

Ministerul Educației și Cercetării Olimpiada Națională de Fizică

Craiova, 16-21 aprilie 2006 Proba teoretică - barem

Subject	Parțial	Total
1. Total punctaj subiect 1		10
a) $T = 2\sigma \cdot b$, $\sin \beta = \frac{a/2}{b}$, $\Delta \ell = \ell' - l = \frac{a}{\sin \beta} (\beta - \sin \beta)$,	3	
$2\sigma \cdot \frac{a}{2\sin\beta} = k \frac{a}{\sin\beta} (\beta - \sin\beta)$		
$k = \frac{\sigma}{\beta - \sin \beta} \approx 33N / m$		
b) $E = \frac{Ba^2\omega}{2}$, $\begin{cases} E_{\text{echivalent}} = E \\ R_{\text{echivalent}} = \frac{R}{4} \end{cases}$, $I_{\text{spitp}} = \frac{E}{4R}$	3	
Un fir parcurs de curent și supus acțiunii simultane a câmpului magnetic se curbează luând forma unui arc de cerc cu raza c $T = B \cdot I \cdot c$		
pentru o porțiune oarecare de lungime d echilibrul forței datorate tensiunii superficiale și forței magnetice cere ca $2\sigma \cdot d = B \cdot I_{spitp} \cdot d$		
$\omega = \frac{8\sigma R}{B^2 a^2} = 8rad / s$		
c) Notând S_M și V_M secțiunea și viteza jetului de apă care	3	
părăsește jgheabul prin capătul M respectiv S_N și V_N		
secțiunea și viteza jetului de apă care părăsește jgheabul prin capătul <i>N</i> , legile de conservare pentru energie și respectiv pentru impulsul orizontal se scriu		
$\begin{cases} \rho \cdot \mathbf{S} \cdot \frac{\mathbf{v}^3}{2} = \rho \cdot \mathbf{S}_M \cdot \frac{\mathbf{v}_M^3}{2} + \rho \cdot \mathbf{S}_N \cdot \frac{\mathbf{v}_N^3}{2} \\ \rho \cdot \mathbf{S} \cdot \mathbf{v}^2 \cdot \sin \alpha = \rho \cdot \mathbf{S}_M \cdot \mathbf{v}_M^2 - \rho \cdot \mathbf{S}_N \cdot \mathbf{v}_N^2 \end{cases}$		
$\left[\rho \cdot \mathbf{S} \cdot \mathbf{v}^2 \cdot \sin \alpha = \rho \cdot \mathbf{S}_M \cdot \mathbf{v}_M^2 - \rho \cdot \mathbf{S}_N \cdot \mathbf{v}_N^2 \right]$		
conservare a masei $\rho \cdot S \cdot V = \rho \cdot S_M \cdot V_M + \rho \cdot S \cdot V_N$,		
de legea Bernoulli $\rho \cdot \frac{v^2}{2} + \rho \cdot g \cdot z + p = const.$		
$\begin{cases} \rho \cdot \frac{v^2}{2} = \rho \cdot \frac{v_N^2}{2} \\ \rho \cdot \frac{v^2}{2} = \rho \cdot \frac{v_M^2}{2} \end{cases}, \mathbf{V} = \mathbf{V}_M = \mathbf{V}_N$		
$\begin{cases} D_{M} = D \frac{1 + \sin \alpha}{2} \\ D_{M} = D \frac{1 - \sin \alpha}{2} \end{cases} D_{M} = 2 \frac{1 + 0.17}{2} \approx 1.17 dm^{3} / s$ $D_{N} = D \frac{1 - \sin \alpha}{2} \Rightarrow 0.83 dm^{3} / s$		
$D_{N} = D \frac{1 - \sin \alpha}{2} \left(D_{N} = 2 \frac{1 - 0.17}{2} \approx 0.83 dm^{3} / s \right)$		

