Package 'ETDQualitizer'

September 9, 2025

1	
Type Package	
Title Automated Eye Tracking Data Quality Determination for Screen-Based Eye Trackers	
Version 0.9.0	
Maintainer Diederick Niehorster < diederick_c.niehorster@humlab.lu.se>	
Description Compute common data quality metrics for accuracy, precision and data loss for screen-based eye trackers. Supports input data both in pixels on the screen and in degrees, output measures are (where appropriate) expressed as angles in degrees.	
License MIT + file LICENSE	
URL https://github.com/dcnieho/ETDQualitizer	
BugReports https://github.com/dcnieho/ETDQualitizer/issues	
Encoding UTF-8	
Imports R6, stats	
Suggests testthat (>= 3.0.0)	
Config/testthat/edition 3	
RoxygenNote 7.3.2	
NeedsCompilation no	
Author Diederick Niehorster [aut, cre, cph] (ORCID: https://orcid.org/0000-0002-4672-8756)	
Repository CRAN	
Date/Publication 2025-09-09 13:50:07 UTC	
Contents	
accuracy bcea compute_data_quality_from_validation DataQuality data_loss_from_expected data_loss_from_invalid	10

2 accuracy

Index		20
	vector_to_Fick	19
	std	18
	ScreenConfiguration	14
	rms_s2s	14
	report_data_quality_table	13
	precision_using_moving_window	12
	Fick_to_vector	11
	ETDQ_version	11
	effective_frequency	10

accuracy

Compute Gaze Accuracy

Description

Calculates the angular offset between gaze and target directions.

Usage

```
accuracy(azi, ele, target_azi, target_ele, central_tendency_fun = mean)
```

Arguments

azi Gaze azimuth in degrees.

ele Gaze elevation in degrees.

target_azi Target azimuth in degrees.

target_ele Target elevation in degrees.

central_tendency_fun

Function to compute central tendency (default: mean).

Value

A list with offset, offset_azi, and offset_ele, the total, horizontal and vertical offset of gaze from the target (in degrees).

```
accuracy(c(1, 2), c(1, 2), 0, 0)
```

bcea 3

bcea

Bivariate Contour Ellipse Area (BCEA)

Description

Computes BCEA and ellipse parameters for gaze precision.

Usage

```
bcea(azi, ele, P = 0.68)
```

Arguments

azi Azimuth values in degrees. ele Elevation values in degrees.

P Cumulative probability (default: 0.68).

Value

A list with the BCEA (area) and additional info about the BCEA ellipse: orientation, ax1, ax2, and aspect_ratio.

Examples

```
bcea(rnorm(100), rnorm(100))

compute_data_quality_from_validation
```

Compute Data Quality Metrics from Validation Data

Description

This function computes a set of data quality metrics for gaze data collected during the PsychoPy validation procedure that is provided in the ETDQualitizer repository on github (https://github.com/dcnieho/ETDQualitizer/tree/It evaluates accuracy, precision, and optionally data loss and effective sampling frequency, per eye and per target.

Usage

```
compute_data_quality_from_validation(
  gaze,
  unit,
  screen = NULL,
  advanced = FALSE,
  include_data_loss = FALSE
)
```

Arguments

Logical. If 'TRUE', includes data loss and effective frequency metrics in the output (default is FALSE).

Details

This function uses the following methods in the 'DataQuality' class to compute the returned results: 'accuracy()', 'precision_RMS_S2S()', 'precision_STD()', 'precision_BCEA()', 'data_loss_from_invalid()', and 'effective_frequency()'.

Value

A 'data.frame' with one row per eye-target combination, containing computed metrics: - 'eye', 'target_id': identifiers - 'offset_x', 'offset_y': accuracy metrics ('offset_x', 'offset_y' only if 'advanced' is 'TRUE') - 'rms_s2s', 'rms_s2s_x', 'rms_s2s_y': precision (RMS sample-to-sample) ('rms_s2s_x', 'rms_s2s_y' only if 'advanced' is 'TRUE') - 'std', 'std_x', 'std_y': precision (standard deviation) ('std_x', 'std_y' only if 'advanced' is 'TRUE') - 'bcea', 'bcea_orientation', 'bcea_ax1', 'bcea_ax2', 'bcea_aspect_ratio': precision (BCEA metrics) ('bcea_orientation', 'bcea_ax1', 'bcea_ax2', 'bcea_aspect_ratio' only if 'advanced' is 'TRUE') - 'data_loss', 'effective_frequency': optional metrics if 'include_data_loss = TRUE'

Examples

```
## Not run:
dq <- compute_data_quality_from_validation(gaze_data, unit = "pixels", screen = my_screen_config)
## End(Not run)</pre>
```

DataQuality R6 class for calculating Data Quality from a gaze data segment

Description

Provides methods for assessing the quality of gaze data, including accuracy, precision, data loss, and effective sampling frequency.

Public fields

timestamps Vector of timestamps in seconds. Samples with missing data should not be removed, or the RMS calculation would be incorrect.

- azi Vector of azimuth angles in degrees (Fick angles). Missing data should be coded as NA, not using some special value such as (0,0) or (-xres,-yres).
- ele Vector of elevation angles in degrees (Fick angles). Missing data should be coded as NA, not using some special value such as (0,0) or (-xres,-yres).

Methods

Public methods:

- DataQuality\$new()
- DataQuality\$accuracy()
- DataQuality\$precision_RMS_S2S()
- DataQuality\$precision_STD()
- DataQuality\$precision_BCEA()
- DataQuality\$data_loss_from_invalid()
- DataQuality\$data_loss_from_expected()
- DataQuality\$effective_frequency()
- DataQuality\$get_duration()
- DataQuality\$precision_using_moving_window()
- DataQuality\$clone()

Method new(): Creates a new DataQuality object from gaze data and timestamps.

```
Usage:
```

```
DataQuality$new(gaze_x, gaze_y, timestamps, unit, screen = NULL)
```

Arguments:

gaze_x Horizontal gaze positions (pixels or degrees).

gaze_y Vertical gaze positions (pixels or degrees).

timestamps Vector of timestamps in seconds.

unit Unit of gaze data: either "pixels" or "degrees".

screen Optional ScreenConfiguration object, required if unit is "pixels".

Returns: A new DataQuality object.

Examples:

```
dq <- DataQuality$new(gaze_x, gaze_y, timestamps, unit = "pixels", screen = sc)</pre>
```

Method accuracy(): Calculates the accuracy of gaze data relative to a known target location.

Usage:

```
DataQuality$accuracy(target_azi, target_ele, central_tendency_fun = mean)
```

Arguments:

target_azi Target azimuth in degrees.

target_ele Target elevation in degrees.

```
central_tendency_fun Function to compute central tendency (e.g., mean, median).
 Returns: Accuracy in degrees.
 Examples:
 dq$accuracy(0, 0)
Method precision_RMS_S2S(): Calculates precision as root mean square of sample-to-sample
distances
 Usage:
 DataQuality$precision_RMS_S2S(central_tendency_fun = mean)
 Arguments:
 central_tendency_fun Function to compute central tendency (e.g., mean, median).
 Returns: Precision in degrees.
 Examples:
 dq$precision_RMS_S2S()
Method precision_STD(): Calculates precision as standard deviation of gaze positions.
 Usage:
 DataQuality$precision_STD()
 Returns: Standard deviation in degrees.
 Examples:
 dq$precision_STD()
Method precision_BCEA(): Calculates the Bivariate Contour Ellipse Area (BCEA) and ellipse
parameters for gaze precision.
 Usage:
 DataQuality$precision_BCEA(P = 0.68)
 Arguments:
 P Proportion of data to include in the ellipse (default is 0.68).
 Returns: BCEA in degrees-squared.
 Examples:
 dq$precision_BCEA()
Method data_loss_from_invalid(): Calculates the proportion of missing data (coded as NA).
 Usage:
 DataQuality$data_loss_from_invalid()
 Returns: Proportion of missing samples.
 Examples:
 dq$data_loss_from_invalid()
```

Method data_loss_from_expected(): Estimates data loss based on expected number of samples given the duration and sampling frequency.

```
Usage:
 DataQuality$data_loss_from_expected(frequency)
 Arguments:
 frequency Expected sampling frequency in Hz.
 Returns: Proportion of missing samples.
 Examples:
 dq$data_loss_from_expected(500)
Method effective_frequency(): Calculates the effective sampling frequency based on times-
tamps.
 Usage:
 DataQuality$effective_frequency()
 Returns: Effective frequency in Hz.
 Examples:
 dq$effective_frequency()
Method get_duration(): Computes the total duration of the gaze recording, including the last
sample.
 Usage:
 DataQuality$get_duration()
 Returns: Duration in seconds.
 Examples:
 dq$get_duration()
Method precision_using_moving_window(): Calculates precision using a moving window
approach.
 Usage:
 DataQuality$precision_using_moving_window(
   window_length,
   metric,
   aggregation_fun = median,
 )
 Arguments:
 window_length Length of the moving window in number of samples.
 metric Precision metric to use ("RMS-S2S", "STD", or "BCEA").
 aggregation_fun Function to aggregate windowed precision values (e.g., median).
 ... Additional arguments passed to the precision metric function.
 Returns: Precision value.
 Examples:
 dq$precision_using_moving_window(0.2, "RMS-S2S")
```

Method clone(): The objects of this class are cloneable with this method.

```
Usage:
DataQuality$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
```

```
sc <- ScreenConfiguration$new(500, 300, 1920, 1080, 600)</pre>
gaze_x <- c(0, 1, -1)
gaze_y <- c(0, 1, -1)
timestamps \leftarrow c(0, 1, 2)
dq <- DataQuality$new(gaze_x, gaze_y, timestamps, unit = "pixels", screen = sc)</pre>
dg$accuracy(0, 0)
dq$precision_RMS_S2S()
dq$data_loss_from_invalid()
## -----
## Method `DataQuality$new`
## -----
dq <- DataQuality$new(gaze_x, gaze_y, timestamps, unit = "pixels", screen = sc)</pre>
## -----
## Method `DataQuality$accuracy`
dq$accuracy(0, 0)
## Method `DataQuality$precision_RMS_S2S`
## -----
dq$precision_RMS_S2S()
## Method `DataQuality$precision_STD`
## -----
dq$precision_STD()
## Method `DataQuality$precision_BCEA`
## -----
dq$precision_BCEA()
## Method `DataQuality$data_loss_from_invalid`
```

Description

data_loss_from_expected

Calculates data loss based on expected number of samples.

Usage

```
data_loss_from_expected(a, b, duration, frequency)
```

Arguments

a Horizontal gaze values (e.g. azimuth or horizontal coordinate in pixels or mm).

Compute Data Loss from Expected Sample Count

b Vertical gaze values (e.g. azimuth or horizontal coordinate in pixels or mm).

duration Duration in seconds.

frequency Sampling frequency in Hz.

Value

Percentage of data loss.

10 effective_frequency

Examples

```
data_loss_from_expected(c(1, NA, 3), c(1, 2, NA), duration = 1, frequency = 3)
```

data_loss_from_invalid

Compute Data Loss from number of invalid samples.

Description

Calculates percentage of missing gaze samples.

Usage

```
data_loss_from_invalid(a, b)
```

Arguments

- a Horizontal gaze values (e.g. azimuth or horizontal coordinate in pixels or mm).
- b Vertical gaze values (e.g. azimuth or horizontal coordinate in pixels or mm).

Value

Percentage of missing samples.

Examples

```
data_loss_from_invalid(c(1, NA, 3), c(1, 2, NA))
```

effective_frequency

Compute Effective Sampling Frequency

Description

Calculates effective frequency based on valid samples.

Usage

```
effective_frequency(a, b, duration)
```

Arguments

a Horizontal gaze values (e.g. azimuth or horizontal coordinate in pixels or mm).

b Vertical gaze values (e.g. azimuth or horizontal coordinate in pixels or mm).

duration Duration in seconds.

ETDQ_version 11

Value

Effective frequency in Hz.

Examples

```
effective_frequency(c(1, NA, 3), c(1, 2, NA), duration = 1)
```

ETDQ_version

Get ETDQualitizer Version

Description

Returns the current version string of the ETDQualitizer tool.

Usage

```
ETDQ_version()
```

Value

A character string representing the version number.

Examples

```
ETDQ_version()
```

Fick_to_vector

Convert Fick Angles to 3D Vector

Description

Converts azimuth and elevation angles (in degrees) to a 3D unit vector.

Usage

```
Fick_to_vector(azi, ele, rho = 1)
```

Arguments

azi	Azimuth angle in degrees.
ele	Elevation angle in degrees.
rho	Radius (default is 1.0).

Value

A list with components x, y, and z.

Examples

```
Fick_to_vector(30, 10)

precision_using_moving_window

Precision Using Moving Window
```

Description

Computes gaze precision using a moving window and selected metric.

Usage

```
precision_using_moving_window(
   azi,
   ele,
   window_length,
   metric,
   aggregation_fun = median,
   ...
)
```

Arguments

```
azi Azimuth values.

ele Elevation values.

window_length Window size in samples.

metric Precision metric: "RMS-S2S", "STD", or "BCEA".

aggregation_fun
Function to aggregate precision values across the windows (default: median).

Additional arguments passed to metric function.
```

Value

Aggregated precision value.

```
precision_using_moving_window(rnorm(100), rnorm(100), 10, "STD")
```

```
report_data_quality_table
```

Summarize and Report Data Quality Metrics

Description

This function summarizes data quality metrics from a validation procedure by computing averages per participant and generating descriptive statistics across participants. It also returns a formatted textual summary suitable for reporting.

Usage

```
report_data_quality_table(dq_table)
```

Arguments

dq_table

A 'data.frame' containing data quality metrics. Must include columns 'file', 'eye', 'target_id', and relevant numeric metrics such as 'offset', 'rms_s2s', and 'std'. This would generally be created by concatenating the output of the compute_data_quality_from_validation() for multiple files.

Details

The summary text excludes BCEA and data loss metrics. BCEA is considered a niche metric and data loss is best reported across the full dataset rather than just the validation subset.

Value

A named list with two elements:

txt A character string summarizing key metrics (accuracy, RMS-S2S precision, STD precision). **measures** A list containing:

- all: A data frame with per-participant averages (grouped by 'file').
- mean, std, min, max: Named numeric vectors with summary statistics across participants.

```
## Not run:
result <- report_data_quality_table(dq_table)
cat(result$txt)
head(result$measures$all)
## End(Not run)</pre>
```

ScreenConfiguration

rms_s2s

RMS of Sample-to-Sample Differences

Description

Computes root mean square of differences between successive gaze samples.

Usage

```
rms_s2s(azi, ele, central_tendency_fun = mean)
```

Arguments

azi Azimuth values in degrees.
ele Elevation values in degrees.
central_tendency_fun

Function to compute central tendency (default: mean).

Value

A list with rms, rms_azi, and rms_ele, the total RMS of sample-to-sample distances and that of the azimuthal and elevation components (all in degrees).

Examples

```
rms_s2s(c(1, 2, 3), c(1, 2, 3))
```

ScreenConfiguration

R6 Screen Configuration Class

Description

Provides methods for converting between pixel, millimeter, and degree units.

Public fields

```
screen_size_x_mm Screen width in mm.
screen_size_y_mm Screen height in mm.
screen_res_x_pix Horizontal screen resolution in pixels.
screen_res_y_pix Vertical screen resolution in pixels.
viewing_distance_mm Viewing distance in mm.
```

ScreenConfiguration 15

Methods

Public methods:

```
• ScreenConfiguration$new()
```

- ScreenConfiguration\$pix_to_mm()
- ScreenConfiguration\$pix_to_deg()
- ScreenConfiguration\$mm_to_deg()
- ScreenConfiguration\$mm_to_pix()
- ScreenConfiguration\$deg_to_mm()
- ScreenConfiguration\$deg_to_pix()
- ScreenConfiguration\$screen_extents()
- ScreenConfiguration\$clone()

Method new(): Creates a new ScreenConfiguration object with screen and viewing distance parameters.

```
Usage:
 ScreenConfiguration$new(
    screen_size_x_mm,
   screen_size_y_mm,
   screen_res_x_pix,
   screen_res_y_pix,
    viewing_distance_mm
 )
 Arguments:
 screen_size_x_mm Screen width in millimeters.
 screen_size_y_mm Screen height in millimeters.
 screen_res_x_pix Horizontal screen resolution in pixels.
 screen_res_y_pix Vertical screen resolution in pixels.
 viewing_distance_mm Viewing distance in millimeters.
 Returns: A new ScreenConfiguration object.
 Examples:
 sc <- ScreenConfiguration$new(500, 300, 1920, 1080, 600)</pre>
Method pix_to_mm(): Converts pixel coordinates to millimeter coordinates on the screen.
 ScreenConfiguration$pix_to_mm(x, y)
 Arguments:
 x Horizontal pixel coordinate.
 y Vertical pixel coordinate.
 Returns: A list with x and y in millimeters.
 Examples:
 sc$pix_to_mm(960, 540)
```

ScreenConfiguration

```
Method pix_to_deg(): Converts pixel coordinates to an angular gaze direction in degrees.
 ScreenConfiguration$pix_to_deg(x, y)
 Arguments:
 x Horizontal pixel coordinate.
 y Vertical pixel coordinate.
 Returns: A list with azimuth ("azi") and elevation ("ele") in degrees.
 Examples:
 sc$pix_to_deg(960, 540)
Method mm_to_deg(): Converts millimeter coordinates to an angular gaze direction in degrees.
 ScreenConfiguration$mm_to_deg(x, y)
 Arguments:
 x Horizontal position in millimeters.
 y Vertical position in millimeters.
 Returns: A list with azimuth ("azi") and elevation ("ele") in degrees.
 Examples:
 sc$mm_to_deg(100, 50)
Method mm_to_pix(): Converts millimeter coordinates on the screen to pixel coordinates.
 Usage:
 ScreenConfiguration$mm_to_pix(x, y)
 Arguments:
 x Horizontal position in millimeters.
 y Vertical position in millimeters.
 Returns: A list with x and y in pixels.
 Examples:
 sc$mm_to_pix(100, 50)
Method deg_to_mm(): Converts an angular gaze direction in degrees to millimeter coordinates
on the screen.
 Usage:
 ScreenConfiguration$deg_to_mm(azi, ele)
 Arguments:
 azi Azimuth in degrees (Fick angles).
 ele Elevation in degrees (Fick angles).
 Returns: A list with x and y in millimeters.
 Examples:
 sc$deg_to_mm(2, 1)
```

```
Method deg_to_pix(): Converts an angular gaze direction in degrees to pixel coordinates.
       ScreenConfiguration$deg_to_pix(azi, ele)
       Arguments:
       azi Azimuth in degrees (Fick angles).
       ele Elevation in degrees (Fick angles).
       Returns: A list with x and y in pixels.
       Examples:
       sc$deg_to_pix(2, 1)
     Method screen_extents(): Computes the horizontal and vertical extents of the screen (in
     degrees).
       Usage:
       ScreenConfiguration$screen_extents()
       Returns: A list with width and height in degrees.
       Examples:
       sc$screen_extents()
     Method clone(): The objects of this class are cloneable with this method.
       Usage:
       ScreenConfiguration$clone(deep = FALSE)
       Arguments:
       deep Whether to make a deep clone.
Examples
    sc <- ScreenConfiguration$new(500, 300, 1920, 1080, 600)</pre>
    sc$pix_to_deg(960, 540)
    ## Method `ScreenConfiguration$new`
    sc <- ScreenConfiguration$new(500, 300, 1920, 1080, 600)</pre>
    ## Method `ScreenConfiguration$pix_to_mm`
    ## -----
    sc$pix_to_mm(960, 540)
    ## Method `ScreenConfiguration$pix_to_deg`
```

sc\$pix_to_deg(960, 540)

18 std

std

Standard Deviation of Gaze Samples

Description

Computes standard deviation of azimuth and elevation.

Usage

```
std(azi, ele)
```

Arguments

azi Azimuth values in degrees. ele Elevation values in degrees.

Value

A list with std, std_azi, and std_ele, the total STD of sample-to-sample distances and that of the azimuthal and elevation components (all in degrees).

vector_to_Fick 19

Examples

```
std(c(1, 2, 3), c(1, 2, 3))
```

vector_to_Fick

Convert 3D Vector to Fick Angles

Description

Converts a 3D vector to azimuth and elevation angles (in degrees).

Usage

```
vector_to_Fick(x, y, z)
```

Arguments

x X component of the vector.

y Y component of the vector.

z Z component of the vector.

Value

A list with components azi and ele.

```
vector_to_Fick(0.5, 0.2, 0.8)
```

Index