

Yakeen NEET 2.0 (2026)

KPP-13

Physics By Saleem Sir **Motion in Straight line**

Time Limit 01 Hour

Part - 01:

A car moves from O to D along the path OABCD shown in figure. What is distance travelled and net displacement.

- (1) 16, 5
- 17, 5
- (3) 20, 4
- (4) 15.3
- 2. Which of the following statements is incorrect?
 - (1) Displacement is independent of the choice of origin of the axis.
 - (2) Displacement may or may not be equal to the distance travelled.
 - (3) When a particle returns to its starting point, its displacement is not zero.
 - (4) Displacement does not tell the nature of the actual motion of a particle between the points
- **3.** An old man goes for morning walk on a semi-circular track of radius 40 m; if he starts from one end of the track and reaches to other end, the distance covered by the man and his displacement will respectively be
 - (1) 126 m, 80 m
- (2) 80 m, 126 m
- (3) 80 m, 252 m
- (4) 252 m, 80 m
- 4. A body covered a distance of L m along a curved path of a quarter circle. The ratio of distance to displacement is

A person moves 30 m north and then 20 m towards east and finally $30\sqrt{2}$ m in south-west direction. The displacement of the person from the origin will be

BY: Saleem Bhaia

- (1) 10 m along north
- (2) 10 m long south
- (3) 10 m along west
- (4) Zero
- An athlete participates in a race now he is moving on a circular track of radius 80 m completes half a revolution in 20 s. Its average velocity is
 - (1) 8 m/s
- (2) 16 m/s
- (3) 10 m/s
- (4) 12 m/s
- 7. The displacement of a particle, starting from rest (at t = 0) is given by $s = 6t^2 - t^3$.

The time in seconds at which the particle will obtain zero velocity again is:

- (1) 2
- (2) 4
- (3) 6
- (4) 8
- The displacement of a body along x-axis depends on 8. time as $\sqrt{x} = 3t + 5$. Then the velocity of body:
 - (1) Increase with time
 - (2) Independent of time
 - (3) Decrease with time
 - (4) None of these
- 9. A particle is moving along x-axis such that $x = 2 - 5t + 6t^2$. What is acceleration of the particle when its velocity is zero?

- (1) Zero (2) 12 m/s^2 (3) -5 m/s^2 (4) $5/12 \text{ m/s}^2$

- 10. The displacement of a particle is given by $y = a + bt + ct^2 dt^4$. The initial velocity and initial acceleration are respectively:
 - (1) b, -4d
- (2) -b, 2d
- (3) b, 2c
- (4) 2c, -4d
- 11. A particle moves along a straight line such that its displacement at any time t is given by $s = t^3 6t^2 + 3t + 4$ metres. The velocity when the acceleration is zero is:
 - (1) 3 m/s
- (2) -12 m/s
- (3) 42 m/s
- (4) -9 m/s
- 12. The displacement of a particle is given by $y = a + bt + ct^2 dt^4$. The initial velocity and acceleration are respectively:
 - (1) b, -4d
- (2) -b, 2c
- (3) b, 2c
- (4) 2c, -4d
- 13. A body is moving according to the equation $x = at + bt^2 ct^3$. Then its instantaneous speed is given by:
 - (1) a + 2b + 3ct
- (2) $a + 2bt 3ct^2$
- (3) 2b 6ct
- (4) None of these
- **14.** A particle starts moving along x-axis from t = 0, its position varying with time as $x = 2t^3 3t^2 + 1$. What is the velocity when it passes through origin?
 - (1) v = 0
- (2) v = 1
- (3) v = 5
- (4) v = 3
- **15.** The figure shows the position time graph of a particle moving on a straight line path. What is the magnitude of average velocity of the particle over 10 second?

