Data set

Table 1: Studies used in the analysis - query

Table 1: Studies us	sed in the analysis - query
Acemoglu & Angrist (1999)	Leigh (2008)
Agrawal (2012)	Li & Urmanbetova (2007)
Arkes (2010)	Lillo (2006)
Aromolaran (2006)	Lillo-Bañuls & Casado-Díaz (2010)
Aryal et al. (2022)	Maluccio (1998)
Asadullah (2006)	Mazrekaj et al. (2019)
Aslam (2007)	Mishra & Smyth (2012)
Ayyash et al. (2020)	Mishra & Smyth (2014)
Bakis et al. (2013)	Morgan & Morgan (1998)
Bartolj et al. (2013)	Mphuka & Simumba (2012)
Bergman & Schöön (2018)	Okuwa (2004)
Blundell et al. (2001)	Patrinos et al. (2021)
Botchorishvili (2007)	Paweenawat & Vechbanyongratana (2015)
Campaniello et al. (2016)	Peters et al. (2022)
Campos & Reis (2017)	Purnastuti (2013)
Casado-Díaz & Lillo-Bañuls (2005)	Purnastuti et al. (2015)
Chanis et al. (2021)	Qiu (2007)
De Brauw & Rozelle (2008)	Sackey (2008)
Depken et al. (2019)	Sakellariou & Fang (2016a)
Doan et al. (2020)	Sakellariou & Fang (2016b)
Dumauli (2015)	Salas-Velasco (2006)
Fang et al. (2012)	Salehi-Isfahani et al. (2009)
Fersterer et al. (2008)	Sinning (2014)
Frazer (2023)	Sinning (2017)
Gibson & Fatai (2006)	Sohn (2013)
Giles et al. (2019)	Umar et al. (2014)
Girma & Kedir (2005)	van der Hoeven (2013)
Glewwe (1996)	Van Praag et al. (2013)
Guifu & Hamori (2009)	Vasudeva Dutta (2006)
Harmon et al. (2002)	Vivatsurakit & Vechbanyongratana (2020)
Hawley (2004)	Walker & Zhu (2008)
Himaz & Aturupane (2016)	Wambugu (2003)
Joseph (2020)	Warunsiri & McNown (2010)
Kenayathulla (2013)	Webbink (2004)
Kolstad & Wiig (2015)	Wincenciak (2020)
Krafft (2018)	Zhong (2011)
Krafft et al. (2019)	Zhu (2012)

Table 2: Studies used in the analysis - snowballing

Aakvik et al. (2010)	Heckman et al. (2006)
Angrist (1995)	Hubbard (2011)
Angrist & Krueger (1991)	Ichino & Winter-Ebmer (1999)
Belzil & Hansen (2002)	Ichino & Winter-Ebmer (2004)
Brainerd (1998)	Jones (2001)
Breda (2014)	Kane & Rouse (1993)
Capatina (2014)	Kijima (2006)
Card (1995)	Kingdon (1998)
Carneiro et al. (2011)	Leigh & Ryan (2008)
Chase (1998)	Lemieux & Card (2001)
Devereux & Hart (2010)	Light & Strayer (2004)
Dougherty & Jimenez (1991)	Moretti (2004)
Duflo (2001)	Munich et al. (2005)
Duraisamy (2002)	Pischke & von Wachter (2005)
Fortin (2008)	Psacharopoulos (1982)
Gill & Leigh (2000)	Psacharopoulos & Layard (1979)
Gorodnichenko & Peter (2005)	Staiger & Stock (1997)
Grogger & Eide (1995)	Stephens Jr & Yang (2014)
Harmon & Walker (1995)	Taber (2001)
Harmon & Walker (1999)	Troske (1999)

Table 3: Mean statistics across various subsets of data

	1	Unweighte	ed		Weighted	d	
	Mean	95% cc	onf. int.	Mean	95% cc	onf. int.	N. obs
All Data	7.628	-1.782	17.038	7.842	-1.568	17.252	1754
Estimate characteristics							
Short Run	7.605	-1.771	16.981	8.074	-1.302	17.450	969
Long Run	7.657	-1.800	17.114	7.444	-2.013	16.901	785
Observations $>= 6476$	7.231	-0.487	14.949	7.244	-0.474	14.962	882
Observations < 6476	8.031	-2.772	18.834	8.541	-2.262	19.344	872
Data characteristics							
Study Size $>= 20$	7.436	-2.342	17.214	7.862	-1.916	17.640	884
Study Size < 20	7.823	-1.187	16.833	7.678	-1.332	16.688	870
Yrs. of Schooling $>= 10.9$	7.792	-0.940	16.524	8.026	-0.706	16.758	881
Yrs. of Schooling < 10.9	7.463	-2.578	17.504	7.597	-2.444	17.638	873
Yrs. of Experience $>= 19.5$	7.884	-1.202	16.970	7.795	-1.291	16.881	901
Yrs. of Experience < 19.5	7.359	-2.357	17.075	7.927	-1.789	17.643	853
Cross-sectional data	7.972	-2.273	18.217	8.476	-1.769	18.721	634
Panel data	7.434	-1.451	16.319	7.357	-1.528	16.242	1120
Data Year $>= 1999$	8.453	-1.821	18.727	8.935	-1.339	19.209	901
$\mathrm{Data\ Year} < 1999$	6.757	-1.304	14.818	6.084	-1.977	14.145	853
Spatial/structural variation							
Higher education $>= 0.5$	8.615	2.480	14.750	7.669	1.534	13.804	311
Higher education < 0.5	7.416	-2.511	17.343	7.921	-2.006	17.848	1443
Wage Earners $>= 0.5$	7.616	-1.610	16.842	7.777	-1.449	17.003	1632
Self-employed > 0.5	7.798	-3.836	19.432	8.969	-2.665	20.603	122
Private sector $>= 0.5$	7.731	-1.642	17.104	8.082	-1.291	17.455	1540
Public sector > 0.5	6.889	-2.676	16.454	6.099	-3.466	15.664	214
Rural >= 0.5	8.129	-4.311	20.569	7.324	-5.116	19.764	176
Urban > 0.5	7.572	-1.436	16.580	7.879	-1.129	16.887	1578
High income countries	6.951	-0.485	14.387	7.504	0.068	14.940	889
Middle income countries	8.304	-2.676	19.284	8.788	-2.192	19.768	761
Low income countries	8.476	-1.994	18.946	6.386	-4.084	16.856	104
Male >= 0.5	7.253	-1.751	16.257	7.253	-1.751	16.257	1298
Male < 0.5	8.697	-1.505	18.899	9.054	-1.148	19.256	456
Age >= 37	7.598	-0.385	15.581	7.609	-0.374	15.592	900
Age < 37	7.660	-3.055	18.375	8.292	-2.423	19.007	854
Estimation method							
Ability: Direct	6.236	-0.420	12.892	6.767	0.111	13.423	236
Ability: Proxied	8.749	-3.511	21.009	8.959	-3.301	21.219	357
Ability: Uncontrolled	8.096	-1.384	17.576	8.617	-0.863	18.097	745
Ability: Unmentioned	6.626	-0.195	13.447	6.147	-0.674	12.968	392
Control: Age	8.535	-1.614	18.684	8.229	-1.920	18.378	604
Control: Age ²	9.345	-0.531	19.221	8.491	-1.385	18.367	482
Control: Experience	7.202	-1.873	16.277	7.540	-1.535	16.615	1064
Control: Experience ²	7.411	-1.930	16.752	8.024	-1.317	17.365	898
Publication characteristics							
Impact Factor $>= 0.191$	7.025	-0.987	15.037	6.959	-1.053	14.971	877
Impact Factor < 0.191	8.232	-2.266	18.730	8.741	-1.757	19.239	877
Citations $>= 80$	7.328	-1.515	16.171	7.270	-1.573	16.113	892
Citations < 80	7.939	-1.990	17.868	8.184	-1.745	18.113	862
Study: Published	7.229	-0.797	15.255	7.029	-0.997	15.055	1340
Study: Unpublished	8.919	-3.674	21.512	9.772	-2.821	22.365	414

