2 Sieve Methods

2.1 Inclusion-Exclusion

"Sieve method"とは:有限集合 S の要素数を求める方法

パターン(1)#Sを大きめに見積もり、誤差を大きめに見積もり、その誤差を…ということを繰り返し、誤差を0に近づけていく

パターン(2) $T \supseteq S$ について、余分な元が打ち消しあうようにT の各元を重みづけする(後の節で登場)

定理 2.1.1. n 元集合 S、線形空間 $V=\{f:2^S\to K\}$ (K は体) について、線形写像 $\phi:V\to V$ を

$$\phi f(T) = \sum_{Y \supset T} f(Y),$$

で定める。このとき ϕ^{-1} が存在し、

$$\phi^{-1}f(T) = \sum_{Y \supset T} (-1)^{\#(Y-T)} f(Y).$$

証明. $\psi:V o V$ を $\psi f(T)=\sum_{Y\subseteq T}(-1)^{\#(Y-T)}f(Y)$ で定めると、

$$egin{align} \phi \psi f(T) &= \sum_{Y \supseteq T} (-1)^{\#(Y-T)} \phi f(Y) & (\psi \phi f(T) \ ext{では?}) \ &= \sum_{Y \supseteq T} (-1)^{\#(Y-T)} \sum_{Z \supseteq Y} f(Z) \ &= \sum_{Z \supseteq T} \left(\sum_{Z \supseteq Y \supseteq T} (-1)^{\#(Y-T)} \right) f(Z). \end{split}$$

T、Z を固定したとき、m=#(Z-T) とおくと

$$\sum_{Z \supseteq Y \supseteq T} (-1)^{\#(Y-T)} = \sum_{i=0}^m (-1)^i \binom{m}{i} = \delta_{0m},$$

なので、 $\phi \psi f(T) = f(T)$ がわかる。よって $\phi^{-1} = \psi$ 。

よくある定理 2.1.1 の適用例

集合 A と、A の元が持ったり持たなかったりする性質の集合 S がある。

ちょうど $T\subseteq S$ の性質のみを持つ A の元の個数 $f_=(T)^{*1}$ は求めにくいが、少なくとも $T\subseteq S$ の性質は満たすような A の元の個数 $f_{\geq}(T)$ は求めやすいようなとき、

$$f_{\geq}(T) = \sum_{Y\supset T} f_{=}(Y),$$

なので、定理 2.1.1 より

$$f_{=}(T) = \sum_{Y \supset T} (-1)^{\#(Y-T)} f_{\geq}(Y).$$

とくに、どの性質も持たないような元の個数は

$$f_{=}(\emptyset) = \sum_{Y} (-1)^{\#Y} f_{\geq}(Y).$$
 (1)

性質を集合で言い換えることもできる。 A_1, \ldots, A_n を A の部分集合とし、

$$A_T = \bigcap_{i \in T} A_i,$$

と定める($A_\emptyset=A$ とする)。 A_i を「性質 P_i を満たす A の元の集合」と考えれば、式 (1) に対応するのは

$$\#(\overline{A_1 \cup \cdots \cup A_n}) = \#(\overline{A_1} \cap \cdots \cap \overline{A_n})$$
$$= S_0 - S_1 + S_2 - \cdots + (-1)^n S_n,$$

ただし

$$S_k = \sum_{\#T=k} \#A_T.$$

 $^{^{*1}}$ 重み $w:A \to K$ を決めて、元の個数の代わりに元の重みの和 $\sum_x w(x)$ を $f_=(T)$ としてもよい

包除原理やその変種は、 \cap と \cup 、 \subseteq と \supseteq などを入れ替えることで双対形が得られる。定理 2.1.1 の双対形は、

 $\widetilde{\phi}:V o V$ を

$$\widetilde{\phi}f(T) = \sum_{Y \subseteq T} f(Y),$$

で定めるとき、 $\widetilde{\phi}^{-1}$ が存在して

$$\widetilde{\phi}^{-1} f(T) \sum_{Y \subseteq T} (-1)^{\#(T-Y)} f(Y).$$

である。証明も同様。元の定理 2.1.1 について $g(T)\mapsto f(S-T)$ を考えることでも双対形の主張が得られる。