Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Grzegorz Szpak

Nr albumu: 319400

Klasyfikacja wielowymiarowych szeregów czasowych przy ewoluujących pojęciach

Praca magisterska na kierunku INFORMATYKA

> Praca wykonana pod kierunkiem **dra Andrzeja Janusza** Instytut Informatyki

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora (autorów) pracy

Streszczenie

W pracy przedstawiono sposoby wydajnej klasyfikacji szeregów czasowych dla danych pochodzących ze źródła o zmiennym rozkładzie. Opisane zostały metody ekstrakcji cech z wielowymiarowego szeregu czasowego. Autor opisuje także metody wyboru przestrzeni atrybutów odpornej na zmiany rozkładu źródła. Przedstawia również wybrane algorytmy adaptacji dziedziny opisywane w literaturze.

Słowa kluczowe

Eksploracja danych, wielowymiarowy szereg czasowy, ewoluujące pojęcia, dopasowanie dziedziny, ekstrakcja cech, selekcja cech, lasy losowe, regresja logistyczna, maszyna wektorów wspierających

Dziedzina pracy (kody wg programu Socrates-Erasmus)

11.3 Informatyka

Klasyfikacja tematyczna

I. Computing MethodologiesI.2 Artificial IntelligenceI.2.6 Learning

Tytuł pracy w języku angielskim

Classification of multivariate time series in the presence of concept drift

Spis treści

W	prowadzenie	5
1.	Podstawowe pojęcia	7
	1.1. Uczenie z nadzorem a concept drift	7
	1.2. Formalizacja problemu	8
	1.2.1. Paradygmaty uczenia się	8
	1.2.2. Ewolucja pojęć a problem przeuczenia	10
		11
2.	Problem klasyfikacji danych z sensorów inercyjnych	13
	2.1. Studium przypadku	13
	2.1.1. Opis zbioru danych	13
		15
		15
		15
	2.2.2. Lasy losowe	17
3.	Ekstrakcja cech z szeregów czasowych	19
	v	19
		19
		20
	1 0 1	23
		27
4.	Redukcja concept drift poprzez selekcję cech	29
		29
		31
		33
		33
	v 1 v	40
	3 0 0 0 0 0 0	41
		42^{-1}
	1 5 0	42
		45
5.	Inne metody adaptacji dziedziny	47
٠.	<i>v</i> 1 <i>v</i>	$\frac{11}{47}$
		47
		48
	o.i.z. imporymenty i winoski	-10

5.2.	Powięl	ększenie przestrzeni cech		 	48
	5.2.1.	Opis algorytmu		 	48
	5.2.2.	Eksperymenty i wnioski		 	49
6. Pod	lsumow	wanie		 	51
Spis ry	sunkóv	ów	•	 	53
Spis ta	bel .		•	 	55
Biblios	rafia .			 	57

Wprowadzenie

Jedną z głównych trudności, z jaką zmierzyć się muszą twórcy algorytmów uczenia maszynowego, jest z pewnością ogromna różnorodność danych. Nawet w obrębie tego samego zagadnienia natrafić można na wielkie zróżnicowanie badanych obiektów. Rozpatrzmy na przykład problem wykrywania niechcianej poczty, w którym reguły uzyskane przez tradycyjne algorytmy muszą być dostosowywane do indywidualnych preferencji danego użytkownika. Innym przykładem może być rozpoznawanie obrazów - badane obiekty zależą od wielu czynników, takich jak oświetlenie, tło, czy rozdzielczość. Problem różnorodności danych jest również wyraźnie widoczny w dziedzinie klasyfikacji tekstu. Istotnie, w zależności od tematyki tekstu czy źródła jego pochodzenia ten sam wyraz może przyjmować wiele znaczeń.

Z tego powodu stosunkowo nowym obszarem badań w dziedzinie uczenia maszynowego stały się algorytmy tak zwanej adaptacji dziedziny, czyli konstrukcji takich klasyfikatorów, które w obrębie określonego zadania będą zachowywać wydajność dla danych pochodzących z różnych źródeł. Zdecydowana większość opracowanych dotychczas metod dotyczy problemów związanych z rozpoznawaniem tekstu ([Blitzer et al., 2006], [III, 2009], [Xia et al., 2014], [Blitzer et al., 2007]) oraz klasyfikacją obrazów ([Mirrashed and Rastegari, 2013], [Kulis et al., 2011]).

Niewiele jest natomiast algorytmów dotykających zagadnienia adaptacji dziedziny dla zadania klasyfikacji szeregów czasowych, którego to zadania problem różnorodności źródeł danych także dotyczy. Wystarczy wziąć pod uwagę takie zadania jak rozpoznawanie mowy, badanie fal mózgowych czy wykrywanie anomalii w odczytach elektrokardiografu - w każdym z nich interpretacja wyników mocno zależy od badanej osoby. W niniejszej pracy autor postara się uzupełnić tę lukę, prezentując sposoby ekstrakcji cech z szeregów czasowych oraz opisując metodę wybierania podprzestrzeni cech odpornych na zmianę źródła danych. Autorskie podejście zostanie również skonfrontowane z wybranymi algorytmami adaptacji dziedziny.

Rozdział 1

Podstawowe pojęcia

1.1. Uczenie z nadzorem a concept drift

Rozważmy następujący problem: na podstawie zbioru informacji personalnych (takich jak wiek, dochody, stan cywilny) napisać algorytm, który będzie umiał z dużą dokładnością określić ryzyko kredytowe danej osoby i na tej podstawie podjąć decyzję o udzieleniu kredytu. Takie zadanie w teorii uczenia maszynowego nazywa się problemem uczenia z nadzorem (ang. supervised learning). Dany zbiór informacji nazywa się zbiorem treningowym. Zbiór decyzji (w tym przypadku dwuelementowy) nazywa się z kolei klasami bądź etykietami. Mówiąc bardziej formalnie, niech dane beda:

- \bullet zbiór X przykładów
- zbiór Y decyzji
- funkcja $f: X \to Y$
- Para zbiorów $(X_{train} \subseteq X, Y_{train} \subseteq Y)$ instancji x_1, x_2, \ldots, x_n oraz odpowiadających im decyzji $f(x_1), f(x_2), \ldots, f(x_n)$, zwana zbiorem treningowym

Zadanie uczenia z nadzorem polega na wyznaczeniu na podstawie zbioru treningowego oraz przy użyciu pewnego algorytmu uczącego (klasyfikatora) takiej funkcji $c: X \to Y$ (zwanej modelem), która będzie dobrą aproksymacją funkcji f. Jakość modelu c określa się, porównując jego wartości dla elementów skończonego zbioru testowego X_{test} z rzeczywistymi wartościami funkcji f dla tych elementów. Istotne jest przy tym założenie, że elementy zbiorów X_{train} oraz X_{test} losowane są ze zbioru X według tego samego rozkładu prawdopodobieństwa D. Schemat rozwiązywania problemu uczenia z nadzorem przedstawia rys. 1.1.

Na przestrzeni ostatnich dziesięcioleci opracowanych zostało wiele algorytmów uczących wykazujących się dużą skutecznością w przeróżnych dziedzinach: od rozpoznawania obrazów, przez klasyfikację tekstów, rekomendację produktów, wykrywanie niechcianej poczty, po przewidywanie zmian na giełdzie czy diagnostykę medyczną.

Sytuacja zmienia się diametralnie, gdy pominiemy założenie o równości rozkładów dla zbiorów treningowych i testowych. Wiele klasyfikatorów cierpi wtedy na znaczny spadek jakości. Problem ten nazywa się ewolucją pojęć (ang. concept drift) lub dopasowaniem dziedziny (ang. domain adaptation). Jest on szczególnie widoczny w zadaniach przetwarzania języka naturalnego (ang. natural language processing, w skrócie NLP). Rozpatrzmy dla przykładu problem rozpoznawania nazw własnych (ang. named entity recognition). Załóżmy, że klasyfikator uczony jest na podstawie danych encyklopedycznych oraz testowany na danych

Rysunek 1.1: Schemat uczenia z nadzorem

pochodzących z komunikatora internetowego. Obydwa zbiory, jakkolwiek powiązane, różnią się w znaczący sposób - przykładowo, szukanie wielkich liter może być bardzo pomocne w pierwszej dziedzinie, a nieść znacznie mniej informacji w wiadomościach z komunikatora.

Stąd też właśnie w dziedzinie NLP powstało najwięcej metod mających rozwiązać problem ewoluujących pojęć. Przykładami takich metod są algorytm *structural correspondence learning* opisywany w [Blitzer et al., 2006] czy metoda odpowiedniego dopasowania przestrzeni parametrów zaproponowana przez Daumé w [III, 2009].

Problem domain adaptation nie jest jednak często poruszany w przypadku klasyfikacji szeregów czasowych. W poniższej pracy autor przedstawia sposoby radzenia sobie z adaptacją dziedziny podczas klasyfikacji szeregów czasowych oraz wykonuje studium przypadku na wybranym zbiorze danych.

1.2. Formalizacja problemu

1.2.1. Paradygmaty uczenia się

Przyjmijmy definicje jak na początku sekcji 1.1. W zależności od dostępności zbiorów Y_{train} , X_{test} , Y_{test} , można (za [Arnold et al., 2007]) zdefiniować inne paradygmaty uczenia.

I tak, jeśli zbiór Y_{train} jest nieznany w momencie tworzenia modelu, mamy do czynienia z uczeniem bez nadzoru (ang. unsupervised learning).

Gdy zbiór X_{test} nie jest znany podczas uczenia, mowa o uczeniu indukcyjnym (ang. inductive learning). W przeciwnym razie takie uczenie nazywa się uczeniem transdukcyjnym (ang. transductive learning).

W powyższym przykładach istotne jest założenie, iż zbiory X_{train} , X_{test} pochodzą z tego samego rozkładu D. Odwrotna sytuacja rozpatrywana jest w paradygmacie uczenia z przeniesieniem wiedzy (ang. transfer learning). Przyjmuje się w nim, że dane sa dwa różne roz-

kłady D^{source} i D^{target} . Model wyuczony na danych treningowych X^{source}_{train} , Y^{source}_{train} z rozkładu D^{source} wykorzystywany jest do klasyfikacji zbioru testowego X^{target}_{test} , Y^{target}_{test} pochodzących z rozkładu D^{target} . W poniższej pracy autor skupia się na problemie dopasowania dziedziny, który zakłada, że zbiór dostępnych klas Y jest ten sam dla D^{source} i D^{target} . Przeciwieństwem dopasowania dziedziny jest zadanie uczenia wielozadaniowego (ang. multi-task learning, więcej między innymi w [Ando and Zhang, 2005]), gdzie zbiory X_{train} , X_{test} pochodzą z tego samego rozkładu, natomiast zbiory Y_{train} , Y_{test} są różne.

Powyższe rozważania podsumowuje tabela 1.1.

Tabela 1.1: Paradygmaty uczenia w teorii uczenia maszynowego. We wszystkich przypadkach zakładamy, że zbiór X_{train} jest dostępny podczas uczenia, podczas gdy zbiór Y_{test} nie jest znany. Dane treningowe pochodzą z rozkładu D^{source} .

Paradygmat	Y_{train} dostępny?	X_{test} dostępny?	Rozkład danych testowych
Indukcyjne uczenie bez nadzoru	Nie	Nie	D^{source}
Transdukcyjne uczenie bez nadzoru	Nie	Tak	D^{source}
Indukcyjne uczenie z nadzorem	Tak	Nie	D^{source}
Transdukcyjne uczenie z nadzorem	Tak	Tak	D^{source}
Indukcyjne uczenie bez nadzoru z przeniesieniem wiedzy	Nie	Nie	D^{target}
Transdukcyjne uczenie bez nadzoru z przeniesieniem wiedzy	Nie	Tak	D^{target}
Indukcyjne uczenie z nadzorem z przeniesieniem wiedzy	Tak	Nie	D^{target}
Transdukcyjne uczenie z nadzorem z przeniesieniem wiedzy	Tak	Tak	D^{target}

W poniższej pracy autor skupi się na problemie uczenia z nadzorem z przeniesieniem wiedzy. Przedstawione zostaną algorytmy, które wykorzystują dostępny zbiór X_{test} do znalezienia reprezentacji odpornej na zmiany rozkładu, co skutkować będzie zwiększoną jakością klasyfikacji w stosunku do standardowego podejścia opisanego w 1.1.

Warto jednak zwrócić uwagę na fakt, że bardziej powszechna jest sytuacja, gdy zbiór testowy nie jest znany podczas uczenia - czyli dużo częściej mamy do czynienia z podproblemem uczenia indukcyjnego. Istotnie, w wielu sytuacjach dziedzin, z których mogą pochodzić dane, jest tak wiele, że ciężko byłoby zawrzeć w X_{test} reprezentatywną próbkę dla każdej z nich. Przykładem będzie zbiór przedstawiony w rozdziale 2. Z tego powodu autor proponuje w rozdziale 4. metodę selekcji cech niewrażliwych na zmianę dziedziny niewymagającą posiadania zbioru testowego podczas uczenia.

1.2.2. Ewolucja pojęć a problem przeuczenia

Mówiąc o problemie ewoluujących pojęć, należy wspomnieć o zagadnieniu przeuczenia (ang. overfitting). Polega on na zbudowaniu modelu nadmiernie dopasowanego do danych treningowych, co skutkuje słabą jego jakością (rys. 1.2).

Rysunek 1.2: Przykład modelu przeuczonego (zielona linia) i zregularyzowanego (czarna linia)

Obydwa pojęcia mogą być mylone przy niewłaściwym sposobie walidacji modelu. Jeśli jakość klasyfikacji sprawdzana jest wyłącznie na zbiorach treningowym i testowym, zarówno concept drift, jak i overfitting dają podobne objawy - wysoki wynik na zbiorze treningowym oraz niski na zbiorze testowym. W przypadku przeuczenia jest to spowodowane nadmiernym dopasowaniem modelu do danych treningowych i jego niską zdolnością do uogólniania. Jeśli mamy do czynienia z ewoluującymi pojęciami, słaba jakość modelu jest spowodowana innym rozkładem dla zbioru testowego.

