

TFT LCD Approval Specification

MODEL NO.: N150X3 - L09

Customer:	
Approved by:	
Note:	

Liquid Crystal	Display Division
QRA Division.	OA Head Division
Approval	Approval
94. 9, 30	林 94.9.29

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	 5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 3.3 EDID DATA	 6
4. BLOCK DIAGRAM TFT LCD MODULE w/ INVERTER	 13
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 TIMING DIAGRAM OF LVDS INPUT SIGNAL 5.3 COLOR DATA INPUT ASSIGNMENT	 13
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	 16
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 18
8. PRECAUTIONS 8.1 ASSEMBLY AND HANDLING PRECAUTIONS 8.2 SAFETY PRECAUTIONS	 23
9. DEFINITION OF LABELS 9.1 CMO MODULE LABEL 9.2 Dell LABEL 10.2.1 MAL PPID LABEL 10.2.2 CARTON LABEL 10.2.3 PALLET LABEL	 24
10. PACKING 10.1 CARTON 10.2 PALLET	 25

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 1.0	Jan.31 '05	All	All	Perminaliary specification was first issued
Ver 2.0	May.23 '05	9	3.3	Added EDID code
Ver 2.1	Aug.31 '05	25	10	Modified Carton & pallet
Ver 2.2	Sep 27,'05	14	4.2	Added 4.2 BLU unit
		15	5.1	Modified pin assignment

1. GENERAL DESCRIPTION

1.1 OVERVIEW

N150X3- L09 is a 15.0" TFT Liquid Crystal Display module. This module supports 1024 x 768 XGA mode and can display 262,144 colors. The optimum viewing angle is at 6 o'clock direction.

1.2 FEATURES

- Thin and Light Weight
- XGA (1024 x 768 pixels) resolution
- DE only mode
- 3.3V LVDS (Low Voltage Differential Signaling) interface with 1 pixel/clock
- SPWG (Standard Panel Working Group) Style B compatible
- Single CCFL
- ROHS product

1.3 APPLICATION

- TFT LCD Notebook

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	304.1 (H) x 228.1 (V) (15.0" diagonal)	mm	(1)
Bezel Opening Area	307.8 (H) x 231.6 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1024 x R.G.B. x 768	pixel	-
Pixel Pitch	0.297 (H) x 0.297 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262,144	color	-
Transmissive Mode	Normally white	-	-
Surface Treatment	Hard coating (3H), Anti-glare (Haze 25)	-	-

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	316.8	317.3	317.8	mm	(1)
Module Size	Vertical(V)	241.5	242	242.5	mm	(1)
	Depth(D)	-	5.7	6.0	mm	(1)
Weight		-	550	565	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Ullit	Note	
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Storage Humidity	H _{ST}	10	90	%RH	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	
Operating Ambient Humidity	H _{OP}	20	90	%RH	(1)	
Shock (Non-Operating)	S _{NOP}	-	200/2	G/ms	(3), (4), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.5/10-200	G/Hz	(4), (5)	

- Note (1) (a) 90 %RH Max. (Ta \leq 40 °C).
 - (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
 - (c) No condensation.
- Note (2) The temperature of panel surface should be 0 $^{\circ}$ C min. and 50 $^{\circ}$ C max.
- Note (3) Condition for 200/2 G/ms is Half Since Wave.
- Note (4) The fixing condition is shown as below:

Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Power Supply Voltage	V_{CC}	-0.3	+4.0	V	(1)
Logic Input Voltage	V_{IN}	-0.3	V _{CC} +0.3	V	(1)

2.2.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note	
iteiii	Symbol	Min.	Max.	Offic		
Lamp Voltage	V_L	-	(2.5K)	V_{RMS}	(1) , (2) , $I_L = 6.0 \text{ mA}$	
Lamp Current	ΙL	2.0	6.5	mA _{RMS}	(1) (2)	
Lamp Frequency	F_L	50	80	KHz	(1), (2)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

