Методы оптимизации

Михайлов Максим

8 апреля 2021 г.

Оглавление стр. 2 из 24

Оглавление

Лекц	ия 1	10 февраля	3				
1	Teop	еория погрешности					
2	Зада	ачи оптимизации. Вводное					
3	Одн	омерная минимизация функций. Прямые методы	8				
	3.1	Метод дихотомии	8				
Лекц	ия 2	17 февраля	10				
	3.2	Метод золотого сечения	10				
	3.3	Метод Фибоначчи	11				
	3.4	Метод парабол	12				
	3.5	Комбинированный метод Брента	13				
Лекция 3		24 февраля	14				
	3.6	Метод равномерного перебора	14				
4	Мет	оды оптимизации, использующие производную	14				
	4.1	Методы средней точки	14				
	4.2	Метод хорд (метод секущей)	15				
	4.3	Метод Ньютона (метод касательной)	16				
Лекция 4		3 марта	17				
	4.4	Модификации метода Ньютона	19				
5	Мет	од минимизации многомодальных функций (метод ломаных)	19				
Лекция 5		10 марта	21				
6	Мин	имизация функций многих переменных	21				
	6.1	Постановка задачи	21				
	6.2	Свойства выпуклых множеств и выпуклых функций	23				
	6.3	Необходимое и достаточное условие безусловного экстремума	24				

Лекция 1

10 февраля

Этот курс — о минимизации (*максимизации*) функционалов. Кроме конкретных методов оптимизации, планируется рассмотреть форматы хранения матриц, о методах работы с ними и рассмотреть 1-2 (*может быть 3*) СЛАУ с использованием различных форматов.

Т.к. значения, получаемые компьютерами — не точные, нам требуется теория погрешности.

1 Теория погрешности

Все погрешности разделяются на два класса:

- 1. Неустранимая обусловлена неточностью исходных данных. Например, неточное знание физических констант или других параметров задачи. Тем не менее, необходимо знать эту погрешность, чтобы ставить рамки погрешности для решения.
- 2. Устранимая погрешность процесса решения задачи. Эту погрешность можно уменьшить выбором метода решения задачи.
 - (а) Погрешность модели
 - (b) Остаточная погрешность (погрешность аппроксимации)
 - Например, аппроксимация ряда первыми n его членами или аппроксимация по теореме Вейерштрасса квадратичной функцией.
 - (с) Погрешность округления
 - (d) Накапливаемая погрешность

2c и 2d часто объединяют в вычислительную погрешность.

Определение. Пусть X^* — точное решение, а X — найденное (приближенное) решение. Тогда X^* — X называется погрешностью, а её модуль $\Delta X = |X^* - X|$ — абсолютная погрешность.

Разумеется, ΔX представляет сугубо теоретический интерес, т.к. X^* неизвестна и ΔX нельзя вычислить.

Определение. В качестве требования к решению часто предоставляется предельная абсолютная погрешность $\Delta_X \geq |X^* - X|$.

Определение. Также существует относительная погрешность
$$\delta X = \left| \frac{X^* - X}{|X|} \right|$$

Относительная погрешность позволяет выражать погрешность относительно значений самой величины. Например, при измерении длины парты погрешность 1 см не очень хорошо, а при измерении расстояния между городами — приемлемо.

Определение. Предельная относительная погрешность
$$\delta_X \geq \left| \frac{X^* - X}{|X|} \right|$$

Определение. Значащие цифры некоторого числа — все цифры в его изображении, отличные от нуля, а также нули, если они содержатся между значащими цифрами или расположены в конце числа и указывают на сохранение разряда точности.

Определение. Если значащая цифра приближенного значения a, находящаяся в разряде, в котором выполняется условие $\Delta \leq 0.5 \cdot 10^k$, т.е. абсолютное значение погрешности не превосходит половину единицы этого разряда (k — номер этого разряда), то такая цифра называется верной в узком смысле.

Цифра называется верной в широком смысле, если в определении выше используется 1 вместо 0.5.

Пример. $a = 3.635, \Delta a = 0.003$

•
$$k = 0$$
 $\frac{1}{2} \cdot 10^0 = \frac{1}{2} \ge \Delta a$

•
$$k = -1$$
 $\frac{1}{2} \cdot 10^{-1} = 0.05 \ge \Delta a$

•
$$k = -2$$
 $\frac{1}{2} \cdot 10^{-2} = 0.005 \ge \Delta a$

•
$$k = -3$$
 $\frac{1}{2} \cdot 10^{-3} = 0.0005 < \Delta a$

Таким образом, цифра 5 является сомнительной, остальные — верные.

