Top Ten Summation Formulas

1. Binomial theorem $ (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k $ Binomial series $ \sum_k \binom{\alpha}{k} x^k = (1+x)^{\alpha} $ 2. Geometric sum $ \sum_{k=0}^{n-1} ar^k = a \frac{1-r^n}{1-r} $	integer $n \ge 0$ $ x < 1 \text{ if } \alpha \ne$ $\text{integer } n \ge 0.$ $r \ne 1$
2. Geometric sum $\sum_{k=0}^{n-1} ar^k = a \frac{1-r^n}{1-r}$	integer $n \geq 0$.
	$r \neq 1$
$\sum_{k=0}^{\infty} a$	
Geometric series $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$	r < 1
3. Telescoping sum $\sum \Delta F(k) = F(b) - F(a)$	integers $a \le b$
"Fundamental Theorem" $a \le k < b$ of summation calculus	
4. Sum of powers $\sum_{a \le k < b} k^{\underline{m}} = \frac{k^{\underline{m+1}}}{m+1} \Big _a^b$	integers $a \leq b$
See related formulas.	integer $m \neq -1$
5. Vandermonde convolution $\sum_{k} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n}$	integer n
5. Vandermonde convolution $\sum_{k} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n}$ 6. Exponential series $\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$	complex x
7. Taylor series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(x)$	x - a < R =
a = 0: Maclaurin series	radius of convergence
8. Newton's advancing $\sum_{k} \frac{\Delta^{k} f(a)}{k!} x^{\underline{k}} = \sum_{k} {x \choose k} \Delta^{k}$	f(a) = f(a+x) real a, x
difference formula	f = polynomial
9. Euler's summation $\sum_{a \le k < b} f(k) = \int_a^b f(x) dx + f(-1)^{m+1} \int_a^b \frac{B_m(x - \lfloor x \rfloor)}{m!} f^{(m)} dx$	$\sum_{k=1}^{m} \frac{B_k}{k!} f^{(k-1)}(x) \Big _{a}^{b} \text{integers } a \leq b$
formula	$ \begin{array}{ll} $
$m=1$: trapezoidal rule: $\sum_{a \in b \in b} f(k) \approx \int_a^b f(x) dx - \frac{1}{a} \int_a^b f(x) dx$	(1/2)[f(b) - f(a)]
10. Inclusion-exclusion $P(\bigcup_{j=1}^{n} A_j) = \sum_{k=1}^{n} (-1)^{k-1} S_k$	events A_1, \ldots, A_n
Also true if "P" = "#" where $S_k = \sum_{1 \le j_1 < \dots < j_k \le n} P($	$\bigcap_{i=1}^{\kappa} A_{j_i}$

Other Contenders and Related Formulas

Name	Summation formula	Constraints
Hypergeometric series	$F\left(\begin{array}{c c} a_1, \dots, a_m \\ b_1, \dots, b_n \end{array} \middle z\right) = \sum_{k \ge 0} \frac{a_1^{\overline{k}} \cdots a_m^{\overline{k}}}{b_1^{\overline{k}} \cdots b_n^{\overline{k}}} \frac{z^k}{k!}$	
Sum of powers	$\sum_{k=0}^{n-1} k^m = \frac{1}{m+1} \sum_{k=0}^m {m+1 \choose k} B_k n^{m+1-k}$	integer $n \ge 1$
Thus	$\sum_{k=0}^{n-1} k^m = \frac{n^{m+1}}{m+1} + \text{lower order terms}$	
Formulas relating factorial powers and ordinary powers		
Stirling numbers of the second kind	$x^n = \sum_{k} \left\{ \begin{array}{c} n \\ k \end{array} \right\} x^{\underline{k}}$	integer $n \ge 0$
Stirling numbers of the first kind	$x^{\overline{n}} = \sum_{k} \left[\begin{array}{c} n \\ k \end{array} \right] x^k$	integer $n \ge 0$
Stirling numbers of the first kind	$x^{\underline{n}} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k$	integer $n \ge 0$
Bernoulli numbers	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$B_{12} = -691/2730$
Implicit recursion	$\sum_{j=0}^{m} {m+1 \choose j} B_m = [m=0]$	
Generating function	$\frac{z}{e^z - 1} = \sum_{n \ge 0} B_n \frac{z^n}{n!}$	
Bernoulli polynomial	$B_m(x) = \sum_{k} \binom{m}{k} B_k x^{m-k}$	