\circ	•	•	1	• 1
Op	nır	ทเรา	nel	111
$\mathbf{P}_{\mathbf{P}}$	711 .	1110	$\mathbf{P}^{\mathbf{C}_{\mathbf{J}}}$	110

Henriikka Palva

Kanditutkielma HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

Helsinki, 10. huhtikuuta 2014

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Tiedekunta — Fakultet — Faculty		Laitos — Institution -	- Department				
Matemaattis-luonnontieteellinen Tekijä — Författare — Author		Tietojenkäsittelytieteen laitos					
Henriikka Palva							
Työn nimi — Arbetets titel — Title							
Oppimispelit							
Oppiaine — Läroämne — Subject Tietojenkäsittelytiede							
Työn laji — Arbetets art — Level	Aika — Datum — Month and year		Sivumäärä — Sidoantal — Number of pages				
Kanditutkielma	10. huhtikuuta 2014		26				
Tiivistelmä — Referat — Abstract							
Oppimispelit ovat videopelejä, jotka opettavat pelaajalle monia eri asioita. Oppimispeleissä on haluttu yhdistää oppiminen ja videopelien parhaat puolet eli niiden puoleensa vetävyys ja hauskanpito. Tämä tutkielma käy läpi mikä on oppimispeli, minkälainen on hyvä oppimispeli ja miten sellainen kannattaa tehdä. Tutkielmassa myös esitellään nykypäivän eri oppimispelejä ja oppimispelien ammattilaisille lähetettyjen kyselyjen tuloksia.							
Avainsanat — Nyckelord — Keywords							
Oppimispeli, videopeli, oppiminen							
Säilytyspaikka — Förvaringsställe — Where deposited							
Muita tietoja — Övriga uppgifter — Additional information							

Sisältö

1	Johdanto						
	1.1	Videopelit	1				
	1.2	Oppimispelit	1				
2	Oppimispelit						
	2.1	Hyvän oppimispelin piirteet	2				
	2.2	Kilpailu oppimispeleissä	5				
	2.3	Pelit opettavat	6				
	2.4	Peleistä oppivat	7				
	2.5	Oppimispelien hyödyt	7				
	2.6	Oppimispelien käyttöönoton ja kehityksen haasteet	8				
3	Орј	pimispelien luomisen käytänteitä	10				
	3.1	Oppimispelin luominen	10				
	3.2	Pelin suunnittelu	11				
	3.3	Pelin komponentit	12				
	3.4	Pelin käytettävyys ja rajapinta	14				
	3.5	Pelin tuotanto	15				
	3.6	Pelin kehitys	15				
	3.7	Jo olemassa olevan pelin muokkaaminen	16				
	3.8	Lapset pelin rakentajina	17				
	3.9	Huomioon otettavaa	18				
4	Haa	astattelu	18				
5	Nykypäivän oppimispelejä						
6	3 Yhteenveto						
Lź	ihtee	et.	22				

1 Johdanto

Oppimispelit ovat pelejä, joiden on tarkoitus opettaa pelaajaansa. Niiden uskotaan olevan motivoivia ja uusi tapa oppia. Kerron kanditutkielmassani yleisesti oppimispeleistä, niiden hyödyistä, niiden kohtaamista haasteista, miten kannattaa tehdä oppimispeli ja minkälainen on hyvä oppimispeli.

Valitsin oppimispelit aiheekseni, koska olen kiinnostunut siitä, että minkälainen on nykyaikainen hyvä oppimispeli, miten niitä tehdään, mitä pitää ottaa huomioon oppimispelejä tehdessä ja opettaako oppimispelin tekeminen myös sen tekijää opetettavasta aiheesta. Kirjoitan tämän tutkielman kaikille niille, jotka ovat kiinnostuneita millään tapaa oppimispeleistä.

Tavoitteenani on saada ihmiset kiinnostumaan enemmän oppimispeleistä ja vaikuttaa henkilöihin, joille on muodostunut negatiivinen suhtautuminen oppimispeleihin. Aion saavuttaa tavoitteeni kertomalla oppimispeleistä monipuolisesti ja tarkasti.

Olen opiskellessani itse tehnyt ohjelmoinninharjoitustyönä matematiikkaa opettavan tietokonepelin, jonka laskutehtävät olivat jaettu kolmeen eri vaikeusasteeseen. Voin siis todeta, että minulla on henkilökohtaista kokemusta oppimispelin tekemisestä. Tärkeimpiä lähteitäni ovat kuitenkin muiden ihmisten tekemät oppimispelit ja niiden tutkimukset ja tutkimustulokset.

1.1 Videopelit

Videopeli on elektroninen peli, jonka pelaamiseen tarvitaan käyttöliittymä ja näyttölaite. Näytön ruudulla nähdään pelistä välitön visuaalinen palaute, jonka käyttöliittymä tuottaa.

Videopeliä tarkempi ilmaisu on tietokonepeli ja tätä ilmaisua käytetään, kun videopeli on julkaistu nimenomaan tietokoneelle. Ensimmäinen tietokonepeli "Tennis for two" tehtiin vuonna 1958 ja se simuloi tennistä tai pöytätennistä. Tietokonepelin pelaaminen vaatii taitoa, tietoa tai sattumaa, kun pelaaja seuraa pelin sääntöjä ja yrittää ratkaista pelin osoittaman tehtävän [23].

Peleissä käyttäjiä vetää puoleensa niiden multimediaesitys [23]. On kuitenkin poikkeuksia, jolloin pelin multimediaesitys ei ole oleellinen, kuten NetHack ja Batmud. NetHack on pelkällä merkkigrafiikalla toimiva vuoropohjainen roolipeli, jota pelataan tietokoneella. BatMub on MUD-peli (Multi-User Dimension) eli MMORPG-pelien (Massively Multiplayer Online Role-playing Game) tekstimuotoinen esiaste. Monet pelaavat NetHackia, koska se on heidän mielestään vaikea ja armoton.

1.2 Oppimispelit

Vaikka ensimmäinen tietokonepeli tehtiin jo 1950-luvun loppupuolella, Marc Prensky otti peleihin perustuvan oppimisen yksityiskohtaisesti esille vasta vuonna 2000. Tämän jälkeen uskotaan oppimispelien kehityksen alkaneen [16]. Prenskyn mukaan pelit ovat aivojen lempitapa oppia [23].

Pelit ovat jo itsessään voimakkaita oppimiskoneita [13] ja kaikki pelit ovat oikeastaan opetuksellisia, koska ne opettavat pelaajalle taitoja, joita tarvitaan selviämään pelissä [15]. Uusi peli on aina oppimisprosessi pelaajalle [30].

Oppimispelit jakaantuvat kahteen kategoriaan: suoraan oppimiseen ja epäsuoraan oppimiseen. Suoran oppimisen peleissä oppiminen on pelaajalle selkeä tavoite ja opetukselliset asiat ovat etualalla. Epäsuoran oppimisen peleissä oppiminen on enemmän taustalla ja oppiminen on huomaamattomampaa.

Oppimispeli on yhdistelmä pelaamista ja oppimista [11]. Tämän yhdistelmän pitää kohdata oppijan tarpeet. Jotkin oppimispelit pyrkivät vaikuttamaan ihmisten käytökseen ja asenteisiin. Nämä pelit puhuttelevat tunteita ja sosiaalisia ja kulttuurisia ongelmia [5].

Oppimispelejä kehitettiin paljon parantamaan pelien opetusarvoa, jotta saataisiin parempi yhteys pelien ja opetuksen välille [23]. Tämä voi kuitenkin vähentää pelin viihteelistä arvoa ja näin pelistä voi tulla liian vakava [23].

On tärkeää, että oppimispeli keskittyy kohdistettuun opintosuunnitelmaansa ja että peli yhdistää oppimisen, niin että pelaaja ei ajaudu sivuraiteille peliosuuden takia [7].

Edutainment on yhdistelmä kahdesta tavallisesta sanasta, mutta se ei kuitenkaan ole oikea sana. Se on yhdistelmä sanoista opetus (education) ja viihde (entertainment). Edutainment kuvaa viihteen eri muotoja, jotka myös opettavat.

Gamification eli pelillistäminen tarkoittaa sitä, että sovelletaan pelien dynamiikkaa ja mekaniikkaa erilaisiin ympäristöihin, esimerkiksi nettisivuille, kouluun tai työelämään. Pelillistämisen keinoja ovat muun muassa pisteet, palkkiot, tasot ja kunniamerkit. Pelillistäminen ei ole kuitenkaan sama asia kuin oppimispelit. Pelillistämisessä pelaaminen on aina toisarvoinen verrattuna suoritettavaan tehtävään. Pelillistämisen tehtävä on löytää aktiviteetista olennaisia palkkioita ja tarjota ulkoisia palkkioita aktiviteettien tekemisestä. Pelillistämisen päämäärä on saada ihminen motivoitumaan ja se on sovellus pelin perusteista. Pelissä voit hävitä ja pelit ovat luonnostaan ja itsessään palkitsevia. Tämä kanditutkielma keskittyy oppimispeleihin.

2 Oppimispelit

2.1 Hyvän oppimispelin piirteet

Hyvä peli saa meidät haluamaan pelata sitä uudelleen [26]. Monet hyvissä peleissä esiintyvät elementit liittyvät hyvään oppimispeliin [7]. Hyvä oppimispeli tarvitsee korkeatasoisen neuvonnan ja ohjeistuksen, jotta henkilöt, joilla on alemman tason koulutustausta, ymmärtävät pelin säännöt [22].

Hyvässä oppimispelissä pitää tunnistaa ja tulkita pelaajan tunteita, koska tunteet vaikuttavat pelaajan motivaatioon ja syventävät oppimista [5]. Jos pelaaja ei ole motivoitunut niin oppimista ei tapahdu, koska pelaajaa ei kiinnosta. Motivaatio luo positiivisia tuloksia, koska motivoituneena opiskelija käyttää enemmän aikaa oppimiseen [21].

Hauskuus on hiljainen peruste peleissä ja se vaikuttaa oppimismotivaatioon [17]. Luontaiseen oppimismotivaatioon kuuluu haaste, uteliaisuus, kontrolli ja fantasia [17]. Haaste, koska oppimisaktiviteetit tuottavat oppijalle tunteen onnitumisesta. Uteliaisuus, koska oppimisaktiviteetit, jotka erovat oppijan varhaisemmasta tietämyksestä, tuottavat uusia löytöjä. Kontrolli, koska oppimisaktiviteetit, jotka antavat asettaa prioriteetteja, tuottavat vastuuta. Fantasia, koska oppimisaktiviteetit, joita ei oikeasti tapahdu jokapäiväisessä elämässä, tuottavat merkityksellistä mielikuvitusta. Näiden uskotaan kasvattavan oppimismotivaatiota [17].

Pelin pitää olla niin itsessään motivoiva kuin mahdollista [7]. Pelin pää-aktiviteetin pitää olla kiinnostavaa ja sitovaa. Kun pelaajat kokevat motivoituneensa niin silloin he ovat haastettuja. Tämä on seurausta pelin monesta hyvin toimivasta muuttujasta. Hyvä oppimispeli onnistuu silloin, kun sen merkitys ei ole tyhjä ja kun siinä on motivaatiota. Oppimispelien päätarkoitus on hyötyä peliformaatin tarjoamasta sitoutuvuudesta ja puoleensa vetävyydestä. Nämä peliformaatin piirteet pitää ylläpitää kaikin keinoin oppimispelissä, koska muutoin oppimispeli ei ole enään peli ja sen voi kategorisoida opetuksellisena ohjelmana [7].

