DICIPLINE : Mathématiques	NIVEAU: 3 ^{ème}

Séquence N°1 THEME : Organisation et gestion de données - Fonctions

RAPPEL DU COURS

<u>Séquence 1 : Fonctions affines et linéaires – Définitions, premiers exemples et vocabulaires</u>

<u>Définition</u>: On appelle <u>fonction affine</u>, une fonction f définie par : f(x) = ax + b où a et b sont des nombres quelconques.

<u>Cas particulier</u>: Lorsque b = 0, la fonction définie par f(x) = ax est dite <u>linéaire</u>.

Exemples:

- f(x) = 2x + 3 est dite affine car elle est de la forme ax + b avec a = 2 et b = 3.
- f(x) = 4x est dite linéaire (elle est aussi affine) car elle est de la forme ax avec a = 4.

Théorème:

- Dans un repère, la représentation graphique d'une fonction affine est une <u>droite non-parallèle à l'axe des</u> <u>ordonnées</u>.
- Réciproquement, toutes droites non parallèles à l'axe des ordonnées est la représentation graphique d'une fonction affine.

Vocabulaire:

- Le nombre « a » s'appelle le <u>coefficient directeur de la droite</u>.

 Il répond à la question « de combien augmente f(x) quand x augmente de 1 ? ».
- Le nombre « b » est <u>l'ordonnée à l'origine</u> : la droite passe par le point de coordonnées (0 ; b). Il est l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées (vertical).
 - Il répond à la question « combien vaut f(x) quand x=0 ? », soit « combien vaut f(0) ? ».

EXERCICES

Exercice 1:

Parmi les fonctions f, g, h et m définies ci-dessous, indique celles qui sont linéaires.

a.
$$f(x) = 2x$$

b.
$$h(x) = 3x - 4$$

c.
$$g(x) = x^2$$

d.
$$m(x) = (5 - 2x) - 5$$

Exercice 2:

Parmi les fonctions n, p, k et d définies ci-dessous, indique celles qui sont affines.

a.
$$n(x) = 5x$$

b.
$$k(x) = 2x + 7$$

c.
$$p(x) = \frac{1}{x}$$

c.
$$p(x) = \frac{1}{x}$$

d. $d(x) = (4x - 7) - 4x$

Exercice 3:

Parmi les fonctions t, u, w et z définies ci-dessous, indique celles qui sont affines.

a.
$$t(x) = -x$$

b.
$$u(x) = \frac{1}{2x+3}$$

c.
$$w(x) = (x+9)^2 - x^2$$

d.
$$z(x) = (3x - 1)^2 - 3x^2$$

Exercice 4:

Un rectangle a pour longueur 7 cm et pour largeur x cm.

- **a.** Exprime le périmètre p(x) en cm, et l'aire a(x), en cm², de ce rectangle en fonction de x.
- **b.** Les fonctions p et a sont-elles linéaires ? Sont-elles affines ?

Séquence N°1 THEME : Organisation et gestion de données - Fonctions

CORRECTION DES EXERCICES

Exercice 1

a. f(x) = 2x est une fonction linéaire car elle est de la forme ax avec a = 2.

b. h(x) = 3x - 4 est une fonction affine car elle est de la forme ax + b avec a = 3 et b = -4.

c. $g(x) = x^2$ n'est pas une fonction affine et n'est pas une fonction linéaire.

d. m(x) = (5 - 2x) - 5 = 5 - 2x - 5 = -2x est une fonction linéaire car elle est de la forme ax avec a = -2. On a réduit l'expression de la fonction m.

Exercice 2

a. n(x) = 5x est une fonction linéaire car elle est de la forme ax avec a = 5.

b. k(x) = 2x + 7 est une fonction affine car elle est de la forme ax + b avec a = 2 et b = 7.

c. $p(x) = \frac{1}{x}$ n'est pas une fonction affine et n'est pas une fonction linéaire.

d. d(x) = (4x - 7) - 4x = 4x - 7 - 4x = -7 est une fonction constante car elle est de la forme b avec b = -7. On a réduit l'expression de la fonction d.

