# Assessing the coefficients



## Logistic Regression Model

$$P(y=1 \mid X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n)}}$$

$$P(y=1 \mid X) = \frac{1}{1+e^{-z}}$$





### Logistic Regression Model

$$(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n) > 0$$

- $\beta = 0$ , the feature does NOT affect the probability of the outcome.
- $\beta > 0 \rightarrow \text{increase p(y=1)}$
- $\beta < 0 \rightarrow \text{decrease p(y=1)}$



## Logistic Regression Model

$$(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n) > 0$$

Is  $\beta$  significantly different from 0?



#### Wald-test

**Null hypothesis**:  $\beta = 0$ 

$$z = \frac{\beta}{SE\beta}$$

z ~ normal distribution

Large  $\beta$  or smaller  $SE\beta$  indicate that we can trust the coefficient.

#### Wald-test

Null hypothesis:  $\beta = 0$ 

$$z = \frac{\beta}{SE\beta}$$

z ~ normal distribution



When  $\beta$  is large,  $SE\beta$  is inflated

→ z is underestimated



# • Coefficients error

How can we calculate it?



#### Coefficients error estimation

- > Cross-validation
- Bootstrapping
- > Empirically



#### Statsmodels

$$\hat{\operatorname{se}}_j = \sqrt{((X^T \hat{W} X)^{-1})_{jj}},$$

- X is the predictor matrix
- W is the covariance matrix

https://web.stanford.edu/class/archive/stats/stats200/stats200.1172/Lecture26.pdf





# THANK YOU

www.trainindata.com