Определение вязкости воздуха по скорости течения через тонкие трубки

Сафиуллин Роберт 13 мая 2018 г.

1 Цель работы:

1) Экспериментально выявить участок сформированного течения, определить режимы ламинарного и турбулентного течения; определить число Рейнольдса.

2 В работе используются:

Металлические трубки, укрепленные на горизонтальной подставке; газовый счетчик; микроманометр типа ММН; стеклянная U-образная трубка; секундомер.

3 Описание работы

Рассмотрим движение вязкой жидкости или газа по трубке круглого сечения. При малых скоростях потока движение оказывается ламинарным (слоистым), скорости частиц меняются по радиусу и направлены вдоль оси трубки. С увеличением скорости потока движение становится турбулентным, и слои перемешиваются. При турбулентном движении скорость в каждой точке быстро меняет величину и направление, сохраняется только средняя величина скорости.

Характер движения газа (или жидкости) в трубке определяется безразмерным числом Рейнольдса:

$$Re = \frac{vrp}{\eta}$$

В гладких трубах круглого сечения переход от ламинарного движения к турбулентному происходит при $Re \approx 1000$.

При ламинарном течении объем газа V, протекающий за время t по трубе длиной l (называемый расходом), определяется формулой Пуазейля:

$$Q_V = \frac{\pi r^4}{8l\eta} (P_1 - P_2)$$

При втекании газа в трубку из большого резервуара скорости слоев вначале постоянны по всему сечению (рис. 1). По мере продвижения газа по трубке картина распределения скоростей меняется, так как сила трения о стенку тормозит прилежащие к ней слои. Характерное для ламинарного течения параболическое распределение скоростей устанавливается на

некотором расстоянии а от входа в трубку, которое зависит от радиуса трубки г и числа Рейнольдса по формуле:

$$a \approx 0, 2r * Re$$

.

4 Ход работы

1) В работе используются две узкие трубки (1 и 2) с диаметрами: $d_1=3.85\pm0.05$ мм

$$d_2 = 5.85 \pm 0.05$$
mm

Оценим расстояние, на котором происходит формирование потока при ламинарном течении:

$$a_1 \approx 0, 2r * Re = 0, 2 * 3, 85/2 * 10^{-2} * 1000 \approx 38.5 \pm 0.5$$
cm

 $a_2 \approx 0, 2r*Re = 0, 2*5, 85/2*10^{-2}*1000 \approx 58.5 \pm 0.5$ см Давление, измеряемое микроманометром, определяется по формуле:

$$P = 0.2 * 809 * N * 9,80665$$

2) Возьмем зависимость $\triangle P(Q)$. Используя секундомер и газовый счетчик найдем расход воздуха по формуле: $Q = \triangle P/\triangle t$

Результаты запишем в таблицу:

N±0.5, дел	206	67	86	52	107
Р±0.8, Па	403.76	106,238	136.37	82.45	169.66
Q±0.05, л/с	0.14	0.085	0.98	0.07	0.101

Используя ее, построим график $\triangle P(Q)$

С помощью коэффицента наклона к графика посчитаем вязкость воздуха из формулы:

$$N = \eta^* \frac{8l}{\pi^* r^4 * 0.2 * 9.8 * 8.80665 * Q}$$

 $N=\eta^*\frac{8l}{\pi^*r^4*0.2*9.8*8.80665*Q}$ $\eta=\frac{\pi r^4k}{8l}=2.06\pm0.18$ *10⁻⁵ Па*с Табличное значение: 1.812*10⁻⁵ Па*с Γ де длина участка на котором проводятся измерения: $l{=}50~{\rm cm}$

3) Найдем число Рейнольдса по формуле: $Re = \frac{\rho vr}{\eta}$, используя, что $\rho = \frac{p_0 M}{RT_0}$ $v = \frac{Q}{\pi r^2}$

А также зная, что ламинарный режим переходит в турбулентный при значении Q=0.095 л/c

Re=893

4) Исследуем распределение давления вдоль трубки путем последовательного подсоединения манометра ко всем ее выводам. результаты Запишем в таблицу:

1 трубка					2 трубка							
Участок	3-4	2-4	2-5	1-4	1-5	Участок	1-5	1-4	1-3	2-4	2-5	3-5
N, дел	31	52	88	77	113	N, дел	103	75	53	44	70	50

Переведем эти данные в зависимость P(l):

1 трубка					2 трубка					
Участок	1-2	1-3	1-4	1-5	Участок	1-2	1-3	1-4	1-5	
l, cm	11.4	41.4	81.4	131.4	l, cm	11.4	41.4	81.4	131.4	
P±0.8, Pa	39.6	72.94	122	179.18	P±0.8, Pa	49.15	84	118.9	163.32	

Используя их, построим график P(l)

Отсюда видно, что установление потока происходит на расстояниях 30 см для 1 трубки и 42 см для 2 трубки. И поэтому можно сделать вывод, что оценка, полученная формулой, является грубой.

5) Для обеих трубок на участках со сформированным течением в ламинарном режиме снимем зависимость Q(P) и обработаем ее по формуле

$$\frac{8l\eta Q}{\pi(P_1 - P_2)} = r^n$$

$$\ln(\frac{8l\eta Q}{\pi(P_1 - P_2)}) = n \ln r$$

$$\ln 1 = n \ln 2$$

Результаты занесем в таблицу:

•	1	трубка	a	2 трубка			
N±0.5, дел	69	140	202	42	92	128	
△P±0.8, Pa	109.4	222	320.3	66.6	145.88	203	
$Q\pm0.05, \pi/c$	0.083	0.125	0.132	0.166	0.25	0.29	
Ln1	-26.72	-27	-27.33	-25.53	-25.9	-26.01	
ln2		-6.25		-5.83			

И по ним построим график Ln1(Ln2):

Отсюда n=2.9 ± 0.8 , т.к. наибольший вклад в погрешность $\frac{ln1}{ln2}$ вносит σ_P =0.8.

Итого: табличные результаты взякости воздуха и показателя степени в формуле Пуазейля находятся в пределах погрешности проделанных измерений.