- (1) 2 m/s
- (2) 4 m/s
- (3) 6 m/s
- (4) 8 m/s

16. The displacement-time graph of a moving particle is shown. The instantaneous velocity of the particle is negative at the point:

- (1) D
- (2) F
- (3) C
- (4) E
- **17.** Which of the following can not be the distance time graph

18. Displacement-time (x - t) graph of a particle moving along a straight-line path is shown in figure. Average speed of particle in the time interval 0 to 5 second is

- (1) 2 m/s
- (2) 16 m/s
- (3) 12 m/s
- (4) 14 m/s

19. The x–t graph shown in figure represents

- (1) Constant velocity
- (2) Velocity of the body is continuously changing
- (3) Instantaneous velocity
- (4) The body travels with constant speed upto time t_1 and then stops
- **20.** The position-time graph of two particles P and Q are as shown in figure. The ratio of their velocities $\frac{V_P}{V_Q}$ is

- (1) 1:3
- (2) $\sqrt{3}:1$
- (3) 3:1
- (4) $1:\sqrt{3}$
- **21.** From the following displacement-time graph find out the velocity of a moving body

- $(1) \quad \frac{1}{\sqrt{3}} m/s$
- (2) $3 \, m/s$
- (3) $\sqrt{3} \, m/s$
- (4) $1/3 \, m/s$

22. Displacement time graph of a particle moving in a straight line is as shown in figure.

Find the sign of velocity in regions oa, ab, bc and cd

- (1) Negative, positive, positive, negative
- (2) Positive, positive, positive, negative
- (3) Positive. negative, positive, positive
- (4) Positive, positive, negative, negative

Paragraph for question nos. 23 to 26

The graph given shows the POSITION of two cars, A and B, as a function of time. The cars move along the *x*-axis on parallel but separate tracks, so that they can pass each other's position without colliding.

- **23.** At which instant in time is car-A overtaking the car-B?
 - (A) t_1
- (B) t_2
- (C) t3
- (D) t4
- **24.** At time t_3 , which car is moving faster?
 - (1) car A
- (2) car B
- (3) same speed
- (4) None of these
- **25.** At which instant do the two cars have the same velocity?
 - (1) t_1
- (2) t_2
- (3) t_3
- (4) t_4

- **26.** Which one of the following best describes the motion of car A as shown on the graphs?
 - (1) speeding up
 - (2) constant velocity
 - (3) slowing down
 - (4) first speeding up, then slowing down

Part - 02:

27. The position-time (*x*–*t*) graphs for two children *A* and *B* returning from their school *O* to their homes *P* and *Q*, respectively, are shown in figure. Choose the correct entries in the brackets below.

- (a) (A/B) lives closer to school than (B/A).
- (b) (A/B) starts from the school earlier than (B/A).
- (c) (A/B) walks faster than (B/A).
- (d) A and B reach home at the (same/different) time.
- (e) (A/B) overtakes on the road (once/twice).
- **28.** For a particle moving along the *x*-axis, mark the correct statement(s).
 - (1) If *x* is positive and is increasing with the time, then average velocity of the particle is positive.
 - (2) If *x* is negative and becoming positive after some time, then the velocity of the particle is always positive.
 - (3) If *x* is negative and becoming less negative as time passes, then the average velocity of the particle is positive.
 - (4) If *x* is positive and is increasing with time, then the velocity of the particle is always positive.

29. Four particles move along *x*-axis. Their coordinates (in meters) as functions of time (in seconds) are given by:

Particle 1: $x(t) = 3.5 - 2.7t^3$

Particle 2: $x(t) = 3.5 + 2.7t^3$

Particle 3: $x(t) = 3.5 + 2.7t^2$

Particle 4: $x(t) = 3.5 - 3.4t - 2.7t^2$

Which of these particles have constant acceleration?

- (1) All four
- (2) Only 1 and 2
- (3) Only 2 and 3
- (4) Only 3 and 4
- **30.** The displacement *x* of a particle depends on time *t* as $x = \alpha t^2 \beta t^3$
 - (1) Particle will return to its starting point after time $\frac{\alpha}{\beta}$
 - (2) The particle will come to rest after time $\frac{2\alpha}{3\beta}$
 - (3) The initial velocity of the particle was zero but its initial acceleration was not zero.
 - (4) No net force acts on the particle at time $\frac{\alpha}{3\beta}$
- 31. The position versus time graph for a certain particle moving along the *x*-axis is shown in figure. Find the average velocity in the time intervals (a) 0 to 2 s,

32. The displacement-time graph of moving particle is shown below. The instantaneous velocity of the particle is negative at the point.

