日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 2月18日

出 願 番 号 Application Number:

人

特願2003-039361

[ST. 10/C]:

[JP2003-039361]

出 願
Applicant(s):

本田技研工業株式会社

特許庁長官 Commissioner, Japan Patent Office 2003年11月11日

今井康

【書類名】

特許願

【整理番号】

H102381001

【提出日】

平成15年 2月18日

【あて先】

特許庁長官殿

【国際特許分類】

F01N 3/08

B01D 53/94

【発明者】

【住所又は居所】

埼玉県和光市中央1丁目4番1号 株式会社本田技術研

究所内

【氏名】

安井 裕司

【発明者】

【住所又は居所】

埼玉県和光市中央1丁目4番1号 株式会社本田技術研

究所内

【氏名】

岩本 淳

【発明者】

【住所又は居所】

埼玉県和光市中央1丁目4番1号 株式会社本田技術研

究所内

【氏名】

荻原 秀実

【特許出願人】

【識別番号】

000005326

【氏名又は名称】

本田技研工業株式会社

【代理人】

【識別番号】

100095566

【弁理士】

【氏名又は名称】

高橋 友雄

【手数料の表示】

【予納台帳番号】

059455

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 内燃機関の排気ガス浄化装置

【特許請求の範囲】

【請求項1】 内燃機関の排気通路に設けられ、当該排気通路を流れる排気ガス中のNOxを還元剤の存在下で浄化するNOx選択還元触媒と、

前記排気通路の前記NOx選択還元触媒よりも下流側に設けられ、排気ガス中のNOx濃度を検出するNOx検出器と、

前記還元剤を前記NOx選択還元触媒に供給する還元剤供給装置と、

前記NOx検出器の検出結果が極値になるように、前記還元剤供給装置による前記NOx選択還元触媒への前記還元剤の供給量を決定する供給量決定手段と、

を備えることを特徴とする内燃機関の排気ガス浄化装置。

【請求項2】 前記排気通路の前記NOx選択還元触媒よりも上流側に設けられ、排気ガス中のNOx濃度を検出する上流側NOx検出器と、

前記内燃機関の排気ガスボリュームを検出する排気ガスボリューム検出手段と

をさらに備え、

前記供給量決定手段は、

前記上流側NOx検出器の検出結果および前記検出された排気ガスボリュームに応じて、前記NOx選択還元触媒への前記還元剤の基本供給量を決定する基本供給量決定手段と、

前記NOx検出器の検出結果が極値になるように、前記決定された還元剤の基本供給量を補正する補正手段と、

を有することを特徴とする請求項1に記載の内燃機関の排気ガス浄化装置。

【請求項3】 前記内燃機関の燃料を少なくとも原料として前記還元剤を生成する還元剤生成器をさらに備えることを特徴とする請求項1または2に記載の内燃機関の排気ガス浄化装置。

【請求項4】 前記還元剤はアンモニアであることを特徴とする請求項3に 記載の内燃機関の排気ガス浄化装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、排気通路を流れる排気ガス中のNOxを、還元剤の存在下でNOx 選択還元触媒により浄化する内燃機関の排気ガス浄化装置に関する。

[0002]

【従来の技術】

従来、この種の内燃機関の排気ガス浄化装置として、還元剤としてのアンモニアを、排気通路の上流側からNOx選択還元触媒に向かって噴射することにより、排気ガス中のNOxを浄化するものが、例えば特許文献1に記載されている。この排気ガス浄化装置は、車両に搭載されたディーゼルエンジンに適用されたものであり、アンモニアを生成するアンモニア生成装置と、生成されたアンモニアを排気通路のNOx選択還元触媒の上流側に供給するアンモニア供給装置と、これを制御するECUと、排気通路のNOx選択還元触媒よりも上流側に設けられ、ECUに接続されたNOxセンサなどを備えている。このアンモニア生成装置は、軽油および空気を原料としてアンモニアを生成するものであり、接触分解反応器、酸化反応器およびアンモニア合成反応器などで構成されている。

[0003]

また、アンモニア供給装置は、アンモニア生成装置で生成されたアンモニアを 貯蔵するアンモニアボンベと、アンモニアボンベから排気通路に供給されるアン モニア量を制御するための制御弁とを備えている。この排気ガス浄化装置では、 ECU2により、NOxセンサで検出された排気ガス中のNOx濃度に基づき、 NOx浄化に必要なアンモニアの供給量が決定されるとともに、決定された供給 量に基づいて、制御弁の開度が制御される。

$[0\ 0\ 0\ 4\]$

以上のような排気ガス浄化装置において、NOx選択還元触媒を用いる理由は、NOx吸着触媒またはNOx吸蔵触媒を用いた場合と比べて、硫黄被毒の度合いが小さく、還元性能が低下しにくいことに加えて、触媒のNOx吸着性能(浄化性能)を回復させるために混合気の空燃比をリッチ化するリッチスパイク制御が不要になることで、内燃機関の燃費を向上させることができることによる。

[0005]

【特許文献1】

特公平6-35816号公報(第3~4頁、図1)

