Assignment 1

Jonas Trepiakas - hv
n548@alumni.ku.dk

Homework 1: Decide which of the following \mathcal{B} are a basis for some topology on the respective given sets X.

- (i) $X = \mathbb{N}, \mathcal{B} = \{U \subset \mathbb{N} \mid 10 < \#(\mathbb{N} \setminus U) < \infty\};$
- (ii) $X = \mathbb{N}, \mathcal{B} = \{U \subset \mathbb{N} \mid \#(\mathbb{N}\backslash U) < 10\}$;
- (iii) $X = \mathbb{R}^2, \mathcal{B} = \{B_r(0) \mid r > 0\}$ where $B_r(0)$ denotes the open disk of radius r around 0 in \mathbb{R}^2 with respect to the Euclidean metric.

Solution: We will freely use that if $A \subseteq B$, the inclusion function is injective and thus $\#A \le \#B$.

(i) We claim \mathcal{B} is a basis for a topology on X. We check the requirements in theorem 3.6:

We have that any $U \in \mathcal{B}$ is by definition a subset of X. Now,

 $\{2, \ldots, x+9\} = 10$, so $U_x \in \mathcal{B}$, and

$$X = \bigcup_{x \in X} \{x\} \subseteq \bigcup_{x \in X} U_x \subseteq \bigcup_{U \in \mathcal{B}} U \subseteq X.$$

Hence $\bigcup_{U \in \mathcal{B}} U = \bigcup_{x \in X} U_x = X$. (b) Let $U, V \in \mathcal{B}$ and let $x \in U \cap V$ (if $U \cap V = \emptyset$, the requirement is satisfied trivially). We have

$$\#\mathbb{N}\backslash\left(U\cap V\right)\overset{\mathrm{De}\ \mathrm{Morgan}}{=}\#\mathbb{N}\backslash U\cup\mathbb{N}\backslash V\geq\#\mathbb{N}\backslash U\geq10$$

and

$$\#\mathbb{N}\setminus (U\cap V) \stackrel{\text{De Morgan}}{=} \#\mathbb{N}\setminus U\cup \mathbb{N}\setminus V \stackrel{\text{PIE}}{\leq} \#\mathbb{N}\setminus U + \#\mathbb{N}\setminus V < \infty,$$

where PIE stands for the principle of inclusion-exclusion (sætning 469, dismat). Thus $U \cap V \in \mathcal{B}$ and the condition is satisfies with $W = U \cap V$ since $x \in U \cap V \subseteq U \cap V$. Now the claim follows by theorem 3.6.

(ii) We claim \mathcal{B} is not a basis for a topology on \mathbb{N} .

Let $U = \{x \in \mathbb{N} \mid x > 11\}, V = \{x \in \mathbb{N} \mid x > 21 \lor x < 10\}$. Then

$$\#\mathbb{N}\setminus U = \#\{1, 2, \dots, 10\} = 10, \qquad \#\mathbb{N}\setminus V = \#\{11, 12, \dots, 20\} = 10.$$

Thus $U, V \in \mathcal{B}$. Now,

$$U \cap V = \{x \in \mathbb{N} \mid x \ge 11 \land (x \ge 21 \lor x \le 10)\} = \{x \in \mathbb{N} \mid x \ge 21\} \dots$$

Then $21 \in U \cap V$, and assume $\exists W \in \mathcal{B}$ such that $21 \in W \subseteq U \cap V = \{x \in \mathbb{N} \mid x \geq 21\}$. Then $W \cap (U \cap V)^c = \emptyset$, so

$$\{1, 2, \dots, 20\} \subseteq \mathbb{N} \backslash W$$
.

Hence $20 = \#\{1, \dots, 20\} \le \#\mathbb{N} \setminus W$, so $W \notin \mathcal{B}$ in contradiction with the assumption. Now the claim follows by theorem 3.6.

(iii) We claim \mathcal{B} is a basis for a topology on $\mathbb{R}^2 = X$.

Any element in \mathcal{B} is by definition a subset of X. Now, we claim $\bigcup_{r\in\mathbb{N}} B_r(0) = \mathbb{R}^2$: since $B_r(0) \subseteq \mathbb{R}^2$, $\bigcup_{r\in\mathbb{N}} B_r(0) \subseteq \mathbb{R}^2$ trivially.

Now assume $x \in \mathbb{R}^2$. Then $|x| \in \mathbb{R}$, so there exists $N \in \mathbb{N}$ such that |x| < N (take e.g. $N = \lceil |x| \rceil + 1$). Then $x \in B_N(0)$ by definition and thus $x \in \bigcup_{r \in \mathbb{N}} B_r(0)$. Hence $\mathbb{R}^2 \subseteq \bigcup_{r \in \mathbb{N}} B_r(0)$. Thus the claim follows.

Now we have

$$\mathbb{R}^2 = \bigcup_{r \in \mathbb{N}} B_r(0) \subseteq \bigcup_{U \in \mathcal{B}} U \subseteq \mathbb{R}^2.$$

Thus $\bigcup_{U \in \mathcal{B}} U = \mathbb{R}^2$, so (a) in theorem 3.6 is satisfied.

