Лекция 06 от 10.10.2016 Бесконечные произведения

Основные понятия и определения

Итак, бесконечные произведения. Попытаемся применить к ним тот же подход, что и к рядам.

Определение 1. Пусть $\{a_k\}_{k=1}^{\infty}$ — последовательность ненулевых действительных чисел. Бесконечным произведением называется выражение $a_1a_2\ldots a_n\ldots$, записываемое также как $\prod_{n=1}^{\infty}a_n$. Частичным произведением называется величина $P_N=a_1\ldots a_N$.

Определение 2. Бесконечное произведение $\prod_{n=1}^{\infty} a_n$ сходится κ числу $A \neq 0$, если последовательность частичных произведений P_N сходится κ A при $N \to \infty$.

Определение 3. Бесконечное произведение сходится, если существует такое $A \neq 0$, κ которому это произведение сходится.

Утверждение 1. Добавление/удаление/изменение конечного числа множителей не влияет на сходимость/расходимость бесконечного произведения.

Здесь важно понимать, что это возможно только потому, что мы запретили последовательности содержать нулевые элементы.

Утверждение 2 (Необходимое условие сходимости). *Если* $\prod_{n=1}^{\infty} a_n$ *сходится, то* $a_n \to 1$.

Доказательство. Пусть
$$\prod_{n=1}^{\infty} a_n = A$$
. Тогда $a_n = \frac{P_n}{P_{n-1}} \to \frac{A}{A} = 1$.

Здесь становится видно, почему A=0 — это плохо. Именно поэтому мы запретили сходимость к нулю, когда давали соответствующие определения.

Раз сходиться к нулю нельзя, то определим это несколько иначе.

Определение 4. Бесконечное произведение $\prod\limits_{n=1}^{\infty}a_n$ расходится к нулю, если $P_N \to 0$ при $N \to \infty$

Бесконечное произведение $\prod\limits_{n=1}^{\infty}a_n$ расходится к бесконечности, если $P_N \to +\infty$ при $N \to \infty$.

Связь с числовыми рядами, исследование сходимости

Конечно, можно было бы потратить несколько лекций на то, чтобы заново доказать все те признаки, которые мы уже разобрали для рядов. Но гораздо легче просто свести задачу к предыдущей.

При изучении сходимости бесконечных произведений достаточно ограничиться случаем, когда $a_n \to 1$. Тогда можно считать, что начиная с некоторого места все члены последовательности строго положительны. А так как удаление конечного числа начальных членов на факт сходимости или расходимости не влияет, достаточно изучить бесконечные произведения только с положительными членами.

Утверждение 3. Бесконечное произведение $\prod_{n=1}^{\infty} a_n$ сходится тогда и только тогда, когда сходится ряд $\sum_{n=1}^{\infty} \ln a_n$.

Доказательство. Заметим, что $S_N=\ln P_N$. Тогда, если существует предел $\lim_{n\to\infty}P_n=A>0$, то существует и предел $\lim_{n\to\infty}S_n=\ln A$, то есть ряд $\sum_{n=1}^\infty\ln a_n$ сходится.

И наоборот, если $\sum_{n=1}^{\infty} \ln a_n = S$, то есть $S_N \to S$, то тогда $P_N = e^{S_n} \to e^S \neq 0$, то есть бесконечное произведение $\prod_{n=1}^{\infty} a_n$ сходится.

Отсюда становится понятным, почему логично определять стремление бесконечного произведения $\prod_{n=1}^\infty a_n$ к нулю как расходимость — это соответствует случаю, когда ряд $\sum_{n=1}^\infty \ln a_n$ расходится к $-\infty$.

Также же получаем несколько халявных следствий.

Утверждение 4. Пусть все $\alpha_n > 0$ или все $\alpha_n \in (-1,0]$. Тогда бесконечное произведение $\prod_{n=1}^{\infty} (1+\alpha_n)$ сходится тогда и только тогда, когда сходится ряд $\sum_{n=1}^{\infty} \alpha_n$.

Доказательство. Если α_n не стремится к нулю, то и $1 + \alpha_n$ не стремится к единице. Тогда и ряд, и бесконечное произведение расходятся, так как не выполняется необходимое условие сходимости.

Теперь пусть $\alpha_n \to 0$. Тогда сходимость бесконечного произведения $\prod_{n=1}^{\infty} (1+\alpha_n)$ равносильна сходимости ряда $\sum_{n=1}^{\infty} \ln(1+\alpha_n)$. И так как он знакопостоянный, то по соответствующему признаку сравнения этот ряд сходится тогда и только тогда, когда сходится ряд из эквивалентных членов $\sum_{n=1}^{\infty} \alpha_n$.

Утверждение 5. Пусть $\alpha_n > -1$ и ряд $\sum_{n=1}^{\infty} \alpha_n$ сходится. Тогда бесконечное произведение $\prod_{n=1}^{\infty} (1+\alpha_n)$ сходится тогда и только тогда, когда сходится ряд $\sum_{n=1}^{\infty} \alpha_n^2$.