Note: This table presents basic summary statistics of the returns to additional year of schooling coefficient calculated on various subsets of the data. Unweighted = Original data set is used. Weighted = Estimates are weighted by the inverse number of estimates reported by each study. OLS = Ordinary Least Squares. For cutoff points, medians are used except for dummy variables where the cutoffs are 0.5.

Publication bias

Table 4: Linear tests for publication bias

	OLS	FE	BE	Study	Precision
Publication bias (Standard error)	0.933***	0.859***	0.812***	1.353***	0.366***
	(0.107)	(0.253)	(0.061)	(0.140)	(0.112)
Effect beyond bias (Constant)	6.445***	6.697***	6.719***	6.322***	6.948***
	(0.128)	(0.432)	(0.311)	(0.162)	(0.092)
Observations	1,754	1,754	1,754	1,754	1,754

Note: The table displays the results obtained from estimating equation XXX. OLS = Ordinary Least Squares. FE = Fixed Effects. BE = Between Effects. Precision = Estimates are weighted by the inverse of their standard error. Study = Estimates are weighted by the inverse of the number of observations reported per study. Standard errors, clustered at the study level, are included in parentheses. ***p<0.01, **p<0.05, *p<0.1

Table 5: Nonlinear tests for publication bias

	WAAP	Top10	Stem	Hier	AK	Kink
Publication bias				0.572*** (0.190)	4.197*** (0.145)	1.730*** (0.527)
Effect beyond bias	6.968*** (0.098)	7.288*** (0.202)	7.200*** (1.647)	6.792*** (0.285)	6.607*** (0.123)	5.925*** (0.072)
Observations	1,754	1,754	1,754	1,754	1,754	1,754

Note: The table reports estimates of the effect beyond bias using six non-linear methods and estimates of the publication bias obtained using two of these methods. WAAP = Weighted Average of the Adequately Powered (Ioannidis et al. 2017). Top10 = Top10 method by Stanley et al. (2010). Stem = the stem-based method by Furukawa (2019). Hier = Hierarchical Bayes model (Allenby & Rossi 2006). AK = Andrews & Kasy (2019)'s selection model. Kink = Endogenous kink model by Bom & Rachinger (2019). Standard errors, clustered at the study level, are included in parentheses. ***p<0.01, **p<0.05, *p<0.1

Table 6: Relaxing the exogeneity assumption

	IV	p-uniform*
Publication bias	1.161*** (0.212)	L = 0.313 $(p = 0.575)$
Effect beyond bias	6.155*** (0.254)	0.0120 (0.033)
Observations	1,754	1,754

Note: IV = Instrumental Variable Regression; logarithm of the number of studies is used as an instrument for the standard error. Standard errors, reported in the parentheses, are also clustered at the study level. puniform* = method proposed by van Aert & van Assen (2021); L represents the publication bias test t-statistic, corresponding p-value can be found in parentheses. ***p<0.01, **p<0.05, *p<0.1

Table 7: Caliper tests at values 1.645, 1.96 and 2.58

	Threshold 1.645	Threshold 1.96	Threshold 2.58
Caliper width 0.05	0.504*	0.142	0.178
	(0.098)	(0.072)	(0.061)
n_1/n_2	5 / 1	3 / 7	5 / 6
Caliper width 0.1	0.457	0.165	0.205
	(0.075)	(0.061)	(0.04)
n_1/n_2	9 / 3	5 / 10	12 / 11
Caliper width 0.2	0.425*	0.25	0.176
	(0.045)	(0.037)	(0.026)
n_1/n_2	22 / 10	20 / 22	22 / 29

Note: The table shows the results of three sets of Caliper tests by Gerber et al. (2008) These sets are carried out around t-statistic thresholds of 1.645, 1.96 and 2.58, which correspond to the 1%, 5% and 10% t-statistic significance levels. Caliper width denotes the width of the interval around the t-statistic, e.g. caliper width 0.05 for threshold 1.96 means $t \in <1.91; 2.01>$. A test statistic of 0.142 means that roughly 64% of estimates appear above the threshold and roughly 36% below it. n_1/n_2 = number of observations above/below the threshold. Standard errors, clustered at study level, are included in parentheses. ***p<0.01, **p<0.05, *p<0.1

Table 8: P-hacking tests

Panel A: P-hacking tests	by Elliott et al. (2022) Test for non-increasingness	Test for monotonicity and bounds
p-value	0.961	0.900
Observations $(p \le 0.1)$	1,612	1,612
Total observations	1,754	1,754
Panel B: MAIVE estima	tor (Irsova et al. 2023) MAIVE coefficient	F-test
Coefficient	5.795***	12.396
Standard Error	(0.460)	

Note: Panel A shows the results of p-hacking tests by Elliott et al. (2022), namely the histogram-based test for non-increasingness and the histogram-based test for monotonicity and bounds. Panel B reports the results of the spurious precision robust approach using MAIVE estimator by Irsova et al. (2023). F-test = Test statistic of the IV first step F-test. Cluster-robust standard errors are used in the MAIVE estimation. These are reported in the parentheses. ***p<0.01, **p<0.05, *p<0.1

