Durée : 1 heure 45 minutes

Contrôle de géométrie analytique N°3

NOM:	
	 Groupe
PRENOM ·	

Barème sur 15 points

1. Le plan est muni d'un repère orthonormé d'origine O. On donne l'équation cartésienne d'un cercle γ_1 et deux points :

$$\gamma_1 : (x-3)^2 + (y-6)^2 - 33 = 0$$
 et $P(4; -3)$ $K(-3; -3)$.

Déterminer l'équation cartésienne d'un cercle γ de rayon r=3 vérifiant les conditions suivantes :

- le point P est le centre d'un cercle γ_2 orthogonal à γ_1 et γ ;
- le centre du cercle γ appartient à la polaire de K par rapport à γ_2 .

(Indication : déterminer l'équation cartésienne de γ_2)

3,5 pts

2. Le plan est muni d'un repère orthonormé d'origine O.

On considère le cercle γ et le point A appartenant à ce cercle :

$$\gamma: x^2 + (y+2)^2 - 4 = 0$$
 et $A(0; -4)$.

Un point P décrit l'axe Ox. Soit t la tangente, autre que l'axe Ox, issue de P et T son point de contact avec γ . La parallèle à Oy abaissée de T coupe la droite AP au point M.

Déterminer l'équation cartésienne du lieu du point $\,M\,$ et en déduire avec précision sa nature.

4.5 pts

3. On considère l'équation suivante, dépendante d'un paramètre réel m:

$$(m-2)x^2 + (y-1)^2 - (m-1)(m-2) = 0$$
, $m \in \mathbb{R} - \{1; 2\}$.

- a) Déterminer les valeurs de m de sorte que cette équation, relativement à un repère orthonormé du plan, soit une ellipse \mathcal{E} .
- b) Discuter, en fonction de m, la direction du grand axe et du petit axe de \mathcal{E} .
- c) Déterminer l'équation cartésienne de l'ellipse \mathcal{E} dont un des foyer est le point $F(0; 1-2\sqrt{2})$.

4,5 pts

2,5 pts

EPF - Lausanne COURS DE MATHEMATIQUES SPECIALES

4. Dans le plan, on considère une droite r et trois points K, R et S $(S \in r)$. Soit $\gamma(\Omega, r)$ un cercle.

Le point R est le pôle de la droite r par rapport au cercle γ .

La polaire de S par rapport à γ passe par le point K.

Construire rigoureusement, à la règle et au compas, sur les données graphiques ci-dessous, le cercle γ .

R +

