

Lezione 13 - Introduzione ai GIS

https://www.youtube.com/watch?v=0FSzNfCJyWA

GIS

Geographical Information System

- Geographical → Si basano su rappresentazioni del territorio geografico
- Information → Indica che nei GIS i dati portano informazioni in varie forme
- System → Un GIT è un sistema fatto da diversi componenti

L'obiettivo ultimo di un GIS è fornire supporto decisionale basandosi su dati spaziali

Struttura dei GIS

Può essere concepito in modo gerarchico, identificando 6 distinte componenti (in ordine di complessità):

- 1. Organizzazione
- 2. Visualizzazione
- 3. Interrogazione
- 4. Combinazione
- 5. Analisi
- 6. Predizione

Organizzazione

L'organizzazione dei dati è il primo step con il quale ci si deve confrontare, in quanto è il livello che gestisce direttamente i dati del sistema, spesso raccolti in database dinamici

Oltre che dalla quantità di dati raccolti, un GIS è caratterizzato dall'eterogeneità delle sorgenti informative da cui provengono i dati, organizzati poi in Data Models

Le tipologie di informazioni contenute in un GIS possono essere, principalemente, di due tipi:

- Spaziale (geografico)
- Alfanumerico (attributi)

Visualizzazione

Un GIS sfrutta la capacità umana di comprendere situazioni complesse attraverso un approccio visuale; è quindi necessario che le informazioni vengano proposte e presentate graficamente in maniera adeguata (es: Mappe)

Interrogazione

In un GIS è tutto memorizzato attraverso oggetti grafici elementari (features), ognuno delle quali ha collegate delle informazioni alfanumeriche

Il GIS deve permettere 3 tipi di richieste:

- ullet Interrogazione degli attributi ullet Conoscere le caratteristiche di una feature
- Interrogazione spaziale → Richieste complesse per ottenere informazioni sui punti geografici
- Interrogazione topologica → Si richiedono le caratteristiche del paesaggio circostante (distanza, adiacenza, orientamento, etc..)

Combinazione

La combinazione indica la possibilità di un GIS di aggregare diversi dati, permettendo di scoprire correlazioni o di generare dati derivati

Si possono avere 2 modalità:

Visualizzazione congiunta di tematismi differenti

Costruzione fisica di temi ottenuti combinandone altri

Analisi

Si riferisce alla possibilità di utilizzare un GIS per ottenere un significato a partire dai dati grezzi (raw)

Puo essere effettuata in maniera visuale, e solitamente un GIS mette a disposizione strumenti statistici e di modellazione

Predizione

Indica l'aspetto più avanzato di un GIS, ed è strettamente legato all'analisi. In più però si spinge a fare previsioni di scenari evolutivi futuri ("wat if?")

Componente fondamentale nei campi quali:

- Urbanistica
- Analisi ambientale
- Valutazione di impatto

Può essere anche collegato ad altre discipline (simulazione, multimedialità, etc...)

Caratteristiche

I settori più vicini ai GIS sono il CAD e l'Image Processing

CAD

Strumenti computerizzati di supporto al disegno tecnico, nati in ambiente ingegneristico e architetturale

Sono strumenti di tipo vettoriale, quindi ogni oggetto disegnato viene memorizzato e gestito attraverso le sue coordinate

Non possedendo il concetto di attributo (inteso come informazione alfanumerica collegata agli oggetti grafici)

Image Processing

Strumenti di visualizzazione, gestione ed elaborazione di immagini Raster (es: Immagini da satellite)

Modello spaziale del mondo reale

La peculiarità dei GIS consiste nell'introdurre la dimensione dello spazio in un database tradizionale, che può contenere informazioni territoriali e relative allo spazio

Un database tradizionali non può, però, gestire nè derivare informazioni originali di tipo spaziale

La modellazione del mondo reale e l'organizzazione delle informazioni presuppongono un processo diviso in stadi:

- Identificazione delle entità
- Identificazione degli attributi
- Identificazione della topologia e delle relazioni spaziali

I fenomeni del mondo realti tradotti in entità GIS vengono detti OGGETTI

Oggetto GIS

L'oggetto GIS ha diverse caratteristiche che lo contraddistinguono:

- Tipo
- Attributi
- Relazioni Spaziali
- Geometria
- Qualità del Dato

Oggetti base di un GIS

- Punto
 - Isolato
 - Vertice o Nodo
- Arco → Sequenza ordinata di vertici che ha un nodo iniziale e finale
- Anello → Insieme di uno o più archi
- Poligono → Insieme di uno o più anelli che delimitano un'area chiusa

Oggetto punto

Entità adimensionale che specifica la localizzazione di un fenomeno nello spazio

- Punto entità → Non tiene conto della forma o dimensione del fenomeno identificato
- Punto area → Denota la posizione in un'area e ne rappresenta una forma semplificata
- Nodo → Localizzazione puntuale con più proprietà topologiche

Oggetto arco o linea

Inteso come entità unidimensionale, che ha la capacità di rappresentare un fenomeno evidenziando:

- Posizione
- Direzione
- Lunghezza

Può essere rappresentata con diversi spessori che indicano attributi metrici

Oggetto poligono o area

Il poligono è un'entità bidimensionale, che rappresenta un fenomeno evidenziandone:

- Posizione
- Morfologia
- Superfice

Ed è utilizzato per rappresentare comuni strutture territoriali

Rappresentazione spaziale

Non esiste una rappresentazione univoca, ed è molto tipizzata dalla scelta degli oggetti e dall'analisi che dovrà essere fatta del fenomeno

Georeferenziazione

La rappresentazione degli oggetti nello spazio richiede un sistema di riferimento spaziale

Gli oggetti devono mantenere:

- Posizioni
- Dimensioni

· Relazioni spaziali

Tecnica di localizzazione territoriale che permette di associare un oggetto ad un particolare punto nello spazio reale

Tecniche di georeferenziazione continue:

- La misura della posizione è ottenuta rispetto ad un sistema di riferimento assoluto
- Sistemi di coordinate terrestri cartografiche
- La posizione reale di un oggetto viene rilevata attraverso sistemi di posizionamento globale

Tecniche di georeferenziazione discrete:

- La misura della posizione è ottenuta indirettamente rispetto ad unità territoriali di riferimento già referenziate
- La posizione viene rilevata valutando la distanza da un oggetto territoriale di riferimento

Modelli della terra

Modello della Terra piatta

La superfice della terra viene rappresentata attraverso un piano orientato a nord Gli oggetti vengono rappresetati sul piano e posizionati relativamente al piano stesso

Modello della Terra curva

Tiene conto della curvatura della superficie terrestre, ed è un modello complesso e non univoco che cerca di limitare gli errori nelle relazioni spaziali degli oggetti rappresentati sulla Terra

Ellissoide o Sferoide (Terra curva)

Modello matematico della Terra generato dalla rotazione di un'ellisse intorno al suo asse minore, che riproduce lo schiacciamento ai poli e il rigonfiamento all'equatore

Non tiene conto della distribuzione non uniforme delle masse nella Terra e delle irregolarità della superficie

Geoide (Terra curva)

Generato dalla superficie perpendicolare alla direzione della forza di gravità in ogni punto della Terra, e tiene conto delle irregolarità locali della superficie terrestre

Luogo dei punti in cui il vettore gravità, applicato al punto considerato, è ortogonale alla superficie

Datum Geodetici

Modello matematico-fisico con la quale si vuole descrivere un geoide, ed è il sistema sul quale si basano i sistemi di coordinate attualmente utilizzati

Anche se ogni paese ha definito un proprio Datum, con la diffusione dei GPS si è creato un Datum standard utilizzato in ogni sistema

