Measure Theory

Alec Zabel-Mena

January 1, 2024

Contents

1	Mea	asure and Measure Spaces	5
	1.1	σ -Algebras	5
	1.2	Measures	8
	1.3	Outer Measures	11
	1.4	Borel Measures on \mathbb{R}	15
	1.5	The Cantor Set and the Cantor-Lebesgue Function	19

4 CONTENTS

Chapter 1

Measure and Measure Spaces

1.1 σ -Algebras

Definition. Let X be a nonempty set. An **algebra** of sets on X is a nonempty collection \mathcal{A} of subsets of X which are closed under finite unions and complements in X. We call \mathcal{A} a σ -algebra if it is closed under countable unions.

Lemma 1.1.1. Let X be a set and A an algebra on X. Then A is closed under finite intersections.

Proof. Let $\{E_{\lambda}\}$ be a collection of sets of \mathcal{A} . Then by finite union $E = \bigcup E_{\lambda} \in \mathcal{A}$. Then by complements, $X \setminus E = \bigcap X \setminus E_{\lambda} \in \mathcal{A}$.

Corollary. σ -algebras are closed under countable disjoint unions.

Proof. Let \mathcal{A} a σ -algebra, and let $\{E_n\}$ a collection of (not necessarily disjoint) sets in \mathcal{A} . Then take

$$F_n = E_n \setminus \left(\bigcup_{k=1}^{n-1} E_k\right) \tag{1.1}$$

Then each F_n is a set in \mathcal{A} , and are pairwise disjoint. Moreover, $\bigcup E_n = \bigcup F_n$.

Lemma 1.1.2. Let X be a set, and A an algebra on X. Then $\emptyset \in A$ and $X \in A$.

Proof. By closure of finite unions, notice that if $E \in \mathcal{A}$, then $E \cup X \setminus E = X \in \mathcal{A}$ lemma ?? gives us that $E \cap X \setminus E = \emptyset \in \mathcal{A}$.

Example 1.1. (1) The collections $\{\emptyset, X\}$ and 2^X are σ -algebras on any set X.

(2) Let X be an uncountable set. Then the collection

$$C = \{E \subseteq X : E \text{ is countable or } X \setminus E \text{ is countable}\}\$$

defines a σ -algebra of sets on X, since countable unions of countable sets are countable, and \mathcal{C} is closed under complements. We call \mathcal{C} the σ -algebra of countable or co-countable sets.

Lemma 1.1.3. Let $\{A_{\lambda}\}$ be a collection of σ -algebras on a set X. Then the intersection

$$\mathcal{A} = \bigcap \mathcal{A}_{\lambda}$$

is a σ -algebra on X. Moreover, if $F \subseteq X$, then there exists a unique smallest σ -algebra containing F; in particular, it is the intersection of all σ -algebras containing F.

Proof. Notice that since each \mathcal{A}_{λ} is a σ -algebra, they are closed under countable unions and complements. Hence by definition, \mathcal{A} must also be closed under countable unions and complements.

Now, let $F \subseteq X$ and let $\{A_{\lambda}\}$ be the collection of all σ -algebras containing F. Then the intersection $\mathcal{A} = \bigcap \mathcal{A}_{\lambda}$ is also a σ -algebra containing F; by above. Now, suppose that there is a smallest σ -algebra \mathcal{B} containing F. Then we have that $\mathcal{B} \subseteq \mathcal{A}$. Now, by definition of \mathcal{A} as the intersection of all σ -algebras containing F, we get that $\mathcal{A} \subseteq \mathcal{B}$; so that $\mathcal{B} = \mathcal{A}$.

Definition. Let X be a nonempty set and $F \subseteq X$. We define the σ -algebra **generated** by F to be the smallest such σ -algebra $\mathcal{M}(F)$ containing F.

Lemma 1.1.4. Let X be a set and let E, $F \subseteq X$. Then if $E \subseteq \mathcal{M}(F)$, then $\mathcal{M}(E) \subseteq \mathcal{M}(F)$.

Proof. We have that since $E \subseteq \mathcal{M}(F)$, and $\mathcal{M}(E)$ is the intersection of all σ -algebras containing E, then $\mathcal{M}(E) \subseteq \mathcal{M}(F)$.

Definition. Let X be a topological space. We define the **Borel** σ -algebra on X to be the σ -algebra $\mathcal{B}(X)$ generated by all open sets of X; that is

$$\mathcal{B}(X) = \mathcal{M}(\mathcal{T})$$

where \mathcal{T} is the topology on X. We call the elements of $\mathcal{B}(X)$ Borel-sets

Definition. Let X be a topological space. We call a countable intersection of open sets of X a G_{δ} -set of X. We call a countable union of closed sets of X an F_{σ} -set of X.

Theorem 1.1.5. The Borel σ -algebra on \mathbb{R} , $\mathcal{B}(\mathbb{R})$, is generated by the following.

- (1) All open intervals of \mathbb{R} .
- (2) All closed intervals of \mathbb{R} .
- (3) All half-open intervals of \mathbb{R} .
- (4) All open rays of \mathbb{R} .
- (5) All closed rays of \mathbb{R} .

Definition. Let X_{α} be a collection of non-empty sets, and let $X = \prod X_{\alpha}$. If \mathcal{M}_{α} is a σ -algebra on X_{α} , then we define the **product** σ -algebra on X to be the smallest σ -algebra generated by all $\pi_{\alpha}^{-1}(E_{\alpha})$, where $E_{\alpha} \in \mathcal{M}_{\alpha}$, and $\pi_{\alpha} : X \to X_{\alpha}$ is the projection map onto the α -th coordinate. We denote the product σ -algebra by $\bigotimes \mathcal{M}_{\alpha}$.

1.1. σ -ALGEBRAS 7

Lemma 1.1.6. Let $\{X_n\}$ be a countable collection of sets, each with a σ -algebra \mathcal{M}_n , and let $X = \prod X_n$. Then the product σ -algebra $\bigotimes \mathcal{M}_n$ on X is generated by all $\prod E_n$, where $E_n \in \mathcal{M}_n$.

Proof. Let $E_n \in \mathcal{M}_n$, then by definition of the projection map, $\pi_n^{-1}(E_n) = \prod E_k$ where $E_k = X_k$ for all $k \neq n$. On the otherhand, we can see that $\prod E_n = \bigcap \pi_n^{-1}(E_n)$.

Lemma 1.1.7. Let $\{X_{\alpha}\}$ be a collection of sets, each together with a σ -algebra \mathcal{M}_{α} . If each \mathcal{M}_{α} is generated by some \mathcal{E}_{α} , then $\otimes \mathcal{M}_{\alpha}$ is generated by all $\pi_{\alpha}^{-1}(E_{\alpha})$, where $E_{\alpha} \in \mathcal{E}_{\alpha}$.

