facebook

Artificial Intelligence Research

How to solve an MDP: Dynamic Programming

Alessandro Lazaric

Facebook AI Research (on leave from Inria Lille)

Notice

From now on we mostly work in the *discounted infinite horizon* setting.

Most results (not always so smoothly) extend to other settings.

How to solve exactly an MDP

Dynamic Programming

Bellman Equations

Value Iteration

Policy Iteration

The Optimization Problem

$$\max_{\pi} V^{\pi}(s_0) =$$

$$= \max_{\pi} \mathbb{E} \left[r(s_0, d_0(a_0|s_0)) + \gamma r(s_1, d_1(a_1|s_0, s_1)) + \gamma^2 r(s_2, d_2(a_2|s_0, s_1, s_2)) + \dots \right]$$

Plan to Simplify the Optimization Problem

- Reduce the search space
 - History-based ⇒ Markov decision rules
 - \blacksquare Non-stationary \Rightarrow Stationary policies
 - ⇒ Focus on stationary policies with Markov decision rules
- Leverage Markov property of the MDP to "simplify" the value function
- Stochastic ⇒ Deterministic decision rules
- ⇒ Focus on stationary policies with deterministic Markov decision rules

From History-Based to Markov Policies

Theorem ([1])

Consider an MDP with $|A|<\infty$ and an initial distribution β over states such that $\left|\left\{s\in S:\beta(s)>0\right\}\right|<\infty$. For any policy π , let

$$p_t^{\pi}(s, a) = \mathbb{P}[S_t = s, A_t = a]; \qquad p_t^{\pi}(s) = \mathbb{P}[S_t = s].$$

Then for any history-based policy π there exists a Markov policy $\overline{\pi}$ such that

$$p_t^{\overline{\pi}}(s,a) = p_t^{\pi}(s,a); \qquad p_t^{\overline{\pi}}(s) = p_t^{\pi}(s)$$

for any $s \in S$, $a \in A$ and $t \in \mathbb{N}^+$.

⇒ Markov policies are as "expressive" as history-based policies

For any $\pi=(d_0,d_1,\ldots)$ with d_t a randomized history-dependent decision rule, let $\overline{\pi}=(\overline{d}_0,\overline{d}_1,\ldots)$ be a randomized Markov policy such that

$$\overline{d}_t(a|s) = \frac{p_t^{\pi}(s,a)}{p_t^{\pi}(s)}$$

Base case. For any s, $p_0^{\overline{\pi}}(s) = p_0^{\pi}(s)$ by definition. And

$$p_0^{\overline{\pi}}(s,a) = p_0^{\overline{\pi}}(s)\overline{d}_0(a|s) = p_0^{\overline{\pi}}(s)\frac{p_0^{\overline{\pi}}(s,a)}{p_0^{\overline{\pi}}(s)} = p_0^{\overline{\pi}}(s)\frac{p_0^{\overline{\pi}}(s,a)}{p_0^{\overline{\pi}}(s)} = p_0^{\overline{\pi}}(s,a)$$

Proof: From History-Based to Markov Policies

Induction. For any s and some t>0, $p_t^{\overline{\pi}}(s)=p_t^{\pi}(s)$ and $p_t^{\overline{\pi}}(s,a)=p_t^{\pi}(s,a)$ by inductive assumption. Then

$$\begin{split} p_{t+1}^{\overline{\pi}}(s_{t+1}) &= \sum_{s_t, a_t} p_t^{\overline{\pi}}(s_t, a_t) p(s_{t+1}|s_t, a_t) \\ &= \sum_{s_t, a_t} p_t^{\overline{\pi}}(s_t) \overline{d}_t(a_t|s_t) p(s_{t+1}|s_t, a_t) \\ &= \sum_{s_t, a_t} p_t^{\overline{\pi}}(s_t) \frac{p_t^{\pi}(s_t, a_t)}{p_t^{\pi}(s_t)} p(s_{t+1}|s_t, a_t) \\ &= \sum_{s_t, a_t} p_t^{\overline{\pi}}(s_t) \frac{p_t^{\pi}(s_t, a_t)}{p_t^{\overline{\pi}}(s_t)} p(s_{t+1}|s_t, a_t) \\ &= \sum_{s_t, a_t} p_t^{\pi}(s_t, a_t) p(s_{t+1}|s_t, a_t) \\ &= p_{t+1}^{\pi}(s_{t+1}) \end{split}$$

Similar for $p_{t+1}^{\overline{\pi}}(s_{t+1}, a_{t+1}) = p_{t+1}^{\pi}(s_{t+1}, a_{t+1})$.

The Discounted Occupancy Measure

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, d_{t}(s_{t}))\right]$$

$$= \sum_{t=0}^{\infty} \gamma^{t} \mathbb{E}\left[r(s_{t}, d_{t}(s_{t}))\right]$$

$$= \sum_{t=0}^{\infty} \gamma^{t} \sum_{s, a} \mathbb{P}\left[S_{t} = s, A_{t} = a\right] r(s, a)$$

$$= \frac{1}{1 - \gamma} \sum_{s, a} (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} \mathbb{P}\left[S_{t} = s, A_{t} = a\right] r(s, a)$$

$$= \frac{1}{1 - \gamma} \sum_{s, a} \rho_{\gamma}^{\pi}(s, a) r(s, a)$$

Theorem ([?])