Пример. Рассмотрим следующие способы записи одного и того же выражения:

$$\left(\frac{\sqrt{2}-1}{\sqrt{2}+1}\right)^3 = (\sqrt{2}-1)^6 = (3-2\sqrt{2})^3 = 99-70\sqrt{2}$$

Посчитаем все выражения с различными приближениями $\sqrt{2}$:

•
$$\frac{7}{5} = 1.4$$

•
$$\frac{17}{12} = 1.41666$$

•
$$\frac{707}{500} = 1.414$$

•
$$\sqrt{2} = 1.4142135624$$

$\sqrt{2}$	$\left(\frac{\sqrt{2}-1}{\sqrt{2}+1}\right)^3$	$(\sqrt{2}-1)^6$	$(3-2\sqrt{2})^3$	$99 - 70\sqrt{2}$
$\frac{7}{5}$	$\frac{1}{216} \approx 0.00\underline{4}6$	$\frac{64}{15625} \approx 0.00\underline{5}1$	$\frac{1}{125} = 0.008$	1
$\frac{17}{12}$	$\frac{125}{24389} \approx 0.00513$	$\frac{15625}{2985354} \approx 0.00\underline{5}2$	$\frac{1}{216} \approx 0.00\underline{4}6$	$-\frac{1}{6} = -0.6(6)$
$\frac{707}{500}$	$\frac{8869743}{1758416743} \approx 0.005044$	$\frac{78672340886049}{15625 \cdot 10^{12}} \approx 0.00\underline{50}4$	$\frac{636056}{125000000} \approx 0.00\underline{50}9$	0.02

$$\Delta_{(X\pm Y)} = \Delta_X + \Delta_Y$$

$$\Delta_{(X\cdot Y)} \approx |Y|\Delta_X + |X|\Delta_Y$$

$$\Delta_{(X/Y)} \approx \left|\frac{1}{Y}\right| \Delta_X + \left|\frac{X}{Y^2}\right| \Delta_Y$$

$$|\Delta u| = |f(x_1 + \Delta x_1, \dots, x_n + \Delta x_n) - f(x_1 \dots x_n)|$$

$$|\Delta u| \approx |df(x_1 \dots x_n)| = \left|\sum_{i=1}^n \frac{\partial u}{\partial x_i} \Delta x_i\right| \le \sum_{i=1}^n \left|\frac{\partial u}{\partial x_i}\right| |\Delta x_i|$$

$$\Delta_u = \sum_{i=1}^n \left|\frac{\partial \ln u}{\partial x_i}\right| \Delta x_i$$

$$|\delta u| = \sum_{i=1}^n \left|\frac{\partial \ln u}{\partial x_i}\right| |\Delta x_i|$$

$$\delta_u = \sum_{i=1}^n \left|\frac{\partial \ln u}{\partial x_i}\right| |\Delta x_i|$$

$$\delta_{(X\pm Y)} = \left|\frac{X}{X\pm Y}\right| \delta_X + \left|\frac{Y}{X\pm Y}\right| \delta_Y$$

$$\delta_{(X+Y)} = \delta_X + \delta_Y$$

$$\delta_{(X/Y)} = \delta_X + \delta_Y$$

Вернемся к прошлому примеру и посчитаем относительную погрешность.

$$\triangleleft x = \frac{7}{5}$$

$$\delta_{f_1} = 3 \left| \frac{1}{x - 1} - \frac{1}{x + 1} \right| \cdot |\delta x| = 6.25 |\delta x|$$

$$\delta_{f_2} = 6 \left| \frac{1}{x - 1} \right| \cdot |\delta x| = 15 |\delta x|$$

$$\delta_{f_3} = 6 \left| \frac{1}{3 - 2x} \right| \cdot |\delta x| = 30 |\delta x|$$

$$\delta_{f_4} = \left| \frac{90}{99 - 70x} \right| \cdot |\delta x| = 70 |\delta x|$$

Таким образом, наибольшую погрешность даёт f_4 , наименьшую — f_1 .

Пример.

$$y^{2} - 140y + 1 = 0$$
$$y = 70 - \sqrt{4899}$$
$$\sqrt{4899} \approx 69.99$$
$$y \approx 70 - 69.99 = 0.01$$

Посчитаем другим методом — избавимся от вычитания похожих чисел.

$$y = \frac{1}{70 + \sqrt{4899}}$$
$$y = \frac{1}{139.99} \approx \frac{1}{140} = 0.00714285 \approx 0.007143$$

Можно заметить, что результат весьма точнее.

Пример. Рассмотрим задачу вычисления суммы $S = \sum_{i=1}^{10^6} \frac{1}{i^2}$.

Если суммировать по формуле $S_n=S_{n-1}+\frac{1}{n^2}$, то из-за того, что сначала суммируются большие числа, а потом малые, погрешность велика: $\Delta=10^6\cdot 2^{-1}\approx 2\cdot 10^{-4}$

Если же суммировать с конца, то $\Delta = \mathcal{O}\left(\frac{1}{n}\right) \approx 6 \cdot 10^{-8}$

Рекомендации для увеличения точности вычислений:

- 1. Если складывать или вычитать последовательность чисел, то лучше начинать с малых членов.
- 2. Желательно избавляться от вычитания двух почти равных чисел, по возможности преобразую формулу.
- 3. Необходимо сводить к минимуму число математических операций. Это также способствует ускорению работы алгоритма.

4. Если ЯП и компьютер позволяют использовать числа разных типов, то числа с большим числом разрядов всегда повышают точность вычислений (в ущерб памяти).

Дробные числа нужно сравнивать с помощью ε , т.е. $|a-b| \le \varepsilon$

2 Задачи оптимизации. Вводное.

