

亿书白皮书

亿书团队

v1.2

2016.5.1

(本版作者: Imfly Tailor Cob Mojie)

目录

1.	介绍	2
	(1) 什么是亿书	2
	(2)场景描述	2
	(3)核心目标	2
	(4)技术选型	2
	(5) 关键创新	3
	(6) 亿书组成	3
	(7) 亿书资源	3
2.	共识机制	4
	(1) 委托人	4
	(2) 网络费用	4
	(3) 点对点网络	5
3.	客户端	5
	(1) 全客户端	5
	(2)轻客户端	5
	(3)移动客户端	6
4.	核心功能	6
	(1) 自定义用户名	6
	(2) 联系人列表	6
	(3) 多重签名	6
	(4) 多功能编辑器	7
	(5) 去中心化博客	7
	(6) 自出版平台	7
	(7)版权签名与验证	8
	(8) 去中心化存储	8
5.	侧链功能	8
	(1)虚拟机	
	(2) Dapp 开发	9
	(3)Dapps 运算	
	(4)Dapps 共识算法	9
	(5)Dapps 主节点	9
	(6)Dapps 分发	9
	(7)Dapps 资金存取	9
	(8)Dapps 代币	10
6.	参考信息	10

1. 介绍

(1) 什么是亿书

亿书,是一个去中心化的出版平台。由新一代加密货币驱动,安装使用零门槛,是颠覆当前中心化的博客和传统出版机构的创新产品。具备侧链功能,方便第三方开发者无缝集成,开发出各类去中心化的应用(Dapp^[1]),打造立体的生态系统,构建覆盖全人类的智能网络。

亿书,英文名 Ebook,底层加密货币中文名"亿书币", 英文名"Ebookcoin",简称: EBC。知识是人类进步的阶梯,亿书以让积累知识、分享知识更简单作为终极目标,给人类创作注入新动力。

(2) 场景描述

对普通人而言,亿书与日常使用的办公软件(word, wps 等)相似,是一款简单的文字写作工具,具备安装简单、编辑可视、互动协作等功能,还可直接获得海量书籍。

对于博客爱好者,它可以安装在服务器端,绑定域名,提供公开访问的能力,大大简化博客安装、个性化与维护的难度。

对于专业作者,它的电子书编辑、一键发布、版权保护与交易等自出版功能,具备强大吸引力。

对于企业或社区,它的多节点协作、互动等功能,可方便地用于集体创作、版本控制等,对 撰写员工手册、说明文档、研究报告等,可大大提高工作效率。

对于出版社等企业用户和第三方开发者,可以基于亿书强大的网络和市场,使用亿书侧链、智能合约、云存储和计算节点,构建、发布个性化的去中心化软件,货币化一切有形或无形资产,并从中盈利。

(3)核心目标

亿书的核心目标是让"写作/协作"更简单、让知识有价值,为知识创作和积累注入新动力,进而建立覆盖全人类的 P2P 网络,改善人类使用网络的体验,打造包括电子商务在内的融合社会化、信息化、商业化、物联网的新一代网络。

(4) 技术选型

亿书完全基于 Node.js^[2]平台研发,后台使用 Express.js^[3]框架,前端使用 Ember.js^[4]框架,客户端使用 Electron^[5]框架,数据库使用 SQLite^[6],前后端统一使用 Javascript 脚本语言,界面使用 HTML5 和 CSS3。

(5) 关键创新

技术优势。Nodejs 是一款服务器开发处理平台,其天生的异步处理机制和强大的网络开发能力,非常适合基于事件的、实时交互的加密货币应用,为亿书高性能的即时通讯提供了坚实的技术保障。

社区优势。前后端统一的技术架构,大大降低了亿书及其侧链开发难度,任何熟悉 JavaScript 和 Node.js 的开发者,都可以快速参与进来,促使亿书形成良好的生态系统。我们做过细致调研,在《Nodejs 开发加密货币》^[7]一书里论述了 Nodejs 在开源社区的使用情况,结果是超过 70%的开源项目都是基于 Nodejs 的。未来,会有大量开发者加入亿书开发行列。

