REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION ET DE LA FORMATION

EXAMEN DU BACCALAUREAT

SESSION DE JUIN 2006

SESSION DE CONTROLE

SECTION: MATHEMATIQUES **EPREUVE: MATHEMATIQUES**

DUREE: 4 heures COEFFICIENT: 4

EXERCICE 1 (5 points)

On dispose de deux urnes indiscernables U₁ et U₂.

U₁ contient 2 jetons noirs et 3 jetons blancs, U₂ contient 3 jetons noirs et 2 jetons blancs.

- Une première épreuve consiste à tirer un jeton de l'urne U1 et un jeton de l'urne U2. Calculer la probabilité de chacun des événements suivants.
 - A: « Obtenir deux jetons noirs »
 - B: « Obtenir deux jetons de même couleur »
 - C: « Obtenir un jeton blanc et un seul ».
- 2) Une deuxième épreuve consiste à choisir une urne au hasard et à tirer un jeton de cette urne.
 - a Montrer que la probabilité de tirer un jeton blanc est égale à $\frac{1}{2}$
 - b Calculer la probabilité de tirer un jeton de l'urne U1, sachant qu'il est blanc.
- On répète la deuxième épreuve n fois de suite (n ≥ 2), en remettant chaque fois le jeton tiré dans son urne d'origine.

Soit X l'aléa numérique qui est égal au nombre de fois où on a tiré un jeton blanc.

- a Donner la loi de probabilité de X.
- b Calculer son espérance et sa variance.
- c Montrer que pour tout entier n supérieur ou égal à 2, la probabilité de tirer deux fois un jeton blanc est supérieure ou égale à $\left[\frac{1}{2}\right]^{n}$

EXERCICE 2 (5 points)

Soit f la fonction définie sur IR par $f(x) = (1 + x) e^{-x}$ et soit \mathscr{C} sa courbe représentative dans un repère orthonormé (O, i, j).

- 1) a Dresser le tableau de variation de f.
 - b Tracer la courbe \mathscr{C} (on étudiera les branches infinies).
- 2) Soit $V_n = \int_0^n f(x) dx$ où $n \in \mathbb{N}^*$.
 - a Montrer que pour tout n de \mathbb{N}^* , $v_n = 2 (2 + n)e^{-n}$
 - b Calculer

- 3) Pour tout k de IN* on pose $u_k = \int_{k-1}^k f(x) \ dx$. Montrer que pour tout n de IN*, $v_n = \sum_{k=1}^n u_k$.
- 4) a Montrer que pour tout k de \mathbb{N}^* , $u_k = (e-1) k e^{-k} + (e-2)e^{-k}$ b – En déduire que pour tout n de \mathbb{N}^* , on a :

$$v_n = (e-1) \sum_{k=1}^{n} k e^{-k} + \frac{e-2}{e-1} (1-e^{-n}).$$

5) Soit $S_n = \sum_{k=1}^n k e^{-k}$. Montrer que $\lim_{n \to +\infty} S_n = \frac{e}{(e-1)^2}$.

PROBLEME (10 points)

Soit AFED un carré de côté 4 cm tel que $(\overrightarrow{AF}, \overrightarrow{AD}) \equiv \frac{\pi}{2} [2\pi]$ et soit O son centre. On désigne par B et O₁ les symétriques respectifs de A et O par rapport à la droite (EF).

- A 1) a Soit r la rotation définie par r(F) = E et r(E) = D. Préciser l'angle et le centre de r. b Soit f = r o $S_{(OO_1)}$; où $S_{(OO_1)}$ désigne la symétrie orthogonale d'axe (OO_1) .

 Montrer que f est la symétrie orthogonale d'axe (OE).
 - 2) Soit r' = t_{oot} o r⁻¹ où t_{oot} désigne la translation de vecteur OO₁ et r⁻¹ désigne la rotation réciproque de r.
 - a Montrer que r' est une rotation dont on précisera l'angle .
 - b Déterminer r' (O). En déduire que F est le centre de r' .
 - On désigne par g l'antidéplacement défini par g(D) = F et g(O) = O₁.
 - a Montrer que g est une symétrie glissante et déterminer sa forme réduite.
 - b Soit M un point du plan.

Montrer que [g(M) = r'(M)] si et seulement si [f(M) = M].

- c En déduire l'ensemble des points M tels que g(M) = r'(M).
- B Soit s la similitude directe telle que s(A) = F et s(B) = E
 - 1) a Déterminer l'angle et le rapport de s.
 - b Montrer que s = r o h où r est la rotation définie dans A-1)a et h est $(A, \frac{1}{2})$ est

l'homothétie de centre A et de rapport $\frac{1}{2}$.

- Soit Ω le centre de s.
 - a Montrer que Ω appartient aux deux cercles de diamètres respectifs [AF] et [BE]. Construire Ω .

2

b – Montrer que s(E) = O. En déduire que Ω , O et B sont alignés.

- 3) On pose $B_0 = B$ et pour tout entier naturel $n : B_{n+1} = s(B_n)$.
 - a Préciser B₁ et B₂.
 - b Montrer que pour tout entier naturel non nul, le triangle B_{n-1} B_n B_{n+1} est rectangle et les points B_{n-1} , Ω et B_{n+1} sont alignés.
 - c Donner un procédé de construction de B_{n+1} à partir de B_{n-1} et B_n.
- 4) Pour tout entier naturel n, on pose $d_n = B_n B_{n+1} = \left\| \overrightarrow{B_n B_{n+1}} \right\|$
 - $a-Montrer que \left(d_{n}\right)_{n\in IN}$ est une suite géométrique dont on précisera le 1^{er} terme et la raison.
 - $b-Soit \ \sigma_n=\sum_{k=0}^n \ d_k \ . \ Calculer \ \sigma_n \ en \ fonction \ de \ n \ et \ déterminer \ \lim_{N\to +\infty} \ \sigma_n \, .$
- C On désigne par : I le milieu de [AF], J le milieu de [OI] et L le symétrique de J par rapport à I Soit ℰ l'ellipse de sommets A, F, J et L.
 - 1) Construire les foyers G₁ et G₂ de & (G₁ désigne le foyer qui appartient au segment [IF]).
 - 2) Soit $G_1' = s(G_1)$ où s est la similitude directe de centre Ω , d'angle $\frac{\pi}{2}$ et de rapport $\frac{1}{2}$
 - a Montrer que la droite ($\Omega G_1^{'}$) est tangente à l'ellipse &
 - b Construire le point de contact M de \mathscr{E} et de $(\Omega G, \cdot)$.