

Evolution to 5G

Philippe Martins

martins@telecom-paristech.fr

Outline

- Introduction: invariant functions of a cellular system
- 3GPP standardization evolution
- **EPS architecture**

Introduction: invariant functions of a cellular system

- Cellular concept
- Multiple access
- Duplexing
- Terminal states
- Beacon
- Mobility management
- Paging and Random access
- Continuity of communications procedures
- Security functions

Cellular concept

Principle

- Division of a covered area in several cells
- Each cell is served by a base station
- A network is formed by a set of cells

Advantages

- Cellular network can cover wide geographical areas
- Lower transmitted powers

Problem: How to separate different cells

- Separation in frequency (Neighbor cells use different carrier frequencies): 2G systems, in some situations 4G also.
- Separation in codes (Neighbor cells use different scrambling codes): 3G systems

11/19/20

Cellular concept

GSM

- K ≠ 1
- Example : K = 18 for TCH channels

UMTS

- K = 1 BUT
- Planning on primary scrambling codes necessary to separate cells

Multiple access

FDMA

- Frequency Division Multiple Access
- Allocation of a dedicated frequency channel
- 1G

TDMA

- Time Division Multiple Access
- Time sharing approach: allocation of a dedicated timeslot
- Several users can be time multiplexed on a frequency channel
- 2G

CDMA

- Code Division Multiple Access
- Allocation of orthogonal codes
- Terminals can transmit simultaneously on the same band
- 3G

Multiple access

OFDMA

- Orthogonal Frequency Division Multiplex Access
- Time and frequency multiplexing.
- LTE (Long Term Evolution) and LTE-Advanced in the downlink

Duplexing

- How to handle bidirectional communications: duplexing
- FDD
 - Frequency Division Duplex
 - Uplink and downlink use different frequency bands

TDD

- Time Division Duplex
- Uplink and Downlink use different timeslots

Terminal states

Idle mode

- No active communication
- User may be « contacted » at any time by the network (via the paging procedure)
- Reselection and location update procedures may be activated

Dedicated Mode

- Ensures communication continuity with user mobility (particularly when switching of cell)
- Handover (or handoff) procedures may be activated

Mobility Management

- Cells are grouped in logical sets called:
 - Location areas for switched circuit based services in 2G and 3G
 - Routing areas for packet based services in 2G and 3G
 - Tracking areas in LTE and LTE-Advanced systems
- In Idle mode, location of terminal is know only at location/routing/tracking area level.
- Terminal decides alone to switch of cell: autonomous reselection procedure

Beacon

Beacon (or Broadcast Channel)

- Broadcast system information to terminals
 - Provides cell and network identities, location area.
 - Radio and network parameters.
- Periodical transmission on the air interface
- Fixed Transmission Power

Paging and random access

Paging

 Used to contact and locate a terminal in idle mode (for example when the network wants to setup an incoming call or wants to transmit a short message to a terminal).

Random Access

- First message sent by terminal to contact network
- Sent on a contention resource (a shared channel where collisions may occur)

Continuity of communications procedures

■ MAHO (Mobile Assisted Handoff or Handover)

- The terminal performs measurement reports while in communication
- It sends the report to the network (base station controller)
- Based on that report the network decides whether it is necessary to trigger a handover for the terminal (change of cell)

Measurement reports

 Contain different radio link measurements (Received Power, Signal to Interference Ratio (SINR), ...)

Continuity of communications procedures

Power Control

Institut Mines-Télécom

- Based on measurement performed by base station, the network controls the terminal transmission level.
- Historically the network adapts the terminal transmission power
- Reduce interference
- Minimize Terminal power consumption

Security functions

Authentication of users

- 2G: user authentication
- 3G, 4G: mutual authentication (user and network authentication)

Ciphering of communications

- 2G: on air interface for GSM, and on access network for GPRS (between terminal and SGSN)
- 3G: on access network (between terminal and RNC)
- 4G: two levels of ciphering:
 - Air interface (between terminal and e-nodeb)
 - Access network (between terminal and MME)

Integrity of information

3G and 4G systems

3GPP standards evolution

- Cellular systems evolution
- Cellular standards evolution outline
- Second generation outline
- Third generation outline
- Evolution of third generation: HSPA
- 3GPP systems architecture evolution

Cellular systems evolution

- 1G: analog systems, voice
 - AMPS (Advanced Mobile Phone System Bell Labs)
 - NMT (Nordic Mobile Telephone SFR)
 - Radiocom 2000 (France Telecom)
- 2G: digital, voice and low data rate services (9–384 kbps)
 - GSM (Global System for Mobile Communications)
 - GPRS (General Packet Radio Services)
 - EDGE (Enhanced Data rates for GSM Evolution)
- 3G: digital, voice and data services (1,9–42 Mbps)
 - UMTS (Universal Mobile Telecommunications System)
 - **HSPA** (High Speed Packet Access)
 - HSPA+, DC-HSPA (Dual Cell)
- 4G: digital, voice over IP, high data rate services (150Mbps-1Gbps)
 - LTE (Long Term Evolution)
 - LTE Advanced
- 5G (10Gbps)

