Aula 11: Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto.

Prof. Lucio A. Rocha

Engenharia de Computação Universidade Tecnológica Federal do Paraná, UTFPR Campus Apucarana, Brasil

1° semestre / 2023

Sumário

1 Linguagens Recursivamente Enumeráveis

2 Linguagens Sensíveis ao Contexto

Seção 1

- Motivação: implementar qualquer função computável.
- Função computável: é aquela para a qual existe um algoritmo que calcula os valores de saída a partir dos valores de entrada.
 - Problemas computáveis:
 - $L = \{ w \# w | w \in \{0, 1\}^* \}$
 - Sucessor de um número em \mathbb{N} , $f(x) = x^2$, sequência de Fibonnaci, fatorial(x), etc.

- Máquina de Turing (MT): é a formalização de uma função computável.
- Também é a formalização de um algoritmo.
- Algoritmo:
 - Sequência ordenada, mecânica e não-ambígua de instruções finitas.

- MT: executa algoritmos.
 - Utiliza uma fita infinita que é a sua memória.
 - Cabeçote para ler e escrever símbolos e mover o cabeçote sobre a fita.
- Inicialmente, a fita contém apenas a palavra de entrada.
 - Se a máquina precisa armazenar informação, ela pode escrever na fita.
 - Para ler a informação que foi escrita, a máquina pode mover o cabeçote sobre ela.
 - Uma única saída ACEITA ou REJEITA é obtida entrando em algum estado de aceitação ou rejeição.
 - Se não entra em estado de aceitação ou rejeição, a MT executa para sempre, e nunca pára.

Figura: Representação de uma MT.

• $1, x \rightarrow L$: Leu o símbolo 1 ou x, não escreve, vá para a esquerda (left).

Figura: Leitura da fita com uma MT.

• $1 \rightarrow x, R$: Leu o símbolo 1, escreve x, vá para a direita (right).

Figura: Escrita na fita com uma uma MT.

- Diferença entre MT e AF:
 - 1 MT pode ler e escrever na fita.
 - A leitura/escrita pode mover o cabeçote para a esquerda ou para a direita.
 - A fita é infinita.
 - Estados especiais para aceitar / rejeitar tomam efeito imediatamente.

Def.: Uma MT é uma 7-tupla:

$$MT = (\Sigma, Q, T, \delta, q_0, q_{aceita}, q_{rejeita})$$

onde Σ , Q, T são todos conjuntos finitos e:

- Σ : é o alfabeto de entrada (não contém o símbolo vazio)
- Q: é o conjunto de estados.
- T: é o alfabeto da fita $| \varepsilon \in T \text{ e } \Sigma \subseteq T$
- δ : é a função de transição (função parcial):

$$Q \times T \rightarrow Q \times T \times \{L, R\}$$

- $q_0 \in Q$: é o estado inicial.
- $q_{aceita} \in Q$: é o estado ACEITA.
- $q_{rejetia} \in Q$: é o estado *REJEITA*.

- Em uma MT, o símbolo vazio indica o fim da fita.
- Se o cabeçote está no final da fita à direita e a transição pede para ir para a direita, o cabeçote fica onde está.
- A computação continua até que ela entre no estado de ACEITA ou REJEITA, e a computação pára.
- Caso contrário, a MT continua sempre.

Configuração de uma MT:

- uv: conteúdo atual da fita
- q: estado atual
- posição do cabeçote: primeiro símbolo da string v
 - Exemplo: $1011q_701111$
 - uv: 101101111
 - q₇: estado atual
 - posição do cabeçote: sobre o primeiro $\underline{0}$ de v.

- A base de funcionamento de uma MT é a função de transição δ .
- A função de transição δ diz como a MT vai de um estado para o próximo estado.

$$\delta: Q \times T \to Q \times T \times \{L, R\}$$

- Exemplo: $\delta(q_0, a) = (q_1, b, L)$
 - Lê-se: dado o estado $q_0 \in Q$ e um símbolo $a \in T$ então:
 - escreva b (ação)
 - vá para o estado q₁ (próximo estado)
 - e mova o cabeçote para a esquerda (Left)
- Notação alternativa: $a \rightarrow b, L$

- Uma MT M_1 aceita a entrada w se uma sequência de configurações $C_1, C_2, ..., C_k$ existe, tal que:
 - **1** C_1 é a configuração inicial de M_1 sobre a entrada w
 - ② Cada C_i produz C_{i+1}
- $L(M_1) = \text{coleção de palavras que } M_1 \text{ aceita.}$

Linguagem Recursivamente Enumerável

Def.: Uma linguagem é:

- Tipo 0,
- Recursivamente enumerável,
- Turing-reconhecível,

se existe uma Máquina de Turing que reconhece a linguagem, ou seja, verifica se a palavra pertence à linguagem.

