Matematik

Definition 1 MÄNGDBETECKNINGAR

Tomma mängden Ω Hela utfallsrummet $A \subseteq B$ A är delmängd av B

 \bigcup Unionen \cap Snittet $a \in A$ Elementet a tillhör mängden A

Komplementet |A| Antalet element i A \ Mängdminus

Additionssatsen Sats 1

För alla mängder A och B gäller att $|A \cup B| = |A| + |B| - |A \cap B|$.

Sats 2 DE MORGANS LAGAR

För alla mängder A och B gäller att $(A \cup B)^C = A^C \cap B^C$ och $(A \cap B)^C = A^C \cup B^C$.

Sats 3 Exponentlagarna

$$a^{b+c} = a^b a^c$$
, $a^{bc} = (a^b)^c = (a^c)^b$, $a^0 = 1$, $a^1 = a$, $a^{-1} = \frac{1}{a}$ och $a^{1/2} = \sqrt{a}$.

LOGARITMLAGARNA För alla a > 0, b > 0, c > 0 gäller

 $\log_a(bc) = \log_a b + \log_a c, \ \log_a(b^c) = c \log_a b, \ \log_a a = 1, \ \log_a \frac{b}{c} = \log_a b - \log_a c.$

Sats 5 Kvadreringsreglerna

$$(a+b)^2 = a^2 + 2ab + b^2$$
, $(a-b)^2 = a^2 - 2ab + b^2$ och $(a+b)(a-b) = a^2 - b^2$.

Sats 6 Andragradsekvationer

$$Om \ x^2 + px + q = 0 \ s \mathring{a} \ \ddot{a} r \ x = \frac{1}{2} (-p \pm \sqrt{p^2 - 4q}).$$

Sats 7 Sambandet mellan koefficienter och rationella rötter

Om ekvationen

$$a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n = 0$$
 $d\ddot{a}r \ a_0, a_1, a_2, \ldots, a_n \in \mathbb{Z}$

har en rationell rot x = p/q så måste a_0 vara mulitpel av p och a_n vara mulitipel av q.

Konjugatmetoden Sats 8

Om fjärdegradsekvationen $x^4 + ax^3 + bx^2 + cx + d = 0$, där $a, b, c, d \in \mathbb{R}$, uppfyller villkoret

• $8c = a(4b - a^2)$ så är de fyra rötterna

$$x = \frac{1}{2} \left(-\alpha \pm \sqrt{\alpha^2 - 4(\beta \pm \delta)} \right) \ d\ddot{a}r \ \alpha = \frac{a}{2}, \ \beta = \frac{b}{2} - \frac{a^2}{8} \ och \ \delta = \sqrt{\beta^2 - d}.$$

•
$$c^2 = a^2 d$$
 så är de fyra rötterna $x = \frac{1}{2}(-\alpha \pm \sqrt{\alpha^2 - 4\beta})$ där $\alpha = \gamma \pm \sqrt{\gamma^2 + 2\beta - b}$, $\beta = \frac{c}{a}$ och $\gamma = \frac{a}{2}$.

Definition 2 Absolutbeloppet av x definieras

$$|x| = \begin{cases} x & om \ x > 0 \\ -x & om \ x \le 0 \end{cases}$$

för alla $x \in \mathbb{R}$.

Sats 9 FAKTORSATSEN

Varje polynom $p(x) = a_0 + a_1x + a_2x^2 + \ldots + a_{n-1}x^{n-1} + x_n$ av grad n har n nollställen x_1, x_2, \ldots, x_n och kan faktoriseras mha dessa enligt $p(x) = (x - x_1)(x - x_2) \cdots (x - x_n)$.

Definition 3

Ett **primtal** är ett heltal som inte är jämnt delbart med något annat heltal andra än 1 och sig självt.

Algoritm 1 DIVISIONSALGORITMEN

För alla heltal a och $b \neq 0$ finns det heltal k och r sådana att $0 \leq r \leq |b| - 1$ och

$$\frac{a}{b} = k + \frac{r}{b}$$

där talet k kallas kvot och talet r kallas (principal) rest.

