Part 2 (EBU5303)

4. Image preparation

a. Create a Matlab function in the file "myJPEG.m". Read the grayscale image file Cpeppers.png using the imread matlab function and display it with imshow.

b. What is the dimension of the image (width x hight)? What is its size in bits? Calculate the number of 8x8 blocks of pixels contained in the image.

- **c.** <u>In myJPEG.m</u>, for one of the channels only and working from left to right, top to bottom, **split** the image into 8x8 blocks of pixels. <u>Comment your code</u>.
- d. Print the first two 8x8 matrices of pixel values as examples (use the disp matlab function).

- **C.** Please check in the source code
- **D.** Copy and paste the matrices

val(:,:,	1) =							val(:,:,	2) =						
177	185	188	190	193	198	202	206	214	213	210	214	219	221	221	221
176	181	181	186	191	198	200	199	201	206	211	216	218	219	220	223
175	174	175	184	192	193	191	196	202	208	210	212	214	215	218	223
169	169	175	186	187	186	192	197	201	203	205	206	209	215	220	222
162	170	177	177	180	187	191	195	194	195	198	202	208	212	208	204
167	173	173	172	178	184	186	185	186	190	198	201	199	193	196	203
168	166	169	173	174	175	177	181	188	193	192	189	190	195	200	202
160	162	166	169	168	170	178	182	181	178	178	185	189	193	194	197

- e. <u>In myJPEG.m</u>, **subtract** 128 from each pixel values so they range from -128 to 127. Comment your code.
- f. Print (disp) again the first two 8x8 matrices of pixel values and check they have been "levelled off".


```
Ε.
```

```
subim(:, :, num) = int16(f(i - 7:i, j - 7:j) -
128); %#ok<*SAGROW>,subtract 128 from each pixel values so they range from
-128 to 127
```

F.

Copy and paste the "levelled off" matrices

val(:,	:,1) :	=						val(:,	:,2) :	=					
49	57	60	62	65	70	74	78	86	85	82	86	91	93	93	93
48	53	53	58	63	70	72	71	73	78	83	88	90	91	92	95
47	46	47	56	64	65	63	68	74	80	82	84	86	87	90	95
41	41	47	58	59	58	64	69	73	75	77	78	81	87	92	94
34	42	49	49	52	59	63	67	66	67	70	74	80	84	80	76
39	45	45	44	50	56	58	57	58	62	70	73	71	65	68	75
40	38	41	45	46	47	49	53	60	65	64	61	62	67	72	74
32	34	38	41	40	42	50	54	53	50	50	57	61	65	66	69

5. Applying 2D DCT to each block

a. <u>In myJPEG.m</u>, working from left to right, top to bottom, **apply** the 2D DCT Matlab function (dct2) to each block of pixel values. Save the results in 8x8 matrices of DCT coefficients values. <u>Comment your code</u>.

b. Print (disp) the first two 8x8 matrices of DCT coefficients values.

- A. See the source code

 B. Copy and paste the DCT matrices

 val(:,:,1) =

 424.3750 -62.0000 -0.6813 -5.1237 0.3750 -1.4346 -0.6649 -1.2739

 57.7108 -9.0649 -3.3671 2.9944 -0.5170 -2.2814 -0.6802 -1.3703

 -1.1829 6.1159 3.6062 -1.1671 -1.5656 0.3987 -0.7134 -0.2871

 9.6860 0.8428 1.7191 -1.9384 -8.4881 -2.0568 0.6694 0.3861

 0.1250 -6.7614 0.2986 -9.1746 0.1250 1.9577 -0.2590 0.4650

 1.0768 4.2101 -1.6908 0.0342 7.0466 1.0042 0.1358 0.1535
 - 80.9429
 -1.6047
 -2.4039
 1.2992
 -0.3080
 -1.0264
 -0.7065
 -0.1669

 -12.4240
 1.8571
 4.2097
 3.1631
 2.1724
 -0.2912
 -0.8776
 -1.0840

 -0.1805
 9.3519
 -5.0183
 0.1354
 0.7503
 0.0937
 0.0392
 1.0371

 -0.1250
 -3.3787
 2.2585
 11.7610
 -0.1250
 1.3619
 0.5528
 -0.7723

 8.2761
 3.4985
 10.7441
 -2.1260
 -3.2571
 -0.5015
 -1.0710
 0.3844

 -4.1895
 3.1755
 -2.1276
 -2.7741
 4.9180
 -0.4926
 -0.2097
 0.3725

1.5901 3.1134 0.1022 5.4939 -3.2475 -1.2363 -0.2626 -0.5291

608.6250 -42.2834 -1.6052 -3.0370 0.6250 -1.9839 -0.2822 -0.8022

6. Quantisation

dval(:,:,2) =

a. <u>In myJPEG.m</u>, **create** a standard quantisation matrix named Q_{std} similar to the matrix shown below.


```
16 11 10 16 24
                     51
                         61
                         55
                 58
14 13 16 24
                57
            40
                    69
                         56
            51
                         62
  22 37 56 68
                109 103
                         77
   35 55 64 81
                104 113
                         92
        87 103 121
72 92 95 98 112 100 103
```