Consider an MDP with $|A| < \infty$ and an initial distribution β over states such that $|\{s \in S : \beta(s) > 0\}| < \infty$.

Then for any non-stationary policy π there exists a stationary policy $\overline{\pi}$ such that

$$\rho_{\gamma}^{\overline{\pi}}(s, a) = \rho_{\gamma}^{\pi}(s, a); \qquad \rho_{\gamma}^{\overline{\pi}}(s) = \rho_{\gamma}^{\pi}(s)$$

for any $s \in S$, $a \in A$ and $t \in \mathbb{N}^+$.

- ⇒ Stationary policies are as "expressive" as non-stationary policies
- \Rightarrow Stationary policies can "generate" any value function

State discounted occupancy measure for stationary policy $\overline{\pi}$ (with Markov decision rules)

$$\begin{split} \rho_{\gamma}^{\overline{\pi}}(s) &= (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} \mathbb{P}[S_{t} = s] \\ &= (1 - \gamma)\beta(s) + (1 - \gamma) \sum_{t=1}^{\infty} \gamma^{t} \mathbb{P}[S_{t} = s] \\ &= (1 - \gamma)\beta(s) + (1 - \gamma)\gamma \sum_{t=1}^{\infty} \gamma^{t-1} \sum_{s'} \sum_{a} \mathbb{P}[S_{t-1} = s', A_{t-1} = a] p(s|s', a) \\ &= (1 - \gamma)\beta(s) + \gamma \sum_{s'} (1 - \gamma) \sum_{t=1}^{\infty} \gamma^{t-1} \mathbb{P}[S_{t-1} = s'] \sum_{a} \overline{\pi}(a|s') p(s|s', a) \\ &= (1 - \gamma)\beta(s) + \gamma \sum_{s'} (1 - \gamma) \sum_{t=1}^{\infty} \gamma^{t-1} \mathbb{P}[S_{t-1} = s'] p^{\overline{\pi}}(s|s') \\ &= (1 - \gamma)\beta(s) + \gamma \sum_{s'} \rho_{\gamma}^{\overline{\pi}}(s') p^{\overline{\pi}}(s|s') \end{split}$$

facebook Artificial Intelligence Research

Moving to *matrix* formulation

$$[\boldsymbol{\rho}_{\gamma}^{\overline{\pi}}]_{s} = \rho_{\gamma}^{\overline{\pi}}(s)$$
$$[P^{\overline{\pi}}]_{s,s'} = p^{\overline{\pi}}(s'|s)$$

$$\rho_{\gamma}^{\overline{\pi}}(s) = (1 - \gamma)\beta(s) + \gamma \sum_{s'} \rho_{\gamma}^{\overline{\pi}}(s') p^{\overline{\pi}}(s|s')$$

$$\Rightarrow \rho_{\gamma}^{\overline{\pi}} = (1 - \gamma)\beta(s) + \gamma \rho_{\gamma}^{\overline{\pi}} P^{\overline{\pi}}$$

$$\Rightarrow \rho_{\gamma}^{\overline{\pi}} = (1 - \gamma)\beta(s) (I - \gamma P^{\overline{\pi}})^{-1}$$

For any non-stationary policy π define a stationary policy $\overline{\pi}$

$$\overline{\pi}(a|s') = \frac{\rho_{\gamma}^{\pi}(s,a)}{\rho_{\gamma}^{\pi}(s)}$$

$$\rho_{\gamma}^{\pi}(s) = (1 - \gamma)\beta(s) + \gamma \sum_{s'} \sum_{a} (1 - \gamma) \sum_{t=1}^{\infty} \gamma^{t-1} \mathbb{P}[S_{t-1} = s', A_{t-1} = a] p(s|s', a)
= (1 - \gamma)\beta(s) + \gamma \sum_{s'} \sum_{a} \rho_{\gamma}^{\pi}(s', a) p(s|s', a)
= (1 - \gamma)\beta(s) + \gamma \sum_{s'} \sum_{a} \overline{\pi}(a|s') \rho_{\gamma}^{\pi}(s') p(s|s', a)
= (1 - \gamma)\beta(s) + \gamma \sum_{s'} \rho_{\gamma}^{\pi}(s') \sum_{a} \overline{\pi}(a|s') p(s|s', a)
= (1 - \gamma)\beta(s) + \gamma \sum_{s'} \rho_{\gamma}^{\pi}(s') p_{\gamma}^{\pi}(s|s')$$

Moving to the *matrix* formulation

$$\rho_{\gamma}^{\pi}(s) = (1 - \gamma)\beta(s) + \gamma \sum_{s'} \rho_{\gamma}^{\pi}(s') p^{\overline{\pi}}(s|s')$$

$$\Rightarrow \rho_{\gamma}^{\pi} = (1 - \gamma)\beta(s) (I - \gamma P^{\overline{\pi}})^{-1}$$

$$\Rightarrow \rho_{\gamma}^{\pi} = \rho_{\gamma}^{\overline{\pi}}$$

The Optimization Problem

$$\begin{aligned} \max_{\pi} \ V^{\pi}(x_0) &= \\ &= \max_{\pi} \ \mathbb{E}\big[r(s_0, d_0(a_0|s_0)) + \gamma r(s_1, d_1(a_1|s_0, s_1)) + \gamma^2 r(s_2, d_2(a_2|s_0, s_1, s_2)) + \dots\big] \\ &= \max_{\pi} \ \mathbb{E}\big[r(s_0, \pi(a_0, s_0)) + \gamma r(s_1, \pi(a_1|s_1)) + \gamma^2 r(s_2, \pi(a_2|s_2)) + \dots\big] \end{aligned}$$

