Foundations of Data Science for Biologists

Introduction to SQL

BIO 724D

26-FEB-2024

Instructors: Greg Wray and Paul Magwene

Introduction to SQL

What is SQL?

SQL is a language for interacting with tabular data

Specifically, around the idea of relational data structures

SQL is designed:

for **powerful data queries** using a simple and compact syntax to enforce **data integrity** during data entry and updating for **highly efficient** search, sort, summarize, etc. operations to be **massively scalable** (billions of rows, thousands of columns)

SQL is a domain-specific language (DSL)

Intended for a specific set of needs

Best-in-class for its intended purposes, bad-to-terrible for most other tasks

SQL is designed to work with relational databases

observations species date familiar location ssp | IUCN species species genus seq genus seq Colias LC Himalayan Bulbul 1022 striatus 2007-06-14 Fairview Hotel 1418 | Pynonotus leucogenys LC 1419 | Pynonotus Common Bulbul 1023 Pycnonotus tricolor 2007-06-14 Fairview Hotel barbatus Fairview Hotel Dark-capped Bulbul Milvus 2007-06-14 1420 | Pynonotus tricolor LC 1024 migrans LC Cape Bulbul Chalcomitra Sheldrick Centre 1032 amethystina 2007-06-14 1421 | Pynonotus capensis Sheldrick Centre 1033 Pycnonotus tricolor 2007-06-14 locations 2007-06-15 Lake Naivasha 1050 Lamprotornis superbus geolocation location clim elev prov country Lake Naivasha 1051 Lamprotornis purpuroptera 2007-06-15 Csb Everard Reserve 90 -37.68,145.49 Vic Australia 2007-06-15 Lake Naivasha 1052 Scopus umbretta FL Everglades NP USA 25.39, -80.63 Aw Hell's Gate NP 1053 Buteo 2007-06-15 augur Fairview Hotel Nb Cfb -1.29,36.80 1715 Kenya 2007-06-15 Hell's Gate NP 1054 Cisticola marginata Faskrudsfjordur ET Iceland 20 64.93, -14.01 Au

Relational design removes redundant information by spreading data across tables:

(1) reduces errors, (2) simplifies updates, (3) saves space, (4) speeds up queries

Important points about how relational databases work

Every table contains a primary key consisting of 1 row (or, occasionally, more)

Value(s) are required (no blanks or NULL values)

Values must be unique (thus, no duplicate rows are possible)

Every table should contain at least one relation

A column intended to reference a column in another table

All this requires is that they contain the same data type (optionally, more restrictive)

The order of rows in a table is not consistent and is not stable

This allows for optimized query and sort operations

However, guaranteed sort order must be explicitly defined

SQL is limited to a small set of operations

Only four kinds of operations are permitted with relational databases Create, Read, Update, Delete (CRUD)

CREATE to create a new database, table, or relation; INSERT to add rows to a table

SELECT to query a database

UPDATE to change the information within a table

DELETE to remove rows from a table; DROP to remove a database, table, or relation

SQL has some additional keywords, but most work with the above set

Clauses within statements: WHERE, JOIN, GROUP BY, LIMIT, etc.

Operators within statements: =, >, IN, NOT, LIKE, BETWEEN, etc.

Functions within statements: MIN, MEAN, COUNT, DISTINCT, etc.

Pandas and dplyr implement many SQL-like operations (and were inspired by it)

Getting started

Software

We will use **DuckDB**, one of many implementations of the SQL standard Free, open source, runs on all major platforms, straightforward to implement Simple: no external software dependencies, no need to set up a RDBMS server Flexible: can be accessed directly from any Python program

In addition, we will use **JupySQL** to interface DuckDB with Jupyter Also free, open source, etc.

There are other ways to access SQL from Python
sqlite3: a Python standard library for SQLite in widespread use
psychoPG3: a Jupyter extension for PostgreSQL
SQLalchemy: a highly flexible general-purpose interface

Points to keep in mind as we construct queries

SQL is case-insensitive, but there are conventions
SQL keywords and functions are in ALL CAPS
Table and column names ("identifiers") are in lowercase

Statements (lines of code) end with a semicolon Required in scripts

Not required in single-line queries, but good practice

SELECT syntax

```
SELECT * FROM table WHERE condition ORDER BY column(s);

optional clause optional clause

or specific column(s) you want back
```

Clause order matters: FROM, JOIN / ON, WHERE, GROUP BY, ORDER BY, LIMIT

Practice database

Practice database: field observations of birds

Full implementation consists of 9 tables

1 records field observations

4 define nested taxonomic groups

3 define place

1 defines context

Simplified version omits 2 place tables And some columns from every table

Points to keep in mind about the database

Taxonomy follows the International Ornithological Congress (IOC)

Scientific (or Latin) taxon name: single word, based on rules of zoological nomenclature Familiar (or common) name: single name, an attempt to reconcile multiple synonyms Sequence of taxa within each rank: provides consistent ordering in lists

The content of taxonomic tables differ by rank

orders and families: complete list of taxa recognized by the IOC

genera and species: only taxa that have been observed

subspecies: not in a separate table but individually recorded under observations

The primary keys of taxonomic tables differ by rank

orders, families, and genera: IOC scientific name

species: IOC sequence (the binomen introduces complexity!)

subspecies: not relevant

Joins

Recommended join syntax

There are other ways to specify joins, some of which are short-cuts.

