

welcome to ML Study Jam session #4

Google Developer Student Clubs Simon Fraser University

Timeline

Review

Model Hypertuning

Review

Model Hypertuning

Data Preprocessing

Importance of data preprocessing: Enhancing data quality for better model performance.

Handling missing data: Managing and filling gaps in the dataset.

Feature scaling and normalization: Scaling features to a common range for optimal model training.

One-hot encoding and categorical variables: Transforming categorical data into numerical format.

Handling outliers: Addressing extreme values that can impact model behavior.

Train-test split and cross-validation: Evaluating model performance on unseen data for robustness.

Machine Learning (ML)

Machine Learning is the field of study that focuses on enabling computers to learn from data and make predictions or decisions without being explicitly programmed.

Key Concepts: Supervised Learning vs. Unsupervised Learning

Classification Algorithms: Decision Trees, Random Forests, KNN

Regression Algorithms: Linear Regression, Polynomial Regression

Evaluation Metrics: Accuracy, Precision, Recall, F1 Score

DATA PIPELINE MACHINE LEARNING ENGINEERING

PIPELINE

Deep Learning

Introduction to Neural Networks: Artificial models inspired by the human brain, composed of interconnected nodes or neurons.

Feedforward Neural Networks: Neural networks where information flows in one direction, from input to output.

Convolutional Neural Networks (CNNs): Specialized neural networks for image processing tasks, leveraging convolutional layers to extract spatial data.

Recurrent Neural Networks (RNNs): Neural networks designed to process sequential data, capturing temporal dependencies.

Transfer Learning and Pretrained Models: Leveraging pre-trained models trained on large datasets to solve related tasks with limited data.

----- MACHINE LEARNING

----- DEEP LEARNING -----

FEATURE EXTRACTION + CLASSIFICATION

OUTPUT

Computer Vision

The field of Al focused on teaching computers to interpret and understand visual data.

Applications: Object recognition, image classification, image segmentation, face detection, etc.

Image Preprocessing Techniques: Normalization, resizing, cropping, data augmentation.

Object Detection and Image Segmentation: Techniques to identify and localize objects within images.

CNN architectures designed specifically for image classification tasks, such as AlexNet, VGGNet, and ResNet.

Natural Language Processing

The field of Al focused on enabling computers to understand, interpret, and generate human language.

Applications: machine translation, text summarization, chatbots, etc.

Text Preprocessing Techniques: Tokenization, stemming, lemmatization, stop word removal, etc.

Language Modeling and Text Classification: Techniques for predicting the next word in a sequence or classifying text into predefined categories.

Sequence-to-Sequence Models for NLP tasks: Architectures like Encoder-Decoder models and Transformers, used for machine translation and other sequence generation tasks.

Natural Language Processing cont'd

Language Modeling and Text Classification: Techniques for predicting the next word in a sequence or classifying text into predefined categories.

Sequence-to-Sequence Models for NLP tasks: Architectures like Encoder-Decoder models and Transformers, used for machine translation and other sequence generation tasks.

Neural Machine Translation

SEQUENCE TO SEQUENCE MODEL

Je

suis

étudiant

Review

Model Hyperparameters

Training Hyperparameters

Learning Rate: The learning rate determines the step size in the optimization process.

Weight Decay: Weight decay is a regularization technique that penalizes large weight values to prevent overfitting.

Batch Size: Batch size represents the number of training examples processed before updating the model's weights.

Number of Epochs: The number of epochs determines how many times the model sees the entire training dataset.

Optimizer: The optimizer algorithm updates the model's parameters during training.

Regularization Parameters: Regularization parameters control the complexity of the model to prevent overfitting.

Diminishing Gradient: The problem of diminishing gradients occurs when gradients become extremely small during training.

Exploding Gradient: The problem of exploding gradients occurs when gradients become extremely large.

Exercise Time

https://colab.research.google.com/drive/1060EuGmAx1ki HxSmPlwjMd-paOzA47O_?usp=sharing

Kaggle Resources

- https://www.kaggle.com/learn/data-visualization
- https://www.kaggle.com/learn/time-series
- https://www.kaggle.com/learn/machine-learning-explainabilit
 y

Thank you!

Google Developer Student Clubs Simon Fraser University

