PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION - International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

INTERNATIONAL AFFLICATION FUBLISH			DER THE TATENT COOLERATION		
(51) International Patent Classification ⁷ :		(1	1) International Publication Number:	WO 00/34526	
C12Q 1/68, C07K 14/435	A1	(4	3) International Publication Date:	15 June 2000 (15.06.00)	
(21) International Application Number: PCT/US (22) International Filing Date: 10 December 1999 (DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).			
(30) Priority Data: 09/210,330 11 December 1998 (11.12.98	8) t	U S	Published With international search report.		
(71) Applicant: CLONTECH LABORATORIES, INC. 1020 East Meadow Drive, Palo Alto, CA 94303 (1		S];			
(72) Inventors: LUKYANOY, Sergey Anatolievich; ul. binskaya 13/1-161, Moscow (RU). FRADKOV Fedorovich; ul. Dnepropetrovskaya, 35/2-14, 113570-(RU). LABAS, Yulii Aleksandrovich; ul. erala Tyuleneva, 35-416, Moscow, 117465 (RU). Mikhail Vladimirovich; ul. Teplii stan, 7/2-28, 117465 (RU).	, Arca Mosco al. Ge MAT	dy w, en- Z,			
(74) Agent: ADLER, Benjamin, A.; McGregor & Adl Candle Ln., Houston, TX 77071 (US).	er, 80	11			
(54) Title: FLUORESCENT PROTEINS FROM NON-B SUCH PROTEINS AND USES THEREOF	IOLUN	MIN	ESCENT SPECIES OF CLASS ANTHOZO	DA, GENES ENCODING	
(57) Abstract					
The present invention is directed to novel fluorescendisclosed are methods of identifying nucleic acid sequence					
				į	
				İ	
				1	

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Јарап	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

FLUORESCENT PROTEINS FROM NON-BIOLUMINESCENT SPECIES OF CLASS ANTHOZOA, GENES ENCODING SUCH PROTEINS AND USES THEREOF

5

10

15

20

25

BACKGROUND OF THE INVENTION

Field of the Invention

This invention relates to the field of molecular biology. More specifically, this invention relates to novel fluorescent proteins, methods of identifying the DNA sequences encoding the proteins and uses thereof.

Description of the Related Art

Fluorescence labeling is a particularly useful tool for marking a protein, cell, or organism of interest. Traditionally, a protein of interest is purified, then covalently conjugated to a fluorophore derivative. For $in\ vivo$ studies, the protein-dye complex is then inserted into cells of interest using micropipetting or a method of reversible permeabilization. The dye attachment and insertion steps, however, make the process laborious and difficult to control. An alternative method of labeling proteins of interest is to concatenate or fuse the gene expressing the protein of interest to a gene expressing a marker, then express the fusion product. Typical markers for this method of protein labeling include β -galactosidase, firefly luciferase

and bacterial luciferase. These markers, however, require exogenous substrates or cofactors and are therefore of limited use for *in vivo* studies.

A marker that does not require an exogenous cofactor or substrate is the green fluorescent protein (GFP) of the jellyfish Aequorea victoria, a protein with an excitation maximum at 395 nm, a second excitation peak at 475 nm and an emission maximum at 510 nm. GFP is a 238-amino acid protein, with amino acids 65-67 involved in the formation of the chromophore.

5

10

15

20

25

Uses of GFP for the study of gene expression and protein localization are discussed in detail by Chalfie et al. in Science 263 (1994), 802-805, and Heim et al. in Proc. Nat. Acad. Sci. 91 (1994), 12501-12504. Additionally, Rizzuto et al. in Curr. Biology 5 (1995), 635-642, discuss the use of wild-type GFP as a tool for visualizing subcellular organelles in cells, while Kaether and Gerdes in Febs Letters 369 (1995), 267-271, report the visualization of protein transport along the secretory pathway using wild-type GFP. The expression of GFP in plant cells is discussed by Hu and Cheng in Febs Letters 369 (1995), 331-334, while GFP expression in Drosophila embryos is described by Davis et al. in Dev. Biology 170 (1995), 726-729.

Crystallographic structures of wild-type GFP and the mutant GFP S65T reveal that the GFP tertiary structure resembles a barrel (Ormö et al., Science 273 (1996), 1392-1395; Yang, et al., Nature Biotechnol 14 (1996), 1246-1251). The barrel consists of beta sheets in a compact structure, where, in the center, an alpha helix containing the chromophore is shielded by the barrel. The compact structure makes GFP very stable under diverse and/or harsh conditions such as protease treatment, making GFP an extremely useful reporter in

general. However, the stability of GFP makes it sub-optimal for determining short-term or repetitive events.

5

10

15

20

A great deal of research is being performed to improve the properties of GFP and to produce GFP reagents useful and optimized for a variety of research purposes. New versions of GFP have been developed, such as a "humanized" GFP DNA, the protein product of which has increased synthesis in mammalian cells (Haas, et al., Current Biology 6 (1996), 315-324; Yang, et al., Nucleic Acids Research 24 (1996), 4592-4593). One such humanized protein is "enhanced green fluorescent protein" (EGFP). Other mutations to GFP have resulted in blue-, cyan- and yellow-green light emitting versions. Despite the great utility of GFP, however, other fluorescent proteins with properties similar to or different from GFP would be useful in the art. fluorescent proteins result in possible new colors, or produce pH-Other benefits of novel fluorescent proteins dependent fluorescence. include fluorescence resonance energy transfer (FRET) possibilities based on new spectra and better suitability for larger excitation.

The prior art is deficient in novel fluorescent proteins wherein the DNA coding sequences are known. The present invention fulfills this long-standing need in the art.

SUMMARY OF THE INVENTION

The present invention is directed to an isolated and purified fluorescent protein selected from the group consisting of amFP486, cFP484, zFP506, zFP538, dsFP483, drFP583, asFP600, dgFP512 and dmFP592.

In one embodiment of the present invention, there is provided a method of identifying a DNA sequence encoding a fluorescent protein comprising the step of screening for an existence of a nucleic acid sequence in a sample, wherein the nucleic acid sequence encodes a peptide having a sequence selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12 and 14. The existence of the nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

5

10

15

20

25

In another embodiment of the present invention, there is provided a method of identifying a DNA sequence encoding a fluorescent protein comprising the step of screening for an existence of a nucleic acid sequence in a sample, wherein the nucleic acid sequence hybridizes to a primer selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15 and 16. The existence of the nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

In still another embodiment of the present invention, there is provided a method of analyzing a fluorescent protein in a cell, comprising the steps of expressing a nucleic acid sequence encoding a fluorescent protein having an amino acid sequence selected from the group consisting of SEQ ID Nos. 55-63 in the cell; and measuring a fluorescence signal from the protein. This method further comprises a step of sorting the cell according to the signal. Preferably, the cell is sorted by fluorescence activated cell sorting. Still preferably, nucleic acid sequence comprises a gene of interest encoding a protein of interest fused to the fluorescent protein, wherein the protein of interest is distinct from the fluorescent protein. The detected fluorescence signal indicates the presence of the gene of interest and the protein of interest in the cell. further By identifying

intracellular location of the fluorescent protein, an intracellular location of the protein of interest is also identified.

Other and further aspects, features, and advantages of the present invention will be apparent from the following description of the presently preferred embodiments of the invention given for the purpose of disclosure.

5

10

15

20

25

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows the modified strategy of 3'-RACE used to isolate the target fragments. Sequences of the oligonucleotides used are shown in Table 2. Dp1 and Dp2 are the degenerate primers used in the first and second PCR, respectively (see Tables 3 and 4 for the sequences of degenerate primers).

Figure 2A shows multiple alignment of novel fluorescent proteins. The numbering is based on Aequorea victoria green fluorescent protein (GFP). Two proteins from Zoanthus and four from Discosoma are compared between each other: residues identical to the corresponding ones in the first protein of the series are represented by dashes. Introduced gaps are represented by dots. In the sequence of A. victoria GFP, the stretches forming beta-sheets are underlined; the residues whose side chains form the interior of the beta-can are shaded (according to Yang et al., Nature Biotechnol. 14, 1246–1251 (1996). Figure 2B shows the N-terminal part of cFP484, which has no homology with the other proteins. The putative signal peptide is underlined.

Figure 3 shows the excitation and emission spectrum of the novel fluorescent protein from Anemonia majano, amFP486.

Figure 4 shows the excitation and emission spectrum of the novel fluorescent protein from *Clavularia*, cFP484.

Figure 5 shows the excitation and emission spectrum of the novel fluorescent protein from Zoanthus, zFP506.

Figure 6 shows the excitation and emission spectrum of the novel fluorescent protein from Zoanthus, zFP538.

5

10

15

25

Figure 7 shows the excitation and emission spectrum of the novel fluorescent protein from *Discosoma striata*, dsFP483.

Figure 8 shows the excitation and emission spectrum of the novel fluorescent protein from Discosoma, drFP583.

Figure 9 shows the excitation and emission spectrum of the novel fluorescent protein from Anemonia sulcata, asFP600.

Figure 10 shows the excitation and emission spectrum of the novel fluorescent protein from *Discosoma*, dgFP512.

Figure 11 shows the excitation and emission spectrum of the novel fluorescent protein from *Discosoma*, dmFP592.

DETAILED DESCRIPTION OF THE INVENTION

As used herein, the term "GFP" refers to the basic green fluorescent protein from Aequorea victoria, including prior art versions of GFP engineered to provide greater fluorescence or fluoresce in different colors. The sequence of Aequorea victoria GFP (SEQ ID No. 54) has been disclosed in Prasher et al., Gene 111 (1992), 229-33.

As used herein, the term "EGFP" refers to mutant variant of GFP having two amino acid substitutions: F64L and S65T (Heim et al., Nature 373 (1995), 663-664). The term "humanized" refers to changes made to the GFP nucleic acid sequence to optimize the codons for

expression of the protein in human cells (Yang et al., Nucleic Acids Research 24 (1996), 4592-4593).

In accordance with the present invention there may be molecular biology, microbiology, employed conventional and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Maniatis, Fritsch & Sambrook, "Molecular Cloning: A Laboratory Manual (1982); "DNA Cloning: A Practical Approach," Volumes I and II (D.N. Glover ed. 1985); "Oligonucleotide Synthesis" (M.J. Gait ed. 1984); "Nucleic Acid Hybridization" (B.D. Hames & S.J. Higgins eds. (1985)); "Transcription and Translation" (B.D. Hames & S.J. Higgins eds. (1984)); "Animal Cell Culture" (R.I. Freshney, ed. (1986)); "Immobilized Cells and Enzymes" (IRL Press, (1986)); B. Perbal, "A Practical Guide To Molecular Cloning" (1984).

5

10

15

20

25

A "vector" is a replicon, such as plasmid, phage or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.

A "DNA molecule" refers to the polymeric form of deoxyribonucleotides (adenine, guanine, thymine, or cytosine) in either single stranded form or a double-stranded helix. This term refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, inter alia, in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and chromosomes.

A DNA "coding sequence" is a DNA sequence which is transcribed and translated into a polypeptide in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3'

(carboxyl) terminus. A coding sequence can include, but is not limited to, prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic (e.g., mammalian) DNA, and synthetic DNA sequences. A polyadenylation signal and transcription termination sequence may be located 3' to the coding sequence.

5

10

15

20

25

As used herein, the term "hybridization" refers to the process of association of two nucleic acid strands to form an antiparallel duplex stabilized by means of hydrogen bonding between residues of the opposite nucleic acid strands.

The term "oligonucleotide" refers to a short (under 100 bases in length) nucleic acid molecule.

"DNA regulatory sequences", as used herein, are transcriptional and translational control sequences, such as promoters, enhancers, polyadenylation signals, terminators, and the like, that provide for and/or regulate expression of a coding sequence in a host cell.

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' to include the minimum number of bases or elements direction) necessary initiate transcription at levels detectable above Within background. the promoter sequence will be found transcription initiation site, as well as protein binding responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes. Various promoters, including inducible promoters, may be used to drive the various vectors of the present invention.

As used herein, the terms "restriction endonucleases" and "restriction enzymes" refer to bacterial enzymes, each of which cut double-stranded DNA at or near a specific nucleotide sequence.

5

10

15

20

25

been "transformed" has or "transfected" b y exogenous or heterologous DNA when such DNA has been introduced inside the cell. The transforming DNA may or may not be integrated (covalently linked) into the genome of the cell. In prokaryotes, yeast, and mammalian cells for example, the transforming DNA may maintained on an episomal element such as a plasmid. With respect to eukaryotic cells, a stably transformed cell is one in which the transforming DNA has become integrated into a chromosome so that it is inherited by daughter cells through chromosome replication. stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones comprised of a population of daughter cells containing the transforming DNA. A "clone" is a population of cells derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth in vitro for many generations.

A "heterologous" region of the DNA construct is an identifiable segment of DNA within a larger DNA molecule that is not found in association with the larger molecule in nature. Thus, when the heterologous region encodes a mammalian gene, the gene will usually be flanked by DNA that does not flank the mammalian genomic DNA in the genome of the source organism. In another example, heterologous DNA includes coding sequence in a construct where portions of genes from two different sources have been brought together so as to produce a fusion protein product. Allelic variations or naturally-occurring mutational events do not give rise to a heterologous region of DNA as defined herein.

As used herein, the term "reporter gene" refers to a coding sequence attached to heterologous promoter or enhancer elements and whose product may be assayed easily and quantifiably when the construct is introduced into tissues or cells.

5

10

15

20

25

The amino acids described herein are preferred to be in the "L" isomeric form. The amino acid sequences are given in one-letter code (A: alanine; C: cysteine; D: aspartic acid; E: gluetamic acid; F: phenylalanine; G: glycine; H: histidine; I: isoleucine; K: lysine; L: leucine; M: metionine; N: asparagine; P: proline; Q: gluetamine; R: arginine; S: serine; T: threonine; V: valine; W: tryptophane; Y: tyrosine; X: any residue). NH₂ refers to the free amino group present at the amino terminus of a polypeptide. COOH refers to the free carboxy group present at the carboxy terminus of a polypeptide. In keeping with standard polypeptide nomenclature, J Biol. Chem., 243 (1969), 3552-59 is used.

The present invention is directed to an isolated and purified fluorescent protein selected from the group consisting of amFP486, cFP484, zFP506, zFP538, dsFP483, drFP583, asFP600, dgFP512 and dmFP592.

In one embodiment of the present invention, there is provided a method of identifying a DNA sequence encoding a fluorescent protein comprising the step of screening for an existence of a nucleic acid sequence in a sample, wherein the nucleic acid sequence encodes a peptide having a sequence selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12 and 14. The existence of the nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

In another embodiment of the present invention, there is provided a method of identifying a DNA sequence encoding a

fluorescent protein comprising the step of screening for an existence of a nucleic acid sequence in a sample, wherein the nucleic acid sequence hybridizes to a primer selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15 and 16. The existence of the nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

5

10

15

20

In still another embodiment of the present invention, there is provided a method of analyzing a fluorescent protein in a cell, comprising the steps of expressing a nucleic acid sequence encoding a fluorescent protein having an amino acid sequence selected from the group consisting of SEQ ID Nos. 55-63 in the cell; and measuring a fluorescence signal from the protein. This method further comprises a step of sorting the cell according to the signal. Preferably, the cell is sorted by fluorescence activated cell sorting. Still preferably, nucleic acid sequence comprises a gene of interest encoding a protein of interest fused to the fluorescent protein, wherein the protein of interest is distinct from the fluorescent protein. The detected fluorescence signal indicates the presence of the gene of interest and of interest in the cell. further the protein By identifying intracellular location of the fluorescent protein, an intracellular location of the protein of interest is also identified.

The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to limit the present invention in any fashion.

EXAMPLE 1

Biological Material

Novel fluorescent proteins were identified from several genera of Anthozoa which do not exhibit any bioluminescence but have fluorescent color as observed under usual white light or ultraviolet light. Six species were chosen (see Table 1).

10

5

TABLE 1

Anthozoa Species Used in This Study

Species	Area of Origination	Fluorescent Color
Anemonia majano	Western Pacific	bright green tentacle tips
Clavularia sp.	Western Pacific	bright green tentacles and oral disk
Zoanthus sp.	Western Pacific	green-yellow tentacles and oral disk
Discosoma sp. "red"	Western Pacific	orange-red spots oral disk
Discosoma striata	Western Pacific	blue-green stripes on oral disk
Discosoma sp. "magenta"	Western Pacific	faintly purple oral disk
Discosoma sp.	Western Pacific	green spots on oral disk

"green"		
Anemonia	Mediterranean	purple tentacle tips
sulcata		

EXAMPLE 2

cDNA Preparation

5

_10

15

Total RNA was isolated from the species of interest according to the protocol of Chomczynski and Sacchi (Chomczynski P., et al., Anal. Biochem. 162 (1987), 156-159). First-strand cDNA was synthetized starting with 1-3 µg of total RNA using SMART PCR cDNA synthesis kit (CLONTECH) according to the provided protocol with the only alteration being that the "cDNA synthesis primer" provided in the kit was replaced by the primer TN3 (5'- CGCAGTCGACCG(T)₁₃, SEQ ID No. 1) (Table 2). Amplified cDNA samples were then prepared as described in the protocol provided except the two primers used for PCR were the TS primer (5'-AAGCAGTGGTATCAACGCAGAGT, SEQ ID No. 2) (Table 2) and the TN3 primer (Table 2), both in 0.1 µM concentration. Twenty to twenty-five PCR cycles were performed to amplify a cDNA sample. The amplified cDNA was diluted 20-fold in water and 1 µl of this dilution was used in subsequent procedures.

TABLE 2

Oligos Used in cDNA Synthesis and RACE

5 TN3: 5'-CGCAGTCGACCG(T)₁₃

(SEQ ID No. 1)

T7-TN3: 5'-GTAATACGACTCACTATAGGGCCGCAGTCGACCG(T)₁₃ (SEQ ID No. 17)

10

TS-primer: 5'-AAGCAGTGGTATCAACGCAGAGT (SEQ ID No. 2)

T7-TS:

15 5'-GTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT (SEQ ID No. 18)

T7: 5'-GTAATACGACTCACTATAGGGC (SEQ ID No. 19)

20

TS-oligo 5'-AAGCAGTGGTATCAACGCAGAGTACGCrGrGG (SEQ ID No. 53)

25

EXAMPLE 3

Oligo Design

5

10

To isolate fragments of novel fluorescent protein cDNAs, PCR using degenerate primers was performed. Degenerate primers were designed to match the sequence of the mRNAs in regions that were predicted to be the most invariant in the family of fluorescent proteins. Four such stretches were chosen (Table 3) and variants of degenerate primers were designed. All such primers were directed to the 3'-end of mRNA. All oligos were gel-purified before use. Table 2 shows the oligos used in cDNA synthesis and RACE.

5

TABLE 3

Key Amino Acid Stretches and Corresponding Degenerate Primers Used for Isolation of Fluorescent Proteins

	Stretch Position	Amino Acid	
	according to	Sequence of	Degenerated Primer Name
	A. victoria GFP (7)	the Key Stretch	and Sequence
			·
•	20-25	GXVNGH	NGH: 5'- GA(C,T) GGC TGC
		(SEQ ID No. 3)	GT(A,T,G,C) $AA(T,C)$ $GG(A,T,G)$
-			CA (SEQ ID No. 4)
	31-35	GEGEG	GEGa: 5'- GTT ACA GGT GA(A,G)
		(SEQ ID No. 5)	GG(A,C) GA(A,G) GG
			(SEQ ID No. 6)
	!		GEGb: 5'- GTT ACA GGT GA(A,G)
	İ		GG(T,G) GA(A,G) GG
			(SEQ ID No. 7)
		GEGNG	GNGa: 5'- GTT ACA GGT GA(A,G)
		(SEQ ID No. 8)	GG(A,C) AA(C,T) GG

(SEQ ID No. 9) GNGb: 5'- GTT ACA GGT GA(A,G) GG(T,G) AA(C,T) GG (SEQ ID No. 10) 127-131 **GMNFP** NFP: 5' TTC CA(C,T) GGT (SEQ ID No. 11) (G,A)TG AA(C,T) TT(C,T) CC **GVNFP** (SEQ ID NO. 13) (SEQ ID No. 12) 134-137 PVMa: 5' CCT GCC (G,A)A(C,T) **GPVM** (SEQ ID No. 14) GGT CC(A,T,G,C) GT(A,C) ATG (SEQ ID NO. 15) PVMb: 5' CCT GCC (G,A)A(C,T) GGT CC(A,T,G,C) GT(G,T) ATG

(SEQ ID NO. 16)

EXAMPLE 4

Isolation of 3'-cDNA Fragments of nFPs

5

10

15

The modified strategy of 3'-RACE was used to isolate the target fragments (see Figure 1). The RACE strategy involved two consecutive PCR steps. The first PCR step involved a first degenerate primer (Table 4) and the T7-TN3 primer (SEQ ID No. 17) which has a 3' portion identical to the TN3 primer used for cDNA synthesis (for sequence of T7-TN3, Table 2). The reason for substituting the longer T7-TN3 primer in this PCR step was that background amplification which occurred when using the shorter TN3 primer was suppressed effectively, particularly when the T7-TN3 primer was used at a low concentration (0.1 _M) (Frohman et al., (1998) PNAS USA, 85, 8998-9002). The second PCR step involved the TN3 primer (SEQ ID No. 1, Table 2) and a second degenerate primer (Table 4).