[0006]

【発明が解決しようとする課題】

上記特許文献1に記載された従来の排気ガス浄化装置では、NOxセンサが、排気通路のNOx選択還元触媒よりも上流側に設けられているため、NOx選択還元触媒へのアンモニア供給量は、ディーゼルエンジンから排出された排気ガスのNOx濃度に基づいて決定されるものの、NOx選択還元触媒による実際のNOx浄化状態とは無関係に決定されてしまう。その結果、NOx選択還元触媒へのアンモニアの供給量が、NOx選択還元触媒による実際のNOx浄化状態に応じて適切に決定されないことで、排気ガス特性の悪化を招くおそれがある。

[0007]

この問題を解決する手法として、NOxセンサを排気通路のNOx選択還元触媒よりも下流側に設け、その検出結果に基づいて、NOx選択還元触媒へのアンモニア供給量を決定することが考えられる。しかし、NOxセンサは一般に、排気ガス中のNOxだけでなく、アンモニアにも反応する特性を有していることが実験により確認されている。そのため、NOxセンサを排気通路のNOx選択還元触媒よりも下流側に設けた場合、NOx還元において消費されない分のアンモニアが増大すると、NOx選択還元触媒よりも下流側の排気ガス中のアンモニア 濃度が高くなり、それに伴い、NOxセンサの検出結果は、見かけ上、NOx濃度が高い状態を示す値となってしまう。その結果、NOxセンサにより、排気ガス中のNOx濃度を適切に検出できなくなることで、NOx選択還元触媒へのアンモニアの供給量が適切に決定されず、排気ガス特性の悪化を招くおそれがある

[0008]

本発明は、上記課題を解決するためになされたもので、NOx選択還元触媒への還元剤の供給量を適切に決定でき、良好な排気ガス特性を確保することができる内燃機関の排気ガス浄化装置を提供することを目的とする。

[0009]

【課題を解決するための手段】

この目的を達成するために、請求項1に係る内燃機関3の排気ガス浄化装置1は、内燃機関3の排気通路(排気管7)に設けられ、排気通路を流れる排気ガス中のNOxを還元剤(アンモニア)の存在下で浄化するNOx選択還元触媒8と、排気通路のNOx選択還元触媒8よりも下流側に設けられ、排気ガス中のNOx濃度を検出するNOx検出器(NOxセンサ20)と、還元剤をNOx選択還元触媒8に供給する還元剤供給装置(インジェクタ14)と、NOx検出器の検出結果が極値になるように(推定値Vnox_hatが極小値Vnox_hminになるように)、還元剤供給装置によるNOx選択還元触媒8への還元剤の供給量(アンモニア噴射量Tinh)を決定する供給量決定手段(ECU2、ステップ2,4,7,31,33,36)と、を備えることを特徴とする。

[0010]

この内燃機関の排気ガス浄化装置によれば、NOx検出器により、排気通路の NOx選択還元触媒よりも下流側におけるNOx濃度が検出され、その検出結果 が極値になるように、NOx選択還元触媒への還元剤の供給量が供給量決定手段 により決定される。この排気ガス浄化装置において、例えば、還元剤としてアン モニアなどのNOx検出器が反応する特性のものを用いた場合、NOx検出器が NOx選択還元触媒よりも下流側に配置されているので、NOx選択還元触媒へ の還元剤の供給量が多すぎると、NOx還元において消費されない分の還元剤が 増大することにより、NOx選択還元触媒よりも下流側の排気ガス中の還元剤濃 度が高くなり、それに伴い、NOx検出器の検出結果は、見かけ上、NOx濃度 が高い状態を示す値となる。一方、NOx選択還元触媒への還元剤の供給量が少 なすぎると、NOx選択還元触媒によるNOxの還元性能が低下することで、N Ox選択還元触媒よりも下流側の排気ガス中のNOx濃度が高くなり、それに伴 い、NOx検出器の検出結果は、NOx濃度が高い状態を示す値となる。以上の 理由により、NOx検出器の検出結果は、NOx選択還元触媒への還元剤の供給 量に対して極値を有する特性を示すことになり、この事実は実験によっても確認 されている。したがって、この排気ガス浄化装置によれば、供給量決定手段によ

り、NOx検出器の検出結果が極値になるように、還元剤の供給量が決定されるので、NOx選択還元触媒よりも下流側の排気ガス中の還元剤濃度およびNOx 濃度の双方がバランスよく低い値となるように、還元剤の供給量を適切に決定することができる。その結果、良好なNOx浄化性能を確保することができ、良好な排気ガス特性を確保できる。

[0011]

