Introduction to Cryptography

Lecture 2
Vahid Amin-Ghafari
Vahidaming@ustc.edu.cn

Introduction and Classical Cryptography

- Crypto is amazing!
 - Can do things that seem impossible...

- Crypto is important and pervasive
 - It impacts each of us every day

- Crypto is fun!
 - Deep theory interacting with practice
 - Attackers' mindset, fun assignments

Textbook

 Required textbook: "Cryptography Theory and Practice, Fourth Edition" Stinson and Paterson (Chinese version)

 Required textbook: "Introduction to Modern Cryptography, 3rd edition," Katz and Lindell

CHAPMAN & HALL/CRC CRYPTOGRAPHY AND NETWORK SECURITY

Cryptography

Theory and Practice FOURTH EDITION

Douglas R. Stinson Maura B. Paterson

Jonathan Katz Yehuda Lindell

Introduction to MODERN CRYPTOGRAPHY

Third Edition

How to reach me

- Best way to contact me is by email: <u>Vahidaming@ustc.edu.cn</u>
- Please put "cryptography course" in subject line

 Please email me in advance if you plan to come to office hours Questions?

Please ask questions throughout!

Course goals

- Understand the theoretical foundations for real-world cryptography
- When you encounter crypto in your career:
 - Understand the key terms
 - Understand the security guarantees needed/provided
 - Know how to use crypto
 - Understand what goes on "under the hood"
- "Crypto mindset"

Course non-goals

- Designing your own crypto schemes
 - This is hard!
- Implementing crypto for real-world use
 - This is hard!

 Course goal: realize when to consult an expert!

Disposition of Period and Assessment

- Class hour: (48 hours)
- Assessment: (20 points)
 - process assessment (40%)
 - Class attendance 5% (only 1 session absence)
 - Oral questions 10%
 - Homework assignment 5%+X
 - You should choose a topic in information security area and get my approve (20%-X, (Homework + Presentation=25%)):
 - ✓ A presentation for 15 minutes as a recorded file or voiced. Try to innovate in this field.
 - ✓ A report at least 10 page size: 12 pt, line spacing 1
 - (final + midterm) exam 65%, 5% extra points
 - Students will be fired with more than 6 absences.
 - Assistant = 5%
- I can't verify your problems.
- Rules are the same for all students.

Cryptography

- "...the art of writing or solving codes..."
- Shave the head, tattoo a secret message

Modern cryptography

- Much broader scope!
 - Data integrity, authentication, protocols, ...
 - The public-key setting
 - Group communication
 - More-complicated trust models
 - Foundations (e.g., number theory, quantumresistance) to systems (e.g., electronic voting, privacy-preserving ML, blockchain, cryptocurrency)

Modern cryptography

Design, analysis, and implementation of **mathematical techniques** for securing information, systems, and distributed computations against adversarial attack

Cryptography (historically)

"...the art of writing or solving codes..."

- Historically, cryptography was an art
 - Heuristic, unprincipled design and analysis
 - Schemes proposed, broken, repeat...

Modern cryptography

- Cryptography is now much more of a science
 - Rigorous analysis, firm foundations, deeper understanding, rich theory

- The "crypto mindset" has permeated other areas of computer security
 - Threat modeling
 - Proofs of security

Cryptography (historically)

 Used primarily for military/government applications, plus a few niche applications in industry (e.g., banking)

Modern cryptography

- Cryptography is ubiquitous!
 - Password-based authentication, password hashing
 - Secure credit-card transactions over the internet
 - Encrypted WiFi
 - Disk encryption
 - Digitally signed software updates
 - Bitcoin

— ...

Rough course outline

	Secrecy	Integrity
Private-key setting	Private-key encryption	Message authentication codes
Public-key setting	Public-key encryption	Digital signatures

Building blocks

- Pseudorandom (number) generators
- Pseudorandom functions/block ciphers
- Hash functions
- Number theory

Classical Cryptography

Motivation

- Allows us to "ease into things...," introduce notation
- Illustrates why things are more difficult than they may appear
- Motivates a more harsh (rigorous) approach

Classical cryptography

 Until the 1970s, exclusively concerned with ensuring secrecy of communication

I.e., encryption

Classical cryptography

 Until the 1970s, relied exclusively on secret information (a key) shared in advance between the communicating parties

Private-key cryptography

 aka secret-key / shared-key / symmetric-key cryptography

Authentication and Key Agreement (AKA)

Private-key encryption

Private-key encryption

Private-key encryption

- A private-key encryption scheme is defined by a message space \mathcal{M} and algorithms (Gen, Enc, Dec):
 - Gen (key-generation algorithm): outputs $k \in K$
 - Enc (encryption algorithm): takes key k and message $m \in \mathcal{M}$ as input; outputs ciphertext c
 - Dec (decryption algorithm): takes key k and ciphertext c as input; outputs m or "error"

For all $m \in \mathcal{M}_a$ nd k output by Gen, $Dec_k(Enc_k(m)) = m$

Kerckhoffs's principle

- The encryption scheme is not secret
 - The attacker knows the encryption scheme
 - The only secret is the key
 - The key must be chosen at random; kept secret
- Arguments in favor of this principle
 - Easier to keep key secret than algorithm
 - Easier to change key than to change algorithm
 - Standardization
 - Ease of deployment (compatibility between different users)
 - Public scrutiny (examining look)

The shift cipher

- Consider encrypting English text
- Associate 'a' with 0; 'b' with 1; ...; 'z' with 25

- $k \in \mathcal{K} = \{0, ..., 25\}$
- To encrypt using key k, shift every letter of the plaintext by k positions (with wraparound)
- Decry helloworldz cccccccc jgnnqyqtnfb

