Small Guide to Making Nice Tables

Markus Püschel
Carnegie Mellon University
www.ece.cmu.edu/~pueschel

Which One Looks Better?

signal processing concept	algebraic concept (coordinate free)	in coordinates
fi lter	$h \in \mathcal{A}$ (algebra)	$\phi(h) \in \mathbb{C}^{I \times I}$
signal	$s = \sum s_i b_i \in \mathcal{M}$ (\mathcal{A} -module)	$\mathbf{s} = (s_i)_{i \in I} \in \mathbb{C}^I$
fi ltering	$h \cdot s$	$\phi(h) \cdot \mathbf{s}$
impulse	base vector $b_i \in \mathcal{M}$	$\mathbf{b}_i = (\dots, 0, 1, 0 \dots)^T \in \mathbb{C}^I$
impulse response of $h \in \mathcal{A}$	$h \cdot b_i \in \mathcal{M}$	$\phi(h) \cdot \mathbf{b}_i = (\dots, h_{-1}, h_0, h_1, \dots)^T \in \mathbb{C}^I$
Fourier transform	$\Delta: \mathcal{M} \to \bigoplus_{\omega \in W} \mathcal{M}_{\omega}$	$\mathcal{F}:\ \mathbb{C}^I oigoplus_{\omega\in W}\mathbb{C}^{d_\omega}$
		$\Leftrightarrow \phi \to \bigoplus_{\omega \in W} \phi_{\omega}$
spectrum of signal	$\Delta(s) = (s_{\omega})_{\omega \in W} = \omega \mapsto s_{\omega}$	$\mathcal{F}(\mathbf{s}) = (\mathbf{s}_{\omega})_{\omega \in W} = \omega \mapsto \mathbf{s}_{\omega}$
frequency response of $h \in \mathcal{A}$		$(\phi_{\omega}(h))_{\omega \in W} = \omega \mapsto \phi_{\omega}(h)$

signal processing concept	algebraic concept (coordinate free)	in coordinates
filter	$h \in \mathcal{A}$ (algebra)	$\phi(h) \in \mathbb{C}^{I \times I}$
signal	$s = \sum s_i b_i \in \mathcal{M}$ (A-module)	$\mathbf{s} = (s_i)_{i \in I} \in \mathbb{C}^I$
filtering	$h \cdot s$	$\phi(h) \cdot \mathbf{s}$
impulse	base vector $b_i \in \mathcal{M}$	$\mathbf{b}_i = (\dots, 0, 1, 0, \dots)^T \in \mathbb{C}^I$
impulse response of $h \in \mathcal{A}$	$h \cdot b_i \in \mathcal{M}$	$\phi(h) \cdot \mathbf{b}_i = (\dots, h_{-1}, h_0, h_1, \dots)^T \in \mathbb{C}^I$
Fourier transform	$\Delta: \ \mathcal{M} \to \bigoplus_{\omega \in W} \mathcal{M}_{\omega}$	$\mathcal{F}: \ \mathbb{C}^I \to \bigoplus_{\omega \in W} \mathbb{C}^{d_\omega} \Leftrightarrow \phi \to \bigoplus_{\omega \in W} \phi_\omega$
spectrum of signal	$\Delta(s) = (s_{\omega})_{\omega \in W} = \omega \mapsto s_{\omega}$	$\mathcal{F}(\mathbf{s}) = (\mathbf{s}_{\omega})_{\omega \in W} = \omega \mapsto \mathbf{s}_{\omega}$
frequency response of $h \in \mathcal{A}$	n.a.	$(\phi_{\omega}(h))_{\omega \in W} = \omega \mapsto \phi_{\omega}(h)$

Easy decision, isn't it?

Another One

	f	C	$s_n - s_{n-2}$	s_n	$s_n - s_{n-1}$	$s_n + s_{n-1}$
$s_{-1} = s_1$	1	T	DCT-1	DCT-3	DCT-5	DCT-7
	_	_	$2(x^2-1)U_{n-2}$	T_n	$(x-1)W_{n-1}$	$(x+1)V_{n-1}$
$s_{-1} = 0$	$\sin \theta$	U	DST-3	DST-1	DST-7	DST-5
			$2T_n$	U_n	V_n	W_n
$s_{-1} = s_0$	$\cos \frac{1}{2}\theta$	V	DCT-6	DCT-8	DCT-2	DCT-4
		,	$2(x-1)W_{n-1}$	V_n	$2(x-1)U_{n-1}$	$2T_n$
$s_{-1} = -s_0$	$\sin \frac{1}{2}\theta$	W	DST-8	DST-6	DST-4	DST-2
		, ,	$2(x+1)V_{n-1}$	W_n	$2T_n$	$2(x+1)U_{n-1}$

	$s_n - s_{n-2}$	s_n	$s_n - s_{n-1}$	$s_n + s_{n-1}$	f	C
$s_{-1} = s_1$	DCT-1	DCT-3	DCT-5	DCT-7	1	\overline{T}
	$2(x^2 - 1)U_{n-2}$	T_n	$(x-1)W_{n-1}$	$(x+1)V_{n-1}$		
$s_{-1} = 0$	DST-3	DST-1	DST-7	DST-5	$\sin \theta$	U
	$2T_n$	U_n	V_n	W_n		
$s_{-1} = s_0$	DCT-6	DCT-8	DCT-2	DCT-4	$\cos \frac{1}{2}\theta$	V
	$2(x-1)W_{n-1}$	V_n	$2(x-1)U_{n-1}$	$2T_n$	_	
$s_{-1} = -s_0$	DST-8	DST-6	DST-4	DST-2	$\sin \frac{1}{2}\theta$	W
	$2(x+1)V_{n-1}$	W_n	$2T_n$	$2(x+1)U_{n-1}$	_	

If your tables tend to look like the above you may find this guide helpful

Background

- Up to 2005, I had been writing technical publications for 8 years, creating roughly 35 fully reviewed papers, 2 theses,
 20 proposals, and many other pages of technical writing
- In each case I spent a lot of effort on content and visual presentation; I am really picky
- In 2005 I learned (from Goran Frehse, thank you!) that I had had no clue how to make tables
- I summarize what I have learned in this short guide

Resources

"Chicago Manual of Style," The University of Chicago Press

■ Latex users: Use booktabs.sty and its documentation http://texcatalogue.sarovar.org/entries/booktabs.html

Most Important Guidelines for Making Tables

- Avoid vertical lines
- Avoid "boxing up" cells, usually 3 horizontal lines are enough: above, below, and after heading (see examples in this guide)
- Avoid double horizontal lines
- Enough space between rows
- If in doubt, align left

Example: Before and After

Before:

	abstract	realized
shift operator	q	$T_1(x) = x$
shift operation	♦	•
space mark	t_n	C_n
k-fold shift operator	$T_k(q)$	$T_k(x)$
space shift	$q \diamond t_n = \frac{1}{2}(t_{n+1} + t_{n-1})$	$x \cdot C_n = \frac{1}{2}(C_{n+1} + C_{n-1})$
signal	$\sum s_n t_n$	$\sum s_n C_n(x)$
fi lter	$\sum h_k T_k(q)$	$\sum h_k T_k(x)$

In Latex

- Style: \usepackage {booktabs}
- Horizontal lines: read documentation of booktabs http://texcatalogue.sarovar.org/entries/booktabs.html
- More space between rows: \renewcommand{\arraystretch} {1.2} (or 1.3)
- Remove space to the vertical edges: \begin{tabular}{@{}111@{}}...

Hierarchical Tables: Examples

One level of hierarchy: x-axis only

slices	abs. error (%)		abs. erro	abs. error (slices)			
	avg.	max.	avg.	max			
< 5000	7.4	73.5	116	625			
5000-10000	3.1	27.2	209	1807			
10000-15000	2.4	15.6	297	2133			
> 15000	1.8	9.0	317	1609			

One level of hierarchy: x-axis and y-axis

		w = 8		w = 16				w = 32			
	twid = 0	twid = 1	twid = 2	twid = 0	twid = 1	twid = 2	-	twid = 0	twid = 1	twid = 2	
dir = 1											
$c_{top,0}$	0.0790	0.1692	0.2945	0.3670	0.7187	3.1815		-1.0032	-1.7104	-21.7969	
$c_{top,1}$	-0.8651	50.0476	5.9384	-9.0714	297.0923	46.2143		4.3590	34.5809	76.9167	
$c_{top,2}$	124.2756	- 50.9612	-14.2721	128.2265	-630.5455	-381.0930		-121.0518	-137.1210	-220.2500	
dir = 0											
$c_{top,0}$	0.0357	1.2473	0.2119	0.3593	-0.2755	2.1764		-1.2998	-3.8202	-1.2784	
$c_{top,1}$	-17.9048	-37.1111	8.8591	-30.7381	-9.5952	-3.0000		-11.1631	-5.7108	-15.6728	
$c_{top,2}$	105.5518	232.1160	-94.7351	100.2497	141.2778	-259.7326		52.5745	10.1098	-140.2130	

Latex Example

Table from the bottom of the previous slide:

```
\usepackage{booktabs}
\newcommand{\ra}[1]{\renewcommand{\arraystretch}{#1}}
\begin{table*}\centering
\ra{1.3}
\begin{tabular}{@{}rrrrcrrrcrrr@{}}\toprule
\phi = 32
\cmidrule{2-4} \cmidrule{6-8} \cmidrule{10-12}
 & $t=0$ & $t=1$ & $t=2$ && $t=0$ & $t=1$ & $t=2$ && $t=1$ & $t=2$\\ \midrule
$dir=1$\\
$c$ & 0.0790 & 0.1692 & 0.2945 && 0.3670 & 0.7187 & 3.1815 && -1.0032 & -1.7104 & -21.7969\\
$c$ & -0.8651& 50.0476& 5.9384&& -9.0714& 297.0923& 46.2143&& 4.3590& 34.5809& 76.9167\\
$c$ & 124.2756& -50.9612& -14.2721&& 128.2265& -630.5455& -381.0930&& -121.0518& -137.1210& -220.2500\\
$dir=0$\\
$c$ & 0.0357& 1.2473& 0.2119&& 0.3593& -0.2755& 2.1764&& -1.2998& -3.8202& -1.2784\\
$c$ & -17.9048& -37.1111& 8.8591&& -30.7381& -9.5952& -3.0000&& -11.1631& -5.7108& -15.6728\\
$c$ & 105.5518& 232.1160& -94.7351&& 100.2497& 141.2778& -259.7326&& 52.5745& 10.1098& -140.2130\\
\bottomrule
\end{tabular}
\caption{Caption}
\end{table*}
```

Further Examples

- The following tables are taken from the magazine Economist
- They demonstrate
 - How to handle multiple levels of hierarchy
 - Alignment, handling of long headers
 - The use of light gray to further divide the tables
 - Horizontal lines provide readability under denser packing and when lots of numbers are organized
 - Sans serif fonts are preferrable for readability;
 of course, if you need math symbols and use latex, then stick with roman
 - Title above table, sometimes with unit of measure
 - The use of footnotes
 - Different types of horizontal lines
 (I personally don't like the use of more than two)

Example Tables I

Price of p Minimum we 2000, \$	orivilege ealth require	d to be in:	
Top 50%	2,161	Top 10%	61,041
Top 40%	3,517	Top 5%	150,145
Top 30%	6,318	Top 1%	514,512
Top 20%	14,169	1,500,300,500	

Not enough

Women as % of German newspapers':

	readers in 2006	top editorial positions
Dailies		
Süddeutsche Zeitung	44.0	10.0
Frankfurter Allgemeine Zeitung	36.0	6.25
Handelsblatt	25.0	0
Die Welt	37.0	31.0
FT Deutschland	32.0	25.0
Weeklies		
Der Spiegel	36.0	0
Focus	36.0	16.7
Stern	48.0	16.0
Die Zeit	43.0	16.6
Wirtschaftswoche	20.5	0

Sources: Medien-Analyse ag.ma; Newspapers; The Economist

170						PAGE SELECTION
ine	Econ	omist'	s hous	e-nm	CAID	dicators
and the same		V	as	> P	CC 1111	aicators

% change

	Latest	Q3 2006	
	on a yea	ar earlier	1997-2006
Denmark	23.3	18.7	115
Ireland	14.2	6.2	252
Canada	12.8	4.3	69
South Africa	12.7	20.7	327
France	12.5	15.5	127
Sweden	12.0	9.5	123
Belgium	11.8	20.0	118
Spain	10.8	13.4	173
New Zealand	9.6	14.9	94
Australia	9.5	1.7	132
Britain	9.6	2.7	192
United States	7.7	12.7	100
Singapore	7.6	3.3	na
Italy	6.6	7.3	88
Netherlands	6.2	5.3	97
China	5.4	5.5	na
Switzerland	2.0	0.8	16
Germany	-0.8	-1.3*	-1†
Hong Kong	-2.1	20.3	-44
Japan	-2.7	-5.4	-32

*2004 | 1997-2005

Sources: ABSA; Bulwien; ESRI; Japan Real Estate Institute; Nationwide; Nomisma; NVM; OFHEO; Quotable Value; Stadim; Swiss National Bank; government offices

Example Tables II

Democratic revival

Which of the following statements do you agree with most? %

	t	Democracy is preferable to any other type of government					an authoritarian government can be preferable to a democratic one				
	1996	2001	2005	2006	Change since 2005	1996	2001	2005	2006	Change since 2005	
Uruguay	80	79	77	77	nil	9	10	10	10	nil	
Costa Rica	80	71	73	75	2	7	8	8	9	1	
Argentina	71	58	66	74	8	15	21	17	16	-1	
Dominican Rep.	na	na	60	71	11	na	na	15	21	6	
Venezuela	62	57	78	70	-8	19	20	11	. 11	nil	
Bolivia	64	54	49	62	9	17	17	19	19	nil	
Chile	54	45	59	56	-3	19	19	11	13	2	
Nicaragua	59	43	57	56	-1	14	22	10	14	4	
Panama	75	34	52	55	3	10	23	12	19	7	
Peru	63	62	40	55	15	13	12	19	20	1	
Ecuador	52	40	43	54	11	18	23	18	21	3	
Mexico	53	46	59	54	-5	23	35	13	15	2	
Colombia	60	36	46	53	7	20	16	11	15	4	
El Salvador	56	25	59	51	-8	12	10	4	15	11	
Honduras	42	57	33	51	18	14	8	10	12	2	
Brazil	50	30	37	46	9	24	18	15	18	3	
Guatemala	50	33	32	41	9	21	21	17	35	18	
Paraguay	59	35	32	41	9	26	43	44	30	-14	

In certain circumstances

South Korea

Taiwan

Brazil

Chile

Thailand

Argentina

Colombia

Venezuela

Saudi Arabia

South Africa

Mexico

Egypt

Israel

+16.7 Dec

+21.3 Dec

+1.3 Nov

+12.0 Nov

+46.1 Dec

+22.1 Dec

+0.3 0ct

-5.9 Nov

+36.8 03

-11.1 02

-7.6 Nov

+125.6 2005

-9.6 Nov

+6.2 Nov

+2.1 Nov

+6.7 03

+13.7 Nov

+5.2 03

-2.3 Q3

 $-1.3 q_3$

+29.7 03

+3.5 02

+6.7 03

-13.503

+90.0 2005

+26.3 03

nil

+5.0

nil

+1.6

+0.3

+2.2

-2.1

-1.1

+10.1

+1.1

+1.5

+25.7‡

-4.9

Source: Latinobarómetro

	Trade balance*	Current-account balance				Budget balance	Interest rates, %		
	latest 12 months, \$bn	latest 12 months, \$bn	% of GDP 2007†	Jan 10th	nits, per \$ year ago	% of GDP 2007‡	3-month latest	10-year gov's bonds, latest	
United States	-837.2 Nov	-880.3 03	-6.3	-	-	-2.3	5.24	4.68	
Japan	+76.7 0ct	+168.3 0ct	+3.8	120	114	-4.8	0.46	1.75	
China	+177.5 Dec	+160.8 2005	+6.7	7.81	8.07	-1.9	3.10	3.06	
Britain	-152.2 Nov	-69.7 q3	-2.8	0.52	0.57	-2.7	5.31	4.80	
Canada	+49.8 Nov	+28.9 03	+1.1	1.18	1.16	0.7	4.17	4.06	
Euro area	-22.9 0ct	-26.7 Oct	-0.1	0.77	0.83	-1.7	3.75	na	
Austria	-0.6 0ct	+12.2 03	+1.4	0.77	0.83	-1.4	3.75	4.00	
Belgium	+15.5 0ct	+6.8 Sep	+2.2	0.77	0.83	0.1	3.80	4.01	
France	-36.3 Oct	-42.4 Oct	-1.1	0.77	0.83	-2.5	3.75	4.00	
Germany	+203.0 Nov	+121.5 Nov	+3.9	0,77	0.83	-1.7	3.75	3.97	
Greece	-41.3 Sep	-27.9 Oct	-7.1 [‡]	0.77	0.83	-2.9	3.75	4.26	
Italy	-27.7 Oct	-43.5 Oct	-1.8	0.77	0.83	-3.5	3.75	4.20	
Netherlands	+38.2 Oct	+63.2 03	+7.8	0.77	0.83	0.6	3.75	3.99	
Spain	-110.1 0ct	-99.9 Sep	-8.5	0.77	0.83	0.6	3.75	4.02	
Czech Republic	+2.0 Nov	-5.2 Q3	-2.7	21.4	23.7	-4.0	2.56	3.75	
Denmark	+6.9 Nov	+7.2 Nov	+2.2	5.76	6.17	3.0	3.91	3.94	
Hungary	-2.8 Nov	-6.9 Q3	-5.9	198	207	-7.1	8.03	7.23	
Norway	+57.8 Nov	+56.0 Q3	+17.6‡	6.44	6.64	19.3	3.92	4.35	
Poland	-4.2 Oct	-6.3 Oct	-2.3	3.00	3.13	-2.5	4.20	5.22	
Russia	+141.2 0ct	+99.5 03	+7.3	26.5	28.4	5.9	11.00	6.25	
Sweden	+19.7 Nov	+26.2 03	+6.4	7.06	7.73	2.4	3.07	3.82	
Switzerland	+9.7 Nov	+105.9 03	+13.4	1.25	1.28	1.2	2.13	2.59	
Turkey	-53.2 Nov	-34.4 Oct	-6.6	1.45	1,34	-2.8	19.71	19.79	
Australia	-9.4 Nov	-39.5 Q3	-5.2	1.29	1.33	1.1	6.43	5.86	
Hong Kong	-17.3 Nov	+19.2 03	+9.3	7.80	7.75	1.1	3.96	3.71	
India	-48.8 Nov	-13.7 gs	-2.2	44.6	44.2	-4.3	7.12	7.67	
Indonesia	+38.5 Nov	+7.0 Q3	+1.4	9,080	9,465	-0.9	9.57	6.20∮	
Malaysia	+28.6 Nov	+22.2 03	+11.1	3.52	3.75	-4.1	3.73	5.29	
Pakistan	-12.9 Nov	-6.0 Q3	-5.1 [‡]	61.0	59.8	-4.6	10.32	6.39§	
Singapore	+35.2 Nov	+39.0 q3	+25.2	1.54	1.63	0.3	3.41	2.98	