Proof. Let $\mathcal{F} = \{\pi_{\alpha}^{-1}(E_{\alpha}) : E_{\alpha} \in \mathcal{E}_{\alpha}\}$. Then by lemma 1.1.4, $\mathcal{M}(\mathcal{F}) \subseteq \bigotimes \mathcal{M}_{\alpha}$. On the otherhand, for any α , the collection of all $\pi_{\alpha}^{-1}(E) \in \mathcal{M}(\mathcal{F})$ is a σ -algebra on X_{α} , containing \mathcal{E}_{α} ; and hence, \mathcal{M}_{α} . That is, $\pi_{\alpha}^{-1}(E) \in \mathcal{M}(\mathcal{F})$ for all $E \in \mathcal{M}_{\alpha}$, which gives us the reverse inclusion.

Corollary. If $\{X_{\alpha}\}$ is a countable collection, theb $\bigotimes \mathcal{M}_{\alpha}$ is generated by all $\prod E_{\alpha}$, where $E_{\alpha} \in \mathcal{E}_{\alpha}$.

Lemma 1.1.8. Let X_1, \ldots, X_n be metric spaces, and $X = \prod_{i=1}^n X_i$ on the product topology. Then

$$\bigotimes (\mathcal{B}(X_i)) \subseteq \mathcal{B}(X)$$

Moreover, if each X_i is separable, then equality is established.

Proof. We have that $\bigotimes \mathcal{B}(X_i)$ is generated by each $\pi_i^{-1}(U_i)$, where U_i is an open set in X_i . Since these sets are open, again by lemma 1.1.4, $\bigotimes \mathcal{B}(X_i) \subseteq \mathcal{B}(X)$.

Now, suppose that each X_i is seperable, and let C_i a countable dense set in X_i , and let \mathcal{E}_i be the collection of all open balls in X_i with rational radius r, and center in C_i . Then every open set in X_i is a countable union of members of \mathcal{E}_i . Moreover, the set of points in X whose i-th coordinate is in C_i , for all i, is countable dense in X_i . Hence, $\mathcal{B}(X_i)$ is generated by \mathcal{E}_i , and since (X) is generated by all $\prod_{i=1}^n E_i$, where $E_i \in \mathcal{E}_i$, we get $\mathcal{B}(X) \subseteq \mathcal{B}(X_i)$, and equality is established.

Corollary. $\mathcal{B}(\mathbb{R}^n) = \bigotimes_{i=1}^n \mathcal{B}(\mathbb{R})$.

Definition. We define an **elementary family** on a set X to be a collection \mathcal{E} of subsets of X such that:

- $(1) \emptyset \in \mathcal{E}.$
- (2) If $E, F \in \mathcal{E}$, then $E \cap F \in \mathcal{E}$.
- (3) If $E \in \mathcal{E}$, then $X \setminus E$ is a finite disjoint union of members of \mathcal{E} .

Lemma 1.1.9. Let X be a set and \mathcal{E} an elementary family on X. Let \mathcal{A} be the collection of all finite disjoint unions of members of \mathcal{E} . Then \mathcal{A} is an algebra on X.

Proof. Let $A, B \in \mathcal{E}$, and let $X \setminus B = \bigcup_{i=1}^n C_i$, where each $C_i \in \mathcal{E}$ for all $1 \leq i \leq n$, and are disjoint. Then we have

$$A \cup B = (A \setminus V) \cup B$$
 and $A \setminus B = \bigcup_{i=1}^{n} (A \cap C_i)$

so that $A \cup B \in \mathcal{A}$, and $A \setminus B \in \mathcal{A}$. Now, by induction on n, suppose that $A_1, \ldots, A_n \in \mathcal{A}$ are disjoint, then

$$\bigcup_{i=1}^{n+1} A_i = A_{n+1} \cup \bigcup_{i=1}^{n} A_i \setminus A_{n+1}$$

is also a disjoint union. Moreover, we have that if $X \setminus A_n = \bigcup_{i=1}^{N_m} B_m^i$, where the union is disjoint, then

$$X \setminus \left(\bigcup_{m=1}^{n} A_{m}\right) = \bigcap_{m=1}^{n} \left(\bigcup_{i=1}^{N_{m}} B_{m}^{i}\right)$$

is also a disjoint union. This makes A an algebra on X.

1.2 Measures

Definition. Let X be a set together with a σ -algebra \mathcal{M} . We define a **measure** on \mathcal{M} to be a function $\mu : \mathcal{M} \to [0, \infty)$ for which the following hold:

- $(1) \ m(\emptyset) = 0.$
- (2) If $\{E_n\}$ is a countable disjoint collection of members of \mathcal{M} , then

$$m\Big(\bigcup E_n\Big) = \sum m(E_n) \tag{1.2}$$

We call m a finitely additive measure if instead of (2), m satisfies:

(2') If $\{E_i\}_{i=1}^n$ is a finite disjoint collection of members of \mathcal{M} , then

$$m\Big(\bigcup_{i=1}^{n} E_i\Big) = \sum_{i=1}^{n} m(E_i)$$
(1.3)

Definition. We call a set X together with a σ -algebra \mathcal{M} a **measurable space**, and we call the members of \mathcal{M} **measurable sets**. If $m: \mathcal{M} \to [0, \infty)$ is a measure on \mathcal{M} , then we call X together with \mathcal{M} a **measure space**.

Definition. Let X together with a σ -algebra be a measure space with measure m. If $m(X) < \infty$, then we call m a **finite measure**, and if $\{E_n\}$ is a covering of X by measurable sets, each with $m(E_n) < \infty$ for all n, then we call m σ -finite. We also call the set $E = \bigcup E_n$ σ -finite. We call m semi-finite if for any measurable set E, of $m(E) = \infty$, there is a measurable set E contained in E such that $0 < m(F) < \infty$.

1.2. MEASURES 9

Lemma 1.2.1. σ -finite measures are semi-finite.

Example 1.2. (1) LEt X be a non-empty set, and let $f: X \to [0, \infty)$ be any function on X. Then f defines a measure m on 2^X by the rule

$$m(E) = \sum_{x \in E} f(x)$$

Now, m is semi-finite if, and only if $f(x) < \infty$ for all $x \in X$, and m is σ -finite if, and only if m is semi-finite, and the pre-image $f^{-1}((0,\infty))$ is countable.

(2) Consider the measure m of example (1) above, where f(x) = 1 for all $x \in X$. Then we call m the **counting measure** on 2^X . Indeed, observe that

$$m(E) = \sum_{x \in E} 1 = |E|$$

which counts the elements of E.

(3) Consider the measure m of example (1) above, where f is defined for any $x_0 \in X$ to be:

$$f(x) = \begin{cases} 1, & \text{if } x = x_0 \\ 0, & \text{if } x \neq x_0 \end{cases}$$

We call this measure the **Dirichlet measure**.

- (4) Let X be an uncountable set, and let \mathcal{M} the σ -algebra of all countable or co-countable sets. Define m on \mathcal{M} by m(E) = 0 if E is countable, and m(E) = 1 if E is co-countable. Then m defines a measure on \mathcal{M} .
- (5) Let X be an infinite set, and define m on 2^X by m(E) = 0 if E is finite, and $m(E) = \infty$ if E is infinite. Then m is a finitely subadditive measure on 2^X , but not a measure on 2^X .

Theorem 1.2.2. Let X be a measure space with measure m. The following are true.

