	Assuming 2 bits to represent the pixel value and the run length.				
	$f(m,n) = \begin{bmatrix} 3 & 3 & 3 & 2 \\ 2 & 3 & 3 & 3 \\ 3 & 2 & 2 & 2 \\ 2 & 1 & 1 & 0 \end{bmatrix}$				
b.	(OR) Explain the operators used for point, line and edge detection in an image.	12	2	3	12
31. a.	Write short notes on i. Analog Video Signal ii. Analog Video Standard	6	2	4	4
	(OR)				
b.	Explain the three types of intra frame filtering techniques. i. LMMSE Filtering	4	2	4	4
-	ii. Adaptive LMMSE filtering	4			
	iii. Median and weighted median filtering	4			
32. a.	Explain how gradient based optimization works in video processing and how it captures local and global minima?	12	2	5	1
	(OR)				
b.	Discuss in detail forward and backward correspondence estimation and optical flow estimation.	12	2	5	1

30. a. For the image f(m,n) compute the degree of compression that can be 12 3 3 2

* * * * *

	 	 17 1		_			
Reg. No.							

B.Tech. DEGREE EXAMINATION, JUNE 2023

Sixth and Seventh Semester

18ECE243J – DIGITAL IMAGE AND VIDEO PROCESSING

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

(ii)		t - B & Part - C should be answer				-		
Time:	3 hours	8			Max. N	Marl	ks: 1	00
		PART - A (20 ×	1 = 20 I	Marks)	Marks	BL	со	PO
	23	Answer ALL						
1	1 The	range of values spanned by th			1	1	1	1
		Dynamic Range		Band Range				
	. ,	Peak Range	` '	Resolution Range				
,) A :	image is considered to be a fur	ation of	f(v v) where 'f' represents	1	1	1	1
0.				Width of Image				
	\ /	Height of Image	. ,	_				
	(C)	Amplitude of Image	(D)	Resolution of Image				
3	3 Whi	ich is made up of concentric la	vers of t	fibrous cells?	1	1	1	1
		Cornea		Lens				
	. ,	Choroid	. ,	Sclera			¥1!	
	(C)	Choroid	(D)	Soloid				
2	4. The			resent image in various degree o	f 1	1	1	1
		lution and pyramidal represent		3				
	(A)	Fourier Transform		Wavelet Transform				
	(C)	Cosine Transform	(D)	KL Transform				
	5. Hist	togram of a dark image will be	clustere	ed towards the	1	2	2	1
· .				Lower Gray Level				
	` '	Entire Dynamic Range		High Side of Gray Scale				
	6 Dno	ocess of restoration using an es	timated	degradation function is called	1	1	2	1
,				Convolution				
	, ,	Blind Convolution						
	(C)	Auto Correlation	(D)	Cross Correlation				
,	7 If'r	' he the gray level of image h	nefore n	rocessing and 'S' after processing	₅ 1	1	2	Tanal
	that	which everession defines the	negative	e transformation for the gray leve	1			
			negauv	c transformation for the gray love	•			
		he range [0-L-1]?	(D)	$S = C \log (1+r)$			4	
	` '	S-Cr ^y	\ /	$S = C \log (1+1)$ $S = L-1+r$	**			
	(C)	S-L-1-r	(D)	3-L-1+1				
	0 7		which c	f the following energtion?	1	1	2	1
		ge sharpening is analogous to	WILICII (To spatial differentiation				
		To Spatial integration						
	(C)	To spatial convolution	(D)	To spatial multiplication				

Note:

(i)

