# Chapitre 5: Gestion de clefs de chiffrement

Polytech Nancy

Année 2021/2022





# Bases cryptographiques (rappel)

## Chiffrement symétrique :

- pour chiffrer  $\{M\}_K$ ,
- et déchiffrer  $\{\{M\}_K\}_K = M$ .

## Chiffrement asymétrique :

- clef publique pour chiffrer  $\{M\}_{PK_A}$ ,
- clef privée pour déchiffrer  $\{\{M\}_{PK_A}\}_{SK_A}=M$  ou signer  $\{M\}_{SK_A}$

## Fonctions de hachage :

• non inversibles; exemple : M,  $\{h(M)\}_{SK_A}$ 

#### Nonce:

• nombre aléatoire créé par un utilisateur.





## Gestion de clefs

- Introduction
- 2 Distribution des clefs
- 3 Échanges de clefs et authentification
- 4 Infrastructure de gestion de clefs

## Point route

- Introduction
- Distribution des clefs
- Échanges de clefs et authentification
- 4 Infrastructure de gestion de clefs

—Introduction

## Gestion des clefs

## Principales opérations

- Génération
- Transfert
- Vérification
- Stockage



#### Génération des clefs

#### Espaces de clefs réduits

• Codage restreint, caractères choisis, clefs faibles, ...

#### Mauvais choix de clefs

ullet Lettres mnémotechniques, ... o attaque par dictionnaire

#### Clefs aléatoires

Générateurs, broyage de clef, acronyme, . . .

#### Phrases mots de passe

Broyage de clef



—Introduction

## Transfert de clef

- Physiquement
  - ullet Rencontre, canal de transmission protégé,  $\ldots \to$  rarement possible
- Un tiers choisit et fournit la clef
- Employer une clef précédente pour chiffrer une nouvelle clef
- Si A et B ont des communications sûres avec un tiers C, C peut relayer la clef entre A et B



## Vérification de clefs

- Origine
  - Rencontre physique
  - Annuaire
  - Tiers
- Moyens
  - Fonction de hachage
  - Certificat

## Stockage des clefs

- Fichiers
- Support extérieur
  - Bande magnétique
  - Token, carte ROM, clef USB
  - Carte à puce
- Ajout de code supplémentaire
  - PIN
  - Sur-chiffrement

## Remarques

- Utilisation d'un centre de distribution de clefs (KDC).
- Nécessité d'avoir des hiérarchies de KDC pour de grands réseaux, mais ils doivent se faire confiance.
- La durée de vie des clefs de session devrait être limitée pour une plus grande sécurité.
- Contrôle de buts d'utilisation des clefs.

## Point route

- 1 Introduction
- 2 Distribution des clefs
- Échanges de clefs et authentification
- 4 Infrastructure de gestion de clefs

Distribution des clefs

## Clefs symétriques

- Nécessité pour les deux usagers de partager une clef secrète commune.
- Comment distribuer sûrement cette clef?
- L'échec d'un système sûr est souvent dû à une rupture dans le schéma de distribution des clefs.

# Scénario de distribution de clefs symétriques

- 1.  $A \rightarrow KDC$ : Request,  $N_1$
- 2.  $KDC \rightarrow A$ :  $\{K_s, Request, N_1\}_{K_a}, \{K_s, ID_a\}_{K_b}$
- 3.  $A \rightarrow B$ :  $\{K_s, ID_a\}_{K_b}$
- 4.  $B \to A : \{N_2\}_{K_s}$
- 5.  $A \to B$ :  $\{f(N_2)\}_{K_s}$ 
  - Étapes de distribution de la clef : 1-3
  - Étapes d'authentification : 3-5



## Clefs publiques

- Le chiffrement par clef publique permet de résoudre les problèmes de distribution de clefs.
- On peut employer soit
  - Annonce publique
  - Annonce publiquement disponible
  - Autorité de clef publique
  - Certificat de clef publique



## Annonce publique

- Distribution des clefs publiques directement aux destinataires ou par broadcast à la communauté dans son ensemble.
  - Exemple : apposer les clefs de PGP aux méls ou les poster dans des forums ou mailing-lists.
- Risque : la contrefaçon
  - N'importe qui peut créer une clef en prétendant être quelqu'un d'autre et la publier.
  - La mascarade peut continuer tant que la contrefaçon n'est pas découverte.