(1) If E and F are measurable with $E \subseteq F$, then

$$m(E) \le m(F)$$

(2) If $\{E_n\}$ is a countable collection of measurable sets, then

$$m\Big(\bigcup E_n\Big) \le \sum m(E_n)$$

(3) If $\{E_n\}$ is a countable collection of measurable sets, in which $E_1 \subseteq E_2 \subseteq \ldots$, then

$$m\Big(\bigcup E_n\Big) = \lim_{n \to \infty} m(E_n)$$

(4) If $\{E_n\}$ is a countable collection of measurable sets, in which ..., $\subseteq E_2 \subseteq E_1$ and $m(E_1) < \infty$, then

$$m\left(\bigcap E_n\right) = \lim_{n \to \infty} m(E_n)$$

Proof. For the first statement, let $E \subseteq F$ be measurable sets, then observe that

$$m(E) \le m(E) + m(F \backslash E) = m(E \cup F \backslash E) = m(F)$$

For the second statement, define $F_1 = E_1$, and $F_i = E_i \setminus \bigcup_{i=1}^{i-1} E_i$ for all i > 1. Then $\{F_n\}$ is a finite disjoint collection of measurable sets, with $\bigcup_{i=1}^n F_i = \bigcup_{i=1}^n E_i$. By the above argument, we get

$$m\left(\bigcup_{i=1}^{n} E_{i}\right) = m\left(\bigcup_{i=1}^{n} F_{i}\right) = \sum_{i=1}^{n} m(F_{i}) \leq \sum_{i=1}^{n} m(E_{i})$$

Now, for (3), let $E_0 = \emptyset$, then

$$m(\bigcup E_n) = \sum m(E_i \backslash E_{i-1}) = \lim_{n \to \infty} \sum_{i=1}^n m(E_i \backslash E_{i-1}) = \lim_{n \to \infty} m(E_n)$$

Additionally, consider when the collection $\{E_n\}$ is decreasing with $m(E_1) < \infty$. Take $F_i = E_1 \setminus E_i$, then $\{F_n\}$ is an increasing collection of measurable sets, and hence we apply the above argument. We get that $m(E_1) = m(F_n) + m(E_n)$, and

$$\bigcup F_n = E_1 \backslash \bigcap E_n$$

therefore, we get

$$m(E_1) = m\left(\bigcap E_n\right) + \lim_{n \to \infty} m(F_i) = m\left(\bigcap E_n\right) + \lim_{n \to \infty} (m(E_1) - m(E_n))$$

Subtracting $m(E_1)$ from both sides of the equation yields the result.

Definition. Let X be a measure space with measure m. We say that a statement about points in X holds **almost everywhere** (with respect to m) if it holds for all $x \in X \setminus E$, where m(E) = 0. We call the measure m complete if its domain contains all subsets of sets with measure 0.

Theorem 1.2.3. Let X be a measure space with s-algebra \mathcal{M} , and measure m. Let $\mathcal{N} = \{N \in \mathcal{M} : m(N) = 0\}$, and define

$$\overline{\mathcal{M}} = \{ E \cup F : E \in \mathcal{M} \text{ and } F \subseteq N \text{ for some } N \in \mathcal{N} \}$$

Then $\overline{\mathcal{M}}$ is a σ -algebra, and there exists a unique complete measure \overline{m} on $\overline{\mathcal{M}}$.

Proof. Since $\overline{\mathcal{M}}$ is a σ -algebra, then so is $\overline{\mathcal{N}}$, moreover, since both are closed under countable unions, so is $\overline{\mathcal{M}}$. Additionally, let $E \cup F \in \overline{\mathcal{M}}$, then we get $E \cup F = (E \cup N) \cap ((X \setminus N) \cup F)$, so that $X \setminus (E \cup F) = X \setminus (E \cup N) \cup N \setminus F$. Since $X \setminus (E \cup N) \in \overline{\mathcal{M}}$, and $N \setminus F \subseteq F$, then we get $X \setminus (E \cup F) \subseteq \overline{\mathcal{M}}$. This makes \mathcal{M} a σ -algebra.

Now, for $E \cup F \in \overline{\mathcal{M}}$, define \overline{m} on $\overline{\mathcal{M}}$ by $\overline{m}(E \cup F) = m(E)$. Then \overline{m} is well defined. Let $E_1 \cup F_1 = E_2 \cup F_2$, where $F_i \subseteq N_i$, with $N_i \in \mathcal{N}$, for i = 1, 2. Then $E_1 \subseteq E_2 \cup N_2$, so that $m(E_1) \leq m(E_2) + m(N_1) = m(E_2)$. Similarly, we also get $m(E_2) \leq m(E_1)$.

Now, let $E \in \overline{\mathcal{M}}$, such that $\overline{m}(E) = 0$. Now, we have $E = A \cup B$, where $A \in \mathcal{M}$ and $B \subseteq N$, for some $N \in \mathcal{N}$. Moreover, $\overline{m}(E) = m(A) = 0$. Now, we get $E \subseteq A \cup N \in \mathcal{N}$, since m(A) = 0. Now, let $F \subseteq E$. Then observe that $F \subseteq A \cup N$, so that $F \in \mathcal{N}$. Then $F = \emptyset \cup F$, so that $F \in \overline{\mathcal{M}}$. Moreover, $\overline{m}(F) = m(\emptyset) = 0$.

Lastly, suppose there is another complete meaure \overline{n} on $\overline{\mathcal{M}}$ for which $\overline{n}(E \cup F) = m(E)$. Let $E \in \overline{\mathcal{M}}$. Then $E = A \cup B$ where $A \in \mathcal{M}$, and $B \subseteq N$, $N\mathcal{N}$. Then $\overline{n}(E) = \overline{n}(A \cup B) = m(A) \leq m(A) + m(B) = m(A \cup B) = \overline{m}(E)$. By similar reasoning, we get $\overline{m}(E) \leq \overline{n}(E)$, which establishes uniqueness.

Definition. Let X be a measure space with s-algebra \mathcal{M} , and measure m. Let $\mathcal{N} = \{N \in \mathcal{M} : m(N) = 0\}$, and define

$$\overline{\mathcal{M}} = \{ E \cup F : E \in \mathcal{M} \text{ and } F \subseteq N \text{ for some } N \in \mathcal{N} \}$$

We call $\overline{\mathcal{M}}$ the completion of M with respect to m, and we call the unique complete measure, \overline{m} on $\overline{\mathcal{M}}$ the completion of m.

1.3 Outer Measures

Definition. Let X be a set. An **outer-measure** on X is a function $m^*: 2^X \to [0, \infty)$ for which the following are true:

- $(1) \ m^*(\emptyset) = 0.$
- (2) If $A \subseteq B$, then $m^*(A) \le m^*(B)$.
- (3) If $\{A_n\}$ is a countable collection of subsets of X, then

$$m^* \Big(\bigcup A_n\Big) \le \sum m^* (A_n)$$

Lemma 1.3.1. Let X be a set, and \mathcal{E} a collection of subsets of X for which $\in \mathcal{E}$ and $X \in \mathcal{E}$, and let $l : \mathcal{E} \to [0, \infty]$ a function for which $l(\emptyset) = 0$. For any $A \subseteq X$, define

$$m^*(A) = \inf \left\{ \sum l(E_n) : E_n \in \mathcal{E}, \text{ and } A \subseteq \bigcup E_n \right\}$$
 (1.4)

Then m^* defines an outer-measure.