Tabela 1.2: Concept drift a overfitting - obniżony wynik modelu 1. przy walidacji krzyżowej świadczy o przeuczeniu, a nie występowaniu ewoluujących pojęć. W drugim przypadku model mimo dobrej umiejętności klasyfikacji elementów pochodzących z rozkładu D^{source} , cierpi na spadek jakości przy ewaluacji na zbiorze pochodzącym z rozkładu D^{target} .

	Wynik na X_{train}	Wynik CV	Wynik na X_{test}
Model 1	0.98	0.73	0.68
Model 2	0.97	0.92	0.76

W rozróżnieniu obydwu sytuacji pomagać może zastosowanie walidacji krzyżowej (ang. cross-validation) na zbiorze treningowym. Walidacja krzyżowa polega na podziale zbioru treningowego na n równolicznych części. Następnie budowane jest n modeli, przy czym n-1 części tworzy zbiór treningowy, natomiast pozostała część - zbiór testowy. Ostateczny wynik jest średnim wynikiem powstałych n modeli.

Nietrudno zauważyć, że w przypadku $concept\ drift$ nie powinno się zauważyć znacznego spadku jakości modelu przy wykonaniu walidacji krzyżowej na X_{train} - w tym przypadku zbiór walidacyjny pochodzi z tej samej dziedziny co treningowy. Inaczej będzie w przypadku przeuczenia - tu wynik walidacji krzyżowej będzie wyraźnie niższy niż wynik klasyfikacji na samym zbiorze treningowym (tabela 1.2).

1.3. Układ pracy

Celem niniejszej pracy jest zbudowanie wydajnego klasyfikatora dla zbioru danych złożonego z wielowymiarowych szeregów czasowych, w którym obecny jest problem ewolucji pojęć między zbiorem treningowym a testowym.

W rozdziale 2. przedstawiony jest badany zbiór danych. Autor opisuje również pokrótce klasyfikatory wykorzystane podczas badań oraz daje przykład obecności concept drift w analizowanym zbiorze. Rozdział 3. prezentuje proces ekstrakcji cech z szeregów czasowych. W rozdziale 4. autor opisuje metodę wyboru takiej podprzestrzeni cech, która będzie odporna na efekt ewolucji pojęć i jednocześnie umożliwi wydajną klasyfikację zadanych szeregów. Przedstawione są najbardziej znane miary jakości atrybutów jak również dwa algorytmy wykrywania zmiany dziedziny. Autor prezentuje także wyniki szeregu eksperymentów mających sprawdzić wydajność opisywanej metody w praktyce. Rozdział 5. zawiera opis dwóch innych algorytmów adaptacji dziedziny - uczenia iteracyjnego oraz powiększania przestrzeni cech. W rozdziałe 6. znajduje się podsumowanie całej pracy oraz wnioski z niej płynące.

Rozdział 2

Problem klasyfikacji danych z sensorów inercyjnych

Jednym z podproblemów zagadnienia klasyfikacji szeregów czasowych jest klasyfikacja serii odczytów z sensorów inercyjnych¹. Jako przykład wykorzystania sensorów inercyjnych służyć może projekt ICRA², którego celem jest stworzenie systemu wspomagania decyzji dowódców straży podczas działań ratowniczo-gaśniczych. Na potrzeby projektu Uniwersytet Warszawski oraz Szkoła Główna Służby Pożarniczej zorganizowały konkurs AAIA'15 Data Mining Competition: Tagging Firefighter Activities at a Fire Scene³. W niniejszej pracy autor dokonuje studium przypadku na podstawie zbioru danych udostępnionych w konkursie. Szczegółowe podsumowanie konkursu (między innymi opis procedury zbierania danych, miary użytej do ewaluacji wyników oraz rezultatów uzyskanych przez uczestników) znaleźć można w [Meina et al., 2015].

2.1. Studium przypadku

2.1.1. Opis zbioru danych

Rysunek 2.1: Rozmieszczenie czujników na ciele strażaka

 $^{^1}$ Nawigacja inercyjna polega na pomiarze przyspieszeń działających na obiekt oraz prędkości kątowych w celu określenia jego orientacji i położenia

²http://icra-project.org/

³https://knowledgepit.fedcsis.org/contest/view.php?id=106

Na potrzeby konkursu zebrano odczyty pochodzące z "inteligentnego kombinezonu", który monitoruje ruchy oraz funkcje życiowe strażaka. W skład kombinezonu wchodziło po siedem akcelerometrów i żyroskopów umieszczonych na: tułowiu, ramionach, dłoniach i nogach (rys. 2.1). Każda instancja w zbiorze danych składała się z zebranych w krótkich odcinkach czasu (około 1.8 s) odczytów z zamontowanych sensorów. Dla każdego akcelerometru oraz żyroskopu zebrano po 400 odczytów wzdłuż osi x, y, z, wraz ze względnym czasem wykonania odczytu. Dla każdego wiersza daje to 42-wymiarowy szereg czasowy o długości 400. Jak łatwo wywnioskować, średni odstęp między kolejnymi odczytami wynosił około 4.5 ms. Zestaw atrybutów uzupełniały dodatkowo 42 agregaty ze wskazań urządzeń monitorujących funkcje życiowe strażaka (takie jak EKG, częstotliwość oddechu, temperatura skóry). Nieprzetworzone dane zawierały więc 400*43+42=17242 atrybuty. Zarówno zbiór treningowy, jak i testowy składały się z 20000 przykładów. Bardzo istotny dla dla analizy tego zbioru danych okazał się fakt, że dane treningowe i testowe pochodziły od różnych czteroosobowych grup strażaków.

Zadaniem uczestników konkursu było przypisanie każdej instancji w zbiorze postury strażaka w danym momencie oraz wykonywanej przez niego czynności. Zastosowane algorytmy miały pomóc w stworzeniu systemu monitorującego bezpieczeństwo strażaka podczas akcji.

Jako że problem klasyfikacji wieloetykietowej nie jest tematem niniejszej pracy, autor postanowił skupić się na problemie przewidywania czynności wykonywanej przez strażaka. Zbiór klas liczył więc 16 elementów. Postawiony problem utrudniał dodatkowo fakt, że klasy były wysoce niezbalansowane - najczęstsza klasa (manipulating) wystąpiła w zbiorze treningowym 6349 razy, podczas gdy najrzadsza (signal_hose_pullback) - jedynie 98 razy. Rozkład klas przedstawia rys. 2.2.

Rysunek 2.2: Rozkład klas w zbiorze treningowym

2.1.2. Ewaluacja jakości klasyfikatora

Standardową miarą jakości jest precyzja (ang. accuracy):

$$ACC(c) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}[c(\mathbf{x}_i) = y_i]$$

W opisywanym konkursie zastosowano modyfikację tej miary zwaną balanced accuracy, zdefiniowaną następująco:

$$ACC_i(c) = \frac{|j: c(\mathbf{x}_j) = y_j = i|}{|j: y_j = i|}$$
 (2.1)

$$BAC(c) = \frac{\sum_{i=1}^{l} ACC_i(c)}{l}$$
(2.2)

Nietrudno zauważyć, że miara BAC jest bardziej wrażliwa na błędną klasyfikację rzadkich klas niż standardowa miara ACC.

Jak wspomniano wcześniej, zadaniem w konkursie była klasyfikacja zarówno postury, jak i czynności strażaka. Ostateczny wynik w zawodach obliczany był przez:

$$score(c_p, c_a) = \frac{BAC(c_p) + 2 \cdot BAC(c_a)}{3}, \tag{2.3}$$

gdzie c_p był modelem dla postury, a c_a - modelem dla czynności. Ponieważ autor niniejszej pracy analizuje wyłącznie czynności wykonywane przez strażaków, prezentowanych wyników nie można bezpośrednio porównywać z rezultatami uzyskanymi przez uczestników konkursu.

2.2. Opis użytych klasyfikatorów

W kolejnych rozdziałach przedstawione zostaną metody mające na celu zwiększenie jakości modelu budowanego na danych, w których obecny jest problem ewoluujących pojęć. Użyteczność tych metod sprawdzana będzie dla trzech różnych algorytmów uczenia: klasyfikatorze opartym na regresji logistycznej, maszynie wektorów nośnych (ang. *support vector machine*, SVM) oraz drzewach decyzyjnych.

2.2.1. Klasyfikator liniowy

Regresja logistyczna i maszyna wektorów wspierających należą do grupy klasyfikatorów liniowych. Przyjmijmy oznaczenia jak w sekcji 1.1. Załóżmy, że zbiór klas Y jest dwuelementowy - dla uproszczenia niech $Y = \{+1, -1\}$. Niech dalej $y \in Y$ będzie decyzją dla elementu $\mathbf{x} = (x_1, x_2, \dots, x_m) \in X \subseteq \mathbb{R}^m$. Klasyfikatorem liniowym nazywamy m-1 - wymiarową hiperpłaszczyznę rozdzielającą punkty z X. Niech $\mathbf{w} = (w_1, w_2, \dots, w_m) \in \mathbb{R}^m$ będzie wektorem współczynników tej hiperpłaszczyzny. Uczenie klasyfikatora liniowego zwykle polega na minimalizacji wartości pewnej funkcji błędu $l(\mathbf{w})$ na zbiorze treningowym.

Klasyfikacja oparta na regresji logistycznej (logit)

Niech

$$g(z) = \frac{1}{1 + e^{-z}}$$

zwana będzie funkcją logistyczną. Jej wykres przedstawia rysunek 2.3.

Rysunek 2.3: Wykres funkcji logistycznej

Funkcja g jest oczywiście ciągła. Jednocześnie $\lim_{z\to-\inf} g(z)=0$ oraz $\lim_{z\to\inf} g(z)=1$. Dzięki tym właściwościom nadaje się ona do modelowania prawdopodobieństwa danego zjawiska. Klasyfikator bazujący na regresji logistycznej modeluje prawdopodobieństwo należenia do klasy pozytywnej przez funkcję:

$$p_w(\mathbf{x}) = g(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^{\mathsf{T}}\mathbf{x}}},$$

przy czym klasyfikacja dokonywana jest przez:

$$c_w(\mathbf{x}) = 1 \iff p_w(\mathbf{x}) \geqslant \frac{1}{2}.$$

Uczenie klasyfikatora opartego na regresji logistycznej polega więc na znalezieniu hiperpłaszczyzny **w**, która minimalizuje następującą funkcję straty:

$$l_{log_loss}(\mathbf{w}) = \sum_{i=-i}^{n} log(1 + e^{-y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i}).$$

Maszyna wektorów nośnych

Innym typem klasyfikatora liniowego jest (ang. support vector machine, SVM). Uczenie SVM polega na znalezieniu hiperpłaszczyzny o największej odległości od punktów obydwu klas (rys. 2.4) - z tego powodu SVM nazywany jest klasyfikatorem maksymalnego marginesu (ang. max margin classifier).

Założenie o liniowej separowalności klas jest jednak rzadko spełnione. Uczenie klasyfikatora SVM polega więc na znalezieniu hiperpłaszczyzny \mathbf{w} , która minimalizuje funkcję straty daną jako

$$l_{hinge_loss}(\mathbf{w}) = \sum_{i=1}^{n} max(0, 1 - y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i).$$

Klasyfikator "jeden przeciwko wszystkim"

Jak wspomniano wcześniej, zarówno regresja logistyczna, jak i SVM są klasyfikatorami binarnymi - zakładają, że zbiór klas Y jest dwuelementowy. Aby użyć ich do klasyfikacji danego zbioru, potrzebna była metoda klasyfikacji wieloklasowej. Zastosowano podejście zwane "jeden przeciw wszystkim" (ang. one-vs.-all, OvA, badź one-vs.-rest, OvR).

Rysunek 2.4: Płaszczyzna H_1 nie rozdziela klas. Płaszczyzna H_2 rozdziela je, ale z niewielkim marginesem. Płaszczyzna H_3 rozdziela je z maksymalnym marginesem.

Niech $Y = \{1, 2, ..., k\}$. Klasyfikacja OvA polega na nauczeniu k binarnych klasyfikatorów $c_1, c_2, ..., c_k$. Klasa dla j - tego klasyfikatora zdefiniowana jest następująco:

$$y_i^j = 1 \iff y_i = j$$

Ostatecznie elementowi x przypisywana jest klasa, której klasyfikator daje najmniejszą wartość funkcji błędu:

$$c(\mathbf{x}) = arg \min_{j \in 1...k} l_j(\mathbf{x})$$

2.2.2. Lasy losowe

Innym typem klasyfikatora jest las losowy. Jest to klasyfikator wykorzystujący prostszy klasyfikator - drzewo decyzyjne.

Rysunek 2.5: Przykładowe drzewo decyzyjne

Drzewo decyzyjne to etykietowane drzewo, którego każdy węzeł odpowiada przeprowadzeniu pewnego testu na wartościach atrybutów. Z węzła wewnętrznego wychodzi tyle gałęzi, ile jest możliwych wyników testu odpowiadającego temu węzłowi. Każdy liść zawiera decyzję o klasyfikacji obiektu. Przykładowe drzewo decyzyjne przedstawia rys. 2.5.

Uczenie lasu losowego polega na uczeniu określonej liczby drzew decyzyjnych - każdego na losowej podprzestrzeni atrybutów. Finalna klasa wyznaczana jest na podstawie wyników pojedynczych drzew. Lasy losowe, podobnie jak drzewa decyzyjne, wspierają klasyfikację wieloklasową. Pełen algorytm uczenia lasów losowych opisany jest w [Breiman, 2001].

Rozdział 3

Ekstrakcja cech z szeregów czasowych

3.1. Metody klasyfikacji szeregów czasowych

Szeregi czasowe obecne są w wielu różnych dziedzinach życia - od medycyny, przez finanse, wyszukiwanie informacji, po przetwarzanie sygnałów oraz prognozę pogody. W ostatnich latach opisanych zostało wiele metod do wykrywania wzorców czasowych w takich zadaniach jak: określanie stanu zdrowia pacjenta na podstawie odczytów elektrokardiografu, przewidywanie wahań na giełdzie, analiza mowy czy prognozowanie temperatur.

