Exercise 17.1

- 1. Construct a $\triangle ABC$, in which:
- (i) mAB = 3.2cm, mBC = 4.2cm,mCA = 5.2cm

Given

The sides mAB = 3.2cm, mBC = 4.2cm, mCA = 5.2cm of AABC

Required

To construct the AABC

Construction

- (i) Draw a line segment mAB = 3.2cm
- (ii) With centre B and radius 4.2cm, draw an arc.
- (iii) With centre A and radius 5.2cm, draw another arc which meet previous arc at point C.
- (iv) Join C to B and A. Then ABC is the required Δ .

(ii) $\overline{MAB} = 4.2 \text{cm}, \overline{MBC} = 3.9 \text{cm},$ $\overline{MCA} = 3.6 \text{cm}$

Given

The sides mAB = 4.2cm, mBC = 3.9cm, mCA = 3.6cm of \triangle ABC Required

To construct the AABC

- (i) Draw a line segment mAB =4.2cm
- (ii) With centre B and radius 3.9cm, draw an arc.
- (iii) With centre A and radius 3.6cm, draw another arc which meet previous arc at point C.
- (iv) Join A to C and B to C.

Then ABC is the required Δ .

(iii) $m\overline{AB} = 4.8cm$, $m\overline{BC} = 3.7cm$, $m\angle B = 60^{\circ}$

Given

The sides mAB = 4.8cm, mBC = 3.7cm and m \angle B = 60° of \triangle ABC Required

To construct the ΔABC

Construction

- (i) Draw a line segment mAB = 4.8cm
- (ii) At the end point B of \overrightarrow{AB} make $m \angle B = 60^{\circ}$.
- (iii) Cut off mBC=3.7cm from the terminal side of $\angle 60^{\circ}$.
- (iv) Join AC

Then ABC is the required Δ .

(iv) $m\overline{AB} = 3cm$, $m\overline{AC} = 3.2cm$, $m\angle A = 45^{\circ}$.

Given

The sides mAB = 3cm,

 $\overrightarrow{mAC} = 3.2cm$ and $\overrightarrow{m} \angle A = 45^{\circ} \text{ of } \triangle ABC$

To construct the ΔABC

Construction

(i) Draw a line segment $m\overline{AB} = 3cm$.

- (ii) At the end point A of \overline{AB} make $m\angle A = 45^{\circ}$.
- (ii) Cut off $\overline{\text{mAC}} = 3.2\text{cm}$ from the terminal side of $\angle 45^{\circ}$.
- (iv) Join BC

Then ABC is the required Δ .

(v) $\overline{MBC} = 4.2 \text{cm}$, $\overline{MCA} = 3.5 \text{cm}$, $\overline{MCA} = 3.5 \text{cm}$,

Given

The sides $m\overline{BC} = 4.2cm$, $m\overline{CA} = 3.5cm$ and $m\angle C = 75^{\circ}$ of $\triangle ABC$

Required

To construct the ΔABC

Construction

- (i) Draw a line segment $m\overline{BC} = 4.2cm$.
- (ii) At the end point C of \overline{BC} make $m\angle C = 75^{\circ}$.
- (iii) Cut off mAC = 3.5cm from the terminal side of $\angle 75^{\circ}$.
- (iv) Join AB.

Then ABC is the required Δ .

(vi) $mAB = 2.5cm, m\angle A = 30^{\circ},$ $m\angle B = 105^{\circ}.$ The side $\overrightarrow{mAB} = 2.5$ cm and angles $\overrightarrow{m} \angle A = 30^{\circ}$, $\overrightarrow{m} \angle B = 105^{\circ}$ of $\triangle ABC$

Required

To construct the ΔABC

- (i) Draw the line segment mAB = 2.5cm.
- (ii) At the end point A of \overrightarrow{AB} make $\angle A = 30^{\circ}$.
- (iii) At the end point B of \overrightarrow{AB} make $m \angle B = 105^{\circ}$.
- (iv) The terminal sides of these two angles meet in C.

Then ABC is required Δ .

(vii) $m\overline{AB} = 3.6cm, m\angle A = 75^{\circ},$ $m\angle B = 45^{\circ}.$

Given

The side $\overline{\text{mAB}} = 3.6$ cm and angles $\overline{\text{m}} \angle A = 75^{\circ}$, $\overline{\text{m}} \angle B = 45^{\circ}$ of $\triangle ABC$

Required

To construct the ΔABC

- (i) Draw the line segment $\overline{MAB} = 3.6$ cm.
- (ii) At the end point A of \overline{AB} make $m\angle A = 75^{\circ}$.
- (iii) At the end point B of AB make $m\angle B = 45^{\circ}$.
- (iv) The terminal sides of these two angles meet at C.

Then ABC is the required Δ .

Q.2. Construct a Δ xyz in which

(i) $m\overline{YZ} = 7.6cm, m\overline{XY} = 6.1cm,$ $m\angle X = 90^{\circ}.$

Given

The sides

$$m\overline{YZ} = 7.6cm, m\overline{XY} = 6.1cm$$
 and $m\angle X = 90^{\circ} \text{ of } \Delta XYZ.$

Required

To construct the ΔXYZ

Construction

- (i) Draw the line segment $m\overline{XY} = 6$. lcm
- (ii) At the end point X of XY make $m\angle X = 90^{\circ}$.
- (iii) With Y as centre and radius 7.6cm, draw an are which cut terminal side of ∠90° at point Z.
- (iv) Join ZY.