Now let $B_r(0), B_s(0) \in \mathcal{B}$. We claim $B_r(0) \cap B_s(0) = B_{\min\{r,s\}}(0)$:

Let $x \in B_r(0) \cap B_s(0)$, then $x \in B_r(0)$ and $x \in B_s(0)$ so by definition |x| < r and |x| < s, hence, since $\min\{r, s\} \in \{r, s\}, |x| < \min\{r, s\}, \text{ so } x \in B_{\min\{r, s\}}(0).$

Conversely, if $x \in B_{\min\{r,s\}}(0)$ then $|x| < \min\{r,s\} \le r, s$, so by transitivity (or simply equality if r = s

), |x| < r and |x| < s, hence $x \in B_r(0)$ and $x \in B_s(0)$ so $x \in B_r(0) \cap B_s(0)$. Now condition (b) in theorem 3.6 is satisfied by choosing $W = B_{\min\{r,s\}}(0)$ (since r, s > 0 also $\min\{r,s\} > 0$ so it is in \mathcal{B}) since for any $x \in B_r(0) \cap B_s(0)$, $x \in B_{\min\{r,s\}}(0) \subseteq B_r(0) \cap B_s(0)$. Now the claim follows by theorem 3.6.

Homework 2. Let X be a non-empty set and fix a point $x_0 \in X$. Define

$$\mathcal{B} := \{ \{x_0\} \} \cup \{ \{x_0, x\} \mid x \in X \setminus \{x_0\} \} .$$

(i) Prove that \mathcal{B} is the basis for some topology on X which we will denote by \mathcal{T} .

Solution: We check the conditions in theorem 3.6: All sets in \mathcal{B} are subsets of X.

Assume first $X \setminus \{x_0\} \neq \emptyset$.

Now, let $U_x = \{x_0, x\}$ for $x \in X \setminus \{x_0\}$, then $x \in U_x \in \mathcal{B}$, so

$$X = \bigcup_{x \in X} \{x\} \subseteq \bigcup_{x \in X \setminus \{x_0\}} U_x \subseteq \bigcup_{U \in \mathcal{B}} U \subseteq X$$

where the first inclusion follows by the above and because $x_0 \in U_x$ for any $x \in X \setminus \{x_0\}$. Thus $\bigcup_{U \in \mathcal{B}} U = X$, so (a) is satisfied.

Let $U, V \in \mathcal{B}$. If either U or V are $\{x_0\}$, then $U \cap V = \{x_0\}$. If $U = \{x_0, x\}, V = \{x_0, y\}$ for $x, y \in X \setminus \{x_0\}$ with $x \neq y$ then also $U \cap V = \{x_0\}$. In these cases, setting $W = \{x_0\}$, $W \in \mathcal{B}$ and satisfies the condition (b) of theorem 3.6: $x_0 \in W \subseteq U \cap V$.

If x = y above, then $U \cap V = U \in \mathcal{B}$, hence for all $x \in U \cap V = U$, $x \in U \subseteq U \cap V$, so W = U satisfies (b).

This exhausts all cases, hence (b) is checked and it follows that \mathcal{B} is a basis for some topology on X by theorem 3.6.

If $X\setminus\{x_0\}=\varnothing$, then $\mathcal{B}=\{X\}$ which clearly is a basis for the trivial topology on X since $\mathcal{B}\subseteq\{\varnothing,X\}$ and for any $x\in X$ and every neighborhood U of x, U must be X and thus the condition in definition 3.1 is satisfied with $U'=X\in\mathcal{B}$ since $x\in U'\subseteq U$.

(ii) Find all subsets of X which are simultaneously open and closed with respect to \mathcal{T} .

Solution: If $A \subseteq X$ is simultaneously open and closed with respect to \mathcal{T} , then $A \in \mathcal{T}$ and $A^c = X \setminus A \in \mathcal{T}$. Since $X \setminus \emptyset = X \in \mathcal{T}$, $X \setminus X = \emptyset \in \mathcal{T}$, we have that X, \emptyset are simultaneously open and closed.

Assume now A is neither X nor \emptyset - in particular we are dealing with the case $X \setminus \{x_0\} \neq \emptyset$ from (i).

Thus by proposition 3.2 and theorem 3.6.(a), $A = \bigcup_{U \in S} U$, $A^c = \bigcup_{U \in T} U$ where $S, T \subsetneq \mathcal{B}$ and $S, T \neq \emptyset$. Then

$$\varnothing = A \cap A^c = \bigcup_{U \in S} U \cap \bigcup_{V \in T} V \stackrel{(7.52) \text{ dismat}}{=} \bigcup_{U \in S, V \in T} \underbrace{U \cap V}_{\text{contains } x_0}.$$

The last equality follows by using the distribute law for sets ((7.52) in the dismat book twice).

