Algorithms, Design & Analysis

Lecture 12: Articulation points and Topological sort

Muhammad Ibrahim & Rana Hammad Ahmad

Information Technology University

June 19, 2025

About Your Fellows

- Hi there! We are **Ibrahim** and **Hammad**.
- We are Associate Students at ITU.

Articulation Points

Articulation Points

Definition:

 Articulation point is a node which if removed increase the number of connected components.

Articulation Point Example

Explanation: The vertex **C** is an articulation point because its removal disconnects the graph into three separate components.

Algorithm For Articulation Points

Articulation Points Algorithm

Algorithm 1 Finding Articulation Points

```
1: for each x \in V do
    flag \leftarrow False
    t \leftarrow 1
4: end for
5: for each v \in N(x) do
       if v is unvisited then
6.
            DFS(v)
7.
       end if
9:
        if flag = True then
            v is an Articulation Point (ARTP)
10.
        end if
11.
        flag \leftarrow True
12.
13: end for
```

Depth-First Search Algorithm For Articulation Points

DFS Algorithm

Algorithm 2 DFS(v)

```
1: v.d = t, v.l = t, t \leftarrow t + 1
 2. v. visited \leftarrow True
 3: for each u \in N(v) do
        if \mu is unvisited then
             DFS(u)
 5.
        end if
 6.
        if u.d < v.d and u \neq v.\pi then
 7:
             v.l \leftarrow \min(u.d, v.l)
 8:
        end if
 9:
        if u \neq v.\pi then
10:
             v.l \leftarrow \min(v.l, u.l) checking if their is a path to ancestors via child
11:
        end if
12:
        if u.l > v.d then
13:
             v is an ARTP
14.
15:
        end if
```

16: end for

Complexity

• Runtime complexity of this algorithm is $\Theta(|V| + |E|)$.

Definition:

• It is linear ordering of graph vertices such that for every directed edge uv from vertex u to vertex v,u comes before v in the ordering.

Conditions:

- Tree: Minimally connected graph (there exist a path between every pair vertices).
- Directed Acyclic Graph (DAG)
- It checks indegrees and outdegrees

Example:

Task Scheduler

 A Task Scheduler is a system that manages the execution order of tasks while considering dependencies. This is a perfect real-world application of Topological Sorting, which is used in Directed Acyclic Graphs (DAGs) to order tasks such that each task appears before any tasks that depend on it.

How Topological Sorting Works in a Task Scheduler

- Tasks as Graph Nodes:
 - Each task is represented as a node in a directed graph.
- Dependencies as Directed Edges:
 - A directed edge $A \rightarrow B$ means task A must be completed before task B.
- Check if in-degree is zero. If it is remove it and put it in the list.

Task Dependency Graph (Topological Sorting)

Valid Execution Order: $F \rightarrow A \rightarrow B \rightarrow D \rightarrow C \rightarrow E$

Topological Sorting Algorithm (1/2)

Algorithm 3 Topological Sorting (TS)

- 1: Given a directed graph G = (V, E)
- 2: Compute in-degrees of all vertices
- 3: Initialize an empty queue $W \leftarrow []$
- 4: **for** each $u \in V$ **do**
- 5: **if** d(u) = 0 **then**
- 6: Add u to W
- 7: end if
- 8: end for

Topological Sorting Algorithm (2/2)

Algorithm 4 Topological Sorting (TS) - Continued

```
1: while W is not empty do
       Remove a vertex \mu from W
2.
       for each outgoing edge (u, v) do
3.
          Remove edge (u, v) from G
4.
          Decrease in-degree of v
5.
          if d(v) = 0 then
6.
              Add v to W
7:
          end if
       end for
9:
10: end while
```


Topological Sort(Home Work)

• Prove this Topological Sort in Linear time O(V + E).

