

About me

- ✓ Passionate about Data ☺
- ✓ Founder at Softentity, 9+ years of experience in the industry
- Certified Microsoft Data Engineer Associate
- Certified Microsoft Power BI Analyst Associate
- Databricks Certified Data Engineer Associate
- Databricks Certified Data Engineer Professional

Connect with me:

in LinkedIn: https://www.linkedin.com/in/iulianatuhasu/

Email: tuhasu.luliana@gmail.com

Batch Processing

Full Batch Processing:

- **Approach:** Reprocess the entire dataset periodically.
- Use Case: Suitable for smaller datasets or scenarios where data changes infrequently. E.g. Adhoc data imports

Incremental Batch Processing:

- Approach: Extract and process only data that has been modified or added since the last update.
- Use Case: Suitable for data warehouses, where changes are tracked by timestamps or IDs and recurrence is Daily, Weekly, Monthly.

The need

Immediate Data
Insights: instant data
updates

Reduced Latency: minimal delay between data arrival and processing

High Throughput: processing million of events

Spark Structured Streaming

Micro-Batch Processing engine

- Process data in small batches at short, regular intervals (e.g., every few seconds)
- Latencies of ~100 ms
- Continuous Processing
 - Latencies of ~ 1ms
 - Experimental

Structured Streaming

Scalable, fault-tolerant engine on top of Spark SQL engine

Treat live data stream as an unbounded table

Data Stream

Continuous Growth Sources: Any data source that continually expands over time

- Cloud Storage: New files being added to cloud storage systems like AWS S3, Azure Blob Storage, or Google Cloud Storage
- **CDC Feeds:** Updates to a database tracked via Change Data Capture (CDC) mechanisms
- **Event Queues:** Events being queued in a publish/subscribe messaging system such as Apache Kafka or Azure Event Hubs

readStream & writeStream

Trigger intervals

Trigger Method Call	Behavior
Default: unspecified	Process data in micro-batch mode. Micro-batches are generated once the previous micro-batch has completed.
.trigger(processingTime="2 minutes")	Process data in micro-batches at the user-specified intervals (e.g., every 2 minutes).
.trigger(once=True) - deprecated	Process all available data in a single batch, then stop.
.trigger(availableNow=True)	Process all available data in multiple micro- batches, then stop.

Output Modes

Append Mode (default)

- Only new rows from the streaming source will be written to sink
- .outputMode("append")

Complete Mode

- ► The output table is being overwritten
- Supported for aggregation queries
- .outputMode("complete")

Update Mode

- Upsert the output data
- .outputMode("update")

Checkpoints

Stores the Stream State

- Maintains intermediate data and variables
- Essential for accurate ongoing computations
- Example: During aggregations, the system needs to remember previous events or partial results to compute the current output

Tracks the Progress of the Stream Processing

- Records which data has already been processed and what remains to be done
- Ensures no data is skipped or reprocessed

Note: The same checkpoint cannot be used by two separate streams

Quick Demo

Incremental Data Ingestion From Files

COPY INTO

- Incremental Loading: Incrementally loads data from external storage into Delta Lake tables
- **Use Case**: Suitable for scenarios with smaller volumes of data
- > **Simplicity**: Simple to use with SQL-like syntax
- Trigger: Requires manual trigger or scheduling

Auto Loader

- > Automatic Detection: Automatically detects and processes new files landing in a cloud storage location
- > **Trigger**: Automatically triggered as new data arrives
- > Use Case: Ideal for real-time or near-real-time data ingestion without manual intervention
- Advanced Processing: <u>Leverages Structured Streaming</u> for continuous data processing

Auto Loader

/demo/input

Data_2.csv

Data_3.csv

Data_3.csv

```
spark.readStream
.format("cloudFiles")
.option("cloudFiles.format", <source_format>)
.load('/demo/input')
.writeStream
.option("checkpointLocation", <checkpoint_directory>)
.table(<table_name>)
```

```
output_table_name
```

Auto Loader

Incremental Data Processing

Auto Loader efficiently processes new data files as they arrive in cloud storage (or optionally all files from the storage), utilizing cloudFiles as a Structured Streaming source

Scalability

> Capable of near real-time ingestion of millions of files per hour

Checkpointing

- > Metadata of files is persisted, ensuring data is processed exactly once
- > In case of failure, it resumes from where it left off

Supported Storage

> AWS S3, ADLS Gen2, Google Cloud Storage, Azure Blob Storage, DBFS

File Formats

> Supports JSON, CSV, XML, PARQUET, AVRO, ORC, TEXT, and BINARYFILE formats

Quick Demo

Stateless Transformations

Definition: Transformations that do not depend on any state or data from previous events.

