TEncDM: Понимание свойств диффузионной модели в пространстве кодировок языковых моделей

Аннотация

Представленная работа описывает Text Encoding Diffusion Model (TEncDM) — новаторский подход к моделированию текста с помощью диффузионной модели, работающей в пространстве кодировок языковой модели. ТEncDM использует кодировки, которые содержат больше контекстной информации и улучшают качество предсказаний модели.

Введение

Авторегрессионные модели, такие как GPT-4 [5] и Llama 3 [2], демонстрируют высокое качество в генерации текста, но имеют два значительных недостатка:

- Невозможность корректировать ошибки, допущенные на ранних этапах.
- Замедление процесса генерации для длинных последовательностей.

Диффузионные модели предлагают альтернативный метод, генерируя текст параллельно и позволяя ускорить процесс.

Генерация с помощью диффузии

Задача генерации текста заключается в построении текста, который удовлетворяет заданному условию, например, теме или стилю. Диффузионное моделирование предполагает преобразование случайного шума в структурированный текст.

Генерация текста

Examining Diffusion Model Architectures for Text Generation: Challenges and Autoregressive Comparison

Language Decoder

Методология TEncDM

Методология TEncDM включает несколько ключевых компонентов:

- ▶ Кодировщик, использующий контекстуальные кодировки.
- Диффузионная модель, контролирующая добавление шума.
- ▶ Декодер, учитывающий контекст для каждого токена.
- Самоконтроль для повышения точности предсказаний.

Обзор фреймворка

Экспериментальный анализ

Для проверки эффективности TEncDM были проведены эксперименты на задачах условной генерации текста, включая перефразирование, суммаризацию и упрощение текста. Были использованы датасеты QQP [1] (вопросы-перефразирования), XSum [4] (экстремальная суммаризация) и Wiki-Auto [3] (упрощение текста)

Сравнение энкодеров

Encoder	ppl ↓	mem ↓	div ↑	mauve ↑		
ROCStories						
BERT emb	48.9 _{.36}	.371 _{.003}	.324 _{.002}	.600 _{.016}		
BERT	29.1 _{.89}	.453 _{.003}	$.295_{.002}$. 762 _{.043}		
RoBERTa	28.3 _{.33}	.443 _{.003}	.302 _{.002}	.647 _{.019}		
T5	31.3 _{.54}	.427 _{.003}	.312 _{.004}	.706 _{.024}		
BART	34.1 _{.52}	.441.006	.299 _{.005}	.705 _{.030}		
Source text	21.7	.365	.403	.876		
Wikipedia						
BERT emb	156.1 _{1.8}	.263 _{.004}	.517 _{.002}	.378 _{.055}		
BERT	104.4 _{2.1}	.286 _{.002}	.504 _{.003}	.874 _{.011}		
Source text	37.3	.122	.615	.957		

Таблица: Сравнение энкодеров

Decoder	ppl ↓	mem ↓	div ↑	mauve ↑			
ROCStories							
MLP	39.7 _{3.38}	.444 _{.002}	.297 _{.004}	.716 _{.074}			
$+ Cor(z_0)$	31.2 _{.33}	.448 _{.002}	.293 _{.003}	.739 _{.051}			
Transformer	34.2 _{.29}	.445 _{.001}	.295 _{.003}	.714 _{.037}			
$+ Cor(z_0)$	29.1 _{.89}	.453 _{.003}	$.295_{.002}$. 762 _{.043}			
Wikipedia							
Transformer	180.6 _{3.2}	.261 _{.001}	.511 _{.001}	.526 _{.025}			
$+ Cor(z_0)$	104.4 _{2.1}	.286 _{.002}	.504 _{.003}	.874 _{.011}			

Таблица: Сравнение декодеров

Заключение

TEncDM показывает высокие результаты в задачах генерации текста и превосходит традиционные модели. Улучшение качества предсказаний достигается за счет контекстуальных кодировок и эффективного денойзинга.

Список литературы

- Zihang Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi Zhao. Quora question pairs. 2017.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, and et al. The llama 3 herd of models. 2024.
- Chao Jiang, Mounica Maddela, Wuwei Lan, Yang Zhong, and Wei Xu.

 Neural crf model for sentence alignment in text simplification.

 In Proceedings of the Association for Computational Linguistics.
 - In Proceedings of the Association for Computational Linguistics (ACL), 2020.

12 / 12

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.

Don't give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization.

In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun'ichi