Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Introduction to Logic Programming

Assignment Project Exam Help

- User declares what facts are true.
- User states some queries.
- the queries.

Primary difference between imperative programming and logic programming and logic

- Imperative: explicitly instruct the system how certain computation should be performed.
- Logic: instruct the system what can be used to perform some computation.

Prolog

Facts

Assignment Project with no Antecedent Help

%% Rule: Horn Clause with antecedent layer (pow) For Company C

Actory We Chat powcoder

```
?- loves(X, tom).
mary
?- loves(mary, Y).
tom
?- loves(mary, jane).
```

(a) \$6 342 Principles of Programming Languages @ Iowa State University

What is Logic Programming

Assignment Project Exam Help

- A very high level programming language
- An interpretation of declarative specifications
- https://powcoder.com
- Algorithms minus control
- Computations as deduction
- ► **MedviWeChat powcoder

A Very High Level Language

Assipsing an engraphical anguage should not ensumber the Help

- The development of programming languages has been toward freeing the programmer of more and more of the details
 - ASSEMBLY LANGUAGE: symbolic encoding of data and interpretations. / DOWCOGET. COM FORTRAN: allocation of variables to memory locations, register
 - saving, etc.

 ML: explicit variable type declarations
- ► Logic Programming Languages are a pass of languages which attempt to free us from having to worry about many aspects of
 - attempt to free us from having to worry about many aspects of explicit control.

An Interpretation of Declarative Specifications

Assignment Project Exam Help Logical statement: Forall X and Y, X is the father of Y if X is a

- Logical statement: Forall X and Y, X is the father of Y if X is a parent of Y and the gender of X is male.
- Prolegicode: fathle (XX) coderio com
- Interpret it in two slightly different ways:
 - declaratively which must be true if a father relationship holds.
 - And We hat be establish that a father relationship holds.

Non-procedural Programming

Assignment Project Exam Help needs to be computed but not HOW it is to be done.

- it specifies a state with constraints, objects and relations:
 - Pite 95 of other DOWN to On the for COM
 - the elationships which hold between them
 - the constraints which must hold for the problem to be solved
- the language interpreter or compiler will decide HOW to satisfy the control WeChat powcoder

Algorithms Minus Control

Assignmente Police de La Structures = Programs Assignmente Police de La Structure | Programs

- ▶ Bob Kowalski offers a similar one to express the central theme of ldgic programming/ Algorithms = Logid + Control
- ► We can riew the LOGIC component as: a specification of the essential logical constraints of a particular problem
- CONTROL component as: advice to an evaluation machine (e.g. an interpreted processing of the experiments) on her are to a statisfying the experiments.

Computation as Deduction

 Computation is related to logical proofs and is not restricted to functional (Church) or imperative (Turing/Von Neumann)

Assignmentation models Project Exam Help reasonable and proof

deductive reasoning:

All men are mortal. (First premise)

Therefore, Socrates is mortal. (Conclusion)

- It uses the language of logic to express data and programs, e.g.,
 Forall X and Y X is the father of Y if X is a parent of Y and the
 general is value. Charles DOWCOCCT
- ► Current logic programming languages use first order logic (FOL)
- ▶ Propositions, e.g., A is father of B, predicates, e.g., parent (X Y), and quantifier symbols such as \exists and \forall on objects (more in discrete maths books).

Theorem Proving

Assignment Project Exam Help Logic programming uses the notion of an automatic theorem prover

- Logic programming uses the notion of an automatic theorem prover as an interpreter.
- The theorem prover derives a desired solution from an initial set of akibbles.//powcoder.com
- Note that the proof must be a "constructive" one so that more than a true/false answer can be obtained, e.g., the answer to exists x such that a will be x = 4 or x = -4 rather than true

A Short History

A 1965 Efficient theorem proving Resolution (Alan Robinson) Help 1969 PLANNER, theorem proving as programming (Carl Hewett) 1970 Micro - Planner, an implementation (Sussman, Charniak and Winograd) 1970 Proba, a implementation Whin Chreater COM 1972 Book: Logic for Problem Solving. (Kowalski) 1977 DEC - 10 Prolog, an efficient interpreter/compiler (Warren and Pereira) 1982 Jena C fth Geverator Computer Project W COCCT 1985 Datalog and deductive databases

1995 Prolog interpreter embedded in NT

PROLOG is the FORTRAN of Logic Programming

Assignment Project Exam Help

- As a Logic Programming language, it has a number of advantages: simple, small, fast, easy to write good compilers for it.
- ▶ https://powcoder.com
 - It has a fixed control strategy.
 - It has a strong procedural aspect
 - limited support parallelism or concurrency or multi-threading.
- ► pare si swite con at operwooder

Prolog Programming

Assignment Project Exam Help

- Step 1: presenting knowledge: predicate logic
 - fact: proposition that's unconditional true

prule: proposition that's conditional trile; dependent on other biblions/ powcoder.com

a fact or a rule is a statement or clause in Prolog.