- (1) D
- (2) F
- (3) C
- (4) E
- **33.** What can you say about velocity in each of the following position-time graphs?

- (viii)
- **34.** Mark the correct statement(s).
 - (1) A particle can have zero displacement and non-zero average velocity.
 - (2) A particle can have zero displacement and non-zero velocity.
 - (3) A particle can have zero acceleration and non-zero velocity.
 - (4) A particle can have zero velocity and non-zero acceleration.

- **35.** The velocity-time graph of two bodies A and B is shown in figure. Choose correct statement.
 - (1) acceleration of B > acceleration of A
 - (2) acceleration of A > acceleration of B
 - (3) both are starting from same point
 - (4) A covers greater distance than B in the same time.
- **36.** Study the following graphs:

The particle is moving with constant speed

- (1) In graphs (i) and (iii)
- (2) In graphs (i) and (iv)
- (3) In graphs (i) and (ii)
- (4) In graphs (i)
- 37. A particle moves along a straight line such that its displacement S varies with time t as $S = \alpha + \beta t + \omega t^2$.

Column-I			Column-II		
i.	Acceleration at $t = 2$ s	a.	$\beta + 5\gamma$		
ii.	Average velocity during	b.	2γ		
	third Second				
iii.	Velocity at $t = 1$ s	c.	α		
iv.	Initial displacement	d.	$\beta + 2\gamma$		

38. A particle is moving in a straight line. The variation of position 'x' as a function of time 't' is given as $x = (t^3 - 6t^2 + 20t + 15)$ m. The velocity of the body when its acceleration becomes zero is:

[29 Jan, 2024 (Shift-II)]

- (1) 4 m/s
- (2) 8 m/s
- (3) 10 m/s
- (4) 6 m/s

39. The x–t graph shown in figure represents

- (1) constant velocity
- (2) velocity of the body is continuously changing
- (3) instantaneous velocity
- (4) the body travels with constant speed upto time t_1 and then stops.
- **40.** The graph shows position as a function of time for two trains running on parallel tracks. Which one of the following statements is true?

- (1) At time $t_{\rm B}$, both trains have the same velocity
- (2) Both trains have the same velocity at some time after t_B
- (3) Both trains have the same velocity at some time before $t_{\rm B}$
- (4) Somewhere on the graph, both trains have the same acceleration
- 41. A particle describes an angle θ in a circular path with a constant speed ν . Find the
 - (a) change in the velocity of the particle and
 - (b) average acceleration of the particle during the motion in the curve (circle).

42. The displacement-time graph of a moving particle is shown below. The instantaneous velocity of the particle is zero at the point.

- (1) C
- (2) D
- (3) E
- (4) F
- **43.** A particle's position on the x axis is given by $x = 4 27t + t^3$, with x in meters and t in seconds.
 - (a) Find the particle's velocity function v(t) and acceleration function a(t).
 - (b) Is there ever a time when v = 0?
 - (c) Describe the particle's motion for $t \ge 0$.
- 44. The curve shown represents the velocity-time graph of a particle, its acceleration values along OA, AB and BC in metre/sec² are respectively.

Time in sec

- (1) 1, 0, -0.5
- (2) 1, 0, 0.5
- (3) 1, 1, 0.5
- (4) 1, 0.5, 0
- 45. A particle moves in a semicircular path of radius R from O to A. Then it moves parallel to z-axis covering a distance R upto B. Finally it moves along BC parallel to y-axis through a distance 2R. Find the ratio of Displacement/Distance.

- 46. A particle moves so that its position vector varies with time as $\vec{r} = A\cos\omega t\hat{i} + A\sin\omega t\hat{j}$. Find the
 - (a) initial velocity of the particle,
 - (b) angle between the position vector and velocity of the particle at any time, and
 - (c) speed at any instant.
- 47. A particle starts moving rectilinearly at time t = 0 such that its velocity v changes with time t according to the equation $v = t^2 - t$, where t is in seconds and v in ms⁻¹. Find the time interval for which the particle retards.
- 48. The position of a particle as a function of time t, is given by $x(t) = at + bt^2 - ct^3$ where a, b and c are constants. When the particle attains zero acceleration, then its velocity will be:

[9 April, 2019 (Shift-II)]

