GERAÇÃO E DEMODULAÇÃO DE SINAIS AM-DSB

- OBJETIVO:
- Dados $e_0(t)$ e $e_m(t)$ provocar a multiplicação dos dois sinais:

- TIPOS DE CIRCUITOS MODULADORES:
 - 1 − Modulador por Chaveamento
 - 2 Modulador usando Circuito Não Linear
 - 3 Controle de Ganho
 - 4 Multiplicação Direta

• 1 – Modulador por Chaveamento

- 1 Modulador por Chaveamento
 - O circuito chaveador abre e fecha no período $T_0 = \frac{1}{F_0}$
 - Isso equivale a multiplicar o sinal por um trem de pulsos.

1 – Modulador por Chaveamento

Representando e_c(t) em série de Fourier, tem-se:

$$e_c(t) = \frac{1}{2} + \frac{2}{\pi} \cdot \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{2n-1} \cdot \cos\left[2\pi f_c t(2n-1)\right]$$

$$e_c(t) = c_0 + c_1 \cdot \cos(\omega_0 t) + c_2 \cdot \cos(3\omega_0 t) + c_3 \cdot \cos(5\omega_0 t) + \dots$$

1 – Modulador por Chaveamento

 $1 + e_m(t) \uparrow$

 $e_c(t)$

Forma de Onda

Periódica de Chaveamento

Sinal Modulante Chaveado

1 – Modulador por Chaveamento

$$e_1(t) = [1 + e_m(t)] \cdot e_c(t)$$

$$e_c(t) = c_0 + c_1 \cdot \cos(\omega_0 t) + c_2 \cdot \cos(3\omega_0 t) + c_3 \cdot \cos(5\omega_0 t) + \dots$$

$$E_1(f) = \mathbb{F}\{e_1(t)\} =$$

$$\mathbb{F}\{[1 + e_m(t)][c_0 + c_1 \cdot \cos(\omega_0 t) + c_2 \cdot \cos(3\omega_0 t) + c_3 \cdot \cos(5\omega_0 t) + \ldots]\}$$

$$\mathbb{F}\{c_0 + c_1 \cos(\omega_0 t) + c_2 \cos(3\omega_0 t) + c_3 \cos(5\omega_0 t) + \dots + c_0 e_m(t) + c_1 \cos(\omega_0 t) e_m(t) + c_2 \cos(3\omega_0 t) e_m(t) + c_3 \cos(5\omega_0 t) e_m(t) + \dots \}$$
 Modulação em ω_0 Modulação em ω_0

• Espectro do Sinal Modulado AM-DSB

• O sinal que nos interessa é:

$$e(t) = [1 + m e_m(t)] \cdot \cos(\omega_0 t)$$

Depois do FPF centrado em f_0 e com banda $2f_m$

Filtro Passa

Espectro do Sinal Modulado AM-DSB

- 2 Modulação por Elemento Quadrático
 - Este método utiliza o fato da multiplicação ocorrer em um elemento não linear:

$$[e_m(t) + e_o(t)]^2 = e_m^2(t) + e_0^2(t) + 2 e_m(t) e_0(t)$$
Multiplicação de $\cos(\omega_0 t)$
por $e_m(t)$ = Modulação

• A resposta não linear de componentes eletrônicos costuma ser uma exponencial que pode ser aproximada por uma série:

$$e^x = a + bx + cx^2 + dx^3 + \dots$$

• Desta série consideramos apenas os primeiros elementos (quadrado/cúbico)

• 2 – Modulação por Elemento Quadrático

- 2 Modulação por Elemento Quadrático
 - Exemplo:

$$e_2(t) = a_1 e_1(t) + a_2 [e_1(t)^2]$$

$$a_1, a_2 \longrightarrow \text{constantes}$$

$$e_0(t) = E_0 \cdot \cos(\omega_0 t) \quad \omega_0 >> \omega_m$$

$$e_m(t) = E_m \cdot \cos(\omega_m t)$$

$$e_1(t) = e_0(t) + e_m(t)$$

Resposta do Elemento Não Linear

- 2 Modulação por Elemento Quadrático
 - Exemplo:

$$e_2(t) = a_1 \left[e_0(t) + e_m(t) \right] + a_2 \left[e_0(t) + e_m(t) \right]^2$$

$$e_2(t) = a_1 e_0(t) + a_1 e_m(t) + a_2 e_0(t)^2 + a_2 e_m(t)^2 + 2 a_2 e_0(t) e_m(t)$$

Sinal Desejado
$$\longrightarrow k_1 e_0(t) + k_2 e_0(t) e_m(t)$$

$$e_2(t) = a_1 e_0(t) + 2 a_2 e_0(t) e_m(t) + a_1 e_m(t) + a_2 e_0(t)^2 + a_2 e_m(t)^2$$

$$E_2(f) = \mathbb{F}\{e_2(t)\}\$$

- 2 Modulação por Elemento Quadrático
 - Espectro de $e_2(t)$:

• 2 – Modulação por Elemento Quadrático

- $e_m(t)$ e $e_o(t)$ se somam em (i)
- o resultado da soma passa por um dispositivo não linear (que implementa a lei quadrática) (ii)
- antes de ir para a saída do circuito o sinal passa por um FPF (iii)

2 – Modulação por Elemento Quadrático

- $\bullet \ \ e_{m}(t) \ e \ e_{o}(t)$ se somam em (iii), na tensão V_{GS}
- \bullet o resultado da soma, tensão V_{GS} , gerará, pelo efeito do transistor (dispositivo não-linear), uma corrente de dreno em (iv)
- a corrente de dreno tem uma característica quadrática expressa por:

$$I_D = I_{dss} (1 - \frac{V_{GS}}{V_p})^2 \quad \begin{array}{l} \text{onde:} \\ I_{\rm d} = \text{corrente no dreno} \\ I_{\rm dss} = \text{corrente para dreno com VGS=0} \\ V_{\rm o} = \text{tensão VGS para ID=0} \end{array}$$

• 2 – Modulação por Elemento Quadrático

• Na corrente de dreno são encontradas as componentes da modulação AM-DSB. Além das componentes do AM-DSB existem outras componentes que são eliminadas pelo filtro passa-faixa (v) antes de deixar o circuito como sinal modulado AM-DSB.

• 3 - Modulação por Variação de Ganho

- O CA 3080 é um Amplificador operacional de transcondutância.
- Como o próprio nome sugere este amplificador transforma a diferença entre as tensões de entrada em uma corrente de saída.
- Possui uma entrada capaz de ajustar o ganho do amplificador
- $i_o = gm(v^+ v^-)$ $gm = k.i_m$

• 3 - Modulação por Variação de Ganho

$$Z_o = R_L \qquad V_o = V_i g_m R_L \quad g_m = 20i_m$$

$$i_m = \frac{\left(A_m + V_{CC} - 0.6\right)}{R_m}$$

• Projetar um Modulador AM-DSB, com as seguintes características: fc=250 K Hz, fm=5 K Hz, Am=1 V, Vcc=12 V, $v_i=50 \text{ m}$ V, $v_i=1 \text{ V}$, $Z_i=10 \text{ K}$ ohm

- A Demodulação é o processo de recuperação do sinal modulante, a partir do sinal modulado, e é feita transladando-se o sinal modulante $e_m(t)$ para a posição em torno do zero hertz (banda base).
- Matematicamente isto é feito multiplicando-se o sinal AM-DSB por $\cos(\omega_0 t)$, que é o sinal de portadora.

$$\cos(\omega_0 t) \cdot \cos(\omega_0 t) = \frac{1}{2} + \frac{1}{2} \cos(2\omega_0 t) = \frac{1}{2} \left[1 + \cos(2\omega_0 t) \right]$$

$$\uparrow \qquad \uparrow$$
Translação para $2 \omega_0$

Termo que elimina a portadora transladando para 0 Hz

DETETOR DE ENVOLTÓRIA

$$e_A(t) = E_0 \left[1 + m \cdot e_m(t) \right] \cos(w_0 t)$$

$$E_A(f) = \mathbb{F}\{e_A(t)\}$$

DETETOR DE ENVOLTÓRIA

Passando pelo diodo, fica apenas a parte superior da onda:

DETETOR DE ENVOLTÓRIA

A série de Fourier para meia onda é dada por:

$$f(x) = \frac{1}{\pi} + \frac{1}{2}\sin(x) - \frac{2}{\pi} \left(\frac{\cos(2x)}{1 \cdot 3} + \frac{\cos(4x)}{3 \cdot 5} + \frac{\cos(6x)}{5 \cdot 7} + \dots \right)$$
$$e_B(t) = [1 + m \cdot e_m(t)] \cdot e_{MO}(t)$$

DETETOR DE ENVOLTÓRIA

Calculando $E_B(f) = \mathbb{F}\{e_B(t)\}$ temos:

Podemos verificar que o sinal original $e_m(t)$ está presente em $e_B(t)$. Passando pelo filtro passa baixa (FPB) podemos recuperar a informação original.

DISPOSITIVO NÃO-LINEAR

$$v_2(t) = a_1 \ v_1(t) + a_2 \ \left[v_1(t)^2 \right]$$

$$a_1, a_2 \longrightarrow \text{constantes}$$

$$v_1(t) = E_0 \left[1 + m \ e_m(t) \right] \cos(2\pi f_0 t)$$

Resposta do Elemento Não Linear

$$v_2(t) = a_1 E_0 [1 + m e_m(t)] \cos(2\pi f_0 t) + \frac{1}{2} a_2 E_0^2 [1 + 2 m e_m(t) + m^2 e_m^2(t)] \cdot [1 + \cos(4\pi f_0 t)]$$

$$\frac{a_2 \ E_0^2 \ m \ e_m(t) \to \text{Sinal Desejado}}{\frac{1}{2} \ a_2 \ E_0^2 \ m^2 \ e_m^2(t) \to \text{Sinal Indesejado}} \frac{2}{m \ e_m(t)} = \frac{\text{Razão entre Sinal}}{\text{Desejado e Indesejado}}$$

$$10K \le R_L \le 47K$$

$$Z_i = 2,4R$$
 se $\frac{R}{R_L} = 0,1$

$$f_{CORTE} = \frac{1}{6\pi [1 + \frac{R_S}{R}]RC}$$