Wśród metod zaproponowanych do klasyfikacji szeregów czasowych znaleźć można większość najbardziej znanych algorytmów uczenia się: metodę k-najbliższych sąsiadów (ang. knearest neighbours, w skrócie k-NN - więcej w [Chaovalitwongse et al., 2007]), sieci neuronowe ([Ravikumar and Devi, 2014]) czy ukryty model Markowa ([Kim and Smyth, 2006]). Wciąż jednak najszerzej używane (i uznawane za najbardziej skuteczne) są warianty algorytmu k-NN z użyciem różnych metryk, takich jak odległość euklidesowa czy Dynamic Time Warping (w skrócie DTW) - więcej o DTW przeczytać można między innymi w [Keogh and Ratanamahatana, 2004].

W poniższej pracy zastosowano nieco odmienne podejście. Autor koncentruje się na ekstrakcji cech opartych na statystycznych własnościach szeregów. Cechy te wyliczane są z różnych reprezentacji danego szeregu. Następnie na tak przekształconych danych uczone były klasyfikatory opisane w sekcji 2.2. Jak pokazują niektóre badania (przykładowo - [Ravikumar and Devi, 2014], [Gay et al., 2013]), takie podejście daje często lepsze wyniki niż

algorytmy bazujące na podobieństwie szeregów. Opisy innych metod ekstrakcji cech znaleźć można między innymi w [Grzegorowski, 2016] lub [Wiens et al., 2012].

3.2. Proces ekstrakcji cech

Zacznijmy od formalnego zdefiniowania szeregu czasowego.

Definicja 3.2.1 Jednowymiarowym szeregiem czasowym T_n nazwiemy skończony ciąg par

$$(t_1, x_1), (t_2, x_2), \dots, (t_n, x_n)$$

o długości n, gdzie x_k jest wartością szeregu w czasie t_k .

Proces ekstrakcji cech dla szeregu czasowego przebiegał następująco:

- 1. Wyznaczenie pochodnych reprezentacji szeregu czasowego (więcej w sekcji 3.2.1)
- 2. Wyliczenie statystyk z wyznaczonych reprezentacji
- 3. Dodanie pozostałych cech (bazujących między innymi na korelacji między szeregami)

W kolejnych sekcjach zostanie omówiony każdy z powyższych kroków.

3.2.1. Reprezentacje pochodne szeregu czasowego

Wiele przekształceń i reprezentacji szeregów czasowych zostało opisanych w literaturze - ich szerszy przegląd można znaleźć między innymi w [Fulcher and Jones, 2014]. Celem takich przekształceń jest wykrycie wzorców charakterystycznych dla klas wynikowych, które nie są wykrywalne przy użyciu podstawowej reprezentacji T_n .

[Gay et al., 2013] podaje przykład, kiedy to badanie drugiej pochodnej szeregu po czasie znacznie zwiększa jakość klasyfikacji (rys. 3.1). Działając na oryginalnych danych, trudno jest rozróżnić dwie klasy. Policzenie drugiej pochodnej sprawia, że klasyfikacja staje się niemalże trywialna.

Rysunek 3.1: Po lewej widać oryginalny zbiór danych, natomiast po prawej - drugą pochodną po czasie

Autor, poza reprezentacją oryginalną T_n , zdecydował się wykorzystać w procesie ekstrakcji cech cztery inne reprezentacje:

- pochodną szeregu po czasie der_{T_n}
- całkę szeregu po czasie int_{T_n}
- \bullet dyskretną transformatę Fouriera $fourier_{T_n}$
- dyskretną transformatę falkową Haara $wavelet_{T_n}$

Pochodna szeregu po czasie

Dyskretna pochodna szeregu $T_n = (t_1, x_1), (t_2, x_2), \dots, (t_n, x_n)$ po czasie wyliczana była w sposób następujący:

$$der_{T_n}(i) = \frac{x_i - x_{i-1}}{t_i - t_{i-1}}, \quad i \geqslant 1$$
(3.1)

Takie przekształcenie pozwala na badanie lokalnej zmienności (monotoniczności i jej tempa) danego szeregu. Jako że badane dane (opisywane szerzej w sekcji 2.1.1) składały się z odczytów z sensorów (akcelerometrów i żyroskopów), pochodna po czasie może być również interpretowana w sensie fizycznym. Przykładowo, miara zmienności przyspieszenia w czasie zwana jest zrywem¹.

Całka szeregu po czasie

Analogicznie do pochodnej zdefiniować można dyskretną całkę z szeregu $T_n = (t_1, x_1), (t_2, x_2), \dots, (t_n, x_n)$, wyliczaną metodą trapezów:

$$int_{T_n}(i) = \sum_{i=1}^{i} \frac{(x_j + x_{j-1})(t_i - t_{i-1})}{2}, \quad i \geqslant 1$$
 (3.2)

Tak wyliczonej całce także można przypisać interpretację fizyczną - dla przykładu, wartość $int_{T_n}(i)$ dla odczytu T_n z akcelerometru umieszczonego na lewej ręce strażaka oznacza prędkość, z jaką poruszała się ta ręka w czasie t_i .

Pozostałe dwa przekształcenia (transformata Fouriera oraz transformata falkowa) wyrażają szereg czasowy w bazie pewnej przestrzeni funkcyjnej.

Transformacja Fouriera

Transformacja Fouriera jest jednym z najważniejszych przekształceń używanych do analizy sygnałów. Bazuje ona na odkryciu, że każdy szereg czasowy może być rozbity na sumę prostych, okresowych sygnałów - sinusów i cosinusów o zmieniających się amplitudzie i fazie (rys. 3.2).

Formalnie współczynniki dyskretnej transformaty Fouriera zdefiniowane są następująco:

$$fourier_{T_n}(k) = \sum_{i=0}^{n-1} x_i \cdot \left(\cos\left(\frac{-2\pi ki}{n}\right) + i\sin\left(\frac{-2\pi ki}{n}\right)\right)$$
(3.3)

Współczynniki $fourier_{T_n}(k)$ są liczbami zespolonymi i reprezentują amplitudy oraz fazy sinusoidalnych składowych sygnału. Dla szeregów o wartościach rzeczywistych, $fourier_{T_n}(i)$ jest zespolonym sprzężeniem $fourier_{T_n}(n-i+1)$ (dla $i=2,3,\ldots,\frac{n}{2}$). Istnieje algorytm (zwany szybką transformacją Fouriera, ang. fast Fourier transform), obliczający współczynniki transformaty Fouriera w czasie $\mathcal{O}(n \log n)$ ([Mörchen, 2003]).

Transformacja falkowa

Przekształceniem podobnym do transformaty Fouriera jest transformacja falkowa. Jej główną przewagą nad transformacją opracowaną przez francuskiego matematyka jest zachowywanie informacji zarówno o częstotliwości, jak i o czasie. Podczas gdy przekształcenie Fouriera rzutuje sygnał z dziedziny czasu na dziedzinę częstotliwości, transformata falkowa mierzy

¹https://pl.wikipedia.org/wiki/Zryw

Rysunek 3.2: Cosinusowe fale s_1 , s_2 , s_3 dają po zsumowaniu bardziej złożony sygnał

częstotliwość w różnych momentach czasu - sygnał jest więc rzutowany na płaszczyznę czasu i częstotliwości.

Dyskretna transformacja falkowa również polega na przedstawieniu sygnału jako sumy sygnałów podstawowych. Podczas gdy transformata Fouriera używała funkcji sinusoidalnych, tutaj funkcję podstawową nazywa się falką. Funkcje falkowe są postaci:

$$\Psi_{j,k}(t) = 2^{\frac{j}{2}} \Psi(2^{j}t - k),$$

gdzie Ψ jest macierzystą funkcją falkową. Wtedy każda funkcja $f\in L^2(\mathbb{R})$ może być przedstawiona w tej bazie jako

$$f(t) = \sum_{j,k} c_{j,k} \Psi_{j,k}(t),$$

a $c_{j,k} = \langle \Psi_{j,k}(t), f(t) \rangle$ są współczynnikami dyskretnej transformaty falkowej. Najbardziej znaną macierzystą funkcją falkową jest falka Haara, zdefiniowana następująco:

$$\Psi_{Haar}(t) = \begin{cases} 0 & t < 0 \\ 1 & 0 \le t < 0, 5 \\ -1 & 0, 5 \le t < 1 \\ 0 & t \ge 1 \end{cases}$$

Wykres falki Haara przedstawia rys. 3.3. Funkcja węgierskiego matematyka została użyta przez autora w procesie ekstrakcji cech.

Podobnie jak w przypadku dyskretnej transformaty Fouriera, tak i tu istnieje szybki algorytm obliczający współczynniki dyskretnej transformaty falkowej (działający w czasie $\mathcal{O}(n)$ - [Mallat, 1999]). Czyni to obydwa przekształcenia niezwykle użytecznymi w praktyce.

Rysunek 3.3: Wykres falki Haara

3.2.2. Statystyki wyliczane z reprezentacji szeregu

Kolejnym krokiem w ekstrakcji cech było opisanie reprezentacji (przedstawionych w poprzedniej sekcji) za pomocą zbioru statystyk, mających jak najlepiej oddać charakter danego szeregu. Poniżej znajduje się lista statystyk (wraz z formalnym opisem) wykorzystanych przez autora.

• Minimum

Minimalna wartość przyjmowana w szeregu czasowym:

$$min(T_n) = \min_{1 \le i \le n} x_i \tag{3.4}$$

• Maksimum

Maksymalna wartość przyjmowana w szeregu czasowym:

$$max(T_n) = \max_{1 \leqslant i \leqslant n} x_i \tag{3.5}$$

• Średnia arytmetyczna

Średnia arytmetyczna wartości przyjmowanych w szeregu czasowym:

$$mean(T_n) = \frac{\sum_{i=1}^{n} x_i}{n}$$
(3.6)

• Suma

Suma wartości przyjmowanych w szeregu czasowym:

$$sum(T_n) = \sum_{i=1}^{n} x_i \tag{3.7}$$

• Odchylenie standardowe

Odchylenie wartości przyjmowanych w szeregu czasowym:

$$std(T_n) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - mean(T_n))^2}{n}}$$
(3.8)

• Kwantyle

Kwantylem $q_p(T_n)$ rzędu p nazwiemy taki element x_k , że dokładnie p elementów szeregu jest od niego mniejszych. W procesie ekstrakcji cech użyto siedmiu kwantyli, rzędów kolejno: 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875.

Kwantyl rzędu 0.5 oznaczany będzie dalej przez $median(T_n)$.

• Wariancja

Wariancja wartości w szeregu czasowym:

$$var(T_n) = std^2(T_n) \tag{3.9}$$

• Błąd standardowy

Błąd standardowy określa odchylenie standardowe dla rozkładu średniej z próby. Zdefiniowany jest jako:

$$sem(T_n) = \frac{std(T_n)}{\sqrt{n}} \tag{3.10}$$

• Indeks pierwszego maksimum

Indeks pierwszego maksimum szeregu (normalizowany przez długość szeregu):

$$first_argmax(T_n) = \frac{\min(\{i : x_i = max(T_n)\})}{n}$$
(3.11)

• Indeks pierwszego minimum

Indeks pierwszego minimum szeregu (normalizowany przez długość szeregu):

$$first_argmin(T_n) = \frac{\min(\{i : x_i = min(T_n)\})}{n}$$
(3.12)

Współczynnik skośności

Współczynnik skośności rozkładu to miara asymetrii rozkładu. Przyjmuje on wartość zero dla rozkładu symetrycznego, wartości ujemne dla rozkładu o lewostronnej asymetrii (wydłużone lewe ramię rozkładu) i wartości dodatnie dla rozkładów o prawostronnej asymetrii (wydłużone prawe ramię rozkładu) (rys. 3.4).

Traktując wartości szeregu jako wartości pewnej próbki statystycznej, można wyznaczyć jego współczynnik skośności, zdefiniowany jako:

$$skew(T_n) = \frac{3(mean(T_n) - median(T_n))}{std(T_n)}$$
(3.13)

• Kurtoza

Kurtoza to miara koncentracji wyników wokół wartości centralnej. Jest to druga, obok skośności, miara kształtu rozkładu.

Kurtoza rozkładu normalnego wynosi 0. Jeśli wartość tej statystyki jest dodatnia, mamy do czynienia z rozkładem leptokurtycznym (wysmukłym). Jeśli zaś jest ujemna, rozkład jest rozkładem platykurtycznym (spłaszczonym) (rys. 3.5)

Formalnie kurtozę definiuje się następująco:

$$kurt(T_n) = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - mean(T_n))^4}{std^4(T_n)} - 3$$
(3.14)

Rysunek 3.4: Rozkłady o ujemnym (pierwszy wykres) i dodatnim (drugi wykres) współczynniku skośności

Rysunek 3.5: Kształt rozkładu w zależności od wartości kurtozy

• Średnia ważona liniowo

Średnia ważona wartości w szeregu, przy czym wagi rosną liniowo wraz z indeksem. W ten sposób nadaje się największą wagę obserwacjom wykonanym najpóźniej (użycie tej statystyki dla szeregów czasowych opisuje [Wiens et al., 2012]):

$$linear_weighted_mean(T_n) = \frac{2}{n(n+1)} \sum_{i=1}^{n} ix_i$$
 (3.15)

• Średnia ważona kwadratowo

Jak wyżej - z tą różnicą, że wagi rosną kwadratowo wraz z indeksem:

$$quadratic_weighted_mean(T_n) = \frac{6}{n(n+1)(2n+1)} \sum_{i=1}^{n} i^2 x_i$$
 (3.16)

• Średnie odchylenie bezwzględne od średniej

Średnie odchylenie bezwzględne to kolejna, obok odchylenia standardowego i wariancji, miara rozrzutu próbki. Definiuje się je następująco:

$$mean_absolute_deviation(T_n) = \frac{\sum_{i=1}^{n} |x_i - mean(T_n)|}{n}$$
 (3.17)

• Mediana bezwzględnego odchylenia

Jeszcze inną miarą rozrzutu jest mediana bezwzględnego odchylenia (ang. median absolute deviation, MAD). Jest to mediana ciągu bezwzględnych odchyleń od mediany:

$$median_absolute_deviation(T_n) = median_{1 \leq i \leq n}(|x_i - median(T_n)|)$$
 (3.18)

• Całkowita energia

Całkowitą energię szeregu definiuje się jako sumę kwadratów jego wartości:

$$E(T_n) = \sum_{i=1}^{n} x_i^2 \tag{3.19}$$

• Liczba elementów mniejszych od średniej

Zdefiniowana w oczywisty sposób:

$$count_below_mean(T_n) = |\{i : x_i < mean(T_n)\}|$$
(3.20)

• Liczba elementów większych od średniej

Analogicznie do powyższego:

$$count_above_mean(T_n) = |\{i : x_i > mean(T_n)\}|$$
(3.21)

• Długość najdłuższego podciągu o wartościach poniżej średniej

Zdefiniowana formalnie:

$$strike_below_mean(T_n) = \max(\{j - i \mid 1 \leqslant i \leqslant j \leqslant n, \forall_{i < k \leqslant j} x_k < mean(T_n)\})$$
 (3.22)

• Długość najdłuższego podciągu o wartościach powyżej średniej

Analogicznie do powyższego:

$$strike_above_mean(T_n) = \max(\{j-i \mid 1 \leqslant i \leqslant j \leqslant n, \forall_{i < k \leqslant j} x_k > mean(T_n)\})$$
 (3.23)

• Średnia autokorelacja

Definicja 3.2.2 Współczynnik korelacji Pearsona wektorów prób losowych $x, y \in \mathbb{R}^n$ zdefiniowany jest jako

$$pearson_corr(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}},$$

gdzie
$$\bar{x}$$
, \bar{y} oznaczają wartości średnie z tych prób, tj. $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$, $\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$.

