Fitting Topic-Rich models to a Billion Token corpus in a box Supplementary Material

For $\zeta \in \{0, 1, 2, ..., m\}$, let $p_i(\zeta, l)$ be the probability that a random j belongs to T_l and $A_{ij} = \zeta/m$ and $q_i(\zeta, l)$ the corresponding "empirical probability":

$$p_i(\zeta, l) = \frac{1}{s} \sum_{j \in T_l} {m \choose \zeta} P_{ij}^{\zeta} (1 - P_{ij})^{m-\zeta}. \tag{1}$$

$$q_i(\zeta, l) = \frac{1}{s} |\{j \in T_l : A_{ij} = \zeta/m\}|.$$
 (2)

Note In the first step of the algorithm, we will pick (uniformly at) random subset of r documents, where, r < s. r will be large enough that we will assume that

(i) there are $w_l r$ documents in the subset with dominant topic l and (ii) p_i, q_i defined on just the subset (with r instead of s in the denominator) are the same as for the whole set of s documents.

The errors involved in these assumptions are small and can be ignored.

Note that $p_i(\zeta, l)$ is a real number, whereas, $q_i(\zeta, l)$ is a random variable with

$$E(q_i(\zeta, l) \mid \mathbf{P}) = p_i(\zeta, l).$$

For an interval $I \subset [0, m]$, we let

$$p_i(I,l) = \sum_{\zeta \in I} p_i(\zeta,l) \; ; \; q_i(I,l) = \sum_{\zeta \in I} q_i(\zeta,l). \tag{3}$$

We need a technical assumption on the $p_i(\zeta, l)$ (which is weaker than unimodality).

No-Local-Min Assumption We assume that $p_i(\zeta, l)$ does not have a local minimum, in the sense:

$$p_i(\zeta, l) > \text{Min}(p_i(\zeta - 1, l), p_i(\zeta + 1, l)) \, \forall \, \zeta \in \{1, 2, \dots, m - 1\}.$$
 (4)

The plot of $q_i(\zeta, l)$ versus ζ often has a Zipf's law behavior whence it is monotone decreasing. Or it could increase to a mode and fall (for catchwords). Both satisfy the assumption.

c refers to a generic constant independent of $m, s, 1/w_0, \varepsilon, \delta$; its value may be different in different contexts.

1 Proof of Correctness

We start by recalling the Höffding-Chernoff (H-C) inequality in the form we use it.

Lemma 1. Höffding-Chernoff If X is the average of r independent random variables with values in [0,1] and $E(X) = \mu$, then, for any t > 0,

$$Pr(X \ge \mu + t) \le \exp\left(-\frac{t^2r}{2(\mu + t)}\right) \; ; \; Pr(X \le \mu - t) \le \exp\left(-\frac{t^2r}{2\mu}\right).$$

1.1 General results

The first lemma is a consequence of the no-local-minimum assumption. We use that assumption solely through this Lemma.

Lemma 2. Suppose a, b are integers with $0 \le a \le b \le m$ and let I = [a, b]. We have

$$p_i([a,b],l) \ge \frac{b-a+1}{m+1} Min(p_i([0,b],l), p_i([a,m],l)).$$

Proof. Abbreviate $p_i(\cdot, l)$ by $f(\cdot)$. It is easy to see that by the No-Local-Min property (4), for $\zeta_0 = \operatorname{Argmax}_{\zeta} f(\zeta)$, we have

$$f(\zeta) \ge f(\zeta - 1)$$
 for $\zeta = 1, 2, \dots, \zeta_0$
 $f(\zeta) \le f(\zeta - 1)$ for $\zeta = \zeta_0 + 1, \zeta_0 + 2, \dots, m$.

Now, let
$$f([a, \zeta_0) = x; f([\zeta_0 + 1, b]) = y; f([0, a - 1]) = u; f([b + 1, m]) = v.$$

Case 1 $\zeta_0 \in [a, b]$: We have:

$$x \ge \frac{\zeta_0 - a + 1}{a} u \ge \frac{\zeta_0 - a + 1}{m - b + a} u$$

$$y \ge \frac{b - \zeta_0}{m - b} v \ge \frac{b - \zeta_0}{m - b + a} v$$

$$x + y \ge \frac{b - a + 1}{m - b + a} \min(u, v)$$

$$x + y \ge \frac{1}{1 + \frac{m - b + a}{b - a + 1}} \min(u + x + y, v + x + y),$$

from which we get the Lemma for this case. The other cases are easier and we omit the proofs. \Box

Next, we state a technical Lemma which is used repeatedly. It states that for every i, ζ, l , the empirical probability that $A_{ij} = \zeta/m$ is close to the true probability, even when conditioned on any value of \mathbf{P} . Unsurprisingly, we prove it using H-C. But we will state a consequence in the form we need in the sequel.

Lemma 3. Let $I \subseteq [0, m]$ be an interval and $L \subseteq \{1, 2, ..., k\}$. With probability at least $1 - 2 \exp(-c\varepsilon w_0 s)$, we have

$$0.9\sum_{I\in I} p_i(I,l) - \frac{\varepsilon w_0}{4} \le \sum_{I\in I} q_i(I,l) \le 2\sum_{I\in I} p_i(I,l) + \frac{\varepsilon w_0}{4}.$$

Proof. Note that

$$\sum_{l \in L} q_i(\zeta, l) = \frac{1}{s} |\{j \in \bigcup_L T_l : A_{ij} = \zeta/m\}| = \frac{1}{s} \sum_{j=1}^s X_{ij},$$

where, X_{ij} is the indicator variable of $A_{ij} = \zeta/m \land j \in \cup_L T_l$. Now, (recalling the bound on the perturbation allowed in **P**)

$$E(X_{ij}) = \frac{1}{s} \sum_{i \in T_i} (\mathbf{M} \mathbf{W})_{ij}$$
 and $|X_{ij} - (\mathbf{M} \mathbf{W})_{ij}| \le \frac{\varepsilon w_0}{8}$.

We can apply H-C with $t = \mu + \frac{\varepsilon w_0}{4}$ and $\mu = \sum_{L} p_i(\zeta, l)$ to get

$$\Pr(\sum_{l \in L} q_i(I, l) > 2 \sum_{l \in L} p_i(I, l) + \frac{\varepsilon w_0}{4})$$

$$\leq \exp(-(\mu + \frac{\varepsilon w_0}{4})^2 s/2(2\mu + \frac{\varepsilon w_0}{4})).$$

The last expression (viewed as a function of μ) is maximized when $\mu = 0$ and so we get an upper bound of $\exp(-\varepsilon w_0 s/8)$.

For the other side, H-C implies

$$\Pr\left(\sum_{L} q_i(I, l) < 0.9 \sum_{L} p_i(I, l) - \frac{\varepsilon w_0}{4}\right)$$

$$\leq \exp\left(-\left(0.1 \sum_{L} p_i(I, l) + \frac{\varepsilon w_0}{4}\right)^2 s / 2 \sum_{L} p_i(I, l)\right)$$

$$\leq \exp\left(-0.05\varepsilon w_0 s\right).$$

1.1.1 Properties of Thresholding

Say that a threshold ζ_i "splits" $T_l^{(2)}$ if $T_l^{(2)}$ has a significant number of j with $A_{ij} > \zeta_i/m$ and also a significant number of j with $A_{ij} \leq \zeta_i/m$. Intuitively, it would be desirable if no threshold splits any T_l , so that, in \mathbf{B} , for each i, l, either most $j \in T_l^{(2)}$ have $B_{ij} = 0$ or most $j \in T_l^{(2)}$ have $B_{ij} = \sqrt{\zeta_i}$. We now prove that this is indeed the case with proper bounds. We henceforth refer to the conclusion of the Lemma below by the mnemonic "no threshold splits any T_l ".

