Data Collection

In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

Out[2]:

_		Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_lati ⁻
	0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.73{
	1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728
	2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740
	3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790
	4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744
	5	44470845	2011-02-12 02:27:09.0000006	4.9	2011-02-12 02:27:09 UTC	-73.969019	40.75
	6	48725865	2014-10-12	24 5	2014-10-12	- 73 961 <u>44</u> 7	40 69:

In [3]: df.head(10)

Out[3]:

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude
0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354
1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225
2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770
3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844
4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	- 73.925023	40.744085
5	44470845	2011-02-12 02:27:09.0000006	4.9	2011-02-12 02:27:09 UTC	-73.969019	40.755910
6	48725865	2014-10-12 07:04:00.0000002	24.5	2014-10-12 07:04:00 UTC	-73.961447	40.693965
7	44195482	2012-12-11 13:52:00.00000029	2.5	2012-12-11 13:52:00 UTC	0.000000	0.000000
8	15822268	2012 - 02-17 09:32:00.00000043	9.7	2012-02-17 09:32:00 UTC	-73.975187	40.745767
9	50611056	2012-03-29 19:06:00.000000273	12.5	2012-03-29 19:06:00 UTC	-74.001065	40.741787
4 II						•

In [4]: df.describe()

Out[4]:

dropoff_la	dropoff_longitude	pickup_latitude	pickup_longitude	fare_amount	Unnamed: 0	
50.0	50.000000	50.000000	50.000000	50.000000	5.000000e+01	count
39.1	-71.015808	39.122071	-71.018026	11.176000	3.031476e+07	mean
8.0	14.643240	8.066889	14.643705	9.555158	1.592279e+07	std
0.0	-74.009767	0.000000	-74.010863	2.500000	1.728270e+06	min
40.7	-73.988552	40.739826	-73.993274	5.475000	1.688968e+07	25%
40.7	-73.978048	40.751817	-73.979772	8.700000	3.191910e+07	50%
40.7	-73.963609	40.764933	-73.968777	12.000000	4.523193e+07	75%
40.8	0.000000	40.834367	0.000000	56.800000	5.508597e+07	max
•						4

```
In [5]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 50 entries, 0 to 49
         Data columns (total 9 columns):
              Column
                                  Non-Null Count Dtype
                                                    ----
          0
              Unnamed: 0
                                   50 non-null
                                                    int64
          1
                                  50 non-null
                                                    object
              key
          2
              fare_amount
                                  50 non-null
                                                    float64
          3
              pickup_datetime
                                  50 non-null
                                                    object
          4
              pickup_longitude 50 non-null
                                                    float64
          5
              pickup_latitude
                                  50 non-null
                                                    float64
          6
              dropoff_longitude 50 non-null
                                                    float64
          7
              dropoff latitude
                                  50 non-null
                                                    float64
          8
              passenger_count
                                  50 non-null
                                                    int64
         dtypes: float64(5), int64(2), object(2)
         memory usage: 3.6+ KB
In [6]: | df.columns
Out[6]: Index(['Unnamed: 0', 'key', 'fare_amount', 'pickup_datetime',
                 'pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'passenger_count'],
               dtype='object')
```

In [7]: sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x1ac7888e130>


```
In [8]: | sns.distplot(df['passenger_count'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='passenger_count', ylabel='Density'>


```
In [11]: sns.heatmap(d.corr())
```

Out[11]: <AxesSubplot:>

To TRAIN THE MODEL=MODEL BUILDING

WE ARE GOING TO TRAIN LINEAR REGRESSION MODEL; WE NEED TO SPLIT OUT DATA INTO TWO VARIABLES X AND Y IS INDEPENDENT VARIABLE (INPUT) AND Y IS DEPENDENT ON X (OUTPUT) WE COULD IGNORE ADDRESS COLUMN AS IT IS NOT REQUIRED FOR OUR MODEL

```
In [15]: x=df[['Unnamed: 0', 'fare_amount','pickup_longitude', 'pickup_latitude', 'drope
                 'dropoff latitude']]
          y=df['passenger_count']
In [16]: #to split my dataset into traning and test data
          from sklearn.model selection import train test split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [17]: from sklearn.linear model import LinearRegression
          lr = LinearRegression()
          lr.fit(x_train,y_train)
Out[17]: LinearRegression()
In [18]:
         print(lr.intercept )
          0.8894301442348738
         coeff=pd.DataFrame(lr.coef ,x.columns,columns=['co-effecient'])
In [19]:
          coeff
Out[19]:
                            co-effecient
               Unnamed: 0
                           1.900822e-09
               fare_amount
                           1.205181e-02
           pickup_longitude
                           8.533600e+00
             pickup_latitude
                           5.875177e+00
          dropoff_longitude -4.833191e+00
            dropoff latitude
                           8.535022e-01
```

```
In [20]: prediction=lr.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[20]: <matplotlib.collections.PathCollection at 0x1ac0cc05550>

In [21]: print(lr.score(x_test,y_test))

-0.12117367047318783

In []: