

Wasserstein Weisfeiler-Lehman

Graph Kernels

Matteo Togninalli, Felipe Llinares-López, Elisabetta Ghisu, Bastian Rieck, Karsten Borgwardt – ETH ZURICH

Fabrice Beaumont

Rheinische Friedrich-Wilhelms-Universität Bonn

01.07.2020

Motivation

TASK: Graph classification (via graph kernels as similarity measure)

Solution: R-Convolution kernels

Problem: Naive aggregation of substructures may disregard valuable information

Only a few approaches extendible for continuously attributed graphs

Method Overview

Optimal

transport

- 1. Transform each graph into a set of node embeddings
 - Weisfeiler-Lehman node embedding scheme
 - 2. WL-features
- 2. Measure the Wasserstein distance between each pair of graphs
 - Ground distance (similarity matrix)
 - Wasserstein distance
- 3. Wasserstein Weisfeiler-Lehman kernel definition

(Differentiate between a finite set of categorical node labels and real valued node attributes)

m: dimensionality of the node labels

 n_G : cardinality of the vertex set

N(v): neighbourhood of v

$$N^h(v) = \{l^h(u_0), \dots, l^h(u_{\deg(v)-1})\}$$

NODE LABELS

$$l^{h+1}(v) = hash(l^h(v), N^h(v))$$

m: dimensionality of the node labels

 n_G : cardinality of the vertex set

$$N^h(v) = \{l^h(u_0), ..., l^h(u_{\deg(v)-1})\}$$

NODE LABELS	NODE ATTRIBUTES
$l^{h+1}(v) = hash(l^h(v), N^h(v))$	$a^{h+1}(v) = a^h(v) + \sum_{u \in N(v)} a^h(u)$

m: dimensionality of the node labels

 n_G : cardinality of the vertex set

$$N^h(v) = \{l^h(u_0), ..., l^h(u_{\deg(v)-1})\}$$

NODE LABELS	NODE ATTRIBUTES
$l^{h+1}(v) = hash(l^h(v), N^h(v))$	$a^{h+1}(v) = a^h(v) + \sum_{u \in N(v)} w((u, v))a^h(u)$

m: dimensionality of the node labels

 n_G : cardinality of the vertex set

$$N^h(v) = \{l^h(u_0), ..., l^h(u_{\deg(v)-1})\}$$

NODE LABELS	NODE ATTRIBUTES
$l^{h+1}(v) = hash(l^h(v), N^h(v))$	$a^{h+1}(v) = \frac{1}{2} \left(a^h(v) + \frac{1}{\deg(v)} \sum_{u \in N(v)} w((u, v)) a^h(u) \right)$

m: dimensionality of the node labels

 n_G : cardinality of the vertex set

$$N^h(v) = \{l^h(u_0), \dots, l^h(u_{\deg(v)-1})\}$$

m=1: dimensionality of the node labels

 $n_G = 7$: cardinality of the vertex set

N(v): neighbourhood of v

m = 1: dimensionality of the node labels

 $n_G = 7$: cardinality of the vertex set

N(v): neighbourhood of v

			$(v_4 d)$	$(v_5 e)$
i	$l^0(v_i)$	$l^1(v_i)$	$l^2(v_i)$	$$ $l^H(v_i)$
1	а			
2	b			
3	С			
4	d			
5	e			
6	а			
7	С			

 $((v_1|x)$

m = 1: dimensionality of the node labels

 $n_G = 7$: cardinality of the vertex set

N(v): neighbourhood of v

			$ v_4 $	$(v_5 e)$
i	$l^0(v_i)$	$l^1(v_i)$	$l^2(v_i)$	$l^{\overline{H}}(v_i)$
1	а	$hash(a, \{b, c\}) = x$		
2	b			
3	С			
4	d			
5	e			
6	а			
7	С			