Oppimisen pitää olla vaivatonta, jotta oppimiskokemus on nautittava [30]. Voit olla keskittynyt oppimiskokemukseen tutkimalla, toimimalla ja olemalla vuorovaikutuksessa asetuksessa (setting), kuten historiallinen kartta tai kaupunki [7]. Keskittymisen pitää olla kuitenkin optimaalista oppimiskokemuksen aikana. Se, että pelaaja käyttää kaiken aikansa klikkailemalla maata liikkuakseen, tutkailemalla ympäristöä löytääkseen pieniä laatikoita ei tue oppimiskokemusta ja näiden asioiden oppiminen ei ole oleellista [7].

Yksi hyvään oppimispeliin vaikuttavista tekijöistä on tehtävien arvostelu [28]. Esimerkiksi Pex4Fun -sovelluksessa, joka julkaistiin vuonna 2010, yritetään ratkaista ohjelmointitehtäviä ja opiskelija pyrkii ratkaisuun syöttämällä iteratiivisesti koodia. Pex4Fun tuottaa jokaiselle tehtävää yrittävälle henkilökohtaisen palautteen. Pex4Fun -sovelluksessa voi osallistua "Coding duels" -peliin, jossa voi oppia erilaisia ohjelmoinnin konsepteja ja taitoja. "Coding duels"-pelissä pelaajan tehtävän on toteuttaa "Puzzle" -metodi, jolla täytyy olla täysin sama käytös kuin toisella salaisella "Puzzle" -metodilla, joka ei näy koskaan pelaajalle. Pelaaja yrittää ratkaista "Puzzle" -metodia ja ajaa salaisen ja oman metodinsa testejä nähdäkseen, milloin hän on saavuttamassa oikeaa ratkaisua.

Pex4Funin tekijät listaavat viisi periaatetta, jotka saavat pelaajat parhaiten osallistumaan pelaamiseen: pelien pitää olla vuorovaikutteisia, palautteen on oltava mukautuvaa ja henkilökohtaista, peleillä pitää olla selkeät voittokri-

teerit ja pelissä ei saa olla mitään mahdollisuutta huijata. He päätyivät näihin periaatteisiin, kun he kehittivät ja parantelivat "Coding Duels" -peliosiota. Ensimmäinen periaate on, että pelien tulee olla vuorovaikutteisia ja vuorovaikutuksien pitää olla iteratiivisia ja iteraatioden on kestettävä monta kierrosta. Toinen periaate on palautteen mukautuvuus. Palautteen pitää olla pelaajan viimeisten toimintojen mukaan eikä toistuvasti samanlaista. Kolmas periaate on henkilökohtainen palaute eli palaute annetaan sen hetkisen pelaajan mukaan. Neljäs periaate on, että peleillä pitää olla selkeät voittokriteerit. Viides ja viimeinen periaate on, ettei pelissä saa olla mitään mahdollisuutta huijata. Viides periaate koskee lähinnä suoran oppimisen pelejä. Pex4Funia on käytetty ohjelmistoinsinööri -kurssilla, jolle osallistui yli 50 ihmistä ja palaute on ollut positiivista. Pex4Fun-sovellukselle ei kuitenkaan ole suoritettu virallista testausta siitä, että se vaikuttaa oppimisen tehokkuuteen [28].

Peleihin pitää lisätä yhteiskunnallis-tunteikasta realismia [5], johon kuuluu muun muassa tervehtimisrituaalit, sosiokulttuuriset säännöt henkilöiden välillä ja sosiaaliset mallit. Yhteiskunnallis-tunteikasta realismia tarvitaan peleissä, koska sen uskotaan vaikuttavan tunteisiin liittyvään oppimiseen, joka tukee sosialisointia, enkulturisoitumista ja sosiaalista kehittymistä.

Realismin vaikutusta oppimiseen ei ole vielä tutkittu pitkälle. On kuitenkin olemassa tutkimus, jonka mukaan voidaan päätellä, kuinka realistinen peli voi olla, että oppiminen ei kärsi [27]. On esitetty hypoteesi, jonka mukaan noviisin pelatessa peliä tai simulaatiota hänen varhainen oppimisensa kasvaa, kun realismin määrä kasvaa. Realismin määrä pystyy kasvamaan kuitenkin vain tiettyyn pisteeseen saakka, minkä jälkeen oppiminen kärsii. Pelin aiheesta keskinkertaisen tiedon määrän omaaville ennustettiin, että varhainen oppiminen on korkeammalla kuin noviisien ja realismin määrä törmää taas pisteeseen, jonka jälkeen oppiminen kärsii. Oppiminen ei kärsi kuitenkaan yhtä paljon kuin noviisien. Ekspertit oppivat paljon enemmän kuin keskinkertaiset tai noviisit [27]. Lopullinen oletus realismin vaikutuksesta oppimiseen oli, että liian suuri realismin määrä tekee pelistä liian vaikean, sekavan ja stressaavan pelaajalle [27].

Fantasia, mielikuvitus, hauskuus ja viihde ovat tarpeellisia piirteitä oppimispeleissä. Fantasia voi tyydyttää virtuaalitilanteen, mielikuvituksen ja ympäristön tunnetta. Hauskuus ja viihde mahdollistavat pelaajan uppoutumisen pelaamiseen ja rohkaisevat aktiiviseen osallistumiseen [30].

Menestyvässä oppimispelissä oppimismateriaali on yhdistetty pelin mekaniikoihin eikä niin, että oppimismateriaali on vain lisäys pelin mekaniikoihin. Tätä puolustetaan sillä, että peli, jossa oppiminen on olennaista (intrinsic) pelaamisessa, on tutkimuksien mukaan motivoivampi ja opetuksellisesti tehokkaampi kuin melkein identtinen peli, jossa ei ollut olennaista oppimista pelaamisessa [15].

On suoritettu tutkimus, jossa 136 yliopistoikäistä taiwanlaista vastasi kyselyyn, että mitä mieltä he ovat peleihin perustuvasta oppimisesta, ja että mitä he odottavat ja haluavat online-peleiltä [24]. Tuloksien mukaan online-

pelien tulee olla kiinnostavia ja haastavia, uusia ja puoleensa vetäviä, pelissä pitää olla mahdollisuus sosialisointiin ja pelissä pitää olla multimediaefektejä. Tutkimuksiin osallistuneiden mukaan he oppivat online-peleissä englannin kielistä dialogia, sanastoa, ääntämistä ja ymmärrystä.

2.2 Kilpailu oppimispeleissä

Kilpailu on yllyke ja kasvattaa opiskelijan motivaatiota [21]. Kilpailussa oppijan suoritusta verrataan ja esitellään ja tämä korostaa sosiaalisen vertailun prosessia. Vertailulla ja esittelyllä voi aiheuttaa oppijalle hänen itseluottamuksensa laskemista ja alhaisempaa minä-pystyvyyttä. Kilpailu on silti hyödyllinen osa peleihin perustuvassa oppimisessa, vaikka se saattaa aiheuttaa negatiivisia vaikutuksia. Suorakilpailu todennäköisesti saa opiskelijat yhdistämään kilpailun tulokset heidän identiteettiinsä. Suorankilpailun sijaan kannattaa käyttää sijaiskilpailua, jolloin kilpailu on rennompaa. Kilpailupeleillä halutaan nostaa oppijan motivaatiota oppia. [4]

Aikaisempien tutkimuksien perusteella on tehty ehdotuksia, jotka helpottavat mahdollisia kilpailun aiheuttamia negatiivisia vaikutuksia. Yksi näistä on anonyymikilpailu, jolloin oppijan epäonnistumisia ei paljasteta julkisesti ja näin väistetään vahingon aiheuttaminen hänen itseluottamukseensa. Toinen ehdotus on ryhmäkilpailu, jolloin nimensä mukaan kilpaillaan pienissä ryhmissä ja tällöin ryhmän jäsenet jakava vastuun kilpailun tuloksesta ja henkilökohtainen paine vähenee. Anonyymikilpailu kuitenkin sopii vain anonyymeihin peliympäristöihin ja ryhmäkilpailu on rajoitettu vain ryhmäoppimistapoihin. [4]

Tietyt tutkimukset kirjaavat kilpailutilanteiden aiheuttamia negatiivisia vaikutuksia asioihin ja näihin kuuluu oppimismotivaatio ja oppimismieltymykset. Testeissä oppijoiden luontainen motivaatio laski, kun heidän täytyi ratkoa tehtäviä kilpailutilanteessa ja kävi ilmi, että osa oppijoista piti anonyymistä kilpailusta eikä henkilökohtaisesta kilpailusta. [4]

Oppijoita kannustetaan katsomaan, että epäonnistumiset johtuvat yrittämisen puutteesta eikä heidän kyvyistään. Sijaiskilpailu on tapa kilpailla, jolloin ei ole suoraa kilpailua oppijoiden välillä vaan jokaisella oppijalla on heitä edustava sijainen. Kilpailu käydään näiden sijaisten välillä. Sijaiskilpailu voi auttaa oppijoita kehittämään positiivisen uskon oppimisponnisteluihin. Optimaalisen kokemuksen kilpailupeleissä saa, kun oppijan kyvyt vastaavat haasteeseen ja tämä vaikuttaa heidän nauttimiseensa. Sijaisen pitää olla puoleensa vetävä oppijalle, koska muutoin oppija ei kiinnostu sijaisesta. Sijaisten tarvitsee kertoa oppijalle hänen sen hetkisen oppimistilanteen, antaa vinkkejä ja palautetta. [4]

Tutkimuksessa, jossa peruskouluikäiset pelasivat peliä, jossa oli sijaispelaaja ja sijaiskilpailijat niin heillä oli vahvempi käsitys tavoitteesta, haasteesta ja nautinnosta kuin peruskouluikäiset, joilla ei ollut tätä elementtiä. Tämä johtui todennäköisesti siitä, että sijaispelaajakilpailumekanismissa on tavoit-

teena kilpailun voittaminen eikä toisen pelaajan voittaminen. Sijaiskilpailu tarjoaa opiskelijoille oppimistilaisuuksia eikä tapahdu tuloksien vertailua ja tukee opiskelijan positiivisen asenteen kehitystä kilpailua kohtaan. Negatiivisen palautteen saaminen kuvalta tietokoneen ruudulla on helpompaa kuin saada negatiivista palautetta oikealta henkilöltä. [4]

2.3 Pelit opettavat

Pelit opettavat toimimaan olosuhteissa, jolloin on asetettu säännöt, kuinka voi ja saa toimia. Jos peli on suoran oppimisen peli eli opetukselliset asiat ovat etualalla niin peli opettaa ainakin näistä tietyistä opetuksellisista asioista. Suoran ja epäsuoran oppimisen pelit opettavat päätöksenteko- ja ongelmienratkaisukykyä.