Oficiu	1	
2. Total punctaj subiect 2		10
a) Condiția de plutire	3	
$m_{balon} + V_{balon} \cdot ho_{T_1} = V_{balon} \cdot ho_{T_0}$, $ ho_{T_1} = ho_{T_0} - rac{m_{balon}}{V_{balon}}$		
D	1	
Cum $\rho = \frac{P \cdot \mu}{R \cdot T}$		
Pentru situația descrisă în care aerul rece exterior și aerul cald din	0.5	
interiorul balonului sunt la aceeași presiune,		
$\left({ ho_{T_1}} - {T_0} ight)$		
$\begin{cases} \frac{\rho_{T_1}}{\rho_{T_0}} = \frac{T_0}{T_1} \\ \rho_{T_1} = \rho_{T_0} \cdot \frac{T_0}{T_1} \end{cases}$		
$\left \begin{array}{c} 1 \\ 2 \\ \end{array} \right _{C} = 2 \cdot \left \frac{T_0}{T_0} \right $	0.5	
$\left[\begin{array}{c} P_{T_1} - P_{T_0} \cdot \overline{T_1} \end{array}\right]$		
$\begin{bmatrix} T_0 & T_0 & M_{balon} \end{bmatrix}$		
$\rho_{T_0} \cdot \frac{T_0}{T_1} = \rho_{T_0} - \frac{m_{balon}}{V_{balon}}$		
$\left[\left\{ \right{T_{-}} ho_{T_{\!\scriptscriptstyle 0}} T_{\!\scriptscriptstyle 0} $	0.5	
$\begin{cases} T_{1} = \frac{\rho_{T_{0}} T_{0}}{\rho_{T_{0}} - \frac{m_{balon}}{V_{balon}}} = \frac{T_{0}}{1 - \frac{m_{balon}}{V_{balon}} \rho_{T_{0}}} \end{cases}$		
$oxed{ \left[egin{array}{cccccccccccccccccccccccccccccccccccc$		
$T_{0} = \frac{T_{0}}{T_{0}} = \frac{303}{T_{0}} = 366.1K \approx 93^{\circ}C$		
$T_1 = \frac{T_0}{1 - \frac{m_{balon}}{V_{balon} \rho_{T_0}}} = \frac{303}{1 - \frac{20}{100 \cdot 1,16}} = 366,1K \cong 93^{\circ}C$	0.5	
$V_{balon} ho_{T_0}$ 100·1,16		
b) Forța care tensionează funia este diferența dintre forța	3	
ascensională și greutatea totală a balonului adică		
$\left[F_{funie} = \left(V_{balon} \cdot g \cdot \rho_{T_0} \right) - \left(V_{balon} \cdot g \cdot \rho_{T_2} + m_{balon} \cdot g \right) \right]$	1	
$ \begin{cases} F_{funie} = \left(V_{balon} \cdot \rho_{T_0} \left(1 - \frac{T_0}{T_2} \right) - m_{balon} \right) \cdot g \end{cases} $	-	
$T_1 = \begin{pmatrix} f_1 & f_2 & f_3 \end{pmatrix} \begin{pmatrix} f_1 & f_4 \end{pmatrix} \begin{pmatrix} f_1 & f_4 \end{pmatrix}$		
În cursul urcării balonului densitatea aerului cald scade de asemenea		
datorită scăderii presiunii. O parte din aerul cald din balon curge din		
acesta. Expresia densității aerului atmosferic la înălțime z este		
$\rho_{atm}(z) = \frac{P(z) \cdot \mu}{R \cdot T(z)} = \frac{\mu}{R} \cdot \frac{P_0(1 - z/z_0)^6}{T_0(1 - z/z_0)} = \rho_0(1 - z/z_0)^5$	0.25	
Pentru aerul din balon densitatea la înălțimea z are expresia		
· · · · · · · · · · · · · · · · · · ·	0.25	
$\rho_{balon}(z) = \frac{P(z) \cdot \mu}{R \cdot T_2} = \frac{\mu}{R} \cdot \frac{P_0(1 - z / z_0)^6}{T_0} \cdot \frac{T_0}{T_2} = \rho_0 \cdot \frac{T_0}{T_2} \cdot (1 - z / z_0)^6$		
Condiția de plutire la înălțimea z este		
$m_{balon} + V_{balon} \cdot \rho_{balon}(z) = V_{balon} \cdot \rho_{atm}(Z)$	0.5	
de unde		
$\rho_{balon}(z) = \rho_{atm}(z) - \frac{m_{balon}}{r}$		
balon		
$\begin{cases} \rho_{balon}(z) = \rho_{atm}(z) - \frac{m_{balon}}{V_{balon}} \\ \frac{T_0}{T_2} \cdot (1 - z / z_0)^6 = (1 - z / z_0)^5 - \frac{m_{balon}}{V_{balon} \cdot \rho_0} \end{cases}$		
Cu notația $t = (1 - z/z_0)$ rezolvarea problemei revine la găsirea soluției		
reale din domeniul (0,1) a ecuației	0.5	
$0.75t^6 - t^5 + 0.17 = 0$ Solutia agrecită este $t \approx 0.86$ În consecintă		
Soluția agreată este $t_1 \approx 0.86$. În consecință,		