Współczynnik Pearsona określa poziom zależności liniowej między zmiennymi losowymi i przyjmuje wartości z przedziału [-1,1]. Wartości bliskie 1 oznaczają silną zależność liniową między próbkami, wartości bliskie zera - brak liniowej zależności, natomiast wartości bliskie -1 - ujemną liniową zależność (rys. 3.6).

Korelacja Pearsona wykorzystywana jest przy wyliczaniu autokorelacji. Autokorelacja jest funkcją, która argumentowi naturalnemu k przypisuje wartość współczynnika korelacji pomiędzy szeregiem czasowym a tym samym szeregiem cofniętym o k jednostek czasu:

$$autocorr_k(T_n) = \frac{1}{(n-k)std^2(T_n)} \sum_{i=1}^{n-k} (x_i - mean(T_n))(x_{i+k} - mean(T_n))$$

Jako cecha używana była średnia wartość autokorelacji obliczanych dla wszystkich przesunięć k (od 1 do n):

$$mean_autocorr(T_n) = \frac{\sum_{k=1}^{n} autocorr_k(T_n)}{n}$$
(3.24)

Rysunek 3.6: Przykładowe wykresy danych (x, y) i odpowiadające im wartości współczynnika korelacji liniowej Pearsona

• Asymetryczność odwracalna w czasie

Ta statystyka (ang. time-reversal asymmetry statistic) została zaproponowana przez Fulchera i Jonesa w [Fulcher and Jones, 2014]. Zdefiniowana jest w zależności od parametru k przez:

$$TRAS_k(T_n) = \frac{1}{n-2k} \sum_{i=0}^{n-2k} x_{i+2k}^2 \cdot x_{i+k} - x_{i+k} \cdot x_i^2$$
 (3.25)

Jako cechy wykorzystane zostały wartości TRAS dla k = 25, 50, 100, 200.

• Informacje o skokach

Definicja 3.2.3 Skokiem o wsparciu n nazwiemy podciąg szeregu T_n , w którym istnieje wartość x będąca większa niż n wartości występujących bezpośrednio przed nią oraz n wartości występujących bezpośrednio po niej.

Przykładowo w ciągu (3,0,0,4,0,0,13) wartość 4 jest skokiem o wsparciu 1 i 2, ale nie jest skokiem o wsparciu 3.

Skoki wykorzystano przy ekstrakcji pięciu kolejnych cech, które oznaczały (kolejno) liczbę skoków o wsparciu: 5, 10, 25, 50, 100.

Funkcje min, max, mean, sum, std, quantiles nazywane będą statystykami podstawowymi. Z reprezentacji pochodnych (pochodnej, całki, transformaty Fouriera, transformaty falkowej) wyliczane były tylko statystyki podstawowe. Wartości wszystkich opisanych wyżej statystyk obliczono tylko dla bazowej reprezentacji szeregu.

W ten sposób z 42 szeregów obecnych w zbiorze danych otrzymano około 4500 cech.

3.2.3. Pozostałe cechy

Mörchen udowadnia w [Mörchen, 2003], że użyteczne przy klasyfikacji szeregów czasowych jest k największych współczynników transformaty Fouriera oraz transformaty falkowej. Autor zdecydował się więc dodać po 10 największych współczynników dla obydwu transformat wyliczonych dla każdego z szeregów.

Kolejne cechy oparte były na korelacji między dwoma szeregami czasowymi. Analogicznie do autokorelacji, korelację między szeregami $T_n = (t_1, x_1), \ldots, (t_n, x_n)$ i $T'_n = (t_1, x'_1), \ldots, (t_n, x'_n)$

definiuje się jako korelację Pearsona (def 3.2.2) między wektorami $(x_1, \dots x_n)$ oraz (x_1', \dots, x_n') .

Ostatecznie otrzymano około 6000 cech (przypomnijmy - początkowa reprezentacja zbioru danych zawierała 17242 atrybuty).

Warto zwrócić uwagę, jak elastyczna jest powyższa metoda ekstrakcji cech - można zastosować ją do praktycznie dowolnego szeregu. Inną zaletą tej metody jest jej niedługi czas działania. Przykładowo, przekształcenie zbioru treningowego (składającego się z 20000 instancji) zajęło około dwóch godzin na komputerze wyposażonym w dwurdzeniowy procesor Intel Core i5 o taktowaniu 2,7 GHz.

Rozdział 4

Redukcja *concept drift* poprzez selekcję cech

4.1. Sprowadzenie problemu adaptacji dziedziny do problemu klasyfikacji

Zacznijmy od sprawdzenia jakości klasyfikatorów przedstawionych w rozdziale 2. na reprezentacji opisanej w poprzednim rozdziale przy użyciu metryki BAC. Wynik na zbiorze treningowym wyliczany był za pomocą trójwarstwowej walidacji krzyżowej. Rezultaty przedstawia tabela 4.1.

Tabela 4.1: Jakość klasyfikacji na wyekstrahowanych cechach

	Wynik na X_{train}	Wynik na X_{test}
Regresja logistyczna	0.95	0.53
SVM	0.96	0.53
Lasy losowe	0.99	0.71

Okazuje się, że problem ewoluujących pojęć był główną przeszkodą przy budowie wydajnego modelu dla zadanego problemu. Mówiąc bardziej szczegółowo, występowały wyraźne różnice w wykonywaniu poszczególnych czynności między strażakami. Widać to po rezultatach prezentowanych w tabeli 4.1. Mimo rewelacyjnych wyników na zborze treningowym (klasyfikator bazujący na lasach losowych był niemalże bezbłędny), jakość predyktorów testowanych na innej grupie strażaków okazała się dużo niższa - wynik pogorszył się o ok. 0.3 w przypadku lasów losowych oraz o prawie 0.5 dla klasyfikatorów liniowych.

Celem tego rozdziału będzie przedstawienie metody wyboru takiej podprzestrzeni cech, która będzie spełniać dwa wymogi:

- będzie umożliwiać zbudowanie wydajnego klasyfikatora,
- będzie możliwie odporna na zmiany dziedziny

Opisywane podejście stanowi rozszerzenie pomysłu zaproponowanego przez Boullé w [Boullé, 2015] oraz [Bondu and Boullé, 2011]. Intuicja jest następująca: załóżmy, że jesteśmy w stanie sprowadzić problem wykrywania concept drift do problemu klasyfikacji (zostanie to opisane szerzej w kolejnych podrozdziałach). Załóżmy też, że mamy daną funkcję f, która dla danego atrybutu określa jego jakość w odniesieniu do ustalonego problemu klasyfikacji.

Przykładem takiej funkcji jest test χ^2 .

Celem jest wybranie tych cech, które jednocześnie:

- dają najwyższy wynik dla oryginalnego problemu klasyfikacji,
- dają najniższy wynik dla problemu klasyfikacji, do którego sprowadzone zostało zadanie wykrywania ewoluujących pojęć.

Przy takim wyborze w oczywisty sposób zostaną spełnione postawione wcześniej wymagania. Intuicyjnie, jeśli będziemy wstanie wybrać reprezentację, która daje dobrą jakość klasyfikacji, ale słabo wykrywa zmianę dziedziny, to nasz klasyfikator będzie mniej czuły na ewolucję pojęć, co skutkować będzie zmniejszeniem różnicy jakości między zbiorami treningowym a testowym.

Rysunek 4.1 przedstawia rozkład jakości cech wraz z przykładowym wyborem intuicyjnie "dobrej" reprezentacji.

Rysunek 4.1: Przykładowy rozkład jakości cech dla problemu klasyfikacji oraz zadania wykrywania ewoluujących pojęć

Oś x przedstawia jakość cech dla bazowego problemu klasyfikacji, natomiast oś y - jakość dla problemu detekcji $concept\ drift$. Przykładowym wyborem jest selekcja cech poniżej czerwonej linii (atrybuty słabo rozróżniające różne dziedziny) oraz na prawo od linii zielonej (cechy o wysokim wyniku dla postawionego problemu klasyfikacji). Oczywiście nie zawsze taki wybór będzie możliwy, co pokażą kolejne podrozdziały.

Głównym wyzwaniem w opisywanym podejściu jest sprowadzenie problemu wykrywania zmiennej dziedziny do problemu klasyfikacji. Zanim jednak poruszona zostanie ta kwestia, autor zaprezentuje używane najcześciej miary jakości cech.

4.2. Miary jakości cech

Podstawowe miary jakości atrybutów pochodzą ze statystki oraz teorii informacji. Do najbardziej znanych należą:

- współczynnik korelacji Pearsona
- test χ^2
- informacja wzajemna
- jednoczynnikowa analiza wariancji
- zysk Giniego

W bieżącej sekcji zostanie przedstawiony opis każdej z tych miar.

Współczynnik korelacji Pearsona

Zdefiniowany w 3.2.2 współczynnik korelacji liniowej Pearsona może być też używany do mierzenia jakości atrybutu. Niech przewidywana zmienna y będzie ciągła. Dla danego ciągłego atrybutu x wartość $pearson_corr(x,y)$ określa poziom liniowej zależności między tym atrybutem a y. Badanie korelacji jest często wykorzystywane przy analizie mikromacierzowej DNA ([Guyon and Elisseeff, 2003]).

Test χ^2

W statystyce testu χ^2 używa się do badania niezależności dwóch zdarzeń A i B, gdzie dwa zdarzenia są uznawane za niezależne, jeśli $P(A\cap B)=P(A)P(B)$, bądź równoważnie: P(A|B)=P(A) i analogicznie P(B|A)=P(B). W uczeniu maszynowym test χ^2 stosowany jest do badania niezależności pomiędzy atrybutami a klasą wynikową. Za wartościowe uważane są te cechy, które nie są niezależnie od przewidywanej zmiennej.

Test ten może być zastosowany tylko w przypadku, gdy zarówno atrybut, jak i klasa wynikowa są zmiennymi kategorycznymi. W przypadku zmiennych ciągłych stosuje się dyskretyzację.

Informacja wzajemna

Z punktu widzenia teorii informacji klasyfikator może być traktowany jako narzędzie redukujące poziom niepewności odnośnie przewidywanej zmiennej. Klasyfikator, "konsumując" informację niesioną przez kolejne instancje zbioru treningowego, stopniowo zmniejsza początkową niepewność zmiennej wynikowej. W przypadku klasyfikatora idealnego (to jest takiego, który zawsze dobrze przewiduje klasę wynikową) końcowa niepewność będzie wynosiła 0. W teorii informacji początkową niepewność definiuje się formalnie przez pojęcie entropii.

Definicja 4.2.1 Jeśli przewidywana zmienna C jest zmienną dyskretną przyjmującą m wartości c_1, c_2, \ldots, c_m , entropia definiowana jest jako

$$H(C) = -\sum_{i=1}^{m} P_C(c_i) \log P_C(c_i)$$

Niech teraz atrybut F będzie atrybutem dyskretnym przyjmującym k wartości f_1, f_2, \ldots, f_k . Wtedy niepewność po poznaniu wartości cechy F nazywa się entropiq warunkowq:

$$H(C|F) = \sum_{i=1}^{k} P_F(f_i)H(C|F = f_i) =$$

$$= -\sum_{i=1}^{k} P_F(f_i) \left(\sum_{i=1}^{m} P_{C|F}(c_j|f_i) \log P_{C|F}(c_j|f_i) \right)$$

Zachodzi wtedy:

$$H(C|F) \leqslant H(C),$$

czyli entropia warunkowa jest nie większa niż entropia początkowa. Równość zachodzi wtedy i tylko wtedy, gdy zmienne C i F są niezależne.