 $(v_6|x)$

1.1 Weisfeiler-Lehman node embedding scheme Example – Node labels

 $(v_2|q)$

 $((v_1|x)$

 $(v_3|p)$

 $(v_4|h)$

m=1: dimensionality of the node labels

 $n_G = 7$: cardinality of the vertex set

N(v): neighbourhood of v

i	$l^0(v_i)$	$l^1(v_i)$	$l^2(v_i)$	 $l^H(v_i)$
1	а	$hash(a, \{b, c\}) = x$		
2	b	$hash(b, \{a, c\}) = q$		 •••
3	С	$hash(c,\{a,b,d\}) = p$		 •••
4	d	$hash(d,\{c,e\}) = h$		 •••
5	e	$hash(e, \{d\}) = j$		 •••
6	а	$hash(a, \{b, c\}) = x$		 •••
7	С	$hash(c, \{a, b\}) = r$		

m = 1: dimensionality of the node labels

 $n_G = 7$: cardinality of the vertex set

N(v): neighbourhood of v

r) = na	$lsh(l^*(v), N)$		(v_4)	$(v_5 e)$
i	$l^0(v_i)$	$l^1(v_i)$	$l^2(v_i)$	$l^H(v_i)$
1	а	$hash(a, \{b, c\}) = x$	$hash(x, \{q, p\}) = k$	
2	b	$hash(b,\{a,c\}) = q$	$hash(q,\{x,p\}) = o$	
3	С	$hash(c,\{a,b,d\}) = p$	$hash(p,\{x,q,h\}) = r$	
4	d	$hash(d,\{c,e\}) = h$	$hash(h,\{p,j\}) = w$	
5	e	$hash(e,\{d\}) = j$	$hash(j,\{h\}) = f$	
6	а	$hash(a,\{b,c\}) = x$	$hash(x,\{q,r\}) = g$	
7	С	$hash(c,\{a,b\}) = r$	$hash(r,\{x,q\}) = s$	
•				

m = 1: dimensionality of the node labels

 $n_G = 7$: cardinality of the vertex set

N(v): neighbourhood of v

	$(v_3 c)$			$(v_7 c)$
	$(v_4 d)$	— (($(v_5 e)$	
$l^2(v_i)$			$l^H(v_i)$	
= k				
= <i>o</i>				
$\}) = r$				
= w				
f				
= g				
= s				

i	$l^0(v_i)$	$l^1(v_i)$	$l^2(v_i)$	$l^H(v_i)$
1	а	$hash(a, \{b, c\}) = x$	$hash(x,\{q,p\}) = k$	
2	b	$hash(b,\{a,c\}) = q$	$hash(q,\{x,p\}) = o$	
3	С	$hash(c,\{a,b,d\}) = p$	$hash(p,\{x,q,h\}) = r$	
4	d	$hash(d,\{c,e\}) = h$	$hash(h,\{p,j\}) = w$	
5	e	$hash(e,\{d\}) = j$	$hash(j,\{h\}) = f$	
6	а	$hash(a,\{b,c\}) = x$	$hash(x,\{q,r\}) = g$	
7	С	$hash(c,\{a,b\}) = r$	$hash(r,\{x,q\}) = s$	

m = 1: dimensionality of the node labels

 $n_G = 7$: cardinality of the vertex set

N(v): neighbourhood of v

	$(v_1 a)$ $(v_2 b)$ $(v_3 c)$	$v_6 a\rangle$ $v_7 c\rangle$
(i)		
:		

i	$l^0(v_i)$	$l^1(v_i)$	$l^2(v_i)$	$l^H(v_i)$
1	а	$hash(a, \{b, c\}) = x$	$hash(x,\{q,p\}) = k$	
2	b	$hash(b,\{a,c\}) = q$	$hash(q,\{x,p\}) = o$	
3	С	$hash(c,\{a,b,d\}) = p$	$hash(p,\{x,q,h\}) = r$	
4	d	$hash(d,\{c,e\}) = h$	$hash(h,\{p,j\}) = w$	
5	e	$hash(e,\{d\}) = j$	$hash(j,\{h\}) = f$	
6	а	$hash(a, \{b, c\}) = x$	$hash(x,\{q,r\}) = g$	
7	С	$hash(c,\{a,b\}) = r$	$hash(r, \{x, q\}) = s$	

