# Soccer championship analysis using Monte Carlo simulation

Isa Castro

University of Neuchâtel, Switzerland

May 2019



#### Introduction

- Statistics in Sport => Soccer
- Soccer is the most famous sport specially in Brazil.
- In soccer championship, there are two stages:
  - a. Classificatory stage
  - Playoffs = 8 best teams were classified while last 4 teams were relegated

## Goal of the article

 Simulate a model to generate an entire championship (by MC simulation) and try to obtain estimators to find the final ranking that will determine which teams will be classified for the playoffs or relegated to a lower rank competition.

## Assumptions

- 1. Equality among the teams : no team has more probability than another to win the game
- 2. Independence: each game is independent to another one
- 3. The probability that a game ends up in a draw is the same for all games.

#### General ideas for the simulation

- 1. Simulate randomly the number of points for each game :
  - a. if a team win = the winner obtains 3 points.
  - b. if the team lose = the loser obtain no points.
  - c. If there is a draw = each team obtain 1 point.
- 2. Calculate the cumulative number of points for each team
- 3. We will rank them

#### Monte Carlo simulation

- 1. Determine the number of teams.
- 2. Generate random number between 0 and 1 (probabilities) according to the number of teams -> we will store it in the matrix.
- 3. We assume only a part of our matrix = when (i>j) -> to know how many points each team will obtain. Remark: The result of a game, will determine the result of his opponent
- 4. Dont take in account the diag (team1  $\times$  team1 ) and we will assign for that 0 points.
- 5. Then, we fill another matrix if the number of point for each team per game according to the probability that the match ends up in a draw.
- 6. Finally, we will sum each column of the matrix for each team.
- 7. Rank them





Figure 1: Representation of the Results Matrix, A(M,N)

1

<sup>1</sup>Article:

## Validation and Exploring the results

- We will compare the simulation model with observations (using the number of probability of draws based in previous championships -> historical data)
- 1. First validation: The accuracy of the model and the number of observation per run. We will choose 26 teams, the probability of draw will be generate by a triangular distribution with parameters (0.20, 0.24,0.30) and we will compare the mean score and the mean standard error for the position 8th and position 22th. We will do the simulation for a different numbers of observation: 200, 500, 1000, 2000, based each time in a 10 simulations runs. Here the single observation is the entire championship => single observation is a matrix

| Number of obs<br>per 10 runs | Mean 8th | MSE 8th    | Mean 22th | MSE 22th   |
|------------------------------|----------|------------|-----------|------------|
| 200                          | 38.1295  | 0.0006377  | 28.0630   | 0.0007237  |
| 500                          | 38.1266  | 0.0002449  | 28.0846   | 0.0002861  |
| 1000                         | 38.0923  | 0.0001259  | 28.1353   | 0.0001413  |
| 2000                         | 38.1141  | 0.00006340 | 28.1256   | 0.00007129 |

## Validation and Exploring the results

2. Second validation: Look at the relationship between the variability of the scores estimators (measured by the standard deviation) and the teams positions.



## Validation and Exploring the results

 Third validation and comparison: Look at the percentiles from the simulation results of necessary scores to achieve classification and avoid relegation according to the number of the teams per championship

| Percentile | 22 teams |     | 24 teams |     | 25 teams |     | 26 teams |     | 28 teams |     |
|------------|----------|-----|----------|-----|----------|-----|----------|-----|----------|-----|
|            | Class    | Rel |
| 5th        | 31       | 15  | 34       | 17  | 33       | 18  | 37       | 19  | 41       | 21  |
| 10th       | 31       | 16  | 35       | 18  | 34       | 19  | 38       | 20  | 41       | 22  |
| 15th       | 32       | 17  | 35       | 19  | 35       | 20  | 38       | 21  | 42       | 23  |
| 20th       | 32       | 18  | 35       | 20  | 35       | 21  | 39       | 22  | 42       | 24  |
| 25th       | 32       | 19  | 36       | 21  | 35       | 22  | 39       | 23  | 42       | 25  |
| 30th       | 33       | 19  | 37       | 21  | 36       | 22  | 39       | 23  | 43       | 26  |
| 35th       | 33       | 20  | 37       | 22  | 36       | 23  | 40       | 24  | 43       | 26  |
| 40th       | 34       | 20  | 37       | 22  | 37       | 23  | 40       | 24  | 44       | 26  |
| 45th       | 34       | 20  | 38       | 23  | 37       | 24  | 41       | 25  | 44       | 27  |
| 50th       | 34       | 21  | 38       | 23  | 38       | 24  | 41       | 25  | 44       | 27  |
| 55th       | 35       | 21  | 39       | 23  | 38       | 24  | 42       | 25  | 45       | 28  |
| 60th       | 35       | 22  | 39       | 24  | 39       | 25  | 42       | 26  | 45       | 28  |
| 65th       | 36       | 22  | 39       | 24  | 39       | 25  | 43       | 26  | 46       | 28  |
| 70th       | 36       | 22  | 40       | 24  | 40       | 25  | 43       | 26  | 46       | 29  |
| 75th       | 37       | 22  | 40       | 25  | 41       | 26  | 44       | 27  | 47       | 29  |
| 80th       | 38       | 23  | 41       | 25  | 41       | 26  | 45       | 27  | 48       | 29  |
| 85th       | 38       | 23  | 42       | 25  | 42       | 26  | 46       | 27  | 49       | 30  |
| 90th       | 40       | 24  | 43       | 26  | 44       | 27  | 47       | 28  | 50       | 30  |
| 95th       | 41       | 24  | 45       | 26  | 46       | 28  | 49       | 29  | 52       | 31  |

## Discussion

- My results for the simulations for the accuracy of the model according to the numbers of observations are quite similar to the authors results for first and second part.
  - 1. For the mean of the score for 8th and 22th position = similar values
  - For the MSE, I obtain smaller values => my model seems to be more
    accurate. But in general, as for the authors analysis, the standard errors
    tend to decrease with the increase of the numbers of observations per
    runs, so the variability decrease and the model becomes more accurate.
- For the plot, we can see that the variability of its score is bigger for the extremes of the ranking (between 1.5 to 3.5)
- Comparing our second table with the table of the article => I have more variability for the percentiles.
- Comparing with the real data, in 2001, the number of teams were 28 and the classification points observed were 45 and 29 to avoid the relegation. I obtain 45 for the 50th percentile and 29 for the 80th percentile. My results are not really similar to the real data at the 95th percentile but there are not completely different.

## Conclusions

- The assumptions that we made at the beginning to simplify the model are too strong:
- We just took in account the fact that a team plays against another team once. In the reality, a team plays twice against another team: one at home, and another outside so these can have an impact to the accuracy of the model.
- 2. We didnt take in account correlation between injuries/players values and games, that can have a huge impact for a game.
  - The model is to simple but give us good general idea.