

CyC - Practica 2

Facundo Tomatis

(1)

Consigna:

Construir MT:

- a) Construir una máquina de Turing que haga un corrimiento a derecha de la cadena binaria en la cinta, marcando con un símbolo especial '#' la celda que corresponde al primer símbolo desplazado. $\Gamma = \{B, \#, 0, 1\}.$
- b) Y otra que haga un corrimiento a izquierda.

	Ejercicio a)
q0,0 q1,#,D	
q0,1 q2,#,D	
q1,0 q1,0,D	
q1,1 q2,0,D	
q1,B qd,0,S	
q2,0 q1,1,D	
q2,1 q2,1,D	
q2,B qd,1,S	

	Ejercicio b)
q0,0 q0,0,D	
q0,1 q0,1,D	
q0,B q1,B,I	
q1,0 q2,#,I	
q1,1 q3,#,I	
q2,0 q2,0,I	
q2,1 q3,0,I	
q2,B qd,0,S	
q3,0 q2,1,I	
q3,1 q3,1,I	
q3,B qd,1,S	

Consigna:

Construir MT

- a) Construir una máquina de Turing M tal que L(M) = $\{0^n1^n/n \ge 1\}$ y mostrar la traza de computación de M para las entradas $w_1=0011$ y $w_2=011$.
- b) Construir una máquina de Turing que busque en la cinta el patrón "abab" y se detenga si y sólo si encuentra ese patrón. $\Gamma = \{a, b, c, B\}$

	Ejercicio a)	
q0,0 q7,0,S		
q0,1 qR,1,S		
q0,B qR,B,S		
q7,0 q1,B,D		
q7,B qA,B,S		
q1,0 q1,0,D		
q1,1 q1,1,D		
q1,B q2,B,I		
q2,0 qR,0,S		
q2,1 q3,B,I		
q2,B qR,B,S q3,0		
q3,0,I		
q3,1		
q3,1,I q3,B		
q7,B,D		

Ejercicio b)
q0,a q1,a,D
q0,b q0,b,D
q0,c q0,c,D
q1,a q1,a,D
q1,b q2,b,D
q1,c q0,c,D
q2,a q3,a,D
q2,b q0,b,D
q2,c q0,c,D
q3,a q0,a,D
q3,b qA,b,D
q3,c q0,c,D

Trazas ejercicio a)

 $w_0 = 0011$ $q_00011 \vdash^* 0011q_0B \vdash 001q_61B \vdash 00q_11 \vdash^* q_1B001 \vdash Bq_9001 \vdash q_001 \vdash 01q_0B \vdash 01q_0B \vdash 0q_61 \vdash 0q_1B \vdash Bq_10 \vdash 0q_9B \vdash Bq_6B \vdash Bq_6B \vdash Bq_aB$

 $w_1 = 011$ $q_0011 \vdash *011q_0B \vdash 01q_61 \vdash 0q_11 \vdash Bq_101 \vdash Bq_901 \vdash Bq_01 \vdash 1q_0B \vdash Bq_61 \vdash Bq_1B \vdash Bq_9B \vdash Bq_rB$

(3)

Consigna:

Construir máquinas de Turing para computar las siguientes funciones:

- a) Suma unaria. $\Sigma = \{+, 1\}.$
- b) Resta unaria $a b \operatorname{con} a > b \Sigma = \{-, 1\}.$
- c) Calcular el complemento a 2 de un número binario de 8 bits $\Sigma = \{0, 1\}$

Ejercicio a)
q0,1 q0,1,D
q0,+ q0,+,D
q0,B q1,B,I
q1,1 q2,B,I
q2,+ q2,1,S
q2,1 q2,1,I

```
Ejercicio b)
q0,1
q0,1,D
q0,-
q0,-,D
q0,B
q1,B,I
q1,1
q2,B,I
q1,-
qD,B,S
q2,1
q2,1,I
q2,-
q2,-,I
q2,B
q3,B,D
q3,1
q0,B,D
```

Ejercicio c)

(4)

Consigna:

Sea $\Sigma = \{a\}$ y w = a. Decir cuáles son las palabras que se obtienen como resultado de aplicar las siguientes operaciones: ww, www, w^3, w^5, w^0 ¿Cuáles son sus longitudes? Definir Σ^* .

