NOIP 模拟赛

day3

题目名称	排序	上帝造题的七分钟	游戏
题目类型	传统型	传统型	传统型
可执行文件名	sort.exe	god.exe	game.exe
输入文件名	sort.in	god.in	game.in
输出文件名	sort.out	god.out	game.out
每个测试点时限	5.0 秒	1.0 秒	1.0 秒
内存限制	512 MB	512 MB	512 MB
测试点/包数目	10	10	10
测试点是否等分	是	是	是

提交源程序文件名

对于 C++ 语言	sort.cpp	god.cpp	game.cpp
对于 C 语言	sort.c	god.c	game.c
对于 Pascal 语言	sort.pas	god.pas	game.pas

编译选项

对于 C++ 语言	-02 -std=c++14 -Wl,stack=536870912	
对于 C 语言	-02 -std=c14 -Wl,stack=536870912	
对于 Pascal 语言	-02	

排序 (sort)

【题目描述】

在 2016 年, 佳媛姐姐喜欢上了数字序列。因而他经常研究关于序列的一些奇奇怪怪的问题, 现在他在研究一个难题, 需要你来帮助他。这个难题是这样子的:

给出一个 1 到 n 的全排列,现在对这个全排列序列进行 m 次局部排序,排序分为两种:

1:(0,l,r) 表示将区间 [l,r] 的数字升序排序

2:(1,l,r) 表示将区间 [l,r] 的数字降序排序

最后询问第q位置上的数字。

【输入格式】

从文件 sort.in 中读入数据。

输入数据的第一行为两个整数 n 和 m。n 表示序列的长度, m 表示局部排序的次数。

第二行为 n 个整数,表示 1 到 n 的一个全排列。

接下来输入 m 行,每一行有三个整数 op, l, r, op 为 0 代表升序排序,op 为 1 代表降序排序, l, r 表示排序的区间。

最后输入一个整数 q, q 表示排序完之后询问的位置。

【输出格式】

输出到文件 sort.out 中。

输出数据仅有一行,一个整数,表示按照顺序将全部的部分排序结束后第 q 位置上的数字。

【样例 1 输入】

6 3

1 6 2 5 3 4

0 1 4

1 3 6

0 2 4

3

【样例 1 输出】

5

【子任务】

对于 30% 数据, n,m<=100.

对于 50% 数据, n<=2000,m<=10000.

对于 70% 数据, n,m<=10000.

对于 100% 数据,1<=n,m<=100000.1<=q<=n.

上帝造题的七分钟(god)

【题目描述】

XLk 觉得《上帝造题的七分钟》不太过瘾,于是有了第二部。

"第一分钟, X 说, 要有数列, 于是便给定了一个正整数数列。

第二分钟, L 说, 要能修改, 于是便有了对一段数中每个数都开平方 (下取整) 的操作。

第三分钟, k 说, 要能查询, 于是便有了求一段数的和的操作。

第四分钟,彩虹喵说,要是 noip 难度,于是便有了数据范围。

第五分钟,诗人说,要有韵律,于是便有了时间限制和内存限制。

第六分钟,和雪说,要省点事,于是便有了保证运算过程中及最终结果均不超过 64 位有符号整数类型的表示范围的限制。

第七分钟,这道题终于造完了,然而,造题的神牛们再也不想写这道题的程序了。"

——《上帝造题的七分钟•第二部》

所以这个神圣的任务就交给你了。

【输入格式】

从文件 god.in 中读入数据。

第一行一个整数 n, 代表数列中数的个数。

第二行 n 个正整数,表示初始状态下数列中的数。

第三行一个整数 m, 表示有 m 次操作。

接下来 m 行每行三个整数 k,l,r, k=0 表示给 [l,r] 中的每个数开平方 (下取整),k=1 表示询问 [l,r] 中各个数的和。

【输出格式】

输出到文件 qod.out 中。

对于询问操作,每行输出一个回答。

【样例 1 输入】

10

1 2 3 4 5 6 7 8 9 10

5

0 1 10

1 1 10

1 1 5

0 5 8

1 4 8

【样例1输出】

19

7

6

【子任务】

对于 10% 数据, n,m<=10.