This syntax is recommended as the most readable and specific

Joins append rows from one table with those of another according to rules

Left join: keep every row from table 1; append matching rows from table 2

SELECT * FROM observations LEFT JOIN locations ON loc_name;

observations

seq	genus	species	date	loc_name
1022	Colias	striatus	2007-06-14	Fairview Hotel
1023	Pycnonotus	tricolor	2007-06-14	Fairview Hotel
1024	Milvus	migrans	2007-06-14	Fairview Hotel
1032	Chalcomitra	amethystina	2007-06-14	Sheldrick Centre
1033	Pycnonotus	tricolor	2007-06-14	Sheldrick Centre
1050	Lamprotornis	superbus	2007-06-15	Lake Naivasha
1051	Lamprotornis	purpuroptera	2007-06-15	Lake Naivasha
1052	Scopus	umbretta	2007-06-15	Lake Naivasha
1053	Buteo	augur	2007-06-15	Hells Gate NP
1054	Cisticola	marginata	2007-06-15	Hells Gate NP

locations

loc_name	prov	country	clim	elev	geolocation	
Everard Reserve	Vic	Australia	Csb	90	-37.68,145.49	
Everglades NP	FL	USA	Aw	2	25.39,-80.63	
Fairview Hotel	Nb	Kenya	Cfb	1715	-1.29,36.80	
Faskrudsfjordur	Au	Iceland	ET	20	64.93,-14.01	
Hell's Gate NP	RV	Kenya	Cfb	1800	-0.89,36.32	
Hinxton	Cam	England	Cfb	40	52.08,0.17	
Lago Huacarpay	Cuz	Peru	Cwb	3800	-13.61,-71.72	
Lake Naivasha	RV	Kenya	Cfb	1700	-0.82,36.38	
Sheldrick Centre	Nb	Kenya	Cfb	1750	-1.33,36.77	
Siem Reap	SiR	Cambodia	Aw	20	13.36,103.86	

Joins append rows from one table with those of another according to rules

Left join: keep every row from table 1; append matching rows from table 2

SELECT * FROM observations LEFT JOIN locations ON loc_name;

return

seq	genus	species	date	location	prov	country	clim		
1022	Colias	striatus	2007-06-14	Fairview Hotel	Nb	Kenya	Cfb	1715	-1.29,36.80
1023	Pycnonotus	tricolor	2007-06-14	Fairview Hotel	Nb	Kenya	Cfb	1715	-1.29,36.80
1024	Milvus	migrans	2007-06-14	Fairview Hotel	Nb	Kenya	Cfb	1715	-1.29,36.80
1032	Chalcomitra	amethystina	2007-06-14	Sheldrick Centre	Nb	Kenya	Cfb	1750	-1.33,36.77
1033	Pycnonotus	tricolor	2007-06-14	Sheldrick Centre	Nb	Kenya	Cfb	1750	-1.33,36.77
1050	Lamprotornis	superbus	2007-06-15	Lake Naivasha	Nb	Kenya	Cfb	1750	-1.33,36.77
1051	Lamprotornis	purpuroptera	2007-06-15	Lake Naivasha	Nb	Kenya	Cfb	1750	-1.33,36.77
1052	Scopus	umbretta	2007-06-15	Lake Naivasha	Nb	Kenya	Cfb	1750	-1.33,36.77
1053	Buteo	augur	2007-06-15	Hells Gate NP	RV	Kenya	Cfb	1800	-0.89,36.32
1054	Cisticola	marginata	2007-06-15	Hells Gate NP	RV	Kenya	Cfb	1800	-0.89,36.32

Note that there is a one-to-many relationship between observations and locations

Joins can return different sets of rows

Inner joins only return rows where there is a match in both tables Left joins return every row of table 1 and will insert NULL where there is no match in table 2

Joins can return different sets of rows

Inner joins only return rows where there is a match in both tables

Left joins return every row of table 1 and will insert NULL where there is no match in table 2

Congratulations! You just learned the most difficult kind of query in SQL

