Lát cắt cực tiểu, luồng cực đại

Min cuts, max flows

Nội dung

- Lát cắt cực tiểu (minimum s-t cuts)
- Luồng cực đại (maximum s-t flows)
- Thuật toán Ford-Fulkerson
 - Finds min cuts and max flows!
- Một số ví dụ

Sử dụng một phần tài liệu bài giảng CS161 Stanford University

Khái niệm

- Graphs are directed and edges have "capacities" (weights)
- We have a special "source" vertex s and "sink" vertex t.
 - s has only outgoing edges
 - t has only incoming edges

Lát cắt

An s-t cut is a cut which separates s from t

An s-t cut is a cut which separates s from t

- An edge crosses the cut if it goes from s's side to t's side.
- The **cost** (or capacity) of a cut is the sum of the capacities of the edges that cross the cut.

Lát cắt cực tiểu

A minimum s-t cut is a cut which separates s from t with minimum cost

• Question: how do we find a minimum s-t cut?

Example where this comes up

- 1955 map of rail networks from the Soviet Union to Eastern Europe.
 - Declassified in 1999.
 - 44 edges, 105 vertices
- The US wanted to cut off routes from suppliers in Russia to Eastern Europe as efficiently as possible.
- In 1955, Ford and Fulkerson gave an algorithm which finds the optimal s-t cut.

Luồng (Flows)

- In addition to a capacity, each edge has a flow
 - (unmarked edges in the picture have flow 0)
- The flow on an edge must be at most its capacity.
- At each vertex, the incoming flows must equal the outgoing flows.

Flows

- The value of a flow is:
 - The amount of stuff coming out of s
 - The amount of stuff flowing into t
 - These are the same!

Because of conservation of flows at vertices,

stuff you put in =

stuff you take out.

Luồng cực đại

A maximum flow is a flow of maximum value

 This example flow is pretty wasteful, I'm not utilizing the capacities very well.

A maximum flow is a flow of maximum value

This one is maximum; it has value 11.

Định lý

Max-flow min-cut theorem

The value of a max flow from s to t

is equal to
the cost of a min s-t cut.

Intuition: in a max flow, the min cut better fill up, and this is the bottleneck.

Proof outline

- Lemma 1: max flow \leq min cut.
 - Proof-by-picture
- What we actually want: max flow = min cut.
 - Proof-by-algorithm...the Ford-Fulkerson algorithm!
 - The Ford-Fulkerson algorithm actually finds the max flow and the min cut.

One half of Min-Cut Max-Flow Theorem

Lemma 1:

 For ANY s-t flow and ANY s-t cut, the value of the flow is at most the cost of the cut.

Ford-Fulkerson Algorithm

Ford-Fulkerson algorithm

Outline of algorithm:

- We will be updating a flow f
- Start with f = 0
- We will maintain a "residual graph" G_f
- A path from s to t in G_f will give us a way to improve our flow.
- We will continue until there are no s-t paths left in G_f .

Assume for today that we don't have edges like this, although this assumption can be removed.

Mạng có dư (Residual networks)

Say we have a flow

Mạng có dư (Residual networks)

Say we have a flow

Residual networks tell us how to improve the flow

- **Definition**: A path from s to t in the residual network is called an **augmenting path (đường tăng)**.
- Claim: If there is an augmenting path in G_f , we can increase the flow along that path in G.

if there is an augmenting path, we can increase the flow along that path.

Easy case: every edge on the path in G_f is a forward edge in G

- Forward edges indicate how much stuff can still go through.
- Just increase the flow on all the edges!

if there is an augmenting path, we can increase the flow along that path.

Easy case: every edge on the path in G_f is a forward edge in G

- Forward edges indicate how much stuff can still go through.
- Just increase the flow on all the edges!

if there is an augmenting path, we can increase the flow along that path.

Easy case: every edge on the path in G_f is a forward edge in G

- Forward edges indicate how much stuff can still go through.
- Just increase the flow on all the edges!

Then update the residual graph.

if there is an augmenting path, we can increase the flow along that path.

Easy case: every edge on the path in G_f is a forward edge in G.

- Forward edges indicate how much stuff can still go through.
- Just increase the flow on all the edges!

Then update the residual graph.

if there is an augmenting path, we can increase the flow along that path.

- Harder case: there are backward edges in G in the path.
 - Here's a slightly different example of a flow:

I changed some of the weights and edge directions.

if there is an augmenting path, we can increase the flow along that path.

- Harder case: there are backward edges in G in the path.
 - Here's a slightly different example of a flow:

Now we should NOT increase the flow at all the edges along the path!

 For example, that will mess up the conservation of stuff at this vertex. I changed some of the weights and edge directions.

if there is an augmenting path, we can increase the flow along that path.

In this case we do something a bit different:

if there is an augmenting path, we can increase the flow along that path.

