CSE 191: Discrete Structures Introduction to Propositional Logic

Nasrin Akhter

The Foundations: Logic and Proofs

- Logic is the basis of all correct mathematical arguments (i.e., proofs).
- Important in all of CS and CEN:
 - Problem solving
 - Software engineering (<u>requirements specification</u>, <u>verification</u>)
 - Databases (<u>relational algebras</u>, <u>SQL</u>)
 - Computer architecture (<u>logic gates</u>, v<u>erification</u>)
 - AI (<u>automated theorem proving</u>,r<u>ule-based ML)</u>
 - Computer security (<u>threat modeling</u>)

• ...

Outline

- Propositional logic
 - Propositions [are declarations]
 - Logical operators
 - Truth tables

Proposition

Definition: A **proposition** is a declarative statement.

- Must be either TRUE (T) or FALSE (F).
 - Cannot be both TRUE and FALSE.
- An opinion of a specific person is a proposition.
 - Their opinion would determine the truth value.
- The bits 0/1 are used for F/T, respectively.
 - Digital logic uses 0/1 or LOW/HIGH or OFF/ON.
 - Computers use bits and logic gates for all computation.

Propositional Logic

Examples of Propositions		
Washington, D.C., is the capital of the USA	TRUE Proposition	
$2 \times 2 = 3$	FALSE Proposition	
Snow is blue	FALSE Proposition	
1 + 1 = 2	TRUE Proposition	

Propositional Logic

Examples of Non-Propositions	
What time is it? Questions are not declarations.	
Please do your homework.	Requests or commands are not declarations.
2 + 3	Not a dealation
x + 1 = 2	Neither true nor false; truth value depends on x.
Wow!	Neither true nor false

Propositions vs Non-Propositions

Propositions

- Declarative Statements
- Either true or false, but not both
 - Has truth values.
 - Can be either a true proposition or a false proposition.

Non-Propositions

- Questions
- Commands/requests
- Statements with unassigned variables
- Exclamations
- •

Propositional Variables

- g: Grans in green
- Propositional variables are variables that represent propositions.
- Commonly used letter for propositional variables are p, q, r, s, ...
 - Or the first letter of what we mean to represent
- Truth value of a proposition
 - T (true) for true propositions
 - F (false) for false propositions
- A propositional variable may be associated with a specific proposition or left as a placeholder for an arbitrary proposition.
- Compound propositions are formed by using propositional variables and logical operators.
 - Each compound proposition is a new proposition itself.

Propositional Variables

- Examples
 - p: Chicago is the capital of the USA
 - q: Albany is the capital of NYS
- "p: " has the meaning "let p be the statement '......' "
- Now, we can substitute p with the statement "Chicago is the capital of the US" and its English equivalents..

- Then we can ask
 - Is p true?
 - Is *q* true?
- What about the following sentences?
 - *p* and *q*
 - *q* or *q*

Outline

- Propositional logic
 - Propositions
 - Logical operators [form new propositions]
 - Truth tables

George Boole

Image Sources:

Wikipedia, "George Boole", https://en.wikipedia.org/wiki/George Boole, George Boole 200, "Publication of the Laws of Thought", https://georgeboole.com/boole/life/ucc/lawsofthought/

Logical Operators

- Logical operators allow combining propositions.
 - Going forward: combine propositions to form new propositions.
 - Going backwards: decompose proposition into atomics.
- The combined/compound proposition
 - If it is snowing, then I am not driving.
- The atomics
 - It is snowing [proposition]
 - I am not driving [proposition]
- The logical operator
 - If ..., then ...

Outline

- Propositional logic
 - Propositions
 - Logical operators
 - Unary operator [operates on only one proposition]
 - Binary logical operators
 - Truth tables

Negation Operator

Definition:

P

Let p be a proposition. The *negation of* p, denoted by $\neg p$ (also denoted by \bar{p}), is the statement

"It is not the case that p."