Heterogeneity

Table 9: Definition and summary statistics of regression variables

Variable	Description	Mean	SD
Main Effect	The effect of an additional year of schooling on logarithmic wage.	7.628	4.801
Standard Error	The standard error of the main effect.	1.268	1.723
Estimate characteristics			
Short Run	=1 if the data span a period shorter than a year.	0.552	0.497
Long Run	=1 if the data span a period longer than a year (reference category).	0.448	0.497
Estimate: City	=1 if the estimates within the study can be aggregated on a city level.	0.119	0.323
Estimate: Sub-region	=1 if the estimates within the study can be aggregated on a subregional level.	0.099	0.299
Estimate: Region	=1 if the estimates within the study can be aggregated on a regional level.	0.309	0.462
Estimate: Country	=1 if the estimates within the study can be aggregated on a country level.	0.395	0.489
Estimate: Continent	=1 if the estimates within the study can not be aggregated on a country level or smaller (reference category).	0.079	0.269
Data characteristics			
Study Size	The logarithm of the number of estimates collected from the study.	2.942	0.637
Yrs. of Schooling	The average number of years of schooling attained by the subjects.	11.115	3.461
Yrs. of Experience	The average number of years of experience attained by the subjects.	18.351	7.450
Education: Years	=1 if authors report schooling in years.	0.634	0.482
Education: Levels	=1 if the authors report schooling in levels (e.g., attained college degree) (reference category).	0.366	0.482
Wage: Log Hourly	=1 if the dependent variable in the regression is log hourly wage.	0.531	0.499
Wage: Log Daily	=1 if the dependent variable in the regression is log daily or weekly wage.	0.095	0.293
Wage: Log Monthly	=1 if the dependent variable in the regression is log monthly wage.	0.211	0.408
Wage: Annual Earnings	=1 if the dependent variable in the regression is log of mean annual earnings (reference category).	0.162	0.369
Micro Data	=1 if the study uses micro data.	0.177	0.382
Survey Data	=1 if the study uses data from a survey.	0.534	0.499
National Register Data	=1 if the study uses data from a national register (reference category).	0.289	0.453
Cross-sectional Data	=1 if the study uses cross-sectional data.	0.361	0.481
Panel Data	=1 if the study uses panel data (reference category).	0.639	0.481
Data Year	The logarithm of the average year of the study's time span	7.599	0.006
No Education	The percentage of subjects that attained no education (reference category).	0.126	0.148

Table 9: Definition and summary statistics of regression variables (continued)

Variable	Description	Mean	SD
Spatial/structural variation	i		
Primary Education	The percentage of subjects that attained only primary education.	0.181	0.16
Secondary Education	The percentage of subjects that attained only secondary education.	0.389	0.19
Higher Education	The percentage of subjects that attained any form of higher education.	0.309	0.24
Wage Earners	The ratio of wage earners to self-employed subjects in the study ($= 1$ if wage earner, $= 0$ if self-employed).	1.495	5.11
Self-Employed	The ratio of self-employed to wage earners subjects in the study (= 1 if self-employed, = 0 if wage earner) (reference category).	0.592	3.3'
Gender: Male	The ratio of male to female subjects in the study ($= 1$ if male, $= 0$ if female).	0.650	0.3
Gender: Female	The ratio of female to male subjects in the study ($= 1$ if female, $= 0$ if male) (reference category).	0.350	0.3
Sector: Private	The ratio of private to public sector workers ($= 1$ if private sector worker, $= 0$ if public).	4.667	9.00
Sector: Public	The ratio of public to private sector workers (= 1 if public sector worker, = 0 if private) (reference category).	3.588	7.0
Ethnicity: Caucasian	The ratio of Caucasian to non-Caucasian subjects in the study $(=1 \text{ if Caucasian}, =0 \text{ if not}).$	0.227	0.4
Ethnicity: Other	The ratio of non-Caucasian to Caucasian subjects in the study (= 1 if non-Caucasian, = 0 if Caucasian) (reference category).	0.773	0.4
Sector: Rural	The ratio of rural to urban workers (= 1 if rural worker, = 0 if urban).	0.297	0.1
Sector: Urban	The ratio of urban to rural workers (= 1 if urban worker, = 0 if rural) (reference category).	0.703	0.1
Reg: Advanced Econ.	=1 if the study was conducted in a country with advanced economy. (reference group)	0.498	0.5
Reg: E. Asia and Pacific	=1 if the study was conducted in the East Asia and Pacific region.	0.213	0.4
Reg: Europe and C. Asia	=1 if the study was conducted in the Europe and Central Asia region.	0.115	0.3
Reg: Lat. Am. and Car.	=1 if the study was conducted in the Latin America and Caribbean region.	0.004	0.0
Reg: M. East and N. Af.	=1 if the study was conducted in the Middle East and North Africa region.	0.043	0.2
Reg: South Africa	=1 if the study was conducted in the South African region.	0.088	0.2
Reg: Sub Sah. Africa	=1 if the study was conducted in the region of Sub Saharan Africa.	0.106	0.3
Income: High	=1 if the study was conducted in a high income country (reference category)	0.507	0.5
Income: Middle	=1 if the study was conducted in a middle income country	0.434	0.4
Income: Low	=1 if the study was conducted in a low income country	0.059	0.2
Median Expenditure	The logarithm of the median expenditure in the country in a given year.	8.584	1.4
Minimum Wage	The logarithm of the minimum wage in the country in a given year.	5.853	1.5
Academic Freedom Index	The academic freedom index reported for the country in a given year.	0.712	0.2
Mean Age	The logarithm of the average age of the subjects.	3.575	0.2
Estimation method			
Method: OLS	=1 if the authors use Ordinary least squares.	0.664	0.4
Method: Cohort	=1 if the authors use Cohort-type estimation.	0.032	0.1
Method: FE	=1 if the authors use Fixed-effects estimation.	0.026	0.1
Method: 2SLS	=1 if the authors use Two-Stage least squares estimation.	0.095	0.2
Method: Heckman	=1 if the authors use Two-step estimation (Heckman and Polachek, 1974).	0.062	0.2
Method: Probit	=1 if the authors use Probit estimation.	0.022	0.1

Continued on next page

Table 9: Definition and summary statistics of regression variables (continued) $\,$

Variable	Description	Mean	SD
Method: IV	=1 if the authors use Instrumental variables estimation (reference category).	0.111	0.314
Ability: Direct	=1 if the authors include a direct measure of ability in their study.	0.135	0.341
Ability: Proxied	=1 if the authors use a proxy for ability in their study.	0.204	0.403
Ability: Uncontrolled	=1 if the authors acknowledge, but do not control for ability in any way in their study.	0.425	0.494
Ability: Unmentioned	=1 if the authors do not mention ability anywhere in their study (reference category).	0.223	0.417
Control: Age	=1 if the authors control for age in the regression.	0.344	0.475
Control: Age ²	=1 if the authors control for age in quadratic form in the regression.	0.275	0.447
Control: Experience	=1 if the authors control for experience in the regression.	0.607	0.489
Control: Experience ²	=1 if the authors control for experience in quadratic form in the regression.	0.512	0.500
Control: Ethnicity	=1 if the authors control for ethnicity in the regression.	0.251	0.434
Control: Health	=1 if the authors control for health in the regression.	0.135	0.342
Control: Gender	=1 if the authors control for gender in the regression.	0.367	0.482
Control: Marriage	=1 if the authors control for marriage in the regression.	0.361	0.480
Control: Occupation	=1 if the authors control for occupation of the subjects in the regression.	0.142	0.349
Control: Firm Char.	=1 if the authors control for firm characteristics in the regression.	0.149	0.357
Control: Area	=1 if the authors control for area type in the regression (e.g., urban, rural).	0.418	0.493
Control: Macro Var.	$=\!1$ if the authors control for macroeconomic variables in the regression.	0.347	0.476
$Publication\ characteristics$			
Impact Factor	The logarithm of the Journal Citations Report impact factor of the study (as of January 2023; $= 0$ in case of no publication).	-0.906	1.533
Citations	The logarithm of the mean number of Google Scholar citations received per year since the appearance of the study in Google Scholar (as of January 2023).	4.029	2.177
Study: Published	=1 if the study was published in a journal.	0.764	0.425
Study: Unpublished	$=\!1$ if the study was not published in a journal (reference category).	0.236	0.425

Note: This table presents the summary statistics and descriptions for each of the various study characteristics. SD = standard deviation, FE = Fixed Effects, 2SLS = 2 Stage Least Squares.

