Orienterede acykliske grafer

Erik Gahner Larsen

Kausalanalyse i offentlig politik

Dagsorden

- Kausalitet og orienterede acykliske grafer
- Terminologi
- Applikationer
- ▶ Potentielle udfald, validitet og orienterede acykliske grafer

Seminaropgaven

- Næste deadline: I dag
- Omkring 5 sider
- ► Indhold:
 - ► Kort beskrivelse af emne
 - Gerne én eller to konkrete ideer
 - ▶ En reference eller to til relevant litteratur
- ► Send til: egl@sam.sdu.dk

Kausalmodeller

- Lektion 3: Rubins kausalmodel
 - ► Fokus på potentielle udfald
 - Definition af en kausaleffekt
 - Antagelser (SITA, SUTVA)
- Lektion 4: Campbells kausalmodel
 - Validitetstypologi
 - Forskellige validitetsbegreber
 - Validitetstrusler
- ▶ I dag: Pearls kausalmodel
 - Grafteori
 - ► Ikke-parametrisk stianalyse
 - Kompatibelt med Rubins kausalmodel

Kausaleffekter: Mange veje til Rom

- Vi er interesseret i kausale mekanismer
 - Mange måder hvorpå de kan studeres
 - Orienterede acycliske grafer
 - En god måde at formulere kausale ideer og evaluere deres konsekvenser
- Simple regler som alle relevante kontrolvariable siger os ikke meget
- ► Hovedpointe: Der er mange måder hvorpå man identificere en kausal effekt
 - ▶ Vi skal kigge på tre identifikationsstrategier vha. DAG

Fire relationer mellem to variable

- X og Y kan være forbundne til hinanden på fire måder
 - ightharpoonup Direct causation: $X \to Y$
 - ▶ Reverse causation: X ← Y
 - ▶ Confounding: $X \leftarrow C \rightarrow Y$
 - $\blacktriangleright \ \, \mathsf{Collider} \colon \, \mathsf{X} \to \mathsf{C} \leftarrow \mathsf{Y}$
- (Beklager, mange engelske begreber)

Directed acyclic graphs (DAGs)

- DAG
 - Directed acyclic graphs/orienterede acycliske grafer
 - Kausalmodel, graf uden kredse
 - Kausale grafer der forbinder variable gennem pile
 - ▶ Framework til at forstå konditionelle korrelationer
- Ekspliciterer kausale antagelser omkring relationen mellem variable (nodes)
 - ► En kvalitativ kausalmodel omkring verden
- Kan bruges til at udlede (partielle) korrelationer mellem variable i modellen
 - Belyse hvilke korrelationer der er af kausal karakter
 - ▶ Belyse hvilke korrelationer der ikke er af kausal karakter

DAGs: Tre overordnede elementer

- 1. Variable (nodes)
- 2. Pile (edges, arcs)
- 3. Manglende pile (stærke antagelser)

DAG, eksempel

Node

- Node: Variabel
- ▶ Illustreret med et bogstav (A, B, C etc.)
- Observeret stokastisk variabel
 - ► Representeret med fyldte cirkler (•)
- Uobserveret stokastisk variabel
 - Representeret med hule cirkler (o)

Pile (directed edges/arcs)

- ► En pil i én retning der går fra en node til en anden
 - Forbinder to nodes
 - Mulige kausale effekter
 - Indikerer retningen på en kaual relation
- Manglende pile er afgørende antagelser
- Der er også pile der fører til to nodes (bidirected edges)
 - Kurvet sti der viser en uobserveret node der påvirker to nodes

Sti (path)

- ▶ En sti er en sekvens af pile, der forbinder to nodes
 - En sti krydser ikke en node mere end en gang
- Stier kan være åbne eller lukkede (eksempler følger!)
 - ▶ Alle stier driver en forbindelse med mindre de er blokeret
 - Blokerede stier kan få fjernet deres blokering
 - En sti med colliding pile er lukket
 - Betinger ("condtions") man på en collider (evt. kontrollerer i en regression), åbner stien (fjerner blokeringen)
 - Også for nodes der er direkte eller indirekte påvirket af den pågældende node
 - (kontrollerer man på en node der påvirkes af en collider, åbner stien)
 - Betinger man på en ikke-collider, lukker stien
 - Betinger man ikke på en collider, forbliver den lukket
- Forskellige stier
 - ► Back-door paths, front-door paths

Hvorfor DAGs?

