

CARRERA DE ESPECIALIZACIÓN EN SISTEMAS EMBEBIDOS

MEMORIA DEL TRABAJO FINAL

Sistema de sensores autónomos para monitoreo de redes de distribución de baja tensión mediante LoRaWAN

Autor: Ing Milton Eduardo Sosa

Director: Marcelo Romeo (UNSaM)

Jurados: Gustavo Mercado (UTN-FRM) Javier Kolodziej (UNaM-FIO) Gerardo Sager (UNLP)

Este trabajo fue realizado en la Ciudad de Munich, Alemania, entre Junio de 2020 y Abril de 2021.

Resumen

En la presente memoria se describe el desarrollo e implementación de un sistema cuya función es determinar valores eficaces de corriente alterna en sistemas metropolitanos de distribución de energía eléctrica en baja tensión. Ademas, es capaz de reportar estados a un centro de operaciones mediante el uso de una red LoRaWAN de acceso público e implementa el uso de tecnologías alternativas de acumulación de energía.

El sistema desarrollado otorga mayor granularidad de información sobre el estado de operación de las redes, brindando información valiosa sobre eventos recurrentes, en pro de delinear acciones correctivas y/o preventivas para mejorar la calidad de servicio.

Agradecimientos

Esta sección es para agradecimientos personales y es totalmente **OPCIONAL**.

Índice general

Re	sume	en	I
1.	Intro	oducción general	1
	1.1.		1
	1.2.	Medidores de energía	1
	1.3.	Estado del arte y problematica identificada	2
	1.4.		4
		1.4.1. Objetivo general	4
		1.4.2. Objetivos específicos	4
		1.4.3. Alcances	5
		1.4.4. Carpetas	5
		1.4.5. Archivos	6
	1.5.	Entorno de trabajo	7
	1.0.	1.5.1. Paquetes adicionales	7
		1.5.2. Configurando TexMaker	8
	1.6.	Personalizando la plantilla, el archivo memoria.tex	9
	1.7.	El código del archivo memoria.tex explicado	9
	1.8.	1	10
	1.0.	Dictiogrand	
2.	Intro	oducción específica	13
	2.1.	Estilo y convenciones	13
		2.1.1. Uso de mayúscula inicial para los título de secciones 1	13
		2.1.2. Este es el título de una subsección	13
		2.1.3. Figuras	14
			15
		2.1.5. Ecuaciones	16
3.		1	19
	3.1.	Análisis del software	19
1	Enco	ayos y resultados	21
т.			21
	4.1.	Truebas funcionales del flatuware	-1
5.	Con	clusiones	23
	5.1.	Conclusiones generales	23
			24
Bil	bliog	rafía 2	25

Índice de figuras

1.2.	Medidor de energia digital con complemento para telemedición	
	mediante GSM. Imagen tomada de [2]	3
1.3.	Fusible seccionador aereo tipo NH usualmente utilizado en lineas	
	de distribucion de baja tension	3
1.4.	Un árbol caído sobre las líneas de distribución aéreas de baja ten-	
	sión luego de una breve tormenta en la ciudad de Posadas, Misio-	
	nes. Imagen tomada de [3]	4
1.5.	Entorno de trabajo de texMaker	8
1.6.	Definir memoria.tex como documento maestro	8
2.1.	Ilustración del cuadrado azul que se eligió para el diseño del logo.	14
2.2.	Imagen tomada de la página oficial del procesador ¹	15
2.3.	¿Por qué de pronto aparece esta figura?	15
24	Tres gráficos simples	15

Índice de tablas

2.1.	caption corto																																	1	6
------	---------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

Dedicado a... [OPCIONAL]

Introducción general

1.1. Estaciones transformadoras

Se denomina estación transformadora al conjunto de equipos electromecánicos responsables de convertir la energía eléctrica variando uno o más de sus principales parámetros que son tensión y corriente, a través del componente más importante del conjunto que es el transformador. La finalidad de convertir la energía eléctrica, que puede ser elevando o reduciendo el nivel de tensión, es poder transmitir y distribuir esa energía hacia los receptores que pueden ser consumidores finales tales como residencias familiares o los denominados grandes usuarios por ejemplo industrias.

Por convención se denomina Estación Transformadora (E.T.) cuando en el proceso se ven involucrados valores considerados de alta tensión (mayor a 66 kV) y Subestación Transformadora (S.E.T.) en el caso de tensiones menores a 66 kV [1]. Para la distribución hacia los consumidores finales, se utilizan las denominadas Subestaciones Transformadoras Aéreas (S.E.T.A.) que convierten la tensión disminuyendo su valor de media a baja tensión.

Para poder obtener energía eléctrica a la salida en óptimas condiciones de calidad y disponibilidad, resulta fundamental administrar y controlar los valores intrínsecos que componen la transmisión y recepción de la misma. Esto se logra a través de instrumentos de medición de tensión y corriente, tanto a la entrada (alta tensión) como a la salida (media tensión) de la conversión. Por otro lado y con el fin de mantener y preservar los equipos electromecánicos se consideran de gran importancia otros valores físicos como ser temperatura y humedad.

1.2. Medidores de energía

Llegado el momento de entregar la energía al usuario final, es indispensable cuantificarla para luego comercializarla. Las distribuidoras del servicio utilizan medidores de energía de electromecánicos o electrónicos, que registran en todo momento la energía acumulada que fluye por el mismo.

