Sha's ppt

Project Final Presentation

Initial Review of Loan Default dataset

Supervised binary classification problem.

Unique values :		Missing Values	Percentage (%)
ID	104069	0	0.000000
year	1	9	0.000000
loan_limit	2	2409	2.314810
Gender	4	0	0.000000
approv_in_adv	2	645	0.619781
loan_type	3	0	0.000000
loan_purpose	4	99	0.095129
Credit_Worthiness	2	0	0.000000
open_credit	2	0	0.000000
business_or_commercial	2	0	0.000000
loan_amount	205	0	0.000000
rate_of_interest	124	25504	24.506818
Interest_rate_spread	20879	25647	24.644226
Upfront_charges	42684	27756	26.670767
term	24	29	0.027866
Neg_ammortization	2	82	0.078794
interest_only	2	0	0.000000
lump_sum_payment	2	0	0.000000
property_value	362	10579	10.165371
construction_type	2	0	0.000000
occupancy_type	3	0	0.000000
Secured_by	2	0	0.000000
total_units	4	0	0.000000
income	910	6350	6.101721
credit_type	4	0	0.000000
Credit_Score	401	0	0.000000
co-applicant_credit_type	2	0	0.000000
age	7	143	0.137409
submission_of_application	2	143	0.137409
LTV	7342	10579	10.165371
Region	4	0	0.000000
Security_Type	2	0	0.000000
Status	2	0	0.000000
dtir1	57	16841	16.182533

```
Count Percentage
        : 148670
                              Status
Columns : 34
                                     112031
                                              75.355485
Missing values : 181135
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 148670 entries, 0 to 148669
Data columns (total 34 columns):
                              Non-Null Count
                               148670 non-null
    loan limit
                               148670 non-null object
    approv_in_adv
    loan_type
                               148670 non-null object
    loan_purpose
    Credit Worthiness
    business_or_commercial
    rate_of_interest
    Interest_rate_spread
    Upfront_charges
    interest_only
    property_value
    construction_type
    occupancy_type
                              148670 non-null
    Secured by
                              148670 non-null
    total units
                              148670 non-null
    income
                              139520 non-null
    credit type
                              148670 non-null
    Credit Score
                              148670 non-null
    co-applicant_credit_type
                              148670 non-null
    age
                               148470 non-null
    submission_of_application 148470 non-null object
29 LTV
                               133572 non-null float64
30
    Region
                              148670 non-null object
                              148670 non-null object
    Security Type
                              148670 non-null int64
32 Status
33 dtir1
                               124549 non-null float64
dtypes: float64(8), int64(5), object(21)
memory usage: 38.6+ MB
```

Initial Review of Loan Default dataset

Supervised binary classification problem.

Preprocessing Steps Taken

Data Cleaning

- 1. Replace null values for justifiable columns (column: rate of interest, interest rate spread, upfront charges, LTV, dtir1).
- 2. Drop columns for non-useful features (column: ID, year).
- 3. Detect & remove outliers more than value 100 (column: LTV).
- 4. General detection & removal of outliers for whole dataset using Z-score method

Data Transformation

- 1. Categorical missing value imputation using most frequent observations (column: loan limit, approv in adv, loan purpose, neg ammortization, age, submission of application).
- 2. Numerical missing value imputation using k-NN imputer (column: term, property value, income).

Preparation for ML

- 1. Drop columns with high correlation (using V Cramer's) for Categorical Features (column: co-applicant credit type, submission of application, security type).
- 2. Drop columns with high correlation for Numerical Features (column: rate of interest, upfront charges).
- 3. Combine low frequency categorical values for affected categorical columns (column: loan type, loan purpose, occupancy type, total units, age, region).
- 4. Use LabelEncoder for columns assumed to be of Ordinal Data (column: credit worthiness, total units, age).
- 5. Use One-hot Encoder for columns assumed to be of Nominal Data (column: the rest of object datatype columns)
- 6. Apply MinMaxScaler to standardize range from 0 to 1 (column: the rest of columns except those that uses LabelEncoder method)

- Region: Most clients resides at North & South.
- Age: High percentage of clients taking loan between 35-64 years old.
- Credit Type: Most client are assessed based on Credit Information Bureau, CRIF Credit Bureau or Experian standards.
- Loan Type: Most client took up type1 loans.
- Loan Purpose: Less client has p2 purpose while rest of the purpose are generally well distributed.

- Most transactions have not been defaulted on. But those who are male or undisclosed tend to default more.
- Peak income group are usually around the age range of 35 to 54.

- Those with Equifax credit type have better scoring than others. While credit type from credit information bureau, CRIF credit information bureau, Experian generally has similar credit score.
- The bigger the property (more units), the higher the property value.

