Signiture_

No. -

Example #01: Orthogonally Diagonalizing a symmetric

Find an orthogonal matrix P that diagonalizes:

$$A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$$

Solution:

$$\Rightarrow \left(\lambda - 2\right)^2 \left(\lambda - 8\right) = 0$$

$$\lambda = 2$$
 and $\lambda = 8$ when $\lambda = 2$: -2 -2 1

when $\lambda = 2$:	-2 -2	-2		1	1	1	
	-2 -2	-2	=)				
	-2 -2	-2		-2	-2	-2]	

	XI X	2	X3_		2K1 + K2	
=	1	1	1	X 2 = 5		
	0	0	0	x3 = t		
	0	0	0	$x_1 = -S - t$		

$$(x_1, x_2, x_3) = (-s-t, s, t)$$

= $s(-1, 1, 0) + t(-1, 0, 1)$

$$U_1 = (-1, 1, 0)$$
 $U_2 = (-1, 0, 1)$

Signature.

MC

No.

when x=8: $\begin{bmatrix} -44 & -2 & -2 & 1 & -1/2 & -1/2 \\ -2 & 4 & -2 & 3 & -2 & 4 & -2 \\ -2 & -2 & 4 & -2 & -2 & -2 & 4 \end{bmatrix}$ after reducing, we get:

雪 43 = (1,1,1)

Date
Example #02: Spectral Decomposition.
A = [1 2]
2 -2
$\det (\lambda \underline{1} - A) = \lambda 0 - 1 2 = \lambda - 1 -2$ $0 \lambda 2 -2 -2 \lambda + 2$
$(\lambda-1)(\lambda+2)-4=0$
$\lambda^2 + 2\lambda - \lambda - 2 - 4 = 0$ $\lambda^2 + \lambda - 6 = 0$
$\lambda + \lambda = -3$, $\lambda = -3$
when $\lambda = -3$:
$\begin{vmatrix} -3 - 1 & -2 \end{vmatrix} = \begin{vmatrix} -4 & -2 \end{vmatrix}$
$\begin{bmatrix} -2 & -3+2 \end{bmatrix} = \begin{bmatrix} -2 & -1 \end{bmatrix}$
$q_1 = (\frac{1}{15}, \frac{-2}{15})$ $q_2 = (\frac{2}{15}, \frac{1}{15})$
$A = \lambda_1 q_1 q_1^{\dagger} + \lambda_2 q_2 q_2^{\dagger}$
$1 \ 2 \ = (-3) \ \frac{1}{15} \ \frac{1}{15} \ \frac{-2}{15} \ \frac{2}{15} \ \frac{2}{15} \ \frac{2}{15} \ \frac{1}{15} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$= (-3) \left[\frac{1}{5} - \frac{2}{5} \right] + (2) \left[\frac{4}{5} + \frac{2}{5} \right]$
Now; let us see what this spectral decomposition tells us about the image of the vector $x = x_2 - x_1 = (1,1)$ under multiplication
Now; let us see what this spectral decomposition tells us about
We image of the vector $x = x_2 - x_1 = (1,1)$ under multiplication
by A writing x in column form, it follows that

Signature.