The Optimization Problem

$$\begin{aligned} \max_{\pi} \ V^{\pi}(x_0) &= \\ &= \max_{\pi} \ \mathbb{E}\big[r(s_0, d_0(a_0|s_0)) + \gamma r(s_1, d_1(a_1|s_0, s_1)) + \gamma^2 r(s_2, d_2(a_2|s_0, s_1, s_2)) + \dots\big] \\ &= \max_{\pi \in \Pi^{MRS}} \ \mathbb{E}\big[r(s_0, \pi(a_0, s_0)) + \gamma r(s_1, \pi(a_1|s_1)) + \gamma^2 r(s_2, \pi(a_2|s_2)) + \dots\big] \end{aligned}$$

 ${\cal C}$ Even if we restrict to deterministic policies we still have $|A|^{|S|}$ policies to check

The Bellman Equation

Theorem

For any stationary policy $\pi = (\pi, \pi, ...)$, at any state $s \in S$, the state value function satisfies the Bellman equation:

$$V^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{y} p(y|s, \pi(s))V^{\pi}(y).$$

Proof: The Bellman Equation

For any stationary policy $\pi = (\pi, \pi, ...)$,

$$\begin{split} V^{\pi}(s) &= \mathbb{E}\Big[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, \pi(s_{t})) \, | \, s_{0} = s; \pi \Big] & [\textit{value function}] \\ &= r(s, \pi(s)) + \mathbb{E}\Big[\sum_{t=1}^{\infty} \gamma^{t} r(s_{t}, \pi(s_{t})) \, | \, s_{0} = s; \pi \Big] \\ &= r(s, \pi(s)) & [\textit{Markov property}] \\ &+ \gamma \sum_{s'} \mathbb{P}(s_{1} = s' \, | \, s_{0} = s; \pi(s_{0})) \mathbb{E}\Big[\sum_{t=1}^{\infty} \gamma^{t-1} r(s_{t}, \pi(s_{t})) \, | \, s_{1} = s'; \pi \Big] \\ &= r(s, \pi(s)) & [\textit{MDP and change of "time"}] \\ &+ \gamma \sum_{s'} p(s' | s, \pi(s)) \mathbb{E}\Big[\sum_{t'=0}^{\infty} \gamma^{t'} r(s_{t'}, \pi(s_{t'})) \, | \, s_{0'} = s'; \pi \Big] \\ &= r(s, \pi(s)) + \gamma \sum_{s'} p(s' | s, \pi(s)) V^{\pi}(s') & [\textit{value function}] \end{split}$$

- **Model**: all the transitions are Markov, states x_5, x_6, x_7 are terminal.
- Setting: infinite horizon with terminal states.
- Objective: find the policy that maximizes the expected sum of rewards before achieving a terminal state.

Notice: not a discounted infinite horizon setting! But the Bellman equations hold unchanged.

Computing V_4 :

$$V_6 = 100$$

$$V_4 = -10 + (0.9V_6 + 0.1V_4)$$

$$\Rightarrow V_4 = \frac{-10 + 0.9V_6}{0.9} = 88.8$$

Computing V_3 : no need to consider all possible trajectories

$$V_4 = 88.8$$

 $V_3 = -1 + (0.5V_4 + 0.5V_3)$

$$\Rightarrow V_3 = \frac{-1 + 0.5V_4}{0.5} = 86.8$$

Computing V_3 : no need to consider all possible trajectories

$$V_4 = 88.8$$

 $V_3 = -1 + (0.5V_4 + 0.5V_3)$

$$\Rightarrow V_3 = \frac{-1 + 0.5V_4}{0.5} = 86.8$$

and so on for the rest...

Bellman Equation: a System of Equations

The Bellman equation

$$V^{\pi}(x) = r(x, \pi(x)) + \gamma \sum_{y} p(y|x, \pi(x))V^{\pi}(y).$$

is a linear system of equations with N unknowns and N linear constraints.

$$V^{\pi}(x) = r(x, \pi(x)) + \gamma \sum_{x} p(y|x, \pi(x))V^{\pi}(y)$$

System of equations

$$\begin{cases} V_1 &= 0 + 0.5V_1 + 0.5V_2 \\ V_2 &= 1 + 0.3V_1 + 0.7V_3 \\ V_3 &= -1 + 0.5V_4 + 0.5V_3 \\ V_4 &= -10 + 0.9V_6 + 0.1V_4 \\ V_5 &= -10 \\ V_6 &= 100 \\ V_7 &= -1000 \end{cases} \Rightarrow (V, R \in \mathbb{R}^7, P \in \mathbb{R}^{7 \times 7})$$

$$V = R + PV$$

$$V = (I - P)^{-1}R$$

The Optimal Bellman Equation

Bellman's Principle of Optimality [?]:

"An optimal policy has the property that, whatever the initial state and the initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision."

