

1. Задача классификации

Есть множество объектов, разделенных по тому или иному набору признаков на классы. Задача: определить к какому классу принадлежит тот или иной объект, исходя из особенностей выборки.

Каждый объект формирует конечное пространство признаков, исследование которого позволяет построить алгоритм, определяющий класс объекта из новой, незнакомой выборки.

Этапы построения классификатора:

- выделение характерных признаков
- обучение выбранного классификатора на обучающей выборке
- проверка классификатора на тестирующей выборке

Классификация временных рядов

Выделение характерных признаков, является важным этапом в классификации временных рядов, ввиду присутствия временной составляющей, с которой сложнее работать.

Основные методы выделения характерных признаков временных рядов:

- методы сглаживания (МА, ЕМА)
- порождающие модели (AR, ARMA, ARIMA, HMM)
- выделение частотных характеристик (FFT, Wavelets)

Классификаторы:

- метрические алгоритмы (kNN)
- нейронные сети (MLP)
- деревья решений (С4.5)
- SVM

2. Нейронные сети

Нейронные сети - универсальный инструмент для классификации статических данных.

Будучи биологически инспирированными, такие сети, аналогично мозгу, справляются с задачами классификации.

Тем не менее, их довольно сложно применять в динамическом контексте, хотя, казалось бы, это естественная задача, которую решает мозг любого живого существа каждый день.

Углубление уровня биологической подобности может принести хорошие плоды и это имеет смысл проверить.

3. Биологический нейрон

В первую очередь, настоящий нейрон — нелинейная динамическая система, динамика которой носит вероятностный характер. Получая электрические импульсы от других нейронов через синапсы, нейрон накапливает потенциал в теле клетки. Накопление необходимого количества потенциала заставляет нейрон, с определённой вероятностью, выработать импульс, который передастся через аксон на синапсы других нейронов.

Некоторые особенности биологических нейронных сетей:

- Нейроны обмениваются между собой импульсами или, как их принято называть, спайками. Частоты спайков в биологических нейронных сетях варьируются от значения близкого к нулю до 200 Герц.
- Слабая связность нейронной сети. В человеческом мозге присутствует порядка 10^{11} нейронов. Не смотря на это, среднее количество соединений одного нейрона с другими составляет около 7000.
- Вероятностная природа генерации спайков. Многими экспериментами подтверждается, что характер плотности распределения вероятности генерации спайков на нейроне близок к пуассоновскому.
- После выработки спайка нейрон переходит в рефрактерный период (порядка 2-30 мс), в течение которого вероятность спайка резко снижается.
- Адаптация нейрона к входным частотам спайков.
- Изменение весов синаптических связей в процессе обучения.

4. Модель спайкового нейрона

Схема модели:

В основе модели спайкового нейрона лежит взвешенная сумма потенциалов с синапсов:

$$u(t) = \sum_{j} w_{j} \sum_{t_{j}^{f}} \alpha(t - t_{j}^{f})$$

 $u(t)\,$ - Потенциал на мембране нейрона (мВ)

 w_j - Вес синапса j (мВ)

lpha(t) - Функция постсинаптического потенциала (мВ)

 $t_{\,j}^{f}$ - Время спайка на синапсе j (мс)

Динамика синапса описывается:

Здесь
$$t_j^f=0$$
 .

Уравнение динамики:

$$\alpha(t) = e^{\left(-\frac{t}{-t_m}\right)}$$

 t_m - константа характеризующая затухание потенциала (20 мс в работе)

Плотность вероятности генерации спайка нелинейно зависит от потенциала (u) на мембране нейрона и имеет свойства пуассоновской плотности.

Зависимость имеет выраженное увеличение вероятности генерации спайка в районе 15 мв — это характерный порог, преодолевая который, нейрон начинает генерировать большое количество спайков:

Уравнение имеет вид:

$$p(u) = g_0 + r_0 ln[1 + exp(\beta(u - U_{tr}))]$$

где g_0 =1 Гц, r_0 =9.5 Гц, β =0.5, U_{tr} =15 мВ

5. Спайковые нейронные сети

Относительно новый класс нейронных сетей.

- Данные внутри сети представляются в виде спайков импульсов, некоторое число которых каждый нейрон генерирует в течение симуляции
- Каждый нейрон это динамическая система, преобразующая входные спайки в выходные.
- Нейроны соединяются в слабосвязную рекуррентную сеть
- Входные данные необходимо представить в виде набора спайков.
- Обучение без учителя

Помимо применения результатов такого рода исследований в реальных задачах, изучение спайковых сетей также вносит вклад в решение общей проблемы, стоящей перед научным сообществом — проблема особенности функционирования мозга.

6. Обучение без учителя

Вероятностная модель спайкового нейрона, позволяет вывести функцию правдоподобия:

$$L(\Omega) = I(\Omega) - \gamma D(\Omega) - \lambda \Psi(\Omega)$$

- $I\,$ Совместная информация по Шеннону между входными и выходными спайками нейрона
- D Гомеостатический параметр, который выражает расстояние Кульбака-Лейблера между средней частотой нейрона и целевой частотой (5 герц в работе)
- Регуляризационный параметр, зависящий от веса нейрона.

Максимизация такой функции относительно вектора весов (Ω) увеличивает совместную информацию между входом и выходом нейрона и минимизирует гомеостатический и регуляризационный параметры.

 λ и γ контролируют значимость последний двух членов (1 и 0.026 в работе).

7. Построение классификатора

Мотивация использования спайковых нейронных сетей заключается в потенциальной возможности использовать свойства их богатой динамики, которая формируется по ходу обучения сети.

Предполагается, что выход обученной сети будет представлять наиболее полезные с дискриминативной точки зрения признаки, на основе которой, можно построить классификатор.

Таким образом, чтобы построить классификатор необходимо решить вопросы:

- как представить входной временной ряд в виде спайков
- как обработать выходные спайки сети, чтобы получить полезные признаки

1) Преобразование входного временного ряда в спайковые последовательности:

2) Обучение без учителя. Формирование чувствительных полей.

Для сети с **100** входными нейронами и **100** нейронами сети:

Каждый нейрон сети сформировал своё чувствительное поле по отношению к небольшому ряду входных нейронов (слева) и усилил или ослабил соединения с другими нейронами сети (справа).

3) Получение ответной спайковой последовательности:

4) Постобработка ответов

Гистограмма, которая выражается количеством спайков на промежуток времени.

5) Классификация обычными методами (kNN, MLP)

Результаты:

Данные: synthetic control.

Характеристика:

- 6 классов
- размер обучающей выборки: 300
- размер тестирующей: 300
- количество измерений во временном ряду: 60
- длительность преобразованного временного ряда в виде спайкового паттерна: 1000 мс

Конфигурация сети:

- 100 входных нейронов
- 100 нейронов сети
- 50% вероятность соединения нейрона сети и входного нейрона
- 15% вероятность соединения нейронов сети между собой

Был разработан программный пакет на языке C, производящий симуляцию спайковой нейронной сети. Скорость работы для текущей конфигурации: 60 секунд системного времени против 300 секунд симуляционного.

Количество ошибочных классификаций к общему числу тестирующей выборки для классификатора 1-NN:

