

<u>Course</u> > <u>Unit 2:</u> ... > <u>Lec. 2:</u> ... > 3. Exer...

3. Exercise: Conditional probabilities

Exercises due Feb 12, 2020 05:29 IST Completed

Exercise: Conditional probabilities

2/2 points (graded)

Are the following statements true of false?

1. If Ω is finite and we have a discrete uniform probability law, and if $B \neq \emptyset$, then the conditional probability law on B, given that B occurred, is also discrete uniform.

2. If Ω is finite and we have a discrete uniform probability law, and if $B \neq \emptyset$, then the conditional probability law on Ω , given that B occurred, is also discrete uniform.

Solution:

- 1. True, because the outcomes inside ${\cal B}$ maintain the same relative proportions as in the original probability law.
- 2. False. Outcomes in Ω that are outside B have zero conditional probability, so it cannot be the case that all outcomes in Ω have the same conditional probability.

Submit You have used 1 of 1 attempt

• Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 2: Conditioning and independence:Lec. 2: Conditioning and Bayes' rule / 3. Exercise: Conditional probabilities

Show a	II posts 🗸		by recent a	ctivity 🗸
	_	e Tenet that P(B) = 1 eference and respect, but tersely. (Otherwise, it would be twice as long.)] The	whole t	1
1		not logic or need more explanation question I back to the lecture and try to understand it completely, I solved q	<u>1 which i</u>	7
	onfused on Q ne conditional p	Question 1 probability of B , given that B occurred, should be [edited to remove answer]?	' What's	21
1	<u>xplanation for</u> se explanation t	r Q2. that I gave is that [edited to remove answer]. Is this reasoning correct?		3
	probability is oes it tell anythi	s equal to 1 ing if that the subset (subevent) has discrete uniform or not. I don't get it. Or	does it	1
1		$\frac{1}{2}$ d by single letter Ω and questions are the same, but different is only one	<u>e letter</u>	1
-	taff] The 2d c	question requres an additional assumption on B, without it the giverect	<u>ren</u>	4
	<u>xplaining Que</u> dited by staff to	estion 2 o remove lot of detail related to the answer]		2
	anos <u>P(Ω B)=(P(Ω∩E</u>	B)) <u>/(P(B))=(P(B))/(P(B))=1 so it is false.</u>		10
	ne Science of es Qn. 2 was cor	<u>Uncertainty.</u> nfusing but after failing it, i have digested it after finding the answer. Thank y	ou.	2
	echnical Issue , I had a strange	e issue with my submission where I selected the correct answers for the two	questio	2
	onfusing wor	ding his exercise is confusing Especially in 2 - by default we'd assume that B belo	ngs to O	9
-		ear what this question was asking. an for there to be a "conditional probability law on" something? Or, for that r	natter, f	5