

Overview

- 1. adPredictor: Bayesian Probit in e-Commerce
- 2. MatchBox: Bayesian Recommendation Systems
- 3. The Path of Go: Bayesian Pattern Ranking for Games

Introduction to Probabilistic Machine Learning

Overview

- 1. adPredictor: Bayesian Probit in e-Commerce
- 2. MatchBox: Bayesian Recommendation Systems
- 3. The Path of Go: Bayesian Pattern Ranking for Games

Introduction to Probabilistic Machine Learning

Predicting Clickthrough-Rate (CTR)

Display logic:

$$b_1 \cdot p_1 \ge b_2 \cdot p_2 \ge \cdots$$

Charge logic:

$$c_i = b_{i+1} \cdot \frac{p_{i+1}}{p_i}$$

- Advantages of improved probability estimates:
 - Increase user satisfaction by better targeting
 - Fairer charges to advertisers
 - Increase revenue by showing ads with high click-thru rate

Bayesian Probit Regression with Factor Graphs

 $\mathcal{N}(w_k; \mu_k, \sigma_k^2) \mathcal{N}(w_D; \mu_D, \sigma_D^2)$

- Learning algorithm speed requirement:
 - $_{\Box}$ 5,000-10,000 impression updates / sec = 100-200 µs per impression update

prior

- Decision: Use one-hot encoding for all raw input data values and features
- Bayesian Probit model:

$$p(w|y = +1) \propto \left[\int_{0}^{\infty} \mathcal{N}\left(t; \sum_{k=1}^{D} w_{k}, \beta^{2}\right) dt \right]$$
posterior likelihood

Closed form using message passing:

largest for parameter with largest uncertainty so far $\sigma_k^2 \leftarrow \sigma_k^2 \cdot \left(1 - \frac{\sigma_k^2}{s^2} \cdot w\left(\frac{\sum_{j=1}^D \mu_j}{s}\right)\right)$

 $\mathcal{N}(w_1; \mu_1, \sigma_1^2)$

Empirical Findings (bing.com)

Introduction to Probabilistic Machine Learning

Accuracy

Introduction to Probabilistic Machine Learning

Unit 12 – Real-World Applications

Predicted CTR

7/23

Overview

- 1. adPredictor: Bayesian Probit in e-Commerce
- **2.** MatchBox: Bayesian Recommendation Systems
- 3. The Path of Go: Bayesian Pattern Ranking for Games

Introduction to Probabilistic Machine Learning

MatchBox: The Recommendation Setting

Introduction to Probabilistic Machine Learning

MatchBox With Metadata

Introduction to Probabilistic Machine Learning

Recommender System: MatchBox

Introduction to Probabilistic Machine Learning

Message Passing For Matchbox

Introduction to Probabilistic Machine Learning

MovieLens (1,000,000 Ratings)

6,040 users

User ID			
User Job		User Age	
Other	Lawyer	<18	
Academic	Programmer	18-25	
Artist	Retired	25-34	
Admin	Sales	35-44	
Student	Scientist	45-49	
Customer	Self-	50-55	
Service	Employed	>55	
Health Care	Technician		
Managerial	Craftsman	User Gender	
Farmer	Unemployed	Male	
Homemaker	Writer	Female	

3,900 movies

Movie ID

Movie Genre		
Action	Horror	
Adventure	Musical	
Animation	Mystery	
Children's	Romance	
Comedy	Thriller	
Crime	Sci-Fi	
Documentary	War	
Drama	Western	
Fantasy	Film Noir	

Introduction to Probabilistic Machine Learning

MovieLens with Thresholds Model

Overview

- 1. adPredictor: Bayesian Probit in e-Commerce
- 2. MatchBox: Bayesian Recommendation Systems
- 3. The Path of Go: Bayesian Pattern Ranking for Games

Introduction to Probabilistic Machine Learning

The Game of Go

- Started about 4000 years ago in ancient China.
- About 20 million players worldwide.
- 2 Players: Black and White.
- Board: 19×19 grid.
- Rules:
 - Turn: One stone placed on vertex.
 - Capture.
- Aim: Gather territory by surrounding it.

Introduction to Probabilistic Machine Learning

Unit 12 – Real-World Applications

16/23

A stone is **captured** by completely **surrounding** it.

Moves Selection by Pattern Matching

Pattern Urgency Table

Introduction to Probabilistic Machine Learning

Unit 12 – Real-World Applications

Black to move

Harvesting and Learning

Two processes:

- Harvesting patterns (180,000 experts games → 600M possible patterns!)
- Ranking patterns (requires model of moved selection)
- Move selection model as partial ranking using urgency
 - Move made: "Wins" over any other move available on the board indicating that it is most *urgent*.
 - Moves not made. Nothing can be concluded about the ranking among the available but un-played moves.

Big patterns matched at beginning of game

Partial Ranking Message Passing

Introduction to Probabilistic Machine Learning

Experimental Results

Introduction to Probabilistic Machine Learning

Experimental Results (ctd.)

Introduction to Probabilistic Machine Learning

Unit 12 – Real-World Applications

Error increases towards end of the game

Error decreases for increasing pattern size

Summary

Real-World Applications

- Bayesian Probit regression using expectation propagation is used in over 200 production systems at Amazon today (and many more places around the world)
- Bayesian Probit regression is like a two-team game where one team is the "threshold-0 player"
- When using the Gaussian product factor for, we can even model bi-linear models used in recommendation → requires a different approximation due to multi-modality
- Partial rankings are another application of the pairwise difference factor
- Used today in AlphaGo!

Introduction to Probabilistic Machine Learning

Thank You!