Machine Translated	by Google
	Linius va dan va va talvid lika va v DMC DC405 Ma album (V/4.4)
	Uniwersalny protokół Jikong BMS RS485 Modbus (V1.1)

Chengdu Jikong Technology Co.,

Ltd. 2024.02

Uniwersalny protokół Jikong BMS RS485 Modbus V1.1

zapis wersji					
Data numer	Data numeru wersji opisać				
2023.02 V1.0 1. Napisz protokół komunikacyjny;					
2024.01 V1.1 1. Naprawiono kilka błędów i dodano obsługę rejestrów					

Uniwersalny protokół Jikong BMS RS485 Modbus (V1.1)

Ogólny protokół Jikong BMS RS485 Modbus przyjmuje metodę odpowiedzi master-slave do transmisji danych. Host może zainicjować żądanie tylko poprzez unikalny adres urządzenia podrzędnego, a BMS (podrzędny) odpowiada zgodnie z żądaniem hosta, czyli komunikacją półdupleksową. Protokół ten umożliwia jedynie hostowi zainicjowanie żądania, a urządzeniu podrzędnemu bierną odpowiedź, więc urządzenie podrzędne nie będzie aktywnie zajmować linii komunikacyjnej i powodować konfliktów danych.

1. Interfejs fizyczny

Charakterystyka elektryczna fizycznego interfejsu komunikacyjnego jest

następująca: Poziom	UART		
interfejsu	RS485		
komunikacyjnego	115200bps 8		
Standardowa	1		
szybkość			
transmisji Bit danych Bit stopu Bit ko	ntrolny		

2. Format umowy

Transmisja informacji jest asynchroniczna, do komunikacji używany jest format szesnastkowy: kod

adresu, kod funkcji		Kontrola CRC 1
bajt 1 bajt 1 bajt 2 b	ajty	

1) Kod adresu Kod

adresu to pierwszy bajt każdej ramki informacji komunikacyjnych i obsługuje wartości od 1 do 247. Każdy adres urządzenia podrzędnego na magistrali musi być unikalny.

Tylko urządzenie podrzędne, które odpowiada kodowi adresowemu wysłanemu przez urządzenie nadrzędne, może odpowiedzieć i zwrócić dane .

2) Kod funkcji

Kod funkcji to drugi bajt każdej ramki informacji komunikacyjnych. Host wysyła go i informuje urządzenie podrzędne za pomocą kodu funkcji, co powinno Kiedy wykonać jaką operację. Definicja kodu funkcji jest

następująca: Definicja funkcji		
03H	odczyt rejestru	Operacja odczytuje dane z jednego lub większej liczby rejestrów
10H zapis	danych rejestru zapisanych v	v jednym lub większej liczbie rejestrów

3) Obszar

danych Obszar danych różni się w zależności od kodu funkcji i kierunku danych. Dane te mogą obejmować "adres pierwszego rejestru + liczba odczytanych rejestrów", "adres rejestru + dane operacyjne", "pierwszy adres rejestru + liczba rejestrów operacji + dane. "Długość + dane" i inne różne kombinacje, obszary danych różnych kodów funkcji są szczegółowo wyjaśnione w "Analizie kodów funkcji".

3) Kontrola CRC

Kontrola CRC służy do zapewnienia poprawności i integralności transmisji danych.

3. Informacja o błędzie

Błędy sprawdzania adresu i CRC nie otrzymają informacji zwrotnej od urządzenia podrzędnego, a inne błędy spowodują zwrócenie kodów błędów do hosta.

Dodanie 0x80 do drugiego bitu ramki danych wskazuje, że w żądaniu wystąpił błąd (niedozwolony kod funkcji, niedozwolona wartość danych itp.). Ramka danych błędu wygląda następująco:

Uniwersalny protokół Jikong BMS RS485 Modbus V1.1

kod adresowy	kod funkcji	Kontrola CRC obszaru	kodu błędu
1-bajtowy	1 bajt	1 bajt 2 bajty	

kod błędu definiuje się w następujący sposób:

wartość	Kod	zilustrować		
01H	funkcji o niedozwolonej nazwie	Ten rejestr operacji kodu funkcji nie jest obsługiwany		
02H	Błąd adresu rejestru	Uzyskano dostęp do rejestru, do którego urządzenie podrzędne nie ma dostępu		
03H	Dane są nielegalne	Logika danych jest nieprawidłowa lub przekracza limit		
04H	Błąd kontroli CRC	Błąd kontroli CRC		

4. Proces przekazywania informacji

Kiedy polecenie komunikacji jest wysyłane z urządzenia nadrzędnego do urządzenia podrzędnego, urządzenie podrzędne odpowiadające kodowi adresowemu wysłanemu przez urządzenie nadrzędne otrzymuje polecenie komunikacyjne If

Jeśli kontrola CRC będzie prawidłowa, zostanie wykonana odpowiednia operacja, a następnie wynik wykonania (dane) zostanie zwrócony do hosta. zwrócone wiadomości

Zawiera kod adresowy, kod funkcji, dane po wykonaniu i kod kontrolny CRC. Jeśli adres się nie zgadza lub CRC jest prawidłowe

5. Analiza kodu funkcji

1) Kod funkcji 03H: Odczyt rejestru

Na przykład: host chce odczytać liczbę dwóch rejestrów holdingowych o adresie slave 01H i adresie rejestru początkowego 05H. Według danych host wysyła:

Host w	ysyła	Dane (szesnastkowo)
kod a	dresu	01H
kod f	unkcji	03H
	wysoki bajt	00Н
Początkowy adres rejestru	niski bajt	05H
Ligado rojectrów	wysoki bajt	00Н
Liczba rejestrów	niski bajt	02H
Kontrola CRC	niski bajt	D4H
Notitiold CRC	wysoki bajt	0AH

Jeśli dane w rejestrach przechowujących urządzenie podrzędne 05H i 06H to 1122H i 3344H, urządzenie podrzędne zwraca:

Dane zwró	cone z urządzenia podrzędnego (HEX)	
		01H
	resowy	03H
kod f	unkcji	
Liczba	bajtów	04H
Zarejestruj dane 05	Starszy	11 rano
Zarejesti uj dane 03	bajt Niski	22H
Zarejestruj dane 06	bajt Wysoki	33H
Zarejesti uj dane 00	bajt Niski	44H
Kontrola CRC	bajt Starszy	4BH
Nonti ola Cite	bajt 2) Kod	C6H

funkcji 10H: Zapis rejestru

Na przykład: host chce zapisać dane 0005H i 2233H pod adresem slave 01H, a adres rejestru początkowego to Wśród 2 rejestrów 0020H host wysyła:

Host wy	ysyła	Dane (szesnastkowo)		
kod fu	unkcji	01H		
kodu	adresu	10H		
	Starszy bajt	00H		
Początkowy adres rejestru	Niski bajt	20H		
	Wysoki bajt	00H		
Liczba rejestrów	Młodszy bajt	02H		
Liczba zapi	sanych	04H		
0000H	bajtów Wysoki bajt	00H		
dolnobajtowy ma zostać zapisa	ny Rejestr	05H		
0001H	Rejestr	22H		
starszych bajtów do zapisan	_a niski bajt	33H		
	niski bajt	В9Н		
CRC sprawdza wysoki bajt	kodu funkcji. Działanie	03H		

10H, urządzenie podrzędne zwraca:

Kod adresu zw	rotnego	Dane (szesnastkowo)		
urządzenia	podrzędnego	01H		
kod fu	ınkcji	10H		
	starszy	00H		
Początkowy adres rejestru	bajt niski	20H		
	bajt wysoki	00H		
Liczba rejestrów	bajt niski	02H		
Karatar In CDC	bajt niski	40H		
Kontrola CRC	bajt wysoki bajt	02H		

	Zarejestruj mapę Zarejestruj mapę							
Początkowe przesunie Pole adresowe	ecie kodu adresu II HEX GRUI		typ danych Typ	_{długość} Długość	R/W	Treść danychTreść	jednostkajednostka	Notatka
	0x0000	0 UI	NT32		Wnrow	adź napięcie uśpienia VolSmartSleep	mV	
	VolCellUV 0x00	₀₄ 4 UI	NT32			czenie podnapięciowe ogniwa	mV	
	VolCellUVPR 0x					bezpieczenia podnapięciowego ogniwa	mV	
	VolCellOV 0x					a ogniwa przed przeładowaniem	mV	
	VolCellOVPR 0x00					zyskiwania zabezpieczenia przed przeładowaniem ogniwa	mV	
	VolBalanTrig 0x	₀₀₁ <u>2</u> 0 U	INT32	4 RW r	óżnica na	pięcia wyrównawczego wyzwalacza	mV	
			INT32			0% napięcie VolSOC100% 0x0018	mV	
	UINT32					napięcie VolSOC0% 0x001C 28	mV	
	0x0020	32 U	INT32			e napięcie ładowania VolCellRCV	mV	
	0x0024	36 U	INT32	4 RW	napięci	pływakowe VolCellRFV	mV	
	0x0028	40 U	INT32	4 RW	Napiecie	automatycznego wyłączania VolSysPwrOff	mV	
	44 UINT32					rąd ładowania CurBatCOC 0x002C	mama	
	TIMBatCOCPDI	0x 0 836	INT32	4 RW (późnien	e zabezpieczenia nadprądowego ładowania	S	
	0x0034		INT32			o zabezpieczenie nadprądowe ładowania TIMBatCOCPRDly	S	
	0x0038	56 U	INT32		1	rąd rozładowania CurBatDcOC	mama	
	TIMBatDcOCF	Dly 0x0	03C 60 UINT32	4 RW	Opóźnie	nie zabezpieczenia nadprądowego rozładowania	S	
	0x0040	64 U	INT32	4 RW 2	adziałał	zabezpieczenie nadprądowe rozładowania TIMBatDcOCPRDly	S	
	TIMBatSCPRDI	0x6844	INT32	4 RW 2	abezpied	zenie przeciwzwarciowe zwolnione	S	
	0x0048	72 U	INT32	4 RW	Maksyn	nalny prąd wyrównawczy CurBalanMax	mama	
	TMPBatCOT 0	x004C 7	6 INT32	4 RW	Zabezpi	eczenie przed przegrzaniem ładowania	0,1 °C	
	TMPBatCOTPR 0x	₀₀₅ &0 IN	T32	4 RW O	dzyskiwan	e przy nadmiernej temperaturze ładowania	0,1 ℃	
	TMPBatDcOT 0>	₀₀₅ 84 IN	T32	4 RW 2	abezpiec	zenie przed przegrzaniem tłoczenia	0,1 °C	
	TMPBatDcOTPR (_{x00} 88 IN	T32	4 RW C	dzyskiwar	ie przy nadmiernej temperaturze tłoczenia	0,1 ℃	
	ładowania TM	PBatCUT	0x005C 92 INT3	2 4 RW	Zabezpie	czenie przed niską temperaturą	0,1 °C	
	TMPBatCUTPR	0× 6 666	T32	4 RW	Odzysk v	niskiej temperaturze ładowania	0,1 °C	
	TPMMosOT 0	x0064 1	100 INT32	4 RW	MOS za	bezpieczenie przed przegrzaniem	0,1 ℃	
	0x0068	104 II	NT32	4 RW	MOS za	pezpieczenie przed przegrzaniem TPMMosOTPR	0,1 ℃	
	UINT32			4 RW	Liczba	komórek 0x006C 108	strunowy	
	0x0070 112 l	JINT32		Przeł	cznik ła	dowania 4 RW BatChargeEN		1: otwarty; 0: zamknięty
	0x0074 116 l			Przeł	cznik r	pzładowania 4 RW BatDisChargeEN		1: otwarty; 0: zamknięty
	BalanEN 0x00	78 20 L	INT32	4 RW	Przełąc	nik równoważący		1: otwarty; 0: zamknięty

