BROUILLON - CARRÉS PARFAITS ET PRODUITS D'ENTIERS CONSÉCUTIFS

CHRISTOPHE BAL

Document, avec son source $L^{A}T_{E}X$, disponible sur la page https://github.com/bc-writing/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International ».

Table des matières

1.	Ce qui nous intéresse	2
2.	Notations utilisées	2
3.	Résolution au cas par cas	2
3.1.	. Avec 1 seul facteur	2
3.2.	. Avec 2 facteurs	2
3.3.	. Avec 3 facteurs	3
3.4.	. Avec 4 facteurs	3
3.5.	. Avec 5 facteurs	4
4.	Une méthode efficace	6
4.1.	. Présentation de la méthode	6
4.2.	. Avec 1 seul facteur	6
4.3.	. Avec 2 facteurs	6
4.4.	. Avec 3 facteurs	6
4.5.	. Avec 4 facteurs	6
4.6.	. Avec 5 facteurs	6
5.	AFFAIRE À SUIVRE	7

Date: 25 Jan. 2024 - 30 Jan. 2024.

1. CE QUI NOUS INTÉRESSE

Dans l'article « Note on Products of Consecutive Integers » 1 , Paul Erdos démontre que pour tout couple $(n,k) \in \mathbb{N}^* \times \mathbb{N}^*$, le produit d'entiers consécutifs $\prod_{i=0}^k (n+i)$ n'est jamais le carré d'un entier. Dans ce modeste document, nous commençons par étudier les premiers cas de façon « adaptative » 2 , puis nous proposons une méthode efficace, et programmable partiellement, pour gérer tous ces premiers cas, et d'autres.

2. Notations utilisées

Dans la suite, nous emploierons les notations suivantes.

- ${}^{2}\mathbb{N} = \{n^{2}, n \in \mathbb{N}\} \text{ et } {}^{2}\mathbb{N}_{*} = {}^{2}\mathbb{N} \cap \mathbb{N}^{*}.$
- $\forall (n,k) \in \mathbb{N}^* \times \mathbb{N}$, $\pi_n^k = \prod_{i=0}^k (n+i)$. Par exemple, nous avons $\pi_n^0 = n$ et $\pi_n^1 = n(n+1)$.
- P désigne l'ensemble des nombres premiers.
- $\forall (p;n) \in \mathbb{P} \times \mathbb{N}^*$, $v_p(n) \in \mathbb{N}$ est la valuation p-adique de n, c'est-à-dire $p^{v_p(n)} \mid n$ et $p^{v_p(n)+1} \nmid n$, autrement dit $p^{v_p(n)}$ divise n, contrairement à $p^{v_p(n)+1}$.
- $\forall (n,m) \in \mathbb{N}^2$, $n \wedge m$ désigne le PGCD de n et m.
- \bullet 2 $\mathbb N$ désigne l'ensemble des nombres naturels pairs.
- $2 \mathbb{N} + 1$ désigne l'ensemble des nombres naturels impairs.

3. Résolution au cas par cas

3.1. Avec 1 seul facteur.

Via $N^2-M^2=(N-M)(N+M)$, il est immédiat de noter que $\forall (N,M)\in\mathbb{N}^*\times\mathbb{N}^*$, si N>M, alors $N^2-M^2\geq 3$. Le fait suivant précise ceci.

Fait 3.1.
$$\forall (N, M) \in \mathbb{N}^* \times \mathbb{N}^*$$
, si $N > M$, alors $N^2 - M^2 = \sum_{k=M+1}^{N} (2k-1)$.

Démonstration. Il suffit d'utiliser
$$N^2 = \sum_{k=1}^{N} (2k-1)$$
.

3.2. Avec 2 facteurs.

Fait 3.2. $\forall n \in \mathbb{N}^*, n(n+1) \notin {}^2\mathbb{N}$.

Démonstration. Il suffit de noter que
$$n^2 < n(n+1) < (n+1)^2$$
.

