It the previous class we have introduced the concept of subnet.

Subnet mask class wise:

Class A

Class B

Class C

 Question A router receives a packet with the destination address 131.24.67.32.

- 1. Show how the router finds the network address of the packet.
- 2. How router is going to do direct broad casting?
- 3. How many numbers of hosts are possible?

Answer

Step 1: First find the class of the address Class B

Default mask 255.255.0.0

Step 2: Bitwise AND operation

First convert IP address to binary

	_						
IP Address	10000011	•	00011000	•	01000011	•	00100000
Default Subnet Mask	11111111	•	11111111	•	00000000	•	00000000
Bit wise AND operation	10000011	•	00011000	•	00000000	•	00000000
_							

Bitwise AND operation gives us Network address.

Network Address 131. 24. 0. 0

Answer 2.

There are two type of broad cast address Limited and Direct

Limited broad cast: when we want to broadcast in our own network

Limited broadcast address: 255.255.255.255

Direct broadcast address:

When packet from another network is to be broadcasted in your network,

IP Address	10000011	•	00011000	•	01000011	•	00100000
Default Subnet Mask compliments.	00000000	•	00000000	•	111111111	•	11111111
Bit wise OR operation	10000011	•	00011000	•	11111111	•	11111111

Broadcast Address 131. 24. 255. 255

Question A router receives a packet with the destination address 131.24.67.32/20 Show how the router finds the network address of the packet.

Answer

Step 1: First find Default mask

It is / 20 so

Default mask DM = 111111111111111111110000.000000000

255.255.240.0

Step 2: Bitwise AND operation

Destination Address	131.	24.	67.	32
Default mask	255.	255.	240.	0

```
Destination Address 10000011. 00011000. 01000011. 00100000 
Default mask 11111111. 11111111. 11110000. 00000000
```

Bitwise AND operation

11111111. 111111111. 01000000. 00000000

Network Address

131. 24. 64.

0

Question 3: Given an Network address 141.14.0.0 /16 as in figure below:

The network can belong to a university campus with four different schools (buildings). How will you divide the network into four subnetworks? Such that after Subnetting, each school has its own subnetworks, but still the whole campus is one network.

Solution:

Given Data:

Given Network Bits

$$GNB = 16$$

Given Host Bits

$$CHB = 32 - 16 = 16$$

No. of Subnets = 4

$$2^{n}=4$$
, so $n = 2$

Required Network Bits

$$CNB = GNB + n = 16 + 2 = 18$$

Required Host Bits

RHB = GHB -
$$n = 16 - 2 = 14$$

Total No of possible Hosts in a subnetwork

$$H = 2^{RHB} - 2 = 2^{14} - 2 = 16382$$

(minus 2 because two addresses are reserved for Subnet IP and Broadcast IP)

Default mask

Required Mask

Compare subnet masks from Right to left

$$\leftarrow$$

255. 255. 0. 0

255. 255. 192. 0

3rd Octet is not matching

So Subtract it from 256

$$D = 256 - 192 = 64$$

So Third Octet of the address will change be 64

	Subnet 0	Subnet1	Subnet 2	Subnet 3
Network ID	141.14.0.0	141.14.64.0	141.14.128.0	141.14.192.0
First Host	141.14.0.1	141.14.64.1	141.14128.1	141.14.192.1
	141.14.0.2	141.14.64.2	141.14.128.2	141.14.192.2
	141.14.1.0			
Broadcast Id	141.14.	141.14.127.255	141.14.191.255	141.14.255.255
	63.255			

•

Question: An ISP is granted a block of addresses starting with 190.100.0.0/18. The ISP needs to distribute these addresses to three groups of customers, Design the subblocks and find out how many addresses are still available after these allocations

Answer

Given IP address 190.100.0.0/18

$$GNB = 18, GHB = 32-18 = 14$$

Consumer Groups = 3 so $2^n >= 3$ n = 2

Converted Network Bits CNB = GNB + n = 18 + 2 = 20 RHB = GHB - n = 14 - 2 = 12 Total number of hosts per group $= 2^{RHB} = 2^{12} - 2 = 4096 - 2 = 4094$