$\begin{cases} 1-\frac{z}{z_0}=t_1\\ z=z_0(1-t_1) \end{cases}$ $z=49(1-0.86)=49\cdot0.14=6.86\ km$ În condițiile problemei, aerul din balon trebuie menținut la $123^{\circ}C$ în timp ce temperatura atmosferei la înălțimea atinsă este de aproximativ $-12^{\circ}C$. La respectiva înălțime, presiunea atmosferei este aproximativ jumătate din presiunea atmosferică la suprafața Pământului. $ \mathbf{c}) P_{\text{int}} \cdot V_0 \cdot \lambda^3 = n \cdot R \cdot T_0 $ $ P_{\text{int}} = P_0 + \Delta P = P_0 \left(1 + a \left(\frac{1}{\lambda} - \frac{1}{\lambda^7} \right) \right) $	0.5	
$a = \frac{P_{\text{int}} - P_0}{P_0 \left(\frac{1}{\lambda} - \frac{1}{\lambda^7}\right)} = \frac{\frac{n}{n_0 \cdot \lambda^3} - 1}{\frac{1}{\lambda} - \frac{1}{\lambda^7}}, \ a = \frac{\frac{3.6}{1.5^3} - 1}{\frac{1}{1.5} - \frac{1}{1.5^7}} \approx 0.11$		
d) Balonul va dislocui deci un număr n' de moli de aer	3	
$n' = n \cdot \frac{P}{P + \Delta P}$		
a căror greutate – egală în modul cu forța ascensională – este		
$G = F_{ascensionala} = n \cdot \frac{P}{P + \Delta P} \cdot M_A \cdot g$		
Condiția de plutire pentru balonul aflat la înălțimea z_f este		
$M_T \cdot g = n \cdot \frac{P}{P + \Delta P} \cdot M_A \cdot g$		
Ecuația de stare pentru heliul din balonul aflat la înălțimea z_f este		
$\begin{cases} (P + \Delta P)V_0 \cdot \lambda^3 = n \cdot R \cdot T \\ (P + \Delta P) \cdot \lambda^3 = p_0 \frac{n}{n_0} \frac{T}{T_0} \end{cases}$		
$\lambda^2 \cdot (1 - \lambda^{-6}) = \frac{1}{0,11 \cdot 12,5} \left(45 - \frac{1,12}{0,0289} \right) \approx 4,54$		
Este evident că soluția este supraunitară astfel că într-o primă		
aproximație termenul care conține λ^{-6} se poate neglija. Soluția		
aproximativă corespunzătoare este $\lambda_f \approx 2.13$		
Care verifică rezonabil (cu eroare de 1%) și ecuația completă. $\begin{cases} \frac{P}{P_0} \cdot \lambda^3 \frac{T_0}{T} = \frac{M_T}{n_0 \cdot M_A} \\ z_f = z_0 \left(1 - \sqrt[5]{\frac{M_T}{n_0 \cdot M_A \cdot \lambda_f^3}} \right) \end{cases}$		
$z_f = 49 \left(1 - \sqrt[5]{\frac{1,12}{12,5 \cdot 0,0289 \cdot 2,13^3}} \right) \approx 9,96 km$		
Oficiu	1	
3. Total punctaj subiect 3		10

a) $T_1 V_1^{n-1} = T_2 V_2^{n-1}; \ T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{n-1}$	1	
$\Delta T \begin{cases} <0, dacă n > 1, \\ >0, dacă n < 1 \end{cases}$	1	
b) $Q = vC \cdot \Delta T$; $C = \frac{\delta Q}{v \cdot dT} = \frac{vC_v dT + pdV}{vdT} = C_v + \frac{pdV}{vdT}$	0.75	
$V^{n-1}dT + (n-1)V^{n-2}TdV = 0; \frac{dV}{dT} = -\frac{V}{(n-1)T};$	0.5	
$C = C_{v} + \frac{R}{1-n} = R \frac{\gamma - n}{(\gamma - 1)(1-n)}$	0.75	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.5	
c) $L = \frac{aria\ cercului}{2} = \frac{\pi}{2} R_{oriz} R_{vert} = \frac{\pi}{2} \frac{V}{2} \frac{p}{2} = \frac{\pi}{8} p_1 V_1$	1	
$Q_{primit} = Q_{12} + Q_{03} + Q_{40}$	0.25	
$Q_{12} = \Delta U_{12} + L_{12}; \ \Delta U_{12} = vC_V (T_2 - T_1)$		
$L_{12} = aria(1, 2, V_0, V_1) = \frac{\pi}{16} p_1 V_1 + p_0 (V_0 - V_1)$		
$V_0 = \frac{3}{2}V_1; p_0 = \frac{3}{2}p_1 Q_{12} = \left(3 + \frac{\pi}{16}\right)p_1V_1$	0.25	
$Q_{03} = \nu C_p \left(T_3 - T_0 \right) = \frac{3}{4} \frac{\gamma}{\gamma - 1} p_1 V_1$	0.25	
$Q_{40} = \nu C_V (T_0 - T_4) = \frac{3}{4} \frac{1}{\gamma - 1} p_1 V_1$	0.25	
$Q_{primit} = \left[3 + \frac{\pi}{16} + \frac{3(\gamma + 1)}{4(\gamma - 1)}\right] p_1 V_1$		
$\eta = \frac{L}{Q_{primit}} = \frac{2\pi(\gamma - 1)}{(\pi + 48)(\gamma - 1) + 12(\gamma + 1)}$	0.75	
$\gamma = \frac{5}{3} \Rightarrow \eta = \frac{2\pi}{\pi + 96} \approx 0,0634 , \ \eta = 6,34\%$	0.25	
Oficiu	1	

(subiect propus de prof. dr. Adrian Dafinei – Universitatea București, prof.dr. Constantin Corega – Colegiul Național "Emil Racoviță" –Cluj-Napoca, prof. Stelian Ursu – Colegiul Național "FrațiiBuzești"- Craiova)

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.