Взвешенная задача вершинного покрытия и алгоритмы аппроксимации

Бруёк Алексей, Б05-022

Аннотация

В этой работе описан жадный алгоритм 2-приближения минимального вершинного покрытия с доказательством коррестности и результатами тестирования. Основным источником стала книга [2].

1 Упрощенные постановки задачи

1.1 Невзвешенный случай

Определение 1. Минимальным вершинным покрытием называется наименьшее по мощности подмножество вершин графа, являющееся вершинным покрытием графа.

Задача 1. Найти вершинное покрытие, мощности не более чем в 2 раза большей, чем у минимального за полиномиальное время. (Полиномиальный алгоритм 2-приближения)

Очевидно, что найдя максимальное по включению паросочетание, мы сможем выбрать вершины, входящие в это паросочетание и получить вершинное покрытие. При этом минимальное вершинное покрытие должно содержать по крайне мере по одной вершине из каждого из этих ребер, поэтому мы не ухудшим ответ более чем в 2 раза.

1.2 Функция весов пропорциональна deg

Определение 2. Назовем функцию весов $w:V\to \mathbb{Q}^+$ пропорционально-степенной, если существует такая константа $c\in \mathbb{Q}^+$, что

$$\forall v \in V : w(v) = c \cdot deg(v)$$

 $r\partial e \ deg(v)$ – степень вершины v.

Определение 3. Минимальным вершинным покрытием во взвешенном случае называем вершинное покрытие минимального веса.

Задача 2. Дан граф G с пропорционально-степенной функцией весов w, нужно найти 2-приближение минимального вершинного покрытия за полиномиальное время.

Лемма 1. Если w пропорционально-степенная функция весов u OPT – минимальное вершинное покрытие, то

$$w(V) \le 2 \cdot w(OPT)$$

Доказательство.

$$w(V) = \sum_{v \in V} c \cdot deg(v) = c \sum_{v \in V} deg(v) = 2c|E|$$

$$w(OPT) = \sum_{v \in OPT} c \cdot deg(v) = c \sum_{v \in OPT} deg(v)$$

Так как для каждого ребра, хотя бы один из его концов принадлежит OPT, имеем

$$\sum_{v \in OPT} deg(v) \geq |E|$$

В итоге,

$$2w(OPT) \ge 2c|E| = w(V)$$

П

Следствие 1. В случае пропорционально степенной функции весов, веса любых 2-х вершинных покрытий отличаются не более чем в 2 раза.

2 Основная задача

Задача 3. Дан граф G и произвольная функция весов w. Требуется найти 2-приближение минимального вершинного покрытия за полиномиальное время.

```
Algorithm 1 GreedyAlgo
```

```
Require: G = (V, E), w: V \to \mathbb{Q}^+ — функция весов S \leftarrow \emptyset — итоговое вершинное покрытие while V \neq \emptyset do c \leftarrow \min_{v \in V} \frac{w(v)}{deg(v)} t(v) \leftarrow c \cdot deg(v) - w \leftarrow w - t D \leftarrow \{v \in V: w(v) = 0\} S \leftarrow S \cup D — добавляем вершины в ответ V \leftarrow V \setminus D — и удаляем их из графа V \leftarrow V \setminus \{v \in V: deg(v) = 0\} end while return S
```

Краткое описание алгоритма: На каждой итерации:

- ullet находим максимальную пропорционально-степенную функцию весов t, которая не превосходит w на всех вершинах и вычитаем ее из w.
- Вершины вес которых стал нулевым добавляем в ответ и удаляем из графа.
- Вершины с нулевымы степенями просто удаляем

Очевидно, алгоритм удаляет вершины на каждом шаге, а значит он закончится и вернет ответ S.

Убедимся в корретности ответа

Пемма 2. Множество вершин S полученное алгоритмом (1) является вершинным покрытием.

Доказательство. Пусть $(u,v) \in E$ и вершины u,v не вошли в S.

Тогда u, v должны были быть удалены как вершины с нулевой степенью, что невозможно. \square

Теперь докажем, что 1 является алгоритмом 2-приближения.

Введем обозначения:

- \bullet t_i пропорционально-степенная функция весов, полученная на i-ой итерации
- $G_i = (V_i, E_i)$ граф перед *i*-ой итерацией.
- S ответ алгоритма
- ОРТ настоящее минимальное вершинное покрытие
- k количество итераций алгоритма
- w исходная функция весов

Лемма 3.

$$\forall i \in \mathbb{N} \cap [1, k] \, \forall j \in \mathbb{N} \cap [j, k] : t_i(G_j \cap S) \le 2t_i(G_j \cap OPT)$$

Доказательство. Зафикцируем $0 < i \le j \le k$.