Proof. For all $A \subseteq X$, there is a collection $\{E_n\}$ of sets of \mathcal{E} for which $A \subseteq \bigcup E_n$. Observe first, that since $l(E_n) \ge 0$ for all n, that $\sum l(E_n) \ge 0$. This makes $m^*(A) \ge 0$. Now, choose $E_n = \emptyset$ for all n, and we get $m^*(\emptyset) = 0$.

Now, let $A \subseteq B$ subsets of X, and let $\{E_n\}$ a countable cover of B. Then $\{E_n\}$ is also a countable cover of A. Define then $E = \{\sum l(E_n) : A \subseteq \bigcup E_n\}$ and $F = \{\sum l(E_n) : B \subseteq \bigcup E_n\}$. Since $A \subseteq B$, $F \subseteq E$. Therefore, by least upper bounds, we have $\inf F \subseteq A$ in $A \subseteq B$, that is $A \subseteq B$.

Lastly, let $\{A_n\}$ be a countable collection of sets of X, and let $A = \bigcup A_n$. Now, if at least one of the $m(A_n) = \infty$, then we are done. Suppose then that $m(A_n) < \infty$ for all n. Now, there exists a cover of A_n , $\{E_{n,k}\}_k$ for which

$$\sum_{k} l(E_{n,k}) < m^*(A) + \frac{1}{2^k}$$

consider now the countable collection $\{E_{n,k}\}_{n,k} = \bigcup_n \{E_{n,k}\}_k$. Then $\{E_{n,k}\}_{n,k}$ is a countable cover for A, and we get

$$m^*(A) \le \sum_{n} \sum_{k} l(E_{n,k}) < \sum_{n} m^*(A_n) + \frac{1}{2^k} = \sum_{n} m^*(A_n) + \varepsilon$$

Take then $\varepsilon > 0$ small, and we get the result.

Corollary. If E is a set of \mathcal{E} , then $m^*(E) = l(E)$.

Proof. Observe that E covers itself, so that $m^*(E) = \inf \{\sum_{i=1}^1 E\} = \inf l(E) = l(E)$.

Definition. Let X be a set. We call a subset A of X m^* -measurable if for any subset E of X,

$$m^*(E) = m^*(E \cap A) + m^*(E \cap X \setminus A) \tag{1.5}$$

Lemma 1.3.2. Let X be a set. A subset A of X is m^* -measurable if, and only if

$$m^*(E) \ge m^*(E \cap A) + m^*(E \cap X \setminus A)$$
 for all $E \subseteq X$

Theorem 1.3.3 (Carathéodory's Theorem). Let X be a set, and m^* an outer-measure on X. Then the collection of all m^* -measurable sets forms a σ -algebra. Moreover, m^* is a complete measure on this σ -algebra.

Proof. Let \mathcal{M} be the collection of all m^* -measurable sets. Observe first that if $A \in \mathcal{M}$, then so is $X \setminus A$, by symetry of equation 1.5. So \mathcal{M} is closed under complements. Now, let $A, B \in \mathcal{M}$. Then we have

$$m^*(E) = m^*(E \cap A) + m^*(E \cap X \setminus A)$$

= $m^*(E \cap A \cap B) + m^*(E \cap A \cap X \setminus B) + m^*(E \cap B \cap X \setminus A) + m^*(E \cap X \setminus A \cap X \setminus B)$

Now, since $A \cup B = (A \cap B) \cup (A \cap X \setminus B) \cup (B \cap X \setminus A)$, so by subadditivity, we get

$$m^*(E\cap A\cap B)+m^*(E\cap A\cap X\backslash B)+m^*(E\cap X\backslash A\cap B)\geq m^*(E\cap (A\cup B))$$

i.e. $m^*(E) \ge m^*(E \cap (A \cup B)) + m^*(E \cap X \setminus (A \cup B))$. That is, $A \cup B \in \mathcal{M}$, making \mathcal{M} an algebra.

Now, let $\{A_n\}$ be a countable disjoint collection of m^* -measurable sets, and take $B_n = \bigcup_{i=1}^n A_i$, and take $B = \bigcup_{i=1}^n B_i$. Then for all $E \subseteq X$

$$m^*(E \cap B_n) = m^*(E \cap B_n \cap A_n) + m^*(E \cap B_n \cap X \setminus A_n)$$

= $m^*(EA_n) + m^*(E \cap B_{n-1})$

13

an induction argument on the collection $\{B_n\}$ gives us

$$m^*(E \cap B_n) = \sum_{i=1}^n m^*(E \cap A_i)$$

therefore

$$m^*(E) = m^*(E \cap B_n) + m^*(E \cap X \setminus B_n) \ge \sum_{i=1}^n m^i(E \cap A_i) + m^*(E \cap X \setminus B_n)$$

letting $n \to \infty$,

$$m^*(E) \ge \sum m^(E \cap A_n) + m^*(E \cap X \setminus B_n)$$

so that $B \in \mathcal{M}$. Taking E = B, we get $m^*(B) = \sum m^*(A_n)$ so that m^* is countably additive, and \mathcal{M} is a σ -algebra.

Finally, let $m^*(A) = 0$, then for any $E \subseteq X$, we have

$$m^*(E) \le m^*(E \cap A) + m^*(E \cap X \setminus A) = m^*(E \cap X \setminus A) \le m^*(E)$$

so that $A \in \mathcal{M}$, which makes m^* complete on \mathcal{M} .

Definition. Let X be a set, and \mathcal{A} an algebra on X. We define a **pre-measure** on \mathcal{A} to be a function $m_0: \mathcal{A} \to [0, \infty]$ for which

- $(1) m_0(\emptyset) = 0.$
- (2) If $\{A_n\}$ is a countably disjoint collection of sets in \mathcal{A} , for which $\bigcup A_n \in \mathcal{A}$, then

$$m_0\left(\bigcup A_n\right) = \sum m_0(A_n) \tag{1.6}$$

Lemma 1.3.4. Pre-measures on algebras define outer-measures on the overlying sets.

Proof. Consider the definition of the outer measure m^* from equation 1.4, simply take $l = m_0$, and $\mathcal{E} = \mathcal{A}$.

Lemma 1.3.5. Let X be a set, and A an algebra on X. If m_0 is pre-measure on A, and the measure m^* is define by

$$m^*(A) = \inf \left\{ \sum m_0(E_n) : E_n \in \mathcal{A}, \text{ and } A \subseteq \bigcup E_n \right\}$$

then the following are true.

- (1) $m_0 = m^* \text{ on } A$.
- (2) Every set in A is m^* -measurable.