0x007C 124 UINT32 Pojemność baterii 4 RW CapBatCell 0x0080 128 UIN**1**32 nas 4 RW obóźnienie zabezpieczenia przed zwarciem SCPDelay 0x0084 132 UIN**T**32 m۷ 4 RW **Z**równoważone napięcie początkowe VolStartBalan 0x0088 136 UINT32 uΩ 4 RW lezystancja wewnętrzna linii łączącej 0CellConWireRes0 0x008C 140 UINT32 uΩ 4 RW R zystancja wewnętrzna przewodu przyłączeniowego 1CellConWireRes1 0x0090 144 UIN 32 uΩ 4 RW R zvstancia ewnętrzna przewodu przyłączeniowego 2CellConWireRes2 0x0094 148 UIN**T**32 uΩ zystancja wewnętrzna przewodu przyłączeniowego 3CellConWireRes3 4 RW R 0x0098 152 UINT32 uΩ 4 RW R ewnętrzna przewodu przyłączeniowego 4CellConWireRes4 zystancja 0x009C 156 UINT32 uО 4 RW F ystancja v ewnętrzna przewodu przyłączeniowego 5CellConWireRes5 0x00A0 160 UIN 32 uΩ 4 RW Rezystancja wewnętrzna przewodu przyłączeniowego 6CellConWireRes6 0x00A4 164 UINT32 uΩ 4 RW Re zystancja wewnętrzna przewodu przyłączeniowego 7CellConWireRes7 0x00A8 168 UINT32 uΩ 4 RW R zystancja wewnętrzna przewodu przyłączeniowego 8CellConWireRes8 0x00AC 17/2 UINT32 uΩ 4 RW R zystancja v ewnętrzna przewodu przyłączeniowego 9CellConWireRes9 0x00B0 176 UINT32 uΩ 4 RW R zystancja wewnętrzna przewodu przyłączeniowego10CellConWireRes10 0x00B4 180 UINT32 uΩ 4 RW R zystancja wewnętrzna przewodu przyłączeniowego 11CellConWireRes11 0x00B8 184 UINT32 uО 4 RW ezystancja wewnętrzna linii łączącej 12CellConWireRes12 0x00BC 188 UIN**T**32 uΩ 4 RW ezystancja wewnętrzna linii łączącej 13CellConWireRes13 0x00C0 192 UIN 32 uΩ 4 RW ezystancja wewnętrzna linii łączącej 14CellConWireRes14 0x00C4 196 UIN 32 uΩ 4 RW Rezystancja wewnętrzna linii łączącej 15CellConWireRes15 0x00C8 200 UIN**T**32 uΩ 4 RW ezystandia wewnetrzna linii łączącej 16CellConWireRes16 0x00CC 204 UINT32 uΩ 4 RW Rezystancja wewnętrzna linii łączącej 17CellConWireRes17 0x00D0 208 UIN**T**32 uΩ 4 RW ezystancja wewnętrzna linii łączącej 18CellConWireRes18 0x00D4 212 UIN**T**32 uΩ 4 RW Rezystancja wewnętrzna linii łączącej 19CellConWireRes19 0x00D8 216 UINT32 uΩ 4 RW rezystancja wewnętrzna linii łączącej 20CellConWireRes20 0x00DC 2**1**0 UIN**T**32 uΩ 4 RW ezystan¢ja wewnętrzna linii łączącej 21CellConWireRes21 0x00E0 22H UIN**T**32 uΩ 4 RW ezystan¢ja wewnętrzna linii łączącej 22CellConWireRes22 0x00E4 228 UIN 32 uΩ 4 RW ezystandja wewnętrzna linii łączącej 23CellConWireRes23 0x00E8 232 UIN 132 uΩ 4 RW ezystancja wewnętrzna linii łączącej 24CellConWireRes24 0x00EC 236 UIN**T**32 uΩ 4 RW Rezystancja wewnętrzna linii łączącej 25CellConWireRes25 0x00F0 24D UIN 132 uΩ 4 RW ezystan¢ja wewnętrzna linii łączącej 26CellConWireRes26 0x00F4 24H UINT32 uΩ 4 RW ezystancja wewnętrzna linii łączącej 27CellConWireRes27 0x00F8 24B UINT32 0x00 uΩ 4 RW ezystancja wewnętrzna linii łączącej 28CellConWireRes28 FC 252 UINT32 0k0100 uΩ 4 RW ezystancja wewnętrzna linii łączącej 29CellConWireRes29 256 UINT32 0x0104 260 uΩ 4 RW ia wewnętrzna linii łaczącej 30CellConWireRes30