La medición de corriente puede ser directa, vinculando los conductores de alimentación de la carga directamente al medidor o indirecta. Una medición indirecta consiste en reducir los valores de corriente de carga a través de transformadores de corriente (TI) y vincular sus secundarios al medidor 1.1. Este último

FIGURA 1.1. Medición indirecta de corriente empleando transformadores de corriente (TI). Imagen tomada por el autor.

método se emplea en casos donde la corriente calculada supera el valor permitido por el medidor de energía, por lo que será necesario multiplicar el valor de la lectura por un coeficiente correspondiente a la relación de transformación del TI. En la actualidad algunas prestadoras del servicio eléctrico han adoptado estrategias de medición inteligente similares a la presentada en la figura 1.2. En este esquema los equipos de medición se reportan a centros de operación en tiempo semi real a través de una red de comunicaciones movil como por ejemplo GSM. El concepto de telemedición aporta además de lo comercial, valiosa información técnica ya que los centros de operaciones conocen en todo momento el estado del medidor con la posibilidad de detectar fallas o interrupción del servicio eléctrico. A pesar de tener resultados beneficiosos en lo económico a largo plazo e inmediato en cuanto a calidad del servicio prestado, conlleva una inversión inicial considerable que muchas empresas no están dispuestas a afrontar o no tienen los recursos suficientes para su implementación.

1.3. Estado del arte y problematica identificada

En Sudamérica, gran parte de las empresas distibuidoras de energía eléctrica y sus tercerizadas basan parte de sus operaciones en el contacto directo con los usuarios finales mediante reclamos para informarse acerca de interrupciones en el servicio de distribución de energía eléctrica. Una vez recibido un reclamo, la prestadora de servicios envía al grupo de operaciones especializado a recorrer el área circundante al cliente y tratar de determinar el motivo de la interrupción del servicio.

Un hecho común en el nordeste Argentino y particularmente en la provincia de Misiones es la destrucción de fusibles aéreos como el presentado en la 1.3. Estos

FIGURA 1.2. Medidor de energia digital con complemento para telemedición mediante GSM. Imagen tomada de [2]

FIGURA 1.3. Fusible seccionador aereo tipo NH usualmente utilizado en lineas de distribucion de baja tension

fusibles conectados inmediatamente a la salida de baja tension y en serie con las líneas de distribución, cumplen la función de protección por sobrecorriente debido a picos de consumo o cortocircuitos causados por desastres naturales como el de la figura 1.4. Los fusibles involucrados actúan de manera correcta autodestruyendose e interrumpiendo el paso de corriente.

Este esquema presentado, resulta aún precario y no efectivo en cuanto a la rapidez para determinar la localización geográfica donde se ha generado una falla, resultando así en una inferior calidad de servicio prestada al cliente.

Cabe mencionar que la mayoría de las redes de distribución de baja tensión en 380/220V no poseen la capacidad de brindar algún otro servicio agregado. Algunas redes de media (33 kV) y alta tensión (132 kV) las cuales sin embargo, pueden albergar un conjunto de pelos de fibra óptica (OPGW) los cuales pueden

FIGURA 1.4. Un árbol caído sobre las líneas de distribución aéreas de baja tensión luego de una breve tormenta en la ciudad de Posadas, Misiones. Imagen tomada de [3]

ser utilizados para brindar servicios a terceras partes como empresas de telefonía o bien para monitoreo de la red propiamente dicha. Sin embargo, estas OPGW demuestran cierta vulnerabilidad frente a condiciones climáticas extremas tales como descargas atmosféricas y traen acarreadas un alto costo de mantenimiento [4].

[5] y [6] comparten una arquitectura de 3 capas: física, red y aplicación para sistemas de smart grid. A partir del entorno donde residirá la aplicación y su objetivo final, surgen diferentes estrategias de control. Así también, la selección de sensores de diferente tipo tales como meteorológicos e infraestructura [6] o bien de cargas eléctricas que residen dentro de un entorno controlado haciendo uso de redes de diferente tipo [5].

Las tecnologías emergentes propias de IoT tales como las redes de comunicación de baja potencia y largo alcance LPWAN [7], y las redes tipo malla se analizan y comparan en [8] como las tecnologías disponibles y viables para dotar de una infraestructura de comunicaciones a las redes de distribución metropolitanas. En [9] y [10] se presentan sistemas de medición de temperatura autónomos utilizando transductores termoeléctricos y electromagnéticos para conversión de energía térmica o electromagnética en energía eléctrica para alimentar la electrónica involucrada y cargar un acumulador.

1.4. Objetivos y alcance

1.4.1. Objetivo general

Desarrollar un sistema capaz de determinar valores eficaces de corriente alterna en sistemas metropolitanos de distribución de energía eléctrica en baja tensión y reportar estados a un centro de operaciones a través de una red LoRaWAN de acceso público.

1.4.2. Objetivos específicos

Evaluar el uso de un supercapacitor como reemplazo de una batería convencional.

Desarrollar una electrónica de ultra bajo consumo para maximizar la autonomía de operación del supercapacitor.