請求項2に係る発明は、請求項1に記載の内燃機関3の排気ガス浄化装置1において、排気通路のNOx選択還元触媒8よりも上流側に設けられ、排気ガス中のNOx濃度を検出する上流側NOx検出器(第2NOxセンサ23)と、内燃機関3の排気ガスボリュームVexを検出する排気ガスボリューム検出手段(吸気管内絶対圧センサ21、クランク角センサ22、ECU2)と、をさらに備え、供給量決定手段は、上流側NOx検出器の検出結果(検出値Vnoxb)および検出された排気ガスボリュームVexに応じて、NOx選択還元触媒8への還元剤の基本供給量(基本噴射量Tinh_base)を決定する基本供給量決定手段(ECU2、ステップ34,35)と、NOx検出器の検出結果が極値になるように(推定値Vnox_hatが極小値Vnox_hminになるように)、決定された還元剤の基本供給量を補正する補正手段(ECU2、ステップ31,33,36)と、を有することを特徴とする。

[0012]

この内燃機関の排気ガス浄化装置によれば、上流側NOx検出器により、排気通路のNOx選択還元触媒よりも上流側におけるNOx濃度が検出され、その検出結果および排気ガスボリュームに応じて、NOx選択還元触媒への還元剤の基本供給量が決定される。例えば、還元剤としてアンモニアなどのNOx検出器および上流側NOx検出器が反応する特性のものを用いた場合でも、上流側NOx検出器を還元剤がNOx選択還元触媒に供給される位置よりも上流側に配置することにより、還元剤の影響を受けることなく、排気ガス中のNOx濃度のみを精度よく検出でき、それにより、NOx選択還元触媒への還元剤の基本供給量を、排気ガス中のNOx濃度のみに応じて適切に決定することができる。さらに、このように決定された基本供給量が、NOx選択還元触媒よりも下流側に設けられ

たNOx検出器の検出結果が極値になるように、補正手段により補正されるので、前述したように、NOx選択還元触媒よりも下流側の排気ガス中の還元剤濃度およびNOx濃度の双方がバランスよく低い値となるように、還元剤の供給量を適切に決定することができる。以上により、NOx選択還元触媒への還元剤供給量を精度よく適切に決定でき、NOx浄化性能をさらに向上させることができる(なお、本明細書では、「排気ガスボリュームの検出」は、センサにより排気ガスボリュームを検出することに限らず、プログラムにより排気ガスボリュームを算出することを含む)。

[0013]

請求項3に係る発明は、請求項1または2に記載の内燃機関3の排気ガス浄化 装置1において、内燃機関3の燃料(ガソリン)を少なくとも原料として還元剤 (アンモニア)を生成する還元剤生成器(アンモニア生成器10)をさらに備え ることを特徴とする。

$[0\ 0\ 1\ 4]$

この内燃機関の排気ガス浄化装置によれば、還元剤生成器により、還元剤が内燃機関の燃料を少なくとも原料として生成されるので、燃料のみを原料とする還元剤、または燃料と空気を原料とする還元剤などを用いることにより、燃料を補給するだけで還元剤を生成することが可能となり、還元剤の補給を省略できるとともに、還元剤補給用のインフラストラクチャを省略することができる。その結果、利便性および商品性を向上させることができる。

[0015]

請求項4に係る発明は、請求項3に記載の内燃機関3の排気ガス浄化装置1に おいて、還元剤はアンモニアであることを特徴とする。

$[0\ 0\ 1\ 6]$

この内燃機関の排気ガス浄化装置によれば、還元剤がアンモニアであるので、 内燃機関の燃料として一般的なガソリンまたは軽油を原料として、還元剤を生成 することができる。

[0017]

【発明の実施の形態】

以下、図面を参照しながら、本発明の第1実施形態に係る内燃機関の排気ガス 浄化装置について説明する。図1は、本実施形態の排気ガス浄化装置1およびこれを適用した内燃機関(以下「エンジン」という)3の概略構成を示している。 同図に示すように、この排気ガス浄化装置1は、ECU2と、アンモニアを生成するアンモニア生成器10と、アンモニア噴射用のインジェクタ14などを備えており、このECU2は、後述するように、インジェクタ14によるアンモニア(NH3)の噴射量を制御する。

[0018]

エンジン3は、リーンバーン運転方式のガソリンエンジンであり、図示しない車両に搭載されている。このエンジン3の吸気管4の途中には、燃料噴射用のインジェクタ5が設けられており、このインジェクタ5は、燃料供給路6aを介して燃料タンク6に接続されている。このインジェクタ5の開弁時間すなわち燃料噴射量はECU2によって制御される。

[0019]

一方、エンジン3の排気管7の途中には、上流側から順に、NOx選択還元触媒8および酸化還元触媒9が設けられている。このNOx選択還元触媒8は、還元剤としてのアンモニアが存在する雰囲気下で、排気ガス中の窒素酸化物(NOx)を選択的に還元するものであり、例えばバナジウム・タングステン・チタン系触媒で構成されている。また、酸化還元触媒9は、いわゆる3元触媒で構成されており、排気ガス中のNOx、CO(一酸化炭素)およびHC(炭化水素)を浄化する。

[0020]

また、排気管 7 のNO x 選択還元触媒 8 と酸化還元触媒 9 の間には、NO x センサ 2 のが設けられている。このNO x センサ 2 の(NO x 検出器)は、NO x 選択還元触媒 8 を通過した排気ガス中のNO x 濃度を検出し、それを表す検出信号を E C U 2 に出力する。このNO x センサ 2 のは、そのセンサ素子内に第 1 および第 2 の室、酸素ポンピング電極および酸素濃度検出電極(いずれも図示せず)などを有する、いわゆる限界電流式のものであり、第 1 室において、排気ガス中の酸素濃度を低下させた後、その酸素濃度の低下した排気ガスを第 2 室に流入

[0021]

また、還元剤生成器としてのアンモニア生成器10は、燃料供給路6bを介して燃料タンク6に接続され、アンモニア供給路15を介してインジェクタ14に接続されている。図2に示すように、アンモニア生成器10は、酸素富化膜11、マイクロリアクタ12およびリアクタ13などを備えている。

[0022]

酸素富化膜11は、これに流入した空気を、高濃度の窒素ガス(窒素富化ガス)と高濃度の酸素ガス(酸素富化ガス)とに分離するものであり、吸気管4のスロットル弁(図示せず)よりも上流側に設けられている。この酸素富化膜11により生成された酸素ガスは、マイクロリアクタ12に供給され、窒素ガスは、リアクタ13に供給される。

[0023]

また、マイクロリアクタ12は、燃料タンク6から供給されるガソリンを改質することで、高濃度の水素ガスを生成するものである。具体的には、ロジウム系触媒を用い、ガソリンを酸素富化膜11から供給される酸素ガスに反応させる部分酸化反応と、ガソリンを水蒸気に反応させる水蒸気改質反応と、を同時に発生させるオートサーマルリフォーミング(autothermal reforming)により、水素および一酸化炭素の混成ガスが生成され、さらに、この混成ガスをシフト反応させることにより、高濃度の水素ガスが生成される。このように生成された水素ガスは、リアクタ13に供給される。

[0024]

さらに、リアクタ13は、ルテニウム系触媒を介した気相合成により、アンモニアを生成する。すなわち、酸素富化膜11からの窒素ガスと、マイクロリアクタ12からの水素ガスとを気相合成させることにより、アンモニアを生成する。以上のように、アンモニア生成器10では、ガソリンおよび空気を原料として、アンモニアが生成される。また、アンモニア生成器10により生成されたアンモニアは、アンモニア供給路15を介してインジェクタ14に加圧状態で供給され

る。

[0025]

一方、インジェクタ 14 (還元剤供給装置)は、排気管 7 (排気通路)の NO x 選択還元触媒 8 よりも上流側に設けられており、ECU2 からの駆動信号によって駆動されることにより、アンモニアをNOx 選択還元触媒 8 に向かって排気管 7 内に噴射する。このインジェクタ 14 の開弁時間すなわちアンモニア噴射量 Tinh(還元剤の供給量)は、後述するように、ECU2で算出される。

[0026]

また、ECU2には、吸気管内絶対圧センサ21およびクランク角センサ22 が電気的に接続されている。この吸気管内絶対圧センサ21 (排気ガスボリューム検出手段) は、半導体圧力センサなどで構成され、吸気管4のインジェクタ5 よりも上流側に設けられており、吸気管4内の絶対圧である吸気管内絶対圧PB Aを検出して、その検出信号をECU2に出力する。

[0027]

さらに、クランク角センサ22(排気ガスボリューム検出手段)は、マグネットロータおよびMREピックアップ(いずれも図示せず)を組み合わせて構成されており、図示しないクランクシャフトの回転に伴い、いずれもパルス信号であるCRK信号およびTDC信号をECU2に出力する。

[0028]

このCRK信号は、所定のクランク角(例えば30°)ごとに1パルスが出力され、ECU2は、このCRK信号に基づき、エンジン3のエンジン回転数NEを算出する。また、TDC信号は、各気筒のピストン(図示せず)が吸入行程開始時のTDC(上死点)付近の所定クランク角度位置にあることを表す信号であり、所定のクランク角(例えば4気筒エンジンでは180°)ごとに1パルスが出力される。

[0029]

一方、ECU2(供給量決定手段、排気ガスボリューム検出手段、基本供給量 決定手段、補正手段)は、CPU、RAM、ROMおよびI/Oインターフェー スなどからなるマイクロコンピュータで構成されている。ECU2は、前述した

[0030]

図3に示すように、排気ガス浄化装置1は、補正係数算出部2a、排気ガスボリューム算出部2bおよびアンモニア噴射量算出部2cなどを備えており、これらはいずれも、具体的にはECU2により構成されている。この補正係数算出部2aでは、後述するアルゴリズムにより、NOxセンサ20の検出信号の値である検出値Vnox(検出結果)に基づいて、補正係数Kbtが算出される。

[0031]

また、排気ガスボリューム算出部 2 b では、下式 (1) により、排気ガスボリューム V e x が算出される。

$$V e x = (NE/1500) \cdot PBA \cdot SVPRA \qquad \dots (1)$$

ここで、SVPRAは、エンジン3の排気量によって予め決定される所定の係数である。

[0032]