0x1000

UINT32

4 RW rezystancja wewnętrzna linii łączącej 31CellConWireRes31

uΩ

0x0108 264 UINT32 0x010C	4 RW adre	es urządzenia DevAddr	Н		
268 UINT32	4 RW Czas ro	zładowania i wstępnego ładowania TIMProdischarge	S		
	RW w	yłacznik ogrzewania HeatEN		1: otwarty; 0:	
	RW os	łona czujnika temperatury Wyłączenie czujnika temperatury		zamknięty 1: otwarty;	
	RW (GPS Wykrywanie pulsu GPS		0: zamknięty 1: otwarty;	
	Funkcj	a portu multipleksowanego RW Przełącznik portów		1: RS485; 0: CAN 1:	
0x0114 276 UINT16	2 RW W	yświetlacz zawsze włączony LCD Zawsze włączony		otwarty; 0: zamknięty	
0.00 14 2 / 9 0 N 15	Identy	/fikacja specjalnej ładowarki RW Specjalna ładowarka		1: otwarty; 0:	
	RW S	SmartSleep		zamknięty 1: otwarty;	
		yłacz równoległe ograniczenie prądu. Wyłącz moduł PCL		0: zamknięty 1:	
	Maga	zy nowanie danych RW z czasem TimedStoredData	2 0	otwarty;	
	RW tr	yb ładowania podtrzymującego.ChargingFloatMode			
0x0118 280 UINT8	_ /	in eligentny czas snu TIMSmartSleep	Н		
UINT8	Pole d	anych R umożliwia sterowanie 0			
0x0000 0 UINT16	2 Napięcie	e ogniwa R 0CellVol0	mV		
0x0002 2 UINT16	2 Napięcie	e ogniwa R 1CellVol1	mV		
0x0004 4 UINT16	2 Napięcie	e øgniwa R 2CellVol2	mV		
0x0006 6 UINT16	2 Napięcie	e ogniwa R 3CellVol3	mV		
0x0008 8 UINT16	2 Napięcie	e ogniwa R 4CellVol4	mV		
0x000A 10 UINT16 0x000C	2 Napięci	e ogniwa R 5CellVol5	mV		
12 UINT16 0x000E	2 Napięcie	e ogniwa R 6CellVol6	mV		
14 UINT16	2 Napięci	e ogniwa R 7CellVol7	mV		
0x0010 16 UINT16	2 Napięci	e ogniwa R 8CellVol8	mV		
0x0012 18 UINT16	2 Napięci	e ogniwa R 9CellVol9	mV		
0x0014 20 UNT16	2 Napięci	e ogniwa R 10CellVol10	mV		
0x0016 22 UINT16	2 Napięci	e ogniwa R 11CellVol11	mV		
0x0018 24 UINT16	2 Napięci	e φgniwa R 12CellVol12	mV		
0x001A 26 UINT16 0x001C	2 Napięcie	e ogniwa R 13CellVol13	mV		
28 UINT16 0x001E 30	2 Napięcie	e φgniwa R14CellVol14	mV		
UINT16 0xQ020	2 Napięci	e ogniwa R15CellVol15	mV		
32 UINT16	2 Napięci	e øgniwa R16CellVol16	mV		
0x0022 34 UINT16		e ogniwa R17CellVol17	mV		
0x0024 36 UINT16	2 Napięcie	e ogniwa R18CellVol18	mV		
0x0026 38 UINT16	2 Napięci	e ogniwa R 19CellVol19	mV		
0x0028 40 UINT16	2 Napięci	e φgniwa R 20CellVol20	mV		

0x002A 42 UINT16 0x	x002C 2 Na	pięcie ogniwa R 21CellVol21	mV		
44 UINT16 0x002E 46	+	pięcie pgniwa R 22CellVol22	mV		
UINT16 0x0030		pięcie pgniwa R 23CellVol23	mV		
48 UIN		pięcie pgniwa R24CellVol24	mV		
0x0032 50 UIN		pięcie ogniwa R 25CellVol25	mV		
0x0034 52 UIN		pięcie ogniwa R 26CellVol26	mV		
0x0036 54 UIN	IT16 2 Na	pięcie ogniwa R 27CellVol27	mV		
0x0038 56 UIN	IT16 2 Na	pięcie pgniwa R 28CellVol28	mV		
0x003A 58 JINT16 0x	x003C 2 Na	pięcie ogniwa R 29CellVol29	mV		
60 UINT16 0x003E 62	2 2 Na	pięcie ogniwa R 30CellVol30	mV		
UINT16 0x0040		pięcie ogniwa R 31CellVol31	mV		
64 UIN		tan baterii CellSta	20 20	BIT[n] wynosi 1, wskazując, że bateria istnieje	
0x0044 68 UIN	1	rednie napięcie ogniwa CellVolAve	mV		
0x0046 70 UIN	=	aksymalna różnica napięcia CellVdifMax	mV		
		R Maksymalny numer ogniwa napięciowego MaxVolCellNbr			
	INT8	R Minimalny numer ogniwa napięciowego MinVolCellNbr			
0x004A 74 JINT16 0x		ównoważona rezystancja linii 0CellWireRes0	mΩ		
76 UINT16 0x004E 78	8 2 R Zr	ównoważona rezystancja linii 1CellWireRes1	mΩ		
UINT16 0x0050		ównoważona rezystancja linii 2CellWireRes2	mΩ		
80 UIN		ównoważona rezystancja linii 3CellWireRes3	mΩ		
0x0052 82 UIN	1.0233	or drutowy 2 R zbalansowany 4CellWireRes4	mΩ		
0x0054 84 UIN		or drutowy 2 R zbalansowany 5CellWireRes5	mΩ		
0x0056 86 UIN	1,02,50	or drutowy 2 R zbalansowany 6CellWireRes6	mΩ		
0x0058 88 UIN	110233	or drutowy 2 R zbalansowany 7CellWireRes7	mΩ		
0x005A 90 JINT16 0x	1,	or drutowy 2 R zbalansowany 8CellWireRes8	mΩ		
92 UINT16 0x005E 94	4 Rezys	or drutbwy 2 R zbalansowany 9CellWireRes9	mΩ		
UINT16 0x0060		or z drutem zrównoważonym 2 R10CellWireRes10	mΩ		
96 UIN		ównoważony rezystor liniowy 11CellWireRes11	mΩ		
0x0062 98 UIN	1,02,3	or z drutem zrównoważonym 2 R12CellWireRes12	mΩ		
0x0064 100 UINT16 (or z syrnetrycznym drutem 2 R13CellWireRes13	mΩ		
102 ŲIN		or z syrnetrycznym drutem 2 R14CellWireRes14	mΩ		
0x0068 104 ΨΙΝ	110293	or z syrnetrycznym drutem 2 R15CellWireRes15	mΩ		
0x006A 106 UINT16	1102yo	or z symetrycznym drutem 2 R16CellWireRes16	mΩ		9
108 UINT16 0x006E 1	110 Rezys	or z syrnetrycznym drutem 2 R17CellWireRes17	mΩ		
UINT16	Rezys	or z symetrycznym drutem 2 R18CellWireRes18	mΩ		

