Exercice 3 – Location de canoës

Le but de cet exercice est de concevoir un algorithme de programmation dynamique pour résoudre ce problème. On note opt(i) le coût minimum d'une séquence de i à n (avec $1 \le i \le n$).

Q 3.1 Donner la valeur du cas de base opt(n), ainsi que la formule de récurrence permettant de déterminer opt(i) (pour $i \in \{1, ..., n-1\}$).

$$\frac{\partial pt(n)}{\partial pt(i)} = 0$$

$$\frac{\partial pt(i)}{\partial pt(i)} = \min_{i \in I} \{c_{i,j} + opt(i) : i < j < n \}$$

Q 3.2 On suppose les coûts c_{ij} stockés en machine sous la forme d'une matrice c de taille $n \times n$ $(c_{ij} = c[i][j])$. Ecrire un algorithme de programmation dynamique permettant de déterminer le coût minimal de location de canoë pour aller du site 1 au site n. Cet algorithme pourra utiliser un tableau opt de taille n, où la valeur opt(i) sera stockée dans la cellule opt[i]. Indiquer la complexité de votre algorithme. Mn je D [N/m X-n) prob de comparusons m i allant de n-1 a 1 faire 2 2 1 n/m-n pour jalant sé i+làn foire & Al rente par opt [i] + cli][j] Oopt [i] alors rente par opt [i] < opt [i] + cli][j][sli 10 opt [i] > n x O(n) > E **Q 3.3** Soit s(i) l'arrêt suivant i dans une séquence de coût minimum de i à n. Les valeurs s(i) seront stockées sous la forme d'un tableau $s[1 \dots n]$. Modifier l'algorithme afin que soient calculées également ces valeurs s(i). Votr instructions chadrés ou - dessus.

L'objet des questions 4 et 5 est d'appliquer l'algorithme à l'instance numérique de la table 1.

Q 3.4 Appliquer l'algorithme pour déterminer opt(i) et s(i) pour $i \in \{1, ..., n\}$.

Q 3.5 En déduire une séquence de coût minimum pour aller de 1 à 8.

Q 3.5 En déduire une séquence de coût minimum pour aller de 1 à 8.										
		CFT	it du	ne ste	uma	· opl	imole	2 50	128	ر ک
u L	1	2	3	4	5	6	7	8		
opt(i)	96	5	6	3	6	4	1	0		
n(i)	$\left \begin{array}{c} 2 \end{array} \right $	9	4	7	8	7				
Equone optimal: (1,2,4,7,8) de coût 9.										
	2	3	4	5	6	7	8			
1	(4)	4	7	5	8	11	10			
» -	2	4	2	3	2	5	9			
	3 Ta	3	3	1	4	8	12			
		3. Table 1	4	4	3	(2)	11			
,		ı		5	4	8	6			
	7 (+)	\ \ _	\\ \		6	3	7			
(1 (7 (·				7	1			