Paramot	Parameter			Value	Unit	Note	
Faramet			Min.	Тур.	Max.	Offic	NOLE
Power Supply Voltage		Vcc	3.0	3.3	3.6	V	-
Ripple Voltage		V_{RP}	-	100	-	mV	-
Rush Current		I _{RUSH}	-	-	1.5	Α	(2)
Power Supply Current	White	Lcc	-	300	350	mA	(3)a
Fower Supply Current	Black		-	350	400	mA	(3)b
Logical Input Voltage	"H" Level	V_{IL}	-	-	+100	mV	-
(LVDS)	"L" Level	V_{IH}	-100	-	-	mV	-
Terminating Resistor		R⊤	-	100	-	Ohm	-
Power per EBL WG		P _{EBL}	-	3.224	-	W	(4)

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:

Vcc rising time is 470µs

Note (3) The specified power supply current is under the conditions at Vcc = 3.3 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

Active Area

Active Area

Note (4) The specified power are the sum of LCD panel electronics input power and the inverter input power. Test conditions are as follows.

- (a) Vcc = 3.3 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \,\text{Hz}$,
- (b) The pattern used is a black and white 32 x 36 checkerboard, slide #100 from the VESA file "Flat Panel Display Monitor Setup Patterns", FPDMSU.ppt.
- (c) Luminance: 60 nits.
- (d) The inverter used is provided from O2Micro (www.o2micro.com). Please contact O2Mirco for detail information. CMO doesn't provide the inverter in this product.

Approval

3.2 BACKLIGHT UNIT

 $Ta = 25 \pm 2$ °C

Parameter	Symbol		Value	Unit	Note		
l'arameter	Syllibol	Min.	Тур.	Max.	Offic	Note	
Lamp Input Voltage	V_L	627	660	693	V_{RMS}	$I_{L} = 6.0 \text{ mA}$	
Lamp Current	ΙL	2.0	6.0	6.5	mA_{RMS}	(1)	
Lamp Turn On Voltage	Vs			1165 (25 °C)	V_{RMS}	(2)	
Lamp rum On voltage				1400 (0 °C)	V_{RMS}	(2)	
Operating Frequency	F_L	50		80	KHz	(3)	
Lamp Life Time	L_BL	15,000		-	Hrs	(5)	
Power Consumption	P_L	-	3.96	-	W	(4) , $I_L = 6.0 \text{ mA}$	

Note (1) Lamp current is measured by utilizing a high frequency current meter as shown below:

- Note (2) The voltage shown above should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) $P_L = I_L \times V_L$
- Note (5) The lifetime of lamp can be defined as the time in which it continues to operate under the condition Ta = 25 ± 2 °C and I_L = 6.0 mArms until one of the following events occurs:
 - (a) When the brightness becomes or lower than 50% of its original value.
 - (b) When the effective ignition length becomes or lower than 80% of its original value. (Effective ignition length is defined as an area that has less than 70% brightness compared to the brightness in the center point.)
- Note (6) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

The output of the inverter must have symmetrical (negative and positive) voltage waveform and symmetrical current waveform.(Unsymmetrical ratio is less than 10%) Please do not use the inverter which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.

Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It shall help increase the lamp lifetime and reduce its leakage current.

- a. The asymmetry rate of the inverter waveform should be 10% below;
- b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$;

The ideal sine wave form shall be symmetric in positive and negative polarities.

* Asymmetry rate:

$$|I_{p} - I_{-p}| / I_{rms} * 100\%$$

* Distortion rate

$$I_p (or I_{-p}) / I_{rms}$$

3.3 EDID DATA

The following data is based on VESA Enhanced EDID proposal.

