COL751 - Lecture 19

In Lecture 18, we studied a characterization of directed graphs that admit k-edge-disjoint reachability trees rooted at a node s. In particular, we proved that G has k edge-disjoint reachability trees rooted at s if and only if MAX-FLOW $(s, v, G) \ge k$, for each $v \in V$. We will prove the following related result for undirected graphs.

Theorem 1 (Nash-Williams 1961, Tutte 1961). Any undirected 2k-edge-connected graph G on n vertices has k-edge-disjoint spanning trees T_1, \ldots, T_k of size n.

1 2k-edge connected graphs

In order to prove Theorem 1 we will first prove some properties of 2k-edge-connected graphs.

Consider a graph G obtained as follows. Start with a multigraph consisting of two vertices x and y connected with 2k parallel edges. Next repeatedly perform one of the following operations:

- 1. Add a new edge.
- 2. Split any set S of k edges. Here **splitting** an edge-set $S = \{(x_1, y_1), \dots, (x_k, y_k)\}$ refers to adding a new (common) vertex, say w, between endpoints of each edge in S, that is, to replace each edge $(x_i, y_i) \in S$ with the two edges (x_i, w) and (w, y_i) .

Lemma 1. Any graph G obtained by sequence of above two operations is 2k-edge-connected.

Proof: Let G_0 be a 2k-edge-connected graph. Let G_1 be a graph obtained from G_0 by splitting a set S of k edges in G, and let w be the associated vertex added to G_1 in this process. It suffices to show that G_1 is 2k-edge-connected.

Note for any $x, y \neq w$, MAX-FLOW $(x, y, G_1) \geqslant 2k$. Now if G_1 is not 2k-edge-connected then there must exist a cut (X, X^c) of size at most 2k-1. Further both X and X^c cannot contain original vertices of G. However, $X, X^c \neq \{w\}$ as degree of w is 2k, contradicting the existence of cut (X, X^c) .

An interesting question is whether any 2k-edge-connected graph G can be generated using operations 1 and 2. We will show that this is indeed true. Let us first prove that there is a candidate vertex w in any minimal 2k-edge-connected graph.

Lemma 2. Every minimal r-edge-connected graph has a vertex of degree r.

Proof: Let G be a minimal r-edge-connected graph. Let (X, X^c) be a cut of size r that minimizes |X|.

• If |X| = 1, then we are done.

• If |X| > 1, then there must exist an edge with both endpoints in X, say e = (a, b). Next observe there must exist a cut of size exactly r containing e. Let this cut be (Y, Y^c) . Submodularity of cuts states that,

$$\delta(X) + \delta(Y) \geqslant \delta(X \cap Y) + \delta(X \cup Y).$$

As each cut in G has size at least r, and $\delta(X) = \delta(Y) = r$, we have $X \cap Y$ is also a cut of size r, thereby contradicting the minimality of X.

Now the next question is whether we can perform **split-off** (i.e. reverse of splitting operation) on vertex w. This is possible due to following result by Lovasz.

Theorem 2 (Lovasz's Splitting Off Theorem). Let $r \ge 2$, G be an undirected graph, and s be a vertex of even degree in G satisfying

$$\lambda(x,y) \geqslant r, \quad \forall x, y \in V \setminus \{s\}.$$
 (1)

Then there exists two edges $e_x = (s, x)$ and $e_y = (s, y)$ incident to s such that the graph $G + (x, y) - \{e_x, e_y\}$ also satisfies Eq. 1.

We will prove this theorem in the last section, and proceed assuming the theorem is correct.

Theorem 3. Every 2k-edge-connected graph G can be obtained as follows: Start with a multigraph consisting of two vertices x and y connected with 2k parallel edges. Next repeatedly perform one of the following operations:

- 1. Add a new edge.
- 2. Split any set S of k edges.

Proof: Let G be a 2k-edge-connected graph on n vertices. If G is not a minimal 2k-edge-connected graph then we can perform operation 1. If G is a minimal 2k-edge-connected graph then by Lemma 2 we can find a vertex w of degree 2k, and next perform splitting-off operation on appropriate pairs of edges incident to w to eliminate w. By Theorem 2, the resultant graph will a 2k-edge-connected graph on n-1 vertices. This process can be repeated until G contains exactly two vertices.

