演算法設計方法論 (Design Strategies for Computer Algorithms)

Homework 1

DUE DATE: OCTOBER 30, 2017

學號: b03902129 系級: 資工四 姓名: 陳鵬宇

1 問題定義

The string-to-string correction problem 是要解決以下的問題:

輸入:字串 $A=a_1a_2,\ldots,a_{|A|}$ 和字串 $B=b_1b_2,\ldots,b_{|B|}$,其中 |A| 和 |B| 分別為字串 A 和 B 的長度。

輸出: 將字串 A edit 至字串 B 花費最少的 sequense S, 其中 $S = s_1 s_2, \ldots, s_{|S|}$, |S| 為 S 的長度, S 有以下三種 edit 方式:

- 1. 改變 (change): 將字串 A 的一個字元改變成另一個字元。
- 2. 删除 (delete): 將字串 A 的一個字元删除。
- 3. 插入 (insert): 在字串 A 中插入一個字元。

2 名詞、性質及定義

2.1 Edit Distance

2.1.1 A's properties and notations

先給定以下 A 的一些性質及表示法,方便讀者理解:

- A 為一個長度有限的字串
- a_i 為 A 的第 i 個字元
- $A_{i...j} = a_i a_{i+1}, \ldots, a_j$
- 當 i > j 時, $A_{i...i}$ 為空字串 (null string)
- |A| 為字串 A 的長度
- $A_0 = A$

2.1.2 edit operation

定義:

edit operation: $a \to b$, 若 A = XaY 可透過 operation $a \to b$ 變成 B = XbY (X 和 Y 為字串)。

我們用 $A \Rightarrow B \ via \ a \rightarrow b$ 表示之, 其中 $0 \le |a| \le 1, \ 0 \le |b| \le 1$. 根據問題定義所敘述, 同樣地, $edit \ operation: \ a \rightarrow b \ b$ 也有三種 $edit \ f$ 式:

- 1. 改變 (change): change a to b, 其中 $a \neq \emptyset$ 且 $b \neq \emptyset$
- 2. 删除 (delete): delete a, 其中 $b = \emptyset$
- 3. 插入 (insert): insert b, 其中 $a = \emptyset$

2.1.3 edit sequence S

定義:

edit sequence
$$S = s_1 s_2, \dots, s_m \ \mathbb{E}AS = B$$
,

 s_i 是一個 edit operation: $a \to b$, $\forall i, 1 \le i \le m$; 而 AS = B 代表: 透過 edit sequence S, A 會被 edit 成 B, 如下所示:

$$A = A_0$$

$$A_0 s_1 = A_1$$

$$A_0 s_1 s_2 = A_1 s_2 = A_2$$

$$\vdots$$

$$A_0 s_1 s_2, \dots, s_{m-1} = A_{m-2} s_{m-1} = A_{m-1}$$

$$A_0 s_1 s_2, \dots, s_{m-1} s_m = A_{m-1} s_m = A_m = B$$

此外, 我們說 S takes A to B, 如果存在一個 S 可以將 A edit 成 B

2.1.4 cost function γ and *edit distance* $\delta(A, B)$

定義:

cost function $\gamma(a \to b)$: 對每一個 edit operation $a \to b$, 我們賦與它一個非負的實數。

因為 edit sequence $S = s_1 s_2, \ldots, s_m$ 是由 m 個 edit operations 所組成的,所以我們定義:

cost function
$$\gamma(S) = \sum_{i=1}^{m} \gamma(s_i) = \gamma(s_1) + \gamma(s_2) + \cdots + \gamma(s_m)$$
.

但這樣的結果我們仍不滿意,我們希望能找到最小的 cost function, 所以我們定義:

 $edit\ distance\ \delta(A,B) = \min\{\gamma(S) \mid S\$ 為可以將 $A\ edit\$ 成 $B\$ 的某一 $edit\ sequence\}.$

我們題目的輸出就是希望能夠使上述的 $edit\ distance\ \delta(A,B)$ 擁有最小 $cost\ box{ }S.$

2.2 Traces T

2.2.1 cost function of T

定義:

cost function
$$\gamma(T_{A\to B})$$
,

其中 $T_{A\to B}$ 為由 A 連到 B 的軌跡 (trace), 它有以下兩種性質:

(性質 1) 對所有 $T_{A\to B}$, 存在一個 edit sequence S taking A to B, 使得:

$$\gamma(S) = \gamma(T_{A \to B}).$$

(性質 2) 對所有 edit sequence S taking A to B, 存在一個 $T_{A\to B}$, 使得:

$$\gamma(T_{A\to B}) \le \gamma(S)$$
.