さらに、アンモニア噴射量算出部 2 c では、上記排気ガスボリューム V e x および混合気の目標空燃比 A / F に応じて、後述する図 8 のマップを検索することにより、基本噴射量 T i n h $_$ b a s e (還元剤の基本供給量)が算出され、この基本噴射量 T i n h $_$ b a s e および上記補正係数 K b t を用い、下式(2)により、アンモニア噴射量 T i n h が算出される。

Tinh(k)=Tinh_base(k)・Kbt(k) ……(2) ここで、kは離散化した時間を表しており、記号(k)付きの各離散データは、所定時間毎にサンプリングされたデータであることを示している。この点は、以下の離散データ(時系列データ)においても同様である。

[0033]

次に、上記補正係数算出部2aにおける、補正係数Kbtを算出するアルゴリ

ズムについて説明する。図4(a)は、NOx選択還元触媒8へのアンモニアの供給量であるアンモニア噴射量Tinhを変化させた場合における、NOxセンサ20の検出値Vnoxの測定例を表しており、同図において、NOxセンサ20の検出値Vnoxは、これが大きいほど、排気ガス中のNOx濃度が高いことを表している。また、図4(b)は、アンモニア噴射量Tinhを変化させた場合における、NOx選択還元触媒8よりも下流側の排気ガス中のNOx濃度およびアンモニア濃度の測定例を示している。

[0034]

図4(a)に示すように、検出値Vnoxは、アンモニア噴射量Tinhが所定値Tinh1のときに極小値Vminを示すとともに、アンモニア噴射量Tinhが所定値Tinh1より大きいほどまたはより小さいほど、大きい値を示すことが判る。これは以下の理由による。すなわち、NOxセンサ20は一般に、排気ガス中のNOxだけでなく、アンモニアにも反応する特性を有している。そのため、図4(b)に示すように、アンモニア噴射量Tinhが多すぎると、NOx還元において消費されない分のアンモニアが増大することにより、NOx選択還元触媒8よりも下流側の排気ガス中のアンモニア濃度が高くなり、それに伴い、検出値Vnoxは、見かけ上、より大きな値すなわちNOx濃度が高い状態を示す値となる。一方、アンモニア噴射量Tinhが少なすぎると、NOx選択還元触媒8によるNOxの還元性能が低下することで、NOx選択還元触媒8よりも下流側の排気ガス中のNOx濃度が高くなり、それに伴い、検出値Vnoxは、NOx濃度が高い状態を示す値となる。

[0035]

以上のように、NOxセンサ20の検出値Vnoxは、NOx濃度だけでなくアンモニア濃度の影響を受けるので、アンモニア噴射量Tinhを、検出値Vnoxに基づく一般的なフィードバック制御手法で制御したとしても、NOx濃度を適切に制御できない。NOxセンサ20の上記特性を考慮すると、検出値Vnoxが極小値となるように、アンモニア噴射量Tinhを設定すれば、NOx濃度を最適に制御できることが判る。さらに、本実施形態では、アンモニア噴射量Tinhの基本噴射量Tinh_baseが、排気ガスボリュームVexに基づ

いて算出されるため、アンモニア噴射量Tinhも排気ガスボリュームVexの変化に伴って変化すると同時に、NOx選択還元触媒8の浄化状態、言い換えれば、NOx選択還元触媒8で浄化された排気ガス中のNOxおよびアンモニアの最適な比率も、排気ガスボリュームVexに応じて変化する。そのため、アンモニア噴射量Tinhを補正するための補正係数Kbtも、排気ガスボリュームVexの影響により変化することになる。この理由により、NOxセンサ20の検出値Vnoxは、補正係数Kbtに対して図5(a)にハッチングで表す範囲の値を示すことが実験により確認された。すなわち、NOxセンサ20の検出値Vnoxにおいては、これを従属変数とし、補正係数Kbtを独立変数とする2次式(回帰式)により検出値Vnoxの近似値すなわち推定値を算出できることが判る(図5(b)参照)。

[0036]

[0037]

また、図6の式(4)において、KP(k)はゲイン係数のベクトルを、ide(k)は誤差をそれぞれ表している。また、このide(k)は、図6の式(6)~(8)により算出される。この式(7)の ξ (k)は、式(8)のように定義される補正係数のベクトルである。さらに、上記ゲイン係数のベクトルKP(k)は、図6の式(9)により算出され、この式(9)のP(k)は、図6の式(10)で定義される3次の正方行列である。

[0038]

以上の式 (4) ~ (10) に示すアルゴリズムにより、回帰係数ベクトル θ (k) は、誤差 i de (k) が値 0 に収束するように算出される。すなわち、推定値 V nox_hat (k) が N Ox センサ 2 Oの検出値 V nox に収束するように、回帰係数ベクトル θ (k) が算出される。

[0039]

Kbt (k) = Kbt_op (k-d) = -B/(2A) (11)
$$(0.040)$$

以下、ECU2により実行されるアンモニア噴射量制御について、 $図7 \sim 29$ を参照しながら説明する。なお、以下の説明では、今回値であることを示す記号 (k) を適宜、省略する。27 は、この制御処理のメインルーチンを示しており、本処理は、27 なの入力に同期して割り込み実行される。この処理では、以下に述べるように、アンモニア噴射量27 in hが算出される。

