

Universidade Federal de Roraima Álgebra Linear I - Lista de exercícios Prof. Jairo S. Araujo Costa

Data:06-08/10/2020 MB202 Turma 1

Questão 1. Nos enunciados abaixo, V é um espaço vetorial, $u,v,w\in V$ e $\alpha\in\mathbb{R}.$ Prove que:

- a) O vetor nulo de V e o simétrico de cada elemento v de V são únicos.
- b) $-(-u) = u \in (-\alpha) \cdot u = \alpha(-u) = -(\alpha \cdot u)$. Em particular, $(-1) \cdot v = -v$.
- c) Dados $u, v \in V$, existe um único $w \in V$ tal que u + w = v.
- d) $u+v=\mathbf{0} \Rightarrow u=-v$
- e) $u + v = v \Rightarrow u = \mathbf{0}$.
- f) $0 \cdot v = 0 \ e \ \alpha \cdot 0 = 0$.
- g) Se $\alpha \cdot v = \mathbf{0}$, então $\alpha = 0$ ou $v = \mathbf{0}$. (Ou, dito de outro modo, se $\alpha \neq 0$ e $v \neq \mathbf{0}$, então $\alpha \cdot v \neq \mathbf{0}$).

Questão 2. Mostre que, se X é um conjunto qualquer e $(V, +, \cdot)$ um espaço vetorial, então com as definições naturais, o conjunto $\mathcal{F}(X; V) = \{f : X \to V\}$ de todas as funções de X em V é um espaço vetorial.

Questão 3. Prove que a interseção de dois subespaços vetoriais ainda é um subespaço vetorial.

Questão 4. Prove que a união de dois subespaços ainda é um subespaço se, e somente se, um deles está contido no outro.

Questão 5. Exiba dois subespaços (diferentes dos subespaços triviais) U e W de \mathbb{R}^4 tais que $U \oplus W = \mathbb{R}^4$. Um seguida, exiba mais dois subespaços U' e W' de \mathbb{R}^4 tais que $U' + W' = \mathbb{R}^4$ e $U' \cap W' \neq \{\mathbf{0}\}$.

Questão 6. Exiba uma base para o subespaço de $\mathbb{M}_{2\times 2}(\mathbb{R})$ gerado pelos vetores

$$u_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, u_2 = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} e u_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Questão 7. Sejam

$$W_1 = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \text{ tal que } a = d, \text{ e } b = c \right\} \quad \text{e} \quad W_2 = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \text{ tal que } a = c, \text{ e } b = d \right\}$$

subespaços do espaço vetorial $\mathbb{M}_{2\times 2}(\mathbb{R})$ das matrizes reais quadradas de ordem 2.

- a) Determine $W_1 \cap W_2$ e exiba uma base.
- b) Determine a dimensão do subespaço $W_1 + W_2$ e exiba uma base para $W_1 + W_2$.
- c) Determine um subespaço W_3 de $\mathbb{M}_{2\times 2}(\mathbb{R})$ tal que $W_1 \oplus W_3 = \mathbb{M}_{2\times 2}(\mathbb{R})$. Quais são as possibilidades para a dimensão de W_3 ?

- d) Determine um subespaço W_4 de $\mathbb{M}_{2\times 2}(\mathbb{R})$ de dimensão 3 tal que $W_1+W_4=\mathbb{M}_{2\times 2}(\mathbb{R})$. A soma pode ser direta?
- Questão 8. Uma função $f: \mathbb{R} \to \mathbb{R}$ é dita ser par (respectivamente impar) quando f(-x) = f(x) (respectivamente f(-x) = -f(x)), para todo $x \in \mathbb{R}$. Prove que:
 - a) o conjunto U de todas as funções pares e o conjunto W de todas as funções ímpares são subespaços de $\mathcal{F}(\mathbb{R};\mathbb{R})$;
 - b) $U \oplus W = \mathcal{F}(\mathbb{R}; \mathbb{R}).$

Questão 9. Encontre um subespaço E de $\mathbb{M}_{3\times 3}(\mathbb{R})$ tal que $D \oplus E = \mathbb{M}_{3\times 3}(\mathbb{R})$, onde $D \subset \mathbb{M}_{3\times 3}(\mathbb{R})$ é o conjunto de todas as matrizes diagonais de ordem 3.

Questão 10. Exercícios 4, 7, 9, 10, 12, 13, 14, e 15 (do capítulo 2) do livro **Álgebra** linear essencial, disponível em https://www.ronaldofreiredelima.com/books (Draft)

Exercícios opcionais

Questão 11. Generalize as definições de função par e função ímpar (para funções $f: U \to V$) em seguida,

- b) mostre que o conjunto W_1 de todas as funções pares e o conjunto W_2 de todas as funções impares, são subespaços de $\mathcal{F}(U;V)$;
- c) $W_1 \oplus W_2 = \mathcal{F}(U;V)$.

Questão 12. Seja $X = \{u_1, \ldots, u_n\}$ um subconjunto de um espaço vetorial V. Mostre que se X é L.I., então dados $\alpha_1 \ldots, \alpha_n \in \mathbb{R}^*$ o conjunto $X' = \{\alpha_1 u_1, \ldots, \alpha_n u_n\}$ também é L.I.

Questão 13. Se $X = \{u_1, \ldots, u_i, \ldots u_j, \ldots, u_n\}$ um subconjunto de um espaço vetorial V é L.I., então, para todo $\alpha \in \mathbb{R}$ o conjunto $X = \{u_1, \ldots, u_i, \ldots, u_j + \alpha u_i, \ldots, u_n\}$ também é L.I.

Questão 14. Seja $X = \{u_1, \ldots, u_n\}$ um subconjunto de um espaço vetorial V. Mostre que se cada vetor u de U = GerX se escreve de modo 'unico como combinação linear dos vetores de X, então X é uma base de U.

Questão 15. Seja V um espaço vetorial. Mostre que para cada subespaço U de V, existe um subespaço W tal que $U \oplus W = V$.

Questão 16. Exercícios 5, 6 e 20 (do capítulo 2) do livro **Álgebra linear essencial**, disponível em https://www.ronaldofreiredelima.com/books (Draft)