- The proposition $\neg p$ is read as "not p."
- The truth value of $\neg p$ is the opposite of the truth value of p.

Example:

- "p: CSE116 is a prerequisite for CSE 191".
- The negation of p:
 - "¬p: It is not the case that CSE 116 is a prerequisite for CSE 191"
- More simply, "¬p: CSE 116 is not a prerequisite for CSE 191"

Negation Operator

S: 7P

- $\neg p$ is a **new proposition** generated from p.
- We have generated one proposition from another proposition.
- We call the **negation operator.**

Outline

- Propositional logic
 - Propositions
 - Logical operators
 - Unary operator
 - Binary logical operators [operate on two propositions]
 - Truth tables

Binary Logical Operators

What other connectives do we have in English?

```
• . . . and . . .
```

- ... or ...
- If . . . , then . . .
- ... if and only if ...

Unary Vs. Binary Logical Operators

- Unary operators transform one proposition into another.
- Binary operators combine **two propositions** into one **compound proposition**.

Binary Logical Operators: Conjunction Example

Definition:

Let p and q be propositions. The **conjunction** of p and q, denoted by $p \wedge q$, is the statement: S: P12

"p and q"

and is only TRUE when p and q are both TRUE, and is FALSE otherwise.

Binary Logical Operators: Conjunction Example

- r: It is rainy and windy. [conjunction of two propositions]
 - *p*: it is rainy.
 - *q*: it is windy.
 - $p \land q$: it is rainy and it is windy.
 - Simplified: $p \land q$: it is rainy and windy.
 - r and " $p \wedge q$ " are interchangeable.

Note: when converting to English from symbols, try to use natural wordings.

PAR TAF

- What if it turns out that today it is rainy indeed, but not windy?
 - p is TRUE, q is FALSE, so " $p \land q$ " is "T \land F"
 - T \wedge F is FALSE \rightarrow r is FALSE

Binary Logical Operators: Disjunction Operator

Definition:

Let p and q be propositions. The **disjunction** of p and q, denoted by $p \ V q$, is the statement:

"p or q."

and is TRUE whenever p is TRUE, q is TRUE, or both are TRUE.

The **disjunction** $p \lor q$ is false when both p and q are FALSE.

Binary Logical Operators: Disjunction Operator

- r: students who took CSE115 or EAS 230 can take this class. [disjunction of two propositions]
 - p: students who took CSE115 can take this class.
 - q: students who took EAS230 can take this class.
 - $p \lor q$: students who took CSE115 can take this class or students who took EAS230 can take this class.
 - Simplified: p V q: students who took CSE115 or EAS230 can take this class.
 - r and "p V q" are interchangeable

7V2 TVT

- What if a student took both CSE115 and EAS230?
 - p is TRUE, q is TRUE, so "p V q" is "T V T"

• T V T is TRUE \rightarrow r is TRUE

Note: known as inclusive or.

Binary Logical Operators: "Exclusive or" Operator

Definition:

Let p and q be propositions. The **exclusive or** of p and q, denoted by $p \oplus q$ (read: $p \times QR q$), is the statement:

"p or q, but not both"

and is TRUE when exactly one of p and q is TRUE, but not both, and is FALSE otherwise.

Binary Logical Operators: "Exclusive or" Operator

- r: I will go to park or I will go to movie.
 - p: I will go to park.
 - q: I will go to movie.

But not both!

- $p \oplus q$: I will go to park or I will go to movie.
 - r and " $p \oplus q$ " are interchangeable

Binary Logical Operators: Implication Operator

Definition:

Conditional

Let p and q be propositions. The **implication of** p **on** q, denoted by

 $p \rightarrow q$ (read: p implies q), is the statement:

"p implies q" or,

"if p, then q"

and is FALSE when p is TRUE and q is FALSE, and TRUE otherwise. $\uparrow \rightarrow F$

- p is called the hypothesis or antecedent or premise.
- q is called the conclusion or consequence.

