

Replacement Sheet

Fig. 1a: Prior Art: flow-chart of Gauss-Seidel Loadflow (GSL) Method

*Replacement sheet***Fig.1b:**Prior Art: Flow-chart: Super Super Decoupled Loadflow (SSDL) Method

Replacement sheet

Fig. 2a: One-line diagram of IEEE 14-node network

Fig. 2c: Non-redundant Level-1 sub-networks of fig. 2b are regrouped to reduce the number of processors required without increasing the number of nodes in any regrouped sub-network larger than the original largest sub-network of 6-nodes

Replacement sheet

Fig. 2b: Level-1 sub-networks around circled nodes for the network of fig. 2a

replacement sheet

Fig. 3a: Invention: flow-chart of Gauss-Seidel-Patel Loadflow (GSPL) Method

Replacement sheet

Fig. 3b: Invention: flow-chart of Parallel-Gauss-Seidel-Patel Loadflow (PGSPL) Method

Replacement sheet

Fig. 4: Invented Parallel computer Architecture/organization

replacement sheet

Fig. 5: Loadflow Calculation in Power Flow Control and/or Voltage Control in Electrical Power System

Replacement sheet

Fig. 6: Load-Flow Calculation for Voltage Control in Electrical Power System

new sheet

Fig. 7: An Exemplary 6-node Power System

Nodes: 1, 2, 3 are PQ-nodes

Nodes: 4 and 5 are PV-nodes

Nodes: 6 is the slack/swing/reference node

Transformers T1 and T2 are tap-changing