Homework 2 for Math 2371

Zhen Yao

Problem 1. Let Y be a subspace of a finite dimensional linear space X such that

$$\dim Y = \dim X - k.$$

Let Z be a subspace of X. Show that

$$\dim(Z \cap Y) \ge \dim Z - k.$$

Proof. With $\dim(Y+Z) = \dim Y + \dim Z - \dim(Y\cap Z)$ and $\dim(Y+Z) \leq \dim X$, then we have

$$\dim(Y \cap Z) = \dim Y + \dim Z - \dim(Y + Z)$$

$$\geq \dim Z + \dim X - k - \dim X$$

$$\geq \dim Z - k.$$

Problem 2. Let $v_1, v_2, \dots, v_k, k \geq 2$, be vectors in \mathbb{R}^n and $1 \leq s < k$. Show that

$$\det G(v_1, \dots, v_k) \le \det G(v_1, \dots, v_s) \det G(v_{s+1}, \dots, v_k).$$

where $G(v_1, \dots, v_k)$ is the Gram matrix of vectors v_1, \dots, v_k with the standard inner product.

Proof. We denote $G(v_1, \dots, v_k) = \begin{pmatrix} G(v_1, \dots, v_s) & B \\ B^* & G(v_{s+1}, \dots, v_k) \end{pmatrix} = \begin{pmatrix} A & B \\ B^* & D \end{pmatrix}$. We assume D > 0, and with Schur complement, we have

$$\frac{G(v_1, \cdots, v_k)}{D} = A - BD^{-1}B^*.$$

Then we have $\det G(v_1, \dots, v_k) = \det D \det (A - BD^{-1}B^*)$.

Problem 3. Find the polar decomposition of

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}.$$

Proof. We have $A^TA = \begin{pmatrix} 10 & 8 \\ 8 & 8 \end{pmatrix}$, and the eigenvalues are $9 + \sqrt{65}$, $9 - \sqrt{65}$. In polar

decomposition, A = QS, and we have $S = \begin{pmatrix} \sqrt{9 + \sqrt{65}} & 0 \\ 0 & \sqrt{9 + \sqrt{65}} \end{pmatrix}$. Thus, we have

$$Q = AS^{-1} = \begin{pmatrix} \frac{1}{\sqrt{9+\sqrt{65}}} & \frac{2}{\sqrt{9-\sqrt{65}}} \\ \frac{2}{\sqrt{9+\sqrt{65}}} & \frac{3}{\sqrt{9-\sqrt{65}}} \end{pmatrix}.$$

Problem 4. Let A be self-adjoint. Show that the singular values of A are absolute values of eigenvalues of A.

Proof. In singular value decomposition, we have A = WDV, where W, V are unitary, and $D \ge 0$ is diagonal. Then we have

$$AA^* = WDVV^*DW^* = WD^2W^*,$$

which implies the singular values are eigenvalues of AA^* , i.e., $\sigma\left(D^2\right)=\sigma(AA^*)$.

Also, A is self-adjoint, and suppose λ is an eigenvalue of A with corresponding eigenvector v. Then $\overline{\lambda}$ is an eigenvalue of A^* with the same eigenvector v. Suppose $\lambda_1, \dots, \lambda_n$ are eigenvalues of A with eigenvectors v_1, \dots, v_n , then we have

$$AA^*v_j = A\overline{\lambda_j}v_j = \lambda_j\overline{\lambda_j}v_j = |\lambda_j|^2v_j,$$

which implies that the eigenvalues of AA^* are $|\lambda_1|^2, \dots, |\lambda_n|^2$, then we have $\sigma(D) = |\lambda_j|, 1 \leq j \leq n$.