Tema 1: Introducción a la Computación

Serafín Moral

Universidad de Granada

Septiembre, 2016

Contenido

Tema 1: Introducción a la Computación

- Breve introducción histórica a la computación
- Definiciones: palabras y lenguajes
- Operaciones con palabras y lenguajes
- Gramáticas
- Jerarquía de Chomsky

La Computación

Vamos a tratar de responder varias preguntas:

- ¿Qué puede ser resuelto de forma automática?
- ¿Qué puede ser resuelto de forma eficiente?
- ¿Qué estructuras son comunes en la computación con palabras y símbolos y cómo se pueden procesar en un ordernador?

Consecuencia: Estudio de Modelos de Computación

Historia

- Russell, Hilbert y Boole: Los precursores
- Turing y Church: Los primeros años (30 y 40)
- FORTRAN, COBOL, LISP: Los primeros lenguajes
- Rabin, Scott, Chomsky: Autómatas y Lenguajes Formales (los 50).
- Hartmanis, Lewis, Cook: Complejidad Algorítmica (los 60)
- Complejidad (circuitos, tiempo-espacio), semántica y estructuras de datos (los 70)
- Complejidad paralela, computación distribuida y criptografía (los 80 y 90)

El problema de la parada

¿Existe un programa que lea un programa y unos datos y nos diga si ese programa termina o cicla indefinidamente? No existe, ya que si existiera (programa Stops(P,x)) podríamos construir el algoritmo Turing(P) con entrada P.

```
L If Stops(P,P) GOTO L
```

¿Cual es el resultado de Turing(Turing)?

Alfabetos

Un **alfabeto** es un conjunto finito A. Sus elementos se llamarán símbolos o letras.

Notación - Alfabetos: A, B, C, ...Símbolos: a, b, c, ... o números.

Ejemplos

- $A = \{0,1\}$
- $B = \{ <0,0>,<0,1>,<1,0>,<1,1> \}$

Palabras

Una palabra sobre el alfabeto A es una sucesión finita de elementos de A.

$$u = a_1 \dots a_n$$

donde $a_i \in A$, $\forall i = 1, ..., n$.

Ejemplo

Si $A = \{0,1\}$ entonces 0111 es una palabra sobre este alfabeto.

Palabras

El conjunto de todas las palabras sobre un alfabeto A se nota como A^* .

Notación - Palabras: u, v, x, y, z, ...

Si $u \in A^*$, entonces la longitud de la palabra u es el número de símbolos de A que contiene.

Notación: |u|

Si $u = a_1 \dots a_n$, entonces |u| = n.

La *palabra vacía* es la palabra de longitud cero.

Notación: ε

Notación: El conjunto de cadenas sobre un alfabeto A excluyendo la cadena vacía se nota como A^+ .

Operaciones: Concatenación

Si $u, v \in A^*$, $u = a_1 \dots a_n$, $v = b_1 \dots b_m$, se llama concatenación de u y v a la cadena u.v (o simplemente uv) dada por $a_1 \dots a_n b_1 \dots b_m$.

Ejemplo

Si u = 011, v = 1010, entonces uv = 0111010

Propiedades

- **2** Asociativa.- u.(v.w) = (u.v).w, $\forall u, v, w \in A^*$
- **3** Elemento Neutro.- $u.\varepsilon = \varepsilon.u = u, \forall u \in A^*$

Estructura de monoide

Prefijos y Sufijos

Prefijo

Si $u \in A^*$ entonces v es un prefijo de u si $\exists z \in A^*$ tal que vz = uUn prefijo v de u se dice propio si $v \neq \varepsilon$ y $v \neq u$.

Sufijo

Si $u \in A^*$ entonces v es un sufijo de u si $\exists z \in A^*$ tal que zv = uUn sufijo v de u se dice propio si $v \neq \varepsilon$ y $v \neq u$.

Si ve 1 * v es una subcadena de u si 321,2, e 1 * tal que 21, v 2 = u. Una subcadena se dice propia si v + E. u.

Iteración y Cadena Inversa

Iteración n-ésima de una cadena (u^n) como la concatenación con ella misma n veces.