1.4.3. Alcances

En el presente documento se desarrollan los siguientes temas:

- Circuito de conversión de energía basado en rectificadores de alta eficiencia.
- Acumulador de energía basado en supercapacitores
- Patrón de firmware implementado en el microcontrolador para optimizar el uso de energía del acumulador.
- Medición de valor RMS de corriente mediante transformador de corriente.
- Tecnología LoRaWAN
- Recuperación, almacenamiento y presentación de datos generados por los nodos finales.

Si bien el proyecto es parte de un plan de una PyME del autor, no es parte del alcance ni se cubren en este documento las etapa de lanzamiento de producto ni creación de la empresa.

1.4.4. Carpetas

Esta plantilla se distribuye como una único archivo .zip que se puede descomprimir en varios archivos y carpetas. Asimismo, se puede consultar el repositorio git para obtener la última versión de los archivos, https://github.com/patriciobos/Plantilla-CESE.git. Los nombres de las carpetas son, o pretender ser, auto-explicativos.

Appendices – Esta es la carpeta donde se deben poner los apéndices. Cada apéndice debe ir en su propio archivo .tex. Se incluye un ejemplo y una plantilla en la carpeta.

Chapters – Esta es la carpeta donde se deben poner los capítulos de la memoria. Cada capítulo debe ir un su propio archivo .tex por separado. Se ofrece por defecto, la siguiente estructura de capítulos y se recomienda su utilización dentro de lo posible:

- Capítulo 1: Introducción general
- Capítulo 2: Introducción específica
- Capítulo 3: Diseño e implementación
- Capítulo 4: Ensayos y resultados
- Capítulo 5: Conclusiones

Esta estructura de capítulos es la que se recomienda para las memorias de la especialización.

Figures – Esta carpeta contiene todas las figuras de la memoria. Estas son las versiones finales de las imágenes que van a ser incluidas en la memoria. Pueden ser

imágenes en formato *raster*¹ como .png, .jpg o en formato vectoriales² como .pdf, .ps. Se debe notar que utilizar imágenes vectoriales disminuye notablemente el peso del documento final y acelera el tiempo de compilación por lo que es recomendable su utilización siempre que sea posible.

1.4.5. Archivos

También están incluidos varios archivos, la mayoría de ellos son de texto plano y se puede ver su contenido en un editor de texto. Después de la compilación inicial, se verá que más archivos auxiliares son creados por LaTeX o BibTeX, pero son de uso interno y no es necesario hacer nada en particular con ellos. Toda la información necesaria para compilar el documento se encuentra en los archivos .tex, .bib, .cls y en las imágenes de la carpeta Figures.

referencias.bib - este es un archivo importante que contiene toda la información de referencias bibliográficas que se utilizarán para las citas en la memoria en conjunto con BibTeX. Usted puede escribir las entradas bibliográficas en forma manual, aunque existen también programas de gestión de referencias que facilitan la creación y gestión de las referencias y permiten exportarlas en formato BibTeX. También hay disponibles sitios web como books.google.com que permiten obtener toda la información necesaria para una cita en formato BibTeX. Ver sección 1.8

MastersDoctoralThesis.cls – este es un archivo importante. Es el archivos con la clase que le informa a LATEX cómo debe dar formato a la memoria. El usuario de la plantilla no debería necesitar modificar nada de este archivo.

memoria.pdf – esta es su memoria con una tipografía bellamente compuesta (en formato de archivo PDF) creado por LATEX. Se distribuye con la plantilla y después de compilar por primera vez sin hacer ningún cambio se debería obtener una versión idéntica a este documento.

memoria.tex – este es un archivo importante. Este es el archivo que tiene que compilar LATEX para producir la memoria como un archivo PDF. Contiene un marco de trabajo y estructuras que le indican a LATEX cómo diagramar la memoria. Está altamente comentado para que se pueda entender qué es lo que realiza cada línea de código y por qué está incluida en ese lugar. En este archivo se debe completar la información personalizada de las primeras sección según se indica en la sección 1.6.

Archivos que *no* forman parte de la distribución de la plantilla pero que son generados por LATEX como archivos auxiliares necesarios para la producción de la memoria.pdf son:

memoria.aux – este es un archivo auxiliar generado por LAT_EX, si se borra LAT_EX simplemente lo regenera cuando se compila el archivo principal memoria.tex.

memoria.bbl – este es un archivo auxiliar generado por BibTeX, si se borra BibTeX simplemente lo regenera cuando se compila el archivo principal memoria.tex. Mientras que el archivo .bib contiene todas las referencias que hay, este archivo

¹https://en.wikipedia.org/wiki/Raster_graphics

²https://en.wikipedia.org/wiki/Vector_graphics

.bbl contine sólo las referencias que han sido citadas y se utiliza para la construcción de la bibiografía.

memoria.blg – este es un archivo auxiliar generado por BibTeX, si se borra BibTeX simplemente lo regenera cuando se compila el archivo principal memoria.tex.

memoria.lof — este es un archivo auxiliar generado por LATEX, si se borra LATEX simplemente lo regenera cuando se compila el archivo principal memoria.tex. Le indica a LATEX cómo construir la sección *Lista de Figuras*.

memoria.log – este es un archivo auxiliar generado por LATEX, si se borra LATEX simplemente lo regenera cuando se compila el archivo principal memoria.tex. Contiene mensajes de LATEX. Si se reciben errores o advertencias durante la compilación, se guardan en este archivo .log.

memoria.lot – este es un archivo auxiliar generado por LATEX, si se borra LATEX simplemente lo regenera cuando se compila el archivo principal memoria.tex. Le indica a LATEX cómo construir la sección *Lista de Tablas*.

memoria.out – este es un archivo auxiliar generado por LATEX, si se borra LATEX simplemente lo regenera cuando se compila el archivo principal memoria.tex.

De esta larga lista de archivos, sólo aquellos con la extensión .bib, .cls y .tex son importantes. Los otros archivos auxiliares pueden ser ignorados o borrados ya que LATEX y BibTeX los regenerarán durante la compilación.

1.5. Entorno de trabajo

Ante de comenzar a editar la plantilla debemos tener un editor L^AT_EX instalado en nuestra computadora. En forma análoga a lo que sucede en lenguaje C, que se puede crear y editar código con casi cualquier editor, existen ciertos entornos de trabajo que nos pueden simplificar mucho la tarea. En este sentido, se recomienda, sobre todo para los principiantes en L^AT_EX la utilización de TexMaker, un programa gratuito y multi-plantaforma que está disponible tanto para windows como para sistemas GNU/linux.

La versión más reciente de TexMaker es la 4.5 y se puede descargar del siguiente link: http://www.xm1math.net/texmaker/download.html. Se puede consultar el manual de usuario en el siguiente link: http://www.xm1math.net/texmaker/doc.html.

1.5.1. Paquetes adicionales

Si bien durante el proceso de instalación de TexMaker, o cualquier otro editor que se haya elegido, se instalarán en el sistema los paquetes básicos necesarios para trabajar con LATEX, la plantilla de los trabajos de Especialización y Maestría requieren de paquete adicionales.

Se indican a continuación los comandos que se deben introducir en la consola de Ubuntu (ctrl + alt + t) para instalarlos:

```
$ sudo apt install texlive-lang-spanish texlive-science
$ sudo apt install texlive-bibtex-extra biber
$ sudo apt install texlive texlive-fonts-recommended
$ sudo apt install texlive-latex-extra
```

1.5.2. Configurando TexMaker

Una vez instalado el programa y los paquetes adicionales se debe abrir el archivo memoria.tex con el editor para ver una pantalla similar a la que se puede apreciar en la figura 1.5.

FIGURA 1.5. Entorno de trabajo de texMaker.

Notar que existe una vista llamada Estructura a la izquierda de la interfaz que nos permite abrir desde dentro del programa los archivos individuales de los capítulos. A la derecha se encuentra una vista con el archivo propiamente dicho para su edición. Hacia la parte inferior se encuentra una vista del log con información de los resultados de la compilación. En esta última vista pueden aparecen advertencias o *warning*, que normalmente pueden ser ignorados, y los errores que se indican en color rojo y deben resolverse para que se genere el PDF de salida.

Recordar que el archivo que se debe compilar con PDFLaTeX es memoria.tex, si se tratara de compilar alguno de los capítulos saldría un error. Para salvar la molestia de tener que cambiar de archivo para compilar cada vez que se realice una modificación en un capítulo, se puede definir el archivo memoria.tex como "documento maestro" yendo al menú opciones ->"definir documento actual como documento maestro", lo que permite compilar con PDFLaTeX memoria.tex directamente desde cualquier archivo que se esté modificando . Se muestra esta opción en la figura 1.6.

FIGURA 1.6. Definir memoria.tex como documento maestro.

En el menú herramientas se encuentran las opciones de compilación. Para producir un archivo PDF a partir de un archivo .tex se debe ejecutar PDFLaTeX (el shortcut es F6). Para incorporar nueva bibliografía se debe utilizar la opción Bib-TeX del mismo menú herramientas (el shortcut es F11).

Notar que para actualizar las tablas de contenidos se debe ejecutar PDFLaTeX dos veces. Esto se debe a que es necesario actualizar algunos archivos auxiliares antes de obtener el resultado final. En forma similar, para actualizar las referencias se debe ejecutar primero PDFLaTeX, después BibTeX y finalmente PDFLaTeX dos veces por idénticos motivos.

1.6. Personalizando la plantilla, el archivo memoria.tex

Para personalizar la plantilla se debe incorporar la información propia en los distintos archivos .tex.

Primero abrir **memoria.tex** con TexMaker (o el editor de su preferencia). Se debe ubicar dentro del archivo el bloque de código titulado *INFORMACIÓN DE LA PORTADA* donde se deben incorporar los primeros datos personales con los que se construirá automáticamente la portada.

1.7. El código del archivo memoria. tex explicado

El archivo **memoria.tex** contiene la estructura del documento y es el archivo de mayor jerarquía de la memoria. Podría ser equiparable a la función *main()* de un programa en *C*, o mejor dicho al archivo fuente .c donde se encuentra definida la función main().

La estructura básica de cualquier documento de LATEX comienza con la definición de clase del documento, es seguida por un preámbulo donde se pueden agregar funcionalidades con el uso de paquetes (equiparables a bibliotecas de C), y finalmente, termina con el cuerpo del documento, donde irá el contenido de la memoria.