Pelit voivat opettaa kieliä [3]. On tehty tutkimuksia kielien oppimisesta pelien avulla ja yhteen näistä tutkimuksista osallistui 35 taiwanlaista kansallisesta lukiosta ja heitä pyydettiin pelaamaan "Bone"-fantasiaseikkailupeliä. He olivat keskimäärin yhdeksäntoista vuotiaita ja heistä kaksi kolmasosaa oli naisia. Heidän englannin kielen osaaminen oli keskinkertaista. "Bone"-pelissä on puhuttu ja kirjoitettu syöte(input). [3]

Osallistujien mukaan peli kehitti heiden yleistä englannin kielen taitoa, kuuntelun taitoa, lukemisen taitoa ja sanaston tuntemusta. Englannin kielen kuuntelun ja lukemisen taitoa paransi kirjoitettu/puhuttu syöte ja osa mainitsi lukunopeutensa kehittyneen pelin pelaamisen jälkeen. Jotkut kokivat strategisen päättelykykynsä parantuneen ja kiehtovan tarinan houkuttelevan heitä pelaamaan lisää. Heidän englannin kielen sanastonsa kasvoi. Tämä johtui siitä, että kun he törmäsivät uuteen sanaan, jota he eivät ymmärtäneet, he menivät katsomaan sanakirjasta käännöksen. Kielen oppimisen lisäksi osallistujat myönsivät heidän asenteensa oppimiseen muuttuneen positiivisemmaksi pelin ansiosta ja että he nauttivat englannin oppimisesta sen verran, että he uskovat sen parantavan heidän motivaatiotaan. Osallistujien mukaan oli hyvä asia, että heidän oli pakko ajatella englanniksi, koska he olivat kokonaan englannin kielisessä ympäristössä. [3]

Valituksena oli, että osa "Bone" -pelin tehtävistä oli liian vaikeita, minkä takia kesti pitkään ratkaista niitä. Osalle osallistujista dialogi kulki puheellisesti ja tekstillisesti liian nopeasti eteenpäin, mikä aiheutti ymmärtämisongelmia. Eikä puheen ja tekstin nopeutta pystynyt kontrolloimaan. Joidenkin osallistujien mukaan pelaaminen vaikeutti kielen oppimista, koska he olivat keskittyneempiä pääsemään tehtävistä läpi kuin oppimaan englantia. Vaikka he ymmärsivät lukemansa niin heille saattoi silti olla vaikeaa tajuta, mitä tehtävässä pitää tehdä. Tästä ongelmasta huolimatta he silti jatkoivat pelaamista, koska he halusivat nähdä, miten peli jatkuu. Tämä tuotti motivaatiota, joka esti heidän turhautumisensa. [3]

DeHaan ohjasi tutkimuksen, jossa tutkittiin voiko japanin kieltä oppia koripallovideopelistä. Tuloksien mukaan pelaajat paransivat kuullun ym-

märtämisen taitojaan ja kanji-merkkien tunnistaitojaan. Ranalli puolestaan tutki "Sims"-pelin vaikutusta toisen kielen sanatuntemukseen ja hän päätyi tuloksiin, että "Sims"-peli paransi huomattavasti tutkimukseen osallistujien sanastontuntemusta. [3]

DeHaan, Reed ja Kuwada ohjasivat tutkimuksen, jossa tutkittiin mihin asteeseen asti PS2-musiikkipelin interaktiivisuus auttaa tai haittaa toisen kielen sanastontuntemusta. Tutkimukseen valittiin sattumanvaraisesti 80 japanilaista yliopisto-opiskelijaa, jotka jaettiin pareihin heidän englannin kielen osaamisen ja pelipätevyyden mukaan. Tutkimuksessa yksi pari pelasi englannin kielistä musiikkipeliä ja toinen pari seurasi peliä toiselta monitorilta. Pelin jälkeen seurasi sanaston muistamistesti, kognitiivinen latausmittaus(cognitive load measure), kokemuskyselykaavake ja kahden viikon jälkeen uusi sanaston muistamistesti. Kognitiivinen lataus on lataus, joka liittyy toimeenpanevan työmuistin hallintaan. Työmuisti kuuluu ihmisten lyhytkestoiseen muistiin. Monimutkaisen oppimisen aikana käsiteltävän tiedon ja vuorovaikutuksen määrä ei voi ylittää eikä alittaa oppijan työmuistin kokoa. Kaikki elementit pitää käsitellä ennen kuin merkityksellinen oppiminen voi jatkua. Tulokset kertoivat, että pelaajat ja seuraajat muistivat sanoja musiikkipelistä, mutta seuraajat muistivat paljon enemmän kuin pelaajat. Tämän uskotaan johtuvan siitä, että seuraajien ei tarvitse keskittyä itse pelaamiseen. [3]

2.4 Peleistä oppivat

Pelistä oppivat itse pelaajat ja sitä vierestä seuraajat [3]. Pelin rakentajat oppivat samalla vähintäänkin ohjelmointia.

"Periodic Table of the Elements" -pelissä harjoitellaan Alkuaine -taulukon faktojen muistamista. Se on suunnattu englannin kieltä osaaville ja internet yhteyden omistaville. Pelin sisältö tekee sen kiinnostavimmaksi niille, jotka opiskelevat kemiaa, lääketiedettä tai fysiikkaa. [2]

"Zombie Division" on peli, jonka tarkoitus on opettaa matematiikkaa. Pelissä pelaaja tappaa luurankoja jakolaskuilla. "Zombie Division" -peliä pelaavat vanhemmat ala-aste oppilaat, jotka ovat päteviä, mutta eivät mestareita kerto- ja jakolaskuissa. [2]

Peli nimeltä "Quest Atlantis" on massiivinen online roolimoninpeli. "Quest Atlantis" sopii oppilaille ala-asteesta lukioon, mutta suuri osa on ylä-aste ikäisiä. Pelin tehtävät ovat sidoksissa erinäisiin opintosuunnitelman osiin. Pelin pelaamiseksi riittää, että osaa perusteet oleellisen tieteen sisällöstä (relevant science content). [2]

2.5 Oppimispelien hyödyt

Oppimispelit ovat parantaneet visuaalisia prosessointitaitoja, päätöksentekokykyä, tiedon vastaanottamista monesta eri lähteestä [5], tiedon säilyttämistä muistissa ja interaktiivista oppimista [27]. Pelit auttavat opiskelijoita rentoutumaan, vähentävät stressiä ja parantavat keskittymistä ja luovuutta [24, 19].

Pelien uskotaan nostavan motivaatiotasoa [12], kehittävän käytönnöllisiä päättelytaitoja ja monimutkaisten ongelmien ratkaisutaitoja [5]. Kun oppijat ovat motivoituneita niin he jaksavat pidempään ja pistävät enemmän yritystä opiskeluun, koska he ovat kiinnostuneita asiasta [12].

Peliä suunniteltaessa ja rakentaessa ryhmätyötaidot kehittyvät [25, 8], kuten kuinka työskennellä ryhmässä, kuinka jakaa työt tasaisesti ryhmän jäsenten kesken ja kuinka ottaa huomioon taidot ja eri tehtävät. Oppimispeleistä on se hyöty, että opiskelijat pääsevät kokeilemaan monimutkaisia asioita ilman riskiä [27, 10], kuten ilmaliikenteen hallintaa tai kirurgisia toimenpiteitä. Ne opettavat yhdeltä yhdelle, ne mukautuvat jokaisen yksilöllisen pelaajan tarpeisiin ja tuottavat yksilöllisen palautteen pelaajille [15].

Pelit voi jakaa moneen kategoriaan, mutta yleensä vain roolipeleissä, strategiapeleissä ja simulaatiopeleissä on jotain opetuksellista [23]. Roolipelipelejä on käytetty eniten markkinoilla ja opetuksessa, koska ne korostavat pelattavan hahmon kasvua ja kokemuksia pelissä [23]. Roolipeleillä saadaan pelaaja syvälle tilanteen sisään, mikä mahdollistaa pelaajan ymmärtämään roolihahmonsa aseman maailmassa paremmin kuin katsomalla elokuvaa, kuuntelemalla luentoa tai lukemalla aiheesta. Tämä johtuu siitä, että pelissä pelaaja joutuu tekemään päätökset roolihahmonsa puolesta [13].

Tunneilla ja luennoilla opiskelijat saattavat joutua kuuntelemaan opettajan selityksiä asiasta, jonka he tuntevat jo osaavansa. Peleissä pelien sosiaalinen paine, aikarajoitukset ja positiivinen mieliala saavat opiskelijan kysymään ja vastaamaan kysymyksiinsä itse. Silloin opiskelijat ryhtyvät itse aktiivisiksi oppimisprosessissa, eivätkä ole vain passiivisia kuuntelijoita [21].

Pelit voidaan sovittaa perinteiseen akateemiseen aikatauluun. Se ei vaadi muita resursseja kuin itse pelin [15].

Vuonna 2002 NESTA Futurelab julkaisi raportin tietokonepeleistä ja oppimisesta. NESTA Futurelab oli päätynyt tuloksiin, että perinteinen opetus ei tuota samanasteista motivaatiota kuin pelit, ja että pelit tukevat kommunikointi- ja ongelmanratkaisutaitoja ja matemaattista kehitystä. [20]

2.6 Oppimispelien käyttöönoton ja kehityksen haasteet

Kuusi ongelmaa on jarruttanut oppimispelien läpimurtoa markkinoille. Ensimmäinen niistä on vanhempien negatiiviset asenteet videopelejä kohtaan ja toisena on peleistä oleva vähäinen todistuaineisto, että ne ovat oikeasti tehokkaita opetusvälineitä. Kolmantena ongelma on, että pelille ei tehdä tarpeeksi testejä, jotka todistaisivat pelin kehittävän oppimista tai taitoja. Neljäntenä ongelmana on, että kaupallisesti saatavilla olevat pelit eivät ole parantaneet käyttäjän kriittistä ajattelua. Viidentenä ongelmana on, että vain harva kaupallisesti saatavissa oleva peli nivoutuu perusopetuksen strategisten

tarpeiden kanssa, ylioppilas suunnitelman kanssa tai harjoitteluohjelmien kanssa. Viimeisenä ongelmana on, ettei ole olemassa kaupallisesti tarjolla olevaa peliä, joka parantaa oppimistuloksia, joiden on tarkoitus kuulua todisteisiin perustuvaan kehykseen [27].

On spekuloitu, että tietokonepeleillä on negatiivinen vaikutus nuoriin, vaikka todistusaineistoa ei ole paljoa tukemaan tätä väitettä [23]. Nuoret, jotka ovat pelanneet, saivat paremmat pisteet käsitteissä, kuten perheläheisyys, positiivinen koulunkäynti, positiivinen mielenterveys, huumeiden käyttö ja vanhempien vastustaminen, kuin nuoret, jotka eivät ole ikinä pelanneet [23]. Nuoret, jotka pelaavat, ovat sanoneet, että heidän perhesuhteensa ovat läheisiä. Sen sijaan, että pelit syrjäyttävät aktiviteetteja, kuten urheilu ja kerhot, niin pelit ovat yksi vapaa-ajan harrasteista [23].

Robert Moser on tehnyt fantasiaseikkailu -peliä, joka opettaa ohjelmointia [18]. Hänen mukaansa opettavan pelin suunnitelu on vaikeaa, koska opetus- ja viihdetavoitteiden välillä on konflikteja. Hänen pelilleen on kaksi erilaista käyttäjää ja heillä on eri prioriteetit pelin tarkoitukselle. Pelaaja haluaa tulla viihdytetyksi ja opettaja haluaa oppilaan oppivan. Hän kertoo, että kompromisseilta ei voida välttyä.

Oppimisen ja hauskuuden määrän luotettava mittaaminen oppimispeleistä on yksi haasteista, koska on olemassa monenlaisia eri määritelmiä, että mitä oppiminen on. Vaikka tutkimuksen tulokset oppimispelistä näyttävät siltä, että oppimista on tapahtunut niin nämä arviot eivät välttämättä ole täysin luotettavia. On epäluotettavaa, että tutkimukseen osallistuneet kykenisivät muistamaan tai demonstroimaan tarkkaan, että oppimista on tapahtunut tai kuinka hauskaa oli pelatessa. Tämän takia vaaditaan lisää tutkimuksia, jotka todistavat, että oppimista tapahtuu pelatessa. [9]

Pelit vaikuttavat siltä, että ne voivat olla hyviä opetusvälineitä, mutta on olemassa vain vähän todistusaineitoa, että pelit tuottavat luotettavia, päteviä ja kestäviä opetuksellisia tuloksia tai että pelit ovat parempi tapa opettaa kuin perinteinen opetus. Testejä, joissa verrataan pelien opetustuloksia muiden opetusmetodien opetustuloksiin on vähän. Vakuuttavan todistusaineiston vähäisyys ei kuitenkaan estä hyviä opetustuloksia tuottavien pelien olemassa oloa. Yhdessä tutkimuksessa verrattiin 19 päivää matemaattisten ongelmien ratkaisua tietokonepelissä ja tehtäväpaperilla. Opiskelijat ratkaisivat kolme kertaa enemmän tehtäviä tietokonepelissä kuin he normaalisti ratkaisivat tehtäväpaperilla. [15]

Ei ole olemassa montaa käytännöllistä suositusta, kuinka tehdä oppimispelistä yhtä motivoiva kuin viihdepelistä. Peleistä keskustellaan paljon, että miksi ne ovat hyviä opetusvälineitä, mutta miten varmistamme, että ne tosiaan ovat hyviä opetusvälineitä. Tämän takia moni oppimispeli on kuin suklaalla kuorrutettu parsakaali, ei hauska eikä opetuksellinen. [15] Nämä pelit kärsivät siitä, että niitä suunnittelevilla ihmisillä ei ole ollut perinteistä pelisuunnittelukokemusta tai he eivät ole kääntäneet tietoa, faktoja ja oppintunteja pelien kielelle [6].

