Sampling Importance Sampling for Contingency Tables

STAT 525

9/20/18

Motivating Example I: 82 descendants of Queen Victoria

Month of birth	Month of death												
	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Jan	1	0	0	0	1	2	0	0	1	0	1	0	6
Feb	1	0	0	1	0	0	0	0	0	1	0	2	5
March	1	0	0	0	2	1	0	0	0	0	0	1	5
April	3	0	2	0	0	0	1	0	1	3	1	1	12
May	2	1	1	1	1	1	1	1	1	1	1	0	12
June	2	0	0	0	1	0	0	0	0	0	0	0	3
July	2	0	2	1	0	0	0	0	1	1	1	2	10
Aug	0	0	0	3	0	0	1	0	0	1	0	2	7
Sept	0	0	0	1	1	0	0	0	0	0	1	0	3
Oct	1	1	0	2	0	0	1	0	0	1	1	0	7
Nov	0	1	1	1	2	0	0	2	0	1	1	0	9
Dec	0	1	1	0	0	0	1	0	0	0	0	0	3
Total	13	4	7	10	8	4	5	3	4	9	7	8	82

Exact Test of Independence

- ullet Observations are from Multinomial $(n,\ p_{ij})$
- Null hypothesis: Independence between row and column variables.

$$H_0: p_{ij} = p_{i}.p_{ij}, \text{ for } i = 1, \dots, k; j = 1, \dots, l.$$

ullet Probability of observing table T

$$P(T) = \binom{n}{n_{11}, \dots, n_{kl}} \prod_{i=1}^{k} \prod_{j=1}^{l} p_{ij}^{n_{ij}}$$

$$= \binom{n}{n_{11}, \dots, n_{kl}} \prod_{i=1}^{k} \prod_{j=1}^{l} (p_{i}.p_{\cdot j})^{n_{ij}}$$

$$= \binom{n}{n_{11}, \dots, n_{kl}} \binom{n}{n_{i1}} \binom{n}{n_{i1}} \binom{n}{n_{i1}} \binom{n}{n_{i1}} \binom{n}{n_{i1}}$$

where $n_{i\cdot}$ and $n_{\cdot j}$ are sufficient statistics.

• If we fix n_i and $n_{\cdot j}$, for $i=1,\ldots,k$, $j=1,\ldots,l$, the conditional distribution is

$$\pi(T) \propto \binom{n}{n_{11}, \dots, n_{kl}} \propto \frac{1}{\prod_{i=1}^{k} \prod_{j=1}^{l} n_{ij}!} \quad \text{for } T \in \Omega$$

where Ω is the set of tables with given n_i and n_{ij}

The exact p-value is

$$\mu = \sum_{T \in \Omega} 1_{\{\pi(T) \le \pi(T_{obs})\}} \pi(T)$$

How to Compute the p-value ?

ullet The exact p-value is

$$\mu = \sum_{T \in \Omega} 1_{\{\pi(T) \le \pi(T_{obs})\}} \pi(T)$$

Consider sequential importance sampling (SIS)

Example:

Questions

- What is the support of the conditional distribution $t_i|(t_{i-1},\ldots,t_1)$?
- How to sample from the support of the conditional distribution?

Fréchet Bounds for Two-Way Tables

					r_1
			• • •		r_2
					r_3
:	:	:	:	:	:
			• • •		r_m
c_1	c_2	c_3		c_n	

$$\max(0, c_1 - r_2 - \dots - r_m) \le t_{11} \le \min(r_1, c_1)$$

$$\max(0, c_1 - t_{11}^* - r_3 - \dots - r_m) \le t_{21} \le \min(r_2, c_1 - t_{11}^*)$$

$$\vdots$$

Sampling Distribution

- Difficult to obtain the true distribution of an entry conditional on the entries that have already been sampled.
- ullet For a target uniform distribution, sample a cell value uniformly from the interval [l,u].
- For a target hypergeometric distribution, sample a cell value from the hypergeometric distribution $p(x) = \binom{u}{r} \binom{u}{l+u-x} / \binom{2u}{l+u} \text{ on the interval } [l,u].$

Counting Tables

- \bullet #P complete problem: How many tables satisfy the given constraints?
- Counting Tables by SIS
 - Note that $|\Omega| = \sum_{T \in \Omega} \frac{1}{q(T)} q(T)$.
 - Draw independent samples $T^{(1)}, \cdots, T^{(N)}$ from q(T).
 - Estimate by

$$|\widehat{\Omega}| = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{q(T^{(i)})}.$$

Eye Color versus Hair Color

	Black	Brunette	Red	Blonde	Total
Brown	68	119	26	7	220
Blue	20	84	17	94	215
Hazel	15	54	14	10	93
Green	5	29	14	16	64
Total	108	286	71	127	592

• Estimation: $(1.225 \pm 0.002) \times 10^{15}$.

True: $1.225914276768514 \times 10^{15}$ (Diaconis and Gangolli, 1995).

References

- Chen, Y., Dinwoodie, I. H., and Sullivant, S. (2006). Sequential Importance Sampling for Multiway Tables. *The Annals of* Statistics, 34, 523-545.
- Chen, Y., Diaconis, P., Holmes, S., and Liu, J.S. (2005).
 Sequential Monte Carlo Methods for Statistical Analysis of Tables. *Journal of the American Statistical Association*, **100**, 109-120.