Введение в молекулярную биологию

Лекция 5. Медицинская генетика и генетические заболевания

Важность генетических заболеваний

Классификация наследственных заболеваний

Моногенные заболевания

Моногенные заболевания

Примеры моногенных заболеваний

Наследственное заболевание	Средняя продолжительность жизни	Максимальная частота встречаемости	
Муковисцидоз	18	1:10 000	
Фенилкетонурия	70	1:7000	
Несиндромальная форма снижения слуха	70	1:2000	
Спинальная мышечная атрофия	10-12	1:10 000	
Галактоземия	70	1:16 242	
Адреногенитальный синдром	70	1:9500	
Врождённый гипотиреоз	70	1:4000	
Глутаровая ацидурия тип 1	6-70	1:50 000	
Гирозинемия тип 1	1–60	1:120 000	
Пейциноз	зависит от формы	1:120 000	
Метилмалоновая/пропионовая ацидурия	3-70	1:75 000	
Недостаточность биотинидазы	от нескольких недель до взрослого возраста	1:40 000	
Недостаточность среднецепочечной ацил-КоА- цегидрогеназы жирных кислот	до 70	1:18 500	

Сцепленное с полом наследование

Сцепленное с полом наследование

Тип наследования	Локализация генов	Примеры	
X-сцепленный рецессивный	Негомологичный участок X- хромосомы	Гемофилия, разные формы цветовой слепоты, отсутствие потовых желез, некоторые формы мышечной дистрофии и пр.	
X-сцепленный доминантный	Негомологичный участок X- хромосомы	Коричневый цвет зубной эмали, витамин D устойчивый рахит и пр.	
Y -сцепленный	Негомологичный участок Y - хромосомы	Перепончатость пальцев ног, гипертрихоз края ушной раковины	

Неполная пенетрантность и вариабельная экспрессивность

FMR1 expansions

Классификация наследственных заболеваний

Олигогенные заболевания

Полигенные заболевания

Диабет 2 типа — полигенное заболевание

Митохондриальные заболевания

Митохондриальные заболевания

Динамические мутации

Динамические мутации

	Repeated sequence	Number of copies of repeat	
Disease		Normal range	Disease range
Spinal and bulbar muscular atrophy	CAG	11-33	40-62
Fragile-X syndrome	CGG	6-54	50-1500
Jacobsen syndrome	CGG	11	100-1000
Spinocerebellar ataxia (several types)	CAG	4-44	21-130
Autosomal dominant cerebellar ataxia	CAG	7-19	37-~220
Myotonic dystrophy	CTG	5-37	44-3000
Huntington disease	CAG	9-37	37-121
Friedreich ataxia	GAA	6-29	200-900
Dentatorubral-pallidoluysian atrophy	CAG	7-25	49-75
Myoclonus epilepsy of the Unverricht-Lundborg type*	CCCCGCCCCGCG	2–3	12-13

Мутации de novo

Мозаицизм

(A) Normal (B) De novo mutation (C) Somatic mosaicism (D) Gonadal mosaicism

Мозаицизм

Хромосомные аномалии

Трисомии

Структурные аномалии хромосом

Синдром Дауна

Эпигенетические изменения

Классификация наследственных заболеваний

Ген-генные взаимодействия (эпистаз)

Доминантный эпистаз

А – оранжевая окраска I – эг а – зелёная окраска i – не

I - эпистатичный ген

і – не влияет на окраску

Диабет 2 типа: генетика и факторы риска

Методы изучения многофакторных заболеваний

Геномные исследования (GWAS): выявление генетических вариаций, связанных с заболеваниями.

Эпигенетический анализ: изучение метилирования ДНК и модификаций гистонов.

Транскриптомика и протеомика: анализ экспрессии генов и белковых профилей для выявления паттернов, связанных с болезнью.

Метаболомика: исследование метаболических изменений, отражающих патологические процессы.

Близнецовые исследования

Близнецовый метод изучает соотносительную роль генотипа и среды в развитии признака

$$H = \frac{K_{MB(B\%\%)} - K_{ZB(B\%\%)}}{100\% - K_{ZB(B\%\%)}}$$

Н – показатель наследуемости признака (от 0 до 1)

К_{мь} – показатель конкордантности в %% у монозиготных близнецов

К_{дь} – показатель конкордантности в %% у дизиготных близнецов

Близнецовые исследования

	MZ concordance	DZ concordance	Heritability	
	rate (%)	rate (%)	(%)	Reference
Alzheimer's Disease	83	46		(Gatz et al. 2006)
Type 1 diabetes	53	11		(Kyvik et al. 1995)
Type 2 diabetes	50	37		(Poulsen et al. 1999)
Schizophrenia	41–65	0–28		(Cardno and Gottesman 2000)
Obesity	74	32		(Maes et al. 1997)
Autistic disorders	92	10		(Bailey et al. 1995)
Celiac disorder	83	17		(Nistico et al. 2006)

