

Bab 3. Matriks dan Determinan (Lanjutan)

Daryono Budi Utomo

1

Bab 3. Matriks, Determinan dan Sistem Persamaan Linier

- 3.1 Matriks dan Operasinya
- 3.2 Matrik Diagonal, Segitiga dan Simetris
- 3.3 Sistem Persamaan Linier
- 3.4 Penyelesaian Sistem Persamaan Linier
- √ 3.5 Matriks Identitas dan Matriks Invers
- ✓ 3.6 Fungsi Determinan
- √ 3.8 Mencari Matriks Invers dengan Adjoint
- √ 3.9 Nilai Eigen dan Vektor Eigen

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

3.5 Matriks Identitas dan Matriks Invers

Matriks Identitas

Matriks Identitas adalah matriks persegi yang anggotanya semua nol kecuali pada diagonal utama semuanya bilangan satu, biasanya disimbol dengan I_n , dimana n adalah ukuran matriksnya.

Contoh

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $I_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Darvono, Matematika 1: Bab 3 Matriks dan Determinan

3

Pengertian Invers Matriks

Matriks persegi A dikatakan mempunyai invers, jikaterdapat matriks B sedemikian hingga:

$$AB = BA = I$$
,

dimana I matriks identitas

• B dikatakan invers matriks A ditulis A^{-1} , maka $AA^{-1} = A^{-1}A = I$

Contoh 1.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 6 \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} -2 & 3 & -1 \\ 0 & -3 & 2 \\ 1 & 1 & -1 \end{pmatrix}$$

$$AA^{-1} = A^{-1}A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 6 \end{pmatrix} \times \begin{pmatrix} -2 & 3 & -1 \\ 0 & -3 & 2 \\ 1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & 3 & -1 \\ 0 & -3 & 2 \\ 1 & 1 & -1 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

4

Mencari Matriks Invers

Diberikan matriks *A* tambahkan pada sisi kanan matriks identitas, ubahlah matriks *A* menjadi bentuk matriks identitas dengan menggunakan *OBE*. Hasil dari matriks sisi kanan merupakan matriks invers dari matriks *A*.

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

5

Contoh 2.

Diberikan matriks A sebagai berikut:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{pmatrix}$$

Tentukan invers matriks A

Penyelesaian

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{pmatrix} \sim (B_2 - 2B_1) \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 2 & 5 & -1 & 0 & 1 \end{pmatrix} \sim (B_3 + 2B_2) \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & -1 & -5 & 2 & 1 \end{pmatrix}$$

$$\sim (B_2 - 2B_1) : 2 - (2 * 1) = 0 \quad \sim (B_3 - B_1) : 1 - 1 = 0 \quad \sim (B_3 + 2B_2) : 0 + 2 * 0 = 0$$

$$5 - (2 * 2) = 1 \quad 0 - 2 = -2 \quad -2 + 2 * 1 = 0$$

$$3 - (2 * 3) = -3 \quad 8 - 3 = 5 \quad 5 + 2 * (-3) = -1$$

$$0 - (2 * 1) = -2 \quad 0 - 1 = -1 \quad -1 + 2 * (-2) = -5$$

$$1 - (2 * 0) = 1 \quad 0 - 0 = 0 \quad 0 + 2 * 1 = 2$$

$$0 - (2 * 0) = 0 \quad 1 - 0 = 1 \quad 1 + 2 * 0 = 1$$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & -1 & -5 & 2 & 1 \end{pmatrix} \sim (-1)B_3 \begin{pmatrix} 1 & 2 & \boxed{3} & 1 & 0 & 0 \\ 0 & 1 & \boxed{3} & -2 & 1 & 0 \\ 0 & 0 & 1 & \boxed{5} & -2 & -1 \end{pmatrix} \sim (B_1 - 3B_3) \sim (B_2 + 3B_3)$$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

/

MATEMATIKA ITS

SPL Tak Homogen

$$x_1 + 2x_2 + 3x_3 = 1$$

 $2x_1 + 5x_2 + 3x_3 = 2$
 $1x_1 + 8x_3 = 3$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{pmatrix} \qquad A^{-1} = \begin{pmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{pmatrix}$$

$$Ax = b \leftrightarrow A^{-1}Ax = A^{-1}b \leftrightarrow Ix = A^{-1}b \rightarrow x = A^{-1}b$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

8

3.6 Fungsi Determinan

Permutasi

Permutasi suatu himpunan bilangan bulat {1; 2; 3; ; n} adalah suatu susunan bilangan-bilangan bulat dalam suatu urutan tanpa pengulangan

Banyaknya susunan *n* bilangan adalah *n*!

