$\mathbf{T}_{\mathbf{M}} \mid \mathbf{T}_{\mathbf{U} \ \mathbf{N} \ \mathbf{I} \ \mathbf{V} \ \mathbf{E} \ \mathbf{R} \ \mathbf{S} \ \mathbf{I} \ \mathbf{T} \ \mathbf{Y}$

CSCE 633: Machine Learning

Lecture 13

Overview

- Clustering overview
- Partitional clustering
 - K-means clustering
 - Gaussian Mixture Models (GMM)
- Hierarchical clustering

(1) Understanding: Finding patterns/structure/sub-populations in data

(2) Summarization: Reducing the size of large datasets

- find patterns/structure/sub-populations in data ("knowledge discovery")
- training data does not include desired outputs
- less well-defined problem with no obvious error metrics
- topic modeling, market segmentation, clustering of hand-written digits, news clustering (e.g. Google news)

Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Notion of clustering can be ambiguous

Types of clustering

- Partitional clustering
 - non-hierarchical clusters
- Hierarchical clustering
 - a set of nested clusters organized as a hierarchical tree

Types of clustering

Partitional clustering

Types of clustering

Hierarchical clustering

Traditional Hierarchical Clustering

Traditional Dendrogram

Overview

- Clustering overview
- Partitional clustering
 - K-means clustering
 - Gaussian Mixture Models (GMM)
- Hierarchical clustering

Representation

K-means Clustering

- Input: Data $\mathcal{D} = \{x_1, \dots, x_N\}$
- Output: Clusters μ_1, \ldots, μ_K
- Decision: Cluster membership, the cluster id assigned to sample $\mathbf{x_n}$, i.e. $A(\mathbf{x_n}) \in \{1, \dots, K\}$
- Evaluation metric: Distortion measure

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x_n} - \boldsymbol{\mu_k}\|_2^2$$
, where $r_{nk} = 1$ if $A(\mathbf{x_n}) = k$, 0 otherwise

 Intuition: Data points assigned to cluster k should be close to centroid μ_k

Evaluation metric:
$$\min_{r_{nk}} J = \min_{r_{nk}} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x_n} - \boldsymbol{\mu_k}\|_2^2$$

Optimization:

- Step 0: Initialize μ_k to some values
- Step 1: Assume the current value of μ_k fixed, minimize J over r_{nk} , which leads to the following cluster assignment rule $r_{nk} = \begin{cases} 1, & \text{if } k = \arg\min_j \|\mathbf{x_n} \boldsymbol{\mu_j}\|_2^2 \\ 0, & \text{otherwise} \end{cases}$
- Step 2: Assume the current value of r_{nk} fixed, minimize J over μ_k , which leads to the following rule to update the prototypes of the clusters $\mu_k = \frac{\sum_n r_{nk} \mathbf{x}_n}{\sum_{r_{nk}} r_{nk}}$
- Step 3: Determine whether to stop or return to Step 1

Remarks

- The centroid μ_k is the means of data points assigned to the cluster k, hence the name K-means clustering.
- The procedure terminates after a finite number of steps, as the procedure reduces *J* in both Step 1 and Step 2
- There is no guarantee the procedure terminates at the global optimum of J. In most cases, the algorithm stops at a local optimum, which depends on the initial values in Step 0 → random restarts to improve chances of getting closer to global optima

Example

Initialization of K-Means is important

Solutions to Initial Centroids Problem

- Multiple random initializations
- Start with hierarchical clustering to determine initial centroids
- Select more than K initial centroids and then select among these initial centroids

How to know when to stop - Elbow Method

- Plot the error (i.e., distance of each sample to the corresponding centroid) against the number of clusters
- Stop when the decrease in error becomes almost flat

Application: vector quantization

- We can replace our data points with the centroids $\mu_{\pmb{k}}$ from the clusters they are assigned to \to vector quantization
- We have compressed the data points into
 - ullet a codebook of all the centroids $\{\mu_1,\ldots,\mu_{\pmb{\kappa}}\}$
 - a list of indices to the codebook for the data points (created based on r_{nk})
- This compression is obviously lossy as certain information will be lost if we use a very small K

Question: vector quantization with K-means

Assume that the images bellow are created by vectoring the original image with K-means using different values of K. What is the correct combination?

