华中科技大学物理学院 2016~2017 学年第 1 学期

《大学物理(二)》课程考试试卷(A卷)

(闭卷)

考试日期: 2017.01.0 7. 上午

考试时间: 150 分钟

题号 一二		三				光 八	统分	教师	
区与			1	2	3	4	总分	统分 签名	教师 签名
得分									

得 分	
评卷人	

一. 选择题(每小题 3 分, 共 30 分。以下每题只有一个正确答 案,将正确答案的序号填入题号前括号中)

]1、在一密闭容器中,储有 A、B、C 三种理想气体,处于平衡状态。A 种 ſ 气体的分子数密度为 n_i ,它产生的压强为 P_i ,B种气体的分子数密度为 $2n_i$,C种气 体的分子数密度为3n,则混合气体的压强P为:

- $(A) 3P_1$

- (B) $4P_1$ (C) $5P_1$ (D) $6P_1$
- Γ]2、关于可逆过程和不可逆过程有以下几种说法。
 - (1)可逆过程一定是准静态过程:
 - (2)准静态过程一定是可逆过程:
 - (3)不可逆过程一定找不到另一过程使系统和外界同时复原;
 - (4) 非准静态过程一定是不可逆过程。

以上说法正确的是:

- (A) (1), (2), (3);
- (B) (2), (3), (4);
- (C) (1), (3), (4):
- (D) (1), (2), (3), (4)

[]3、一简谐波沿 x 轴负方向传播,圆频率为 ω ,周期为 T,波速为 u,设 $t = \frac{T}{2}$ 时刻的波形如图所示,则该波的表达式为:

(A)
$$y = A\cos\omega(t - x/u)$$

(B)
$$y = A\cos[\omega(t+x/u) + \frac{\pi}{2}]$$

(C)
$$y = A\cos[\omega(t + x/u)]$$

(D)
$$y = A\cos[\omega(t+x/u) + \pi]$$

[]4、当机械波在媒质中传播时,一媒质质元的最大形变发生在(A 是振动振幅):

- (A) 媒质质元离开其平衡位置最大位移处;
- (B) 媒质质元离开其平衡位置($\frac{\sqrt{2}A}{2}$) 处;
- (C) 媒质质元在其平衡位置处;
- (D) 媒质质元离开其平衡位置 $\frac{A}{2}$ 处。
- []5、在弦线上有一简谐波,其表达式为

$$y_1 = 2.0 \times 10^2 \cos[100\pi(t + \frac{x}{20}) - \frac{4\pi}{3}] \text{ (SI)}$$

为了在此弦线上形成驻波,并使 x=0 处为一波腹,此弦线上还应有一简谐波,其表达式为:

(A)
$$y_2 = 2.0 \times 10^2 \cos[100\pi(t - \frac{x}{20}) + \frac{\pi}{3}]$$
 (SI)

(B)
$$y_2 = 2.0 \times 10^2 \cos[100\pi (t - \frac{x}{20}) + \frac{4}{3}\pi]$$
 (SI)

(C)
$$y_2 = 2.0 \times 10^2 \cos[100\pi(t - \frac{x}{20}) - \frac{\pi}{3}]$$
 (SI)

(D)
$$y_2 = 2.0 \times 10^2 \cos[100\pi(t - \frac{x}{20}) - \frac{4}{3}\pi]$$
 (SI)

[]6、若星光的波长为 550nm, 孔径为 127cm 的大型望远镜所能分辨的两颗星的最小角距离 θ (从地面上一点看两星的视线间夹角)是:

(A)
$$1.8 \times 10^{-5}$$
 rad

(B)
$$4.3 \times 10^{-7}$$
 rad

(C)
$$5.3 \times 10^{-7}$$
 rad

(D)
$$4.3 \times 10^{-9}$$
 rad

[]7、自然光以60°的入射角照射到两介质交界面时,反射光为完全线偏振光,
则知折射光为;
(A)完全线偏振光且折射角是30°;
(B) 部分偏振光且只是在该光由真空入射到折射率为 $\sqrt{3}$ 的介质时,折射角是 30° ;
(C)部分偏振光,但必须知道两种介质的折射率才能确定折射角;
(D) 部分偏振光且折射角是 30 [°] 。
[]8、在双折射的课堂演示实验中,一束自然光射入方解石晶体中,将折射出两束光线(o光和e光)。若用偏振片检验这两束光线的偏振态,当旋转偏振片的偏振化方向时,将会观察到: (A)o光和e光亮度都不变。 (B)o光和e光同时变亮,同时变暗,并且有完全消光。 (C)o光和e光同时变亮,同时变暗,最暗时不会完全消光。 (D)o光最亮时e光亮度变成零,e光最亮时o光亮度变成零。
[]9、某放射性核素的半衰期为30年,放射性活度减为原来的12.5%所需要
的时间是年。
(A) 30 (B) 60 (C) 90 (D) 120 (E) 240
[]10、P型半导体中杂质原子所形成的杂质能级叫做受主能级,该能级在能 ###################################
带结构中处于: (A)满带中 (B)禁带中靠近满带的位置
(A)满带中 (B)禁带中靠近满带的位置 (C)导带中 (D)禁带中靠近导带的位置
(0) 4市中 (0) 奈市中非处4市的位置
得分二二.填空题(每题 3 分,共 30 分) 评卷人
1、三个容器内分别贮有 1mol 氦(He)、1mol 氢(H ₂)和 1mol 氨(NH ₃)(均视为刚性分
子的理想气体),若它们的温度都升高 1K,则三种气体的内能的增加值分别为: 氦:

2 、一定量理想气体从 A 状态(压强为 $2P_1$,体积为 V_1)经历 $P-V$ 图上的准静态直线过程到 B 状态(压强为 P_1 ,体积为 $2V_1$),则 AB 过程中系统做功,内能改变。			
3、一质点作谐振动,周期为 <i>T</i> ,质点由平衡位置到二分之一最大位移处所需要的最短时间为。			
4、两个同方向同频率的谐振动,振动表达式分别为:			
$x_1 = 6 \times 10^{-2} \cos (5t - \frac{1}{2}\pi)$ (m), $x_2 = 2 \times 10^{-2} \sin(\pi - 5t)$ (m),			
它们的合振动的振幅为m,初位相为rad。			
5、课堂上用音叉演示拍现象,在1秒时间内听到有2次强音和2次弱音(即"拍频"为2Hz),已知其中一音叉的固有振动频率为800Hz,则另一音叉的振动频率为Hz。			
6、 真空中有一平面电磁波的电场表达式如下:			
$E_{\rm x}=0$, $E_{\rm y}=0.60{\rm cos} \left[2\pi\times 10^8 \left(t-x/c\right)\right] \left({ m V\cdot m^{-1}}\right)$, $E_{z}=0$ 。则磁场强度的三个分量分别			
为: $H_{\rm x}=$			
H_z =o			
(真空介电常数 ε_0 =8.85×10 ⁻¹² C²/(N·m²),真空磁导率 μ_0 =4 π ×10 ⁻⁷ T·m/A)			
7、用真空中波长 λ =589. 3nm 的单色光垂直照射折射率为 1. 50 的劈尖薄膜,产生等厚 干 涉 条 纹 , 测 得 相 邻 暗 条 纹 间 距 l = 0.15cm , 那 么 劈 尖 角 θ 应 是rad。			
8、如果单缝夫琅和费衍射的第一级暗纹发生在衍射角 30°的方向上,所用单色光波长 λ = 500nm,则单缝宽度为			
9、已知 X 射线光子的能量为 0.6 MeV,若在康普顿散射中散射光子的波长变化了 20%,则反冲电子的动能为MeV。			
10 、根据量子力学理论,氢原子中电子的轨道角动量为 $L=\sqrt{l(l+1)}\hbar$,当主量子数			
n=3 时,电子轨道角动量的可能取值为。			

三. 计算题 (每题 10 分, 共 40 分)

得 分	
评卷人	

- 1、一卡诺热机做正循环,工作在温度分别为 T_1 =300K 和 T_2 =100K 的热源之间,每次循环对外做净功 6000J,在 T-S 图中画出此循环,并求出:
- (1) 在每次循环过程中从高温热源吸收的热量;
- (2) 在每次循环过程中向低温热源放出的热量;
- (3) 此循环的效率。

得分	
评卷人	

2、按要求设计定向辐射天线阵。如图所示,三根相同的天线在一条直线上等间距排列,其长度方向均垂直纸面。已知每根天线单独辐射时左右两侧的辐射强度都为 I_0 ,波长为 λ ,现要求天线阵向左侧的辐射尽可能强而向右侧辐射为零,试确定相邻两天线之间的距离 d 和天线之间的初位相之差 $\Delta \varphi_0$ ($\Delta \varphi_0 = \varphi_{20} - \varphi_{10} = \varphi_{30} - \varphi_{20}$),并求此时左侧的辐射强度。(注:为了使天线阵的尺寸尽可能小,d 应取符合要求的最小值)

