

$TI\emptyset4120$ - Operasjonsanalyse, grunnkurs

Exercise #1

Author: Sondre Pedersen

Oppgave 1: Grafisk illustrering

3.1-2 For each of the following constraints, draw a separate graph to show the nonnegative solutions that satisfy this constraint.

- a) $x_1 + 3x_2 \le 6$ b) $4x_1 + 3x_2 \le 12$ c) $4x_1 + x_2 \le 8$

Beklager blanding mellom norsk og engelsk i denne innleveringen. Jeg følger språket brukt i oppgavebeskrivelsen.

3.1-3 Consider the following objective function for a linear programming model: $Maximize\ Z=2x_1+3x_2, Z_1=6, Z_2=12, Z_3=18$

a) Objective functions

b)

$$Z_i = 2x_1 + 3x_2$$

$$\Rightarrow x_2 = \frac{Z_i}{3} - \frac{2x_1}{3}$$

$$slope = \frac{dx_2}{dx_1} = -\frac{2}{3}$$

They have the same slope. From the graph, we can see that the x_2 intercept is 2, 4, 6. The interception increases along with Z.

Oppgave 2: Max problem

$$\max\,z = 3x_1 + 6x_2\,\, n \mathring{a} r$$

$$3x_1 + 2x_2 <= 18$$

$$x_1 + x_2 <= 5$$

$$x_1 <= 4$$

$$x_2 <= 7$$

$$\frac{x_2}{x_1} <= \frac{7}{8}$$

$$x_1 >= 0$$

$$x_2 >= 0$$

Løser ved å lage en målfunksjon der Z = 10, og øke Z til bare ett punkt på linjen er innenfor Mulighetsområdet.

b)

Løsningen er når Z = 22. Løser finner x_1 og x_2 ved å se at punktet er møtepunktet mellom $x_1+x_2=5$ og $\frac{x_2}{x_1}=\frac{7}{8}\Rightarrow 8x_2-7x_1=0$. Ved å løse ligningssettet får vi $x_1=\frac{8}{3}$ og $x_2=\frac{7}{3}$

Oppgave 3: Excel

3.5-5 Investment

LP formulated problem:

min $z = 2.5x_1 + 3x_2 + 3.5x_4$ such that

$$2x_1 + 1x_2 + 0.5x_3 > = 400 \tag{1}$$

$$0.5x_1 + 0.5x_2 + x_3 > = 100 (2)$$

$$1.5x_2 + 2x_3 >= 300 \tag{3}$$

Where all units are millions of dollars. x_i refer to asset i. c), d)

	Asset 1	Asset 2	Asset 3			Kapasitet
Profitt	2.5	3	3.5	1250		
Year 5	2	1	0.5	400	>=	400
Year 10	0.5	0.5	1	300	>=	100
Year 20		1.5	2	550	>=	300
Investment	100	100	200			

The table shows returns on investments of \$100 million in asset 1, \$100 million in asset 2 and \$200 million in asset 3. All constraints are satisfied, and the investment of \$400 million would generate \$1.25 billion. Sounds good to me.

e)

	Asset 1	Asset 2	Asset 3			Kapasitet
Profitt	2.5	3	3.5	850		
Year 5	2	1	0.5	400	>=	400
Year 10	0.5	0.5	1	150	>=	100
Year 20		1.5	2	300	>=	300
				•		
Investment	100	200				

Here is the solution found by Excel Solver. The smallest possible investment to satisfy the constraints is \$100 million in asset 1 and \$200 million in asset 2.

Oppgave 4: Distribusjon

Generell formulering

Indekser:

i og j: noder i grafen.

Konstanter og parametre:

N: antall noder i grafen.

 \mathcal{C}_{ij} : kostnad per enhet som transporteres mellom node i og j.

 \mathcal{P}_i : produksjonsmengde hos node i.

 G_{ij} : Grense på enheter som kan transporteres mellom node i og j.

Variabler:

 x_{ij} : antall enheter som transporteres mellom node i og j. z: total kostnad til transport av enheter

b) min $z = \sum_{i=1}^{N} \sum_{j=1}^{j} x_{ij} C_{ij}$

s.t.

$$x_{ij} >= 0$$
, i,j = 1,...,N
 $P_i = \sum_{j=1}^{N} x_{ij} - x_{ji}$, i = 1,...,N
 $x_{ij} <= G_{ij}$

$$\left[\begin{array}{cc|c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]$$