OWD projekt - dane nr.19

Kacper Zagórski 309276

1. Model

Zmienne i wartości wynikowe z treści zadania:

```
 \{s1, s2\} \in S - \text{surowce wykorzystane w produkcji} \\ \{d1, d2, d3\} \in D - \text{p\'o\'tprodukty powsta\'te w wyniku przetwarzania surowc\'ow, zmienne całkowite} \\ \{dk2, dk3\} \in DK - \text{p\'o\'tprodukty D poddane procesowi uwodornienia, zmienne całkowite} \\ \{dp2, dp3\} \in DP - \text{p\'o\'tprodukty D przeznaczone na bezpośrednią produkcję produkt\'ow, zmienne całkowite} \\ \{k1, k2\} \in K - \text{p\'o\'tprodukty powsta\'te w wyniku uwodornienia, zmienne całkowite} \\ \{k1, k2\} \in F - \text{produkty, zmienne całkowite} \\ \{k1, k2\} \in F - \text{produkty uzyskane z k1, zmienne całkowite} \\ \{k2p1, k2p2\} - \text{produkty uzyskane z k2, zmienne całkowite} \\ \{d1p1, d1p3\} - \text{produkty uzyskane z d1, zmienne całkowite} \\ \{d2p2\} - \text{produkty uzyskane z dp2, zmienna całkowita}
```

{qk, q1, q2, q3} ∈ Q – kryteria, gdzie qk określa koszt produkcji a q1,q2,q3 dotyczą

Metoda Punktu Odniesienia:

```
\begin{aligned} \max & \{v + \varepsilon \sum z_i\} \\ v \leq z_i \\ z_i \leq & \beta \lambda_i (y_i - asp_i) \\ z_i \leq & \lambda_i (y_i - asp_i) \\ \text{Gdzie:} \\ y_i - \text{oceny, i} \in \mathbf{Q} \\ \varepsilon - \text{wybrana mała stała} \\ z_i - \text{wartości indywidulanych funkcji osiągnięcia, i} \in \mathbf{Q} \\ \lambda_i - \text{współczynniki skalujące zależne od nadiru i utopii, i} \in \mathbf{Q} \\ asp_i - \text{aspiracja dla danego kryterium, i} \in \mathbf{Q} \\ \beta - \text{parametr dodatni mniejszy od 1} \end{aligned}
```

{d3p2} - produkty uzyskane z dp3, zmienna całkowita

niedoborów w produkcji produktów p1,p2,p3

Oceny:

 $y_{qk} = maxKoszt - koszt$ <- ponieważ maksymalizujemy funkcję celu, definiujemy oceny w ten sposób aby minimalizować koszty, tym samym naszą aspiracją będzie różnica między możliwym kosztem maksymalnym a kosztem wyliczonym.

 $y_{qi}=1-rac{1490-pi}{1490}$, i \in {1,2,3} <- jak powyżej, tym samym aspiracją będzie różnica między zaspokojeniem wymagań dotyczących dostawy a względnym niedoborem produkcji.

Gdzie:

maxKoszt – maksymalny do uzyskanie koszt na podstawie danych z zadania,

koszt – koszt wykorzystania surowców i pracy zakładu uwodornienia

Koszt:

koszt = kosztU + kosztWykS

Gdzie:

kosztU - koszt stały, ponoszony tylko w przypadku uruchomienia zakładu uwodornienia o wartości 12000 zł

$$kosztU = b * 12000, b \in \{0,1\}$$

$$Int * b \ge dk2 + dk3$$

$$b \le Int * (dk2 + dk3)$$

$$Int - dowolnie duża liczba$$

kosztWykS – koszt wynikający z ilości przetwarzanych surowców s1 i s2, który kształtuje się na podstawie poniższych zależności:

S1 – cena 150 zł za tonę, dostępność 8000 ton dziennie.

S2 – cena 140 zł za tonę, dostępność 9000 ton dziennie.