Required Mask 11111111111111111111110000.000000000

DM = 255.255.192.0

RM = 255.255.240.0

Comparing RM and DM difference is in third octet 256-240 = 16

	Block 0	Block1	Block2
Network ID	190.100.0.0/20	190.100.16.0/20	190.100.32.0/20
First	190.100.0.1/20	190.100.16.1/20	190.100.32.1/20
Address			
Second	190.100.0.2/20	190.100.16.2/20	190.100.32.2/20
Address			
Last usable	190.100.15.254/20	190.100.31.254/20	190.100.47.254/20
address			

Broadcast	190.100.15.255/20	190.100.31.255/20	190.100.47.255/20
ID			
Total	4096	4096	4096
addresses			
used			

Total addresses used = 3X 4096 = 12288

Total addresses available = 2^{14} = 16384

Unused addresses = 16384-12288 = 4096 Ans

Question: An ISP is granted a block of addresses starting with 190.100.0.0/16 (65,536 addresses). The ISP needs to distribute these addresses to three groups of customers as follows:

- a. The first group has 64 customers; each needs 256 addresses.
- b. The second group has 128 customers; each needs 128 addresses.
- c. The third group has 128 customers; each needs 64 addresses.

Design the subblocks and find out how many addresses are still available after these allocations.

Question: An ISP is granted a block of addresses starting with 192.168.10.0/27. The ISP needs to distribute these addresses to four groups of customers, Design the subblocks and find out how many addresses are still available after these allocations

$$GNB = 27$$
 $GHB = 5$ $n = 2$ $RNB = 29$ $RHB = 3$

$$DM = 255.255.255.224$$

$$RM = 255.255.255.248$$

	Block0	Block1	Block2	Block3
Network	192.168.10 <mark>.0</mark>	192.168.10. <mark>8</mark>	192.168.10. <mark>16</mark>	192.168.10.24
id				
Broadcast	192.168.10.7	192.168.10.15	192.168.10.23	192.168.10.31
id				

Question: An ISP is granted a block of addresses starting with 192.168.10.0/24. The ISP needs to distribute these addresses to three groups of customers with 120, 60 and 30 users. Design the subblocks.

Answer

GNB = 24 GHB = 8 Maximum No. of Host = 2^8 =256

Check total no. of host is less than 256

Arrange the groups in descending order of no. of Host

Block 0 = 120 host, Block 1 = 60 host, Block 2 = 30 host

DM= 111111111.11111111.1111111.00000000

= 255.255.255.0

	Block 0	Block1	Block2
No. of host required	120	60	30
Converted Host bits	2 ⁿ >= 120	$2^{n} >= 60$	$2^{n} >= 30$
	CHB= 7	CHB= 6	CHB= 5
	CNB=25	CNB = 26	CNB = 27
Converted Mask	11111111.111111111111111111111110000000	11111111.111111111.11111111.11000000	11111111.11111111.11111111.11100000
	255.255.255.128	255.255.255.192	255.255.255.224
	255.255.255.0	255.255.255.0	255.255.255.0
	Difference 256-128= 128	Difference 256-192= 64	Difference = 256 -224 = 32
Network address of Block	192.168.10.0/25	192.168.10.128/26	192.168.10.192/27
Fist address	192.168.10.1	192.168.10.129	192.168.10.193
Second address	192.168.10.2	192.168.10.130	192.168.10.194
Last address	192.168.10.126	192.168.10.190	192.168.10.222
Broadcast address	192.168.10.127	192.168.10.191	192.168.10.223

Public and Private Addresses

Table 19.3 Addresses for private networks

	Ran	ge	Total
10.0.0.0	to	10.255.255.255	2 ²⁴
172.16.0.0	to	172.31.255.255	2 ²⁰
192.168.0.0	to	192.168.255.255	216

NAT network address translation