FISEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Visible-light induced photocatalytic oxidative desulfurization using BiVO₄/C₃N₄@SiO₂ with air/cumene hydroperoxide under ambient conditions

Guang Miao^a, Dishun Huang^a, Xiaoling Ren^a, Xin Li^b, Zhong Li^a, Jing Xiao^{a,*}

- ^a Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, and School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- ^b Department of Chemistry, South China University of Agriculture, Guangzhou 510642, China

ARTICLE INFO

Article history:
Received 4 December 2015
Received in revised form 12 March 2016
Accepted 15 March 2016
Available online 16 March 2016

Keywords:
Photocatalytic oxidative desulfurization (PODS)
BiVO₄/C₃N₄@SiO₂
Dibenzothiophene
Adsorption
Visible light

ABSTRACT

Trace amount of thiophenic compounds in fuel is harmful to the environment and challenging to get rid of efficiently. The objective of this work is to explore a new visible-light induced photocatalytic oxidative desulfurization (PODS) approach using $BiVO_4/C_3N_4@SiO_2$ with air/cumene hydroperoxide (CHP) under ambient conditions. A series of $BiVO_4/C_3N_4@SiO_2$ photocatalysts were prepared by a hydrothermal method and PODS tests were carried out in a Xenon lamp built-in batch reactor. The dibenzothiophene conversion of the PODS system reached as high as 99%. $BiVO_4/C_3N_4@SiO_2$ showed high vis-photocatalytic activity due to the effective charge separation of $BiVO_4/C_3N_4$ and small particle size of $BiVO_4$. Additional air flow was demonstrated to effectively enhance PODS kinetics of $BiVO_4/C_3N_4@SiO_2$ with CHP, which may be ascribed to the accelerated ROO• generation by air with R• radical for DBT oxidation. Mixing silica gel with $BiVO_4/C_3N_4@SiO_2$ as a hybrid adsorbent under photocatalytic adsorptive desulfurization (PADS) showed a dramatically enhanced desulfurization capacity (7.2 mg/g) compared to that under sole ADS. When fitted to Langmuir adsorption isotherm, K and q_m reached as high as 0.24 and 7.41. The integrated PADS system can be particularly suitable for s single-stage desulfurization for low-sulfur fuel production under visible light at ambient conditions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Removal of thiophenic compounds is an important operation in petroleum refining and is achieved by catalytic hydrotreating process operated at elevated temperatures (>300 °C) and high $\rm H_2$ pressures (20 ~ 100 atm) [1]. The more and more stringent sulfur specification in fuel urged the need of ultra-deep desulfurization, in which hydrotreating becomes more expensive and less efficient as it would require a much larger catalyst bed, higher temperature and pressure, and more $\rm H_2$ consumption [2]. Therefore, develop alternative non-hydrotreating approaches for effective ultra-deep desulfurization have attracted much recent interests worldwide.

Among various desulfurization technologies, photocatalytic oxidative desulfurization (PODS) received growing attention as it provides a green path to photooxidize sulfur species to highly polar sulfoxide or sulfone products with the utilization of ultraviolet or

visible light as the energy source, where photocatalyst plays a key role. TiO_2 -based photocatalyst has been widely studied because of its nontoxicity, high chemical and photochemical stability, low cost, and excellent photocatalytic activity under UV irradiation [3]. Zhang et al. [4] prepared TiO_2 /bamboo charcoal for the photocatalytic oxidation of dibenzothiophene (DBT) under UV using H_2O_2 as the oxidant, and over 70% of sulfur conversion was reported. Wang et al. [5] synthesized TiO_2 /SiO₂ for PODS under UV using air as the oxidant at room temperature, and over 95% of sulfur conversion was reported. However, UV light only accounts for a small fraction (3–5%) of the energy of the sun. Moreover, besides thiophenic compounds, some other fuel components, i.e. aromatics can also absorb UV light strongly [6] and their structure can be destructed during PODS under UV. Therefore, designing photocatalysts responsive to visible light for PODS is desirable.

Bismuth vanadate (BiVO₄), with a band gap of $2.4\,\mathrm{eV}$ that allows direct photo-activation under visible light [7], is attractive because of its low toxicity, low cost and high stability. However, the photo-catalytic activity of BiVO₄ under visible light is low in general due to the rapid recombination of photogenerated electrons and holes

^{*} Corresponding author.

E-mail address: cejingxiao@scut.edu.cn (J. Xiao).

Scheme 1. Schematic illustration of the hydrothermal synthesis of BiVO₄/C₃N₄ and BiVO₄/C₃N₄@SiO₂.

[8], and thus need to be further enhanced via modification. Lin et al. [6] co-loaded BiVO₄ with Pt and RuO₂ as co-catalyst for PODS under visible light using molecular oxygen as the oxidant, which achieved over 99% of thiophene conversion to SO₃. However, using BiVO₄-based photocatalyst without the incorporation of precious metal for PODS under visible light has not been addressed in the literature for PODS.

In recent years, carbon nitride (g-C₃N₄) has drawn great attention in photocatalysis due to its visible light absorption, environment stability, and graphene-like 2D structure, etc. [9], which made it applicable as a catalyst or catalyst support in water decomposition, oxygen reduction, organic photosynthesis and environmental remediation [10]. Li et al. [11] synthesized mesoporous TiO₂/g-C₃N₄ hybrid for degradation of methyl orange and phenol, and reported remarkably enhanced photocatalytic activity under visible light. To further enhance the photocatalytic activity, g-C₃N₄ nanosheet was dispersed in mesoporous silica channels, which acted as the support to load Fe²⁺ and Fe³⁺ for the efficient transformation of CO₂ to epoxides and direct oxidative cycloaddition of CO₂ to olefins, respectively [12]. Previous work suggested that g-C₃N₄ dispersed on mesoporous silica can be a new class of effective photocatalyst support, and its visible-light photocatalytic activity may stand out for effective PODS when further hybrid with visible-light responsive BiVO₄.

