

Networked Systems Security

Domain Name System Security

Panos Papadimitratos

Networked Systems Security Group www.ee.kth.se/nss

Domain Name System (DNS)

- Translate names to IP addresses
 - www.ee.kth.se q 130.237.45.45
- End-hosts query DNS servers for name-to-IP translation
- Requests are handled in a recursive manner
 - Tree-like structure

Note: DNS was not designed with security in mind

Tree structure of domain names

- Internet root
- Top-level domain servers
- Second-level domain names, registered by organizations _ (or individuals)
- Sub-domain names created by such organizations
- Names assigned to hosts
- E.g., www.ee.kth.se/nss

Tree structure of authorities

Tree structure of authorities (cont'd)

Zone delegation

- Zone delegation is delegation of trust
- Example: the .se Name Server (NS) trusts the .kth.se NS to resolve *.kth.se
- .se has no say over .kth.se other than the delegation itself

src: wikipedia.org

Recursive requests

Clients/end-hosts get the answer from the nearest NS possible

src: after wikipedia.org

Resolution example

DNS query

- Query ID is unique per query and links it to the response
- 16 bits of randomizable data

Query example

- DNS query to c.gtld-servers.net
- Gets QID 43561

Query example (cont'd)

- DNS response from c.gtld-servers.net
- Identified by QID
- Unknown address:
 Response with next NS (name and IP)
- DNS glue records
 - IP addresses of NSs within the queried domain
 - What would happen without them?

Query example (cont'd)

- DNS query to linux.unixwiz.net
- New QID
- Same sort of request

Query example (cont'd)

- DNS authoritative response from linux.unixwiz.net
- Linked by QID
- We got our answer

Checking the response

 Same UDP port we sent it from

Checking the response (cont'd)

32 bits pkt len hlen TOS WCE. identification fragment offset header cksum. TTL protocol The Query ID src IP = 64.170.162.98 linux.unixwiz.net dnsr1.sbcglobal.net matches the dst IP = 68.94.156.1pending query src port = 53 dst port = 5798OR=1 - this is a response AA=1 - Authoritative! UDP length QID = 435620p=0 rc=ok RA=0 - recursion unavailable Question count = 1Answer count = 1 Authority count = 2 Addl. Record count=2 • What is A record for www.unixwiz.net? www.unixwiz.net A = 8.7.25.94 hr unixwiz.net NS - linux.unixwiz.net 2 dv unixwiz.net NS - cs.unixwiz.net 2 dy linux.unixwiz.net A - 64.170.162.98 hr. cs.unixwiz.net A = 8.7.25.941 hr

Checking the response (cont'd)

 The Question section is a duplicate

Checking the response (cont'd)

 Response is in the same domain as the query ("bailiwick checking")

Time To Live (TTL)

- A DNS answer contains a TTL describing how long to keep the record
- An www.unixwiz.net A = 8.7.25.94 1 hr
- Answers are kept in caches
- In a way, the responder manages the cache

***		1
Au	unixwiz.net NS = linux.unixwiz.net	2 dy
Au	unixwiz.net NS = cs.unixwiz.net	2 dy
Ad	linux.unixwiz.net A = 64.170.162.98	1 hr
Ad	cs.unixwiz.net A = 8.7.25.94	1 hr

How can we inject malicious data?

DNS Attacks

- How can we abuse DNS?
- Examples:
 - Man-in-the-Middle attacks
 - Kaminsky cache poisoning
 - DNS rebinding
- Recommended reading:
 - RFC3833: Threat Analysis of the Domain Name System (DNS)

DNS Attacks (cont'd)

- Why would we want to attack DNS?
 - To pretend to be someone else
 - To redirect users to where we want them to
 - Fun and profit

Man-in-the-Middle

- The adversary can change the response, drop it, or create its own in an arbitrary manner
- Sometimes used by governments, asking ISPs to
 - Provide "erroneous" responses
 - Drop queries for specific sites

Government-in-the-Middle

- The Pirate Bay, along with several torrent sites, has been DNS-blocked in several countries
 - Is this how DNS was meant to be used?

Government-in-the-Middle (cont'd)

- In 2007 koreabonsai.com was blocked by Swedish ISPs, since the police listed it as child pornography
- Such lists mostly block their intended targets, but is there due process?

