Computational Statistics (732A90) Lab5

Anubhav Dikshit(anudi287) and Thijs Quast(thiqu264)
12 Feburary 2019

Contents

Question 1: Hypothesis testing	2
1. Make a scatterplot of $Y(draft_no)$ versus $X(day_of_year)$ and conclude whether the lottery	
looks random	2
2. Compute an estimate Y(hat) of the expected response as a function of X by using a loess smoother (use loess()), put the curve Y(hat) versus X in the previous graph and state again whether the lottery looks random.	2
3. To check whether the lottery is random, it is reasonable to use test statistics	4
4.Implement a function depending on data and B that tests the hypothesis H0: Lottery is random versus H1: Lottery is non-random by using a permutation test with statistics T. The function	-
is to return the p-value of this test. Test this function on our data with $B=2000.\ldots$	6
Question 2: Bootstrap, jackknife and confidence intervals	6
1. Plot the histogram of Price. Does it remind any conventional distribution? Compute the mean price	6
2. Estimate the distribution of the mean price of the house using bootstrap. Determine the bootstrap bias-correction and the variance of the mean price. Compute a 95% confidence interval for the	
mean price using bootstrap percentile, bootstrap BCa, and first-order normal approximation	7
3. Estimate the variance of the mean price using the jackknife and compare it with the bootstrap estimate	10
4. Compare the confidence intervals obtained with respect to their length and the location of the estimated mean in these intervals	11
Appendix	11

Question 1: Hypothesis testing

1. Make a scatterplot of $Y(draft_no)$ versus $X(day_of_year)$ and conclude whether the lottery looks random.

```
lottery <- read.csv("lottery.csv", sep=";")

ggplot(lottery, aes(x=Day_of_year, y = Draft_No)) + geom_point() +
    ggtitle("Plot of Draft Number vs. day of birth")</pre>
```

Plot of Draft Number vs. day of birth

2. Compute an estimate Y(hat) of the expected response as a function of X by using a loess smoother (use loess()), put the curve Y(hat) versus X in the previous graph and state again whether the lottery looks random.

```
ggplot(lottery, aes(x=Day_of_year, y = Draft_No)) +
  geom_point() +
  geom_smooth(method = loess) +
  ggtitle("Plot of Draft Number vs. Day of birth")
```

Plot of Draft Number vs. Day of birth


```
model <- loess(Draft_No ~ Day_of_year, lottery)
lottery$Y_hat <- predict(model, lottery)

ggplot(lottery, aes(x=Day_of_year, y = Draft_No)) +
    geom_point() +
    geom_line(aes(y = Y_hat)) +
    ggtitle("Plot of Draft Number vs. Day of birth without using ggplot loess")</pre>
```


3. To check whether the lottery is random, it is reasonable to use test statistics

$$T = \frac{\hat{Y}(X_b) - \hat{Y}(X_a)}{X_b - X_a}$$

Where $X_b = argmax_x Y(X)$ and $X_a = argmin_x Y(X)$.

If this value is significantly greater than zero, then there should be a trend in the data and the lottery is not random. Estimate the distribution of T by using a non-parametric bootstrap with B=2000 and comment whether the lottery is random or not. What is the p-value of the test?

```
library("boot")

stat1 <- function(data, index){
    data <- data[index,]
    model <- loess(Draft_No ~ Day_of_year, data)
    res <- predict(model, data)
    X_a <- data$Day_of_year[which.max(data$Draft_No)]
    X_b <- data$Day_of_year[which.min(data$Draft_No)]
    Y_a <- res[X_a]
    Y_b <-res[X_b]
    answer <- ((Y_b - Y_a) / (X_b - X_a))
    return(answer)
}</pre>
```

```
res <- boot(data=lottery, statistic = stat1, R=2000)</pre>
print(boot.ci(res))
## Warning in boot.ci(res): bootstrap variances needed for studentized
## intervals
## Warning in norm.inter(t, adj.alpha): extreme order statistics used as
## endpoints
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = res)
##
## Intervals :
## Level
              Normal
                                  Basic
                               (-1.7641,
## 95%
         (-1.9456, 0.8549)
                                          0.5903)
## Level
             Percentile
                                   BCa
## 95%
         (-1.1247, 1.2298)
                               (-8.2307, 0.0948)
## Calculations and Intervals on Original Scale
## Warning : BCa Intervals used Extreme Quantiles
## Some BCa intervals may be unstable
plot(res)
```

