. For more details, see the Final Project Guidelines.

Teaching Portfolio

You will put together a teaching portfolio that documents your teaching experience to date as well as your teaching philosophy. It should also be organized so that you can easily add artifacts from additional experience. The teaching portfolio is due May 3. For more details, see the Teaching Portfolio Guidelines.

Grading

This course is graded on a pass/no pass basis. Requirements for a passing grade are:

- regular attendance and participation in class including mini-lectures (if you must miss a class session, please contact me ahead of time about makeup work.)
- completion of class assignments including the final project and teaching portfolio.

TOOLS IN MODERN GENETICS: APPLICATIONS AND MECHANISMS

MITCH ROTH 2/12/2018

Few differences

Sisters

One major gene difference

Holstein

Angus

Many millions of differences

Chicken

T-Rex

Holstein breed of cattle

- Bos taurus
- 3 Gb genome size
- Excellent dairy producer
- Sub-optimal meat quality
- In-tact polled gene = horns
- Horned phenotype:
- / Dangerous for other cattle
- Dangers for human workers
- Horns often removed via burning (animal cruelty)

Angus breed of cattle

- Bos taurus
- 3 Gb genome size
- Excellent meat quality
- Sub-optimal dairy producer
- Non-functional polled gene = hornless
- Hornless phenotype:
- Safer around other cattle
- Safer around human workers
- No need for physical removal of horms

Dehorning a calf https://www.youtube.com/watch?v=1HRt5rtePOE

Mixed Holstein-Angus cattle

- Bos taurus
- 3 Gb genome size
- Sub-optimal meat quality
- Sub-optimal dairy producer
- 50/50 functional and non-functional polled gene

Many generations later...

What if dogs had horns?

Pros	Cons
	ros

NEXT WEEK - MECHANISMS

- Restriction enzymes and Ligase
 - "Cut and paste" DNA sequences
- Agrobacterium tumefaciens T-DNA transfer
 - Moving DNA from one organism to another
- CRISPR Gene Editing
 - Working with an organism's native DNA sequences

TOOLS IN MODERN GENETICS: APPLICATIONS AND MECHANISMS

MITCH ROTH 4/9/2018

SHOULD ALREADY KNOW

- Central Dogma of Molecular Biology
 - DNA → RNA → Protein
- Types of DNA in bacterial cell
 - Chromosome and plasmids
- Regulation of gene expression in bacteria
 - Lac operon

SHOULD ALREADY KNOW

Table 14.1 <i>lac</i> O	peron Genes and Regulatory Se	equences		
Gene/Sequence	Product/Sequence Type	Function	Important Mutants	
Protein-Producing Ge	Protein-Producing Genes			
lacl	Repressor protein	Contains two binding sites, one for the operator and one for lactose, the inducer	I—Unable to bind to operator IS—Unable to bind the inducer (allolactose)	
lacZ	β -galactosidase	Cleaves lactose into two monosaccharides (glucose and galactose)	Z^- —No functional β-galactosidase	
lacY	Permease	Facilitates lactose transport across the cell membrane	Y—No functional permease	
lacA	Transacetylase	Protects against harmful by-products of lactose metabolism	A—No transacetylase	
Regulatory Sequences				
lacO	Operator	Binds repressor protein to block transcription of operon genes	O ^C —Fails to bind repressor protein	
lacP	Promoter	Binds RNA polymerase	P [—] —Fails to bind RNA polymerase or does so weakly	

ACTIVITY — STEP 1

- You have a bag of Lac genes, some are wild type and some are mutated
- Find others that have the same genotype as you, and form a group

- Your group is now a pure culture of bacteria, and I have just transferred you into a new flask where lactose is present
- As a group, go through all of the steps to determine if you will express LacZ and LacY and survive!
 - If you will survive, be ready to explain how and why
 - If you won't survive, be ready to explain what you might need in order to survive

♦ ACTIVITY — STEP 3

Group 1 Group 2 Group 3 Group 4

LacI+ LacIS LacI- LacI-

LacP+ LacP+ LacP-

LacO+ LacOC LacOC

LacZ- LacZ+ LacZ- LacZ+

LacY- LacY+ LacY- LacY+

♦ ACTIVITY — STEP 3

Group 1

Group 2

Group 3 Group 4

LacI+

LacIS

Lacl-

Lacl-

LacP+

LacP+

LacP+

LacP-

LacO+

LacO+

LacOC

LacOC

LacZ-

LacZ+

LacZ-

LacZ+

LacY-

LacY+

LacY-

LacY+

Needs

Needs

Needs

Needs

LacZ+

LacOC

LacZ+

LacP+

LacY+

LacY+

GENOTYPE:

Lacl bound CAP bound to LacZ and LacY to lacO? promoter? expressed?

Glucose low Lactose low

Glucose high Lactose low

Glucose low Lactose high

Glucose high Lactose high

NEXT WEEK - APPLICATIONS

- If the Lac operon genes were cloned into another system, would they still work?
- If so, how could we take advantage of Lacl, LacP, and LacO?

Genetics and its Applications in the Modern World

Course Overview
Y Hoang and Mitch Roth
5/3/18

Course Objectives

In this course, students will expand the basic knowledge of genetics they attained in introductory biology courses. This will involve learning new terminology and new core concepts. Students will learn about the actual processes that happen in the cell such as DNA replication, gene expression, and explore their applications in various fields of biology (PCR, cloning, regulating gene expression, expressing a of protein-of-interest).

