3. Determina

$$\Gamma = \{(p_0
ightarrow p_1) \land (p_2
ightarrow p_3), p_1 \lor p_3
ightarrow p_4,
eg p_4\} \ lpha =
eg (p_0 \lor p_4)$$

Determinar $\Gamma \models \alpha$

Por demostrar que Γ implica lógicamente a α .

Vamos a afirmar el antecedente y negar consecuente para llagar a una contradicción.

$$p
ightarrow q$$
 $op
ightarrow ot \equiv ot$

Tenemos que

$$\underbrace{\left(\left(\left(p_{0} \rightarrow p_{1}\right) \land \left(p_{2} \rightarrow p_{3}\right)\right) \land \left(p_{1} \lor p_{3} \rightarrow p_{4}\right) \land \neg p_{4}\right)}_{\text{antecedente}} \rightarrow \underbrace{\neg \left(p_{0} \lor p_{4}\right)}_{\text{consecuente}}$$

Por lo tanto

$$egin{aligned} \underbrace{\left(\left(\left(p_0
ightarrow p_1
ight)\wedge\left(p_2
ightarrow p_3
ight)
ight)\wedge\left(p_1ee p_3
ightarrow p_4
ight)\wedge\lnot p_4
ight)}_{ op}
ightarrow \underbrace{\lnot\left(\left(\left(p_0
ightarrow p_1
ight)\wedge\left(p_2
ightarrow p_3
ight)
ight)\wedge\left(p_1ee p_3
ightarrow p_4
ight)\wedge\lnot p_4
ight)}_{ op}\equiv oxdot \\ \lnot\left(\left(p_0ee p_1
ight)\wedge\left(p_2
ightarrow p_3
ight)
ight)\wedge\left(p_1ee p_3
ightarrow p_4
ight)\wedge\lnot p_4
ight)\equiv oxdot \end{aligned}$$

La tabla de verdad para $\neg \Big(p_0 \lor p_4 \Big)$

p_0	p_4	$\neg (p_0 \vee p_4)$
0	0	1
0	1	0
1	0	0
1	1	0

Solo nos fijaremos en las casos donde el resultado sea 0.

Ahora vamos a intentar hacer verdadero a $\left(\left((p_0\to p_1)\wedge(p_2\to p_3)\right)\wedge\left(p_1\vee p_3\to p_4\right)\wedge\neg p_4\right)$, con los valores de $p_0=1$ y $p_4=0$. Sustituimos los valores en la fórmula.

$$\Big(ig((op p_1) \wedge (p_2 o p_3) ig) \wedge ig(p_1 ee p_3 o ot) \wedge
olimits ig)$$

Cada elemento de la conjunción debe de ser verdadero para que toda la fórmula sea verdadera. Tenemos que:

$$egin{aligned} \left(\underbrace{\left((op_1)\wedge(p_2 op_3)
ight)}_{ op}\wedge\underbrace{\left(p_1ee p_3 o\perp
ight)}_{ op}\wedge\underbrace{ op_\perp}_{ op}
ight)\equiv op \ \left((op_1)\wedge(p_2 op_3)
ight)\equiv op \ \left(p_1ee p_3 o\perp
ight)\equiv op \ \left(p_1ee p_3 o\perp
ight)\equiv op \ \end{aligned}$$

Para $\neg \bot \equiv \top$ se cumple

Para $(p_1 \lor p_3 \to \bot) \equiv \top$ se cumple cuando $p_1 = 0$ y $p_3 = 0$

Ahora sustituimos el valor de p_0,p_1,p_3,p_4 en $\left((\top \to p_1) \land (p_2 \to p_3)\right) \equiv \top$ y validamos si se cumple

$$\big((\top \to \bot) \land (p_2 \to \bot)\big) \equiv \top \quad \text{contradicci\'o}\, \mathbf{n}$$

Llegamos a una contradicción y vemos que no se cumple

Por lo tanto Γ no implica lógicamente a α .