Problem

Prove the following stronger form of the pumping lemma, wherein both pieces v and v must be nonempty when the string s is broken up.

If A is a context-free language, then there is a number k where, if s is any string in A of length at least k, then s may be divided into five pieces, s = uvxyz, satisfying the conditions:

- **a.** for each $i \ge 0$, $uv^i xy^i z \in A$,
- **b.** $v \neq \varepsilon$ and $y \neq \varepsilon$, and
- c. $|vxy| \leq k$.

Step-by-step solution

Step 1 of 8

It has to be proven that if A is a context-free language, there is a number k where is a string s such that $s \in A$ and $|s| \ge k$, then the string s can be split into five pieces s = uvxyz such that the following conditions hold:

- a. For each $i \ge 0$, $uv^i x y^i z \in A$,
- b. $v \neq \varepsilon$ and $y \neq \varepsilon$, and
- $|vxy| \le k$

Comment

Step 2 of 8

Now, define a context-free grammar $G = (V, \Sigma, R, T)$ for the context-free language A such that the right-hand side of a rule b has maximum number of symbols, with b being at least 3 symbols large.

- When the height of parse tree is k then the length of the string s generated is at least b^k . This is as there will be at most b leaves 1 step from s, at most s at 2 steps and at-most s leaves at a depth of s steps.
- Alternatively if the length of string is b^k then all smallest possible parse trees for the string must be at least k deep. Thus any path in a parse tree for the string s will have a path that is at least k terminals long. The path will start with k-1 variables and terminate with a single terminal.

Comment

Step 3 of 8

The number of variables in the grammar G is |V|. A string s is taken whose length is at least |V|+1. Hence any of the smallest possible parse trees will have a depth that is at least $b^{|V|+1}$ steps. Or in other words all paths will be at least |V|+1 long, which will start with |V|+1 variables and end with a terminal.

- There are only |V| variables in the grammar G. The pigeonhole principle is applied with the variables (or non-terminal nodes) being the holes and with the pigeons being the variables encountered on any path in the tree.
- There are |V|+1 pigeons going into |V| holes, so at least one hole must contain more than one pigeon. That is at least one variable occurs more once in the longest path of the smallest possible parse tree τ .

Comment

Let this variable be R. Use the parse tree τ from the start symbol T to divide the string s into five pieces, of the form wxyz. Consider the figure which is given below:

The parse tree v at the first R vertex hit by the start symbol T breaks down the substring vxy into three strings of terminals. Therefore this tree v can be repeated any number of times. This is shown by considering a couple of examples.

Comment

Step 5 of 8

Consider the figure which is given below. It shows a tree for the string uv^2xy^2z is:

Now, the figure which is given below, shows a tree for the string uxz is:

In this way, it can be said that "The first condition $uv^i xy^iz \in A, i \ge 0$ has been shown to be true".

	Step 6 of 8
the seco	nd condition, it is stated that either of v and y cannot be the empty string ε . The parse tree τ is the smallest possible tree.
$v = \varepsilon_{\text{ or i}}$	$y = \mathcal{E}$, then one or more vertices can be removed from the sub-trees ending in \mathcal{E} in the parse tree τ .
omments (1)
	Step 7 of 8
his is a cor	tradiction as it is not possible to remove vertices from the tree $ au$ as it is the smallest possible parse tree.
has been	shown that $v \neq \varepsilon$ and $y \neq \varepsilon$.
Comment	
	Step 8 of 8
astly it has	is to be proven that $ vxy \le k$. Alternatively, the depth of the tree v has to be at least k . Since the root node R repeats and the path has
	oles. Thus depth of the tree v is at least $ V +1$ and its yield will be at most $b^{ V +1}=k$.
Comment	