

Workshop and International Conference on

Magnetic Calculations

1.Find the magnetic ground state of Fe

Taking the ferromagnetic, ferrimagnetic and antiferromagnetic configurations

Ferromagnetism

Anti-ferromagnetism

Ferrimagnetism

FM

AFM

FiM

Fe, Co, Ni

Cr, NiO, Fe₂O₃

Fe²⁺Fe₂³⁺O₄ (Magnetite), Ferrites

Magnetization → FM > FiM > AFM

For AFM → Magnetization is zero

Login details

PC login password: student

WiFi details:

U: estesodp.guest1

p: Hks3U\$M

Server IP: 10.111.1.12

User Name: estesodp.g1/2/3/4

password: tut_estesodp_2024

Use secure shell to connect to cluster

ssh <u>estesodp@10.111.1.12</u>

or ssh -oHostKeyAlgorithms=+ssh-dss estesodp@10.111.1.12

Fe POSCAR

- 1. Login to the cluster
- 2. Open folder Tut 3
- 3. Go to <u>Fe</u> folder
- 4. Copy POSCAR to your local system
- 5. Open POSCAR in VESTA

Server IP: 10.111.1.12

User Name: estesodp.g1/2/3/4

password: tut_estesodp_2024

Basic input for magnetic materials

ISPIN = 2

and MAGMOM = NIONS*Magnetic Moment

Get from **POSCAR** file

<u>Fe_bcc</u>		
1.0		
2.8630354989499160	0.0000000000000000	0.00000000000000000
0.0000000000000005	2.8630354989499160	0.00000000000000000
0.0000000000000000	0.0000000000000000	2.8630354989499160
Fe		
2		
direct		
0.0000000000000000	0.0000000000000000	0.00000000000000000
0.5000000000000000	0.50000000000000000	0.50000000000000000

Basic input for magnetic materials

Get from **POSCAR** file

<u>Tip</u>: To converge to the magnetic ground state, we recommend setting the magnetic moments slightly larger than the expected values, e.g., using the experimental magnetic moment multiplied by 1.2 or 1.5.

The final magnetic state strongly depends on the initial values for MAGMOM.¹

• Fe – 2.2 μ_B (Experimental)

density functional theory - What's the difference between spinunpolarized, spin-polarized and non-colinear calculation? -Matter Modeling Stack Exchange

INCAR for non-magnetic metal

ISTART=0

ISMEAR = 1

SIGMA = 0.2

ENCUT = 500

IBRION = 2

NSW = 300

ISIF=3

EDIFF = 0.1E-05

EDIFFG = -0.001

LORBIT = 11

PREC = Accurate

ISTART=0

ISMEAR = 1

SIGMA = 0.2

ENCUT = 500

IBRION = 2

NSW = 300

ISIF=3

EDIFF = 0.1E-05

EDIFFG = -0.001

LORBIT = 11

PREC = Accurate

ISPIN=2

MAGMOM = 2*4

<u>Ferromagnetism</u>

Maximum magnetic moment

All moments in same direction

Spin up = positive

NIONS = 2MAGMOM = 2*4

INCAR for bcc Fe – FM configuration

ISTART=0

ISMEAR = 1

SIGMA = 0.2

ENCUT = 500

IBRION = 2

NSW = 300

ISIF=3

EDIFF = 0.1E-05

EDIFFG = -0.001

LORBIT = 11

PREC = Accurate

ISPIN=2

MAGMOM = 2*4

Calculation 1:

Tut 3/Fe/relax scf/input

gsub job-sh

MAGMOM = 2*4

<u>OUTCAR</u>

Orbital-wise contribution to magnetic moments

Atom-wise magnetic moment and the total magnetic moment

```
FREE ENERGIE OF THE ION-ELECTRON SYSTEM (eV)

free energy TOTEN = -16.47327343 eV
```

TOTEN for FM = -16.47327343 eV

Complete cancellation of magnetic moments

- Between same atoms only
- M atom can cancel M atom, M atom cannot cancel N atom

