Variable aggregation for dynamical systems on networks.

Mauro Faccin

Benet 2019 (Hasselt University)

Projected Markov Chain

Markov Chain

 $\dots, X_{\text{past}}, X_{\text{now}}, X_{\text{future}}, \dots$

Projection

 $\dots, Y_{\text{past}}, Y_{\text{now}}, Y_{\text{future}}, \dots$

Complexity

Where did the complexity go?

Complexity

Where did the complexity go?

Part of the complexity is now hidden in the [projected] dynamics.

Emergence of effective memories.

Effective Memory

How can we compute the emerfing memory effects?

Random walk covariance

A walker is visiting nodes on the network. Let's measure how it get trapped in a partition.

Let's define:

 χ_c characteristic function of partition c

Covariance of partitions along the dynamics:

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

$$E(\chi_c(t)\chi_c(t-1)) = \frac{1}{2m} \sum_{ij \in c} A_{ij}$$

$$E(\chi_c(t)) = \frac{1}{2m} \sum_{i \in c} k_i$$

Modularity

Modularity:

$$Q = \frac{1}{2m} \sum_{ij} \left[A_{ij} - \frac{k_i k_j}{2m} \right] \delta(c_i, c_j)$$

Random walker covariance

 χ_c characteristic function of partition c

$$Q \propto \sum_{c} \mathbf{Cov} \left(\chi_{c}(t), \chi_{c}(t+1) \right)$$

Linear correlation between consecutive time-steps.

Shen et al. (2010) PRE, 82, 016114

Back to the Entrogram

where au represents a time-scale parameter.

M.F. et al, Journal of Complex Networks, cnx055

What about generative models?

$$I(Y_t; Y_{t-1}) = H(Y_y) + H(Y_{t-1}) - H(Y_y, Y_{t-1})$$

$$H(Y_t) = -\sum_{c} \frac{e_c}{2m} \log \frac{e_c}{2m} \qquad e_c = \sum_{i \in c, j} A_{ij}$$

$$H(Y_t, Y_{y-1}) = -\sum_{cd} \frac{e_{cd}}{2m} \log \frac{e_{cd}}{2m} \qquad e_{cd} = \sum_{i \in c, j \in d} A_{ij}$$

In binary undirected networks

What about generative models?

$$I(Y_t; Y_{t-1}) = H(Y_y) + H(Y_{t-1}) - H(Y_y, Y_{t-1})$$

$$H(Y_t) = -\sum_{c} \frac{e_c}{2m} \log \frac{e_c}{2m} \qquad e_c = \sum_{i \in c, j \in d} A_{ij}$$

$$H(Y_t, Y_{y-1}) = -\sum_{cd} \frac{e_{cd}}{2m} \log \frac{e_{cd}}{2m} \qquad e_{cd} = \sum_{i \in c, j \in d} A_{ij}$$

DC-SBM

$$\mathcal{S}_{\mathsf{C}} \propto -rac{1}{2} \sum_{cd} e_{cd} \log rac{e_{cd}}{e_c e_d}$$

In binary undirected networks

Non linear communities

Shen et al. (2010) PRE, 82, 016114. Karrer and Newman (2011), PRE 83, 016107. Rosvall and Bergstrom (2008) PNAS 105, 1118.

Where the dynamical part enter?

Example 1: One cycle

How many partitions?

Example 1: One cycle

How many partitions?

Example 1: One cycle

How many partitions?

$$au=$$
 700 days

au= 700 days

Questions?

https://maurofaccin.github.io mauro.faccin@uclouvain.be

Code at:

https://github.com/maurofaccin/entropart