0x0070 112 UINT16 0x0072 mΩ Rezystor z symetrycznym drutem 2 R19CellWireRes19 114 **U**INT16 mΩ Rezystor z symetrycznym drutem 2 R20CellWireRes20 0x0074 116 UINT16 0x0076 mΩ Rezystor drutowy 2 R zbalansowany 21CellWireRes21 118 UINT16 mΩ Rezystor drutowy 2 R zbalansowany 22CellWireRes22 0x0078 120 **U**INT16 mΩ Rezystor drutbwy 2 R zbalansowany 23CellWireRes23 0x007A 122 UINT16 0x007C mΩ Rezystor z symetrycznym drutem 2 R24CellWireRes24 124 UINT16 0x007**£** 126 mΩ 2 R Zrównoważona rezystancja linii 25CellWireRes25 UINT16 0x0080 128 UINT16 mΩ Rezystor z symetrycznym drutem 2 R26CellWireRes26 0x0082 mΩ Rezystor z syrhetrycznym drutem 2 R27CellWireRes27 130 UINT16 mΩ Rezystor z symetrycznym drutem 2 R28CellWireRes28 0x0084 132 UINT16 0x0086 mΩ Rezystor z syrhetrycznym drutem 2 R29CellWireRes29 134 **U**INT16 mΩ Rezystor z symetrycznym drutem 2 R30CellWireRes30 0x0088 136 **U**INT16 mΩ Rezystor drutbwy 2 R zbalansowany 31CellWireRes31 0x008A 138 UINT16 0x008C 0.1 °C 2 R Temperatura płyty zasilającej TempMos 140 UINT32 0x009**0** 144 4 R Stan zrównoważonej rezystancji linii CellWireResSta BIT[n] wynosi 1, co oznacza, że linia równowagi jest alarmująca UINT32 0x0094 148 UINT32 m۷ 4 R calkowite rapiecie akumulatora BatVol 0x0098 mW Moc baterii 4 R BatWatt 152 INT32 Pradakumulatora 4 R BatCurrent mama 0x009C 156 INT16 0x009E 0,1 °C 2 R Temperatura akumulatora TempBat 1 0,1 °C 158 INT16 2 R Temperatura akumulatora TempBat 2 BIT0 Rezystancja linii wagi jest za duża AlarmWireRes 1: Usterka: 0: BIT1 Normalna 1: Usterka: Zabezpieczenie przed przegrzaniem MOS AlarmMosOTP BIT2 0: Normalna 1: Liczba ogniw i wartość ustawienia nie są zgodne z AlarmCellQuantity Nieprawidłowość BIT3 Usterka; 0: Normalna czujnika prądu AlarmCurSensorErr Zabezpieczenie przed przepięciem BIT4 1: Usterka; 0: ogniwa AlarmCellOVP Zabezpieczenie przed przepięciem BIT5 Normalna 1: Usterka: akumulatora AlarmBatOVP Zabezpieczenie nadpradowe BIT6 0: Normalna 1: ładowania AlarmChOCP Zabezpieczenie przed BIT7 Usterka; 0: Normalna zwarciem ładowania AlarmChSCP Przeładowanie-BIT8 1: Usterka: Usterka: zabezpieczenie temperaturowe AlarmChOTP BIT9 0: Normalna 1: Zabezpieczenie przed niską temperaturą ładowania BIT10 Usterka; 0: Normalna AlarmChUTP Nieprawidłowość komunikacji wewnętrznej BIT11 1: Usterka; 0: AlarmCPUAuxCommuErr Zabezpieczenie podnapięciowe **UINT324** 0x00A0 160 BIT12 Normalna 1: Usterka; ogniwa AlarmCellUVP Zabezpieczenie podnapieciowe BIT13 0: Normalna 1: akumulatora AlarmBatUVP Zabezpieczenie nadpradowe Usterka; 0: Normalna 1: Usterka 0: Normalna 1: Usterka; Bła rozładowania AlarmDchOCP Zabezpieczenie przed zwarciem rozładowania AlarmDchSCP

0x1200

					Zabezpieczenie przed przegrzaniem rozładowania		1: Usterka; 0: Normalna	BIT15
					AlarmDchOTP Nieprawidłowość rury ładującej		1: Usterka; 0: Normalna	BIT16
					AlarmChar geMOS Nieprawidłowość rury wyładowczej		1: Usterka; 0: Normalna	BIT17
					AlarmDischargeMOS Odłączenie GPS GPSDSisconnete		1: Usterka; 0: Normalna	BIT18
					d Proszę zmienić hasło autoryzacyjne na czas Zmień PWD na czas Nie udało		1: Usterka; 0: Normalna	BIT19
					się otworzyć rozładowania Rozładowanie włączone		1: Usterka;	BIT20
					Niepowodzenie Alarm nadmiernej temperatury akumulatora Alarm			BIT21
					nadmiernej temperatury akumulatora m Nieprawidłowość czujnika temperatury			
					Temperatura anomalia czujnika. Awaria modułu równoległego. Anomalia modułu PLC			
0x00A4 164	NT16		2 R P	rąd rów	noważący BalanCurrent	mama		
0x00A6	166	UINT8	2	-	równowagi BalanSta	% 2: 1	ozładowanie; 1: Ładowanie; 0: Wył	
UXUUAU	100	UINT8	2	R pozo	stała moc SOCStateOfchar ge			
0x00A8 168	NT32 0	x00AC	4 R p		pojemność SOCCa pRemai n	mAH		
172 UINT32	0x00B0	176		 	pjemność akumulatora 4 R SOCFullChar geCap	mAH		
UINT32 0x00	B4 180	UINT32			kli SOCC ycleCount			Ti Ti
					jemność cyklu 4 R SOCC ycleCap	mAH		
0x00B8	184	UINT8 2 UINT8	1		Wycena SOCSOH	%		
UXUUDO			2	R stan wst	pnego ładowania Wstępne ładowanie		1: otwarty; 0: zamknięty	
0x00BA 186	UINT16	0x00BC	2 R Al	arm po	ziomu użytkownika UserAlarm			
188 UINT32			4 R R	unTime	RunTime	S		
0x00C0 192		UINT8	2	R stan	adowaniaŁadowanie		1: otwarty; 0: zamknięty	
000000132		UINT8		R stan ı	ozładowania Rozładowanie		1: otwarty; 0: zamknięty	
0x00C2 194	JINT16	0x00C4	2 R A	arm po	ziomu użytkownika 2UserAlarm2			
196 UINT16	0x00C6	198	2 R Cza	s zadziała	nia zabezpieczenia nadprądowego rozładowania TimeDcOCP R	S		
UINT16 0x00	C8 200	UINT16	2 R Cza	s zadziała	nia zabezpieczenia przed zwarciem rozładowania TimeDcSCP R	S		
0x00CA 202	UINT16	0x00CC	2 R Cza	s zadział	ania zabezpieczenia nadprądowego ładowania TimeCOCP R	S		
204 UINT16	0x00CE	206 UINT16	2 R Cza	s zadział	nia zabezpieczenia przed zwarciem ładowania TimeCSCP R	S		
			2 R Czas	zadziałania	zabezpieczenia podnapięciowego pojedynczego urządzenia TimeUVP R	S		
			2 R Czas	zadziałania	zabezpieczenia przepięciowego pojedynczego urządzenia TimeOVP R	S		
					Czujnik temperatury MOS MOS Tem pSensorAbsent Czujnik			BIT0
					temperatury akumulatora 1 BATTem pSensor1Absent Czujnik		1: normalny; 0: brak 1:	BIT1
		UINT8	2 R		temperatury akumulatora 2 BATTem pSensor2Absent Czujnik		normalny; 0: brak 1:	BIT2
0x00D0 208		DINIO	211		temperatury akumulatora 3 BATTem pSensor3Absent Czujnik		normalny; 0: brak 1:	BIT3
					temperatury akumulatora 4 BATTem pSensor4Absent Czujnik		normalny; 0: brak 1:	BIT4
					temperatury akumulatora 5 BATTem pSensor5Nieobecny		normalny;	BIT5

