WHAT IS CLAIMED IS:

1	1. A pipeline accelerator, comprising:
2	a memory; and
3	a hardwired-pipeline circuit coupled to the memory and operable to,
4	receive data,
5	load the data into the memory,
6	retrieve the data from the memory,
7	process the retrieved data, and
8	provide the processed data to an external source.
1	2. The pipeline accelerator of claim 1 wherein:
2	the memory is disposed on a first integrated circuit; and
3	the pipeline circuit is disposed on a second integrated circuit.
1	3. The pipeline accelerator of claim 1 wherein the pipeline circuit is disposed
2	on a field-programmable gate array.
1	4. The pipeline accelerator of claim 1 wherein the pipeline circuit is operable
2	to provide the processed data to the external source by:
3	loading the processed data into the memory;
4	retrieving the processed data from the memory; and
5	providing the retrieved processed data to the external source.
1	5. The pipeline accelerator of claim 1 wherein:
2	the external source comprises a processor, and
3	the pipeline circuit is operable to receive the data from the processor.
1	6. A computing machine, comprising:
2 .	a processor; and
3	a pipeline accelerator coupled to the processor and comprising,
4	a memory, and
5	a hardwired-pipeline circuit coupled to the memory and operable to,
6	receive data from the processor,
7	load the data into the memory,

8	retrieve the data from the memory,
9	process the retrieved data, and
10	provide the processed data to the processor.
1	7. A pipeline accelerator, comprising:
2	a memory; and
3	a hardwired-pipeline circuit coupled to the memory and operable to,
4	receive data,
5	process the received data,
6	load the processed data into the memory,
7	retrieve the processed data from the memory, and
8	provide the retrieved processed data to an external source.
1.	8. A computing machine, comprising:
2	a processor; and
3	a pipeline accelerator coupled to the processor and comprising,
4	a memory, and
5	a hardwired-pipeline circuit coupled to the memory and operable to,
6	receive data from the processor,
7	process the received data,
8	load the processed data into the memory,
9	retrieve the processed data from the memory, and
10	provide the retrieved processed data to the processor.
1	9. A pipeline accelerator, comprising:
2	first and second memories; and
3	a hardwired-pipeline circuit coupled to the first and second memories and
4	comprising,
5	an input-data handler operable to receive raw data from an external
6	source and to load the raw data into the first memory,
7.	a hardwired pipeline operable to process the raw data.

8	a pipeline interface operable to retrieve the raw data from the first memory,
9 .	provide the retrieved raw data to the hardwired pipeline, and load processed data
10	from the hardwired pipeline into the second memory, and
11	an output-data handler operable to retrieve the processed data from the
12	second memory and to provide the processed data to the external source.
1	10. The pipeline accelerator of claim 9 wherein:
2	the first and second memories each include respective first and second ports;
3	the input-data handler is operable to load the raw data via the first port of the first
4	memory,
5	the pipeline interface is operable to retrieve the raw data via the second port of
6	the first memory and to load the processed data via the first port of the second memory,
7	and
8	the output-data handler is operable to retrieve the processed data via the second
9	port of the second memory.
1	11. The pipeline accelerator of claim 9, further comprising:
2	a third memory coupled to the hardwired-pipeline circuit;
3	wherein the hardwired pipeline is operable to generate intermediate data while
4	processing the raw data; and
5	wherein the pipeline interface is operable to load the intermediate data into the
6	third memory and to retrieve the intermediate data from the third memory.
1	12. The pipeline accelerator of claim 9 wherein:
2	the first and second memories are respectively disposed on first and second
3	integrated circuits; and
4	the pipeline circuit is disposed on a field-programmable gate array.
1	13. The pipeline accelerator of claim 9, further comprising:
2	an input-data queue coupled to the input-data handler and the pipeline interface;
3	wherein the input-data handler is operable to load into the input-data queue a
4	pointer to a location of the raw data within the first memory; and

