Premier University

Department of Computer Science and Engineering

4th Semester Special Retake Examination, 2020 Course Title: Signals and Systems

Course Code: EEE 201

Full Marks: 35; Time: 2 hours

Q-1	a.	Given $x[n] = 2, n=1,2$ $= -2, n=-1,-2,-3$ $= 0, n=0, n>2 \text{ or } n<-3$ Find $y[n] = x[3n+2]$	3.5
	b.	Categorize the signal	3.5
		x[n] = n, 0<=n<5 = 20-n, 5<=n<=10 = 0,otherwise as power or energy signal and find the energy/time average power	
Q-2	a. b.	Write short notes on: i)Impulse Function ii)Ramp Function Define causal system. Consider a system for which input-output relation is y(t) = x(t) x(t-1). Find out whether the system is linear or non-linear.	02 05
Q-3	a.	Evaluate the convolutional integral for a system with input $x(t)$ and impulse	06
	b.	response h(t), respectively given by $x(t) = u(t-1)-u(t-3)$ and $H(t) = u(t) - u(t-1)$ Describe briefly the initial value theorem.	01
Q-4	a.	Determine the Laplace transform, ROC and locations of poles and zeros of $X(s)$	04
	b.	for $x(t) = \sin(4t)u(t)$ Find the unilateral Laplace Transform of $x(t) = e^{-t}u(t) * \sin(t-3)u(t-3)$	03
Q-5	a.	The impulse response of a system is given by $h(t) = RC^{-1} * e^{-t/RC} * u(t)$	05
	b.	Find the expression for magnitude and phase response. Explain whether the function $x(t) = t$ stable or not.	02