深圳大学期中考试试卷

开/闭卷		闭								
				期中考试						
	课程编号	2218004	801-4	课程名称	: 	大学物理	里 D	学分	4	
			_				回僚		0	
	命题人(签字)			审题。	人(签字)					
	题号	_		三 1	三 2	三 3		1	<u>g</u>	
	得分								Ä	
	评卷人					5.33	注"石头 斗",获取]复"资 程资料	
	一、判断是	(下面	表述正确	的在括号	号内填入	T,错误	1 , 3 人	母小趔	3分,	
	共 24 分) 1、一个理想	与休系统	的状太可	以田民强	休和和海	1度三个参	昌 来表示。	地 可以田	系统内	
	,	$\mathbf{F}(\mathbf{T})$	H1.NC)@21	◇川正宝、	汗 初77月11111	LI/又一 「 シ <u>-</u>	主 /八八八,		AN-JUNI	
	FE/NACA	· (1)								
1	2、理想气体	的内能不	仅与温度	有关,还与	亏气体的 体	2积有关(F)			
	3、理想气体	分子的平	均速率小	于最概然返	基率(F)				
	4、在静电场	5中,电场	的强弱分	布随空间位	位置不同而	万不同,随 时	时间变化而	变化(F)	
	5、电场强度	E和电势都	是反映静	电场性质的	的物理量((T)				
	6、在任何情	祝下,通	过闭合曲	面的电通量	量一定不为	p零(F)			
	7、根据热力学第二定律,热量不能百分之一百转变为机械功,同样机械功也不能百分之									
	一百转变	5为热量(F)							
	8、热力学第	5一定律实	际上就是	能量守恒知	定律(T)				
	二、单项边 共 24 分)	选择题(把下列名	卜 题正确名	答案的英	文字母填	入括号内	,每题3	3分,	
	1、一个容器	片内贮有 1	摩尔氢气	和1摩尔复	氡 气的理想	見气体,若	两种气体各	自对器壁	产生的	
	压强分别为	p_1 和 p_2 ,	则根据理	想气体状态	方程,两	i者的大小乡		C)		
	A. $p_1 > 1$	p_2	B. $p_1 < p_1$	p_2	C. $p_1 = 1$	p_2	D. 无法确定	定		
	2、一个理想	具气体系统	进行一个	等温过程,	如果系统	充体积增加,	则()		
	A. 系统	的内能一	定增加		B. 系	统一定向外	小界传递热力	量		
	C. 一定	是外界对	系统做功		D. —	D. 一定是系统对外界做功				

- 3、有两个卡诺循环过程,其中一个循环过程的高温热源温度为 320K,低温热源温度为 80K; 另一个循环过程的高温热源温度为 360K, 低温热源温度为 90K, 则它们的循环效 $\mathbf{x}_{\eta_1} = \mathbf{y}_{\eta_2}$ 的关系为(C

 - A. $\eta_1 > \eta_2$ B. $\eta_1 < \eta_2$
- C. $\eta_1 = \eta_2$
- D. 无法确定
- 4、一容器内装有 M 个单原子理想气体分子和 M 个刚性双原子理想气体分子, 当该系统处 在温度为 T的平衡态时, 其内能为 (\mathbb{C}
 - A. $(N_1 + N_2)$ $(\frac{3}{2}kT + \frac{5}{2}kT)$
 - B. $\frac{1}{2} (N_1 + N_2) (\frac{3}{2} kT + \frac{5}{2} kT)$
 - C. $N_1 \frac{3}{2} kT + N_2 \frac{5}{2} kT$
 - D. $N_1 \frac{5}{2} kT + N_2 \frac{3}{2} kT$
- 5、关于电场强度定义式 $\vec{E}=\vec{F}/q_{0}$,下列说法中哪个是正确的? (**B**
 - A. 场强 \bar{E} 的大小与试探电荷 q_0 的大小成反比
 - B. 对场中某点, 试探电荷受力 \vec{F} 与 q_0 的比值不因 q_0 而变
 - C. 试探电荷受力 \vec{F} 的方向就是场强 \vec{E} 的方向
 - D. 若场中某点不放试探电荷 q_0 ,则 $\bar{F}=0$,从而 $\bar{E}=0$
- 6、设有一"无限大"均匀带正电荷的平面. 取 x 轴垂直带电平 面,坐标原点在带电平面上,则其周围空间各点的电场强度 \bar{E} 随 距离平面的位置坐标x变化的关系曲线为(规定场强方向沿x轴正 向为正、反之为负)(C