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

С

Pembalikan Permutasi

Jika dalam suatu permutasi terdapat jumlah pembalikan yang genap maka permutasi tersebut disebut permutasi genap, begitu juga jika terjadi jumlah pembalikan yang ganjil maka disebut dengan permutasi ganjil

Contoh 3.

Untuk n = 3

Permutasi	Jumlah Pembalikan	Klasifikasi
(1, 2, 3)	0	genap
(1, 3, 2)	1	ganjil
(2, 1, 3)	1	ganjil
(2, 3, 1)	2	genap
(3, 1, 2)	2	genap
(3, 2, 1)	3	ganjil

Penjelasan

- (1, 2, 3) urutan sudah benar tidak ada yang terbalik, pembalikan 0
- (1, 3, 2) → 3 mendahului 2 jumlah pembalikan 1
- (3, 2, 1) → 3 mendahului 2,
 3 mendahului 1, 2 mendahului 1
 jumlah pembalikan 3

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

Determinan

Pandang matriks A matriks persegi. Fungsi determinan A atau biasanya disingkat dengan determinan A dinyatakan dengan det(A) sebagai jumlahan hasil kali dasar beserta tanda dari A.

Untuk matriks A berukuran 2 x 2

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Permutasi	Hasil Kali Dasar	Pembalikan	Hasil Kali Bertanda
(1,2)	$a_{11}a_{22}$	genap	$a_{11}a_{22}$
(2,1)	$a_{12}a_{21}$	ganjil	$-a_{12}a_{21}$

- Untuk permutasi (1, 2) tidak ada pembalikan (genap tanda +), maka $a_{11}a_{22}$
- Untuk permutasi (2, 1) ada pembalikan 1 (ganjil tanda), maka $a_{12}a_{21}$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

11

Untuk matriks A berukuran 3 x 3

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Permutasi	Hasil Kali Dasar	Pembalikan	Hasil Kali Dasar Bertanda
(1, 2, 3)	$a_{11}a_{22}a_{33}$	0 (genap)	$a_{11}a_{22}a_{33}$
(1, 3, 2)	$a_{11}a_{23}a_{32}$	1 (ganjil)	$-a_{11}a_{23}a_{32}$
(2, 1, 3)	$a_{12}a_{21}a_{33}$	1 (ganjil)	$-a_{12}a_{21}a_{33}$
(2, 3, 1)	$a_{12}a_{23}a_{31}$	2 (genap)	$a_{12}a_{23}a_{31}$
(3, 1, 2)	$a_{13}a_{21}a_{32}$	2 (genap)	$a_{13}a_{21}a_{32}$
(3, 2, 1)	$a_{13}a_{22}a_{31}$	3 (ganjil)	$-a_{13}a_{22}a_{31}$

 $(1, 2, 3) \rightarrow 1$, 2 dan 3 sudah pada posisi : $a_{11}a_{22}a_{33}$

 $(1, 3, 2) \rightarrow 1$ sudah pada posisi $2 \rightarrow 3$ dan $3 \rightarrow 2$ $a_{11}a_{23}a_{32}$

 $(2, 1, 3) \rightarrow 3$ sudah dalam posisi $1 \rightarrow 2$ dan $2 \rightarrow 1$ $a_{12}a_{21}a_{33}$

 $(3, 2, 1) \rightarrow 2$ sudah dalam posisi $1 \rightarrow 3$ dan $3 \rightarrow 1$ $a_{13}a_{22}a_{31}$ $(3, 1, 2) \rightarrow$ semua tdk dalam posisi $1 \rightarrow 3$, $3 \rightarrow 2$ dan $2 \rightarrow 1$ $a_{13}a_{21}a_{32}$ $(2, 3, 1) \rightarrow$ semua tdk dalam posisi $1 \rightarrow 2$, $2 \rightarrow 3$ dan $3 \rightarrow 1$ $a_{12}a_{23}a_{31}$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

Contoh 4.

Tentukan nilai determinan dari matriks sebagai berikut

$$A = \begin{pmatrix} 2 & 4 & 3 \\ 4 & 1 & 5 \\ 6 & 2 & 3 \end{pmatrix}$$

Penyelesaian

Permutasi	Hasil Kali Dasar	Pembalikan	Hasil Kali Dasar Bertanda	$\det(A) = \begin{vmatrix} 2 & 4 & 3 \\ 4 & 1 & 5 \end{vmatrix}$
(1, 2, 3)	(2)(1)(3)	0 (genap)	(2)(1)(3)	6 2 3
(1, 3, 2)	(2)(5)(2)	1 (ganjil)	-(2)(5)(2)	= (2)(1)(3) - (2)(5)(2) - (4)(4)(3) +
(2, 1, 3)	(4)(4)(3)	1 (ganjil)	-(4)(4)(3)	(4)(5)(6) + (3)4)(2) - (3)(1)(6)
(2, 3, 1)	(4)(5)(6)	2 (genap)	(4)(5)(6)	= 64
(3, 1, 2)	(3)(4)(2)	2 (genap)	(3)(4)(2)	
(3, 2, 1)	(3)(1)(6)	3 (ganjil)	-(3)(1)(6)	

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

13

Sifat – sifat Determinan

- 1. Jika A mempunyai sebuah atau lebih baris (kolom) nol semua, maka det(A) = 0
- 2. $det(A) = det(A^T)$
- 3. Jika matriks persegi A adalah matriks segitiga atas atau bawah, maka det(A) = hasil kali elemen pada diagonalnya
- 4. Jika B adalah matriks yang dihasilkan dari matriks A yang dilakukan dengan OBE/OKE tunggal yaitu dengan mengalikan dengan k pada salah satu baris atau kolom dari A, maka det(B) = k det(A)
- 5. Jika B adalah matriks yang dihasilkan dari matriks A dengan OBE/OKE yaitu menukarkan baris atau kolom dari A, maka det(B) = det(A)
- 6. Jika B adalah matriks yang dihasilkan dari matriks A dengan OBE/OKE yaitu penggandaan dari baris atau kolom dari A kemudian ditambah atau dikurang pada baris atau kolom yang lain, maka det(B) = det(A)
- 7. Jika matriks persegi A mempunyai dua baris atau dua kolom yang sebanding, maka det(A) = 0

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

14

3.7 Menghitung Determinan

Ukuran 2 x 2

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Ukuran 3 x 3

Metoda Sarrus → Khusus determinan ukuran 3 x 3

Tambahkan kolom 1 dan 2 dan letakkan di belakang determinan

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \rightarrow \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{vmatrix} = \begin{vmatrix} (a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}) - (a_{12}a_{21}a_{33} + a_{11}a_{23}a_{32} + a_{13}a_{22}a_{31}) \\ - & - & - & + & + & + \end{vmatrix}$$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

15

Contoh 5.

$$\begin{vmatrix} 2 & -3 \\ 5 & 1 \end{vmatrix} = (2 \times 1) - (-3 \times 5) = 17$$

$$\begin{vmatrix} 2 & -1 & 1 \\ 0 & 3 & -2 \\ -4 & 0 & 5 \end{vmatrix} \rightarrow \begin{vmatrix} 2 & 1 & 2 & -1 \\ 0 & 3 & -2 & 0 \\ -4 & 0 & 5 & -4 \end{vmatrix} = \frac{(2.3.5 + (-1)(-2)(-4) + 1.0.0) - (-1)(-1)(-1)(-1)(-1)}{((-1).0.(5) + 2.(-2).0 + 1.3.(-4))} = 34$$

$$\begin{pmatrix} 3 & 8 & -1 & 6 \\ -2 & 0 & 7 & 4 \\ 5 & -3 & 2 & 0 \\ 1 & 0 & 9 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 8 & 1 & 6 & 3 & 8 & 1 \\ -2 & 0 & 7 & 4 & 2 & 0 & 7 \\ 5 & -3 & 2 & 6 & 5 & -3 & 2 \\ 1 & 0 & 9 & 5 & 1 & 0 & 9 \end{pmatrix}$$
Salah!

- - - - + + + + + Jangan dilakukan!

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

Menghitung Determinan Ukuran $n \times n$

- Buat matriks segitiga (atas/bawah) dengan OBE
- Nilai determinan ukuran $n \times n$ adalah perkalian diagonalnya

Contoh 6.

