

Všeobecná botanika

Ústav biologických a ekologických vied PF UPJŠ Košice

Ing. Anna Macková, CSc. 2009

CIEVNATÉ RASTLINY (TRACHEOPHYTAE)

- predstavujú vývojovú vetvu vyšších rastlín, u ktorých prevažuje sporofyt nad gametofytom
- predchodcami suchozemských cievnatých rastlín boli pravdepodobne semiakvatické heterotrichálne riasy. Nasvedčuje tomu napr.:
 - rovnaký spôsob delenia buniek
 - fytochemická podobnosť (napr. chlorofyl a, b, xantofyly, β-karotén, škrob, celulózová bunková stena)
 - najstaršími, doposiaľ známymi suchozemskými rastlinami boli zástupcovia rodu Coocksonia zo stredného siluru (420 mil. rokov) (makrofosílie, úlomky telómu)
- pre fylogenézu cievnatých rastlín je charakteristická postupná redukcia gametofytu až k jeho úplnej závislosti od sporofytu, ako je tomu u semenných rastlín (*Spermatophyta*)
- sporofyt cievnatých rastlín je rozlíšený na vegetatívne a generatívne orgány, ktoré sú tvorené systémami pravými pletivami. Orgány sú vaskularizované. Cievne zväzky vytvárajú vodivý systém rastlín.
- k cievnatým rastlinám patria cievnaté výtrusné rastliny (*Psilophyta* a *Pteridophyta*), nahosemenné rastliny (*Gymnospermophyta*) a krytosemenné rastliny (*Angiospermophyta*, *Magnoliophyta*)

KOLONIZÁCIA SÚŠE CIEVNATÝMI RASTLINAMI

bola spojená s mnohými fyziologickými a anatomicko-morfologickými zmenami podmienenými novými ekologickými zmenami prostredia napr.: atmosférické sucho, priame slnečné žiarenie, odlišný spôsob príjmu minerálnych živín, vody a uhlíka, zvýšené pôsobenie gravitácie (rastliny už neboli nadnášané vztlakom vody) a rozmnožovanie v odlišných podmienkach.

- rizomoidy
- kutikula
- prieduchy
- vodivé pletivá
- mechanické pletivá
- lignín

ROZDELENIE BOTANICKÝCH DISCIPLÍN

RASTLINNÁ MORFOLÓGIA

- cytológia
- anatómia a histológia náuka o bunkových súboroch a pletivách
- □ d organológia náuka o rastlinných orgánoch

SYSTEMATICKÁ BOTANIKA

- **■** fylogenéza a systematika nižších rastlín
- **■** fylogenéza a systematika vyšších rastlín
- **■** fytopaleontológia

FYZIOLÓGIA RASTLÍN GENETIKA RASTLÍN

- Rastlinné explantáty
- Embryológia rastlín
- Mikrobiológia
- Algológia náuka o riasach
- Mykológia náuka o hubách
- Bryológia a lichenológia náuka i machoch a lišajníkoch
- Graminológia náuka i trávach
- Dendrológia náuka o drevinách
- Pomológia náuka o ovocných stromoch
- Ekológia a fytocenológia
- Farmakognózia náuka o liečivých rastlinách
- Fytopatológia náuka o chorobách rastlín, atď.

CYTOLÓGIA - NÁUKA O BUNKE

ZÁKLADNOU STAVEBNOU JEDNOTKOU ŽIVÝCH ORGANIZMOV JE BUNKA. MÁ TIETO SCHOPNOSTI A VLASTNOSTI:

- je schopná samostatne existovať a rásť
- prijímať, premieňať a vydávať energiu a látky
- rozmnožovať sa
- pohybovať sa
- reagovať na podnety vonkajšieho prostredia.

VŠETKY TIETO DEJE SÚ ZABEZPEČENÉ BUNKOVÝMI ORGANELAMI.

MEDZI NAJDÔLEŽITEJŠIE ŠTRUKTÚRY RASTLINNEJ BUNKY PATRIA:

- jadro nukleus prenos genetickej informácie na potomstvo
- mitochondrie centrum metabolických a energetických procesov v bunke
- plastidy najdôležitejšie sú chloroplasty, zodpovedné za fotosyntézu
- jadierko
- endoplazmatické retikulum
- diktiozómy
- vakuoly.

