

SEZIONI

INTRODUZIONE

Contesto e obiettivi del progetto

CARATTERISTICHE DEI SENSORI

Nome del sensore	Portata	Sensibilità	Tempo di risposta
Sensore di pH	0 - 14	±0.1 a 25 °C	< 120 s
Sensore di residuo fisso (TDS)	0 - 1000 ppm	±10% a 25 °C	-
Sensore di torbidità	0% - 3.5% (0 - 3000 NTU)	±1 NTU	< 0.5 s

GRANDEZZE FISICO/CHIMICHE

- Torbidità: misura ottica della limpidezza dell'acqua in NTU
- **pH**: misura chimica dell'acidità dell'acqua
- Residuo fisso (TDS): misura chimica della "durezza" dell'acqua

STIMA DELLA QUALITA'

Grandezza	Valori ottimali
Torbidità	< 1 NTU
рН	6.5 - 8.5
Residuo fisso (TDS)	< 100 ppm

ARCHITETTURA SOFTWARE

Comportamento del sistema

Inizializzazione

Inizializzazione delle periferiche, transizione in STOP mode

Gestione dell'interrupt

Passaggio in modalità RUN attraverso una ISR personalizzata

Acquisizione, elaborazione, visualizzazione

Gestione dei sensori, elaborazione dei dati e visualizzazione dei risultati

COMPONENTI FONDAMENTALI

Acquisizione, elaborazione, visualizzazione

ACQUISIZIONE

Nella funzione Show_Measure si procede alla calibrazione dell'Analog-to-Digital Converter (ADC) con risoluzione 12-bit attraverso ADC_Calibrate.

L'acquisizione dei dati in arrivo dai tre sensori analogici è poi possibile grazie alla funzione ADC_Select_Channel che permette di comunicare alla scheda da quale sensore (canale) vogliamo acquisire la misura.

ELABORAZIONE

I dati acquisiti vengono salvati in vettori di dimensione costante (128) in modo da poter ridurre gli errori di misurazione applicando ai valori convertiti una media aritmetica (funzione Avg_Array).

SENSORE DI pH

$$pH = -4.4522 \cdot V_c + 18.73$$

Simbolo	Significato
V	Voltaggio calcolato (V)
rawValue	Valore grezzo misurato
V _a	Tensione di alimentazione (5 V)
res	Risoluzione dell'ADC (12-bit)
V _c	Voltaggio "calibrato" (V)
k _{pH}	Costante di calibrazione
рН	Valore di pH calcolato

SENSORE DI TORBIDITA'

$$V_c = V \cdot k_{torb}$$

torb =
$$\begin{cases} 1120.4 \cdot V_c^2 + 5742.3 \cdot V_c - 4353.8 & \text{per } V_c \ge 2.63 \\ 0 & \text{per } V_c \le 2.63 \end{cases}$$

11111
O _A
O-Mills

Simbolo	Significato
V	Voltaggio calcolato (V)
V _c	Voltaggio "calibrato" (V)
k _{torb}	Costante di calibrazione
torb	Valore di torbidità calcolato (NTU)

SENSORE DI RESIDUO FISSO (TDS)

TDS =
$$\frac{k_{\text{TDS}}}{2} \cdot (133.42 \cdot V_{\text{comp}}^3 - 255.86 \cdot V_{\text{comp}}^2 + 857.39 \cdot V_{\text{comp}})$$

Simbolo	Significato
k _t	Costante di compensazione
V	Voltaggio calcolato (V)
V _{comp}	Voltaggio compensato (V)
k _{TDS}	Costante di calibrazione
TDS	Valore di TDS calcolato (ppm)

SISTEMA DI DECISIONE

A ciascuno dei parametri viene assegnato un punteggio massimo sulla scala, il quale verrà raggiunto solo se il valore specifico di quella determinata grandezza è ottimale.

VISUALIZZAZIONE

Integrando la libreria "stm32l0538_discovery_epd.h", che rende trasparente l'accesso tramite protocollo *Serial Peripheral Interface* (SPI) allo schermo ePaper (EPD), con le funzioni: BSP_EPD_DrawTriangle e
BSP_EPD_FillTriangle si riesce a generare un triangolo che esprime in modo intuitivo il punteggio di qualità dell'acqua determinato dal sistema di decisione.

RISORSE HARDWARE

53.22%

RAM

Stima della memoria RAM utilizzata dal sistema: 4.26/8 KB

89.46%

FLASH

Stima della memoria FLASH utilizzata dal sistema: 57.25/64 KB

POWER MODE

- STOP mode: modalità a basso consumo energetico che consente di non inizializzare di nuovo le periferiche
- RUN mode: l'utilizzo della tecnologia del *Dynamic*Voltage Scaling (DVS) con scala di voltaggio intermedia e HSI a 16 MHz ci permettono di ottenere un risparmio energetico legato alla scheda di circa il 15% rispetto al consumo con scala più alta

TEMPI DI ESECUZIONE

Analisi in un ipotetico scenario d'uso

POTENZA IN RUN MODE

Analisi in un ipotetico scenario d'uso

GRAZIE PER L'ATTENZIONE!

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

