

Lezione del 23/03/2023

Facciamo il punto

- Siamo partiti cercando di capire come risolvere automaticamente i problemi
- E abbiamo studiato la soluzione proposta da Alan Turing che, partendo dalla sua analisi del processo di soluzione, è arrivato a definire il passo elementare di calcolo: una operazione
 - scelta in un insieme di operazioni di cardinalità costante
 - che richiede di ricordare una quantità costante di dati
- Da questa idea di operazione elementare, Turing ha introdotto un modello di calcolo: la Macchina di Turing
 - che è un linguaggio per descrivere algoritmi
 - e ogni macchina di Turing è un algoritmo
- Poi, Turing ha anche progettato la sua macchina Universale ma questa è un'altra storia (che già conosciamo)

A questo punto

- Beh, a questo punto è ragionevole porsi un po' di domande:
 - utilizzando la Macchina di Turing, possiamo risolvere tutti i problemi? Oppure esiste qualche problema che non è risolubile con la Macchina di Turing?
 - E, se esiste qualche qualche problema che non è risolubile con la Macchina di Turing, non sarà forse possibile risolvere quel problema con un altro modello di calcolo?
- La prima domanda cui risponderemo è la seconda
- Prima di farlo, dobbiamo, però, essere un po' più precisi
- Meglio: dobbiamo essere più formali
- Siamo alla dispensa 3, paragrafo 3.1

Più in dettaglio

- Una macchina di Turing (di tipo riconoscitore) è un oggetto che, se gli diamo un certo input, quella ci risponde se quell'input soddisfa una certa proprietà
- e l'input di una macchina di Turing è una parola (scritta con i caratteri di un certo alfabeto).
- Quindi: una macchina di Turing (di tipo riconoscitore) è un oggetto che, se gli scriviamo una certa parola sul nastro, quella ci risponde se quella parola soddisfa una certa proprietà
- Allora, possiamo considerare l'insieme di tutte le parole che soddisfano quella certa proprietà e dire: "la nostra macchina di Turing sa riconoscere le parole che appartengono a tale insieme!"
- Ma non è abbastanza formale: che vuol dire esattamente riconoscere?

Decidere un linguaggio

- Dato un alfabeto Σ, un **linguaggio** L è un insieme di parole costituite di caratteri di Σ: ossia, L \subseteq Σ*
- Un linguaggio L è deciso da una macchina di Turing T se
 - per ogni $x \in L$, la computazione T(x) termina in q_A
 - per ogni x ∉ L, la computazione T(x) termina in q_R
- Quindi, le computazioni della macchina T che decide L terminano sempre: sia che sul nastro di T venga scritto un input appartenente ad L, sia che sul nastro di T venga scritto un input non appartenente ad L, T giunge ad una conclusione
- Ossia, T è sempre in grado di distinguere fra le parole di L e le parole che non sono in L.
- Qualunque sia x in Σ^* , T ci dice se x è in L oppure no

Decidere un linguaggio - esempio

- Prendiamo la macchina T_{PAL} che abbiamo visto la scorsa lezione (con le due quintuple che rigettano se la parola in input ha lunghezza dispari):
 - $\rightarrow \langle q_0, q_1, q_2, D \rangle$, $\langle q_0, b_1, q_2, D \rangle$,
 - \bullet $\langle q_a, a, a, q_a, D \rangle$, $\langle q_a, b, b, q_a, D \rangle$, $\langle q_b, a, a, q_b, D \rangle$, $\langle q_b, b, b, q_b, D \rangle$,

 - lacksquare $\langle q_{a1}, a, q_{2}, S \rangle$, $\langle q_{a1}, b, b, q_{R}, F \rangle$, $\langle q_{b1}, a, a, q_{R}, F \rangle$, $\langle q_{b1}, b, q_{2}, S \rangle$,