Lemma 4. (No Threshold Splits any T_l) For a fixed i, l, with probability at least $1 - m^2 \exp(-c\varepsilon w_0 r)$, the following holds:

$$Min\ (p_i([0,\zeta_i],l)\ ,\ p_i([\zeta_i+1,m],l)) \le 4\varepsilon w_0/\varepsilon_0.$$

Proof. Note that ζ_i is a random variable which depends only on $A^{(1)}$. So, for $j \in T_l^{(2)}$, A_{ij} are independent of ζ_i . Now, suppose

$$p_i([0,\zeta_i],l) > \frac{4\varepsilon w_0}{\varepsilon_0}$$
 and $p_i([\zeta_i+1,m],l) > \frac{4\varepsilon w_0}{\varepsilon_0}$.

Let

$$I = \left[\operatorname{Max}(0, \frac{\zeta_i}{m} - \varepsilon_0), \operatorname{Min}(m, \frac{\zeta_i}{m} + \varepsilon_0) \right].$$

Since $\varepsilon_0 m$ is an integer, we can write I as $\left[\frac{a}{m}, \frac{b}{m}\right]$ and apply Lemma (2) to get:

$$p_i(I, l) > 4\varepsilon w_0.$$

Pay a failure probability of $m^2 \exp(-c\varepsilon r w_0)$ and assume the conclusion of Lemma (3) holds for every interval $I \subseteq [0, m]$. [Note: The Lemma was for the case when the empirical probability $q_i(I, l)$ was for a sample of s documents, but is valid for any s. Here we apply it with r samples instead of s, since $\mathbf{A}^{(1)}$ has just r columns. - Recall we assumed these quantities are the same for the sub-sample of r documents as well - see note just after (2).] We have:

$$\frac{1}{r} \left| \{ j \in T_l^{(1)} : A_{ij} \in I \} \right| = q_i(I, l) \ge 0.9 p_i(I, l) - \frac{\varepsilon w_0}{4} > 3\varepsilon w_0,$$

contradicting the definition of ζ_i in the algorithm. This completes the proof of the Lemma.

Define k vectors $\mu^{(1)}, \mu^{(2)}, \dots, \mu^{(k)}$ by

$$\mu^{(l)} = E(B_{\cdot,j} \mid j \in T_l^{(2)}), l = 1, 2, \dots, k,$$

where, expectation refers to uniform random sample j.

We also abuse notation slightly and let $\mu_{\cdot,j}$ denote $\mu^{(l)}$ for $j \in T_l^{(2)}$, so we also think of μ as a $d \times s$ matrix. The entries of the matrix μ are fixed (real numbers) once we have $\mathbf{A}^{(1)}$ (and the thresholds ζ_i are determined). But μ_{ij} are random variables before we fix $\mathbf{A}^{(1)}$. The following Lemma is a direct consequence of "no threshold splits any T_l ".

Lemma 5. Suppose $\zeta_i \geq 8 \ln(20/\varepsilon w_0)$. With probability at least $1-2m^2kd \exp(-c\varepsilon r w_0)$ (over the choice of $\mathbf{A}^{(1)}$):

$$\forall l, \forall j \in T_l, \forall i : \mu_{ij} \leq \varepsilon_l \sqrt{\zeta_i} \ OR \ \mu_{ij} \geq \sqrt{\zeta_i} (1 - \varepsilon_l)$$

where, $\varepsilon_l = 4\varepsilon w_0/\varepsilon_0 w_l$.

Proof. After paying a failure probability of $2m^2kd\exp(-c\varepsilon rw_0)$, assume no threshold splits any T_l . [The factors of k and d come in because we are taking the union bound over all words and all topics.] Then,

$$p_i([0,\zeta_i],l) \le 4\varepsilon \frac{w_0}{\varepsilon_0} = .4\varepsilon_l w_l$$

or $p_i([\zeta_i + 1, m], l) \le 4\varepsilon \frac{w_0}{\varepsilon_0} = .4\varepsilon_l w_l$.

Wlg, assume that the first inequality holds. Then, by Lemma (3),

$$q_{i}([0,\zeta_{i}],l) \leq .8\varepsilon_{l}w_{l} + \varepsilon w_{0}/4 \leq \varepsilon_{l}w_{l}\sqrt{\zeta_{i}}$$

$$\frac{1}{w_{l}s}\sum_{j\in T_{l}}B_{ij} \geq \frac{w_{l}s(1-\varepsilon_{l})}{w_{l}s} = (1-\varepsilon_{l})\sqrt{\zeta_{i}}$$
(5)

which implies

$$\mu_{ij} \ge (1 - \varepsilon_l) \sqrt{\zeta_i}.$$

This proves the lemma in this case. The other case is symmetric.

So far, we have proved that for every i, the threshold does not split any T_l . But this is not sufficient in itself to be able to cluster (and hence identify the T_l), since, for example, this alone does not rule out the extreme cases that for most j in every T_l , $A_{ij}^{(2)}$ is above the threshold (whence $\mu_{ij} \geq (1 - \varepsilon_l) \sqrt{\zeta_l^2}$ for almost all j) or for most j in no T_l is $A_{ij}^{(2)}$ above the threshold, whence, $\mu_{ij} \leq \varepsilon_l \sqrt{\zeta_i'}$ for almost all j. Both these extreme cases would make us loose all the information about T_l due to thresholding; this scenario and milder versions of it have to be proven not to occur. We do this by considering how thresholds handle catchwords. Indeed we will show that for a catchword $i \in S_l$, each $j \in T_l$ has $A_{ij}^{(2)}$ above the threshold and each $j \notin T_l$ has $A_{ij}^{(2)}$ below the threshold. (Both statements will only hold with high probability, of course.) To do this, we first define a η_i (which is not random and only depends on parameters, not data) and show (Lemma (6)) that whp, for $j \in T_l, A_{ij} > \eta_i/m$ and for $j \notin T_l, A_{ij} < \eta_i/m$. Then we show (Lemma (7)) that with high probability, $\zeta_i \geq \eta_i$. So it follows for $i \in S_l$, $j \notin T_l$, whp, $A_{ij} < \zeta_i/m$ and so $B_{ij} = 0$. Since ζ_i can be greater than η_i , it does not automatically follow that for $j \in T_l$, $A_{ij} > \zeta_i/m$. Since for $j \notin T_l$, $A_{ij} < \zeta_i/m$, and since by definition of ζ_i in the algorithm, we have at least $w_0 r/2$ documents j with $A_{ij} > \zeta_i/m$, most of these must be in T_l . Now, the "no threshold splits any T_l " lemma comes in handy to show that indeed, most of T_l lies above threshold. This is used in the proof of the Lemma that $\mu_{.,j}$ and $\mu_{.,j'}$ differ a lot for j,j' in different T_l .