Pelin suunnittelijat keskittyvät joskus liikaa opetukselliseen sisältöön, joka haittaa pelinkulkua. Pelit ovat hyviä opetusvälineitä, koska ne nähdään itsessään motivoivina. Se ei kuitenkaan tarkoita, että kaikki pelit ovat motivoivia. Muuttamalla oppikirjatyylisen opetusohjelman "osoita ja klikkaa-tietokonepeliksi ei ole pelisuunnittelua [15].

Oppimispelin epäonnistuminen yleensä johtuu siitä, että pelin suunnittelijat eivät ole tietoisia, kuinka pelit pohjimmiltaan rakennetaan [7]. He unohtavat, että peleissä on kyse siitä, että mitä sinä teet eikä että mitä sinä näet. He menettävät kyvyn nähdä eron näkemisen ja tekemisen välillä.

Monien opettajien mielestä pelit ovat ajanhukkaa ja tekee oppimisprosessista usein liian pitkän ja keskittyy vääriin tavoitteisiin. Opiskelijan näkökulmasta opetusmateriaalin lisääminen peliin vähentää pelin hauskuutta. [21]

Tutkimuksissa päädyttin tulokseen, että pelien käytettävyydessä on 12 ongelmaa, jotka ovat: johdonmukaisuus, muokattavuus, tekoäly, näkymän yhteensopimattomuus, sisällön sivuuttaminen (skip content), syötteen kartoitus (input mapping), hallinta, pelin tila, harjoittelu ja apu, komentosarjat (command sequences), visuaaliset esitykset ja vastausaika. Nämä löydökset perustuvat 108 kaupallisen videopelin arvosteluun. Näiden ongelmien välttämiseksi tulee tuottaa johdonmukaisia vastauksia pelaajan toiminnoille, antaa pelaajan muokata video- ja ääniasetuksia, säätää vaikeustasoa ja pelin nopeutta, tuottaa rajoittamattomia näkymiä, jotka ovat sopivia pelaajan sen hetkisille teoille, antaa pelaajan sivuuttaa eipelattavaa ja useasti toistuvaa sisältöä, tuottaa vaistonvaraista ja muokattavaa syötekartoitusta, tuottaa kontrolleja, joita on helppo hallita ja joilla on sopiva herkkyys- ja reagoivuustaso, tuottaa pelaajalle pelin tila ja ohjeet ja apu ja tuottaa visuaaliset esitykset, joita on helppo tulkita. [30]

Tutkijat ovat luoneet yhden ratkaisun ongelmaan, että miten saadaan edutainmentia peliin lapsille [14]. Tämä ratkaisu on tuoda edutainment tarinan kautta ja sitä parannetaan multimediateknologian avulla.

3 Oppimispelien luomisen käytänteitä

3.1 Oppimispelin luominen

Katherine Isbister, Mary Flanagan ja Chelsea Hash ottivat selvää haastattelemalla kokeneita pelisuunnittelijoita ja keräsivät tietoa kolme vuotta siitä, että mikä toimii ja mikä ei toimi suunniteltaessa oppimispelejä. He aloittivat vuonna 2008 ja haastateltavana oli 41 henkilöä, joista neljä seitsemästätoista oli naisia ja ikäluokka oli kahdenkymmenen ja viidenkymmenen välillä. Haastateltavien pelisuunnittelukokemus oli vaihteleva ja vain yksi haastateltavista ei ollut ollut kehittämässä pelejä ammattimaisesti.

He tulivat lopputuloksiin, että on pakko olla intohimoinen pelistä, jota tekee. Pelin tekemisen pitää olla ainakin aluksi hauskaa ja oppimismateriaalin pitää olla syvällä pelin mekaniikassa ja tavoitteissa [13]. Monesti opetusma-

teriaali vain heitetään pelin mekaniikan päälle eikä mietitä tarkkaan, että kartoittaako peli pedagogisiamalleja [29]. Oppimateriaalin yhdistäminen peliin vaatii hyvän käsikirjoituksen, tuotantotekniikan, hahmojen suunnittelun, ympäristön mallintamisen ja tietoa hallinnoimisesta [23]. Täytyy myös jaksaa viilata peliä loppuun asti, mikä saattaa tehdä pelin teon ikäväksi tai hauskaksi. Pelissä on hyvä olla yhteistyötä, roolipeliä ja etnisten ongelmien ratkaisua [13].

Ju-Ling Shih, Jia-Jiun Tseng, Chien-Wen Chuang ja Bai-Jiun Shih loivat yhdessä Taiwanin historian ja maantiedon opetusroolipelin. He kertovat suunnitelleensa ensimmäiseksi roolipelin käsikirjoituksen, joka käsitteli anti-japanilaista sotahistoriaa ja eteläisen Taiwanin maantietoa. Sen jälkeen he toivat vuorovaikutteisen kartan, roolit ja kontekstit saadakseen rakennettua kokonaisen maiseman.

3.2 Pelin suunnittelu

Menestyksekkään oppimispelin rakentamiseen tarvitsee ymmärtää, mitä pitää ottaa huomioon, kun suunnitellaan perinteinen tietokonepeli [15]. Pelit yleensä esittävät pelaajalle sarjan lyhyitä, keskipitkiä ja pitkäaikaisia tavoitteita. Näiden tavoitteiden saavuttamiseksi pelaajaa vaaditaan tekemään päätöksiä ja toimimaan. Pelit yleensä tuottavat välitöntä ja tarkkaa palautetta pelaajalle, mikä on motivaation ydin ja ylläpitää mielenkiintoa, oppimista ja hauskuutta. Pelit opettavat pelaajalle suunnitelmallisesti kyvyt, joita tarvitaan haasteiden voittamiseksi. Pitkät ja vaikeat tehtävät rikotaan pienemmiksi paloiksi ja jokainen pala opetellaan yksi kerrallaan ennen kuin ne yhdistetään. Jos pelaajalle esitetään vaihtoehdot seuraavaan tekoon niin minkään vaihtoehdon ei pidä olla selkeästi se oikea tai väärä. [15]

Pelin suunnittelu alkaa substantiiveista [7]. Substantiivit määrittelevät tarinan ja ympäristön. Verbit kuvaavat mitä voidaan tehdä tarinassa ja ympäristössä, mutta substantiivit asettavat kohtauksen. Ne vetävät pelaajan mukaan kohtaukseen, selittävät universumin ja tuottavat taustakertomuksen. Pelit ovat päätösten tekoa, mitä teet seuraavaksi, seurauksien näkemistä ja palautteen saamista tekojen jälkeen. Verbeihin keskittyminen tarkoittaa, että kun suunnittelet (oppimis)peliä, niin sinun pitää keskittyä myös pelin sääntöihin. Pelin selitykset ja säännöt ovat tärkeitä, koska ne ovat ohjeet, joita pelaaja seuraa pelatessaan. Sääntöjen tulee olla selkeitä, jotta pelaaja pystyy pelaamaan helposti peliä [30]. Suunniteltaessa oppimispeliä meidän pitää keskittyä, kuinka säännöt toimivat pelissä, koska ne määrittelevät pelin kokemuksen ytimen ja lopulta ensisijaiset oppimistulokset.

Kun suunnittelee oppimispeliä niin täytyy varmistaa, että oppiminen ja pelaaminen yhdistyvät [7]. Tämä tarkoittaa, että menestyäkseen pelissä täytyy hallita pelin takana olevat oppimistavoitteet. Esimerkiksi strategiapelissä "Age of Empires II"verbit ovat periaatteessa kivi-paperi-sakset-pelin dynamiikan hallitsemista, mutta niitä ei ole yhdistetty mihinkään oppimis-

tavoitteeseen. Vaikka nämä verbit ovat historiallisessa ympäristössä, niin historiallinen tietämys ei ole tarpeellista menestyäkseen pelissä. Tämän takia se ei tule tärkeäksi pelaajalle. Parhaimmillaan pelaaja lukaisee historiatietoiskut läpi, mutta enimmäkseen vain sivuuttaa ne, koska niiden oppimisesta ei ole seurauksia.

Seuraavat askeleet auttavat suunnittelemaan pelin, joka auttaa oppijoita saavuttamaan heidän oppimistavoitteensa: käyttäytymisen määrittely ja mittaus, käyttäytymisen muutoksen tallennus ja analysointi, tarkentava palaute ja että peli on dynaamisesti sopeutuva opiskelijan suoritukseen [15].

Ensimmäiseksi määritellään tarkoitetut pelin oppimistulokset ja pitää olla mahdollista tuottaa määritelmä siitä, jos pelaaja on saavuttanut oppimitulokset tai ei ole saavuttanut. Tämän määritelmän lisäksi suunnittelijan pitää määritellä kaikki askeleet, jotka tarvitaan, että pelaaja saavuttaa oppimistulokset. Näin syntyy oppimistuloksien hierarkia, jolloin yksinkertaisimmat asiat opetetaan ensin. Tehtäville on joskus aikarajoituksia. Käytösanalyytikkojen mukaan täsmällisen suorituksen vaatiminen aikarajoituksella on metodi, joka varmistaa, että oppija tuntee materiaalin. On tärkeää kerätä dataa pelaajan käytöksestä pelin aikana, mutta se, miten data esitetään on suunnittelijan oma päätös [15].

Pelin pitää pystyä analysoimaan pelaajan suorituksia ja näin mukautumaan siihen, jotta se voi esittää sopivia haasteita pelaajalle. Jos tehtävän suorittamiseen kuluu toistuvia yrityksiä niin pelaaja pitää ohjata toistamaan pienempiä aliosia, jotka muodostavat tehtävän, jota pelaaja ei pääse läpi. Tällä tavoin pelaaja aina ponnistelee kohti saatutettavia päämääriä. [15]

3.3 Pelin komponentit

Pelissä pitää olla seuraavat alikomponentit: multimodal, tehtävä ja palaute. [26] Multimodaalisuus on sitä, että verkkoesitykset koostuvat monesta moodista. Moodeja ovat esimerkiksi teksti, kuva ja ääni [1].

