<u>Trabajo Práctico Nº 4:</u> Modelos Lineales en Paneles Desbalanceados.

Ejercicio 1.

Utilizar la base de datos "keane.dta", la cual contiene el historial de empleo y escolaridad de una muestra de hombres para los años 1981 a 1987. Luego, considerar la siguiente ecuación de salarios:

$$ln(wage_{it}) = \beta_0 + \beta_1 exper_{it} + \beta_2 educ_{it} + c_i + u_{it}, t = 1, 2, ..., T,$$
(1)

donde ln ($wage_{it}$) es el logaritmo del salario por hora, $exper_{it}$ son los años de experiencia en el mercado laboral y $educ_{it}$ son los años de escolaridad. Responder las siguientes preguntas:

(a) Estimar la ecuación usando efectos fijos. ¿Cuál es el sesgo potencial en este contexto?

FE:

Fixed-effects (within) regression Group variable: id					obs = groups =	•
R-squared: Within = 0.2373 Between = 0.1857 Overall = 0.1767				Obs per g	<pre>min = avg = max =</pre>	_
corr(u_i, Xb)	= -0.3197				= =	669.73 0.0000
lwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
educ	.0964067 .1697764 7.270616	.0243797	6.96	0.000	.1219795	.2175732
sigma_e	.45083563 .31573611 .67092951	(fraction o	of varian	ce due to	u_i)	
F test that all u i=0: $F(1530, 4304) = 5$.					Prob >	F = 0.0000

En este contexto de efectos fijos, la selección muestral por truncamiento incidental es un problema si la selección está relacionada con los errores idiosincráticos de la ecuación de interés. Por lo tanto, si se piensa que, efectivamente, lo anterior se cumple y que se están observando los salarios "más altos" (los mejores salarios que se ofrecieron), entonces, el truncamiento tendría como consecuencia una sobreestimación de los retornos a la educación.

(b) Implementar el contraste de sesgo de selección propuesto por Wooldridge (1995) bajo el enfoque de Mundlak (1978).

Se rechaza la hipótesis nula, por lo que existe evidencia suficiente de que hay sesgo de selección.

(c) Implementar el contraste de sesgo de selección propuesto por Wooldridge (1995) bajo el enfoque de Chamberlain (1980).

Se rechaza la hipótesis nula, por lo que existe evidencia suficiente de que hay sesgo de selección.

Ejercicio 2.

Considerando, nuevamente, la ecuación de salarios del ejercicio previo, realizar los siguientes procedimientos:

(a) Estimar el modelo por Wooldridge (1995) bajo el enfoque de Chamberlain (1980).

POLS (Chamberlain):

Source	SS	df	MS	Number of F(15, 5821		=	5,837 111.85	
Model	357.875358	15 2:	3.8583572	Prob > F	- /	=	0.0000	
Residual	1241.62941	5,821 .:	213301737	R-squared		=	0.2237	
				Adj R-squared		=	0.2217	
Total	1599.50477	5,836 .:	274075526	Root MSE		=	.46185	
	lwage	Coefficient	Std. err.	t	P> t		[95% conf.	interval]
	exper	.0566567	.0130844	4.33	0.000		.0310064	.0823071
	educ	.101945	.0187839	5.43	0.000		.0651215	.1387684
	exper81	.1106423	.0330149	3.35	0.001		.0459208	.1753637
	educ81	.0986618	.0204867		0.000		.0585003	.1388233
	exper82	0102639	.0284707		0.718		0660771	.0455492
	educ82	2174353	.0366788		0.000		2893393	1455313
	exper83	0704014	.0284495		0.013		1261731	0146298
	educ83	.0856036	.0363551	2.35	0.019		.0143341	.1568731
year#c.lambda_c		0.00001.5	000000	2 27			4006500	0000101
	81	2683315	.0873923	-3.07	0.002		4396528	0970101
	82	3211014	.0890068	-3.61	0.000		4955878	1466151
	83	3500805	.0833289		0.000		5134361	1867249
	84	3390861	.0853207		0.000		5063464	1718258
	85	3585597	.0887959		0.000		5326328	1844867
	86	3195615	.09277	-3.44	0.001		5014252	1376977
	87	3590845	.0978012	-3.67	0.000		5508112	1673579
	_cons	8.87783	.1514153	58.63	0.000		8.580999	9.17466

(b) Estimar el modelo por Wooldridge (1995) bajo el enfoque de Mundlak (1978).

POLS (Mundlak):

Source SS	df	MS		er of obs	= 5,8 = 150.		
Model 354.230 Residual 1245.20			F(11, 5825) Prob > F R-squared		= 0.00 = 0.22	00 15	
Total 1599.50	0477 5 , 836	.274075526	Adj R-squared Root MSE			= 0.2200 = .46236	
lwage	Coefficient	Std. err.	t	P> t	[95% conf	. interval]	
exper educ mean_exper mean_educ	.0881093 0275146	.007649 .0296264 .0156551 .0291599	8.87 2.97 -1.76 -0.58	0.000 0.003 0.079 0.565	.0528517 .0300305 0582044 0739398	.146188	
year#c.lambda_mundlak 81 82 83 84 85 86	2756566 3239156 3637717 3154769 3101603 2515261 2525642	.0778676 .0765798 .0737034 .0727725 .073666 .074834 .0770484	-3.54 -4.23 -4.94 -4.34 -4.21 -3.36 -3.28	0.000 0.000 0.000 0.000 0.000 0.001 0.001	4283059 4740404 5082579 4581381 454573 3982286 4036077	1230073 1737908 2192856 1728158 1657477 1048236 1015207	
_cons	8.781247	.1284501	68.36	0.000	8.529437	9.033056	

(c) Comentar sobre los errores estándar de las estimaciones anteriores.

La varianza asintótica de los estimadores de la segunda etapa necesita ser corregida por heterocedasticidad y correlación serial arbitraria, así como, además, por la estimación de la primera etapa.

(d) Estimar los errores estándar vía bootstrapping.

<mark>Stata.</mark>

(e) Estimar los errores estándar analíticos (varianza asintótica).

<mark>Stata.</mark>