

# 作为5600

# 12位可编程非接触式 体温计

## 一般说明

该AS5600是一个易于编程的磁性旋转位置

具有高分辨率12位模拟或PWM输出的传感器。 这种非接触系统 测量直径磁化轴上磁铁的绝对角度。 这个AS5600是为 非接触式电位器的应用及其鲁棒设计消除了任何均匀外部杂散 磁场的影响。

行业标准I2C界面支持简单用户 非易失性参数的编程,而不需要专用程序员。

默认情况下,输出表示从0到360度的范围。

还可以通过编程零角 (开始位置)和最大角度(停止位置)来 定义输出的较小范围)。

该AS5600还配备了智能低功耗模式功能,以自动降低功耗。

输入引脚(DIR)根据旋转方向选择输出的极性。 如果DIR连接 到地面,则输出值随顺时针旋转而增加。 如果DIR连接到 VDD, 则输出值随逆时针方向增加 旋转。

订购信息还有内容指南出现在数据表的末尾。

## 主要优点和特点

以下列出了AS5600、12位可编程无触点电位计的优点和特点:

使用AS5600的附加值

| 好处              | 特征                                    |
|-----------------|---------------------------------------|
| • 最高的可靠性和耐久性    | • 非接触式角度测量                            |
| • 简单的编程         | • 简单的用户可编程启动和停止位置在I <sup>2</sup> C界面上 |
| • 在角度偏移上有很大的灵活性 | ● 最大角度可编程从18°到360°                    |
| • 高分辨率输出信号      | • 12位DAC输出分辨率                         |
| • 可选择输出         | • 模拟输出比率VDD或PWM编码数字输出                 |



| 好处         | 特征                     |
|------------|------------------------|
| • 低功耗      | • 自动进入低功耗模式            |
| • 简单的设置    | • 自动磁铁检测               |
| • 小形态因子    | • SOIC-8包装             |
| • 健壮的环境耐受性 | • 宽温度范围: -40° C到125° C |

# 申请

AS5600非常适合于非接触式电位器, 非接触式旋钮,踏板,RC伺服和其他角度位置测量解决方案。

# 块状图

本装置的功能块如下图所示:

图2: 功能块AS5600





# 固定作业

图3: SOIC-8Pin-Out



图4: 别针说明

| 密码 | 名字     | 类型      | 说明                                  |
|----|--------|---------|-------------------------------------|
| 1  | vdd5v  | 供应      | 正电压电源在5V模式下(需要100nF去耦电容)            |
| 2  | vdd3v3 | 供应      | 正电压电源在3.3V模式(需要外部1-μF去耦电容<br>在5V模式) |
| 3  | 出去     | 模拟/数字输出 | 模拟/PWM输出                            |
| 4  | GND    | 供应      | 地面                                  |
| 5  | 帕戈     | 数字输入    | 程序选项(内部拉起,连接GND=编程选项B)              |
| 6  | SDA    | 数字输入/输出 | I <sup>2</sup> C数据(考虑外部拉起)          |
| 7  | SCL    | 数字输入    | I <sup>2</sup> C时钟(考虑外部拉起)          |
| 8  | 迪尔     | 数字输入    | 方向极性(GND=值顺时针增加,VDD=值逆时针增加)         |



# 绝对最高等级

强调超出下文所列的范围绝对最高等级 可能对设备造成永久 损坏。 这些只是压力评级。 设备在这些条件或任何其他条 件下的功能操作,超出以下条件运营 条件不是隐含的。 暴露 在绝对最大值

长时间的额定条件可能会影响设备的可靠性。

图5: 绝对最高等级

| <b>竹.</b> 旦.       | 会数                   | 付      | 丰古牝                       | A A:   | □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □                                                                                                  |  |  |  |  |  |
|--------------------|----------------------|--------|---------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 符号                 | <b>参数</b>            | 敏      | 麦克斯                       | 単位     | 评论意见                                                                                                                                   |  |  |  |  |  |
|                    | 电气参数                 |        |                           |        |                                                                                                                                        |  |  |  |  |  |
| vdd5v              | 直流电源电压在VDD5V引脚       | -0.3   | 6. 1                      | V      |                                                                                                                                        |  |  |  |  |  |
| vdd3v3             | 直流电源电压在VDD3V3引<br>脚  | -0.3   | 4.0                       | V      |                                                                                                                                        |  |  |  |  |  |
| 维奥                 | 直流电源电压在所有数字<br>或模拟引脚 | -0.3   | VDD+0.3                   | V      |                                                                                                                                        |  |  |  |  |  |
| i可控硅               | 输入电流 (闭锁抗扰度)         | -100   | 100                       | m A    | 杰西78                                                                                                                                   |  |  |  |  |  |
|                    | 连                    | 续功率    | 、<br>耗散(T <sub>a</sub> =7 | 70° c) |                                                                                                                                        |  |  |  |  |  |
| p <sub>t</sub>     | 持续的功耗                |        | 50                        | M W    |                                                                                                                                        |  |  |  |  |  |
|                    |                      | i<br>E | 静电放电                      |        |                                                                                                                                        |  |  |  |  |  |
| ESD <sub>HBM</sub> | 静电放电HBM              |        | ±<br>1                    | k V    | MIL883E法3015.7                                                                                                                         |  |  |  |  |  |
|                    |                      | 温度范    | 围和储存组                     | 条件     |                                                                                                                                        |  |  |  |  |  |
| t斯特格               | 储存温度范围               | -55    | 125                       | °c     |                                                                                                                                        |  |  |  |  |  |
| <sup>t</sup> 尸体    | 包裹体温                 |        | 260                       | ° c    | ICP/JEDECj-STD-020<br>回流峰焊接温度(体温)是根据<br>IPC/JEDEC指定的<br>J-STD-020"水分/回流敏<br>感性分类<br>非密封固态表面安装装置。"无<br>铅铅包装的铅光洁度是<br>"MatteTin"(100%Sn) |  |  |  |  |  |
| Rh <sub>NC</sub>   | 相对湿度(不凝结)            | 5      | 85                        | %      |                                                                                                                                        |  |  |  |  |  |
| msl                | 水分敏感性水平              |        | 3                         |        | ICP/JEDECj-STD-033                                                                                                                     |  |  |  |  |  |



# 电气特性

所有的限制都是有保证的。 用生产试验或SQC(统计质量控制) 方法保证最小值和最大值的参数。

# 操作条件

图6:

系统电气特性和温度范围

| 符号             | 参数                      | 条件                       | 敏     | 字体   | 麦克<br>斯      | 単位  |
|----------------|-------------------------|--------------------------|-------|------|--------------|-----|
| vdd5v          | 正电源电压5. 0V模式            | 5. 0V运行模式                | 4. 5  | 5. 0 | 5 <b>.</b> 5 | v   |
| vaasv          |                         | 在OTP烧伤过程中 <sup>(2)</sup> | 4. 5  | 3.0  | J. J         | V   |
| n443n3         | 正电源电压在3.3V模式下           | 3. 3V运行模式                | 3.0   | 3. 3 | 3. 6         | V   |
| vaasvs         | td3v3                   | 在0TP烧伤过程中 <sup>(2)</sup> | 3. 25 | 3.3  | 3. 35        | V   |
| IDD            | 供应电流在NOM <sup>(1)</sup> | 下午=00<br>一直开着            |       |      | 6. 5         | m A |
| 1DD_LPM1       | 供应电流1pm1 <sup>(1)</sup> | 下午=01<br>轮询时间=5ms        |       |      | 3. 4         | m A |
| 1DD_LPM2       | 供应电流1pm2 <sup>(1)</sup> | 下午=10点<br>轮询时间=20ms      |       |      | 1.8          | m A |
| 1DD_LPM3       | 供应电流1pm3 <sup>(1)</sup> | 下午=11点<br>轮询时间=100ms     |       |      | 1.5          | m A |
| idd_burn       | 为烧伤程序提供每位电流             | 初始峰值,1µs                 |       |      | 100          | m A |
| Tuu_buTii      |                         | 稳定燃烧,<30μs               |       |      | 40           | m A |
| t <sub>a</sub> | 操作温度                    |                          | -40   |      | 125          | °C  |
| $t_p$          | 编程温度                    |                          | 20    |      | 30           | ° c |

#### 注.

- 1. 对于典型磁场(60mT),不包括传递给外部负载的电流和轮询时间的公差。
- 2. 对于OTP燃烧过程,供应线源电阻不应超过10hm。



# 数字输入和输出

图7: 数字输入输出特性

| 符号    | 参数      | 条件 | 敏                | 字体 | 麦克<br>斯 | 単位 |
|-------|---------|----|------------------|----|---------|----|
| v_ih  | 高电平输入电压 |    | $0.7 \times VDD$ |    |         | V  |
| v_i1  | 低电平输入电压 |    |                  |    | 0.3×vdd | V  |
| v_oh  | 高电平输出电压 |    | VDD-0.5          |    |         | V  |
| v_ol  | 低电平输出电压 |    |                  |    | 0.4     | v  |
| i_lkg | 泄漏电流    |    |                  |    | ±1      | μА |

# 模拟输出

图8: 模拟输出特性

| 符号      | 参数            | 条件       | 敏   | 字体 | 麦克<br>斯 | 単位  |
|---------|---------------|----------|-----|----|---------|-----|
| inl_dac | DAC积分-非线性电气规范 |          |     |    | ±5      | LSB |
| dnl_dac | DAC微分-非线性电气规范 |          |     |    | ±1      | LSB |
| rout_fd | 输出电阻负载        | 0到VDD输出  | 100 |    |         | kΩ  |
| rout_pd | 输出电阻负载        | 产出10%至90 | 10  |    |         | kΩ  |
| 库特      | 输出电容负载        |          |     |    | 1       | n F |



# PWM输出

图9:

PWM输出特性

| 符号     | 参数                   | 条件      | 敏    | 字体  | 麦克<br>斯 | 单位         |
|--------|----------------------|---------|------|-----|---------|------------|
| PWMf1  | PWM频率 <sup>(1)</sup> | PWMF=00 |      | 115 |         | 赫兹         |
| PWMf2  | PWM频率 <sup>(1)</sup> | PWMF=01 |      | 230 |         | 赫兹         |
| PWMf3  | PWM频率 (1)            | PWMF=10 |      | 460 |         | 赫兹         |
| PWMf4  | PWM频率 <sup>(1)</sup> | PWMF=11 |      | 920 |         | 赫兹         |
| pwm_dc | PWM占空比               |         | 2. 9 |     | 97. 1   | %          |
| pwm_sr | PWM旋转速率              | 负载=1nF  | 0.5  |     | 2       | 五<br>/ μ s |
| i_0    | 输出电流为PWM输出           |         | ±0.  |     |         | m A        |
| c_1    | 用于PWM输出的电容负<br>载     |         |      |     | 1       | n F        |

### 注:

1. 频率作为典型值,公差±为5%

# 时间特性

图10:时间条件

| 符号       | 参数                     | 条件    | 敏 | 字体 | 麦克斯        | 单位 |
|----------|------------------------|-------|---|----|------------|----|
| t_detwd  | 看门狗检测时间 <sup>(1)</sup> | 华盛顿=1 |   | 1  |            | 分钟 |
| t_pu     | 启动时间                   |       |   |    | 10         | Ms |
| f_s      | 抽样率                    |       |   |    | 150        | μs |
| t_sett11 | 安顿时间                   | SF=00 |   |    | 2. 2       | Ms |
| t_sett12 | 安顿时间                   | SF=01 |   |    | 1.1        | Ms |
| t_sett13 | 安顿时间                   | SF=10 |   |    | 0.55       | Ms |
| t_sett14 | 安顿时间                   | SF=11 |   |    | 0. 28<br>6 | Ms |

### 注:

1. 作为典型值,公差±为5%



# 磁特性

图11: 磁特性

| 符号       | 参数                               | 条件                            | 敏  | 麦克<br>斯 | 単位  |
|----------|----------------------------------|-------------------------------|----|---------|-----|
| Bz       | 正交磁场强度,规则输出噪<br>声ON_SLOW和ON_FAST | 所需的正交分量的磁场强度测量<br>在模具表面沿1mm的圆 | 30 | 90      | тТ  |
| Bz_ERROR | 最小要求正交磁场强度,磁<br>铁检测水平            |                               |    | 8       | m T |

# 系统特性

图12: 系统规范

| 符号      | 参数                | 条件                                                      | 敏 | 字<br>体 | 麦克斯        | 単位 |
|---------|-------------------|---------------------------------------------------------|---|--------|------------|----|
| 决议      | 决议                |                                                         |   | 12     |            | 比特 |
| inl_bl  | 系统INL             | 偏离最佳线配合;360°最大角度,无磁铁位移,无<br>执行零编程(PWM,I <sup>2</sup> C) |   |        | ±1         | 学位 |
| on_slow | 均方根输出噪<br>声(1西格玛) | 正交分量为磁场在规定范围内<br>(Bz),后2.2ms;<br>SF=00                  |   |        | 0. 01<br>5 | 学位 |
| on_fast | 均方根输出噪<br>声(1西格玛) | 正交分量为磁场在规定范围内(Bz),经过286 μs, SF=11                       |   |        | 0.04       | 学位 |



## 详细说明

该AS5600是一种基于霍尔的旋转磁位传感器,使用平面传感 器来转换磁场

组件垂直于芯片表面成a

电压。

来自霍尔传感器的信号首先被放大和滤波,然后被模数转换 转换器(ADC)。 ADC的输出由硬连线CORD IC块(坐标旋转数 字) 处理

计算机)来计算的角度和大小

磁场矢量。 磁场强度由自动增益控制 (AGC) 来调节放大电平 以补偿温度和磁场

变化。

输出阶段使用CORDIC算法提供的角度值。 用户可以在模拟 之间讲行选择

输出和PWM编码的数字输出。 前者提供一个输出电压,它将角 度表示为比率线性绝对值。 后者提供数字输出,它将角度表 示为脉冲宽度。

AS5600是通过工业标准的I2C接口编程来编写片上非易失性存 储器。这个

接口可用于编程零角(开始位置)和最大角度(停止位置),以

输出到整个0到360度范围的子集的分辨率。

### IC电源管理

AS5600由5.0V电源供电,使用片上LDO调节器,也可以直接由 3.3V电源供电。内部LDO不打算为其他外部IC供电,需要1µF电 容器接地,如图所示图13.

