Example File Segment Calculations

Notation

$$\operatorname{Spd}_1 := \frac{\displaystyle\sum_{j=1}^n \operatorname{Len}_{i,j}}{\displaystyle\sum_{j=1}^n \frac{\operatorname{Len}_{i,j}}{\operatorname{Spd}_{i,j}}} \qquad \operatorname{Den}_i := \frac{\displaystyle\sum_{j=1}^n \left(\operatorname{Den}_{i,j} \cdot \operatorname{Lns}_{i,j} \cdot \operatorname{Len}_{i,j}\right)}{\displaystyle\sum_{j=1}^n \left(\operatorname{Lns}_{i,j} \cdot \operatorname{Len}_{i,j}\right)} \qquad \operatorname{Spd}_{i,j} = \textit{Average speed in subsegment j of segment } i$$

$$\operatorname{Len}_{i,j} = \textit{Length of subsegment j of segment } j$$

$$\operatorname{Lns}_{i,j} = \textit{Number of lanes in subsegment j of segment } i$$

= Average speed in entire segment i

 $\operatorname{Spd}_{i,i}$ = Average speed in subsegment j of segment i

 $Len_{i,j} = Length of subsegment j of segment i$

Den; = Average density in entire segment i

Den_{i, i} = Average density in subsegment j of segment i

NVeh: Total number of vehicles in subsegment j of segment i (i.e., Density * NumberLanes * Length)

 $Time \\ i.j \quad \textit{= Average travel time to cover subsegment j of } \\$ segment i (i.e., Length / Speed)

i is the segment index, j is the subsegment index and n is the number of subsegments

1. Basic Segment

$$Spd_{1,1} := 65.0$$

$$Spd_1 := Spd_{1,1} = 65.000$$

$$Den_{1,1} := 16.8$$

$$Den_1 := Den_{1,1} = 16.800$$

2. Full Cloverleaf Segment

$$Spd_{2.1} := 59.9$$

$$Len_{2.1} := 1500$$

$$Lns_{2.1} := 3$$

$$\Gamma_{\text{ime}_{2.1}} := \frac{\text{Len}_{2.1}}{\text{Spd}_{2.1}}$$

Time_{2.1} :=
$$\frac{\text{Len}_{2.1}}{\text{Spd}_{2.1}}$$
 NVeh_{2.1} := Den_{2.1}·Len_{2.1}·Lns_{2.1}

