基于反向传播的网格交易参数设计

代码位于 https://github.com/JennyJiang118/grid.git

一、主要原理

反向传播即误差交传播算法,在神经网络中用于根据历史训练结果调整权重等参数。过程为:求导->求梯度->更新反向->损失更小->(局部)收敛->局部极值。

实际处理中,需注意以下几个问题:

- 1.反向传播需要设置初始值作为传播的起始点,这里使用人工设置的参数作为初始值。 人工设置中,调整参数并运行 human set grids(line118)可获得该组参数下收益情况,然后根据收益情况调整参数大小。由于大多数参数的取值与实际资金有关,且多为离散值,因此不纳入反向传播自动调参中。
- 2.这里的局部极值,是在人工设置的初始参数的周围形成"局部",因此人工设置的初始参数十分重要。由于本问题中,参数的设置效果基本为凸函数或渐进函数,因此人工设置的参数基本在全局最优的周围。
- 3.实际操作中根据历史价格作出参数调整,因此 BP 调整参数有效的前提在于,未来价格波动与历史价格波动有一定程度的一致性

二、代码解读

1.human set grids:

这里处理的是人为给定的 grids,使用自动调参时可以不运行

2.BP:

#目标

获取最优网格 grids

根据已有信息,自动调整 grids 密度,代替人工设置或调整

#设计思路

使用逆向传播 bp, 斜率代替导数

#实际操作步骤

- 1.使用 human set grids 找出相对较好的 grids 和其他参数,作为初步参数
- 2.实际操作中,BP 中的初始 grids 参数,初始化为 human set grids 里的最优值

#超参:

Ir 学习率

EPOCH 总训练轮数

三、实验结果

1. IF

IF03-12 合约中,固定网格数为 5 (保证金限制),手工初步调参最优结果,与 BP 算法所得(局部)最优结果如下:

参数设置为:

参数名称	数值	解释	来源
网格与均线的最高差值	10	超过该值后,价格再涨也不再	人工设置
grid_max		买入。由风险承受能力决定,	
		承受能力高则提高该值	
网格与均线的最低差值	-10	同上	人工设置
grid_max			
网格数 grid_num	5	决定网格密度	人工设置
仓位上限 max_hold	4	持仓超过该值后,不再买入。	人工设置
		由资金充裕程度决定	
仓位下限 min_hold	-4	同上	人工设置
基准线 base_line	avg3	可选: avg2,avg5	人工设置
训练轮数 EPOCH	3	对网格密度迭代更新的次数。	人工设置
		轮数越多,网格密度更新得越	
		好,过拟合风险、时间开销也	
		越大	
学习率 Ir	5e-5	对网格密度迭代更新的速度	人工设置
网格设置 grids	[-2.90328236	在人工给定较优初值后,反向	BP 迭代更
	0.55807827	传播(超参为 EPOCH, Ir) 所得。	新所得,
	1.55807827	收益比人工设置的最优收益高	自动调参
	2.55807827	50%	
	5.24845667]		

2. IC

参数设置为:

4. 104. 4. 44			
参数名称	数值	解释	来源
网格与均线的最高差值	8	超过该值后,价格再涨也不再	人工设置
grid_max		买入。由风险承受能力决定,	
		承受能力高则提高该值	
网格与均线的最低差值	-8	同上	人工设置
grid_max			
网格数 grid_num	5	决定网格密度	人工设置
仓位上限 max_hold	4	持仓超过该值后,不再买入。	人工设置
		由资金充裕程度决定	
仓位下限 min_hold	-4	同上	人工设置
基准线 base_line	avg5	可选: avg2,avg5	人工设置
训练轮数 EPOCH	3	对网格密度迭代更新的次数。	人工设置
		轮数越多,网格密度更新得越	
		好,过拟合风险、时间开销也	
		越大	
学习率 Ir	1e-6	对网格密度迭代更新的速度	人工设置
网格设置 grids	[-7.88087025	在人工给定较优初值后,反向	BP 迭代更
	-3.88087025	传播(超参为 EPOCH, Ir) 所得。	新所得,
	-0.3111267	收益与人工设置相比变化不明	自动调参
	4.84135106	显	
	7.64536759]		

四、后续工作

- 1. 保证金当前以仓位上下限的形式作出限制,后续可以加入保证金对可用资金的影响-->修改网格设置:资金限制,参数减小
- 2*. 价格的变动是离散值,当前使用持有手数进行标记,后续可插值离散化,使结果更精确 3. BP 仅处理了网格密度的自动调参,后续可将其他参数,如网格数量、仓位上下限等纳入调参(仓位上下限受保证金影响,调参意义不大,主要内容会集中在网格数量的纳入上)
- 4*. 损失过大时,及时切除(纳入训练)
- 5*.同一种类,使用同套参数-->多数据验证,防止过拟合
- 6. 加权数据训练