# Koszul Pairs

## Mario Román

## April 30, 2017

# Contents

| 1 Sheaves and presheaves |                  |                       |                               |        |  |  |  |  |  |  |  |  |   |   | 2 |   |   |
|--------------------------|------------------|-----------------------|-------------------------------|--------|--|--|--|--|--|--|--|--|---|---|---|---|---|
| 2                        | Hor              | Homological algebra   |                               |        |  |  |  |  |  |  |  |  |   |   |   | 2 |   |
|                          | 2.1              | Abelia                | categories                    |        |  |  |  |  |  |  |  |  |   |   |   |   | 2 |
|                          |                  | 2.1.1                 | Additive category             |        |  |  |  |  |  |  |  |  |   |   |   |   | 2 |
|                          |                  | 2.1.2                 | Abelian category              |        |  |  |  |  |  |  |  |  |   |   |   |   | 2 |
|                          | 2.2              | Chain                 | complexes and homology .      |        |  |  |  |  |  |  |  |  |   |   |   |   | 2 |
|                          |                  | 2.2.1                 | Chain complex                 |        |  |  |  |  |  |  |  |  |   |   |   |   |   |
|                          |                  | 2.2.2                 | Exact sequences               |        |  |  |  |  |  |  |  |  |   |   |   |   | 2 |
|                          |                  | 2.2.3                 | Homology                      |        |  |  |  |  |  |  |  |  |   |   |   |   | 2 |
| 3                        | Derived functors |                       |                               |        |  |  |  |  |  |  |  |  | 2 |   |   |   |   |
|                          | 3.1              | Projec                | ive, injective and flat resol | utions |  |  |  |  |  |  |  |  |   |   |   |   | 2 |
|                          |                  | 3.1.1                 | Definitions                   |        |  |  |  |  |  |  |  |  |   |   |   |   |   |
|                          |                  | 3.1.2                 | Resolutions                   |        |  |  |  |  |  |  |  |  |   |   |   |   | 3 |
|                          |                  | 3.1.3                 | Derived functors              |        |  |  |  |  |  |  |  |  |   |   |   |   | 4 |
| 4                        | Hoo              | Hochschild homology 4 |                               |        |  |  |  |  |  |  |  |  |   |   |   |   |   |
|                          | 4.1              | Prelim                | naries                        |        |  |  |  |  |  |  |  |  |   |   |   |   | 4 |
|                          |                  | 4.1.1                 | Enveloping algebra            |        |  |  |  |  |  |  |  |  |   |   |   |   | 4 |
|                          |                  | 4.1.2                 | Standard resolution           |        |  |  |  |  |  |  |  |  |   |   |   |   |   |
|                          | 4.2              | Hochso                | hild homology                 |        |  |  |  |  |  |  |  |  |   |   |   |   |   |
| 5                        | Koszul pairs     |                       |                               |        |  |  |  |  |  |  |  |  |   | 5 |   |   |   |
|                          | 5.1              | Prelim                | nary definitions              |        |  |  |  |  |  |  |  |  |   |   |   |   | 5 |
|                          |                  | 5.1.1                 | Graded rings                  |        |  |  |  |  |  |  |  |  |   |   |   |   | 5 |
|                          |                  | 5.1.2                 | Koszul rings                  |        |  |  |  |  |  |  |  |  |   |   |   |   | 6 |
|                          |                  | 5.1.3                 | R-rings                       |        |  |  |  |  |  |  |  |  |   |   |   |   | 6 |
|                          |                  | 5.1.4                 | R-coring                      |        |  |  |  |  |  |  |  |  |   |   |   |   |   |
|                          |                  | 5.1.5                 | Almost-koszul pair            |        |  |  |  |  |  |  |  |  |   |   |   |   | 6 |
| 6                        | Ref              | oroncos               |                               |        |  |  |  |  |  |  |  |  |   |   |   |   | 7 |

### 1 Sheaves and presheaves

## 2 Homological algebra

### 2.1 Abelian categories

#### 2.1.1 Additive category

**Definition 1.** C is an additive category if:

- Hom(A, B) is an abelian group.
- Distributivity holds:  $b \circ (f+g) = b \circ f + b \circ g$  and  $(f+g) \circ a = f \circ a + g \circ a$ .
- Has a zero object.
- Has finite products and coproducts.

A functor T between two additive categories is and **additive functor** if T(f+g) = Tf + Tg. [1]

#### 2.1.2 Abelian category

**Definition 2.** An abelian category is an additive category such that

- every morphism has a kernel and cokernel.
- every monomorphism is a kernel.
- every epimorphism is a cokernel.

The category of R-modules is an abelian category, but also the category of chain complexes of an arbitrary abelian category, Ch(A), is an abelian category.

### 2.2 Chain complexes and homology

#### 2.2.1 Chain complex

**Definition 3.** A chain complex is a family of R-modules  $\{C_n\}$  and homomorphisms  $d_n \colon C_n \to C_{n-1}$  called *differentials*, such that each composite of consecutive differentials is zero, i.e.  $d_{n-1} \circ d_n = 0$ . [2]

**Theorem 1.** Given an abelian category A, the category Ch(A) is an abelian category.

#### 2.2.2 Exact sequences

Theorem 2.