Dodatkowo, koszty przetwarzania s1 i s2 kształtują się w następujący sposób

$$\mathsf{ps1} = \begin{cases} 14 * s1 \ dla \ s1 \le 1939 \\ 1939 * 14 \ + 11 * (s1 - 1939) \ dla \ s1 > 1939 \ i \ s1 \le 4659 \\ 1939 * 14 \ + 11 * (4659 - 1939) \ + 8 * (s1 - 4659) \ dla \ s1 > 4659 \ i \ s1 \le 8000 \end{cases}$$

$$\mathsf{ps2} = \begin{cases} 10 * s2 \ dla \ s2 \le 2214 \\ 2214 * 10 \ + 12 * (s2 - 2214) \ dla \ s2 > 2214 \ i \ s2 \le 5845 \\ 2214 * 10 \ + 12 * (5845 - 2214) \ + 15 * (s2 - 5845) \ dla \ s2 > 5845 \ i \ s2 \le 9000 \end{cases}$$

Zatem, przekładając na model matematyczny:

$$kosztWykS = 150 * s1 + 140 * s2 + ps1 + ps2$$

 $ps1 = 14 * s1a + 11 * s1b + 8 * s1c$
 $ps2 = 10 * s2a + 12 * s2b + 15 * s2c$

$$s1 \le 8000$$

$$s2 \le 9000$$

Surowiec 1, wykorzystanie:

$$s1 = s1a + s1b + s1c$$

 $1939 * b1a \le s1a \le 1939$
 $(4659 - 1939) * b1b \le s1b \le (4659 - 1939) * b1a$
 $0 \le s1c \le (8000 - 4659) * b1b$

 $s1a, s1b, s1c-ilośc\ przetwożonych\ ton\ s1\ dla\ kolejnych\ przedziałów\ cenowych$

b1a, b1b — pomocnicze zmienne binanrne

Surowiec 2, wykorzystanie:

$$s2 = s2a + s2b + s2c$$

$$2214 * b2a \le s2a \le 2214$$

$$(5845 - 2214) * b2b \le s2b \le (5845 - 2214)*b2a$$

$$0 \le s2c \le (9000 - 5845) * b2b$$

s2a, s2b, s2c-ilośc przetwożonych ton s2 dla kolejnych przedziałów cenowych b2a, b2b-pomocnicze zmienne binanrne

Przetwarzanie surowców na półprodukty D:

$$d1 = s1 * 0.6 + s2 * 0.1$$
$$d2 = s1 * 0.3 + s2 * 0.6$$
$$d3 = s1 * 0.1 + s2 * 0.3$$

 $s1 + s2 \le 11346$ - przepustowość przygotowalni

Przetwarzanie półproduktów D na K:

$$dk2+dk3 \leq 5011$$
 – przepustowość zakładu uwodorniania
$$d2=dk2+dp2$$

$$d3=dk3+dp3$$

$$k1=dk2*0.4+dk3*0.6$$

$$k2=dk2*0.6+dk3*0.4$$

Produkcja produktów P:

k1p1+k1p2=k1 <-- produkty uzyskane z k1 muszą się sumować do ilości k1 k2p1+k2p2=k2 <-- produkty uzyskane z k2 muszą się sumować do ilości k2 d1p1+d1p3=d1 <-- produkty uzyskane z d1 muszą się sumować do ilości d1 d2p2=dp2 <-- produkty uzyskane z dp2 muszą się sumować do ilości dp2

d3p2=dp3 <-- produkty uzyskane z dp3 muszą się sumować do ilości dp3 p1=k1p1+k2p1+d1p1 <-- suma produktów p1 z różnych źródeł p2=k1p2+k2p2+d2p2+d3p2 <-- suma produktów p2 z różnych źródeł p3=d1p3 <-- suma produktów p3 z różnych źródeł

2. Symulacja podejmowania decyzji.

Wykorzystane parametry				
ε	0,000025	Stała wybrana arbitralnie		
λ_k	0,0000005596			
λ_1	1	Obliczone na postawie odwrotności		
λ_2	1	różnicy między utopią a nadirem.		
λ_3	1			
β	0,001	Stała wybrana arbitralnie		
maxKoszt	1786986	Koszt wyliczony na podstawie treści zadania.		