m = 1: dimensionality of the node labels

 $n_G = 7$: cardinality of the vertex set

N(v): neighbourhood of v

) — nc	lSII(i (V), IV)		(v_4)	$(v_5 e)$
i	$l^0(v_i)$	$l^1(v_i)$	$l^2(v_i)$	$l^H(v_i)$
1	а	$hash(a, \{b, c\}) = x$	$hash(x,\{q,\boldsymbol{p}\})=\boldsymbol{k}$	
2	b	$hash(b,\{a,c\}) = q$	$hash(q,\{x,p\}) = o$	
3	С	$hash(c,\{a,b,d\}) = p$	$hash(p,\{x,q,h\}) = r$	
4	d	$hash(d,\{c,e\}) = h$	$hash(h,\{p,j\}) = w$	
5	e	$hash(e,\{d\}) = j$	$hash(j,\{h\}) = f$	
6	а	$hash(a, \{b, c\}) = x$	$hash(x,\{q,\textbf{r}\})=\textbf{\textit{g}}$	
7	С	$hash(c,\{a,b\}) = r$	$hash(r,\{x,q\}) = s$	

m=1: dimensionality of the node labels

 $n_G = 7$: cardinality of the vertex set

N(v): neighbourhood of v

	$(v_3 c)$	$(v_7 c)$
	$(v_4 d)$ $(v_5 e)$	
$l^2(v_i)$	$l^H(v_i)$	_
$p\})=k$		
$p\}) = o$		
$q,h\})=r$		
j }) = w		
= f		
r }) = g		
q $) = s$		
X_G^2	$\dots X_G^H$	

i	$l^0(v_i)$	$l^1(v_i)$	$l^2(v_i)$	$l^H(v_i)$
1	a	$hash(a, \{b, c\}) = x$	$hash(x, \{q, p\}) = k$	
2	b	$hash(b,\{a,c\}) = q$	$hash(q,\{x,p\}) = o$	
3	С	$hash(c,\{a,b,d\}) = p$	$hash(p,\{x,q,h\}) = r$	
4	d	$hash(d,\{c,e\}) = h$	$hash(h,\{p,j\}) = w$	
5	e	$hash(e,\{d\}) = j$	$hash(j,\{h\}) = f$	
6	а	$hash(a, \{b, c\}) = x$	$hash(x,\{q,r\}) = g$	
7	С	$hash(c,\{a,b\}) = r$	$hash(r,\{x,q\}) = s$	
·	X_G^0	X_G^1	X_G^2	X_G^H

m = 1: dimensionality of the node labels

 $n_G = 7$: cardinality of the vertex set

N(v): neighbourhood of v

(*)			(v_4)	$(v_5 e)$
i	$l^0(v_i)$	$l^1(v_i)$	$l^2(v_i)$	$l^H(v_i)$
1	а	$hash(a, \{b, c\}) = x$	$hash(x,\{q,p\}) = k$	
2	b	$hash(b,\{a,c\}) = q$	$hash(q,\{x,p\}) = o$	
3	С	$hash(c,\{a,b,d\}) = p$	$hash(p,\{x,q,h\}) = r$	
4	d	$hash(d,\{c,e\}) = h$	$hash(h,\{p,j\}) = w$	
5	e	$hash(e,\{d\}) = j$	$hash(j,\{h\}) = f$	
6	а	$hash(a,\{b,c\}) = x$	$hash(x,\{q,r\}) = g$	
7	С	$hash(c,\{a,b\}) = r$	$hash(r,\{x,q\}) = s$	
$f_{WL}^H:G$	$\rightarrow (X_G^0)$	X_G^1	X_G^2	$\dots X_G^H$)

$$a^{h+1}(v) = \frac{1}{2} \left(a^h(v) + \frac{1}{\deg(v)} \sum_{u \in N(v)} w((u, v)) a^h(u) \right)$$

i	$l^0(v_i)$	$l^1(v_i)$	 $l^H(v_i)$
1	0.5		
2	42		
3	1138		
4	17		
5	73		
6	0.5		
7	42		

i	$l^0(v_i)$	$l^1(v_i)$	l	$H(v_i)$
1	0.5	$\frac{1}{2}(0.5 + \frac{1}{2}[0.9 * 1138 + 13 * 42]) = 392.8$		•••
2	42			
3	1138			
4	17			
5	73			
6	0.5			
7	42			

13

0.9

110

0.9

110

 $(v_2|1724)$

 $(v_1|392.8)$

$$a^{h+1}(v) = \frac{1}{2} \left(a^h(v) + \frac{1}{\deg(v)} \sum_{u \in N(v)} w((u, v)) a^h(u) \right)$$

$$a^{h+1}(v) = \frac{1}{2} \left(a^h(v) + \frac{1}{\deg(v)} \sum_{u \in N(v)} w((u, v)) a^h(u) \right)$$

i	$a^0(v_i)$	$a^1(v_i)$	$u^H(v_i)$
1	0.5	$\frac{1}{2}(0.5 + \frac{1}{2}[0.9 * 1138 + 13 * 42]) = 392.8$	 •••
2	42	$\frac{1}{2}(42 + \frac{1}{3}[13 * 0.5 + 110 * 1138 + 0.25 * 17]) = 20886.125$	 •••
3	1138	$\frac{1}{2}(1138 + \frac{1}{4}[0.9 * 0.5 + 110 * 42 + 0.9 * 0.5 + 110 * 42]) = 1724.1125$	
4	17	$\frac{1}{2}(17 + \frac{1}{2}[0.25 * 42 + 7 * 73]) = 138.875$	
5	73	$\frac{1}{2}(73 + \frac{1}{1}[7 * 17]) = 96$	
6	0.5	$\frac{1}{2}(0.5 + \frac{1}{2}[0.9 * 1138 + 13 * 42]) = 392.8$	
7	42	$\frac{1}{2}(42 + \frac{1}{2}[13 * 0.5 + 110 * 1138]) = 31317.625$	

$$a^{h+1}(v) = \frac{1}{2} \left(a^h(v) + \frac{1}{\deg(v)} \sum_{u \in N(v)} w((u, v)) a^h(u) \right)$$

i	$a^0(v_i)$	$a^1(v_i)$	a	$u^H(v_i)$
1	0.5	$\frac{1}{2}(0.5 + \frac{1}{2}[0.9 * 1138 + 13 * 42]) = 392.8$		•••
2	42	$\frac{1}{2}(42 + \frac{1}{3}[13 * 0.5 + 110 * 1138 + 0.25 * 17]) = 20886.125$		
3	1138	$\frac{1}{2}(1138 + \frac{1}{4}[0.9 * 0.5 + 110 * 42 + 0.9 * 0.5 + 110 * 42]) = 1724.1125$		
4	17	$\frac{1}{2}(17 + \frac{1}{2}[0.25 * 42 + 7 * 73]) = 138.875$		
5	73	$\frac{1}{2}(73 + \frac{1}{1}[7 * 17]) = 96$		
6	0.5	$\frac{1}{2}(0.5 + \frac{1}{2} 0.9 * 1138 + 13 * 42]) = 392.8$		
7	42	$\frac{1}{2}(42 + \frac{1}{2}[13 * 0.5 + 110 * 1138]) = 31317.625$		

2.1 Ground disance between nodes

$$\rho(x,y) = \begin{cases} 1 \text{ if } x \neq y \\ 0 \text{ if } x = y \end{cases}$$

