Algorithms for analyzing and verifying infinite-state recursive probabilistic systems

Kousha Etessami

University of Edinburgh

LATA'13 Bilbao, April 5th, 2013

• A number of important countable infinite-state stochastic processes can be captured by adding recursion to finite-state Markov chains.

- A number of important countable infinite-state stochastic processes can be captured by adding recursion to finite-state Markov chains.
- Adding recursion to MCs also provides a natural abstract model of probabilistic procedural programs (useful in verification).

- A number of important countable infinite-state stochastic processes can be captured by adding recursion to finite-state Markov chains.
- Adding recursion to MCs also provides a natural abstract model of probabilistic procedural programs (useful in verification).
- Such models can also be captured by probabilistic extensions to classic infinite-state automata-theoretic models, like context-free grammars, pushdown automata, and one-counter automata.

- A number of important countable infinite-state stochastic processes can be captured by adding recursion to finite-state Markov chains.
- Adding recursion to MCs also provides a natural abstract model of probabilistic procedural programs (useful in verification).
- Such models can also be captured by probabilistic extensions to classic infinite-state automata-theoretic models, like context-free grammars, pushdown automata, and one-counter automata.
- The algorithmic theory, and complexity, of analyzing such recursive MCs and their extension to Markov decision processes and stochastic games, has turned out to be an extremely rich subject.

- A number of important countable infinite-state stochastic processes can be captured by adding recursion to finite-state Markov chains.
- Adding recursion to MCs also provides a natural abstract model of probabilistic procedural programs (useful in verification).
- Such models can also be captured by probabilistic extensions to classic infinite-state automata-theoretic models, like context-free grammars, pushdown automata, and one-counter automata.
- The algorithmic theory, and complexity, of analyzing such recursive MCs and their extension to Markov decision processes and stochastic games, has turned out to be an extremely rich subject.
- In this talk, I will survey only one fragment of this theory (focusing mainly on recent joint work with Alistair Stewart and Mihalis Yannakakis).

999

Question: What is the probability of eventual extinction, starting with one

$$X_R =$$

Question: What is the probability of eventual extinction, starting with one

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$

Question: What is the probability of eventual extinction, starting with one

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$

$$x_B = \frac{1}{4}x_R^2 + \frac{3}{4}$$

$$x_G = x_B x_R^2$$

Question: What is the probability of eventual extinction, starting with one

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$

$$x_B = \frac{1}{4}x_R^2 + \frac{3}{4}$$

$$x_G = x_B x_R^2$$

We get nonlinear fixed point equations:

$$\bar{\mathbf{x}} = P(\bar{\mathbf{x}}).$$

Question: What is the probability of eventual extinction, starting with one

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$

$$x_B = \frac{1}{4}x_R^2 + \frac{3}{4}$$

$$x_G = x_B x_R^2$$

We get nonlinear fixed point equations: $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Fact

The extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0,1]^3$, of $\mathbf{\bar{x}} = P(\mathbf{\bar{x}})$.

Question: What is the probability of eventual extinction, starting with one

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$

$$x_B = \frac{1}{4}x_R^2 + \frac{3}{4}$$

$$x_G = x_B x_B^2$$

We get nonlinear fixed point equations: $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Fact

The extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0,1]^3$, of $\mathbf{\bar{x}} = P(\mathbf{\bar{x}})$. $q_R^* = 0.276$; $q_R^* = 0.769$; $q_G^* = 0.059$.

$$R \xrightarrow{1/3} aBBcGdR$$

$$R \xrightarrow{1/2} bcBbR$$

$$R \xrightarrow{1/6} d$$

$$\stackrel{B}{\longrightarrow} eeRRf$$

$$B \xrightarrow{3/4} g$$

$$G \xrightarrow{1} aBcRRb$$

$$R \xrightarrow{1/3} aBBcGdR$$

$$R \xrightarrow{1/2} bcBbR$$

$$R \xrightarrow{1/6} d$$

$$B \xrightarrow{1/4} eeRRf$$

$$B \xrightarrow{3/4} g$$

$$G \xrightarrow{1} aBcRRb$$

Leftmost derivation

<u>R</u>

$$R \xrightarrow{1/3} aBBcGdR$$

$$R \xrightarrow{1/2} bcBbR$$

$$R \xrightarrow{1/6} d$$

$$B \xrightarrow{1/4} eeRRf$$

$$B \xrightarrow{3/4} g$$

$$G \xrightarrow{1} aBcRRb$$

$$\frac{R}{2}$$

$$\frac{1/2}{2} bcBbR$$

$$R \xrightarrow{1/3} aBBcGdR$$

$$R \xrightarrow{1/2} bcBbR$$

$$R \xrightarrow{1/6} d$$

$$B \xrightarrow{1/4} eeRRf$$

$$B \xrightarrow{3/4} g$$

$$G \xrightarrow{1} aBcRRb$$

$$\frac{R}{\longrightarrow} bc\underline{B}bR$$

$$\frac{1/2}{\longrightarrow} bc\underline{B}bR$$

$$\frac{1/4}{\longrightarrow} bceeRRfbR$$

$$R \xrightarrow{1/3} aBBcGdR$$

$$R \xrightarrow{1/2} bcBbR$$

$$R \xrightarrow{1/6} d$$

$$\stackrel{B}{\longrightarrow} eeRRf$$

$$B \xrightarrow{3/4} g$$

$$G \xrightarrow{1} aBcRRb$$

$$\frac{R}{D}$$

$$\frac{1/2}{D} bc\underline{B}bR$$

$$\frac{1/4}{D} bcee\underline{R}RfbR$$

$$\frac{1/6}{D} bceed\underline{R}fbR$$

$$R \xrightarrow{1/3} aBBcGdR$$

$$R \xrightarrow{1/2} bcBbR$$

$$R \xrightarrow{1/6} d$$

$$B \xrightarrow{1/4} eeRRf$$

$$B \xrightarrow{3/4} g$$

$$G \xrightarrow{1} aBcRRb$$

$$\begin{array}{c}
\underline{R} \\
\frac{1/2}{\longrightarrow} & bc\underline{B}bR \\
\frac{1/4}{\longrightarrow} & bcee\underline{R}RfbR \\
\frac{1/6}{\longrightarrow} & bceed\underline{R}fbR \\
\frac{1/6}{\longrightarrow} & bceeddcb\underline{R}
\end{array}$$

$$R \xrightarrow{1/3} aBBcGdR$$

$$R \xrightarrow{1/2} bcBbR$$

$$R \xrightarrow{1/6} d$$

$$\stackrel{B}{\longrightarrow} eeRRf$$

$$B \xrightarrow{3/4} g$$

$$G \xrightarrow{1} aBcRRb$$

Leftmost derivation

$$\begin{array}{ccc}
\underline{R} \\
\frac{1/2}{\longrightarrow} & bc\underline{B}bR \\
\frac{1/4}{\longrightarrow} & bcee\underline{R}RfbR \\
\frac{1/6}{\longrightarrow} & bceed\underline{R}fbR \\
\frac{1/6}{\longrightarrow} & bceeddcb\underline{R} \\
\frac{1/6}{\longrightarrow} & bceeddcbd
\end{array}$$

probability of this derivation: $\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{6}^3$

Question

$$R \xrightarrow{1/3} aBBcGaabR$$

$$R \xrightarrow{1/2} bcBbR$$

$$R \xrightarrow{1/6} cb$$

$$B \xrightarrow{1/4} bbRRc$$

$$B \xrightarrow{3/4} a$$

$$G \xrightarrow{1} aBcRRb$$

What is the probability of termination, i.e., eventually generating a finite string, starting with one non-terminal, R?

 $R \xrightarrow{1/3} aBBcGaabR$

$$R \xrightarrow{1/2} bcBbR$$

$$R \xrightarrow{1/6} cb$$

$$B \xrightarrow{1/4} bbRRc$$

$$B \xrightarrow{3/4} a$$

$$G \xrightarrow{1} aBcRRb$$

What is the probability of termination, i.e., eventually generating a finite string, starting with one non-terminal, R?

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{R} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$

$$x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$$

$$x_{G} = x_{B}x_{R}^{2}$$

Fact

Question

Termination probabilities (also called the partition function of the SCFG) are the least fixed point, $\mathbf{q}^* \in [0,1]^3$, of $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Some other key computations for SCFGs

- string ("inside") probability: Given an SCFG, G, and a string w, what is the probability that G generates w?
- regular language probability: Given a SCFG, G, and given a DFA, D, what is the probability that G generates a string in L(D)?
- ω -regular model checking: Given a stochastic context-free process and a Büchi automaton, B, what is the probabilty that a run of G generates an ω -word in L(B)?

For general SCFGs, G, all these questions are at least as hard as computation of SCFG termination probabilities.

Probabilistic Polynomial Systems of Equations

$$\frac{1}{3}x_B^2x_Gx_R + \frac{1}{2}x_Bx_R + \frac{1}{6}$$

is a Probabilistic Polynomial: the coefficients are positive and sum to 1.

A Probabilistic Polynomial System (PPS), is a system of n equations

$$\mathbf{x} = P(\mathbf{x})$$

in *n* variables where each $P_i(x)$ is a probabilistic polynomial.

Every multi-type Branching Process (BP) with n types, and every SCFG with n nonterminals, corresponds to a PPS, and vice-versa.

Basic properties of PPSs, $\mathbf{x} = P(\mathbf{x})$

For every PPS, $P:[0,1]^n \to [0,1]^n$ defines a monotone map on $[0,1]^n$.

Proposition

- A PPS, x = P(x) has a least fixed point, $q^* \in [0, 1]^n$. $(q^* \text{ can be irrational.})$
- q^* is vector of extinction/termination probabilities for the BP (SCFG).

Question

Can we compute the probabilities q^* efficiently (in P-time)?

First considered by Kolmogorov & Sevastyanov (1940s).

Newton's method

Newton's method

Seeking a solution to $F(\mathbf{x}) = 0$, we start at a guess $\mathbf{x}^{(0)}$, and iterate:

$$\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} - (F'(\mathbf{x}^{(k)}))^{-1}F(\mathbf{x}^{(k)})$$

Here $F'(\mathbf{x})$, is the **Jacobian matrix**:

$$F'(\mathbf{x}) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} \cdots \frac{\partial F_1}{\partial x_n} \\ \vdots \vdots \\ \frac{\partial F_n}{\partial x_1} \cdots \frac{\partial F_n}{\partial x_n} \end{bmatrix}$$

For PPSs, $F(x) \equiv (P(x) - x)$, and Newton iteration looks like this:

$$\mathbf{x}^{(k+1)} := \mathbf{x}^{(k)} + (I - P'(\mathbf{x}^{(k)}))^{-1}(P(\mathbf{x}^{(k)}) - \mathbf{x}^{(k)})$$

where $P'(\mathbf{x})$ is the Jacobian of $P(\mathbf{x})$.

Newton on PPSs

We can decompose $\mathbf{x} = P(\mathbf{x})$ into its strongly connected components (SCCs), based on variable dependencies, and eliminate "0" variables.

Theorem [E.-Yannakakis'05]

Decomposed Newton's method converges monotonically to the LFP \mathbf{q}^* for PPSs, and for more general Monotone Polynomial Systems (MPSs).

But...

- In [E.-Yannakakis'05,'09], we gave no upper bounds on # of iterations needed for PPSs or MPSs.
- We proved hardness results (PosSLP-hardness) for obtaining any nontrivial approximation of the LFP of MPSs for recursive Markov chains.

What is Newton's worst case behavior for PPSs?

[Esparza, Kiefer, Luttenberger, '10] studied Newton's method on MPSs further:

- Gave bad examples of PPSs, $\mathbf{x} = P(\mathbf{x})$, where $q^* = 1$, requiring exponentially many iterations, as a function of the encoding size |P| of the equations, to converge to within additive error < 1/2.
- For strongly-connected equation systems they gave an exponential upper bound in |P|.
- But they gave no upper bounds for arbitrary PPSs or MPSs in terms of |P|.

What is Newton's worst case behavior for PPSs?

[Esparza, Kiefer, Luttenberger, '10] studied Newton's method on MPSs further:

- Gave bad examples of PPSs, $\mathbf{x} = P(\mathbf{x})$, where $\mathbf{q}^* = \mathbf{1}$, requiring exponentially many iterations, as a function of the encoding size |P| of the equations, to converge to within additive error < 1/2.
- For strongly-connected equation systems they gave an exponential upper bound in |P|.
- But they gave no upper bounds for arbitrary PPSs or MPSs in terms of |P|.
- (Recently [Stewart-E.-Yannakakis'13], we give a matching exponential upper bound in |P| for arbitrary PPSs and MPSs.)

P-time approximation for PPSs

Theorem ([E.-Stewart-Yannakakis,STOC'12])

Given a PPS, $\mathbf{x} = P(\mathbf{x})$, with LFP $\mathbf{q}^* \in [0,1]^n$, we can compute a rational vector $\mathbf{v} \in [0,1]^n$ such that

$$\|\mathbf{v} - \mathbf{q}^*\|_{\infty} \leq 2^{-j}$$

in time polynomial in both the encoding size |P| of the equations and in j (the number of "bits of precision").

We use Newton's method..... but how?

Qualitative decision problems for PPSs are in P-time

Theorem ([Kolmogorov-Sevastyanov'47, Harris'63])

For certain classes of strongly-connected PPSs, $\mathbf{q}_i^* = \mathbf{1}$ for all i iff the spectral radius $\varrho(P'(\mathbf{1}))$ for the moment matrix $P'(\mathbf{1})$ is ≤ 1 , and otherwise $\mathbf{q}_i^* < \mathbf{1}$ for all i.

Theorem ([E.-Yannakakis'05])

Given a PPS, $\mathbf{x} = P(\mathbf{x})$, deciding whether $\mathbf{q}_i^* = 1$ is in P-time.

(Deciding whether $q_i^* = 0$ is also in P-time (and a lot easier).)

Algorithm for approximating the LFP q^* for PPSs

- ① Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$.
- ② On the resulting system of equations, run Newton's method starting from $\mathbf{0}$.

Algorithm for approximating the LFP q^* for PPSs

- Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$.
- ② On the resulting system of equations, run Newton's method starting from $\mathbf{0}$.

Theorem ([ESY'12])

Given a PPS $\mathbf{x} = P(\mathbf{x})$ with LFP $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, if we apply Newton starting at $\mathbf{x}^{(0)} = \mathbf{0}$, then

$$\|\mathbf{q}^* - \mathbf{x}^{(4|P|+j)}\|_{\infty} \le 2^{-j}$$

Algorithm for approximating the LFP q^* for PPSs

- Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$.
- ② On the resulting system of equations, run Newton's method starting from **0**.

Theorem ([ESY'12])

Given a PPS $\mathbf{x} = P(\mathbf{x})$ with LFP $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, if we apply Newton starting at $\mathbf{x}^{(0)} = \mathbf{0}$, then

$$\|\mathbf{q}^* - \mathbf{x}^{(4|P|+j)}\|_{\infty} \le 2^{-j}$$

Theorem ([ESY'12])

Given a PPS $\mathbf{x} = P(\mathbf{x})$ with LFP $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, if we apply Newton starting at $\mathbf{x}^{(0)} = \mathbf{0}$, then

$$\|\mathbf{q}^* - \mathbf{x}^{(32|P|+2j+2)}\|_{\infty} \le 2^{-2^j}$$

Algorithm with rounding

- ① Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$.
- ② On the resulting system of equations, run Newton's method starting from **0**.
- 3 After each iteration, round down to a multiple of 2^{-h}

Theorem ([ESY'12])

If, after each Newton iteration, we round down to a multiple of 2^{-h} where h := 4|P| + j + 2, then after h iterations $\|\mathbf{q}^* - \mathbf{x}^{(h)}\|_{\infty} \le 2^{-j}$.

Thus, we obtain a P-time algorithm (in the standard Turing model) for approximating q^* .

High level picture of proof

• For a PPS, x = P(x), with LFP $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, $P'(q^*)$ is a non-negative square matrix, and (we show)

(spectral radius of
$$P'(q^*)$$
) $\equiv arrho(P'(q^*)) < 1$

- So, $(I P'(q^*))$ is non-singular, and $(I P'(q^*))^{-1} = \sum_{i=0}^{\infty} (P'(q^*))^i$.
- ullet We can show the # of Newton iterations needed to get within $\epsilon>0$ is

$$pprox pprox \log \|(I - P'(q^*))^{-1}\|_{\infty} + \log \frac{1}{\epsilon}$$

- $||(I P'(q^*))^{-1}||_{\infty}$ is tied to the distance $|1 \varrho(P'(q^*))|$, which in turn is related to $\min_i (1 q_i^*)$, which we can lower bound.
- Uses lots of Perron-Frobenius theory.

Proof outline: some key lemmas

 $(1 - q^*)$ is the vector of survival probabilities.

Lemma

If $q^* - x^{(k)} \le \lambda (1 - q^*)$ for some $\lambda > 0$, then $q^* - x^{(k+1)} \le \frac{\lambda}{2} (1 - q^*)$.

Lemma

For any PPS with LFP \mathbf{q}^* , such that $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, for any i, $q_i^* \le 1 - 2^{-4|P|}$.

The complexity of quantitative decision problems for BPs

Proposition

Given a PPS, x = P(x), and a probability p, deciding whether $q_i^* \le p$ is in PSPACE.

Proof.

$$\exists \mathbf{x}(\mathbf{x} = P(\mathbf{x}) \land x_i \leq p)$$

is expressible in the existential theory of reals. There are PSPACE decision procedures for $\exists \mathbb{R}$ ([Canny'89,Renegar'92]).

Now some bad news:

Theorem ([E.-Yannakakis,'05,'07])

Given a PPS, x = P(x), deciding whether $q_i^* \le 1/2$ (or $q_i^* \le p$ for any $p \in (0,1)$), is both Sqrt-Sum-hard and PosSLP-hard.

two "hard" problems

Sqrt-Sum: the square-root sum problem is the following decision problem: Given $(d_1, \ldots, d_n) \in \mathbb{N}^n$ and $k \in \mathbb{N}$, decide whether $\sum_{i=1}^n \sqrt{d_i} \le k$. Solvable in PSPACE.

Open problem ([GareyGrahamJohnson'76]) whether it is in NP (or even the polynomial time hierarchy).

PosSLP: Given an arithmetic circuit (Straight Line Program) with gates $\{+,*,-\}$ with integer inputs, decide whether the output is > 0. PosSLP captures all of polynomial time in the unit-cost arithmetic RAM model of computation.

[Allender, Bürgisser, Kjeldal-Petersen, Miltersen, 2006] Gave a (Turing) reduction from Sqrt-Sum to PosSLP and showed both can be decided in the Counting Hierarchy: $P^{PP^{PP}}$. Nothing better is known.

The quantitative decision problem for PPSs is PosSLP-equivalent

Theorem ([E.-Stewart-Yannakakis'12])

Given a PPS, x = P(x), and a probability p, deciding whether $q_i^* < p$ is P-time (many-one) reducible to PosSLP. (And thus PosSLP-equivalent.)

- Thus it captures the full power of polynomial time in the unit-cost arithmetic RAM model of computation.
 - And by [Allender, et. al.'06], it is also in the Counting Hierarchy.

What is the maximum probability of extinction, starting with one?

What is the maximum probability of

extinction, starting with one

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{Y} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$

$$x_{B} = \frac{1}{4}x_{R}^{2} + \frac{3}{4}$$

$$x_G = x_B x_R^2$$

$$X_{\mathbf{Y}} =$$

extinction, starting with one

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{Y} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$

$$x_B = \frac{1}{4}x_R^2 + \frac{3}{4}$$

$$x_G = x_B x_R^2$$

$$x_{Y} = \max\{x_{B}^{2}, x_{R}\}$$

We get fixed point equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Fact [E.-Yannakakis'05]

The maximum extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0, 1]^3$, of $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

What is the minimum probability of

extinction, starting with one

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{Y} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$

$$1 - 3$$

$$x_B = \frac{1}{4}x_R^2 + \frac{3}{4}$$

$$x_G = x_B x_R^2$$

$$x_{Y} = \min\{x_B^2, x_R\}$$

We get fixed point equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Fact [E.-Yannakakis'05]

The minimum extinction probabilities are the least fixed point, $\mathbf{q}^* \in [0,1]^3$, of $\bar{\mathbf{x}} = P(\bar{\mathbf{x}}).$

Maximum Probabilistic Polynomial Systems of Equations

A Maximum Probabilistic Polynomial System (maxPPS) is a system

$$\mathbf{x}_{i} = \max\{p_{i,j}(\mathbf{x}) : j = 1, \dots, m_{i}\}$$
 $i = 1, \dots, n$

of n equations in n variables, where each $p_{i,j}(x)$ is a probabilistic polynomial. We denote the entire system by:

$$\mathbf{x} = P(\mathbf{x})$$

Minimum Probabilistic Polynomial Systems (minPPSs) are defined similarly.

These are Bellman optimality equations for maximizing (minimizing) extinction probabilities in a BMDP.

We use max/minPPS to refer to either a maxPPS or an minPPS.

Basic properties of max/minPPSs, $\mathbf{x} = P(\mathbf{x})$

 $P: [0,1]^n \rightarrow [0,1]^n$ defines a monotone map on $[0,1]^n$.

Proposition. [E.-Yannakakis'05]

- Every max/minPPS, x = P(x) has a least fixed point, $q^* \in [0,1]^n$.
- q^* is vector of optimal extinction probabilities for the BMDP.

Question

Can we compute the probabilities q^* efficiently (in P-time)?

P-time approximation for BMDPs and max/minPPSs

Theorem ([E.-Stewart-Yannakakis,ICALP'12])

Given a max/minPPS, $\mathbf{x} = P(\mathbf{x})$, with LFP $\mathbf{q}^* \in [0,1]^n$, we can compute a rational vector $\mathbf{v} \in [0,1]^n$ such that

$$\|\mathbf{v} - \mathbf{q}^*\|_{\infty} \le 2^{-j}$$

in time polynomial in the encoding size |P| of the equations, and in j.

We establish this via a Generalized Newton's Method that uses linear programming in each iteration.

Newton iteration as a first-order (Taylor) approximation

An iteration of Newton's method on a PPS, applied on current vector $y \in \mathbb{R}^n$, solves the equation

$$P^{\mathbf{y}}(\mathbf{x}) = \mathbf{x}$$

where $P^{\mathbf{y}}(\mathbf{x}) \equiv P(\mathbf{y}) + P'(\mathbf{y})(\mathbf{x} - \mathbf{y})$ is a linear (first-order Taylor) approximation of P(x).

Generalised Newton's method

Linearisation

Given a maxPPS

$$(P(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{x}) : j = 1, \dots, m_i\}$$
 $i = 1, \dots, n$

We define the linearisation, $P^{y}(x)$, by:

$$(P^{\mathbf{y}}(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{y}) + \nabla p_{i,j}(\mathbf{y}).(\mathbf{x} - \mathbf{y}) : j = 1, \dots, m_i\}$$
 $i = 1, \dots, m_i$

Generalised Newton's method

Linearisation

Given a maxPPS

$$(P(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{x}): j=1,\ldots,m_i\}$$
 $i=1,\ldots,n$

We define the linearisation, $P^{y}(x)$, by:

$$(P^{\mathbf{y}}(\mathbf{x}))_i = \max\{p_{i,j}(\mathbf{y}) + \nabla p_{i,j}(\mathbf{y}).(\mathbf{x} - \mathbf{y}) : j = 1, \dots, m_i\}$$
 $i = 1, \dots, m_i$

Generalised Newton's method, applied at vector y

For a maxPPS, minimize $\sum_i x_i$ subject to $P^{\mathbf{y}}(\mathbf{x}) \leq \mathbf{x}$;

For a minPPS, maximize $\sum_{i} x_{i}$ subject to $P^{\mathbf{y}}(\mathbf{x}) \geq \mathbf{x}$;

These can both be phrased as linear programming problems. Their optimal solution solves $P^{\mathbf{y}}(\mathbf{x}) = \mathbf{x}$, and yields the GNM iteration we need.

Algorithm for max/minPPSs

• Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$. $(q_i^* = 1 \text{ decidable in P-time using LP [E.-Yannakakis'06]: reduces to a spectral radius optimization problem for non-negative square matrices.)$

Algorithm for max/minPPSs

- Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$. $(q_i^* = 1 \text{ decidable in P-time using LP [E.-Yannakakis'06]: reduces to a spectral radius optimization problem for non-negative square matrices.)$
- ② On the resulting system of equations, run Generalized Newton's Method, starting from $\mathbf{0}$. After each iteration, round down to a multiple of 2^{-h} .
 - Each iteration of GNM can be computed in P-time by solving an LP.

Algorithm for max/minPPSs

- Find and remove all variables x_i such that $q_i^* = 0$ or $q_i^* = 1$. $(q_i^* = 1 \text{ decidable in P-time using LP [E.-Yannakakis'06]: reduces to a spectral radius optimization problem for non-negative square matrices.)$
- ② On the resulting system of equations, run Generalized Newton's Method, starting from $\mathbf{0}$. After each iteration, round down to a multiple of 2^{-h} .

Each iteration of GNM can be computed in P-time by solving an LP.

Theorem [ESY'12]

Given a max/minPPS $\mathbf{x} = P(\mathbf{x})$ with LFP $\mathbf{0} < \mathbf{q}^* < \mathbf{1}$, if we apply rounded GNM starting at $\mathbf{x}^{(0)} = \mathbf{0}$, using h := 4|P|+j+1 bits of precision, then $\|\mathbf{q}^* - \mathbf{x}^{(4|P|+j+1)}\|_{\infty} \le 2^{-j}$.

We can do all this in time polynomial in |P| and j.

finite-state Simple Stochastic Games

What is the value of the game for hitting S_5 starting at S_1 ? (These games are determined.)

$$x_1 =$$

What is the value of the game for hitting S_5 starting at S_1 ? (These games are determined.)

$$x_{1} = \frac{1}{3}x_{2} + \frac{1}{2}x_{3} + \frac{1}{6}$$

$$x_{2} = \frac{2}{5}x_{1} + \frac{1}{5}x_{3} + \frac{2}{5}$$

$$x_{3} = \max\{x_{1}, x_{4}\}$$

$$x_{4} = \min\{x_{2}, x_{3}\}$$

What is the value of the game for hitting S_5 starting at S_1 ? (These games are determined.)

$$x_{1} = \frac{1}{3}x_{2} + \frac{1}{2}x_{3} + \frac{1}{6}$$

$$x_{2} = \frac{2}{5}x_{1} + \frac{1}{5}x_{3} + \frac{2}{5}$$

$$x_{3} = \max\{x_{1}, x_{4}\}$$

$$x_{4} = \min\{x_{2}, x_{3}\}$$

We get linear-min-max equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

What is the value of the game for hitting S_5 starting at S_1 ? (These games are determined.)

$$x_{1} = \frac{1}{3}x_{2} + \frac{1}{2}x_{3} + \frac{1}{6}$$

$$x_{2} = \frac{2}{5}x_{1} + \frac{1}{5}x_{3} + \frac{2}{5}$$

$$x_{3} = \max\{x_{1}, x_{4}\}$$

$$x_{4} = \min\{x_{2}, x_{3}\}$$

We get linear-min-max equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Fact: [Shapley'53, Condon'92] Hitting values are the least fixed point, $q^* \in [0, 1]^4$, of $\mathbf{x} = P(\mathbf{x})$.

