PLANET project

Plant and soiL heAlth iNdicators from an agroEcological perspecTive for sustainable rice production in Cambodia

PPNs cause serious losses in rice production

- rice yield losses due to PPN range from 10% to 25% worldwide
- Southeast Asia produce 90% rice production
- Pesticide is the most common method to control PPN in Cambodia

PPN infected rice field

=> shift of Cambodian rice farming systems towards a sustainable and safe production

Conservation agriculture in Cambodia

- Minimum soil perturbation
- Permanent soil cover
- Crop rotation
- => maintain biodiversity of soil organisms
- => relies on natural processes
- => increase yield

CA (no tillage + cover crops)CT (conventional tillage + no cover crop)

Which PPNs are present in Stung chinit?

Method: - ITS/18S/28S metabarcoding

- Shot-gun sequencing

Database: SILVA, ntNCBI, rice PPN references

Sample: Nematode population from rice root Phka Rumduol

3 genus among 24 parasitic nematode in rice were found:

Genus	Amplicon read coverage	Shot-gun reads coverage
Meloidogyne	48252	6405
Hirschmanniella	1321	16
Tylenchorhynchus	1074	11

- Does CA allow to reduce PPN or make plant tollerant to PPN?
- CA has specific microbiome that participate in the biocontrol of this pest?

Sample: Nematode population colected from 4 varieties in CA and CT practice

Method: microscopic observation

Masson et al. unpublished data

Which microorganisms can control PPN?

Life cycle (18 – 35 days)

- Nematode, bacteria, fungi and other protists can control PPN
- Microorganisms in roots, rhizosphere, and endosymbiont can has impact on PPN living and infection
- Root-knot nematode spend most of lifecycle inside the roots => Roots µbiome and endosymbiont should has more impact on PPN ?

Amplicon barcoding in Stung chinit samples under CT and CA

- 1 field managed under 2 types of **practices**:
- •CA (no tillage + cover crops)
- •CT (conventional tillage + no cover crop)

Rice varieties	Species	Host of Mg?	Replications	Compartments	
IR64	O.s. indica	Susceptible			
IR504	O.s. indica	Susceptible	4 reps per	Root and	
Azucena	O.s. japonica	Susceptible	practices	Rhizosphere	
Zhonghua	O.s. japonica	Resistance			

Compartment	#Samples	DNA extraction	μ biome	Amplicon barcode	Database
Root	32		Nematode	185	SILVA/ntNCBI/ rice PPN refs
Rhizosphere 32	PowerSoil kit	Fungi	ITS	UNITE/ntNCBI	
		Bacteria	16S	SILVA/ntNCBI	

Nematode population on roots

Using ntNCBI database

Using SILVA database

Using homemade rice PPNs references

	CA		СТ		
	Genus	#reads	Genus	#reads	
Azucena	Hirschmanniella	59031	Hirschmanniella	92153	
	Meloidogyne	28	Meloidogyne	321	
IR504	Hirschmanniella	58548	Hirschmanniella	46828	
			Meloidogyne	753	
IR64	Hirschmanniella	49021	Hirschmanniella	57023	
	Meloidogyne	492	Meloidogyne	516	
Zonghua	Hirschmanniella	54764	Hirschmanniella	58516	
			Meloidogyne	119	

Pratylenchidae (*Hirschmanniella*) is the most abundance which is not the case

=> DNA extraction methods does not allow to retrieve all nematode DNA!

Diversity of the **fungi** communities

- Compartment level: Richness and diversity higher in Rhizosphere
- Practice level: Richness higher in CA
- Cultivar level: Higher richness in CA in all cultivar

Differential taxonomic enrichments of fungi in roots

Log2FC(absolute abundance)

Diversity of the **bacteria** communities

Roots

Rhizosphere

- Practice level:
 - In Rhizosphere: Richness CA >> CT
 - In roots: Richness and diversity CT >> CA
- Cultivar level: Richness and diversity is not always higher in CT in all cultivar

Shanon index

Differential taxonomic enrichments of bacteria in roots

Sulfurisoma sediminicola
Acinetobacter brisouii

-5.0

Log2FC(absolute abundance)

Amplicon barcoding for endosymbionts of Mg

^{*}Meloidogyne graminicola genome coverage (600x)

Potential set of endosymbionts of Mg

Relative abundance of 9 bacteria species found in four Nematode sample

Main messages and remaining questions

- 1. Both CA and CT practices showed **higher** richness and divesity of microbiome (fungi and bacteria) in **rhizosphere** than root
- 2. on roots: CA practices associated to higher richness and diversity of fungi community compare to CT
- 3. on roots : CA practices associated to **lower** richness and diversity of **bacteria** community on roots compare to CT
- 4. Specific microbiome (fungi and bacteria) associated to rice roots under CA and CT were found
 - ? Do they have nematicide/ antagonist activity
 - ? Do they promote plant development?
- 5. A set of potential bacterial endosymbiont of Mg was detected
 - ? How they impact Mg infection to plant? Do they participate to promote plant development ?

Future works

- Do CA practice resulted in promoting plant developments and/or reduction of PPN?
 - 1. study CA between different fields/ rice agro-ecosystems
 - (i) Kampong Thom (Stung-chinit, irrigated rice on sandy soil),
 - (ii) Preah Vihear (rain fed upland and irrigated rice on upper terraces)
 - (iii) Battambang (irrigated rice on clayed soils)
 - 2. cultivable method to test biocontrol activity and soil suppressiveness (reduction of the ability of PPNs to infect rice plants) of specific microbiome (fungi and bacteria) associated to rice roots under CA
 - 3. cultivable method to test PGPB and PGPF activities of fungi and bacteria in rice
- Do Mg microbiome impact to plant microbiom that resulting in promoting plant development?
 - 1. More replications of *Mg* microbiome samples
 - 2. Detection of bacteria/fungi in *Mg* (using FISH/microscopic flourescence)
 - 3. Cultivable method and infect in Rice => PGPR effect?

THANK YOU

6 samples:

Nematode Nem_IR64 Nem_Zh

Galls (infected) Gall_IR64 Gall_Zh

Roots (non-infected) Root_IR64 Root_Zh

Differential taxonomic enrichments of fungi in roots under CA and CT

Amplicon barcoding for endosymbionts of Mg

^{*}Meloidogyne graminicola genome coverage (600x)

6 samples:

Nematode Nem_IR64 Nem_Zh

Galls (infected) Gall_IR64 Gall_Zh

Roots (non-infected) Root_IR64 Root_Zh