Chapter 3 Applications of Derivatives

3.3 How Derivatives affect the Shape of a Graph

What does f' tells us about f.

	$\parallel A$		$\mid B \mid$		$\mid C \mid$		D_{\cdot}
f'(x)	 	+	0	—	0	+	7
f(x)	Abs	7	loc max.	7	loc.	77	Abs.

Conclusion:

Increasing/Decreasing Test

- (a) If f'(x) > 0 on an interval, then f is increasing on that interval.
- (b) If f'(x) < 0 on an interval, then f is decreasing on that interval.

EXAMPLE 1 Find where the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing and where it is decreasing.

Factors	x<-1	-1	-12220	0	06262	$\mid 2 \mid$	76>2
12	+	\ .	+		+		+
241	_		+		+		+
χ-2	_		_		_		+
76	_	,	_		+		+
f'(x)	_	0	+	,0		0	+
f(x)	77	loc.	7	loc	7	loc.	\nearrow

EXTREME VALUES (MAX OR MIN)

	$\mid A \mid$		$\mid B \mid$		C		D
f'(x)	#	+	0	_	0	+	
f(x)	abs. min	7	max	7	min	7	abs. max

The First Derivative Test Suppose that c is a critical number of a continuous function f.

- (a) If f' changes from positive to negative at c, then f has a local maximum at c.
- (b) If f' changes from negative to positive at c, then f has a local minimum at c.
- (c) If f' is positive to the left and right of c, or negative to the left and right of c, then f has no local maximum or minimum at c.

(a) Local maximum

(c) No maximum or minimum

(d) No maximum or minimum

EXAMPLE 3 Find the local maximum and minimum values of the function

$$g(x) = x + 2\sin x$$
 $0 \le x \le 2\pi$

$$g'(x) = | + 2\cos x$$

$$q'(x) = 0$$

Zeros:
$$g'(x) = 0 \implies 1 + 2\cos x = 0$$

 $\Rightarrow \cos x = -\frac{1}{z}$

$$x = \frac{2\pi}{3}$$

$$x = \frac{4\pi}{3}$$

)	0	< x <	3	< x <):	등	< x <	21
1+2cosx	#	+	0		0	+	#
2+251n2		7	luc.		loc		•

$$f(\frac{2\pi}{3}) = \frac{2\pi}{3} + 2 \operatorname{orn}(\frac{2\pi}{3}) = \frac{2\pi}{3} + \frac{2\sqrt{3}}{2}$$

$$f(\frac{4\pi}{3}) = \frac{4\pi}{3} + 2sm(\frac{4\pi}{3}) = \frac{4\pi}{3} - 2\sqrt{3}$$

What does f" tell us about f?

Two important definitions:

- Definition If the graph of f lies above all of its tangents on an interval I, then it is called **concave upward** on I. If the graph of f lies below all of its tangents on I, it is called **concave downward** on I.
- Definition A point P on a curve y = f(x) is called an **inflection point** if f is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.

Concavity Test

- (a) If f''(x) > 0 for all x in I, then the graph of f is concave upward on I.
- (b) If f''(x) < 0 for all x in I, then the graph of f is concave downward on I.

Example. Find the interval(s) of concavity of the function $f(x) = x^3 - 3x^2 - 9x + 4$.

$$f'(x) = 3x^2 - 6x - 9$$

 $f''(x) = 6x - 6 = 6(x-1)$

$$\int_{-\infty}^{\infty} (x) = 0 \qquad \iff \qquad (6(x-1)) = 0$$

$$\iff \qquad x = 1$$

(3) Table.

+.1	-06 x 6	1	L X L &
Factors 6	+		+
(2-1)	_		+
f"(x)		0	+
f(zi)			

If
$$z \in I((-\infty, 1))$$
, then f is concave down.
If $z \in I((1, \infty))$, then f is concave up.

The Second Derivative Test Suppose f'' is continuous near c.

(a) If f'(c) = 0 and f''(c) > 0, then f has a local minimum at c.

(b) If f'(c) = 0 and f''(c) < 0, then f has a local maximum at c.

7 - x2

- · f"(c) = 0 => can't conclude anything.
- f''(x) > 0 frany $x \Rightarrow c$ is an absolute minimum $(f''(x) \ge 0)$ (absolute maximum.).

EXAMPLE. Find the extreme values of the function $f(x) = x^3 + 3x^2$.

1 Critical numbers.

$$f'(x) = 3x^2 + 6x = 3x(x+2)$$

C.N:
$$f'(x) = 0 \implies 3\pi (x+z) = 0$$

$$\Rightarrow x=0 \text{ or } x=-2$$

(2) 2nd derivative test

$$f''(x) = (ex+6) = 6(x+1)$$

$$x=0$$
 $f''(0) = 6(0+1) = 6 > 0$

$$\Rightarrow \frac{1}{2}(0) = 0$$

$$x=-2$$
 $f''(-z) = 6(-z+1) = -6 < 0$

$$\Rightarrow \frac{1}{2}(-2) = 4$$