Multimodal sisältää modaliteetiin ja vuorovaikutuksen, joita ilman ei voida kehittää peliä. Modaliteettii hallinnoi oppijan ja pelin vuorovaikutusta. Modaliteettiin sisältyy multimedia elementit, rajapinnan suunnitelma ja kerronta. Pelin kerronta on ratkaiseva, koska esimerkiksi historiapeleissä se voi näyttää, kuinka historialliset tapahtumat tapahtuivat [30]. Multimedia tuo peliin lisää kiinnostusta sen kuvilla, animaatioilla ja spesiaali tehosteilla. Rajapinnan tulee olla yksinkertainen ja puoleensa vetävä, jotta oppija mukautuu peliympäristöön helposti. Kerronnalla vaikutetaan oppijan ja pelin väliseen vuorovaikutukseen. Parempi tarina pelissä auttaa oppijaa uppoutumaan peliin ja saavuttamaan oppimistuloksia, kun hänellä on hauskaa. Oppijan vuorovaikutus pelin kanssa on tärkeä osa, koska se määrittelee kuinka oppija ohjaa peliä ja kuinka oppija oppii siitä. [26]

Tehtävien tarkoitus pelissä on saada pelaaja opettelemaan oppimismateriaalia. Tehtäviä pitää olla eri tasoisia, että pelaaja pystyy helposti mukau-

tumaan peliympäristöön. Vaikeuden eri tasot varmistavat sen, että pelaaja voi oman osaamisensa mukaan kehittää itseään eikä turhautumista tapahdu. Ratkaistakseen tehtävän pelaajan tulee ymmärtää tehtävä. [26]

Palaute on tärkeää ja vihjeitä pitää antaa pelaajalle pyydettäessä suoraan tai epäsuoraan. Jos pelaajat saavat palkinnon suoritettuaan tehtävän niin se kannustaa heitä tekemään seuraavankin tehtävän. Jos pelaaja ei saa palkintoa, vaikka hän ratkaisee tehtävän niin pelin pitää kannustaa pelaajaa suorittamaan tehtävän uudestaan, mutta paremmin. [26]

Pelissä annetaan palautetta, jotta pelaaja tietää, kuinka lähellä hänen sen hetkinen tasonsa on hänen tavoitteitaan. Kun halutaan, että pelaaja oppii jonkun taidon kannattaa tarjota palkkiota hyvästä suorituksesta, negatiiviset seuraukset huonosta suorituksesta ja suorat negatiiviset seuraukset, kun pelaaja tekee jotain, mitä hänen ei haluta tekevän. [15]

Palkkioilla pidetään yllä pelaajan motivaatiota ja kiinnostusta peliin. Pelin pitää osata arvioida eri palkkioiden vaikutusta pelaajaan. Pelin pitää pystyä tähän, jotta se tietää, että mitkä palkkiot motivoivat pelaajaa. Pelissä pitää olla erilaisia palkkioita saatavilla samaan aikaan. Tärkeintä ei ole ainoastaan, että mitä on palkkiona vaan milloin palkkio on saatavilla. Ei kannata tarjota palkkiota jokaisen toiminnan jälkeen. On olemassa erilaisia menetelmiä aikatauluttaa palkkioita. Yksi menetelmä on aikatauluttaa säännöllisin väliajoin. Esimerkiksi joka yhdeksännen tehtävän jälkeen saa palkkion. Toinen menetelmä on aikatauluttaa epäsäännöllisesti eli suoritettavien tehtävien lukumäärä vaihtelee, kunnes saa palkkion. Kolmas menetelmä on, että tietty määrä aikaa pitää kulua ennen kuin saa palkkion. Neljäs menetelmä on, että satunnaisen aika määrän pitää kulua ennen kuin saa palkkion. Pelissä voidaan käyttää vain jotain tiettyä menetelmää tai sitten yhdistelmää monesta eri menetelmästä. Pelaajalla pitää olla hänen tasostaan huolimatta aina mahdollisuus palkkioon. [15]

Pelit auttavat kehittämään monia kykyjä, kuten sosiaalista ja tunteikasta oppimista, ongelmanratkaisua, luovaa ajattelua ja neuvottelua. Pelien pitää tasapainoitella opetuksellisten periaatteiden ja viihdeomainaisuuksien, joita pelaaja olettaa pelissä olevan, kanssa.

Pelin kohdekäyttäjiä kannattaa ottaa mukaan alkuvaiheessa pelin suunnitteluun, koska heidän läsnäolonsa voi inspiroida pelintekijöitä suunnittelemaan lumoavamman pelin ja tuottamaan oivalluksia, että kuinka voi saumattomasti yhdistää pelin omaan käyttöympäristöönsä. Suunnitteluehdotuksia kerätessä peliä varten kannattaa pitää kohdekäyttäjät vain tiedonlähteinä. Opettajien näkökulmat ovat tuottaneet selkeämpiä määritelmiä ongelmasta, jota yritetään ratkaista pelissä. Opettajat ovat tärkeä käyttäjäryhmä, koska he valitsevat ottavatko vai eivätkö he ota pelejä mukaan opetukseen. Lapset saavat suunnittelijoiden mielikuvituksen venymään provokatiivisilla suunnitteluehdotuksilla. [29]

Käyttäjien lisääminen suunnitteluvaiheeseen ei onnistu kuitenkaan ilman haasteita. Tutkimuksissa pojat suunnittelivat kohtauksia, jotka olivat liian väkivaltaisia ja perustuivat peleihin, joita he olivat jo aikaisemmin pelanneet. Lasten oli vaikea yhdistää tehtäviin sopivia palkkioita, jotka syventäisivät pelin syvemmän oppimisen objektien yhteyksiä. [29]

Peli täytyy suunnitella kohdeyleisöä varten, jotta he voivat helposti mukautua peliin [26]. Tätä varten pitää selvittää ensin opiskelijoiden käytös (learners' behavior), psykologiset tarpeet ja kognitiivinen kehitys, minkä jälkeen valitaan ja suunnitellaan peli. Kohdeyleisön oppimiskäytös (behavior of learning) vaikuttaa heidän tehokkuuteensa ja oppimistuloksiin. Opiskelija voi haluta jatkuvasti pelata peliä oppiakseen, jos hänen tarpeensa on saavutettu pelissä. [26]

Flow on tila, jossa henkilö on täysin sulautunut aktiviteettiinsa ja tästä syntyy optimaalinen kokemus. Flow-tilassa millään muulla ei ole väliä kuin saada kyseisen aktiviteetin tavoitteet valmiiksi. Aikaisempien tutkimuksien mukaan flow-tilalla on positiivinen vaikutus oppimiseen ja tämä pitäisi ottaa huomioon suunniteltaessa digitaalisia oppimismateriaaleja. [23] Hahmojen vaikutus koko peliin on suuri, koska pelaajat samaistuvat heihin. Hahmojen suunnittelu ja tutkiminen on tärkein vaihe suunnittelussa [23]. Rollings ja Adams nimeävät hahmojen ja tarinan olevan tärkeimpiä tekijöitä roolipeleissä, vaikka tarina joskus laiminlyödään niin hahmojen seikkailut, kehitys ja taistelut ovat välttämättömiä [23]. Teemat, taustat, vuorovaikutusmallit niin kuin hahmojen johtaminen, ohjaus ja hallinta, objektit ja näkökulmat ovat tärkeitä suunnittelussa. Taustatarinalla ja kerronnalla on positiivinen vaikutus opiskelijan motivaatioon [21].

Peleissä, joissa on puhe- ja tekstisyöte, pitää olla mahdollisuus hallita syötettä eli esimerkiksi mahdollisuus tauottaa. Jos edellä mainittua mahdollisuutta ei ole niin kaikki pelaajat eivät ehdi ymmärtää ohjeita [3].

3.4 Pelin käytettävyys ja rajapinta

Pelin rajapinta on ensimmäinen asia, jonka pelaaja kohtaa, kun peli alkaa. Rajapinta vaikuttaa suuresti pelin käytettävyyteen ja sen tulee olla yksinkertainen, tehokas, käytettävä ja hyvän näköinen [30, 24]. Pelin rajapinnan pitää antaa pelaajan hallita peliä sujuvasti ja näyttää kaiken tarvittavan tiedon pelaajan ja pelin tilasta ja mahdollisista toiminnoista. Rajapinnan pitää olla yhteinäinen kontrolleissa, väreissä, typografiassa ja dialogin tyylissä. Rajapinnan käytettävyys ja luotettavuus varmistavat, että pelaaja voi keskittyä itse pelaamiseen ja pelistä nauttimiseen, eikä rajapinnan kanssa tappeluun. [30]

Pelien käytettävyydestä ja pelin rajapinnan laadusta on vain rajoitettu määrä tutkimuksia. Huonosti suunniteltu rajapinta voi vaikuttaa pelin menestykseen markkinoilla ja sillä voi olla negatiivinen vaikutus ylipäänsä pelin laatuun. Rajapintaa arvioidessa kannattaa varmistaa, että se on helppo oppia, sujuva käyttää ja tukee ohjeita [30].

Käytettävyys ja oletettu käyttäjä soveltavuus ovat kaksi pääsyytä nuo-

rempien lapsien turhautumiseen videopeleissä. Pitää tehdä pelejä, jotka ovat oikealla tasolla, jotta lumoava kokemus saataisiin tuotettua. Pelien pitää tuottaa haastetta ja fantasiaa ja yllyttää uteliaisuuteen. [9]

3.5 Pelin tuotanto

Pelin tuotantoon kuuluu viisi vaihetta [23]. Ensimmäinen vaihe on pelin teeman ja taustan asennus(setup). Tämä vaihe pitää sisällään huokuttelevan pelitarinan ja kontekstin luomisen ja peligenren määrittelyn. Toinen vaihe on pelikartan asennus. Tässä vaiheessa tuotantoryhmä suunnittelee pelin käsikirjoituksen ja rakentaa arkkitehtuurit siihen liittyen. Kolmas vaihe on pelin vaiheet(stages) ja tehtävät. Tuotantoryhmä määrittelee pelin sisällön ja pelin kulun. Neljäs vaihe on pelin hahmot ja objektiparametrit. Tällöin tuotantoryhmä suunnittelee hahmojen ulkonäöt, luonteet ja toiminnot ja tavaroiden ja objektien tarkoitukset ja parametrit. Viides ja viimeinen vaihe on mekaniikka ja algoritmit. Tässä vaiheessa tuotantoryhmä asettaa aikajärjestelmän, taistelujärjestelmän, tukijärjestelmän, pelirajapinnan ja manipulaatiojärjestelmän ja siihen kuuluvat toiminnot. Shihinien, Tsengin ja Chuangin luoma peli Taiwanin historiasta ja maantiedosta on tehty näiden viiden vaiheen mukaan.

3.6 Pelin kehitys

Pelin kehitys sisältää viisi vaihetta [23]. Vaiheiden esimerkkeinä käytetään aikaisemmin mainittua peliä Taiwanin historiasta ja maantiedosta. Ensimmäiseen vaiheeseen kuuluu pelin kontekstin suunnittelu. Tässä vaiheessa pelin käsikirjoitus suunnitellaan eteläisen Taiwanin anti-japanilaisen sotahistorian mukaan ja peligenreksi valitaan roolipeli. Seuraavaan vaiheeseen kuuluu pelin kartan toteutus. Tällöin pelin arkkitehtuurimallit rakennetaan käyttäen 3Ds Maxia ja simuloitu ympäristö perustetaan. Kolmanteen vaiheeseen kuuluu pelin vaiheiden ja tehtävien asennus(setup). Pelin vaiheet rakennettiin(setup) sotahistorian sijaintien mukaan ja joka vaiheelle määriteltiin vastaavat oppimistehtävät. Neljänteen vaiheeseen kuuluu pelin roolien ja objektien asennus. Pelin hahmot, objektit ja ominaisuuksien parametrit määriteltiin tarinan kulun mukaan. Viidenteen vaiheeseen kuuluu pelin mekaniikan ja algoritmien asennus. Pelin käynnistämisen mahdollistamiseksi asennettiin hallinto-operaatio mekaniikka(system operation mechanics), aikamekaniikka, hallintofunktiot ja rajapinta.

Oppimispeli pitää kehittää niin, että pelaaja pystyy simuloimaan tai rakentamaan jotakin, jotta peli saisi pelaajan kytkettyä peliin mahdollisimmaan hyvin [26].