For Fe (2 atoms) = 1 up + 1 down

MAGMOM = 1*4 1*-4

INCAR

ISTART=0

ISMEAR = 1

SIGMA = 0.2

ENCUT = 500

IBRION = 2

NSW = 300

ISIF=3

EDIFF = 0.1E-05

EDIFFG = -0.001

LORBIT = 11

PREC = Accurate

ISPIN=2

MAGMOM = 1*4 1*-4

Calculation 2 : Tut 3/Fe/AFM/input

gsub job.sh

OUTCAR

magnetization (x)

# of ion	s	р	d	tot
1 2		0.023 -0.023		
tot	0.000	0.000	0.000	0.000

free energy TOTEN = -15.58814939 eV

FM vs AFM

TOTEN for FM = -16.47327343 eV

TOTEN for AFM = -15.58814939 eV

More negative More stable

FM configuration more stable than AFM configuration

What will happen when

MAGMOM = 1*-4 1*4?

Same

How to build AFM configuration with odd number of atoms?

How to build AFM configuration with odd number of atoms?

Supercell

VESTA – Supercell

hase: 1	Fe_bcc								
	tructure para	meter	s Volu	metric data Cr	ystal s	hape			
Symmetry Magnetic structo	ire								
System		No.	Space	Group		No.	Setting		
Molecule		1	P 1		Ш	1	P 1		
Custom		2	P -1			2	A 1		
Triclinic		3	P 2			3	B 1		
Monoclinic Orthorhombic		4	P 21 C 2		4 5	C 1			
		5							
Tetragonal	(6	P m			6	F 1		
Trigonal		7	Рс			_			
	Tr	ansfor	m	Customize	Up	odate str	ucture param	eters to keep 3D geon	netry
Lattic	e parameter			415			0.793	(8)	
	a (Å) 5.72607	b (A) 36304	c (Å) 2.86304	α (°	0000	β (°) 90.0000	γ (°) 90.0000	
			00000	0.00000	0.0		0.0000	0.0000	
s.u.:	0.00000	0.0	0000	0.00000	0.0	000	0.0000	0.0000	
				Remove sy	mmet	nv			

VESTA – Supercell

<u>Ferrimagnetism</u>

Can we build a ferrimagnetic structure with 2 atoms of Fe?

<u>Ferrimagnetism</u>

Can we build a ferrimagnetic structure with 2 atoms of Fe?

Supercell(2x1x1)

NIONS = 4 MAGMOM = 3*4 1*-4 ISTART=0

ISMEAR = 1

SIGMA = 0.2

ENCUT = 500

IBRION = 2

NSW = 300

ISIF=3

EDIFF = 0.1E-05

EDIFFG = -0.001

LORBIT = 11

PREC = Accurate

ISPIN=2

MAGMOM = 3*4 1*-4

What happens to KPOINTS when taking supercell?

What happens to KPOINTS when taking supercell?

Computationally expensive

Monkhorst Pack 8 8 8 0 0 0

Monkhorst Pack 4 8 8 0 0 0

Magnetic Calculations

2. Calculate the magnetocrystalline anisotropy energy (MAE) of Fe by incorporating Spin-Orbit Coupling in DFT

Magnetic Anisotropy

- ➤ Strongly affects the shape of Hysteresis loop
- Can be related to the shape, stress, exchange or even can be induced

 Extrinsic

Crystal Anisotropy or Magnetocrystalline Anisotropy (MCA)

1800 <100> Hard 1600 Medium <111> 1400 <110> 1200 $M \, (emu/cm^3)$ 1000 Easy <100> 800 600 400 $MAE = E_{100}$ 200 1000 200 400 600 800 H(Oe)

Image: BD Cullity and CD Graham, Introduction to magnetic materials

Anisotropy Constant (K) = MAE/Cell vol.