Доказательство. Так как ряд $\sum_{n=1}^{\infty} \alpha_n$ сходится, то $\alpha_n \to 0$. Тогда, аналогично предыдущему доказательству, достаточно исследовать сходимость ряда $\sum_{n=1}^{\infty} \ln(1+\alpha_n)$.

Разложим его члены в ряд Тейлора, получив $\sum\limits_{n=1}^{\infty}\left(\alpha_n-\frac{\alpha_n^2}{2}+o(\alpha_n^2)\right)$, а это уже равносильно сходимости ряда $\sum\limits_{n=1}^{\infty}\alpha_n^2(1+o(1))$. Начиная с некоторого номера, ряд станет знакопостоянным, то есть можно применить все тот же признак сравнения. Что и приводит нас с исследованию сходимости ряда $\sum\limits_{n=1}^{\infty}\alpha_n^2$.

Фактически мы доказали два необходимых и достаточных условия сходимости. Теперь рассмотрим просто достаточное.

Утверждение 6. Пусть $\alpha_n > -1$. Тогда если ряд $\sum_{n=1}^{\infty} |\alpha_n|$ сходится, то сходится и бесконечное произведение $\prod_{n=1}^{\infty} (1+\alpha_n)$.

Доказательство.

$$\sum_{n=1}^{\infty} |\alpha_n| \, \operatorname{сходится} \Rightarrow \sum_{n=1}^{\infty} |\ln(1+\alpha_n)| \, \operatorname{сходится} \Rightarrow \sum_{n=1}^{\infty} \ln(1+\alpha_n) \, \operatorname{сходится} \Rightarrow \prod_{n=1}^{\infty} (1+\alpha_n) \, \operatorname{сходится}.$$

Если ввести соответствующее определение, то на бесконечные произведения можно будет распространить теорему о перестановке множителей (слагаемых) и ее влиянии на сходимость.

Определение 5. Бесконечное произведение $\prod_{n=1}^{\infty} a_n$ сходится абсолютно/условно, если абсолютно/условно сходится ряд $\sum_{n=1}^{\infty} \ln a_n$.

Применение

Теперь, окончательно убедившись, что изучение бесконечных произведений можно свести к изучению рядов, самое время задаться вопросом — а зачем они нужны?

Оказывается, они могут быть удобным инструментом при доказательствах. Приведем несколько примеров.

Утверждение 7. Пусть
$$a_n > 0$$
, $\sum_{n=1}^{\infty} a_n = +\infty$ и $S_n = a_1 + \dots a_n$. Тогда ряд $\sum_{n=1}^{\infty} \frac{a_n}{S_n}$ расходится.

Доказательство. Достаточно доказать расходимость бесконечного произведения $\prod_{n=2}^{\infty} \left(1 - \frac{a_n}{S_n}\right)$:

$$\prod_{n=2}^{\infty} \left(1 - \frac{a_n}{S_n} \right) = \prod_{n=2}^{\infty} \frac{S_n - a_n}{S_n} = \prod_{n=2}^{\infty} \frac{S_{n-1}}{S_n},$$

$$P_n = \frac{S_1}{S_2} \cdot \frac{S_2}{S_3} \dots \frac{S_{n-1}}{S_n} = \frac{S_1}{S_n} \to 0.$$

Отсюда в частности следует, что нет самого маленького расходящегося ряда.

Теперь докажем почти формулу Стирлинга.

Утверждение 8. Пусть $a_n = \frac{n!e^n}{n^{n+1/2}}$. Тогда существует предел $\lim_{n\to\infty} a_n = A > 0$.

Доказательство. Представим элемент a_n в следующем виде:

$$a_n = a_1 \cdot \frac{a_2}{a_1} \cdot \frac{a_3}{a_2} \dots \frac{a_n}{a_{n-1}} = a_1 / \prod_{k=1}^{n-1} \frac{a_k}{a_{k+1}}.$$

Тогда сходимость к положительной константе последовательности $\{a_n\}$ равносильна сходимости бесконечного произведения $\prod\limits_{n=1}^{\infty} \frac{a_n}{a_{n+1}}.$

Посчитаем, чему равен член этого произведения:

$$\frac{a_n}{a_{n+1}} = \frac{n!e^n(n+1)^{n+1+1/2}}{(n+1)!e^{n+1}n^{n+1/2}} = \left(1 + \frac{1}{n}\right)^{n+1/2}/e.$$

Перейдем к рассмотрению ряда из логарифмов:

$$\begin{split} \ln\frac{a_n}{a_{n+1}} &= \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right) - 1 = [\text{p. Тейлора}] = \\ &= \left(n + \frac{1}{2}\right) \left(\frac{1}{n} - \frac{1}{2n^2} + O\left(\frac{1}{n^3}\right)\right) - 1 = 1 - \frac{1}{2n} + \frac{1}{2n} - 1 + O\left(\frac{1}{n^2}\right) = O\left(\frac{1}{n^2}\right). \end{split}$$

Получили, что такой ряд будет сходится. Следовательно, существует положительный предел $\lim_{n\to\infty} a_n$.