## Annuaire public

- Enregistrement des clefs dans un annuaire public.
- Nécessité de faire confiance à cet annuaire.
- Propriétés :
  - Doit contenir les entrées (nom, clef publique).
  - Possibilité de s'inscrire de manière sécurisée dans l'annuaire.
  - Possibilité de remplacer la clef à tout moment.
  - Publié périodiquement.
  - Possibilité de consultation électronique.





## Autorité de clef publique

- Renforcement du contrôle de la distribution des clefs à partir de l'annuaire.
- Dispose des mêmes propriétés qu'un annuaire.
- Chaque participant doit disposer d'une paire de clefs.
  - Publication de la clef publique dans l'annuaire.
- Interaction avec l'autorité pour obtenir la clef publique du correspondant.
  - Exige l'accès en temps réel à l'annuaire quand les clefs sont nécessaires.



# Scénario de distribution de clefs publiques

```
1. A \rightarrow PKA: Request, Time<sub>1</sub>
```

2. 
$$PKA \rightarrow A$$
:  $\{PK_b, Request, Time_1\}_{SK_{auth}}$ 

3. 
$$A \rightarrow B$$
:  $\{ID_a, N_1\}_{PK_b}$ 

4. 
$$B \rightarrow PKA$$
: Request, Time<sub>2</sub>

5. 
$$PKA \rightarrow B$$
:  $\{PK_a, Request, Time_2\}_{SK_{auth}}$ 

6. 
$$B \to A : \{N_1, N_2\}_{PK_a}$$

7. 
$$A \to B : \{N_2\}_{PK_b}$$



# Certificat de clefs publiques

- Les certificats permettent l'échange de clef sans accès en temps réel à l'autorité de clef publique.
- Un certificat lie une identité à une clef publique.
  - Habituellement avec d'autres informations telles que la période de validité, les droits d'utilisation, . . .
- Son contenu est signé par la clef privée d'une entité de confiance (ou autorité de certification, CA).
- Il peut être vérifié par toute personne connaissant la clef publique de l'autorité de certification.



# Scénario d'échange de certificats de clefs publiques

1. 
$$A \rightarrow CA$$
:  $PK_a$ 

2. 
$$CA \rightarrow A$$
:  $C_A = \{Time_1, ID_a, PK_a\}_{SK_{auth}}$ 

1. 
$$B \rightarrow CA$$
:  $PK_b$ 

2. 
$$CA \rightarrow B$$
:  $C_B = \{Time_2, ID_b, PK_b\}_{SK_{auth}}$ 

1. 
$$A \rightarrow B$$
:  $C_A$ 

2. 
$$B \rightarrow A : C_B$$

## Clefs de session

- Distribution de clef publique : simple ; permet la confidentialité et/ou l'authentification ; mais lent!
- Objectif: protection du contenu d'un message
- Solution : système hybride + clef de session
- Souhait : disposer de plusieurs solutions alternatives pour négocier une session

## Distribution simple de clef de session

#### Merkle, 1979

- A produit une nouvelle paire de clefs publique/privée provisoire.
- A envoie à B sa clef publique et son identité.
- B engendre une clef de session  $K_s$  et l'envoie à A, chiffrée par la clef publique fournie par A.
- A déchiffre la clef de session et tous les deux peuvent l'utiliser.

## Scénario de distribution simple de clef de session

1.  $A \rightarrow B$ :  $PK_a$ ,  $ID_a$ 

2.  $B \rightarrow A$ :  $\{K_s\}_{PK_a}$ 

Distribution des clefs

# Scénario de distribution simple de clef de session

1.  $A \rightarrow B$ :  $PK_a$ ,  $ID_a$ 

2.  $B \rightarrow A$ :  $\{K_s\}_{PK_a}$ 

Problème : attaque « man in the middle ».

# Scénario de distribution simple de clef de session

1. 
$$A \rightarrow B$$
:  $PK_a$ ,  $ID_a$ 

2. 
$$B \rightarrow A$$
:  $\{K_s\}_{PK_a}$ 

Problème : attaque « man in the middle ».

