0 Preserving Suslin Trees with Finite Support

Definition 1. A sequence $\langle \mathbb{B}_{\alpha} \mid \alpha < \delta \rangle$ of cBa's is called continuous if $\mathbb{B}_{\alpha} <_{\text{reg}} \mathbb{B}_{\beta}$ for all $\alpha < \beta < \delta$ and for all limit $\alpha < \delta$, $\mathbb{B}_{\alpha} = \dim_{\beta < \alpha} \mathbb{B}_{\beta}$, that is \mathbb{B}_{α} is the completion of $\bigcup_{\beta < \alpha} \mathbb{B}_{\beta}$ or equivalently that union is dense in \mathbb{B}_{α} .

Lemma 2. if $\langle \mathbb{B}_{\alpha} \mid \alpha < \gamma \rangle$ is a continuous chain of cBa's and κ is regular uncountable so that every \mathbb{B}_{α} has the κ -cc then the direct limit \mathbb{B} of this sequence is κ -cc.

Proof. We proof this by induction on δ . If δ is a successor this is trivial. If δ is a limit, this is trivial for $\operatorname{cof}(\delta) \neq \kappa$, so assume $\operatorname{cof}(\delta) = \kappa$. Let $\{b_{\alpha} \mid \alpha < \kappa\}$ be a sequence in \mathbb{B}^{\times} . Let $\langle \gamma_{\alpha} \mid \alpha < \kappa \rangle$ be a normal sequence of limit ordinals cofinal in κ . For $\alpha < \kappa$ let p_{α} be the projection of \mathbb{B} onto \mathbb{B}_{α} , that is

$$p_{\alpha}(b) = \inf\{c \in \mathbb{B}_{\alpha} \mid b \leqslant c\}$$

For $\alpha < \delta$ limit let

$$\mathbb{B}_{<\alpha} = \bigcup_{\beta < \alpha} \mathbb{B}_{\beta}$$

It is easy to show the following:

Claim 3. If $\alpha < \kappa$ and $c \leq p_{\alpha}(b)$, $c \in \mathbb{B}_{\alpha}$ and $c, b \neq 0$, then $c \wedge b \neq 0$.

Now for any $\alpha < \delta$ choose $c_{\alpha} \in \mathbb{B}_{<\gamma_{\alpha}}$ so that

$$c_{\alpha} \leqslant p_{\gamma_{\alpha}}(b_{\alpha})$$

and find $\eta_{\alpha} < \gamma_{\alpha}$ so that $c_{\alpha} \in \mathbb{B}_{\eta_{\alpha}}$. There is a stationary $S \subseteq \kappa$ and some $\eta < \kappa$ so that $\eta = \eta_{\alpha}$ for α in S. Observe that

$$\{c_{\alpha} \mid \alpha \in S\}$$

cannot be an antichain as \mathbb{B}_{η} has the κ -cc. Thus there are $\alpha < \beta$ both in S so that $c_{\alpha} \parallel c_{\beta}$, witnessed by $c \in \mathbb{B}_{\eta}$. I claim that b_{α} and b_{β} are compatible. Let $a = c \wedge b_{\alpha} \wedge b_{\beta}$. We show that $a \neq 0$. By the claim, $c \wedge b_{\alpha} \neq 0$. Furthermore $c \wedge b_{\alpha} \in \mathbb{B}_{\gamma_{\alpha}} \subseteq \mathbb{B}_{\gamma_{\beta}}$ and

$$c \wedge b_{\alpha} \leqslant c \leqslant p_{\gamma_{\beta}}(b_{\beta})$$

and by the claim again, $a = c \wedge b_{\alpha} \wedge b_{\beta} \neq 0$.

Definition 4. We call a sequence $\langle \mathbb{P}_{\alpha} \mid \alpha < \delta \rangle$ of p.o.'s continuous iff $\mathbb{P}_{\alpha} <_{\text{reg}} \mathbb{P}_{\beta}$ for $\alpha < \beta < \delta$ and for limit $\alpha < \delta$, $\mathbb{P}_{\alpha} = \bigcup_{\beta < \alpha} \mathbb{P}_{\beta}$ with the natural ordering.

Corollary 5. If $\langle \mathbb{P}_{\alpha} \mid \alpha < \delta \rangle$ is a continuous sequence of separative p.o.'s which all satisfy the κ -cc for regular uncountable κ , then the direct limit \mathbb{P} , namely $\bigcup_{\alpha < \delta} \mathbb{P}_{\alpha}$, satisfies the κ -cc.

Proof. For $\alpha < \delta$ let $\mathbb{B}_{\alpha} \cong \mathrm{RO}(\mathbb{P}_{\alpha})$ so that \mathbb{B}_{α} is a subalgebra for \mathbb{B}_{β} if $\alpha < \beta < \delta$. It is easy to check that $\langle \mathbb{B}_{\alpha} \mid \alpha < \delta \rangle$ is a continuous sequence of cBa's and that each \mathbb{B}_{α} has the κ -cc. Thus $\mathbb{B} = \mathrm{RO}(\mathbb{P})$ has the κ -cc and so \mathbb{P} does, too.

Corollary 6. If T is a Suslin tree, then finite support iterations preserve the property $\operatorname{ccc}+$ "preserving T". That is if $\mathbb{Q}=\langle \dot{\mathbb{Q}}_{\alpha} \mid \alpha < \delta \rangle$ is a finite support iteration such that $\mathbb{Q}_{\alpha} \Vdash \ \ \dot{\mathbb{Q}}_{\alpha}$ is ccc and $\operatorname{preserves} \check{T}$ " then $\mathbb{Q}=\mathbb{Q}_{\delta}$ is ccc and $\operatorname{preserves} T$, too.

Proof. By induction on δ . This is trivial for δ successor, so assume otherwise. Clearly, \mathbb{Q} is ccc so that \mathbb{Q} preserves T if and only if $\mathbb{Q} \times T$ is ccc. Now

$$\mathbb{Q} \times T = \operatorname{dir\, lim}_{\alpha < \delta} \mathbb{Q}_{\alpha} \times T$$

and $\langle \mathbb{Q}_{\alpha} \mid \alpha < \delta \rangle$ is a continuous sequence of p.o.'s (simply by finite support). As each \mathbb{Q}_{α} is ccc and preserves T by induction, $\mathbb{Q}_{\alpha} \times T$ is ccc for all $\alpha < \delta$. Hence $\mathbb{Q} \times T$ is ccc as well.