Lemma 6. For $i \in S_l$, and $l' \neq l$, we have with $\eta_i = |M_{il}^{(1)}(\alpha + \beta + \rho)m/2|$,

$$p_i([0, \eta_i + \varepsilon_0 m], l) \le \varepsilon w_0 w_l / 20,$$

 $p_i([\eta_i - \varepsilon_0 m, m], l') \le \varepsilon w_0 w_l / 20.$

Proof. Recall that P_{ij} is the probability of word i in document j conditioned on **W**. Fix an $i \in S_l$. From the dominant topic assumption,

$$\forall j \in T_l, (\mathbf{MW})_{ij} = \sum_{l_1} M_{il_1}^{(1)} W_{l_1,j}^{(1)} \ge M_{il}^{(1)} W_{lj}^{(1)} \ge M_{il}^{(1)} \alpha_l \implies P_{ij} \ge M_{il}^{(1)} \alpha - \varepsilon w_0 / 8.$$

$$(6)$$

Note that (6) holds with probability 1. From Catchword assumption we get that

$$M_{il}^{(1)}\alpha_l - (\eta_i/m) - (\varepsilon w_0/8) \ge M_{il}^{(1)}\alpha - M_{il}^{(1)}((\alpha + \beta + \rho)/2) - (\varepsilon w_0/8) \ge M_{il}^{(1)}\alpha\delta/2.$$

Now, we will apply H-C with $\mu - t = \varepsilon_0 + \eta_i/m$ and $\mu \ge M_{il}^{(1)} \alpha_l - (\varepsilon w_0/8)$ for the m independent words in a document. By Calculus, the probability bound from H-C of

$$\exp(-t^2 m/2\mu) = \exp(-(\mu - \varepsilon_0 - (\eta_i/m))^2 m/2\mu)$$

is highest subject to the constraints $\mu \geq M_{il}^{(1)}\alpha_l$; $\eta_i \leq mM_{il}^{(1)}(\alpha+\beta+\rho)/2$, when $\mu = M_{il}^{(1)}\alpha - (\varepsilon w_0/8)$ and $t = M_{il}^{(1)}\alpha_l - \frac{\eta_i}{m} - \varepsilon_0$, whence, we get

$$p_i([0, \eta_i + \varepsilon_0 m], l) \le \exp(-M_{il}^{(1)} \alpha \delta^2 m / 16) \le \varepsilon w_0 / 20,$$

using (7). Now, we prove the second assertion of the Lemma.

$$\forall j \in T_{l'}, l' \neq l, \sum_{l_1} M_{il_1}^{(1)} W_{l_1, j}^{(1)} = M_{il}^{(1)} W_{lj}^{(1)} + \sum_{l_1 \neq l} M_{il_1}^{(1)} W_{l_1, j}^{(1)}$$

$$\leq M_{il}^{(1)} W_{lj}^{(1)} + \left(\text{Max}_{l_1 \neq l} M_{il_1}^{(1)} \right) (1 - W_{lj}^{(1)})$$

$$\leq M_{il}^{(1)} (\beta + \rho) \implies P_{ij} \leq M_{il}^{(1)} (\beta + \rho) + (\varepsilon w_0 / 8). \tag{7}$$

$$\frac{\eta_i}{m} - \varepsilon_0 - M_{il}^{(1)}(\beta + \rho) \ge \frac{M_{il}^{(1)}(\alpha + \beta + \rho)}{2} - M_{il}^{(1)}(\beta + \rho) - \frac{1}{m} - \varepsilon_0 \ge 0.4M_{il}^{(1)}\alpha\delta,$$

using the bounds on α, β, ρ . Applying the first inequality of Lemma (1) with $\mu + t = \eta_i/m - \varepsilon_0$ and $\mu \leq M_{il}^{(1)}(\beta + \rho)$ and we get the second assertion of the Lemma.

Lemma 7. For $i \in S_l$, $Pr(\zeta_i < \eta_i) \leq 3km^2e^{-c\varepsilon rw_0}$, with η_i as defined in Lemma 6.

Proof. Let $I = \left[\frac{\eta_i}{m} - \varepsilon_0, \frac{\eta_i}{m} + \varepsilon_0\right]$. Fix attention on an $i \in S_l$. After paying the failure probability of $3m^2ke^{-c\varepsilon rw_0}$, assume the conclusions of Lemma (3) hold for all l and all intervals I. It suffices to show that

$$\left| \{j : A_{ij}^{(1)} > \eta_i / m\} \right| \ge \frac{w_0 r}{2} , \left| \{j : A_{ij}^{(1)} \in I\} \right| < 3w_0 \varepsilon r,$$

since, η_i is an integer and ζ_i is the largest integer satisfying the inequalities. For the first statement, we have from Lemma 6 with $I' = [\eta_i + 1, m]$: $p_i(I', l) \ge w_l(1 - (\varepsilon w_0/20w_l)) \ge 0.9w_l$. So,

$$|\{j: A_{ij}^{(1)} > \eta_i/m\}| \ge rq_i(I, l) \ge w_l r(.81 - (\varepsilon w_0/4)) \ge w_0 r/2.$$

The second statement is slightly more complicated. Using both the first and second assertions of Lemma 6, we get that for all l' (including l' = l), we have

$$p_i(I, l') \le \varepsilon w_0 w_l / 20 \implies \sum_{l'=1}^k p_i(I, l') \le \varepsilon w_0 / 20.$$

Now, Lemma (3) implies

$$\left| \{j : A_{ij}^{(1)} \in I\} \right| = r \sum_{l'=1}^{k} q_i(I, l') \le \left(\frac{\varepsilon w_0}{10} + \frac{\varepsilon w_0}{4}\right) r \le \varepsilon w_0 r,$$

thus completing the proof.

Lemma 8. Define $I_l = \{i \in S_l : \zeta_i \geq \eta_i\}$. With probability at least $1 - 6m^2dk \exp(-c\varepsilon r)$, we have for all l,

$$\sum_{i \in I_l} \zeta_i' \ge m\alpha p_0/4.$$

Proof. After paying the failure probability, we assume the conclusion of Lemma 3 holds for all i, ζ, l . Now, by Lemma 7, we have (with **1** denoting the indicator function)

$$E\left(\sum_{i \in S_l} M_{il}^{(1)} \mathbf{1}(\zeta_i < \eta_i)\right) \le 3m^2 k \exp(-\varepsilon r w_0/8) \sum_{i \in S_l} M_{il}^{(1)},$$

which using Markov inequality implies that with probability at least $1 - 6m^2k \exp(-c\varepsilon sw_0)$,

$$\sum_{i \in I_l} M_{il}^{(1)} \ge \frac{1}{2} \sum_{i \in S_l} M_{il}^{(1)} \ge p_l/2. \tag{8}$$

Note that no catchword has ζ_i' set to zero. So,

$$\sum_{i \in I_l} \zeta_i' = \sum_{i \in I_l} \zeta_i \ge \sum_{i \in I_l} \eta_i \ge \sum_{I_l} m M_{il}^{(1)} \alpha_l / 2 \ge \alpha_l p_l m / 4.$$

Lemma 9. With probability at least $1 - 8m^2dk \exp(-c\varepsilon w_0 r)$, we have for $l \neq l'$,

$$|\mu^{(l)} - \mu^{(l')}|^2 \ge \frac{2m}{9} \alpha p_0.$$

Proof. For this proof, i will denote an element of I_l . By Lemma 6,

$$\forall i \in I_l, l' \neq l, p_i([\zeta_i, m], l') \leq \frac{\varepsilon w_0 w_l}{20}.$$
 (9)