1. 
$$A \rightarrow I(B)$$
:  $PK_a, ID_a$ 

1'. 
$$I(A) \rightarrow B : PK_i, ID_a$$

$$2'. B \rightarrow I(A) : \{K_s\}_{PK_i}$$

2. 
$$I(B) \rightarrow A$$
:  $\{K_s\}_{PK_a}$ 

3. 
$$A \to I(B) : \{M\}_{K_s}$$

# Scénario de distribution de clef de session avec confidentialité et authentification

- 1.  $A \rightarrow B$ :  $\{N_1, ID_a\}_{PK_b}$
- 2.  $B \to A$ :  $\{N_1, N_2\}_{PK_a}$
- 3.  $A \to B : \{N_2\}_{PK_b}$
- 4.  $A \to B$ :  $\{\{K_s\}_{SK_a}\}_{PK_b}$

Échanges de clefs et authentification

## Point route

- Introduction
- 2 Distribution des clefs
- 3 Échanges de clefs et authentification
- 4 Infrastructure de gestion de clefs

Échanges de clefs et authentification

## Exemple de protocole d'authentification

#### Needham-Schroeder, 1978

- But : établissement d'une clef de session symétrique  $K_{AB}$  pour A et B, qui doit être fraîche.
- Utilisation d'une tierce partie de confiance T.

Construction pas à pas...

Échanges de clefs et authentification

# Exemple de protocole d'authentification

#### Solution 1

1.  $A \rightarrow T$ : A, B

2.  $T \rightarrow A$ :  $K_{ab}$ 

3.  $A \rightarrow B$ :  $K_{ab}$ , A



#### Solution 2

```
1. A \rightarrow T: A, B
```

2. 
$$T \to A$$
:  $\{K_{ab}\}_{K_{at}}, \{K_{ab}\}_{K_{bt}}$ 

3. 
$$A \rightarrow B$$
:  $\{K_{ab}\}_{K_{bt}}, A$ 



#### Solution 3

```
1. A \rightarrow T: A, B
```

2. 
$$T \to A$$
:  $\{K_{ab}, B\}_{K_{at}}, \{K_{ab}, A\}_{K_{bt}}$ 

3. 
$$A \rightarrow B$$
:  $\{K_{ab}, A\}_{K_{bt}}$ 



#### Solution 4

- 1.  $A \rightarrow T$ :  $A, B, N_a$
- 2.  $T \to A$ :  $\{K_{ab}, B, N_a, \{K_{ab}, A\}_{K_{bt}}\}_{K_{at}}$
- 3.  $A \to B : \{K_{ab}, A\}_{K_{bt}}$
- 4.  $B \rightarrow A$ :  $\{N_b\}_{K_{ab}}$
- 5.  $A \to B$ :  $\{N_b 1\}_{K_{ab}}$



#### Solution 5

- 1.  $B \rightarrow A$ :  $B, N_b$
- 2.  $A \rightarrow T$ :  $A, B, N_a, N_b$
- 3.  $T \to A$ :  $\{K_{ab}, B, N_a\}_{K_{at}}, \{K_{ab}, A, N_b\}_{K_{bt}}$
- 4.  $A \rightarrow B$ :  $\{K_{ab}, A, N_b\}_{K_{bt}}$



#### Variante sous Kerberos

- 1.  $A \rightarrow T$ :  $A, B, N_a$
- 2.  $T \to A$ :  $\{K_{ab}, B, N_a, \{K_{ab}, A\}_{K_{bt}}\}_{K_{at}}$
- 3.  $A \to B$ :  $\{N_a\}_{K_{ab}}, \{K_{ab}, A\}_{K_{bt}}$
- 4.  $B \to A$ :  $\{N_a 1, N_b\}_{K_{ab}}$
- 5.  $A \rightarrow B$ :  $\{N_b 1\}_{K_{ab}}$



# Exemple de protocole d'échange de clef

#### Diffie-Hellman, 1976

- Méthode d'échange de clef secrète ou de session.
- Utilisé dans de nombreux produits commerciaux (SSL).
- Permet d'établir une clef commune connue seulement des deux participants.
- La valeur de la clef dépend des participants.
- Basée sur l'élévation à la puissance dans un champ fini (facile).
- La sécurité se fonde sur la difficulté de calculer des logarithmes discrets (difficile).



