

Recursive State Estimation & Bayes Filters

Department of Electrical and Electronics Engineering
Dr. Afşar Saranlı

What we will discuss

- Recall our motivation for using Probability for robotics,
- Review probability theory, its axioms and important results,
- Take another look in robot environment interaction,
- Discuss recursive state estimation through the formalism of Bayes Filters,

Why are we doing this?

- Robotics would have been so easy <u>if only</u> we knew certain quantities,
- We could make decisions, apply control etc easily.
- What are those "quantities"?

 Unfortunately, we do not know directly and often cannot directly measure the "state".

Why are we doing this?

- Probabilistic Robotics is about estimating "the state" based on noisy models and noisy measurement data.
- In fact: We will attempt to compute belief distributions over all possible world states.
- These will be in the form:
 - Probability Mass Functions (discrete case)
 - Probability Density Functions (continuous case)

Basic Concepts in Probability Theory

- A Random Variable (rv) is "a mathematical variable that takes on values based on the outcome of an uncertain event E"
- Examples of Events:
 - E1: The US president in the 2028 will be Trump again!
 - E2: You will wake up tomorrow with a headache.
 - E3: You have Corona Virus!
- Each possible event is mapped into a value of the rv: For example x = 1,2,3 for E1, E2, E3
- Can be generalized to represent "continuous events" (e.g., battery level of a robot)

Discrete Random Variables

- X denotes a random variable.
- X can take on a countable number of values in {x₁, x₂, ..., x_n}.
- $Pr(X=x_i)$, or $P(x_i)$, is the *probability* that the random variable X takes on value x_i .
- *P*(.) is called *probability mass function*.
- E.g.: $P(Room = i) = \langle 0.7, 0.2, 0.08, 0.02 \rangle$

Discrete Random Variables

$$Pr(Room = i) = \langle 0.7, 0.2, 0.08, 0.02 \rangle$$

Continuous Random Variables

- X takes on values in the continuum.
- p(X=x), or p(x), is called a probability density function.

$$P(x \in (a,b)) = \int_{a}^{b} p(x)dx$$

$$p(x) \uparrow \qquad P(x \in (a,b))$$

• E.g.

However individual values of P(X=x) have a name: called the "**likelihood**" of X=x.

We cannot talk ab for individual values of X=x but of intervals!!

Meaning of Probabilities

• For the continuous case, $P(x \in (a,b))$ is the fraction of worlds in which event E causing $x \in (a,b)$ is true.

$$P(E) = P(x \in (a,b))$$

 $P(x \in (a,b)) =$ P(E)= Area of reddish oval

Axioms of Probability Theory

Assume events A and B

- 0 <= P(A) <= 1
- P(True) = P("Sure Event") = 1
- P(False) = P("Impossible Event") = 0
- P(A or B) = P(A) + P(B) P(A and B)
- More popularly used Symbols "Or": V, "And": Λ

Interpreting the Axioms

- P(True) = 1
- •
- P(A or B) = P(A) + P(B) P(A and B)

Assume events A and B

The area of A can't get any smaller than 0

And a zero area would mean "no world could ever have A true" – A is an "impossible event"

Interpreting the Axioms

• 0 <=

Assume events A and B

- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

The area of A can't get any bigger than 1

And an area of 1 would mean "all worlds will have A true" – A is a "sure event"

Interpreting the Axioms

- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0

•

Assume events A and B

Simple addition and subtraction for P(.) values

These Axioms are Not to be Trifled With

- There have been attempts to propose different methodologies for uncertainty
 - Fuzzy Logic
 - Three-valued logic
 - Dempster-Shafer "Theory of Evidence"
 - Non-monotonic reasoning
- But the axioms of probability are the only system with this property:
- If you gamble using them you can't be unfairly exploited by an opponent using some other system [di Finetti 1931]

http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.5

Theorems from the Axioms

- Anything other than the axioms needs proof based on the axioms!
- Simple example: From the axioms,

$$0 \le P(A) \le 1$$
, $P(True) = 1$, $P(False) = 0$
 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

we can prove:

$$P(not A) = P(\neg A) = 1 - P(A)$$

$$Pr(A \lor \neg A) = Pr(A) + Pr(\neg A) - Pr(A \land \neg A)$$

$$Pr(True) = Pr(A) + Pr(\neg A) - Pr(False)$$

$$1 = Pr(A) + Pr(\neg A) - 0$$

$$Pr(\neg A) = 1 - Pr(A)$$

Another important Theorem

Again from the Axioms:

$$0 \le P(A) \le 1$$
, $P(True) = 1$, $P(False) = 0$
 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

We can prove:

$$P(A) = P(A \land B) + P(A \land \neg B)$$

How?

Joint Probabilities and Independence

 Probability that two or more events happen at the same time or "jointly".

$$P(A \text{ and } B) = P(A \land B) = P(A, B)$$
$$P(X = x \text{ and } Y = y) = P(x, y)$$

X and Y are independent r.v.s, if and only if:

$$p(x,y) = p(x)p(y)$$

A reminder about notation

Events are sets:

$$P(A) = Pr(A = true) = Pr(event A happens)$$

 Continuous event spaces: We can only talk about actual probabilities of intervals.

$$\Pr(x \in (a,b)) = \int_{a}^{b} p(x)dx$$

Otherwise in general a prob. density function:

Joint density function

- Conditional probability is about an event A, given that we know exatly what happened with event B
- Notation: P("A given B") = P(A|B)

 P(A|B) = Fraction of worlds in which B is true that also have A true

"Headaches are rare and flu is rarer, but if you're coming down with flu what is the chance that you also have a headache?

 P(A|B) = Fraction of worlds in which B is true that also have A true

H = "Having a headache" F = "Coming down with Flu"

"Headaches are rare and flu is rarer, but if you're coming down with flu there's a 50-50 chance you'll have a headache."

$$P(H) = 1/10$$

 $P(F) = 1/40$
 $P(H|F) = 1/2$

H = "Have a headache" F = "Coming down with Flu"

$$P(H) = 1/10$$

 $P(F) = 1/40$
 $P(H|F) = 1/2$

P(H|F) = Fraction of flu-infected worlds in which you have a headache

= #worlds with flu and headache
----#worlds with flu

= Area of "H and F" region
----Area of "F" region

Hence:

$$P(H \land F)$$

$$P(H|F) = ------$$

$$P(F)$$

Definition of Conditional Probability

$$P(A \mid B) \stackrel{\triangle}{=} \frac{P(A \land B)}{P(B)}$$

$$p(x \mid y) \stackrel{\triangle}{=} \frac{p(x,y)}{p(y)}$$

Event set notation

pdf notation

Most convenient when we talk about discrete events & discrete random variables

Definition of Conditional Probability

$$P(A \mid B) \stackrel{\triangle}{=} \frac{P(A \land B)}{P(B)}$$

$$p(x \mid y) \stackrel{\triangle}{=} \frac{p(x,y)}{p(y)}$$

Event set notation

pdf notation

Most convenient when we talk about continuous random variables

Definition of Conditional Probability

$$P(A \mid B) \stackrel{\triangle}{=} \frac{P(A \land B)}{P(B)}$$

$$p(x \mid y) \stackrel{\triangle}{=} \frac{p(x,y)}{p(y)}$$

Event set notation

pdf notation

Corollary: The Chain Rule

$$Pr(A \land B) = Pr(A \mid B) Pr(B)$$
$$p(x, y) = p(x \mid y) p(y)$$

Multi-valued random variables

- Binary random variables have only "true" and "false" values,
- Represent whether an event A has happened or not,
- In general, discrete random variables also take multiple (but finite number of) values,
- Continuous r.v.s take infinitely many values (hence why we are dealing with intervals)

Total Probability and Marginals

 For multi-valued discrete and continuous random variables, we can show:

Discrete case

$$\sum_{x} P(x) = 1$$

$$P(x) = \sum_{v} P(x, y)$$

$$P(x) = \sum_{y} P(x \mid y) P(y)$$

Continuous case

$$\int p(x) \, dx = 1$$

$$p(x) = \int p(x, y) \, dy$$

$$p(x) = \int p(x \mid y) p(y) \, dy$$

"Total Probability Theorem"

$$p(x, y) = p(y, x)$$
$$p(x | y)p(y) = p(y | x)p(x)$$

The "Bayes Rule"

$$p(x, y) = p(y, x)$$

 $\Rightarrow p(x | y)p(y) = p(y | x)p(x)$
and hence

$$\Rightarrow p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$$

Bayes, Thomas (1763) "An essay towards solving a problem in the doctrine of chances." Philosophical Transactions of the Royal Society of London, 53:370-418

The "Bayes Rule"

"Posterior" belief about the state, having made the observation

would

sensor data"

$$\Rightarrow p(x) \qquad p(x)$$
and he see

"Prior" or "a-priori knowledge"

$$\Rightarrow p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

"Generative model" or "sensor model"

> A normalization factor independent of x

An essay doctrine actions of 370-418

How to compute p(y)?

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)} = \frac{p(y|x)p(x)}{\sum_{x'} p(y|x')p(x')}$$
 Discrete
$$p(x|y) = \frac{p(y|x)p(x)}{p(y)} = \frac{p(y|x)p(x)}{\int p(y|x')p(x')dx'}$$
 Continuous

 η is a normalization factor independent of x. Can always be found using the fact $\sum_{x} P(x \mid y) = 1$

With the normalization factor

$$p(x \mid y) = \eta \cdot p(y \mid x) p(x)$$

- Mathematical convenience,
- Keep propagating η in all equations.
- It is always a different number!
- Reminds us simply that "the final result has to be normalized to 1"

Conditioning on a third variable

Law of total probability:

$$P(x) = \int P(x, z)dz$$

$$P(x) = \int P(x \mid z)P(z)dz$$

$$P(x \mid z) = \int P(x \mid z)P(z \mid z) dz$$

"Bayes Rule with background knowledge":

$$P(x \mid y) = \frac{p(y \mid x) p(x)}{p(y \mid x)}$$

Conditional Independence

 Conditional Independence of x and y, given z, iff:

$$P(x,y|z)=P(x|z)P(y|z)$$

Which is equivalent to:

$$P(x \mid z, y) = P(x \mid z)$$

$$P(y \mid z, x) = P(y \mid z)$$

Conditional Independence is extremely important and makes almost all algorithms in this book computationally feasible.

34

Conditional Independence

Important note:

Conditional Independence does not imply (absolute) independence

More interestingly:

(absolute) independence does not imply conditional independence

Expected Value of a R.V.

 "Expected Value" or "Expectation" of a r.v. X is given by

$$E[X] = \sum_{x} x \cdot p(x) \qquad \text{(discrete)}$$

$$E[X] = \int_{x} x \cdot p(x) dx \qquad \text{(continuous)}$$

• *E*[.] is a linear operator:

$$E[aX+b] = aE[X]+b$$

E[x] is also often called "the mean of x"

Variance of a R.V.

Defined using the "Expectation" operator:

$$Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - (E[X])^{2}$$

- Mean and Variance are the first and second "moments" of the r.v., X.
- Measures: "the expected value of the squared deviation from the mean"
- If we have a (column) vector r.v. X, then we have the "Covariance Matrix" instead

The Covariance Matrix

 Defined again using the "Expectation" operator:

$$Cov(\mathbf{X}) = E\left[\left(\mathbf{X} - E[\mathbf{X}]\right)\left(\mathbf{X} - E[\mathbf{X}]\right)^{T}\right]$$

where **X** is column vector.

Example: Gaussian pdf

- Very common (why?) and useful probability distribution function,
- Described for a scalar r.v. X by:

$$p(x) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right\}$$

• which has a mean μ and variance σ^2

Multivariate Gaussian pdf

For a multivariate (vector) r.v. X:

$$p(\mathbf{x}) = \det(2\pi\Sigma)^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}$$

- which has a mean vector μ and Covariance matrix Σ
- Notation: $N\{x; \mu, \Sigma\}$

- Originates in Information Theory,
- Represents the expected information (in bits) that a random variable carries

$$H_p(x) = E[-\log_2 p(x)]$$

$$H_p(x) = -\sum_x p(x) \log_2 p(x)$$
 (discrete)
$$H_p(x) = -\int_x p(x) \log_2 p(x) dx$$
 (continuous)

Used for robotic exploration in this context₄₁

A Simple example of state estimation

- Suppose a robot obtains a measurement z indicating that a door is open. (observation)
- What is the probability that the door is in fact open (x=open)
- Namely: What is P(x=open|z=open)?

A Simple example of state estimation

- P(x=open|z) is diagnostic. (A question)
- P(z|x=open) is causal.
- Often causal knowledge is easier to obtain (often by repeated experimentation).
- Bayes rule allows us to use causal knowledge to obtain diagnostic answers:

$$P(x = open \mid z) = \underbrace{P(z \mid x = open)P(x = open)}_{P(z)}$$

How can we compute these terms?

A Simple example of state estimation

- A priori knowledge: $P(x=open) = P(x=\neg open) = 0.5$
- Sensor Behavior ("Model"): P(z=op|x=op)=0.6; $P(z=op|x=\neg op)=0.3$

$$P(x = op \mid z = op) = \frac{P(z = op \mid x = op)P(x = open)}{P(z = op \mid x = op)p(x = open) + P(z = op \mid x = \neg op)p(x = \neg open)}$$

$$P(x = op \mid z = op) = \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{2}{3} = 0.67$$

- Observation z=open brings our "belief" on the door state closer to the "open" state!!
- A similar calculation can be done for when
 z=closed is our observation!!

Recursively combining new data

- Suppose our robot obtains another observation z_2 .
- How can we recursively integrate this new information to our present "belief"?
- More generally, how can we estimate the "belief" $p(x|z_{n},z_{n-1},...,z_{1})$?

