Pflichtenheft

für

Softwareentwicklung in der Medizintechnik im WS 22/23

Lorenz Reithmayr 354458

M.Sc. Automatisierungstechnik RWTH Aachen University

1 Zielbestimmung	3
1.1 Musskriterien	3
2 Produkteinsatz	3
2.1 Anwendungsbereiche	3
2.2 Zielgruppen	3
2.3 Betriebsbedingungen	3
3 Produktübersicht	3
4 Produktfunktionen	3
4.1 Einlesen von CT-Datensätzen	4
4.2 Funktion zur Fensterung	4
4.3 Rendering einer drehbaren 3D-Modellansicht	4
4.4 Traversieren des 2D-Datensatzes durch Wahl der Schnittebene	5
4.5 Segmentierung mittels Grenzwertverfahren	5
4.6 Segmentierung mittels Region Growing	5
4.7 Definition von Bestrahlungs- und Schonbereichen	6
4.8 Speichern des Bestrahlungs- und Schonbereiches im Koordinatensystem des Bestrahlungsgeräts	6
5 Produktdaten	6
5.1 Inputs	7
5.2 Outputs	7
5.3 Software-Architektur	7
5.4 Software-Tests	8
6 Produktleistungen	8
7 Technische Produktumgebung	8
7.1 Software	8

1 Zielbestimmung

1.1 Musskriterien

- Ermöglichen der CT-basierten Planung einer Strahlentherapie am Kopf
- Verarbeitung von CT-Bilddaten zu medizinisch nutzbarer Darstellung
- Definition von Ziel- und Schonbereich im CT-Modell
- Ausgabe der geplanten und erfassten Landmarken an ein Bestrahlungsgerät
- Erstellung der Software in der Programmiersprache C++
- GUI-Erstellung durch Qt

2 Produkteinsatz

2.1 Anwendungsbereiche

- Klinische Einsatzgebiete in der Planung und Durchführung von Tumortherapien
- Einsatz in Praxen niedergelassener Radiologen oder Onkologen im Rahmen Patientenbehandlung

2.2 Zielgruppen

• Medizinisch geschultes Fachpersonal

2.3 Betriebsbedingungen

- Anwendung in OP- oder Praxisumgebung
- Tägliche Betriebszeit von bis zu 24 h

3 Produktübersicht

- Einlesen von CT-Datensätzen im .raw-Bildformat
- Einstellbare Parameter zur Fensterung
- Rendering einer frei drehbaren 3D-Modellansicht des Datensatzes
- Wählbare Darstellung der Schnittebenen des Datensatzes
- Segmentierung des Datensatzes mittels Grenzwertverfahren
- Segmentierung des Datensatzes mittels Region Growing
- Definition von kugelförmigen Bestrahlungs- und Schonvolumina in der 2D-Schichtdarstellung
- Kalibrierung externer Koordinatensysteme durch Punkt-zu-Punkt-Registrierung
- Ausgabe der definierten Bestrahlungs- und Schonvolumina in Koordinatensystem des Bestrahlungsgeräts

4 Produktfunktionen

4.1 Einlesen von CT-Datensätzen

Lastenheft: 2.4.1.1.1

- Kategorie: primär
- Vorbedingung: CT-Datensatz steht im .raw-Format zur Verfügung
- Nachbedingung Erfolg: Datensatz steht zur weiteren Verarbeitung zur Verfügung und erscheint statisch gerendert in einem GUI-Fenster
- Nachbedingung Fehlschlag: Datensatz konnte nicht eingeladen werden
- Auslösendes Ereignis: Auswahl der einzulesenden Datei über GUI
- Beschreibung:
 - Benutzer kann auf der Benutzeroberfläche über einen geeigneten Button ein Dialogfenster zur Dateiauswahl öffnen
 - Bei fehlerhaft erfolgter Dateneingabe wird eine entsprechende Fehlermeldung ausgegeben
 - Nach erfolgreichem Ladevorgang werden die Daten automatisch mittels eines grenzwertbasierten Verfahrens gerendert und es steht eine Top-Down-3D-Ansicht in einem GUI-Fenster zur Verfügung

4.2 Funktion zur Fensterung

Lastenheft: 2.4.1.1.2

- Kategorie: primärVorbedingung: -
- Nachbedingung Erfolg: 2D-Ansicht des Datensatzes wird mit den gewählten Windowing-Parametern dargestellt
- Nachbedingung Fehlschlag: Windowing-Darstellung ist nicht erfolgt oder fehlerhaft
- Auslösendes Ereignis: Einstellung der Schieberegler in der GUI
- Beschreibung:
 - Benutzer kann auf der Benutzeroberfläche die dafür vorgesehenen Schieberegler "Center" und "Window Size" im Rahmen festgelegter Grenzwerte manipulieren
 - Manipulation kann bereits vor Einladen der CT-Daten geschehen
 - Bei bereits eingeladenen CT-Daten werden die Änderung sofort in der 2D-Ansicht sichtbar