$$Spd_{2,2} := 65.0$$

$$Len_{2,2} := 500$$

$$Lns_{2.2} := 3$$

$$\mathsf{Time}_{2.2} := \frac{\mathsf{Len}_{2.2}}{\mathsf{Spd}_{2.2}}$$

$$Time_{2.2} := \frac{Len_{2.2}}{Spd_{2.2}}$$

$$NVeh_{2.2} := Den_{2.2} \cdot Len_{2.2} \cdot Lns_{2.2}$$

$$\mathsf{Spd}_{2.3} \coloneqq 53.1$$

$$Den_{2,3} := 17.4$$

$$Len_{2.3} := 3000$$

$$Lns_{2,3} := 4$$

$$\mathsf{Time}_{2.3} \coloneqq \frac{\mathsf{Len}_{2.3}}{\mathsf{Spd}_{2.3}}$$

$$NVeh_{2.3} := Den_{2.3} \cdot Len_{2.3} \cdot Lns_{2.3}$$

$$Spd_{2.4} := 65.0$$

$$Len_{2.4} := 500$$

$$Lns_{2.4} := 3$$

$$\mathsf{Time}_{2.4} \coloneqq \frac{\mathsf{Len}_{2.4}}{\mathsf{Spd}_{2.4}}$$

$$NVeh_{2.4} := Den_{2.4} \cdot Len_{2.4} \cdot Lns_{2.4}$$

$$Spd_{2.5} := 59.7$$

$$Len_{2.5} := 1500$$

$$Lns_{2.5} := 3$$

Revised: 11/02/2009

$$\mathsf{Time}_{2.5} \coloneqq \frac{\mathsf{Len}_{2.5}}{\mathsf{Spd}_{2.5}}$$

$$NVeh_{2.5} := Den_{2.5} \cdot Len_{2.5} \cdot Lns_{2.5}$$

$$\mathsf{Speed}_2 := \frac{\mathsf{Len}_{2.1} + \mathsf{Len}_{2.2} + \mathsf{Len}_{2.3} + \mathsf{Len}_{2.4} + \mathsf{Len}_{2.5}}{\mathsf{Time}_{2.1} + \mathsf{Time}_{2.2} + \mathsf{Time}_{2.3} + \mathsf{Time}_{2.4} + \mathsf{Time}_{2.5}}$$

 $Speed_2 = 57.354$

$$\mathsf{Density}_2 := \frac{\mathsf{NVeh}_{2.1} + \mathsf{NVeh}_{2.2} + \mathsf{NVeh}_{2.3} + \mathsf{NVeh}_{2.4} + \mathsf{NVeh}_{2.5}}{\mathsf{Lns}_{2.1} \cdot \mathsf{Len}_{2.1} + \mathsf{Lns}_{2.2} \cdot \mathsf{Len}_{2.2} + \mathsf{Lns}_{2.3} \cdot \mathsf{Len}_{2.3} + \mathsf{Lns}_{2.4} \cdot \mathsf{Len}_{2.4} + \mathsf{Lns}_{2.5} \cdot \mathsf{Len}_{2.5}}$$

 $Density_2 = 17.554$

3. Basic Segment

$Spd_{3,1} := 65.0$	$Spd_3 := Spd_{3,1} = 65.000$
Spu3.1 :- 05.0	$5pa_3 - 5pa_3 - 05.000$

$$Den_{3.1} := 19.0$$
 $Den_{3.1} = 19.000$

4. Diamond

$$Spd_{4.1} := 59.6$$
 $Den_{4.1} := 20.2$ $Len_{4.1} := 1500$ $Lns_{4.1} := 3$ $Time_{4.1} := \frac{Len_{4.1}}{Spd_{4.1}}$ $NVeh_{4.1} := Den_{4.1} \cdot Len_{4.1} \cdot Lns_{4.1}$

$$\mathsf{Spd}_{4.2} \coloneqq 65.0 \qquad \mathsf{Den}_{4.2} \coloneqq 16.5 \qquad \mathsf{Len}_{4.2} \coloneqq 2280 \qquad \mathsf{Lns}_{4.2} \coloneqq 3 \qquad \mathsf{Time}_{4.2} \coloneqq \frac{\mathsf{Len}_{4.2}}{\mathsf{Spd}_{4.2}} \qquad \mathsf{NVeh}_{4.2} \coloneqq \mathsf{Den}_{4.2} \cdot \mathsf{Len}_{4.2} \cdot \mathsf{Lns}_{4.2} = \mathsf{Den}_{4.2} = \mathsf{Den}_{4.2} \cdot \mathsf{Lns}_{4.2} = \mathsf{Den}_{4.2} = \mathsf{Den$$

$$Spd_{4.3} := 51.8$$
 $Den_{4.3} := 19.1$ $Len_{4.3} := 1500$ $Lns_{4.3} := 4$ $Time_{4.3} := \frac{Len_{4.3}}{Spd_{4.3}}$ $NVeh_{4.3} := Den_{4.3} \cdot Len_{4.3} \cdot Lns_{4.3}$

$$Speed_4 := \frac{Len_{4.1} + Len_{4.2} + Len_{4.3}}{Time_{4.1} + Time_{4.2} + Time_{4.3}}$$

