

RNNs Predicting Stock of Disney

Gavin Wentzel Hao Zhang Dylan Lai

Recurrent Neural Network

1. Time-Series Modeling

 RNNs excel at capturing temporal patterns in sequential data like stock prices.

2. Memory of Past Trends

 Retains stock prices from previous days to understand context over time.

3. Non-linear Relationship Handling

- Models complex market dynamics influenced by multiple factors, such as sentiment and volatility.
- Reveal hidden patterns and associations that would otherwise be difficult or nearly impossible for humans to identify with linear methods

4. Multivariate Input Support

 Can integrate multiple variables (e.g., prices, trading volume, economic indicators) for better predictions.

Goal

- Generate a general outline predicting future stock price movement
- Develop Trade Entry and Exit Strategy
- **Profit** \$\$

Languages Used

Python: Primary programming language for the project.

Libraries:

- NumPy: Numerical computations.
- Pandas: Data manipulation and preprocessing.
- Matplotlib: Data visualization.
- Scikit-learn: Data scaling and evaluation metrics.
- TensorFlow: Building and training the RNN model

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error

from tensorflow.keras.models import Sequential
```

from tensorflow.keras.layers import Dense, LSTM, Dropout, GRU, Bidirectional

from tensorflow.keras.optimizers import SGD

Dataset

Source: Kaggle.

Content: Historical stock prices of Disney from 1999 to October 2024.

Variables: Open Price, Close Price, High Price, Low Price, Volume

Format: CSV file imported as a Pandas DataFrame for analysis.

Focus:

Used high prices to predict the next high price using a
 Long Short Term Memory and Gated Recurrent Unit

print(dataset.describe()) Low Price Close Price High Price Volume 6281.000000 6281.000000 6281.000000 6.281000e+03 6281.000000 67.436753 68.087816 66.735660 67.428240 9.810510e+06 mean 44.669931 45.029558 44.237155 6.085865e+06 13.800000 14.100000 13.480000 1.487900e+06 28.910000 29.380000 28.550000 6.380600e+06 43.610000 44.080000 43.260000 43.790000 8.340051e+06 103.220000 104.150000 102.100000 103.260000 1.142185e+07 200.185000 203.020000 195.400000 201.910000 1.166250e+08

Dataset Scaling and Modification


```
#divides the training and testing sets
def train_test_split(dataset, tstart, tend):
   train = dataset.loc[f"{tstart}":f"{tend}", "High Price"].values
   test = dataset.loc[f"{tend+1}":, "High Price"].values
   return train, test
training_set, test_set = train_test_split(dataset, tstart, tend)
num features = 1
#scales the training set
sc = MinMaxScaler(feature range=(0, 1))
training set = training set.reshape(-1, num features)
training_set_scaled = sc.fit_transform(training_set)
def split_sequence(sequence, n_steps):
   X, y = list(), list()
   for i in range(len(sequence)):
        end ix = i + n steps
        if end ix > len(sequence) - 1:
        seq x, seq y = sequence[i:end ix], sequence[end ix]
        X.append(seq x)
        y.append(seq y)
    return np.array(X), np.array(y)
#splits the training set into predictor and prediction segments
n \text{ steps} = 60
# split into samples
X train, y train = split sequence(training set scaled, n steps)
```

Training

```
#displays information about the lstm model
model_lstm = Sequential()
model_lstm.add(LSTM(units=125, activation="tanh", input_shape=(n_steps, num_features)))
model_lstm.add(Dense(units=num_features))
# Compiling the model
model_lstm.compile(optimizer="RMSprop", loss="mse")
model_lstm.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 125)	63,500
dense (Dense)	(None, 1)	126

```
Total params: 63,626 (248.54 KB)
Trainable params: 63,626 (248.54 KB)
Non-trainable params: 0 (0.00 B)
```



```
38/38
                          - 1s 30ms/step - loss: 8.0626e-04
Epoch 42/50
38/38
                          1s 31ms/step - loss: 7.0012e-04
Epoch 43/50
38/38 -
                          1s 31ms/step - loss: 7.0750e-04
Epoch 44/50
38/38
                          1s 30ms/step - loss: 6.7793e-04
Epoch 45/50
38/38 -
                           1s 30ms/step - loss: 8.2062e-04
Epoch 46/50
38/38 -
                          - 1s 29ms/step - loss: 7.1232e-04
Epoch 47/50
38/38 -
                          - 1s 30ms/step - loss: 7.3169e-04
Epoch 48/50
38/38 -
                           1s 31ms/step - loss: 7.9386e-04
Epoch 49/50
38/38

    1s 29ms/step - loss: 7.5055e-04

Epoch 50/50
38/38
                          1s 30ms/step - loss: 6.2414e-04
```