所以我們知道

$$\delta(A, B) = \min(\gamma(T_{A \to B})).$$

3 解法敘述

3.1 Computation of Edit Distance

3.1.1 Dynamic Progamming

透過觀察, 我們可以發現其實 change 等於 delete 後再 insert, 所以

$$\gamma(a \to b) = \gamma(a \to \varnothing) + \gamma(\varnothing \to b) \tag{*}$$

現在要來尋找將 A edit 成 B 花費最少的 S。由式 (*), 我們給定以下的花費函數 (cost function):

- 改變 (change): $\gamma(a \rightarrow b) = \2 , 其中 $a \neq b$
- \mathbb{H} \mathbb{R} (delete): $\gamma(a \to \emptyset) = \1
- 插入 (insert): $\gamma(\emptyset \to b) = \1
- $\not A \not = (doNothing)$: $\gamma(a \rightarrow b) = \0 , $\not = a = b$

將一個字串 $A = a_1 a_2 \dots a_i$ edit 成字串 $B = b_1 b_2 \dots b_j$ 的 edit distance $\delta(A, B)$ 用動態規劃的方式寫成:

$$\begin{split} \delta(A,B) &= \delta(A_{1..i},B_{1..j}) = \min \{ \delta(A_{1..i-1},B_{1..j-1}) + \delta(a_i \to b_j), \\ \delta(A_{1..i-1},B_{1..j}) + \delta(a_i \to \varnothing), \\ \delta(A_{1..i},B_{1..j-1}) + \delta(\varnothing \to b_j) \}. \end{split}$$

舉例來說,假設我們有兩字串 A= "alignment" 和 B=algorithm",我們想要把 A edit 成 B,可以畫出如下的花費表格(doNothing: \nwarrow ,delete: \uparrow ,insert: \leftarrow):

(因為 change 是由 delete 和 insert 所組成的, 所以我們省去此 edit operation)

A	Ø	a	1	g	0	r	i	t	h	m
Ø	$0, \emptyset$	$1, \leftarrow$	$2, \leftarrow$	$3, \leftarrow$	$4, \leftarrow$	$5, \leftarrow$	$6, \leftarrow$	7,←	8,←	9,←
a	1,↑	0, <	$1, \leftarrow$	$2, \leftarrow$	$3, \leftarrow$	$4, \leftarrow$	$5, \leftarrow$	$6, \leftarrow$	7,←	8,←
1	$2,\uparrow$	1, ↑	0, <	$1, \leftarrow$	$2,\leftarrow$	$3, \leftarrow$	$4, \leftarrow$	$5, \leftarrow$	6,←	7,←
i	3, ↑	$2,\uparrow$	1, ↑	$2, \leftarrow$	$3, \leftarrow$	$4, \leftarrow$	3, <	$4, \leftarrow$	5,←	6,←
g	$4,\uparrow$	$3,\uparrow$	$2,\uparrow$	1, <	$2,\leftarrow$	$3, \leftarrow$	$4, \leftarrow$	$5, \leftarrow$	6,←	7,←
n	5, ↑	$4,\uparrow$	$3,\uparrow$	$2,\uparrow$	$3, \leftarrow$	$4, \leftarrow$	$5, \leftarrow$	$6, \leftarrow$	7,←	8,←
m	6, ↑	$5,\uparrow$	$4,\uparrow$	$3,\uparrow$	$4, \leftarrow$	$5, \leftarrow$	6,←	7,←	8,←	7, <
e	7, ↑	6, ↑	$5,\uparrow$	$4,\uparrow$	$5, \leftarrow$	6,←	7,←	8,←	9,←	8,↑
n	8,↑	7,↑	$6,\uparrow$	5,↑	6,←	7,←	8,←	9,←	10, ←	9, ↑
t	9, ↑	8, ↑	7, ↑	6, ↑	$7, \leftarrow$	8,←	9,←	8, <	9,←	10, ←

