Introduction to Algorithms

Dynamic Programming

0-1 Knapsack problem

- Given a knapsack with maximum capacity W, and a set S consisting of n items
- Each item i has some weight w_i and benefit value b_i (all w_i , b_i and W are integer values)
- <u>Problem</u>: How to pack the knapsack to achieve maximum total value of packed items?

0-1 Knapsack problem: a picture

	Items	Weight w _i	Benefit value b _i
		2	3
This is a knapsack		3	4
Max weight: $W = 20$		4	5
W=20		5	8
		9	10

0-1 Knapsack problem

• Problem, in other words, is to find

$$\max \sum_{i \in T} b_i$$
 subject to $\sum_{i \in T} w_i \leq W$

- The problem is called a "0-1" problem, because each item must be entirely accepted or rejected.
- Just another version of this problem is the "Fractional Knapsack Problem", where we can take fractions of items.

0-1 Knapsack problem: brute-force approach

Let's first solve this problem with a straightforward algorithm

- Since there are n items, there are 2^n possible combinations of items.
- We go through all combinations and find the one with the most total value and with total weight less or equal to W
- Running time will be $O(2^n)$

0-1 Knapsack problem: brute-force approach

- Can we do better?
- Yes, with an algorithm based on dynamic programming
- We need to carefully identify the subproblems

Let's try this:

If items are labeled 1...n, then a subproblem would be to find an optimal solution for $S_k = \{\text{items labeled } 1, 2, ... k\}$

Defining a Subproblem

If items are labeled 1...n, then a subproblem would be to find an optimal solution for $S_k = \{items\ labeled\ 1,\ 2,\ ...\ k\}$

- This is a valid subproblem definition.
- The question is: can we describe the final solution (S_n) in terms of subproblems (S_k) ?
- Unfortunately, we <u>can't</u> do that. Explanation follows....

Defining a Subproblem

$$w_1 = 2$$
 $w_2 = 4$ $w_3 = 5$ $w_4 = 3$ $b_1 = 3$ $b_2 = 5$ $b_3 = 8$ $b_4 = 4$

Max weight: W = 20

For S_4 :

Total weight: 14;

total benefit: 20

For S_5 :

Total weight: 20 total benefit: 26

Solution for S_4 is not part of the solution for $S_5!!!$

Defining a Subproblem (continued)

- As we have seen, the solution for S_4 is not part of the solution for S_5
- So our definition of a subproblem is flawed and we need another one!
- Let's add another parameter: w, which will represent the <u>exact</u> weight for each subset of items
- The subproblem then will be to compute B[k, w]

Recursive Formula for subproblems

■ Recursive formula for subproblems:

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- It means, that the best subset of S_k that has total weight w is one of the two:
- 1) the best subset of S_{k-1} that has total weight w, or
- 2) the best subset of S_{k-1} that has total weight $w-w_k$ plus the item k

Recursive Formula

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- The best subset of S_k that has the total weight w, either contains item k or not.
- First case: $w_k > w$. Item k can't be part of the solution, since if it was, the total weight would be > w, which is unacceptable
- Second case: $w_k \le w$. Then the item k can be in the solution, and we choose the case with greater value

0-1 Knapsack Algorithm

```
for w = 0 to W
  B[0,w] = 0
for i = 0 to n
  B[i,0] = 0
   for w = 0 to W
       if w_i \le w // item i can be part of the solution
               if b_i + B[i-1, w-w_i] > B[i-1, w]
                       B[i,w] = b_i + B[i-1,w-w_i]
                else
                       B[i,w] = B[i-1,w]
        else B[i,w] = B[i-1,w] // w_i > w
```

Running time

```
for w = 0 to W
                   O(W)
  B[0,w] = 0
for i = 0 to n
                  Repeat n times
  B[i,0] = 0
  for w = 0 to W
                      O(W)
     < the rest of the code >
     What is the running time of this algorithm?
      O(n*W)
   Remember that the brute-force algorithm
                    takes O(2^n)
```

Example

Let's run our algorithm on the following data:

```
n = 4 (# of elements)
W = 5 (max weight)
Elements (weight, benefit):
(2,3), (3,4), (4,5), (5,6)
```

Example (2)

W i	0	1	2	3	4
0	0				
1	0				
2	0				
3	0				
4	0				
5	0				

for
$$w = 0$$
 to W
 $B[0,w] = 0$

Example (3)

