1.Import necessary packages

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
```

2.Load the file

```
In [3]: df=pd.read_csv("https://raw.githubusercontent.com/Mukund94/Datasets/main/Inc_Exp_Data%20(1).csv",sep=',')
In [4]: df.head(20)
```

Out[4]:		Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annual_HH_Income	Highest_Qualified_Member	No_of_Earning_Members
	0	5000	8000	3	2000	64200	Under-Graduate	
	1	6000	7000	2	3000	79920	Illiterate	
	2	10000	4500	2	0	112800	Under-Graduate	,
	3	10000	2000	1	0	97200	Illiterate	
	4	12500	12000	2	3000	147000	Graduate	•
	5	14000	8000	2	0	196560	Graduate	•
	6	15000	16000	3	35000	167400	Post-Graduate	
	7	18000	20000	5	8000	216000	Graduate	•
	8	19000	9000	2	0	218880	Under-Graduate	
	9	20000	9000	4	0	220800	Under-Graduate	2
	10	20000	18000	4	8000	278400	Under-Graduate	2
	11	22000	25000	6	12000	279840	Illiterate	
	12	23400	5000	3	0	292032	Illiterate	•
	13	24000	10500	6	0	316800	Graduate	2
	14	24000	10000	4	0	244800	Graduate	2
	15	25000	12300	3	0	246000	Graduate	,
	16	25000	20000	3	3500	261000	Graduate	•
	17	25000	10000	6	0	258000	Under-Graduate	3
	18	29000	6600	2	2000	348000	Graduate	•
	19	30000	13000	4	0	385200	Graduate	•
4)

3. Analyze the data

In	[5]:	df.sample(15)
----	------	---------------

Out[5]:		Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annual_HH_Income	Highest_Qualified_Member	No_of_Earning_Members
	44	85000	25000	5	0	1142400	Under-Graduate	2
	24	35000	12000	3	0	466200	Graduate	,
	9	20000	9000	4	0	220800	Under-Graduate	2
	38	55000	45000	6	12000	600600	Graduate	ć
	43	80000	20000	4	0	1075200	Graduate	,
	17	25000	10000	6	0	258000	Under-Graduate	3
	14	24000	10000	4	0	244800	Graduate	Ź
	19	30000	13000	4	0	385200	Graduate	•
	37	50500	20000	3	0	581760	Professional	Ź
	36	50000	20000	4	0	570000	Professional	•
	46	98000	25000	5	0	1152480	Professional	Ź
	39	60000	10000	3	0	590400	Post-Graduate	•
	6	15000	16000	3	35000	167400	Post-Graduate	•
	35	47000	15000	7	0	456840	Professional	2
	48	100000	50000	4	20000	1032000	Professional	2

In [6]: df.dtypes

Mthly_HH_Income int64 Out[6]: Mthly_HH_Expense int64 No_of_Fly_Members int64 Emi_or_Rent_Amt int64 Annual_HH_Income int64 Highest_Qualified_Member object No_of_Earning_Members int64 dtype: object

```
df.columns
In [7]:
         Index(['Mthly_HH_Income', 'Mthly_HH_Expense', 'No_of_Fly_Members',
                 'Emi or Rent Amt', 'Annual HH Income', 'Highest Qualified Member',
                 'No of Earning Members'],
                dtvpe='object')
         df.describe()
In [8]:
                Mthly_HH_Income Mthly_HH_Expense No_of_Fly_Members Emi_or_Rent_Amt Annual_HH_Income No_of_Earning_Members
Out[8]:
                        50.000000
                                           50.000000
                                                              50.000000
                                                                               50.000000
                                                                                               5.000000e+01
                                                                                                                          50.000000
         count
                     41558.000000
                                        18818.000000
                                                               4.060000
                                                                             3060.000000
                                                                                               4.900190e+05
                                                                                                                           1.460000
          mean
            std
                     26097.908979
                                        12090.216824
                                                               1.517382
                                                                             6241.434948
                                                                                               3.201358e+05
                                                                                                                           0.734291
                      5000.000000
                                        2000.000000
                                                               1.000000
                                                                                 0.000000
                                                                                               6.420000e+04
                                                                                                                           1.000000
           min
          25%
                                                               3.000000
                     23550.000000
                                        10000.000000
                                                                                0.000000
                                                                                               2.587500e+05
                                                                                                                           1.000000
           50%
                                                               4.000000
                                                                                0.000000
                                                                                                                           1.000000
                     35000.000000
                                        15500.000000
                                                                                               4.474200e+05
          75%
                     50375.000000
                                        25000.000000
                                                               5.000000
                                                                             3500.000000
                                                                                               5.947200e+05
                                                                                                                           2.000000
```

35000.000000

1.404000e+06

7.000000

In [9]: df.describe(include='all')

100000.000000

max

50000.000000

4.000000

ut[9]:		Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annual_HH_Income	Highest_Qualified_Member	No_of_Earning_Men
	count	50.000000	50.000000	50.000000	50.000000	5.000000e+01	50	50.00
	unique	NaN	NaN	NaN	NaN	NaN	5	
	top	NaN	NaN	NaN	NaN	NaN	Graduate	
	freq	NaN	NaN	NaN	NaN	NaN	19	
	mean	41558.000000	18818.000000	4.060000	3060.000000	4.900190e+05	NaN	1.4€
	std	26097.908979	12090.216824	1.517382	6241.434948	3.201358e+05	NaN	0.73
	min	5000.000000	2000.000000	1.000000	0.000000	6.420000e+04	NaN	1.00
	25%	23550.000000	10000.000000	3.000000	0.000000	2.587500e+05	NaN	1.00
	50%	35000.000000	15500.000000	4.000000	0.000000	4.474200e+05	NaN	1.00
	75%	50375.000000	25000.000000	5.000000	3500.000000	5.947200e+05	NaN	2.00
	max	100000.000000	50000.000000	7.000000	35000.000000	1.404000e+06	NaN	4.00
								•
[10]:	sns.pa plt.sh	irplot(df) ow()						

file:///C:/Users/DELL/Desktop/Mukund/DATA SCIENCE/Statistics/Assigments/16258287/8. M1W3-PE-Basicstats-Questions.html

8/21/23, 9:08 AM

4. What is the Mean Expense of a Household?