El archivo memoria.tex se encuentra densamente comentado para explicar qué páginas, secciones y elementos de formato está creando el código LATEX en cada línea. El código está dividido en bloques con nombres en mayúsculas para que resulte evidente qué es lo que hace esa porción de código en particular. Inicialmente puede parecer que hay mucho código LATEX, pero es principalmente código para dar formato a la memoria por lo que no requiere intervención del usuario de la plantilla. Sí se deben personalizar con su información los bloques indicados como:

- Informacion de la memoria
- Resumen

- Agradecimientos
- Dedicatoria

El índice de contenidos, las listas de figura de tablas se generan en forma automática y no requieren intervención ni edición manual por parte del usuario de la plantilla.

En la parte final del documento se encuentran los capítulos y los apéndices. Por defecto se incluyen los 5 capítulos propuestos que se encuentran en la carpeta /Chapters. Cada capítulo se debe escribir en un archivo .tex separado y se debe poner en la carpeta *Chapters* con el nombre **Chapter1**, **Chapter2**, etc...El código para incluir capítulos desde archivos externos se muestra a continuación.

```
\include{Chapters/Chapter1}
\include{Chapters/Chapter2}
\include{Chapters/Chapter3}
\include{Chapters/Chapter4}
\include{Chapters/Chapter5}
```

Los apéndices también deben escribirse en archivos .tex separados, que se deben ubicar dentro de la carpeta *Appendices*. Los apéndices vienen comentados por defecto con el caracter % y para incluirlos simplemente se debe eliminar dicho caracter.

Finalmente, se encuentra el código para incluir la bibliografía en el documento final. Este código tampoco debe modificarse. La metodología para trabajar las referencias bibliográficas se desarrolla en la sección 1.8.

1.8. Bibliografía

Las opciones de formato de la bibliografía se controlan a través del paquete de latex biblatex que se incluye en la memoria en el archivo memoria.tex. Estas opciones determinan cómo se generan las citas bibliográficas en el cuerpo del documento y cómo se genera la bibliografía al final de la memoria.

En el preámbulo se puede encontrar el código que incluye el paquete biblatex, que no requiere ninguna modificación del usuario de la plantilla, y que contiene las siguientes opciones:

En el archivo **reference.bib** se encuentran las referencias bibliográficas que se pueden citar en el documento. Para incorporar una nueva cita al documento lo primero es agregarla en este archivo con todos los campos necesario. Todas las entradas bibliográficas comienzan con @ y una palabra que define el formato de la entrada. Para cada formato existen campos obligatorios que deben completarse. No importa el orden en que las entradas estén definidas en el archivo .bib. Tampoco es importante el orden en que estén definidos los campos de una entrada bibliográfica. A continuación se muestran algunos ejemplos:

1.8. Bibliografía

```
@ARTICLE { ARTICLE: 1,
   AUTHOR="John Doe",
   TITLE="Title",
    JOURNAL="Journal",
   YEAR="2017",
}
@BOOK { BOOK : 1,
    AUTHOR="John Doe",
    TITLE="The Book without Title",
   PUBLISHER="Dummy Publisher",
   YEAR="2100",
}
@INBOOK{BOOK:2,
   AUTHOR="John Doe",
    TITLE="The Book without Title",
   PUBLISHER="Dummy Publisher",
   YEAR="2100",
   PAGES="100-200",
@MISC{WEBSITE:1,
   HOWPUBLISHED = "\url{http://example.com}",
    AUTHOR = "Intel",
   TITLE = "Example Website",
   MONTH = "12",
   YEAR = "1988",
   URLDATE = \{2012-11-26\}
}
```

Se debe notar que los nombres *ARTICLE:1*, *BOOK:1*, *BOOK:2* y *WEBSITE:1* son nombres de fantasía que le sirve al autor del documento para identificar la entrada. En este sentido, se podrían reemplazar por cualquier otro nombre. Tampoco es necesario poner : seguido de un número, en los ejemplos sólo se incluye como un posible estilo para identificar las entradas.

La entradas se citan en el documento con el comando:

```
\citep{nombre_de_la_entrada}
```

Y cuando se usan, se muestran así: [4], [11], [BOOK:2], [WEBSITE:1]. Notar cómo se conforma la sección Bibliografía al final del documento.

Introducción específica

Todos los capítulos deben comenzar con un breve párrafo introductorio que indique cuál es el contenido que se encontrará al leerlo. La redacción sobre el contenido de la memoria debe hacerse en presente y todo lo referido al proyecto en pasado, siempre de modo impersonal.

2.1. Estilo y convenciones

2.1.1. Uso de mayúscula inicial para los título de secciones

Si en el texto se hace alusión a diferentes partes del trabajo referirse a ellas como capítulo, sección o subsección según corresponda. Por ejemplo: "En el capítulo 1 se explica tal cosa", o "En la sección 2.1 se presenta lo que sea", o "En la subsección 2.1.2 se discute otra cosa".

Cuando se quiere poner una lista tabulada, se hace así:

- Este es el primer elemento de la lista.
- Este es el segundo elemento de la lista.

Notar el uso de las mayúsculas y el punto al final de cada elemento.

Si se desea poner una lista numerada el formato es este:

- 1. Este es el primer elemento de la lista.
- 2. Este es el segundo elemento de la lista.

Notar el uso de las mayúsculas y el punto al final de cada elemento.

