Understanding Optimized BLS Multisignatures on EVM

Arijit Dutta

May 15, 2023

Background

- ▶ Pairing: $e(\mathbb{G}_1, \mathbb{G}_2) \to \mathbb{G}_T$
- ▶ For $P, S \in \mathbb{G}_1$ and $Q, R \in \mathbb{G}_2$, we have

$$e(P, Q + R) = e(P, Q) * e(P, R)$$

 $e(P + S, R) = e(P, R) * e(S, R)$
 $e(aP, bQ) = e(P, Q)^{ab} = e(P, aQ)^{b} = e(bP, aQ)$

- ▶ Let $H \in \mathbb{G}_1$, $G \in \mathbb{G}_2$ are some generators, same scalar field \mathbb{F}_r
- ▶ Signer $(sk \in \mathbb{F}_r, pk = skG \in \mathbb{G}_2)$, message $= m \in \mathbb{F}_r$, $\mathbb{H}(m) \in \mathbb{G}_1$
- ▶ BLS signature: $sk\mathbb{H}(m) \in \mathbb{G}_1$
- ► Verification: $e(\sigma, -G) * e(\mathbb{H}(m), pk) \stackrel{?}{=} 1$
- Say H(m) = xH, first term $= e(H, G)^{-(sk*x)}$, second term $= e(H, G)^{sk*x}$

Background

- ▶ Pairing: $e(\mathbb{G}_1, \mathbb{G}_2) \to \mathbb{G}_T$
- ▶ For $P, S \in \mathbb{G}_1$ and $Q, R \in \mathbb{G}_2$, we have

$$e(P, Q + R) = e(P, Q) * e(P, R)$$

 $e(P + S, R) = e(P, R) * e(S, R)$
 $e(aP, bQ) = e(P, Q)^{ab} = e(P, aQ)^{b} = e(bP, aQ)$

- ▶ BLS Multisignature: all signers need to sign the same message *m*
- ▶ Let three signers: $(sk_1, pk_1), (sk_2, pk_2), (sk_3, pk_3), pk_i = sk_iG \in \mathbb{G}_2, i \in [3]$
- The signers send their signatures: $\sigma_i = sk_i\mathbb{H}(m), i \in [3]$ to a submitter
- Submitter verifies/computes
 - ▶ proof of possession: $e(-\sigma_i, G) * e(\mathbb{H}_2(pk_i), pk_i) \stackrel{?}{=} 1, i \in [3]$
 - aggregated public key: $apk = pk_1 + pk_2 + pk_3$
 - ▶ signature: $\sigma = \sigma_1 + \sigma_2 + \sigma_3$
- ► Verification: $e(\sigma, -G) * e(\mathbb{H}(m), apk) \stackrel{?}{=} 1$

Optimised Multisignatures

Verification equation

$$e(\sigma, -G) * e(\mathbb{H}(m), apk) \stackrel{?}{=} 1$$

- EVM suitable because:
 - \triangleright -G can be precomputed
 - ▶ $\mathbb{H}(m)$ is efficiently computed in \mathbb{G}_1 (cofactor = 1 in \mathbb{G}_1 , around 254 bits in \mathbb{G}_2)
- ▶ Drawback: public keys are in \mathbb{G}_2 , aggregation/addition is costly (30k gas as compared to 500 in \mathbb{G}_1)
- Proposal:
 - ▶ Do the costly addition in \mathbb{G}_2 off-chain
 - lackbox Verify it on-chain using a newly introduced public key in \mathbb{G}_1

Optimised Multisignatures (contd)

ightharpoonup One public key in \mathbb{G}_1 , in addition to that in \mathbb{G}_2

$$pk_1 = sk * H \in \mathbb{G}_1$$

 $pk_2 = sk * G \in \mathbb{G}_2$

► Three participants: Alice, Bob, Charlie

$$apk = pk_{2, Alice} + pk_{2, Bob} + pk_{2, Charlie}$$

 $P_1 = pk_{1, Alice} + pk_{1, Bob} + pk_{1, Charlie}$

- ▶ apk is computed by the submitter (offchain computation)
- P₁ is computed by the contract (onchain computation)
- ► To check apk is correct.

$$e(P_1,G)*e(-H,apk)\stackrel{?}{=}1,$$

$$e(H,G)^{(sk_{\mathsf{Alice}}+sk_{\mathsf{Bob}}+sk_{\mathsf{Charlie}})} \text{ and its inverse in } G_{\mathcal{T}}$$

Protocol

- ► Check σ signed by apk, check the validity of apk with P_1 , combine them with a random scalar
- $ightharpoonup \alpha = \text{hash-to-scalar}(\sigma, m, P_1, apk), \text{ to check}$

$$e(\sigma, -G) * e(\mathbb{H}(m), apk) * (e(P_1, G) * e(-H, apk))^{\alpha} = 1$$

$$\implies e(\sigma, -G) * e(\mathbb{H}(m), apk) * e(\alpha P_1, G) * e(-\alpha H, apk) = 1$$

$$\implies e(\sigma - \alpha P_1, -G) * e(\mathbb{H}(m) - \alpha H, apk) = 1$$

► Further optimisation: Work with precomputed *apk* and subtract public keys corresponding to the absent signer

References

https://geometry.xyz/notebook/Optimized-BLS-multisignatures-on-EVM

2. https://eth2book.info/capella/part2/building_blocks/signatures/

Thank you for your attention. Questions?