International Olympiad in Informatics 2013

6-13 July 2013 Brisbane, Australia Day 2 tasks

robots

Bulgarian — 1.0

Малкият брат на Марита е разхвърлял играчките си по пода на стаята. За щастие Марита е направила специални роботи, които могат да прибират играчките. Тя се нуждае от помощта ви, за определянето на това кои роботи трябва да свършат работата.

Има Т играчки, всяка от които има целочислено тегло W[i] и целочислена големина S[i]. Роботите са два вида: *слаби* и *малки*.

- Има А слаби роботи. Всеки слаб робот има ограничение Діј за тежестта на играчката, която може да пренася, като може да пренася само играчка с тегло строго по-малко от Діј. Големината на играчката няма значение.
- Има В малки роботи. Всеки малък робот има ограничение Y[i] за големината на играчката, която може да пренася, като може да пренася само играчка с големина строго по-малка от Y[i]. Теглото на играчката няма значение.

На всеки робот му трябва една минута, за да пренесе една играчка. Различните роботи могат да пренасят различните играчки за едно и също време.

Вашата задача е да определите дали роботите на Марита могат да разчистят всички играчки и ако това е възможно, да се намери най-краткото време, за което това може да стане.

Примери

Като първи пример да предположим, че има A = 3 слаби робота с ограничения за теглата X = [6, 2, 9], B = 2 малки робота с ограничения за големините на играчките Y = [4, 7] и T = 10 играчки, за които:

Номер на играчката	0	1	2	3	4	5	6	7	8	9
Тегло	4	8	2	7	1	5	3	8	7	10
Големина	6	5	3	9	8	1	3	7	6	5

Най-краткото време за разчистване на играчките е три минути:

	Слаб робот 0	Слаб робот 1	Слаб робот 2	Малък робот 0	Малък робот 1
Първа минута	Играчка 0	Играчка 4	Играчка 1	Играчка 6	Играчка 2
Втора минута	Играчка 5		Играчка 3		Играчка 8
Трета минута			Играчка 7		Играчка 9

Като втори пример да предположим, че има A = 2 слаби робота с ограничения за теглата X = [2, 5], B = 1 малък робот с ограничение за големините на играчките Y = [2] и T = 3 играчки, за които:

Играчка номер	0	1	2
Тегло	3	5	2
Големина	1	3	2

Никой от роботите не може да пренесе играчката с тегло 5 и големина 3, затова е невъзможно всичките играчки да бъдат разчистени.

Имплементация

Трябва да изпратите файл, който реализира функцията [putaway()] както следва:

Вашата функция: putaway()

```
C/C++ int putaway(int A, int B, int T, int X[], int Y[], int W[], int S[]);

Pascal function putaway(A, B, T : LongInt; var X, Y, W, S : array of LongInt) : LongInt;
```

Описание

Функцията трябва да пресмята най-малкия брой минути, необходими за пренасянето на всички играчки или трябва да върне резултат [-1], ако това е невъзможно.

Параметри

- А : брой на слабите роботи.
- В : брой на малките роботи.
- Т: брой на играчките.

- X: Масив от A елемента, съдържащ цели числа, задачващи ограниченията за теглата за всеки от слабите роботи.
- Y: масив от B елемента, съдържащ цели числа, който задава ограниченията за големините за всеки от малките роботи.
- W: масив от T елемента, съдържащ цели числа, който задава теглата на всяка от играчките.
- S: масив от Т елемента, съдържащ цели числа, който задава големините на всяка от играчките.
- *Резултат*: Най-малкият брой минути, необходими за разчистването на всички играчки или -1, ако това е невъзможно.

Примерна сесия

Следната сесия описва първия пример:

Параметър				C	той	інос	СТ			
A	3									
В	2									
T	10									
X	[6,	2,	9]							
Y	[4,	7]								
W	[4,	8,	2,	7,	1,	5,	3,	8,	7,	10]
S	[6,	5,	3,	9,	8,	1,	3,	7,	6,	5]
Резултат	3									

Следващата сесия описва втория пример:

Параметър	Стойност
A	2
В	1
Т	3
х	[2, 5]
Y	[2]
W	[3, 5, 2]
S	[1, 3, 2]
Резултат	-1

Ограничения

• Време: 3 секунди

■ Памет: 64 МіВ

■ 1 ≤ T ≤ 1,000,000

■ $0 \le A, B \le 50,000 \text{ } \text{и} \text{ } 1 \le A + B$

■ $1 \le X[i], Y[i], W[i], S[i] \le 2,000,000,000$

Подзадачи

Подзадача	Точки	Допълнителни входни ограничения
1	14	Т = 2 и A + B = 2 (точно две играчки и два робота)
2	14	В = 0 (всички роботи са слаби)
3	25	T ≤ 50 и A + B ≤ 50
4	37	T ≤ 10,000 и A + B ≤ 1,000
5	10	(Няма)

Експериментиране

Опростеният грейдер от вашия компютър ще чете входните данни от файл robots.in, който трябва да бъде в следния формат:

■ ред 1: АВТ

■ ред 2: X[0] ... X[A-1]

■ ред 3: [Y[0] ... Y[B-1]]

• следващите T реда: W[i] S[i]

Например първият от горните примери трябва да бъде описан по следния начин:

```
3 2 10
6 2 9
4 7
4 6
8 5
2 3
7 9
1 8
5 1
3 3
8 7
7 6
10 5
```

Ако A = 0 или B = 0, тогава съответният ред (ред 2 или ред 3) трябва да бъде празен.

Бележки по езика за програмиране

```
C/C++Трябва да използвате #include "robots.h".PascalТрябва да дефинирате unit Robots. Всички масиви са номерирани от (0) (не от 1).
```

Виж шаблоните на решения от вашата машина за примери.