2.1.2. Este es el título de una subsección

Se recomienda no utilizar **texto en negritas** en ningún párrafo, ni tampoco texto <u>subrayado</u>. En cambio sí se debe utilizar *texto en itálicas* para palabras en un idioma extranjero, al menos la primera vez que aparecen en el texto. En el caso de palabras que estamos inventando se deben utilizar "comillas", así como también para citas textuales. Por ejemplo, un *digital filter* es una especie de "selector" que permite separar ciertos componentes armónicos en particular.

La escritura debe ser impersonal. Por ejemplo, no utilizar "el diseño del firmware lo hice de acuerdo con tal principio", sino "el firmware fue diseñado utilizando tal principio".

El trabajo es algo que al momento de escribir la memoria se supone que ya está concluido, entonces todo lo que se refiera a hacer el trabajo se narra en tiempo pasado, porque es algo que ya ocurrió. Por ejemplo, "se diseñó el firmware empleando la técnica de test driven development".

En cambio, la memoria es algo que está vivo cada vez que el lector la lee. Por eso transcurre siempre en tiempo presente, como por ejemplo:

"En el presente capítulo se da una visión global sobre las distintas pruebas realizadas y los resultados obtenidos. Se explica el modo en que fueron llevados a cabo los test unitarios y las pruebas del sistema".

Se recomienda no utilizar una sección de glosario sino colocar la descripción de las abreviaturas como parte del mismo cuerpo del texto. Por ejemplo, RTOS (*Real Time Operating System*, Sistema Operativo de Tiempo Real) o en caso de considerarlo apropiado mediante notas a pie de página.

Si se desea indicar alguna página web utilizar el siguiente formato de referencias bibliográficas, dónde las referencias se detallan en la sección de bibliografía de la memoria, utilizado el formato establecido por IEEE en [12]. Por ejemplo, "el presente trabajo se basa en la plataforma EDU-CIAA-NXP [CIAA], la cual...".

2.1.3. Figuras

Al insertar figuras en la memoria se deben considerar determinadas pautas. Para empezar, usar siempre tipografía claramente legible. Luego, tener claro que **es incorrecto** escribir por ejemplo esto: "El diseño elegido es un cuadrado, como se ve en la siguiente figura:"

La forma correcta de utilizar una figura es con referencias cruzadas, por ejemplo: "Se eligió utilizar un cuadrado azul para el logo, como puede observarse en la figura 2.1".

FIGURA 2.1. Ilustración del cuadrado azul que se eligió para el diseño del logo.

El texto de las figuras debe estar siempre en español, excepto que se decida reproducir una figura original tomada de alguna referencia. En ese caso la referencia de la cual se tomó la figura debe ser indicada en el epígrafe de la figura e incluida como una nota al pie, como se ilustra en la figura 2.2.

FIGURA 2.2. Imagen tomada de la página oficial del procesador¹.

La figura y el epígrafe deben conformar una unidad cuyo significado principal pueda ser comprendido por el lector sin necesidad de leer el cuerpo central de la memoria. Para eso es necesario que el epígrafe sea todo lo detallado que corresponda y si en la figura se utilizan abreviaturas entonces aclarar su significado en el epígrafe o en la misma figura.

FIGURA 2.3. ¿Por qué de pronto aparece esta figura?

Nunca colocar una figura en el documento antes de hacer la primera referencia a ella, como se ilustra con la figura 2.3, porque sino el lector no comprenderá por qué de pronto aparece la figura en el documento, lo que distraerá su atención.

Otra posibilidad es utilizar el entorno *subfigure* para incluir más de una figura, como se puede ver en la figura 2.4. Notar que se pueden referenciar también las figuras internas individualmente de esta manera: 2.4a, 2.4b y 2.4c.

FIGURA 2.4. Tres gráficos simples

El código para generar las imágenes se encuentra disponible para su reutilización en el archivo **Chapter2.tex**.

2.1.4. Tablas

Para las tablas utilizar el mismo formato que para las figuras, sólo que el epígrafe se debe colocar arriba de la tabla, como se ilustra en la tabla 2.1. Observar que sólo algunas filas van con líneas visibles y notar el uso de las negritas para los encabezados. La referencia se logra utilizando el comando \ref{<label>} donde label debe estar definida dentro del entorno de la tabla.

¹Imagen tomada de https://goo.gl/images/i7C70w

```
\begin{table}[h]
\centering
\caption[caption corto]{caption largo más descriptivo}
\begin{tabular}{l c c}
\toprule
\textbf{Especie} & \textbf{Tamaño} & \textbf{Valor}\\
\midrule
Amphiprion Ocellaris & 10 cm
Hepatus Blue Tang & 15 cm
Zebrasoma Xanthurus & 12 cm
                                           & \$ 6.000 \\
                                            & \$ 7.000 \\
                                           & \$ 6.800 \\
\bottomrule
\hline
\end{tabular}
\label{tab:peces}
\end{table}
```

TABLA 2.1. caption largo más descriptivo

Especie	Tamaño	Valor
Amphiprion Ocellaris	10 cm	\$ 6.000
Hepatus Blue Tang	15 cm	\$ 7.000
Zebrasoma Xanthurus	12 cm	\$ 6.800

En cada capítulo se debe reiniciar el número de conteo de las figuras y las tablas, por ejemplo, figura 2.1 o tabla 2.1, pero no se debe reiniciar el conteo en cada sección. Por suerte la plantilla se encarga de esto por nosotros.