Herein, a new visible-light induced PODS system using g- C_3N_4/SiO_2 supported BiVO₄ with air/cumene hydroperoxide (CHP) was investigated and demonstrated to be effective for desulfurization under ambient conditions. The new BiVO₄/ C_3N_4 @SiO₂ photocatalysts were synthesized by hydrothermally loading BiVO₄ onto a lab-prepared mesoporous g- C_3N_4/SiO_2 support. The photocatalysts were characterized by N_2 adsorption, X-ray diffraction (XRD) and transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible diffusive reflectance spectroscopy (UV-vis DRS). The effectiveness of BiVO₄/ C_3N_4 @SiO₂ for PODS under visible light was investigated as compared to that of C_3N_4 @SiO₂, and BiVO₄@SiO₂. The synergy between BiVO₄ and C_3N_4 on SiO₂ for PODS was further illustrated. The BiVO₄ loading and CHP/DBT ratio were optimized. Moreover, the promotion of PODS kinetics by the additional air flow was

reported for the first time, and its mechanism was further elucidated. Additionally, the effectiveness of an integrated visible-light induced photocatalytic adsorptive desulfurization (PADS) process by mixing $BiVO_4/C_3N_4@SiO_2$ with silica gel with air/CHP under visible light at ambient conditions was investigated.

2. Experimental

2.1. Photocatalyst syntheses

 $BiVO_4/C_3N_4$ and $BiVO_4/C_3N_4$ @SiO₂ are synthesized via hydrothermal method. The schematic illustration of the hydrothermal synthesis of $BiVO_4/C_3N_4$ and $BiVO_4/C_3N_4$ @SiO₂ were shown in Scheme 1.

The $C_3N_4@SiO_2$ was prepared by a hydrothermal method. In a typical synthesis, $4.0\,\mathrm{g}$ P123 was dissolved in 120 ml of water and 20 ml of 12 mol/l HCl solution. Then 9.2 ml of TEOS was added to the above homogeneous solution at $40\,^\circ\text{C}$ and mixed for 20 h. After that, 0.5 g melamine as C_3N_4 precursor was added into the slurry, and then the mixture was transferred into a 100 ml Teflon-lined stainless steel autoclave and heated to $110\,^\circ\text{C}$ for $24\,\text{h}$. The obtained solids was washed three times with deionized water and dried in a vacuum oven at $80\,^\circ\text{C}$ for $8\,\text{h}$. Afterwards, solid product was calcined to $550\,^\circ\text{C}$ at a rate of $1.0\,^\circ\text{C}/\text{min}$ and maintained at $550\,^\circ\text{C}$ for $4\,\text{h}$. The powder product was stored in a desiccator for further use.

The BiVO₄/C₃N₄@SiO₂ was prepared by loading BiVO₄ onto C_3N_4 @SiO₂ hydrothermally. In a typical synthesis, 0.173 mmol Bi(NO₃)₃·5H₂O was dissolved in 0.4 ml of water and 0.2 ml of 14.4 mol/l HNO₃ solution. Then, the solution was added into 0.5 g of as-prepared C_3N_4 @SiO₂ dropwise under ultrasound for 15 min, and heated at 80 °C for 60 min. Meanwhile, equimolar NH₄VO₃ was dissolved in 50 ml aqueous ammonia and the suspension was heated to dissolve NH₄VO₃. The NH₄VO₃ solution was added into the above solid dropwise, and then the pH of the slurry was adjusted to 7.0 with acetate. This precursor solution was transferred to a Teflonlined stainless steel autoclave and heated at 180 °C for 16 h at autogenous pressure. After that, the autoclave was cooled to room temperature, and the yellow precipitate was separated by filtration, washed with excess distilled water, and then dried at 100 °C

Fig. 1. DBT conversion of $BiVO_4/C_3N_4$ @SiO₂ referred to that of $BiVO_4/C_3N_4$, C_3N_4 @SiO₂ and $BiVO_4$ @SiO₂ under PODS at 30 °C (Conditions: initial DBT Conc.: 300 ppm-S; air flow rate: 20 cc/min; fuel-to-catalyst ratio: 20:1; O:S: 3:1).

for 2 h. As a reference, $BiVO_4$ @SiO₂ and $BiVO_4/C_3N_4$ were synthesized by loading $BiVO_4$ onto SiO_2 and C_3N_4 , respectively, using the same hydrothermal method mentioned above.

2.2. Characterizations

Nitrogen adsorption isotherms were collected at 77 K using an ASAP2020 analyzer (Micromeritics). The surface area was calculated using BET method. Prior to each measurement, the samples were outgassed at 150 °C for 8 h. Powder X-ray diffraction (XRD) analysis was performed using a Bruker D8 Advance X-ray diffractometer with Cu K α_1 radiation (λ =1.54056 nm) operated at 40 mA and 40 kV at a scanning range of 10–80 ° following Joint Committee on Powder Diffraction Standards (JCPDS). Fourier transform infrared spectra (FTIR) of the products were recorded using an IR Affiniy-1 FTIR spectrometer. Transmission electron microscopy (TEM) was conducted using a JEOL2100F. UV–vis diffusive reflectance spectra (UV-vis DRS) were recorded on a Shimadzu UV-2550 UV–vis spectrophotometer using BaSO₄ as the reference.

Atomic Absorption Spectroscopy (AAS) was used to quantify the Bi content in the composites.

2.3. Model fuel (MDF)

The model fuels were prepared by dissolving given amounts (100–400 ppmw) of dibenzothiophene (DBT, 98%) in dodecane (99%). All the chemicals were purchased from Sigma–Aldrich and used as such without further purification.

2.4. Photocatalytic oxidative desulfurization (PODS) test

Schematic illustration of the PODS reactor with a built-in Xenon lamp was shown in **Fig. S1.** The photocatalyst was mixed with model fuel (certain amount of CHP was added) in a given ratio in the PODS reactor. The water cooled condenser was installed above the reactor to avoid the liquid loss (\sim 3%). The treated fuels were sampled periodically. Air flow rate for PODS was set as 20 cc/min. The DBT concentration in initial and desulfurized fuels were monitored by a high-performance liquid chromatogram (HPLC) equipped with a UV–vis detector at 301 nm and an ODS-C18 column at the flow

rate of 1.0 cc/min. The oxidation product of DBT in treated fuel was identified by GC–MS. The program was initially set at $50\,^{\circ}$ C and ramped immediately at $10\,^{\circ}$ C/min to $100\,^{\circ}$ C, followed by a ramp at $25\,^{\circ}$ C/min to $280\,^{\circ}$ C, and held at $280\,^{\circ}$ C for 5 min.

2.5. Adsorption isotherms of $BiVO_4/C_3N_4@SiO_2$ mixed with silica gel

The effectiveness of the integrated visible-light induced PADS process was tested by the adsorption isotherms of mixed $BiVO_4/C_3N_4@SiO_2$ with silica gel. The adsorption isotherms of $BiVO_4/C_3N_4@SiO_2$ mixed with silica gel (weight ratio of 4:1) under PADS and sole ADS were carried out in a stirred batch system. About 4.0 g of model fuel (100, 200, 300, 400 ppmw-S of DBT in dodecane) and 0.2 g of $BiVO_4/C_3N_4@SiO_2$ mixed with 0.05 g of silica gel (Sigma–Aldrich, S_{BET} of $330m^2/g$) were mixed under ambient conditions till reached adsorption equilibrium (2 h) unless mentioned otherwise. The treated fuels were sampled and tested using a HPLC equipped with a UV–vis detector at 301 nm.

3. Results and discussion

3.1. Effectiveness of BiVO₄/C₃N₄@SiO₂ for PODS

Fig. 1 shows DBT conversion of $BiVO_4/C_3N_4@SiO_2$ and its three references. The DBT conversion reached as high as 99%, demonstrating that $BiVO_4/C_3N_4@SiO_2$ acted as an effective photocatalyst for deep desulfurization of fuels under visible light at ambient conditions. Moreover, compared to $C_3N_4@SiO_2$ and $BiVO_4@SiO_2$, a 2.4-times higher DBT conversion was achieved by $BiVO_4/C_3N_4@SiO_2$, suggesting the synergy between $BiVO_4$ and C_3N_4 was present on the photocatalytic conversion of DBT. Meanwhile, compared to $BiVO_4/C_3N_4$ without SiO_2 support, a tripled DBT conversion was achieved on $BiVO_4/C_3N_4@SiO_2$, which suggested that SiO_2 in $BiVO_4/C_3N_4@SiO_2$ played a critical role for the effective photocatalytic oxidation of DBT. Fig. S2 shows the effect of $BiVO_4$ loading in $BiVO_4/C_3N_4@SiO_2$ on DBT conversion. The $BiVO_4$ loading was optimized to be 8.6%.

Table 1 lists BET surface area (S_{BET}) of BiVO₄/C₃N₄@SiO₂ referred to that of BiVO₄/C₃N₄, BiVO₄@SiO₂, C₃N₄@SiO₂ and the parent SiO₂. It was noted that with the incorporation of C₃N₄ into SiO_2 hydrothermally, its S_{BET} increased slightly from 920.4 to 933.4 m²/g, which may be ascribed to the newly generated porosity by anchoring C₃N₄ into SiO₂. By further incorporation of BiVO₄ into C₃N₄@SiO₂, a dramatic decrease of S_{BET} (from >900 to only $8.0 \,\mathrm{m}^2/\mathrm{g}$) was noticed. Similarly, BiVO₄/C₃N₄@SiO₂ at 4.4, 8.6, and 13.2% of BiVO₄ loading were measured to be $\sim 0 \text{ m}^2/\text{g}$. BiVO₄@SiO₂ also had a much lower S_{BET} (42.7 m²/g) than the parent SiO_2 . Fig. S6 showed the TEM images of the BiVO₄@SiO₂ sample after hydrothermal process. The results suggested that pores in C₃N₄@SiO₂ or SiO₂ collapsed in the process of BiVO₄ incorporation into C₃N₄@SiO₂ or SiO₂, due likely to the high hydrothermal temperature [13] during the synthesis of BiVO₄@SiO₂ and BiVO₄/C₃N₄@SiO₂. It should be mentioned that though BiVO₄/C₃N₄@SiO₂ had lower S_{BET} than BiVO₄@SiO₂ and C₃N₄@SiO₂, it showed the highest DBT conversion (Fig. 1), suggesting the synergy between BiVO₄ and C₃N₄ was not dominated by the textural properties.

Fig. 2 shows the XRD pattern of BiVO₄/C₃N₄@SiO₂ photocatalyst referred to that of BiVO₄/C₃N₄, C₃N₄@SiO₂ and BiVO₄@SiO₂.

Table 1 BET surface area of $BiVO_4/C_3N_4@SiO_2$ referred to that of $BiVO_4/C_3N_4$, $BiVO_4@SiO_2$, $C_3N_4@SiO_2$ and the parent SiO_2 .

Sample	BiVO ₄ /C ₃ N ₄ @SiO ₂	BiVO ₄ /C ₃ N ₄	BiVO ₄ @SiO ₂	C ₃ N ₄ @SiO ₂	SiO ₂
$S_{BET} (m^2/g)$	8.0	<5.0 ^a	42.7	933.4	920.4

^a Under the detection limit of ASAP2020.

Fig. 2. XRD patterns of $BiVO_4/C_3N_4@SiO_2$ photocatalyst referred to that of $BiVO_4/C_3N_4$, $C_3N_4@SiO_2$ and $BiVO_4@SiO_2$.

 $\label{eq:Fig.3.Fi-IR} \textbf{Fig.3.} \ \ \text{Fi-IR} \ spectra of \ BiVO_4/C_3N_4@SiO_2 \ photocatalyst \ referred \ to \ that \ of \ C_3N_4@SiO_2 \ and \ g-C_3N_4.$

For BiVO₄/C₃N₄@SiO₂, BiVO₄@SiO₂, and BiVO₄/C₃N₄ samples, the diffraction peaks at 2θ of 18.6° , 28.8° , 34.5° , 39.8° , 42.7° , 46.1° , 47.3°, and 53.4° were clearly observed, which correspond to the crystalline planes of (101), (112), (200), (211), (015), (220), (123) and (116), respectively, characteristics of monoclinic BiVO₄⁷. Compared to BiVO₄/C₃N₄, BiVO₄/C₃N₄@SiO₂ showed a weakened featured peaks of monoclinic BiVO₄, suggesting the crystallinity of monoclinic BiVO₄ decreased after incorporated into SiO₂. It should be mentioned that the characteristic peak ($\sim 27.4^{\circ}$ [14]) for C₃N₄ was identified for BiVO₄/C₃N₄ (90%), but not for C₃N₄@SiO₂ and BiVO₄/C₃N₄@SiO₂ in Fig. 2, similar to that of g-C₃N₄/NiFe-LDH composite [15], GO/MIL-101 [16] and Ag₃VO₄/C₃N₄ hybrid materials [17]. This was possibly due to the low C₃N₄ loading (0.46 wt.%) in the composites. Scherrer equation $D = (K \times \lambda)/(\beta \times \cos \theta)$. (K = 0.89, λ =1.54 nm) was applied to calculate the average particle sizes of BiVO₄ in the BiVO₄/C₃N₄@SiO₂ sample, which was in the range of 3-8 nm, and BiVO₄ (112) plane was dominating. Fig. 3 presents the FI-IR spectra of BiVO₄/C₃N₄@SiO₂ photocatalyst referred to that of C₃N₄@SiO₂ and g-C₃N₄. The breathing vibration at 808 cm⁻¹ for triazine units, the skeletal vibration bands at 1243 cm⁻¹ and 1638 cm⁻¹ for aromatic C–N and C=N heterocycles, characteristic bands for g- C₃N [9a,18], were commonly present for all the three samples, suggesting the successful incorporation of C₃N₄ in C_3N_4 @SiO₂ as well as BiVO₄/ C_3N_4 @SiO₂.

Fig. 4 shows the TEM images of $BiVO_4/C_3N_4$ @SiO₂ sample referred to that of $BiVO_4/C_3N_4$, C_3N_4 @SiO₂ and $BiVO_4$ @SiO₂. The $BiVO_4$ facet spacing of 0.309 nm in Fig. 4a,c and d, characteristic of (112) crystalline plane for monoclinic $BiVO_4$, suggested that the monoclinic $BiVO_4$ was the dominated crystalline structure

in both BiVO₄@SiO₂ and BiVO₄/C₃N₄@SiO₂, which was consistent with the XRD results in Fig. 2. For BiVO₄/C₃N₄ (Fig. 4a), the particle size of monoclinic BiVO₄ (located above C₃N₄) was in hundreds of nm. In sharp contrast, BiVO₄@SiO₂ and BiVO₄/C₃N₄@SiO₂ had much smaller particle sizes of monoclinic BiVO₄ (averagely 5-6 nm), which was in accordance with the average particle size calculated by Scherrer equation from Fig. 2. The result suggested that the particle size of BiVO₄ decreased dramatically after the hydrothermal incorporation of BiVO₄. It was likely that BiVO₄ was initially dispersed well on the highly porous C₃N₄@SiO₂ or SiO₂ support (S_{BET} over 900 m²/g in Table 1) forming small particles of BiVO₄, and the particles did not aggregate to much larger particles during the later corrosion (pore collapses, Fig. 4c) stage of C₃N₄@SiO₂ or SiO₂ when introducing BiVO₄ hydrothermally. The particle size of BiVO₄ was noted to follow the order of $BiVO_4@SiO_2 \sim BiVO_4/C_3N_4@SiO_2 < BiVO_4/C_3N_4$. However, BiVO₄@SiO₂ showed lower DBT conversion than BiVO₄/C₃N₄@SiO₂ (Fig. 1), suggesting the particle size of BiVO₄ alone was not the dominating factor for the photocatalytic DBT conversion. Moreover, it was noted in Fig. 4d that different from BiVO₄@SiO₂, BiVO₄ located above C₃N₄ rather than SiO₂ in BiVO₄/C₃N₄@SiO₂ (achieved 99% of DBT conversion in Fig. 1). The results indicated that the anchoring of $BiVO_4$ on C_3N_4 may play a critical role on PODS.

Fig. 5 shows the UV-vis DRS of BiVO₄/C₃N₄@SiO₂ referred to that of BiVO₄@SiO₂ and C₃N₄@SiO₂. C₃N₄@SiO₂ shows an absorption region at 300-500 nm (a portion in the visible light region) and reaches the highest adsorption at 340 nm, consistent with those reported in the literature [9a,19]. The absorption strength was quite low, which can be attributed to the low content of C_3N_4 (0.46 wt.%) in the C_3N_4 @SiO₂ sample. BiVO₄@SiO₂ shows an absorption range at 300-550 nm and reaches the highest adsorption at 480 nm, clearly visible light-sensitive [7,20]. Interesting, by incorporating BiVO₄ into C₃N₄@SiO₂, it gives a broad peak region at 300-550 nm, and its absorption intensity was much stronger than that of BiVO₄@SiO₂ and C₃N₄@SiO₂. The results indicated that the synergy between C₃N₄ and BiVO₄ on visible light absorption was present, which was further illustrated in the inset of Fig. 5. At the interface of the composites, the hybridization of BiVO₄ and C₃N₄ reduce the electron density in the VB of BiVO₄ and the CB of C₃N₄, which was beneficial for the VB electrons into the CB of C₃N₄ and thus promoted the transformation of CB electrons to the surface of BiVO₄. Meanwhile, the electron mobility was improved due to the delocalized conjugated structure of C₃N₄, which reduced the possibility of hole-electron recombination. On one hand, different position of energy band between C₃N₄ and BiVO₄ contributed to the formation of heterojunction, which increased the adsorption intensity at visible light region. On the other hand, the photoinduced electrons and holes participated in PODS and transformed CHP into OH• and ROO•, which further served as the oxidant for DBT. Therefore, the effective charge separation decreased the probability of hole-electron recombination and resulted in the enhanced photocatalytic activity under visible light irradiation [21]. It should be mentioned that the synergy between C₃N₄ and BiVO₄ can be also present in the BiVO₄/C₃N₄ sample. However, its larger particle size of BiVO₄ (hundreds of nm, Fig. 4) may negatively impact its catalytic activity for DBT conversion (35%). In other word, smaller particle size of BiVO₄ in BiVO₄/C₃N₄ hybrid may impact its photocatalytic activity for DBT conversion. To sum up, the high DBT conversion of BiVO₄/C₃N₄@SiO₂ may be attributed to the anchoring BiVO₄ onto C₃N₄ for enhanced charge separation and the small particle size (nano-scale, Fig. 4) of BiVO₄ for superior photocatalytic activity. Additionally, the highest DBT conversion of 8.6% BiVO₄/C₃N₄@SiO₂ may be ascribed to the balanced BiVO₄ –C₃N₄ charge transfer effect and particle size effect at the BiVO₄ loading of 8.6%.

Fig. 4. TEM images of (A) BiVO₄/C₃N₄; (B) C₃N₄@SiO₂; (C) BiVO₄@SiO₂; (D) BiVO₄/C₃N₄@SiO₂.

Fig. 5. UV-vis DRS of $BiVO_4/C_3N_4@SiO_2$ referred to $BiVO_4@SiO_2$ and $C_3N_4@SiO_2$ (Inset: Schematic illustration of effective charge separation of hybrid C_3N_4 and $BiVO_4$ under visible light).

3.2. Effects of air and CHP on PODS

Molecular oxygen is an ideal "green" oxidant for the oxidation of thiophenes. However, due to its triplet ground state structure, molecule oxygen is an inactive molecule for thiophene oxidation. Cumene hydroperoxide (CHP) is a more active oxidant due to its oxidation state of -1 for oxygen, and thus was selected as the suitable oxidant for oxidative desulfurization [22]. In this work, applying air and CHP together as compared to that separately for PODS was investigated. Fig. S3 shows the effect of air flow on PODS kinetics of DBT over BiVO₄/C₃N₄@SiO₂ using CHP. Interestingly, though only 20% of DBT conversion was achieved by BiVO₄/C₃N₄@SiO₂ using CHP in 5 h, it was dramatically enhanced when air flow was introduced simultaneously, the DBT conversion

Fig. 6. Plots of In C_t versus time during PODS.

reached 99% in 5 h. It should be mentioned that under dark condition, $BiVO_4/C_3N_4$ @SiO₂ showed moderate catalytic activity for BDT oxidation in the presence of both oxygen and CHP. And with the involvement of visible light, the rate constant was greatly enhanced (5.2 times higher), suggesting the presence of light accelerated the DBT oxidation process vastly. The results suggested that PODS using $BiVO_4/C_3N_4$ @SiO₂ by applying air and CHP simultaneously was able to deeply desulfurize DBT under visible light at ambient conditions.

The kinetic curves of PODS over $BiVO_4/C_3N_4$ @ SiO_2 using different oxidants were further fitted to the first order reaction equation: $-\frac{dC(t)}{dt} = kC(t)$, where k is the rate constant and C(t) is the concentration of sulfur compounds in the liquid phase varied with time, and then converted to the fitting plots of ln(C) versus t, as shown in Fig. 6. Good linear relationships were obtained between ln(C) and t (correlation coefficients $R^2 \ge 95\%$), indicating that the PODS kinetics can be well expressed by the

Fig. 7. Possible PODS pathway using CHP w/o and w/O2.

first-order kinetic models. The rate constant increased in the order of air < CHP < dark < air + CHP (0, 0.041, 0.117 and 0.61 h $^{-1}$ respectively), suggesting the reaction activation energy increased in the order of air + CHP < dark < CHP < air. The results implied that the introduction of air flow and light accelerated DBT conversion on BiVO₄/C₃N₄@SiO₂ with CHP, which may be ascribed to the O₂ —CHP synergistic mechanism under visible light on DBT oxidation as further studied in the 3.3 Section.

Fig. S4 shows the effect of CHP/DBT ratio on the DBT conversion. The DBT conversion followed the order of 3:1 > 4:1 > 8:1 > 2:1. The optimized CHP/DBT ratio of 3:1 was higher than the stoichiometric ratio of 2 molar of CHP reacted with 1 molar of DBT forming DBTO₂ [23], which may be ascribed to the partial self-photodegradation of CHP to alcohol [24]. It should be noted that if further increase O/S ratio from 3:1 to 4:1 or 8:1, the PODS capacity decreased. The results may be ascribed to the oxidation of small portion of dodecane (the MDF solvent) when CHP was in excess. The as-formed polar byproducts, i.e. alcohol [25] occupied the PODS catalytic sites on BiVO₄/C₃N₄@SiO₂, and thus resulted in decreased DBT conversion at increased O/S ratio.

3.3. Pathways of PODS

To understand the PODS mechanism using air and CHP simultaneously, radial scavengers [26], isopropanol (capture ROO* radical), benzoquinone (capture HO* radical) and methanol (capture hole) were introduced to detect and quantify the intermediate radials for PODS. Table 2 lists DBT conversion of BiVO₄/C₃N₄@SiO₂ under different radial scavengers. 71.8, 27.2, and 99.0% of DBT conversion were achieved when isopropanol, benzoquinone and methanol were introduced during PODS. The results suggested that two types of radicals (71.8% of ROO* and 27.2% of HO*) rather than the hole served as the intermediate oxidants for PODS, and ROO* was more significant. With that, the possible PODS pathway using CHP w/o and w/air were proposed in Fig. 7. The PODS was initiated with the generation of HO* and RO* from CHP [23] under visible light irradiation. Followed with that, RO* was further oxidized to ROO* radical by CHP [27]. After that, the ROO* and HO* radicals served

Scavengers	N/A	isopropanol	benzoquinone	methanol
DBT conversion/%	99.0	71.8	27.2	99.0

as the intermediate for DBT oxidation to DBTO₂ [27], where the ROO• itself was reduced to R•. Without the additional O₂, R• was further oxidized to RO•, and then ROO• by CHP (**Route A**), which further served as the intermediate for DBT oxidation to DBTO₂. In contrast, with the additional O₂, R• reacted with O₂ molecule to generate ROO• directly [27] for DBT oxidation without the step of intermediate RO• formation by CHP (**Route B**), as the Gibbs free energy of CHP-R• reaction (-18.2 kcal/mol) was higher than that of O₂-R• reaction (-19.2 kcal/mol) [27], and thus promoted the PODS kinetics. The proposed PODS pathways explained the dramatically enhanced PODS from kinetics and thermodynamics when air was introduced (Fig. S3) through **Route B**.

Fig. S5 shows the GC–MS pattern of sulfur species in the treated fuel. It was confirmed that dibenzothiophene sulfone (DBTO₂) was identified as the PODS product when applying BiVO₄/C₃N₄@SiO₂ as the photocatalyst using air and CHP simultaneously under visible light, which is the same as the PODS product identified in CHP/TiCeO-MCM-48 [28], H₂O₂/WOx-ZrO₂ [29], and CHP/Al₂O₃—CuO [23] systems, but different from the oxidation product of dibenzothiophene sulfoxide (DBTO) in UV-photocatalytic ADS over TiO₂/SiO₂ [30]. During the oxidation process, it was noted that part of the oxidation product DBTO₂ was not desorbed from the BiVO₄/C₃N₄@SiO₂ surface. It was likely that SiO₂ acted as the adsorbent for DBTO₂ through the abundant surface silanol groups.

3.4. Regeneration of BiVO₄/C₃N₄@SiO₂

Fig. 8 shows the DBT conversion of the $BiVO_4/C_3N_4$ @SiO₂ in 4 consecutive regeneration cycles. It can be seen that the $BiVO_4/C_3N_4$ @SiO₂ photocatalyst can be well regenerated by solvent wash followed with calcination under air. It was also noted that the desulfurization capacities slightly decreased with regeneration cycles, which can be ascribed to the loss of active component $BiVO_4$ during the PODS process, similar phenomenon was reported by Hauser et al. [31].

3.5. Effectiveness of the integrated PADS process

The thiophenic compounds was oxidized to thiophenic sulfones during PODS, which were required to be further removed in a followed-up process, such as adsorption by polar adsorbents or extraction by polar extractants, i.e. water, acetonitrile, or ionic liquids (ILs) [32], to completely subtract sulfur element from fuel. Herein, an integrated photocatalytic adsorptive desulfurization (PADS) process, PODS combined with sulfone adsorption

Fig. 8. DBT conversion of the $BiVO_4/C_3N_4@SiO_2$ at 4 consecutive regeneration (Regeneration conditions:Catalyst was washed by 10 ml ethanol and 10 ml acetone for 3 times and then calcined at 300 °C for 4 h).

Fig. 9. Adsorption isotherms of DBT over $BiVO_4/C_3N_4@SiO_2$ mixed with silica gel under PADS referred to that under sole adsorption.

using mixed BiVO₄/C₃N₄@SiO₂ photocatalyst with silica gel under air/CHP under ambient conditions was investigated. To verify the effectiveness of the PADS process, the adsorption isotherms of mixed BiVO₄/C₃N₄@SiO₂ photocatalyst with silica gel under PADS referred to that under sole ADS were compared as shown in Fig. 9. In sharp contrast, BiVO₄/C₃N₄@SiO₂ mixed with silica gel under PADS process showed a significantly higher desulfurization capacity compared to that under sole ADS. Particularly, at the low C_e of 15 and 5 ppm–S, desulfurization capacity of BiVO₄/C₃N₄@SiO₂ mixed with silica gel reached as high as 5.0 and 4.0 mg–S/g–sorb under PADS, while negligible desulfurization capacity was obtained on that under sole ADS.

The static adsorption data were further fitted to the Langmuir adsorption isotherm model $Q = q_m * k^* C_e / (1 + k^* C_e)$, where Q is the equilibrium amount adsorbed of sulfur on the BiVO₄/C₃N₄@SiO₂ mixed with silica gel, C_e is the concentration of DBT in the liquid phase at equilibrium, k is the adsorption equilibrium constant, and q_m is the maximum adsorption capacity of DBT. The much greater k of 0.24 under PADS suggested that the adsorption affinity was dramatically enhanced after the transformation of DBT to DBTO₂, which may be ascribed to the strong adsorption affinity of silica gel to the highly polar DBTO₂ rather than DBT [23]. The isotherm

results further suggested that applying the integrated PADS process by mixing $BiVO_4/C_3N_4@SiO_2$ with silica gel under visible light was effective for fuel desulfurization at low sulfur concentration range. It should be highlighted that the desulfurization capacity of the integrated PADS system was higher than the previously reported UV photocatalytic ADS- TiO_2/SiO_2 system [5], as well as many reported desulfurization adsorbents at low S-concentration range (<15 ppm-S), such as carbon materials [33], UMCM-150 and HKUST [34], etc., which made it promising to be engineered for the effective deep desulfurization of fuel.

4. Conclusion

In this work, an effective PODS approach using $BiVO_4/C_3N_4@SiO_2$ with air/CHP under ambient conditions was developed. The following conclusions can be drawn:

- (a) The DBT conversion of BiVO₄/C₃N₄@SiO₂ under PODS reached as high as 99%, which was much higher than that of BiVO₄/C₃N₄, BiVO₄@SiO₂ and C₃N₄@SiO₂. The highest vis-photocatalytic activity of BiVO₄/C₃N₄@SiO₂ could be ascribed to the effective charge separation formation of BiVO₄/C₃N₄ and small particle size of BiVO₄.
- (b) The additional air flow dramatically enhanced the PODS kinetics of BiVO₄/C₃N₄@SiO₂ with CHP, which may be ascribed to the accelerated ROO• radical formation by the introduced O₂ with R• radical for the DBT oxidation.
- (c) The $BiVO_4$ loading and the CHP/DBT ratio were optimized to be 8.6% and 3:1.
- (d) Mixing BiVO₄/C₃N₄@SiO₂ with silica gel as a hybrid adsorbent under PADS showed a dramatically enhanced desulfurization capacity (7.2 mg/g) compared to that under pure ADS, with a high K of 0.24 and q_m of 7.41 were obtained when fitted to Langmuir adsorption isotherm. The integrated PADS approach further simplified the desulfurization process and can pave the way for a single stage desulfurization process using air/CHP for producing low sulfur fuels.

Acknowledgements

We gratefully acknowledge the research grants provided by the National Natural Science Foundation of China (21306054), Guangdong Natural Science Foundation (S2013040014747, 2014A030312007), Guangdong Natural Science Funds for Distinguished Young Scholar, Petro China Innovation Foundation, the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and Fundamental Research Funds for the Central Universities.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.apcatb.2016. 03.033.

References

- [1] (a) R.T. Yang, Y.H. Wang, J.M. Heinzel, Ind. Eng. Chem. Res. 48 (2009) 142–147;(b) C.S. Song, X.L. Ma, Appl. Catal. B Environ. 41 (2003) 207–238.
- [2] X.L. Ma, S. Velu, J.H. Kim, C.S. Song, Appl. Catal. B Environ. 56 (2005) 137–147.
- (a) C. Su, X. Ran, J. Hu, C. Shao, Environ. Sci. Technol. 47 (2013) 11562–11568;
 (b) X. Guo, D. M, J. Crittenden, Environ. Sci. Tech. 49 (2015) 9230–9236.
 - 4] J. Zhang, D.S. Zhao, J. Wang, L. Yang, J. Mater. Sci. 44 (2009) 3112–3117.
- [5] X. Wang, W. Zhang, L. Wu, F. Ye, J. Xiao, Z. Li, RSC Adv. 4 (2014) 56567–56570.
- [6] F. Lin, D.G. Wang, Z.X. Jiang, Y. Ma, J. Li, R.G. Li, C. Li, Energ. Environ. Sci. 5 (2012) 6400–6406.
- [7] J. Tang, B. Song, Q. Deng, H. Xin, Mater. Sci. Semicond. Process 35 (2015) 90–95.

- [8] (a) J.W. Yang, D.H. Han, C. Li, Acc. Chem. Res. 46 (2013) 1900–1909;
 (b) J. Cheng, J.W. Pan, ACS Appl. Mater. Interfaces 7 (2015) 9638–9644.
- [9] (a) M. Ding, W. Wang, Y. Zhou, C. Lu, Y. Ni, Z. Xu, J. Alloys Compd. 635 (2015) 34–40;
 - (b) W.Y. Wang, C. J, D. Xia, P.K. Wong, Y. Li, Environ. Sci. Tech. 47 (2013) 8724–8732.
- [10] P. Zhang, Y. Wang, H. Li, M. Antonietti, Green Chem. 14 (2012) 1904–1908.
- [11] Y. Li, J. Wang, Y. Yang, Y. Zhang, D. He, Q. An, G. Cao, J. Hazard. Mater. 292 (2015) 79–89.
- [12] Z. Huang, F. Li, B. Chen, T. Lu, Y. Yuan, G. Yuan, Appl. Catal. B Environ. 136–137 (2013) 269–277.
- [13] D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279 (1998) 548–552.
- [14] M. Zhang, X. Bai, D. Liu, J. Wang, Y. Zhu, Appl. Catal. B Environ. 164 (2015) 77–81.
- [15] S.M. Nayak, L.K. Parida, J. Mater. Chem. A 3 (2015) 18622-18635.
- [16] J. Yan, Y. Yu, C. Ma, J. Xiao, Q. Xia, Y. Li, Z. Li, Appl. Therm. Eng. 84 (2015) 118–125.
- [17] S. Wang, D. Li, C. Sun, S. Yang, Y. Guan, H. He, Appl. Catal. B Environ. 144 (2014) 885–892.
- [18] (a) D. Chen, K. Wang, W. Hong, R. Zong, W. Yao, Y. Zhu, Appl. Catal. B Environ. 166 (2015) 366–373;
 - (b) J. Zhang, M. Z, C. Yang, X. Wang, Adv. Mater. 26 (2014) 4121–4126; (c) S. Wu, K. L, W. Zhang, Appl. Surf. Sci. 324 (2015) 324–331.
- [19] H. Zhao, C. Di, L. Wang, Y. Chun, Q. Xu, Micropor. Mesopor. Mat. 208 (2015) 98–104.
- [20] M.J. Nalbandian, M. Zang, J. Sanchez, Y. Choa, D.M. Cwiertny, N.V. Myung, J. Mol. Catal. a-Chem. 404 (2015) 18–26.
- [21] (a) S. Chen, Y. Qi, T. Hisatomi, Q. Ding, T. Asai, Z. Li, S. Ma, K. S, F. Zhang, K. Domen, C. Li, Angew. Chem. Int. Ed. 54 (2015) 1–5; (b) Z. Chen, F. Bing, Q. Liu, Z. Zhang, X. Fang, J. Mater. Chem. A 3 (2015)

- (a) G.W. Mushrush, E.J. Beal, D.R. Hardy, R.N. Hazlett, D.G. Mose, Fuel 73 (1994) 1481–1485;
 (b) J. Xiao, L. W, Y. Wu, B. Liu, L. Dai, Z. Li, Q. Xia, H. Xi, Appl. Energy 113 (2014) 78–85
- [23] C.S. Song, R. Sundararaman, X.L. Ma, Ind. Eng. Chem. Res. 49 (2010) 5561–5568.
- [24] W. Zhang, J. Xiao, X. Wang, G. Miao, F. Ye, Z. Li, EnergyFuels 28 (2014) 5339–5344.
- (a) R.G. Lichtenthaler, W.R. Haag, T. Mill, Environ. Sci. Technol. 23 (1989) 39–45;
 (b) J.R. Payne, C.R. Phillips, Environ. Sci. Technol. 19 (1985) 569–579.
- [26] J.H. Kou, Z. Li, Y. Yuan, H. Zhang, Y. Wang, Z. Zou, Environ. Sci. Technol. 43 (2009) 2919–2924.
- [27] S. Matsui, T. Fujita, Catal. Today 71 (2001) 145–152.
- [28] J. Xiao, X.X. Wang, Y.S. Chen, M. Fujii, C.S. Song, Ind. Eng. Chem. Res. 52 (2013) 15746–15755.
- [29] E. Torres-Garcia, A. Galano, G. Rodriguez-Gattorno, J. Catal. 282 (2011) 201–208.
- [30] G. Miao, F. Ze, L. Wu, X. Ren, J. Xiao, Z. Li, H.H. Wang, J. Hazard. Mater. (2015).
- [31] J.L. Hauser, D.T. Tran, E.T. Conley, Chem. Mater. 28 (2015) 474-479.
- [32] F. Li, Y. Liu, Z. Sun, Y. Zhao, R. Liu, L. Chen, D. Zhao, Catal. Sci. Technol. 2 (2012) 1455–1462.
- [33] (a) M.X. Yu, Z. Li, Q.B. Xia, S.W. Wang, J. Chem. Ind. Eng. (China) 58 (2007) 938–943;
 - (b) A.N. Zhou, X.L. Ma, C.S. Song, J. Phys. Chem. B 110 (2006) 4699–4707;
 - (c) L. Wu, S. S, J. Xiao, B. Liu, Z. Li, M.J. Janik, Chem. Eng. J. 242 (2014) 211–219.
- [34] (a) A.J. Matzger, K.A. Cychosz, A.G. Wong-Foy, J. Am. Chem. Soc. 131 (2009) 14538–14543:
 - (b) L. Wu, J. X, Y. Wu, S. Xian, G. Miao, H.H. Wang, Z. Li, Langmuir 30 (2014) 1080–1088.