北京邮电大学 2022——2023 学年第一学期

《计算机网络》期末缓考补考考试试题

注 二、书本、参考资料、书包等物品一律放到考场指定位置。

意 三、学生不得另行携带、使用稿纸,要遵守《北京邮电大学考场规则》,有考场违 事 纪或作弊行为者,按相应规定严肃处理。

项一四、学生必须将答题内容做在试题答卷上,做在试题及草稿纸上一律无效。

五、学生的姓名、班级、学号、班内序号等信息由教材中心统一印制。

,	,	1 3 /± 11 •	-///	. , ,	• 52147.	3 3 13	II 10. HI 1	X 13 1 O	-70 1	11-3 -		
考试		计算机	[网络		考试时	考试时间 2023年2月13日						
课程							18:00-19:00					
题号	_		=	四	五	六	七	八	九	+	总分	
满分	14	14	14	12	4	8	6	8	10	10		
得分												
阅卷 教师												

一、 填空题(共14分)

特位的差错:

1.1.		三层协议是网络层协议,网络层上面一层的协议层名 ,网络层下面一层的协议层名称是层。
1.2.		道(Multiaccess channel)下一个使用者的协议属于数 ,该层称为子层。
1.3.		ng Code)对7比特长的消息1001101进行编码,以发中出现的一个比特位差错,假定此汉明码中使用奇校
	a) 至少需要	个校验位(Check bits)以保证在将编码后得到的比特

b) 采用上述汉明码对此 7 比特长的消息进行编码后得到的比特串为

串发给接收方时,接收方能够纠正此比特串在传输过程中出现的一个比

c) 若上述汉明码改为采用偶校验(even parity),则对此 7 比特长的消息进行编码后得到的比特串为_____

1.4.	在一个数据链路层协议中,使用如下字符编码: A: 00010111 B: 01101111 FLAG: 01111110 ESC: 111 当此协议对含有三个字符的帧 A ESC B 分别使用下形成的帧的二进制比特串是: a) 字节填充法 (Flag bytes with byte stuffing):		时,所
	b) 比特填充法(Starting and ending flag bytes with bit stu	iffing):	
1.5.	下面两个 IP 地址前缀 192.64.16.0/21 和 192.64.24.0/21 地址前缀:。	可以聚合成	一个 IP
1.6.	WWW 中,HTTP 协议使用的传输层协议是	协议。	
二、	单选题(共 14 分)		
2.1.	下列哪种网络是一种局域网? (A) 经典以太网 (B) 有线电视(Cable television)网络 (C) 第五代移动通信网络 (D) 中国教育和科研计算机网(CERNET)	()
	若选择重传协议(Sliding Window Protocol Using Select 范围是[0,7],则该协议的窗口大小不能大于 (A) 3 (B) 4 (C) 5 (D) 7	ive Repeat)	的帧的
		(,
2.3.	下面关于 IEEE 802.11 WLAN 的描述: 1) 虽然 IEEE 802.11 WLAN 的帧结构与经典以太网的两种网络的帧中都只有两个地址字段。 2) IEEE 802.11 WLAN 的数据链路层中包含逻辑链路拉Link Control)子层 3) IEEE 802.11 WLAN 的使用模式有两种:有架构的mode)和自组织模式(Ad-hoc mode)有几句是正确的?	空制(LLC:	Logical
	(A) 1 句		

	(C) 3 句	()
2.4.	下面哪个网络使用 CSMA/CA 协议? (A) 经典以太网 (B) 交换型以太网 (C) IEEE 802.11 WLAN		
		()
2.5.	下列哪个 Linux 命令可以为网卡配置 IP 地址? (A) netstat (B) ip address		
	(C) iptables	()
2.6.	下面关于 TCP 协议的描述,哪句是不正确的? (A) TCP 连接是点对点的,TCP 协议不支持广播功能。 (B) 一个使用 TCP 协议进行通信的网络应用程序至少端口号的使用。 (C) TCP 连接的建立过程中需要在路由器中为 TCP 连	需要获得一个	r TCP
2.7.	(A) listen() (B) bind()	消息?	
	(C) connect()	()
三、	判断题:对下面每个描述,在你认为正确的描	述后面括号	中填
"T	E", 否则填 "F" (共 14 分)		
3.1.	仅有时分复用或频分复用方法可实现多个用户共享一个	无线信道。)
3.2.	非归零制(NRZ: Non-Return-to-Zero)编码方法是一种调	制技术。()
3 3	若一个数据链路层协议提供的服务是单向通信服务,则	该数据链路	旱协议

	的协议实体之间不能相互发送帧。	()
3.4.	WLAN 中存在隐藏终端 (hidden terminals) 问题。	()
3.5.	经典以太网中,网卡的 MAC 地址一般固化在网卡中。	()
3.6.	Wireshark 软件可用于抓取主机发送和接收的数据包。	()
3.7.	在 DNS 系统中,有域名 (Domain name) 可以对应到一个 IPv4	地址,	也可
	以对应到一个 IPv6 地址。	()

