Лекции по ДМ

Основное учебное пособие:

А.И. Белоусов, С.Б. Ткачев. Дискретная математика. – 7-е изд., испр. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2021.- 703 с.

Далее - Учебник.

Лекция №1

06.09.24

І. Множества и отношения

1. Множества

Почему наивная теория множеств.

«Наивность» в данном случае означает, что исходное понятие множества строго формально не определяется, а поясняется содержательно.

«Под многообразием или множеством я понимаю всё то многое, что посредством некоторого закона приводится к единству» (Г. Кантор).

Отношение принадлежности: $a \in A$; реже $A \ni a$.

Форма $A = \{x : P(x)\}$.

Читается: A есть множество всех таких элементов x, что утверждение P(x) истинно. Это P(x) называется коллективизирующим свойством или характеристическим предикатом.

Если переменной x придать то или иное значение, получится истинное или ложное высказывание.

Примеры: "х – студент МГТУ", "х – четное целое число".

Интуитивно мы будем понимать также, что такое *натуральное число* и *конечное множество*. Хотя, строго говоря, эти понятия следует уже строго определять через исходное понятие множества.

Равенство множеств (принцип экстенсиональности, или объемности):

$$A = B \Longrightarrow (\forall x)(x \in A \Leftrightarrow x \in B)$$

Множество полностью определяется *составом* элементов. Для конечного множества не имеет значения порядок перечисления элементов, а также число повторений какого-то элемента при перечислении.

$$\{1,2,3\} = \{3,2,1\} = \dots = \{1,1,2,2,2,3\} = \dots$$
, Ho $\{1,2,3\} \neq \{\{1,2\},3\}$

Элементом множества может быть другое множество.

Канонически элементы конечного множества перечисляются в каком-то договоренном порядке без повторений элементов.

$$\{a_1, a_2, ..., a_n\} = \{x : x = a_1 \lor x = a_2 \lor ... \lor x = a_n\}$$

Подмножество:

$$A \subseteq B \rightleftharpoons (\forall x)(x \in A \Rightarrow x \in B)$$

Сопоставляя определение равных множеств с определением подмножества, получаем, что

$$A = B \Leftrightarrow (A \subset B) \& (B \subset A)$$

Это равносильное исходному определение равенства множеств лежит в основе метода доказательства равенства множеств, называемого методом двух включений. О нем речь еще пойдет.

Собственное (строгое) подмножество:

$$A \subset B \rightleftharpoons (A \subseteq B) \& (A \neq B)$$

Пустое множество: $\emptyset = \{x : F(x)\}$, где F(x) - тождественно ложный предикат.

По определению принимается, что пустое множество есть подмножество любого множества.

Универсальное множество: $U = \{x : T(x)\}$, где T(x) - тождественно истинный предикат.

По определению принимается, что любое множество есть подмножество универсального множества.

Содержательно под универсальным множеством понимается наиболее широкий род объектов, рассматриваемых в данной теории. Произвольная трактовка этого понятия может привести к противоречиям.

Итак, для любого множества $A \varnothing \subseteq A \subseteq U$.

Булеан: $2^A \rightleftharpoons \{X : X \subseteq A\}$.

Пример: $2^{\{a,b,c\}} = \{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}$.

Можно доказать, что если конечное множество состоит из $\,n\,$ элементов, то в его булеане $\,2^{^n}\,$ элементов.

Операции

- 1) Объединение: $A \cup B \rightleftharpoons \{x : x \in A \lor x \in B\}$
- 2) Пересечение: $A \cap B \rightleftharpoons \{x : x \in A \& x \in B\}$

Может оказаться, что $A \cap B = \emptyset$. Тогда множества A и B называют непересекающимися.

- 3) Разность: $A \setminus B \rightleftharpoons \{x : x \in A \& x \notin B\}$
- 4) Дополнение: $\overline{A} \rightleftharpoons \{x : x \notin A\} = \{x : x \in U \& x \notin A\} = U \setminus A$

Напомним, что каждый элемент считается элементом универсального множества.