b. In myJPEG.m, **create** two more quantisation matrices, one for lower quantisation (Q_{low}) and one for higher quantisation (Q_{high}) . Comment your code.

Hint: use quantisation factors to multiply Q_{std} . The scaled matrices must then be rounded and clipped to have positive integer values ranging from 1 to 255.

c. Print (disp) Q_{low} and Q_{high} and explain how you created them (i.e., what quantisation factor you chose and why).

Copy and paste the quantisation matrices and explain your choice of quantisation factors.

Qlow									Qhigh								
5	3	3	5	7	12	15	1	3	32	22	20	32	48	80	102	122	2
4	4	4	6	8	17	18	1	7	24	24	28	38	52	116	120	11	0
4	4	5	7	12	17	2	1 1	.7	28	26	32	48	80	114	138	11	2
4	5	7	9	15	26	2	4 1	.9	28	34	44	58	102	174	4 160	12	24
5	7	11	17	20	0 3	3	31	23	36	44	74	112	130	5 21	8 20	6 1	54
7	11	17	19	2	4	31	34	28	48	70	110	128	3 16	2 20	08 22	26 :	184
15	19	23	2	6	31	36	36	30	98	128	156	17	4 2	06 2	42 2	40	202
22	28	29	2	9 :	34	30	31	30	144	184	190	0 19	96 2	24	200	206	198

The quantization coefficients are 0.4 and 2 respectively. They were chosen for convenience and not out of range (2 is the largest integer that keeps the original matrix in range)

其实不会答捏

d. In myJPEG.m, **apply** quantisation to all the 8x8 matrices of DCT coefficients, using Q_{std}, Q_{low} and Q_{high}. Comment your code.

Hint: quantisation is achieved by dividing each DCT coefficient by the corresponding element in the quantisation matrix, and then rounding to the nearest integer value.

e. Print (disp) the first two 8x8 matrices of quantised DCT coefficients for the three different levels of quantisation (standard, low and high), i.e., 6 matrices in total.

Copy and pas	e the six quantised ma	trices here.	
	The first matrix		The second
Apply Qstd	27 -6 0 0 0	0 0 0	38 -4 0 0 0 0 0 0
	5 -1 0 0 0	0 0 0	7 0 0 0 0 0 0
	0 0 0 0 0	0 0 0	-1 0 0 0 0 0 0 0
	1 0 0 0 0	0 0 0	0 1 0 0 0 0 0 0
	0 0 0 0 0	0 0 0	0 0 0 0 0 0 0
	0 0 0 0 0	0 0 0	0 0 0 0 0 0 0
	0 0 0 0 0	0 0 0	0 0 0 0 0 0 0
	0 0 0 0 0	0 0 0	0 0 0 0 0 0 0
Apply Qlow	85 -21 0 -1 0	0 0 0	122 -14 -1 -1 0 0 0 0
	14 -2 -1 0 0	0 0 0	20 0 -1 0 0 0 0 0
	0 2 1 0 0	0 0 0	-3 0 1 0 0 0 0 0
	2 0 0 0 -1	0 0 0	0 2 -1 0 0 0 0 0
	0 -1 0 -1 0	0 0 0	0 0 0 1 0 0 0 0
	0 0 0 0 0	0 0 0	1 0 1 0 0 0 0 0
	0 0 0 0 0	0 0 0	0 0 0 0 0 0 0
	0 0 0 0 0	0 0 0	0 0 0 0 0 0 0
Apply Qlow	13 -3 0 0 0	0 0 0	19 -2 0 0 0 0 0 0
	2 0 0 0 0	0 0 0	3 0 0 0 0 0 0
	0 0 0 0 0	0 0 0	0 0 0 0 0 0 0
	0 0 0 0 0	0 0 0	0 0 0 0 0 0 0
	0 0 0 0 0	0 0 0	0 0 0 0 0 0 0
	0 0 0 0 0	0 0 0	0 0 0 0 0 0 0
	0 0 0 0 0	0 0 0	0 0 0 0 0 0 0
	0 0 0 0 0	0 0 0	0 0 0 0 0 0 0

f. Compare the 6 matrices and comment.

