Лекции по теории формальных языков

Лекция 2.

Недетерминированные конечные автоматы. Операции над автоматными языками.

Автоматные фрагменты языков программирования Регулярные языки.

Александр Сергеевич Герасимов http://gas-teach.narod.ru Кафедра математических и информационных технологий Санкт-Петербурского академического университета Российской академии наук. Весенний семестр 2010/11 учебного года

18 февраля 2011 г.

ых языков 18 февраля 2011 г. 1 / 35 Определение недетерминированного конечного

автомата

Недетерминированным конечным автоматом (НКА) называется пятёрка $\mathcal{B}=(Q,\Sigma,\delta,Q_0,F)$, где

- ullet Q непустое конечное множество *состояний*,
 - Σ алфавит,
- ullet $\delta:Q imes \Sigma o 2^Q функция переходов,$
- ullet $Q_0\subseteq Q$ множество *начальных* состояний,
- ullet $F\subseteq Q$ множество заключительных (или допускающих) состояний.
- $(\delta$ может быть определено и как отношение $\delta\subseteq Q imes \Sigma imes Q.)$

символом а, может перейти в любое состояние из множества $\delta({ t q},{ t a}).$ НКА, находящийся в состоянии q и обозревающий ячейку с

Задание НКА диаграммой переходов

18 февраля 2011 г. 4 / 35

НКА ${\cal B}$ тот же, что и на предыдущем слайде.

- $\bullet \ \mathtt{aab} \in \mathsf{L}(\mathcal{B}) \colon \ \delta(q_0, \mathtt{a}) = \{q_0, q_1\} = \delta(q_0, \mathtt{aa}), \\ \delta(q_0, \mathtt{aab}) = \{q_0, q_2\} \cap \mathit{F} \neq \emptyset.$
- abba $\notin L(\mathcal{B})$: $\delta(q_0, abba) = \{q_0, q_1\} \cap F = \emptyset$.

18 февраля 2011 г. 7 / 35

План

- 🕕 Недетерминированные конечные автоматы
- 💿 Операции над автоматными языками
- В Регулярные языки
- Автоматные (регулярные) фрагменты языков программирования
- Пример нерегулярного языка

 « □ » « □ » « □ » « □ »
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №
 №<

Язык, распознаваемый НКА

- ullet Доопределим функцию переходов δ на $Q imes \Sigma^*$:
- $\delta(q,\epsilon) = \{q\}, \qquad \delta(q,ua) = \bigcup_{r \in \delta(q,u)} \delta(r,a).$
- НКА $\mathcal{B}=(Q,\Sigma,\delta,Q_0,F)$ распознает (или допускает) цепочку $w\in\Sigma^*$, если

$$\left(\bigcup_{\mathfrak{q}\in\mathfrak{Q}_0}\delta(\mathfrak{q},w)\right)\bigcap F\neq\emptyset.$$

ullet Множество всех цепочек, допускаемых автоматом ${\cal B}$, называется языком, распознаваемым автоматом \mathcal{B} , и обозначается $\mathcal{L}(\mathcal{B})$. Теорема Рабина-Скотта

Георема (Рабина-Скотта)

Класс языков, распознаваемых НКА, совпадает с классом языков, распознаваемых ДКА.

поэтому класс языков, распознаваемых ДКА, содержится в классе Доказательство. ДКА является частным случаем НКА, языков, распознаваемых НКА. Докажем обратное включение.

• Пусть $\mathcal{B}=(Q,\Sigma,\delta,Q_0,F)$ — произвольный НКА. Возьмём ДКА $\mathcal{A}=(2^Q,\Sigma,\delta',Q_0,F')$, где

$$\delta'(P,\mathbf{a}) = \bigcup_{a \in P} \delta(\mathbf{q},\mathbf{a}), \qquad F' = \{P \in 2^Q \mid P \cap F \neq \emptyset\},$$

и докажем, что $L(\mathcal{A}) = L(\mathcal{B})$.