Exercice 3

a. $n(x) = -x = -1 \times x$ est une fonction linéaire car elle est de la forme ax avec a = -1.

c. $w(x) = (x+9)^2 - x^2$

On va développer et réduire l'expression de la fonction w.

$$(x+9)^2 - x^2 = (x+9)(x+9) - x^2$$
 On développe

$$= x^2 + 9x + 9x + 81 - x^2$$
On

réduit

$$= 18x + 81$$

w est donc une fonction affine car elle est de la forme ax + b avec a = 18 et b = 81.

b. $u(x) = \frac{1}{2x+3}$ n'est pas une fonction affine et n'est pas une fonction linéaire.

d. $z(x) = (3x - 1)^2 - 3x^2$

On va développer et réduire l'expression de la fonction z.

$$(3x-1)^2 - 3x^2 = (3x-1)(3x-1) - 3x^2$$

= $9x^2 - 3x - 3x - 3x^2 + 1$
= $6x^2 - 6x + 1$

z n'est donc pas une fonction affine et n'est pas une fonction linéaire.

Exercice 4

Rappels:

- Le périmètre d'un rectangle se calcule avec la formule $P_{rectangle} = 2 \times longueur + 2 \times largeur$
- L'aire d'un rectangle se calcule avec la formule $A_{rectangle} = longueur \times largeur$
- **a.** Le rectangle a pour longueur 7 cm et pour largeur x cm. On utilise les formules des rappels :
- Périmètre : $p(x) = 2 \times 7 + 2 \times x = 14 + 2x$
- Aire : $a(x) = 7 \times x = 7x$

b.

- -p(x) = 14 + 2x est de la forme ax + b avec a = 2 et b = 14.
- p est donc une fonction affine.
- -a(x) = 7x est de la forme ax avec a = 7.
- a est donc une fonction linéaire. Attention, a est aussi une fonction affine (avec b = 0).

DICIPLINE : Mathématiques NIVEAU : 3^{ème}

Séguence N°2 THEME : Organisation et gestion de données - Fonctions

RAPPEL DU COURS

<u>Séquence 2 : Fonctions affines et linéaires – Représentations graphiques</u>

Propriété : Soit f une fonction affine définie par : f(x) = ax + b

- Si a > 0, alors f est croissante (sa courbe « monte »)
- Si a < 0, alors f est décroissante (sa courbe « descend »)
- Si a = 0, alors f est constante (sa courbe est parallèles à l'axe des abscisses)

Propriétés:

Ci-dessus, la représentation graphique d'une fonction affine de la forme : f(x) = ax + b où a est le coefficient directeur et b est l'ordonnée à l'origine.

Ci-dessus, la représentation graphique d'une fonction linéaire de la forme : f(x) = ax où a est le coefficient directeur. C'est le cas où b = 0.

Ci-dessus, la représentation graphique d'une fonction constante de la forme : f(x) = b où b est l'ordonnée à l'origine. C'est le cas où a = 0.

Remarques:

- Pour tracer la représentation graphique d'une fonction affine, il suffit de <u>calculer deux</u> points.
- La représentation graphique d'une fonction affine ne peut pas être une droite parallèle à l'axe des ordonnées, sinon il existerait une abscisse ayant plusieurs images.

EXERCICES

Exercice 1 : Ce graphique représente une fonction f.

- **a.** Quelle est l'image de 1 par f ?
- **b.** Donne des valeurs pour :
 - f(0)
 - l'image de -2 par f
 - l'image de 2 par f
 - f(−1)

Exercice 2 : Sur le graphique ci-dessous, des fonctions f, g, h, k et u ont été représentées.

Parmi ces fonctions, indique celles qui sont affines.

(Tu préciseras celles qui sont linéaires.)

Exercice 3: La fonction linéaire h est définie par h(x) = -1.5x.

- a. Quelle est la nature de la représentation graphique de cette fonction ?
- **b.** Combien de points sont nécessaires pour construire la représentation graphique de cette fonction ?
- **c.** Déterminer les coordonnées de suffisamment de points avec des abscisses comprises entre -4 et 4.
- **d.** Construis la représentation graphique en prenant 1 cm pour 1 unité en abscisse et 1 cm pour 2 unités en ordonnée.

Exercice 4 : Reprends les questions de l'exercice précédent pour la fonction affine m définie par m(x) = 3x - 5.

Exercice 5 : Avec le graphique ci-dessous :

a. Identifie les droites (d_f) , (d_g) et (d_h) qui représentent les fonctions f, g et h définies par :

$$f(x) = 3x + 6$$
;

$$g(x) = 0.5x - 1;$$

$$h(x) = -x + 2.$$

- **b.** Détermine les coordonnées du point d'intersection des droites (d_g) et (d_h) par le calcul.
- **c.** Détermine celles du point d'intersection des droites (d_f) et (d_h) également par le calcul.

DICIPLINE : Mathématiques

NIVEAU: 3^{ème}

Séquence N°2

THEME: Organisation et gestion de données - Fonctions

CORRECTION DES EXERCICES

Exercice 1

a. L'image de 1 par la fonction f est 3,5.

b.
$$f(0) = 2$$

$$f(-2) = -1$$
 ou l'image -2 par f est -1 .
 $f(2) = 5$ ou l'image 2 par f est 5 .

f(2) = 5 ou l'image 2 par f est 5. f(-1) = 0.5

Exercice 2

Rappels: La représentation graphique d'une fonction affine (et donc aussi d'une fonction linéaire) est une droite (qui n'est pas parallèle à l'axe des ordonnées). L'origine du repère est le point de coordonnées (0 ; 0). C'est le point « au centre » du repère.

Sur le graphique, les seules droites sont les représentations graphiques de u, g et h. u, g et h sont donc des fonctions affines.

De plus, la droite qui représente h passe par l'origine du repère, h est donc aussi une fonction linéaire.

Exercice 3

a. h(x) = -1.5x est de la forme ax avec a = -1.5. h est donc une fonction linéaire. D'après les rappels précédents, la représentation graphique de la fonction h est donc une droite qui passe par l'origine du repère.

b. Il faut au minimum 2 points pour tracer une droite.

Pour être sûr de ne pas s'être trompé, mieux vaut placer 3 points de la droite.

c.
$$h(x) = -1.5 \times x$$

$$h(0) = -1.5 \times 0 = 0$$

$$h(2) = -1.5 \times 2 = -3$$

$$h(-2) = -1.5 \times (-2) = 3$$

a. m(x) = 3x - 5 est de la forme ax + b avec a = 3 et b = -5. m est donc une fonction affine.

D'après les rappels précédents, la représentation graphique de la fonction m est donc une droite.

b. If faut au minimum 2 points pour tracer une droite.

Pour être sûr de ne pas s'être trompé, mieux vaut placer 3 points de la droite.

c.
$$m(x) = 3 \times x - 5$$

$$m(0) = 3 \times 0 - 5 = -5$$

$$m(1) = 3 \times 1 - 5 = 3 - 5 = -2$$

$$m(2) = 3 \times 2 - 5 = 6 - 5 = 1$$

Exercice 5

a. f(x) = 3x + 6 est la droite qui passe par le point de coordonnées (0; 6). $f(0) = 3 \times 0 + 6 = 6$ ou « f est une fonction affine dont l'ordonnée à l'origine est 6 ».

g(x)=0.5x-1 est la droite qui passe par le point de coordonnées $(0\;;-1).$ $g(0)=0.5\times0-1=-1$ ou « g est une fonction affine dont l'ordonnée à l'origine est -1 ».

h(x) = -x + 2 est la droite qui passe par le point de coordonnées (0; 2). h(0) = -0 + 2 = 2 ou « h est une fonction affine dont l'ordonnée à l'origine est 2 ».

b. On aurait pu trouver le point d'intersection graphiquement si l'énoncé ne précisait pas « par le calcul ».

