Chapter 1

Logic Design with Mosfet

何宗易

Tsung-Yi Ho
tyho@cs.nthu.edu.tw
http://theta.cs.nthu.edu.tw
Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan

nMOS Transistor

- Four terminals: gate, source, drain, body
- Gate oxide body stack looks like a capacitor
 - Gate and body are conductors
 - SiO₂ (oxide) is a very good insulator
 - Called metal oxide semiconductor (MOS) capacitor

Source

Even though gate is no longer made of metal*

Drain

Gate

* Metal gates are returning today!

Polysilicon
SiO₂

n+
Body
p bulk Si

nMOS Operation

- Body is usually tied to ground (0 V)
- When the gate is at a low voltage:
 - P-type body is at low voltage
 - Source-body and drain-body diodes are OFF
 - No current flows, transistor is OFF

nMOS Operation Cont.

- When the gate is at a high voltage:
 - Positive charge on gate of MOS capacitor
 - Negative charge attracted to body
 - Inverts a channel under gate to n-type
 - Now current can flow through n-type silicon from source through channel to drain, transistor is ON

pMOS Transistor

- Similar, but doping and voltages reversed
 - Body tied to high voltage (V_{DD})
 - Gate low: transistor ON
 - Gate high: transistor OFF
 - Bubble indicates inverted behavior

Signals and Wires

Signals

$$-$$
 0 = V_{ss} = Ground = GND = Low = 0V

$$-1 = V_{dd} = Power = PWR = High = 5V, 3.3V, 1.5V, 1.2V, 1.0V, etc.$$

$$\frac{1}{\frac{1}{2}}V_{dd}$$

Wires

No connection

Connection

Ideal Switches

Switch

Electrically open

Assert-high switch (nMOS)

Assert-low switch (cMOS)

$$x \xrightarrow{A=0} y = x$$
Closed $(y = x)$

Electrically short

Transistors as Switches

- We can view MOS transistors as electrically controlled switches
- Voltage at gate controls path from source to drain

Series/Parallel Connections of Switches

Series

AND operation (yis defined only when a=1 and b=1) (yis undefined if a=0 or b=0)

а	b	у	
0	0		
0	1	undefined	
1	0		
1	1	x	

Parallel

OR operation (yis defined only when a = 1 or b = 1) (yis undefined if a = 0 and b = 0)

а	b	у
0	0	undefined
0	1	
1	0	\boldsymbol{x}
1	1	

Inverter Design with Switches

- Inverter
 - The output is defined both when a = 0 and when a = 1.

a	у
0	1
1	0

CMOS Inverter

CMOS NAND Gate

CMOS NOR Gate

(上面接V_DD一定是PMOS,下面GND一定是NMOS)

Α	В	Υ	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

3-input NAND Gate

- Y pulls low if ALL inputs are 1
- Y pulls high if ANY input is 0

Complementary CMOS

- Complementary CMOS logic gates
 - nMOS pull-down network
 - pMOS pull-up network
 - a.k.a. static CMOS

pull-up: V_DD		
inputs	pMOS pull-up network nMOS pull-down network	output

pull-down: GND

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

Series and Parallel

- nMOS: 1 = ON
- pMOS: 0 = ON
- Series: both must be ON
- Parallel: either can be ON

Conduction Complement

- Complementary CMOS gates always produce 0 or 1
- Ex: NAND gate
 - Series nMOS: Y=0 when both inputs are 1
 - Thus Y=1 when either input is 0
 - Requires parallel pMOS

- Rule of Conduction Complements
 - Pull-up network is complement of pull-down
 - Parallel -> series, series -> parallel

Compound Gates

- Compound gates can do any inverting function
- Ex:

Example: O3AI

(1) ignore complement,做 $Y = (A + B + C) \cdot D$ $(A+B+C) \cdot D \Rightarrow NMOS$ (2) 接著做PMOS => or改and, and改or => $(A \cdot B \cdot C) + D$ B

nFET Threshold voltages

- MOSFET has a characterizing parameter called the <u>threshold</u> voltage V_T.
- V_T is established during manufacturing process and is assumed to be a given value to the designer.
- nFET has a threshold voltage V_{Tn} a positive number (0.5V $^{\sim}$ 0.7V).

Figure 2.14 Threshold voltage of an nFET

nFET Threshold voltages

- If $V_{GSn} \le V_{Tn}$ the transistor acts like an open circuit. A transistor is OFF.
 - The drain terminal is the one close to Vdd and the source terminal is the one connected to Gnd.