Respuesta:

$$\Sigma = \{a\}$$

$$w = a$$

$$w^{0} = \lambda$$

$$w^{(i+1)} = w.w^{i}, i \ge 0$$

$$i = 0 \lambda$$

$$i = 1 a$$

$$i = 2 aa$$

$$i = 3 aaa$$

$$i = 5 aaaaa$$

sus longitudes son lo mismo que sus i $\Sigma^* = \{\lambda, a, aa, aaa, aaaa, aaaaa, ...\}$

(5)

Consigna:

Idem al ejercicio anterior, pero con $\Sigma = \{a, b\}$ y w = aba.

$$\Sigma = \{a, b\}$$

$$\mathbf{w} = \mathbf{aba}$$

$$w^0 = \lambda$$

$$w^{(i+1)} = w.w^i, i \ge 0$$

$$\mathbf{i} = 0 \lambda$$

$$\mathbf{i} = 1 \mathbf{aba}$$

 $i{=}2~abaaba$ $i{=}3~abaabaaba}$ $i{=}5~abaabaabaabaaba}$ sus longitudes son lo mismo que sus i*cantidad de a's $\Sigma^* = \{\lambda, a, b, aa, bb, ab, ba, ...\}$

(6)

Consigna:

Sea $\Sigma = \{a, b, c\}$, escriba las 13 cadenas más cortas de Σ^* .

Respuesta:

 λ ,a,b,c,aa,ab,ac,ba,bb,bc,ca,cb,cc

(7)

Consigna:

Dar tres ejemplos de lenguajes basados en el alfabeto {0,1}

Respuesta:

$$\begin{split} \Sigma &= \{0,1\} \\ \Sigma^* &= \{\lambda,0,1,00,01,10,11,\ldots\} \\ \text{ejemplos de lenguajes son:} \\ \varnothing \ \Sigma^* \ \{\lambda\} \end{split}$$

(8)

Consigna:

¿Cuántas cadenas de longitud 3 hay en $\{0,1,2\}^*$, y cuántas de longitud n?

Respuesta:

$$\Sigma = \{0, 1, 2\}$$

si la longitud hubiese sido n, habría 3^n cadenas

(9)

Consigna:

Explicar la diferencia -si la hay- entre los lenguajes L1 y L2.

a)
$$L_1 = \emptyset$$

$$L_2 = \{\lambda\}$$

$$\mathbf{b)} \quad L_1 = \Sigma^* \cup \{\lambda\}$$

$$L_2 = \varnothing \cup \Sigma^*$$

c)
$$L_1 = \Sigma^* - \varnothing$$

$$L_2 = \Sigma^*$$

$$\mathbf{d)} \quad L_1 = \Sigma^* - \{\lambda\}$$

$$L_2 = \Sigma^*$$

Respuesta:

- a) L_1 es un conjunto vacio o sea un conjunto sin elementos $\{\}$ L_2 es un conjunto con un elemento $\{\lambda\}$ que representa la cadena vacia siendo esta una cadena valida
- b) Σ^* contiene a λ por lo que $L_1 = L_2$
- c) L_1 sin el conjunto vacio sigue siendo L_1 por lo que $L_1 = L_2$
- d) $L_1 \sin \lambda$ pasa a tener un elemento menos, la cadena vacia, por lo que $L_1 \neq L_2$

(10)

Consigna:

Mostrar que Σ^* es infinito contable.

Respuesta:

$$\begin{split} |\Sigma^*| &\leq |\mathbb{N}| \\ \text{f: } \Sigma^* &\to \mathbb{N} \text{ inyectiva} \\ \text{f(y)=convierto y a num unico} \end{split}$$

(11)

Consigna:

Indicar cuál es el lenguaje que se obtiene al intersectar los siguientes lenguajes:

a)
$$L_1 = \{a^n c^m d^n / n \ge 0, m \ge 0\} \text{ con } L_2 = \{c^n / n \ge 0\}$$

b)
$$L_1 = \{a^n c^m d^n / n > 0, m \ge 0\} \text{ con } L_2 = \{c^n / n \ge 0\}$$

c)
$$L_1 = \{a^n c^m d^n / n \ge 0, m > 10\} \text{ con } L_2 = \{c^n / n > 5\}$$

d)
$$L_1 = \{1^n 2^m / n, m \ge 0, n \text{ par}, m \text{ impar}\} \text{ con } L_2 = \{2^n / n \ge 0\}$$

e)
$$L_1 = \{1^n 2^m / n, m \ge 0, n \text{ par}, m \text{ impar}\} \text{ con } L_2 = \{1^n / n \ge 0\}$$

a)
$$L_1 \ y \ L_2 = L_2$$

b)
$$L_1$$
 y $L_2 = \emptyset$ ya que L_1 si o si tiene a o d

c)
$$L_1 \text{ y } L_2 = L_3 = \{c^n/n > 10\}$$

d)
$$L_1 ext{ y } L_2 = L_3 = \{2^n/n \ge 0, n \text{ impar}\}$$

e)
$$L_1$$
 y $L_2 = \emptyset$ ya que m no puede ser 0.