 - \blacksquare $\langle q_0, \blacksquare, \blacksquare, q_A, F \rangle$,
 - \blacksquare $\langle q_{a1}, \blacksquare, q_{R}, F \rangle$, $\langle q_{b1}, \blacksquare, q_{R}, F \rangle$.
- ► Ebbene, T_{PAL} decide il linguaggio L_{PPAL} (Pari e PALindrome) seguente:

$$L_{PPAI} = \{ x_1 x_2 ... x_{2n} \in \{a,b\}^* : n \in \mathbb{N} \land \forall i \in \{1, 2, ..., n\} [x_i = x_{2n-i+1}] \}$$

Accettare un linguaggio

- Dato un alfabeto Σ , un linguaggio L è un insieme di parole costituite di caratteri di Σ : ossia, L $\subseteq \Sigma^*$
- Un linguaggio L è accettato da una macchina di Turing T se
 - per ogni $x \in L$, la computazione T(x) termina in q_A
 - per ogni x ∉ L, la computazione T(x) non termina in q_A
- Quindi, se sul nastro di T viene scritto un input x appartenente ad L, siamo certi
 (a) che T(x) termina e (b) che T(x) termina in q_A
- Se, invece, sul nastro di T viene scritto un input x non appartenente ad L, possiamo solo essere certi che T(X) non termina in q_A
- Ma, se x non appartiene ad L,
 - non è detto che T(x) termini in q_R
 - potrebbe anche non terminare
- Ossia, T è solo in grado di di dirci che una parola appartiene a L quando questo accade!

Accettare un linguaggio - esempio

- Modifichiamo le ultime due quintuple della macchina T_{PAL} per ottenere la macchina T_{PAL} seguente
 - $\triangleright \langle q_0, q_1 \rangle, q_q, D \rangle, \langle q_0, b_1 \rangle, q_b, D \rangle$
 - \bullet $\langle q_a, a, a, q_a, D \rangle$, $\langle q_a, b, b, q_a, D \rangle$, $\langle q_b, a, a, q_b, D \rangle$, $\langle q_b, b, b, q_b, D \rangle$,
 - $\rightarrow \langle q_a, \neg, q_{a1}, S \rangle$, $\langle q_b, \neg, q_{b1}, S \rangle$,
 - \blacksquare $\langle q_{a1}, a, \blacksquare, q_2, S \rangle$, $\langle q_{a1}, b, b, q_R, F \rangle$, $\langle q_{b1}, a, a, q_R, F \rangle$, $\langle q_{b1}, b, \blacksquare, q_2, S \rangle$,

 - \blacksquare $\langle q_0, \blacksquare, \blacksquare, q_A, F \rangle$,
 - $\rightarrow \langle q_{a1}, \dots, q_{a1}, F \rangle$, $\langle q_{b1}, \dots, q_{R}, F \rangle$.
- ► Ebbene, T_{PAL1} accetta il linguaggio L_{PPAL} ma non lo decide; in particolare:
 - accetta le parole palindrome di lunghezza pari
 - rigetta le parole non palindrome
 - rigetta le parole palindrome di lunghezza dispari che hanno 'b' come carattere centrale
 - non termina sulle parole palindrome di lunghezza dispari che hanno 'a' come carattere centrale

Linguaggi decidibili / accettabili

- Un linguaggio L ⊆ Σ* è decidibile se esiste una macchina di Turing T che lo decide
 - ossia, che, per ogni $x \in \Sigma^*$, T(x) termina: se $x \in L$ allora T(x) termina in q_A , se $x \notin L$ allora T(x) termina in q_R ,
- Quando un linguaggio L è deciso da una macchina T scriviamo: L= L(T)
- Un linguaggio L $\subseteq \Sigma^*$ è **accettabile** se esiste una macchina di Turing T che lo accetta
 - ossia, che, per ogni $x \in L$, T(x) termina in q_A ,
 - se x ∉ L allora sappiamo solo che T(x) non termina in q_A: potrebbe terminare in q_R oppure non terminare
 - ricordate la storia delle istanze negative?
- Naturalmente, ogni linguaggio decidibile è anche accettabile ma non viceversa!
 - non devo spiegarvi perché, spero...

