Оглавление

1	Teo	ия числовых рядов	2
	1.1	Понятие числовых рядов	2
	1.2	Ряды с неотр. слагаемыми	3
		1.2.1 Признаки сравнения	3
		1.2.2 Признаки Даламбера и Коши	4
		1.2.3 Интегральный признак	5
	1.3	Бесконечные произведения	5

Глава 1

Теория числовых рядов

1.1 Понятие числовых рядов

$$\{u_n\}_{n\geq 1} \subset \mathbb{R} : u_1 + u_2 + \dots + u_n + \dots \equiv \sum_{n=1}^{\infty} u_n$$
 (1)

Определение 1. Числовой ряд (1) сходится к числу S, называется его суммой, если $\exists \lim_{N \to \infty} \sum_{n=1}^{N} u_n = S$.

(N-ая) частичная сумма: $S_N = \sum_{n=1}^N u_n$

Определение 2. Если $\lim_{N\to\infty} S_N$ не существует, то говорят, что ряд (1) расходится.

Пример 1. в разработке.

Теорема 1 (Критерий Коши).

Числовой ряд сходится $\Leftrightarrow \forall \varepsilon > 0 \ \exists N : \forall n \geq N, p \in \mathbb{N} : \left| \sum_{k=N+1}^{N+p} u_k \right| < \varepsilon$

Доказательство. Следует из опр и критерия Коши сходимости последвательности.

$$|S_{N+p} - S_N| = \left| \sum_{n=1}^{N+p} u_n - \sum_{n=1}^{N} u_n \right| = \left| \sum_{n=N+1}^{N+p} u_n \right| < \varepsilon$$

Следствие 1. Если ряд (1) сходится, то $\lim_{n\to\infty}u_n=0$

Пример 2.

- $1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} + \ldots$ гармонический ряд расходится.
- $\sum_{n=1}^{\infty} \frac{1}{\sin^2 n * n^3}$ расходится.
- $\bullet \ \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

Замечание 1. Отбрасывание любого конечного числа слагаемых не влияет на сходимость.

Замечание 2.

- $\sum\limits_{n=1}^{\infty}u_n\pm\sum\limits_{n=1}^{\infty}v_n=\sum\limits_{n=1}^{\infty}(u_n\pm v_n)$ сложение двух сходящихся рядов дают сходящийся рядо.
- $\alpha(\sum_{n=1}^{\infty}u_n)=\sum_{n=1}^{\infty}\alpha u_n$ умножение ряда на число дает сходящийся ряд.

1.2 Ряды с неотр. слагаемыми

$$\sum_{n=1}^{\infty} p_n, p_n \ge 0 (3)$$

$$S_n = p_1 + p_2 + \dots + p_n$$

$$S_{n+1} = S_n + p_{n+1} > S_n$$

$$\Rightarrow \{S_n\} \text{ не убывает}$$

Теорема 2. Числовой ряд (3) сходится \Leftrightarrow посл-ть его числовых сумм ограничена(ограничена сверху).

1.2.1 Признаки сравнения

Теорема 3. Пусть $\sum\limits_{k=1}^{\infty}p_k$ — миноранта, $\sum\limits_{k=1}^{\infty}p_k'$ — мажоранта, где $p_k,p_k'\geq 0$. Пусть кроме того выполнено: $p_k\leq c_0p_k'$, где $c_0>0$. Тогда:

- 1. Если $\sum_{k=1}^{\infty} p_k'$ сходится, то $\sum_{k=1}^{\infty} p_k$ сходится.
- 2. Если $\sum_{k=1}^{\infty} p'_k$ расходится, то $\sum_{k=1}^{\infty} p_k$ расходится.

Доказательство.