产品优势。亿书目标明确,能让读者、创作者、开发者,基于这个网络,做一切他们想做的事情——写作、设计、开发、交易等。读者可以快速找到最专业、最系统的文章、书籍和服务,创作者可以随时、安全的出售自己的研究成果,开发者可以使用侧链开发电子商务、游戏、物联网等各类商业化软件并从中盈利。

团队优势。亿书面向未来,全面打造专业技术团队。亿书结合开源团队的特点,按照核心团队、贡献者团队、支持社区三个层面,逐步打造出一个实力雄厚、操作规范、运转高效的技术团队。核心团队成员全球控制在 57 人以内,全部来自于贡献者,贡献者产生于支持社区,从而确保每一位开发者都经过长期检验和历练,都被社区高度认可。

管理优势。亿书把贡献作为唯一考量标准,构建了独特的激励机制,并写入区块链,覆盖了团队管理、产品推广和交易计算的每一个环节。对团队管理和产品推广,按照时间和贡献两个纬度设计,坚持先贡献先得且多得、多贡献多得、不贡献不得的原则,给予 EBC 奖励,逐步扩大团队和社区规模。对网络存储、计算和交易等给予固定的 EBC 奖励,促进用户、委托人维护好亿书节点网络,保证网络安全。

对于读者、作者和开发者而言,亿书就是一个知识宝库、巨大市场和一站式解决方案,是一个加密货币驱动的相互促进、互为所用、共享共赢的生态系统。

(6) 亿书组成

- ❖ 新一代极具创新精神的加密货币;
- ❖ 新一代强大的高性能对等网络;
- ❖ 面向未来的去中心化的存储和计算:
- ❖ 面向未来的易用易扩展的可编程侧链功能:
- ❖ 简单易用的可视化编辑器;
- ❖ 清晰稳定的 API 接口;
- ❖ 针对主流开源产品的官方插件;
- ❖ 面向第三方开发者的开发工具包 SDK。

(7) 亿书资源

❖ 亿书官方网站, http://ebookchain.org;

- ❖ 《Nodejs 开发加密货币》,详尽的开发文档,http://bitcoin-on-nodejs.ebookchain.org;
- ❖ 亿书币核心代码,及其辅助开发包,https://github.com/Ebookcoin;
- ❖ 亿书客户端源码,及为第三方提供的各类插件,https://github.com/Ebookchain;
- ❖ 区块链俱乐部,亿书社区,团队管理,http://chainclub.org

2. 共识机制

亿书基于 $DPOS^{[8]}$ (授权股权证明机制)共识算法,该算法是由 BTS 团队创造,是被广泛证明更加安全合理的共识机制。

DPOS 是由委托人来创建区块。委托人是被社区选举的可信帐户,得票数排行前 101 位。其它得票排名未进入前 101 名的委托人帐号被列为候选人,当从其它 EBC 持有者那里得到足够多的投票并且排名进入前 101 名后,将成为正式委托人。

所有 EBC 用户均有 101 张选票来推举他们所喜爱的委托人进入前 101,每个用户根据自己持有的 EBC 数量占总量的百分比来投票,得票总数以百分比的方式展示在委托人名单里,比如持有 100 万 EBC 的人投的票,票值就是 1%。

当 101 个区块生成周期完成后,委托人排名前 101 名的代表就会重新调整,排名下降的则被降级到候选人。每个周期的 101 个区块均由 101 个代表随机生成,每个块的时间为 10 秒,新创建的块被广播到网络上,并被添加到区块链里,在得到 6-10 个确认后,交易则被确认,一个完整的 101 个块的周期大概需要 16 分钟。