5) Симметрическая разность: $A\Delta B \rightleftharpoons (A \setminus B) \cup (B \setminus A)$.

Можно доказать, что $A\Delta B = (A \cup B) \setminus (A \cap B)$.

Выше написано теоретико-множественное тождество. Его надо доказать.

Основные тождества

1)
$$A \cup B = B \cup A; A \cap B = B \cap A$$

2)
$$A \cup (B \cup C) = (A \cup B) \cup C; A \cap (B \cap C) = (A \cap B) \cap C$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C);$

3)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

4)
$$A \cup A = A \cap A = A$$

5)
$$A \cup (A \cap B) = A \cap (A \cup B) = A$$

6)
$$A \cup \emptyset = A \cap U = A; A \cap \emptyset = \emptyset; A \cup U = U$$

7)
$$\overline{A \cup B} = \overline{A} \cap \overline{B}; \overline{A \cap B} = \overline{A} \cup \overline{B}$$
 (тождества, или законы, Де Моргана)

8)
$$A \setminus B = A \cap \overline{B}$$

9)
$$\bar{\varnothing} = U; \bar{U} = \varnothing$$
 (принимается по определению)

10)
$$A \cap \overline{A} = \emptyset$$
; $A \cup \overline{A} = U$

11)
$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

12)
$$A\Delta B = B\Delta A$$

13)
$$A\Delta(B\Delta C) = (A\Delta B)\Delta C$$

14)
$$A\Delta A = \emptyset$$
; $A\Delta \emptyset = A$; $A\Delta U = \overline{A}$

15)
$$A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$$

Рассмотрим на лекции метод двух включений.

Примеры:

1)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Далее рассмотрим два случая:

1.
$$x \in A$$

Тогда х принадлежит объединению A с любым множеством, в частности, $x \in A \cup (B \cap C)$.

2.
$$x \notin A$$

Тогда, поскольку х принадлежит написанным выше объединениям, то $x \in B \& x \in C \Rightarrow x \in B \cap C \Rightarrow x \in A \cup (B \cap C)$.

2. Неупорядоченная и упорядоченная пары. Кортеж. Декартово произведение

Неупорядоченная пара на множествах $A, B: \{a,b\}, a \in A, b \in B$.

Заметим, что если a = b , то $\{a,b\} = \{a,a\} = \{a\}$.

Равенство неупорядоченных пар: $\{a,b\} = \{c,d\} \Leftrightarrow a=c,b=d \lor a=d,b=c$. T.e., порядок перечисления неважен: $\{1,2\} = \{2,1\}$.

Упорядоченная пара на множествах A,B обозначается (a,b) и определяется не только составом, но порядком перечисления своих элементов, которые в этом случае называются компонентами или проекциями. Зависимость от порядка постулируется в определении равенства упорядоченных пар: принимается, что

$$(a,b) = (c,d) \Leftrightarrow a = c \& b = d$$
,

Т.е. в общем случае $(a,b) \neq (b,a)$.

Точка плоскости как упорядоченная пара действительных чисел.

Факультативное замечание

Упорядоченная пара может быть явно определена как некоторое множество, а именно:

$$(a,b) = \{\{a\},\{a,b\}\}\$$
.

Тогда сформулированное выше *определение* равенства упорядоченных пар надо доказать, как *критерий*.

Пусть (a,b)=(c,d) . Рассмотрим сначала случай, когда $a\neq b$. Тогда, поскольку одноэлементное множество не может быть равно двухэлементному, то $\{a\}=\{c\},\{a,b\}=\{c,d\}$, причем $c\neq d$, так как иначе одноэлементное множество окажется равным двухэлементному. Отсюда a=c,b=d (b не может совпасть с c , так как тогда получится, что a=c=b в противоречии с неравенством $a\neq b$.