Здесь и далее целевая функция — функция, которую мы минимизируем.

Обозначение. Пусть целевая функция — f(x). Это обозначается как $f(x) \xrightarrow{x \in U} \min.$

 $f(x) o \max \Rightarrow -f(x) o \min$. Таким образом, мы без потери общности рассматриваем задачу минимизации.

Определение. Если $\exists x^* \in U \ f(x^*) \le f(x) \ \forall x \in U$, то такой x^* называется точкой (глобального) минимума

Обозначение. Множество всех точек минимума обозначается $U^* = \{x_i^* \mid i = 1 \dots k\}$

Мы рассматриваем класс функций таких, что $U^* \neq \varnothing$

Определение. Функция f(x) называется унимодальной на [a,b], если она:

- 1. Непрерывна на [a,b]
- 2. $\exists \alpha, \beta : a \leq \alpha \leq \beta \leq b$, такие что:
 - (a) Если $a < \alpha$, то на $[a, \alpha] f(x)$ строго монотонно убывает.
 - (b) Если $\beta < b$, то на $[\beta, b] f(x)$ строго монотонно возрастает.
 - (c) $\forall x \in [\alpha, \beta]$ $f(x) = f_* = \min_{[a,b]} f(x)$

Свойства.

- 1. Если функция унимодальна на [a,b], то она унимодальна и на $[c,d] \subset [a,b]$
- 2. Если f унимодальна на $[a,b], a \le x_1 < x_2 \le b$, тогда:
 - (a) Если $f(x_1) \le f(x_2)$, то $x^* \in [a, x_2]$
 - (b) Если $f(x_1) > f(x_2)$, то $x^* \in [x_1, b]$

Определение. f(x), заданная на [a,b], называется выпуклой на этом отрезке, если

$$\forall x', x'' \in [a, b], \alpha \in [0, 1] \quad f(\alpha x' + (1 - \alpha)x'') \le \alpha f(x') + (1 - \alpha)f(x'')$$

Свойства.

- 1. Если f(x) выпукло на [a,b], то $\forall [x',x''] \subset [a,b]$, то её график расположен ниже хорды между x' и x''
- 2. Всякая выпуклая функция на отрезке является унимодальной на нём.

Определение. Стационарные точки — точки x, для которых f'(x) = 0.

Мы будем рассматривать одномерные задачи оптимизации, т.к. многомерные задачи часто сводятся к одномерным.

3 Одномерная минимизация функций. Прямые методы.

Прямые методы — методы, не использующие производные целевой функции.

3.1 Метод дихотомии

Этот метод — тернарный поиск.

$$x_1 = \frac{b+a-\delta}{2} \quad x_2 = \frac{b+a+\delta}{2}$$
$$\tau = \frac{b-x_1}{b-a} = \frac{x_2-a}{b-a} \to \frac{1}{2}$$
$$x^* \in [a_i, b_i] \ \forall i$$

Шаг 1: Находим x_1 и x_2 , вычисляем $f(x_1)$ и $f(x_2)$

Шаг 2: Сравниваем $f(x_1)$ и $f(x_2)$.

- Если $f(x_1) \leq f(x_2)$, переходим к отрезку $[a,x_2]$, т.е. $b=x_2$
- Иначе переходим к $[x_1, b]$, т.е. $a = x_1$

Шаг 3: $\, \varepsilon_n = \frac{b-a}{2} ,$ где n- номер итерации.

- Если $\varepsilon_n>\varepsilon$, переходим к новой итерации.
- Если $\varepsilon_n \leq \varepsilon$, завершаем поиск и переходим к шагу 4.

III
ar 4:
$$X^* \approx \overline{X} = \frac{a+b}{2}$$

Примечание. δ выбирается на интервале $(0,2\varepsilon)$. Чем меньше δ , тем больше относительное уменьшение длины отрезка на каждой итерации. При черезмерно малом δ сравнение $f(x_1)$ и $f(x_2)$ будет затруднительно, т.к. они близки.

Мы можем оценить число необходимых итераций:

$$n \ge \log_2 \frac{b - a - \delta}{2\varepsilon - \delta}$$

Лекция 2

17 февраля

3.2 Метод золотого сечения

Рассмотрим отрезок [0,1]. Пусть $x_2=\tau$, тогда симметрично расположенная $x_1=1-\tau$. Пусть дальше был выбран отрезок $[0,\tau]$, тогда пусть $x_2'=1-\tau$. Чтобы новые точки делили отрезок в таком же соотношении, необходимо, чтобы $\frac{1}{\tau}=\frac{\tau}{1-\tau}\Rightarrow \tau^2=1-\tau\Rightarrow \tau=\frac{\sqrt{5}-1}{2}\approx 0.61803$. Таким образом, $x_1=1-\tau=\frac{3-\sqrt{5}}{2}, x_2=\tau=\frac{\sqrt{5}-1}{2}$

В общем случае для отрезка [a, b]:

$$x_1 = a + \frac{3 - \sqrt{5}}{2}(b - a), x_2 = a + \frac{\sqrt{5} - 1}{2}(b - a)$$
 (1)

Вычислим погрешность:

$$\Delta_n = \tau^n(b-a)$$
 $\varepsilon_n = \frac{\Delta_n}{2} = \frac{1}{2} \left(\frac{\sqrt{5}-1}{2}\right)^n (b-a)$

Для заданного ε условия окончания $\varepsilon_n \leq \varepsilon$.

