In [184]: import pandas as pd

In [185]: data=pd.read_csv("/home/placement/Downloads/fiat500.csv")#read data from file as csv

In [186]: data.describe()#describe data like count, mean, max value

Out[186]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

In [187]: data.tail(10)#shows last 10 rows

Out[187]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
1528	1529	lounge	51	2861	126000	1	43.841980	10.51531	5500
1529	1530	lounge	51	731	22551	1	38.122070	13.36112	9900
1530	1531	lounge	51	670	29000	1	45.764648	8.99450	10800
1531	1532	sport	73	4505	127000	1	45.528511	9.59323	4750
1532	1533	pop	51	1917	52008	1	45.548000	11.54947	9900
1533	1534	sport	51	3712	115280	1	45.069679	7.70492	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.66687	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.41348	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.68227	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.56827	7900

In [188]: datal=data.drop(['lat','ID','lon'],axis=1)#remove column of lat,id,lon by using drop function

In [189]: data1

Out[189]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

In [190]: data2=pd.get_dummies(data1)#where the lounge model it shows"1" other models it shows "0" data2

Out[190]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1538 rows × 8 columns

```
In [191]: data2.shape#how many rows and columns in the data frame
```

Out[191]: (1538, 8)

In [192]: z=data2.loc[(data.model=='lounge')]#determine only for lounge cars

In [193]: z

Out[193]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
3	51	2739	160000	1	6000	1	0	0
6	51	731	11600	1	10750	1	0	0
7	51	1521	49076	1	9190	1	0	0
11	51	366	17500	1	10990	1	0	0
	•••							
1528	51	2861	126000	1	5500	1	0	0
1529	51	731	22551	1	9900	1	0	0
1530	51	670	29000	1	10800	1	0	0
1534	74	3835	112000	1	4600	1	0	0
1536	51	2557	80750	1	5990	1	0	0

1094 rows × 8 columns

In [194]: y=z['price']#removing price from data2 and put in new data frame y
x=z.drop(['price'],axis=1)#remaining data can be put in another data fram

In [195]: x# to get data in x

Out[195]:

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
0	51	882	25000	1	1	0	0
3	51	2739	160000	1	1	0	0
6	51	731	11600	1	1	0	0
7	51	1521	49076	1	1	0	0
11	51	366	17500	1	1	0	0
1528	51	2861	126000	1	1	0	0
1529	51	731	22551	1	1	0	0
1530	51	670	29000	1	1	0	0
1534	74	3835	112000	1	1	0	0
1536	51	2557	80750	1	1	0	0

1094 rows × 7 columns

```
In [196]: | y# to get data in y
Out[196]: 0
                     8900
                     6000
           3
           6
                   10750
           7
                     9190
           11
                   10990
                    . . .
           1528
                     5500
           1529
                     9900
                   10800
           1530
           1534
                     4600
           1536
                     5990
           Name: price, Length: 1094, dtype: int64
In [197]: from sklearn.model selection import train test split
           x train,x test,y train,y test=train_test_split(x,y,test_size=0.33,random_state=42)#dividing training data and
In [198]: x test.head(5)#display top 5 data in testing data
Out[198]:
                 engine_power age_in_days
                                          km previous_owners model_lounge model_pop model_sport
             676
                         51
                                        18609
                                                          1
                                                                      1
                                                                                0
                                                                                           0
                                   762
             215
                         51
                                   701
                                         25000
                                                          1
                                                                      1
                                                                                0
                                                                                           0
            146
                         51
                                   4018
                                       152900
                                                          1
                                                                      1
                                                                                0
                                                                                           0
            1319
                         51
                                   731
                                         20025
                                                          1
                                                                      1
                                                                                0
                                                                                           0
                                         38231
                                                                                           0
            1041
                         51
                                   640
                                                          1
                                                                      1
                                                                                0
In [199]: y test.head(5)#display top 5 data in testing data price dataframe
Out[199]: 676
                   10250
                     9790
           215
           146
                     5500
           1319
                     9900
                     8900
           1041
           Name: price, dtype: int64
```

```
In [200]: x train.head(5)#display top 5 data in training data
Out[200]:
                                         km previous owners model lounge model pop model sport
                engine power age in days
            441
                         51
                                  762 36448
                                                        1
                                                                   1
                                                                             0
                                                                                        0
            701
                         51
                                  701 27100
                                                        1
                                                                   1
            695
                         51
                                  3197 51083
                                                        1
                                                                   1
                                                                             0
           1415
                         51
                                  670 33000
                                                        1
                                                                   1
                                                                             0
            404
                         51
                                  456 14000
                                                       1
                                                                   1
                                                                             0
                                                                                        0
In [201]: y train.head(5)#display top 5 data in training data price dataframe
Out[201]: 441
                    8980
          701
                   10300
                    5880
          695
          1415
                   10490
           404
                    9499
          Name: price, dtype: int64
In [202]: from sklearn.model selection import GridSearchCV#ridge regression
           from sklearn.linear model import Ridge
           alpha = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20,30]
           ridge = Ridge()
          parameters = {'alpha': alpha}
           ridge regressor = GridSearchCV(ridge, parameters)
           ridge regressor.fit(x train, y train)
Out[202]: GridSearchCV(estimator=Ridge(),
                        param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                               5, 10, 20, 30]})
```

```
In [203]: ridge_regressor.best_params_#alpha value

Out[203]: {'alpha': 30}

In [204]: ridge=Ridge(alpha=30)
    ridge.fit(x_train,y_train)
    y_pred_ridge=ridge.predict(x_test)

In [205]: from sklearn.metrics import mean_squared_error#mean_squared error
    Ridge_Error=mean_squared_error(y_pred_ridge,y_test)
    Ridge_Error

Out[205]: 519771.8129989742

In [206]: from sklearn.metrics import r2_score
    r2_score(y_test,y_pred_ridge)#finding the efficieny

Out[206]: 0.8373030813683995
```

In [220]: Results=pd.DataFrame(columns=['Actual', 'predicted'])##creating a data frame called results for given price a
Results['Actual']=y_test
Results['predicted']=y_pred_ridge
Results=Results.reset_index()
Results['ID']=Results.index
Results.head(10)

Out[220]:

	index	Actual	predicted	ID
0	676	10250	10045.347779	0
1	215	9790	9989.171535	1
2	146	5500	4769.099603	2
3	1319	9900	10048.683238	3
4	1041	8900	9813.944798	4
5	1425	9500	8678.143561	5
6	409	10450	10173.797921	6
7	617	9790	10180.627008	7
8	1526	9300	9107.315259	8
9	1010	4600	5625.007407	9

In [221]: import seaborn as sns#putting the graoh for actual price and predicted price
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()

Out[221]: []


```
In [222]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.tail(50))
sns.lineplot(x='ID',y='predicted',data=Results.tail(50))
plt.plot()
```

Out[222]: []


```
In [ ]:
```