- The rate of interest gap doesn't differ much between interest types.
- And the interest rate spread is generally the same.

- V Cramer's: Drop high correlated categorical columns (co-applicant_credit_type | submission_of_application | Security_Type)
- Correlation Matrix: Drop high correlated numerical columns (rate_of_interest | Upfront_charges)

Chosen Machine Learning Algorithms

- Naïve Bayes
 - Gaussian
 - Complement (Multinominal)
 - particularly for imbalance dataset
- Random Forest
- Support Vector Machine (SVM)
 - Kernel: Radial Basis Function (RBF)
- Voting Classifier
 - Random Forest & SVM

Initial Base Models Performance

S/N	Model	Accuracy (TP+TN)/ALL	Precision (TP/TP+FP)	Recall (TP/TP+TN)	F1-score
1	Gaussian NB	0.840489	1.0	0.001443	0.002882
2	Complement NB	0.706189	0.281035	0.5386	0.369349
3	Random Forest	0.913099	0.996075	0.457792	0.627286
4	SVM (RBF kernel)	0.906788	0.85166	0.504329	0.633511

Gaussia	Mean				
0.8515	0.8545	0.8527	0.8534	0.8527	0.8530
Compler	Mean				
0.7070	0.7068	0.7101	0.7067	0.7072	0.7076
Random	Forest - C	ross Valid	lation Sco	res:	Mean
0.9989	0.9978	0.9980	0.9984	0.9984	0.9983
SVM RBF	Mean				
(skip)	(skip)	(skip)	(skip)	(skip)	(skip)

Initial Base Models Performance

Strategies to Overcome Misclassification

Steps for error analysis & subsequent model improvements (specifically, to increase TP & TN):

- Error analysis with Confusion Matrix
 - Indicates no. of FPs & FNs for reduction to improve the model
- Cross-Validation
 - Ensured model generalises well & is not overfitted to particular subset of data.
- Alternative Models
 - Experiment with other models that might capture different relationships in the data to provide better performance.
- Class Imbalance Handling
 - Consider oversampling minority class or undersampling majority class. (can improve recall for minority class)
- Hyperparameter Tuning
 - Consider Grid Search/Random Search to find optimal parameters for model (improve performance for complex models)
- Inspect Misclassified Cases (preliminary only)
 - Review those close to decision boundary. Understand why these cases were incorrectly classified for improvement insights.
- Threshold Tuning (not covered)
 - Adjust decision threshold either to reduce FNs or FPs using ROC curve to max True Positive Rate (Recall) while keep False Positive Rate low.
- Feature Importance Analysis (not covered)
 - Consider Feature Engineering (e.g. create new features/combine existing ones/adding intersection terms/polynomial features) or analyse feature weights.

1. Feature Engineering – Feature Selection

Business Reference:

- https://fastercapital.com/topics/f actors-affecting-loandefault.html
- https://fastercapital.com/keywor d/loan-amortization.html

Note: Reduction from original dataset features with a more focused set of features. Other preprocessing steps are the same from initial.

1. Feature Engineering – Feature Selection

TN	FP	
FN	TP	

S/N	Model	Accuracy (TP+TN)/ALL	Precision (TP/TP+FP)	Recall (TP/TP+TN)	F1-score
1	Gaussian NB	NA	NA	NA	NA
2	Complement NB	1.0	1.0	1.0	1.0
3	Random Forest	1.0	1.0	1.0	1.0
4	SVM (RBF kernel)	1.0	1.0	1.0	1.0

Gaussian NB – Cross Validation Scores:					Mean
NA	NA	NA	NA	NA	NA
Compler	Mean				
1.	1.	1.	1.	1.	1.0000
Random	Forest - C	ross Valid	lation Sco	res:	Mean
1.	1.	1.	1.	1.	1.000
SVM RBF	Mean				
(skip)	(skip)	(skip)	(skip)	(skip)	(skip)

1. Feature Engineering – Feature Selection

2. Oversampling – SMOTE

Note: SMOTE is only applied to Train dataset while Test dataset remained untouched.

```
# Create DataFrame for counts & percentages
# Calculating value counts and percentages for 'Status'
status count = MLtrain['Status'].value counts()
status_percent = MLtrain['Status'].value_counts(normalize=True) * 100
# Creating a DataFrame
status_summary = pd.DataFrame({
    'Count': status count,
    'Percentage': status_percent
# Display the DataFrame
print(status summary)
        Count Percentage
Status
0.0
        68117
                 84.07119
        12906
                 15.92881
```

```
# Create DataFrame for counts & percentages
# Calculating value counts and percentages for 'Status'
status_count = MLtrain_bal['Status'].value_counts()
status_percent = MLtrain_bal['Status'].value_counts(normalize=True) * 100
# Creating a DataFrame
status_summary = pd.DataFrame({
    'Count': status_count,
    'Percentage': status_percent
print(status_summary)
        Count Percentage
Status
0.0
        68117
                     50.0
        68117
                     50.0
```