得 分	
评卷人	

3、一束平行光垂直入射到光栅上,该光束有两种波长的光: λ_1 =420nm, λ_2 =630nm。 经过观测,两种波长的谱线(不计中央明纹)第二次重合于衍射角 θ =60 $^{\circ}$ 的方向上,求此光栅的光栅常数 d。

得 分	
评卷人	

4、已知粒子在一维无限深势阱中运动,其波函数为

$$\psi(x) = A \sin \frac{2\pi x}{a} \qquad (0 \le x \le a)$$

试求:

- (1) 归一化常数A;
- (2) 该粒子位置坐标的概率分布函数(即概率密度);
- (3) 在何处找到粒子的概率最大。

2016-2017(1)大学初程(=)

A 卷参考答案

一、选择题: DCBCD CDDCB

二、填空题

与标答完全相同的给相应的分。除此之外,不给分: 每小應在應头处只给正分,或 0 分,不给负分; 一應两空:对 1 个的给 2 分,对 2 个的给 3 分,一题三空的每空 1 分一题两空或三空的只给该题的最终分

1.
$$\Delta E = \frac{3}{2}RR[12.4]$$
 Reg. 12.5 $\Delta E = \frac{5}{2}RR[20.7]$ Reg. 20.8 $\Delta E = 3RR[24.9]$

2.
$$A = \frac{3}{2}p_1V_1$$
 $\Delta E = 0$

4.
$$8 \times 10^{-2}$$
 , $-\frac{1}{2}\pi$

5.802 或 798,

6. 0. 0.
$$H_z = \sqrt{\varepsilon_0 / \mu_0} E_y$$
 $\Re H_z = \sqrt{\varepsilon_0 / \mu_0} E_y = 1.6 \times 10^{-3} \cos [2\pi \times 10^8 (t - x/c)] (A \cdot m^{-1})$

$$D_x^2 H_z = \sqrt{\varepsilon_0 / \mu_0} E_y = 1.6 \times 10^{-1} \cos \left[2\pi \times 10^4 (t - x/c) \right]$$

8, 1

9.0.1

10.
$$\sqrt{2}h = \sqrt{2} \frac{\sqrt{2}}{2\pi} h = \sqrt{2} \frac{1.4 \times 10^{18} \text{kgm}^2/\text{s}}{1.5 \times 10^{19} \text{kgm}^2/\text{s}}$$

$$\sqrt{6}$$
h與2.5×10⁻³⁴kgm²/s與2.6×10⁻³⁴kgm²/s

三、计算题:

- a. 没有衡头或箭头方向错误:扣1分:
- b. P-V 图没有分:
- c. T、S没标,但有矩形,扣1分;
- d. T、S 交换,方向逆时针不扣分,但顺时针扣 1 分。

解法一:

(1)

$$\eta = 1 - \frac{T_2}{T_1} = \frac{T_1 - T_2}{T_1}$$

$$Q_1 = \frac{A}{\eta} = \frac{AT_1}{T_1 - T_2} = \frac{6000 \times 300}{300 - 100} = 9000J$$

或者用方法:

$$A = \Delta S(T_1 - T_2)$$

$$\Delta S = \frac{A}{T_1 - T_2}$$

$$Q_1 = T_1 \Delta S = T_1 \frac{A}{T_1 - T_2} = 9000J$$

(同样得2分)

(2)

$$Q_2 = T_2 \Delta S = T_2 \frac{A}{T_1 - T_2} = T_2 \frac{Q_1}{T_1} = \frac{100 \times 9000}{300} = 3000J$$
 2 分

或者用方法:

$$Q_2 = Q_1 - A = 3000J$$

(同样得2分)

(3)

$$\eta = \frac{A}{Q_1} = 1 - \frac{T_2}{T_1} = 1 - \frac{100}{300} = 66.7\%$$

3分

解法二:

(1)

$$Q_1 = \nu R T_1 \ln \frac{V_2}{V_1} \qquad Q_2 = \nu R T_2 \ln \frac{V_3}{V_4} \qquad \ln \frac{V_2}{V_1} = \ln \frac{V_3}{V_4}$$

$$\frac{Q_1}{Q_2} = \frac{T_1}{T_2} = 3$$
, $Q_1 - Q_2 = A = 6000J$

因此:
$$Q_1 = 9000J$$
, $Q_2 = 3000J$ 4分

或者用方法:

$$Q_1 - Q_2 = \nu R T_1 \ln \frac{V_2}{V_1} - \nu R T_2 \ln \frac{V_2}{V_4} = \nu R \ln \frac{V_2}{V_1} (T_1 - T_2) = A$$

$$\nu R \ln \frac{V_2}{V_1} = \frac{A}{(T_1 - T_2)} = 30 J / K$$

$$Q_1 = \nu R T_1 \ln \frac{V_2}{V_1} = 9000 J, \qquad Q_2 = \nu R T_2 \ln \frac{V_2}{V_1} = 3000 J \qquad (同样 4 分)$$