Amerikkalainen yliopisto-opettaja Don Gotterbarn kysyi opiskelijoiltaan, että onko väliä, jos julkaistavassa videopelissä on tiedossa olevia virheitä. Moni opiskelija ei vastustanut tätä. Heidän mielestään on hyväksyttävää,

että pelissä on vikoja, jos on varmistus, että julkaistaan pian pelistä versio, jossa viat on korjattu [10].

3.7 Jo olemassa olevan pelin muokkaaminen

Lähiaikoina peleissä on lisääntynyt mahdollisuus käyttäjien kustomoida heidän pelikokemuksiaan rakentamalla ja laajentamalla pelikäytöstä [8]. Tätä kutsutaan sanalla "modding" eli olemassa olevien pelien muokkaus. Käyttäjille annetaan mahdollisuus muokata ohjelmakoodia monessa suositussa pelissä. Muokkaamalla pelin ohjelmakoodia käyttäjä voi muokata pelin käytöstä, luoda uusia maailmoja tutkittaviksi tai muokata peliä niin paljon, että pelistä tulee aivan uusi peli. Tämä prosessi vaatii käyttäjää ymmärtämään, kuinka kommunikoida pelimoottorin kanssa.

Uusien pelien luomisen monimutkaisuutta pystyy karsimaan muokkaamalla jo olemassa olevia pelejä, mutta se ei karsi mahdollisuutta oppia. Muokkaamalla peliä voi oppia 3D-grafiikkaa, vektori geometriaa, tapahtumaohjattua ja olio-orientoitunutta ohjelmointia, tekoälyyn liittyviä asioita ja pelien kehittämisen laskennallisia ja esteettisiä perusteita.

Muokkaamalla jo olemassa olevaa peliä luodakseen uuden pelin on suunnitteluaktiviteetti, jolla on opetuksellisia hyötyjä [8]. Suunnittelu tehtävät ovat hyödyllisiä oppimismateriaalille, taidoille ja strategioille, koska ne tuottavat pelaajalle merkityksellisiä ja lumoavia konteksteja. Näin he kokeilevat eri taitoja ja konsepteja ymmärtääkseen, kuinka niitä voi soveltaa todelliseen maailmaan. Suunnittelu prosessin aikana täytyy käyttää analyysin, synteesin, arvioinnin ja tarkistuksen taitoja. Rakentamisen prosessin aikana palaute tulee osalliseksi, kun käyttäjä yrittää ymmärtää, miksi ja miten hänen suunnitelmansa epäonnistuu ja miksi ja miten sitä voi parantaa. Suunnitteluongelmilla on monia eri ratkaisuja eikä vain yhtä oikeaa. Tämä antaa käyttäjille tilaisuuden nähdä ja arvioida eri vaihtoehtoja. Tämä johtaa iteratiivisiin aktiviteetteihin, joissa käyttäjät pikkuhiljaa rakentavat, arvioivat, keskustelevat ja päivittävät heidän rakennelmaansa.

Moni peli on julkaissut työkaluja, jotka sallivat käyttäjän muokata pelin karttoja, mekaniikoita, tapahtumia (event), esimerksiksi mainittakoon pelit "War Craft III", "Unreal Tournament 2003 ja 2004", "Half Life" ja "Half Life 2". [8]

On suoritettu harjoitus, jossa 35 opiskelijan, jotka olivat Pennsylvanian osavaltionyliopistosta tietojenkäsittelytieteen osastolta, piti yhdessä muokata "Unreal Tournament" -pelin käytöstä [8]. Heidän piti luoda uusia huoneita "Unreal Edit" -työkalulla. "Unreal Tournament" on ensimmäisen persoonan ammuntapeli -tyyppinen verkkopeli, jonka ensimmäinen versio julkaistiin vuonna 1999. Tämä tehtävä vaati opiskelijoita ymmärtämään arkkitehtuurista suunnittelua, teksturointia, äänisuunnittelua, valaistussuunnittelua, maisemointia ja 3D geometrian perusteiden ymmärtämistä.

Opiskelijat olivat sitoutuneita kehittäessään muutoksiaan peliin [8]. Kun

opiskelija törmäsi ongelmaan, hän yritti ensin ratkaista sen itse ja jos hän ei pystynyt siihen niin hän kysyi muilta opiskelijoilta, kunnes he löysivät vastauksen. Opiskelijat kommentoivat "Unreal Tournament"-pelin koneiston ohjelmakoodia ja tämä edisti parempaa hyvän koodin standardien ymmärtämistä ja arvostusta. Peli tuki ohjelmakoodissa perintää ja olio-orientoitunutta ohjelmointia ja tämä harjoitus vasta auttoi opiskelijoita ymmärtämään uusiokäytön ja perinnän arvon ohjelmoinnissa, vaikka nämä aiheet oltiin jo käyty läpi aikaisemmin olio-orientoitunut suunnittelu kurssilla. Tämä johtuu siitä, että harjoituksessa he pääsivät vasta itse käyttämään niitä. Lisäämällä hahmoja ympäristöön opiskelijat oppivat, kuinka käyttää sisäänrakennettuja navigointialgoritmeja ja liikuttamaan hahmoja heidän arkkitehtuureissaan. Harjoituksessa opiskelijat oppivat mukautumisesta, projektin hallinnasta, aikatauluksesta ja iteratiivisesta kehityksestä. [8]

Opiskelijat kommentoivat itse harjoitusta. Heidän mielestään kertomus on tärkeä osa pelin suunnittelua, koska loistavimmat pelit kertovat tarinan ja se rakentaa mukaansatempaavan kokemuksen pelaajalle. Hahmot ja tarinankerronta ovat tärkeässä osassa peliä ja tarinankerronnan pitää olla vuorovaikutteista. Täytyy tehdä ero pelin suunnittelulle ja pelin ohjelmoinnille. Kokemukset vaikuttavat, että minkälainen peli syntyy. [8]

Kaiken kaikkiaan pelin muokkaamisesta uskotaan opittavan ryhmätyötä, kritiikin muodostamista, projektin aikatauluttamista, projektin hallintaa, iteraatiota, protyyppien luomista, tapahtumaohjattua ja olio-orientoitunutta ohjelmointia, komponenttiperusteista kehitystä, ohjelmistomalleja, valaistuksen, arkkitehtuurin ja hahmojen suunnittelua, peli suunnittelua, pelin mekaniikoita ja tasapainottelua pelin estetiikan ja pelin toimintojen välillä. Muokkaamalla jo olemassa olevia pelejä käyttäjät pääsevät nopeasti kokeilemaan eri suunnittelukonsepteja. Tämä lisää opiskelijoiden motivaatiota, mikä johtuu siitä, että opiskelijat arvostavat ja odottavat sitä, että he näkevät saman estetiikan laadun opetusympäristön peleissä kuin nykypäivän peleissä. [8]

3.8 Lapset pelin rakentajina

On suoritettu tutkimus, jossa tutkittiin lasten kykyä rakentaa pelejä itse eikä niin, että lapset kehittävät idean ja antavat sen ammattilaisille toteutettavaksi. Tutkijat tapasivat lapset lauantaisin kuuden viikon ajan ja tapaamiset kestivät noin puolitoistatuntia. Tähän osallistui neljä poikaa ja kolme tyttöä, jotka olivat 12-14 ikäisiä. Yksi lapsista oli uusi koko projektille ja muut olivat olleet samankaltaisissa projekteissa jo ennenkin mukana.

Lapset jaettiin pieniin ryhmiin ja ryhmät alkoivat rakentamaan omaa peliä "Neverwinter Nights" -työkalustolla. "Neverwinter Nights" on tietokoneroolipeli, jossa on "Aurora Toolset", jolla voi rakentaa itse pelissä uusia seikkailuja. Lapset testasivat toistensa rakentamia pelejä ja antoivat palautetta toisilleen. Iteratiivinen pelitestaus toi tärkeitä oivalluksia rakentajan

rooliin. Se oli oleellinen asia menestyksekkääseen lopputulokseen, koska silloin rakentajalapset tulivat itse tulokseen, että onnistuvien suunnitelmien pitää keskittyä enemmän pelaajan kokemuksiin kuin heidän omiin tarinoihinsa. [25] Kuitenkin lasten kyky suunnitella peli, joka saisi aikaan syvää oppimista, on rajallinen [29].

3.9 Huomioon otettavaa

Pelaajan ajatukset ja tuntemukset pelaamisen aikana vaikuttavat oppimiseen [12]. Tätä väittämää tukemaan toteutettiin testejä, joihin osallistuja saivat itse valita pelin, mitä he pelaisivat ja heidän pelaamistansa tarkkailtiin. Pelaamisen jälkeen pidettiin haastattelu, jossa pelaaja kertoi tuntemuksistaan ja ajatuksistaan pelin eri kohdissa ja tämä peli näytettiin vielä videolta samaan aikaan. Huonossa tapauksessa pelaaja saattaa turhautua pelatessaan, jos hänen yrityksensä ratkaista ongelma tai tehtävä eivät johda onnistumiseen. Tämä on huono tilanne, koska turhautuessaan pelaaja saattaa lopettaa pelaamisen ja tästä seuraa ettei oppimista enää tapahdu. Tulokset viittaavat, että osallistuminen ja oppiminen liittyvät toisiinsa. Oppimisen ja osallistumisen suhdetta pitää kuitenkin vielä tutkia lisää ennen kuin voidaan tehdä mitään konkreettisia väittämiä [12].

4 Haastattelu

Kyselyssä kartoitettiin, että minkälainen kokemus kyselyyn vastaavalla on tietokoneista, videopeleistä, ohjelmoinnista, oppimispeleistä, mikä on olennaista oppimispelejä tehdessä, oppiko oppimispelejä tehdessä itse jotain, miksi hän alkoi tehdä oppimispelejä, onko hän pitänyt siitä ja minkä hän uskoo oppismispelien tulevaisuuden olevan. Kysely lähetettiin kymmenelle oppimispelejä tekevälle henkilölle, joista kolme vastasi kyselyyn.

Yksi kyselyyn vastanneista oli alkanut käyttää tietokonetta 1980-luvun alkupuolella ja hänen ohjelmointikokemuksensakin ulottuu 1980-luvulle. Muutama opiskelija on tehnyt oppismispelihin liittyvän opinnäytetyön hänen ohjauksessaan. Hän pelaa videopelejä lastensa kanssa pari kertaa kuukaudessa.

Toinen alkoi käyttää tietokonetta seitsemän vuotiaana ja hän pelaa videopelejä nykyään 2-4 tuntia viikossa, vaikka teininä 6-8 tuntia päivässä. Hän toimii pelintuottajana eli hän päättää projektin fokuksen, hankkii sille rahoituksen, määrää aikataulun, kertoo mitä suunnittelija, graafikko ja ohjelmoija seuraavaksi tekevät ja pitää huolen, että peli valmistuu budjetissa. Hän alkoi tekemään oppimispelejä, koska on kiinnostunut opettajana aiheesta ja tuntee pelialan ihmisiä.

Kolmas kyselyyn vastannut aloitti tietokoneen käytön vuonna 1981 ja käyttää ajasta riippuen noin 5-25 tuntia viikossa videopelien pelaamiseen. Hänellä on paljon ohjelmointikokemusta. Hän on ohjelmoinut harrastuksena lapsesta alkaen ja päätyönään toiminut ohjelmistosuunnittelijana yli neljä

vuotta taloushallinnon ohjelmistoja tehneessä yrityksessä. Hän on oman yrityksensä puitteissa myös tehnyt ohjelmointityötä oppimispelien ja virtuaalisten oppimisympäristöjen kanssa. Hänen oma työskentely oppimispelien parissa on ollut enemmän suunnittelun, ohjelmistoarkkitehtuurin ja projektinhallinnan puolella. Hänen kiinnostuksensa oppimispelejä kohtaan perustuu oppimisen ja opetuksen murrokseen ja hyödyllisten asioiden ja erityisesti peliteknologian yhdistämiseen. Hänestä pelit ovat parhaimmillaan hauskoja, positiivisesti koukuttavia ja luovat flow-tilan, joka on otollinen oppimisen kannalta. Jos nämä pelien positiiviset asiat pystytään hyödyntämään niin, että pelaaja oppii huomaamattaan hyödyllisiä asioita niin se on arvokas asia.

