Classification Algorithms

- The Classification algorithm is a Supervised Learning technique that is used to identify the category of new observations on the basis of training data.
- Unlike regression, the output variable of Classification is categorical, not a value, such as Yes-No, Male-Female, True-false etc.

Classification Algorithms

- There are two types of Classifications:
- ➤ **Binary Classifier:** If the classification problem has only two possible outcomes, then it is called as Binary Classifier. Examples: YES or NO, MALE or FEMALE, SPAM or NOT SPAM, CAT or DOG, etc.
- Multi-class Classifier: If a classification problem has more than two outcomes, then it is called as Multi-class Classifier. Example: Classifications of types of fruits, Classification of types of music.
- Types of ML Classification Algorithms:

Classification Algorithms can be further divided into the Mainly two category:

- > Linear Models
 - Logistic Regression
 - Support Vector Machines
- > Non-linear Models
 - K-Nearest Neighbours
 - Kernel SVM
 - Naïve Baye's
 - Decision Tree Classification
 - Random Forest Classification

Evaluation of Classification Model

• Confusion Matrix:

	Actual Positive	Actual negative
Predicted Positive	True Positive	False Positive
Predicted Negative	False Negative	True Negative

Suppose a ML Algorithm identifies 8 dogs in a picture containing 10 cats and 12 dogs. Of the 8 identified as dogs, 5 actually are dogs (true positives), while the other 3 are cats (false positives). 7 dogs were missed (false negatives), and 7 cats were correctly excluded (true negatives).

 \triangleright **Accuracy:** In classification, the commonly used metric is accuracy which is defined as: (TP + TN) / (TP + FP + FN + TN)

The algorithm's Accuracy is: (5 + 7) / (5 + 3 + 7 + 7) = 12 / 22 = .5454

Evaluation of Classification Model

Precision: Precision is defined as: TP / (TP + FP).

This fraction shows the ratio of the true positive prediction among all positive predictions.

The algorithm's Precision is: 5/(5+3) = 5/8 = .625

➤ Recall/Sensitivity/True Positive Rate: In classification, recall or true positive rate shows how many of the positives returned by the ML Algorithm. It is defined as:

$$Recall(TPR) = TP / (TP + FN)$$

The algorithm's Recall is: 5/(5+7) = 5/12 = .4166

➤ F1-Score: Precision and recall are often combined into a single measure using their harmonic mean, known as the F1-score.

The algorithm's f1-Score is: 2*5 / 2*5 + 3 + 7 = 10 / 20 = .5

Evaluation of Classification Model

>AUC-ROC Curve:

- ROC curve stands for **Receiver Operating Characteristics Curve** and AUC stands for **Area Under the Curve**.
- It is a graph that shows the performance of the classification model at different thresholds.
- The ROC curve is plotted with TPR and FPR, where TPR (True Positive Rate) on Y-axis and FPR(False Positive Rate) on X-axis.
- Specificity/True Negative Rate: It tells us what proportion of the negative class got correctly classified.

Specificity =
$$TN / (TN + FP)$$

• False Positive Rate: It tells us what proportion of the negative class got incorrectly classified by the classifier.

$$FPR = FP / (TN + FP) = 1$$
- Specificity

K-Nearest Neighbor Algorithm

- This algorithm is used to solve the classification problems.
- K-nearest neighbor or K-NN algorithm basically creates an imaginary boundary to classify the data. When new data points come in, the algorithm will try to predict that to the nearest of the boundary line.
- Suppose there are two categories, i.e., Category A and Category B, and we have a new data point(in blue colour), so K-NN algorithm can be used to identify the category in which this data point will lie.

K-Nearest Neighbor Algorithm

- Select the number 'k' of the neighbors.(k=5)
- Calculate the Euclidian Distances of the new data point with all the existing data points
- Take the k nearest neighbors and count the number of data points in each category.
- Assign the new data points to that category for which the number of the neighbour is maximum.

- Standardization: When independent variables in training data are measured in different units, it is important to standardize variables before calculating distance.
- Xstd = (X mean) / standard deviation
- **Xstd** = (**X-mean**)/(**max-min**)

K-Nearest Neighbor Example

- Suppose we have height, weight and T-shirt size of some customers.
- We have to predict the size of the T-shirt of a new customer whose height and weight is given.
- Let us consider the following available information:
- Find T-shirt size of the new customer whose

• Height: 161 cm

• Weight: 61 kg

• T-Shirt Size: ?

Height (cm)	Weight (kg)	T-shirt Size
158	58	M
158	59	M
158	63	M
160	59	M
160	60	M
163	60	M
163	61	M
160	64	L
163	64	L
165	61	L
165	62	L
165	65	E
168	62	L
168	63	L
168	66	L
170	63	E
170	64	L
170	68	L