The quantity that usually distinguishes the permanent (hard) magnets from the soft ones is large anisotropy energy

Spin **Orbit** Lattic **Strong** e

Spin-Orbit Coupling

- ✓ Orbital magnetic moments are quenched to the lattice
- ✓ Spin-spin coupling is strong but is isotropic in nature
- ✓ Anisotropy energy is the energy needed to overcome spin-orbit coupling

MAE is mainly due to spin-orbit coupling

LS Coupling (Lanthanides/Rare Earths)

JJ Coupling (Actinides)

Before SOC – static (point calculation/NSCF)

- 1. Create a new folder (mkdir static)
- 2. Copy CONTCAR, INCAR, POTCAR, KPOINTS and job.sh to
- 3. Go to static (cd static)
- 4. Rename CONTCAR to POSCAR (mv CONTCAR POSCAR)
- 5. Modify INCAR

6. Increase KPOINTS

```
k-points
0
Monkhorst Pack
12 12 12
0 0 0
```

Calculation 3:

Tut 3/Fe/static/input

```
ISTART = 0
ISMEAR = 1
SIGMA = 0.2
ENCUT = 500
IBRION = -1
NSW = 0
ISIF = 2
EDIFF = 0.1E-06
EDIFFG = -0.0001
LORBIT = 11
PREC = Accurate
ISPIN = 2
```

MAGMOM = 2*4

Magnetocrystalline anisotropy Energy (MAE)

The MAE is determined by rotating all spins according to different directions and the approach that we use is: **MAGNETIC FORCE THEOREM**

SAXIS

Page Discussion

SAXIS = [real array]

Default: **SAXIS** = (0, 0, 1)

Description: Set the global spin-quantization axis w.r.t. Cartesian coordinates.

LSORBIT = .TRUE. | .FALSE.

Default: **LSORBIT** = .FALSE.

Description: Switch on spin-orbit coupling.

For noncollinear calculation (LNONCOLLINEAR=T), the on-site magnetic moment (MAGMOM) is specified by three components for each ion.

SOC is noncollinear (ncl) – vasp_ncl in job.sh

 $MAGMOM = m_x m_y m_z$ for each atom

For BCC Fe-MAGMOM = 0 0 2.2 0 0 2.2 Better to use the magnetic moment obtained in static run

More on Non-Collinearity

Non-collinear magnetism is quite common in nature, where the spins are not parallel (ferromagnetic) or anti-parallel (antiferromagnetic), rather they orient in spirals, helicoids, canted or disordered. Non-collinear magnetism can occur because of geometric frustration of magnetic interaction. It can also occur due to the magnetocrystalline anisotropy which is the result of interaction between the spin and lattice interaction. This relativistic effect comes via spin-orbit coupling.

density functional theory - What's the difference between spinunpolarized, spin-polarized and non-colinear calculation? -Matter Modeling Stack Exchange

Sample INCAR for SOC calculation

```
ISTART=0
                   CHGCAR goes as input file
ISMEAR = 1
SIGMA = 0.2
ENCUT = 500
ISPIN=2
MAGMOM = 0 0 2.2 0 0 2.2
SAXIS= 1 0 0
EDIFF = 1E-06
LORBTT = 11
LSORBIT = .True.
LWAVE = .False.
LCHARG= .False.
LORBMOM = T
LNONCOLLINEAR = .TRUE.
LMAXMIX = 4
ISYM = 0
PREC = Accurate
NPAR = 4
                   2*SCF (grep NBANDS OUTCAR)
GGA_COMPAT=.FALSE.
```

INPUT files for SOC calculation:

INCAR

POSCAR (static CONTCAR to POSCAR)

POTCAR

KPOINTS

CHGCAR

job.sh

- Make folder SOC mkdir SOC
- Copy all input files to SOC folder

job.sh for SOC calculation


```
#!/bin/bash
#PBS -N soc_x
#PBS -q little
#PBS -l nodes=1:ppn=4
#PBS -V

cd $PBS_O_WORKDIR

mpirun -n 4 -N 4 /home/amrb/vasp/vasp.6.2.0/bin/vasp_ncl > vasp.out
```


Magnetocrystalline anisotropy Energy (MAE)