Результат метода:

$$x^* = \frac{a_{(n)} + b_{(n)}}{2}$$

Оценка числа шагов для достижения искомой точности:

$$n \ge \ln\left(\frac{\frac{2\varepsilon}{b-a}}{\ln \tau}\right) \approx 2 \cdot 1 \cdot \ln\left(\frac{b-a}{2\varepsilon}\right)$$

Шаг 1: Находим x_1 и x_2 по формуле (1), вычисляем $f(x_1)$ и $f(x_2)$. $\varepsilon_n = \frac{b-a}{2}$, $\tau = \frac{\sqrt{5}-1}{2}$.

Шаг 2: — Если $\varepsilon_n > \varepsilon$, переходим к шагу 3.

– Если $\varepsilon_n \leq \varepsilon$, переходим к шагу 4.

Шаг 3: Сравниваем $f(x_1)$ и $f(x_2)$.

- Если $f(x_1) \le f(x_2)$, то $b=x_2, x_2=x_1, x_1=b-\tau(b-a)$. Мы запоминаем $f(x_2)$ для следующего шага, т.к. оно равно $f(x_1)$ на этом шаге.
- Иначе $a=x_1, x_1=x_2, f(x_1)=f(x_2)$. Мы запоминаем $f(x_1)$ для следующего шага, т.к. оно равно $f(x_2)$ на этом шаге.

Шаг 4: $X^* pprox \overline{X} = \frac{a_{(n)} + b_{(n)}}{2}$

3.3 Метод Фибоначчи

Мы знаем, что $F_n=rac{\left(rac{1+\sqrt{5}}{2}
ight)^n-\left(rac{1-\sqrt{5}}{2}
ight)^n}{\sqrt{5}}$, а также при $n o+\infty$ $\ F_npproxrac{\left(rac{1+\sqrt{5}}{2}
ight)^n}{\sqrt{5}}$

Рассмотрим нулевую итерацию:

$$x_1 = a + \frac{F_n}{F_{n+2}}(b-a)$$
 $x_2 = a + \frac{F_{n+1}}{F_{n+2}}(b-a)$

Рассмотрим k-тую итерацию:

$$x_1 = a_{(k)} + \frac{F_{n-k+1}}{F_{n-k+3}}(b_k - a_k) = a_k + \frac{F_{n-k+1}}{F_{n+2}}(b_0 - a_0)$$

$$x_2 = a_{(k)} + \frac{F_{n-k+2}}{F_{n-k+3}}(b_k - a_k) = a_k + \frac{F_{n-k+2}}{F_{n+2}}(b_0 - a_0)$$

Пусть k = n, тогда:

$$x_1 = a_n + \frac{F_1}{F_{n+2}}(b_0 - a_0)$$
 $x_2 = a_n + \frac{F_2}{F_{n+2}}(b_0 - a_0)$

Условие на погрешность:

$$\frac{b_n - a_n}{2} = \frac{b_0 - a_0}{F_{n+2}} < \varepsilon$$

Какое брать n? Такое, что $\frac{b_0 - a_0}{\varepsilon} < F_{n+2}$

Есть проблема, при большом $n \, \frac{F_n}{F_{n+2}}$ есть бесконечная десятичная дробь, вследствие чего образуется погрешность.

Рис. 2.1: Функция f(x) и её приближение параболой.

Метод парабол

Пусть
$$\exists x_1, x_2, x_3 \in [a,b]$$
, такие что $\begin{cases} x_1 < x_2 < x_3 \\ f(x_1) \geq f(x_2) \leq f(x_3) \end{cases}$

Тогда приближающая парабола имеет вид $q(x)=a_0+a_1(x-x_1)+a_2(x-x_1)(x-x_2).$ Мы имеем условия на коэффициенты этой параболы: $\begin{cases} q(x_1)=f(x_1)=f_1\\ q(x_2)=f(x_2)=f_2\\ q(x_3)=f(x_3)=f_3 \end{cases}$

Коэффициенты можно найти следующим образом:

$$a_0 = f_1$$
 $a_1 = \frac{f_2 - f_1}{x_2 - x_1}$ $a_2 = \frac{1}{x_3 - x_2} \left(\frac{f_3 - f_1}{x_3 - x_1} - \frac{f_2 - f_1}{x_2 - x_1} \right)$

Тогда результат итерации есть $\overline{x}=\frac{1}{2}\left(x_1+x_2-\frac{a_1}{a_2}\right)$, на следующей лекции будет рассказан переход к следующей итерации.

Точки x_1, x_2, x_3 для новой итерации выбираются следующим образом:

1. (a) Если $x_1 < \overline{x} < x_2 < x_3$ и $f(\overline{x}) \geq f(x_2)$, то $x^* \in [\overline{x}, x_3], x_1 = \overline{x}$, точки x_2 и x_3 не меняются.

