

Durée : 15 minutes

Énoncé constitué de 5 questions. Pour chaque question, zéro, une ou plusieurs options peuvent être correctes. Colorier entièrement les cases de votre choix.

Nom :	
Prénom :	
Groupe :	

peuvent être correctes. Colorier entièrement les cases de votre choix. Groupe :
Question 1 & La relation d'ordre strict $(a < b)$ sur l'ensemble des entiers $\mathbb Z$ est-elle bien-fondée ? Oui Non Stret dec
Question 2 Soit f la fonction définie par $f(0) = 0$, $f(1) = 1$ et $f(n) = 2f(n-1) + f(n-2)$ quand $n \ge 2$. On souhaite montrer par récurrence que $2\sqrt{2}f(n) = (1+\sqrt{2})^n - (1-\sqrt{2})^n$. Pour les cas de base, on a $(1+\sqrt{2})^0 - (1-\sqrt{2})^0 = 1-1=0$ et $(1+\sqrt{2})^1 - (1-\sqrt{2})^1 = 2\sqrt{2}$. Pour l'hérédité, on a $2\sqrt{2}f(n-1) = (1+\sqrt{2})^{n-1} - (1-\sqrt{2})^{n-1} - (1-\sqrt{2})^{n-1} + (1+\sqrt{2})^{n-2} - (1-\sqrt{2})^{n-2}$ $2\sqrt{2}f(n) \stackrel{(A)}{=} 2\sqrt{2}(2f(n-1)+f(n-2)) \stackrel{(B)}{=} 2((1+\sqrt{2})^{n-1} - (1-\sqrt{2})^{n-1}) + (1+\sqrt{2})^{n-2} - (1-\sqrt{2})^{n-2}$
$\stackrel{(C)}{=} (1+\sqrt{2})^{n-2}(2(1+\sqrt{2})+1) - (1-\sqrt{2})^{n-2}(2(1-\sqrt{2})+1) \stackrel{(D)}{=} (1+\sqrt{2})^n - (1-\sqrt{2})^n.$
Dans quelle étape de la preuve utilise-t-on l'hypothèse de récurrence?
☐ (A) ☐ (B) ☐ (C) ☐ (D)
Question 3 \clubsuit Soient A, B, C trois ensembles. Parmi les ensembles suivants, lesquels sont toujours égaux à $A \cap (B \cup C)$?
Question 4 \clubsuit Soit M_n le nombre de mots de longueur n dans un alphabet de cardinalité 3 . Quelle est la relation de récurrence satisfaite par la suite M_n ? $n > 0$
Question 5 \(\beta \) Soit f une fonction $f: A \to B$. Que peut-on conclure sur les cardinaux de A et B ? $ A = B $ Aucune de ces réponses $ A \ge B $ $ A \le B $ $ A = B $