Mathematik für Informatiker 2 – SS 2025

Studiengang Angewandte Informatik & Angewandte Künstliche Intelligenz

Kapitel 1: Kombinatorik

Lernziele:

- Summen- und Komplementregel bei Abzählproblemen anwenden
- Produktregel bei Abzählproblemen anwenden
- Produktregel als Baum veranschaulichen
- Anzahl an Variationen mit und ohne Beachtung der Reihenfolge berechnen
- Anzahl an Kombinationen mit und ohne Beachtung der Reihenfolge berechnen
- Entscheiden, ob Kombination oder Variation mit oder ohne Beachtung der Reihenfolge zu berechnen ist

Dieses Kapitel setzt das Wissen über Mengen und Mengenoperationen voraus.

Wiederholung Mengenoperationen: Durchschnitt, Vereinigung, Restmenge, Komplement

Durchschnitt von A und B. $A \cap B := \{x | x \in A \text{ und } x \in B\}$

- "A geschnitten B"
- Menge aller Elemente, die zu allen (beiden) Mengen A, B gehören.
- UND: in A als auch in B

Vereinigungsmenge $A \cup B$ $A \cup B := \{x | x \in A \text{ oder } x \in B\}$

- "A vereinigt B"
- ... Elemente, die zu mind. einer der Mengen A, B gehören.
- ODER: in A oder in B oderin beiden.

- "A ohne B"
- ... Elemente von A ohne die Elemente von B

Disjunkte Menge (elementfremd): $A \cap \overline{B} = \emptyset$

Komplement von A bzgl. Grundmenge M $\overline{A} := M \backslash A = \{ x \in M | x \notin A \}$

- Alle Elemente einer (bekannten) Grundmenge, die nicht zu A gehören.

Gegeben sind zwei Mengen A und B mit $A \cap B = A$. Welche der folgenden Aussagen ist wahr?

- A) A und B sind disjunkt
- B) A ist eine Teilmenge von $B: A \subseteq B$
- C) B ist eine Teilmenge von A: B \subseteq A
- D) A ist gleich B: A = B

In einem Studiengang gibt es 25 Studierende. 15 von ihnen wählen das Wahlpflichtfach "Spannend", 10 wählen "Nützlich". 5 Studierende haben dabei sowohl "Spannend" als auch "Nützlich" gewählt.

Wie viele Studierende haben keines der beiden Wahlpflichtfächer gewählt?

Tipp: Betrachten Sie die Gruppen als Mengen und zeichnen Sie ein Venn-Diagramm.

- A) 0
- B) 5
- C) 10
- D) 15

Wir betrachten die folgenden Mengen:

$$A := \{x \in \mathbb{R} \mid x > 0\}$$

$$B := \{x \in \mathbb{R} \mid x^2 > 0\}$$

$$C := \{x \in \mathbb{R} \mid x > 0 \text{ und } x^2 > 0\}$$

- A) Es gilt $B \subseteq A \subseteq C$.
- B) Es gilt $B \subseteq C \subseteq A$.
- C) Es gilt $A \subseteq B \subseteq C$.
- D) Es gilt $A \subseteq C \subseteq B$.

(Bauer)

Binomischer Satz / Binomialkoeffizient

Binomische Formeln - Wie verallgemeinerbar?

$$(x + y)^2 = x^2 + 2xy + y^2$$

$$(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

Binomischer Lehrsatz

$$(\mathbf{x} + \mathbf{y})^n = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n$$
$$= \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

... benutzt neue mathematische Symbole:

n! gelesen: n Fakultät

$$n! \coloneqq n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1$$
 $(n \in \mathbb{N})$

$$0! \coloneqq 1$$

Beispiele:

4!

5!

15! = 1307674368000

Die 1. bzw. 2. Binomische Formel kann durch den binomischen Lehrsatz verallgemeinert werden. Er dient der Auswertung von Potenzen einer Summe oder Differenz zweier Terme $(x+y)^n$. Der Ausdruck in der Klammer gehört zu den "Binomen".

Um diese Formeln verstehen zu können, benötigen wir die Kenntnis der folgenden mathematischen Symbole:

n! Produkt der ersten n natürlichen Zahlen.(s.a. TeachMatics App: ID 71 Die Fakultät)

Überprüfen Sie per Taschenrechner-Funktion → sehr schnelles Wachstum!

$$x = \frac{8!}{4 \cdot 6!}$$

Berechnen Sie ohne Taschenrechner!

- A) 1/3
- B) 1/2 C) 4 D) 14

$$\frac{(n+1)!}{n!} = 2$$

- *A*) 1
- *B*) n
- *C*) n + 1
- D) n!

Binomialkoeffizient $\binom{n}{k}$ gelesen: "n über k"

$$\binom{n}{k} \coloneqq \frac{n!}{k! \cdot (n-k)!}$$
 falls $k \le n$ (and ernfalls $i = 0$)

$$\binom{5}{2} = \frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}$$

$$\binom{5}{2} = \frac{5\cdot 4}{2\cdot 1} = 10$$

Wichtige Sonderfälle:

$$\binom{n}{0} = \binom{n}{n} = 1$$

$$\binom{5}{0} =$$

Berechnen Sie $(x + y)^4$ mit Hilfe des binomischen Satzes (Ergebnis ohne Binomialkoeffizienten)

Jemand behauptet, dass sich der Binomialkoeffizient rekursiv berechnen lässt mit der Formel:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Diese Behauptung ist:

- A) Immer wahr
- B) Immer falsch
- C) Für einige, aber nicht für alle Werte wahr
- D) Das lässt sich allgemein nicht beantworten.

Welcher der folgenden Ausdrücke ist gleich $\binom{n}{n-k}$?

A)
$$\binom{n}{k}$$

B)
$$\binom{n-k}{n}$$

C)
$$\binom{n-k}{k}$$

D) Keiner davon

Fakultät n!

Das Produkt der ersten n natürlichen Zahlen:

"n Fakultät"

$$n! := 1 \cdot 2 \cdot \dots \cdot n \quad (n \in \mathbb{N})$$

 $0! := 1$

- Sehr schnelles Wachstum
- Verwendung bei Binomialkoeffizienten (s.u.)

 $4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24$

 $5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$

10! = 3628800

20! = 2432902008176640000

Binomialkoeffizient $\binom{n}{k}$ "n über k"

"n über k" (heißt Binomialkoeffizient)

$$\binom{n}{k} \coloneqq \frac{n!}{k! \cdot (n-k)!}$$

falls $k \leq n$

$$\binom{n}{0} = \binom{n}{n} = 1$$

$$\binom{n}{k} = 0$$
 falls $k > n$

Symmetrie:

$$\binom{n}{k} = \binom{n}{n-k}$$

Beispiel:

$$\binom{5}{2} = \frac{5\cdot 4}{2\cdot 1} = 10$$

$$\begin{aligned} & \text{Alternative Schreibweise mit Fakultät:} \\ & = \frac{5!}{2! \cdot (5-2)!} = \frac{5!}{2! \cdot 3!} \end{aligned}$$

$$\binom{5}{0} = \frac{5!}{0! \cdot 5!} = \frac{1}{0!} = \frac{1}{1} = 1$$

$$\binom{5}{2} = \binom{5}{5-2} = \binom{5}{3}$$

Additionseigenschaft:

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

Pascalsches Dreieck:

Berechnung über Addition der "Vorgänger":

טכ	I CCI	IIIuII	y u	<i>J</i> C1 <i>F</i>	wuit	ion c	ıcı ,,	voig	ange					
n														
0							1							
1						1		1						
2					1		2		1					
3				1		3		3		1				
4			1		4 <	. /	/6		4		1			
5		1		5		10	_	10		5		1		
6	1		6		15		20		15		6		1	

Passende Theorieblöcke in der TeachMatics App

(In der App Suche per Stichwort oder ID)				
Die Fakultät	71			
Der Binomialkoeffizient	70			
(Das Pascalsche Dreieck)	64			
Der Binomische Lehrsatz	81			

MassMatics-Aufgaben ID 767, 769