First Method

SAXIS fixed, Change MAGMOM

- Inside SOC folder make folder magmom_change – mkdir magmom_change
- 2. cd magmom_change
- 3. mkdir x
- 4. mkdir y
- 5. mkdir z

MAGMOM applied along 3 different directions

SAXIS = 0.01 (z-axis) MAGMOM = m.0.0 m 0.0

In most cases, the changes in energies are very low (sometimes around micro-eV)

```
ISTART=0
ISMEAR = 1
SIGMA = 0.2
ENCUT = 500
ISPIN=2
MAGMOM = 2.2 0 0 2.2 0 0
SAXIS= 0 0 1
EDIFF = 1E-05
LORBIT = 11
LSORBIT = .True.
LWAVE = .False.
LCHARG= .False.
LORBMOM = T
LNONCOLLINEAR = .TRUE.
LMAXMIX = 4
ISYM = 0
PREC = Accurate
NPAR = 4
NBANDS = 32
```

GGA COMPAT=.FALSE.

First Method: SAXIS fixed, Change MAGMOM

ISTART=0	ISTART=0	ISTART=0
ISMEAR = 1	ISMEAR = 1	ISMEAR = 1
SIGMA = 0.2	SIGMA = 0.2	SIGMA = 0.2
ENCUT = 500	ENCUT = 500	ENCUT = 500
ISPIN=2	ISPIN=2	ISPIN=2
MAGMOM = 2.2 0 0 2.2 0 0	MAGMOM = 0 2.2 0 0 2.2 0	MAGMOM = 0 0 2.2 0 0 2.2
SAXIS= 0 0 1	SAXIS= 0 0 1	SAXIS= 0 0 1
EDIFF = 1E-05	EDIFF = 1E-05	EDIFF = 1E-05
LORBIT = 11	LORBIT = 11	LORBIT = 11
LSORBIT = .True.	LSORBIT = .True.	LSORBIT = .True.
LWAVE = .False.	LWAVE = .False.	LWAVE = .False.
LCHARG= .False.	LCHARG= .False.	LCHARG= .False.
LORBMOM = T	LORBMOM = T	LORBMOM = T
LNONCOLLINEAR = .TRUE.	LNONCOLLINEAR = .TRUE.	LNONCOLLINEAR = .TRUE.
LMAXMIX = 4	LMAXMIX = 4	LMAXMIX = 4
ISYM = 0	ISYM = 0	ISYM = 0
PREC = Accurate	PREC = Accurate	PREC = Accurate
NPAR = 4	NPAR = 4	NPAR = 4
NBANDS = 32	NBANDS = 32	NBANDS = 32
GGA_COMPAT=.FALSE.	GGA_COMPAT=.FALSE.	GGA COMPAT=.FALSE.

First Method: SAXIS fixed, MAGMOM in X-direction

D P P	
ISTART=0	
ISMEAR = 1	
SIGMA = 0.2	
ENCUT = 500	
ISPIN=2	
MAGMOM = 2.2 0	0 2.2 0 0
SAXIS= 0 0 1	
EDIFF = 1E-05	
LORBIT = 11	
LSORBIT = .Tru	ıe.
LWAVE = .False	· .
LCHARG= .False	· .
LORBMOM = T	
LNONCOLLINEAR	= .TRUE.
LMAXMIX = 4	
ISYM = 0	
PREC = Accurat	:e
NPAR = 4	
NBANDS = 32	

GGA_COMPAT=.FALSE.

magnetizat	ion (x)			
# of ion	s	р	d	tot
1	-0.011	-0.047	2.257	2.200
2	-0.011	-0.047	2.257	2.200
tot	-0.023	-0.093	4.515	4.399
	. , .			
magnetizat	ion (y)			
# of ion	s	р	d	tot
1	-0.000	-0.000	-0.000	-0.000
2	0.000	0.000	-0.000	-0.000
tot	0.000	-0.000	-0.000	-0.000
magnetizat	ion (z)			
# of ion	s	р	d	tot
1	-0.000	-0.000	0.000	0.000
2	-0.000	-0.000	0.000	0.000
tot	-0.000	-0.000	0.001	0.001

orbital mo	oment (x)		_
# of ion	р	d	tot	
1 2		0.048 0.048	0.048 0.048	
	0.000	0.096	0.097	
				•
orbital mo	oment (y)		
# of ion	р	d	tot	
1 2		-0.000 0.000		
	-0.000	-0.000	-0.000	
orbital mo	oment (z)		
# of ion	р	d	tot	
1 2		0.000 0.000		

