Detection of eco-evolutionary dynamics in metacommunities using Joint Species Distribution Models

Jelena H. Pantel* Ruben J. Hermann[†]

23 October, 2024

^{*}Laboratoire Chrono-environnement, UMR 6249 CNRS-UFC, 16 Route de Gray, 25030 Besançon cedex, France, jelena. pantel@univ-fcomte.fr

 $^{^\}dagger \text{University}$ of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany, ruben.hermann@uni-due.de

₅ 1 Title

6 Detection of eco-evolutionary dynamics in metacommunities using Joint Species Distribution Models

7 2 Abstract

8 XXXXX

₉ 3 Introduction

10 XXXXX

11 4 Methods

12 4.1 Simulation model

- We simulated growth and competition dynamics for a multi-species assemblage in a patchy landscape, with
- site variation in one environmental property.

15 4.1.1 Environmental variation

- Population growth for species in the metacommunity simulation follows a Leslie-Gower model (a discrete-
- time version of a Lotka-Volterra model (Beverton and Holt 1957) (Leslie and Gower 1958)). We consider the
- 18 impact of trait evolution for growth using a discrete time quantitative genetic model of evolutionary rescue
- 19 (Gomulkiewicz and Holt 1995). The model for population size is as follows:

$$N_{i,t+1} = \frac{\hat{W}e^{\frac{-[(\frac{w+(1-h^2)P}{P+w})(E-x_{i,t})]^2}{2(P+w)}}N_{i,t}}{1+\alpha_{ii}N_{i,t} + \sum_{j\neq i}^{S}\alpha_{ij}N_{j,t}}$$

where N_i, t is the population size of species i at time t, \hat{W} is calculated as $\hat{W} = W_{max} \sqrt{(\frac{w}{P+w})}$, W_{max} is the species' maximum per-capita growth rate, w is the width of the Gaussian fitness function (which determines the strength of selection, as increasing values indicate a weaker reduction in fitness with distance from optimum trait value), P is the width of the distribution of the phenotype x, h^2 is the heritability of the trait x, E is the local environmental optimum trait value, $x_{i,t}$ is the trait value of species i at time t, α_{ii} is the intraspecific competition coefficient (the per capita impact of species i on itself) and α_{ij} is the interspecific competition coefficient. Populations have a critical density N_c , below which the population is subject to extinction due to demographic stochasticity at a probability of p (Gomulkiewicz and Holt 1995).

5 Results

29 XXXX

o 6 Discussion

31 XXXXX

³² 7 References

- Beverton, R. J., and S. J. Holt. 1957. On the dynamics of exploited fish populations (Vol. 11). Springer
- 34 Science & Business Media.
- ₃₅ Gomulkiewicz, R., and R. D. Holt. 1995. When does evolution by natural selection prevent extinction?
- ³⁶ Evolution 49:201–207.
- ₃₇ Leslie, P. H., and J. C. Gower. 1958. The properties of a stochastic model for two competing species.
- 38 Biometrika 45:316–330.

39 8 Figures & Tables