Dynamic Liquidation Strategy for Large Quantity of Stock using Reinforcement Learning

Hwang, Jo, Lee, Mok

Global Economics, Sungkyunkwan University

January 8, 2024

Outline

- Overview of Liquidation Problem
- 2 Research Question
- Why Reinforcement Learning
- Modeling of Liquidation Problem
- Result and Analysis
- 6 Conclusion and Future Work

Overview of Liquidation Problem

- Suppose we want to sell a large quantity of a specific stock in one day.
- We have two naive liquidation strategies.
 - First Strategy: Sell everything once
 - Second Strategy: Sell small amount many times
- Two Strategies have trade-off
 - Market Impact would be huge, but no unpredictable risk
 - Market Impact would be small, but exposed to unpredictable risk
- We need to optimize this trade-off and decide our trading strategy.

Overview of Liquidation Problem

Figure: Example of Order Book

Overview of Liquidation Problem

- Trading firms generally use TWAP and VWAP strategies.
 - TWAP strategy: Executing trades evenly over a specified time period.
 - 2 VWAP strategy: Executing more orders as volume increases
- However, these two static strategies determine their trading strategies before trading starts.
- They do not consider the *price change* in their trading period.

Research Question

- We want to make a *Dynamic Liquidation Strategy* which considers price change in given trading period.
- We used Reinforcement Learning method to apply price change into our trading strategy.
- We adopted methodology of 'Amgren-Chriss Model' for trading strategy which is a fundamental paper that has been quoted over 2,000 times.

Why Reinforcement Learning?

- Our Liquidation Problem is such a "Sequential Decision Problem".
- This process is similar with how the reinforcement learning learns

Figure: Framework of reinforcement learning

- Goal : Maximize $G_t = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-t} R_{T+1}$
- The policy of this agent will be our trading strategy

Almgren and Chriss Model (1)

Price Dynamics and Market Impact

• Permanent Market Impact: Let S_k be the price at time t_k

$$S_k = S_{k-1} + \sigma \tau^{1/2} \xi_k - \tau g(v)$$

ullet Temporary Market Impact: $ilde{S}_k$ is an actual execution price

$$\tilde{S}_k = S_{k-1} - h(v)$$

Cost of Trading Strategy

- Let X be total share and n_k be the quantity of stock we sold for \tilde{S}_k
- Total cost of trading is

$$C = XS_0 - \sum_{k=1}^{N} n_k \tilde{S}_k = \sum_{k=1}^{N} x_k \left(\sigma \sqrt{\tau} \xi_k - \tau g_k \right) - \sum_{k=1}^{N} n_k h_k$$

Almgren and Chriss Model (2)

Mean Variance Analysis

Take expectation and variance for cost and make utility function

$$U(\mathcal{C}) = \mathbb{E}[\mathcal{C}] + \lambda \operatorname{Var}[\mathcal{C}]$$

ullet λ is risk aversion parameter of trader

Optimal Solution

• They get static optimal trading strategy n_k by using FOC $\frac{\partial U}{\partial n_k} = 0$

$$n_k = \frac{2\sinh\left(\frac{1}{2}\kappa\tau\right)}{\sinh(\kappa T)}\cosh\left(\kappa\left(T - t_{k-\frac{1}{2}}\right)\right)X$$
 for $k = 0, \dots, N$

 We will use their utility function and static trading strategy to find dynamic optimal trading strategy

Modeling Reinforcement Learning - States

 Our state vector must contain some information about the time remaining, or what is equivalent, the number trades remaining.

$$[r_{k-5}, r_{k-4}, r_{k-3}, r_{k-2}, r_{k-1}, r_k, m_k, i_k]$$

where

- $ullet r_k = \log\left(rac{ ilde{S}_k}{ ilde{S}_{k-1}}
 ight)$ is the log-return at time t_k
- $m_k = \frac{N_k}{N}$ is the number of trades remaining at time t_k normalized by the total number of trades.
- $i_k = \frac{x_k}{X}$ is the remaining number of shares at time t_k normalized by the total number of shares.

