- 1. Determine parametric equations for the plane π in the following cases:
 - a) π contains the point M(1,0,2) and is parallel to the vectors $\mathbf{a}_1(3,-1,1)$ and $\mathbf{a}_2(0,3,1)$,
 - b) π contains the points A(-2,1,1), B(0,2,3) and C(1,0,-1),
 - c) π contains the point A(1,2,1) and is parallel to **i** and **j**,
 - d) π contains the point M(1,7,1) and is parallel coordinate plane Oyz,
 - e) π contains the points $M_1(5,3,4)$ and $M_2(1,0,1)$, and is parallel to the vector $\mathbf{a}(1,3,-3)$,
 - f) π contains the point A(1,5,7) and the coordinate axis Ox.
- 2. Determine Cartesian equations for the plane π in the following cases:
 - a) π : x = 2 + 3u 4v, y = 4 v, z = 2 + 3u;
 - b) $\pi : x = u + v$, y = u v, z = 5 + 6u 4v.
- 3. Determine parametric equations for the plane π in the following cases:
 - a) 3x 6y + z = 0;
 - b) 2x y z 3 = 0;
- **4.** Determine an equation for each plane passing through P(3, 5, -7) and intersecting the coordinate axes in congruent segments.
- **5.** Let A(2,1,0), B(1,3,5), C(6,3,4), D(0,-7,8) be vertices of a tetrahedron. Determine a Cartesian equation of the plane containing [AB] and the midpoint of [CD].

6. Show that a parallelepiped with faces in the planes 2x + y - 2z + 6 = 0, 2x - 2y + z - 8 = 0 and x + 2y + 2z + 1 = 0 is rectangular.

- 7. Show that the points A(1,0,-1), B(0,2,3), C(-2,1,1) and D(4,2,3) are coplanar.
- **8.** Determine a Cartesian equation of the plane π if A(1,-1,3) is the orthogonal projection of the origin on π .
- **9.** Determine the distance between the planes x 2y 2z + 7 = 0 and 2x 4y 4z + 17 = 0.
- 10. Determine the relative positions of the planes in the following cases

a)
$$\pi_1: x + 2y + 3z - 1 = 0$$
, $\pi_2: x + 2y - 3z - 1 = 0$.

b)
$$\pi_1: x + 2y + 3z - 1 = 0$$
, $\pi_2: 2x + y + 3z - 2 = 0$, $\pi_3: x + 2y + 3z + 2 = 0$.

11. Show that the planes

$$\pi_1: 3x + y + z - 1 = 0$$
, $\pi_2: 2x + y + 3z + 2 = 0$, $\pi_3: -x + 2y + z + 4 = 0$

have a point in common.

12. Show that the pairwise intersection of the planes

$$\pi_1: 3x + y + z - 5 = 0$$
, $\pi_2: 2x + y + 3z + 2 = 0$, $\pi_3: 5x + 2y + 4z + 1 = 0$

are parallel lines.

- **13.** Determine parametric equations for the line ℓ in the following cases:
 - a) ℓ contains the point $M_0(2,0,3)$ and is parallel to the vector $\mathbf{a}(3,-2,-2)$,
 - b) ℓ contains the point A(1,2,3) and is parallel to the Oz-axis,
 - c) ℓ contains the points $M_1(1,2,3)$ and $M_2(4,4,4)$.
- 14. Give Cartesian equations for the lines ℓ in the previous exercise.
- **15.** Determine parametric equations for the line contained in the planes x + y + 2z 3 = 0 and x y + z 1 = 0.
- **16.** Consider the lines ℓ_1 : x = 1 + t, y = 1 + 2t, z = 3 + t, $t \in \mathbb{R}$ and ℓ_2 : x = 3 + s, y = 2s, z = -2 + s, $s \in \mathbb{R}$. Show that ℓ_1 and ℓ_2 are parallel and find the equation of the plane determined by the two lines.