Fyzikální praktikum II 3. MBalmerova série

Jméno: Michal Červeňák Kolega: Ondřej Glac

Kruh: **Útorok** Číslo skup.: 1

Měřeno: 21.3.2017 Zpracování: 3 h Klasifikace:

1 Pracovní úkol

1. DU: V přípravě odvoď te vzorec (11) pro případ, kdy je splněna podmínka úhlu nejmenší deviace $\alpha_1 = \alpha_2$.

2. Metodou dělených svazků změřte lámavý úhel hranolu. Měření opakujte $5\times$.

3. Změřte index lomu hranolu v závislosti na vlnové délce pro čáry rtuťového spektra, vyneste do grafu a fitováním nelineární funkcí (13) určete disperzní vztah $n = n(\lambda)$.

4. Změřte vlnové délky spektrálních čar zinkové výbojky a porovnejte je s tabulkovými hodnotami.

5. Změřte spektrum vodíkové výbojky, porovnejte s tabulkovými hodnotami, ověřte platnost vztahu (5) a určete hodnotu Rydbergovy konstanty.

6. Určete charakteristickou disperzi $dn/d\lambda$ v okolí vlnové délky 589 nm (žlutá čára v sodíkovém spektru). Poté spočítejte minimální velikost základny hranolu, vyrobeného ze stejného materiálu jako hranol, se kterým měříte, který je ještě schopný sodíkový dublet rozlišit.

2 Teória

Lámavý uhol σ určíme z nameraných uhlov $d_{1,2}$ podľa vzťahu

$$\sigma = \frac{d_1 - d_2}{2} \,. \tag{1}$$

Uhol minimálnej deviacie ε_0 určíme z nameraných uhlov $d_{1,2}$ podľa vzťahu

$$\varepsilon_0 = \frac{d_1 - d_2}{2} \,. \tag{2}$$

Index lomu nvypočítame z lámavého uhlu σ a minimálnej deviacie ε_0 ako

$$n = \frac{\sin\frac{\varepsilon_0 + \sigma}{2}}{\sin\sigma} \,. \tag{3}$$

Závislosť vlnovej dĺžky λ indexu lomu n na konštantách n_n , C a λ_n udáva vzťah

$$n = n_n + \frac{C}{\lambda - \lambda_n} \,. \tag{4}$$

2.0.1 Spracovanie chýb merania

Označme $\langle t \rangle$ aritmetický priemer nameraných hodnôt t_i , a Δt hodnotu $\langle t \rangle - t$, pričom

$$\langle t \rangle = \frac{1}{n} \sum_{i=1}^{n} t_i \,, \tag{5}$$

a chybu aritmetického priemeru

$$\sigma_0 = \sqrt{\frac{\sum_{i=1}^n (t_i - \langle t \rangle)^2}{n(n-1)}},$$
(6)

pričom n je počet meraní.

3 Pomôcky

Goniometr, hranol (délka hrany 3 cm), stolní lampa, rtuťová, zinková, vodíková a sodíková výbojka.

4 Postup merania

4.1 Lámavý úhol

- 1. Na goniometer sme umiestnili optický hranol a nastavili ho tak aby sa svetlo lámalo no obe strany hranola
- 2. Zmerali sme uhol odrazu pre obe strany

4.2 Hg spektrum

- 1. Pripojili sme ortutovú výbojku výmenou za zameriavac terčík
- $2.\,$ Goniometrom sem postupne odmerali pre každú spektrálnu čiaru uhly na oboch stranách

Identický postup ako u Hg bol použitý aj pre ostatné typy výbojek.

5 Výsledky merania

5.1 Lámavého uhol

Namerané hodnoty lámavého uhla sú v tabuľke Tab. 1. Z nich bola pomocou vzťahu 5 vypočítaná hodnota

$$\sigma = 60,065 \pm 0,028 \deg$$
.

