Machine Learning for Systems and Control

5SC28

Lecture 5B

dr. ir. Maarten Schoukens & dr. ir. Roland Tóth

Control Systems Group

Department of Electrical Engineering

Eindhoven University of Technology

Academic Year: 2020-21 (version 1.01)

Stochastic Environment

Towards Reinforcement Learning:

Value Function, Q-Function, Bellman Equation

Temporal Difference Learning

Q-Learning

Stochastic Environment

Towards Reinforcement Learning:

Value Function, Q-Function, Bellman Equation

Temporal Difference Learning

Q-Learning

Environment (deterministic)

A finite **Markov Decision Process (MDP)** is a tuple $\langle X,\ U,\ g,\ \rho \rangle$ where:

X is the finite state space

 $U\,$ is the finite action space

 $g\,:\, X imes U o X$ is the state transition function

 $ho\,:\, X imes U o \mathbb{R}$ is the reward function

$$x_{k+1}=g(x_k,u_k),\; r_{k+1}=\rho(x_k,u_k)$$
 with k being the discrete time

A **finite MDP** has finite state, action and reward sets.

Environment (stochastic)

A finite Markov Decision Process (MDP) is given by:

 $p(x_{k+1},r_{k+1}|x_k,u_k)$ the joint state transition and reward probability

Transition probability:
$$p(x_{k+1}|x_k,u_k) = \sum_{r \in R} p(x_{k+1},r|x_k,u_k)$$

Expected reward:
$$\rho(x_k,u_k) = \sum_{r \in R} r \sum_{x \in X} p(x,r|x_k,u_k)$$

 $X,\,U,\,R$ are the finite state, action and reward space respectively and k is the discrete time

Environment (stochastic)

A finite Markov Decision Process (MDP) is given by:

 $p(x_{k+1},r_{k+1}|x_k,u_k)$ the joint state transition and reward probability

Transition probability:
$$p(x_{k+1}|x_k,u_k) = \sum_{r \in R} p(x_{k+1},r|x_k,u_k)$$

Expected reward:
$$\rho(x_k, u_k, x_{k+1}) = \sum_{r \in R} r \frac{p(x_{k+1}, r | x_k, u_k)}{p(x_{k+1} | x_k, u_k)}$$

 $X,\,U,\,R$ are the finite state, action and reward space respectively and k is the discrete time

Recycling Robot Example (stochastic)

Mobile robot collects empty soda cans in an environment.

Battery: High or Low

Activity: Search, Wait, Recharge

Reward highest when actively searching, but depletes battery

When battery low, there is a risk of running empty, resulting in a large penalty.

Recycling Robot Example (stochastic)

x_{t}	u_{t}	x_{t+1}	$p(x_{t+1} x_t,u_t)$	$\rho(x_{t}, u_{t}, x_{t+1})$
High	Search	High	α	$r_{\rm search}$
High	Search	Low	1-α	$r_{\rm search}$
Low	Search	High	1-β	-3
Low	Search	Low	β	r_{search}
High	Wait	High	1	r_{wait}
High	Wait	Low	0	-
Low	Wait	High	0	-
Low	Wait	Low	1	r_{wait}
Low	Recharge	High	1	0
Low	Recharge	Low	0	-

Source: R.S. Sutton and A.G. Barto, "Reinforcement Learning: An Introduction", The MIT Press, 2018

Stochastic Environment

Towards Reinforcement Learning:

Value Function, Q-Function, Bellman Equation

Temporal Difference Learning

Q-Learning

Value Function

Discounted Return:
$$G_k = \mathbb{E}_\pi \left\{ \sum_{ au=0}^\infty \gamma^ au r_{k+ au+1}
ight\}$$

Value Function:
$$V_{\pi}(x_k) = \mathbb{E}_{\pi} \left\{ \left. G_k \right| x_k \right\}$$