W i	0	1	2	3	4
0	0	0	0	0	0
1	0				
2	0				
3	0				
4	0				
5	0				

for
$$i = 0$$
 to n

$$B[i,0] = 0$$

Example (4)

1: (2,3) 3 2: (3,4) W 0 0 0 0 0 0 3: (4,5) i=14: (5,6) 0 $b_i=3$ 2 0 $w_i=2$ 3 0 w=1 $w-w_i = -1$ **5** 0

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (5)

Items:

1: (2,3) 2: (3,4) W 0 0 3: (4,5) 0 0 0 0 i=14: (5,6) $b_i=3$ 2 0 3 $w_i=2$ 3 0 w=20 $w-w_i = 0$ 5

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (6)

W i	0	1	2	3	4	1: (2,3) 2: (3,4)	
0	0	0	0	0	0	3: (4,5))
1	0	0				i=1 4: (5,6))
2	0	3				$b_i=3$	
3	0	3				$w_i=2$	
4	0					w=3	
5	0					$w-w_i=1$	

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (7)

W 0 0 0 0 0 0 i=10 $b_i=3$ 2 3 0 $w_i=2$ 3 3 w=40 3 $w-w_i=2$ 5

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (8)

w i	0	1	2	3	4
0	0	0	0	0	0
1	0	0			
2	0	3			
3	0	3			
4	0	3			
5	0	3			

if
$$w_i \le w$$
 // item i can be part of the solution if $b_i + B[i-1,w-w_i] > B[i-1,w]$

$$B[i,w] = b_i + B[i-1,w-w_i]$$

$$B[i,w] = B[i-1,w]$$

$$else \ B[i,w] = B[i-1,w] \ // w_i > w$$

Example (9)

i W	0	1	2	3	4		1: (2,3) 2: (3,4)
0	0	0	0	0	0		3: (4,5)
1	0	0 -	0			<i>i</i> =2	<i>4: (5,6)</i>
2	0	3				$b_i=4$	
3	0	3				$w_i=3$	
4	0	3				w= <u>1</u>	_
5	0	3				$w-w_i=-$	2

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (10)

w i	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0		
2	0	3 -	→ <i>3</i>		
3	0	3			
4	0	3			
<i>5</i>	0	3			

$$b_i = 4$$

$$w_i = 3$$

$$w=2$$

$$w-w_i=-1$$

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (11)

1: (2,3) 2: (3,4) W 3: (4,5) i=2 $b_i=4$ 4: (5,6) $w_i=3$ w=3 $w-w_i=0$

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (12)

Items:

1: (2,3) 2: (3,4) W 3: (4,5) i=2 $b_i=4$ 4: (5,6) $w_i=3$ w=4 $w-w_i=1$

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (13)

w i	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0		
2	0	3	3		
3	0	3	4		
4	0	3	4		
5	0	3	7		

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$

$$B[i,w] = b_i + B[i-1,w-w_i]$$

$$B[i,w] = B[i-1,w]$$

$$else \ B[i,w] = B[i-1,w] \ // w_i > w$$

Example (14)

W i	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0 -	→ 0	
2	0	3	3 —	→ 3	
3	0	3	4 —	→ 4	
4	0	3	4		
5	0	3	7		

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (15)

W i	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	
2	0	3	3	3	
3	0	3	4	4	
4	0	3	4	5	
5	0	3	7		

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (15)

W i	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	
2	0	3	3	3	
3	0	3	4	4	
4	0	3	4	5	
<i>5</i>	0	3	7 -	→ 7	

Items:

1: (2,3) 2: (3,4) 3: (4,5)

4: (5,6)

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else

$$B[i,w] = B[i-1,w]$$

$$else \ B[i,w] = B[i-1,w] \ // w_i > w$$

Example (16)

W i	0	1	2	3	4		1: (2,3) 2: (3,4)
0	0	0	0	0	0		3: (4,5)
1	0	0	0	0 -	→ 0	<i>i=3</i>	<i>4: (5,6)</i>
2	0	3	3	3 —	→ 3	$b_i=5$	
3	0	3	4	4 -	→ 4	$w_i=4$	
4	0	3	4	5 —	→ 5	w=14	
5	0	3	7	7			