938

32.7

36.0

3.08

2.15

542

2,248

11.0

3,913

5.70

4.25

3.75

7.33

985

32.1

39.7

3.05

2.27

524

2,275

10.6

2,653

5.74

4.63

3.75

6.08

0.4

-2.8

-1.2

1.4

-2.2

5.8

-1.5

-0.3

-2.5

-8.0

-2.9

16.8

-2.0

4.87

1.82

5.25

10.63

13.19

5.16

6.69

7.02

10.08

9.71

4.64

4.93

9.35

4.91

2.08

5.04

па

6.165

5.275

6.265

7.65

6.55

5.405

5.28

na

7.77

Example Tables III

Trade, exchange rates and budgets

	Trade balance*, \$bn	Current-account balance			Exchange rate		Currency units					Budget	
	latest 12	\$bn		iomist poll	trade-we	ighted†		per		per	per	per	balance
	months	latest 12 mths	% of GD	P, forecast	2000	=100		\$		£	euro	¥100	% of GDP
			2006	2007	Dec 6th	year ago	De	:6th ye	ar ago				2006‡
Australia	- 10.2 Oct	- 39.5 Q3	- 5.5	- 5.1	119.6	120.0	1.	27 :	1.34	2.50	1.69	1.10	+ 2.5
Austria	- 1.2 Sep	+ 9.2 Q2	+ 1.4	+ 1.4	105.8§	104.9	0.	75 (0.85	1.48	-	0.65	- 1.3
Belgium	+ 16.0 Sep	+ 6.5 Jun	+ 1.8	+ 2.1	107.5§	106.5	0.	75 (0.85	1.48	_	0.65	nil
Britain	-144.2 Sep	- 64.4 Q2	- 2.6	- 2.7	103.2	98.8	0.	51 (5.58	_	0.68	0.44	- 3.0
Canada	+ 53.7 Sep	+ 28.9 Q3	+ 1.4	+ 0.8	124.9	125.8	1.	15 :	1.16	2.26	1.53	1.00	+ 0.9
Denmark	+ 7.7 Sep	+ 7.6 Sep	+ 2.3	+ 2.2	106.7	105.8	5.	60 6	5.35	11.0	7.46	4.87	+ 3.4
France	- 34.9 Sep	- 41.5 Sep	- 1.6	- 1.3	108.4§	107.2	0.	75 (0.85	1.48	-	0.65	- 2.7
Germany	+187.4 Sep	+107.5 Sep	+ 3.1	+ 3.2	110.2§	108.6	_ 0	75 (0.85	1.48		0.65	- 2.3
Italy	- 26.4 Sep	- 39.1 Sep	- 2.3	- 1.9	108.1§	106.9	0.	75 (0.85	1.48	-	0.65	- 4.8
Japan	+ 78.4 Sep	+168.1 Sep	+ 3.7	+ 3.7	80.0	80.3	1	15	121	226	153	-	- 4.6
Netherlands	+ 38.3 Sep	+ 63.2 Q3	+ 7.3	+ 6.3	108.4§	107.3	0	75 (0.85	1.48		0.65	- 0.4
Spain	-107.4 Sep	- 98.4 Aug	- 8.2	- 8.0	105.9§	105.1	0	75 (0.85	1.48	_	0.65	+ 1.4
Sweden	+ 19.3 Oct	+ 26.2 Q3	+ 6.5	+ 6.1	100.9	95.0	6	80 8	8.02	13.4	9.06	5.92	+ 2.9
Switzerland	+ 9.2 Oct	+ 55.3 Q2	+13.8	+12.9	105.7	107.1	1.	19 :	1.31	2.35	1.59	1.04	+ 0.2
United States	-849.5 Sep	-838.1 Q2	- 6.6	- 6.4	82.0	88.3		_	_	1.97	1.33	0.87	- 2.3
Euro area	- 24.1 Sep	- 35.3 Sep	- 0.3	- 0.1	120.6	114.9	0	75 (0.85	1.48	-	0.65	- 2.1
						.							

^{*}Merchandise. Australia, Britain, France, Canada, Japan and United States imports fob, exports fob. All others cif/fob. †Bank of England except §IMF, September average. ‡OECD forecast.

Example Tables IV

The Economist poll of forecasters, December averages (previous month's, if changed)

