Uczenie typu selfsupervised w przetwarzaniu obrazów

ARKADIUSZ KWASIGROCH

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI, POLITECHNIKA GDAŃSKA

akwasigroch.github.io

Plan prezentacji

- 1. Typy uczenia oraz różnice pomiędzy nimi
 - Supervised
 - Unsupervised
 - Self-supervised
 - Semi-supervised
 - Weakly supervised
- 2. Ogólny przegląd i klasyfikacja metod typu self-supervised
- 3. Szczegółowy 2 metod

Podział algorytmów

Supervised learning

- Do każdego przykładu przypisana jest etykieta
- Przykłady: problemy klasyfikacji i regresji
- Etykiety przygotowane przez człowieka (fine-grained, human-annotated)
- Wadą jest duży koszt przygotowania etykiet (Amazon Mechanical Turk)

Unsupervised learning

- Algorytmy operują na danych bez etykiet
- Przykłady
 - Estymacja rozkładu
 - Klasteryzacja
 - Redukcja wymiarowości

KMeans train time: 0.04s inertia: 2470.583458

Weakly supervised

- Wykorzystanie mniej szczegółowych etykiety (coarse-grained vs fine-grained)
- Wykorzystanie etykiet niedokładnych
- Mniejszy koszt uzyskania etykiet

https://arxiv.org/pdf/1805.00932.pdf

Target task: ImageNet

Number of classes in target task (ImageNet)

Semi-supervised learning

- Włączenie do uczenia przykładów oetykietowanych i nieoetykietowanych
- Funkcja celu składa się z dwóch ważonych członów: człon supervised i człon unsupervised

50 labeled, 1950 unlabeled data				
JA	DI	SE		
72.85	81.15	82.77		
73.25	81.60	83.30		
75.31	83.79	86.37		
74.59	83.27	82.77		
74.21	82.68	83.15		
	unla JA 72.85 73.25 75.31 74.59	unlabeled da JA DI 72.85 81.15 73.25 81.60 75.31 83.79 74.59 83.27		

300 oetykietowanych, 1700 nieoetykietowanych Baseline - supervised

Team	JA	DI	AC	SE	SP
Our Semi-supervised Method	0.798	0.874	0.943	0.879	0.953
Our Baseline	0.772	0.853	0.936	0.837	0.969
Yuan and Lo [🔼]	0.765	0.849	0.934	0.825	0.975
Berseth [2]	0.762	0.847	0.932	0.820	0.978
Bi et al. [□]	0.760	0.844	0.934	0.802	0.985
RECOD	0.754	0.839	0.931	0.817	0.970
Jer	0.752	0.837	0.930	0.813	0.976

http://bmvc2018.org/contents/papers/0162.pdf

Self-supervised

- Poddziedzina unsupervised learning
- Etykiety generowane automatycznie
- Pierwszy etap uczenie zadania pomocniczego (pretext task)
- Drugi etap uczenie zadania docelowego (downstream task)
- Podejście podobne do transfer learning
- Zastosowanie w przetwarzaniu obrazów inspirowane rozwiązaniami NLP

Self-supervised learning – pretext tasks

- Zadanie pomocnicze (pretext task) jest zadaniem, które ma rozwiązać sieć neuronowa, w celu nauczenia odpowiedniej reprezentacji danych.
- Pseudo-etykiety generowane są automatycznie

Self supervise learning – downstream task

- Zadaniem docelowym najczęściej jest klasyfikacja, detekcja lub segmentacja
- Ewaluacja przeprowadzana jest najczęściej z zamrożonymi wagami
- W przypadku klasyfikacji, wykorzystuje się klasyfikator liniowy

Generation based methods

Image inpainting

(a) Input context

text (b) Human artist

(c) Context Encoder (L2 loss)

(d) Context Encoder (L2 + Adversarial loss)

Generation based methods

Image colorization

https://arxiv.org/pdf/1603.06668.pdf

Split-Brain Autoencoders:

https://arxiv.org/pdf/1611.09842.pdf

Context based methods

Context prediction

https://www.cvfoundation.org/openaccess/content_iccv_2015/papers/Doersch_Uns upervised Visual Representation ICCV 2015 paper.pdf

Jigsaw puzzle solving

https://arxiv.org/pdf/1603.09246.pdf

Context based methods

DeepCluster

https://arxiv.org/pdf/1807.05520.pdf

Free semantic label-based methods

https://arxiv.org/pdf/1711.09082.pdf

Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles

Permutation Set

index	permutation
64	9,4,6,8,3,2,5,1,7

Reorder patches according to the selected permutation

Wybór permutacji

- Liczba możliwych permutacji wynosi 9! = 362 880
- Należało ograniczyć liczbę permutacji i wybrać zbiór permutacji, które są do siebie "najbardziej odmienne"
- Miarą odmienności permutacji jest odległość Hamminga