Chiariamoci un po' le idee...

- Consideriamo il il linguaggio L_{PPAL} (Pari e PALindrome) visto poc'anzi
 - abbiamo visto la macchina T_{PAL} che lo decide
 - ma abbiamo visto anche la macchina T_{PAL1} che lo accetta senza deciderlo
- Insomma, L_{PPAL} è un linguaggio decidibile oppure no????
- Certo che è decidibile! Infatti, esiste una macchina che lo decide: la macchina T_{PAL}!!!!
 - esiste: vuol dire che basta che ce ne sia una!

Linguaggi complemento

- Dunque, mentre una macchina che decide un linguaggio su un alfabeto Σ sa ben comportarsi con tutte le parole in Σ^*
 - ightharpoonup per ogni parola in Σ^* sa se accettare o rigettare
- una macchina che accetta un linguaggio su un alfabeto Σ , invece, non sa sempre come comportarsi sulle parole in Σ^* che non sono in L
 - lacktriangle potrebbe esistere una parola in Σ^* L sulla quale la macchina non riesce a capire che decisione prendere e quindi non termina
- ▶ Sia L $\subseteq \Sigma^*$; chiamiamo *linguaggio complemento* di L il linguaggio $L^C = \Sigma^* L$
- Allora, possiamo dire che la differenza fra decisione e accettazione di un linguaggio è il comportamento della macchina sul linguaggio complemento
 - eccole ancora qui, le istanze negative...

Teorema 3.1

- ▶ $L \subseteq \Sigma^*$ è decidibile se e soltanto se L è accettabile e L^C è accettabile
- Se L è decidibile, allora:
 - chiamiamo T la macchina che decide L
 - dobbiamo costruire una macchina I₁ che accetta L e una macchina I₂ che accetta L^c
 - Ebbene: la macchina T₁ è la stessa macchina T
 - infatti, per ogni $x \in L$, T(x) termina in q_A ,
 - E la macchina T₂ ?
 - Facile: prendiamo T, invertiamo i suoi stati di accettazione e di rigetto e otteniamo T2
 - infatti, poiché T decide L
 - allora per ogni $x \notin L$, T(x) termina in q_R ,
 - ossia, per ogni $x \in L^c$, T(x) termina in q_R ,
 - e, dunque, per ogni $x \in L^{c}$, $T_{2}(x)$ termina in q_{A} !

Teorema 3.1

- L $\subseteq \Sigma^*$ è decidibile se e soltanto se L è accettabile e L^C è accettabile
- <u>Se L è accettabile e L^C è accettabile</u> allora (fate sempre riferimento alla dispensa 3, pag. 3):
 - lacktriangle chiamiamo T_1 la macchina che accetta L e T_2 la macchina che accetta L^C
 - dobbiamo costruire una macchina T che decide L
 - \blacktriangleright dotiamo T di due nastri: T usa il nastro 1 per simulare $T_1(x)$ e il nastro 2 per simulare $T_2(x)$.
 - Input di T: una parola x scritta sul nastro 1
 - ▶ Inizializzazione: T copia l'input x sul nastro 2, e poi inizia la computazione vera e propria:
 - 1) T simula **un passo** di T₁(x): se quel passo fa accettare T₁ allora accetta, altrimenti va a 2)
 - 2) T simula un passo di T₂(x): se quel passo fa accettare T₂ allora rigetta, altrimenti va a 1)
- poiché x ∈ L oppure x ∉ L , allora, prima o poi T₁ accetta o T₂ accetta: allora, T decide L.
- Ma perché simuliamo un passo alla volta di ciascuna macchina?! Perché non simuliamo prima l'intera $T_1(x)$ e poi l'intera $T_2(x)$?

Perché un passo alla volta?