Если же a=b , то $(a,b)=(a,a)=\{\{a\},\{a,a\}\}=\{\{a\},\{a\}\}\}=\{\{a\}\}$. Тогда из равенства упорядоченных пар получаем, что c=d (иначе опять получим равенство одноэлементного и двухэлементного множества) и a=b=c=d . \triangleright

Кортеж, равенство кортежей.

Декартово произведение, декартова степень. Особый случай нулевой декартовой степени, пустой кортеж.

Тождества с декартовым произведением.

(См. Учебник, п. 1.2. Пустой кортеж – пример 2.7д.)

Лекция №2

11.09.24

3. Отношения, соответствия, отображения

n - арное отношение на множествах $A_{\!\scriptscriptstyle 1},A_{\!\scriptscriptstyle 2},...,A_{\!\scriptscriptstyle n}: \rho \subseteq A_{\!\scriptscriptstyle 1} imes A_{\!\scriptscriptstyle 2} imes ... imes A_{\!\scriptscriptstyle n}$.

Содержательные примеры.

Строка учебного расписания есть кортеж

(Дисциплина, Преподаватель, Уч.группа, Аудитория, День, Час)

Конкретное расписание есть подмножество множества всех таких кортежей.

Частные случаи: n-арное отношение на множестве (все указанные выше множества совпадают), унарные и бинарные отношения.

Соответствия: область определения и область значений. Сечение по элементу и по множеству.

Соответствие из множества A в множество B: $\rho \subseteq A \times B$. Можно также говорить: бинарное отношение на множествах A и B.

Если A=B , то говорят о бинарном отношении на множестве А: $ho \subseteq A^2$.

Примеры:

- 1) $\rho = \{(x, y) : x^2 + y^2 \le a^2\}$
- 2) $\sigma = \{(x, y) : x \le y\}$ обычное отношение числового порядка
- 3) $\tau = \{(x, y) : x \text{сын } y\}$

Область определения соответствия $\rho \subseteq A \times B$: $D_{\rho} = \{x : (x, y) \in \rho, y \in B\}$.

Область значений соответствия $R_{\rho} = \{y : (x, y) \in \rho, x \in A\}$.

Сечение соответствия $\rho \subseteq A \times B$ по элементу $x \in A$: $\rho(x) = \{y : (x, y) \in \rho, y \in B\}$.

Сечение соответствия $\,
ho\,{\subseteq}\, A{ imes} B\,$ по множеству $\, C\,{\subseteq}\, D_{\scriptscriptstyle
ho}$:

$$\rho(C) = \{ y : (x, y) \in \rho, x \in C, y \in B \}.$$

Замечание. Если множество $C \subseteq A$, то под сечением $\rho(C)$ следует понимать множество $\rho(C \cap D_a)$. Если это пересечение пусто, то и множество $\rho(C)$ считается пустым.

Отображения и частичные отображения.

Соответствие $\rho \subseteq A \times B$ называется функциональным по второй компоненте, если для каждого $x \in D_{\sigma}$ сечение $\rho(x)$ содержит единственный элемент $y \in B$.

Или, что то же самое, для любых двух пар $(x,y),(x',y')\in \rho$ при условии, что x=x' имеет место равенство y=y'.

Это значит, что функциональному по второй компоненте соответствию не могут принадлежать пары с одинаковыми первыми компонентами и разными вторыми.

Соответствие $ho \subseteq A imes B$ называется ϕ ункциональным по первой компоненте, если для каждого $y \in R_{
ho}$ существует единственный элемент $x \in D_{
ho}$ такой, что $(x,y) \in
ho$.

Или, что то же самое, для любых двух пар $(x, y), (x', y') \in \rho$ при условии, что y = y' имеет место равенство x = x'.

Это значит, что функциональному по второй компоненте соответствию не могут принадлежать пары с одинаковыми вторыми компонентами и разными первыми.

Соответствие $ho \subseteq A \times B$ называется всюду (или полностью) определенным, если $D_{
ho} = A$, то есть для любого $x \in A$ существует $y \in B$ (не обязательно единственный!) такой, что $(x,y) \in \rho$.