$$D = \begin{pmatrix} 2 & 3 & -1 & 6 \\ -2 & -5 & 7 & 4 \\ 6 & 11 & 2 & 0 \\ 4 & 0 & 9 & -4 \end{pmatrix} \sim \begin{pmatrix} B_2 + B_1 \\ 0 & 2 & 6 & 10 \\ 0 & 2 & 5 & -18 \\ 0 & 6 & 7 & 8 \end{pmatrix} \sim \begin{pmatrix} B_3 - B_2 \\ 0 & 2 & 6 & 10 \\ 0 & 0 & -1 & -28 \\ 0 & 0 & -11 & -22 \end{pmatrix}$$

$$D = \begin{pmatrix} 2 & 8 & -1 & 6 \\ 0 & 2 & 6 & 10 \\ 0 & 0 & -1 & -28 \\ 0 & 0 & -11 & -22 \end{pmatrix} \sim \begin{pmatrix} B_4 + 11B_3 \end{pmatrix} \begin{pmatrix} 2 & 8 & -1 & 6 \\ 0 & 2 & 6 & 10 \\ 0 & 0 & -1 & -28 \\ 0 & 0 & 0 & -338 \end{pmatrix} \quad |D| = 2 \times 2 \times (-1) \times (-330) = 1320$$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

17

Minor dan Kofaktor

Jika matriks persegi A, maka minor anggota a_{ij} dinyatakan dengan M_{ij} dan didenisikan sebagai determinan dari sub-matriks dari matriks awal dengan menghilangkan baris ke-i dan kolom ke-j, sedangkan kofaktor anggota a_{ij} ditulis:

$$C_{ij} = (-1)^{i+j} M_{ij}$$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

Contoh 7

$$A = \begin{pmatrix} 2 & 4 & 3 \\ 4 & 1 & 5 \\ 6 & 2 & 3 \end{pmatrix}$$

Kofaktor:
$$C_{11} = (-1)^{1+1} \begin{vmatrix} 1 & 5 \\ 2 & 3 \end{vmatrix} = -7$$
; $C_{12} = (-1)^{1+2} \begin{vmatrix} 4 & 5 \\ 6 & 3 \end{vmatrix} = 18$; $C_{13} = (-1)^{1+3} \begin{vmatrix} 4 & 1 \\ 6 & 2 \end{vmatrix} = 2$

$$C_{21} = (-1)^{2+1} \begin{vmatrix} 4 & 3 \\ 2 & 3 \end{vmatrix} = -6$$
; $C_{22} = (-1)^{2+2} \begin{vmatrix} 2 & 3 \\ 6 & 3 \end{vmatrix} = -12$; $C_{23} = (-1)^{2+3} \begin{vmatrix} 2 & 4 \\ 6 & 2 \end{vmatrix} = 20$

$$C_{31} = (-1)^{3+1} \begin{vmatrix} 4 & 3 \\ 1 & 5 \end{vmatrix} = 17$$
; $C_{32} = (-1)^{3+2} \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = 2$; $C_{33} = (-1)^{3+3} \begin{vmatrix} 2 & 4 \\ 4 & 1 \end{vmatrix} = -14$

Matriks Kofaktor:
$$C = \begin{pmatrix} -7 & 18 & 2 \\ -6 & -12 & 20 \\ 17 & 2 & -14 \end{pmatrix}$$

Darvono, Matematika 1: Bab 3 Matriks dan Determinan

19

Menghitung Determinan Dengan Minor dan Kofaktor

Determinan dari matriks persegi A dapat dihitung dengan mengalikan anggotaanggota baris atau kolom dengan kofaktornya dan menjumlahkannya. Untuk setiap $1 \le i, j \le n$, perluasan kofaktor dengan baris ke-i, adalah:

$$\det(A) = \sum_{j=1}^{n} a_{ij} C_{ij}$$

Dan perluasan kofaktor dengan baris ke-i, adalah

$$\det(A) = \sum_{i=1}^{n} a_{ij} C_{ij}$$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

Contoh 8.

$$|A| = \begin{vmatrix} 2 & -1 & 1 \\ 0 & 3 & -2 \\ -4 & 0 & 5 \end{vmatrix}$$

Perluasan kofaktor dengan baris ke-1,

$$|A| = 2(-1)^{1+1} \begin{vmatrix} 3 & -2 \\ 0 & 5 \end{vmatrix} + (-1)(-1)^{1+2} \begin{vmatrix} 0 & -2 \\ -4 & 5 \end{vmatrix} + 1(-1)^{1+3} \begin{vmatrix} 0 & 3 \\ -4 & 0 \end{vmatrix}$$
$$= 30 - 8 + 12 = 34$$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

21

3.8 Mencari Matriks Invers dengan Adjoint

Matriks Adjoint

Jika matriks persegi A dengan ukuran n dan C_{ij} adalah kofaktor dari matriks A, maka transpose dari matriks kofaktor dinamakan adjoint(A) ditulis Adj(A).

