Purpose-first programming:

A programming learning approach for learners who care most about what code achieves

Kathryn Cunningham

Committee:

Mark Guzdial, CSE (co-chair) Barbara Ericson, SI (co-chair) Stephanie Teasley, SI Chris Quintana, SoE (cognate)

A recent theory of programming instruction¹

What is code tracing?

Code tracing := Simulating program execution ¹

5 - Motivation [1] Sorva. 2013.

Tracing activities often involve contextless problems with no "purpose"

Question 2. Consider the following code fragment: $int[] x1 = \{1, 2, 4, 7\};$ $int[] x2 = \{1, 2, 5, 7\};$ int i1 = x1.length-1; int i2 = x2.length-1;int count = 0; while ((i1 > 0) && (i2 > 0))if (x1[i1] == x2[i2])++count; --i1; --i2: else if (x1[i1] < x2[i2])--i2; else // x1[i1] > x2[i2]--i1; After the above while loop finishes, "count" contains what value? a) 3 b) 2

d) 0

```
Question 5.
```

Consider the following code fragment:

```
int[] x = {0, 1, 2, 3};
int temp;
int i = 0;
int j = x.length-1;

while (i < j)
{
    temp = x[i];
    x[i] = x[j];
    x[j] = 2*temp;
    i++;
    j--;
}</pre>
```

After this code is executed, array "x" contains the values:

```
a) {3, 2, 2, 0}
b) {0, 1, 2, 3}
c) {3, 2, 1, 0}
d) {0, 2, 4, 6}
e) {6, 4, 2, 0}
```

What happens if you don't think tracing is a fit for your needs?

In my thesis, I propose an alternative way to learn about code that prioritizes code's purpose, so learners like the manager and the data scientist can understand and write meaningful code quickly.

Contributions of my thesis

- Analyzed existing programming skills hierarchies (Ch 2)
- Understood affective and cognitive reasons why some learners avoid code tracing (Ch 3, 4)
- Designed **purpose-first programming**, an alternative learning approach that scaffolds code understanding in **larger**, **more meaningful pieces** (Ch 5)
- Developed a **proof-of-concept** purpose-first programming curriculum and evaluated how novices use it and how the approach **motivates** novice learners (Ch 5)

Part 1: Why don't novice programmers trace code?

I understand novice programmers' code tracing activity by analyzing their sketched traces


```
(na=10, b=3, t= 0 > 1/2,3

for i in range (1,4):

t=10

t=1+3=4

b=10-1=9 b=4-2=2 b=4-3=1
```

I found that performing tracing doesn't always lead to success...

I found an **oddity**:

Those who started to trace but didn't finish did very poorly, even worse than those who didn't sketch at all!

Why would novices **not complete a trace**? Not trace at all?

Retrospective artifact walkthroughs

Student sketches from exam

(n=13)

Problems from exam

I asked learners in a CS1 course about their choices to trace or not trace code.

Search for goals and patterns is primary

Pattern matching

Interrupted tracing

Close tracing

"Once you look at the code and figure out what it's doing, then it's like, okay, I can compute an average without writing it down, especially if it's only two values." "After I sort of got the hang of it, I just started to skip through writing it."

"You can also see the point where I realized like... and it clicked."

"When I saw it I wasn't like 'Oh, I think I have a hunch that this code does this.' I'm going to need to work through it."

Published at ITiCSE 2019

Takeaways

- Tracing has a high cognitive load. It's time-consuming and difficult, even for students in a for-majors intro course.
- Novice programmers prefer to think with higher-level strategies, rather than use fine-grained code tracing. They may need support to identify goals and patterns successfully.

How might tracing be helpful when determining the purpose of code?

But!

Participants had some unsolicited feedback about the <u>value</u> of the tracing tasks.

Problems from past "Explain in plain English" studies Problem 1 - Tracing Thursday, September 5, 2019 4:26 PM Describe the purpose of the following code. Do not give a line-by-line description of what the code does. Instead, describe the code's purpose in one sentence. def enigma(nums): # nums is a list of numbers for index in range(len(nums) - 1): if nums[index] > nums[index + 1]: return False return True Trace through the following example until you figure it out. Please show your work. enigma([3,4,2,5]) A participant's trace

Eccles Expectancy-Value Model of Achievement Choice¹

Goals and General Self-Schemata

"Yeah, I mean, it's just like, it makes me think like a computer. But I'm not a computer. And it's not that I can't work with the computer in tandem. I mean, that's why we have the computers."

