# оценочный лист

#### лабораторной работы по курсу ЧММФ

Тема: Разностные схемы для ОДУ-2

 Учебный год:
 2019/2020

 Преподаватель:
 Будник А.М.

Студент: Казачинский Глеб Всеволодович

Курс/подгруппа: 3/\_6б\_\_

| № | Параметры оценивания                                         | Оценка в<br>баллах | Отметка<br>студентом (знак<br>«+»)                                |
|---|--------------------------------------------------------------|--------------------|-------------------------------------------------------------------|
| 1 | Оформление отчета:                                           |                    |                                                                   |
|   | • изменен готовый отчет с учетом данных своего варианта      | 1                  | необходимые<br>формулы<br>получены и<br>набраны<br>самостоятельно |
|   | • изучена теория и понятны используемые формулы              | 2                  |                                                                   |
|   | • необходимые формулы получены и набраны самостоятельно      | 3                  |                                                                   |
| 2 | Программирование:                                            |                    |                                                                   |
|   | • изменена готовая программа с учетом данных своего варианта | 1                  |                                                                   |
|   | • изучен алгоритм расчетов и понятна его реализация в коде   | 2                  | алгоритм<br>закодирован и<br>отлажен<br>самостоятельно            |
|   | • алгоритм закодирован и отлажен самостоятельно              | 3                  |                                                                   |
| 3 | Анализ результатов:                                          |                    |                                                                   |
|   | • использован готовый отчет с учетом своего варианта         | 1                  | полученные результаты оценены самостоятельно                      |
|   | • внесены изменения в готовый отчет по результатам расчетов  | 2                  |                                                                   |
|   | • полученные результаты оценены самостоятельно               | 3                  |                                                                   |
|   | Баллы преподавателя $(0, \pm 1,, \pm 10)$ :                  | -1                 |                                                                   |

# БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Казачинский Глеб Всеволодович

Лабораторная работа №2 Уравнение переноса

Студента 3 курса 6б группы

Минск 2020

## Вариант 4

#### Постановка задачи

Задание № П-4

Для решения краевой задачи вида

$$\begin{cases} \frac{\partial u}{\partial t} - 10 \frac{\partial u}{\partial x} = 0, \\ u(0,t) = 100t^2, \quad u(x,0) = x^2, \end{cases}$$

в области  $D = \{0 \le x, t \le 1\}$  на сетке  $\omega_{h\tau}$  построить разностную схему с весами, используя четырехточечный шаблон:

$$(x,t+\tau) \qquad (x+h,t+\tau)$$

$$(x,t) \qquad (x+h,t)$$

Необходимо:

- 1. Построение сетки  $\omega_{h\tau}$
- 2. Поставить разностную задачу(схему)
- 3. Определить порядок аппроксимации разностной схемы при  $\sigma = \frac{1}{2}$ .
- 4. Исследовать устойчивость разностной схемы, используя принцип максимума.
- 5. Реализовать данную разностную схему при  $h = 0.1 \ u \ \tau$ , выбранным из условия устойчивости.
- 6. Оценить приближенное решение, анализируя погрешность аппроксимации, а также в сравнении с точным решением исходной задачи.

1 . Построение сетки  $\omega_{h\tau}$ 

$$\omega_{h,\tau} = \{(x_i, t_j), x_i = ih, t_j = h\tau, i = \overline{0, N-1}, j = \overline{0, M-1}, h = \frac{1}{N}, \tau = \frac{1}{M}\}$$

2. Построим разностную задачу(схему)

$$\begin{cases} y_t - 10(\sigma \hat{y}_x + (1 - \sigma)y_x) = 0, \\ y(x,0) = x^2, x \in \omega_h. \\ y(0,t) = 100t^2, t \in \omega_\tau. \end{cases}$$

