Tagging and HMMs Jonathan Stewart

1)

- i. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN Atlanta is a proper noun, so it should be coded as NNP.
- ii. Does/VBZ this/DT flight/NN serve/VB dinner/NNS Dinner is not a plural noun. Instead, it should be coded as NN.
 - iii. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP

Have is a past tense verb in this case, and should be coded as VBD.

iv. Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NN flights/NNS

Afternoon is a descriptor/adjective in this case, and should be coded as JJ.

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example	
CC	coordinating conjunction	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg present	eat	
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats	
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that	
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who	
FW	foreign word	mea culpa	RB	adverb	quickly	WPS	wh-possess.	whose	
IN	preposition/ subordin-conj	of, in, by	RBR	comparative adverb	faster	WRB	wh-adverb	how, where	
IJ	adjective	yellow	RBS	superlaty, adverb	fastest	S	dollar sign	5	
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#	
JJS	superlative adj	wildest	SYM	symbol	+,%,&	66	left quote	" or "	
LS	list item marker	1, 2, One	TO	"to"	to	**	right quote	' or "	
MD	modal	can, should	UH	interjection	ah, oops	(left paren	[, (, {, <	
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren	1,), }, >	
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	,	
NNP	proper noun, sing.	IBM	VBG	verb gerund	eating		sent-end punc	. ! ?	
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	: ;	

2)

Back given MD::

Probability of the prior word:

(3E-8)*P(VB|MD)*P(back|VB) = (3E-8)*(.7968)*(.00067)=**1.6E-11** (2.3E-13)*P(VB|VB)*P(back|VB)=(2.3E-13)*(.005)*(.00067)=7.7E-19

(1.1e-10)*P(VB|NN)*(P(back|VB)=(1.1e-10)*(.0014)*(.00067)

Since the max of the probabilities is 1.6E-11, This means that P(MD)*P(VB|MD)*P(back|VB) is the likelihood that is kept as the likelihood of 'back' being a verb classification.

Back given RB:

 $(3E-8)^*P(RB|MD)^*P(back|RB) = (3E-8)^*(.1698)^*(.0104) = \textbf{5.29e-11} \\ (2.3E-13)^*P(RB|VB)^*P(back|RB) = (2.3E-13)^*(.0514)^*(.0104) = 1.2E-16 \\ (1.1e-10)^*P(RB|NN)^*(P(back|RB) = (1.1e-10)^*(.0177)^*(.0104) = 2.0E-13 \\ \text{Since the max of the probabilities is } 5.3E-11, \text{ this means that } P(MD)^*P(RB|MD)^*P(back|RB) \text{ is kept as the likelihood of 'back' being an RB classification}$

	NNP	MD	VB	JJ	NN	RB	DT
<s></s>	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

3)

The first step is estimating how to classify the word will. To do this, it is first taking the word 'Janet', as this is the preceding word. 'Janet' has an unsmoothed probability of only being an "NNP', so there is only one preceding, non-zero state. Next, the probability of a verb, given an NNP, the probability of an MD, given an NNP, and the probability of an NN, given an NNP, are calculated, as are the emission probabilities of will being a VB, MD, or NN. Since there is only one preceding possibility, there is only one possible entry per state, and the max probability for each state is the only possible possibility. From the graph, 'will' has the highest likelihood of being an MD.

The second image shows three consecutive words. The first word, 'back' has four possible non-zero states. The second word, 'the' has two possible states. For each state in 'back' the probability associated with that state, times the probability of DT or NNP, given the four preceding tags, times the probability of 'the', given the DT or NNP are calculated. For each of those two states, the highest of the probabilities calculated are chosen. Once this is accomplished, the same process is repeated for the word 'bill'. From the above graph, it can be seen that the VB -> DT -> NN is the most likely path.