Econometrics HW3

Michael B. Nattinger*

November 23, 2020

1 3.24

	beta
education	0.14431
experience	0.042633
experience $^2/100$	-0.095056
constant	0.53089
resul	ts
R^2 0.389	932
SSE 82.50)5
	reestimate
coefficient estimate 0.14431	
R^2	0.36874
SSE	82.505

From the above tables, we see that we have matched the ols coefficient from equation (3.50). The R^2 and SSE are listed as well in the second table. In the third table, we see our re-estimated coefficient is the same as in the original regression; however, the R^2 is lower in the re-estimated regression as part of the informational content was already regressed out of the response variable in the first stage of the two-stage regression. The SSE are identical, however, due to the residuals from the original regression being identical to the residuals from the second stage of the re-estimated regression.

^{*}I worked on this assignment with my study group: Alex von Hafften, Andrew Smith, and Ryan Mather. I have also discussed problem(s) with Emily Case, Sarah Bass, and Danny Edgel.

2 3.25

	sums
a	4.4187e-14
b	-7.2209e-13
\mathbf{c}	-2.0606e-13
d	133.1331
e	1.5575e-11
f	-8.249e-14
g	82.505

The above table yields the relevant sums. Note that a, b, c, e are 0 (to computational accuracy) reflecting the fact that these sums are the inner product of one of the columns of X and the residual estimates. These inner products are 0 by construction. f is also 0 by construction for similar reasons. d, g are not forced to be 0 by construction, and in this case they are clearly nonzero.

3 7.2

$$\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}' \to_{p} E[X_{i} X_{i}']
\frac{1}{n} \lambda I_{k} \to_{p} 0
\hat{\beta} = (X'X + \lambda I_{k})^{-1} X' Y
= (X'X + \lambda I_{k})^{-1} X' (X\beta + \epsilon)
= (X'X + \lambda I_{k})^{-1} X' X\beta + (X'X + \lambda I_{k})^{-1} X' \epsilon
\to_{p} (E[X_{i} X_{i}'] + 0)^{-1} E[X_{i} X_{i}'] \beta + (E[X_{i} X_{i}'] + 0)^{-1} E[X_{i} \epsilon]
= (E[X_{i} X_{i}'])^{-1} E[X_{i} X_{i}'] \beta + (E[X_{i} X_{i}'])^{-1} 0
- \beta$$

Thus, $\hat{\beta}$ is consistent for β .

4 7.3

$$\frac{1}{n}\lambda I_k = \frac{1}{n}cnI_k \to_p cI_k$$

$$\Rightarrow \hat{\beta} \to_p \left(E[X_i X_i'] + cI_k \right)^{-1} E[X_i X_i'] \beta + \left(E[X_i X_i'] + CI_k \right)^{-1} E[X_i \epsilon]$$

$$= \left(E[X_i X_i'] + cI_k \right)^{-1} E[X_i X_i'] \beta$$

So, in this case the estimator is not consistent as $(E[X_iX_i'] + cI_k)^{-1}E[X_iX_i'] \neq I_k$.

5 7.4

1.
$$E[X_1] = 1/2(1) + 1/2(-1) = 0$$

2.
$$E[X_1]^2 = 1/2(1) + 1/2(1) = 1$$

3.
$$E[X_1X_2] = 3/4(1) + 1/4(-1) = 1/2$$

4.
$$E[e^2] = (5/4)(3/4) + (1/4)(1/4) = 1$$

5.
$$E[X_1^2 e^2] = (3/4)((1)(5/4)) + (1/4)((1)(1/4)) = 1$$

6.
$$E[X_1X_2e^2] = (3/4)((1)(5/4)) + (1/4)((-1)(1/4)) = 7/8$$

6 7.8

We know from (7.18) that $\hat{\sigma}_p^{\rightarrow} \sigma^2$. Moreover,

$$\sqrt{n}(\hat{\sigma}^{2} - \sigma^{2}) = \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} - \sigma^{2} \right)
= \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} (\epsilon_{i} - x_{i}'(\hat{\beta} - \beta))^{2} - \sigma^{2} \right)
= \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i}^{2} - \sigma^{2} \right) - 2 \left(\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} x_{i}' \right) \sqrt{n} (\hat{\beta} - \beta) + \sqrt{n} (\hat{\beta} - \beta)' \left(\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}' \right) (\hat{\beta} - \beta)
= \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i}^{2} - \sigma^{2} \right) - 2 o_{p}(1) O_{p}(1) + O_{p}(1) O_{p}(1) o_{p}(1)
\rightarrow_{d} N(0, V),$$

where $V = Var(\epsilon_i^2) = E(\epsilon_i^4) - \sigma^4$. Note that we have implicitly assumed that the fourth moment of ϵ exists.

7 7.9a

The first estimator, $\hat{\beta}$ is the univariate version of OLS. We know that this is therefore a consistent estimator. It is less immediate that $\tilde{\beta}$ is consistent, but we will show below that this is the case.

$$\tilde{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_i}{X_i} = \frac{1}{n} \sum_{i=1}^{n} \frac{X_i \beta + e_i}{X_i}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \beta + \frac{e_i}{X_i} = \beta + \frac{1}{n} \sum_{i=1}^{n} \frac{e_i}{X_i}$$

$$\rightarrow_p \beta + E\left[\frac{e_i}{X_i}\right] = \beta + E\left[\frac{E[e_i|X_i]}{X_i}\right]$$

$$= \beta$$

Therefore, $\tilde{\beta}$ is also a consistent estimator of β .

