ML Assignment-4

Sushmitha_Virri

#700742289

Github Link: https://github.com/Sushmitha-Virri/MLAssignments21627

Video link: https://drive.google.com/file/d/1Mn8uKQGqq-

POawFzIPTmfoBCOjv8JJ6H/view?usp=sharing

1.Pandas

1. Pandas

- A. Read the provided CSV file 'data.csv'.
- B. Show the basic statistical description about the data
- C. Check if the data has null values.

Replace the null values with the mean

- D. Select at least two columns and aggregate the data using: min, max, count, mean.
- E. Filter the dataframe to select the rows with calories values between 500 and 1000.
- F. Filter the dataframe to select the rows with calories values > 500 and pulse < 100.
- G. Create a new "df_modified" dataframe that contains all the columns from df except for "Maxpulse".
- H. Delete the "Maxpulse" column from the main df dataframe
- I. Convert the datatype of Calories column to int datatype.
- J. Using pandas create a scatter plot for the two columns (Duration and Calories).

In [1]: import pandas as pd import numpy as np # reads the data.csv file and returns the dataframe object which is assignred to 'df' df = pd.read_csv('data.csv') # head() method displays first few rows of the dataframe df.head()

Out[1]:

	Duration	Pulse	waxpuise	Calories
0	60	110	130	409.1
1	60	117	145	479.0
2	60	103	135	340.0
3	45	109	175	282.4
4	45	117	148	406.0

jupyter 700742289_Sushmitha_Virri_Assignment_4 Last Checkpoint: 2 minutes ago (unsaved changes)

Jupyter 700742289_Sushmitha_Virri_Assignment_4 Last Checkpoint: 2 minutes ago (unsaved changes)

Out[5]:

	Duration	Pulse	Maxpulse	Calories
51	80	123	146	643.1
62	160	109	135	853.0
65	180	90	130	800.4
66	150	105	135	873.4
67	150	107	130	816.0
72	90	100	127	700.0
73	150	97	127	953.2
75	90	98	125	563.2
78	120	100	130	500.4
83	120	100	130	500.0
90	180	101	127	600.1
99	90	93	124	604.1
101	90	90	110	500.0
102	90	90	100	500.0
103	90	90	100	500.4
106	180	90	120	800.3
108	90	90	120	500.3

Jupyter 700742289_Sushmitha_Virri_Assignment_4 Last Checkpoint: 3 minutes ago (autosaved)

Out[6]:

	Duration	Pulse	Maxpulse	Calories
65	180	90	130	800.4
70	150	97	129	1115.0
73	150	97	127	953.2
75	90	98	125	563.2
99	90	93	124	604.1
103	90	90	100	500.4
106	180	90	120	800.3
108	90	90	120	500.3

In [7]: # create a new df_modified dataframe without the "Maxpulse" column
df_modified = df[['Duration','Pulse','Calories']]
df_modified.head()

Out[7]:

	Duration	Pulse	Calories
0	60	110	409.1
1	60	117	479.0
2	60	103	340.0
3	45	109	282.4
4	45	117	406.0

Jupyter 700742289_Sushmitha_Virri_Assignment_4 Last Checkpoint: 4 minutes ago (autosaved)

2. Titanic Dataset

Jupyter 700742289_Sushmitha_Virri_Assignment_4 Last Checkpoint: 9 minutes ago (autosaved)

(Titanic Dataset)

- 1. Find the correlation between 'survived' (target column) and 'sex' column for the Titanic use case inclass.
- a. Do you think we should keep this feature?
 - 2. Do at least two visualizations to describe or show correlations.
 - 3. Implement Naïve Bayes method using scikit-learn library and report the accuracy.

```
In [ ]: import pandas as pd
        import numpy as np
        import random as rnd
        import warnings # current version generates a bunch of warnings that we'll ignore
        warnings.filterwarnings("ignore")
        # for visualization
        import seaborn as sns
        import matplotlib.pyplot as plt
        # machine learning
        from sklearn.linear_model import LogisticRegression, RidgeClassifierCV
        from sklearn.svm import SVC, LinearSVC
        from sklearn.ensemble import (RandomForestClassifier, GradientBoostingClassifier)
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.naive_bayes import GaussianNB
        from sklearn.linear_model import Perceptron
        from sklearn.linear model import SGDClassifier
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.model_selection import cross_val_score, GridSearchCV
        from sklearn.metrics import accuracy_score
        from sklearn import preprocessing
```


a. Do you think we should keep this feature?

#Answer: In the survived column 300 people survived while most of them died. The Sex column shows that there are more number of females than males in the ship.

Jupyter 700742289_Sushmitha_Virri_Assignment_4 Last Checkpoint: 11 minutes ago (autosaved)

Out[19]: <seaborn.axisgrid.FacetGrid at 0x2b792f000a0>

Jupyter 700742289_Sushmitha_Virri_Assignment_4 Last Checkpoint: 11 minutes ago (autosaved) File Edit View Insert Cell Kernel Widgets Help ► Run C Markdown In [20]: # Visualization 2 to show correlation # using seaborn library to create FaceGrid plot based on train dataset. grid = sns.FacetGrid(train_data, row='Embarked', size=1.5, aspect=2) # map() method to plot each row of the grid grid.map(sns.pointplot, 'Pclass', 'Survived', 'Sex', palette='deep') grid.add_legend()

Out[20]: <seaborn.axisgrid.FacetGrid at 0x2b792f00d30>

Jupyter 700742289_Sushmitha_Virri_Assignment_4 Last Checkpoint: 12 minutes ago (autosaved)

Jupyter 700742289_Sushmitha_Virri_Assignment_4 Last Checkpoint: 13 minutes ago (autosaved)

```
File
        Edit
                View
                        Insert
                                 Cell
                                         Kernel
                                                  Widgets
                                                             Help
B + % 4 B
                       ↑ ↓
                                ► Run ■ C → Markdown
      In [23]: # Implementing Naïve Bayes method using scikit-learn library and report the accuracy
                from sklearn.metrics import confusion matrix
                from sklearn.metrics import classification_report
                from sklearn.model_selection import train_test_split
     In [24]: train_raw = pd.read_csv('train.csv')
                test raw = pd.read csv('test.csv')
                # Join data to analyse and process the set as one.
                train_raw['train'] = 1
test_raw['train'] = 0
                df = train raw.append(test raw, sort=False)
                features = ['Age', 'Embarked', 'Fare', 'Parch', 'Pclass', 'Sex', 'SibSp']
                target = 'Survived'
                df = df[features + [target] + ['train']]
                # Categorical values need to be transformed into numeric.
                df['Sex'] = df['Sex'].replace(["female", "male"], [0, 1])
df['Embarked'] = df['Embarked'].replace(['S', 'C', 'Q'], [1, 2, 3])
                train = df.query('train == 1')
                test = df.query('train == 0')
     In [25]: # Drop missing values from the train set.
                train.dropna(axis=0, inplace=True)
                labels = train[target].values
                train.drop(['train', target, 'Pclass'], axis=1, inplace=True)
test.drop(['train', target, 'Pclass'], axis=1, inplace=True)
                from sklearn.model_selection import train_test_split, cross_validate
                X_train, X_test, y_train, y_test = train_test_split(train, labels, test_size=0.2, random_state=0)
```


3. Glass Dataset

Jupyter 700742289_Sushmitha_Virri_Assignment_4 Last Checkpoint: 17 minutes ago (autosaved)

1. Evaluate the model on testing part using score and

Implement linear SVM method using scikit library

- a. Use the glass dataset available in Link also provided in your assignment.
- b. Use train test split to create training and testing part.