Proof. For (1), suppose that $A \in \mathcal{A}$, and that $A \subseteq \bigcup E_n$ for $E_n \in \mathcal{A}$. Take

$$F_n = A \cap A_n \setminus \left(\bigcup_{i=1}^{n-1} A_i\right)$$

then $\{F_n\}$ is a disjoint countable collection of sets of \mathcal{A} for which $A = \bigcup F_n$. Hence

$$mo(A) = \sum m_0(F_n) \le \sum m_0(E_n)$$

it follows from hypothesis that $m_0(A) \leq m^*(E)$. For the reverse inclusion, simply take $A \subseteq \bigcup E_n$ with $A = E_1$ and $E_n = \emptyset$ for all n > 1.

For (2), if $A \in \mathcal{A}$, and $E \subseteq X$, and $\varepsilon > 0$, there is a collection $\{B_n\}$ of sets of \mathcal{A} with $A \subseteq \bigcup B_n$, and

$$\sum m_0(B_n) < m^*(A) + \varepsilon$$

by additivity of m_0 on \mathcal{A} , we get

$$m^*(E) + \varepsilon \ge \sum m_0(B_n \cap A) + \sum m_0(B_n \cap X \setminus A) \ge m^*(E \cap A) + m^*(E \cap X \setminus A)$$

Theorem 1.3.6. Let X be a set, and A an algebra on X. Let m_0 be a pre-measure on A, and let M the σ -algebra generated by A. Then there exists a measure m on M whose restriction to is m_0 . Moreover, if n is another measure extending from m_0 , then

$$n(E) \leq m(E)$$
 for all $E \in \mathcal{M}$

where equality holds when $m(E) < \infty$. Lastly, if m_0 is σ -finite, then m is the unique extension of m_0 to \mathcal{M} .

Proof. Define again,

$$m^*(A) = \inf \left\{ \sum m_0(E_k) : E_k \in \mathcal{A}, \text{ and } A \subseteq \bigcup E_k \right\}$$

then by Carathéodory's theorem, lemma 1.3.5, the first result follows, since the σ -algebra of all m^* -measurable sets contains \mathcal{A} , and as consequence, also contains \mathcal{M} .

Now, let $E \in \mathcal{M}$ with $E \subseteq \bigcup A_k$, where $A_k \in \mathcal{A}$. Then

$$n(E) \le \sum n(A_n) = \sum m_0(A_n)$$

which gives us $n(E) \leq m(E)$. Now, set $A = \bigcup A_n$, and observe that

$$n(A) = \lim_{k \to \infty} n\left(\bigcup_{i=1}^k A_i\right) = \lim_{k \to \infty} m\left(\bigcup_{i=1}^k A_i\right) = m(A)$$

if $m(E) < \infty$, choose A_k such that $m(A) < m(E) + \varepsilon$ for $\varepsilon > 0$. Then $m(A \setminus E) < \varepsilon$, and

$$m(E) \leq m(A) = n(A) = n(E) + n(A \setminus E) \leq n(E) + m(A \setminus E) \leq n(E) + \varepsilon$$

taking ε small, we get n(E) = m(E).

Finally, suppose that m_0 is σ -finite, and let $X = \bigcup A_k$ for s me0disjoint collection A_n , then $m_0 m_0$ $< \infty$. Then for every $E \in \mathcal{M}$,

$$m(E) = \sum m(E \cap A_k) = \sum n(E \cap A_k) = n(E)$$

so that m = n, making m unique.

1.4 Borel Measures on \mathbb{R}

Definition. We call measures defined on the σ -algebra $\mathcal{B}(\mathbb{R})$ of all Borel sets of \mathbb{R} borel measures. If m is a finite Borel measure on \mathbb{R} , we define the **distribution function** of m to be the function $F: \mathbb{R} \to \mathbb{R}$ by the rule

$$F(x) = m((-\infty, x])$$

Lemma 1.4.1. Let m be a finite Borel measure on \mathbb{R} . Then the distribution function o of m is an increasing, right-continuous function. Moreover, if b > a are extended real numbers, then m((a,b]) = F(b) - F(a).

Proof. By the monotonicity of m, F is an increasing function. Now, let $\{x_n\}$ a sequence of points for which $\{x_n\} \to x$ from the right. For $x \ge 0$, the collection $\{(-\infty, x_n]\}$, then by continuity from below, we have

$$m\Big(\bigcup(-\infty,\times_n]\Big) = \lim_{n\to\infty} m((-\infty,x_n]) = \lim_{x_n\to x_+} m((-\infty,x_n]) = m((-\infty,x])$$

That is $\lim F(x_n) = F(x)$ as $x_n \to x+$. A similar argument holds for x < 0, using continuity from above. Lastly, observe that

$$(-\infty, b] = (-\infty, a] \cup (a, b] \tag{1.7}$$

Lemma 1.4.2. Let $F : \mathbb{R} \to \mathbb{R}$ an increasing right-continuous function. If $\{(a_i, b_i]\}_{i=1}^n$ is a finite collection of disjoint half-open intervals, and m_0 is defined by

$$m_0\left(\bigcup_{i=1}^n (a_i, b_i)\right) = \sum_{i=1}^n F(b_i) - F(a_i) \text{ and } m_0(\emptyset) = 0$$
 (1.8)

then m_0 is a pre-measure on the algebra of all finite unions of half-open intervals.

Proof. Denote the algebra of all finite unions of half-open intervals by \mathcal{A} . Notice then by theorem 1.1.5, that $\mathcal{B}(\mathbb{R})$ is the smallest σ -algebra generated by \mathcal{A} . Now, let $\{(a_i,b_i)\}_{i=1}^n$ a finite disjoint collection of half-open intervals, and take $(a,b] = \bigcup_{i=1}^n (a_i,b_i]$ Then (a,b] is partitioned by the points $P = \{a = a_1 < b_1 = a_1 < b_2 = \cdots < b_n = b \ldots\}$ Therefore

$$\sum_{P} F(b_i) - F(a_i) = \sum_{i=1}^{n} F(b_i) - F(a_i) = F(b) - F(a)$$

That is, if $\{I_j\}_{j=1}^n$ and $\{J_i\}_{i=1}^n$ are finite collections of disjoint half-open intervals, where $\bigcup_{j=1}^n I_j = \bigcup_{i=1}^n J_i$, then

$$\sum_{j=1}^{n} m_0(I_j) = \sum_{i=1, j=1}^{n, n} m_0(I_j \cap J_i) = \sum_{i=1}^{n} m_0(J_i)$$

this makes m_0 well defined, and finitely additive, by construction.