Cellular standards evolution

Second generation outline

- Frequency bands
 - 900 MHz
 - 1800 MHz (DCS 1800)
 - 1900 MHz (PCS 1900)
- Digital transmission on FDMA/TDMA channel with a FDD duplex mode
- Terminal transmission Power
 - 2W for GSM 900
 - 1W for DCS 1800
- Raw data rate at physical layer: 271 kbps per carrier (TRX)

Second generation outline

- Frequency bands
 - 900 MHz
 - 1800 MHz (DCS 1800)
 - 1900 MHz (PCS 1900)
- Digital transmission on FDMA/TDMA channel with a FDD duplex mode
- Terminal transmission Power
 - 2W pour GSM 900

Institut Mines-Télécom

- 1W pour DCS 1800
- Access packet mode on the air interface: Use of TBF concept (Temporary Block Flow)

Second generation outline

- New PCU (Packet Controller Unit) function in charge scheduling of radio blocks between different users in a cell.
- New IP core network to connect terminals to Internet:
 - SGSN (access router handling user attachment to the network, user mobility management, routing of IP packets between terminals and core network.).
 - GGSN (Access point to Internet)

Third generation outline

- UMTS is a third generation system:
 - UMTS defines a new air interface based on W-CDMA multiple access technic.
- UMTS relies on a new access network (UTRAN):
 - Based on ATM technology R99 behind base stations (non ATM on the air interface)
 - Possibly based on IP in the following releases (R4, R5, ...)
- Evolution of the UMTS core network is more progressive:
 - First UMTS Release 99 (R99) uses the same technologies as in second generation systems.
 - The following releases (R4 et R5, R6, ...) introduce significant changes: « NGN Next Generation Networks ».

Evolution of third generation: HSPA

HSDPA

# de codes	Modulation	Max data rate
5 codes	QPSK	1.8 Mbps
5 codes	16-QAM	3.6 Mbps
10 codes	16-QAM	7.2 Mbps
15 codes	16-QAM	10.1 Mbps
15 codes	16-QAM	14.4 Mbps

HSUPA

# de codes	TTI	Max data rate
2 x SF4	2 ms 10 ms	1.46 Mbps
2 x SF2	10 ms	2.0 Mbps
2 x SF2	2 ms	2.9 Mbps
2 x SF2 + 2 x SF4	2 ms	5.76 Mbps

Evolution of third generation: HSPA

- Rel-7: 64QAM or 2X2 MIMO => 21 or 28 Mbps
- Rel-8: DC + 64QAM or 2X2 MIMO + 64QAM => 42 Mbps
- Rel-9: DC + 2X2 MIMO + 64QAM => 84 Mbps
- Rel-10: 4C + 2X2 MIMO + 64QAM => 168 Mbps
- Rel-11: (8C or 4X4 MIMO) + 64QAM => 336 Mbps

Evolution of third generation: HSPA

3GPP systems architecture evolution

From 2G to LTE (Source: http://www.3gpp.org/technologies/keywords-acronyms/98-lte)

LTE worldwide deployment

Source: http://www.4gamericas.org/index.cfm?fuseaction=page&pageid=939

EPS architecture

- Introduction
- E-nodeb functions
- **EPC functional entities**
- **EPS functional interfaces**

Introduction

- 3GPP has defined a new mobile network for 4G named EPS (Evolved Packet System)
- It is subdivided into two parts:
 - E-UTRAN (Evolved Terrestrial Access Network)
 - EPC (Evolved Packet Core Network-

Figure: EPS Architecture (source: http://www.telecom-cloud.net/lte-nuggets/basics-of-lte-dimensioning/)

11/19/20

Introduction

■ E-UTRAN is also called LTE (Long Term Evolution).

- One single type of device: enodeB.
- Concentration of base station and base station controller in the same device:.
- eNodeB are connected to core network through S1 interface
- eNodeB are interconnected through X2 interface
- Air interface: OFDMA in downlink and SCFDMA in uplink.

Introduction

All IP system

No circuit switched available.

Interworking with legacy cellular networks

- GERAN (name of 2G access network).
- UTRAN (name of 3G access network).
- Non 3GPP systems: WLAN, M2M (Machine to Machine communications), ...

E-nodeb functions

- e-nodeb is the base station controller for LTE
- It has the following functions:
 - Radio admission Control
 - Radio Resource Allocation (Data and signaling radio bearers)
 - Handover triggering and execution
 - Mobility Anchor when inter enodeb handover is triggered
 - Broadcast system information to terminals on broadcast channels (beacon)
 - Transmission/reception of packets to/from air interface (modulation, coding, ARQ, Hybrid ARQ, header compression operations).