Так как $V_j \subset V_i$, то t_i определена на V_j . Также из того, что OPT и S – вершинные покрытия G следует, что $OPT \cap G_j$ и $S \cap G_j$ – вершинные покрытия G_j . Остается применить лемму 1. и получить требуемый результат.

Теорема 1. Алгоритм 1 является алгоритмом 2-приближения.

Доказательство. Пусть $v \in S$ и v была добавлена в S на i-ом шаге, тогда верно равенство

$$w(v) = \sum_{j \le i} t_j(v) = \sum_{j: v \in G_j} t_j(v)$$

Теперь $v \in OPT \backslash S$, и v была удалена на i-ом шаге, тогда

$$w(v) \ge \sum_{j \le i} t_j(v) = \sum_{j: v \in G_j} t_j(v)$$

Переходя от отдельных вершин к множествам:

$$w(S) = \sum_{v \in S} \sum_{j: v \in V_j} t_j(v) = \sum_{j \le k} \sum_{v \in V_j} t_j(v) = \sum_{j \le k} t_j(S \cap V_j)$$

$$w(OPT) \geq \sum_{v \in OPT} \sum_{j: v \in G_j} t_j(v) = \sum_{j \leq k} t_j(G_j \cap OPT)$$

Пользуясь леммой 3 получаем

$$w(S) = \sum_{j \le k} t_j(S \cap V_j) \le 2\sum_{j \le k} t_j(G_j \cap OPT) \le 2w(OPT)$$

чтд.

3 Альтернативный алгоритм

Для сравнения приведем еще один алгоритм 2-приближения минимильного вершинного покрытия без доказательства. Алгоритм взят из лекции [1], а также реализован в библиотеке networkx.

Algorithm 2 Bar-Yehuda and Even's Greedy Algorithm

```
S \leftarrow \emptyset while E \neq \emptyset do e = (u,v) \in E – берем одно любое ребро из E if w(u) > w(v) then (u,v) \leftarrow (v,u) end if w(v) \leftarrow w(v) - w(u) S \leftarrow S \cup \{u\} V \leftarrow V \setminus \{u\} end while return S
```

Также будем рассматривать наивный алгоритм, игнорирующий веса.

4 Тестирование

Веса вершин будем считать случайным целым числом от 1 до 256.

4.1 Простые графы с ≤ 7 вершин

Рассмотрим все неизоморфные графы на не более чем 7 вершинах. Для каждого сгенерируем 100 взвешенных графов и протестируем.

Если усреднить результаты на этих 100 графах и отсортировать графы можно получить представление о весах возвращаемых вершинных покрытий:

Из графика видно, что в большинстве случаев алгоритм 1 работает лучше других, а наивный – хуже.

Для детального сравнения алгоритмов 1 и 2 будем считать отношение весов ответов на одном и том же взвешенном графе и примерное распределение этой величины:

Нетрудно заметить, что это отношение всегда находится между 0.5 и 2 (оба алгоритма дают 2-приближение минимального вершинного покрытия), а также, что в большинсве случаев (медиана) алгоритм 1 дает лучший ответ, чем 2.

4.2 Случайные графы G(n, p)

Тут построим большие случайные графы и проведем те же наблюдения, а также посмотрим на время исполнения.

Тут можно отметить, что с увелиением плотности графа или количества вершин алгоритмы начинают вести себя почти одинаково. Случай n=500, p=0.8 анализировать вообще бессмысленно.

Давайте построим аналогичные графики по времени.

Видно, что наивный алгоритм всегда работает быстрее (неудивительно). Между двумя другими алгоритмами разница несущественна, и может быть списана на реализацию.

Выведем отношение весов ответов алгоритмов 1 и 2

Тут статистика соответствует полученным ранее результатам. А именно, при большой плотности ребер и количестве вершин, результаты алгоритмов очень близки. Однако алгоритм 1 все же почти всегда немного лучше 2.

4.3 Другие виды графов

4.3.1 Планарные

Данные были взяты с [3].

4.3.2 Деревья

4.3.3 Сильно регулярные

Данные были взяты с [3].

Во всех трех случаях отмеченные закономерности также работают.

5 Выводы

Построенный алгоритм 2-приближения является достаточно эффективным в среднем даже в сравнении с другим алгоритмом 2-приближения.

Список литературы

[1] Samir Khuller, Advanced Algorithms, Lectures 4 and 5. (https://www.cs.umd.edu/class/fall2018/cmsc858E/pdfs/651/vc.pdf)

- [2] А.В.Кононов, П.А.Кононова, Приближенные алгоритмы для решения NP-Трудных задач, $(http://old.math.nsc.ru/LBRT/k5/Kononov/Kononovs_teaching_book.pdf)$
- [3] Примеры графов, (http://users.cecs.anu.edu.au/~bdm/data/graphs.html)