

Computer Systems Forensic Analysis AFSC

Mobile Forensics

Artur Varanda

School Year 2023-2024

Forensic value of phones

Phones, especially smartphones, have a huge potential of providing evidences

- are part of our everyday life
 - ✓ screen checks/day and h/day usage of smartphones
 - ✓ they store a huge amount of diverse information:
 - ✓ logs of calls, messages, GPS, network connections contents of messages, emails, multimedia (photos and video), social networks, etc...
- sales of smartphones surpassed PCs by the end of 2011

Phones' data locations

Where is data located in phones?

- data can be physically stored in 3 different locations:
 - ✓ handset, memory card and SIM card
- some types of data may be found in more than one location:
 - ✓ contacts on SIM and handset
 - ✓ pictures on handset and memory card

Acquiring data from phones

Retrieval approach:

- Examine every area (handset, memory card and SIM) independently
 - ✓ to be sure of capturing all the information you can

Can data be stored anywhere else?

- Service providers → requires additional legal procedures
- Cloud services → might require additional legal procedures
- Handset backups → more common in iOS devices

SIM cards?

Disambiguation

- UICC (Universal Integrated Circuit Card) is the technical name of the physical part of the smart card
- SIM (Subscriber Identity Module) is a logical module stored inside the smart card
 - ✓ in the early stages a SIM consisted of the hardware and the software

A given card can contain multiple SIMs

This would allow multiple phone numbers or accounts to be accessed by a single UICC.

12-in-1 UICC: https://multi-com.eu/,details,id_pr,2769,key,sim-max-12-in-1-card.html

How many sizes/formats exist?

Variant	1FF	2FF ("Mini SIM")	3FF ("Micro SIM")	4FF ("Nano SIM")
Year of launch	1991	1996	2003	2012
Dimensions (mm)	85.6 x 53.98	25.0 x 15.0	15.0 x 12.0	12.3 x 8.8

These are user replaceable

Embedded UICC (also know as eSIM)

- permanently embedding into devices used in machine-to-machine (M2M) applications
- not replaceable by a regular user
- 2 formats MFF1 and MFF2 { both have the same size
 - ✓ MFF1 is socketable (replaceable with special tools)
 - ✓ MFF2 is soldered

These are non user replaceable

Main characteristics

- processor
- storage
 - ✓ memory to store text based user data e. g. SMS, contacts and calls
 - ✓ traditionally held just 16 to 64 KB, but there are some with 1 GB

UICC are also known as "SIM cards"

- mandatory in GSM networks
- standardized by 3GPP: https://www.3gpp.org/

Integrated Circuit Card Identifier (ICCID)

- uniquely identifies the card
- 19 or 20 digits in length
- often printed on the outside (may be abbreviated)
- always stored digitally in the card

ICCID identifies issuing service provider and country

http://phone.fyicenter.com/1155 ICCID SIM Card Number Checker Decoder.html

ICCID: 8935101812049567121

Subscriber Identity Module (SIM)

Role of the SIM

- Authentication the mobile network uses a challenge/response security mechanism to allow access to the network;
- Accountability the SIM contains a unique reference number that identifies both the card and the subscriber to ensure that associated costs are allocated correctly;

USIM - Universal Subscriber Identity Module

- for 3G and newer networks
- compared with SIM:
 - ✓ higher security, bigger and improved phonebook, can run small applications

Multi-application cards have 2 partitions: SIM + USIM

International Mobile Subscriber Identity (IMSI)

IMSI

- uniquely identifies the subscriber
- stored digitally in the card
- cannot be changed in a normal card
- can also identify issuing service provider and country
- usually not know by the owner
- composed by:
 - ✓ Mobile Country Code (MCC)
 - ✓ Mobile Network Code (MNC)
 - ✓ Mobile Subscription Identification Number (MSIN)

https://www.msisdn.net/list-of-mcc-mnc/

- MCC Portugal: 268
- MNC
 - ✓ 01 Vodafone
 - ✓ 03 NOS
 - ✓ 06 MEO

Mobile Station International Subscriber Directory Number

MSISDN

- just like the IMSI, the DSISDN is also an important number used for identifying a mobile subscriber
- used for routing calls to the subscriber
- it is the number normally dialed to connect a call to the mobile phone
- The ITU-T recommendation E.164 limits the maximum length of an MSISDN to 15 digits. 1-3 digits are reserved for country code.

