

目录

- 1 什么是VLAN
 - · VLAN的功能
- 2 VLAN的基本概念
- 3 VLAN的应用
- 4 VLAN的配置示例

传统以太网的问题

虚拟局域网(VLAN, Virtual LAN)

目录

- 1 什么是VLAN
- 2 VLAN的基本原理
 - · VLAN的基本概念
 - · VLAN的划分方式
- 3 VLAN的应用
- 4 VLAN的配置示例

如何实现VLAN

VLAN标签(VLAN Tag)

• 交换机如何识别接收到的数据帧属于哪个VLAN?

VLAN标签

- 报文中添加标识VLAN信息的字 段使交换机能够分辨不同VLAN 的报文。
- VLAN标签,又称VLAN Tag, 简称Tag。

VLAN数据帧

VLAN的实现

目录

- 1 什么是VLAN
- 2 VLAN的基本原理
 - · VLAN的基本概念
 - · VLAN的划分方式
- 3 VLAN的应用
- 4 VLAN的配置示例

VLAN的划分方式

• 整个网络是如何划分VLAN的?

VLAN划分方式	VLAN 10	VLAN 20
基于接口	GE0/0/1, GE0/0/3	GE0/0/2,GE0/0/4
基于MAC地址	MAC 1,MAC 3	MAC 2,MAC 4
基于IP子网划分	10.0.1.*	10.0.2.*
基于协议划分	IP	IPv6
基于策略	10.0.1.* + GE0/0/1+ MAC 1	10.0.2.* + GE0/0/2 + MAC 2

基于接口的VLAN划分

基于接口的VLAN划分

- ・原理
 - 。根据交换机的接口来划分VLAN。
- ・缺省VLAN, PVID
 - □ Port VLAN ID,是接口上的缺省VLAN。
 - □ 取值: 1~4094。

基于MAC地址的VLAN划分

SW1的MAC地址与VLAN表

MAC地址	VLAN ID
MAC 1	10
MAC 2	10

基于MAC地址的VLAN划分

- ・原理
 - 根据数据帧的源MAC地址来划分VLAN。
- ・映射表
 - 。记录了MAC地址和VLAN ID的关联情况。

以太网二层接口类型

Access接口

● Trunk接口

接口类型

• Access接口

Trunk接口

• Hybrid接口

Access接口

帧的VLAN ID与接口PVID相同

帧的VLAN ID与接口PVID不同

无标记帧

Trunk接口

无标记帧

10 标记帧

Access接口与Trunt接口举例

• 请描述主机之间数据访问的全流程。

SW1与SW2的Trunk接口

允许通过列表			
VLAN ID	1		
	10		
	20		

● Trunk接口 ○ Access接口

Hybrid接口

无标记帧

帧的VLAN ID是该接口允许通 过的VLAN ID,且该VLAN ID 属于Untagged VLAN ID列表

帧的VLAN ID是该接口允许通 过的VLAN ID,且该VLAN ID 属于tagged VLAN ID列表

10 标记帧

Hybrid接口举例

Hybrid接口

交换机1的允许通过列表

Port1

Port2

Port3

Untagged		
VLAN ID	1	
	20	
	100	

Tagged		
VLAN ID	10	
	10	
	100	

交换机2的允许通过列表

Port1

Port3

Tagged			
VLAN ID	10		
	20		
	100		

小结

Access接口

接收数据帧

- Untagged数据帧,打上PVID,接收。
- Tagged数据帧,与PVID比较,相同则接收;不同则丢弃。

Trunk接口

接收数据帧

- Untagged数据帧,打上PVID,且VID在 允许列表中,则接收;VID不在允许列表, 则丢弃。
- Tagged数据帧,查看VID是否在允许列表中,在允许列表中,则接收;VID不在允许列表,则丢弃。

Hybrid接口

接收数据帧

- · Untagged数据帧,打上PVID,且VID在 允许列表中,则接收;VID不在允许列表 中,则丢弃。
- Tagged数据帧,查看VID是否在允许列表中,在允许列表中,则接收;VID不在允许列表,则丢弃。

发送数据帧

VID与PVID比较,相同则剥离标签发送;不同则丢弃。

发送数据帧

- · VID在允许列表中,且VID与PVID一致, 则剥离标签发送。
- VID在允许列表,但VID与PVID不一致, 则直接带标签发送。
- 不在允许列表中,则直接丢弃。

