PC 3 – Random vectors & Convergence

Gamma distribution

Exercise 1

(Gamma distribution). One says that X has Gamma distribution with parameters p > 0 et $\theta > 0$, denoted by $\gamma(p,\theta)$, if its density is given by

$$f(x) = \frac{\theta^p}{\Gamma(p)} \exp(-\theta x) x^{p-1} \mathbb{1}_{[0, +\infty[}(x)$$

The associated characteristic function is given by

$$\Phi_X(t) = \frac{1}{(1 - it/\theta)^p}, \quad t \in \mathbb{R}.$$

Here $\Gamma(\cdot)$ denotes the Gamma function defined as

$$\forall \alpha > 0, \quad \Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} \exp(-x) dx, \quad \Gamma(\alpha + 1) = \alpha \Gamma(\alpha), \quad \Gamma(1/2) = \sqrt{\pi}$$

- 1. Compute $\mathbb{E}[X^k]$ for $k \geq 1$. Deduce that $\mathbb{E}[X] = p/\theta$ and $\text{Var}(X) = p/\theta^2$.
- 2. Let a > 0. Show that $X/a \sim \gamma(p, a\theta)$.
- 3. Let X and Y be two independent random variables with Gamma distribution $\gamma(p_1, \theta)$ and $\gamma(p_2, \theta)$, respectively. Show that $X + Y \sim \gamma(p_1 + p_2, \theta)$.
- 4. Let Z have standard normal distribution $\mathcal{N}(0,1)$. What is the distribution of \mathbb{Z}^2 ?
- 5. Let X_1, \ldots, X_n be n i.i.d. random variables aléatoires with exponential distribution $\operatorname{Exp}(\theta)$. Determine the distribution of the sum $S_n = X_1 + \cdots + X_n$. Compute $\mathbb{E}[S_n]$ and $\operatorname{Var}(S_n)$.
- 6. Let X_1, \ldots, X_n be n i.i.d. random variables aléatoires with standard normal distribution $\mathcal{N}(0,1)$. Determine the distribution of the sum $S'_n = X_1^2 + \cdots + X_n^2$. Compute $\mathbb{E}[S'_n]$ and $\operatorname{Var}(S'_n)$.

Solution 1 1. We have:

$$\begin{split} \mathbb{E}[X^k] &= \frac{\theta^p}{\Gamma(p)} \int_0^\infty e^{-\theta t}.t^{p-1}dt \\ &= \frac{\theta^p}{\Gamma(p)} \left[e^{-\theta t}.\frac{t^p}{p} \right]_0^\infty - \frac{\theta^p}{\Gamma(p)} \int_0^\infty -\theta e^{-\theta t}.\frac{t^p}{p}dt \\ &= \frac{\theta^{p+1}}{p\Gamma(p)} \int_0^\infty e^{-\theta t}.\frac{t^p}{p}dt \\ &= \frac{\theta^{p+1}}{\Gamma(p)} \int_0^\infty e^{-\theta t}.t^pdt \\ &= \mathbb{E}[X^{k+1}] \end{split}$$

Therefore,

$$\forall k \ge 0, \ \mathbb{E}[X^k] = \mathbb{E}[X^0] = 1$$

Random vectors

Exercise 2

Denote

$$f(x,y) = ce^{-x} \mathbb{1}_{|y| \le x}.$$

- 1. Find c such that f is a probability density function of a pair (X,Y) of random variables.
- 2. Compute the marginal distributions of X and Y.
- 3. Conclude on the independence of X and Y.

Exercise 3

Let X and Y be two random variables taking their values in \mathbb{N} . Consider the joint probability mass function of (X,Y) given by

$$\mathbb{P}[(X=i)\cap (Y=j)] = \frac{a}{2^{i+j}}, i,j\in\mathbb{N}, a\in\mathbb{R}.$$

- 1. Compute a.
- 2. Give the marginal distributions of X and Y.
- 3. Are X and Y independent?

Solution 2 1. We have:

$$\sum_{i,j=0}^{\infty} \frac{a}{2^{i+j}} = a \left(\sum_{i=0}^{\infty} \frac{1}{2^i}\right)^2 = a.2.2 = 4a$$

Therefore, 4a = 1 and finally $a = \frac{1}{4}$.

