Institut für Geodäsie and Photogrammetrie

ETH Zürich

Übung zu Satellitengeodäsie

Herbst Semester 2021

4. Übung

Planeten- und Satellitenbahnen, Achtung Abgabe: Montag, 20. December 2021. 08:00h (CET)!

- 1. Die Halbachse der Erdumlaufbahn des Mondes beträgt 400'000 km. Seine Umlaufzeit beträgt etwa 27 Tage. Schätzen Sie die gesamte Masse des Erde-Mond-Systems. (Gravitationskonstante: $G=6.673\cdot 10^{-11}~m^3kg^{-1}s^{-2}$)
- 2. Für einen Satelliten, der sich um die Erde bewegt, sei die Umlaufzeit T und die pro Zeiteinheit überstrichene Fläche c gegeben:

$$T = 8720 s$$

 $c = 9.448 \times 10^9 m^2/s$
 $GM = 3.986 \times 10^{14} m^3/s^2$

- ullet Bestimmen Sie die Große und Kleine Halbachse a und b der Ellipse.
- Bestimmen Sie die wahre Anomalie zum Zeitpunkt $t_1=2^h\ 30^m$, wenn der Durchgang durch das Perigäum bei $t_0=2^h\ 20^m$ liegt.
- Bestimmen Sie die Koordinaten x, y des Satelliten und seine Geschwindigkeit bei t_1 , im System der Bahnebene (x-Achse in Richtung Perigäum, z-Achse senkrecht zu Bahnebene, y-Achse ergänzt das Rechtssystem).
- 3. Die Umlaufzeit eines Satelliten beträgt $T=2^h~30^m~20^s$. Die numerische Exzentrizität der Satellitenbahn beträgt e=0.3. Zum Zeitpunkt $t=16^h~45^m~50^s$ ist die wahre Anomalie $\nu=51^\circ~30'~36^{''}$. Wann in der Zulunft erreicht der Satellit den nächsten (Perigäum) und fernsten (Apogäum) Punkt in der Ellipsenbahn?
- 4. Ein Satellit bewegt sich auf einer Kreisbahn über dem Erdäquator mit einer Winkelgeschwindigkeit von $\omega = 7.29 \times 10^{-5} \ rad/s$, was der Winkelgeschwindigkeit der Erde entspricht. Berechnen Sie die Höhe H des Satelliten über der Erdoberfläche (Erdradius 6378 km).

Interpretieren Sie ihre Resultate.

Als Abgabe bitte folgende zwei Dateien an rossiy@geod.baug.ethz.ch schicken. Verspätete Abgaben werden nicht berücksichtigt.

- Python oder Matlab Code (.py, .ipynb, .mat) oder Handrechnung (.pdf)
- Datei mit Plots, Interpretation (.pdf)

Abgabe: Montag, 20. December 2021. 08:00h (CET)