```
In [11]: df.Mthly_HH_Expense.mean()
Out[11]: df['Mthly_HH_Expense'].mean()
Out[12]: 18818.0
```

5. What is the Median Household Expense?

```
In [13]: df.Mthly_HH_Expense.median()
Out[13]: 15500.0
```

6. What is the Monthly Expense for most of the Households?

```
In [14]: df.Mthly_HH_Expense.mode()
```

```
25000
Out[14]:
         Name: Mthly HH Expense, dtype: int64
         df.Mthly HH Expense.value counts()
In [15]:
          25000
Out[15]:
          20000
                   6
                   5
          10000
          15000
                   3
                   3
          9000
          8000
                   3
          12000
                   3
                   2
          50000
                   2
          40000
          16000
                   1
                   1
          48000
          45000
                   1
          22000
                   1
          19000
                   1
                   1
          4500
          13000
                   1
          6600
                   1
                   1
          12300
          7000
                   1
                   1
          10500
          5000
                   1
          2000
                   1
          18000
                   1
          30000
                   1
         Name: Mthly HH Expense, dtype: int64
```

7.Plot the Histogram to count the Highest qualified member

```
In [17]: sns.countplot(x=df.Highest_Qualified_Member,order=df['Highest_Qualified_Member'].value_counts(ascending=False).index)
    plt.xlabel("Highest qualified member",c='red')
    plt.show()
```


8. Calculate IQR (difference between 75% and 25% quartile)

```
In [18]: df.describe(include='all')
```

Out[18]:		Mthly_HH_Income	Mthly_HH_Expense	No_of_Fly_Members	Emi_or_Rent_Amt	Annual_HH_Income	Highest_Qualified_Member	No_of_Earning_Men
	count	50.000000	50.000000	50.000000	50.000000	5.000000e+01	50	50.00
	unique	NaN	NaN	NaN	NaN	NaN	5	
	top	NaN	NaN	NaN	NaN	NaN	Graduate	
	freq	NaN	NaN	NaN	NaN	NaN	19	
	mean	41558.000000	18818.000000	4.060000	3060.000000	4.900190e+05	NaN	1.46
	std	26097.908979	12090.216824	1.517382	6241.434948	3.201358e+05	NaN	0.73
	min	5000.000000	2000.000000	1.000000	0.000000	6.420000e+04	NaN	1.00
	25%	23550.000000	10000.000000	3.000000	0.000000	2.587500e+05	NaN	1.00
	50%	35000.000000	15500.000000	4.000000	0.000000	4.474200e+05	NaN	1.00
	75%	50375.000000	25000.000000	5.000000	3500.000000	5.947200e+05	NaN	2.00
	max	100000.000000	50000.000000	7.000000	35000.000000	1.404000e+06	NaN	4.00
4								•
In [19]:	Q1=df.M Q1	Mthly_HH_Income.	quantile([.25])					
Out[19]:	0.25 23550.0 Name: Mthly_HH_Income, dtype: float64							
In [20]:	Q3=pd.DataFrame(df.Mthly_HH_Income.quantile([.75])) Q3							
Out[20]:	М	thly_HH_Income						
	0.75	50375.0						
In [21]:	#IQR Co	alculations for	'Mthly_HH_Income'	column Only				
		quartiles[0.75]	HH_Income'].quant - quartiles[0.25]	ile([0.25, 0.75])				

26825.0

