Computer-Aided Diagnosis for Prostate Cancer using mp-MRI

PhD Defence 28th November 2016

Guillaume Lemaître

Universitat de Girona - ViCOROB Université de Bourgogne Franche-Comté - LE21

Supervised by:

Robert Martí - Fabrice Mériaudeau Jordi Freixenet - Paul M. Walker

- 1 Introduction
- 2 State-of-the-art
- **3** I2CVB

1 Introduction

Motivations
The prostate organ
Prostate carcinoma
Screening
CAD and mp-MRI
Research objectives

- 2 State-of-the-art
- **3** 12CVB

Motivations

Statistics

(a) # of cancer cases

(b) # of cancer deaths

Implications, image source¹

- ▶ 2nd most frequently diagnosed men cancer
- lacktriangle Accounting for 7.1% of overall cancers diagnosed
- ightharpoonup Accounting for 3.4% of overall cancers death

¹J. Ferlay et al. "Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008". In: *Int. J. Cancer* 127.12 (Dec. 2010), pp. 2893–2917.

The prostate organ

Anatomy

Localization of the prostate organ, image source²

Characteristics

Height: 3 cmDepth: 2.5 cmWeight: 7 g to 16 g

²Geckomedia. *Natom Anatomy*. French. June 2011. url: http://www.natomshop.com/.

The prostate organ

Anatomy

(a) Transverse plane

(b) Sagittal plane

Prostate zones - AFT: anterior fibromuscular tissue, CZ: central zone, ED: ejaculatory duct, NVB: neurovascular bundle, PUT: periurethral tissue, PZ: peripheral zone, U: urethra, TZ: transitional zone, B: base, M: median, A: apex; image source³

³Y. J. Choi et al. "Functional MR imaging of prostate cancer". In: *Radiographics* 27 (2007), pp. 63–75.

Prostate carcinoma (CaP)

CaP development

- ► Slow-growing → 85 %
- ► Fast-growing \rightarrow 15 %
- ► CaPs in CG are more aggressive

Zonal predisposition

- \triangleright PZ \rightarrow 70 % to 80 %
- ightharpoonup TZ \rightarrow 10 % to 20 %
- ► CG → 5 %

Goals

- Detect CaP
- ► Distinguish slow- from fast-growing CaP
- ► Active surveillance *vs.* prostatectomy/other treatments

Prostate-specific antigen

- $ightharpoonup > 10 \, \mathrm{ng} \, \mathrm{mL}^{-1} \rightarrow \mathrm{biopsy}$
 - From 4 ng mL⁻¹ to 10 ng mL⁻² $\rightarrow \frac{15\%}{15\%} \rightarrow \text{biopsy}$
 - X Not reliable

"Blind" transrectal ultrasound biopsy

- Take samples from different locations
- Grade using Gleason score
- X Invasive procedure
- X Lead to false positives & negatives

State-of-the-art

Prostate-specific antigen

- $ightharpoonup > 10 \, \mathrm{ng} \, \mathrm{mL}^{-1}
 ightarrow \mathrm{biopsy}$
- From 4 ng mL⁻¹ to 10 ng mL^{-1} $\rightarrow \frac{\bullet}{\bullet} > 15\% \rightarrow \text{biopsy}$
- X Not reliable

- Take samples from different locations
- ► Grade using Gleason score
- X Invasive procedure
- X Lead to false positives & negatives

Prostate-specific antigen

- $ightharpoonup > 10\,\mathrm{ng}\,\mathrm{mL}^{-1} o \mathrm{biopsy}$
- From 4 ng mL⁻¹ to 10 ng mL^{-1} $\rightarrow \frac{\bullet}{\bullet} > 15\% \rightarrow \text{biopsy}$
- X Not reliable

- Take samples from different locations
- ► Grade using Gleason score
- X Invasive procedure
- X Lead to false positives & negatives

Prostate-specific antigen

- $ightharpoonup > 10\,\mathrm{ng}\,\mathrm{mL}^{-1} o \mathrm{biopsy}$
- ▶ From 4 ng mL^{-1} to 10 ng mL^{-1}

$$\rightarrow \frac{\bullet}{1} > 15\% \rightarrow \text{biopsy}$$

X Not reliable

- ► Take samples from different locations
- Grade using Gleason score
- X Invasive procedure
- X Lead to false positives & negatives

Image source: https://goo.gl/fEVQXQ

Prostate-specific antigen

- $ightharpoonup > 10 \, \mathrm{ng} \, \mathrm{mL}^{-1}
 ightarrow \mathrm{biopsy}$
- From 4 ng mL^{-1} to 10 ng mL^{-1}

$$\rightarrow \frac{\bullet}{\bullet} > 15\% \rightarrow \text{biopsy}$$

X Not reliable

- ► Take samples from different locations
- Grade using Gleason score
- X Invasive procedure
- X Lead to false positives & negatives

