Εργαστήριο Λογικού Προγραμματισμού

Μανόλης Μαρακάκης, Καθηγητής

mmarak@cs.hmu.gr

Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σχολή Μηχανικών Ελληνικό Μεσογειακό Πανεπιστήμιο

Ενότητα 3: Μάθημα 3

- 3. Αναδρομή, Λίστες και Αριθμητική σε Prolog
 - > 3.1. Αναδρομή
 - > 3.2. Λίστες
 - ✓ 3.2.1. Δομή και Χρήση της Λίστα.
 - ✓ 3.2.2. Παραδείγματα Προγραμμάτων με Λίστες

3.1. Αναδρομή

- Η Prolog χρησιμοποιεί δομές όπως η λίστα οι οποίες ορίζονται επαγωγικά. Ένα σύνολο στοιχείων Σ έχει επαγωγικό (inductive) ορισμό εάν μπορεί να οριστεί με μια από τις παρακάτω τρεις διακριτές προτάσεις:
 - 1. Η βασική πρόταση ή βάση.
 - 2. Η αναδρομική (recursive) ή επαγωγική (inductive) πρόταση.
 - > 3. Η ακραία (extremal) πρόταση.

3.1. Αναδρομή

- 1. Η βασική πρόταση (βάση) του ορισμού καθιστά κάποια στοιχεία μέλη του συνόλου Σ. Η βασική πρόταση έχει διπλό σκοπό.
 - Να δείξει ότι το σύνολο Σ δεν είναι άδειο και
 - να καθορίσει τα βασικά στοιχεία με τα οποία θα κατασκευαστεί το υπόλοιπο τμήμα του συνόλου.

Παραδείγματα:

- Η άδεια λίστα [] είναι μέλος του συνόλου των λιστών και αποτελεί τη βάση ορισμού τους.
- Το 0 είναι βάση ορισμού του συνόλου των φυσικών αριθμών.

- 2. Η επαγωγή (induction) ή επαγωγική (inductive) πρόταση του ορισμού καθορίζει τον τρόπο με τον οποίο στοιχεία του συνόλου Σ μπορούν να ενωθούν για να δημιουργηθούν νέα στοιχεία.
- □ Η επαγωγική πρόταση περιγράφει τις πράξεις οι οποίες πρέπει να εκτελεστούν σε στοιχεία του συνόλου Σ για να κατασκευαστούν νέα στοιχεία του συνόλου Σ.
 - Για την λίστα, τα στοιχεία κατασκευάζονται από
 - **❖**την **άδεια λίστα**,
 - ❖την ειδική συνάρτηση «.» πληθικότητας 2 (ή με τον ειδικό συμβολισμό «|») και
 - ❖ όρους όπως άτομα, ακέραιοι, πραγματικοί, σύνθετοι όροι.
 - Μια μη κενή λίστα έχει τη μορφή
 - « .(Όρος, Λίστα) » ή « [Όρος | Λίστα] » όπου «Όρος» είναι οποιοσδήποτε όρος της Prolog και «Λίστα» είναι οποιαδήποτε λίστα.

- 2. Η επαγωγή (induction) ή επαγωγική (inductive) πρόταση (συνέχεια)
 - Για την λίστα ο τελεστής «|» συνδέει μια οντότητα (ακέραιο, άτομο, πραγματικό, σύνθετο όρο) με μια λίστα (ένα στοιχείο) και δημιουργεί μια νέα λίστα (ένα νέο στοιχείο). Παραδείγματα:
 - ❖ Η λίστα «[a]» κατασκευάζεται από
 - την κενή λίστα «[]»,
 - τη συνάρτηση «.» (ή με τον ειδικό συμβολισμό «|») και
 - το στοιχείο «a»
 - ως εξής «.(a,[]) = [a]» ή «[a|[]] = [a]».
 - ❖Παρόμοια, η λίστα «[a,b]» κατασκευάζεται από
 - το στοιχείο «a»,
 - τη συνάρτηση «.» (ή τον ειδικό συμβολισμό «|») και
 - τη λίστα «[b]»
 - ως εξής: « .(a,[b]) = .(a,.(b,[])) = [a,b]» ή
 «[a|[b]] = [a|[b|[]]] = [a,b]».
 - ❖Από την λίστα .(a,[b,c]) ή [a|[b,c]] προκύπτει η λίστα [a,b,c].

