משתנה מקרי רציף: משתנה מקרי שקבוצת ערכיו האפשריים אינה בת-מניה.

ברוב המקרים קבוצה זו היא קטע של מספרים ממשיים (או מספר סופי של קטעים).

פונקציית הצפיפות של משתנה מקרי רציף: אם X הוא משתנה מקרי רציף, אז פונקציית הצפיפות שלו x ומקיימת היא פונקציה ממשית f(x) המוגדרת לכל

- $f(x) \ge 0$ א.
- . $P\{a \leq X \leq b\} = \int\limits_{a}^{b} f(x) dx$: ממשיים a < b ממשיים . $P\{X \in B\} = \int\limits_{a}^{b} f(x) dx$ ב. לכל מאורע b ועד לנקודה a ועד מהנקודה a היא השטח שמתחת לעקומת הצפיפות הצפיפות a היא השטח שמתחת לפיכך, אועד לנקודה a היא השטח שמתחת לעקומת הצפיפות הצפיפות ועד לנקודה a
 - .1- אווה (x ומעל לציר) וומעל הצפיפות שמתחת לעקומת השטח שמתחת (וומעל לציר ; $\int\limits_{-\infty}^{\infty}f(x)dx=1$. .
 - $P\{X \le a\} = P\{X < a\}$ ולכן, $P\{X = a\} = 0$ ממשי משתנה מקרי רציף אז לכל מקרי רציף אז לכל .1 . אם X
- 2. פונקציית הצפיפות אינה חייבת להיות חסומה מלעיל, כל עוד השטח הכלוא תחתיה מתכנס ל-1.

 $F(x)=P\{X\leq x\}=\int\limits_{-x}^{x}f(t)dt$ לכל אלות המצטברת של משתנה מקרי רציף:

 $f(x) = \frac{d}{dx}F(x)$: הקשר בין פונקציית ההתפלגות המצטברת לפונקציית הצפיפות:

 $.E[X]=\int\limits_{-\infty}^{\infty}x\,f(x)\,dx$ התוחלת של X מסומנת ב- E[X] , ומוגדרת על-ידי התוחלת של X מסומנת ב- $E[X]=\int\limits_{0}^{\infty}P\{X>x\}dx$ אם X הוא משתנה מקרי אי-שלילי, כלומר X=0

תוחלת של פונקציה של משתנה מקרי:

 χ , אם אפשריים של משתנה מקרי לכל הערכים המוגדרת משתנה מקרי אם χ

.
$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) dx$$
 אז

E[aX+b] = aE[X]+b לכן, התוחלת מקיימת את השוויון

. $\operatorname{Var}(X) = E[(X - E[X])^2] = \int\limits_{-\infty}^{\infty} (x - E[X])^2 f(x) dx$ שונות: השונות של X מסומנת ב- $\operatorname{Var}(X)$ ומוגדרת על-ידי

.
$$\operatorname{Var}(X) = E[X^2] - (E[X])^2 = \int\limits_{-\infty}^{\infty} x^2 f(x) dx - (E[X])^2$$
 אפשר להראות שמתקיים

. $Var(aX + b) = a^2 Var(X)$ השונות מקיימת את השוויון

 σ_X או $\mathrm{SD}(X)$: סטיית התקן של X היא השורש החיובי של שונותו. סימון

. SD(aX + b) = |a|SD(X) סטיית התקן מקיימת את השוויון

X פונקציה של משתנה מקרי: יהי X משתנה מקרי רציף, ויהי ויהי Y=g(X) פונקציה של

; $F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\} = P\{X \le g^{-1}(y)\} = F_X(g^{-1}(y))$ אם g היא פונקציה מונוטונית עולה, אז איז g

. $F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\} = P\{X \ge g^{-1}(y)\} = 1 - F_X(g^{-1}(y))$ ואם g היא פונקציה מונוטונית יורדת, אז

 f_Y אפשר לקבל את אפשר f_Y אפשר לקבל

משתנים מקריים מיוחדים

$$X \sim U(a\,,b)$$
 משתנה מקרי אחיד: $a < b -1$ ממשיים ו $a < b -1$

;
$$f(x) = \frac{1}{b-a}$$
 $F(x) = \frac{x-a}{b-a}$ $a \le x \le b$ $E[X] = \frac{a+b}{2}$ $Var(X) = \frac{(b-a)^2}{12}$ $Var(X) = \frac{a+b}{12}$

$$X\sim Exp(\lambda)$$
 משתנה מקרי מעריכי:
$$f(x)=\lambda e^{-\lambda x} \quad ; \quad F(x)=1-e^{-\lambda x} \qquad x>0$$

$$E[X] = \frac{1}{\lambda} \qquad \Rightarrow \quad E[X^2] = \int_0^\infty x^2 f(x) dx = \frac{1}{\lambda^2} + \left(\frac{1}{\lambda}\right)^2 = \frac{2}{\lambda^2}$$

תכונת חוסר-הזיכרון:

. $P\{X>s+t \, \big| \, X>t\} = P\{X>s\}$ משתנה מקרי t ו- t אי-שליליים לכל t ו- t אי-שליליים ענקרא וקר-הזיכרון. המשתנה המשתנה המשתנה היחיד שמקיים את תכונת חוסר-הזיכרון.

, שלמים אי-שליליים. (לכן t -i s ו- המשתנה המקרי הגיאומטרי מקיים את תכונת חוסר-הזיכרון, אך רק עבור t -i t -i שלמים אי-שליליים. (לכן, אינו נקרא חסר-זיכרון.)

טענה: אם המופעים, המתרחשים במרווח-זמן כלשהו, מקיימים את שלושת ההנחות של תהליך פואסון עם קצב λ , אז הזמן החולף (מתחילת מרווח-הזמן) עד להתרחשות המופע הראשון הוא משתנה מקרי מעריכי עם הפרמטר λ .

$$Z \sim N(0.1)$$
 משתנה מקרי נורמלי סטנדרטי:

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$
 ; $F(z) = \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$

$$E[Z] = 0$$

Var(Z) = 1

 $\Phi(-z) = 1 - \Phi(z)$, כלומר, $P\{Z \le -z\} = P\{Z \ge z\}$ מתקיים $\Phi(-z) = 1 - \Phi(z)$ סימטרית סביב $\Phi(-z) = 1 - \Phi(z)$

$$X \sim N(\mu, \sigma^2)$$
 משתנה מקרי נורמלי: μ ממשי ו- $\sigma^2 > 0$ משתנה מקרי נורמלי:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 ; $F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$

$$E[X] = \mu$$
 $Var(X) = \sigma^2$

 $.~aX+b\sim N(a\mu+b,a^2\sigma^2)$ אז $X\sim N(\mu,\sigma^2)$ טענה: אם $X\sim N(\mu,\sigma^2)$

 $Z=rac{X-\mu}{\sigma}\sim N(0,1)$ אז $X\sim N(\mu\,,\sigma^2)$ ולכן: תוצאה: אם

$$F_X(x) = P\{X \le x\} = P\left\{\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right\} = P\left\{Z \le \frac{x - \mu}{\sigma}\right\} = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

$\Phi(z)$, ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(z) = P\{Z \le z\} = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \qquad ; \qquad \Phi(-z) = 1 - \Phi(z) \qquad ; \qquad Z \sim N(0,1)$$

$$\Phi(z)pprox \Phi(z_1) + rac{z-z_1}{z_2-z_1} [\Phi(z_2) - \Phi(z_1)]$$
 : נוסחת האינטרפולציה:

Z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

$\Phi(z)$	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
z	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(z)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
z	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326