- (1) $a + \frac{b^2}{4c}$ (2) $a + \frac{b^2}{c}$
- (3) $a + \frac{b^2}{2c}$ (4) $a + \frac{b^2}{2c}$
- 49. The position of a particle moving along x-axis is related to time t as follow: $x = 2t^2 - t^3$, where x is in meters and t is in seconds.
 - (a) What is the maximum positive displacement of the particle along the x axis and at what instant does it attain it?
 - (b) Describe the motion of the particle.
 - (c) What is the distance covered in the first three seconds?
 - (d) What is its displacement in the first four seconds?
 - (e) What is the particle's average speed and average velocity in the first 3 seconds?
 - (f) What is the particles instantaneous acceleration at the instant of its maximum positive x displacement?
 - (g) What is the average acceleration between the interval t = 2s to t = 4s?

Part - 03:

50. Which one of the following graphs for a body moving along a straight line is possible?

- 51. The position of a particle moving along x-axis given by $x = (-2t^3 + 3t^2 + 5)$ m. The acceleration of particle at the instant its velocity becomes zero is:
 - (1) 12 m/s^2
 - (2) -12 m/s^2
 - (3) -6 m/s^2
 - (4) Zero
- **52.** A ball is thrown vertically upwards. Which of the following plots represents the speed-time graph of the ball during its motion if the air resistance (constant) is not ignored?

53. The v - t graph of a moving object is given in figure. The maximum acceleration is:

- $(1) 1 cm/sec^2$
- (2) 2 cm/sec²
- (3) 3 cm/sec²
- (4) 6 cm/sec²
- 54. Column-I shows the position-time graph of particles moving along a straight line and column-II lists the conclusion that follow from graphs. Match column-I with column-II and choose the correct option given below the columns.

Column-I	Column-II		
$\stackrel{x}{\uparrow}$	p.	Acceleration a > 0	
A B	q.	Acceleration a < 0	
	r.	Speeding up	
C/ D	s.	Slowing down	
		-	
 t			

- (1) A-(q,p); B-(r,p); C-(s,q); D-(r,s)
- (2) A-(q,s); B-(q,r); C-(p,r); D-(p,s)
- (3) A-(r,q); B-(s,r); C-(q,r); D-(p,r)
- (4) A-(p,s); B-(r,s); C-(p,r); D-(p,q)
- **55.** Figure shows a graph of position versus time graph for a particle moving along x-axis.

Column-I			Column-II		
A.	Slowing down	p.	$t_1 \rightarrow t_2$		
B.	Returning towards origin	q.	$t_2 \rightarrow t_3$		
C.	Moving away from origin	r.	$t_3 \rightarrow t_4$		
D.	Speeding up	s.	$t_4 \rightarrow t_5$		
		t.	$t_5 \rightarrow t_6$		

- (1) A-(r); B-(p,s,t); C-(q,r); D-(p,s)
- (2) A-(r); B-(r,t); C-(q); D-(s)
- (3) A-(p,r); B-(s); C-(p,r,q); D-(r,s)
- (4) A-(r); B-(p,s); C-(p,q); D-(q,r,s)
- **56.** The position of a particle along *x*-axis is given by $x = (2t^3 21t^2 + 60t)m$. Then match the Column-I with Column-II.

	Column-I	Column-II		
A.	Velocity of particle is zero	p.	2 sec	
B.	Acceleration of particle is	q.	3 sec	
	zero			
C.	Acceleration of particle is		3.5 sec	
	negative			
D.	Velocity of particle is	s.	4 sec	
	towards the origin			
		t.	5 sec	

- (1) A-(p,r,t); B-(r); C-(p,q); D-(q,r,s)
- (2) A-(p,t,r); B-(r,t); C-(q); D-(s)
- $(3) \ A-(p,r); B-(s); C-(p,r,q); D-(r,s) \\$
- (4) A-(p,t); B-(r); C-(p,q); D-(q,r,s)

57. The figure shows the graph of velocity-time for a particle moving in a straight line. If the average speed for 6 sec is 'b' and the average acceleration from 0 sec to 4 sec is 'c' find magnitude of bc (in m^2/s^3).