Table 10: Model averaging results

Response variable:	Bayesian	model avera	ging	ing Frequentist model ave		
Returns to Year of Schooling	Post. mean	Post. SD	PIP	Coef.	SE	p-value
Constant	-7.755	NaN	1.000	9.416	286.497	0.974
Standard Error	0.425	0.069	1.000	0.621	0.243	0.011
Estimate characteristics						
Short Run	-0.089	0.258	0.134	0.000	1.092	0.000
Estimate: City	-1.421	0.914	0.812	0.000	1.919	0.000
Estimate: Sub-region	-2.079	0.723	0.997	-0.253	2.305	0.913
Estimate: Region	-2.228	0.668	1.000	-0.404	2.351	0.863
Estimate: Country	-0.810	0.725	0.625	0.000	1.174	0.000
Data characteristics						
Study Size	-0.002	0.032	0.014	0.000	0.414	0.000
Yrs. of Schooling	0.042	0.062	0.348	0.000	0.109	0.000
Yrs. of Experience	0.000	0.001	0.006	0.000	0.016	0.000
Education: Years	0.897	0.249	0.996	0.245	0.436	0.574
Wage: Log Hourly	-1.416	0.307	1.000	-0.411	1.050	0.695
Wage: Log Daily	-2.642	0.451	1.000	-1.093	1.663	0.511
Wage: Log Monthly	-1.204	0.379	0.986	-0.308	1.051	0.770
Micro Data	0.017	0.113	0.036	0.000	0.569	0.000
Survey Data	-1.032	0.237	0.999	-0.258	0.668	0.699
Cross-sectional Data	0.203	0.369	0.292	0.000	0.998	0.000
Data Year	2.812	11.039	0.083	0.000	38.542	0.000
Spatial/structural variation						
Primary Education	-0.011	0.163	0.014	0.000	0.423	0.000
Secondary Education	-3.801	0.978	1.000	-2.638	2.346	0.261
Higher Education	1.553	1.135	0.711	0.000	0.876	0.000
Wage Earners	0.082	0.020	1.000	0.046	0.042	0.266
Gender: Male	-1.407	0.292	1.000	-0.970	0.781	0.214
Sector: Private	0.072	0.013	1.000	0.052	0.041	0.198
Ethnicity: Caucasian	-2.035	0.329	1.000	-0.873	0.980	0.373
Sector: Rural	-0.059	0.274	0.061	0.000	0.754	0.000
Median Expenditure	-0.022	0.074	0.111	0.000	0.008	0.000
Minimum Wage	0.000	0.014	0.015	0.000	0.073	0.000
Academic Freedom Index	-0.319	0.575	0.287	0.000	1.276	0.000
Mean Age	-0.001	0.051	0.008	0.000	0.286	0.000
Estimation method						
Method: OLS	-2.529	0.306	1.000	-1.088	1.439	0.449
Method: Cohort	-0.002	0.057	0.006	0.000	0.180	0.000
Method: FE	-4.012	0.708	1.000	-2.015	2.527	0.425
Method: 2SLS	-1.606	0.488	0.990	-0.491	1.226	0.689
Method: Heckman	-2.210	0.490	1.000	-0.606	1.806	0.737
Method: Probit	-3.015	0.807	0.999	-0.988	2.476	0.690
Ability: Direct	-1.098	0.434	0.955	0.000	0.745	0.000
Ability: Proxied	0.005	0.063	0.015	0.000	0.250	0.000
Ability: Uncontrolled	0.764	0.258	0.984	0.275	0.753	0.715
Control: Age	-1.301	0.689	0.867	0.000	1.183	0.000
Control: Age ²	2.878	0.654	1.000	1.223	1.144	0.285
Control: Experience	0.002	0.041	0.011	0.000	0.518	0.000
Control: Experience ²	0.039	0.153	0.078	0.000	0.564	0.000
Control: Ethnicity	0.000	0.023	0.005	0.000	0.155	0.000
Control: Health	-0.001	0.037	0.009	0.000	0.188	0.000
Control: Gender	0.000	0.016	0.004	0.000	0.211	0.000
Control: Marriage	0.041	0.141	0.1	0.000	0.490	0.000
Control: Occupation	-0.039	0.173	0.065	0.000	0.604	0.000
Control: Firm Char.	-0.196	0.357	0.281	0.000	0.569	0.000
Control: Area	1.374	0.255	1.000	0.338	1.274	0.791
Control: Macro Var.	0.244	0.326	0.423	0.000	0.486	0.000

Continued on next page

Table 10: Model averaging results (continued)

Response variable:	Bayesian model averaging			Frequentist model averaging		
Returns to Year of Schooling	Post. mean	Post. SD	PIP	Coef.	SE	p-value
Impact Factor	-0.091	0.104	0.502	0.000	0.195	0.000
Citations	-0.001	0.010	0.014	0.000	0.026	0.000
Study: Published	-1.504	0.297	1.000	-0.300	1.113	0.788

Note: This table presents the results of the Bayesian and Frequentist model averaging. Post. mean = Posterior Mean, Post. SD = Posterior Standard Deviation, PIP = Posterior Inclusion Probability, Coef. = Coefficient, SE = Standard Error, OLS = Ordinary Least Squares, FE = Fixed Effects, 2SLS = 2 Stage Least Squares. The variables with PIP > 0.5 are highlighted. For a detailed explanation of the variables, see table 9.

