Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 3

Aufgabe 3.1 (1+1+2 Punkte)

Es sei $A = \{a, b\}$. Beschreiben Sie unter Benutzung nur der Symbole $\{, \}$, a, b, ε , \cup , * und +, sowie runde Klammer auf, runde Klammer zu und Komma, die folgenden formalen Sprachen:

- a) die Menge aller Wörter über A, die das Teilwort ab enthalten;
- b) die Menge aller Wörter über A, deren vorletztes Zeichen ein b ist;
- c) die Menge aller Wörter über A, in denen nirgends zwei b's unmittelbar hintereinander vorkommen.

Lösung 3.1

- a) $\{a,b\}^*\{ab\}\{a,b\}^*$
- b) $\{a,b\}^*\{b\}(\{a,b\})$
- c) $\{a,ba\}^*\{b,\varepsilon\}$

Aufgabe 3.2 (2+3+2 Punkte)

Es seien L_1, L_2 beliebige formale Sprachen. Beweisen Sie folgende Aussagen:

- a) $L_1 \subseteq L'_1 \wedge L_2 \subseteq L'_2 \Rightarrow L_1 \cdot L_2 \subseteq L'_1 \cdot L'_2$
- b) $L_1 \subseteq L_2 \Rightarrow \forall n \in \mathbb{N}_0 : L_1^n \subseteq L_2^n$ (Hinweis: vollständige Induktion)
- c) $L_1 \subseteq L_2 \Rightarrow L_1^* \subseteq L_2^*$

Lösung 3.2

a) Wir nehmen an, es gilt $L_1 \subseteq L'_1 \wedge L_2 \subseteq L'_2$.

Wir wählen ein beliebiges aber festes $w \in (L_1 \cdot L_2)$.

Dann existieren $w_1 \in L_1$ und $w_2 \in L_2$ mit $w = w_1 \cdot w_2$.

Da $L_1 \subseteq L'_1 \wedge L_2 \subseteq L'_2$ ist auch $w_1 \in L'_1 \wedge w_2 \in L'_2$; also $w_1 \cdot w_2 \in L'_1 \cdot L'_2$.

Also gilt $L_1 \cdot L_2 \subseteq L'_1 \cdot L'_2$

b) Induktionsanfang: n = 0: Nach Definition gilt $L_1^0 \subseteq L_2^0$, da $\{\epsilon\} \subseteq \{\epsilon\}$. $\sqrt{$ Induktionsvoraussetzung: Für ein beliebiges aber festes $n \in \mathbb{N}_0$ gelte $L_1 \subseteq L_2 \Rightarrow L_1^n \subseteq L_2^n$.

Induktionsschluss: Wir zeigen, dass dann auch $L_1^{n+1} \subseteq L_2^{n+1}$ gelten muss.

$$L_1^{n+1} = L_1^n \cdot L_1$$

$$\subseteq L_1^n \cdot L_2 \quad \text{nach Vor. und Teilaufgabe a)}$$

$$\subseteq L_2^n \cdot L_2 \quad \text{nach Ind.vor. und Teilaufgabe a)}$$

$$= L_2^{n+1}$$

Hinweis: Teilaufgabe a) sollte auf jeden Fall erwähnt/benutzt werden! Hinweis: Es werden 0,5 Punkte für den IA, 0,5 Punkte für die IV und 2 Punkte für den IS vergeben.

c) Wir nehmen an es gelte $L_1 \subseteq L_2$ und wählen ein beliebiges aber festes $w \in L_1^*$. Nach Definition existiert ein $n \in \mathbb{N}_0 : w \in L_1^n$ Nach Teilaufgabe b) ist $L_1^n \subseteq L_2^n$, also $w \in L_2^n$ folglich $w \in L_2^*$

Aufgabe 3.3 (2+3+3 Punkte)

Es seien L_1, L_2 beliebige formale Sprachen, mit $L_1, L_2 \subseteq \{a, b\}^*$.

- a) Geben Sie ein Beispiel für L_1 und L_2 an, so dass $|L_1|=|L_2|=3$ und $|L_1\cdot L_2|=|L_1|\cdot |L_2|$ gilt. Geben Sie zudem alle Elemente von $L_1\cdot L_2$ an.
- b) Es sei $n \in \mathbb{N}_0$ beliebig aber fest. Geben Sie zwei formale Sprachen L_1 und L_2 mit $|L_1| = |L_2| = n$ an, so dass $|L_1 \cdot L_2| = n^2$.
- c) Es sei $n \in \mathbb{N}_0$ beliebig aber fest. Geben Sie zwei formale Sprachen L_1 und L_2 mit $|L_1| = |L_2| = n$ an, so dass $|L_1 \cdot L_2| \le 2n$.

Lösung 3.3

- a) $L_1=\{a,aa,aaa\}$ und $L_2=\{b,bb,bbb\}$ $L_1\cdot L_2=\{ab,abb,aabb,aabb,aabb,aabb,aaabb,aaabb,aaabb\}$
- b) $L_1 = \{a^i \mid 1 \le i \le n\}$ und $L_2 = \{b^i \mid 1 \le i \le n\}$

c) $L_1 = \{ \mathbf{a}^i \mid 1 \le i \le n \} \text{ und } L_2 = \{ \mathbf{a}^i \mid 1 \le i \le n \}$ Erläuterung: es ist dann $L_1 \cdot L_2 = \{a^i \mid 2 \le i \le 2n\}$

Aufgabe 3.4 (2 Punkte)

Es sei $L\subseteq A^*$ eine formale Sprache. Beweisen Sie:

$$\varepsilon \in L \Rightarrow L \subseteq L^2$$

Lösung 3.4

Wir nehmen an es gelte $\varepsilon \in L$.

Man wähle ein beliebiges aber festes $w \in L$.

Es ist $w=w\cdot \varepsilon$, und da $w\in L\wedge \varepsilon\in L$ ist $w=w\cdot \varepsilon\in L\cdot L=L^2$. Also gilt $L\subseteq L^2$.