2.1.5. Ecuaciones

Al insertar ecuaciones en la memoria dentro de un entorno *equation*, éstas se numeran en forma automática y se pueden referir al igual que como se hace con las figuras y tablas, por ejemplo ver la ecuación 2.1.

$$ds^{2} = c^{2}dt^{2} \left(\frac{d\sigma^{2}}{1 - k\sigma^{2}} + \sigma^{2} \left[d\theta^{2} + \sin^{2}\theta d\phi^{2} \right] \right)$$
 (2.1)

Es importante tener presente que si bien las ecuaciones pueden ser referidas por su número, también es correcto utilizar los dos puntos, como por ejemplo "la expresión matemática que describe este comportamiento es la siguiente:"

$$\frac{\hbar^2}{2m}\nabla^2\Psi + V(\mathbf{r})\Psi = -i\hbar\frac{\partial\Psi}{\partial t}$$
(2.2)

Para generar la ecuación 2.1 se utilizó el siguiente código:

```
\begin{equation}
\label{eq:metric}
ds^2 = c^2 dt^2 \left( \frac{d\sigma^2}{1-k\sigma^2} + \sigma^2\left[ d\theta^2 + \sin^2\theta d\phi^2 \right] \right)
\end{equation}
```

Y para la ecuación 2.2:

```
\begin{equation}
\label{eq:schrodinger}
\frac{\hbar^2}{2m}\nabla^2\Psi + V(\mathbf{r})\Psi =
-i\hbar \frac{\partial\Psi}{\partial t}
\end{equation}
```

Diseño e implementación

3.1. Análisis del software

La idea de esta sección es resaltar los problemas encontrados, los criterios utilizados y la justificación de las decisiones que se hayan tomado.

Se puede agregar código o pseudocódigo dentro de un entorno lstlisting con el siguiente código:

```
\begin{lstlisting}[caption= "un epígrafe descriptivo"]
las líneas de código irían aquí...
\end{lstlisting}
A modo de ejemplo:
```

```
1 #define MAX_SENSOR_NUMBER 3
2 #define MAX_ALARM_NUMBER 6
3 #define MAX_ACTUATOR_NUMBER 6
{\tiny 5}\>\>\> uint32\_t\>\>\>\> sensorValue[MAX\_SENSOR\_NUMBER];
6 FunctionalState alarmControl[MAX_ALARM_NUMBER]; //ENABLE or DISABLE
7 state_t alarmState[MAX_ALARM_NUMBER]; //ON or OFF
{\tt s \ tate\_t \ actuatorState [MAX\_ACTUATOR\_NUMBER];} \qquad {\tt //ON \ or \ OFF}
void vControl() {
11
    initGlobalVariables();
12
13
    period = 500 ms;
15
    while (1) {
16
17
      ticks = xTaskGetTickCount();
18
19
      updateSensors();
20
21
      updateAlarms();
22
      controlActuators();
       vTaskDelayUntil(&ticks, period);
27
28 }
```

CÓDIGO 3.1. Pseudocódigo del lazo principal de control.

Ensayos y resultados

4.1. Pruebas funcionales del hardware

La idea de esta sección es explicar cómo se hicieron los ensayos, qué resultados se obtuvieron y analizarlos.

Conclusiones

5.1. Conclusiones generales

El sistema desarrollado, en concordancia con el objetivo general, conforma una herramienta económica para la prestadora del servicio de energía. Esta herramienta está diseñada para otorgar mayor granularidad de información sobre el estado de operación de las redes, sin implicar cambios significativos de infraestructura. Por otra parte, el análisis de la información suministrada permite identificar eventos recurrentes y evaluar sus posibles causas para poder delinear acciones correctivas y/o preventivas para mejorar la calidad de servicio.

Cumplimentando todos los requerimientos planteados por el cliente, y el tiempo planteado en la planificación, se ha logrado el desarrollo exitoso del sistema en todas sus partes: HW, FW, BES; como así también su integración con la red LoRa-WAN.

El uso de la red LoRaWAN de acceso público "The Things Network" elegida para el trabajo, ha funcionado durante todo el desarrollo sin problema alguno, demostrando así su buena cobertura y calidad de servicio a nivel global. Aun cuando el autor ha tenido que cambiar su localización geográfica de Europa a Sudamérica para realizar pruebas de laboratorio, la operación del sistema no se ha visto afectada en ningún aspecto.

El HW es capaz de convertir energía de CA proveniente del TI en otra de CC y almacenarla. Los resultados del Capítulo 4, demuestran que el uso de circuitos de *energy harvesting* en conjunto con tecnologías alternativas de acumulación en constante evolución como los SC, podrían ser posibles sustitutos de las baterías litio en aplicaciones autónomas que operen en régimen 24/7 y donde el rango de temperatura de operación necesaria sea mayor.

Las mediciones de valor RMS de corriente realizadas en el laboratorio, simulando la señal del TI con un GS [referencia al ensayo con GS] y usando una carga de prueba en [referencia al ensayo con carga de prueba], demostraron la linealidad del circuito de medición dentro del rango de medición adoptado.

