Realizacja symulacji prostego systemu zdarzeń dyskretnych ze sterowaniem nadzorczym i przypadkowymi zakłóceniami

Imię i nazwisko: Michał Krzyszczuk Grupa:3a

Tabela parametrów symulacji

rabola parametro ir symulasji				
Początkowa pozycja robota	0			
Początkowa pozycja zagrożenia	0.06			
r1	0.05			
r2	0.06			
r3	0.8			
r4	0.01			
r5	0.5			
r6	0.01			
r7	1-r5			
r8	0.01			
r9	0.01			
r10	0.01			
r11	0.02			
r12	1-r3			

Kody źródłowe aplikacji

Schemat simulink w dodatku

```
damage h = [damage h;damage(end)];
distance h = [distance h;distance(end)];
energy used h = [energy used h;energy used(end)];
var(damage h)
var(energy used h)
mean (energy used h)
mean (damage h)
figure (1)
plot(damage, 'DisplayName', 'Zniszczenie')
hold on;
plot(energy used, 'DisplayName', 'Zuzyta energia')
xlabel('Czas [t {symulacji}*10]')
grid on;
plot(distance, 'DisplayName', 'Odleglosc od punktu
poczatkowego')
legend show;
dd = transpose(d(1,:))
figure (2)
plot(d(:), 'DisplayName', 'd')
xlabel('Czas [t {symulacji}*10]')
ylabel('wartosc sygnalu c')
```

Wyniki przeprowadzonych eksperymentów

• I eksperyment

Nr symulacji	Przebyta odległość	Zużyta energia	Uszkodzenia
1	53.6789192871883	1.30185000000010	0.9454000000000004
2	54.7565005921108	1.29930000000010	0.945400000000004
3	55.8523878310184	1.29930000000010	0.952400000000004
4	61.1193312960291	1.28940000000009	0.950400000000004
5	50.7950212481166	1.27375000000008	0.950900000000004
6	53.0143900923190	1.29255000000009	0.920900000000004
7	57.7420203656743	1.31725000000011	0.948400000000004
8	57.1293026744123	1.27245000000008	0.935900000000004
9	51.8215246110846	1.27160000000008	0.953000000000004
10	54.4392511055873	1.27670000000009	0.934900000000004
Wartość średnia	55.2347	1.2891	0.9432
Wariancja	8.6695	2.0146e-0	9.1155e-05

Figure 1 Wyjscia bloku Chart symulującego pracę robota

Figure 1 Wyjście generatora sygnału d Zastosowano następujący generator sygnałów z sygnał buildera:

• II eksperyment

Nr symulacji	Przebyta odległość	Zużyta energia	Uszkodzenia
1	40.0229660397853	0.598449999999968	0.9770000000000002
2	38.4142592926334	0.628099999999965	0.972500000000002
3	38.3158597649495	0.638599999999964	0.975000000000001
4	38.2467359614155	0.618549999999966	0.968500000000001
5	39.8417983804643	0.638999999999964	0.9705000000000002
6	38.5163062267761	0.610549999999967	0.981000000000002
7	38.2165420716664	0.622099999999965	0.9660000000000002
8	39.1097652677847	0.637549999999964	0.968000000000002
9	39.8300964999085	0.638999999999965	0.978000000000002
10	39.1691202428973	0.629099999999966	0.978000000000002
Wartość średnia	39.0802	0.6267	0.9735
Wariancja	0.8410	1.7486e-04	2.3300e-05

Zastosowano następujący generator sygnałów z sygnał buildera:

Wnioski

- *Różne wartości parametrów generują różne czasy zakończenia działania (przejście do stanu F)
- *Na wykresie można zaobserwować, że zużycie energii jest różne dla różnych stanów (konieczne powiększenie wykresu, na linii niebieskiej)
- *Budowa schematów z wykorzystaniem bloczków typu chart jest intuicyjne i proste
- *Napotkano na trudność w wykorzystaniu generatora Entity z biblioteki *Stateflow*, i zastąpiono go generatorem Poissona i sprawdzeniem warunku.
- *Tworzenie programó w z wykorzystanie bloczka Chart jest proste i umożliwią przeniesienie grafu wprost z przeanalizowanego schematu