Step	Algorithm: $[\alpha] := \text{Sapdot_unb_var1}(x, y, \alpha)$
1a	
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	
3	while $m(x_T) < m(x)$ do
2,3	$\wedge m(x_T) < m(x)$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	
8	$\alpha := \chi_1 \psi_1 + \alpha$
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
7	
2	
	endwhile
2,3	$\wedge \neg (m(x_T) < m(x))$
1b	

Compute $\alpha := x^Ty + \alpha$ where x,y are vectors of size n

i = 0

while i < n do

$$\alpha := \alpha + \chi_i \psi_i$$

$$i := i+1$$

end do

Compute $\alpha := x^Ty + \alpha$ where x,y are vectors of size n

$$i = n - 1$$

while $i \ge 0$ do

$$\alpha := \alpha + \chi_i \psi_i$$

$$i := i - 1$$

end do

Step	Algorithm:		
1a			
4			
	where		
2			
3	while do		
2,3		^	
5a			
	where		
6			
8			
5b			
7			
2			
	endwhile		
2,3		$\land \neg ($)
1b			