Survival Models: Week 8

# Markov models - Multi-state Example



What is the probability of transferring from the dating state to the married state?

### Markov models - Multi-state Example

Using the Kolmogorov equations we have:

$$\frac{d}{dt} p_x^{dm} = {}_t p_x^{ds} \mu^{sm} - {}_t p_x^{dm} \mu^{ms} + {}_t p_x^{dd} \mu^{dm} - {}_t p_x^{dm} \mu^{md} 
= {}_t p_x^{dd} \mu^{dm}$$

For this model we have that  $_tp_x^{dd} = \exp[-t(\mu^{ds} + \mu^{dm})]$  giving:

$$\frac{d}{dt} p_x^{dm} = \exp[-t(\mu^{ds} + \mu^{dm})] \mu^{dm}$$

This last relationship implies that:

$$_{t}p_{x}^{dm} = \frac{-\mu^{dm}}{\mu^{ds} + \mu^{dm}} \exp[-t(\mu^{ds} + \mu^{dm})] + C$$

To find the value of the constant C we use the fact that  $_{0}p_{x}^{dm}=0$  and solve:

$$_{0}p_{x}^{dm} = \frac{-\mu^{dm}}{\mu^{ds} + \mu^{dm}} \exp[-0(\mu^{ds} + \mu^{dm})] + C.$$

Putting this together we have that:

ther we have that: 
$$the prob of moving out of state d$$
 
$$the prob of moving out of state d$$
 
$$after time t$$
 tion for this result?

What is the intuition for this result?

#### The Binomial Model

The binomial model is an <u>alternative means</u> of modelling survival times.

- In the material on multi-state modelling we estimated the hazard  $\mu_x$ . The hazard was then used to estimate probabilities of interest.
- In the binomial model we estimate  $q_x$ , the probability an individual aged x dies before reaching age x + 1.

major différence: Quantity of interest is différent

## The Binomial Model - Data

We observe the following data for each of N individuals aged [x, x + 1]:

- $x + a_i$  is the age that individual i comes under observation.
- $x + b_i$  is the age that individual i stops being observed or is censored.
- $\delta_i$  is an indicator variable taking the value 1 if individual i is observed to die.

To estimate  $q_x$  we need to write the likelihood for  $\delta_i$ . The likelihood is:

$$L = \prod_{i=1}^{N} b_{i-a_{i}} q_{x+a_{i}}^{\delta_{i}} (1 - b_{i-a_{i}} q_{x+a_{i}})^{1-\delta_{i}}.$$

#### The Binomial Model - Estimation

To work with this likelihood we need to make assumptions about  $tq_x$  over the year of age [x, x + 1). Three common assumptions are:

- Uniform distribution of deaths (UDD):  $tq_x = tq_x$ , where  $(0 \le t \le 1)$ .
- Constant hazard:  $tq_x = 1 \exp\{-\mu t\}$ , where  $(0 \le t \le 1)$ .

# Example - UDD

Behavior between x and x + 1:

$$\mu_x(t) = \frac{d}{dt} - \log S(x+t)$$

$$= \frac{d}{dt} - \log(tp_x)$$

$$= \frac{d}{dt} - \log(1 - tq_x)$$

$$= \frac{d}{dt} - \log(1 - tq_x)$$

$$= \frac{q_x}{1 - tq_x}$$

# Example - O'Neill notes

Suppose all individuals start observation exactly aged x and that all censoring takes place at age x + 0.5. This means  $a_i = 0$  for all individuals and that  $b_i = 1$  or  $b_i = 0.5$  for uncensored and censored individuals, respectively. We will let w denote the number of censored individuals. If we use the constant hazard assumption we have:

$$1 -_{0.5} q_x = 1 - (1 - \exp(-0.5\mu))$$
$$= \exp(-0.5\mu)$$
$$= (1 - q_x)^{0.5}$$

Using this fact we can write the likelihood as:

$$q_x^{\delta} (1 - q_x)^{N-w-\delta} (1 - q_x)^{0.5w},$$

where,  $\delta$  is the total number of observed deaths. Maximising the likelihood gives:

$$\hat{q}_x = \frac{\delta}{N - 0.5w}$$

$$L = \frac{5}{6} \left( 1 - \frac{3}{6} \right) \quad N - \omega - 5 \quad (1 - \frac{3}{6} \times 2)$$

$$= \frac{3}{6} \left( 1 - \frac{3}{6} \times 2 \right) \quad N - 0.5 \omega - 5$$

$$= \frac{3}{6} \left( 1 - \frac{3}{6} \times 2 \right) \quad N - 0.5 \omega - 5 \quad \log(1 - \frac{3}{6} \times 2)$$

$$L = \frac{5}{6} \log(\frac{3}{6} \times 2) + \left( N - 0.5 \omega - 5 \right) \log(1 - \frac{3}{6} \times 2)$$

$$\frac{\partial l}{\partial q_{x}} = \frac{S}{g_{x}} + \frac{N - 0.5 \omega - S}{1 - g_{x}} \cdot (C - 1) = 0$$

mder constant
hazard assumption

#### The Poisson Model

Another method for estimation is the Poisson model. The Poisson distribution can be used to model the number of events that occur over a given period of time. A random variable X follows the Poisson distribution if:

$$P[X = x] = \frac{e^{-\lambda} \lambda^x}{x!},$$

for  $x = 0, 1, 2, \dots$ 

For the Poisson distribution  $E(X) = Var(X) = \lambda$ .

#### The Poisson Model

To use the Poisson model we need to observe the total number of deaths that occur  $\delta$  and the total waiting time. The total waiting time is the quantity denoted v in last week's lecture notes. The total waiting can also be denoted  $E_x^c$ , the central exposed to risk. Define the total number of deaths as X, the Poisson model assumes that X is Poisson with mean  $\mu E_x^c$ .

$$P[X=j] = \frac{e^{-\mu E_x^c} (\mu E_x^c)^j}{j!},$$

so the MLE of  $\mu$  is  $\hat{\mu} = \frac{\delta}{E_x^c}$ . Note: For the Poisson distribution we know that  $\lambda$  can be estimated by the observed number of deaths so that  $\hat{\lambda} = \delta$ . This fact and the fact that  $\lambda = \mu E_x^c$  give the desired result.

For Poisson distribution but we define a differently / = w. Ex WMLE = Sme = S Ec = Ec According to sides  $P(\delta=j) = e^{-\lambda_1 j}$  total # of deaths ~ Poisson In this case 2= E[S]=5

### Poisson Model - Example

At a particular university the hazard of a student dropping out is 0.01 in year 2010. Additionally, during the year 2010 there were 2950 years of study observed (i.e.  $E_x^c = 2950$ ). What is the probability there were more than 60 students dropping out during 2010?

The Poisson mean is  $\mu * E = .01(2950) = 29.50$  drop outs per year.

Solution:

$$P(X > 60) \approx P(Z > [60 - 29.50]/\sqrt{29.50}).$$

Note: For multistate, even if N=0, prob could be non-zero.

## R Example

The package msm in R can fit multi-state markov models. The dataset "cav" contains information from heart transplant patients. the dataset contains information on 614 individuals. There are four states that a patient can be in: "1": no cav; "2": mild cav: "3": severe CAV; "4": death. An example of the data is provided below:

|   | PTNUM  | age      | years    | dage | sex | pdiag | cumrej | state | firstobs |
|---|--------|----------|----------|------|-----|-------|--------|-------|----------|
| 1 | 100002 | 52.49589 | 0.000000 | 21   | 0   | IHD   | 0      | 1     | 1        |
| 2 | 100002 | 53.49863 | 1.002740 | 21   | 0   | IHD   | 2      | 1     | 0        |
| 3 | 100002 | 54.49863 | 2.002740 | 21   | 0   | IHD   | 2      | 2     | 0        |
| 4 | 100002 | 55.58904 | 3.093151 | 21   | 0   | IHD   | 2      | 2     | 0        |
| 5 | 100002 | 56.49589 | 4.000000 | 21   | 0   | IHD   | 3      | 2     | 0        |
| 6 | 100002 | 57.49315 | 4.997260 | 21   | 0   | IHD   | 3      | 3     | 0        |
| 7 | 100002 | 58.35068 | 5.854795 | 21   | 0   | IHD   | 3      | 4     | O        |

The variable year is the time since the transplant.

```
#obtaining transition intensities and prob transitioning in 1 year.
#code taken from http://www.jstatsoft.org/v38/i08/ by C Jackson 2011.
library(msm)
data("cav")
cav<-cav[!is.na(cav$pdiag),]</pre>
statetable.msm(state, PTNUM, data = cav)
> statetable.msm(state, PTNUM, data = cav)
    to
          2 3
       1
from
                       4
   1 1348 203 44 147
          134 54
      46
                      47
       4
           13 107
                      55
   3
twoway4.q <- rbind(c(0, 0.25, 0, 0.25), c(0.166, 0, 0.166, 0.166), c(0, 0.25, 0, 0.25), c(0, 0, 0, 0))
rownames(twoway4.q) <- colnames(twoway4.q) <- c("Well", "Mild", "Severe", "Death")
cav.msm <- msm(state ~ years, subject = PTNUM, data = cav,qmatrix = twoway4.q, death = 4)</pre>
cav.msm
Call:
msm(formula = state ~ years, subject = PTNUM, data = cav, qmatrix = twoway4.q,
                                                                                   death = 4
Maximum likelihood estimates:
Transition intensity matrix
                                Mild
       Well
```

```
Well
       -0.1682 (-0.188,-0.1505) 0.1276 (0.111,0.1467)
Mild
      0.2264 (0.1692, 0.303)
                               -0.618 (-0.7195, -0.5309)
Severe 0
                               0.1226 (0.07308, 0.2056)
Death 0
                                0
                                Death
       Severe
Well
                                0.04057 (0.03227, 0.051)
       0
Mild
      0.3375 (0.2713, 0.4199)
                              0.05405 (0.02233,0.1308)
Severe -0.4144 (-0.5245,-0.3275) 0.2919 (0.2274,0.3746)
Death 0
-2 * log-likelihood: 3945.363
pmatrix.msm(cav.msm, t = 1, ci = "normal")
> pmatrix.msm(cav.msm, t = 1, ci = "normal")
       Well
                                  Mild
     0.8558 (0.8426,0.8685)
                                  0.08785 (0.07751,0.09805)
Well
      0.1559 (0.1189,0.1965)
                                  0.5602 (0.5061, 0.6017)
Mild
Severe 0.009393 (0.005577,0.01616) 0.07416 (0.04564,0.1183)
Death 0
                                  0
       Severe
                               Death
Well
     0.01458 (0.0116, 0.01792) 0.04175 (0.03462, 0.05111)
Mild
      0.2042 (0.1672, 0.2402)
                               0.07974 (0.05931,0.1291)
Severe 0.6736 (0.6028, 0.7264)
                               0.2429 (0.1965, 0.3023)
                                1 (1,1)
Death 0
```