The Optimal NBA Roster-Building Strategy

Patrick Simpson Dr. Max Buot

Xavier University

April 29, 2020

Outline

1 What is Cluster Analysis?

2 Applying the Agglomerative Clustering Algorithm

3 Applying Hierarchical Clustering to NBA Data

Background

• Clustering is in our everyday life

Cluster analysis methodology

Early uses

Hierarchical Clustering

• Two different approaches:

- Agglomerative
- Divisive

Agglomerative Hierarchical Clustering Algorithm

Algorithm Agglomerative Clustering Algorithm

- 1: Starting with a dataset of N observations, each begins in its own cluster. Form an $N \times N$ proximity matrix.
- 2: Identify the two most similar clusters.
- 3: Merge those clusters and recompute the proximity matrix (Note: it will have one fewer row and column than the previous matrix).
- 4: Repeat steps (2) and (3) until the proximity matrix is 1x1.

Outline

What is Cluster Analysis?

2 Applying the Agglomerative Clustering Algorithm

3 Applying Hierarchical Clustering to NBA Data

Sample Data

Step I

Algorithm Agglomerative Clustering Algorithm

- 1: Starting with a dataset of N observations, each begins in its own cluster. Form an $N \times N$ proximity matrix.
- 2: Identify the two most similar clusters.
- 3: Merge those clusters and recompute the proximity matrix (Note: it will have one fewer row and column than the previous matrix).
- 4: Repeat steps (2) and (3) until the proximity matrix is 1x1.

Creating the Proximity Matrix

There are different measures of distance between two objects; in this model Euclidean Distance is used.

Definition

Let x and y be two points. The Euclidean Distance function between x and y can be expressed as: $d_{euc}(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$

Proximity Matrix

	1	2	3	4	5
1	0	2.24	10.63	9.43	10.44
2	2.24	0	8.60	7.21	9.06
3	10.63	8.60	0	3.16	4.47
4	9.43	7.21	3.16	0	7.07
5	10.44	9.06	4.47	7.07	0

Step II

Algorithm Agglomerative Clustering Algorithm

- 1: Starting with a dataset of N observations, each begins in its own cluster. Form an $N \times N$ proximity matrix.
- 2: Identify the two most similar clusters.
- 3: Merge those clusters and recompute the proximity matrix (Note: it will have one fewer row and column than the previous matrix).
- 4: Repeat steps (2) and (3) until the proximity matrix is 1x1.

Merging the Two Most Similar Clusters

	1	2	3	4	5
1	0	2.24	10.63	9.43	10.44
2	2.24	0	8.60	7.21	9.06
3	10.63	8.60	0	3.16	4.47
4	9.43	7.21	3.16	0	7.07
5	10.44	9.06	4.47	7.07	0

Step III

Algorithm Agglomerative Clustering Algorithm

- 1: Starting with a dataset of N observations, each begins in its own cluster. Form an $N \times N$ proximity matrix.
- 2: Identify the two most similar clusters.
- 3: Merge those clusters and recompute the proximity matrix (Note: it will have one fewer row and column than the previous matrix).
- 4: Repeat steps (2) and (3) until the proximity matrix is 1x1.

Recomputing the Proximity Matrix

	12	3	4	5
12	0			
3		0	3.16	4.47
4		3.16	0	7.07
5		4.47	7.07	0

How do we account for a multi-observational cluster?

Measure of Dissimilarity

Complete Linkage

Definition

Let G and H represent two clusters. The dissimilarity d(G,H) between G and H is computed from the set of pairwise observation dissimilarities ij where one member of the pair i is in G and the other j is in H. The dissimilarity of G and H with complete linkage is computed as follows:

$$d_{CL}(G,H) = \max_{i \in G, j \in H} d_{ij}$$

- Average Linkage
- Single Linkage

Recomputing the Proximity Matrix (cont.)