2. We have :

$$\begin{split} \mathbb{P}[X = i] &= \sum_{j=0}^{\infty} \mathbb{P}[(X = i) \cap (Y = j)] \\ &= \sum_{j=0}^{\infty} \frac{1}{4 \cdot 2^{i} \cdot 2^{j}} \\ &= \frac{1}{2^{i+1}} \end{split}$$

In the same way:

$$\mathbb{P}[Y=i] = \frac{1}{2^{i+1}}$$

3. We have :

$$\mathbb{P}[(X=i) \cap (Y=j)] = \frac{1}{2^{i+j+2}} = \left(\frac{1}{2^{i+1}}\right) \left(\frac{1}{2^{j+1}}\right) = \mathbb{P}[X=i]\mathbb{P}[Y=j]$$

And the random variables are therefore independents.

Exercise 4

Denote

$$f(x,y) = a(x^2 + y^2) \mathbb{1}_{(x,y) \in [-1,1]^2}.$$

- 1. Find a such that f is a probability density. We denote (X, Y) the pair of random variables with joint distribution f.
- 2. Compute the marginal distributions of X and Y.
- 3. Compute the covariance of X and Y.
- 4. Are X and Y independent?

Exercise 5

Let $\mathbf{X} = (X_1, X_2, X_3)$ be a random vector with the following covariance matrix

$$Cov(\mathbf{X}) = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 5 & 6 \\ 3 & 6 & 9 \end{pmatrix}$$

- 1. Give the variance of X_2 and the covariance between X_1 and X_3 .
- 2. Compute the variance of $Z = X_3 \alpha_1 X_1 \alpha_2 X_2$ for $\alpha_1, \alpha_2 \in \mathbb{R}$.
- 3. Deduce that X_3 is almost surely a linear combination of X_1 and X_2 .
- 4. More generally, let **Y** be a random vector. Give a necessary and sufficient condition on the covariance matrix of **Y** ensuring that one of the components of **Y** is almost surely a linear combination of the components of **Y**.

Convergence

Exercise 6

Let $\{X_i\}_{i>0}$ be a sequence of i.i.d. Bernoulli variables with parameter θ .

- 1. Show that $\sqrt{n} (\bar{X}_n \theta) \xrightarrow{d} \mathcal{N}(0, \theta(1 \theta))$, where $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$.
- 2. Show that $\bar{X}_n \left(1 \bar{X}_n\right) \stackrel{P}{\longrightarrow} \theta(1 \theta)$.
- 3. Show that $\sqrt{n} (\bar{X}_n \theta)^2 \xrightarrow{P} 0$.
- 4. Determine the limit distribution of $\sqrt{n} \left(\bar{X}_n \left(1 \bar{X}_n \right) \theta (1 \theta) \right)$.

Solution 3 1. Par le TCL, on a $\sqrt{n}(\bar{X}_n - \theta) = \sqrt{n}(\bar{X}_n - \mathbb{E}[[X_1]) \xrightarrow{d} \mathcal{N}(0, Var(X_1)) = \mathcal{N}(0, \theta(1 - \theta))$.

- 2. Par la LGN, on a $\bar{X}_n \stackrel{P}{\to} \mathbb{E}[[X_1] = \theta$. La fonction h(x) = x(1-x) étant continue, on obtient par le théorème de continuité, $\bar{X}_n(1-\bar{X}_n) = h(\bar{X}_n) \stackrel{P}{\to} h(\theta) = \theta(1-\theta)$.
- 3. On a

$$\sqrt{n}(\bar{X}_n - \theta)^2 = \underbrace{\sqrt{n}(\bar{X}_n - \theta)}_{\stackrel{d}{\to} \mathcal{N}(0, \theta(1 - \theta))} \underbrace{(\bar{X}_n - \theta)}_{\stackrel{P}{\to} 0} \stackrel{d}{\to} 0 \times \mathcal{N}(0, \theta(1 - \theta)) = 0.$$

La convergence en loi vers une constante est équivalente à la convergence en probabilité, d'où le résultat.