[0041]

まず、ステップ1(図では「S1」と略す。以下同じ)において、前述した各種のセンサ20~22の出力を読み込むとともに、読み込んだデータをRAM内に記憶する。次に、ステップ2に進み、後述するように回帰係数ベクトル θ を算出する。

[0042]

次いで、ステップ3に進み、インジェクタ14によるアンモニア噴射の実行条件が成立しているか否かを判別する。この判別は、具体的には、エンジン3の運転状態(エンジン回転数NEおよび吸気管内絶対圧PBAなど)に基づいて実行される。この判別結果がYESで、アンモニア噴射の実行条件が成立していると

[0043]

次いで、ステップ5に進み、前述した式(1)により、排気ガスボリュームVexを算出する。この後、ステップ6に進み、上記ステップ5で算出した排気ガスボリュームVexおよび混合気の目標空燃比A/Fに応じて、図8に示すマップを検索することにより、基本噴射量Tinh_baseを算出する。このマップでは、3つの排気ガスボリュームVexの所定値Vex1~Vex3は、Vex3<Vex2<Vex1の関係で設定されている。すなわち、基本噴射量Tinh_baseは、排気ガスボリュームVexが大きいほど、より大きな値に設定されている。これは、排気ガスボリュームVexが大きいほど、排気ガス中の総NOx量が大きくなることによる。また、基本噴射量Tinh_baseは、目標空燃比A/Fに対して、これが理論空燃比よりもリーン側の所定値A/F1(例えば値16.0)のときに最も大きい値になるように設定されている。これは、目標空燃比A/Fが理論空燃比よりもリーン側の所定値A/F1のときに、排気ガス中の総NOx量が最も大きくなることによる。

[0044]

次に、ステップ7に進み、ステップ4,6で算出した補正係数Kbtおよび基本噴射量Tinh_baseを用い、前述した式(2)により、アンモニア噴射量Tinhを算出した後、本処理を終了する。

[0045]

一方、ステップ3の判別結果がNOで、アンモニア噴射の実行条件が不成立であるときには、ステップ8に進み、アンモニア噴射量Tinhを値0に設定した後、本処理を終了する。

[0046]

次に、図9を参照しながら、前述したステップ2の回帰係数ベクトル θ の算出処理について説明する。この処理では、まず、ステップ10において、RAMに記憶されている、前回のループでの回帰係数ベクトルの算出値 θ を、その前回値PRV θ [= θ (k-1)]として設定する。

[0048]

次に、ステップ 14 に進み、前述した式(6)により、誤差 i d e を算出した後、ステップ 15 で、RAMに記憶されている、前回のループでの正方行列の次回値NEXP [=P(k+1)] の算出値を、その今回値Pとして設定する。

[0049]

次いで、ステップ 16 に進み、前述した式(9)により、ゲイン係数のベクトル KP を算出した後、ステップ 17 に進み、前述した式(4)により、回帰係数ベクトル θ を算出する。

[0050]

次に、ステップ18に進み、前述した式(10)により、正方行列の次回値N EXPを算出した後、本処理を終了する。

[0051]

一方、ステップ11の判別結果がNOで、回帰係数ベクトル θ の算出条件が不成立であるときには、ステップ19に進み、回帰係数ベクトルの前回値 $PRV\theta$ を、今回値 θ として設定した後、本処理を終了する。

[0052]

検出値の推定値Vnox_hat(k)が極小値Vnox_hminになるように算出され、かつ推定値Vnox_hat(k)が検出値Vnoxに収束するように算出されるので、前述した理由により、NOx選択還元触媒8よりも下流側の排気ガス中のアンモニア濃度およびNOx濃度の双方がバランスよく低い値となるように、アンモニア噴射量Tinhを適切に算出することができる。その結果、良好なNOx浄化性能を確保することができ、良好な排気ガス特性を確保できる。また、アンモニア生成器10において、アンモニアが燃料(ガソリン)および空気を原料として生成されるので、燃料を補給するだけで還元剤としてのアンモニアを生成することができ、還元剤の補給を省略できるとともに、還元剤補給用のインフラストラクチャを省略することができる。その結果、利便性および商品性を向上させることができる。

[0053]

次に、本発明の第2実施形態に係る排気ガス浄化装置について説明する。この排気ガス浄化装置1は、前述した第1実施形態の排気ガス浄化装置1と比べると、図10に示すように、NOxセンサ20に加えて、第2NOxセンサ23(上流側NOx検出器)が排気管7に設けられている点のみが異なっており、それ以外は同様に構成されている。したがって、以下、異なる点を中心に説明するとともに、第1実施形態と同じ構成要素については、同一の参照番号を付し、その説明は適宜、省略する。

[0054]