#### 2.2.3 Homology

### 3 Derived functors

### 3.1 Projective, injective and flat resolutions

#### 3.1.1 Definitions

**Definition 4.** An R-module D is:

- 1. **Projective** if Hom(D, -) is exact.
- 2. **Injective** if Hom(-, D) is exact.
- 3. Flat if  $D \otimes -$  is exact.

We know that Hom(D, -) and Hom(-, D) are left-exact and that  $D \otimes -$  is right-exact; so for them to be exact, we only need:

• A module D is **projective** when  $B \longrightarrow C$  surjective induces  $Hom(D,B) \longrightarrow Hom(D,C)$  surjective.

$$D \xrightarrow{\exists} C$$

• A module D is **injective** when  $A \longrightarrow B$  surjective induces  $Hom(B,D) \longrightarrow Hom(A,D)$  surjective.

$$\begin{array}{c}
A \\
\downarrow \\
D \leftarrow --- B
\end{array}$$

• A module D is **flat** when  $A \longrightarrow B$  injective induces  $D \otimes A \longrightarrow D \otimes B$  injective.

#### 3.1.2 Resolutions

**Definition 5.** A projective resolution is a resolution

$$\cdots \longrightarrow P_2 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

where every  $P_i$  is projective.

**Definition 6.** An **injective resolution** is a resolution

$$0 \longrightarrow M \longrightarrow E_0 \longrightarrow E_1 \longrightarrow E_2 \longrightarrow \dots$$

where every  $E_i$  is injective.

**Definition 7.** A flat resolution is a resolution

$$\cdots \longrightarrow F_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M \longrightarrow 0$$

where  $F_i$  is flat.

**Explicit construction** Notice that, given a module M, we can always find a surjection from a projective module (if we have *enough projectives*). So we can construct a projective resolution as follows:



We can also reverse the arrows to obtain an injective resolution.

#### 3.1.3 Derived functors

#### Definition 8.

Construction of the right derived functor Let F be additive, covariant and left-exact. Let  $0 \longrightarrow M \longrightarrow E^{\bullet}$  be an injective resolution with M deleted; then  $F(E^{\bullet})$  is a complex, and we define:

$$R^{i}F(M) = H^{i}(F(E^{\bullet})) = \frac{\ker\{F(E_{i}) \longrightarrow F(E_{i+1})\}}{\operatorname{Im}\{F(E_{i-1}) \longrightarrow F(E_{i})\}}$$

That is, if we take the *injective resolution* 

$$0 \longrightarrow M \longrightarrow E_0 \longrightarrow E_1 \longrightarrow \dots$$

we can delete M and apply F to get a (non necessarily exact) complex where we can compute the homology

$$0 \longrightarrow F(E_0) \longrightarrow F(E_1) \longrightarrow F(E_2) \longrightarrow \dots$$

Construction of the left derived functor Let F be additive, contravariant and left-exact. Let  $P^{\bullet} \longrightarrow M \longrightarrow 0$  be a projective resolution with M deleted; then  $F(P^{\bullet})$  is a complex, and we define:

$$R^{i}F(M) = H^{i}(F(P^{\bullet})) = \frac{\ker\{F(P_{i}) \longrightarrow F(P_{i+1})\}}{\operatorname{Im}\{F(P_{i-1}) \longrightarrow F(P_{i})\}}$$

That is, if we take the *projective resolution*:

$$\cdots \longrightarrow P_2 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

Delete M and apply F to get a (non neccesarily exact) complex where we can compute the homology:

$$0 \longrightarrow F(P_0) \longrightarrow F(P_1) \longrightarrow F(P_2) \longrightarrow \dots$$

## 4 Hochschild homology

### 4.1 Preliminaries

#### 4.1.1 Enveloping algebra

**Definition 9.** Let R be a k-algebra, the **enveloping algebra** of R is  $R^e = R \otimes R^{op}$ , where the product is defined as

$$(r_1 \otimes s_1)(r_2 \otimes s_2) = (r_1 r_2) \otimes (s_2 s_1).$$

**Theorem 3.** Given any k-algebra, R, the following categories are isomorphic:

- $\bullet$  (R;R)-Mod
- R<sup>e</sup>-Mod
- $Mod-R^e$

*Proof.* If M is an (R;R)-module, we can provide it with  $R^e$ -module structure by defining  $(r \otimes s)m = rms$ . It is trivial to check that this structure is compatible with our previously defined product, as

$$(a \otimes b)(c \otimes d)m = acmdb = (ac \otimes bd)m.$$

If M is an  $R^e$ -module, we can provide it with R; R-module structure taking  $rms = (r \otimes s)m$ . Compatibility relation can be checked by the same reasoning.

