1

Maths Assignment

Abhignya Gogula EE23BTECH11023

PROBLEM STATEMENT

A G.P consists of an even number of terms. If the sum of all terms is 5 times the sum of terms occupying odd places, then find its common ratio.

SOLUTION

Parameter	Description	condition
N	Number of terms in the G.P	-
M	number of odd place terms	N=2M
<i>x</i> (0)	first term in the G.P	-
r	common ratio in the G.P	-
x(n)	n+1 th term in the G.P	$x(n) = x(0)r^n$
y(n)	sum of G.P series	$y(n) = x(0) \left(\frac{r^{n+1}-1}{r-1}\right) u(n)$
$x_o(n)$	n+1 th term of G.P of odd places	$x_o(n) = x(0)r^{2n}$
$y_o(n)$	sum of terms in odd places	$y_o(n) = x(0) \left(\frac{r^{n+1}-1}{r^2-1}\right) u(n)$

TABLE I Input Parameters

Solving the Question in time domain:

$$x(n) = x(0)r^n \tag{1}$$

$$y(n) = x(0) \left(\frac{r^{n+1} - 1}{r - 1} \right) u(n)$$
 (2)

The sum of terms in odd places:

$$x_o(n) = x(0)r^{2n}$$
 (3)

$$y_o(n) = x(0) \left(\frac{r^{n+1} - 1}{r^2 - 1} \right) u(n)$$
 (4)

Then from (2) and (4)

$$x(0)\left(\frac{r^{N}-1}{r-1}\right)u(n) = 5\left(x(0)\left(\frac{r^{2M}-1}{r^{2}-1}\right)u(n)\right)$$
 (5)

$$\frac{r^2 - 1}{r - 1} = 5\tag{6}$$

as
$$r \neq 1$$
, hence $r = 4$ (7)

(8)

X,Y,Xo,Yo are frequency counterparts of the above GP

$$X(z) = \frac{x(0)}{1 - rz^{-1}} \quad |z| > |r| \tag{9}$$

$$X_o(z) = \frac{x(0)}{1 - r^2 z^{-1}} \tag{10}$$

$$Y(z) = \frac{x(0)}{(1 - rz^{-1})(1 - z^{-1})}$$
(11)

$$Y_o(z) = \frac{x(0)}{\left(1 - rz^{\frac{-1}{2}}\right)\left(1 - z^{-1}\right)}$$
(12)