# Exemple de protocole d'échange de clef

## Principe de l'algorithme de Diffie-Hellman

- Soient A et B les deux parties de la communication.
- A engendre un nombre premier p et un primitif a (tous deux sont publics).
- A et B engendrent chacun un nombre aléatoire,  $x_A$  et  $x_B$ .
- Ils s'échangent a élevé à la puissance de leur nombre aléatoire, modulo p.
- Ils calculent alors la clef commune  $a^{X_AX_B}$ .



### Point route

- Introduction
- 2 Distribution des clefs
- Échanges de clefs et authentification
- 4 Infrastructure de gestion de clefs
  - Certificats électroniques
  - Définition d'une PKI
  - Utilisations des certificats
  - Exemples de PKI
  - Gestion des certificats en cours
  - PKI : conclusion





—Infrastructure de gestion de clefs

Certificats électroniques

## Point route

- 1 Introduction
- 2 Distribution des clefs
- Échanges de clefs et authentification
- 4 Infrastructure de gestion de clefs
  - Certificats électroniques
  - Définition d'une PKI
  - Utilisations des certificats
  - Exemples de PKI
  - Gestion des certificats en cours
  - PKI: conclusion





Certificats électroniques

# Certificat électronique

# Problématique (exemple)

- Un utilisateur connaît la clef publique d'une personne en consultant, par exemple, un serveur Web ou un serveur LDAP.
- Mais comment garantir que la clef publique de A que B a récupérée est correcte?
- Cette clef pourrait avoir été déposée par une autre personne, ou les données sur le serveur pourraient avoir été piratées.

Certificats électroniques

# Certificat électronique

### Définition

- C'est comme une carte d'identité ou un passeport.
- Il contient des informations concernant son propriétaire, sa signature, une date de validité, une présentation spécifique,... permettant de reconnaître ce document comme non contrefait, et délivré par une autorité connue.
- C'est un document électronique, résultat d'un traitement fixant les relations existant entre une clef, son propriétaire et l'application pour laquelle il a été émis.
  - Pour une personne, il prouve l'identité de celle-ci.
  - Pour une application, il assure que celle-ci n'a pas été détournée de ses fonctions.
  - Pour un site, il offre la garantie lors d'un accès que l'on est sur le bon site.





Certificats électroniques

# Certificat électronique

### Informations contenues:

- numéro de série du certificat;
- désignation de l'autorité émettrice du certificat;
- période de validité;
- nom distinctif du titulaire de la clef;
- identification de l'algorithme de chiffrement et valeur de la clef;
- informations complémentaires optionnelles (mél,...);
- identification de l'algorithme de signature et valeur de la signature.

La signature électronique est calculée à partir de ces informations, chiffrée par la clef privée de l'autorité de certification délivrant ce certificat.

Certificats électroniques

# Certificats électroniques

### Classes de certificats

- Classe 1 : pas de contrôle d'identité du détenteur du certificat.
- Classe 2 : contrôle sur pièces, la preuve de l'identité est nécessaire.
- Classe 3 : présentation physique du demandeur requise.
- Classe 3+: classe 3 avec en plus un support physique (carte à puce, clef USB,...)





└─Définition d'une PKI

## Point route

- Introduction
- 2 Distribution des clefs
- 3 Échanges de clefs et authentification
- 4 Infrastructure de gestion de clefs
  - Certificats électroniques
  - Définition d'une PKI
  - Utilisations des certificats
  - Exemples de PKI
  - Gestion des certificats en cours
  - PKI : conclusion





—Définition d'une PKI

# Infrastructure de gestion de clefs

## Problématique

- Lors d'une demande de certificat, décider...
  - ...qui va recueillir et vérifier les informations données?
  - ...suivant quelles procédures?
  - ...qui va créer le certificat?
  - ...qui va le délivrer?
  - ... pour quelle durée?
  - ... où le stocker?
  - ...où récupérer les certificats d'autres personnes?
  - ...comment supprimer un certificat? (expiration, compromission)
- Définir une architecture de gestion des certificats (IGC ou PKI, Public Key Infrastructure).





