InSet Documentation

Release 1

Rahul Singh

CONTENTS

I	Cont		3		
	1.1	Beam			
	1.2	Indices and tables			
	1.3	Machine			
		Device Modules			
	1.5	Common Modules	6		
2 Indices and tables					
Bi	bliogr	aphy	11		
Рy	thon]	Module Index	13		
In	dex		15		

This website provides the documentation for the usage and extension of the INstrumentSETtings beam instrumentation toolbox. This is not in the above paragraph?

CONTENTS 1

2 CONTENTS

ONE

CONTENTS

1.1 Beam

This module defines the beam class

The module takes the following arguments

```
Property — Key — Value Type — Remarks
```

Particle type — par_type — String — Ion type (p, U, Ar etc.)

Charge state — charge_state — Integer — Charge state

Atomic mass — atomic_mass — Integer — 2 for Hydrogen

Particle energy — kin_energy — Float — Kinetic energy per nucleon

Particle number —par_num — Integer — Total number of particles (ions)

Distribution type — d_type — String — a for arbitrary, p for parabolic, g for gaussian and kv for KV distribution

X Distribution — x_dist — List of integers for 'a', two Ints for parabolic and gaussian — Phase space distribution in x plane

Y Distribution — y_dist — Same as X Dist. — Phase space distribution in y plane

Z Distribution — z_dist — Same as X Dist. — Phase space distribution in z/s plane

```
par_type=None, charge_state= None, atomic_mass = None, par_num= None, d_type = 'ggg', x_dist = [0,5], y_dist = [0,5], z_dist = [0,100]
```

The arguments can be passed in this order or by defining a dictionary or by calling a file where the parameters exist

```
class beam.dynamicbeam(*args, **kwargs)
```

This attributes are similar to a static beam, however, the beam energy, number of beam particles and beam structure is updated for several turns (depends on the length of list) and stored

```
qaussian(x, mu, sig)
```

Returns the normal distribution with x number of points, and mean mu, and sig

listfiles()

THis function will list all the static and dynamic beams

```
parabolic (x, xmin, xmax)
```

Returns the normal distribution with x number of points, and mean mu, and sig

plot()

This function will plot the profile of the beam in the mentioned axis

```
save (name_of_file, description)
```

This function will save the beam object to an external file in the directory called "defined_beams" in the source directory

structure()

This function defines the structure of the beam based on the beam parameters

```
class beam.staticbeam(*args, **kwargs)
```

Beam class defines the static beam object

It creates a beam object instance the parameters in a special order are specified, or simply by passing a beam dictionary

A save keyword 's' can be used to save the beam object in a file, which can be loaded later

```
gaussian(x, mu, sig)
```

Returns the normal distribution with x number of points, and mean mu, and sig

classmethod listfiles (staticbeam)

THis function will list all the static and dynamic beams

```
load(name of file)
```

This function will load the beam object from the specified file in the directory called "defined_beams" in the source directory

```
parabolic (x, xmin, xmax)
```

Returns the normal distribution with x number of points, and mean mu, and sig

plot()

This function will plot the profile of the beam in the mentioned axis

```
save (name_of_file, description)
```

This function will save the beam object to an external file in the directory called "defined_beams" in the source directory

structure()

This function defines the structure of the beam based on the beam parameters

1.2 Indices and tables

- · genindex
- · modindex
- · search
- Home
- Table of contents
- Table of page

1.3 Machine

This module defines the beam object

The module takes the following arguments

Property — Key — Value type — Description

```
Circumference — circumference — Float — Circumference of the machine
```

Compaction factor — com_fact — Float — Momentum compaction factor

```
Set tune — set tune — List of Float — Horizontal and vertical tune
```

Set Chromaticity — set_chro — List of float — Horizontal and vertical chromaticity

```
class machine.dynamicmachine(*args, **kwargs)
```

This attributes are similar to a static beam, however, the beam energy, number of beam particles and beam structure is updated for several turns (depends on the length of list) and stored

```
save (name_of_file, description)
```

This function will save the beam object to an external file in the directory called "defined_beams" in the source directory

```
class machine.staticmachine(*args, **kwargs)
```

The machine class defines all the machine parameters

```
save (name_of_file, description)
```

This function will save the beam object to an external file in the directory called "defined_beams" in the source directory

1.3.1 Indices and tables

- · genindex
- · modindex
- · search
- Home
- Table of contents
- · Table of page

Use the tutorial here to learn about Sphinx: [SPHINXDOC].

