L'information : A – La Voix

EFREI L1 2015 – 2016

1. Notion d'Onde

a) Généralités

- ⇒ Onde : transmission d'un signal (ie. d'énergie) d'un point à un autre sans transport de matière
- ⇒ Types d'ondes :
 - ⇒ matérielle / immatérielle

- ⇒ scalaire / vectorielle
- ⇒ transversale / longitudinale / de surface

- **⇒** Représentation mathématique :
 - Dépend de l'espace
 - Dépend du temps
 - ⇒ fonction(s) de 4 variables :
 - f(x, y, z, t)
 - $\mathbf{E}(x, y, z, t) = \{E_x, E_y, E_z\}$

- **⇒** Onde plane : une seule coordonnées d'espace
 - **⇒** direction de propagation
 - \Rightarrow par exemple : (Ox)
 - \Rightarrow Onde scalaire plane : f(x, t)
 - \Rightarrow Onde vectorielle plane : { $E_x(x, t), E_y(x, t), E_z(x, t)$ }
 - \Rightarrow Onde plane longitudinale : $E_x(x, t)$,
 - \Rightarrow Onde plane transversale : { $E_v(x, t), E_z(x, t)$ }

b) Ondes Mécaniques

- **⇒** Signal : déplacement local des molécules
 - ⇒ Vibrations autour d'une position d'équilibre fixe
 - ⇒ Déplacement macroscopique de l'onde
- **⇒** Exemples :
 - ⇒ Corde vibrante (transversale)
 - ⇒ Compression d'un ressort (longitudinale)
 - ⇒ Ondes de surface
 - ⇒ Ondes élastiques

⇒ Corde vibrante (transversale)

Chaque point P de la corde se soulève verticalement. Le signal se propage horizontalement. Il est transversal.

La vitesse de propagation est
$$v = \frac{ab}{t_2 - t_1} = \frac{bc}{t_3 - t_2}$$

⇒ Compression d'un ressort (longitudinale)

 $_{
m cate\,O}$

qate t¹ o ullil a b p

date t2 o ADDALLA COLLA COLLA

Chaque point P du ressort se déplace horizontalement. La perturbation se déplace également horizontalement. L'onde est longitudinale.

La vitesse de propagation est $v = \frac{ab}{t_2 - t_1}$

⇒ Ondes de surface

c) Onde progressive

- ⇒ Onde qui se déplace sans se déformer
- ⇒ Caractérisé par sa vitesse de propagation ou **célérité** : c (en m.s⁻¹)
- \Rightarrow Onde plane progressive:

⇒ Amplitude constante si :

$$\Delta x = c \Delta t$$

$$(x'-x) = c (t'-t)$$

$$x'-c t' = x-c t \quad \forall x, x', t, t'$$

 \Rightarrow la quantité $(x-c\ t)$ est conservée et caractérise l'amplitude de l'onde

$$f(x,t) = f(x-ct)$$

 \Rightarrow Généralisation à une onde plane quelconque : $f(\mathbf{OM}) = f(\mathbf{OM.u} - c t)$

d) Onde harmonique (ou sinusoïdale)

- **⇒** Fonction sinusoïdale du temps
 - ⇒ caractérisé par :

♥ Période T

♥ Fréquence f

⇒ Onde plane progressive harmonique :

$$\Rightarrow f(x-ct)$$

⇒ Fonction sinusoïdale du temps et de l'espace

$$f(x,t) = f(x-ct) = g(t-x/c) = A \cdot \cos(\omega(t-x/c) + \varphi) = A \cdot \cos(\omega t - kx + \varphi)$$

$$f(x,t) = A \cdot \cos(\omega t - kx + \varphi)$$

$$= B \cdot \sin(\omega t - kx + \psi)$$

$$= C \cdot \cos(\omega t - kx) + D \cdot \sin(\omega t - kx)$$

✓ Temporelle			√Spatiale		
Période	Т	s	Longueur d'onde	λ	m
fréquence	f	Hz	Nombre d'onde	σ	m ⁻¹
pulsation	ω	rad.s ⁻¹	vecteur d'onde	k	rad.m ⁻¹

⇒ Relation de dispersion :

$$\omega = kc$$
 ou $\lambda = cT$

 \Rightarrow Notation complexe:

$$f(x,t) = \underline{A} \cdot e^{i(\omega t - kx)}$$
 avec $\underline{A} = Ae^{i\varphi}$

$$f(x,t) = A \cdot \cos(\omega t - kx + \varphi) = \text{Re}(\underline{f})$$

- **⇒** Décomposition harmonique :
 - ⇒ Toute onde est la superposition d'ondes harmoniques de différentes fréquences

e) Onde sphérique

- **⇒** Onde progressive non plane : plusieurs directions de propagation
- **⇒** Front d'onde : ensemble des points vibrant en phase
 - ⇒ Onde plane : plans [⊥] direction de propagation
- ⇒ Onde sphérique : onde émise par une source ponctuelle de façon isotrope
 - \Rightarrow Paramètre d'espace : distance à la source r
 - ⇒ Fronts d'onde : sphères concentriques centrées sur la source

$$\Rightarrow f(r, t) = A(r) \cdot g(t - r/c)$$

- A(r): terme d'amplitude $(A(r) = A_0 / r)$
- g(t-r/c): terme de phase
- ⇒ Onde sphérique harmonique :

$$f(r,t) = A(r) \cdot \cos(\omega t - kr + \varphi) = \frac{A_0}{r} \cdot \cos(\omega t - kr + \varphi)$$

f) Puissance - Intensité

- \Rightarrow Puissance de de l'onde : \mathcal{P}
 - ⇒ Puissance totale de l'onde
 - ⇒ Puissance émise par la source
 - ⇒ Unité: Watt
 - \Rightarrow Vibrations très rapides \Rightarrow valeur moyenne $\langle \mathcal{P} \rangle = \frac{1}{T} \int_{0}^{T} \mathcal{P}(t) dt$
- **⇒** Intensité
 - \Rightarrow Puissance perçue par unité de surface : $I = \frac{\langle \mathcal{P} \rangle}{S}$
 - ⇒ Unité : W.m⁻²
 - \Rightarrow Proportionnel à f^2 $I \propto \langle f^2 \rangle$ Rem: $\langle f^2 \rangle \neq \langle f \rangle^2$!
 - ⇒ Ici signal = pression

$$I \propto \left\langle p^2 \right\rangle = p_{e\!f\!f}^2 \quad \left(p_{e\!f\!f} = \sqrt{\left\langle p^2 \right\rangle} \right)$$

⇒ Onde harmonique

$$\Rightarrow f(x,t) = A \cdot \cos(\omega t - kx + \varphi) \Rightarrow f^{2}(x,t) = A^{2} \cdot \cos^{2}(\omega t - kx + \varphi)$$

$$\Rightarrow \left\langle f^{2}(x,t) \right\rangle = A^{2} \cdot \left\langle \cos^{2}(\omega t - kx + \varphi) \right\rangle$$

$$\Rightarrow \left\langle f^{2}(x,t) \right\rangle = \frac{A^{2}}{2}$$

$$\Rightarrow I \propto A^{2} \Rightarrow I = I_{0} = cste$$

Onde sphérique

- \Rightarrow 2 plans d'onde (r, t) (r', t')
- ⇒ Énergie conservée :

ie conservée :
$$\mathcal{P}(r) = \mathcal{P}(r')$$

$$I(r,t) \cdot S(r) = I(r',t') \cdot S(r')$$

$$I(r,t) \cdot 4\pi r^2 = I(r',t') \cdot 4\pi r'^2$$

$$\left\langle A^2(r) \cdot \cos^2(\omega t - kr) \right\rangle \cdot 4\pi r^2 = \left\langle A^2(r') \cdot \cos^2(\omega t - kr') \right\rangle \cdot 4\pi r'^2$$

$$\left\langle A^2(r) \right\rangle \cdot 2\pi r^2 = \left\langle A^2(r') \right\rangle \cdot 2\pi r'^2$$

$$A^2(r) \cdot r^2 = A^2(r') \cdot r'^2$$

$$A(r) = \frac{A(r') \cdot r'}{r} \quad \forall r'$$

$$\Rightarrow I(r) \propto \frac{1}{r^2} \Rightarrow I(r) = \frac{I_1}{r^2}$$

$$\mathcal{P}_S = I(r) \cdot S(r) \Rightarrow \mathcal{P}_S = 4\pi r^2 I(r) \Rightarrow I(r) = \frac{\mathcal{P}_S}{4\pi r^2}$$

2. Onde acoustique – Onde sonore

- **⇔** Onde acoustique
 - ⇒ Onde mécanique
 - ⇒ Signal : variation de pression

a) Pression

- **⇒** Fluide : milieu constitué de particules pouvant se déplacer librement
- **⇒** Agitation thermique : mouvements désordonnés des molécules (isotrope)
- **⇒** Chocs entre les molécules
- **⇒** Forces
- **⇒** Pression:

$$P = \frac{F}{S}$$

- ⇒ unité : N.m⁻² ou Pa
- \Rightarrow Air à T $\approx 20^{\circ}$ C
 - $< v > \approx 400 \text{ m.s}^{-1}$
 - < $l> \approx 70 \text{ nm}$
 - <*n*> $\approx 5.10^9$ collisions/s

\Rightarrow Variations autour d'une valeur moyenne : P =

- \Rightarrow P_0 : pression moyenne ou pression atmosphérique
- \Rightarrow p: pression variable ou pression acoustique
- \Rightarrow Dans l'air : $P_0 = 1$ atm $\approx 10^5$ Pa , $p \approx 10^{-5} 10$ Pa

b) Caractéristiques physiologiques d'un son

- **⇒** Son et bruit
 - ⇒ Son : variation périodique de la pression
 - ⇒ Bruit : variation non périodique de la pression

 $\langle P \rangle = P_0 \text{ et } \langle p \rangle = 0$

⇒ Sensations auditives : 3 paramètres

♥ Hauteur

♥ Force

♥ Timbre

⇒ Hauteur:

- ⇒ son grave ou aigu
- ⇒ Directement lié à la fréquence f / période T
- \Rightarrow L'effet de 2 sons successifs (mélodie) ou simultanés (accord) ne dépend que du rapport f_1/f_2 et pas de la hauteur absolue \Rightarrow <u>échelle multiplicative</u>
- ⇒ Décomposition en octaves : intervalle correspondant à un doublement de la fréquence
- ⇒ Gamme tempérée : octave découpé en douze intervalles chromatiques égaux
 - do | do# | ré | mi ♭ | mi | fa | fa# | sol | sol# | la | si ♭ | si | do
 - Passage d'une note à une autre (demi-ton) : $f \rightarrow 2^{1/12} f \approx 1,059 f$
- ⇒ Seuil de sensibilité : $\Delta f/f \approx 1\%$
- ⇒ Domaine audible par l'homme :

$$20 \text{ Hz} \le f \le 20 \text{ kHz}$$

- f < 20 Hz: infrasons
- f > 20 kHz : ultrasons

⇒ Timbre :

⇒ Forme du motif de l'onde

- ⇒ Décomposition harmonique:
 - Tout signal de fréquence f peut se décomposer comme la somme de signaux sinusoïdaux de fréquences multiples de f.

$$s(t) = s_0 + \sum_{n=1}^{+\infty} s_n \cdot \cos(2\pi n f t + \varphi_n) = a_0 + \sum_{n=1}^{+\infty} a_n \cdot \cos(2\pi n f t) + b_n \cdot \sin(2\pi n f t)$$

- n = 1: fondamental
- n > 1: harmonique de rang n

⇒ Spectre d'amplitude

- Son pur : peu d'harmoniques

- Son riche: beaucoup d'harmoniques

⇒ Force

- ⇒ Lié à l'amplitude des
 - Variations de pression
 - Oscillations des molécules
- ⇒ Son <u>et</u> bruit
- \Rightarrow Quantifié par l'intensité I

(à 1 kHz)	l (W.m ⁻²)	p (Pa)	a (m)
Seuil d'audition	10 ⁻¹²	2.10 ⁻⁵	0,5.10 ⁻¹⁰
Seuil de douleur	1	20	0,5.10-4

c) Niveau sonore

- ⇒ Test d'écoute :
 - \Rightarrow Si p faible, on perçoit Δp faible
 - \Rightarrow Si p fort, on ne perçoit pas Δp faible
- **⇒** Courbe de sensibilité de l'oreille :
 - ⇒ Échelle logarithmique
- Niveau sonore:

$$L = 20 \log \left(\frac{p_{eff}}{p_0} \right)$$

$$\Rightarrow p_0: \text{ pression de référence} = \text{ pression au seuil d'audition } : p_0 = 2.10^{-5} \text{ Pa}$$

$$\Rightarrow I = \alpha \cdot p^2 \Rightarrow L = 20 \log \left(\frac{(I/\alpha)^{1/2}}{p_0} \right) \Rightarrow L = 20 \log \left(\frac{I}{\alpha p_0^2} \right)^{1/2} \Rightarrow L = 10 \log \left(\frac{I}{\alpha p_0^2} \right)$$

$$L = 10 \log \left(\frac{I}{I_0} \right)$$

- \Rightarrow I_0 : intensité de référence = Intensité au seuil d'audition : I_0 = 10^{-12} W.m⁻²
- ⇒ "unité" : décibel (acoustique) ou dB

