Smart Card in Public Transportation: Designing a Analysis System at the Human Scale

E. Tonnelier, N. Baskiotis, V. Guigue and P. Gallinari

LIP6 - UPMC - Sorbonne Universités

November 3^{rd} , 2016 IEEE 19th International Conference on Intelligent Transportation Systems

URBAN MOBILITY - MANY ISSUES & SENSORS

- Data sources
 - City / Smart City: cellphones, GPS, smart street furnitures
 - Explosion of available data, rich literature over the last decade
- Development policies

[Black et al., 2002, Golias, 2002]

Global view on traffic

[Ceapa et al., 2012, Louail et al., 2014]

- Regularity of users
 - Trip prediction

[Song et al., 2010, Foell et al., 2013]

Users representations

[Poussevin et al., 2014]

L 6 UI

URBAN MOBILITY - User-centered study

o Temporal patterns, habits

⇒ at the individual scale⇒ for a standard week day

CONTRIBUTIONS AND CHALLENGES

Logs = entries of **10k users** during **13 weeks**

CONTRIBUTIONS AND CHALLENGES

Logs = entries of **10k users** during 13 weeks

- Characterize **noisy** users
 - Aggregation / Clustering
 - Habits modeling of week days:

SORBONNE UNIVERSITÉS

Week days

Thursdays

CONTRIBUTIONS AND CHALLENGES

Logs = entries of **10k users** during 13 weeks

but with individual schedule

Characterize **noisy** users

- Aggregation / Clustering
- Habits modeling of week days:

SORBONNE UNIVERSITÉS

Week days

Thursdays

New hypothesis: Habits are shared...

MATRIX FACTORIZATION

User decomposition = Habit extraction

Goal: optimizing both code & dictionary

Variations SVD

- [Golub and Van Loan, 1996]
- Non-negative matrix factorization [Lee and Seung, 2000]

Sparseness

[Hoyer, 2002]

5 random users

• 24h = 96 intervals of 15min

Dictionary: (most used atoms)

5 random users

• 24h = 96 intervals of 15min

Dictionary: (most used atoms)

5 random users

24h = 96 intervals of 15minFocusing on user #1

Dictionary: (most used atoms)

5 random users

 \circ 24h = 96 intervals of 15min Focusing on user #1

Dictionary: (most used atoms)

5 random users

 \circ 24h = 96 intervals of 15min Focusing on user #1

Dictionary: (most used atoms)

5 random users

 \circ 24h = 96 intervals of 15min Focusing on user #1

Dictionary: (most used atoms)

5 random users

 \circ 24h = 96 intervals of 15min Focusing on user #1

Dictionary: (most used atoms)

5 random users

 \circ 24h = 96 intervals of 15min Focusing on user #1

Dictionary: (most used atoms)

5 random users

 \circ 24h = 96 intervals of 15min Focusing on user #1

Dictionary: (most used atoms)

NMF: ANALYSIS

Number of atoms in the dictionary (rank constraint)

5 atoms

- 5 best atoms among 10
- 5 best atoms among 40

- More atoms = finer reconstruction...
 - +reconstruction of the noise...
 - + meaningless atoms
- Less atoms = no longer local event modeling (variance overestimate)
- Parameters are wasted modeling translated events
- Evaluation ?

NMF: ANALYSIS

- Number of atoms in the dictionary (rank constraint)
 - More atoms = finer reconstruction...

+reconstruction of the noise... + meaningless atoms

Less atoms = no longer local event modeling (variance overestimate)

Reconstruction (poor dictionary)

Reconstruction (standard dictionary)

Reconstruction (rich dictionary)

- Parameters are wasted modeling translated events
- Evaluation?

SORBONNE UNIVERSITÉS

CONTRIBUTION: TS-NMF

Idea:

- Keeping the NMF framework
- Defining compact atoms

which shapes are learned on all users (=NMF) which can be positioned for each user

CONTRIBUTION: TS-NMF

Idea:

- Keeping the NMF framework
- Defining compact atoms

which shapes are learned on all users (=NMF) which can be positioned for each user

$$u = \sum_{z} \tau_{u,z}(w_{u,z}d_z) = w_{u,z}d_z(t + \phi_{u,z})$$

Data matrix (logs)

 ϕ matrix

 \oplus

1

LGORITHM

Algorithm 1: TS NMF learning algorithm

 $\overline{\mathbf{Data}}$: $X \in \mathbb{R}_{+}^{U \times T}$, $\overline{\mathbf{Z}}$, \max_{iter} , α_{Φ}

*max*_{iter}: to reach convergence α_{Φ} : window of search in the atom shift procedure

Result: Optimized matrix Φ , D and W

 $D, W, \Phi = init(X, Z)$

D and W randomly initialized, Φ regularly scattered along time band

```
for it \in 0...max_{iter} do
       for u \in range(0, U) do
            \mathbf{x}_u = X[u,.]
5
            atoms = descendingEntropy(D)
```

return atoms indexes sort in descending order

5

6

8

9

10

11

12

D and W randomly initialized, Φ regularly scat tered along time band

for $it \in 0...max_{iter}$ **do**

 $2 P_{1} P_{2} P_{3} P_{4} = mit(X_{H}Z_{3})_{TS} / NMF$

LGORITHM

for $u \in range(0, U)$ **do**

$$\mathbf{x}_u = X[u,.]$$

atoms = descendingEntropy(D)

return atoms indexes sort in descending order

for $a \in atoms$ do

$$\Phi_{u,a} = minimizeLocalCost_t(\mathbf{x}_u, D_a)$$

finding optimal time-shift t in a window of size α_{Φ}

$$W_{u,a} = update_W(\mathbf{x}_u, W_{u,.}, D, \Phi_{u,a})$$

Simple gradient descent

$$\mathbf{x}_{u} = \mathbf{x}_{u} - f(\overline{D_{a}, \Phi_{u,a})}W_{u,a}$$

Matching pursuit like update

$$D = update_D(W, D, \Phi)$$

$$D = centerAtoms(D)$$

Centering procedure to make atoms comparable

Reconstructed users:

Reconstruction process: Atom selection ...