- Η ακραία (extremal) πρόταση καθορίζει ότι εάν ένα στοιχείο δεν μπορεί να αποδειχθεί ότι είναι μέλος του συνόλου Σ εφαρμόζοντας πεπερασμένο αριθμό επαναλήψεων τις προτάσεις 1 και 2 τότε δεν είναι μέλος του συνόλου.
- «Αναδρομικός (recursive)» σημαίνει αυτοαναφορά. Ο αναδρομικός (recursive) ορισμός χρησιμοποιείται για να δηλώσει αυτό που ονομάζουμε επαγωγικός (inductive) ορισμός.
 - Δεν είναι όλοι οι αναδρομικοί ορισμοί και επαγωγικοί ενώ ένας επαγωγικός ορισμός είναι και αναδρομικός.
 - > Συνεπώς, ο όρος «επαγωγικός» είναι υποκλάση του γενικότερου όρου «αναδρομικός».

- Ο όρος αναδρομικός (recursive) στην επιστήμη υπολογιστών σημαίνει αυτοαναφορά και είναι πιο γενικός όρος από τον όρο επαγωγικός (inductive).
- Στο προγραμματισμό μια αναδρομική διαδικασία καλεί το εαυτό της είτε ευθεως ή έμεσα. Αναδρομικές διαδικασίες βασίζονται σε αναδρομικούς ορισμούς.
- Εάν ένα υποπρόγραμμα βασίζεται σ' ένα επαγωγικό (inductive) ορισμό τότε τα τμήματα του υποπρογράμματος αντιστοιχούν με φυσικό τρόπο στη βασική πρόταση και στην επαγωγική πρόταση του ορισμού. Η επεξεργασία αναδρομικών δομών γίνεται με αναδρομικά προγράμματα.
- Η Prolog δεν υποστηρίζει άλλη εντολή επανάληψης εκτός από την αναδρομή.
- Για να γράψουμε ένα αναδρομικό πρόγραμμα πρέπει να χωρίσουμε το πρόβλημα σε περιπτώσεις οι οποίες μπορούν να ανήκουν σε μια από τις εξής ομάδες:
 - 1. Οι βασικές περιπτώσεις στις οποίες δεν έχουμε αναδρομή.
 - 2. Οι γενικές περιπτώσεις στις οποίες η λύση κατασκευάζεται από λύσεις απλούστερων περιπτώσεων του αρχικού προβλήματος.

3.1. Αναδρομή

- Ας υποθέσουμε ότι θέλουμε να γράψουμε ένα πρόγραμμα σε Prolog το οποίο θα υπολογίζει το παραγοντικό ενός αριθμού n≥0. Ο αναδρομικός ορισμός της συνάρτησης παραγοντικό έχει ως εξής:
 - Βασική Περίπτωση 0! = f(0) = 1
 - $ightharpoonup Γενική Περίπτωση <math>n! = f(n) = (n-1)! \cdot n = f(n-1) \cdot n \text{ όπου } (n-1)! = f(n-1) = 1 \cdot 2 \cdot 3 \cdot \cdot (n-2) \cdot (n-1)$
- Α τρόπος: Κατασκευή Δομής στην κεφαλή της πρότασης.

factorial(0, 1).

factorial(N, F):- N>0, N1 is N-1, factorial(N1, F1), F is N*F1.

Πρόγραμμα 3.1: Υπολογισμός παραγοντικού με κατασκευή δομής στην κεφαλή της πρότασης.

Β τρόπος: Κατασκευή Δομής στο σώμα της πρότασης.

factorial (N, F):- factorial1(N, N, F).

factorial1(0, 1, 1).

factorial1(1, Facc, Facc).

factorial1(N, Facc, F) :- N > 1, N1 is N - 1, NewFacc is Facc*N1, factorial1(N1, NewFacc, F).

Πρόγραμμα 3.2: Υπολογισμός παραγοντικού με κατασκευή δομής στο σώμα της πρότασης.

3.1. Αναδρομή: Στοίβα αναδρομικών κλήσεων

::	
$F1^3 = 1$	factorial(0, F1 ³)
$N1^3=0,$	
factorial(0, F1 ³)	factorial(1, F1 ²)
$F1^2 = 1_* F1^3$	
$N1^2=1,$	
factorial(1, F1 ²)	factorial(2, F1 ¹)
$F1^1 = 2_* F1^2$	
$N1^1=2,$	
factorial(2, F1 ¹)	factorial(3, F)
$F = 3_* F1^1$	
Στοίβα	Κλήσεις