Соответствие $ho \subseteq A \times B$, которое всюду определено и функционально по второй компоненте, называется *отображением множества* A **в** *множество* B (обратим внимание на предлог!).

Для нас синонимом термина «отображение» будет термин «функция».

Для отображения $f \subseteq A \times B$ принято обозначение $f: A \to B$. Единственный элемент сечения f(x) называется образом элемента $x \in A$ при отображении f.

Пишут при этом y = f(x) (вместо записи $(x, y) \in f$).

Тот же элемент $x \in A$, для которого y = f(x), называется прообразом элемента y при отображении f. Множество всех таких элементов называют полным прообразом элемента y при отображении f. Используется обозначение $f^{-1}(y)$, то есть $f^{-1}(y) = \{x \colon y = f(x)\}$. Иногда именно это множество называют прообразом элемента y при отображении f.

Соответствие $ho \subseteq A \times B$, которое и только лишь функционально по второй компоненте, но не является всюду определенным, называется *частичным отображением* множества A $\mathbf{\textit{B}}$ множество B. Можно говорить и «частичная функция».

Мы будем в этом случае использовать обозначение $f:A \longrightarrow B$, ставя точку под стрелкой.

Используют также понятие *образа множества* $X \subseteq A$ при отображении f: $f(X) = \{y : y = f(x), x \in X\}$.

Соответственно, прообраз множества $Y \subseteq B$ есть множество $f^{-1}(Y) = \{x : f(x) \in Y\}$.

Классификация отображений

• Инъективное отображение (или, просто, инъекция) – отображение, функциональное по 1-й компоненте, то есть для каждого $y \in R_f$ существует единственный $x \in A$, такой, что y = f(x).

- Сюръективное отображение (сюръекция) отображение $f:A \to B$, у которого область значений совпадает со всем множеством B, то есть для каждого $y \in B$ существует элемент $x \in A$ (не обязательно единственный!), для которого y = f(x). Про такое отображение говорят, что оно есть отображение множества A на множество B.
- *Биективное* отображение (*биекция*) отображение, которое одновременно инъективно и сюръективно.

Биекцию называют также взаимно однозначным соответствием (иногда (1, 1)-соответствием).

Для биекции $f:A \to B$ каждый элемент первого множества имеет единственный образ и каждый элемент второго множества имеет единственный прообраз.

Операции над соответствиями

- 1) Теоретико-множественные операции
- 2) Композиция

$$ho\circ\sigma \Longrightarrow \{(x,y): (\exists z)(x,z)\in
ho\,\&(z,y)\in\sigma\}\subseteq A imes D$$
 , где $ho\subseteq A imes B$, а $\sigma\subseteq C imes D$ -

композиция соответствий ho и σ .

Можно доказать, что $\rho \circ \sigma \neq \emptyset \Leftrightarrow R_u \cap D_\sigma \neq \emptyset$.

Для отображений
$$f:A\to B$$
 и $g:B\to C$ композиция
$$f\circ g \Longrightarrow \{(x,y): (\exists z)(x,z)\in f\ \&\ (z,y)\in g\} = \{(x,y): (\exists z)(z=f(x)\ \&\ y=g(z)\} = \{(x,y): y=g(f(x))\},$$

то есть
$$(f \circ g)(x) = g(f(x))$$
.

Обычная композиция функций, или сложная функция.

- 3) Обратное соответствие: если $\rho \subseteq A \times B$, то соответствие $\rho^{-1} \Longrightarrow \{(y,x): (x,y) \in \rho\} \subseteq B \times A$ называется обратным к ρ .
- 4) Диагональ множества A Так называется бинарное отношение $\mathrm{id}_A = \{(x,x) : x \in A\}$.

Ясно, что это не что иное как тождественная функция.

Для бинарного отношения $ho \subseteq A^2$ композиция его с самим собой называется его *квадратом*, то есть $ho^2 \Longrightarrow
ho \circ
ho$.

Доказательство некоторых тождеств для отображений (задачи 1.7 и 1.8).