由表格知 $\delta(A,B)=\delta("alignment","algorithm")=10;$ 透過 backtracking 可寫出由 A edit 到 B 的過程:

$$alignment. delete(i) = algnment$$
 (1)

$$algnment.delete(n) = algment$$
 (2)

$$algment.delete(m) = algent$$
 (3)

$$algent.delete(e) = algnt$$
 (4)

$$algnt.delete(n) = algt$$
 (5)

$$algt.insert(o) = algot$$
 (6)

$$algot.insert(r) = algort (7)$$

$$algort.insert(i) = algorit$$
 (8)
 $algorit.insert(h) = algorith$ (9)

$$algorith.insert(m) = algorithm$$
 (10)

當然這不是唯一解,在我的演算法中在計算 δ 的 min 要取哪一項若發生等於的情況,會優先選擇 insert operation,但不論選擇哪一項符合 min 的 edit operation, $\delta(A,B)$ 都會等於 10。

在這個例子中, $S = d_i d_n d_m d_e d_n i_o i_r i_i i_h i_m$, |S| = 10, 其中 d 和 i 分別代表删除 (delete) 和插入 (insert),下標的英文字母代表為對哪個字元作操作。

因為此演算法要將整個動態規劃的表格填滿,故時間複雜度為 O(|A| imes |B|)。

4 讀後心得

在閱讀完〈The String-to-String Correction Problem〉後,我對於字串之間的操作有了更進一步的了解,很 佩服原作者 Robert A. Wagner 和 Michael J. Fischer 能夠在 1974 年這個資訊還不是很普及的時候,提出了這樣一篇強而有力的論文,他們提出 $edit\ distance$ 這個概念,讓字串間的操作有了新的理解,並且定義了花費函數 (cost function),讓問題變得更加明確「找出 $\delta(A,B)$ 和對應的 S」。

在寫這份報告同時,也上網查了很多有關的例子,發現許多有趣的應用,像是生物的基因比對、git 上面的 diff 指令、經典的 $Longest\ Common\ Subsequence(LCS)$ 問題等等。

此篇論文中有提到 $\delta(A,B)$ 的概念, 説的白話一點就是我們不只希望能找到由 A edit 到 B 的過程 (S), 同時我們還希望這個 edit distance 是 minimum 的,假設當我們看到以下三個基因序列:

- 1. AGCCT
- 2. AACCT
- 3. ATCT

我們可能可以很直覺的說「2. 和 1. 的相似程度比 3. 和 1. 還要高」,但能夠這樣用肉眼看出是因為我們舉的例子還很小,「肉眼」還感覺的出差異性,但一但我們的序列變得更長,不再是屬於同一個數量級別時,如何有一個有效的量化標準就變得很重要了,正好 $minimum\ edit\ distance\delta(A,B)$ 就能完成這件事。若要比較兩個基因序列 A="CTTAACT" 和 B="CGGATCAT" 的相似程度,我們可以透過計算 $edit\ distance\delta(A,B)=\delta("CTTAACT","CGGATCAT")$,來做為一個標準,當 $\delta(A,B)$ 較小時,這代表這兩個基因序列相似程度高;反之,代表相似程度低。

 $edit\ distance\$ 演算法的時間複雜度是 $O(|A||B|)=O(n^2)$,但人總是希望能夠做的更好,而 2015 年 MIT 的一篇論文 〈Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false)* 〉就有提到這個時間複雜度是無法再被下降的。

在這個資訊蓬勃發展的二十一世紀, edit distance 或許已經稱不上什麼太高深的演算法, 但是它歷久而彌新, 在現今很多的應用中都能看見它的影子, 並且默默的推動著 Computer Science 的發展。

5 參考資料

- [1] (The String-to-String Correction Problem)
- [2] ⟨Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false)*⟩
- [3] Edit distance Wikipedia
- [4] Sequence alignment Wikipedia
- [5] Levenshtein distance Wikipedia
- [6] String-to-string correction problem Wikipedia
- [7] The Myers diff algorithm: part 1 –The If Works
- [8] 自然語言處理 Minimum Edit Distance