この第2NOxセンサ23は、NOxセンサ20と同様の限界電流式のものであり、排気ガス中のNOx濃度を検出して、その検出信号をECU2に出力する。また、第2NOxセンサ23は、アンモニア噴射用のインジェクタ14から噴射されたアンモニアの影響を受けることなく、エンジン3から排出されたNOxの濃度のみを検出できるように、排気管7のインジェクタ14よりも上流側に設けられている。ECU2は、この第2NOxセンサ23の検出信号の値である検出値Vnoxb(検出結果)に応じて、後述するように、基本噴射量Tinh_baseを算出する。

[0055]

また、この排気ガス浄化装置1では、アンモニア噴射量Tinhは、図11に示すアンモニア噴射制御処理により算出される。同図に示すように、この処理では、ステップ35,36以外の各ステップは、前述した図7のステップ1~5,8と同様に構成されているので、以下、ステップ35,36を中心に説明する。

[0056]

この処理では、ステップ34で、前述したように排気ガスボリュームVexを 算出した後、ステップ35に進み、ステップ34で算出した排気ガスボリュームVexおよび第2NOxセンサ23の検出値Vnoxbに応じて、図12に示すマップを検索することにより、基本噴射量Tinh_baseを算出する。このマップでは、3つの検出値Vnoxb1の関係で設定されている。すなわち、このマップでは、基本噴射量Tinh_baseは、第2NOxセンサ23の検出値Vnoxbが大きいほど、言い換えればエンジン3から排出された排気ガス中のNOx濃度が高いほど、NOx還元能力を高めるために、より大きな値に設定されている。また、このマップでは、前述した理由により、基本噴射量Tinh_baseは、排気ガスボリュームVexが大きいほど、より大きな値に設定されている。

[0057]

次いで、ステップ37に進み、前述した式(2)により、アンモニア噴射量Tinhを算出した後、本処理を終了する。

[0058]

以上のような第2実施形態の排気ガス浄化装置1によれば、補正係数Kbtが、第1実施形態の排気ガス浄化装置1と同様の手法により算出されるとともに、基本噴射量Tinh_baseが、第2NOxセンサ23の検出値Vnoxbおよび排気ガスボリュームVexに応じて算出されるので、エンジン3から排出された排気ガス中のNOx濃度と、NOx選択還元触媒8によって浄化された排気ガス中のNOx濃度およびアンモニア濃度とに応じて、アンモニア噴射量Tinhをより精度よく制御でき、その結果、排気ガス中のNOxをより効果的に低減できる。また、第1実施形態の排気ガス浄化装置1と同様に、燃料を補給するだ

けで還元剤としてのアンモニアを生成することができ、還元剤の補給を省略できるとともに、還元剤補給用のインフラストラクチャを省略することができる。

[0059]

なお、以上の各実施形態は、還元剤としてアンモニアを用いた例であるが、還元剤は、これに限らず、内燃機関の燃料を少なくとも原料として生成可能なものであればよい。例えば、ガソリン、軽油またはメタノールなどを燃料とする内燃機関において、燃料から生成した炭化水素またはアルデヒドなどを還元剤として用いてもよい。

[0060]

さらに、NOx選択還元触媒8に供給すべきアンモニアを確保する手法は、アンモニア生成器10を用いる各実施形態の例に限らないことは言うまでもない。例えば、アンモニア生成器10に代えて、図1および図10に2点鎖線で示すように、アンモニア貯蔵用のアンモニアタンク17をエンジン3に設け、これからNOx選択還元触媒8にアンモニアを供給してもよい。この場合、アンモニアタンク17内のアンモニア貯蔵量が低下したときには、アンモニアを外部から補充すればよい。また、アンモニア生成器10およびアンモニアタンク17の両者をエンジン3に設け、前者が生成したアンモニアを後者に貯蔵するとともに、必要に応じて後者からNOx選択還元触媒8にアンモニアを供給してもよい。

[0061]

また、本発明の排気ガス浄化装置1は、実施形態の車両用の内燃機関に限らず、それ以外の内燃機関に適用可能であることは言うまでもない。例えば、船舶用の内燃機関や発電用の内燃機関にも適用可能である。さらに、本発明の排気ガス浄化装置1を、実施形態のガソリンエンジンに限らず、ディーゼルエンジンに適用してもよいことは言うまでもない。

[0062]

さらに、NOx検出器は、実施形態の限界電流式のNOxセンサ20,23に限らず、半導体式のNOxセンサまたは表面電位式のNOxセンサなどの排気ガス中のNOx濃度を検出できるものであればよい。さらに、実施形態では、NOx検出器として、NOx濃度またはアンモニア濃度が高いほど、検出値Vnox

がより大きい値を示す特性のNOxセンサ20を用いたが、これに代えて、NOx濃度またはアンモニア濃度が高いほど、検出値Vnoxがより小さい値を示す特性のNOxセンサを用いてもよい。その場合には、推定値Vnox_hat(k)が極大値になるように、補正係数Kbtを算出すればよい。

[0063]