- Uma máquina Turing-reconhecível pode aceitar ou rejeitar entradas, mas nem sempre pára para entradas que não pertecem à linguagem (pode entrar em loop).
- Se $w \notin L$, a MT pode parar ou entrar em loop.

Linguagem Recursiva

Def.: Uma linguagem é:

- Recursiva,
- Decidível,
- Turing-decidível,

se existe, no mínimo, uma Máquina de Turing que decide a linguagem, ou seja, pára em um estado de *ACEITA* ou *REJEITA* para todas as entradas da linguagem.

• Uma máquina Turing-decidível pode aceitar ou rejeitar entradas, e sempre pára para todas as entradas.

16/26

Figura: Linguagens Irrestritas: Tipo 0.

- Implicação: existem mais problemas não-solucionáveis (infinitos, não-contáveis) do que problemas solucionáveis (infinitos, contáveis).
- Problema contável: que pode ser enumerado em uma sequência de números Naturais.
- Problemas contáveis:
 - $L = \{ w \# w | w \in \{0, 1\}^* \}$
 - Sucessor de um número em \mathbb{N} , $f(x) = x^2$, sequência de Fibonnaci, fatorial(x), etc.

- Linguagens Recursivamente Enumeráveis são aquelas que podem ser aceitas por uma MT.
- É possível representar essas linguagens com um formalismo axiomático (gerador), no formato de uma Gramática.
- Essa Gramática é denominada Gramática Irrestrita.
 - A Gramática Irrestrita não possui qualquer restrição na forma das produções.

- Uma linguagem aceita por uma MT é uma Linguagem Recursivamente Enumerável (LRE).
- A classe das LRE representa todas as linguagens que podem ser reconhecidas mecanicamente.
- Exemplos:
 - $L_1 = \{a^n b^n \mid n \ge 0\}$
 - $L_2 = \{ w \mid w \text{ tem o mesmo número de símbolos } a \in b \}$
 - $L_3 = \{a^i b^j c^k \mid i = j \text{ ou } j = k\}$

Figura: Classificação de Linguagens.

- Distinguir uma MT em loop ou que está demorando para terminar é difícil.
- Por esse motivo, é preferível a MT que pára para todas as entradas.
- MT decisoras sempre tomam a decisão de aceitar ou rejeitar a entrada.
 - Toda linguagem Turing-decidível é Turing-reconhecível.
 - Nem toda linguagem Turing-reconhecível é Turing-decidível.
 - A MT Turing-reconhecível pode não parar para uma entrada não-aceita pela linguagem.

• Exemplo: MT que decide a linguagem:

$$B = \{ w \# w \mid w \in \{0\}^* \}$$

Figura: Diagrama de Estados da MT B.

• Computação da palavra w = 00#00:

q ₁ 00#00	$x0\#0q_40$ _	$xxq_2#0x$ _
$xq_20#00$	$x0#q_50x_$	$xx#q_30x$ _
$x0q_2#00$	$x0q_5#0x_$	$xx#0q_3x_{_}$
$x0#q_300$	$xq_60\#0x$ _	$xx#q_40x$ _
$x0#0q_30$	$q_6 x 0 \# 0 x$ _	$xxq_5\#xx$ _
$x0\#00q_3$ _	$xq_10#0x_$	$xq_6x\#xx$ _
		$xxq_1#xx$
		$xx#q_7xx$ _
		xx#xq _{aceita} x_

Seção 2

Linguagens Sensíveis ao Contexto

Linguagens Sensíveis ao Contexto

Linguagem Sensível ao Contexto (LSC)

Def.: Uma linguagem é:

- Tipo 1,
- Sensível ao Contexto,

se pode ser aceita por uma Máquina de Turing com fita limitada.

 O tamanho da fita é igual ao tamanho da entrada acrescido de duas células de controle.

Linguagens Sensíveis ao Contexto

- Formalismo axiomático: para gerar uma LSC é usada uma Gramática Sensível ao Contexto (GSC).
- O lado esquerdo das produções pode ser um símbolo não-terminal ou terminal, definindo um "contexto" da derivação.
 - Ex: $Aa \rightarrow B$ (onde a derivação de A depende do contexto a).
- A classe da LSC pertence às linguagens Turing-decidíveis.
- Inclui a grande maioria das linguagens aplicadas.

Linguagens Sensíveis ao Contexto

Seja a Gramática Sensível ao Contexto (GSC):

$$G = (\Sigma, V_N, \mathbb{P}, Z)$$

- Σ : conjunto de símbolos terminais.
- V_N : conjunto de símbolos não-terminais.
- P: conjunto de regras de produção (função parcial):

$$\alpha \to \beta$$

- $\alpha \in (\Sigma \cup V_N)^+ \mid |\alpha| \leq |\beta|$, exceto para $Z \to \varepsilon$
- Portanto, em uma GSC, a cada derivação o tamanho da palavra não pode diminuir, exceto pela derivação que produz a palavra vazia.