A Solutions Found by CRANE

In this appendix, we list the exact function definitions produced by CRANE for all of the problem instances in Section 6 both before and after algebraic simplification (excluding multiplications by one). The correctness of all of them has been checked by identifying suitable base cases and verifying the numerical answers across a range of domain sizes.

1. $\Theta(m)$ solution for counting $\Gamma \to \Gamma$ functions:

$$f(m) = \left(-1 + \sum_{l=0}^{m} {m \choose l} [l < 2]\right)^m = m^m.$$

2. $\Theta(m^3 + n^3)$ solution for counting $\Gamma \to \Delta$ surjections:

$$f(m,n) = \sum_{l=0}^{m} {m \choose l} (-1)^{m-l} \sum_{k=0}^{n} {n \choose k} (-1)^{n-k}$$

$$\left(\sum_{j=0}^{k} {k \choose j} [j < 2]\right)^{l}$$

$$= \sum_{l=0}^{m} {m \choose l} (-1)^{m-l} \sum_{k=0}^{n} {n \choose k} (-1)^{n-k} (k+1)^{l}.$$

3. $\Theta(m^3)$ solution for counting $\Gamma \to \Gamma$ surjections:

$$f(m) = \sum_{l=0}^{m} {m \choose l} (-1)^{m-l} \sum_{k=0}^{m} {m \choose k} (-1)^{m-k}$$

$$\left(\sum_{j=0}^{k} {k \choose j} [j < 2]\right)^{l}$$

$$= \sum_{l=0}^{m} {m \choose l} (-1)^{m-l} \sum_{k=0}^{m} {m \choose k} (-1)^{m-k} (k+1)^{l}.$$

4. $\Theta(mn)$ solution for counting $\Gamma \to \Delta$ injections and partial injections (with different base cases):

$$f(m,n) = \sum_{l=0}^{m} {m \choose l} [l < 2] f(m-l, n-1)$$

= $f(m, n-1) + mf(m-1, n-1)$.

5. $\Theta(m^3)$ solution for counting $\Gamma \to \Gamma$ injections:

$$f(m) = \sum_{l=0}^{m} {m \choose l} (-1)^{m-l} g(m, l);$$

$$g(m, l) = \sum_{k=0}^{l} {l \choose k} [k < 2] g(m - 1, l - k)$$

$$= g(m - 1, l) + lg(m - 1, l - 1).$$

6. $\Theta(m)$ solution for counting $\Gamma \to \Delta$ bijections:

$$f(m,n) = mf(m-1, n-1).$$