3° teste de F12 13/06/2007	8, Diurno, Turma:	
Nome:		RA:

Uma bola de massa m é projetada com velocidade v_i no cano de uma espingarda de mola, de massa M, inicialmente em repouso sobre uma superfície sem atrito. (ver figura abaixo). A bola adere ao cano no ponto de compressão máxima da mola. Nenhuma energia é perdida em atrito. (a) Qual a velocidade da espingarda de mola após a bola atingir o repouso no cano? (b) Que fração da energia cinética inicial da bola fica armazenada na

Solução:

(a) Pela conservação de momento linear: $P_i = P_f \Rightarrow mv_i = (M + m)v_f$.

Logo, a velocidade da espingarda de mola é $v_f = \left(\frac{m}{M+m}\right)v_i$.

(b) Energia cinética inicial: $K_i = \frac{1}{2}mv_i^2$; Energia cinética inicial: $K_{\xi} = \frac{1}{2}(M+m)v_f^2$.

$$K_{i} - K_{f} = \frac{1}{2} m v_{i}^{2} - \frac{1}{2} (M + m) \left[\left(\frac{m}{M + m} \right) v_{i} \right]^{2} = \left(\frac{M}{M + m} \right) \frac{1}{2} m v_{i}^{2} = \left(\frac{M}{M + m} \right) K_{i}$$

Logo:
$$f = \frac{K_i - K_f}{K_i} = \frac{M}{M + m} \left(o^{\sqrt{\lambda}} \right)$$

$$f = \frac{1}{K_i} = \frac{1}{M+m}$$

$$m_b V_i = \frac{1}{M+m} V_i + \frac{1}{M$$

$$\frac{m\sqrt{m+m}\sqrt{m+m}}{\sqrt{m+m}} = \frac{m\sqrt{m}}{\sqrt{m+m}} = \frac{m\sqrt{m}}{\sqrt{m+m}} = \frac{m}{\sqrt{m+m}}$$