
Quasi Experiment EE13.1

EE12.2

我們直接從課本的 Empirical Exercise 13.1 來複習如何用 Stata 實作 quasi-experimental analysis,並做出解釋。

EE13.1 Questions

E13.1 A prospective employer receives two resumes: a resume from a white job applicant and a similar resume from an African American applicant. Is the employer more likely to call back the white applicant to arrange an interview? Marianne Bertrand and Sendhil Mullainathan carried out a randomized controlled experiment to answer this question. Because race is not typically included on a resume, they differentiated resumes on the basis of "white-sounding names"

(such as Emily Walsh or Gregory Baker) and "African American-sounding names" (such as Lakisha Washington or Jamal Jones). A large collection of fictitious resumes was created, and the presupposed "race" (based on the "sound" of the name) was randomly assigned to each resume. These resumes were sent to prospective employers to see which resumes generated a phone call (a callback) from the prospective employer. Data from the experiment and a detailed data description are on the text website, http://www.pearsonglobaleditions.com, in the files Names and Names_Description.

EE13.1 Questions

- a. Define the *callback rate* as the fraction of resumes that generate a phone call from the prospective employer. What was the callback rate for whites? For African Americans? Construct a 95% confidence interval for the difference in the callback rates. Is the difference statistically significant? Is it large in a real-world sense?
- b. Is the African American/white callback rate differential different for men than for women?
- c. What is the difference in callback rates for high-quality versus low-quality resumes? What is the high-quality/low-quality difference for white applicants? For African American applicants? Is there a significant difference in this high-quality/low-quality difference for whites versus African Americans?
- **d.** The authors of the study claim that race was assigned randomly to the resumes. Is there any evidence of nonrandom assignment?

EE13.1 Data Descrptions

Names Data

1. Observations: 4870 resumes

2. Time Period: 2001

Variable Descriptions

Variable Name	Description					
Key Variables						
firstname	applicant's first name					
female	1 = female					
black	1 = black					
high	1= high quality resume					
call_back	1= applicant was called back					
chicago	1 = data from Chicago					
Detailed Information on Resume						
ofjobs	number of jobs listed on resume					
yearsexp	number of years of work experience on the resume					
honors	1=resume mentions some honors					
volunteer	1-resume mentions some volunteering experience					
military	1=applicant has some military experience					
empholes	1=resume has some employment holes					
workinschool	1=resume mentions some work experience while at school					
email	1=email address on applicant's resume					
computerskills	1=resume mentions some computer skills					
specialskills	1=resume mentions some special skills					
college	applicant has college degree or more					
	Detailed Information Concerning Employer					
expminreq	min experience required, if any					
eoe	1=ad mentions employer is EOE					
manager	1=manager wanted					
supervisor	1=supervisor wanted					
secretary	1=secretary wanted					
offsupport	1=office support					
salesrep	1=sales representative wanted					
retailsales	1=retail sales worker wanted					
req	1=ad mentions any requirement for job					
expreq	1=ad mentions some experience requirement					
comreg	1=ad mentions some communication skills requirement					
educreq	1-ad mentions some educational requirement	_				
compreq	1=ad mentions some computer skill requirement					
orgreq	1-ad mentions some organizational skills requirement					
manuf	1=employer industry is manufacturing					
transcom	1=employer industry is transport/communication					
bankreal	1=employer industry is finance, insurance, real estate					
trade	1-employer industry is wholesale or retail trade					
busservice	1=employer industry is business and personal services					
othservice	1-employer industry is health, educ, and social services					
missind	1=employer industry is other/unknown					

EE13.1 a

The command:

mean callback

gives us the fraction of resumes that generate a phone call from prospective employer.

The expression:

ci mean callback

gives us the same result.

EE13.1 a

For whites, simply add a condition:

ci mean callback if black==0

For blacks:

ci mean callback if black==1

To understand how Stata gives us the 95% C.I., recall the point estimator in the previous semester.

Let

$$y_i = \begin{cases} 1, & \text{if receive phone call} \\ 0, & \text{o.w.} \end{cases}$$

Clearly, y_i follows Bernoulli(p) where p is the unknown fraction of resumes that generate a phone call from prospective employer.

