Huitième partie VIII

Logique du premier ordre

En bref ...

Pourquoi la logique du premier ordre?

Syntaxe et sémantique de la logique du premier ordre

Utiliser la logique du première ordre

Situation calculus

Plan

- 1. Introduction à l'intelligence artificielle
- 2. Agents intelligents
- 3. Algorithmes classiques de recherche en IA
- 4. Algorithmes et recherches heuristiques
- 5. Programmation des jeux de réflexion
- 6. Problèmes de satisfaction de contraintes
- 7. Agents logiques
- 8. Logique du premier ordre
- 9. Inférence en logique du première ordre
- 10. Introduction à la programmation logique avec Prolog
- 11. Planification
- 12. Apprentissage

Pourquoi la logique du premier ordre?

Avantages et inconvénients de la logique propositionnelle

Avantages

- La logique propositionnelle est déclarative : connaissances et inférences sont séparées, les inférences sont indépendantes du domaine
- La logique propositionnelle permet de prendre en compte des informations partielles avec la disjonction et la négation
- La logique propositionnelle est compositionnelle :
 - La signification de $B_{1,1} \wedge P_{1,2}$ provient de la signification de $B_{1,1}$ et $P_{1,2}$
- La signification en logique propositionnelle ne dépend pas du contexte
 - Contrairement au langage naturel

Inconvénients

- La logique propositionnelle a un pouvoir expressif très limité
 - On ne peut pas par exemple exprimer "Les puits entrainent une brise dans les cases adjacentes", à moins de créer un énoncé pour chaque case.

Différents types de logique

Langage	Éléments du langage	Valeurs de vérité
Logique propositionnelle	faits	vrai/faux/inconnu
Logique du premier ordre	faits, objets, relations	vrai/faux/inconnu
Logique temporelle	faits, objets, relations, temps	vrai/faux/inconnu
Théory des probabilités	faits	degré de croyance
Logique floue	faits + degrée de vérité	état interne

Logique du premier ordre

- La logique propositionnelle suppose que le monde est constitué de faits
- La logique du premier ordre suppose que le monde est constitué comme le langage naturelle de :
 - Objets: personnes, maisons, nombres, couleurs, match de foot, guerres, ...
 - Relations :
 - relations unaires ou propriétés : rouge, arrondi, faux, premier, ...
 - relations n-aires : frère-de, plus-grand-que, est-de-couleur, possède,
 - Fonctions: une seule "valeur" pour une "entrée" donnée, e.g., père de, meilleur ami, un de plus que ...
 - . . .

Syntaxe et sémantique

Syntaxe de la logique du premier ordre

• Constantes : 2, Jean, X1, ...

• Prédicats : Frere, >, Avant, ...

• Fonctions : RacineCarre, JambeGauche, ...

• Variables : x, y, a, b, . . .

• Connecteurs : \neg , \land , \lor , \Rightarrow , \Leftrightarrow

• Egalité : =

• Quantificateurs : \forall , \exists

Syntaxe de la logique du premier ordre

• Les énoncés ou formules composées sont construits à partir des énoncés atomiques et des connecteurs

$$\neg S1, \quad S1 \land S2, \quad S_1 \lor S2, \quad S_1 \Rightarrow S2, \quad S_1 \Leftrightarrow S_2$$

- Exemples :
 - Frere(John, Richard) ⇒ Frere(Richard, John)
 - $> (1,2) \lor < (1,2)$
 - $> (1,2) \land \neg > (1,2)$

Syntaxe de la logique du premier ordre

```
Formule atomique = predicate(terme_1, ..., terme_n) ou terme_1 = term_2

Terme = fonction(terme_1, ..., terme_n) ou constant ou variable
```

- Exemples :
 - Frere(John, Richard)
 - > (Longueur(JambeGauche(Richard)), Longueur(JambeGauche(john)))

Sémantique de la logique du premier ordre

- La vérité d'un énoncé est déterminée par un modèle et une interprétation des symboles de l'énoncé
- Un modèle contient des objets (appelés éléments du domaine) qui sont liés entre eux par des relations
- Une interprétation spécifie à quoi réfèrent les symboles de l'énoncé :
 - Symboles de constantes → objets
 - Symboles de prédicats → relations
 - Symboles de fonctions → fonctions
- Un énoncé atomique predicate(terme₁,..., terme_n) est vrai dans un modèle donné, compte tenu d'une interprétation donnée, si la relation predicate s'applique aux objets terme₁,..., terme_n en arguments

