Faculté des Sciences de Tétouan/Électromagnétisme SMP3/Test en TD1/J Diouri 28/10/2010

Durée allouée : 30 minutes

Documents de cours et TD autorisés

Rédiger la réponse à remettre dans cette page

Nom, prénom

On considère la portion de circuit représentée sur la figure.

 \vec{k} Désigne le vecteur unitaire de l'axe perpendiculaire au plan de la figure orienté positivement vers l'avant.

En utilisant le résultat établi en TD du champ créé par un segment de courant, établir l'expression du champ magnétique créé en O (en fonction de I, a, b et \vec{k}) par cette portion de circuit.

Exercice N°9

Reply In chant the for we troused: $B = \frac{h \circ I}{4 \pi h} \left(\sin \theta_1 + \sin \theta_2 \right) I$ If wellist de détermine θ_1 it θ_2 from changes required (et r)

AC = $\theta_1 = \theta_2 = 0$ = BAC = 0, de même BZF = 0AB = $\left(\theta_1 = 0, \theta_2 = \frac{\pi}{4} \right)$ $B(AB) = \frac{h \circ I}{2 \pi k - a} \sqrt{2} \left(-II \right)$ $CA = \theta_1 = 0, \theta_2 = \frac{\pi}{4}, h = k$ $B(CB) = \frac{h \circ I}{8 \pi k} \sqrt{2} \left(II \right)$ $ED = 0, \theta_2 = \frac{\pi}{4}, h = k$ $B(ED) = \frac{h \circ I}{8 \pi k} \sqrt{2} \left(II \right)$ $AB = \theta_1 = 0, \theta_2 = \frac{\pi}{4}, h = k$ $AB = \theta_2 = 0, \theta_2 = \frac{\pi}{4}, h = k$ $AB = \theta_1 = 0, \theta_2 = \frac{\pi}{4}, h = k$ $AB = \theta_1 = 0, \theta_2 = \frac{\pi}{4}, h = k$ $AB = \theta_1 = 0, \theta_2 = \frac{\pi}{4}, h = k$ $AB = \theta_1 = 0, \theta_2 = \frac{\pi}{4}, h = k$ $AB = \theta_1 = 0, \theta_2 = \frac{\pi}{4}, h = k$ $AB = \theta_1 = 0, \theta_2 = \frac{\pi}{4}, h = k$ $AB = \theta_1 = 0, \theta_2 = \frac{\pi}{4}, h = k$ $AB = \theta_1 = 0, \theta_2 = \frac{\pi}{4}, h = k$ $AB = \theta_1$