EE2026 Digital Design

BOOLEAN ALGEBRA

Massimo ALIOTO

Dept of Electrical and Computer Engineering

Email: massimo.alioto@nus.edu.sg

Get to know the latest silicon system breakthroughs from our labs in 1-minute video demos

Outline

- Definitions and postulates
- Theorems
- Boolean functions and truth table
- Boolean function simplification using algebra manipulation

Boolean Algebra

- Developed as formal algebraic system in 1854 by George Boole (English mathematician, philosopher, and logician)
 - Huntington formulated the postulates in 1904 as formal definition
 - Boolean Algebra is the mathematical foundation for digital system design, including computers
 - First applied by C.E Shannon (MIT) to the practical problem of analyzing networks of relays (switches)
 - Useful for control and logic systems
- Boolean algebra is ultimately described by
 - a set of elements B={0,1} (binary symbols)
 - operator ... (NOT) on single operand ←
 - \circ operators \cdot (AND), + (OR) on multiple operands $\stackrel{\longleftarrow}{\leftarrow}$

binary constants or variables (as in common algebra)

· has precedence over +

Boolean Algebra

- Huntington postulates as foundation of Boolean algebra
 - General algebraic structure based on axioms (rules), leading to more practical settheoretic definition (operations are a consequence of postulates)
 - 1. Closure
 - $\forall x,y \in B, x+y \in B$ (outcome of operation is still in B, obviously)
 - $\lor \forall x, y \in B, x \cdot y \in B$ (outcome of operation is still in B, obviously)
 - 2. Neutral elements of + and ·
 - There exists a 0 and 1 element in B, such that
 - $x + 0 = x \leftarrow 0$ o is neutral elements for +
 - \circ $x \cdot 1 = x \leftarrow$ 1 is neutral elements for \cdot
 - 3. Commutative Law
 - \circ x + y = y + x
 - \circ $x \cdot y = y \cdot x$

Boolean Algebra

- 4. Distributive Law
- $x \cdot (y + z) = x \cdot y + x \cdot z$ (• over +, easy to remember)
- $x + (y \cdot z) = (x + y) \cdot (x + z) \text{ (+ over } \cdot \text{ not intuitive, still true)}$
- 5. Complement
- \lor $\forall x \in B$, there exists an element $\bar{x} \in B$ (complement of x) such that
 - \circ $x + \bar{x} = 1$
 - $\cdot \quad x \cdot \bar{x} = 0$
- 6. There exist at least two distinct elements in the set B (obvious, it was introduced for more general algebras with more than two symbols)

Operators in Boolean Algebra

Derived from axioms:

OR: A + B

В	A + B
0	0
1	1
0	1
1	1
	0 1 0

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 1$

truth table (simplest expression of a function)

AND: $A \cdot B$

$$0 \cdot 0 = 0$$

 $0 \cdot 1 = 0$
 $1 \cdot 0 = 0$
 $1 \cdot 1 = 1$

NOT: \overline{A} $\begin{array}{c|ccc}
A & \overline{A} \\
\hline
0 & 1 \\
1 & 0
\end{array}$

$$A = 0 \rightarrow \overline{A} = 1$$

$$A = 1 \rightarrow \overline{A} = 0$$

priority: NOT has highest precedence, followed by AND and OR \rightarrow NOT(A \cdot B + C) = NOT((A \cdot B) + C)

Boolean vs. Elementary Algebra

Boolean algebra	Ordinary algebra
No associative law. But it can be derived from the other postulates	Associative law is included: $a + (b + c) = (a + b) + c$
Distributive law: $x + (y \cdot z) = (x + y) \cdot (x + z)$ valid	Not valid
No additive or multiplicative inverses, therefore there are no subtraction and division operation	Subtraction and division operations exist
Complement operation available	No complement operation
Boolean algebra: Undefined set of elements; Switching algebra: a two-valued Boolean algebra, whose element set only has two elements, 0 and 1	Dealing with real numbers and constituting an infinite set of elements

