RCA IH 10

- Houston District
- IH 10
- 1995 to 1998
- 11"

Background

- Rehab Project in Houston, Texas
- I-10 between I-45 & Loop 610 West
- Project Length: 5.8 Miles
- Existing CRCP: Constructed in 1968
- Rehab Project: 1995-1998
- 10 Lanes + HOV
- No Virgin Aggregates Used for Concrete- All RCA (Both Coarse & Fine)

Pavement Structures

8" CRCP

6" CSB

14" CRCP

3" ASB

6" LTS

11" CRCP

1" BB

Existing

Proposed

Outline

- Background
- Materials Evaluations
- Pavement Performance
- Findings & Conclusions

Material Evaluations

- RCA Properties
- Concrete Properties

- Specific Gravity: 2.4 ~ 2.5 for CA & FA
- Water Absorption: CA 3~5 % FA 6~9 %
- Reclaimed Mortar Content
- Sulfate Soundness Loss
- LA Abrasion Loss
- Angularity

- Specific Gravity: 2.4 ~ 2.5 for CA & FA
- Water Absorption: CA 3~5 % FA 6~9 %
- Reclaimed Mortar Content
- Sulfate Soundness Loss
- LA Abrasion Loss
- Angularity

Mortar Volume Attached to Gravel

- Specific Gravity: 2.4 ~ 2.5 for CA & FA
- Water Absorption: CA 3~5 % FA 6~9 %
- Reclaimed Mortar Content
- Sulfate Soundness Loss
- LA Abrasion Loss
- Angularity

Soundness Loss of RCA

Soundness Loss of Gravel

- Specific Gravity: 2.4 ~ 2.5 for CA & FA
- Water Absorption: CA 3~5 % FA 6~9 %
- Reclaimed Mortar Content
- Sulfate Soundness Loss
- LA Abrasion Loss
- Angularity

- Specific Gravity: 2.4 ~ 2.5 for CA & FA
- Water Absorption: CA 3~5 % FA 6~9 %
- Reclaimed Mortar Content
- Sulfate Soundness Loss
- LA Abrasion Loss
- Angularity

Abrasion resistance of various aggregate mixes

Outline

- Background
- Materials Evaluations
- Pavement Performance
- Findings & Conclusions

Pavement Performance

- Crack Spacing Distribution
- Spalling

Pavement Performance

- Crack Spacing Distribution
- Spalling

Crack Spacing Distribution of Virgin & Recycled Sections

Pavement Performance

- Crack Spacing Distribution
- Spalling

Spalling

Findings & Conclusions

Aggregate Properties

- The properties of RCA measured in this study are consistent with those reported elsewhere.
 - 1. **Gs**
- 2. Water Absorption
- 3. Sulfate Soundness Loss
- 4. LA Abrasion Loss
- 5. Angularity
- Sodium sulfate causes more damage to recycled aggregates than magnesium sulfate does.

Findings & Conclusions-cont'd

Concrete Properties

- Recycled fine aggregate has an adverse effect on strength.
- The use of both recycled coarse and fine aggregates reduces modulus of elasticity of concrete substantially.
- Thermal coefficient of concrete with 100% RCA is higher than that of virgin aggregate concrete.
- The effect of recycled aggregate on the abrasion resistance of concrete is inconclusive.

Findings & Conclusions-cont'd

Pavement Performance

- CRCP utilizing 100% recycled coarse & fine aggregates has performed well.
- The large amount of old mortar in RCA does not appear to have adverse effect on CRCP performance.
- Moisture control of recycled aggregate is critical in producing consistent and workable concrete.
- No significant adjustment is necessary in paving operations due to the use of 100% RCA.

Findings & Conclusions-cont'd

Spec Changes

- Coarse Aggregate: Coarse aggregate shall be washed and shall consist of durable particles of gravel, crushed blast furnace slag, crushed stone, or combinations thereof. ('93)
- Coarse Aggregate: Provide coarse aggregate consisting of durable particles of gravel, crushed blast furnace slag, recycled crushed hydraulic cement concrete, crushed stone, or combinations thereof. ('04)