Quadrupoles Excitation Curves Comparison

".format(str(new id0),

str(new idf)))

```
In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
In [2]:
#Extract data from FAC excitation files
file q20 = 'C:\\Users\\labimas\\Desktop\\Avaliação dos Efeitos de Ciclagem\\Medidas das curvas de
excitação Quadrupolos Anel\\medidas_FAC_Q20.txt'
_file_q14 = 'C:\\Users\\labimas\\Desktop\\Avaliação dos Efeitos de Ciclagem\\Medidas das curvas de
excitação Quadrupolos Anel\\medidas_FAC_Q14.txt'
_file_q30 = 'C:\\Users\\labimas\\Desktop\\Avaliação dos Efeitos de Ciclagem\\Medidas das curvas de
excitação Quadrupolos Anel\\medidas_FAC_Q30.txt'
In [3]:
from db import DB
#filepath
filepath = 'C:\\Arq\Work At LNLS\\eclipse-workspace\\rotating-coil-software\\Rotating Coil v3\\me
asurements_data.db'
filepath = filepath.replace("\\","//")
#Import database from SQlite
database = DB(filename= filepath, dbtype='sqlite')
Indexing schema. This will take a second...finished!
In [4]:
def conversor fac files(file):
    new file = np.loadtxt(file, skiprows=7).T
    return new file
def creating df(new file, magnet name, inverse=False):
    if inverse:
       new file[3] = new file[3] *(-1)
    df = pd.DataFrame({
        'Current [A]': new_file[0],
        'Normal {} [T]'.format(str(magnet name)) : new file[3]
    return _df
In [5]:
#Converting FAC files
FAC q20 = conversor fac files (file <math>q20)
FAC q14 = conversor fac files( file q14)
_FAC_q30 = conversor_fac_files(_file_q30)
#Creating DataFrames from files converted
_df_fac_q20 = creating_df(_FAC_q20, 'quadrupole', False)
df fac q14 = creating df(FAC q14, 'quadrupole', True)
df_fac_q30 = creating_df(_FAC_q30, 'quadrupole', False)
In [6]:
def overview_dataframe(new_fac_file, old_id0, old_idf, new_id0, new_idf):
    #Import from DB Q14 NEW excitation ramp
    db new excitation = database.query("SELECT * from measurements WHERE (id >= {}) AND (id < {})
```

```
#Import from DB Q14 OLD excitation ramp
   db old excitation = database.query("SELECT * from measurements WHERE (id >= {}) AND (id < {})
".format(str(old id0),
str(old idf)))
   #Creating DataFrame with all quadrupole values (FAC, older excitation, new excitation)
   df excitation = pd.DataFrame({
       '1-Nominal Current [A]': db old excitation.main current.iloc[0:12],
       '2-FAC excitation [T]': new fac file['Normal quadrupole [T]'].iloc[0:12],
       '3-Older excitation [T]' : _db_old_excitation.main_harmonic.iloc[0:12],
       '4-Newest excitation [T]': _db_new_excitation.main_harmonic.iloc[0:12]
   })
   _df_excitation.style.set_caption("Main Harmonic Quadrupole Excitation Relationship")
   #Adding excitation ratio
    _df_excitation['Newest / FAC (%)'] = abs((_df_excitation['4-Newest excitation [T]']) / abs(_df_
excitation['2-FAC excitation [T]']))*100-100
    citation['2-FAC excitation [T]']))*100-100
   df excitation
   return df excitation
```

In [7]:

```
def subplotting excitation( df, name):
   f, axarr = plt.subplots(3, sharex=True, figsize=(10, 10))
   axarr[0].plot(_df['1-Nominal Current [A]'], _df['2-FAC excitation [T]'], '-o')
   axarr[0].set_title('{} - FAC Excitation'.format(name))
   axarr[0].set xlabel('Current [A]')
   axarr[0].set ylabel('Normal quadrupole [T]', color='b')
   axarr[0].tick params('y', colors='b')
   axarr[0].grid('on', alpha=0.3)
   axarr[1].plot(\_df['1-Nominal \ Current \ [A]'], \ \_df['3-Older \ excitation \ [T]'], \ '-ro')
   axarr[1].set title('{} - Older Excitation - RotCoil'.format(name))
   axarr[1].set xlabel('Current [A]')
   axarr[1].set ylabel('Normal quadrupole [T]', color='r')
   axarr[1].tick params('y', colors='r')
   axarr[1].grid('on', alpha=0.3)
   axarr[2].set xlabel('Current [A]')
   axarr[2].set_ylabel('Normal quadrupole [T]', color='g')
   axarr[2].tick_params('y', colors='g')
   axarr[2].grid('on', alpha=0.3)
   axarr[2].legend([axarr[0].get lines()[0], axarr[1].get lines()[0], axarr[2].get lines()[0]],
              ['FAC','Older-Excitation (RC)','Newest-Excitation (RC)'], bbox_to_anchor=(1.3, 2.2))
   plt.subplots adjust(hspace=0.8)
   plt.savefig('C:\\Users\\labimas\\Desktop\\Avaliação dos Efeitos de Ciclagem\\Medidas das curva
s de excitação Quadrupolos Anel\\plot comparison '+str(name)+'.png')
   return plt.show()
```

In [8]:

```
def plot_fully(_df, name):
    plt.figure(figsize=(10,8))
    plt.title('{} - Excitation comparison'.format(name))
    plt.plot(_df['1-Nominal Current [A]'], _df['2-FAC excitation [T]'], '-o')
    plt.plot(_df['1-Nominal Current [A]'], _df['3-Older excitation [T]'], '-ro')
    plt.plot(_df['1-Nominal Current [A]'], _df['4-Newest excitation [T]'], '-go')
    plt.xlabel('Current [A]')
    plt.ylabel('Normal quadrupole [T]')
    plt.grid('on', alpha=0.3)
    plt.legend(['FAC','Older-Excitation (RC)','Newest-Excitation (RC)'])
    plt.savefig('C:\\Users\\labimas\\Desktop\\Avaliação dos Efeitos de Ciclagem\\Medidas das curva
s de excitação Quadrupolos Anel\\plot_comparison_fully_'+str(name)+'.png')
    return plt.show()
```

```
In [9]:
```

```
_q20_id0_old = 6458  #Q20-055 (2019)
_q20_idf_old = 6482

_q20_id0_new = 40209  #Q20-055 (2020)
_q20_idf_new = 40234

_q20_overview = overview_dataframe(_df_fac_q20, _q20_id0_old, _q20_idf_old, _q20_id0_new, _q20_idf_new)
#_q20_overview
```

In [10]:

```
dados = database.query("SELECT * from measurements WHERE (id >= {}) AND (id <
{})".format(str(_q20_id0_old),str(_q20_idf_old)))
harmonicos = np.array([])

for i in range(len(dados)):
    valor = dados.read_data.iloc[i].split('\n')[2]
    harmonicos = np.append(harmonicos, valor.split('\t')[1])
harmonicos = np.asarray(harmonicos, dtype='float')</pre>
```

In [11]:

```
_q20_overview.drop(['3-Older excitation [T]'], axis=1, inplace=True)
_q20_overview.drop(['Older / FAC (%)'], axis=1, inplace=True)
_q20_overview.drop(['Newest / FAC (%)'], axis=1, inplace=True)

_q20_overview['3-Older excitation [T]'] = harmonicos[:12]
_q20_overview['Newest / FAC (%)'] = (_q20_overview['4-Newest excitation [T]'] / _df_fac_q20['Normal quadrupole [T]'].iloc[0:12])*100-100
_q20_overview['Older / FAC (%)'] = (_q20_overview['3-Older excitation [T]'] / _df_fac_q20['Normal quadrupole [T]'].iloc[0:12])*100-100
_q20_overview
```

Out[11]:

	1-Nominal Current		4-Newest excitation	3-Older excitation		Older / FAC
	[A]	[T]	[T]	[T]	(%)	(%)
0	0.0	0.00000	-0.043017	-0.040635	-inf	-inf
1	2.0	-0.15088	-0.154323	-0.150957	2.281677	0.050901
2	4.0	-0.26347	-0.266737	-0.263354	1.239990	-0.044066
3	6.0	-0.37681	-0.381109	-0.376563	1.141007	-0.065656
4	8.0	-0.49085	-0.495671	-0.490465	0.982179	-0.078517
5	10.0	-0.60553	-0.610645	-0.605033	0.844714	-0.082143
6	30.0	-1.77320	-1.775644	-1.771719	0.137804	-0.083521
7	50.0	-2.95580	-2.954016	-2.953629	-0.060346	-0.073449
8	70.0	-4.14000	-4.135054	-4.136582	-0.119462	-0.082560
9	90.0	-5.31950	-5.312134	-5.313668	-0.138465	-0.109634
10	110.0	-6.48580	-6.475595	-6.476010	-0.157345	-0.150945
11	130.0	-7.63100	-7.618917	-7.616195	-0.158340	-0.194011

In [12]:

```
subplotting_excitation(_q20_overview, 'Q20')
```

Q20 - FAC Excitation				
E 0				
og -2				
₩ -4 -				

In [13]:

```
plot_fully(_q20_overview, 'Q20')
```


Q14 comparison

In [14]:

```
_q14_id0_old = 31220  #Q14-003 (08/2019)
_q14_idf_old = 31244

_q14_id0_new = 40768  #Q14-003 (10/2020)
_q14_idf_new = 40792
```

```
_q14_overview = overview_dataframe(_df_fac_q14, _q14_id0_old, _q14_idf_old, _q14_id0_new,
_q14_idf_new)
_q14_overview
```

