Highlight description of constrained group placement algorithm

Placement algorithm

- Traverse physical tree in depth first order
- Solve placement subproblem when visiting node n
- Choice of heuristics
 - ordering of sibling nodes
 - determination of placement range
 - selection of best number to place at a node
- Return of logical tree, representing placement result
- Variations of algorithm
 - place a partially placed group
 - place dynamic group (size changes)

Visit node *n*

Placement problem at node *n*:

- Given: N(n), M(n), A(n), C(I(n))
- Find: *Z(n)*

Procedure:

- Calculate R(n) based on N(n), M(n), C(l(n))
- Calculate best choice $Z^*(n)$ based on A(n) in R(n)
- Order and visit children of n
 - visit first child with M(.)=Z*(n)
 - visit next, subtracting Z(.) from M(.) and adjusting N(.)
- Z(n) is total placed in subtree n

Initially,

- n = root
- N(n) = 1
- M(n) = group size

Setting range based on level constraint

Constraint, C	Pack	Spread
Hard	[M, M, M]	[1, 1, 1]
Soft	[1, M, M]	[1, ceil(M/N), M]

Setting best number to place

$$Z^* = min\{min\{A, b\}, d\},$$
 $A >= a$
0, $A < a$

Let

- M(n) = M
- N(n) = N
- C(I(n)) = C

Let

- A(n) = A
- Z*(n) = Z*

Partial placement

Given a partially placed group, place remainder of group

- Let B(n) be the number of members already placed in subtree rooted at node n
- Modify Visit node n
 - add primary ordering criterion, decreasing B(.)
 - calculation of range R(n) remains same
 - when selecting best choice Z*(n)
 - use (A(n) + B(n)) instead of A(n)
 - if Z*(n) < B(n) then return failure (cannot satisfy constraint given partial placement)
 - on leaf nodes, place over partially placed entities
- Logical tree includes partially and newly placed entities

Background