4. On écrit

$$\sqrt{n} \left(\bar{X}_n (1 - \bar{X}_n) - \theta (1 - \theta) \right) = \sqrt{n} \left((\bar{X}_n - \theta)(1 - \bar{X}_n) + \theta (1 - \bar{X}_n) - \theta (1 - \theta) \right)
= \sqrt{n} \left((\bar{X}_n - \theta)(1 - \bar{X}_n) - \theta (\bar{X}_n - \theta) \right)
= \underbrace{\sqrt{n} (\bar{X}_n - \theta)}_{\underline{d} \mathcal{N}(0, \theta(1 - \theta))} \underbrace{(1 - \bar{X}_n - \theta)}_{\underline{P}_{1-2\theta}}
\xrightarrow{\underline{d}} (1 - 2\theta) \mathcal{N}(0, \theta(1 - \theta)) = \mathcal{N}(0, (1 - 2\theta)^2 \theta (1 - \theta)),$$

par le lemme de Slutsky.

Exercise 7

Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. square-integrable random variables with mean m and variance $\sigma^2 > 0$. Denote $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \bar{X}_n \right)^2$.

- 1. Show that $\hat{\sigma}_n^2$ converges in probability to σ^2 as $n \to \infty$.
- 2. Determine the limit distribution of $\sqrt{n} (\bar{X}_n m) / \hat{\sigma}_n$.

Solution 4 Commençons par étudier le comportement limite de $\hat{\sigma}_n^2$ quand $n \to +\infty$.

$$(n-1)\hat{\sigma}_n^2 = \sum_{k=1}^n (X_k - \bar{X}_n)^2$$

$$= \sum_{k=1}^n (X_k - m)^2 + 2\sum_{k=1}^n (X_k - m)(m - \bar{X}_n) + n(m - \bar{X}_n)^2$$

$$= \sum_{k=1}^n (X_k - m)^2 - n(m - \bar{X}_n)^2.$$

Donc

$$\frac{n-1}{n}\hat{\sigma}_n^2 = \frac{1}{n}\sum_{k=1}^n (X_k - m)^2 - (m - \bar{X}_n)^2$$

$$\xrightarrow{p.s.} \mathbb{E}[[(X_1 - m)^2] - 0 = \text{Var}(X_1) =: \sigma^2,$$

où la limite est donnée par la loi des grands nombres. Par suite, $\hat{\sigma}_n \to \sigma$ presque sûrement. Notons $Z_n = \sqrt{n}(\bar{X}_n - m)$ qui converge en loi, d'après le théorème limite central vers une variable aléatoire gaussienne $Z \sim \mathcal{N}(0, \sigma^2)$. D'après le lemme de Slutsky, le couple $(Z_n, \hat{\sigma}_n^{-1})$ converge en loi vers (Z, σ^{-1}) . En particulier, la fonction produit étant continue, $\frac{Z_n}{\hat{\sigma}_n} \stackrel{d}{\to} Z/\sigma \sim \mathcal{N}(0, 1)$.

Exercise 8

(Poisson model). Let (X_1, \ldots, X_n) be an i.i.d. sample from the Poisson distribution with unknown parameter $\lambda > 0$. Denote $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.

- 1. Show that \bar{X}_n is an unbiased estimator of λ , that is $\mathbb{E}\left[\bar{X}_n\right] = \lambda$.
- 2. Show that \bar{X}_n converges in probability to λ when n tends to infinity.
- 3. Determine the limit distribution of $\sqrt{n} \left(\bar{X}_n \lambda \right) / \sqrt{\bar{X}_n}$.
- 4. Find an appropriate function g such that $\sqrt{n} \left(g\left(\bar{X}_n \right) g(\lambda) \right) \xrightarrow{d} \mathcal{N}(0,1)$.

Solution 5 1. On rappelle, pour $X \sim \mathcal{P}(\lambda)$, $\lambda > 0$, on a $\mathbb{E}[[X] = \text{Var}[(X)] = \lambda$. Alors l'estimateur \bar{X}_n est alors sans biais ($\mathbb{E}[[\bar{X}_n]] = \lambda$), consistant en vertu de la LFGN ($\bar{X}_n \longrightarrow \mathbb{E}[[X_1]] = \lambda$ p.s.), et enfin, \bar{X}_n est asymptotiquement normal par le TCL:

$$\sqrt{n}(\bar{X}_n - \lambda) = \sqrt{n}(\bar{X}_n - \mathbb{E}[[X_1]) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \text{Var}[(X_1))) = \mathcal{N}(0, \lambda), \quad lorsque \ n \to \infty.$$