Algoritm 2 Eratosthenes såll

Antag att man vill generera alla primtal $\leq n$.

- 1. Gör en lista över alla heltal from 2 tom n.
- 2. Ringa in det första icke strukna eller inringade talet.
- 3. Stryk alla multipler av det senast inringade talet från resten av listan.
- 4. Om inte alla $tal \leq \sqrt{n}$ är inringade eller strukna, gå tillbaks till steg 2.
- 5. Då alla tal som $\ddot{a}r \leq \sqrt{n}$ behandlats $\ddot{a}r$ de icke strukna talen primtalen.

Definition 4

Den största gemensamma delaren, gcd(a,b), för två heltal, a och b, är produkten av alla primtalsfaktorer som är gemensamma i a och b.

Algoritm 3 Euklides Algoritm

För att bestämma gcd(a,b), där a > b, bestäm r_1, r_2, r_3, \ldots så att

$$\begin{cases} a = c_1b + r_1 & d\ddot{a}r \ 0 < r_1 \le |b| - 1 \\ b = c_2r_1 + r_2 & d\ddot{a}r \ 0 < r_2 \le r_1 - 1 \end{cases}$$

och fortsättningsvis

$$\begin{cases} r_1 &= c_3r_2 + r_3 & d\ddot{a}r \ 0 < r_3 \le r_2 - 1 \\ r_2 &= c_4r_3 + r_4 & d\ddot{a}r \ 0 < r_4 \le r_3 - 1 \\ \vdots &\vdots \\ r_{n-2} &= c_nr_{n-1} + r_n & d\ddot{a}r \ 0 < r_n \le r_{n-1} - 1 \\ r_{n-1} &= c_nr_n + 0 & (d\ddot{a}r \ allts \mathring{a} \ r_{n+1} = 0) \end{cases}$$

 $D\mathring{a} \ \ddot{a}r \gcd(a,b) = r_n, \ den \ sista \ positiva \ resten.$

Definition 5

Låt a och b vara heltal. Det minsta tal, c, sådant att c = am = bn för några positiva heltal m och n kallas **minsta gemensamma multipel** för a och b och betecknas lcm(a,b).

Sats 10
$$\operatorname{lcm}(a,b) = \frac{ab}{\gcd(a,b)}$$
 för alla heltal a och b.

Definition 6

Heltalen a och b kallas relativt prima om gcd(a, b) = 1.

Algoritm 4 LÖSNING AV DIOFANTISK EKVATION

För att lösa den diofantiska ekvationen ax + by = c

- 1. $ber\ddot{a}kna\ d = \gcd(a,b)\ mha\ Euklides\ algoritm.$
- 2. Om inte c är en multipel av d så saknar ekvationen heltalslösningar.
- 3. Om c är en multipel av d, låt $k = \frac{c}{d}$.
- 4. Lös hjälpekvationen ax + by = d mha Euklides algoritm baklänges \Rightarrow (x_0, y_0) .
- 5. Allmän lösning till den fullständiga ax + by = c är då $\{(kx_0 + \frac{b}{m}n, ky_0 \frac{a}{m}n), n \in \mathbb{Z}\}$ där $m = \gcd(a, b, d)$.

Sats 11 Resträkning

```
Om a \equiv r och b \equiv s \pmod{c}, s\mathring{a} \ \ddot{a}r \ a + b \equiv r + s \pmod{c}.

Om a \equiv r och b \equiv s \pmod{c}, s\mathring{a} \ \ddot{a}r \ ab \equiv rs \pmod{c}.

Om a \equiv r \pmod{c}, s\mathring{a} \ \ddot{a}r \ a^b \equiv r^b \pmod{c}.
```

Definition 7 Den diskreta (multiplikativa) inversen till a mod n är det minsta positiva tal x, betecknat $a^{-1} \mod n$, som satisfierar $ax \equiv 1 \pmod n$.