- ▶ Formelt *og* generelt framework
- Eksplicit valg og fravalg af variable i empiriske analyser
 - Fokus på kausale antagelser
- Kan bruges til at udlede implikationer
- Perfekt til at illustrere mange udfordringer ift. kausal inferens
 - Især mere komplekse kausalmodeller
- ► En masse figurer (kan forstås uden algebra)
- Kan bruges til at visualisere og sammenligne forskellige identifikationsstrategier (Steiner et al. 2015)
- Kan bruges til at repræsentere nødvendige og tilstrækkelige kausale relationer (kendt fra QCA, process tracing m.v.)

Cyklisk graf (ikke en DAG)

Orienteret acyclisk graf

- ▶ DAG er orienteret så det ikke er muligt at følge pilene og ramme den samme node igen
- ► Ingen simultanitet
 - Vi tillader ikke at to variable simultant påvirker hinanden direkte eller indirekte
- ► Tænk tid: Fremtiden kan ikke forårsage fortiden
- Hvis man er interesseret i feedbacks: komplekst!

Hvordan ikke-parametrisk?

- Ikke-parametrisk fordi der ikke er nogle antagelser omkring parametrene i modellen
- Mere specifikt ingen antagelser omkring:
 - 1. Distributionen af variablene i DAG
 - 2. Den funktionelle form

DAGs, tre elementer

- ▶ Alle DAGs kan konstrueres af tre elementer:
 - Chains

Forks

$$\blacktriangleright \ X \leftarrow C \rightarrow Y$$

Inverted forks

$$X \rightarrow C \leftarrow Y$$

- ▶ De elementer skaber korrelationer via:
 - Kausalitet
 - Confounders
 - Colliders

DAGs, tre elementer

(b) Mutual dependence

Mere terminologi: familiestrukturen

- ▶ Descendent, child, ancestor, parent, grandparent
 - ightharpoonup Eksempel: A ightharpoonup B ightharpoonup C
- Parents af en node: alle nodes der direkte påvirker en node
 - ▶ pa(C) = {B}
- Grandparents af en node: alle nodes der påvirker parents
- Children af en node: alle nodes direkte påvirket af en node
 - ▶ child(A) = {B}
- Descendants af en node: alle nodes direkte eller indirekte påvirket af en node
 - ▶ desc(A) = {B, C}
- ► Ancestors af en node: alle nodes der direkte eller indirekte påvirker en node
 - ▶ an(C) = {A, B}

Conditioning

- ► Kan finde sted i analysestadiet eller i dataindsamlingsprocessen
- Betinge en node, conditioning
 - Overordnet: introducere information omkring en variabel i analysen
- Kan finde sted på mange måder i praksis
 - Kontrol (regression)
 - Stratificering (krydstabulering)
 - Subgroup analyse (split sample)
 - Stikprøveudvælgelse
 - ► Frafald etc.