4.3 Rendering einer drehbaren 3D-Modellansicht

Lastenheft: 2.4.1.1.3

- Kategorie: primär
- Vorbedingung: Fehlerfreies Einladen der CT-Bilddaten und korrekte Ausführung des Region-Growing-Algorithmus
- Nachbedingung Erfolg: 3D-Ansicht wurde gerendert und ist frei drehbar
- Nachbedingung Fehlschlag: Es ergeben sich Darstellungsfehler oder unvorhergesehenes Verhalten bei der Manipulation mit dem Maus-Cursor

- Auslösendes Ereignis: Ausführen des Region-Growing-Algorithmus
- Beschreibung:
 - Benutzer führt über eine Schaltfläche den Region-Growing-Algorithmus aus (siehe Punkt 4.6)
 - Das 3D-Modell kann anschließend bei gedrückter rechter Maustaste frei gedreht werden

4.4 Traversieren des 2D-Datensatzes durch Wahl der Schnittebene

Lastenheft: Abgeleitet aus 2.4.1.1 und 2.4.1.3

- Kategorie: primär
- **Vorbedingung:** Fehlerfreies Einladen der CT-Bilddaten
- Nachbedingung Erfolg: 2D-Schnittbilder können mittels eines GUI-Sliders durchlaufen werden; Einstellungen zur Fensterung und Segmentierung werden in allen Ebenen übernommen
- Nachbedingung Fehlschlag: Ebenen werden falsch dargestellt oder Windowingund Segmentierungseinstellungen werden nicht übernommen
- Auslösendes Ereignis: Bewegen eine GUI-Sliders
- Beschreibung:
 - Benutzer bewegt einen GUI-Sliders und wählt so die darzustellende Ebene aus
 - Das 2D-Bild wird sofort aktualisiert und die mit den weiteren Slidern eingestellten Windowing- und Thresholdeinstellungen werden übernommen

4.5 Segmentierung mittels Grenzwertverfahren

Lastenheft: Abgeleitet aus 2.4.1.1 und 2.4.1.3

- Kategorie: primär
- Vorbedingung: Fehlerfreies Einladen der CT-Bilddaten
- **Nachbedingung Erfolg:** Segmentierten Bereiche erscheinen hervorgehoben in der 2D-Schnittansicht und haben Einfluss auf die 3D-Darstellung
- **Nachbedingung Fehlschlag:** Segmentierte Bereiche werden nicht oder falsch dargestellt und/oder führen zu Fehlern in der 3D-Darstellung
- Auslösendes Ereignis: Bewegen eine GUI-Sliders
- Beschreibung:
 - Benutzer bewegt einen GUI-Sliders und wählt so den Grenzwert für die Segmentierung
 - Segmentierte Bereiche erscheinen in Rot in der 2D-Schnittansicht
 - o Segmentierte Bereiche werden erneut in 3D gerendert

4.6 Segmentierung mittels Region Growing

Lastenheft: 2.4.1.2.1

- Kategorie: primär
- Vorbedingung: Fehlerfreies Einladen der CT-Bilddaten; Auswahl eines Saatpunkts

- **Nachbedingung Erfolg:** Segmentierte Bereiche in der zusammenhängenden Region werden als mit dem Cursor manipulierbares 3D-Modell dargestellt
- Nachbedingung Fehlschlag: Segmentierte Bereiche werden nicht oder falsch dargestellt und/oder Bereiche außerhalb der Region werden gerendert
- **Auslösendes Ereignis:** Wahl eines Saatpunktes und Betätigung eines GUI-Buttons zum Starten des Algorithmus
- Beschreibung:
 - o Nutzer wählt in der statischen 3D-Ansicht einen geeigneten Saatpunkt
 - Nutzer betätigt einen assoziierten GUI-Button, wodurch der Algorithmus gestartet wird
 - o Die segmentierte Region wird im 3D-Fenster dargestellt und ist manipulierbar

