Lesson 1: Introduction to Databases

CSC430/530 - DATABASE MANAGEMENT SYSTEMS

OUTLINE

- •Introduction.
- Database concept overview.
- Database management system (DBMS).
- Overview of database design process.
- Characteristics of database approach.

INTRODUCTION (1)

•Why study databases?

- Academic.
 - Databases involve many aspects of computer science.
 - Active area of research.
- Developer.
 - A wide array of applications involve using or accessing databases.
- Business.
 - Every organization needs databases.
- Student.
 - Easier to get hired.

INTRODUCTION (2)

- Databases are everywhere:
 - Bank withdrawal or deposit.
 - Hotel or airline reservation.
 - Groceries shopping.
 - Online shopping.
 - More examples?
- Generally, databases can be divided into two classes:
 - Traditional databases.
 - Store numeric and textual information.
 - Non-traditional databases.
 - Store information generated on the web (posts, tweets, images, videos, webpages).
 - Big data storage systems and NOSQL (Not Only SQL) databases.

DATABASE CONCEPT OVERVIEW

- Definition 0: Database is a collection of related data.
 - Data known facts that can be recorded and that have implicit meaning.

Database properties:

- Represents some aspect of the real world (mini-world).
- Logically coherent collection of data with inherent meaning.
- Designed, built, and populated with data for a specific **purpose**.

• Database has:

- Source from which data is derived.
- Interaction with events in the real world.
- Audience that is actively interested in its contents.

DATABASE MANAGEMENT SYSTEM (1)

- Database management system (DBMS) general-purpose software system that allows users to create and maintain a database.
- Typical DBMS functionality:
 - Define database.
 - Construct database.
 - Manipulate database.
 - **Share** database.
 - Protect database.
 - Maintain database.

DATABASE MANAGEMENT SYSTEM (2)

• Database system = DBMS software + database itself.

DATABASE EXAMPLE

- Five files/tables (each store data records of the same type):
 - Student, Course, Section, Prerequisite, and Grade report.

STUDENT

Name	Student_number	Class	Major
Smith	17	1	CS
Brown	8	2	CS

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

PREREQUISITE

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	07	King
92	CS1310	Fall	07	Anderson
102	CS3320	Spring	08	Knuth
112	MATH2410	Fall	08	Chang
119	CS1310	Fall	08	Anderson
135	CS3380	Fall	08	Stone

GRADE REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	А
8	92	Α
8	102	В
8	135	А

OVERVIEW OF DATABASE DESIGN PROCESS

- Database design stages:
 - Requirements specification and analysis.
 - Conceptual design.
 - Entity-relationship and enhanced entity-relationship models.
 - Logical design.
 - Relational DBMS.
 - Physical design.
- •The **database** is
 - implemented,
 - populated with an actual data, and
 - continuously maintained to reflect the state of the mini-world.

CHARACTERISTICS OF DATABASE APPROACH (1)

Characteristics of database approach:

- Self-describing nature.
 - Definition of data is stored in the DBMS catalog (meta-data).
- Insulation between programs and data.
 - Program-data independence.
- Data abstraction.
 - Data model is used to hide storage details and present the users with a conceptual view of the database.

RELATIONS

Relation_name	No_of_columns	
STUDENT	4	
COURSE	4	
SECTION	5	
GRADE_REPORT	3	
PREREQUISITE	2	

COLUMNS

Column_name	Data_type	Belongs_to_relation	
Name	Character (30)	STUDENT	
Student_number	Character (4)	STUDENT	
Class	Integer (1)	STUDENT	
Major	Major_type	STUDENT	
Course_name	Character (10)	COURSE	
Course_number	XXXXNNNN	COURSE	
	****	*****	
Prerequisite_number	XXXXNNNN	PREREQUISITE	

CHARACTERISTICS OF DATABASE APPROACH (2)

- Characteristics of database approach (cont.):
 - Support of multiple views of the data.
 - User may see a different view of the database, which describes the data of interest to that user.
 - Sharing of data and multi-user transaction processing.
 - Allowing a set of concurrent users to retrieve from and to update the database.

TRANSCRIPT

Student_name	Student_transcript				
Student_name	Course_number	Grade	Semester	Year	Section_id
Smith	CS1310	С	Fall	08	119
Smith	MATH2410	В	Fall	08	112
Brown	MATH2410	Α	Fall	07	85
	CS1310	Α	Fall	07	92
	CS3320	В	Spring	08	102
	CS3380	Α	Fall	08	135

COURSE_PREREQUISITES

Course_name	Course_number	Prerequisites	
Database	CS3380	CS3320	
Database	C33360	MATH2410	
Data Structures	CS3320	CS1310	

Two Views Derived From University Database

SUMMARY

- Database definition and properties.
- DBMS definition and functionality.
- Concept of database system.
- Database design stages.
- Characteristics of database approach.