Enter the frequency of the 3rd positive frequency peak (1 mark) *
Your answer
Enter the amplitude of the 1st positive frequency peak (accurate to 3 significant * figures) (1 mark) Your answer
Enter the amplitude of the 2nd positive frequency peak (accurate to 3 significant * figures) (1 mark) Your answer
Enter the amplitude of the 3rd positive frequency peak (accurate to 3 significant * figures) (1 mark) Your answer
Enter the phase angle (in degrees) of the 1st positive frequency peak (1 mark) * Your answer
Enter the phase angle (in degrees) of the 2nd positive frequency peak (1 mark) * Your answer

Enter the phase angle (in degrees) of the 3rd positive frequency peak (1 mark) *	
Your answer	

RC filter design
Design a first order RC low-pass filter with a cut-off frequency of 100 Hz Total: 10 marks
By setting R = 1000 Ohm, calculate the value of C in microFarad (μF), accurate to * 4 significant figures. (2 marks) Your answer
Refer to the PDF document titled "Standard_Capacitor_Values.pdf". Using 3 * standard capacitors, what is the closest you can get to the value of C as reported in the previous question? (2 marks) Your answer
Create a first order Butterworth low-pass filter in Python with a cut-off frequency * of 100 Hz, using scipy.signal.butter.
Compare the Bode plots of your RC filter and your Butterworth filter, and complete the following (6 marks)
The Bode plot magnitude graphs are different
The Bode plot phase angle graphs are identical
The Bode plot phase angle graphs are different
The Bode plot magnitude graphs are identical
Other:

Python filter implementation	
Apply your first order Butterworth low-pass filter to your time domain signal, and calcula the FFT of the filtered signal. Compare the peak frequency amplitudes with those you calculated in Section 2 Total: 8 marks	te
Enter the amplitude of the 1st positive frequency peak of the filtered signal (accurate to 3 significant figures) (1 mark) Your answer	*
Enter the amplitude of the 2nd positive frequency peak of the filtered signal	*
Enter the amplitude of the 2nd positive frequency peak of the filtered signal (accurate to 3 significant figures) (1 mark)	
Your answer	
Enter the amplitude of the 3rd positive frequency peak of the filtered signal (accurate to 3 significant figures) (1 mark)	*
Your answer	

According to you, is the low-pass filter effective in filtering out the 3rd peak frequency? (1 mark)
○ No
Somewhat
○ Yes
Other:
What can be done to increase the effectiveness of the low-pass filter (2 marks) *
Nothing, the filter is effective
Increase the filter order
Reduce the cut-off frequency
Other:
Compare the phase angles of the frequency components of the filtered signal to * that of the unfiltered signal (as reported in Section 2). The differences are caused by (2 marks):
O Phase angle distortion from using the low-pass filter
O Aliasing
Random errors characteristic of the FFT algorithm