I'm not a computer

Expectation for Success

"It seems like no matter how much I do it, I don't understand these things."

"If we were to do ten of these, I'm sure each one of them I would look over [overlook] a small component of the code."

I can't think like a computer does

Subjective Task Value

"It always seems like a really strange way to try and teach someone code when you could just execute it and see where it goes."

"Nowhere outside, I feel like, a college setting is ever gonna ask you that question."

The computer executes code, not me

Achievement-Related Choice

I don't trace

19 - Why novices don't trace

Goals and General Self-Schemata

"Yeah, I mean, it's just like, it makes me think like a computer. But I'm not a computer. And it's not that I can't work with the computer in tandem. I mean, that's why we have the computers."

I'm not a computer

Expectation for Success

"It seems like no matter how much I do it, I don't understand these things."

"If we were to do ten of these, I'm sure each one of them I would look over [overlook] a small component of the code."

I can't think like a computer does

Subjective Task Value

"It always seems like a really strange way to try and teach someone code when you could just execute it and see where it goes."

"Nowhere outside, I feel like, a college setting is ever gonna ask you that question."

The computer executes code, not me

Achievement-Related Choice

I don't trace

Goals and General Self-Schemata

"Yeah, I mean, it's just like, it makes me think like a computer. But I'm not a computer. And it's not that I can't work with the computer in tandem. I mean, that's why we have the computers."

I'm not a computer

Expectation for Success

"It seems like no matter how much I do it, I don't understand these things."

"If we were to do ten of these, I'm sure each one of them I would look over [overlook] a small component of the code."

I can't think like a computer does

Subjective Task Value

"It always seems like a really strange way to try and teach someone code when you could just execute it and see where it goes."

"Nowhere outside, I feel like, a college setting is ever gonna ask you that question."

The computer executes code, not me

Achievement-Related Choice

I don't trace

Goals and General Self-Schemata

"Yeah, I mean, it's just like, it makes me think like a computer. But I'm not a computer. And it's not that I can't work with the computer in tandem. I mean, that's why we have the computers."

I'm not a computer

Expectation for Success

"It seems like no matter how much I do it, I don't understand these things."

"If we were to do ten of these, I'm sure each one of them I would look over [overlook] a small component of the code."

I can't think like a computer does

Subjective Task Value

"It always seems like a really strange way to try and teach someone code when you could just execute it and see where it goes."

"Nowhere outside, I feel like, a college setting is ever gonna ask you that question."

The computer executes code, not me

Achievement-Related Choice

I don't trace

22 - Why novices don't trace

Goals and General Self-Schemata

"If I was wanting to become a programmer, then perhaps it would be more interesting to me."

"I mean the purpose itself is not to code something....The code is just a means to an end, of creating an interaction, or creating a product or creating whatever else, right?"

I'm not a programmer

Expectations for Success

"It's literally like I learn it to where I need it, then I don't care to keep it."

"So like it's just to see what each part is doing, that's where I would get confused."

I try to forget programming details

Subjective Task Value

"This sort of stuff was blatantly to write Python. There's times I'm just like 'Why would I ever use this?""

"It serves just sort of like a crossword puzzle that's not fun."

Tracing is only about learning a language

Achievement-Related Choice

I don't trace

Goals and General Self-Schemata

"If I was wanting to become a programmer, then perhaps it would be more interesting to me."

"I mean the purpose itself is not to code something....The code is just a means to an end, of creating an interaction, or creating a product or creating whatever else, right?"

I'm not a programmer

Expectations for Success

"It's literally like I learn it to where I need it, then I don't care to keep it."

"So like it's just to see what each part is doing, that's where I would get confused."

I try to forget programming details

†

Subjective Task Value

"This sort of stuff was blatantly to write Python. There's times I'm just like 'Why would I ever use this?'"

"It serves just sort of like a crossword puzzle that's not fun."

Tracing is only about learning a language

Achievement-Related Choice

I don't trace

Goals and General Self-Schemata

"If I was wanting to become a programmer, then perhaps it would be more interesting to me."

"I mean the purpose itself is not to code something....The code is just a means to an end, of creating an interaction, or creating a product or creating whatever else, right?"

