TECHNISCHE UNIVERSITÄT DORTMUND

Anfängerpraktikum Physik Wintersemester 13/14

V701 Reichweite von Alphastrahlung

15.04.2014

Johannes Schlüter Joshua Luckey johannes.schlueter@udo.edu joshua.luckey@udo.edu

1 Einleitung

2 Theorie

3 Durchführung

4 Auswertung

In folgendem Abschnitt sind die während des Versuche aufgenommenen Daten, so wie die aus diesen gewonnenen Ergebnisse tabellarisch und mit Hilfe von Grafiken dargestellt. An entsprechender Stelle werden Erklärungen zu den Messdaten, Rechnungen und Ergebnissen gegeben.

4.1 Messung der mittleren Reichweite im Abstand 20mm

Die Messergebnisse der ersten Messung zu Bestimmung der mittleren Reichweite R_m sind in Tabelle 1 aufgeführt. Wobei die hervorgehobene Zeile wegen der großen Abweichung nicht für die folgende Auswertung genutzt wurde.

Druck	Channel Maximum	Energie Maximum	Anzahl Pulse
p [mbar]	Ch_{max}	E_{max} [MeV]	N
0	630	3,807	34527
100	628	3,795	27953
200	628	3,795	24588
300	631	3,813	38289
400	630	3,807	14007
450	632	3,819	7717
500	623	3,764	9970
550	631	3,813	6084
600	632	3,819	5376
650	624	3,770	2688
700	622	3,758	2933
750	662	4,000	2051
800	631	3,813	1773
850	634	3,831	1997
900	636	3,843	918
950	640	3,867	1031
1000	630	3,807	852

Tabelle 1: Messwerte der Messung im Abstand von 20mm

In Abbildung 1 sind diese Messwerte grafisch dargestellt, wobei die Gesamtzahl der gemessenen Pulse durch Division mit der Messdauer t = 120s in die Zerfallsrate umgerechnet

wurde. Die effektive Länge, die Strecke die die Alphastrahlung relativ zu Atmosphärendruck, zurück gelegt hat berechnet sich nach ??.

Die mittlere Reichweite R_m der Alphastrahlung erhält man nun, indem zunächst eine lineare Regression der Messwerte durchgeführt wird. Die in Abbildung 1 grau eingezeichneten Messwerte wurden bei dieser Regression nicht verwendet. Mit Hilfe der Python-Bibliothek SciPy [1] erhält man aus den Messdaten mit dem Ansatz

$$A(x) = a \cdot x + b,\tag{1}$$

die Regressionsparameter

$$a = (-20 \pm 1) \,\mathrm{s}^{-1} \,\mathrm{mm}^{-1}$$
 (1a)

$$b = (280 \pm 10) \,\mathrm{s}^{-1}. \tag{1b}$$

Im folgenden Schritt wird eine zur x-Achse parallele Gerade auf halber Höhe des Maximalwerts, der gemessenen Zerfallsraten, hier gestrichelt, eingezeichnet.

Die zu bestimmende Reichweite R_m lässt sich damit als x-Koordinate des Schnittpunktes dieser beiden Geraden ablesen. Die auf diese Weise ermittelte, mittlere Reichweite beträgt für diese Messdaten $R_m = (6,65 \pm 0,01)$ mm.

Abbildung 1: Darstellung der Messdaten aus Tabelle 1 und Bestimmung von R_m

Der aus diesen Versuchsdaten zu berechnende Energieverlust $-\frac{\mathrm{d}E}{\mathrm{d}x}$ wird wegen der bes-

seren Messergebnisse im folgenden Unterabschnitt vorgenommen.

4.2 Messung der mittleren Reichweite im Abstand 25mm

Druck	Channel Maximum	Energie Maximum	Anzahl Pulse
p [mbar]	Ch_{max}	E_{max} [MeV]	N
0	559	4,000	77 188
200	512	3,664	69282
400	446	3,191	58 770
450	468	3,349	53517
500	431	3,084	50024
550	422	3,020	46370
600	419	2,998	38 034
650	419	2,998	35348
700	419	2,998	26457
750	419	2,998	18 744
800	416	2,977	10536
850	418	2,991	5429
900	412	2,948	4797
950	415	2,970	5281
1000	421	3,013	3660

Tabelle 2: Messwerte der Messung im Abstand von 25mm

4.3 Statistik des radioaktiven Zerfalls

Abbildung 2: Darstellung der Messdaten aus Tabelle 2 und Bestimmung von R_m

Abbildung 3: Darstellung der Messdaten aus Tabelle 2 und Bestimmung von R_m

Abbildung 4: Vergleiche der Messdaten mit der diskreten Poissonverteilung

Abbildung 5: Vergleich der Messdaten mit der kontinuierlichen Gaussverteilung

4.4 Fehlerrechnung

5 Diskussion

Literatur

[1] SciPy. URL: http://docs.scipy.org/doc/ (besucht am 18.01.2014).