- La macchina T_{PAL1} che abbiamo visto poc'anzi, accetta L_{PPAL}
- \blacktriangleright la seguente macchina, che chiamiamo T_{PAL2} , accetta : L_{PPAL}

```
\rightarrow \langle q_0, a, \neg, q_a, D \rangle, \langle q_0, b, \neg, q_b, D \rangle,
```

- \bullet $\langle q_a, a, a, q_a, D \rangle$, $\langle q_a, b, b, q_a, D \rangle$, $\langle q_b, a, a, q_b, D \rangle$, $\langle q_b, b, b, q_b, D \rangle$,
- $\triangleright \langle q_a, \neg, \neg, q_{a1}, S \rangle$, $\langle q_b, \neg, \neg, q_{b1}, S \rangle$,

- \blacksquare $\langle q_0, \blacksquare, \blacksquare, q_R, F \rangle$,
- Ora, costruiamo la macchina T'_{PAL} che ha due nastri: dopo aver copiato l'input x (che inizialmente è scritto sul nastro 1) sul nastro 2, T usa il nastro 1 per simulare T_{PAL1}(x) e il nastro 2 per simulare T_{PAL2}(x)

Perché un passo alla volta?

- Costruiamo la macchina T'PAI che opera in due fasi:
 - durante la prima fase simula l'intera computazione T_{PAL1} (aba)
 - durante la seconda fase simula l'intera computazione T_{PAL2} (aba)
- Bene. Ora eseguiamo la computazione T'_{PAL}(bab)
 - che, ad un certo punto, dovrà eseguire la quintupla (qa1, , , , qa1, F) e, quindi, andrà in loop!
- Osservate che aba $\in L_{PPAL}^{C}$: quindi, T'_{PAL}(aba) dovrebbe rigettare
- Ma aba è una parola palindroma di lunghezza dispari con 'a' al centro
- e, quindi, poiché T'_{PAL} simula <u>prima</u> l'intera computazione T_{PAL1}(bab), T'_{PAL} non termina!
- Ecco perché "un passo alla volta"!
- Guardatelo bene, questo esempio

Esercizi

- E ora un paio di esercizi (<u>che vi chiedo all'esame</u>):
 - dimostrare che, se L₁ e L₂ sono due linguaggi accettabili, allora L₁ u L₂ è accettabile
 - dimostrare che, se L₁ e L₂ sono due linguaggi accettabili, allora L₁ n L₂ è
 accettabile
- In una delle due dimostrazioni è possibile prima simulare l'intera computazione di una macchina e poi l'intera computazione della seconda macchina: in quale dimostrazione?
 - la soluzione la trovate sulle dispense
 - e io sono sempre disponibile a correggere le soluzioni che vorrete inviarmi

Funzioni calcolabili

- Torniamo, per un momento, ai cari vecchi trasduttori: macchine di Turing dotate di nastro di output, che sanno calcolare il valore di una funzione generica – scrivendo tale valore sul nastro di output e terminando la computazione nello stato q_F
- Bella cosa, questa, di una macchina che sa calcolare il valore di una funzione – bella, sì, ma che vuol dire?
- Facile! ("La so, la so", starete gridando tutti, agitandovi sulle vostre sedie). Cioè, ad esempio:
 - $f(n) = n^2$ nel punto n = 5, vale 25 ossia, f(5) = 25
 - $f(n) = 2^n$ nel punto n = 9 vale 512 ossia, f(9) = 512
 - facile!
 - Ef(n) = $\frac{1}{n-4}$ nel punto n = 4 vale ... Ops!

Funzioni calcolabili

- Già, non è proprio così banale come sembrava...
- Allora, intanto ci limitiamo a considerare funzioni "discrete" ossia, dati due alfabeti (finiti, neanche a dirlo) Σ_1 e Σ_2 , noi consideriamo funzioni f : $\Sigma_1^* \to \Sigma_2^*$
 - ossia, funzioni che trasformano parole in altre parole
- Poi, noi vogliamo calcolarle solo dove sono definite
 - E, poiché $f(n) = \frac{1}{n-4}$ non è definita nel punto n = 4, non possiamo (né vogliamo!) calcolare f(4)
- E, infatti, parliamo di funzioni in generale (che possono non essere definite in alcuni punti) e di funzioni totali (che sono definite per ogni $x \in \Sigma_1^*$)
- Una funzione $f: \Sigma_1^* \to \Sigma_2^*$ è **calcolabile** se esiste una macchina di Turing di tipo trasduttore T tale che, per ogni $x \in \Sigma_1^*$ tale che f(x) è definita, T(x)=f(x)
 - ossia, quando f(x) è definita, la computazione T(x) termina con la parola f(x) scritta sul nastro di output

