This is a title

Jiuru Lyu

August 28, 2023

Contents

1 Floating Point Numbers			
	1.1	Binary Representation	2
	1.2	Integers in Computers	2
	1.3	Representation of Floating Point Numbers	3

1 Floating Point Numbers

1.1 Binary Representation

Definition 1.1.1 (Binary). 0 and 1; on and off.

Example 1.1.2 Represent Numbers in Base-2

Consider $13 = 1(10) + 3(1) = 1(10) + 3(10^0)$ in base-10. It can be converted into base-2 by decomposing 13 as $1(2^3) + 1(2^2) + 0(2^1) + 1(2^0)$.

Example 1.1.3 Fractions in Base-2

$$\frac{7}{16} = \frac{1}{16}(7) = (2^{-4})(2^2 + 2^1 + 2^0) = 2^{-2} + 2^{-3} + 2^{-4}.$$

Example 1.1.4 Repeating Fractions in Base-2

$$\frac{1}{5} = \frac{1}{8} + \varepsilon_1 \implies \varepsilon_1 = \frac{1}{5} - \frac{1}{8} = \frac{8 - 5}{(5 \times 8)} = \frac{3}{40}$$

$$\varepsilon_1 = \frac{3}{3(16)} + \varepsilon_2 \implies \cdots$$

Repeating the steps above, we would finally get

$$\frac{1}{5} = \frac{1}{8} + \frac{1}{16} + \frac{1}{128} + \frac{1}{256} + \cdots$$

Theorem 1.1.5

Let $n \in \mathbb{Z}$ and $n \ge 1$, then

$$\sum_{k=0}^{n-1} 2^k = 2^{n-1} + 2^{n-2} + \dots + 2^0 = 2^n - 1.$$

1.2 Integers in Computers

Definition 1.2.1 (Storing Integers). unit8 stands for unsigned integers and int8 stands for signed integers.

Remark. The 8 here represents 8 bits. It is a measure of how much storage (how many 0s or 1s).

unsigned:
$$\begin{bmatrix} b_7 & b_6 & b_5 & b_4 & b_3 & b_2 & b_1 & b_0 \\ 2^7 & 2^6 & 2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0 \\ signed: & -2^7 & 2^6 & 2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0 \end{bmatrix}$$

Example 1.2.2

$$\label{eq:unit8} \verb| unit8| (13) = 00001101$$
 Since $-13 = 1(-2^7) + 1(2^6) + 1(2^5) + 1(2^4) + 0(2^3) + 0(2^2) + 1(2^1) + 1(2^0)$, we have
$$\verb| int8| (-13) = 11110011$$

Remark. Largest and Smallest Integers:

$$\begin{split} & \text{uint8}(x_L) = 11111111 & \implies x_L = 2^7 + 2^6 + \dots + 2^0 = 2^8 - 1 = 255 \\ & \text{uint8}(x_S) = 000000000 & \implies x_S = 0(2^7) + 0(2^6) + \dots + 0(2^0) = 0 \\ & \text{int8}(x_L) = 01111111 & \implies x_L = 0(-2^7) + 2^6 + \dots + 2^0 = 2^7 - 1 = 127 \\ & \text{int8}(x_S) = 1000000000 & \implies x_S = 1(-2^7) + 0(2^6) + \dots + 0(2^0) = -128 \end{split}$$

1.3 Representation of Floating Point Numbers

Definition 1.3.1 (Normalized Scientific Notation). Only 1 digit (non-zero) to the left of the decimal point.

Example 1.3.2
$$123.456\times10^7$$

$$12.3456\times10^8$$

$$1.23456\times10^9\to \text{normalized}$$

Definition 1.3.3 (Anatomy of Floating Point Numbers). A floating point number, float(x), consists of three parts: s(x) (sign bit), e(x) (exponent bits), and f(x) (fraction bits). **Definition 1.3.4 (Precision).** Precision is defined by the number of bits per part:

	s(x)	e(x)	f(x)	total
double precision (DP)	1	11	52	64
single precision (SP)	1	8	23	32
half precision (HP)	1	5	10	16

Remark. The less bits the float point number has, the less storage it requires and faster computation it performs, but more error introduces.

Definition 1.3.5 (Floating Point Number).

$$float(x) = (-1)^{s(x)} \left(1 + \frac{f(x)}{2^{\text{\# of fraction bits}}} \right) 2^{E(x)}, \tag{1}$$

where E(x) is called the *unbiased exponent* because it is centered about 0 and is calculated through the e(x), the *biased exponent* because it can only be non-negative integers, by the following formula:

$$E(x) = e(x) - \left(2^{\text{# of exponent bits} - 1} - 1\right).$$

Remark. Eq. (1) is in normalized scientific notation because the largest number f(x) can represent is $2^{\# \text{ of fraction bits}} - 1$. Hence,

$$1 + \frac{f(x)}{2^{\# \text{ of fraction bits}}} < 2,$$

and thus there will be only 1 digit in front of the decimal point.

Example 1.3.6 Formula for a Floating Point Number in Double Precision (DP)

$$\mathtt{float}_{\mathrm{DP}}(x) = (-1)^{s(x)} \bigg(1 + \frac{f(x)}{2^{52}} \bigg) 2^{e(x) - 1023}.$$

Example 1.3.7 Converting DP into Decimal

Suppose a DP floating number is stored as s(x) = 0, e(x) = 10000000011, and $f(x) = 0100100 \cdots 0$. Find its representation in decimal base-10.

Solution 1.

 $e(x) = 10000000011 = 2^{10} + 2^1 + 2^0$ and $f(x) = 0100100 \cdots 0 = 2^{50} + 2^{47}$. Then, the unbiased exponent $E(x) = e(x) - 1023 = 2^{10} + 2^1 + 2^0 - (2^{10} - 1) = 4$. So,

$$\begin{aligned} \mathtt{float}_{\mathtt{DP}}(x) &= (-1)^{s(x)} + \left(1 + \frac{f(x)}{2^{52}}\right) 2^{E(x)} \\ &= (-1)^0 \left(1 + \frac{2^{50} + 2^{47}}{2^{52}}\right) 2^4 \\ &= \left(1 + 2^{-2} + 2^{-5}\right) 2^4 \\ &= 2^4 + 2^2 + 2^{-1} \\ &= 16 + 4 + 0.5 = 20.5 \end{aligned}$$

Answer.m

```
% Plot function f(x) = 2*x^3 - x - 2
1
2
    ezplot('2*x^3-x-2', [0, 2])
   hold on
3
   plot([0, 2], [0, 0], 'r')
4
```

Algorithm 1: Bisection Algorithm

```
Input: a, b, M, \delta, \varepsilon
   u \leftarrow f(a)
   b \leftarrow f(b)
   e \leftarrow b - a
   Output: output
 1 begin
        if sign(u) = sign(v) then
         stop
 3
        for k=1 to M do
 4
             e \leftarrow e/2
 5
 6
             c \leftarrow a + e
             w \leftarrow f(c)
 7
             return k, c, w, e
 8
             if |e| < \deltaor |w| < \varepsilon then
 9
              stop
10
             if sign(u) \neq = sign(v) then
11
                 b \leftarrow c
12
                v \leftarrow w
13
             else
14
                  a \leftarrow c
15
                  u \leftarrow w
16
```