Matriks kofaktor A

$$\begin{pmatrix} c_{11} & c_{12} & c_{13} & \cdots & c_{1n} \\ c_{21} & c_{22} & c_{23} & \cdots & c_{2n} \\ c_{31} & c_{32} & c_{33} & \cdots & c_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & c_{n3} & \cdots & c_{nn} \end{pmatrix}$$

Matriks
$$Adj(A) = C^T$$

c_{11}	c_{21}	c_{31}	•••	c_{n1}
c_{12}	c_{22}	c_{32}	•••	c_{n2}
c_{13}	c_{23}	c_{33}	• • •	c_{n3}
:	:	:	٠.	:
c_{1n}	c_{2n}	c_{3n}	•••	c_{nn}

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

Contoh 9.

$$A = \begin{pmatrix} 2 & 4 & 3 \\ 4 & 1 & 5 \\ 6 & 2 & 3 \end{pmatrix}$$

$$C_{11} = (-1)^{1+1} \begin{vmatrix} 1 & 5 \\ 2 & 3 \end{vmatrix} = -7; \quad C_{12} = (-1)^{1+2} \begin{vmatrix} 4 & 5 \\ 6 & 3 \end{vmatrix} = 18 \quad ; \quad C_{13} = (-1)^{1+3} \begin{vmatrix} 4 & 1 \\ 6 & 2 \end{vmatrix} = 2$$

$$C_{21} = (-1)^{2+1} \begin{vmatrix} 4 & 3 \\ 2 & 3 \end{vmatrix} = -6;$$
 $C_{22} = (-1)^{2+2} \begin{vmatrix} 2 & 3 \\ 6 & 3 \end{vmatrix} = -12;$ $C_{23} = (-1)^{2+3} \begin{vmatrix} 2 & 4 \\ 6 & 2 \end{vmatrix} = 20$

$$C_{31} = (-1)^{3+1} \begin{vmatrix} 4 & 3 \\ 1 & 5 \end{vmatrix} = 17;$$
 $C_{32} = (-1)^{3+2} \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = 2$; $C_{33} = (-1)^{3+3} \begin{vmatrix} 2 & 4 \\ 4 & 1 \end{vmatrix} = -14$

Matriks
$$C = \begin{pmatrix} -7 & 18 & 2 \\ -6 & -12 & 20 \\ 17 & 2 & -14 \end{pmatrix}$$

Matriks $C = \begin{pmatrix} -7 & 18 & 2 \\ -6 & -12 & 20 \\ 17 & 2 & -14 \end{pmatrix}$ Matriks Adj(A): $Adj(A) = \begin{pmatrix} -7 & -6 & 17 \\ 18 & -12 & 2 \\ 2 & 20 & -14 \end{pmatrix}$

Darvono, Matematika 1: Bab 3 Matriks dan Determinan

Menentukan Invers Matriks

Jika matriks persegi A mempunyai invers, maka

$$A^{-1} = \frac{1}{\det(A)} adj(A)$$

Contoh 10

Diberikan matriks A sebagai berikut

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{pmatrix}$$

Tentukan invers matriks A

Penyelesaian

$$det(A) = \begin{bmatrix} 1 & 2 & 3 & 1 & 2 \\ 2 & 5 & 3 & 2 & 5 \\ 1 & 0 & 8 & 1 & 0 \end{bmatrix} = (1.5.8 + 2.3.1 + 3.2.0) - (2.2.8 + 1.3.0 + 3.5.1) = 46 - 47 = -1$$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

Kofaktor matriks
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{pmatrix}$$

$$C_{11} = (-1)^{1+1} \begin{vmatrix} 5 & 3 \\ 0 & 8 \end{vmatrix} = 40; \quad C_{12} = (-1)^{1+2} \begin{vmatrix} 2 & 3 \\ 1 & 8 \end{vmatrix} = -13 \quad ; \quad C_{13} = (-1)^{1+3} \begin{vmatrix} 2 & 5 \\ 1 & 0 \end{vmatrix} = -5$$

$$C_{21} = (-1)^{2+1} \begin{vmatrix} 2 & 3 \\ 0 & 8 \end{vmatrix} = -16; \quad C_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 3 \\ 1 & 8 \end{vmatrix} = 5 \quad ; \quad C_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} = 2$$

$$C_{31} = (-1)^{3+1} \begin{vmatrix} 2 & 3 \\ 5 & 3 \end{vmatrix} = -9 \quad ; \quad C_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 3 \\ 2 & 3 \end{vmatrix} = 3 \quad ; \quad C_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = 1$$

$$C = \begin{pmatrix} 40 & -13 & -5 \\ -16 & 5 & 2 \\ -9 & 3 & 1 \end{pmatrix} \rightarrow A^{-1} = \frac{1}{-1} \begin{pmatrix} 40 & -16 & -9 \\ -13 & 5 & 3 \\ -5 & 2 & 1 \end{pmatrix} = \begin{pmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{pmatrix}$$