Now, consider $\{I_n\}$ a countable collection of disjoint half-open intervals. And let $I = \bigcup I_n$. Then $I \in \mathcal{A}$, and $m_0(I) = \sum m_0(I_n)$. Now, since I is a finite union of disjoint half-open intervals, partition $\{I_n\}$ into finitely many subcollections $\{I_{n_k}\}$ for which $\bigcup I_{n_k}$ is a single half-open interval. Then I = (a, b] a single half-open interval. Thus, by the finite additivity of m_0 , we get

$$m_0(I) = m_0\left(\bigcup_{j=1}^n I_j\right) + m_0(I\setminus\left(\bigcup_{j=1}^{n-1} I_j\right)) \ge m_0(I) = m_0\left(\bigcup_{j=1}^n I_j\right) = \sum_{i=1}^n m_0(I_i)$$

Taking $n \to \infty$, we get $m_0(I) \ge \sum m_0(I_n)$

Now, suppose that $a,b \in \mathbb{R}^{\infty}$ are finite, and take $\varepsilon > 0$. By hypothesis, we get F is right-continuous, so there is a $\delta > 0$ for which $F(a+\delta) - F(a) < \varepsilon$. If $I_n = (a_n,b_n]$, there is a $\delta_n > 0$ for which $F(b_n + \delta_n) - F(b_n) < \frac{\varepsilon}{2^{n+1}}$. Now, $[a+\delta,b]$ is compact, by the finite collection $\{(a_i,b_i+\delta_i)\}_{i=1}^N$. Now, refine this subcover by discaring any $(a_i,b_i+\delta_i)$ contained in another of that cover, and reindex i to j by letting $b_j \in (a_{j+1},b_{j+1}+\delta_{j+1})$ for all $1 \leq j \leq N-1$. Then

$$m_0(I) = F(b) - F(a + \delta) + \varepsilon$$

$$\leq F(b_N + \delta_N) - F(a_1) + \varepsilon$$

$$= F(b_N + \delta_N) - F(a_N) + \sum_{j=1}^{N-1} F(a_{j+1}) - F(a_j) + \varepsilon$$

$$\leq F(b_N + \delta_N) - F(a_N) + \sum_{j=1}^{N-1} F(b_j + \delta_j) - F(a_j) + \varepsilon$$

$$< \sum_{j=1}^{N} F(b_j) + \frac{\varepsilon}{2^{j+1}} - F(a_j) + \varepsilon$$

$$< \sum_{j=1}^{N} F(b_j) + \frac{\varepsilon}{2^{j+1}} - F(a_j) + \varepsilon$$

Since a and b are finite, taking ε small enough gives us the m_0 . as a pre-measure on \mathcal{A} . Now, if $a = -\infty$, for all $M < \infty$, there is a cover $\{(a_i, b_i + \delta_i)\}$ of [-M, b], so that by the pervious argument, $F(b) - F(-M) \leq \sum m_0(I_n) + \varepsilon$. If $b = \infty$, then for all $M < \infty$, by a similar argument, $F(M) - F(a) \leq \sum m_0(I_n) + \varepsilon$. Taking ε small then gives us the same result.

Theorem 1.4.3. If $F : \mathbb{R} \to \mathbb{R}$ is any increasing right-continuous function, then there exists a unique Borel measure on \mathbb{R} , m_F such that m((a,b]) = F(b) - F(a) for all $a,b \in \mathbb{R}^{\infty}$. Moreover if G is another increasing right-continuous function, then $m_F = m_G$ if, and only if F - G is a constant function. Lastly, if m is a Borel measure on \mathbb{R} , finite on all bounded Borel sets of \mathbb{R} , and if F is defined by

$$F(x) = \begin{cases} m((0,x]), & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -m((0,x]), & \text{if } x < 0 \end{cases}$$
 (1.9)

Then F is the distribution function associated with m.

Proof. We have by lemma 1.4.2, that F defines pre-measures on the σ -algebra \mathcal{A} of finite unions of open half-intervals, and moreover that $m_F = m_G$ if, and only if F - G is constant. Moreover, each m_F is σ -finite since $\mathbb{R} = \bigcup_{-n}^n (n, n+1]$.

Now, let m be a Borel measure on \mathbb{R} , and define F by equation 1.9. By lemma 1.4.1, F is increasing and right continuous. Lastly, since $m = m_F$ on \mathcal{A} , and $\mathcal{B}(\mathbb{R})$ is generated by \mathcal{A} , then $m = m_F$ on all $\mathcal{B}(\mathbb{R})$.

Definition. We call Borel measures on \mathbb{R} , with distribution functions defined by

$$F(x) = \begin{cases} m((0,x]), & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -m((0,x]), & \text{if } x < 0 \end{cases}$$

Lebesgue-Stieltjes measures.

Lemma 1.4.4. Let m be a Lebesgue-Stieljes measure on \mathbb{R} . Then for any m-measurable set E,

$$m(E) = \inf \left\{ \sum m((a_n, b_n)) : E \subseteq \bigcup (a_n, b_n) \right\}$$
(1.10)

Proof. Observe that for all m-measurable sets E, that

$$m(E) = \inf \left\{ \sum F(b_k) - F(a_k) : E \subseteq \bigcup (a_n, b_n) \right\}$$

Let

$$n(E) = \inf \left\{ \sum m((a_k, b_k)) : E \subseteq \bigcup (a_k, b_k) \right\}$$

and let $E \subseteq \bigcup (a_k, b_k)$. Then $\{(a_k, b_k)\}$ is a countable collection of disjoint half-open intervals I_j^l . Specifically, $I_k^l = (c_j^l, c_j^{l+1}]$, where $\{c_j^l\}$ is an increasing sequence, with $c_j^1 = a_j$, and $\{c_j^l\} \to b_j$ as $l \to \infty$. Then

$$E \subseteq \bigcup_{j,l} I_j^l$$

We get

$$\sum m((a_k, b_k)) = \sum_{j,l} m(I_j^l) \ge m(E)$$

so that $n(E) \ge m(E)$. On the other hand, letting $\varepsilon > 0$, there exists a countable collection $\{(a_k, b_k]\}$ of disjoint half-open intervals where $E \subseteq \bigcup (a_k, b_k]$, and

$$\sum m((a_k, b_k)) \le m(E) + \varepsilon$$

Thus, for every j, there is a δ_j for which $F(b_j + \delta_j) - F(b_j) < \frac{\varepsilon}{2^{j+1}}$. Therefore $E \subseteq \bigcup ((a_j, b_j + \delta_j))$ and

$$\sum m((a_j, b_j + \delta_j)) \le \sum m((a_k, b_k]) + \varepsilon \le m(E) + \varepsilon$$

so that $n(E) \leq m(E)$.

Theorem 1.4.5. Let m be a Lebesgue-Stieltjes measure on \mathbb{R} . If E is m-measurable, then

$$m(E) = \inf \{ m(U) : U \text{ is open and } E \subseteq U \} = \sup \{ m(K) : K \text{ is compact and } K \subseteq \}$$

$$(1.11)$$

Proof. By lemma 1.4.4, for every $\varepsilon > 0$, there is a countable collection $\{(a_n, b_n)\}$ of disjoint intervalscovering E, for which

$$\sum m((a_n, b_n)) \le m(E) + \varepsilon$$

Let $U = \bigcup (a_n, b_n)$, then U is open, and $E \subseteq U$, with $m(U) \le m(E) + \varepsilon$. On the other hand, by monotonicity of $m, m(E) \le m(U)$, so we get the first equality.

