

Summary

Lak Lakshmanan

Machine Learning on Google Cloud Platform

The Art of ML

Hyperparameter Tuning

A Pinch of Science

The Science of Neural Networks

Embeddings

Custom Estimator

The art of ML: regularization

The art of Machine Learning

Batch size and learning rate have a strong impact on training

Batch size too small - training will bounce around

Batch size too large - training will take a very long time

Learning rate too small - training will take a long time

Learning rate too large - training will bounce around

Hyperparameter Tuning

There are a variety of model parameters

Size of model

Number of hash buckets

Embedding size

Etc.

A pinch of science

Making neural networks converge faster and better

Code to create an embedded feature column in TensorFlow

Example	movield		#	Shrek	Incredible	Triplets	Harry Potter	Star Wars	
0			0	1	0	0	0	0	
1			1	0	1	0	0	0	
2	LES TRIPLETTES DE RELLEVILLE		2	0	0	1	0	0	
3			3	0	0	0	1	0	
4			4	1	0	0	0	0	

You can take advantage of this similarity property of embeddings

Canned Estimators are sometimes insufficient

Objectives

Why ML?

ML with TensorFlow

Improving ML Accuracy

ML at Scale

Specialized ML Models

The unreasonable effectiveness of data

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35179.pdf

Deep Learning scaling is predictable, empirically https://arxiv.org/abs/1712.00409

Invest in data collection, augmentation and enrichment; then top off with hyperparameter tuning

Objectives

Why ML?

ML with TensorFlow

Improving ML Accuracy

ML at Scale

Specialized ML Models

cloud.google.com