Preuve alternative no.1. Supposons que $\pi_n^1=n(n+1)\in{}^2\mathbb{N}_*$. Clairement $\forall p\in\mathbb{P}$, $v_p(\pi_n^1)\in 2\mathbb{N}$. Or $p\in\mathbb{P}$ ne peut diviser à la fois n et n+1. Nous savons donc que $\forall p\in\mathbb{P}$, $v_p(n)\in 2\mathbb{N}$ et $v_p(n+1)\in 2\mathbb{N}$, autrement dit $(n,n+1)\in{}^2\mathbb{N}\times{}^2\mathbb{N}$. D'après le fait 3.1, nous savons que ceci est impossible.

^{1.} J. London Math. Soc. 14 (1939).

^{2.} Différentes approches intéressantes sont proposées avant de donner une méthode « généraliste » qui nous semble être la plus efficace.

Preuve alternative no.2. Supposons que $\pi_n^1 = n(n+1) = N^2$ où $N \in \mathbb{N}^*$. Les équivalences suivantes donnent alors une contradiction.

$$n(n+1) = N^{2}$$

$$\iff 2 \sum_{k=1}^{n} k = \sum_{k=1}^{N} (2k-1)$$

$$n(n+1) = 2 \sum_{k=1}^{n} k \text{ et } N^{2} = \sum_{k=1}^{N} (2k-1).$$

$$\iff \sum_{k=1}^{n} 2k = \sum_{k=1}^{N} 2k - N$$

$$\iff \sum_{k=n+1}^{N} 2k = N$$

$$\iff \sum_{k=n+1}^{N-1} 2k + N = 0$$

$$N > 0 \text{ rend impossible la dernière égalité.}$$

3.3. Avec 3 facteurs.

Fait 3.3. $\forall n \in \mathbb{N}^*$, $n(n+1)(n+2) \notin {}^2\mathbb{N}$.

Démonstration. Supposons que $\pi_n^2 = n(n+1)(n+2) \in {}^2\mathbb{N}_*$. Posant m=n+1, nous avons $\pi_n^2 = (m-1)m(m+1) = m(m^2-1)$ où $m \in \mathbb{N}_{\geq 2}$. Comme $\forall p \in \mathbb{P}$, $v_p(\pi_n^2) \in 2\mathbb{N}$, et comme de plus $p \in \mathbb{P}$ ne peut diviser à la fois m et m^2-1 , nous savons que $\forall p \in \mathbb{P}$, $v_p(m) \in 2\mathbb{N}$ et $v_p(m^2-1) \in 2\mathbb{N}$, d'où $(m,m^2-1) \in {}^2\mathbb{N}_* \times {}^2\mathbb{N}_*$. Or, d'après le fait 3.1, $m^2-1 \in {}^2\mathbb{N}$ est impossible. □

Une preuve alternative. Supposons que $\pi_n^2 = n(n+1)(n+2) \in {}^2\mathbb{N}_*$. Comme $p \in \mathbb{P}_{>2}$ ne peut diviser au maximum qu'un seul des trois facteurs n, (n+1) et (n+2), nous savons que $\forall p \in \mathbb{P}_{>2}$, $(v_p(n), v_p(n+1), v_p(n+2)) \in (2\mathbb{N})^3$. Mais que se passe-t-il pour p = 2?

Supposons d'abord $n \in 2\mathbb{N}$.

- Posant n=2m, nous avons $\pi_n^2=4m(2m+1)(m+1)$, d'où $m(2m+1)(m+1)\in {}^2\mathbb{N}_*$.
- Comme $v_2(2m+1)=0$, nous savons que $2m+1\in{}^2\mathbb{N}_*$
- Donc $m(m+1) \in {}^2\mathbb{N}_*$, mais le fait 3.2 interdit cela.

Supposons maintenant $n \in 2\mathbb{N} + 1$.

- Nous savons que $n \in {}^{2}\mathbb{N}_{*}$ via $v_{2}(n) = 0$.
- Dès lors, on obtient $(n+1)(n+2) \in {}^2\mathbb{N}_*$, mais de nouveau ceci contredit le fait 3.2. \square

3.4. Avec 4 facteurs.

Fait 3.4. $\forall n \in \mathbb{N}^*, \ n(n+1)(n+2)(n+3) \notin {}^2\mathbb{N}$.

