Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

DEPARTMENT OF MATHEMATICS

Course: Fundamentals of Linear Algebra, Calculus and Statistics	Improvement CIE	Maximum marks: 50
Course code: MAT211CT	First semester 2023-2024 Chemistry Cycle Branch: AI, BT, CS, CD, CY, IS, SPARK	Time: 2:00PM-3:30PM Date: 22-01-2024

Instructions to candidates: Answer all questions.

Q.No	QUESTIONS	M	BT	СО
1(a)	Test for consistency and solve the system: x + y + z = 4, $2x + y - z = 1$, $x - y + 2z = 2$.	5	L2	1
1(b)	Apply Rayleigh's power method to find the largest eigenvalue of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$. Take the initial vector as $X_0 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. Perform 4 iterations.	5	L2	2
2(a)	Apply Gauss-Seidel iteration method to solve the following system of equations: $20x + y - 2z = 17$, $3x + 20y - z = -18$, $2x - 3y + 20z = 25$. Carry out 4 iterations.	5	L2	2
2(b)	Evaluate $\int_0^1 \int_x^1 e^{\frac{x}{y}} dy dx$ by changing the order of integration.	5	L2	2
3(a)	Determine the area enclosed by the parabola $y = x^2$ and the line $y = x + 2$.	5	L3	3
3(b)	Transform to polar coordinates and hence evaluate $\int_0^2 \int_0^{\sqrt{2x-x^2}} \frac{x}{\sqrt{x^2+y^2}} dy dx$.	5	L2	2
4	Evaluate $\int_0^{\log_e 2} \int_0^x \int_0^{x+y} e^{x+y+z} dz dy dx$.	10	L2	3
5	Obtain the center of gravity of a triangular lamina with vertices $(0,0)$, $(0,3)$ and $(3,0)$ if the density function is $\rho(x,y) = xy$.	10	L3	4

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

Marks	Partic	ulars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Distribution	Test	Max Marks	5	20	15	10		35	15		-	-

DEPARTMENT OF MATHEMATICS

Scheme and Solution – Chemistry cycle

Course: Fundamentals of Linear Algebra, Calculus and Statistics	Improvement CIE	Maximum marks: 50
Course code: MAT211CT	First semester 2023-2024	
	Chemistry Cycle	
	Branch: AI, BT, CS, CD, CY, IS, SPARK	

Q.No		Marks
1a)	$[A:B] = \begin{bmatrix} 1 & 1 & 1 & : & 4 \\ 2 & 1 & -1 & : & 1 \\ 1 & -1 & 2 & : & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & : & 4 \\ 0 & -1 & -3 & : & -7 \\ 0 & 0 & 7 & : & -12 \end{bmatrix}$	3
	Rank (A) =Rank ([A: B]) =No of variables=3. The system has unique solution. $x = \frac{3}{7}, y = \frac{13}{7}z = \frac{12}{7}$	1 1
1b)	$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \\ 4 \end{bmatrix} = 6 \begin{bmatrix} 1 \\ 0 \\ 0.667 \end{bmatrix}$	2
	$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0.667 \end{bmatrix} = \begin{bmatrix} 7.334 \\ -2.667 \\ 4.001 \end{bmatrix} = 7.334 \begin{bmatrix} 1 \\ -0.364 \\ 0.546 \end{bmatrix}$	1
	$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -0.364 \\ 0.546 \end{bmatrix} = \begin{bmatrix} 7.820 \\ -3.638 \\ 4.002 \end{bmatrix} = 7.820 \begin{bmatrix} 1 \\ -0.465 \\ 0.512 \end{bmatrix}$	1
	$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -0.465 \\ 0.512 \end{bmatrix} = \begin{bmatrix} 7.954 \\ -3.907 \\ 4.001 \end{bmatrix} = 7.954 \begin{bmatrix} 1 \\ -0.4912 \\ 0.5029 \end{bmatrix}$	1
2a)	$x = \frac{17 - y + 2z}{20}$, $y = \frac{-18 - 3x + z}{20}$, $z = \frac{25 - 2x + 3y}{20}$ and initial values $(0,0,0)$	1
	Iteration-1: $x = 0.85, y = -1.0275, z = 1.0109$. Iteration-2: $x = 1.0025, y = -0.9998, z = 1.0000$. Iteration-3: $x = 0.9999, y = -0.9999, z = 1.0000$. Iteration-4: $x = 0.9999, y = -0.9999, z = 1.0000$.	1+1 1+1
2b)	$\int_{0}^{1} \int_{x}^{1} e^{\frac{x}{y}} dy dx = \int_{0}^{1} \int_{0}^{y} e^{\frac{x}{y}} dx dy$	2
	$\int_0^1 \int_x^1 e^{\frac{x}{y}} dy dx = \int_0^1 \left[y e^{\frac{x}{y}} \right]_0^y dy = \int_0^1 [y \cdot e - y] dy = \int_0^1 y (e - 1) dy = \left[\frac{(e - 1)y^2}{2} \right]_0^1$	2
	$\int_0^1 \int_x^1 e^{\frac{x}{y}} dy dx = \frac{e - 1}{2}$	1
3(a)	$y = x^{2}$ $y = x + 2$ $(2, 4)$	2
	(-1,1) 0 0 0 0 0 0 0 0 0 0	

