主成分分析

以下, 行列 $X=(x_{i,j})\in\mathbb{R}^{N\times p}$ は中心化されていると仮定する. すなわち, 各 $j=1,\cdots,p$ に対して

$$\sum_{i=1}^{N} x_{i,j} = 0$$

であるとする. $||v||_2^2 = 1$ のもとで,

$$||Xv||_2^2 = v^T X^T X v \tag{1}$$

を最大にする v を v_1 , (??) 式を最大にして v_1 と直交する v を v_2 , \cdots というようにして正規直交系 $V:=[v_1,\cdots,v_p]$ を求める操作を主成分分析という.

まず各 v_j が直交するという制約を除いて, $\|v\|_2^2=1$ のもとで $\|Xv\|_2^2$ を最大にする v_j について考えてみる.そのような v_j は

$$L(v_j, \mu_j) = \|Xv_j\|_2^2 - \mu_j(\|v_j\|_2^2 - 1)$$

を最大にするので、上式を v_i で微分して0とおいた等式

$$X^T X v_j - \mu_j v_j = 0$$

を満足する.上式を,X の標本共分散行列 $\Sigma:=\frac{1}{N}X^TX$ および $\lambda:=\frac{\mu_I}{N}$ を用いて書き換えると

$$\Sigma v_j = \lambda_j v_j$$

と書くことができる.これより求める v_j は Σ の固有ベクトルで, λ_j は v_j が属する固有値になることがわかる.もし λ_j の中で重複度が 2 以上のものだある場合には,それらの固有ベクトルは直交するように選んでくる. Σ の固有値が全てことなる場合には, v_1, \cdots, v_p は自動的に直交することがいえる.

実際には v_1, \dots, v_p を全て用いることはなく,最初の m 個のみを用いることになる.そして X の各行を $V_m := [v_1, \dots, v_m]$ に射影した $Z := XV_m$ を得る.すなわち p 次元の情報を m 個の主成分 v_1, \dots, v_m の空間に射影して,m 次元の Z で p 次元の X を見ることになる.そのような次元の圧縮のための線形写像が,主成分分析である.

主成分分析のスパースなアプローチにはいくつかあるので,それらを考察していく.まず非ゼロ要素の個数を制限する手法について,この場合は t を整数として, $\|v\|_0 \le t$, $\|v\|_2 = 1$ のもとで

$$v^T X^T X v - \lambda ||v||_0$$

を最大化するような定式化になる. しかしこの場合, 目的関数が凸にはならない.

また, $||v||_1 \le t(t>0)$ の制約を持たせて, $||v||_2 = 1$ のもとで

$$v^T X^T X v - \lambda ||v||_1 \tag{2}$$

の最大化を図ろうとしても, 目的関数は凸にならない.

そこで $u \in \mathbb{R}^N$ として、 $||u||_2 = ||v||_2 = 1$ のもとで

$$u^T X v - \lambda ||v||_1 \tag{3}$$

の最大化を図る定式化,SCoTLASS*1が提案された. (??) 式で得られる最適な v は,(??) の最適解になっている. 実際

$$L := -u^T X v + \lambda \|v\|_1 + \frac{\mu}{2} (u^T u - 1) + \frac{\delta}{2} (v^T v - 1)$$
(4)

をuで偏微分して0とおくと

$$\frac{\partial L}{\partial u} = Xv + \mu u = 0$$

となり, $\|u\|_2^2 = 1$ であることから $u = \frac{Xv}{\|Xv\|_2}$ となる.これを $(\ref{eq:continuous})$ 式に代入することで

$$-\|Xv\|_{2} + \lambda \|v\|_{1} + \frac{\delta}{2}(v^{T}v - 1)$$
(5)

となる.

^{*1} Simplified Component Technique - LASSO