在3.3V操作中,VDD5V和VDD3V3引脚必须绑在一起。VDD是 VDD5V引脚处的电压电平。

图13: 5.0 V和3. 3V电源选项



AMS数据表 第11页9 文件反馈



## I2C接口

该AS5600支持2线快速模式加I<sup>2</sup>C从协议在设备模式,符合 NXP半导体(原飞利浦半导体)

规格UM10204。 向总线发送数据的设备是发射机,接收数据的设备是接收机。 的

控制消息的设备称为主设备。 由主人控制的装置称为奴隶。 一位大师

设备生成串行时钟(SCL),控制总线访问,并生成控制总线的 START和STOP条件。 AS5600总是在I<sup>2</sup>C总线上作为奴隶运行。 连接到总线是通过开路I/O线SDA和输入SCL。 不包括时钟 拉伸。

主机MCU(master) 发起数据传输。 该AS5600的7位从地址为 0x36 (0110110为二进制)。

### 支持模式

- 随机/相等读取
- 字节/页写
- 自动增量(ANGLE寄存器)
- 标准模式
- 快速模式
- 快速模式加

其中SDA信号为双向数据线。 其中SCL信号是由I<sup>2</sup>C总线母 机产生的时钟进行同步

来自SDA的采样数据。 最大SCL频率为1MHz。 数据采样在SCL的上升边缘。

### I<sup>2</sup>C接口操作

图14: I<sup>2</sup>C时序图





### I<sup>2</sup>C电气规范

图15: I<sup>2</sup>C电气规范

| 符号               | 参数                             | 条件                              | 敏             | 字体 | 麦克斯          | 単位  |
|------------------|--------------------------------|---------------------------------|---------------|----|--------------|-----|
| 维尔               | 逻辑低输入电压                        |                                 | -0.3          |    | 0. 3x<br>VDD | v   |
| vih              | 逻辑高输入电压                        |                                 | 0.7x<br>VDD   |    | VDD+0<br>. 3 | V   |
| 维斯               | 施密特触发器输入的迟滞                    | VDD>2.5V                        | 0. 05x<br>VDD |    |              | V   |
| 第二卷              | 逻辑低输出电压<br>(开漏或开收集器)在3米A汇<br>流 | VDD>2.5V                        |               |    | 0.<br>4      | V   |
| 哈哈               | 逻辑低输出电流                        | 卷=0.4v                          | 20            |    |              | m A |
| t的               | 输出下降时间从VIHmax到VILmax           |                                 | 10            |    | 120 (1)      | NS  |
| $t_{sp}$         | 脉冲宽度的尖峰,必须抑制输<br>入滤波器          |                                 |               |    | 50 (2)       | NS  |
| ii               | 输入电流在每个I/0引脚                   | 输入电压在<br>0.1xVDD 和<br>0.9xVDD之间 | -10           |    | +10 (3)      | μА  |
| Ср               | 每条母线的总电容负荷                     |                                 |               |    | 550          | p F |
| c <sub>i/o</sub> | I/O电容(SDA, SCL) <sup>(4)</sup> |                                 |               |    | 10           | p F |

### 注:

- 1. 在Fast-modePlus中,输出级和总线定时都指定了相同的下降时间。 如果使用串联电阻,则必须考虑总线定时。
- 2. 在SDA和SCL输入上的输入滤波器抑制小于50ns的噪声尖峰。
- 3. 快速模式和快速模式加设备的I/O引脚不能加载或驱动SDA和SCL线,如果VDD被关闭。
- 4. 特殊用途的设备,如多路复用器和开关可能超过这个电容,因为它们将多条路径连接在一起。



### I2C时机

图16: I<sup>2</sup>C定时

| 符号                  | 参数                            | 敏     | 麦克<br>斯    | 单位  |
|---------------------|-------------------------------|-------|------------|-----|
| f <sub>斯克尔</sub>    | SCL时钟频率                       |       | 1.0        | MHz |
| $t_{ m buf}$        | 总线空闲时间(停止和启动条件之间的时间)          | 0.5   |            | μs  |
| t <sub>高清;斯</sub> 塔 | 保持时间; (重复)开始条件 <sup>(1)</sup> | 0.26  |            | μs  |
| t低                  | 低相位的SCL时钟                     | 0. 5  |            | μs  |
| t高                  | 高相位的SCL时钟                     | 0. 26 |            | μs  |
| t <sub>苏;斯塔</sub>   | 重复启动条件的设置时间                   | 0. 26 |            | μs  |
| t高清; dat            | 数据保存时间 <sup>(2)</sup>         |       | 0.45       | μs  |
| t <sub>苏</sub> ; 达特 | 数据设置时间 <sup>(3)</sup>         | 50    |            | NS  |
| $t_{\rm r}$         | SDA和SCL信号的上升时间                |       | 120        | NS  |
| $t_{\mathrm{f}}$    | SDA和SCL信号的下降时间                | 10    | 120<br>(4) | NS  |
| t苏;斯多               | 停止条件的设置时间                     | 0. 26 |            | μs  |

### 注:

- 1. 在此时间之后,生成第一个时钟。
- 2. 设备必须在内部为SDA信号(指V)提供120ns(快速模式加)的最小保持时间 $_{\mathrm{Hmin}}$ 在SCL)中桥接SCL下降边缘的未定义区域。
- 3. 标准模式系统可以使用快速模式设备,但要求 $t_{\ddot{\pi};\ \dot{t}_{c}}$ 始少须满足250ns=。 如果设备不拉伸SCL的低相位,这是自动的。 如果这样的设备确实拉伸了SCL的低相位,则必须在SDA(T)上驱动下一个数据位 $t_{c}$ Rmax $t_{c}$ + $t_$
- 4. 在Fast-modePlus中,输出级和总线定时都指定了相同的下降时间。 如果使用串联电阻,则必须考虑总线定时。



### I<sup>2</sup>C模式

### 无效地址

有两个地址用于访问AS5600寄存器。 首先是用于选择AS5600的从地址。 所有I<sup>2</sup>C总线事务都包括从地址。 该AS5600的从地址为0x36(0110110在二进制),第二个地址是在写事务中传输的第一个字节中发送的字地址。 字地址选择AS5600上的寄存器。 字地址加载到AS5600上的地址指针中。

在写入事务中的后续读事务和后续字节期间,地址指针提供所 选寄存器的地址。 地址指针递增

在每个字节被传输后,除了某些读取事务到特殊寄存器之外。

如果用户将地址指针设置为无效字地址,则不承认地址字 节(A位高)。

然而,读或写周期是可能的。 地址指针在每个字节之后增加。

### 读书

当从无效地址读取时,AS5600返回数据字节中的所有零。 地址指针在每个字节之后递增。 整个地址范围的顺序读取是可能的,包括地址溢出。

自动增加地址指针为ANGLE,RAWANGLE和MAGNITUDE寄存器

这些是抑制自动的特殊寄存器

读取上的地址指针的增量,因此重新读取这些寄存器不需要 I<sup>2</sup>C写入命令来重新加载地址指针。 只有当地址指针设置为 寄存器的高字节时,指针的这种特殊处理才是有效的。