Naturally, we would like to use $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ to estimate p. Where n = 4870.

We need to know $se(\bar{y})$ in order to build up a interval estimator.

Now, our concern would be: What is the sampling distribution of \bar{y} ?

Given

$$y_i \stackrel{i.i.d.}{\sim} Bernoulli(p)$$

then

$$\sum_{i=1}^{n} y_i \sim Binomial(n, p)$$

which can be approximated by normal distribution

$$\sum_{i=1}^{n} y_i \stackrel{a}{\sim} N(np, np(1-p))$$

as $n \to \infty$. And let $X = \frac{1}{n} \sum_{i=1}^{n} y_i$, then

$$X \sim N(p, \frac{p(1-p)}{n})$$

That is, $se(\bar{y})$ can be calculated easily from the approximated normal distribution.

With the normal quantile $Z_{0.05}=-1.96$, we know the interval estimator for ${\it p}$ is:

$$[\bar{\textit{y}} - 1.96 \times \textit{se}(\bar{\textit{y}}), \bar{\textit{y}} + 1.96 \times \textit{se}(\bar{\textit{y}})]$$

And we know

$$\mathit{se}(\bar{\mathit{y}}) \approx (0.0804928(1-.0804928)/4870)^{\frac{1}{2}} = 0.003898446728$$

Which is nearly the Std. Err. calculated by Stata.

After that, we may construct the C.I. under every given quantile.

Some may know that the command:

ci proportion callback

gives us a very similar result, and wonder the difference between the two.

Actually, you may see the text "Binomial Exact" in the latter command.

That is, Stata calculate the exact sampling distribution from "categories" we're interested in, instead of using the approximated normal distribution.

. ci proportion call_back								
Variable	0bs	Proportion	Std. Err.	— Binomial Exact — [95% Conf. Interval]				
call_back	4,870	.0804928	.0038984	.0730025 .0884904				

Also, if the variable is binary, and it is valued at 1 and 0, then the two command will yield the same result as the number of observations is large.

And the option proportion is designed for category variables. You may notice that there are Binomial distribution, Trinomial distribution, and Multinomial distribution.

For example,

$$(X, Y) \sim Trinomial(n, p_1, p_2)$$

$$f_{XY}(x, y) = \frac{n!}{x! y! (n - x - y)!} p_1^x p_2^y (1 - p_1 - p_2)^{n - x - y}$$

EE13.1 b

Given the model:

$$call_back = \beta_0 + \beta_1 black + \beta_2 female + \beta_3 black female + u$$

If black = 0 & female = 0, then the effect is β_0

If black = 1 & female = 0, then the effect is $\beta_0 + \beta_1$

If black = 0 & female = 1, then the effect is $\beta_0 + \beta_2$

If black = 1 & female = 1, then the effect is $\beta_0 + \beta_1 + \beta_2 + \beta_3$

EE13.1 c

Given the model:

$$call_back = \beta_0 + \beta_1 black + \beta_2 high + \beta_3 blackhigh + u$$

If black = 0 & high = 0, then the effect is β_0

If black = 1 & high = 0, then the effect is $\beta_0 + \beta_1$

If black = 0 & high = 1, then the effect is $\beta_0 + \beta_2$

If black = 1 & high = 1, then the effect is $\beta_0 + \beta_1 + \beta_2 + \beta_3$

EE13.1 Table

	(1)	(2)	(3)			
VARIABLES	а	b	С			
black	-0.0320***	-0.0304*	-0.0231**			
	(0.00778)	(0.0155)	(0.0106)			
female		0.0102				
		(0.0137)				
blackFemale		-0.00224				
		(0.0179)				
high			0.0229*			
			(0.0120)			
blackHigh			-0.0178			
			(0.0156)			
Constant	0.0965***	0.0887***	0.0850***			
	(0.00599)	(0.0119)	(0.00801)			
		,	,			
Observations	4,870	4,870	4,870			
R-squared	0.003	0.004	0.004			
Robust standard errors in parentheses						

36