在 DPOS 里,可以发生分叉,但较长的分叉获胜。委托人必须保持在线,且有足够的在线率。在线率是用来衡量节点稳定性的一个参数,当节点错失区块创建时,就会减少在线率。用户给 101 名委托人投票是基于多因素的,在线率是影响用户是否投票的关键因素,如果委托人的在线率下降到一定程度,用户就有可能取消给他的投票。

(1) 委托人

想成为委托人,用户需要注册委托人帐户,可以通过任意版本的客户端进行注册,但只有全客户端才具有创建区块的功能,也就是说用户可以通过轻客户端注册委托人帐户,但只能使用全客户端来开启锻造区块的功能。所有 EBC 帐户都可以注册成为委托人。

新的委托人都是从候选人开始的。候选人从得票率 0 开始,候选人必须到社区拉票,以使自己能挤身前 101 个委托人。前 101 的委托人在候选状态下,是无法创建区块的。注册为委托人要支付一定的网络手续费。

(2) 网络费用

所有网络中的有效事务都必须被处理,委托人处理交易并把交易存储在新创建的区块里,为 此委托人要收取该区块中所有交易的手续费。所有网络中的交易都必须包含手续费,以防止 洪水式垃圾交易攻击。 EBC 默认的发送交易手续费为 0.1%, 例如:发送 100 个 EBC,需要包含 0.1 个 EBC 做为手续费,所以实际花费为 100.1 个 EBC。

以下是不同类型的交易所需要的费用:

- ❖ 发送交易手续费 0.1%;
- ❖ 注册成为委托人手续费 100EBC;
- ❖ 注册一个侧链应用手续费 500EBC:
- ❖ 注册一个多重签名,每名会员 10EBC;
- ❖ 用户注册实名认证信息免费,修改或删除手续费 50EBC;
- ❖ 用户出售商品(电子书等),实名认证的用户交易手续费远低于未实名认证的手续费, 费率由具体交易决定,不超过5%;

委托人代表团收取每一轮(101个块)的所有交易费用,并且平分给该轮里有创建区块的所有委托人,在该轮里没有成功创建区块的委托人则不参与分配。

(3) 点对点网络

亿书使用的是一个建立在 HTTP 协议之上的标准的对等网络(点对点网络^[9]),它使用 JSON 进行数据通信,P2P 模块包含了以下节点数据。

- ❖ 版本
- ❖ 系统
- **♦** IP
- ❖ 端口号

3. 客户端

(1) 全客户端

全客户端是针对委托人和开发者的最佳解决方案,具有亿书全部功能和 API,可用于 windows,Mac OS 以及 Linux。为了运行委托人节点,需要运行在 Linux 上。全客户端通过 点对点网络,从其它全客户端节点下载完整的区块链。

(2) 轻客户端

轻客户端适用于普通用户,只通过 HTTP 连接到其它的节点,就像一个个性化的浏览器,轻松管理帐户、撰写和发布文档、管理远端博客、买卖书籍、管理各类第三方开发的去中心化应用等,支持 Windows,Mac OS 和 Linux。

与全客户端相比,轻客户端不下载区块数据,会一直保持较小的体积。它不向网络广播密钥, 所有数据在本地签名,可以做所有类型的交易。缺点是无法铸币。

(3) 移动客户端

移动客户端,核心功能与桌面版相同,允许用户通过移动终端来操作自己的帐户。亿书提供苹果与安卓两种版本,可通过苹果应用商店和安卓应用商店下载安装。

它采用响应式设计,适配各类移动终端屏幕。它充分利用移动设备的特殊功能,如:指纹扫描及视网膜扫描验证来增加帐户的安全性,语音输入提高输入体验,GPS 定位查找附近好友等。

4. 核心功能

(1) 自定义用户名

亿书允许用户注册一个用户名,它相当于是用户帐户的一个别名,其它用户可以直接向该用户的用户名付款(类似于人们常用的支付宝帐号),而与该用户名相关联的帐户就会收到对应的交易,用户不再需要记下一长串的加密货币地址。