MSISDN = Country Code + Subscriber Number

Phones vary enormously

Huge variation between dierent handsets

• shape, keyboard, connectivity, features, memory, etc

What they have in common?

International Mobile Equipment Identifier (IMEI)

All handsets must be uniquely identified by IMEI

International Mobile Equipment Identifier

IMEI

- printed under the battery, or the back of the device
- stored digitally in the handset
 - ✓ can be displayed on most phones by entering *#06#
- first 8 digits identify manufacturer and model

*#06# IMEI

<u>355995057333900</u> / 01

355996057333908 / 01

https://www.imei.info/

XRY Software

Supports device search by the first digits of TAC

https://en.wikipedia.org/wiki/International Mobile Equipment Identity

https://en.wikipedia.org/wiki/Type Allocation Code (Manufacturer and model)

https://en.wikipedia.org/wiki/Reporting Body Identifier (GSMA-approved group that allocated the TAC)

https://en.wikipedia.org/wiki/Luhn_algorithm (Check digit computation)

Potential Evidence

What data can potentially be an evidence on the (U)SIM?

- ICCID and IMSI
- phonebook / contacts
- SMS messages, including deleted (if not overwritten)
- call information

	SIM	USIM
Dialled	Yes (no time, date or duration)	Yes (optionaly: time, date and duration)
Received	No	Yes (optionaly: time, date and duration)
Missed	No	Yes (optionaly: time, date and duration)

Potential Evidence

What happens when a SMS on the (U)SIM is deleted?

- the message status is changed to indicate message no longer required
- however, the content of the message is typically left intact
- message is only overwritten when space is required for a new SMS
- So deleted SMS may be retrieved by accessing SIM via a card reader

Each SMS message has a maximum length

- 160 characters (for the GSM Latin alphabet)
- less characters per message for Arabic, Hebrew, etc
- long SMS are split into 2 or more separate messages

Potential Evidence

Network data on SIM card

- location area information can be retrieved from SIM card but its value is limited
 - ✓ likely to reflect location of seizure, but could be used to ensure the handset hasn't been switched on after seizure
- list of allowed or forbidden networks
- other network information can also be retrieved, e. g. TMSI, Kc, etc
 - ✓ may not be relevant to many investigations
 - ✓ more details: Forensics Wiki (https://forensics.wiki/sim_cards/) and

(https://en.wikipedia.org/wiki/SIM_card)

Warning

Some feature phones only work with a SIM card inserted.

However, if the handset detects that the SIM card has changed (based on IMSI, ICCID or both) it could potentially delete the call register entries

Solution:

- when available, clone SIM card ICCID and IMSI (requires special equipment)
 - ✓ SIM with cloned ICCID and IMSI cannot connect to the cell network

Forensics Dangers

SIM card security

- PIN (personal identification number) if the PIN is enabled and entered incorrectly 3 times in a row, the SIM card will be blocked
- PUK (PIN unlock key) if PUK is entered 10 times incorrectly, the SIM card will become
 permanently blocked and unrecoverable
 - ✓ PUK is a SIM-specific code assigned by the service provider
 - ✓ cannot be changed by the user

Without the PIN

- only ICCID can be read from the SIM card
- with the ICCID ask the service provider for the PUK \Rightarrow requires legal procedures

Forensics Dangers

Mobile Station International Subscriber Directory Number (MSISDN)

- SIM cards can store one or more phone numbers (MSISDNs)
- but entries are **unreliable**
 - ✓ the number may never have been used
 - ✓ the MSISDN may have been ported over from a previous SIM
 - ✓ in older handsets the number may be missing or **edited by owner**
 - ✓ MSISDN must be confirmed with the service provider

Data Acquisition

Connection Interfaces

Interfaces to acquire data

• Cable – fast and secure

• Bluetooth – slower than cable, leaves footprints in PC and handset

XRY Device Manual details the preferred connection

- same handset with different connection interface may produce different results
- "Manually find devices and apps" and read info

Network isolation

Ensure network isolation before data extraction

• airplane mode ON - many devices allow it in the block screen

or

- remove the SIM card and turn off Wi-Fi
- use a faraday cage
- signal jammers (might require special permission)

Importance of network isolation

- to avoid data changes (SMS, chat, calls, etc)
- to avoid remote locks or wipes

Logical acquisition

How it works?