(2)

$$\eta = \frac{A}{C} = 1 - \frac{T_1}{T} = 1 - \frac{100}{300} = 66.7\%$$
 (3.5)

注意:

- (1) Q₂用负值不扣分;
- (2) 若公式正确,一次计算错误,无论在中间过程,还是在最后一步,均只扣 1 分(计算错误不重复扣分)。

2、解:解法(一):

为了使润左侧的辐射尽可能强。应有

$$\Delta \varphi_0 - \frac{2\pi d}{\lambda} = 0 R 2k\pi$$

为了使向右侧的辐射为 0、应让三列波的位相依次落后 120° (如图 1)

$$\mathbf{PP}: \quad \Delta \varphi_0 + \frac{2\pi d}{\lambda} = \frac{2\pi}{3} \mathbf{R} \frac{2\pi}{3} + 2k\pi$$

(1)。(2) 联列求解。取 k=0。得:
$$d = \frac{\lambda}{6}$$
, $\Delta g_0 = \frac{\pi}{3}$ 2 分

左侧 /=3/4

1 #

*]=91*₀

1分

(图2)

鮮法(二)。

为了使向左侧的辐射尽可能强、应有

$$\Delta \varphi_0 - \frac{2\pi d}{\lambda} = 0 \, \mathbb{R} \, 2k\pi \tag{1}$$

为了使向右侧的辐射为 6、应让三列波的位相依次落后 240° (如图 2)

(1), (3) 联列求解,取 k=0。得:
$$d = \frac{\lambda}{3}$$
, $\Delta \varphi_0 = \frac{2\pi}{3}$ 2分

此时左侧:

A≐3A_s

1分

7=9 *[*。

1分

【注】。如没写出 A=3A。直接得 *F*=9A ,得 2 分。

3、由光栅公式

$$d \sin \theta = k_1 \lambda_1$$

$$d \sin \theta = k_1 \lambda_2$$

$$\frac{d\sin\theta_1}{d\sin\theta_2} = \frac{k_1\lambda_1}{k_2\lambda_1} = \frac{k_1 \times 420}{k_2 \times 630} = \frac{2k_1}{3k_2} \stackrel{?}{2} \stackrel{?}{2}$$

重合對有 6,= 6,

所以
$$\frac{k_1}{k_2} = \frac{3}{2} = \frac{6}{4} = \frac{9}{6}$$
L

第二次重合时,
$$\frac{k_1}{k_2} = \frac{6}{4}$$
2分

则
$$d \sin 60^\circ = 6\lambda$$

$$d = \frac{6\lambda_1}{\sin 60^0} = 2.91 \times 10^{-3} \text{mm 2 } 分$$

情况 1:
$$k_1\lambda_1 = k_2\lambda_2$$
或 $k_1 = \frac{3}{2}k_2$ 给 6 分

第二次重合的式子
$$\frac{k_1}{k_2} = \frac{6}{4}$$
 2分 结果 2 分

情况 2: 只出程 = 6

8分,结果2分

情况 3: 按 $d \sin \theta = \frac{10}{2}$ 且做法对,给 6 分

情况 4: 按第一次或其它次重合计算的, 给 6 分

4. 解: (1)
$$\int_{0}^{a} |\Psi(x)|^{2} dx = \int_{0}^{a} |A \sin \frac{2\pi x}{a}|^{2} dx = 1$$
, $A^{2} \cdot \frac{a}{2} = 1$, $A = \sqrt{\frac{2}{a}}$. 4分以上两个积分只要写对一个给全分,结果错给 2 分

(2)
$$\rho = |\Psi(x)|^2 = \frac{2}{a} \sin^2 \frac{2\pi x}{a}$$

$$4$$

上式只要写对平方被函数平方式全分。

(3) 令
$$\frac{d\rho}{dx} = 0$$
, 得 $x = \frac{a}{4}, \frac{3a}{4}$, 即 $x = \frac{a}{4}, \frac{3a}{4}$ 处概率最大。 2 分

结果错扣两分,如果极大值和极小值不分,扣1分,写"(2k+1)扣1分。