Histogram of t

4.Implement a function depending on data and B that tests the hypothesis H0: Lottery is random versus H1: Lottery is non-random by using a permutation test with statistics T. The function is to return the p-value of this test. Test this function on our data with B=2000.

```
my_permu <- function(data, index){
    data <- data[index,]
    model <- loess(Draft_No ~., data)
    res <- predict(model, data)
    X_a <- data*Day_of_year[which.max(data*Draft_No)]
    X_b <- data*Day_of_year[which.min(data*Draft_No)]
    Y_a <- res[X_a]
    Y_b <-res[X_b]
    answer <- ((Y_b - Y_a) / (X_b - X_a))
    return(answer)
}

data <- lottery
data*Month <- NULL
res <- boot(data=lottery, statistic = stat1, R=2000)</pre>
```

Question 2: Bootstrap, jackknife and confidence intervals

1. Plot the histogram of Price. Does it remind any conventional distribution? Compute the mean price.

```
price_data <- read.csv("prices1.csv", sep=";")

ggplot(data=price_data,aes(Price)) +
  geom_histogram(bins=20) +
  ggtitle("Histogram of Price")</pre>
```

Histogram of Price

2. Estimate the distribution of the mean price of the house using bootstrap. Determine the bootstrap bias-correction and the variance of the mean price. Compute a 95% confidence interval for the mean price using bootstrap percentile, bootstrap BCa, and first-order normal approximation

Bias correction

$$T1 = 2.T(D) - \frac{1}{D} \sum_{i=1}^{B} T_i^*$$

```
# Estimation of mean of Price
stat_mean <- function(data, index){
    data <- data[index,]
    answer <- mean(data$Price)
    return(answer)
}

res <- boot::boot(data=price_data, statistic = stat_mean, R=2000)
res

##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## ## Call:
## boot::boot(data = price_data, statistic = stat_mean, R = 2000)</pre>
```

```
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 1080.473 0.3080682 36.16977
plot(res,index = 1)
```

Histogram of t

##

Quantiles of Standard Normal

```
\#95\% CI for mean using percentile
boot.ci(res, index=1, type=c('perc'))
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = res, type = c("perc"), index = 1)
##
## Intervals :
             Percentile
## Level
         (1011, 1152)
## Calculations and Intervals on Original Scale
#95% CI for mean using bca
boot.ci(res, index=1, type=c('bca'))
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
```

```
## CALL :
## boot.ci(boot.out = res, type = c("bca"), index = 1)
## Intervals :
## Level
               BCa
## 95% (1015, 1156)
## Calculations and Intervals on Original Scale
#95% CI for mean using first order normal
boot.ci(res, index=1, type=c('norm'))
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
## CALL :
## boot.ci(boot.out = res, type = c("norm"), index = 1)
## Intervals :
## Level
              Normal
        (1009, 1151)
## 95%
## Calculations and Intervals on Original Scale
# Bias-correction and Varience of Price
stat bias correction <- function(data, index){</pre>
    t_d <- 2*mean(data$Price)</pre>
    data2 <- data[index,]</pre>
    answer <- t_d - mean(data2$Price)</pre>
    return(answer)
}
res <- boot(data=price_data, statistic = stat_bias_correction, R=2000)
res
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = price_data, statistic = stat_bias_correction, R = 2000)
##
## Bootstrap Statistics :
       original
                  bias
                           std. error
## t1* 1080.473 0.7735909
                             35.29654
print(boot.ci(res))
## Warning in boot.ci(res): bootstrap variances needed for studentized
## intervals
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = res)
##
```

```
## Intervals :
## Level Normal
                                  Basic
## 95% (1011, 1149) (1009, 1150)
## Level
             Percentile
## 95%
        (1011, 1152)
                        (1007, 1148)
## Calculations and Intervals on Original Scale
# Varience using bootstrap
stat varience <- function(data, index){</pre>
    data2 <- data[index,]</pre>
    n <- length(data2)</pre>
    answer <- (1/(n-1)) * sum(data2$Price - mean(data2$Price))^2
    return(answer)
}
res <- boot(data=price_data, statistic = stat_varience, R=2000)</pre>
res
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = price_data, statistic = stat_varience, R = 2000)
##
## Bootstrap Statistics :
                                original
## t1* 0.000000000000000000000002481542 0.0000000000000000000000141906
                             std. error
## t1* 0.00000000000000000000001538808
```

3. Estimate the variance of the mean price using the jackknife and compare it with the bootstrap estimate

```
stat_jackknife_varience <- function(data, index){</pre>
    data2 <- data[-index,]</pre>
        n <- length(data2)</pre>
    answer <- (1/(n-1)) * sum(data2$Price - mean(data2$Price))^2</pre>
    return(answer)
}
res <- boot(data=price_data, statistic = stat_jackknife_varience, R=2000)
res
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
## Call:
## boot(data = price_data, statistic = stat_jackknife_varience,
       R = 2000)
##
##
```

4. Compare the confidence intervals obtained with respect to their length and the location of the estimated mean in these intervals.

