

ETH zürich

1/15

Tobia Claglüna :: Midterm Presentation

The Langevin Approach to Discretize the Collision Operator

Introduction: Combining Vlasov and Fokker-Plank

Vlasov Equation with a Fokker Plack collisional term (Risken [1984]):

$$\frac{\partial f(\mathbf{r}, \mathbf{v})}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{\mathbf{F}}{\mathbf{m}} \cdot \frac{\partial f}{\partial \mathbf{v}} = \left(\frac{\partial f}{\partial t}\right)_{\text{coll}} \tag{1}$$

$$\left(\frac{\partial f(\mathbf{v})}{\partial t}\right)_{\text{coll}} = -\frac{\partial}{\partial \mathbf{v}} \cdot \left(f\left\langle \Delta \mathbf{v}\right\rangle\right) + \frac{1}{2} \frac{\partial^2}{\partial \mathbf{v} \partial \mathbf{v}} : \left(f\left\langle \Delta \mathbf{v} \Delta \mathbf{v}^\mathsf{T}\right\rangle\right)$$
(2)

 F_d and D are approximated by Rosenbluth Potentials via following elliptic identities (Rosenbluth et al. [1957]):

$$\nabla_{\mathbf{v}}^{2} \nabla_{\mathbf{v}}^{2} G(\mathbf{v}) = -8\pi f(\mathbf{v}) \tag{3}$$

$$\nabla_{\mathbf{v}}^2 G(\mathbf{v}) = H(\mathbf{v}) \tag{4}$$

2/15

Tobia Clagliina (LSM, PSI)

April 4, 2023

Resulting Langevin Scheme and Problem Setting

Stochasticity is accounted for by dW_t following $\langle dW_t \rangle = 0$ and $\langle dW_t dW_t^T \rangle = I \cdot dt$.

$$\begin{cases}
\frac{d\mathbf{r}}{dt} = \mathbf{v} \\
\frac{d\mathbf{v}}{dt} = \frac{\mathbf{F}}{m} + \mathbf{F}_d + \mathbf{Q} \cdot d\mathbf{W}_t \\
\mathbf{D} = \mathbf{Q}\mathbf{Q}^T
\end{cases} \tag{5}$$

3 / 15

Disorder Induced Heating (DIH):

- Cold plasma beam evolves from a disordered state to an ordered one when emitted from a electron gun
- The beam is heated by the disorder in the plasma
- Resolving collisions is thus crucial for the simulation of the beam

Tobia Claglüna (LSM, PSI)

April 4, 2023

Chainable Differential Stencils in 3D

- Allows concatentation of any 1D user defined stencils
- Can define one stencil type per dimension and operator

Generalized Hessian Operator for the calculation of the Diffusion tensor \boldsymbol{D}

- Want: FD / BD on system boundaries; centered differencing in the interior
- Can create separate operators for center, face, edge and slab subdomains of the 3D grid

Figure: Error Convergence of concatenated stencils

Tobia Claglüna (LSM, PSI)

April 4, 2023 4/15

Chainable Differential Stencils in 3D

Defining an operator for the second derivative: $\frac{\partial}{\partial x} \cdot \frac{\partial}{\partial x}$

Listing: Stencil Definition

```
template<Dim D, typename T, class Callable>
inline T centered_stencil(const T &hInv, const Callable &F, size_type i, j, k){
    return 0.5 * hInv * (- shiftedIdxApply<D>(F,-1,i,j,k) + shiftedIdxApply<D>(F,1,i,j,k));
}
```

Listing: Operator Definition

Tobia Claglüna (LSM, PSI)
April 4, 2023

Analysis of Current Solver (I)

- √) Not parallelizeable
 - Some parts had to be made GPU compatible
 - Shared memory parallelism only for collisionless solver
 - ✓ Consisted of two large files of convoluted code
 - Improve general readability
 - Refactoring
 - Split into multiple files

 \checkmark : fixed (\checkmark) : partially accomplished \checkmark : still problematic

Tobia Claglüna (LSM, PSI)

April 4, 2023 6/15

Analysis of Current Solver (II)

- (\checkmark) With collisions, crashed after a few timesteps
 - Particles leave domain with FFT solver (open boundary conditions)
 - X Results suggest Drag/Diffusion forces are too strong
 - Current workaround: Scale each term by a tunable factor
 - Would be cheaper to compute collisions every *n*-th timestep (Stoel [2015])

 \checkmark : fixed (\checkmark) : partially accomplished \nearrow : still problematic

Tobia Claglüna (LSM, PSI) April 4, 2023 7/15

Analysis of Current Solver (III)

- (✓) Results only stable for considered time frame (5 plasma periods)
 - Apparent upward trend for longer time frames (see next slide)
- High memory consumption for 256³ spatial grid (use Kokkos functionality for profiling)
 - Some fields could be shared (i.e. currently storing 17 Scalar fields; not counting temp. fields of the 3 FFT solvers!)