This implies by Lemma 3,

$$\sum_{l' \neq l} \left| \{ j \in T_{l'}^{(1)} : A_{ij}^{(1)} > \frac{\zeta_i}{m} \} \right| \le \sum_{l' \neq l} r \frac{\varepsilon w_0}{10} w_{l'} + r \frac{\varepsilon w_0}{4} \le \varepsilon w_0 r. \tag{10}$$

Now the definition of ζ_i in the algorithm implies that:

$$r\sum_{\zeta>\zeta_i}q_i(\zeta,l)=\left|\{j\in T_l^{(1)}:A_{ij}>\frac{\zeta_i}{m}\}\right|\geq \left(\frac{w_0}{2}-\varepsilon w_0\right)r\geq w_0r/4.$$

So, by Lemma 3,

$$p_i([\zeta_i + 1, m], l) \ge \frac{1}{2} q_i([\zeta_i + 1, m], l) - \frac{1}{4} \varepsilon w_0$$

 $\ge \frac{w_0}{8} - \frac{1}{4} \varepsilon w_0 \ge w_0/9,$

using (7). Next let $I = \left[\frac{\zeta_i}{m} - \varepsilon_0, \frac{\zeta_i}{m} + \varepsilon_0\right]$ and $\tilde{p} = p_i(I, l)$. Since $|\{j \in T_l^{(1)} : A_{ij} \in I\}| \leq 3\varepsilon w_0 r$, by the definition of ζ_i in the algorithm, we get from Lemma 3 again:

$$\tilde{p} \le 2q_i(I, l) + \varepsilon w_0/4 \le 7\varepsilon w_0.$$
(11)

Now, by Lemma 2, we have

$$\tilde{p} \ge \operatorname{Min}\left(\frac{2\varepsilon_0 w_0}{9}, 2\varepsilon_0 p_i([0, \zeta_i], l)\right).$$

By (7), $7\varepsilon w_0 < 2\varepsilon_0 w_0/9$ and so $\tilde{p} < 2\varepsilon_0 w_0/9$ and we get:

$$p_i([0,\zeta_i],l) \le 7\varepsilon w_0/2\varepsilon_0.$$

Noting that by (2,3,4), no catchword has ζ_i' set to zero, $\Pr(B_{ij} = 0|j \in$ $T_l^{(2)} \le 7\varepsilon w_0/2\varepsilon_0 w_l \le 1/6$, by the bounds on ε . This implies

$$\mu_{ij} \ge \frac{5}{6} \sqrt{\zeta_i'}.$$

Now, by (9), we have for $j' \notin T_l$,

$$\mu_{ij'} \leq \sqrt{\zeta_i'}/6.$$

So, we have

$$\sum_{i \in I_l} (\mu_{ij} - \mu_{ij'})^2 \ge (4/9) \sum_{i \in I_l} \zeta_i'.$$

Similarly, we get $\sum_{i \in I_{l'}} (\mu_{ij} - \mu_{ij'})^2 \ge \frac{4}{9} \sum_{i \in I_{l'}} \zeta_i'$. Now Lemma (8) implies the current Lemma.

Lemma 10. With probability at least $1 - \exp(-c\varepsilon w_0 s)$, we have

$$||\mathbf{B}||_F^2 \ge \frac{sm\alpha p_0}{20}.$$

Proof. By Lemma (8),

$$E(|B_{.,j}|^2 \mid j \in T_l) \ge \frac{1}{2} E(\sum_{i \in S_l} \zeta_i') \ge \frac{m\alpha p_0}{10}.$$

So, $E(||\mathbf{B}||_F^2) \ge \frac{m\alpha p_0 s}{10}.$

Now, $||\mathbf{B}||_F^2 = \sum_j |B_{.,j}|^2$ is the sum of independent random variables $|B_{.,j}|^2$ which are each at most 8km by Lemma (11). So applying H-C to $|B_{,j}|^2/(8km)$, we get the current Lemma.

Since with high probability, for all $i \in S_l$ and $j \in T_l$, $B_{ij} = \zeta_i'$ and also by the argument of Lemma (6), $\zeta_i' \geq m M_{il}^{(1)} \alpha/2$, we have whp for $j \in T_l$, $|B_{\cdot,j}|^2 \geq c\alpha p_0 m$ and so $\sum_{j\in T_l} |B_{\cdot,j}|^2 |\geq csw_l p_0 \alpha m$.

Also, for any j, $\sum_{i:B_{ij}>0} \zeta_i' \leq m$ and so $||\mathbf{B}||_F^2 \leq sm$.

Now also we have that for $i \in S_l$, $j \notin T_l$, $B_{ij} = 0$ whp. Further, for $i \in S_0$, $B_{ij}^2 \leq \lambda_i$ implies (recall the definition of p_0 from the Notation section) that whp $\sum_{i \in S_0} B_{ij}^2 \le p_0 m$.. Thus, whp, $||\mathbf{B}||_F^2 \le s(p_0 + \sum_{l'} w_{l'} p_{l'})$.

1.2 k-means find dominant topics

We need a piece of notation: For t = 1, 2, ..., r, if $B_{\cdot,j}, j \in T_l$ was picked to be the t th column of \mathbf{C} , we form a $d \times r$ matrix $\tilde{\mu}$ with $\tilde{\mu}_{\cdot,t} = \mu_{\cdot,j}$. We denote by \tilde{T}_l the set of columns in T_l which were sampled and included in \mathbf{C} .

We first prove:

Theorem 1.1. With probability at least $1 - cm^2 dk \exp(-c\varepsilon w_0 r)$, we have

$$||\mathbf{C} - \tilde{\mu}||_F^2 \le ck^3 \frac{\varepsilon w_0 m}{p_0 \alpha \varepsilon_0} r.$$

Proof.

Let
$$\mathcal{E}_1 : \sum_{i=1}^d \zeta_i' \le ckm$$
 ; \mathcal{E}_2 : $||\mathbf{B}||_F^2 \ge csm\delta_0$. (12)

After paying the failure probability of $m^2 dk \exp(-c\varepsilon w_0 r)$, we may assume from Lemmas (11) and (10), that $\mathcal{E}_1, \mathcal{E}_2$ hold.

Consider the random variable $X = ||\mathbf{C} - \tilde{\mu}||_F^2$. It is the sum of r independent i.i.d. random variables: $X_t = |C_{\cdot,t} - \tilde{\mu}_{\cdot,t}|^2$. Changing one $C_{\cdot,t}$ changes X by at most ckm since each $|B_{\cdot,j}|^2 \leq \sum_{i=1}^d \zeta_i'$ and under $\mathcal{E}_1, \sum_i \zeta_i' \leq ckm$. So we have by Bounded Difference Inequality that with high probability, |X - EX| is small. So, now, it suffices to bound E(X). Now,

$$E(X) = rE_{\text{length}^2} \left(|C_{\cdot,1} - \tilde{\mu}_{\cdot,1}|^2 \right) = E\left(\sum_{i=1}^s \frac{|B_{\cdot,j}|^2}{||\mathbf{B}||_F^2} |B_{\cdot,j} - \mu_{\cdot,j}|^2 \right). \tag{13}$$

$$E\left(\sum_{j=1}^{s} \frac{|B_{\cdot,j}|^2}{||\mathbf{B}||_F^2} |B_{\cdot,j} - \mu_{\cdot,j}|^2\right) \le E\left(\sum_{j=1}^{s} \frac{|B_{\cdot,j}|^2}{||\mathbf{B}||_F^2} |B_{\cdot,j} - \mu_{\cdot,j}|^2 \mid \mathcal{E}_1, \mathcal{E}_2\right) + m^2 dk \exp(-c\varepsilon w_0 r) m^2,$$