对于 20% 数据, n,m<=100.

对于 30% 数据, n,m<=1000.

对于 40% 数据, n,m<=10000.

对于 50% 数据, n,m<=50000.

对于 100% 的数据,1 <= n,m <= 100000,1 <= l <= r <= n,数列中的数大于 0,且不超过 1e12。

【提示】

数据不保证 L<=R 若 L>R,请自行交换 L,R,谢谢!

游戏 (game)

【题目描述】

everlasting 觉得太无聊了,于是决定和蒟蒻 yyc 玩游戏!

他们会玩 T 轮游戏,每轮游戏中有若干局,他们的初始积分为 1,每局的分值为 k,输的人的得分乘 k,赢的人得分乘 k^2。每轮游戏后,everlasting 都会询问这次游戏 双方的得分,但 yyc 记不住得分只能随口说两个得分。但他不知道这两个数最终会不会成为两个人的得分。于是 yyc 决定向你求助!

【输入格式】

从文件 game.in 中读入数据。

第一行一个正整数 T,表示游戏轮数。

接下来 T 行,每行两个数 x,y,表示 yyc 随口说出的两个人的得分。

【输出格式】

输出到文件 game.out 中。

T 行,每行一个 "Yes"或 "No"。表示这两个数是否合法。

【样例 1 输入】

5

3 9

8 8

245 175

233 666

9 9

【样例 1 输出】

Yes

Yes

Yes

No

No

【样例1解释】

第一轮中, 一局游戏 k=3.

第二轮中,两局游戏 k=2,每人赢一局。

第三轮中 k=5 和 7, 两个人分别赢一局。

【样例 2】

见选手目录下的 game/game2.in 与 game/game2.ans。

【提示】

请选手用较快的输入输出方式进行数据处理。

【子任务】

测试点编号₽	T¢³	X⁴₃	у₄⋾	其他性质↩
1₽	= 14	= 2ᡧ	≤ 10 ⁹ ¢ ³	x 是质数₽
2₽	= 14	≤ 10€	≤ 10€	₽
3₽	≤ 10€	≤ 10³⇔	≤ 10³₄⋾	₽
4₽	≤ 10³₽	≤ 10³⇔	≤ 10³∜	₽
5₽	= 1€	≤ 10 ⁹ €	≤ 10 ⁹ € ⁷	₽
6₽	≤ 5 × 10 ⁵ ¢ ³	≤ 10 ⁹ €	≤ 109↔	x 是质数₽
7₽	≤ 5 × 10 ⁵ ¢ ³	≤ 10 ⁹ €	≤ 109€	$8 N = 2^{k_{\phi}}$
8⇔	≤ 5 × 10 ⁵ ¢ ³	≤ 10³⇔	≤ 10³₄ ∣	₽
9₽	≤ 5 × 10 ⁵ ¢ ³	≤ 10³⇔	≤ 10³⇔	₽
10€	≤ 5 × 10 ⁵ ¢ ³	≤ 10³⇔	≤ 10³ಫ	₽
11₽	≤ 10³₽	≤ 10 ⁹ €	≤ 10 ⁹ √	43
12₽	≤ 10³₽	≤ 10 ⁹ €	≤ 109€	₽

Ψ

13₽	≤ 10⁵₽	≤ 10 ⁹ ¢ ⁷	≤ 10 ⁹ ¢ ⁷	43
14₽	≤ 10⁵₽	≤ 10 ⁹ √	≤ 10 ⁹ √	₽
15₽	≤ 106₽	≤ 109€	≤ 109€	x是质数₽
16↩	≤ 106₽	≤ 10⁵∜	≤ 10⁵∜	₽
17₽	≤ 106₽	≤ 109€	≤ 109€	₽
18₽	≤ 106€	≤ 109↔	≤ 109↔	₽
19₽	≤ 10 ⁶ €	≤ 10 ⁹ € ⁷	≤ 10 ⁹ € ⁷	₽
20₽	≤ 106€	≤ 10 ⁹ €	≤ 10 ⁹ € ⁷	₽