 $Informację\ wzajemna\ I(C;F)$ definiuje się wtedy jako wartość, o jaką początkowa niepewność odnośnie klasy wynikowej została pomniejszona po poznaniu wartości cechy F, czyli formalnie:

$$I(C;F) = H(C) - H(C|F)$$

$$(4.1)$$

Po nietrudnych przekształceniach można otrzymać zwarty wzór na informację wzajemną:

$$I(C; F) = \sum_{i=1}^{k} \sum_{j=1}^{m} P_{CF}(c_j, f_i) \log(\frac{P_{CF}(c_j, f_i)}{P_{C}(c_j)P_{F}(f_i)})$$
(4.2)

Jednoczynnikowa analiza wariancji

Jednoczynnikowa analiza wariancji używa testu statystycznego F do mierzenia jakości cechy. Test F określa, czy wartości oczekiwane danej cechy X wewnątrz m określonych grup (odpowiadających m wartościom klasy wynikowej) różnią się między sobą. Wartość F-testu zdefiniowana jest jako:

$$F = \frac{MS_M}{MS_W}$$

 MS_M określa wariancję między grupami i jest zdefiniowana jako:

$$MS_M = \frac{\sum_{i=1}^m n_i (\bar{x}_i - \bar{x})^2}{m-1},$$

gdzie n_i oznacza liczbę obserwacji w *i*-tej grupie, \bar{x}_i oznacza średnią w *i* - tej grupie, a \bar{x} - średnią z całej próbki. MS_W określa z kolei wariancję wewnątrz grup, zdefiniowaną jako:

$$MS_W = \frac{\sum_{ij} (x_{ij} - \bar{x}_i)^2}{n - m},$$

gdzie x_{ij} oznaczaj-tą obserwację i-tej grupy.

Zysk Giniego

Niech ponownie zmienna przewidywana C będzie zmienną dyskretną przyjmującą m wartości c_1, c_2, \ldots, c_m .

Definicja 4.2.2 Indeksem Giniego zmiennej C nazywa się wartość

$$Gini(C) = 1 - \sum_{i=1}^{m} P_C^2(c_i)$$

Podobnie jak entropia, indeks Giniego jest miarą niejednorodności zbioru. Przykładowo, dla jednej klasy indeks Giniego (niejednorodność zbioru) wynosi $1-1^2=0$. Jeśli rozkład klas jest jednostajny (czyli $P_C(c_i)=\frac{1}{m}$, indeks Giniego osiąga maksimum.

Ze względu na podobieństwo między indeksem Giniego a entropią, zysk Giniego definiuje się analogicznie do informacji wzajemnej. Dla atrybutu dyskretnego F przyjmującego wartości f_1, f_2, \ldots, f_k zysk Giniego wyraża, o ile zmalała niejednorodność zbioru (jego indeks Giniego) po poznaniu wartości cechy F:

$$GiniGain(C; F) = Gini(C) - Gini(C|F) = Gini(C) - \sum_{i=1}^{k} P_F(f_i)Gini(C|F = f_i)$$
 (4.3)

W dalszych eksperymentach autor wykorzystał trzy miary jakości cech: informację wzajemną, jednoczynnikową analizę wariancji oraz zysk Giniego.

4.3. Wykrywanie ewolucji pojęć między zbiorem treningowym a testowym

Wróćmy do problemu wykrywania ewolucji pojęć. Przypomnijmy, że celem jest przypisanie instancjom takich klas, aby obiekty pochodzące z tej samej dziedziny otrzymały tę samą klasę. Przy tak stworzonej klasie wynikowej mierzona będzie jakość poszczególnych atrybutów i wybierane będą te cechy, które uzyskają najgorszy wynik, czyli takie, które najgorzej rozróżniają dziedziny.

W celu wykrycia concept drift między zbiorem treningowym a zbiorem testowym wykorzystany został pomysł opisywany w [Boullé, 2015]. Zbiory X_{train} i X_{test} zostały połączone w jeden: $X = X_{train} \cup X_{test}$. Klasa wynikowa była dwuelementowa i przyjmowała wartość "train" dla obiektów ze zbioru treningowego oraz "test" dla zbioru testowego. Następnie wybierane były te cechy, które słabo rozróżniały obiekty ze zbioru treningowego od obiektów ze zbioru testowego i jednocześnie dobrze przewidywały czynności wykonywane przez strażaków.

Opisana metoda, jakkolwiek obiecująca ze względu na swoją prostotę (zarówno ideologiczną, jak i implementacyjną), nie ma jednak zastosowania w przypadku uczenia indukcyjnego (por. tabela 1.1). W istocie, założenie posiadania zbioru testowego w momencie uczenia znacznie ogranicza możliwości wykorzystania przedstawionego podejścia w praktyce. Jak bowiem wspomniano wcześniej, podproblem uczenia indukcyjnego z przeniesieniem wiedzy występuje częściej niż podproblem uczenia transdukcyjnego.

4.3.1. Wyniki eksperymentów

Poniżej zaprezentowane zostaną rezultaty selekcji cech przy użyciu trzech miar jakości wspomnianych w poprzedniej sekcji - informacji wzajemnej, jednoczynnikowej analizy wariancji i zysku Giniego. W opisie każdego z eksperymentów $threshold_{drift}$ będzie oznaczał górny próg wartości miary przy zadaniu detekcji $concept\ drift$, natomiast $threshold_{class}$ - dolny próg jakości cechy przy klasyfikacji czynności wykonywanej przez strażaka (analogicznie do rysunku 4.1).

Informacja wzajemna

Rysunek 4.2 przedstawia rozkład jakości cech przy użyciu informacji wzajemnej jako miary. Widoczna jest wysoka dodatnia korelacja między jakością cechy dla klasyfikacji a jej jakością

dla problemu ewolucji pojęć. Utrudnia to w oczywisty sposób dobranie dobrych wartości dla progów $threshold_{drift}$ oraz $threshold_{class}$ - eliminując atrybuty "słabe" dla detekcji concept drift, eliminujemy jednocześnie cechy "dobre" dla klasyfikacji czynności strażaka. Znajduje to swoje odzwierciedlenie w jakości otrzymanych klasyfikatorów. Tabele 4.2, 4.3, 4.4 prezentują jakość klasyfikacji dla różnych wartości $threshold_{class}$ i $threshold_{drift}$ odpowiednio dla klasyfikatorów: regresji logistycznej, SVM i lasów losowych. Pierwszy wiersz każdej tabeli zawiera wyniki bez selekcji atrybutów.

Rysunek 4.2: Rozkład jakości cech przy użyciu informacji wzajemnej

Tabela 4.2: Jakość klasyfikacji dla różnych wartości progowych przy użyciu informacji wzajemnej i regresji logistycznej

$threshold_{class}$	$threshold_{drift}$	Liczba cech	$X_{train} \ BAC$	$X_{test} BAC$
0.0	0.7	6027	0.9341	0.5227
0.0	0.05	2867	0.9116	0.516
0.0	0.1	3559	0.9201	0.509
0.0	0.2	4362	0.9209	0.5492
0.25	0.05	950	0.8494	0.5468
0.25	0.1	1448	0.915	0.4899
0.25	0.2	2246	0.9471	0.5313
0.5	0.05	266	0.7615	0.5008
0.5	0.1	597	0.9292	0.5499
0.5	0.2	1379	0.9662	0.5453
0.5	0.4	2044	0.944	0.5225
1.0	0.1	15	0.1636	0.1358
1.0	0.3	443	0.7416	0.4221
1.0	0.5	920	0.7788	0.4255
1.5	0.7	486	0.6942	0.4673

Tabela 4.3: Jakość klasyfikacji dla różnych wartości progowych przy użyciu informacji wzajemnej i SVM

$threshold_{class}$	$threshold_{drift}$	Liczba cech	$X_{train} \ BAC$	$X_{test} \ BAC$
0.0	0.7	6027	0.9501	0.53
0.0	0.05	2867	0.9062	0.5668
0.0	0.1	3559	0.9256	0.5374
0.0	0.2	4362	0.9267	0.5379
0.25	0.05	950	0.8594	0.5756
0.25	0.1	1448	0.8985	0.5295
0.25	0.2	2246	0.9342	0.5507
0.5	0.05	266	0.7179	0.3884
0.5	0.1	597	0.9039	0.524
0.5	0.2	1379	0.9114	0.5153
0.5	0.4	2044	0.9213	0.5266
1.0	0.1	15	0.1719	0.1192
1.0	0.3	443	0.7094	0.4488
1.0	0.5	920	0.6926	0.4644
1.5	0.7	486	0.696	0.2582

Tabela 4.4: Jakość klasyfikacji dla różnych wartości progowych przy użyciu informacji wzajemnej i lasów losowych

$threshold_{class}$	$threshold_{drift}$	Liczba cech	$X_{train} BAC$	$X_{test} BAC$
0.0	0.7	6027	0.9952	0.7118
0.0	0.05	2867	0.9862	0.6932
0.0	0.1	3559	0.992	0.7194
0.0	0.2	4362	0.9933	0.7055
0.25	0.05	950	0.9892	0.7044
0.25	0.1	1448	0.9923	0.7167
0.25	0.2	2246	0.9927	0.7249
0.5	0.05	266	0.9868	0.6625
0.5	0.1	597	0.9924	0.7172
0.5	0.2	1379	0.9935	0.6886
0.5	0.4	2044	0.9954	0.7089
1.0	0.1	15	0.8553	0.2661
1.0	0.3	443	0.9935	0.6888
1.0	0.5	920	0.9951	0.7064
1.5	0.7	486	0.9914	0.6438

Zastosowanie opisanej selekcji cech pomogło poprawić wynik o około 0.045 w najlepszym przypadku. Oczekiwane rezultaty zaobserwować można przykładowo dla wartości $threshold_{class}=0.25$ i $threshold_{drift}=0.05$ przy użyciu obydwu klasyfikatorów liniowych - po wybraniu 950 cech, wynik na zbiorze treningowym obniżył się, podczas gdy wynik na zbiorze testowym wzrósł. Wybrana reprezentacja, mimo że teoretycznie gorsza jeśli chodzi o klasyfikację czynności strażaków, okazała się bardziej odporna na zmianę dziedziny.

Jednoczynnikowa analiza wariancji

Rozkład jakości atrybutów mierzony przy użyciu jednoczynnikowej analizy wariancji (wykres 4.3) prezentuje się dużo korzystniej niż w poprzednim przypadku. Cechy skupione są przy osiach x i y, zatem wybór zmiennych odpornych na zmianę dziedziny nie powinien powodować spadku jakości klasyfikatora.

Rysunek 4.3: Rozkład jakości cech przy użyciu jednoczynnikowej analizy wariancji

Znajduje to swoje odzwierciedlenie w otrzymanych rezultatach. Największy zysk wydajności zaobserwowano dla klasyfikatorów liniowych. Wynik na zbiorze testowym dla regresji logistycznej i SVM przy odpowiednich wartości progów poprawił się nawet o 0.15 (tabele 4.5 i 4.6), przy jednoczesnym niewielkim spadku BAC na zbiorze treningowym. Dla lasów losowych poprawa miary jakości wyniosła około 0.05 w najlepszym przypadku (tabela 4.7). Należy przy tym zauważyć, że polepszenie jakości klasyfikatora nastąpiła wraz z redukcją przestrzeni cech - najlepsze wyniki uzyskano dla ok. 1500 atrybutów. Niesie to ze sobą kolejną zaletę, jaką jest obniżenie czasu budowy modelu.

Warto też zwrócić uwagę na wyniki klasyfikatorów dla ustalonej wartości $threshold_{class}$. Praktycznie w każdym przypadku obniżanie $threshold_{drift}$ przy ustalonym $threshold_{class}$ (a co za tym idzie - eliminowanie większej liczby cech wrażliwych na zmianę dziedziny) skutkuje wzrostem jakości modelu.

Tabela 4.5: Jakość klasyfikacji dla różnych wartości progowych przy użyciu analizy wariancji i regresji logistycznej

$threshold_{class}$	$threshold_{drift}$	Liczba cech	$X_{train} \ BAC$	$X_{test} \ BAC$
0.0	8000	6027	0.9497	0.5348
0.0	250	3813	0.9067	0.5853
0.0	500	4434	0.9295	0.5940
0.0	750	4694	0.9387	0.5931
0.0	1000	4871	0.9445	0.5838
250	250	1890	0.9188	0.6711
250	500	2278	0.9426	0.6333
250	750	2446	0.9538	0.6102
250	1000	2560	0.9559	0.6289
500	250	1309	0.8926	0.6680
500	500	1566	0.9124	0.6050
500	750	1656	0.9171	0.5898
500	1000	1714	0.9310	0.6169
500	2000	1805	0.9214	0.5495
1000	500	873	0.7031	0.5725
1000	1000	927	0.7118	0.5436
1000	2000	946	0.8019	0.4943

Tabela 4.6: Jakość klasyfikacji dla różnych wartości progowych przy użyciu analizy wariancji i ${\rm SVM}$

$threshold_{class}$	$threshold_{drift}$	Liczba cech	$X_{train} BAC$	$X_{test} BAC$
0.0	8000	6027	0.9586	0.5346
0.0	250	3813	0.9064	0.5603
0.0	500	4434	0.9334	0.5857
0.0	750	4694	0.9301	0.6035
0.0	1000	4871	0.9342	0.6054
250	250	1890	0.9254	0.6733
250	500	2278	0.9357	0.6492
250	750	2446	0.9510	0.6015
250	1000	2560	0.9578	0.6176
500	250	1309	0.8599	0.6849
500	500	1566	0.9069	0.5904
500	750	1656	0.9135	0.6239
500	1000	1714	0.9188	0.6006
500	2000	1805	0.9128	0.5373
1000	500	873	0.7966	0.4923
1000	1000	927	0.8039	0.5589
1000	2000	946	0.8005	0.5950

Tabela 4.7: Jakość klasyfikacji dla różnych wartości progowych przy użyciu analizy wariancji i lasów losowych

$threshold_{class}$	$threshold_{drift}$	Liczba cech	$X_{train} \ BAC$	$X_{test} \ BAC$
0.0	8000	6027	0.9948	0.7118
0.0	250	3813	0.9915	0.7401
0.0	500	4434	0.9923	0.7362
0.0	750	4694	0.9922	0.7311
0.0	1000	4871	0.9929	0.7275
250	250	1890	0.9919	0.7659
250	500	2278	0.9933	0.7225
250	750	2446	0.9927	0.7300
250	1000	2560	0.9931	0.7233
500	250	1309	0.9911	0.7171
500	500	1566	0.9921	0.7235
500	750	1656	0.9920	0.7238
500	1000	1714	0.9933	0.7056
500	2000	1805	0.9935	0.7113
1000	500	873	0.9912	0.6692
1000	1000	927	0.9915	0.6685
1000	2000	946	0.9919	0.6679

Zysk Giniego

Rysunek 4.4 przedstawia rozkład jakości cech przy użyciu zysku Giniego. Podobnie jak w przypadku jednoczynnikowej analizy wariancji, rozkład cech jest korzystny dla opisywanej metody redukcji $concept\ drift$ - atrybuty są skupione przy osiach x i y. Otrzymane wyniki przedstawiają tabele 4.8, 4.9 i 4.10.