Si $u \in A^*$ entonces

- $u^0 = \varepsilon$
- $u^{i+1} = u^i . u$, $\forall i \geq 0$

Ejemplo

Si u = 010, entonces $u^3 = 010010010$.

Si $u = a_1 \dots a_n \in A^*$, entonces la *cadena inversa* de u es la cadena $u^{-1} = a_n \dots a_1 \in A^*$.

Ejemplo

Si u = 011, entonces $u^{-1} = 110$.

Lenguajes

Un **lenguaje** sobre el alfabeto A es un subconjunto del conjunto de las cadenas sobre A: $L \subseteq A^*$.

Notación - Lenguajes: L, M, N, Ejemplos:

- $L_1 = \{a, b, \epsilon\}$ Tres palabras
- $L_2 = \{a^i b^i \mid i = 0, 1, 2, ...\}$ Una sucesión de a seguida de una de b de la misma longitud
- $L_3 = \{uu^{-1} \mid u \in A^*\}$ Palíndromos de longitud par
- $L_4 = \{a^{n^2} \mid n = 1, 2, 3, ...\}$ Sucesiones de a de longitud un cuadrado perfecto

Conjuntos Numerables

Un conjunto se dice numerable si existe una aplicación inyectiva de este conjunto en el conjunto de los números naturales, o lo que es lo mismo, se le puede asignar un número natural a cada elemento del conjunto de tal manera que dos elementos distintos tengan números distintos.

Ejemplos

 A^* es siempre numerable. Si $A=\{a_1,\ldots,a_n\}$ entonces puedo asignar un número binario distinto de 0 y de la misma longitud a cada a_i de tal manera que símbolos distintos reciben números distintos y a cada palabra $b_1\ldots b_k$ se le asigna el número cuya representación en binario es el que se obtiene sustituyendo cada b_i por su número binario.

Ejemplo: El conjunto de programas bien escritos en C es numerable.

Un conjunto no numerable

Ejemplo: El conjunto de lenguajes sobre A^* (si A no es vacío) nunca es numerable.

Haremos la demostración por reducción al absurdo.

Si lo fuese, se podría asignar un número natural distinto f(L) a cada lenguaje L.

Sea $a \in A$.

Definamos el lenguaje L formado por palabras de la forma a^i de acuerdo a lo siguiente: para cada i número natural:

- Si este número no es de un lenguaje, entonces $a^i \in L$.
- Si este número es del lenguaje, M, (i = f(M))
 - Si $a^i \notin M$ entonces $a^i \in L$.
 - Si $a^i \in M$ entonces $a^i \notin L$.

L no puede tener ningún número asociado. Si fuese j = f(L), entonces la pertenencia de a^j a L es contradictoria:

- Si $a^j \in L$ como j = f(L), entonces $a^j \notin L$
- Si $a^j \notin L$ y j = f(L), entonces $a^j \in L$

Operaciones

Aparte de las operaciones de unión e intersección de lenguajes, dada su condición de conjuntos existe la operación de concatenación.

Si L_1, L_2 son dos lenguajes sobre el alfabeto A, la concatenación de estos dos lenguajes se define como,

$$L_1L_2 = \{u_1u_2 \mid u_1 \in L_1, u_2 \in L_2\}$$

Propiedades

- L0 = 0L = 0
- *Elemento Neutro.* $\{\epsilon\}L = L\{\epsilon\} = L$
- Asociativa.- $L_1(L_2L_3) = (L_1L_2)L_3$

Ejemplo

Si
$$L_1=\{0^i1^i:i\geq 0\}, \quad L_2=\{1^i0^i:i\geq 0\}$$
 entonces,
$$L_1L_2=\{0^i1^i1^j0^j:i,j\geq 0\}$$

Operaciones

La iteración de lenguajes se define de forma recursiva:

$$L^{0} = \{\varepsilon\}, \qquad L^{i+1} = L^{i}L$$

Si L es un lenguaje sobre el alfabeto A, la clausura de Kleene de L es

$$L^* = \bigcup_{i \ge 0} L^i$$

$$L^+ = \bigcup_{i \ge 1} L^i$$

Operaciones

Propiedades:

- $L^+ = L^* \text{ si } \epsilon \in L$
- $L^+ = L^* \setminus \{\epsilon\}$ si $\epsilon \notin L$

Ejemplo

Si $L = \{0,01\}$, entonces:

 $L^* =$ Conjunto de palabras sobre $\{0,1\}$ en las que un uno va siempre precedido de un cero.

