Problem D. 严格次小生成树

Time limit 1000 ms **Mem limit** 524288 kB

Description

小 C 最近学了很多最小生成树的算法,Prim 算法、Kruskal 算法、消圈算法等等。正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了。小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是 E_M ,严格次小生成树选择的边集是 E_S ,那么需要满足:(value(e) 表示边 e 的权值) $\sum_{e\in E_M} value(e) < \sum_{e\in E_S} value(e)$

这下小 C 蒙了, 他找到了你, 希望你帮他解决这个问题。

Input

第一行包含两个整数 N 和 M,表示无向图的点数与边数。

接下来 M 行,每行 3 个数 x, y, z 表示,点 x 和点 y 之间有一条边,边的权值为 z。

Output

包含一行,仅一个数,表示严格次小生成树的边权和。

Sample 1

Input	Output
5 6	11
1 2 1	
1 3 2	
2 4 3	
3 5 4	
3 4 3	
4 5 6	

Hint

数据中无向图不保证无自环

对于 50% 的数据, $N \leq 2000$, $M \leq 3000$ 。

对于 80% 的数据, $N < 5 \times 10^4$, $M < 10^5$ 。

对于 100% 的数据, $N \leq 10^5$, $M \leq 3 imes 10^5$,边权 $\in [0,10^9]$,数据保证必定存在严格次小生成树。