

Model Optimization and Tuning Phase Template

Date	8July 2024
Team ID	SWTID1720078167
Project Title	Rice type classification using CNN
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters
MOBILENET	<pre>#hyperparameters for MobileNet Architecture param_grid_mobilenet = { 'batch_size': [16, 32, 64], 'epochs': [10, 20, 30], 'optimizer': ['adam', 'sgd'], 'learning_rate': [0.001, 0.00001, 0.00001], 'trainable': }</pre>
RESNET50	#hyperparamters for Resnet50 architecture param_grid_resnet50 = { 'batch_size': [16, 32, 64], 'epochs': [10, 20, 30], 'optimizer': ['adam', 'sgd'], 'learning_rate': [0.001, 0.0001] } Python


```
#hyperparamters for InceptionV3 architecture
param_grid_inception = {
    'batch_size': [16, 32, 54],
    'epochs': [19, 29, 39],
    'optimizer': ['adam', 'rmsprop'],
    'learning_rate': [0.001, 0.0001, 0.00001]
}

#hyperparamters for Xception architecture
param_grid_xception = {
    'batch_size': [16, 32, 64],
    'epochs': [10, 20, 30],
    'optimizer': ['adam', 'rmsprop'],
    'learning_rate': [0.001, 0.0001, 0.00001]
}

Python
```

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
MOBILENET	 Efficiency: MobileNet is designed to be lightweight and efficient, making it ideal for applications with limited computational resources, such as mobile devices and embedded systems. Its architecture is optimized for speed and low power consumption. Performance: While deeper networks like ResNet50 might offer better performance in some cases, MobileNet provides

comparable accuracy with significantly lower computational overhead, especially beneficial for smaller datasets and real-time applications.

- Flexibility: MobileNet is highly flexible and can be easily finetuned for different tasks and datasets. Its design allows for adjustments to the trade-off between latency and accuracy, making it versatile for various use cases.
- Consistency: MobileNet has shown consistent performance across various image classification and recognition tasks, making it a reliable choice for many applications.
- Feature Extraction: The architecture of MobileNet, with its
 depthwise separable convolutions, is excellent for feature
 extraction. This makes it a powerful tool when transferring
 learning to new datasets, providing robust feature representation
 with reduced computational cost.
- In this example, MobileNet provides a high accuracy, making it
 a suitable choice for this particular task. However, the final
 decision should consider factors like dataset size, computational
 resources, and specific application requirements.