```
df.quantile(q=[0.25, 0.5, 0.75], axis=0, numeric_only=True)
Out[22]:
               Mthly_HH_Income Mthly_HH_Expense No_of_Fly_Members Emi_or_Rent_Amt Annual_HH_Income No_of_Earning_Members
          0.25
                        23550.0
                                           10000.0
                                                                 3.0
                                                                                 0.0
                                                                                               258750.0
                                                                                                                          1.0
          0.50
                         35000.0
                                          15500.0
                                                                 4.0
                                                                                 0.0
                                                                                               447420.0
                                                                                                                          1.0
          0.75
                                                                                                                          2.0
                         50375.0
                                          25000.0
                                                                 5.0
                                                                              3500.0
                                                                                               594720.0
          #IQR Calculations for all the numeric columns
In [23]:
          quartiles=df.quantile(q=[0.25, 0.75], axis=0, numeric only=True)
          IQR All Numeric Columns=quartiles.loc[0.75]-quartiles.loc[0.25]
          IOR=pd.DataFrame(IOR All Numeric Columns,columns=['IOR'])
          IQR
Out[23]:
                                     IQR
                Mthly HH Income
                                  26825.0
               Mthly_HH_Expense
                                  15000.0
              No_of_Fly_Members
                                     2.0
                Emi_or_Rent_Amt
                                   3500.0
               Annual HH Income 335970.0
          No_of_Earning_Members
                                     1.0
          df.head()
In [24]:
```

```
Out[24]:
             Mthly HH Income Mthly HH Expense No of Fly Members Emi or Rent Amt Annual HH Income Highest Qualified Member No of Earning Members
                        5000
          0
                                          8000
                                                                            2000
                                                                                             64200
                                                                                                             Under-Graduate
          1
                        6000
                                          7000
                                                               2
                                                                            3000
                                                                                             79920
                                                                                                                    Illiterate
                                                               2
          2
                                          4500
                                                                               0
                                                                                            112800
                                                                                                             Under-Graduate
                       10000
                                                                                             97200
          3
                       10000
                                          2000
                                                                               0
                                                                                                                    Illiterate
                                                                                                                                                1
          4
                       12500
                                         12000
                                                               2
                                                                            3000
                                                                                            147000
                                                                                                                   Graduate
                                                                                                                                                1
          df.Mthly HH Income.head()
                5000
Out[25]:
                6000
               10000
          3
               10000
               12500
          Name: Mthly HH Income, dtype: int64
          #Lower Outlier
In [26]:
          Q1-1.5*IQR
                                IQR 0.25
Out[26]:
               Mthly_HH_Income NaN NaN
               Mthly_HH_Expense NaN NaN
              No_of_Fly_Members NaN NaN
                Emi_or_Rent_Amt NaN NaN
              Annual_HH_Income NaN NaN
          No_of_Earning_Members NaN NaN
          df[(df.Mthly_HH_Income<-16687.5)]['Mthly_HH_Income']</pre>
          Series([], Name: Mthly_HH_Income, dtype: int64)
Out[27]:
```

```
#Upper Outlier
In [28]:
          03+1.5*IOR
Out[28]:
                                IQR Mthly_HH_Income
                          0.75 NaN
                                                NaN
              Annual HH Income NaN
                                                NaN
               Emi or Rent Amt NaN
                                                NaN
              Mthly_HH_Expense NaN
                                                NaN
               Mthly_HH_Income NaN
                                                NaN
          No_of_Earning_Members NaN
                                                NaN
             No_of_Fly_Members NaN
                                                NaN
         df[(df.Mthly HH Income>90612.5)]['Mthly HH Income']
In [29]:
                98000
Out[29]:
               100000
               100000
               100000
         Name: Mthly HH Income, dtype: int64
```

9. Calculate Standard Deviation for first 4 columns.

10. Calculate Variance for first 3 columns.

11. Calculate the count of Highest qualified member.

```
df.Highest Oualified Member.value counts()
In [32]:
                            19
         Graduate
Out[32]:
          Under-Graduate
                            10
          Professional
                            10
          Post-Graduate
                             6
          Illiterate
                             5
         Name: Highest Qualified Member, dtype: int64
         df.Highest Qualified Member.value counts().head(1)
In [33]:
         Graduate
Out[33]:
         Name: Highest Oualified Member, dtype: int64
```

12.Plot the Histogram to count the No_of_Earning_Members

```
In [34]: sns.histplot(x='No_of_Earning_Members',data=df)
plt.xlabel("Number of Earning Members",c='red')
plt.show()
```



```
In [35]: df.No_of_Earning_Members.unique()
Out[35]: array([1, 2, 3, 4], dtype=int64)
```

13. Suppose you have option to invest in Stock A or Stock B. The stocks • have different expected returns and standard deviations. The expected return of Stock A is 15% and Stock B is 10%. Standard Deviation of the returns of these stocks is 10% and 5% respectively.

Which is better investment?

I will invest in stock A because stock B is stable stock and might be less profit or loss though profilt is for sure in stock B, As it has less standard deviation.

B stock is Stable & A is volatile So A is a risky asset but it can be profitable as well if it goes to high So I will prefer A.