【発明の効果】

以上のように、本発明の内燃機関の排気ガス浄化装置によれば、NOx選択還元触媒への還元剤の供給量を適切に決定でき、良好な排気ガス特性を確保することができる。

【図面の簡単な説明】

【図1】

本発明の第1実施形態に係る排気ガス浄化装置およびこれを適用した内燃機関の概略構成を示す図である。

図2】

排気ガス浄化装置のアンモニア生成器の概略構成を示す図である。

【図3】

排気ガス浄化装置の概略構成を示すブロック図である。

【図4】

(a)アンモニア噴射量Tinhを変化させた場合における検出値Vnoxの測定例を示す図と(b)NOx選択還元触媒を通過した排気ガス中のアンモニア濃度および窒素酸化物濃度の測定例を示す図である。

【図5】

(a) 補正係数Kbtと検出値Vnoxとの関係を示す図と(b) 補正係数Kbtと、検出値Vnoxおよびその推定値Vnox_hatとの関係を示す図である。

【図6】

【図7】

排気ガス浄化装置におけるアンモニア噴射制御処理を示すフローチャートである。

図8

図7のステップ6で基本噴射量Tinh_baseの算出に用いるマップの一例を示す図である。

【図9】

図7のステップ2における回帰係数ベクトル θ の算出処理を示すフローチャートである。

【図10】

第2実施形態に係る排気ガス浄化装置およびこれを適用した内燃機関の概略構成を示す図である。

【図11】

第2実施形態の排気ガス浄化装置におけるアンモニア噴射制御処理を示すフローチャートである。

【図12】

図11のステップ35で基本噴射量Tinh_baseの算出に用いるマップの一例を示す図である。

【符号の説明】

- 1 排気ガス浄化装置
- 2 ECU (供給量決定手段、排気ガスボリューム検出手段、基本供 給量決定手段、補正手段)
- 3 内燃機関
- 7 排気管(排気通路)
- 8 NOx選択還元触媒
- 10 アンモニア生成器 (還元剤生成器)
- 14 インジェクタ (還元剤供給装置)
- 20 NOxセンサ (NOx検出器)
- 21 吸気管内絶対圧センサ(排気ガスボリューム検出手段)
- 22 クランク角センサ(排気ガスボリューム検出手段)

23 第2 NO x センサ (上流側 NO x 検出器)

Tinh アンモニア噴射量 (還元剤の供給量)

Tinh_base 基本噴射量(還元剤の基本供給量)

Vnox 検出値(NOx検出器の検出結果)

Vnox_hat 検出値の推定値

Vnox_hmin 極小値(極値)

Vex 排気ガスボリューム

Vnoxb 検出値(上流側NOx検出器の検出結果)

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

$$V_{nox}hat(k) = A \cdot Kbt(k-d)^{2} + B \cdot Kbt(k-d) + C \qquad \cdots \qquad (3)$$

$$\theta(k) = \theta(k-1) + KP(k) \cdot i de(k) \qquad \cdots \qquad (4)$$

$$\theta$$
 (k)^T = [A, B, C] $\cdots (5)$

$$ide(k) = Vnox(k) - Vnox_hat(k)$$
 (6)

$$Vnox_hat(k) = \theta(k-1)^T \cdot \zeta(k) \qquad \cdots \qquad (7)$$

$$\zeta(k)^{T} = [Kbt(k-d)^{2}, Kbt(k-d), 1]$$
 (8)

$$KP(k) = \frac{P(k) \cdot \zeta(k)}{1 + \zeta(k)^{T} \cdot P(k) \cdot \zeta(k)} \cdot \cdots (9)$$

$$P(k+1) = \frac{1}{\lambda_1} \cdot \left(I - \frac{\lambda_2 \cdot P(k) \cdot \zeta(k) \cdot \zeta(k)^{\mathsf{T}}}{\lambda_1 + \lambda_2 \cdot \zeta(k)^{\mathsf{T}} \cdot P(k) \cdot \zeta(k)} \right) \cdot P(k) \qquad (1 0)$$

I:単位行列 λ₁, λ₂:重みパラメータ 【図7】

【図8】

[図9]

 \bigcirc

【図10】

* t

【図11】

【図12】

ページ: 1/E

【書類名】

要約書

【要約】

【課題】 NOx選択還元触媒への還元剤の供給量を適切に決定でき、良好な排気ガス特性を確保することができる内燃機関の排気ガス浄化装置を提供する。

【解決手段】 排気ガス浄化装置1は、ECU2と、排気管7の排気ガス中のNOxをアンモニアの存在下で浄化するNOx選択還元触媒8と、排気管7のNOx選択還元触媒8よりも下流側に設けられ、排気ガス中のNOx濃度を検出するNOxセンサ20と、アンモニア生成器10で生成されたアンモニアをNOx選択還元触媒8に供給するインジェクタ14とを備える。ECU2は、NOxセンサ20の検出値Vnoxの推定値Vnox_hatが極小値Vnox_hminになるように、インジェクタ14によるNOx選択還元触媒8へのアンモニア噴射量Tinhを決定する(ステップ2、4~7)。

【選択図】 図7

特願2003-039361

出願人履歴情報

識別番号

[000005326]

1. 変更年月日

1990年 9月 6日

[変更理由]

新規登録

住所

東京都港区南青山二丁目1番1号

氏 名

本田技研工業株式会社