Машинное обучение в экономике Метод ближайших соседей

Потанин Богдан Станиславович

доцент, научный сотрудник, кандидат экономических наук

2023-2024

Метод ближайших соседей _{Интуиция}

- Чтобы спрогнозировать, совершит ли покупку тот или иной индивид, мы можем изучить действия, совершавшиеся похожими на него покупателями.
- Вопрос как определить схожих покупателей?
- Ответ на основании меры сходства признаков этих покупателей: возраст, образование и т.д.
- Идея если покупатели со схожими признаками совершали покупку, то мы предполагаем, что и данный покупатель также совершит покупапку.

Метрика расстояния

- Для измерения расстояния между двумя m-мерными векторами x и y используется метрика, представляющая собой функцию d(x,y), удеовлетворяющую следующим свойствам:
 - **Неотрицательность**: $d(x, y) \ge 0$.
 - Тождественность: d(x,y) = 0 тогда и только тогда, когда x = y.
 - Симметричность: d(x, y) = d(y, x).
 - ullet Неравенство треугольника: $d(x,y) \leq d(x,z) + d(y,z)$ для любого z.
- Наиболее популярные метрики расстояния:
 - ullet Минковский: $d(x,y) = \left(\sum\limits_{i=1}^m (x_i-y_i)^{\lambda}
 ight)^{rac{1}{\lambda}}$, где $\lambda \in \mathcal{N}$
 - Чем больше λ , тем больше штраф за разницу между x_i и y_i .
 - ullet Евклидова: $(\lambda=2)$: $d(x,y)=\sqrt{\sum\limits_{i=1}^{m}(x_i-y_i)^2}$

Пример:
$$x = (4, 2, 8)$$
, $y = (0, 5, 8)$, $d(x, y) = \sqrt{(4 - 0)^2 + (2 - 5)^2 + (8 - 8)^2} = 5$

- Манхэттен: $(\lambda = 1)$: $d(x, y) = \sum_{i=1}^{m} |x_i y_i|$
 - Пример: x = (4, 2, 8), y = (0, 5, 8), d(x, y) = |4 0| + |2 5| + |8 8| = 7

Случай с единственным соседом

- Идея предсказываем наблюдению значение, совпадающее со значением другого, наиболее близкого к нему наблюдения, именуемого ближайшим соседом.
- ullet Через X_i обозначим i-е наблюдение и запишем классифицирующее правило:

$$\hat{y}(x) = Y_i$$
, где $i = \underset{j \in \{1, ..., n\}}{\operatorname{argmin}} d(x, X_j)$

- Прогноз $\hat{y}(x)$ это Y_i ближайшего соседа x с точки зрения функции растояния d().
- Рассмотрим выборку $X_1=(0,1)$, $X_2=(1,2)$, $X_3=(0,6)$, $X_4=(2,2)$, Y=(1,0,0,1) и найдем ближайшего соседа для x=(1,3) с помощью дистанции Евклида:

$$d(x, X_1) = \sqrt{(1-0)^2 + (3-1)^2} = \sqrt{5} \qquad d(x, X_2) = \sqrt{(1-1)^2 + (3-2)^2} = 1$$

$$d(x, X_3) = \sqrt{(1-0)^2 + (3-6)^2} = \sqrt{10} \qquad d(x, X_4) = \sqrt{(1-2)^2 + (3-2)^2} = \sqrt{2}$$

ullet Ближайшим соседом x является X_2 , а значит $\hat{y}(x)=Y_2=0$.