drive to work >
buylon
P > 4

TOT ST

F>FST

FIT

Binary Logical Operators: Implication Example

- If the night sky is clear, then stars are visible. [implication between two propositions]

 [Assuming there's no air or light pollution]]
 - p: The night sky is clear.
 - q: stars are visible.
 - $p \rightarrow q$: If the night sky is clear, stars are visible. [a conditional statement]

- What if the night sky is clear but the stars are not visible?
 - p is TRUE, q is FALSE, so " $p \rightarrow q$ " is "T \rightarrow F"
 - T \rightarrow F is FALSE

Terminology for Implication

- Implication statements are expressed in many ways.
- Common expressions of $p \rightarrow q$.

```
"if p, then q"

"if p, q"

"q if p"

"q when p"

"q unless ¬p"

"p implies q"

"p only if q"
```

```
"q whenever p"

"p is sufficient for q"

"q is necessary for p"

"a necessary condition for p is q"

"a sufficient condition for q is p"

"q follows from p"
```

```
P P F OT ST
```

Converse, Contrapositive, and Inverse

- Converse of $p \rightarrow q$: $q \rightarrow p$ bwap
- Contrapositive of $p \rightarrow q$: $\neg q \rightarrow \neg p$ swap + negate
- Inverse of $p \rightarrow q$: $\neg p \rightarrow \neg q$ negate

Example:

 $r: p \rightarrow q$: If it is sunny, then we will go to beach.

- p: it is sunny, q: we will go to beach
- Contrapositive: if we do not go to beach, then it is not sunny.
- Converse: if we go to beach, then it is sunny.
- Inverse: if it is not sunny, then we will not go to beach.
- Which of the above three is equivalent to r? [Equivalent propositions have the same truth value].

Binary Logical Operators: Bidirectional Implication Operator

Definition: P > Q AND $Q \rightarrow P$ Let p and q be propositions. The **bidirectional implication between** p **on** q, denoted by $p \leftrightarrow q$, is the statement: "p if and only if q" and is only TRUE when p and q have the same truth value, and is FALSE otherwise. The proposition of q is the statement: $q \rightarrow q$ is the statement: $q \rightarrow q$ if and only if q if $q \rightarrow q$ is the statement of $q \rightarrow q$ is the statement: $q \rightarrow q$ if $q \rightarrow q$ is the statement: $q \rightarrow q$ if $q \rightarrow q$ is the statement: $q \rightarrow q$ if $q \rightarrow q$ is the statement: $q \rightarrow q$ if $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ if $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ if $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$ is the statement of $q \rightarrow q$ if $q \rightarrow q$ is the statement of $q \rightarrow q$

Binary Logical Operators: Bidirectional Implication Example

- P \Leftrightarrow 2
- You can take the flight if and only if you buy a ticket.
 - p: you can take the flight.
 - q: you buy a ticket.
 - $p \Leftrightarrow q$: you can take the flight if and only if you buy a ticket.
 - T SF
 - You could take the flight but you didn't buy a ticket!!?
 - p is TRUE, q is FALSE, so " $p \Leftrightarrow q$ " is "T \Leftrightarrow F".
 - T \Leftrightarrow F is FALSE.

Terminology for Bidirectional Implication

- Common expressions of $p \Leftrightarrow q$.
 - "p is necessary and sufficient for q".
 - " if p then q, and conversely".
 - "p iff q".

Outline

Propositional logic

- Propositions
- Logical operators
 - Unary operator
 - Binary logical operators [operate on two propositions]

Truth tables

- Truth table construction process
- Compound propositions
- Order of operations

Truth Tables

- How can we formally specify the behavior or an operator?
 - How to clearly show the results of applying an operator (e.g., the negation operator) on one or more propositions?
- Build truth tables
 - List all possible combinations of truth values of the operands.
 - List the resulting truth value in the rightmost column.

Truth Tables: Negation Operator

• The truth value of $\neg p$ is the opposite of the truth value of p.