 L^+ = Conjunto de palabras sobre $\{0,1\}$ en las que un uno va siempre precedido de un cero y distintas de la palabra vacía.

Lenguaje Inverso

El **lenguaje inverso** de *L* es el lenguaje dado por:

$$L^{-1} = \{u \ | \ u^{-1} \in L\}$$

Operaciones

La cabecera de L es el lenguaje dado por

CAB(L) =
$$\{u \mid u \in A^* \text{ y } \exists v \in A^* \text{ tal que } uv \in L\}$$

Es el conjunto de prefijo de todas las polabras de L.

Ejemlo

Si
$$L = \{0^i 1^i : i \ge 0\}$$
, entonces $CAB(L) = \{0^i 1^j : i \ge j \ge 0\}$.

Operaciones

Si A_1 y A_2 son dos alfabetos, una aplicación

$$h: A_1^* \to A_2^*$$

se dice que es un homomorfismo si y solo si

$$h(uv) = h(u)h(v)$$

Consecuencias

- $h(\varepsilon) = \varepsilon$
- $\bullet \quad h(a_1 \ldots a_n) = h(a_1) \ldots h(a_n)$

Homomorfismo

Si
$$A_1 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, A_2 = \{0, 1\}$$

$$h(0) = 0000,$$
 $h(1) = 0001,$ $h(2) = 0010,$ $h(3) = 0011$
 $h(4) = 0100,$ $h(5) = 0101,$ $h(6) = 0110,$ $h(7) = 0111$
 $h(8) = 1000$ $h(9) = 1001$

$$h(034) = 000000110100, \quad h(\varepsilon) = \varepsilon$$

Preguntas

¿Verdadero of falso?

- Si A es un afabeto, la aplicación que transforma cada palabra $u \in A^*$ en su inversa es un homomorfismo de A^* en A^* . FALSO $\{(0,V) = V_N V_{N-1} V_A V_N V_A = V^* V_A V_A = V^* V_A V_A + V_A V_A = V^* V_A V_A + V_A -$
- La transformación que a cada palabra sobre $\{0,1\}^*$ le añade 00 al principio y 11 al final es un homomorfismo. FALSO

Gramáticas Generativas

Una gramática generativa es un cuadrupla (V, T, P, S) en la que

- V es un alfabeto, llamado de variables o símbolos no terminales.
 Sus elementos se suelen representar con letras mayúsculas.
- T es un alfabeto, llamado de símbolos terminales. Sus elementos se suelen representar con letras minúsculas.
- P es un conjunto finito de pares (α, β) , llamados reglas de producción, donde $\alpha, \beta \in (V \cup T)^*$ y α contiene, al menos un símbolo de V.
 - El par (α, β) se suele representar como $\alpha \to \beta$. ("Tracito" β se puede cambiar por uno β).
- S es un elemento de V, llamado símbolo de partida.

Gramática

$$G = (V, T, P, S)$$
 dada por,

- $V = \{E\}$
- $T = \{+, *, (,), a, b, c\}$
- P está compuesto por las siguientes reglas de producción

$$E \rightarrow E + E$$
, $E \rightarrow E * E$, $E \rightarrow (E)$, $E \rightarrow a$, $E \rightarrow b$, $E \rightarrow c$

 \circ S = E

Lenguaje Generado: idea intuitiva

Una gramática sirve para determinar un lenguaje.

$$E \rightarrow E + E, \quad E \rightarrow E * E, \quad E \rightarrow (E),$$

 $E \rightarrow a, \quad E \rightarrow b, \quad E \rightarrow c$

Las palabras son las de \mathcal{T}^* que se obtienen a partir del símbolo inicial efectuando pasos de derivación. Cada paso consiste en elegir una parte de la palabra que coincide con la parte izquierda de una producción y sustituir esa parte por la derecha de la misma producción.

