

Bloque IV: El nivel de red

Tema 11: Subredes

Índice

- Bloque IV: El nivel de red
 - Tema 11: Subredes
 - Introducción
 - Máscara de subred
 - Direcciones de subred
 - Subredes de tamaño variable
 - Ejemplo 1 y 2

Referencias

- Capítulo 4 de "Redes de Computadores: Un enfoque descendente basdado en Internet". James F. Kurose, Keith W. Ross. Addison Wesley, 2ª edición. 2003.
- Capítulo 3 de "TCP/IP Illustrated, Volume 1: The Protocols",
 W. Richard Stevens, Addison Wesley, 1994.

Introducción

- Subredes: consiste en dividir una red en partes mas pequeñas.
 - Nivel jerárquico intermedio entre red y host
 - Utiliza unos bits de la parte del identificador de host para la subred.
 - Permite una organización jerárquica → Visión externa como una sola red, aunque dividida en subredes.
- Por ejemplo, partimos de una dirección clase C: 210.53.23.0
 - Tenemos una empresa y 4 departamentos.
 - Inicialmente no realizamos ningún tipo de división, porque la empresa es demasiado pequeña.

Introducción

- Pero la empresa crece, y cada departamento necesita una LAN → Solución: seguir asignando "aleatoriamente" las direcciones IP.
- Problema: la tabla de enrutamiento para el router es enorme (necesito una entrada para cada máquina).

Introducción

Solución → Subredes: dividir el espacio de direcciones en 4 grupos.

• Y en binario:

 Identificador de subred: con los 2 primeros bits del identificador de host, sabremos a que departamento (subred) pertenece una máquina. Identificador de red
 Id. subred
 Id. host

Máscara de subred

- Indica cuantos bits forman el identificador de red y subred, y cuantos forman el identificador host.
 - Se ponen a 1 todos los bits correspondientes al identificador de red o subred.
 - Se ponen a 0 todos los bits correspondientes al identificador de host
- Cada máquina almacena su dirección IP y su máscara de subred.

- Una dirección IP siempre tiene una máscara asociada: 210.53.23.65 y 255.255.255.192
- Otra notación más breve: 210.53.23.65/26 (se utilizan 26 bits para identificador de red y subred).

The last

Direcciones de subred

Dirección de subred:

- Dirección IP que identifica a una subred
- Se calcula para cada subred poniendo a 0 el identificador de host.
- Es equivalente a: dirección IP AND máscara de subred

Bits subred	Dir. subred	Máscara	Rango
00 (0)	210.53.23.0	255.255.255.192	210.53.23.0- 210.53.23.63
01 (64)	210.53.23.64	255.255.255.192	210.53.23.64- 210.53.23.127
10 (128)	210.53.23.128	255.255.255.192	210.53.23.128- 210.53.23.191
11 (192)	210.53.23.192	255.255.255.192	210.53.23.192- 210.53.23.255

The last

Direcciones de subred

- Dirección de broadcast en la subred:
 - Se calcula poniendo todo a 1 el identificador de host
 - Representa a todas las máquinas de la subred
- Direcciones IP reservadas:
 - En cada subred siempre hay dos direcciones reservadas: dirección de subred y de broadcast en la subred (= la primera y la última dirección del rango).

Dir. subred	Dir. subred	Broadcast subred	Broadcast subred
0000 0000 = 0	210.53.23.0	0011 1111 = 63	210.53.23.63
0100 0000 = 64	210.53.23.64	0111 1111 = 127	210.53.23.127
1000 0000 = 128	210.53.23.128	1011 1111 = 191	210.53.23.191
1100 0000 = 192	210.53.23.192	1111 1111 = 255	210.53.23.255

-

Direcciones de subred

- Red 210.53.23.0, con máscara 255.255.255.192
 - ¿La dirección 210.53.23.0 identifica a la red o la primera subred?
 - ¿La dirección 210.53.23.255 identifica la dirección de broadcast en la red o en la subred?
- Solución: no utilizar la primera ni la última subred.
 - Número de subredes: 2^{bits subred} 2
- Declaración "subnet zero": permite utilizar la primera y última subred.
 - Mejor aprovechamiento del espacio de direcciones.
 - Número de subredes: 2^{bits subred}

Direcciones de subred

• Subredes para una red clase C

Bits subred	N⁰ subredes	Nº subredes (subnet zero)	Bits host	Nº hosts	Máscara	Máscara binario
0	0	0	8	254	255.255.255.0	0000 0000
1	0	2	7	126	255.255.255.128	1000 0000
2	2	4	6	62	255.255.255.192	1100 0000
3	6	8	5	30	255.255.255.224	1110 0000
4	14	16	4	14	255.255.255.240	1111 0000
5	30	32	3	6	255.255.255.248	1111 1000
6	62	64	2	2	255.255.255.252	1111 1100
7	126	128	1	0	255.255.254	1111 1110
8	254	256	0	0	255.255.255	1111 1111

Subredes de tamaño variable

- Subredes de tamaño variable o sub-subredes:
 - El departamento de marketing (subred 210.53.23.128) se quiere subdividir en 4 subredes.