 $Speed_4 = 59.191$

$$\mathsf{Density}_4 \coloneqq \frac{\mathsf{NVeh}_{4.1} + \mathsf{NVeh}_{4.2} + \mathsf{NVeh}_{4.3}}{\mathsf{Lns}_{4.1} \cdot \mathsf{Len}_{4.1} + \mathsf{Lns}_{4.2} \cdot \mathsf{Len}_{4.2} + \mathsf{Lns}_{4.3} \cdot \mathsf{Len}_{4.3}}$$

 $Density_4 = 18.360$

5. Basic Segment

 $Spd_{5.1} := 51.8$ $Spd_5 := Spd_{5.1} = 51.800$ $Den_{5.1} := 19.1$ $Den_{5.1} := 19.100$

6. Partial Cloverleaf

$\mathrm{Spd}_{6.1} \coloneqq 51.8$	$Den_{6.1} := 19.1$	$Len_{6.1} := 1500$	$Lns_{6.1} := 4$	$Time_{6.1} \coloneqq \frac{Len_{6.1}}{Spd_{6.1}}$	$NVeh_{6.1} \coloneqq Den_{6.1} \cdot Len_{6.1} \cdot Lns_{6.1}$
$Spd_{6.2} \coloneqq 65.0$	$Den_{6.2} := 16.5$	Len _{6.2} := 2280	Lns _{6.2} := 3	$Time_{6.2} \coloneqq \frac{Len_{6.2}}{Spd_{6.2}}$	$NVeh_{6.2} \coloneqq Den_{6.2} \cdot Len_{6.2} \cdot Lns_{6.2}$
$\mathrm{Spd}_{6.3} \coloneqq 59.7$	$Den_{6.3} := 18.8$	$Len_{6.3} := 1500$	Lns _{6.3} := 3	$Time_{6.3} \coloneqq \frac{Len_{6.3}}{Spd_{6.3}}$	$NVeh_{6.3} \coloneqq Den_{6.3} \cdot Len_{6.3} \cdot Lns_{6.3}$

$$\mathsf{Speed}_6 \coloneqq \frac{\mathsf{Len}_{6.1} + \mathsf{Len}_{6.2} + \mathsf{Len}_{6.3}}{\mathsf{Time}_{6.1} + \mathsf{Time}_{6.2} + \mathsf{Time}_{6.3}}$$

 $Speed_6 = 59.219$

$$\mathsf{Density}_6 \coloneqq \frac{\mathsf{NVeh}_{6.1} + \mathsf{NVeh}_{6.2} + \mathsf{NVeh}_{6.3}}{\mathsf{Lns}_{6.1} \cdot \mathsf{Len}_{6.1} + \mathsf{Lns}_{6.2} \cdot \mathsf{Len}_{6.2} + \mathsf{Lns}_{6.3} \cdot \mathsf{Len}_{6.3}}$$