### 写作

对无效地址的写入不被承认

AS5600, 虽然地址指针是递增的。 当地址指针再次指向有效地址时,将确认成功的写入访问。 整页写在上面地址范围是可能的,包括地址溢出。

### 支持总线协议

只有当总线不忙时,才能启动数据传输。

在数据传输过程中,每当SCL高时,数据线必须保持稳定。 当 SCL较高时,数据线的变化是 解释为START或停止条件。

AMS数据表第11页13[v1-06]2018年6月文件反馈



因此, 定义了以下总线条件:

### 巴士不忙

SDA和SCL仍然很高。

### 开始数据传输

当SCL较高时,SDA状态从高到低的变化定义了START条件。

### 停止数据传输

当SCL较高时,SDA状态从低到高的变化定义了停止条件。

### 数据有效

数据线的状态表示有效数据,当在START条件之后,SDA在较高的持续时间内是稳定的

SCL的阶段。 在SCL的低阶段,必须改变SDA上的数据。 每位数据有一个时钟周期。

每个I<sup>2</sup>C总线事务都以START条件启动,并以STOP条件终止。 数据字节数

在START和STOP条件之间转移不受限制,并由I<sup>2</sup>C总线主决定。 信息是

传输字节,每个接收器承认第九位。

### 承认

每个 $I^2$ C从设备,当被寻址时,必须在接收每个字节后生成一个确认。  $I^2$ C总线主设备必须为此生成额外的时钟周期确认位。

一个承认的奴隶必须在此期间拉下SDA

确认时钟周期的方式,使SDA在确认时钟周期的高阶段是 稳定的低。 的

课程、设置和持有时间必须考虑在内。 母服务器必须用not 来表示读取事务的结束

在从服务器发出的最后一个字节上生成一个确认位。 在这种情况下,从服务器必须离开SDA高,以使主机能够生成停止条件。

图17:数据读取



**第10页**14 文件反馈



根据R/W位的状态,可以进行两种类型的数据传输:

### 从主传送器到从接收器的数据传输

主机传输的第一个字节是从地址,后面是R/W=0。 接下来是一些数据字节。 从服务器在每个接收到的字节之后返回一个确认位。 如果从服务器不理解命令或数据,则发送非确认(NACK)。 数据传输最多重要位(MSB)第一。

### 从从从发送器到主接收器的数据传输

主机发送第一个字节(从地址)。 然后,从服务器返回一个确认位,然后是从服务器

发送多个数据字节。 主返回一个

在所有接收到的字节之后确认位,而不是最后一个字节。 在最后一个接收字节的末尾,返回一个NACK。 主生成所有SCL时钟周期以及START和STOP条件。 转移以停止条件或重复启动条件结束。 因为反复的开始

条件也是下一次串行传输的开始,总线不被释放。 首先用最重要的位 (MSB) 传输数据。

### AS5600奴隶模式

### 从接收器模式 (写入模式)

通过SDA和SCL接收串行数据和时钟。 每个字节后面都有一个确认位或一个不确认,这取决于地址指针是否选择有效的地址。 开始和停止条件被认为是

总线事务的开始和结束。 从地址字节是START条件后接收的第一个字节。七位AS5600地址为0x36(0110110二进制)。

在7位从地址后面跟着方向位(R/W),对于写,方向位为0(低)。接收和解码从地址字节后,从设备在SDA上驱动确认。在AS5600确认从地址和之后

写位,主机将寄存器地址(字地址)发送到AS5600。 这将加载到AS5600上的地址指针中。 如果地址是有效可读的地址,AS5600通过发送确认(有点低)来回答)。 如果地址指针选择无效地址,则发送不确认(有点高)。 然后,主机可以发送零字节或更多字节的数据。 如果地址指针选择无效地址,则

未存储接收到的数据。 无论地址是否有效,每个字节传输后,地址指针都会增加。 如果地址指针再次到达有效位置,则

用确认和存储数据来回答AS5600。 主机生成停止条件以终止 写入 交易。

AMS数据表第11页15[v1-06]2018年6月文件反馈



图18:

数据写入(从接收器模式)



### 从发射机模式(读取模式)

第一个字节被接收并处理为从接收器模式。 然而,在这种模式下,方向位表示AS5600将在SDA上驱动数据。 START和STOP 条件被确认为总线事务的开始和结束。 从地址字节是主机生成START条件后接收到的第一个字节。 从地址字节包含7位 AS5600地址。 在7位从地址后面跟着方向位(R/W),对于读取,方向位为1(高)。 后

接收和解码从地址字节,从设备驱动SDA行上的确认。 然后 AS5600开始从地址指针指向的寄存器地址开始传输数据。 如果没有写入地址指针

在启动读取事务之前,读取的第一个地址是存储在地址指针中的最后一个地址。 为了结束读取,AS5600必须接收一个未确认(NACK

交易。

图19: 数据读取(从发射机模式)