Collider

- Collider: En node hvor to eller flere pile mødes
 - Colliders er i relation til en path, ikke én edge
- ► Enhver endogen variabel der har to eller flere årsager er en collider i en sti
 - Endogene variable er ofte colliders
 - Desværre ikke noget politologer fokuserer meget på
- Et af de vigtigste koncepter med væsentlige implikationer!
 - En brugbar indsigt fra Pearl's framework
 - Relateret til selektion på den afhængige variabel og betingning på en endogen variabel
 - Altså hvad der finder sted i mange studier

d-seperation og d-connection

- d-seperation: grafisk test for om to sets af nodes er uafhængige efter kontrol for et tredje set
 - d = directional
 - udleder testbare implikationer af en model
- ► To nodes er d-connected hvis der er en åben sti mellem dem
 - ▶ Blokeret, d-seperated, ingen forbindelse
 - ▶ Ikke blokeret, d-connected, forbindelse
- Hvis to variable er d-seperated: statistisk uafhængige efter kontrol for en eller flere variable (ingen partiel korrelation)
 - Hvis to variable ikke er d-seperated: afhængige, åbne, d-connected

d-seperation og d-connection

- ▶ Eksempel: $A \rightarrow B \rightarrow C \rightarrow D \leftarrow E \leftarrow F \rightarrow G$
 - ► Collider: D
 - ► A-B-C-D er ikke blokeret, så A og D er d-connected
 - ▶ D-E-F-G er ikke blokeret, så D og G er d-connected
 - ► A og G er d-seperated
 - Ved at betinge på D, åbnes stien og A og G er d-connected

Betinge på en collider

- "Conditioning on a collider"
 - Berksons Paradoks
- Conditioning på en collider kan skabe en spuriøs korrelation mellem de to nodes i en inverted fork
- ▶ I praksis: Vi kan ikke bare inkludere et hav af kontrolvariable i en regressionsmodel og undgå spuriøse korrelationer
 - Vi kan tværtimod skabe spuriøse korrelationer

Eksempel: Regression, confounder og collider

- Hvilke variable er det OK at kontrollere for?
 - Confounders, generelt OK
 - Colliders, farligt!
 - Og hvis collideren er en del af dataudvælgelsen, kan det ikke klares i analysen

Conditioning på en confounder (generelt OK)

Eksempel: Regression, confounder og collider (Ogorek 2016)

Eksempel: Regression (Ogorek 2016)

Confounding

```
N <- 100000

w <- rnorm(N)

x <- .5 * w + rnorm(N)

y <- .3 * w + .4 * x + rnorm(N)</pre>
```

Eksempel: Regression (Ogorek 2016)

Confounding

```
summary(lm(y ~ x))$coef
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.000608 0.00327 0.186 0.852
## x 0.518146 0.00293 176.758 0.000
```

Confounding

```
summary(lm(y \sim x + w))$coef
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0016 0.00316 0.506 0.613
## x 0.3984 0.00316 125.921 0.000
## w 0.2983 0.00352 84.742 0.000
```

Collider

```
x <- rnorm(N)

y <- .7 * x + rnorm(N)

w <- 1.2 * x + .6 * y + rnorm(N)
```

Collider

```
summary(lm(y ~ x))$coef
```

Collider

```
summary(lm(y \sim x + w))$coef
```

Eksempel: College

- SAT score (A, test score)
- Motivation (B, interview rating)
- College (C = 1 for dem der er optaget på college, C = 0 for dem der er afvist)
- ► College er en collider
 - $\blacktriangleright \ \mathsf{A} \to \mathsf{C} \leftarrow \mathsf{B}$
- ▶ Ingen relation mellem A og B ($\rho = .035$)
- ▶ A og B påvirker C hver $(\rho (A,C) = .641, \rho (B,C) = .232)$
- ▶ Betinger vi på C, får vi en **negativ** korrelation mellem A og B

Eksempel: College

Tre typer af bias

- Overcontrol
 - Betinge på confounders i en sti
- Confounding bias
 - ► Ikke at betinge på bagvedliggende nodes
- Collider bias
 - Betinge på colliders

Hvordan kan vi identificere en kausal effekt?

