Задача №4

Расчет толстостенных цилиндров

Составной цилиндр, образованный из двух длинных цилиндров посадкой с натягом Δ , подвергается действию внутреннего давления p_1 . Размеры цилиндров: r_1 – радиус внутренней поверхности составного цилиндра; r_C – радиус поверхности сопряжения внутреннего и наружного цилиндров;

 r_2 — радиус наружной поверхности составного цилиндра. Допускаемое напряжение для материала цилиндров $[\sigma]=300 M\Pi a$, модуль продольной упругости $E=2*10^5 M\Pi a$, коэффициент поперечной деформации $\mu=0,3$.

Определить оптимальную величину натяга Δ и допускаемую величину внутреннего давления [p₁]. Определить также допускаемую величину внутреннего давления [p₁] для сплошного однослойного цилиндра с внутренним радиусом r_1 и наружным радиусом r_2 и сравнить с допускаемым внутренним давлением для составного цилиндра. Построить эпюры радиального, окружного и продольного нормальных напряжений в составном и сплошном цилиндрах при большем из допускаемых внутренних давлений [p₁].

Дано: r_1 =50мм; r_C =65мм; r_2 =80мм; гипотеза предельного состояния IV.

1. Радиальное и окружное напряжения вычисляются по формуле

$$\sigma_{r,t} = \frac{p_B r_B^2 - p_H r_H^2}{r_H^2 - r_B^2} \mp \frac{r_B^2 r_H^2 (p_B - p_H)}{r^2 (r_H^2 - r_B^2)},\tag{1}$$

где p_B и p_H — внутреннее и наружное давления; r_B и r_H — внутренний и наружный радиусы; r — радиус-вектор точки, в которой определяются напряжения. Знак (—) соответствует напряжению σ_r , знак (+) соответствует напряжению σ_r .

Напряжения в составном цилиндре определяются суммированием напряжений (σ_r^l , σ_t^l) в цилиндре с радиусами r_1 и r_2 от действия внутреннего давления p_1 и напряжений (σ_r^{ll} , σ_t^{ll}) в цилиндре с радиусами r_1 и r_2 от действия натяга p_3 :

$$\sigma_{r} = \sigma_{r}^{/} \binom{r=r_{1}, p_{B}=p_{1}, p_{H}=0,}{r_{B}=r_{1}, r_{H}=r_{2}} + \sigma_{r}^{//} \binom{r=r_{1}, p_{B}=0, p_{H}=p_{C},}{r_{B}=r_{1}, r_{H}=r_{C}}$$
(2)
$$\sigma_{t} = \sigma_{t}^{/} \binom{r=r_{1}, p_{B}=p_{1}, p_{H}=0,}{r_{B}=r_{1}, r_{H}=r_{0}} + \sigma_{t}^{//} \binom{r=r_{1}, p_{B}=0, p_{H}=p_{C},}{r_{B}=r_{1}, r_{H}=r_{C}}$$
(3).

Продольное напряжение: $\sigma_Z = \mu(\sigma_r + \sigma_t)$. (4)

Подставим значения в уравнения (1)...(4).

$$\sigma_{t}' = \frac{p_{1} * 50^{2}}{80^{2} - 50^{2}} + \frac{50^{2} * 80^{2} * p_{1}}{50^{2} * (80^{2} - 50^{2})} = 2,28p_{1}; \quad \sigma_{t}'' = \frac{-p_{C} * 65^{2}}{65^{2} - 50^{2}} + \frac{50^{2} * 65^{2} * (-p_{C})}{50^{2} * (65^{2} - 50^{2})} = -4,90p_{C}; \quad \sigma_{t} = 2,28p_{1} - 4,9p_{C} = \sigma_{1};$$

$$\sigma_{r}' = \frac{p_{1} * 50^{2}}{80^{2} - 50^{2}} - \frac{50^{2} * 80^{2} * p_{1}}{50^{2} * (80^{2} - 50^{2})} = -p_{1}; \quad \sigma_{r}'' = \frac{-p_{C} * 65^{2}}{65^{2} - 50^{2}} - \frac{50^{2} * 65^{2} * (-p_{C})}{50^{2} * (65^{2} - 50^{2})} = 0; \quad \sigma_{r} = -p_{1} = \sigma_{3};$$

$$\sigma_{Z} = 0,3 * (-p_{1} + 2,28p_{t} - 4,9p_{C}) = 0,38p_{1} - 1,47p_{C} = \sigma_{2}.$$
(5)

