CSD1241 Tutorial 1

Problem 1. Given 3 vectors $\vec{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$.

- (a) Find the coordinates of the vectors $\vec{u} + \vec{v}$, $\vec{v} \vec{u}$, $-3\vec{w}$ and $\vec{u} + \vec{v} 3\vec{w}$.
- (b) Graph in one picture the vectors $\vec{u} + \vec{v}$, $\vec{v} \vec{u}$, $2\vec{w}$ and $\vec{v} \vec{u} + 2\vec{w}$.
- (c) Compute the dot products $\vec{u} \cdot \vec{w}$, $(\vec{u} + \vec{v}) \cdot (-3\vec{w})$ and $(\vec{u} \vec{v}) \cdot (\vec{u} \vec{v} 3\vec{w})$.
- (d) Find the angle between the vectors \vec{u} and \vec{v} .
- (e) Find the angle between the vectors $\vec{v} \vec{u}$ and $\vec{w} \vec{u}$.

Problem 2. Consider the points P = (2, 5), Q = (4, -1), R = (5, 2).

- (a) Find the midpoints M_{PQ} and M_{PR} of the line segments PQ and PR.
- (b) Find the midpoint M of the line segment $M_{PQ}M_{PR}$.
- (c) Find real numbers a, b such that

$$\overrightarrow{PM} = a\overrightarrow{PQ} + b\overrightarrow{PR}.$$

Problem 3. (a) Graph in one picture the points P = (3, 2), Q = (5, 0) and R = (2, -1).

- (b) Compute the distances d(P,Q), d(P,R), d(Q,R).
- (c) Compute all three angles of the triangle $\triangle PQR$.
- (d) Compute the area of $\triangle PQR$.

Hint for d. Area $(\triangle PQR) = \frac{1}{2}PQ \times PR \times \sin(\angle P)$

Problem 4. Consider three points A = (2, 3), B = (-2, 4), C = (-3, -2).

- (a) Find all the lengths of the sides of $\triangle ABC$.
- (b) Find all three angles of $\triangle ABC$.
- (c) Compute the area of $\triangle ABC$.
- (d) From C, draw vertically to AB and let H be the intercept of the vertical line with AB. Find the coordinates of H.

Problem 5. Consider three points A = (1, 1, 2), B = (0, 1, 4), C = (2, 3, 5).

- (a) Find the projection of \overrightarrow{AC} onto \overrightarrow{AB} , that is, $\text{proj}_{\overrightarrow{AB}}(\overrightarrow{AC})$.
- (b) Find the orthogonal complement of \overrightarrow{AC} on \overrightarrow{AB} , that is,

$$\overrightarrow{AC}^{\perp} = \overrightarrow{AC} - \operatorname{proj}_{\overrightarrow{AB}}(\overrightarrow{AC}).$$

Further, check that $\overrightarrow{AC}^{\perp}$ and \overrightarrow{AB} are orthogonal.

(c) Let D be another point such that ABCD is a parallelogram. Find D. $Hint: \overrightarrow{AD} = \overrightarrow{BC}$.

Problem 6. (a) Find the condition for the coordinates a, b of $\vec{x} = \begin{bmatrix} a \\ b \end{bmatrix}$ such that \vec{x} is orthogonal to $\vec{u} = \begin{bmatrix} -7 \\ 2 \end{bmatrix}$. Could you give 3 examples of such vectors \vec{y} ? Could you give a geometric interpretation for all vectors which are orthogonal to \vec{u} ?

- (b) Find the condition for the coordinates a,b,c of $\vec{y}=\begin{bmatrix} a\\b\\c \end{bmatrix}$ such that \vec{y} is orthogonal to
- $\vec{v} = \begin{bmatrix} 2 \\ -3 \\ 7 \end{bmatrix}$. Could you give 3 examples of such vectors \vec{y} ? Do you know the geometric description for all these vectors \vec{y} ?