TIME SERIES

Speaker: Anastasia Sokolova

ABOUT ME

Moscow State University | Bachelor's degree in Economics

University of Toronto | Master's degree in Statistics

Sber, Liquidity Risk Department | Data Scientist

Yandex, e-com market | Data Scientist

Dodo Pizza | Product Analyst

Wildberries, A/B-testing platform
Analyst - Developer

LECTURE PLAN

- 1. Definition
- 2. Application
- 3. AR, MA, ARMA processes
- 4. ARCH-GARCH
- 5. Trend-seasonal decomposition
- 6. Forecasting and confidence intervals

TIME SERIES | DEFINITION

Time Series - is a sequence of data points that occur in successive order over time.

ВВП в текущих ценах, млрд руб.

2022	151 455.6
2021	135 295.0
2020	107 658.2
2019	109 608.3
2018	103 861.7
2017	91 843.2
2016	85 616.1
2015	83 087.4
2014	79 030.0
2013	72 085.7
2012	68 103.4
2011	60 114.0
2010	46 308.5

WHY DO WE NEED TO MODEL TIME SERIES?

For real-life Time Series a theoretical model can be estimated. Time series model approximates real-life process for studying and forecasting.

An example of a forecast of Time Series using a mathematical model. Realization in fb-prophet.

PROPERTIES OF TIME SERIES

- Periodicity (seconds, minutes, hours, days, months, years etr.)
- Seasonality (same patterns that repeat over time.
 Example: demand on AC-systems)
- Trend (some stable tendention over time)
- Stationarity/Non-stationarity
- Heteroscedasticity/Homoscedasticity

HETEROSCEDASTICITY/HOMOSCEDASTICITY

Homoscedasticity

Variance is NOT stable over time

Variance is stable over time

STATIONARITY/NON-STATIONARITY

TREND, SEASONALITY AND SHOCKS

Временной ряд можно представить в виде декомпозиции на несколько отдельных временных рядов:

- -тренд
- -сезонность
- -шоки/выбросы

TREND, SEASONALITY AND SHOCKS

Additive Decomposition

$$Y_t = T_t + S_t + E_t$$

Y_t - observation value at time t,

T_t - trend component

S_t - seasonal component

E_t - shock component

Multiplicative Decomposition

$$Y_t = T_t * S_t * E_t$$

WHITE NOISE

White noise is a process e_1…e_t of independent equally distributed random variables that has a zero mean and finite variance

AR(P) - AUTO-REGRESSION PROCESS

$$X_t = \sum_{i=1}^p arphi_i X_{t-i} + arepsilon_t.$$

A process with values that follow the formula

AR(1) - FIRST ORDER AUTO-REGRESSION

It is an example of auto-regression of order p=1.

$$y_t = \delta + \theta y_{t-1} + \varepsilon_t$$

MA(Q) - MOVING AVERAGE PROCESS

$$MA(q): Y_t = \mu + \epsilon_t + \sum_{i=1}^{n} heta_i \epsilon_{t-i}$$

FBPROPHET EXAMPLE

Insert example with electricity