Expected discounted return given the system states at time k for policy π

Q-Function

Discounted Return:
$$G_k = \mathbb{E}_{\pi} \left\{ \sum_{ au=0}^{\infty} \gamma^{ au} r_{k+ au+1}
ight\}$$

Value Function:

$$V_{\pi}(x_k) = \mathbb{E}_{\pi} \left\{ \left. G_k \right| x_k \right\}$$

Q-Function:

$$Q_{\pi}(x_k, u_k) = \mathbb{E}_{\pi} \left\{ G_k | x_k, u_k \right\}$$

Expected discounted return given the system states and the action taken at time k for policy π

Q-Function

Q-Function:

$$Q_{\pi}(x_k, u_k) = \mathbb{E}_{\pi} \left\{ G_k | x_k, u_k \right\}$$

Expected discounted return given the system states and the action taken at time k for policy π

Action at time k is independent of the policy, all the consecutive actions are taken following the policy π

Bellman Equation

Develop Q-Function one step ahead:

$$Q_{\pi}(x_{k}, u_{k}) = \mathbb{E}_{\pi} \left\{ G_{k} | x_{k}, u_{k} \right\}$$

$$= \mathbb{E}_{\pi} \left\{ \sum_{\tau=0}^{\infty} \gamma^{\tau} r_{k+\tau+1} | x_{k}, u_{k} \right\}$$

$$= \mathbb{E}_{\pi} \left\{ r_{k+1} + \sum_{\tau=1}^{\infty} \gamma^{\tau} r_{k+\tau+1} | x_{k}, u_{k} \right\}$$

$$= \mathbb{E}_{\pi} \left\{ r_{k+1} + \gamma V_{\pi}(x_{k+1}) | x_{k}, u_{k} \right\}$$

Link the present with the future

Optimal Policy

Optimality of a policy is given by the Value Function:

$$\pi \geq \pi' \iff V_{\pi}(x) \geq V_{\pi'}(x) \ \forall \ x \in X$$

Policy π is better than policy π ' if and only if its expected return is greater than or equal to that of π ' for all states.

Optimal Policy

Optimality of a policy is given by the Value Function:

$$\pi \geq \pi' \iff V_{\pi}(x) \geq V_{\pi'}(x) \ \forall \ x \in X$$

Policy π is better than policy π ' if and only if its expected return is greater than or equal to that of π ' for all states.

Multiple optimal policies $\pi_*(x)$ can exist, they share the same optimal Value Function and optimal Q-Function:

$$V_*(x) = \max_{\pi} V_{\pi}(x)$$

$$Q_*(x, u) = \max_{\pi} Q_{\pi}(x, u)$$

$$\pi_*(x) = \arg\max_{u \in U} Q_*(x, u)$$

Bellman Equation of Optimality

Value Function:
$$V_*(x_k) = \max_u Q_*(x_k, u)$$

 $= \max_u \mathbb{E}_{\pi} \left\{ G_k | x_k, u_k \right\}$
 $= \max_u \mathbb{E}_{\pi} \left\{ r_{k+1} + \gamma V_*(x_{k+1}) | x_k, u_k \right\}$
 $= \max_u \sum_{x_{k+1}, r} p(x_{k+1}, r | x_k, u) \left(r + \gamma V_*(x_{k+1}) \right)$

Bellman Equation of Optimality

Q-Function:

$$Q_{*}(x_{k}, u_{k}) = \mathbb{E}_{\pi} \left\{ G_{k} | x_{k}, u_{k} \right\}$$

$$= \mathbb{E}_{\pi} \left\{ r_{k+1} + \sum_{\tau=1}^{\infty} \gamma^{\tau} r_{k+\tau+1} | x_{k}, u_{k} \right\}$$

$$= \mathbb{E}_{\pi} \left\{ r_{k+1} + \gamma V_{*}(x_{k+1}) | x_{k}, u_{k} \right\}$$

$$= \mathbb{E}_{\pi} \left\{ r_{k+1} + \gamma \max_{u} Q_{*}(x_{k+1}, u) | x_{k}, u_{k} \right\}$$

$$= \sum_{x_{k+1}, r} p(x_{k+1}, r | x_{k}, u_{k}) \left(r + \gamma \max_{u_{k+1}} Q_{*}(x_{k+1}, u_{k+1}) \right)$$

Stochastic Environment

Towards Reinforcement Learning:

Value Function, Q-Function, Bellman Equation

Temporal Difference Learning

Q-Learning

Monte Carlo

Dynamic Programming

Temporal Difference

Monte Carlo

Dynamic Programming

Temporal Difference

Temporal Difference Learning

New Estimate \leftarrow Old Estimate + Step Size \times [Target - Old Estimate]

Learn directly from raw experience

No model of the system dynamics required

Update the knowledge of the agent on **every timestep** (action) rather than on every episode (reaching the goal or end state) (update estimates based upon other estimates - **bootstrapping**)

Incremental nature (good for online applications)

The Prediction Problem

Estimate the Value Function $V_{\pi}(x)$ for a given policy π .

New Estimate \leftarrow Old Estimate + Step Size \times [Target - Old Estimate]

$$V_{\pi}(x_k) \leftarrow V_{\pi}(x_k) + \alpha \left[G_k - V_{\pi}(x_k) \right]$$

$$V_{\pi}(x_k) \leftarrow V_{\pi}(x_k) + \alpha \left[r_{k+1} + \gamma V_{\pi}(x_{k+1}) - V_{\pi}(x_k) \right]$$

Instead of waiting to see all obtained rewards required for computing G_k plug in the estimate $V_\pi(x_{k+1})$

→ bootstrapping

Temporal Difference

Temporal Difference Learning

```
Input: the policy \pi to be evaluated
Parameters: step size \alpha \in (0,1]
Initialize V_{\pi}(x) arbitrarily, V(\text{terminal}) = 0.
for each episode do
        Initialize x_0
        Repeat for each time step of the episode
                Obtain u_k based on x_k using policy \pi
                Take action u_k, observe r_{k+1}, x_{k+1}
                V_{\pi}(x_k) \leftarrow V_{\pi}(x_k) + \alpha \left[ r_{k+1} + \gamma V_{\pi}(x_{k+1}) - V_{\pi}(x_k) \right]
                k = k + 1
        Until the states are terminal
end for
```

Stochastic Environment

Towards Reinforcement Learning:

Value Function, Q-Function, Bellman Equation

Temporal Difference Learning

Q-Learning

Temporal Difference Learning for Control

```
SARSA (State-Action-Reward-State-Action) on-policy TD control
```

Q-Learning

off-policy TD Control

An **off-policy** learner learns the value of the optimal policy independently of the agent's actions.

An **on-policy** learner learns the value of the policy being carried out by the agent including the exploration steps.

Temporal Difference Learning for Control

SARSA (State-Action-Reward-State-Action) on-policy TD control

Q-Learning

off-policy TD Control

An **off-policy** learner learns the value of the optimal policy independently of the agent's actions.

An **on-policy** learner learns the value of the policy being carried out by the agent including the exploration steps.

Directly learn the optimal Q-Function $Q_*(x_t,u_t)$, use it to compute π_* Independent of the policy being followed

Policy still is important:

Determines which state-action pairs are visited and updated

Exploration required

Take **Bellman optimality equation** at some state and action

$$Q_*(x_k, u_k) = \sum_{x_{k+1}, r} p(x_{k+1}, r | x_k, u_k) \left(r + \gamma \max_{u_{k+1}} Q_*(x_{k+1}, u_{k+1}) \right)$$

Take **Bellman optimality equation** at some state and action

$$Q_*(x_k, u_k) = \sum_{x_{k+1}, r} p(x_{k+1}, r | x_k, u_k) \left(r + \gamma \max_{u_{k+1}} Q_*(x_{k+1}, u_{k+1}) \right)$$