每个用户名都是唯一的,用户名的长度不得超过 **16** 个字符,而且,用户名注册后无法更改或删除。

亿书鼓励用户添加真实姓名和国家身份 ID,这非常有利于版权认证和保护。对于不提供真实信息的存储、交易和验证,将会收取相对较高的费用。

(2) 联系人列表

亿书允许用户维护一个联系人列表,该功能可用来存储一些常用帐户,包括合作者、客户、读者或朋友。这是一项社交功能,是亿书协作功能的基础,它类似于社交网站的关注功能。

一个用户被添加到某人的联系人列表,那在该用户的客户端里面,会显示一个待处理的联系人请求,不管该用户是否接受该请求,他都会显示在别人的联系人列表上,而如果该用户接受该请求,那他们双方都会添加对方到自己的联系人列表里。

每一个用户都会优先看到在线联系人的各类公开状态,并可直接访问该用户博客页面,阅读或购买该用户的书籍,向该用户直接发送消息等。用户的动态会推送给联系人列表里的所有人,增强用户互动性。

(3) 多重签名

亿书允许用户创建一个多重签名钱包。一个多重签名钱包就是指一个钱包有多个持有人共同 持有并管理。多重签名钱包的交易必须是由数位,或者是全部持有人共同签署的才会有效。 多重签名基于 M/N 架构,其中,多重签名钱包的所有者数量 N 最多不超过 16 个,当签署交 易时,至少要有 M 个所有者进行签名。M 必须大于 1 且小于等于 N 的数量。 一旦你从多重签名钱包发起一笔交易,所有钱包拥有者都会看到该条待处理的交易,并可决定是否要同意或者拒绝,一旦达到需要的签名数量,那钱包就会允许该交易被提交到网络,并广播全网,打包进下一个区块中。多重签名钱包的所有者可以在获得 M 个所有者同意的情况下,随时更改多重签名的规则。

亿书基于多重签名,实现电子书籍利益分享。用户作为一本书籍的核心创作者,可以创建一个多重签名钱包,将书籍的销售分成比例与合作者的贡献比例对应分配,然后发布出售。这样,每一个购买交易,都会自动按照设定的比例分配给合作者。每笔交易包含一定手续费。

(4) 多功能编辑器

亿书提供面向普通用户的可视化编辑器,具有一般编辑器的易用性,后台使用 Markdown 标记语言,可方便的导出导入 Html、Word、PDF 等各类格式。

亿书编辑器具有强大的互动协作功能,可以忠实记录每一处修改细节,自动显示合作伙伴的 修改信息,即时显示读者的评论等反馈信息。具备强大的辅助编辑功能,通过简单拖拽,就 能把零星记录的灵感组合成文。

亿书编辑器兼具阅读器的功能,可以添加批注、评论,信息直接反馈给版权所有者,与作者 进行直接互动。

(5) 去中心化博客

亿书全客户端集成了一个内容管理系统(CMS^[10]),可以简单的展示用户撰写的博客文章,用户能够方便的改变页面主题,控制文章发布状态。其他用户能够通过用户名直接进行访问,阅读和评论。

用户可以在服务器上安装全客户端,绑定域名,供全世界用户访问浏览。同时,在本地使用 轻客户端进行管理,将本地客户端与远程节点同步,从而实现远程控制,大大减少博客维护 难度。

(6) 自出版平台

亿书可以帮助用户,把自己平时积累写作的文章,方便的处理成电子书。用户可以设置封面、插页等信息,直观地设置出售的价格,与合作者的利润分成比例等。电子书的出售,要支付一定的交易费用,最高不超过5%。

用户也可以把自己联系人列表里好友的文章,直接拿来聚合成书,亿书会自动记录版权信息, 提供详尽的贡献者名单和贡献比例。这对那些开源社区、企业或团队更加方便,协作建立各 类专业文档更加简单直接。