Best-practice Estimate

Table 11: Comparing best-practice estimates across literature

Study	Estimate	95% Confidence Interval (6.098; 7.6)	
Author's subjective estimate	6.849		
Panel A: Studies identified by query (subset	t;)		
Leigh (2008)	8.511	(7.002; 10.02)	
Bartolj et al. (2013)	8.139	(7.494; 8.784)	
Salas-Velasco (2006)	6.677	(5.505; 7.849)	
Wincenciak (2020)	4.045	(2.822; 5.268)	
Okuwa (2004)	6.371	(4.848; 7.894)	
Webbink (2004)	10.473	(8.533; 12.413)	
Kenayathulla (2013)	9.582	(7.889; 11.275)	
Asadullah (2006)	6.020	(4.523; 7.517)	
Maluccio (1998)	9.160	(7.98; 10.34)	
Depken et al. (2019)	12.090	(10.481; 13.699)	
Purnastuti et al. (2015)	10.617	(8.586; 12.648)	
Umar et al. (2014)	8.512	(7.093; 9.931)	
Sinning (2014)	11.460	(10.413; 12.507)	
Agrawal (2012)	7.293	(5.866; 8.72)	
Sackey (2008)	6.161	(5.238; 7.084)	
Patrinos et al. (2021)	7.743	(6.451; 9.035)	
Giles et al. (2019)	6.556	(5.739; 7.373)	
van der Hoeven (2013)	7.639	(5.632; 9.646)	
Acemoglu & Angrist (1999)	6.393	(5.272; 7.514)	
Vivatsurakit & Vechbanyongratana (2020)	10.643	(9.393; 11.893)	
Qiu (2007)	5.958	(4.904; 7.012)	
Mphuka & Simumba (2012)	12.453	(10.577; 14.329)	
Aslam (2007)	10.498	(8.85; 12.146)	
Himaz & Aturupane (2016)	7.835	(6.128; 9.542)	
Warunsiri & McNown (2010)	9.296	(7.581; 11.011)	
Aromolaran (2006)	6.687	(5.676; 7.698)	
Salehi-Isfahani et al. (2009)	5.703	(4.701; 6.705)	
Botchorishvili (2007)	6.154	(4.882; 7.426)	
Girma & Kedir (2005)	6.731	(4.636; 8.826)	
De Brauw & Rozelle (2008)	7.563	(6.166; 8.96)	
Chanis et al. (2021)	8.055	(6.612; 9.498)	
Paweenawat & Vechbanyongratana (2015)	10.495	(9.141; 11.849)	
Vasudeva Dutta (2006)		, ,	
Gibson & Fatai (2006)	$3.442 \\ 6.558$	(1.972; 4.912) (5.406; 7.71)	
Hawley (2004)	6.275	(4.944; 7.606)	
Sohn (2013)	9.398	(7.955; 10.841)	
Harmon et al. (2002)	9.598 10.050	, ,	
		(9.056; 11.044)	
Lillo (2006) Zhong (2011)	4.852 8.075	(3.896; 5.808)	
Zhong (2011) Krafft (2018)	8.975 7.206	(7.334; 10.616)	
Krafft (2018)	7.396	(5.448; 9.344)	
Walker & Zhu (2008)	9.690	(8.692; 10.688)	
Wambugu (2003)	10.108	(7.991; 12.225)	

Continued on next page

Table 11: Best-practice across literature (continued)

Study	Estimate	95% Confidence Interval
Panel B: Studies identified by snow	vballing	
Aakvik et al. (2010)	6.079	(4.801; 7.357)
Angrist (1995)	7.369	(6.367; 8.371)
Angrist et al. (1991)	8.486	(7.304; 9.668)
Belzil et al. (2002)	5.647	(4.532; 6.762)
Brainerd (1998)	2.287	(0.958; 3.616)
Breda (2014)	0.491	(-0.887; 1.869)
Capatina (2014)	6.260	(5.662; 6.858)
Card (1995)	6.294	(5.198; 7.39)
Carneiro et al. (2011)	6.965	(5.364; 8.566)
Chase (1998)	2.749	(1.744; 3.754)
Devereux et al. (2010)	5.873	(4.148; 7.598)
Dougherty et al. (1991)	6.250	(4.86; 7.64)
Duflo (2001)	7.687	(6.431; 8.943)
Duraisamy (2002)	6.090	(5.402; 6.778)
Fortin (2008)	4.065	(3.497; 4.633)
Gill et al. (2000)	7.324	(6.54; 8.108)
Gorodnichenko (2005)	5.197	(4.282; 6.112)
Grogger et al. (1995)	3.374	(2.574; 4.174)
Harmon et al. (1995)	10.631	(9.114; 12.148)
Harmon et al. (1999)	9.757	(8.16; 11.354)
Harmon et al. (2003)	8.305	(7.115; 9.495)
Heckman et al. (2006)	8.373	(7.305; 9.441)
Hubbard (2011)	7.100	(6.269; 7.931)
Ichino (1999)	7.411	(6.027; 8.795)
Ichino et al. (2004)	11.036	(9.519; 12.553)
Jones (2001)	6.813	(5.171; 8.455)
Kane et al. (1993)	6.693	(5.848; 7.538)
Kijima (2006)	3.050	(2.19; 3.91)
Kingdon (1998)	7.788	(6.365; 9.211)
Leigh (2008)	8.259	(7.114; 9.404)
Lemieux et al. (2001)	6.202	(5.293; 7.111)
Light et al. (2004)	7.919	(6.853; 8.985)
Moretti (2004)	6.293	(4.786; 7.8)
Munich et al. (2005)	5.172	(3.782; 6.562)
Pischke (2005)	6.582	(5.063; 8.101)
Psacharopoulos (1982)	3.864	(2.468; 5.26)
Psacharopoulos (1979)	7.827	(6.424; 9.23)
Staiger et al. (1997)	7.809	(6.6; 9.018)
Stephens Jr et al. (2014)	6.029	(4.853; 7.205)
Taber (2001)	6.409	(5.251; 7.567)
Troske (1999)	3.546	(2.392; 4.7)

Note: The table reports estimates of the best-practice estimate according most studies form the data set, as well as the author's subjective best-practice. 95% confidence interval bounds are constructed as an approximate using OLS with study level clustered standard errors.

Table 12: Significance of key variables

	One SD change		Maximum change		
	Effect on Returns	% of BP	Effect on Returns	% of BP	
Standard Error	0.726	10.6%	3.995	58.32%	
Estimate: City	-0.483	-7.05%	-1.493	-21.8%	
Estimate: Sub-region	-0.640	-9.34%	-2.139	-31.23%	
Estimate: Region	-1.058	-15.44%	-2.289	-33.41%	
Estimate: Country	-0.431	-6.29%	-0.881	-12.86%	
Education: Years	0.434	6.33%	0.900	13.14%	
Wage: Log Hourly	-0.701	-10.23%	-1.404	-20.5%	
Wage: Log Daily	-0.771	-11.26%	-2.634	-38.45%	
Wage: Log Monthly	-0.488	-7.13%	-1.197	-17.47%	
Survey Data	-0.518	-7.56%	-1.038	-15.15%	
Secondary Education	-0.772	-11.28%	-3.917	-57.18%	
Higher Education	0.344	5.02%	1.391	20.31%	
Wage Earners	0.421	6.14%	4.976	72.64%	
Gender: Male	-0.493	-7.19%	-1.408	-20.56%	
Sector: Private	0.655	9.57%	4.053	59.17%	
Ethnicity: Caucasian	-0.861	-12.58%	-2.054	-29.99%	
Method: OLS	-1.197	-17.48%	-2.534	-36.99%	
Method: FE	-0.633	-9.23%	-3.999	-58.39%	
Method: 2SLS	-0.472	-6.89%	-1.608	-23.48%	
Method: Heckman	-0.531	-7.75%	-2.207	-32.22%	
Method: Probit	-0.451	-6.59%	-3.060	-44.67%	
Ability: Direct	-0.372	-5.42%	-1.089	-15.89%	
Ability: Uncontrolled	0.372	5.43%	0.752	10.98%	
Control: Age	-0.633	-9.24%	-1.331	-19.43%	
Control: Age ²	1.298	18.95%	2.908	42.45%	
Control: Area	0.675	9.85%	1.368	19.97%	
Impact Factor	-0.156	-2.28%	-0.711	-10.38%	
Study: Published	-0.645	-9.42%	-1.519	-22.17%	