└─Définition d'une PKI

# PKI: constituants

# **Objets**

• Bi-clefs (clef privée / clef publique), certificats

# Éléments

- Autorité de certification
- Autorité d'enregistrement
- Système de publication/distribution de certificats (annuaire)
- Applications compatibles avec la PKI





└ Définition d'une PKI

# PKI: bi-clefs

Couple de clefs permettant la mise en œuvre d'algorithmes de chiffrement asymétrique.

# Quatre types de bi-clefs

- Bi-clefs de confidentialité : pour chiffrer de petits messages.
- Bi-clefs de signature : pour signer des messages et vérifier les signatures.
- Bi-clefs de certification : pour signer les certificats ou des messages de révocation.
- Bi-clefs d'échange/transport de clefs : pour transporter des clefs symétriques utilisées pour sécuriser des communications.





└ Définition d'une PKI

# PKI: Autorité d'enregistrement

#### Rôle

- Vérifie l'identité du demandeur de certificat.
- S'assure qu'il possède un coupe de clefs privée/publique.
- Récupère la clef publique.
- Transmet ces informations à l'autorité de certification.

Remarque : communication sécurisée entre l'AE et l'AC (authentification, intégrité, confidentialité).





└─Définition d'une PKI

# PKI: Autorité de certification

- Délivre des certificats électroniques.
- A son propre certificat (auto-signé ou signé par une autre AC).
- Utilise sa clef privée pour signer les certificats délivrés.
- Se porte garante de l'identité du propriétaire d'un certificat qu'elle a délivré.
- A besoin d'être « reconnue ».





└ Définition d'une PKI

# PKI: Autorité de certification

### Rôle

- Reçoit les demandes de création de certificats des AE.
- Vérifie la validité de la signature des messages reçus.
- S'assure de l'intégrité de la demande et de l'authentification des émetteurs.
- Crée et signe les certificats avec sa clefs privée.
- Envoie les certificats aux utilisateurs et aussi au service de publication.





└─Définition d'une PKI

# PKI : Autorité de certification commerciale

# Quelques exemples (entreprises)

- BNP Paribas (Net Identity)
- CertEurope (CertEurope Classe 3+)
- CertiNomis (SociePoste),
- Crédit Agricole (CA Certificat)
- LCL (CL Authentis)

# Trois types de certificats

- certificats serveurs
- certificats utilisateurs
- certificats Java





└ Définition d'une PKI

# PKI : Service de publication

### Rôle

- Rend disponibles les certificats émis par l'AC.
- Publie la liste des certificats valides.
- Publie la liste des certificats révoqués.

Possible par un annuaire LDAP ou un serveur Web.





—Infrastructure de gestion de clefs

└ Définition d'une PKI

# PKI : révocation d'un certificat

### Nombreuses raisons

- Fin de validité.
- Départ de l'entreprise.
- Changement de service.
- Perte de la clef privée.

└─Définition d'une PKI

# PKI: révocation d'un certificat

- Chaque AC publie régulièrement la liste des certificats révoqués (CRL), signée par l'AC.
- Vérification d'un certificat :
  - vérification de la signature de l'AC l'ayant délivré;
  - consultation de la CRL.

Problème : publication non instantanée.

Solution : interrogation d'un service de révocation (mais pb de sécurité de la communication).





—Infrastructure de gestion de clefs

Utilisations des certificats

## Point route

- 1 Introduction
- 2 Distribution des clefs
- Échanges de clefs et authentification
- 4 Infrastructure de gestion de clefs
  - Certificats électroniques
  - Définition d'une PKI
  - Utilisations des certificats
  - Exemples de PKI
  - Gestion des certificats en cours
  - PKI: conclusion





Utilisations des certificats

# Utilisations des certificats

# Application et protocoles

- Courrier électronique sécurisé (S-MIME).
- Protocoles SSL/TLS : Web sécurisé (HTTPS), accès à la messagerie (IMAPS/SMTP).
- Réseaux virtuels privés (IPsec).
- En remplacement d'une authentification par mot de passe de l'utilisateur.





Utilisations des certificats

# Utilisations des certificats

# S/MIME

Secure Multipurpose Internet Mail Extensions

- Permet la signature et/ou le chiffrement des messages électroniques.
- Supporté par les principaux outils de messagerie, qui créent et vérifient les signatures.





