Quiz 6 Solutions: Recursion and Induction

1. Suppose that $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ is defined recursively as follows for all $m, n \in \mathbb{N}$:

(B)
$$f(0, m) = m$$

(R) $f(n+1, m) = 1 + f(n, m)$

Which of the following statements are true?

- (a) For all $m, n \in \mathbb{N}$, we have f(n, m) = f(m, n).
- (b) For all $a, b, c \in \mathbb{N}$, we have f(a, f(b, c)) = f(f(a, b), c).
- (c) For all $a, b, c \in \mathbb{N}$, we have af(b, c) = f(ab, ac).
- (d) For all n, we have $f(n, n) = n^2$

Answer(s)

From unwinding, we find that

$$f(n,m) = 1 + f(n-1,m)$$

$$= 2 + f(n-2,m)$$

$$\vdots$$

$$= k + f(n-k,m)$$

$$\vdots$$

$$= n + f(0,m)$$

$$= n + m.$$

This function is a recursive definition of addition.

- (a) True, as commutativity holds in addition.
- (b) True, as associativity holds in addition.
- (c) True, as distribution holds in addition.
- (d) False. Consider $f(1,1) = 2 \neq 1^2$.
- 2. Consider the following recurrence:

$$T(n) = T(n/3) + T(n/4) + T(n/5) + 3n,$$

where T(n) increases as n increases. True or false: $T(n) \in O(n \log n)$.

- (a) True
- (b) False

Answer(s)

True. Since T(n) is increasing, we know that

$$T(n/5) \le T(n/4) \le T(n/3)$$

which means that

$$T(n) = T(n/3) + T(n/4) + T(n/5) + 3n \le 3T(n/3) + 3n.$$

We can use master theorem to solve the recurrence 3T(n/3) + 3n. We have d = 1 and c = 1 so from case 2, we get

$$T(n) \le 3T(n/3) + 3n \in \Theta(n \log n)$$

so we conclude that $T(n) \in O(n \log n)$.

3. Let a_n and b_n be integer sequences defined recursively:

(B)
$$a_1 = 1, a_2 = 2$$

(B)
$$b_1 = 1, b_2 = k$$

(R)
$$a_n = a_{n-1} + a_{n-2}$$

(R)
$$b_n = 2b_{n-1} - b_{n-2}$$

where $k \in \mathbb{Z}$. For what value of k will $a_n = b_n$ for all $n \ge 1$?

- (a) 1
- (b) 2
- (c) 3
- (d) No such k exists

Answer(s)

We want $a_n = b_n$ for all $n \ge 1$, we need $a_2 = b_2$. This mean that $b_2 = k$ can only be 2. We compare the first couple terms of a_n and b_n to get

$$a_1 = 1 \qquad b_1 = 1$$

$$a_2 = 2$$
 $b_2 = 2$

$$a_2 = 2$$
 $b_2 = 2$ $a_3 = 3$ $b_3 = 3$

$$a_4 = 5$$
 $b_4 = 4$

Since $a_n \neq b_n$ when n = 4, we find that a_n and b_n are different sequences. As k cannot be 2, there is no such k value.

- 4. Let $\Sigma = \{a, b\}$. Consider the language $L \subseteq \Sigma^*$ defined recursively:
 - (B) $\lambda \in L$
 - (R1) If $w \in L$, then $awb \in L$ and $bwa \in L$
 - (R2) If $w_1, w_2 \in L$, then $w_1w_2 \in L$

where $|w|_a$ and $|w|_b$ denotes the number of a's and number of b's in word w respectively.

Which of the following properties holds for all $w \in L$?

- (a) For all $w \in L$, $|w|_a = |w|_b$
- (b) For all $w \in L$, if $w = w_1 a w_2 b w_3$ then $|w_1|_b = 0$, where $w_1, w_2, w_3 \in L$.

- (c) For all $w \in L$, $|w| =_{(2)} 0$
- (d) For all $w \in L$, if |w| > 0 then w = aw' or w = bw' for some $w' \in \Sigma^*$

Answer(s)

- (a) True, provable by structural induction.
- (b) False, consider w = abab, where $w_1 = ab$ and $w_2 = w_3 = \lambda$. We have $|w_1|_b \neq 0$.
- (c) True, provable by structural induction.
- (d) True, provable by structural induction.
- 5. We want to prove by induction that for all integers $n \ge 4$, $2^n < (n+1)!$.

Which combination of base case(s) and inductive step would be valid?