The Optimal Bellman Equation

Theorem

The optimal value function V^* (i.e., $V^* = \max_{\pi} V^{\pi}$) is the solution to the optimal Bellman equation:

$$\label{eq:V*} \begin{split} V^*(s) = \max_{a \in A} \bigl[r(s,a) + \gamma \sum_{s'} p(s'|s,a) V^*(s') \bigr]. \end{split}$$

and any optimal policy is such that

$$\pi^*(a|s) \ge 0 \Leftrightarrow a \in \arg\max_{a' \in A} \left[r(s, a') + \gamma \sum_{s'} p(s'|s, a) V^*(s') \right].$$

The Optimal Bellman Equation

Theorem

The optimal value function V^* (i.e., $V^* = \max_{\pi} V^{\pi}$) is the solution to the optimal Bellman equation:

$$\label{eq:V*} \begin{split} V^*(s) = \max_{a \in A} \bigl[r(s,a) + \gamma \sum_{s'} p(s'|s,a) V^*(s') \bigr]. \end{split}$$

and any optimal policy is such that

$$\pi^*(a|s) \ge 0 \Leftrightarrow a \in \arg\max_{a' \in A} \left[r(s, a') + \gamma \sum_{s'} p(s'|s, a) V^*(s') \right].$$

There is always a deterministic policy

Proof: The Optimal Bellman Equation

For any policy $\pi=(a,\pi')$ (possibly non-stationary),

$$V^{*}(x) = \max_{\pi} \mathbb{E} \Big[\sum_{t \geq 0} \gamma^{t} r(x_{t}, \pi(x_{t})) \mid x_{0} = x; \pi \Big]$$

$$= \max_{(a, \pi')} \Big[r(x, a) + \gamma \sum_{y} p(y | x, a) V^{\pi'}(y) \Big]$$

$$= \max_{a} \Big[r(x, a) + \gamma \sum_{y} p(y | x, a) \max_{\pi'} V^{\pi'}(y) \Big]$$

$$= \max_{a} \Big[r(x, a) + \gamma \sum_{y} p(y | x, a) V^{*}(y) \Big].$$

Proof: The Optimal Bellman Equation

We have

$$\max_{\pi'} \sum_{y} p(y|x, a) V^{\pi'}(y) \le \sum_{y} p(y|x, a) \max_{\pi'} V^{\pi'}(y)$$

But, let $\overline{\pi}(y) = \arg\max_{x'} V^{\pi'}(y)$

$$\sum_{y} p(y|x,a) \max_{\pi'} V^{\pi'}(y) = \sum_{y} p(y|x,a) V^{\overline{\pi}}(y) \leq \max_{\pi'} \sum_{y} p(y|x,a) V^{\pi'}(y)$$

System of Equations

The optimal Bellman equation

$$V^*(s) = \max_{a \in A} [r(s, a) + \gamma \sum_{s'} p(y|s, a) V^*(s')].$$

is a non-linear system of equations with N unknowns and N non-linear constraints (i.e., the \max operator).

The Student Dilemma

The Student Dilemma

$$\label{eq:V*} \begin{split} \mathbf{V}^*(x) = \max_{a \in A} \bigl[r(x,a) + \gamma \sum_y p(y|x,a) \mathbf{V}^*(y) \bigr] \end{split}$$

System of equations

$$\begin{cases} V_1 &= \max \left\{ 0 + 0.5V_1 + 0.5V_2; \ 0 + 0.5V_1 + 0.5V_3 \right\} \\ V_2 &= \max \left\{ 1 + 0.4V_5 + 0.6V_2; \ 1 + 0.3V_1 + 0.7V_3 \right\} \\ V_3 &= \max \left\{ -1 + 0.4V_2 + 0.6V_3; \ -1 + 0.5V_4 + 0.5V_3 \right\} \\ V_4 &= \max \left\{ -10 + 0.9V_6 + 0.1V_4; \ -10 + V_7 \right\} \\ V_5 &= -10 \\ V_6 &= 100 \\ V_7 &= -1000 \end{cases}$$

 \Rightarrow too complicated, we need to find an alternative solution.

The Bellman Operators

Notation. w.l.o.g. a discrete state space |S| = N and $V^{\pi} \in \mathbb{R}^{N}$.

Definition

For any $W \in \mathbb{R}^N$, the Bellman operator $\mathcal{T}^{\pi} : \mathbb{R}^N \to \mathbb{R}^N$ is

$$\mathcal{T}^{\pi}W(s) = r(s, \pi(s)) + \gamma \sum_{s'} p(s'|s, \pi(s))W(s'),$$

and the optimal Bellman operator (or dynamic programming operator) is

$$TW(s) = \max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a)W(s) \right].$$

Proposition

Properties of the Bellman operators

1 Monotonicity: for any $W_1, W_2 \in \mathbb{R}^N$, if $W_1 \leq W_2$ component-wise, then

$$\mathcal{T}^{\pi}W_1 \leq \mathcal{T}^{\pi}W_2,$$

 $\mathcal{T}W_1 \leq \mathcal{T}W_2.$

Proposition

Properties of the Bellman operators

1 Monotonicity: for any $W_1, W_2 \in \mathbb{R}^N$, if $W_1 \leq W_2$ component-wise, then

$$\mathcal{T}^{\pi}W_1 \leq \mathcal{T}^{\pi}W_2,$$

 $\mathcal{T}W_1 \leq \mathcal{T}W_2.$

2 Offset: for any scalar $c \in \mathbb{R}$,

$$\mathcal{T}^{\pi}(W + cI_N) = \mathcal{T}^{\pi}W + \gamma cI_N,$$

 $\mathcal{T}(W + cI_N) = \mathcal{T}W + \gamma cI_N,$

Proposition

3. Contraction in L_{∞} -norm: for any $W_1, W_2 \in \mathbb{R}^N$

$$||\mathcal{T}^{\pi}W_{1} - \mathcal{T}^{\pi}W_{2}||_{\infty} \leq \gamma ||W_{1} - W_{2}||_{\infty},$$