3. Определить порядок аппроксимации разностной схемы при  $\sigma = \frac{1}{2}.$   $\psi = U_t - 10(\frac{1}{2}\hat{U}_x + \frac{1}{2}U_x) = \frac{U(x,t+\tau) - U(x,t)}{\tau} - \frac{5}{h}(U(x+h,t+\tau) - U(x,t+\tau) + U(x+h,t)) = \left[\frac{\partial U}{\partial t} = \dot{U},\frac{\partial U}{\partial x} = U'\right] = \dot{U} + \frac{\tau}{2}\ddot{U} + O(\tau^2) - 10U' - 5hU'' - 5\tau\dot{U}' + O(\tau^2 + h^2) = \left[\dot{U} - 10U' = 0, \ddot{U} = 10\dot{U}', U'' = \frac{1}{10}\dot{U}'\right] = 0$ 

 $=-rac{h}{2}\dot{U}'+O( au^2+h^2)$  => схема имеет первый порядок аппроксимации

4. Исследовать устойчивость разностной схемы, используя принцип максимума.

Запишем схему в индексной форме:

$$\frac{y_i^{j+1} - y_i^j}{\tau} - 10\left(\sigma \frac{y_{i+1}^{j+1} - y_i^{j+1}}{h} + (1 - \sigma) \frac{y_{i+1}^j - y_i^j}{h}\right) = 0$$

Собирая коэффициенты и обозначая  $\gamma = \frac{10\tau}{h}$ , представим разностное уравнение в виде:

$$\sigma \gamma y_{i+1}^{j+1} = (1 + \sigma \gamma) y_i^{j+1} - (1 - (1 - \sigma)\gamma) y_i^j - (1 - \sigma)\gamma y_{i+1}^j$$

составляем систему:

$$\begin{cases} \sigma\gamma > 0, \\ (1 - \sigma)\gamma - 1 \ge 0, \\ 1 + \sigma\gamma \ge 0, \\ -(1 - \sigma)\gamma \ge 0. \end{cases}$$

Отсюда выходит, что схема неустойчива для точки (x+h, t+tau)

5. Реализовать данную разностную схему при h = 0.1 и  $\tau$ , выбранным из условия устойчивости.

возьмём 
$$\sigma=0.45, \gamma=10,$$
 тогда  $\tau=\frac{\gamma h}{10}=0.1\,$  и:

точное решение:

$$U = (x + 10t)^2$$

график точного решения:



# график полученного решения:



модуль невязки точного и полученного решений:

 $(U_true - U) = 8.736925327799039e-13$ 

#### Код программы:

```
import numpy as np
1.
   from matplotlib import pylab
   from mpl toolkits.mplot3d import Axes3D
4.
   from numpy import linalg as LA
5.
6.
7.
   def draw(X, Y, Z):
8.
   fig = pylab.figure()
       cs = Axes3D(fiq, azim=-80)
10. cs.plot surface(X, Y, Z)
11.
       pylab.show()
12.
13.
14. def u true(x, t):
15.
       return (x + 10 * t) ** 2
16.
17.
18. def solve(N, M, x, t, sigma, gamma):
19.
       y = np.zeros((N, M))
       for i in range(N):
20.
           y[i][0] = x[i] ** 2
21.
22.
       for j in range(M):
23.
           y[0][j] = 100 * (t[j] ** 2)
24.
       for i in range (0, N - 1):
25.
           for j in range(0, M - 1):
               y[i + 1][j + 1] = (1 / (sigma * gamma)) * (
26.
27.
                           y[i][j + 1] * (1 + sigma * gamma) - y[i][j] * (1 -
    (1 - sigma) * gamma) - y[i + 1][j] * (
28.
                          1 - sigma) * gamma)
29.
       return y
30.
31.
32. sigma = 0.45
33. gamma = 10
34.
35. h = 0.1
36. tau = h * gamma / 10
38. N, M = int(1 / h), int(1 / tau)
39. x, t = np.zeros(N), np.zeros(M)
40.
41. for i in range(N):
       x[i] = i * h
43. for j in range (M):
44. t[j] = j * tau
45.
46. U_true = np.zeros((N, M))
47. for i in range(N):
48. for j in range(M):
           U_{true}[i][j] = u_{true}(x[i], t[j])
50.
51. U = solve(N, M, x, t, sigma, gamma)
53. print(f'(U true - U) = {LA.norm(U true - U)}')
54.
```

