Advanced Digital System Design Course

GALAXIC

Diseño de Controlador Para La Máquina de Cervezas Usando el Datapath UV2009

Máquina Expendedora de Cervezas

❖ Diseñar la unidad de control para realizar una Máquina expendedora de Cervezas. La máquina recibe monedas de 100, 200, 500 y 1000 pesos y los productos que entrega son:

Poker \$700

Águila \$800

Costeña \$1.000

Club Colombia \$3.000

La máquina debe entregar devuelta.

Diagrama de Bloques

Diagrama de Bloques Entregar Producto

Diagrama de Bloques Entregar Devuelta

Datapath y ASM Específico

R[M] ←Valor Moneda donde M=0,1,2,3 R[0]← Dato '100' R[1]← Dato '200' R[2]← Dato '500' R[3]← Dato '1000' R[P]← Valor Producto Donde P=[(n-1)..4] RA← Acumulador Y Devuelta

IDLE "Estado De Inactividad"
SM "Sensar Moneda"
EP "Entregar Producto"
C "Carry"

Datapath y ASM Entregar Devuelta

R[(n-1)..4]← Valor Producto RA← Acumulador Y Devuelta NP "No Hay Moneda"

Cnt[3] Contador Monedas 1000

Cnt[2] Contador Monedas 500

Cnt[1] Contador Monedas 200

Cnt[0] Contador Monedas 100

Datapath UV2009

ASM

Diagrama de Estados

Señales de Control

~	-	
	• ••	И И
\mathbf{o}	: ID	

S1: CLR, LD_CNTDIR

S2: WIN , DIRRAM[1] , DIRRAM[0]

S3: RIN, CM, WR, WIN, EN_CNTDIR

S4: IDLE

S5: RRA, RRB, SEL, WA, WB, DIRB0, DIRB2

S6: WC, AS

S7: RC,WR, DIRW0, DIRW2

S8: WIN, SEL

S9: RINWR, DIRW2

S10: RRA, RRB, WA, WB, DIRAO, DIRA2,

DIRB2 S11: WC

S12: RC, WR, DIRW0, DIRW2

\$13:EN_CNTDIR

S14: RRA, RRB, WA, WB, DIRAO, DIRA2, SEL

S15: WC

S16: RC, WC, WR, DIRW2, DIRW0, EN_CLKM

	_ del \
SEÑALES DE CONTROL	DESCRIPCIÓN
RA, RB, RC, RIN, ROUT	Leer Registro A, B, C, IN, OUT
RRA, RRB	Leer por el bus A, B del Banco de Registros
DIRA[20], DIRB[20]	Dirección lectura Registros del Banco por el bus A, B
DIRRAM[40]	Dirección lectura-escritura RAM
DIRW[20]	Dirección escritura Registros del Banco
WA, WB, WC, WROUT, WIN	Escribir en el Registro A, B, C, OUT, IN
WR	Escribir en el Banco de Registros
SEL	Direcciones de Usuario
AS	Operaciones ALU Add-Sub
EN_CNT	Habilitar el contador
LD_CNTDIR	Cargar En El Contador Dir
СМ	Modo Contador. Las direcciones las da Contador
EN_CLKM	Habilitar Contador Monedas devuelta

Simulación: Comprar Producto2

Cargar datos de la RAM en el banco de Registros:

VC muestra los datos provenientes de la memoria RAM que se cargan en el banco de Registros. (VC permite ver los datos que pasan por el Bus C).

Simulación: Comprar Producto2

Insertar Monedas:

Los valores de las monedas se insertan en RA y en RB se inserta el acumulado. (VC permite ver los datos que pasan por el Bus C).

R0←RAM[00] Moneda '100' R1←RAM[01] Moneda '200' R2←RAM[02] Moneda '500' R3←RAM[03] Moneda '1000' R5←Acumulador y Devuelta RAM[04] Producto0 '700' RAM[05] Producto1 '800' RAM[06] Producto2 '1000' RAM[07] Producto3'3000'

Dinero Ingresado=1000+500+200+100=1800

Simulación: Comprar Producto2

Los valores de las monedas se insertan en RA y en RB se inserta el acumulado.

(VC permite ver los datos que pasan por el Bus C).

EP=1

RA←R5; RB←R4

RC←RA-RB

C=1

R5←RC

S12

S10

S11

Simulación: Entregar Devuelta

Entregar Devuelta:

La devuelta se inserta en RA y en RB se inserta las monedas.

(VA, VB y VC permiten ver los datos que pasan por el Bus A, B, C respectivamente).

Cnt Contador Dirección
Cnt[3] Contador Monedas 1000
Cnt[2] Contador Monedas 500
Cnt[1] Contador Monedas 200
Cnt[0] Contador Monedas 100

Devuelta=500+200+100=800

outclock

MAQUINA DE ESTADOS

CONTADORES DE MONEDAS

