

Ground

- $V_{TH} = 2/3 \ Vcc$ for comparator 1
- $V_{TL} = 1/3 Vcc$ for comparator 2

- For Comparator 1
- $V_{TH} = 2/3 \ Vcc$
- IF $V_6 > V_{TH}$, $V_0 = 1$, High
- IF $V_6 < V_{TH}$, $V_0 = 0$, Low

- For Comparator 2
- $V_{TL} = 1/3 \ Vcc$
- IF $V_2 > V_{TL}$, $V_0 = 0$, Low
- IF $V_2 < V_{TL}$, $V_O = 1$, High

Truth Table for SR Flip Flop

S	R	Q ⁺
0	0	Q
0	1	0
1	0	1
1	1	X

For Comparator 1

- $V_{TH} = 2/3 \ Vcc$
- IF $V_6 > V_{TH}$, $V_0 = 1$, High
- IF $V_6 < V_{TH}$, $V_O = 0$, Low

For Comparator 2

- $V_{TI} = 1/3 \ Vcc$
- IF $V_2 > V_{TL}$, $V_O = 0$, Low
- IF $V_2 < V_{TL}$, $V_O = 1$, High

For RS Latch

- Q = 0, Q = 1
- Q = 1, Q = 0

9

- (a) The 555 timer connected to implement a monostable multivibrator.
- (b) Waveforms of the circuit in.

In the stable state, $V_{trigger} = 1$, high

SR flip-flop is in the **Reset State**, Q = 0, output will be low Q = 1, output will be high Turning ON transistor Q_1 Q_1 , is saturated Vc will be close to 0 V, Comparator1 output will be low $V_{trigger} = 1$, high (greater than V_{TL}) Comparator2 output will be low SR flip-flop is in the reset state, Q = 0, low Vo = 0 V, low

Triggering monostable multivibrator, a negative input pulse is applied on $V_{trigger}$

 $V_{trigger} = 0$, low (lower than V_{TL}) Comparator2 output will be high SR flip-flop is in the Set State, Q = 1, output will be high Q = 0, output will be low Turning OFF transistor Q_1 Capacitor C now begins to charge up through resistor voltage Vc its and rises exponentially toward Vcc, Monostable multivibrator is now in its Quasi-Stable state.

Triggering monostable multivibrator, a negative input pulse is applied on $V_{trigger}$

Charging Vc until reaches, begins to exceed, VTH,

Comparator1 output will be high SR flip-flop is in the **Ret State**,

$$Q = 0$$
, LOW

$$\overline{Q} = 1$$
, High

Transistor Q_1 on (Vsat = 0.2V)

Transistor Q₁ rapidly discharges capacitor C, causing Vc to go to

When the flip-flop is reset Q output goes low,

Triggering monostable multivibrator, a negative input pulse is applied on $V_{trigger}$

When the flip-flop is **Reset** its *Q* output goes low, *Vo* goes back to 0 V.

The monostable multivibrator is now back in its stable state. It is ready to receive a new triggering pulse.

- (a) The 555 timer connected to implement a monostable multivibrator.
- (b) Waveforms of the circuit in.

The exponential waveform of V_c can be expressed as

$$T = RC \ln 3 \cong 1.1RC$$

Thus the pulse width is determined by the external components C and R, which can be selected to have values as precise as desired.

(a)

$$T_{\text{high}} = 1.1 R_A C = 1.1(7.5 \times 10^3)(0.1 \times 10^{-6}) = 0.825 \text{ ms}$$

- (a) 555 timer connected to implement an astable multivibrator.
- (b) Waveforms of the circuit in.

The expression of T_H C charges from V_{TL} to V_{cc}

The expression of T_L C discharges from V_{TH} to θ

$$V_{C} = V_{final} - (V_{final} - V_{initial})e^{-t/\tau}$$

$$V_{C} = 0 - (0 - V_{TH})e^{-t/\tau}$$

$$V_{C} = 0 - (0 - \frac{2}{3}V_{CC})e^{-t/\tau}$$

$$where \qquad \tau = R_{B}C$$

$$V_{C} = V_{TL} = \frac{1}{3}V_{CC} \quad at \qquad t = T_{L}$$

$$T_{L} = 0.69R_{B}C$$

