1.

A) $\delta(v_0, 10) = Undefined$ Since, M has only 0,1 in it's alphabet 8 10 is not past of it.

B) $\hat{S}(\alpha_1, 101)$ We know that, $\hat{S}(\alpha_1, w) = \begin{cases} 3 \\ S(\hat{S}(\alpha_1, w), \alpha) \end{cases}$ if $w = \epsilon$ $\hat{S}(\alpha_1, w) = \begin{cases} 3 \\ S(\hat{S}(\alpha_1, w), \alpha) \end{cases}$

 $\begin{array}{ll}
50, \hat{S}(\alpha_{1}, 101) &= \hat{S}(\hat{S}(\alpha_{1}, 10), 1) \\
&= S(\hat{S}(\hat{S}(\alpha_{1}, 1), 0), 1) \\
&= S(\hat{S}(\hat{S}(\alpha_{1}, 1), 0), 1) \\
&= S(\hat{S}(\hat{S}(\alpha_{1}, 1), 0), 1) \\
&= S(\hat{S}(\alpha_{2}, 0), 1) \\
&= S(\alpha_{3}, 1) \\
&= N_{1}
\end{array}$

S($\alpha_1, 101$) = α_3 c) The language of M, L(M) = $\frac{2013}{3}$

2.

A)
$$\hat{S}(v, \epsilon) = q$$

B) $\hat{S}(v, az) = \hat{S}(S(v, a), z)$

Proof:

We know that,

 $\hat{S}(v, av) = \hat{S}(\hat{S}(v, u), v)$

Let $u = \alpha$
 $\hat{S}(v, av) = \hat{S}(\hat{S}(v, a), v)$

we know that,

 $\hat{S}(v, av) = \hat{S}(\hat{S}(v, \epsilon), a)$
 $\hat{S}(v, av) = \hat{S}(\hat{S}(v, \epsilon), a)$
 $\hat{S}(v, av) = \hat{S}(\hat{S}(v, \epsilon), a)$
 $\hat{S}(v, av) = \hat{S}(\hat{S}(v, \epsilon), a)$