

Scanned by CamScanner

of marry multiplication rector processing

for
$$j=1:1:m$$

$$\begin{cases}
x = a[i, i] \\
y = 1:1:T
\end{cases}$$

$$\begin{cases}
x = b[:,j] - \\
y = y + k \neq d(j;) = u
\end{cases}$$
and $y = a[i, i] = a[i, i]$

$$\begin{cases}
y = a[i, i] \\
y = a[i, i] \\
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i] \\
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i] \\
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i] \\
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i] \\
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$

$$\begin{cases}
y = a[i, i]
\end{cases}$$
and $y = a[i, i]$
and $y = a[i,$

merge Awo sorted arrays.

= Herge two sorted woways GP = [14.17,27,36,42,58] H 8. [18,31,33,35, 50,60] C = 17,36.58 A: 14,29,42 mory - 17, 31, 35, 36, 58, 60 D - 31, 35, 60 6- 18, 33,50 42 29 33 T(n) = T(n/2) + 1Y(1) -[1] I - [18, 25,33, 42,50] Reasons Z (6)=[] J-[17, 31,34, 36,58] ... K = Min(I,J) = [17,29, 33,36,50] L= Man (I, J)= [18,31, 34,42,58] 14[17,18, 29, 31, 28.34, 36, 42, 50, [8]60-Shuffle (K, L) Given a dais A second for south a stample see how then watereth ounter example suntify the rejoin of the

"bum of alements of nector. vector ale can also - Find laugh - div - Find elements at me of indices n = leyle (T) while (n > 1) n-torgh (P) K = div(m2) J=11k [1,2,3,4] 1 -T(J) [15, 11, 17, 19] B = T D(J)-[] [41, 32, 36, 84] T= A+B . n/=2 and.

4.918 z xy 00 01 11 90 x=0 y=1 z=0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\frac{2}{2} \frac{1}{2} \frac{1}$
$\frac{z^{\frac{1}{2}}}{0} = \frac{00}{1} = \frac{00}{1} = \frac{90}{1} = \frac{1}{90} = $
$\frac{yy'}{2} = \frac{1}{2} \left[\frac{yz'}{2} + \frac{yz'}{2} \right] = \frac{1}{2} \left[\frac{yz'}{$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
22 00 01 11 10 Think xyz' + x'yz'a = yz'(x+x'a) - yz'(x+a)

of - such input occur will never occur

y X	0	ı	
0	0	C	-
1.	0	d	

zx	00	01	101	11			
O	0		13	o make 1			
1	0	0	D	0 = makeo			
reduce eize of erop							

	ay	1	1	ſ,		1	
	1	00	01	10	σ۱	1	
	00 00	1	t	0	0	Ĭ	
	01	1	1	1	1		
_	11	0	0	٥	1		
_	10_	6	0	0	0	1	

119.18 - 04 En En=1 0 10 En - 1 Fn=0 a = b=0 亟

MIDSEM ASSIGNMENT 1 TYPE

