

Preet Kanwal

Department of Computer Science & Engineering

Unit 2

Preet Kanwal

Department of Mechanical Engineering

Unit 2 - Finite Automata to Regular Expression

State Elimination Algorithm

Unit 2 - Regular Grammar

State Elimination Method

Start with an FA for the language L.

- Add a new start state qs and accept state qf to the FA.
- Add E-transitions from each original accepting state to qf, then mark them as not accepting.
- Repeatedly remove states other than qs and qf from the FA by "shortcutting" them until only two states remain: qs and qf.
- The transition from qs to qf is then a regular expression for the FA.

Unit 2 - Finite Automata to Regular Expression

Example 1:

Unit 2 - Finite Automata to Regular Expression

Example 1:

a

Unit 2 - Finite Automata to Regular Expression

Example 1:

Unit 2 - Finite Automata to Regular Expression

Example 2:

Unit 2 - Finite Automata to Regular Expression

Example 2:

Unit 2 - Finite Automata to Regular Expression

Example 2:

Unit 2 - Finite Automata to Regular Expression

Example 3:

Unit 2 - Finite Automata to Regular Expression

Unit 2 - Finite Automata to Regular Expression

PES UNIVERSITY ONLINE

Example 3:

- 1. Eliminate A
- 2. Eliminate B

Unit 2 - Finite Automata to Regular Expression

Example 3:

Unit 2 - Finite Automata to Regular Expression

Unit 2 - Finite Automata to Regular Expression

PES

Unit 2 - Finite Automata to Regular Expression

PES UNIVERSITY ON LINE

Example 4:

A new Final state F is introduced as there is an Outgoing edge to the existing Final State B.

Unit 2 - Finite Automata to Regular Expression

PES UNIVERSITY ONLINE

Example 4:

Unit 2 - Finite Automata to Regular Expression

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate A
- 2. Eliminate B

Unit 2 - Finite Automata to Regular Expression

PES UNIVERSITY ONLINE

- 1. Eliminate A
- 2. Eliminate B

Unit 2 - Finite Automata to Regular Expression

Unit 2 - Finite Automata to Regular Expression

Unit 2 - Finite Automata to Regular Expression

PES UNIVERSITY ON LINE

Example 4:

- 1. Eliminate B
- 2. Eliminate A

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate B
- 2. Eliminate A

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate A
- 2. Eliminate B

- 1. Eliminate B
- 2. Eliminate A

Unit 2 - Finite Automata to Regular Expression

Example 5:

Unit 2 - Finite Automata to Regular Expression

Example 5:

A new start state (S) is introduced as there is an incoming edge to the existing start state

Unit 2 - Finite Automata to Regular Expression

Example 5:

A new final state (F) is introduced as there is an outgoing edge from the existing final state and we must have a single accepting state

Unit 2 - Finite Automata to Regular Expression

PES UNIVERSITY ONLINE

Example 5:

Previous final state is made as non final state

Unit 2 - Finite Automata to Regular Expression

PES UNIVERSITY ONLINE

Example 5:

Unit 2 - Finite Automata to Regular Expression

PES

Example 5:

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate C
- 2. Eliminate B

Unit 2 - Finite Automata to Regular Expression

PES UNIVERSITY

- 1. Eliminate C
- 2. Eliminate B

Unit 2 - Finite Automata to Regular Expression

PES UNIVERSITY ONLINE

- 1. Eliminate C
- 2. Eliminate B

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate C
- 2. Eliminate B
- 3. Eliminate A

Unit 2 - Finite Automata to Regular Expression

PES UNIVERSITY ONLINE

$$= 0(11*+\lambda)$$

=0*(1++\lambda)

Unit 2 - Finite Automata to Regular Expression

Unit 2 - Finite Automata to Regular Expression

Unit 2 - Finite Automata to Regular Expression

Unit 2 - Finite Automata to Regular Expression

Example 6:

A new start state (S) is introduced as there is an incoming edge to the existing start state

Unit 2 - Finite Automata to Regular Expression

Example 6:

A new final state (F) is introduced as there is an outgoing edge from the existing final state

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate D
- 2. Eliminate B

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate D
- 2. Eliminate B

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate D
- 2. Eliminate B
- 3. Eliminate C

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate D
- 2. Eliminate B
- 3. Eliminate C

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate D
- 2. Eliminate B
- 3. Eliminate C
- 4. Eliminate A

Unit 2 - Finite Automata to Regular Expression

Unit 2 - Finite Automata to Regular Expression

Unit 2 - Finite Automata to Regular Expression

Example 7:

A new start state (S) is introduced as there is an incoming edge to the existing start state

Unit 2 - Finite Automata to Regular Expression

Example 7:

A new final state (F) is introduced as there is an outgoing edge from the existing final state

Unit 2 - Finite Automata to Regular Expression

PES UNIVERSITY ONLINE

Example 7:

1. Eliminate C

Unit 2 - Finite Automata to Regular Expression

Example 7:

1. Eliminate C

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate C
- 2. Eliminate A

Unit 2 - Finite Automata to Regular Expression

PES UNIVERSITY ONLINE

- 1. Eliminate C
- 2. Eliminate A

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate C
- 2. Eliminate A
- 3. Eliminate B

