Gold standard of evidence: Randomized Controlled Trial 101

Thuy Nguyen

- 1. Identify the research question
- 2. Identify the hypothesis
- 3. Identify the study design
- 4. Observations
- 5. Conclusions
- 6. Inferences

1. Identify the research question

What's the independent variable and effect dependent variable? Key words/phrases: cause and effect, before and after

- 2. Identify the hypothesis
- 3. Identify the study design
- 4. Observations
- 5. Conclusions
- 6. Inferences

- 1. Identify the research question
- 2. Identify the hypothesis

What does the researcher expect to find?

Key words/phrases: if/then statements, predict, anticipate

- 3. Identify the study design
- 4. Observations
- 5. Conclusions
- 6. Inferences

- 1. Identify the research question
- 2. Identify the hypothesis
- 3. Identify the study design
 - What's the group we're comparing everything to?
 - Which group is getting the treatment?
 - What things are staying the same during the experiment?
 - How many times are we doing the experiment to make sure our results are reliable?
 Key words/phrases: different, same/identical
- 4. Observations
- 5. Conclusions
- 6. Inferences

- 1. Identify the research question
- 2. Identify the hypothesis
- 3. Identify the study design
- 4. Observations

What do the researchers learn from the trials?

- 5. Conclusions
- 6. Inferences

- 1. Identify the research question
- 2. Identify the hypothesis
- 3. Identify the study design
- 4. Observations
- 5. Conclusions

Do the observations align with the hypothesis?

6. Inferences

- 1. Identify the research question
- 2. Identify the hypothesis
- 3. Identify the study design
- 4. Observations
- 5. Conclusions
- 6. Inferences

How do the researchers apply their knowledge to make sense of what they observe?

Independent variable:

Dependent variable:

Independent variable: whether someone exercises or not

Dependent variable:

Independent variable: whether someone exercises or not

How much time per week does someone spend exercising?

Dependent variable: cholesterol levels

Blood pressure? Resting heart rate? Mobility?

Many ways to define the **independent** and **dependent** variables!

Recruit participants

Ask about their exercise habits

- Person does not exercise
- Person exercises

Bias: systematic error in sampling or testing

Don't exercise

Cholesterol levels

Exercise

Exercising raises cholesterol levels???

A potential bias

Unhealthy individuals may be more motivated to exercise

Solution: Fair Experiment

How would you design a fair experiment?

• Treatment:

• Control:

Why might we want to provide the control group with light stretching exercises?

Randomized Controlled Trial

Randomized Controlled Trial

Before Treatment: No observed differences

After Treatment: Effect of Daily Exercise

Takeaways

- Bias could produce misleading and counterintuitive findings
- Randomization at the start of the study ensures group comparability, allowing for a fair comparison
- Defining the independent and dependent variables are at the heart of study design
- Many considerations (e.g., ethical concerns, cognitive biases, and others) come into play when determining what the treatment and control groups receive

Spurious correlation

Spurious correlation

Spurious correlation