Sémantique de la logique du premier ordre

• Considere the interpretation suivante

 $Richard \rightarrow Richard coeur de lion$ $John \rightarrow le roi diabolique John$ $Frere \rightarrow relation fraternelle$

La formule atomique
 Frere(Richard, John) est vrai si est
 seulement si Richard cœur de lion
 et le roi diabolique John sont liés
 par une relation fraternelle

Quantification universelle

• Syntaxe :

∀ ⟨variables⟩⟨formule⟩

• Exemple : Tous les étudiants de Berkeley sont intelligents :

 $\forall x \; Etudiant(x, Berkeley) \Rightarrow Smart(x)$

- Semantique
 - $\forall x \ P$ est vrai dans un modèle m ssi p est vrai pour tous les objets x
 - Autrement dit ∀x P est équivalent à la conjonction de toutes les instanciations de P :

```
 \begin{array}{l} (\textit{Etudiant}(\textit{Paul}, \textit{Berlekey}) \Rightarrow \textit{Intelligent}(\textit{Paul}) \\ \land (\textit{Etudiant}(\textit{Pierre}, \textit{Berlekey}) \Rightarrow \textit{Intelligent}(\textit{Pierre}) \\ \land (\textit{Etudiant}(\textit{Sophie}, \textit{Berlekey}) \Rightarrow \textit{Intelligent}(\textit{Sophie}) \\ \land (\textit{Etudiant}(\textit{Julie}, \textit{Berlekey}) \Rightarrow \textit{Intelligent}(\textit{Julie}) \\ \land \dots \\ \end{array}
```

Sémantique de la logique du premier ordre

- L'inférence en logique propositionnelle peut être réalisée en énumérant les modèles
- Il est également possible d'énumérer les modèles en logique du premier ordre pour une vacabulaire donné :

Pour chaque nombre n de 1 à ∞ Pour chaque predicat P_k d'arité k du vocabulaire Pour chaque constante c du vocabulaire

 Calculer les modèles par énumération en logique du premier ordre n'est pas facile!

Quantification universelle

- Le princial connecteur utilisé avec le quantifieur ∀ est l'implication ⇔
- \bullet Erreur fréquente : utiliser la conjonction \wedge comme connecteur principal avec \forall
 - Exemple :

 $\forall x \; Etudiant(x, Berkeley) \land Intelligent(x)$

signifie "tout le monde est étudiant à Berkeley et tous le monde est intelligent"

Quantification existential

• Syntaxe :

```
∃ ⟨variables⟩⟨formule⟩
```

• Exemple : Quelqu'un à Standford est intelligent :

```
\exists x \; Etudiant(x, Standford) \Rightarrow Smart(x)
```

- Semantique
 - $\exists x \ P$ est vrai dans un modèle m ssi p est vrai pour un obiet x
 - Autrement dit ∃x P est équivalent à la disjonction de toutes les instanciations de P :

```
 \begin{split} & (\textit{Etudiant}(\textit{Paul}, \textit{Berlekey}) \Rightarrow \textit{Intelligent}(\textit{Paul}) \\ & \lor (\textit{Etudiant}(\textit{Pierre}, \textit{Berlekey}) \Rightarrow \textit{Intelligent}(\textit{Pierre}) \\ & \lor (\textit{Etudiant}(\textit{Sophie}, \textit{Berlekey}) \Rightarrow \textit{Intelligent}(\textit{Sophie}) \\ & \lor (\textit{Etudiant}(\textit{Julie}, \textit{Berlekey}) \Rightarrow \textit{Intelligent}(\textit{Julie}) \\ & \lor \dots \end{split}
```