4.7 Definition von Bestrahlungs- und Schonbereichen

Lastenheft: 2.4.1.3.1 und 2.4.1.3.2

- Kategorie: primär
- Vorbedingung: Fehlerfreies Einladen der CT-Bilddaten;
- Nachbedingung Erfolg: Bestrahlungs- und Schonvolumina werden in der 2D-Ansicht als Kreise mit benutzerdefinierten Radien dargestellt
- Nachbedingung Fehlschlag: Regionen werden falsch oder nicht dargestellt
- Auslösendes Ereignis: Betätigung des assoziierten GUI-Knopfes
- Beschreibung:
 - Nutzer wählt in der GUI den jeweiligen Auswahlknopf
 - Nutzer kann nun den Mittelpunkt sowie den Radius des gewünschten Volumens in der 2D-Schnittansicht setzen
 - Die Definitionskreise der beiden Volumina werden in der 2D-Ansicht dargestellt und k\u00f6nnen ver\u00e4ndert bzw. erneut gesetzt werden

4.8 Kalibrierung externer Koordinaten durch Punkt-zu-Punkt-Registrierung

Lastenheft: 2.4.1.4.1

- Kategorie: primär
- **Vorbedingung:** 3D-Modell mittels Region-Growing-Algorithmus; Referenzkoordinaten des externen Koordinatensystems
- Nachbedingung Erfolg: Transformationsmatrix zur Überführung von CT-Bildkoordinaten zu externen Koordinaten wurde erstellt
- Nachbedingung Fehlschlag: Transformationsmatrix fehlerhaft
- Auslösendes Ereignis: Betätigung des assoziierten GUI-Knopfes
- Beschreibung:
 - Nutzer rendert zunächst das 3D-Modell mittels Region Growing
 - Anschließend können im 3D-Modell sechs Kalibrierungspunkte ausgewählt werden
 - Aus den sechs gewählten und den sechs bereits bekannten Referenzpunkten wird die Transformationsmatrix berechnet

4.9 Speichern des Bestrahlungs- und Schonbereiches im Koordinatensystem des Bestrahlungsgeräts

Lastenheft: 2.4.1.4.1

- Kategorie: primär
- **Vorbedingung:** Bestrahlungs- und Zielbereiche definiert; Transformationsmatrix berechnet
- Nachbedingung Erfolg: Bestrahlungs- und Schonvolumina wurden mit korrekten Koordinaten in eine Textdatei geschrieben
- Nachbedingung Fehlschlag: Bereichskoordinaten wurden falsch transformiert;
 Schreibvorgang konnte nicht erfolgen
- Auslösendes Ereignis: Betätigung des assoziierten GUI-Knopfes
- Beschreibung:
 - Nutzer wählt in der GUI den jeweiligen Auswahlknopf
 - Nutzer wählt den Dateinamen und den Speicherort der Textdatei

5 Produktdaten

5.1 Inputs

• CT-Bilddaten in Form von 16-Bit-Grauwerten als .raw-Datei

5.2 Outputs

 Textdatei im .txt-Dateiformat mit den Koordinaten des Bestrahlungs- und Schonbereiches im Koordinatensystem des Bestrahlungsgerätes

5.3 Software-Architektur

- Trennung der GUI-Funktionalitäten und der Bildverarbeitungsalgorithmen in externer Bibliothek
 - o GUI-Erstellung mit Qt
 - Rendering der Benutzeroberfläche
 - Implementierung der Pushbuttons und Schieber
 - Darstellung der 2D-Grenzwertsegmentierung
 - Darstellung der 3D-Modelle
 - Erfassung und Übergabe von Mausposition und -bewegung und Klick-Events
 - Bildverarbeitung-Bibliothek
 - Einlesen der Bilddaten
 - Fensterung
 - 3D-Grenzwert-Segmentierung und Rendering
 - Region-Growing-Segmentierung
 - Punkt-zu-Punkt-Registrierung
- Implementierung einer Helfer-Bibliothek, die hilfreiche Algorithmen implementiert und allen anderen Klassen zur Verfügung stellt

- Implementierung einer Error-Handling-Klasse zur Vermeidung von Exceptions
 - o Datentyp Status zur Rückgabe von Fehlermeldungen bzw. OK
 - Datentyp StatusOr zur Rückgabe von Fehlermeldungen oder dem gewünschten Wert/Objekt
- Swim-Lane-Diagramm der Bedienung

5.4 Software-Tests

 Software-Unit-Tests mithilfe des Qt-Testframeworks für die Windowing-Funktionalität sowie die Punkt-zu-Punkt-Registrierung werden in einer separaten Software-Bibliothek implementiert

6 Produktleistungen

- Pixelgenaue Angabe von Koordinaten und Radien
- Schnelle, flüssige Darstellung des 3D-Modells
- Intuitive Anwendung über eine GUI

7 Technische Produktumgebung

7.1 Software

- Nutzer-Betriebssystem: Windows 10/11 oder Linux
- Qt 5
- Mit C++ 14 kompatibler Compiler
- Externe Bibliotheken
 - o Eigen 3.14 liegt als submodule bei