- (b) Если $x_1 < \overline{x} < x_2 < x_3$ и $f(\overline{x}) < f(x_2)$, то $x^* \in [x_1,x_2], x_3 = x_2, x_2 = \overline{x}$, точка x_1 не меняется.
- 2. (a) Если $x_1 < x_2 < \overline{x} < x_3$ и $f(\overline{x}) \le f(x_2)$, то $x^* \in [x_2,x_3], x_1 = x_2, x_2 = \overline{x}$, точка x_3 не меняется.
 - (b) Если $x_1 < x_2 < \overline{x} < x_3$ и $f(\overline{x}) > f(x_2)$, то $x^* \in [x_1, \overline{x}], x_3 = \overline{x}$, точки x_1 и x_2 не меняются.

Примечание. Метод парабол имеет квадратичную сходимость.

Примечание. Метод парабол требует гладкость функции, что неверно для предыдущих методов.

3.5 Комбинированный метод Брента

Для собственного изучения.

Лекция 3

24 февраля

3.6 Метод равномерного перебора

Шаг 1: Если $f(x_0)>f(x_0+\delta)$, то $k=1, x_1=x_0+\delta, h=\delta$ иначе $x_1=x_0, h=-\delta$

Шаг 2: $h = 2h, x_{k+1} = x_k + h$

Шаг 3: Если $f(x_k)>f(x_{k+1})$, то k=k+1 и переходим к шагу 2. Иначе прекращаем поиск и искомое лежит в $[x_{k-1},x_{k+1}]$

4 Методы оптимизации, использующие производную

В рамках этой главы f(x) — дифференцируемая или дважды дифференцируемая выпуклая функция.

Есть три классических метода, использующих производную:

- Средней точки
- Метод хорд
- Метод Ньютона

f'(x)=0 — необходимое и достаточное условие глобального минимума. Таким образом, условие остановки вычислений — $f'(x)\approx 0$, т.е. $|f'(x)|\leq \varepsilon$

4.1 Методы средней точки

Средняя точка $\overline{x} = \frac{a+b}{2}$.

Общая идея алгоритма:

- Если f'(x)>0, то $\overline{x}\in$ участку монотонного возрастания f(x) и $x^*<\overline{x}$, т.е. минимум лежит на $[a,\overline{x}]$
- Если f'(x) < 0, то аналогично можем вывести, что минимум лежит на $[\overline{x}, b]$
- Если f'(x) = 0, то мы нашли решение.

Перепишем это в виде алгоритма:

Шаг 1: $\overline{x} = \frac{a+b}{2}$, вычислим $f'(\overline{x})$

Шаг 2: Если $|f'(x)| \leq \varepsilon$, то $x^* = \overline{x}$ и завершаем вычисление.

Шаг 3: Сравниваем f'(x) с нулём:

- Если f'(x)>0, то $x^*\in [a,\overline{x}]$ и $b=\overline{x}$
- Иначе $x^* \in [\overline{x}, b]$ и $a = \overline{x}$

Длина отрезка после n итераций есть $\Delta_n = \frac{b-a}{2^n}$

4.2 Метод хорд (метод секущей)

Если $\exists f'(x)$ на [a,b], $f'(a)\cdot f'(b)<0$ и f'(x) непрерывна на [a,b], то $\exists x\in(a,b):f'(x)=0.$ F(x)=f'(x). Пусть $\tilde{x}-$ точка пересечения хорды F(x) с осью Ox на [a,b]

Можем тривиально вывести \tilde{x} из уравнения прямой по двум точками:

$$\tilde{x} = a - \frac{f'(a)}{f'(a) - f'(b)}(a - b) \tag{2}$$

Шаг 1: Считаем \tilde{x} по (2)

Шаг 2: Если $|f'(\tilde{x})| \leq \varepsilon$, то $x^* = \tilde{x}$ и мы заканчиваем вычисление.

Иначе шаг 3.

Шаг 3: Переходим к новому отрезку:

- Если $f'(\tilde{x}) > 0$, то $x^* \in [a, \tilde{x}], b = \tilde{x}, f'(b) = f'(\tilde{x})$, переходим к шагу 1
- иначе $x^* \in [\tilde{x},b], a = \tilde{x}, f'(a) = f'(\tilde{x})$, переходим к шагу 1

Примечание. Если $f'(a) \cdot f'(b) \ge 0$, то $x^* = a$ или $x^* = b$.

4.3 Метод Ньютона (метод касательной)

Если f выпуклая на [a,b] и дважды непрерывно дифференцируемая, то уравнение f'(x)=0 решается методом Ньютона.

Пусть $x_0 \in [a, b]$ — начальное приближение x^* . F(x) = f'(x) линеаризуема в окрестности x_0 , т.е.

$$F(x) \approx F(x_0) + F'(x_0)(x - x_0)$$

Пусть x_1 — следующее приближение к x^* . Это будет пересечение касательной с Ox. Найдём эту точку.

$$F(x_0) + F'(x_0)(x_1 - x_0) = 0$$
$$x_1 = x_0 - \frac{F(x_0)}{F'(x_0)}$$

Таким образом, мы можем получить $\{x_k\}_{k=1}^n$ — итерационную последовательность.