Image source: https://goo.gl/fEVQXQ

Prostate-specific antigen

- $ightharpoonup > 10 \
 m ng \ mL^{-1}
 ightarrow
 m biopsy$
- From 4 ng mL^{-1} to 10 ng mL^{-1} $\rightarrow \frac{\bullet}{\bullet + \bullet} > 15\% \rightarrow \text{biopsy}$
- X Not reliable

"Blind" transrectal ultrasound biopsy

- ► Take samples from different locations
- Grade using Gleason score
- X Invasive procedure
- X Lead to false positives & negatives

Pros

✓ Reduce CaP-related mortality from 21 % to 44 %⁴

Cons

- ✗ Up to 30 % of over-diagnosis⁵
- X Up to 35 % of undiagnosed CaP⁶
- X Biopsies are invasive

⁴Fritz H. Schröder et al. "Prostate-cancer mortality at 11 years of follow-up". In: New England Journal of Medicine 366.11 (2012), pp. 981–990.

⁵G. P. Haas et al. "Needle biopsies on autopsy prostates: sensitivity of cancer detection based on true prevalence". In: *J. Natl. Cancer Inst.* 99.19 (Oct. 2007), pp. 1484–1489.

⁶A. V. Taira et al. "Performance of transperineal template-guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy setting". In: *Prostate Cancer Prostatic Dis.* 13.1 (Mar. 2010), pp. 71–77.

CAD and mp-MRI

Current trendy techniques: mp-MRI

✓ Less invasive technique

Human diagnosis using mp-MRI

- Need further investigation of the mp-MRI modalities
- X Low repeatability
 - Observer limitations
 - Complexity of clinical cases

Emergence of CAD

- ► CADe → detection of potential lesions
- ► CADx → diagnosis regarding those lesions

Research objectives

Propose a mp-MRI CAD for CaP

- ► Study and investigate the state-of-the-art on MRI CAD for CaP
- Identify the scientific barriers
- Design a mp-MRI CAD addressing these issues
- Investigate and analyze the proposed CAD

- 1 Introduction
- State-of-the-art MRI modalities CAD for CaP The MedIA evil
- **3** 12CVE

T₂W-MRI

(a) Healthy

(b) CaP PZ

(c) CaP CG

Healthy

- Intermediate to high-signal intensity (SI) in PZ
- ► Low-SI in CG

CaP

- ► Low-SI
- Round and ill-defined mass in PZ
- ► Homogeneous with ill-defined edges in CG

T₂W-MRI

(d) Healthy

(e) CaP PZ

(f) CaP CG

Pros

- Highest spatial resolution
- Anatomy nicely depicted

Cons

- ► Low sensitivity in CG
- Lower specificity due to outliers

DCE-MRI

Green: healthy - Red: CaP

Healthy

- Slower wash-in, wash-out, time-to-peak enhancement
- ► Lower integral under the curve, max SI

CaP

- Faster wash-in, wash-out, time-to-peak enhancement
- ► Higher integral under the curve, max SI

DCE-MRI

Green: healthy - Red: CaP

Pros

► Information about vascularity

Cons

- Spatial mis-registration
- ► Lower spatial resolution than T₂W-MRI
- ▶ Difficult detection in CG

DW-MRI - ADC

(a) DW MRI

(b) ADC

Healthy

► DW-MRI: lower SI

► ADC: higher-SI

CaP

► DW-MRI: higher SI

► ADC: lower-SI

DW-MRI - ADC

(c) DW MRI

(d) ADC

Pros

- ► Information about tissue structure
- ► ADC correlated with Gleason score

Cons

- ► Poor spatial resolution
- ► Variability of the ADC coefficient

MRSI

(b) CaP

Healthy

- ► High citrate
- ► Moderate choline and spermine

CaP

- Decrease of citrate and spermine
- ► Increase of choline

MRS

(C) Healthy

Pros

► Citrate correlated with Gleason score

Cons

- Low spatial resolution
- Variation inter-patients

Full CAD for detection and diagnosis of CaP

Common CAD framework based on MRI images used to detect CaP

- ✓ 3 modalities better than 2
- Texture and edge features are predominant
- ✓ Feature selection/extraction tends to improve performance
- ✓ Pre-eminence of SVM and ensemble classifier (i.e., AdaBoost, RF, etc.)

- ✓ 3 modalities better than 2
- ✓ Texture and edge features are predominant
- √ Feature selection/extraction tends to improve performance
- ✓ Pre-eminence of SVM and ensemble classifier (i.e., AdaBoost, RF, etc.)

- ✓ 3 modalities better than 2
- ✓ Texture and edge features are predominant
- √ Feature selection/extraction tends to improve performance
- Pre-eminence of SVM and ensemble classifier (i.e., AdaBoost, RF, etc.)

- ✓ 3 modalities better than 2
- √ Texture and edge features are predominant
- √ Feature selection/extraction tends to improve performance
- ✓ Pre-eminence of SVM and ensemble classifier (i.e., AdaBoost, RF, etc.)