where, for the second term, we have used $|B_{\cdot,j}|^2 \le ||\mathbf{B}||_F^2$ and $|B_{\cdot,j}|^2, |\mu^{(l)}|^2 \le m^2$. The second term is easily seen to be lower order, so we may ignore it

and just bound the first term. Now since $|B_{\cdot,j}|^2 \leq \sum_{i=1}^d \zeta_i'$,

$$E\left(\sum_{j=1}^{s} \frac{|B_{\cdot,j}|^{2}}{|\mathbf{B}|^{2}} |B_{\cdot,j} - \mu_{\cdot,j}|^{2} | \mathcal{E}_{1}, \mathcal{E}_{2}\right) \leq \frac{ckm}{sm\alpha p_{0}} E\left(\sum_{j=1}^{s} |B_{\cdot,j} - \mu_{\cdot,j}|^{2}\right)$$

$$\leq \frac{ck}{s\delta_{0}} \sum_{l=1}^{k} w_{l} s E\left(|B_{\cdot,j} - \mu^{(l)}|^{2} | j \in T_{l}\right)$$

$$\leq \frac{ck^{2} \varepsilon w_{0}}{\varepsilon_{0}\delta_{0}} E\left(\sum_{i} \zeta_{i}'\right) \leq \frac{ck^{3} \varepsilon w_{0} m}{\varepsilon_{0}\delta_{0}},$$

where, we have used Lemma (5) and \mathcal{E}_1 . Since $|B_{\cdot,j}|^2 \leq ckm$ under \mathcal{E}_1 and \mathcal{E}_2 , we can put in Theorem (1.4) $\nu \leq c\sqrt{km}$. Also put $t = ck\sqrt{\frac{\varepsilon w_0}{\delta_0\varepsilon_0}}\sqrt{r}$. Then the current theorem follows.

1.2.1 Proximity

We need a piece of notation: For t = 1, 2, ..., r, if $B_{\cdot,j}, j \in T_l$ was picked to be the t th column of \mathbf{C} , we form a $d \times r$ matrix $\tilde{\mu}$ with $\tilde{\mu}_{\cdot,t} = \mu_{\cdot,j}$. We denote by \tilde{T}_l the set of columns in T_l which were sampled and included in \mathbf{C} .

We wish to show that clustering as in ℓ_2^2 identifies the dominant topics correctly for most documents, i.e., that $R_l \approx \tilde{T}_l$ for all l. For this, we will use a theorem from [2] [see also [1]] which in this context says:

Theorem 1.2. If all but a f fraction of the the $C_{\cdot,t}$ satisfy the "proximity condition", then $\ell_2^2 TSVD$ identifies the dominant topic in all but $c_1 f$ fraction of the documents correctly after polynomial number of iterations.

To describe the proximity condition, first let σ be the maximum over all directions v of the square root of the mean-squared distance of $C_{.,t}$ to $\tilde{\mu}_{.,t}$, i.e.,

$$\sigma^2 = \text{Max}_{\|v\|=1} \frac{1}{r} |v^T (\mathbf{C} - \tilde{\mu})|^2 = \frac{1}{r} \|\mathbf{C} - \tilde{\mu}\|^2.$$

The parameter σ should remind the reader of standard deviation.

Recall: We showed that $|\tilde{T}_l|$ is at least $\Omega(w_l\alpha_l p_l r/k)$.

Definition: $C_{.,t}, t \in \tilde{T}_l$ is said to satisfy the proximity condition with respect to μ , if for each $l' \neq l$, the projection of $C_{.,t}$ onto the line joining $\mu^{(l)}$ and $\mu^{(l')}$

is closer to $\mu^{(l)}$ than it is to $\mu^{(l')}$ by at least at least

$$\Delta_{l.l'} = c_0 k \left(\frac{\sqrt{r}}{\sqrt{|\tilde{T}_l|}} + \frac{\sqrt{r}}{\sqrt{|\tilde{T}_{l'}}} \right) \sigma$$

$$\leq c_0 k^{3/2} \left(\frac{1}{\sqrt{w_l \alpha_l p_l}} + \frac{1}{\sqrt{w_{l'} \alpha_{l'} p_{l'}}} \right) \sigma.$$

If this fails for an l', we say that t is not proximate with respect to l'.

To prove proximity, we need to upper bound σ . This will be the task of the subsection 1.3 which relies heavily on Random Matrix Theory.

1.3 Bounding the Spectral norm

In this section, we prove:

Theorem 1.3. With δ_0 as in (6), we have: With probability at least $1 - cm^2 dk \exp(-c\varepsilon w_0 r)$, we have

$$||\mathbf{C} - \tilde{\mu}||^2 \le ck^3 \frac{\varepsilon w_0 m}{\delta_0 \varepsilon_0} r.$$

Theorem 1.4. [3, Theorem 5.44] Suppose R is a $d \times r$ matrix with columns $R_{\cdot,j}$ which are independent identically distributed vector-valued random variables. Let $U = E(R_{\cdot,j}R_{\cdot,j}^T)$ be the inertial matrix of $R_{\cdot,j}$. Suppose $|R_{\cdot,j}| \leq \nu$ always. Then, for any t > 0, with probability at least $1 - de^{-ct^2}$, we have

$$||R|| \le ||U||^{1/2} \sqrt{r} + t\nu.$$

We need the following Lemma first.

Lemma 11. Let

$$\zeta_i' = \begin{cases} \zeta_i & \text{if } \zeta_i \ge 8 \ln(20/\varepsilon w_0) \\ 0 & \text{if } \zeta_i < 8 \ln(20/\varepsilon w_0) \end{cases}.$$

Let $\zeta_0 = Max_i\zeta_i'$. With probability at least $1 - \exp(-r\varepsilon w_0/3)$, we have

$$\zeta_0 \le 4m\lambda \; ; \; \sum_i \zeta_i' \le 4km$$
 (14)

Proof. The probability of word i in document j, is given by: $(\mathbf{MW})_{ij} = \sum_{l} M_{il}^{(1)} W_{lj}^{(1)} \leq \lambda_{i}$ (where, $\lambda_{i} = \max_{l} M_{il}^{(1)}$). If $\lambda_{i} < \frac{1}{m} \ln(20/\varepsilon w_{0})$, then, $\Pr(A_{ij} > (8/m) \ln(20/\varepsilon w_{0})) \leq \varepsilon w_{0}$ by H-C (since A_{ij} is the average of m i.i.d. trials). Let X_{j} be the indicator function of $A_{ij} > (8/m) \ln(20/\varepsilon w_{0})$. X_{j} are independent and so using H-C, we see that with probability at least $1 - \exp(-\varepsilon w_{0}r/3)$, less than $w_{0}s/2$ of the A_{ij} are greater $(8/m) \ln(20/\varepsilon w_{0})$, whence, $\zeta'_{i} = 0$. So we have (using the union bound over all words):

$$\Pr\left(\sum_{i:\lambda_i < (1/m)\ln(20/\varepsilon w_0)} \zeta_i' > 0\right) \le d\exp(-\varepsilon w_0 s/3).$$

