

Unifying Language Models with Knowledge Graphs

A SESHADITYA

naavi network

- Special thanks to
 - Jakob Porschmann (Google Berlin)
 - Milena Solomun
 - Michael Schäfer
 - Anuradha
 - Lavanya
 - Siva Sai

Table of Contents

- Knowledge Graphs
- Unifying Language models with Knowledge Graphs (KG)
 - KG enhanced language Model generation
 - Language Models augmented KG
 - Synergising Language Models with KG

- Evaluation and Benchmarking
- Generating Personalised educational Pathways

Knowledge Graphs

Information as entities and relationship

Key Component

Nodes

Edges

Attributes

Different Knowledge Graphs

- Encyclopedic KnowledgeGraphs
- Commonsense Knowledge Graphs
- Domain-specific Knowledge Graphs
- Multi-modal Knowledge Graphs

LLMs and Knowledge Graphs

Knowledge Graphs (KGs)

Cons:

- Implicit Knowledge
- Hallucination
- Indecisiveness
- Black-box
- Lacking Domainspecific/New Knowledge

Pros:

- Structural Knowledge
- Accuracy
- Decisiveness
- Interpretability
- Domain-specific Knowledge
- Evolving Knowledge

Pros:

- General Knowledge
- Language Processing
- Generalizability

Cons:

- Incompleteness
- Lacking Language Understanding
- Unseen Facts

Large Language Models (LLMs)

Different approaches

Unifying LMs with Knowledge Graphs

Knowledge Graph enhanced LLM generation

Graph RAGs

Retrieval-Augmented Generation (RAG) advanced retrieval technique, more accurate, contextually aware, and nuanced responses to user queries

LLM-augmented Knowledge Graphs

General framework of LLM-based KG construction

LLM-augmented Knowledge Graphs

Distilling KGs from LLMs

LLM-augmented KG-to-text Generation

Generate high-quality texts and leverage knowledge from LLMs

LLMs Synergised with Knowledge Graphs

From perspective of knowledge representation and reasoning

LLMs Synergised with Knowledge Graphs

Unified model for Embedding

KEPLER: Knowledge Embedding and Pre-trained Language Representation

Knowledge Graph Compressions

KEPLER: Knowledge Embedding and Pre-trained Language Representation

Evaluation and Benchmarking

LLM-KG-Bench: an automated and continuous evaluation platform

Source: https://github.com/AKSW/LLM-KG-Bench

Evaluation and Benchmarking

Fixing of Errors in Turtle Files

KG Creation from Factsheet Plaintext

Evaluation and Benchmarking

Direct (synthetic data) and indirect (model)

Generating Personalised Educational Pathways

Using Open-source Language models and Knowledge graphs (Graph RAGs)

Education Knowledge Graphs

Figure 1: A conceptual overview of EducOnto. The lower, middle and upper parts of the diagram depict the classes and properties related to the User Profile, High School and University, respectively.

Generating Knowledge Graphs

Synergised Architecture

perspectives of knowledge representation and reasoning

LLM HyperGraphs Architecture

Figure 1: LLMHG includes four major steps: interest angle extraction, construction of a multi-view hypergraph centered on interest angles, hypergraph structure learning for LLM content refinement, and representation fusion for recommendation prediction.

Graphs Compressions

Figure 2: Overview of our approach. We retrieve a subgraph from ConceptNet for the given input sentence, compress it, and use MoE to generate diverse sentences for containing concepts from the compressed graph.

from perspectives of knowledge representation and reasoning

Hybrid Architecture

Combining graph and vector search

Summary and Outlook

 KGs to ground LLMs and thereby providing contextual responses, limiting hallucinations, and lack of interpretability

Multi-Modal LLMs for KGs

• Development of sophisticated algorithms to ensure KGs have low-latency to enhance the effectiveness of integrations.

Synergising LMs and KGs for Birectional Reasoning in context of educational pathways

References

• Special thanks to Jakob Porschmann (Google Berlin)

• Few References:

- https://github.com/zjukg/KG-LLM-Papers
- https://seucoin.github.io/workshop/llmkg/
- https://www.researchgate.net/publication/377318531_Unifying_Large_Language_Models_and_Knowledge_Graphs_A_Roadmap
- https://github.com/AKSW/LLM-KG-Bench
- https://arxiv.org/pdf/1911.06136
- https://www.ontotext.com/knowledgehub/fundamentals/what-is-graph-rag/

THANK YOU

A SESHADITYA

Email: aditya@zedat.fu-berlin.de

Githb: https://github.com/adytiaa/naavi_os