2. Oversampling – SMOTE

S/N	Model	Accuracy (TP+TN)/ALL	Precision (TP/TP+FP)	Recall (TP/TP+TN)	F1-score
1	Gaussian NB	0.840489	1.000000	0.001443	0.002882
2	Complement NB	0.704720	0.278698	0.534271	0.366312
3	Random Forest	0.925460	0.994316	0.536436	0.696895
4	SVM (RBF kernel)	0.839394	0.498524	0.914141	0.645194
5	Voting (Hard)	0.924393	0.994580	0.529582	0.691149

Gaussia	Mean				
0.5986	0.5955	0.5952	0.5956	0.5857	0.5942
Compler	Mean				
0.6515	0.65730	0.6511	0.6567	0.6497	0.6533
Random	Forest - C	ross Valid	lation Sco	res:	Mean
0.9990	0.9983	0.9985	0.9987	0.9158	0.9821
SVM RBF	Mean				
(skip)	(skip)	(skip)	(skip)	(skip)	(skip)

2. Oversampling – SMOTE

3. Hyperparameter Tuning

Complement Naïve Bayes

• Technique: Grid Search

Params: alpha = [0.01, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0]

 Output: Fitting 5 folds for each of 7 candidates, totalling 35 fits Best parameters: {'alpha': 10.0} Best cross-validation score: 0.7095

Random Forest

- Technique: Random Search
- Params:
 n_estimators: randint(25, 50, 100)
 max_depth: [10, 20, 30]
 min_samples_split: randint(2, 5, 10)
 min_samples_leaf: randint(1, 2, 4)

Best cross-validation score: 0.9990

max_features: ['auto', 'sqrt', 'log2']
 Output:

 Fitting 5 folds for each of 7 candidates, totalling 35 fits
 Best parameters: {'max_depth': 30, 'max_features': 'sqrt', 'min_samples_leaf': 5, 'min_samples_split': 14, 'n estimators': 127}

3. Hyperparameter Tuning

```
Combined Metrics Base Models:

Model Accuracy Precision Recall F1-Score

Complement Naive Bayes 0.706189 0.281035 0.53860 0.369349

Complement Naive Bayes (Tune) 0.707745 0.282430 0.53842 0.370508
```

Co	mbined Me	etrics	Base Mod	lels:			
			Model	Accuracy	Precision	Recall	F1-Score
0	R	Random	Forest	0.913099	0.996075	0.457792	0.627286
1	Random F	orest	(Tune)	0.918199	0.989150	0.493326	0.658322

S/N	Model	Accuracy (TP+TN)/ALL	Precision (TP/TP+FP)	Recall (TP/TP+TN)	F1-score
1	Gaussian NB	NA	NA	NA	NA
2	Complement NB	0.707745	0.28243	0.53842	0.370508
3	Random Forest	0.918199	0.98915	0.493326	0.658322
4	SVM (RBF kernel)	(skip)	(skip)	(skip)	(skip)

TN	FP
FN	TP

Gaussian NB – Cross Validation Scores:					Best	
NA	NA	NA	NA	NA	NA	
Compler	Complement NB – Cross Validation Scores:					
(skip)	(skip)	(skip)	(skip)	(skip)	0.7095	
Random	Forest - C	ross Valid	lation Sco	res:	Best	
(skip)	(skip)	(skip)	(skip)	(skip)	0.9990	
SVM RBF	Best					
(skip)	(skip)	(skip)	(skip)	(skip)	(skip)	

3. Hyperparameter Tuning

4. Error Analysis (Test vs Predicted)

Random Forest

Potential to use interest_rate_spread to create new feature based on range (green line) to separate between default & non-default.

Complement Naïve Bayes, SVM (Kernel: RBF)

• Current features are difficult to find segregation. Have to explore create new features with e.g. polynomial degree.

4. Error Analysis (Test vs Predicted)

Complement Naïve Bayes

Number of misclassified cases: 10197

Random Forest

Number of misclassified cases: 3016

SVM (Kernel: RBF)

Number of misclassified cases: 3235

Complement Naïve Bayes

• Actual non-default (0) was highly predicted wrongly. About 80% of misclassification.

Random Forest

• Actual default (1) was highly predicted wrongly. Majority of misclassification.

SVM (Kernel: RBF)

• Actual default (1) was highly predicted wrongly. About 83% of misclassification.