Consigna:

Encontrar si es posible un lenguaje L_1 que cumpla:

- a) $L_1 \cap \{1^k 2^m 3^n / m = k + n + 1 \text{ y } n, k \ge 0\} = \{1^n 2^{n+1} / n \ge 0\}$
- **b)** $L_1 \cap \{1^n 2^m / n \neq m \text{ y } n, m \geq 0\} = \{1^n 2^n / n > 0\}$

Respuesta:

- a) $L_1 = \{1^n 2^{n+1}/n \ge 0\}$
- b) Ø ya que no pueden ser diferentes e iguales al mismo tiempo

(13)

Consigna:

Conteste las siguientes preguntas sobre Máquinas de Turing

- a) ¿Puede el alfabeto de la cinta (Γ) ser el mismo que el alfabeto de entrada (Σ)?
- b) ¿Puede una máquina de Turing tener un único estado?
- c) ¿Cuántos lenguajes existen definidos sobre el alfabeto $\Sigma = \{0, 1\}$? ¿y sobre $\Sigma = \{1\}$?
- d) ¿Cuáles de los siguientes conjuntos son lenguajes definidos sobre Σ ? $\varnothing, \Sigma, \Sigma^*, \{\lambda\}, \{\lambda\} \cup \Sigma, \{\varnothing\}$
- e) Sea la siguiente máquina de Turing:

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$$

Con $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{a, b, c\}, \Gamma = \{a, b, c, B\}$ y $\delta(q, s) = (q', s', m)$ tal que $q \in Q$ $q' \in Q \cup \{q_R\}$ $s, s' \in \Gamma$ $m \in \{D, I\}$
¿Reconoce el lenguaje $\{\lambda\}$? Si no es así indique cuál es el lenguaje que reconoce

Respuesta:

- a) No, ya que Γ siempre contiene el valor B y Σ nunca puede tenerlo
- **b)** Si, el inicial

c)
$$\Sigma = \{0, 1\}$$

 $\Sigma^* = \{\lambda, 0, 1, 00, 01, 10, 11, ...\}$

es un lenguaje que tiene todas las palabras formadas por Σ

 $\rho(\Sigma^*)$ es el conjunto de todos los lenguajes definidos sobre Σ , es infinito incontable

$$\Sigma = \{1\}$$

$$\Sigma^* = \{\lambda, 1, 11, \dots\}$$

es un lenguaje que tiene todas las palabras formadas por Σ

 $\rho(\Sigma^*)$ es el conjunto de todos los lenguajes definidos sobre Σ , es infinito incontable

- **d)** \varnothing si, Σ si, Σ^* si, $\{\lambda\}$ si, $\{\lambda\} \cup \Sigma$ si, $\{\varnothing\}$ no
- e) No reconoce $\{\lambda\}$ al no tener transiciones a q_A , el unico lenguaje que reconoce es al \emptyset

(14)

Consigna:

Sea $\mathcal{M} = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$, en cada caso asumir que los $\delta()$ no especificados son los que hacen detener la MT en q_R , determinar $\mathcal{L}(\mathcal{M})$

- a) $Q = \{q_0, q_1\}; \Sigma = \{0, 1\}; \Gamma = \{0, 1, B\}$ $\delta(q_0, 0) = (q_0, 0, I)$ $\delta(q_0, B) = (q_0, B, D)$ $\delta(q_0, 1) = (q_1, 1, D)$
- **b)** $Q = \{q_0, q_1\}; \Sigma = \{0, 1\}; \Gamma = \{0, 1, B\}$ $\delta(q_0, 0) = (q_1, B, D)$ $\delta(q_1, B) = (q_A, B, D)$ $\delta(q_1, 0) = (q_A, 0, D)$ $\delta(q_1, 1) = (q_A, 1, D)$
- c) $Q = \{q_0, q_1\}; \Sigma = \{0, 1\}; \Gamma = \{0, 1, B\}$ $\delta(q_0, 0) = (q_0, 0, I)$ $\delta(q_0, B) = (q_0, B, D)$ $\delta(q_0, 1) = (q_1, 1, D)$ $\delta(q_1, 0) = (q_0, B, I)$ $\delta(q_1, B) = (q_0, B, D)$
- d) $Q = \{q_0\}; \Sigma = \{0, 1\}; \Gamma = \{0, 1, B\}$ $\delta(q_0, 1) = (q_0, B, I)$ $\delta(q_0, 0) = (q_A, B, I)$ $\delta(q_0, B) = (q_0, B, D)$
- e) $Q = \{q_0, q_1\}; \Sigma = \{0, 1\}; \Gamma = \{0, 1, B\}$ $\delta(q_0, 0) = (q_1, B, D)$ $\delta(q_1, 0) = (q_1, 1, D)$ $\delta(q_1, 1) = (q_1, 0, D)$ $\delta(q_1, B) = (q_A, 1, D)$

- a) $L(M) = \emptyset$
- **b)** $L(M) = \{00, 01, 0B\}$
- c) $L(M)=\emptyset$
- d) $L(M) = \{w/w \text{ contiene un } 0\}$
- e) $L(M) = \{w/w \text{ empieza con } 0\}$