Assembly Language Telling a computer what to do

Computer Evolution

The rapid development of increasingly capable computers was largely driven by improved silicon fabrication techniques (integrated circuits).

The Electronic Computer

Computer Components (Anatomy)

Modern computers are built from a hierarchical arrangement of devices, the lowest level of which is a complimentary pair of transistor switches (CMOS).

Transistors

A semiconductor (solid-state) triode.

Channel

Definition

awesome

...Don't get me started...

Logic Gates

The fundamental units of computation.

Circuits

Integrated combinations of logic gates that's store data, process data, and move data around.

Definition

The 74181 4-bit ALU

4002 320-bit RAM

An ALU performs a specific logic function of 4 input bits based on a "control input" (instruction)

RAM can read or write bits values (o or 1) at a specific location (address)

Circuits in Silicon

Atmel Mega 328P

 $ALU \ (arithmetic/logic \ unit)$

Von Neumann Architecture

John realized that "Data" and a "Program" do not require distinct substrates...they can be stored in the same hardware, system memory (often RAM) and then processed by a separate CPU.

John von Neumann

Microcontrollers (μC, MCU)

Definition

Microcontrollers, as the name suggests, are small computers containing a CPU and RAM. Unlike a PC, they lack an operating system (OS). They normally come on a board (PCB) integrated with ADCs, DACs, peripheral contacts, and a communication bus (serial, USB, etc.)

Arduino

Definition

Arduino is an open-source, open-hardware platform that integrates a slow (16 MHz) microcontroller, ADCs, digital ports, PWMs, counters, voltage regulators, USB-to-Serial converter, and useful connectors (headers) onto a single board.

Microcontroller	ATmega328
Operating Voltage	5V
Input Voltage (recommended)	7-12V
Input Voltage (limits)	6-20V
Digital I/O Pins	14 (of which 6 provide PWM output)
Analog Input Pins	6
DC Current per I/O Pin	40 mÅ
DC Current for 3.3V Pin	50 mA
Flash Memory	32 KB (ATmega 328) of which 0.5 KB used by bootloader
SRAM	2 KB (ATmega328)
EEPROM	l KB (ATmega328)
Clock Speed	16 MHz

Atmel Mega 328P

How do you tell a (binary) computer what to do?

Binary Representation

The bits o and 1 can be used to represent any number, as can the digits o through 9, when combined appropriately. The number of distinct values that can be represented depends on the number of bits used.

"Let's count in Binary!"		#Values = 2 ^{#Bits}
1	1-bit:	2
2 3	1 810.	
4 5	8-bits:	256
6	4611	
,	16-bits:	65,536
8 9	32-bits:	4,294,967,296 (~4 billion)
10 11	JZ DICS.	4,234,307,230 (4 billion)
	64-bits:	18,446,744,073,709,551,616 (~18 quintillion)
13		
14 15	128-bits:	340,282,366,920,938,463,463,374,607,431,768,211,456
 33		(~340 undecillion)

Binary Data Types

Definition

Conventions for translating a set of binary values into another format (integer, floating point, text, colour, etc.). The number and range of distinct values in the new format is constrained by the bit-depth of the binary representation (e.g. 8-bit text = 256 possible letters).

Data Types:

- **Boolean** True vs. False (1-bit)
- **Integers** signed/unsigned

8-bit, 16-bit, 32-bit, 64-bit

Note: Range depends on signed/unisgned:

8-bit signed: 0 to 256 8-bit unsigned: -127 to 127

• **Floating Point** (with decimal point)

32 and 64-bit

(Single) (Double) precision

- Strings/Characters
 - (ASCII/UNICODE)
- Others?

Binary Memory Block

ASCII Text File: 01000100011000010111010001100001 = "Data"

16-bit Integers: 01000100011000010111010001100001 = 17505 29793

32-bit Integer: 01000100011000010111010001100001 = 1147237473

32-bit Float: 01000100011000010111010001100001 = 901.81842041015625

Note

Hexadecimal Representation

Base 16: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F (each Hex numeral is equivalent to 4-bits, two Hex is a byte,...convenient)

How do you tell a (binary) computer what to do?