Then XYZ is the required Δ .

mZX = 6.4cm, mYZ = 2.4cm,(ii) $\mathbf{m} \angle \mathbf{Y} = 90^{\circ}$

Given

The sides

$$m\overline{ZX} = 6.4$$
cm, $m\overline{YZ} = 2.4$ cm and $m\angle Y = 90^{\circ}$ of ΔXYZ .

Required

To construct the ΔXYZ

Construction

- Draw the line segment (i) mYZ = 2.4cm
- At the end point Y of YZ make (ii) $m \angle Y = 90^{\circ}$.
- With Z as centre and radius 6.4cm (iii) draw an arc which cut terminal side of $\angle 90^{\circ}$ at point X.
- (iv) Join XZ.

Then XYZ is the required Δ .

(iii)
$$m\overline{XY} = 5.5 \text{cm}, m\overline{ZX} = 4.5 \text{cm},$$

 $m\angle Z = 90^{\circ}$

Given

The sides

$$\overline{mXY} = 5.5$$
cm, $\overline{mZX} = 4.5$ cm and $m\angle Z = 90^{\circ}$ of ΔXYZ .

Required

To construct the ΔXYZ

Construction

- Draw a line segment mZX = 4.5cm(i)
- At the end point Z of ZX make $m \angle Z = 90^{\circ}$.
- (iii) With X as centre and radius 5.5cm draw an arc which cut terminal side of $\angle 90^{\circ}$ at point Y
- (iv) Join XY.

Then XYZ is the required Δ .

Q.3. Construct a right angled measure of whose hypotenuse is 5cm and one side is 3.2cm.

Given

In right angled Δ hypotenuse is 5cm and one side is 3.2cm

Required

To construct the ΔXYZ

Construction

- (i) Draw a line segment $m\overline{AB} = 5cm$.
- (ii) With \overrightarrow{AB} as diameter, draw a semi circle.
- (iii) With A as center draw an arc of radius 3.2cm cutting the semi circle in C.
- (iv) Join C with A and B.

Therefore ABC is required triangle with $\angle C=90^{\circ}$

Q.4 Construct a right angled isosceles triangle. Whose hypotenuse is:

i) Hypotenuse 5.2cm long

Given

In right angled isosceles triangle hypotenuse is 5.2 cm.

Required

To construct right angled isosceles triangle

Construction

(i) Take mAB = 5.2cm.

- (ii) Find mid-point M of \overline{AB} .
- (iii) With centre as M and radius

 mAM = mMB draw a semi circle

 which intersects the bisector in C.
- (iv) Join A to C and B to C.

Then $\triangle ABC$ is the required right angled : isosceles triangle with $\angle C = 90^{\circ}$

(ii) Hypotenuse 4.8 cm

Given

In right angled isosceles triangle hypotenuse is 4.8 cm.

Required

To construct right angled isosceles triangle.

Construction

- (i) Take mAB = 4.8cm.
- (ii) Find mid-point M of AB.
- (iii) With centre as M and radius $\overline{mAM} = \overline{mMB}$ draw a semi circle which intersects the bisector in C.
- (iv) Join A to C and B to C.

Then $\triangle ABC$ is the required right angled isosceles triangle with $\angle C = 90^{\circ}$

(iii) Hypotenuse 6.2 cm Given

In right angled isosceles triangle hypotenuse is 6.2 cm.

Required

To construct right angled isosceles triangle.

Construction

- (i) Take mAB = 6.2cm.
- (ii) Find mid-point M of AB.
- (iii) With centre as M and radius

 mAM = mMB draw a semi circle

 which intersects the bisector in C.
- (iv) Join A to C and B to C.

Then \triangle ABC is the required right angled isosceles triangle with \angle C = 90°

(iv) Hypotenuse 5.4 cm

Given

In right angled isosceles triangle hypotenuse is 5.4 cm.

Required

To construct right angled isosceles triangle.

Construction

- (i) Take mAB = 5.4cm.
- (ii) Find mid-point M of AB.
- (iii) With centre as M and radius

 mAM = mMB draw a semi circle
 which intersects the bisector in C.
- (iv) Join A to C and B to C.

Then $\triangle ABC$ is the required right angled isosceles triangle with $\angle C = 90^{\circ}$

- Q.5.(Ambiguous case) construct a ΔABC in which
- (i) mAC = 4.2cm, mAB = 5.2cm, $m \angle B = 45^{\circ}.$

Given

In $\triangle ABC \text{ mAC} = 4.2\text{cm}, \text{mAB} = 5.2\text{cm},$ $\text{m} \angle B = 45^{\circ}.$

Required

Construction

- (i) Draw a line segment mAB = 5.2cm.
- (ii) At the end point B of \overline{BA} make $m\angle B = 45^{\circ}$.
- (iii) With centre A and radius 4.2cm draw an arc which cuts \overline{BD} in two distinct points C and C'.
- (iv)Join AC and AC'.

- ... ΔABC and Δ ABC' are required triangles.
- (ii) $\overline{\text{mBC}} = 2.5 \text{cm}$, $\overline{\text{mAB}} = 5.0 \text{cm}$, $\overline{\text{m}} \angle A = 30^{\circ}$.

Given

In $\triangle ABC$ m $\overline{BC} = 2.5$ cm,

 $\overline{MAB} = 5.0$ cm, $m \angle A = 30^{\circ}$.

Required

To construct ΔABC

- (i) Take $\overline{\text{mAB}} = 5\text{cm}$.
- (ii) At the end point A of \overrightarrow{AB} make $m\angle A = 30^{\circ}$.
- (iii)With centre B and radius 2.5cm draw an arc which touches AX at point C.
 (iv) Join BC.
- ∴ ∆ABC is required triangle.