- (a) **[B]** Show P(4) holds
 - [I] Show for all integers $k \ge 4$, if P(k) holds then P(k+1) holds
- (b) **[B]** Show P(4) and P(5) hold
 - [I] Show for all integers $k \ge 4$, if P(k) holds then P(k+2) holds
- (c) **[B]** Show P(4) holds
 - [I] Show for all integers $k \geq 4$, if P(i) holds for all integers $4 \leq i \leq k$ then P(k+1) holds
- (d) **[B]** Show P(4), P(5) and P(6) hold
 - [I] Show for all integers $k \ge 6$, if P(k) holds then P(k+1) holds

Answer(s)

- (a) This proof is induction for $n \geq 4$ and valid.
- (b) This proof method is induction with larger steps for $n \geq 4$ and valid.
- (c) This proof is strong induction for $n \ge 4$ and valid.
- (d) This proof uses induction to prove the property for all $n \ge 6$. We also prove the n = 4 and n = 5 cases to show the property is true for all $n \ge 6$. This proof method is valid.
- 6. Consider the recurrence relation:

(B)
$$T(1) = 1$$

(R)
$$T(n) = 2T(\sqrt{n}) + n \log n$$

Which statement is correct about solving this recurrence?

- (a) Case 1 of Master Theorem applies.
- (b) Case 2 of Master Theorem applies.
- (c) Case 3 of Master Theorem applies.
- (d) The Master Theorem cannot be applied to this recurrence.

Answer(s)

Master Theorem cannot be applied to this recurrence as it only applies when we divide n by some constant in the recursive rule. The recursive rule instead takes the square root of n.

7. Let $Prop = \{p, q, r, s\}$ be a set of letters that represent propositions. Consider

$$\Sigma = \text{Prop} \cup \{\top, \bot, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,], \diamond\}.$$

The better-formed formulas (bffs) over Prop is the smallest subset of Σ^* where:

- (B1) \top , \perp are bffs
- (B2) All elements of Prop are bffs
- (B3) [p] is a bff for all $p \in \text{Prop}$
- (R1) If φ is a bffs, then $\neg \varphi$ is a bff
- (R2) If φ and ψ are bffs, then $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$ and $(\varphi \leftrightarrow \psi)$ are bffs
- (R3) If φ is a bff, then $[\varphi]$ is a bff
- (R4) If $\varphi_1, \varphi_2, \varphi_3$ are bffs, then $(\diamond \varphi_1 \varphi_2 \varphi_3)$ is a bff

Which of the following are better-formed formulas according to this definition?

- (a) $(\neg[p] \land (\diamond qrs))$
- (b) $(\diamond[p]q[\neg r])$
- (c) $((\diamond pq) \rightarrow s)$
- (d) $(\neg(\diamond pqr) \lor [\diamond pqr])$

Answer(s)

- $(\neg[p] \land (\diamond qrs))$: This is a bff.
- $(\diamond[p]q[\neg r])$: This is a bff.
- $((\diamond pq) \to s)$: This is not a bff. The \diamond operator requires 3 inputs but we have 2 in $(\diamond pq)$.
- $(\neg(\diamond pqr)\lor[\diamond pqr])$: This is not a bff. The term $[\diamond pqr]$ is not a bff as the rule requires brackets () around the \diamond operator.
- 8. Let $\Sigma = \{a, b\}$. We define function $f: \Sigma^* \to \mathbb{N}$ as

(B)
$$f(\lambda) = 0$$

(R)
$$f(aw) = 2 + f(w)$$

(R)
$$f(bw) = 1 + f(w)$$

Where $|w|_a$, $|w|_b$ denotes the number of a's and b's in word w respectively.

Which of the following properties are true?

(a)
$$f(w) = 2|w|_a + |w|_b$$

(b)
$$f(w_1w_2) = f(w_1) + f(w_2)$$

(c)
$$f(w_1w_2) = f(w_1) + f(w_2) + |w_1|_a$$

(d)
$$f(w_1w_2) = f(w_1) + f(w_2) + |w_2|_a$$

Answer(s)

- (a) We find that $f(w) = 2|w|_a + |w|_b$ is true. This can be proven by structural induction.
- (b) This can be proven with the closed form of f(w).
- (c) Consider the counterexample $f(a) \neq f(a) + f(\lambda) + |a|_a$.
- (d) Consider the counterexample $f(a) \neq f(\lambda) + f(a) + |a|_a$.