Analyse Élémentaire - Fonction d'une variable réel

Matéis RAGON

Sept. 2023

Définition:

- Une fonction d'une variable réelle est la donnée d'un domaine $X\subset R$ d'un ensemble donné $Y\subset R$ et pour tout $x\in R$, d'un unique $y\in R$ appelé l'image de x par la fonction f.

- L'image de f on dit f(x) est l'ensemble de toutes les images de $f(x) = \{f(x), x \in X\}$.

- Un antécédent de $y \in Y$ par la fonction f est un élément de $x \in X$ tel que y = f(x).

- L'ensemble des antécédents de y par la fonction f est noté $f^{-1}(\{y\})=\{x\in X, f(x)=y\}$

Exemple:

 $f[1;3] \mapsto R \ f: x \mapsto 2x+1$

- L'image de $f:f([1;3[)\subset [3;7[$ Soit $y\in [3;7[,$ il existe un antécédent dans [1;3[

$$3y < 7 \iff 2y - 1 < 6 \iff 1\frac{y - 1}{2} < 3$$

Donc ici $\frac{y-1}{2}=x$. Donc x est un antécédent de y dans [1;3[donc $[3;7[\subset f([1;3[)$. L'image de f est [3;7[- Les antécédents de 4 $(\in [3;7[)$ On cherche les $x\in [1;3[$ tels que :

$$f(x) = 4 \iff 2x + 1 = 4 \iff 2x = 3 \iff x = \frac{3}{2}$$

De plus $\frac{3}{2} \in [1; 3[$, donc 4 a un antécédent par la fonction f qui est $\frac{3}{2}$.

Définition : - Fonctions usuels : - Polynômes : Soit $n \in \tilde{N}$ et soient $a_0, ..., a_n \in R$ La fonction $f: R \mapsto R$, $f: x \mapsto a_0 + a_1x + ... + a_nx^n$ est une fonction polynôme de degré n.

- Valeur absolue : $|\cdot| R \mapsto R x \mapsto \begin{cases} -x & si \\ x < 0 & \text{- Propriété (inégalité} \\ x & sinon \end{cases}$

triangulaire) Soient $x, y \in R$, on a : $|x + y| |x| + |y| |\overrightarrow{X} + \overrightarrow{Y}| |\overrightarrow{X}| + |\overrightarrow{Y}|$

inégalitées donnent : $-(\mid x\mid +\mid y\mid)x+y\mid x\mid +\mid y\mid -$ A SAVOIR! -KtK $\Longleftrightarrow \mid t \mid K$

 $\mathrm{Donc}:\iff \mid x+y\mid\mid x\mid +\mid y\mid$

- Racine Carré: $\sqrt{\cdot}: [0; +\infty[\to R \ x \mapsto \sqrt{x} \ \text{avec} \ \sqrt{x^2} = | \ x \ | \ \text{et} \ \sqrt{x^2} = x$ -Exponentielle - Logarithme néperien - sin, cos, ...

Definition: Graph d'une fonction On appelle le graph d'une fonction $X \subset$ $R \to Y \subset R$ le sous-ensemble de $R \times R$ forme des couples $\{x, f(x)\} \in X, Y$

Définition: Injéctivité - Surjéctivité Une fonction $f: X \to Y$ est dite : -Injective si: $\forall x_1, x_2 \in X$, $f(x_1) = f(x_2) \iff x_1 = x_2$ - Surjective si: $\forall y \in Y, \exists x \in X \text{ tel que } f(x) = y$

- Bijective si elle est injective **et** surjective.