### You scored 0 out of 100

### Question 1

You did not answer the question. rectangular coordinates

Find the rectangular coordinates of the point

$$\begin{array}{c} X = Y \cos \theta \\ Y = Y \sin \theta \\ \psi = Y \cos \theta$$

$$|2,\frac{1}{2}\pi| = [r,o]$$
  
 $\Rightarrow X = 2 \cdot \cos \overline{Z} = 0$   
 $y = Z \cdot \sin \overline{Z} = 2$   
 $\Rightarrow (0,2)$ 

polar coordinates

You did not answer the question.

Find the rectangular coordinates of the point

$$|-4, \frac{3}{4}\pi| = [\Gamma, 0]$$

$$X = -4 \cos \frac{3\pi}{4} = -4, -\frac{12}{2} = 2\sqrt{2}.$$

$$y' = -4 \sin \frac{3\pi}{4} = -4, \frac{12}{2} = -2\sqrt{2}.$$

$$\Rightarrow (2\sqrt{2}, -2\sqrt{2})$$

d) 
$$(-2\sqrt{2}, 2\sqrt{2})$$

b)  $\oplus$   $(2\sqrt{2} - 2\sqrt{2})$ 

 $e(\sqrt{2} - 4\sqrt{2})$ 

$$e) = \sqrt{2} - \sqrt{2}$$

a) @ (4√2 4

Question 3

You did not answer the question.

Give all possible polar coordinates for the point  $(4, 4\sqrt{3})$  given in rectangular coordinates

Find the point symmetric to  $\begin{bmatrix} 1 \\ \end{bmatrix} = \frac{1}{4} \pi$ 



### Question 5

d)  $\frac{1}{2}$   $\frac{1}{4}$   $\pi$ 

You did not answer the question.

Write the equation in polar coordinates.



Question 6

You did not answer the question.

Write the equation in polar coordinates.

$$(r\cos\theta - 7)^{2} + y^{2} = 49$$

$$(r\cos\theta - 7)^{2} + (r\sin\theta)^{2} = 49$$

$$r = 7 \sin(\theta) + 49$$

$$r^{2}\cos\theta - 14r\cos\theta + 49 + r\sin^{2}\theta = 49$$

$$r^{2}\cos\theta - 14r\cos\theta + 49 + r\sin^{2}\theta = 49$$

$$r^{2}\cos\theta + 49 + r\sin^{2}\theta = 6$$

$$r^{2}\cos\theta + 49 + r\cos\theta = 6$$

$$r^{2}\cos\theta +$$

**Ouestion 7** 

You did not answer the question.

Write the equation in rectangular coordinates.

$$2 r \cos(\theta) = 9 \qquad \left( \cos \theta \right) = 7$$

$$\Rightarrow 2 \times \frac{X}{X} = 9$$

$$\Rightarrow 2 \times \frac{X}{X} = 9$$

$$\Rightarrow 2 \times \frac{Y}{X} = 9 \Rightarrow X = \frac{9}{2}$$

$$\Rightarrow 2 \times 2 \times 4 \Rightarrow X = \frac{9}{2}$$

$$\Rightarrow 2 \times 4 \Rightarrow X = \frac{9}{2}$$



You did not answer the question.

Write the equation in rectaingular coordinates

 $r = 6 \sin(\theta)$ 

See "Graph" in last page.

b) 
$$x^2 + y^2 = 36$$

C)  $Q : Y = \frac{Q}{2} - \frac{Q}{2} \cos \theta$ 

c)  $y = x^2 + 6$ 

d)  $x = y + 6$ 

P(a)  $Q = \frac{Q}{2} + \frac{Q}{2} = 6$ 
 $Q = \frac{Q$ 

You did not answer the question.

Which of the following shows the correct sketch of the given polar curve?

$$r = \frac{9}{2} - \frac{9}{2} \cos(9)$$

Then check the point as 0=17. AS 0=17,  $Y=\frac{9}{3}-\frac{4}{5}\cos 17=\frac{9}{3}-\frac{4}{5}(-1)$ = 9+4=9. > This graph goes through







h)



Question 10

You did not answer the question.

Which of the following shows the correct sketch of the given polar curve?  $r = 6 \cos{(2.9)}$ 

$$\Rightarrow$$
 item 3,  $\otimes$   $m=2$  (even)

this graph is a flower which has 4 petals  $\Rightarrow$  (a) or (e).

Then check the polar point as 0=0We have  $V=6\cos(2\cdot0)=6$  $\Rightarrow$  This graph goes through  $[6\cdot0] \Rightarrow (e)$ 

















d)



Ouestion 12

You did not answer the question.