 $||\mathcal{T}W_{1} - \mathcal{T}W_{2}||_{\infty} \leq \gamma ||W_{1} - W_{2}||_{\infty}.$

Proposition

3. Contraction in L_{∞} -norm: for any $W_1, W_2 \in \mathbb{R}^N$

$$||\mathcal{T}^{\pi}W_{1} - \mathcal{T}^{\pi}W_{2}||_{\infty} \leq \gamma ||W_{1} - W_{2}||_{\infty},$$

 $||\mathcal{T}W_{1} - \mathcal{T}W_{2}||_{\infty} \leq \gamma ||W_{1} - W_{2}||_{\infty}.$

4. Fixed point: For any policy π

 V^{π} is the unique fixed point of \mathcal{T}^{π} , V^{*} is the unique fixed point of \mathcal{T} .

Proposition

3. Contraction in L_{∞} -norm: for any $W_1, W_2 \in \mathbb{R}^N$

$$||\mathcal{T}^{\pi}W_{1} - \mathcal{T}^{\pi}W_{2}||_{\infty} \leq \gamma ||W_{1} - W_{2}||_{\infty},$$

 $||\mathcal{T}W_{1} - \mathcal{T}W_{2}||_{\infty} \leq \gamma ||W_{1} - W_{2}||_{\infty}.$

4. Fixed point: For any policy π

$$V^{\pi}$$
 is the unique fixed point of \mathcal{T}^{π} , V^{*} is the unique fixed point of \mathcal{T} .

 ${f C}$ For any $W\in \mathbb{R}^N$ and any stationary policy π

$$\lim_{k \to \infty} (\mathcal{T}^{\pi})^{k} W = V^{\pi},$$

$$\lim_{k \to \infty} (\mathcal{T})^{k} W = V^{*}.$$

Proof: Contraction of the Bellman Operator

For any $s \in S$

$$\begin{aligned} &|\mathcal{T}W_{1}(s) - \mathcal{T}W_{2}(s)| \\ &= \Big| \max_{a} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) W_{1}(s') \right] - \max_{a'} \left[r(s, a') + \gamma \sum_{s'} p(s'|s, a') W_{2}(s') \right] \Big| \\ &\leq \max_{a} \Big| \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) W_{1}(s') \right] - \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) W_{2}(s') \right] \Big| \\ &= \gamma \max_{a} \sum_{s'} p(s'|s, a) |W_{1}(s') - W_{2}(s')| \\ &\leq \gamma \|W_{1} - W_{2}\|_{\infty} \max_{a} \sum_{s'} p(s'|s, a) = \gamma \|W_{1} - W_{2}\|_{\infty}, \end{aligned}$$

 \bigcirc Same proof applies for \mathcal{T}^{π}

How to solve exactly an MDP

Dynamic Programming

Bellman Equations

Value Iteration

Policy Iteration

1 Let V_0 be any vector in \mathbb{R}^N

- 1 Let V_0 be any vector in \mathbb{R}^N
- 2 At each iteration $k = 1, 2, \dots, K$

- 1 Let V_0 be any vector in \mathbb{R}^N
- 2 At each iteration $k = 1, 2, \dots, K$
 - Compute $V_{k+1} = \mathcal{T}V_k$

- 1 Let V_0 be any vector in \mathbb{R}^N
- 2 At each iteration $k = 1, 2, \dots, K$
 - Compute $V_{k+1} = \mathcal{T}V_k$
- Return the *greedy* policy

$$\pi_K(s) \in \arg\max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_K(s') \right].$$

Value Iteration: the Guarantees

Theorem

Let $V_0 \in \mathbb{R}^N$ be an arbitrary function, then the sequence of functions $\{V_k\}_k$ generated by value iteration converges to the optimal value function V^* .

Furthermore, let $\varepsilon>0$ and $\max_{s,a}|r(s,a)|\leq r_{\max}<\infty$, then after at most

$$K = \frac{\log(r_{\text{max}}/\varepsilon)}{\log(1/\gamma)}$$

iterations $||V_K - V^*||_{\infty} \le \varepsilon$.

Proof: Value Iteration

lacksquare From the *fixed point* property of $\mathcal T$ and $V_k=\mathcal T V_{k-1}$

$$\lim_{k \to \infty} V_k = \lim_{k \to \infty} \mathcal{T}^k V_0 = V^*$$

Proof: Value Iteration

■ From the *fixed point* property of \mathcal{T} and $V_k = \mathcal{T}V_{k-1}$

$$\lim_{k \to \infty} V_k = \lim_{k \to \infty} \mathcal{T}^k V_0 = V^*$$

From the *contraction* property of \mathcal{T}

$$\begin{split} \|V^* - V_{k+1}\|_{\infty} &= \|\mathcal{T}V^* - \mathcal{T}V_k\|_{\infty} & \text{[value iteration and Bellman eq.]} \\ &\leq \gamma \|V_k - V^*\|_{\infty} & \text{[contraction]} \\ &\leq \gamma^{k+1} \|V^* - V_0\|_{\infty} & \text{[recursion.]} \\ &\to 0 \end{split}$$

