

Subject Index of Volume 149

- Aircraft application
 Autothermal reforming; Jet A-1; Desulphurisation (Lenz, B. (149) 44)
- Anodic recirculation
 Ejector; SOFC; Hybrid system (Ferrari, M.L. (149) 22)
- Autothermal reforming
 Jet A-1; Desulphurisation; Aircraft application (Lenz, B. (149) 44)
- Auto-thermal reforming
 Biodiesel; Fuel processor; Auxiliary power unit; Thermal cracking;
 Vehicle (Sgroi, M. (149) 8)
- Auxiliary power unit
 Biodiesel; Fuel processor; Auto-thermal reforming; Thermal cracking;
 Vehicle (Sgroi, M. (149) 8)
- Biodiesel
 Fuel processor; Auxiliary power unit; Auto-thermal reforming;
 Thermal cracking; Vehicle (Sgroi, M. (149) 8)
- Capital cost
 SOFC; CHP; Decentralised; Optimisation; Lifetime; Electricity export
 (Hawkes, A. (149) 72)
- Catalyst
 Hydrogen-generator; Storage solution; Fuel-cell; Portable power
 (Gervasio, D. (149) 15)
- Cathode material
 High-temperature electrolysis; Nickel/yttria stabilized zirconia composite; Hydrogen production; Electrical conductivity; Particle size (Hong, H.S. (149) 84)
- CHP
 PEMFC stack; Experimental analysis; Factorial design (Torchio, M.F. (149) 33)
- CHP
 SOFC; Decentralised; Optimisation; Capital cost; Lifetime; Electricity export (Hawkes, A. (149) 72)
- Conversion efficiency
 Dye-sensitized solar cell; Gel polymer electrolyte; Photovoltaic performance; Porous membrane; Ionic conductivity (Kim, D.-W. (149) 112)
- Cyclic voltammetry
 Pt/C and Pt–Ru/C electrocatalysts; Direct ethanol fuel cell; Microwave-assisted polyol process (Liu, Z. (149) 1)
- Decentralised
 SOFC; CHP; Optimisation; Capital cost; Lifetime; Electricity export (Hawkes, A. (149) 72)
- Desulphurisation
 Autothermal reforming; Jet A-1; Aircraft application (Lenz, B. (149) 44)
- Direct ethanol fuel cell
 Pt/C and Pt–Ru/C electrocatalysts; Cyclic voltammetry; Microwave-assisted polyol process (Liu, Z. (149) 1)
- Dye-sensitized solar cell
 Gel polymer electrolyte; Photovoltaic performance; Porous membrane; Ionic conductivity; Conversion efficiency (Kim, D.-W. (149) 112)
- Ejector
 Anodic recirculation; SOFC; Hybrid system (Ferrari, M.L. (149) 22)
- Electrical conductivity
 High-temperature electrolysis; Cathode material; Nickel/yttria stabilized zirconia composite; Hydrogen production; Particle size (Hong, H.S. (149) 84)
- Electricity export
 SOFC; CHP; Decentralised; Optimisation; Capital cost; Lifetime (Hawkes, A. (149) 72)
- Experimental analysis
 PEMFC stack; Factorial design; CHP (Torchio, M.F. (149) 33)
- Factorial design
 PEMFC stack; Experimental analysis; CHP (Torchio, M.F. (149) 33)
- FEMLAB
 Solid oxide fuel cell (SOFC); Modelling and simulation (Pfafferott, M. (149) 53)
- Ferroelectric fillers
 Polymer electrolytes; Nanocomposite; Lithium battery; Strontium bismuth titanate; Poly(ethylene) glycol (Shanmukaraj, D. (149) 90)
- Flow batteries
 Lead acid; Methanesulfonic acid (Hazza, A. (149) 103)
- Flow batteries
 Lead acid; Methanesulfonic acid (Pletcher, D. (149) 96)
- Fuel processor
 Biodiesel; Auxiliary power unit; Auto-thermal reforming; Thermal cracking; Vehicle (Sgroi, M. (149) 8)
- Fuel-cell
 Hydrogen-generator; Storage solution; Catalyst; Portable power (Gervasio, D. (149) 15)
- Gel polymer electrolyte
 Dye-sensitized solar cell; Photovoltaic performance; Porous membrane; Ionic conductivity; Conversion efficiency (Kim, D.-W. (149) 112)
- High-temperature electrolysis
 Cathode material; Nickel/yttria stabilized zirconia composite; Hydrogen production; Electrical conductivity; Particle size (Hong, H.S. (149) 84)
- Hybrid system
 Ejector; Anodic recirculation; SOFC (Ferrari, M.L. (149) 22)
- Hydrogen production
 High-temperature electrolysis; Cathode material; Nickel/yttria stabilized zirconia composite; Electrical conductivity; Particle size (Hong, H.S. (149) 84)