	12	3	4	5
12	0			
3		0	3.16	4.47
4		3.16	0	7.07
5		4.47	7.07	0

$$d_{CL}(12,3) = \max_{i \in G, j \in H} d_{ij}$$

$$d_{CL}(12,3) = \max(d_{euc}(13), d_{euc}(23))$$

$$d_{CL}(12,3) = \max(10.63, 8.60)$$

$$d_{CL}(12,3) = 10.63$$

Updated Proximity Matrix

	12	3	4	5
12	0	10.63	9.43	10.44
3	10.63	0	3.16	4.47
4	9.43	3.16	0	7.07
5	10.44	4.47	7.07	0

Step IV

Algorithm Agglomerative Clustering Algorithm

- 1: Starting with a dataset of N observations, each begins in its own cluster. Form an $N \times N$ proximity matrix.
- 2: Identify the two most similar clusters.
- 3: Merge those clusters and recompute the proximity matrix (Note: it will have one fewer row and column than the previous matrix).
- 4: Repeat steps (2) and (3) until the proximity matrix is 1x1.

Applying the Algorithm

	12	3	4	5
12	0	10.63	9.43	10.44
3	10.63	0	3.16	4.47
4	9.43	3.16	0	7.07
5	10.44	4.47	7.07	0

Applying the Algorithm (Cont.)

	12	34	5
12	0	10.63	10.44
34	10.63	0	4.47
5	10.44	4.47	0

Applying the Algorithm (Cont.)

	12	345
12	0	10.63
345	10.63	0

Applying the Algorithm (Cont.)

	12345
12345	0

Visualizing the Hierarchical Relationship

Outline

What is Cluster Analysis?

2 Applying the Agglomerative Clustering Algorithm

3 Applying Hierarchical Clustering to NBA Data

NBA Clustering

- Goal
 - To cluster players into archetypes based on skillsets

- Challenges
 - Must use player performance to determine ability. These are not the same.
 - Accounting for variables such as team philosophy, role in offense, level of teammates, etc.

Challenges (cont.)

It is unlikely Gerald Green's shooting ability improved in year 13.

Boston 2016-17 (47 gp)

Houston 2017-18 (41 gp)

The Data

- Data was collected via NBA.com, synergy sports, pbpbasketball.com, basketball-reference.com, and fivethirtyeight.com by scraping the sites.
- Tracking data did not become available until the 2013-14 season, so I only focused on the past 5 seasons.

The Data

- Data was collected via NBA.com, synergy sports, pbpbasketball.com, basketball-reference.com, and fivethirtyeight.com by scraping the sites.
- Tracking data did not become available until the 2013-14 season, so I only focused on the past 5 seasons.

Player	Avg. Sec Per Touch	Avg. Dribble Per Touch	Pts. Per Touch
LeBron James	4.52	3.32	0.32
Stephen Curry	3.73	3.45	0.36
James Harden	6.37	5.92	0.41

Table: 2018-19 Per Second Spectrum

Proximity Matrix

- For each season, an 8 component vector was created for each player.
- The Components:
 - 3PT Shooting
 - Mid-Range Scoring
 - Inside Scoring
 - Roll Gravity (how effective a player is in the pick-and-roll)
 - Playmaking (ability to create shots for teammates)
 - Self-Creation (ability to get own shot)
 - Rebounding

3PT Shooting Component (Unadjusted)

- Classified 3pt attempts as contested, open, or wide open based on defender distance.
- For each category, calculated the players shooting ability over expectation (SAOE).
- Ex: (SAOE)_{open} = proportion of open attempts (fgp-expected fgp)
- Also considered the location of shot.
- unadjustedshootingcomponent = $\sum_{i \in A} (SAOE_i)$
 - A = (Tightly Contested, Open, Wide Open, ATB, Corner)

3PT Shooting Component (Adjusted)

- Normalized the number of 3 point field goal attempts for each player.
- Passed the normalized variable through a sigmoid function to obtain a value, r.
- Then $SAOE_{adjusted} = (r) SAOE_{unadjusted}$ (given $SAOE_{unadjusted} > 0$).