I'm not a programmer

Expectations for Success

"It's literally like I learn it to where I need it, then I don't care to keep it."

"So like it's just to see what each part is doing, that's where I would get confused."

I try to forget programming details

Subjective Task Value

"This sort of stuff was blatantly to write Python. There's times I'm just like 'Why would I ever use this?'"

"It serves just sort of like a crossword puzzle that's not fun."

Tracing is only about learning a language

Achievement-Related Choice

I don't trace

Goals and General Self-Schemata

"If I was wanting to become a programmer, then perhaps it would be more interesting to me."

"I mean the purpose itself is not to code something....The code is just a means to an end, of creating an interaction, or creating a product or creating whatever else, right?"

I'm not a programmer

Expectations for Success

"It's literally like I learn it to where I need it, then I don't care to keep it."

"So like it's just to see what each part is doing, that's where I would get confused."

I try to forget programming details

1

Subjective Task Value

"This sort of stuff was blatantly to write Python. There's times I'm just like 'Why would I ever use this?'"

"It serves just sort of like a crossword puzzle that's not fun."

Tracing is only about learning a language

Achievement-Related Choice

I don't trace

Takeaways

It's possible to connect self-beliefs to reasons to not trace code

- Contribute to low expectancy of success and low task value

Learners with the self-beliefs "I'm not a computer" and "I'm not a programmer" valued the *creation of code* more than understanding how code works.

These novices could benefit from an **alternative pathway** to build expertise in programming that doesn't prioritize code tracing.

- Purpose-oriented, in an authentic application context

Part 2: Designing to meet the need

Emphasizing code's *purpose* rather than programming language semantics

Purpose-first programming

Using programming plans¹, chunks of code associated with a goal, within a particular domain of interest, to scaffold code understanding, writing, and debugging.

For a small set of plans authentic to a domain of interest (e.g. web scraping)

Plan-based scaffolds

Plan 2: Get a soup from multiple webpages # Load libraries for web scraping Put the parts of the URL that are unique from bs4 import BeautifulSoup here. E.g. ['steve-oney', 'paul-resnick'] import requests Get a soup from multiple URLs base_url = endings = for ending in endings: url = base_url + ending r = requests.get(url) soup = BeautifulSoup(r.content) Plan 3: Get a single tag of a certain type # Get first tag of a certain type from the soup tag = soup.find(# Get **info** from the **tag** info = tag. Plan 5: Print the info # Print **info** If you want a tag's text, put text If you want a tag's link, put get('href') print(

- Group code as part of a plan
- Associate each plan with a goal
- Add subgoals to each plan's code
- Highlight which parts of a plan can be changed ("slots"), and which should stay the same
- Describe how slots should be filled, using domain-specific concepts

Plan-based scaffolds

Write code by **choosing**, **ordering and tailoring plans**

Understand code by **reading goals and subgoals**

Debug by focusing on plan slots and how they should be filled

Understanding responses of novices to purpose-first scaffolding

Preferences for learning tasks *differ* between **conversational programmers** and other novice programmers

Survey study

"Rank these 3 activities as far as their usefulness in preparing you for your future"

(n=33; 16 conversational programmers, 17 other novice programmers)

High scaffolding (fill in code)

Medium scaffolding (subgoal labels)

No scaffolding (write code from scratch)

Developing
a "proof of concept"
purpose-first programming
curriculum

Developing the "proof-of-concept" curriculum

- 1. Choosing a domain
- 2. Identifying authentic plans
- 3. Develop worked examples + practice
 - a. Innovative technical supports
- 4. Create code writing, debugging, and explanation problems
 - a. Innovative technical supports

Developing the "proof-of-concept" curriculum

1. Choosing a domain

Web scraping with BeautifulSoup

Reason #1: Disciplinary authenticity: In focus groups, I found that Information students found web scraping to be valuable to their future goals.

Reason #2: Semantically complex but "planfully" simple:

Use of libraries and "complex" language semantics like objects. A few patterns are repeated often.