Examples

Map: Transforms each input element into exactly one output element.

Example: map(lambda x: x * 2) transforms each element by multiplying by 2.

Filter: Filters elements based on a predicate.

 \blacktriangleright Example: filter(lambda x: x > 10) filters elements greater than 10.

FlatMap: Transforms each input element into zero or more output elements.

Example: flatMap(lambda x: [x, x * 2, x * 3]) generates multiple outputs for each input.

Select: Projects a set of expressions and returns a new DataFrame.

Example: select("name", "age") selects only the "name" and "age" columns.

Explode: Transforms each element in an array or map into multiple rows.

Example: explode("array_column") turns each element in the array into a separate row.

Stateful Transformations

Definition

- Transformations that depend on state that is accumulated and updated over time
- Written between readStream & writeStream

Examples

- Aggregation: counts, sums, etc
- Windowed Operations: tumbling, sliding windows, etc
- Joins: Joins data streams based on keys over a time window.

```
# Read the streaming data
input_stream = spark.readStream |
    .format("delta") \
    .table("silver_stateful_table")
# Perform the aggregation
aggregated data = input stream \
    .groupBy("CustomerId") \
    .agg( sum("AccumulatedAmountSpent").alias("TotalAmountSpent")) \
    .withColumn("TotalDiscountGiven", expr("TotalAmountSpent * 0.01"))
# Write the result
query = aggregated_data.writeStream
    .outputMode("update") \
    .foreachBatch(merge_to_gold_table) \
    .option("checkpointLocation", "dbfs:/mnt/output/aggregated_data_checkpoint") \
    .start()
```

Input – batch1

A ^B _C Transacti	A ^B _C CustomerId	TransactionDate	.00 AccumulatedAmountSpent
T001	C001	2024-07-10T10:00:00.000+00:	100
T002	C002	2024-07-10T11:00:00.000+00:	200
T003	C003	2024-07-10T12:00:00.000+00:	300

Output after batch 1

^B _C CustomerId	.00 TotalAmountSpent	.00 TotalDiscountGiven
C001	100	1
C002	200	2
C003	300	3

Input – batch2

A ^B _C TransactionId	^{AB} _C CustomerId	TransactionDate	.00 AccumulatedAmountSpent
T001	C001	2024-07-10T10:00:00.000+00:	100
T002	C002	2024-07-10T11:00:00.000+00:	200 -
T003	C003	2024-07-10T12:00:00.000+00:	300
T004	C001	2024-07-10T13:00:00.000+00:	200
T005	C002	2024-07-10T14:00:00.000+00:	300
T006	C004	2024-07-10T15:00:00.000+00:	400

Output after batch 2

ABC CustomerId	.00 TotalAmountSpent	.00 TotalDiscountGiven
C001	300	3
C002	500	5
C003	300	3
C004	400	4

Stateless aggregation

```
# Read the streaming data
input_stream = spark.readStream
    .format("delta") \
    .table("silver_stateful_table")
# Perform the aggregation
aggregated data = input stream \
    .groupBy("CustomerId") \
    .agg(_sum("AccumulatedAmountSpent").alias("TotalAmountSpent")) \
    .withColumn("TotalDiscountGiven", expr("TotalAmountSpent * 0.01"))
# Write the result
query = aggregated_data.writeStream
    .outputMode("update") \
    .foreachBatch(merge_to_gold_table) ←
    .option("checkpointLocation", "dbfs:/mnt/output/aggregated_data_checkpoint") \
    .start()
```

```
def merge_to_gold_table(batch_df, batch_id):
    aggregated_data = batch_df \
        .groupBy("CustomerId") \
        .agg(_sum("AccumulatedAmountSpent").alias("TotalAmountSpent")) \
        .withColumn("TotalDiscountGiven", expr("TotalAmountSpent * 0.01"))
    ....
```

Types of Windows – examples

Tumbling Windows:

- •Fixed-size, non-overlapping time intervals.
- •Example: Counting events per 10-minute window.