**AMS数据表** 文件反馈 [v1-06] 2018 年6月



### 图20: 数据读取与地址指针Reload (从发射机模式)



SDA和SCL输入滤波器

包括SDA和SCL输入的输入滤波器,以抑制小于50ns的噪声尖

AMS数据表 第11页17 文件反馈



# 登记册说明

以下寄存器可通过串行I<sup>2</sup>C接口访问。 从机的7位设备地址 为0x36

(0110110二进制)。 对配置进行永久编程, 提供了一种非易失性存储器(OTP。

图21: 登记地图

| 地址    | 名字        | r/w   | 第7位                                | 第6位  | 第5<br>位  | 第4<br>位 | 第3<br>位          | 第2位           | 第1位 0位         |
|-------|-----------|-------|------------------------------------|------|----------|---------|------------------|---------------|----------------|
|       |           |       | 配                                  | 置登记册 | (1), (2) |         |                  |               |                |
| 0x00  | zmco      | r     |                                    |      |          |         |                  |               | zmco (1:<br>0) |
| 0x01  | zpos      | r/w/p |                                    |      |          |         |                  | zpos<br>8     |                |
| 0x02  |           |       |                                    |      |          | zpos (  | 7: 0)            |               |                |
| 0x03  | mpos      | r/w/p |                                    |      |          |         |                  | mpos<br>8     |                |
| 0x04  |           |       |                                    |      |          | mpos (  | 7: 0)            |               |                |
| 0x05  | 旦扮        | / /-  |                                    |      |          |         |                  | 曼格            | (11: 8)        |
| 0x06  | · 曼格      | r/w/p |                                    |      |          | 曼格 (    | 7: 0)            |               |                |
| 0x07  | conf      | r/w/p |                                    |      | WD       |         | 第四次<br>(2:<br>0) |               | SF (1: 0)      |
| 0x08  |           |       | PWMF                               | (1:  | 出局<br>0) | (1:     |                  | ·特(1 <b>:</b> | 下午 (1:<br>0)   |
|       |           |       |                                    | 输出寄  | 存器       |         |                  |               |                |
| 0x0C  | 生的 角      | r     |                                    |      |          |         |                  | 原始角度          | 美(11:8)        |
| 0x0D  | 度         | r     | 原始角(7:0)                           |      |          |         |                  |               |                |
| 0x0E  | 在中        | r     |                                    |      |          |         |                  | 角度            | (11: 8)        |
| 0x0F  | 角度        | r     | 角度 (7: 0)                          |      |          |         |                  |               |                |
|       | 1         | 1     |                                    | 身份登  | 记        |         |                  |               |                |
| 0x0B  | 地位        | r     |                                    |      | 医学<br>博士 | 毫升      | mh               |               |                |
| Ox1A  | 农业合<br>作社 | r     | APC (7: 0)                         |      |          |         |                  |               |                |
| 0x1B  | - 震级      | r     |                                    |      |          |         |                  | 震级(1]         | 1: 8)          |
| 0x1C  | 辰纵        | r     | 震级 (7: 0)                          |      |          |         |                  |               |                |
|       | 燃烧命令      |       |                                    |      |          |         |                  |               |                |
| 0x FF | 燃烧        | W     | Burn_Angle=0x80; Burn_Setting为0x40 |      |          |         |                  |               |                |

注: 第18页18 文件反馈 14. 煮要更改配置。明请读出寄存器,只修改所需的位并写入新配置。 空白字段可能包含工厂设置。 2. 在启动期间,配置寄存器被重置为永久编程值。 未编程位为零。



AMS数据表 第19页19 文件反馈



### ZPOS/MPOS/MANG注册

这些寄存器用于配置a的起始位置(ZPOS)和停止位置(MPOS)或最大角度(MANG

更窄的角度范围。 角范围必须大于18度。 在角范围变窄的 情况下

分辨率没有缩放到缩小的范围(例如。 0° 360° (全转) 409612月; 0°至180° 204812月)。 要配置角范围,请参阅角度编程.

### 冲突登记册

CONF寄存器支持自定义AS5600。 图22 显示CONF寄存器的映射。

# 图22: 冲突登记册

| 名字            | 位置    | 说明                                                                                                             |
|---------------|-------|----------------------------------------------------------------------------------------------------------------|
| 下午<br>(1: 0)  | 1:0   | 电源模式<br>00=NOM, 01=LPM1, 10=LPM2, 11=LPM3                                                                      |
| 海斯特 (1:0)     | 3:2   | 迟滞<br>00=0FF, 01=1LSB, 10=2LSB, 11和3LSB                                                                        |
| 出局<br>(1:0)   | 5:4   | 产出阶段<br>00=模拟(GND和VDD之间的全范围从0%到100%,01=模拟(GND和VDD之间的减少<br>范围从10%到90%,10=数字PWM                                  |
| 普华永道<br>(1:0) | 7:6   | PWM频率<br>00=115Hz; 01=230Hz; 10=460Hz; 11=920Hz                                                                |
| SF(1:0)       | 9:8   | 慢速过滤器<br>00=16倍 <sup>(1)</sup> ; 01=8x; 10=4x; 11=2x                                                           |
| 第四<br>(2:0)   | 12:10 | 快速过滤器阈值<br>仅=慢滤波器,001=6个LSB,010=7个LSB,011=9个LSB,100,18个LSB,101<br>=21个地方自治机构、110个=24个地方自治机构、111个=10个地方自治机<br>构 |
| WD            | 13    | 看门狗<br>0=关机,1=开机                                                                                               |

### 注:

1. 在低功耗模式(LPM)下强制执行)

### ANGLE/RAW ANGLE寄存器

拉瓦角寄存器包含未缩放和未修改的角度。 缩放的输出值在ANGLE寄存器中可用。

注: ANGLE寄存器在360度范围的极限处有10-LSB滞后,以避免不连续点或

在一个旋转内切换输出。

**AMS数据表** 文件反馈 [v1-06]2018年6月



## 统计登记册

状态寄存器提供指示AS5600当前状态的位。

# 图23: 统计登记册

| 名字   | 状态当位高           |
|------|-----------------|
| mh   | AGC最小增益溢出, 磁铁太强 |
| 毫升   | AGC最大增益溢出, 磁铁太弱 |
| 医学博士 | 磁铁被检测到          |

### AGC登记册

AS5600采用闭环自动增益控制来补偿磁场强度的变化 温度的变化,IC和磁铁之间的气隙,以及磁铁的降解。 AGC寄存器表示增益。 对于最稳健的性能,增益值应该在其范围的中心。 物理系统的气隙可以调整以实现此值。

在5V操作中,AGC范围为0-255计数。 在3.3V模式下,AGC范围减少到0-128计数。

## 国民登记册

MAGNITUDE寄存器表示内部CORDIC的大小值。

### 非易失记忆(OTP)

非易失性存储器用于永久编程配置。 以编程非易失性存储器,  $I^2C$ 

使用接口(备选案文A, 备选案文C)。 或者,启动和停止位置可以通过输出引脚编程(备选案文B).编程可以在5V供应模式或3.3V操作模式下执行,但使用a

最小供电电压为3.3V,在VDD3V3引脚处有10个μF电容器接地。 这10μF电容器只需要

在设备的编程过程中。 两个不同的命令用于永久编程设备:

AMS数据表第19页21[v1-06]2018年6月文件反馈



### Burn\_Angle命令(Z POS, MPOS)

主机微控制器可以执行永久的

用BURN\_ANGLE命令编程ZPOS和MPOS。 要执行BURN\_ANGLE命令,请编写

值0x80到寄存器0xFF。 BURN\_ANGLE命令最多可执行3次。 ZMCO显示了ZPOS和MPOS被永久写入的次数。

只有在检测到磁铁的存在时才能执行此命令(MD=1)。

### Burn\_Setting指挥(MANG, CONFIG)

主机微控制器可以用BURN\_SETTING命令执行MANG和CONFIG的永久写入。 去

执行BURN SETTING命令,将值0x40写入寄存器0xFF。

只有当ZPOS和MPOS从未被永久写入时,MANG才能被写入(Z MCO=00)。 BURN\_地点 命令只能执行一次。

### 角度编程

对于不使用全0到360度角范围的应用程序,输出分辨率可以通过增强

编程实际使用的范围。 在这种情况下,输出的全部分辨率自 动缩放到

编程角范围。 角范围必须大于18度。

该范围是通过编程开始位置(ZPOS)和停止位置(MPOS)或角的大小来指定的

范围(MANG)。

BURN ANGLE命令最多可执行3次。

**AMS数据表** 文件反馈 [v1-06]2018年6月



### 角范围的编程有三种推荐方法:

- 选项A: 角度编程通过I<sup>2</sup>C接口
- 备选案文B: 角度编程通过外销
- 选项C: 通过I<sup>2</sup>C接口编程最大角度范围