- Hydrogen-generator
Storage solution; Catalyst; Fuel-cell; Portable power (Gervasio, D. (149) 15)
- Ionic conductivity
Dye-sensitized solar cell; Gel polymer electrolyte; Photovoltaic performance; Porous membrane; Conversion efficiency (Kim, D.-W. (149) 112)
- Jet A-1
Autothermal reforming; Desulphurisation; Aircraft application (Lenz, B. (149) 44)
- $\alpha\text{-LiAlO}_2$
MCFC; Matrix (Bergaglio, E. (149) 63)
- Lead acid
Flow batteries; Methanesulfonic acid (Hazza, A. (149) 103)
- Lead acid
Flow batteries; Methanesulfonic acid (Pletcher, D. (149) 96)
- Lifetime
SOFC; CHP; Decentralised; Optimisation; Capital cost; Electricity export (Hawkes, A. (149) 72)
- Lithium battery
Polymer electrolytes; Ferroelectric fillers; Nanocomposite; Strontium bismuth titanate; Poly (ethylene) glycol (Shanmukaraj, D. (149) 90)
- Matrix
MCFC; $\alpha\text{-LiAlO}_2$ (Bergaglio, E. (149) 63)
- MCFC
Matrix; $\alpha\text{-LiAlO}_2$ (Bergaglio, E. (149) 63)
- Methanesulfonic acid
Flow batteries; Lead acid (Hazza, A. (149) 103)
- Methanesulfonic acid
Flow batteries; Lead acid (Pletcher, D. (149) 96)
- Microwave-assisted polyol process
Pt/C and Pt–Ru/C electrocatalysts; Direct ethanol fuel cell; Cyclic voltammetry (Liu, Z. (149) 1)
- Modelling and simulation
Solid oxide fuel cell (SOFC); FEMLAB (Pfafferodt, M. (149) 53)
- Nanocomposite
Polymer electrolytes; Ferroelectric fillers; Lithium battery; Strontium bismuth titanate; Poly (ethylene) glycol (Shanmukaraj, D. (149) 90)
- Nickel/yttria stabilized zirconia composite
High-temperature electrolysis; Cathode material; Hydrogen production; Electrical conductivity; Particle size (Hong, H.S. (149) 84)
- Optimisation
SOFC; CHP; Decentralised; Capital cost; Lifetime; Electricity export (Hawkes, A. (149) 72)
- Oxygen electrode
PEMFC; Protonic conducting polymers (Ayad, A. (149) 66)
- Particle size
High-temperature electrolysis; Cathode material; Nickel/yttria stabilized zirconia composite; Hydrogen production; Electrical conductivity (Hong, H.S. (149) 84)
- PEMFC stack
Experimental analysis; Factorial design; CHP (Torchio, M.F. (149) 33)
- PEMFC
Protonic conducting polymers; Oxygen electrode (Ayad, A. (149) 66)
- Photovoltaic performance
Dye-sensitized solar cell; Gel polymer electrolyte; Porous membrane; Ionic conductivity; Conversion efficiency (Kim, D.-W. (149) 112)
- Poly (ethylene) glycol
Polymer electrolytes; Ferroelectric fillers; Nanocomposite; Lithium battery; Strontium bismuth titanate (Shanmukaraj, D. (149) 90)
- Polymer electrolytes
Ferroelectric fillers; Nanocomposite; Lithium battery; Strontium bismuth titanate; Poly (ethylene) glycol (Shanmukaraj, D. (149) 90)
- Porous membrane
Dye-sensitized solar cell; Gel polymer electrolyte; Photovoltaic performance; Ionic conductivity; Conversion efficiency (Kim, D.-W. (149) 112)
- Portable power
Hydrogen-generator; Storage solution; Catalyst; Fuel-cell (Gervasio, D. (149) 15)
- Protonic conducting polymers
PEMFC; Oxygen electrode (Ayad, A. (149) 66)
- Pt/C and Pt–Ru/C electrocatalysts
Direct ethanol fuel cell; Cyclic voltammetry; Microwave-assisted polyol process (Liu, Z. (149) 1)
- SOFC
Ejector; Anodic recirculation; Hybrid system (Ferrari, M.L. (149) 22)
- SOFC
CHP; Decentralised; Optimisation; Capital cost; Lifetime; Electricity export (Hawkes, A. (149) 72)
- Solid oxide fuel cell (SOFC)
Modelling and simulation; FEMLAB (Pfafferodt, M. (149) 53)
- Storage solution
Hydrogen-generator; Catalyst; Fuel-cell; Portable power (Gervasio, D. (149) 15)
- Strontium bismuth titanate
Polymer electrolytes; Ferroelectric fillers; Nanocomposite; Lithium battery; Poly (ethylene) glycol (Shanmukaraj, D. (149) 90)
- Thermal cracking
Biodiesel; Fuel processor; Auxiliary power unit; Auto-thermal reforming; Vehicle (Sgroi, M. (149) 8)
- Vehicle
Biodiesel; Fuel processor; Auxiliary power unit; Auto-thermal reforming; Thermal cracking (Sgroi, M. (149) 8)