发送数据帧

- · VID不在允许列表中,直接丢弃。
- · VID在Untagged列表中,剥离标签发送 。
- VID在Tagged列表中,带标签直接发送。

目录

- 1 什么是VLAN
- 2 VLAN的基本原理
- 3 VLAN的应用
 - VLAN的应用
- 4 VLAN的配置示例

VLAN的规划

• VLAN分配原则

- 。 按业务规划
- 。 按部门规划
- 。 按应用规划

· VLAN规划示例

- □ 假设某园区有三栋楼,分别为行政楼、教学楼、办公楼;每栋楼各有1台接入交换机,核心交换机在行政楼;一行政楼内有办公室、财务部和教室;办公楼内有办公室和财务部;教学楼内有办公室和教室。
- 。 VLAN规划如下:

VLAN	IP地址段	描述	
1	X.16.10.0/24	办公室用户所属的VLAN	
2	X.16.20.0/24	财务部用户所属的VLAN	
3	X.16.30.0/24	教室用户所属的VLAN	
100	Y.16.100.0/24	设备管理所属的VLAN	

· VLAN分配技巧

为了提高VLAN ID的连续性,可以采用VLAN ID和子网关联的方式进行分配。

应用场景 - 基于接口的VLAN划分

• 应用场景:

某商务楼内有多家公司,为了降低成本,多家公司共用网络资源,各公司分别连接到一台二层交换机的不同接口,并通过统一的出口访问Internet。

• VLAN划分:

为了保证各公司业务的独立和安全,可将每个公司所连接的接口划分到不同的VLAN,实现公司间业务数据的完全隔离。可以认为每个公司拥有独立的网络,每个VLAN就是一个"虚拟工作组"。

应用场景 - 基于MAC的VLAN划分

应用场景:

某个公司的网络中,网络管理者将同一部门的 员工划分到同一VLAN。为了提高部门内的信息 安全,要求只有本部门员工的主机才可以访问 特定网络资源。

• VLAN划分:

为了保证非本部门员工不能访问网络资源,可在SW1上配置基于MAC地址划分VLAN。这样,新的主机接入网络,就无法访问公司的网络资源。

目录

- 1 什么是VLAN
- 2 VLAN的基本原理
- 3 VLAN的应用
- 4 VLAN的配置示例
 - VLAN的基础配置
 - · VLAN的配置案例

VLAN的基础配置命令

1. 创建VLAN

[Huawei] **vlan** *vlan-id*

通过此命令创建VLAN并进入VLAN视图,如果VLAN已存在,直接进入该VLAN的视图。

• *vlan-id*是整数形式,取值范围是1~4094。

[Huawei] vlan batch { vlan-id1 [to vlan-id2] }

通过此命令批量创建VLAN。其中:

• batch: 指定批量创建的VLAN ID。

• *vlan-id1*: 表示第一个VLAN的编号。

• vlan-id2:表示最后一个VLAN的编号。

Access接口的基础配置命令

1. 配置接口类型

[Huawei-GigabitEthernet0/0/1] port link-type access

在接口视图下,配置接口的链路类型为Access。

2. 配置Access接口的缺省VLAN

[Huawei-GigabitEthernet0/0/1] **port default vlan** *vlan-id*

在接口视图下,配置接口的缺省VLAN并同时加入这个VLAN。

• *vlan-id*: 配置缺省VLAN的编号。整数形式,取值范围是1~4094。

Trunk接口的基础配置命令

1. 配置接口类型

[Huawei-GigabitEthernet0/0/1] port link-type trunk

在接口视图下,配置接口的链路类型为Trunk。

2. 配置Trunk接口加入指定VLAN

[Huawei-GigabitEthernet0/0/1] port trunk allow-pass vlan { { vlan-id1 [to vlan-id2] } | all }

在接口视图下,配置Trunk类型接口加入的VLAN。

3. (可选) 配置Trunk接口的缺省VLAN

[Huawei-GigabitEthernet0/0/1] port trunk pvid vlan vlan-id

在接口视图下,配置Trunk类型接口的缺省VLAN。

Hybrid接口的基础配置命令

1. 配置接口类型

[Huawei-GigabitEthernet0/0/1] port link-type hybrid

在接口视图下,配置接口的链路类型为Hybrid。

2. 配置Hybrid接口加入指定VLAN

[Huawei-GigabitEthernet0/0/1] **port hybrid untagged vlan** { { vlan-id1 [to vlan-id2] } | all }

在接口视图下,配置Hybrid类型接口加入的VLAN,这些VLAN的帧以Untagged方式通过接口。

[Huawei-GigabitEthernet0/0/1] port hybrid tagged vlan { { vlan-id1 [to vlan-id2] } | all }