Byte # Byte		Field Name and Comments	Value	Value
(decimal)	(hex)	Field Name and Comments	(hex)	(binary)
0	0	Header	00	00000000
1	1	Header	FF	11111111
2	2	Header	FF	11111111
3	3	Header	FF	11111111
4	4	Header	FF	11111111
5	5	Header	FF	11111111
6		Header	FF	11111111
7		Header	00	00000000
8	8	EISA ID manufacturer name ("CMO")	0D	00001101
9	9	EISA ID manufacturer name (Compressed ASCII)	AF	10101111
10		ID product code	13	00010011
11		ID product code	15	00010101
12		ID S/N (fixed "0")	00	00000000
13		ID S/N (fixed "0")	00	00000000
14		ID S/N (fixed "0")	00	00000000
15		ID S/N (fixed "0")	00	00000000
16	10	Week of manufacture (fixed week code)	00	00000000
17	11	Year of manufacture (fixed year code)	00	00000000
18		EDID structure version # ("1")	01	00000001
19		EDID revision # ("3")	03	00000011
20	14	Video I/P definition ("digital")	80	10000000
21		Max H image size ("30.4128 cm")	1E 17	00011110
23		Max V image size ("22.8096 cm")	78	00010111 01111000
24	17 18	Display Gamma (Gamma = "2.2")	0A	00001010
24	10	Feature support ("Active off, RGB Color")	UA	00001010
25	19	Red/Green (Rx1, Rx0, Ry1, Ry0, Gx1, Gx0, Gy1, Gy0)	77	01110111
26		Blue/White (Bx1, Bx0, By1, By0, Wx1, Wx0, Wy1, Wy0)	F1	11110001
27		Red-x (Rx = "0.626")	A0	10100000
28	1C	Red-y (Ry = "0.355")	5A	01011010
29	1D	Green-x (Gx = "0.294")	4B	01001011
30	1E	Green-y (Gy = "0.589")	96	10010110
31	1F	Blue-x (Bx = "0.144")	24	00100100
32	20	Blue-y (By = "0.097")	18	00011000
33	21	White-x (Wx = "0.309")	4F	01001111
34		White-y (Wy = "0.329")	54	01010100
35	23	Established timings 1	00	00000000
36	24	Established timings 2	08	00001000
37		Manufacturer's reserved timings	00	00000000
38	26	Standard timing ID # 1	01	00000001
39	27	Standard timing ID # 1	01	00000001
40	28	Standard timing ID # 2	01	00000001
41	29	Standard timing ID # 2	01	00000001

m		Ш	M	IEI
	ОРТО	ELECT	RONIC	S CORP.

42	2A	Standard timing ID # 3	01	00000001	
43	2B	Standard timing ID # 3	01	00000001	
44	2C	Standard timing ID # 4	01	00000001	
45	2D	Standard timing ID # 4	01	00000001	
46	2E	Standard timing ID # 5	01	00000001	
47	2F	Standard timing ID # 5	01	00000001	
48	30	Standard timing ID # 6	01	00000001	
49	31	Standard timing ID # 6	01	00000001	
50	32	Standard timing ID # 7	01	00000001	
51	33	Standard timing ID # 7	01	00000001	
52	34	Standard timing ID # 8	01	00000001	
53	35	Standard timing ID # 8	01	00000001	
	00	Standard timing 15 % 5			
54	36	Detailed timing description # 1 Pixel clock ("65 MHz")	64	01100100	
55	37	# 1 Pixel clock (hex LSB first)	19	00011001	
56	38	# 1 H active ("1024")	00	00000000	
57	39	# 1 H blank ("320")	40	01000000	
58	3A	# 1 H active : H blank ("1024 : 320")	41	01000001	
59	3B	# 1 V active ("768")	00	00000000	
60	3C	# 1 V blank ("38")	26	00100110	
61	3D	# 1 V active : V blank ("768 : 38")	30	00110000	
62	3E	# 1 H sync offset ("24")	18	00011000	
63	3F	# 1 H sync pulse width ("136")	88	10001000	
64	40	# 1 V sync offset : V sync pulse width ("3 : 6")	36	00110110	
65	10	# 1 H sync offset : H sync pulse width : V sync offset : V	00	00000000	
00	41	sync width ("24 : 136 : 3 : 6")			
66	42	# 1 H image size ("304.128 mm")	30	00110000	
67	43	# 1 V image size ("228.096 mm")	E4	11100100	
68	44	# 1 H image size : V image size ("304 : 228")	10	00010000	
69	45	# 1 H boarder ("0")	00	00000000	
70	46	# 1 V boarder ("0")	00	00000000	
71	47	# 1 Non-interlaced, Normal, no stereo, Separate sync, H/V pol Negatives	18	00011000	
72	48	Detailed timing description # 2	00	00000000	
73	49	# 2 Flag	00	00000000	
74	4A	# 2 Reserved	00	00000000	
75	4B	# 2 FE (hex) defines ASCII string (Model Name "N150X3-L09", ASCII)	FE	11111110	
76	4C	# 2 Flag	00	00000000	
77	4D	# 2 1st character of name ("N")	4E	01001110	
78	4E	# 2 2nd character of name ("1")	31	00110001	
79	4F	# 2 3rd character of name ("5")	35	00110101	
80	50	# 2 4th character of name ("0")	30	00110000	
81	51	# 2 5th character of name ("X")	58	01011000	
82	52	# 2 6th character of name ("3")	33	00110011	
83	53	# 2 7th character of name ("-")	2D	00101101	
84	54	# 2 8th character of name ("L")	4C	01001100	
85	55	# 2 9th character of name ("0")	30	00110000	