	0.0000001					pgrzewaniaOgrzewanie	- 100	1: otwarty; 0: zamknięty
	0x00D2 210			2R Za	rezerw	owane		
	212 UINT16			2 R C	as prze	łączania awaryjnego TimeEmer genc y	S	
	0x00D8 216	JINT16	0x00DA	2 R W	spółczyr	nik korekcji prądu rozładowania BatDisCurCorrect		
	218 UINT16	x00DC	220 FLOAT	2 R N	apięcie	czujnika prądu ładowania VolChar gCur	mV	
	0x00E4 228 L	JINT16 (x00E6 230			czujnika prądu rozładowania VolDischar gCur	mV	
	INT16				-	nik korekcji napięcia akumulatora BatVolCorrect	8 0	
				2 R N	apięcie	akumulatora BatVol	0,01	
				2 R pi	ad grza	niaHeatCurrent	VmA	
	00055 220		UINT8		,	owaj RVD		
	0x00EE 238		UINT8	2	R Stan	ładowarkiŁadowarkaPodłączona		1: wstawiony; 0: nie wstawiony
	0x00F0 240 L	INT32 (x00F8 248	Syste		pkonujeS ysRunTicks	0,1 S	
	INT16 0x00F	4 250 IN	T16			ura akumulatora TempBat 3	0,1 °C	
	0x00FC 252 I	NT16 0x	0100			ura akumulatora TempBat 4	0,1 °C	
	256 UINT32)x0108	264			ura akumulatora TempBat 5	0,1 °C	
	UINT32					C RTCTicks	•	Czas zaczyna się od 2020-1-1
					-	czas uśpienia TimeEnterSlee p Stan modułu	S	2245 24425/N4 51Q 04 2020 Y 1
			UINT8		JIOWAGZ	ograniczającego prąd równoległy PCLModuleSta		1: otwarty; 0: zamknięty
	0x010C268		UINT8	2 R	8	Reserved RVD		1. Octobrity, o. Zarrikriięcy
	0x0000	0 zna	ków ASCII	16 R N	lodel p	roducentaProducentDeviceID		
	0x0010	16 zna	ków ASCII		<u> </u>	ersji sprzętuHardwareVersion		
	0x0018	24 AS			_	rsji oprogramowania SoftwareVersion		
	0x0020	32 UI			_	vany czas pracy ODDRunTime	S	
	0x0024	36 UI				czenia PWRONTimes	razy	
			UINT8			ł portu szeregowego RW 1 UART1MPRTOLNbr	Tazy	
	0x00B2 178		UINT8	2		bł RW CAN CANMPRTOLNbr		
	0x00B4 180	JINT8 0	k00C4	16 P St	_	e protokołem portu szeregowego 1 UART1MPRTOLenable		
	196 UINT8					nie protokołem CAN UARTMPRTOLenable[0-15]	8 0	
			UINT8			fortu szeregowego RW 2 UART2MPRTOLNbr		
	0x00D4	212 I	UINT8	2		anie protokołem portu szeregowego 2 UART2MPRTOLenable[0]		
			UINT8		k sterov		+	
	0x00E4 228		UINT8	2RW		Źródło wyzwalania brzęczyka LCD LCDBuzzerTrigg er		
1400			UINT8			suchy węzeł 1 źródło wyzwalania DRY1Trigg er		
	0x00E6 230		UINT8	2		ło wyzwalania węzła suchego 2 DRY2Trigg er		
	0x00E8 232 I		OHVIO			ja biblioteki protokołu UART UARTMPTLVer valania brzęczyka LCD 4 RW.LCDBuzzerTriggerVal		

