MACHINE LEARNING FORMULA CHEAT SHEET

Omkar Jagtap

Index

Statistics Formulas

- Mean
- Median
- Mode
- Variance
- Standard Deviation
- Covariance
- Co-relation
- Confidence Interval
- P value
- Range
- Quartile
- IQR (Inter Quartile Range)

Machine Learning Formulas

- Linear Regression
- Logistic Regression
- KNN / Clustering (Euclidean Distance)
- KNN / Clustering (Manhattan Distance)
- Decision Tree/RF (Entropy)
- Decision Tree/RF (Information Gain Entropy)
- Decision Tree/RF (Gini Impurity)
- Decision Tree/RF (Information Gain Gini Impurity)
- Bayes' Theorem (Naïve Bayes)
- SVM Kernel- Linear, Polynomial, RBF, Sigmoid

Pre-Processing Formulas

Standardization

- Normalization
- Robust Scaling
- Maximum Absolute Scaling
- Min Max Scaling

Evaluation Metrics Formulas

- Mean Absolute Error
- Mean Square Error
- Root Mean Square Error
- Sum Square Error
- Mean Square Error
- Root Mean Square Error
- R Square
- Accuracy
- Precision
- Recall
- F1 Score

1. STATISTICS

MEAN (AVERAGE)

$$ar{x} = rac{1}{n} \sum_{i=1}^n x_i$$

MEDIAN

if n is odd,

$$median = \left(\frac{n+1}{2}\right)^{th}$$

if n is even,

$$median = \left(\frac{n}{2}\right)^{th} + \left(\frac{n}{2} + 1\right)^{th}$$

n = number of terms
th = n(th) number

MODE

(Most recurring value)

$$M_o = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right)h$$

Where

I = lower limit of the modal class,

h = size of the class interval (assuming all class sizes to be equal),

f₁ = frequency of the modal class,

f₀ = frequency of the class preceding the modal class,

f₂ = frequency of the class succeeding the modal class.

VARIANCE

 $\sigma^2=rac{\sum_{i=1}^n(x_i-ar{x})^2}{n}$

where:

- x_i represents each individual value in the data set,
- ullet $ar{x}$ is the mean (average) of the data set, and
- n is the total number of values in the data set.

STANDARD DEVIATION

 $\sigma = \sqrt{rac{\sum_{i=1}^n (x_i - ar{x})^2}{n}}$

In this formula:

 $\overline{x_i}$ represents each individual value in the data set,

 $ar{x}$ is the mean (average) of the data set,

 \sum denotes the sum over all values, and

n is the total number of values in the data set.

CO-VARIANCE

 $\mathrm{cov}(X,Y) = rac{\sum_{i=1}^n (x_i - ar{X})(y_i - ar{Y})}{n}$

where:

- ullet x_i and y_i are the individual values of variables X and Y in the data set,
- ullet $ar{X}$ and $ar{Y}$ are the means (averages) of variables X and Y , and
- ullet n is the total number of paired observations.

CO-RELATION

 $\rho = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$

- $ullet \ \operatorname{cov}(X,Y)$ is the covariance between variables X and Y ,
- ${}^ullet\;\sigma_X$ is the standard deviation of variable X ,
- σ_Y is the standard deviation of variable Y .

CONFIDENCE INTERVAL

Confidence Interval $= ar{x} \pm Z\left(rac{s}{\sqrt{n}}
ight)$

where:

- $ar{x}$ is the sample mean,
- ullet s is the sample standard deviation,
- ullet n is the sample size, and
- ullet Z is the Z-score associated with the desired level of confidence.

P-value

If p-value is low (compared to alpha) let the null Hypothesis GO

RANGE

 $R = ext{Maximum Value} - ext{Minimum Value}$

QUARTILE

The Quartile Formula for Q1 = $\frac{1}{4}$ (n + 1)thterm

The Quartile Formula for Q3 = $\frac{3}{4}$ (n + 1)thterm

The Quartile Formula for Q2 = Q3 - Q1 (Equivalent to Median)

Inter Quartile Range

$$IQR = Q3 - Q1$$

MACHINE LEARNING

Linear Regression

 $Y = b_0 + b_1 \cdot X + \varepsilon$

- Y is the dependent variable,
- ullet X is the independent variable,
- b_0 is the y-intercept (the value of Y when X is 0),
- b_1 is the slope of the line (the change in Y for a one-unit change in X),
- arepsilon is the error term (representing the difference between the observed and predicted values).

Logistic Regression (Sigmoid Function)

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

KNN/ K Means Euclidean Distance

$$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

In three-dimensional space, the formula extends to:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

And more generally, for n-dimensional space:

$$d=\sqrt{\sum_{i=1}^n(a_i-b_i)^2}$$

where a_i and b_i are the coordinates of the two points in each dimension.

KNN/ K Means Manhattan Distance

$$d = |x_2 - x_1| + |y_2 - y_1|$$

In three-dimensional space, it extends to:

$$d = |x_2 - x_1| + |y_2 - y_1| + |z_2 - z_1|$$

And more generally, for n-dimensional space:

$$d = \sum_{i=1}^n |a_i - b_i|$$

Decision Tree (Entropy)

$$H(S) = -p_1 \log_2(p_1) - p_2 \log_2(p_2)$$

where:

- ullet S is the set of labels (e.g., the target variable in a dataset),
- ullet p_1 is the proportion of instances in S belonging to class 1,
- p_2 is the proportion of instances in S belonging to class 2 (for binary classification, $p_2=1-p_1$),
- \log_2 is the logarithm base 2.