Note: This table presents ceteris paribus effect of several key variables on the partial correlation coefficient. Only those variables with PIP over 0.5 in the BMA model are included. One SD change implies how the effect changes when we increase a specific variable by one standard deviation. Maximum change represents the change in the effect when the variable is increased from its minimum to its maximum. The reference best-practice value is 6.845. SD = Standard Deviation, BP = Best-Practice. For a detailed explanation of the variables, see table 9.

Bibliography

- Aakvik, A., Salvanes, K. G., & Vaage, K. (2010). Measuring heterogeneity in the returns to education using an education reform. *European Economic Review*, 54 (4), 483–500.
- Acemoglu, D. & Angrist, J. (1999). How large are the social returns to education? Evidence from compulsory schooling laws.
- Agrawal, T. (2012). Returns to education in india: Some recent evidence.
- Allenby, G. M. & Rossi, P. E. (2006). Hierarchical bayes models.
- Andrews, I. & Kasy, M. (2019). Identification of and correction for publication bias. *American Economic Review*, 109(8), 2766–94.
- Angrist, J. D. (1995). The economic returns to schooling in the west bank and gaza strip. *American Economic Review*, 85(5), 1065–1087.
- Angrist, J. D. & Krueger, A. B. (1991). Does compulsory school attendance affect schooling and earnings? *The Quarterly Journal of Economics*, 106(4), 979–1014.
- Arkes, J. (2010). Using unemployment rates as instruments to estimate returns to schooling. *Southern Economic Journal*, 76(3), 711–722.
- Aromolaran, A. B. (2006). Estimates of mincerian returns to schooling in nigeria. Oxford Development Studies, 34(2), 265–292.
- Aryal, G., Bhuller, M., & Lange, F. (2022). Signaling and employer learning with instruments. *American Economic Review*, 112(5), 1669–1702.
- Asadullah, M. N. (2006). Returns to education in bangladesh. *Education Economics*, 14(4), 453–468.
- Aslam, M. (2007). Rates of return to education by gender in pakistan. *Education Economics*, 15(2), 209–224.

- Ayyash, M., Sadeq, T., & Sek, S. K. (2020). Returns to schooling in palestine: a bayesian approach. *International Journal of Education Economics and Development*, 11(1), 37–57.
- Bakis, O., Davutyan, N., Levent, H., & Polat, S. (2013). Quantile estimates for social returns to education in turkey: 2006–2009. *Middle East Development Journal*, 5(3), 1350017–1.
- Bartolj, T., Ahčan, A., Feldin, A., & Polanec, S. (2013). Evolution of private returns to tertiary education during transition: evidence from slovenia. *Post-Communist Economies*, 25(3), 407–424.
- Belzil, C. & Hansen, J. (2002). Unobserved ability and the return to schooling. *Econometrica*, 70(5), 2075–2091.
- Bergman, E. & Schöön, C.-G. (2018). Returns to schooling and potential signalling effects: Estimates based on issp data on sweden. *Research in Social Stratification and Mobility*, 56, 54–67.
- Blundell, R., Dearden, L., & Sianesi, B. (2001). Estimating the returns to education: Models, methods and results.
- Bom, P. R. & Rachinger, H. (2019). A kinked meta-regression model for publication bias correction. *Research synthesis methods*, 10(4), 497–514.
- Botchorishvili, V. (2007). Private returns to education in georgia. Technical report, Economics Education and Research Consortium, National University, Kyir-Mohyla Academy.
- Brainerd, E. (1998). Winners and losers in russia's economic transition. *American Economic Review*, 88(5), 1094–1116.
- Breda, T. (2014). Firms' rents, workers' bargaining power and the union wage premium. *The Economic Journal*, 125(589), 1616–1652.
- Campaniello, N., Gray, R., & Mastrobuoni, G. (2016). Returns to education in criminal organizations: Did going to college help michael corleone? *Economics of Education Review*, 54, 242–258.
- Campos, M. & Reis, H. (2017). Revisiting the returns to schooling in the portuguese economy. Banco de Portugal Economic Studies, 3(2), 1–28.
- Capatina, E. (2014). Skills and the evolution of wage inequality. *Labour Economics*, 28(C), 41–57.

- Card, D. (1995). Using geographic variation in college proximity to estimate the return to schooling. In L. N. Christofides, E. K. Grant, & R. Swidinsky (Eds.), Aspects of labor market behaviour: Essays in honour of John Vanderkamp (pp. 201–222). University of Toronto Press.
- Carneiro, P., Heckman, J. J., & Vytlacil, E. (2011). Estimating marginal returns to education. *The American Economic Review*, 101(6), 2754–2781.
- Casado-Díaz, J. M. & Lillo-Bañuls, A. (2005). How profitable is to study in spain? an empirical insight using a new source of information.
- Chanis, S., Eleftheriou, K., Hadjidema, S., & Katavelis, V. (2021). Tell me who your co-worker is and i will tell you how much you earn: human capital spillovers in the greek health sector. *Journal of Education and Work*, 34(2), 128–142.
- Chase, R. S. (1998). Markets for communist human capital: Returns to education and experience in the czech republic and slovakia. *ILR Review*, 51(3), 401–423.
- De Brauw, A. & Rozelle, S. (2008). Reconciling the returns to education in off-farm wage employment in rural china. *Review of Development Economics*, 12(1), 57–71.
- Depken, C., Chiseni, C., & Ita, E. (2019). Returns to education in south africa: Evidence from the national income dynamics study. Zagreb International Review of Economics & Business, 22(1), 1–12.
- Devereux, P. & Hart, R. (2010). Forced to be rich? returns to compulsory schooling in britain. *Economic Journal*, 120 (549), 1345–1364.
- Doan, T., Strazdins, L., & Leach, L. (2020). Cost of poor health to the labour market returns to education in australia: another pathway for socio-economic inequality. *The European Journal of Health Economics*, 21, 635–648.
- Dougherty, C. R. & Jimenez, E. (1991). The specification of earnings functions: tests and implications. *Economics of Education Review*, 10(2), 85–98.
- Duflo, E. (2001). Schooling and labor market consequences of school construction in indonesia: Evidence from an unusual policy experiment. *American Economic Review*, 91(4), 795–813.
- Dumauli, M. T. (2015). Estimate of the private return on education in indonesia: Evidence from sibling data. *International Journal of Educational Development*, 42, 14–24.