Odległość Hamminga (ang. Hamming distance) – wprowadzona przez Richarda Hamminga miara odmienności dwóch ciągów o takiej samej długości, wyrażająca liczbę miejsc (pozycji), na których te dwa ciągi się różnią.

https://pl.wikipedia.org/wiki/Odleg%C5%82o%C5%9B%C4%87 Hamminga

Przykład:

4	2	3	1	8	6	7	5
4	3	2	1	8	7	6	5

Odległość Hamminga wynosi 4

Algorithm 1. Generation of the maximal Hamming distance permutation set

Input: N

Output: P

1: $P \leftarrow \text{all permutations } [\bar{P}_1, \dots, \bar{P}_{9!}] \setminus \bar{P} \text{ is a } 9 \times 9! \text{ matrix}$

 $2: P \leftarrow \emptyset$

3: $j \sim \mathcal{U}[1, 9!]$

 $4: i \leftarrow 1$

5: repeat

6: $P \leftarrow [P \ \bar{P}_i]$

7: $\bar{P} \leftarrow [\bar{P}_1, \dots, \bar{P}_{i-1}, \bar{P}_{i+1}, \dots]$

8: $D \leftarrow \operatorname{Hamming}(P, P')$

9: $\bar{D} \leftarrow \mathbf{1}^T D$

10: $j \leftarrow \arg\max_k D_k$

11: $i \leftarrow i + 1$

12: until $i \leq N$

\\ number of permutations

\\ uniform sample out of 9! permutations

\\ add permutation P_i to P

\\ remove \bar{P}_i from \bar{P}

 $\setminus \setminus \overline{D}$ is a $1 \times (9! - i)$ row vector

 $\setminus \setminus \bar{D}_k$ denotes the k-th entry of \bar{D}

A good self-supervised task is neither simple nor ambiguous.

Utrudnienie zadania

- Maksymalizacja dystansu Hamminga pomiędzy permutacjami
- W celu uniknięcia uczenia na podstawie "ciągłości" pikseli elementy są od siebie oddalone (średnio o 11 pikseli)
- Każdy element normalizowany indywidualnie, wprowadzono color jittering

Wyniki

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results of the other methods are taken from Pathak et al. [30].

Method	Pretraining time	Supervision	Classification	Detection	Segmentation
Krizhevsky et al. [25]	3 days	1000 class labels	78.2 %	56.8%	48.0%
Wang and Gupta[39]	1 week	motion	58.4%	44.0%	-
Doersch et al. [10]	4 weeks	context	55.3%	46.6%	-
Pathak et al. [30]	14 hours	context	56.5%	44.5%	29.7%
Ours	2.5 days	context	67.6%	53.2 %	37.6%

Table 4: Ablation study on the impact of the permutation set.

Number of permutations	${f Average\ hamming} \ {f distance}$	$\begin{array}{c} {\rm Minimum\ hamming} \\ {\rm distance} \end{array}$	Jigsaw task accuracy	Detection performance
1000	8.00	2	71	53.2
1000	6.35	2	62	51.3
1000	3.99	2	54	50.2
100	8.08	2	88	52.6
95	8.08	3	90	52.4
85	8.07	4	91	52.7
71	8.07	5	92	52.8
35	8.13	6	94	52.6
10	8.57	7	97	49.2
7	8.95	8	98	49.6
6	9	9	99	49.7

Table 5: Ablation study on the impact of the shortcuts.

Gap	Normalization	Color jittering	Jigsaw task accuracy	Detection performance
X	✓	✓	98	47.7
✓	X	✓	90	43.5
✓	✓	X	89	51.1
✓	✓	✓	88	52.6

Self-Supervised Learning of Pretext-Invariant Representations

https://arxiv.org/pdf/1912.01991.pdf

Funkcja celu

Funkcja celu zbliża do siebie cechy obrazu oryginalnego i jego modyfikacji. Oddala cechy obraz modyfikowanego oraz cechy innych obrazów ze zbioru uczącego.

$$h(\mathbf{v_{I}}, \mathbf{v_{I^{t}}}) = \frac{\exp\left(\frac{s(\mathbf{v_{I}}, \mathbf{v_{I^{t}}})}{\tau}\right)}{\exp\left(\frac{s(\mathbf{v_{I}}, \mathbf{v_{I^{t}}})}{\tau}\right) + \sum_{\mathbf{I'} \in \mathcal{D}_{N}} \exp\left(\frac{s(\mathbf{v_{I^{t}}}, \mathbf{v_{I'}})}{\tau}\right)}{(3)}$$

$$L_{\text{NCE}}(\mathbf{I}, \mathbf{I}^{t}) = -\log \left[h\left(f(\mathbf{v}_{\mathbf{I}}), g(\mathbf{v}_{\mathbf{I}^{t}}) \right) \right]$$
$$- \sum_{\mathbf{I}' \in \mathcal{D}_{N}} \log \left[1 - h\left(g(\mathbf{v}_{\mathbf{I}}^{t}), f(\mathbf{v}_{\mathbf{I}'}) \right) \right]$$

Bank cech

Bank cech przechowuje cechy każdego obrazu znajdującego się w zbiorze uczącym. Przechowywane reprezentacje są średnią ekspotencjalną cech oryginalnego obrazu, uzyskiwane co każdą epokę.