We saw in (i) that any intersection of basis elements contains x_0 , hence the union above contains x_0 and hence cannot equal the empty set. Thus, no such A can exist. So the only subsets of X that are simultaneously open and closed with respect to \mathcal{T} are X and \emptyset .

(iii) Let $Y = X \setminus \{x_0\}$. Prove that the subspace topology on Y obtained from (X, \mathcal{T}) equals the discrete topology on Y.

Solution: We note that any topology on Y is coarser than the discrete topology on Y (Remark 2.11), hence we must only show that the discrete topology on Y is coarser than the subspace topology on Y obtained from (X, \mathcal{T}) .

Let A be any open set in the discrete topology on Y; let $y \in A$. Since $A \subseteq X \setminus \{x_0\}$, $A \cap \{x_0\} = \emptyset$, so $y \in \{x_0, y\} \cap Y \subseteq A$, and since $\{x_0, y\}$ is a basis element in X, it is open in the topology generated by

the basis by definition 3.7, hence $\{x_0, y\} \cap Y$ is open in the subspace topology on Y by definition 4.1. Letting $A_y = \{x_0, y\} \cap Y$, we thus get

$$A = \bigcup_{y \in A} \{y\} \subseteq \bigcup_{y \in A} A_y \subseteq A.$$

Hence $A = \bigcup_{y \in A} A_y$ which is open as it is the union of open sets. So A is open in the subspace topology.

Homework 3. Let (X,<) be a totally ordered set. Assume that X has a maximal element with respect to < which we call x_{max} . Let

$$S = \{(x, x_{max}) \mid x \in X \setminus \{x_{max}\}\}.$$

Under what condition does S define a subbasis for some topology on X? In the case that it defines a subbasis, compare, if possible, the topology generated by S with the order topology on X.

Solution: By lemma 3.11, S is a subbasis for some topology on X if it satisfies (a) of definition 3.10. Assume X has no minimal element. Then let $x \in X$. We then have $x \in (y, x_{max}] \in S$ where $y \in X$ with y < x (such an element exists since otherwise x would be a minimal element). Since $x \in X$ was arbitrary, we can for any $x \in X$ find $S_x \in S$ such that $x \in S_x$. Hence

$$X = \bigcup_{x \in X} \{x\} \subseteq \bigcup_{x \in X} S_x \subseteq \bigcup_{S \in \mathcal{S}} S \subseteq X.$$

So (a) of definition 3.10 is satisfied.

Assume that X has a minimal element, call it x_{min} . Then $x_{min} \in X$ but there does not exist $x \in X \setminus \{x_{max}\}$ such that $x_{min} \in (x, x_{max}]$ since if such an x existed, $x < x_{min}$ by definition of intervals, and this contradicts the minimality of x_{min} . Thus $x \notin \bigcup_{S \in \mathcal{S}} S$, so $\bigcup_{S \in \mathcal{S}} S \neq X$ and thus (a) of definition 3.10 is not satisfied; so \mathcal{S} is not a subbasis for some topology \mathcal{T} on X.

Hence S defines a subbasis for some topology on X if and only if X does not have a minimal element.

Assume now that S does define a subbasis for some topology on X.

Then X has no minimal element, so the order topology on X is generated by the basis containing all intervals of the form (x, y) with $x, y \in X, x < y$ and all intervals of the for $(x, x_{max}], x \in X \setminus \{x_{max}\}$ (basis by proposition 4.13). Hence S is contained in this basis, and thus S is contained in the order topology on X. Hence, since topologies are closed under finite intersections, the basis generated by the subbasis S is also contained in the order topology, and again, since topologies are closed under finite intersections and arbitrary unions, the topology generated by S (the topology generated by the basis generated by S) is contained in the order topology.

Thus, the order topology on X is finer than the topology generated by S on X. We claim it is strictly finer: since X has no minimal element and is totally ordered, we can choose $x \in X$ such that $x < x_{max}$. Since x is not minimal, we can choose $y \in X$ such that $y < x < x_{max}$. Again, since y is not minimal, we can choose $z \in X$ with $z < y < x < x_{max}$. Now $y \in (z, x)$ which is open in the order topology.

We claim that S is, in fact, even a basis for the topology it generates. For this it suffices to show that the basis it generates is equal to S. Let $(x_1, x_{max}], \ldots, (x_n, x_{max}]$ be a finite collection of elements from S, then since X is totally ordered, we can order x_1, \ldots, x_n , and assume without loss of generality that $x_1 \leq x_2 \leq \ldots \leq x_n$. Then

$$\bigcap_{i=1}^{n} (x_i, x_{max}] = (x_n, x_{max}] \in \mathcal{S}.$$

Hence S is closed under finite intersections and is thus equal to the basis it generates.

Thus if the topologies were equal, there would exist a basis element $(a, x_{max}]$ of the topology generated by S such that $y \in (a, x_{max}] \subseteq (z, x)$ (by definition 3.1); however then $x_{max} < x < x_{max}$ which is a contradiction. Hence the order topology is strictly finer than the topology generated by S.