Démonstration. Nous pouvons ici faire les manipulations algébriques naturelles suivantes.

$$\pi_n^3 = n(n+3) \cdot (n+1)(n+2)$$

$$= (n^2 + 3n) \cdot (n^2 + 3n + 2)$$

$$= m(m+2)$$

$$= m^2 + 2m$$

$$= (m+1)^2 - 1$$

Comme m > 0, d'après le fait 3.1, $(m+1)^2 - 1 \notin {}^2\mathbb{N}$, c'est-à-dire $\pi_n^3 \notin {}^2\mathbb{N}$.

Une preuve alternative. En « symétrisant » certaines expressions, nous obtenons les manipulations algébriques « moins magiques » suivantes.

$$\pi_n^3 = n(n+1)(n+2)(n+3)$$

$$= \left(x - \frac{3}{2}\right)\left(x - \frac{1}{2}\right)\left(x + \frac{1}{2}\right)\left(x + \frac{3}{2}\right)$$

$$= \left(x^2 - \frac{9}{4}\right)\left(x^2 - \frac{1}{4}\right)$$

$$= (y-1)(y+1)$$

$$= y^2 - 1$$

$$= \left(\left(n + \frac{3}{2}\right)^2 - \frac{5}{4}\right)^2 - 1$$

$$= \left(n^2 + 3n + 1\right)^2 - 1$$

3.5. Avec 5 facteurs.

Fait 3.5. $\forall n \in \mathbb{N}^*, n(n+1)(n+2)(n+3)(n+4) \notin {}^{2}\mathbb{N}$.

Démonstration. Supposons que $\pi_n^4 = n(n+1)(n+2)(n+3)(n+4) \in {}^2\mathbb{N}_*$. Clairement, $\forall p \in \mathbb{P}_{>3}$, $\left(v_p(n), v_p(n+1), v_p(n+2), v_p(n+3), v_p(n+4)\right) \in \left(2\mathbb{N}\right)^5$. Pour p=2 et p=3, nous avons les alternatives suivantes pour chaque facteur (n+i) de π_n^3 .

- [A1] $(v_2(n+i), v_3(n+i)) \in 2\mathbb{N} \times 2\mathbb{N}$
- [A2] $(v_2(n+i), v_3(n+i)) \in 2\mathbb{N} \times (2\mathbb{N}+1)$
- [A3] $(v_2(n+i), v_3(n+i)) \in (2\mathbb{N}+1) \times 2\mathbb{N}$
- [A4] $(v_2(n+i), v_3(n+i)) \in (2\mathbb{N}+1) \times (2\mathbb{N}+1)$

Comme nous avons cinq facteurs pour quatre alternatives, ce bon vieux principe des tiroirs va nous permettre de lever des contradictions très facilement.

- Deux facteurs différents (n+i) et (n+i') vérifient [A1]. Dans ce cas, on sait juste que $(n+i,n+i') \in {}^{2}\mathbb{N} \times {}^{2}\mathbb{N}$. Or $n \notin {}^{2}\mathbb{N}$ puisque sinon nous aurions $(n+1)(n+2)(n+3)(n+4) \in {}^{2}\mathbb{N}$ via $n(n+1)(n+2)(n+3)(n+4) \in {}^{2}\mathbb{N}$, mais ceci ne se peut pas d'après le fait 3.4. De même, $n+4 \notin {}^{2}\mathbb{N}$. Dès lors, nous avons $\{n+i,n+i'\} \subseteq \{n+1,n+2,n+3\}$ qui donne deux carrés parfaits non nuls éloignés de moins de 3, et ceci contredit le fait 3.1.
- Deux facteurs différents (n+i) et (n+i') vérifient [A 2]. Dans ce cas, le couple de facteurs est (n, n+3), ou (n+1, n+4).
 - (1) Supposons d'abord que n et (n+3) vérifient $[\mathbf{A2}]$. Comme $\forall p \in \mathbb{P} - \{3\}$, $v_p(n) \in 2\mathbb{N}$ et $v_p(n+3) \in 2\mathbb{N}$, mais aussi $v_3(n) \in 2\mathbb{N} + 1$ et $v_3(n+3) \in 2\mathbb{N} + 1$, nous avons $n = 3N^2$ et $n+3 = 3M^2$ où $(N,M) \in (\mathbb{N}^*)^2$. Or, ceci donne $3 = 3M^2 - 3N^2$, puis $M^2 - N^2 = 1$ qui contredit le fait 3.1.
 - (2) De façon analogue, on ne peut pas avoir (n+1) et (n+4) vérifiant $[\mathbf{A2}]$.
- Deux facteurs différents (n+i) et (n+i') vérifient **[A3]**. Comme dans le point précédent, c'est impossible car on aurait $2 = 2M^2 - 2N^2$, ou $4 = 2M^2 - 2N^2$. En effet, ici les couples possibles sont (n, n+2), (n, n+4), (n+2, n+4) et $(n+1, n+3)^3$.