E-nodeb functions

- Measurement configuration and provision (informs terminals how to perform and transfer measurement reports)
- Scheduling of radio resources between different terminals in the cell

EPC Functional entities

PCRF (Policy and Charging Rules Function)

- Call Admission Control for QoS
- Billing and charging per flow
- Transmits QoS rules to P-GW (PDN Gateway)

HSS (Home Subscriber Server)

- Subscriber data
- Security data (authentication, ciphering, integrity)

PDN Gateway (P-GW)

- Allocates an IP address to each terminal (IPv6 or IPv4)
- Routing of packets to terminals according to QoS constraints
- PCEF (Policy Control Enforcement Function): enforces QoS for GBR (Granted Bit Rate).
- Filtering

EPC Functional entities

S-GW (Serving Gateway)

- Routes packets from or to terminals.
- Mobility Anchor for data bearers during handoff procedure between two e-nodeb
- Buffers data from core network during handoff procedure

■MME (Mobility Management Entity)

- Receives NAS messages from or to terminals
- Admission Control for Bearers between terminal and network.
- NAS security procedures
- Idle state mobility handling (tracking area location update procedures)

EPS Functional interfaces

EPS Functional interfaces

Figure: user plane protocol stack http://www.tutorialspoint.com/lte/lte_radio_protocol_architecture.htm

19/11/2020

EPS functional interfaces

Figure: control pane protocol stack (source http://www.tutorialspoint.com/lte/lte_radio_protocol_architecture.htm)

19/11/2020

OFDM signal generation

LTE Downlink OFDMA - Orthogonal Frequency Division Multiplexing Access

- Grand nombre de sous-porteuses de 15 kHz
- Sous porteuses orthogonales

Uplink SC-FDMA – Single Carrier FDMA

- Simimlar to OFDMA
 - 15 kHz subcarriers
 - Same time/frequency structure
- Better PAPR (Peak To Average Power Ratio)

Radio resource allocation

LTE air interface numerology

Scheduling

Time domain

- Round-robin
- Max C/I
- Proportional fair

Frequency domain

- Contiguous
- Random
- Measure based

Link adaptation

- Time domain (/user)
 - Modulation
 - Channel coding

- Frequency domain (/Scheduling Block)
 - unused

Delay spread

Cyclic prefix insertion

MIMO schemes (examples)

Spectrum Flexibility

- New and existing bands
- FDD and TDD
- Plusieurs largeurs de bandes

20 MHz: 100 Scheduling Blocks

LTE Channel bandwidths [MHz]	1.4	3	5	10	15	20	
------------------------------	-----	---	---	----	----	----	--

LTE DL peak rate 20 MHz and 4x4 MIMO et 64 QAM

14 OFDM symbols per 1.0 ms subframe 64QAM = 6 bits per symbol 6 x 14 = 84 bits per 1.0 ms subframe

84bits/1.0ms = 84kbps per subcarrier

12 x 84kbps = 1.008Mbps per Scheduling Block

100 Scheduling Blocks in 20MHz

 $100 \times 1.008 \text{Mbps} = 100.8 \text{Mbps}$ per antenna

4 x 4 MIMO: 403.2Mbps!

BUT in reality approx. 300Mbps

Source: LTE Fundementals, Sven Anders Sturesson

...and UL no MIMO 75Mbps

LITE 3GPP Rel 10 Higher peak rates

Carrier aggregation

Spectrum aggregation

■ DL/UL Multi-Antenna transmission

downlink

uplink

Numérologie de l'interface radio 5G

Canaux downlink et uplink

Canaux physiques et signaux de références

- PBCH (Physical Broadcast channel)
- PDSCH (Downlink shared channel)
- PDCCH (Physical Downlink control) channel

- PRACH Random access channel
- PUSCH Uplink shared channel
- PUCCH Uplink control channel

Signaux de référence voie descedante

- Demodulation Reference signal (DMRS)
- Phase-tracking Reference signal (PT-RS)
- Channel State Information Reference signal (CSI-RS) Primary Synchronization (PSS)
- Secondary Synchronization (SSS)

Signaux de référence voie montante

- Demodulation Reference signal (DMRS)
- Phase-tracking Reference signal (PTRS)
- Sounding Reference signal (SRS)

Source: présentation de Amitabha Ghosh, 5G New Radio (NR): Physical Layer Overview and Performance, IEEE Communication Theory Workshop –2018, 15 Mai 2018

Différentes configurations SCS

Source: présentation de Amitabha Ghosh, 5G New Radio (NR): Physical Layer Overview and Performance, IEEE Communication Theory Workshop –2018, 15 Mai 2018

