4-STAGE PARALLEL IN/PARALLEL OUT SHIFT REGISTER

- 4-STAGE CLOCKED SHIFT OPERATION
- SYNCHRONOUS PARALLEL ENTRY ON ALL 4 STAGES
- JK INPUTS ON FIRST STAGE
- ASYNCHRONOUS TRUE/COMPLEMENT CON-TROL ON ALL OUTPUTS
- STATIC FLIP-FLOP OPERATION; MASTER-SLAVE CONFIGURATION
- BUFFERED INPUTS AND OUTPUTS
- HIGH SPEED 12MHz (typ.) AT V_{DD} = 10V
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURR 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC TENTATIVE STANDARD N°. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The HCC4035B (extended temperature range) and HCF4035B (intermediate temperature range) are monolithic integrated circuit, available in 16-lead dual in-line plastic or ceramic package and plastic micro package. The HCC/HCF4035B is a fourstage clocked signal serial register with provision for synchronous PARALLEL inputs to each stage and SERIAL inputs to the first stage via JK logic. Register stages 2, 3, and 4 are coupled in a serial D flipflop configuration when the register is in the serial mode (PARALLEL/SERIAL control low). Parallel entry into each register stage is permitted when the PARALLEL/SERIAL control is high. In the parallel or serial mode information is transferred on positive clock transitions. When the TRUE/COMPLEMENT control is high, the true contents of the register are available at the output terminals. When the TRUE/COMPLEMENT control is low, the outputs are the complements of the data in the register. The TRUE/COMPLEMENT control functions asynchronously with respect to the CLOCK signal. JK input logic is provided on the first stage SERIAL input to minimize logic requirements particularly in counting and sequence-generation applications.

Whith JK inputs connected together, the first stage becomes a D flip-flop. An asynchronous common RESET is also provided.

July 1989 1/14

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V
Vi	Input Voltage	- 0.5 to V _{DD} + 0.5	V
I_1	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for T_{op} = Full Package-temperature Range	200	mW mW
			+
T _{op}	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C °C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability. \star All voltage values are referred to $V_{\rm SS}$ pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to 18	V
	HCF Types	3 to 15	V
VI	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature: HCC Types	-55 to +125	°C
	HCF Types	-40 to +85	°C

LOGIC DIAGRAM

TRUTH TABLE

FIRST STAGE

Clock	1	: _{n-1} (i	nputs	t _n (outputs)		
(ø)	J	K	R	Q _{n-1}	Qn	
	0	Х	0	0	0	
	1	Х	0	0	I	
	Х	0	0	ı	0	
	I	0	0	Q _{n-1}	$\overline{Q_{n-1}}$ Toggle Mode	
	Х	I	0	ı	I	
	Х	Х	0	Q_{n-1}	Q _{n-1}	
Х	Х	Х	I	Х	0	

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			Т	est Con	dition	s				Value				
Symbol	Parame	ter	V,	٧o	I ₀	V _{DD}	T _{Low} * 25°C					T Hi	ah*	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		5		0.04	5		150	
	Current	нсс	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	
			0/20			20		100		0.08	100		3000	μΑ
			0/ 5			5		20		0.04	20		150	
		HCF Types	0/10			10		40		0.04	40		300	
		Турсз	0/15			15		80		0.4	80		600	
V _{OH}	Output High	n .	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V _{OL}	Output Low	1	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V _{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V _{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	
	Voltage			9/1	< 1	10		3			3		3	V
				13.5/1.5	< 1	15		4			4		4	
I _{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive Current	HCC	0/ 5	4.6		5	- 0.64		- 0.51	- 1		- 0.36		
	Current	Types	0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		mA
			0/ 5	2.5		5	- 1.53		- 1.36	- 3.2		- 1.1		1117 (
		HCF	0/ 5	4.6		5	- 0.52		- 0.44	- 1		- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I _{OL}	Output		0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink Current	HCC Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current	.) 00	0/15	1.5		15	4.2		3.4	6.8		2.4		mA
			0/ 5	0.4		5	0.52		0.44	1		0.36		шА
		HCF Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
		.,,,,	0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input leakage	HCC Types	0/18	Any In	put	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	,,,Λ
	Curent	HCF Types	0/15			15		± 0.3			± 0.3		± 1	μΑ
Cı	Input Ca	pacitan	ce	Any In	put					5	7.5			pF

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5$ V, 2V min. with $V_{DD} = 10$ V, 2.5V min. with $V_{DD} = 15$ V.

