Übersicht

- [[Sortierverfahren]]
- gegeben Array von unterschiedlichen Elementen
- Divide and Conquer
 - in zwei Subarrays aufteilen
 - Teilarrays rekursiv sortieren
 - sortierte Arrays zusammenfügen
- Input
 - Array a
 - linke/kleinste Index l
 - rechte/größte Index r
- zwischen l und r wird sortiert

Algorithmus

- l=1 und r=n beim ersten Aufruf
- p:=a[r] ist Pivot-Element
- vergleiche a[l] bis a[r-1] mit p
- sortiere um, sodass
 - -a[k]=p
 - a[i]
 - a[i]>p für i>k
- ruf Quicksort rekursiv für linke und rechte Seite auf
 - links mit den Parametern
 - * l=l, r=k-1
 - rechts mit den Parametern
 - * l=k+1, r=r
- angenommen alle Eingabepermutationen sind gleich wahrscheinlich
- C_n ist Anzahl der Vergleiche für Array mit
n Elementen
 - $-\ C_n = 2(n+1)(H_{n+1}-2+\tfrac{1}{n+1})$
 - $-H_n := \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$
 - * n-te harmonische Zahl
- $H_n \ln(n) \gamma$ konvergiert gegen 0 für n-> ∞
 - γ:=Euler-Mascheroni-Konstante
 - ~ 0.577
- $\frac{C_n}{2nln(n)}$ konvergiert gegen 1 asymptotisch

[[Nicht Lineare Rekursion]]