TOPOLOGÍA I

Prueba Tema 1 21 de noviembre de 2013

1. En \mathbb{R} se considera la familia de intervalos

$$\mathcal{B}' = \{]m, n[: m < n \in \mathbb{Z} \}.$$

- (a) Demostrar que existe una topología \mathcal{T} sobre \mathbb{R} tal que \mathcal{B}' es una familia de abiertos y cerrados en $(\mathbb{R}, \mathcal{T})$.
- (b) Probar que \mathcal{B}' es base de una topología \mathcal{T}' sobre \mathbb{R} .
- (c) Comparar \mathcal{T} con \mathcal{T}' y deducir que \mathcal{B}' no es base de \mathcal{T} .
- (d) Calcular interior y adherencia de]1,3[y \mathbb{Z} en ambas topologías.
- 2. Sea (X, \mathcal{T}) un espacio topológico y $A \subset X$. Demostrar:
 - (a) A es abierto si y solo si $A \cap Fr(A) = \emptyset$.
 - (b) A es cerrado si y solo si $Fr(A) \subset A$.
- 3. Se considera \mathbb{N} con la topología \mathcal{T} , tal que $O_n=\{1,\ldots,n\}$ es un entorno básico de $n\in\mathbb{N}$.
 - (a) Probar que $O_n \in \mathcal{T}$ para cada $n \in \mathbb{N}$.
 - (b) Hallar el interior y la adherencia de $\{2,4\}$ en $A = \{2,3,4\}$ con \mathcal{T}_A .

Puntuación: 1°) 5 puntos, 2°) y 3°) 2'5 puntos.

Tiempo: 2 horas.

TOPOLOGÍA I

Prueba Tema 2 9 de enero de 2014

1. Sea $\mathbb{S}^2=\{(x_1,x_2,x_3)\in\mathbb{R}^3/x_1^2+x_2^2+x_3^2=1\}$ la esfera unidad. Estudiar para que valores de $a\in[-1,+1]$ son homeomorfos

$$\mathbb{S}_a^+ = \mathbb{S}^2 \cap \mathbb{R}^2 \times [a, +\infty[\qquad y \qquad \mathbb{S}_a^- = \mathbb{S}^2 \cap \mathbb{R}^2 \times] - \infty, a],$$

con las topologías usuales inducidas.

Encontrar, si es posible, dos homeomorfismos distintos.

- 2. Sea $(\mathbb{R}^2, \mathcal{T})$ el espacio topológico producto de $(\mathbb{R}, \mathcal{T}_u)$ y $(\mathbb{R}, \mathcal{T}_{CF})$.
 - (a) Estudiar si la aplicación $f:(\mathbb{R}^2,\mathcal{T}_u)\longrightarrow(\mathbb{R}^2,\mathcal{T}),$ dada por

$$f(x_1, x_2) = (x_2, x_1), \quad \forall (x_1, x_2) \in \mathbb{R}^2,$$

es continua, abierta o cerrada.

- (b) Lo mismo para $p_1 \circ f$, con $p_1 : (\mathbb{R}^2, \mathcal{T}) \longrightarrow (\mathbb{R}, \mathcal{T}_u)$ proyección.
- 3. Se considera el disco unidad cerrado $D=\{(x_1,x_2)\in\mathbb{R}^2/x_1^2+x_2^2\leq 1\}$ con la relación de equivalencia

$$xRy \Leftrightarrow x = y \circ x, y \in \mathbb{S}^1 = \{(x_1, x_2) \in \mathbb{R}^2 / x_1^2 + x_2^2 = 1\}.$$

- (a) Estudiar si la proyección $\pi:(D,\mathcal{T}_{uD})\longrightarrow(D_{/R},\mathcal{T}_{uD/R})$ es continua, abierta o cerrada.
- (b) Probar que $(D_{/R}, \mathcal{T}_{uD/R})$ es homeomorfo a $(\mathbb{S}^2, \mathcal{T}_{u\mathbb{S}^2})$.

(Se puede usar que toda sucesión en ${\cal D}$ tiene una parcial convergente).

Puntuación: 1°) 2'5 puntos, 2°) 3'5 puntos y 3°) 4 puntos. Tiempo: 2 horas.

TOPOLOGÍA I

12 de febrero de 2014

1. En \mathbb{R} se define la siguiente familia de subconjuntos:

$$\mathcal{B} = \{ \{q\} \mid q \in \mathbb{Q} \} \cup \{ |x - \varepsilon, x + \varepsilon| \mid x \in \mathbb{R} - \mathbb{Q}, \ \varepsilon > 0 \}.$$

- (a) Demostrar que $\mathcal B$ es base de una topología $\mathcal T$ sobre $\mathbb R.$
- (b) Comparar \mathcal{T} con la topología usual \mathcal{T}_u .
- (c) Calcular interior, adherencia y frontera de los subconjuntos $A=[0,\sqrt{2}]$ y $B=\{\sqrt{n}\ /\ n\in\mathbb{N}\}$ en $(\mathbb{R},\mathcal{T}).$
- 2. (a) Determinar la menor topología \mathcal{T} sobre \mathbb{N} , tal que $O_n = \{1, ..., n\} \in \mathcal{T}$, para todo $n \in \mathbb{N}$ y la aplicación $f: (\mathbb{N}, \mathcal{T}) \longrightarrow (\mathbb{N}, \mathcal{T})$, dada por

$$f(2n) = 2n - 1$$
 y $f(2n - 1) = 2n$,

es cerrada.

- (b) Caracterizar los homeomorfismos de $(\mathbb{N}, \mathcal{T})$ en $(\mathbb{N}, \mathcal{T})$ y encontrar un homeomorfismo del produto $(\mathbb{N}^2, \mathcal{T}(\mathcal{T} \times \mathcal{T}))$ que no sea producto de ellos.
- 3. Sea (X,\mathcal{T}) un espacio topológico Hausdorff. Probar:
 - (a) Si $f:([0,1],\mathcal{T}_{u[0,1]}) \longrightarrow (X,\mathcal{T})$ es una aplicación continua, con

$$f(0) \in A \subset X$$
 y $f(1) \in X - A$,

entonces existe $t \in [0,1]$ tal que $f(t) \in Fr(A)$.

- (b) No existe una topología $T' \neq T$ sobre X con (X, T') compacto y $T \subset T'$.
- 4. En $X = \mathbb{R} \times \{-1, +1\}$ se considera la relación de equivalencia:

$$(x_1, x_2)R(y_1, y_2) \Leftrightarrow (x_1, x_2) = (y_1, y_2) \ o \ x_1, y_1 \le -2 \ o \ x_1, y_1 \ge +2.$$

- (a) Estudiar si la proyección $p:(X,\mathcal{T}_{uX})\longrightarrow (X_{/R},\mathcal{T}_{uX/R})$ es abierta o cerrada.
- (b) Probar que $(X_{/R}, \mathcal{T}_{uX/R})$ es homeomorfo a $(\mathbb{S}^1, \mathcal{T}_{u\mathbb{S}^1})$.

Puntuación: todos igual.

Tiempo: 3 horas.