

Advanced Level

Day 1

Each problem is worth 7 points.

These problems are to be kept confidential till Monday, 18th May 2020, 1200 hours (GMT).

Problem 1

Let ABC be a triangle with incentre I. The incircle of the triangle ABC touches the sides AC and AB at points E and F, respectively. Let ℓ_B and ℓ_C be the tangents to the circumcircle of BIC at B and C, respectively. Show that there is a circle tangent to EF, ℓ_B and ℓ_C with centre on the line BC.

Problem 2

Geoff has an infinite stock of sweets, which come in n flavours. He arbitrarily distributes some of the sweets amongst n children (a child can get sweets of any subset of all flavours, including the empty set). Call a distribution of sweets k-nice if every group of k children together has sweets in at least k flavours. Find all subsets S of $\{1, 2, ..., n\}$ such that if a distribution of sweets is s-nice for all $s \in S$, then it is s-nice for all $s \in \{1, 2, ..., n\}$.

Problem 3

We call a set of integers *special* if it has 4 elements and can be partitioned into 2 disjoint subsets $\{a,b\}$ and $\{c,d\}$ such that ab-cd=1. For every positive integer n, prove that the set $\{1,2,\ldots,4n\}$ cannot be partitioned into n disjoint special sets.

Problem 4

Prove that, for all sufficiently large integers n, there exist n numbers a_1, a_2, \ldots, a_n satisfying the following three conditions:

- Each number a_i is equal to either -1, 0 or 1.
- At least 2n/5 of the numbers a_1, a_2, \ldots, a_n are non-zero.
- The sum $a_1/1 + a_2/2 + \ldots + a_n/n$ is 0.

Note: Results with 2/5 replaced by a constant c will be awarded points depending on the value of c.

May 16th, 2020 Time: 5 hours