Близнецовые исследования

	MZ concordance	DZ concordance	Heritability	
	rate (%)	rate (%)	(%)	Reference
Alzheimer's Disease	83	46	69%	(Gatz et al. 2006)
Type 1 diabetes	53	11	47%	(Kyvik et al. 1995)
Type 2 diabetes	50	37	21%	(Poulsen et al. 1999)
Schizophrenia	41–65	0–28		(Cardno and Gottesman 2000)
Obesity	74	32	62%	(Maes et al. 1997)
Autistic disorders	92	10	91%	(Bailey et al. 1995)
Celiac disorder	83	17	80%	(Nistico et al. 2006)

Семейные исследования

Введение в критерии ACMG

		BENIGN	CRITERIA		PATHOGENI	C CRITERIA	
Stre	ength of evidence	Strong	Supporting	Supporting	Meneran	Strong	Very Strong
Odd	s of Pathogenicity*	-18.7	-2.08	2.08	4.33	18.7	350,0
9	Population Data	BA1+ BS1 BS2			PM2	PS4	
C 4	Allelic Evidence &	Allelic Evidence &	BP2 BP5	PP1-			
	Cosegregation Data	BS4			PMI	PS2	
onding	Computation & Predictive Data		BP1 BP3 BP4 BP7	PP2 PP3	HMA PMS	PS1	PVS1
Correspo	Functional Data	BS3				PS3	
0	Other		BP6	PP4 PP5			

thogenic	
į	thogenic

	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene/gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path, missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	→	
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Observed in trans with a dominant variant BP2 Observed in cis with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

Классификация генетических вариантов

Class 1	Pathogenic
Class 2	Likely pathogenic
Class 3	Variant of uncertain significance (VUS)
Class 4	Likely benign
Class 5	Benign

Алгоритм оценки по ACMG

Патогенные варианты

	Pathogenic		
Supporting	Moderate	Strong	Very strong
	Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Missense in gene with low rate of benign missense variants and path, missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Cosegregation with disease in multiple affected family members PP1	Increased segregation data	→	
	De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
	For recessive disorders, detected in trans with a pathogenic variant PM3		
Reputable source = pathogenic PP5			
Patient's phenotype or FH highly specific for gene PP4			

Вероятно патогенные варианты

Pathogenic			
Moderate	Strong	Very strong	
Absent in population databases PM2	Prevalence in affecteds statistically increased over		

controls PS4

Same amino acid

pathogenic variant

Well-established

functional studies

effect PS3

show a deleterious

De novo (paternity and

maternity confirmed)

PS2

change as an

established

Predicted null

variant in a gene

where LOF is a

mechanism of

known

disease PVS1

Novel missense change

at an amino acid residue

pathogenic missense

change has been seen

Protein length changing

Mutational hot spot

functional domain

De novo (without

confirmed) PM6

For recessive disorders, detected in trans with a pathogenic variant

PM3

paternity & maternity

Increased segregation data

or well-studied

without benign

variation PM1

where a different

before PM5

variant PM4

Supporting

Multiple lines of

evidence support a

deleterious effect

on the gene /gene

Missense in gene with

missense variants and

low rate of benign

path, missenses

Cosegregation with disease in multiple

common PP2

affected family members PP1

Reputable source = pathogenic PP5

gene PP4

Patient's phenotype or FH highly specific for

computational

product PP3

Варианты неопределенного значения (VUS)

Вопрос: Что делать с вариантами, чья клиническая значимость не ясна?

Ответ: Никто не знает.

Доброкачественные и вероятно доброкачественные варианты

	€ Ber	nign
	Strong	Supporting
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene/gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3
Functional data	Well-established functional studies show no deleterious effect BS3	
Segregation data	Nonsegregation with disease BS4	
De novo data		
Allelic data		Observed in trans with a dominant variant BP2 Observed in cis with a pathogenic variant BP2
Other database		Reputable source w/out shared data = benign BP6
Other data		Found in case with an alternate cause BP5

Что такое CNV

Влияние CNV на заболевания

Влияние CNV на заболевания

Критерии ACMG оценки клинической значимости CNV

Genome-Wide Association Study (GWAS)

Simple additivity: Common variant increases risk by small amount in all carriers (population OR = individual RR)

Epistatic interactions: effect of common variant varies with genetic background

Modifier: Common variant increases risk dramatically, but only in presence of rare mutation (*)

Synthetic association: Common variant has no effect but tags haplotype carrying rare mutations (*1, *2)

Ограничения и критика GWAS

Методики расчета полигенных шкал

Концепция полигенных шкал риска

Концепция полигенных шкал риска

Персонализированная медицина

Этические аспекты генетики

- Конфиденциальность: необходимость защиты генетических данных от несанкционированного доступа.
- Генетическая дискриминация: недопустимость использования генетической информации для ограничения прав и возможностей человека.
- Информированное согласие: важность добровольного и осознанного участия в генетических исследованиях.
- Генное редактирование: моральные дилеммы, связанные с изменением генома человека.

Вопросы и обсуждение