PHY201: Homework 1

Ariel Attias Matthieu Chapuy Matthieu Melennec André Renom

7^{th} November 2019

Contents

1	Hor	zontally Excited Pendulum	1
	1.1		1
	1.2		2
	1.3		2
	1.4		2
	1.5		2
	1.6		2
2	Equ	ilibrium of Two Masses	2
	2.1		2
	2.2		2
	2.3		2
	2.4		2
3	Susi	pended Bar	2
•		One Mass Only	2
	9.1	3.1.1	2
		3.1.2	2
			2
		3.1.4	2
		3.1.5	2
		3.1.6	2
		3.1.7	2
	3.2	Connected Masses	2
		3.2.1	2
		3.2.2	2
		3.2.3	2
		3.2.4	2

1 Horizontally Excited Pendulum

1.1

Under normal assumptions, we would write the position of the pendulum as:

$$\begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} x_f + l\sin\theta \\ -l\cos\theta \end{pmatrix}$$

However for $\theta \ll 1$, we can use the taylor series of the trigonometric functions to approximate $\cos\theta \approx 1$ and $\sin\theta \approx \theta$. We therefore have:

$$\begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} x_f + l\theta \\ -l \end{pmatrix}$$

1.2		
1.3		
1.4		
1.5		
1.6		
2 Equilibrium of Two Masses		
2.1		
2.2		
2.3		
2.4		
3 Suspended Bar		
3.1 One Mass Only		
3.1.1		
3.1.2		
3.1.3		
3.1.4		
3.1.5		
3.1.6		
3.1.7		
3.1.7 3.2 Connected Masses		
3.2 Connected Masses		

3.2.4