Unit 2: Differentiation: Definition and Fundamental Properties

2.5 - The Power Rule

- power function: $f(x) = x^n$ where n is a real number
 - examples include: $f(x)=x^5$ $v(t)=t^{\frac{7}{6}}$ $y=x^e$
 - functions can be rewritten in the form of power function
 - examples include: $f(x) = \frac{1}{x^2} = x^{-2}$ $f(x) = \sqrt{x} = x^{\frac{1}{2}}$ $y = \frac{1}{x} = x^{-1}$
 - if the exponent value isn't a constant, then the function isn't a power function
 - $p(x) = 2^x$ exponent is a variable
 - $y = e^x$ e is a constant, but it is not the exponent value
- ullet power rule: $rac{d}{dx}[x^n]=nx^{n-1}$ if f(x) is a power function

$$egin{array}{lll} f(x) = x^5 & v(t) = t^{rac{7}{6}} & y = x^e \ f'(x) = 5x^{5-1} & v'(t) = rac{7}{6}t^{rac{7}{6}-1} & y' = ex^{e-1} \ f'(x) = 5x^4 & v'(t) = rac{7}{6}t^{rac{1}{6}} & y' = ex^{e-1} \ f(x) = x^{-2} & f(x) = \sqrt{x} = x^{rac{1}{2}} & y = rac{1}{x} = x^{-1} \ f'(x) = -2x^{-2-1} & f'(x) = rac{1}{2}x^{rac{1}{2}-1} & rac{dy}{dx} = -1x^{-1-1} \ f'(x) = rac{1}{2}x^{-rac{1}{2}} = rac{1}{2\sqrt{x}} & rac{dy}{dx} = -1x^{-2} = -rac{1}{x^2} \ \end{array}$$

Power Function: $f(x) = x^n$ Power Rule: $rac{d}{dx}[x^n] = nx^{n-1}$

2.6 - Derivative Rules - Constant, Sum, Difference, and Constant Multiple

- constant rule: the derivative of any constant term is 0
 - average rate of change of a horizontal line is 0
- ullet constant multiple rule: $rac{d}{dx}[kx^n]=k\cdot nx^{n-1}$

$$f(x) = -16x^2$$
 $f(x) = \frac{4}{3}\pi x^3$ $f(x) = -0.75x$ $f'(x) = -16 \cdot 2x$ $f'(x) = \frac{4}{3}\pi \cdot 3x^2$ $f'(x) = -0.75 \cdot 1$ $f'(x) = -32x$ $f'(x) = 4\pi x^2$ $f'(x) = -0.75$

• sum and difference rule: $\frac{d}{dx}[f(x)+g(x)]=f'(x)+g'(x)$ where the derivative is equal to the respective sum or difference of the derivatives of each term

$$h(t) = \frac{1}{2}gt^2 + vt + k$$
 $g(x) = 15x - 8\sqrt{x^3}$ $h'(t) = (\frac{1}{2}g \cdot 2t) + v + 0$ $g'(x) = 15 - (8 \cdot \frac{3}{2}x^{\frac{1}{2}})$ $g'(x) = 15 - 12x^{\frac{1}{2}} = 15 - 12\sqrt{x}$ $y = \frac{3x^5 + 2x - 7}{x^2}$ $y = \frac{3x^5}{x^2} + \frac{2x}{x^2} - \frac{7}{x^2}$ $y = 3x^3 + 2x^{-1} - 7x^{-2}$ $y' = (3 * 3x^2) + (2 * -1x^{-2}) - (7 * -2x^{-3})$ $y' = 9x^2 - 2x^{-2} + 14x^{-3}$

 \P Constant Rule: $rac{d}{dx}[k]=0$

Constant Multiple Rule: $rac{d}{dx}[kx^n] = k \cdot nx^{x-1}$

Sum and Difference Rule: $rac{d}{dx}[f(x)+g(x)]=f'(x)+g'(x)$

2.7 - Derivatives of $\cos x$, $\sin x$, e^x , and $\ln x$

- sine: $\frac{d}{dx}[\sin x] = \cos x$
- cosine: $\frac{d}{dx}[\cos x] = -\sin x$
- e^x : $\frac{d}{dx}[e^x] = e^x$
- natural log: $\frac{d}{dx}[\ln x] = \frac{1}{x}$
- · limits can be changed to derivative form to which can be evaluated easier
 - if the function is defined as $\lim_{h\to 0} \left[\frac{f(x+h)-f(x)}{h}\right]$
 - ullet take the first term in the numerator and remove the h
 - if the term has a value plugged in, you are evaluating for the derivative at that value
 - if the term has a variable, evaluate the equation of the derivative
 - if the function is defined as $\lim_{x\to a} \left[\frac{f(x)-f(a)}{x-a}\right]$
 - get the equation of the derivative from f(x)
 - evaluate for the derivative at the a value

$$egin{aligned} &\lim_{h o 0}[rac{(\sinrac{\pi}{3}+h)-(sinrac{\pi}{3})}{h}]\ f(x) = \sin x\ f'(x) = \cos x\ f'(rac{\pi}{3}) = \cosrac{\pi}{3} = rac{1}{2} \end{aligned}$$

$$egin{aligned} &\lim_{t o 9}[rac{\sqrt{t}-3}{t-9}]\ f(x) = \sqrt{x} = x^{rac{1}{2}}\ f'(x) = rac{1}{2}x^{-rac{1}{2}} = rac{1}{2\sqrt{x}}\ f'(9) = rac{1}{2\sqrt{9}} = rac{1}{6} \end{aligned}$$