四、 在基于 Ubuntu Linux 的路由器中,有下面分别用 route -n 命令和 ip route 命令输出的路由表:

```
abc@ubuntu:~$ route -n
Kernel IP routing table
Destination
                              Genmask
                                              Flags Metric Ref
                                                                 Use Iface
              Gateway
0.0.0.0
                                                          0
                                                                  0 ens40
               192.168.112.136 0.0.0.0
                                              UG 0
169.254.0.0
                              255.255.0.0
                                             U
                                                   1000
                                                          0
                                                                   0 ens33
             0.0.0.0
192.153.32.0 192.168.174.133 255.255.240.0 UG
                                                          0
                                                                  0 ens36
192.153.36.0 192.168.64.132 255.255.252.0 UG
192.153.64.0 192.168.136.131 255.255.248.0
                                              UG
                                                   0
                                                          0
                                                                  0 ens34
              0.0.0.0
                                                                   0 ens35
                              255.255.255.0
                                              U
                                                  102
                                                          0
192.168.64.0
192.168.112.0 0.0.0.0
                                              U
                                                   104
                              255.255.254.0
                                                          0
                                                                   0 ens40
                                             UG
192.168.112.0 192.168.229.130 255.255.240.0
                                                   0
                                                          0
                                                                   0 ens33
192.168.120.0 192.168.112.136 255.255.254.0
                                             UG 0
                                                          0
                                                                   0 ens40
                                                  101
192.168.136.0 0.0.0.0
                              255.255.255.0 U
                                                          0
                                                                  0 ens34
                                                   103
192.168.174.0 0.0.0.0
                              255.255.255.0 U
                                                          0
                                                                  0 ens36
192.168.229.0
                              255.255.255.0 U
                                                   100
                                                          0
                                                                  0 ens33
             0.0.0.0
abc@ubuntu:~$ ip route
default via 192.168.112.136 dev ens40
169.254.0.0/16 dev ens33 scope link metric 1000
192.153.32.0/20 via 192.168.174.133 dev ens36
192.153.36.0/22 via 192.168.64.132 dev ens35
192.153.64.0/21 via 192.168.136.131 dev ens34
192.168.64.0/24 dev ens35 proto kernel scope link src 192.168.64.132 metric 102
192.168.112.0/23 dev ens40 proto kernel scope link src 192.168.112.136 metric 104
192.168.112.0/20 via 192.168.229.130 dev ens33
192.168.120.0/23 via 192.168.112.136 dev ens40
192.168.136.0/24 dev ens34 proto kernel scope link src 192.168.136.131 metric 101
192.168.174.0/24 dev ens36 proto kernel scope link src 192.168.174.133 metric 103
192.168.229.0/24 dev ens33 proto kernel scope link src 192.168.229.130 metric 100
abc@ubuntu:~$
```

请说明当此路由器接收到的 IP 分组中的目的 IP 地址分别为下列 IP 地址时,此路由器将分别会怎样处理这些 IP 分组。如果路由器转发这些分组的话,请写出用于将分组转发出去的网络接口的名字、下一跳设备的 IP 地址 (假定下一跳设备的 IP 地址在网络层从本路由

器直接可达),请写明结果的计算过程。(12分)

- 1) 192.153.37.59
- 2) 192.153.65.39
- 3) 192.153.53.7
- 4) 192.168.113.87
- 5) 192.168.126.34
- 6) 192.168.121.79

五、 请分别说明 IPv4 分组头中的 MF 比特位、Time to live 字段的作用。IPv4 分组头格式可参见本试卷第十题中的图 2 - IPv4 分组头格式。(4 分)

六、 1)链路状态路由算法和距离矢量路由算法这两个路由算法,哪个路由算法存在无穷计数问题(Count-to-infinity problem)?该算法在什么情况下会出现无穷计数问题? 2)互联网使用哪个协议作为域间路由协议?为什么域间路由协议采用基于策略的路由?请至少说明两点不同类型的原因。(8分)

七、 1) 请说明 TCP 协议的重传计时器(Retransmission timer)的作用。2) TCP 协议中的持续计时器(Persistence timer)用于解决什么问题? 3) 什么情况下需要使用 TCP 协议的保活计时器

(Keepalive timer)? (6分)

八、 1)为什么说一个 TCP 连接是一个字节流(byte stream),而不是一个消息流(message stream)? 2)请说明 TCP 协议的快速重传(Fast retransmission)的基本工作过程? (8分)

九、 图 1 所示的网络 1(Network 1)和网络 2(Network 2)为两个交换型以太网(Switched Ethernet),网络 1 和网络 2 相互连接,网络 1 和网络 2 的网络层都采用 IPv4 协议。表 1 列出了图 1 中各个主机和网络设备配置的网卡的名称,网卡的名称也标注在图 1 中,如:以太网交换机 1(Ethernet Switch1)的 E3 网卡与路由器 1(Router1)的 E6 网卡通过网线连接。网络 1 在网络内部使用私有IP 地址,路由器 1 的 E7 网卡使用公网 IP 地址,网络 2 使用公网 IP 地址,路由器 1(Router 1)具有 NAT 功能。