⟨Ø > ⟨ E > ⟨ E > ⟨ P ⟩ ⟨ Q
18 февраля 2011 г. 8 / 35

План

- 🗓 Недетерминированные конечные автоматы

- 4 Автоматные (регулярные) фрагменты языков
- 5 Пример нерегулярного языка

Задание НКА расширенной таблицей переходов

HKA B:

-	0	٥	П	
ශී	1	0	0	
Ф	ďo	q_2	q_1	
ø	qo, q1		q 2	
	о́Ь	q 1	q_2	

Теорема Рабина-Скотта: продолжение доказательства

$$\delta'(P, w) = \bigcup_{a \in P} \delta(q, w).$$

 $\stackrel{\star}{\odot}$

ullet База индукции (|w|=0) верна, поскольку

$$\delta'(P,\varepsilon) = P = \bigcup_{\mathbf{q} \in P} \delta(\mathbf{q},\varepsilon).$$

ullet Индукционный переход. Рассмотрим $w=u{
m a}$.

$$\delta'(P,u\mathbf{a}) = \delta'(\delta'(P,u),\mathbf{a}) =_{\mathsf{NHA}, \ \mathsf{npeafin}}, \delta'\left(\bigcup_{q \in \mathcal{P}} \delta(\mathbf{q},u), \ \mathbf{a}\right) =_{\mathsf{onp.} \ \delta'}$$

$$\bigcup_{\mathbf{x} \in \bigcup_{q \in \mathcal{P}} \delta(\mathbf{q},u)} \delta(\mathbf{x},\mathbf{a}) = \bigcup_{\mathbf{q} \in \mathcal{P}} \bigcup_{\mathbf{x} \in \delta(\mathbf{q},u)} \delta(\mathbf{x},\mathbf{a}) = \bigcup_{\mathbf{q} \in \mathcal{P}} \delta(\mathbf{q},u\mathbf{a}).$$

Теорема Рабина-Скотта: окончание доказательства

• Наконец, пользуясь определениями и беря Q_0 в качестве P в $(\star),$ получаем

$$L(A) = \{ w \in \Sigma^* \mid \delta'(Q_0, w) \in F' \} =$$

$$\{ w \in \Sigma^* \mid \delta'(Q_0, w) \cap F \neq \emptyset \} =$$

$$\{ w \in \Sigma^* \mid \bigcup_{q \in Q_0} \delta(q, w) \bigcap_{f \neq \emptyset} F \neq \emptyset \} = L(B).$$

Применённый в доказательстве теоремы способ получения ДКА по НКА называется «построением подмножеств».

ных языков 18 февраля 2011 г. 10 / 35 Определение недетерминированного конечного

автомата с ε -переходами

Определяемые здесь автоматы будет удобно строить по заданным

Недетерминированным конечным автоматом с ε-переходами $(arepsilon ext{-}HKA)$ называется пятёрка $\mathcal{B} = (Q, \Sigma, \delta, Q_0, F)$, где

Q, Σ, Q₀, F — те же, что и в случае НКА,

• $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q - \phi$ ункция переходов.

arepsilon-НКА может не сдвигаться по входной цепочке по окончании некоторых тактов (на таком такте автомат прочитывает arepsilon). Диаграмма переходов arepsilon-НКА может содержать дуги,

ε-НКА распознает цепочку w ⇔ в диаграмме переходов существует путь из начального состояния в заключительное, помеченный w.

помеченные ε .

ных языков 18 февраля 2011 г. 13 / 35 (Определение распознаваемой цепочки через обобщение функции переходов будет дано ниже.

Класс языков, распознаваемых ε-НКА, совпадает с классом языков, распознаваемых НКА.

Доказательство.

