05042018.notebook April 09, 2018

5.1 Topologi i RM

$$B(\vec{a},r) = \{\vec{x} \in \mathbb{R}^m : |\vec{x} - \vec{a}| < r\} \text{ apen kule om } \vec{a}, r > 0$$

$$\overline{B}(\vec{a},r) = \{\vec{x} \in \mathbb{R}^m : |\vec{x} - \vec{a}| \le r\} \text{ lukket } - - - - , r > 0$$

Def La A < Rm. Et punkt a & Rm kalles et

- · indre punkt for A huis dot fins en kule B(a,r) c A
- · randpunkt for A huis enhver kule B(a,r) inneholder både punkter som er med i A og punkter som ikke er med i A.
- · y tre punkt for A huis det fins en kule B(a, r) som ikke inneholder punkter fra A.

- A C IR kalles lukket huis den inneholder alle sine randpunkter, Def. og åpen hvis den ikke inneholder noen randpunkter. Mengdene & (den tomme mengden) og Rn regnes som både apri og lukkede.
- Def Følgen $\{\vec{x}_n\} = \{\vec{x}_1, \vec{x}_2, \vec{x}_3, ...\}$ i \mathbb{R}^m konvergerer mot à ∈ Rm huis det til entuer &>0 fins N∈ M slik at $|\vec{x}_n - \vec{a}| < \varepsilon$ for alle $n \gg N$.

 V_i skriver de $\lim_{n\to\infty} \vec{x}_n = \vec{a}$.

Setuing S.I.S

Huis lim $\vec{x}_n = \vec{x}$ og lim $\vec{y}_n = \vec{y}$, så gjelder

- (i) $\lim_{n\to\infty} (c\vec{x}_n) = c \cdot \vec{x}$ for all reelle tall c(ii) $\lim_{n\to\infty} (\vec{x}_n + \vec{y}_n) = \lim_{n\to\infty} \vec{x}_n + \lim_{n\to\infty} \vec{y}_n = \vec{x} + \vec{y}$ (iii) $\lim_{n\to\infty} (\vec{x}_n \vec{y}_n) = \vec{x} \vec{y}$ (iv) $\lim_{n\to\infty} (\vec{x}_n \cdot \vec{y}_n) = \vec{x} \cdot \vec{y}$ (Skalarprodukt)

05042018.notebook April 09, 2018

Bevis (ii) (skisse):

$$\left| \left(\vec{x}_{n} + \vec{y}_{n} \right) - \left(\vec{x} + \vec{y} \right) \right| = \left| \left(\vec{x}_{n} - \vec{x} \right) + \left(\vec{y}_{n} - y \right) \right|$$
Trekantulikheten
$$\left| \left(\vec{x}_{n} + \vec{y}_{n} \right) - \left(\vec{x}_{n} + \vec{y}_{n} \right) \right| \leq \left| \vec{x}_{n} - \vec{x} \right| + \left| \vec{y}_{n} - \vec{y} \right| \tag{*}$$
(setning 1.2.5)

Gitt $\epsilon > 0$, kan vi velge N, slik at $|\vec{x}_n - \vec{x}| < \frac{\epsilon}{2}$ for n > N, og $N_2 - n - |\vec{y}_n - \vec{y}| < \frac{\epsilon}{2}$ for n > N,

Huis da Nerstorre enn både N, og Nz, er (*) < E. [

Setning 5.1.6 komponent i fra
$$\vec{x}_n$$

$$\lim_{n \to \infty} \vec{x}_n = \vec{x} \iff \lim_{n \to \infty} \vec{x}_n^{(n)} = \vec{x}_i \quad \text{for alle i}$$

Setning 5.1.8

Anta at A er lukket, og at $\{\vec{x}_n\}$ er en følge av punkter i A som konvergerer mot \vec{x} . Da er $\vec{x} \in A$.

Bevis

Anta at $\vec{x} \notin A$. Siden A er lukket, fins da en kule $B(\vec{x},r)$ som ikke inneholder punkter fra A. Da må $\vec{x}_n \notin B(\vec{x},r)$ for alle n, noe som strider mot at $\lim_{n\to\infty} \vec{x}_n = \vec{x}$. \square

Setning S. 1.9

Anta at $\vec{F}: A \to \mathbb{R}^m$, der $A \subseteq \mathbb{R}^k$. La $\vec{a} \in A$.

Da er \vec{F} kontinuerlig i \vec{a} hviss $\vec{F}(\vec{x}_n) \to \vec{F}(\vec{a})$ for alle folger $\{\vec{x}_n\}$ fra A slikat $\vec{x}_n \to \vec{a}$.

Bevis Se bok.

05042018.notebook April 09, 2018

5.2 Komplethet av Rm

Huis $\{\vec{x}_n\}$ er en følge i \mathbb{R}^m og $n_1 < n_2 < n_3 < \cdots$ er maturlige fall, så kalles følgen $\{\vec{x}_{n_k}\} = \{\vec{x}_{n_1}, \vec{x}_{n_2}, \vec{x}_{n_3}, \dots\}$ for en delfølge av $\{\vec{x}_n\}$.

eks. {3,7,11,13,...} (odde primtall)

er en delfølge av {1,3,5,7,9,(1,...} (oddetallene)

Setuing 5.2.2

Huis $\{\vec{x}_n\}$ konvergerer mot \vec{x} , så konvergerer også alle delfølger av $\{\vec{x}_n\}$ mot \vec{x} .

Bevis: Ukeoppgove.

Teorem 5.2.3 (Bolzano - Weierstrass)

Alle begrensede følger i R^m har en konvergent delfølge.

Bevis (Fange love i orkenen). Gitt en følge { in}.

Velger K slik at $|x_{ij}^{(n)}| < K$ for alle \vec{n} . (Alle komponentene

Plukker ut delfølge $\{\vec{x}_{n_1}, \vec{x}_{n_2}, \vec{x}_{n_3}, ...\}$ ved å la \vec{x}_{n_k} være første ledd i følgen som ligger i K_k .

05042018.notebook April 09, 2018

La (a_k, b_k) vare nedre, venstre hjørne i kvadratet K_k .

Da ar $\{a_k\}$ og $\{b_k\}$ voksende og begrensede følger av reelle tall, så de konvergerer ved kompletfhetsprinsippet (Kalkulus 4.3.9).

Så $\vec{z}_k = (a_k, b_k)$ konvergerer mot $\vec{z} = (a_i b)$ vår $k \rightarrow \infty$.

Siden både \vec{z}_k og \vec{x}_{n_k} ligger mot K_k , og størrelsen av K_k går mot 0 når $k \rightarrow \infty$, får vi at $\lim_{k \rightarrow \infty} \vec{x}_{n_k} = \vec{z}$.

Definisjon

 $\{\vec{x}_n\}$ er en <u>Cauchy-følge</u> hvis det til enhver $\epsilon > 0$ fins $N \in \mathbb{N}$ slik at $|\vec{x}_n - \vec{x}_k| < \epsilon$ for alle $n, k \ge N$.

Teorem (5.2.5 og 5.2.6) $\{\vec{x}_n\} \text{ er Cauchy } \iff \{\vec{x}_n\} \text{ er konvergent.}$

> \Rightarrow Anta at $\{\vec{x}_n\}$ er Cauchy. Do er $\{\vec{x}_n\}$ begrenset, for die this N slik at $|\vec{x}_n - \vec{x}_N| < 1$ for alle $n \ge N$.

Giff $\varepsilon > 0$, vely N slik at $|\vec{x}_n - \vec{x}_k| < \frac{\varepsilon}{2}$ war $n, k \ge N$.

Ved Bolzano-Weierstvass, velg delfølge $\{\vec{x}_{n_k}\}$ som konvargerer mot \vec{x} .

Vely so $n_k \geqslant N$ slik at $|\vec{x}_{n_k} - \vec{x}| < \frac{\epsilon}{2}$

Hvis n > N, er da

$$|\vec{x}_{n} - \vec{x}| = |(\vec{x}_{n} - \vec{x}_{n_{k}}) + (\vec{x}_{n_{k}} - \vec{x})|$$

$$\leq |\vec{x}_{n} - \vec{x}_{n_{k}}| + |\vec{x}_{n_{k}} - \vec{x}| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Altså konvergerer { xn } mot x . 1