Which of the following shows the correct sketch of the given polar curve?

=> See Graph"

It is item 4,3. a=-2, b=4. ⇒ 19/<1b/

> Limaçon with loop > (a), (b), (c), or (e)

Cheek point as 0=0

 $\Rightarrow Y=-2+4\cos(0)=-2+4=2$ .

=> [his graph goes through [r.o] = [z.o] => (b) or (e)

Check one more point as Q== > r=-2+4cos=-2. > [-2=] > (E)









d)



Find the rectangular coordinates of the point(s) of intersection of the following polar curves.  $r = 4 \operatorname{sm}(\Theta)$ 

By Graph 
$$\Rightarrow$$
 See item 1.

$$r=45iha$$
  $\Rightarrow$  a circle with center (0,2)  
 $r=45iha$   $\Rightarrow$  a circle with center (0,2)  
 $r=45iha$   $\Rightarrow$  radius Z

$$r = -(1\cos 0)$$
  $\Rightarrow a citale with contor(-2,0)$   
 $\alpha = 0.0$   $\alpha = -2$   $\alpha = -2$ 

Question 14

You did not answer the question.

Calculate the area enclosed by 
$$r^2 = 25 \sin^2(\theta)$$
  $\Rightarrow$   $r = \pm 5 \sin \theta$ 



Calculate the area of the given region:

$$r = 3 \cos(\theta)$$

$$r = 3 \sin(\theta)$$
and the rays:  $\theta = 0$  and  $\theta = \frac{1}{4} \pi$ 

$$\frac{3}{2}$$

#### Question 16

You did not answer the question.

Calculate the area of the given region

$$r=22\cos(\Theta)$$

$$r = 11 \cos(9)$$
and the rays:  $9 = 0$  and  $9 = \frac{1}{4} \pi$ 

$$\frac{1089}{16} + \frac{1089}{32} \pi$$

$$\frac{363}{8} + \frac{363}{16} \pi$$

$$\frac{363}{4} + \frac{363}{33} \pi$$

$$\frac{363}{4} + \frac{363}{33} \pi$$

$$\frac{121}{4} + \frac{121}{8} \pi$$

Question 17

You did not answer the question.

Which of the following represents the area outside  $r = 12$ , but inside  $r = 24$  and  $9 = 12$ .

$$\frac{5}{6} \pi$$

$$\frac{1}{6} \pi$$

$$\frac{$$



Question 19

$$\int_{0}^{\frac{1}{6}\pi} \frac{1}{2} \left( \bar{s} \sin(\bar{\theta}) \right)^{2} d\theta + \int_{\frac{1}{6}\pi}^{\frac{1}{2}\pi} \frac{1}{2} \left( 8 - 8 \sin(\bar{\theta}) \right)^{2} d\theta$$

$$2\left\{\int_{0}^{\frac{1}{6}\pi} \frac{1}{2} \left(8 \sin(\theta)\right)^{2} d\theta + \int_{\frac{1}{6}\pi}^{\frac{1}{2}\pi} \frac{1}{2} \left(8 - 8 \sin(\theta)\right)^{2} d\theta\right\}$$

$$2\left[\int_{0}^{\frac{1}{4}} \frac{s}{2} \left(8 - 8 \sin(\theta)\right)^{2} d\theta + \int_{\frac{1}{4}}^{\frac{1}{2}} \frac{1}{2} \left(8 \sin(\theta)\right)^{2} d\theta\right]$$

$$2\left[\int_{0}^{\frac{1}{6}\pi} \frac{1}{2} \left( 2 - 8 \sin(\theta) \right)^{2} d\theta + \int_{\frac{1}{6}\pi}^{\frac{1}{2}\pi} \frac{1}{2} \left( 8 \sin(\theta) \right)^{2} d\theta \right]$$



$$8-85in0=85in0$$

$$\Rightarrow 8=165in0$$

$$5in0=\frac{8}{16}=\frac{1}{16}$$

$$0=\frac{1}{6}$$

# Graph

## 1. Circle

| polar    | rectangular                |        |
|----------|----------------------------|--------|
| r=a      | $x^2y^2=\alpha^2$          | 7(0,0) |
| Y=20,000 | $(x-a)^2+y^2=q^2$          |        |
| r=205ino | $\chi^{2}+(y-a)^{2}=a^{2}$ | (0,0)  |

## 2. Line

## 3, Flowers

$$r = a\cos(m0)$$
  $m \neq -1$ ,  $\alpha > 0$  or  $r = a\sin(m0)$ 

4. Polar curves of the form





