"Теоретические модели вычислений"

Артем Поляков А-13а-19 $30 \ {\rm Mas} \ 2022 \ {\rm r}.$

1 Задание 1. Построить конечный автомат, распознающий язык

1.1 $\mathcal{L} = \{ \ \mathbf{w} \in \{a,b,c\}^* \ | \ |w|_c = 1 \}$

1.2	
$\mathcal{L} = \{ \mathbf{w} \in a, b^* \mid$	$ w _a \le 2, w _b \ge 2$

	,	1 1 1
	a	b
q1,q4	q2,q4	q1,q5
q1,q5	q2,q5	q1,q6
q1,q6	q2,q6	q1,q6
q2,q4	q3,q4	q2,q5
q2,q5	$q_{3,q_{5}}$	q2,q6
q2,q6	q3,q6	q2,q6
q3,q4	Ø	q3,q5
q3,q5	Ø	q3,q6
q3,q6	Ø	q3,q6

$$L = \{w \in \{a,b\}^* \mid |w|_a \neq |w|_b\}^*$$

Невозможно описать с помощью ДКА т.к. имеется необходимость запоминать число символов хотя бы одного (а или б)

$$L = \{w \in a, b^* \mid ww = www\}$$
 Содержит пустые слова

2 Задание 2. Построить конечный автомат, используя прямое произведение

$$\mathbf{L}_1 = \{ w \in \{a, b\} | |w|_a \ge 2 \land |w|_b \ge 2 \}$$

	a	b
q1,q4	q2,q4	q1,q5
q1,q5	q2,q5	q1,q6
q1,q6	$q_{2,q_{6}}$	q1,q6
q2,q4	q3,q4	q2,q5
q2,q5	q3,q5	q2,q6
q2,q6	q3,q6	q2,q6
q3,q4	q3,q4	q3,q5
q3,q5	q3,q5	q3,q6
q3,q6	q3,q6	q3,q6

	a	b
q1,q5	q2,q6	q2,q6
q1,q6	q2,q5	q2,q5
q2,q5	q3,q6	q3,q6
q2,q6	q3,q5	q3,q5
q3,q5	q4,q6	q4,q6
q3,q6	q4,q5	q4,q5
q4,q5	q4,q6	q4,q6
a4 a6	g4 g5	a4 a5

2.3 $\mathsf{L}_3 = \{w \in \{a,b\}^* | \ |w|_a \wedge |w| \ \text{кратно трём} \ \}$

	a	b
q1,q4	q1,q5	q2,q4
q1,q5	q1,q4	q2,q5
q2,q4	q2,q5	q3,q4
q2,q5	q2,q4	q3,q5
q3,q4	q3,q5	q1,q4
a3.a5	a3.a4	g1.g5

$$\begin{array}{l} 2.4 \\ \mathbf{L}_4 = \neg L_3 \\ \mathbf{T}_4 = Q_3 \ T_3 = q1q4, q1q5, q2q4, q2q5, q3q4, q3q5 \end{array}$$

$$\begin{array}{l} 2.5 \\ {\rm L}_5 = L_2/L_3L_5 = L_2 \cap L_3 \end{array}$$

	a	b
q1,q1	q2,q4	q_{2,q_2}
q1,q2	q2,q5	q2,q3
q1,q3	$q_{2,q_{6}}$	q2,q1
q1,q4	q2,q1	q2,q5
q1,q5	q_{2,q_2}	q2,q6
q1,q6	q2,q3	q2,q4
q2,q1	q3,q4	q3,q2
q2,q2	q3,q5	q3,q3
q2,q3	q3,q6	q3,q1
q2,q4	q3,q1	q3,q5
q2,q5	q3,q2	q3,q6
q2,q6	q3,q3	q3,q4
q3,q1	q4,q4	q3,q2
q3,q2	q4,q5	q3,q3
q3,q3	q4,q6	q3,q1
q3,q4	q4,q1	q3,q5
q3,q5	q4,q2	q3,q6
q3,q6	q4,q3	q3,q4
q4,q1	q3,q4	q3,q2
q4,q2	q3,q5	q3,q3
q4,q3	q3,q6	q3,q1
q4,q4	q3,q1	q3,q5
q4,q5	q3,q2	q3,q6
q4,q6	q3,q3	q3,q4

3 Задание 3. Построить минимальный ДКА по регулярному выражению

 $^{(ab + aba)*a}$ Построим НКА:

Строим по алгоритму Томпсона ДКА

строим по а	erponia no amophini romneona A				
	a	b			
q1	q2,q3,q4				
q2, q3, q4		q1,q5			
q1,q5	q1,q2,q3,q4				
q1,q2,q3,q4	q2,q3,q4	q1,q5			

3.2 $a(a(ab)^*b)^*(ab)^*$ Построим НКА:

Строим по алгоритму Томпсона ДКА:

	a	b
q1	q2,q3,q4	
q2,q3,q4		q1,q5
q1,q5	q1,q2,q3,q4	
q1,q2,q3,q4	q2,q3,q4	q1,q5

	q1	q2	q3	q4	q5	q6	q3q7	q6q8
q1		+	+	+	+	+	+	+
q2 q3	+		+	+	+	+	+	+
q3	+	+		+	+	+		+
q4	+	+	+		+	+	+	+
q5	+	+	+	+		+	+	+
q6	+	+	+	+	+		+	
q3,q7	+	+		+	+	+		+
q6,q8	+	+	+	+	+		+	

3.3 $(a+(a+b)(a+b)b)^*$ Построим НКА:

	a	b
q1	q1,q2	q2
q2	q3	q3
q3		q6
q1,q2	q1,q2,q3	q2,q3
q2,q3	q1,q3	q3
q1,q3,q4	q1,q2	q1,q2
q1,q2,q3	q1,q2,q3	q1,q2,q3

Строим по алгоритму Томпсона ДКА:

 $3.4 \ (b+c)((ab)^*c+(ba)^*)^* \$ Построим НКА:

Строим по алгоритму Томпсона ДКА:

	a	b	c
q1		q2	q2
q2	q3	q6	
q3		q4	
q4	q3		q 5
q5	q3	q6	
q6	q7		
q7	q3	q6	

	q1	q2	q3	q4	q5	q6	q7
q1		+	+	+	+	+	+
q2	+		+	+		+	
q 3	+	+		+	+	+	+
q4	+	+	+		+	+	+
q5	+		+	+		+	
q1 q2 q3 q4 q5 q6 q7	+	+	+	+	+		+
q7	+		+	+		+	

3.5

 $(a+b)^+(aa+bb+abab+baba)(a+b)^+$ Построим НКА:

Строим по алгоритму Томпсона ДКА:

4 Задание 4. Определить является ли язык регулярным или нет

L = { $(aab)^n b (aba)^m \mid n \ge 0, m \ge 0$ }

Так как нам удалось построить ДКА следовательно язык регулярный.

Рассмотрим слово: $w=b^naaa^n$ для любого п принадлежащего множеству натуральных чисел. Разобьем слово w на хух так что $|xy| \leq n, |y| \neq 0$. Тогда $x=b^i, y=b^j, z=b^{n-i-j}aaa^n$, где i+j не больше п и ј больше нуля. Тогда $xy^0z=a^ia^{n-i-j}b^n=a^{n-j}b^n\notin L\Rightarrow L$ не регулярный язык.

4.3

$$L = \{ a^m w | w \in \{a, b\}^*, 1 \le |w|_b \le m \}$$

Рассмотрим слово: $w=b^na^n$ для любого п принадлежащего множеству натуральных чисел, тогда $|w|=n+n\geq n$. Разобьем слово w на хух так что $|xy|\leq n, |y|\neq 0$. $\mathbf{x}=\mathbf{a}^iy=a^jz=a^{n-i-j}b^n, i+j$ не больше n и j больше нуля. Тогда $xy^0z=a^ia^{n-i-j}b^n=a^{n-j}b^n\notin L\Rightarrow \mathbf{L}$ не регулярный язык.

4.4

$$L = \{a^k b^m a^n \mid k = n \vee m\}$$

Рассмотрим слово $w=a^nba^n$ для любого п принадлежащего множеству натуральных чисел, тогда $|\mathbf{w}|=\mathrm{n}{+}1{+}\mathrm{n}$ п. Разобьем слово w на хуz так что $|xy|\leq n, |y|\neq 0.$ х $=\mathrm{a}^iy=a^jz=a^{n-i-j}ba^n, i+j$ не больше n, и j больше нуля. Тогда $xy^2z=a^ia^{2j}a^{n-i-j}ba^n=a^{n+j}ba^n\notin L\Rightarrow \mathrm{L}$ не регулярный язык.

4.5

$$\mathbf{L} \ = \ \{ \mathbf{ucv} \ \mid \ \mathbf{u} \in \{a,b\}^*, v \in \{a,b\}^*, u \neq v^R - \}$$

Рассмотрим слово $w=(ab)^nc(ab)^n=\alpha_1\alpha_2...\alpha_{4n+1}$ для любого п принадлежащего множеству натуральных чисел, тогда |w|=4n+1n. Разобьем слово w на хуz так что $|xy|\leq n, |y|\neq 0$. х= $\alpha_1\alpha_2...\alpha_i, y=\alpha_{i+1}\alpha_{i+2}...\alpha_{i+j}, z=\alpha_{i+j+1}\alpha_{i+j+1}...\alpha_{4n+1}c(ab)^n, i+j$ не больше n, и ј больше нуля. Тогда $xy^2z=(\alpha_1\alpha_2...\alpha_i)(\alpha_{i+1}\alpha_{i+2}...\alpha_{i+j})^2(\alpha_{i+j+1}\alpha_{i+j+1}...\alpha_{4n+1}c(ab)^n)\notin L\Rightarrow L$ не регулярный язык.