⇒ Doublement d'amplitude :

$$p' = 2 \times p \Rightarrow L' = 20 \log \left(\frac{2p}{p_0}\right) \Rightarrow L' = L + 20 \log(2) \approx L + 6 dB$$

⇒ Doublement de puissance :

$$I' = 2 \times I \Rightarrow L' = 10 \log \left(\frac{2I}{I_0}\right) \Rightarrow L' = L + 10 \log(2) \approx L + 3dB$$

⇒ Onde sphérique :

$$I(r) = \frac{I_1}{r^2} \Rightarrow L(r) = 10 \log \left(\frac{I_1}{I_0 r^2}\right) = 10 \log \left(\frac{I_1}{I_0}\right) + 10 \log \left(\frac{1}{r^2}\right)$$

$$L(r) = L_1 - 20 \log r$$

⇒ Échelle (indicative) des niveaux sonores

Niveau (dB)	Pression (Pa)	Intensité (W.m ⁻²)	Effets	Exemple
194	101 300	25 10 ⁶		Pression atmosphérique
180	20 000	10 ⁶		Fusée
140	200	100	lésions irréversibles	Avion à réaction
120	20	1	Seuil de douleur	Atelier Industriel
100	2	10-2	Perte d'audition après une exposition brève	Discothèque
80	0.2	10-4	Perte d'audition après une exposition prolongée	Orchestre
60	0.02	10-6		Rue
40	0.002	10-8		Conversation
20	0.0002	10-10		Chuchotement
0	0.00002	10-12		Silence

3. Propagation d'une onde acoustique

a) Propagation d'un ébranlement

- **⇒** Ebranlement : déplacement rapide, de faible amplitude
 - ⇒ Compression de l'air
 - ⇒ Poussée supplémentaire
 - ⇒ Poussée sur le point voisin
 - ⇒ Propagation longitudinale

⇒ Variables mises en jeu

Specification
$$\zeta(x,t)$$
 Specification $\dot{\zeta}(x,t) = \frac{\partial \zeta}{\partial t}$ Specification $\ddot{\zeta}(x,t) = \frac{\partial^2 \zeta}{\partial t^2}$

 \Rightarrow Surpression $p_e(x,t)$

$$P = P_o + p_e$$
 et $p_e \ll P_o$

20

b) Equation de Propagation

⇒ 3 Phénomènes

- I Le gaz se déplace et change de densité
- II Le changement de densité entraîne un changement de pression
- III Les inégalités de pression engendrent le déplacement du gaz

Le gaz se déplace et change de densité

⇒ Conservation de la masse :

$$\rho_o \cdot \mathrm{Sd}x = \rho \cdot S((x + \mathrm{d}x + \zeta(x + \mathrm{d}x, t)) - (x + \zeta(x, t)))$$

si
$$dx \to 0$$
 $\zeta(x + dx, t) = \zeta(x, t) + \frac{\partial \zeta}{\partial x}(x, t) \cdot dx$

$$\rho_o \cdot dx = (\rho_o + \rho_e) \cdot \left[dx + \frac{\partial \zeta}{\partial x}(x, t) \cdot dx \right]$$

$$\rho_o = (\rho_o + \rho_e) \cdot \frac{\partial \zeta}{\partial x}(x, t) + (\rho_o + \rho_e)$$

$$\rho_e = -(\rho_o + \rho_e) \cdot \frac{\partial \zeta}{\partial x}(x, t)$$

$$\Rightarrow \rho_e = -\rho_o \cdot \frac{\partial \zeta}{\partial x} \quad (I)$$

Le changement de densité entraîne un changement de pression

 \Rightarrow Dilatation d'un fluide : Relation entre P et ρ

$$P = f(\rho) \text{ et } P_o = f(\rho_o)$$

$$P = P_o + p = f(\rho_o + \rho_e) \approx f(\rho_o) + f'(\rho_o) \cdot \rho_e$$

$$p = f'(\rho_o) \cdot \rho_e$$

⇒ Dilatation d'un gaz parfait :

$$PV = nRT$$
 $\Rightarrow P = \frac{n}{V}RT$
et $\rho = \frac{m}{V} = \frac{nM}{V}$ $\Rightarrow P = \left(\frac{RT}{M}\right) \cdot \rho$

⇒ Coefficient de compressibilité d'un fluide :

$$\chi = -\frac{1}{V} \cdot \frac{\Delta V}{\Delta P} = -\frac{1}{V} \cdot \frac{V - V_o}{P - P_o}$$
 dépend du fluide dépend de T

et
$$\theta = \frac{V - V_o}{V_o} = \frac{\frac{m}{\rho} - \frac{m}{\rho_o}}{\frac{m}{\rho_o}} = \frac{\rho_o - \rho}{\rho} \approx -\frac{\rho_e}{\rho_o}$$
 soit $\chi = -\frac{\theta}{p} = \frac{\rho_e}{\rho_o p}$

$$\Rightarrow p = \frac{1}{\rho_o \chi} \cdot \rho_e \quad (II)$$

Les inégalités de pression engendrent le déplacement de la tranche

⇒ Équation du mouvement de la tranche :

 \Leftrightarrow masse: $m = \rho_o \cdot S \cdot dx$

 \Leftrightarrow accélération : $\vec{a} = \frac{\partial^2 \zeta}{\partial t^2} \cdot \vec{u}_x$

 $S \mid x \mid x + dx$

$$\Rightarrow \text{RFD} : m \cdot \vec{a} = \sum \vec{F} \Rightarrow \left(\rho_o \cdot S \cdot dx \right) \cdot \left(\frac{\partial^2 \zeta}{\partial t^2} \cdot \vec{u}_x \right) = -\frac{\partial p}{\partial x} (x, t) \cdot dx \cdot S \cdot \vec{u}_x$$

$$\Rightarrow \rho_o \cdot \frac{\partial^2 \zeta}{\partial t^2} = -\frac{\partial p}{\partial x} \quad \text{(III)}$$

