

Problem of the Week Problem D and Solution Tangled Triangles

Problem

In the diagram, A(0, a) lies on the y-axis above the origin. If $\triangle ABD$ and $\triangle COB$ have the same area, determine the value of a.

Solution Solution 1

Draw rectangle EDFC with sides parallel to the x and y-axes so that O(0,0) is on ED and B(2,-1) is on DF. Since EC is parallel to the x-axis and E is on the y-axis, E has coordinates (0,2). Since EF is parallel to the y-axis, E has the same E-coordinate as E. Since E is parallel to the E-axis, E has the same E-coordinate as E and E. Therefore the coordinates of E are E-axis, E-a

To find the area of $\triangle COB$, subtract the areas of $\triangle CEO$, $\triangle ODB$, and $\triangle BFC$ from the area of rectangle EDFC.

In rectangle EDFC, EC = 3 - 0 = 3 and ED = 2 - (-1) = 3. The area of rectangle $EDFC = EC \times ED = 3 \times 3 = 9$ units².

In
$$\triangle CEO$$
, $EC=3$ and $EO=2-0=2$. The area of $\triangle ECO=\frac{EC\times EO}{2}=\frac{3\times 2}{2}=3$ units².

In
$$\triangle ODB$$
, $OD=0-(-1)=1$ and $DB=2-0=2$. The area of $\triangle ODB=\frac{OD\times DB}{2}=\frac{1\times 2}{2}=1$ unit².

In
$$\triangle BFC$$
, $BF=3-2=1$ and $CF=2-(-1)=3$. The area of $\triangle BFC=\frac{BF\times CF}{2}=\frac{1\times 3}{2}=1.5$ units².

Area
$$\triangle COB$$
 = Area Rectangle $EDFC - \triangle CEO - \triangle ODB - \triangle BFC$
= $9 - 3 - 1 - 1.5$
= 3.5 units^2

But the area $\triangle ABD = \triangle COB$ so the area of $\triangle ABD = 3.5$ units².

In
$$\triangle ABD$$
, $AD = a - (-1) = a + 1$ and $DB = 2 - 0 = 2$ so

Area
$$\triangle ABD = \frac{AD \times DB}{2}$$

$$3.5 = \frac{(a+1) \times 2}{2}$$

$$3.5 = a+1$$

$$2.5 = a$$

 \therefore the value of a is 2.5.

Solution 2

Determine the equation of the line containing C(3,2) and B(2,-1).

The slope of the line is $\frac{2-(-1)}{3-2}=3$. The equation of the line is of the form y=3x+b. Substitute $x=3,\ y=2$ to determine the value of b. 2=3(3)+b and b=-7 follows. Therefore the equation of the line containing C and B is y=3x-7.

To determine the area of $\triangle COB$ determine the sum of the areas of $\triangle COP$ and $\triangle BOP$.

In $\triangle BOP$, $OP = \frac{7}{3}$ and the height is the perpendicular distance from the x-axis to B(2, -1), which is 1 unit. The area of $\triangle BOP = \frac{\frac{7}{3} \times 1}{2} = \frac{7}{6}$ units².

Area
$$\triangle COB$$
 = Area $\triangle COP$ + Area $\triangle BOP$
= $\frac{7}{3} + \frac{7}{6}$
= $\frac{14}{6} + \frac{7}{6}$
= $\frac{21}{6}$
= $\frac{7}{2}$ units²

But the area $\triangle ABD = \triangle COB$ so the area of $\triangle ABD = \frac{7}{2}$ units².

In
$$\triangle ABD$$
, $AD = a - (-1) = a + 1$ and $DB = 2 - 0 = 2$ so

Area
$$\triangle ABD = \frac{AD \times DB}{2}$$

$$\frac{7}{2} = \frac{(a+1) \times 2}{2}$$

$$7 = 2a + 2$$

$$5 = 2a$$

$$\therefore a = \frac{5}{2} = 2.5.$$