Impossible on training data:

- more degrees of freedom ⇒ less reconstruction error
- o 9 weeks for learning, 4 weeks for testing
 - Random initialization + non convex optimization ⇒ averaging performance on 5 runs
 - Reconstruction of unseen data (=predictive skills)
 - Necessary but not sufficient
- ⇒ meaning/interpretation of the model is required
 - link with the number of parameters

LP

BASELINES & DIMENSIONALITY

- 10k users
- 480 time intervals (3 minutes)

parameters $\Rightarrow 0$

- General model = 1-mean model
- k-means, k = 16:
 - 16 prototypes $\in \mathbb{R}^{480}$ + 10k assignments

 \Rightarrow 17,680

- NMF, Z = 16:
 - 16 prototypes $\in \mathbb{R}^{480} + 10k \times 16$ weights

 \Rightarrow 167,680

- GMM = 3 Gaussian atoms (μ, σ_1) , (μ, σ_2) , (μ, σ_3) centered on each of the 480 time interval & weighted \Rightarrow 14,400,003
- TSNMF = 16 atoms of size 60, weighted & shifted

 \Rightarrow 320,960

Evaluation 00000

2 metrics

MSE Mean Squared Error (between real & estimated pdf)

ML Likelihood of the logs according to the model

Model	# param.	MSE -train- (mean (std))	MSE -test- (mean (std))
General model	0	0.033 (0)	0.040 (0)
KMeans (16 clusters)	17,680	0.027 (6.3e-6)	0.038 (1.5e-5)
NMF	167,680	0.024 (7.7e-5)	0.036 (6.7e-5)
GMM	14,400,003	0.023 (0)	0.050(0)
TS-NMF	320,960	0.016 (5.8e-4)	0.042 (8.9e-4)
₩odel	# param.	ML -train- (mean (std))	ML -test- (mean (std))
General	0	0.0038 (0)	0.0036(0)
KMeans (16 clusters)	17,680	0.010 (6.3e-6)	0.008 (5.7e-6)
NMF	167,680	0.013 (8.3e-5)	0.009 (3.8e-5)
GMM	14,400,003	0.027 (0)	0.018 (0)
NMF GMM TS-NMF	320,960	0.026 (9.3e-4)	0.016 (4.8e-4)

Shapes of the atoms

- +/- variance
- Different shapes

Atoms Positions (distrib. over the population)

 Most atoms correspond to a defined period of the day

L 6

USER MAPPING ON PARIS MAP

According to the **shapes of the atoms**

[Poussevin et al., 2014]

According to the **time positions of the atoms** (morning = departure to work)

CONCLUSION

Characterizing both habits and their schedules

- ... at the individual scale
- $\circ \Rightarrow$ valuable information on users
- Costly, but scalable for a transportation system

Perspective

- Work on the cost function...
- ... to discover less compact atoms (more meaningful)

BIBLIOGRAPHY

Black, J. A., Paez, A., and Suthanaya, P. A. (2002).

Sustainable urban transportation: performance indicators and some analytical approaches. Journal of urban planning and development, 128(4):184-209.

Ceapa, I., Smith, C., and Capra, L. (2012). Avoiding the crowds: understanding tube station congestion patterns from trip data. In ACM SIGKDD 2012, pages 134–141. ACM.

Foell, S., Kortuem, G., Rawassizadeh, R., Phithakkitnukoon, S., Veloso, M., and Bento, C. (2013).

Mining temporal patterns of transport behaviour for predicting future transport usage. In UbiComp 13, pages 1239-1248. ACM.

Golias, J. C. (2002).

Analysis of traffic corridor impacts from the introduction of the new athens metro system. J. Transp. Geogr., 10(2):91-97.

SORBONNE UNIVERSITÉS

Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations (3rd Ed.). Johns Hopkins University Press.

Hoyer, P. O. (2002).

Non-negative sparse coding. In W. on Neural Networks for Signal Processing, pages 557-565. IEEE.

Lee, D. D. and Seung, H. S. (2000).

Algorithms for non-negative matrix factorization.

In NIPS, pages 556-562.

Louail, T., Lenormand, M., Cantú, O. G.,

Picornell, M., Herranz, R., Frias-Martinez, E., Ramasco, J. J., and Barthelemy, M. (2014). From mobile phone data to the spatial structure of cities. Nature

Poussevin, M., Tonnelier, E., Baskiotis, N., Guigue, V., and Gallinari, P. (2014). Mining ticketing logs for usage characterization with nonnegative matrix factorization. In International Workshop on Modeling Social

Song, C., Qu, Z., Blumm, N., and Barabási, A.-L. (2010).

Limits of predictability in human mobility. Science, 327(5968):1018-1021.

Media, pages 147-164. Springer.