Turn into iterative update

$$Q(x_k, u_k) \leftarrow \sum_{x_{k+1}, r} p(x_{k+1}, r | x_k, u_k) \left(r + \gamma \max_{u_{k+1}} Q(x_{k+1}, u_{k+1}) \right)$$

Take Bellman optimality equation at some state and action

$$Q_*(x_k, u_k) = \sum_{x_{k+1}, r} p(x_{k+1}, r | x_k, u_k) \left(r + \gamma \max_{u_{k+1}} Q_*(x_{k+1}, u_{k+1}) \right)$$

Turn into iterative update

$$Q(x_k, u_k) \leftarrow \sum_{x_{k+1}, r} p(x_{k+1}, r | x_k, u_k) \left(r + \gamma \max_{u_{k+1}} Q(x_{k+1}, u_{k+1}) \right)$$

Instead of a transition model, use the transition sample at each step

$$Q(x_k, u_k) \leftarrow r_{k+1} + \gamma \max_{u_{k+1}} Q(x_{k+1}, u_{k+1})$$

Instead of a transition model, use the transition sample at each step

$$Q(x_k, u_k) \leftarrow r_{k+1} + \gamma \max_{u_{k+1}} Q(x_{k+1}, u_{k+1})$$

Make update incremental

$$Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha \left(r_{k+1} + \gamma \max_{u_{k+1}} Q(x_{k+1}, u_{k+1}) - Q(x_k, u_k) \right)$$

Learning rate $\alpha \in (0,1]$

Temporal Difference

end for

```
Parameters: step size \alpha \in (0,1] and 0 < \epsilon < 1
Initialize
   Q(x, u) arbitrarily for all possible states and actions,
   Q(\text{terminal},.) = 0.
for each episode do
       Initialize x_0
       Repeat for each time step of the episode
               Obtain u_k based on x_k using policy \pi derived from Q
               (e.g. \epsilon-greedy)
               Take action u_k, observe r_{k+1}, x_{k+1}
               Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha [r_{k+1} + \gamma \max_u Q(x_{k+1}, u) - Q(x_k, u_k)]
               k = k + 1
       Until the states are terminal
```

Parameters: step size $\alpha \in (0,1]$ and $0 < \epsilon < 1$

Initialize

Q(x, u) arbitrarily for all possible states and actions,

Q(terminal,.) = 0.

for each episode do

Initialize x_0

Repeat for each time step of the episode

Obtain u_k based on x_k using policy π derived from Q (e.g. ϵ -greedy)

In off-policy learning any policy can be used (exploration recommended), the choice displayed here is one of the more common choices

Take action u_k , observe r_{k+1} , x_{k+1}

$$Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha [r_{k+1} + \gamma \max_u Q(x_{k+1}, u) - Q(x_k, u_k)]$$

$$k = k + 1$$

Until the states are terminal

end for

Exploration - Exploitation

Essential for **convergence** to $Q_*(x_k, u_k)$

all (x, u) pairs need to be visited infinitely often

Exploration necessary, but **exploitation** also necessary:

 ϵ -greedy approaches are recommended

Delivery Drone Example

Parameters:

$$\alpha = 0.2$$
 $\epsilon = 0.3$

$$\varepsilon = 0.3$$

$$\gamma = 0.5$$

$$x_0 = 2 \text{ or } 3$$

Iteration: 1, step: 0

Parameters:

$$\alpha$$
 = 0.2

$$\varepsilon = 0.3$$

$$\gamma = 0.5$$

$$\gamma = 0.5$$
 $x_0 = 2 \text{ or } 3$

What is Reinforcement Learning?

Multi-Armed Bandits

Finite Markov Decision Process (Deterministic & Stochastic)

Towards Reinforcement Learning:

Value Function, Q-Function, Bellman Equation

Temporal Difference Learning

Q-Learning

Remaining Problems

Systems with large state space → large tables!

Continuous state space?