Corso di Laurea in Matematica

GEOMETRIA A

Prova scritta del 11.2.2020 - parte seconda

Esercizio 1. Si consideri il piano euclideo \mathbb{E}^2 con un sistema di coordinate ortogonali (x, y). Sia $\rho \colon \mathbb{E}^2 \to \mathbb{E}^2$ la riflessione rispetto alla retta $r \colon x + y = 0$ e sia definita la funzione

$$\sigma_k(x,y) = \left(\frac{k^2 - 1}{k^2 + 1}x - \frac{2k}{k^2 + 1}y + \frac{4 + 6k}{k^2 + 1}, \frac{-2k}{k^2 + 1}x + \frac{1 - k^2}{k^2 + 1}y + \frac{4k + 6k^2}{k^2 + 1}\right)$$

- 1. Si dimostri che per ogni valore di $k \in \mathbb{R}$, σ_k è una riflessione, calcolando esplicitamente l'equazione della retta s_k fissata da σ_k
- 2. Dopo aver giustificato perché l'isometria $\rho \circ \sigma_k$ è una isometria diretta, stabilire per quali valori di $k \in \mathbb{R}$ l'isometria $\rho \circ \sigma_k$ è una traslazione e per quali è una rotazione.
- 3. Si calcoli il coseno dell'angolo convesso $P\hat{O}Q$, dove $P=\left(\frac{4}{1-\sqrt{3}},0\right)$, O=(0,0) e $Q:=\rho\circ\sigma_0(P)$.

Esercizio 2. Sia $\mathbb{P}^2(\mathcal{C})$ il piano proiettivo complesso munito delle coordinate proiettive $[x_0, x_1, x_2]$. Si consideri il piano proiettivo $\mathbb{C}^2 = \mathbb{P}^2(\mathcal{C}) \setminus \{x_0 = 0\}$ munito delle coordinate affini (x, y) con $x = x_1/x_0$ e $y = x_2/x_0$. Si consideri la quartica affine \mathcal{C} definita dall'equazione

$$f(x,y)$$
: $x^4 - 4y^4 - x^2 + 4y^2 = 0$.

- (i) Dopo aver individuato i punti singolari di \mathcal{C} e della sua chiusura proiettiva, si individui la natura di ciascun punto singolare e le tangenti principali.
- (ii) Per ogni tangente t ricavata nel punto precedente, si calcolino le intersezioni tra t e C, e in ogni punto di intersezione P, il valore di I(t, C, P).
- (iii) Si trovino gli asintoti della quartica \mathcal{C} .