1 Построение графа группы по образующим и определяющим соотношениям.

2 Теоретические сведения. Описание алгоритма.

Чтобы ввести понятие определяющих соотношений группы G, рассмотрим множество, состоящее из всех нетривиальных соотношений группы G, т. е. множество $R_k = I$, k = 1, 2, ..., где R_k , — непустое слово. Обозначим это множество через A.

Рассмотрим множество A всех нетривиальных соотношений группы G и выберем в нем, если это возможно, подмножество B, такое, что соотношения из B влекут за собой все соотношения из множества A. Это множество B соотношений называется множеством определяющих соотношений группы G. Хотя бы одно множество B определяющих соотношений существует (если A непусто), так как в качестве B можно взять все множество A. Однако более интересной и плодотворной оказывается ситуация, когда B является собственным подмножеством множества A (т. е. когда оно не совпадает с A).

TEOPEMA 1. Если задано множество B соотношений $R_k = I$, где каждое R_k есть непустое слово от заданного множества символов, то существует группа G, для которой B является множеством определяющих соотношений.

Дадим набросок основной процедуры построения группы при помощи образующих и соотношений.

- (1) Зададим множество порождающих символов и множество В соотношений $R_k = I$, где каждое R_k есть непустое слово от заданных символов.
 - (2) Рассмотрим множество F всех слов от заданных порождающих символов.
- (3) Образуем подмножество K, состоящее из всех слов W из F, таких, что равенство W=I есть следствие заданного множества соотношений $R_k=I$. Один из способов «построения» K указан в приведенном ниже замечании.
- (4) Разобъем F на классы эквивалентных слов, т. е. таких слов, которые могут быть преобразованы одно в другое с помощью вставки и вычеркивания слов, равных I.
- (5) Выберем множество G представляющих слов по одному из каждого класса эквивалентности. Любое такое множество G есть группа 2), для которой заданные соотношения $R_k = I$ являются определяющими.

Замечание о построении множества . Мы утверждаем, что K есть множество всех произведений (т. е. конечных последовательностей) слов вида $T^{-1}RT$ или $T^{-1}R^{-1}T$, где R=I— соотношение из заданного множества B, а T— произвольное слово из F. Если R=I, то ясно, что любое слово описанного вида равно I, так как $T^{-1}IT=I$. Обратно, можно показать, что если V— слово из F и если равенство V=I есть следствие наших соотношений, то V есть произведение сомножителей вида $T^{-1}RT$.

Пример. Задание группы C_3 определяющими соотношениями.

- (1) Применим описанную выше процедуру для «отыскания» группы C, задаваемой определяющим со- отношением $r^3 = I$ от одной образующей r. (Мы, конечно, ожидаем, что группа C окажется циклической группой порядка 3.)
- (2) В нашем случае множество F всех слов от r состоит из всех конечных произведений символов r и r^{-1} . Ясно, что любое слово T из F можно преобра- зовать к виду r^n , $n = 0, \pm 1, \pm 2, ...$
- (3) Чтобы образовать множество K, найдем все слова, «порожденные» словами вида $T^{-1}RT$ или $T^{-1}R^{-1}T$, т. е. слова вида

$$r^{n-1}r^3r^n$$
 или $r^{n-1}r^{-3}r^n$.

Но если удалить из этих слов все стоящие рядом пары взаимно обратных элементов, то мы получим

$$r^3$$
 и r^{-3} .

Таким образом, множество K включает в себя все произведения степеней элементов r^3 и r^{-3} :

$$K = \{r^n\}$$
, где и кратно 3.

или

$$K = \{r^n\}, n \equiv 0 \pmod{3}.$$

Этими словами из K исчерпываются все слова W, для которых равенство W=I есть следствие из $r^3=I$. (4) Преобразуя слова r^n из F путем вставки или вычеркивания слов, для которых $n\equiv 0 (mod 3)$, мы замечаем теперь, что множество F делится на три класса:

А: слова r^n , для которых $n\equiv 0 (mod3)$, например n=6; В: слова r^n , для которых $n\equiv 1 (mod3)$, например n=4; С: слова r^n , для которых $n\equiv 2 (mod3)$, например n=-1,

(5) В качестве представителей этих классов выберем

$$I$$
 из A ($n=0$), r из B , r^2 из C .