If $\lambda_i \geq (1/m) \ln(20/\varepsilon w_0)$, then

$$\Pr(A_{ij} > 4\lambda_i) \le e^{-\lambda_i m} \le \varepsilon w_0/2,$$

which implies by the same X_j kind of argument that with probability at least $1 - \exp(-\varepsilon w_0 r/4)$, for a fixed $i, \zeta_i \leq 4\lambda_i m$. Using the union bound over all words and adding all i, we get that with probability at least $1 - 2d \exp(-\varepsilon w_0 s/4)$,

$$\sum_{i} \zeta_i' \le 4m \sum_{i} \lambda_i \le 4m \sum_{i,l} M_{il}^{(1)} \le 4km.$$

Now we prove the bound on ζ_0 . For each fixed i, j, we have $\Pr(A_{ij} \geq 4\lambda) \leq e^{-m\lambda} \leq \varepsilon w_0$. Now, let Y_j be the indicator variable of $A_{ij} \geq 4\lambda$. The $Y_j, j = 1, 2, \ldots, s$ are independent (for each fixed i). So, $\Pr(\zeta_i \geq 4m\lambda) \leq \Pr(\sum_j Y_j \geq w_0 s/2) \leq e^{-\varepsilon w_0 r/3}$. Using an union bound over all words, we get that $\Pr(\zeta_0 > 4m\lambda) \leq de^{-\varepsilon w_0 r/3}$ by H-C.

Proof. (of Theorem 1.3)

Let $U = E\left((C_{\cdot,1} - \stackrel{'}{\tilde{\mu}_{\cdot,1}})(C_{\cdot,1} - \tilde{\mu}_{\cdot,1})^T\right)$ be the intertial matrix of $C_{\cdot,1} - \tilde{\mu}_{\cdot,1}$.

$$||U|| \leq \operatorname{Max}_{v:|v|=1} E_{\operatorname{length}^2} \left((v^T (C_{\cdot,1} - \tilde{\mu}_{\cdot,1}))^2 \right)$$

$$\leq E_{\text{length}^2} \left(|C_{\cdot,1} - \tilde{\mu}_{\cdot,1}|^2 \right) = E \left(\sum_{j=1}^s \frac{|B_{\cdot,j}|^2}{||\mathbf{B}||_F^2} |B_{\cdot,j} - \mu_{\cdot,j}|^2 \right).$$
 (15)

Let
$$\mathcal{E}_1 : \sum_{i=1}^d \zeta_i' \le ckm \quad ; \quad \mathcal{E}_2 \qquad \qquad : ||\mathbf{B}||_F^2 \ge csm\delta_0.$$
 (16)

After paying the failure probability of $m^2 dk \exp(-c\varepsilon w_0 r)$, we may assume from Lemmas (11) and (10), that $\mathcal{E}_1, \mathcal{E}_2$ hold. We use this to bound the right hand side of (15). To this end,

$$E\left(\sum_{j=1}^{s} \frac{|B_{\cdot,j}|^2}{||\mathbf{B}||_F^2} |B_{\cdot,j} - \mu_{\cdot,j}|^2\right) \le E\left(\sum_{j=1}^{s} \frac{|B_{\cdot,j}|^2}{||\mathbf{B}||_F^2} |B_{\cdot,j} - \mu_{\cdot,j}|^2 \mid \mathcal{E}_1, \mathcal{E}_2\right) + m^2 dk \exp(-c\varepsilon w_0 r) m^2,$$

where, for the second term, we have used $|B_{\cdot,j}|^2 \leq ||\mathbf{B}||_F^2$ and $|B_{\cdot,j}|^2, |\mu^{(l)}|^2 \leq m^2$. The second term is easily seen to be lower order, so we may ignore it and just bound the first term. Now since $|B_{\cdot,j}|^2 \leq \sum_{i=1}^d \zeta_i'$,

$$E\left(\sum_{j=1}^{s} \frac{|B_{\cdot,j}|^{2}}{|\mathbf{B}|_{F}^{2}} |B_{\cdot,j} - \mu_{\cdot,j}|^{2} | \mathcal{E}_{1}, \mathcal{E}_{2}\right) \leq \frac{ckm}{sm\delta_{0}} E\left(\sum_{j=1}^{s} |B_{\cdot,j} - \mu_{\cdot,j}|^{2}\right)$$

$$\leq \frac{ck}{s\delta_{0}} \sum_{l=1}^{k} w_{l} s E\left(|B_{\cdot,j} - \mu^{(l)}|^{2} | j \in T_{l}\right)$$

$$\leq \frac{ck^{2} \varepsilon w_{0}}{\varepsilon_{0}\delta_{0}} E\left(\sum_{i} \zeta_{i}'\right) \leq \frac{ck^{3} \varepsilon w_{0} m}{\varepsilon_{0}\delta_{0}},$$

where, we have used Lemma (5) and \mathcal{E}_1 . Since $|B_{\cdot,j}|^2 \leq ckm$ under \mathcal{E}_1 and \mathcal{E}_2 , we can put in Theorem (1.4) $\nu \leq c\sqrt{km}$. Also put $t = ck\sqrt{\frac{\varepsilon w_0}{\delta_0\varepsilon_0}}\sqrt{r}$. Then the current theorem follows.

1.4 Proving Proximity

From Theorem (1.3), the σ in definition 1.4 is $ck^{3/2}\sqrt{\varepsilon w_0m}/\sqrt{\delta_0\varepsilon_0}$. So, the Δ in definition 1.4 is

$$\Delta_{l,l'} \le ck^3 \sqrt{\frac{\varepsilon w_0 m}{\delta_0 \varepsilon_0}} \left(\frac{1}{\sqrt{w_l \alpha_l p_l}} + \frac{1}{\sqrt{w_{l'} \alpha_{l'} p_{l'}}} \right).$$

So it suffices to prove:

Lemma 12. For $t \in \tilde{T}_l$ and $l' \neq l$, let $\hat{C}_{.,t}$ be the projection of $C_{.,t}$ onto the line joining $\mu^{(l)}$ and $\mu^{(l')}$. The probability that $|\hat{C}_{.,t} - \mu^{(l')}| \leq |\hat{C}_{.,t} - \mu^{(l)}| + \Delta_{l,l'}$ is at most $c \in w_0 k^{5/2} / \delta_0 \varepsilon_0 \min_l \sqrt{\alpha_l p_l}$. Hence, with probability at least $1 - cm^2 dk \exp(-cw_0 \varepsilon r)$, the number of t for which $C_{.,t}$ does not satisfy the proximity condition is at most $\min_l(w_l a_l \delta_l) r / (10c_1)$, where, c_1 is the constant in Theorem (1.2).

Proof. After paying the failure probability of $cm^2dk \exp(-cw_0r\varepsilon)$, of Lemmas (11) and (9), assume that $\zeta_0 \leq 4m\lambda$, $|\mu_{.,j} - \mu_{.,j'}|^2 \geq (\alpha_l p_l + \alpha_{l'} p_{l'})m/9$ and $\sum_i \zeta_i' \leq 4km$.

