

Where we are

- Supervised learning and classification problems
 - Predict a class label based on other attributes

Rules

- To start, we guessed simple rules that might explain the data
- But the relationships are complex, so we need to automate
- The 1-rule algorithm
- A sequential cover algorithm for sets of rules with complex conditions
- But: Sets of rules are hard to interpret

Decision trees

- Each path from the root is a tree; easy to interpret
- Use entropy to choose best attribute at each node
- Extensions for numeric attributes
- But: Decision Trees are prone to overfitting

Overfitting

What if the knowledge and data we have are not sufficient to completely determine the correct classifier? Then we run the risk of just hallucinating a classifier (or parts of it) that is not grounded in reality, and is simply encoding random quirks in the data.

This problem is called *overfitting*, and is the bugbear of machine learning. When your learner outputs a classifier that is 100% accurate on the training data but only 50% accurate on test data, when in fact it could have output one that is 75% accurate on both, it has overfit.

Overfitting

Low error on training data and high error on test data

Overfitting

Perhaps not the most useful intuition

Is the model able to *generalize*? Can it deal with unseen data, or does it overfit the data? Test on hold-out data:

- split data to be modeled in training and test set
- train the model on training set
- evaluate the model on the training set
- evaluate the model on the test set
- difference between the fit on training data and test data measures the model's ability to generalize

slide src: Frank Keller

Bill Howe, UW

Underfitting:

High Bias Low Variance

Overfitting:

Low Bias High Variance

High Variance Variance \times High X Bias Low **Bias**

Low

src: Domingo 2012