- (1) 5
- (2) 20
- (3) 25
- (4) 40
- **58.** The given figure is an x-t graph of the motion of a particle.

- (i) At which of the points P, Q, R and S is the velocity v_x positive?
- (ii) At which points is the velocity negative?
- (iii) At which points is the velocity zero?
- (iv) At which of the points P, Q, R, and S is the *x*-acceleration a_x positive?
- (v) At which point is the a_x negative?
- (vi) At which points does the *x*-acceleration appear to be zero?
- (vii) At each point, state whether the speed is increasing, decreasing, or not changing.
- **59.** The velocity versus time curve of a moving point is shown in figure. Find the retardation of the particle for the portion CD.

60. An object is thrown up vertically. The velocity-time graph for the motion of the particle is:

61. The velocity-time graph of a particle moving in a straight line is shown in figure. The acceleration of the particle at t = 9 s is:

62. The displacement-time graph of a body is shown in figure.

The velocity-time graph of the motion of the body will be:

63. The acceleration will be positive in

- (1) (I) and (III)
- (2) (I) and (IV)
- (3) (II) and (IV)
- (4) None of these

64. Plot the acceleration-time graph of the velocity-time graph given in figure.

- **65.** A particle starts moving rectilinearly at time t = 0 such that its velocity v changes with time t according to the equation $v = t^2 t$, where t is in seconds and v is in ms⁻¹. The time interval for which the particle retards (i.e., magnitude of velocity decreases) is:
 - (1) t < 1/2
- (2) 1/2 < t < 1
- (3) t > 1
- (4) t < 1/2 and t > 1
- **66.** Check up the only correct statements in the following:
 - (1) A body having a constant velocity still can have varying speed.
 - (2) A body having a constant speed can have varying velocity.
 - (3) A body having constant speed can have an acceleration.
 - (4) If velocity and acceleration are in the same direction, then distance is equal to displacement.

67. The velocity-time plot for a particle moving on a straight line is shown in figure.

- (1) The particle has a constant acceleration.
- (2) The particle has never turned around.
- (3) The particle has zero displacement.
- (4) The average speed in the interval 0 to 10 s is the same as the average speed in the interval 10 s to 20 s.
- **68.** The displacement of a particle as a function of time is shown in figure. It indicates

- (1) The particle starts with a certain velocity, but the motion is retarded and finally the particle stops.
- (2) The velocity of the particle decreases.
- (3) The acceleration of the particle is in opposite direction to the velocity.
- (4) The particle starts with a constant velocity, the motion is accelerated and finally the particle moves with another constant velocity.

For Problems 69 and 70:

Study the four graphs given below. Answer the following questions on the basis of these graphs.

- **69.** In which of the graphs, the particle has more magnitude of velocity at t_1 than at t_2 .
 - (1) (i), (iii), and (iv)
 - (2) (i) and (iii)
 - (3) (ii) and (iii)
 - (4) None of the above
- **70.** Acceleration of the particle is positive
 - (1) In graph (i)
 - (2) In graph (ii)
 - (3) In graph (iii)
 - (4) In graph (iv)
- **71.** Study the following graphs:

The particle has negative acceleration

- (1) In graph (i)
- (2) In graph (ii)
- (3) In graph (iii)
- (4) In graph (iv)
- **72.** The displacement versus time curve is given. Sections OA and BC are parabolic. CD is parallel to the time axis.

Column-I		Column-II			
i.	OA	a. Velocity increases with tim			
			linearly		
ii.	AB	b.	Velocity decreases with time		
iii.	BC	c.	Velocity is independent of		
			time		
iv.	CD	d.	Velocity is zero		

73. The velocity-time graph of a particle moving along the *x*-axis is shown in figure. Match the entries of Column I with entries of Colcumn II.

	Column-I			Column-II		
i.	For AB,	the	a.	Moving in positive		
	particle is			x-direction with		
				increasing speed		
ii.	For BC,	the	b.	Moving in positive		
	particle is			x-direction with		
				decreasing speed		
iii.	For CD,	the	c.	Moving in negative x-		
	particle is			direction with		
				increasing speed		
iv.	For DE,	the	d.	Moving in negative x-		
	particle is			direction with		
				increasing speed		

74. The velocity-time graph for a particle moving along a straight line is given in each situation of column I. In the time interval v > t > 0, match the graph in column I with corresponding statements in column II.