Original Image

A)
$$K = 25$$
 $K = 10$

B)
$$K = 3$$

$$K = 10$$

$$K = 10$$

$$K=3$$

$$K = 25$$

Correct answer is A of course :)

Limitations of K-Means

- Problems when clusters are of differing size, density, or non-spherical shapes (for Euclidean distances)
- Sensitive to outliers
- Number of clusters is difficult to determine

Overview

- Clustering overview
- Partitional clustering
 - K-means clustering
 - Gaussian Mixture Models (GMM)
- Hierarchical clustering

Univariate Gaussian distribution

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

Multivariate Gaussian distribution

$$p(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

Covariance matrix

- Covariance between two random variables X and Y $Cov(X, Y) = \mathbb{E}((X \mathbb{E}(X))(Y \mathbb{E}(Y))) = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y)$
- The covariance matrix provides a way to summarize the covariances of all pairs of variables $(\Sigma)_{ii} = Cov(X_i, X_i)$
- ullet Σ is always positive definite

Isocontours

• For a function $f: \mathbb{R}^2 \to \mathbb{R}$ an isocontour is a set of the form $\{\mathbf{x} \in \mathbb{R}^2 : f(\mathbf{x}) = c\}$

The diagonal covariance case

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$$

Question: Which is correct in this non-diagonal covariance case?

A)
$$\Sigma = \begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix}$$
 $\Sigma = \begin{bmatrix} 1 & -0.8 \\ -0.8 & 1 \end{bmatrix}$ $\Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$

B)
$$\Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$$
 $\Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$ $\Sigma = \begin{bmatrix} 1 & -0.8 \\ -0.8 & 1 \end{bmatrix}$

C)
$$\Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$
 $\Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$ $\Sigma = \begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix}$

Question: Which is correct in this non-diagonal covariance case?

Correct answer is C

By increasing the off-diagonal elements from 0.5 to 0.8, the distribution is more thinly peaked along the line where x_1 is equal to x_2

Probabilistic interpretation of clustering

- We want to find p(x) that best describes our data
- The data points seem to form 3 clusters
- However, we cannot model p(x) with simple and known distributions, e.g. one Gaussian

Probabilistic interpretation of clustering

- Instead, we will model each region with a Gaussian distribution \rightarrow Gaussian mixture models (GMMs)
- Question 1: How do we know which (color) region a data point comes from?
- Question 2: What are the parameters of Gaussian distributions in each region?
- We will answer both in an unsupervised way from data $\mathcal{D} = \{x_1, \dots, x_n\}$

GMM as the marginal distribution of a joint distribution

The joint distribution between x and z (representing color) are

$$p(\mathbf{x}|z = red) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$$

 $p(\mathbf{x}|z = blue) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$
 $p(\mathbf{x}|z = green) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3)$

The marginal distribution is thus

$$p(\mathbf{x}) = p(red)\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) + p(blue)\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2) \\ + p(green)\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3)$$

Gaussian mixture models

A Gaussian mixture model has the following density function for x

$$p(\mathbf{x}) = \sum_{k=1}^{N} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu_k}, \boldsymbol{\Sigma_k})$$

- K: number of Gaussians
- μ_k, Σ_k : mean & covariance of k^{th} component
- π_k : component weights

$$\pi_k > 0$$
, $\forall k$ and $\sum_{k=1}^K \pi_k = 1$

• Estimate μ_k , Σ_k , $\pi_k \Rightarrow$ Expectation Maximization

Parameter estimation for GMMs

If we know the probability of sample $\mathbf{x_n}$ belonging to Gaussian component k, i.e., responsibility $\gamma(z_{nk})$, we can estimate the parameters of each Gaussian distribution $\{\mu_k, \Sigma_k, \pi_k\}$ (Maximization Step)

$$\pi_{k} = \frac{\sum_{n} \gamma(z_{nk})}{\sum_{k} \sum_{n} \gamma(z_{nk})} \qquad \mu_{k} = \frac{1}{\sum_{n} \gamma(z_{nk})} \sum_{n} \gamma(z_{nk}) \mathbf{x}_{n}$$

$$\Sigma_{k} = \frac{1}{\sum_{n} \gamma(z_{nk})} \sum_{n} \gamma(z_{nk}) (\mathbf{x}_{n} - \mu_{k}) (\mathbf{x}_{n} - \mu_{k})^{T}$$