TABLE 4

Combinations of Degenerate Primers for First and Second PCR Resulting in Specific Amplification of 3'-Fragments of nFP cDNA

Species	First	Second Degenerate Primer
- F	Degenerate Degenerate	Ü
	Primer	
Anemonia majano	NGH	GNGb
	(SEQ ID No. 4)	(SEQ ID No. 10)
Clavularia sp.	NGH	GEGa
	(SEQ ID No. 4)	(SEQ ID No. 6)
Zoanthus sp.	NGH	GEGa
	(SEQ ID No. 4)	(SEQ ID No. 6)
Discosoma sp. "red"	NGH	GEGa (SEQ ID No. 6),
	(SEQ ID No. 4)	NFP (SEQ ID No. 13) or
•		PVMb (SEQ ID No. 16)
Discosoma striata	NGH	NFP
	(SEQ ID No. 4)	(SEQ ID No. 13)
Anemonia sulcata	NGH	GEGa (SEQ ID No. 6)
	(SEQ ID No. 4)	or NFP (SEQ ID No. 13)

5

The first PCR reaction was performed as follows: 1 µl of 20-fold dilution of the amplified cDNA sample was added into the reaction mixture containing 1X Advantage KlenTaq Polymerase Mix with provided buffer (CLONTECH), 200 µM dNTPs, 0.3 µM of first degenerate

primer (Table 4) and 0.1 µM of T7-TN3 (SEQ ID No. 17) primer in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 1 cycle for 95°C, 10 sec.; 55°C, 1 min.; 72°C, 40 sec; 24 cycles for 95°C, 10 sec.; 62°C, 30 sec.; 72°C, 40 The reaction was then diluted 20-fold in water and 1 µl of this dilution was added to a second PCR reaction, which contained Advantage KlenTaq Polymerase Mix with the buffer provided by the (CLONTECH), 200 µM dNTPs, 0.3 µM of the second manufacturer degenerate primer (Table 4) and 0.1 µM of TN3 primer. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 1 cycle for 95°C, 10 sec.; 55°C (for GEG/GNG or PVM) or 52°C (for NFP), 1 min.: 72°C, 40 sec; 13 cycles for 95°C, 10sec.; 62°C (for GEG/GNG or PVM) or 58°C (for NFP), 30 sec.; 72°C, 40 sec. The product of PCR was into PCR-Script vector (Stratagene) according the manufacturer's protocol.

5

10

15

20

25

Different combinations of degenerate primers were tried in the first and second PCR reactions on the DNA from each species until a of primers found resulted specific combination was that in amplification--meaning that a pronounced band of expected (about 650-800 bp for NGH and GEG/GNG and 350-500 bp for NFP and PVM--sometimes accompanied by a few minor bands) was detected on The primer combinations agarose gel after two PCR reactions. choice for different species of the Class Anthozoa are listed in Table 4. Some other primer combinations also resulted in amplification fragments of correct size, but the sequence of these fragments showed no homology to the other fluorescent proteins identified Aequorea victoria GFP.

EXAMPLE 5

Obtaining Full-Length cDNA Copies

5

10

15

20

25

of Upon sequencing the obtained 3'-fragments novel fluorescent protein cDNAs, two nested 5'-directed primers were synthesized for cDNA (Table 5), and the 5' ends of the cDNAs were then amplified using two consecutive PCRs. In the next PCR reaction, the novel approach of "step-out PCR" was used to suppress background amplification. The step-out reaction mixture contained 1x Advantage KlenTaq Polymerase Mix using buffer provided by the manufacturer (CLONTECH), 200 µM dNTPs, 0.2 µM of the first gene-specific primer (see Table 5), 0.02 µM of the T7-TS primer (SEQ ID No. 18), 0.1 µM of T7 primer (SEQ ID No. 19) and 1 µl of the 20-fold dilution of the amplified cDNA sample in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 23-27 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of amplification was diluted 50-fold in water and one µl of this dilution was added to the second (nested) PCR. The reaction contained Advantage KlenTaq Polymerase Mix with provided buffer (CLONTECH), 200 μM dNTPs, 0.2 μM of the second gene-specific primer and 0.1 μM of TS primer (SEQ ID No. 2) in a total volume of 20 µl. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 12 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of amplification was then cloned into pAtlas vector (CLONTECH) according to the manufacturer's protocol.

"NEWSTREEN,

TABLE 5

Gene-Specific Primers Used for 5'-RACE

Species	First Primer	Second (Nested) Primer
Anemonia	5'-GAAATAGTCAGGCATACTGGT	5'-GTCAGGCATAC
majano	(SEQ ID No. 20)	TGGTAGGAT
	·	(SEQ ID No. 21)
Clavularia	5'-CTTGAAATAGTCTGCTATATC	5'-TCTGCTATATC
sp.	(SEQ ID No. 22)	_ GTCTGGGT
		(SEQ ID No. 23)
Zoanthus	5'-	5'-GTCTACTATGTCTT
sp.	GTTCTTGAAATAGTCTACTATGT	GAGGAT
	(SEQ ID No. 24)	(SEQ ID No. 25)
Discosoma	5'-CAAGCAAATGGCAAAGGTC	5'-CGGTATTGTGGCC
sp. "red"	(SEQ ID No. 26)	TTCGTA
		(SEQ ID No. 27)
Discosoma	5'-TTGTCTTCTTCTGCACAAC	5'-CTGCACAACGG
striata	(SEQ ID No. 28)	GTCCAT
		(SEQ ID No.,29)
Anemonia	5'-CCTCTATCTTCATTTCCTGC	5'-TATCTTCATTTCCT
sulcata	(SEQ ID No. 30)	GCGTAC
		(SEQ ID No. 31)
Discosoma	5'-TTCAGCACCCCATCACGAG	5'-ACGCTCAGAGCTG
sp.	(SEQ ID No. 32)	GGTTCC
"magenta"		(SEQ ID No. 33)
Discosoma	5'-CCCTCAGCAATCCATCACGTTC	5'-ATTATCTCAGTGGA
sp. "green"	(SEQ ID No. 34)	TGGTTC
		(SEQ ID No. 35)

EXAMPLE 6

Expression of nFPs in E.coli

5

10

15

20

25

To prepare a DNA construct for novel fluorescent protein expression, two primers were synthesized for each cDNA: a 5'-directed "downstream" primer with the annealing site located in the 3'-UTR of the cDNA and a 3'-directed "upstream" primer corresponding to the site of translation start site (not including the first ATG codon) (Table Both primers had 5'-heels coding for a site for a restriction endonuclease; in addition, the upstream primer was designed so as to allow the cloning of the PCR product into the pQE30 vector (Qiagen) in such a way that resulted in the fusion of reading frames of the vectorencoded 6xHis-tag and nFP. The PCR was performed as follows: 1 µl of the 20-fold dilution of the amplified cDNA sample was added to a mixture containing 1x Advantage KlenTaq Polymerase Mix with buffer provided by the manufacturer (CLONTECH), 200 µM dNTPs, 0.2 µM of upstream primer and 0.2 µM of downstream primer, in a final total volume of 20 ul. The cycling profile was (Hybaid OmniGene Thermocycler, tube control mode): 23-27 cycles for 95°C, 10 sec.; 60°C, 30 sec.; 72°C, 40 sec. The product of this amplification step was purified by phenol-chlorophorm extraction and ethanol precipitation and then cloned into pQE30 vector using restriction endonucleases corresponding to the primers' sequence according standard protocols.

All plasmids were amplified in XL-1 blue $E.\ coli$ and purified by plasmid DNA miniprep kits (CLONTECH). The recombinant clones were selected by colony color, and grown in 3 ml of LB medium (supplemented with 100 μ g/ml of ampicillin) at 37°C overnight. 100 μ l

of the overnight culture was transferred into 200 ml of fresh IB medium containing 100 μ g/ml of ampicillin and grown at 37°C, 200 rpm up to OD₆₀₀ 0.6-0.7. 1 mM IPTG was then added to the culture and incubation was allowed to proceed at 37°C for another 16 hours. The cells were harvested and recombinant protein, which incorporated 6x His tags on the N-terminus, was purified using TALONTM metal-affinity resin according to the manufacturer's protocol (CLONTECH).

5

TABLE 6

Primers Used to Obtain Full Coding Region of nFPs for Cloning into Expression Construct

Species	Upstream Primer	Downstream Primer
Anemonia majano	5' -acatggatccgctctttcaaaca agtttatc (SEQ ID No. 36) BamHI	5'-tagtactcgagcttattcgta tttcagtgaaatc (SEQ ID No. 37) XhoI
Clavularia sp.	L: 5'-acatggatccaacattttttga gaaacg (SEQ ID No. 38) BamHI S: 5'-acatggatccaaagctctaacc accatg (SEQ ID No. 39) BamHI	5'-tagtactcgagcaacacaa accetcagacaa (SEQ ID No. 40) XhoI
Zoanthus sp.	5'- acatggatccgctcagtcaaag cacggt (SEQ ID No. 41) BamHI	5'-tagta <u>ctcgagg</u> ttggaactacat tcttatca (SEQ ID No. 42) XhoI
Discosoma sp. "red"	5'- acatggatccaggtcttccaagaat gttatc (SEQ ID No. 43) BamHI	5'-tagtactcgaggagccaagttc agcctta (SEQ ID No. 44) XhoI
Discosoma striata	5'- acatggatccagttggtccaagagtgtg (SEQ ID No. 45) BamHI	5'-tagcgagctctatcatgcctc gtcacct (SEQ ID No. 46) SacI
Anemonia sulcata	5'- acatggatccgcttcctttttaaagaagact (SEQ ID No. 47) BamHI	5'-tagta <u>ctcgag</u> tccttgggagc ggcttg (SEQ ID No. 48) XhoI
Discosoma sp. "magenta"	5'- acatggatccagttgttccaagaatgtgat (SEQ ID No. 49) BamHI	5'-tagtactcgaggccattacg ctaatc (SEQ ID No. 50) XhoI
Discosoma sp. "green"	5'-acatggatccagtgcacttaaagaagaaatg (SEQ ID No. 51)	5'-tagtactcgagattcggtttaat gccttg (SEQ ID No. 52)

EXAMPLE 7

Novel Fluorescent Proteins and cDNAs Encoding the Proteins

Seven cDNA full-length cDNAs encoding fluorescent proteins were obtained (SEQ ID Nos. 45-51), and seven novel fluorescent proteins were produced (SEQ ID Nos. 53-59). The spectral properties of the isolated novel fluorescent proteins are shown in Table 7, and the emission and excitation spectra for the novel proteins are shown in Figures 3-11.

10

5

TABLE 7

Spectral Properties of the Isolated NFPs.

						,
Species	NFP	Abs.	Emission	Maximum	Relative	Relative
	Name	Max.	Maximum	Extinction	Quantum	Brightness
		n m	n m	Coeff.	Yield*	**
Anemonia	amFP486	458	486	40,000	0.3	0.43
majano						
Clavularia	cFP484	456	484	35,300	0.6	0.77
sp.						
Zoanthus	zFP506	496	506	35,600	0.79	1.02
- sp.						
Zoanthus	zFP538	528	538	20,200	0.52	0.38
sp.						
Discosoma	drFP583	558	583	22,500	0.29	0.24
sp. "red"						
Discosoma	dsFP483	443	483	23,900	0.57	0.50
striata					ļ	
Anemonia	asFP600	572	596	56,200	<0.001	-
sulcata						
Discosoma	dgFP512	502	512	20,360	0.3	0.21
sp "green"						
Discosoma		,				
sp.	dmFP592	573	593	21,800	0.11	0.09
"magenta"						

^{5 *}relative quantum yield was determined as compared to the quantum yield of A. victoria GFP.

