

Versuchsplanung

Vorlesung Modellbildung und Simulation WS 2019 – 2020 Prof. Dr.-Ing. Kai Furmans

Experimente

- Breites Anwendungsspektrum in Wissenschaft und Technik
 - Charakterisierung/Optimierung von Prozessen
 - Verkürzung der Durchlaufzeit in der Fertigung
 - Untersuchung von Materialeigenschaften
 - Kostensenkungen, z.B. geringere Materialkosten
 - Entwurf und Entwicklung von Produkten
 - Verkürzung der Entwicklungszeit neuer Produkte
 - > Erhöhung des Funktionsumfangs eines Produkts
 - Bestimmung der Fehler-Toleranz von Systemen
 - Bessere Erfüllung von Kundenanforderungen
 - und viele weitere

Ein einfaches Modell

Unkontrollierbare oder unbekannte Einflussgrößen

Ein einfaches Modell: Beispiel Kaffeemaschine

Unkontrollierbare oder unbekannte Einflussgrößen: z.B. Wasserqualität, Verschmutzung innerhalb der Maschine

Vorgehensweise

- 1. Ausgangssituation beschreiben
- 2. Untersuchungsziel festlegen
- 3. Zielgrößen und Faktoren festlegen
- 4. Versuchsplan aufstellen
- 5. Experimente durchführen
- 6. Versuchsergebnisse auswerten
- 7. Ergebnisse interpretieren und Maßnahmen ableiten

Ausgangssituation beschreiben

- Wer ist der Kunde?
- Was ist die langfristige Zielsetzung?
- Welches konkrete **Problem** soll durch die jetzt geplante Untersuchung gelöst werden?
- Wie viel Zeit und Geld ist verfügbar?
- Was ist über Problemstellung schon bekannt?

Untersuchungsziel festlegen

- Optimierung der Zielgröße(n)
- Erkennung der wichtigsten Einflüsse
- Robuste Faktoreinstellung (Robustheit der Zielgrößen hinsichtlich Schwankungen der Faktoreinstellungen)

Zielgrößen und Faktoren festlegen

- Für Auswahl der Zielgrößen zu berücksichtigende Aspekte
 - Kundenorientierung/Relevanz
 - Vollständigkeit
 - Verschiedenheit (keine Abhängigkeiten der Zielgrößen voneinander)
- Achtung: Aspekte können im Konflikt stehen!
- Faktoren = Teilmenge aus der Menge der Einflussgrößen, die in der Analyse näher untersucht werden sollen
- Festlegung der Faktorwertstufen
 - Art des Faktors (quantitativ/qualitativ)
 - Richtige Auflösung bei quantitativen Größen

Versuchsplan Aufstellen

- Festlegung der Wertstufenkombinationen
- Anzahl der Replikationen
 - Verbesserung der Schätzung von Effekten
 - Schätzung der Reststreuung
- Aufwandsabschätzung

Restliche Schritte

- Experimente durchführen
- Versuchsergebnisse auswerten
 - Anwendung statistischer Methoden (z.B. Konfidenzintervall -Vertrauensbereich der Ergebnisse)
 - Identifikation/Behandlung von Ausreißern
- Ergebnisse interpretieren und Maßnahmen ableiten
 - Bedeutung der Ergebnisse
 - Einleitung neuer Experiment-Iterationen

Beschreibungsmodelle

- Linear
 - Teilfaktorielle zweistufige Versuchspläne

- Quadratisch
 - Central-Composite-Design
- Kubisch
 - Space Filling Design

- Komplexe Zusammenhänge
 - Monte-Carlo-Verfahren

Quelle: Siebertz et. al.: Statistische Versuchsplanung

Vollfaktorieller Versuchsplan – Alle Möglichkeiten probieren

Einflussgröße 1 → 5 Stufen

Einflussgröße 2 → 3 Stufen

5x3x4 = 60 Versuche

Einflussgröße 3 → 4 Stufen

Einflussgröße 1 → 5 Stufen

Einflussgröße 2 → 3 Stufen

Einflussgröße 3 → 4 Stufen

→ Lediglich Betrachtung der Extremwerte

Einflussgröße 1 → 5 Stufen

Einflussgröße 2 → 3 Stufen

Einflussgröße 3 → 4 Stufen

→ Lediglich Betrachtung der Extremwerte

Ш	Ш	Ш	
-	-		
-	-	+	
-	+	+	
+	+	+	
+	-	-	
+	-	+	
+	+	-	
	+	-	

→ 8 Versuche

	E 1	E 2	Е3	Ergebnis der Zielgröße	
Versuch 1	-	-	-		
Versuch 2	-	-	+		
Versuch 3	-	+	+		
Versuch 4	+	+	+		
Versuch 5	+	-	-		
Versuch 6	+	-	+		
Versuch 7	+	+	-		
Versuch 8	-	+	-		