Utilisations des certificats

# Utilisations des certificats

# SSL/TLS

Secure Socket Layer / Transport Layer Security

- SSL : protocole initialement développé par Netscape; à partir de la version 3, standardisé par l'IETF.
- Dans une application client-serveur, grâce aux certificats, permet d'authentifier les extrémités et d'assurer la confidentialité et l'intégrité des échanges de données.
- S'insère entre l'application (http) et la couche transport (tcp).
- Quand la session est établie entre le client et le serveur, toutes les données transitant sont chiffrées et authentifiées.





Utilisations des certificats

# Utilisations des certificats

### SSH

#### Secure Shell

- Ensemble d'outils permettant d'avoir des sessions interactives en mode telnet ou X, des transferts de fichiers, des exécutions de commandes à distance.
- Authentification forte de l'utilisateur et du serveur;
  chiffrement des données transmises.
- Utilise des algorithmes de chiffrement asymétriques avec une clef de session : bi-clefs engendré par l'utilisateur; clef publique transmise au serveur.
- Remarque : n'utilise pas de certificats, mais à combiner avec.





—Infrastructure de gestion de clefs

Utilisations des certificats

# Utilisations des certificats

### **IPsec**

## IP security

- Permet de chiffrer les paquets circulant sur un réseau, et d'authentifier les deux éléments physiques qui dialoguent.
- Certificats appartenant aux équipements (routeur ou station).
- N'authentifie pas les utilisateurs ou les serveurs.





—Infrastructure de gestion de clefs

Exemples de PKI

## Point route

- 1 Introduction
- 2 Distribution des clefs
- 3 Échanges de clefs et authentification
- 4 Infrastructure de gestion de clefs
  - Certificats électroniques
  - Définition d'une PKI
  - Utilisations des certificats
  - Exemples de PKI
  - Gestion des certificats en cours
  - PKI: conclusion





LExemples de PKI

# Exemple: Service d'authentification X.509

## Qu'est-ce?

- Créé en 1988 dans le cadre de la norme X.500.
- Définit le cadre pour des services d'authentification (formats standards de certificats électroniques, algorithme pour la validation de chemins de certification).
- Repose sur un système hiérarchique d'autorités de certification.
- Souvent utilisé dans les protocoles d'authentification.
- Utilise la cryptographie à clef publique et les signatures digitales (RSA recommandé mais non imposé).





Exemples de PKI

# Certificat X.509

| Version                                        |
|------------------------------------------------|
| Numéro de série                                |
| Algorithme de signature du certificat          |
| Nom du signataire du certificat                |
| Validité (dates limites)                       |
| Détenteur du certificat                        |
| Informations sur sa clef publique (algo, clef) |
| Identifiant unique du signataire               |
| Identifiant unique du détenteur                |
| Extensions                                     |
| Signature des informations ci-dessus           |



LExemples de PKI

# Exemple: Pretty Good Privacy (PGP)

## Qu'est-ce?

- Programme gratuit de protection du mél, par Ph. Zimmermann.
- Utilise
  - IDEA pour le chiffrement,
  - RSA pour la gestion des clefs et les signatures digitales,
  - MD5 comme fonction de hachage à sens unique.
- Messages chiffrés ayant une structure de sécurité en couches (et non hiérarchique).





Exemples de PKI

# PGP : originalité

### Gestion des clefs distribuée

- Pas d'autorité de certification : remplacée par un « climat de confiance ».
- Chaque utilisateur engendre et distribue sa propre clef publique.
- Les utilisateurs signent mutuellement leurs clefs publiques, et sont libres de décider à qui ils font confiance.

## Exemple

A et B sont amis, tout comme B et C.

Si A veut communiquer avec C, il utilise un certificat émis par B.





—Infrastructure de gestion de clefs

Gestion des certificats en cours

## Point route

- Introduction
- 2 Distribution des clefs
- 3 Échanges de clefs et authentification
- 4 Infrastructure de gestion de clefs
  - Certificats électroniques
  - Définition d'une PKI
  - Utilisations des certificats
  - Exemples de PKI
  - Gestion des certificats en cours
  - PKI : conclusion



—Infrastructure de gestion de clefs

Gestion des certificats en cours

# Gestion des certificats en cours

# **Opérations**

- Révocation
- Mise à jour
- Renouvellement

# Exemples

- Mise à jour de la clef de l'AC.
- Renouvellement d'un certificat d'utilisateur.