Upon successful completion of the course students should be able to understand and explain the logic and core concepts of molecular genetics and apply this knowledge to solve complex problems, analyze data, and interpret experimental results. The core concepts will include:

- Mechanisms of DNA replication
- Mechanisms of DNA recombination
- Transcription and translation,
- Regulation of gene expression.
- Mitosis and meiosis

- Connection between genotype and phenotype
- Mechanisms of genetic engineering
- Genomics
- Determine how mutations affect these processes

Schedule of Topics

- Week 1: Review of basic cell biology, physiology, processes and DNA structure and organization
- Week 2: Microbial genetics 1 DNA replication, plasmids
- Week 3: Microbial genetics 2 application of DNA replication → PCR
- Week 4: Microbial genetics 3 Restriction enzymes, ligase
- Week 5: Microbial genetics 4 application of RE \rightarrow cloning
- Week 6: Microbial genetics 5 gene expression / catabolite repression
- Week 7: Microbial genetics 6 application of gene expression → cloning / overexpression of a gene of interest
- Week 8: Review session, EXAM 1

Schedule of Topics

- Week 9: Euk. genetics 1: DNA replication, mitosis & meiosis
- Week 10: Euk. genetics 2: application of meiosis → prediction of gametes / offspring phenotypes
- Week 11: Euk. genetics 3: regulation of gene expression and the cell cycle
- Week 12: Euk. genetics 4: application of regulation → metabolic engineering, and cancer genetics
- Week 13: Euk. genetics 5: genomics
- Week 14: Euk. genetics 6: application of genomics → GWAS and marker-assisted breeding
- Week 15: Review session, EXAM 2
- Week 16: Final Exam

Grading

Category	Percent of Grade	
Attendance	5%	
Problem sets	20%	
Midterm Exam 1	25%	
Midterm Exam 2	25%	
Final Exam	25%	

- Attendance will be monitored by participation in clicker points. If a student uses someone else's clicker to earn attendance points for that student, this will be considered academic dishonesty which can result in a failure of the class and/or expulsion from the university. If a student is present for 90% or more of the lectures, the student will receive 100% for the attendance portion of their grade.
- Problem sets will be assigned in class and collected in class 1 week after being assigned. The assignments will be graded and returned to the students 1 week after being turned in.

Concept: DNA Replication Application: Polymerase Chain Reaction

Genetics and its Applications in the Modern World 5/3/18

Clicker Questions

What does DNA stand for?

- A. Dithiothreitol naphthalic acid
- B. Deoxyribonucleic acid
- C. Dimethylsulfoxide nitric acid

Clicker Questions

Where is DNA found in a cell?

- A. Mitochondria
- B. Ribosome
- C. Golgi Apparatus
- D. Nucleus

Clicker Questions

What organelle is "1"?

- A. Mitochondria
- B. Ribosome
- C. Golgi Apparatus
- D. Nucleus

Discussion Questions

Why is DNA important?

What does DNA do?

How did we figure out what it does?

How did we get here?

How did we come to know DNA is so important?

How did we get here?

If DNA "codes" for life, what does DNA look like?

Activity

Make your own DNA model

- "Twizzler" backbone of DNA
- "Gummy bear" base pairs
- "Toothpick" hydrogen bonds
- Be sure to follow Chargaff's rule!

How does it work?

If DNA "codes" for life, how does it propagate and ensure that life goes on?

1958

Meselson and Stahl showed that DNA is replicated by taking advantage of the two strands

- A pairs with T
- C pairs with G
- One strand used as template (radioactive)
- New strand is synthesized (not radioactive)
- Two, double stranded DNA molecules, both with 1 radioactive strand and one non-radioactive
- Four, double stranded DNA molecules, two as above, and two with no radioactive strands

How does it work?

If DNA is "replicated" how does that work?

DNA Replication

This is still an active area of research!

Graham et al 2017. Independent and Stochastic Action of DNA Polymerases in the Replisome. *Cell*. https://doi.org/10.1016/j.cell.2017.05.041

Replication

- 1. Helicase unwinds DNA
- 2. Primase (not pictured) adds "primer" small string of nucleotides
- 3. Polymerase uses primer to continue synthesizing complementary strand of DNA
- 4. Gyrase (not pictured) prevents over-twisting
- 5. Topoisomerase (not pictured) fixes over-twisted DNA
- 6. Ligase (not pictured) fixes any DNA breaks

Taking Advantage of DNA Replication

DNA is small. I mean, really small. Consider a single gene that is 100 nucleotides long:

- How can we get enough DNA to work with?
- Polymerase chain reaction
- This gene (both strands) weighs 1.023965825e-16 micrograms
- You would need 10 quadrillion (1x10¹⁶) strands of the gene to get 1 microgram!
- You need 1 million micrograms to have 1 gram of DNA!

Polymerase Chain Reaction

Polymerase chain reaction (PCR) is a technique used in molecular biology to amplify a single copy or a few copies of a segment of DNA across several orders of magnitude, generating thousands to millions of copies of a particular DNA sequence.

- 1. The two strands of the DNA double helix are physically separated at a high temperature in a process called DNA melting.
 - a. What separates DNA during replication?
- 2. The temperature is lowered and the two DNA strands become templates for DNA polymerase to selectively amplify the target DNA.
 - a. What tells Polymerase where to begin?
- 3. Polymerase synthesizes a complementary strand of DNA using a template strand
 - a. What does Polymerase build DNA with?

Polymerase Chain Reaction

Virtual lab:

http://learn.genetics.utah.edu/content/labs/pcr/

Next Week

How exactly does DNA "code" for life?

- Genes / gene expression
- Transcription and Translation
- Cloning

Homework:

- Crossword Puzzle
 - http://www.nclark.net/Genes_Crossword.pdf
- Paper to read
 - https://www.annualreviews.org/doi/pdf/10.1146/annurev.biochem.71.110601.13542
 5