STAT547C: Topics in Probability

Fall 2019-20

Assignment 1

 $Giorgio\ Viancha\ Sgarbi$

giorgio.sgarbi@stat.ubc.ca

1 PARTITION GENERATED SIGMA ALGEBRA

(a) Let $D=\{A,B,C\}$ be a partition of E. List the elements of $\sigma D.$ D is a partition of E:

 $E = A \cup B \cup C$

 $\emptyset = A \cap B = A \cap C = B \cap C$

Let K be the set of all possible countable unions of A, B and C, i.e:

$$\mathcal{K} = \{A, B, C, A \cup B, A \cup C, B \cup C, A \cup B \cup C, \emptyset\}$$

I will show $\mathcal{K} \subset \sigma \mathcal{D}, \sigma \mathcal{D} \subset \mathcal{K}$. Hence, $\mathcal{K} = \sigma \mathcal{D}$.

 \mathcal{K} is a σ -algebra on E:

 $E \in \mathcal{K}$:

 $E = A \cup B \cup C \in \mathcal{K}$ since D is a partition of E.

 \mathcal{K} is closed under union:

By construction, K closed under union (finite/countable union)

 \mathcal{K} is closed under complement:

Since $E = A \cup B \cup C$ and $\emptyset = A \cap B = A \cap C = B \cap C$:

 $E \setminus A = B \cup C$

 $E \setminus B = A \cup C$

 $E \setminus C = A \cup B$

 $E \setminus A \cup B \cup C = \emptyset$

 $D \subset \mathcal{K}$:

 $A, B, C \in \mathcal{K}$

 $\sigma D \subset \mathcal{K}$:

 \mathcal{K} is a σ -algebra on E that contains D, so $\sigma D \subset K$

 $\mathcal{K} \subset \sigma \mathcal{D}$:

 $A, B, C \in \sigma D$ by definition of σD .

 $A \cup B, A \cup C, B \cup C, A \cup B \cup C \in sD$ because σD is a σ -algebra on E and, thus, needs to be closed under countable unions. Therefore, all elements of \mathcal{K} are elements of σD .

Hence, the list of elements in $\sigma \mathcal{D}$ are:

 $\{A, B, C, A \cup B, A \cup C, B \cup C, A \cup B \cup C, \emptyset\}$, where $E = A \cup B \cup C$

b) Let C be a countable partition of E. Show that every element of σC is a countable union of elements taken from C. Hint: Let S be the collection of all sets that are countable unions of elements taken from C. Show that S is a σ -algebra on E and argue that $S = \sigma C$ Hint: You might find it useful to recall the fact that the union of a countable collection of sets, each of which is countable, is again countable.

Notation: $C = \mathcal{C}$

C is a countable partition of E. Let S be the collection of all sets that are countable unions of elements in C (C_i) 's, \emptyset included).

Will show $S = \sigma \mathcal{C}$

Proof template:

- S is a σ -algebra on E .
- $\sigma C \subset S$
- $S \subset \sigma C$

Lemma: The union of a countable collection of countable sets is countable.

 $E \in S$:

 $C = \{C_1, C_2, ...\}$ is a countable partition of $E \Rightarrow E = \bigcup C_i \in S$

S is closed under countable unions:

The union of a countable collection of countable sets is countable and S is the collection of all sets that are countable unions of elements from C. So any countable union of elements in S will again be a countable union of elements from C, i.e, an element of S.

S is closed under complement:

Any A from S can be written as a countable union of a collection of elements in $C^* \subset C_i$'s. A^c is then the union of the C_i 's not in C^* because C is a partition of E. Therefore, by our lemma, A^c is also a countable union of elements from C and hence is also in S.

 $\sigma C \subset S$:

 $\sigma \mathcal{C}$ is the intersection of all σ -algebra on E containing C. S is one of those σ -algebra on E, so $\sigma \mathcal{C} \subset \mathcal{S}$

 $S \subset \sigma \mathcal{C}$:

By definition, $\sigma \mathcal{C}$ needs to be closed under countable union, so it has to contain C and own (\exists) all possible countable unions of elements taken from C. So, by the definition of S, $S \subset \sigma \mathcal{C}$.

$$\sigma \mathcal{C} \subset \mathcal{S} \land \mathcal{S} \subset \sigma \mathcal{C} \iff \mathcal{S} = \sigma \mathcal{C}$$

(c) Show that the Borel σ -algebra on \mathbb{R} , $\mathcal{B}(\mathbb{R})$, is countably generated.

(checked) $\mathcal{B}(R)$ is generated by, for example, the collection of sets of the form (q, ∞) , where $q \in Q$. Since that collection has the same cardinality of Q and Q is countable, $\mathcal{B}(R)$ is countably generated.

1(d) Suppose \mathcal{E} is generated by a countable partition C of E. Show that, in this case, a R function is \mathcal{E} -measurable if and only if it is constant on each member of that partition.

This proof will use the following:

Prop. 2.3 from book with B_0 as the collection of sets of the form (q, ∞) . We know, from the previous question, that B_0 generates $\mathcal{B}(\mathbb{R})$.

$$(E,\mathcal{E}),(\mathbb{R},\mathcal{B}(\mathbb{R}))$$

$$f: E \to \mathbb{R}$$

$$E = \bigcup_n C_n$$

$$C_i \cap C_j = \emptyset \ \forall i, j \ge 1 \land i \ne j$$

f is constant on each member of the partition $\implies f$ is \mathcal{E} -measurable:

Assumption:

 $\forall i \in 1, 2, \dots$:

$$f(x) = k_i \in \mathbb{R} \ \forall x \in C_i$$

Now, for each set B of the form (q, ∞) : $f^{-1}B = \{x \in E : f(x) \in B\} = \{x \in E : f(x) > q\} = \bigcup C_j : k_j > q \ \forall j \in \mathbb{N}$

I can write $f^{-1}B$ in the way above because C is a partition of E.

Furthermore, since E is the collection of countable unions of elements taken from C (with \emptyset of course), we have that: $f^{-1}B \in \mathcal{E} \ \forall B \in B_0$

f is \mathcal{E} -measurable $\implies f$ is constant on each member of the partition :

Will prove the counter positive:

If f is **NOT** constant on at least one member of the partition, then f is **NOT** \mathcal{E} – measurable.

Assume f is not constant on at least one member C_d in C. This means: $\exists x_1, x_2 \in C_k : f(x_2) < f(x_1)$.

Then take
$$B = (q, \infty)$$
 with $f(x_2) < q < f(x_1)$.

Using the fact that C is a partition of E, we can write $f^{-1}B = S_1 \cup S_2$, where:

$$S_1 = \bigcup C_j : k_j > q \ \forall j \in \mathbb{N} \setminus \{d\} \text{ and } S_2 = \{x \in C_d : f(x) \in B\} \text{ with } S_1 \cap S_2 = \emptyset$$

 S_1 is defined in a similar fashion as the first case and uses the fact that f takes constant values on partition elements, with the exception of C_d .

However, S_2 is a **proper** subset of C_d as its elements are taken from C_d while S_2 can't be the whole C_d since $x_2 \in C_d$, but $x_2 \notin S_2$.

Since C is a partition of E and S_2 is a **proper** subset of C_d , $f^{-1}B$ will only be a member of \mathcal{E} , i.e a countable union of elements taken from C, if $S_2 = \emptyset$, but $x_1, x_2 \in S_2$, so $f^{-1}B \notin \mathcal{E}$.

¹ This rational q exists because $f(x_1)$ and $f(x_2)$ are reals and Q is dense in \mathbb{R} , but I won't say q can be written as the average between those two values as said average may not be rational.

2 Towards conditioning and sufficiency

2a) Suppose there is random variable $X:\Omega\to\mathbb{R}$ taking values in $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ that induces a measurable (countable) partition, $C=(C_n)_{n\geq 1}$ of Ω .

2a) sol
 For each $A\in \mathcal{B}(\mathbb{R}),$ in order for X to be a random variable, we need:
 $X^{-1}A$ to ...

2b) Recall that for D

(b)

$$\mu(\emptyset) = 0$$

Proof template:
$$\mu(\emptyset) = 0 \\ \mu(\bigcup_n A_n) = \sum_n \mu(A_n) \ \mu = P(A)$$

2c) Define a probability measure constructed from n. What must be true of n(Cm) in order for this to be well-deaned?

2c) sol

2(d)

2(d) sol

2e question

2e) sol

2f) question

2f)sol

2g question

2g) sol

question 3 Show every continuous functions from a topological space E to R is a Borel function.

solution 3

 $(E,\mathcal{E}),(\mathbb{R},\mathcal{B}(\mathbb{R}))$

 $f:E\to\mathbb{R}$ continuous

E is topological

Hint: f continuous $\implies f^{-1}B$ is open for every open subset $B \subset \mathbb{R}$ (1)

Show $\forall B \in \mathcal{B}(\mathbb{R}) : f^{-1}B \in \mathcal{E}$

If (E,\mathcal{E}) is topological, \mathcal{E} is a collection of open sets in E. Therefore, we have:

 $\forall B \in \mathcal{B}(\mathbb{R})$:

 $B \text{ open} \Longrightarrow {}^{(1)}f^{-1}B \text{ open} \Longrightarrow f^{-1}B \in \mathcal{E} \quad \Box$

question 4

solution 4