DYNAMIC ELECTRICAL CHARACTERISTICS (T $_{amb}=25^{\circ}C$, $C_{L}=50pF$, $R_{L}=200k\Omega$, typical temperature coefficient for all $V_{DD}=0.3\%/^{\circ}C$, all input rise and fall time = 20ns)

		Test Conditions					
Symbol	Parameter		V _{DD} (V)	Min.	Тур.	Max.	Unit
CLOCKED	OPERATION						
t _{PLH} , t _{PHL}	Propagation Delay Time		5		250	500	
			10		100	200	ns
			15		75	150	
t_{THL}, t_{TLH}	Transition Time		5		100	200	
			10		50	100	ns
			15		40	80	
f _{CL}	Maximum Clock Input Frequency		5	2	4		
			10	6	12		MHz
			15	8	16		
t _W	Clock Pulse Width		5		100	200	
			10		45	90	ns
			15		30	60	
t _r , t _f	Clock Input Rise or Fall Time		5		15		
			10		15		μs
			15		15		
t _{setup}	Data Setup Time J/K Lines		5		110	220	
			10		40	80	ns
			15		30	60	
t _{setup}	Data Setup Time Parallel-In-Lines		5		70	140	
			10		25	50	ns
			15		20	40	
RESET O	PERATION						
t _{PLH} , t _{PHL}	Propagation Delay Time		5		230	460	
			10		100	200	ns
			15		80	160	
t _W	Reset Pulse Width		5		125	250	
			10		55	110	ns
			15		40	40	

Typical Output Low (sink) Current Characteristics.

Typical Output High (source) Current Characteristics.

Minimum Output Low (sink) Current Characteristics.

Minimum Output High (source) Current Characteristics.

TYPICAL APPLICATIONS

BINARY-TO-BCD CONVERTER

EXAMPLE OF BINARY-TO-BCD CONVERSION

TYPICAL APPLICATIONS

BIDEC LOGIC

DOUBLE SEQUENCE GENERATOR

STATE SEQUENCES

Using a control line (E) two different state sequences can be generated. For example, suppose the following two sequences are desired on command (control line E).

	Cont	rol =	E = 0				1		
	Q_1	Q_2	Q_3	Q_4		Q ₁	Q_2	Q_3	Q ₄
	Α	В	С	D		Α	В	С	D
0	0	0	0	0	15	1	1	1	1
1	1	0	0	0	14	0	0	1	1
2	0	1	0	0	13	1	0	1	1
5	1	0	1	0	10	0	1	0	1
10	0	1	0	1	5	1	0	1	0
4	0	0	1	0	11	1	1	0	1
9	1	0	0	1	6	0	1	1	0
3	1	1	0	0	12	0	0	1	1
6	0	1	1	0	9	1	0	0	1
13	1	0	1	1	2	0	1	0	0
11	1	1	0	1	4	0	0	1	0
7	1	1	1	0	8	0	0	0	1
14	0	1	1	1	1	1	0	0	0
12	0	0	1	1	3	1	1	0	0
8	0	0	0	1	7	1	1	1	0

TYPICAL APPLICATIONS

SHIFT LEFT/SHIFT RIGHT REGISTER

TEST CIRCUITS

Quiescent Device Current.

Input Voltage.

Input Current.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
ı			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch			
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			20			0.787	
В			7			0.276	
D		3.3			0.130		
E	0.38			0.015			
e3		17.78			0.700		
F	2.29		2.79	0.090		0.110	
G	0.4		0.55	0.016		0.022	
Н	1.17		1.52	0.046		0.060	
L	0.22		0.31	0.009		0.012	
М	0.51		1.27	0.020		0.050	
N			10.3			0.406	
Р	7.8		8.05	0.307		0.317	
Q			5.08			0.200	

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (ı	max.)		

PLCC20 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