Name	Season	FG3A	Component
Kyle Korver	2014-15	449	0.2637
JJ Redick	2015-16	413	0.2134
Stephen Curry	2015-16	884	0.2089
Joe Harris	2018-19	386	0.2059
Kyle Korver	2013-14	392	0.1972
Stephen Curry	2014-15	646	0.1931

2018-19 Hierarchical Clustering Results

- There were 423 players who played at least 15 games.
- I created 15 clusters (avg. 28 player per cluster)
- \bullet 5 clusters had an average VORP > 0.
 - Superstars
 - Supporting Stars
 - 2-way Bigs
 - Playmaking Defenders
 - 3&D Wings

Archetype	PPG	RPG	APG	AVG. SALARY
Superstars	23.6	7.1	5.0	24.5M
Supporting Stars	14.2	4.6	3.8	16.6M
2-Way Bigs	15.2	9.5	2.4	15.8M
Playmaking Defenders	8.0	3.9	2.1	7.3M
3&D Wings	10.5	2.9	2.6	7.4M

Archetype	PPG	RPG	APG	AVG. SALARY
Superstars	23.6	7.1	5.0	24.5M
Supporting Stars	14.2	4.6	3.8	16.6M
2-Way Bigs	15.2	9.5	2.4	15.8M
Playmaking Defenders	8.0	3.9	2.1	7.3M
3&D Wings	10.5	2.9	2.6	7.4M

Superstars: LeBron James, Kevin Durant, Kawhi Leonard

Archetype	PPG	RPG	APG	AVG. SALARY
Superstars	23.6	7.1	5.0	24.5M
Supporting Stars	14.2	4.6	3.8	16.6M
2-Way Bigs	15.2	9.5	2.4	15.8M
Playmaking Defenders	8.0	3.9	2.1	7.3M
3&D Wings	10.5	2.9	2.6	7.4M

Superstars: LeBron James, Kevin Durant, Kawhi Leonard Supporting Stars: Stephen Curry, Kyrie Irving, Kyle Lowry

Archetype	PPG	RPG	APG	AVG. SALARY
Superstars	23.6	7.1	5.0	24.5M
Supporting Stars	14.2	4.6	3.8	16.6M
2-Way Bigs	15.2	9.5	2.4	15.8M
Playmaking Defenders	8.0	3.9	2.1	7.3M
3&D Wings	10.5	2.9	2.6	7.4M

Superstars: LeBron James, Kevin Durant, Kawhi Leonard Supporting Stars: Stephen Curry, Kyrie Irving, Kyle Lowry 2-Way Bigs: Joel Embiid, Anthony Davis, Rudy Gobert

Archetype	PPG	RPG	APG	AVG. SALARY
Superstars	23.6	7.1	5.0	24.5M
Supporting Stars	14.2	4.6	3.8	16.6M
2-Way Bigs	15.2	9.5	2.4	15.8M
Playmaking Defenders	8.0	3.9	2.1	7.3M
3&D Wings	10.5	2.9	2.6	7.4M

Superstars: LeBron James, Kevin Durant, Kawhi Leonard

Supporting Stars: Stephen Curry, Kyrie Irving, Kyle Lowry

2-Way Bigs: Joel Embiid, Anthony Davis, Rudy Gobert

Playmaking Defenders: Draymond Green, Andre Iguodala, Lonzo Ball

Archetype	PPG	RPG	APG	AVG. SALARY
Superstars	23.6	7.1	5.0	24.5M
Supporting Stars	14.2	4.6	3.8	16.6M
2-Way Bigs	15.2	9.5	2.4	15.8M
Playmaking Defenders	8.0	3.9	2.1	7.3M
3&D Wings	10.5	2.9	2.6	7.4M

Superstars: LeBron James, Kevin Durant, Kawhi Leonard

Supporting Stars: Stephen Curry, Kyrie Irving, Kyle Lowry

2-Way Bigs: Joel Embiid, Anthony Davis, Rudy Gobert

Playmaking Defenders: Draymond Green, Andre Iguodala, Lonzo Ball

3&D Wings: Klay Thompson, Robert Covington, P.J. Tucker

2018-19 Hierarchical Clustering Results

Future Research

Linking clusters by season

• Predicting which clusters rookies will belong to

Modeling career trajectories

Thank You

 Thank you to everyone who helped and supported me during my four years at Xavier!