Proof: Value Iteration

■ From the *fixed point* property of \mathcal{T} and $V_k = \mathcal{T}V_{k-1}$

$$\lim_{k \to \infty} V_k = \lim_{k \to \infty} \mathcal{T}^k V_0 = V^*$$

From the *contraction* property of \mathcal{T}

$$\begin{split} \|V^* - V_{k+1}\|_{\infty} &= \|\mathcal{T}V^* - \mathcal{T}V_k\|_{\infty} & \text{[value iteration and Bellman eq.]} \\ &\leq \gamma \|V_k - V^*\|_{\infty} & \text{[contraction]} \\ &\leq \gamma^{k+1} \|V^* - V_0\|_{\infty} & \text{[recursion.]} \\ &\to 0 \end{split}$$

■ Convergence rate. Let $\varepsilon > 0$ and $||r||_{\infty} \le r_{\max}$, then after at most

$$||V^* - V_{k+1}||_{\infty} \le \gamma^{k+1} ||V^* - V_0||_{\infty} < \varepsilon \implies K \ge \frac{\log(r_{\max}/\varepsilon)}{\log(1/\gamma)}$$

Value Iteration: the Guarantees

Corollary

Let V_K the function computed after K iterations by value iteration, then the greedy policy

$$\pi_K(x) \in \arg\max_{a \in A} \left[r(x, a) + \gamma \sum_{y} p(y|x, a) V_K(y) \right]$$

is such that

$$\underbrace{\|V^* - V^{\pi_K}\|_{\infty}}_{performance \ loss} \le \frac{2\gamma}{1 - \gamma} \underbrace{\|V^* - V_K\|_{\infty}}_{approx. \ error}.$$

Furthermore, there exists $\epsilon > 0$ such that if $||V_K - V^*||_{\infty} \le \epsilon$, then π_K is optimal.

Proof: Performance Loss

$$||V^* - V^{\pi}||_{\infty} \leq ||TV^* - T^{\pi}V||_{\infty} + ||T^{\pi}V - T^{\pi}V^{\pi}||_{\infty}$$

$$\leq ||TV^* - TV||_{\infty} + \gamma ||V - V^{\pi}||_{\infty}$$

$$\leq \gamma ||V^* - V||_{\infty} + \gamma (||V - V^*||_{\infty} + ||V^* - V^{\pi}||_{\infty})$$

$$\leq \frac{2\gamma}{1 - \gamma} ||V^* - V||_{\infty}.$$

Termination condition

$$\max_{s} |V_k(s) - V_{k-1}(s)| - \min_{s} |V_k(s) - V_{k-1}(s)| \le \varepsilon$$

Performance guarantees

$$\underbrace{\|V^* - V^{\pi}\|_{\infty}}_{performance\ loss} \le \frac{\gamma}{1 - \gamma} \varepsilon$$

At each iteration $k = 1, 2, \dots, K$

- \Rightarrow Compute $V_{k+1} = \mathcal{T}V_k$
- - 1 Set $maxV = -\infty$
 - 2 For all $a \in A$
 - $\textbf{I} \quad \mathsf{Compute} \ q(s,a) = r(s,a) + \gamma \sum_{s'} p(s'|s,a) V_k(s)$
 - $2 \quad \text{If } q(s,a) > \mathsf{maxV}, \text{ set } \mathsf{maxV} = q(s,a)$

Value Iteration: the Complexity

Time complexity

■ Each iteration takes $O(S^2A)$ operations

$$V_{k+1}(s) = \mathcal{T}V_k(s) = \max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_k(s') \right]$$

■ The computation of the greedy policy takes $O(S^2A)$ operations

$$\pi_K(s) \in \arg\max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_K(s') \right]$$

■ Total time complexity $O(KS^2A)$

Space complexity

- Storing the MDP: dynamics $O(S^2A)$ and reward O(SA).
- Storing the value function and the optimal policy O(S).

Value Iteration: Extensions and Implementations

Asynchronous VI.

- 1 Let V_0 be any vector in \mathbb{R}^N
- 2 At each iteration $k = 1, 2, \dots, K$
 - Choose a state s_k
 - Compute $V_{k+1}(s_k) = \mathcal{T}V_k(s_k)$
- Return the greedy policy

$$\pi_K(s) \in \arg\max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_K(s') \right].$$

Comparison

- Reduced time complexity to O(SA)
- Using round-robin, number of iterations increased by at most O(KS) but much smaller in practice if states are properly *prioritized*
- Convergence guarantees if no *starvation*

State-Action Value Function

Definition

In discounted infinite horizon problems, for any policy π , the *state-action value function* (or Q-function) $Q^{\pi}: S \times A \mapsto \mathbb{R}$ is

$$Q^{\pi}(s, \mathbf{a}) = \mathbb{E}\Big[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) | s_{0} = s, a_{0} = \mathbf{a}, a_{t} = \pi(s_{t}), \forall t \ge 1\Big],$$

The optimal Q-function is

$$Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a),$$

and the optimal policy can be obtained as

$$\pi^*(s) = \arg\max_{a} Q^*(s, a).$$

State-Action Value Function Operators*

$$\mathcal{T}^{\pi}Q(s,a) = r(s,a) + \gamma \sum_{s'} p(s'|s,a)Q(s,\pi(s))$$

$$\mathcal{T}Q(s,a) = r(s,a) + \gamma \sum_{s'} p(s'|s,a) \max_{a} Q(s,a)$$

*Abuse of notation for the operators

State-Action and State Value Function

$$Q^{\pi}(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|s, a) V^{\pi}(s')$$
$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$Q^*(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|s, a) V^*(s')$$
$$V^*(s) = Q^*(s, \pi^*(s')) = \max_{a \in A} Q^*(s, a)$$

Value Iteration: Extensions and Implementations

Q-iteration.

