Assignment 3

Quinn Perfetto, 104026025 60-454 Design and Analysis of Algorithms

March 15, 2017

Question 1.

Idea: Sum consecutive elements of the input array until the sum exceeds M. Once this happens, add the offending index to the subdivision and reset the sum.

Lemma 1.1. Algorithm Subdivide produces a valid subdivision of the input array W

We shall show this by inductively proving that after the mth iteration of the for loop,

$$S$$
 is a valid subdivision of $W[1..m] \wedge sum = \sum_{j=S_{last}+1}^m W[j]$

Note: We take S_{last} to be the last element in S if it exists, and 0 otherwise.

Proof. (Induction Basis) We first note that sum is initialized to 0. After control reaches line 4 for the first time we have,

$$sum = sum + W[1] \Rightarrow sum = W[1] = \sum_{j=1}^{1} W[j]$$

Note that S was initialized to []. Since $sum = W[1] \leq M$, control will not enter the if statement on line 5, thus S will remain empty and $S_{last} = 0$. Further since W[1..m = 1] is a single element list such that $W[1] \leq M$, S = [] is vacuously a valid subdivision of W.

(Induction Hypothesis) Assume that after k iterations of the for loop,

$$S$$
 is a valid subdivision of $W[1..k] \wedge sum = \sum_{j=S_{last}+1}^k W[j]$

(Induction Step) Case 1: sum > M

By the induction assumption S is a valid subdivision of W[1..k], by the defintion of a valid subdivision we thus have,

$$\sum_{j=S_{last}+1}^{k} W[j] \le M \tag{I}$$

After appending i-1=k to S, $S_{last}=k$. Therefore (I) is equivalent to,

$$\sum_{j=S_{last-1}+1}^{S_{last}} W[j] \le M$$

Further since $\sum_{j=S_{last}+1}^{k+1} W[j] = W[k+1] \leq M$ we have S is a valid subdivision of W[1..k+1].

After assigning sum = W[k+1] we also have $sum = \sum_{S_{last}+1}^{k+1} W[j]$.

Case 2: $sum \leq M$

Since by our inductive assumption S is a valid subdivision of W[1..k] and,

$$sum = \sum_{j=S_{last}+1}^{k} W[j] + W[k+1]$$
$$= \sum_{j=S_{last}+1}^{k+1} W[j]$$
$$\leq M$$

We have S is a valid subdivision of W[1..k+1].

Therefore by Lemma 1.1, after n iterations S will be a valid parition of W[1..n]. Hence the algorithm produces a valid subdivision of W.

Question 2 (b).

Algorithm 2: LeastDifferenceMatching(H, S) Input: $H = \{h_j \mid 1 \le j \le n\}, S = \{S_j \mid 1 \le j \le m\}, n \le m$ Output: TODO begin | for $i \leftarrow 1$ to m do | D[n+1,i] = 0; | end