Ejemplo

$$EE \Rightarrow E*E \Rightarrow (E)*E \Rightarrow (E+E)*E \Rightarrow (a+E)*E \Rightarrow$$

 $(a+b)*E \Rightarrow (a+b)*b$ Palabra Generada

Paso de Derivación

```
Gramática G = (V, T, P, S) y dos palabras \alpha, \beta \in (V \cup T)^* \beta es derivable a partir de \alpha en un paso (\alpha \Longrightarrow \beta) si y solo si
```

- existe una producción $\,\gamma \! \to \! \phi$ tal que
 - α contiene a γ como subcadena.
 - β se obtiene sustituyento γ por ϕ en α .

Secuencia de Derivación

 β es derivable de α $(\alpha \stackrel{*}{\Longrightarrow} \beta)$, si y solo si existe una sucesión de palabras $\gamma_1, \ldots, \gamma_n$ $(n \ge 1)$ tales que

$$\alpha = \gamma_1 \Longrightarrow \gamma_2 \Longrightarrow \ldots \Longrightarrow \gamma_n = \beta$$

Lenguaje Generado

Lenguaje generado por una gramática G = (V, T, P, S) al conjunto de cadenas formadas por símbolos terminales y que son derivables a partir del símbolo de partida. Es decir.

$$L(G) = \{ u \in T^* \mid S \stackrel{*}{\Longrightarrow} u \}$$

Ejemplo

G = (V, T, P, S), donde $V = \{S, A, B\}$, $T = \{a, b\}$, el símbolo de partida es S y las reglas son

$$S \rightarrow aB$$
, $S \rightarrow bA$, $A \rightarrow a$, $A \rightarrow aS$, $A \rightarrow bAA$, $B \rightarrow b$, $B \rightarrow bS$, $B \rightarrow aBB$

Esta gramática genera el lenguaje

$$L(G) = \{u \mid u \in \{a, b\}^+ \text{ y } N_a(u) = N_b(u)\}$$

donde $N_a(u)$ y $N_b(u)$ son el número de apariciones de símbolos a y b, en u, respectivamente.

Demostración

Esto es fá cil de ver interpretando,

- A palabra con una a de más
- B palabra con una b de más
- S palabra con igual número de a que de b.

Hay que demostrar dos cosas:

- Todas las palabras generadas por la gramática tienen el mismo número de a que de b.
- Cualquier palabra con el mismo número de a que de b es generada.

Demostración

Para lo primero, podemos considerar $N_{a,A}(\alpha)$ (número de a + número de A) y $N_{b,B}(\alpha)$ (número de b + número de B) y tener en cuenta lo siguiente para una generación $S \stackrel{*}{\Longrightarrow} u$:

- Al principio de la generación tenemos: $N_{a,A}(S) = N_{b,B}(S) = 0$
- Al aplicar cualquier regla $\alpha_1 \Rightarrow \alpha_2$, si $N_{a,A}(u\alpha_1) = N_{b,B}(\alpha_1)$, entonces $N_{a,A}(\alpha_2) = N_{b,B}(\alpha_2)$
- Luego al final $N_{a,A}(u) = N_{b,B}(u)$, y como u no contiene variables, $N_a(u) = N_b(u)$, como se quería demostrar.

Algoritmo de Generación

Generación por la izquierda, un símbolo cada vez.

- Para generar una a
 - Si a último símbolo de la palabra, aplicar $A \rightarrow a$
 - Si no es el último símbolo
 - Si la primera variable es S aplicar $S \rightarrow aB$
 - Si la primera variable es B aplicar $B \rightarrow aBB$
 - Si la primera variable es A
 - Si hay más variables aplicar $A \rightarrow a$
 - Si no hay más, aplicar $A \rightarrow aS$
- Para generar una b
 - Si b último símbolo de la palabra, aplicar $B \rightarrow b$
 - Si no es el último símbolo
 - Si la primera variable es S aplicar $S \rightarrow bA$
 - Si la primera variable es A aplicar $A \rightarrow bAA$
 - Si la primera variable es B
 - Si hay más variables aplicar $B \to b$
 - Si no hay más, aplicar $B \rightarrow bS$

Condiciones de Garantía

- Las palabras generadas tienen primero símbolos terminales y después variables.
- Se genera un símbolo de la palabra en cada paso de derivación
- Las variables que aparecen en la palabra pueden ser:
 - Una cadena de A (si hemos generado más b que a)
 - Una cadena de B (si hemos generado más a que b)
 - Una S si hemos generado las mismas a que b
- Antes de generar el último símbolo tendremos como variables:
 - Una A si tenemos que generar a
 - Una B si tenemos que generar b
- Entonces aplicamos la primera opción para generar los símbolos y la palabra queda generada.