87	57	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	0A	00001010
88	58	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	20	00100000
89	59	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	20	00100000
90	5A	Detailed timing description # 3	00	00000000
91	5B	# 3 Flag	00	00000000
92	5C	# 3 Reserved	00	00000000
93	5D	# 3 FE (hex) defines ASCII string (Vendor "CMO", ASCII)	FE	11111110
94	5E	# 3 Flag	00	00000000
95	5F	# 3 1st character of string ("C")	43	01000011
96	60	# 3 2nd character of string ("M")	4D	01001101
97	61	# 3 3rd character of string ("O")	4F	01001111
98	62	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	0A	00001010
99	63	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	20	00100000
100	64	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	20	00100000
101	65	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	20	00100000
102	66	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	20	00100000
103	67	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	20	00100000
104	68	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	20	00100000
105	69	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	20	00100000
106	6A	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	20	00100000
107	6B	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	20	00100000
108	6C	Detailed timing description # 4	00	00000000
109	6D	# 4 Flag	00	00000000
110	6E	# 4 Reserved	00	00000000
111	6F	# 4 FE (hex) defines ASCII string (Model Name"N150X3-L09", ASCII)	FE	11111110
112	70	# 4 Flag	00	00000000
113	71	# 4 1st character of name ("N")	4E	01001110
114	72	# 4 2nd character of name ("1")	31	00110001
115	73	# 4 3rd character of name ("5")	35	00110101
116	74	# 4 4th character of name ("0")	30	00110000
117	75	# 4 5th character of name ("X")	58	01011000
118	76	# 4 6th character of name ("3")	33	00110011
119	77	# 4 7th character of name ("-")	2D	00101101
120	78	# 4 8th character of name ("L")	4C	01001100
121	79	# 4 9th character of name ("0")	30	00110000
122	7A	# 4 10th character of name ("9")	39	00111001
123	7B	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	0A	00001010

Approval

124	7C	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	20	00100000
125	7D	(If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	20	00100000
126	7E	Extension flag	00	00000000
127	7F	Checksum	0E	00001110

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Symbol	Description	Polarity	Remark
1	Vss	Ground		
2	Vcc	Power Supply +3.3 V (typical)		
3	Vcc	Power Supply +3.3 V (typical)		
4	V_{EDID}	DDC 3.3V Power		DDC 3.3V Power
5	NC	Non-Connection		
6	CLK _{EDID}	DDC Clock		DDC Clock
7	DATA _{EDID}	DDC Data		DDC Data
8	Rxin0-	LVDS Differential Data Input	Negative	R0~R5,G0
9	Rxin0+	LVDS Differential Data Input	Positive	-
10	Vss	Ground		
11	Rxin1-	LVDS Differential Data Input	Negative	G1~G5,B0,B1

12	Rxin1+	LVDS Differential Data Input	Positive	-
13	Vss	Ground		
14	Rxin2-	LVDS Differential Data Input	Negative	B2~B5,DE,Hsync,Vsync
15	Rxin2+	LVDS Differential Data Input	Positive]
16	Vss	Ground		
17	CLK-	LVDS Clock Data Input	Negative	LVDS Level Clock
18	CLK+	LVDS Clock Data Input	Positive	LVDS Level Clock
19	Vss	Ground		
20	NC	Non-Connection		
21	NC	Non-Connection		
22	Vss	Ground		
23	NC	Non-Connection		
24	NC	Non-Connection		
25	Vss	Ground		
26	NC	Non-Connection		
27	NC	Non-Connection		
28	Vss	Ground		
29	NC	Non-Connection		
30	NC	Non-Connection		

Note (1) Connector Part No.: JAE-FI-XB30SL-HF10 or equivalent

Note (2) User's connector Part No: JAE-FI-X30C2L or equivalent

Note (3) The first pixel is even.