Три представляющих слова I, r, r^2 образуют группу, а именно циклическую группу по- рядка 3 с элементом г в качестве образующей. (Мы должны помнить, что элементу группы соответствует целый класс эквивалентных слов. Например, слово $r^2r^2=\mathbf{r}^4$ лежит в том же классе, что и слово r, и, следовательно, мы можем сказать, что элемент r^4 есть не что иное, как элемент \mathbf{r} .)

Мы видим, что группа G с определяющим соотношением $r^3 = I$, как мы и ожидали, оказалась циклической группой порядка 3.

3 Логическая блок-схема алгоритма

Основные этапы работы алгоритма представлены на рисунке логической блок схемы

4 Описание программы и инструкции по работе с ней

Программа по заданным порождающим символам а и b, и, по определяющим соотношениям строит граф. Инструкция по работе с ней:

- 1) Ввести степень а
- 2) Ввести степень b
- 3) Вводим равенство, относительно ab

Далее, нажав кнопку «Пуск» , справа от нас появляется наш граф, где один цвет стрелочек - умножения на а, другой - на b.

5 Оценка сложности алгоритма

Наибольшую сложность имеет построение таблицы умножения - $O(n^3)$, что соответствует максимальному числу вложенных циклов в программе – три.

6 Тестовые примеры. Скриншоты программы.

Пример №1. Граф задан следующим представлением: $G = \langle a,b \mid a^2 = e, b^2 = e, ab = ba \rangle$ $e \prec a \prec a^{-1} \prec b \prec b^{-1} \prec aa \prec aa^{-1} \prec ab \prec ab^{-1} \prec a^{-1}a \prec a^{-1}a^{-1} \prec a^{-1}b \prec a^{-1}b^{-1} \prec ba \prec ... \prec b^{-1}b^{-1} \prec aaa \prec aaa^{-1} \prec ...$

Получившиеся базовые элементы выделяем жирным:

$$\mathbf{e} \prec \mathbf{a} \prec a^{-1} = a \prec \mathbf{b} \prec b^{-1} = b \prec a^2 = e \prec aa^{-1} = e \prec \mathbf{ab} \prec ab^{-1} = ab \prec \dots$$

Построение таблицы:

	e	a	b	ab
e	e	a	b	ab
a	a	e	ab	b
b	b	ab	e	a
ab	ab	b	a	e

Построение графа:

Пример №2. Граф задан следующим представлением: $G = \langle a,b \mid a^3 = e, b^2 = e, ab = ba^2 \rangle$ $e \prec a \prec a^{-1} \prec b \prec b^{-1} \prec aa \prec aa^{-1} \prec ab \prec ab^{-1} \prec a^{-1}a \prec a^{-1}a^{-1} \prec a^{-1}b \prec a^{-1}b^{-1} \prec ba \prec ... \prec b^{-1}b^{-1} \prec aaa \prec aaa^{-1} \prec ...$

Получившиеся базовые элементы выделяем жирным:

$$e \prec a \prec a^{-1} \prec b \prec b^{-1} = b \prec a^2 = a^{-1} \prec aa^{-1} = e \prec ab \prec ab^{-1} = ab \prec a^{-1}b$$

Построение таблицы:

	e	a	a^{-1}	b	ab	$a^{-1}b$
e	e	a	a^{-1}	b	ab	$a^{-1}b$
a	a	a^{-1}	e	ab	$a^{-1}b$	b
a^{-1}	a^{-1}	e	a	$a^{-1}b$	b	ab
b	b	$a^{-1}b$	ab	e	a^{-1}	a
ab	ab	b	$a^{-1}b$	a	e	a^{-1}
$a^{-1}b$	$a^{-1}b$	ab	b	a^{-1}	a	e

Построение графа:

7 Скриншоты программы

Пример №2