Two cases

- Original proposition p is false
 - New proposition $\neg p$ is a TRUE proposition
- Original proposition p is TRUE
 - New proposition $\neg p$ is a false proposition

	1
p	$\neg p$
F	- /
T	F

Example: Truth table for negation

Truth Tables: Binary Logical Operators

4,	4	1
p	q	р∧q
F	F	F
F	Т	F
Т	F	F
Ţ	丁	T

Conjunction/AND

Truth Tables: Binary Logical Operators

p	q	p V q
F	F	F
F	Ţ	Ţ
T	F	T_
Т	T /	丁 -

Disjunction/OR

p	q	<i>p</i> ⊕ <i>q</i>
F	F	F
F	T	T
T	F	T
Т	Т	F

Exclusive or/XOR

Truth Tables: Binary Logical Operators

p	q	$p \rightarrow q$
F	F	Т
F	T	T
Ţ	F	F
Т	Т	Т

Implication/ if ..., then ...

p	q	$p \Leftrightarrow q$
F	F	T
F	Т	F
Т	F	F
	T	T

Bidirectional Implication/IFF

Outline

- Propositional logic
 - Propositions
 - Logical operators
 - Unary operator
 - Binary logical operators [operate on two propositions]
 - Truth tables
 - Truth table construction process
 - Compound propositions
 - Order of operations

- Need 2ⁿ rows, where <u>n</u> is the number of propositional variables.
 - For $p \lor q$ we have 2 variables, so we need $2^2 = 4$ rows.
- Fill half of the first column with **F** values, remainder with **T**.

→	p	q	p V q
F	=		
F	=		
1	Γ		
	Т		

We need a row for each possible combination of truth values

- Need 2ⁿ rows, where n is the number of propositional variables.
 - For $p \lor q$ we have 2 variables, so we need $2^2 = 4$ rows.
- Fill half of the first column with **F** values, remainder with **T**.
- In the second column:
 - For each group of rows in first column: fill half with *F* and half with *T*.

p	q	p Vq
F	F	L
F	T	7
G	F	7
Т	Ð	+

We need a row for each possible combination of truth values

- Need 2^n rows, where n is the number of propositional variables.
 - For $p \lor q$ we have 2 variables, so we need $2^2 = 4$ rows.
- Fill half of the first column with F values, remainder with T.
- In the second column:
 - For each group of rows in first column: fill half with *F* and half with *T*.
- Determine truth value of new proposition in the last column.

p	q	p V q
F	F	F
F	Т	Т
Т	F	Т
Т	T	Т

We need a row for each possible combination of truth values

- Here we have 3 variables, so we should end up with $2^3 = 8$ rows.
- (optionally) Add additional columns to handle partial propositions.
 - We evaluate it as the proposition
 (p Vq) Vr and handle (p Vq)
 first.

3	variables	→	2 = 8	rows
	•			

	٦,	de		1
p	q	r	p Vq	p V q V r
F				
F				
F				
F				
Т				
Т				
Т				
Т				

- Here we have 3 variables, so we should end up with $2^3 = 8$ rows.
- (optionally) Add additional columns to handle partial propositions.
 - We evaluate it as the proposition
 (p Vq) Vr and handle (p Vq)
 first.

p	q	r	p V q	p V q V r
F	F			
F	F			
F	Т			
F	Т			
Т	F			
Т	F			
Т	Т			
Т	Т			

- Here we have 3 variables, so we should end up with $2^3 = 8$ rows.
- (optionally) Add additional columns to handle partial propositions.
 - We evaluate it as the proposition $(p \ Vq) \ Vr$ and handle $(p \ Vq)$ first.

p	q	r	p V q	p V q V r
F	F	F		
F	F	Т		
F	Т	F		
F	Т	Т		
Т	F	F		
Т	F	Т		
Т	T	F		
Т	Т	Т		

- Here we have 3 variables, so we should end up with $2^3 = 8$ rows.
- (optionally) Add additional columns to handle partial propositions.
 - We evaluate it as the proposition
 (p Vq) Vr and handle (p Vq)
 first.

