```
. or _mod = modifier_ob.
mirror object to mirror
mirror_mod.mirror_object
peration == "MIRROR_X":
irror_mod.use_x = True
"Irror_mod.use_y = False
lrror_mod.use_z = False
 _operation == "MIRROR_Y"
lrror_mod.use_x = False
mirror_mod.use_y = True
mirror mod.use z = False
 _operation == "MIRROR_Z"
 Mrror mod.use_x = False
 #rror_mod.use_y = False
 lrror_mod.use_z = True
  election at the end -add
  ob.select= 1
  er ob.select=1
   eneral Guidance
  ata.objects[one.name].sel
```

Hung-yi Lee 李宏毅

```
x mirror to the select
x mirror to the select
yect.mirror_mirror_x"
rror x"

ntext):
xt.active_object is not
```

Framework of ML

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \dots, (x^N, \hat{y}^N)\}$$

Testing data:
$$\{x^{N+1}, x^{N+2}, \dots, x^{N+M}\}$$

Speech Recognition

x: ***

 \hat{y} : phoneme

Image Recognition

 \hat{y} : soup

Speaker Recognition

x:

 \hat{y} : John (speaker)

Machine Translation

x: 痛みを知れ

 \hat{y} : 了解痛苦吧

Framework of ML

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^N, \hat{y}^N)\}$$

Training:

Testing data:
$$\{x^{N+1}, x^{N+2}, \dots, x^{N+M}\}$$

Use $y = f_{\theta^*}(x)$ to label the testing data

$$\{y^{N+1}, y^{N+2}, \dots, y^{N+M}\}$$
 Upload to Kaggle

Model Bias

The model is too simple.

 $y = f_{\boldsymbol{\theta}}(\boldsymbol{x})$ $f_{\theta^1}(x)$ $f^*(x)$ small loss

find a needle in a haystack ...

... but there is no needle

 Solution: redesign your model to make it more flexible

$$y = b + wx_1$$
Deep Learning (more neurons, layers)
$$y = b + \sum_{j=1}^{56} w_j x_j$$

$$y = b + \sum_{i} c_i sigmoid\left(b_i + \sum_{j=1}^{56} w_{ij}x_j\right)$$

too small ...

Optimization Issue

• Large loss not always imply model bias. There is another possibility ...

Optimization Issue

 Diagnosis: large loss on training data, and you believe your model has sufficient flexibility (?)

Optimization Issue

- Diagnosis: large loss on training data, and you believe your model has sufficient flexibility (?)
 - Gaining the insights from comparison
 - Start from shallower networks (or other models), which are easier to train.
 - If deeper networks do not obtain smaller loss on training data, then there is optimization issue.

	1 layer	2 layer	3 layer	4 layer	5 layer
2017 – 2020	0.28k	0.18k	0.14k	0.10k	0.34k

 Solution: More powerful optimization technology (next lecture)

 Small loss on training data, large loss on testing data. Why?

An extreme example

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \dots, (x^N, \hat{y}^N)\}$$

$$f(x) = \begin{cases} \hat{y}^i & \exists x^i = x \\ random & otherwise \end{cases}$$
 Learns nothing ...!

This function obtains zero training loss, but large testing loss.

- Training data
- Testing data

Data augmentation (you can do that in HWs)

- Real data distribution (not observable)
 - Training data
 - Testing data

- Less parameters, sharing parameters
- Early spotting
- Regularization
- Dropout

- Training data
- Testing data

 χ

The extreme example again

It is possible that $f_{56789}(x)$ happens to get good performance on public testing set.

So you select $f_{56789}(x)$ Random on private testing set

HomeworkpublicprivateTraining SetTesting SetTesting SetModel 1 \longrightarrow mse = 0.9
Model 2 \longrightarrow mse = 0.7

I beat baseline!

→mse = 0.5

No, you don't

→ mse > 0.5

What will happen?

Model 3

http://www.chioka.in/howto-select-your-final-modelsin-a-kaggle-competitio/

Cross Validation

N-fold Cross Validation

Let's predict no. of views of 2/26!

Mismatch

 Your training and testing data have different distributions. Be aware of how data is generated.

HW11

Training Data

Simply increasing the training data will not help.

Testing Data