- Sub-subredes:
 - Subred [10] 01 XXXX
 - Identificador subred: 1001 0000 = 144
 - Broadcast subred: 1001 1111 = 159

Marketing

Dir. subred	Dir. Subred	Máscara	Rango
[10] 00 0000	210.53.23.128	255.255.255.240	210.53.23.128-210.53.23.143
[10] 01 0000	210.53.23.144	255.255.255.240	210.53.23.144-210.53.23.159
[10] 10 0000	210.53.23.160	255.255.255.240	210.53.23.160-210.53.23.175
[10] 11 0000	210.53.23.176	255.255.255.240	210.53.23.176-210.53.23.191

- Queremos organizar la red de nuestra empresa, teniendo en cuenta la siguiente distribución por departamentos:
 - Dpto. contabilidad: 12 ordenadores
 - Dpto. I+D: 18 ordenadores
 - Dpto. desarrollo: 21 ordenadores
 - Análisis: 8 ordenadores
 - Implementación: 13 ordenadores
 - Dpto. marketing: 10 ordenadores
 - Dpto. administración: 10 ordenadores
- Disponemos de una dirección clase C: 195.35.12.0

- 5 departamentos → 5 subredes → Mínimo 3 bits para identificador de subred
 → Máximo 30 ordenadores por subred.
- Máscara de subred: 255.255.255.224 (27 bits)
 - Dpto. contabilidad: subred 001 00000 → 195.35.12.32
 - Rango direcciones IP: 195.35.12.33-62
 - Dpto. I+D: subred 010 00000 = 195.35.12.64
 - Rango direcciones IP: 195.35.12.65-94
 - Dpto. desarrollo: subred 100 00000 = 195.35.12.128
 - Rango direcciones IP: 195.35.12.129-158
 - Dpto. marketing: subred 011 00000 → 195.35.12.96
 - Rango direcciones IP: 195.35.12.97-126
 - Dpto. administración: subred 101 00000 → 195.35.12.160
 - Rango direcciones IP: 195.35.12.161-190
- El departamento de I+D hay que subdividirlo en 2 subredes → Mínimo 1 bit para identificador de subred (subnet zero) → Máximo 14 ordenadores por subred.
- Máscara de subred: 255.255.255.240 (28 bits)
 - Dpto. I+D Análisis: subred 0100 0000 → 195.35.12.64
 - Rango direcciones IP: 195.35.12.65-78
 - Dpto. I+D Implementación: subred 0101 0000 = 195.35.12.80
 - Rango direcciones IP: 195.35.12.80-94

• Red 194.27.89.0

•
$$33 = 00100001$$

•
$$46 = 001011110$$

•
$$44 = 00101100$$

•
$$41 = 0010101001$$

- 211 = 1|10|10011
- 212 = 1|10|1 0100

- Id. subred 1 bit:
 - LAN B y LAN C mismo identificador subred.
- Id. subred 2 ó 3 bits:
 - 2 bits: 4 subredes y 62 hosts por subred.
 - 3 bits: 8 subredes y 30 hosts por subred.
- Id. subred 4 bits:
 - Hosts 137 y 158 distinto identificador subred.
- Solución: 2 bits
 - Máscara = 1100 0000
 (192) → 255.255.255.192

Subred	Dir. subred	Dir. subred	Broadcast dirigido subred	Broadcast dirigido subred
A (00)	00 000000	194.27.89.0	00 111111	194.27.89.63
B (10)	10 000000	194.27.89.128	10 111111	194.27.89.191
C (11)	11 000000	194.27.89.192	11 111111	194.27.89.255

• Red 194.27.89.0

RC - Bloque IV - Tema 11

$$\bullet$$
 33 = 0010 0001

•
$$46 = 001011110$$

•
$$44 = 00101100$$

•
$$41 = 0010101001$$

$$\bullet$$
 210 = 1101 0010

•
$$211 = 1101 0011$$

•
$$212 = 1|10|10|100$$

•
$$213 = 1 | 101 | 0101$$

$$\bullet$$
 217 = 1 1 0 1 1 0 0 1

- Id. subred 2 ó 3 bits:
 - LAN C y D mismo identificador subred.
- Id. subred 4 bits:
 - Hosts 137 y 158 distinto identificador subred.
- Solución:
 - En un primer nivel: 2 bits →
 Identificamos a las subredes A,
 B y C+D.
 - Segundo nivel (sub-subredes): subdividir C y D.
 - Otros 3 bits para identificar las subredes C y D.
- Máscara para LAN A y B: 2 bits
 - 11 000000 (192) →255.255.255.192
- Máscara para LAN C y D: 2 + 3 bits
 - 11 111 000 (248) → 255.255.255.248

Subred	Máscara	Dir. subred	Dir. subred	Broadcast dirigido subred
A (00)	255.255.255.192	00 000000	194.27.89.0	194.27.89.63
B (10)	255.255.255.192	10 000000	194.27.89.128	194.27.89.191
C (11 010)	255.255.255.248	11 010 000	194.27.89.208	194.27.89.215
D (11 011)	255.255.255.248	11 011 000	194.27.89.216	194.27.89.223

• Identificador de subred de:

– Host 217: 217 & 248 = 216 (subred D)

– Host 137: 137 & 192 = 128 (subred B)

Identificador de host de:

- Host 217: 217 & (248 XOR 255) = 217 & (00000 111) = 1

- Host 137: 137 & (192 XOR 255) = 137 & (00 1111111) = 9

Comandos

• Windows: ipconfig

Unix: ifconfig