Conclusions

- ✓ 3 modalities better than 2
- ✓ Texture and edge features are predominant
- ✓ Feature selection/extraction tends to improve performance
- ✓ Pre-eminence of SVM and ensemble classifier (i.e., AdaBoost, RF, etc.)

- X No publicly available mp-MRI dataset
- X Only 1 study used 4 MRI modalities
- X Limited work on data normalization
- X A lot of features are extracted in 2D
- X Limited work regarding selection/extraction
- X No work regarding data balancing
- X No source code available of any CAD

- No publicly available mp-MRI dataset
- X Only 1 study used 4 MRI modalities
- X Limited work on data normalization
- X A lot of features are extracted in 2D
- X Limited work regarding selection/extraction
- X No work regarding data balancing
- X No source code available of any CAD

- No publicly available mp-MRI dataset
- X Only 1 study used 4 MRI modalities
- X Limited work on data normalization
- X A lot of features are extracted in 2D
- X Limited work regarding selection/extraction
- X No work regarding data balancing
- X No source code available of any CAD

- No publicly available mp-MRI dataset
- X Only 1 study used 4 MRI modalities
- X Limited work on data normalization
- X A lot of features are extracted in 2D
- X Limited work regarding selection/extraction
- X No work regarding data balancing
- X No source code available of any CAD

- No publicly available mp-MRI dataset
- X Only 1 study used 4 MRI modalities
- X Limited work on data normalization
- X A lot of features are extracted in 2D
- X Limited work regarding selection/extraction
- X No work regarding data balancing
- X No source code available of any CAD

I2CVB

- No publicly available mp-MRI dataset
- Only 1 study used 4 MRI modalities
- X Limited work on data normalization
- X A lot of features are extracted in 2D
- X Limited work regarding selection/extraction
- X No work regarding data balancing
- X No source code available of any CAD

Conclusions

- √ 3 modalities better than 2
- ✓ Texture and edge features are predominant
- √ Feature selection/extraction tends to improve performance
- ✓ Pre-eminence of SVM and ensemble classifier (i.e., AdaBoost, RF, etc.)

- No publicly available mp-MRI dataset
- Only 1 study used 4 MRI modalities
- X Limited work on data normalization
- X A lot of features are extracted in 2D
- X Limited work regarding selection/extraction
- X No work regarding data balancing
- X No source code available of any CAD

Conclusions

- ✓ 3 modalities better than 2
- ✓ Texture and edge features are predominant
- √ Feature selection/extraction tends to improve performance
- ✓ Pre-eminence of SVM and ensemble classifier (i.e., AdaBoost, RF, etc.)

Scientific and technical challenges

- No publicly available mp-MRI dataset
- Only 1 study used 4 MRI modalities
- X Limited work on data normalization
- X A lot of features are extracted in 2D
- X Limited work regarding selection/extraction
- X No work regarding data balancing
- X No source code available of any CAD

Research objectives

- Collect a mp-MRI dataset
- Design a CAD for CaP using all mp-MRI modalities
- ▶ Investigate normalization, feature selection/extraction, data balancing
- ► Implement 3D features
- Release source code and dataset

The Medical Imaging evil

The reasons of a nightmare

→ Multidisciplinary competences: medical doctors vs. computer scientists

Some examples

- ▶ Delay in the data acquisition
- Interest differences between the different core competences
- → Lack of interest

The keystones needed

- Common datasets
- ► Algorithms comparisons
- ► Full benchmarking

The Medical Imaging evil

The reasons of a nightmare

→ Multidisciplinary competences: medical doctors vs. computer scientists

Some examples

- ▶ Delay in the data acquisition
- ▶ Interest differences between the different core competences
- → Lack of interest

The keystones needed

- Common datasets
- Algorithms comparisons
- Full benchmarking

The Medical Imaging evil

The reasons of a nightmare

→ Multidisciplinary competences: medical doctors vs. computer scientists

Some examples

- ► Delay in the data acquisition
- ▶ Interest differences between the different core competences
- → Lack of interest

The keystones needed

- Common datasets
- ► Algorithms comparisons
- ► Full benchmarking

Overview

► Development of a web platform

Manifesto

I₂C√β Vision

Democratization of the ability to research

I₂C√β Mission

 Open data; evaluation methods; comparison framework; reporting platform

I₂C√β Protagonists

Research groups and individuals from all walks of life to shape a transparent community

I₂C√β Strategy

 Transferring successful practises from Free Software and Quality Management

Prostate dataset

Multi-parametric MRI

- ► Cohort of 20 patients
- ► T₂W MRI, DCE MRI & ADC
- ▶ 3 Tesla whole body MRI without endorectal coil

Ground-truth

- ▶ Delineations: prostate zones CaP
- ► Healthy: 2 vs. CaP: {PZ: 13, CG: 3, PZ + CG: 2 }