

Fakultät Informatik

Discrimination in Algorithms (Face Recognition)

Intercultural Communications

Vorgelegt von: Ronny Pollak

Matrikelnummer: 3694422

Studiengang: Master Informatik

Dozent: Wolfgang Jockusch

Abgabedatum: 27.01.2023

Contents

Li	st of Figures	iii
1	Introduction	1
2	Training and test data	2
3	Issues with data	3
4	Solution approaches	4
5	Conclusion	6
Bi	bliography	7

List of Figures

2.1	Neural network as blockbox with training data	2
2.2	Neural network as blockbox with test data	2
4.1	Example data augmentation	4

1 Introduction

Discrimination in algorithms is a growing concern in the field of artificial intelligence (AI) and machine learning. Discrimination can occur in a number of ways, including bias in the training data or the algorithm itself. One specific area where discrimination has been identified is in facial recognition technology. This technology uses algorithms to analyze images of faces and match them to a database of known individuals. This essay will discuss the ways in which discrimination can occur in algorithms, as well as providing specific examples and approaches to reduce discrimination in facial recognition technology.

2 Training and test data

To understand how algorithms can discriminate a group of people you first have to understand how these algorithms work. When building an AI algorithm it has to be trained on a big amount of data, called "training data", which is a set of data used to train an algorithmic model. In Figure 2.1 we can see a simplified illustration of a neural network as a blackbox that is being trained on the training data. The model uses this data to learn patterns and relationships in the data, which can then be used to make predictions or decisions on new, unseen data.

Figure 2.1: Neural network as blockbox with training data

On the other hand, is the test data. In Figure 2.1 we can see a simplified illustration of a neural network as blackbox that uses the test data to make predictions or decisions and compare them to the true values in the test data to evaluate its accuracy and reliability. In general, the training data is used to optimize the model and the test data is used to evaluate the model. [Kha+18, p. 32-33]

Figure 2.2: Neural network as blockbox with test data

3 Issues with data

AI bias is an anomaly in the output of machine learning algorithms, due to the prejudiced assumptions made during the algorithm development process or prejudices in the training data.

One of the many data-related problems that is responsible for unreliable, biased algorithms is poorly selected data. One of them is poorly selected data. As Muñoz, Smith, and Patil [MSP16, p. 7] describe it, poorly selected data is "where the designers of the algorithmic system decide that certain data are important to the decision but not others. (...) resulting in potentially discriminatory effects."

Another problem is the selection bias which occurs when the set of input data to a model is not representative of a population, and leads to conclusions that can disadvantage certain groups of people. [MSP16, p. 8] For example, the training data for facial recognition AI algorithms is often composed of a higher number of faces from white people than from other races. This leads to difficulty in recognizing the faces of people from other races. In a study by Buolamwini and Gebru [BG18] the authors use the Fitzpatrick Skin Type classification system to characterize the gender and skin type distribution of two facial analysis benchmarks, IJB-A and Adience. They find that these datasets are overwhelmingly composed of lighter-skinned subjects, and introduce a new facial analysis dataset that is balanced by gender and skin type. They evaluate three commercial gender classification systems using their dataset and show that darker-skinned females are the most misclassified group, with error rates of up to 34.7%. The maximum error rate for lighter-skinned males is 0.8%. [BG18, p. 1]

People of color are disproportionately represented in the databases used by law enforcement for suspect identification, leading to a higher frequency of matches and a disproportionate number of true and false acceptances. [BL19, p. 323-324] This can result in further discrimination when innocent individuals are stopped, searched, or arrested. These algorithms perpetuate the hidden, historical and systemic biases present in society that are transferred through their training data. [MSP16, p. 8]

4 Solution approaches

To prevent discrimination in algorithms, there are a number of steps that can be taken. One step is to ensure that the training data used to train algorithms is representative of the population it will be used on. This can be achieved with diverse and inclusive data sets, or by using techniques such as data augmentation to make the training data more representative. Data augmentation is a technique used to increase the amount of training data by adding modified copies of existing data or newly created synthetic data. The aim of this technique is to reduce overfitting and promote better generalization when training machine learning models. [Nan+22, p. 2] In the following Figure 4.1 an example of a image data augmentation on an existing image of a person can be seen. This image gets modified in different ways to add more data.

Figure 4.1: Example data augmentation [Sin20]

In the case of facial recognition technology, researchers and engineers can use techniques such as cross-dataset evaluation to test the accuracy of facial recognition algorithms on a diverse range of individuals. Cross-dataset evaluation is a method used to evaluate the performance of machine learning models on data that is different from the data that was used to train the model. This is important because a model that performs well on the training data may not perform well on new, unseen data. Cross-dataset evaluation helps identify how well a model is likely to generalize to new data, and can be used to identify potential issues such as overfitting or bias in the training data. [ARLC22, p. 1-2] [Che+20, p. 3679-3680]

Pessach and Shmueli [PS22, p. 8-.10] state that generally there are three fairness-enhancing mechanisms in machine learning:

5

- **Pre-process** mechanisms involve changing the training data before it is fed into an machine learning algorithm, such as changing labels, reweighing instances, or modifying feature representations.
- In-process mechanisms involve modifying the machine learning algorithm during the training time, such as adding regularization terms, constraints, or adjusting decision tree split criteria.
- Post-process mechanisms are techniques used to adjust the predictions or threshold for classification made by a machine learning model after it has been trained. These techniques involve modifying the output of the model in some way, rather than changing the model itself.

