Pro	roblem: mechanical work - calculation of work for an arbitrary path and inside a location-depending force fi	eld
>	 Curve/path/line integral in a vector field = Integration of a vectorial quantity along a given path/curve (e. mechanical work) 	g.,
Wh	hat are you doing, when calculating a path/curve integral?	
	u follow the curve and sum up the contributions of the vector field along this curve ("projection of	
vec	ctors onto this curve")	
	lution of problem (consists basically of 3 steps):	
Solu		
Solu	(i) Decrease Arrian the same C(D1 D2), find a sitable consent for a second division.	
Solu	(i) Parametrize the curve C(P1,P2): find suitable way of parametrizing (ii) Parametrize vector field coordingly (insert the parametrization of (i)	
	(ii) Parametrize vector field coordingly (insert the parametrization of (i)	
	(ii) Parametrize vector field coordingly (insert the parametrization of (i)	
	(ii) Parametrize vector field coordingly (insert the parametrization of (i)	
	(ii) Parametrize vector field coordingly (insert the parametrization of (i)	

Example 1:

Caluculate work W along path C(PP) in force field
$$\vec{f}(\vec{r}) = -\int_0^{\infty} \vec{e}_x = \begin{pmatrix} -f_0 x \\ 0 \end{pmatrix}$$
 $f_0 = const. > 0$

Kurve C is given by
$$C(0,P)$$
 where $P = \begin{pmatrix} x_0 \\ 0 \end{pmatrix}$; $x_0 = const.$

(i) Parameterize (: (urne parameter s
$$(S \subseteq X)$$
 $\overline{r} = (X)$
 $\overline{r} \rightarrow \overline{r}(S) = (S)$ $\overline{s} = S.\overline{e}_x$
 $S \in [0, X_0]$

(ii) Para meterize force field:
$$f(\vec{r}) = -f_0 x \cdot \vec{e}_x = \begin{pmatrix} -f_0 x \\ 0 \end{pmatrix}$$

$$f(\dot{r}(s)) = -\dot{t}_s \cdot \dot{e}_x = \begin{pmatrix} -\dot{t}_s s \\ 0 \end{pmatrix}$$

(iii) line element: $d\dot{r}(s) = \dot{t} ds = \frac{d\dot{r}(s)}{ds} \cdot ds = \begin{pmatrix} i \\ 0 \end{pmatrix} \cdot ds = \dot{e}_x \cdot ds$

To solve
$$W = \int_{c}^{x_{0}} \overline{f(r)} dr = \int_{c}^{x_{0}} (f_{0} S. \overline{e_{x}}) \cdot \overline{e_{x}} \cdot ds = \int_{c}^{x_{0}} (-f_{0} S) \cdot (0) ds$$

$$\overline{f(r)} \qquad \overline{f} \cdot ds = \left[-\frac{1}{2} f_{0} S^{2} \right]_{0}^{x_{0}} = -\frac{1}{2} f_{0} \chi_{0}^{2}$$

Example 2:

Example 2:
Consider vector field
$$\vec{f}(\vec{n}) = (x^2 + y)\vec{e}_x + (x + y)\vec{e}_y = (x + y)$$

 $y=x^2$ where: $P_1=\begin{pmatrix}0\\0\end{pmatrix}$ to $P_2\begin{pmatrix}2\\4\end{pmatrix}$ Calculate line/path integral along curve C(PP2):

$$S \rightarrow \vec{r}(s)$$

$$S \leftarrow \vec{r}(s)$$

$$\vec{F}(\vec{r}) \rightarrow \vec{F}(\vec{r}(s)) = (S^2 + S^2)\vec{e}_x + (S+S^2)\vec{e}_y = (S^2+S^2)$$

$$= 2S^2 \cdot \vec{e}_x + (S+S^2)\vec{e}_y = (2S^2)$$

Parameterize
$$d\bar{t}$$
 $d\bar{\tau}(s) = \bar{t} \cdot ds = \frac{d\bar{\tau}(s)}{ds} \cdot ds$

$$\vec{r}(s) = (\vec{s}^2) = s \cdot \vec{e}_x + S^2 \vec{e}_y$$

$$\vec{t} = \frac{d\vec{r}(s)}{ds} = \vec{e}_x + 2s \cdot \vec{e}_y = (2s)$$

$$d\vec{r}(s) = (\frac{1}{2s}) \cdot ds = (\vec{e}_x + 2s \cdot \vec{e}_y) \cdot ds$$

$$W = \int_{\vec{r}} \vec{r}(\vec{r}) d\vec{r} = \int_{\vec{r}} (2s^2 \vec{e}_x + (sfs^2) \vec{e}_y) \cdot (\vec{e}_x + 2s \cdot \vec{e}_y) \cdot ds$$

$$C(\vec{r}_{ij}, \vec{r}_{s}) = \int_{\vec{r}_{s}} (2s^2 + 2s(sfs^2)) ds$$

$$= \int_{\vec{r}_{s}} (2s^2 + 2s(sfs^2)) ds$$

$$= \int_{\vec{r}_{s}} (2s^2 + 2s(sfs^2)) ds$$

$$= \int_{0}^{2} (4s^{2} + 2s^{3}) ds$$

$$= \left[\frac{4}{3}s^{3} + \frac{1}{2}s^{4} \right]_{0}^{2} = \left[\frac{4}{3}.8 + \frac{1}{2}.16 \right] = \frac{32}{3} + 8$$