VŠETKY ORGANELY SÚ ULOŽENÉ V ZÁKLADNEJ CYTOPLAZME. BUNKA JE OBALENÁ BUNKOVOU MEMBRÁNOU, RASTLINNÉ BUNKY MAJÚ CELULÓZOVÚ BUNKOVÚ STENU.

Stavba rastlinnej bunky

BUNKY SA MÔŽU DELIŤ:

priamo - amitoticky (prokaryotické bunky) nepriamo - mitoticky (somatické bunky) meioticky - redukčné delenie (pohlavné bunky)

MITÓZA

- zabezpečuje rovnomerné rozdelenie chromozómov do dcérskych buniek
- prejavuje sa postupnými zmenami v jadre a na chromozómoch
- podstatou je pozdĺžne štiepenie dvojchromatidových chromozómov na jednochromatidové
- dcérske bunky budú mať takú istú chromozómovú výbavu, ako mala materská bunka
- výsledkom sú nové generácie buniek s rovnakou genetickou výbavou, teda s rovnakými vlastnosťami

Profáza:

- rozrušuje sa jadrová membrána
- centriola sa rozdelí na dve a s mikrotubulami vytvára deliace vretienko
- zaniká jadierko
- chromozómy sa skracujú, stávajú sa rozlíšiteľné - špiralizujú sa

Metafáza

- chromozómy sú maximálne špiralizované, sú najlepšie rozlíšiteľné
- chromozómy sa zoraďujú do centrálnej - ekvatoriálnej roviny
- nastáva pozdĺžne rozštiepenie chromozómov na dve dcérske chromatídy
- tieto zostávajú zatiaľ spojené centromérou

Anafáza

- centroméra sa rozdelí na dve, takto sú chromozómy úplne rozštiepené na dve chromatídy
- každá chromatída sa stáva dcérskym chromozómom
- dcérske chromozómy skracovaním mikrotubúl deliaceho vretienka sa rozostupujú k protiľahlým pólom bunky

dcérske chromozómy

Telofáza

- zaniká deliace vretienko
- chromozómy sa dešpiralizujú
- vznikom dcérskych jadier končí karyokinéza - delenie jadra
- utvára sa nová jadrová membrána
- syntetizuje sa jadierko
- nastáva cytokinéza rozdelenie cytoplazmy a následne materskej bunky na dve dcérske bunky

CHLOROPLASTY (zelené)

(chlorofyl)
RODOPLASTY (červené)
(fykoerytrín, fykocyanín)
FEOPLASTY (hnedé)
(fukoxantín)

CHROMOPLASTY

(*žlté až červené*) (karotenoidy)

LEUKOPLASTY

NACHÁDZAJÚ SA NAPR. V BUNKÁCH ZÁSOBNÝCH ORGÁNOV

- AMYLOPLASTY
- STATOLITY
- ELAIOPLASTY
- PROTEINOPLASTY
- ETIOLOPLASTY
- PROPLASTIDY

- amylóza, amylopektín
- statolitový škrob
- lipidy
- bielkoviny
- protochlorofyl
- prekurzory plastidov

- skupina dekarboxylácia 4C kyselín NADP-malátový enzým; agranálne chloroplasty
- skupina dekarboxylácia 4C kyselín NAD-malátový enzým; dobre vyvinutý membránový systém, chloroplasty umiestnené pri vnútornej stene buniek
- skupina dekarboxylácia 4C kyselín PEP-karboxyláza; chloroplasty umiestnené pri vonkajšej stene buniek

Pozdĺžny a priečny rez chloroplastom (schéma)

CHLOROPLASTY V BUNKÁCH LISTU Elodea sp.

CHLOROPLASTY V BUNKÁCH PALÍSTKU MNIUM SP.

ŠTRUKTÚRA CHLOROPLASTU V ELEKTRÓNOVOM MIKROSKOPE

CHROMOPLASTY

- **⊲GLOBULÁRNE** KAROTENOIDY ROZPUSTENÉ V LIPIDOCH
- **MEMBRÁNOVÉ** KAROTENOIDY SÚ VIAZANÉ NA FRAGMENTOCH MEMBRÁN
- **◄ TUBULÁRNE**
- **◄ RETIKULÁRNO-TUBULÁRNE**
- **▼ KRYŠTALICKÉ** (KRYŠTÁLIKY LYKOPÉNU A ß-KAROTÉNU)
- **▼ SENESCENTNÉ** CHROMOPLASTY

Kryštalické chromoplasty v koreni Dacus carota

ONTOGENÉZA PLASTIDOV