Decision Tree (Information Gain-Entropy)

$$IG(S,A) = H(S) - \sum_{v \in \mathrm{values}(A)} rac{|S_v|}{|S|} \cdot H(S_v)$$

- H(S) is the entropy of the set S (a measure of impurity),
- ullet values(A) is the set of possible values for feature A,
- ullet S_v is the subset of instances in S for which feature A has value v ,
- $ullet \; |S|$ and $|S_v|$ are the sizes of sets S and S_v , respectively.

Decision Tree (Gini Impurity)

 $Gini(S) = 1 - \sum_{i=1}^K p_i^2$

In this formula:

 p_i is the proportion of instances in class i in the set S.

The summation goes over all K classes present in the set.

Decision Tree (Gini Impurity – Information Gain)

Information Gain $=Gini(S) - \sum_{v \in \mathrm{values}(A)} rac{|S_v|}{|S|} \cdot Gini(S_v)$

In this formula:

- ullet Gini(S) is the Gini impurity of the entire set S.
- ullet values (A) represents the distinct values that feature A can take.
- $\left|S_v\right|$ is the size of the subset of instances where feature A has the value v.
- |S| is the size of the entire set S.
- $Gini(S_v)$ is the Gini impurity of the subset S_v .

Bayes' Theorem

$$P(A|B) = rac{P(B|A) \cdot P(A)}{P(B)}$$

Here's the breakdown of the terms:

- P(A|B): This is the probability of event A occurring given that event B has occurred. This is often referred to as the posterior probability.
- P(B|A): This is the probability of event B occurring given that event A has occurred. This is known as the likelihood.
- P(A): This is the prior probability of event A occurring. It represents our initial belief in the probability of A before observing any evidence.
- P(B): This is the probability of event B occurring. It acts as a normalization factor.

SVM (Linear Kernel)

$$K(x_1, x_2) = x_1^T x_2$$

SVM (Polynomial Kernel)

$$K(x_1, x_2) = (x_1^T x_2 + r)^d$$

SVM (Radial Basis Function [rbf] Kernel)

$$K(x_1, x_2) = \exp(-\gamma \cdot ||x_1 - x_2||^2)$$

SVM (Sigmoid Kernel)

$$K(x_1, x_2) = tanh(\gamma . x_1^T x_2 + r)$$

PRE-PROCESSING

Standard Scaler

 $Z = \frac{(X - \mu)}{\sigma}$

- ullet Z is the standardized value,
- ullet X is the original value of the feature,
- ullet μ is the mean of the feature values,
- σ is the standard deviation of the feature values.

Normalization (L1 & L2)

1. L1 Normalization:

$$X_{ ext{normalized}} = rac{X}{\sum_{i=1}^{n} |x_i|}$$

2. L2 Normalization:

$$X_{ ext{normalized}} = rac{X}{\sqrt{\sum_{i=1}^n x_i^2}}$$

Robust Scaler

 $X_{ ext{scaled}} = rac{X - Q_1(X)}{Q_3(X) - Q_1(X)}$

- $X_{
 m scaled}$ is the scaled value of X,
- ullet X is the original value of the feature,
- ullet $Q_1(X)$ is the first quartile (25th percentile) of the feature X ,
- $Q_3(X)$ is the third quartile (75th percentile) of the feature X.

Max Absolute Scaler

 $X_{
m scaled} = rac{X}{\max(|X_{
m max}|,|X_{
m min}|)}$

where:

- $X_{
 m scaled}$ is the scaled value of X,
- ullet X is the original value of the feature,
- ullet $X_{
 m max}$ is the maximum absolute value of the feature in the dataset,
- ullet $X_{
 m min}$ is the minimum absolute value of the feature in the dataset.

Min Max Scaler

 $X_{
m scaled} = rac{X - X_{
m min}}{X_{
m max} - X_{
m min}}$

- $X_{
 m scaled}$ is the scaled value of X,
- X is the original value of the feature,
- ullet X_{\min} is the minimum value of the feature in the dataset,
- ullet $X_{
 m max}$ is the maximum value of the feature in the dataset.

EVALUATION METRICS

REGRESSION

MAE (Mean Absolute Error)

 $ext{MAE} = rac{1}{n} \sum_{i=1}^n \lvert y_i - \hat{y}_i
vert$

- ullet n is the number of observations or data points,
- ullet y_i is the actual or observed value for the i-th data point,
- \hat{y}_i is the predicted value for the i-th data point.

SSE (Sum of Squared Error), MSE (Mean of Squared Error), RMSE (Root Mean of Squared Error)

1. Sum of Squared Errors (SSE):

$$ext{SSE} = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

2. Mean Squared Error (MSE):

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

3. Root Mean Squared Error (RMSE):

$$ext{RMSE} = \sqrt{rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

R-SQUARE

$$R^2 = \frac{SSR}{SST}$$

Where,

- SSR is Sum of Squared Regression also known as variation explained by the model
- SST is Total variation in the data also known as sum of squared total
- $SSR = \sum_{i} (\hat{y}_{i} \bar{y})^{2}$ y_i is the y value for observation i
 - y_bar is the mean of y value
- $SST = \sum_i (y_i \bar{y})^2$ y_bar_hat is predicted value of y for observation i

CLASSIFICATION

Confusion Matrix

Type I, Type II Error

Accuracy, Precision, Recall, F1 Score

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F_{1} = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$