Propritétés des quantifieurs

- 1. $\forall x \ \forall y \ \text{est \'equivalent \'a} \ \forall y \ \forall x$
- 2. $\exists x \exists y \text{ est équivalent à } \exists y \exists x$
- 3. $\exists x \ \forall y \ \text{n'est pas équivalent à} \ \forall y \ \exists x$
 - $\exists y \forall x \; Aime(x, y)$: "Il existe une personne qui est aimé par tout le monde"
 - ∀x∃y Aime(x,y): "Tout le monde aime quelqu'un" (pour toute personne, il existe quelqu'un qu'il aime)
- 4. Les quantifieurs sont duals : ils peuvent s'exprimer en s'utilisant l'un l'autre
 - $\forall x \; Aime(x, Glace)$ est équivalent à $\neg \exists x \; \neg Aime(x, Glace)$
 - $\exists x \ Aime(x, Brocoli)$ est équivalent à $\neg \forall x \ \neg Aime(x, Brocoli)$

Quantification existential

- Le princial connecteur utilisé avec le quantifieur ∃ est la conjonction ∧
- Erreur fréquente : utiliser la conjonction \Rightarrow comme connecteur principal avec \exists
 - Exemple :

```
\exists x \; Etudiant(x, Standford) \Rightarrow Intelligent(x)
```

signifie "il existe une personne qui n'est pas étudiant à Standford"

Exemples de formules

• Des frères font partie de la même fratrie

$$\forall x, y \; Frere(x, y) \Rightarrow Fratrie(x, y)$$

• La relation Frere est symétrique

$$\forall x, y \; Frere(x, y) \Leftrightarrow Frere(y, x)$$

• Une mère est un parent de sex féminin

$$\forall x, y \; Mere(x, y) \Leftrightarrow (Femme(x) \land Parent(x, y))$$

• Un cousin germain est l'enfant d'un frère

$$\forall x, y \; Cousin(x, y) \Leftrightarrow \exists p, f \; Parent(p, x) \land Fere(f, p) \land Parent(f, y))$$

Égalité

- Syntaxe : $terme_1 = term_2$
- Sémantique : $terme_1 = terme_2$ est vrai sous une certaine interprétation si et seulement si $terme_1$ et $terme_2$ font référence à un même objet
- Exemple :
 - 1 = 2 : non valide
 - $\forall x \times (Sqrt(x), Sqrt(x)) = x : valide$
 - 2 = 2 : valide

Utiliser la logique pour résoudre un problème

- 1. Identifier la tâche
- 2. Collecter les connaissances pertinentes
- 3. Choisir le vocabulaire des prédicats, fonctions et constantes
- 4. Encoder les connaissances du domaine
- 5. Encoder une description d'un exemple du problème spécifique
- 6. Soumettre des requêtes à la procédure d'inférence et obtenir des réponses
- 7. Déboguer la base de connaissances

Utiliser la logique du première ordre

Situation calculus

Exemple: Le monde du Wumpus

• Supposons qu'un agent dans le monde du Wumpus utilisant une base de connaissances en logique du premier ordre perçoivent une odeur et une brise mais pas de lumière à l'intant t=5

```
Tell(KB, Percept([Smelt, Breeze, None], 5))
 Ask(KB, \exists a \ Action(a, 5))
```

Quelles actions puis je déduire de la base de connaissances à t = 5?

- Réponse : $\{a/Shoot\}$ \leftarrow substitution (liste d'affectations)
- Étant donné une formule S et une substitution σ , $S\sigma$ est le resultat de l'application de σ à S

```
S = PlusIntelligent(x, y) et \sigma = \{x/Sophie, y/Paul\}
S\sigma = PlusIntelligent(Sophie, Paul)
```

• Ask(KB, S) retourne un ou plusieurs σ tels que $KB \models S\sigma$

Exemple : Le monde du Wumpus

• Propriétés de positions

```
\forall x, t \ At(Agent, x, t) \land Smelt(t) \Rightarrow Smelly(x)
\forall x, t \ At(Agent, x, t) \land Breeze(t) \Rightarrow Breesy(x)
```

- Les cases sont venteuses près d'un puit :
 - Régle de diagnostique : infère les causes à partir des effets

```
\forall y \; Breezy(y) \Rightarrow \exists x \; Pit(x) \land Adjacent(x, y)
```

• Règle de causalité : infère les effets à partir des causes

```
\forall x, y \ Pit(x) \land Adjacent(x, y) \Rightarrow Breezy(y)
```

- Remarque : ces règles ne sont pas complètes, e.g., la règle de causalité n'indique pas qu'il faut fuire les cases venteuses
- Définition du prédicay Breezy

```
\forall y \; Breezy(y) \Leftrightarrow [\exists x \; Pit(x) \land Adjacent(x, y)]
```

