Association Rule and its Algorithms

Data Warehousing and Big Data (DWBI-121)

Masters Of Computer Sciences Lincoln University College

Feb 16, 2025 Ashesh Shakya Momik Shrestha

Association Rules

Association Rules are patterns like:

$$A \rightarrow B$$

 Example: {butter, cheese} → {bread} {(Age>25), CS Career} → (Salary > 100K)

 Note that A and B are sets of instantiated (binary) variables

What are association Rules?

Association rule learning is a fundamental technique in data mining that aims to discover interesting relationships, patterns, or associations among a set of items in large datasets.

At a basic level, association rule mining involves the use of Unsupervised machine learning models to analyze data for patterns, called co-occurrences, in a database.

Applications of Association rules

Business Use Case: Stores can use these rules to optimize product placement, create promotions, or recommend products (e.g., "Customers who bought butter and cheese also bought bread").

Technical Use Case: It's a way to uncover hidden patterns in data, which can be applied in recommendation systems, fraud detection, or even healthcare.

Association Rule Learning Process Market Basket Analysis Generate Identify Association Relationships Rules Recommendation Systems

1. Itemset

- St of one or more items. For example: {Milk, Bread, Beer}
- K-itemset
 - An itemset that contains k items
 - For example: {Milk, Bread, Beer, Rice} is a 4-itemset

2. Support Count of an itemset(σ)

- Number of transactions that contain the itemset
- Example: : σ {Milk, Bread, Beer} = 125
 - Means that there are 125 transactions containing all 3 of those productions.

3. Support (s)

- A measure of how frequently an itemset appears in the dataset.

$$\operatorname{Support}(A) = \frac{\operatorname{Number of transactions containing } A}{\operatorname{Total number of transactions}}$$

$$s(\{Milk, Bread, Beer\}) = 125/15000$$

- **Frequent Itemset:** An itemset whose support(s) is greater than a defined threshold.

- 4. Confidence
 - The fraction of times items in Y appear in transaction that contains x

$$\operatorname{Confidence}(A \to B) = \frac{\operatorname{Support}(A \cup B)}{\operatorname{Support}(A)}$$

- Confidence measures how often the rule $A \rightarrow B$ is true.

It is calculated as: Confidence = $\sigma(A \cup B) / \sigma(A)$.

In the example, if

 σ {milk, diapers, beer} = 100

 σ {milk, diapers} = 150,

Then: Confidence = 100/150 = 0.67 = 67%

 This means that 67% of transactions containing milk and diapers also contain beer.

5. Lift

- How much more likely the outcome is to happen when the condition is met, compared to if it were random
 - Lift = 1 -> independent,
 - Lift > 1 dependent,
 - Lift < 1 substitute

$$\operatorname{Lift} = rac{\operatorname{Support}(X \cup Y)}{\operatorname{Support}(X) imes \operatorname{Support}(Y)}.$$

 Measures how much the likelihood of buying Y increases after knowing X is also purchased.

Let's say:

- s(milk) = 0.4 (40% of transactions contain milk).
- s(bread) = 0.3 (30% of transactions contain bread).
- s(milk, bread) = 0.2 (20% of transactions contain both milk and bread).

Now, plug these values into the lift formula:

```
Lift(milk→bread)

= s(milk,bread)/(s(milk)s(bread))

= 0.2/(0.4×0.3)

=1.67

Lift(milk→bread)=1.67
```


Algorithms for Association Rule Mining

1. Apriori Algorithm

- Generates frequent itemsets using a bottom-up approach.
- Works by finding combinations of items that frequently appear together in transactions.
- Key feature: Prunes non-frequent itemsets. (itemsets that have feq < minimum support)

Step 1: Initial Transactions

- Transaction 1: {Bread, Milk, Eggs}
- Transaction 2: {Bread, Diapers, Beer}
- Transaction 3: {Milk, Diapers, Beer}
- Transaction 4: {Bread, Milk, Diapers, Beer}
- Transaction 5: {Bread, Milk, Cola}

Step 2: Count Item Frequencies

- Bread appears in 4/5 transactions
- Milk appears in 4/5 transactions
- Diapers appears in 3/5 transactions
- Beer appears in 3/5 transactions

Step 3: Set Minimum Support (e.g., 60%)

Qualifying Frequent Itemsets:

- Bread (80%)
- Milk (80%)
- Diapers (60%)
- Beer (60%)

Step 4: Generate Rules

- If Bread, then likely Milk
- If Diapers, then likely Beer
- If Milk, then likely Bread

2. FP-Growth Algorithm

- Uses an FP-tree (Frequent Pattern Tree) to compress the dataset.
- Key feature: Efficiently mines patterns by recursively exploring the FP-tree.

Transactions:

- 1. {Bread, Milk, Eggs}
- 2. {Bread, Diapers, Beer}
- 3. {Milk, Diapers, Beer}
- 4. {Bread, Milk, Diapers}
- 5. {Milk, Eggs, Cola}

Item Frequency (Sorted):

- Milk: 4 times
- Bread: 3 times
- Diapers: 3 times
- Beer: 2 times
- Eggs: 2 times

```
Root
   Milk (4)
     — Bread (2)
        └─ Diapers (1)
       Diapers (2)
        └─ Bread (1)
   Bread (3)
    ├─ Diapers (2)
    └─ Milk (2)
   Diapers (3)
    └─ Milk (2)
```

3. Eclat Algorithm

- Generates frequent itemsets using a depth-first search approach.
- Key feature: Computes intersections of TID sets to find frequent itemsets.
- Requires only a single scan of the dataset to convert transactions into vertical format.

Transactions:

- 1. {Milk, Bread, Eggs}
- 2. {Bread, Diapers, Beer}
- 3. {Milk, Diapers, Beer}
- 4. {Bread, Milk, Diapers}
- 5. {Milk, Eggs, Cola}

Intersections:

- {Milk, Bread}: [1, 4]
- {Milk, Diapers}: [3, 4]
- {Bread, Diapers}: [2, 4]

Vertical Data Representation:

- Milk: [1, 3, 4, 5]
- Bread: [1, 2, 4]
- Diapers: [2, 3, 4]
- Beer: [2, 3]
- Eggs: [1, 5]
- Cola: [5]

Thank You