### 图24:

选项A: 通过I<sup>2</sup>C接口进行角度编程

| 使用正确的 | 使用正确的硬件配置如图所示图37还有图38.                                                                            |  |  |  |  |  |  |
|-------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 第一步   | 启动AS5600。                                                                                         |  |  |  |  |  |  |
| 第二步   | 将磁铁转到启动位置。                                                                                        |  |  |  |  |  |  |
| 第三步   | 读取RAWAngle寄存器。<br>将RAWAngle值写入ZPOS寄存器。 等待至少1ms。                                                   |  |  |  |  |  |  |
| 步骤4   | 将磁铁按DIR引脚上的电平(GND为顺时针方向,VDD为逆时针方向)定义的方向旋转到停止位置。 旋转量必须大于 18度。                                      |  |  |  |  |  |  |
| 第5步   | 读取RAWAngle寄存器。<br>将RAWAngle值写入MPOS寄存器。 等待至少1ms。                                                   |  |  |  |  |  |  |
| 继续执行步 | 5骤6以永久编程配置。                                                                                       |  |  |  |  |  |  |
| 步骤6   | 执行BURN_ANGLE命令永久地对设备进行编程。 等待至少1ms。                                                                |  |  |  |  |  |  |
| 步骤7   | 验证BURN_ANGLE命令:<br>将命令0x01、0x11和0x10依次写入寄存器0xFF以加载实际0TP内容。<br>读取ZPOS和MPOS寄存器,以验证BURN_ANGLE命令是否成功。 |  |  |  |  |  |  |
| 第8步   | 读取和验证ZPOS和MPOS寄存器后,一个新的启动周期。                                                                      |  |  |  |  |  |  |

### 注:

- 1. 在每个寄存器命令之后,新设置在输出至少1ms后有效。
- 2. 强烈建议在此过程之后进行功能测试。

AMS数据表 第19页23 文件反馈 [v1-06]2018年6月



图25:

选项B: 通过外销进行角度编程

| 使用正确的到编程过程 | 的硬件配置如图所示图37还有图38. 该PGO引脚连接到GND,输出引脚被内部电阻拉高,直<br>程完成。             |
|------------|-------------------------------------------------------------------|
| 第一步        | 启动AS5600。                                                         |
| 第二步        | 将磁铁放置在启动位置。                                                       |
| 第三步        | 将输出引脚拉到GND至少100ms,然后允许引脚浮动。                                       |
| 步骤4        | 将磁铁按DIR引脚上的电平(GND为顺时针方向,VDD为逆时针方向)定义的相同方向旋转到停止位置。 旋转量必须大于18度。     |
| 第5步        | 将输出引脚拉到GND至少100ms,然后允许引脚浮动。                                       |
| 步骤6        | 检查输出引脚是否永久驱动到GND。 这表明在编程过程中发生了错误。 如果输出引脚上驱动的电压对应于磁铁位置,则成功地执行了该过程。 |

### 注:

- 1. 在步骤5之后,新设置在输出处是有效的。
- 2. 如果步骤3没有跟随步骤5,则不会执行永久写入。
- 3. 强烈建议在程序之后进行功能测试。
- 4. 此过程只能执行一次;零位置和最大角度只能通过I<sup>2</sup>C重新编程(备选案文A).
- 5. 只有当检测到磁铁的存在时,才能执行此过程(MD=1)。

第18页24 文件反馈 [v1-06]2018年6月



### 图26:

选项C: 通过I<sup>2</sup>C接口编程最大角度范围

| 使用正确的硬件配置如图所示图37还有图38.                          |                                                                                                            |  |  |  |  |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 第一步                                             | 启动AS5600。                                                                                                  |  |  |  |  |
| 第二步                                             | 使用I <sup>2</sup> C接口将最大角范围写入MANG寄存器。 例如,如果最大角范围为90度,则用0x400写入MANG寄存器。<br>通过写入CONFIG寄存器来配置其他配置设置。 等待至少1ms。  |  |  |  |  |
| 继续执行                                            | 步骤3以永久编程配置。                                                                                                |  |  |  |  |
| 第三步                                             | 执行BURN_SETTINGS命令永久地对设备进行编程。 等待至少1ms。                                                                      |  |  |  |  |
| 步骤4                                             | 验证BURN_SETTINGS命令:<br>将命令0x01、0x11和0x10依次写入寄存器0xFF以加载实际0TP内容。<br>读取并验证MANG和CONF寄存器,以验证BURN_SETTINGS命令是否成功。 |  |  |  |  |
| 继续执行步骤5,永久编程一个零位置。 如果OUT引脚用于此选项,则PGO引脚必须连接到GND。 |                                                                                                            |  |  |  |  |
| 第5步                                             | 将磁铁放置在起始位置(零角)。                                                                                            |  |  |  |  |
| 步骤6                                             | 将输出引脚拉到GND至少100ms,然后允许引脚浮动。 或者,通过I <sup>2</sup> C接口(编程零位(备选案文A).<br>等待至少1ms。                               |  |  |  |  |
| 步骤7                                             | 通过I <sup>2</sup> C验证永久编程(备选案文A或检查OUT是否永久驱动到GND(备选案文B).                                                     |  |  |  |  |
| 第8步                                             | 读取和验证永久编程寄存器后,一个新的启动周期。                                                                                    |  |  |  |  |

### 注:

- 1. 在每个寄存器命令之后,新配置在至少1ms后的输出中有效。
- 2. 建议在此过程后进行功能测试。

# 产出阶段

在CONF寄存器中的OUTS位用于在模拟比率输出(默认)和数字 PWM之间进行选择

产出。 如果选择PWM,则DAC被关闭。

不考虑哪个输出是启用的,外部单元可以随时通过I2C接口从 ANGLE寄存器读取角度。

AMS数据表 第19页25 文件反馈 [v1-06]2018年6月



### 模拟输出模式

默认情况下,AS5600输出级被配置为模拟比率输出。 数字到模拟转换器 (DAC) 具有12位分辨率。 在默认模式下,DAC的较低参考电压为GND,而上参考电压为VDD。 输出引脚上的输出电压是GND和VDD之间的比率。

最大角范围可以从编程 18度到360度。 默认范围为360度。

如下图,如果范围是360度,要避免

不连续点正好在范围的极限,一个10-LSB滞后被应用。 当 磁铁接近于零或360度时,这种迟滞抑制了切换输出引脚。

图27: 输出特性超过360°全翻转革命



AS5600支持零角和最大角范围的编程。 如图所示图28减少最大角范围会推动非连续性

指向边缘,远离0和  $\theta$   $_{\rm Jch}$ (哪里  $\theta$   $_{\rm Jch}$ 是最大角度)按  $\lambda$ ,其中  $\lambda$  =  $(360-\theta$   $_{\rm Jch})/2$ .