Darvono, Matematika 1: Bab 3 Matriks dan Determinan

25

Penyelesaian SPL Dengan Matriks Invers

Diberikan SPL berbentuk:

$$Ax = b$$

Kalikan dari sisi kiri dengan A^{-1} didapat:

$$A^{-1}Ax = A^{-1}b$$
$$Ix = A^{-1}b$$
$$x = A^{-1}b$$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

MATEMATIKA ITS

Contoh 11

Diberikan SPL berbentuk:

$$\begin{array}{ccc}
 x_1 + 2x_2 + 3x_3 &= 1 \\
 2x_1 + 5x_2 + 3x_3 &= 2 \\
 x_1 &+ 8x_3 &= 3
 \end{array}$$

$$\begin{array}{ccc}
 1 & 2 & 3 \\
 2 & 5 & 3 \\
 1 & 0 & 8
 \end{array}$$

$$\begin{array}{ccc}
 x_1 \\
 x_2 \\
 x_3
 \end{array}$$

$$= \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Penyelesaian

Dari Contoh 10.
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 5 & 2 \\ 1 & 0 & 3 \end{pmatrix} \rightarrow A^{-1} = \begin{pmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{pmatrix}$$
$$x = \begin{pmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} (-40).1 + 16.2 + 9.3 \\ 13.1 + (-5).2 + (-3).3 \\ 5.1 + (-2).2 + (-1).3 \end{pmatrix} = \begin{pmatrix} 19 \\ -6 \\ -2 \end{pmatrix} \rightarrow (x_1, x_2, x_2) = (19, -6, -2)$$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

27

Penyelesaian SPL Dengan Aturan Cramer

Jika Ax = b merupakan SPL dengan n variabel dan $det(A) \neq 0$, maka SPL tersebut mempunyai penyelesaian:

$$x_1 = \frac{\det(A_1)}{\det(A)}$$
; $x_2 = \frac{\det(A_2)}{\det(A)}$; ... $x_n = \frac{\det(A_n)}{\det(A)}$

dengan A_j ; j = 1, . . . ,n adalah matriks yang diperoleh dengan menggantikan anggota matriks A pada kolom ke-j dengan b, aturan tersebut dinamakan dengan Aturan Cramer

Contoh 12.

Diberikan SPL berbentuk:

$$x_1 + 2x_2 + 3x_3 = 1 2x_1 + 5x_2 + 3x_3 = 2 \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

28

Penyelesaian

$$\det(A) = \begin{vmatrix} 1 & 2 & 3 & 1 & 2 \\ 2 & 5 & 3 & 2 & 5 \\ 1 & 0 & 8 & 1 & 0 \end{vmatrix} = (1.5.8 + 2.3.1 + 3.2.0) - (2.2.8 + 1.3.0 + 3.5.1) = 46 - 47 = -1$$

$$\det(A_1) = \begin{bmatrix} 2 & 3 & 1 & 2 \\ 1 & 0 & 8 & 1 & 0 \end{bmatrix}$$

$$\det(A_1) = \begin{bmatrix} 1 & 2 & 3 & 1 & 2 \\ 2 & 5 & 3 & 2 & 5 \\ 3 & 0 & 8 & 3 & 0 \end{bmatrix}$$

$$= (1.5.8 + 2.3.3 + 3.2.0) - (2.2.8 + 1.3.0 + 3.5.3) = 58 - 47 = -19$$

$$\det(A_2) = \begin{bmatrix} 1 & 3 & 1 & 1 \\ 2 & 3 & 2 & 2 \\ 1 & 3 & 2 & 2 \end{bmatrix} = (1.2.8 + 1.3.1 + 3.2.3) - (1.2.8 + 1.3.3 + 3.2.1) = 37 - 31 = 6$$

$$\det(A_2) = \begin{bmatrix} 1 & 1 & 3 & 1 & 1 \\ 2 & 3 & 2 & 2 \\ 1 & 3 & 8 & 1 & 3 \end{bmatrix}$$