Modular arithmetic

- x = y mod N if and only if N divides x-y
- [x mod N] = the remainder when x is divided by N
 - I.e., the unique value $y \in \{0, ..., N-1\}$ such that $x = y \mod N$

- 25 = 35 mod 10
- 25 ≠ [35 mod 10]
- 5 = [35 mod 10]

The shift cipher, formally

- M = {strings over lowercase English alphabet}
- Gen: choose uniform k∈{0, ..., 25}
- $\operatorname{Enc}_{k}(m_{1}...m_{t})$: output $c_{1}...c_{t}$, where $c_{i} := [m_{i} + k \mod 26]$
- $Dec_k(c_1...c_t)$: output $m_1...m_t$, where $m_i := [c_i k \mod 26]$

Can verify that correctness holds...

Is the shift cipher secure?

Example

- Ciphertext uryybjbeyq
- Try every possible key...
 - tqxxaiadxp
 - spwwzhzcwo
 - **—** ...
 - helloworld

Byte-wise shift cipher

- Work with an alphabet of bytes rather than (English, lowercase) letters
 - Works natively for arbitrary data!

- Use XOR instead of modular addition
 - Essential properties still hold

Hexadecimal (base 16)

Hex	Bits ("nibble")	Decimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7

Hex	Bits ("nibble")	Decimal
8	1000	8
9	1001	9
Α	1010	10
В	1011	11
С	1100	12
D	1101	13
Е	1110	14
F	1111	15

Hexadecimal (base 16)

• 0x10

- -0x10 = 16*1 + 0 = 16
- -0x10 = 00010000

0xAF

- -0xAF = 16*A + F = 16*10 + 15 = 175
- -0xAF = 1010 1111

ASCII

- Characters often represented in ASCII
 - 1 byte/char = 2 hex digits/char

Hex	Dec	Char		Hex	Dec	Char	Hex	Dec	Char	Hex	Dec	Char
0×00	0	NULL	null	0x20	32	Space	0x40	64	9	0x60	96	-
0×01	1	SOH	Start of heading	0x21	33	1	0x41	65	A	0x61	97	a
0x02	2	STX	Start of text	0x22	34	"	0x42	66	B	0x62	98	b
0x03	3	ETX	End of text	0x23	35	#	0x43	67	C	0x63	99	C
0×04	4	EOT	End of transmission	0x24	36	\$	0×44	68	D	0x64	100	d
0×05	5	ENQ	Enquiry	0x25	37	8	0x45	69	E	0x65	101	е
0x06	6	ACK	Acknowledge		38	&	0x46	70	F	0x66	102	f
0×07	7	BELL	Bell	0x27	39	*	0x47	71	G	0x67	103	g
0x08	8	BS	Backspace	0x28	40	(0x48	72	H	0x68	104	h
0×09	9	TAB	Horizontal tab	0x29	41)	0x49	73	I	0x69	105	i
0x0A	10	LF	New line	0x2A	42	*	0x4A	74	J	0x6A	106	j
0x0B	11	VT	Vertical tab	0x2B	43	+	0x4B	75	K	0x6B	107	k
0x0C	12	FF	Form Feed	0x2C	44	,	0x4C	76	L	0x6C	108	1
$0 \times 0 D$	13	CR	Carriage return	0x2D	45	_	0x4D	77	M	0x6D	109	m
0x0E	14	SO	Shift out	0x2E	46		0x4E	78	N	0x6E	110	n
0x0F	15	SI	Shift in	0x2F	47	/	0x4F	79	0	0x6F	111	0
0x10	16	DLE	Data link escape	0x30	48	0	0x50	80	P	0x70	112	p
0x11	17	DC1	Device control 1	0x31	49	1	0x51	81	Q	0x71	113	q
0x12	18	DC2	Device control 2	0x32	50	2	0x52	82	R	0x72	114	r
0x13	19	DC3	Device control 3	0x33	51	3	0x53	83	S	0x73	115	S
0x14	20	DC4	Device control 4	0x34	52	4	0x54	84	T	0x74	116	t
0x15	21	NAK	Negative ack	0x35	53	5	0x55	85	U	0x75	117	u
0x16	22	SYN	Synchronous idle	0x36	54	6	0x56	86	V	0x76	118	V
0×17	23	ETB	End transmission block	0x37	55	7	0x57	87	W	0x77	119	W
0x18	24	CAN	Cancel	0x38	56	8	0x58	88	X	0x78	120	X
0x19	25	EM	End of medium	0x39	57	9	0x59	89	Y	0x79	121	У
0x1A	26	SUB	Substitute	0x3A	58	:	0x5A	90	\mathbf{z}	0x7A	122	Z
0x1B	27	FSC	Escape	0x3B	59	;	0x5B	91	[0x7B	123	{
0x1C	28	FS	File separator	0x3C	60	<	0x5C	92	1	0x7C	124	
0x1D	29	GS	Group separator	0x3D	61	=	0x5D	93]	0x7D	125	}
0x1E	30	RS	Record separator	0x3E	62	>	0x5E	94	^	0x7E	126	0-11
0x1F	31	US	Unit separator	0x3F	63	?	0x5F	95	_	0x7F	127	DEL

Source: http://benborowiec.com/2011/07/23/better-ascii-table/

Useful observations

- Only 128 valid ASCII chars (128 bytes invalid)
- Only 0x20-0x7E printable
- 0x41-0x7a includes all upper/lowercase letters
 - Uppercase letters begin with 0x4 or 0x5
 - Lowercase letters begin with 0x6 or 0x7