1. Пусть
$$f: X \to Y, A, B \subseteq X$$
 . Доказать, что $f(A \cup B) = f(A) \cup f(B)$.

Если объединение заменить пересечением, доказательство обратного включения не пройдет (элементы x и x' не обязаны совпадать), и будет иметь место только включение $f(A \cap B) \subseteq f(A) \cap f(B)$. Оно превратится в равенство, если f инъективно (и тогда x = x').

2) В условиях предыдущей задачи доказать, что $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ (но здесь $A, B \subseteq Y$).

В данном случае очевидна обратимость каждой стрелки, и тождество доказано. Легко видеть, что оно сохранится и при замене объединения пересечением.

Лекция №3

13.09.24

Алгебраические свойства

1)
$$\rho \circ (\sigma \circ \tau) = (\rho \circ \sigma) \circ \tau$$

2)
$$\rho \circ (\sigma \cup \tau) = (\rho \circ \sigma) \cup (\rho \circ \tau)$$
$$(\sigma \cup \tau) \circ \rho = (\sigma \circ \rho) \cup (\tau \circ \rho)$$

(Доказательство первого тождества см. в Учебнике, стр. 54, после примера 1.10. Все страницы даются по 7-му изданию.)

3)
$$(\rho \circ \sigma)^{-1} = \sigma^{-1} \circ \rho^{-1}$$

4) Для бинарных отношений $\,
ho \subseteq A^2 : \,
ho \circ id_{\scriptscriptstyle A} = id_{\scriptscriptstyle A} \circ
ho =
ho \,$.

4. Специальные свойства бинарных отношений

Запись $x \rho y$ далее используется вместо записи $(x, y) \in \rho$.

Отношение $\rho \subset A^2$ называется:

- 1) $pe\phi$ лексивным, если $(\forall x \in A)(x\rho x)$, то есть $\mathrm{id}_A \subseteq \rho$ (диагональ полностью содержится в отношении);
- 2) иррефлексивным, если $(\forall x \in A)((x,x) \notin \rho)$, то есть $\mathrm{id}_A \cap \rho = \emptyset$ (диагональ полностью исключается из отношения);
- 3) симметричным, если $(\forall x, y \in A)(x\rho y \Rightarrow y\rho x)$, то есть $\rho^{-1} = \rho$;
- 4) антисимметричным, если $(\forall x, y \in A)(x\rho y \& y\rho x \Rightarrow x = y)$, то есть $\rho^{-1} \cap \rho \subseteq \mathrm{id}_A$, в частности, $\rho^{-1} \cap \rho = \emptyset$;
- 5) транзитивным, если $(\forall x, y, z \in A)(x \rho y \& y \rho z \Rightarrow x \rho z)$.

Соответствующие свойства бинарных отношений называются 1) рефлексивностью, 2) иррефлексивностью, 3) симметричностью, 4) антисимметричностью и 5) транзитивностью.

Критерий транзитивности

Теорема. Отношение $ho \subseteq A^2$ транзитивно тогда и только тогда, когда $ho^2 \subseteq
ho$.

Доказательство. Пусть $ho \subseteq A^2$ транзитивно и пусть $x
ho^2 y$. Тогда для некоторого $z \ x
ho z \ \text{и} \ z
ho y$. В силу транзитивности это означает, что x
ho y , т.е. $ho^2 \subseteq
ho$.

Обратно: если $\rho^2\subseteq \rho$, то из $x\rho z$ и $z\rho y$ для произвольных x,y,z , т.е. из $x\rho^2 y$, следует $x\rho y$, т.е. отношение транзитивно.

Замечание. Можно доказать, что рефлексивное и транзитивное отношение *совпадает* со своим квадратом.

«Анкетирование» отношений.

Эквивалентность, порядок, толерантность, предпорядок.

Эквивалентность – отношение рефлексивное, симметричное и транзитивное.

Порядок - отношение рефлексивное, антисимметричное и транзитивное.