在接口视图下,配置Hybrid类型接口加入的VLAN,这些VLAN的帧以Tagged方式通过接口。

3. (可选) 配置Hybrid接口的缺省VLAN

[Huawei-GigabitEthernet0/0/1] port hybrid pvid vlan vlan-id

在接口视图下,配置Hybrid类型接口的缺省VLAN。

目录

- 1 什么是VLAN
- 2 VLAN的基本原理
- 3 VLAN的应用
- 4 VLAN的配置示例
 - VLAN的基础配置
 - · VLAN的配置案例

案例1: 基于接口划分VLAN

- Access接口
- Trunk接口

• 组网需求:

- 某企业的交换机连接有很多用户,且相同业务用户通过不同的设备接入企业网络。为了通信的安全性,企业希望业务相同用户之间可以互相访问,业务不同用户不能直接访问。
 - 可以在交换机上配置基于接口划分VLAN,把业务相同的用户连接的接口划分到同一VLAN。这样属于不同VLAN的用户不能直接进行二层通信,同一VLAN内的用户可以直接互相通信。

创建VLAN

创建VLAN:

[SW1] vlan 10 [SW1-vlan10] quit [SW1] vlan 20 [SW1-vlan20] quit

[SW2] vlan batch 10 20

配置Access接口和Trunk接口

配置Access接口,并加入对应的VLAN:

[SW1] interface GigabitEthernet 0/0/1 [SW1-GigabitEthernet0/0/1] port link-type access [SW1-GigabitEthernet0/0/1] port default vlan 10

[SW1] interface GigabitEthernet 0/0/2[SW1-GigabitEthernet0/0/2] port link-type access[SW1] vlan 20[SW1-vlan20] port GigabitEthernet0/0/2

[SW1-vlan20] quit

配置Trunk接口,并创建对应的允许通过列表:

[SW1] interface GigabitEthernet 0/0/3

[SW1-GigabitEthernet0/0/3] port link-type trunk

[SW1-GigabitEthernet0/0/3] port trunk pvid vlan 1

[SW1-GigabitEthernet0/0/3] port trunk allow-pass vlan 10 20

注: SW2配置与SW1类似

验证配置

[SW1] dis The total	o lay vlan number of vla	ns is : 3	
U: Up; MP: Vlan-	D: Down;		G: Tagged; UT: Untagged; T: Vlan-stacking;
	olTransparent-		Management-vlan;
VID	Туре	Ports	
1	common	UT:GE0/0/3(U))
10	common	UT:GE0/0/1(U)	
		TG:GE0/0/3(U)	
20	common	UT:GE0/0/2(U)	
		TG:GE0/0/3(U)	

案例2: 基于接口划分VLAN

Hybrid接口

· 组网需求:

- 某企业的交换机连接有很多用户,且不同部门的用户都需要访问公司服务器。但是为了通信的安全性,企业希望不同部门的用户不能直接访问。
- 可以在交换机上配置基于接口划分VLAN,并配置Hybrid接口,使得不同部门的用户不能直接进行二层通信,但都可以直接访问公司服务器。

Hybrid接口的基础配置 (1)

SW1的配置如下:

[SW1] vlan batch 10 20 100 [SW1] interface GigabitEthernet 0/0/1

[SW1-GigabitEthernet0/0/1] port link-type hybrid

[SW1-GigabitEthernet0/0/1] port hybrid pvid vlan 10

[SW1-GigabitEthernet0/0/1] port hybrid untagged vlan 10 100

[SW1-GigabitEthernet0/0/1] interface GigabitEthernet 0/0/2

[SW1-GigabitEthernet0/0/2] port link-type hybrid

[SW1-GigabitEthernet0/0/2] port hybrid pvid vlan 20

[SW1-GigabitEthernet0/0/2] port hybrid untagged vlan 20 100

[SW1-GigabitEthernet0/0/2] interface GigabitEthernet 0/0/3

[SW1-GigabitEthernet0/0/3] port link-type hybrid

[SW1-GigabitEthernet0/0/3] port hybrid tagged vlan 10 20 100

Hybrid接口的基础配置 (2)

SW2的配置如下:

[SW2] vlan batch 10 20 100

[SW2] interface GigabitEthernet 0/0/1

[SW2-GigabitEthernet0/0/1] port link-type hybrid

[SW2-GigabitEthernet0/0/1] port hybrid pvid vlan 100

[SW2-GigabitEthernet0/0/1] port hybrid untagged vlan 10 20 100

[SW2-GigabitEthernet0/0/1] interface GigabitEthernet 0/0/3

[SW2-GigabitEthernet0/0/3] port link-type hybrid

[SW2-GigabitEthernet0/0/3] port hybrid tagged vlan 10 20 100

验证配置

[SW1]display vlan The total number of vlans is : 4					
U: Up; D: Down; MP: Vlan-mapping; #: ProtocolTransparent-vlan;			TG: Tagged; UT: Untagged; ST: Vlan-stacking; *: Management-vlan;		
VID	Туре	Ports			
1 10	common common	UT:GE0/0/1(L UT:GE0/0/1(L TG:GE0/0/3(L		GE0/0/3(U)	
20	common	UT:GE0/0/2(L TG:GE0/0/3(L			
100	common	UT:GE0/0/1(L TG:GE0/0/3(L	J) GE0/0/2(U) J)		
•••••					

VLAN的基础配置命令

1. 关联MAC地址与VLAN

[Huawei-vlan10] mac-vlan mac-address mac-address [mac-address-mask | mac-address-mask-length]

通过此命令配置MAC地址与VLAN关联。

- *mac-address*: 指定与VLAN关联的MAC地址。格式为H-H-H。其中H为4位的十六进制数,可以输入1~4位,如 00e0、fc01。当输入不足4位时,表示前面的几位为0,如:输入e0,等同于00e0。MAC地址不可设置为0000-0000、FFFF-FFFF-FFFF和组播地址。
- *mac-address-mask*: 指定MAC地址掩码。格式为H-H-H,其中H为1至4位的十六进制数。
- mac-address-mask-length: 指定MAC地址掩码长度。整数形式,取值范围是1~48。

2. 使能MAC地址与VLAN

[Huawei-GigabitEthernet0/0/1] mac-vlan enable

通过此命令使能接口的MAC VLAN功能。

案例:基于MAC地址划分VLAN

组网需求:

- 某个公司的网络中,网络管理者将同一部门的员工划分到同一VLAN。为了提高部门内的信息安全,要求只有本部门员工的主机才可以访问公司网络。
- 主机1、主机2、主机3为本部门员工的主机,要求这几台主机可以通过SW1访问公司网络,如换成其他主机则不能访问。
- 。可以配置基于MAC地址划分VLAN,将本部门员 工主机的MAC地址与VLAN绑定,从而实现该需 求。

创建VLAN,并关联MAC地址和VLAN

创建VLAN:

[SW1] vlan 10 [SW1-vlan10] quit

关联MAC地址和VLAN:

[SW1] vlan 10 [SW1-vlan10] mac-vlan mac-address 001e-10dd-dd01 [SW1-vlan10] mac-vlan mac-address 001e-10dd-dd02 [SW1-vlan10] mac-vlan mac-address 001e-10dd-dd03 [SW1-vlan10] quit

加入VLAN,并使能MAC VLAN功能

加入VLAN:

[SW1] interface gigabitethernet 0/0/1

[SW1-GigabitEthernet0/0/1] port link-type hybrid

[SW1-GigabitEthernet0/0/1] port hybrid tagged vlan 10

[SW1] interface gigabitethernet 0/0/2

[SW1-GigabitEthernet0/0/2] port link-type hybrid

[SW1-GigabitEthernet0/0/2] port hybrid untagged vlan 10

使能接口的基于MAC地址划分VLAN功能:

[SW1] interface gigabitethernet 0/0/2

[SW1-GigabitEthernet0/0/2] mac-vlan enable

[SW1-GigabitEthernet0/0/2] quit

验证配置

[SW1]display vlan The total number of vlans is : 2					
U: Up; C MP: Vlan-map #: ProtocolTra	ping;	;	TG: Tagged; ST: Vlan-stac *: Managem	J .	ed;
VID T	ype Po	orts			
4.0	ommon U	T:GE0/0/1(T:GE0/0/2(G:GE0/0/1(U)	GE0/0/2(U) GE0/0/3(U)	GE0/0/3(U) GE0/0/4(U)

[SW1]display mac-vlan mac-address all					
MAC Address	MASK	VLAN	Priority		
001e-10dd-dd01 ffff-ffff 10 0 001e-10dd-dd02 ffff-ffff 10 0 001e-10dd-dd03 ffff-ffff 10 0					
Total MAC VLAN address count: 3					

本章总结

- 本章节主要介绍了虚拟局域网 (VLAN)的相关技术知识,包括: VLAN的作用,VLAN的标识及划分,VLAN的数据交互,VLAN的实际规划和应用,以及VLAN的相关基本配置。
- 通过VLAN技术,可以将物理的局域网划分成多个广播域,实现同一VLAN内的网络设备可以直接进行二层通信,不同VLAN内的设备不可以直接进行二层通信。