FUNDAMENTOS DA INTELIGÊNCIA ARTIFICIAL

Aula 02 - Perceptron

Prof. Rafael G. Mantovani

Roteiro

- 1 Introdução
- 2 Perceptron
- 3 Teorema de Convergência
- 4 Algoritmo de Treinamento Perceptron
- 5 Exemplo / Exercício
- 6 Síntese / Próximas Aulas
- Referências

Roteiro

- 1 Introdução
- 2 Perceptron
- 3 Teorema de Convergência
- 4 Algoritmo de Treinamento Perceptron
- 5 Exemplo / Exercício
- 6 Síntese / Próximas Aulas
- 7 Referências

Relembrando

O que vimos na aula passada ?

Relembrando

- Paradigma Conexionista
- Redes Neurais Artificiais
- Inspiração Biológica (estrutura do cérebro)
- Neurônio artificial
- Funções de Ativação
- Topologias
- Algoritmos de Aprendizado

Introdução

- Perceptron (Rosenblatt, 1958):
 - primeira rede neural descrita algoritmicamente
 - Frank Rosenblatt (psicólogo)
 - modelo mais simples de rede neural que existe

Introdução

- Classifica padrões linearmente separáveis
- um único neurônio com pesos sinópticos ajustáveis e bias
- □ Rosenblatt → algoritmo:
 - Ajuste dos parâmetros livres da rede (pesos sinápticos)
 - provou que se os exemplos utilizados no treino forem linearmente separáveis, o algoritmo converge, posicionando um hiperplano entre as duas classes

Roteiro

- 1 Introdução
- 2 Perceptron
- 3 Teorema de Convergência
- 4 Algoritmo de Treinamento Perceptron
- 5 Exemplo / Exercício
- 6 Síntese / Próximas Aulas
- **7** Referências

□ Perceptron → Neurônio de McCulloch-Pitts

Quais são os elementos manipulados?

$$v_k = \sum_{j=0}^m w_{kj} x_j \qquad e \qquad y_k = \varphi(v_k)$$

- X são os sinais de entrada
- W são os pesos sinápticos do neurônio k
- v_k é a combinação linear de W e X (entradas)
- □ b_k é o bias
- Φ(.) é a função de ativação
- y_k é a saída do neurônio

 Objetivo: classificar corretamente um conjunto de exemplos X em uma de duas classes C1 ou C2

 Objetivo: classificar corretamente um conjunto de exemplos X em uma de duas classes C1 ou C2

 Objetivo: classificar corretamente um conjunto de exemplos X em uma de duas classes C1 ou C2

 Aprendizado: ajuste iterativo dos pesos sinápticos usando o algoritmo de convergência do perceptron

Roteiro

- 1 Introdução
- 2 Perceptron
- 3 Teorema de Convergência
- 4 Algoritmo de Treinamento Perceptron
- 5 Exemplo / Exercício
- 6 Síntese / Próximas Aulas
- Referências

- bias b(n): é um peso w₀ associado a uma entrada +1
- □ vetor de entrada X(n): [+1, $x_1(n)$, $x_2(n)$, ..., $x_m(n)$] T
- vetor de pesos W(n): [b, $w_1(n)$, $w_2(n)$, ..., $w_m(n)$]

$$v(n) = \sum_{i=0}^{m} w_i(n) x_i(n) = \mathbf{w}^{T}(n) \mathbf{x}(n)$$

 $\mathbf{w}^T \mathbf{x} = 0$ define um hiperplano de separação

 $\mathbf{w}^T \mathbf{x} > 0$ para todo vetor \mathbf{x} pertencente à classe

 $\mathbf{w}^T \mathbf{x} \leq 0$ para todo vetor \mathbf{x} pertencente à classe

- Se o n-ésimo vetor x(n) é corretamente classificado pelo vetor w(n) na n-ésima iteração do algoritmo, nenhuma correção é feita no vetor de pesos:
 - $\mathbf{w}(n+1) = \mathbf{w}(n)$ se $\mathbf{w}^{\mathsf{T}}\mathbf{x}(n) > 0$ e $\mathbf{x}(n) \ni$ a classe C1
 - $\mathbf{w}(n+1) = \mathbf{w}(n)$ se $\mathbf{w}^T \mathbf{x}(n) \le 0$ e $\mathbf{x}(n) \ni$ a classe C2
- Caso contrário, o vetor de pesos é atualizado:
 - $\mathbf{w}(n+1) = \mathbf{w}(n) \mathbf{\eta}(n) \mathbf{x}(n)$ se $\mathbf{w}^T \mathbf{x}(n) > 0$ e $\mathbf{x}(n) \ni$ classe C2
 - $\mathbf{w}(n+1) = \mathbf{w}(n) + \mathbf{\eta}(n)\mathbf{x}(n)$ se $\mathbf{w}^T\mathbf{x}(n) \leq 0$ e $\mathbf{x}(n) \ni$ classe C1
- n é a taxa de aprendizado que controla o ajuste dos pesos
 - hiper-parâmetro do algoritmo
 - parâmetro x hiper-parâmetro

A saída do neurônio é computada usando a função sinal sgn(.):

$$sgn(v) = \begin{cases} +1 \text{ se } v > 0\\ -1 \text{ se } v < 0 \end{cases}$$