^{**}relative brightness is extinction coefficient multiplied by quantum yield divided by the same value for A. victoria GFP.

Multiple alignment of fluorescent proteins is shown in The numbering is based on Aequorea victoria green fluorescent protein (GFP, SEQ ID No. 54). The amino acid sequences of the novel fluorescent proteins are labeled as SEQ ID Nos. 55-63. from Zoanthus and four from Discosoma are compared between each other: residues identical to the corresponding ones in the first protein of the series are represented by dashes. Introduced gaps In the sequence of A. victoria GFP, the are represented by dots. stretches forming \beta-sheets are underlined; the residues whose side chains form the interior of the β -can are shaded. Figure 2B shows the N-terminal part of cFP484, which has no homology with the other The putative signal peptide is underlined. proteins.

The following references were cited herein.

- 1. Ormo et al., (1996) Science 273: 1392-1395.
- 15 2. Yang, F., et al., (1996) Nature Biotech 14: 1246-1251.
 - 3. Cormack, et al., (1996) Gene 173, 33-38.

5

10

25

- 4. Haas, et al., (1996) Current Biology 6, 315-324.
- 5. Yang, et al., (1996) Nucleic Acids Research 24, 4592-4593.
- 6. Ghoda, et al.. (1990) J. Biol. Chem. 265: 11823-11826.
- 20 7. Prasher D.C. et al. (1992) Gene 111:229-33.
 - 8. Kain et al. (1995) Biotechniques 19(4):650-55.
 - 9. Chomczynski P., et al., (1987) Anal. Biochem. 162, 156-159.
 - 10. Frohman et al., (1998) PNAS USA, 85, 8998-9002.

Any patents or publications mentioned in this specification are indicative of the levels of those skilled in the art to which the invention pertains. These patents and publications are by reference to the same extent as if each individual incorporated publication was specifically and individually indicated to b e incorporated by reference.

One skilled in the art will readily appreciate that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The present examples along with the methods, procedures, treatments, molecules, and specific compounds described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention as defined by the scope of the claims.

5

10

WHAT IS CLAIMED IS:

1. A method of identifying a DNA sequence encoding a fluorescent protein, comprising the step of:

screening for an existence of a nucleic acid sequence in a sample, wherein said nucleic acid sequence encodes a peptide having a sequence selected from the group consisting of SEQ ID Nos. 3, 5, 8, 11, 12 and 14, and wherein the existence of said nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

10

15

25

5

2. A method of identifying a DNA sequence encoding a fluorescent protein, comprising the step of:

screening for an existence of a nucleic acid sequence in a sample, wherein said nucleic acid sequence hybridizes to a primer selected from the group consisting of SEQ ID Nos. 4, 6, 7, 9, 10, 13, 15 and 16, and wherein the existence of said nucleic acid sequence identifies the DNA sequence encoding the fluorescent protein.

- 3. A method of analyzing a fluorescent protein in a cell, 20 comprising the steps of:
 - a) expressing a nucleic acid sequence encoding a fluorescent protein in said cell, wherein said protein having an amino acid sequence selected from the group consisting of SEQ ID Nos. 55-63; and
 - b) measuring a fluorescence signal from said protein.
 - 4. The method of claim 3, further comprising the step of:

sorting said cell according to said signal.

5. The method of claim 4, wherein said step of sorting comprises sorting said cell by fluorescence activated cell sorting.

- 5 6. The method of claim 3, wherein said nucleic acid sequence comprises a gene of interest encoding a protein of interest fused to said fluorescent protein, wherein said protein of interest is distinct from said fluorescent protein.
- 7. The method of claim 6, wherein the fluorescence signal indicates a presence of said gene of interest in said cell.
 - 8. The method of claim 7, wherein said cell further comprises a protein of interest fused to said fluorescent protein.
 - 9. The method of claim 8, further comprising the step of:

identifying an intracellular location of said fluorescent protein, thereby identifying an intracellular location of said protein of 20 interest.

15

10. An isolated and purified fluorescent protein selected from the group consisting of amFP486, cFP484, zFP506, zFP538, dsFP483, drFP583, asFP600, dgFP512 and dmFP592.

		 ·		
•				
				8 2
				• <u>•</u>
				7
	•		·	

INSTRUCT.

		•	٠

_

10 20 30 40 50 MSKGEELFTG. VVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTT.GKLPVPW GFP	SEQ ID# 54
MAQSKHGLTK.EMTMKYRMEGCVDGHKFVITGEGIGYPFKGKQAINLCVVEGGPLPFAE 2FP506	57 58
MSWSKSVIKE.EMLIDLHLEGTFNGHYFEIKGKGKGKPNEGTNTVTLEVTKGGPLPFGW dsFP48M-ALY-K-N-TMVVLP-K-R-DYQ-SQELT-VSY dgFP51 -RSNF-RFKVRMVEE-E-R-YHK-KA- drFP58 M-CNF-RFKVRMVEE-R-YHCS-K-MAF dmFP59	2 62 3 60
MASFLKK.TMPFKTTIEGTVNGHYFKCTGKGEGNPFEGTQEMKIEVIEGGPLPFAF asFP60 MALSNKFIGD.DMKMTYHMDGCVNGHYFTVKGEGNGKPYEGTQTSTFKVTMANGGPLAFSF amFP48 (KALTTMGVIKPDMKIKLKMEGNVNGHAFVIEGEGEGKPYDGTHTLNLEVKMAEGAPLPFSY cFP484	16 55
60 70 80 90 100 110 PTLVTTFSYGVQCFSRYPDHMKQHDFFKSAM:PEGYVQERTIFFKDDGNYKTRAEVKFEGD	GFP
DILSAAFNYGNRVFTEYPQDIVDYFKNSCPAGYTWDRSFLFEDGAVCICNADITVSVEEN	zFP506 zFP538
HILCPQFQYGNKAFVHHPDDIPDYLKLSFPEGYTWERSMHFEDGGLCCITNDISLTGN D-TTMRNY-EIF-QTCSGPNGS-Q-T-TYV-TA-SNVV-D D-SS-VY-K-AKFKV-NVVTV-Q-SKDG	dsFP483 dgFP512 drFP583 dmFP592
HILSTSCMYGSKTFIKYVSGIPDYFKQSFPEGFTWERTTTYEDGGFLTAHQDTSLDGD DILSTVFKYGNRCFTAYPTSMPDYFKQAFPDGMSYERTFTYEDGGVATASWEISLKGN DILSNAFQYGNRALTKYPDDIADYFKQSFPEGYSWERTMTFEDKGIVKVKSDISMEED	asFP600 amFP486 cFP484
120 130 140 150 160 170 <u>TLVNRIELKGI</u> DFKEDGNILGHKLEYNYN <u>SHNVYIM</u> ADKQKNG <u>IKVNFKIRHNI</u> EDGSVQL	GFP
CMYHESKFYGVNFPADGPVM.KKMTDNWEPSCEKIIPVPKQGILKGDVSMYLLLKDGGRLR-IK-I-N-M	zFP506 zFP538
CENYDIKETGLNEPPNGPVV.QKKTTGWEPSTERLYPRDGVLIGDIHHALTVEGGGHYV TH-M-ALDMMR-MKIMFEL-R-D-AMS-LLKRI-KVI-VSDMMAK-EK-KLKDLI-EVI-VSDMRR-RSKMRLL	dsFP483 dgFP512 drFP583 dmFP592
CLVYKVKILGNNFPADGPVM.QNKAGRWEPATEIVYEVDGVLRGQSLMALKCPGGRHLT CFEHKSTFHGVNFPADGPVM.AKKTTGWDPSFEKMTVCDGILKGDVTAFLMLQGGGNYR SFIYEIRFDGMNFPPNGPVM.QKKTLKWEPSTEIMYV,.RDGVLVGDISHSLLLEGGGHYR	asEP600 amFP486 cFP484
180 190 200 210 220 230 ADHYQQNTPIGDG.PVLLPDNHYLSTOSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK	GFP
CQFDTVYKAKSVPRKMPDWHFIQHKLTREDRSDAKNQKWHLTEHAIASGSALP	zFP506 zFP538
CDIKTVYPAKKPVKMPGYHYVDTKLVIRSNDKEFM.KVEEHEIAVARHHPLQSQFE-I-KPN- VDFHYIE-T-QQNYYN VLT-V-EYSS-EKIGKSKA VEF-SI-MQLYSD-T-HNEDYT.IQY-RTEGLFL VEF-SI-MV PS-QLYSDMT-HNEDYT VQY-KTQFIKPLQ	dsFP483 dgFP512 drFP583 dmFP592
CHLHTTYRSKKPASALKMPGFHFEDHRIEIMEEVEKGK.CYKQYEAAVGRYCDAAPSKLGHN CQFHTSYKTKKPVTMPPNHVVEHRIARTDLDKGGN.SVQLTEHAVAHITSVFPF CDFKSIYKAKKVVKLPDYHFVDHRIEILNHDKDYN.KVTLYENAVARYSLLPSQA	asFP600 amFP486 cFP484

FIG. 2A

»

MKCKFVFCLSFLVLAITNANIFLRNEADLEEKTLRIP

FIG. 2B 2/11 SUBSTITUTE SHEET (RULE 26)

			•
		_	
			•
			•. •

3/11
SUBSTITUTE SHEET (RULE 26)

4/11
SUBSTITUTE SHEET (RULE 26)

FIG. 5

SUBSTITUTE SHEET (RULE 26)

				,	
	. •	- "			
	~				
_					•
					,
					٠
				·	

SUBSTITUTE SHEET (RULE 26)

				ı		
	. •		·			
						â,
						w \$
						•
				 •	•	

SUBSTITUTE SHEET (RULE 26)

FIG. 7

	. •			
				Ç.
	·			÷
			·	

SUBSTITUTE SHEET (RULE 26)

• . .

