TensorFlow Tutorial #01

Linear Regression

Seonghyeon Nam, Ph.D. Student Computational Intelligence and Photography Lab. Yonsei University

Acknowledgement

- TensorFlow website <u>http://www.tensorflow.org</u>
- 2. CS20SI: TensorFlow for Deep Learning Research http://web.stanford.edu/class/cs20si/
- Hun Kim, DeepLearningZeroToAll http://hunkim.github.io/ml/

TensorFlow?

- Open source library for numerical computation using data flow graphs
- Developed by Google Brain Team
- Provides various functions and classes to implement machine learning and deep neural networks

Why TensorFlow?

Deep learning libraries: Accumulated GitHub metrics

Aggr	egate po	pularity (30•contrib + 10•issues + 5•forks)•1e-3
#1:	172.29	tensorflow/tensorflow
#2:	89.78	BVLC/caffe
#3:	69.70	fchollet/keras
#4:	53.09	dmlc/mxnet
#5:	38.23	Theano/Theano
#6:	29.86	deeplearning4j/deeplearning4j
#7:	27.99	Microsoft/CNTK
#8:	17.36	torch/torch7
#9:	14.43	baidu/paddle
#10:	13.10	pfnet/chainer
#11:	12.37	NVIDIA/DIGITS
#12:	10.42	tflearn/tflearn
#13:	9.20	pytorch/pytorch

The central unit of data in TensorFlow is the **tensor**.

NOTE: Rank == the number of dimsensions

```
# a rank 0 tensor; this is a scalar with shape []
# a rank 1 tensor; this is a vector with shape [3]
[1.,2.,3.]
# a rank 2 tensor; a matrix with shape [2, 3]
[[1.,2.,3.],[4.,5.,6.]]
# a rank 3 tensor with shape [2, 1, 3]
[[[1.,2.,3.]],[[7.,8.,9.]]]
```

Rank	Math entity	Python example
0	Scalar (magnitude only)	s = 483
1	Vector (magnitude and direction)	v = [1.1, 2.2, 3.3]
2	Matrix (table of numbers)	m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3	3-Tensor (cube of numbers)	t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
n	n-Tensor (you get the idea)	••••

Rank	Shape	Dimension number	Example
0		0-D	A 0-D tensor. A scalar.
1	[D0]	1-D	A 1-D tensor with shape [5].
2	[D0, D1]	2-D	A 2-D tensor with shape [3, 4].
3	[D0, D1, D2]	3-D	A 3-D tensor with shape [1, 4, 3].
n	[D0, D1, Dn-1]	n-D	A tensor with shape [D0, D1, Dn-1].

Data type	Python type	Description
DT_FLOAT	tf.float32	32 bits floating point.
DT_DOUBLE	tf.float64	64 bits floating point.
DT_INT8	tf.int8	8 bits signed integer.
DT_INT16	tf.int16	16 bits signed integer.
DT_INT32	tf.int32	32 bits signed integer.
DT_INT64	tf.int64	64 bits signed integer.

Computational Graph

... also known as Data Flow Graph

TensorFlow separates definition of computations from their execution

Phase 1: Definition of a Computational Graph

```
import tensorflow as tf
node1 = tf.constant(3.0, tf.float32)
node2 = tf.constant(4.0) # also tf.float32 implicitly
print(node1, node2)
>> Tensor("Const:0", shape=(), dtype=float32) Tensor("Const 1:0", shape=(), dtype=float32)
node3 = tf.add(node1, node2)
print("node3: ", node3) # are you expecting 7?
>> node3: Tensor("Add_2:0", shape=(), dtype=float32) # actually it's not 7 :(
```

The output of Print() is the computational nodes, not the numerical values 3, 4, 7.