Эквивалентное напряжение в опасной точке внутреннего цилиндра по IV-й гипотезе предельного состояния:

$$\sigma_{I_{SKG}} = \sqrt{\sigma_t^2 + \sigma_z^2 + \sigma_r^2 - \sigma_t \sigma_z - \sigma_z \sigma_r - \sigma_r \sigma_t} =$$

$$=\sqrt{(2,28p_1-4,9p_C)^2+(0,38p_1-1,47p_C)^2+(-p_1)^2-(2,28p_1-4,9p_C)(0,38p_1-1,47p_C)-(0,38p_1-1,47p_C)(-p_1)-(-p_1)(2,28p_1-4,9p_C)}=$$

$$=\sqrt{8,13p_1^2-24,62p_1p_C+18,97p_C^2}.$$
(6)

2. Вычисляем напряжения в опасной точке наружного цилиндра (при r=r_c).

$$\sigma_t' = \frac{p_1 * 50^2}{80^2 - 50^2} + \frac{50^2 * 80^2 * p_1}{65^2 * (80^2 - 50^2)} = 1,61p_1; \quad \sigma_t'' = \frac{p_C * 65^2}{80^2 - 65^2} + \frac{65^2 * 80^2 * p_C}{65^2 * (80^2 - 65^2)} = 4,67p_C; \quad \sigma_t = 1,61p_1 + 4,67p_C = \sigma_1;$$

$$\sigma_r' = \frac{p_1 * 50^2}{80^2 - 50^2} - \frac{50^2 * 80^2 * p_1}{65^2 * (80^2 - 50^2)} = -0.33 p_1; \quad \sigma_r'' = \frac{p_C * 65^2}{80^2 - 65^2} - \frac{65^2 * 80^2 * p_C}{65^2 * (80^2 - 65^2)} = -p_C; \quad \sigma_r = -0.33 p_1 - p_C = \sigma_3;$$

$$\sigma_Z = 0.3*(-0.33p_1 - p_C + 1.61p_t + 4.67p_C) = 0.38p_1 + 1.10p_C = \sigma_2.$$

Эквивалентное напряжение в опасной точке наружного цилиндра по ІV-й гипотезе предельного состояния:

$$\sigma_{II_{9K6}} = \sqrt{\sigma_t^2 + \sigma_z^2 + \sigma_r^2 - \sigma_t \sigma_z - \sigma_z \sigma_r - \sigma_r \sigma_t} =$$

$$=\sqrt{(1,61p_1+4,67p_C)^2+(0,38p_1+1,1p_C)^2+(-0,33p_1-p_C)^2-(1,61p_1+4,67p_C)(0,38p_1+1,1p_C)-(0,38p_1+1,1p_C)(-0,33p_1-p_C)-(-0,33p_1-p_C)(1,61p_1+4,67p_C)}=$$

$$=\sqrt{2,89p_1^2+16,89p_1p_C+24,65p_C^2}.$$
(8)

					КР_ММиК_2022_06			
Изм	Лист	№ докум	Подпись	Дата				=
Разр	раб	Каплан Л.В.				Литера	Лист	Листов
Пров	в	Кирилюк С.И.			Расцам моломосмочни м	y		
	онтр.				Расчет толстостенных цилиндров	ГГТУ им.П.О.Сухого, гр.К-21		•
Утв						cp.1(21		

