groups out of a given semigroup $(T(t))_{t\geq 0}$ on a Banach space E . Let V be an isomorphism from E onto E . Then $S(t):=VT(t)V^{-1}$, $t\geq 0$, defines a strongly continuous semigroup. If A is the generator of $(T(t))_{t\geq 0}$ then

$$B := VAV^{-1}$$
 with domain $D(B) := \{f \in E : V^{-1}f \in D(A)\}$

is the generator of $(S(t))_{t\geq 0}$.

3.1. The Rescaled Semigroup

For fixed $\lambda \in \mathbb{C}$ and $\alpha > 0$ the operators

$$S(t) := exp(\lambda t)T(\alpha t)$$

yield a new semigroup having generator

$$B := \alpha A + \lambda Id$$
 with $D(B) = D(A)$.

This 'rescaled semigroup' enjoys most of the properties of the original semigroup and the same is true for the corresponding generators. However, by using this procedure certain constants associated with $(T(t))_{t\geq 0}$ and A can be normalized. For example, by this rescaling we may in many cases suppose without loss of generality that the growth bound ω is zero.

Another application is the following: For $\lambda \in \mathbb{C}$ and $S(t) := \exp(-\lambda t)T(t)$ the formulas (1.3) and (1.4) yield:

$$e^{-\lambda t}T(t)f - f = (A-\lambda) \int_0^t e^{-\lambda s}T(s)f ds$$
(3.1) or
$$(e^{\lambda t}-T(t))f = (\lambda-A) \int_0^t e^{\lambda(t-s)}T(s)f ds \qquad \text{for } f \in E,$$

and

$$e^{-\lambda t}T(t)f - f = \int_0^t e^{-\lambda s}T(s)(A-\lambda)f ds$$

(3.2) or
$$(e^{\lambda t} - T(t))f = \int_0^t e^{\lambda (t-s)} T(s) (\lambda - A) f ds \quad \text{for } f \in D(A) .$$

3.2. The Subspace Semigroup

Assume F to be a closed (T(t))-invariant or, equivalently, $R(\lambda,A)$ -invariant $(\lambda \in \mathbb{C} , Re\lambda > \omega)$ subspace of E. Then the semigroup $(T(t)_{|})_{t\geq 0}$ of all restrictions $T(t)_{|} := T(t)_{|}F$ is strongly continuous on F. If (A,D(A)) denotes the generator of $(T(t))_{t\geq 0}$ it follows from the (T(t))-invariance and closedness of F that A maps $D(A) \cap F$ into F. Therefore

 $A_{\mid}:=A_{\mid D(A) \cap F}$ with domain $D(A_{\mid}):=D(A) \cap F$ is the generator of $(T(t)_{\mid})$.