2. En utilisant la question a et le lemme de Slutsky, on obtient

$$\sqrt{n}\left(\frac{\bar{X}_n - \lambda}{\sqrt{\bar{X}_n}}\right) = \underbrace{\sqrt{n}\left(\frac{\bar{X}_n - \lambda}{\sqrt{\lambda}}\right)}_{\stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0,1)} \underbrace{\frac{\sqrt{\lambda}}{\sqrt{\bar{X}_n}}}_{\stackrel{P}{\longrightarrow} \frac{\sqrt{\lambda}}{\sqrt{\mathbb{E}[||X_1|]}} = 1} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1).$$

3. D'après la delta méthode, pour toute fonction g continument dérivable sur \mathbb{R}_+ , on a

$$\sqrt{n} \left(g(\bar{X}_n) - g(\lambda) \right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, (g'(\lambda))^2 \operatorname{Var}[(]X)).$$

Nous cherchons donc une fonction g telle que la variance limite vaut 1. Ce qui veut dire

$$(g'(\lambda))^2 \operatorname{Var}[(]X) = 1 \Leftrightarrow (g'(\lambda))^2 = \frac{1}{\lambda}.$$

On peut alors choisir $g(u) = 2\sqrt{u}$ avec dérivée $g'(u) = 1/\sqrt{u}$ et on obtient

$$\sqrt{n}\left(2\sqrt{\bar{X}_n} - 2\sqrt{\lambda}\right)\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \left(\frac{1}{\sqrt{\lambda}}\right)^2 \lambda\right) = \mathcal{N}(0, 1).$$

Exercise 9

Define the random variable

$$Y = \mathbb{1}\{\theta > X\}$$

where $\theta \in \mathbb{R}$ and X is a random variable with standard normal distribution $\mathcal{N}(0,1)$. We observe a sample Y_1, \ldots, Y_n of i.i.d. realizations of Y and suppose that parameter θ is unknown. Denote by Φ the cumulative distribution function of the standard normal distribution $\mathcal{N}(0,1)$. An estimator $\hat{\theta}_n$ of θ is given by

$$\hat{\theta}_n = \Phi^{-1} \left(\bar{Y}_n \right)$$

where $\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$

- 1. Determine the distribution of Y.
- 2. Study the convergence in probability of $\hat{\theta}_n$ towards θ when n tends to infinity.
- 3. Study the limit distribution of $\sqrt{n} (\hat{\theta}_n \theta)$.

Solution 6 1. Comme Y prend ses valeurs dans $\{0,1\}$, Y suit une loi de Bernoulli avec paramètre $\P(Y=1) = \P(\theta > \xi) = \Phi(\theta)$.

- 2. Puisque $\frac{1}{n}\sum_{i=1}^{n}Y_{i} \to \mathbb{E}[[Y_{1}] = \Phi(\theta) \ p.s. \ et \Phi^{-1} \ est \ une fonction \ continue, \ on \ a \ \hat{\theta}_{n} = \Phi^{-1}(\frac{1}{n}\sum_{i=1}^{n}Y_{i}) \to \Phi^{-1}(\Phi(\theta)) = \theta \ p.s.. \ Donc \ \hat{\theta}_{n} \ est \ consistant \ pour \ \theta.$
- 3. En vertu du TCL (car $\mathbb{E}[[Y_1^2] < \infty)$, on a $\sqrt{n}(\frac{1}{n}\sum_{i=1}^n Y_i \Phi(\theta)) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \text{Var}[(Y_1)) = \mathcal{N}(0, \Phi(\theta)(1 \Phi(\theta)))$. La fonction $\Phi^{-1}(\theta)$ est continument dérivable avec dérivée $(\Phi^{-1})'(\theta) = 1/\varphi(\Phi^{-1}(\theta))$. On obtient par la delta-méthode

$$\sqrt{n}(\hat{\theta}_n - \theta) = \sqrt{n} \left(\Phi^{-1} \left(\frac{1}{n} \sum_{i=1}^n Y_i \right) - \Phi^{-1}(\Phi(\theta)) \right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, ((\Phi^{-1})'(\Phi(\theta)))^2 \Phi(\theta)(1 - \Phi(\theta)))$$

$$= \mathcal{N} \left(0, \frac{\Phi(\theta)(1 - \Phi(\theta))}{\varphi^2(\theta)} \right).$$