9.	Edge based segmentation algorithm	n is usiı	ng	1	1	3	1
	(A) Discontinuity and similarity	(B)	Continuity and similarity				
	(C) Threshold Value						
10.	The sobel gradient is not that good	for the	detection of	1	1	3	12
	(A) Horizontal lines	(B)	Vertical lines				
	(C) Diagonal lines	(D)	Edges				
11.		long se	quence of the same symbol occur?	1	1	3	12
	(A) Run length	(B)	Huffman	0			
	(C) Arithmetic	(D)	Predictive				
12.	Lossy compression is called as			1	1	3	12
	(A) Reversible		Irreversible				
	(C) Code	(D)	Redundancy				
13	Affine transformation is defined as			1	1	4	4
	(A) $X' = RX + T$		VI-DV T		_		
•	$(C) X' = RX^{+1}$		X' = RX - T				
	(c) $X = RX^*I$	(D)	$X' = \frac{RX}{T}$				
			1				
14.	Non rigid motion is also called as			1	1	4	4
	(A) Template Matching	(B)	Planar Surface				
	(C) Deformable Surface	(D)	Polynomial Surface				6
15.	Aspect ratio of NTSC of digital vic	leo stan	dard	1	1	4	4
	(A) 4:3		3:2				
	(C) 2:3	. ,	1:3				
16.	Application of median filter is to re	duce		1	1	4	4
-	(A) Speckle Noise	_	Multiplicative Noise	60			
	(C) AWGN		Salt and Pepper Noise				
			PP				
17.	method is used to soldisplacement object	ve the	apparent motion and apparent	1	1	5	1
		nd (B)	Slow Motion	-			
	corresponding field	` /					
	(C) Frequency motion	(D)	Pixel recursive algorithms and				
			optical flow estimation				
18.	2D motion is also called			1	1	5	1
	(A) Projected Motion	(B)	Circular Motion				
	(C) Rectilinear Motion		Rotational Motion				
10	Which are -Cut - Cut	•		1	1	_	1
19.	Which one of the following is no matching motion estimation?	ot a blo	ck distortion measure for block	1	1	5	1
	(A) MSE	(B)	MAD				
	(C) PSNR	(D)	SSIM				

20.	Which coding scheme is used extend still frame image compression method to inter frame video compression? (A) Motion compensated Coding (B) Object based Coding (C) 3D waveform Coding (D) Semantic Coding	1	1	5	1	
	$PART - B (5 \times 4 = 20 Marks)$					
21.	Answer ANY FIVE Questions Differentiate photopic and scotopic vision.	Marks 4	BL 2	co i	PO 1	
22. i.	Find the number of bits required to store a 256×256 image with 64 gray levels.	2	3	1	1	
ii.	Find the DC component of the image. $f(m,n) = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \\ 1 & 2 & 3 \end{pmatrix}$	2	3	1	Ī	
23.	Write short notes on gamma correction.	4	1	2	1	
24.	What is the role of singular value decomposition in image processing?	4	2	2	1	
25.	What is region splitting techniques for image segmentation?	4	1	3	12	
26.	How does photometric image formation model work?				4	
27.	. Describe the process of translation block motion.				1	
	$PART - C (5 \times 12 = 60 \text{ Marks})$	Marks	D.I		DO.	
28. a.i.	Answer ALL Questions Explain the principle of image formation in human eye.	6	BL 2	1	PO 1	
ii.	Let p and q be the pixels at coordinates (5,5) and (10,5) respectively. Find out which distance measure gives the minimum distance between the pixels.	6	4	1	3	
	(OR)					
b.	Define: $2D$ – Fourier transform and its inverse transformation. Discuss any three properties of $2D$ – DFT .	12	2	1	1	
29. a.	Explain the following image enhancement techniques with applications. i. Contrast stretching		2	2	1	
	ii. Bit Plane Slicing	4				
	iii. Gray Level Slicing	- 4).2		
b.	(OR) Consider 8-level gray scale image of size 8×8 show in figure below. Compute the equalized histogram and display it graphically.	12	3	2	3	
	$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 3 & 3 & 2 & 1 & 0 \end{bmatrix}$					
e .	0 4 5 3 3 5 4 0 0 1 2 7 7 2 1 0 0 0 1 2 6 6 2 1 0	×				
	0 1 2 6 6 2 1 0 0 0 4 5 3 3 5 4 0					
	0 1 2 3 3 2 1 0					
	[0 1 1 0 0 1 1 0] 8×8					