$\frac{d_1}{[\deg]}$	$\frac{d_1}{[\deg]}$	$\frac{d_1 - d_2 = 2\sigma}{[\deg]}$
$281,894 \pm 0,001$	$161,677 \pm 0,001$	$120,217 \pm 0,001$
$281,866 \pm 0,001$	$161,769 \pm 0,001$	$120,097 \pm 0,001$
$281,869 \pm 0,001$	$161,761 \pm 0,001$	$120,108 \pm 0,001$
$281,888 \pm 0,001$	$161,769 \pm 0,001$	$120,119 \pm 0,001$
$281,869 \pm 0,001$	$161,764 \pm 0,001$	$120,106 \pm 0,001$

Tab. 1: Namerané uhly d_1 a d_2 a vypočítaná hodnota σ podľa 1

5.2 Ortuťové spektrum

Namerané hodnoty ortuťového ortuťového spektra sú v tabulke Tab. 2.

farba	$\frac{d_1}{[\deg]}$	$\frac{d_1}{[\deg]}$	$\frac{\varepsilon_0}{[\deg]}$	$\frac{n}{[-]}$	$\frac{\lambda}{[\mathrm{nm}]}$
oranžová	$268,942 \pm 0,001$	$171,214 \pm 0,001$	$48,864 \pm 0,002$	$1,625 \pm 0,003$	579,065
žltá	$268,964 \pm 0,001$	$171,192 \pm 0,001$	$48,886 \pm 0,002$	$1,626 \pm 0,003$	576,074
zelená	$269,242 \pm 0,001$	$170,900 \pm 0,001$	$49,171 \pm 0,002$	$1,629 \pm 0,003$	546,074
azurová	$269,883 \pm 0,001$	$170,244 \pm 0,001$	$49,819 \pm 0,002$	$1,636 \pm 0,003$	435,835
fialová	$270,858 \pm 0,001$	$169,261 \pm 0,001$	$50,799 \pm 0,002$	$1,645 \pm 0,003$	407,781
ultrafialová	$271,519 \pm 0,001$	$168,439 \pm 0,001$	$51,540 \pm 0,002$	$1,652 \pm 0,003$	404,656

Tab. 2: Namerané uhly d_1 a d_2 a vypočítaná hodnota ε_0 podľa 2 a index lomu n podľa 3 a tabuľková vlnová dĺžka λ .

Namerané hodnoty boli vynesené do grafu Obr. 1 a z fitu dostávame vzťah pre závislosť vlnovej dĺžky na indexe lomu

$$n = 1.620 \pm 0.001 + \frac{0.49 \pm 0.24}{\lambda - 386.2 \pm 8.1}.$$
 (7)

5.3 Spektrum zinku

Bohužiaľ zinková výboja bola v čase merania pokazená, z tohoto dôvodu nebola nameraná.

5.4 Vodíkové spektrum

Namerané hodnoty vodíkového spektra sú v tabuľke 3.

Obr. 1: Závislosť indexu lomu n na tabuľkovej vlnovej dĺžke λ preložená závislosťou $y=1.620\pm0.001+\frac{0.49\pm0.24}{\lambda-386.2\pm8.1}.$

farba	$\frac{d_1}{[\deg]}$	$\frac{d_1}{[\deg]}$	$\frac{\varepsilon_0}{[\deg]}$	$\frac{n}{[-]}$	$\frac{\lambda}{[\mathrm{nm}]}$
červená	$278,727 \pm 0,001$	$171,833 \pm 0,001$	$53,447 \pm 0,002$	$1,670 \pm 0,003$	376,484
modrá	$270,069 \pm 0,001$	$170,258 \pm 0,001$	$50,331 \pm 0,002$	$1,640 \pm 0,003$	361,719
fialová	$270,008 \pm 0,001$	$169,344 \pm 0,001$	$49,906 \pm 0,002$	$1,635 \pm 0,003$	355,105

Tab. 3: Namerané uhly d_1 a d_2 a vypočítaná hodnota ε_0 podľa 2 a index lomu n podľa 3 a vypočítaná hodnota vlnovej dĺžky λ podľa vzťahu 7.