Unit 2 - Finite Automata to Regular Expression

Unit 2 - Finite Automata to Regular Expression

Unit 2 - Finite Automata to Regular Expression

Example 8:

A new start state (S) is introduced as there is an incoming edge to the existing start state

Unit 2 - Finite Automata to Regular Expression

PES UNIVERSITY ONLINE

Example 8:

A new final state (F) is introduced as there is an outgoing edge from the existing final state

Unit 2 - Finite Automata to Regular Expression

Example 8:

1. Eliminate B

Unit 2 - Finite Automata to Regular Expression

Example 8:

1. Eliminate B

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate B
- 2. Eliminate C

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate B
- 2. Eliminate C

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate B
- 2. Eliminate C
- 3. Eliminate A

Unit 2 - Finite Automata to Regular Expression

PES UNIVERSITY ONLINE

Unit 2 - Finite Automata to Regular Expression

PES UNIVERSITY ONLINE

$$RE=(01*0+1(1+01*0))*(01*+1(01*+\lambda))$$

Unit 2 - Finite Automata to Regular Expression

PES UNIVERSITY ONLINE

$$RE=(01*0+1(1+01*0))*(01*+1(01*+\lambda))$$

$$=(101*0+01*0+11)*(01*(\lambda+1)+1)$$

Unit 2 - Finite Automata to Regular Expression

Example 8:

RE=
$$(01*0+1(1+01*0))*(01*+1(01*+\lambda))$$

= $(01*0+11+101*0)*(01*+(101*+1))$
= $(101*0+01*0+11)*(01*(\lambda+1)+1)$
= $(01*0(1+\lambda)+11)*(01*(\lambda+1)+1)$

Unit 2 - Finite Automata to Regular Expression

Example 8:

RE=
$$(01*0+1(1+01*0))*(01*+1(01*+\lambda))$$

= $(01*0+11+101*0)*(01*+(101*+1))$
= $(101*0+01*0+11)*(01*(\lambda+1)+1)$
= $(01*0(1+\lambda)+11)*(01*(\lambda+1)+1)$
= $(01*0(1+\lambda))*(11)*(01*(\lambda+1)+1)$

Unit 2 - Finite Automata to Regular Expression

Example 8:

RE=
$$(01*0+1(1+01*0))*(01*+1(01*+\lambda))$$

= $(01*0+11+101*0)*(01*+(101*+1))$
= $(101*0+01*0+11)*(01*(\lambda+1)+1)$
= $(01*0(1+\lambda)+11)*(01*(\lambda+1)+1)$
RE= $(01*0(1+\lambda))*(11)*(01*(\lambda+1)+1)$

Unit 2 - Finite Automata to Regular Expression

Example 9 : order of elimination (B,D,C,A)

Unit 2 - Finite Automata to Regular Expression

Example 9:

A new start state (S) is introduced as there is an incoming edge to the existing start state

Unit 2 - Finite Automata to Regular Expression

A new final state (F) is introduced as there is an outgoing edge from the existing final state

Unit 2 - Finite Automata to Regular Expression

1. Eliminate B

Unit 2 - Finite Automata to Regular Expression

Example 9:

1. Eliminate B

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate B
- 2. Eliminate D

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate B
- 2. Eliminate D

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate B
- 2. Eliminate D
- 3. Eliminate C

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate B
- 2. Eliminate D
- 3. Eliminate C

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate B
- 2. Eliminate D
- 3. Eliminate C
- 4. Eliminate A

Unit 2 - Finite Automata to Regular Expression

Unit 2 - Finite Automata to Regular Expression

Example 9:

Consider the same example: Order of elimination: B,C, D ,A (Adding new start state and

new final state will remain same)

Unit 2 - Finite Automata to Regular Expression

1. Eliminate B

Unit 2 - Finite Automata to Regular Expression

Example 9:

1. Eliminate B

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate B
- 2. Eliminate C

Unit 2 - Finite Automata to Regular Expression

- **Eliminate B**
- **Eliminate C**

Unit 2 - Finite Automata to Regular Expression

PES

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate B
- 2. Eliminate C
- 3. Eliminate D

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate B
- 2. Eliminate C
- 3. Eliminate D
- 4. Eliminate A

Unit 2 - Finite Automata to Regular Expression

- 1. Eliminate B
- 2. Eliminate C
- 3. Eliminate D
- 4. Eliminate A

Unit 2 - Finite Automata to Regular Expression

$$RE = ((aa+ab(bb)*ba) + (b+ab(bb)*a)(a(bb)*a)*(a(bb)*ba+b))*$$

Unit 2 - Finite Automata to Regular Expression

Example 9:

(aa+bb+(ab+ba+(aa+bb)*(ab+ba))*

Eliminate: B,D,C,A

((aa+ab(bb)*ba)* + (b+ab(bb)*a)(a(bb)*a)*(a(bb)*ba+b))* Eliminate B,C,D,A

THANK YOU

Preet Kanwal

Department of Computer Science & Engineering

preetkanwal@pes.edu

+91 80 6666 3333 Extn 724