

O4 Chapiter

Informed Search

2I1AE1: Artificial Intelligence

Régis Clouard, ENSICAEN - GREYC

"On fait la science avec des faits, comme on fait une maison avec des pierres : mais une accumulation de faits n'est pas plus une science qu'un tas de pierres n'est une maison."

Henri Poincaré

Informed Search Algorithms

- Algorithms that can find a solution when the brute force algorithms failed due to the size of the search tree.
- 1) Best-First Search Algorithms
 - Greedy Best-First Algorithm
 - A* Algorithm
 - IDA* Algorithm
- 2) Heuristics

How to Speed Up the Search?

- Uninformed search algorithms
 - Use only the information about the problem definition and past explorations e.g. cost of the path generated so far.
 - Hint to speed up the search process:
 - Bi-directional search
 - ► Closed-list (however, makes all algorithms exponential in worst-case space complexity, but makes them often better in average-case complexity)
- Informed search algorithms
 - Incorporate additional measure of a potential of a state to reach the goal.
 - Best-first search algorithms
 - Caveat: This has no influence on the solution itself, only on the search speed.

Best-First Search

- Evaluation function, denoted f(n)
 - Defines the desirability of a node n to be expanded next.
- Evaluation-function driven search
 - Among all candidates, expand first the node with the best evaluation-function value f(n).
- Implementation: same algorithm as for uninformed search:
 - ADD-IN-LIST: uses a priority queue that orders nodes in the decreasing order
 of their evaluation function value.

```
function GENERAL-SEARCH(problem) returns solution
  open-list ← MAKE-LIST(MAKE-NODE(INITIAL-STATE[problem]))
LOOP
  IF EMPTY(open-list) THEN return failure
  node ← REMOVE-FRONT-LIST(open-list)
  IF IS-GOAL(problem, STATE[node]) THEN return the related solution
  open-list ← ADD-IN-LIST(GET-SUCCESSORS(node, problem), open-list)
end
```

Evaluation Function

Idea

 Incorporate a heuristic function h(n) into the evaluation function f(n) to guide the search.

Heuristic function

- Measures a potential of a node to reach a goal.
 - Typically in terms of some distance to a goal.
- Problem-dependent : designed for a given search problem.
- Examples:
 - Traveler problem: the straight-line distance between the current city and the goal city.
 - Puzzle-8: number of well placed tiles.
- Recall: This heuristic has no influence on the result, only on the search speed.

Best-First Algorithms

- General formulation of the best-first algorithms
 - Algorithms differ in the design of evaluation function f(n).
 - Notation
 - \blacktriangleright f(n): estimated cost of the cheapest solution through n.
 - \triangleright g(n): path cost from the start to the node n.
 - \blacktriangleright h(n): estimated cost of the cheapest path from n to the target.
- Recall:
 - Breadth-First Search
 - $f_{BFS}(n)$ = visited time
 - Depth-First Search
 - ► f_{DFS}(n) = visited time
 - Uniform Cost Search algorithm (aka Dijkstra)
 - $f_{UCS}(n) = g(n)$

1. Greedy Best-First search Algorithm

- Strategy: Greedy best-first search algorithm expands the node that appears to be closest to goal.
 - Making the locally optimal choice at each stage.
 - Models the naive strategy: immediate gain.
- Evaluation function
 - f(n) = h(n): estimate of cost from n to goal.

Traveler example

Normandy map with straight-line distance to Caen

Town	Straight-line distance to Caen
Avranches	92
Barfleur	84
Barneville- Carteret	105
Bayeux	27
Caen	0
Carentan	88
Cherbourg	102
Coutances	79
Deauville	36
Dozulé	23
Granville	98
Lessay	83
Lisieux	43
Livarot	43
Périers	76
Pont-l'Évêque	40
Saint-Lô	53
Thury-Harcourt	23
Touques	37
Valognes	87

Greedy Best-First Search Example

e.g., h(n) = straight-line distance from n to Caen.

Properties of Greedy Search

Completeness

 No. Can get stuck in local minimum (eg. Knuth's conjecture with distance to expected number as heuristic).

Optimality

No. Evaluation function disregards the real cost of the path. The minimum path
is not necessarily the one with the minimum heuristic. The path cost is never
used.

Time complexity

- Worst-case O(b^m). Same as DFS but often better!
- Best case: *O*(*bd*) If *h*(*n*) is 100% accurate.

Space complexity

- Worst-case O(b.m)
- Notice: with the closed list -> $O(b^m)$.

