Einleitung Deskriptive Analyse Methoden Ergebnisse Zusammenfassung

Online-Marketing der Interhyp AG Analyse von Tracking-Daten

Daniel Fuckner Markus Vogler Betreuer: Fabian Scheipl

Statistisches Consulting Institut für Statistik Ludwig-Maximilians-Universität München

12.08.2014

Inhaltsverzeichnis

- Einleitung
- 2 Deskriptive Analyse
- Methoden
- 4 Ergebnisse
- 5 Zusammenfassung

Einleitung

- Interhyp AG ist Vermittler für private Baufinanzierungen
- Primäres Ziel des Marketing ist die Kundenakquise
- Etwa 80% aller Kundenanträge werden online abgeschickt
- Online-Marketing verfügt über verschiedene Kanäle
- Refined Labs GmbH ist verantwortlich für das Online-Tracking der Werbekampagnen der Interhyp AG

Entstehung eines Funnels (Quelle: Interhyp AG)

Unterschiede zwischen konvertierten und nicht-konvertierten Funnels?

Inhalt

- Einleitung
- 2 Deskriptive Analyse
- 3 Methoden
- 4 Ergebnisse
- Zusammenfassung

Beispiel für einen Auszug aus der Datenbank

ID	Campaign	Transaction	Position	
1	Affiliate - Partnerprogramm	0	1	
1	SEM - Brand	0	2	
1	Direct	0	3	
1	Direct	1	4	
2	Display	0	1	
2	SEM - Generisch	0	2	
2	Social Media	0	3	

Datenlage

- SQL-Dump mit Größe von circa 13 Gigabyte
- Einteilung in konvertierte und nicht-konvertierte Funnels
- Kampagnen in Form einer Baumstruktur organisiert
- Festlegung auf 17 Kategorien
- Views liegen in den nicht-konvertierten Funnels nur vor, wenn diese bei einem anderen Kunden der Refined Labs GmbH konvertiert sind
- 297,963 Clicks f
 ür die konvertierten und 9,550,802 Clicks f
 ür die nicht-konvertierten Funnels
- Erstellung von Features

clickCount

- Anzahl der Clicks bis zur aktuellen Position
- Gemittelt über alle konvertierten Funnels
- Mehr Views als Clicks

Beschreibung der Kampagnen

Kampagne	Beschreibung
Affiliate - Partnerprogramm	Partner, die Werbemittel einbinden
Affiliate - Rest	Partner, die Zinsvergleich bereitstellen
Direct	Direkte Eingabe von www.interhyp.de
Display	Bannerschaltungen
E-Mailing	Mails an Interessenten, die schon einen Antrag o.ä. gestellt haben
Generic	Unbezahlter Link
Kooperationen - Focus Kooperationen - Immonet	
Kooperationen - Immoscout24	Individuelle Zusammenarbeit mit größeren Partnern
Kooperationen - Immowelt	
Kooperationen - Rest	
Newsletter	Regelmäßige Rundschreiben
SEM - Brand	
SEM - Remarketing	Bezahlte Suchergebnisse
SEM - Generisch	
SEO	Unbezahlte Suchergebnisse
Social Media	facebook und gutefrage.net

campaign

- Hauptsächlich Display bei Berücksichtigung der Views
- Ausgewogenere Verteilung wenn Views gelöscht werden

Nein

campaign

- Direct am häufigsten in den konvertierten Funnels
- Display und
 Affiliate Partnerprogramm
 am häufigsten in
 den
 nicht-konvertierten
 Funnels

funnelLength

- Anzahl Kontaktpunkte eines Funnels
- Kurze Funnels überwiegen deutlich

Nein

timeSinceFirst

- Verstrichene Zeit seit dem ersten Kontaktpunkt
- In der Abbildung wird nur der letzte Kontaktpunkt berücksichtigt
- Funnels mit Länge
 1 unberücksichtigt
- timeSinceLast: Verstrichene Zeit seit dem vorherigen Kontaktpunkt

freq

Konvertiert?