## 6. Вывод

Получили, что схема неустойчива для точки  $(x+h,t+\tau)$ . По принципу максимума получили несовместную систему. Мне удалось получить удовлетворительную невязку лишь в двух приведенных на картинках случаях при изменении  $\sigma$  и  $\gamma$ ( $\sigma$  в области [0.4, 0.6] с шагом 0.01;  $\gamma$  в области [1, 10] с шагом 0.1), что также свидетельствует о неустойчивости схемы в данной точке. Норма разности полученного приближённого решения и точного получилась равной  $10^{-13}$ . По 3D-графикам поверхности полученные в численном и аналитическом решении так же совпадают. Исходя из этого можно считать, что метод реализован правильно. Программа реализована на Python.

| sigma | gamma               | U_true - U                   |
|-------|---------------------|------------------------------|
| 0.4   | <del> </del>        | +<br>  7.186091783238147e+31 |
| 0.4   | 1.1                 | 2.512804199588536e+29        |
| 0.4   | 1.20000000000000002 | 3.854268739037014e+27        |
| 0.4   | 1.3000000000000003  | 5.932063799826697e+25        |
| 0.4   | 1.40000000000000004 | 2.528095498361094e+24        |
| 0.4   | 1.50000000000000004 | 1.0834576123455161e+2        |
| 0.4   | 1.60000000000000005 | 7.854402991102902e+21        |
| 0.4   | 1.70000000000000006 | 5.708593291734756e+20        |
| 0.4   | 1.80000000000000007 | 7.1204584281460425e+1        |
| 0.4   | 1.9000000000000008  | 8.924824762552497e+18        |
| 0.4   | 2.0000000000000001  | 1.1189171790658765e+1        |
| 0.4   | 2.1000000000000001  | 2.4587782938184874e+1        |
| 0.4   | 2.2000000000000001  | 5.438451662202768e+16        |
| 0.4   | 2.300000000000001   | 1.207719443025364e+16        |
| 0.4   | 2.4000000000000012  | 2686158603448252.5           |
| 0.4   | 2.50000000000000013 | 596936182222074.4            |
| 0.4   | 2.6000000000000014  | 240117812930493.5            |
| 0.4   | 2.70000000000000015 | 97258394626067.4             |
| 0.4   | 2.8000000000000016  | 21645115839565.492           |
| 0.4   | 2.9000000000000017  | 8821435662945.088            |
| 0.4   | 3.00000000000000018 | 3607358132433.1895           |
| 0.4   | 3.1000000000000000  | 1478601440714.0537           |
| 0.4   | 3.2000000000000000  | 606831796113.5167            |
| 0.4   | 3.3000000000000000  | 249102892663.26248           |
| 0.4   | 3.4000000000000000  | 102165956790.00932           |
| 0.4   | 3.5000000000000000  | 41816753711.518036           |
| 0.4   | 3.60000000000000023 | 17059828744.608685           |
| 0.4   | 3.70000000000000024 | 13294405892.403526           |
| 0.4   | 3.80000000000000025 | 5402534782.410275            |
| 0.4   | 3.90000000000000026 | 2179185696.4864726           |
| 0.4   | 4.000000000000000   | 870729908.8748478            |
| 0.4   | 4.100000000000000   | 673509544.8454366            |
| 0.4   | 4.200000000000000   | 264134446.8207282            |
| 0.4   | 4.30000000000000025 | 200594375.45321915           |
| 0.4   | 1 4.400000000000000 | 76047252.29183254            |
| 0.4   | 4.50000000000000036 | 55501483.639637835           |
| 0.4   | 4.600000000000000   | 19662525.26023913            |
| 0.4   | 4.7000000000000003  | 13023155.89637424            |
| 0.4   | 4.8000000000000003  | 3844814.0909224637           |
| 0.4   | 4.9000000000000004  | 1710848.1881649676           |
| 0.4   | 5.00000000000000036 | 4.454102093230724e-07        |
| 0.4   | 5.1000000000000003  | 678318.2717978476            |
| 0.4   | 5.2000000000000004  | 1219311.4320749517           |
| 0.4   | 5.3000000000000004  | 810318.1518377215            |
| 0.4   | F 4000000000000     | 1 077700 4075577213          |