Pour déterminer le point d'intersection des droites (d_g) et (d_h) par le calcul, on va résoudre l'équation suivante :

$$g(x) = h(x)$$

$$0.5x - 1 = -x + 2$$
 On regroupe les termes « avec x ».

$$0.5x - 1 + x = -x + 2 + x$$
 On réduit.

$$1.5x - 1 = 2$$
 On regroupe les termes « sans x ».

$$1,5x - 1 + 1 = 2 + 1$$
 On réduit.

$$1.5x = 3$$
 On divise par le nombre devant x .

On réduit.

$$\frac{1,5x}{1,5} = \frac{3}{1,5} = 2$$

Donc pour
$$x = 2$$
, $g(x) = h(x)$ et $g(2) = h(2) = 0.5 \times 2 - 1 = 0$.

c. Pour déterminer le point d'intersection des droites (d_f) et (d_h) par le calcul, on va résoudre l'équation suivante :

<u>Conclusion</u>: Le point d'intersection des droites (d_q) et (d_h) a pour coordonnées (2;0).

$$f(x) = h(x)$$

$$3x + 6 = -x + 2$$

$$3x + 6 + x = -x + 2 + x$$

$$4x + 6 = 2$$

$$4x + 6 - 6 = 2 - 6$$

$$4x = -4$$

$$\frac{4x}{4} = \frac{-4}{4} = -1$$

On regroupe les termes « avec
$$x$$
 ».

On regroupe les termes « sans
$$x$$
 ».

On divise par le nombre devant
$$x$$
.

Donc pour
$$x = -1$$
, $f(x) = h(x)$ et $f(-1) = h(-1) = 3 \times (-1) + 6 = 3$.
Conclusion: Le point d'intersection des droites (d_f) et (d_h) a pour coordonnées $(-1; 3)$.

DICIPLINE : Mathématiques NIVEAU : 3^{ème}

Séquence N°3 | THEME : Organisation et gestion de données - Fonctions

RAPPEL DU COURS

<u>Séquence 3 : Fonctions affines et linéaires – Déterminer une fonction affine linéaire par lecture graphique</u>

<u>Méthode</u>: Pour lire le coefficient directeur a d'une droite il faut :

- 1. Choisir deux points A et B sur la droite.
- 2. Se déplacer de A vers B par la méthode des escaliers :
 - a. On compte le nombre de graduations verticales : monter (+) et descendre (-)
 - b. On compte le nombre de graduations horizontales : droite (+) et gauche
- 3. Déduire le coefficient directeur : $\frac{\textit{déplacement vertical}}{\textit{déplacement horizontal}}$

Exemple : On se déplace de A vers B

- En descendant de 2 graduations.
- Puis en se déplaçant vers la droite de 3 graduations.

Le coefficient directeur de la droite est :

$$a = \frac{(-2)}{3} = -\frac{2}{3}$$

Pour trouver graphiquement b, il suffit de « lire » la hauteur de la courbe pour x = 0.

EXERCICES

Exercice: Pour chaque représentation graphique, donner l'expression littérale de la fonction affine associée.

 $f(x) = \dots \qquad i(x) = \dots$

1 rectos /verso par séquence

DICIPLINE : Mathématiques NIVEAU : 3^{ème}

Séquence N°3 THEME : Organisation et gestion de données - Fonctions

CORRECTION DES EXERCICES

$$f(x) = x + 2$$

$$i(x) = -\frac{2}{5}x + 3$$

$$g(x) = 3x - 1$$

$$j(x) = x$$

$$k(x) = 3x - 3$$