p	q	r	p V q	p V q V r
F	F	F	F	
F	F	Т	F	
F	Т	F	Т	
F	Т	Т	Т	
Т	F	F	Т	
Т	F	Т	Т	
Т	Т	F	Т	
Т	Т	Т	Т	

- Here we have 3 variables, so we should end up with $2^3 = 8$ rows.
- (optionally) Add additional columns to handle partial propositions.
 - We evaluate it as the proposition
 (p Vq) Vr and handle (p Vq)
 first.

p	q	r	p V q	p V q V r
F	F	F	F	FF
F	F	Ţ	F	$\mathcal T$ T
F	Т	F	Т	T
F	Т	Т	Т	T
Т	F	F	Т	Т
Т	F	Т	Т	Т
Т	Т	F	Т	Т
Т	Т	Т	Т	Т

Outline

- Propositional logic
 - Propositions
 - Logical operators
 - Unary operator
 - Binary logical operators [operate on two propositions]
 - Truth tables
 - Truth table construction process
 - Compound propositions
 - Order of operations

Compound Propositions

A **compound proposition** is created by using one or more logical operators.

- Suppose p and q are propositions.
 - Compound proposition: $(p \lor q) \land \neg (p \land q)$
 - This is a new proposition formed by using a combination of AND, OR, and NOT.
- Suppose we have propositions *s* and *t* where:
 - s : Jim eats pie
 - t : Jim eats cake
- What is $u = (s \ V t) \land \neg (s \land t)$ in natural language (e.g., English)?
 - u : Jim eats pie or cake but Jim doesn't eat pie and cake.

How to build construct compound propositions?

- Consider how we build u from s and t: ____ s / t)
 u: Jim eats pie or cake but Jim doesn't eat pie and cake.
- Identify atomic propositions:

```
s: Jim eats pie. t: Jim eats cake
```

• Then we have:

 $(s \lor t)$: Jim eats pie or cake $(s \land t)$: Jim eats pie and cake

• The last piece is

 $\neg(s \land t)$: Jim doesn't eat pie and cake

• Finally, we get:

 $(s \ Vt) \land \neg (s \land t)$: Jim eats pie or cake but Jim doesn't eat pie and cake

Examples

• p: The window is closed; q: It is raining; r: I will run the air conditioner.

```
· -p:? The window is not closed.
```

- · p V -q:? The aindrow à closed on ét à not raining
- It is raining but the window is not closed: ?
- $72 \rightarrow 7P$
- If it is not raining then the window is open: ?
- p ⇔ q: ?
- $(q \land \neg p) \rightarrow \neg r$

- Recall that each logical operator creates a new proposition.
 - The outcome is a new proposition.
 - New statement must be TRUE or FALSE.

- Two ways to view a compound proposition.
 - Start with the smaller propositions and build up.
 - Start with the compound proposition and decompose.

- Is "u: Jim eats pie or cake but Jim doesn't eat pie and cake." true?
- (s Vt) A¬(s At) 3: T t: T
- <u>Scenario 1</u>: Jim eats cake and Jim eats pie are both true.
- We can evaluate u from the ground up (as a function of s and t).

```
We have that s : T, t : T
So (s \lor t) and (s \land t) are both T -(s \land t) is F
```

Finally, we can say that $(s \lor t) \land \neg (s \land t)$ is F. $(T \land F)$

 $\neg(s \land t)$ is F, so the AND evaluates to F.

Therefore, *u* is FALSE.

What if we don't know anything about the atomics that form u?

• Consider the general case, a.k.a. build the truth table.

	4	+	41	4	2=4
s	t	(s Vt)	(s ∧t)	¬(s ∧ t)	$(s \ Vt) \land \neg (s \land t)$
_					

- What if we don't know anything about the atomics that form u?
 - Consider the general case, a.k.a. build the truth table.

