INDEX

SN	Experiment Title	Date	Page Number	Remark
1	Basics concept- Introduction to			
1	Linux Operating system, Basic			
	command in Linux and writing			
	shell script in Vi editor.			
2	Process management			
	1.Use ps to search for the init process			
	by name.			
	2 what is the process id of init process			
	3 use the who am I command to			
	determine terminal name			
	5 what is the process id of your shell			
	6 what is the parent process id of your			
	shell			
	7 start two instances of sleep 4432 in the background			
	8 locate the process id of all sleep			
	commands			
	9 display those two sleep process on			
	top.			
	10 use the standard kill to kill one of			
	the process			
3	Process priorities:			
	1 Create a new directory and create six			
	pipes in that directory.			
	2.Bounce another character between			
	two other pipes but this same time			
	start the command nice, verify that			
	all cat processes are battling to the			
	CPU.			
	3.Use ps to verify that the two new			
	cat process have a nice value. Use			
	the o and c.			
	4.use renice to increase the nice			
	value from 10 to 15. Notice the			
	difference between the usual			
	commands.			
	Communus.			

Logical volume management: 1) Create a volume group that contains a complete disk and partition on another disk 2) Create two logical volumes (as small one and a bigger one) in this volumegroup. Format them with ext 3, mount them and copy some files tothem.	4	Disk partioions 1 use fdisk -l to display existing partitions and sizes 2 compare the output of fdisk and df 3 compare the output of fdisk Create a 200MB primary partition on a small disk 4 Create a 400 MB primary partion and two 300 MB logical drives on a big disk 4 Use df-h and f disk -l to verify your work 5 Compare the output again fdisk and df.		
group that contains a complete disk and partition on another disk 2) Create two logical volumes (as small one and a bigger one) in this volumegroup. Format them with ext 3, mount them and copy some files	5	Logical volume management:		
complete disk and partition on another disk 2) Create two logical volumes (as small one and a bigger one) in this volumegroup. Format them with ext 3, mount them and copy some files		1)Create a volume		
partition on another disk 2) Create two logical volumes (as small one and a bigger one) in this volumegroup. Format them with ext 3, mount them and copy some files		group that contains a		
disk 2) Create two logical volumes (as small one and a bigger one) in this volumegroup. Format them with ext 3, mount them and copy some files		complete disk and		
2) Create two logical volumes (as small one and a bigger one) in this volumegroup. Format them with ext 3, mount them and copy some files		partition on another		
volumes (as small one and a bigger one) in this volumegroup. Format them with ext 3, mount them and copy some files		disk		
and a bigger one) in this volumegroup. Format them with ext 3, mount them and copy some files		2) Create two logical		
volumegroup. Format them with ext 3, mount them and copy some files		volumes (as small one		
them with ext 3, mount them and copy some files		and a bigger one) in this		
them and copy some files		volumegroup. Format		
		them with ext 3, mount		
tothem.		them and copy some files		
		tothem.		

	File systems		
	1.List the file systems that are known by your system.		
	2.Create ab ext2 file system on the 200MB partition.		
	3.Create an ext3 file system on one of the 300MB logical drives.		
	4.Create an ext4 on the 400MB partition.		
	5.Set the reserved space for the root		
	On the ext3 file system to 0 percent.		
	6.Verify your work with fdisk and df.		
	7.Perform a file system check on all		
	The new file systems.		
7	Scheduling		
	1.Schedule two jobs with at, display		
	The at queue and remove a job.		
	2.As normal user, use crontab -e		
	To schedule a script to run every four minutes.		
	3.As a root, display the crontab file of your normal user.		
	4.As the normal user again, remove your crontab file		
	5. Take a look at the cron files and directories in/etc and understand		
	Them. What is the runparts command doing?		

8	Memory Management		
	1.Use dmevg to find the total amount of memory in your computer.		
	2.Use free to display memory usage		
	In kilobytes.(then in megabytes)		
	3.On a virtual machine, create a swap partitions.		
	4.Add a 20 megabytes swap file to the system.		
	5.Put all swap spaces in/etc/f stab and activate them. Test with a reboot that they are mounted.		
	6.Use free to verify usage of current swap		

Date: / /

PRACTICAL 5

AIM: Logical volume management:

3) Create a volume group that contains a complete disk and partition on another disk

4) Create two logical volumes (as small one and a bigger one) in this volumegroup. Format them with ext 3, mount them and copy some files tothem.