用户可以选择一键发布到自己的博客节点主页,也可以选择在线即时交易,更可以发布或出售给第三方平台,即便用户不在线也能在线出售,供其他用户购买使用。

(7) 版权签名与验证

亿书自动对发布的文本、电子文档、图片等进行哈希运算,并将运算结果、概要、用户名、作者真实信息、时间戳等写入区块链。如果是多人合作并设置了权益比例,那么每个人的个人信息、贡献比例和权益比例也会一并写入区块链。

亿书可以方便的查看和验证一部作品的版权信息,只要用客户端打开文档,就能直观的检索 出来。亿书可以根据用户对版权的要求,做出加密、隐藏、公开、授权等各种版权保护处理。 亿书独创多重加密算法,针对文档内容,亿书可以检索区块链记录,罗列全部版权更新情况, 实现版权信息追溯验证。

亿书提供各类插件或扩展,为著名的博客、论坛等软件提供支持,把亿书网络之外的文档纳入管理。提供简单易用的 API,鼓励第三方扩展,实现对文件、图片、音频、视频、甚至包含海量数据的文件等进行版权签名和验证,从而为传统出版社等企业用户提供强大技术支撑。

(8) 去中心化存储

用户在使用亿书过程中,会产生大量数据,包括各类文本,聚合的各类电子书,及其导出的 PDF 等格式的文档,图片,视频等,还有第三方开发的去中心化的应用数据,这些文件需要 安全存储,快速分发。

亿书采用星际文件系统(IPFS^[11])作为底层存储方案。IPFS 是分布式文件系统的超媒体协议,它可以让用户的数据分布存储于网络的各个节点。当用户浏览其他用户的博客时,或下载安装第三方 Dapp 时,他的节点在下载的同时会向其它节点扩散。这意味着他的博客被越多的人浏览,数据会越多的分布于亿书网络。

这样做的好处有很多,数据分布于网络中成千上万的节点上,攻击者想要阻止其他人访问是不可能的。用户不必全天候的运行自己的节点(虽然这么做有助于网络安全),商户在关闭这个亿书客户端的时候,他的博客或书籍在网络中依然可以访问。类似于 BitTorrent,访问和下载的人越多,速度会越快,用户体验越好。

5. 侧链功能

亿书具备强大、易用、可编程的侧链(Sidechains^[12]),可为第三方开发者或出版设等企业用户,提供简单快捷的扩展服务,开发设计出适合企业业务流程的个性化的 Dapps,让亿书这个生态系统更加安全,业务范围更加广泛。主要特点是:

(1) 虚拟机

亿书采取沙箱机制,通过虚拟机来运行未经验证的 JavaScript 代码。该虚拟机是一个 Node.js 的分支,通过 API 与亿书主链、比特币区块链进行连接。

Dapp 在虚拟机中运行,使用亿书的算法做为它的共识算法,这种机制能够阻止许多可能的攻击,使用户更加安全的在本机运行 **Dapp**。用户可以在全客户端或者轻客户端上运行 **Dapps**。

(2) Dapp 开发

亿书虚拟机 API 简单易用,开发者可以选择任何 NPM 库^[13],使用所有 JavaScript 的异步编程能力,构建基于亿书的任何应用代码。

(3) Dapps 运算

亿书实现了一个可依时间计费的系统,亿书虚拟机可以追踪运行一个 Dapp 所使用的 CPU 时间,因此,节点所有者可以通过运行 Dapp 主节点来赚取 EBC 或者 BTC 作为收益。

亿书鼓励节点所有者通过提供 CPU 计算,内存,存储和其它资源来获取报酬,促进亿书网络覆盖面更广、更强大、更安全。

(4) Dapps 共识算法

Dapp 的所有者可以跟踪自己的 Dapp 被使用的情况。Dapps 内的交易是由主节点处理的,主节点是由 Dapps 所有者运行的,Dapp 所有者必须拥有一个亿书帐号,这个帐号类似多重签名的帐号,它的主要任务是在 Dapp 主节点创建共识并签名新的区块。

