Parity Bit Based Codes

Single Parity Bit Code

- Given a k-bit message, we can create a (k+1,k,2) block code by adding a single bit.
 - The bit is chosen so that the sum of the (k+1) bits in the codeword is even.
 - Equivalently, the bit is 1 if the sum of the k message bit is odd, and 0 otherwise.
 - The bit is called a parity bit.
 - The resulting codeword is said to have even parity.

Example: (8,7,2) code

parity bit

message block: 0110010

codeword: 0 1 1 0 0 1 0 1

code rate = $\frac{k}{k+1} = \frac{7}{8}$

message block: 1011100

codeword: 10111000

Error Detection

- With the (k+1,k,2) parity bit code, we can detect single bit errors.
- If the received codeword has an even number of ones,
 then, we assume no bit errors have occurred
 otherwise, we assume a one bit error has occurred
- Example: (8,7,2) code

message block: 0 1 1 0 0 1 0

sent codeword: 0 1 1 0 0 1 0 1

received codeword: $0 1 1 0 1 1 0 1 \rightarrow \text{single bit error (detected)}$

received codeword: $0 1 1 1 1 1 0 1 \rightarrow two bit error (not detected)$

An (8,4,3) Code

- Arrange the message block to a 2x2 square.
- Add a parity bit (P_i) to each row or column, so that it has even parity.
 - Choose P₁ so row 1 has even parity.
 - Choose P₂ so row 2 has even parity.
 - Choose P₃ so column 1 has even parity.
 - Choose P₄ so column 2 has even parity.
- Rearrange the bits to form the final codeword.

code rate =
$$\frac{1}{2}$$

Example

- Arrange the message block to a 2x2 square.
- Add a parity bit (P_i) to each row or column, so that it has even parity.
 - Choose P₁ so row 1 has even parity.
 - Choose P₂ so row 2 has even parity.
 - Choose P₃ so column 1 has even parity.
 - Choose P₄ so column 2 has even parity.
- Rearrange the bits to form the final codeword.

Syndrome Bits

Received codeword

Rearrange the codeword

 The P_i have been chosen so that each row or column of the rearranged codeword should have an even number of bits.

Compute syndrome bits

- Syndrome bits S_i check this condition in the received code word.
 - $S_i = 1$ indicates the condition for parity bit P_i is violated.

Example Syndrome Bit Calculations

0	1	1	0
1	1	0	0
1	0		
0	0		

0	1	1	0
1	1	1	1
1	0		
0	0		

0	1	1	0
1	0	0	1
1	0		
0	1		

D_1	D_2	P_1	S_1
D_3	D_4	P_2	S ₂
P_3	P_4		
S ₃	S ₄		

If
$$D_1 + D_2 + P_1$$
 is even
then $S_1 = 0$
else $S_1 = 1$

If
$$D_3 + D_4 + P_2$$
 is even
then $S_2 = 0$
else $S_2 = 1$

If
$$D_1 + D_3 + P_3$$
 is even
then $S_3 = 0$
else $S_3 = 1$

If
$$D_2 + D_4 + P_4$$
 is even
then $S_4 = 0$
else $S_4 = 1$

Performing Error Correction

 Since d=3, we can detect and correct (d-1)/2=1 bit errors.

- Check the syndrome bits
 - If all $S_i = 0$, we assume no error.
 - If only one $S_i = 1$, we assume an error in parity bit P_i .

 If syndrome bits for column i and row j are 1, we assume a bit error in the data bit at position i,j

Performing Error Detection

 With the (8,4,3) code, since d=3, we can detect 1 or 2 bit errors.

- Check the syndrome bits
 - If all Si = 0, we assume no error.
 - Otherwise, we assume there has been an error in at least one bit

Error Correction Summary

- 1. Take an input message stream:
- 2. Break the message stream into k-bit blocks (e.g. k = 4).
- 3. Add (n-k) parity bits to form n-bit codeword (e.g. n = 8)
- 4. Transmit data through noisy channel and receive codewords with some errors
- 5. Perform error correction
- 6. Extract the k=4 message bits from each corrected codeword.

Summary

- Noise, always present in communication systems, leads to bit errors.
- Error Correcting Codes can be used to reduce bit error rate.
- With (n,k,d) block codes, we use n bits to encode k message bits, where n > k.
- The minimum Hamming distance, d, between the codewords indicates how many bit errors the code can detect or correct.