Theorems of Boolean Algebra

#	Theorem					
1	A + A = A	$A \cdot A = A$	Tautology Law			
2	A + 1 = 1	$A \cdot 0 = 0$	Union Law			
3	$\overline{(\overline{A})} = A$		Involution Law			
4	A + (B + C) $= (A + B) + C$	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	Associative Law			
5	$\overline{A+B} = \bar{A} \cdot \bar{B}$	$\overline{A \cdot B} = \overline{A} + \overline{B}$	De Morgan's Law			
6	$A + A \cdot B = A$	$A \cdot (A+B) = A$	Absorption Law			
7	$A + \bar{A} \cdot B = A + B$	$A \cdot (\bar{A} + B) = A \cdot B$				
8	$AB + A\bar{B} = A$	$(A+B)(A+\bar{B})=A$	Logical adjacency			
9	$AB + \bar{A}C + BC$ $= AB + \bar{A}C$	$(A+B)(\bar{A}+C)(B+C)$ = $(A+B)(\bar{A}+C)$	Consensus Law			

duality (swap OR and AND, swap 0 and 1)

Analytical Expressions and Truth Tables

- Analytical expressions for Boolean functions use logical relationship between binary variables via operators
 - Evaluated by determining the binary value of the expression for all possible values of the variables
 - Examples:

$$F_1 = A + B$$

$$F_3 = A + BC$$

$$F_3 = A + BC$$

$$F_2 = A \cdot B$$

$$F_4 = \bar{A}\bar{B}C + AB\bar{C}$$

- Truth table lists all possible combinations of input values and corresponding output
 - Examples:
 - Repeat for F_2 and F_4

$$\boldsymbol{F_1} = \boldsymbol{A} + \boldsymbol{B}$$

Α	В	F ₁
0	0	0
0	1	1
1	0	1
1	1	1

Α	В	С	F ₃
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Using Truth Tables to Prove Theorems

- Exhaustively check validity for all possible input values
 - Example: prove De Morgan's laws

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

A B $\overline{A + B}$ $\overline{A} \cdot \overline{B}$

0 0 1 0 0
1 0 0
1 1 0 0
1 1 0 0

equality true for all input values $\overline{A \cdot B} = \overline{A} + \overline{B}$

 $\rightarrow \mathsf{proved}$

Α	В	$\overline{A\cdot B}$	$\overline{A} + \overline{B}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Example: prove other laws

$$A + \bar{A} \cdot B = A + B$$

Α	В	$A + \overline{A} \cdot B$	A + B
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

$$A \cdot (A + B) = A$$

Α	В	$A \cdot (A + B)$	A
0	0	0	0
0	1	0	0
1	0	1	1
1	1	1	1

Special Forms of Boolean Expressions: SOP, POS

- A Boolean expression can be rewritten in many formally different (but equivalent) forms
 - Sum of products (SOP)
 - Logic sum of product terms
 - Example:

- Product of sums (POS)
 - Logic product of sum terms
 - Example:

rms $F_2(A,B,C) = (A+B+C) \cdot (A+\bar{B}+\bar{C}) \cdot (\bar{A}+B+C) \cdot (\bar{A}+\bar{B}+\bar{C})$ sums

Special Forms of Boolean Expressions: Canonical

- Definition of minterms and maxterms
 - Minterm: product term that contains all variables of the function
- "." often omitted
- examples in Boolean Function Z=f(A,B,C)
- $^{\circ}$ $^{\prime}$ $^{\prime}$
- \circ AC, $A\overline{B}$, \overline{A} are not minterms (some variable is missing)
- Maxterm: product term that contains all variables of the function
 - examples in Boolean Function Z=f(A,B,C)
 - \circ A+B+C, $A+\bar{B}+\bar{C}$, $\bar{A}+B+C$ are maxterms (contain all variables)
 - \circ A+B, $\bar{B}+\bar{C}$, B are not maxterms (some variable is missing)
- Canonical form: SOP = sum of only minterms
 (POS = product of only maxterms)
 SOP

