$12a_{1287} (K12a_{1287})$

Ideals for irreducible components of X_{par}

$$I_1^u = \langle u^{18} + u^{17} + \dots + 3u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 18 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. $I_1^u = \langle u^{18} + u^{17} + 13u^{16} + 12u^{15} + 68u^{14} + 57u^{13} + 183u^{12} + 136u^{11} + 269u^{10} + 171u^9 + 211u^8 + 108u^7 + 80u^6 + 28u^5 + 18u^4 + 4u^3 + 9u^2 + 3u + 1 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{8} + 5u^{6} + 7u^{4} + 4u^{2} + 1 \\ u^{10} + 6u^{8} + 11u^{6} + 6u^{4} - u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{14} + 9u^{12} + 30u^{10} + 47u^{8} + 38u^{6} + 16u^{4} + 4u^{2} + 1 \\ u^{16} + 10u^{14} + 38u^{12} + 68u^{10} + 56u^{8} + 14u^{6} - 2u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{15} - 10u^{13} - 38u^{11} - 68u^{9} - 56u^{7} - 14u^{5} + 2u^{3} - 2u \\ u^{15} + 9u^{13} + 30u^{11} + 47u^{9} + 38u^{7} + 16u^{5} + 4u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{9} - 6u^{7} - 11u^{5} - 6u^{3} + u \\ u^{9} + 5u^{7} + 7u^{5} + 4u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{17} - 4u^{16} - 52u^{15} - 48u^{14} - 272u^{13} - 224u^{12} - 728u^{11} - 508u^{10} - 1044u^9 - 568u^8 - 756u^7 - 272u^6 - 224u^5 - 24u^4 - 36u^3 - 4u^2 - 36u - 6$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_7, c_{11}, c_{12}	$u^{18} + u^{17} + \dots + 3u + 1$
c_2, c_3, c_4 c_8, c_9, c_{10}	$u^{18} - u^{17} + \dots - 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	$y^{18} + 25y^{17} + \dots + 9y + 1$

(\mbox{vi}) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.065042 + 1.102700I	4.46708 + 1.50403I	5.18929 - 4.54490I
u = -0.065042 - 1.102700I	4.46708 - 1.50403I	5.18929 + 4.54490I
u = 0.205535 + 1.091440I	-3.71533I	0. + 4.49065I
u = 0.205535 - 1.091440I	3.71533I	04.49065I
u = -0.297449 + 1.108730I	-10.26620 + 4.74487I	-0.82347 - 3.51953I
u = -0.297449 - 1.108730I	-10.26620 - 4.74487I	-0.82347 + 3.51953I
u = -0.558415 + 0.355021I	-14.8588 + 1.8284I	-5.01513 - 3.29027I
u = -0.558415 - 0.355021I	-14.8588 - 1.8284I	-5.01513 + 3.29027I
u = 0.451254 + 0.331288I	-4.46708 - 1.50403I	-5.18929 + 4.54490I
u = 0.451254 - 0.331288I	-4.46708 + 1.50403I	-5.18929 - 4.54490I
u = -0.193258 + 0.297102I	0.701427I	0 9.96307I
u = -0.193258 - 0.297102I	-0.701427I	0. + 9.96307I
u = 0.04734 + 1.75261I	10.26620 - 4.74487I	0.82347 + 3.51953I
u = 0.04734 - 1.75261I	10.26620 + 4.74487I	0.82347 - 3.51953I
u = -0.07535 + 1.75351I	6.30909I	0 2.51986I
u = -0.07535 - 1.75351I	-6.30909I	0. + 2.51986I
u = -0.01462 + 1.75753I	14.8588 + 1.8284I	5.01513 - 3.29027I
u = -0.01462 - 1.75753I	14.8588 - 1.8284I	5.01513 + 3.29027I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_6 \\ c_7, c_{11}, c_{12}$	$u^{18} + u^{17} + \dots + 3u + 1$
$c_2, c_3, c_4 \\ c_8, c_9, c_{10}$	$u^{18} - u^{17} + \dots - 3u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	$y^{18} + 25y^{17} + \dots + 9y + 1$