- ullet Пусть $\mathcal{B}=(Q,\Sigma,\delta,\{q_0\},\{f\})$ (нормальный) arepsilon-НКА. Определим НКА $\mathcal{B}'=(Q,\Sigma,\delta',Q_0,\{f\})$, где $Q_0=\text{Clo}(q_0),\,\delta'(q,a)=\bar{\delta}(q,a).$
 - ullet Пути, помеченные цепочкой $w\in \Sigma^*$, в диаграммах переходов ${\mathcal B}$ и \mathcal{B}' существуют или не существуют одновременно:

$$(\mathbb{Q}) \xrightarrow{\xi} \dots \xrightarrow{\xi} (\mathbb{Q}) \xrightarrow{a_1} \mathbb{Q} \xrightarrow{\xi} \dots \xrightarrow{\xi} \mathbb{Q}_1 \xrightarrow{a_2} \dots \xrightarrow{\xi} \mathbb{Q}_{2d} \xrightarrow{a_n} \mathbb{Q} \xrightarrow{\xi} \dots \xrightarrow{\xi} \underbrace{\mathbb{Q}}_{2d}$$

ullet Таким образом, множества цепочек, распознаваемых ${\cal B}$ и ${\cal B}'$

18 февраля 2011 г. 16 / 35

Алгоритм нахождения ДКА по НКА (построением подмножеств)

Bыход. Эквивалентный ДКА $\mathcal{A} = (Q', \Sigma, \delta', Q_0, F')$ без недостижимых Вход. НКА $\mathcal{B} = (Q, \Sigma, \delta, Q_0, F)$. состояний.

1. для каждого $P\subseteq Q$ label(P):=0;2. $Q' := \{Q_0\}$

 $\delta'(P,a) := \bigcup \delta(q,a);$ 3. пока $(\exists P \in Q': |abe|(P) = 0)$ повторять 4. для каждого $a \in \Sigma$

 $Q' := Q' \cup \{\delta'(P, \mathbf{a})\};$

8. $F' := \{P \in Q' \mid P \cap F \neq \emptyset\}$ label(P) := 1;

ных языков 18 февраля 2011 г. 11 / 35 Все состояния автомата А достижимы, поскольку каждое состояние в Q^\prime , кроме начального, получено переходом в него из ранее построенного состояния.

Нормальные arepsilon-НКА

добавим следующим образом к исходному автомату состояния q_0 ullet Произвольный arepsilon-HKA эквивалентен arepsilon-HKA с единственным начальным и единственным заключительным состоянием:

и объявим $\{q_0\}$ множеством начальных состояний, а $\{f\}$ множеством заключительных состояний нового автомата.

- ullet arepsilon arepsilon-HKA вида $(Q,\Sigma,\delta,\{q_0\},\{f\})$ будем называть *нормальными*.
- 18 февраля 2011 г. 14 / 35 В дальнейшем мы рассматриваем только нормальные є-НКА.

Алгоритм нахождения ДКА по arepsilon-НКА

Bход. ε –HKA $\mathcal{B}=(Q,\Sigma,\delta,\{q_0\},F)$. Bыход. Эквивалентный ДКА $\mathcal{A}=(Q',\Sigma,\delta',Q_0,F')$ без недостижимых

1. для каждого $P\subseteq Q\ \mathit{label}(P):=0;$

2. $Q_0:=Clo(q_0);\ Q':=\{Q_0\};$ 3. пока $(\exists P\in Q':label(P)=0)$ повторять

 $\delta'(P,a) := \bigcup_{q \in P} \overline{\delta}(q,a);$ для каждого $a \in \Sigma$

 $Q' := Q' \cup \{\delta'(P,a)\};$ 8. $F' := \{P \in Q' \mid P \cap F \neq \emptyset\}$ label(P) := 1;

Это видоизменение алгоритма, описанного на слайде 11. Замыкание ${\it Clo}({
m q})$ вычисляется поиском из состояния q.

