Diabetes Prediction using Medical History

Group 11 - Yunrui Jiang, Jonah Soong, Justin Sin, Anyin Huang, Zeyu Chang

Motivation

- Diabetes
 - a. Chronic condition leading to life threatening issues
 - b. Caused by increased resistance to insulin leading to high glucose levels
- 38.4 million people (11.6% of the US)
- 97.6 million adults have prediabetes
 (38.0% of US adults)

Objective

1. What are some key indicators for diabetes?

2. How well do existing prediction techniques forecast diabetes?

Methodology

- Pearson Correlation Coefficients were computed on different subsets of data as main heuristic for strong indicators
 - Categorical variables were binarized
 - Data was stratified to see if coefficients changed
- 5 different prediction ML models were tested for accuracy and precision

Datasets overview

(https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset /data)

	gender	age	hypertension	heart_disease	smoking_history	bmi	HbA1c_level	blood_glucose_level	diabetes
0	Female	80.00	0	1	never	25.19	6.60	140	0
1	Female	54.00	0	0	No Info	27.32	6.60	80	0
2	Male	28.00	0	0	never	27.32	5.70	158	0
3	Female	36.00	0	0	current	23.45	5.00	155	0
4	Male	76.00	1	1	current	20.14	4.80	155	0

Dataset attributes

Age

Gender

Diabetes

Heart Disease

BMI (Body mass index)

Hypertension (high blood pressure)

Smoking history

Blood glucose level

HbA1c level (average blood glucose level over the past 2-3 months)

Age and Gender

Diabetes and Heart Disease

BMI

Body Mass Index - kg/m^2

Hypertension

High Blood Pressure

Smoking History

Blood Glucose

glucose in bloodstream - mg/dl

HbA1c

fraction of hemoglobin(blood protein) with glucose attached - %

What are some key indicators for diabetes?

Diabetes Correlation Matrix

- Blood Glucose and HbA1c have positive linear relationship with diabetes
- Not significant correlation with other metrics

How does stratification affect indicators of diabetes?

Diabetes Correlation Matrix by Gender

 Very similar correlation matrix with non stratified data

Diabetes Correlation Matrix by Age

- Stronger correlation with blood glucose and HbA1c in older people
- Younger ages don't have strong indicators

Diabetes Correlation Matrix Stratified by Age and Gender

- 0.

- 0.

- 0.

- 0.

19

How well do standard ML models predict diabetes?

Predictive Modeling

Actua

5 models are used

- Logistic Regression Predicts the probability of an event's occurrence using a logistic function.
- Random Forest Builds multiple decision trees and combines their predictions to improve accuracy and generalizability.
- Support Vector Machine (SVM) Finds
 the optimal boundary between classes to maximize
 the margin between categories.
- K-Nearest Neighbors (KNN) Predicts by finding the K nearest training samples to the test data point.
- Gradient Boosting Incrementally adds weak predictive models (usually decision trees) to minimize the loss function.

		Negative	Positive	
ıl	Negative	True Negative	False Negative	
	Positive	False Positive	True Positive	

Predicted

$$Accuracy = \frac{Number\ of\ Correct\ Prediction}{Number\ of\ the\ Results}$$

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

$$Recall = \frac{True\ Positive}{True\ Positive + False\ Negative}$$

$$F1 = \frac{Precision*Recall}{Precision*Recall}$$

Models Norms	Logistic Regression	Random Forest	SVM	KNN	Gradient Boosting
Accuracy	0.802	0.843	0.786	0.806	0.842
F1 Score	0.756	0.815	0.728	0.761	0.813

Feature importance

Questions?