9) Linear Regression

Vitor Kamada

July 2018

Reference

Tables, Graphics, and Figures from

https://www.quantopian.com/lectures

Lecture 12 Linear Regression

Linear Regression

$$Y_{TSLS} = \alpha + \beta X_{SPY} + \epsilon$$

import numpy as np
from statsmodels import regression
import statsmodels.api as sm
import matplotlib.pyplot as plt
import math

Create a Function for Linear Regression

```
def linreg(X,Y):
    # Running the linear regression
   X = sm.add constant(X)
    model = regression.linear_model.OLS(Y, X).fit()
    a = model.params[0]
    b = model.params[1]
   X = X[:, 1]
    # Return summary of the regression and plot results
    X2 = np.linspace(X.min(), X.max(), 100)
    Y hat = X2 * b + a
    plt.scatter(X, Y, alpha=0.3) # Plot the raw data
    plt.plot(X2, Y hat, 'r', alpha=0.9); # Add the regression l
    plt.xlabel('X Value')
    plt.vlabel('Y Value')
    return model.summary()
```

Get Data

```
start = '2014-01-01'
end = '2015-01-01'
asset = get pricing('TSLA', fields='price',
                    start date=start, end date=end)
benchmark = get pricing('SPY', fields='price',
                        start date=start, end date=end)
# We have to take the percent changes to get to returns
# Get rid of the first (0th) element because it is NAN
r a = asset.pct change()[1:]
r b = benchmark.pct change()[1:]
linreg(r b.values, r a.values)
```

$Y_{TSLS} = \alpha + \beta X_{SPY} + \epsilon$

Dep. Variable:	у	R-squared:	0.202
Model:	OLS	Adj. R-squared:	0.199
Method:	Least Squares	F-statistic:	63.14
Date:	Thu, 17 Sep 2015	Prob (F-statistic):	6.66e-14
Time:	20:55:12	Log-Likelihood:	548.81
No. Observations:	251	AIC:	-1094.
Df Residuals:	249	BIC:	-1087.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
const	0.0011	0.002	0.626	0.532	-0.002 0.004
x1	1.9271	0.243	7.946	0.000	1.449 2.405

$\hat{Y}_{TSLS} = 0.0011 + 1.92X_{SPY}$

Ordinary Least Squares (OLS)

$$Y = \alpha + \beta X + \epsilon$$

$$\sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{a} - \hat{\beta}X_{i})^{2}$$

Residual Sum of Squares (RSS)

$$\sum_{i=1}^{n} e_i^2 = e_1^2 + e_2^2 + \dots + e_n^2$$

OLS Derivation

$$RSS = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x_i)^2$$

$$\frac{\partial \sum\limits_{i=1}^{n} e_i^2}{\partial \hat{\alpha}} = -2 \sum\limits_{i=1}^{n} (y_i - \hat{\alpha} - \hat{\beta} x_i) = 0 = \sum\limits_{i=1}^{n} e_i$$

$$\frac{\partial \sum_{i=1}^{n} e_i^2}{\partial \hat{\beta}} = -2 \sum_{i=1}^{n} \left[x_i (y_i - \hat{\alpha} - \hat{\beta} x_i) \right] = 0$$

$$\sum_{i=1}^n x_i e_i = 0$$

Estimating the Coefficients

$$\hat{y} = \hat{\alpha} + \hat{\beta}x$$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}$$

Seaborn Library

```
import seaborn
start = '2014-01-01'
end = '2015-01-01'
asset = get pricing('TSLA', fields='price',
                    start date=start, end date=end)
benchmark = get pricing('SPY', fields='price',
                        start date=start, end date=end)
# We have to take the percent changes to get to returns
# Get rid of the first (0th) element because it is NAN
r a = asset.pct change()[1:]
r b = benchmark.pct change()[1:]
seaborn.regplot(r b.values, r a.values);
```

95% Confidence Intervals

Standard Errors and Prediction Interval

$$s = \sqrt{\frac{\sum_{i=1}^{n} \epsilon_i^2}{n-2}}$$

$$s_f^2 = s^2 (1 + \frac{1}{n} + \frac{(X - \mu_X)^2}{(n-1)\sigma_X^2})$$

$$\hat{Y} \pm t_c s_f$$