<u>1</u>6.9

Fig. 10

10/11
SUBSTITUTE SHEET (RULE 26)

				•	,	ļ
	. -					
•						
	·					
		_				
						: :
						2 2 2 2 3
						·
		•				

11/11
SUBSTITUTE SHEET (RULE 26)

FIG. 11

	_				
				-	

WO 00/34526 PCT/US99/29405

	•	
		SEQUENCE LISTING
	<110>	Lukyanov, Sergey A.
		Labas, Yulii A.
		Matz, Mikhail V.
5		Fradkov, Arcady F.
	<120>	Fluorescent proteins from non-bioluminescent
		species of Class Anthozoa, genes encoding such
		proteins and uses thereof
	<130>	D6196PCT
10	<141>	1999-12-10
	<150>	09/210,330
	<151>	1998-12-11
	<160>	63
_		
15	<210>	1
	<211>	25
	<212>	DNA
	<213>	artificial sequence
	<220>	
20	<221>	primer_bind
	<223>	primer TN3 used in cDNA synthesis and RACE
	<400>	1
	cgcagtcgac	cgttttttt ttttt 25
25	<210>	2
	<211>	23
	<212>	DNA
	<213>	artificial sequence
	<220>	
30	<221>	primer_bind
	<223>	primer TS used in cDNA synthesis and RACE
	<400>	2
	aagcagtggt	atcaacgcag agt 23
	J J JJ -	
35	<210>	3
	<211>	6
	<212>	

	 		:	
·				
_				

				; } :
		·		

			PC 1/0399/29405
	<213>	Aequorea victoria	
	<220>	Aequorea Victoria	
		21	
	<222>		
_	<223>	amino acid sequence of a key stretch	
5		primer NGH is based; Xaa at position	21
	- 4.0.0	represents unknown	
	<400>	3	
	Gly Xaa Val As	n Gly His	
		5	
10			
	<210>	4	
	<211>	20	
	<212>	DNA	
	<213>	artificial sequence	
15	<220>		
	<221>	primer_bind	
	<222>	12	
	<223>	primer NGH used for isolation of fluo	orescent
		protein; n at position 12 represents	any of the
20		four bases	
	<400>	4	
	gayggctgcg tna	ayggdca 20	
	<210>	5	
25	<211>	5	
	<212>	PRT	
	<213>	Aequorea victoria	
	<220>		
	<222>	3135	
30	<223>	amino acid sequence of a key stretch	on which
		primers GEGa and GEGb are based	
	<400>	5	
	Gly Glu Gly Gli	ı Gly	
		5	
35			
	<210>	6	
	<211>	20	

PCT/US99/29405

·			, ;
			. :

```
DNA
          <212>
          <213>
                     artificial sequence
          <220>
          <221>
                     primer_bind
 5
          <223>
                     primer GEGa used for isolation of fluorescent
                     protein
          <400>
                     6
                                                         20
    gttacaggtg arggmgargg
10
                     7
          <210>
          <211>
                     20
          <212>
                     DNA
          <213>
                     artificial sequence
          <220>
15
          <221>
                     primer_bind
                     primer GEGb used for isolation of fluorescent
          <223>
                     protein
          <400>
                     7
    gttacaggtg arggkgargg
                                                          20
20
          <210>
                     8
          <211>
                     5
          <212>
                     PRT
          <213>
                     Aequorea victoria
25
          <220>
                     31...35
          <222>
          <223>
                     amino acid sequence of a key stretch on which
                    primers GNGa and GNGb are based
          <400>
                     8
30
    Gly Glu Gly Asn Gly
                     5
          <210>
                     9
          <211>
                     20
35
          <212>
                    DNA
          <213>
                    artificial sequence
          <220>
```

PCT/US99/29405

	WO 00/34526	PCT/US99/29405
	<221>	primer_bind
	<223>	_
	<400>	9
5	gttacaggtg	arggmaaygg 20
	<210>	10
	<211>	20
	<212>	DNA
10	<213>	artificial sequence
	<220>	•
	<221>	primer_bind
	<223>	primer GNGb used for isolation of fluorescent
		protein
15	<400>	10
	gttacaggtg	arggkaaygg 20
	<210>	11
	<211>	5
20	<212>	PRT
	<213>	Aequorea victoria
	<220>	
	<222>	127131
	<223>	amino acid sequence of a key stretch on which
25		primer NFP is based
	<400>	11
	Gly Met Asn	Phe Pro
		5
30	<210>	12
	<211>	5
	<212>	PRT
	<213>	Aequorea victoria
	<220>	
35	<222>	127131
	<223>	amino acid sequence of a key stretch on which
		primer NFP is based

SEQ 4/28

SEQ 5/28

primer PVMa used for isolation of fluorescent protein; n at position 15 represents any of the

artificial sequence

primer_bind

15

<213>

<220> <221>

<222>

<223>

		· :	• • • • • • • • • • • • • • • • • • • •
. •	. 		
		-	· · · · · · · · · · · · · · · · · · ·
			- 100 mm -
			,
		· .	

four bases <400> 15 cctgccrayg gtccngtmat g 21 5 <210> 16 <211> 21 <212> DNA <213> artificial sequence <220> <221> 10 primer_bind <222> 15 <223> primer PVMb used for isolation of fluorescent protein; n at position 15 represents any of the four bases 15 <400> 16 cctgccrayg gtccngtkat g 21 <210> 17 <211> 47 20 <212> DNA <213> artificial sequence <220> <221> primer_bind <223> primer T7-TN3 used in cDNA synthesis and RACE 25 <400> 17 gtaatacgac tcactatagg gccgcagtcg accgtttttt ttttttt 47 <210> 18 <211> 45 30 <212> DNA <213> artificial sequence <220> <221> primer_bind <223> primer T7-TS used in cDNA synthesis and RACE 35 <400> 18 gtaatacgac tcactatagg gcaagcagtg gtatcaacgc agagt 45

PCT/US99/29405

WO 00/34526 PCT/US99/29405

```
<210>
                     19
          <211>
                     22
          <212>
                     DNA
 5
          <213>
                     artificial sequence
          <220>
          <221>
                     primer_bind
          <223>
                     primer T7 used in cDNA synthesis and RACE
          <400>
                     19
                                                         22
10
    gtaatacgac tcactatagg gc
          <210>
                     20
          <211>
                     21
          <212>
                     DNA
15
          <213>
                     artificial sequence
          <220>
          <221>
                    primer_bind
          <223>
                     gene-specific primer used for 5'-RACE for
                     Anemonia majano
20
          <400>
                     20
                                                           21
    gaaatagtca ggcatactgg t
          <210>
                     21
          <211>
                     20
25
          <212>
                     DNA
          <213>
                     artificial sequence
          <220>
          <221>
                    primer_bind
          <223>
                     gene-specific primer used for 5'-RACE for
30
                     Anemonia majano
          <400>
                     21
                                                          20
    gtcaggcata ctggtaggat
          <210>
                     22
35
         <211>
                     21
```

	***************************************	FC (70599/2940
	<212>	DNA
	<213> <220>	
	<221>	
5	<221>	-
3	\223 /	gene-specific primer used for 5'-RACE for Clavularia sp.
	<400>	22
	cttgaaatag	tctgctatat c 21
10	010.	
10	<210>	
	<211>	
	<212>	
-	<213>	-
15	<220>	
15	<221> <223>	_
	<2237	gene-specific primer used for 5'-RACE for Clavularia sp.
	<400>	23
	<400 >	23
	tctgctatat	cgtctgggt 19
20		
	<210>	24
	<211>	23
	<212>	DNA
	<213>	artificial sequence
25	<220>	
	<221>	primer_bind
	<223>	gene-specific primer used for 5'-RACE for
		Zoanthus sp.
	<400>	24
30	gttcttgaaa	tagtctacta tgt 23
	<210>	25
	<211>	20
	<212>	DNA
35	<213>	artificial sequence

PCT/US99/29405

	WO 00/34526	PCT/US99/29405
	<220>	
		myimow hind
	<221>	-
	<223>	
~		Zoanthus sp.
5	<400>	25
	gtctactatg	tcttgaggat 20
	<210>	26
	<211>	19
10	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
	<223>	gene-specific primer used for 5'-RACE for
15		Discosoma sp. "red"
	<400>	26
	caagcaaatg	gcaaaggtc 19
	<210>	27
20	<211>	19
	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
25	<223>	gene-specific primer used for 5'-RACE for
		Discosoma sp. "red"
	<400>	27
	cggtattgtg	gccttcgta 19
30	<210>	28
	<211>	19
	<212>	DNA
	<213>	artificial sequence
	<220>	
35	<221>	primer_bind
	<223>	gene-specific primer used for 5'-RACE for

(4)

SEQ 9/28

. .

Discosoma striata <400> ttgtcttctt ctgcacaac 19 5 <210> 29 17 <211> <212> DNA <213> artificial sequence <220> 10 <221> primer_bind <223> gene-specific primer used for 5'-RACE for Discosoma striata <400> 29 ctgcacaacg ggtccat 17 15 <210> 30 <211> 20 <212> DNA <213> artificial sequence 20 <220> <221> primer_bind <223> gene-specific primer used for 5'-RACE for Anemonia sulcata <400> 25 20 cctctatctt catttcctgc <210> 31 <211> 20 <212> DNA 30 <213> artificial sequence <220> <221> primer_bind <223> gene-specific primer used for 5'-RACE for Anemonia sulcata 35 <400> 31

20

tatcttcatt tcctgcgtac

	-	.
	~210×	32
	<211>	
	<212>	
5	<213>	
3	<220>	
	<221>	
	<223>	-
		Discosoma sp. "magenta"
10	<400>	
	ttcagcaccc	catcacgag 19
	24.0	
	<210>	
		19
15	<212>	
	<213>	-
	<220>	
	<221>	-
	<223>	
20		Discosoma sp. "magenta"
	<400>	33
	acgctcagag	ctgggttcc 19
	<210>	34
25	<211>	22
	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
30	<223>	gene-specific primer used for 5'-RACE for
		Discosoma sp. "green"
	<400>	34
	ccctcagcaa	tccatcacgt tc 22
	_	_
35	<210>	35
	<211>	
	<212>	

PCT/US99/29405

WO 00/34526

	-		
•			
			<u>-</u>
			\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}
		· .	. •

•	WO 00/34526	PCT/US99/29405
	<213>	artificial sequence
•	<220>	-
	<221>	
	<223>	
5		Discosoma sp. "green"
	<400>	35
	attatctcag	tggatggttc 20
	accasses	
	<210>	36
10	<211>	31
	<212>	DNA
	<213>	artificial sequence
	<220>	-
	<221>	primer_bind
15	<223>	upstream primer used to obtain full coding region
		of nFPs from <i>Anemonia majano</i>
	<400>	36
	acatggatcc	gctctttcaa acaagtttat c 31
20	<210>	37
	<211>	34
	<212>	DNA
	<213>	artificial sequence
	<220>	
25	<221>	primer_bind
	<223>	downstream primer used to obtain full coding
		region of nFPs from Anemonia majano
	<400>	37
	tagtactcga	gcttattcgt atttcagtga aatc 34
30		
	<210>	38
	<211>	29
	<212>	DNA
	<213>	artificial sequence
35	<220>	
	<221>	primer_bind
	<223>	upstream primer used to obtain full coding region

WO 00/34526 PCT/US99/29405 of nFPs from Clavularia sp. <400> 38 29 acatggatcc aacatttttt tgagaaacg 5 <210> 39 <211> 28 <212> DNA <213> artificial sequence <220> primer_bind 10 <221> <223> upstream primer used to obtain full coding region of nFPs from Clavularia sp. <400> 39 28 acatggatcc aaagctctaa ccaccatg 15 <210> 40 <211> 31 <212> DNA <213> artificial sequence 20 <220> <221> primer_bind <223> downstream primer used to obtain full coding region of nFPs from Clavularia sp. 40 <400> 25 31 tagtactcga gcaacacaaa ccctcagaca a <210> 41 <211> 28 <212> 30 <213> artificial sequence <220> <221> primer_bind <223> upstream primer used to obtain full coding region

41

acatggatec geteagteaa ageaeggt

<400>

35

SEQ 13/28

28

of nFPs from Zoanthus sp.

