MOBILE PRICE CLASSIFICATION

Since we are to predict the price range indicating how high the price is based on that we classify our price range from 0-3 where,

- 0 Low cost
- 1 Medium cost
- 2 High cost
- 3 Very High cost

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [3]:

df = pd.read_csv('mobile_price_range_data.csv')
df.head()
```

Out[3]:

	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_
0	842	0	2.2	0	1	0	7	0.6	188	
1	1021	1	0.5	1	0	1	53	0.7	136	
2	563	1	0.5	1	2	1	41	0.9	145	
3	615	1	2.5	0	0	0	10	0.8	131	
4	1821	1	1.2	0	13	1	44	0.6	141	

5 rows × 21 columns

In [4]: ▶

sns.countplot(df['price_range']) #shows me the count of observations

C:\Users\fozan\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[4]:

<AxesSubplot:xlabel='price_range', ylabel='count'>

In [5]: ▶

df.shape

Out[5]:

(2000, 21)

In [6]: ▶

```
df.isnull().sum()
```

Out[6]:

battery_power	0
blue	0
clock_speed	0
dual_sim	0
fc	0
four_g	0
int_memory	0
m_dep	0
<pre>mobile_wt</pre>	0
n_cores	0
рс	0
px_height	0
px_width	0
ram	0
sc_h	0
SC_W	0
talk_time	0
three <u>g</u>	0
touch_screen	0
wifi	0
price_range	0
dtype: int64	

In [7]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 21 columns):

Ducu	COTAMINS (COCAT	21 CO1411113).	
#	Column	Non-Null Count	Dtype
0	battery_power	2000 non-null	int64
1	blue	2000 non-null	int64
2	clock_speed	2000 non-null	float64
3	dual_sim	2000 non-null	int64
4	fc	2000 non-null	int64
5	four_g	2000 non-null	int64
6	int_memory	2000 non-null	int64
7	m_dep	2000 non-null	float64
8	<pre>mobile_wt</pre>	2000 non-null	int64
9	n_cores	2000 non-null	int64
10	рс	2000 non-null	int64
11	px_height	2000 non-null	int64
12	px_width	2000 non-null	int64
13	ram	2000 non-null	int64
14	sc_h	2000 non-null	int64
15	sc_w	2000 non-null	int64
16	talk_time	2000 non-null	int64
17	three <u>g</u>	2000 non-null	int64
18	touch_screen	2000 non-null	int64
19	wifi	2000 non-null	int64
20	price_range	2000 non-null	int64
Jan	C1+C4/2\	: -+ C 4 (4 O)	

dtypes: float64(2), int64(19)

memory usage: 328.2 KB

In [8]:

df.describe()

Out[8]:

	battery_power	blue	clock_speed	dual_sim	fc	four <u>g</u>	int_men
count	2000.000000	2000.0000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000
mean	1238.518500	0.4950	1.522250	0.509500	4.309500	0.521500	32.046
std	439.418206	0.5001	0.816004	0.500035	4.341444	0.499662	18.145
min	501.000000	0.0000	0.500000	0.000000	0.000000	0.000000	2.000
25%	851.750000	0.0000	0.700000	0.000000	1.000000	0.000000	16.000
50%	1226.000000	0.0000	1.500000	1.000000	3.000000	1.000000	32.000
75%	1615.250000	1.0000	2.200000	1.000000	7.000000	1.000000	48.000
max	1998.000000	1.0000	3.000000	1.000000	19.000000	1.000000	64.000

8 rows × 21 columns

→

Generating visualizations with respect to a few features such as - ram, battery_power, fc, wifi etc.

```
In [9]:

df.plot(kind = 'scatter', x = 'price_range', y = 'ram')
plt.show()
```



```
In [10]:

df.plot(kind = 'scatter',x = 'price_range', y = 'battery_power',color = 'red')
plt.show()
```


In [11]:

```
df.plot(kind = 'scatter',x = 'price_range', y = 'fc',color = 'magenta')
plt.show()
```



```
In [12]:
```

```
df.plot(kind = 'scatter',x = 'price_range', y = 'wifi',color = 'black')
plt.show()
```


In [13]: ▶

```
df.hist(figsize=(20,15), bins=30)
plt.show()
```


We can generate a 'CORRELATION HEATMAP' which is a graphical representation of a correlation matrix to understand the relation between different variables

In [14]: ▶