- 1. Пусть $\sum_{k=1}^{\infty} p_k'$ сходится. Тогда по теореме 2 $\{S_n'\}$ ограничена сверху и $S_n \leq c_0 S_n' \Rightarrow \{S_n\}$ ограничена сверху \Rightarrow ЧТД.
- 2. Пусть утверждение неверно. Тогда по пункту 1 первый ряд тоже должен быть сходящимся противоречие.

Замечание 3. В разработке.

Теорема 4 (Признак сравнения в предельной форме).

Пусть $\sum_{k=1}^{\infty} p_k$, $\sum_{k=1}^{\infty} p_k'$, $p_k \ge 0$, $p_k' \ge 0$, $\exists \lim_{k \to \infty} \frac{p_k}{p_k'} \equiv L > 0 \Rightarrow$ они сходятся и расходятся одновременно.

Доказательство. В разработке.

Теорема 5 (ещё один признак сравнения). В разработке.

1.2.2Признаки Даламбера и Коши

Теорема 6 (признак Коши).

1. Если $\sqrt[k]{p_k} < q < 1 \ \forall k, \ mo \ psd \sum_{k=1}^{\infty} p_k, \ p_k \geqslant 0 \ cxodumcs.$ Если $\sqrt[k]{p_k} \geqslant 1$, то ряд расходится.

2. Пусть $\exists \lim_{k \to \infty} \sqrt[k]{p_k} \equiv L$. Если L < 1, то ряд сходится. Если L > 1, то расходится.

Доказательство.

1. $\sqrt[k]{p_k} \leqslant q \Rightarrow p_k \geqslant q^k$, q < 1 и $\sum_{k=1}^{\infty} q^k$ сходится \Rightarrow сходимость ряда по теореме 3. $\sqrt[k]{p_k} \geqslant 1 \Rightarrow$ нарушенно необходимое условие \Rightarrow ряд расходится.

2. $\forall \varepsilon > 0 \ \exists k_0 : \forall k > k_0 \ L - \varepsilon < \sqrt[k]{p_k} < L + \varepsilon$.

Если L<1, то возьмем ε так, чтобы $L+\varepsilon<1$, тогда $\sqrt[k]{p_k}< L+\varepsilon<1$. Задача сведена к 1 пункту \Rightarrow ряд сходится.

Если L>1, то возьмем ε так чтобы $L-\varepsilon>1$ тогда $\sqrt[k]{p_k}>L-\varepsilon>1\Rightarrow$ свели задачу к 1 пункту \Rightarrow ряд расходится.

Замечание 4. Если L=1, то данный признак не дает однозначного ответа.

$$\sum_{k=1}^{\infty} \frac{1}{k} - pacx \qquad \sum_{k=1}^{\infty} \frac{1}{k} - cx$$

$$\sqrt[k]{\frac{1}{k}} \to 1 \qquad \sqrt[k]{\frac{1}{k^2}} \to 1$$

Замечание 5. Если $L=\infty$, то ряд (3) расходится.

$$\forall \varepsilon > 0 \ \exists k_0: \ \forall k > k_0 \ \sqrt[k]{p_k} \geqslant \varepsilon$$

Замечание 6. Утверждение српаведливо и в случае, если $L=\varlimsup_{k\to\infty}\sqrt[k]{p_k}$

Теорема 7 (Признак Даламбера $\frac{p_{k+1}}{p_k}$).

1. Если $\frac{p_{k+1}}{p_k} < 1$, то (3) сходится. Если $\frac{p_{k+1}}{p_k} > 1$, то (3) расходится. 2. Пусть $\exists \lim_{k \to \infty} \frac{p_{k+1}}{p_k} \equiv L$. Если L < 1, то (3) сходится. Если L > 1, то (3) расходится.

Доказательство.