Definition 8 Den diskreta a-logaritmen av b mod n är det minsta positiva tal x, betecknat $\log a \mod n$, som satisfierar $a^x \equiv b \pmod n$.

Sats 12 Kinesiska restsatsen

 $Om \ n_1, n_2, \ldots, n_m \ \ddot{a}r \ parvis \ relativt \ prima \ så \ har \ kongruenskevationssystemet$

$$\begin{cases} x \equiv h_1 \pmod{n_1} \\ x \equiv h_2 \pmod{n_2} \\ \vdots \\ x \equiv h_m \pmod{n_m} \end{cases}$$

lösningen $x = \sum_{i=1}^m h_i b_i \frac{n}{n_i} \mod n$ i \mathbb{Z}_n^* där $n = n_1 n_2 \cdots n_m$ och $b_i = (\frac{n}{n_i})^{-1} \mod n_i$.

Algoritm 5 Fermats faktoriseringsmetod

Antag att man vill faktorisera det udda talet N, dvs man vill hitta heltal, p och q, sådana att N = pq. Då kan man göra enligt följande procedur. Om talet man vill faktorisera är ett jämnt tal, bryt ut faktorn 2 och fortsätt tills ett udda tal, N, erhålls.

- 1. Låt (initialt) $x = 1 + [\sqrt{N}]$
- 2. Beräkna $x^2 N$.
- 3. Om $x^2 N$ är en jämn kvadrat (dvs om $\sqrt{x^2 N}$ är ett heltal), låt $p = x + \sqrt{x^2 N}$ och $q = x \sqrt{x^2 N}$ och gå till 6.
- 4. Om $x \sqrt{x^2 N} < 2$, låt p = N och q = 1 och gå till 6.
- 5. Addera 1 till x och gå till 2.
- 6. Klart!

Om faktoriseringen blir p = N och q = 1 (såsom det kan i steg 4. ovan) så är talet N ett primtal.

Definition 9

Eulers ϕ -funktion, $\phi(n)$, är antalet positiva heltal < n som är relativt prima med n.

Sats 13 Eulers sats

Om a och n är relativt prima så är $a^{\phi(n)} \equiv 1 \pmod{n}$.

Sats 14_m Eulers produktregel

$$\phi(n) = \prod_{i=1}^{m} p_i^{k_i-1}(p_i-1) \ d\ddot{a}r \ n = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m} \ \ddot{a}r \ primtals faktoriseringen \ av \ n.$$

Sats 15

Om g är en generator av det ändliga fältet \mathbb{F}_n så är samtliga generatorer $\{g^k \bmod n : k \in \mathbb{F}_n, \gcd(k, n-1) = 1\}$.

Sats 16

Om p primtal, 2p+1 primtal, $g \in \{1, 2, ..., 2p\}$, $g^2 \not\equiv 1 \pmod{2p+1}$ och $g^p \not\equiv 1 \pmod{2p+1}$ så är g en generator av fältet \mathbb{F}_{2p+1} .

Sats 17

 $Om \mathbb{F}_p$ är ett ändligt fält av primtalsordning p så är antalet generatorer av fältet $\phi(p-1)$.

Definition 10 LFSR

Givet sekvensen $a_1 a_2 \ldots a_n b_1 b_2 \ldots b_n$ där $a_i, b_i \in \{0, 1\}$ för alla $1 \le i \le n$ bildas sekvensen $x_1, x_2, \ldots, x_{2^n-1}$ genom att $x_1 = b_1, x_2 = b_2, \ldots, x_n = b_n$ och sedan $x_k = a_1 x_{k-1} + a_2 x_{k-2} + \ldots + a_n x_{k-n} \mod 2$ för alla $n+1 \le k \le 2^n - 1$.

Definition 11

Låt $f(x) = a_0 + a_1 x + \ldots + a_{N-1} x^{N-1}$ och $g(x) = b_0 + b_1 x + \ldots + b_{N-1} x^{N-1}$. Då betecknas **modulofaltningen** av f och g med f * g och den är definierad som polynomet $f * g(x) = c_0 + c_1 x + \ldots + c_{N-1} x^{N-1} \mod (p, x^N - 1)$ dvs där $c_k = \sum_{i+j \equiv k \pmod N} a_i b_j \mod p$.