Funzioni calcolabili

- Una funzione $f: \Sigma_1^* \to \Sigma_2^*$ è calcolabile se esiste una macchina di Turing di tipo trasduttore T tale che, per ogni x ∈ Σ_1^* tale che f(x) è definita, f(x)=f(x)
 - ossia, la computazione T(x) termina con la parola f(x) scritta sul nastro di output
- Osservate che questa definizione nulla ci dice circa le computazioni T(x) tali che f(x) non è definita
 - in questo caso, T(x) potrebbe non terminare
 - oppure terminare con un valore scritto sul nastro di output che non corrisponde al valore f(x): infatti, f(x) non esiste!
- Perciò, a pensarci bene, il concetto di calcolabilità di una funzione è molto simile al concetto di accettabilità di un linguaggio
- Le cose vanno certamente bene quando scegliamo un x tale che f(x) è definita / x appartiene al linguaggio
- Può succedere di tutto quando quando scegliamo un x tale che f(x) non è definita / x non appartiene al linguaggio

- Pensandoci bene, ad ogni linguaggio $L \subseteq \Sigma^*$ possiamo associare una funzione quella che si chiama funzione caratteristica di un insieme: una funzione $\chi_1: \Sigma^* \to \{0,1\}$ tale che, per ogni $x \in \Sigma^*$,
 - $\rightarrow \chi_1(x)=1$ se $x \in L$,
 - $\rightarrow \chi_L(x)=0 \text{ se } x \notin L$
- Osservate che, qualunque sia L, χ_L è una funzione totale

- **TEOREMA 3.2:** χ_1 è calcolabile se e solo se L è decidibile
- è questo il Teorema 3.2 e la dimostrazione (facile facile facile) ve la <u>studiate</u> sulle dispense
- è argomento di esame
 - perciò, studiatelo e se avete dubbi fatemi delle domande!

- Ri-pensandoci bene, anche ad ogni funzione $f: \Sigma_1^* \to \Sigma_2^*$ possiamo associare un linguaggio $L_f \subseteq \Sigma_1^* \times \Sigma_2^* : L_f = \{ (x, y) \in \Sigma_1^* \times \Sigma_2^* \text{ tali che y = f(x)} \}$
- Osservate bene: il linguaggio è costituito da coppie di parole
 - a ben guardare, L_f è, in qualche modo, il grafico della funzione f
- **▼ TEOREMA 3.3:** Se f è calcolabile <u>e totale</u> allora L_f è decidibile
 - Idea della dimostrazione: sia T_f è il trasduttore che calcola f
 - Costruiamo il riconoscitore T per decidere L_f: T ha tre nastri sul primo nastro è scritto l'input x, sul secondo nastro è scritto l'input y, il terzo nastro è un nastro di lavoro
 - Topera in due fasi:
 - ► FASE 1: T simula $T_f(x)$ scrivendo il risultato f(x) = z sul terzo nastro
 - FASE 2: T confronta z con y, accettando se sono uguali rigettando se sono diverse
 - La dimostrazione che T effettivamente decide L_f è sulla dispensa: studiatela!
- Domandina: possiamo dire qualcosa su L_f se f è calcolabile ma non totale? Provate a giocarci un po'...

