Given a 6×6 2D Array, **arr**:

We define an hourglass in \boldsymbol{A} to be a subset of values with indices falling in this pattern in \boldsymbol{arr} 's graphical representation:

```
abc
d
efg
```

There are **16** hourglasses in *arr*, and an *hourglass sum* is the sum of an hourglass' values. Calculate the hourglass sum for every hourglass in *arr*, then print the *maximum* hourglass sum.

For example, given the 2D array:

We calculate the following **16** hourglass values:

```
-63, -34, -9, 12,
-10, 0, 28, 23,
-27, -11, -2, 10,
9, 17, 25, 18
```

Our highest hourglass value is 28 from the hourglass:

```
0 4 3
1
8 6 6
```

Note: If you have already solved the Java domain's Java 2D Array challenge, you may wish to skip this challenge.

Function Description

Complete the function *hourglassSum* in the editor below. It should return an integer, the maximum hourglass sum in the array.

hourglassSum has the following parameter(s):

• arr: an array of integers

Input Format

Each of the $\boldsymbol{6}$ lines of inputs arr[i] contains $\boldsymbol{6}$ space-separated integers arr[i][j].

Constraints

- $-9 \leq arr[i][j] \leq 9$
- $0 \le i, j \le 5$

Output Format

Print the largest (maximum) hourglass sum found in arr.

Sample Input

Sample Output

Explanation

arr contains the following hourglasses:

The hourglass with the maximum sum (19) is:

2 4 4

2

1 2 4