· · · · ·				4
	-			
	•			
		·	. -	

```
<210>
                     42
          <211>
                     32
          <212>
                     DNA
 5
          <213>
                     artificial sequence
          <220>
          <221>
                     primer_bind
          <223>
                     downstream primer used to obtain full coding
                     region of nFPs from Zoanthus sp.
10
          <400>
                     42
    tagtactcga ggttggaact acattcttat ca
                                                          32
          <210>--
                     43
          <211>
                     31
15
          <212>
                     DNA
          <213>
                     artificial sequence
          <220>
          <221>
                     primer_bind
          <223>
                     upstream primer used to obtain full coding region
20
                     of nFPs from Discosoma sp. "red"
          <400>
                     43
    acatggatcc aggtcttcca agaatgttat c
                                                          31
          <210>
                     44
25
          <211>
                     29
          <212>
                     DNA ·
          <213>
                     artificial sequence
          <220>
          <221>
                     primer_bind
30
          <223>
                     downstream primer used to obtain full coding
                     region of nFPs from Discosoma sp. "red"
          <400>
                     44
                                                          29
    tagtactcga ggagccaagt tcagcctta
35
          <210>
                     45
          <211>
                     28
          <212>
                     DNA
```

SEQ 14/28

ALC:

	WO 00/34526	PCT/US99/29405
	<213>	artificial sequence
	<220>	
•	<221>	primer_bind
	<223>	-
5		of nFPs from <i>Discosoma striata</i>
	<400>	45
	acatggatcc	agttggtcca agagtgtg 28
	<210>	46
10	<211>	28
	<212>	DNA
	<213>	artificial sequence
	<220>	
	<221>	primer_bind
15	<223>	downstream primer used to obtain full coding
		region of nFPs from Discosoma striata
	<400>	46
	tagcgagctc	tatcatgcct cgtcacct 28
20	<210>	47
	<211>	31
	<212>	DNA
	<213>	artificial sequence
	<220>	
25	<221>	primer_bind
	<223>	upstream primer used to obtain full coding region
		of nFPs from Anemonia sulcata
	<400>	47
	acatggatcc	gcttcctttt taaagaagac t 31
30		
	<210>	48
	<211>	28
	<212>	DNA
	<213>	artificial sequence
35	<220>	
	<221>	primer_bind
	<223>	downstream primer used to obtain full coding

SEQ 15/28


```
region of nFPs from Anemonia sulcata
                    48
          <400>
    tagtactcga gtccttggga gcggcttg
                                                       28
 5
          <210>
                    49
          <211>
                    30
          <212>
                    DNA
          <213>
                    artificial sequence
          <220>
10
          <221>
                    primer_bind
          <223>
                    upstream primer used to obtain full coding region
                    of nFPs from Discosoma sp. "magenta"
          <400>
                    49
    acatggatcc agttgttcca agaatgtgat
                                                       30
15
          <210>
                    50
          <211>
                    26
         <212>
                    DNA
         <213>
                    artificial sequence
         <220>
20
         <221>
                    primer_bind
         <223>
                    downstream primer used to obtain full coding
                    region of nFPs from Discosoma sp. "magenta"
                    50
         <400>
25
    tagtactcga ggccattacg ctaatc
                                                       26
         <210>
                    51
         <211>
                    31
         <212>
                    DNA
30
         <213>
                    artificial sequence
         <220>
         <221>
                    primer_bind
         <223>
                    upstream primer used to obtain full coding region
                    of nFPs from Discosoma sp. "green"
35
         <400>
                    51
```

acatggatcc agtgcactta aagaagaaat g

```
52
          <210>
          <211>
                     29
          <212>
                     DNA
          <213>
 5
                     artificial sequence
          <220>
          <221>
                    primer_bind
          <223>
                     downstream primer used to obtain full coding
                     region of nFPs from Discosoma sp. "green"
10
          <400>
                     52
    tagtactcga gattcggttt aatgccttg
                                                        29
          <210>
                     53
          <211>
                    33
15
          <212>
                    DNA
          <213>
                    artificial sequence
          <220>
                    primer_bind
          <221>
          <223>
                    TS-oligo used in cDNA synthesis and RACE
20
          <400>
                    53
    aagcagtggt atcaacgcag agtacgcrgr grg
                                                          33
          <210>
                    54
          <211>
                    238
25
          <212>
                    PRT
          <213>
                    Aequorea victoria
          <220>
          <223>
                    amino acid sequence of GFP
          <400>
                    54
30
    Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu
                     5
                                          10
                                                               15
    Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser
                     20
                                          25
    Gly Glu Gly Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys
35
                     35
                                          40
                                                               45
    Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu
                     50
                                          55
                                                               60
```

	. -				
·					
					÷
		•			

	Va1	Thr	Thr	Phe		Tyr	Gly	Val	Gln		Phe	Ser	Arg	Tyr	
					65					70					75
	Asp	Hıs	Met	Lys	61n 80	His	Asp	Pne	Phe	Lys 85	Ser	Ala	Met	Pro	90 90
5	Gly	Tyr	Val	Gln	Glu	Arg	Thr	Ile	Phe	Phe	Lys	Asp	Asp	Gly	Asn
					95					100					105
	Tyr	Lys	Thr	Arg	Ala	Glu	Val	Lys	Phe	Glu	Gly	Asp	Thr	Leu	Val
					110					115					120
	Asn	Arg	Ile	Glu	Leu	Lys	Gly	Ile	Asp	Phe	Lys	Glu	Asp	Gly	Asn
10					125					130					135
	Ile	Leu	Gly	His	Lys	Leu	Glu	Tyr	Asn	Tyr	Asn	Ser	His	Asn	Val
					140					145					150
	Tyr	Ile	Met	Ala	Asp	Lys	Gln	Lys	Asn	Gly	Ile	Lys	Val	Asn	Phe
					155					160					165
15	Lys	Ile	Arg	His	Asn	Ile	Glu	Asp	Gly	Ser	Val	Gln	Leu	Ala	Asp
					170					175					180
	His	Tyr	Gln	Gln	Asn	Thr	Pro	Ile	Gly	Asp	Gly	Pro	Val	Leu	Leu
					185					190					195
	Pro	Asp	Asn	His	Tyr	Leu	Ser	Thr	Gln	Ser	Ala	Leu	Ser	Lys	Asp
20					200					205					210
	Pro	Asn	Glu	Lys	Arg	Asp	His	Met	Val	Leu	Leu	Glu	Phe	Val	Thr
					215					220					225
	Ala	Ala	Gly	Ile	Thr	His	Gly	Met	Asp	Glu	Leu	Tyr	Lys		
					230					235					
25															
			10>		55										
			11>		229										
			12>		PRT -										
20			13>		Anem	onia	maj	ano							
30			20>							_					
			23>			o ac	id s	eque	nce	of a	mFP4	86			
			20>		55	_	_,		4.7	_	_		_		
	Met	Ala	Leu	Ser		Lys	Phe	Ile	GIY	_	Asp	Met	Lys	Met	
25		**'	35.1		5	~	7	_	~ 7	10					15 -
35	тух	HIS	Met	qaa		суs	val	asn	GIY		туr	Pne	Thr	val	
	01	C3	01	7	20	T	Dec -	æ	01	25	m)	01	ml. · ·	G - :	30
	GTÀ	GIU	Gly	ASN		ьуs	Pro	Tyr	GTA		Tnr	GIN	Tnr	ser	
					35					40					45

```
Phe Lys Val Thr Met Ala Asn Gly Gly Pro Leu Ala Phe Ser Phe
                      50
                                          55
    Asp Ile Leu Ser Thr Val Phe Lys Tyr Gly Asn Arg Cys Phe Thr
                      65
                                          70
                                                               75
    Ala Tyr Pro Thr Ser Met Pro Asp Tyr Phe Lys Gln Ala Phe Pro
                      80
                                          85
                                                               90
    Asp Gly Met Ser Tyr Glu Arg Thr Phe Thr Tyr Glu Asp Gly Gly
                     95
                                          100
                                                               105
    Val Ala Thr Ala Ser Trp Glu Ile Ser Leu Lys Gly Asn Cys Phe
10
                     110
                                          115
                                                               120
    Glu His Lys Ser Thr Phe His Gly Val Asn Phe Pro Ala Asp Gly
                     125
                                          130
    Pro Val Met Ala Lys Lys Thr Thr Gly Trp Asp Pro Ser Phe Glu
                     140
                                          145
                                                               150
15
    Lys Met Thr Val Cys Asp Gly Ile Leu Lys Gly Asp Val Thr Ala
                     155
                                          160
    Phe Leu Met Leu Gln Gly Gly Asn Tyr Arg Cys Gln Phe His
                     170
                                          175
                                                               180
    Thr Ser Tyr Lys Thr Lys Lys Pro Val Thr Met Pro Pro Asn His
20
                     185
                                          190
                                                               195
    Val Val Glu His Arg Ile Ala Arg Thr Asp Leu Asp Lys Gly Gly
                     200
                                          205
    Asn Ser Val Gln Leu Thr Glu His Ala Val Ala His Ile Thr Ser
                     215
                                          220
                                                               225
25
    Val Val Pro Phe
          <210>
                     56
          <211>
                    266
30
         <212>
                    PRT
          <213>
                    Clavularia sp.
         <220>
         <223>
                    amino acid sequence of cFP484
          <400>
                    56
35
    Met Lys Cys Lys Phe Val Phe Cys Leu Ser Phe Leu Val Leu Ala
```

Ile Thr Asn Ala Asn Ile Phe Leu Arg Asn Glu Ala Asp Phe Glu

	-	
		•

					20					25					30
•	Glu	Lys	Thr	Phe	Arg	Ile	Pro	Lys	Ala	Leu	Thr	Thr	Met	Gly	Val
					35					40					45
	Ile	Lys	Pro	Asp	Met	Lys	Ile	Lys	Leu	Lys	Met	Glu	Gly	Asn	Val
5					50					5 5					60
	Asn	Gly	His	Ala	Phe	Val	Ile	Glu	Gly	Glu	Gly	Glu	Gly	Lys	Pro
					65					70					75
	Tyr	Asp	Gly	Thr	His	Thr	Leu	Asn	Leu	Glu	Val	Lys	Glu	Gly	Ala
					80					85					90
10	Pro	Leu	Pro	Phe	Ser	Tyr	Asp	Ile	Leu	Ser	Asn	Ala	Phe	Gln	Tyr
					95					100					105
	Gly	Asn	Arg	Ala	Leu	Thr	Lys	Tyr	Pro	Asp	Asp	Ile	Ala	Asp	Tyr
					110			_		115					120
	Phe	Lys	Gln	Ser	Phe	Pro	Glu	Gly	Tyr	Ser	Trp	Glu	Arg	Thr	Met
15					125					130					135
	Thr	Phe	Glu	Asp	Lys	Gly	Ile	Val	Lys		Lys	Ser	Asp	Ile	
					140					145					150
	Met	Glu	Glu	Asp	Ser	Phe	Ile	Tyr	Glu		Arg	Phe	Asp	Gly	
		_			155					160					165
20	Asp	Phe	Pro	Pro	Asn	Gly	Pro	Val	Met		Lys	Lys	Thr	Leu	_
	_	~1		~ .	170	~3.	~1.	30.1		175		_	~ 1	7	180
	Trp	Glu	Pro	Ser	Thr	GIU	шe	Met	туr		Arg	Asp	GIY	Val	
	*7~ 7	01	7 ~~	T1.	185	TT: -	Cox	T 011	T 011	190	01. .	01. -	01	~1	195
25	vaı	GIY	Asp	TIE	Ser 200	птъ	ser	Leu	ьeu	205	GIU	GTĀ	GIY	GTA	210
23	ጥ ን ያንሳ	Ara	Circ	Acn	Phe	Lvc	Ser	Tla	Фиг		λla	Tare	Tare	T/a l	
	171	111.9	Cys	TOP	215	цу	DCI	110	* y ±	220	ALG	ъу.5	цуs	val	225
	Lvs	Leu	Pro	Asp	Tyr	His	Phe	Val	Asp		Ara	Ile	Glu	Ile	
	-	-	-		230					235	3				240
30	Asn	His	Asp	Lys	Asp	Tyr	Asn	Lys	Val	Thr	Leu	Tyr	Glu	Asn	
			_	_	245	_		-		250		-			255
	Val	Ala	Arg	Tyr	Ser	Leu	Leu	Pro	Ser	Gln	Ala				
					260					265					
35		<23	1.0>		57										
		<2:			230										

