REVIEW SHEET 2, Math 540, Summer 2021, Melody Chan Due Weds May 19 at 11:59pm Eastern Time

Submit all of the following on Gradescope, and don't forget to tag each answer to its page. We have implemented a course policy whereby failing to tag results in half credit.

I put a copy of this review sheet in the Overleaf folder located here

https://www.overleaf.com/read/hffhqdrqxbjf

for those of you who are typing your homework. I'll try to keep doing this for future homeworks.

(1) Draw pictures of the following subsets of \mathbb{R}^2 .

Example:

$$\{\lambda_1 \cdot (2,0) + \lambda_2 \cdot (0,1) : \lambda_1, \lambda_2 \in \mathbb{R}, \ 0 \le \lambda_1, \lambda_2 \le 1\}$$

Answer:

(a)
$$\{\lambda_1 \cdot (1,1) + \lambda_2 \cdot (0,1) : \lambda_1, \lambda_2 \in \mathbb{R}, \ 0 \le \lambda_1, \lambda_2 \le 1\}$$

(b)
$$\{\lambda_1 \cdot (0,2) + \lambda_2 \cdot (0,1) : \lambda_1, \lambda_2 \in \mathbb{R}, \ 0 \le \lambda_1, \lambda_2 \le 1\}$$

(c)
$$\{\lambda_1 \cdot (1,1) + \lambda_2 \cdot (0,1) : \lambda_1, \lambda_2 \in \mathbb{R}_{>0}\}$$

(d)
$$\{\lambda_1 \cdot (1,1) + \lambda_2 \cdot (0,1) : \lambda_1, \lambda_2 \in \mathbb{R}\}$$

(2) Describe the following subsets of \mathbb{R}^2 , drawn below, using set-builder notation. Many different answers are certainly possible.

Example:

is the set

$$\{\lambda_1\cdot(2,0)+\lambda_2\cdot(0,1):\lambda_1,\lambda_2\in\mathbb{R},\ 0\leq\lambda_1,\lambda_2\leq1\}.$$

(3) (Starting to write mathematics!) Define the functions below using $f(\cdot)$ or \mapsto notation. Don't be afraid to give things names! Then, assert whether they are injective, surjective, both (bijective), or neither.

Example: The absolute value function with domain and codomain \mathbb{R} .

Answer 1: Let $f: \mathbb{R} \to \mathbb{R}$ be given by f(x) = |x|. I claim that f is neither injective nor surjective.

Another answer: Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $x \mapsto |x|$. Then I assert that f is neither injective nor surjective.

Notice that both answers are composed of two sentences, each beginning with an English. I really do want you to write "Let" and "I assert"/"I claim." The latter two phrases signal that you are claiming something is true but that you haven't yet justified it.

- (a) The natural logarithm function from $\mathbb{R}_{>0}$ to \mathbb{R} .
- (b) The binary operation of multiplication in the field of rational numbers. Regarded as a function, it has domain $\mathbb{Q} \times \mathbb{Q}$ and codomain \mathbb{Q} .
- (c) The function from \mathbb{R}^2 to \mathbb{R}^3 sending (x,y) to (x,x+y,y).
- (d) The function from \mathbb{R}^2 to \mathbb{R}^2 sending (x,y) to (x+y,-x-y).