Formal Language Selected Homework Chapter 4.2

- 1. Show that there exists an algorithm to determine whether or not $w \in L_1 L_2$, for any given w and any regular languages L_1 and L_2 .
- 2. Show that there exists an algorithm for determining if $L_1 \subseteq L_2$, for any regular languages L_1 and L_2 .
- 5. A language is said to be a palindrome language if $L = L^R$. Find an algorithm for determining if a given regular language is a palindrome language.
- 12. Let L be any regular language on $\Sigma = \{a, b\}$. Show that an algorithm exists for determining if L contains any strings of even length.

- 1. Since by Example 4.1 $L_1 L_2$ is regular, there exists a membership algorithm for it.
- **2.** If $L_1 \subseteq L_2$, then $L_1 \cup L_2 = L_2$. Since $L_1 \cup L_2$ is regular and we have an algorithm for set equality, we also have an algorithm for set inclusion.
- 5. From the dfa for L, construct the dfa for L^R , using the construction suggested in Theorem 4.2. Then use the equality algorithm in Theorem 4.7.
- 12. Here you need a little trick. If L contains no even-length strings, then

$$L \cap L((aa + ab + ba + bb)^*) = \varnothing.$$

The left side is regular, so we can use Theorem 4.6.