Пример построения ДКА по НКА

F	0	0	1
ଫ	1	0	0
Р	q ₀	q_2	q 1
В	q0, q1		q ₂
	ф	q 1	q 2

зыков 18 февраля 2011 г. 12 / 35

Цепочки, распознаваемые (нормальным) arepsilon-HKA

 $\bullet \ \, \mathsf{Определим} \ \, \mathsf{отношениe} \ \, \rho \subseteq Q^2 \colon \ \, (\mathbf{q},\mathbf{p}) \in \rho \ \, \Leftrightarrow \ \, \mathbf{p} \in \delta(\mathbf{q},\varepsilon).$ Пусть $\mathcal{B} = (Q, \Sigma, \delta, \{q_0\}, \{f\}) - ($ нормальный $) \varepsilon$ -НКА.

- ullet $(\mathbf{q},\mathbf{p})\in
 ho^*$ (рефлексивно-транзитивное замыкание отношения ho) ⇔ автомат может перейти из состояния q в состояние p, не сдвигаясь по входной цепочке.
- ullet Замыкание состояния q: $\mathit{Clo}(q) = \{ p \in Q \mid (q,p) \in
 ho^* \}.$
- Замыкание множества состояний $P\subseteq Q\colon Clo(P)=\bigcup_{q\in P}Clo(q)$.
- ullet Обобщённая функция переходов $\overline{\delta}:Q imes \Sigma^* o 2^Q$,

$$ar{\delta}(\mathsf{q},arepsilon) = \mathit{Clo}(\mathsf{q}), \qquad ar{\delta}(\mathsf{q},\mathit{ua}) = \bigcup_{\mathbf{r} \in ar{\delta}(a,u)} \mathit{Clo}(\delta(\mathbf{r},\mathsf{a})).$$

- ullet $\mathbf{r} \in \overline{\delta}(\mathsf{q},w) \Leftrightarrow \mathsf{B}$ диаграмме переходов автомата $\mathcal B$ существует путь из q в r, помеченный w.
- ullet Цепочка *w распознаётся* автоматом \mathcal{B} , если $\mathbf{f} \in \overline{\delta}(\mathtt{q}_0,w).$

- 2 Операции над автоматными языками
- 4 Автоматные (регулярные) фрагменты языков
- 5 Пример нерегулярного языка

Назовём язык *автоматным*, если он распознаётся некоторым конечным автоматом (каким?). Обозначим через 🗛 класс всех автоматных языков.

Теорема

Класс 🛦 замкнут относительно объединения, пересечения, дополнения, произведения и итерации.

Доказательство.

- нормальные arepsilon-НКА, $Q_1 \cap Q_2 = \emptyset$. Тогда язык $L(\mathcal{B}_1) \cup L(\mathcal{B}_2)$ $\mathcal{B}_1 = (Q_1, \Sigma, \delta_1, \{q_1\}, \{f_1\}) \text{ in } \mathcal{B}_2 = (Q_2, \Sigma, \delta_2, \{q_2\}, \{f_2\})$ • Замкнутость относительно объединения. Пусть распознаётся следующим нормальным arepsilon-HKA $(Q_1 \cup Q_2 \cup \{q_0, f\}, \Sigma, \delta_3, \{q_0\}, \{f\})$:
- Автоматность конечных языков

Любой конечный язык является автоматным.

Доказательство.

- ullet Языки $\emptyset,~\{arepsilon\},~\{{
 m a}\}$ (где ${
 m a}-{
 m cимвол})$ распознаются следующими автоматами:
 - 6
 - F
- ullet Любой язык, состоящий из одной цепочки, либо совпадает с $\{arepsilon\}$, либо является произведением конечного числа языков из одного символа, поэтому по предыдущей теореме такой язык является
- объединением конечного числа языков из одной цепочки, поэтому по предыдущей теореме такой язык является автоматным. • Любой конечный язык либо совпадает с ∅, либо является

Теорема Клини: продолжение доказательства

Герасимов (СПБАУ РАН) Лекции по теории формальных языков 18 февраля 2011 г. 22 / 35

База индукции.