- funnelLength
 dividiert durch
 Gesamt Beobachtungsdauer
 in Stunden
- Frequenzen in nicht-konvertierten Funnels höher

Inhalt

- Einleitung
- 2 Deskriptive Analyse
- Methoden
- 4 Ergebnisse
- 5 Zusammenfassung

- Zeit bis zu einem Ereignis ⇒ Konvertierung oder Nicht-Konvertierung bzw. Rechtszensierung
- Positionen bilden Zeitachse des Modells ⇒ Zeitdiskretes Modell
- Stochastic Gradient Boosting mit Stümpfen als Basis-Lerner

Zielvariable:

$$y_{ip} = \begin{cases} 1 & \text{Beobachtung } i \text{ konvertiert an Position } p \\ 0 & \text{sonst} \end{cases}$$

$$p = 1, ..., 25, i = 1, ..., N_p$$

Hazardrate:

$$\lambda_{ip} = P(y_{ip} = 1 | funnelLength_i \ge p, x_{ip})$$

Logit-Modell:

$$y_{ip}|x_{ip}\stackrel{ind}{\sim}Bin(1,\lambda_{ip})$$
 $E(y_{ip}|x_{ip})=P(y_{ip}=1|x_{ip})=\lambda_{ip}=h(f_{ip})=rac{\exp(f_{ip})}{1+\exp(f_{ip})}$

Likelihood:

$$L(\lambda_{ip}) = \prod_{i=1}^{N_p} \lambda_{ip}^{y_{ip}} (1 - \lambda_{ip})^{1 - y_{ip}}$$

Log-Likelihood:

$$I(\lambda_{ip}) = \ln(L(\lambda_{ip})) = \sum_{i=1}^{N_p} (y_{ip} \ln(\lambda_{ip}) + (1 - y_{ip}) \ln(1 - \lambda_{ip}))$$

$$= \sum_{i=1}^{N_p} (y_{ip} f(x_{ip}) - \ln(1 + \exp(f(x_{ip}))))$$

Binomieller Verlust:

$$L(y, f) = -yf + \ln(1 + \exp(f))$$

Prädiktorfunktion:

$$\begin{split} f(x_{ip}) = & f_{weekday,p}(\text{weekday}_{ip}) + \\ & f_{hour,p}(\text{hour}_{ip}) + \\ & f_{campaign,p}(\text{campaign}_{ip}) + \\ & f_{campaignLast,p}(\text{campaign}_{i,p-1}) + \\ & f_{campaignLast2,p}(\text{campaign}_{i,p-2}) + \\ & f_{timeSinceLast,p}(\text{timeSinceLast}_{ip}) + \\ & f_{timeSinceFirst,p}(\text{timeSinceFirst}_{ip}) + \\ & \text{offset}(\hat{\lambda}_{i,p-1}) \end{split}$$

Gradient Boosting - Pseudocode

Setze Startwert für
$$f_{0p}(x_{ip})$$

for $m=1:n.trees$ do
Setze $\lambda_{ip}(x_{ip}) = \frac{\exp(f_{m-1,p}(x_{ip}))}{1+\exp(f_{m-1,p}(x_{ip}))}$
for $i=1:N_p$ do
 $r_{imp} = -\frac{\partial L(y_{ip},f_{m-1,p}(x_{ip}))}{\partial f_{m-1,p}(x_{ip})} = y_{ip} - \lambda_{ip}(x_{ip})$
end for
 $\theta_{mp} = \arg\min_{\beta} \sum_{i=1}^{N_p} (r_{imp} - h(x_{ip},\theta))^2$
 $\beta_{mp} = \arg\min_{\beta} \sum_{i=1}^{N_p} L(y_{ip},f_{m-1,p}(x_{ip}) + \beta h(x_{ip},\theta_{mp}))$
 $f_{mp}(x_{ip}) = f_{m-1,p}(x_{ip}) + \beta_{mp}h(x_{ip},\theta_{mp})$
end for

Parameter des Modells

- Trainingsdaten machen Hälfte der gesamten Daten aus stratifiziert bezüglich Transaction, Campaign, funnelLength
- *n.trees* = 3000
- cv.folds = 5
- Shrinkage-Parameter:

$$\mu = 0.01 \Rightarrow f_{mp}(x_{ip}) = f_{m-1,p}(x_{ip}) + \mu \beta_{mp} h(x_{ip}, \theta_{mp})$$