Σχήμα 3.1: Στοίβα αναδρομικών κλήσεων

- Μια λίστα παριστάνεται σαν σύνθετος όρος με όνομα συνάρτησης την τελεία (.) και δύο ορίσματα, την κεφαλή και την ουρά της λίστας. Ο σύνθετος όρος .(Κεφαλή, Ουρά) παριστάνει μια λίστα με πρώτο στοιχείο την «Κεφαλή» και «Ουρά» την υπόλοιπη λίστα.
- Η ουρά η οποία είναι πάντα λίστα μπορεί να είναι είτε ένας σύνθετος όρος της ίδιας μορφής .(Κεφαλή, Ουρά) ή η άδεια λίστα.
- Λίστα με ένα στοιχείο παριστάνεται από την δομή .(a, []). Αυτός ο όρος παριστάνεται από το δυαδικό δέντρο του σχήματος Σχήμα 3.1

Σχήμα 3.1:Δομή λίστας μ' ένα αντικείμενο

- 3.2. Λίστες: Δομή και Χρήση της Λίστας
- Οι πρωτεύουσες των νομών της περιφέρειας Κρήτης
 - >chania, rethimnon, iraklion, agiosNikolaos μπορούν να γραφτούν ως όρος της Prolog ως εξής:
 - .(chania, .(rethimnon, .(iraklion, .(agiosNikolaos, []))))
- □ Για διευκόλυνση του προγραμματιστή η πιο πάνω λίστα μπορεί να γραφτεί σ'ένα πρόγραμμα Prolog ως εξής:
 - [chania, rethimnon, iraklion, agiosNikolaos]
 Εσωτερικά η Prolog αναπαριστά τις λίστες σαν δυαδικά δέντρα.

3.2. Λίστες: Δομή και Χρήση της Λίστας

- □ Έστω οι δύο τρόποι αναπαράστασης των λιστών,
 - > α) σαν όρος της Prolog όπως η λίστα
 - .(yannis, .(kostas, .(anna, [])))
 - β) σαν μια λίστα στοιχείων μέσα σε αγκύλες όπως η λίστα
 - [yannis, kostas, anna].
- Ο πρώτος συμβολισμός σαν όρος της Prolog είναι δυσνόητος ενώ ο δεύτερος συμβολισμός με τις αγκύλες είναι απλός και ευκρινής.
- Στο σχήμα Σχήμα 3.3 φαίνεται το δυαδικό δέντρο γι' αυτό το παράδειγμα.

Σχήμα 3.3:Δομή της λίστας [yannis,kostas,anna]

- Μια λίστα μπορεί να περιέχει σαν στοιχεία είτε άλλους όρους (ατομικούς ή σύνθετους), ή άλλες λίστες ή μεταβλητές. Δηλαδή, τα στοιχεία μιας λίστας μπορεί να έχουν την εξής μορφή.
 - 1. σταθερές π.χ. yannis, 13
 - 2. μεταβλητές π.χ. Χ, Sholi
 - > 3. σύνθετοι όροι π.χ. gonios(yannis, panos)
 - 4. άλλες λίστες π.χ. [a, b, c, d]

□ Παραδείγματα λιστών.

- > [a, b, c, d]
- > [[a, b], c, [d, e], f]
- > [X, a, b, W, [Y, c]]
- > [[a], [b, X]]

- Στη λίστα [Head Tail] η κάθετος () χωρίζει την κεφαλή από την ουρά. Σε λίστες που περιέχουν περισσότερα από ένα στοιχείο, η κεφαλή είναι το πρώτο στοιχείο της λίστας και η ουρά το υπόλοιπο μέρος το οποίο είναι λίστα. Στη λίστα [stef, sdo, seyp, steg] η κεφαλή είναι το άτομο stef ενώ η ουρά είναι η λίστα [sdo, seyp, steg].
- Εάν η λίστα περιέχει ένα μόνο στοιχείο, η κεφαλή είναι το μοναδικό στοιχείο της λίστας και η ουρά της είναι η κενή λίστα []. Για παράδειγμα, η λίστα [α] έχει για κεφαλή το α και ουρά το [].

🔲 Παράδειγμα 1

	Λίστα	<u>Κεφαλή</u>	<u>Ουρά</u>
α.	[a, b, c, d]	а	[b, c, d]
β.	[[a, b], c, [d, e], f]	[a, b]	[c, [d, e], f]
γ.	[X, a, b, W, [Y, c]]] X	[a, b, W, [Y, c],]
δ.	[[a], [b, X]]	[a]	[[b, X]]

Τέλος Διάλεξης

Ευχαριστώ!

Ερωτήσεις;