S	t	(s Vt)	(s At)	¬(s ∧ t)	(s Vt) ∧¬(s ∧t)
F					
F					
Т					
T					

- What if we don't know anything about the atomics that form u?
 - Consider the general case, a.k.a. build the truth table.

S	t	(s Vt)	(s At)	¬(s ∧ t)	(s Vt) ∧¬(s ∧t)
F	F				
F	Т				
Т	F				
Т	Т				

- What if we don't know anything about the atomics that form u?
 - Consider the general case, a.k.a. build the truth table.

s	t	(s Vt)	(s /lt)	¬(s ∧ t)	(s Vt) ∧¬(s ∧t)
F	F	F			
F	Т	Т			
Т	F	Т			
Т	Т	Т			

- What if we don't know anything about the atomics that form u?
 - Consider the general case, a.k.a. build the truth table.

s	t	(s Vt)	(s At)	¬(s ∧ t)	(s Vt) ∧¬(s ∧t)
F	F	F	F		
F	Т	Т	F		
Т	F	Т	F		
Т	Т	Т	Т		

- What if we don't know anything about the atomics that form u?
 - Consider the general case, a.k.a. build the truth table.

S	t	(s Vt)	(s At)	¬(s ∧ t)	(s Vt) ∧¬(s ∧t)
F	F	F	F	Т	
F	Т	Т	F	Т	
Т	F	Т	F	Т	
Т	Т	Т	Т	F	

- What if we don't know anything about the atomics that form u?
 - Consider the general case, a.k.a. build the truth table.

		_ / ,		4	
S	t	(s Vt)	(s ∧t)	¬(s ∧ t)	$\underbrace{(s \ Vt) \land \neg(s \land t)}$
F	F	F	F	Т	F
F	Т	T	F	ī	T
Т	F	T	F	T	T
Т	Т	Т	Т	F	F

- What if we don't know anything about the atomics that form u?
 - Consider the general case, a.k.a. build the truth table.

S	t	(s Vt)	(s /lt)	¬(s ∧ t)	(s Vt) ∧¬(s ∧t)
F	F	F	F	Т	F
F	Т	Т	F	Т	Т
Т	F	Т	F	Т	Т
Т	Т	Т	Т	F	F

- Scenario 2: *u* is TRUE and *s* (Jim eats pie) is TRUE.
 - What is the truth value of t?

Outline

- Propositional logic
 - Propositions
 - Logical operators
 - Unary operator
 - Binary logical operators [operate on two propositions]
 - Truth tables
 - Truth table construction process
 - Compound propositions
 - Order of operations

Precedence or Operators

Operator	Precedence	
()	0	
	1	
A V	2	
→ V	3	
θ	4	
\rightarrow	5	
\Leftrightarrow	6	

Examples
$$(\neg p) \land q \qquad \text{means} \qquad (\neg p) \land q$$

$$(p \land q) \Rightarrow r \Rightarrow \text{means} \qquad (p \land q) \Rightarrow r$$

$$p \lor (q \land r) \leftrightarrow p \Rightarrow q \not \oplus r \text{ means}$$

$$T \lor (\vdash \land T) \longleftrightarrow T \Rightarrow \vdash \not \oplus T$$

$$T \lor f \longleftrightarrow T \Rightarrow (\vdash \not \oplus T)$$

$$T \Leftrightarrow T \Rightarrow (\vdash \not \oplus T)$$

$$T \Leftrightarrow T \Rightarrow (\vdash \not \oplus T)$$

Precedence or Operators

Operator	Precedence	
()	0	
	1	
Λ	2	
V	3	
θ	4	
\rightarrow	5	
\Leftrightarrow	6	

Examples
$$\neg p \land q$$
 means $(\neg p) \land q$
 $p \land q \rightarrow r \rightarrow$ means $(p \land q) \rightarrow r$
 $p \lor q \land r \leftrightarrow p \rightarrow q \not pr$ means

 $(p \lor (q \land r)) \leftrightarrow (p \rightarrow (q \not pr))$

When in doubt, use parenthesis.