⇒ Équation de propagation

$$\rho_e = -\rho_o \cdot \frac{\partial \zeta}{\partial x} \quad (I)$$

$$p = \frac{1}{\rho_o \chi} \cdot \rho_e \quad (II)$$

$$\rho_o \cdot \frac{\partial^2 \zeta}{\partial t^2} = -\frac{\partial p}{\partial x} \quad \text{(III)}$$

$$\rho_o \cdot \frac{\partial^2 \zeta}{\partial t^2} \stackrel{\text{(III)}}{=} - \frac{\partial p}{\partial x} \stackrel{\text{(II)}}{=} - \frac{1}{\rho_o \chi} \cdot \frac{\partial \rho_e}{\partial x} \stackrel{\text{(I)}}{=} - \frac{1}{\rho_o \chi} \cdot \frac{\partial}{\partial x} \left(-\rho_o \cdot \frac{\partial \zeta}{\partial x} \right)$$

$$\rho_o \cdot \frac{\partial^2 \zeta}{\partial t^2} = \frac{1}{\chi} \cdot \frac{\partial^2 \zeta}{\partial x^2}$$

- $\Rightarrow \text{ Équations identiques en } p \text{ et } \rho_e : \quad \rho_o \chi \cdot \frac{\partial^2 \rho_e}{\partial t^2} = \frac{\partial^2 \rho_e}{\partial x^2} \quad \text{ou} \quad \rho_o \chi \cdot \frac{\partial^2 p}{\partial t^2} = \frac{\partial^2 p}{\partial x^2}$
- \Rightarrow Unité de $\rho_o \chi$: m⁻².s²
- $\Rightarrow \text{ On pose : } c_s = \frac{1}{\sqrt{\rho_o \chi}} \qquad (c_s \text{ en m.s}^{-1})$

$$\Rightarrow \frac{\partial^2 p}{\partial x^2} - \frac{1}{c_s^2} \cdot \frac{\partial^2 p}{\partial t^2} = 0$$

c) Résolution de l'équation de d'Alembert

$$\frac{\partial^2 f}{\partial x^2} - \frac{1}{c^2} \cdot \frac{\partial^2 f}{\partial t^2} = 0 \quad (1)$$

Onde progressive dans le sens des *x* décroissants

c) Vitesse du son

 $c_s = \frac{1}{\sqrt{\rho_o \chi}}$

⇒ En général :

$$\begin{array}{ccc}
\rho_s &> \rho_l &> \rho_g \\
\text{mais} & \chi_s &<< \chi_l &<< \chi_g
\end{array} \right\} c_s > c_l > c_g$$

 \Rightarrow **Quelques valeurs** ($P_o = 1$ atm, T = 20 °C)

milieu	c _s (m.s ⁻¹)	milieu	c _s (m.s ⁻¹)	milieu	c _s (m.s ⁻¹)
air	340	PVC	2000 - 2400	verre	5300
eau	1480	béton	3100	acier	5600 - 5900
glace	3200	Bois	3300	granit	6200

⇒ Vitesse du son dans la mer

$$c = 1449,2$$

$$+4,6T - 0,055T^{2} + 0,00029T^{3}$$

$$+(1,34 - 0,010T)(S - 35)$$

$$+1,58 \cdot 10^{-6} P$$

⇒ Vitesse du son dans un gaz parfait

- \Rightarrow Loi des gaz parfaits : PV = nRT
- \Rightarrow Transformation adiabatique (sans échange de chaleur) : $PV^{\gamma} = \text{cste}$ γ : coefficient adiabatique du gaz
 - gaz monoatomique : $\gamma = 5/3 = 1,67$
 - gaz diatomique : $\gamma = 7/5 = 1,4$

$$PV^{\gamma} = \text{cste} \quad \Rightarrow \ln P + \gamma \ln V = \text{cste} \quad \Rightarrow \frac{dP}{P} + \gamma \frac{dV}{V} = 0$$
$$\Rightarrow \frac{1}{V} \cdot \frac{dV}{dP} = -\frac{1}{\gamma P} \qquad \Rightarrow \chi = -\frac{1}{V} \cdot \frac{dV}{dP} = \frac{1}{\gamma P}$$

$$\Rightarrow \text{ Vitesse du son : } c = \frac{1}{\sqrt{\rho_o \chi}} = \sqrt{\frac{\gamma P}{\rho_o}} = \sqrt{\frac{\gamma PV}{m}} = \sqrt{\frac{\gamma PV}{nM}}$$

$$c = \sqrt{\frac{\gamma RT}{M}} \propto \sqrt{T}$$

$$\Rightarrow$$
 Air à 20°C: $c = \sqrt{\frac{1,4 \times 8,31 \times 293}{29 \cdot 10^{-3}}} = 343 \text{ m} \cdot \text{s}^{-1}$

e) Puissance acoustique – Impédance acoustique

- **⇒** Déplacement de matière associée à l'onde
 - Puissance mécanique : $\mathcal{P} = \vec{F} \cdot \vec{v} = pS \cdot \frac{\partial \zeta}{\partial z}$
 - \Rightarrow Onde progressive : $\zeta(x, t) = f(x ct)$

donc
$$\frac{\partial \zeta}{\partial t} = -c \cdot f'(x - ct)$$
 et $\frac{\partial \zeta}{\partial x} = f'(x - ct)$
soit $\frac{\partial \zeta}{\partial t} = -c \cdot \frac{\partial \zeta}{\partial x} \stackrel{\text{(I)}}{=} -c \cdot -\frac{\rho_e}{\rho_o} \stackrel{\text{(II)}}{=} c \cdot \chi p$
donc $\mathcal{P} = S\chi c \cdot p^2$ or $c = \frac{1}{\sqrt{\rho_o \chi}} \Rightarrow \chi = \frac{1}{\rho_o c^2}$ soit $\mathcal{P} = \frac{S}{\rho_o c} \cdot p^2$

- \Rightarrow Intensité acoustique $I = \frac{\langle \mathcal{P} \rangle}{S} \Rightarrow I = \frac{\langle p^2 \rangle}{S}$
 - $\Rightarrow \text{ Pression efficace : } p_{eff} = \sqrt{\langle p^2 \rangle} \Rightarrow I = \frac{p_{eff}^2}{2}$
 - ⇒ Onde harmonique :

$$p = p_o \cos(\omega t - kx + \varphi) \Rightarrow \langle p^2 \rangle = \frac{p_o^2}{2} \Rightarrow p_{eff} = \frac{p_o}{\sqrt{2}}$$

⇒ Impédance acoustique

$$Z = \rho_o \cdot c$$

⇒ Unité : kg.m⁻³ x m.s⁻¹ donc kg.m⁻².s⁻¹ ou Pa.m⁻¹.s

 \Rightarrow Air à 20 °C : Z = 1,29 x 343 = 440 Pa.m⁻¹.s

⇒ Analogie électrique

Electricité			Acoustique		
Tension	U	V	Pression	p	Pa
Intensité	I	Α	Vitesse	$v = \frac{\partial \zeta}{\partial t}$	m.s ⁻¹
Puissance	P	W	Intensité	I	W.m ⁻²
Loi d'Ohm	$U = ZI$ ou $Z = \frac{U}{I}$			$p = Zv$ ou $Z = \frac{p}{v}$	
Loi de Joule	$P = U \cdot I = Z \cdot I^2 = \frac{U^2}{Z}$			$I = \langle p \cdot v \rangle = Z$	$Z \cdot \langle v^2 \rangle = \frac{\langle p^2 \rangle}{Z}$

4. Réflexion – Transmission d'une onde

a) Onde à l'interface de 2 milieux

- **⇒** Surface séparant 2 milieux homogènes :
 - \Rightarrow Milieu 1 : ρ_1 , c_1 , Z_1
 - \Rightarrow Milieu 2 : ρ_2 , c_2 , Z_2
- **⇒** Interface localement plane
- **⇒** Ondes planes progressives harmoniques, perpendiculaires à l'interface

$$p_1(x,t) = p_{1+}(x,t) + p_{1-}(x,t)$$
$$= A_1 \cdot e^{i(\omega t - k_1 x)} + B_1 \cdot e^{i(\omega t + k_1 x)}$$

$$p_2(x,t) = p_{2+}(x,t) + p_{2-}(x,t)$$
$$= A_2 \cdot e^{i(\omega t - k_2 x)} + B_2 \cdot e^{i(\omega t + k_2 x)}$$

⇒ Onde provenant du milieu 1 :

- \Rightarrow Onde incidente : p_{I+}
- \Rightarrow Onde réfléchie : p_1
- \Rightarrow Onde transmise : p_{2+}

$$A_1 = p_i, B_1 = p_r$$
$$A_2 = p_t, B_2 = 0$$

$$\Rightarrow$$
 Milieu 1: $Z_1 = \rho_1 \cdot c_1, k_1 = \frac{\omega}{c_1}, p_1 = \pm Z_1 \cdot v_1$

$$\Rightarrow$$
 Milieu 2 : $Z_2 = \rho_2 \cdot c_2, k_2 = \frac{\omega}{c_2}, p_2 = \pm Z_2 \cdot v_2$

b) Coefficients d'amplitude

⇒ Coefficient de transmission en amplitude :

$$t = \frac{p_t}{p_i} = \frac{A_2}{A_1}$$

 \Rightarrow Coefficient réflexion en amplitude : $r = \frac{p_r}{p_i} = \frac{B_1}{A_1}$

$$r = \frac{p_r}{p_i} = \frac{B_1}{A_1}$$

⇒ Continuité de la pression à l'interface :

$$p_1(0,t) = p_2(0,t) \Rightarrow A_1 \cdot e^{i(\omega t)} + B_1 \cdot e^{i(\omega t)} = A_2 \cdot e^{i(\omega t)} \Rightarrow A_1 + B_1 = A_2 \Rightarrow 1 + \frac{B_1}{A_1} = \frac{A_2}{A_1}$$
$$\Rightarrow 1 + r = t$$

Continuité de la vitesse à l'interface :

$$v_i = \frac{p_i}{Z_1}, v_t = \frac{p_t}{Z_2}, v_r = -\frac{p_r}{Z_1}$$

 \Rightarrow Continuité de v en x = 0:

$$\begin{aligned} v_{1}(0,t) &= v_{2}(0,t) \Rightarrow v_{i}(0,t) + v_{r}(0,t) = v_{t}(0,t) \Rightarrow \frac{p_{i}(0,t)}{Z_{1}} - \frac{p_{r}(0,t)}{Z_{1}} = \frac{p_{t}(0,t)}{Z_{2}} \\ &\Rightarrow \frac{A_{1}}{Z_{1}} - \frac{B_{1}}{Z_{1}} = \frac{A_{2}}{Z_{2}} \Rightarrow 1 - \frac{B_{1}}{A_{1}} = \frac{Z_{1}}{Z_{2}} \cdot \frac{A_{2}}{A_{1}} \quad \Rightarrow 1 - r = \frac{Z_{1}}{Z_{2}} t \end{aligned}$$

⇒ Coefficients en amplitude :

$$\begin{cases} 1+r=t \\ 1-r=\frac{Z_1}{Z_2}t \Rightarrow \begin{cases} 2=\left(1+\frac{Z_1}{Z_2}\right)t \Rightarrow \\ r=t-1 \end{cases} \Rightarrow t = \frac{2Z_2}{Z_1+Z_2}, \quad r=\frac{Z_2-Z_1}{Z_1+Z_2}$$

c) Coefficients en intensité

⇒ Coefficient de transmission en intensité/énergie :

$$T = \frac{I_t}{I_i}$$

 \Rightarrow Coefficient de réflexion en intensité/énergie : $R = \frac{I_r}{I_i}$

Intensité des ondes :
$$I = \frac{\left\langle p^2 \right\rangle}{Z}, I_i = \frac{\left\langle p_i^2 \right\rangle}{Z_1}, I_r = \frac{\left\langle p_r^2 \right\rangle}{Z_1}, I_t = \frac{\left\langle p_t^2 \right\rangle}{Z_2}$$

$$T = \frac{I_t}{I_i} = \frac{A_2^2}{Z_2} \cdot \frac{Z_1}{A_1^2} = \frac{Z_1}{Z_2} \cdot t^2$$

$$R = \frac{I_r}{I_i} = \frac{B_1^2}{Z_1} \cdot \frac{Z_1}{A_1^2} = r^2$$

Coefficients en intensité/énergie :

$$T = \frac{4Z_1Z_2}{(Z_1 + Z_2)^2}, \quad R = \left(\frac{Z_2 - Z_1}{Z_1 + Z_2}\right)^2$$

$$\Rightarrow \text{ Remarques :} \Rightarrow T + R = \frac{4Z_1Z_2}{(Z_1 + Z_2)^2} + \left(\frac{Z_2 - Z_1}{Z_1 + Z_2}\right)^2 = \frac{4Z_1Z_2 + Z_2^2 - 2Z_1Z_2 + Z_1^2}{(Z_1 + Z_2)^2} = \frac{Z_2^2 + 2Z_1Z_2 + Z_1^2}{(Z_1 + Z_2)^2} = \frac{(Z_1 + Z_2)^2}{(Z_1 + Z_2)^2}$$

