Sommes de séries géométriques

- Soient $q \in \mathbb{R}$ et v une suite géométrique de raison q définie sur \mathbb{N} , i.e. vérifiant $\forall n \in \mathbb{N}$, $v_{n+1} = q \cdot v_n$
- Soit V la série associée, i.e. la suite définie sur $\mathbb N$ par :

$$\begin{cases} V_0 = v_0 \\ \forall n \in \mathbb{N}, \ V_{n+1} = V_n + v_{n+1} \end{cases}$$

Ce qu'on note usuellement sous la forme : $V_n = \sum_{k=0}^n v_k$

- On cherche a exprimer V_n en fonction de $n \in \mathbb{N}$.
- Par distributivité du produit sur les sommes, on a, pour tout $n \in \mathbb{N}$, la suite d'égalités suivante :

$$(1-q)V_{n} = V_{n} - q \cdot V_{n}$$

$$= \sum_{k=0}^{n} v_{k} - q \cdot \sum_{k=0}^{n} v_{k}$$

$$= \sum_{k=0}^{n} v_{k} - \sum_{k=0}^{n} q \cdot v_{k}$$

$$= \sum_{k=0}^{n} v_{k} - \sum_{k=0}^{n} v_{k+1}$$

$$= \sum_{k=0}^{n} v_{k} - \sum_{k=1}^{n+1} v_{k}$$

$$= \left(\sum_{k=0}^{n} v_{k} - \sum_{k=0}^{n} v_{k}\right) + (v_{0} - v_{n+1})$$

$$= v_{0} - v_{n+1}$$

• En définitive, nous avons $\forall n \in \mathbb{N}, \ V_n = \frac{v_0 - v_{n+1}}{1 - q}$