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Условие остановки такое же, как в предыдущих методах: $|f'(x_k)| \leq \varepsilon$

Лекция 4. 3 марта стр. 17 из 24

Лекция 4

3 марта

Пусть x_k — текущая оценка решения x^*

Рассмотрим ряд Тейлора:

$$f(x_k + p) = f(x_k) + pf'(x_k) + \frac{1}{2}p^2f''(x_k) + \dots$$

$$f(x*) = \min_{x} f(x)$$

$$= \min_{p} f(x_k + p)$$

$$= \min_{p} \left(f(x_k) + pf'(x_k) + \frac{1}{2}p^2 f''(x_k) + \dots \right)$$

$$\approx \min_{p} \left(f(x_k) + pf'(x_k) + \frac{1}{2}p^2 f''(x_k) \right)$$

Приравняем производную выражения под min к нулю:

$$f'(x_k) + pf''(x_k) = 0$$
$$p = -\frac{f'(x_k)}{f''(x_k)}$$

Тогда
$$x^* pprox x_k + p$$
 и $x_{k+1} = x_k + p = x_k - rac{f'(x_k)}{f''(x_k)}$

Главное преимущество метода Ньютона — квадратичная скорость сходимости, т.е. если x_k достаточно близка к x^* и $f''(x^*)>0$, то $|x_{k+1}-x^*|\leq \beta |x_k-x^*|^2$

Метод Ньютона может потерпеть неудачу в следующих случаях:

Лекция 4. 3 марта стр. 18 из 24

1. f(x) плохо аппроксимируется первыми тремя членами в ряде Тейлора. Тогда x_{k+1} может быть хуже (как аппроксимация) x_k .

- 2. $f''(x_k) = 0$, тогда p не определен.
- 3. Кроме f нужно вычислять f' и f'', что затруднительно в реальных задачах.

Мы можем аппроксимировать производную по определению:

$$f'(x_k) \approx \frac{f(x_k + h) - f(x_k)}{h}$$

Эта формула называется правой разностной схемой, у нее есть улучшение, называемое центральной разностной схемой:

$$f'(x_k) \approx \frac{f(x_k + h) - f(x_k - h)}{2h}$$

Если f(x) — квадратичная функция, то метод Ньютона сходится за один шаг при любом выборе x_0 .

Достаточное условие монотонной сходимости метода Ньютона

Пусть $x^* \in [a,b]$ и f(x) трижды непрерывно дифференцируемая и выпуклая на [a,b] функция. Тогда $\{x_k\}$ будет сходиться к пределу x^* монотонно, если $0 < \frac{x^* - x_{k+1}}{x^* - x_k} < 1$

$$f'(x^*) = 0 = f'(x_k) + f''(x_k)(x^* - x_k) + \frac{f'''(x)}{2}(x^* - x_k)^2$$
$$\frac{x^K - x_{k+1}}{x^* - x_k} = \frac{x^* - x_k + \frac{f'(x_k)}{f''(x_k)}}{x^* - x_k} = 1 - \frac{2}{2 + \frac{f'''(x)(x^* - x_k)^2}{f'(x_k)}}$$

Последовательность итераций $\{x_k\}$ монотонна, если $\frac{f'''(x)}{f'(x_k)}>0$, таким образом условие монотонной сходимости метода Ньютона — постоянство на $x\in[x^*,x_0]$ знака f'''(x) и его совпадение с $f'(x_0)$.

Пример. $f(x) = x \cdot \operatorname{arctg}(x) - \frac{1}{2}$???

$$f'(x) = \operatorname{arctg} x \quad f''(x) = \frac{1}{1+x^2} > 0 \quad f'''(x) = -\frac{2x}{(1+x^2)^2}$$

 $f'(x) \cdot f'''(x) < 0$, таким образом не будет монотонной сходимости.

Пусть $x_0 = 1$.

Лекция 4. 3 марта стр. 19 из 24

k	$ x_k $	$f'(x_k)$	$f''(x_k)$
0	1	0.785	$\frac{1}{2}$
1	-0.57	-0.518	\bar{a}
2	0.117	0.	
4	$9 \cdot 10^{-8}$		

4.4 Модификации метода Ньютона

Метод Ньютона-Рафсона

$$x_{k+1} = x_k - \tau_k \frac{f'(x_k)}{f''(x_k)}, 0 < \tau_k \le 1$$

 au_k — константы. Если au=1, то метод Ньютона-Рафсона вырождается в метод Ньютона. Для нахождения au_k зададим au(au):

$$\varphi(\tau) = f(x_k - \tau \frac{f'(x_k)}{f''(x_k)}) \to \min$$

Тогда

$$au_k = rac{(f'(x_k))^2}{(f'(x_k))^2 + (f'(ilde{x}))^2}$$
 , где $ilde{x} = x_k - rac{f'(x_k)}{f''(x_k)}$

Метод Марквардта

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k) + \mu_k}$$

, где $\mu_k > 0$

 μ_0 выбирают на порядок выше значения $f''(x_0), \mu_{k+1} = egin{cases} rac{m_k}{2} &, \ \operatorname{если} \ f(x_{k+1}) < f(x_k) \\ \mu_{k+1} = 2\mu_k &, \ \operatorname{если} \ f(x_{k+1}) \geq f(x_k) \end{cases}$