Recall

- b: maximum branching factor
- d: depth of the optimal solution

2. A* Search Algorithm

- The problem with the uniform-cost search is that it uses only past exploration information (path cost), no additional information is utilized.
 - f(n) = g(n)
- The problem with the greedy search is that it does not take into account the cost so far. It can keep expanding paths that can be already very expensive.
 - f(n) = h(n)
- A*: search takes into account both information
 - f(n) = g(n) + h(n)

Traveler example

Normandy map

Town	Straight-line distance to Caen
Avranches	92
Barfleur	84
Barneville- Carteret	105
Bayeux	27
Caen	0
Carentan	88
Cherbourg	102
Coutances	79
Deauville	36
Dozulé	23
Granville	98
Lessay	83
Lisieux	43
Livarot	43
Périers	76
Pont-l'Évêque	40
Saint-Lô	53
Thury-Harcourt	23
Touques	37
Valognes	87

A* Search Example

e.g., h(n) = straight-line distance from n to Caen.

[ass1.sh; ass2.sh]

Properties of A*

- Completeness
 - Yes, but only with non negative edge weights.
- Optimality
 - Yes in term of solution cost g(n), but only with admissible heuristic.
- Time complexity

Space complexity

Admissible Heuristic

Definition

- A heuristic h(n) is admissible if: $\forall n, h(n) \leq h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.
- An admissible heuristic never **overestimates** the cost to reach the goal, i.e., it is **optimistic**.
- Worst-cases
 - ▶ if h(n) = cst, $\forall n$, this is equivalent to BFS.
 - ▶ If h(n) is not admissible this is equivalent to DFS.

Example

 h(n): straight-line distance is admissible because it underestimates the actual road distance (Euclide!).

Theorem

• If h(n) is admissible, A^* is optimal.

Proof of optimality

- Suppose some suboptimal goal G_2 has been generated and is in the queue.
- Let n be an unexpanded node in the queue such that n is on a shortest path to an optimal goal G.


```
\begin{split} f(G_2) &= g(G_2) + h(G_2) \text{ by definition} \\ f(G_2) &= g(G_2) & \text{since } G_2 \text{ is a goal } \rightarrow h(G_2) = 0 \\ f(G) &= g(G) & \text{since } G \text{ is a goal } \rightarrow h(G) = 0 \\ g(G_2) &> g(G) & \text{since } G_2 \text{ is suboptimal} \\ f(G_2) &> f(G) \\ h(n) &\leq h^*(n) & \text{since } h \text{ is admissible} \\ g(n) + h(n) &\leq g(n) + h^*(n) & \text{since } f(G) = g(n) + h^*(n) \\ f(n) &\leq f(G) & \text{since } n \text{ is a step toward } G \\ \text{Hence } f(G_2) &> f(G) \geq f(n), \text{ and } A^* \text{ will never select } G_2 \text{ for expansion} \end{split}
```

Properties of A* Tree Search

Completeness

Yes, but only with non negative edge weights.

Optimality

Yes in term of solution cost g(n), but only with admissible heuristic.

Time complexity

- Worst-case O(b^d). Exponential in worst case (= BFS).
- But more interesting: average-case complexity can be close to O(b.d) with good heuristic.

Space complexity

Worst-case O(b^{d+1}). Exponential in worst case (= BFS).

3. IDA* Search Algorithm

- Problem: A* is memory greedy: O(b^{d+1}). It maintains all created states in memory (cf. BFS).
- Iterative deepening version of A*
 - Like Iterative Deepening algorithm -> space complexity O(bd).
 - ▶ But the cutoff used is the f(g + h) rather than the depth.
 - At each iteration, the cutoff value is the smallest f(n) of any node n that exceeded the cutoff on the previous iteration.
 - We can use the same closed list than IDS.

IDA* Search Algorithm (recursive version)

```
function IDA_STAR(root) returns solution
   bound \leftarrow h(root)
   path ← [root]
   1 00P
     t \leftarrow SEARCH(path, 0, bound)
     IF t = FOUND THEN return (path, bound)
     IF t = \infty THEN return NOT FOUND
     bound \leftarrow t
   END
 END
function SEARCH(path, g, bound)
   node ← path.last
   f \leftarrow g + h(node)
   IF f > bound THEN return f
   IF is qoal(node) THEN return FOUND
   min ← ∞
   FOR succ in successors(node) DO
     IF succ not in path THEN # avoid loops
        path.push(succ)
        t \leftarrow SEARCH(path, g + cost(node, succ), bound)
        IF t = FOUND THEN return FOUND
        IF t < min THEN min \leftarrow t
       path.pop()
     END
   END
   return min
END
```

Properties of IDA*

Completeness

Yes, but only with non negative edge weights.