1.4 Device Modules

Each Diagnostic sensor description and settings are documented here.

1.4.1 Current Transformers

Generic Transformer object Generic Trafo module takes beam and machine object and returns the TrafoOut

The module takes the following arguments

Beam — Beam object fully specifying the beam

Machine — Accelerator setting object

TrafoType (Optional) — Specific transformer types to define exact Trafo behaviour

```
class TrafoModule.generictrafo(*args, **kwargs)
```

The Generic trafo class defines all the generic trafo parameters

```
combine systems(*args, **kwargs)
```

Combines all the subsystems to the sensor

1.4. Device Modules 5

```
load (name_of_file)
```

Loads the specific trafo settings

```
optimize (observable_in, constraints)
```

Predicts optimal settings for all the variable parameters in the device module, common module or any combination

```
output (observable in)
```

Calculates the output of the device module or the system

```
save (name_of_file, description)
```

This function will save the beam object to an external file in the directory called "defined_beams" in the source directory

1.4.2 Add functions from Python library

io.open()

1.4.3 Indices and tables

- genindex
- · modindex
- · search
- Home
- Table of contents
- Table of page

1.5 Common Modules

The common modules consist of electronics, optics systems cables etc. They are described and documented here.

1.5.1 Amplifiers and Attenuators

Generic amplifier and attenuator definition Generic Amplifier Module

The module takes the following arguments

Amplification — The amplification/attenuation in (dB)

Noise figure — Accelerator setting object

Input Noise — When the input is open or terminated (in nV/sqrt(Hz))

AmplifierType (Optional) — Specific amplifier implementation

```
class AmpAttModule.genericAmpAtt(*args, **kwargs)
```

The Generic trafo class defines all the generic trafo parameters

```
save (name_of_file, description)
```

This function will save the beam object to an external file in the directory called "defined_beams" in the source directory

7

1.5.2 Lenses

1.5.3 Indices and tables

- genindex
- modindex
- search
- Home
- Table of contents
- Table of page

1.5. Common Modules

CHAPTER

TWO

INDICES AND TABLES

- genindex
- modindex
- search

Use the tutorial here to learn about Sphinx: [SPHINXDOC].

[SPHINXDOC] This is Sphinx doc documentation -> http://sphinx-doc.org/latest/tutorial.html.

12 Bibliography

PYTHON MODULE INDEX

a AmpAttModule,6 b beam,3 m machine,4 t TrafoModule,5

14 Python Module Index

AmpAttModule (module), 6	save() (beam.dynamicbeam method), 3 save() (beam.staticbeam method), 4 save() (machine.dynamicmachine method), 5 save() (machine.staticmachine method), 5 save() (TrafoModule.generictrafo method), 6 staticbeam (class in beam), 4 staticmachine (class in machine), 5 structure() (beam.dynamicbeam method), 4 structure() (beam.staticbeam method), 4	
B beam (module), 3 C combine_systems() (TrafoModule.generictrafo method), 5		
D dynamicbeam (class in beam), 3 dynamicmachine (class in machine), 5	TrafoModule (module), 5	
G gaussian() (beam.dynamicbeam method), 3 gaussian() (beam.staticbeam method), 4 genericAmpAtt (class in AmpAttModule), 6 generictrafo (class in TrafoModule), 5		
L listfiles() (beam.dynamicbeam method), 3 listfiles() (beam.staticbeam class method), 4 load() (beam.staticbeam method), 4 load() (TrafoModule.generictrafo method), 5		
M machine (module), 4		
O optimize() (TrafoModule.generictrafo method), 6 output() (TrafoModule.generictrafo method), 6		
P parabolic() (beam.dynamicbeam method), 3 parabolic() (beam.staticbeam method), 4 plot() (beam.dynamicbeam method), 3 plot() (beam.staticbeam method), 4		

S

save() (AmpAttModule.genericAmpAtt method), 6