0.000

0.000

0.000

First Method: SAXIS fixed, MAGMOM in X-direction


```
ISTART=0
```

ISMEAR = 1

SIGMA = 0.2

ENCUT = 500

ISPIN=2

MAGMOM = 2.2 0 0 2.2 0 0

SAXIS= 0 0 1

EDIFF = 1E-05

LORBIT = 11

LSORBIT = .True.

LWAVE = .False.

LCHARG= .False.

LORBMOM = T

LNONCOLLINEAR = .TRUE.

LMAXMIX = 4

ISYM = 0

PREC = Accurate

NPAR = 4

NBANDS = 32

GGA COMPAT=.FALSE.

magnetiza	tion (x)			orbital mo	orbital moment (x)					
# of ion	S	р	d	tot	# of ion	р	d	tot		
1 2		-0.047 -0.047	2.257	2.200 2.200	1 2	0.000 0.000	0.048 0.048	0.048 0.048		
tot	-0.023	-0.093	4.515	4.399		0.000	0.096	0.097		

FREE	ENERGIE	OF T	HE IO	N-ELEC	TRON	SYSTEM	(eV	()	
free	energy	 T0	TEN	 =	 16-	 5.486008	 896	eV	

Direction	TOTEN (in eV)
X	-16.48600896

First Method: SAXIS fixed, MAGMOM in Y-direction


```
ISTART=0
ISMEAR = 1
SIGMA = 0.2
ENCUT = 500
ISPIN=2
MAGMOM = 0 2.2 0 0 2.2 0
SAXIS= 0 0 1
EDIFF = 1E-05
LORBIT = 11
LSORBIT = .True.
LWAVE = .False.
LCHARG= .False.
LORBMOM = T
LNONCOLLINEAR = .TRUE.
LMAXMIX = 4
ISYM = 0
PREC = Accurate
NPAR = 4
NBANDS = 32
GGA_COMPAT=.FALSE.
```

magnetiza	tion (x)				orbita	al moment (x)	
# of ion	S	р	d	tot	# of i	lon p	d	
1	-0.000	-0.000	-0.000	-0.000	1	0.000	-0.000	
2	0.000	0.000	-0.000	0.000	2			
t	0.000	0.000	-0.000	-0.000		0.000	-0.000	
gnetiza	tion (y)				orbita	al moment (y)	
of ion	S	р	d	tot	# of i	lon p	d	
1	-0.011	-0.047	2.257	2.200	1	0.000	9 948	-
2	-0.011	-0.047	2.257	2.200	2		0.048	
:	-0.023	-0.093	4.515	4.399		0.000	0.096	-
gnetiza	tion (z)				orbita	al moment (z)	
of ion	S	р	d	tot	# of i	lon p	d	
	-0.000	-0.000	-0.000	-0.001	1	0.000	-0.000	-
2	-0.000	-0.000	-0.000	-0.001	2			
	-0.000	-0.000	-0.001	-0.001		0.000	-0.000	

First Method: SAXIS fixed, MAGMOM in Y-direction


```
ISTART=0

ISMEAR = 1

SIGMA = 0.2

ENCUT = 500

ISPIN=2

MAGMOM = 0 2.2 0 0 2.2 0
```

EDIFF = 1E-05

SAXIS= 0 0 1

LORBIT = 11 LSORBIT = .True.

LWAVE = .False.

LCHARG= .False.

LORBMOM = T

LNONCOLLINEAR = .TRUE.

