

Contenu

- □ SensorManager & Sensor
- □ SensorEvent & SensorEventListener
- □ Exemples d'applications
- 🗆 Filtrage des valeurs du capteurs 😟

Les Capteurs

- □ Des équipements matériels qui donnent des mesures de l'environnement physique:
 - **■** Mouvement
 - Position
 - **□** Environnement

Exemples des Capteurs

- □ Mouvement 3 Axes pour un accéléromètre
- □ **Position** 3 Axes pour le champ magnétique
- □ **Environnement** pression

5

SensorManager

- □ Un service système qui gère les capteurs.
- □ Pour avoir une référence :
 - □ getSystemService (Context.SENSOR_SERVICE)
- □ Accéder à un capteur spécifique:
 - □ SensorManager.getDefaultSensor (int type)

Quelques constantes pour les types de capteurs

- □ Accéléromètre Sensor.TYPE_ACCELEROMETER
- □ Champ magnétique Sensor.TYPE_MAGNETIC_FIELD
- □ Pression- Sensor. TYPE_PRESSURE

7

SensorEventListener

- □ Interface pour les appels du « <u>SensorEvent</u> »
- □ Invoquée quand une précision d'un capteur a changé
 - void on Accuracy Changed (Sensor sensor, int accuracy)
- □ Invoquée quand la valeur du capteur a changé:
 - void onSensorChanged (SensorEvent event)

S'enregistrer pour les « SensorEvents » (1)

□ Utiliser le « **SensorManager** » pour <u>s'enregister</u> / <u>désenregistrer</u> au «**SensorEvents** ».

9

S'enregistrer pour les « SensorEvents » (2)

- □ Pour enregistrer à un «SensorEventListener » à un capteur donné:
 - public boolean registerListener (SensorEventListener listener, Sensor sensor, int rate)

S'enregistrer pour les « SensorEvents » (2)

- Pour désenregistrer un «SensorEventListener » d'un capteur donné:
 - public void unregisterListener (SensorEventListener listener, Sensor sensor)

11

SensorEvent

- □ Représente un évènement spécifique à un capteur.
- 🗖 La forme des données dépendra du type du capteur.
 - □ Type du capteur
 - □ Horodatage
 - □ Précision
 - □ Les données des mesures

Les coordonnées système d'un capteur (1)

Lorsque l'orientation par défaut est portrait et l'appareil est plat et face en haut sur une table, la disposition des axes est comme suit:

- X Right to left
- Y Bottom to top
- **Z** Down to up

13

Les coordonnées système d'un capteur (2)

□ Les coordonnées système ne changent pas quand l'appareil change d'orientation

SensorRawAccelerometer (1)

□ Affiche des valeurs brutes lues à partir de l'Accéléromètre de l'appareil.

15

SensorRawAccelerometer (2)

SensorRawAccelerometer (3)

17

Les valeurs de l'Accéléromètre (1)

 $\hfill\Box$ Si l'appareil étaient debout vers le haut,

l'accéléromètre devrait idéalement signaler:

 $\square X \approx Om/s^2$

 $\square Y \approx 9.81 \text{m/s}^2$

 \square Z \approx Om/s²

Les valeurs de l'Accéléromètre (2)

Mais ces valeurs varient en raison de mouvements naturels, des surfaces non planes, le bruit, etc.

TIUM y

19

SensorCompass (boussole)

□ Utilise l'accéléromètre et magnétomètre de l'appareil pour orienter une boussole.

TP:

Modifier le code pour qu'il indique la position de la Qibla (القبلة), pour la ville de tiaret.

