Note to self: Replace Spec(R) with Spec(R).

Problem 1:

Part a:

Let $r \in R^*$.

Then there is an $r^{-1} \in R$ such that $r^{-1}r = 1$. If $r \in M$ for any maximal ideal, M, then $r^{-1}r \in M$, so $1 \in M$, so M = R. This means that M is not a maximal ideal. That is, $r \notin \bigcup M$, so $r \in R \setminus \bigcup M$.

a maximal ideal. That is, $r \notin \bigcup_{M \in m-Spec(R)} M$, so $r \in R \setminus \bigcup_{M \in m-Spec(R)} M$. Now, let $r \notin \bigcup_{M \in m-Spec(R)} M$. That is, $r \in R \setminus \bigcup_{M \in m-Spec(R)} M$ isn't in any maximal ideal.

Then r is not in any ideal other than R; all ideals other than R are contained in some maximal ideal.

So (r) = R. This means that $1 \in (r)$. So there's an element, $r^{-1} \in R$, such that $r^{-1}r = 1$. So $r \in R^*$.

So
$$R^* \subset R \setminus \bigcup_{\substack{M \in m - Spec(R)}} M$$
 and $R^* \supset R \setminus \bigcup_{\substack{M \in m - Spec(R)}} M$.
So $R^* = R \setminus \bigcup_{\substack{M \in m - Spec(R)}} M$.

Part b:

We freely use the fact that $R \setminus R^* = \bigcup_{M \in m-Spec(R)} M$. This follows from the above, and is clear with proper notation:

$$R^* = \left(\bigcup_{M \in m - Spec(R)} M\right)^c$$
$$(R^*)^c = \bigcup_{M \in m - Spec(R)} M$$

If $R \setminus R^* = \bigcup_{M \in m-Spec(R)} M$ is an ideal, then $\bigcup_{M \in m-Spec(R)} M$ is a maximal

ideal or R; it contains every maximal ideal, so it contains every ideal other than R. But this ideal is not R, otherwise R^* is empty (and we know that R^* contains 1.) So $\bigcup_{M \in m-Spec(R)} M$ is a maximal ideal that contains every

maximal ideal. That is, it is the unique maximal ideal. So R is local.

If R is local, then say that M' is R's unique maximal ideal. Then we have that $R \setminus R^* = \bigcup_{M \in m-Spec(R)} M = M'$ is an ideal.

Problem 2:

Let $P \in Spec(R)$. Consider PR_P .

We can see that PR_P is an R_P -ideal:

Further, if I is an R_P -ideal other than R_P , then $I \subset PR_P$:

So PR_P contains every ideal other than the entire ring; it is the unique maximal ideal, making R_P local.

Problem 3:

Define $rad(R) = \sqrt{0} = \{a \in R : a^n = 0 \text{ for some } n \ge 0\}.$ Then if $r \in rad(R)$, then $r \in \bigcap_{P \in Spec(R)} P$:

Let P be a prime ideal. Then

Next, if $r \in \bigcap_{P \in Spec(R)} P$, then $r \in rad(R)$:

Problem 4:

Let $u \in R^*$ and $a \in rad(0)$.

Then $a^{2^n}=0$ for some $n\in\mathbb{N}$: since $a\in rad(0),\ a^k=0$ for some $k\in\mathbb{N}$. So for all $j\geq k,\ a^j=0$. There's an $n\in\mathbb{N}$ such that $2^n\geq k$, so we have what we want.

Now, consider the product

$$(u+a)(u-a)(u^2+a^2)\dots(u^{2^{n-1}}+a^{2^{n-1}})=u^{2^n}-a^{2^n}$$

= u^{2^n}

Now, there is a $u^{-1} \in R$ such that $u^{-1}u = 1$. It is clear also that $(u^{-1})^{2^n}u^{2^n} = 1$. So we have

$$u^{-2^{n}}(u+a)(u-a)(u^{2}+a^{2})\dots(u^{2^{n-1}}+a^{2^{n-1}}) = u^{-2^{n}}(u^{2^{n}}-a^{2^{n}})$$

$$= u^{-2^{n}}u^{2^{n}}$$

$$= 1$$

So
$$(u+a)u^{-2^n}(u-a)(u^2+a^2)\dots(u^{2^{n-1}}+a^{2^{n-1}})=1$$
. So $u+a\in R^*$.

Problem 5:

Problem 6:

Problem 7: