

Element Information: Gadolinium

About Us | Directory | Career | News | Chat | InfoStore | Industrial | Ask an Expert

Materials Home

ResourcesBibliography

■ Free Magazines
Injection Molding
Plastics News
Desktop Engineering
Machine Lubrication
Processing Magazine
Portable Design
Reinforced Plastics
more...

▶ Login

<u>Sheet Metal Fabrication: Laser</u> www.laser-dynamics.com

Sheet Metal Fabrication www.fournierenterprises.com

Gd Atomic Weight

Electron Config.

2-2-6-2-6-10-2-6-10-7-2-6-1-0-2

Electron configuration order: 1s-2s-2p-3s-3p-3d-4s-4p-4d-4f-5s-5p-5d-5f-6s-6p-6d-7s

Conditions Mechanical Properties Phase Temp. (K) Pressure (Pa) Density 7900 kg/m³ Solid 298.15 0 75.842 GPa Modulus of Elasticity Solid 0 Poisson Ratio 0.26 Solid Thermal Expansion Coefficient $9.000 \times 10^{-6} / K$ Solid 298.15 Conditions

Electrical Properties			
		Temp . (K)	Note
Electrical Resistivity	$1.405 \times 10^{-6} \Omega$ -m	298.15	

Thermal Properties	·	Conditions		
		Temp. (K)	Pressure (Pa)	
Melting Temperature	1587.15 K		101325	
Boiling Temperature	3537.15 K		101325	
Critical Temperature	8670 K			
Fusion Enthalpy	62.4 J/g	0	101325	
Heat Capacity	236 J/kg-K	298.15	100000	
Thermal Conductivity	10.5 W/m-K	300 <u>more</u>	101325	

Download a Palm version of eFunda's periodic table!

Melt Practice

Nitinol is a family of alloys which are comprised of near equiatomic percentages of nickel and titanium. A few variants of Nitinol also include small amounts of a third element that is used to alter certain properties. Nitinol exhibits a thermoelastic martensitic transformation. This transformation is responsible for either shape memory or superelasticity being exhibited by the alloy. Following deformation below the transformation range, the ability called shape memory allows recovery of a predetermined shape upon heating above the transformation range. Superelasticity is the ability to recover a shape upon removal of an applied stress over a narrow range of deformation temperatures. The strain recovered with shape memory or superelasticity provides nearly ten times the elastic springback of other alloys such as stainless steel.

Typical Chemistry

	FWM NiTi #1	FWM Avg.
Nickel	54.5-57.0 wt. %	56.0 wt %
Carbon	0.050 wt % Max.	0.033 wt % Max.
Oxygen	0.050 wt % Max.	0.028 wt % Max.
Hydrogen	0.005 wt % Max.	0.0025 wt % Max.
Titanium	Balance	Balance

In addition to FWM's NiTi #1 (High Nickel Superelastic Binary), requirements for a variety of binary and ternary chemistries can be made available.

Physical Properties

These values are typical for FWM NiTi#1

*	Density Modulus of Elasticity	6.45 g/cm 3 15GPa	6.45 g/cm 3 40GPa	
•	Electrical Resistivity Magnetic Susceptibility	82x10 -6 ohm-cm 3.7x10 -6 emu/g →	76x10 -6 ohm-cm 2.4x10 -6 emu/g	
	Coefficient of Thermal Expansion	11x10 -6 /°C	6.6x10 -6 /°C	

Transformation Properties

Because shape memory and superelasticity are very temperature dependent, there are a number of thermal points of interest that deserve discussion in order to gain an understanding of the material. This paper will discuss two of these points: the fully annealed austenitic peak and the active austenitic finish temperatures. The fully annealed austenitic peak (A p) is a temperature that FWM uses in order to classify the types of Nitinol. Several companies will make use of different points, but the intent of the measurements are the same. The A p is the point that the fully annealed Nitinol has the highest rate of transformation from Martensite to Austenite. The active austenitic finish temperature (Active A f) is a finished material property that is measured after heat treatment. This is the temperature at which the material has completely transformed to Austenite, which means that at and above this temperature the material will have completed its shape memory transformation or will display its superelastic characteristics. For a more detailed discussion of thermal properties and the effect that they may have on your finished product, please feel free to contact FWM.

Fully Annealed Austenitic Peak (A p) by Differential Scanning

-25 to -5 °C

Calorimeter

Active Austenitic Finish (A f) by bend and

10 to 20 °C

free recovery

Product Forms

Round Wire: Size Range .0005" up to .250" Flat Wire: Minimum thickness down to .0003"

Strands and Cables: Nitinol is available in all of our standard strand configurations.

DFT (drawn filled tubing): Please call FWM regarding your DFT needs.

Turkshead and Specialty Shapes: FWM has recently added the capability to manufacture your

square, rectangle or other shaped cross-sectional wire needs.

Surface Finishes

Light Oxide: (LO) Gold to Brown color - diamond drawn surface Dark Oxide: (DK) Grey to Black color - diamond drawn surface Black Oxide: (BLK) Shiny Black color - diamond drawn surface

Etch: (E) chemical removal of oxide layer - will retain smooth surface

Pickled: (P) chemical removal of oxide layer along with a slight amount of base metal - surface

will have a rough texture

Etched and Mechanically Polished: (EMP) Chemical removal of oxide layer followed by mechanical polish - surface will have stainless steel appearance (although at >40x magnification, micro scratches will be present)

Mechanical Properties (at 21 +/- 3°C)

Two critical characteristics unique to Nitinol in the austenitic phase are the loading plateau and the unloading plateau. The loading plateau stress is the stress level at which material at a specific temperature above A f will force Austenite phase into Martensite. This produces an almost constant stress level over a relatively large range of strain, up to about 8%. The unloading plateau stress is the stress level at which the Martensite will return to the Austenitic phase.

by Atomic Weight **Element Information**

Resources

Bibliography Free Magazines

Injection Molding **Plastics News Desktop Engineering**

Machine Lubrication Processing Magazine Portable Design

Reinforced Plastics

more...

Login

Element Information: Lead

Ads by Yahoo!

Conditions

About Us | Directory | Career | News | Chat | InfoStore | Industrial | Ask an Expert

Materials Home ☑ for Pure Elements Search All Periodic Table Home Membership Palm Store Forum Search Member Calculators **Element List** by Name B by Symbol Materials Processes Units Design Formulas Math by Atomic Number

Sheet Metal Fabrication www.fournierenterprises.com

Machanical Properties

Sheet Metal Fabrication: Laser www.laser-dynamics.com

Engineering Jobs Search Here

Download a Palm version of eFunda's periodic table!

Lead 82 **Atomic Number** 82 Pb Atomic Weight 207.2 207.2 Electron Config. 2-2-6-2-6-10-2-6-10-14-2-6-10-0-2-2

Electron configuration order: 1s-2s-2p-3s-3p-3d-4s-4p-4d-4f-5s-5p-5d-5f-6s-6p-6d-7s

	Mechanical Properties		Phase	Temp. (K)	Pressure (Pa)	
Ť	Density	11300 kg/m ³	Solid	298.15	0	
*	Modulus of Elasticity	13.79 GPa	Solid	0		
	Poisson Ratio	0.44	Solid	_		
	Thermal Expansion Coefficient	$2.890 \times 10^{-5} / K$	Solid	298.15	•	
	Floatsiant Proposition			Conditions		
	Electrical Properties			Temp. (K) Note	
	Electrical Resistivity	$2.065 \times 10^{-7} \Omega$ -m				
				Conditions	Conditions	
	Thermal Properties		Temp. (K	· ()	Pressure (Pa)	
	Melting Temperature	600.61 K			101325	
	Boiling Temperature	2022.15 K			101325	
	Critical Temperature	5500 K				
	Fusion Enthalpy	23 J/g	0		101325	
	Vaporization Enthalpy	866.31 J/g	0		101325	
	Heat Capacity	129 J/kg-K	298.15 mor	e	100000	
	Thermal Conductivity	35.3 W/m-K	300 <u>more</u>	·••	101325	

Download a Palm version of eFunda's periodic table!