图 1

设备名称	配置的网卡
主机 1 (Host 1)	以太网卡1个,网卡名称 E1
主机 3 (Host 3)	以太网卡1个,网卡名称 E5
主机 4 (Host 4)	以太网卡1个,网卡名称 E13
主机 5 (Host 5)	以太网卡1个,网卡名称 E14
以太网交换机 1(Ethernet	以太网卡3个,网卡名称分别为:
Switch 1)	E2、E3、E4
以太网交换机 2(Ethernet	以太网卡3个,网卡名称分别为:
Switch 2)	E10、E11、E12
路由器 1(Router 1)	以太网卡2个,网卡名称分别为:
	E6, E7
路由器 2(Router 2)	以太网卡 2 个,网卡名称分别为:

图 1 所示网络中的路由表配置正确、网卡 IPv4 地址配置正确,图 1 中各设备之间在网络层相互连通。(10 分)

- 1) 假定在主机 1 (Host1) 上执行 ping 命令用以测试主机 1 与主机 5 (Host 5) 在网络层的连通性,问:主机 1 在执行 ping 命令时发出的 IPv4 分组中携带了哪种协议的请求消息?
- 2) 当主机 5 接收到本题第 1) 问中主机 1 发出的请求消息后,主

- 机 5 向主机 1 发出的响应消息的 IPv4 分组的源地址(Source address)、目的地址(Destination address)分别是图 1 中哪个 网卡所配置的 IPv4 地址? 并请说明其中的原理。
- 3) 假定在主机 1 (Host1) 上执行 ping 命令用以测试主机 1 与主机 3 (Host 3) 在网络层的连通性,主机 1 执行该 ping 命令所发出的帧的源 MAC 地址、目的 MAC 地址分别是图 1 中哪个网卡的 MAC 地址?请说明主机 1 根据 ping 命令中输入的 IP地址得到本问中的目的 MAC 地址的处理过程。
- 4) 在以太网中,给网卡配置 IP 地址能够起到什么作用?请说明至少2种不同类型的作用。
- 十、 表 2 给出了七个携带 TCP 报文段 (TCP Segment)的 IP 分组的前 40 个字节,图 2 给出了 IP 分组头格式,图 3 给出了 TCP 报文头的格式。请: 1)写出这七条消息中,哪三条消息是建立一条 TCP连接的三次握手过程;并请写出该 TCP连接的服务器端 IP 地址、端口号, IP 地址和端口号用 16 进制表示; 2)请用顺序图描述该 TCP连接的建立过程,并在图中标出每条 TCP 报文段的类型、顺序号、确认号。顺序号和确认号用 16 进制表示。3)在该 TCP连接上,哪个 TCP 报文段中携带了数据?该报文段中携带的数据长度是多少字节? (10 分)

								水 Z								
IP																
分																
组	IP分组前40个字节															
序																
号	4-							0.0	1.0	0.0						
1	45	00	00	3c	e2	9d	40	00	40	06	2d	с8	c0	a8	54	82
	с0	a8	54	83	e2	de	17	73	c4	f4	bc	9d	00	00	00	00
	a0	02	fa	f0	2a	85	00	00								
2	45	00	00	3c	7e	fe	40	00	40	06	2e	e4	с0	a8	54	82
	b9	7d	be	31	a3	9e	00	50	с8	8e	24	9f	00	00	00	00
	a0	02	fa	f0	8d	08	00	00								
3	45	00	00	3c	00	00	40	00	40	06	10	66	с0	a8	54	83
	с0	a8	54	82	17	73	e2	de	68	e4	е0	97	c4	f4	bc	9e
	a0	12	fe	88	0e	c4	00	00								
4	45	00	00	34	e2	9e	40	00	40	06	2d	cf	с0	a8	54	82
	c0	a8	54	83	e2	de	17	73	c4	f4	bc	9e	68	e4	е0	98
	80	10	01	f6	2a	7d	00	00								
5	45	00	00	2c	00	ae	00	00	80	06	ad	44	b9	7d	be	31
	c0	a8	54	82	00	50	a3	9e	56	38	62	34	с8	8e	24	a0
	60	12	fa	f0	с6	c1	00	00								
6	45	00	00	44	e2	9f	40	00	40	06	2d	be	с0	a8	54	82
	c0	a8	54	83	e2	de	17	73	c4	f4	bc	9e	68	e4	e0	98
	80	18	01	f6	2a	8d	00	00								
7	45	00	00	28	00	b3	00	00	80	06	ad	43	b9	7d	be	31
	c0	a8	54	82	00	50	аЗ	9e	56	38	62	с8	с8	8e	24	f8
	50	19	fa	ef	dd	8b	00	00								

图 2 IPv4 分组头 (IP Header) 格式

→ 32 Bits — →										
سسسا										
	Source port					Destination port				
	Sequence number									
Acknowledgement number										
TCP header length		U A R C G K	S				Window size			
	Checksum Urgent pointer									
	Options (0 or more 32-bit words)									
	Data (optional)									

图 3. TCP 报文头(TCP Header)格式