ENM 360: Introduction to Data-driven Modeling

Lecture #2: Primer on Linear Algebra and Scientific Computing

Lecture outline

Scientific computing

Linear algebra

Matrix/vector calculus/operations

Vectors

- Basic definitions
- Vector operations (e.g. addition, subtraction, multiplication, etc.)
- Linear combinations
- Dot products
- Norms
- Vector/Linear spaces
- · Linear (in)dependance
- Bases

Useful resources:

- Gilbert Strang's lectures at MIT OCW: https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
- Pavel Grinfeld's series on linear algebra: https://www.youtube.com/playlist?
 list=PLIXfTHzgMRUKXD88Idz\$I 4F4NxAZud\$mv

Matrices

- Basic definitions
- Matrix operations (e.g. addition, subtraction, multiplication, etc.)
- Unit matrices, transposes, inverses
- Basic properties
- Norms
- Linear transformation of vectors
- Eigenvalues and eigenvectors
- Linear systems

- (a) Original data.
- (b) Rotation by 45° .
- (c) Stretch along the (d) General linear horizontal axis. mapping.

$$\underbrace{\boldsymbol{A}}_{n\times k}\underbrace{\boldsymbol{B}}_{k\times m} = \underbrace{\boldsymbol{C}}_{n\times m}$$
 For $\boldsymbol{A}=\begin{bmatrix}1&2&3\\3&2&1\end{bmatrix}\in\mathbb{R}^{2\times 3}, \boldsymbol{B}=\begin{bmatrix}0&2\\1&-1\\0&1\end{bmatrix}\in\mathbb{R}^{3\times 2}$, we obtain

$$\boldsymbol{AB} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 2 & 5 \end{bmatrix} \in \mathbb{R}^{2 \times 2},$$

$$2x_1 + 3x_2 + 5x_3 = 1$$
$$4x_1 - 2x_2 - 7x_3 = 8$$
$$9x_1 + 5x_2 - 3x_3 = 2$$

$$\begin{bmatrix} 2 & 3 & 5 \\ 4 & -2 & -7 \\ 9 & 5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \\ 2 \end{bmatrix}$$

Useful resources:

- https://see.stanford.edu/materials/lsoeldsee263/Additional I -notes-matrix-primer.pdf
- https://see.stanford.edu/materials/lsoeldsee263/Additional2-matrix_crimes.pdf

Linear systems

- Direct solvers:
 - Gauss elimination/LU decomposition
 - Cholesky decomposition (SPD matrices)
 - QR decomposition
 - SVD
- Iterative solvers:
 - Jacobi iterations
 - Gauss-Seidel
 - Successive over-relaxation (SOR)
 - Krylov subspace methods (conjugate gradients, etc.)

$$2x_1 + 3x_2 + 5x_3 = 1$$
$$4x_1 - 2x_2 - 7x_3 = 8$$
$$9x_1 + 5x_2 - 3x_3 = 2$$

$$\begin{bmatrix} 2 & 3 & 5 \\ 4 & -2 & -7 \\ 9 & 5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \\ 2 \end{bmatrix}$$

Useful resources:

- Gilbert Strang's lectures at MIT OCW: https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
- Pavel Grinfeld's series on linear algebra: https://www.youtube.com/playlist?
 list=PLIXfTHzgMRUKXD88Idz\$I 4F4NxAZud\$mv