

Mathematics Methods Year 12 Test 2 2016

Section 1 Calculator Free Exponential Function, Fundamental Theorem

STUDENT'S NAME							
DAT	E : Friday 1 st	April	TIME: 33 minutes	MARKS: 33			
_		Pens, pencils, dra	awing templates, eraser				
Questi	ions or parts of qu	uestions worth more	than 2 marks require working to be shown to rec	eive full marks.			
1.	(7 marks)						
	Determine -	$\frac{dy}{dx}$ for each of the	ne following. Do not simplify.				
	(a) $y = x$	$e^{\sqrt{x}}$		[2]			
	(b) $y = x$	$\sin(e^{2x})$		[2]			
	(c) $y =$	$(\cos x) e^{\cos x}$		[3]			

2. (10 marks)

(a) Evaluate exactly
$$\int_0^2 x e^{4-x^2} dx$$
 [4]

(b) Determine
$$\int \frac{4e^{2x} + 4x}{(e^{2x} + x^2)^3} dx$$
 [3]

(c) Determine
$$\int_{\pi}^{x^2} \left(\frac{d}{dt} e^{e^{-t}} \right) dt$$
 [3]

3. (4 marks)

Given
$$y = \frac{e^x}{3 + e^x}$$

(a) determine
$$\frac{dy}{dx}$$
 [2]

(b) explain why
$$\frac{dy}{dx} \neq 0$$
 [2]

4. (5 marks)

(a) Determine
$$\frac{dy}{dx}$$
 given $y = x e^x$ [2]

(b) Hence determine
$$\int x e^x dx$$
 [3]

5. (4 marks)

Given $y = \int_{-3}^{x} \frac{t^2 - 2}{\sqrt{t}} dt$, use the incremental formula $\delta y \approx \frac{dy}{dx} \times \delta x$ to determine the change in y if x changes from 4 to 4.02.

Mathematics Methods Year 12 Test 2 2016

Section 2 Calculator Assumed **Exponential Function, Fundamental Theorem**

STUDENT'S NAME

DAT	E : Friday 1 ^s	April TIM	TIME: 20 minutes				
Special Items: Three calcul		Pens, pencils, drawing templates, e	lators, notes on one side of a single A4 page (these notes to be handed in with the				
Questi	ons or parts of	questions worth more than 2 marks requ	ire working to be shown to	receive full marks.			
6.	(4 marks)						
	Determine the value of x for which $\int_{x}^{-1} (1-t^2) dt$ has a relative minimum. Justify it is a						
	minimum value. [4						

7. (4 marks)

Sugar is being dissolved in a solution at a rate given by $\frac{dS}{dt} = -20e^{-0.1t}$ where S is the amount, in grams, of undissolved sugar after t seconds.

(a) how much sugar is initially in the solution [2]

(b) how long does it take for half the sugar to dissolve. [2]

8. (5 marks)

A particular rock is dropped into a swimming pool and it sinks vertically to the bottom. Due to water resistance, the rock does not have a constant velocity on the way to the bottom. Its velocity, v centimetres per second, t seconds after it hits the surface of the water is given by

$$v = 8(2 - e^{-0.8t})$$
 for $0 \le t \le 7$

- (a) What is the initial velocity of the rock in the water? [1]
- (b) What is the acceleration of the rock after 4 seconds? [2]

(c) Terminal velocity is an expression used to describe the velocity that is approached but never exceeded. Determine the terminal velocity reached by the rock in the water. [2]

9. (8 marks)

The amount A of a drug (in milligrams) in the bloodstream will decline at a rate proportional to the current amount . That is $\frac{dA}{dt} = -\left(\frac{1}{k}\right)A$.

where k hours is a constant called the <u>elimination time</u> and time t is measured in hours.

- (a) Write down the formula for A(t), the amount of the drug in the bloodstream after t hours, in terms of t, k and the initial amount A_0 . [2]
- (b) What proportion of the drug remains in the bloodstream after k hours? [3]

The drug sodium pentobarbitol can be used to tranquilize animals. A dog is tranquilized if its bloodstream contains at least 45 milligrams of the drug for each kilogram of the dog's weight. The elimination time for the drug is 6 hours.

(c) What single dose of this drug should be given in order to tranquilize a 12 kilogram dog for 1 hour? [3]