Несколько соседей

- Прогноз, основанный всего на одном наблюдении, будет обладать очень большой дисперсией, что мотивирует учет большего числа соседей.
- По аналогии с одномерным случаем находим *k* ближайших соседей и выбираем наиболее часто встречающееся среди них значение целевой переменной.
- Число соседей k выбирается нечетным, для того, чтобы избежать ситуации, когда 0 и 1 поровну среди соседей.
- Рассмотрим выборку $X_1 = (0,1)$, $X_2 = (1,2)$, $X_3 = (0,6)$, $X_4 = (2,2)$, Y = (1,0,0,1) и найдем k = 3 ближайших соседа для x = (1,3) с помощью дистанции Манхэттен:

$$d(x, X_1) = |1 - 0| + |3 - 1| = 3$$
 $d(x, X_2) = |1 - 1| + |3 - 2| = 1$
 $d(x, X_3) = |1 - 0| + |3 - 6| = 4$ $d(x, X_4) = |1 - 2| + |3 - 2| = 2$

- ullet Ближайшими соседями x являются X_1, X_2 и X_4 .
- ullet Поскольку $Y_1=1$, $Y_2=0$ и $Y_4=1$, то $\hat{y}(x)=1$.

Взвешенные ближайшие соседи

- **Проблема** при малом числе соседей k метод ближайших соседей страдает от большой дисперсии, а при большом количестве соседей склонен к переобучению.
- **Решение** взять достаточно много ближайших соседей k, но при построении прогноза учитывать их значения целевой переменной с разными весами, пропорциональными расстояниям до этих соседей.
- Обозначим через $q_1(x),..,q_k(x)$ признаки ближайших соседей наблюдения x, а через $q_1(y),..,q_k(y)$ значения их целевых переменных.
- Интуиция чем больше расстояние $d(x, q_i(x))$, тем меньший вес должен получить i-й сосед. Этой идее удовлетворяет, например, функция $1/d(x, q_i(x))^2$.
- Классификатор присваивает значение 1, если суммарный вес соседей с $q_i(y) = 1$ больше, чем суммарный вес соседей с $q_i(y) = 0$:

$$\hat{y}(x) = I\left(\sum_{i:q_i(y)=1} \frac{1}{d(q_i(x),x)^2} \ge \sum_{i:q_i(y)=0} \frac{1}{d(q_i(x),x)^2}\right)$$

Нормализация признаков

- Метод ближайших соседей чувствителен к шкале измерения признаков.
- Например, пусть признаки X_{*1} и X_{*2} отражают возраст индивида и его рост.
- ullet Пусть при росте, измеряном в метрах, x=(25,1.8), $X_1=(30,1.9)$ и $X_2=(26,1.6)$.
- Тогда в соответстии с расстоянием Евклида $d(x,X_1)\approx 5$ и $d(x,X_2)\approx 1$, а значит ближайшим соседом x является X_2 .
- Если рост измерен в сантиметрах, то x=(25,180), $X_1=(50,190)$ и $X_2=(26,160)$, откуда $d(x,X_1)\approx 11.2$ и $d(x,X_2)\approx 20$, а значит ближайшим соседом x является X_1 .
- Проблема даже несущественные (существенные) признаки с мелкими (крупными) единицами измерения могут вносить (не)существенный вклад в расчет расстояний.
- Решение осуществить нормализацию признаков, то есть привести их к сопоставимой шкале, например, вычтя выборочное среднее и поделив на выборочное стандартное отклонение.
- ullet В качестве альтернативы можно провести нормализацию к шкале [0,1] вычтя у каждого признака максимальное значение и поделив на разницу между максимальным и минимальным значениями.

Точность и полнота

- Иногда исследователю недоступны цены прогнозов P_{TP} , P_{TN} , P_{FT} и P_{FN} , но при этом интуиция подсказывает, что качество прогнозов разного типа не является равноценным.
- В таком случае используются альтернативные метрики качества модели, например, точность (precision) и полнота (recall):

$$\begin{aligned} &\text{precision} = \frac{TP}{TP + FP} & \text{доля верно предсказанных } 1 \text{ среди всех } \textbf{предсказанных } 1 \\ &\text{recall} = \frac{TP}{TP + FN} & \text{доля верно предсказанных } 1 \text{ среди всех } \textbf{истинных } 1 \end{aligned}$$

- Например, в скоринговых моделях доля верно предсказанных дефолтов среди тех, кому мы предсказали дефолт, отражает точность, а среди тех, у кого на самом деле произошел дефолт – полноту.
- Чем выше точность и полнота, тем лучше модель справляется с прогнозами 1. Эта идея используется в F1-метрике:

$$\textit{F1} = \frac{\mathsf{precision} \times \mathsf{recall}}{\mathsf{precision} + \mathsf{recall}}$$

 \bullet F1-метрика предполагает, что точность прогноза 1 более важна, чем точность прогноза 0.

Несбалансированная выборка

- Часто доли 1 и 0 в выборке могут существенно различаться. В таком случае говорят, что данные являются **несбалансированными**.
- Например, клиентов с дефолтом обычно гораздо меньше, чем без дефолта.
- Обозначим через recall(1) и recall(0) полноту, посчитанную для 1 и 0 соответственно. В последнем случае формула будет иметь вид recall(0) = $\frac{TN}{TN+FP}$.
- Средняя точность по классам рассчитывается как:

$$ACA = \frac{\mathsf{recall}(1) + \mathsf{recall}(0)}{2}$$

• Достигнуть большой средней точности по классам можно и в случае, когда лишь однин из recall(1) или recall(0), а другой — гораздо меньше. Для того, чтобы повысить штраф за крайне малое значение одного из этих показателей среднюю точность по классам часть считают с помощью гармонического среднего:

$$ACA = \frac{2 \left(\text{recall}(1) \times \text{recall}(0) \right)}{\text{recall}(1) + \text{recall}(0)}$$

Оценивание качества прогноза ROC-кривая

• При подборе оптимального порога в классификаторе $I(\hat{p} \geq c)$ мы можем стремиться найди баланс между следующими долям:

$$TPR=rac{TP}{TP+FN}$$
 доля предсказанных 1 среди всех истинных 1 $FPR=rac{FP}{TN+FP}$ доля предсказанных 1 среди всех истинных 0

- \bullet Важно по мере уменьшения порога c pастут FPR (false positive rate плохо) и TPR (true positive rate хорошо).
- Перебирая различные значения порога (отсортированные оценки вероятностей) мы получаем все возможные комбинации *TRP* и *FPR* в наших данных.
- ROC-кривая отражает график зависимости между TPR (ось x) и 1-FPR (ось y).
- ROC-кривую часто строят сразу для нескольких моделей. В таком случае, если график одной модели в какой-то точке находится над графиком другой модели, то значит, при прочем равном FPR он дает более высокое значение TRP, а значит эта модель предпочтительна при соответствующем пороге.
- Применение можно понять, при каких порогах различные модели имеют преимущество.

Графическая иллюстрация ROC-кривой

Графическая иллюстрация связи порога, TRP и FPR

Оценивание гиперпараметров

Оценивание гиперпараметров с помощью кросс-валидации

- ullet Чем выше ROC-кривая в той или иной точке, тем выше TRP при прочем равном 1-FPR.
- Следовательно, чем обычно выше лежит ROC-кривая, тем лучше.
- Интеграл ROC-кривой тем больше, чем выше лежит соответствующая кривая.
- Этот интеграл именуется **AUC** (area under curve) и отражает среднее качество прогноза модели при различных порогах.
- Преимущество аггрегирует предиктивные способности модели при различных порогах.
- **Недостаток** отражает среднюю температуру по больнице. В частности, *AUC* может быть велик за счет хороших предиктивных способностей моделей при тех порогах, которые нам могут быть неинтересны исходя из содержательное экономической задачи.

Выигрыш (gain)

- Рассмотрим модель, предсказывающую, купит ли индивид товар, посмотрев контекстную рекламу.
- Логично сперва показать рекламу индивидам, которые, в соответствии с оценками нашей модели, имеют наибольшую вероятность совершения покупки.
- Вопрос отобрав 10% клиентов с самыми большими оценками вероятностей покупки, какой процент потенциальных покупателей мы охватим?
- Например, из 1000 индивидов в тестовой выборке 200 готовы купить наш товар. Из них 50 вошли в 10% с набиольшими предсказанными вероятностями покупки. В таком случае число угаданных покупателей, то есть выигрыш от первой децили, обозанчаемый gain(1), составит (50/200)*100 = 25%.
- В результате показав рекламу 100 наиболее вероятным покупателям из 1000 мы бы угадали 50 покупателей из 200.
- Если бы мы показывали рекламу не руководствуясь моделью, случайным образом, то отобрали бы, вероятно, лишь 200/10 = 20 потенциальных покупателей.
- ullet По аналогии можно рассмотреть выигрыш от остальных децилей gain(k), где $k \in \{1,..,10\}.$
- Вывод сперва показываем рекламу наиболее вероятным покупателям и останавливаемся на децили k, если gain(k) слишком мал, то есть издержки на работу с потенциальными клиентами не покроются успешным нахождением новых клиентов.

Пример использования выигрыша

- Допустим, что общее число посмотревших рекламу в тестовой выборке равняется 1000 и 200 из них совершили покупку.
- Предположим, что издержки на показ рекламы клиенту составляют 1 рублей, а выигрыш от продажи равняется 10 рублям.

Дециль	Купили	Выигрыш	Кумулятивный выигрыш	Выручка	Затраты	Прибыль
1	50	0.25	0.25	500	100	400
2	40	0.2	0.45	400	100	300
3	35	0.175	0.65	350	100	250
4	25	0.125	0.75	250	100	150
5	20	0.1	0.85	200	100	100
6	8	0.04	0.89	80	100	-20
7	10	0.05	0.94	100	100	0
8	2	0.01	0.95	20	100	-80
9	5	0.025	0.975	50	100	-50
10	5	0.025	1	50	100	-50

• Вывод – выгодно опрашивать лишь группы клиентов, входяших в первые 5 децилей.

Оценивание гиперпараметров

Оценивание гиперпараметров с помощью кросс-валидации

- Некоторые параметры не оцениваются непосредственно при обучении модели.
- К таким параметром, именуемым **гиперпараметрами**, можно отнести, например, глубину решающего дерева и количество ближайших соседей.
- Подбор оптимальных значений гиперпараметров именуется **тюнингом** и, как правило, осуществляется с помощью кросс-валидации по следующему алгоритму:
 - Выбирается метрика качества модели, например, точность АСС прогноза или взвешенные доли прогнозов различного вида.
 - Модель оценивается при различных значениях гиперпараметров, например, с различным числом ближайших соседей и различными метриками расстояния.
 - Предпочтение отдается гиперпараметрам, максимизирующим выбранную метрику.
- В самом просто случае используется жадный алгоритм, при котором перебираются все задаваемые пользователем комбинации гиперпараметров.
- При достаточно большом числе гиперпараметров жадный алгоритм слишком ресурсозатратен, поэтому в качестве альтернативы применяются различные подходы рандомизированного поиска, когда гиперпараметры перебираются частично случайным образом, например, симулируются из некоторого совместного распределения.

Оценивание гиперпараметров

Пример с жадным алгоритмом

- Представим, что в качестве гиперпараметров выступает, во-первых, число ближайших соседей $k \in \{1,2,3\}$, во вторых, метрика расстояния: Евклидова $(\lambda=2)$ или Манхэттан $(\lambda=1)$.
- Выборка была разбита на обучающую и тестовую, после чего была проведена 5-блоичная кросс-валидации на основании метрик ACC и F1.

	λ	ACC	<i>F</i> 1
K	1	,	
1	1	0.81	0.85
2	1	0.76	0.91
3	1	0.75	0.86
1	2	0.68	0.88
2	2	0.83	0.91
3	2	0.75	0.92

• Результаты кросс-валидации свидетельствуют в пользу того, что в соответствии с ACC оптимальными являются значения k=2 и $\lambda=2$, а согласно F1 величины k=3 и $\lambda=2$.