

NAÏVE BAYES CLASSIFIER.

Also known as Idiot's Bayes or simple bayesian classifier/ statistical classifier.

Makes use of the **Bayes theorem** to compute probabilities of class membership, given specific evidence.

BAYES THEOREM

At the heart of this approach is the Bayes theorem:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

- Theorem calculates the probability of a hypothesis (H) given some evidence (E), or posterior probability P(H|E)
- For example, it can calculate the probability that someone would develop diabetes given evidence of a family history of diabetes.
- The hypothesis corresponds to the response variable in the other methods.
- The theorem makes use of this posterior probability of the evidence given the hypothesis, or P(E|H).

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

BAYES THEOREM

- Using the same example, the probability of someone having a family history of diabetes can also be calculated given the evidence that the person has diabetes and would be an example of P(E|H).
- The formula also makes use of two prior probabilities:
 - The probability of the hypothesis P(H), and
 - The probability of the evidence P(E).
- These probabilities are not predicated on the presence of any evidence

P (Head)

P (Tail)

4 Queens 52 cards

P (Queen)

PROBABILITY

1/13

Queen of Diamond

52 cards 13 Diamonds 1 Queen

PROBABILITY P(Q|D)=1/13

Occurred

INDEPENDENCE ASSUMPTION.

- In strict use of the Bayes theorem for multiple independent variables each having multiple possible values becomes challenging in practical situations.
- Using this formula directly would result in a large number of computations.
- Also, the training data would have to cover all of these situations, which also makes its application impractical.
- The naive Bayes approach uses a simplification which results in a computationally feasible series of calculations.
- The method assumes that the independent variables are independent despite the fact that this is rarely the case.
- Even with this overly optimistic assumption, the method is useful as a classification modelling method in many situations

INDEPENDENCE ASSUMPTION.

- Naive Bayesian classifiers assumes that:
 - Effect of an attribute value on a given class is independent of the values of the other attributes.
 - This assumption is called class conditional independence

Observation (X):

BP = high; Weight = above; FH = yes; Age = 50 +

Objective: To classify this individual as prone to developing or not prone to developing diabetes given the factors described.

TABLE 4.19 Diabetes Data Set to Illustrate the Naive Bayes Classification Training data

Blood pressure	Weight	Family history	Age	Diabetes
Average	Above average	Yes	50+	1
Low	Average	Yes	0 50	0
High	Above average	No	5 0+	1
Average	Above average	Yes	5 0+	1
High	Above average	Yes	5 0+	0
Average	Above average	Yes	0 50	1
Low	Below average	Yes	0 50	0
High	Above average	No	0 50	0
Low	Below average	No	0 50	0
Average	Above average	Yes	0 50	0
High	Average	No	50+	0
Average	Average	Yes	50+	1
High	Above average	No	50+	1
Average	Average	No	0 50	0
Low	Average	No	50+	0
Average	Above average	Yes	0 50	1
High	Average	Yes	50+	1
Average	Above average	No	0 50	0
High	Above average	No	50+	1
High	Average	No	0 50	0

- Calculate P(diabetes=1|X) and the P(diabetes=0|X) is the next step
- The individual will be assigned to the class, either has (diabetes=1) or has not (diabetes=0), based on the highest probability value.

$$P(diabetes = 1|X) = \frac{P(X|diabetes = 1)P(diabetes = 1)}{P(X)}$$
 (1)

$$P(diabetes = 0|X) = \frac{P(X|diabetes = 0)P(diabetes = 0)}{P(X)}$$
 (2)

- Since P(X) is the same in both equations, only
 P(X| diabetes=1)P(diabetes=1) and P(X| diabetes=0)P(diabetes=0)
- To calculate P(diabetes=1)
 - Number of observations with diabetes=1
 Total number of observations

$$= 9/20$$
 $= 0.45$ (3)

To calculate P(diabetes=0)

```
Number of observations with diabetes=0
Total number of observations
```

```
= 11/20 
= 0.55 (4)
```

```
BP = high;
Weight = above;
FH = yes;
Age = 50 +
```

Since this approach assumes that the independent variables are independent,

```
P(X | diabetes=1) = Product of conditional probability for each value of X:
```

```
P(X| diabetes = 1) = P(BP = high | diabetes = 1)

x P(weight = above | diabetes = 1)

x P(FH = yes | diabetes = 1)

x P(age = 50 | diabetes = 1)
```

P(BP=high | diabetes=1) = No. of observations with BP high and diabetes=1
 No. of observations where diabetes=1

```
P(BP = high | diabetes = 1) = 4/9 = 0.44
P(weight = above | diabetes = 1) = 7/9 = 0.78
P(FH = yes | diabetes = 1) = 6/9 = 0.67
P(age = 50+ | diabetes = 1) = 7/9 = 0.78
```

Using these probabilities, the probability of X given diabetes=1 is calculated:

```
P(X | diabetes = 1) = P(BP = high | diabetes = 1)

x P(weight = above | diabetes = 1)

x P(FH = yes | diabetes = 1)

x P(age = 50 | diabetes = 1)
```

Using the values for P(X| diabetes=1) and P(diabetes =1), the product

```
P(X | diabetes=1)P(diabetes 1)
= 0.179 x 0. 45
= 0.081
```

Similarly, value for P(X | diabetes=0)P(diabetes=0) can be calculated:

```
P(X | diabetes = 0) = P(BP = high | diabetes = 0)
x P(weight = above | diabetes = 0)
x P(FH = yes | diabetes = 0)
x P(age = 50 + | diabetes = 0)
```

Using the following probabilities, based on counts from Table 4.19:

P(BP = high | diabetes = 0) =
$$4/11 = 0.36$$

P(weight = above | diabetes = 0) = $4/11 = 0.36$
P(FH = yes | diabetes = 0) = $4/11 = 0.36$
P(age = 50 | diabetes = 0) = $3/11 = 0.27$

The P(X | diabetes=0) can now be calculated:

$$= 0.36 \times 0.36 \times 0.36 \times 0.27$$

= **0.0126**

• The final assessment of P(X| diabetes=0)P(diabetes= 0) is computed:

$$P(X| diabetes = 0)P(diabetes = 0) = 0.0126 \times 0.0069$$

Since P(X| diabetes=1)P(diabetes=1) > P(X| diabetes=0) P(diabetes=0)

- The observations X are assigned to class diabetes=1.
- A final probability that diabetes=1, given the evidence (X), can be computed as follows:

$$P(diabetes = 1 | X) = 0.081/(0.081 + 0.0069) = 0.922$$

ADVANTAGES OF NAÏVE BAYES CLASSIFIER

The naive Bayes is a simple classification approach that works surprisingly well particularly with large data sets as well as with larger numbers of independent variables.

DISADVANTAGES OF NAÏVE BAYES CLASSIFIER

Only categorical variables:

This method is usually applied in situations in which the independent variables and the response variable are categorical.

Requires large data sets:

This method is versatile, but it is particularly effective in building models from large data sets.

