Relational Database Design by ER- and EER-to-Relational Mapping

Chapter 9 Outline

Relational Database Design Using ER-to-Relational Mapping

Mapping EER Model Constructs to Relations

Relational Database Design by ER- and EER-to Relational Mapping

Design a relational database schema

Based on a conceptual schema design

Seven-step algorithm to convert the basic

ER model constructs into relations

Additional steps for EER model

Relational Database Design Using ER-to-Relational Mapping

ER-to-Relational Mapping Algorithm

COMPANY database example

Assume that the mapping will create tables with simple single-valued attributes

Step 1: Mapping of Regular Entity Types

For each regular entity type, create a relation *R* that includes all the simple attributes of *E*

Called entity relations

Each tuple represents an entity instance

Step 2: Mapping of Weak Entity Types

For each weak entity type, create a relation R and include all simple attributes of the entity type as attributes of R

Include primary key attribute of owner as foreign key attributes of *R*

Figure 9.3

Illustration of some mapping steps.

- a. Entity relations after step 1.
- b. Additional weak entity relation after step 2.
- c. Relationship relation after step 5.
- d. Relation representing multivalued attribute after step 6.

(a) EMPLOYEE

DEPARTMENT

Dname <u>Dnumber</u>

PROJECT

(b) DEPENDENT

(c) WORKS_ON

(d) DEPT LOCATIONS

Dnumber Dlocation

Step 3: Mapping of Binary 1:1 Relationship Types

For each binary 1:1 relationship type

 Identify relations that correspond to entity types participating in R

Possible approaches:

- Foreign key approach
- Merged relationship approach
- Crossreference or relationship relation approach

Step 4: Mapping of Binary 1:*N* Relationship Types

For each regular binary 1:N relationship type

- Identify relation that represents participating entity type at N-side of relationship type
- Include primary key of other entity type as foreign key in S
- Include simple attributes of 1:N relationship type as attributes of S

Alternative approach

 Use the relationship relation (cross-reference) option as in the third option for binary 1:1 relationships

Step 5: Mapping of Binary M:N Relationship Types

For each binary M:N relationship type

- Create a new relation S
- Include primary key of participating entity types as foreign key attributes in S
- Include any simple attributes of M:N relationship type

Step 6: Mapping of Multivalued Attributes

For each multivalued attribute

- Create a new relation
- Primary key of R is the combination of A and K
- If the multivalued attribute is composite, include its simple components

Step 7: Mapping of *N*-ary Relationship Types

For each *n*-ary relationship type *R*

- Create a new relation S to represent R
- Include primary keys of participating entity types as foreign keys
- Include any simple attributes as attributes

Discussion and Summary of Mapping for ER Model Constructs

Table 9.1	Correspondence between ER and Relational Models
-----------	---

ER MODEL RELATIONAL MODEL

Entity type Entity relation

1:1 or 1:N relationship type Foreign key (or *relationship* relation)

M:N relationship type Relationship relation and two foreign keys

n-ary relationship type Relationship relation and *n* foreign keys

Simple attribute Attribute

Composite attribute Set of simple component attributes

Multivalued attribute Relation and foreign key

Value set Domain

Key attribute Primary (or secondary) key

Mapping EER Model Constructs to Relations

Extending ER-to-relational mapping algorithm

Mapping of Specialization or Generalization

Step 8: Options for Mapping Specialization or Generalization

Option 8A: Multiple relations—superclass and subclasses

 For any specialization (total or partial, disjoint or overlapping)

Option 8B: Multiple relations—subclass relations only

- Subclasses are total
- Specialization has disjointedness constraint

Mapping of Specialization or Generalization (cont'd.)

Option 8C: Single relation with one type attribute

- Type or discriminating attribute indicates subclass of tuple
- Subclasses are disjoint
 - Potential for generating many NULL values if many specific attributes exist in the subclasses

Option 8D: Single relation with multiple type attributes

- Subclasses are overlapping
- Will also work for a disjoint specialization

Manufacture date

Pflag

Supplier_name

Batch no

Part no

Description

List_price

Mflag

Drawing_no

Mapping of Shared Subclasses (Multiple Inheritance)

Apply any of the options discussed in step 8 to a shared subclass

Mapping of Categories (Union Types)

Step 9: Mapping of Union Types (Categories)

Defining superclasses have different keys Specify a new key attribute

Surrogate key

Figure 9.7

Mapping the EER categories (union types) in Figure 8.8 to relations.

Summary

Map conceptual schema design in the ER model to a relational database schema

Algorithm for ER-to-relational mapping
Illustrated by examples from the COMPANY
database

Include additional steps in the algorithm for mapping constructs from EER model into relational model