$$egin{aligned} &\lim_{h o 0} [rac{rac{1}{h+2}-rac{1}{2}}{h}] \ f(x) = rac{1}{x} = x^{-1} \ f'(x) = -1x^{-2} = rac{-1}{x^2} \ f'(2) = rac{-1}{2^2} = -rac{1}{4} \end{aligned}$$

$$egin{aligned} &\lim_{ heta o \pi} [rac{\cos heta - \cos \pi}{ heta - \pi}] \ f(x) = \cos x \ f'(x) = -\sin x \ f'(\pi) = -\sin \pi = 0 \end{aligned}$$

$$egin{aligned} &\lim_{h o 0}[rac{(x+h)^4-x^4}{h}]\ f(x) = x^4\ f'(x) = 4x^3 \end{aligned}$$

$$egin{aligned} &\lim_{x o 3}[rac{2x^2-5x-3}{x-3}]\ &\lim_{x o 3}[rac{(2x+1)(x-3)}{(x-3)}]\ &\lim_{x o 3}[2x+1]\ f'(x) = 2(3)+1 = 7 \end{aligned}$$

2.8 - The Product Rule

- ullet product rule: $rac{d}{dx}[f(x)\cdot g(x)]=g(x)f'(x)+f(x)g'(x)$ if f and g are differentiable at x
 - \bullet $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$
 - · can distribute first and then differentiate

$$egin{aligned} h(x) &= (5x^2-2)(8x+3) \ h'(x) &= (8x+3)\cdot 10x + (5x^2-2)\cdot 8 \ h'(x) &= 80x^2 + 30x + 40x^2 - 16 \ h'(x) &= 120x^2 + 30x - 16 \end{aligned}$$

$$egin{aligned} g(x) &= (4x-1)(2x^3+7) \ g'(x) &= (2x^3+7)\cdot 4 + (4x-1)\cdot 6x^2 \ g'(x) &= 8x^3+28+24x^3-6x^2 \ g'(x) &= 32x^3-6x^2+28 \end{aligned}$$

2

2.9 - The Quotient Rule

- quotient rule: $rac{d}{dx}[rac{f(x)}{g(x)}]=rac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}$ if f and g are differentiable at x and if g(x)
 eq 0
 - $\frac{d}{dx}\left[\frac{u}{v}\right] = \frac{v\frac{du}{dx} u\frac{dv}{dx}}{v^2}$
 - quotient rule song: lo dee hi mine hi dee lo o' lo lo
 - sometimes you can simplify the equations so that you don't need the quotient rule

$$g(x) = rac{5x^2 + 2}{8x - 3} \ g'(x) = rac{(8x - 3) \cdot 10x + (5x^2 + 2) \cdot 8}{(8x - 3)^2} \ g'(x) = rac{80x^2 - 30x + 40x^2 + 16}{(8x - 3)^2} \ g'(x) = rac{120x^2 - 30x + 16}{(8x - 3)^2}$$

$$egin{aligned} g(x) &= rac{5x^2+2}{3} = rac{1}{3}(5x^2+2) \ g'(x) &= rac{1}{3}\cdot 10x \ g'(x) &= rac{10}{3}x \end{aligned}$$

$$f(x)=rac{5x+rac{2}{x}}{8-rac{3}{x}}=rac{5x^2+2}{8x-3} \ f'(x)=rac{(8x-3)\cdot 10x-(5x^2+2)\cdot 8}{(8x-3)^2} \ f'(x)=rac{80x^2-30x-40x^2-16}{(8x-3)^2} \ f'(x)=rac{40x^2-30x-16}{(8x-3)^2}$$

$$h(x)=rac{3}{5x^2}=rac{3}{5}x^{-2}\ h'(x)=rac{3}{5}\cdot -2x^{-3}\ h'(x)=rac{-6}{5x^3}$$

Quotient Rule: $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$

2.10 - Derivatives of $\tan x$, $\cot x$, $\sec x$, and $\csc x$

- tangent: $\frac{d}{dx}[\tan x] = \sec^2 x$
 - use $\frac{\sin x}{\cos x}$ and the *quotient rule* to get the derivative of tangent
- cosecant: $\frac{d}{dx}[\csc x] = -\csc x \cdot \cot x$
- secant: $\frac{d}{dx}[\sec x] = \sec x \cdot \tan x$
- cotangent: $\frac{d}{dx}[\cot x] = -\csc^2 x$
- ullet point-slope form y-f(a)=f'(a)(x-a) can be used to determine slope of the line tangent to a point

$$egin{aligned} g(x) &= rac{ an x + 4}{\sec x} \ g'(x) &= rac{ an x}{\sec x} + rac{4}{\sec x} \ g'(x) &= \sin x + 4\cos x \end{aligned}$$

$$egin{aligned} h(x) &= rac{7}{5\sec x} \ h'(x) &= rac{7}{5}\sec^{-1}x \ h'(x) &= -rac{7}{5}(\sec x an x) \end{aligned}$$

3

$$f(x) = 3 \cot x + \ln x \csc x$$

$$f'(x) = 3(-\csc^2 x) + (\csc x)(\frac{1}{x}) + (\ln x)(-\csc x \cot x) \ f'(x) = -3\csc^2 x + \frac{\csc x}{x} - \ln x \csc x \cot x$$

$$f'(x) = -3\csc^2 x + \frac{\csc x}{x} - \ln x \csc x \cot x$$