For $j \in T_l$, define $X_{j,l'} = (B_{.,j} - \mu_{.,j}) \cdot (\mu^{(l')} - \mu^{(l)})$. Since $\Pr(B_{ij} = \sqrt{\zeta_i'} | j \in T_l) = \mu_{ij} / \sqrt{\zeta_i'}$, we have:

$$E(|X_{j,l'}| \mid j \in T_l) \leq E \sum_{i} |B_{ij} - \mu_{ij}| \mid \mu_i^{(l')} - \mu_i^{(l)}|$$

$$= \sum_{i} \left[(\sqrt{\zeta_i'} - \mu_{ij}) \frac{\mu_{ij}}{\sqrt{\zeta_i'}} + (1 - \frac{\mu_{ij}}{\sqrt{\zeta_i'}}) \mu_{ij} \right] |\mu_{ij} - \mu_{ij'}|$$

$$\leq 2\varepsilon_l \sum_{i} \sqrt{\zeta_i'} |\mu_{ij} - \mu_{ij'}| \quad \text{by Lemma 5}$$

$$\leq 2\varepsilon_l \left(\sum_{i} \zeta_i' \right)^{1/2} |\mu_{.,j} - \mu_{.,j'}| \leq 4\varepsilon_l \sqrt{km} |\mu_{.,j} - \mu_{.,j'}|.$$

We claim that: If $|X_{j,l'}| \leq |\mu_{.,j} - \mu_{.,j'}|^2/8$, then, $|\hat{B}_{.,j} - \mu_{.,j'}| \geq |\hat{B}_{.,j} - \mu_{.,j}| + 3|\mu_{.,j} - \mu_{.,j'}|/4 \geq |\hat{B}_{.,j} - \mu_{.,j}| + \Delta_{l,l'}$.

To prove the claim, it suffices to show that $|\mu^{(l)} - \mu^{(l')}|^2 \ge 4\Delta_{l,l'}^2$. There are two cases: **Case 1** $w_l\alpha_lp_l \le w_{l'}\alpha_{l'}p_{l'}$: Then we have $\left(\frac{1}{w_l\alpha_lp_l} + \frac{1}{w_{l'}\alpha_{l'}p_{l'}}\right) \le \frac{2}{w_l\alpha_lp_l}$ and so $4\Delta_{l,l'}^2 \le cm\alpha_lp_l$, using (7). **Case 2** $w_l\alpha_lp_l > w_{l'}\alpha_{l'}p_{l'}$. By a similar argument, $4\Delta_{l,l'}^2 \le cm\alpha_{l'}p_{l'}$. Since $|\mu^{(l)} - \mu^{(l')}|^2 \ge cm(\alpha_lp_l + \alpha_{l'}p_{l'})$, the claim follows.

Let $Y_{i,l'}$ be the indicator of non-proximity of j for l'.

$$\Pr(Y_{j,l'} \mid j \in T_l) \le \Pr(X_{j,l'} \ge (1/8)|\mu_{.,j} - \mu^{(l')}|^2) \le \frac{c\varepsilon_l \sqrt{k}}{\sqrt{\alpha_l p_l}}.$$

Let $Y_j = \text{indicator of non-proximity of } j$. Union over all $l' \neq l$. Now, under \mathcal{E}_1 and \mathcal{E}_2 of (16),

$$E\left(\frac{|B_{,j}|^2}{||\mathbf{B}||_F^2}Y_j \mid j \in T_l\right) \le \frac{ck}{s\delta_0} \frac{\varepsilon_l k^{3/2}}{\sqrt{\alpha_l p_l}}.$$

$$\Pr(C_{\cdot,1} \text{ doesn't satisfy proximity }) = E_{\text{length}^2} \left[\sum_{j=1}^s Y_j \right] \leq \frac{ck^{5/2} \varepsilon w_0}{\delta_0 \text{Min}_l \sqrt{\alpha_l p_l \varepsilon_0}}.$$

Now using H-C on the r independent columns of \mathbb{C} , and (7), the second statement of Lemma follows.

The last Lemma implies by Theorem (1.2):

Lemma 13. With probability at least $1 - \exp(-cw_0\varepsilon r)$, $l_2^2 TSVD$ correctly identifies the dominant topic in all but at most $\min_l(w_l a_l)\delta/10$ fraction of documents in each \tilde{T}_l .

1.5 Identifying Catchwords

Recall the definition of J_l from Step 5a of the algorithm. The two lemmas below are roughly converses of each other which prove roughly that J_l consists of those i for which $M_{il}^{(1)}$ is strictly higher than $M_{il'}^{(1)}$.

Lemma 14. Let J_l be as in step 6b of the Algorithm. For $i \in J_l$, and $l' \neq l$, $M_{il}^{(1)} \geq (1+4\delta)M_{il'}^{(1)}$ and $M_{il}^{(1)} \geq \frac{3}{m\delta^2}\ln(20/\varepsilon\delta\min_l(w_la_lp_l\alpha_l))$.

Proof. By the definition of J_l in the algorithm, $g(i, l) \ge (6/m\delta^2) \ln(20/\varepsilon\delta \min_l(w_l a_l p_l \alpha_l))$. We claim that this implies:

$$\max_{l_1} M_{il_1}^{(1)} \ge \frac{3}{m\delta^2} \ln(20/\varepsilon\delta \min_{l} (w_l a_l p_l \alpha_l)). \tag{17}$$

Suppose not. Then $(\mathbf{MW})_{ij} < \frac{3}{m\delta^2} \ln(20/\varepsilon\delta \min_l(w_l a_l p_l \alpha_l))$, and we have

$$\Pr\left(A_{ij} \ge (4/m\delta^2) \ln(20/\varepsilon \delta w_0 a p_0 \alpha)\right) \le \exp(-\ln(20/\varepsilon \delta w_0 a p_0 \alpha)/8\delta^2) \le \varepsilon \delta a w_0 p_0 \alpha/20,$$

using (6,7). Thus, $\Pr(g(i,l) \ge (4/m\delta^2) \ln(20/\varepsilon\delta \min_l(w_l a_l p_l \alpha_l))) \le c \exp(-\varepsilon w_0 r)$, which is a contradiction, proving (17).

Let $l' = \arg \max_{l_1 \neq l} M_{il_1}^{(1)}$ and assume for contradiction that $M_{il}^{(1)} \leq (1 + 4\delta)M_{il'}^{(1)}$. Now, by Lemma, there are at least $cw_{l'}a_{l'}p_{l'}\alpha_{l'}r/k$ documents in \mathbf{C} which are $(1-\delta)$ -pure for topic l' and by Lemma (13), at least $cw_{l'}a_{l'}p_{l'}\alpha_{l'}r/k$ of these are in $R_{l'}$ Further, (17) implies that for $(1-\delta)$ -pure documents in $T_{l'}$, whp, $A_{ij} \geq M_{il'}^{(1)}(1-2\delta)$. Thus,

$$q(i, l') > M_{il'}^{(1)}(1 - 2\delta).$$
 (18)

On the other hand, we have for all l_1 , $M_{il_1}^{(1)} \leq \max(M_{il}^{(1)}, M_{il'}^{(1)}) \leq (1+4\delta)M_{il'}^{(1)}$ and so we have $g(i, l) \leq M_{il'}^{(1)}(1+5\delta)$ which together with (18) contradicts the fact that i is in J_l .

Lemma 15. If $M_{il}^{(1)} \geq Max\left(\frac{5}{m\delta^2}\ln(20/\varepsilon\delta\min_l(a_lw_lp_l\alpha_l)), Max_{l'\neq l}(1+12\delta) M_{il'}^{(1)}\right)$, then, with probability at least $1-\exp(-c\varepsilon w_0r)$, we have that $i \in J_l$. So, $S_l \subseteq J_l$.