Uniwersalny protokół Jikong BMS RS485 Modbus V1.1

1	0x00EC 236 I	NT32 0x	00F0 240	Warto	ść odzy	skiwania brzęczyka LCD 4 RW LCDBuzzerReleaseVal		
	INT32 0x00F4	244 IN	Г32	4 RW	Wartość	wyzwalacza węzła suchego 1 DRY1TriggerVal		
	0x00F8 248 I	NT32 0x	00FC 252	4 RW	Wartość	wyzwalacza węzła suchego 1 DRY1ReleaseVal		
	INT32 0x010	256 IN	Г32	4 RW	Wartość	wyzwalacza węzła suchego 2 DRY2TriggerVal		
				4 RW	Wartość	odzyskiwania węzła suchego 2 DRY2ReleaseVal		
				4 RW	okres p	rzechowywania danych DataStoredPeriod		
	0x0104	260 U	NT8	2	RW	Czas ładowania RCVTime Czas	0,1 godz	
	oxo ro r	200 0		_		ładowania pływającego RFVTime	0,1 godz	
	0x0106	262 U	NT8	2	R	Wersja biblioteki protokołu CAN CANMPTLVer		
	one ree					Rezerwowy RVD		
	5		NT16 0x0000	Kalibı	acja na	pięcia 4 W Kalibracja napięcia	mV	
			NT16 0x0004	Wyłącz	enie kart	v zabezpieczającej 2 W. Wyłączenie		
	0x0006	6 UI	NT16	Kalibı	acja pra	du 4 W	mama	
	0x000A 10 U	NT16 0>	000C 12	2 W Trz	yelemento	wy LI-ION jednym kliknięciem		
0x1600	UINT16			2 W Je	dnoprzyc	skowy litowo-żelazny LIFEPO4		
	0x000E		NT16	Tytania	n litu LTO d	mocy 2 W z jednym wiązaniem		
	0x0010		NT16			awaryjny Awaryjny		
	0x0012	18 U	NT32	Kalibi	acja cza	su 4 W		
				_				

			Przykłac	dowe dan	e	
Zarejestruj dar Długość typu przesu	-	azowego	Definicja rejestru	organizować coś	Wyślij polecenie	otrzymać odpowiedź
			spienia VolSmartSleep 0x1000 0x0004	3,54 01 1	0 10 00 00 02 04 00 00 0D D4 3A A0 2,83 01 10 10	01 10 10 00 00 02 45 08
			va VolCellUV 0x1000 0x0008	04 00 02	04 00 00 0B 0E B9 68 2,86 01 10 10 08 00 02 04	01 10 10 04 00 02 04 C9
		_	pięciowego ogniwa VolCellUVPR 0x1000	00 00 0B	2C 39 24 4.3	01 10 10 08 00 02 C4 CA
		+	owaniem ogniwa V olCellOV		01 10 10 0C 00 02 04 00 00 10 CC 33 WYŁ.	01 10 10 0C 00 02 85 0B
×1000 0×00 10 UINT3	2 4 Napięcie po	wrotne za	bezpieczenia przed przeładowaniem ogniwa VolCellOVPR	4.16 01 1	10 10 00 02 04 00 00 10 40 33 53 0x1000 0x0014	01 10 10 10 00 02 44 CD
INT32 4 Wyzwalanie	napięcia wyró	wnawczeg	volBalanTrig 0.003 01 10 10 14 00 02 04 00 00 00 03 7E 9	1 0x1000	0x0018 UINT32 4 00% Napiecie VolSOC100% 4,17	01 10 10 14 00 02 05 0C
			0x001C UINT32 4 SOC-0% Napięcie VolSOC0% 2,85 01 10			01 10 10 18 00 02 C5 0F
alecane napięcie ład	owania VolCelli	RCV 4,2 01	10 10 20 00 02 04 00 00 10 68 30 59 0x1000 0x0024 UINT3	2 4 Napię	ie pływakowe VolCellRFV 4,16 01 10 10 24 00 02 04	01 10 10 1C 00 02 84 CE
00 10 40 B1 B4 0x1	000 0x0028 UII	VT32 4 Na	pięcie automatycznego wyłączania VolSysPwrOff 2,7 0x100	0 0x002C	UINT32 4 Ciągły prąd ładowania CurBatCOC 30	01 10 10 20 00 02 44 C2
1000 0x0030 UINT3	2 4 Opóźnienie	zabezpie	zenia nadprądowego ładowania TIMBatCOCPDly 0x1000	0x0034 UI	NT32 4 Zadziałanie zabezpieczenia nadprądowego	01 10 10 24 00 02 05 03
dowania TIMBatCO	PRDly 40 0x10	00 0x0038	UINT32 4 Ciągły prąd rozładowania CurBatDcOC 0x1000		01 10 10 28 00 02 04 00 00 0A 8C 3A D4	01 10 10 28 00 02 C5 00
			eczenia nadprądowego TIMBatDcOCPDly 30 0x1000 0x004	0	01 10 10 2C 00 02 04 00 00 75 30 1A A6	01 10 10 2C 00 02 84 C1
NT32 4 Wyzwalacz	abezpieczenia	nadprado	wego rozładowania TIMBatDcOCPRDly 40 0x1000	10	01 10 10 30 00 02 04 00 00 00 0A BD 7C	01 10 10 30 00 02 45 07
			arciowego TIMBatSCPRDly 0x1000 0x0048 UINT32 4		01 10 10 34 00 02 04 00 00 00 28 3C 96	01 10 10 34 00 02 04 C6
			4 Zabezpieczenie przed przegrzaniem	149 01 1	0 10 38 00 02 04 00 02 46 08 AE BB	01 10 10 38 00 02 C4 C5
dowania TMPBatCO	T 0x1000 0x004	4C INT32 4	Odzyskiwanie przy nadmiernej temperaturze ładowania		01 10 10 3C 00 02 04 00 00 00 1E BD 26	01 10 10 3C 00 02 85 04
//PBatCOTPR 0x100	0x0050 INT 32	2 4 Zabezp	eczenie przed przegrzaniem rozładowania TMPBatDcOT		01 10 10 40 00 02 04 00 00 00 28 3A 41 6	01 10 10 40 00 02 44 DC
			nia odzysk temperatury TMPBatDcOTPR		01 10 10 44 00 02 04 00 00 00 06 BB AE 1	01 10 10 44 00 02 05 1D
1000 0x0058 INT32	4 Niski poziom	adowani	a zabezpieczenie temperaturowe		01 10 10 48 00 02 04 00 00 03 E8 3B 47 75	01 10 10 48 00 02 C5 1E
dzyskiwan e przy ni:	kiej	TMPI	atCUT 0x1000 0x005C INT32 4		01 10 10 4C 00 02 04 00 00 02 EE BB 26 65	01 10 10 4C 00 02 84 DF
T32 4 Zabezpieczer	ie prt ærd peratu	rze ładow	ania TMPBatCUTPR 0x1000 0x0060		01 10 10 50 00 02 04 00 00 02 8A BB 94 75	01 10 10 50 00 02 45 19
Odzyskiwanie zabez	pieczeniąprzegi	rzaniem M	OS TMPMosOT 0x1000 0x0064 INT32		01 10 10 54 00 02 04 00 00 02 EE BB 8C 65	01 10 10 54 00 02 04 D8
T32 0x 1000 0x0060	: UINT32 4przed	d przegrza	niem MOS TMPMosOTPR 0x1 000 0x0068		01 10 10 58 00 02 04 00 00 02 8A BA 32 -25	01 10 10 58 00 02 C4 DB
	Licz	ba komóre	k Liczba komórek		01 10 10 5C 00 02 04 FF FF FF 06 FA D0 -15	01 10 10 5C 00 02 85 1A
					01 10 10 60 00 02 04 FF FF FF 6A F9 BC	01 10 10 60 00 02 45 16
				105 01 1	0 10 64 00 02 04 00 00 04 1A BA BF 90 01 10 10 68	01 10 10 64 00 02 04 D7
				00 02 04	00 00 03 84 39 72 15	01 10 10 68 00 02 C4 D4
					01 10 10 6C 00 02 04 00 00 00 0F 78 16 Wł.: 01 10	01 10 10 6C 00 02 85 15
(1000 0,0070	III T22 1		i Budi Sil	10 70 00	02 04 00 00 00 01 F8 8B Wył.: 01 10 10 70 00 02 04	01 10 10 70 00 02 44 D3
0x0070	ואונן 32 4 przel	łącznik łac	owania BatChargeEN	00 00 00	i	01 10 10 70 00 02 44 D3