Sats 18 Summeringsregler

$$\sum_{k=1}^{n} a b_k = a \sum_{k=1}^{n} b_k \qquad \sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$
$$\sum_{k=m}^{n} a = (n-m+1)a \qquad \sum_{k=m}^{n} a_k = \sum_{k=1}^{n} a_k - \sum_{k=1}^{m-1} a_k$$

Sats 19 Speciella regler

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \qquad \sum_{k=0}^{n} a^k = \frac{a^{n+1}-1}{a-1} \quad om \ a \neq 1 \qquad \sum_{k=1}^{n} (a_k - a_{k-1}) = a_n - a_0$$

Definition 12

En funktion kallas **inversen** till funktionen f och betecknas f^{-1} om $f^{-1}(f(x)) = x$ för alla x som f är definierad för.

Definition 13 Trigonometri

Låt a, b vara kateter, c hypotenusan i en rätvinklig triangel och α vinkeln mellan b och c (dvsmotstående a). Då är $\sin \alpha = \frac{a}{c}$, $\cos \alpha = \frac{b}{c}$ och $\tan \alpha = \frac{a}{b}$ och $a^2 + b^2 = c^2$ (Pythagoras).

Låt nu a,b,c vara sidorna i en godtycklig triangel och α,β,γ respektive motstående sidor. Då är $\frac{\sin\alpha}{a} = \frac{\sin\beta}{b} = \frac{\sin\gamma}{c}$ (sinussatsen) och $a^2 + b^2 - 2ab\cos\gamma = c^2$ (cosinussatsen).

För alla vinklar α och β gäller $\sin^2 \alpha + \cos^2 \alpha = 1$ (trigonmetriska ettan) och $\sin(\alpha \pm \beta) =$ $\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ och $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ (additionssatserna).

Definition 14 Linjär algebra

En vektor $\boldsymbol{u} = (u_1, u_2, \dots, u_n) \in \mathbb{R}^n$ är ett matematiskt objekt med riktning och storlek.

 $\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \end{vmatrix}$ Längden $\ddot{a}r |\mathbf{u}| = \sqrt{u_1^2 + u_2^2 + \ldots + u_n^2}$. Skalärprodukten $\boldsymbol{u} \cdot \boldsymbol{v} = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$. $A = \begin{bmatrix} a_{m1} & a_{m2} \end{bmatrix}$

 $\ddot{a}r$ en $m \times n$ -matris. Addition, subtraktion mellan matriser och multiplikation med skalär $\ddot{a}r$ definierat elementvis medan matrismultiplikation är definierat av att AB = C om A är en $m \times n$ -matrix med rader \mathbf{a}_i , $i = 1, \ldots, m$, B en $n \times k$ -matrix med kolonner \mathbf{b}_j , $j = 1, \ldots, k$, Cen $m \times k$ -matris med element $c_{ij} = \boldsymbol{a}_i \cdot \boldsymbol{b}_j$ – skalärprodukten mellan a_i och b_j . Matrisen A^T med elementen a_{ji} kallas transponatet av A. Om A är en kvadratisk matris är inversen A^{-1} den matris för vilken $AA^{-1} = I$ där I är **enhetsmatrisen**.

Definition 15 Komplexa tal

Mängden av komplexa tal, z=a+bi där $a,b\in\mathbb{R}$ och $i^2=-1$, betecknas \mathbb{C} . Realdelen $\ddot{a}r \operatorname{Re} z = a \text{ och imaginärdelen } \operatorname{Im} z = b.$ Konjugatet $\bar{z} = a - bi.$ Absolutbeloppet $|z| = \sqrt{a^2 + b^2}$. Polär form $z = r(\cos \alpha + i \sin \alpha) \ d\ddot{a}r \ r = |z| \ och \ \alpha = \arg z$.

