Entanglement-induced provable and robust quantum learning advantages

Haimeng Zhao
Caltech
haimeng@caltech.edu

Dong-Ling Deng Tsinghua

Caltech

Motivation

Can we find practical and provable quantum advantage in **classical** ML tasks?

(Most applications are classical, not quantum!)

Known obstacles:

- 1. Hard to unconditionally prove lower bounds.
- 2. More expressive QML models are harder to train.
- 3. Data-loading overheads lead to dequantization.
- 4. NISQ devices limit heuristic exploration.

practically relevant: seq-seq translation

A machine learning task demonstrating noise-tolerant unconditional <u>linear quantum advantage</u> in representation power, inference speed, and training efficiency!

tolerate O(1) depolarize noise

A machine learning task demonstrating noise-tolerant unconditional linear quantum advantage in representation power, inference speed, and training efficiency!

tolerate O(1) depolarize noise

provable w/o conjectures

quantum O(1) vs classical $\Omega(n)$

exp. improve SOTA $\Omega(\log n)$

fewer parameters faster inference & train smaller sample size

Intuition

Pseudo-telepathy: entanglement reduces communication complexity of seq. transl. tasks

- Embed non-local games into a translation task.
- Score = winning probability
- 0(1) q model + $\leq 0.64\%$ noise $\Rightarrow 1 2^{-\Omega(n)}$ score
- o(n) classical model $\Rightarrow \le 2^{-\Omega(n)}$ score Clifford simulation $O(n^3)$
- MLE training in O(1) time

(c) Quantum model

Numerics & Ion trap

- Noise tolerance
- Exponential separation in score
- Classical models suffer from q advantage + overfitting

Numerics & Ion trap

- Noise tolerance
- Exponential separation in score
- Classical models suffer from q advantage + overfitting

Numerics & Ion trap

- Noise tolerance
- Exponential separation in score
- Classical models suffer from q advantage + overfitting

Conclusions & Future directions

A quantum advantage in ML

provable w/o conjectures

tolerate O(1) depolarize noise

quantum O(1) vs classical $\Omega(n)$ exp. improve SOTA, $\Omega(\log n)$

fewer parameters faster inference & train smaller sample size

visible on small size! (q. advantage + overfit)

- P boost advantage w/ many-body Bell inequalities?
- against more general classical models?
- non-locality in real-world? e.g., natural language?