Conditional Probability

Introduction

Sta 771 - Spring 2016

Duke University, Department of Statistical Science

1. Main Topics

2. Example/Definitions

Tricks/Shortcuts

4. Review

Ideas for Today:

Today, we are going to discuss, define and learn how to use *Conditional Probability* to solve real world problems. The terms that you should be familiar with at the end of the lesson are:

Ideas for Today:

Today, we are going to discuss, define and learn how to use *Conditional Probability* to solve real world problems. The terms that you should be familiar with at the end of the lesson are:

- ► Marginal Probability
- ▶ Joint Probability
- ► Conditional Probability

1. Main Topics

2. Example/Definitions

3. Tricks/Shortcuts

4. Review

Example/Definitions

Table: Flu Shot Contingency Table

		<u>Vaccinated</u>		
		Yes	No	
Flu Test Result	Pos	2	14	16
Tid Tost Hosdit	Neg	9	9	18
		11	23	34

Source: Dr. Roy Benaroch, The Pediatric Insider

Table: Flu Shot Contingency Table

		<u>Vaccinated</u>		
		Yes	No	
Flu Test Result	Pos	2	14	16
Tiu Test Hesuit	Neg	9	9	18
		11	23	34

Source: Dr. Roy Benaroch, The Pediatric Insider

Marginal Probability

 A probability that is based on a single variable without regard to any other variables.

Table: Flu Shot Contingency Table

		Vaccinated		
		Yes	No	
Flu Test Result	Pos	2	14	16
	Neg	9	9	18
		11	23	34

Marginal Probability

- A probability that is based on a single variable without regard to any other variables.
- -P(A)

Table: Flu Shot Contingency Table

		Vaccinated		
		Yes	No	
Flu Test Result	Pos	2	14	16
riu rest riesuit	Neg	9	9	18
		11	23	34

Marginal Probability

- A probability that is based on a single variable without regard to any other variables.
- -P(A)

What is the marginal probability of getting a positive flu test?

Table: Flu Shot Contingency Table

		<u>Vaccinated</u>		
		Yes	No	
Flu Test Result	Pos	2	14	16
Tiu Test Hesuit	Neg	9	9	18
		11	23	34

Source: Dr. Roy Benaroch, The Pediatric Insider

▶ Joint Probability

 A probability of outcomes for two or more variables or processes.

Table: Flu Shot Contingency Table

		Vaccinated		
		Yes	No	
Flu Test Result	Pos	2	14	16
riu rest riesuit	Neg	9	9	18
		11	23	34

Source: Dr. Roy Benaroch, The Pediatric Insider

- Joint Probability
 - A probability of outcomes for two or more variables or processes.
 - $P(A \cap B)$ or P(A and B)

Table: Flu Shot Contingency Table

		<u>Vaccinated</u>		
		Yes	No	
Flu Test Result	Pos	2	14	16
Tiu lest Hesuit	Neg	9	9	18
		11	23	34

Joint Probability

- A probability of outcomes for two or more variables or processes.
- $P(A \cap B)$ or P(A and B)

What is the joint probability of being vaccinated and getting a positive flutest?

Table: Flu Shot Contingency Table

		<u>Vaccinated</u>		
		Yes	No	
Flu Test Result	Pos	2	14	16
Tiu Test Hesuit	Neg	9	9	18
		11	23	34

Source: Dr. Roy Benaroch, The Pediatric Insider

- Conditional Probability
 - A probability of an event given that another event has occurred.

Table: Flu Shot Contingency Table

		Vaccinated		
		Yes	No	
Flu Test Result	Pos	2	14	16
	Neg	9	9	18
		11	23	34

- Conditional Probability
 - A probability of an event given that another event has occurred.
 - $P(B \text{ given } A) \text{ or } P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$

Table: Flu Shot Contingency Table

		Vaccinated		
		Yes	No	
Flu Test Result	Pos	2	14	16
riu rest riesuit	Neg	9	9	18
		11	23	34

Conditional Probability

- A probability of an event given that another event has occurred.
- $P(B \text{ given } A) \text{ or } P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$

What is the conditional probability of a person having a positive flu test given that s/he has been vaccinated?

Table: Flu Shot Contingency Table

		<u>Vaccinated</u>		
		Yes	No	
Flu Test Result	Pos	2	14	16
Tiu Test Hesuit	Neg	9	9	18
		11	23	34

Continuing example:

What is the conditional probability of a person having a negative flu test given that s/he has been vaccinated?

Table: Flu Shot Contingency Table

		<u>Vaccinated</u>		
		Yes	No	
Flu Test Result	Pos	2	14	16
riu iest nesuit	Neg	9	9	18
		11	23	34

Continuing example:

What is the conditional probability of a person having a negative flu test given that s/he has been vaccinated?

- Trick
 - Given that a person has been vaccinated, how many different flu test outcomes are there?

Table:	Flu Shot	Contingency	Table
--------	----------	-------------	-------

		Vaccinated		
		Yes	No	
Flu Test Result	Pos	2	14	16
riu lest nesuit	Neg	9	9	18
		11	23	34

Source: Dr. Roy Benaroch, The Pediatric Insider

Continuing example:

What is the conditional probability of a person having a negative flu test given that s/he has been vaccinated?

- Trick
 - Given that a person has been vaccinated, how many different flu test outcomes are there?
 - If we let C_1 = Positive Flu Test and C_2 = Negative Flu Test. Notice that $P(C_1|A) + P(C_2|A) = 1$

- ▶ Assume a standard deck of cards for the following questions. Remember that a standard deck has 4 suits. Each suit has 13 unique cards from Ace to King.
 - What is the marginal probability of a card drawn being red?

- ▶ Assume a standard deck of cards for the following questions. Remember that a standard deck has 4 suits. Each suit has 13 unique cards from Ace to King.
 - What is the marginal probability of a card drawn being red?
 - What is the joint probability that a card drawn is red and a King?

- ▶ Assume a standard deck of cards for the following questions. Remember that a standard deck has 4 suits. Each suit has 13 unique cards from Ace to King.
 - What is the marginal probability of a card drawn being red?
 - What is the joint probability that a card drawn is red and a King?
 - What is the conditional probability of getting a King, given that you drew a red card?

1. Main Topics

2. Example/Definitions

3. Tricks/Shortcuts

4. Review

► Here are some easy and simple tips to help you work faster and more accurately:

-
$$P(C_1|A) + P(C_2|A) + \cdots + P(C_n|A) = 1$$

► Here are some easy and simple tips to help you work faster and more accurately:

$$- P(C_1|A) + P(C_2|A) + \dots + P(C_n|A) = 1$$

- If A and B are independent, then

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$$

1. Main Topics

2. Example/Definitions

Tricks/Shortcuts

4. Review

Today we learned about *Conditional Probability* and how it relates mathematically to *Marginal Probability* and *Joint Probability*. Remember that:

► Marginal Probability refers to one variable occurring.

Today we learned about *Conditional Probability* and how it relates mathematically to *Marginal Probability* and *Joint Probability*. Remember that:

- ▶ Marginal Probability refers to one variable occurring.
- ▶ Joint Probability refers to two or more variables jointly happening.

Today we learned about *Conditional Probability* and how it relates mathematically to *Marginal Probability* and *Joint Probability*. Remember that:

- ▶ Marginal Probability refers to one variable occurring.
- ▶ Joint Probability refers to two or more variables jointly happening.
- ► Conditional Probability refers to the probability of an event *conditional* on another event happening first.