Лабораторна робота No 1 МЕТОДИ РОЗВ'ЯЗАННЯ НЕЛІНІЙНИХ АЛГЕБРАЇЧНИХ РІВНЯНЬ

<u>Мета роботи:</u> засвоїти суть означених методів, навчитися відокремлювати та уточнювати корені нелінійних рівнянь.

Теоретичні відомості

1. Метод бісекції.

Дано: кінці інтервалу ${\bf a}$ та ${\bf b}$, точність ${\bf \epsilon}$. На кожному кроці інтервал ділять навпіл:

$$c := (a + b) / 2$$
,

та залишають той підінтервал, до якого належить корінь.

2. Метод хорд.

Вхідні дані ті самі. Проводиться січна до графіку функції. Точкою перетину її з віссю абсцис ділять інтервал:

$$c := (a*f(b) - b*f(a)) / (f(b) - f(a)),$$

та залишають той підінтервал, до якого належить корінь.

3. Метод Ньютона (дотичних).

Дано: початкове наближення $\mathbf{x_0}$ та точність $\boldsymbol{\varepsilon}$. Проводять дотичні до графіку функції, що дає формулу

$$x_{k+1} := x_k - f(x_k) / f'(x_k)$$
.

Хід роботи:

- 1. Допрограмовий етап. Відокремити корені Вашого рівняння. Це означає, що, застосовуючи відповідні теореми, треба визначити кількість дійсних коренів рівняння та для кожного з них обчислити інтервал, до якого відповідний корінь належить та є на ньому єдиним. Висновком цього пункту має бути фраза: "Таким чином, рівняння (1) має ... коренів:
 - о перший належить інтервалу [..., ...];
 - о другий належить інтервалу [..., ...];
 - o ..."
- 2. Запрограмувати методи бісекції, хорд та дотичних. Методи реалізувати у вигляді методів відповідного класу (об'єкту) "поліном" або у вигляді процедури, до якої передаються посилання на функцію (див. примітку 3), корінь якої шукається, межі інтервалу, до якого належить корінь, та точність, з якою треба його знайти. Обов'язковою вимогою є універсалізм реалізованих процедур. Тому треба оформити їх у вигляді окремого модуля у окремому файлі.

Критерієм закінчення мають бути нерівності

о для методу бісекції (інтервальний метод; а та b - кінці інтервалу)

$$\mid \mathbf{b} - \mathbf{a} \mid < \varepsilon$$
 Ta $\mid \mathbf{f}(\mathbf{x}_k) \mid < \varepsilon$

о для методів хорд та дотичних

$$| x_k - x_{k-1} | < \varepsilon \text{ Ta } | f(x_k) | < \varepsilon$$

- 3. Всіма методами знайти всі корені рівняння з точністю $\varepsilon = 0.00001$.
- 4. Порівняти три методи за швидкодією (за кількістю ітерацій, необхідних для досягнення заданої точності).

Звіт має містити:

- а. Аналітичну частину опис процесу відокремлення коренів.
- b. Текст програми.
- с. Результати роботи програми:
 - о для методів бісекції та хорд на кожній ітерації мають виводитися значення кінців інтервалу, що звужується, та значення функції на кінцях інтервалу;
 - о для методу Ньютона має виводитися значення кожного поточного наближення та значення функції у цій точці.
- d. Висновки результати порівняння методів за кількістю ітерацій.

Примітки

- 1. У разі значної кількості ітерацій можна вивести на друк кілька перших та кілька останніх ітерацій.
- 2. Для того, щоби можна було під час відлагодження виводити результати на екран, а потім остаточно вивести їх у файл, треба взяти собі за звичку завжди відкривати вихідний файл на запис, але спочатку надавати йому ім'я 'con', що є позначенням консолі (екрану ЕОМ). Виводячи остаточні результати, поміняйте ім'я на 'Result.txt'.

Додаток. Варіанти

Якщо викладачем не сказано дещо інше, номер варіанту обчислюється за формулою

$$N_{2 \text{ Bap}} = ((N_{2 \text{ cm}} - 1) \mod 10) + 1,$$

де N_2 сп - Ваш номер у списку групи за абеткою в груповому журналі. Параметри \mathbf{k} та α обчислюються за формулами

$$k = ((N_2 \text{ групи -1}) \text{ mod } 10) + 1,$$

$$\alpha = \{ N_2 \text{ cm - } [(N_2 \text{ cm -1}) \text{ mod } 10] - 1 \} / 10,$$

що, говорячи людською мовою, означає таке. Номер варіанту - це молодша цифра Вашого номера у журналі. Параметр \mathbf{k} - це молодша цифра номера Вашої групи. Параметр α - старша цифра Вашого номеру у журнальному списку. Загальний вигляд поліноміального рівняння:

$$a_5(1+\alpha) x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x^1 + k a_0 = 0$$

№ вар.	Коефіцієнти поліному					
	a_5	a_4	a_3	\mathbf{a}_2	a_1	a_0
1	1	-2	-4	0	2	1
2	1	-3	0	7	0	-3
3	0	1	-3	1	-2	-2
4	0	-1	3	0	-2	1
5	2	-3	-1	0	0	3
6	0	0	2	-4	-1	1
7	2	-3	1	2	-4	1
8	1	0	0	3	-2	-1
9	0	1	-2	-9	-3	-1
10	0	-2	1	5	-2	1