Aufgabe 1

- (a) Nein, z.B. $n=2, A=\begin{pmatrix}2&2\\2&4\end{pmatrix}, B=\begin{pmatrix}1&1\\1&5\end{pmatrix}, A\cdot B$ ist nicht in S. (b) nein $(E_n, -E_n\in S; E_n-E_n=0;$ Die Nullmatrix ist aber nicht regulär).

Überprüfe das Untergruppenkriterium. Seien also $A, B \in S'$.

 $(A \cdot B^{-1})^T$ | Kommutativität = $(B^{-1} \cdot A)^T$ | Regeln beim Transponieren = $A^T \cdot (B^{-1})^T$ | A,B symmetrisch

 $= A \cdot B^{-1} \Rightarrow$ Behauptung (Mithilfe des UGK)

Aufgabe 2

 \Rightarrow : Falls H Normalteiler ist, ist H auch Untergruppe \rightarrow trivial

 \Leftarrow : H ist nicht leer und (ii) \Rightarrow H ist UG von G. Zeige mit (i), dass G abelsch ist: $y \circ x = y \circ x \circ e = y \circ x \circ (x \circ y)^{-1} \circ x \circ y \mid (i)$

 $= y \circ x \circ x^{-1} \circ y^{-1} \circ x \circ y = y \circ y^{-1} \circ x \circ y = x \circ y$. Dann ist jede UG Normalteiler von G \Rightarrow Beh.