MTHE 474 Notes

Timothy Liu September 15, 2022

Chapter 2

Information Measures for Discrete Systems

Definitions

• **Definition 2.2:** Entropy of discrete random variable X with pmf $P_X(*)$ is defined as

$$H(x) := -\sum_{x \in X} P_X(x) * \log_2 P_X(x)$$

• **Definition 2.2:** Entropy of discrete random variable X with pmf $P_X(*)$ is defined as

$$H(x) := -\sum_{x \in X} P_X(x) * \log_2 P_X(x)$$

• Definition 2.8 (Joint entropy):

$$H(X,Y) := -\sum_{(x,y)\in\mathcal{X}\times\mathcal{Y}} P_{X,Y}(x,y) * \log_2 P(X,Y)(x,y)$$

• Definition 2.9 (Conditional entropy):

$$H(Y|X) := \sum_{x \in \mathcal{X}} P_X(x) (-\sum_{y \in \mathcal{Y}} P_{Y|X}(y|x) * \log_2 P_{Y|X}(y|x))$$

Lemmas/Theorems

• Lemma 2.4 (Fundamental Inequality): $\forall x > 0$ and D > 1 we have

$$\log_D(X) \le \log_D e * (x - 1)$$

- Lemma 2.5 (Non-negativity): $H(X) \ge 0$
- Lemma 2.6 (Entropy Upper-Bound): $H(X) \leq \log_2 |\mathcal{X}|$ where random variable X takes values from finite set \mathcal{X}
- Lemma 2.7 (Log-Sum inequality) Write this one out later
- Theorem 2.10 (Chain rule for entropy): H(X,Y) = H(X) + H(Y|X)

Mutual Information

Definitions

• Definition 2.2.1 (Mutual Information):

$$I(X;Y) := H(X) - H(X|Y)$$

• Definition 2.2.2 (Conditional Mutual Information):

$$I(X;Y|Z) := H(X|Z) - H(X|Y,Z)$$

Lemmas

• Lemma 2.15 (Properties of Mutual Information):

1.
$$I(X;Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P_{X,Y}(x,y) \log_2 \frac{P_{X,Y}(x,y)}{P_X(x)P_Y(y)}$$
 (1)

2.
$$I(X;Y) = I(Y;X) = H(Y) - H(Y|X)$$
 (2)

3.
$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$
 equality iff X is a function of Y (3)

$$4. I(X;Y) \le H(X) \tag{4}$$

5.
$$I(X;Y) \le 0$$
 with equality iff X and Y are independent (5)

$$6. I(X;Y) \le \min\{\log_2 |\mathcal{X}|, \log_2 |\mathcal{Y}|\} \tag{6}$$

• Lemma 2.16 (Chain Rule for Mutual Information):

$$I(X;Y,Z) = I(X;Y) + I(X;Z|Y) = I(X;Z) + I(X;Y|Z)$$

• Theorem 2.17 (Chain Rule for entropy): $X^n := (X_1, \dots, X_n)$ and $x^n := (x_1, \dots, x_n)$

$$H(X^n) = \sum_{i=1}^n H(X_i|X^{i-1})$$