Лабораторная работа №3

"Детерминированные вычислительные процессы с управлением по аргументу. Численное интегрирование"

Цель: реализовать решение задач посредством детерминированных вычислительных процессов с управлением по аргументу.

Оборудование: ПК, PascalABC.NET, lucid.app

Задание 1

1. Написать программу для вычисления определенного интеграла из индивидуального задания методом прямоугольника левых частей.

2.

$$\int_{0.4}^{1.2} \frac{\cos(0.4x+0.6) dx}{0.8+\sin^2(x+0.5)}.$$

3.

Имя	Смысл	Тип	
S	Результат	Real	
Х	Текущий аргумент	Real	
h	Шаг	Real	
n	Количество разбиений	Integer	
i	Параметр цикла	Integer	

5.

```
var
  S,x,h:real;
 n,i:integer;
begin
 Writeln('введите n');
 Readln(n);
 S := 0;
 h:=0.8/n;
 x := 0.4;
  for i:=1 to n do begin
   S:=S+(\cos(0.4*x+0.6)/(0.8+\sin(x+0.5)*\sin(x+0.5)));
   x := x+h;
  end;
 writeln('результат =',S*h);
end.
6.
введите n
10
результат =0.300591672715924
введите n
100
результат =0.291441704357091
введите n
1000
результат =0.290545155217238
введите n
10000
результат =0.290455684795222
```

7. Для нахождения данного интеграла я использовал метод левых частей, который выполняется с помощью детерминированных вычислительных процессов.

Задание 2

1. Написать программу для вычисления определенного интеграла из индивидуального задания методом прямоугольника правых частей.

```
\int_{0.4}^{1.2} \frac{\cos(0.4x+0.6) dx}{0.8+\sin^2(x+0.5)}
```

3.

4.

Имя	Смысл	Тип	
S	Результат	Real	
Х	Текущий аргумент	Real	
h	Шаг	Real	
n	Количество разбиений	Integer	
i	Параметр цикла	Integer	

5.

var

```
S,x,h:real;
 n,i:integer;
begin
 Writeln('введите n');
 Readln(n);
 S := 0;
 h:=0.8/n;
 x := 0.4 + h;
  for i:=1 to n do begin
   S:=S+(\cos(0.4*x+0.6)/(0.8+\sin(x+0.5)*\sin(x+0.5)));
   x := x+h
  end;
  writeln('результат =',S*h);
end.
6.
введите n
10
результат =0.280713912070272
введите n
100
результат =0.289453928292526
```

```
введите n
1000
результат =0.290346377610781
Введите n
10000
результат =0.290435807034576
```

7. Для нахождения данного интеграла я использовал метод правых частей, который выполняется с помощью детерминированных вычислительных процессов.

Задание 3

1. Написать программу для вычисления определенного интеграла из индивидуального задания методом трапеций.

2.

$$\int_{0.4}^{1.2} \frac{\cos(0.4x+0.6) dx}{0.8+\sin^2(x+0.5)}$$

3.

Имя	Смысл	Тип	
S	Результат	Real	
Х	Текущий аргумент	Real	
h	Шаг	Real	
n	Количество разбиений	Integer	
i	Параметр цикла	Integer	

5.

```
var
           S,x,h:real;
          n,i:integer;
begin
          Writeln('введите n');
          Readln(n);
S := (\cos(0.4*0.4+0.6) / (0.8+\sin(0.4+0.5) * \sin(0.4+0.5)) + (\cos(0.4*1.2+0.6) / (0.8+s) + (\cos(0.4*0.4+0.6)) + (\cos(0
in(1.2+0.5)*sin(1.2+0.5))))/2;
          h:=0.8/n;
          x := 0.4 + h;
          for i:=1 to n-1 do begin
                     S:=S+(\cos(0.4*x+0.6)/(0.8+\sin(x+0.5)*\sin(x+0.5)));
           end;
          writeln('результат =',S*h);
 end.
 6.
   введите n
    10
   результат =0.290652792393098
   введите n
    100
   результат =0.290447816324808
   введите n
    1000
   результат =0.290445766414009
   введите n
    10000
   результат =0.290445745914899
```

7. Для нахождения данного интеграла я использовал метод трапеций частей, который выполняется с помощью детерминированных вычислительных процессов.

Задание 4

1. Написать программу для вычисления определенного интеграла из индивидуального задания методом парабол.

```
\int_{0.4}^{1.2} \frac{\cos(0.4x+0.6) dx}{0.8+\sin^2(x+0.5)}
```

3.

4.

Имя	Смысл	Тип	
S	Результат	Real	
х	Текущий аргумент	Real	
h	Шаг	Real	
n	Количество разбиений	Integer	
i	Параметр цикла	Integer	
S1	Вспомогательная	огательная Real	
	переменная.		
S2	Вспомогательная Real		
	переменная.		

```
var
  S,S1,S2,x,h:real;
  n,i:integer;
begin
  Writeln('введите n');
  Readln(n);
  h:=0.8/n;
  x:=0.4+2*h;
S := (\cos(0.4*0.4+0.6)/(0.8+\sin(0.4+0.5)*\sin(0.4+0.5))+(\cos(0.4*1.2+0.6)/(0.8+s)
in(1.2+0.5)*sin(1.2+0.5)));
  S1:=0;
  S2:=0;
  for i:=1 to ((n div 2)-1) do begin
    S1:=S1+(\cos(0.4*x+0.6)/(0.8+\sin(x+0.5)*\sin(x+0.5)));
    x := x + 2 * h;
  end;
  x:=0.4+4*h;
  for i:=1 to ((n div 2)-2) do begin
    S2:=S2+(\cos(0.4*x+0.6)/(0.8+\sin(x+0.5)*\sin(x+0.5)));
    x := x+2*h;
  end;
  S:=S+4*s1+2*s2;
  writeln('результат =',S*h/3);
end.
```

6.

```
введите п
10
результат =0.226622642125822

введите п
100
результат =0.283621285016193

введите п
1000
результат =0.289758400485229

введите п
10000
результат =0.290376961687201
```

7. Для нахождения данного интеграла я использовал метод парабол частей, который выполняется с помощью детерминированных вычислительных процессов.

N	Шаг	Метод ЛЧ	Метод ПЧ	Метод трапеций	Метод парабол
10	0.08	0.300591672715924	0.280713912070272	0.290652792393098	0.226622642125822
100	0.008	0.291441704357091	0.289453928292526	0.290447816324808	0.283621285016193
1000	0.0008	0.290545155217238	0.290346377610781	0.290445766414009	0.289758400485229
10000	0.00008	0.290455684795222	0.290435807034576	0.290445745914899	0.290376961687201

Вывод: Я научился реализовывать вычисление интегралов различными методами посредством детерминированных вычислительных процессов с управлением по аргументу и PascalABC.NET. Из приведенных выше результатов можно сказать, что наиболее точные значения выдает метод парабол. Чтобы увеличить точность подсчета необходимо увеличить число шагов.