

第五节 紧束缚近似

$$\psi_{\alpha}(\vec{k},\vec{r}) = u_{\alpha}(\vec{k},\vec{r})e^{i\vec{k}\cdot\vec{r}}$$

由于
$$\vec{k} = \vec{k} + \vec{K}_h$$
 (\vec{K}_h 为倒格矢)

在波矢空间中,Bloch函数是周期函数,其周期与倒格子周期相同。

Uestc 431

Bloch函数可在 k 空间中展成Fourier级数

$$\psi_{\alpha}(\vec{k}, \vec{r}) = \frac{1}{\sqrt{N}} \sum_{n} a_{\alpha}(\vec{R}_{n}, \vec{r}) \exp^{(i\vec{k}\cdot\vec{R}_{n})}$$

$$a_{\alpha}(\vec{R}_{n},\vec{r})$$
-----Wannier函数

USTÇ 4

可以证明:

• Wannier函数具有定域特性,

即:Wannier函数是以格点 \vec{R}_n 为中心的波包。

• 不同能带、不同格点的Wannier函数 是正交的。

当每个原子的势场对电子束缚很强时

当电子距某原子较近时,电子的行为与孤立原子中电子的行为相似

选孤立原子的电子波函数 $\varphi_{\alpha}^{at}(\vec{r}-\vec{R}_{n})$ 为Wannier函数

当束缚很强时, 电子波函数为:

$$\psi_{\alpha}(\vec{k}, \vec{r}) = \frac{1}{\sqrt{N}} \sum_{n} \varphi_{\alpha}^{at}(\vec{r} - \vec{R}_{n}) \exp^{(i\vec{k} \cdot \vec{R}_{n})}$$

将该波函数代入Schrodinger方程 并求解,得:

S能带的电子能量:

$$E_s(\vec{k}) = E_s^{at} + C_s - J \sum_{\vec{R}_n}^{\text{BLOS}} e^{i\vec{k}\cdot\vec{R}_n}$$

 E_s^{at} ----孤立原子S电子的能量

$$C_s$$
---库仑能 ($C_s < 0$) $J = -J_s > 0$

 J_{c} ----原子间电子云的交迭积分

课堂练习

1. 求简立方晶体S电子的能带结构

2. 求面立方晶体S电子的能带结构

3. 求体立方晶体S电子的能带结构

1. 求简立方晶体S电子的能带结构

将最近邻点的坐标代入到能量表达式中:

$$E_{s}(\vec{k}) = E_{s}^{at} + C_{s} - J \sum_{\vec{R}_{n}}^{\text{BL}} e^{i\vec{k}\cdot\vec{R}_{n}}$$

$$\vec{k} \cdot \vec{R}_n = \left(k_x \hat{i} + k_y \hat{j} + k_z \hat{k}\right) \cdot \left(x \hat{i} + y \hat{j} + z \hat{k}\right)$$

$$=k_x x + k_y y + k_z z$$

$$(\pm a,0,0) \longrightarrow \vec{R}_n = \pm a\hat{i}$$

$$(0,\pm a,0) \longrightarrow \vec{R}_n = \pm a\hat{j}$$

$$(0,0,\pm a) \longrightarrow \vec{R}_n = \pm a\hat{k}$$

$$E(\vec{k}) = E_s^{at} + C_s$$

$$-J\begin{bmatrix} e^{ik_x a} + e^{-ik_x a} + e^{ik_y a} \\ + e^{-ik_y a} + e^{ik_z a} + e^{-ik_z a} \end{bmatrix} \longrightarrow$$

$$E(\vec{k}) = E_s^{at} + C_s$$

$$-2J\left[\cos(k_x a) + \cos(k_y a) + \cos(k_z a)\right]$$

最小值在
$$k_x = k_y = k_z = 0$$
 处

$$E_{\min} = E_s^{at} + C_s - 6J$$

UDSTC 45

最大值在 $k_x = k_y = k_z = \frac{\pi}{\alpha}$ 处

$$E_{\text{max}} = E_s^{at} + C_s + 6J$$

能带宽度:

$$\Delta E = E_{\text{max}} - E_{\text{min}} = 12J$$

2. 求面心立方晶体S电子的能带结构

每个原子有12个最近邻

$\frac{a}{2}(1,1,0)$	$\frac{a}{2}(1,0,1)$	$\frac{a}{2}(0,1,1)$
$\frac{a}{2}(-1,-1,0)$	$\frac{a}{2}(-1,0,-1)$	$\frac{a}{2}(0,-1,-1)$
$\frac{a}{2}(-1,1,0)$	$\frac{a}{2}(1,0,-1)$	$\frac{a}{2}(0,-1,1)$
$\frac{a}{2}(1,-1,0)$	$\frac{a}{2}(-1,0,1)$	$\frac{a}{2}(0,1,-1)$

$$E_{s}(\vec{k}) = E_{s}^{at} + C_{s}$$

$$-4J \left[\cos \left(\frac{k_x}{2} a \right) \cos \left(\frac{k_y}{2} a \right) + \right] \\ \cos \left(\frac{k_x}{2} a \right) \cos \left(\frac{k_z}{2} a \right) + \left[\cos \left(\frac{k_y}{2} a \right) \cos \left(\frac{k_z}{2} a \right) \right]$$

3. 求体立方晶体S电子的能带结构

$$\frac{a}{2}$$
(1,1,1)

$$\frac{a}{2}(-1,-1,-1)$$

$$\frac{a}{2}(-1,1,1)$$

$$\frac{a}{2}(-1,1,1)$$
 $\frac{a}{2}(1,1,-1)$

$$\frac{a}{2}(1,-1,1)$$

$$\frac{a}{2}(-1,-1,1)$$

$$\frac{a}{2}(-1,-1,1)$$
 $\frac{a}{2}(1,-1,-1)$ $\frac{a}{2}(-1,1,-1)$

$$\frac{a}{2}(-1,1,-1)$$

$$E(\vec{k}) = E_s^{at} + C_s$$

$$-8J\cos(\frac{1}{2}k_x a)\cos(\frac{1}{2}k_y a)\cos(\frac{1}{2}k_z a)$$