Rysunek 4.4: Rozkład jakości cech przy użyciu zysku Giniego. Wykres po prawej stronie stanowi przybliżenie wykresu po stronie lewej

Tabela 4.8: Jakość klasyfikacji dla różnych wartości progowych przy użyciu zysku Giniego i regresji logistycznej

$threshold_{class}$	$threshold_{drift}$	Liczba cech	$X_{train} BAC$	$X_{test} \ BAC$
0.0	0.05	6027	0.9497	0.5348
0.0	1e-05	2018	0.8548	0.4719
0.0	5e-05	3776	0.9165	0.4847
0.0	0.0001	4386	0.9289	0.5472
0.0	0.001	5185	0.9436	0.5285
5e-05	1e-05	429	0.7764	0.5359
5e-05	5e-05	1053	0.8935	0.5245
5e-05	0.0001	1392	0.9254	0.5516
5e-05	0.0025	1999	0.9610	0.5643
5e-05	0.005	2028	0.9529	0.5484
0.0001	5e-05	620	0.8859	0.5913
0.0001	0.0001	841	0.8947	0.6004
0.0001	0.005	1331	0.9553	0.6176
0.001	0.0001	117	0.6451	0.4872
0.001	0.0025	185	0.6829	0.5600

Tabela 4.9: Jakość klasyfikacji dla różnych wartości progowych przy użyciu zysku Giniego i SVM

$threshold_{class}$	$threshold_{drift}$	Liczba cech	$X_{train} \ BAC$	$X_{test} \ BAC$
0.0	0.05	6027	0.9586	0.5346
0.0	1e-05	2018	0.8562	0.4723
0.0	5e-05	3776	0.9109	0.4935
0.0	0.0001	4386	0.9318	0.5489
0.0	0.001	5185	0.9317	0.5273
5e-05	1e-05	429	0.8063	0.5762
5e-05	5e-05	1053	0.9296	0.4788
5e-05	0.0001	1392	0.9288	0.5371
5e-05	0.0025	1999	0.9532	0.5141
5e-05	0.005	2028	0.9580	0.5358
0.0001	5e-05	620	0.8727	0.5763
0.0001	0.0001	841	0.8693	0.5952
0.0001	0.005	1331	0.9562	0.5876
0.001	0.0001	117	0.6483	0.4387
0.001	0.0025	185	0.6582	0.5136

Tabela 4.10: Jakość klasyfikacji dla różnych wartości progowych przy użyciu zysku Giniego i lasów losowych

$threshold_{class}$	$threshold_{drift}$	Liczba cech	$X_{train} \ BAC$	$X_{test} \ BAC$
0.0	0.05	6027	0.9948	0.7118
0.0	1e-05	2018	0.9859	0.7000
0.0	5e-05	3776	0.9893	0.7254
0.0	0.0001	4386	0.9914	0.7271
0.0	0.001	5185	0.9933	0.7163
5e-05	1e-05	429	0.9890	0.7207
5e-05	5e-05	1053	0.9925	0.7393
5e-05	0.0001	1392	0.9925	0.7338
5e-05	0.0025	1999	0.9953	0.7112
5e-05	0.005	2028	0.9962	0.7246
0.0001	5e-05	620	0.9933	0.7281
0.0001	0.0001	841	0.9927	0.7502
0.0001	0.005	1331	0.9960	0.7205
0.001	0.0001	117	0.9918	0.7298
0.001	0.0025	185	0.9928	0.7100

Dla każdego z algorytmów uczących można ponownie zauważyć poprawę jakości klasyfikatora. Wzrost BAC, chociaż nie tak wyraźny jak w przypadku ANOVA, jest też znaczny i wyniósł kolejno: 0.08 dla regresji logistycznej, 0.06 dla maszyny wektorów nośnych i 0.04 dla lasów losowych.

Warto też zwrócić uwagę, że mimo korzystnego rozkładu cech, obniżanie $threshold_{drift}$ (a co za tym idzie - eliminacja większej liczby cech wrażliwych na ewolucję pojęć) nie zawsze niosło ze sobą poprawę jakości klasyfikatora. Najlepiej widać to na przykładzie regresji logistycznej. Przy $threshold_{class}=0$, obniżenie $threshold_{drift}$ z 0.0001 na 0.00005 spowodowało dość wyraźny spadek jakości klasyfikatora - z 0.5472 na 0.4847. Jest to o tyle zaskakujące, że:

- na podstawie wykresu 4.4 wywnioskować można, że większość wyeliminowanych cech była bezużyteczna dla klasyfikacji czynności strażaka
- obniżenie progu nie poskutkowało drastycznym spadkiem liczby wybranych cech (z 4386 na 3776)

4.4. Detekcja zmiany dziedziny przy użyciu klasteryzacji

Problem adaptacji dziedziny w kontekście analizowanego zbioru danych dotyczy różnic w wykonywaniu tych samych czynności przez różnych strażaków. Szukając cech odpornych na ewolucję pojęć, naturalne byłoby więc wybieranie tych atrybutów, które najgorzej rozróżniają funkcjonariuszy straży między sobą. Problemem okazał się jednak brak identyfikatora strażaka. W zamian dostępna była inna informacja: liczba osób, od których zbierane były dane w każdym ze zbiorów (gwoli przypomnienia: zbiór treningowy i testowy pochodziły od różnych czteroosobowych grup strażaków). Wykorzystując tę wiedzę, modyfikację metody opisanej na wstępie rozdziału, w której identyfikator funkcjonariusza próbuje się "odzyskać" przez klastrowanie.

4.4.1. Algorytmy klasteryzacji

Klasteryzacja (inaczej analiza skupień) jest metodą uczenia bez nadzoru (por. z sekcją 1.2.1). Jest to metoda grupowania elementów danego zbioru we względnie jednorodne klasy. Podstawą grupowania w większości algorytmów jest podobieństwo między elementami - wyrażone przy pomocy pewnej funkcji podobieństwa. Algorytmy analizy skupień dzieli się na kilka podstawowych kategorii:

- metody hierarchiczne tworzy dla zbioru obiektów hierarchię klasyfikacji, zaczynając od takiego podziału, w którym każdy obiekt stanowi samodzielne skupienie, a kończąc na podziale, w którym wszystkie obiekty należą do jednego skupienia.
- metody rozmytej analizy skupień metody z tej grupy mogą przydzielać element do więcej niż jednego klastra. Z tego powodu algorytmy rozmytej analizy skupień stosowane są w zadaniu kategoryzacji (przydziału obiektów do jednej lub wielu kategorii).
- grupa metod k-centroidów polega na podzieleniu zbioru na daną z góry liczbę klas.
 Polega na iteracyjnym przyporządkowaniu danego obiektu do klastra, którego środek znajduje się najbliżej. Schemat algorytmu jest następujący:
 - 1. losowy wybór środków (centroidów) klastrów
 - 2. przypisanie punktów do najbliższych centroidów
 - 3. wyliczenie nowych środków skupień
 - 4. powtarzanie algorytmu aż do osiągnięcia kryterium zbieżności

Przykład obiektów pogrupowanych przy użyciu algorytmu k-centroidów przedstawia rys. 4.5.

Rysunek 4.5: Przykład klastrowania danych przy użyciu algorytmu k-centroidów

4.4.2. Opis algorytmu

W sekcji 4.3 wyliczano jakość cech względem etykiet "train" i "test" w celu wykrycia cech najbardziej odpornych na concept drift. Intuicyjnie, lepsze wyniki powinno się uzyskać, używając jako klas rzeczywistych identyfikatorów dziedzin - w tym przypadku, identyfikatorów strażaków. Te identyfikatory nie były jednak obecne w zbiorze danych. Jak wspomniano na początku bieżącej sekcji, można je jednak imitować na podstawie wyników analizy skupień.

Nasuwającym się pomysłem jest więc pogrupowanie obiektów w tyle grup, ilu strażaków dostarczyło dane, a następnie wykorzystanie identyfikatorów tak powstałych klastrów do wyznaczenia jakości cech. Taka metoda wydała się jednak autorowi niewystarczająca - klastry mogły skupiać w sobie instancje odpowiadające podobnym czynnościom (tak jak running i stairs_up), a nie pomiary pobrane od jednego strażaka. Z tego powodu autor zastosował inny algorytm, w którym grupowanie dokonywane było osobno na zbiorach obiektów należących do tej samej klasy. Następnie jakość danej cechy dla problemu concept drift była mierzona osobno na każdym z tych zbiorów, a ostateczny wynik był średnią wyników częściowych.

Schemat algorytmu dla cechy f i miary $quality_measure$ przedstawia poniższy pseudokod:

Algorytm 4.1 Algorytm pomiaru jakości cechy dla problemu wykrycia ewoluujących pojęć przy użyciu klasteryzacji

```
def get_quality(f, quality_measure, X_train, y_train):
    labels = set(y_train)
    partial_qualities = []
    for label in labels:
        X_{label} = \{x_i \in X_{train}: y_i = label\}
        # Zbiór treningowy pochodził od 4 strażaków –
        # stąd podział na 4 klastry
        firefighter_ids = cluster(X_label, 4)
        # Pomiar jakości cechy dla częsciowego zbioru
        # względem identyfikatorów strażaków
        partial_quality = quality_measure(
            X_label,
            f,
            firefighter_ids
        partial_qualities.append(partial_quality)
    return mean(partial_qualities)
```

Ponieważ liczba klastrów była z góry ustalona, do klastrowania użyto algorytmu k-centroidów (przy k=4). Jako miarę jakości zastosowano (podobnie jak w poprzedniej sekcji): informację wzajemną, jednoczynnikową analizę wariancji oraz zysk Giniego.

4.4.3. Wyniki eksperymentów

Informacja wzajemna i jednoczynnikowa analiza wariancji

Analogicznie do eksperymentów opisanych w sekcji 4.3, rozpatrzmy rozkład jakości cech dla dwóch problemów: klasyfikacji czynności strażaka oraz wykrywania ewoluujących pojęć. W

tym przypadku jakość cechy dla problemu detekcji concept drift wyznaczana była przy użyciu algorytmu 4.1.

Rys. 4.6 przedstawia rozkład jakości przy zastosowaniu informacji wzajemnej (rysunek po lewej) i jednoczynnikowej analizy wariancji (rysunek po prawej) jako miar. W obu przypadkach widać wysoką korelację między jakością cechy dla klasyfikacji a jej jakością dla wykrycia dziedziny. Jak wspomniano w sekcji 4.3, znacznie utrudnia to dobranie odpowiednich wartości progów $threshold_{clift}$ oraz $threshold_{class}$. Znalazło to swoje odzwierciedlenie w jakości klasyfikacji - w obu przypadkach zastosowanie selekcji atrybutów albo pogarszało wynik, albo poprawiało go bardzo nieznacznie. Rezultaty uzyskane dla różnych klasyfikatorów były zbliżone do tych prezentowanych w tabelach 4.2, 4.3 i 4.4.

Rysunek 4.6: Rozkład jakości cech przy użyciu informacji wzajemnej (po lewej) i jednoczynnikowej analizy wariancji (po prawej) mierzonej za pomocą algorytmu 4.1

Zysk Giniego

Sytuacja prezentuje się znacznie korzystniej, gdy jako miary użyje się zysku Giniego (rys. 4.7). Cechy skupione są przy osiach x i y, co pozwala łatwo dobrać dobre wartości progów $threshold_{drift}$ i $threshold_{class}$. Uzyskane rezultatys przedstawiają tabele 4.11, 4.12 i 4.13.

Rysunek 4.7: Rozkład jakości cech przy użyciu zysku Giniego i algorytmu 4.1. Wykres po prawej stronie stanowi przybliżenie wykresu po stronie lewej

Tabela 4.11: Jakość klasyfikacji dla różnych wartości progowych przy użyciu algorytmu 4.1, zysku Giniego i regresji logistycznej

$threshold_{class}$	$threshold_{drift}$	Liczba cech	$X_{train} \ BAC$	$X_{test} \ BAC$
0.0	0.4	6027	0.9497	0.5348
0.0	5e-05	3900	0.9263	0.5000
0.0	2.5e-05	3566	0.9314	0.4985
0.0	1e-05	3001	0.9193	0.5101
2.5e-05	0.4	2754	0.9651	0.5284
2.5e-05	5e-05	1661	0.9128	0.5383
2.5e-05	2.5e-05	1458	0.9147	0.5372
5e-05	0.4	2057	0.9630	0.5311
5e-05	5e-05	1186	0.9034	0.5641
5e-05	1.25e-05	819	0.8789	0.5764
0.00025	0.4	703	0.9272	0.6193
0.00025	0.002	678	0.9039	0.6294
0.00025	2.5e-05	339	0.8835	0.6161
0.001	0.4	187	0.6823	0.5260
0.001	0.0005	172	0.6801	0.5296
0.001	5e-05	114	0.7202	0.4882

Tabela 4.12: Jakość klasyfikacji dla różnych wartości progowych przy użyciu algorytmu 4.1, zysku Giniego i SVM

$threshold_{class}$	$threshold_{drift}$	Liczba cech	$X_{train} BAC$	$X_{test} \ BAC$
0.0	0.4	6027	0.9586	0.5346
0.0	5e-05	3900	0.9264	0.4974
0.0	2.5e-05	3566	0.9222	0.4821
0.0	1e-05	3001	0.9085	0.5064
2.5e-05	0.4	2754	0.9673	0.5346
2.5e-05	5e-05	1661	0.9308	0.5080
2.5e-05	2.5e-05	1458	0.9116	0.5279
5e-05	0.4	2057	0.9618	0.5513
5e-05	5e-05	1186	0.9300	0.5308
5e-05	1.25e-05	819	0.8888	0.5760
0.00025	0.4	703	0.9100	0.5945
0.00025	0.002	678	0.9169	0.6287
0.00025	2.5e-05	339	0.8849	0.5973
0.001	0.4	187	0.6946	0.5908
0.001	0.0005	172	0.6849	0.4715
0.001	5e-05	114	0.6968	0.4628

Tabela 4.13: Jakość klasyfikacji dla różnych wartości progowych przy użyciu algorytmu 4.1, zysku Giniego i lasów losowych

$threshold_{class}$	$threshold_{drift}$	Liczba cech	$X_{train} \ BAC$	$X_{test} \ BAC$
0.0	0.4	6027	0.9948	0.7118
0.0	5e-05	3900	0.9926	0.7258
0.0	2.5e-05	3566	0.9907	0.7366
0.0	1e-05	3001	0.9908	0.7359
2.5e-05	0.4	2754	0.9954	0.7258
2.5e-05	5e-05	1661	0.9937	0.7265
2.5e-05	2.5e-05	1458	0.9920	0.7372
5e-05	0.4	2057	0.9958	0.7175
5e-05	5e-05	1186	0.9943	0.7307
5e-05	1.25e-05	819	0.9919	0.7337
0.00025	0.4	703	0.9961	0.7325
0.00025	0.002	678	0.9948	0.7417
0.00025	2.5e-05	339	0.9937	0.7596
0.001	0.4	187	0.9940	0.7209
0.001	0.0005	172	0.9917	0.7219
0.001	5e-05	114	0.9898	0.7027

Ponownie dla każdego z klasyfikatorów zauważyć można wzrost jakości (wynoszący około 0.09 dla klasyfikatorów liniowych i prawie 0.05 dla lasów losowych). Warto przy tym zwrócić uwagę, że najwyższe wyniki otrzymano dla niewielkiej liczby wybranych atrybutów - 678 w przypadku regresji logistycznej i SVM oraz 339 dla lasów losowych. Znaczne zmniejszenie wymiarowości może mieć wiele pozytywnych skutków w biznesowych zastosowaniach modelu, znacznie obniżając czas i zasoby potrzebne do uczenia.

