A random formula with logs of primes

dnzc

Contents

1	Introduction			
2	Solving the Problem			
	2.1	Computational Way		
		2.1.1 Case 1		
		2.1.2 Case 2		
		2.1.3 Total		
	2.2	Combinatorial Way		
3	3 Summary		4	
4	Conjecture			

1 Introduction

We will derive the following fact:

 $\forall a, b, p, q \in \mathbb{N}$ with p, q distinct primes,

$$ab = \sum_{x=1}^{a} \min(b, \lfloor x \log_q p \rfloor) + \sum_{x=1}^{b} \min(a, \lfloor x \log_p q \rfloor)$$

This formula was derived by thinking about the following problem:

Let $n = 2^{31}3^{19}$. How many positive divisors of n^2 are less than n but do not divide n?

We will solve a more general version of the above problem in two different ways, which will lead us to the main result arrived at in the Summary section.

2 Solving the Problem

The version of the problem that we will think about is as follows: For some $a, b, p, q \in \mathbb{N}$ with p, q distinct primes, let $n = p^a q^b$. How many positive divisors of n^2 are less than n but do not divide n?

2.1 Computational Way

The factors of n^2 are in the form p^rq^s , $r,s \in \mathbb{Z}$ with $0 \le r \le 2a, 0 \le q \le 2b$ If this factor does not divide n then we must have r > a or s > b.

We cannot have both r > a and s > b since that would imply $p^r q^s > n$ and we are counting the factors that are less than n. Thus these cases are disjoint and we can count them separately.

2.1.1 Case 1

We will count the case when r > a.

Then more specifically, $a < r \le 2a$ and $0 \le s < b$. And:

$$\begin{aligned} p^r q^s &< p^a q^b \\ \Longrightarrow p^{r-a} &< q^{b-s} \end{aligned}$$

Let x = r - a, y = b - s

Then with some inequality manipulations we get $1 \le x \le a$ and $1 \le y \le b$

$$p^x < q^y$$

$$\implies x \log_q p < y \text{ (log rules)}$$

$$\implies \lfloor x \log_q p \rfloor + 1 \le y \le b \text{ (} \log_q p \text{ is irrational)}$$

So for any given x, the number of possibilities for y contributed to the count is

$$\max(0, b - |x \log_a p|)$$

We use the "max" function here to contribute 0 if $\lfloor x \log_q p \rfloor \geq b$ rather than contributing a negative number (since there are 0 possibilities for y in that case) So, the total number of possibilities counted by Case 1 is the sum of this over all possible values of x:

$$= \sum_{x=1}^{a} \max(0, b - \lfloor x \log_q p \rfloor)$$

2.1.2 Case 2

The case when s > b is symmetric to Case 1, with p,q swapped and a,b swapped but the argument is entirely the same.

Thus similarly to Case 1, the count contributed by this case is

$$\sum_{x=1}^{b} \max(0, a - \lfloor x \log_p q \rfloor)$$

2.1.3 Total

So the overall answer to the problem is the sum of Case 1 and Case 2, which is

$$\begin{split} &\sum_{x=1}^{a} \max(0, b - \lfloor x \log_q p \rfloor) + \sum_{x=1}^{b} \max(0, a - \lfloor x \log_p q \rfloor) \\ &= \sum_{x=1}^{a} \left[b - \min(b, \lfloor x \log_q p \rfloor) \right] + \sum_{x=1}^{b} \left[a - \min(a, \lfloor x \log_p q \rfloor) \right] \\ &= 2ab - \left[\sum_{x=1}^{a} \min(b, \lfloor x \log_q p \rfloor) + \sum_{x=1}^{b} \min(a, \lfloor x \log_p q \rfloor) \right] \end{split}$$

$$\therefore \text{answer} = 2ab - \left[\sum_{x=1}^{a} \min(b, \lfloor x \log_q p \rfloor) + \sum_{x=1}^{b} \min(a, \lfloor x \log_p q \rfloor) \right] \quad (1)$$

2.2 Combinatorial Way

We will show that the overall answer is simply ab.

$$n^2 = p^{2a}q^{2b}$$
 so there are $(2a+1)(2b+1)$ factors of n^2 .

We can consider positive factor pairs of n^2 - one number of the pair will < n and the other will be > n, except for the case when the factor pair is (n, n). In other words, if a is a positive factor of n^2 and a < n then $\frac{n^2}{a} > n$ so exactly one of the factor pair $(a, \frac{n^2}{a})$ will be less than n.

Thus the number of factors of n^2 that are less than n is

factors of
$$n^2$$
 less than $n = \frac{(2a+1)(2b+1)-1}{2} = 2ab+a+b$

where we exclude the (n, n) case and then halve.

Now,

factors of
$$n^2$$
 less than n AND divide n
(# factors of n) - 1 (since we exclude n as a factor of n)
= $(a+1)(b+1) - 1 = ab + a + b$

Finally,

answer = # factors of n^2 less than n AND NOT divide n= # factors of n^2 less than n - # factors of n^2 less than n AND divide n= (2ab + a + b) - (ab + a + b)= ab

$$\therefore$$
 answer = ab (2)

3 Summary

Equating (1) and (2):

$$ab = 2ab - \left[\sum_{x=1}^a \min(b, \lfloor x \log_q p \rfloor) + \sum_{x=1}^b \min(a, \lfloor x \log_p q \rfloor)\right]$$

Rearrange to get

$$ab = \sum_{x=1}^{a} \min(b, \lfloor x \log_q p \rfloor) + \sum_{x=1}^{b} \min(a, \lfloor x \log_p q \rfloor)$$

 $\forall a, b, p, q \in \mathbb{N}$ with p, q distinct primes

We have shown our result.

4 Conjecture

If we replace $\log_q p$ with the positive irrational constant c, then we have a conjecture:

$$\forall a, b \in \mathbb{N}, c \in \mathbb{R} \setminus \mathbb{Q}, c > 0$$

$$ab = \sum_{x=1}^{a} \min(b, \lfloor cx \rfloor) + \sum_{x=1}^{b} \min(a, \lfloor \frac{x}{c} \rfloor)$$

Then we note that this can be easily proven true by counting the lattice points inside a rectangle cut through by a line (similar to the pretty picture lemma). More specifically:

Consider the line y=cx and the rectangle with vertices (0,0), (a+1, 0), (b+1,0) (a+1, b+1).

We will count the number of lattice points strictly inside the rectangle in two different ways. (Note c is irrational so no lattice points lie on y=cx)

One way is directly width*height = a*b.

The other way is counting the lattice points that are inside the rectangle and underneath the line y=cx by summing for each value of x, and then doing the same thing for y (i.e. the rest of the points, to the left of y=cx).

Doing this, we arrive at the conjecture, QED.