 $Density_6 = 17.997$

University of Florida Transportation Research Center

7. Full Cloverleaf Segment

$Spd_{7.1} := 59.3$	$Den_{7.1} := 20.2$	$Len_{7.1} := 1500$	$Lns_{7.1} := 3$	$Time_{7.1} \coloneqq \frac{Len_{7.1}}{Spd_{7.1}}$	$NVeh_{7.1} \coloneqq Den_{7.1} \cdot Len_{7.1} \cdot Lns_{7.1}$
$Spd_{7.2} := 65.0$	Den _{7.2} := 16.5	Len _{7.2} := 1500	$Lns_{7.2} := 3$	$Time_{7.2} \coloneqq \frac{Len_{7.2}}{Spd_{7.2}}$	$NVeh_{7.2} \coloneqq Den_{7.2} \cdot Len_{7.2} \cdot Lns_{7.2}$
$Spd_{7.3} := 59.5$	$Den_{7.3} := 19.5$	$Len_{7.3} := 1500$	$Lns_{7.3} := 3$	$Time_{7.3} \coloneqq \frac{Len_{7.3}}{Spd_{7.3}}$	$NVeh_{7.3} \coloneqq Den_{7.3} \cdot Len_{7.3} \cdot Lns_{7.3}$
$Spd_{7.4} := 65.0$	$Den_{7.4} := 19.8$	$Len_{7.4} := 1000$	$Lns_{7.4} := 3$	$Time_{7.4} \coloneqq \frac{Len_{7.4}}{Spd_{7.4}}$	$NVeh_{7.4} \coloneqq Den_{7.4} \cdot Len_{7.4} \cdot Lns_{7.4}$
$Spd_{7.5} := 58.7$	$Den_{7.5} := 21.1$	Len _{7.5} := 1500	$Lns_{7.5} := 3$	$Time_{7.5} \coloneqq \frac{Len_{7.5}}{Spd_{7.5}}$	$NVeh_{7.5} := Den_{7.5} \cdot Len_{7.5} \cdot Lns_{7.5}$
$Spd_{7.6} := 65.0$	$Den_{7.6} := 16.0$	$Len_{7.6} := 1500$	$Lns_{7.6} := 3$	$Time_{7.6} \coloneqq \frac{Len_{7.6}}{Spd_{7.6}}$	$NVeh_{7.6} := Den_{7.6} \cdot Len_{7.6} \cdot Lns_{7.6}$
Spd _{7.7} := 55.0	Den _{7.7} := 16.3	Len _{7.7} := 1500	Lns _{7.7} := 4	$Time_{7.7} \coloneqq \frac{Len_{7.7}}{Spd_{7.7}}$	$NVeh_{7.7} \coloneqq Den_{7.7} \cdot Len_{7.7} \cdot Lns_{7.7}$

$$\mathsf{Speed}_7 \coloneqq \frac{\mathsf{Len}_{7.1} + \mathsf{Len}_{7.2} + \mathsf{Len}_{7.3} + \mathsf{Len}_{7.4} + \mathsf{Len}_{7.5} + \mathsf{Len}_{7.6} + \mathsf{Len}_{7.7}}{\mathsf{Time}_{7.1} + \mathsf{Time}_{7.2} + \mathsf{Time}_{7.3} + \mathsf{Time}_{7.4} + \mathsf{Time}_{7.5} + \mathsf{Time}_{7.6} + \mathsf{Time}_{7.7}}$$

 $Speed_7 = 60.654$

$$\mathsf{Density}_7 \coloneqq \frac{\mathsf{NVeh}_{7.1} + \mathsf{NVeh}_{7.2} + \mathsf{NVeh}_{7.3} + \mathsf{NVeh}_{7.4} + \mathsf{NVeh}_{7.5} + \mathsf{NVeh}_{7.6} + \mathsf{NVeh}_{7.7}}{\mathsf{Lns}_{7.1} \cdot \mathsf{Len}_{7.1} + \mathsf{Lns}_{7.2} \cdot \mathsf{Len}_{7.2} + \mathsf{Lns}_{7.3} \cdot \mathsf{Len}_{7.3} + \mathsf{Lns}_{7.4} \cdot \mathsf{Len}_{7.4} + \mathsf{Lns}_{7.5} \cdot \mathsf{Len}_{7.5} + \mathsf{Lns}_{7.6} \cdot \mathsf{Len}_{7.6} + \mathsf{Lns}_{7.7} \cdot \mathsf{Len}_{7.7}}$$

 $Density_7 = 18.319$

8. Off-Ramp Segment

$Spd_{8.1} := 55.0$	$Spd_8 := Spd_{8.1} = 55.000$
Den _{8.1} := 16.3	$Den_8 := Den_{8.1} = 16.300$

9. Basic Segment

$Spd_{9.1} := 65.0$	$Spd_9 := Spd_{9.1} = 65.000$
$Den_{9.1} := 16.8$	$Den_9 := Den_{9.1} = 16.800$

