四川大学期末考试试卷(A)

(2010-2011 学年第二学期)

科 目:大学数学(II)微积分-2(课序号: 201075030)

适用专业年级:四川大学数学二类 2010 级各专业本科生

题号	 _	=	=		四	五	六	总分
得分								i

考试须知

四川大学学生参加由学校组织或由学校承办的各级各类考试,必须严格执行《四川大学考试工作管理办法》和《四川大学考场规则》.有考试违纪作弊行为的,一律按照《四川大学学生考试违纪作弊处罚条例》进行处理.

四川大学各级各类考试的监考人员,必须严格执行《四川大学考试工作管理办法》、《四川大学考场规则》和《四川大学监考人员职责》.有违反学校有关规定的,严格按照《四川大学教学事故认定及处理办法》进行处理.

得 分 评卷人

一、填空题(每小题3分,共15分)

- 1. 已知 $f'(x) \int_0^2 f(x) dx = 50$,且 f(0) = 0, f(2) = 10,则 f(x) =_______
- 2. $z = f(x,y) = x^4 + y^4 x^2 2xy y^2$, 其驻点为______.

 极小值点为______.
- $3. \quad \iint\limits_{|x|+|y|\leq 1} |xy| \, \mathrm{d}x \, \mathrm{d}y = \underline{\qquad}.$
- 4. 已知数列 $\{b_n\}$ 有 $\lim_{n\to\infty}b_n=\infty$,且 $b_n\neq 0$ $(n=1,2,\cdots)$ 则级数 $\sum_{n=1}^{\infty}\left(\frac{1}{b_n}-\frac{1}{b_{n+1}}\right)$ 的和是
- 5. 微分方程 xy" + 3y' = 0 的通解为______

1. 设 f(x), $\varphi(x)$ 在点 x = 0 的某邻域内连续,且当 $x \to 0$ 时 f(x) 是 $\varphi(x)$ 的高阶无穷小,

则当 $x \to 0$ 时, $\int_0^x f(t) \sin t dt$ 是 $\int_0^x t \varphi(t) dt$ 的 (

(A) 低阶无穷小

- (B) 高阶无穷小
- (C) 同阶但不等价的无穷小
- (D) 等价无穷小

2.
$$f(x,y) = \begin{cases} \frac{x^5 + xy}{x^4 + y^4}, & x^4 + y^4 \neq 0 \\ 0, & x^4 + y^4 = 0 \end{cases} \quad \text{if } f_x(0,0) = ($$

(A) 0

(B) 不存在但不是无穷大

(C) 1

3. 累次积分 $\int_0^{\frac{\pi}{2}} d\theta \int_0^{\cos\theta} f(r\cos\theta, r\sin\theta) r dr$ 可以写成 (

- (A) $\int_0^1 dy \int_0^{\sqrt{y-y^2}} f(x,y) dx$ (B) $\int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x,y) dx$
- (C) $\int_0^1 dx \int_0^1 f(x,y) dy$ (D) $\int_0^1 dx \int_0^{\sqrt{x-x^2}} f(x,y) dy$

4. 设 $0 \le a_n \le \frac{1}{n}$ $(n = 1, 2, \cdots)$ 则下列级数中肯定收敛的是()。

(A) $\sum_{i=1}^{\infty} a_n$

(B) $\sum_{i=1}^{\infty} \left(-1\right)^{n} a_{n}$

(C) $\sum_{n=1}^{\infty} \sqrt{a_n}$

(D) $\sum_{n=0}^{\infty} \left(-1\right)^n a_n^2$

5. 具有特解 $y_1 = e^{-x}$, $y_2 = 2xe^{-x}$, $y_3 = 3e^x$ 的三阶常系数齐次线性微分方程是(

- (A) y''' y'' y' + y = 0
- (B) y''' + y'' y' y = 0
- (C) v''' 6v'' + 11v' 6v = 0
 - (D) v''' 2v'' v' + 2v = 0

三、计算题(每题8分,共32分)

得 分 评卷人	1. 确定常数 a,b,c 的值,使	$\lim_{x \to 0} \frac{ax - \sin x}{\int_{-\infty}^{x} \frac{\ln(1+t^{3})}{\ln t}} = c$	$c \neq 0$.
VI W/		$\int_{b} \frac{dt}{t}$	

#X

得 分	
评卷人	

2. 求极限
$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} \left(\frac{xy}{x^2 + y^2} \right)^{x^2}$$
.

得分

3.计算
$$I = \iint_D \frac{x^2}{y^2} dx dy$$
, D 由曲线 $xy = 2, y = 1 + x^2$ 及直线 $x = 2$ 围成。

挨

得分	
评卷人	

4. 设 y = y(x) 是二阶线性常系数非齐次微分方程 $y'' + 2y' + y = e^{3x}$ 满足条

件
$$y'(0) = y(0) = 0$$
 的解,求极限 $\lim_{x \to 0} \frac{\ln(1+x^2)}{y(x)}$ 。

四、解答题(每题8分,共24分)

得分	
评卷人	

1. 把曲线 $y=e^{-x}$ $(x \ge 0)$, x轴, y轴和直线 $x=\xi$ $(\xi > 0)$

所围平面图形绕x轴旋转一周,得一旋转体,求此旋转体体积 $V(\xi)$:

并求满足
$$V(a) = \frac{1}{2} \lim_{\xi \to +\infty} V(\xi)$$
的 a 。

得分	
评卷人	

鉄

2. 设 $z = x^3 f(xy, \frac{y}{x})$, f 具有连续二阶导数, 求 $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x \partial y}$.

得分	
评卷人	

3. 设 $f(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{n!}$, $\left(-\infty < x < +\infty\right)$, 不求和函数,将积分 $\int_{0}^{x} t f(t) dt$

用 f(x) 表示出来.

得分	
评卷人	

五、证明题(共7分). 证明: 绝对收敛的级数一定收敛.

得 分 评卷人

六、应用题(共 7 分). 设曲线 L 的极坐标方程为 $r=r(\theta)$, $M(r,\theta)$ 为 L 上任意一点, $M_0(2,0)$ 为 L 上一定点,若极径 OM_0 , OM 与曲线 L 所围成的曲边扇形面积值等于 L 上 M_0 , M 两点间弧长值的一半,求曲线 L 的方程。

46 6 37 ++ 2 35