ECES 450 Tutorial 8

SALEH REFAHI AND DREW MANGIONE

What is metagenomic assembly?

- Metagenomics is the extraction, sequencing, and analysis of the combined genomic DNA from an entire microbiome sample
- Samples will have DNA from many different organisms
- Need to reconstruct the genomes of the various organisms

How metagenomic assembly works

- ▶ Looks for reads that have overlapping segments
- Reads are combined to create contigs
- Multiple combinations might work together, needs to find best match
- Contigs are strung together into scaffolds

Types of assembly methods

- Greedy extension
 - Simplest method, computationally efficient
 - Randomly selects read and finds other reads that overlap
 - Can result in suboptimal assemblies
- Overlap Layout Consensus
 - Finds every pair of reads that of overlap
 - Lays all pairs out in graph structure, and generates a consensus merging pairs
 - Good for long-read sequences, but computationally demanding
- ▶ De Bruijn graphs
 - Creates every possible k-mer for each read
 - ▶ Finds reads with the identical k-mers and links them together
 - Very computationally efficient for large sets of short reads

Greedy extension Start with any read → Extend → Final contigs

All reads

Repeat with different read

Overlap Layout Consensus

De Brujin Graphs

Individual vs co-assembly

- Individual assembly sequences the reads from each sample independently
 - ► Each sample might have different contigs from the same genome
 - De-replication can be performed to combine the results of all the individual assemblies
 - Allows for assemblies to be specifically tailored to the conditions of each sample
- Co-assembly sequences the reads from all samples at once
 - Reads are combined into a single pool for making contigs
 - Results in more complete sequences due to larger dataset
 - ► Helps sequence lower abundant organisms

Sample 1 Reads

E Galaxy PROJECT

What is Galaxy?

- Developed by researchers at Penn State, John Hopkins University, and Oregon Health & Science University
- Open-source program that aims to make computational biology available to those without computer expertise
- Can run as a local program or hosted as a webserver
- Serves as a platform for scheduling tasks using a wide array of tools
- Various organizations run free, publicly-available Galaxy servers
 - Each Galaxy can have different sets of tools depending on the owner's field of research

Using Galaxy for Metagenomic assembly

- MEGAhit
 - Single node assembler used for assembling large and complex genomes using de Bruijin graph method
 - Very computationally efficient
- MetaSPAdes (Meta St. Petersburg Genome Assembler)
 - Assembler specifically built for metagenomic assembly, also using de Bruijin graph method
 - Can result in better contigs, but is computationally intensive
- QUAST (Quality Assessment Tool for Genome Assemblies)
 - Gives an overview on the quality of a genome assembly, using various metrics
 - Can give insight into which assembler and settings produce better results for a given dataset

Galaxy Exploration: Interactive Session!

https://usegalaxy.org/u/saleh_refahi/h/genomeclass

Quast: Statistics without Reference

contigs longer than 500bp

L50: number of contigs equal to or longer than N50

N50: is measure of contiguity; length for which the collection of all contigs of that length or longer covers at least half an assembly.

For Quiz! Let's consider 9 contigs with the lengths 2, 3, 4, 5, 6, 7, 8, 9, and 12:

- The sum of the length is 56
- Half of the sum is 28
- 12 + 9 + 8 = 28 (half the length of the sequence)
- N50 = 8 : L50 = 3

Quast: Statistics without Reference

Cumulative length

GC Content

Quast: Statistics with Reference

▶ **Genome fraction (%)**: percentage of aligned bases in the reference genome (Silva)

Quast: Statistics with Reference

- ▶ **Duplication ratio**: total number of aligned bases / genome fraction * reference length
- ▶ If an assembly contains many contigs that cover the same regions of the reference, the duplication ratio may be much larger than 1.

Misassemblies

Misassemblies: joining sequences that should not be adjacent.

Relocation occur based on signal from two mappings of the same contig against the same chromosome which are separated by an unmapped region of at least 1kbp (or overlapped by 1kbp)

Translocation occur when a contig has mapped on more than one reference chromosomes

Inversion occurs when a contig has two consecutive mappings on the same chromosome but in different strands

Quast: Statistics with Reference

Quast identifies missassemblies by mapping the contigs to the reference genomes

Sources

Polunina, Polina, and Bérénice Batut. "Assembly / Hands-on: Assembly of Metagenomic Sequencing Data." Galaxy Training Network, Galaxy Training Network, 21 Feb. 2024, training.galaxyproject.org/training-material/topics/assembly/tutorials/metagenomics-assembly/tutorial.html.

Afgan, Enis et al. "The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update." Nucleic acids research vol. 44,W1 (2016): W3-W10. doi:10.1093/nar/gkw343

Assembling a Metagenome and Recovering "Genomes" with Anvi'o, astrobiomike.github.io/metagenomics/metagen_anvio#:~:text=%E2%80%9CCo%2Dassembly%E2%80%9D%20refers%20to,reads%20from%20that%20in dividual%20sample. Accessed 20 Feb. 2024.

Ghurye, Jay S et al. "Metagenomic Assembly: Overview, Challenges and Applications." The Yale journal of biology and medicine vol. 89,3 353-362. 30 Sep. 2016