Now, suppose that E is bounded. If E is closed, then E is compact, and there is nothing else to prove. Otherwise, let $\varepsilon > 0$ and choose an open set U contained in $(\operatorname{cl} E) \setminus E$ (where $\operatorname{cl} E$ is the topological closure of E) such that $m(U) \leq m((\operatorname{cl} E) \setminus E) + \varepsilon$. Now, let $K = (\operatorname{cl} E) \setminus U$. Then K is compact, and $K \subseteq E$, and $m(K) = m(E) - m(E \cap U) = m(E) - m(U) - m(U) \setminus E) \geq m(E) - m(U) + m((\operatorname{cl} E) \setminus E) \geq m(E) - \varepsilon$

Now, if E is unbounded, let $E_n = E \cap (n, n+1]$. Then by the preceding argument, for every $\varepsilon > 0$, there is a K_n compact, contained in E_n for which $m(K_n) \ge m(E_n) + \frac{\varepsilon}{2^{|n|}3}$. Let $H_n = \bigcup_{n=1}^n K_n$. Then H_n is compact, and contained in E, and

$$m(H_n) = m\Big(\bigcup_{i=-n}^n E_i\Big) - \varepsilon$$

By continuity from above, we are done.

Theorem 1.4.6 (Inner and Outer Approximation). Let m be a Lebesgue-Stieltjes measure on \mathbb{R} , and let E any subset of \mathbb{R} of finite m-measure. Then the following are equivalent.

- (1) E is m-measurable.
- (2) There exists a G_{δ} -set V for which $E = V \setminus N_1$, and $m(N_1) = 0$.
- (3) There exists an F_{σ} -set H for which $E = H \cup N_2$, and $m(N_2) = 0$.

Proof. Since m is complete on all m-measurable sets, statements (2) and (3) imply (1). Now, let E be m-measurable, with $m(E) < \infty$. Choose U_n open, containing E for all n, and choose K_n compact, conatined in E for all n, such that,

$$m(U_n) - \frac{1}{2^n} \le m(E) \le m(K_n) - \frac{1}{2_n}$$

Let $V = \bigcap U_n$, and $H = \bigcup K_n$. Then V is a G_{δ} -set, H is an F_{σ} -set, and $H \subseteq E \subseteq V$. Moreover, $m(V) = m(H) = m(E) < \infty$, so that $m(V \setminus E) = m(E \setminus H) = 0$.

Lemma 1.4.7. Let m be a Lebesgue-Stieltjes measure. If E is m-measurable, of finite m-measure, then for every $\varepsilon > 0$, there exists a finite collection $\{I_j\}_{j=1}^n$, such that

$$m(E \setminus A \cup A \setminus E) < \varepsilon \text{ where } A = \bigcup_{j=1}^{n} I_j$$
 (1.12)

Definition. We define the **Lebesgue measure** on \mathbb{R} to be the complete Lebesgue-Stieljes measure m associated to the distribution funtion l(x) = x. We call all m-measurable sets **Lebesgue measurable**, and denote the domain of m by \mathcal{L} .

Theorem 1.4.8. If E is Lebesgue measurable, then so is E + s and rE, for all $s, r \in \mathbb{R}^{\infty}$, and where $E + s = \{x + s : x \in E\}$, and $rE = \{rx : x \in E\}$. Moreover

$$m(E+s) = m(E)$$
 and $m(rE) = |r|m(E)$

Theorem 1.4.9. Countable sets of \mathbb{R} have Lebesgue measure 0.

Example 1.3. Let m be the Lebesgue measure on \mathbb{R} .

- (1) $m(\mathbb{Q}) = 0$, since \mathbb{Q} is countable.
- (2) Here is a pathological example where topologically "large" sets can be measured to be as small as one likes, and where topologically "small" sets can be measured as large as one likes. Let $\{r_n\}$ be an enumeration of \mathbb{Q} in the interval [0,1]. Take $\varepsilon > 0$, and let $I_r = (r \frac{1}{2^n}, r + \frac{1}{2^n})$ the open interval centered around r of length $\frac{1}{2^n}$. Then take $U = (0,1) \cap \bigcup I_r$. Then U is open and dense in [0,1], but $m(U) \leq \sum \frac{1}{2^n} < \varepsilon$. Now, let $K = [0,1] \setminus U$. Then K is closed and nowhere dense in [0,1], however $m(K) \geq 1 \varepsilon$. Notice however that non-empty open sets of \mathbb{R} cannot have Lebesgue measure 0.

1.5 The Cantor Set and the Cantor-Lebesgue Function

Definition. We define the Cantor set \mathcal{C} to be the intersection

$$C = \bigcap C_k$$

where $\{C_k\}$ is a descending collection of closed sets in which for each $k \in \mathbb{Z}^+$, C_k is the disjoint union of $2^k - 1$ closed intervals in \mathbb{R} each of length $\frac{1}{3^k}$.

Theorem 1.5.1. The Cantor set is a compact and uncountable set of Lebesgue measure $m(\mathcal{C}) = 0$.

Proof. Since \mathcal{C} is an arbitrary intersection of closed sets in \mathbb{R} , \mathcal{C} is closed in \mathbb{R} . We also have that $\mathcal{C} \subseteq [0,1]$, which is compact. Therefore, by the theorem of Heine-Borel, \mathcal{C} is compact. Moreover, by the definition of each C_k , C_k is Lebesgue measurable and

$$m(C_k) = \left(\frac{2}{3}\right)^k$$
 for each $k \in \mathbb{Z}^+$

Then \mathcal{C} is also Lebesgue measurable, and we have by monotonicity of the Lebesgue measure

$$m(\mathcal{C}) \le m(C_k) = \left(\frac{2}{3}\right)^k$$

Taking $k \to \infty$, gives us that $m(\mathcal{C}) = 0$.

Now, suppose that \mathcal{C} is countable, and let $\mathcal{C} = \{c_k\}$ be an enumeration of \mathcal{C} . Now, one of the disjoint intervals whose union is C_1 fails to contain c_1 ; call it F_1 . Proceeding, one of the disjoint intervals whose union is F_1 fails to contain c_2 ; call it F_2 . Proceeding inductively, we get a descending collection $\{F_k\}$ of closed sets, for which $c_k \notin F_k$ for each $k \in \mathbb{Z}^+$. Now, by the nested set theorem, the intersection

$$F = \bigcap F_k$$

is nonempty. Moreover, $F \subseteq \mathcal{C}$. This implies that there is an element $x \in \mathcal{C}$ which is not equal to any c_k ; but $\{c_k\}$ is an enumeration of \mathcal{C} , which is absurd! Therefore, \mathcal{C} fails to be countable.

Corollary. C is perfect.

Proof. Let $x \in \mathcal{C}$, so that $x \in C_k$ for all k. Now, observe by construction that \mathcal{C} contains all the endpoints of all subintervals of each C_k ; i.e. contains the points $\{0,1,\frac{1}{3},\frac{2}{3},\dots\}$. Take $\varepsilon > 0$, and choose k large enough so that $\frac{1}{3^k} < \varepsilon$. Since $x \in C_k$, $x \in [a,b]$, where a,b are one of the aformentioned endpoints. Since $m([a,b]) = \frac{1}{3^k} < \varepsilon$, we get $|x-a| < \varepsilon$, and $|x-b| < \varepsilon$. That is, there is some $y \in \mathcal{C}$ for which $y \neq x$, and $y \in (x-\varepsilon, x+\varepsilon) \cap \mathcal{C}$. Therefore, \mathcal{C} contains no isolated points. Since \mathcal{C} is also closed, \mathcal{C} is perfect.