Porównując rezultaty z wynikami otrzymanymi dla metody detekcji concept drift z sekcji 4.3 (tabele 4.8, 4.9 i 4.10) przy użyciu zysku Giniego, można zauważyć niewielką poprawę. Autorska metoda wykrywania ewoluujących pojęć może zatem konkurować z metodą zaproponowaną w [Boullé, 2015], co czyni ją z pewnością wartą uwagi.

4.5. Wnioski z przeprowadzonych eksperymentów

W rozdziale 4 przedstawiono generyczną metodę wyboru podprzestrzeni cech odpornych na zmianę dziedziny. Jedną z największych zalet opisywanej metody jest właśnie jej generyczność - może być ona stosowana niezależnie od typu badanych danych czy algorytmów uczących. Innym znaczącym plusem jest wydajność - miejscami osiągnięto poprawę jakości (mierzoną w mierze BAC) sięgającą 0.15. Dużą zaletą jest też prostota tego podejścia, zarówno pod kątem ideologicznym, jak i implementacyjnym.

Do wad zaliczyć należy natomiast zależność skuteczności metody od danej przestrzeni cech - jeśli dana reprezentacja zawiera niewielką liczbę atrybutów odpornych na concept drift, stosowanie selekcji cech okaże się bezużyteczne. Innym istotnym czynnikiem jest wybór miary jakości cech. Jak pokazały opisane eksperymenty, dla niektórych miar rozkład jakości utrudniał takie dobranie wartości progów $threshold_{drift}$ i $threshold_{class}$, aby usunąć cechy wrażliwe na ewolucję pojęć i jednocześnie zostawić atrybuty wartościowe dla klasyfikacji czynności strażaka.

Rozdział 5

Inne metody adaptacji dziedziny

W poniższym rozdziale przedstawione zostaną dwie inne metody adaptacji dziedziny: uczenie iteracyjne oraz metoda zmiany przestrzeni cech zaproponowana przez Daumé w [III, 2009].

5.1. Uczenie iteracyjne

5.1.1. Opis algorytmu

Idea uczenia iteracyjnego jest stosunkowo intuicyjna. Algorytm ten polega na iteracyjnym powiększaniu zbioru treningowego na części poprzednio sklasyfikowanych przykładów ze zbioru testowego. Bardziej szczegółowo, uczenie iteracyjne działa według następującego schematu:

- 1. klasyfikator c jest uczony na zbiorze treningowym
- 2. c klasyfikuje część przykładów ze zbioru testowego
- 3. zbiór treningowy powiększany jest o uprzednio sklasyfikowane instancje

Poniżej znajduje się pseudokod algorytmu uczenia iteracyjnego.

Algorytm 5.1 Algorytm uczenia iteracyjnego

Argument rows_percentage jest liczbą z przedziału (0,1] i określa, jaka część zbioru testowego jest dołączana do zbioru treningowego w każdej iteracji.

Jedną z zalet uczenia iteracyjnego jest z pewnością prostota implementacji. Kolejną - możliwość stosowania go dla dowolnych danych oraz klasyfikatora bazowego. Wadą może natomiast okazać się zwiększona czas uczenia - w zależności od wartości rows_percentage, model trenowany jest kilka razy.

5.1.2. Eksperymenty i wnioski

Wyniki klasyfikacji przy zastosowaniu zaprezentowanego wyżej algorytmu opisują tabele 5.1. Pierwszy wiersz każdej z tabel podaje jakość klasyfikacji bez zastosowania uczenia iteracyjnego.

$rows_percentage$	$X_{train} BAC$	$X_{test} BAC$
-	0.9497	0.5348
0.5	0.9541	0.5449
0.34	0.9411	0.5302
0.25	0.9474	0.5274
0.1	0.9507	0.5073

$rows_percentage$	$X_{train} BAC$	$X_{test} BAC$
-	0.9586	0.5348
0.5	0.9535	0.537
0.34	0.9457	0.5389
0.25	0.9525	0.5282
0.1	0.95127	0.5091

(a) Regresja logistyczna

(b) SVM

$rows_percentage$	$X_{train} BAC$	$X_{test} BAC$
-	0.9948	0.7118
0.5	0.9949	0.7249
0.34	0.9945	0.7257
0.25	0.995	0.7273
0.1	0.9948	0.7317

(c) Lasy losowe

Tabela 5.1: Jakość klasyfikatora budowanego przy użyciu uczenia iteracyjnego dla różnych algorytmów uczących i wartości $rows_percentage$

Zastosowanie *iterative learning* nie miało znaczącego wpływu na jakość klasyfikacji. Można zauważyć, że w przypadku "słabszych" algorytmów (regresji logistycznej i SVM) nastąpiło obniżenie wyniku. Było to najpewniej spowodowane tym, że klasyfikator z każdą iteracją dopasowywał się coraz bardziej do dużej liczby błędnie sklasyfikowanych obiektów. Jest to jedna z wad uczenia iteracyjnego - dla klasyfikatora bazowego miernej jakości wynik najpewniej nie ulegnie poprawie. W przypadku lasów losowych można z kolei zauważyć nieznaczny, ale stały wzrost jakości przy obniżaniu wartości rows_percentage.

5.2. Powiększenie przestrzeni cech

5.2.1. Opis algorytmu

Adaptacja dziedziny przez powiększenie przestrzeni cech została zaproponowana przez Daumé w [III, 2009]. Jak większość tego typu metod, pochodzi ona z dziedziny przetwarzania języka

naturalnego. Powiększenie przestrzeni cech polega na zastąpieniu każdego atrybutu jego trzema wersjami: wersją ogólną, wersją odpowiadającą dziedzinie źródłowej D^{source} oraz wersją odpowiadającą dziedzinie docelowej D^{target} .

Aby zdefiniować tę operację bardziej formalnie, przyjmijmy oznaczenia jak w sekcji 1.1. Niech dla czytelności $X=\mathbb{R}^F$, dla pewnego F>0. Wtedy powiększona przestrzeń przykładów zdefiniowana jest jako $\hat{X}=\mathbb{R}^{3F}$. Następnie definiuje się funkcje:

$$\Phi^{train}: X_{train} \to \hat{X}, \quad \Phi^{train}(\mathbf{x}) = (\mathbf{x}, \mathbf{x}, \mathbf{0})$$

oraz

$$\Phi^{test}: X_{test} \to \hat{X}, \quad \Phi^{test}(\mathbf{x}) = (\mathbf{x}, \mathbf{0}, \mathbf{x}),$$

gdzie $\mathbf{0} = (0, 0, \dots, 0) \in \mathbb{R}^F$. Funkcje te mapują instancje ze zbioru treningowego (pochodzące z założenia z dziedziny D^{source}) oraz testowego (pochodzące z D^{target}) w rozszerzoną przestrzeń atrybutów \hat{X} .

Spróbujmy wyjaśnić intuicję stojącą za takim podejściem. Rozważmy problem rozpoznawania części mowy (ang. Part-of-speech tagging, w skrócie POS), gdzie zbiór treningowy tworzą artykuły z Wall Street Journal¹, a zbiór testowy - anglojęzyczne artykuły o sprzęcie komputerowym. Przy tak postawionym problemie, słowo "in" powinno być traktowane w obu dziedzinach jako przyimek, podczas gdy słowo "monitor" powinno być traktowane jako czasownik w dziedzinie treningowej oraz rzeczownik w dziedzinie testowej.

Rozważmy prosty przypadek, w którym $X = \mathbb{R}^2$, gdzie wymiar x_1 odpowiada słowu "in", a wymiar x_2 - słowu "monitor". Wtedy, w \hat{X} , \hat{x}_1 i \hat{x}_2 odpowiadają "ogólnym" znaczeniom tych słów, \hat{x}_3 i \hat{x}_4 - znaczeniom w dziedzinie artykułów finansowych, a \hat{x}_5 i \hat{x}_6 - znaczeniom w dziedzinie artykułów komputerowych.

Zastanówmy się teraz, co może zrobić algorytm uczący, aby zauważyć, że "in" powinno być traktowane jako przyimek w obydwu dziedzinach, natomiast klasyfikacja słowa "monitor" może się różnić w zależności od dziedziny. W tym przypadku, wektor wag odpowiadający klasie "przyimek" będzie wyglądał następująco: (1,0,0,0,0,0). Podkreśla to, że "in" jest przyimkiem niezależnie od dziedziny. Z kolei wektor wag dla klasy "rzeczownik" będzie postaci (0,0,0,0,0,1), co oznacza, że "monitor" jest rzeczownikiem tylko w zbiorze testowym. Analogicznie, wektor dla klasy "czasownik" będzie postaci (0,0,0,1,0,0).

5.2.2. Eksperymenty i wnioski

Prezentowana metoda znacznie powiększa przestrzeń cech. Przy 6000 atrybutach otrzymanych w rozdziale 3. daje ona 18000 cech, co jest stosunkowo dużą liczbą dla 20000 instancji treningowych. Z tego powodu autor postanowił połączyć metodę Daumé z metodą selekcji cech opisaną w rozdziale 4. Do selekcji cech użyto jednoczynnikowej analizy wariancji (por. tabele 4.5, 4.6, 4.6). Wyniki przedstawia tabela 5.2b. Dla czytelności, tabela 5.2a przedstawia jakość klasyfikacji na oryginalnej (niepowiększonej) przestrzeni cech.

Rezultaty są bardzo interesujące. W przypadku klasyfikatorów liniowych zwiększenie liczby atrybutów miało praktycznie zerowy wpływ na jakość klasyfikacji - zarówno regresja logistyczna, jak i SVM zdają się ignorować dodane cechy. Dla lasów losowych metoda Daumé miała jednak katastrofalne skutki - wynik spadł z około 0.7 do około 0.15! Można zatem wyciągnąć wniosek, że metoda powiększania przestrzeni cech nie ma szerszego zastosowania poza dziedziną przetwarzania języka naturalnego.

 $^{^{1}\}mathrm{http://www.wsj.com}$

Klasyfikator	Liczba cech	$X_{train} BAC$	$X_{test} BAC$
logit	6027	0.9497	0.5348
SVM	6027	0.9586	0.5346
lasy losowe	6027	0.9948	0.7118
logit	1309	0.8926	0.6680
SVM	1309	0.8599	0.6849
lasy losowe	1309	0.9911	0.7171
logit	1890	0.9188	0.6711
SVM	1890	0.9254	0.6733
lasy losowe	1890	0.9919	0.7659
logit	2278	0.9426	0.6333
SVM	2278	0.9357	0.6492
lasy losowe	2278	0.9933	0.7225

(a) Oryginalne wyniki

Klasyfikator	Liczba cech	$X_{train} \ BAC$	$X_{test} \ BAC$
logit	6027	0.9498	0.5348
SVM	6027	0.9568	0.5346
lasy losowe	6027	0.9957	0.2080
logit	1309	0.8964	0.6516
SVM	1309	0.8652	0.6800
lasy losowe	1309	0.9902	0.1682
logit	1890	0.9382	0.6726
SVM	1890	0.9209	0.6606
lasy losowe	1890	0.9908	0.1460
logit	2278	0.9407	0.6333
SVM	2278	0.9428	0.6438
lasy losowe	2278	0.9921	0.1647

(b) Wyniki po powiększeniu przestrzeni cech

Tabela 5.2: Jakość klasyfikatora budowanego przy użyciu metody powiększania przestrzeni cech

Rozdział 6

Podsumowanie

Głównym celem pracy było zbudowanie wydajnego klasyfikatora na zbiorze wielowymiarowych szeregów czasowych, w którym obecny był problem ewolucji pojęć między zbiorem treningowym a testowym. Autor skupił się na dwóch składowych procesu budowy klasyfikatora:

- ekstrakcji cech z szeregów czasowych
- redukcji concept drift

Cały proces ekstrakcji cech został opisany w rozdziale 3. Warto zauważyć, że zastosowane podejście jest bardzo ogólne - może być użyte dla dowolnych szeregów czasowych i nie wymaga specjalistycznej wiedzy z dziedziny, z której pochodzą dane. Dodatkowo pozwala na otrzymanie sensownej liczby cech (z 42 szeregów czasowych o długości 400 uzyskano 6000 atrybutów) w stosunkowo niewielkim czasie (około dwóch godzin na komputerze przeznaczonym do użytku domowego). Należy przy tym zwrócić uwagę na fakt, iż cechy wyliczane były sekwencyjnie - zastosowanie mocniejszej maszyny i zrównoleglenia całego procesu mogłoby znacznie obniżyć czas działania.