	Column-I	Column-II			
i.	v • t	a.	Speed of particle is continuously decreasing		
ii.	v h	b.	Magnitude of acceleration of particle is decreasing with time		
iii.		c.	Direction of acceleration of particle does not change		
iv.	v t	d.	Magnitude of acceleration of particle does not change		
		e.	Particle will never come back to its initial position		

Answer Key

- 1. (2)
- 2. (3)
- **3.** (1)
- 4. (1)
- 5. (3)
- **6.** (1)
- 7. (2)
- **8.** (1)
- 9. (2)
- 10. (3)
- 11. (4)
- 12. (3)
- 13. (2)
- 13. (2)
- 14. (1)15. (1)
- 16 (1)
- **16.** (4)
- **17.** (2)
- **18.** (4)
- 19. (4)
- **20.** (1)
- 21. (3)
- 22. (2)
- **23.** (1)
- 24. (2)
- **25.** (2)
- **26.** (3)
- **27.** (a) It is clear from the graph that OP < OQ. A lives closer to the school than B.
 - (b) As A starts from t = 0 while B starts little later. So A starts from the school earlier than B.
 - (c) The slope of x t for motion of B > slope of x t of A. Hence B walks faster than A.
 - (d) The value of *t* corresponding to positions P and Q of there homes is same, so A and B reach home at the same time.
 - (e) It is clear from the graph that B overtakes A once on the road.
- 28. (1, 3, 4)
- 29. (4)
- 30. (1, 2, 3, 4)
- 31. (a) 5 ms^{-1} , (b) -2.5 ms^{-1}
- 32. (4)

- 33. (i) zero velocity.
 - (ii) constant positive velocity.
 - (iii) infinite velocity.
 - (iv) constant negative velocity.
 - (v) positive increasing velocity.
 - (vi) positive decreasing velocity.
 - (vii) positive increasing velocity.
 - (viii) positive decreasing velocity
- 34. (2, 3, 4)
- 35. (2, 4)
- **36.** (2)
- 37. $i \rightarrow b$; $ii \rightarrow a$; $iii \rightarrow d$; $iv \rightarrow c$
- 38. (2)
- 39. (4)
- 40. (3)

41. (a) =
$$2v \sin \frac{\theta}{2}$$
, (b) $\frac{2v^2}{R\theta} \sin \frac{\theta}{2}$

- 42. (2)
- **43.** (a) $v = -27 + 3t^2$, a = +6t; (b) $t = \pm 3s$;
- 44. (1)
- **45.** $\frac{\pi+3}{3}$
- **46.** (a) $A\omega \hat{j}$, (b) $\theta = \frac{\pi}{2}$, (c) $A\omega$
- 47. $\frac{1}{2}$ s < t < 1s
- 48. (4)
- **49.** (a) $x_{\text{max}} = \frac{32}{27} \text{ m}$, $t = \frac{4}{3} \text{ s}$; (c) $\frac{307}{27} \text{ m}$;
 - (d) -32 m; (e) -3ms^{-1} ; (f) -4 ms^{-2} ;
 - $(g) -14 \text{ ms}^{-2}$
- **50.** (4)
- **51.** (3)
- 52. (3)
- -- (0)
- 53. (4)
- **54.** (2)
- 55. (1)
- **56.** (4)
- **57.** (3)
- **58.** (*)
- **59.** 2ms⁻¹

- **60. (4)**
- **61. (3)**
- **62.** (4)
- **63.** (2)
- **64.** (1)
- **65.** (2)
- **66.** (2, 3, 4)
- **67.** (1, 4)

- **68.** (1, 2, 3)
- **69.** (2)
- **70.** (3)
- 71. (3)
- 72. $i \rightarrow a$; $ii \rightarrow c$; $iii \rightarrow b$; $iv \rightarrow d$
- 73. $i \rightarrow a$; $ii \rightarrow a$; $iii \rightarrow b$; $iv \rightarrow c$
- 74. $i \rightarrow c,d$; $ii \rightarrow c,d$; $iii \rightarrow a,b,c,e$; $iv \rightarrow a,b,c,e$