5 Метод минимизации многомодальных функций *(метод ломаных)*

Определение. $f(x), x \in [a,b]$ удовлетворяет условию Липшица, если $\forall x_1, x_2 \in [a,b] \mid f(x_1) - f(x_2) \mid \leq L \mid x_1 - x_2 \mid$

- Шаг 1 Возьмём $x_1^*=\frac{1}{2L}(f(a)-f(b)+L(a+b))$ и $p_1^*=\frac{1}{2}(f(a)+f(b)+L(a-b))$. Добавим в рассматриваемое множество $x_1'=x_1^*-\Delta_1$ и $x_1''=x_1^*+\Delta_1$, где $\Delta_1=\frac{1}{2L}(f(x_1^*)-p_1)$
- Шаг 2 Ииз пар (x_1', p_1) и (x_1'', p_1) выберем пару с минимальной $p: (x_2^*, p_2^*)$ и исключим из рассматриваемого множества.

Лекция 4. 3 марта стр. 20 из 24

Шаг $n\;$ В результате мы получим множество из n пар (x,p). Исключаем пару с минимальной p и вместо неё

Пример.
$$f(x) = \frac{\sin x}{x}$$
, $[a,b] = [10,15]$, $\varepsilon = 0.01$

Проверим условие Липшица:

$$|f'(x)| = \left| \frac{x \cos x - \sin x}{x^2} \right| < \frac{x |\cos x| + \sin |x|}{x^2} < \frac{x+1}{x^2} \le 0.11$$

n	x_n^*	p_n^*	$2L\Delta_n$	x'_n	x_n''	p_n
1	12.056	-0.281	0.240	10.963	13.149	-0.161
2	10.963	-0.161	0.070	10.646	11.280	-0.126
3	13.149	-0.161	0.203	12.227	14.701	-0.096
4	10.646	-0.126	0.038	10.474	10.818	-0.107
5	11.280	-0.126	0.041	11.094	11.466	-0.106
6	10.474	-0.107	0.024	10.364	10.584	-0.095
7	10.818	-0.107	0.160	10.745	10.891	-0.099
8	11.094	-0.106	0.016	11.020	11.168	-0.098
9	11.466	-0.106	0.028	11.338	11.594	-0.092
10	10.891	-0.099	$0.008 < \varepsilon$			

Лекция 5

10 марта

6 Минимизация функций многих переменных

6.1 Постановка задачи

Необходимо найти $x^* = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix}^T \in U \subset E_n$, где U — множество допустимых значений, а E_n — евклидово пространство размера n, при этом $f(x^*) = \min_{x \in U} f(x)$.

Примечание.

- 1. Как и в одномерном случае, задача минимизации эквивалентна задачи максимизации и в общем случае называется задачей поиска экстремума.
- 2. Если U задается ограничениями на вектор x, то такая задача оптимизации называется задачей поиска условного экстремума.
- 3. Если $U=E_n$, т.е. не имеет ограничений, то такая задача оптимизации называется задачей поиска безусловного экстремума.
- 4. Решением задачи поиска экстремума называется пара $(x^*, f(x^*))$.

Определение. Если $f(x^*) \le f(x) \ \forall x \in U$, то x^* называется глобальным минимумом.

Определение. Если $\exists \varepsilon>0: ||x-x^*||<\varepsilon \Rightarrow f(x^*)\geq f(x),$ то x^* называется локальным минимумом.

Примечание.

$$||x|| = \sqrt{\sum_{i} x_i}$$

Определение. Поверхностью уровня функции f(x) называется множество точек, в которых функция принимает постоянное значение.

Определение. Градиентом $\nabla f(x)$ непрерывно дифференцируемой функции f(x) в x называется:

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix}$$

Примечание. Градиент направлен по нормали к поверхности нормали уровня, т.е. перпендикулярно к касательной плоскости, проведенной в точке x в сторону наибольшего возрастания функции.

Определение. Матрица Гессе $\mathbf{H}(x)$ дважды непрерывно дифференцируемой в точке x функции f(x) называется матрица частных производных производных второго порядка, вычисленных в данной точке.

$$\mathbf{H}(x) = \begin{pmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} & \cdots & h_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ h_{n1} & h_{n2} & \cdots & h_{nn} \end{pmatrix}$$

- 1. $\mathbf{H}(x)$ симметрична, имеет размер $n \times n$.
- 2. Можно определить антиградиент вектор, равный по модулю градиенту и направленный противоположно. Антиградиент указывает в сторону наибольшего убывания f(x).
- 3. $\Delta f(x) = f(x + \Delta x) f(x) = \nabla f(x)^T \Delta x + \frac{1}{2} \Delta x^T \mathbf{H}(x) \Delta x + \mathcal{O}(||\Delta x||^2)$, где $\mathcal{O}(||\Delta x||^2)$ есть сумма всех членов разложения, имеющих порядок выше второго. Можем заметить, что $\Delta x^T \mathbf{H}(x) \Delta x$ квадратичная форма.