T + R = 1⇒ Conservation de l'énergie : (mais $t+r \neq 1$)

$$T_{1\to 2} = T_{2\to 1}, \quad R_{1\to 2} = R_{2\to 1}$$

$$\Rightarrow$$
 si $Z_1 >> Z_2$ (ou $Z_2 >> Z_1$), $T \approx \frac{4Z_1Z_2}{Z_1^2} = \frac{4Z_2}{Z_1}$, $R \approx \frac{Z_1^2}{Z_1^2}$, $T \to 0$, $R \to 1$

$$\Rightarrow$$
 si $Z_1 \approx Z_2, T \approx \frac{4Z_1^2}{(2Z_1)^2}, R \approx \frac{0}{(2Z_1)^2}, T \to 1, R \to 0$

⇒ Atténuation en niveau acoustique :

⇒ Atténuation en transmission :

$$\Delta L_t = L_t - L_i = 10 \log \frac{I_t}{I_o} - 10 \log \frac{I_i}{I_o} = 10 \log \frac{I_t}{I_i}$$

$$\Delta L_t = 10 \log T$$

⇒ Atténuation en réflexion :

$$\Delta L_r = L_r - L_i = 10 \log \frac{I_r}{I_o} - 10 \log \frac{I_i}{I_o} = 10 \log \frac{I_r}{I_i}$$

$$\Delta L_r = 10 \log R$$

5. Phénomènes Ondulatoires

a) Effet Doppler – Bang Sonique

⇒ **Effet Doppler** : décalage de fréquence d'une onde acoustique ou électromagnétique entre la mesure à l'émission et la mesure à la réception lorsque la distance entre l'émetteur et le récepteur varie au cours du temps

$$f' = f \cdot \frac{c + V_o \cdot \cos \theta_o}{c - V_s \cdot \cos \theta_s}$$

- ⇒ Objet supersonique : répartition de la surpression sur un cône de Mach
 ⇒ Bang sonique
- ⇒ Objet transsonique : répartition de la surpression devant l'objet
 ⇒ Mur du son

- 1. Subsonique (v < c)
- 2. Transsonique $(v \approx c)$
- 3. Supersonique (v > c)

• Avions:

- •Bell X1 (14/10/1947)
- •Concorde et Tupolev TU-144

• Balle de fusil ($v \approx 800 \text{ m/s}$)

• Claquement du fouet

b) Transmission des sons – Modulation d'une onde

- ⇒ Portée du son : quelques mètres
- ⇒ On transforme le signal acoustique en un signal électrique ou électromagnétique
- **⇒** On lui trouve un support de transmission
 - ⇒ Radiodiffusion: espace hertzien
 - ⇒ Télécommunications: câble en cuivre, fibre optique, espace hertzien
- **⇒ On trouve, si nécessaire, un véhicule du signal**
 - ⇒ porteuse dont le choix des caractéristiques dépend du support de propagation

AM

 $I = (I_0 + I_{smax} \sin \omega_s t) \sin \omega_0 t$

FM

 $I = I_{0\text{max}} \sin(\omega_0 t + (\omega_0/\omega_s) \sin \omega_s t)$

Modulation d'amplitude

Une porteuse sinusoïdale $e_o(t) = E\cos(\omega t)$ modulée en amplitude par un signal modulant basse-fréquence s(t) qui peut être un signal audiofréquence, vidéo, analogique ou numérique s'écrit :

$$e(t) = E(1 + k.s(t)) cos(\omega t)$$

- en l'absence de signal modulant s(t)=0 et e(t) = e_o(t) = Ecos(ωt)
- en présence de modulation l'amplitude de la porteuse s'écrit : E(1+k.s(t))

Pour représenter l'allure temporelle d'un signal AM, on utilise les propriétés suivantes :

- la porteuse oscille entre deux limites qui sont les enveloppes supérieure et inférieure
- l'enveloppe supérieure a pour équation x(t) = E (1 + k.s(t)) (lorsque cos(ωt) = 1)
- l'enveloppe inférieure a pour équation y(t) = -E (1 + k.s(t)) (lorsque cos(ωt) = -1)
- on retrouve la forme du signal modulant s(t) dans les deux enveloppes

Lorsque le signal modulant est sinusoïdal, on a $s(t) = acos(\Omega t)$ et la porteuse modulée s'écrit :

 $e(t) = E(1 + kacos(\Omega t)) cos(\omega t) = E(1 + mcos(\Omega t)) cos(\omega t)$

m : indice de modulation

Figure 1.

Allure d'une
porteuse
modulée en
amplitude

Figure 2. Influence de m sur l'allure de la porteuse

Pour produire un signal modulé en amplitude, il faut :

- une information basse-fréquence s(t) qui peut être un signal audiofréquence, vidéo, analogique ou numérique
- une porteuse sinusoidale eo(t)

La porteuse modulée en amplitude s'écrit alors :

$$e(t)=E[1+k.s(t)]\cos(\omega t+\varphi)$$

- en l'absence de signal modulant s(t)=0 et e(t) = eo(t) = Ecos(ωt)
- en présence de modulation, la porteuse oscille entre les enveloppes supérieure et inférieure
- l'enveloppe supérieure s'écrit y(t) = E(1+k.s(t)) et l'enveloppe inférieure y'(t) = E(1+k.s(t))

Un système de communication transmet à travers un canal des informations de la source vers un utilisateur :

- la source fournit l'information sous la forme d'un signal analogique ou numérique
- l'émetteur inscrit cette information sur une porteuse sinusoïdale de fréquence fo : c'est la modulation
- ce signal électrique modulé est transformé en onde électromagnétique par l'antenne
- le canal est l'espace libre entre l'antenne d'émission et de réception dans lequel se propage l'onde électromagnétique
- le récepteur sélectionne la fréquence de la porteuse et démodule l'information qui y est inscrite
- l'information est restituée avec une dégradation liée aux qualités de l'émetteur, du récepteur et des perturbations du canal

La AM est utilisée dans un grand nombre d'applications :

- les Grandes Ondes de 150 à 280 kHz pour la radiodiffusion commerciale
- de 30 kHz à 3 MHz : les radiophares, balises d'aéroports, radios maritimes, services de météorologie...
- les Petites Ondes de 520 à 1710 kHz pour la radiodiffusion commerciale
- les Ondes Courtes de 3 à 30 MHz avec les cibistes (autour de 27 MHz) et les radioamateurs trafiquant dans 13 bandes allant de 120m (2,3 à 2,5 MHz) à 11m (25,6 à 26,1 MHz)
- les VHF et UHF de 30 MHz à 3 GHz où on trouve les radioamateurs, la télévision pour la luminance et le son, les communications avec les satellites, les émissions des aéroports, de la police...

