Analiza porównawcza algorytmów sortowania

28 października 2025

1 Wprowadzenie

W niniejszym sprawozdaniu przedstawiono implementację i analizę sześciu algorytmów sortowania:

- 1. INSERTION_SORT,
- 2. INSERTION_SORT_DOUBLE,
- 3. MERGE_SORT,
- 4. MERGE_SORT3.
- 5. HEAP_SORT
- 6. HEAP_SORT_TERNARY.

Dla tablic o różnych rozmiarach zmierzono czas działania oraz zliczano liczbę porównań i przypisań. Wykresy w skali log-log potwierdzają teoretyczne rzędy złożoności - algorytmy $O(n^2)$ szybko przegrywają z wariantami $O(n \log n)$ już dla średnich n. Dla każdego algorytmu mierzono czas wykonania oraz liczby porównań i przypisań, a następnie wizualizowano wyniki w postaci tabel i wykresów.

2 Metodyka pomiarów

Pomiary wykonano w języku C++ z użyciem std::chrono::high_resolution_clock i zapisem wyników do pliku wyniki.csv. Metodyka zapewnia sprawiedliwe porównanie algorytmów:

Rozmiary i powtórzenia. Dla każdego $n \in \{100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000\}$ wykonano R=10 niezależnych prób dla każdego algorytmu. Dla każdej próby generowano nową tablicę baza wypełnioną losowymi liczbami wygenerowanymi przez funkcję fill_random.

Losowanie danych. Elementy tablicy losowano z przedziału liczb całkowitych $[-10^6, 10^6]$.

Pomiar czasu. Czas mierzono za pomocą t1 = high_resolution_clock::now() i t2 = ...::now(), a różnicę przeliczano na nanosekundy przez duration_cast<nanoseconds>(t2 - t1).count(). Dla każdego (n,r) zapisywano czasy wszystkich sześciu algorytmów, a następnie uśredniano po R próbach.

Liczniki operacji (struktura Stats). W algorytmach zliczano:

- por liczbę porównań wartości danych (np. A[j] > x, L[i] <= R[j]),
- przyp liczbę przypisań przenoszących wartości danych (np. A[1] = L[i] lub zamiany).

Dla każdego algorytmu uśredniano por i przyp po R próbach.

Format wyników. Plik wyniki.csv zawiera kolumny: n, a dla każdego algorytmu (INS, INSD, M2, M3, H2, H3) trójkę: _czas_ns, _por, _przyp. Do uśrednienia 10 wyników danego algorytmu dla ustalonego n wykorzystano llround.

TLDR;

- Każde wywołanie programu ma swój własny seed losowany na podstawie czasu systemowego std::srand(std::time(NULL));.
- Na podstawie tego użyto unsigned int base_seed = std::rand(); i otrzymano base_seed, czyli prawie już pierwszy używalny seed do generowania,
- Prawie, ponieważ base_seed będzie deterministycznie modyfikowany dla ustalonego $n \in \mathbb{N}$ s w każdej z R prób. Użyto jak widać poniżej na żaden sposób niewyróżniającego się wzoru (n,r) podczas wywołania funkcji fill_random.

```
for (int r = 0; r < R; ++r) {
   int* baza = new int[n];
   fill_random(baza, n, base_seed + n*37 + r);</pre>
```

• Warto dodać, że zastosowano $funkcję\ lambda\$ avg, która po każdej iteracji pętli zewnętrznej iterującej po $n\in\mathbb{N}$ s, czyli po R prób dla ustalonego n przyjmowała sumy: czasów [ns], powtórzeń oraz przypisań jako long double x i miała bardzo proste zadanie - uśrednić wynik za pomocą llround:

```
auto avg = [R](long double x)
{ return (long long) llround(x / R); };
```

Została użyta podczas *printowania* do ofstream out("wyniki.csv", ios::trunc); wiersza wyników dla n:

```
out << n << "," << avg(sum_tINS) << "," << avg(sum_cINS) << "," << avg(sum_aINS) << "," ...
```

3 Najciekawsze fragmenty kodu z wyjaśnieniami

INSERTION_SORT_DOUBLE — wstawianie podwójne

```
//INSERTION SORT modyfikacja
       void INSERTION_SORT_DOUBLE(int A[], int n, Stats& stats)
2
3
         if (n < 2) return;
4
5
         //sortowanie pierwszej pary
6
         stats.porownania++;
         if (A[0] > A[1]) {
           int x = A[0];
           A[0] = A[1]; stats.przypisania++;
10
           A[1] = x;
                          stats.przypisania++;
11
         }
12
13
         //kolejne pary
14
         for (int i = 2; i < n; i += 2) {
15
           //gdy nie ma pelnej pary
16
           if (i + 1 >= n) {
17
             int x = A[i];
18
             int j = i - 1;
19
             while (j \ge 0) {
                stats.porownania++;
21
                if (A[j] > x) {
22
                  A[j + 1] = A[j]; stats.przypisania++;
23
                  j--;
24
               } else break;
25
```

```
26
              A[j + 1] = x; stats.przypisania++;
27
              break;
            }
29
30
            //nastepna para tak, by a <= b
31
            int a = A[i];
32
            int b = A[i + 1];
33
            stats.porownania++;
34
35
            if (a > b) {
              int x = a;
36
              a = b;
37
                = x;
38
            }
39
40
            //wstaw wiekszy (b) - przesuwamy o 2
41
42
            int j = i - 1;
            while (j \ge 0) {
43
              stats.porownania++;
44
              if (A[j] > b) {
45
                A[j + 2] = A[j]; stats.przypisania++;
46
47
                j--;
              } else break;
48
            }
49
            A[j + 2] = b; stats.przypisania++;
50
51
52
            //wstaw mniejszy (a) - przesuwamy o 1
            while (j \ge 0) {
53
              stats.porownania++;
              if (A[j] > a) {
                A[j + 1] = A[j]; stats.przypisania++;
56
                i--;
57
              } else break;
58
            }
59
            A[j + 1] = a; stats.przypisania++;
60
         }
61
       }
62
```

