CPSC 4420/6420

Artificial Intelligence

06 – Markov Decision Processes
September 8, 2020

Announcements

- Project 1 is due tonight
- Quiz 2 is due on Thursday
- Sample exam questions will be posted later this week

Lecture 6

Slide Credits: Stuart Russell Pieter Abbeel Dan Klein Ioannis Karamouzas

Markov Decision Process

- An MDP is defined by:
 - A set of states *S*
 - A set of actions A
 - A transition function T(s, a, s')
 - Also called the model or the dynamics
 - Sometimes P(s'|s,a)
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state s_0 (maybe a terminal one as well)
- MDPs are non-deterministic search problems

Policy

- In deterministic search problems, we seek an optimal sequence of actions (plan/path) from start to a goal
- For MDPs, we seek an optimal policy $\pi^*: S \to A$
 - A policy π gives an action for each state
 - An optimal policy, π^* , maximizes the *expected utility* if followed

Evaluating a policy

- Following a policy yields a random path
- The utility, U, of a policy is the (discounted) sum of the rewards along the path
 - Path 1, U = 1
 - Path 2, U = -1
 - Path 3, U = 1
 - •

R(s) = -0.4

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- Solution: values of rewards decay exponentially over time based on a discount factor $0 \le \gamma \le 1$

Discounting

- Example
 - $U([1,2,3]) = 1*1 + \gamma*2 + \gamma^2*3 \text{ VS.}$
 - $U([3,2,1]) = 1*3 + \gamma*2 + \gamma^2*1$
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also, helps algorithms converge

Avoiding infinite rewards

- Problem: If the game lasts forever, do we get infinite rewards?
- Solutions:
 - Finite horizon H
 - Terminate episodes after a fixed number of *H* steps
 - Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$

$$U([s_0, s_1, s_2, \ldots]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \le \sum_{t=0}^{\infty} \gamma^t R_{\text{max}} = R_{\text{max}}/(1 - \gamma)$$

R(s) = -0.4

 Absorbing state: guarantee that for every policy a terminal state will eventually be reached

Revisiting MDPs

- An MDP is defined by:
 - A set of states *S*
 - A set of actions A
 - A transition function P(s'|s,a) or T(s,a,s')
 - A reward function R(s, a, s')
 - A start state s_0 (maybe a terminal one as well)
 - Discount factor γ
 - Horizon *H* (can be infinite)
- MDP quantities so far
 - Policy π : Choice of action for each state
 - Utility $U_{\pi} = \sum_{t=0} \gamma^t R(\mathbf{s}_t)$: Sum of (discounted) rewards

Goal:
$$max_{\pi}\mathbb{E}\left[\sum_{t=0}^{H} \gamma^{t} R(\mathbf{s}_{t}) \mid \pi\right]$$

Solving MDPs

• Goal: find the optimal policy π^*

$$\pi^* = \operatorname{argmax}_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(\mathbf{s}_t) \, | \, \pi \right]$$

- Exact methods based on dynamic programming
 - Value Iteration
 - Policy Iteration

Solving MDPs: Value Iteration

 $V^*(s)$ = sum of discounted rewards starting in s and acting optimally (for now)

Let's assume:

Noise = 0, γ = 1, living reward = 0

$$V^*(4,3) =$$

$$V^*(3,3) =$$

$$V^*(2,3) =$$

$$V^*(1,1) =$$

$$V^*(4,2) =$$

 $V^*(s)$ = sum of discounted rewards starting in s and acting optimally (for now)

Let's assume:

Noise = 0, γ = 1, living reward = 0

$$V^*(4,3) = 1$$

$$V^*(3,3) = 1$$

$$V^*(2,3) = 1$$

$$V^*(1,1) = 1$$

$$V^*(4,2) = -1$$

 $V^*(s)$ = sum of discounted rewards starting in s and acting optimally (for now)

Let's assume:

Noise = 0, γ = 0.9, living reward = 0

$$V^*(4,3) =$$

$$V^*(3,3) =$$

$$V^*(2,3) =$$

$$V^*(1,1) =$$

$$V^*(4,2) =$$

 $V^*(s)$ = sum of discounted rewards starting in s and acting optimally (for now)

Let's assume:

Noise = 0, γ = 0.9, living reward = 0

$$V^*(4,3) = 1$$

$$V*(3,3) = 0.9$$

$$V^*(2,3) = 0.9 \times 0.9 = 0.81$$

$$V^*(1,1) = 0.9 \times 0.9 \times 0.9 \times 0.9 \times 0.9 = 0.59$$

$$V^*(4,2) = -1$$

 $V^*(s)$ = sum of discounted rewards starting in s and acting optimally (for now) = $\max_{a} (R(s, a, s') + \gamma V^*(s'))$

Let's assume:

Noise = 0, γ = 0.9, living reward = 0

$$V^*(4,3) = 1$$

$$V^*(3,3) = 0.9 = 0 + \gamma V^*(4,3)$$
 [action East]

$$V^*(2,3) = 0.9 \times 0.9 = 0.81 = 0 + \gamma V^*(3,3)$$
 [action East]

$$V^*(1,1) = 0.9 \times 0.9 \times 0.9 \times 0.9 \times 0.9 = 0.59 = 0 + \gamma V^*(1,2)$$
 [action North]

$$V^*(4,2) = -1$$

Let's assume:

Noise = 0.2, γ = 0.9, living reward = 0

$$V^*(4,3) =$$

$$V^*(3,3) =$$

$$V^*(2,3) =$$

$$V^*(1,1) =$$

$$V^*(4,2) =$$

 $V^*(s)$ = expected utility starting in s and acting optimally

$$= \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

Let's assume:

Noise = 0.2, γ = 0.9, living reward = 0

$$V^*(4,3) = 1$$

$$V^*(3,3) = 0.8 \times 0.9 + 0.1 \times 0.9 \times V^*(3,3) + 0.1 \times 0.9 \times V^*(3,2)$$
 [action East]

$$V^*(2,3) =$$

$$V^*(1,1) =$$

$$V^*(4,2) =$$

Bellman equation

$$V^{*}(s) = \max_{a} \mathbb{E} \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$= \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V^{*}(s'))$$

Value iteration

- $V_0^*(s)$ = optimal value for state s when H=0
 - $V_0^*(s) = 0, \forall s$
- $V_1^*(s)$ = optimal value for state s when H=1

•
$$V_1^*(s) = \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_0^*(s'))$$

- $V_2^*(s)$ = optimal value for state s when H=2
 - $V_2^*(s) = \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_1^*(s'))$
- $V_k^*(s)$ = optimal value for state s when H=k

•
$$V_k^*(s) = \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_{k-1}^*(s'))$$

Value iteration algorithm

```
function Value-Iteration (MDP)  \begin{aligned} & \text{Initialize $V_0^*$ }(s) = 0, \, \forall \, s \\ & \text{for $k$=1...H do} \\ & \text{for each state s in S do} \\ & V_k^*(s) \leftarrow \max_a \sum_s P(s'|s,a) \left( R(s,a,s') + \gamma V_{k-1}^*(s') \right) \\ & \pi_k^*(s) \leftarrow \arg\max_a \sum_{s'} P(s'|s,a) \left( R(s,a,s') + \gamma V_{k-1}^*(s') \right) \end{aligned}
```

This is called a value update or Bellman update/back-up

Implementation: Use two vectors of size |S| storing value functions, one at time k and one at k-1

$$V_0(s) \leftarrow 0$$

$$k = 0$$

$$V_1(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_0(s'))$$

$$k = 1$$

$$V_2(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_1(s'))$$

$$k = 2$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

$$k = 3$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

$$k = 4$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

$$k = 5$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_k(s'))$$

$$k = 6$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_k(s'))$$

$$k = 7$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_k(s'))$$

$$k = 8$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_k(s'))$$

$$k = 9$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

$$k = 10$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

$$k = 11$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

$$k = 12$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

$$k = 100$$

Convergence of value iteration

Theorem. Value iteration converges. At convergence, we have found the optimal value function V^* for the discounted infinite horizon problem, which satisfies the Bellman equations

$$\forall S \in S : V^*(s) = \max_{a} \sum_{s'} P(s'|s, a) \left[R(s, a, s') + \gamma V^*(s') \right]$$

- Now we know how to act for infinite horizon with discounted rewards!
 - Run value iteration until convergence
 - This produces V*, which in turn tells you how to act:

$$\pi^*(s) = \arg\max_{a} \sum_{s'} P(s'|s, a) \left[R(s, a, s') + \gamma V^*(s') \right]$$

- In fact policy may converge long before values do
- Complexity of each value iteration: $O(|S|^2|A|)$

Q-Values

- $Q^*(s, a)$ = expected utility starting in s, taking action a and (thereafter) acting optimally
- Bellman equation

$$Q^*(s, a) \leftarrow \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma \max_{a'} Q^*(s', a'))$$

Q-Value Iteration

$$Q_{k+1}^*(s,a) \leftarrow \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma \max_{a'} Q_k^*(s',a'))$$

Gridworld: V* and Q*

0.64	0.74	0.85	1.00
0.57		0.57	-1.00
0.49	0.43	0.48	0.28
VALUES AFTER 100 ITERATIONS			

Optimal utilities

- V*(s) = expected utility starting in s and acting optimally
- $Q^*(s,a)$ = expected utility starting out having taken action a from state s and (thereafter) acting optimally

MDP search tree

Bellman equations

Recursive definition of values

$$\begin{split} V^*(s) &= \max_a Q^*(s,a) \\ Q^*(s,a) &= \sum_{s'} P(s'|s,a) \left[R(s,a,s') + \gamma V^*(s') \right] \\ V^*(s) &= \max_a \sum_{s'} P(s'|s,a) \left[R(s,a,s') + \gamma V^*(s') \right] \end{split}$$

- These are called the Bellman equations
 - Can be solved using one-step lookahead relationship amongst optimal values

Principle of maximum expected utility (MEU)

- A rational agent should chose the action that maximizes its expected utility
- The expected utility of an action is $EU(a|s) = \sum_{s'} P(s'|a,s)U(s')$