- Тогда $L(\mathcal{A})=\{arepsilon\}$, если $\mathtt{q}_0\in F$, и $L(\mathcal{A})=\emptyset$ иначе. ullet Функция переходов δ нигде не определена.
- Если $\mathbf{q} \neq \mathbf{q}_0$, то имеем: $L(\mathcal{A}) = \{\varepsilon\}$ при $\mathbf{q}_0 \in F$, а иначе $L(\mathcal{A}) = \emptyset$. Разберём все возможные случаи, если ${\tt q}={\tt q_0}$: ullet Существует ровно один переход $\delta(\mathbf{q},\mathbf{a})=\mathbf{r}.$

(A)	Ø	{a}	$\{s\}$	$\{arepsilon, \mathbf{a}\}$	Ø	$\{\mathtt{a}\}_*$
r F	нет	Да	нет	Да	нет	Да
9 1	нет	нет	еΉ	Да	нет	Ча
$\mathbf{r}=\mathbf{q}_0$	нет	нет	нет	нет	т	да

Теорема: продолжение доказательства

Замкнутость относительно произведения. L (\mathcal{B}_1) L (\mathcal{B}_2)

ullet Замкнутость относительно итерации. L $(\mathcal{B}_1)^*$

языков 18 февраля 2011 г. 20 / 35

План

языков 18 февраля 2011 г. 19 / 35

- 🕕 Недетери
- **Q**
- Регулярные языки 60
- Автоматные (регулярные) фрагменты языков
- LO

Георема Клини: продолжение доказательства

пьных языков 18 февраля 2011 г. 23 / 35

Индукционый переход. Пусть автомат $\mathcal{A} = (Q, \Sigma, \delta, \mathtt{q}_0, F)$ имеет k > 1 переходов.

- (частичную) функцию переходов на $Q imes \Sigma$ такую, что значение δ' не определено на паре (q,a) и совпадает со значением δ на всех ullet Зафиксируем один переход $\delta(\mathbf{q},\mathbf{a})=\mathbf{r}.$ Через δ' обозначим остальных парах.
- $\mathcal{A}_1 = (Q, \Sigma, \delta', q_0, \{q\}),$ • Рассмотрим автоматы $\mathcal{A}_2 = (Q, \Sigma, \delta', \mathbf{r}, \{q\}),$ $\mathcal{A}_0 = (Q, \Sigma, \delta', q_0, F),$

каждый из которых имеет (k-1) переход. По индукционному предположению языки $L(\mathcal{A}_0)$, $L(\mathcal{A}_1)$, $L(\mathcal{A}_2)$, $L(\mathcal{A}_3)$ регулярны. $\mathcal{A}_3 = (Q, \Sigma, \delta', \mathbf{r}, F),$

Теорема: окончание доказательства

- $\mathcal{A}=(Q,\Sigma,\delta,\mathrm{q_0},F)-($ полный) ДКА. Тогда язык $\overline{L(\mathcal{A})}$ Замкнутость относительно дополнения. Пусть распознаётся ДКА ($Q, \Sigma, \delta, q_0, Q \setminus F$).
- ullet Замкнутость относительно пересечения. $K\cap L=\overline{\overline{K}\cup \overline{L}}$

зыков 18 февраля 2011 г. 21 / 35

Определение регулярного языка. Теорема Клини

результате конечного числа операций объединения, произведения и конечных языков (или языков вида \emptyset , $\{arepsilon\}$, $\{\mathtt{a}\}$, где \mathtt{a} — символ) в Язык называется регулярным, если он может быть получен из итерации. Обозначим через $\mathbb R$ класс всех регулярных языков.

Теорема (теорема Клини)

 $\mathbb{R} = \mathbb{A}$.

Доказательство. $\mathbb{R}\subseteq \mathbb{A}$ по предыдущим теореме и предложению. Покажем, что $\mathbb{A} \subseteq \mathbb{R}$.

Пусть $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$ — неполный ДКА. Индукцией по числу переходов автомата ${\mathcal A}$ докажем, что язык $L({\mathcal A})$ регулярен.