. -			
	_		
			·

```
<213>
                     Zoanthus sp.
          <220>
          <223>
                     amino acid sequence of zFP506
          <400>
                     57
 5
    Ala Gln Ser Lys His Gly Leu Thr Lys Glu Met Thr Met Lys Tyr
                                          10
                                                               15
    Arg Met Glu Gly Cys Val Asp Gly His Lys Phe Val Ile Thr Gly
                     20
                                          25
    Glu Gly Ile Gly Tyr Pro Phe Lys Gly Lys Gln Ala Ile Asn Leu
10
                     35
                                          40
    Cys Val Val Glu Gly Gly Pro Leu Pro Phe Ala Glu Asp Ile Leu
                     50
                                          55
    Ser Ala Ala Phe Asn Tyr Gly Asn Arg Val Phe Thr Glu Tyr Pro
                     65
                                          70
                                                               75
15
    Gln Asp Ile Val Asp Tyr Phe Lys Asn Ser Cys Pro Ala Gly Tyr
                     80
                                          85
                                                               90
    Thr Trp Asp Arg Ser Phe Leu Phe Glu Asp Gly Ala Val Cys Ile
                     95
                                          100
                                                               105
    Cys Asn Ala Asp Ile Thr Val Ser Val Glu Glu Asn Cys Met Tyr
20
                     110
                                          115
    His Glu Ser Lys Phe Tyr Gly Val Asn Phe Pro Ala Asp Gly Pro
                     125
                                          130
                                                               135
    Val Met Lys Lys Met Thr Asp Asn Trp Glu Pro Ser Cys Glu Lys
                     140
                                          145
                                                               150
25
    Ile Ile Pro Val Pro Lys Gln Gly Ile Leu Lys Gly Asp Val Ser
                     155
                                          160
    Met Tyr Leu Leu Lys Asp Gly Gly Arg Leu Arg Cys Gln Phe
                     170
                                          175
    Asp Thr Val Tyr Lys Ala Lys Ser Val Pro Arg Lys Met Pro Asp
30
                     185
                                          190
    Trp His Phe Ile Gln His Lys Leu Thr Arg Glu Asp Arg Ser Asp
                     200
                                          205
                                                              210
    Ala Lys Asn Gln Lys Trp His Leu Thr Glu His Ala Ile Ala Ser
                     215
                                          220
                                                              225
35
    Gly Ser Ala Leu Pro
                     230
```

•

.

```
58
          <210>
          <211>
                    230
          <212>
                    PRT
 5
          <213>
                    Zoanthus sp.
          <220>
          <223>
                    amino acid sequence of zFP538
                    58
          <400>
    Met Ala His Ser Lys His Gly Leu Lys Glu Glu Met Thr Met Lys
10
                                          10
    Tyr His Met Glu Gly Cys Val Asn Gly His Lys Phe Val Ile Thr
                                          25
                                                               30
                     20
    Gly Glu Gly Ile Gly Tyr Pro Phe Lys Gly Lys Gln Thr Ile Asn
                                          40
                                                               45
                     35
    Leu Cys Val Ile Glu Gly Gly Pro Leu Pro Phe Ser Glu Asp Ile
15
                                          55
                                                               60
                     50
    Leu Ser Ala Gly Phe Lys Tyr Gly Asp Arg Ile Phe Thr Glu Tyr
                     65
                                          70
                                                               75
    Pro Gln Asp Ile Val Asp Tyr Phe Lys Asn Ser Cys Pro Ala Gly
                                                               90
20
                     80
                                          85
    Tyr Thr Trp Gly Ser Phe Leu Phe Glu Asp Gly Ala Val Cys Ile
                     95
                                          100
                                                               105
    Cys Asn Val Asp Ile Thr Val Ser Val Lys Glu Asn Cys Ile Tyr
                     110
                                          115
                                                               120
25
    His Lys Ser Ile Phe Asn Gly Met Asn Phe Pro Ala Asp Gly Pro
                     125
                                          130
                                                               135
    Val Met Lys Lys Met Thr Thr Asn Trp Glu Ala Ser Cys Glu Lys
                     140
                                          145
                                                               150
    Ile Met Pro Val Pro Lys Gln Gly Ile Leu Lys Gly Asp Val Ser
30
                     155
                                          160
    Met Tyr Leu Leu Lys Asp Gly Gly Arg Tyr Arg Cys Gln Phe
                                          175
                     170
                                                               180
    Asp Thr Val Tyr Lys Ala Lys Ser Val Pro Ser Lys Met Pro Glu
                     185
                                          190
35
    Trp His Phe Ile Gln His Lys Leu Leu Arg Glu Asp Arg Ser Asp
                     200
                                          205
                                                               210
    Ala Lys Asn Gln Lys Trp Gln Leu Thr Glu His Ala Ile Ala Phe
                     215
                                          220
                                                               225
```

		:	
			• •
			•

Pro Ser Ala Leu Ala

```
5
          <210>
                     59
          <211>
                    232
          <212>
                    PRT
          <213>
                    Discosoma striata
          <220>
10
          <223>
                    amino acid sequence of dsFP483
          <400>
                    59
    Met Ser Cys Ser Lys Ser Val Ile Lys Glu Glu Met Leu Ile Asp
                     5
                                          10
    Leu His Leu Glu Gly Thr Phe Asn Gly His Tyr Phe Glu Ile Lys
15
                     20
                                          25
                                                               30
    Gly Lys Gly Lys Gly Gln Pro Asn Glu Gly Thr Asn Thr Val Thr
                     35
                                          40
                                                               45
    Leu Glu Val Thr Lys Gly Gly Pro Leu Pro Phe Gly Trp His Ile
                     50
                                          55
                                                               60
20
    Leu Cys Pro Gln Phe Gln Tyr Gly Asn Lys Ala Phe Val His His
                     65
                                          70
                                                               75
    Pro Asp Asn Ile His Asp Tyr Leu Lys Leu Ser Phe Pro Glu Gly
                     80
                                          85
                                                               90
    Tyr Thr Trp Glu Arg Ser Met His Phe Glu Asp Gly Gly Leu Cys
                     95
25
                                          100
                                                               105
    Cys Ile Thr Asn Asp Ile Ser Leu Thr Gly Asn Cys Phe Tyr Tyr
                     110
                                          115
                                                               120
    Asp Ile Lys Phe Thr Gly Leu Asn Phe Pro Pro Asn Gly Pro Val
                     125
                                          130
                                                               135
30
    Val Gln Lys Lys Thr Thr Gly Trp Glu Pro Ser Thr Glu Arg Leu
                     140
                                          145
                                                               150
    Tyr Pro Arg Asp Gly Val Leu Ile Gly Asp Ile His His Ala Leu
                     155
                                          160
                                                               165
    Thr Val Glu Gly Gly His Tyr Ala Cys Asp Ile Lys Thr Val
35
                     170
                                          175
                                                               180
    Tyr Arg Ala Lys Lys Ala Ala Leu Lys Met Pro Gly Tyr His Tyr
                     185
                                          190
                                                               195
```

	-		
	,		
•			
•			

```
Val Asp Thr Lys Leu Val Ile Trp Asn Asn Asp Lys Glu Phe Met
                                          205
                     200
                                                               210
    Lvs Val Glu Glu His Glu Ile Ala Val Ala Arg His His Pro Phe
                     215
                                          220
                                                               225
    Tyr Glu Pro Lys Lys Asp Lys
 5
                     230
          <210>
                     60
                     225
          <211>
          <212>
10
                     PRT
          <213>
                     Discosoma sp. "red"
          <220>
          <223>
                     amino acid sequence of drFP583
          <400>
                     60
15
    Met Arg Ser Ser Lys Asn Val Ile Lys Glu Phe Met Arg Phe Lys
                     5
                                                               15
                                          10
    Val Arg Met Glu Gly Thr Val Asn Gly His Glu Phe Glu Ile Glu
                     20
                                          25
    Gly Glu Gly Glu Gly Arg Pro Tyr Glu Gly His Asn Thr Val Lys
20
                                          40
                                                               45
                     35
    Leu Lys Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Trp Asp Ile
                     50
                                          55
                                                               60
    Leu Ser Pro Gln Phe Gln Tyr Gly Ser Lys Val Tyr Val Lys His
                                                               75
                     65
                                          70
25
    Pro Ala Asp Ile Pro Asp Tyr Lys Lys Leu Ser Phe Pro Glu Gly
                                          85
                     80
    Phe Lys Trp Glu Arg Val Met Asn Phe Glu Asp Gly Gly Val Val
                     95
                                          100
                                                               105
    Thr Val Thr Gln Asp Ser Ser Leu Gln Asp Gly Cys Phe Ile Tyr
30
                     110
                                          115
                                                               120
    Lys Val Lys Phe Ile Gly Val Asn Phe Pro Ser Asp Gly Pro Val
                     125
                                          130
    Met Gln Lys Lys Thr Met Gly Trp Glu Ala Ser Thr Glu Arg Leu
                     140
                                          145
                                                               150
35
    Tyr Pro Arg Asp Gly Val Leu Lys Gly Glu Ile His Lys Ala Leu
                     155
                                          160
    Lys Leu Lys Asp Gly Gly His Tyr Leu Val Glu Phe Lys Ser Ile
                     170
                                          175
                                                               180
```