Proof. Using the pure documents for topic l and proceeding as in Lemma (14), we get:

$$g(i,l) \ge M_{il}^{(1)}(1-1.5\delta).$$
 (19)

On the other hand, for $j \in T_{l'}$ and for $l' \neq l$ and $i : M_{il}^{(1)} \geq (1 + 12\delta)M_{il'}^{(1)}$ (hypothesis of the Lemma),

$$(\mathbf{MW})_{ij} \le M_{il}^{(1)} W_{lj}^{(1)} + \frac{1}{1 + 12\delta} M_{il}^{(1)} (1 - W_{lj}^{(1)}) \le M_{il}^{(1)} \left(\beta_l + \frac{1 - \beta_l}{1 + 12\delta}\right) \le M_{il}^{(1)} \frac{1 + 1.2\delta}{1 + 12\delta},$$

since $\beta \leq 0.1$. So whp,

$$g(i, l') \le M_{il}^{(1)} \frac{1 + 2\delta}{1 + 12\delta}.$$
 (20)

From (19) and (20) and hypothesis of the Lemma, it follows that

$$g(i, l) \ge \operatorname{Max}\left(\frac{4}{m\delta^2}\ln(1/\varepsilon w_0), (1+8\delta)\ g(i, l')\right).$$

So, $i \in J_l$ as claimed. It only remains to check that i in S_l satisfies the hypothesis of the Lemma which is obvious.

Proof. (of Lemma 4): let $\hat{\mathbf{A}}$ be defined by $\hat{A}_{lj} = \sum_{i \in J_l} A_{ij}$, for l = 1, 2, ..., k and $\hat{A}_{ij} = A_{ij}$ for $i \notin \bigcup_l J_l$ (except the rows are rearrnaged so that all $i \notin \bigcup_l J_l$ are put in rows k + 1, k + 2, ...). Similarly define $\hat{\mathbf{M}}$ and $\hat{\mathbf{P}}$. Call j with $W_{lj}^{(1)} \geq 1 - \delta$ "pure" for topic l. For j pure for topic l, we have:

$$(\mathbf{MW})_{lj} = \sum_{l'} \hat{M}_{ll'}^{(1)} W_{l'j}^{(1)} \ge \hat{M}_{ll}^{(1)} W_{lj}^{(1)} \ge (1 - \delta) \hat{M}_{ll}^{(1)}.$$

Also, since each \hat{A}_{lj} is the average of m independent trials, and $(\mathbf{MW})_{lj} \leq M_{ll}^{(1)}$, we have by Höffding-Chernoff, for j pure for topic l:

$$\Pr\left(\hat{A}_{lj} \leq (\mathbf{M}\mathbf{W})_{lj} - \delta \hat{M}_{ll}^{(1)}\right) \leq ce^{-mc\delta^2 \hat{M}_{ll}^{(1)}} \leq \varepsilon \delta/10,$$

since, $\hat{M}_{ll}^{(1)} \in \Omega^*(1/m\delta^2)$. This implies whp:

$$\left| \{ j : W_{lj}^{(1)} \ge 1 - \delta \; ; \; \hat{A}_{lj} \ge (1 - 2\delta) \hat{M}_{ll}^{(1)} \} \right| \ge \frac{3\varepsilon n}{4}$$
 (21)

Now, consider j with $W_{lj}^{(1)} \leq 1 - 10\delta$. For such j,

$$(\mathbf{MW})_{lj} = \hat{M}_{ll}^{(1)} + \sum_{l' \neq l} \hat{M}_{ll'}^{(1)} W_{l'j}^{(1)} \le (1 - 10\delta) \hat{M}_{ll}^{(1)} + 10\delta (\hat{M}_{ll}^{(1)}/2) \le (1 - 5\delta) \hat{M}_{ll}^{(1)}.$$

So for these j, we have

$$\Pr\left(\hat{A}_{lj} \ge (1 - 4\delta)\hat{M}_{ll}^{(1)}\right) \le \varepsilon\delta/10,$$

which implies

$$\left| \{ j : W_{lj}^{(1)} \le 1 - 10\delta ; \ \hat{A}_{lj} \ge (1 - 4\delta) \hat{M}_{ll}^{(1)} \} \right| \le \varepsilon \delta n / 10.$$
 (22)

This implies:

$$\left| U_l \cap \{j : W_{lj}^{(1)} \le 1 - 10\delta\} \right| \le \varepsilon \delta/5. \tag{23}$$

This can imply that at least for all $i \in J_l$, we have the desired inequality:

$$\widetilde{M}_{il}^{(1)} \ge (1 - c\delta) M_{il}^{(1)}.$$

But we need this inequality for all i and for this, we proceed as follows. Now, we go back to the original $\mathbf{A}, \mathbf{M}, \mathbf{P}$. Let

$$\frac{2}{\varepsilon n} \sum_{j \in U_l} A_{ij} = N_{il}.$$

Lemma 16. Whp, $\forall i, l : N_{il} \geq (1 - 14\delta)M_{il}^{(1)} - \frac{10\ln(d/\varepsilon)}{\varepsilon nm}$.

Proof. from (23), it follows that

$$\frac{2}{\varepsilon n} \sum_{j \in U_l} (\mathbf{MW})_{ij} \ge (1 - 10\delta)(1 - (\delta/2)) M_{il}^{(1)} \ge (1 - 12\delta) M_{il}^{(1)}.$$

Now, $\frac{2}{\varepsilon n} \sum_{j \in U_l} A_{ij}$ is the average of εnm independent Bernoulli random variables (where each is a word of a document in U_l). So by H-C, we can show for a single i,

$$\Pr\left(\frac{2}{\varepsilon n} \sum_{j \in U_l} A_{ij} < (1 - 14\delta) M_{il}^{(1)} - \frac{10 \ln(d/\varepsilon)}{\varepsilon n m \delta}\right) \le \frac{\varepsilon}{10d},$$

which implies by union bound that whp,

$$\sum_{j \in U_l} A_{ij} \ge (1 - 14\delta) M_{il}^{(1)} - \frac{10 \ln(d/\varepsilon)}{\varepsilon nm} \forall i,$$

proving the Lemma.

Now the total amount we add to all the N_{il} is at most $10 \ln(d/\varepsilon) d / \varepsilon \delta nm$, which is at most δ by assumption on n. So (4) follows.

We now sketch the proof of (5).

$$M_{il}^{(1)}(\mathbf{M^{(2)}W})_{lj} \geq M_{il}^{(1)} \alpha \forall \text{ non-pure } j \in T_l.$$

Now, we can show that $(\mathbf{MW})_{i,j_0}$ is strictly lower for $j_0 \notin T_l$. This implies (by a calculation) that $l_1(j)$ is correct for all j. For the proof that $l_2(j)$ is correct, similar calculations are used.

[Note that we can easily extend this to more than 2 dominant basic topics per document.]

The run time complexity estimate is obtained through the following observations. Step (1) is dominated by (c) which has a runtime complexity of O(nd) as it requires Thresholding all n documents. Between Step (2) is O(rd) while Step (3) requires truncated SVD with complexity $O(rdk_0^2)$. Step (4) requires $O(dk_0^2)$. The remaining steps are all O(nk), where k is the number of edge topics. All this together yields the desired estimate.

References

- [1] Pranjal Awasthi and Or Sheffet. Improved spectral-norm bounds for clustering. In *Approximation, Randomization, and Combinatorial Optimization*. *Algorithms and Techniques*, pages 37–49. Springer, 2012.
- [2] Amit Kumar and Ravindran Kannan. Clustering with spectral norm and the k-means algorithm. In *Foundations of Computer Science (FOCS)*, pages 299–308. IEEE, 2010.
- [3] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint arXiv:1011.3027, 2010.