COSC 3360/6310 Wednesday, January 20

Welcome to COSC 3360!

Spring 2021 Edition J.-F. Pâris

ZITS

BY JERRY SCOTT AND JIM BORGMAN

Why should you study OS?

What is an operating system?

"What stands between the user and the bare machine"

What is an operating system?

- The *basic* software required to operate a computer.
- Similar role to that of the conductor of an orchestra

Functions of an OS

- Four basic functions
 - To provide a better user interface
 - □ To manage the system resources
 - □ To protect users' programs and data
 - To let programs exchange information

The core of the OS

- Part that remains in main memory
- Controls the execution of all other programs.
- Known as the kernel
 - Also called monitor, supervisor, executive
- Other programs interact with it through system calls

Understanding the system call interface

- Essential to the advanced programmer
 - □ To create files with the right protection attributes
 - □ To write multithreaded programs
 - □ To synchronize their threads
 - □ To write distributed applications

One exciting development

Main memory

- ☐ Cache and DRAM
- Byte-addressable
- Volatile

Process address spaces

Secondary store

- Magnetic disks and now SSD
- Block-addressable
- Non-volatile

Long-term storage

What to expect

- NVRAM breaks the boundaries between main memory and secondary store
- Challenges the traditional file system interface
 - □ POSIX
 - □ Based on system calls

A two-pronged approach

- OS overall organization
- □ How they manage processes/lightweight processes
- □ How they share cores among processes
- □ How they let processes communicate with each other
- □ How they can synchronize cooperating processes
- □ Why we have virtual memory
- □ How the hardware OS manages the virtual memory
- All about file systems

Introducing new friends

The Unix family of OSes

And their offspring

The practice

- Three programming assignments
 - □ To be written in **C/C++**
 - □ In a Linux/Free BSD environment
- First assignment about process management
 - No special system calls
 - □ Will test your knowledge of linked lists
- Second assignment about inter-process communication
- Third assignment about thread synchronization

For C/C++ newbies

- Several of you have taken COSC 2430 in Java
 - □ Do not panic
 - □ Let me know so I will let you use Java for the first assignment
 - □ You will still have to learn C/C++ for the last two assignments.
 - System programming assignments with minimal coding
- Some of you have taken COSC 2430 in Python
 - □ Ouch!

Your teaching team

The instructor

- Jehan-François Paris
 - □ Jehan-François is French for Juan-Francisco
- jfparis AT uh DOT edu
- MW 5:30-6:30 pm and F 10:00-10:30 am on MS Teams

The TAs

- Christos Smailis
 - csmailis AT uh DOT edu
 - ☐ MW 2:00-4:00 PM on MS Teams
- Pavan Kumar Paluri
 - pvpaluri AT uh DOT edu
 - □ TuTh 11:00 AM-12:00 PM on MS Teams
- Aftab Husain
 - ahussain27 AT uh DOT edu
 - □ Th 5:00-7:30 PM on MS Teams

Getting in touch

- Primarily through Prulu
 - □ Free online course discussion tool
 - FERPA compliant
- Let me know if you did not receive an invitation
- Better than email
- Will host some course materials
 - □ Lecture notes replicated on "old" UH web site

Blackboard

- □ Online quizzes
- Assignment submission

Microsoft Teams

- □ Lectures (recordings on MS Streams)
- □ Office hours
- □ Lecture notes and other postings

Prulu

- □ Q& A
- □ Backup for lecture notes and other postings

Check your UH account + your spam folder

Class attendance policy

- Recommended but *not* required
 - □ All video lectures will be recorded
- Required for the five quizzes
 - □ Unless excused absence or other extenuating circumstances
- If you decide to attend the lectures, please consider
 - □ Turning on your camera
 - □ Adding your picture to your MS Teams account

Resources

Study materials

- Course slides
 - □ What you should study
 - On MS Teams, some on Prulu
- Textbook
 - □ Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau, Operating Systems: Three Easy Pieces
 - http://pages.cs.wisc.edu/~remzi/OSTEP
 - □ Another presentation of most of what we cover in class

Computing resources

- Your laptop
 - □ For Mac users
 - Bash shell is all you need
 - □ For Windows users
 - If you have 64-bit version of Windows 10
 - Should install Windows Subsystem for Linux
 - Otherwise
 - □ Install *Cygwin*
 - □ Use the class account for second and third assignments

For PC users: Installing WSL

- Excellent Microsoft tutorial
 - □ https://docs.microsoft.com/en-us/windows/wsl/install-win10
- Two step process
 - Open PowerShell as Administrator and run:

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux

- □ Go to Microsoft App store
 - Search For "Linux"
 - Pick your version of Linux, such as Ubuntu 18.04 LTS

For Mac users

- Few subtle differences between the ways Linux and Mac OS X handles some system calls
 - □ Rare
 - □ Will not affect your grades

Evaluating your performance

The quizzes

- Five quizzes
 - □ 60 percent of course average
 - On Blackboard
 - Require Respondus browser and camera
 - □ Non-comprehensive
 - Covers all materials discussed in class since previous quiz
 - Open book but time-limited

The programming assignments

- Three programming assignments
 - □ 40 percent of semester average
 - ☐ Must be done in C/C++ in a Linux/Free BSD environment
 - □ Must be submitted through your UH *Blackboard* account
- People failing the assignments <u>or</u> the examinations will fail the course.