**第18页**26 文件反馈



图28: 输出特性范围小于360°



 $\Lambda$ =(θ<sub>马克斯</sub>/360) × 4096

AS5600还允许选择输出动态

在CONF寄存器中具有OUT位的OUT信号的特性。 默认情况下 (OUTS=00),输出可以覆盖全电压范围(OV到VDD),但从10%到10%的范围

GND和VDD之间的90%可以编程(OUTS=01)。

图29: 输出特性,输出范围缩小(10%-90%)



**AMS数据表** [v1-06]2018年6月



### PWM输出模式

对于PWM编码的数字输出(OUTS), AS5600输出级可以在CONF寄存器的OUTS位中编程

= 10). 在这种模式下,输出引脚提供数字PWM信号。每个脉冲的占空比与旋转磁铁的绝对角度成正比。

所述PWM信号由4351PWM时钟周期的帧组成,如图所示图30。此PWM帧由

以下各节:

- 128PWM时钟周期高
- 4095PWM时钟周期数据
- 128PWM时钟周期低

角表示在帧的数据部分,一个PWM时钟周期表示一个4096<sup>th</sup> 全角的

范围。 用CONF寄存器中的PWM F位编程PWM频率。

图30: 脉宽调制模式下的输出特性



零度角由128个时钟周期高和4223个时钟周期低表示,而最大 角度表示

由4223个时钟周期高和128个时钟周期低组成。

**AMS数据表** 文件反馈 [v1-06]2018年6月



## 步骤响应和过滤器设置

该AS5600具有数字后处理可编程滤波器,可设置为快速或慢速模式。可以通过在CONF寄存器的FT H位中设置快速筛选阈值来启用快速筛选模式。

如果快速滤波器为0FF,则步进输出响应由慢线性滤波器控制。 慢滤波器的阶跃响应为

可编程的SF位在CONF寄存器中。 图32 显示不同SF位设置的 延迟和噪声之间的权衡。

图31: 步骤响应延迟与。 噪音乐队

| SF | 步响应延迟(ms) | 麦克斯。 RMS输出噪声(1西格玛)(度) |
|----|-----------|-----------------------|
| 00 | 2. 2      | 0.015                 |
| 01 | 1.1       | 0.021                 |
| 10 | 0. 55     | 0.030                 |
| 11 | 0. 286    | 0.043                 |

图32: 步响应(快速过滤关闭)



AMS数据表第19页29[v1-06]2018年6月文件反馈



对于沉降后的快速阶跃响应和低噪声,可以启用快速滤波器。 快速过滤器只在输入时工作

变化大于快速滤波器阈值,否则输出响应仅由慢滤波器决定。 用FTH比特编程快速滤波器阈值conf 登记。 如图所示图34在 两个完整的采样周期后,阶跃响应保持在一个误差带内 由慢滤波器确定的最终值。

图33: 快速过滤器阈值

| 第四  | 快速滤波器阈值(LSB) |         |  |  |  |
|-----|--------------|---------|--|--|--|
|     | 慢到快的过滤器      | 快到慢的过滤器 |  |  |  |
| 000 |              |         |  |  |  |
| 001 | 6            | 1       |  |  |  |
| 010 | 7            | 1       |  |  |  |
| 011 | 9            | 1       |  |  |  |
| 100 | 18           | 2       |  |  |  |
| 101 | 21           | 2       |  |  |  |
| 110 | 24 2         |         |  |  |  |
| 111 | 10 4         |         |  |  |  |



图34: 步骤响应(快速过滤器打开)



# 方向(顺时针方向与逆时针方向)

AS5600允许用DIR引脚控制磁铁旋转的方向。 如果DIR连接到GND (D IR=0),从顶部观察的顺时针旋转将产生一个计算角度的增量。 如果DIR引脚连接到VDD (DIR=1),计算角度的增量将发生逆时针旋转。

图35: 原始角度在顺时针方向



AMS数据表第19页31[v1-06]2018年6月文件反馈



### 迟滞

为了避免磁铁不移动时输出的任何切换,12位分辨率的1到 3LSB滞后可以启用海斯特在里面的比特conf登记。

### 磁铁检测

作为安全和诊断功能, AS5600表示

没有磁铁。 如果测量的磁场强度低于最小指定水平 (Bz ERROR),那个

输出是低驱动的,而不考虑选择了哪种输出模式(模拟或PWM)和医学博士咬在里面地位寄存器为0。

### 低功耗模式

数字状态机自动管理低功耗模式,以减少平均电流消耗。 三种低功耗模式是可用的,可以启用下午在里面的比特conf登记。 当前消耗和轮询时间显示在图6.

## 看门狗计时器

看门狗定时器允许通过切换来节省电源 如果角度保持在4LSB的看门狗阈值内至少一分钟,则LMP3,如 图所示图36。 看门狗 函数可以用the启用在WD位上conf登记。

图36: 看门狗计时器功能





# 申请资料

## 原理图

所有所需的外部组件如下所示 参考应用程序图。 为了改进EMC和远程应用,考虑额外的保护电 路。

图37: 角度读出和通过输出引脚编程的应用图(**备选案文**B)



### 注:

1. 考虑到输出是由内部拉电阻驱动的高,在编程通过输出引脚。 在编程过程中断开额外的外部负载。

#### 图38:

角度读出和I<sup>2</sup>C编程应用图(备选案文A还有备选案文C)





图39: 推荐的外部组件

| 构成部分                           | 符号  | 价值   | 单位  | 说明                     |
|--------------------------------|-----|------|-----|------------------------|
| VDD5V缓冲电容器                     | с1  | 100  | n F | 20%                    |
| LDO调节器电容器                      | c2  | 1    | μF  | 20%; <100mΩ; 低ESR陶瓷电容器 |
| 为I <sup>2</sup> C辆公共汽车选择停<br>车 | RPU | 4. 7 | kω  | 参考UM10204的RPU大小        |

### 注:

1. 给定的参数特性必须在操作温度和产品寿命内完成

### 磁性要求

该AS5600要求磁场分量Bz垂直于芯片上的敏感区域。

沿着霍尔元件圆的周长,磁场Bz应该是正弦的。 沿圆半径的Bz的磁场梯度应在磁铁的线性范围内,以消除位移误差差分测量原理。

图40: 磁场Bz和典型气隙



典型的气隙在0.5毫米到3毫米之间,它取决于所选的磁铁。一个更大更强的磁铁允许一个更大的气隙。以AGC值为导向,通过调整磁铁与AS5600之间的距离,使AGC值处于其范围的中心,可以找到最佳的气隙。参考磁铁旋转轴从封装中心的最大允许位移为

当使用直径为6mm的磁铁时, 0.25毫米。



# 机械数据

内部霍尔元件放置在封装的中心,其半径为1mm。

图41: 霍尔元件位置



### 注:

- 1. 所有尺寸以毫米为单位。
- 2. 模具厚度356 mNOM。



## 包装图纸和标记

图42: S0IC8封装轮廓图



#### 注:

- 1. 尺寸和公差符合ASMEY14. 5M-1994。
- 2. 所有尺寸均以毫米为单位。 角度是度。
- 3. 式中, N为终端总数。

### AMS数据表

第35页35

[v1-06]2018年6月



第36页36AMS数据表文件反馈[v1-06]2018年6月



### 图43: 包裹标记



图44: 包装代码

| 是<br>的     | ww   | r     | ZZ             | @     |
|------------|------|-------|----------------|-------|
| 制造年度的最后两位数 | 制造业周 | 植物标识符 | 自由选择/可追溯<br>代码 | 子点标识符 |

