Enigma

Dada uma configuração inicial, a máquina de criptografia alemã Enigma, da Segunda Guerra Mundial, substituía cada letra digitada no teclado por alguma outra letra. A substituição era bastante complexa, mas a máquina tinha uma vulnerabilidade: uma letra nunca seria substituída por ela mesma! Essa vulnerabilidade foi explorada por Alan Turing, que trabalhou na criptoanálise da Enigma durante a guerra. O objetivo era encontrar a configuração inicial da máquina usando a suposição de que a mensagem continha uma certa expressão usual da comunicação, como por exemplo a palavra **ARMADA**. Essas expressões eram chamadas de *cribs*. Se a mensagem cifrada era, por exemplo, **FDMLCRDMRALF**, o trabalho de testar as possíveis configurações da máquina era simplificado porque a palavra **ARMADA**, se estivesse nessa mensagem cifrada, só poderia estar em duas posições, ilustradas na tabela abaixo com uma seta. As demais cinco posições não poderiam corresponder ao *crib* **ARMADA** porque ao menos uma letra do *crib*, sublinhada na tabela abaixo, casa com sua correspondente na mensagem cifrada; como a Enigma nunca substituiria uma letra por ela própria, essas cinco posições poderiam ser descartadas nos

F	D	М	L	С	R	D	М	R	A	L	F
A	R	<u>M</u>	A	D	A						
	A	R	M	A	D	A	←				
		A	R	M	A	<u>D</u>	A				
			A	R	M	A	D	A	←		
				A	<u>R</u>	M	A	D	<u>A</u>		
					A	R	<u>M</u>	A	D	A	
						A	R	M	<u>A</u>	D	A

testes.

Neste problema, dada uma mensagem cifrada e um *crib*, seu programa deve computar o número de posições possíveis para o *crib* na mensagem cifrada.

Entrada

A primeira linha da entrada contém a mensagem cifrada, que é uma sequência de pelo menos uma letra e no máximo 10⁴ letras. A segunda linha da entrada contém o *crib*, que é uma sequência de pelo menos uma letra e no máximo o mesmo número de letras da mensagem. Apenas as 26 letras maiúsculas, sem acentuação, aparecem na mensagem e no *crib*.

Saída

Imprima uma linha contendo um inteiro, indicando o número de posições possíveis para o *crib* na mensagem cifrada.

Exemplo

Entrada:

FDMLCRDMRALF ARMADA

Saída:

2

Entrada:

AAAAABABABABABABABA ABA

Saída:

7