POS

$$F_1(A,B,C) = \bar{A}B\bar{C} + A\bar{B}\bar{C} + A\bar{B}\bar{C} + AB\bar{C} \leftarrow \text{canonical form} \rightarrow F_3(A,B,C) = (A+B+C)(A+B+\bar{C})(A+\bar{B}+\bar{C})$$

$$F_2(A,B,C) = \bar{A}B\bar{C} + A\bar{B}\bar{C} + AB\bar{C} \leftarrow \text{non canonical form} \rightarrow F_4(A,B,C) = (A+B+C)(A+\bar{C})(A+\bar{B}+\bar{C})$$

$$\text{non minterms}$$

Minterm Association with Input Value

- In n-variable function, there are 2ⁿ different minterms
 - Example with n=3

Α	В	С	minterm
0	0	0	$ar{A}\cdotar{B}\cdotar{C}$
0	0	1	$ar{A}\cdotar{B}\cdot\mathcal{C}$
0	1	0	$ar{A}\cdot B\cdot ar{\mathcal{C}}$
0	1	1	$\bar{A} \cdot B \cdot C$
1	0	0	$A\cdot ar{B}\cdot ar{C}$
1	0	1	$A\cdot ar{B}\cdot C$
1	1	0	$A \cdot B \cdot \bar{C}$
1	1	1	$A \cdot B \cdot C$

input value making minterm = 1

- o Input value such that $A \cdot B \cdot C = 1 \leftarrow 111$ $\bar{A} \cdot \bar{B} \cdot \bar{C} = 1 \leftarrow 000$ $\bar{A} \cdot B \cdot C = 1 \leftarrow 011$
- There exists at least one input value such that given minterm = 1
 (rule: 1 if not complemented, 0 if complemented)
- Value of the above minterms is 0 under any other input value (mostly 0, 1 only for specific input)
- There exists one and only one input value such that given minterm = 1

Direct (one-to-one) relation between minterms or values making them 1

Maxterm Association with Input Value

- In n-variable function, there are 2ⁿ different maxterms
 - Example with n=3

Α	В	С	maxterm
0	0	0	A + B + C
0	0	1	$A+B+\bar{C}$
0	1	0	$A + \overline{B} + C$
0	1	1	$A + \bar{B} + \bar{C}$
1	0	0	$\bar{A} + B + C$
1	0	1	$\bar{A} + B + \bar{C}$
1	1	0	$\bar{A} + \bar{B} + C$
1	1	1	$\bar{A} + \bar{B} + \bar{C}$

input value making maxterm = 0

- Input value such that $A + B + C = 0 \leftarrow 000$ $\bar{A} + \bar{B} + \bar{C} = 0 \leftarrow 111$ $\bar{A} + B + C = 0 \leftarrow 100$
- There exists at least one input value such that given maxterm = 0 ← duality (rule: 0 if not complemented, 1 if complemented)
- Value of the above maxterms is 1 under any other input value (mostly 1, 0 only for specific input) ← duality
- There exists **one and only** one input value such that given maxterm = 0

Direct (one-to-one) relation between maxterms or values making them 0

Convert Truth Table → **Canonical Form: SOP (CSOP)**

- In n-variable function, there are 2ⁿ different minterms and maxterms
 - Example with n=3: sum of 2 products (CSOP)

Α	В	С	F	minterm	maxterm
0	0	0	0	$ar{A}\cdotar{B}\cdotar{\mathcal{C}}$	A + B + C
0	0	1	0	$ar{A}\cdotar{B}\cdot\mathcal{C}$	$A + B + \bar{C}$
0	1	0	1	$ar{A} \cdot B \cdot ar{C}$	$A + \bar{B} + C$
0	1	1	0	$ar{A} \cdot B \cdot C$	$A + \bar{B} + \bar{C}$
1	0	0	1	$A \cdot \bar{B} \cdot \bar{C}$	$\bar{A} + B + C$
1	0	1	0	$A\cdot ar{B}\cdot C$	$\bar{A} + B + \bar{C}$
1	1	0	0	$A \cdot B \cdot \bar{C}$	$\bar{A} + \bar{B} + C$
1	1	1	0	$A \cdot B \cdot C$	$\bar{A} + \bar{B} + \bar{C}$

