Midterm1 CPSC 323 Section

Name:

10/2020 (Tue-Thu) 100 points (20% of semester grade)

ANSWER ALL 5 QUESTIONS (20 points each) SHOW YOUR WORK AND ADD MORE PAGES AS NEEDED

- 1. a) Name the five steps of the compilation process with I/O of each step (5)?
 - b) What is the goal or purpose of the Lexical Analyzer (5)?
 - c) What is the formal definition of a DFSM, name all the components (5)?
 - d) What is the difference between a DFSM and a NFSM (5)?
- 2. For the following NFA state transition table function:

	a	b	3
0	{ }	{2}	{1}
1	{0,4}	{ }	{ }
2	{ }	{4}	{ }
3	{4 }	{ }	{ }
4	{ }	{ }	{3}
a0 = 0	and F	$= \{4\}$	

q0=0 and $F=\{4\}$

Define the e-closures (5) and convert it into a DFA table using the **subset method** (15 points)

- 3. Use Thompson's construction method to convert the following RE= a^* ($a \mid b$) into a NFA diagram (20)
- 4. Convert the following Regular Expression into an NFA diagram (10) and into a DFSM table (10). For Sigma={l,d,o}, you can use 'l' for letters, 'd' for digits and 'o' as other inputs for any other symbols. Label the starting state and final state.

$$RE = 1(1|d)*o$$

5. Based on the book, write the code for a DFSM() function that can iterates through a state transition table [1..nstates, 1..nInputs] and determine if an input string(w) is accepted or not.

Given that w is a string(1D-array of chars as a parameter) and table is a 2D-array(of numerical values and has already been pre-defined). And the function char_to_col() can convert any character to an integer value. You can also use any of the pre-existing functions getNextToken(), currentToken(), getNextChar(), currentChar(), backup(), error() or match() if needed or not.

Using pseudo-code to implement the function (maximum of 15 points)
Using syntactically and grammatically correct c/c++ or python (maximum 20 points)