Optimality

• Yes in term of solution cost g(n), with admissible heuristic.

Time complexity

- Worst-case O(b^d)
- In practice, it has an overcost of 10% compared to A*.

Space complexity

Worst-case O(bd)

4. How to Create Admissible Heuristics?

- Heuristic
 - Should be fast to compute (polynomial time complexity).
 - Should be close to the actual cost value.
- Recall:
 - Admissible heuristics $h(n) \le h^*(n)$.
- Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem.
 - Relaxed problem is a problem with fewer restrictions on the actions than the real problem.

- Normandy map
 - Relaxed problem
 - No road between cities → straight-line distance.

Town	Straight-line distance to Caen
Avranches	92
Barfleur	84
Barneville- Carteret	105
Bayeux	27
Caen	0
Carentan	88
Cherbourg	102
Coutances	79
Deauville	36
Dozulé	23
Granville	98
Lessay	83
Lisieux	43
Livarot	43
Périers	76
Pont-l'Évêque	40
Saint-Lô	53
Thury-Harcourt	23
Touques	37
Valognes	88

The 8-puzzle problem

Initial position

Goal position

1	2	3
4	5	6
7	8	

- Relaxed problem
 - The tile can move anywhere.
- Admissible heuristic
 - $h_1(n)$ = Number of misplaced tiles (**Hamming distance**).

■ The 8-puzzle problem

Initial position

Goal position

1	2	3
4	5	6
7	8	

- Relaxed problem
 - The tile can move to any of adjacent square.
- Admissible heuristic
 - $h_2(n)$ = Sum of distances of all tiles from their goal positions (Manhattan distance).

Admissible Heuristics

For example:

Initial position

5	4	
6	1	8
7	3	2

• Value of $h_1(n)$?

• Value of $h_2(n)$?

$$= 2+3+3+2+2+0+2 = 16$$

Goal position

1	2	3
4	5	6
7	8	

Dominance

- h_2 dominates h_1 if $h_2(n) \ge h_1(n)$ for all n.
 - both are admissible: h_i(n) < h*(n).
 - h_2 is better for search (closer to the real cost).
- Puzzle-8 typical search costs (average number of nodes expanded).
 - depth = 12
 - ► Iterative Deepening Search = 3,188,646 nodes
 - ► $A^*(h_1) = 539$ nodes
 - $A^*(h_2) = 119 \text{ nodes}$
 - depth = 24
 - ► Iterative Deepening Search > O(3²⁴)
 - $A^*(h_1) = 39,135 \text{ nodes}$
 - $A^*(h_2) = 1,641 \text{ nodes}$

Can We Do Better?

- We could consider 2 less complex relaxed problems.
 - Consider 2 half puzzles (pieces [1, 4] and pieces [5, 8]).
 - Store the exact solution costs for every subproblems.
 - ► These distances could have been precomputed in a database
 - ► Called: **Dynamic programming**
 - Heuristic $h_3(n) = d1234 + d5678$ [disjoint pattern heuristic].

• This heuristic h_3 dominates h_2 (ie, sum of distances of all tiles from their goal positions).

				4	2	1	-	4	5	6					
				7	3	6		7	8						
									<u> </u>	→					
				1	2	3			5		8				
4	2	1	→	4								-		5	6
	3								7		6		7	8	

- Rubik's Cube (4.3 x 10¹⁹ states)
 - $h(n) = max(h_c(n), h_{e1}(n), h_{e2}(n))$
 - hc: restricted to the corners.
 - ► h_{e1}: restricted to six edges.
 - ► h_{e2}: restricted to the rest of the edges.
- Dynamic Programming
 - Precomputed h_c, h_{e1}, h_{e2} using BFS (build solutions from start to each possible configuration and store distances)
 - ▶ 3 tables (5 minutes each, total size: 4 Mb).
- 1 day to solve a configuration with IDA* and the previous heuristic.
 - However optimal solution.
- Theorem: ≤ 20 moves for any configuration.
 - ie. d=20

Traveler problem

- To develop a shortest path search program (like a car GPS), you need to use hierarchical search algorithms (Hierarchical Contractions).
- Intuitively, there are axes that are more important than others.
 - A first phase creates short-cuts.
 - The second uses hierarchical A* and bidirectional search.