5.5 Výpočet Rydbergovy konštanty

Pre jednotlivé farby bola postupne spočítaná Rydbergovu konštanta ${\cal R}$

$$R_c = 19.1 \,\mathrm{nm}^{-1} \;,$$

$$R_m = 14.8 \,\mathrm{nm}^{-1} \;,$$

$$R_f = 13.3 \,\mathrm{nm}^{-1} \;,$$

kde spodný index označuje farbu cčervenú, m modrú a f fialovú.

5.6 Sodíkové spektrum

Namerané hodnoty sodíkového spektra sú v tabuľke Tab. 4

farba	$rac{d_1}{[\deg]}$	$rac{d_1}{[\deg]}$	$\frac{\varepsilon_0}{[\deg]}$	$\frac{n}{[-]}$	$\frac{\lambda}{[\mathrm{nm}]}$
červená	$269,002 \pm 0,001$	$171,391 \pm 0,001$	$48,805 \pm 0,002$	$1,627 \pm 0,003$	385,12

Tab. 4: Namerané uhly d_1 a d_2 a vypočítaná hodnota ε_0 podľa 2 a index lomu n podľa 3 a vypočítaná hodnota vlnovej dĺžky λ podľa vzťahu 7.

6 Diskusia

Pri celom experimente sem pracovali s goniometrom, ktorý ma vysokú presnosť, z tohoto dôvodu sú uhly prevedené na stupne písané s vačším počtom platných cifier. presnosť goniometru závisela hlavne na presnosti zamerania spektrálnej čiary, čo hlavne v oblastiach modrého a fialové svetla bol problém. Pri vodíkovje výbojke sme museli štrbinu otvoriť viac a teda spektrálna čiara bola širšia, čo nám znepresnilo meranie. Aj napriek presnej metóde, sme sa u vodíkové a sodíkového spektra dopustili s najväčšiu chybou systematickej chyby merania ktorou sú tieto merania poznačené. Pre porovnanie tabuľkové[2] VS namerané hodnoty

```
\begin{split} &656,\!272\,\mathrm{nm}\ vs\ 376,\!484\,\mathrm{nm}(H_2\check{\mathrm{cerven\'a}})\,,\\ &486,\!133\,\mathrm{nm}\ vs\ 361,\!719\,\mathrm{nm}(H_2\mathrm{modr\'a})\,,\\ &434,\!047\,\mathrm{nm}\ vs\ 355,\!105\,\mathrm{nm}(H_2\mathrm{fialov\'a})\,,\\ &\sim 589\,\mathrm{nm}\ vs\ 355,\!105\,\mathrm{nm}(Na\check{\mathrm{z}}\mathrm{lt\'a})\,. \end{split}
```

Rydbergovu konštanta v porovnaní s vypočítanou $R=10^6\,\mathrm{m}^{-1}$ sa líši o cca polovicu, hlavným zdrojom tejto nepresnosti budú chyby v meraní vlnovej dĺžky. Ak chceme pozorovať sodíkový dublet potrebujeme ekvivalentný hranol s dĺžkou základne $a=0.13\,\mathrm{m}$.

7 Záver

Z nameraných hodnôt pre ortuťovú výboju viď Tab. 1 sme určili konštanty n_n , C a λ_n .

Pomocou týchto konštante sme z nameraných dát pre vodíkovú a sodíkovú výbojku určili spektrá. Nakoniec sme určili Rydbergovu konstantu konštantu pre jednotlivé

farby

$$R_c = 19.1 \, \mathrm{nm}^{-1} \; ,$$

$$R_m = 14.8 \, \mathrm{nm}^{-1} \; ,$$

$$R_f = 13.3 \, \mathrm{nm}^{-1} \; ,$$

a určili základňu hranolu $a=0,13\,\mathrm{m},$ ktorým je možné pozorovať sodíkový dublet.

Reference

- [1] Balmerova série [cit. 27.03.2017]Dostupné po prihlásení z Kurz: Fyzikální praktikum II:https://praktikum.fjfi.cvut.cz/pluginfile.php/417/mod_resource/content/5/Balmer-2016-Feb-27.pdf
- [2] HyperPhysics Concepts [cit. 27.03.2017]Dostupné na webe:http://hyperphysics.phy-astr.gsu.edu/hbase/index.html