10. Full Cloverleaf Segment

$Spd_{10.1} := 59.6$	$Den_{10.1} := 17.9$	$Len_{10.1} := 1500$	$Lns_{10.1} := 3$	$Time_{10.1} \coloneqq \frac{Len_{10.1}}{Spd_{10.1}}$	$NVeh_{10.1} := Den_{10.1} \cdot Len_{10.1} \cdot Lns_{10.1}$
$Spd_{10.2} := 65.0$	Den _{10.2} := 14.6	$Len_{10.2} := 1000$	$Lns_{10.2} := 3$	$Time_{10.2} \coloneqq \frac{Len_{10.2}}{Spd_{10.2}}$	$NVeh_{10.2} \coloneqq Den_{10.2} \cdot Len_{10.2} \cdot Lns_{10.2}$
$Spd_{10.3} := 57.4$	$Den_{10.3} := 20.8$	$Len_{10.3} := 900$	$Lns_{10.3} := 3$	$Time_{10.3} \coloneqq \frac{Len_{10.3}}{Spd_{10.3}}$	$NVeh_{10.3} \coloneqq Den_{10.3} \cdot Len_{10.3} \cdot Lns_{10.3}$
$Spd_{10.4} := 57.4$	$Den_{10.4} := 20.8$	$Len_{10.4} := 900$	$Lns_{10.4} := 3$	$Time_{10.4} \coloneqq \frac{Len_{10.4}}{Spd_{10.4}}$	$NVeh_{10.4} \coloneqq Den_{10.4} \cdot Len_{10.4} \cdot Lns_{10.4}$
$Spd_{10.5} := 65.0$	$Den_{10.5} := 15.7$	$Len_{10.5} := 1000$	$Lns_{10.5} := 3$	$Time_{10.5} := \frac{Len_{10.5}}{Spd_{10.5}}$	$NVeh_{10.5} \coloneqq Den_{10.5} \cdot Len_{10.5} \cdot Lns_{10.5}$
$Spd_{10.6} := 59.5$	$Den_{10.6} := 19.2$	$Len_{10.6} := 1500$	$Lns_{10.6} := 3$	$Time_{10.6} \coloneqq \frac{Len_{10.6}}{Spd_{10.6}}$	$NVeh_{10.6} \coloneqq Den_{10.6} \cdot Len_{10.6} \cdot Lns_{10.6}$

University of Florida Transportation Research Center

$$\mathsf{Speed}_{10} \coloneqq \frac{\mathsf{Len}_{10.1} + \mathsf{Len}_{10.2} + \mathsf{Len}_{10.3} + \mathsf{Len}_{10.4} + \mathsf{Len}_{10.5} + \mathsf{Len}_{10.6}}{\mathsf{Time}_{10.1} + \mathsf{Time}_{10.2} + \mathsf{Time}_{10.3} + \mathsf{Time}_{10.4} + \mathsf{Time}_{10.5} + \mathsf{Time}_{10.6}}$$

 $Speed_{10} = 60.441$

$$\mathsf{Density}_{10} \coloneqq \frac{\mathsf{NVeh}_{10.1} + \mathsf{NVeh}_{10.2} + \mathsf{NVeh}_{10.3} + \mathsf{NVeh}_{10.4} + \mathsf{NVeh}_{10.5} + \mathsf{NVeh}_{10.6}}{\mathsf{Lns}_{10.1} \cdot \mathsf{Len}_{10.1} + \mathsf{Lns}_{10.2} \cdot \mathsf{Len}_{10.2} + \mathsf{Lns}_{10.3} \cdot \mathsf{Len}_{10.3} + \mathsf{Lns}_{10.4} \cdot \mathsf{Len}_{10.4} + \mathsf{Lns}_{10.5} \cdot \mathsf{Len}_{10.5} + \mathsf{Lns}_{10.6} \cdot \mathsf{Len}_{10.6}}$$