A partir de los ensayos de consumo en modo deep sleep y autonomía de operación presentados en el capítulo 4, queda demostrado que el patrón "power save loop" ha tenido un impacto significativamente positivo en la gestión de energía del nodo.

El tiempo total de propagación de los datos generados desde el nodo in-situ hacia la red LoRaWAN, recuperación por los BES y presentación en la GUI, es de menos de 5 segundos. Este valor de tiempo de propagación para el reporte de un problema, es considerado excelente en contraste con la situación actual en la provincia de Misiones.

Un conjunto de software con abundante documentación tal como lo es LAMPP,

ha ayudado a reducir el tiempo requerido para la puesta en funcionamiento de los BES propios del proyecto y la integración con la red LoRaWAN a través de su API REST.

Durante la etapa de integración entre LoRaWAN y los BES, fue evidente el valor que tiene la unificación del uso del lenguaje de programación Python. Además de su uso para el desarrollo del FW, se lo utilizó para implementar mockups que emulen los datos generados por el HW. Mediante el uso de esta técnica se pudo garantizar un flujo de desarrollo totalmente desacoplado de la necesidad de involucrar el HW, pero sí con una interacción constante entre servicios WEB públicos y privados.

5.2. Trabajo a futuro

Cumplidos los requerimientos y finalizado el trabajo propuesto, se han identificado las siguientes áreas de mejoras a futuro tanto en HW como SW:

- Actualizar de manera inalámbrica el firmware (OTA): nuevas versiones del firmware del microcontrolador aportarán nuevas funcionalidades, correcciones o mejoras sobre las ya existentes en nodos desplegados. Sin embargo, desarrollar esta funcionalidad es de alta prioridad antes de que el sistema llegue a una etapa de lanzamiento de producto. De esta manera, se prescindirá de la necesidad de intervenir físicamente cada nodo para actualizarlo.
- Modularizar el PCB para realizar mediciones de 3 fases: dado que los sistemas de distribución son trifásicos, el HW deberá también permitir realizar mediciones de corrientes sobre las 3 fases del sistema. Para lograr esto se debería proponer una modularización de la etapa de medición de valor RMS de corriente.
- Integrar servicios de mensajería instantánea: si bien la GUI permite de manera rápida identificar sobre un mapa el punto geográfico donde la red presenta un problema o su estado actual de operación, contar con una aplicación similar para dispositivos móviles será de utilidad para el personal encargado de cumplir horarios de guardia.

Bibliografía

- [1] Asociación Electrotécnica Argentina. «AEA 95301 Reglamentación Líneas Aéreas Exteriores de Media Tensión y Alta Tensión». En: Asociación Electrotécnica Argentina AEA, 2007, pág. 13.
- [2] MYEEL. *Meterlink*. https://www.myeel.com.ar/novedad/Meterlink. Mayo de 2021. (Visitado 04-05-2021).
- [3] Misiones Online. *La breve tormenta que pasó por Posadas dejó a un árbol sujeto al tendido eléctrico y hay alerta entre los vecinos*. Visitado el 2021-05-04. 2020. URL: https://misionesonline.net/2020/02/25/la-breve-tormenta-que-paso-por-posadas-dejo-a-un-arbol-sujeto-al-tendido-electrico-y-hay-alerta-entre-los-vecinos/.
- [4] L. Lu Y. Liang B. Li y J. Guo. «Maintenance of the OPGW using a distributed optical fiber sensor». En: *International Conference on Power System Technology, Chengdu* (2014), págs. 1251-1256. URL: https://ieeexplore.ieee.org/abstract/document/6993536.
- [5] Eduardo Omar Sosa Milton Eduardo Sosa. «Internet de las Cosas en Entornos Académicos. Caso de Éxito en la Universidad de Misiones». En: UBA Elektron (2017). URL: http://elektron.fi.uba.ar/index.php/elektron/article/view/9.
- [6] H. Zhu Y. Zhen X. Chen L. Sun y H. Chen. «Application of Internet of Things in Power-Line Monitoring». En: *International Conference on Cyber-Enabled Distributed Computing and Knowledge Discover* (2012), págs. 423-426.
- [7] Internet Engineering Task Force (IETF). *Hypertext Transfer Protocol HTTP/1.1*. RFC 8376. Mayo de 2018. DOI: 10.17487/rfc2616. URL: https://tools.ietf.org/html/rfc8376.
- [8] J. Filho y V. Moreli H. Filho. «The adequacy of LoRaWAN on smart grids: A comparison with RF mesh technology». En: *IEEE International Smart Cities Conference (ISC2)* (2016).
- [9] S. Dalola y e. al. «Autonomous Sensor System With Power Harvesting for Telemetric Temperature Measurements of Pipes». En: *IEEE Transactions on Instrumentation and Measurement, vol. 58* (2009), págs. 1471-1478.
- [10] X. Hua. Power Management Techniques for Supercapacitor Based IoT Applications. Disponible: 202-03-17. URL: https://bit.ly/3eZlAjM.
- [11] John Doe. *The Book without Title*. Dummy Publisher, 2100.
- [12] IEEE. *IEEE Citation Reference*. 1.^a ed. IEEE Publications, 2016. URL: http://www.ieee.org/documents/ieeecitationref.pdf (visitado 26-09-2016).