Толерантность - отношение рефлексивное и симметричное (но, вообще говоря, не транзитивное).

Предпорядок - отношение рефлексивное и транзитивное.

5. Отношения эквивалентности и фактор-множества

Отношение равенства по модулю к на множестве целых чисел.

На множестве $\mathbb Z$ целых чисел введем отношение равенства по модулю k:

$$x \equiv_k y \Longrightarrow k \mid x - y \Longrightarrow (x - y) : k$$
.

Чтобы доказать, что это отношение эквивалентности, покажем, что равенство чисел по модулю k означает равенство их остатков от деления на k:

$$x \equiv_k y \Leftrightarrow \operatorname{mod}(x,k) = \operatorname{mod}(y,k)$$
.

Через $\operatorname{mod}(x,k)$ обозначен остаток от деления числа x на k . При этом $0 \leq \operatorname{mod}(x,k) \leq k-1$, и $\operatorname{mod}(x,k) = x - [x]_k$, где через $[x]_k$ обозначено наибольшее число, не превосходящее x и делящееся на k.

Пусть тогда
$$x \equiv_k y$$
. Отсюда $x - y = [x]_k + \operatorname{mod}(x, k) - [y]_k - \operatorname{mod}(y, k)$.

Так как эта алгебраическая сумма делится на k, то для этого необходимо, чтобы разность остатков $\operatorname{mod}(x,k) - \operatorname{mod}(y,k)$ делилась на k (так как числа $[x]_k$ и $[y]_k$ делятся на k). Но разность остатков на k по модулю меньше k и может делиться на k, только если она равна нулю. Что и означает равенство остатков $\operatorname{mod}(x,k) = \operatorname{mod}(y,k)$.

Итак, если числа равны по модулю k, то остатки их от деления на k равны. Обратное очевидно.

Другое доказательство см. в Учебнике стр. 68-69, пример 1.14. Но нам именно такой способ доказательства нужен, так как позже мы сошлемся на него в алгебре.

Из доказанного сразу следует, что отношение равенства чисел по модулю к является отношением эквивалентности, так как определяется через отношение равенства.

Понятие класса эквивалентности

Класс эквивалентности элемента x по отношению эквивалентности $\rho: [x]_o \rightleftharpoons \{y: y \rho x\}$.

Для рассмотренного выше примера $[x]_{=_k} \rightleftharpoons \{y : \operatorname{mod}(y,k) = \operatorname{mod}(x,k)\}$. Это означает, что классов эквивалентности здесь ровно k, каждый класс однозначно определен числом между 0 и k-1.

Теорема. Классы эквивалентности попарно не пересекаются.

Доказательство. Пусть $\rho \subseteq A^2$ - отношение эквивалентности, классы $[x]_\rho$ и $[y]_\rho$ различны, но их пересечение не пусто. Пусть $z \in [x]_\rho \cap [y]_\rho$. Так как классы $[x]_\rho$ и $[y]_\rho$ различны, то найдется элемент $u \in [x]_\rho \setminus [y]_\rho$ или элемент $v \in [y]_\rho \setminus [x]_\rho$. В первом случае получим цепочку эквивалентностей: $z\rho x, u\rho x, z\rho y$, которая в силу симметричности любого отношения эквивалентности может быть переписана так: $u\rho x, x\rho z, z\rho y$, откуда в силу транзитивности отношения получим, что $u\rho y$, что невозможно, так как элемент $u \notin [y]_\rho$ (этот элемент выбран так, что не является эквивалентным элементу y). Случай элемента $v \in [y]_\rho \setminus [x]_\rho$ рассматривается точно так же.

Тем самым доказано, что любые два различных класса эквивалентности не пересекаются. Другое доказательство теоремы см. в Учебнике (теорема 1.4, стр. 67-68).

Разбиение множества.

Определение. Говорят, что подмножества непустого множества А образуют его *разбиение*, если 1) все они не пусты, 2) каждый элемент А принадлежит какому-то из них и 3) они попарно не пересекаются. Подмножества, образующие разбиение множества А, называются *членами разбиения*.