	2 x+2 2	
	$A = \int_{-1}^{\infty} \int_{x^2}^{\infty} dy dx = \int_{-1}^{\infty} (x + 2 - x^2) dx$	2
	$A = \left[\frac{x^2}{2} + 2x - \frac{x^3}{3}\right]_{-1}^2 = \frac{9}{2} \text{ sq. units}$	1
3b)	$I = \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\cos\theta} \frac{r\cos\theta \cdot r}{r} dr d\theta$	2
	$I = \int_{0}^{\frac{\pi}{2}} \int_{0}^{2\cos\theta} r\cos\theta dr d\theta = \int_{0}^{\frac{\pi}{2}} \cos\theta \left[\frac{r^2}{2} \right]_{0}^{2\cos\theta} d\theta = \int_{0}^{\frac{\pi}{2}} 2\cos^3\theta d\theta = 2 \int_{0}^{\frac{\pi}{2}} \frac{1}{4} [\cos 3\theta + 3\cos\theta] d\theta$	2
	$I = \frac{1}{2} \left[\frac{\sin 3\theta}{3} + 3\sin \theta \right]_0^{\frac{\pi}{2}} = \frac{1}{2} \left[-\frac{1}{3} + 3 \right] = \frac{4}{3}$	1
4	$I = \int_{0}^{\log 2} \int_{0}^{x} e^{x+y} \left[e^{z} \right]_{0}^{(x+y)} dy dx$	1
	$I = \int_{0}^{\log 2} \int_{0}^{x} e^{x+y} \left(e^{x+y} - 1 \right) dy dx = \int_{0}^{\log 2} \int_{0}^{x} \left(e^{2(x+y)} - e^{x+y} \right) dy dx$	2
	$I = \int_{0}^{\log 2} \left[e^{2x} \cdot \frac{e^{2y}}{2} - e^{x} \cdot e^{y} \right]_{0}^{x} dx = \int_{0}^{\log 2} \left(\frac{e^{4x}}{2} - e^{2x} - \frac{e^{2x}}{2} + e^{x} \right) dx$	2
	$I = \left[\frac{e^{4x}}{8} - \frac{e^{2x}}{2} - \frac{e^{2x}}{4} + e^{x}\right]_{0}^{\log 2} = \left[\frac{e^{4\log 2}}{8} - \frac{e^{2\log 2}}{2} - \frac{e^{2\log 2}}{4} + e^{\log 2}\right] - \left(\frac{1}{8} - \frac{1}{2} - \frac{1}{4} + 1\right)$	2
	$I = \left(\frac{e^{\log 16}}{8} - \frac{e^{\log 4}}{2} - \frac{e^{\log 4}}{4} + e^{\log 2}\right) - \frac{3}{8}$	2
	$I = \left(\frac{16}{8} - \frac{4}{2} - \frac{4}{4} + 2\right) - \frac{3}{8} = 1 - \frac{3}{8} = \frac{5}{8}$	1
5	(0,3) $x + y = 3$ $dm = p(x, y)dA$	2
	$m = \int_{0}^{3} \int_{0}^{3-x} \rho(x, y) dy dx$	2
	$m = \int_{0}^{3} \int_{0}^{3-x} xy dy dx = \frac{27}{8}$	2
	$\bar{x} = \frac{8}{27} \int_{0}^{3} \int_{0}^{3-x} x^2 y dy dx = \frac{8}{27} \times \frac{81}{20} = \frac{6}{5}, \ \bar{y} = \frac{8}{27} \int_{0}^{3} \int_{0}^{3-x} xy^2 dy dx = \frac{8}{27} \times \frac{81}{20} = \frac{6}{5}$	2+2
	$\therefore (\bar{x}, \bar{y}) = \left(\frac{6}{5}, \frac{6}{5}\right)$	