Chapter 2.6 Arrangements of Nondistinct Objects

Jim Albert and Monika Hu

Chapter 2 Counting Methods

Creating silly words

➤ Suppose one is making up silly words from the letters "a", "b", "c", "d", "e", "f", like

bacedf, decabf, eabcfd

- How many silly words can one make up?
- Using the permutation rule, the number of possible permutations is

$$6! = 6 \times 5 \times 4 \times ... \times 1.$$

Second counting rule

- ➤ Suppose one has six letters "a", "b", "c", "d", "e", "f", and one is going to choose three of the letters to construct a three-letter word.
- ▶ One cannot choose the same letter twice and the order in which one chooses the letters is not important.
- Here one is interested in the number of combinations the number of ways of choosing three letters from six is equal to

$$\binom{6}{3} = \frac{6!}{3! \, 3!}.$$

Different arrangement problem

One randomly arranges the four triangles and five squares as shown below.

What is the chance that the first and last locations are occupied by triangles?

What is the difference?

- ► This is an arrangement problem with one difference the objects are not all distinct
- ➤ So one cannot use the earlier permutations rule that assumes the objects are distinguishable.
- How can one count the number of possible arrangements?

Possible arrangements

➤ Suppose one writes down a list of nine slots and an arrangement is constructed by placing the triangles and the squares in the nine slots.

1	2	3	4	5	6	7	8	9

Constructing an arrangement

- ► First, place the four triangles in four slots, and then place the squares in the remaining slots.
- ► How many ways can one put the triangles in the slots? For example, one could place the triangles in slots 1, 3, 4, and 8.

$$\frac{\triangle}{1} \frac{\triangle}{2} \frac{\triangle}{3} \frac{\triangle}{4} \frac{\triangle}{5} \frac{\triangle}{6} \frac{\triangle}{7} \frac{\triangle}{8} \frac{\triangle}{9}$$

▶ Or one could place the four triangles in slots 2, 5, 7, and 8.

$$\frac{\triangle}{1} \frac{\triangle}{2} \frac{\triangle}{3} \frac{\triangle}{4} \frac{\triangle}{5} \frac{\triangle}{6} \frac{\triangle}{7} \frac{\triangle}{8} \frac{\triangle}{9}$$

Constructing an arrangement

- ➤ One specifies an arrangement by choosing four locations from the slot locations {1, 2, 3, 4, 5, 6, 7, 8, 9}.
- One knows that the number of ways of selecting four objects from a group of nine objects is

$$\binom{9}{4} = \frac{9!}{4!(9-4)!} = 126.$$

- One finishes the arrangement by putting in the squares. But there is only one way of doing this.
- ▶ So applying the multiplication rule, the number of ways of arranging four triangles and five squares is $126 \times 1 = 126$.

Permutations Rule for Non-Distinct Objects

▶ The number of permutations of n non-distinct objects where r are of one type and n-r are of a second type is

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}.$$

Back to example

- Suppose four triangles and five squares are randomly arranged. What is the chance that the first and last locations are occupied by triangles?
- We know there are 126 ways of mixing up four triangles and five squares.
- ► Each possible arrangement is equally likely and has a chance of 1/126 of occurring.

Finding the probability

▶ One needs to count the number of ways of arranging the triangles and squares so that the first and last positions are filled with triangles.

$$\frac{\triangle}{1} \frac{1}{2} \frac{1}{3} \frac{1}{4} \frac{1}{5} \frac{1}{6} \frac{1}{7} \frac{\triangle}{8} \frac{\triangle}{9}$$

▶ If one places triangles in slots 1 and 9, then one is free to arrange the remaining two triangles and five squares in the remaining 7 slots. By use of the new arrangements formula, the number of ways is

$$\binom{7}{2} = \frac{7!}{2!(7-2)!} = 21$$

and so the probability the first and last slots are filled with triangles is equal to 21/126.