 \checkmark : fixed (\checkmark) : partially accomplished \checkmark : still problematic

Tobia Claglüna (LSM, PSI)

April 4, 2023

Comparison to P3M

Change in mesh size drastically improves results, though an upwards trend becomes apparent:

Figure: Normalized Emittance of a cold sphere w/o collisions

Tobia Claglüna (LSM, PSI)
April 4, 2023

Comparison to P3M

Constant focusing factor is an important hyperparameter:

Figure: Decreased Constant Focusing

Figure: Increased Constant Focusing

10 / 15

Tobia Claglüna (LSM, PSI)

April 4, 2023

Timeline in Restrospect

Date	Target Goals
30/01	Assist Severin and ensure correctness of current implementation
20/02	Find Order of convergence / accuracy and compare whether really much better than P3M (even though it might still run only on single core)
20/02	Ensure Performance Portability (MPI, OpenMP and GPU)
06/03	Benchmarking of accuracy, runtime and scalability
27/03	Start improving most pressing bottlenecks

Table: Initial Timeline; Font-Encoding: partially accomplished, not-accomplished

Tobia Claglüna (LSM, PSI)

April 4, 2023 11/15

Timeline Going Forward

Date	Target Goals
08/05	Find causes of divergence / phase shift in comparison to P3M
	Carry out rigorous profiling
	Analyse Friction / Diffusion coefficients
08/05	Implement algorithmic improvements and compare accuracy / performance to previous implementation
12/06	Start writing and code clean-up
03/07	Submission

Table: Timeline with approximate milestones

Tobia Clagliina (LSM, PSI)

April 4, 2023 12/15

Conclusion

- Implementation of Generalized Hessian Operator
- Refactoring and verification of Severin's results
- Comparison to P3M (observation of unphysical upward trend)

Personal Take-Aways:

- Don't loose yourself in small details
- Actively seek discussions about the current problems with supervisors and students
- Keep an eye on the timeline, adjust if necessary

Tobia Claglüna (LSM, PSI)

April 4, 2023

References I

Hannes Risken. Fokker-Planck Equation. Springer, 1984.

Marshall N. Rosenbluth, William M. MacDonald, and David L. Judd. Fokker-planck equation for an inverse-square force. Phys. Rev., 107:1–6, Jul 1957. doi: 10.1103/PhysRev.107.1. URL https://link.aps.org/doi/10.1103/PhysRev.107.1.

Linda Stoel. The numerical solution of the vlasov-poisson-fokker-planck equation in the context of accelerator physics. Master's thesis, Utrecht University, 2015.

James D. Callen. Plasma kinetic theory, 2018. Accessed: 2023-01-29.

Tobia Claglüna (LSM, PSI)

April 4, 2023 14/15

Rosenbluth Potentials Rosenbluth et al. [1957]

Potentials on velocity space only Callen [2018]:

$$\Gamma = \frac{q^4 \ln(\Lambda)}{4\pi\epsilon_0^2 m^2} \tag{6}$$

$$H(\mathbf{v}) = 2 \int d^3 \mathbf{v}' \frac{f(\mathbf{v}')}{|\mathbf{v} - \mathbf{v}'|}$$
(7)

$$G(\mathbf{v}) = \int d^3 \mathbf{v}' f(\mathbf{v'}) |\mathbf{v} - \mathbf{v'}| \qquad (8)$$

$$\langle \Delta \mathbf{v} \rangle = \Gamma \frac{\partial H}{\partial \mathbf{v}} = \mathbf{F_d}$$
 (9)

$$\langle \Delta \mathbf{v} \Delta \mathbf{v}^T \rangle = \Gamma \frac{\partial^2 G}{\partial \mathbf{v} \partial \mathbf{v}} = \mathbf{D}$$
 (10)

Resulting Elliptic Identities:

$$\nabla_{\mathbf{v}}^{2}\nabla_{\mathbf{v}}^{2}G(\mathbf{v}) = -8\pi f(\mathbf{v}) \qquad (11)$$

$$\nabla_{\mathbf{v}}^{2}G(\mathbf{v})=H(\mathbf{v}) \tag{12}$$

15 / 15

Tobia Clagiüna (LSM, PSI)

April 4, 2023