- ▶ Step 2: "execute a program": make inference from a database of Add WeChat powcoder

To Understand Computing with Logic

Assignment Project Exam Help

We need to understand Logic.
Loghttps://powcoder.com

- Declarative Statements describing the state of the world.
 - Declarative Statements are either true or false
- Aules of Read on the entire definition of the definition of the desired of the de

Basic Constituents of Logic

Assignment Project Exam Help

- Individuals in the world (constants).

 Ritto Sover the God Constants): E.g., Edges between nodes.
 - Relations have arity (number of individuals involved in the relation)

Add n We Chate powcoder

Quantifiers and variables used to describe all or some individuals

Another Example

Assignment Project Exam Help

httleptive Statements: Facts and dues .com

Byery mother loves her children.

- Mary is a mother and Tom is Mary's child.

Add Me hat powcoder

Another Example

Assignment Project Exam Help

Predicates: isamother/1, childof/2, loves/2

https://poweoder.com

Facts Mary is a mother isamother(mary)

Facts Tom is Mary's child. childof(tom, mary)

Queries:

Does Mary love Tom?

true ? loves(mary, tom) true

Horn Clause

Assignment Project Exam Help

Alfred Horn A Hattps://powcoder.com

 $c h_1 \wedge h_2 \wedge \ldots \wedge h_n$

where c is the coverne and happing motion of he is the entreedent.

Horn Clause

Assignment Project Exam Help

Alf https://powcoder.com

 $c \qquad h_1 \wedge h_2 \wedge \ldots \wedge h_n$ where construction and that the property is the excedent.

If all his are true then c is true

Horn Clause: c

Assignment Project Exam Help

 $c \leftarrow h_1 \wedge h_2 \wedge \dots h_n$

is hittps://powcoder.com

Horn Clause with no Antecedent Fact

Horn Clause with Antecendent Rule

Horn Clause with no Consequent Query

Assignment Project Exam Help

```
https://powcoder.com
edge(a, b)
edge(b, c).
*Add WeChat powcoder
reach(X, Y) := edge(X, Y).
reach(X, Y) := edge(X, Z), reach(Z, Y).
?-reach(a, X)
b, c
```

Prolog

```
Facts
```

ASSIGNMENT Projects Atom Help childof (jerry, mary). When Clause with no Antecedent

Rules

```
%% holt-Henceleuse pit outegedon and citr variablem
%% holt-Henceleuse pit outegedon and citr variablem
loves(X, Y) :-
isamother(X), childof(Y, X).
```

Add univer quantizet powcoder

```
hassibling(X) :-
```

childof(X, Y), childof(Z, Y).

Query

- %% Query: Horn Clause with no consequent
- ?- loves(mary, X). %% X is exitentially quantified
- ?- hassibling(jerry).

Queries with variables

Assignment Project Exam Help

Queries with free variables will generate a binding for free variables

Queries with variables

Assignment Project Exam Help

loves (X, Y):- isamother (X), childof (Y, X).

What the position x-possible way to satisfy $\exists X$.loves (mary, X).

loves (mary, X)isamother (mary) Validof (X, mary) (mary, X) by the position (mary, X) is (mary, X) (m

ADVADVATV T SOO

Syntax of Logic Programs

Assignment Project Exam Help

Terms
constant. Desibles, programments)

Terms
constant. Desibles, programments from the function Mil terms as arguments)

predicate with terms of a guinera, to peace of the combination of the

Syntax of Logic Programs

Assignment Project Exam Help

Example

Assignment Project Exam Help odd(succ(succ(Z))) :- odd(Z). \(\frac{1}{2}\) rule using a Functor

- https://powcoder.com

odd(X)

Add COWe Contracted powcoder

```
\mathsf{X} = \mathsf{succ}(\mathsf{succ}(\mathsf{Z})) \land \mathsf{Z} = \mathsf{succ}(\mathsf{0}) \quad \mathsf{X} = \mathsf{succ}(\mathsf{succ}(\mathsf{Z})) \land \mathsf{Z} = \mathsf{succ}(\mathsf{succ}(\mathsf{Z}1)) \land \mathsf{odd}(\mathsf{Z}1)
```

Swi-prolog Programming

Assignment Project Exam Help

- ▶ Install on different machines: https://www.swi-prolog.org/build/
- edit your program in any aditor and save it as test.pl
- https://spowcoder.com
- stop running the program: halt.
- ► frequently used command link

Add WeChat powcoder

Executing Logic Programs

Assignment Project Exam Help

Unification/Most General Unifiers

Varlattipiss://powcoder.com

Backward Chaining/Goal-directed Reasoning

Reducing one proof obligation (goal) into simpler ones (subgoals).

Add WeChat powcoder

Backtracking

Search for proofs (answers).

Unification

nment Project Exam Help they can be made syntactically identical by replacing the variables in them

by some terms.

yes by replacing X by mary

- Unify childof(jane, X) and childof(jane, Y)? Unity childof (jane, X) and childo (Y, mary) yes by replacing X by mary, and Y by jane
- Unify childof(jane, X) and childof(tom, Y)? No.