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Example (17)

W i	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	3	3	3	3
3	0	3	4	4	4
4	0	3	4	5	5
5	0	3	7	7 —	→ 7

```
1: (2,3)
2: (3,4)
3: (4,5)
```

if
$$w_i \le w$$
 // item i can be part of the solution
if $b_i + B[i-1,w-w_i] > B[i-1,w]$
 $B[i,w] = b_i + B[i-1,w-w_i]$
else
 $B[i,w] = B[i-1,w]$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Comments

- This algorithm only finds the max possible value that can be carried in the knapsack
- To know the items that make this maximum value, an addition to this algorithm is necessary
- Please see LCS algorithm from the previous lecture for the example how to extract this data from the table we built

Dynamic programming

Dynamic programming is distinct from divide-andconquer, as the divide-and-conquer approach works well if the sub-problems are essentially unique

Storing intermediate results would only waste memory

If sub-problems re-occur, the problem is said to have overlapping sub-problems

Matrix chain multiplication

Suppose **A** is $k \times m$ and **B** is $m \times n$

- Then **AB** is $k \times n$ and calculating **AB** is $\Theta(kmn)$
- The number of multiplications is given exactly *kmn*

Suppose we are multiplying three matrices ABC

- Matrix multiplication is associative so we may choose (AB)C or A(BC)
- The order of the multiplications may significantly affect the run time

For example, if **A** and **B** are $n \times n$ matrices and **v** is an n-dimensional column vector:

- Calculating (**AB**)v is $\Theta(n^3)$
- Calculating A(Bv) is $\Theta(n^2)$

Matrix chain multiplication

Suppose we want to multiply four matrices **ABCD**

There are may ways of parenthesizing this product:

```
((AB)C)D
(AB)(CD)
(A(BC))D
A((BC)D)
A(B(CD))
```

Which has the least number of operations?

Matrix chain multiplication

For example, consider these four:

Matrix	Dimensions	
A	20 × 5	
В	5×40	
\mathbf{C}	40×50	
D	50 × 10	

Considering each order:

The required number of multiplications is:

AB
$$20 \times 5 \times 40 = 4000$$

(AB)C
$$20 \times 40 \times 50 = 40000$$

$$((\mathbf{AB})\mathbf{C})\mathbf{D}$$
 $20 \times 50 \times 10 = 10000$

This totals to 54000 multiplications

Considering the next order:

The required number of multiplications is:

AB
$$20 \times 5 \times 40 = 4000$$
 CD $40 \times 50 \times 10 = 20000$ **(AB)(CD)** $20 \times 40 \times 10 = 8000$

This totals to 32000 multiplications

Considering the next order:

The required number of multiplications is:

BC
$$5 \times 40 \times 50 = 10000$$
A(BC) $20 \times 5 \times 50 = 5000$ (A(BC))D $20 \times 50 \times 10 = 10000$

This totals to 25000 multiplications

And the the next order:

The required number of multiplications is:

BC
$$5 \times 40 \times 50 = 10000$$
(BC)D $5 \times 50 \times 10 = 2500$ A((BC)D) $20 \times 5 \times 10 = 1000$

This totals to 13500 multiplications

Repeating this for the last, we get the following table:

Order	Multiplications
((AB)C)D	54000
(AB)(CD)	32000
(A(BC))D	25000
A((BC)D)	13500
A(B(CD))	23000

The optimal run time uses A((BC)D)

Thus, the optimal run time may be found by calculating the product in the order

Problem: What if we are multiply *n* matrices?

Can we generate a greedy algorithm to achieve this?

- Greedy by the smallest number of operations?
 - Unfortunately, $2 \times 1 \times 2 + 2 \times 2 \times 3 = 16 > 12 = 1 \times 2 \times 3 + 2 \times 1 \times 3$ even though $2 \times 1 \times 2 = 4 < 6 = 1 \times 2 \times 3$

$$\binom{3}{2}(6 \quad 4)\binom{3}{1} \quad \binom{3}{1} \quad$$

- Greedy by generating the smallest matrices (sum of dimensions)?
 - Unfortunately, $2 \times 1 \times 2 + 2 \times 2 \times 4 = 20 > 16 = 1 \times 2 \times 4 + 2 \times 1 \times 4$ even though 2 + 2 = 4 < 5 = 1 + 4

$$\binom{3}{2}(6 \quad 4)\binom{2}{0} \quad \binom{7}{8} \quad \binom{9}{1} \quad \binom{4}{5}$$