- For π_k : count the number of data points whose z_n is k and divide by the total number of data points
- For μ_k : the mean of all samples weighted by their responsibility (i.e., probability of belonging to mixture k)
- For Σ_k : the covariance matrix of all samples weighted by their responsibility (i.e., probability of belonging to mixture k)

Parameter estimation for GMMs: incomplete data

If we know the parameters of each Gaussian mixture $\{\mu_k, \Sigma_k, \pi_k\}$, we can find the probability of each data sample $\mathbf{x_n}$ belonging to Gaussian mixture k (Expectation Step)

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x_n} | \boldsymbol{\mu_k}, \boldsymbol{\Sigma_k})}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x_n} | \boldsymbol{\mu_j}, \boldsymbol{\Sigma_j})}$$

Every data point $\mathbf{x_n}$ is assigned to a component fractionally according to $\gamma(z_{nk})$, also called responsibility

Parameter estimation for GMMs

Since we do not know μ_k , Σ_k to begin with, we cannot compute $\gamma(z_{nk})$ or π_k

But we can invoke an iterative procedure and alternate between estimating γ_{nk} using π_k , μ_k and Σ_k , and vice-versa.

- Step 0: Guess π_k , μ_k , Σ_k with initial values
- Step 1 (E-Step): Compute γ_{nk} using current π_k , μ_k , Σ_k
- Step 2 (M-Step): Update π_k , μ_k , Σ_k using computed γ_{nk}
- Step 3: Go back to Step 1

Parameter estimation for GMMs

Example of GMM parameter estimation with EM

Gaussian Mixture Models

Example of GMM parameter estimation with EM

Gaussian Mixture Models

Comparison between K-Means and GMMs

Overview

- Clustering overview
- Partitional clustering
 - K-means clustering
 - Gaussian Mixture Models (GMM)
- Hierarchical clustering

Hierarchical clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Traditional Hierarchical Clustering

Traditional Dendrogram

Hierarchical clustering

Advantages of hierarchical clustering

- Do not have to pre-determine number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- Resulting clusters may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction)

Hierarchical clustering

Types of hierarchical clustering

- Agglomerative
 - Start with each sample as individual cluster
 - Merge the closest pair of clusters each time until only one cluster left
- Divisive
 - Start with one, all-inclusive cluster
 - Split a cluster each time until each cluster contains a point

- Step 0: Compute the proximity matrix
- Step 1: Let each data sample be a cluster
- Step 2: Repeat:
 - Merge the two closest clusters
 - Update the proximity matrix

Until only a single cluster remains

Key operation is the computation of the proximity of two clusters \rightarrow different approaches for defining distance between clusters

Initialization: Start with each sample being a cluster

After some steps: we have some clusters

We want to merge the two closest clusters (C2 and C5) and update the proximity matrix

How do we update the proximity matrix?

How to define inter-cluster similarity?

	p1	p2	р3	p4	р5	Ŀ
p1						
p2						
рЗ						L
p4						L
p4 p5						

• min, max, group average, distance between centroids

Distance between the closest samples (min)

	p1	p2	р3	p4	p5	<u>.</u> .
p1						
p2						
рЗ						
p4						
р5						

Distance between the furthest samples (max)

\Box	p1	p2	рЗ	p4	р5	Ŀ
p1						
p2						
p2 p3						L
p4						
р5						
$\neg \neg$						Γ

Average pairwise distance between samples (group average)

1	р1	p2	р3	p4	p5	ı
\rightarrow	Ρ.	P-	Po	PT	PU	Ŀ٠
p1						
p2						
рЗ						
p4						
p4 p5						

Distance between centroids

	р1	p2	р3	p4	p5	١.
p1	•		•	•		Ė
-						F
p2 p3						F
\neg						H
p4 p5						L
p5						L

Overview

- Clustering tries to find patterns/hidden structures in data
- Partitional clustering
 - K-means: hard assignment of samples to one centroid
 - GMMs: soft assignment of samples to each Gaussian
- Hierarchical clustering: nested clusters organized as a hierarchical tree
- Readings: Alpaydin 7; Pang-Ning Tan 7 (uploaded on Piazza)