Other Flip Flops, Analysis of Sequential Circuits

By Engr. Rimsha

JK Flip Flop

- The JK flip flop performs three operations:
 - set it to 1
 - reset it to 0
 - complement the output
- The J input sets the flip flop to 1.
- The K input resets the flip flop to 0.
- When both J and K are enabled, the output is complemented.

JK Flip Flop Logic

(a) Circuit diagram

(b) Graphic symbol

Analysis of the JK Circuit

The circuit applied to the D input is

$$D = JQ' + K'Q$$

- If J = 1 and K = 0, D = Q + Q' = 1, set to 1
- If J = 0 and K = 1, D = 0, reset to 0
- If J = K = 1, D = Q, complements the output
- If J = K = 0, D = Q, leaving the output unchanged

JK Characteristic Table

JK Flip Flop						
J	\mathbf{K}	Q(t+1)				
0	0	Q(t)	No change			
0	1	0	Reset			
1	0	1	Set			
1	1	Q'(t)	Complement			

$$Q(t+1) = J(t)Q'(t) + K'(t)Q(t)$$

T Flip Flop

- The T (Toggle) flip flop is a complementing flip flop and can be obtained from a JK flip flop when inputs J and K are tied together.
- The T flip flop can be obtained from a D flip flop by using an XOR as the input for D.
 - The expression for D input is D = T \oplus Q = TQ' + T'Q
 - When T = 0, (j = k = 0) then D = Q and there is no change in the output
 - When T = 1, (j = k = 1) then D = Q' and the output complements

T Flip Flop Logic

Characteristic Tables

- Characteristic tables define the logical properties of a flip flop by describing its operations in tabular form.
 - They define the next state as a function of the inputs and the present state.
 - -Q(t) refers to the present state prior to the application of a clock edge.
 - -Q(t + 1) refers to the next state one clock period later.
 - Clock edges are not listed as inputs but are implied by the transition from t to t + 1.

T Flip Flop Characteristic Table

T Flip Flop					
T	Q(t+1)				
0	Q(t)	No change			
1	Q'(t)	Complement			

$$Q(t + 1) = TQ' + T'Q$$

Characteristic Equations

The D flip flop can be expressed as:

$$-Q(t+1)=D$$

The JK flip flop can be expressed as:

$$-Q(t+1) = JQ' + K'Q$$

The T flip flop can be expressed as:

$$-Q(t+1) = TQ' + T'Q$$

Direct Input to Flip Flops

D Flip Flop with Asynchronous Reset

Solution

Practice Problem

 Make changes in circuits of Master-Slave D Flip Flop with NAND Gates into D flip flop with Clear and Preset inputs

Solution

Positive-edge-triggered D flip-flop with *Clear* and *Preset*

Asynchronous Vs Synchronous Reset

Overview

- D Flip Flop
 - Characteristic Table?
 - Characteristic Equation?
- JK Flip Flop
 - Characteristic Table?
 - Characteristic Equation?
- T Flip Flop
 - Characteristic Table?
 - Characteristic Equation?

- Analysis of Clocked Sequential Circuits
 - Circuit with D flip flops
 - Circuit with T or JK flop flops

Example Sequential Circuit

Analysis of Clocked Sequential Circuits

- The behavior of a clocked sequential circuit is determined from the inputs, the outputs, and the state of its flip flops.
 - The outputs and the next state are both a function of the inputs and the present state.
- Analysis consists of obtaining a table or a diagram for the time sequence of inputs, outputs, and internal states.
- It is also possible to write Boolean expressions that describe the behavior.

State Equations

- A state equation (transition equation) specifies the next state as a function of the present state and inputs.
 - It is an algebraic equation that specifies the condition for a flip flop state transition.

State Equations

Since the D input determines the next state:

$$-A(t+1) = A(t)x(t) + B(t)x(t) = Ax + Bx$$

$$-B(t + 1) = A'(t)x(t) = A'x$$

$$-y(t) = [A(t) + B(t)]x'(t) = (A + B)x'$$

State Table

- The time sequence of inputs, outputs, and flip flop states can be enumerated in a state table (transition table).
 - The table consists of four sections
 - Present state shows the states of the flip flops at time t
 - Input gives input values for each possible present state
 - Next state shows the states of the flip flops one cycle later at t + 1
 - Output gives the value of other outputs at time t for each present state and input condition

Our Example

- The derivation of a state table requires listing all possible binary combinations of present state and inputs.
 - In our example, we have eight combinations from 000 to 111.
- The next state values are then determined from the logic diagram or from the state equations.

Example State Table

•
$$A(t + 1) = Ax + Bx$$

•
$$B(t + 1) = A'x$$

•
$$y(t) = (A + B)x$$

Present State		Input	Next State		Output
Α	В	x	A	В	у у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Generic Procedure

- A sequential circuit with m flip flops and n inputs needs 2^{m+n} rows in the state table.
- The numbers 0 through 2^{m+n} 1 are listed under the present state and input columns.
- The next state section has m columns, one for each flip flop.
 - Next state values are derived from the state equations.
- The output section has many columns as there are output values
 - Output values are derived from the circuit or the Boolean function in the same matter as a truth table.

Alternative Table

Present State		Input	Next State		Output
Α	В	x	Α	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Present State	Next State			Output		
	x = 0 $x = 1$			$\mathbf{x} = 0$	x = 1	
AB	AB	AB			y	
00	00	01		0	0	
01	00	11		1	0	
10	00	10		1	0	
11	00	10		1	0	

State Diagram

- Information in a state table can be represented graphically in the form of a state diagram.
- In a state diagram:
 - a state is represented by a circle
 - transitions between states are indicated by directed lines connecting the circles
 - Binary numbers inside the circles represent state of the flip flops
 - Directed lines are labeled with two binary numbers separated by a slash
 - The input value during the present state is labeled first
 - The second number gives the output after the present state with the given input

Example State Diagram

Present State	Next State			Output		
	x = 0 $x = 1$			$\mathbf{x} = 0$	x = 1	
AB	AB	AB			y	
00	00	01		0	0	
01	00	11		1	0	
10	00	10		1	0	
11	00	10		1	0	

Example Analysis

Present state	Inr	outs	Next state
state	11111	/uto	state
Α	Х	Υ	Α
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

End of Lecture