- Duraisamy, P. (2002). Changes in returns to education in india, 1983–94: by gender, age-cohort and location. *Economics of Education Review*, 21(6), 609–622.
- Elliott, G., Kudrin, N., & Wüthrich, K. (2022). Detecting p-hacking. *Econometrica*, 90(2), 887–906.
- Fang, H., Eggleston, K. N., Rizzo, J. A., Rozelle, S., & Zeckhauser, R. J. (2012). The returns to education in china: Evidence from the 1986 compulsory education law. Technical Report w18189, National Bureau of Economic Research.
- Fersterer, J., Pischke, J.-S., & Winter-Ebmer, R. (2008). Returns to apprentice-ship training in austria: Evidence from failed firms. *The Scandinavian Journal of Economics*, 110(4), 733–753.
- Fortin, N. (2008). The gender wage gap among young adults in the united states: The importance of money versus people. The Journal of Human Resources, 43(4), 884–918.
- Frazer, G. (2023). Firm productivity, worker ability, and returns to education. *Econometrica*, 91(1), 107–135.
- Furukawa, C. (2019). Publication bias under aggregation frictions: Theory, evidence, and a new correction method.
- Gerber, A., Malhotra, N., et al. (2008). Do statistical reporting standards affect what is published? publication bias in two leading political science journals. *Quarterly Journal of Political Science*, 3(3), 313–326.
- Gibson, J. & Fatai, O. K. (2006). Subsidies, selectivity and the returns to education in urban papua new guinea. *Economics of Education Review*, 25(2), 133–146.
- Giles, J., Park, A., & Wang, M. (2019). The great proletarian cultural revolution, disruptions to education, and the returns to schooling in urban china. *Economic Development and Cultural Change*, 68(1), 131–164.
- Gill, A. M. & Leigh, D. E. (2000). Community college enrollment, college major, and the gender wage gap. *ILR Review*, 54(1), 161–181.
- Girma, S. & Kedir, A. (2005). Heterogeneity in returns to schooling: Econometric evidence from ethiopia. *The Journal of Development Studies*, 41(8), 1405–1416.

- Glewwe, P. (1996). The relevance of standard estimates of rates of return to schooling for education policy: A critical assessment. *Journal of Development economics*, 51(2), 267–290.
- Gorodnichenko, Y. & Peter, K. S. (2005). Returns to schooling in russia and ukraine: A semiparametric approach to cross-country comparative analysis. Journal of Comparative Economics, 33(2), 324–350.
- Grogger, J. & Eide, E. (1995). Changes in college skills and the rise in the college wage premium. The Journal of Human Resources, 30(2), 280–310.
- Guifu, C. & Hamori, S. (2009). Economic returns to schooling in urban china: Ols and the instrumental variables approach. *China Economic Review*, 20(2), 143–152.
- Harmon, C., Oosterbeek, H., & Walker, I. (2002). The returns to education: A review of evidence, issues and deficiencies in the literature.
- Harmon, C. & Walker, I. (1995). Estimates of the economic return to schooling for the united kingdom. *American Economic Review*, 85(5), 1278–1286.
- Harmon, C. & Walker, I. (1999). The marginal and average returns to schooling in the uk. *European Economic Review*, 43, 879–887.
- Hawley, J. D. (2004). Changing returns to education in times of prosperity and crisis, thailand 1985–1998. *Economics of Education Review*, 23(3), 273–286.
- Heckman, J. J., Lochner, L. J., & Todd, P. E. (2006). Earnings functions, rates of return and treatment effects: The mincer equation and beyond. In *Handbook* of the Economics of Education (Volume 1) (pp. 307–458). Elsevier.
- Himaz, R. & Aturupane, H. (2016). Returns to education in sri lanka: a pseudopanel approach. *Education Economics*, 24(3), 300–311.
- Hubbard, W. H. J. (2011). The phantom gender difference in the college wage premium. The Journal of Human Resources, 46(3), 568–586.
- Ichino, A. & Winter-Ebmer, R. (1999). Lower and upper bounds of returns to schooling: An exercise in iv estimation with different instruments. *European Economic Review*, 43, 889–901.
- Ichino, A. & Winter-Ebmer, R. (2004). The long-run educational cost of world war ii. *Journal of Labor Economics*, 22(1), 57–87.

- Ioannidis, J. P., Stanley, T. D., & Doucouliagos, H. (2017). The power of bias in economics research.
- Irsova, Z., Bom, P. R., Havranek, T., & Rachinger, H. (2023). Spurious precision in meta-analysis.
- Jones, P. (2001). Are educated workers really more productive? *Journal of Development Economics*, 64, 67–79.
- Joseph, C. (2020). Education and labour market earnings in low income countries: Empirical evidence for tanzania. *Tanzania Journal for Population studies and Development*, 26(2).
- Kane, T. J. & Rouse, C. E. (1993). Labor market returns to two- and four-year colleges: Is a credit a credit and do degrees matter? Technical report, National Bureau of Economic Research.
- Kenayathulla, H. B. (2013). Higher levels of education for higher private returns: New evidence from malaysia. *International Journal of Educational Develop*ment, 33(4), 380–393.
- Kijima, Y. (2006). Why did wage inequality increase? evidence from urban india 1983–99. Journal of Development Economics, 81(1), 97–117.
- Kingdon, G. G. (1998). Does the labour market explain lower female schooling in india? *Journal of Development Studies*, 35(1), 39–65.
- Kolstad, I. & Wiig, A. (2015). Education and entrepreneurial success. *Small Business Economics*, 44, 783–796.
- Krafft, C. (2018). Is school the best route to skills? returns to vocational school and vocational skills in egypt. *The Journal of Development Studies*, 54(7), 1100–1120.
- Krafft, C., Branson, Z., & Flak, T. (2019). What's the value of a degree? evidence from egypt, jordan and tunisia. *Compare: A Journal of Comparative and International Education*, 49(5), 784–806.
- Leigh, A. (2008). Returns to education in australia. *Economic Papers: A journal of applied economics and policy*, 27(3), 233–249.
- Leigh, A. & Ryan, C. (2008). Estimating returns to education using different natural experiment techniques. *Economics of Education Review*, 27, 149–160.

