Directed sets and topological spaces definable in o-minimal structures

Pablo Andújar Guerrero

Universität Konstanz pa377@cantab.net

Conventions

- Throughout $\mathcal{R} = (R, 0, 1, +, \cdot, <, \ldots)$ denotes an o-minimal expansion of a field and definable means definable in \mathcal{R} (possibly with parameters).
- A curve in $X \subseteq R^n$ is a map $\gamma: (0, \infty) \to X$. If τ is a topology on X we say that γ τ -converges to $x \in X$ if, for every open $A \ni x$, $\gamma(t) \in A$ for all t > 0 small enough.

Definition 1

A definable topological space (X, τ) is a topological space such that $X \subseteq \mathbb{R}^n$ is definable and there exists a definable basis $\mathcal{B} = \{A_u : u \in \mathbb{R}^m\} \subseteq \mathcal{P}(X)$ for the topology τ .

E.g. Definable groups and fields [3], definable metric spaces [4], quotient spaces of definable open equivalence relations [1].

Definition 2

A definable (downward) directed set is a tuple (Ω, \preceq) such that $\Omega \subseteq \mathbb{R}^n$ is definable and \preceq is a definable preorder (i.e. a reflexive and transitive relation) on Ω such that, for every finite subset $F \subseteq \Omega$,

 $\exists u \in \Omega \text{ such that } u \preccurlyeq v \, \forall v \in F.$

Theorem 1

Let (Ω, \preceq) be a definable directed set. There exists a definable curve $\gamma:(0,\infty)\to\Omega$ such that, for every $u\in\Omega$, $\gamma(t)\preceq u$ for all t>0 small enough.

Given (X, τ) a definable topological space with definable basis $\mathcal{B} = \{A_u : u \in R^m\}$ and $x \in X$ consider $\Omega = \{u \in R^m : x \in A_u\}$. The family $\{A_u : u \in \Omega\}$ clearly induces a definable directed set (Ω, \preceq) where $u \preceq v \Leftrightarrow A_u \subseteq A_v$. Hence the following theorem follows from Theorem 1.

Theorem 2 (Definable first countability)

Let (X, τ) be a definable topological space. For every $x \in X$ there exists a definable basis of open neighborhoods of x of the form $\{A_t : t > 0\}$.

There are uniform versions of theorems 1 and 2. In particular in Theorem 2 the definable basis can be taken uniformly on x.

Corollary 1 (Curve Selection)

Let (X, τ) be a definable topological space and $Y \subseteq X$ be definable. Then $x \in X$ belongs in the τ -closure of Y iff there exists a definable curve in Y τ -converging to x.

Corollary 2

If the ambient structure \mathcal{R} is separable (e.g. if \mathcal{R} expands \mathbb{R}) then any definable topological space is first countable. In general the character of a definable topological space is bounded by the density of the ambient structure.

Definition 3

- A definable topological space (X, τ) is **Definably compact 1 (DC1)** if every definable curve in X τ -converges [2].
- A definable topological space (X, τ) is **Definably compact 2 (DC2)** if every definable (downward) directed family of nonempty closed sets has nonempty intersection [1].

Corollary 3

A definable topological space (X, τ) is **DC1** if and only if it is **DC2**.

By Corollary 3 we may define **definable compactness** to be either DC1 or DC2. If \mathbb{R} expands the field of reals, then we know that a definable topological space is definably compact iff it is compact.

If \mathbb{R} is an arbitrary o-minimal structure (not necessarily expanding a field) we may always prove that DC2 \Rightarrow DC1 but it is no longer necessarily true that DC1 \Rightarrow DC2.

Question: What should be the definition for definable compactness in the general setting of \mathcal{R} being an arbitrary o-minimal structure?

References

- [1] W. Johnson, Topologizing interpretable sets in O-minimal Structures, preprint 2014.
- [2] Y. Peterzil and C. Steinhorn, Definable compactness and definable subgroups of o-minimal groups, J. London Math. Soc., Vol. 59, 3, p. 769-786, June 1999.
- [3] A. Pillay, On groups and fields definable in o-minimal structures, J. Pure Appl. Algebra, Vol. 53, p. 239-255, 1988.
- [4] E. Walsberg, On the Topology of Metric Spaces Definable in o-minimal expansions of fields, preprint 2015.