Uso de aprendizado de máquina para detecção de faces falsas geradas por inteligência artificial

João Pedro Vieira Rodrigues, 201022613

Orientador: Prof. Dr. Kelton Augusto Pontara da Costa

Bacharelado em Ciência da Computação - UNESP / Bauru

INTRODUÇÃO

PROBLEMA

O avanço da inteligência artificial permitiu a criação de rostos falsos através de algoritmos, acarretando problemas como:

CRIAÇÃO DE NOTÍCIAS FALSAS

ATAQUES CIBERNÉTICOS

CRIAÇÃO DE PERFIS FALSOS

JUSTIFICATIVA

Principais motivações do trabalho:

- Área da segurança digital em alta
- O aprendizado de máquina é uma alternativa para resolver o problema

OBJETIVOS

Objetivo Geral:

Avaliar o desempenho da Capsule Neural Network na classificação de faces falsas.

Objetivos Específicos

- 1. Estudar e implementar a Capsule Neural Network
- 2. Treinar essa rede para reconhecer faces falsas e verdadeiras
- 3. Interpretar os dados gerados pelo treinamento
- 4. Comparação do seu desempenho com outras técnicas

FUNDAMENTAÇÃO TEÓRICA

GENERATIVE ADVERSARIAL NETWORK

• Publicado em 2014 por lan Goodfellow no artigo "Generative Adversarial Network"

 Algoritmo utilizado para criação das imagens falsas do banco de dados

GENERATIVE ADVERSARIAL NETWORK

Representação de uma GAN

CAPSULE NEURAL NETWORK

 Proposta em 2017 no artigo "Dynamic routing between capsules"

 Utiliza o conceito de cápsulas para extração de características de uma imagem

CAPSULE NEURAL NETWORK

Representação da CapsNet

FUNÇÃO DE ATIVAÇÃO

Sigmoid:

Fórmula:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

MÉTRICAS DE AVALIAÇÃO

As métricas utilizadas no trabalho foram a acurácia e precisão

Acurácia

$$rac{VP+VN}{VP+VN+FN+FP}$$

Precisão

$$rac{VP}{VP+FP}$$

METODOLOGIA

BANCO DE DADOS

Banco de dados de 140 mil imagens de rostos falsos e verdadeiros do site Kaggle

- 70 mil rostos falsos criados pela Style-GAN
- 70 mil rostos verdadeiros retirados do site Flickr

BANCO DE DADOS

Imagem falsa

Imagem real

TREINAMENTO, VALIDAÇÃO E TESTE

As imagens foram divididas de acordo com a tabela:

	Rostos Reais	Rostos Falsos
Treinamento	50 mil imagens	50 mil imagens
Validação	10 mil imagens	10 mil imagens
Teste	10 mil imagens	10 mil imagens

RESULTADOS

TREINAMENTO E VALIDAÇÃO

Época	Perda de Treinamento	Perda de Validação	Acurácia
1	0.0348	0.0257	0.7316
2	0.0236	0.0215	0.7939
3	0.0202	0.0196	0.8201
4	0.0182	0.0189	0.8304
5	0.0166	0.0164	0.8602
6	0.0155	0.0154	0.8745
7	0.0145	0.0150	0.8798
8	0.0137	0.0174	0.8380
9	0.0130	0.0138	0.8951
10	0.0124	0.0139	0.8918
11	0.0119	0.0136	0.8972
12	0.0114	0.0127	0.9063
13	0.0110	0.0128	0.9072
14	0.0106	0.0124	0.9098
15	0.0102	0.0127	0.9091
16	0.0099	0.0129	0.9055
17	0.0097	0.0126	0.9114
18	0.0094	0.0120	0.9101
19	0.0092	0.0117	0.9170
20	0.0090	0.0117	0.9159
21	0.0087	0.0120	0.9123
22	0.0085	0.0117	0.9166
23	0.0083	0.0116	0.9144
24	0.0081	0.0114	0.9207
25	0.0080	0.0116	0.9164

- Época com menor perda de treinamento: 25
- Época com menor perda de validação: 24
- Época com a melhor acurácia: 24

TREINAMENTO E VALIDAÇÃO

Gráfico das acurácias durante as épocas

TREINAMENTO E VALIDAÇÃO

Gráfico das perdas durante as épocas

TESTE

Matriz de confusão

		Valor Predito	Valor Predito
		Positivo	Negativo
Valor Real	Positivo	8649	976
Valor Real	Negativo	650	9725

Métricas

 $Precis\~ao = 93.01\%$

Acur'acia = 91.87%

COMPARAÇÃO

Comparação da CapsNet com as técnicas do artigo (WANG; ZARGHAMI; CUI, 2021)

Modelos	Acurácia	Precisão
CapsNet	91.87	93.01
Res-Net	98.67	99.12
Gram-Net	98.71	98.98
LBP-Net	98.58	98.96

CONCLUSÃO

TRABALHOS FUTUROS

Qualidade da imagem

Banco de dados diferente

REFERÊNCIAS

GOODFELLOW, I. J.; POUGET-ABADIE, J.; MIRZA, M.; XU, B.; WARDE-FARLEY, D.; OZAIR, S.; COURVILLE, A.; BENGIO, Y. GENERATIVE ADVERSARIAL NETWORKS. 2014.

WANG, Y.; ZARGHAMI, V.; CUI, S. FAKE FACE DETECTION USING LOCAL BINARY PATTERN AND ENSEMBLE MODELING. IN: 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP).

[S.L.:
S.N.], 2021. P. 3917-3921

SABOUR, S.; FROSST, N.; HINTON, G. E. DYNAMIC ROUTING BETWEEN CAPSULES. 2017.

OBRIGADO