Computer System Architecture

DR. Howida Youssry

Functions and Functional Blocks

- The functions considered are those found to be very useful in design
- Corresponding to each of the functions is a combinational circuit implementation called a functional block.

★ Half Adder

- Adds 1-bit plus 1-bit
- Produces Sum and Carry

x y	C S
0 0	0 0
0 1	0 1
1 0	0 1
1 1	1 0

★ Full Adder

- Adds 1-bit plus 1-bit plus 1-bit
- Produces Sum and Carry

x y z	C S
0 0 0	0 0
0 0 1	0 1
0 1 0	0 1
0 1 1	1 0
1 0 0	0 1
1 0 1	1 0
1 1 0	1 0
1 1 1	1 1

			J	<i>y</i>	
	0	1	0	1	
x	1	0	1	0	
\overline{z}					

X

+	y z
C	S

$$S = xy'z' + x'yz' + x'y'z + xyz = x \oplus y \oplus z$$

$$C = xy + xz + yz$$

★ Full Adder

★ Carry Propagate Adder

Selecting

- Selecting of data or information is a critical function in digital systems and computers
- Circuits that perform selecting have:
 - A set of information inputs from which the selection is made
 - A single output
 - A set of control lines for making the selection
- Logic circuits that perform selecting are called multiplexers
- Selecting can also be done by three-state logic or transmission gates

Multiplexers

Multiplexers

2-to-1 MUX

4-to-1 MUX

Multiplexers

- A multiplexer selects information from an input line and directs the information to an output line
- A typical multiplexer has n control inputs $(S_{n-1}, \ldots S_0)$ called selection inputs, 2^n information inputs $(I_{2^n-1}, \ldots I_0)$, and one output Y
- A multiplexer can be designed to have m information inputs with $m < 2^n$ as well as n selection inputs

DeMultiplexers

$S_1 S_0$	Y ₃	Y ₂	Y_{1}	Y_{0}
0 0	0	0	0	Ι
0 1	0	0	Ι	0
1 0	0	I	0	0
1 1	Ι	0	0	0

Multiplexer / DeMultiplexer

Decoders

- **★ Extract "Information"** from the code
- **★ Binary Decoder**
 - Example: 2-bit Binary Number

Only one lamp will turn on

Decoders

★ 2-to-4 Line Decoder

$I_1 I_0$	Y_3	Y ₂	Y ₁	Y_0
0 0	0	0	0	1
0 1	0	0	1	0
1 0	0	1	0	0
1 1	1	0	0	0

$$Y_3 = I_1 I_0$$
 $Y_2 = I_1 \bar{I}_0$
 $Y_1 = \bar{I}_1 I_0$ $Y_0 = \bar{I}_1 \bar{I}_0$

Implementation Using Decoders

<u>y</u> <u>z</u>

- **★** Each output is a minterm
- **★** All minterms are produced
- **★** Sum the required minterms

Example: Full Adder

$$S(x, y, z) = \sum (1, 2, 4, 7)$$

$$C(x, y, z) = \sum (3, 5, 6, 7)$$

Implementation Using Decoders

Decoding

- Decoding the conversion of an n-bit input code to an m-bit output code with $n \le m \le 2^n$ such that each valid code word produces a unique output code
- Circuits that perform decoding are called decoders
- Here, functional blocks for decoding are
 - called *n*-to-*m* line decoders, where $m \leq 2^n$, and
 - generate 2^n (or fewer) minterms for the n input variables

Encoders

- **★ Put "Information"** into code
- **★ Binary Encoder**
 - Example: 4-to-2 Binary Encoder

 $\begin{array}{c|c}
 & x_1 \\
\hline
2 & x_2 \\
\hline
8 & x_2 \\
\hline
8 & x_3
\end{array}$ Binary
Encoder y_0

Only one switch should be activated at a time

<i>x</i> ₃	x_2	$\boldsymbol{x_1}$	$y_1 y_0$
0	0	0	0 0
0	0	1	0 1
0	1	0	1 0
1	0	0	1 1

Encoders

★ Octal-to-Binary Encoder (8-to-3)

<i>I</i> ₇	I ₆	<i>I</i> ₅	I ₄	<i>I</i> ₃	I_2	<i>I</i> ₁	I_0	Y_2	Y_1	Y_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

$$Y_2 = I_7 + I_6 + I_5 + I_4$$

$$Y_1 = I_7 + I_6 + I_3 + I_2$$

$$Y_0 = I_7 + I_5 + I_3 + I_1$$

Eastern Mediterranean University

Encoding

- Encoding the opposite of decoding the conversion of an m-bit input code to a n-bit output code with $n \le m \le 2^n$ such that each valid code word produces a unique output code
- Circuits that perform encoding are called encoders
- An encoder has 2^n (or fewer) input lines and n output lines which generate the binary code corresponding to the input values
- Typically, an encoder converts a code containing exactly one bit that is 1 to a binary code corresponding to the position in which the 1 appears.

Encoder Example

- A decimal-to-BCD encoder
 - Inputs: 10 bits corresponding to decimal digits 0 through 9, $(D_0, ..., D_9)$
 - Outputs: 4 bits with BCD codes
 - Function: If input bit D_i is a 1, then the output (A_3, A_2, A_1, A_0) is the BCD code for i,
- The truth table could be formed, but alternatively, the equations for each of the four outputs can be obtained directly.

Encoder / Decoder Pairs

Seven-Segment Decoder

w x y z	abcdefg
0 0 0 0	1111110
0 0 0 1	0110000
0 0 1 0	1101101
0 0 1 1	1111001
0 1 0 0	0110011
0 1 0 1	1011011
0 1 1 0	1011111
0 1 1 1	1110000
1 0 0 0	1111111
1 0 0 1	1111011
1 0 1 0	XXXXXXX
1 0 1 1	XXXXXXX
1 1 0 0	XXXXXXX
1 1 0 1	XXXXXXX
1 1 1 0	XXXXXXX
1111	XXXXXXX

$$a = w + y + xz + x'z'$$

$$b = \dots$$

$$d = \dots$$

Combinational Function Implementation

- ***** Alternative implementation techniques:
 - Decoders and OR gates
 - Multiplexers (and inverter)
 - ROMs
 - PLAs
 - PALs
 - Lookup Tables
- **★** Can be referred to as *structured implementation methods* since a specific underlying structure is assumed in each case