Introduction to Metaheuristics Estimation of Distribution

DrC. Alejandro Piad Morffis

CC-BY - matcom.in/metaheuristics

Review: The metaheuristic framework

- given a black box function F
- define stop criteria
- while not stop do:
 - ightharpoonup generate a new solution x_i (or many)
 - ightharpoonup evaluate $y_i = F(x_i)$
 - ▶ update global best $y^* \leftarrow \min\{y^*, y_i\}$
 - learn something about F for next iteration (maybe)
- return global best y*

... in local search?:

Every metaheuristic learns some implicit **model** of the function to guide the search.

- ... in local search?:
 - Gradients

Every metaheuristic learns some implicit **model** of the function to guide the search.

- ... in local search?:
 - Gradients
 - Features of local optima

Every metaheuristic learns some implicit **model** of the function to guide the search.

- ... in local search?:
 - Gradients
 - Features of local optima
- ... in evolutionary search:?

Every metaheuristic learns some implicit **model** of the function to guide the search.

- ... in local search?:
 - Gradients
 - Features of local optima
- ... in evolutionary search:?
 - Components of good solutions

Every metaheuristic learns some implicit **model** of the function to guide the search.

- ... in local search?:
 - Gradients
 - Features of local optima
- ... in evolutionary search:?
 - Components of good solutions
- ... in swarm optimization:?

Every metaheuristic learns some implicit **model** of the function to guide the search.

- ... in local search?:
 - Gradients
 - Features of local optima
- ... in evolutionary search:?
 - Components of good solutions
- ... in swarm optimization:?
 - Features of the global landscape

Every metaheuristic learns some implicit **model** of the function to guide the search.

- ... in local search?:
 - Gradients
 - Features of local optima
- ... in evolutionary search:?
 - Components of good solutions
- ... in swarm optimization:?
 - Features of the global landscape
 - Features of local optima

Every metaheuristic learns some implicit **model** of the function to guide the search.

Estimation of Distribution Algorithms

- given a black box function F
- ightharpoonup initialize probabilistic model ${\mathfrak F}$
- define stop criteria
- while not stop do:
 - **sample** *N* new solutions $\{x_i\}$ from \mathfrak{F}
 - ightharpoonup evaluate $\{y\}_i = \{F(x_i)\}$
 - ▶ update global best $y^* \leftarrow \min\{y^*, y_i...\}$
 - update model \(\varphi \) for next iteration
- return global best y*

Different EDAs differ in the selection of the model ${\mathfrak F}$

Types of models

What does the model estimates:

(The distribution of):

- ► the global optimum
- ▶ the local optima
- the best features
- fitness values

Types of models

What does the model estimates:

(The distribution of):

- the global optimum
- the local optima
- the best features
- fitness values
- **.** . . .

What assumptions the model encodes:

- ► Are components correlated?

Assuming the simplest possible model

Assuming the simplest possible model

- A fixed set of binary components i
- A binomial distribution for each component p_i
- Components are independent

Assuming the simplest possible model

- A fixed set of binary components i
- ► A binomial distribution for each component *p_i*
- Components are independent

Sample:

For each component i, set $x_i = U(0,1) < p_i$

Update rule:

- For each component i:
 - ightharpoonup compare solutions where $x_i = 0$ vs $x_i = 1$
 - ▶ if most soluctions where $x_i = 0$ are better, decrease p_i
 - else, increase p_i

Some implementation details:

- \blacktriangleright Use a learning rate r << 1
- ► Adjust learning rate to balance exploration/exploitation

Some implementation details:

- ▶ Use a learning rate r << 1
- ► Adjust learning rate to balance exploration/exploitation

Extension to categorical distributions

- For each component *i*:
 - ▶ For each value b_{ij},
 - ightharpoonup Compute all solutions where $x_i = b_{ij}$
 - ► Increase *p_{ij}* proportional to their fitness
- Renormalize probabilities

Some implementation details:

- ▶ Use a learning rate r << 1
- ► Adjust learning rate to balance exploration/exploitation

Extension to categorical distributions

- For each component *i*:
 - ▶ For each value b_{ij},
 - ► Compute all solutions where $x_i = b_{ij}$
 - \triangleright Increase p_{ii} proportional to their fitness
- Renormalize probabilities

Alternative formulation:

- ▶ Compute marginal distribution from *K* best solutions
- Interpolate model using learning rate

UMDA: Moving to continuous spaces

Model:

- **Each** component is a normal distribution $N(\mu_i, \sigma_i)$
- ightharpoonup Start with large σ values

Update rule:

- Computer marginal distribution of best solutions
- **Compute** μ_b, σ_b
- Interpolate

Removing the independence constraint

Instead of N independent Gaussian univariate distributions, use a multivariate distribution

- ▶ A vector \vee of μ_i means
- ▶ A matrix Σ of σ_{ij} covariance pairs

Update rule:

- ► Keep the best *M* < *N* solutions
- Update mean
- Update covariance matrix on solution pairs

Better idea: CMA-ES

CMA-ES

CMA-ES

Updating the covariance matrix w.r.t. solutions naively is suboptimal. (Why?)

CMA-ES updates the covariance matrix such that it produces new solutions in the **direction of the best search steps** seen so far.

Details are involved:

- ► Compute incremental evolution path: *If the mean moves in a similar direction, the path length increases.*
- Update step-size σ in a similar way.
- Compute covariance matrix.

CMA-ES

Adapts much quicker to the function landscape.

State-of-the-art in continuous optimization.

Towards general-purpose domains

What happens when the domain is too complex?:

- Continuous and discrete parameters
- Conditional parameters (hierarchical)

Example: Optimizing in the space of computer programs.

- ► Analytic regression
- Compiler optimization
- AutoML

Towards general-purpose domains

What happens when the domain is too complex?:

- Continuous and discrete parameters
- Conditional parameters (hierarchical)

Example: Optimizing in the space of computer programs.

- Analytic regression
- Compiler optimization
- AutoML

Define the search space with a probabilistic grammar

Probabilistic Grammatical Evolution

Model:

- Associate probabilities to grammar productions
- ► Sample in DFS order

Update rule:

- Select K < N best solutions</p>
- Compute marginal probability of used productions
- Update model by interpolation

What is the fundamental problem with PGE?

You have to evaluate many solutions for a single model update. For e.g., AutoML, this can be prohitive.

Bayesian Optimization

Can we estimate with a single solution?

Bayesian Optimization

Can we estimate with a single solution?

- \triangleright Assume F can be approximated by, e.g., a mixture of Gaussians
- Bake uncertainty into the sampling process

Bayesian Optimization

Can we estimate with a single solution?

- ightharpoonup Assume F can be approximated by, e.g., a mixture of Gaussians
- Bake uncertainty into the sampling process

Update rule:

- ightharpoonup Build \mathfrak{F} from previous evaluations
- Construct acquisition function G
- Find global optimum in G

Examples of acquisition functions:

- Probability of improvement
- Expected improvement
- Confidence bounds
- **.**...

Some conclusions

Why estimation of distribution works:

- ► EDAs are some of the most robust optimization strategies
- ► Easy to incorporate domain knowledge (e.g., what general shape you expect the function to have)
- Some empirical and formal convergence guarantees

Other considerations:

- PBIL / UMDA are simple and good enough for most cases.
- Bayesian Optimization is the fastest when F is very costly.
- ▶ **Do not** reimplement CMA-ES! Use a library instead.
- PGE is Turing-complete :)

Time to practice!