Теорема. Каждое отношение эквивалентности определяет однозначно разбиение множества, на котором оно задано, причем членами разбиения являются классы эквивалентности.

Наоборот, любое разбиение множества определяет однозначно отношение эквивалентности на нем, и классы эквивалентности совпадают с членами разбиения.

Доказательство. Первое утверждение очевидно в силу ранее доказанного. Заметим только, что каждый элемент множества, на котором определено отношение эквивалентности, принадлежит своему классу эквивалентности в силу свойства рефлексивности.

Пусть теперь подмножества $B, C, ... \subseteq A$ образуют разбиение множества A. Определим отношение $\rho \subseteq A^2$ так: $x \rho y \Longrightarrow (x \in B) \& (y \in B)$ для некоторого члена разбиения B. Рефлексивность и симметричность такого отношения очевидны. Докажем транзитивность.

Пусть $x \rho y, y \rho z$. Тогда для некоторых членов разбиения B, C имеем: $x, y \in B; y, z \in C \Rightarrow y \in B \cap C \neq \varnothing \Rightarrow B = C \Rightarrow x, y, z \in B \Rightarrow x \rho z$, что и доказывает транзитивность определенного таким образом отношения.

Тривиальные разбиения: это 1) разбиение, единственным членом которого является само множество, а также 2) разбиение на одноэлементные подмножества.

Можно сказать, что в первом случае все элементы множества эквивалентны, а во втором каждый элемент эквивалентен только самому себе.

Фактор-множество.

Множество классов эквивалентности $\{[x]_{\rho}:x\in A\}$ называется фактор-множеством множества A по отношению эквивалентности $\rho\subseteq A^2$ и обозначается A/ρ .

Примеры. 1) Фактор множество $\mathbb{Z}/\equiv_k=\{[0]_{\equiv_k},[1]_{\equiv_k},...,[k-1]_{\equiv_k}\}$. Это множество конечно (оно состоит из k элементов), хотя каждый его элемент есть бесконечное множество всех чисел, дающих при делении на k остаток 0, 1,..., k-1. Тем самым устанавливается взаимно однозначное соответствие между фактор-множеством \mathbb{Z}/\equiv_k и множеством чисел $\{0,1,...,k-1\}$.

2) На множестве вещественных чисел $\mathbb R$ определим отношение равенства по модулю 1: $x\equiv_1 y \Longrightarrow x-y \in \mathbb Z$.

Рекомендуется самостоятельно доказать, что это отношение эквивалентности и что фактор множество $\mathbb{R}/\equiv_{\text{I}}$ находится во взаимно однозначном соответствии с полуинтервалом [0, 1).

Также рекомендуется проанализировать отношение

 $x \equiv_{\tau} y \rightleftharpoons x - y = kT; k \in \mathbb{Z}, T \in \mathbb{R}^+$ (положительное действительное число).

Здесь часто используется случай $T=2\pi$ (период).

3) На множестве точек плоскости \mathbb{R}^2 зададим отношение $(x_1,y_1)\rho(x_2,y_2) \rightleftharpoons x_1^2 + y_1^2 = x_2^2 + y_2^2$. Легко проверяется, что это эквивалентность (проверить!).

Класс эквивалентности точки $[(x_0,y_0)]_{\rho}=\{(x,y):x^2+y^2=x_0^2+y_0^2\}$ - окружность радиуса $\sqrt{x_0^2+y_0^2}\,$ с центром в начале координат, и исходная точка лежит на этой окружности. Заметим при этом, что класс эквивалентности точки (0, 0) сводится только к этой точке. Фактор-множество есть здесь множество концентрических окружностей $x^2+y^2=r^2, r\geq 0$.

Предлагается самостоятельно проанализировать отношение $(x_1, y_1)\sigma(x_2, y_2) \rightleftharpoons x_1^2 - y_1^2 = x_2^2 - y_2^2$.