## Objectives

- To discuss the different message ordering paradigms.
- To discuss Raynal-Schiper-Toueg algorithm for causal ordering.
- To discuss 3-phase distributed algorithms for total ordering.

## Message ordering paradigms

The order of delivery of messages in a distributed system is an important aspect of system executions.

- Because it determines the messaging behavior that can be expected of the distributed program.
  - 1. Async / Non-FIFO
  - 2. FIFO
  - 3. Causal Order
  - 4. Synchronous order

Group Communication

- 1. Causal Order
- 2. Total Order

Sync  $\subset$  CO  $\subset$  FIFO  $\subset$  Async

### In summary

• Sync  $\subset$  CO  $\subset$  FIFO  $\subset$  Async



# Implementing message ordering

 Summary of approaches to implement different message ordering paradigms.

| Ordering Paradigm | Implementation approach                |
|-------------------|----------------------------------------|
| Async order       | Lamport's Scalar clock                 |
| FIFO order        | Sequence numbering along each channel  |
| Causal order      | Raynal-Schiper-Toueg algorithm*        |
| Sync order        | Mutual exclusion, agreement algorithms |
| Total order       | Three Phase Distributed algorithm*     |

<sup>\*</sup> Will be dealt next.



#### Recall Total order

- The order of delivery to all processes must be same.
- Below scenarios depict break in total order when m1 and m2 are (i) concurrent and (ii) causally related.



# Three Phase Distribured Algorithm

The order of delivery to all processes must be same.



### Conclusion

- We discussed different message ordering paradigms.
  - Async, FIFO, Causal, Sync
- Multicast communication
  - Causal order, Total order
- Causal ordering by Raynal-Schiper-Toueg algorithm.
- Three phase total ordering algorithm.