Developing the "proof-of-concept" curriculum

- 1. Choosing a domain
- 2. Identifying authentic plans

Scraped files from Github that use BeautifulSoup for web scraping

Identified 5 common patterns from subset of 50 files

Annotated patterns with slots, goals and subgoals

Two experts who use BeautifulSoup professionally review plans

Developing the "proof-of-concept" curriculum

hoosing a domain It turns out that you can! Run the code below to see what it collects. Scrape all the Cottage Inn Pizza locations Let's say that you want to make a list of all the Cottage Inn Pizza locations. When you go to their website, Original - 1 of 1 it turns out that there are a lot of locations. pr Pizza Restaurant Neor me - Fi X + 1 #Get the webpage CL to tr (a) Incoprito 2 # Load libraries for web scraping RESORDER LOCATIONS CAREERS MENU DEALS ORDER 3 from bs4 import BeautifulSoup 4 import requests po 5 # Get a soup from a URL 6 url = 'https://web.archive.org/web/20200427175705/https://cottageinn.com/pick-a-lo 7 r = requests.get(url) 8 soup = BeautifulSoup(r.content, 'html.parser') ALLENDALE 10 #Extract info from the page Access 10746 48th Ave #110, Altendale, MI 45401, USA 11 # Get all tags of a certain type from the soup ORDER NOW 12 tags = soup.find all('h3') 13 # Collect info from the tags 14 collect info = [] ANN ARBOR BROADWAY ST. 15 for tag in tags: ['Allendale', 'Ann Arbor Broadway St.', 'Ann Arbor Packard St.', 'Ann Arbor Stadium Blvd.', ANN ADDOD DACKADD CT

If only you could write a little Python to easily collect them all..

This code probably seems a bit complicated. In this ebook, we will break down web scraping into a few common "plans". This example is made up of three plans. Click on each of them to learn more.

Developing the "proof-of-concept" curriculum

Writing code

#1: Order plan goals

#2: Order plan code

#3: Fill plan slots

Evaluating
the "proof of concept"
purpose-first programming
curriculum

Research questions

- 1. Can novice programmers **read**, **write**, **and debug** complex code using the scaffolds provided by purpose-first programming?
 - a. How do they complete these tasks?
- 2. Is purpose-first programming **motivating** for learners who are more likely to reject code tracing?
 - a. How do novice programmers describe their expectancy of success and subjective task value for purpose-first programming activities?

Study design

Recruited 9 participants (and 1 pilot) with

- No prior BeautifulSoup experience
- No advanced programming experience
- Interest in web scraping
- Lower expectancy or value for code tracing

21 students planning to take a non-majors programming course completed interest form.

Participant completed instructional content, with assistance if needed.

Participant attempted novel problems that combined plans in new ways. Participant performed concurrent thinkaloud. I performed a semi-structured interview focusing on aspects of expectancy and value for purpose-first programming.

45 - Evaluating the curriculum

RQ1: Participants could complete scaffolded problems

After 31 minutes of instructional time

Involved 5 plans, while other problems involved 3

"Okay. Um... First we want to start with the getting tags from the soup. Choose between these three. Get first tag of certain type from soup, get all tags of a certain type, get first tag of a certain type. I think it's this one, we want all tags. Okay." -P2

RQ2:

All participants said they wanted to learn with plans in the future

Why?

I performed deductive reflexive thematic analysis¹ to understand the reasoning behind this motivation

Themes

Learners perceived purpose-first programming as having **low** cognitive load

Participants felt **success** and **enjoyment**, which came from **understanding** and **completing** problems

Participants felt that purpose-first programming was for **beginners** and those who need **extra help**

Participants believed purpose-first programming gave them conceptual, high-level knowledge

Participants found curricular content realistic and applicable

Some participants found code tracing visualizations difficult to understand and apply, and preferred plans.

"I mean I guess in theory CodeLens [a PythonTutor variant] is useful but sometimes it gets so **confusing**." - P2.

"Just from my experience CodeLens was helpful for people who knew programming really well, so it kind of feels like the plans might be for more beginners." - P5

Others found code tracing visualizations helpful for gaining deeper knowledge beyond plans

"I think plans helped me in the very beginning, but once I understand the concept, debugging is what really helps me **further my learning** past the plans into more real life scenarios." - P9

- Perceived lower cognitive load
 - Plans help me focus on less
 - Plans help apply knowledge
- I was successful because I understood and completed tasks

Subjective Task Value

- Plans are for beginners and struggling learners
- Plans help me learn general, not detailed, knowledge
- I enjoyed the activity, especially when I got stuff right
- I found the content interesting and applicable