Density₁₀ = 18.146

11. Basic Segment

$$Spd_{11.1} := 65.0$$
 $Spd_{11.1} = 65.000$

$$Den_{11.1} := 19.5$$
 $Den_{11} := Den_{11.1} = 19.500$

12. On-Ramp Segment

$$Spd_{12.1} := 52.9$$
 $Spd_{12.1} = 52.900$

$$Den_{12.1} := 21.0$$
 $Den_{12} := Den_{12.1} = 21.000$

13. Basic Segment

$$\operatorname{Spd}_{13.1} := 52.9$$
 $\operatorname{Spd}_{13.1} = 52.900$

$$Den_{13.1} := 21.0$$
 $Den_{13.1} = 21.000$

University of Florida Transportation Research Center

14. Full Cloverleaf

$Spd_{14.1} := 52.9$	$Den_{14.1} := 21.0$	$Len_{14.1} := 1500$	$Lns_{14.1} := 4$	$Time_{14.1} \coloneqq \frac{Len_{14.1}}{Spd_{14.1}}$	$NVeh_{14.1} := Den_{14.1} \cdot Len_{14.1} \cdot Lns_{14.1}$
$Spd_{14.2} := 65.0$	$Den_{14.2} := 20.3$	Len _{14.2} := 1140	$Lns_{14.2} := 3$	$Time_{14.2} \coloneqq \frac{Len_{14.2}}{Spd_{14.2}}$	$NVeh_{14.2} := Den_{14.2} \cdot Len_{14.2} \cdot Lns_{14.2}$
$Spd_{14.3} := 53.2$	$Den_{14.3} := 20.9$	$Len_{14.3} := 2000$	$Lns_{14.3} := 4$	$Time_{14.3} \coloneqq \frac{Len_{14.3}}{Spd_{14.3}}$	$NVeh_{14.3} \coloneqq Den_{14.3} \cdot Len_{14.3} \cdot Lns_{14.3}$
$Spd_{14.4} := 65.0$	$Den_{14.4} := 20.3$	$Len_{14.4} := 1140$	$Lns_{14.4} := 3$	$Time_{14.4} \coloneqq \frac{Len_{14.4}}{Spd_{14.4}}$	$NVeh_{14.4} := Den_{14.4} \cdot Len_{14.4} \cdot Lns_{14.4}$
$Spd_{14.5} := 59.0$	$Den_{14.5} := 22.8$	$Len_{14.5} := 1500$	$Lns_{14.5} := 3$	$Time_{14.5} \coloneqq \frac{Len_{14.5}}{Spd_{14.5}}$	$NVeh_{14.5} := Den_{14.5} \cdot Len_{14.5} \cdot Lns_{14.5}$

$$\mathsf{Speed}_{14} \coloneqq \frac{\mathsf{Len}_{14.1} + \mathsf{Len}_{14.2} + \mathsf{Len}_{14.3} + \mathsf{Len}_{14.4} + \mathsf{Len}_{14.5}}{\mathsf{Time}_{14.1} + \mathsf{Time}_{14.2} + \mathsf{Time}_{14.3} + \mathsf{Time}_{14.4} + \mathsf{Time}_{14.5}}$$

Speed₁₄ = 57.572

$$\mathsf{Density}_{14} \coloneqq \frac{\mathsf{NVeh}_{14.1} + \mathsf{NVeh}_{14.2} + \mathsf{NVeh}_{14.3} + \mathsf{NVeh}_{14.4} + \mathsf{NVeh}_{14.5}}{\mathsf{Lns}_{14.1} \cdot \mathsf{Len}_{14.1} + \mathsf{Lns}_{14.2} \cdot \mathsf{Len}_{14.2} + \mathsf{Lns}_{14.3} \cdot \mathsf{Len}_{14.3} + \mathsf{Lns}_{14.4} \cdot \mathsf{Len}_{14.4} + \mathsf{Lns}_{14.5} \cdot \mathsf{Len}_{14.5}}$$

Density₁₄ = 21.099