In this case we do something a bit different:

Then we'll update the residual graph:

if there is an augmenting path, we can increase the flow along that path.

• In this case we do something a bit different:

Then we'll update the residual graph:

Still a legit flow, but with a bigger value!

if there is an augmenting path, we can increase the flow along that path.

proof:

- increaseFlow(path P in G_f , flow f):
 - x = min weight on any edge in P
 - **for** (u,v) in P:
 - if (u,v) in E, $f'(u,v) \leftarrow f(u,v) + x$.
 - if (v,u) in E, $f'(v,u) \leftarrow f(v,u) x$
 - return f'

Check that this always makes a bigger (and legit) flow!

Ford-Fulkerson Algorithm

- Ford-Fulkerson(G):
 - $f \leftarrow$ all zero flow.
 - $G_f \leftarrow G$
 - while t is reachable from s in G_f
 - Find a path P from s to t in G_f
 - $f \leftarrow increaseFlow(P,f)$
 - update G_f
 - return f

// eg, use BFS

Useful corollary

- Using Ford-Fulkerson alg. you can find :
 - An s-t cut of cost X
 - An s-t flow with value X
- Then the minimum s-t cut and the maximum s-t flow must both be equal to X.

$$X \ge \frac{Min cut}{cost} \ge \frac{Max flow}{value} \ge X$$

⇒ All of these things must be equal!

What have we learned?

- Max s-t flow is equal to min s-t cut!
 - The USSR and the USA were trying to solve the same problem...
- Useful corollary:
 - To certify that you have a max flow, it's enough to find a cut with the same cost.
 - To certify that you have a min cut, it's enough to find a flow with the same value.
- The Ford-Fulkerson algorithm can find the min-cut/max-flow.
 - Repeatedly improve your flow along an augmenting path.

Our usual questions about Ford-Fulkerson

- Does it work?
 - Yep, just showed that
- Is it fast?
 - Depends on how we pick the augmenting paths!

Edmonds-Karp Algorithm

 If we run the Ford-Fulkerson algorithm, using BFS to pick augmenting paths, it's called the Edmonds-Karp Algorithm.

 It turns out that this will run in time O(nm²) on a graph with n vertices and m edges.

One more useful observation

- If all the capacities are integers, then the flows in any max flow are also all integers.
 - When we update flows in Ford-Fulkerson, we're only ever adding or subtracting integers.
 - Since we started with 0 (an integer), everything stays an integer.

But wait, there's more!

- Max flows and min cuts aren't just for railway routing.
- The Ford-Fulkerson algorithm is the basis for many other graph algorithms.
- For the rest of today, we'll see a few:
 - Maximum bipartite matching
 - Integer assignment problems

Ví dụ:

Maximum matching in bipartite graphs

- Different students only want certain items of Stanford swag (depending on fit, style, etc).
- How can we make as many students as possible happy?

Stanford Students

Stanford Swag

Maximum matching in bipartite graphs

- Different students only want certain items of Stanford swag (depending on fit, style, etc).
- How can we make as many students as possible happy?

Stanford Students

Stanford Swag

All edges have capacity 1.

Stanford Students

All edges have capacity 1.

Stanford Swag

Solution via max flow why does this work?

each student 0 or 1.

(And vice versa).

All edges have capacity 1.

max matching.

matching gives a flow).

A slightly more complicated example: assignment problems

- One set X
 - Example: Stanford students
- Another set Y
 - Example: tubs of ice cream
- Each x in X can participate in c(x) matches.
 - Student x can only eat 4 scoops of ice cream.
- Each y in Y can only participate in c(y) matches.
 - Tub of ice cream y only has 10 scoops in it.
- Each pair (x,y) can only be matched c(x,y) times.
 - Student x only wants 3 scoops of flavor y
 - Student x' doesn't want any scoops of flavor y'
- Goal: assign as many matches as possible.

How can we serve as much ice cream as possible?

Example

This person wants 4 scoops of ice cream, at most 1 of chocolate and at most 3 coffee.

This person is vegan and not that hungry; they only want two scoops of the sorbet.

Stanford Students

Tubs of ice cream

Give this person 1 scoop of this ice cream.

Stanford Students

Tubs of ice cream

No more than 3 scoops of sorbet can be assigned.

As before, flows correspond to assignments, and max flows correspond to max assignments.

Tổng kết

- Khái niệm về lát cắt s-t (nguồn đích) và luồng s-t.
- Định lý Min-Cut Max-Flow: tối thiểu hóa lát cắt đồng nghĩa với tối đa hóa luồng.
- Thuật toán Ford-Fulkerson:
 - Tìm một đường đi "tăng cường"
 - Bổ sung lưu lượng của luồng bằng đường đi này
 - Lặp lại cho đến khi không còn đường đi nào khác.
- Là cơ sở cho nhiều giải thuật khác
 - Ví dụ, bài toán phân công (assignment problems).