5	wherein the pipeline interface is operable to retrieve the raw data from the	
6	location using the pointer.	
1	14. The pipeline accelerator of claim 9, further comprising:	
2	an output-data queue coupled to the output-data handler and the pipeline	
3	interface;	
4	wherein the pipeline interface is operable to load into the output-data queue a	
5	pointer to a location of the processed data within the second memory; and	
6	wherein the output-data handler is operable to retrieve the processed data from	
7	the location using the pointer.	
1	15. The pipeline accelerator of claim 9, further comprising:	
2	wherein each of the input-data handler, hardwired pipeline, pipeline interface,	
3	and output-data handler has a respective operating configuration; and	
4	a configuration manager coupled to and operable to set the operating	
5	configurations of the input-data handler, hardwired pipeline, pipeline interface, and	
6	output-data handler.	
1	16. The pipeline accelerator of claim 9, further comprising:	
2	wherein each of the input-data handler, hardwired pipeline, pipeline interface,	
3	and output-data handler has a respective operating status; and	
4	an exception manager coupled to and operable to identify an exception in the	
5	input-data handler, hardwired pipeline, pipeline interface, or output-data handler in	
6	response to the operating statuses.	
1	17. A pipeline accelerator, comprising:	
2	a hardwired pipeline operable to process data; and	
3	an input-data handler coupled to the hardwired pipeline and operable to,	
4	receive the data,	
5	determine whether the data is directed to the hardwired pipeline, and	
6	provide the data to the hardwired pipeline if the data is directed to the	
7	hardwired nineline	

1	18. The pipeline accelerator of claim 17 wherein the inp	out-data handler is	
2	further operable to:	further operable to:	
3	receive the data by,		
4	receiving a message that includes a header and the	data, and	
5	extracting the data from the message; and		
6	determine whether the data is directed to the hardwired pi	peline by analyzing the	
7	header.		
1	19. The pipeline accelerator of claim 17 wherein the ha	rdwired pipeline and	
2	the input-data handler are disposed on a single field-programma	ole gate array.	
1	20. The pipeline accelerator of claim 17 wherein the ha	rdwired pipeline and	
2	the input-data handler are disposed on respective field-programm	nable gate arrays.	
1	21. A computing machine, comprising:		
2	a processor; and		
3.	a pipeline accelerator coupled to the processor and comp	ising,	
4	a hardwired pipeline operable to process data, and		
5	an input-data handler coupled to the hardwired pipe	line and operable to,	
6	receive the data from the processor,		
7	determine whether the data is directed to the	hardwired pipeline,	
8	and		
9	provide the data to the hardwired pipeline if t	he data is directed to	
10	the hardwired pipeline.		
1	22. A pipeline accelerator, comprising:		
2	a hardwired pipeline operable to generate data; and		
3	an output-data handler coupled to the hardwired pipeline a	and operable to,	
4	receive the data,		
5	determine a destination of the data, and		
6	provide the data to the destination.		
1	23. The pipeline accelerator of claim 22 wherein the ou	tput-data handler is	
2	further operable to:		

3	determine the destination of the data by,
4	identifying a type of the data, and
5	determining the destination based on the type of the data; and
6	provide the data to the destination by,
7	generating a message that identifies the destination and that includes the
8	data, and
9	providing the message to the destination.
1	24. A computing machine, comprising:
2	a processor operable to execute threads of an application; and
3	a pipeline accelerator coupled to the processor and comprising:
4	a hardwired pipeline operable to generate data, and
5	an output-data handler coupled to the hardwired pipeline and operable to,
6	receive the data,
7	identify a thread of the application that subscribes to the data, and
8	provide the data to the subscribing thread.
1	25. A pipeline accelerator, comprising:
2	a hardwired pipeline operable to process data values; and
3	a sequence manager coupled to and operable to control the operation of the
4	hardwired pipeline.
1	26. The pipeline accelerator of claim 25 wherein the sequence manager is
2	operable to control an order in which the hardwired pipeline receives the data values.
1	27. The pipeline accelerator of claim 25 wherein the sequence manager is
2	further operable to:
3	receive an event; and
4	control the hardwired pipeline in response to the event.
1	28. The pipeline accelerator of claim 25 wherein the sequence manager is
2	further operable to:
3	receive a synchronization signal; and