Expressamos a saída y(n) de maneira compacta:

$$y(n) = sgn[\mathbf{w}^{T}(n)\mathbf{x}(n)]$$

Regra de Atualização dos Pesos sinápticos:

■
$$w(n+1) \leftarrow w(n) + \eta (d(n) - y(n)) x(n)$$

 \neg d(n) - y(n): sinal de erro

- Os pesos são corrigidos de acordo com o valor do produto interno w^T(n) x(n)
- Se o produto interno, na iteração n, tiver um sinal errado, os pesos devem ser ajustados para classificar o exemplo corretamente na iteração n+1

Gradiente descendente

Gradiente descendente

$$E^2 = \left(d(n) - y(n)\right)^2 = \left(d(n) - \mathbf{w}^T(n)\mathbf{x}(n)\right)^2$$

erro quadrático

$$w_i(n+1) = w_i(n) - \eta \frac{dE^2}{dw_i}$$

$$\frac{dE^2}{dw_i} = \frac{d\left(d(n) - y(n)\right)^2}{dw_i(n)} = 2 \times \left(d(n) - \mathbf{w}^T(n)\mathbf{x}(n)\right) \times -x_i$$

Gradiente descendente

Roteiro

- 1 Introdução
- 2 Perceptron
- 3 Teorema de Convergência
- 4 Algoritmo de Treinamento Perceptron
- 5 Exemplo / Exercício
- 6 Síntese / Próximas Aulas
- **7** Referências

Algoritmo de Treinamento

- Entradas e hiper-parâmetros:
 - □ X(n): vetor de entrada
 - W(n): vetor de pesos
 - □ **b** : bias
 - □ y(n): saída obtida
 - d(n): saída desejada (real)
 - η: taxa de aprendizado

- Funcionamento:
 - reduzir o erro entre as saídas esperadas, e as saídas obtidas

Algoritmo de Treinamento

- Passo 1. Obter o conjunto de amostras de treinamento
- Passo 2. Associar a saída desejada d(n) para cada amostra obtida x(n)
- Passo 3. Iniciar o vetor w com valores aleatórios pequenos
- Passo 4. Especificar a taxa de aprendizagem η
- Passo 5. Iniciar o contador de número de épocas
 - (época ← 0)

Algoritmo de Treinamento

- Passo 6. Repita
 - 6.1 erro ← FALSE
 - 6.2 Para todas as amostras de treinamento x(n), d(n), fazer:
 - 6.2.1 n ←epoca
 - 6.2.2 \cup ← $\mathbf{w}^{T}(n) \mathbf{x}(n)$
 - 6.2.3 y \leftarrow sgn (u)
 - 6.2.4 Se $y(n) \neq d(n)$, então
 - w \leftarrow w + η (d(n) y(n)) x(n)
 - erro ← TRUE
 - 6.3 epoca ←epoca + 1
- □ até que erro ← FALSE
- // Repetir até que todas as amostras de treinamento tenham sido corretamente rotuladas

Roteiro

- 1 Introdução
- 2 Perceptron
- 3 Teorema de Convergência
- 4 Algoritmo de Treinamento Perceptron
- 5 Exemplo / Exercício
- 6 Síntese / Próximas Aulas
- Referências

Exemplo

Treinar o perceptron para o problema abaixo:

$$^{\circ}$$
 w0 = -0.5441, w1 = 0.5562, w2 = 0.4074

- □ bias = -1
- $\eta = 0.1$

Exemplo	X1	X2	Classe	
E1	2	2	1	
E2	4	4	0	

Exemplo

Treinar o perceptron para o problema abaixo:

$$\sim$$
 w0 = -0.5441, w1 = 0.5562, w2 = 0.4074

- □ bias = -1
- $\eta = 0.1$

Exemplo	X1	X2	Classe	
E1	2	2	1	
E2	4	4	0	

várias soluções possíveis

Exercício

Treinar o perceptron para reconhecer o problema lógico OR.
Dados:

$$\sim$$
 w0 = w1 = w2 = 0.5

- \Box bias = +1
- $\eta = 0.1$

X1	X2	D
0	0	0
0	1	1
1	0	1
1	1	1

Roteiro

- 1 Introdução
- 2 Perceptron
- 3 Teorema de Convergência
- 4 Algoritmo de Treinamento Perceptron
- 5 Exemplo / Exercício
- 6 Síntese / Próximas Aulas
- **7** Referências

Síntese/Revisão

- Perceptron
 - um neurônio de McCulloch Pitts
 - bias
 - função de ativação degrau
- Teorema de Convergência
- Algoritmo de Aprendizado do Perceptron
- Exemplo

Próxima Aula

- ADALINE x Perceptron Simples
 - implementação dos algoritmos (R/Python)
 - prática: AT01

Roteiro

- 1 Introdução
- 2 Perceptron
- 3 Teorema de Convergência
- 4 Algoritmo de Treinamento Perceptron
- 5 Exemplo / Exercício
- 6 Síntese / Próximas Aulas
- **7** Referências

Literatura Sugerida

[Faceli et al, 2011]

[Braga et al, 2007]

Literatura Sugerida

(Haykin, 1999)

(Freeman & Skapura, 1991)

Perguntas?

Prof. Rafael G. Mantovani

rgmantovani@gmail.com