Redes Neuras em Visão Computacional

Apresentações

· Luiz Henrique B. Lago

 Cap 14 - Deep Computer Vision using Convolutional Neural Networks

Visão Computacional

- · Analisar, interpretar e extrair informações de imagens;
- · Características de animais:
 - Reconhecer faces familiares;
 - Contar objetos;
 - Identificar cenários;

Visão Computacional

- Informações facilmente reconhecidas:
 - São 3 Cachorros;
 - Estão num campo;
 - · O do meio carrega algo;
- Como abstrair isso para que uma máquina entenda?

Arquitetura do Córtex Visual

- Como o ser humano entende essas imagens?
- Pesquisa de David H. Hubel e Torsten Wiesel (1958 e 1959);
- Neurônios com campos de percepções pequenos;
- Neurônios especializados:
 - · Linhas;
 - Contornos;
 - Formas;
 - · Reconhecimento de objeto;
 - Etc..

- Neurônios com um campo visual maior:
 - · Reagiam a padrões mais complexos;
 - Eram baseados na saída dos neurônios de campo visual menor;
- Usavam os padrões simples encontrados para gerar padrões mais complexos;

- · Rede com neurônios:
 - Especializados em reconhecimentos de padrões;
 - · Campo de visão pequeno;
- Cada camada da rede se especializa em reconhecimentos mais complexos que a camada anterior;

edges

combinations of edges

object models

- Cada camada é conectada a uma fração da camada anterior;
 - Campo de percepção;
- Uma rede pode conter múltiplas camadas;
- · A primeira camada é sempre a imagem de entrada;

· Kernel size:

 Campo de percepção do neurônio;

 É o tamanho do campo em altura x largura que o vai receber como input da camada anterior;

Altura e largura podem ter '
tamanhos diferentes

Convolution over a 5X5 kernel size

Redes Convolucionais (Conceitos)

• Tamanho da nova camada atual:

$$novaAltura = (altura - kernelSize) + 1$$

 $novaLargura = (largura - kernelSize) + 1$

· Campo de visão do neurônio:

$$f_j = kernelsize[altura]$$
 $f_i = kernelsize[largura]$
 $novoN_{ij} = \sum_{x=0}^{f_j} \sum_{y=0}^{f_i} N_{(x+i)(y+j)}$

Redes Convolucionais (Conceitos)

Padding Zero:

 Algumas vezes queremos que a camada tenha o mesmo tamanho que a anterior;

 Adicionamos um espaçamento de zeros para preencher as casas não existentes;

Mesmo tamanho das camadas;

· Campo de visão do neurônio:

$$f_j = kernelsize[altura]$$

 $f_i = kernelsize[largura]$

$$novoN_{ij} = \sum_{x=0}^{J_J} \sum_{y=0}^{J_i} N_{(x+i-\frac{f_i}{2})(y+j-\frac{f_j}{2})}$$

0	2	00	0,	0	0	0	0
0	1	20	20	3	3	3	0
0	0	0,	1,	3	0	3	0
[0		2	3	0	1	3	0
[0		3	3	2	1	2	0
[0		3	3	0	2	3	0
	1	0	0	0	0	0	0

1	6	5
7	10	9
7	10	8

Redes Convolucionais (Conceitos)

• Stride:

- Define o passo entre um campo e percepção e outro;
- Podem ser definidos verticalmente e horizontalmente independentes;

• Sem a opção **padding zero**, parte do input podem ser ignorado;

Redes Convolucionais (Conceitos)

· Campo de visão do neurônio:

$$f_j = kernelsize[altura]$$
 $f_i = kernelsize[largura]$
 $s_j = stride[altura]$
 $s_i = stride[largura]$
 $novoN_{ij} = \sum_{x=s_i}^{f_j} \sum_{y=0}^{f_i} N_{(x+i*s_i)(y+j*s_j)}$

 Novo tamanho é dividido pelo stride;

7 x 7 Input Volume

Filtros

• É a matriz de pesos aplicada ao campo de percepção do neurônio.