5.2 TIMING DIAGRAM OF LVDS INPUT SIGNAL

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

									[Data		al							
	Color			Re						Gre							ue		
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	50	65	68	MHz	-
	Frame Time Cycle	TV	771	806	850	TH	-
DE	Vertical Active Display Period	TVD	768	768	768	TH	-
	One Line Scanning Time Cycle	TH	1200	1344	1600	Tc	-
	Horizontal Active Display Period	THD	1024	1024	1024	Tc	-

Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

Approval

Timing Specifications:

 $0.47 < t1 \leq 10 \text{ msec}$

 $0 < t2 \leq 50 \text{ msec}$

 $0 < t3 \leq 50 \text{ msec}$

 $t4 \geq 500 \text{ msec}$

t5 \geq 200 msec

 $t6 \geq 200 \, \text{msec}$

Note (1) Please avoid floating state of interface signal at invalid period.

Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD Vcc to 0 V.

Note (3) The Backlight inverter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight inverter power must be turned off before the power supply for the logic and the interface signal is invalid.

Note (4) Sometimes some slight noise shows when LCD is turned off (even backlight is already off). To avoid this phenomenon, we suggest that the Vcc falling time had better to follow

 $t7 \geq 5 \text{ msec}$

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	°C				
Ambient Humidity	Ha	50±10	%RH				
Supply Voltage	V _{CC}	3.3	V				
Input Signal	According to typical v	alue in "3. ELECTRICAL	CHARACTERISTICS"				
Inverter Current	IL	6.0	mA				
Inverter Driving Frequency	F _L 61 KHz						
Inverter	Sumida H05 4915						

The relative measurement methods of optical characteristics are shown in 6.2. The following items should be measured under the test conditions described in 6.1 and stable environment shown in Note (6).

7.2 OPTICAL SPECIFICATIONS

Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Color Chromaticity	Red	Rx			0.589			
	Red	Ry			0.338			
	Croon	Gx			0.316			
	Green	Gy		TYP	0.532	TYP		
	Dive	Вх	0 -00 0 -00	-0.03	0.152	+0.03		(1), (5)
	Blue	Ву	θ_x =0°, θ_Y =0° CS-1000T		0.129			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Wx			0.313			
	White	Wy			0.329			
Center Lumin	ance of White	L _C		170	200		cd/m ²	(4), (5)
Contra	st Ratio	CR		200	300			(2), (6)
Doopon	ao Timo	T _R	0 -00 0 -00		5	10	ms	(2)
Respon	se rime	T _F	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$		11	16	ms	(3)
White V	/ariation	δW	θ_x =0°, θ_Y =0° CA-210		1.25	1.40		(5), (6)
	l la vima mtal	θ_x +		40	45			
Respon White V Viewing Angle	Horizontal	θ _x -	CR≥10	40	45		Dog	(1), (2)
	Vertical	θ _Y +	CA-210	15	20		Deg.	(5)
	vertical	θ _Y -		40	45			

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (7).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 63 at center point

$$L_{C} = L (5)$$

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Note (8) Definition of color gamut (C.G%):

C.G%= ΔR G B $/\Delta R_0$ G₀ B₀,

 R_0 , G_0 , B_0 : color coordinates of red, green, and blue defined by NTSC, respectively.

R, G, B: color coordinates of module on 255 gray levels of red, green, and blue, respectively.

 $\Delta R_0~G_0~B_0\,:$ area of triangle defined by $R_0,~G_0,~B_0$

ΔR G B: area of triangle defined by R, G, B

Approval

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly, and the starting voltage of CCFL will be higher than room temperature.

8.2 SAFETY PRECAUTIONS

- (1) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

Approval

9. DEFINITION OF LABELS

9.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

E207943
MADE IN TAIWAN

- (a) Model Name: N150X3 L09
- (b) Revision: Rev. XX: WS, ES: A1, A2, A3,..., etc.

CS & MP: C1, C2, C3,...,etc.

Note: It will happen that revision code changed without product changed in developing duration because of CMO internal stage change, for example: $AX \rightarrow B1$, $BX \rightarrow C1$.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0 ~ 9, for 2000 ~ 2009.

Month: 1 ~ 9, A ~ C, for Jan. ~ Dec.

Day: $1 \sim 9$, $A \sim Y$, for 1^{st} to 31^{st} , exclude I, O and U.

- (b) Revision Code: cover all the changes.
- (c) Serial No.: Manufacturing sequence of product.
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

10.PACKING 10.1 CARTON

10.2 PALLET