- In any finite-state SSG, both max and min, have optimal positional strategies (i.e., deterministic and memoryless optimal strategies).
- Thus [Condon'92]: deciding whether the game value $q_i^* \le 1/2$, is in NP \cap coNP.
 - And computing the (exact, rational) values q^* is in **FNP**.
- Long standing open problem whether SSGs are solvable in P-time.
 (Subsumes parity games and mean payoff games.)

Question

What is the value of extinction, starting with one ?

Question

What is the value of extinction, starting with one ?

$$x_{R} = \frac{1}{3}x_{B}^{2}x_{G}x_{Y} + \frac{1}{2}x_{B}x_{R} + \frac{1}{6}$$

$$x_B = \min\{x_R^2, 1\}$$

$$x_G = x_B x_R^2$$

$$x_Y = \max\{x_B^2, x_R\}$$

We get fixed point equations, $\bar{\mathbf{x}} = P(\bar{\mathbf{x}})$.

Fact [E.-Yannakakis'05]

The extinction values are the LFP, $\mathbf{q}^* \in [0,1]^3$ of $\mathbf{\bar{x}} = P(\mathbf{\bar{x}})$.

Qualitative and Quantitative problems for BSSGs

Theorem ([E.-Yannakakis'05])

For any BSSG, both players have static positional optimal strategies for maximizing (minimizing) extinction probability.

A static positional strategy is one that, for every type belonging to the player, always deterministically chooses the same single rule. (i.e., it is deterministic, memoryless, and "context-oblivious".)

Theorem ([E.-Yannakakis'06])

Given a BSSG, deciding if the extinction value is $q_i^* = 1$ is in NP \cap coNP, & is at least as hard as computing the exact value for a finite-state SSG.

Theorem ([ESY'12])

Given a BSSG, and given $\epsilon > 0$, we can compute a vector $v \in [0,1]^n$, such that $||v - q^*||_{\infty} \le \epsilon$, in **FNP**.

One piece of a larger story

- Many other analyses: expected total reward, discounted reward, expected limiting average reward, model checking.
- Many analyses require termination probabilities q^* as a prerequisite, but they also require non-trivial additional work.
- Recursive Markov Chains (RMCs) form a more general class of countable infinite-state discrete-time MCs. (BPs and SCFGs correspond to 1-exit RMCs.)

Recursive Markov Chain

- RMCs also have MPSs (not PPSs) whose LFP $q^* \in [0,1]^n$ gives their termination probabilities.
- However, any non-trivial approximation of q^* for RMCs is PosSLP-hard ([E.-Yannakakis'07]).
- For RMDPs and RSSGs any non-trivial approximation of their value vector is uncomputable! ([E.-Yannakakis'05]).

- But other subclasses of RMCs, corresponding to other important stochastic processes, are analyzable.
- 1-box RMCs correspond to (discrete-time) Quasi-Birth-Death processes (QBDs), and to probabilistic one-counter automata (OC-MCs).
- For QBDs we can approximate q* in P-time ([E.-Wojtczak-Yannakakis'08], [Stewart-E.-Yannakakis'13]).
- Many problems for OC-MDPs and OC-SSGs are also decidable ([Brazdil-Brozek-E.-Kucera-Wojtczak'10,'10,'11]), but for many we don't know good complexity bounds.

Conclusion

- A very rich landscape, with still many open questions.
- Can we solve finite-state SSGs in P-time?
- Can we obtain any better upper bounds for PosSLP??
- Deciding $q^* \ge 1/2$ for Branching SSGs subsumes both of these problems.