Ejemplo

Sea
$$G = (\{S, X, Y\}, \{a, b, c\}, P, S)$$
 donde P tiene las reglas,

$$S
ightarrow abc$$
 $S
ightarrow aXbc$ $Xb
ightarrow bX$ $Xc
ightarrow Ybcc$ $bY
ightarrow Yb$ $aY
ightarrow aaX$ $aY
ightarrow aa$

Lenguaje Generado

$$S o abc$$
 $S o aXbc$ $Xb o bX$ $Xc o Ybcc$ $bY o Yb$ $aY o aaX$ $aY o aa$

Esta gramática genera el lenguaje: $\{a^nb^nc^n \mid n=1,2,\ldots\}$.

Inicialmente tenemos dos posibilidades:

$$S \Longrightarrow abc$$
, $S \Longrightarrow aXbc$

Con la primera generamos la palabra *abc*. Si seguimos la segunda opción, sólo se puede seguir cómo:

$$aXbc \Longrightarrow abXc \Longrightarrow abYbcc \Longrightarrow aYbbcc$$

Lenguaje Generado: $\{a^nb^nc^n \mid n=1,2,\ldots\}$

$$S o abc$$
 $S o aXbc$ $Xb o bX$ $Xc o Ybcc$ $bY o Yb$ $aY o aaX$ $aY o aa$ Ya tenemos abc .

Habíamos generado también: aYbbcc. En este momento podemos aplicar dos reglas:

- $aY \rightarrow aa$, en cuyo caso producimos $aabbcc = a^2b^2c^2 \in L(G)$
- $aY \rightarrow aaX$, en cuyo caso producimos aaXbbcc

A partir de aaXbbcc repetimos el proceso: sólo se puede mover la X a la derecha hasta la frontera b-c. Entonces se añade una b y una c y se cambia X por Y. Después, se mueve la Y a la izquierda hasta que encuentra la frontera a-b. Entonces, tiene dos opciones: añadir sólo a, obteniendo la siguiente palabra, o aX con lo que se vuelven a generar las otras palabras.

Jerarquía de Chomsky

- Tipo 0 Cualquier gramática. Sin restricciones.
 Lenguajes recursivamente enumerables.
- Tipo 1 Si todas las producciones tienen la forma

$$\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$$

donde $\alpha_1, \alpha_2, \beta \in (V \cup T)^*, A \in V, y \ \beta \neq \varepsilon$, excepto posiblemente la regla $S \to \varepsilon$, en cuyo caso S no aparece a la derecha de las reglas. Lenguajes dependientes del contexto.

Jerarquía de Chomsky

Tipo 2 Si cualquier producción tiene la forma

$$A \rightarrow \alpha$$

donde $A \in V, \alpha \in (V \cup T)^*$. Lenguajes Independientes del Contexto

Tipo 3 Si toda regla tiene la forma

$$A \rightarrow uB$$
 ó $A \rightarrow u$

donde $u \in T^*$ y $A, B \in V$. Conjuntos Regulares

Clases de Lenguajes

Un lenguaje se dice que es de tipo i (i = 0,1,2,3) si y solo si es generado por una gramática de tipo i.

La clase o familia de lenguajes de tipo i se denota por \mathcal{L}_i .

Propiedad

Demostrar que la gramática

$$G=(\{S\},\{a,b\},\{S\to\epsilon,S\to \ \mathsf{aSb}\},S)$$
 genera el lenguaje $\ L=\{a^ib^i\mid i=0,1,2,\ldots\}$

Inicialmente tenemos dos opciones:

$$S \Rightarrow \varepsilon$$
, $S \Rightarrow aSb$

Con eso generamos la palabra vacía, o continuamos generando. Otra vez hay dos opciones:

$$S \Rightarrow aSb \Rightarrow ab$$
, $S \Rightarrow aSb \Rightarrow aaSbb$

Demostrar que la gramática

$$G=(\{S\},\{a,b\},\{S\to\epsilon,S\to\ \mathsf{aSb}\},S)$$
 genera el lenguaje $\ L=\{a^ib^i\mid i=0,1,2,\ldots\}$

Si seguimos este procedimiento, nos encontramos que podemos ir generando todas las palabras de la forma a^ib^i , y siempre nos queda la palabra a^iSb^i para seguir generando las palabras de mayor longitud.

Por otra parte, estas son las únicas palabras que se pueden generar.

Encontrar el lenguaje generado por la gramática $G = (\{A,B,C\},\{a,b\},P,S)$ donde P contiene las siguientes producciones

$$S \rightarrow aAB$$
 $bB \rightarrow a$ $Ab \rightarrow SBb$ $Aa \rightarrow SaB$ $B \rightarrow SA$ $B \rightarrow ab$

El resultado es el Lenguaje vacío: nunca se puede llegar a generar una palabra con símbolos terminales. Siempre que se sustituye S aparece A, y siempre que se sustituye A aparece S.

Encontrar una gramática libre del contexto para generar cada uno de los siguientes lenguajes

- $2 L = \{a^i b^j a^j b^i \mid i, j \in \mathbb{N}\}$

- **5** $L = \{uu^{-1} \mid u \in \{a, b\}^*\}$

donde \mathbb{N} es el conjunto de los números naturales incluyendo el 0.

$$L = \{a^i b^j \mid i, j \in \mathbb{N}, i \le j\}$$

$$S \rightarrow aSb$$

$$S \rightarrow \epsilon$$

$$S \rightarrow Sb$$

$$L = \{a^i b^j a^j b^i \mid i, j \in \mathbb{N}\}$$

Este lenguaje es generado por la siguiente gramática:

$$S \rightarrow aSb$$

$$S \rightarrow B$$
, $B \rightarrow bBa$, $B \rightarrow \varepsilon$

$$L = \{a^i b^i a^j b^j \mid i, j \in \mathbb{N}\}$$

Podemos generar $\{a^ib^i\mid i\in\mathbb{N}\}$ con:

$$S_1 \rightarrow aS_1b$$
, $S_1 \rightarrow \varepsilon$

El lenguaje L se puede generar añadiendo:

$$S \rightarrow S_1 S_1$$

siendo S el símbolo inicial.

$$L = \{a^i b^i \mid i \in \mathbb{N}\} \cup \{b^i a^i \mid i \in \mathbb{N}\}\$$

Podemos generar $\{a^i b^i \mid i \in \mathbb{N}\}$ con:

$$S_1 \rightarrow aS_1b$$
, $S_1 \rightarrow \varepsilon$

 $y \{b^i a^i \mid i \in \mathbb{N}\} \text{ con }$

$$S_2 \rightarrow bS_2a$$
, $S_2 \rightarrow \varepsilon$

El lenguaje L se puede generar añadiendo:

$$S \rightarrow S_1$$
, $S \rightarrow S_2$

siendo S el símbolo inicial.

$$L = \{uu^{-1} \mid u \in \{a, b\}^*\}$$

Este lenguaje se genera con la gramática:

$$S \rightarrow aSa$$
, $S \rightarrow bSb$, $S \rightarrow \varepsilon$

$$L = \{a^i b^j c^{i+j} \mid i, j \in \mathbb{N}\}$$

Este lenguaje se genera con la gramática:

$$S \rightarrow aSc$$
, $S \rightarrow B$,

$$B \rightarrow bBc$$
, $B \rightarrow \varepsilon$

Determinar si la gramática $G = (\{S, A, B\}, \{a, b, c, d\}, P, S)$ donde P es el conjunto de reglas de producción:

$$S \rightarrow AB$$
 $A \rightarrow Ab$ $A \rightarrow a$
 $B \rightarrow cB$ $B \rightarrow d$

genera un lenguaje de tipo 3.

Esta gramática genera el lenguaje: $\{ab^ic^jd:i,j\in\mathbb{N}\}$

Y este lenguaje se puede generar mediante la gramática:

$$S \rightarrow aB$$
, $B \rightarrow bB$, $B \rightarrow C$, $C \rightarrow cC$, $C \rightarrow d$
Como esta gramática es de tipo 3, el lenguaje lo es.