- ► Tre ikke-udtømmende måder
 - Strategi I: Conditioning
 - Conditioning på variable der blokerer alle back-door stier
 - Strategi II: Instrumentelle variable
 - Eksogen variation i en IV
 - Strategi III: Front-door kriterier (mediatorer)
 - Find en isoleret og udtømmende node (eller flere nodes) der medierer effekten

Back-door path

- ► En back-door sti fra X til Y er en sti der har en direkte edge til X der er en *ancestor* til X
- ► En kausal effekt af X på Y kan identificeres ved at betinge effekten på en observeret variabel der blokerer back-door stier
- Forskellige strategier
 - Kontrol
 - Instrumentel variabel
 - Mediatorer

Back-door kriterier

- Hvis en eller flere back-door stier forbinder to nodes (T og Y), kan det at betinge på en tredje variabel kun virke hvis alle back-door stier mellem de to nodes blokeres
- Applicerbar algoritme
 - 1. Find alle back-door stier, der forbinder T og Y
 - Undersøg om disse blokeres naturligt
 - Hvis ja, identifikation
 - 3. Undersøg om de ikke-blokerede stier kan blokeres ved at betinge nodes der ikke er descendants af T
 - Hvis ja, fortsæt; hvis nej, ingen identifikation
 - 4. Undersøg om blokeringen i Step 3 åbnede ikke-kausale stier og undersøg om disse kan blokeres
 - Hvis ja, fortsæt; hvis nej, ingen identifikation
 - 5. Undersøg om nogle variable der skal betinges på for at blokere en back-door sti er på stien mellem T og Y eller er descendants af en variabel på stien mellem T og Y
 - ► Hvis ja, ingen idenfitikation; hvis nej; identifikation

Eksempel: Lagged variable, back-door

Eksempel: Lagged variable, back-door

- Ofte bruger vi en lagged afhængig variabel
 - Y_{t-1}
- ▶ To back-door stier fra D til Y

$$\triangleright$$
 $D \leftarrow V \rightarrow Y_{t-1} \rightarrow Y$

$$\blacktriangleright \ \ D \leftarrow V \rightarrow Y_{t-1} \leftarrow U \rightarrow Y$$

- $ightharpoonup Y_{t-1}$ opfylder ikke back-door kriteriet
 - ▶ Blokerer $D \leftarrow V \rightarrow Y_{t-1} \rightarrow Y$, men ikke $D \leftarrow V \rightarrow Y_{t-1} \leftarrow U \rightarrow Y$
- ▶ Hvad sker der ved at kontrollere for Y_{t-1} ?
 - COLLIDER!!!
 - ► Hvilke nodes?

Front-door

- ▶ Identifikation ved hjælp af en mekanisme
- Z opfylder front-door kriteriet når:
 - ▶ Z blokerer alle *direkte* stier fra X til Y
 - Der ikke er nogle åbne back-door stier fra X til Z
 - X blokerer alle back-door stier fra Z til Y

Simpelt eksempel på front-door

Øvelse: Hvad er hvad?

- U er en [child/parent] til X og Y
- X og Y er [descendants/ancestors] af Z
- ▶ Der er en [direkte/ingen] sti fra Z til Y
- Der er [to/ingen] stier fra Z til U
- lacksquare X er en [collider/ikke-collider] i stien $Z \to X \leftarrow U$
- ightharpoonup X er en [collider/ikke-collider] i stien $Z \to X \to Y$

Øvelse: Hvad er hvad?

- ► U er en [child/parent] til X og Y
- X og Y er [descendants/ancestors] af Z
- Der er en [direkte/ingen] sti fra Z til Y
- ▶ Der er [to/ingen] stier fra Z til U
- ▶ X er en [collider/ikke-collider] i stien $Z \rightarrow X \leftarrow U$
- lacksquare X er en [collider/ikke-collider] i stien $Z \to X \to Y$

do(x) operator

- Kontrafaktisk kausalitet i DAGs
- Operatoren erstatter en stokastisk variabel X med en konstant x
 - ▶ Tænk eksperiment, x = 1 (stimuli) og x = 0 (kontrol)
 - Fjerner alle edges der pejer til X
- Bemærk: Kræver ikke at X er manipulerbar!
 - ► Kan eksempelvis være køn

Kausaleffekt af X på Y (Pearl 2007)

- Vi kan bruge do-operatoren til at beskrive back-door og front-door kriterierne
- ightharpoonup Pr(Y|do(X=x))
- Kontrolvariable: S
- ► Back-door kriteriet: $Pr(Y|do(X=x)) = \sum_{s} Pr(Y|X=x, S=s) Pr(S=s)$
- Front-door kriteriet:

$$Pr(Y|do(X=x)) = \sum_{s} Pr(Y|S=s, X=x) \sum_{x'} Pr(Y|X=x', S=s) Pr(X=x')$$

Hvad skal vi betinge på for at identificere effekten af D på Y?

Hvad skal vi betinge på for at identificere effekten af D på Y?

- ► To back-door stier mellem D og Y
 - $\blacktriangleright \ \mathsf{D} \leftarrow \mathsf{A} \leftarrow \mathsf{V} \rightarrow \mathsf{F} \rightarrow \mathsf{Y}$
 - $\blacktriangleright \ \mathsf{D} \leftarrow \mathsf{B} \leftarrow \mathsf{U} \rightarrow \mathsf{A} \leftarrow \mathsf{V} \rightarrow \mathsf{F} \rightarrow \mathsf{Y}$
- A er collider i den anden back-door sti.
- F. F overholder back-door kriteriet, så vi kan identificere effekten af D på Y
- 2. A og B. A er en midtervariabel i D \leftarrow A \leftarrow V (og kan dermed blokere V). B er midtervariabel i D \leftarrow B \leftarrow U. A er dog også en collider variabel (U \rightarrow A \leftarrow V), så ved at betinge kun på A, vil vi åbne den anden back-door.
 - ► Altså: A og B

Hvilken node vil være et godt instrument?

Hvilken node vil være et godt instrument?

- ▶ C. Eksogen variation i D der overholder front-door kriterie
- ▶ Den eneste effekt C kan have på Y er gennem D

Opsummering

- ▶ DAG faciliterer diskussioner omkring antagelser ifm. kausal inferens
- ▶ DAG gør os bevidst omkring, at vi ikke skal inddrage alle variable i en analyse, for at identificere en kausal effekt
 - Vi skal fokusere på en bestemt sti
- ▶ Igen: Mange veje til Rom
 - Forskellige identifikationsstrategier tilgængelig i den samme DAG
- Mere forklarende model for kausalitet: Eksplicit beskrivelse af under hvilke betingelser X forårsager Y

Er der nogle ulemper?

- ▶ Ingen DAG er bedre end de antagelser, der gøres
- Kausale antagelser er ofte svage og kan ikke ekspliciteres med den præcision, der kræves
- ▶ I "virkeligheden" skal vi ofte gøre os parametriske antagelser for at estimere kausale effekter
- Det antages at der er effektheterogenitet (igen: ingen antagelser omkring parametre)

Tre kausalmodeller: ligheder og forskelle

Se tabel

Øvelse: Hvorfor kan vi identificere $X \rightarrow Y$? (Pearl 1995)

Øvelse: Hvorfor kan vi ikke identificere X \rightarrow Y? (Pearl 1995)

Næste gang

- I dag var sidste gang om kausale modeller
 - ▶ Potentielle udfald
 - Validitetstypologi
 - Directed acyclic graphs (DAGs)
- ▶ Næste gang: Præsentation af seminaropgave
- Mandag, samme tid og sted

Næste gang: præsentation af idé

- Jeg holder en miniforelæsning
- ► Efterfulgt af præsentationer:
 - ▶ 10 minutter (max)
 - Slides
 - ► Kontekst (emne)
 - ► Teori (hypotese)
 - Metode (design)
 - Videre overvejelser