THEORY:

Logical Volume Management:

In computer storage, logical volume management or LVM provides a method of allocating space on mass-storage devices that is more flexible than conventional partitioning schemes to store volumes. In particular, a volume manager can concatenate, stripe together or otherwise combine partitions (or block devices in general) into larger virtual partitions that administrators can re-size or move, potentially without interrupting system use.

Volume management represents just one of many forms of storage virtualization; its implementation takes place in a layer in the device-driver stack of an operating system (OS) (as opposed to within storage devices or in anetwork).

In Linux, Logical Volume Manager (LVM) is a device mapper framework that provides logical volume management for the Linux kernel. Most modern Linux distributions are LVM-aware to the point of being able to have their root file systems on a logical volume.

INTRODUCTION TO LVM

Problems with standard partitions

There are some problems when working with hard disks and standard partitions.

Consider a system with a small and a large hard disk device, partitioned like this. The first disk (/dev/sda) is partitioned in two, the second disk (/dev/sdb) has two partitions and some empty space.

Partition in disk

In the example above, consider the options when you want to enlarge the space available for /srv/project42. What can you do? The solution will always force you to unmount the file system, take a backup of the data, remove and recreate partitions, and then restore the data and remount the file system.

solution with lym

Using **lvm** will create a virtual layer between the mounted file systems and the hardware devices. This virtual layer will allow for an administrator to enlarge a mounted file system in use. When **lvm** is properly used, then there is no need to unmount the file system to enlarge it.

lvm terminology

physical volume (pv)

A **physical volume** is any block device (a disk, a partition, a RAID device or even an iSCSI device). All these devices can become a member of a **volume group**.

The commands used to manage a **physical volume** start with pv.

volume group (vg)

A **volume group** is an abstraction layer between **block devices** and **logical volumes**.

The commands used to manage a **volume group** start with vg.

```
[root@centos65 ~] # vq
vgcfgbackup vgconvert
                                             vgmknodes
                             vgextend
vqs
                             vgimport
vgcfgrestore
              vgcreate
                                             vgreduce
vgscan
                             vgimportclone vgremove
              vqdisplay
vqchange
vgsplit
vqck
              vgexport
                             vgmerge
                                             vgrename
```

logical volume (lv)

A **logical volume** is created in a **volume group**. Logical volumes that contain a file system can be mounted. The use of **logical volumes** is similar to the use of **partitions** and is accomplished with the same standard commands (mkfs, mount, fsck, df, ...).

The commands used to manage a **logical volume** start with lv.

```
[root@centos65 ~]# lv
```

lvchange lvextend		lvmdiskscan	lvmsar		
lvresize					
lvconvert	lvm	lvmdump	lvreduce	lvs	
lvcreate	lvmchange	lvmetad	lvremove		
lvscan					
lvdisplay	lvmconf	lvmsadc	lvrename		

pvs

The easiest way to verify whether devices are known to lvm is with the **pvs** command. The screenshot below shows that only /dev/sda2 is currently known for use with LVM. It shows that /dev/sda2 is part of Volgroup00 and is almost 16GB in size. It also shows /dev/sdc and /dev/sdd as part of vg33. The device /dev/sdb is knwon to lvm, but not linked to any Volume Group.

[root@RHEL5	~]# pvs				
PV	VG	Fmt	Attr	PSize	PFree
/dev/sda2	VolGroup00	lvm2	a-	15.88G	0
/dev/sdb		lvm2		409.60M	409.60M
/dev/sdc	vg33	lvm2	a-	408.00M	408.00M
/dev/sdd	vg33	lvm2	a-	408.00M	408.00M
[root@RHEL5	~]#				

Pvscan

vgscan

The **vgscan** command will scan all disks for existing Volume Groups. It will also update the **/etc/lvm/.cache** file. This file contains a list of all current lvm devices.

```
[root@RHEL5 ~] # vgscan
  Reading allphysicalvolumes. This may take a
while...
  Found volume group "VolGroup00" using metadata type
lvm2
[root@RHEL5 ~] #
```

LVM will run the vgscan automatically at boot-up, so if you add hot swap devices, then you will need to run vgscan to update/etc/lvm/.cache with the new devices.

vgdisplay

The **vgdisplay** command will give you more detailed information about a volume group (or about all volume groups if you omit the argument).

```
[root@RHEL5 ~] # vgdisplay VolGroup00
  --- Volume group ---
 VG Name
                         VolGroup00
  System ID
  Format
                          lvm2
 Metadata Areas
                          1
 Metadata Sequence No
                          read/write
  VG Access
                          resizable
  VG Status
 MAX LV
                          ()
  Cur LV
                          2
                          2.
  Open LV
 Max PV
                          \cap
  Cur PV
                          1
  Act. PV
                          1
  VG Size
                          15.88 GB
                          32.00 MB
  PE Size
  Total PE
                          508
```

```
Alloc PE/Size 508 / 15.88 GB
Free PE/Size 0 /0

VGUUID qsXvJb-71qV-917U-ishX-
FobM- qptE-VXmKIg

[root@RHEL5 ~]#
```

Verifying existing logical volumes

lvs

Use **lvs** for a quick look at all existing logical volumes. Below you can see two logical volumes named LogVol00 and LogVol01.

lvscan

The **lvscan** command will scan all disks for existing Logical Volumes.

lvdisplay

More detailed information about logical volumes is available through the **lvdisplay(1)** command.

```
[root@RHEL5 ~]# lvdisplay VolGroup00/LogVol01
--- Logical volume ---
```

```
/dev/VolGroup00/LogVol01
 LVName
                          VolGroup00
 VGName
                          RnTGK6-xWsi-t530-ksJx-
 LVUUID
7cax- co5c-A1KlDp
                          read/write
 LVWriteAccess
 LVStatus
                          available
 #open
                          1
 LVSize
                          1.00GB
                          32
 CurrentLE
                          1
 Segments
                          inherit
 Allocation
 Readaheadsectors
 Blockdevice
                          253:1
[root@RHEL5 ~]#
```

[100cGIGIDES] "

Manage volume groups

vgcreate

Use the **vgcreate** command to create a volume group. You can immediately name all the physical volumes that span the volume group.

```
[root@RHEL5 ~] # vgcreate vg42 /dev/sde /dev/sdf
Volume group "vg42" successfully created
[root@RHEL5 ~] #
```

vgextend

Use the **vgextend** command to extend an existing volume group with a physical volume.

```
[root@RHEL5 ~] # vgextend vg42 /dev/sdg
  Volume group "vg42" successfully extended
[root@RHEL5 ~] #
```

vgremove

Use the **vgremove** command to remove volume groups from lvm. The volume

groups may not be in use.

```
[root@RHEL5 ~] # vgremove vg42
Volume group "vg42" successfully removed
[root@RHEL5 ~] #
```

vgreduce

Use the **vgreduce** command to remove a Physical Volume from the Volume Group.

The following example adds Physical Volume /dev/sdg to the vg1 Volume Group using vgextend. And then removes it again using vgreduce.

```
[root@RHEL5 ~] # pvs | grep sdg
  /dev/sdg
                         1 vm2--
                                    819,20M
819.20M [root@RHEL5 ~] # vgextend vg1/dev/sdg
  Volume group "vg1" successfully extended
[root@RHEL5 ~] # pvs | grep sdg
  /dev/sda
                         1 \text{vm} 2 \text{a}
                                   816.00M
             va1
816.00M [root@RHEL5 ~] # vgreduce vg1/dev/sdq
  Removed "/dev/sdg" from volume group "vg1"
[root@RHEL5 ~] # pvs | grep sdg
                         lvm2-- 819.20M819.20M
  /dev/sda
```

vgchange

Use the **vgchange** command to change parameters of a Volume Group.