Phase 2: Execution Using a Session

```
import tensorflow as tf
node1 = tf.constant(3.0, tf.float32)
node2 = tf.constant(4.0) # also tf.float32 implicitly
sess = tf.Session()
print(sess.run([node1, node2]))
>> [3.0, 4.0]
node3 = tf.add(node1, node2)
print("sess.run(node3): ", sess.run(node3))
>> sess.run(node3): 7.0
```


Placeholder

We want to feed our data into the computational graph

```
import tensorflow as tf

a = tf.placeholder(tf.float32)
b = tf.placeholder(tf.float32)
adder_node = a + b # + provides a shortcut for tf.add(a, b)

sess = tf.Session()
print(sess.run(adder_node, {a: 3, b: 4.5}))
print(sess.run(adder_node, {a: [1, 3], b: [2, 4]}))

>> 7.5
[3. 7.]
```

adder_no...

Linear Regression

Linear Regression

Optimization

Our hypothesis for modeling data is

$$H(x) = Wx + b$$

To find the optimal **W** and **b**, we minimize the following cost function

$$cost\left(W,b\right) = \frac{1}{N} \sum_{i=1}^{N} (H(x^i) - y^i)^2$$

Building a TF Graph

```
# Step 1: Load data
data = \dots
# Step 2: create placeholders for input X (number of fires) and label Y (number of thefts)
X = tf.placeholder(tf.float32, name='X')
Y = tf.placeholder(tf.float32, name='Y')
# Sten 3: create weight and bias, initialized to 0
w = tf.Variable(0.0, name='weights')
                                       Trainable variables
b = tf.Variable(0.0, name='bias')
# Step 4: build model to predict Y
Y predicted = X * w + b
H(x) = Wx + b
```

Building a TF Graph

```
# Step 5: use the square error as the loss function loss = tf.reduce_mean(tf.square(Y - Y_predicted, name='loss')) cost\left(W,b\right) = \frac{1}{N}\sum_{i=1}^{N}(H(xi)-yi)^2
```

Step 6: using gradient descent with learning rate of 0.01 to minimize loss
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train = optimizer.minimize(loss)

Training

```
with tf.Session() as sess:
    # Step 7: initialize w and b
    sess.run(tf.global_variables_initializer())
    # Step 8: train the model
    for i in range(100): # train the model 100 times
        total_loss = 0
        for x, y in data:
            # Session runs train op and fetch values of loss
            _, l = sess.run([train, loss], feed_dict={X: x, Y: y})
            total loss += 1
        print('Epoch {0}: {1}'.format(i, total_loss / n_samples))
    # Step 9: output the values of w and b
    w value, b value = sess.run([w, b])
```

Training

```
>> ...
Epoch 89: 1426.038033108981
Epoch 90: 1424.5748210840281
Epoch 91: 1423.1531702368743
Epoch 92: 1421.771026852585
Epoch 93: 1420.4274983895677
Epoch 94: 1419.121967994741
Epoch 95: 1417.85251878131
Epoch 96: 1416.618930517208
Epoch 97: 1415.4196022436731
Epoch 98: 1414.2534379121803
Epoch 99: 1413.1202843011845
```


Multivariate Linear Regression

X ¹	X ²	X ³	Y
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142

$$\begin{split} &H\left(x_{1}, x_{2}, x_{3}\right) \\ &= w_{1}x_{1} + w_{2}x_{2} + w_{3}x_{3} + b \\ &= \left(w_{1} \ w_{2} \ w_{3}\right) \left(x_{1} \ x_{2} \ x_{3}\right)^{T} + b \\ &= WX + b \end{split}$$

Test Scores for General Psychology

Building a TF Graph

```
# Step 1: Load data
data = \dots
# Step 2: create placeholders
X = tf.placeholder(tf.float32, shape=[None, 3], name='X')
Y = tf.placeholder(tf.float32, shape=[None, 1], name='Y')
# Step 3: create weight and bias
W = tf.Variable(tf.random_normal([3, 1]), name='weights')
b = tf.Variable(tf.random_normal([1]), name='bias')
# Step 4: build model to predict Y
Y predicted = tf.matmul(X, W) + b
```

Training is similar to that of the previous case...