Latitudine e Longitudine

Sul modello della Terra viene generata una griglia immaginaria al fine di effettuare misurazioni con un sistema di coordinate terrestri

La griglia è costituita da due sistemi di linee:

- Paralleli
 - Cerchi paralleli all'equatore (parallelo zero)
 - Misurata in gradi sessagesimali
- Meridiani
 - Cerchi tracciati in verticale attraverso nord e sud geografici

Posizionamento

Ad ogni punto sulla superficie terrestre viene assegnata una posizione espressa in gradi, minuti e secondi di latitudine e longitudine

Proiezioni

Compito principale della cartografia è quello di rappresentare su carta la realtà tridimensionale. Questo processo è detto "proiezione" e porta alla costruzione di una mappa

Non esistono proiezioni o trasformazioni matematiche di qualsiasi tipo che permettono di sviluppare fedelmente una superficie senza distorsioni. Queste possono ripercuotersi su:

- Distanze
- Direzioni
- Forme
- Superfici
- Scala

Classificazione

- Proprietà fisiche (conservate senza errori):
 - o Conformi o isogone
 - Ad aree equivalenti
 - Equidistanti
 - Afilattiche
- Metodi geometrici:
 - o Cilindriche
 - Coniche
 - Azimutali

Proiezione UTM (Universale Trasversa di Mercatore)

La proiezione di UTM è una modifica della proiezione di Mercatore

Crea un mosaico di proiezioni centrate sul meridiano centrale della zona di interesse di dimensioni contenute, e ogni elemento del mosaico minimizza gli errori lineari, angolari e superficiali

Modello di proiezione UTM

Per ognuna delle aree nella mappa la distorsione è maggiore ai bordi rispetto che al centro

Le mappe dei GIS

In un GIS una mappa è il risultato della sovrapposizione di più mappe elementari, dette strati informativi

- Modello di mappa Vettoriale
- Modello di mappa Raster
- Modello di mappa Tradimensionale

Mappa raster

- Modello adatto per dati che cambiano con continuità nello spazio
- Matrice rettangolare di numeri
- Facilmente acquisibile e riproducibile
- Limitata scalabilità
- Lentezza di elaborazione
- Memorizzazione di una sola variabile

Mappa vettoriale

Rappresenta le informazioni con tutti e tre gli elementi (punti, linee e poligoni)

Ogni elemento è caratterizzato dalle sue coordinate geografiche, e permette una scalabilità completa

Mappa tridimensionale

TIN → Triangulated Irregular Network

Modello che viene utilizzato per le rappresentazioni 3D, e per la generazione dei DEM o DTM (Digital Elevation Model)

Viene costruita una traingolazione che rappresenta in maniera compatta l'andamento della superficie 3D

Il TIN viene costruito rispettando la regola di triangolazione di Delaunay:

Il cerchio che passa per i 3 vertici del triangolo non contiene alcun altro vertice

Mappe tematiche

Si identificano diverse tecniche di rappresentazione in mappa dei dati, e hanno lo scopo di concentrare l'attenzione sulla distribuzione di una particolare variabile Si possono classificare in 5 tipi:

- Coroplete → Visualizzano la distribuzione di un attributo nello spazio in forma classificata attraverso l'uso di scale cromatiche, e sono basate su 2 tipi di metodi
 - Metodi idiografici
 - Metodi esogeni
- A densità di punti → Visualizzano la distribuzione nello spazio di un attributo sotto forma di simboli grafici, in numero proporzionale al valore dell'attributo
- Scalari → I simboli assumono una dimensione proporzionale all'entità della variabile che rappresentano
- Categoriali → Le variabili categoriali sono visualizzate con simboli o colori che identificano individualmente i diversi valori
- A isolinee → Vengono disegnate linee che congiungono zone a ugual valore della variabile formando degli anelli. Assumono diversi nomi:

- Isobare
- Isobate
- Isoipse
- Isocline