```
plt.figure(figsize=(20,20))
sns.heatmap(df.corr(),annot=True,cmap=plt.cm.nipy_spectral)
plt.show()
```


We can also generate a 'BOXPLOT' in order to determine potential outliers

```
In [15]:
                                                                                                 H
df.plot(kind= 'box',figsize=(20,10),color = 'Green')
plt.show()
4000
3000
2500
2000
1500
 500
In [16]:
                                                                                                 H
x = df.drop('price_range',axis=1)
y = df['price_range']
print(type(x))
print(type(y))
<class 'pandas.core.frame.DataFrame'>
<class 'pandas.core.series.Series'>
In [17]:
print(x.shape)
print(y.shape)
(2000, 20)
(2000,)
```

```
In [18]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.1,random_state=101)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
(1800, 20)
(200, 20)
(1800,)
(200,)
In [19]:
# 200 rows are dumped into the x_test and the remaining 1800 rows are dumped into the x_tra
# Similarly 200 rows are dumped into the y_test and the remaining 1800 rows are dumped into
# y_train.
0.1*2000
```

Out[19]:

200.0

We perform Standardization

- Standardization comes into picture when features of input data set have large differences between their ranges, or simply when they are measured in different measurement units
- · Standardization makes all the features value in range 0 to 1

```
In [20]:

from sklearn.preprocessing import StandardScaler

In [21]:

sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.fit_transform(x_test)
```

```
M
In [22]:
x_train
Out[22]:
array([[-1.62737257, -0.98675438, -1.01271559, ..., -1.78222729,
        -1.00892875, -0.99888951],
       [-0.75199354, 1.01342342, 0.58093235, ..., -1.78222729,
         0.99115027, -0.99888951],
       [-0.20630271, 1.01342342, 0.70352065, ..., 0.56109566,
        -1.00892875, 1.00111173],
       . . . ,
       [0.69636086, 1.01342342, -0.03200917, ..., 0.56109566,
        -1.00892875, -0.99888951],
       [ 0.83733099, -0.98675438, -1.2578922 , ..., 0.56109566,
        -1.00892875, 1.00111173],
       [ 0.4144206 , -0.98675438, -0.39977408, ..., 0.56109566,
         0.99115027, 1.00111173]])
In [23]:
x test
Out[23]:
array([[ 0.38671473, -1.02020406, -1.21086485, ..., 0.54653573,
        -0.98019606, -1.16316
                                ],
       [-1.36645979, -1.02020406, -1.21086485, ..., 0.54653573,
         1.02020406, 0.85972695],
       [-1.41958629, -1.02020406, -0.10729182, ..., 0.54653573,
        -0.98019606, 0.85972695],
       [-0.46561913, 0.98019606, 0.38318508, \ldots, 0.54653573,
        -0.98019606, -1.16316
                                ],
       [0.19499736, -1.02020406, -0.84300717, ..., 0.54653573,
         1.02020406, 0.85972695],
       [-1.53507869, -1.02020406, 1.11890043, ..., 0.54653573,
         1.02020406, -1.16316
                                11)
1) Logistic Regression
In [24]:
                                                                                         H
from sklearn.linear model import LogisticRegression
In [25]:
                                                                                         И
m1 = LogisticRegression()
m1.fit(x_train,y_train)
Out[25]:
```

localhost:8889/notebooks/Mini project/Mobile Price Classification.ipynb

LogisticRegression()