Appendix

```
knitr::opts_chunk$set(echo = TRUE)
options(scipen=999)
library(dplyr)
library(ggplot2)
lottery <- read.csv("lottery.csv", sep=";")</pre>
ggplot(lottery, aes(x=Day_of_year, y = Draft_No)) + geom_point() +
  ggtitle("Plot of Draft Number vs. day of birth")
ggplot(lottery, aes(x=Day_of_year, y = Draft_No)) +
  geom_point() +
  geom_smooth(method = loess) +
  ggtitle("Plot of Draft Number vs. Day of birth")
model <- loess(Draft_No ~ Day_of_year, lottery)</pre>
lottery$Y_hat <- predict(model, lottery)</pre>
ggplot(lottery, aes(x=Day_of_year, y = Draft_No)) +
  geom_point() +
  geom_line(aes(y = Y_hat)) +
  ggtitle("Plot of Draft Number vs. Day of birth without using ggplot loess")
library("boot")
stat1 <- function(data, index){</pre>
    data <- data[index,]</pre>
    model <- loss(Draft_No ~ Day_of_year, data)</pre>
    res <- predict(model, data)</pre>
    X_a <- data$Day_of_year[which.max(data$Draft_No)]</pre>
    X_b <- data$Day_of_year[which.min(data$Draft_No)]</pre>
    Y_a \leftarrow res[X_a]
    Y_b <-res[X_b]</pre>
    answer <- ((Y_b - Y_a) / (X_b - X_a))
    return(answer)
}
res <- boot(data=lottery, statistic = stat1, R=2000)
print(boot.ci(res))
```

```
plot(res)
my_permu <- function(data, index){</pre>
    data <- data[index,]</pre>
    model <- loess(Draft_No ~., data)</pre>
    res <- predict(model, data)</pre>
    X_a <- data$Day_of_year[which.max(data$Draft_No)]</pre>
    X_b <- data$Day_of_year[which.min(data$Draft_No)]</pre>
    Y_a <- res[X_a]</pre>
    Y_b <-res[X_b]</pre>
    answer <- ((Y_b - Y_a) / (X_b - X_a))
  return(answer)
data <- lottery
data$Month <- NULL
res <- boot(data=lottery, statistic = stat1, R=2000)
price_data <- read.csv("prices1.csv", sep=";")</pre>
ggplot(data=price_data,aes(Price)) +
  geom_histogram(bins=20) +
  ggtitle("Histogram of Price")
# Estimation of mean of Price
stat mean <- function(data, index){</pre>
    data <- data[index,]</pre>
    answer <- mean(data$Price)</pre>
    return(answer)
}
res <- boot::boot(data=price_data, statistic = stat_mean, R=2000)
plot(res,index = 1)
#95% CI for mean using percentile
boot.ci(res, index=1, type=c('perc'))
#95% CI for mean using bca
boot.ci(res, index=1, type=c('bca'))
#95% CI for mean using first order normal
boot.ci(res, index=1, type=c('norm'))
\# Bias-correction and Varience of Price
stat_bias_correction <- function(data, index){</pre>
    t_d <- 2*mean(data$Price)</pre>
    data2 <- data[index,]</pre>
    answer <- t_d - mean(data2$Price)</pre>
    return(answer)
}
```

```
res <- boot(data=price_data, statistic = stat_bias_correction, R=2000)</pre>
print(boot.ci(res))
# Varience using bootstrap
stat_varience <- function(data, index){</pre>
    data2 <- data[index,]</pre>
    n <- length(data2)</pre>
    answer <- (1/(n-1)) * sum(data2$Price - mean(data2$Price))^2</pre>
    return(answer)
}
res <- boot(data=price_data, statistic = stat_varience, R=2000)</pre>
res
stat_jackknife_varience <- function(data, index){</pre>
    data2 <- data[-index,]</pre>
        n <- length(data2)</pre>
    answer <- (1/(n-1)) * sum(data2$Price - mean(data2$Price))^2</pre>
    return(answer)
}
res <- boot(data=price_data, statistic = stat_jackknife_varience, R=2000)</pre>
res
```