This example shows how to prevent Physical Volumes from being added or removed to the Volume Group vg1.

```
[root@RHEL5 ~] # vgchange -xn vg1
Volume group "vg1" successfully changed
[root@RHEL5 ~] # vgextend vg1 /dev/sdg
Volume group vg1 is not resizable.
```

You can also use vgchange to change most other properties of a Volume Group. This example changes the maximum number of Logical Volumes and maximum

number of Physical Volumes that vg1 canserve.

vgmerge

Merging two Volume Groups into one is done with **vgmerge**. The following example merges vg2 into vg1, keeping all the properties of vg1.

```
[root@RHEL5 ~] # vgmerge vg1 vg2
Volume group "vg2" successfully merged into "vg1"
[root@RHEL5 ~] #
```

Manage logical volumes

lvcreate

Use the **lvcreate** command to create Logical Volumes in a Volume Group. This example creates an 8GB Logical Volume in Volume Group vg42.

```
[root@RHEL5 ~]# lvcreate -L5G vg42
Logical volume "lvol0" created
[root@RHEL5 ~]#
```

As you can see, lvm automatically names the Logical Volume **lvol0**. The next example creates a 200MB Logical Volume named MyLV in Volume Group vg42.

```
[root@RHEL5 ~] # lvcreate -L200M -nMyLV vg42
Logical volume "MyLV" created
```

```
[root@RHEL5 ~]#
```

The next example does the same thing, but with different syntax.

```
[root@RHEL5 ~] # lvcreate --size 200M -n MyLV vg42
Logical volume "MyLV" created
[root@RHEL5 ~] #
```

This example creates a Logical Volume that occupies 10 percent of the Volume Group.

```
[root@RHEL5 ~] # lvcreate -l 10%VG -n MyLV2 vg42
Logical volume "MyLV2" created
[root@RHEL5 ~] #
```

This example creates a Logical Volume that occupies 30 percent of the remaining free space in the Volume Group.

```
[root@RHEL5 ~] # lvcreate -1 30%FREE -n MyLV3 vg42
Logical volume "MyLV3" created
[root@RHEL5 ~] #
```

lvremove

Use the **lvremove** command to remove Logical Volumes from a Volume Group. Removing a Logical Volume requires the name of the Volume Group.

```
[root@RHEL5 ~]# lvremove vg42/MyLV
Do you really want to remove active logical volume
"MyLV"? [y/n]: y
  Logical volume "MyLV" successfully removed
[root@RHEL5 ~]#
```

Removing multiple Logical Volumes will request confirmation for each individual volume.

```
[root@RHEL5 ~]# lvremove vg42/MyLV vg42/MyLV2
vg42/MyLV3
Do you really want to remove active logical volume
"MyLV"? [y/n]: y
  Logical volume "MyLV" successfully removed
```

```
Do you really want to remove active logical volume "MyLV2"? [y/n]: y
Logical volume "MyLV2" successfully removed
Do you really want to remove active logical volume "MyLV3"? [y/n]: y
Logical volume "MyLV3" successfully removed
[root@RHEL5 ~]#
```

lvextend

Extending the volume is easy with **lvextend**. This example extends a 200MB Logical Volume with 100 MB.

The next example creates a 100MB Logical Volume, and then extends it to 500MB.

```
[root@RHEL5 ~] # lvcreate --size 100M -n extLV vg42
Logical volume "extLV" created
[root@RHEL5 ~] # lvextend -L 500M vg42/extLV
   Extending logical volume extLV to 500.00 MB
   Logical volume extLV successfully resized
[root@RHEL5 ~] #
```

This example doubles the size of a Logical Volume.

```
[root@RHEL5 ~] # lvextend -l+100%LV vg42/extLV
  Extending logical volume extLV to 1000.00 MB
  Logical volume extLV successfully resized
[root@RHEL5 ~] #
```

lvrename

Renaming a Logical Volume is done with **lvrename**. This example renames extLV

to bigLV in the vg42 Volume Group.

```
[root@RHEL5 ~] # lvrename vg42/extLV vg42/bigLV
Renamed "extLV" to "bigLV" in volume group "vg42"
[root@RHEL5 ~] #
```

OUTPUTS:

1. Create a volume group that contains a complete disk and a partition on anotherdisk.

Step 1: select disks:

```
root@rhel65:~# fdisk -1 | grep Disk
Disk /dev/sda: 8589 MB, 8589934592 bytes Disk
identifier:0x000055ca0
Disk /dev/sdb: 1073 MB, 1073741824 bytes Disk
identifier:0x00000000
Disk /dev/sdc: 1073 MB, 1073741824 bytes Disk
identifier:0x00000000
```

I choose /dev/sdb and /dev/sdc for now.