| 0.4500000000000000007 | 6.9000000000000006  | 3658.761183206904      |
|-----------------------|---------------------|------------------------|
| 0.450000000000000007  | 7.0000000000000005  | 3320.9343635241767     |
| 0.450000000000000007  | 7.1000000000000005  | 3014.668446494806      |
| 0.450000000000000007  | 7.20000000000000055 | 1574.3048703044697     |
| 0.450000000000000007  | 7.3000000000000006  | 1431.3174703532907     |
| 0.450000000000000007  | 7.4000000000000006  | 1300.9629776761337     |
| 0.450000000000000007  | 7.5000000000000005  | 1181.991544209246      |
| 0.450000000000000007  | 7.6000000000000006  | 1073.2917517809178     |
| 0.450000000000000007  | 7.7000000000000006  | 554.3565181576994      |
| 0.450000000000000007  | 7.8000000000000006  | 503.3898319675518      |
| 0.450000000000000007  | 7.9000000000000006  | 456.58669715364164     |
| 0.450000000000000007  | 8.000000000000007   | 413.56741498225796     |
| 0.450000000000000007  | 8.1000000000000007  | 373.9911215394548      |
| 0.450000000000000007  | 8.2000000000000006  | 337.55137813230255     |
| 0.450000000000000007  | 8.300000000000006   | 303.9723114197807      |
| 0.450000000000000007  | 8.4000000000000006  | 154.00760398533234     |
| 0.450000000000000007  | 8.5000000000000007  | 138.11494679666816     |
| 0.450000000000000007  | 8.6000000000000007  | 123.40291651969906     |
| 0.450000000000000007  | 8.7000000000000006  | 109.77433483641214     |
| 0.450000000000000007  | 8.800000000000008   | 97.1410042908994       |
| 0.450000000000000007  | 8.900000000000007   | 85.42278444158829      |
| 0.450000000000000007  | 9.000000000000007   | 74.54677264184079      |
| 0.450000000000000007  | 9.1000000000000007  | 35.980694217096676     |
| 0.450000000000000007  | 9.2000000000000006  | 30.792998000035254     |
| 0.450000000000000007  | 9.3000000000000008  | 25.956930310409888     |
| 0.450000000000000007  | 9.4000000000000007  | 21.446266251318363     |
| 0.450000000000000007  | 9.5000000000000007  | 17.23697985435867      |
| 0.450000000000000007  | 9.6000000000000009  | 13.307038274171584     |
| 0.450000000000000007  | 9.7000000000000008  | 9.636217250334035      |
| 0.450000000000000007  | 9.800000000000008   | 6.205935434201717      |
| 0.450000000000000007  | 9.900000000000007   | 2.9991054732556655     |
| 0.450000000000000007  | 10.0000000000000007 | 8.368328270954761e-13  |
| 0.450000000000000007  | 10.1000000000000000 | 1.552483282158304      |
| 0.450000000000000007  | 10.2000000000000008 | 3.0103170285775893     |
| 0.450000000000000007  | 10.3000000000000008 | 4.379790666406217      |
| 0.450000000000000007  | 10.400000000000001  | 5.666723386297564      |
| 0.450000000000000007  | 10.5000000000000000 | 6.8765035035190385     |
| 0.450000000000000007  | 10.6000000000000000 | 8.014124169801777      |
| 0.450000000000000007  | 10.7000000000000008 | 9.084215806938948      |
| 0.450000000000000007  | 10.8000000000000008 | 10.091075591878617     |
| 0.450000000000000007  | 10.900000000000001  | 11.03869428712837      |
| 0.46000000000000001   | 1.0                 | 2.2514550501801953e+21 |
| 0.46000000000000001   | 1.1                 | 9.18897930567975e+19   |
| 0.46000000000000001   | 1.20000000000000000 | 7.909025407826912e+18  |
| 0.4600000000000001    | 1.3000000000000000  | 6.827671326069016e+17  |