PROGRAMMING

Assembly Languag

The lowest (sensible) level that you can specify

Definition

:100030000C946E000C946E000C946E000C946E0088 :100040000C9488000C946E000C946E000C946E005E :100050000C946E000C946E000C946E000C946E0068 :100060000C946E000C946E00000000080002010069 :1000700000030407000000000000000000102040863 :100080001020408001020408102001020408102002 :10009000040404040404040402020202020203032E :1000A0000303030300000000250028002B000000CC :1000B0000000240027002A0011241FBECFEFD8E043 :1000C000DEBFCDBF21E0A0E0B1E001C01D92A930AC :1000D000B207E1F70E9403020C9413020C94000093 :1000E00061E08DE00C94930161E08DE00E94CC0111 :1000F00068EE73E080E090E00E94F50060E08DE043 :100100000E94CC0168EE73E080E090E00C94F50072 :100110001F920F920FB60F9211242F933F938F933C :100120009F93AF93BF938091010190910201A091A1 :100130000301B09104013091000123E0230F2D371A :1001400020F40196A11DB11D05C026E8230F0296DB :10015000A11DB11D20930001809301019093020124 :10016000A0930301B09304018091050190910601D1 :10017000A0910701B09108010196A11DB11D8093C6 :10018000050190930601A0930701B0930801BF9168 :10019000AF919F918F913F912F910F900FBE0F9034 :1001A0001F9018953FB7F894809105019091060132 :1001B000A0910701B091080126B5A89B05C02F3F6B :1001C00019F00196A11DB11D3FBF6627782F892F19 :1001D0009A2F620F711D811D911D42E0660F771FDE :1001E000881F991F4A95D1F708958F929F92AF92D9 :1001F000BF92CF92DF92EF92FF926B017C010E943F :10020000D2004B015C01C114D104E104F104F1F00E :100210000E9412020E94D200681979098A099B097A :10022000683E73408105910570F321E0C21AD10840 :10023000E108F10888EE880E83E0981EA11CB11C2D :10024000C114D104E104F10429F7DDCFFF90EF9050 :10025000DF90CF90BF90AF909F908F90089578944B :1002600084B5826084BD84B5816084BD85B58260BB :1002700085BD85B5816085BDEEE6F0E08081816059 :100280008083E1E8F0E01082808182608083808159 :1002900081608083E0E8F0E0808181608083E1EB31 :1002A000F0E0808184608083E0EBF0E08081816019 :1002B0008083EAE7F0E080818460808380818260CF :1002C00080838081816080838081806880831092B8 :1002D000C1000895833081F028F4813099F0823094 :1002E000A1F008958730A9F08830B9F08430D1F4B6 :1002F000809180008F7D03C0809180008F778093F4 :100300008000089584B58F7702C084B58F7D84BD49 :1003100008958091B0008F7703C08091B0008F7DE9 :100320008093B0000895CF93DF9390E0FC01E458F0 :10033000FF4F2491FC01E057FF4F8491882349F13E :1003400090E0880F991FFC01E255FF4FA591B491F1 :100350008C559F4FFC01C591D4919FB7611108C086 :10036000F8948C91209582238C93888182230AC0F3 :10037000623051F4F8948C91322F309583238C9312 :100380008881822B888304C0F8948C91822B8C9373 :100390009FBFDF91CF9108950F931F93CF93DF936A :1003A0001F92CDB7DEB7282F30E0F901E859FF4F93 :1003B0008491F901E458FF4F1491F901E057FF4F80 :1003C00004910023C9F0882321F069830E946A0107 :1003D0006981E02FF0E0EE0FFF1FEC55FF4FA59174 :1003E000B4919FB7F8948C91611103C0109581234B :1003F00001C0812B8C939FBF0F90DF91CF911F91F4 :100400000F91089508950E942F010E9402020E94F8 :100410007000C0E0D0E00E9474002097E1F30E94D9 :0A0420000000F9CF0895F894FFCF13

:00000001FF

:100020000C946E000C946E000C946E000C946E0098

your computer.

```
.ORG
        0x0000
RJMP
        main
main:
    LDI
             r16, 0xFF
             0x04, r16
    OUT
loop:
    SBI
             0x05, 5
            delay
    RCALL
             0x05, 5
    CBI
             delay
    RCALL
    RJMP
             loop
delay:
    LDI r16, 61
    outer loop:
    LDI r24, low(0)
    LDI r25, high (0)
    delay loop:
    ADIW
             r24, 1
    BRNE
             delay loop
    DEC
             r16
    BRNE
             outer loop
    RET
```