- 1 Let Q_0 be any Q-function
- 2 At each iteration $k = 1, 2, \dots, K$
 - Compute $Q_{k+1} = \mathcal{T}Q_k$
- 3 Return the greedy policy

$$\pi_K(s) \in \arg\max_{a \in A} Q_K(s, a)$$

Comparison

- Increased space and time complexity to O(SA) and $O(S^2A^2)$
- Reduced time complexity to compute the greedy policy O(SA)
- Bonus: computing the greedy policy from the Q-function does not require the MDP

How to solve exactly an MDP

Dynamic Programming

Bellman Equations

Value Iteration

Policy Iteration

1 Let π_0 be any stationary policy

- 1 Let π_0 be any stationary policy
- 2 At each iteration $k = 1, 2, \dots, K$

- 1 Let π_0 be any stationary policy
- 2 At each iteration $k = 1, 2, \dots, K$
 - Policy evaluation given π_k , compute V^{π_k} .

- **11** Let π_0 be any stationary policy
- 2 At each iteration $k = 1, 2, \dots, K$
 - Policy evaluation given π_k , compute V^{π_k} .
 - Policy improvement: compute the greedy policy

$$\pi_{k+1}(s) \in \arg \max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V^{\pi_k}(s') \right].$$

- 1 Let π_0 be any stationary policy
- 2 At each iteration $k = 1, 2, \dots, K$
 - Policy evaluation given π_k , compute V^{π_k} .
 - Policy improvement: compute the greedy policy

$$\pi_{k+1}(s) \in \arg\max_{a \in A} [r(s,a) + \gamma \sum_{s'} p(s'|s,a) V^{\pi_k}(s')].$$

 $3 ext{ Stop if } V^{\pi_k} = V^{\pi_{k-1}}$

- 1 Let π_0 be any stationary policy
- 2 At each iteration $k = 1, 2, \dots, K$
 - Policy evaluation given π_k , compute V^{π_k} .
 - Policy improvement: compute the greedy policy

$$\pi_{k+1}(s) \in \arg \max_{a \in A} [r(s,a) + \gamma \sum_{s'} p(s'|s,a) V^{\pi_k}(s')].$$

- $Stop if V^{\pi_k} = V^{\pi_{k-1}}$
- f 4 Return the last policy π_K

Policy Iteration: the Guarantees

Proposition

The policy iteration algorithm generates a sequences of policies with non-decreasing performance

$$V^{\pi_{k+1}} \geq V^{\pi_k},$$

and it converges to π^* in a finite number of iterations.

Proof: Policy Iteration

From the definition of the Bellman operators and the greedy policy π_{k+1}

$$V^{\pi_k} = \mathcal{T}^{\pi_k} V^{\pi_k} \le \mathcal{T} V^{\pi_k} = \mathcal{T}^{\pi_{k+1}} V^{\pi_k}, \tag{1}$$

Proof: Policy Iteration

From the definition of the Bellman operators and the greedy policy π_{k+1}

$$V^{\pi_k} = \mathcal{T}^{\pi_k} V^{\pi_k} \le \mathcal{T} V^{\pi_k} = \mathcal{T}^{\pi_{k+1}} V^{\pi_k}, \tag{1}$$

and from the monotonicity property of $\mathcal{T}^{\pi_{k+1}}$, it follows that

$$V^{\pi_{k}} \leq \mathcal{T}^{\pi_{k+1}} V^{\pi_{k}},$$

$$\mathcal{T}^{\pi_{k+1}} V^{\pi_{k}} \leq (\mathcal{T}^{\pi_{k+1}})^{2} V^{\pi_{k}},$$

$$\dots$$

$$(\mathcal{T}^{\pi_{k+1}})^{n-1} V^{\pi_{k}} \leq (\mathcal{T}^{\pi_{k+1}})^{n} V^{\pi_{k}},$$

$$\dots$$

Proof: Policy Iteration

From the definition of the Bellman operators and the greedy policy π_{k+1}

$$V^{\pi_k} = \mathcal{T}^{\pi_k} V^{\pi_k} \le \mathcal{T} V^{\pi_k} = \mathcal{T}^{\pi_{k+1}} V^{\pi_k}, \tag{1}$$

and from the monotonicity property of $\mathcal{T}^{\pi_{k+1}}$, it follows that

$$V^{\pi_{k}} \leq \mathcal{T}^{\pi_{k+1}} V^{\pi_{k}},$$

$$\mathcal{T}^{\pi_{k+1}} V^{\pi_{k}} \leq (\mathcal{T}^{\pi_{k+1}})^{2} V^{\pi_{k}},$$

$$\dots$$

$$(\mathcal{T}^{\pi_{k+1}})^{n-1} V^{\pi_{k}} \leq (\mathcal{T}^{\pi_{k+1}})^{n} V^{\pi_{k}},$$

$$\dots$$

Joining all the inequalities in the chain we obtain

$$V^{\pi_k} \le \lim_{n \to \infty} (\mathcal{T}^{\pi_{k+1}})^n V^{\pi_k} = V^{\pi_{k+1}}.$$