- 1. $\frac{p_{k+1}}{p_k}=q: \frac{q^{k+1}}{q^k}, \sum_{k=1}^{\infty} q^k$ сходится, если $q<1\Rightarrow$ по теореме $3\sum_{k=1}^{\infty} p_k$ сходится. $\frac{p_{k+1}}{p_k}\geqslant 1$, то $p_k+1\geqslant p_k\Rightarrow \{p_k\}$ возрастает \Rightarrow нарушено необходимое условие сходимости \Rightarrow расходится.
- 2. $L>1,\ L-\varepsilon<\frac{p_{k+1}}{p_k}< L+\varepsilon,\ \forall k\geqslant k_0$ Выберем $\varepsilon>0$ $L-\varepsilon>1\Rightarrow$ (3) расходится. L<1, выберем $L+\varepsilon<1\Rightarrow$ (3) сходится.

Замечание 7. L=1 - аналогично предыдущему.

Замечание 8. $L = \infty$ - аналогично предыдущему.

Замечание 9.

Лемма 1. $Ec_{\mathcal{A}}u\lim_{k\to\infty}b_k=b,\ mo\lim_{k\to\infty}\frac{b_1+b_2+...+b_k}{k}=b$

Доказательство.

$$\sum_{n=1}^{k} \frac{b_n}{k} - b = \frac{(b_1 - b) + (b_2 - b) + \dots + (b_k - b)}{k} = \left| \forall \varepsilon > 0 \ \exists k_0 : \forall k > k_0 \ |b_k - b| < \varepsilon \right| =$$

$$= \frac{(b_1 - b) + (b_2 - b) + \dots + (b_{k_0 - 1} - b)}{k} + \frac{(b_{k_0} - b) + \dots + (b_k - b)}{k} \Rightarrow$$

$$\Rightarrow \left| \frac{b_1 + b_2 + \dots + b_k}{k} - k \right| \leqslant \frac{|b_1 - b| + \dots + |b_{k_0 - 1} - b|}{k} + \frac{|b_{k_0} - b| + \dots + |b_k - b|}{k} =$$

$$= \left| M = \sup |b_k - b| \right| = \frac{k_0 * M}{k} + \varepsilon$$

выберем $k_1 \geqslant k_0$: $\frac{k_0 M}{k} < \varepsilon, \ \forall k > k_1$

1.2.3 Интегральный признак

Пусть $y = f(x), x \ge 1$. Пусть f(x) неотрицательна и монотонно не возрастает.

Теорема 8. Pяд $\sum_{n=1}^{\infty} f(x)$ $cxoдится \Leftrightarrow cxoдится \int\limits_{1}^{\infty} f(x)dx$

Доказательство. В разработке.

1.3 Бесконечные произведения

$$v_1 * v_2 * \dots * v_n * \dots = \prod_{n=1}^{\infty} v_n$$
 (1)

Определение 3. Бесконечное произведение (1) - сходится к числу $P \neq 0$, если $P_n = \prod_{k=1}^n v_k \to P \ (n \to \infty)$. Если $\exists \lim_{n \to \infty} P_n = 0$, то говорят, что бесконечное произведение (1) расходится к θ .

 $Ec \pi u \not\equiv \lim_{n \to \infty} P_n$, то (1) расходится.

Заметим что $v_n = \frac{P_n}{P_{n-1}}$. Если $\exists P \neq 0 : P_n \to P \mod v_n \to 1$

Теорема 9. Необходимое условие сходимости Если бесконечное произведение (1) сходится, то $v_n \to 1 (n \to \infty)$.

Доказательство. Т.к отбрасывание конечного числ v_n не влияет на его сходимость и, начиная с некоторого $n_0: v_n >= \frac{1}{2} (n \geq n_0)$, можно считать, что в бесконечных произведениях все $v_n > 0$.

Пример 3.