Robot and Its Environment

Some terminology first,

- State (Static/Dynamic) Pose Landmark
 - Complete / Incomplete State MarkovChain (Markov Assumption) -

Robot / Environment Interaction

 Measurement and actuation is represented by time-sequences of data...

All interaction (measurement and actuation) is uncertain,

All interaction (measurement and actuation) is

- Variables influence each other through probabilistic models: conditional density functions
- Complete State Assumption and Markov Property allows us to write

$$p(\mathbf{x}_{t} \mid \mathbf{x}_{0:t-1}, \mathbf{z}_{1:t-1}, \mathbf{u}) = p(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}, \mathbf{u}_{t})$$

$$p(\mathbf{z}_{t} \mid \mathbf{x}_{0:t-1}, \mathbf{u}_{1:t}) = p(\mathbf{z}_{t} \mid \mathbf{x}_{t})$$
Measurement Model
$$p(\mathbf{z}_{t} \mid \mathbf{x}_{0:t}, \mathbf{u}_{1:t}) = p(\mathbf{z}_{t} \mid \mathbf{x}_{t})$$

 The probabilistic relation forms a graph called Hidden-Markov-Model (HMM) or Dynamic Bayes

Bayes Filter: The framework

Given:

– Stream of observations $\{z_t\}$ and action data $\{u_t\}$:

$$d_t = \{u_1, z_1, ..., u_t, z_t\}$$

- Sensor model $p(\mathbf{z}_t | \mathbf{x}_t)$
- Action (state transition) model $p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_t)$
- Prior density of the system state $p(x_0)$.

Wanted:

- Estimate of the state x_t of the dynamical system at t.
- This "posterior" of the state is also called Belief:

$$Bel(x_t) = P(x_t | u_{1:t}, z_{1:t})$$

- We would like to do this recursively for all time t.

Bayes Filter: Recursive estimation

$$\begin{array}{ll} \hline \textit{Bel}(x_t) = P(x_t \,|\, u_1, z_1 \,..., u_t, z_t) & \textbf{z} = \text{observation} \\ \textbf{Bayes} &= \eta \; P(z_t \,|\, x_t, u_1, z_1, ..., u_t) \; P(x_t \,|\, u_1, z_1, ..., z_{t-1}, u_t) \\ \textbf{Markov} &= \eta \; P(z_t \,|\, x_t) \; P(x_t \,|\, u_1, z_1, ..., z_{t-1}, u_t) \\ \textbf{Total prob.} = \eta \; P(z_t \,|\, x_t) \; \int P(x_t \,|\, u_1, z_1, ..., z_{t-1}, u_t, x_{t-1}) \\ \textbf{+ chain rule} & P(x_{t-1} \,|\, u_1, z_1, ..., z_{t-1}, u_t) \; dx_{t-1} \\ \textbf{Markov} &= \eta \; P(z_t \,|\, x_t) \; \int P(x_t \,|\, u_t, x_{t-1}) \; P(x_{t-1} \,|\, u_1, z_1, ..., z_{t-1}, u_t) \; dx_{t-1} \\ \textbf{Markov} &= \eta \; P(z_t \,|\, x_t) \; \int P(x_t \,|\, u_t, x_{t-1}) \; P(x_{t-1} \,|\, u_1, z_1, ..., z_{t-1}) \; dx_{t-1} \\ \textbf{Markov} &= \eta \; P(z_t \,|\, x_t) \; \int P(x_t \,|\, u_t, x_{t-1}) \; P(x_{t-1} \,|\, u_1, z_1, ..., z_{t-1}) \; dx_{t-1} \\ \end{array}$$

 $= \eta \ P(z_{t} | x_{t}) \int P(x_{t} | u_{t}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$

The Bayes Filter Algorithm in Short

Table 2.1 The general algorithm for Bayes filtering.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Return Bel'(x)

The Bayes Filter Algorithm

$$bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$
 Algorithm Bayes_filter($Bel(x), d$):
$$\eta = 0$$
 If d is a perceptual data item z then For all x do
$$Bel'(x) = P(z \mid x) Bel(x)$$

$$\eta = \eta + Bel'(x)$$
 For all x do
$$Bel'(x) = \eta^{-1} Bel'(x)$$
 Else if d is an action data item u then For all x do
$$Bel'(x) = \int P(x \mid u, x') \ Bel(x') \ dx'$$

- Bayes rule allows us to compute probabilities that are hard to assess otherwise.
- Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.
- A Bayes filter is a probabilistic tool for recursively estimating the state of a dynamic system.

- Homework is coming (will be in metuonline soon! You will be notified.)
- Read Chapter 1 & 2 from the textbook
- Study the full example at the end of Chapter 2.