- acquisition software asks handset what data is available
- handset may or may not provide data
 - ✓ usually, it's not possible to get deleted data
- different protocols are used for
 - ✓ different handsets and OS
 - ✓ different data types

Different types of logical acquisition

- full acquisition (through an agent app)
- ask the smartphone to do a backup

Logical acquisition

What data can be retrieved in a logical acquisition?

Logical acquisition

Logical acquisition requires access to the OS.

How to beat the security code?

- ask the owner!
- XRY can get the security codes of some devices, check the "Device Manual"
- smudged swipe pattern
- manufacturers defaults (check user manual)
- on some devices XRY can do a physical acquisition without the security code

Physical acquisition

How it works?

- data is recovered in raw form
 - ✓ copy bit by bit
 - ✓ provides a lot of data, including deleted data (not overwritten)
 - ✓ requires decoding of the raw data
 - CPU intensive
 - software may not be able to decode everything
 - cannot be done if device is encrypted

Physical acquisition

What data can be retrieved in a physical acquisition?

Single hash for repeatability is not feasible

In mobile data acquisition hashing cannot be treated the same way as in HDD

- each time the handset is turned ON something changes
- it is not feasible to have a single hash value for the acquired image
- it is very important to hash ALL content individually (every file or digital object)
 - ✓ this is done automatically by acquisition software like XRY

Software tools

Some software tools:

- **XRY** to acquire data on mobile devices
- **FTK Imager** to acquire data on memory cards
- Autopsy to analyze acquisitions, some support for Android
- **SQLiteBrowser** to see browsers caches and mobile apps databases
- **file** to identify le types regardless of extension
- **strings** to extract strings (ascii, utf-8 or utf-16)
- scripting to speed up repetitive tasks
- phones specifications: https://phonescoop.com and https://gsmarena.com

Hardware tools

Hardware tools

Conclusions

Service providers can give additional information:

- subsriber details (name, address, payment details, etc)
- calls made/received
- SMS and MMS logs
- voicemail
- location information
- ICCID / IMSI / IMEI / phone number (MSISDN)
- PUK code

Open the file MAVEN.xrycase with XAMN Launcher

1- open the SIM acquisition

- what is the card ID (ICCID)? Who issued this SIM card? what is the network operator?
- what is the phone number?
- click on Device, a new tab will open
- what was the last network the device was connected?

2 - open the Agent acquisition

- what is the phone brand and model?
- what is the device timezone?
- click on ALL, a new tab will open
- what is the phone number of Kara Thrace?
- what number was dialed on 16-06-2016 21:21:11 UTC?

3 - Look for MMS, choose MMS ID 1

- "launch" the image file and look at its properties (exif info)
- find the GPS coordinates, what is the address where the photo was taken?
- the photo on the MMS ID 2 was in the same area?

Still in the file case MAVEN.xrycase, open the Backup acquisition

- 1 add a word list filter with Kik (a messaging app)
 - change to File tree view pane
- 2 profile picture
 - /data/data/kik.android/8c66b2ac[...]/cache/profPics/
 - can you see the profile picture?
 - can you tell the username?
- 3 look for the app databases
 - directory /data/data/kik.android/databases/
 - save this file 8c66b2ac[...] 37.kikDatabase.db
- 4 with SQLiteBrowser
 - open database kikDatabase.db
 - see contents of table KIKcontactsTable
 - what is the photo time stamp of user funnyordie?
- 5 with MFT Stampede
 - convert the photo-timestamp to readable format

Computer Systems Forensic Analysis - artur.varanda@sapo.pt