ASEN 5044, Fall 2018

Statistical Estimation for Dynamical Systems

Lecture 8: Intro to Probability

Prof. Nisar Ahmed (<u>Nisar.Ahmed@Colorado.edu</u>)
Thurs 9/20/2018

Announcements

 HW 3 Due Thurs 9/27 at 11 am (before start of next lecture) 		
Submit to Canvas		

Overview

• Last Time: Stability and Observability of LTI DT systems

- Today: Intro to Probability
 - Motivation
 - Formal definitions: sample spaces, event spaces, axioms...
 - Basic operations

READ: Chapter 2.3 in Simon book

Intro to Probability

- How to describe random non-determinism (i.e. random errors/noise) in SS models?
- Need to use probability theory
 - O What are probabilities?
 - O What are the rules?
 - O How to interpret for (scalar/vector-valued) quantities?

(Deterministic variables in DT)

(Random non-deterministic variables in DT)

Example: 1D Robot Localization with an Inertial Sensor

- Consider robot with inertial position p(t) and acceleration input u(t)
- Robot can measure position with a GPS sensor
- Suppose we take CT model, and discretize with ZOH u(t) and time step Δt

$$X = \begin{bmatrix} P \\ P \end{bmatrix} \Rightarrow \dot{x} = \begin{bmatrix} \dot{P} \\ \dot{P} \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 0 & 0 \end{bmatrix} \times + \begin{bmatrix} 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0$$

- But robot needs to determine its <u>actual position(k)</u> and velocity(k) to drive on road correctly!
- Can position and velocity states at any time step k both be determined if only u and y are available?

Example: 1D Robot Localization with an Inertial Sensor

• But how to account for all of the <u>random physical disturbances</u> that robot encounters?

$$x(k+1) = Fx(k) + Gu(k) + w(ky)$$

$$y(k+1) = Hx(k+1) + Du(k+1) + v(k+1)$$

ASEN 5044: Statistical Estimation for E

Probability as a Description of Randomness

- Probability is a mathematical tool for describing random events, i.e.
 - o those events which we do not/cannot explicitly know to have occurred for certain...
 - ...but which would otherwise "explain" why certain other observed events happen
- "...probability summarizes uncertainty due to our laziness and ignorance" (Stuart Russell and Peter Norvig, "Artificial Intelligence")
- <u>Laziness:</u> too much cost/work to predict system behavior exactly (e.g. radio environment)
- O Theoretical ignorance: incomplete domain knowledge (e.g. biomedical; quantum: HUP)
- Practical ignorance: even if we knew all dynamics, may not know values for all parts
 (e.g. system ID for robot actuators, solar radiation pressure, wind speed, lateral stability derivatives of aircraft)

Probability as a Description of Randomness

Many different interpretations of probability exist – each has its own issues

-(ii) "measure of belief" (subjective): make an argument that may or may not be based on experimental data (but they're based on good old common sense)

Formal Axiomatic Definition of Probability (modern underpinning)

Define an experiment to be a process with a random outcome

(i.e. actual outcome is unpredictable: we can't know what will actually happen, but the important point is that we do know what things could possibly happen)

• Sample space S: the set of all possible random outcomes of the experiment

The sample space S is also sometimes called the outcome space

Events and Event Spaces

- Event: a subset A of outcomes for the experiment, i.e. A is subset of sample space S
- Event space: the set of all events A that are defined on S
- Many ways to define events: each element of S could form its own event, or multiple elements of S could form events, or we can mix and match...

• If we observe an outcome in S belonging to event A, then we say that **event A has occurred** (or, **event A has been observed**)

Probabilities and Probability Spaces

• 3 Axioms of Probability: The probability of event A, denoted P(A), satisfies:

$$(2) P(s) = 1$$

(3) If
$$A \cap B = Set of outcomer in both events $A \notin B \notin A \cap B = \emptyset$
[empty set]

Then $P(A \cup B) = P(A) + P(B)$

either $A = B$

Otherwise! $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ [ie $P(A \cap B) \neq 0$]

Either $A = B$

The position are a sitten association of $P(A \cap B) = P(A \cap B)$ [in a constitution of $P(A \cap B) = P(A \cap B)$]$$

- Probability space: a given specification (S, {A_i}, {P(A_i)}) (i.e. a specific sample space S, an event space on S, and probabilities on that event space)
- This formalism covers both discrete and continuous sample spaces S (we will focus on discrete case for time being, and move to continuous case later...)

Example: Rolling a Die

Consider observing the number on top of a standard 6-sided die

Set of outcome:
$$S = \{f_1, f_2, ..., f_6\}$$
 $f_i = \text{outcome} = face i \text{ on top} (i=1,...,6)$

Events: are subsets of S , e.g.

• event $F_i = \{f_i\}$

• event $F_{even} = \{f_i\} =$

Joint Distributions

• The joint probability P(A,B) is the probability that events A and B occur simultaneously

Example: Die Rolls

- Consider rolling of a fair 6-sided die with outcome i
- Let event A=1 if roll comes up even (i = 2,4,6) and A=0 otherwise
- Let event B=1 if roll comes up prime (i = 2,3,5) and B=0 otherwise

Marginal Probabilities

- How are P(A) and P(B) related to P(A,B)?
- Turns out we can always recover P(A) and P(B) from the joint probability P(A,B), (even though in general $P(A)P(B) \neq P(A,B)$)

Given joint probabilities P(A = a, B = b), define:

Marginal distribution of A:
$$P(A = a) = \sum_{b} P(A = a, B = b)$$

Marginal distribution of B:
$$P(B=b) = \sum_a P(A=a, B=b)$$

Also holds for more than 2 events, e.g. if 3rd event C with P(A, B, C), then

$$P(A = a) = \sum_{b} \sum_{c} P(A = a, B = b, C = c),$$

$$P(B = b) = \sum_{a} \sum_{c} P(A = a, B = b, C = c),$$

$$P(C=c) = \sum_{a} \sum_{b} P(A=a, B=b, C=c)$$

Examples of Marginal Probabilities

• 6-sided die example again: A: roll is even # (1=yes, 0 = no)

B: roll is prime # (1=yes, 0 = no)

P(A & B)	B=0	B=1
A=0	1/6	2/6
A=1	2/6	1/6

Marginal Prob of
$$A = 0$$
: $P(A = 0) = \sum_b P(A = 0, B = b)$
= $P(A = 0, B = 0) + P(A = 0, B = 1) = \frac{1}{6} + \frac{2}{6} = \frac{1}{2}$

Marginal Prob of
$$A = 1$$
: $P(A = 1) = \sum_b P(A = 1, B = b)$
= $P(A = 1, B = 0) + P(A = 1, B = 1) = \frac{2}{6} + \frac{1}{6} = \frac{1}{2}$

Likewise, can show that:

$$P(B=0) = \sum_{a} P(A=a, B=0) = \frac{1}{2}$$
 $P(B=1) = \sum_{a} P(A=a, B=1) = \frac{1}{2}$