ыных языков 18 февраля 2011 г. 24 / 35

Георема Клини: окончание доказательства

• Для завершения доказательства достаточно показать, что $L(\mathcal{A}) = L(\mathcal{A}_0) \cup L(\mathcal{A}_1)\{a\} (L(\mathcal{A}_2)\{a\})^* L(\mathcal{A}_3).$

 $\widehat{*}$

- ullet Пусть $w\in L(\mathcal{A})$. Если автомат \mathcal{A} распознал w, не совершив перехода $\delta(\mathbf{q},\mathbf{a}) = \mathbf{r}$, то $w \in L(\mathcal{A}_0)$.
 - 9 ullet Если же переход $\delta({
 m q},{
 m a})={
 m r}$ был совершён $n\geqslant 1$ раз, $w=w_0$ а w_1 а $\dots w_{n-1}$ а w_n для некоторых $w_0\in L(\mathcal{A}_1)$, $w_1,\ldots,w_{n-1}\in L(\mathcal{A}_2),\ w_n\in L(\mathcal{A}_3)$:

○→ ··· → (q) ♣ (z) → ··· → (q) ♣ (z) → ··· → (q) ♣ (z) → ···

- Так что $w\in L(\mathcal{A}_1)\{a\}(L(\mathcal{A}_2)\{a\})^*L(\mathcal{A}_3).$
 Пусть w принадлежит правой части (*). Если $w\in L(\mathcal{A}_0)$, то по
- Если $w \in L(\mathcal{A}_1)\{a\}(L(\mathcal{A}_2)\{a\})^*L(\mathcal{A}_3)$, то $w = w_0 a w_1 a \dots w_{n-1} a w_n$ для некоторых $n\geqslant 1$, $w_0\in \mathsf{L}(\mathcal{A}_1)$, $w_1,\dots,w_{n-1}\in \mathsf{L}(\mathcal{A}_2)$ определению автомата \mathcal{A}_0 верно $w \in \mathcal{L}(\mathcal{A})$.

 $w_n \in L(\mathcal{A}_3)$. Отсюда $w \in L(\mathcal{A})$.

х языков 18 февраля 2011 г. 25 / 35

языков 18 февраля 2011 г. 26 / 35

(@ > (≥ > (≥ >) ≥ (∩) C | 18 февраля 2011 г. 27 / 35

Определение регулярных выражений

- Регулярные языки можно задавать так называемыми регулярными выражениями
- Регулярные выражения в алфавите (над алфавитом) Σ и языки, которые они обозначают, определяются следующим образом:
- символы $\emptyset, \, arepsilon \,$ и а $(\mathsf{гдe} \, \mathsf{a} \in \Sigma)$ являются регулярными выражениями в Σ , обозначающими языки \emptyset , $\{\varepsilon\}$ и $\{a\}$ соответственно;
- если r и s регулярные выражения в Σ , обозначающие языки R и S соответственно, то (r|s), (rs) и r^* являются регулярными выражениями в Σ , обозначающими языки $R \cup S$, RS и R^*
- Класс 🗵 совпадает с классом всех языков, определяемых регулярными выражениям

соответственно.

- Переносим соглашение о приоритетах операций над языками.
- Пример: $\Sigma = \{a, b\}$

 $a^*b^2|bb^*a = \{a^mb^2 \mid m \geqslant 0\} \cup \{b^na \mid n \geqslant 1\}$ $(a|b)^*a=\{wa\mid w\in\Sigma^*\}.$ Регулярные выражения, задающие идентификаторы

ых языков 18 февраля 2011 г. 28 / 35

Имя (или идентификатор):

$$\langle {
m zmx}
angle = \langle {
m byrba}
angle (\langle {
m byrba}
angle | \langle {
m tm} {
m ppa}
angle
angle)
angle ,$$
 где $\langle {
m byrba}
angle = {
m a} {
m b} | \dots | {
m z} \; ,$ $\langle {
m tm} {
m ppa}
angle = {
m o} | {
m 1} | \dots | {
m 9}$

• Целое без знака:

$$\langle \mathtt{пелоe_6es_знакa}
angle = \langle \mathtt{пифpa}
angle (\langle \mathtt{пифpa}
angle)^*$$

Число без знака

$$\langle \mathtt{viclo_6es_3haka} \rangle = \langle \mathtt{uenoe_6es_3haka} \rangle \langle \cdot \langle \mathtt{uenoe_6es_3haka} \rangle | \varepsilon \rangle$$

$$\langle \mathtt{Uenoe_6es_3haka} \rangle | \varepsilon \rangle$$

Нерегулярность скобочного языка LB

СПБАУ РАН) Лекции по теории формальных языков 18 февраля 2011 г. 31 / 35

- Предположим, что язык LB распознаётся некоторым ДКА A.
 Пусть п число состояний этого автомата. Автомат A
 - распознаёт цепочку $w = [[\dots]]$
- последовательно переходит в состояния, обозначаемые $q_1,\dots,q_n.$ ullet Из начального состояния q_0 автомат ${\mathcal A}$ при чтении n скобок [
 - ullet Найдутся такие i < j, что ${
 m q_i} = {
 m q_j}$. Путь в автомате ${\cal A}$, помеченный цепочкой и, можно представить так:

ullet Но тогда ${\mathcal A}$ распознаёт и цепочку $[\hspace{-0.04cm}[\ldots]\hspace{-0.04cm}]$, не

языков 18 февраля 2011 г. 34 / 35 принадлежащую *LB*. Противоречие.

Построение конечного автомата по регулярному выражению

Нормальный ε-НКА, распознающий язык а(а∣b)*аb:

Регулярные выражения, задающие константы и простые типы

• Константа (в языке Паскаль):

$$\langle \texttt{константа}\rangle = (\texttt{константа}) = ((+|-|\varepsilon|)\langle \texttt{число_без_знака}\rangle | \langle \texttt{ммя}\rangle | | \langle (\mathsf{буква}\rangle | \langle \texttt{цифра}\rangle |''\rangle^* |$$

Простой тип (в языке Паскаль):

$$\langle \mathtt{mms} \rangle \mid "(" \langle \mathtt{mms} \rangle)(, \langle \mathtt{mms} \rangle)^* ")" \mid \langle \mathtt{kohctahta} \rangle ... \langle \mathtt{kohctahta} \rangle$$

• Арифметические выражения (со сбалансированными скобками) не задаются регулярными выражениями, иначе говоря, не распознаются конечными автоматами. еории формальных языков 18 февраля 2011 г. 32 / 35

Литература

Основная литература

- Замятин А. П., Шур А. М. Языки, грамматики, распознаватели: (электронный вариант книги — на http://elar.usu.ru, поиск) Учебное пособие. Екатеринбург : Изд-во Урал. ун-та, 2007 Дополнительная литература
- Ахо А., Ульман Дж. Теория синтаксического анализа, перевода и Ахо А., Лам М., Сети Р., Ульман Дж. Компиляторы: принципы, технологии и инструментарий. М.: ООО "И.Д. Вильямс", 2008 компиляции. М.: Мир, 1978
- Издательство С.-Петербургского университета, 2004 (электронный • Мартыненко Б. К. Языки и трансляции: Учеб. пособие. СПб.: вариант книги — на http://www.math.spbu.ru/user/mbk)

языков 18 февраля 2011 г. 35 / 35

Недетерминированные

План

- **C1**
- Вегулярные языки
- Ф Автоматные (регулярные) фрагменты языков программирования

План

языков 18 февраля 2011 г. 29 / 35

языков 18 февраля 2011 г. 30 / 35

- Недетерминированные
- 67
- Вегулярные языки
- 4 Автоматные (регулярные) фрагменты языков
- Пример нерегулярного языка

ыных языков 18 февраля 2011 г. 33 / 35