Параллельная реализация метода эллипсоидов для задач оптимизации большой размерности

Безбородов В.А.

ФГБОУ ВПО ЮУрГУ г. Челябинск

10 мая 2015 г.

Содержание

- 1 Метод эллипсоидов
 - Кратко об истории
 - Геометрия метода
 - Алгоритм метода

Метод эллипсоидов предложили

- 1976 **Юдин Д.Б. и Немировский А.С.** как метод последовательных отсечений.
- **Шор Н.З.** как вариант метода с растяжением пространства в направлении субградиента.
- 1979 **Хачиян Л.** построил первый полиномиальный алгоритм решения задачи ЛП с рациональными коэффициентами.

1-d эллипсоид и его свойства

Эллипсоид ε_n , содержащий полушар в E_n , имеет параметры

$$b=\left(lpha+rac{1}{lpha}
ight)rac{r}{2},\quad h=\left(1-rac{1}{lpha^2}
ight)rac{r}{2},$$
 где $lpha=rac{b}{a}$ и r – радиус шара $S_n.$

Если пространство «растянуть» с коэффициентом α в направлении полуоси a, то ε_n станет шаром в преобразованном пространстве.

Отношение объема эллипсоида $arepsilon_n$ к объему шара S_n равно

$$q(n) = \frac{vol(\varepsilon_n)}{vol(S_n)} = \frac{1}{\alpha} \left(\frac{b}{r}\right)^n = \frac{1}{\alpha} \left(\frac{1}{2} \left(\alpha + \frac{1}{\alpha}\right)\right)^n.$$

Сходимость метода эллипсоидов

Отношение объема эллипсоида ε_n к объему шара S_n равно

$$q(n) = \frac{vol(\varepsilon_n)}{vol(S_n)} = \frac{1}{\alpha} \left(\frac{b}{r}\right)^n = \frac{1}{\alpha} \left(\frac{1}{2} \left(\alpha + \frac{1}{\alpha}\right)\right)^n.$$

Если коэффициент α такой, что $\alpha+1/\alpha<2\sqrt[n]{\alpha}$, то отношение q(n)<1 и объем эллипсоида, в котором локализуется искомая точка x^* , убывает со скоростью геометрической прогрессии со знаменателем q(n).

Использование метода эллипсоидов

МЭ используется для решения следующей задачи

На E_n $(n \ge 1)$ определено векторное поле g(x), $g(x) \in E_n$. Требуется найти точку x^* , такую, что $(g(x), x - x^*) \ge 0$ для всех $x \in E_n$. Предполагается, что x^* существует и $g(x) \ne 0$ для $x \ne x^*$.

К такой задаче сводятся задачи математического программирования:

- задача безусловной минимизации выпуклой функции,
- общая задача выпуклого программирования,
- задача о седловой точке выпукло-вогнутых функций.

Стартовые условия для МЭ

Задан:

Коэффициент α такой, что $\alpha+1/\alpha<2\sqrt[n]{\alpha}$.

Инициализация:

- 1. Выбрать стартовую точку $x_0 \in E_n$ и начальный радиус r_0 , такой что $||x_0 x^*|| \le r_0$.
- 2. Положить $B_0 := E$, где E единичная матрица.

Перейти к очередной итерации со значениями x_0 , r_0 , B_0 .

Пусть на k-й итерации найдены $x_k \in E_n$, r_k и B_k . Для перехода к (k+1)-й итерации выполнить:

- Шаг 1. Вычислить $g(x_k)$. Если $g(x_k) = 0$, то **ОСТАНОВ** $(x^* = x_k)$.
- Шаг 2. Вычислить очередную точку $x_{k+1}=x_k-h_kB_k\xi_k$, где $h_k=rac{1}{2}\left(1-rac{1}{lpha^2}
 ight),\ \xi_k=rac{B_k^Tg(x_k)}{||B_k^Tg(x_k)||}.$
- Шаг 3. Пересчитать матрицу B_{k+1} и радиус r_{k+1} $B_{k+1} = B_k + (\beta-1)(B_k \xi_k) \xi_k^T, \ \beta = \frac{1}{\alpha},$ $r_{k+1} = (\alpha+\beta)\frac{r_k}{2}.$
- Шаг 4. Перейти к (k+1)-й итерации с x_{k+1} , r_{k+1} и B_{k+1} .

О сходимости метода эллипсоидов

Теорема (Локализация x^* в эллипсоиде)

Генерируемая методом эллипсоидов последовательность точек $\{x_k\}_{k=0}^\infty$ удовлетворяет неравенствам

$$||B_k^{-1}(x_k-x^*)|| \le r_k, \quad k=0,1,2,\ldots$$

Следствие

Эллипсоид
$$\varepsilon_k = \{x : ||B_k^{-1}(x_k - x)|| \le r_k\}$$
 содержит точку x^* .

О сходимости метода эллипсоидов

Теорема (О скорости сходимости)

Для всех итераций метода эллипсоидов коэффициент уменьшения объема эллипсоида, локализующего x^* , есть величина постоянная и равная

$$q(n) = \frac{vol(\varepsilon_{k+1})}{vol(\varepsilon_k)} = \frac{1}{\alpha} \left(\frac{1}{2}\left(\alpha + \frac{1}{\alpha}\right)\right)^n < 1, \quad k = 0, 1, 2, \dots$$

Оптимальный коэффициент растяжения пространства

$$\alpha = \sqrt{\frac{n+1}{n-1}} \Rightarrow q(n) = \sqrt{\frac{n-1}{n+1}} \left(\frac{n^2}{n^2-1}\right)^{n/2} \le 1 - \frac{1}{2n}.$$

4 D > 4 A > 4 B > 4 B > B 900

Вопросы?

СПАСИБО ЗА ВНИМАНИЕ!