#### Standard resolution 4.1.2

Given R, a k-algebra we define the standard resolution  $(P_{\bullet}, d_{\bullet})$  of R in (R; R)-mod as

- $P_n = R \otimes (R^{\otimes n}) \otimes R$
- $d_n = \sum_{i=0}^n (-1)^i d_n^i$

where

$$d_n^i(a_0 \otimes \cdots \otimes a_{n+1}) = a_0 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_{n+1}.$$

#### 4.2 Hochschild homology

**Definition 10.** Given R, a K-algebra, and M, an (R; R)-module, we define:

- The Hochschild cohomology of R in M as  $HH^{\bullet}(R, M) = \operatorname{Ext}_{R^e}^{\bullet}(R, M)$ .
- The Hochschild homology of R in M as  $HH_{\bullet}(R,M) = \operatorname{Tor}_{\bullet}^{R^e}(R,M)$ .

In order to compute the cohomology, we can take the following cochain complex

$$\operatorname{Hom}_K(K,M) \xrightarrow{b^0} \operatorname{Hom}_K(R,M) \xrightarrow{b^1} \operatorname{Hom}_K(R^{\otimes 2},M) \xrightarrow{b^2} \dots$$

where the  $b^n$  are defined as

- $b^{0}(m)(a) = am ma$   $b^{n} = \sum_{i=0}^{n+1} (-1)^{i} b_{i}^{n}$

and the auxiliary morphisms  $b_i^n$  are defined as

$$b_i^n(f)(a_1 \otimes \cdots \otimes a_{n+1}) = \begin{cases} a_1 f(a_2 \otimes \cdots \otimes a_{n+1}) & \text{if } i = 0 \\ f(a_1 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_{n+1} & \text{if } i = 1, \dots, n \\ f(a_1 \otimes \cdots \otimes a_n) a_{n+1} & \text{if } i = n+1 \end{cases}$$

#### 5 Koszul pairs

#### Preliminary definitions

#### Graded rings 5.1.1

**Definition 11.** A graded ring is a ring that can be written as a direct sum of abelian groups

$$A = \bigoplus_{n \in \mathbb{N}} A_n$$

such that  $A_i A_j \subset A_{i+j}$ .

A homogeneous element is an element of any factor  $A_i$  of the decomposition.

#### 5.1.2 Koszul rings

**Definition 12.** A graded ring A is a **koszul ring** if  $A^0$  is a semisimple ring and it has a resolution  $P_*$  by projective graded left A-modules such that each  $P_n$  is generated by homogeneous elements of degree n. [3]

#### **5.1.3** R-rings

**Definition 13.** An R-ring is an associative and unital algebra. It is an associative and unital ring A together with a morphism  $u: R \longrightarrow A$ .

A R-ring is **graded** if it is equipped with a decomposition:

$$A = \bigoplus_{n \in \mathbb{N}} A^n$$

such that multiplicaton  $m^{p,q}$  maps  $A^p \otimes A^q$  into  $A^{p+q}$ . It is **connected** when  $A_0 = R$ . It is **strongly graded** when  $m^{1,p}$  is surjective. We call  $\pi^n_A$  to the projection of A onto  $A^n$ .

#### 5.1.4 R-coring

**Definition 14.** A **coalgebra** over a field K is a **vector space** V together with linear maps  $\Delta: V \longrightarrow V \otimes V$  and  $\varepsilon: V \longrightarrow K$  such that:

1. 
$$(id \otimes \Delta) \circ \Delta = (\Delta \otimes id) \circ \Delta$$

2. 
$$(id \otimes \varepsilon) \circ \Delta = id = (\varepsilon \otimes id) \circ \Delta$$

When writting in coalgebras, we will follow the **Sweedler notation**. [4]

**Definition 15.** An **R**-coring is a coassociative and counital coalgebra. It is an R-bimodule with a comultiplication  $\Delta: C \longrightarrow C \otimes C$  and a counit  $\epsilon: C \longrightarrow R$ .

A R-coring is **graded** if it is equipped with a decomposition  $C = \bigoplus_{n \in \mathbb{N}} C_n$ , such that

$$\Delta(C_n) \subset \bigoplus_{p=0}^n C_p \otimes C_{n-p}.$$

#### 5.1.5 Almost-koszul pair

**Definition 16.** An almost-Koszul pair is a connected R-ring and R-coring (A, C) with an isomorphism  $\theta_{C,A}: C_1 \longrightarrow A^1$  that satisfies the relation

$$m^{1,1} \circ (\theta_{C,A} \otimes \theta_{C,A}) \circ \Delta_{1,1} = 0.$$

Using Sweedler notation we can rewrite the condition as follows: for any  $c \in C_2$ ,

$$\sum \theta_{C,A}(c_{(1,1)})\theta_{C,A}(c_{(2,1)}) = 0.$$

## 6 References

## References

- [1] Joseph J. Rotman. Setting the Stage, pages 1–110. An Introduction to Homological Algebra. Springer New York, 2008.
- [2] Charles A. Weibel. *Introduction*, pages xi–xiv. An Introduction to Homological Algebra. Cambridge University Press, nil.
- [3] P. Jara Martínez, J. López Peña, and D. Ştefan. Koszul pairs and applications. ArXiv e-prints, November 2010.
- [4] Robert G. Underwood. Algebras and Coalgebras, pages 1–34. Universitext. Springer International Publishing, 2015.