Mechanika działania. Algorytm działa podobnie do klasycznego wstawiania, ale zamiast pojedynczego elementu wstawia parę elementów (a,b) tak, aby $a \leq b$. Najpierw wstawiany jest element większy, przesuwany o dwa pozycje, a następnie mniejszy o jedną. Dzięki temu redukuje się liczbę przesunięć, ponieważ wewnętrzna pętla wykorzystuje częściowo przesunięte dane z poprzedniego wstawienia.

Uzasadnienie poprawności. Dla każdej iteracji z indeksem i (rozpatrywanej pary):

```
A[0...i-1] jest posortowane niemalejąco.
```

Po wstawieniu pary (a,b), gdzie $a \leq b$, niezmiennik zostaje zachowany, ponieważ: 1. Wstawienie b nie narusza porządku w lewym fragmencie (zachodzi $A[j] \leq b$), 2. Następnie a jest wstawiane w dokładne miejsce, gdzie $A[j] \leq a \leq A[j+1]$. Indukcyjnie dla wszystkich i mamy, że po każdej iteracji fragment $A[0 \dots i+1]$ jest posortowany.

MERGE SORT3

```
//MERGE_SORT modyfikacja
void MERGE_SORT3(int A[], int p, int k, Stats& stats)
{
   if (p >= k) return;
```

```
int len = k - p + 1;
5
         int t1 = p + (len/3) - 1;
6
         int t2 = p + (2*len/3) - 1;
         // korekta granic
         if (t1 < p) t1 = p;
10
         if (t2 < t1 + 1) t2 = t1 + 1;
11
         if (t2 > k - 1) t2 = k - 1;
12
13
         MERGE_SORT3(A, p,
14
                               t1, stats);
         MERGE_SORT3(A, t1+1, t2, stats);
15
         MERGE_SORT3(A, t2+1, k,
16
17
18
         MERGE (A, p,
                        t1, t2, stats);
19
         MERGE(A, p,
                        t2, k, stats);
       }
```

Mechanika działania. Zamiast dzielić tablicę na dwie połowy, algorytm dzieli ją na trzy części o zbliżonej długości:

$$[p, t_1], [t_1+1, t_2], [t_2+1, k].$$

Każdy fragment jest sortowany rekurencyjnie, a następnie wyniki są łączone dwuetapowo (pierwsze scalanie łączy 1. i 2. część, drugie — wynik z 3. częścią).

Uzasadnienie poprawności.

• Funkcja MERGE.

Funkcja MERGE scala dwa posortowane fragmenty tablicy w jeden większy, zachowując porządek niemalejący. Porównuje elementy z lewej i prawej części, zawsze wybierając mniejszy i dopisując go do wyniku. Dzięki temu po zakończeniu działania cały fragment A[p..k] jest posortowany.

• Algorytm MERGE_SORT3.

Algorytm dzieli tablicę na trzy części, z których każda jest następnie sortowana rekurencyjnie. Gdy wszystkie trzy fragmenty są już posortowane, następują dwa kolejne scalenia: najpierw łączenie pierwszej i drugiej części, a następnie połączenie powstałego wyniku z trzecią częścią. Ponieważ każda operacja MERGE zachowuje porządek, po dwóch scaleniach otrzymujemy posortowany fragment A[p..k]. Po zakończeniu wszystkich wywołań rekurencji cała tablica A jest uporządkowana niemalejąco.

HEAP SORT TERNARY

```
//HEAP SORT modyfikacja
       void heapify_ternary(int A[], int n, int i, Stats& stats)
2
3
         int c1 = 3*i + 1;
         int c2 = 3*i + 2;
5
         int c3 = 3*i + 3;
6
         int largest = i;
         if (c1 < n) { stats.porownania++; if (A[c1] > A[largest]) largest = c1; }
         if (c2 < n) { stats.porownania++; if (A[c2] > A[largest]) largest = c2; }
         if (c3 < n) { stats.porownania++; if (A[c3] > A[largest]) largest = c3; }
11
12
         if (largest != i) {
13
           swap_count(A[i], A[largest], stats);
14
           heapify_ternary(A, n, largest, stats);
15
16
      }
```

Mechanika działania. Każdy węzeł ma do trzech dzieci (3i+1,3i+2,3i+3). Funkcja heapify_ternary utrzymuje własność kopca: element w indeksie i jest nie mniejszy od swoich dzieci. W fazie build-heap kopiec jest budowany od dołu, a następnie sortowanie polega na wielokrotnym przenoszeniu elementu maksymalnego na koniec tablicy.

