Reducción del algoritmo de Lagrange

Allan y Jhon

April 24, 2016

1 Lagrange

Para ejemplificar el método de Lagrange se usara el mismo ejercicio que en el método de Shamir.

Se selccionó un anillo $Z_p=11$ con w=5 incógnitas de las que se resuelven t=2. Se seleccionó como llave k=8

Se seleccionan los t-1 elementos del anillo \mathbb{Z}_p $a_0=5$

Del anillo
$$Z_p$$
 se seleccionan los w elementos x $x_1=2$ $x_2=7$ $x_3=9$ $x_4=10$ $x_5=3$

Se calcula el conjunto de elementos y por medio de la ecuación

$$y_n = k + \sum_{j=1}^{t-1} a_j x_j^j modp \tag{1}$$

$$y_1 = 8 + 5(2) mod 11 = 7$$
 $y_2 = 8 + 5(7) mod 11 = 10$
 $y_3 = 8 + 5(9) mod 11 = 9$ $y_4 = 8 + 5(10) mod 11 = 3$
 $y_5 = 8 + 5(3) mod 11 = 1$

Se tienen los pares
$$A_n(x_n, y_n)$$

 $A_1(2,7)$ $A_2(7,10)$ $A_3(9,9)$ $A_4(10,3)$ $A_5(3,1)$

Para recuperar la llave k es necesario seleccionar 2 pares del conjunto A_n , los seleccionados son:

$$A_2(7,10)$$
 $A_4(10,3)$

Con estos pares podemos calcular un sistema de ecuaciones resolviendo el polinomio característico para t=2

$$a_0 + a_1 x = y$$
 donde $a_0 = k$

De lo que resulta el siguiente sistema de ecuaciones al sustituir los pares A_2 y A_4 en el polinomio

$$a_0 + 7a_1 = 10$$

$$a_0 + 10a_1 = 3$$

Podemos resolver el sistema de ecuaciones para obtener los valores de a_0 y a_1 o usar otro método, como es la ecuación de Lagrange como se muestra a continuación:

$$k = \sum_{j=1}^{t} y_j \prod \frac{x - x_j}{x_i - x_j} mod \quad p$$
 (2)

Al sustituir los valores de las ecuaciones anteriores reconstruimos el polinomio original pero a nosostros solo nos interesa obtener el valor de a_0 por que esta es k. Para conseguir esto en el calculo de l_i quitamos la variable x quedando la de la siguiente forma

$$l_i = \prod \frac{-x_j}{x_i - x_j} \tag{3}$$

Ahora sustituiremos en la ecuación (4) los pares seleccionados para recuperar el secreto $A_2(7,10)$ y $A_4(10,3)$ quedando las siguientes ecuaciones.

$$l_2 = \frac{-x_4}{x_2 - x_4}$$

Reduciendo la expresión nos queda

$$l_2 = \frac{-10}{7-10} = \frac{-10}{-3} \mod 11 = \frac{1}{8}$$

$$l_4 = \frac{-x_2}{x_4 - x_2}$$

Reduciendo la expresión nos queda
$$l_4 = \frac{-7}{10-7} = \frac{-7}{3} mod 11 = \frac{4}{3}$$

Por ultimo para calcular el valor del secreto que estamos buscando tenemos que obtener los correspondientes coeficientes a_0 y a_1 usaremos las siguientes expresiones.

$$a_0 = (y_2)(l_2)$$

$$a_0 = 10(\frac{1}{8}) = \frac{10}{8} = (10)(7) = 70 \mod 11 = 4$$

$$a_1 = (y_4)(l_4)$$

$$a_1 = 3(\frac{4}{3}) = 4$$

k = a + b = 4 + 4 = 8 y podemos notar que el secreto k se recupero exitosamente.