		Real GDP,	% change		Consu	mer prices	Current account			
_	Low/high range		average			ncrease	% of GDP			
	2006	2007	2006	2007	2006	2007	2006	2007		
Australia	2.3/2.9	2.3/3.7	2.6 (2.7)	3.0 (3.2)	3.4	2.7	-5.5(-5.6)	-5.1 (-5.2)		
Austria	1.9/3.3	1.8/2.6	2.8	2.3 (2.1)	1.6 (1.7)	1.6 (1.7)	1.4 (1.1)	1.4 (1.1)		
Belgium	2.6/3.0	1.8/2.4	2.8 (2.7)	2.0 (1.9)	2.2	1.9 (2.0)	1.8	2.1 (1.9)		
Britain	2.5/2.7	1.8/2.8	2.6	2.4	2.3	2.1 (2.2)	-2.6	-2.7 (-2.8)		
Canada	2.8/3.0	2.0/2.9	2.8	2.5	2.1 (2.2)	2.0 (2.1)	1.4	0.8 (0.9)		
Denmark	2.8/3.8	1.9/3.0	3.3 (3.1)	2.3	1.9 (2.0)	1.9 (2.0)	2.3 (2.0)	2.2 (1.9)		
France	2.0/2.3	1.6/2.5	2.1 (2.3)	2.0	1.9 (1.8)	1.5	-1.6(-1.5)	-1.3 (-1.2)		
Germany	2.2/2.8	0.6/2.2	2.4	1.5 (1.4)	1.7	2.2 (2.3)	3.1 (3.6)	3.2 (3.7)		
Italy	1.5/1.9	0.9/2.0	1.7	1.3 (1.2)	2.2	1.9	-2.3(-1.8)	-1.9 (-1.7)		
Japan	2.7/2.9	1.4/3.0	2.8 (2.7)	2.0 (2.1)	0.2 (0.3)	0.5	3.7 (3.6)	3.7 (3.6)		
Netherlands	2.5/3.0	1.6/2.9	2.7	2.3 (2.2)	1.6	1.7	7.3 (6.3)	6.3 (5.7)		
Spain	3.3/3.7	2.5/3.2	3.5	2.9 (2.8)	3.6 (3.5)	2.8	-8.2(-8.1)	-8.0 (-7.8)		
Sweden	4.0/4.7	2.6/3.7	4.4	3.2 (3.1)	1.4	1.8	6.5 (6.4)	6.1 (5.9)		
Switzerland	2.4/3.1	1.5/2.6	2.9	2.1	1.2	1.1 (1.2)	13.8(13.5)	12.9		
United States	3.2/3.3	1.6/2.9	3.3	2.2 (2.3)	3.3 (3.4)	2.1 (2.3)	-6.6	-6.4 (-6.5)		
Euro area	2.5/2.7	1.5/2.5	2.6	1.9	2.2	2.1	-0.3(-0.4)	-0.1		

Sources: ABN AMRO, Deutsche Bank, Economist Intelligence Unit, Goldman Sachs, HSBC Securities, KBC Bank, JPMorgan Chase, Morgan Stanley, Decision Economics, BNP Paribas, Citigroup, Scotiabank, UBS

Example Tables V

The Economist commodity price index

2000=100

			% change on				
	Nov 28th	Dec 5th*	one	one			
			month	year			
Dollar index							
Allitems	185.5	188.3	+ 0.9	+ 34.8			
Food	154.3	153.8	+ 1.9	+ 25.4			
Industrials							
All	226.0	232.9	nil	+ 44.0			
Nfa†	135.0	137.0	- 0.1	+ 2.3			
Metals	275.6	285.2	+ 0.1	+ 61.3			
Sterling inde	x						
Allitems	144.5	144.9	- 2.3	+ 18.9			
Euro index							
Allitems	130.5	130.8	- 3.0	+ 19.3			
Yen index							
All items	200.1	201.0	- 1.2	+ 28.2			
Gold							
\$ per oz	636.08	643.28	+ 2.8	+ 26.8			
West Texas Ir	termediate						
\$ per barrel	60.85	62.46	+ 5.9	+ 4.2			

^{*}Provisional. †Non-food agriculturals.

THE RESERVE			% change on			
	Jan 2nd	Jan 9th*	one month	one		
Dollar index						
All items	187.0	168.0	-9.8	+13.5		
Food	157.5	150.1	-1.7	+15.0		
Industrials						
All	225.2	191.1	-16.9	+12.1		
Nfa [†]	147.8	147.8	+5.7	+4.8		
Metals	267.5	214.7	-23.0	+15.1		
Sterling index		Title lines	10.110	118		
All items	143.7	131.2	-8.6	+3.2		
Euro index	TIE WIND					
All items	130.2	119.4	-8.2	+5.3		
Gold	Non In	HINDER.	MINE			
\$ per oz	640.70	609.10	-3.1	+12.4		
West Texas Int	termediate	le de la constant	OF THE STATE OF	Haller		
\$ per barrel	60.77	55.57	-8.8	-12.2		