3. Согласно условию равнопрочности внутреннего и наружного цилиндров приравняем выражения (6) и (8):

$$\sigma_{I_{SK6}} = \sigma_{II_{SK6}}, \ \sqrt{8,13\,{p_1}^2 - 24,62\,{p_1}{p_C} + 18,97\,{p_C}^2} = \sqrt{2,89\,{p_1}^2 + 16,89\,{p_1}{p_C} + 24,65\,{p_C}^2} \ ,$$

$$5,24p_1^2-41,51p_1p_C-5,68p_C^2=0$$
 , $p_1^2-7,92p_1p_C-1,08p_C^2=0$, откуда $p_1=3,96p_C+\sqrt{(3,96p_C)^2+1,08p_C^2}=8,05p_C$. (9)

4. Оптимальную величину давления натяга находим из условия $\sigma_{Isset} = [\sigma]$, подставив $p_{l} = 8,05 p_{C}$ в σ_{Isset} :

 $\sqrt{8,13\,p_1^{\ 2}-24,62\,p_1p_C+18,97\,p_C^{\ 2}}=[\sigma],\ \sqrt{8,13*(8,05\,p_C)^2-24,62*8,05\,p_Cp_C+18,97\,p_C^{\ 2}}=[\sigma],\ 18,6p_C=300,$ откуда $p_C=16$ МПа. При этом допускаемое внутреннее давление будет равно $[p_1]=8,05*16=129$ МПа.

5. Величину натяга находим из формулы Гадолина (при $E_1 = E_2 = E$ и $\mu_1 = \mu_2 = \mu$):

$$\begin{split} p_C &= \frac{\Delta}{2r_C \left[\frac{1}{E_1} \left(\frac{r_C^2 + r_1^2}{r_C^2 - r_1^2} - \mu_1 \right) + \frac{1}{E_2} \left(\frac{r_2^2 + r_C^2}{r_2^2 - r_C^2} + \mu_2 \right) \right]}, \\ \Delta &= \frac{2p_C r_C}{E} \left(\frac{r_C^2 + r_1^2}{r_C^2 - r_1^2} + \frac{r_2^2 + r_C^2}{r_2^2 - r_C^2} \right) = \frac{2*16*65}{2*10^5} \left(\frac{65^2 + 50^2}{65^2 - 50^2} + \frac{80^2 + 65^2}{80^2 - 65^2} \right) = 0,091_{\text{MM}}. \end{split}$$

6. Определяем допускаемую величину внутреннего давления в однослойном цилиндре с r_1 =50мм и r_2 =80мм.

Напряжения в опасной точке при r=r₁=50мм:
$$\sigma_r^f = \frac{p_1 * 50^2}{80^2 - 50^2} - \frac{50^2 * 80^2 * p_1}{50^2 * (80^2 - 50^2)} = -p_1$$
;

$$\sigma_t' = \frac{p_1 * 50^2}{80^2 - 50^2} + \frac{50^2 * 80^2 * p_1}{50^2 * (80^2 - 50^2)} = 2,28p_1, \quad \sigma_Z = \mu(\sigma_r' + \sigma_t') = 0,3 * (-1 + 2,28)p_1 = 0,38p_1.$$

Определяем [p₁]:
$$\sigma_{I_{9K6}} = \sqrt{\sigma_t^2 + \sigma_z^2 + \sigma_r^2 - \sigma_t \sigma_z - \sigma_z \sigma_r - \sigma_r \sigma_t} =$$

$$=\sqrt{(2,28p_1)^2+(0,38p_1)^2+(-p_1)^2-(2,28p_1)(0,38p_1)-(0,38p_1)(-p_1)-(-p_1)(2,28p_1)}=2,85p_1; \quad \sigma_{I_{SKS}}=[\sigma] ,$$
 2,85p₁=300; [p₁]=105MΠa.

Величина допускаемого давления в сплошном цилиндре оказалась меньше, чем в составном в $n = \frac{129}{105} = 1,22$ раза.

7. Для построения эпюр напряжений вычисляем их значения для точек с $r=r_1$, $r=r_C$ и $r=r_2$ при $[p_1]=129$ МПа. Напряжения во внутреннем цилиндре при $r=r_1$ находим по выражениям (5).

$$\sigma_t = 2,28*129-4,9*16=217$$
 MTIa; $\sigma_r = -p_1 = -129$ MTIa; $\sigma_Z = 0,3*(-129+216)=26$ MTIa.

Напряжения во внутреннем цилиндре при $r=r_C$ равны

$$\sigma_{r} = \sigma_{r}^{\prime} {r \choose r_{B} = r_{1}, r_{H} = r_{2}} + \sigma_{r}^{\prime\prime} {r \choose r_{B} = r_{1}, r_{H} = r_{C}} + \sigma_{r}^{\prime\prime} {r \choose r_{B} = r_{1}, r_{H} = r_{C}} = \frac{p_{1} * 50^{2}}{80^{2} - 50^{2}} - \frac{50^{2} * 80^{2} * p_{1}}{65^{2} * (80^{2} - 50^{2})} + \frac{-p_{C} * 65^{2}}{65^{2} - 50^{2}} - \frac{50^{2} * 65^{2} * (-p_{C})}{65^{2} * (+65^{2} - 50^{2})} = -0.33 * p_{1} - p_{C} - 0.33 * 129 - 16 = -58 \text{MHz}.$$

$$\sigma_t = \sigma_t \left(r = r_C, p_B = p_1, p_H = 0, \atop r_B = r_1, r_H = r_2 \right) + \sigma_t \left(r = r_C, p_B = 0, p_H = p_C, \atop r_B = r_1, r_H = r_C \right) = \frac{p_1 * 50^2}{80^2 - 50^2} + \frac{50^2 * 80^2 * p_1}{65^2 * (80^2 - 50^2)} + \frac{-p_C * 65^2}{65^2 - 50^2} + \frac{50^2 * 65^2 * (-p_C)}{65^2 * (65^2 - 50^2)} = \frac{p_1 * 50^2}{65^2 * (65^2 - 50^2)} + \frac{p_1 * 50^2}{65^2 * (65^2 - 50^2)} + \frac{p_2 * 65^2}{65^2 * (65^2 - 50^2)} + \frac{p_2 * 65^2}{65^2 * (65^2 - 50^2)} = \frac{p_1 * 50^2}{65^2 * (65^2 - 50^2)} + \frac{p_2 * 65^2}{65^2 * (65^2 - 50^2)} + \frac{p_2 * 65$$

=1,61p₁-3,90p_C=1,61*129-3,9*16=145MΠa; $\sigma_Z = 0,3*(-59+145)=26$ MΠa.

Напряжения в наружном цилиндре при r=r_C определяем по формулам (7):

$$σ_r = -0.33 p_1 - p_C = -0.33*129-16=-58$$
ΜΠα; $σ_t = 1.61 p_1 + 4.67 p_C = 1.61*129+4.67*16=282$ ΜΠα; $σ_Z = 0.3*(-58+282)=68$ ΜΠα.

Напряжения в наружном цилиндре при r=r₂: $\sigma_{r(r=r_2)} = 0$;

$$\sigma_{t} = \sigma_{t} \left(\frac{r - r_{2}, p_{B} = p_{1}, p_{H} = 0}{t \left(\frac{r - r_{2}, p_{B} = p_{C}, p_{H} = 0}{r_{B} - r_{C}, r_{H} = r_{2}} \right)} + \sigma_{t} \left(\frac{r - r_{2}, p_{B} = p_{C}, p_{H} = 0}{r_{B} - r_{C}, r_{H} = r_{2}} \right) = \frac{p_{1} * 50^{2}}{80^{2} - 50^{2}} + \frac{50^{2} * 80^{2} * p_{1}}{80^{2} * (80^{2} - 50^{2})} + \frac{p_{C} * 65^{2}}{80^{2} - 65^{2}} + \frac{65^{2} * 80^{2} * p_{C}}{80^{2} * (80^{2} - 65^{2})} = 1,28p_{1} + 3,89p_{C} = 1,28*129 + 3,89*19 = 227M\Pi a; \quad \sigma_{Z} = 0,3*(0+227) = 68M\Pi a.$$

