

Days of Future Past: An Optimization-based Adaptive Bitrate Algorithm over HTTP/3

EPIQ'21 (ACM CONEXT 2021)

07.-10.12.2021 | Munich, Germany

Daniele Lorenzi, Minh Nguyen, Farzad Tashtarian, Christian Timmerer, Hermann Hellwagner, Simone Milani Christian Doppler laboratory ATHENA | Alpen-Adria University | Austria daniele.lorenzi@aau.at | https://athena.itec.aau.at/

Agenda

- Introduction
- Motivation
- Proposed method
- Experimental setup
- Results and analysis
- Conclusion

Introduction

Introduction: HAS Schema

Introduction: HTTP/3 & QUIC

Motivation

Motivation

Proposed Method

- Mixed Integer Linear Programming (MILP) model that selects:
 - Bitrate for the next segments;
 - Which segments from the buffer need to be upgraded;
 - Bitrate for these segments.

Par.	\mathfrak{B}	q_i	$a_{i,j}$	d_i	B_{now}	B_{max}	$S_{i,j}$	t_i	ω
Desc.	Set of indexes of k buffered segments + next one	Quality level of ith segment	Binary variable: 1 → (re-) download ith segment at quality level j;	Deadline to (re-) download ith segment	Current buffer level	(Max.) Buffer size	Size of ith segment with quality level <i>j</i> (kbits)	Assigned throughput to (re-) download ith segment	Available throughput between player and server

1st constraint expresses the univocity of the pair (index, quality):

$$\sum_{j=1: L \& j \ge q_i} a_{i,j} = 1, \ \forall i \in \mathcal{B}$$

Max. quality level

Define the **deadlines** for each segment (where $0 < \alpha < \beta < \gamma < 1, 0 < \mu < 1$):

2nd constraint ensure that the download time is lower than the deadline:

$$\sum_{j=1:L\&j>q_i} a_{i,j} \times S_{i,j} \le d_i \times t_i, \, \forall i \in \mathcal{B}$$

 3rd constraint checks the sum of the assigned throughputs to be at most the total available one:

$$\sum_{i \in \mathcal{B}} t_i \le \omega$$

No Multiplexing

$$t_i \leq \omega/(k+1) \ \forall i \in \mathcal{B}$$

With Multiplexing

The MILP model is finally introduced as follows:

$$\begin{array}{ll} \textit{Maximize} & j^* + \sum_{i \in \mathbb{B}} \sum_{j=1:L\&j \geq q_i} a_{i,j} \times j & \text{Objective Function} \\ s.t.: & \textit{Constraints}(1) - (3) \\ j^* \leq \sum_{j=1:L\&j \geq q_i} a_{i,j} \times j, \forall i \in \mathbb{B} \\ \textit{var.}: & a_{i,j} \in \{0,1\}, t_i \geq 0 & \text{Variables} \\ \end{array}$$

Experimental setup

Experimental setup

- HAS + LSQUIC [1] testbed
- 5-min **test sequence** (Tears of Steel begin)
- **Bitrate ladder**: {107, 240, 346, 715, 1347, 2426, 4121} kbps [2]
- **Resolution**: {144, 240, 360, 480, 720, 1080, 1440} p [2]
- Codec: H.264
- Linux tc (bash script)
 - 4G Network trace
 - o **RTT**: 40 ms
- $\tau = 4s$, $B_{max} = 20s$
- μ = 0.1, α = 0.25, β = 0.5, γ = 0.75

- [1] https://github.com/litespeedtech/lsquic
- [2] T. Karagkioules, et al.: A Public Dataset for YouTube's Mobile Streaming Client.

- **Metrics** considered:
 - Average quality: average quality level of the played segments
 - Video instability: average quality fluctuation among adjacent segments
 - Number of switches: number of segments whose quality is lower than their previous one
 - Number of stalls: number of buffer underruns
 - o **Stall duration**: total video freeze time
 - QoE score: computed via ITU-T P.1203 mode 0 and its extension [3]

[3] https://github.com/Telecommunication-Telemedia-Assessment/itu-p1203-codecextension

- Results: Comparison among different DoFP versions:
 - DoFP/B: next segment, then retransmitted ones seq. in order as in the buffer
 - o **DoFP/M**: with **stream multiplexing** feature and concurrent requests
 - DoFP/C: with stream cancellation feature
 - DoFP/MC: with both stream multiplexing and stream cancellation

	Avg. quality	Video inst.	N. switches	N. stalls	Stall dur. (s)	QoE
DoFP/B	6.12	0.53	8.2	1.8	6.7	3.15
DoFP/M	6.14	0.47	7.8	1.8	6.7	3.25
DoFP/C	6.11	0.48	7.8	0.6	1.7	3.36
DoFP/MC	6.02	0.54	10.6	0.0	0.0	3.38

- Results: Comparison with state-of-the-art approaches
 - SARA → DoFP/MC: highest % of quality 7 seg. (74% → 64%) and avg. quality
 (6.12 → 6.02)
 - DoFP/MC → others: lowest % of quality 1 seg. (3.2% → > 6.1%)

- Results: Comparison with state-of-the-art approaches
 - BBA-0: lowest video instability (0.53); DoFP/MC: second lowest (0.54)
 - DoFP/MC: high # of switches (10.6) → upgrade quality, not eliminate gaps

- Results: Comparison with state-of-the-art approaches
 - DoFP/MC: 0.0 stalls and 0.0s stall duration
 - AGG (0.4 1.47s), BOLA (1 3.88s) → SARA (2.8 9.71s), BBA-0 (4 14.41s)

▲ ATHENA

- Results: Comparison with state-of-the-art approaches
 - DoFP/MC: best QoE score (3.38)
 - Up to 33.9% increment w.r.t the other approaches

Conclusions

Conclusions

- DoFP(/MC): a MILP model to provide high QoE (and low stall-probability)
 through HTTP/3 and QUIC features
- Taking into account throughput, buffer, and quality of each buffered segment
- The model chooses the bitrates for the next segment and (if needed) for the buffered segments to be re-transmitted
- DoFP/MC: outperforms the other approaches with the highest QoE score
- Multiplexing and cancellation features enhance DoFP results
- In the future, investigate the stream priority feature, the impact of DoFP's parameters and different streaming (video sequence, bitrate ladder, segment duration) and network scenarios (bandwidth traces)

Thankyou