Proof: Policy Iteration

From the definition of the Bellman operators and the greedy policy π_{k+1}

$$V^{\pi_k} = \mathcal{T}^{\pi_k} V^{\pi_k} \le \mathcal{T} V^{\pi_k} = \mathcal{T}^{\pi_{k+1}} V^{\pi_k}, \tag{1}$$

and from the monotonicity property of $\mathcal{T}^{\pi_{k+1}}$, it follows that

$$V^{\pi_{k}} \leq \mathcal{T}^{\pi_{k+1}} V^{\pi_{k}},$$

$$\mathcal{T}^{\pi_{k+1}} V^{\pi_{k}} \leq (\mathcal{T}^{\pi_{k+1}})^{2} V^{\pi_{k}},$$

$$\dots$$

$$(\mathcal{T}^{\pi_{k+1}})^{n-1} V^{\pi_{k}} \leq (\mathcal{T}^{\pi_{k+1}})^{n} V^{\pi_{k}},$$

$$\dots$$

Joining all the inequalities in the chain we obtain

$$V^{\pi_k} \le \lim_{n \to \infty} (\mathcal{T}^{\pi_{k+1}})^n V^{\pi_k} = V^{\pi_{k+1}}.$$

Then $(V^{\pi_k})_k$ is a non-decreasing sequence.

Policy Iteration: the Guarantees

Since a finite MDP admits a finite number of policies, then the termination condition is eventually met for a specific k.

Thus eq. 1 holds with an equality and we obtain

$$V^{\pi_k} = \mathcal{T}V^{\pi_k}$$

and $V^{\pi_k} = V^*$ which implies that π_k is an optimal policy. \blacksquare

Notation. For any policy π the reward vector is $r^{\pi}(x) = r(x, \pi(x))$ and the transition matrix is $[P^{\pi}]_{x,y} = p(y|x,\pi(x))$

Policy Evaluation Step

Direct computation. For any policy π compute

$$V^{\pi} = (I - \gamma P^{\pi})^{-1} r^{\pi}.$$

Complexity: $O(S^3)$.

Policy Evaluation Step

Direct computation. For any policy π compute

$$V^{\pi} = (I - \gamma P^{\pi})^{-1} r^{\pi}.$$

Complexity: $O(S^3)$.

I Iterative policy evaluation. For any policy π

$$\lim_{n\to\infty} \mathcal{T}^{\pi} V_0 = V^{\pi}.$$

Complexity: An ε -approximation of V^π requires $O\Big(S^2 \frac{\log(1/\epsilon)}{\log(1/\gamma)}\Big)$ steps.

Policy Evaluation Step

Direct computation. For any policy π compute

$$V^{\pi} = (I - \gamma P^{\pi})^{-1} r^{\pi}.$$

Complexity: $O(S^3)$.

• Iterative policy evaluation. For any policy π

$$\lim_{n\to\infty} \mathcal{T}^{\pi} V_0 = V^{\pi}.$$

Complexity: An ε -approximation of V^{π} requires $O\left(S^2 \frac{\log(1/\epsilon)}{\log(1/\gamma)}\right)$ steps.

■ Monte-Carlo simulation. In each state s, simulate n trajectories $((s_t^i)_{t\geq 0},)_{1\leq i\leq n}$ following policy π and compute

$$\hat{V}^{\pi}(s) \simeq \frac{1}{n} \sum_{i=1}^{n} \sum_{t>0} \gamma^{t} r(s_{t}^{i}, \pi(s_{t}^{i})).$$

Complexity: In each state, the approximation error is $O\left(\frac{r_{\text{max}}}{1-\gamma}\sqrt{\frac{1}{n}}\right)$

Policy Improvement Step

■ If the policy is evaluated with V, then complexity O(SA)

Policy Improvement Step

- If the policy is evaluated with V, then complexity O(SA)
- If the policy is evaluated with Q, then complexity O(A)

$$\pi_{k+1}(s) \in \arg\max_{a \in A} Q^{\pi_k}(s, a),$$

Number of Iterations

- $\blacksquare \text{ At most } O\bigg(\frac{SA}{1-\gamma}\log(\frac{1}{1-\gamma})\bigg)$
- lacksquare Other results exist that do not depend on γ

Comparison between Value and Policy Iteration

Value Iteration

- Pros: each iteration is very computationally efficient.
- Cons: convergence is only asymptotic.

Policy Iteration

- Pros: converge in a finite number of iterations (often small in practice).
- **Cons:** each iteration requires a full *policy evaluation* and it might be expensive.

The Grid-World Problem

Other Algorithms

- Linear programming
- Modified Policy Iteration
- lacksquare λ -Policy Iteration
- Primal-dual formulations

Summary

- Bellman equations and Bellman operators (and their properties)
- Value iteration (algorithm, guarantees, and complexity)
- Policy iteration (algorithm, guarantees, and complexity)

Bibliography

[1] Dimitri P. Bertsekas. *Dynamic Programming and Optimal Control, Vol. II.* Athena Scientific, 3rd edition, 2007.

Thank you!

facebook Artificial Intelligence Research