Promoting diversity and inclusivity in the field of AI and machine learning is crucial in preventing discrimination in algorithms. This includes actively seeking out and encouraging individuals from underrepresented groups such as women, people of color, and people with disabilities to enter the field, and providing them with the necessary resources and support to succeed. This can be achieved through initiatives such as mentorship programs, targeted recruitment efforts, and providing access to education and training opportunities. Creating a culture of inclusivity within the field is important, by fostering an environment where all voices are heard, respected, and valued, and actively working to address and eliminate discrimination and bias within the field.

Regular audits and evaluations of algorithms are also critical in preventing discrimination. They can ensure that algorithms are performing as intended, without any issues of bias or discrimination. The evaluations can also be used to track the progress of the algorithm over time and identify areas for improvement. Additionally, regularly auditing and evaluating algorithms, can help build trust and transparency with stakeholders, including customers, regulators, and the general public.

5 Conclusion

In conclusion, discrimination in algorithms is a growing concern in the field of AI and machine learning. Discrimination can occur in a number of ways, including bias in the training data or the algorithm itself. Facial recognition technology is one specific area where discrimination has been identified, as studies have found that facial recognition algorithms are less accurate when analyzing images of people with darker skin tones. Preventing this kind of discrimination is a complex problem that requires a multifaceted approach. It is important to use diverse and inclusive data sets, and techniques such as fairness enhancing mechanisms, cross-dataset evaluation, and transparent algorithms. It is also crucial for policymakers to be aware of the issues of discrimination in algorithms and work to prevent it. Additionally, it is important to promote diversity and inclusivity in the field of AI and machine learning, to improve accountability and transparency, use human feedback, and engage with communities and stakeholders. By taking these steps, we can work towards ensuring that algorithms are fair, equitable, and do not perpetuate discrimination.

Bibliography

- [ARLC22] Said Al-Riyami, Alexei Lisitsa, and Frans Coenen. "Cross-Datasets Evaluation of Machine Learning Models for Intrusion Detection Systems". In: Proceedings of Sixth International Congress on Information and Communication Technology. Ed. by Xin-She Yang et al. Vol. 217. Series Title: Lecture Notes in Networks and Systems. Singapore: Springer Singapore, 2022, pp. 815–828. ISBN: 9789811621017 9789811621024. DOI: 10.1007/978-981-16-2102-4_73. URL: https://link.springer.com/10.1007/978-981-16-2102-4_73 (visited on 01/21/2023).
- [BG18] Joy Buolamwini and Timnit Gebru. "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification". In: *Proceedings of the 1st Conference on Fairness, Accountability and Transparency*. Conference on Fairness, Accountability and Transparency. ISSN: 2640-3498. PMLR, Jan. 21, 2018, pp. 77–91. URL: https://proceedings.mlr.press/v81/buolamwini18a.html (visited on 01/20/2023).
- [BL19] Fabio Bacchini and Ludovica Lorusso. "Race, again: how face recognition technology reinforces racial discrimination". In: Journal of Information, Communication and Ethics in Society 17.3 (Jan. 1, 2019). Publisher: Emerald Publishing Limited, pp. 321–335. ISSN: 1477-996X. DOI: 10.1108/JICES-05-2018-0050. URL: https://doi.org/10.1108/JICES-05-2018-0050 (visited on 01/14/2023).
- [Che+20] Yiran Chen et al. "CDEvalSumm: An Empirical Study of Cross-Dataset Evaluation for Neural Summarization Systems". In: Findings of the Association for Computational Linguistics: EMNLP 2020. Findings 2020. Online: Association for Computational Linguistics, Nov. 2020, pp. 3679–3691. DOI: 10.18653/v1/2020.findings-emnlp.329. URL: https://aclanthology.org/2020.findings-emnlp.329 (visited on 01/21/2023).

5. Bibliography 8

[Kha+18] Salman Khan et al. A Guide to Convolutional Neural Networks for Computer Vision. Synthesis Lectures on Computer Vision. Cham: Springer International Publishing, 2018. ISBN: 978-3-031-00693-7 978-3-031-01821-3. DOI: 10.1007/978-3-031-01821-3. URL: https://link.springer.com/10.1007/978-3-031-01821-3 (visited on 01/20/2023).

- [MSP16] Cecilia Muñoz, Megan Smith, and DJ Patil. Big Data: A Report on Algorithmic Systems, Opportunity, and Civil Rights. . Executive Office of the President, 2016.
- [Nan+22] Loris Nanni et al. "Feature transforms for image data augmentation". In: arXiv preprint arXiv:2201.09700 (2022).
- [PS22] Dana Pessach and Erez Shmueli. "A Review on Fairness in Machine Learning". In: 55.3 (2022). ISSN: 0360-0300. URL: https://doi.org/10.1145/3494672.
- [Sin20] Manmeet Singh. Face Data Augmentation Techniques. Medium. May 25, 2020. URL: https://manmeet3.medium.com/face-data-augmentation-techniques-ace9e8ddb030 (visited on 01/20/2023).