• If $V_{GSn} \ge V_{Tn}$ the nFET drain and source are connected. A transistor is ON.

pFET Threshold voltages

- A pFET behaves in a complementary manner. V_{Tp} is a negative number (-0.5V~-0.8V). We use $V_{SGp} = -V_{GSp}$
- If $V_{SGp} \le |V_{Tp}|$, the transistor acts like an open circuit. A transistor is OFF.
- If $V_{SGp} \ge |V_{Tp}|$, the pFET drain and source are connected. A transistor is ON.

Figure 2.15 pFET threshold voltage

Pass Characteristics (nFET)

- Ideal electrical switch can pass any voltage.
- The pass characteristics of nFET.
 - Fig 2.16a, a logic 0 is connected from left to the right.
 - Fig 2.16b, a VDD is applied in the left. The output voltage is reduced to a value V_{DD} - V_{Tn} . (Threshold voltage loss)
 - nFET can only pass a weak logic 1 but strong logic 0.

Figure 2.16 nFET pass characteristics

Pass Characteristics (pFET)

- The pass characteristics of pFET.
 - Fig 2.17a, a logic 1 is connected from left to the right.
 - Fig 2.17b, a VSS is applied in the right. The output voltage drops to a value $|V_{To}|$ (Threshold voltage loss)
 - pFET can only pass a weak logic 0 but strong logic 1.

Figure 2.17 pFET pass characteristics

Signal Strength

- Strength of signal
 - How close it approximates ideal voltage source
- V_{DD} and GND rails are strongest 1 and 0
- nMOS pass strong 0
 - But degraded or weak 1
- pMOS pass strong 1
 - But degraded or weak 0
- Thus nMOS are best for pull-down network

Pass Transistors

Transistors can be used as switches

$$g = 0$$

$$s - d$$

$$g = 0$$

 $s \rightarrow d$

$$\begin{array}{ccc}
\text{Input} & g = 1 & \text{Output} \\
0 & & \text{strong 0}
\end{array}$$

Input
$$g = 0$$
 Output $0 \longrightarrow degraded 0$

Transmission Gates

- Pass transistors produce degraded outputs
- Transmission gates pass both 0 and 1 well

NMOS, PMOS串在一起, g跟gb為dual訊號

$$g = 0$$
, $gb = 1$
 $a - b$

$$g = 1$$
, $gb = 0$
 $a \rightarrow b$

Input

Output

$$g = 1$$
, $gb = 0$
 $1 \rightarrow \infty$ strong 1

Tristates

Tristate buffer produces Z when not enabled

=>with enable

EN	А	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

Nonrestoring Tristate

- Transmission gate acts as tristate buffer
 - Only two transistors
 - But nonrestoring
 - Noise on A is passed on to Y

Tristate Inverter

- Tristate inverter produces restored output
 - Violates conduction complement rule
 - Because we want a Z output

Multiplexers

• 2:1 multiplexer chooses between two inputs

S	D1	D0	Υ
0	X	0	0
0	X	1	1
1	0	X	0
1	1	X	1

Gate-Level Mux Design

- $Y = SD_1 + \overline{S}D_0$ (too many transistors)
- How many transistors are needed?

Transmission Gate Mux

- Nonrestoring mux uses two transmission gates
 - Only 4 transistors

Inverting Mux

- Inverting multiplexer
 - Use compound AOI22
 - Or pair of tristate inverters
 - Essentially the same thing
- Noninverting multiplexer adds an inverter

4:1 Multiplexer

- 4:1 mux chooses one of 4 inputs using two selects
 - Two levels of 2:1 muxes
 - Or four tristates

D Latch

- When CLK = 1, latch is transparent
 - D flows through to Q like a buffer
- When CLK = 0, the latch is opaque
 - Q holds its old value independent of D
- a.k.a. transparent latch or level-sensitive latch

D Latch Design

Multiplexer chooses D or old Q

=> Set CLK as enable

D Flip-flop

- When CLK rises, D is copied to Q
- At all other times, Q holds its value
- a.k.a. positive edge-triggered flip-flop, master-slave flip-flop

D Flip-flop Design

Built from master and slave D latches

CMOS Fabrication

- CMOS transistors are fabricated on silicon wafer
- Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and crosssection of wafer in a simplified manufacturing process

Inverter Cross-section

- Typically use p-type substrate for nMOS transistors
- Requires n-well for body of pMOS transistors

Well and Substrate Taps

- Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
- Use heavily doped well and substrate contacts / taps

Inverter Mask Set

- Transistors and wires are defined by masks
- Cross-section taken along dashed line

Detailed Mask Views

Six masks

- n-well
- Polysilicon
- n+ diffusion
- p+ diffusion
- Contact
- Metal (for 連線)

Fabrication

- Chips are built in huge factories called fabs
- Contain clean rooms as large as football fields

Courtesy of International Business Machines Corporation. Unauthorized use not permitted.