- 7、如图所示, v_0 两边的 $A \times B$ 的两部分面积相同,则说明(
 - A. 最概然速率等于 ν_0
 - B. 平均速率等于ν_ο
 - C. 方均根速率等于 ν_0
 - $D. v_0$ 两边的速率区间分布的分子数相同

- 8、根据麦克斯韦速率分布律, $\frac{\int_{v_1}^{v_2} vf(v)dv}{\int_{v_1}^{v_2} f(v)dv}$ 表示的是(
- A. 所有分子的平均速率

- B. 系统的总分子数
- C. 分布在速率 $v_1 v_2$ 区间的分子的平均速率 D. 分布在速率 $v_1 - v_2$ 区间的总分子数 《大学物理 D》期中试卷 第 2 页 共 4 页

三、计算题(共52分)

1、(13 分)容器内有 M = 2.66 kg 氧气,已知其气体分子的平动动能总和是 $E_K = 4.14 \times 10^5$ J,求: (1) 气体分子的平均平动动能; (2) 气体温度.

(阿伏伽德罗常量 $N_{\rm A}=6.02\times 10^{23}$ /mol,玻尔兹曼常量 $k=1.38\times 10^{-23}$ J·K⁻¹ ,氧气的摩尔质量 $M_{\rm mol}=32\times 10^{-3}$ kg/mol)

解: (1)
$$M/M_{\text{mol}}=N/N_{\text{A}}$$

$$\frac{N=MN_A / M_{\text{mol}}}{\overline{\varepsilon}_t} = \frac{E_k}{N} = \frac{M_{\text{mol}} E_K}{MN} = 8.27 \times 10^{-21} \text{ J}$$

$$(2) T = \frac{2\overline{\varepsilon}_t}{3k} = 400 \text{ K}$$

2、(13 分) 在真空中,正电荷 q 均匀分布在半径为 R 的球面上,试用高斯定理求空间的电场强度.

解:根据高斯定理: $\oint_s \vec{E} \cdot d\vec{s} = \frac{q}{\varepsilon_0}$,

(1) 当 r < R, 以 r 为半径, 同球心作一球面, 则此球面为高斯面,

根据对称性可得: $\oint_{\mathcal{E}} \vec{E}_1 \bullet d\vec{s} = E_1 4\pi r^2$

故
$$E_1 4\pi r^2 = \frac{q}{\varepsilon_0} = 0$$

解得: $E_1 = 0$

(2) 当 r〈R, 同理可得:
$$E_2 4\pi r^2 = \frac{q}{\varepsilon_0}$$

解得:
$$E_2 = \frac{q}{4\pi\varepsilon_0 r^2}$$

方向沿着径向

3、(13 分) 一系统由图中的 a 态沿 abc 到 达 c 态时,吸收了 350 J 的热量,同时对 外作 126J 的功.

(1)如果沿 adc 进行,则系统作功 42J,问这时系统吸收了多少热量?

(2)当系统由 c 态沿曲线 ca 返回 a 态时如果是外界对系统作功 84J,问这时系统是吸热还是放热?热量传递是多少?

解: (1) 根据热力学第一定律,有

Q = Ec-Ea+42J

依题意,有

350J = Ec - Ea + 126J

解得: O=266J

(2) 根据热力学第一定律,有

O = Ea - Ec - 84J

Ea-Ec=-(Ec-Ea)

解得: Q=-308J, 即系统放热

- 4、(13分)假想从无限远处陆续移来微量电荷使一半径为 R 的导体球带电.
- (1) 当球上已带有电荷 q 时,再将一个电荷元 dq 从无限远处移到球上的过程中,外力作多少功?
 - (2) 使球上电荷从零开始增加到 Q 的过程中,外力共作多少功?
- 解: (1) 令无限远处电势为零,

则带电荷为q的导体球,其电势为

$$U = \frac{q}{4\pi\varepsilon_0 R}$$

将 dq 从无限远处搬到球上过程中,外力作的功等于该电荷元在球上所具有的电

势能为

$$d A = dW = \frac{q}{4\pi\varepsilon_0 R} dq$$

(2) 带电球体的电荷从零增加到 Q 的过程中,外力作功为

$$A = \int dA = \int_{0}^{Q} \frac{q dq}{4\pi\varepsilon_{0}R} = \frac{Q^{2}}{8\pi\varepsilon_{0}R}$$