```
M
In [26]:
ypred_m1 = m1.predict(x_test)
print(ypred_m1)
[1\ 1\ 2\ 1\ 1\ 1\ 2\ 1\ 1\ 1\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 2\ 0\ 1\ 3\ 1\ 2\ 3\ 2\ 2\ 2\ 2\ 0\ 0\ 2\ 3\ 0\ 0\ 3\ 0\ 0
 0 1 1 1 2 3 2 3 0 1 3 3 1 0 0 3 3 3 3 1 3 2 3 2 2 3 1 3 1 0 0 0 2 1 2 3 2
 2 3 3 2 0 2 0 0 2 1 2 2 2 1 0 0 3 2 0 2 0 3 2 0 2 3 0 1 3 3 0 3 0 0 2 0 1
 0 3 2 2 1 1 3 1 0 3 3 2 3 1 3 3 2 1 1 1 0 0 1 0 2 3 0 2 3 1 3 0 0 0 1 1 3
 2 0 3 1 2 2 3 2 2 0 3 2 2 2 2 1 2 1 1 3 3 1 2 0 3 1 3 2 2 3 2 2 1 0 1 3
 3 1 2 0 3 1 0 2 2 0 2 0 0 3 0]
In [27]:
                                                                                              H
from sklearn.metrics import confusion matrix, classification report
In [28]:
cm = confusion_matrix(y_test,ypred_m1)
print(cm)
print(classification_report(y_test,ypred_m1))
[[49 1 0
            0]
 [ 0 46 0
            0]
 [ 0 1 55 6]
 [0 0
        0 42]]
               precision
                            recall f1-score
                                                 support
           0
                    1.00
                              0.98
                                         0.99
                                                      50
           1
                    0.96
                              1.00
                                         0.98
                                                      46
           2
                                         0.94
                    1.00
                              0.89
                                                      62
           3
                                         0.93
                                                      42
                    0.88
                              1.00
                                         0.96
                                                     200
    accuracy
                                         0.96
   macro avg
                    0.96
                              0.97
                                                     200
weighted avg
                    0.96
                              0.96
                                         0.96
                                                     200
In [29]:
                                                                                              H
from sklearn.metrics import accuracy score
LR_acc = accuracy_score(ypred_m1,y_test)
print(LR_acc)
```

0.96

Hence Logistic Regression shows a 96% Accuracy

2) KNN Classification

```
M
In [30]:
from sklearn.neighbors import KNeighborsClassifier
In [47]:
                                                                                        Н
m2 = KNeighborsClassifier(n_neighbors = 19)
m2.fit(x_train,y_train)
Out[47]:
KNeighborsClassifier(n neighbors=19)
In [48]:
                                                                                        H
ypred m2 = m2.predict(x test)
print(ypred_m2)
\begin{smallmatrix}0&1&1&1&3&2&3&3&1&2&3&3&0&0&0&2&3&3&2&0&3&3&2&1&3&1&3&1&0&1&0&2&0&1&3&1\end{smallmatrix}
 1 3 2 2 1 2 0 0 3 2 3 2 2 2 0 1 3 1 0 2 0 2 1 0 2 2 0 2 3 2 0 3 0 0 2 0 0
 0 3 1 1 1 1 3 2 0 3 2 2 3 1 2 3 2 0 1 1 2 0 1 0 0 3 0 3 3 1 3 0 2 0 1 1 3
 2 0 2 0 2 2 3 2 2 0 3 0 2 0 2 2 1 2 2 0 3 3 2 1 1 3 1 3 2 2 2 2 2 1 0 1 3
 3 2 1 0 3 1 0 2 2 0 1 0 0 3 0]
In [49]:
                                                                                        M
from sklearn.metrics import confusion_matrix,classification_report
In [50]:
cm = confusion_matrix(y_test,ypred_m2)
print(cm)
print(classification_report(y_test,ypred_m2))
[[40 8 2 0]
 [11 27 8
           0]
 [ 6 12 33 11]
        9 33]]
 [ 0 0
              precision
                          recall
                                  f1-score
                                             support
                            0.80
                                      0.75
                                                  50
           0
                   0.70
           1
                   0.57
                            0.59
                                      0.58
                                                  46
           2
                   0.63
                            0.53
                                      0.58
                                                  62
           3
                   0.75
                            0.79
                                      0.77
                                                  42
                                      0.67
                                                 200
    accuracy
                   0.67
                            0.68
                                      0.67
                                                 200
   macro avg
weighted avg
                   0.66
                            0.67
                                      0.66
                                                 200
```

```
In [51]:
from sklearn.metrics import accuracy_score
In [52]:
KNN_acc = accuracy_score(ypred_m2,y_test)
print(KNN_acc)
0.665
Hence KNN shows a 66.5% accuracy
3) SVM Classifier