If we are multiplying $A_1A_2A_3A_4\cdots A_n$, starting top-down, there are n-1 different ways of parenthesizing this sequence:

$$(\mathbf{A}_{1})(\mathbf{A}_{2}\mathbf{A}_{3}\mathbf{A}_{4}\cdots\mathbf{A}_{n})$$

$$(\mathbf{A}_{1}\mathbf{A}_{2})(\mathbf{A}_{3}\mathbf{A}_{4}\cdots\mathbf{A}_{n})$$

$$(\mathbf{A}_{1}\mathbf{A}_{2}\mathbf{A}_{3})(\mathbf{A}_{4}\cdots\mathbf{A}_{n})$$

$$\cdots$$

$$(\mathbf{A}_{1}\cdots\mathbf{A}_{n-2})(\mathbf{A}_{n-1}\mathbf{A}_{n})$$

$$(\mathbf{A}_{1}\cdots\mathbf{A}_{n-2}\mathbf{A}_{n-1})(\mathbf{A}_{n})$$

For each one we must ask:

- What is the work required to perform this multiplication
- What is the minimal amount of work required to perform both of the other products?

For example, in finding the best product of

$$(\mathbf{A}_1 \cdots \mathbf{A}_i)(\mathbf{A}_{i+1} \cdots \mathbf{A}_n)$$

the work required is:

- The product columns(A_1) rows(A_i) rows(A_n)
 - Note that $rows(A_i)$ and $columns(A_{i+1})$ must be equal
- The minimal work required to multiply A₁···A_i
- The minimal work required to multiply $\mathbf{A}_{i+1} \cdots \mathbf{A}_n$

```
int matrix_chain( Matrix *ms, int i, int j ) {
   // There is only one matrix
   if (i + 1 == j) {
           return 0;
   } else if ( i + 2 == j ) {
           assert( ms[i].columns() == ms[i + 1].rows() );
           return ms[i].rows() * ms[i].columns() * ms[i + 1].columns();
   }
   // We are multiplying at least three matrices
   // Start with calculating the work for M[i] * (M[i + 1] * ... * M[j - 1])
   assert( ms[i].columns() == ms[i + 1].rows() );
   int minimum = matrix chain( ms, i + 1, j ) + ms[i].rows() * ms[i].columns() * ms[j - 1].columns();
   for ( int k = i + 2; k < j; ++k ) {
           // Find the work for (M[i] * ... * M[k - 1]) * (M[k] * ... M[j - 1]) and update if it is less
           assert( ms[k - 1].columns() == ms[k].rows() );
           int current = matrix_chain( ms, i, k ) + matrix_chain( ms, k, j ) +
                       + ms[i].rows() * ms[k].rows() * ms[j - 1].columns();
           if ( current < minimum ) {</pre>
                   minimum = current;
           }
   }
   return minimum;
```

Because of the recursive nature, we will on numerous occasions be asking for the optimal behaviour of a given subsequence

■ We will asked the optimal way to multiply $A_3 \cdots A_{n-2}$ when we ask the optimal way to multiply any of the following:

$$\begin{array}{l} \mathbf{A}_{1}\left(\mathbf{A}_{2}\left(\left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \ \mathbf{A}_{n-1}\right) \mathbf{A}_{n}\right)\right) \\ \mathbf{A}_{1}\left(\mathbf{A}_{2}\left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \ (\mathbf{A}_{n-1} \ \mathbf{A}_{n}\right)\right)\right) \\ \mathbf{A}_{1}\left(\left(\mathbf{A}_{2} \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ (\mathbf{A}_{n-1} \mathbf{A}_{n}\right)\right)\right) \\ \mathbf{A}_{1}\left(\left(\mathbf{A}_{2} \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ \mathbf{A}_{n-1}\right)\right) \mathbf{A}_{n}\right) \\ \mathbf{A}_{1}\left(\left(\mathbf{A}_{2} \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ (\mathbf{A}_{n-1}\right) \mathbf{A}_{n}\right)\right) \\ (\mathbf{A}_{1} \mathbf{A}_{2}\right)\left(\left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ (\mathbf{A}_{n-1} \mathbf{A}_{n}\right)\right) \\ (\mathbf{A}_{1} \left(\mathbf{A}_{2} \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ (\mathbf{A}_{n-1} \mathbf{A}_{n}\right)\right) \\ (\mathbf{A}_{1} \left(\mathbf{A}_{2} \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ (\mathbf{A}_{n-1} \mathbf{A}_{n}\right)\right) \\ (\mathbf{A}_{1} \left((\mathbf{A}_{2} \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ (\mathbf{A}_{n-1}\right) \mathbf{A}_{n}\right) \\ ((\mathbf{A}_{1} \mathbf{A}_{2}) \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ (\mathbf{A}_{n-1}\right) \mathbf{A}_{n} \\ ((\mathbf{A}_{1} \mathbf{A}_{2}) \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ (\mathbf{A}_{n-1}\right) \mathbf{A}_{n} \\ ((\mathbf{A}_{1} \mathbf{A}_{2}) \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ (\mathbf{A}_{n-1}\right) \mathbf{A}_{n} \\ ((\mathbf{A}_{1} \mathbf{A}_{2}) \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ (\mathbf{A}_{n-1}\right) \mathbf{A}_{n} \\ ((\mathbf{A}_{1} \mathbf{A}_{2}) \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ (\mathbf{A}_{n-1}\right) \mathbf{A}_{n} \\ ((\mathbf{A}_{1} \mathbf{A}_{2}) \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ (\mathbf{A}_{n-1}\right) \mathbf{A}_{n} \\ ((\mathbf{A}_{1} \mathbf{A}_{2}) \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ (\mathbf{A}_{n-1}\right) \mathbf{A}_{n} \\ ((\mathbf{A}_{1} \mathbf{A}_{2}) \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ (\mathbf{A}_{n-1}\right) \mathbf{A}_{n} \\ ((\mathbf{A}_{1} \mathbf{A}_{2}) \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ (\mathbf{A}_{n-1}\right) \mathbf{A}_{n} \\ ((\mathbf{A}_{1} \mathbf{A}_{2}) \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ (\mathbf{A}_{n-1}\right) \mathbf{A}_{n} \\ ((\mathbf{A}_{1} \mathbf{A}_{2}) \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}) \) \ (\mathbf{A}_{n-1}\right) \mathbf{A}_{n} \\ ((\mathbf{A}_{1} \mathbf{A}_{2}) \left(\begin{array}{c} (\mathbf{A}_{3} \cdots \mathbf{A}_{n-2}\right) \) \mathbf{A}_{n-1} \right) \mathbf{A}_{n} \\ ((\mathbf{A}_{1} \mathbf{A}_{2}) \left(\begin{array}{c} (\mathbf{A}_{1} \cdots \mathbf{A}_{n-2}) \ (\mathbf{A}_{1} \cdots \mathbf{A}_{n-2}) \ (\mathbf{A}_{1} \cdots \mathbf{A}_{n-1}) \mathbf{A}_{n} \\ ((\mathbf{A}_{1} \mathbf{A}_{2}) \left(\begin{array}{c} (\mathbf{A}_{1} \cdots \mathbf{A}_{n-2}) \ (\mathbf{A}_{1} \cdots \mathbf{A}_{n-2}) \ (\mathbf{A}_{1} \cdots \mathbf{A}_{n-1}) \ (\mathbf{A}_{1} \cdots \mathbf{A}_{n-1}) \mathbf{A}_{n} \\ ((\mathbf{A}_{1} \mathbf{A}_{2}) \left($$

The actual number of possible orderings is given by the following recurrence relation:

$$P(n) = \begin{cases} 1 & n = 1 \\ \sum_{k=1}^{n-1} P(n)P(n-k) & n > 1 \end{cases}$$

Without proof, this recurrence relation is solved by P(n) = C(n-1) where C(n-1) is the (n-1)th Catalan number

$$C(n) = \frac{1}{n+1} {2n \choose n} = \Theta\left(\frac{4^n}{n^{3/2}}\right) \qquad C(1) = 1 \qquad C(6) = 132$$

$$C(2) = 2 \qquad C(7) = 429$$

$$C(3) = 5 \qquad C(8) = 1430$$

$$C(4) = 14 \qquad C(9) = 4862$$

$$C(5) = 42 \qquad C(10) = 16796$$

The number of function calls of the implementation is given by $\begin{bmatrix} 1 & n-1/2 \end{bmatrix}$

 $T(n) = \begin{cases} 1 & n = 1, 2 \\ 4 \times 3^{n-3} & n \ge 3 \end{cases} = \Theta(3^n)$

Can we speed this up?

 Memoization: once we've found the optimal number of solutions for a given sequence, store it

#include <map> Matrix chain multiplication

```
int matrix chain memo( Matrix *ms, int i, int j, bool clear = true ) {
    static std::map< std::pair< int, int >, int > memo;
    if ( clear ) {
       memo.clear();
                                                          Associate a pair (i, j) with an integer
    }
   if (i + 1 == j) {
        return 0:
    } else if ( memo[std::pair<int, int>(i, j)] == 0 ) {
        if (i + 2 == j) {
            memo[std::pair<int, int>(i, j)] = ms[i].rows() * ms[i].columns() * ms[i + 1].columns();
        } else {
            int minimum = matrix chain memo( ms, i + 1, j, false )
                        + ms[i].rows() * ms[i].columns() * ms[i - 1].columns();
            for ( int k = i + 2; k < j; ++k ) {
                int current = matrix chain memo( ms, i, k, false ) + matrix chain memo( ms, k, j, false )
                            + ms[i].rows() * ms[k].rows() * ms[j - 1].columns();
                if ( current < minimum ) {</pre>
                    minimum = current;
            }
            memo[std::pair<int, int>(i, j)] = minimum;
        }
    }
    return memo[std::pair<int, int>(i, j)];
```

Our memoized version now runs in

$$T(n) = \begin{cases} 1 & n=1 \\ (n-1)(n-1) & n \ge 2 \end{cases} = \Theta(n^2)$$

This is a top-down implementation

Can we implement a bottom-up version?

For a bottom-up implementation, we need a matrix that stores our best current solution to A_i to A_j :

	j=1	2	3	4		n
i = 1	0					
2		0			•••	
3			0		•••	
4				0	• • •	
					٠٠.	
n						0

As we calculate the minimum number of multiplications required for a specific sequence $\mathbf{A}_i \cdots \mathbf{A}_j$, we fill the entry a_{ij} in the table

	j=1	2	3	4		n
i = 1	0					
2		0			•••	
3			0		•••	
4				0	• • •	
					٠٠.	
n						0

This table has n^2 entries, and therefore our run time must be at least $\Omega(n^2)$

However, at each step, the actual run time is $\Theta(n^3)$

For example, given the previous example

Matrix	Dimensions
\mathbf{A}_1	20 × 5
\mathbf{A}_2	5 × 40
\mathbf{A}_3	40 × 50
\mathbf{A}_4	50 × 10

we can calculate the table as follows...

We can calculate the off-diagonal easily:

Matrix	Dimensions
\mathbf{A}_1	20 × 5
\mathbf{A}_2	5 × 40
\mathbf{A}_3	40 × 50
\mathbf{A}_4	50 × 10

	1	2	3	4
1	0 20×5	4000 20×40		
2		0 5×40	10000 5×50	
3			0 40×50	20000 40×10
4				0 50×10

Next, we may calculate either:

$$\mathbf{A}_1(\mathbf{A}_2\mathbf{A}_3)$$
$$(\mathbf{A}_1\mathbf{A}_2)\mathbf{A}_3$$

$$20 \times 5 \times 50 + 10000 = 15000$$

 $4000 + 20 \times 40 \times 50 = 44000$

Matrix	Dimensions
\mathbf{A}_1	20 × 5
\mathbf{A}_2	5 × 40
\mathbf{A}_3	40 × 50
\mathbf{A}_4	50 × 10

	1	2		3	4
1	0	4000		15000	
	20×5	20×40 _		20×50	
2		0	I	10000	
		5×40		5×50	
3				0	24000
				40×50	40×10
4					0
					50×10

We continue:

$$\mathbf{A}_2(\mathbf{A}_3\mathbf{A}_4)$$
$$(\mathbf{A}_2\mathbf{A}_3)\mathbf{A}_4$$

$$5 \times 40 \times 10 + 20000 = 22000$$

 $10000 + 5 \times 50 \times 10 = 12500$

Matrix	Dimensions
\mathbf{A}_1	20 × 5
\mathbf{A}_2	5 × 40
\mathbf{A}_3	40 × 50
\mathbf{A}_4	50 × 10