Conversational Programmers' Goals and General Self-Schemata

- I'm not good at programming
- I won't be a "hard coder" who writes code unassisted
- Learning to code is practical, but I just want the basics

52 - Evaluating the curriculum

Related Choice

I am motivated to learn with

purpose-first

programming

Achievement-

- Perceived lower cognitive load
 - Plans help me focus on less
 - Plans help apply knowledge
- I was successful because I understood and completed tasks

1

Subjective Task Value

- Plans are for beginners and struggling learners
- Plans help me learn general, not detailed, knowledge
- I enjoyed the activity, especially when I got stuff right
- I found the content interesting and applicable

Conversational Programmers' Goals and General Self-Schemata

- I'm not good at programming
- I won't be a "hard coder" who writes code unassisted
- Learning to code is practical, but I just want the basics

53 - Evaluating the curriculum

Related Choice

I am motivated

Achievement-

to learn with purpose-first programming

- Perceived lower cognitive load
 - Plans help me focus on less
 - Plans help apply knowledge

Achievement-Related Choice

I am motivated

to learn with

purpose-first

programming

 I was successful because I understood and completed tasks

Subjective Task Value

- Plans are for beginners and struggling learners
- Plans help me learn general, not detailed, knowledge
- I enjoyed the activity, especially when I got stuff right
- I found the content interesting and applicable

Conversational Programmers' Goals and General Self-Schemata

- I'm not good at programming
- I won't be a "hard coder" who writes code unassisted
- Learning to code is practical, but I just want the basics

54 - Evaluating the curriculum

- **Expectations for Success**
 - Perceived lower cognitive load
 - Plans help me focus on less
 - Plans help apply knowledge
 - I was successful because I understood and completed tasks

Subjective Task Value

- Plans are for beginners and struggling learners
- Plans help me learn general, not detailed, knowledge
- lenjoyed the activity, especially when I got stuff right
- I found the content interesting and applicable

Conversational Programmers' Goals and General Self-Schemata

- I'm not good at programming
- I won't be a "hard coder" who writes code unassisted
- Learning to code is practical, but I just want the basics

55 - Evaluating the curriculum

Related Choice

Achievement-

I am motivated to learn with purpose-first programming

- Perceived lower cognitive load
 - Plans help me focus on less
 - Plans help apply knowledge
- I was successful because I understood and completed tasks

1

Subjective Task Value

- Plans are for beginners and struggling learners
- Plans help me learn general, not detailed, knowledge
- I enjoyed the activity, especially when I got stuff right
- I found the content interesting and applicable

Conversational Programmers' Goals and General Self-Schemata

- I'm not good at programming
- I won't be a "hard coder" who writes code unassisted
- Learning to code is practical, but I just want the basics

56 - Evaluating the curriculum

Achievement-Related Choice

I am motivated to learn with purpose-first programming

- Perceived lower cognitive load
 - Plans help me focus on less
 - Plans help apply knowledge

Achievement-Related Choice

I am motivated

to learn with purpose-first

programming

 I was successful because I understood and completed tasks

Subjective Task Value

- Plans are for beginners and struggling learners
- Plans help me learn general, not detailed, knowledge
- I enjoyed the activity, especially when I got stuff right
- I found the content interesting and applicable

Other Novice Programmers' Goals and General Self-Schemata

- I'm a beginner
- I want to be a programmer who can write code on my own

57 - Evaluating the curriculum

- Perceived lower cognitive load
- Plans help me focus on less
 - Plans help apply knowledge
- I was successful because I understood and completed tasks

Subjective Task Value

- Plans are for beginners and struggling learners
- Plans help me learn general, not detailed, knowledge
 - I enjoyed the activity, especially when I got stuff right
- I found the content interesting and applicable

Other Novice Programmers' Goals and General Self-Schemata I'm a beginner

I am motivated to learn with purpose-first programming

Achievement-**Related Choice**

58 - Evaluating the curriculum

I want to be a programmer

who can write code on my own

Conclusions

Based on their goals, learners value programming learning tasks differently

Changing the way learners think about code can result in increased motivation

Where do we go from here?

Can purpose-first programming increase programming self-efficacy?

I focused on motivation, but questions of learning are next.

Technical supports could work more efficiently. How can they fade?

A platform could can support the creation of purpose-first modules for a variety of domain areas.

Thanks!