Sats 20 DE MOIVRES FORMEL

Om $z = r(\cos \alpha + i \sin \alpha)$ så är $z^n = r^n(\cos(n\alpha) + i \sin(n\alpha))$

Sats 21 BINOMIALKOEFFICIENTER

Antalet sätt att välja k element bland n möjliga (utan återläggning och utan hänsyn till ordningen) är

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \qquad d\ddot{a}r \quad n! = \prod_{j=1}^{n} j \qquad och \quad 0! = 1$$

Sats 22 BINOMIALSATSEN

För alla reella tal a och b och positiva heltal n är

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Matematisk statistik

Definition 16 Sannolikhet

Sannolikheten för en händelse A är ett tal, betecknat P(A), som uppfyller villkoren:

- 1. $0 \le P(A) \le 1$
- 2. $P(\Omega) = 1$
- 3. Om A, B disjunkta, så är $P(A \cup B) = P(A) + P(B)$

Sats 23 Komplementsatsen
$$P(A^C) = 1 - P(A)$$

Defintion 12 BETINGAD SANNOLIKHET

Den betingade sannolikheten av A givet B $\ddot{a}r\ P(A|B) = \frac{P(A \cap B)}{P(B)}\ d\ddot{a}r\ P(B) > 0.$

Sats 24 Additionssatsen $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Definition 13

En slumpvariabel, X, är en (vanligtvis numerisk) generalisering av ett experiment. Mha slumpvariabeln kan olika händelser formuleras som att X har vissa värden. En slumpvariabels utfallsrum, Ω_X , är mängden av de värden som slumpvariabeln kan anta.

Definition 14

A och B är oberoende händelser om $P(A \cap B) = P(A)P(B)$. Två slumpvariabler, X och Y med utfallsrum Ω_X resp. Ω_Y , är oberoende om $P(X \in M_X, Y \in M_Y) = P(X \in M_X)P(Y \in M_Y)$ för alla $M_X \subseteq \Omega_X$ och $M_Y \subseteq \Omega_Y$.

Sats 25 BINOMIALFÖRDELNING

Om $X = Y_1 + Y_2 + \ldots + Y_n$ där $P(Y_k = 1) = p$ och $P(Y_k = 0) = 1 - p$ för alla $k = 1, 2, \ldots n$ och variablerna Y_1, Y_2, \ldots, Y_n är oberoende av varandra, så är $X \in Bin(n, p)$ (dvs X är binomialfördelad med n och p) vilket innebär att dess sannolikhetsfunktion är $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$ där $k \in \{0, 1, \ldots, n\} = \Omega_X$, E(X) = np och V(X) = np(1-p).

Sats 26 Poissonfördelning

Om X är Poissonfördelad med intensitet λ betecknas detta $X \in Poi(\lambda)$ och innebär att $P(X = x) = \frac{\lambda^x}{x!}e^{-\lambda}$ där $x \in \{0, 1, 2, ...\} = \Omega_X$, $E(X) = \lambda$ och $V(X) = \lambda$. Dessutom gäller att $X \in Poi(\lambda_X) \perp Y \in Poi(\lambda_Y) \Rightarrow X + Y \in Poi(\lambda_X + \lambda_Y)$.

Sats 27 Normalfördelning

Denna betecknas $N(\mu, \sigma)$ där μ är väntevärde och σ är standardavvikelse. Om $X \in N(0, 1)$ kallas X standard normalfördelad, och dess fördelningsfunktion är $\Phi(x) = P(X \le x)$ för alla $x \in \mathbb{R} = \Omega_X$. Om $X \in N(\mu, \sigma)$ så är $P(X \le x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$ för alla $x \in \mathbb{R} = \Omega_X$. Symmetri: $\Phi(-x) = 1 - \Phi(x)$ för alla $x \in \mathbb{R}$.

Symmetri: $\Phi(-x) = 1 - \Phi(x)$ för alla $x \in \mathbb{R}$. Sannolikheter: $P(a \le X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$ för all $a < b \in \mathbb{R}$.