$$\det(A_2) = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 2 & 2 \\ 2 & 3 & 2 & 2 \end{bmatrix} = (1.2.8 + 1.3.1 + 3.2.3) - (1.2.8 + 1.3.3 + 3.2.1) = 37 - 31 = 6$$

$$\det(A_1) = \begin{bmatrix} 1 & 1 & 2 & 3 & 1 & 3 \\ 3 & 8 & 1 & 3 & 3 \\ 3 & 8 & 1 & 3 & 3 \\ 3 & 8 & 1 & 3 & 3 \\ 3 & 8 & 1 & 3 & 3 \\ 3 & 8 & 1 & 3 & 3 \\ 3 & 8 & 1 & 3 & 3 \\ 4 & 2 & 3 & 2 & 2 \\ 3 & 2 & 3 & 2 & 3 & 3 \\ 4 & 3 & 3 & 3$$

Kolom 1 matriks A diganti dengan kolom matriks b
$$\det(A_2) = \begin{vmatrix} 1 & 3 & 1 & 1 \\ 2 & 3 & 2 & 2 \end{vmatrix} = (1.2.8 + 1.3.1 + 3.2.3) - (1.2.8 + 1.3.3 + 3.2.1) = 37 - 31 = 6$$

$$det(A) = \begin{bmatrix} 1 & 3 & 8 & 1 & 3 \\ 1 & 2 & 1 & 1 & 2 \\ 2 & 5 & 2 & 5 \\ 1 & 0 & 3 & 1 & 0 \end{bmatrix}$$
Kolom 2 matriks A diganti dengan kolom matriks b
$$Kolom 2 matriks A diganti dengan kolom matriks b$$
Kolom 3 matriks A diganti dengan kolom matriks b

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

$$x_1 = \frac{\det(A_1)}{\det(A)} = \frac{-19}{-1} = 19$$

$$x_2 = \frac{\det(A_2)}{\det(A)} = \frac{6}{-1} = -6$$

$$x_3 = \frac{\det(A_3)}{\det(A)} = \frac{2}{-1} = -2$$

$$(x_1, x_2, x_2) = (19, -6, -2)$$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

3.9 Nilai Eigen dan Vektor Eigen

Definisi: Nilai Eigen dan Vektor Eigen

Jika A matriks persegi $n \times n$, \bar{x} vektor tak nol di R^n dinamakan vektor eigen dari A, jika

$$A\overline{x} = \lambda \overline{x}$$

untuk skalar λ yang dinamakan nilai eigen dari A dan \bar{x} dikatakan vektor eigen yang berhubungan dengan nilai λ .

Teorema:

Jika A matriks persegi $n \times n$, maka λ adalah nilai eigen dari A, jika dan hanya jika

$$\det(\lambda I - A) = 0$$

yang dinamakan dengan persamaan karakteristik dari A.

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

31

Contoh 13.

Tentukan nilai eigen dari

$$A = \left(\begin{array}{ccc} 1 & 0 & -2 \\ 0 & 1 & 2 \\ -1 & 0 & 0 \end{array}\right)$$

$$\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ -1 & 0 & 0 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 0 \rightarrow \begin{vmatrix} 1 - \lambda & 0 & -2 \\ 0 & 1 - \lambda & 2 \\ -1 & 0 & -\lambda \end{vmatrix} = 0$$

Dengan ekspansi kofaktor pada kolom ke-2

$$(1 - \lambda)[(1 - \lambda)(-\lambda) - 2] = 0$$

$$(1 - \lambda)[\lambda^2 - \lambda - 2] = 0$$

$$(1 - \lambda)(\lambda - 2)(\lambda + 1) = 0$$

Jadi, matriks A memiliki tiga buah nilai eigen yaitu :

$$\lambda_1 = 1$$
, $\lambda_1 = 2$, $\lambda_3 = 1$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

Contoh 14.

Tentukan nilai eigen dari

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right)$$

Penyelesaian: persamaan karakteristik dari A

$$\begin{vmatrix} \lambda - 2 & -1 & -1 \\ -1 & \lambda - 2 & -1 \\ -1 & -1 & \lambda - 2 \end{vmatrix} = 0 \rightarrow (\lambda - 2) \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} + \begin{vmatrix} -1 & -1 \\ -1 & \lambda - 2 \end{vmatrix} - \begin{vmatrix} -1 & \lambda - 2 \\ -1 & -1 \end{vmatrix} = 0$$

$$(\lambda - 2)[(\lambda - 2)^2 - 1] + (-\lambda + 1) - (1 + (\lambda - 2)) = 0$$

$$(\lambda - 2)[\lambda^2 - 4\lambda + 3] - (\lambda - 1) - (\lambda - 1) = 0$$

$$(\lambda - 2)(\lambda - 3)(\lambda - 1) - 2(\lambda - 1) = 0$$

$$(\lambda - 1)[(\lambda - 3)(\lambda - 2) - 2] = 0$$

$$(\lambda - 1)(\lambda^2 - 5\lambda + 4) = 0$$
$$(\lambda - 1)(\lambda - 1)(\lambda - 4) = 0$$