П 1	E 2	Е3	Ergebnis	
-	-	-	3,6 1,3	
-	-	+	1,3	
-	+	+	4,4	
+	+	+		
+	-	-	4,2	
+	-	+	4,4 4,2 2,7 6,4	
+	+	-	6,4	
-	+	-	1,7	

	√ш\	E 2	Е3	Ergebnis	
	-	-	-	3,6 1,3	
	-	-	+	1,3	
	-	+	+	4,4	
	+	+	+	2,6	
	+	_	-	4,2	
	1 + 1	_	+	2,7	
	\ + /	+	-	6,4	
	\-/	+	-	1,7	
MW+	3,98				

IFL

IFL

	E 1	E 2	Е 3	Ergebnis			
	-	-	-	3,6			
	-	-	+	1,3			
	l	+	++	4,4			
	+	+		2,6			
	+	-	-	4,2			
	+	-	+	2,7			
	+	+	-	6,4			
	-	+	-	1,7			
MW+	3,98	3,78	2,75				
MW-	2,75	2,95	3,98	_			
Effekt	1,23	0,83	-1,23	_			

E1 und E3 haben den größten Effekt auf die Zielgröße und sollten im nächsten Schritt genauer untersucht werden.

Zweistufiger teilfaktorieller Versuchsplan – DoE Wechselwirkungseffekte

	E1	E2	E3	E1E2	E1E3	E2E3	E1E2E3	Ergebnis
	-	-	-	+	+	+	-	3,6
	-	-	+	+	-	-	+	1,3
	-	+	+	-	-	+	-	4,4
	+	+	+	+	+	+	+	2,6
	+	-	-	-	-	+	+	4,2
	+	-	+	-	+	-	-	2,7
	+	+	-	+	-	-	-	6,4
	-	+	-	-	+	-	+	1,7
MW+	3,98	3,78	2,75	3,48	2,65	3,70	2,45	
MW-	2,75	2,95	3,98	3,25	4,08	3,03	4,28	
Effekt	1,23	0,83	-1,23	0,23	-1,43	0,67	-1,83	

Zweistufiger teilfaktorieller Versuchsplan – DoE Wechselwirkungseffekte

	<u> </u>	E2	E3	E1E2	E1E3	E2E3	E1E2E3	Ergebnis	2-Faktor-Wechselwirkungsdiagramm
	-	-	-	+	+	+	-	3,6	
	-	-	+	+	-	-	+	1,3	6 E3-
	-	+	+	-	-	+	-	4,4	5 E2+
	+	+	+	+	+	+	+	2,6	4 E3-
	+	-	-	-	-	+	+	4,2	3 E3+
	+	-	+	 -	+	-	-	2,7	E3+
	+	+	-	+	-	-	-	6,4	_
	-	+	-	<u>-</u>	+	-	+	1,7	1
MW+	3,98	3,78	2,75	3,48	2,65	3,70	2,45		<u> </u>
MW-	2,75	2,95	3,98	3,25	4,08	3,03	4,28		- E1 + - E1 + - E2 +
Effekt	1,23	0,83	-1,23	0,23	-1,43	0,67	-1,83		

Central Composite Design

 Zusätzliche Versuche (Stern) aufbauend auf zweistufigem Versuchsplan (Würfel)

Central-Composite-Design

Face-Centered-Central-Composite-Design

Besonders geeignet für quadratische Beschreibungsmodelle

Quelle: Siebertz et. al.: Statistische Versuchsplanung

Space Filling Design und Monte Carlo

- Monte-Carlo-Verfahren
 - Faktoreneinstellung per Zufallsgenerator
 - Hohe Anzahl an Kombinationen

- Space Filling Design
 - Faktoreneinstellung per Zufallsgenerator
 - Möglichst gleichmäßige Verteilung im Faktorraum

Auch für komplexere Zusammenhänge geeignet

Quelle: Siebertz et. al.: Statistische Versuchsplanung

Regalbediengerät (RBG) – Modell

- Eingangsgrößen
 - Last
 - Hubhöhe
 - Fahrzeit

- Unkontrollierbare Größen
 - Störung
 (Abhängig von Eigenkreisfrequenz und Geschwindigkeit)
- Ausgangsgrößen
 - Beschleunigung X₂ [m/s²]
 - Auslenkung X₂ [m]

Last

Leerfahrt: 0 kg Voll beladen: 560 kg

Beliebige Abstufung möglich

- Hubhöhe
- Fahrzeit

Min: 1 m Max: 22 m Abstufung: 1,4 m

Min: 2 s Max: 30 s Abstufung: 2 s

Eingangsgrößen

Last 0 bis 560 kg → 20 kg/Schritt → 29 Schritte

Hubhöhe
1 bis 22 m → 1,4 m/Schritt → 16 Schritte

Fahrzeit 2 bis 30 s → 2 s/Schritt → 15 Schritte

 \rightarrow 29x16x15 = 6960 Einzelversuche

- Versuchsplan um Einflussfaktoren zu identifizieren
- → 8 Versuche