

Jordan University of Science and Technology Faculty of Computer & Information Technology Artificial Intelligence Department

Al249 Machine Learning - JNQF Level: 7

Second Semester 2023-2024

Course Catalog

3 Credit Hours. This course provides a comprehensive introduction to the field of machine learning, covering fundamental concepts, techniques, and algorithms. Students will learn to analyze data, identify patterns, and make data-driven predictions and decisions using machine learning models. The course covers supervised and unsupervised learning, including key topics such as regression, classification, clustering, and dimensionality reduction. Practical applications and real-world examples will be emphasized throughout the course to illustrate the power and versatility of machine learning in various domains. By the end of the course, students will have a solid understanding of core machine-learning principles. They will be equipped with the skills needed to implement and evaluate machine-learning models using popular programming tools and libraries.

Teaching Method: On Campus

Text Book			
Title Hands-on Machine Learning with. Scikit-Learn, Keras, and TensorFlow			
Author(s)	Geron Aurelien		
Edition	3rd Edition		
Short Name	Ref #1		
Other Information	Ch1 - Ch 9		

Course References

	hort ame	Book name	Author(s)	Edition	Other Information
R	ef #2	An Introduction to Statistical Learning: with Applications in Python	Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor	1st Edition	

Instructor		
Name	Dr. Malak Abdullah	
Office Location	A1-L3	

Office Hours	Sun: 12:30 - 13:30 Tue: 12:30 - 13:30 Wed: 11:30 - 14:30 Thu: 11:30 - 12:30
Email	mabdullah@just.edu.jo

Class Schedule & Room

Section 2:

Lecture Time: Sun, Tue, Thu: 10:30 - 11:30

Room: CPE07-M7L2

Prerequisites				
Line Number Course Name Prerequisite Type				
1792440	Al244 Artificial Intelligence Programming	Pre./Con.		

Tentative List of Topics Covered				
Weeks	Topic	References		
Week 1	01-introduction	From Ref #1 , From Ref #2		
Week 2	02-Machine Learning Maths	From Ref #1 , From Ref #2		
Weeks 3, 4	03- Prediction	From Ref #1 , From Ref #2		
Weeks 4, 5	04- Linear Regression			
Weeks 6, 7	05- Classification			
Week 8	06-SVM	From Ref #1 , From Ref #2		
Week 9	07-Decision Tree	From Ref #1 , From Ref #2		
Weeks 10, 11	08-Ensembling	From Ref #1		
Weeks 12, 13, 14	09-Unsupervised learning	From Ref #1		

Mapping of Course Outcomes to Program Outcomes and NQF Outcomes	Course Outcome Weight (Out of 100%)	Assessment method
CLO1: Understand and explain key machine learning concepts and algorithms. [1SO1] [1L7K1]	30%	First Exam, Second Exam, Final Exam
CLO2: Apply machine learning algorithms to real-world datasets and problems. [1SO2] [1L7S1]	20%	Quizzes, Final Exam

CLO3: Evaluate and interpret the performance of machine learning models using appropriate metrics. [1SO2] [1L7S1]	10%	Project
CLO4: Design and implement end-to-end machine learning projects, including data preprocessing, model training, and validation. [1SO2] [1L7S1]	20%	Assignments, Project, Final Exam
CLO5: Conduct a critical review of existing literature and identify current trends and challenges in machine learning. [1SO1] [1L7K1]	20%	Final Exam

Relationship to Program Student Outcomes (Out of 100%)					
SO1	SO2	SO3	SO4	SO5	SO6
50	50				

Relationship to NQF Outcomes (Out of 100%)		
L7K1	L7S1	
50	50	

Evaluation		
Assessment Tool	Weight	
First Exam	10%	
Second Exam	10%	
Quizzes	10%	
Assignments	15%	
Project	15%	
Final Exam	40%	

Date Printed: 2024-06-09