ĐẠI HỌC QUỐC GIA HÀ NỘI Trường Đại học Công nghệ

ĐÁP ÁN BÀI KIỂM TRA CUỐI KỲ

Ngày thi: 14/12/2015

Môn học: Tín hiệu và Hệ thống (ELT2035) Thời gian: 90 phút

<u>Phần 1 (Trắc nghiệm)</u>: Với các câu hỏi trong phần này, sinh viên chỉ cần viết chữ cái tương ứng với câu trả lời (A/B/C/D) mà không cần đưa ra giải thích.

Câu 1. Trong các hệ thống tuyến tính bất biến có đáp ứng xung được cho dưới đây, hệ thống nào là một hệ thống nhân quả và ổn định?

A.
$$h(t) = [\cos(2\pi t)]^{-1} [u(t) - u(t-1)]$$

B.
$$h(n) = \sin(\frac{\pi}{4}n)[u(n+1) - u(n-1)]$$

C.
$$h(n)=2^{-n}u(|n|)$$

D.
$$h(t) = \frac{3^t u(t-1)}{4^t}$$

Trả lời: D

Câu 2. Đáp ứng tần số của một hệ thống tuyến tính bất biến liên tục tồn tại và được cho dưới đây:

$$H(\omega) = \frac{1 - 2j\omega}{\omega^2 + j\omega + 2}$$

Trong các đáp ứng xung được cho dưới đây, đáp ứng xung nào là của hệ thống trên?

A.
$$h(t) = (e^{-t} + e^{2t})u(t)$$

B.
$$h(t) = -(e^{-t} + e^{2t})u(-t)$$

C.
$$h(t) = e^{-t}u(t) - e^{2t}u(-t)$$

D.
$$h(t) = -e^{-t}u(-t) + e^{2t}u(t)$$

Trả lời: C

Câu 3. Trong các phát biểu dưới đây về một hệ thống tuyến tính bất biến rời rạc nhân quả và ổn định, phát biểu nào đúng?

- A. Hàm chuyển của hệ thống chỉ có các trị cực nằm ở vùng bên trong đường tròn đơn vị trong mặt phẳng Z.
- B. Hàm chuyển của hệ thống chỉ có các trị cực nằm ở vùng bên ngoài đường tròn đơn vị trong mặt phẳng Z.
- C. Hàm chuyển của hệ thống có các trị cực nằm ở cả hai bên của đường tròn đơn vị trong mặt phẳng Z.
- D. Hàm chuyển của hệ thống có các trị cực nằm trên đường tròn đơn vị trong mặt phẳng Z.

Trả lời: A

Câu 4. Trong các phát biểu dưới đây về một hệ thống tuyến tính bất biến liên tục ổn định, phát biểu nào đúng?

- A. Đáp ứng tần số của hệ thống có dạng liên tục và tuần hoàn.
- B. Đáp ứng tần số của hệ thống có dạng liên tục và không tuần hoàn.
- C. Đáp ứng tần số của hệ thống có dạng rời rạc và tuần hoàn.
- D. Đáp ứng tần số của hệ thống có dạng rời rạc và không tuần hoàn.

Trả lời: B

<u>Phần 2 (Tự luận)</u>: Với các câu hỏi trong phần này, sinh viên cần đưa ra các tính toán/giải thích chi tiết dẫn tới câu trả lời.

Câu 5. Một hệ thống tuyến tính bất biến rời rạc nhân quả được mô tả bởi phương trình sai phân dưới đây:

$$y(n)-y(n-1)-2y(n-2)=2x(n)-x(n-1)$$

- a) Xác định đáp ứng xung của hệ thống nói trên.
- b) Xác định đáp ứng của hệ thống với tín hiệu vào x(n)=u(n-1)-u(n-4) .
- c) Xác định đáp ứng của hệ thống với tín hiệu vào $x(n)=(-2)^n u(n)$.

Trả lời:

a)

$$H(z) = \frac{2 - z^{-1}}{1 - z^{-1} - 2z^{-2}} = \frac{1}{1 + z^{-1}} + \frac{1}{1 - 2z^{-1}}$$
$$h(n) = [(-1)^n + 2^n]u(n)$$

b)
$$x(n)=u(n-1)-u(n-4)=\delta(n-1)+\delta(n-2)+\delta(n-3)$$
$$y(n)=h(n)*x(n)=h(n-1)+h(n-2)+h(n-3)$$
$$y(n)=(-1)^{n}[-u(n-1)+u(n-2)-u(n-3)]$$
$$+2^{n-1}[u(n-1)+2^{-1}u(n-2)+2^{-2}u(n-3)]$$

c)

$$x(n) = (-2)^{n} u(n)$$

$$X(z) = \frac{1}{1+2z^{-1}}$$

$$Y(z) = H(z)X(z) = \frac{1}{(1+z^{-1})(1+2z^{-1})} + \frac{1}{(1-2z^{-1})(1+2z^{-1})}$$

$$Y(z) = -\frac{1}{1+z^{-1}} + \frac{5}{2} \frac{1}{1-2z^{-1}} + \frac{1}{2} \frac{1}{1+2z^{-1}}$$

$$y(n) = [-(-1)^{n} + 5 \times 2^{n-1} - (-2)^{n-1}]u(n)$$

Câu 6. Một hệ thống liên tục có đáp ứng tần số $H(\omega)=u(\omega+\pi/4)-u(\omega-\pi/4)$ (hệ thống này chính là một bộ lọc thông thấp tương tự).

$$h(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} H(\omega) e^{j\omega t} d\omega = \frac{1}{2\pi} \int_{-\pi/4}^{+\pi/4} e^{j\omega t} d\omega$$
$$h(t) = \frac{1}{j2\pi t} \left[e^{j\frac{\pi}{4}t} - e^{-j\frac{\pi}{4}t} \right] = \frac{\sin(\frac{\pi}{4}t)}{\pi t}$$

b) Khai triển chuỗi Fourier:

a)

$$x(t) = \sin(t/2+1/3) + 2\cos(t-1/2) + 3\sin(2t)$$

$$x(t) = \frac{1}{j2} \left[e^{j(t/2+1/3)} - e^{-j(t/2+1/3)} \right] + \left[e^{j(t-1/2)} + e^{-j(t-1/2)} \right] + \frac{3}{j2} \left[e^{j2t} - e^{-j2t} \right]$$

$$y(t) = \frac{1}{j2} \left[H(1/2) e^{j(t/2+1/3)} - H(-1/2) e^{-j(t/2+1/3)} \right]$$

$$+ \left[H(1) e^{j(t-1/2)} + H(-1) e^{-j(t-1/2)} \right]$$

$$+ \frac{3}{j2} \left[H(2) e^{j2t} - H(-2) e^{-j2t} \right]$$

$$y(t) = \frac{1}{j2} \left[H(1/2) e^{j(t/2+1/3)} - H(-1/2) e^{-j(t/2+1/3)} \right]$$

$$y(t) = \sin(t/2+1/3)$$

$$\begin{split} H_{1}(\omega) &= H(\omega) * FT[u(t)] = H(\omega) * \frac{1}{j\omega} \\ H_{1}(\omega) &= \int_{-\infty}^{+\infty} H(\varphi) \frac{1}{j(\omega - \varphi)} d\varphi = \int_{-\pi/4}^{+\pi/4} \frac{1}{j(\omega - \varphi)} d\varphi \\ H_{1}(\omega) &= -\frac{1}{j} \left[\ln(\omega - \frac{\pi}{4}) - \ln(\omega + \frac{\pi}{4}) \right] \\ ***** HÉT ***** \end{split}$$

c)