The grace days

- You have three grace days
 - □ Late penalty waivers
- Assume you turn one assignment five days late
 - ☐ Still had your three grace days
 - \square Late penalty will be (5-3)=2 late days instead of 5
 - □ Lose your grace days
- Can be used at your own discretion
 - □ No need to ask for my permission

Warnings

- Start early
 - □ ...
- Do not use MS Visual C++ IDE
 - □ Incompatible with Linux/Free BSD gnu compilers
- Ask for help before it is too late
 - □ Programming problems, personal problems, ...
- Do not cheat
 - □ What you turn in must be your own code

Important dates

Monday, February 8 First quiz

Wednesday, February 24 First assignment due

Monday, March 1 Second quiz

Late March
Second assignment due

Monday, March 29
Third quiz

Monday, April 19
Fourth quiz

Monday, May 3
Last lecture. Third assignment due

Friday, May 7
Fifth quiz at 5 pm

The fine print

- Details of all course policies are to be found in the course syllabus
 - □ Posted online
- They may change
 - □ Changes will be announced in class, on MS Teams and on Prulu ahead of time

Listen to the cow

Chapter I Introduction

Jehan-François Pâris jfparis@uh.edu

Chapter Overview

- Defining operating systems
- Major functions of an OS
- Types of operating systems
- UNIX
- Kernel organization

What is an operating system?

"What stands between the user and the bare machine"

What is an operating system?

- The *basic* software required to operate a computer.
- Similar role to that of the conductor of an orchestra

Do not belong to OS

- All user programs
- Compilers, spreadsheets, word processors, and so forth
- Most utility programs
 - mkdir is a user program calling mkdir()
- The command language interpreter
 - Anyone can write his/her UNIX shell

The UNIX shells

- UNIX has several shells
 - □ *sh* (the Bourne shell) is the original UNIX shell
 - □ *csh* was developed at Berkeley by Bill Joy
 - □ ksh (the Korn shell) was developed by David Korn at AT&T Bell Laboratories
 - □ **bash** (the GNU Bourne-Again shell) and the list is far from complete

The core of the OS

- Part that remains in main memory
- Controls the execution of all other programs.
- Known as the kernel
 - ☐ Also called *monitor*, *supervisor*, *executive*
- Other programs interact with it through system calls

System calls

A question

Who among you has already used system calls?

The answer

- All of you
 - □ All I/O operations are performed through system calls

The four missions

Functions of an OS

- Four basic functions
 - To provide a better user interface
 - To manage the system resources
 - To protect users' programs and data
 - To let programs exchange information

A better user interface

- Accessing directly the hardware would be very cumbersome
- Must enter manually the code required to read into main memory each program
 - □ boot strapping

How it was done (I)

<u>PDP 8</u>

- Early 70's
- 12-bit machine
 - □ 4K RAM!

How it was done (II)

Toggle switches in front panel were used to enter the bootstrap code

Batch systems

- Allow users to submit a batches of requests to be processed in sequence
- Include a command language specifying what to do with the inputs
 - Compile
 - □ Link edit
 - □ Execute and so forth

An IBM 1401

Interactive systems

- Came later
- Allow users to interact with the OS through their terminals:
- Include an *interactive* command language
 - UNIX shells, Windows PowerShell
 - □ Can also be used to write scripts

Time sharing

- Lets several interactive users to access a single computer at the same time
- Standard solution when computers were expensive

Graphical user interfaces

- Called GUIs (pronounced goo-eys):
 Macintosh, Windows, X-Windows, Linux
 - □ Require a dedicated computer for each user
 - □ Pioneered at Xerox Palo Alto Research Center (Xerox PARC)
 - Popularized by the Macintosh
 - □ Dominated the market with MS Windows

The Xerox Alto

Xerox PARC (I)

- Founded by XEROX in 1970
- Invented
 - Laser printing
 - Ethernet
 - □ The GUI paradigm
 - Object-oriented programming (Smalltalk)

Xerox PARC (II)

- All their inventions were brought to market by other concerns
- Popular belief is that Xerox management blew it
- In reality
 - □ Alto workstations were very expensive
 - □ Smalltalk was very slow
 - ☐ Group was too small to deliver a full system

Smart phones and tablets

- Convergence of four trends
 - □ Cheaper LCD displays
 - □ Solid-State Storage (SSD)
 - ☐ Faster wireless communications
 - Ubiquitous wireless

History repeats itself

- First successful devices introduced by Apple
 - □iPod, iPhone, iPad, ...
 - First iPad was underpowered
- Competition soon grows
 - □ Cheaper Android devices

With a difference!

- Apple did not "steal" the concept from anyone
- iPods, iPhones, iPads were an instant success
 - Reasonably priced

Two models

- Apple:
 - □ Closed ecosystem (*walled garden*)
 - □ Strict controls on app market
 - Missing features
 - No file system

- Android:
 - □ Just the opposite
 - □ Lax controls on app market
 - □Can access the Linux/Android shell

Is this paradise?

Summary

- Six major steps
 - ☐ Bare bone machine
 - ☐ Batch systems
 - □Timesharing
 - □ Personal computer
 - □ Personal computer with GUI
 - □ Smart phone/tablet

File systems

- Let users create and delete files without having to worry about disk allocation
 - □ Users lose the ability to specify how their files are stored on the disk
 - □ Database designers prefer to bypass the file system
- Some file systems tolerate disk failures (RAID)