LMAXMIX = 4

ISYM = 0

PREC = Accurate

NPAR = 4

NBANDS = 32

GGA_COMPAT=.FALSE.

magnetizat	tion (y)			orbital mo	orbital moment (y)				
# of ion	s	р	d	tot	# of ion	р	d	tot	
1 2		-0.047 -0.047		2.200	1 2	0.000 0.000		0.048 0.048	
tot	-0.023	-0.093	4.515	4.399		0.000	0.096	0.097	

FREE	ENERGIE	OF	THE	ION	-ELECTR	ON	SYSTEM	(eV	')	
	energy						.486033			

Direction	TOTEN (in eV)
X	-16.48600896
У	-16.48603316

First Method: SAXIS fixed, MAGMOM in Z-direction

IST	ΓARΊ	Γ=0
TSN	ΛΕΔ Ε	? =

SIGMA = 0.2

ENCUT = 500

ISPIN=2

MAGMOM = 0 0 2.2 0 0 2.2

SAXIS= 0 0 1

EDIFF = 1E-05

LORBIT = 11

LSORBIT = .True.

LWAVE = .False.

LCHARG= .False.

LORBMOM = T

LNONCOLLINEAR = .TRUE.

LMAXMIX = 4

ISYM = 0

PREC = Accurate

NPAR = 4

NBANDS = 32

GGA COMPAT=.FALSE.

magnetization (x)

# of ion	s	р	d	tot
1 2		-0.000 -0.000		
tot	-0.000	-0.000	0.000	-0.000

magnetization (y)

# of ion	S	р	d	tot	
1 2		-0.000 0.000			
tot	-0.000	-0.000	-0.001	-0.001	

magnetization (z)

# of ion	s	р	d	tot
1 2	-0.011 -0.011	-0.047 -0.047	2.257 2.257	2.200
tot	-0.023	-0.093	4.515	4.399

orbital moment (x)

# of ion	р	d	tot	
1 2		-0.000 -0.000		
	0.000	-0.000	-0.000	

orbital moment (y)

# of ion	р	d	tot	
1 2		-0.000 -0.000		
	0.000	-0.000	-0.000	

orbital moment (z)

# of ion	р	d	tot	
1 2	0.000 0.000	0.048 0.048	0.048 0.048	
	0.000	0.096	0.097	

First Method: SAXIS fixed, MAGMOM in Z-direction


```
ISTART=0
```

ISMEAR = 1

SIGMA = 0.2

ENCUT = 500

ISPIN=2

MAGMOM = 0 0 2.2 0 0 2.2

SAXIS= 0 0 1

EDIFF = 1E-05

LORBIT = 11

LSORBIT = .True.

LWAVE = .False.

LCHARG= .False.

LORBMOM = T

LNONCOLLINEAR = .TRUE.

LMAXMIX = 4

ISYM = 0

PREC = Accurate

NPAR = 4

NBANDS = 32

GGA COMPAT=.FALSE.

magnetization (z)

# of ion	S	р	d	tot
1 2		-0.047 -0.047		
tot	-0.023	-0.093	4.515	4.399

orbital moment (z)

# of ion	р	d	tot	
1 2		0.048 0.048		
	0.000	0.096	0.097	

FREE ENERGIE OF THE ION-ELECTRON SYSTEM (eV)

free energy TOTEN = -16.48602935 eV

Direction	TOTEN (in eV)
X	-16.48600896 (hard)
у	-16.48603316 (easy)
Z	-16.48602935

Magnetocrystalline anisotropy Energy (MAE)

SAXIS fixed, Change MAGMOM

SAXIS = 0 0 1 (z-axis)

 $MAGMOM = m_x 0 0 m_x 0 0$

 $MAGMOM = 0 m_v 0 0 m_v 0$

 $MAGMOM = 0.0 m_z 0.0 m_z$

SAXIS change, fix MAGMOM

 $MAGMOM = 0.0 m_z 0.0 m_z$

SAXIS = 100

SAXIS = 0.10

SAXIS = 001

Thankyou