8 7.10

8.1 Point forecast

Let $\hat{Y}_{n+1} = x'\hat{\beta}$. We will show that this estimator of Y_{n+1} yields, in expectation conditional on X, x, the expectation of Y_{n+1} conditional on x.

$$\hat{Y}_{n+1} = x'\hat{\beta} = x'((X'X)^{-1}X'Y)$$

$$= x'(X'X)^{-1}X'(X\beta + e)$$

$$= x'\beta + x'(X'X)^{-1}X'e.$$

$$E[\hat{Y}_{n+1}|X,x] = E[x'\beta + x'(X'X)^{-1}X'e|X,x]$$

$$= x'\beta + E[x'(X'X)^{-1}X'E[e|X]|X,x]$$

$$= x'\beta$$

$$= E[Y_{n+1}|x]$$

8.2 Variance estimator

$$Var(\hat{Y}_{n+1}) = E[\hat{e}_{n+1}^2]$$

$$= E[(e_{n+1} - x'(\hat{\beta} - \beta))^2]$$

$$= E[e_{n+1}^2] - 2E[e_{n+1}x'(\hat{\beta} - \beta))^2] + E[x'(\hat{\beta} - \beta)(\hat{\beta} - \beta)'x]$$

$$= \sigma^2 + x'V_{\hat{\beta}}x$$

These are not known, however. Yet, we do have estimates of these quantities. Therefore,

$$\hat{Var}(\hat{Y}_{n+1}) = \hat{\sigma}^2 + x'\hat{V}_{\beta}x$$

is an estimator of the variance of our forecast.

9 7.13

We propose $\hat{\gamma} = \frac{1}{n} \sum_{i=1}^{n} X_i / Y_i$. Naturally, this leads to an estimator for $\theta : \hat{\theta} = 1/\hat{\gamma}$. $Var(\hat{\gamma}) = \frac{1}{n^2} \sum_{i=1}^{n} Var\left(\frac{X_i}{Y_i}\right) = \frac{1}{n^2} \sum_{i=1}^{n} Var\left(\gamma + \frac{u_i}{Y_i}\right) = \frac{1}{n} \left(\frac{Var(u_i)}{Var(Y_i)}\right) := \frac{1}{n}V$. Therefore, $\sqrt{n}(\hat{\gamma} - \gamma) \to_d N(0, V)$. Thus, we can apply the delta method and find that $\sqrt{n}(\hat{\theta} - \theta) \to_d N(0, W)$ where $W = \frac{V}{\gamma^2} = \theta^2 V$.

The asymptotic standard error for $\hat{\theta}$ is $\sqrt{W} = \theta \sqrt{V} = \theta \sqrt{\frac{Var(u_i)}{Var(Y_i)}}$.

10 7.14

We can retrieve OLS estimates of β_1, β_2 $(\hat{\beta}_1, \hat{\beta}_2)$ and then define $\hat{\theta} = \hat{\beta}_1 \hat{\beta}_2$. Next, we know the asymptotic distribution for OLS: $\sqrt{n}(\hat{\beta} - \beta) \to_d N(0, V_\beta)$ where $V_\beta = E[x_i x_i']^{-1} E[\epsilon_i^2 x_i x_i'] E[x_i x_i']^{-1}$ Then, we can apply the delta method and find:

$$\sqrt{n}(\hat{\theta} - \theta) \to_d N(0, V),$$

where $V = [\beta_2 \beta_1] V_{\beta} [\beta_2 \beta_1]'$. Should there be a 1/4 here?

To run a test, we would estimate $V: \hat{V} = [\hat{\beta}_2 \hat{\beta}_1] \hat{V}_{\beta} [\hat{\beta}_2 \hat{\beta}_1]'$ and calculate the 95 percent CI as $\left[\hat{\theta} - 1.96\sqrt{\hat{V}/n}, \hat{\theta} + 1.96\sqrt{\hat{V}/n}\right]$.

11 7.15

$$\begin{split} \hat{\beta} &= \frac{\sum_{i=1}^{n} X_{i}^{3} Y_{i}}{\sum_{i=1}^{n} X_{i}^{4}} \\ &= \frac{\sum_{i=1}^{n} X_{i}^{3} (X_{i} \beta + e_{i})}{\sum_{i=1}^{n} X_{i}^{4}} \\ &= \frac{\sum_{i=1}^{n} X_{i}^{4} \beta + \sum_{i=1}^{n} X_{i}^{3} e_{i}}{\sum_{i=1}^{n} X_{i}^{4}} \\ &\to_{d} \frac{E[X_{i}^{4}] \beta + E[X_{i}^{3} e_{i}]}{E[X_{i}^{4}]} \\ &= \beta + \frac{E[X_{i}^{3} E[e_{i} | X_{i}]]}{E[X_{i}^{4}]} \\ &= \beta \end{split}$$

Thus, $\hat{\beta}$ is a consistent estimator for β . Now we should find its distributional variance:

. . .

- 12 7.17
- 13 7.19
- 14 Q 9