Set No.3: Real sequences

Exercise 1:

Calculate the limit of the following sequences with the general term

$$u_n = \frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \frac{n}{n^2 + 3} + \dots + \frac{n}{n^2 + n}, \quad v_n = \frac{1}{n!} (1! + 2! + \dots + n!),$$

$$w_n = \sqrt{n} (\sqrt{n - 1} + \sqrt{n}).$$

Exercise 2:

1. Let the sequence (u_n) define by the general term :

$$u_n = \frac{2^n + (-1)^n}{2^n}, n \in \mathbb{N}$$

Show that $\lim u_n = 1$. For what values of n, $|u_n - 1|$ less then ε and less then 10^{-4} .

2. Using the definition of a sequence, show that:

$$\lim_{n \to +\infty} \frac{2\ln(n+1)}{\ln n} = 0; \quad \lim_{n \to +\infty} \frac{-5n^2 - 3}{4n} = -\infty, \quad \lim_{n \to +\infty} \ln(\ln n) = +\infty$$

Exercise 3:

Among the following sequences, show which ones are bounded

$$u_n = n^{(-1)^n}, \quad v_n = \sum_{k=1}^n \frac{1}{k + n}.$$

Study the monotony of the following sequences and deduce possibly their nature:

$$u_n = \sum_{k=1}^n \frac{k^2}{n^2}, \quad v_n = \sum_{k=1}^n \frac{1}{k+n}, \quad w_n = \frac{1 \times 3 \times 5 \times \cdots (2n-1)}{2 \times 4 \times 6 \times \cdots \times (2n)}.$$

Exercise 4:

Let (u_n) and (v_n) be two sequences defined by $0 < u_0 < v_0$ and $u_{n+1} = \frac{2u_nv_n}{u_n+v_n}$ and $v_{n+1} = \frac{u_n+v_n}{2}$

- 1. Prove that $\forall n \in \mathbb{N}, 0 < u_n < v_n$
- 2. Show that the two sequences u_n and v_n are convergent
- 3. Deduce that they converge towards the same limit. calculate this limit.

Exercise 5:

Let the sequence (u_n) be defined by :

$$u_n = \begin{cases} u_1 = \frac{1}{2}, \\ u_{n+1} = u_n^2 + \frac{3}{16} \end{cases}.$$

- 1. Prove that $\forall n \geq 1, \ \frac{1}{4} < u_n < \frac{3}{4}$.
- 2. Study the nature of the sequence u_n and calculate its limit if it is convergent.
- 3. Let $E = \{u_n, n \ge 1\}$. Determine $\sup E$ and $\inf E$.

Exercise 6: Find inf u_n , sup u_n , $\lim \inf u_n$ and $\lim \sup u_n$ if:

$$u_n = \frac{(-1)^n}{n} + \frac{1 + (-1)^n}{2}; \quad u_n = 1 + \frac{n}{n+1}\cos\frac{n\pi}{2}.$$