Numbers and Entropy

John Mangual

Fermat¹ showed that any $p = a^2 + b^2$ has a solution for p prime and integers a, b iff p = 4k + 1. Primes can be arbitrarily large, how do we find (a, b)?

Algorithm #1

- \bullet Let x be quadratic non-residue and set $z=x^{\frac{p-1}{4}}+i$
- Then $a + ib = \gcd(x^{\frac{p-1}{4}} + i, p)$

Algorithm #2

- Let $(\frac{a}{n})$ be the Legendre symbol².
- $a = \sum_{0 \le x < p} \left(\frac{x^3 x}{p}\right)$

Algorithm #3 Let $c = \sqrt{-1} \mod p$ and $\gcd(p, i - c) = a + bi$ then $p = a^2 + b^2$.

- Somehow need to compute $\sqrt{-1}$ (maybe theory of Pell's eq)
- need GCD algorithm in $\mathbb{Z}[i]$.

Algorithm #4

- Find $z^2 = -1 \mod p$.
- \bullet Take Euclidean algorithm of (z,p) until $x,y<\sqrt{p}$

Algorithm #5

- Find $x = \frac{1}{2} \binom{2k}{k} \mod p$ and let $y = x \cdot (2k)! \mod p$
- ullet Why are $x,y<rac{p}{2}$? Gauss showed $x^2+y^2=p$ (that is not a congruence).

1 Prime Number Theorem

What happens to these algorithms as $p \to \infty$? No freaking idea.

¹Efficiently finding two squares which sum to a prime http://math.stackexchange.com/q/5877/4997 ²Explicit formula for Fermat's 4k + 1 theorem http://math.stackexchange.com/a/74299/4997

References

- [1] Jean Bourgain, Alex Kontorovich.

 Beyond Expansion II: Low-Lying Fundamental Geodesics arXiv:1406.1366

 Beyond Expansion II: Traces of Thin Semigroups arXiv:1310.7190
- [2] Dubi Kelmer. Quadratic irrationals and linking numbers of modular knots arXiv:1205.2230
- [3] Menny Aka, Uri Shapira. On the evolution of continued fractions in a fixed quadratic field arXiv:1201.1280
- [4] Curtis McMullen Uniformly Diophantine numbers in a fixed real quadratic field http://www.math.harvard.edu/~ctm/papers/home/text/papers/cf/cf.pdf