	1	2	3	4
1	0 20×5	4000 20×40	15000 20×50	
2		0 5×40	10000 5×50 —	12500 5×10
3			0 40×50	20000 40×10
4				0 50×10

Finally we calculate:

$$A_1((A_2A_3)A_4)$$
 $20 \times 5 \times 10 + 12500 = 13500$
 $(A_1A_2)(A_3A_4)$ $4000 + 20 \times 40 \times 10 + 20000 = 32000$
 $(A_1(A_2A_3))A_4$ $15000 + 20 \times 50 \times 10 = 25000$

Matrix	Dimensions
\mathbf{A}_1	20 × 5
\mathbf{A}_2	5 × 40
\mathbf{A}_3	40 × 50
\mathbf{A}_4	50 × 10

	1	2	3	4
1	0 _	4000	15000	13500
	20×5	20×40	20×50	20×10
2		0	10000	12500
		5×40	5×50	5×10
3			0	20000
			40×50	40×10
4				0
				50×10

Thus, counting the number of calculations required (each $\Theta(1)$):

$$n-1$$
 $(n-2) 2$
 $(n-3) 3$

which suggests the sum

$$\sum_{i=1}^{n-1} (n-i)i = n \sum_{i=1}^{n-1} i - \sum_{i=1}^{n-1} i^2 = \frac{n^3 - n^2}{2} - \frac{n(n-1)(2n-1)}{6} = \frac{n^3 - n}{6}$$

Therefore, the run time is $\Theta(n^3)$

```
int matrix chain iterative( Matrix *ms, int n ) {
    int array[n][n];
    for ( int i = 0; i < n; i++ ) {
       array[i][i] = 0;
    }
    for ( int i = 1; i < n; i++ ) {
        for ( int j = 0; j < n - i; j++ ) {
            arrav[j][j + i] = array[j][j] + array[j + 1][j + i]
                            + ms[i].rows()*ms[i + 1].rows()*ms[j + i].columns();
            for ( int k = j + 1; k < j + i; k++) {
                int current = array[i][k] + array[k + 1][i + i]
                            + ms[j].rows()*ms[k + 1].rows()*ms[j + i].columns();
                if ( current < array[j][j + i] ) {</pre>
                    array[j][j + i] = current;
    }
    return array[0][n - 1];
}
```

How can you estimate run times?

■ Which is faster—the top-down implementation with memoization or

the bottom-up implementation?

You could plot run times...

• Question: what is the growth of this plotted data?

- Quadratic?
- Cubic?
- $\Theta(n^2 \ln(n))$

If a function grows in polynomial time, it is of the form:

$$T(n) = an^b$$

Take the logarithm of both sides:

$$ln(T(n)) = ln(an^b) = ln(a) + b ln(n)$$

 \blacksquare It grows linearly with a slope b

Top-down with memoization

In graphics and geometry, convex polygons are a basic unit

Applications in graphics and finite-element methods

In graphics and geometry, convex polygons are a basic unit

Dividing such a polygon into simpler triangles is a common

operation

In graphics and geometry, convex polygons are a basic unit

Some triangulations may be better than others

For example,

Now, a convex quadrilateral (tetragon) can only be triangulated in two different ways

A convex pentagon can be triangulated in five different

ways

And a convex hexagon can be triangulated in 14 different ways

If we can put a weight on each generated triangle, can we find an optimal triangulation?

- Can we come up with a good algorithm?
- Consider the previous problem of finding an optimal order for multiplying matrices

Choose a side and begin numbering the sides in order

- Any two adjacent sides can be joined to create a triangle
- Any two adjacent matrices could be multiplied

Taking two adjacent sides and creating a triangle is similar to bracketing

Instead of sides 1 and 2, we could choose 2 and 3

Or 3 and 4

Suppose the triangle 3/4 was optimal

Next, do we add the side 2?

Suppose the triangle 3/4 was optimal

Or do we add the side 5?

The analogy is not exact because there is no logic to bracketing and multiplying matrices A_1 and A_7

Never-the-less, this strongly suggests that there is an efficient algorithm based on dynamic programming that will find an optimal triangulation