• If F=1 only for input 010:

$$F = \bar{A} \cdot B \cdot \bar{C}$$

• If F=1 only for inputs 010 and 100:

$$F = \overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C}$$
0 for input 100 0 for input 010

- Each minterm is 1 only for a specific input
 - no "interference" with other inputs → just add minterms independently

Convert Truth Table → **Canonical Form: SOP (CSOP)**

- In n-variable function, there are 2ⁿ different minterms and maxterms
 - Example with n=3: sum of 4 products (CSOP)

Α	В	С	F	minterm	maxterm
0	0	0	0	$ar{A}\cdotar{B}\cdotar{C}$	A + B + C
0	0	1	0	$ar{A}\cdotar{B}\cdot \mathcal{C}$	$A+B+\bar{C}$
0	1	0	1	$ar{A} \cdot B \cdot ar{C}$	$A + \bar{B} + C$
0	1	1	0	$ar{A} \cdot B \cdot C$	$A + \bar{B} + \bar{C}$
1	0	0	1	$A \cdot \bar{B} \cdot \bar{C}$	$\bar{A} + B + C$
1	0	1	1	$A \cdot \bar{B} \cdot C$	$\bar{A} + B + \bar{C}$
1	1	0	0	$A \cdot B \cdot \bar{C}$	$\bar{A} + \bar{B} + C$
1	1	1	1	$A \cdot B \cdot C$	$\bar{A} + \bar{B} + \bar{C}$

$$F = \overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot C$$

- Truth table is expressed directly with canonical form by
 - 1. Identifying minterms = 1 for the input values making F = 1
 - 2. (Logically) add them up

Convert Truth Table → **Canonical Form: POS (CPOS)**

Example with n=3: product of 3 sums (CPOS)

Α	В	С	F	minterm	maxterm
0	0	0	0	$ar{A}\cdotar{B}\cdotar{C}$	A + B + C
0	0	1	0	$ar{A}\cdot ar{B}\cdot C$	$A+B+\bar{C}$
0	1	0	1	$ar{A} \cdot B \cdot ar{C}$	$A + \bar{B} + C$
0	1	1	0	$ar{A} \cdot B \cdot C$	$A + \bar{B} + \bar{C}$
1	0	0	1	$A\cdot ar{B}\cdot ar{\mathcal{C}}$	$\bar{A} + B + C$
1	0	1	0	$A\cdot ar{B}\cdot C$	$\bar{A} + B + \bar{C}$
1	1	0	0	$A \cdot B \cdot \bar{C}$	$\bar{A} + \bar{B} + C$
1	1	1	1	$A \cdot B \cdot C$	$\bar{A} + \bar{B} + \bar{C}$

$$F = (A + B + C) \cdot (A + B + \overline{C}) \cdot \cdot \cdot (A + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot \cdot \cdot (\overline{A} + \overline{B} + C)$$

each maxterm is 0 only for a specific input (no "interference" with other inputs)

→ just multiply maxterms independently

- Truth table is expressed directly with canonical form by
 - 1. Identifying maxterms = 0 for the input values making F = 0
 - 2. (Logically) multiply them

Convert Canonical Form → **Truth Table**

Just reverse the process: in SOP (POS), fill in the outputs = 1 (0) for the input values associated with the function minterms (maxterms)

Example: SOP

$$F_1(A, B, C) = \overline{ABC} + \overline{ABC} + \overline{ABC}$$

A	4	В	С	F
)	0	0	0
()	0	1	1
C)	1	0	1
)	1	1	0
	L	0	0	0
1	L	0	1	1
	1	1	0	0
	1	1	1	0

Example: POS

$$F_1(A, B, C) = (A + B + C) + (A + \bar{B} + \bar{C}) + (\bar{A} + B + C) + (\bar{A} + \bar{B} + \bar{C}) + (\bar{A} + \bar{B} + \bar{C}) + (\bar{A} + \bar{B} + \bar{C})$$

 In this example, SOP and POS happen to express the very same function → SOP and POS just different forms

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Convert SOP → **POS** and **POS** → **SOP**

