Teoria da Computação

Gramáticas Livres de Contexto

Thiago Alves Rocha

Introdução

- ◆Uma Gramática Livre de Contexto (GLC) é uma notação para descrever linguagens
- Ideia básica é usar variáveis no lugar de conjunto de strings

 $A \rightarrow 0A1$ $A \rightarrow B$ $B \rightarrow \#$

Introdução

- Regras para concatenar conjuntos de strings
- Regras alternativas para uma variável permite a união
- Regras são chamadas de produções

```
P \rightarrow A
```

$$P \rightarrow B$$

$$P \rightarrow 0P0$$

$$P \rightarrow 1P1$$

$$A \rightarrow \epsilon$$

$$B \rightarrow 1$$

$$B \rightarrow 0$$

Formalismo de GLC

- ◆Símbolo inicial: a variável S cuja linguagem está sendo definida
- ◆Variáveis (não terminais): um conjunto finito V de outros símbolos, cada um representando uma linguagem
- ◆Terminais: conjunto T de símbolos do alfabeto da linguagem sendo definida

Produções

- Uma producão tem a forma
 - variável → string de variáveis e terminais
 - Cabeça → corpo
- ◆Convenção:
 - A, B, C,... e também S são variáveis
 - a, b, c,... são terminais
 - ..., X, Y, Z podem ser variáveis ou terminais
 - ..., w, x, y, z são strings de terminais
 - $lackbox{0}{\hspace{0.1cm}} \alpha$, β , γ ,... são strings de terminais ou variáveis

GLC - Formalismo

- \bullet G = (V, T, P, S)
- V é o conjunto de variáveis
- ◆T é o conjunto de terminais
- P é o conjunto de produções
- S é o símbolo inicial

 $lack G_1 = (V_1, T_1, P_1, S_1)$ $lack V_1 = \{A, B\}$ $lack T_1 = \{0, 1, \#\}$ $lack S_1 = A$ $lack P_1 = \{A \rightarrow 0A1, A \rightarrow B, B \rightarrow \#\}$

Representação

- Podemos representar uma GLC apenas pelas suas regras
- Variáveis aparecem no lado esquerdo das regras
- Terminais são os outros símbolos

Representação

- Símbolo da esquerda da primeira regra de produção é o inicial
- Regras com mesmo símbolo na esquerda podem ser compactadas:

$$A \rightarrow 0A1$$
 $A \rightarrow 0A1 \mid B$

$$A \rightarrow B$$
 $B \rightarrow \#$

$$B \rightarrow \#$$

- **♦** E → E+T
- **♦** E → T
- ◆ T → TxF
- \uparrow T \rightarrow F
- \bullet F \rightarrow (E) | a
- Definição formal da GLC?

Intuição das Derivações

- Nós derivamos strings iniciando pelo símbolo inicial, e repetidamente trocando alguma variável A pelo corpo de uma das suas produções
 - As produções de A são aquelas que tem A na cabeça da produção
 - Repetindo até não sobrar variáveis

Derivações - Formalismo

- ◆Dizemos que αAβ ⇒ αγβ se A → γ é uma produção
- **♦** Exemplo: $\{A \rightarrow 0A1, A \rightarrow B, B \rightarrow \#\}$
- $\diamond A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 00B11 \Rightarrow 00#11$

Derivação Iterada

- →* significa "zero ou mais passos de derivação"
- $\bullet \alpha \Rightarrow \alpha$ para qualquer string α
- ♦ Se $\alpha \Rightarrow * \beta$ e $\beta \Rightarrow \gamma$, então $\alpha \Rightarrow * \gamma$

◆Derivação A ⇒* 000#111 na GLC

 $A \rightarrow 0A1 \mid B$

 $B \rightarrow \#$

- ◆ A ⇒* A
- **♦**A ⇒* 0A1
- **♦**A ⇒* 00A11
- **♦**A ⇒* 00B11
- ◆A ⇒* 00#11
- ◆A ⇒* 000#111

Árvore de Derivação

◆Podemos representar uma derivação através de uma árvore

- **♦** E → E+T
- **♦** E → T
- ◆ T → TxF
- \uparrow T \rightarrow F
- \bullet F \rightarrow (E) | a
- ◆ Derivação de a+axa?