Remarque : jusqu'à 50 MHz, les ondes radio peuvent se réfléchir sur l'ionosphère, ce qui permet une portée importante avec une puissance réduite.

Une antenne a une fréquence de résonance liée à la dimension du brin actif :

- sa longueur est typiquement égale au quart de la longueur d'onde
- en travaillant à une fréquence fo élevée, l'antenne sera donc de taille réduite

antennes bande FM : 88 à 108 MHz et $\lambda \approx 3m$

Antenne TV-UHF : 400 à 800 MHz et $\lambda \approx 50$ cm

Le centre GO d'Allouis utilise deux antennes pylônes de 350m de haut diffusant les programmes de France Inter à 162 kHz (λ = 1852 m).

Ce mobile GSM qui tient dans la main contient 3 antennes différentes :

- bande GSM autour de 900 MHz
- bande DCS autour de 1,8 GHz
- bande Bluetooth autour de 2,45 GHz

Le 26 novembre 1921 a lieu la première émission de radiophonie française :

- à Sainte-Assise, près de Melun, Yvonne Brothier, debout au milieu de tout l'appareillage d'émission, interprète "la Marseillaise" et un air du "Barbier de Séville"
- cette musique est captée par un microphone puis module en amplitude une porteuse
- à 40 kilomètres de là, à Paris, une assemblée d'ingénieurs ravis entend la voix de la chanteuse
- le concert est également capté par de nombreuses stations dans un rayon de 1600 km

A cette époque, les nombre d'émissions est faible et l'audience réservée à quelques passionnés. En 1922, Émile GIRARDEAU crée un service public d'information et de musique, l'émetteur de la Tour Eiffel est installé et commence à émettre à fo = 113,2 kHz (2650 m) avec P= 1 kW

Les émissions radio en modulation d'amplitude n'ont plus cessé depuis...

La première émission AM

Récepteur à galène

Modulation de fréquence

Le message basse-fréquence s(t) à transmettre est inscrit dans la fréquence instantanée de la porteuse.

Sa fréquence dépend alors du temps et s'écrit :

$$f(t) = fo + k.s(t)$$
 avec $s(t)$: signal modulant

fo : fréquence de la porteuse non modulée

On passe aisément de la fréquence à la pulsation instantanée :

$$\omega(t) = 2\pi f(t) = \omega o + 2\pi k s(t)$$

puis à la phase en intégrant la pulsation :

$$\theta(t) = \int \omega(t)dt = \omega ot + 2\pi k \int s(t)dt$$

Le signal modulé en fréquence est un signal sinusoïdal d'amplitude E et de fréquence f(t). Son expression mathématique est donc la suivante :

$$e(t) = E\cos(\theta(t)) = E\cos(\omega t + 2\pi k \int s(t)dt)$$

Figure 1.
Porteuse FM
avec signal
modulant
sinusoïdal

c) Diffraction – Diffusion

 \Rightarrow Diffraction : comportement particulier de l'onde lorsqu'elle rencontre un obstacle de la taille de sa longueur d'onde : L $\approx \lambda$

⇒ **Diffusion :** phénomène par lequel une onde est dévié dans de multiples directions par une interaction avec d'autres objets.

Diffusion de Rayleigh:

$$I = I_0 \cdot 8\pi^4 \cdot N\alpha^2 \cdot \frac{1 + \cos^2(\Theta)}{\lambda^4 \cdot R^2}.$$

d) Battements – Interférences

- ⇒ **Battements :** superposition de 2 sons de fréquences très proches mais non identiques
 - \Rightarrow Audible si $|f_1 f_2| < 7 Hz$

mathématiquement

perceptivement

⇒ **Interférences :** lorsque deux ondes de même type et de même fréquence se rencontrent et interagissent l'une avec l'autre.

Casque anti bruit

e) Atténuation

- ⇒ Diminution de l'amplitude / l'intensité d'un son lors de sa propagation
- ⇒ **Atténuation géométrique :** puissance totale conservée, augmentation de la surface des fronts d'ondes
 - ⇒ Onde sphérique :

$$P_S = I(r) \cdot S(r) = I(r) \cdot 4\pi r^2$$

$$I(r) = \frac{P_S}{4\pi r^2} \Rightarrow I(r) \propto \frac{1}{r^2}$$
$$L(r) = L_1 - 20 \log r$$

- ⇒ **Atténuation physique :** interactions entre l'onde et le milieu dans lequel elle se propage
 - \Rightarrow Frottements de type visqueux : $\vec{f} = -k \cdot \vec{v}$
 - \Rightarrow Puissance dissipée : $\mathcal{P} = \langle \vec{f} . \vec{v} \rangle = \langle -k.v^2 \rangle \Rightarrow \mathcal{P} \propto \langle v^2 \rangle \propto \langle p^2 \rangle \propto I$

⇒ Variation d'intensité :

$$I(x+dx) - I(x) = \mathcal{P}(x)dx = -\mu \cdot I(x)dx \Rightarrow \frac{dI(x)}{dx} = -\mu I(x)$$

$$I(x) = I_0 \cdot e^{-\mu x}$$

$$L(x) = L_0 - \alpha x \quad (\text{avec } \alpha = 10 \frac{\mu}{\ln 10})$$

$$\alpha \text{ en dB/m}$$

- \Rightarrow En général : α dépend
 - du milieu
 - de la fréquence f

Fréquence des ultrasons	Profondeur d'exploration maximale
2,5 - 3,5 MHz	> 15 cm
5 MHz	10 cm
7,5 MHz	5-6 cm
10 - 12 MHz	2-3 cm

	Sang	Graisse	Muscle	Os
α/f	0,1	0,5	1,5	10
(dB.m ⁻¹ .MHz ⁻¹)				

7. Les ondes acoustiques comme véhicule de l'information

a) À l'écoute de la mer (acoustique sous-marine)

La crevette «claquante», qui aime les eaux chaudes peu profondes, emplit l'océan d'un son caractéristique dû à sa pince surdimensionnée : en refermant sa pince très rapidement (en haut), la crevette crée une bulle de cavitation qui, en disparaissant, engendre un claquement.