^{3.} Rien n'empêche d'avoir n, (n+2) et (n+4) vérifiant tous les trois [A3].

• Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A4}]$.

Ceci donne deux facteurs différents divisibles par 6, mais c'est impossible.

Bien que longue, la preuve suivante est simple à suivre car elle ne fait que dérouler le fil des faits découverts. De plus, cette preuve utilise une technique dont nous reparlerons plus tard lors de l'exposé de la méthode efficace et généraliste.

Une preuve alternative. Supposons que $\pi_n^4 = n(n+1)(n+2)(n+3)(n+4) \in {}^2\mathbb{N}_*$. Posant m=n+2, nous avons $\pi_n^4 = (m-2)(m-1)m(m+1)(m+2) = m(m^2-1)(m^2-4)$ où $m \in \mathbb{N}_{\geq 3}$. On notera dans la suite $u=m^2-1$ et $q=m^2-4$.

Supposons d'abord que $m \in {}^{2}\mathbb{N}_{*}$.

- De $muq \in {}^2\mathbb{N}_*$, nous déduisons $uq \in {}^2\mathbb{N}_*$.
- Comme u q = 3, nous savons que $u \land q \in \{1, 3\}$.
- Si $u \wedge q = 1$, alors $\forall p \in \mathbb{P}$, $v_p(u) \in 2\mathbb{N}$ et $v_p(q) \in 2\mathbb{N}$, d'où $(u,q) \in {}^2\mathbb{N} \times {}^2\mathbb{N}$. Le fait 3.1 impose d'avoir (u,q) = (4,1), d'où $m^2 1 = 4$, mais ceci est impossible ⁴.
- Si $u \wedge q = 3$, alors $\forall p \in \mathbb{P} \{3\}$, $v_p(u) \in 2\mathbb{N}$ et $v_p(q) \in 2\mathbb{N}$, mais aussi $v_3(u) \in 2\mathbb{N} + 1$ et $v_3(q) \in 2\mathbb{N} + 1$. Donc $u = 3U^2$ et $q = 3Q^2$ avec $(U, Q) \in (\mathbb{N}^*)^2$. Or u q = 3 donne $U^2 Q^2 = 1$, et le fait 3.1 nous indique une contradiction.

Supposons maintenant que $m \notin {}^{2}\mathbb{N}_{*}$.

- Nous avons vu ci-dessus que $u \notin {}^2\mathbb{N}$ et $q \notin {}^2\mathbb{N}$. On peut donc écrire $m = \alpha M^2$, $u = \beta U^2$, $q = \gamma Q^2$ où $(M, U, Q) \in \left(\mathbb{N}^*\right)^3$, et $(\alpha, \beta, \gamma) \in \left(\mathbb{N}_{>1}\right)^3$, le dernier triplet étant formé d'entiers sans facteur carré.
- Notons que $\beta \neq \gamma$ car, dans le cas contraire, $3 = u q = \beta (U^2 Q^2)$ fournirait $\beta = 3$ puis $U^2 Q^2 = 1$, et ceci contredirait le fait 3.1.
- Nous avons $m \wedge u = 1$, $m \wedge q \in \{1, 2, 4\}$ et $u \wedge q \in \{1, 3\}$ avec $m \wedge u = m \wedge q = u \wedge q = 1$ impossible car sinon on aurait $(m, u, q) \in {}^{2}\mathbb{N}$ via $muq \in {}^{2}\mathbb{N}$.
- Clairement, $\forall p \in \mathbb{P}_{>3}$, $(v_p(m), v_p(u), v_p(q)) \in (2\mathbb{N})^3$.
- Les points précédents donnent $\{\alpha,\beta,\gamma\}\subseteq\{2,3,6\}$ avec de plus $\beta\neq\gamma$, ainsi que $\alpha\wedge\beta=1$, $\alpha\wedge\gamma\in\{1,2\}$ et $\beta\wedge\gamma\in\{1,3\}$. Notons au passage que $\alpha\wedge\beta=1$ implique $(\alpha,\beta)=(2,3)$, ou $(\alpha,\beta)=(3,2)$. Via le tableau « mécanique » ci-après, nous obtenons que forcément $(\alpha,\beta,\gamma)=(2,3,2)$ ou $(\alpha,\beta,\gamma)=(2,3,6)$. Le plus dur est fait!