—Infrastructure de gestion de clefs

Gestion des certificats en cours

# Mise à jour de la clef de l'AC

## Principales causes

- Certificat de l'AC arrivé à expiration.
- Clef privée compromise.

#### Autres causes

- Modification de la taille des clefs pour renforcer la sécurité.
- •



Gestion des certificats en cours

# Mise à jour de la clef de l'AC

# Processus de modification de la clef publique

- Création d'un nouveau bi-clefs.
- Création d'un nouveau certificat contenant l'ancienne clef publique signée avec la nouvelle (ancien-avec-nouveau).
- Création d'un nouveau certificat contenant la nouvelle clef publique signée avec l'ancienne (nouveau-avec-ancien).
- Création d'un nouveau certificat contenant la nouvelle clef publique signée avec la nouvelle clef privée (nouveau-avec-nouveau).
- Publication des nouveaux certificats.





Gestion des certificats en cours

# Mise à jour de la clef de l'AC

Dès lors, les certificats issus de l'AC sont signés avec la nouvelle clef privée.

### Démarches

Pour un utilisateur possédant l'ancienne clef publique et voulant vérifier un certificat signé avec le nouvelle clef privée...

• récupérer le certificat *nouveau-avec-ancien*, pour obtenir la nouvelle clef publique.

Pour un utilisateur possédant la nouvelle clef publique et voulant vérifier un certificat signé avec l'ancienne clef privée...

• récupérer le certificat *ancien-avec-nouveau*, pour obtenir l'ancienne clef publique.





Gestion des certificats en cours

# Mise à jour de la clef de l'AC

### Durées de validité

- Certificat *ancien-avec-nouveau* : débute à la création de l'ancienne clef publique ; termine à sa date d'expiration.
- Certificat nouveau-avec-ancien : débute à la génération de la nouvelle clef publique; termine à la date d'expiration de l'ancienne clef publique.
- Certificat nouveau-avec-nouveau : débute à la génération de la nouvelle clef publique; termine à la date de la prochaine mise à jour du couple de clef.





└─Gestion des certificats en cours

# Renouvellement d'un certificat d'utilisateur

# Comme pour un contrat de travail...

- renouvellement (possible) en conservant les mêmes informations,
- sauf le numéro de série (unique),
- et les dates de validité (pas avant, pas après).

Renouvellement en fin de validité, mais aussi avant ou après.

- Renouvellement par demande à son AC.
- L'AC lui délivre le nouveau certificat.





—Infrastructure de gestion de clefs

└─Gestion des certificats en cours

# Renouvellement d'un certificat d'utilisateur

# Exemple : carte bancaire

- Carte émise pour une personne, pour une durée limitée.
- Carte renouvelée automatique ou après demande du client.
- Une fois renouvelée, l'ancienne carte est inutilisable (car expirée ou révoquée).





PKI : conclusion

## Point route

- 1 Introduction
- 2 Distribution des clefs
- Échanges de clefs et authentification
- 4 Infrastructure de gestion de clefs
  - Certificats électroniques
  - Définition d'une PKI
  - Utilisations des certificats
  - Exemples de PKI
  - Gestion des certificats en cours
  - PKI : conclusion





PKI : conclusion

# PKI: conclusion

## Certificats numériques

- Partie intégrante de notre vie quotidienne (cartes bancaires, certificats logiciels, . . . ).
- Nombreux usages validés par l'IETF.
- Usage prédéfini à la création.

## PKI : gestion des certificats

- Opérations : révocation, mise à jour, renouvellement.
- Problème de confiance : quel degré de confiance aux autorités de certification ?
- Révocation suite à compromission de clef privée : approches et performances variées.



Infrastructure de gestion de clefs

PKI : conclusion

# Crédits

- Laurence Herbiet, Univ. Liège
- Maryline Maknavicius, Univ. Evry
- Équipe Pesto, LORIA

