UNIT 8: Infectious disease

1 Introduction

Infectious disease

- Extremely common
- Huge impacts on ecological interactions
- A form of exploitation, but doesn't fit well into our previous modeling framework
 - How many people are there?
 - How many influenza viruses are there?
 - How do they find each other?

Disease agents

- Poll: Name an infectious agent that causes disease in humans.
- Disease agents vary tremendously:
 - Most viruses have just a handful of genes that allow them to hijack a cell and get it to make virus copies

*

Bacteria are independent, free-living cells with hundreds or thousands of chemical pathways

*

 Eukaryotic pathogens are nucleated cells who are more closely related to you than they are to bacteria

*

Microparasites

- For infections with small pathogens (viruses and bacteria), we don't attempt to count pathogens, but instead divide disease into stages
 - Latently infected (infected but not yet infectious)
 - Infectious
 - Recovered

Microparasite models

- We model microparasites by counting the number of hosts in various **states**:
 - Susceptible individuals can become infected
 - **Infectious** individuals are infected and can infect others
 - Resistant individuals are not infected and cannot become infected
- More complicated models include other states:

_

Models as tools

- Models are the tools that we use to connect scales:
 - individuals to populations
 - single actions to trends through time

2 Rate of spread

COVID in Ontario

COVID in Ontario

Scales

- Which scale should we look at?
 - _

Population biology

- What quantities do we want to look at?
 - _ _ _

Instantaneous rate of growth r

- \bullet What are the components?
 - *
 - ;
 - _
 - *

• How do you think we estimate?

:

* Individuals \leftrightarrow Populations

Reproductive number \mathcal{R}

• What is it?

_

• Why do we want this?

_

• How do we calculate it?

_

Example

- $r \approx 0.14/\text{day}$
- What is our estimate of \mathcal{R} ?
 - When average length of infection $L = 5 \,\mathrm{day}$?
 - When average length of infection $L = 10 \,\mathrm{day}$?

Generation intervals

- Researchers try to estimate the *proportion* of transmission that happens for different ages of infection
- How long from the time you are *infected* to the time you *infect someone else*?
- Analogous to a life table
- The effective generation time \hat{G} has units of time
 - And is hard to calculate, like λ in a structured model

Approximate generation intervals

Approximate generation intervals

Speed and risk

- Which is more dangerous, a fast disease, or a slow disease?
 - How are we measuring speed?
 - How are we measuring danger?
 - What do we already know?

Generation time and risk

- If we know \mathcal{R} , what does the generation time tell us about r?
- If we know r, what does the generation time tell us about \mathcal{R} ?
- $\mathcal{R} = \exp(r\hat{G})$

- $\mathcal{R} = \exp(r\hat{G})$
- An intuitive view:
 - Epidemic speed = Generation strength \times Generation speed
- \bullet If we know generation speed, then a faster epidemic speed means:
- If we know epidemic speed, a faster generation speed means

_

3 Single-epidemic model

- ullet We also use N to mean the total population

Transition rates

- What factors govern movement through the boxes?
 - People get better independently
 - People get infected by infectious people

Conceptual modeling

- Poll: What happens in the long term if we introduce an infectious individual?
 - _

Interpreting

- Why might there not be an epidemic?
 - *
- \bullet Why doesn't everyone get infected?

Quantities

State variables

Parameters

- Susceptible people have **potentially effective** contacts at rate β (units [1/time])
 - These are contacts that would lead to infection if the person contacted is infectious
 - Total infection rate is $\beta I/N$, because I/N is the proportion of the population infectious
- Infectious people recover at per capita rate γ (units [1/time])
 - Total recovery rate is γI
 - Mean time infectious is $D = 1/\gamma$ (units [time])

Simulating the model

Basic reproductive number

• Poll: What *unitless* parameter can you make from the model above?

- Poll: What happens early in the epidemic if $\mathcal{R}_0 > 1$?

• What happens early in the epidemic if $\mathcal{R}_0 < 1$?

Effective reproductive number

• The effective reproductive number gives the number of new infections per infectious individual in a partially susceptible population:

• Is the disease increasing or decreasing?

the disease increasing or decreasing:

-

• Why doesn't everyone get infected?

_

4 Recurrent epidemic models

• Poll: If epidemics tend to burn out, why do we often see repeated epidemics?

_

Measles reports from England and Wales

Closing the circle

Closing the circle

Equilibrium

- At equilibrium, we know that $\mathcal{R}_e = 1$
 - One case per case
 - Number of susceptibles at equilibrium determined by the number required to keep infection in balance

*
$$S/N = 1/\mathcal{R}_0$$

• What does this remind you of?
_
• Number of infectious individuals determined by number required to keep susceptibles in balance.
• As susceptibles go up, what happens?
 Rate of susceptible increase goes down * per capita, at least Infections required goes down
Reciprocal control
• What happens to $equilibrium$ if we protect susceptibles (move them to R class)?
Reciprocal control
• Poll: What happens if we remove infectious individuals at a constant rate (find them and cure them or isolate them)?
_
_
*
_

- "Closed-loop" SIR models (ie., with births or loss of immunity):
 - Tend to show damped oscillations
 - * System reaches an **endemic** equilibrium disease persists

0.6

8.0

1.0

Source of oscillations

- Similar to predator-prey systems
- What happens if we start with too many susceptibles?

Persistent oscillations

• Poll: If oscillations tend to be damped in simple models, why do they persist in real life?

©2010-2021, Jonathan Dushoff and the 3SS teaching team. May be reproduced and distributed, with this notice, for non-commercial purposes only.