- Lemieux, T. & Card, D. (2001). Education, earnings, and the "canadian g.i. billâ€t. The Canadian Journal of Economics, 34(2), 313–344.
- Li, H. & Urmanbetova, A. (2007). 14 the effect of education and wage determination in china's rural industry. In *Private Enterprises and China's Economic Development*, (pp. 235). Emerald Group Publishing Limited.
- Light, A. & Strayer, W. (2004). Who receives the college wage premium assessing the labor market returns to degrees and college transfer patterns. *The Journal of Human Resources*, 39(3), 746–773.
- Lillo, A. (2006). The private returns to tourist human capital: Endogeneity of schooling and returns heterogeneity.
- Lillo-Bañuls, A. & Casado-Díaz, J. M. (2010). Rewards to education in the tourism sector: one step ahead. *Tourism Economics*, 16(1), 11–23.
- Maluccio, J. A. (1998). Endogeneity of schooling in the wage function: Evidence from the rural philippines.
- Mazrekaj, D., De Witte, K., & Vansteenkiste, S. (2019). Labour market consequences of a high school diploma. *Applied Economics*, 51(21), 2313–2325.
- Mishra, V. & Smyth, R. (2012). Returns to schooling in urban china: New evidence using heteroskedasticity restrictions to obtain identification without exclusion restrictions. Technical Report 33, Department of Economics, Monash University, Discussion Paper.
- Mishra, V. & Smyth, R. (2014). Returns to education in china's urban labour market: Evidence from matched employer-employee data for shanghai. In *Urban China in the New Era: Market Reforms, Current State, and the Road Forward*, (pp. 169–183). World Scientific.
- Moretti, E. (2004). Estimating the social return to higher education: evidence from longitudinal and repeated cross-sectional data. *Journal of Econometrics*, 121, 175–212.
- Morgan, S. L. & Morgan, W. R. (1998). Education and earnings in nigeria, 1974-1992. Research in Social Stratification and Mobility, 16, 3–26.
- Mphuka, C. & Simumba, J. (2012). Estimating returns to education in zambia. African Development Review, 24(1), 1–16.

- Munich, D., Svejnar, J., & Terrell, K. (2005). Returns to human capital under the communist wage grid and during the transition to a market economy. *Review of Economics and Statistics*, 87(1), 100–123.
- Okuwa, O. B. (2004). Private returns to higher education in nigeria.
- Patrinos, H. A., Psacharopoulos, G., & Tansel, A. (2021). Private and social returns to investment in education: the case of turkey with alternative methods. *Applied Economics*, 53(14), 1638–1658.
- Paweenawat, S. W. & Vechbanyongratana, J. (2015). Private returns to stem education in thailand. *Science*, 100, 150–000.
- Peters, A., Dockery, A. M., & Bawa, S. (2022). Course non-completion and multiple qualifications: re-estimating the returns to education in australia. *Australian Journal of Labour Economics*, 25(1), 55–80.
- Pischke, J.-S. & von Wachter, T. (2005). Zero returns to compulsory schooling in germany: Evidence and interpretation. *The Review of Economics and Statistics*, 87(3), 467–476.
- Psacharopoulos, G. (1982). Earnings and education in greece, 1960–1977. European Economic Review, 17(3), 333–347.
- Psacharopoulos, G. & Layard, R. (1979). Human capital and earnings: British evidence and a critique. *Review of Economic Studies*, 46, 485–503.
- Purnastuti, L. (2013). Instrumenting education and returns to schooling in indonesia. *Jurnal Economia*, 9(2), 166–174.
- Purnastuti, L., Losina, R. S., & Joarder, M. A. M. (2015). The returns to education in indonesia: Post reform estimates. *The Journal of Developing Areas*, 49(2), 183–204.
- Qiu, T. (2007). Private returns to education: earnings, health and well-being. PhD thesis, University of Bath.
- Sackey, H. A. (2008). Private returns to education in ghana: implications for investments in schooling and migration.
- Sakellariou, C. & Fang, Z. (2016a). Returns to schooling for urban and migrant workers in. *Applied Economics*, 48(8), 684–700.

- Sakellariou, C. & Fang, Z. (2016b). Returns to schooling for urban and migrant workers in china: a detailed investigation. *Applied Economics*, 48(8), 684–700.
- Salas-Velasco, M. (2006). Private returns to an university education: An instrumental variables approach.
- Salehi-Isfahani, D., Tunali, I., & Assaad, R. (2009). A comparative study of returns to education of urban men in egypt, iran, and turkey. *Middle East Development Journal*, 1(2), 145–187.
- Sinning, M. (2014). How much is it worth? new estimates of private returns to university education in australia. Technical report, Final Report.
- Sinning, M. (2017). Gender differences in costs and returns to higher education. *AND GENDER*, 2017, 227.
- Sohn, K. (2013). Monetary and nonmonetary returns to education in indonesia. *The Developing Economies*, 51(1), 34–59.
- Staiger, D. & Stock, J. H. (1997). Instrumental variables regression with weak instruments. *Econometrica*, 65(3), 557–586.
- Stanley, T. D., Jarrell, S. B., & Doucouliagos, H. (2010). Could it be better to discard 90% of the data? A statistical paradox.
- Stephens Jr, M. & Yang, D. Y. (2014). Compulsory education and the benefits of schooling. *American Economic Review*, 104(6), 1777–1792.
- Taber, C. R. (2001). The rising college premium in the eighties: Return to college or return to unobserved ability? *Review of Economic Studies*, 68(3), 665–691.
- Troske, K. R. (1999). Evidence on the employer size-wage premium from worker-establishment matched data. *The Review of Economics and Statistics*, 81(1), 15–26.
- Umar, H. M., Ismail, R., & AbdulHakim, R. (2014). Regional disparities in private returns to education: Evidence from nigeria. *Journal of Economics and Sustainable Development*, 5(20), 48–58.
- van Aert, R. C. & van Assen, M. A. L. M. (2021). Correcting for publication bias in a meta-analysis with the p-uniform* method.
- van der Hoeven, R. (2013). Oyedolapo chiamaka adeoye.

- Van Praag, M., van Witteloostuijn, A., & van der Sluis, J. (2013). The higher returns to formal education for entrepreneurs versus employees. *Small Business Economics*, 40, 375–396.
- Vasudeva Dutta, P. (2006). Returns to education: New evidence for india, 1983–1999. *Education Economics*, 14(4), 431–451.
- Vivatsurakit, T. & Vechbanyongratana, J. (2020). Returns to education among the informally employed in thailand. Asian-Pacific Economic Literature, 34 (1), 26–43.
- Walker, I. & Zhu, Y. (2008). The college wage premium and the expansion of higher education in the uk. *The Scandinavian Journal of Economics*, 110(4), 695–709.
- Wambugu, A. (2003). Essays on earnings and human capital in Kenya. PhD thesis, University of Connecticut.
- Warunsiri, S. & McNown, R. (2010). The returns to education in thailand: A pseudo-panel approach. World Development, 38(11), 1616–1625.
- Webbink, D. (2004). Returns to university education.
- Wincenciak, L. (2020). Evolution of private returns to schooling over the business cycle in a transition economy. *International Journal of Manpower*, 41(8), 1307–1322.
- Zhong, H. (2011). Returns to higher education in china: What is the role of college quality? *China Economic Review*, 22(2), 260–275.
- Zhu, R. (2012). Economic restructuring, heterogeneous returns to schooling and the evolution of wage inequality in urban china. In 35th Pacific Trade and Development Conference.