Model: "sequential_13"

Layer (type)	Output Shape	Param #
gru_4 (GRU)	(None, 125)	48,000
dense_13 (Dense)	(None, 1)	126

```
Total params: 48,126 (187.99 KB)
Trainable params: 48,126 (187.99 KB)
Non-trainable params: 0 (0.00 B)
model_gru.fit(X_train, y_train, epochs=50, batch_size=32)
38/38
                          10s 147ms/step - loss: 6.4953e-04
Epoch 42/50
38/38
                          10s 135ms/step - loss: 7.7769e-04
Epoch 43/50
38/38
                           6s 143ms/step - loss: 5.6075e-04
Epoch 44/50
38/38 -
                          10s 137ms/step - loss: 7.6533e-04
Epoch 45/50
38/38
                           5s 140ms/step - loss: 5.4499e-04
Epoch 46/50
38/38 -
                           6s 149ms/step - loss: 6.6725e-04
Epoch 47/50
                           10s 132ms/step - loss: 6.4558e-04
38/38
Epoch 48/50
38/38 -
                           6s 143ms/step - loss: 7.2674e-04
Epoch 49/50
38/38
                           6s 143ms/step - loss: 5.2221e-04
Epoch 50/50
38/38
                           6s 147ms/step - loss: 6.1471e-04
```

```
#same for gru
model_gru = Sequential()
model_gru.add(GRU(units=125, activation="tanh", input_shape=(n_steps, num_features)))
model_gru.add(Dense(units=num_features))
# Compiling the RNN
model_gru.compile(optimizer="RMSprop", loss="mse")
model_gru.summary()
```

Demo - Prediction vs. Real Data

return_rmse(test_set,predicted_stock_price_lstm) return_rmse(test_set,predicted_stock_price_gru)

The root mean squared error is 2.24.

The root mean squared error is 2.43.

Demo - Prediction vs. Real Data

```
return_rmse(training_set[-futurePredicts:],newPredicts_LSTM)
return_rmse(training_set[-futurePredicts:],newPredicts_GRU)
```

The root mean squared error is 9.21. The root mean squared error is 13.01.

Demo - Prediction vs. Real Data

Results

- The RNN model successfully captured the overall **trend** in Disney's stock price movements.
- Despite the irregular shape and noise in the distribution of data points, the model was able to predict a fairly accurate shape for future high prices.
- Highlights the model's strength in learning patterns from complex, non-linear time-series data.
- Minor deviations in individual predictions were observed, likely due to market volatility and random fluctuations

Limitations

Influence of External Factors:

- Stock prices are influenced by more than just historical trends, such as:
 - Economic news, geopolitical events, and company announcements.
 - Market sentiment, investor behavior, and macroeconomic indicators.
- Including these external factors in the model is challenging due to their complexity and unpredictability.

Data Dependency:

Over-reliance on historical prices can lead to limited accuracy in highly volatile markets.

Conclusion

RNN Effectiveness:

- Successfully modeled trends in Disney's stock prices, demonstrating its ability to handle sequential, non-linear data.
- Despite challenges, the predictions closely matched the general shape of future price trends.

Challenges Faced:

- External factors influencing stock prices are difficult to incorporate into the model.
- The irregular distribution of data points posed limitations on prediction accuracy.

Future Scope:

- Enhance the model by integrating external data sources like market news or sentiment analysis.
- Explore advanced architectures such as GRUs or hybrid models for improved performance.

Takeaway:

 RNNs are powerful for stock price prediction but must be complemented by additional features for real-world applications

061 Jul Aug Oct May Jun Sep Nov