1 Iteracja			
asp_k	0	Koszt	1775694
asp_1	1	p1	1491
asp_2	1	p2	8359
asp_3	1	р3	1490

W pierwszym kroku, postawiłem przede wszystkim na wypełnienie zobowiązań dotyczących ilości produktów rezygnując z jakichkolwiek aspiracji dotyczących kosztów produkcji, jak widać udało się spełnić wymogi dla wszystkich 3 produktów

2 Iteracja			
asp_k	12 000	Koszt	1774024
asp_1	1	p1	1490
asp_2	1	p2	8350
asp_3	1	р3	1490

W drugiej iteracji moim założeniem było ustawienie takiej kwoty oszczędności aby zmusić model do zmniejszenia produkcji, któregoś z produktów. Względem pierwszej iteracji produkcja p2 zmniejszyła się o 9 jednostek a p1 o 1 jednostkę.

3 Iteracja			
asp_k	30 000	Koszt	1678061
asp_1	1	p1	1490
asp_2	1	p2	7345
asp_3	1	р3	1915

Przy aspiracji oszczędności wyznaczonej na poziomie 30 000, znacząco spadła produkcja produktu p2 ale wzrosła też produkcja p3.

4 Iteracja			
asp_k	200 000	Koszt	805054
asp_1	1	p1	1492
asp_2	1	p2	1988
asp_3	1	р3	1490

Przy ustawieniu oszczędności na 200 000 zł, nadal spełnione są warunki dotyczące produkcji wszystkich produktów, co ciekawe przy tej iteracji model skorzystał tylko z surowca s1.

5 Iteracja			
asp_k	300 000	Koszt	1486294
asp_1	1	p1	1490
asp_2	1	p2	4415
asp_3	1	р3	3445

Dla tak ustawionych aspiracji, niespodziewanie cplex, zwiększył produkcję p2 i p3, wzrósł również koszt produkcji chociaż nadal spełnia on nasze założenia dotyczące aspiracji.

6 Iteracja			
asp_k 1 000 000 Koszt 78673			
asp_1	1	p1	1986
asp_2	1	p2	1492
asp_3	1	р3	1492

Wzrosła produkcja p1, a p2 i p3 spadła, koszt produkcji również zmniejszył się do 786 739 zł.

7 Iteracja			
asp_k	1 000 000	Koszt	756074
asp_1	0,8	p1	1192
asp_2	0,8	p2	1864
asp_3	0,8	р3	1604

W tym kroku postanowiłem, trochę zmienić podejście ustawiając aspiracje dla wszystkich produktów na 0.8 tym samym przyjmując, że nie musimy spełnić wymagań dla wszystkich z nich. Tym poniżej wymaganej ilości 1490 jednostek spadła produkcja p1. Zmniejszył się też koszt produkcji

8 Iteracja			
asp_k 1 000 000 Koszt 75607			
asp_1	0,9	p1	1341
asp_2	0,7	p2	1864
asp_3	0,7	р3	1455

Manipulacją aspiracjami dla różnych produktów próbowałem wymusić większą produkcję p1, chociaż produkcja wzrosła nie osiągnęła progu 1490 jednostek, dodatkowo poniżej tego progu spadła produkcja p3. Koszt produkcji nie uległ zmianie.

9 Iteracja			
asp_k	1 000 000	Koszt	786739
asp_1	1	p1	2731
asp_2	0,5	p2	747
asp_3	1	р3	1492

Przy kolejnych zmianach aspiracji udało się osiągnąć zadowalający wynik dla produkcji p1 i p3, jednak produkcja p2 spadła prawie poniżej połowy wymaganych jednostek. Koszt produkcji wzrósł.

10 Iteracja			
asp_k 1 050 000 Koszt 71324			
asp_1	1	p1	1490
asp_2	1	p2	1500
asp_3	1	р3	1490

Biorąc pod uwagę poprzednie iteracje postanowiłem, z powrotem ustawić aspiracje dla produktów na poziomie 1 oznaczającym brak niedoborów i jeszcze raz zwiększyć trochę kwotę oszczędności. Dla takich parametrów aspiracji nadprodukcja występuje tylko w przypadku p2 i wynosi 10 jednostek, koszt jest najmniejszy ze wszystkich iteracji, zatem jest to najlepsze z dotychczasowych rozwiązań.