Structural Framework Workflows for Petrel 2018

Module 8: Structural gridding for depogrids

Structural framework with Petrel 2018 – Modeling line

Agenda Structural framework– Day 3

Module 8: Structural gridding for depogrids

Learning objectives

When you complete this module, you will know how to:

- build a depogrid from a structural framework model
- run property modeling on a depogrid
- create alternative segmentations of a stair-stepped grid
- create segmentations of a depogrid

You also will know the advantages and disadvantages of stair-stepped grids and depogrid structural grids

Structural gridding for depogrids

Characteristics and workflows of depogrids

Quality control on depogrids

Reservoir compartments in a depogrid

Advantages and disadvantages of stair-stepped and Depogrid structural grids

Property modeling in depogrids

Split cells in cell-based algorithms

Split cells in object-based facies modeling

The workflow (Demo)

Depogrid workflow

- 1 Structural model
- 2 Depospace mesh
- 3 Regular grid in Depospace
- 4 Structured part
- 5 Unstructured cells (cut cells)
- 6 Depogrid

Characteristics of Depogrids

Depogrid pillars are orthogonal to the horizons and hence non-vertical and non-aligned with faults

Depogrid construct grids within each sequence independently -> Grid column offset across sequence boundaries

Pillar grid pillars

Property modeling in Depogrids (1)

- Property modeling methods are enhanced to handle splits cells
- The simbox used is the uncut grid in Depospace
- Each cut cell is mapped to a unique regular simbox cell

Split cells in cell-based algorithm

Property modeling in Depogrids (2) Split cells in object-based facies modeling

Object-based facies modeling methods on Depogrids produce results that are similar to pillar grids or stair-stepped grids.

Structural gridding for depogrids

Characteristics and workflows of depogrids

Quality control on depogrids

Reservoir compartments in a depogrid

Advantages and disadvantages of stair-stepped and Depogrid structural grids

Relative rotation angle

Orthogonality assessment

Compaction and dilation

Relative rotation angle (1)

Compares the direction of local cell axes in Geospace and globally defined cell axes in Depospace.

- 1 Global v and u axes in Depospace
- 2 Local cell v and u axes in Geological space
- 3 Comparison of v and u axes in Depospace and in Geological space

Relative rotation angle (2)

Highlights area with differences between the two axes. As part of the QC phase, ask yourself:

- Is there a geological reason for the result?
- Is there a local rotation due to Depospace flattening?
- Are small-scale individual rotations caused by input data or modeling decisions when you constructed the structural framework?

Orthogonality assessment (1)

In Depospace, the cells are a perfect cube, so the local u, v, w cell axes are mutually orthogonal.

- Orthogonality angle 3D property compares each local cell axis directions in Geospace with the vector cross product of the other two axes directions.
- Orthogonality angle 2D property measures the angle between each pair of u, v, or w local axes and returns the deviation from 90 degrees.

Orthogonality assessment (2)

Deviations from orthogonality (rotations) may have an impact on directional properties.

- Are local distortions of cells due to input data/structural model/Depospace issues?
- Larger areas have more impact on simulation.

Compaction and dilation

Compaction of dilation of each cell is the ratio of the geological

space length to the depospace/simbox length.

As part of the QC phase, ask yourself:

- Is there a geological reason for the result?
- Is there a general location dilation due to Depospace unfolding?
- Are local distortions of cells due to input data/structural model/depospace issues?

Structural gridding for depogrids

Characteristics and workflows of depogrids

Quality control on depogrids

Reservoir compartments in a depogrid

Fault-boundary connection

Vertical extent

Fault-fault connection

Structural framework modification to create isolated fault blocks

User-defined segments

Advantages and disadvantages of stair-stepped and Depogrid structural grids

Depogrid output

Reservoir compartments in a Depogrid (1)

Use to define reservoir compartments or regions for geomodeling and reservoir simulation workflows.

Regions fault blocks

User-defined segments

Reservoir compartments in a Depogrid (2)

Is there a lack of fault blocks?

- Inspect to see if gaps or leaks are present in the fault-fault connections.
 - 'Discontinuous fault intersection' report in QC manager
 - 'Fault/fault proximity' report in the QC manager
- Inspect if poor connection is present between faults and model boundary
- Inspect the vertical extent of the faults

Reservoir compartments in a Depogrid (3)

Case 1 - You realize the faults are correct and you want to structurally isolate one part of the reservoir from another.

You must modify the structural framework to create isolated fault blocks.

Reservoir compartments in a Depogrid (4)

Case 2 - You are confident the structural model and the grid structure are correct.

Define segments at a finer granularity for use in the downstream modeling and simulation workflows.

Structural gridding for depogrids

Characteristics and workflows of depogrids

Quality control on depogrids

Reservoir compartments in a depogrid

Advantages and disadvantages of stair-stepped and Depogrid structural grids

Advantages and disadvantages of stair-stepped grids

Advantages and disadvantages of depogrids

Stair-stepped grid and Depogrid: comparison

Stair-stepped grid

- Structured corner point grid
- Extensive Petrel functionality

supported

- Supports all flow simulators
- Faults look non-geological
- Handling well tops near faults
- Fault juxtaposition area approximations
- Limited structural operations support*
- Volumes depend on cell resolution

Depogrid

- Limited structural operations support*
- INTERSECT flow simulator required
- Honors structural geometry exactly
- Honors well-tops close to fault and fault-ties

Volumes largely resolution independent

Well completions on correct side of fault

Exercises and workflow example videos:

- Exercise: Build and QC a full Depogrid
- Workflow example video: Build a Depogrid
- Exercise: Build a Depogrid of selected zones from the structural framework
- Exercise: Segment your Depogrid
- Exercise: Modify a segment model
- Workflow example video: Segment your Depogrid and combine segments and regions

Summary

In this module, you learned how to:

- build a Depogrid from a structural framework model
- create alternative segmentations of your stair-stepped grid
- create your own segmentations of a Depogrid

You also learned about the advantages and disadvantages of Stair-stepped grids and Depogrid structural grids.

Learning game: Structural gridding for depogrids (1)

Instructions:

There are several questions. Select the correct answers.

Learning game: Structural gridding for depogrids (2)

How do you fix grid quality issues seen in a Depogrid?

- a. Identify problems in Depospace
- b. Identify geological/geomechanical/structural inconsistencies in the framework model
- c. Use Structural geology knowledge
- d. Examine input data and interpretation
- e. All the answers above are correct

Learning game: Structural gridding for depogrids (3)

What is the simbox for a Depogrid?

- a. It represents the unfaulted structural model from which the Depogrid is created
- b. It represent the unfolded structural model from which the Depogrid is created
- c. There is no simbox in a Depogrid
- d. Both a. and b. are correct

Learning game: Structural gridding for depogrids (4)

How can you define the compartments you want on a Depogrid?

- a. With the default Regions fault block property
- b. With user-defined segments
- c. With the Property calculator
- d. All the answers above are correct
- e. Both a. and b. are correct