- ► TEOREMA 3.4: Se L_f è decidibile allora f è calcolabile
- e qui qualche commento è d'uopo
- Sappiamo che L_f è decidibile (la nostra ipotesi); allora esiste un riconoscitore T_L che, se gli scrivo sul nastro le **due parole x e y** quello, dopo un po', mi risponde "(x,y) è in L_f " (q_A) oppure "(x,y) non è in L_f " (q_R)
- Dobbiamo sfruttare T_L per costruire un trasduttore T_f che calcoli f
 - ossia, ogni volta che scrivo x (x soltanto, x nudo e crudo) sul nastro di T_f quello, dopo un po' termina con la parola f(x) scritta sul nastro di output
- Problema: se a T_f posso comunicare soltanto x, come faccio ad utilizzare T_L che ha bisogno di due input, x e y, per lavorare? Chi me lo dà y???
- Risposta: nessuno, me lo dà. Me lo devo costruire da me...
 - o meglio, devo enumerare tutti gli y possibili e provarli uno per uno!
- E allora...

- Costruiamo una macchina T_f, con 4 nastri ed un nastro di output, che opera come segue
 - inizialmente, l'input x è scritto sul primo nastro, e T_f scrive 0 sul secondo nastro
 - T_f scrive sul terzo nastro tutte le parole di lunghezza 0: ossia, la parola vuota -
 - T_f simula la computazione $T_L(x, \square)$: se T_L accetta, allora T_f scrive \square sul nastro di output, altrimenti (e, in questo caso T_L rigetta) passa al successivo passo 1)
 - PASSO 1) T_f incrementa di 1 il valore scritto sul secondo nastro
 - PASSO 2) T_f scrive sul terzo nastro tutte le parole in Σ_2^* la cui lunghezza è il valore scritto sul secondo nastro: ad esempio, se sul secondo nastro è scritto 2 e Σ_2 = {a,b}, allora T_f scrive sul terzo nastro le parole aa, ab, ba, bb
 - PASSO 3) per ogni parola y scritta sul terzo nastro, T_f simula la computazione τ_L (x, y): se T_L accetta, allora T_f scrive sul y nastro di output e termina, altrimenti (e, in questo caso T_L rigetta)
 - se non ha ancora esaminato tutte le parole scritte sul terzo nastro, passa alla parola successiva
 - altrimenti, se ha esaminato tutte le parole scritte sul secondo nastro e nessuna ha indotto T₁ ad accettare, torna al PASSO 1)

- Osserviamo che i passi 1), 2) e 3) terminano sempre.
- Perciò, se f è definita in x₀, allora,
 - ightharpoonup detto n_0 il numero di caratteri di $f(x_0)$,
 - ightharpoonup quando sul secondo nastro verrà scritto n_0 , sul terzo nastro verranno scritte tutte le parole di n_0 caratteri e fra esse anche la parola $f(x_0)$ (chiamiamola y_0)
 - allora, poiché tutte le computazioni T_L (x₀, y) terminano, prima o poi verrà anche eseguita la computazione T_L (x₀, y₀) che terminerà in q_A: così, y₀ verrà scritto sul nastro di output di T_f e la computazione T_f (x₀) terminerà
- Questo dimostra che "se f è definita in x_0 , allora $T_f(x_0)$ calcola $f(x_0)$ "
- Quindi, f è calcolabile.
- Ma, se f non è definita in x_0 , allora non verrà mai trovata una parola y_0 tale che T_1 (x_0 , y_0) accetta perché T_1 decide $L_f = \{ (x, y) \in \Sigma_1^* \times \Sigma_2^* \text{ tali che } y = f(x) \}$
- \blacksquare e, quindi, anche se L_f è decidibile, non è detto che f sia totale.

NOTA BENE

I teoremi 3.2 – 3.3 - 3.4 sono stati enunciati (e il 3.4 discusso) molto informalmente: per non appesantire la chiacchierata, non ho mai specificato dominio e codominio delle funzioni, e alfabeto dei linguaggi.

Naturalmente, voi dovrete essere più formali: esattamente come viene fatto sulle dispense.

Perché

dovete

studiare

sulle

dispense.

Senza se e senza ma. Punto.