NODE LABELS	NODE ATTRIBUTES
Normalised Hamming distance:	Euclidean distance:
$d_{Ham}(v, v') = \frac{1}{H+1} \sum_{i=1}^{H+1} \rho(v_i, v'_i)$	$d_E(v, v') = \ v - v'\ _2$

$$\begin{array}{c|cccc} & \neq & & 1 \\ & \neq & & 2 \\ & = & \\ & \neq & & 3 \Longrightarrow d_{Ham} = 3 \\ & = & & \end{array}$$

2.1 Ground disance between nodes

$$\rho(x,y) = \begin{cases} 1 \text{ if } x \neq y \\ 0 \text{ if } x = y \end{cases}$$

NODE LABELS	NODE ATTRIBUTES
Normalised Hamming distance:	Euclidean distance:
$d_{Ham}(v, v') = \frac{1}{H+1} \sum_{i=1}^{H+1} \rho(v_i, v'_i)$	$d_E(v,v') = \ v-v'\ _2$

$$\Rightarrow d_{Ham} = 2$$

2.2 Wasserstein distance - L^p

 $p \in [1, \infty)$: parameter for the L^p Wasserstein distance

 σ, μ : probability distributions on a metric space **M**

 $d: \mathbb{R}^m x \mathbb{R}^m \to \mathbb{R}^m$: ground distance (on M)

 $\Gamma(\sigma,\mu)$: set of all transportaion plans over MxM (with marginals σ and μ on the first and second factor)

$$W_p(\sigma,\mu) := \left(\lim_{\gamma \in \Gamma(\sigma,\mu)} \int_{M \times M} d(x,y)^p d\gamma(x,y)\right)^{\frac{1}{p}}$$

2.2 Graph Wasserstein distance


```
p \in [1, \infty): parameter for the L^p Wasserstein distance X \in \mathbb{R}^{n \times m} X' \in \mathbb{R}^{n' \times m}: set of vectors M = [d(x,y)]_{x \in X, y \in X'}: distance matrix on a ground distance \Gamma(X,X'): set of all transportaion plans \langle .,. \rangle: Frobenius dot product
```

$$W_1(X,X'):=\min_{P\in\Gamma(X,X')}\langle P,M\rangle$$

$$G,G' \quad \rightarrowtail f_{WL}^H \colon G \to \mathbb{R}^{n_G \times m(H+1)} \quad \rightarrowtail \quad D_W^f(G,G') \colon = W_1(f(G),f(G')) = \min_{P \in \Gamma(f(G),f(G'))} \langle P,M \rangle$$

2.2 Graph Wasserstein distance


```
p \in [1, \infty): parameter for the L^p Wasserstein distance X \in \mathbb{R}^{n \times m} X' \in \mathbb{R}^{n' \times m}: set of vectors M = [d(x,y)]_{x \in X, y \in X'}: distance matrix on a ground distance \Gamma(X,X'): set of all transportaion plans \langle .,. \rangle: Frobenius dot product
```

$$W_1(X,X'):=\min_{P\in\Gamma(X,X')}\langle P,M\rangle$$

$$G,G' \quad \mapsto \quad f_{WL}^H:G \to \mathbb{R}^{n_G \times m(H+1)} \quad \mapsto \quad D_W^f(G,G'):=W_1(f(G),f(G'))=\min_{P \in \Gamma(f(G),f(G'))} \langle P,M\rangle \quad \mapsto \quad K_{WWL}=e^{-\lambda D_W^{f_{WL}}(G,G')}$$

3 Kernel definition

Experimental evaluation

NODE LABELS	NODE ATTRIBUTES
Competitive with best graph kernel	Outperforms all state-of-the art graph kernels

TODO: summarize tables in pile chart with slack

Sumary

TODO: the whole method only in 3-4 graphics (graphics from above)

Thank you for your attention!