Uzasadnienie poprawności.

• Funkcja heapify_ternary (lokalnie w poddrzewie).

Funkcja heapify_ternary(i) dba o to, aby element w węźle i był większy (lub równy) od swoich dzieci. Jeśli któreś z dzieci jest większe, elementy zostają zamienione miejscami, a procedura wywoływana jest rekurencyjnie dla tego dziecka. Po zakończeniu działania całe poddrzewo o korzeniu i spełnia własność kopca maksymalnego – rodzic nie jest mniejszy od żadnego ze swoich potomków.

• Algorytm HEAP_SORT_TERNARY (całość).

W pierwszej fazie budowany jest kopiec, dzięki czemu największy element znajduje się na początku tablicy. Następnie w każdej iteracji największy element (z korzenia) zamieniany jest z ostatnim nieposortowanym, po czym wywoływana jest funkcja heapify_ternary, aby przywrócić strukturę kopca w pozostałej części tablicy. W ten sposób z każdą iteracją rośnie posortowany fragment na końcu tablicy, a reszta pozostaje kopcem. Po zakończeniu wszystkich kroków cała tablica jest posortowana w porządku rosnącym.

4 Wyniki pomiarów

4.1 Tak	oela	(czas	\mathbf{w}	ns))
---------	------	-------	--------------	-----	---

$\overline{}$	INS	INSD	M2	М3	H2	Н3
100	7340	5970	20690	20860	10520	9560
200	27370	21510	42460	45470	24180	21430
500	160030	122150	108580	130900	71770	61640
1000	632010	469960	219440	239390	159870	138470
2000	2614220	1902930	483530	498590	357680	308780
5000	33089180	22949150	2480610	2603560	1519290	1330030
10000	157938310	82056700	3701390	4263850	3048180	2558480
20000	310030700	225582910	6299860	6109440	5469100	4628730
50000	1646121180	1262847360	14091930	14960820	13297230	11482840
100000	6484806260	4833272160	27762510	31965820	27549340	23682240

4.2 Wykresy czasu

Czas: INSERTION vs INSERTION_DOUBLE

Rysunek 1: Porównanie czasu: INSERTION i INSERTION_DOUBLE w log-log z odniesieniami

Rysunek 2: Porównanie czasu: INSERTION i INSERTION DOUBLE w lin-lin z odniesieniami

Czas: MERGE_SORT vs MERGE_SORT3

Rysunek 3: Porównanie czasu: MERGE_SORT vs MERGE_SORT3 w log-log z odniesieniami.

Rysunek 4: Porównanie czasu: MERGE_SORT vs MERGE_SORT3 w $\it lin-lin$ z odniesieniami.

Czas: HEAP binarny vs HEAP ternarny

Rysunek 5: Porównanie czasu: HEAP_SORT binarny vs ternarny log-log z odniesieniami.

Rysunek 6: Porównanie czasu: HEAP SORT binarny vs ternarny w lin–lin z odniesieniami

Czas wykonania algorytmów sortowania (wszystkie)

Rysunek 7: Porównanie czasu działania dla wszystkich algorytmów log-log.

4.3 Wykresy liczby porównań i przypisań

Porównanie: liczba porównań (wszystkie algorytmy)

Rysunek 8: Liczba porównań w funkcji rozmiaru danych.

Porównanie: liczba przypisań (wszystkie algorytmy)

Rysunek 9: Liczba przypisań w funkcji rozmiaru danych.

INS/INSD: Algorytmy wstawiania wykazują wzrost kwadratowy; INSERTION_SORT_DOUBLE ogranicza liczbę ruchów dzięki wstawianiu par, jednak dla rosnącego n i tak przegrywa z metodami $O(n \log n)$.

 ${\bf MERGE_SORT}$ vs ${\bf MERGE_SORT3}$: Dzielenie na 3 części zmniejsza głębokość rekurencji i może skutkować lepszym wykorzystaniem pamięci podręcznej; w wynikach widać nieznaczne korzyści czasowe dla większych n.

HEAP: Kopiec potrójny redukuje wysokość drzewa względem binarnego, ale każde **heapify** porównuje do trzech dzieci.

5 Wnioski

- Algorytmy $O(n^2)$ (INS, INSD) stają się nieefektywne już dla $n \gtrsim 2000$.
- MERGE_SORT oraz HEAP_SORT są złożoności $O(n \log n)$, więc wypadają lepiej od INS, INSD.
- ullet MERGE_SORT3 wypada minimalnie lepiej od zwykłego MERGE'a dla większych n, co przypisujemy mniejszej głębokości rekurencji.
- HEAP_SORT_TERNARY stosuje płytsze drzewo, dzięki czemu czasy są minimalnie lepsze.
- Dla praktycznych, dużych danych najlepsze są te o złożoności $O(n \log n)$.