# Automated Trading System using Swarm Intelligence

By Papon

Ratchanon

**Sirapop** 

**Attagonwantana** 

**Khamvichit** 

Nuannimnoi

56090500414

56090500417

56090500421

### Overview

- Briefly on our project proposal by Ratchanon
- Our experiments by Papon
- Results and Discussions by Sirapop
- Application demo
- Possible future works

### BRIEFLY ABOUT OUR PROPOSAL

- Importance of our work
  - Stock trading is risky.
  - Amateur investors lack of skills and experiences.
  - Human errors in decision making





### BRIEFLY ABOUT OUR PROPOSAL (CONT.)

- Technical analysis?
  - An attempt to forecast stock prices on basis of market-derived data.
  - Looking for trends and patterns in the data.
  - Open, close, high and low prices are inputs
- Technical indicators?
  - To generate buy and sell signals
  - To confirm price movement.
  - Many indicators, but can't really rely on just one indicator.



### BRIEFLY ABOUT OUR PROPOSAL (CONT.)

Our new approach to trading

Generate trading signals with technical indicators

Train the swarm intelligence to weight each signal

Test and make a proper decision

$$Decision = \frac{\sum_{i=1}^{n} signal_{i} weight_{i}}{\sum_{i=1}^{n} weight_{i}}$$

$$\begin{array}{ccc} \text{If} & \text{Decision} > t_D & \rightarrow \text{Buy} \\ & \text{Decision} < -t_D & \rightarrow \text{Sell} \\ & \text{Else} & \rightarrow \text{Hold/Do nothing} \end{array}$$

### BRIEFLY ABOUT OUR PROPOSAL (CONT.)

- Technical Indicators used…
  - Simple Moving Average: SMA 100
  - Exponential Moving Average: EMA20/50, EMA20/100, EMA50/100
  - Moving Average Convergence Divergence (MACD)
  - Relative Strength Index (RSI)
  - Stochastic Oscillator (STO)
  - Commodities Channel Index (CCI)
  - William Percent Range (%R)



### Briefly about our proposal (cont.)

- Swarm Intelligence?
  - consists typically of a population of simple agents interacting locally with one another and with their environment.
  - Two sample algorithms used in this project
    - ► PSO
    - ▶ CLONALG
  - ► To optimize each weight of each signal in decision equation.



**PSO** 

each particle

#### CLONALG

Step 1: Initialization
Step 2: Evaluate the
objective function values of
all particles in the swarm
Step 3: Update personal
best (Pi) and global best (Pg)
in the swarm
Step 4: Calculate velocity of
each particle
Step 5: Update position of

Step 6: Redo step 2 - 5 until

the stopping criteria is met.

**Step 1 :** Initialize antibodies AB **Step 2:** Evaluate affinities of all antibodies ABi **Step 3 :** Select n best antibodies according to their affinities -> SAb **Step 4 :** Clone the selected antibodies for p numbers -> C **Step 5 :** Mutate the clones **Step 6 :** Evaluate affinities of the clones **Step 7:** Foreach Ci in C and ABi in AB If affinity of Ci >= ABi Replace ABi with Ci Step 8: Redo step 3-7 until the

stopping criteria is met.

### Briefly about our proposal (cont.)



### Our experiments

- Command line version of our application
- ▶ 10 highly active stocks from NYSE
- ▶ 10 stocks from SET
- Historical data from 2015 to 2016 downloaded from finance.yahoo.com.





### Our experiments

- ► The first experimentation
- ► The use of PSO to optimize weights and make decision for every experimented data record.
- The objective function: % of return/initial money
- Goals:
  - Performance comparison with Buy & Hold and signal follow strategies.
  - Study the effects of changes in decision threshold. (0.1, 0.3, 0.5)
  - Study the effects of changes in population number between 20 and 25.



### Our experiments (cont.)

- Parameters of PSO
  - ▶ J. Kennedy and R. Eberhart version of PSO (1995)
  - $ightharpoonup c_1, c_2$  from 2.5 to 0.5 and from 0.5 to 2.5, respectively
  - ▶ Inertia weight from 0.9 to 0.4
  - ► Refer to empirical studies by Shi and Eberhart (1999)

$$c = (c_f - c_i) * (\frac{calls}{MAXOBJCALLS}) + c_i$$

Inertia weight 
$$\omega = (\omega_i - \omega_f) * \left(\frac{MAXOBJCALLS - calls}{MAXOBJCALLS}\right) + \omega_f$$

### Our experiments (cont.)

- The second experimentation
- ► The alternative algorithm
  - CLONALG
  - ▶ Performance comparison with PSO
  - Use the most effective threshold from previous experimentation.
  - The parameters follow the work of Castro, L.n. De, and F.j. Von Zuben's CLONALG.



### Our experiments (cont.)

- Parameters of CLONALG
  - ▶ 100% of selected antibodies with high affinity values (Objective function values)
  - ▶ 20% of antibodies with low affinity values will be replaced.
  - Multiplying factor  $(\beta)$  is set 1.
  - Low affinity value, high hypermutation rate. (Relation with highest affinity)

Number of clones = 
$$\sum_{i=1}^{n} round(\beta * Population size)$$

### Results and Discussions

### • Experiment 1



## Results and Discussions (cont.)

#### Experiment 2



## Results and Discussions (cont.)

#### Our GUI



## Results and Discussions (cont.)

- Our program can utilize the ability of swarm intelligence to make a trading decision for users.
  - Overall, PSO works better than CLONALG
  - Both algorithms work better than Buy & Hold strategy
- Our program has user-friendly graphic user interface. General users can easily understand the steps of using this application.

### Application Demo

- Minimum system requirements
  - ▶ Windows 7 32/64 bit
  - ▶ Minimum free space : 500 MB
  - ▶ Python 3.6.1
  - ▶ R Studio 1.0.143
  - ▶ Qt 5.8.0

### Possible future works

- Add technical indicators to the system
- Add alternative swarm intelligence algorithms
- Better options and parameters configuration
- More add-ons for showing graphs aside from R and Python







### References

- Worasucheep C., Nuannimnoi S., Khamvichit R., and Attagonwantana P. "An Automatic Stock Trading System using Particle Swarm Optimization." IEEE 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Phuket, 2017.
- Castro, L.n. De, and F.j. Von Zuben. "Learning and Optimization Using the Clonal Selection Principle." IEEE Transactions on Evolutionary Computation 6.3 (2002): 239-51.
- Y. Shi and R. C. Eberhart, "Empirical study of particle swarm optimization," in Proc. IEEE Int. Congr. Evolutionary Computation, vol. 3, 1999, pp. 101–106.
- Stevens, Leigh. Essential Technical Analysis: Tools and Techniques to Spot Market Trends. New York, NY: Wiley, 2002.

## Q&A