進捗報告

1 今週やったこと

VisionTransformer の構造理解, グレースケール画像を 含めた再学習と考察

2 VisionTransformer の構造

今までの ViT の実装で用いていたものは簡易な ViT を用いて、一部 embedding に Conv2d を用いることで 小型の ViT (Distillable Vision Transformer [1]) としてい た (ResNet を蒸留できるモデルではあるが蒸留自体は 使用していない. つまり Conv2d はいらないようなモ デルとなっていたにもかかわらず入れていた. また, " ImageNet21k"を事前学習したモデルを転移学習してい る). 今回実装した ViT はシンプルに ViT-B_16 という ViT[2] を用いた ("ImageNet21k"を事前学習したモデ ルを転移学習している). またこの ViT は入力を画像の パッチにするのではなく, ResNet で得た特徴量を入力と する Hybrid Architecture も実装しているため、今後試 すのもあり. Hybrid Architecture はデータセットの規模 が小さい場合にはわずかに ViT を上回り、大きなもので は ViT のほうが良くなっていることが知られている. こ れは CNN が画像情報を捨象して要約することから、デー タセットが大きくなると必要な情報を捨ててしまう可能 性を示している. 今回実装した ViT は "ImageNet21k" を事前学習したモデルを転移学習した ViT-B_16 という モデルであり、基本的な構造は ViT[3] そのものである.

3 グレースケール画像を含めた再学習

まず初めに、前回実装したテストデータにグレースケールを行ったものはコード中の画像の前処理に誤りがあったため結果が確かではなかった.既に訂正済みである.表1に訂正済みのコードを用いて訓練データを元画像とし、テストデータをグレースケール画像とした混同行列結果を示す.

今までの ResNet を蒸留した Distillable Vision Transformer, そして Vision Transformer を比較のため双方のネットワークで実行した. 以降, 名称を Distillable ViT と ViT とする. 今回は訓練データにグレースケール画像, テストデータにグレースケール画像とし, 入力画像は 216

枚とした. 表 2 に DistillableViT を用いた縦軸を真値, 横軸を予測値とした混同行列結果を示す. 表 3 に ViT を用いた縦軸を真値, 横軸を予測値とした混同行列結果を示す.

表 1: 元画像の混同行列(訂正済み)

真値	多義図形	50	11	11	
	風景画	0	70	2	
	肖像画	3	4	65	
		多義図形	風景画	肖像画	
		DistillableViT による予測値			

表 2: グレースケール画像の混同行列

真値	多義図形	55	7	10
	風景画	0	69	3
	肖像画	2	3	67
		多義図形	風景画	肖像画
		DistillableViT による予測値		

表 3: グレースケール画像の混同行列

	多義図形	61	4	7
真値	風景画	0	72	0
	肖像画	1	1	70
		多義図形	風景画	肖像画
		ViT による予測値		

表 2 より DistillableViT を用いた識別率は 88.4% となり,多義図形の識別では 76.4% となった.表 3 より ViT を用いた識別率は 94.0% となり,多義図形の識別では 84.7% となった.以上のことから訓練データをグレースケール画像とすると訓練データを元画像としていた場合の識別率 85.7% よりも高くなった.多義図形の識別率に関しても 69.4% よりも高くなった.テストデータがグレースケール画像である場合,訓練データをグレースケール化すると識別率の向上がみられた. ViT を用いた識別率 94.0% は訓練データ,テストデータ共に元画像とした場合と同等の識別率となった.多義図形識別において DistillableViT より ViT のほうが 8.3% 高く,より良

い識別器と考えられる.

また、訓練データを元画像+グレースケール画像、テストデータをグレースケール画像とし、入力画像を 216 枚とした実験を行った。 表 4 に DistillableViT を用いた縦軸を真値、横軸を予測値とした混同行列結果を示す。 表 5 に ViT を用いた縦軸を真値、横軸を予測値とした混同行列結果を示す。

表 4: グレースケール画像の混同行列

X 2. /				
	多義図形	56	7	9
真値	風景画	0	71	1
	肖像画	0	4	68
·		多義図形	風景画	肖像画
		DistillableViT による予測値		

表 5: グレースケール画像の混同行列

	多義図形	63	3	6
真値	風景画	0	72	0
	肖像画	2	1	69
·		多義図形	風景画	肖像画
		ViT (による予測	削値

表 4 より DistillableViT を用いた識別率は 90.3 % と なり、多義図形の識別では 77.8 % となった. 表 5 より ViT を用いた識別率は 94.4 % となり、多義図形の識別では 87.5 % となった. またしても ViT のほうが識別率が高く、より良い識別器といえる.

最後に訓練データを元画像+グレースケール画像,テストデータを元画像とし,入力画像を 216 枚とした実験を行った.表6に DistillableViT を用いた縦軸を真値,横軸を予測値とした混同行列結果を示す.表7に ViT を用いた縦軸を真値,横軸を予測値とした混同行列結果を示す.

表 6: 元画像の混同行列

	多義図形	53	10	9
真値	風景画	0	70	2
	肖像画	0	4	68
		多義図形	風景画	肖像画
		DistillableViT による予測値		

表 6 より DistillableViT を用いた識別率は 88.4% となり, 多義図形の識別では 73.6% となった. 表 7 より ViT を用いた識別率は 94.9% となり, 多義図形の識別で

表 7: 元画像の混同行列

	多義図形	64	4	4
真値	風景画	0	71	1
	肖像画	1	1	70
·		多義図形	風景画	肖像画
ViT による予測値			削値	

は 88.9% となった. ViT を用いた識別率 94.9% は元画像を訓練データとテストデータとした DistillableViT を用いた識別率 93.1% を上回り、また、元画像を訓練データとテストデータとした ViT を用いた識別率 94.0% をも上回った.

以上より ViT は DistillableViT よりも良い識別器であることがわかり、訓練データを元画像+グレースケール画像としたほうがテストデータの元画像の識別率が向上することが判明した。このことからグレースケール化は訓練データの DA として適切であることがわかった。

4 今後の方針

attention map の実装, 別の DA の実装, 実装コードの 細かい調整 (識別率向上のため)

参考文献

- [1] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou. Training data-efficient image transformers & distillation through attention. arXiv preprint arXiv:2012.12877, 2020.
- [2] VisionTransformer-PyTorch. https://github.com/tczhangzhi/VisionTransformer-PyTorch.
- [3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.