Arquitetura e organização de computadores Sistema de Computação

SIAC 202 - Arquitetura de Computadores

Prof.: Félix do Rêgo Barros

felixregobarros@gmail.com

Baseado em W. Stallings – Arquitetura e Organização de Computadores

Visão geral de sistemas operacional

Objetivos e funções de um sistema operacional

O sistemas operacional é o software que controla a execução de programas aplicativos em um processador, gerencia os recursos do computador e age como uma interface entre o usuário e o hardware do computador.

Objetivos

Conveniência: um sistema operacional visa tonar o uso do computador mais conveniente.

Eficiência: um sistema operacional permite uma utilização mais eficiente dos recursos do sistema

Visão geral de sistemas operacional

Serviços realizados pelo sistema operacional

- Criação de programas;
- Execução de programas;
- Acesso a dispositivos de E/S;
- Acesso controlado aos arquivos;
- Acesso ao sistema;
- Detecção e reação aos erros;
- Monitoração.

Principais recursos gerenciados pelo sistema operacional

Sistemas Monoprogramáveis / Monotarefa

7Sistemas Multiprogramáveis / Mutitarefa

Sistemas Fortemente Acoplados

- SFA = Sistemas multiprocessadores
- Várias CPUs compartilhando única memória e dispositivos E/S sendo gerenciados por um único sistema operacional

<u>Desvantagem</u>: => problema de concorrência (disputa) é introduzido (vários processadores tentando acessar a mesma área de memória)

Sistemas Fortemente Acoplados

- Vantagem: organização simples de implementar
- Desvantagem 1:
 - => Não utiliza o hardware com eficiência.
 - Somente o <u>processador mestre</u> pode executar serviços do sistema operacional (por exemplo operações E/S)
 - O <u>Processador escravo</u> deve fazer requisição ao <u>processador mestre</u> (ineficiência caso escravo execute muitas operações E/S)
- -Desvantagem 2:
- _=> Pode ocorrer falha do <u>processador mestre</u>

Sistemas Fortemente Acoplados

Simétricos (é o que existe!)

- Vantagem:

- => Um programa pode ser executado por qualquer processador ou por vários processadores ao mesmo tempo (paralelismo)
 - => Quando um processador falha o sistema continua a funcionar
- Desvantagem:
 - => Acessos simultâneos às mesmas áreas de memória: solução a cargo do hardware e do sistema operacional.
 - => Implementação bastante complexa

Sistemas Fracamente Acoplados Sistema Operacional de Rede

Sistemas Fracamente Acoplados Sistema Operacional de Rede

Sistemas Fracamente Acoplados Sistema Operacional de Rede

Permitem que uma estação compartilhe seus recursos como impressora, diretório com as demais estações da rede.

Sistemas Fracamente Acoplados

Sistema Operacional Distribuídos

Sistemas Fracamente Acoplados

Sistemas Operacionais Distribuídos

O <u>sistema (operacional) distribuído</u> esconde os detalhes das estações individuais e passa a tratá-los como um conjunto único, como se fosse um <u>sistema fortemente acoplado simétrico</u>

Permite que uma aplicação seja dividida em partes sendo cada uma executada em estações diferentes

Sistemas Fracamente Acoplados

Sistemas Operacionais Distribuídos

Distribuído: em um sistema operacional distribuído, os recursos de cada máquina estão disponíveis globalmente, de forma transparente aos usuários. Ao lançar uma aplicação, o uuário interage com sua janela, mas não sabe onde ela está executando ou armazenando seus arquivos: o sistema é quem decide, de forma transparente.

Os sistemas operacionais distribuídos já existem há tempos (Amoeba [TKvRB91] e Clouds [DRJLAR91], por exemplo), mas ainda não são uma realidade de mercado.

Resumo

Sistemas Operacionais

Sistemas Operacionais

- MS-DOS
- Windows (95, 98, NT, CE)
- UNIX
- LINUX
- Solaris
- OS/2 (IBM micros)
- Mac OS (Apple -Machintosh)
- MCP (Unisys Mainframe)
- VSE (IBM Mainframe)
- MVS (IBM Mainframe)

Gerenciadores de Rede

- Windows NT
- UNIX Ware
- LINUX Red Hat
- Solaris
- Novell Netware
- LANtastic

Sistemas Operacionais

Exemplos – MS-DOS (Disk Operating System)

- Mono-usuário e mono-tarefa.
- É um sistema operacional de 16 bits
- Interface de linha de comando
- Modos de comunicação do usuário com o MS-DOS: modo interativo e o modo batch.
 - Modo Interativo: executa comandos digitados pelo usuário na linha de comando (prompt do sistema).
 - Modo batch: comandos em lote uma seqüência de comandos, colocados em um arquivo texto, que serão executados segundo uma programação (script) pré-definida.
- Versões: 1.0, 2.0, 3.0,, 6.0, 6.22, 7.0 (unificado ao Windows)

Sistemas Operacionais

Exemplos – Windows

- Revolucionou a forma de utilização dos PC'S.
- Permite utilizar o microcomputador com maior facilidade, através de uma interface visual gráfica.
- Metáfora básica: a do desktop ferramentas necessárias e outros recursos são sempre visíveis e facilmente acessíveis.
- Janelas
 - Regiões retangulares que se alternam e se sobrepõem
 - Apresentam na tela todas as operações ou programas executados no computador
- Versões: Windows 3.1 e 3.11, Windows 95 / Windows 98, Windows NT, Windows Vista, Windows 7
- O win 3.X era apenas uma plataforma gráfica sobre o DOS. A partir do Win 9X, houve a unificação do Windows e do DOS

Sistemas Operacionais

Exemplos – UNIX

- Sistema multi-usuário e multi-tarefa.
- Principal objetivo: obtenção de um ambiente satisfatório de trabalho para programadores.
- Utilização: usuários e programadores experientes simples, elegante e fácil de aprender; Iniciantes - resumido e não muito amistoso.
- Uso predominante: inicialmente, em estações de trabalho e servidores de rede, e especialmente popular em máquinas RISC de alto desempenho
- Vantagens: portabilidade, padronização, sistema de arquivos hierárquico, estabilidade, versatilidade
- Sistemas UNIX modernos tendem a ser distribuídos e suportam aplicações em tempo real.

Sistemas Operacionais

Exemplos – Linux

- É um "clone" do UNIX, de distribuição livre.
- Foi primeiramente desenvolvido para PCs baseados em 386/486/Pentium, atualmente também roda em computadores Alpha - DEC, Sparc - SUN, PowerPCs.
- Está disponível também em código fonte aberto.
- A maioria dos programas rodando em Linux são freeware genéricos para UNIX.
- Linux está sendo usado hoje em dia por centenas e centenas de pessoas pelo mundo, no desenvolvimento de software, networking, e como plataforma de usuário final.
- Tem se tornado uma alternativa efetiva de custo em relação aos caros sistemas UNIX e Windows existentes. Ex: Ubuntu, Fedora, Conectiva