

Figura 2.6.6 Las superficies equipotenciales (líneas de puntos) son ortogonales al campo el éctrico ${\bf E}$.

Ejercicios

- **1.** Demostrar que la derivada direccional de $f(x, y, z) = z^2 x + y^3$ en (1, 1, 2) en la dirección $(1/\sqrt{5})\mathbf{i} + (2/\sqrt{5})\mathbf{j}$ es $2\sqrt{5}$.
- **2.** Calcular las derivadas direccionales de las siguientes funciones en los puntos y direcciones indicados:
 - (a) $f(x,y) = x + 2xy 3y^2, (x_0, y_0) = (1,2),$ $\mathbf{v} = \frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j}$
 - (b) $f(x,y) = \log \sqrt{x^2 + y^2}, (x_0, y_0) = (1,0),$ $\mathbf{v} = (1/\sqrt{5})(2\mathbf{i} + \mathbf{j})$
 - (c) $f(x,y) = e^x \cos(\pi y), (x_0, y_0) = (0, -1),$ $\mathbf{v} = -(1/\sqrt{5})\mathbf{i} + (2/\sqrt{5})\mathbf{j}$
 - (d) $f(x,y) = xy^2 + x^3y, (x_0, y_0) = (4, -2),$ $\mathbf{v} = (1/\sqrt{10})\mathbf{i} + (3/\sqrt{10})\mathbf{j}$
- **3.** Calcular las derivadas direccionales de las siguientes funciones a lo largo de los vectores unitarios en los puntos indicados en una dirección paralela al vector dado en cada caso:
 - (a) $f(x,y) = x^y, (x_0,y_0) = (e,e), \mathbf{d} = 5\mathbf{i} + 12\mathbf{j}$
 - (b) $f(x, y, z) = e^x + yz, (x_0, y_0, z_0) = (1, 1, 1),$ $\mathbf{d} = (1, -1, 1)$
 - (c) $f(x, y, z) = xyz, (x_0, y_0, z_0) = (1, 0, 1),$ $\mathbf{d} = (1, 0, -1)$
- **4.** Un individuo camina sobre la gráfica de $f(x,y) = y\cos(\pi x) x\cos(\pi y) + 10$, estando de pie en el punto (2, 1, 13). Determinar la dirección x, y en la que debería caminar para permanecer en el mismo nivel.

- **5.** (a) Sea $f: \mathbb{R}^3 \to \mathbb{R}$, $\mathbf{x}_0 \in \mathbb{R}^3$. Si \mathbf{v} es un vector unitario en \mathbb{R}^3 , demostrar que el valor máximo de la derivada direccional de f en \mathbf{x}_0 a lo largo de \mathbf{v} es $||\nabla f(\mathbf{x}_0)||$.
 - (b) Sea $f(x, y, z) = x^3 y^3 + z^3$. Hallar el valor máximo de la derivada direccional de f en el punto (1, 2, 3).
- **6.** Hallar un vector que sea normal a la curva $x^3 + xy + y^3 = 11$ en (1, 2).
- 7. Hallar cómo varía f(x, y, z) = xyz en la dirección normal a la superficie $yx^2 + xy^2 + yz^2 = 3$ en (1, 1, 1).
- **8.** Determinar los planos tangentes a las siguientes superficies en los puntos indicados:
 - (a) $x^2 + 2y^2 + 3xz = 10$, en el punto $(1, 2, \frac{1}{3})$
 - (b) $y^2 x^2 = 3$, en el punto (1, 2, 8)
 - (c) xyz = 1, en el punto (1, 1, 1)
- 9. Hallar la ecuación para el plano tangente a cada superficie z=f(x,y) en el punto indicado:
 - (a) $z = x^3 + y^3 6xy$, en el punto (1, 2, -3)
 - (b) $z = (\cos x)(\cos y)$, en el punto $(0, \pi/2, 0)$
 - (c) $z = (\cos x)(\sin y)$, en el punto $(0, \pi/2, 1)$
- **10.** Calcular el gradiente ∇f para cada una de las siguientes funciones:
 - (a) $f(x, y, z) = 1/\sqrt{x^2 + y^2 + z^2}$
 - (b) f(x, y, z) = xy + yz + xz