Substitution

Assignment Project Exam Help

Substitution maps variables to terms.

Instantiation is the application of substitution to all variables in a prolog formula tems. / 100WCOCET COM

- Unify childof(jane, X) and childof(Y, mary)?
 yes by [X → mary, Y → jane]
- Anida We Chat powcoder

Recall, term can be constant, variable, functor.

Most General Unifier

Assignment Project Exam Help

MGU results from a substitution that bounds free variables as little as

- Unify p(X, f(Y)) and p(g(Z), W)
 - $[X \mapsto g(a), Y \mapsto b, W \mapsto f(b)]$
 - $[X \mapsto g(Z), W \mapsto f(Y)] MGU$
- *Aidd Wedfat powcoder

Soln:
$$[W \rightarrow X, Y \rightarrow g(Z), Z \rightarrow h(x)]$$
 MGU Or, $[W \rightarrow X, Y \rightarrow g(h(x)), Z \rightarrow h(x)]$ MGU

Unification and Computing with Logic

Assignment Project Exam Help

Given a query (prove/disprove a predicate holds)

- Search the facts and rules to find whether the query unifies with any consequent
- If the search fails, return false (query result)
- If the search is successful, then
 - A city e unification of the variables (if any)
 - if the unification occurs with the consequent of a rule, instantiate the variables (if any) and prove the subgoals

Example: Recap

Assignment Project Exam Help

```
isamother (mary).

childen mary powcoder.com
loves (X, Y):- isamother (mary) childen (tom, mary)

isamother (X),

Addivertise MGU: [X \mapsto mary, Y \mapsto tom].
```

Backtracking: Example Recap

Assignment Project Exam Help childof(tom, mary).

loves (Mary, X)
What is the result of ? Ploves (mary, X)
Computes all possible way to satisfy $\exists X.\text{loves}(mary, X)$.

More Language Features

Assignment Project Exam Help

https://powcoder.com

- Numbers
- 'Add WeChat powcoder

Lists

A Significant and training training the entropy of the significant states and the significant states and the significant states are significant states are significant states and the significant states are sig

• [a, [b, c], [[d, e]], []]: list can contain elements of different

https://arnepo.w/Godeth.Geoffile list and [b, c] is the tail of the list

$$\overset{?-}{\underset{x_s}{\text{in}}} \overset{[1,\ 2,\ 3]}{\underset{x_s}{\text{dd}}} \overset{=}{\underset{[2,\ 3]}{\text{WeChat powcoder}}}$$

Rest = [3]

Example

Assignment Project Exam Help

- ullet appending an empty list L_1 to list L_2 results in L_2
- appending a non-empty list L_1 to list L_2 results in L if the head of L_1 appending the tail of bis obtained by appending the tail of L_1 to list L_2 .

If ${\cal L}$ represents the set of lists, then signature of append is

Add WeChat powcoder

```
append([X|Xs], L, [X|Ys]) :-
    append(Xs, L, Ys).
```

Example

Assignment Project Exam Help

```
reverse([], []).

reverse([X|Xs], L)/:- reverse(Xs, Ys], append(Ys, [X], L).

Length of a list

length([], 0).

length([Xs], W-length(Xs, M), N is M+toder

How about?

length([], 0).

length([X|Xs], N):- M is N - 1, length(Xs, M).
```

Unification vs Computation

Assignment to Project of Color and Help • X is 3 + 1: X is assigned to 4

```
?- X is Y + 1.
Uninterpres: //poweoder.com
```

?- X is 3, X = 3.

X = 3

-Add. WeChat powcoder

X = 3 Y = 4

?- X is 3, X is X + 1.

no

if-then-else

Assignment Project Exam Help

. 1

).

Example: search on graphs

Assignment Project Exam Help edge(b, c). edge(c, a). https://powcoder.com reach(X, Y) :-Add W&Chat powcoder ?- reach(a, c)

Example: write a parser with Prolog

Assignment Project Exam Help

https://pwww.cpe.der.com

4. (30 pt) Consider the simple grammar above. Write a Prolog program that parses sentences (represented Asias) for words with the grammar above. The properties of the propert

Example: write a parser with Prolog

Assignment Project Exam Help

```
s sentence([A,B][all]): - noun-parase(A,B), checkverbrhase([all]).
s checkverbPhrase([A,B,C]Tall]): - end([Bead]).
c checkPeriod([Head|Tail]): - end([Head]), isNull(Tail), sentence(Tail).
c checkPeriod([Head|Tail]): - end([Head]), isNull(Tail), sentence(Tail).
c checkPeriod([A,B,C]), article(A), noun-phrase(B,C), clear, comparation of the phrase(A,B,C), article(A), noun-phrase(B,C), clear, c
```

Add WeChat powcoder

```
16  noun(dog).
17  verb(pets).
18  verb(sees).
19  end('.').
```

11

Logic Programming

Assignment Project Exam Help

- numbers: max
- list: append, reverse constitues blen/spowcoder.com
- language parsing
- graph search problems

Add WeChat powcoder