Пример 4. Валиис

$$\begin{split} I_n &= \int_0^{\frac{\pi}{2}} \sin^n x dx = \int_0^{\frac{\pi}{2}} \sin^{n-1} x d(-\cos x) = -\sin^{n-1} x * \cos x + \\ &+ \int_0^{\frac{\pi}{2}} \cos x * (n-1) \sin^{n-2} x \cos x dx = (n-1) \int_0^{\frac{\pi}{2}} (1-\sin^2 x) * \sin^{n-2} x dx = \\ &= (n-1) I_{n-2} - (n-1) I_n \Rightarrow I_n = \frac{n-1}{n} I_{n-2} \\ I_{2k} &= \frac{2k-1}{2k} I_{2k-2} = \frac{(2k-1)(2k-3)}{2k(2k-2)} I_{2k-4} = \frac{(2k-1)(2k-3)...1}{2k(2k-2)...2} I_0 \\ I_{2k+1} &= \frac{2k}{2k+1} I_{2k-1} = \frac{(2k)(2k-2)}{(2k+1)(2k-1)} I_{2k-3} = \frac{2k(2k-2)...2}{(2k+1)(2k-1)...3} I_1 \\ \frac{I_{2k}}{I_{2k+1}} &= \frac{(2k+1)(2k-1)^2(2k-3)^2 * ... * 3^2}{(2k)^2(2k-2)^2 * ... * 2^2} * \frac{\pi}{2} \Rightarrow \frac{\pi}{2} = \frac{(2k+1)(2k-1)^2 * ... * 3^2}{(2k)^2(2k-2)^2 * ... * 2^2} * \frac{I_{2k}}{I_{2k+1}} \end{split}$$

Докажем, что $\frac{I_{2k}}{I_{2k+1}} \to 1(k \to \infty)$

$$1 < \frac{I_{2k}}{I_{2k+1}} < \frac{I_{2k-1}}{I_{2k+1}} = \frac{2k+1}{2k} \to 1$$

Так как $\ln P_n = \ln v_1 + \dots + \ln v_n$ $\sum_{i=1}^{\infty} \ln(v_n)$

Теорема 10. Пусть $v_n > 0 \forall n$ Тогда бесконечное произведение(1) сходится \Leftrightarrow сходится pяд $\sum_{r=1}^{\infty} \ln v_r$

Теорема 11. Пусть $v_n \ge 1 \forall n$ Тогда бесконечное произведение(1) сходится \Leftrightarrow сходится ряд $\sum_{n=1}^{\infty} (v_n - 1)$

 \mathcal{A} оказательство. \Rightarrow т.17 $v_n \to 1$ Для ряда $\sum_{n=1}^{\infty} \infty \ln v_n$ из неотриц. слагаемых $(v_n \ge 1)$ выполнено $\lim_{n \to \infty} \frac{\ln v_n}{v_n - 1} = 1$ По пр-ку сравнения сход. ряд. $\sum_{n=1}^{\infty} \infty (v_n - 1)$

 \Leftarrow Если ряд $\sum_{n=1}^{\infty} (v_n-1)$ сх. $\Rightarrow v_n \to 1$ и $\lim_{n\to\infty} \frac{\ln v_n}{v_n-1} = 1 \Rightarrow$ по признаку сравнения \Rightarrow сходится

ряд
$$\sum_{n=0}^{\infty} \ln(v_n)$$

Теорема 12. Пусть $v_n > 0 \forall n$ Положим $v_n = 1 + u_n \forall n$

- 1. Пусть ряд $\sum\limits_{n=1}^{\infty}u_n$ сходится. Тогда бесконечное произведение сходится \Leftrightarrow ряд $\sum\limits_{n=1}^{\infty}u_n^2$ сзрдится.
- 2. Пусть ряд $\sum_{n=1}^{\infty} u_n^2$ сходится. Тогда бесконечное произведение (1) сходится \Leftrightarrow ряд $\sum_{n=1}^{\infty} u_n$ сходится.

Доказательство. В условиях т. 20: $u_n \to 0, n \to \infty$ $\sum_{n=1}^{\infty} \ln 1 + u_n$

$$\ln 1 + u_n = u_n - \frac{u_n}{2} + o(u_n^2), n \to \infty$$