							01 10 10 74 00 02 05 12
0x1000	0x0074 UIN	T32 4 wyłacz	nik rozła	dowania BatDisChargeEN	Wł.: 01 10	10 74 00 02 04 00 00 00 01 F9 78 Wył.: 01 10 10	
	0,007 1 011	132 1 1191902	11111110210	aoviana Bathisena geliv	74 00 02	04 00 00 00 00 38 B8 Wł.: 01 10 10 78 00 02 04 00	01 10 10 74 00 02 05 12
0x1000	0.0070.1170	T22 4 D I .		and the tente Bulletin FM	00 00 01	F9 2D Wył.: 01 10 10 78 00 02 04 00 00 00 00 38 ED	01 10 16 20 00 01 04 4B
0.000	0X0078 UIN	132 4 Przełąd	znik rov	vnoważenia BalanEN	50 01 10	10 7C 00 02 04 00 00 C3 50 69 D2 140 01 10 10 80	01 10 16 20 00 01 04 4B
0x1000 0x0	07C UINT32	4 Pojemność	projekto	wa akumulatora CapBatCell	00 02 04	00 00 00 8C 37 AA 01 10 10 80 0 0 02 44 E0	01 10 10 7C 00 02 84 D0
	1	1 1		eczenia zwarciowego SCPDelay			
					3,1 01 10	00 80 00 82 06 22 04 00 00 0C 1C 33 35 01 10 10	
				i i i	0.1 01 10	88 88 02 02 05 02 00 64 36 42	
					0,1 01 10	00 80 00 82 84 62 04 00 00 00 64 37 B1	
1CellConWi	reRes1 0x10	00 0x0090 UI	NT32 4 V	Vewnętrzna rezystancja linii łączącej	0,1 01 10	00 90 00 92 45 23 04 00 00 04 36 E8	
					0,1 01 10	00 90 00 92 00 82 04 00 00 00 64 37 1B	
linii łaczace	3CellConWi	reRes3 0x100	00 0x009	8 UINT32 4 Rezystancja wewnętrzna	0,1 01 10	00 98 00 92 04 62 04 00 00 00 64 37 4E	
linii łączące	4CellConWi	reRes4 0x100	00 0x009	C UINT32 4 Rezystancja wewnętrzna	0,1 01 10	00 90 00 92 86 28 04 00 00 00 64 36 BD	
linii łączące	5CellConWi	reRes 5 0x10	00 0x 00	A0 UINT32 4 Rezystancja wewnętrzna	0,1 01 10	00 AO 00 AQ 46 QA 04 00 00 00 64 35 FC	
przyłącza li	ia 6CellCon\	WireRes6 0x1	000 0x0	DA4 UINT32 4 Rezystancja wewnętrzna	0,1 01 10	00 A4 00 A2 04 EB 04 00 00 00 64 34 0F	
linii łaczace	7CellConWi	reRes7 0x100	00 0x00A	8 UINT32 4 Rezystancja wewnętrzna	0,1 01 10	00 A8 00 A2 04 62 04 00 00 00 64 34 5A	
linii łaczace	8CellConWi	reRes8 0x100	00 0x00A	C UINT32 4 Rezystancja wewnętrzna	0,1 01 10	00 ORAZ AC 02 82 29 00 00 00 64 35 A9	
					0,1 01 10 1	0 Bd 0 01002 B49 JG2 E02 04 00 00 00 64 34 F0	
łączącej 100	l TellConWireF	es10 0x1000	0x00B4	UINT32 4 Rezystancja wewnętrzna linii	0,1 01 10	00 B4 00 B2 06 22 04 00 00 00 64 35 03	
					0,1 01 10	00 B8 00 B2 05 QD 04 00 00 00 64 35 56	
					0,1 01 10	00 p0n1e. p0e0208 92/0 24 00 00 00 64 34 A5	
					0,1 01 10	00 CO 00 O2 46 82 04 00 00 00 64 33 D4	
			,	UINT32 4 Rezystancja wewnętrzna złącza linia 15CellCo	AWIPℜ	09 C4 00 02 04 02 04 00 00 00 64 32 27	