- **♦** E → E+T
- **♦** E → T
- ◆ T → TxF
- \uparrow T \rightarrow F
- \bullet F \rightarrow (E) | a
- ◆ Derivação de (a+a)xa?

◆ Derivação para a+axa e (a+a)xa

Linguagem de uma GLC

- Seja G uma GLC
- ◆A linguagem de G é L(G) = $\{w \in \Sigma^* \mid S \Rightarrow^* w\}$
- ◆L(G) é a linguagem gerada por G

Linguagem de uma GLC

Linguagem Livre de Contexto

◆Seja B uma linguagem tal que existe uma GLC G com L(G) = B. Dizemos que B é uma Linguagem Livre de Contexto

- $\bullet L_1 = \{0^n \# 1^n \mid n \ge 1\}$ é livre de contexto
- \bullet Pois $L(G_1) = L_1$

 $◆L_2 = \{w \in \{0,1\}^* \mid w \text{ é palíndromo}\} \text{ é livre de contexto}$

- $◆L_2 = \{w \in \{0,1\}^* \mid w \text{ é palíndromo}\} \text{ é livre de contexto}$
- \bullet G₂:

```
P \rightarrow A \mid OPO \mid 1P1
```

$$A \rightarrow \epsilon \mid 1 \mid 0$$

$$\bullet L_2 = L(G_2)$$

- **♦**S → ε
- **♦**S → 0S1
- L(G) = ?

- **♦**S → ε
- **♦**S → 0S1
- \bullet L(G) = $\{0^n1^n \mid n \ge 0\}$
- \bullet {0ⁿ1ⁿ | n \geq 0} é livre de contexto

- Faça uma gramática livre de contexto para gerar a linguagem abaixo:
- $\{w \in \{0,1\}^* \mid w = 0^n 1^n \text{ ou } w = 1^n 0^n \text{ e } n \ge 0\}$

- Faça uma gramática livre de contexto para gerar a linguagem abaixo:
- $\{w \in \{0,1\}^* \mid w = 0^n 1^n \text{ ou } w = 1^n 0^n \text{ e } n \ge 0\}$
- **♦** S → A | B
- ◆ A → 0A1 | ε
- ♦ B → 1B0 | ε

Exercícios

- ◆Seja L(0*1(0+1)*) a linguagem da expressão regular 0*1(0+1)*
- Construa uma GLC para gerar L(0*1(0+1)*)

Exercícios

- ◆Seja L(0*1(0+1)*) a linguagem da expressão regular 0*1(0+1)*
- Construa uma GLC para gerar L(0*1(0+1)*)

- **♦**S → A1B
- **♦**A → 0A | ε
- ◆B \rightarrow 0B | 1B | ε

Exercício

Faça uma GLC para gerar $L = \{a_ib_jc_k \in \{a,b,c\}^* \mid i = j \text{ ou } j = k\}$

Exercício

Faça uma GLC para gerar

```
L = \{aibick \in \{a,b,c\}^* \mid i = j \text{ ou } j = k\}
```

```
S \rightarrow AB \mid CD
```

$$A \rightarrow aAb \mid \epsilon$$

$$B \rightarrow cB \mid \epsilon$$

$$D \rightarrow bDc \mid \epsilon$$

◆Construa uma GLC para gerar {w ∈ {a,b}* | w tem mesma quantidade de a's e b's}

◆Construa uma GLC para gerar {w ∈ {a,b}* | w tem mesma quantidade de a's e b's}

S → aSbS | bSaS | ε