Sliding Windows:

- •Fixed-size, overlapping time intervals.
- •Example: Counting events every 5 minutes over a 10-minute window.

Late arriving data

Letter	CountOfLetters
Α	4
В	3
С	1

By Maintaining State -> updates counts in previous windows when late data arrives

Increasing State -> Risks of out-of-memory issues

Solution -> Use Watermarking to drop unnecessary / old windows

Watermarking

- Technique to handle late data in stream processing
- Discard state for old windows
- Output Mode either Append or Update

Watermark = EventTime (when the event has been generated, max ever seen) - Threshold (how late we expect the data to arrive)

Set new watermark

= MAX(EventTime)

Accepted Delay (Threshold) = 4 minutes

Watermarking

Quick Demo

Joins

Stream – Static joins

- Between a streaming table and a static dataframe
- Not stateful
- > Inner, Left Outer, Left Semi (stream-static)
- Inner, Right Outer (static-stream)

Stream - Stream joins

- Between two streaming dataframes
- Stateful
- Inner (optional watermark, optional time constraints)
- Left Outer, Right Outer, Full Outer, Left Semi (mandatory watermark + time constraints)

Stream-Static Join

Transactions Table - Streaming

TransactionId	CustomerId	Transaction Date	Typeld
T001	1	2023-07-20	1
T002	2	2023-07-21	2
T003	3	2023-07-22	4

Transaction Type Table - Static

Typeld	TypeName
1	Card -
2	Cash

Output

TransactionId	CustomerId	TransactionDate	Typeld	TypeName
T001	1	2023-07-20	1	Card
T002	2	2023-07-21	2	Cash

Stream-Static Join

Transactions Table - Streaming

TransactionId	CustomerId	Transaction Date	Typeld
T001	1	2023-07-20	1
T002	2	2023-07-21	2
T003	3	2023-07-22	4

Transaction Type Table - Static

Typeld	TypeName
1	Card
2	Cash
4	Bank Statement

Output

	TransactionId	CustomerId	TransactionDate	Typeld	TypeName
>	T001	1	2023-07-20	1	Card
	T002	2	2023-07-21	2	Cash

- > Only matched records at the time the stream is being processed will be part of the output
- > The streaming part of the join drives the join.

Stream-Stream Join

Transactions Table - Streaming

TransactionId	CustomerId	Transaction Date	Typeld
T001	1	2023-07-20	1
T002	2	2023-07-21	2
T003	3	2023-07-22	4

Transaction Type - Streaming

Typeld	TypeName	
1	Card	
2	Cash	
4	Bank Statement	

Output

TransactionId	CustomerId	TransactionDate	Typeld	TypeName
T001	1	2023-07-20	1	Card
T002	2	2023-07-21	2	Cash
T003	3	2023-07-22	4	Bank Statement

- Future input data can match past input data
 State can grow indefinitely => limit with watermark

Quick Demo

Streaming Deduplication – dropDuplicates()

dropDuplicates()

- by using a Unique Identifier (e.g., Id + EventTime)
- Similar to distinct
- Without Watermark:
 - A duplicate record can arrive at any time.
 - Past records are kept as state, causing state to grow over time.
- With Watermark:
 - Limits how late a duplicate record can arrive.
 - > The watermark removes old state, managing the state size efficiently.

Streaming Deduplication – Complex logic

Custom logic within foreachBatch()

- Data already exists in the output (upsert new records from the input stream without creating duplicates)
- Deduplication based on sorting criteria (e.g., retaining the most recent record or the record with the highest priority)

2 parameters:

- microbatchDF -> dataframe with output data of the micro-batch
- batch -> unique id of the micro-batch

```
def upsert_data(microBatchDF, batch):
    microBatchDF.createOrReplaceTempView("transactions_microbatch")

sql_query = """
    MERGE INTO silver_transactions a
    USING transactions_microbatch b
    ON a.TransactionId=b.TransactionId and a.TransactionDate=b.TransactionDate
    WHEN MATCHED THEN UPDATE SET *
    WHEN NOT MATCHED THEN INSERT *
    """

microBatchDF.sparkSession.sql(sql_query)
```


Quick Demo

Q&A