2 Graph Orientation

Orienting an undirected graph G refers to assigning direction to edges of the graph. We will prove the following result.

Theorem 4 (Nash-Williams, 1960). An undirected graph G is 2k-edge-connected iff there exists an orientation of G, say D(G), that is strongly-k-edge-connected.

Proof: If D(G) is strongly-k-edge-connected, then for any cut (X, X^c) there are k edges in both directions, thereby proving G is 2k-edge-connected. The reverse claim can be proven inductively using Theorem 3 and is left as an exercise.

Proof of Theorem 1 By Theorem 4, we have that for any arbitrary vertex s in D(G), MAX-FLOW $(s, v, D(G)) \ge k$. Using the Edmond's Tree Packing theorem (a.k.a Edmond's Disjoint Reachability Theorem) we get k-edge-disjoint reachability trees T_1, \ldots, T_k rooted at s. Ignoring the edge directions in these k trees gives us the corresponding trees for G.

3 Lovasz's Splitting Off Theorem

Reminder of Theorem 2. Let $k \ge 2$, G be an undirected graph, and s be a vertex of even degree in G satisfying

$$\lambda(a,b) \geqslant k, \quad \forall a,b \in V \setminus \{s\}.$$
 (2)

Then there exists two edges $e_x = (s, x)$ and $e_y = (s, y)$ incident to s such that the graph $G + (x, y) - \{e_x, e_y\}$ also satisfies Eq. 2.

Proof: Let us fix an edge (s, x) incident to s. We will prove that there exists a neighbor $y(\neq x)$ of s for which $G + (x, y) - \{(s, x), (s, y)\}$ satisfies Eq. 2. Let us suppose this is not true. Then for each $y \in Y$ there must exist a cut (Y, Y^c) of size k + 1 satisfying $x, y \in Y$, $s \in Y^c$, and $|Y^c| \geq 2$. Let ' \mathcal{C} ' be a minimal collection of such Y's whose union covers neighbors of s.

Observe that for $Y \in \mathcal{C}$, $\delta(Y) \leq k+1$ and $\delta(Y \cup \{s\}) \geq k$. This implies

$$deg(s, Y) \leq deg(s)/2.$$

This together with the fact that $x \in Y$ implies $|\mathcal{C}| \geqslant 3$. Let Y_1, Y_2, Y_3 be three elements in \mathcal{C} . We have

$$x \in Y_1 \cap Y_2 \cap Y_3,$$

$$Y_1 \nsubseteq (Y_2 \cup Y_3),$$

$$Y_2 \nsubseteq (Y_1 \cup Y_3),$$

$$Y_3 \nsubseteq (Y_1 \cup Y_2).$$

Figure 1: Depiction of sets Y_1, Y_2, Y_3 and edge (s, x) separated by cuts $(Y_i, Y_i^c), i \in [1, 3]$.

By three-way submodularity we have,

$$\begin{split} \delta(Y_1) + \delta(Y_2) + \delta(Y_3) & \geqslant \delta(Y_1 \cap Y_2 \cap Y_3) \\ & + \delta(Y_1 \setminus (Y_2 \cup Y_3)) \\ & + \delta(Y_2 \setminus (Y_1 \cup Y_3)) \\ & + \delta(Y_3 \setminus (Y_1 \cup Y_2)). \end{split}$$

This along with the fact that edge (s, x) is covered thrice in left-hand side, and exactly once in right-hand side implies the following stronger relation.

$$\delta(Y_1) + \delta(Y_2) + \delta(Y_3) \geqslant \delta(Y_1 \cap Y_2 \cap Y_3)$$

$$+ \delta(Y_1 \setminus (Y_2 \cup Y_3))$$

$$+ \delta(Y_2 \setminus (Y_1 \cup Y_3))$$

$$+ \delta(Y_3 \setminus (Y_1 \cup Y_2))$$

$$+ 2.$$

In above inequality, every term on the left-hand side is at most k+1 (by the definition of Y's) and every term on the right-hand side is at least k (by our assumption of max-flow being at least k between pairs in $V \setminus \{v\}$). So, we have

$$3k + 3 \geqslant 4k + 2$$
,

implying $k \leq 1$. This contradicts our assumption. Hence, there must exist a neighbor $y(\neq x)$ of s for which $G + (x, y) - \{(s, x), (s, y)\}$ satisfies Eq. 2.