Nowa funkcja celu

Funkcja celu z poprzedniego slajdu nie porównywała reprezentacji obrazów oryginalnych z reprezentacją innych obrazów oryginalnych znajdujących się w bazie. W tym celu funkcję celu zmodyfikowano:

$$L\left(\mathbf{I}, \mathbf{I}^{t}\right) = \lambda L_{\text{NCE}}(\mathbf{m}_{\mathbf{I}}, g(\mathbf{v}_{\mathbf{I}^{t}})) + (1 - \lambda) L_{\text{NCE}}(\mathbf{m}_{\mathbf{I}}, f(\mathbf{v}_{\mathbf{I}})).$$

- Pierwszy człon funkcją celu z poprzedniego slajdu. Zamiast aktualnie obliczanej reprezentacji, wykorzystuje się reprezentację przechowywaną w pamięci
- Drugi człon posiada dwie role:
 - porównywanie reprezentacji w pamięci z oryginalną reprezentacją zapobiegają gwałtownym zmianom parametrów
 - Oddala reprezentację oryginalnego obrazu od reprezentacji innych oryginalnych obrazów znajdujących się w bazie

Szczegóły techniczne

- Sieć ResNet50 jako ekstraktor cech
- Sieć ResNet50 zwraca wektor 2048 elementowy, stosowana jest dodatkowa warstwa w pełni połączona, w celu zredukowania tego wektora do rozmiaru 128 elementów
- Zadaniem pomocniczym (pretext task) jest "układanie puzzli", każdy element generuje wektor 128 elementowy, następnie wektory są łączone ze sobą, tworząc wektor 9* 128 elementów. Taki wektor podawany jest na warstwę w pełni połączoną w celu uzyskania wektora 128 elementowego.
- Współczynnik funkcji celu 0.5

Wyniki - detekcja

Detekcja obrazu na bazie VOC07+12, pretraining na bazie Imagenet

Method	Network	$\mathbf{AP}^{\mathbf{all}}$	AP^{50}	AP^{75}	$\Delta { m AP}^{75}$
Supervised	R-50	52.6	81.1	57.4	=0.0
Jigsaw [19]	R-50	48.9	75.1	52.9	-4.5
Rotation [19]	R-50	46.3	72.5	49.3	-8.1
NPID++ [72]	R-50	52.3	79.1	56.9	-0.5
PIRL (ours)	R-50	54.0	<u>80.7</u>	59.7	+2.3

Wyniki – klasyfikacja liniowa

Method	Parameters	Transfer Dataset			
		ImageNet	VOC07	Places205	iNat.
ResNet	t-50 using eva	luation set	up of [1	9]	
Supervised	25.6M	75.9	87.5	51.5	45.4
Colorization [19]	25.6M	39.6	55.6	37.5	_
Rotation [18]	25.6M	48.9	63.9	41.4	23.0
NPID++ [72]	25.6M	59.0	76.6	46.4	32.4
MoCo [24]	25.6M	60.6	_	_	_
Jigsaw [19]	25.6M	45.7	64.5	41.2	21.3
PIRL (ours)	25.6M	63.6	81.1	49.8	34.1

Wyniki – klasyfikacja przy małych zbiorach uczących

	Data fraction →	1%	10%
Method	Backbone	Top-5 A	ccuracy
Random initialization [72]	R-50	22.0	59.0
NPID [72]	R-50	39.2	77.4
Jigsaw [19]	R-50	45.3	79.3
NPID++ [72]	R-50	52.6	81.5
VAT + Ent Min. [20, 45]	R-50v2	47.0	83.4
S ⁴ L Exemplar [75]	R-50v2	47.0	83.7
S ⁴ L Rotation [75]	R-50v2	53.4	83.8
PIRL (ours)	R-50	57.2	83.8

Wyniki

Wyniki – inne zadania pomocnicze

Method	Params	Params Transfer Data				
		ImageNet	VOC07	Places205	iNat.	
Rotation [18]	25.6M	48.9	63.9	41.4	23.0	
PIRL (Rotation; ours)	25.6M	60.2	77.1	47.6	31.2	
Δ of PIRL	-	+11.3	+13.2	+6.2	+8.2	
Combining pretext tasks using	g PIRL	y-				
PIRL (Jigsaw; ours)	25.6M	62.2	79.8	48.5	31.2	
PIRL (Rotation + Jigsaw; ours)	25.6M	63.1	80.3	49.7	33.6	

Prezentacja przygotowana na podstawie przeglądu:

https://arxiv.org/pdf/1902.06162.pdf