Heidän mukaansa oleellista oppimispelejä tehdessä on, että pelin on oltava oikea peli eikä elektroninen tehtäväkirja. Pelin sisällön on liityttävä kiinteästi opittavaan aiheeseen ja sillä on oltava pedagoginen tavoite eli se ei voi olla viihdepeli, jota vain kutsutaan oppimispeliksi. Heistä suuri osa oppimispelejä on väärillä jäljillä, kun opittava aihe on vain "päälleliimattu"pelimekaniikan päälle. Esimerkiksi kun tasoloikka tai apumapelissä opetetaan kielioppia tai matematiikkaa. Tällöin opetusmateriaali ei liity itse peliin ja tämän tyyliset pelit ovat suklaalla kuorrutettuja parsakaaleja. Oppimispelin pitää rakentua opetusmateriaalin ympärille, esimerkiksi oppimispeliversio SimCityEdu, jossa opiskellaan muun muassa taloutta, tiimityöskentelyä, verotusta ja kaavoitusta. Pelin rakentaminen opetusmateriaalin ympärille on haastava osa-alue oppimispelien tuotannossa ja tämä osa-alueen tarkoitus on keskittyä hyvään pelisuunnitteluun ja pedagogisten sisältöjen tuomiseen pelin muotoon. Kyse on ensisijaisesti pelisuunnittelun ja pedagogisen suunnittelun saumattomasta yhdistämisestä. Tähän lopputulokseen ei yllä moni ja jopa viihdepuolella on parempia esimerkkejä peleistä, jotka soveltuvat oppimispeleiksi kuin niin kutsuttuja "varsinaisia" oppimispelejä. Optimaalinen henkilö oppimispeliä tekemään on koulutettu opettaja, joka tuntee pelimaailman hyvin.

Kyselyyn vastanneiden mukaan oppimispeliä tehtäessä peliin tuleva opetusmateriaali on opiskeltava, ymmärrettävä, sisäistettävä ja kyettävä muotoilemaan sellaiseen muotoon, josta pelaaja pystyy oppimaan. Jos pelisuunnittelija ei itse opettele oppimispelin opetusmateriaalia niin pelisuunnittelu osoittautuu mahdottomuudeksi tai johtaa epäonnistuneeseen yritykseen. He oppivat oppispelien tekoa seuratessaan, että oppimispelisuunnittelun periaatteet ovat samat kuin viihdepelin, ja että vaikeata oli asiakkaan tavoitteiden sovittaminen aikatauluun ja budjettiin. Oppimissisältö oli vaikeaa saada istumaan peliin hyvin.

Oppimispelin tekemisessä oli haasteellista opetuksellisten asioiden kytkeminen peliin ja välillä esiintyi ongelmia, joita ei viihdepuolella tule vastaan. On haastavaa suunnitella peli siten, että pelin keskeisiin pelimekaniikkoihin on sisäänkirjoitettu oppimista vaativia prosesseja. Oppimisen pitää olla pelin sydämessä, eikä se saa olla viimeisenä lisätty asia. Vaikeaksi on osoittaunut myös aiheen onnistunut käsittely pelissä, eikä ole helppoa luoda pedagogisesti järkevä oppimispeli.

Yhden kyselyyn vastanneen mukaan hänen ohjaamansa oppilaat ovat pitäneet oppimispelin kehittämisestä muun muassa sen takia, että niiden pelisuunniteluperiaatteet ovat samat. Toinen kuvaa oppimispelin tekemisen olevan kovaa työtä, jossa harvat hyvät hetket motivoivat puurtamaan joka päivä aamusta iltapäivään. Näihin hyviin hetkiin kuuluu esimerkiksi oppilaiden innostuminen pelitesteissä. Kun peliä työstää useamman vuoden, ei siitä yksiselitteisesti pidä tai ole pitämättä. Kolmas on pitänyt oppimispelien tekemisestä ja hän on nauttinut yhteistyöstä opettajien ja pedagogista sisältöä tuottavien kanssa. Hän on oppinut myös paljon uutta "poikkitieteellisestä"yhteistyöstä.

He uskovat oppimispelien tulevaisuuden olevan valoisa ja kannustava ja oppimispelien olevan keskeisessä osassa oppimista. Opettajien joukosta löytyy paljon digitaaliseen teknologiaan ja peleihin positiivisesti suhtautuvia henkilöitä ja heidän suunnastaan on tullut oma-aloitteista mielenkiintoa pelillistä oppimista kohtaan. Yksi kyselyyn vastanneista tuntee, että nyt on oppimispelien "kulta-aikaa", on optimistinen oppimispelien tulevaisuuden suhteen ja katsoo taloudenllisten mittareiden osoittavan alan markkinoiden kasvuun.

5 Nykypäivän oppimispelejä

Nykypäivän oppimispeleihin kuuluu muun muassa "Super Energy Apocalypse" [6], "Zombie Division" [2], "Where in the world is Carmen Sandiego" [5], "Re-Mission" [5] ja "Quest Atlantis" [2].

"Super Energy Apocalypse" on reaaliaikainen strategiavideopeli, joka opettaa pelaajalle kestävästä energiakäytöstä ja energiatalouden monimutkaisuudesta. Pelissä käytetään U.S.A:n energiatalousdataa pelin talousmallina. Pelin tarkoitus on saada pelaaja ymmärtämään energiatuotannon, luonnonvarojen, kuljetuksen, polttoaineen, voimaloiden, talouden ja saasteiden välisen suhteen.

Pelin tekijät halusivat luoda pelaajalle ratkaistavaksi ongelman, joka heijastaa todellisen maailman haasteita. Pelaajan täytyy saada tuotannon ja puhtauden välille tasapaino samalla, kun jatkuvasti yrittää säilöä resursseja. Pelaajan on tarkoitus oppia eri voimalatyyppien välinen ero, kulkuneuvojen käyttämien eri polttoaineiden hyvät ja huonot puolet, ymmärtämään kuinka uusiutuvia ja uusiutumattomia resursseja käytetään ja muutetaan ja ymmärtämään kuinka jokainen osa energiataloutta vaikuttaa koko maailmaan.

Pelissä pelaaja joutuu keskelle post-apokalyptistä maailmaa, joka kuhisee zombeja. Hänen täytyy suojella linnaketta, jota ympäröi zombien miehittämä erämaa. Päivällä pelaaja kehittää hänen talouttaan ja yrittää minimoida hänen tuottamia saasteitaan. Yöllä pelaajan täytyy estää zombeja tuhoamasta hänen rakennuksiaan. Pelaajan on täytynyt tuottaa tarpeeksi resursseja selviytyäkseen, mutta zombit ruokkivat itseään pelaajan saasteilla. Päivällä

pelaaja pystyy kokeilemaan taloudellista strategiaa ja yöllä pelaaja näkee, kuinka hyvin se toimii. Isot määrät resursseja ja vähäiset saasteet takaavat pelaajalle ammuksia zombeja vastaan, mutta jos pelaajalle on vähäiset resurssit ja isot määrät saasteita, hänen on vaikea puolustaa linnaketta.

"Zombie Division" on seikkailupeli, jonka tarkoitus on opettaa tekijöihin jakamista ja kerto- ja jakolaskua. "Zombie Division" -pelissä pelaaja on kreikkalainen sankari, joka taistelee zombeja vastaan miekalla, kilvellä ja rautakäsineellä. Zombeilla on numero esillä heidän rinnassaan. Esimerkiksi sankaria lähestyy zombi, jolla on numero 27 rinnassaan. Sankarin täytyy nyt valita, että millä aseella hän iskee zombia: miekka, joka esittää arvon kaksi, kilpi, joka esittää arvon kolme vai rautakäsine, jolla on viisi sormea pystyssä. Tuhotakseen zombin pelaajan on käytettävä kilpeä, joka jakaa tekijöihin kolmella. "Zombie Division" -pelin tarkoitus vahvistaa matemaattisia taitoja numeroiden tekijöiden tunnistamisessa.

"Where in the world is Carmen Sandiego" on oppimispeli, joka opettaa yksinkertaista maantietoa ja viittaustaitoja samalla, kun pelaaja pelaa mysteeripeliä. Pelistä on ilmestynyt monta eri versiota ja uusin versio julkaistiin vuonna 2011 Facebooksissa. Peli alkaa päällikön toimistosta San Franciscosta ja pelaaja valitsee seuraavan saatavilla olevan tapauksen suoritettavaksi. Pelaaja matkustaa ensimmäiselle rikospaikalle ja hän päättää löytämiensä vihjeiden perusteella mihin paikkaan hän seuraavaksi lentää. Jos pelaaja saa uudesta paikasta ihmisiltä lisää vihjeitä, hän on oikeilla jäljillä. Pelaajan täytyy karsia epäiltyjenlista yhteen henkilöön ennen kuin hän voi antaa pidätysmääräyksen. Pelaajalla on vain tietty määrä päiviä aikaa ratkaista tapaus.

"Re-Mission" on peli, joka auttaa nuoria potilaita läpi käymään syövän. Pelaaja konrolloi RX5-E ("Roxxi") nanobottia, joka on suunniteltu piikitettäväksi ihmiskehoon ja taistelee tietyn tyyppisiä syöpiä ja samaa sukua olevia tulehduksi vastaan, kuten Non-Hodgkinin lymfooma ja leukemia, solutasolla. Pelaajan täytyy monitoroida potilaan tilaa ja raportoida oireista pelin tohtori Westille. Kaikki 20 tasoa informoivat potilasta erilaisista hoitokeinoista, kuinka ne toimivat ja niiden hoitokeinojen tiukan noudattamisen ylläpidon tärkeydestä.

"Quest Atlantis" on 3D monikäyttäjäpeli, joka yhdistää oppimisen, pelaamisen ja auttamisen parhaat puolet ja sen päämäärä on motivoida ja sitoa oppijoita. Pelissä suoritetaan opetuksellisia aktiviteetteja (quests), puhutaan toisten käyttäjien ja mentorien kanssa ja rakennetaan virtuaalinen henkilöhahmo. Pelin on kompromissi online ja off-line oppimisaktiviteetteja juonella, joka inspiroi sosiaaliseen toimintaan. "Quest Atlantis" -pelin päämäärä on perustaa maailmoja, joissa lapsista tulee tieteilijöitä, tohtoreita, reporttereita ja matemaatikkoja. "Quest Atlantis" -peli on todistanut oppimishyötyjä tieteessä, kielissä ja yhteiskuntaopissa.

6 Yhteenveto

Olen nyt esitellyt mikä oppimispeli on, minkälainen on hyvä oppimispeli ja käytänteitä kuinka oppimispeli kannattaa tehdä. Olen eritellyt hyötyjä, miksi kannattaa pelata oppimispelejä ja niiden kohtaamia haasteita. Esittelin myös tavan luoda ja suunnitella oppimispelejä, muutaman nykypäivän oppimispelin ja kyselyni tulokset.

Oppimispeleistä ei ole vielä tehty paljoa tutkimuksia ja materiaalin löytäminen oli suhteellisen haasteellista. Tämä johtui muun muassa siitä, että moni artikkeli käsitteli loppujen lopuksi vain kehittämäänsä peliä, jota ei oltu edes julkaistu tähän päivään mennessä.

kritiikki

Oppimispeli tai mikä tahansa peli päätyy hyödyttömäksi, jos kukaan ei pelaa sitä. Pohdittavaksi kysymyksiksi jää, että miten saada ihmiset pelaaman oppimispelejä, mikä tekee pelistä houkuttavan, hauskan tai/ja opettavan?