 If starting from SOP, Boolean expression manipulations lead to complement of POS (not POS)

```
• Example: F_1(A,B,C) = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}C complement needed \rightarrow insert 2 to leave function unaltered De Morgan's laws  = \overline{\overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}C}   = \overline{\overline{A}\overline{B}C \cdot \overline{A}B\overline{C} \cdot \overline{A}\overline{B}C}   = \overline{(A+B+\overline{C}) \cdot (A+\overline{B}+C) \cdot (\overline{A}+B+\overline{C})}
```

- To get POS, the above complement needs to be compensated upfront
 - start from complemented SOP
 - manipulate via
 De Morgan's laws
 and derive true POS
 - same when starting from POS to derive SOP

$$\overline{F_1(A, B, C)} = \overline{\overline{A}\overline{B}C} + \overline{A}B\overline{C} + A\overline{B}C$$

$$= \overline{\overline{A}\overline{B}C} \cdot \overline{\overline{A}B\overline{C}} \cdot \overline{\overline{A}BC}$$

$$= (A + B + \overline{C}) \cdot (A + \overline{B} + C) \cdot (\overline{A} + B + \overline{C})$$

Convert Non-Canonical → **Canonical via Truth Table**

• First method: non-canonical form \rightarrow truth table \rightarrow canonical form

Example:

$$F = 1$$
 for any input such that $B\bar{C} = 1$

$$F_1(A, B, C) = \bar{A} + B\bar{C}$$

$$F = 1$$
 for any input such that $\bar{A} = 1$

Resulting SOP canonical form (from entries with F = 1)

$$F_1(A,B,C) = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}B\bar{C} + \bar{A}BC + AB\bar{C}$$

Resulting POS canonical form (from entries with F = 0)

$$F_1(A,B,C) = (\bar{A} + B + C)(\bar{A} + B + \bar{C})(\bar{A} + \bar{B} + \bar{C})$$

Non-Canonical → Canonical via Boolean Algebra

- Use Boolean properties to manipulate the non-canonical expression to let missing literals appear for canonical form
 - Example:

SOP
$$\rightarrow$$
 CSOP
$$F(x, y, z) = \bar{x}y + xz$$

$$= \bar{x}y \cdot 1 + x \cdot 1 \cdot z$$

$$= \bar{x}y(z + \bar{z}) + x(y + \bar{y})z$$

$$= \bar{x}yz + \bar{x}y\bar{z} + xyz + x\bar{y}z$$
For mir A.

For missing literals, complete minterms through postulates: $A \cdot 1 = A$ and $A + \bar{A} = 1$

```
1) express SOP as POS
                                        F(x,y,z) = \bar{x}y + xz
                                                                                                          a) complement twice
           SOP \rightarrow CPOS
                                                                                                          b) apply De Morgan's law
                                                        =\overline{\overline{x}y+xz} a
                                                                                                          c) expand
2) for missing literals, complete
                                                                                                          d) re-apply De Morgan's law
maxterms through distribution postulate
                                                        =\overline{(x+\bar{y})(\bar{x}+\bar{z})} b
                                                        = \overline{x\bar{x} + x\bar{z} + \bar{x}\bar{y} + \bar{y}\bar{z}} \quad \mathbf{c}
A + (BC) = (A + B)(A + C)
(A = incomplete sum,
                                                        =(x+y)(\bar{x}+z)(y+z) d
C = NOT(B) = missing literal
                                                   ⇒ 2) = (x + y + z) \cdot (x + y + \bar{z}) \cdot (\bar{x} + y + z) \cdot (\bar{x} + \bar{y} + z).
x+y=(x+y)+z\overline{z}
                                                                           (x + y + z) \cdot (\bar{x} + y + z)
=(x+y+z)(x+y+\overline{z})
```

Summary

- Postulates and theorems of Boolean algebra
- Boolean operators: AND, OR and NOT
- Boolean functions and truth tables
- Boolean function expressed in SOP and POS form
- Obtain SOP or POS from truth table
- Minterm, maxterm and canonical form (CSOP, CPOS)
- Convert truth table → CSOP and CPOS
- Convert CSOP and CPOS → truth table
- Convert CSOP → CPOS and vice versa
- Non-canonical → canonical form (via truth table, Boolean algebra)