⇒ Le sonar

Militaire:

- ⇒ **Actif**: Emission d'ondes de fréquence plus ou moins hautes selon la distance.
- ⇒ **Passif**: Capte tous les bruits environnants.

♥ Civil:

- \Rightarrow Cartographie
- **⇒** Détection de poissons
- **⇒** Navigation

♦ Naturel:

⇒ Echolocation des dauphins

Echolocation des dauphins

L'émission

Le dauphin est capable d'émettre différents types de son, de fréquences variables, certains servant à communiquer, d'autres à se repérer dans l'espace. Chez le dauphin, une mécanique vibratoire explique aussi la production du son. Le principe est relativement simple, même si encore sujet à controverses. Il s'agit du principe des cavités de <u>Helmholtz</u>. Le dauphin possède des sacs d'air dont il peut ajuster la taille, afin d'émettre des sons à des <u>fréquences de résonances</u> variées. C'est le même principe qui permet d'émettre des sons lorsqu'on souffle à la perpendiculaire d'un goulot de bouteille. Selon la quantité de liquide dans la bouteille, on pourra émettre des sons plus ou moins aigus.

Lorsque le dauphin est en plongée, il emmagasine un certain volume d'air dans ses poumons, et il n'en relâche pas. Comme l'homme et ses deux <u>narines</u>, il possède deux conduits aériens parallèles, auxquels sont fixés des petits sacs d'air de taille variable, ce sont des cavités résonantes. Pour produire les sifflements, le dauphin utilise son <u>larynx</u>, comme l'homme. D'ailleurs, les sifflements sont généralement émis dans la gamme de fréquences audibles. Cependant, la mécanique vibratoire classique ne permet pas d'expliquer les capacités d'émissions à une centaine de kHz. En effèt, les tissus du larynx ne peuvent pas vibrer à une fréquence si élevée. Ce sont des tissus contenant un liquide cristallin, les <u>lèvres phoniques</u>, qui génèrent ces fréquences élevées. Ce liquide cristallin a des propriétés de résonance à des fréquences beaucoup plus élevées que les tissus normaux. Les sons émis se propagent ensuite dans ce qu'on appelle le <u>melon</u>, la bosse cachée sous le front. Il s'agit d'une boule <u>graisseuse</u> qui joue le rôle d'une <u>lentille</u> acoustique <u>focalisante</u>. Elle permet de diriger une onde acoustique <u>cohérente</u> vers la zone spatiale située devant le dauphin.

b) À l'écoute du corps humain (imagerie acoustique)

⇒ Échographie médicale

Echographie médicale

- Modalité d'imagerie relativement peu coûteuse
- Temps réel
- "Non-invasive"
- Bien adaptée pour les tissus mous
- Rendue inefficace par les os, les gaz...
- Peut se miniaturiser

Principe de base

Utiliser le fait que, lors de l'émission d'une vibration mécanique dans un milieu, une partie de l'énergie revient vers "l'envoyeur' en fonction de la nature locale du milieu traversé

- Créer un impulsion mécanique (acoustique) la plus brève possible
- La confiner dans un faisceau étroit
- Déplacer et orienter ce faisceau
- Créer un image avec ce qui « revient » après chaque émission d'impulsion à l'intérieur de chacun des faisceaux
- Exploiter l'information contenue dans cette image.

⇒ Mesure de distance

$$d = \frac{c\Delta t}{2}$$

Forme d'onde classique émise par un élément de réseau piezo-électrique

Génération et réception d'ondes ultrasonores

- Réseaux de transducteurs piézoélectriques réversibles
- réseaux 1D de 128 à 512 transducteurs (1.5 D et 2D), pas d'échantillonnage $\lambda/2$
- Emission de pulses formés d'une oscillation de sinusoïde.
- Très bonne résolution axiale (correspondance temps/profondeur)
- Focalisation électronique pour la résolution latérale.
- Synthèse de lentilles acoustiques
- Imagerie de réflectivité : $Z = \rho_0 c_0$
- •Milieu faiblement hétérogène

Milieu	$c_0 (m.s^{-1})$	ρ_0 (kg.m ⁻³)
Sang	1566	1060
Graisse	1446	960
Muscle	1542	1070
Foie	1566	1060

• Longueur d'onde typique : à 5 MHz, $\lambda = c_0/f = 0.3$ mm

Focalisation électronique en milieu homogène : formation de l'image

Modélisation par différences finies

Maillage: 500 x 500 points taille de la grille: 50 x 50 mm² Codes Couleur: -40 à 0 db

Focalisation à l'émission

Focalisation à la réception

- Approximation de la diffusion simple
- Diffuseurs de rayleigh répartis aléatoirement : bruit de "speckle"

Avantages et inconvénients de l'échographie : exemples

- Bruit de Speckle Difficulté d'analyse
- Cadence d'images Imagerie fonctionnelle incomparable

⇒ Échographie par effet Doppler

$$\Delta f = \frac{2 f v_s \cos \theta}{v}$$

$$v_s = \frac{\Delta f}{2f\cos\theta} v$$

f = fréquence de l'onde émise

 v_s = vitesse de la source

v = vitesse de l'onde sonore dans le milieu

 θ = angle entre la ligne de "visée" et la direction du mouvement.

c) À l'écoute des matériaux (contrôle non destructif par ultrasons)

Array of 128 transducers 5 MHz central frequency

Zone with a flat bottom hole at L'information: A-**140mm** depth

Zone without defect (speckle)

d) À l'écoute de la terre (sismologie)

1. Pour la propagation jusqu'à 1500 kilomètres de la source, on assimile la Terre à une succession de couches géologiques. Dans ce cadre, les ondes sismiques se propagent comme les rayons de lumière de l'optique géométrique. Des rayons sismiques se propagent directement (Pg, Sg; g pour granit), d'autres sont réfléchis (PmP, SmS; m, signal réfléchi sur le manteau), d'autres encore se propagent le long de l'interlate entre la croûte et la manteau (Pn, Sn; n, pour normal), puis réapparaissent sous forme d'ondes de type P et S, atténuées par rapport aux ondes qui se sont propagées directement.