Lähteet

- [1] kielikompassi.jyu.fi. https://kielikompassi.jyu.fi/resurssikartta/netro/pankki/parametrit_moodi_multi.shtml, Helmikuu 2014.
- [2] Arena, Dylan: The Seven Circumstances of Game-based Learning: A Worked Example and an Invitation. Teoksessa Proceedings of the 7th International Conference on Games + Learning + Society Conference, GLS'11, sivut 23–30, Pittsburgh, PA, USA, 2011. ETC Press. http://dl.acm.org/citation.cfm?id=2206376.2206379.
- [3] Chen, Howard Hao Jan ja Yang, Christine: Investigating the Effects of an Adventure Video Game on Foreign Language Learning. Teoksessa Proceedings of the 6th International Conference on E-learning and Games, Edutainment Technologies, Edutainment'11, sivut 168–175, Berlin, Heidelberg, 2011. Springer-Verlag, ISBN 978-3-642-23455-2. http://dl.acm.org/citation.cfm?id=2040452.2040490.
- [4] Chen, Zhi Hong ja Chen, Sherry Y.: A Surrogate Competition Approach to Enhancing Game-based Learning. ACM Trans. Comput.-Hum. Interact., 20(6):35:1-35:24, joulukuu 2013, ISSN 1073-0516. http://doi.acm.org/10.1145/2524264.
- [5] Dormann, Claire ja Biddle, Robert: Understanding Game Design for Affective Learning. Teoksessa Proceedings of the 2008 Conference on Future Play: Research, Play, Share, Future Play '08, sivut 41–48, New

- York, NY, USA, 2008. ACM, ISBN 978-1-60558-218-4. http://doi.acm.org/10.1145/1496984.1496992.
- [6] Doucet, Lars ja Srinivasan, Vinod: Designing Entertaining Educational Games Using Procedural Rhetoric: A Case Study. Teoksessa Proceedings of the 5th ACM SIGGRAPH Symposium on Video Games, Sandbox '10, sivut 5–10, New York, NY, USA, 2010. ACM, ISBN 978-1-4503-0097-1. http://doi.acm.org/10.1145/1836135.1836136.
- [7] Egenfeldt-Nielsen, Simon: What Makes a Good Learning Game?: Going Beyond Edutainment. eLearn, 2011(2), helmikuu 2011, ISSN 1535-394X. http://doi.acm.org/10.1145/1943208.1943210.
- [8] El-Nasr, Magy Seif ja Smith, Brian K.: Learning Through Game Modding. Comput. Entertain., 4(1), tammikuu 2006, ISSN 1544-3574. http://doi.acm.org/10.1145/1111293.1111301.
- [9] Fowler, Allan: Measuring Learning and Fun in Video Games for Young Children: A Proposed Method. Teoksessa Proceedings of the 12th International Conference on Interaction Design and Children, IDC '13, sivut 639-642, New York, NY, USA, 2013. ACM, ISBN 978-1-4503-1918-8. http://doi.acm.org/10.1145/2485760.2485879.
- [10] Gotterbarn, Don: Serious Games: Learning Why Professionalism Matters Can Be Fun. ACM Inroads, 4(2):26-28, kesäkuu 2013, ISSN 2153-2184. http://doi.acm.org/10.1145/2465085.2465091.
- [11] Heintz, Stephanie ja Law, Effie Lai Chong: Evaluating Design Elements for Digital Educational Games on Programming: A Pilot Study. Teoksessa Proceedings of the 26th Annual BCS Interaction Specialist Group Conference on People and Computers, BCS-HCI '12, sivut 245–250, Swinton, UK, UK, 2012. British Computer Society. http://dl.acm.org/citation.cfm?id=2377916.2377946.
- [12] Iacovides, Ioanna: Exploring the Link Between Player Involvement and Learning Within Digital Games. Teoksessa Proceedings of the 23rd British HCI Group Annual Conference on People and Computers: Celebrating People and Technology, BCS-HCI '09, sivut 29–34, Swinton, UK, UK, 2009. British Computer Society. http://dl.acm.org/citation.cfm?id=1671011.1671015.
- [13] Isbister, Katherine, Flanagan, Mary ja Hash, Chelsea: Designing Games for Learning: Insights from Conversations with Designers. Teoksessa Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '10, sivut 2041–2044, New York, NY, USA, 2010. ACM, ISBN 978-1-60558-929-9. http://doi.acm.org/10.1145/1753326.1753637.

- [14] Karime, Ali, Hossain, M. Anwar, El Saddik, Abdulmotaleb ja Gueaieb, Wail: A Multimedia-driven Ambient Edutainment System for the Young Children. Teoksessa Proceedings of the 2Nd ACM International Workshop on Story Representation, Mechanism and Context, SRMC '08, sivut 57–64, New York, NY, USA, 2008. ACM, ISBN 978-1-60558-315-0. http://doi.acm.org/10.1145/1462014.1462026.
- [15] Linehan, Conor, Kirman, Ben, Lawson, Shaun ja Chan, Gail: Practical, Appropriate, Empirically-validated Guidelines for Designing Educational Games. Teoksessa Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '11, sivut 1979–1988, New York, NY, USA, 2011. ACM, ISBN 978-1-4503-0228-9. http://doi.acm.org/10. 1145/1978942.1979229.
- [16] Luo, Xiangfeng, Wei, Xiao ja Zhang, Jun: Game-based Learning Model Using Fuzzy Cognitive Map. Teoksessa Proceedings of the First ACM International Workshop on Multimedia Technologies for Distance Learning, MTDL '09, sivut 67-76, New York, NY, USA, 2009. ACM, ISBN 978-1-60558-757-8. http://doi.acm.org/10.1145/ 1631111.1631123.
- [17] Mitsuhara, Hiroyuki, Kanenishi, Kazuhide ja Yano, Yoneo: What if Children Learn Phenomena of Light Through Real World Edutainment? Teoksessa Proceedings of the 7th International Conference on Advances in Computer Entertainment Technology, ACE '10, sivut 11–14, New York, NY, USA, 2010. ACM, ISBN 978-1-60558-863-6. http://doi.acm.org/10.1145/1971630.1971634.
- [18] Moser, Robert: A Fantasy Adventure Game As a Learning Environment: Why Learning to Program is So Difficult and What Can Be Done About It. Teoksessa Proceedings of the 2Nd Conference on Integrating Technology into Computer Science Education, ITiCSE '97, sivut 114–116, New York, NY, USA, 1997. ACM, ISBN 0-89791-923-8. http://doi.acm.org/10.1145/268819.268853.
- [19] Phunsa, Suwichai ja Tirakoat, Suwich: A Case Study of Developing Game Edutainment: "Addictive Danger". Teoksessa Proceedings of the 3rd International Conference on Digital Interactive Media in Entertainment and Arts, DIMEA '08, sivut 58–61, New York, NY, USA, 2008. ACM, ISBN 978-1-60558-248-1. http://doi.acm.org/10.1145/1413634.1413650.
- [20] Prayaga, Lakshmi: Game Technology As a Tool to Actively Engage K-12 Students in the Act of Learning. Teoksessa Proceedings of the 6th Conference on Information Technology Education, SIGITE '05, sivut

- 307-310, New York, NY, USA, 2005. ACM, ISBN 1-59593-252-6. http://doi.acm.org/10.1145/1095714.1095785.
- [21] Sancho, Pilar, Gómez-Martín, Pedro Pablo ja Fernández-Manjón, Baltasar: Multiplayer Role Games Applied to Problem Based Learning. Teoksessa Proceedings of the 3rd International Conference on Digital Interactive Media in Entertainment and Arts, DIMEA '08, sivut 69–76, New York, NY, USA, 2008. ACM, ISBN 978-1-60558-248-1. http://doi.acm.org/10.1145/1413634.1413652.
- [22] Schmitz, Birgit, Czauderna, André, Klemke, Roland ja Specht, Marcus: Game Based Learning for Computer Science Education. Teoksessa Computer Science Education Research Conference, CSERC '11, sivut 81–86, Open Univ., Heerlen, The Netherlands, The Netherlands, 2011. Open Universiteit, Heerlen, ISBN 978 90 358 1987 0. http://dl.acm.org/citation.cfm?id=2043594.2043601.
- [23] Shih, Ju Ling, Chuang, Chien Wen, Tseng, Jia Jiun ja Shih, Bai Jiun: Designing a Role-Play Game for Learning Taiwan History and Geography. Teoksessa Proceedings of the 2010 Third IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning, DIGITEL '10, sivut 54–60, Washington, DC, USA, 2010. IEEE Computer Society, ISBN 978-0-7695-3993-5. http://dx.doi.org/10.1109/DIGITEL.2010.27.
- [24] Shih, Ru Chu, Papa, Charles, Hsin, Tien Hsin ja Lou, Shi Jer: The Attributes and Importance of Online Game with Language Learning for College English-majored Students. Teoksessa Proceedings of the 6th International Conference on E-learning and Games, Edutainment Technologies, Edutainment'11, sivut 420–424, Berlin, Heidelberg, 2011. Springer-Verlag, ISBN 978-3-642-23455-2. http://dl.acm.org/citation.cfm?id=2040452.2040542.
- [25] Steiner, Brittany, Kaplan, Nancy ja Moulthrop, Stuart: When Play Works: Turning Game-playing into Learning. Teoksessa Proceedings of the 2006 Conference on Interaction Design and Children, IDC '06, sivut 137–140, New York, NY, USA, 2006. ACM. http://doi.acm.org/10.1145/1139073.1139107.
- [26] Tan, Phit Huan, Ling, Siew Woei ja Ting, Choo Yee: Adaptive Digital Game-based Learning Framework. Teoksessa Proceedings of the 2Nd International Conference on Digital Interactive Media in Entertainment and Arts, DIMEA '07, sivut 142–146, New York, NY, USA, 2007. ACM, ISBN 978-1-59593-708-7. http://doi.acm.org/10.1145/1306813.1306844.

- [27] Tashiro, Jay Shiro ja Dunlap, David: The Impact of Realism on Learning Engagement in Educational Games. Teoksessa Proceedings of the 2007 Conference on Future Play, Future Play '07, sivut 113–120, New York, NY, USA, 2007. ACM, ISBN 978-1-59593-943-2. http://doi.acm.org/ 10.1145/1328202.1328223.
- [28] Tillmann, Nikolai, De Halleux, Jonathan, Xie, Tao, Gulwani, Sumit ja Bishop, Judith: Teaching and Learning Programming and Software Engineering via Interactive Gaming. Teoksessa Proceedings of the 2013 International Conference on Software Engineering, ICSE '13, sivut 1117–1126, Piscataway, NJ, USA, 2013. IEEE Press, ISBN 978-1-4673-3076-3. http://dl.acm.org/citation.cfm?id=2486788.2486941.
- [29] Vasalou, Asimina, Ingram, Gordon ja Khaled, Rilla: User-centered Research in the Early Stages of a Learning Game. Teoksessa Proceedings of the Designing Interactive Systems Conference, DIS '12, sivut 116–125, New York, NY, USA, 2012. ACM, ISBN 978-1-4503-1210-3. http://doi.acm.org/10.1145/2317956.2317976.
- [30] Yue, Wong Seng ja Zin, Nor Azan Mat: Usability Evaluation for History Educational Games. Teoksessa Proceedings of the 2Nd International Conference on Interaction Sciences: Information Technology, Culture and Human, ICIS '09, sivut 1019–1025, New York, NY, USA, 2009. ACM, ISBN 978-1-60558-710-3. http://doi.acm.org/10.1145/1655925.1656110.