Government-in-the-Middle (cont'd)

 SOPA/PIPA in the USA contained DNS blocking sections, causing Wikipedia and others to blackout in protest

Kaminsky cache poisoning

Let client query (1) for random.trusted.com

- Let client query for random.trusted.com (1)
- The local dns server will ask/look for ns.trusted.com (2)

- Let client query for random.trusted.com (1)
- The local DNS server will ask/look for ns.trusted.com (2)
- The attacker sends multiple responses (3) with different QID.
 If any one (3) matches (2), the attacker will now "own" trusted.com

- Let client query for random.trusted.com (1)
- The local DNS server will ask/look for ns.trusted.com (2)
- The attacker sends multiple responses (3) with different QID. If any one (3) matches (2), the attacker will now "own" trusted.com
- Unless (4) arrives first

- . . .
- Unless (4) arrives first
- If the attack fails, let the client query (5) for random2.trusted.com

Mitigation: Increase randomization

- Query ID is 16 bits
- Source port is 16 bits, and the DNS server can allocate a range of them, e.g., 11 bits
- 2^27 is much bigger than 2^16
- DNSSEC would solve this, but still has not been fully deployed

DNS Rebinding

• (1) is query for www.adversary

- (1) is query for www.adversary
- (2) is a correct response pointing to (3), but with a short TTL

- (1) is query for www.adversary
- (2) is a correct response pointing to (3), but with a short TTL
- Client queries again, but now get an IP to (4)

- (1) is query for www.adversary
- (2) is a correct response pointing to (3), but with a short TTL
- Client queries again, but now get an IP to (4)

- Circumvents the same-origin policy
 - See the lecture on web security

- Browser mitigation: DNS Pinning
 - Refuse to switch to a new IP
 - But various services does this in a legitimate way
 - Proxies, VPN, dynamic DNS, ...
- Server-side defenses
 - Authenticate users with something other than IP
 - Reject HTTP requests with an unrecognized host header
- Firewall defenses
 - Check for external names resolving to internal addresses

Domain Name System Security Extensions (DNSSEC)

- Same principle as DNS
- All answers are digitally signed, to provide authentication
- New resource records (see RFC4034)
 - RRSIG DNS
 - Digital signature on the resource records in the response
 - DNSKEY
 - Public key that corresponds to the private used for the RRSIG
 - DS: Delegation Signer
 - Authenticate the DNSKEY record, i.e., a sub-domain
 - NSEC, to prove that some sub domains do not exist

DNSSEC (cont'd)

- Responses are not encrypted, i.e., no confidentiality
- Challenges as those for deploying a PKI
 - Centralized trust
 - Certificate revocation

DNSSEC NSEC

- Denial of existence records contains Next Secure (NSEC) resource records
- "NSEC RRs assert which names do not exist in a zone by linking from existing name to existing name along a canonical ordering of all the names within a zone." RFC4033

DNSSEC NSEC (cont'd)

- Allows for zone walking, i.e., zone enumeration
 - 1) Query for <random>.domain.com
 - 2) If domain exits, store it and repeat 1
 - 3) Get two valid sub-domain names, say a and b, store them
 - 4) Repeat step 1 for b1.domain.com
 - 5) When the complete linked list is found, the entire domain is mapped
- Potentially exposing servers not meant for public use
 - E.g., counteract the trouble of finding IPv6 hosts in the vast number space

DNSSEC NSEC3

- Hashed Authenticated Denial of Existence (NSEC3)
- Owner names are
 - Hashed, in order to hide them
 - Chained in hash order
- Still possible to zone walk to enumerate hosts
- See a discussion of NSEC/NSEC3 (which are mutually exclusive) here:

http://www.internetsociety.org/deploy360/resources/dnssec-nsec-vs-nsec3/

DNSSEC Deployment

- 2010-07-15: Distribution of possible-to-validate signed root zone; publication of root zone trust anchor
- Domain owners, ISPs, and end users have been slow to adopt
- Deployment maps:
 - http://www.internetsociety.org/deploy360/dnssec/maps/

Summary

- DNS is a tree, with delegated trust
- DNS was not designed with security in mind
- Query IDs does not provide adequate protection
- DNSSEC addresses issues, but it is not everywhere just yet

Extra reading

- Request for Comments
 - RFC3833: Threat Analysis of the Domain Name System (DNS)
 - RFC4033: DNS Security Introduction and Requirements
 - RFC4034: Resource Records for the DNS Security Extension
- An Illustrated Guide to the Kaminsky DNS Vulnerability
 - http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html