			• .
. •	-	:	
			,
			,
			, and the second
			,

	Tyr	Met	Ala	Lys		Pro	Val	Gln	Leu		Gly	Tyr	Tyr	Tyr	
	3	0	T	T	185	T10	mh x	Cox	TT: ~	190	C1.,	7 am	(Th. +24)	mb .c	195
	Asp	ser	Lys	ьеи	200	TIE	TIII	ser	nis	205	Gru	Asp	TÀT	TITE	Ile 210
5	1727	Glu	Gln	ጥኒያን		Δνα	Thr	Glu	Gly		Hic	Hic	T. (211	Dhe	
3	vai	Giu	GIII	ıyı	215	Arg	1111	Giu	Gry	220	1172	1112	пеа	FILE	225
					213										223
		<2	10>		61										
		<2	11>		232										
10		<2	12>		PRT										
		<2	13>		Anem	onia	sul	cata							
		<2	20>												
		<2	23>		amin	o ac	id s	eque	nce	of a	sFP6	00			
		<4	<00		61										
15	Met	Ala	Ser	Phe	Leu	Lys	Lys	Thr	Met	Pro	Phe	Lys	Thr	Thr	Ile
					5					10					15
	Glu	Gly	Thr	Val		Gly	His	Tyr	Phe		Cys	Thr	Gly	Lys	
					20					25					30
•	Glu	Gly	Asn	Pro		Glu	Gly	Thr	Gln		Met	Lys	Ile	Glu	
20					35	_	_			40			_	_	45
	He	GIu	Gly	GIY		Leu	Pro	Phe	Ala		Hls	TTE	Leu	Ser	
	Cox	Cara	Mot	Па тэс	50	Cox	Tira	Mb~	Dho	55	Tara	Mr 220	1707	Com	60
	ser	Cys	Met	тĀт	65	ser	гух	TIIL	PHE	70	гур	TÄT	vai	Ser	75
25	Tle	Pro	Asp	ጥረታ		Lvs	Gln	Ser	Phe		Glu	Glv	Phe	ጥ ከጉ	
20	110	110	пор	172	80	2,5	0111	501	- 1.0	85	014	011	1110		90
	Glu	Arg	Thr	Thr		Tyr	Glu	Asp	Gly		Phe	Leu	Thr	Ala	
		J			95	-		-	-	100					105
	Gln	Asp	Thr	Ser	Leu	Asp	Gly	Asp	Cys	Leu	Val	Tyr	Lys	Val	Lys
30					110					115					120
	Ile	Leu	Gly	Asn	Asn	Phe	Pro	Ala	Asp	Gly	Pro	Val	Met	Gln	Asn
					125					130					135
	Lys	Ala	Gly	Arg	Trp	Glu	Pro	Ala	Thr	Glu	Ile	Val	Tyr	Glu	Val
					140					145					150
35	Asp	Gly	Val	Leu	Arg	Gly	Gln	Ser	Leu	Met	Ala	Leu	Lys	Cys	Pro
					155					160					165
	Gly	Gly	Arg	His	Leu	Thr	Cys	His	Leu	His	Thr	Thr	Tyr	Arg	Ser
					170					175					180

			, .
. •			
		_	

	Lys	Lys	Pro	Ala	Ser	Ala	Leu	Lys	Met	Pro	Gly	Phe	His	Phe	Glu
					185					190					195
	Asp	His	Arg	Ile		Ile	Met	Glu	Glu		Glu	Lys	Gly	Lys	
_	(Th	T	C1~	(Th. ***	200	77.	77.	77a 7	01	205	60	O	3	27.	210
5	туг	гуѕ	GIII	TAT	215	Ala	Ala	vai	GIA	220	Tyr	Cys	Asp	Ата	A1a 225
	Pro	Ser	Lys	Leu		His	Asn			220					223
			-		230										
10		-2	10>		62										
10			11>		231										
			12>		PRT										
		<2	13>		Disc	osom	a sp	. "g	reen	"					
		<2	20>												
15			23>		amin	o ac	id s	eque	nce	of d	gFP5	12			
		<4	00>		62										
	Met	Ser	Ala	Leu	Lys	Glu	Glu	Met	Lys	Ile	Asn	Leu	Thr	Met	Glu
					5					10		,			15
	Gly	Val	Val	Asn	Gly	Leu	Pro	Phe	Lys	Ile	Arg	Gly	Asp	Gly	Lys
20					20					25					30
	Gly	Lys	Pro	Tyr	Gln	Gly	Ser	Gln	Glu	Leu	Thr	Leu	Thr	Val	Val
					35					40					45
	Lys	Gly	Gly	Pro	Leu	Pro	Phe	Ser	Tyr	Asp	Ile	Leu	Thr	Thr	Met
					50					55					60
25	Phe	Gln	Tyr	Gly	Asn	Arg	Ala	Phe	Val	Asn	Tyr	Pro	Glu	Asp	Ile
					65					70					75
	Pro	Asp	Ile	Phe	Lys	Gln	Thr	Cys	Ser	Gly	Pro	Asn	Gly	Gly	Tyr
					80					85					90
	Ser	Trp	Gln	Arg	Thr	Met	Thr	Tyr	Glu	Asp	Gly	Gly	Val	Cys	Thr
30					95					100					105
	Ala	Thr	Ser	Asn	Ile	Ser	Val	Val	Gly	Asp	Thr	Phe	Asn	Tyr	Asp
					110					115					120

				, .
		.		
			_	
İ				

•	TIE	nis	FILE	Mec	Gry	AIG	ASII	1110	110	Dea	ASD	Gry	FIO	vai	Mec
					125					130					135
	Gln	Lys	Arg	Thr	Met	Lys	Trp	Glu	Pro	Ser	Thr	Glu	Ile	Met	Phe
					140					145					150
5	Glu	Arg	Asp	Gly	Met	Leu	Arg	Gly	Asp	Ile	Ala	Met	Ser	Leu	Leu
					155					160					165
	Leu	Lys	Gly	Gly	Gly	His	Tyr	Arg	Cys	Asp	Phe	Glu	Thr	Ile	Tyr
					170					175					180
	Lys	Pro	Asn	Lys	Val	Val	Lys	Met	Pro	Asp	Tyr	His	Phe	Val	Asp
10					185		_			190					195
	His	Cys	Ile	Glu	Ile	Thr	Ser	Gln	Gln	Asp	Tyr	Tyr	Asn	Val	Val
					200					205					210
	Glu	Leu	Thr	Glu	Val	Ala	Glu	Ala	Arg	Tyr	Ser	Ser	Leu	Glu	Lys
					215					220					225
15	Ile	Gly	Lys	Ser	Lys	Ala									
					230										
		<23	10>		63										
		<23	11>		235										
20		<22	12>		PRT										
		<23	13>		Disc	osom	a sp	. "m	agen	ta"					
		<22	20>												
		<22	23>		amin	o ac	id s	eque	nce	of d	mFP5	92			
		<40	<00		63										
25	Met	Ser	Cys	Ser	Lys	Asn	Val	Ile	Lys	Glu	Phe	Met	Arg	Phe	Lys
					5					10					15
	Val	Arg	Met	Glu	Gly	Thr	Val	Asn	Gly	His	Glu	Phe	Glu	Ile	Lys
					20					25					30
	Gly	Glu	Gly	Glu	Gly	Arg	Pro	Tyr	Glu	Gly	His	Cys	Ser	Val	Lys
30					35					40					45

				, ,	
•					
	_				
	 _				

	Leu	Met	Val	Thr	Lys	Gly	Gly	Pro	Leu	Pro	Phe	Ala	Phe	Asp	Ile
					50					55					60
	Leu	Ser	Pro	Gln	Phe	Gln	Tyr	Gly	Ser	Lys	Val	Tyr	Val	Lys	His
					65					70					7 5
5	Pro	Ala	Asp	Ile	Pro	Asp	Tyr	Lys	Lys	Leu	Ser	Phe	Pro	Glu	Gly
					80					85					90
	Phe	Lys	Trp	Glu	Arg	Val	Met	Asn	Phe	Glu	Asp	Gly	Gly	Val	Val
					100					105					110
	Thr	Val	Ser	Gln	Asp	Ser	Ser	Leu	Lys	Asp	Gly	Cys	Phe	Ile	Tyr
10		-	-		115					120					125
	Glu	Val	Lys	Phe	Ile	Gly	Val	Asn	Phe	Pro	Ser	Asp	Gly	Pro	Val
					130					135					140
	Met	Gln	Arg	Arg	Thr	Arg	Gly	Trp	Glu	Ala	Ser	Ser	Glu	Arg	Leu
					145					150					155
15	Tyr	Pro	Arg	Asp	Gly	Val	Leu	Lys	Gly	Asp	Ile	His	Met	Ala	Leu
					160					165					170
	Arg	Leu	Glu	Gly	Gly	Gly	His	Tyr	Leu	Val	Glu	Phe	Lys	Ser	Ile
					175					180					185
	Tyr	Met	Val	Lys	Lys	Pro	Ser	Val	Gln	Leu	Pro	Gly	Tyr	Tyr	Tyr
20					190					195					200
	Val	Asp	Ser	Lys	Leu	Asp	Met	Thr	Ser	His	Asn	Glu	Asp	Tyr	
					205					210					215
	Val	Val	Glu	Gln		Glu	Lys	Thr	Gln	Gly	Arg	His	His	Pro	
					220					225					230
25	Ile	Lys	Pro	Leu											
					235										

. - -.

-

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/29405

IPC(7)	SSIFICATION OF SUBJECT MATTER :C12Q 1/68; C07K 14/435 :435/6, 69.1; 530/350								
According t	o International Patent Classification (IPC) or to both	national classification and IPC							
B. FIEL	DS SEARCHED								
Minimum d	ocumentation searched (classification system followed	d by classification symbols)							
U.S. : 4	435/6, 69.1, 968; 530/350; 424/9.6, 436/172								
Documentat	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched						
	ata base consulted during the international search (na Extra Sheet.	me of data base and, where practicable	, search terms used)						
c. Doc	UMENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.						
***	The sequence diskette submitted with thus the references listed below were search, and not by a search of the SEC	obtained solely by a WORD	***						
X, P	MATZ et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnology. October 1999, Volume 17, No. 10, pages 969-973, entire document.								
Х, Р	DE 197 18 640 A1 (WIEDENMA document.	NN) 22 July 1999, entire	3-10						
Furth	er documents are listed in the continuation of Box C	. See patent family annex.							
• Spe	ecial categories of cited documents:	"T" later document published after the int							
	cument defining the general state of the art which is not considered be of particular relevance	date and not in conflict with the appl the principle or theory underlying the							
	lier document published on or after the international filing date	"X" document of particular relevance; the							
L doc	cunent which may throw doubts on priority claim(s) or which is not be establish the publication date of another citation or other citation (as specified)	when the document is taken alone "Y" document of particular relevance; th							
O doc	cument referring to an oral disclosure, use, exhibition or other ans	considered to involve an inventive combined with one or more other suc being obvious to a person skilled in	step when the document is hocuments, such combination						
·P· doc	cument published prior to the international filing date but later than priority date claimed	*& document member of the same paten	t family						
Date of the	actual completion of the international search	Date of mailing of the international sea	arch report						
18 FEBRU	JARY 2000	02 MAR 201	00						
	nailing address of the ISA/US	Authorized officer							
Box PCT	Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 GABRIELE ELISABETH BOGALST								
Facsimile N	o. (703) 305-3230	Telephone No. (703) 308-0196	Į.						

		•	
. -	.		
		·	