Your answer.		

g. Comment on how the choice of quantisation matrix affects the compression rate.

Your answer.

7. Decompression

a. In myJPEG.m, multiply the quantised DCT values by the corresponding element of the quantisation matrix originally used (i.e., Q_{std} , Q_{low} or Q_{high}). Comment your code.

b. Print (disp) the first two 8x8 matrices of DCT coefficients for the three different levels of quantisation (standard, low and high), i.e., 6 matrices in total. **Compare** with the two matrices of question 5b. and **comment**.

Copy and paste the matrices, and comment.

	1st 2st
The standard one	432 -66 0 0 0 0 0 0 608 -44 0 0 0 0 0
	60 -12 0 0 0 0 0 84 0 0 0 0 0
	0 0 0 0 0 0 0 0 -14 0 0 0 0 0
	14 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ithe low quantisd one	425 -63 0 -5 0 0 0 0 610 -42 -3 -5 0 0 0 0
	56 -8 -4 0 0 0 0 0 80 0 -4 0 0 0 0
	0 8 5 0 0 0 0 0 -12 0 5 0 0 0 0
	8 0 0 0 -15 0 0 0 0 10 -7 0 0 0 0
	0 -7 0 -17 0 0 0 0 0 0 17 0 0 0 0
	0 0 0 0 0 0 0 0 7 0 17 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
the high quantisd one	416 -66 0 0 0 0 0 0 608 -44 0 0 0 0 0
	48 0 0 0 0 0 0 0 72 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

c. <u>In myJPEG.m</u>, apply the inverse DCT (idct2) to all 8x8 matrices of DCT coefficients (standard, low and high quantisation). Add 128 to each matrix element and round the values. <u>Comment your code</u>.

d. Print (disp) the first two 8x8 matrices of pixels for the three different levels of quantisation (standard, low and high), i.e., 6 matrices in total. **Compare** with the two matrices of question

	1st								2st
The standard one	180	182	186	192	197	203	207	209	608 -44 0 0 0 0 0 0
	176	179	182	188	193	198	202	204	84 0 0 0 0 0 0 0
	172	174	178	183	188	193	197	199	-14 0 0 0 0 0 0 0
	171	173	176	180	185	190	193	195	0 17 0 0 0 0 0 0
	170	172	175	179	183	187	191	192	0 0 0 0 0 0 0
	169	170	173	177	180	184	187	188	0 0 0 0 0 0 0
	165	166	169	172	175	179	181	183	0 0 0 0 0 0 0
	161	162	165	168	171	174	177	178	0 0 0 0 0 0 0
Ithe low quantisd one	174	185	191	189	190	197	204	205	214 212 212 214 219 222 222 22
	180	179	181	187	193	197	198	198	199 206 215 219 218 216 218 22
	177	172	174	185	192	192	192	197	201 206 211 212 212 214 221 22
	165	169	177	184	186	186	192	200	206 203 202 205 210 216 219 21
	161	170	178	179	180	186	192	194	193 195 199 206 210 210 206 20
	167	171	172	171	177	187	188	182	186 192 199 201 199 197 199 20
	168	168 162	167	169	174	179	181	179	187 190 191 189 188 191 200 20
the high quantisd one	163	179	166 182	171 186	170 191	168 195	175 198	186 200	181 180 180 184 190 195 196 19 209 210 212 215 218 221 223 22
the high quantisa one	177 176	179	181	185	189	193	198	198	209 210 212 215 218 221 223 22 207 208 210 213 216 219 221 22
	173	175	178	182	187	194	194	196	207 208 210 213 216 219 221 22
	170	172	175	179	184	188	191	193	199 200 202 205 208 211 213 21
	167	169	172	176	181	185	188	190	194 195 197 200 203 206 208 20
	164	166	169	173	178	182	185	187	189 190 193 195 198 201 203 20
	162	163	166	171	175	179	183	184	186 187 189 192 195 198 200 20
	160	162	165	169	174	178	181	183	184 185 187 190 193 196 198 19

4.d and comment.

8. Image reconstruction

a. <u>In myJPEG.m</u>, **reconstruct** the images from the 8x8 blocks of pixel values you obtained in question 8 for the three different levels of quantisation (standard, low and high). <u>Comment your code</u>.

b. Display and save the four images: original, standard, low and high compression.

c. Compare the images and comment. You should clearly see blocky artefacts in the high compression image. If not, go back to Question 6 and modify the Q_{high} matrix.

Hint: You may have to cast your pixel values to uint8 to display the images.

Your comments.

Original

Qstd

Qlow

Qhigh

