# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

#### ОТЧЕТ

#### по лабораторной работе №2

по дисциплине «Компьютерная графика»

Тема: Формирования различных кривых с использованием ортогонального проектирования на плоскость визуализации (экране дисплея)

| Студент гр. 9308 | Степовик В.С.<br>Соболев М.С. |
|------------------|-------------------------------|
| Преподаватель    | Матвеева И.В.                 |

Санкт-Петербург

## Оглавление

| Цель работы                      | 3 |
|----------------------------------|---|
| Задание                          | 3 |
| Используемые ресурсы             |   |
| Основные теоретические положения | 4 |
| Пример работы программы          | 7 |
| Вывод                            | 9 |

## Цель работы

Исследовать формирования различных кривых с использованием ортогонального проектирования на плоскость визуализации.

## Задание

Сформировать на плоскости кривую Безье на основе задающей ломаной, определяемой 3 и большим количеством точек. Обеспечить редактирование координат точек задающей ломаной с перерисовкой сплайна Безье.

#### Используемые ресурсы

Для выполнения лабораторной работы использовался язык C++ и фреймворк Qt для визуализации.

#### Основные теоретические положения

Кривая Безье — это параметрическая кривая, определяемая набором точек, известных как контрольные точки. Она широко используется в компьютерной графике и смежных областях.

#### Выделим свойства кривой Безье:

- 1. непрерывность заполнения сегмента между начальной и конечной точками;
- 2. кривая всегда располагается внутри фигуры, образованной линиями, соединяющими контрольные точки:
- 3. при наличии только двух контрольных точек сегмент представляет собой прямую линию;
- 4. прямая линия образуется при коллинеарном (на одной прямой) размещении управляющих точек;
- 5. кривая Безье симметрична, то есть обмен местами между начальной и конечной точками (изменение направления траектории) не влияет на форму кривой;
- 6. масштабирование и изменение пропорций кривой Безье не нарушает её стабильности, поскольку с математической точки зрения она «аффинно-инвариантна»;
- 7. изменение координат хотя бы одной из точек ведет к изменению формы всей кривой Безье;
- 8. любой частичный отрезок кривой Безье также является кривой Безье;
- 9. степень (порядок) кривой всегда на одну ступень меньше числа контрольных точек. Например, при трёх контрольных точках форма кривой парабола, так как парабола кривая 2-го порядка;
- 10. окружность не может быть описана параметрическим уравнением кривой Безье.



Общее определение точки на кривой Безье выглядит следующим образом:

$$\mathbf{B}(t) = \sum_{i=0}^n inom{n}{i} (1-t)^{n-i} t^i \mathbf{P}_i$$

где n - степень кривой и  $\binom{n}{i}$  биномиальные коэффициенты. Мы также можем представить это, как показано ниже.

$$\binom{n}{i} = \frac{n!}{i!(n-i)!}$$

Мы можем упростить основное уравнение

$$\mathbf{B}(t) = \sum_{i=0}^n b_{i,n}(t) \mathbf{P}_i, ~~ 0 \leq t \leq 1$$

И получим базисные многочлены Бернштейна степени п.

$$b_{i,n}(t)=inom{n}{i}t^i(1-t)^{n-i}, \quad i=0,\dots,n$$

Данное уравнение известно как полином Бернштейна, который представляет собой линейную комбинацию базисных полиномов.

#### Ход работы

Нам потребуется функция, которая возвращает вектор интерполированных точек Безье на всём диапазоне параметра t, где t может быть между 0 и 1 (оба включительно).

Входными данными для функции является список контрольных точек.

Разберем следующую функцию:

$$\mathbf{B}(t) = \sum_{i=0}^{n} b_{i,n}(t) \mathbf{P}_{i}, \quad 0 \leq t \leq 1$$

$$b_{i,n}(t)=inom{n}{i}t^i(1-t)^{n-i}, \quad i=0,\ldots,n$$

$$\binom{n}{i} = \frac{n!}{i!(n-i)!}$$

Реализация:

Из формул выше следует, что для каждой точки кривой Безье, зависящей от параметра t, справедлив представленный ниже алгоритм(код). В нём последовательно производится нахождение полинома Бернштейна для каждой контрольной точки, умножение координат данной точки на полином, с последующим и добавлением результата к результирующей координате.

```
void Bizve::countBizvePoints(OVector<OPoint> points) {
    float t = 1.0f;
    double x,y;
    int N = points.size() - 1;
    while(!(t < -0.0f)){
        x = 0;
        y = 0;
        double bernPoly = 0;
        for (int k = N; k >= 0; --k) {
            double C = ((double) factorial(N) / (double) (factorial(k) *factorial(N-
k)));
            double p t = powr(t, k);
            double p mt = powr((1.0-t), N-k);
            bernPoly = C * p t * p mt;
            if(t==1){
                x = points[N].x();
                y = points[N].y();
            else if (t==0) {
                x = points[0].x();
                y = points[0].y();
            }
            else{
             x += points[k].x() * bernPoly;
             y += points[k].y() * bernPoly;
            } ;
    // qDebug()<< "t"<<t <<"koef" <<C << "(t^n)"<<p t << "(1-t)"<<p mt <<
"poly" << bernPoly << "slogaemoe" << QPoint(points[k].x() *
bernPoly,points[k].y() * bernPoly);
        qDebug() << QPointF(x,y);</pre>
        bizye points.push back(QPointF(x+5,y+5));
        t-=0.10f;
        if(t>0.098f \&\& t<0.1f) t = 0.1f;//нюансы си
    }
}
```

# Пример работы программы

Пример работы программы представлен на рисунках ниже:



Рисунок 1. Начальное окно

Кнопка «ДОБАВИТЬ ТОЧКУ» добавляет точку на сцену.

Кнопка «ПОСТРОИТЬ» строит кривую Безье по указанным точкам и соединяет их линиями.

Кнопка «СБРОС» убирает со сцены все элементы графики.



Рисунок 2. Кубическая кривая



Рисунок 3. Кубическая кривая



Рисунок 4. Кривая 4го порядка.

## Вывод

При выполнении лабораторной работы были изучены формирования различных кривых с использованием ортогонального проектирования на плоскость визуализации. В частности, исследована кривая Безье и ее построение на плоскости.