Week 09

Duong Thu Phuong

$\mathrm{July}\ 2021$

Ex1: 1

a,We have:

	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	P_{y}
y_1	0.01	0.02	0.03	0.1	0.1	0.26
y_2	0.05	0.1	0.05	0.07	0.2	0.47
<i>y</i> ₃	0.1	0.05	0.03	0.05	0.04	0.27
P_{x}	0.16	0.17	0.11	0.22	0.34	

b,

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	
<i>y</i> ₁	0.01	0.02	0.03	0.1	0.1	
y_2	0.05	0.1	0.05	0.07	0.2	
<i>y</i> ₃	0.1	0.05	0.03	0.05	0.04	
$P_{(x Y=y_1)}$	0.9375	0.8824	0.7273	0.5455	0.7059	
$P_{(X Y=y_3)}$	0.375	0.7059	0.7273	0.7727	0.8824	

2 Ex2:

We have:

$$E_x[X] = \sum_x x P(x)$$

And:

$$E_x[X] = \sum_x x P(x)$$

$$E_y[E(x|y) = E_y[\sum_x x P(x|y)]$$

$$= \sum_{y} \left[\sum_{x} x P(x|y)\right] P(y)$$

$$= \sum_{y} \sum_{x} x P(x|y) P(y)$$

$$= \sum_{x} x \sum_{y} P(x|y) P(y)$$

$$= \sum_{x} x P(x)$$

$$\Rightarrow E_x[X] = E_y[E(x|y)]$$

3 EX3:

Gọi X là người được phỏng vấn dùng sản phẩm X Y là người đư
ục phỏng vấn dùng sản phẩm Y Ta có P(X)=0.207 và
 P(Y)=0.5, p(X|Y)=0.365a, Xác suất người phỏng vấn dùng cả
 X và Y là: P(XY)=P(X|Y).P(Y)=0.365.0,5=0.1825b, Ta có:

$$P(\overline{X}|Y) = \frac{\overline{X}Y}{P(Y)} = \frac{P(Y) - P(XY)}{P(Y)} = 1 - P(X|Y) = 0,635$$

Xác suất người phỏng vấn dùng Y và không dùng X là:

$$P(Y|\overline{X}) = \frac{P(Y\overline{X})}{P(\overline{X})} = \frac{P(Y)P(\overline{X}|Y)}{1 - P(X)} = 0,4004$$

4 EX4:

We have:

$$Var(X) = E((X - \mu)^2)$$

$$= E((X - E(X))^2) = E(X^2 - 2XE(X) + (E(X))^2)$$

$$= E(X^2) - 2E(X) \cdot E(X) + (E(X))^2 = E(X^2) - (E(X))^2$$

$$\Rightarrow Var(X) = E(X^2) - (E(X))^2$$

5 Ex5:

Giả sử đầu tiên chọn ô cửa số 1. Gọi A là biến có chiếc xe ở ô số 1 B là biến cố Monty mở cửa số 2 C là biến cố xe nằm ở ô số 3 Ta có: $P(A)=\frac{1}{3}$, $P(B)=\frac{1}{2}$ Xác suất xe nằm ở ô cửa số 1 khi đã mở ô cửa số 2 là: $P(A|B)=\frac{1}{3} \text{ Xác suất xe ở ô cửa số 3 sẽ là: } P(C)=1 \text{ -P}(A)=\frac{2}{3}$ => Ta nên đổi ô cửa thì xác suất trúng xe sẽ cao hơn