Jadi, matriks A memiliki tiga buah nilai eigen

yaitu :
$$\lambda_1 = \lambda_2 = 1$$
 , $\lambda_3 = 4$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

22

Contoh 15

Tentukan nilai eigen dan vektor eigen dari

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

Persamaan karakteristik dari A

$$\det (\lambda . I - A) = 0 \iff \begin{vmatrix} (\lambda - 2) & -1 \\ -1 & (\lambda - 2) \end{vmatrix} = 0$$
$$(\lambda - 2)(\lambda - 2) - 1 = 0$$
$$(\lambda^2 - 4\lambda + 4) - 1 = 0$$
$$\lambda^2 - 4\lambda + 3 = 0$$
$$(\lambda - 1)(\lambda - 3) = 0$$

diperoleh
$$\lambda = 1$$
; $\lambda = 3$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

Vektor Eigen

$$A\overline{x} = \lambda \overline{x} \leftrightarrow (\lambda - A)\overline{x} = 0 \leftrightarrow \begin{pmatrix} \lambda - a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}; \quad A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

Untuk $\lambda = 1$

$$\begin{pmatrix} 1-2 & -1 \\ -1 & 1-2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \leftrightarrow \begin{cases} -x_1 - x_2 = 0 \\ -x_1 - x_2 = 0 \end{cases} \rightarrow \begin{cases} x_1 = -x_2 \\ x_2 = t \end{cases} \rightarrow Vektor \text{ Eigen} : v_1 = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} t$$

Untuk $\lambda = 3$

$$\begin{pmatrix} 3-2 & -1 \\ -1 & 3-2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \leftrightarrow \begin{cases} x_1 - x_2 = 0 \\ -x_1 + x_2 = 0 \end{cases} \rightarrow \begin{cases} x_1 = x_2 \\ x_2 = t \end{cases} \rightarrow Vektor \text{ Eigen } : \overline{v_2} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} t$$

Darvono, Matematika 1: Bab 3 Matriks dan Determinan

35

Contoh 16

Penyelesaian: persamaan karakteristik dari A: det $(\lambda . I - A) = 0$

$$\det \left(\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \right) = 0 \iff \det \begin{pmatrix} (\lambda - 1) & 0 & 0 \\ 0 & (\lambda - 1) & -1 \\ 0 & -1 & (\lambda - 1) \end{pmatrix} = 0$$

Dengan menggunakan ekspansi kofaktor: Pilih Baris I

$$(\lambda - 1)(\lambda)(\lambda - 2) + 0 + 0 = 0 \iff (\lambda - 1)(\lambda)(\lambda - 2) = 0$$

diperoleh
$$\lambda_1 = 1$$
; $\lambda_2 = 0$; $\lambda_3 = 2$

Daryono, Matematika 1: Bab 3 Matriks dan Determinan

- Untuk $\lambda = 1 \begin{pmatrix} 1-1 & 0 & 0 \\ 0 & 1-1 & -1 \\ 0 & -1 & 1-1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \leftrightarrow \begin{cases} x_1 = t \\ x_3 = 0 \rightarrow Vektor \text{ Eigen } : v_1 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} t$
- Untuk $\lambda = 0 \begin{pmatrix} 0 1 & 0 & 0 \\ 0 & 0 1 & -1 \\ 0 & -1 & 0 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \leftrightarrow \begin{cases} x_1 = 0 \\ x_2 = -x_3 \rightarrow Vektor \text{ Eigen } : \overline{v_2} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} t$
- Untuk $\lambda = 2\begin{pmatrix} 2-1 & 0 & 0 \\ 0 & 2-1 & -1 \\ 0 & -1 & 2-1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \leftrightarrow \begin{cases} x_1 = 0 \\ x_2 = x_3 \rightarrow Vektor \text{ Eigen } : \overrightarrow{v_3} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} t$

Darvono, Matematika 1: Bab 3 Matriks dan Determinan

NEXT Fungsi

Daryono, Matematika 1: Bab 1 Matriks dan Determinan