Определение. Квадратичная форма $\Delta x^T \mathbf{H}(x) \Delta x^1$ называется:

- Положительно определенной, если $\forall \Delta x \neq 0 \ \Delta x^T \mathbf{H}(x) \Delta x > 0$
- Отрицательно определенной, если $\forall \Delta x \neq 0 \ \Delta x^T \mathbf{H}(x) \Delta x < 0$
- Положительно полуопределенной, если $\forall \Delta x \ \Delta x^T \mathbf{H}(x) \Delta x \geq 0$ и имеется $\Delta x \neq 0$: $\Delta x^T \mathbf{H}(x) \Delta x = 0$
- Отрицательно полуопределенной, если $\forall \Delta x \ \Delta x^T \mathbf{H}(x) \Delta x \leq 0$ и имеется $\Delta x \neq 0$: $\Delta x^T \mathbf{H}(x) \Delta x = 0$
- Неопределенной, если $\exists \Delta x, \Delta \tilde{x} : \Delta x^T \mathbf{H}(x) \Delta x > 0, \Delta \tilde{x}^T \mathbf{H}(x) \Delta \tilde{x} < 0$
- Тождественно равной нулю, если $\forall \Delta x \ \Delta x^T \mathbf{H}(x) \Delta x = 0$

 $^{^{\}scriptscriptstyle 1}$ и соответствующая ей матрица $\mathbf{H}(x)$

6.2 Свойства выпуклых множеств и выпуклых функций

Определение. Пусть $x,y\in E_n$, множество точек вида $\{z\}\subset E_n:z=\alpha x+(1-\alpha)y$, т.е. z это отрезок [x,y].

Определение. $U \subset E_n$ выпуклое, если вместе с точками $x,y \in U$ оно содержит весь отрезок z.

Определение. Функция f(x), заданная на выпуклом множестве $U \subset E_n$, называется:

• выпуклой, если:

$$\forall x, y \in U, \alpha \in [0, 1] \ f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

• строго выпуклой, если:

$$\forall x, y \in U, \alpha \in (0,1) \ f(\alpha x + (1-\alpha)y) < \alpha f(x) + (1-\alpha)f(y)$$

• сильно выпуклой с константой l>0, если:

$$\forall x, y \in U, \alpha \in [0, 1] \ f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) - \frac{l}{2}\alpha(1 - \alpha)||x - y||^2$$

Свойства.

- 1. Функция f(x) выпуклая, если её график целиком лежит не выше отрезка, соединяющего две её произвольные точки.
- 2. Функция f(x) строго выпуклая, если её график целиком лежит ниже отрезка, соединяющего две её произвольные, но не совпадающие точки.².
- 3. Если функция сильно выпуклая, то она одновременно строго выпуклая и выпуклая.
- 4. Если функция строго выпуклая, то она выпуклая.
- 5. Выпуклость функции можно определить по H(x):
 - Если $\mathbf{H}(x) \geq 0 \ \forall x \in E_n$, то f(x) выпуклая.
 - Если $\mathbf{H}(x) > 0 \ \forall x \in E_n$, то f(x) строго выпуклая.
 - Если $\mathbf{H}(x) \geq lE^3 \ \forall x \in E_n$, то f(x) сильно выпуклая.

Свойства (выпуклых функций).

1. Если f(x) — выпуклая функция на множестве U, то всякая точка локального минимума — глобальный минимум на U.

² Пример будет на следующей лекции

³ единичная матрица

- 2. Если выпуклая функция достигает своего минимума в двух различных точках, то она достигает минимума во всех точках отрезка, соединяющего эти точки.
- 3. Если f(x) строго выпуклая функция на множестве U, то она может достигать своего глобального минимума на U не более чем в одной точке.

6.3 Необходимое и достаточное условие безусловного экстремума

Необходимое условие экстремума первого порядка

Пусть $x^* \in E_n$ — точка локального минимума f(x) на E_n и f(x) дифференцируема в точке x^* . Тогда $\nabla f(x)$ в точке x^* равен нулю: $\nabla f(x^*) = 0$ или $\frac{\partial f(x^*)}{\partial x_i} = 0 \ \forall i \in 1 \dots n$. Точка x^* называется стационарной.

Необходимое условие экстремума второго порядка

Пусть $x^* \in E_n$ — точка локального минимума f(x) на f(x) дважды дифференцируема в точке x^* . Тогда $\mathbf{H}(x^*)$ положительно полуопределена или отрицательно полуопределена.

Достаточное условие экстремума

Пусть f(x) в $x^* \in E_n$ дважды дифференцируема, $\nabla f(x^*) = 0$ и $\mathbf{H}(x) > 0$ (или $\mathbf{H}(x) < 0$). Тогда x^* — точка локального минимума f(x) на f(x) на

Проверка выполнений условий экстремума

- Вычисление угловых миноров H(x)
- Вычисление главных миноров H(x)

Есть два способа это сделать:

- 1. Исследование положительной или отрицательной определенности угловых и главных миноров $\mathbf{H}(x)$.
- 2. Анализ собственных значений H(x).

⁴ или максимума

⁵ или максимума

⁶ или максимума