4	control the operation of the hardwired pipeline in response to the synchronization
5	signal.
1 2	29. The pipeline accelerator of claim 25 wherein the sequence manager is further operable to:
3	sense an occurrence relative to the hardwired pipeline; and
4	generate an event in response to the occurrence.
1	30. A computing machine, comprising:
2	a processor operable to generate data and an event; and
3	a pipeline accelerator coupled to the processor and comprising,
4	a hardwired pipeline operable to receive the data from the processor and
5	process the received data; and
6	a sequence manager coupled to the hardwired pipeline and operable to
7	receive the event from the processor and to control the operation of the
8	hardwired pipeline in response to the event.
1	31. A pipeline accelerator, comprising:
2	a hardwired-pipeline circuit having an operating configuration and operable to
3	process data; and
4	a configuration manager coupled to the hardwired-pipeline circuit and operable to
5	set the operating configuration.
1	32. The pipeline accelerator of claim 31 wherein:
2	the hardwired-pipeline circuit includes a configuration register; and
3	the configuration manager is operable to set the operating configuration by
4	loading a configuration value into the configuration register.
1	33. The pipeline accelerator of claim 32 wherein the configuration manager is
2	operable to receive the configuration value from an external source.
1	34. A computing machine, comprising:
2	a processor operable to generate data and a configuration value; and
3	pipeline accelerator coupled to the processor and comprising,

4	a hardwired-pipeline circuit having an operating configuration and operable	
5	to process the data, and	
6	a configuration manager coupled to the hardwired-pipeline circuit and	
7	operable to set the operating configuration in response to the configuration value.	
1	35. A pipeline accelerator, comprising:	
2	a hardwired-pipeline circuit having an operating status and operable to process	
3	data; and	
4	an exception manager coupled to the hardwired-pipeline circuit and operable to	
5	identify an exception in the operation status of the hardwired-pipeline circuit in response	
6	to the operating status.	
1	36. The pipeline accelerator of claim 35 wherein:	
2	the hardwired-pipeline circuit is operable to generate a status value that	
3	represents the operating status; and	
4	the exception manager is operable to identify the exception in response to the	
5	status value.	
1	37. The pipeline accelerator of claim 36 wherein:	
2	the hardwired-pipeline circuit includes a status register that is operable to store	
3	the status value; and	
4	the exception manager receives the status value from the status register.	
1	38. The pipeline accelerator of claim 35 wherein the exception manager is	
2	operable to identify an exceptionin the operating status of the hardwired-pipeline circuit	
3	to an external source.	
1	39. A computing machine, comprising:	
2	a processor operable to generate data; and	
3	a pipeline accelerator, comprising,	
4	a hardwired-pipeline circuit having an operating status and operable to	
5	process data and to generate a status value that represents the operating status,	
6	and	

7	an exception manager coupled to the hardwired-pipeline circuit and
8	operable to identify an exception in the operating status of the hardwired-pipeline
9	circuit in response to the status value and to notify the processor of the
10	exception.
1	40. A computing machine, comprising:
2	a pipeline accelerator, comprising,
3	a hardwired-pipeline circuit having an operating status and operable to
4	process data, and
5	an exception manager coupled to the hardwired-pipeline circuit and
6	operable to generate a status value that represents the operating status; and
7	a processor coupled to the pipeline accelerator and operable to generate the
8	data, to receive the status value, and to determine whether the hardwired-pipeline
9	circuit is malfunctioning by analyzing the status value.
1 .	41. A method, comprising:
2	loading data into a memory;
3	retrieving the data from the memory;
4	processing the retrieved data with a hardwired-pipeline circuit; and
5	providing the processed data to an external source.
1	42. The method of claim 41 wherein providing the processed data comprises:
2	loading the processed data into the memory;
3	retrieving the processed data from the memory; and
4	providing the retrieved processed data to the external source.
1	43. A method, comprising:
2	processing data with a hardwired-pipeline circuit;
3 .	loading the processed data into a memory;
4	retrieving the processed data from the memory; and
5	providing the retrieved processed data to an external source.
1	44. A method, comprising:
2	loading raw data from an external source into a first memory:

3	retrieving the raw data from the first memory;	
4	processing the retrieved data with a hardwired pipeline;	
5	loading the processed data from the hardwired pipeline into a second memory;	
6	and	
7	providing the processed data from the second memory to the external source.	
ì	45. The method of claim 44 wherein:	
2	loading the raw data comprises loading the raw data via a first port of the first	
3	memory;	
4	retrieving the raw data comprises retrieving the raw data via a second port of the	
,5	first memory;	
6	loading the processed data comprises loading the processed data via a first port	
7	of the second memory; and	
8	providing the processed data comprises retrieving the processed data via a	
9	second port of the second memory.	
1	46. The method of claim 44, further comprising:	
2	generating intermediate data with the hardwired pipeline in response to	
3	processing the raw data;	
4	loading the intermediate data into a third memory; and	
5	providing the intermediate data from the third memory back to the hardwired	
6	pipeline.	
1	47. The method of claim 44, further comprising:	
2	loading into an input-message queue a pointer to a location of the raw data within	
3	the first memory; and	
4	wherein retrieving the raw data comprises retrieving the raw data from the	
5	location using the pointer.	
1	48. The method of claim 44, further comprising:	
2	loading into an output-message queue a pointer to a location of the processed	
3	data within the second memory; and	

4	wherein retrieving the processed data comprises retrieving the processed data	
5	from the location using the pointer.	
1	49. The method of claim 44, further comprising setting parameters for loading	
2	and retrieving the raw data, processing the retrieved data, and loading and providing the	
3	processed data.	
1	50. The method of claim 44, further comprising determining whether an error	
2	occurs during the loading and retrieving of the raw data, the processing of the retrieved	
3	data, and the loading and providing of the processed data.	
1	51. A method, comprising:	
2	receiving data;	
3	determining whether the data is directed to a hardwired pipeline; and	
4	providing the data to the hardwired pipeline if the data is directed to the	
5	hardwired pipeline.	
1	52. The method of claim 51 wherein:	
2	receiving the data comprises,	
3	receiving a message that includes a header and the data, and	
4	extracting the data from the message; and	
5	determining whether the data is directed to the hardwired pipeline comprises	
6	analyzing the header.	
1	53. A method, comprising:	
2	generating data with a hardwired pipeline;	
3	determining a destination of the data; and	
4	providing the data to the destination.	
1	54. The method of claim 53 wherein:	
2	determining the destination of the data comprises,	
3	identifying a type of the data, and	
4	determining the destination based on the type of the data; and	
5	providing the data to the destination comprises,	

6	generating a message that identifies the destination and that includes the
7	data, and
8	providing the message to the destination.
1	55. A method, comprising:
2	processing data values with a hardwired pipeline; and
3	sequencing the operation of the hardwired pipeline.
1	56. The method of claim 55 wherein sequencing the operation comprises
2	sequencing an order in which the hardwired pipeline processes the data values.
1	57. The method of claim 55 wherein sequencing the operating comprises
2	synchronizing the operation of the hardwired pipeline to a synchronization signal.
1	58. The method of claim 55, further comprising:
2	sensing a predefined occurrence during operation of the hardwired pipeline; and
3	generating an event in response to the occurrence.
1	59. A method, comprising:
2	loading a configuration value into a register; and
3	setting an operating configuration of a hardwired pipeline with the configuration
4	value.
1	60. A method, comprising:
2	processing data with a hardwired pipeline; and
3	identifying an error in the processed data by analyzing an operating status of the
4	hardwired pipeline.
1	61. A method for designing a hardwired-pipeline circuit, comprising:
2	retrieving from a library a first data representation of a communication interface;
3	generating a second data representation of a hardwired pipeline that is to be
4	coupled to the communication interface; and
5	combining the first and second data representations to generate
6	hard-configuration data for the hardwired-pipeline circuit.

. 1

2

- 1 62. The method of claim 61, further comprising modifying the first data 2 representation by selecting values for predetermined parameters of the services layer 3 before combining the first and second data representations.
- 1 63. The method of claim 61 wherein the communication interface is operable 2 to allow the hardwired-pipeline circuit to communicate with another circuit.
- 1 64. The method of claim 61 wherein combining the first and second data 2 representations comprises compiling the first and second data representations into the 3 hard-configuration data.
 - 65. The method of claim 61 wherein the hard-configuration data comprises firmware.