α	β	γ	$\alpha \wedge \beta$	$\alpha \wedge \gamma$	$\beta \wedge \gamma$	Statut
2	3	2	1	2	1	✓
2	3	6	1	2	3	√
3	2	3	1	3	1	\boxtimes
3	2	6	1	3	2	\boxtimes

• $(\alpha, \beta, \gamma) = (2, 3, 2)$ nous donne $m = 2M^2$, $m^2 - 1 = 3U^2$ et $m^2 - 4 = 2Q^2$. Comme m est pair, posant m - 2 = 2r et notant s = m + 2, les faits suivants lèvent une contradiction.

^{4.} On peut aussi noter que le fait 3.3 lève une contradiction car nous avons $m \in {}^2\mathbb{N}$ et $u \in {}^2\mathbb{N}$ qui donnent $(m-1)m(m+1) \in {}^2\mathbb{N}$

- $-2rs = 2Q^2$ donne $rs = Q^2$.
- $-s \notin {}^2\mathbb{N}$, car dans le cas contraire, nous aurions $(m-2)(m-1)m(m+1) \in {}^2\mathbb{N}$ via $(m-2)(m-1)m(m+1)(m+2) \in {}^2\mathbb{N}$, mais ceci ne se peut pas d'après le fait 3.4.
- Les deux résultats précédents donnent $(\pi, R, S) \in \mathbb{N}_{>1} \times (\mathbb{N}^*)^2$ tel que $r = \pi R^2$ et $s = \pi S^2$ avec π sans facteur carré.
- $-4 = s 2r = \pi(S^2 2R^2)$ donne alors $\pi = 2$, d'où $m + 2 = 2S^2$.
- Finalement, $m = 2M^2$ et $m + 2 = 2S^2$ contredisent le fait 3.1 via $2 = 2(S^2 M^2)$.
- $(\alpha, \beta, \gamma) = (2, 3, 6)$ nous donne $m = 2M^2$, $m^2 1 = 3U^2$ et $m^2 4 = 6Q^2$. Les faits suivants lèvent une autre contradiction via une technique similaire à celle employée ci-dessus.
 - Travaillons modulo 3. Comme $m=2M^2$, nous avons $m\equiv 0$ ou $m\equiv -1$. Or $m^2-1=3U^2$ donne $m^2\equiv 1$, d'où $m\equiv -1$, puis $3\mid m-2$, et enfin $6\mid m-2$ puisque m est pair.
 - Posant m-2=6r et notant s=m+2, nous avons $6rs=6Q^2$, puis $rs=Q^2$.
 - $-s \notin {}^{2}\mathbb{N}$ reste valable ici.
 - Les deux résultats précédents donnent $(\pi, R, S) \in \mathbb{N}_{>1} \times (\mathbb{N}^*)^2$ tel que $r = \pi R^2$ et $s = \pi S^2$ avec π sans facteur carré.
 - $-4 = s 6r = \pi(S^2 6R^2)$ donne $\pi = 2$, et on conclut comme avant.

4. Une méthode efficace

- 4.1. Prenons du recul. TODO
- 4.2. Avec 1 seul facteur. TODO
- 4.3. Avec 2 facteurs. TODO
- 4.4. Avec 3 facteurs. TODO
- 4.5. Avec 4 facteurs. TODO
- 4.6. Avec 5 facteurs. TODO

5. AFFAIRE À SUIVRE...