

Praktische Übungen zu Numerik 2

Blatt 4 - 20.6.2022

Abgabe: 1.7.2022, 10:00 Uhr

Homepage zur Vorlesung:

https://aam.uni-freiburg.de/agba/lehre/ss22/num

Projekt 1 (10 Punkte). Schreiben Sie ein Programm, welches das Integral einer gegebenen Funktion in einem Intervall [a, b] mithilfe der Trapez-Regel, der Simpson-Regel, und einer Gaußschen 3-Punkt-Quadraturformel, berechnet.

Überprüfen Sie die in der Vorlesung erwähnten Exaktheitsgrade der verschiedenen Quadraturformeln anhand geeigneter Funktionen und dokumentieren Sie Ihre Ergebnisse.

Projekt 2 (10 Punkte). Erweitern Sie Ihr Programm aus Projekt 1, sodass die Approximation des Integrals nun mithilfe der summierten Form der jeweiligen Quadraturformel mit einer gegebenen Schrittweite h geschieht.

Testen Sie das Programm anhand der Funktionen

$$f(x) = \sin(\pi x)e^x$$
, $g(x) = x^{1/3}$

im Intervall [0,1] mit Schrittweiten $h=2^{-\ell},\ \ell=1,2,\ldots,10$. Berechnen Sie jeweils den Approximationsfehler e_h und bestimmen Sie eine experimentelle Konvergenzrate γ aus dem Ansatz $e_h\approx c_1h^\gamma$ und der daraus folgenden Formel

$$\gamma \approx \frac{\log(e_h/e_H)}{\log(h/H)}$$

für zwei aufeinanderfolgende Schrittweiten h, H > 0. Vergleichen Sie die experimentellen Konvergenzraten mit den theoretischen Konvergenzraten der Verfahren und kommentieren Sie Ihre Ergebnisse. Stellen Sie die Paare (h, e_h) für die verschiedenen Quadraturformeln vergleichend als Polygonzüge grafisch in logarithmischer Achsenskalierung mit Hilfe des Matlab-Befehls loglog dar.