一旦一个新的 Dapp 区块被创建,并且在主节点内被签名,这个区块需要被转换成 SHA256 哈希。然后 Dapp 所有者提交这个哈希值给亿书区块链,亿书则存储该哈希值为 Dapp 区块。一旦亿书区块链收到一条包含 Dapp 哈希值的交易,就经由委托人对比这条哈希值与上一个啥希值,并将它保存。

(5) Dapps 主节点

Dapp 主节点是指安装了该 Dapp 并且针对该 Dapp 开放了区块创建功能的亿书节点,只有多重签名 Dapp 帐户的所有者可以通过使用密钥来运行主节点,主节点是该 Dapp 系统的核心,主节点处理交易并且创建新区块,然后由亿书区块链或者比特币的区块链来保证其安全性。

(6) Dapps 分发

Dapps 采用去中心化的存储方案(IPFS),存储为一个 ZIP 文件包,包括了 node.js 安装包,该 zip 包的 json 文件包含了安装信息,开发者可以使用其 Dapp 帐户更新安装包,多重签名的 Dapp 帐户会按其多重签名的设定,要求其签名授权对 Dapps 的更改。

(7) Dapps 资金存取

开发者可以使用 EBC 和 BTC 来作为其 Dapp 的货币。使用 Dapp 时,用户需要存入或者取出资金。当 EBC 或者 BTC 被发送到 Dapp 时,资金会在其 Dapp 的帐户内出现,用户便可在 Dapp 内使用该资金。BTC 与 EBC 的存入方式是一样的。

Dapp 的帐户就是 Dapp 的 BTC 或 EBC 地址,由 Dapp 的作者创建,所有存入的 EBC 或者 BTC 都将被存储在这里,考虑到安全性,Dapp 帐户应该是多重签名账户。

从 Dapp 取款是由主节点负责处理的,当有人发送一条取款请求, Dapp 主节点就会处理它并且把资金从 Dapp 的地址上移出到亿书区块链上或者比特币区块链上。

(8) Dapps 代币

开发者可以在自己的 Dapp 里面发行代币,使用代币作为该 Dapp 的流通货币,这些代币在该 Dapp 内可像 EBC 或者 BTC 一样使用。但是,它不能直接从一个 Dapp 转移到另一个 Dapp,必须通过亿书主链来转移。

6. 参考信息

- [1] [Decentralized Applications.]: https://github.com/DavidJohnstonCEO/DecentralizedApplications
- [2] [Node.js 官方网站]: http://nodejs.org
- [3] [Express.js 开发框架]: http://expressjs.com/
- [4] [Ember.js 开发框架]: http://emberjs.com/
- [5] [Electron 官方网站]: https://github.com/atom/electron
- [6] [Sqlite 官方网站]: http://www.sqlite.org/
- [7] [Nodejs 开发加密货币]: http://bitcoin-on-nodejs.ebookchain.org
- [8] [Bitshares DPoS.]: http://wiki.bitshares.org/index.php/BitShares
- [9] [Peer-to-Peer Wikipedia Article]: https://en.wikipedia.org/wiki/Peer-to-peer
- [10] [CMS]: https://en.wikipedia.org/wiki/Content_management_system
- [11] [IPFS]: https://ipfs.io/
- [12] [Sidechains.]: https://www.blockstream.com/sidechains.pdf
- [13] [NPM 官网]: https://www.npmjs.com/
- [14] [Factom 白皮书 v1.0]:

https://github.com/FactomProject/FactomDocs/blob/master/Factom_Whitepaper.pdf

- [15] [Crypti 白皮书 v2.1]: https://crypti.me/crypti.pdf
- [16] [Bitcoin 白皮书]: https://bitcoin.org/bitcoin.pdf