Fabrication Steps

- Start with blank wafer
- Build inverter from the bottom up
- First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

p substrate

Oxidation

- Grow SiO₂ on top of Si wafer
 - -900-1200 C with H_2O or O_2 in oxidation furnace

Photoresist

- Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Softens where exposed to light

Lithography

- Expose photoresist through n-well mask
- Strip off exposed photoresist

Etch(蝕刻)

- Etch oxide with hydrofluoric acid (HF)
 - Seeps through skin and eats bone; nasty stuff!!!
- Only attacks oxide where resist has been exposed

Strip Photoresist

- Strip off remaining photoresist
 - Use mixture of acids called piranah etch
- Necessary so resist doesn't melt in next step

n-well

- n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- Ion Implanatation
 - Blast wafer with beam of As ions
 - Ions blocked by SiO₂, only enter exposed Si

Strip Oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

Polysilicon

- Deposit very thin layer of gate oxide
 - < 20 Å (6-7 atomic layers)</p>
- Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Polysilicon Patterning

Use same lithography process to pattern polysilicon

Self-Aligned Process

- Use oxide and masking to expose where n+ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

N-diffusion

- Pattern oxide and form n+ regions
- Self-aligned process where gate blocks diffusion
- Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

N-diffusion cont.

- Historically dopants were diffused
- Usually ion implantation today
- But regions are still called diffusion

N-diffusion cont.

Strip off oxide to complete patterning step

P-Diffusion

 Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide
- Etch oxide where contact cuts are needed

Metalization

- Sputter on aluminum over whole wafer
- Pattern to remove excess metal, leaving wires

Layout

- Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- Feature size f = distance between source and drain
 - Set by minimum width of polysilicon
- Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- Express rules in terms of $\lambda = f/2$
 - E.g. λ = 0.3 μm in 0.6 μm process

Gate Layout

- Layout can be very time consuming
 - Design gates to fit together nicely
 - Build a library of standard cells
- Standard cell design methodology
 - V_{DD} and GND should abut (standard height) ⇒ 在相同高度
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts

(所有單一或複合式的gate都會存成library)

Basic Gate Design

Figure 3.31 Translating a NOT gate circuit to silicon

Figure 3.32 Alternate layout for a NOT gate

Stick Diagrams

- Stick diagrams help plan layout quickly
 - Need not be to scale
 - Draw with color pencils or dry-erase markers

Example: Inverter

Example: NAND3

- Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- 32 λ by 40 λ

Wiring Tracks

- A wiring track is the space required for a wire
 - -4λ width, 4λ spacing from neighbor = 8λ pitch
- Transistors also consume one wiring track

Well spacing

- Wells must surround transistors by 6 λ
 - Implies 12 λ between opposite transistor flavors
 - Leaves room for one wire track

 In Figure 3.33. Two NOT circuits share the same power supply and ground to reduce area.

=>盡量把polysilicon做成直的比較容易做share

Figure 3.33 Two NOT gates that share power supply and ground

(a) Logic diagram

Figure 3.34 Non-inverting buffer

(b) Layout

Interconnect routing problems in layout.

Figure 3.35 Layout of a transmission gate with a driver

Figure 3.36 NAND2 layout

(b) Layer design

Figure 3.39 Layout for 3-input gates

Figure 3.40 Extension of layout technique to a complex logic gate

(a) Tattern

Figure 3.41 Creation of the dual network

Introduction of Integrated Circuit Design (Fall 2020)

Figure 3.42 A general 4-input AOI gate

Example: O3AI

Sketch a stick diagram for O3AI and estimate area

$$- Y = \overline{(A+B+C) \cdot D}$$

Summary

- MOS transistors are stacks of gate, oxide, silicon
- Act as electrically controlled switches
- Build logic gates out of switches
- Draw masks to specify layout of transistors

 Now you know everything necessary to start designing schematics and layout for a simple chip!

Questions?