 Os filtros vão ser produzidos a partir do treinamento da rede.

Mapa de Características

- Uma camada de neurônios que aplicam o mesmo filtro criam um feature map;
- Tem como objetivo destacar áreas da imagem no qual o filtro foi melhor ativado;
 - · Mapa de ativação;
- A quantidade de **feature maps** definem o comprimento da camada;

Mapa de Características

 Para cada filtro se obtém uma representação do mapa de características, em que cada pixel é a saída de um neurônio;

Mapa de Características

 Um neurônio da camada K está conectado aos neurônios da camada K-1 no campo de percepção dentro de todos os mapas de características;

Camada Convolucional

- Uma camada convolucional é o principal bloco de construção de uma rede convolucional;
- Ela contém um grupo de filtros e gera um vários mapas de características;

 Nem todas as camadas de uma rede convolucional são camadas convolucionais;

Canais

- Define o comprimento de cada nível;
- Numa imagem, geralmente os canais são divididos pelos tons de cores (RGB);
- A quantidade de feature maps representa também a quantidade de canais;

- Tem como objetivo reduzir a matriz de informações de uma camada para outra;
- Cada neurónio também tem seu campo de percepção;
- Não contém pesos, ao invés, utiliza funções de agregação;
 - · Eg. Max, Min, Sum

· A saída terá a mesma quantidade de canais que a entrada;

Camada de Agrupamento

- Exemplos concretos:
 - Sem zero padding;
 - Kernel size 2;
 - Stride 2;

 Executa a média arredondada nos dados de entrada;

3	9	7	4	7	5
0	6	7	3	1	2
2	4	5	0	3	2
3	7	5	0	2	1
1	5	0	7	3	6
8	9	2	5	1	8

Construção de uma rede Convolucional

- · Geralmente uma rede convolucional é composta por:
 - · Grupos de camadas convolucionais e uma camada de pooling;
 - · Ao final algumas camadas de uma rede totalmente conectada;
 - A ultima camada resulta na predição de rede;

Construção de uma rede Convolucional

 (Aqui vai um slide mais voltado para a construção de uma rede dessas. Talvez envolva código?? Quem sabe...)

Construindo a saída

- A saída de uma rede pode variar entre:
 - Classificação;
 - Localização;
 - Detecção de Objetos;
 - Segmentação;

Classificação e Localização

- As ultimas camadas são uma rede neural totalmente conectada;
- Classificação:
 - Função softmax;
 - · Cada neurônio de saída representa sim ou não;
- Localização:
 - Valor entre 0 e 1;
 - Cada neurônio de saída representa um eixo na posição do objeto detectado;

Classificação e Localização

- · Número fixo de neurônios de saída;
 - Problemas para detectar mais de um objeto;

 Precisa que os dados de treinamento já estejam classificados ou localizados;

- Método simples:
 - · Dividir a imagem principal;
 - Testar a classificação e localização de cada parte;
- Lista de todas as localizações;
- Desvantagens:
 - Não existe tamanho padrão;
 - Reprocessamento;
 - Dois objetos no mesmo pedaço;
 - Pode detectar o mesmo objeto;

- Substituir a rede totalmente conectada:
 - Imagens de qualquer tamanho podem ser carregadas;
 - Imagens maiores resultam saídas maiores;
 - CNN podem ser convertidas em FCN;

Rede Totalmente Conectada

• Funcionamento:

Aqui vai uma imagem que ainda não terminei de confeccionar

Aqui vai uma explicação bem difícil e complicada

AOFOIIII

- Arquitetura usando FCN;
- · Método rápido e preciso de detecção de objetos;
 - Detecta em tempo real para vídeos;
- Código aberto desenvolvido em C;
 - Diversas variantes;

Implementação?

• Sei não....

