Labs **Machine Learning Course** Fall 2020

EPFL

School of Computer and Communication Sciences Nicolas Flammarion & Martin Jaggi www.epfl.ch/labs/mlo/machine-learning-cs-433

Problem Set 12, Dec 3, 2020 (Solutions to SVD Theory Questions)

Problem 1 (How to compute U and S efficiently):

In class, we saw that solving the eigenvector/value problem for the matrix XX^{\top} gives us a way to compute U and S. But in some instances $D \gg N$. In those cases, is there a way to accomplish this computation more efficiently?

Solution 1:

Consider the $N \times N$ matrix $\boldsymbol{X}^{\top} \boldsymbol{X}$. Similarly as before, we have

$$X^{\top}X = VS^{\top}SV^{\top}.$$

Let v_i , $i = 1, \dots, D$, denote the columns of V. Then

$$\boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{v}_{j} = \boldsymbol{V} \boldsymbol{S}^{\top} \boldsymbol{S} \boldsymbol{V}^{\top} \boldsymbol{v}_{j} = s_{j}^{2} \boldsymbol{v}_{j}. \tag{1}$$

So we see that the j-th column of V is an eigenvector of $X^{\top}X$ with eigenvalue s_j^2 . Therefore, solving the eigenvector/value problem for the matrix $X^{\top}X$ gives us a way to compute V and S.

Now multiply the identity (1) from the left by the matrix X. We get

$$\boldsymbol{X}\boldsymbol{X}^{\top}(\boldsymbol{X}\boldsymbol{v}_j) = s_j^2(\boldsymbol{X}\boldsymbol{v}_j).$$

We see therefore that $u_j = Xv_j$ and so we can compute the desired eigenvectors u_j from the eigenvectors v_j without having to solve the $D \times D$ eigenvector/value problem.

Problem 2 (Positive semi-definite):

Show that if \boldsymbol{X} is a $N \times N$ symmetric matrix then the SVD has the form $\boldsymbol{U}\boldsymbol{S}\boldsymbol{U}^{\top}$, where \boldsymbol{U} is a $N \times N$ unitary matrix and \boldsymbol{S} is a $N \times N$ diagonal matrix with non-necessarily positive entries. Show that if \boldsymbol{X} is positive semi-definite, then all entries of \boldsymbol{S} are non-negative.

Solution 2:

Consider $A = XX^{\top}$ and $B = X^{\top}X$. By the SVD we know that $X = USV^{\top}$. As we discussed in the course, the columns of U are eigenvectors of the first matrix and the columns of V are eigenvectors of the second matrix. But note that A = B since X is symmetric. Hence the eigenspace associated to each distinct eigenvalue of A is equal to the eigenspace associated to the same eigenvalue of B.

Set U = V and let the columns of U be eigenvectors of A. Compute $U^{\top}XV$. This gives us a diagonal matrix which we can define to be S. It's entries are not necessarily non-negative.

If the matrix is in addition positive semi-definite then the diagonal entries of S must in fact must be non-negative – multiplying the matrix from the left by u_j^{\top} and from the right by u_j gives s_j which must be non-negative if the quadratic form given by the matrix is assumed to be positive-definite.