Изм. Лист № докум. Подпись Дата

КР_ММиК_2022_06

Напряжения в наружном цилиндре при r=r₂: $\sigma_{r(r=r_2)} = 0$;

$$\sigma_t = \sigma_t \left(\frac{r - r_2, p_B = p_1, p_H = 0}{r_B - r_1, r_H = r_2} \right) + \sigma_t \left(\frac{r - r_2, p_B = p_C, p_H = 0}{r_B - r_C, r_H = r_2} \right) = \frac{p_1 * 50^2}{80^2 - 50^2} + \frac{50^2 * 80^2 * p_1}{80^2 * (80^2 - 50^2)} + \frac{p_C * 65^2}{80^2 * (80^2 - 65^2)} + \frac{65^2 * 80^2 * p_C}{80^2 * (80^2 - 65^2)} = \frac{p_1 * 50^2}{r_B - r_1, r_H = r_2} + \frac{p_C * 65^2}{r_B - r_2, r_H = r_2} + \frac{65^2 * 80^2 * p_C}{r_B - r_2, r_H = r_2} = \frac{p_1 * 50^2}{r_B - r_2, r_H = r_2} + \frac{p_C * 65^2}{r_B - r_2, r_2 + r_2} + \frac{p_C * 65^2}{r_B - r_2, r_2 + r_2} + \frac{p_C * 65^2}{r_B - r_2, r_2 + r_2} + \frac{p_C * 65^2}{r_B - r_2, r_2 + r_2} + \frac{p_C * 65^2}{r_B - r_2, r_2 + r_2} + \frac{p_C * 65^2}{r_B - r_2, r_2 + r_2} + \frac{p_C * 65^2}{r_B - r_2, r_2 + r_2} + \frac{p_C * 65^2}{r_B - r_2, r_2 + r_2} + \frac{p_C * 65^2}{r_B - r_2, r_2 + r_2} + \frac{p_C * 65^2}{r_B - r_2, r_2 + r_2} + \frac{p_C * 65^2}{r_B - r_2, r_2 + r_2} + \frac{p_C * 65^2}{r_B - r_2, r_2 + r_2} + \frac{p_C * 65^2}{r_B - r_2, r_2 + r_2} + \frac{p_C * 65^2}{r_B - r_2, r_2 + r_2} + \frac{p_C * 65^2}{r_2 + r_2} + \frac{p_C * 65^2}{r_2 + r_2} + \frac{p_C * 65^2}{r_2$$

=1,28p₁+3,89p_C=1,28*129+3,89*19=227MHa; $\sigma_Z = 0,3*(0+227)=68$ MHa.

Напряжения в сплошном цилиндре определяем по формулам (1) и (4) при
$$r_B=r_1$$
, $r_H=r_2$, $p_B=p_1$, $p_H=0$.
Для $r=r_1$: $\sigma_r = \frac{129*50^2}{80^2-50^2} - \frac{50^2*80^2*129}{50^2*(80^2-50^2)} = -129 M \Pi a$; $\sigma_t = \frac{129*50^2}{80^2-50^2} + \frac{50^2*80^2*129}{50^2*(80^2-50^2)} = 294 M \Pi a$; $\sigma_t = 0.3*(-129+294) = 50 M \Pi a$.

 $\sigma_Z = 0.3*(-129+294)=50$ M Π_S

Для
$$r=r_2$$
: $\sigma_r = \frac{129*50^2}{80^2-50^2} - \frac{50^2*80^2*129}{80^2*(80^2-50^2)} = 0$; $\sigma_t = \frac{129*50^2}{80^2-50^2} + \frac{50^2*80^2*129}{80^2*(80^2-50^2)} = 165 M\Pi a$;

 $\sigma_Z = 0.3*(0+165)=50$ M Π a.

Строим эпюры окружных, радиальных и продольных напряжений

Изм.	Лист	№ докум.	Подпись	Дата