**AMS数据表** [v1-06]2018年6月



# 订购和联系信息

图45: 订购信息

| 订购代码      | 包裹     | 标记     | 送货单              | 交货数量      |
|-----------|--------|--------|------------------|-----------|
| 作为5600-没有 | Soic-8 | 作为5600 | 13"胶带和卷筒在干包<br>装 | 2500台个人电脑 |
| 作为5600-原子 | Soic-8 | 作为5600 | 7"胶带和卷筒在干包装      | 500台个人电脑  |

购买我们的产品或获得免费样品在线: www.ams.com/Products 技术支持可在:

www.ams.com/Technical-支持

提供有关本文件的反馈:

www.ams.com/Document-反馈

欲了解更多信息和要求,请发电子邮件给我们:

ams\_sales@ams.com

各销售办事处,经销商及代表请访问: www.ams.com/Contact

### 总部

AMS AG Tobelbader Strasse308141Premstae tten奥地利,欧洲

电话: +43 (0) 3136500

网站: www.ams.com

AMS数据表第37页37[v1-06]2018年6月文件反馈



## 罗HS遵守和AMS绿色声明

RoHS:术语RoHS兼容意味着AMSAG产品完全符合当前RoHS指令。 我们的半导体产品不含所有6种物质的任何化学品类别,包括铅不超过的要求

均匀材料重量的0.1。 如果设计在高温下焊接,符合RoHS的产品适合在指定的无铅工艺中使用。

AMSGreen(符合RoHS标准,没有SB/BR): AMSGreen 定义除了符合RoHS要求外,我们的产品不含溴(Br)和锑(Sb) 基阻燃剂(Br或Sb),其重量不超过0.1

材料)。

重要信息: 在此提供的信息

声明表示AMSAG截至提供之日的知识和信念。 AMS AG将其知识和信念建立在第三方提供的信息之上,并作出否定

表示或保证这些信息的准确性。 目前正在努力更好地融入 社会

来自第三方的信息。 AMS AG已经并继续采取合理步骤,提供有代表性和准确的信息,但可能没有对来料和化学品进行破坏性测试或化学分析。 AMS AG和AMS AG供应商认为某些信息是专有的,因此CAS号码和其他有限的信息可能无法发布。

第38页38AMS数据表文件反馈[v1-06]2018年6月



# 版权和免责声明

版权所有AMSAG,托贝维德街30,8141Premstaetten,奥地利-欧洲。 注册商标。 版权所有。 本材料不得复制、改编、合并,

未经版权所有者事先书面同意而翻译、存储或使用。

AMS AG销售的设备由其一般贸易条款中的保修和专利赔偿条款所涵盖。 AMS AG不对此处所列信息作出任何保证、明示、法定、默示或说明。 AMSAG保留随时更改规格和价格的权利, 恕不另行通知。 因此, 在设计之前

本产品进入一个系统,有必要向AMSAG查询当前信息。 本产品拟用于

商业应用。 需要延长温度范围,不寻常的环境要求或高可靠性应用的应用,如军事,医疗

除非AMSAG对每个应用程序进行额外处理,否则不建议使用生命支持或维持生命的设备。本产品由AMSAG"ASIS"和任何明示或默示保证提供,包括但不包括在内

仅限于对适销性和适合某一特定目的的默示保证是免责的。

AMS AG不应就与家具有关或由家具引起的任何损害,包括但不限于人身伤害、财产损害、利润损失、使用损失、业务中断或任何形式的间接、特别、附带或间接损害向接收方或任何第三方承担责任,

此处技术数据的性能或使用。 不得产生或流出AMSAG提供技术或其他服务对接收方或任何第三方的义务或责任。

AMS数据表第39页39[v1-06]2018年6月文件反馈



# 文件状况

| 文件状况    | 产品状况 | 定义                                                              |
|---------|------|-----------------------------------------------------------------|
| 产品预览    | 发展前  | 此数据表中的信息是基于开发计划阶段的产品想法。 所有规格都是设计目标,没有任何保证,如有<br>更改,恕不另行通知       |
| 初步数据表   | 生产前  | 本数据表中的信息是基于开发的设计、验证或认证阶段的产品。 本文件所示的性能和参数是初步的,没有任何保证,如有更改,恕不另行通知 |
| 数据表     | 生产   | 本数据表中的信息是基于在完全生产或完全生产之前的产品,这些产品符合AMSAG标准保修条款中规定的一般贸易条款中的规格      |
| 数据表(停用) | 停止了  | 本数据表中的信息是基于符合AMSAG标准保证条款的产品,如一般贸易条款所规定的,但这些产品已被取代,不应用于新的设计      |



# 订正资料

| 由1-05(2018年5月-18日)变更为现行修订1-06(2018年6月-20日) | 页  |
|--------------------------------------------|----|
| 更新图6                                       | 5  |
| 更新ZPOS/MPOS/MANG注册下的文本                     | 19 |

### 注:

- 1. 上一个版本的页码和数字可能与当前修订中的页码和数字不同。
- 2. 没有明确提到纠正印刷错误。



# 内容指南

- 1 一般说明
- 1 主要优点和特点
- 2 申请
- 2 块状图
- 3 固定作业
- 4 绝对最高等级
- 5 电气特性
- 5 操作条件
- 6 数字输入和输出
- 6 模拟输出
- 7 PWM输出
- 7 时间特性
- 8 磁特性
- 8 系统特性
- 9 详细说明
- 9 IC电源管理
- **10** I<sup>2</sup>C接口
- 10 支持模式
- 10 I<sup>2</sup>C接口操作
- **11** I<sup>2</sup> C电气规范
- 12 I<sup>2</sup>C时机
- 13 I<sup>2</sup>C模式
- 13 无效地址
- 13 读书
- 13 自动增加地址指针为ANGLE,RAWANGLE和 MAGNITUDE寄存器
- 13 写作
- 13 支持总线协议
- 15 AS5600奴隶模式
- 15 从接收器模式(写入模式)
- 16 从发射机模式(读取模式)
- 17 SDA和SCL输入滤波器
- 18 登记册说明
- 19 ZPOS/MPOS/MANG注册
- 19 冲突登记册
- 19 ANGLE/RAW ANGLE寄存器
- 20 统计登记册
- 20 AGC登记册
- 20 国民登记册
- 20 非易失记忆(OTP)
- 20 Burn Angle命令(Z POS, MPOS)
- 21 Burn\_Setting指挥(MANG, CONFIG)
- 21 角度编程
- 24 产出阶段
- 25 模拟输出模式
- 27 PWM输出模式
- 28 步骤响应和过滤器设置
- 30 方向(顺时针方向vs。 逆时针方向)
- 31 迟滞
- 31 磁铁检测



- 31 低功耗模式
- 31 看门狗计时器
- 32 申请资料
- 32 原理图
- 33 磁性要求
- 34 机械数据
- 35 包装图纸和标记
- 37 订购和联系信息
- 38 罗HS遵守和AMS绿色声明
- 39 版权和免责声明
- 40 文件状况
- 41 订正资料

AMS数据表第43页43[v1-06]2018年6月文件反馈