Kolejnym krokiem była redukcja problemu ewoluujących pojęć. Celem autora było rozwinięcie metody opisanej w [Boullé, 2015] i dokładne przetestowanie jej dla różnych kombinacji miar jakości cech i algorytmów uczących. Uzyskane rezultaty można uznać za satysfakcjonujące - poprawa wyniku sięgała nawet 30%. Inną dużą zaletą metody zaproponowanej w rozdziale 4. jest możliwość stosowania jej z różnymi funkcjami mierzącymi jakość atrybutów nawet przy pozornie niekorzystnym rozkładzie jakości cech zastosowanie opisywanego podejścia prowadziło do poprawy wyników klasyfikatora. Za mocną stronę opisywanego podejścia uznać można też jego stabilność - przy podobnych rozkładach jakości cech dla danych miar, wybrane zbiory atrybutów (o zbliżonej liczności) były także podobne. Wadą jest natomiast problem automatyzacji metody dla różnych miar - każda funkcja wymaga przeanalizowania rozkładu istotności atrybutów w celu wyznaczenia potencjalnie dobrych wartości progów $threshold_{class}$.

Głównym wkładem niniejszej pracy jest także zaproponowanie usprawnienia powyższego podejścia, które to usprawnienie polega na wykrywaniu klastrów odpowiadających ewoluującym pojęciom bezpośrednio ze zbioru treningowego. W tym celu zastosowano analizę skupień, a konkretnie algorytm k-centroidów. Takie spojrzenie niesie ze sobą wiele zalet. Przede wszystkim czyni opisywaną metodę użyteczną w przypadku uczenia indukcyjnego (czyli w przypadku, gdy zbiór testowy jest niedostępny). Pozwala też na lepsze określenie jakości cech

dla problemu detekcji concept drift - ranga atrybutów jest mierzona względem identyfikatorów źródeł. Z wymienionych powodów autor wierzy, że to podejście będzie dalej rozwijane i analizowane - przykładowo przez wykorzystanie innych algorytmów klasteryzacji.

Warte rozważenia jest pytanie, jak zachowałaby się metoda opisywana w rozdziale 4., gdyby badany zbiór danych zawierał identyfikatory źródeł danych (w tym przypadku - identyfikatory strażaków). Autor liczy na to, że posiadanie informacji o pochodzeniu danej instancji mogłoby wyraźnie poprawić uzyskane rezultaty. Jest to o tyle istotne, że w codziennym zastosowaniu dodanie takiej informacji do zbioru danych bywa niekłopotliwe.

W rozdziale 5. opisano dwie inne metody stosowane do rozwiązania problemu adaptacji dziedziny - uczenie iteracyjne oraz powiększanie przestrzeni cech zaproponowane w [III, 2009]. Obie okazały się nieskuteczne - wyniki otrzymane przy ich użyciu były dużo gorsze niż te uzyskane przy zastosowaniu selekcji cech. Potwierdza to tylko fakt, że metoda przedstawiona w rozdziale 4. zasługuje na rozwinięcie i dalsze badania.

Spis rysunków

1.1.	Schemat uczenia z nadzorem	8
1.2.	Przykład przeuczenia	10
2.1.	Rozmieszczenie czujników na ciele strażaka	13
2.2.	Rozkład klas w zbiorze treningowym	14
2.3.	Wykres funkcji logistycznej	16
2.4.	Przykład klasyfikacji za pomocą SVM	17
2.5.		17
3.1.	Przykład korzyści z badania reprezentacji pochodnych szeregu	20
3.2.	Przykład transformacji Fouriera	22
3.3.	Wykres falki Haara	23
3.4.	Rozkłady o ujemnym i dodatnim współczynniku skośności	25
3.5.	Kształt rozkładu w zależności od wartości kurtozy	25
3.6.	Przykładowe wykresy danych i odpowiadające im wartości współczynnika ko-	
	relacji liniowej Pearsona	27
4.1.	Przykładowy rozkład jakości cech dla problemu klasyfikacji oraz zadania wy-	
	krywania ewoluujących pojęć	30
4.2.	Rozkład jakości cech przy użyciu informacji wzajemnej	34
4.3.	Rozkład jakości cech przy użyciu jednoczynnikowej analizy wariancji	36
4.4.	Rozkład jakości cech przy użyciu zysku Giniego	38
4.5.	Przykład klastrowania danych przy użyciu algorytmu k-centroidów	41
4.6.	Rozkład jakości cech przy użyciu informacji wzajemnej i jednoczynnikowej	
	analizy wariancji mierzonej za pomocą algorytmu 4.1	43
4.7.	Rozkład jakości cech przy użyciu zysku Giniego i algorytmu 4.1	43

Spis tabel

1.1.	Paradygmaty uczenia w teorii uczenia maszynowego	9
1.2.	Concept drift a overfitting	10
4.1.	Jakość klasyfikacji na wyekstrahowanych cechach	29
4.2.	Jakość klasyfikacji dla różnych wartości progowych przy użyciu informacji wzajemnej i regresji logistycznej	34
4.3.	Jakość klasyfikacji dla różnych wartości progowych przy użyciu informacji wzajemnej i SVM	35
4.4.	Jakość klasyfikacji dla różnych wartości progowych przy użyciu informacji wzajemnej i lasów losowych	35
4.5.	Jakość klasyfikacji dla różnych wartości progowych przy użyciu analizy wariancji i regresji logistycznej	37
4.6.	Jakość klasyfikacji dla różnych wartości progowych przy użyciu analizy wariancji i SVM	37
4.7.	Jakość klasyfikacji dla różnych wartości progowych przy użyciu analizy wariancji i lasów losowych	38
4.8.	Jakość klasyfikacji dla różnych wartości progowych przy użyciu zysku Giniego i regresji logistycznej	39
4.9.	Jakość klasyfikacji dla różnych wartości progowych przy użyciu zysku Giniego i SVM	39
4.10.	Jakość klasyfikacji dla różnych wartości progowych przy użyciu zysku Giniego i lasów losowych	40
4.11.	Jakość klasyfikacji dla różnych wartości progowych przy użyciu algorytmu 4.1, zysku Giniego i regresji logistycznej	44
4.12.	Jakość klasyfikacji dla różnych wartości progowych przy użyciu algorytmu 4.1, zysku Giniego i SVM	44
4.13.	Jakość klasyfikacji dla różnych wartości progowych przy użyciu algorytmu 4.1, zysku Giniego i lasów losowych	45
5.1.	- · · · · · · · · · · · · · · · · · · ·	48
5.2.	Jakość klasyfikatora budowanego przy użyciu metody powiększania przestrzeni	E ()
	cech	50

Bibliografia

- [DBL, 2007] (2007). Workshops Proceedings of the 7th IEEE International Conference on Data Mining (ICDM 2007), October 28-31, 2007, Omaha, Nebraska, USA. IEEE Computer Society.
- [DBL, 2011a] (2011a). The 2011 International Joint Conference on Neural Networks, IJCNN 2011, San Jose, California, USA, July 31 August 5, 2011. IEEE.
- [DBL, 2011b] (2011b). The 24th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, Colorado Springs, CO, USA, 20-25 June 2011. IEEE Computer Society.
- [DBL, 2013] (2013). IEEE International Conference on Computer Vision, ICCV 2013, Sydney, Australia, December 1-8, 2013. IEEE Computer Society.
- [DBL, 2014] (2014). 2014 IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2014, Orlando, FL, USA, December 9-12, 2014. IEEE.
- [Ando and Zhang, 2005] Ando, R. K. and Zhang, T. (2005). A framework for learning predictive structures from multiple tasks and unlabeled data. *Journal of Machine Learning Research*, 6:1817–1853.
- [Appice et al., 2014] Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., and Ras, Z. W., editors (2014). New Frontiers in Mining Complex Patterns Second International Workshop, NFMCP 2013, Held in Conjunction with ECML-PKDD 2013, Prague, Czech Republic, September 27, 2013, Revised Selected Papers, volume 8399 of Lecture Notes in Computer Science. Springer.
- [Arnold et al., 2007] Arnold, A., Nallapati, R., and Cohen, W. W. (2007). A comparative study of methods for transductive transfer learning. In [DBL, 2007], pages 77–82.
- [Bartlett et al., 2012] Bartlett, P. L., Pereira, F. C. N., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors (2012). Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States.
- [Battiti, 1994] Battiti, R. (1994). Using mutual information for selecting features in supervised neural net learning. *IEEE Trans. Neural Networks*, 5(4):537–550.
- [Blitzer et al., 2007] Blitzer, J., Dredze, M., and Pereira, F. (2007). Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In [Carroll et al., 2007].

- [Blitzer et al., 2006] Blitzer, J., McDonald, R. T., and Pereira, F. (2006). Domain adaptation with structural correspondence learning. In [Jurafsky and Gaussier, 2006], pages 120–128.
- [Bondu and Boullé, 2011] Bondu, A. and Boullé, M. (2011). A supervised approach for change detection in data streams. In [DBL, 2011a], pages 519–526.
- [Boullé, 2015] Boullé, M. (2015). Tagging fireworkers activities from body sensors under distribution drift. In [Ganzha et al., 2015], pages 389–396.
- [Breiman, 2001] Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.
- [Brodley and Stone, 2014] Brodley, C. E. and Stone, P., editors (2014). Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27-31, 2014, Québec City, Québec, Canada. AAAI Press.
- [Carroll et al., 2007] Carroll, J. A., van den Bosch, A., and Zaenen, A., editors (2007). ACL 2007, Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, June 23-30, 2007, Prague, Czech Republic. The Association for Computational Linguistics.
- [Chaovalitwongse et al., 2007] Chaovalitwongse, W. A., Fan, Y., and Sachdeo, R. C. (2007). On the time series k-nearest neighbor classification of abnormal brain activity. *IEEE Trans. Systems, Man, and Cybernetics, Part A*, 37(6):1005–1016.
- [Fulcher and Jones, 2014] Fulcher, B. D. and Jones, N. S. (2014). Highly comparative feature-based time-series classification. *IEEE Trans. Knowl. Data Eng.*, 26(12):3026–3037.
- [Ganzha et al., 2015] Ganzha, M., Maciaszek, L. A., and Paprzycki, M., editors (2015). 2015 Federated Conference on Computer Science and Information Systems, FedCSIS 2015, Lódz, Poland, September 13-16, 2015. IEEE.
- [Ganzha et al., 2016] Ganzha, M., Maciaszek, L. A., and Paprzycki, M., editors (2016). Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, September 11-14, 2016.
- [Gay et al., 2013] Gay, D., Guigourès, R., Boullé, M., and Clérot, F. (2013). Feature extraction over multiple representations for time series classification. In [Appice et al., 2014], pages 18–34.
- [Grünauer and Vincze, 2015] Grünauer, A. and Vincze, M. (2015). Using dimension reduction to improve the classification of high-dimensional data. *CoRR*, abs/1505.06907.
- [Grzegorowski, 2016] Grzegorowski, M. (2016). Massively parallel feature extraction framework application in predicting dangerous seismic events. In [Ganzha et al., 2016], pages 225–229.
- [Guyon and Elisseeff, 2003] Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. *Journal of Machine Learning Research*, 3:1157–1182.
- [III, 2009] III, H. D. (2009). Frustratingly easy domain adaptation. CoRR, abs/0907.1815.
- [Jurafsky and Gaussier, 2006] Jurafsky, D. and Gaussier, É., editors (2006). EMNLP 2007, Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, 22-23 July 2006, Sydney, Australia. ACL.

- [Keogh and Ratanamahatana, 2004] Keogh, E. and Ratanamahatana, A. (2004). Everything you know about dynamic time warping is wrong. 3rd Workshop on Mining Temporal and Sequential Data, in conjunction with 10th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD-2004), Seattle, WA.
- [Kim and Smyth, 2006] Kim, S. and Smyth, P. (2006). Segmental hidden markov models with random effects for waveform modeling. *Journal of Machine Learning Research*, 7:945–969.
- [Kulis et al., 2011] Kulis, B., Saenko, K., and Darrell, T. (2011). What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In [DBL, 2011b], pages 1785–1792.
- [Mallat, 1999] Mallat, S. (1999). A wavelet tour of signal processing (2. ed.). Academic Press.
- [Meina et al., 2015] Meina, M., Janusz, A., Rykaczewski, K., Slezak, D., Celmer, B., and Krasuski, A. (2015). Tagging firefighter activities at the emergency scene: Summary of aaia'15 data mining competition at knowledge pit. In [Ganzha et al., 2015], pages 367–373.
- [Mirrashed and Rastegari, 2013] Mirrashed, F. and Rastegari, M. (2013). Domain adaptive classification. In [DBL, 2013], pages 2608–2615.
- [Mörchen, 2003] Mörchen, F. (2003). Time series feature extraction for data mining using DWT and DFT. Technical Report No. 33, Philipps-University Marburg.
- [Ravikumar and Devi, 2014] Ravikumar, P. and Devi, V. S. (2014). Weighted feature-based classification of time series data. In [DBL, 2014], pages 222–228.
- [Wiens et al., 2012] Wiens, J., Guttag, J. V., and Horvitz, E. (2012). Patient risk stratification for hospital-associated c. diff as a time-series classification task. In [Bartlett et al., 2012], pages 476–484.
- [Xia et al., 2014] Xia, R., Yu, J., Xu, F., and Wang, S. (2014). Instance-based domain adaptation in NLP via in-target-domain logistic approximation. In [Brodley and Stone, 2014], pages 1600–1606.
- [Zagorecki, 2015] Zagorecki, A. (2015). A versatile approach to classification of multivariate time series data. In [Ganzha et al., 2015], pages 407–410.