Modeling Reinforcement Learning - Actions

- \bullet We set action a_k as a percentage of the solution of AC suggested
- By giving near-opimal solution, we can reduce traning time
- We set a_k produced by agent between 0.5 and 1.5.
- Using this method, agent determine n_k , the number of shares to sell at each time by

$$n_k = a_k \times AC_k$$

• where AC_k is the number of stocks to sell at time t_k at AC paper

Modeling Reinforcement Learning - Rewards

- Since we don't know which order is good exactly, we give agent a clue for which order is better.
- We give more reward to agent when the utility (of agent's remaining stocks) decreases
- x_t^* is remaining stocks at time t

$$R_{t} = \frac{U_{t}(x_{t}^{*}) - U_{t+1}(x_{t+1}^{*})}{U_{t}(x_{t}^{*})}$$

• Since more reward is given as U(C) decreases, agent will action toward minimizing market impact

Simulation

- Total shares we need to sell: 1 million
- Initial Price: \$50
- Price Dynamics : Arithmetic discrete random walk
- Number of available trade: 60
- Daily Volatility: 0.8
- Fixed cost of selling per share: \$0.062
- Risk aversion parameter : 10^{-7} , 2.5×10^{-7} and 5×10^{-7}

Result (1)

Our agent learns 10000 episodes in this simulation environment

- Half Life of our strategy is shorter than TWAP
- We can guess risk aversion of TWAP is lower than others

Result (2)

 We get mean and standard deviation of trading cost for each models and TWAP by simulating 10000 times

Trading Cost	Mean	STD
TWAP	210,220	1,661,784
$\lambda = 10^{-7}$	268,004 (+27.5%)	912,361 (-45%)
$\lambda = 2.5 \times 10^{-7}$	324,881 (+54.5%)	707,578 (-57.4%)
$\lambda = 5.0 imes 10^{-7}$	387,967 (+84.5%)	578,764 (-65.1%)

Table: Result of our model and TWAP

- Trading Cost of our models are higher than TWAP but the risks lower
- As the mean goes down, the variance goes up

Analysis (1)

We can capture the trade-off between two naive strategies.

Figure: Efficient Frontier of our simulation

- As variance goes higher, expectation of cost goes lower
- As risk aversion parameter(λ) goes lower, variance goes higher

Analysis (2)

Figure: Simulated price of stock affected by each strategy's market impact

- Market Impact of TWAP is lower than other model
- But since they should sell same amount even later period, so variance increases

Conclusion and Limitation

- We confirmed trade-off exists between expactation and variance of trading cost
- Our dynamic model is less risky than TWAP.
- Therefore, for some traders whose risk aversion is high, our dynamic liquidation strategy can be an alternative to TWAP strategy
- Also, trader can customize our dynamic strategy by easily adjusting risk aversion parameters.
- But our model cannot be used as an alternative for VWAP since they do not consider volume at all.
- We need voluminous real world data to simulate volume like price.
 (ex. minute data)

Reference

- Robert Almgren and Neil Chriss, Optimal execution of portfolio transactions, Journal of Risk 3 5–40 (2001)
- Jim Gatheral and Alexander Schied, Optimal Trade Execution under Geometric Brownian Motion in the Almgren and Chriss Framework, International Journal of Theoretical and Applied Finance 14(3) 353–368 (2011)
- P.A. Forsyth, J.S. Kennedy, S. T. Tse, and H. Windcliff, Optimal Trade Execution: A Mean- Quadratic-Variation Approach, University of Waterloo (2011). Jim Gatheral, No-dynamic-arbitrage and market impact, Quantitative Finance 10(7) 749–759 (2010).
- D. Hendricks and D. Wilcox, "A reinforcement learning extension to the Almgren-Chriss framework for optimal trade execution," 2014 IEEE Conference on Computational Intelligence for Financial Engineering Economics (CIFEr), London, UK, 2014, pp. 457-464, doi: 10.1109/CIFEr.2014.6924109.

prof.Hwang