Corollary. C is nowhere dense, and totally disconnected.

Proof. Since \mathcal{C} has Lebesgue measure 0, it cannot contain any open set (see example 1.3(2)). Hence $\mathcal{C} = \emptyset$, so that \mathcal{C} is nowhere dense.

Let $x, y \in \mathcal{C}$, and suppose without loss of generality that x < y. Now, suppose also that $y - x > \frac{1}{3^k}$, so that x and y belong to completely different closed intervals in some C_k of \mathcal{C} . Now, let $z \notin C_k$ for which x < z < y. Then there is a separation of the set $\{x, y\}$ into

$$\{x,y\}=(\{x,y\}\cap(-\infty,z))\cup(\{x,y\}\cap(z,\infty))$$

so that $\{x,y\}$ is disconnected. Now, if $S \subseteq \mathcal{C}$ with |S| > 2, then the previous argument follows. Taking $x,y \in S$, where x < y, there is a z such that x < z < y. Then $S = (S \cap (-\infty,z)) \cup (S \cap (z,\infty))$ is a separation, making \mathcal{C} totally disconnected.

Definition. Let \mathcal{C} be the Cantor set, and define U_k such that $C_k = [0,1] \setminus U_k$, and define $\mathcal{U} = \bigcup U_k$; so that $[0,1] = \mathcal{C} \cup \mathcal{U}$. Fix $k \in \mathbb{Z}^+$ and define

$$\phi: U_k \to \mathbb{R}$$

to be the increasing function which is constant on each of the $2^k - 1$ intervals of U_k , and whose image is

$$\phi([0,1]) = \left\{ \frac{1}{2^k}, \frac{2}{2^k}, \dots, \frac{2^k - 1}{2^k} \right\}$$

We define the **Cantor-Lebesgue function** to be the extension Φ of ϕ to [0,1]; defined in terms of \mathcal{C} to be

$$\Phi(0) = \phi(0) = 0$$
 and $\Phi(x) = \sup \{\phi(t) : t \in \mathcal{U} \cap [0, x]\}$ for all $x \in \mathcal{C} \setminus \{0\}$

Figure 1.1: The Canotr Lebesgue Function on U_3 .

Theorem 1.5.2. The Cantor-Lebesgue function is an increasing continuous function mapping [0,1] onto [0,1], and differentiable on \mathcal{U} with

$$\Phi'(x) = 0$$
 on \mathcal{U} where $m(\mathcal{U}) = 1$

Proof. Since ϕ is an increasing function, and Φ is the extension of ϕ to [0,1], then Φ must also be increasing. Now, ϕ is continuous at each point of \mathcal{U} , since it is constant on each U_k . Now, consider $x_0 \in \mathcal{C}$ with $x_0 \neq 0, 1$. Then $x_0 \notin U_k$ for all $k \in \mathbb{Z}^+$. So for k large enought, x_0 lies in between consecutive intervals of U_k . Choose a_k to be the lowerbound of the lower interval, and b_k the upperbound of the upper interval. Then by definition of ϕ , we get

$$a_k < x_0 < b_k \text{ and } \phi(b_k) - \phi(a_k) = \frac{1}{2^k}$$

Since k is arbitrarily large, Φ fails to have a jump discontinuity at x_0 , which is the only possible discontinuity it can have. Therefore Φ is continuous at x_0 . A similar argument shows that Φ is continuous at $x_0 = 0, 1$.

Now, since ϕ is constant on each U_k , ϕ is differentiable on U_k and has $\phi' = 0$ on each U_k , hence $\phi' = 0$ on \mathcal{U} . Since $m(\mathcal{C}) = 0$ and $[0,1] = \mathcal{C} \cup \mathcal{U}$, then $m(\mathcal{U}) = 1$. Since Φ is an extension, we get that

$$\Phi' = 0$$
 on \mathcal{U} where $m(\mathcal{U}) = 1$

Finally, since $\Phi(0) = 0$ and $\Phi(1) = 1$, and Φ is increasing, by the intermediate value theorem $\Phi([0,1]) = [0,1]$.

Lemma 1.5.3. Let Φ be the Cantor-Lebesgue function, and define $\Psi:[0,1]\to\mathbb{R}$ by

$$\Psi(x) = \Phi(x) + x \text{ for all } x \in [0, 1]$$

Then Ψ is strictly increasing, and maps [0,1] onto [0,2]. Moreover, Ψ maps the Cantor set onto a set of positive Lebesgue measure, and maps a measurable subset of the Cantor set onto a nonmeasurable set.

Proof. Since Ψ is the sum of the strictly increasing function f(x) = x and the increasing function $\Phi(x)$, Ψ is strictly increasing. Moreover, Ψ is continuous since it is the sum of continuous functions, and $\Psi(0) = 0$, and $\Psi(1) = 2$, so by the intermediate value theorem, $\Psi([0,1]) = [0,2]$. Finally, notice that since Φ and f(x) = x are 1–1, then Ψ is also 1–1. Therefore Ψ has a continuous inverse Ψ^{-1} . This makes $\Psi(\mathcal{C})$ closed, and $\Psi(\mathcal{U})$ open. Therefore both $\Psi(\mathcal{C})$ and $\Psi(\mathcal{U})$ are measurable.

Now, let $\{I_k\}$ be the collection of intervals removed from [0,1] to form \mathcal{C} ; i.e.

$$\mathcal{U} = \bigcup I_k$$

Since Φ is constant on each of these intervals, we get that Ψ maps I_k onto the translate $I_k + x$. Since Ψ is 1–1, we have that $\{\Psi(I_k)\}$ is a disjoint collection of measurable sets. Therefore, by countable additivity

$$m\Big(\bigcup \Psi(I_k)\Big) = \sum m(\Psi(I_k)) = \sum m(I_k + x) = \sum m(I_k) = m(\mathcal{U}) = 1$$

Since $[0,2] = \Psi(\mathcal{C}) \cup \Psi(\mathcal{U})$, we get $\Psi(\mathcal{C}) = 1$.

Now, by Vitali's theorem, there exists a nonmeasurable subset $W \subseteq \Psi(\mathcal{C})$. Notice then that $\Psi^{-1}(W) \subseteq \mathcal{C}$ is Lebesgue measurable of measure $m(^{-1}(W)) = 0$, since $m(\mathcal{C}) = 0$. That is, we have mapped a measurable subsete of \mathcal{C} to a nonmeasurable set. This concludes the proof.

Theorem 1.5.4. There exists a measurable subset of the Cantor set which is not Borel.

Bibliography

- [1] G. B. Folland, Real Analysis: Modern Techniques and Their Applications. Hoboken, NJ: John Wiley & Sons, Inc, 1999.
- [2] H. L. Royden and P. Fitzpatrick, Real Analysis. Saddle River, NJ: Pearson, 2010.