Project 4

ESE 545, Data Mining: Learning from Massive Datasets
November 27, 2017

Due at 11:59PM on **December 4, 2017**

This question consists of several parts. You are required to solve the problems using Python, Matlab or C and turn in your code. You are allowed to work in groups of at most two members. You should submit your code with a brief report containing responses to each part. Turn in one report and script per group. Upload a zipped file containing the report and the code on Canvas.

Question 1.1. In this project, we are returning to the MovieLens dataset. For this project you may use a smaller dataset to help with runtime: http://grouplens.org/datasets/movielens/1m/. The goal of this project is to implement a type of recommender system, in which we are asked to choose for example 20 movies to advertise to users of a website. We want to maximize the chance that a user of the site will "like" some of the movies. Recall that each user rates the movies by a number between 0-5 (if a user has not rated a movie, we simply let the corresponding rating value to be 0). In your python program, construct a suitable representation of the data set in a matrix form. 10 pts

Question 1.2. The first step is to define an objective function which assigns to each subset of the movies a real value representing how much the users 'like" that subset. One way to define such an objective function is as follows. Let us first introduce some notation. Let n, m to be the number of users and movies, respectively. We also let $r_{i,j}$ denote the rating that user i assigns to movie j. Given any subset A of the movies, we define $F(A) = \frac{1}{n} \sum_{i=1}^{n} \max_{j \in A} r_{i,j}$. Prove that the objective function F is both monotone and submodular. 30 pts

Question 1.3. In the next part, we will implement the greedy submodular maximization algorithm described in class. Note that, due to monotonicity and submodularity, the greedy algorithm guarantees a solution A such that $F(A) \ge (1-1/e)F(A^*)$, where A^* is the true optimal set. Implement the greedy algorithm for maximization of F over all the subsets of movies that have cardinality at most k. Plot the objective values of the greedy algorithm versus k for k = 10, 20, 30, 40, 50. **30 pts**

Question 1.4. One way to make the greedy algorithm faster is to use the so-called "lazy" version. Expand on your implementation for part 2, and implement the lazy greedy algorithm. You should get the same greedy solution as in the previous part but with a smaller runtime. Record the runtime (in seconds) of both the greedy algorithm and its lazy version for k = 10, 20, 30, 40, 50 and plot the values. **30 pts**