- interaction.depth = 1
- bag.fraction = 0.5 ⇒ **Stochastic** Gradient Boosting

Output des Modells

• $\hat{f}(x_{ip})$ für jede Beobachtung i und jede Position p

$$\hat{\lambda}_{ip} = \frac{\exp(\hat{f}(x_{ip}))}{1 + \exp(\hat{f}(x_{ip}))}$$

• Relative Wichtigkeit der Features:

$$\hat{l}_{jp} = \sqrt{\frac{1}{M} \sum_{m=1}^{n.trees} \hat{i}_{mp} 1_{jmp}}$$

• Marginale Effekte der Features:

$$\bar{f}_{jp}(x_{jp}) = \frac{1}{N} \sum_{i=1}^{N_p} \hat{f}(x_{jp}, x_{i, \setminus j, p})$$

ROC-Kurve und AUC

- Menge von Items $I = \{a, b, c, d, e\} \Rightarrow \mathsf{Kampagnen}$
- Datenbank: [ID1, < abcdbaae >]; [ID2, < edcaa >]
- 4-Sequenz $s = b \rightarrow b \rightarrow a \rightarrow e$
- Support einer Sequenz: Anteil der IDs, die s unterstützen
- SPADE-Algorithmus findet häufige Sequenzen, deren Support größer als ein festgelegter minimaler Support ist
- Seperate Anwendung auf konvertierte und nicht-konvertierte Funnels

- Geordneter Graph G = (V, E) besteht aus Menge V von Knoten und Menge E von Kanten
- Kante $e_i \in E$ besteht aus geordneten Paar von zwei Knoten (v_j, v_k) , wobei $v_j, v_k \in V$
- Startpunkt → 17 Kampagnen der ersten Position → Succ_1, Fail_1 und 17 Kampagnen der zweiten Position → Succ_2, Fail_2 und 17 Kampagnen der dritten Position → ...
- Kanten sind bezüglich der Anzahl der Nutzer gewichtet
- Relative Ausgänge: relative Häufigkeiten der Kanten, wobei die zugrundeliegende Menge die Summe aller Nutzer ist, die einen Knoten verlassen
- Relative Eingänge: relative Häufigkeiten der Kanten, wobei die zugrundeliegende Menge die Summe aller Nutzer ist, die in einen Knoten gehen

- R-Paket rgexf o gexf-Datei o Gephi
- Berechnung der räumlichen Anordnung der Knoten und Kanten anhand von Algorithmen (z.B. Force Atlas 2)
- Manuelle Bearbeitung f
 ür die Pr
 äsentation von Ergebnissen
- ullet Interaktives Arbeiten mit dem Netzwerk in *Gephi* möglich o Tutorial dazu im Bericht

Inhalt

- Einleitung
- 2 Deskriptive Analyse
- 3 Methoden
- 4 Ergebnisse
- 5 Zusammenfassung

Relative Wichtigkeit der Features

Marginale Effekte - campaign

Marginale Effekte - timeSinceFirst & timeSinceLast

AUC

Häufige Sequenzen

- Kurze Funnels überwiegen
- Nur Funnels mit mindestens 15 Kontaktpunkten berücksichtigt

Netzwerk für die ersten 10 Positionen

Relative Ausgänge

Relative Ausgänge mit Filter 0.02

Relative Ausgänge mit Filter 0.5

Success 2

Relative Eingänge

Relative Eingänge mit Filter 0.1

Relative Eingänge mit Filter 0.1

Inhalt

- Einleitung
- 2 Deskriptive Analyse
- 3 Methoden
- 4 Ergebnisse
- 5 Zusammenfassung

Zusammenfassung der Ergebnisse

- Zeitdiskretes Survival-Modell
 - Klassifikation in konvertierte und nicht-konvertierte Funnels
 - Marginale Effekte der Features
- Sequential Pattern Mining
- Netzwerk
 - Visualisierung der gesamten Daten
 - Bestätigung der Ergebnisse aus Survival-Modell und Sequential Pattern Mining
 - Tutorial zum interaktiven Arbeiten im Bericht

Literatur

- J. H. Friedman & B. E. Popescu (2005): "Predictive Learning via Rule Ensembles".
- R. Agrawal & R. Srikant (1995): "Mining sequential patterns".
- M. J. Zaki (2001): "SPADE: An efficient algorithm for mining frequent sequences".
- M. Bastian, S. Heymann & M. Jacomy. (2009): "Gephi: An Open Source Software for Exploring and Manipulating Networks".
- R-Packages: gbm, rgexf, arulesSequences, data.table, plyr, ggplot2, doSNOW, foreach.

Einleitung Deskriptive Analyse Methoden Ergebnisse Zusammenfassung

Vielen Dank für Ihre Aufmerksamkeit!