Out[14]:

	1-Nominal Current			4-Newest excitation	Newest / FAC	Older / FAC
	[A]	[T]	[1]	[1]	(%)	(%)
0	0.0	-0.028641	-0.026289	-0.016185	-43.489587	-8.212829
1	2.0	-0.094995	-0.093991	-0.083805	-11.779483	-1.056802
2	4.0	-0.162910	-0.162355	-0.153009	-6.077818	-0.340424
3	6.0	-0.231350	-0.231146	-0.223135	-3.550742	-0.088094
4	8.0	-0.300260	-0.300326	-0.293627	-2.209131	0.022018
5	10.0	-0.369610	-0.369919	-0.364414	-1.405823	0.083672
6	30.0	-1.077700	-1.078285	-1.077224	-0.044137	0.054296
7	50.0	-1.796000	-1.795820	-1.790859	-0.286230	-0.009999
8	70.0	-2.514800	-2.514005	-2.505657	-0.363551	-0.031622
9	90.0	-3.229800	-3.229202	-3.218830	-0.339643	-0.018523
10	110.0	-3.936700	-3.938388	-3.926398	-0.261701	0.042885
11	130.0	-4.631500	-4.637334	-4.624095	-0.159884	0.125955

In [15]:

subplotting_excitation(_q14_overview, 'Q14')

In [16]:

plot_fully(_q14_overview, 'Q14')

Q30 - comparison

```
In [17]:
```

```
#Q30-010 (2018)
id0_old = 4236
idf_old = 4260

#Q30-002 (2020)
id0_new = 40533
idf_new = 40557

_df_q30 = overview_dataframe(_df_fac_q30, id0_old, idf_old, id0_new, idf_new)
```

In [18]:

```
dados = database.query("SELECT * from measurements WHERE (id >= {}) AND (id <
{})".format(str(id0_old),str(idf_old)))
harmonicos = np.array([])
for i in range(len(dados)):
    valor = dados.read_data.iloc[i].split('\n')[2]
    harmonicos = np.append(harmonicos, valor.split('\t')[1])
harmonicos = np.asarray(harmonicos, dtype='float')</pre>
```

In [19]:

```
_df_q30.drop(['3-Older excitation [T]'], axis=1, inplace=True)
_df_q30.drop(['Older / FAC (%)'], axis=1, inplace=True)
_df_q30.drop(['Newest / FAC (%)'], axis=1, inplace=True)

_df_q30['3-Older excitation [T]'] = harmonicos[:12]
_df_q30['Newest / FAC (%)'] = (_df_q30['4-Newest excitation [T]'] / _df_fac_q30['Normal quadrupole
[T]'].iloc[0:12])*100-100
_df_q30['Older / FAC (%)'] = (_df_q30['3-Older excitation [T]'] / _df_fac_q30['Normal quadrupole [T]'].iloc[0:12])*100-100
_df_q30
```

Out[19]:

	1-Nominal Current	ניז 2-FAC excitation	ניו 4-Newest excitation	3-Older excitation	Newest / FAC	Older / FAC
0	0.0 [A]	-0.057045 [T]	-0.051215 [T]	-0.056240 [T]	-10.220392 (%)	-1.410728 (%)
1	2.0	-0.224940	-0.221119	-0.224500	-1.698523	-0.195519
2	4.0	-0.395210	-0.393457	-0.395003	-0.443484	-0.052276
3	6.0	-0.566560	-0.568021	-0.566534	0.257817	-0.004571
4	8.0	-0.738900	-0.744267	-0.739003	0.726367	0.013886
5	10.0	-0.912200	-0.921038	-0.912408	0.968903	0.022835
6	30.0	-2.673900	-2.680205	-2.675050	0.235786	0.043008
7	50.0	-4.456200	-4.451799	-4.458046	-0.098758	0.041425
8	70.0	-6.241000	-6.226096	-6.243688	-0.238809	0.043070
9	90.0	-8.019900	-7.994126	-8.024513	-0.321375	0.057519
10	110.0	-9.782900	-9.752241	-9.790838	-0.313395	0.081142
11	130.0	-11.522000	-11.490159	-11.534450	-0.276350	0.108054

In [21]:

 ${\tt subplotting_excitation}\,(_{\tt df_q30}\,,~\ensuremath{\mbox{$^{\circ}$Q30'}})$

In [22]:

 $\verb"plot_fully(_df_q30, 'Q30')"$