Step 2: partition/dev/sdc

```
Command (m for help): n
Command action
   e extended
   p primary partition(1-4)
p
Partition number (1-4): 1
First cylinder (1-130, default 1):
Using default value 1
Last cylinder, +cylinders or +size{K,M,G} (1-130, default 130):
Using default value130

Command (m for help):w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.
```

Step 3: pvcreate and vgcreate

```
root@rhel65:~# pvcreate /dev/sdb /dev/sdc1 Physical
  volume "/dev/sdb" successfully created Physical
  volume "/dev/sdc1" successfullycreated
root@rhel65:~# vgcreate VG42 /dev/sdb /dev/sdc1
  Volume group "VG42" successfully created
```

1. Create two logical volumes (a small one and a bigger one) in this volumegroup. Format them wih ext3, mount them and copy some filesto them.

```
root@rhel65:~# lvcreate --size 200m --name LVsmall VG42
Logical volume "LVsmall" created
root@rhel65:~# lvcreate --size 600m --name LVbig VG42
Logical volume "LVbig" created root@rhel65:~# ls -
l /dev/mapper/VG42-LVsmall
lrwxrwxrwx. 1 root root 7 Apr 20 20:41 /dev/mapper/VG42-LVsmall
-> ../dm-2
  root@rhel65:~# ls -l /dev/VG42/LVsmall
lrwxrwxrwx. 1 root root 7 Apr 20 20:41 /dev/VG42/LVsmall ->
../dm-2
  root@rhel65:~# ls -l /dev/dm-2
brw-rw----. 1 root disk 253, 2 Apr 20 20:41 /dev/dm-2
```

root@rhe165:~# mkfs.ext3 /dev/mapper/VG42-LVsmall mke2fs 1.41.12 (17-May-2010) Filesystem label= OS type: Linux Block size=1024 (log=0) Fragment size=1024 (log=0) Stride=0 blocks, Stripe width=0 blocks 51200 inodes, 204800 blocks 10240 blocks (5.00%) reserved for the super user First data block=1 Maximum filesystem blocks=67371008 25 block groups 8192 blocks per group, 8192 fragments per group 2048 inodes per group Superblock backups stored on blocks: 8193, 24577, 40961, 57345, 73729 Writing inode tables: done Creating journal (4096 blocks): done Writing superblocks and filesystem accounting information: done This filesystem will be automatically checked every 39 mounts or 180 days, whichevercomesfirst. Use tune2fs -c or -i to override.

root@rhel65:~# mkfs.ext3 /dev/VG42/LVbig

mke2fs 1.41.12 (17-May-2010)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
38400 inodes, 153600 blocks
7680 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=159383552
5 block groups
32768 blocks per group, 32768 fragments per group
7680 inodes per group
Superblock backups stored on blocks:
32768, 98304

```
Writing inode tables: done
Creating journal (4096 blocks): done
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 25 mounts or
180 days, whichevercomesfirst. Use tune2fs -c or -i to
override.
```

The mounting and copying of files.

```
root@rhel65:~# mkdir /srv/LVsmall
root@rhel65:~# mkdir /srv/LVbig
root@rhel65:~# mount /dev/mapper/VG42-LVsmall /srv/LVsmall
root@rhel65:~# mount /dev/VG42/LVbig /srv/LVbig root@rhel65:~#
cp -r /etc /srv/LVsmall/
root@rhel65:~# cp -r /var/log /srv/LVbig/
```

Result: 1. I have studied about logical volume management.

2. Creating volume groups and logical volume groups successfully.

•		