Exemple: Le monde du Wumpus

Perceptions

```
\forall b, g, t \ Percept([Smelt, b, g], t) \Rightarrow Smelt(t)
\forall s, b, t \ Percept([s, b, Glitter], t) \Rightarrow AtGold(t)
```

Réflexe

```
\forall t \ AtGold(t) \Rightarrow Action(Grab, t)
```

- Réflexe avec état interne : a t-on déjà l'or?
 ∀t AtGold(t) ∧ ¬Holding(Gold, t) ⇒ Action(Grab, t)
- Remarque : Holding(Gold, t) ne peut pas être observé ⇒ nécessité de garder en mémoire les changements

Garder la trace du changement

- Les faits sont vérifiés en situation et non dans l'absolue Holding (Gold, Now) vs. Holding (Gold)
- Situation calculus est une façon de représenter le changement en logique du premier ordre :
 - Ajouter un argument de situation à chaque prédicat non interne, e.g.,
 Now dans le prédicat Holding (Gold, Now) représente une situation
- Les situations ou les états sont reliés par la fonction Result
- Result(a, s) est la situation qui résulte de l'application de l'action a dans s

Décrire les actions (1/2)

- L'axiome d'effets : décrit les changements du à l'action
 ∀s AtGold(s) ⇒ Holding(Gold, Result(Grab, s))
- l'axiome de cadre (Frame) : décrit les propriétés du monde qui ne changent pas

```
\forall s \; HaveArrow(s) \Rightarrow HaveArrow(Result(Grab, s))
```

- Le problème du cadre : trouver une manière élégante de représenter ce qui ne change pas
 - 1. représention \rightarrow éviter les axiomes de cadre
 - 2. inférence \rightarrow éviter les règles redondantes permettant de concerver les traces du changement
- Le problème de qualification : problème lié à la description exhautive des conditions nécessaires au déclanchement d'une action
- Le problème de ramification : problème lié à la description exhautive des effets d'une actions

Élaborer des plans

• État initial de la base de connaissances KB :

```
At(Agent, [1, 1], S_0)

At(Gold, [1, 2], S_0)
```

- Question : Ask(KB, ∃s Holding(Gold, s))
 i.e., dans quel état ou situation j'aurai en ma possession l'or?
- Réponse : {s/Result(Grab, Result(Forward, S₀))} i.e., avance et ensuite rammasse l'or
- Cette exemple suppose que
 - 1. l'agent désire trouver un plan en partant de la situation S_0
 - 2. S_0 soit la seule situation décrite dans la base de connaissances

Décrire les actions (2/2)

• L'axiome de l'état successeur résoud le frame problème

```
P est vrai après \Leftrightarrow [une action a pour effet P
\lor P est vraie et aucune action produit l'effet \neg P]
```

• Exemple :

```
\forall a, s \; Holding(Gold, Result(a, s)) \Leftrightarrow
[(a = Grab \land AtGodl(s))
\lor (Holdind(Gold, s) \land a \neq Release)]
```

Élaborer des plans : une meilleure manière

- Représenter les plans commes des séquences d'actions $[a_1, a_2, \ldots, a_n]$
- PlanResult(p, s) est le résultat de l'exécution de p dans s
- Alors la question

```
Ask(KB, \exists p \ Holding(Gold, PlanResult(p, S_0)))
```

la réponse est

```
{p/[Forward, Grab]}
```

• Définition de *PlanResult* en termes de *Result* :

```
\forall s \ PlanResult([], s) = s
\forall a, p, s \ PlanResult([a|p], a) = PlanResult(p, Result(a, s))
```

• Les planificateurs sont des systèmes spécialement conçus pour résoudre efficacement ce type de problème

Conclusion

- Logique du première ordre
 - Les objets et relations sont des primitives de la sémantique
 - Syntaxe : constantes, fonctions, prédicats, égalité, quantifieurs
- Augmentation du pouvoir expressif
 - Suffisant pour représenter le monde du Wumpus
- Situation calculus
 - Convention pour décrire des actions et des changements en logique du première ordre
 - Permet d'effectuer de la planification, i.e., inférer les actions à exécuter en fonction d'un but à partir d'une base de connaissances