    Linear kernel

In [53]:
                                                                                            M
from sklearn.svm import SVC
In [54]:
m3 = SVC(kernel ='linear',C = 1)
m3.fit(x_train,y_train)
Out[54]:
SVC(C=1, kernel='linear')
In [55]:
ypred_m3 = m3.predict(x_test)
print(ypred_m3)
[1 1 2 1 1 1 2 1 1 1 0 1 1 1 1 1 0 0 2 0 1 3 1 2 3 2 2 2 2 0 0 2 3 0 0 3 0 0
```

 0
 2
 1
 1
 2
 3
 2
 3
 1
 3
 3
 1
 3
 3
 1
 3
 3
 1
 3
 3
 1
 3
 2
 2
 2
 1
 2
 2
 1
 0
 0
 3
 3
 1
 3
 2
 0
 2
 1
 2
 0
 2
 0
 1
 3
 2
 0
 0
 0
 2
 0
 1
 2
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

3 1 2 0 3 1 0 2 2 0 2 0 0 3 0]

[[49 1 0 0]

```
In [56]: ▶
```

```
from sklearn.metrics import confusion_matrix,classification_report
cm = confusion_matrix(y_test,ypred_m3)
print(cm)
print(classification_report(y_test,ypred_m3))
```

```
[ 0 43 3 0]
 [ 0 3 53 6]
 [0042]]
              precision
                           recall f1-score
                                               support
           0
                   1.00
                             0.98
                                       0.99
                                                    50
           1
                   0.91
                             0.93
                                       0.92
                                                    46
           2
                   0.95
                             0.85
                                       0.90
                                                    62
           3
                                       0.93
                   0.88
                             1.00
                                                    42
                                       0.94
                                                   200
    accuracy
                   0.93
                             0.94
                                       0.94
                                                   200
   macro avg
weighted avg
                   0.94
                             0.94
                                       0.93
                                                   200
```

```
In [57]: ▶
```

```
from sklearn.metrics import accuracy_score
SVML_acc = accuracy_score(ypred_m3,y_test) #SVML - SVM Linear
print(SVML_acc)
```

0.935

SVM Classifier with the Linear model generates an accuracy of 93.5%

· rbf kernel

```
In [58]: ▶
```

```
m4 = SVC(kernel = 'rbf',gamma = 0.1,C = 1)
m4.fit(x_train,y_train)
```

Out[58]:

```
SVC(C=1, gamma=0.1)
```

```
M
In [59]:
ypred_m4 = m4.predict(x_test)
print(ypred_m4)
0 1 1 1 3 3 2 3 1 2 3 3 1 0 1 2 3 2 2 1 3 2 3 2 2 3 1 3 1 0 1 0 2 1 1 3 1
1 3 3 2 1 2 0 0 2 2 2 2 2 1 0 0 3 2 0 2 0 3 1 0 2 3 0 2 3 3 0 3 0 0 2 0 1
0 3 2 1 1 1 3 1 0 3 2 2 3 1 2 3 2 1 1 1 0 0 1 0 1 3 0 2 3 1 3 0 0 0 1 1 3
2 0 2 0 2 1 3 2 2 0 3 2 2 2 1 2 1 2 2 1 3 3 1 2 1 3 1 3 2 2 3 2 1 1 0 1 2
3 2 1 0 2 1 0 2 2 0 2 0 0 3 0]
In [60]:
                                                                                   H
cm = confusion matrix(y test,ypred m4)
print(cm)
print(classification_report(y_test,ypred_m4))
[[42 8
        0
           01
[ 3 39 4
           0]
 0 11 47
          4]
 [ 0 0 5 37]]
             precision
                         recall
                                f1-score
                                           support
          0
                 0.93
                           0.84
                                    0.88
                                               50
          1
                 0.67
                           0.85
                                    0.75
                                               46
          2
                 0.84
                           0.76
                                    0.80
                                               62
          3
                 0.90
                           0.88
                                    0.89
                                               42
                                    0.82
                                               200
   accuracy
                 0.84
                           0.83
                                    0.83
                                               200
  macro avg
weighted avg
                 0.84
                           0.82
                                    0.83
                                               200
In [61]:
                                                                                   H
from sklearn.metrics import accuracy score
```

```
from sklearn.metrics import accuracy_score
SVMrbf_acc = accuracy_score(ypred_m4,y_test) #SVMrbf - SVM rbf
print(SVMrbf_acc)
```

0.825

SVM Classifier with the rbf model generates an accuracy of 82.5%

Report on the Model with the best accuracy

In [62]:

Therefore, Logistic Regression with a 96% Accuracy exhibits the highest accuracy among the 3 Models.