Dessutom, om $X \in N(\mu_X, \sigma_X) \perp Y \in N(\mu_Y, \sigma_Y)$ så är $X + Y \in N(\mu_X + \mu_Y, \sqrt{\sigma_X^2 + \sigma_Y^2})$.

Definition 15 Väntevärdet av en slumpvariabel X betecknas E(X) och är tyngdpunkten i sannolikhetsfunktionen respektive täthetsfunktionen för x. Linjaritet: E(aX + bY) = aE(X) + bE(Y). **Variansen** av en slumpvariablel X betecknas V(X) och definieras V(X) = aE(X) + bE(Y).

 $E((X-E(X))^2)$. Räkneregler: $V(X) = E(X^2) - E(X)^2$ och $V(aX+bY) = a^2V(X) + b^2V(Y)$ om $X \perp Y$. Om X diskret variabel är $E(g(X)) = \sum_{x \in \Omega_X} g(x) P(X = x)$.

CENTRALA GRÄNSVÄRDESSATSEN (CGS)

 $Om\ X_1, X_2, \ldots, X_n\ \ddot{a}r\ oberoende\ och\ lika\ f\"{o}rdelade\ med\ E(X_i) = \mu\ och\ V(X_i) = \sigma^2$ så är approximativt $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \in N(\mu, \frac{\sigma}{\sqrt{n}})$ och $\sum_{i=1}^{n} X_i \in N(n\mu, \sigma\sqrt{n})$ då n är stort.

Definition 16 Beskrivande statistik

Proportionen: $p = \hat{\pi} = P(X \in A) = \frac{\#\{i: x_i \in A\}}{\pi}$

Medelvärdet: $\bar{x} = \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$ Stickprovsvariansen: $s^2 = \hat{\sigma}^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^2 - n \bar{x}^2 \right)$

Medianen: $\operatorname{md}(X_1,\ldots,X_n)=\left\{\begin{array}{ll} X_{(\frac{n+1}{2})} & om\ n\ \ddot{a}r\ udda\\ \frac{1}{2}(X_{(\frac{n}{2})}+X_{(\frac{n}{2}+1)}) & om\ n\ \ddot{a}r\ udda\\ \end{array}\right.$ Första kvartilen: $Q_1=\left\{\begin{array}{ll} \operatorname{md}(X_{(1)},\ldots,X_{(\frac{n-1}{2})}) & om\ n\ \ddot{a}r\ udda\\ \operatorname{md}(X_{(1)},\ldots,X_{(\frac{n}{2})}) & om\ n\ \ddot{a}r\ udda\\ \operatorname{md}(X_{(\frac{n+3}{2})},\ldots,X_{(n)}) & om\ n\ \ddot{a}r\ udda\\ \operatorname{md}(X_{(\frac{n}{2}+1)},\ldots,X_{(n)}) & om\ n\ \ddot{a}mnt \end{array}\right.$ Tredje kvartilen: $Q_3=\left\{\begin{array}{ll} \operatorname{md}(X_{(\frac{n+3}{2})},\ldots,X_{(n)}) & om\ n\ \ddot{a}r\ udda\\ \operatorname{md}(X_{(\frac{n}{2}+1)},\ldots,X_{(n)}) & om\ n\ \ddot{a}mnt \end{array}\right.$ Kvartilavståndet:

Variationsbredden: $R = X_{(n)} - X$

Definition 17 Konfidensintervall

Antag X_1, X_2, \ldots, X_n är stickprov på X och $E(X) = \mu_X$, att Y_1, Y_2, \ldots, Y_m är stickprov på Y och $E(Y) = \mu_Y$ och att $V(X) = V(Y) = \sigma^2$. Då gäller att ett $100(1-\alpha)\%$ konfidensintervall för

$$\mu_{X} \ddot{a}r \begin{cases} \bar{x} \pm \lambda_{\alpha/2} \frac{\sigma}{\sqrt{n}} \\ om \ \sigma^{2} \ \ddot{a}r \ k\ddot{a}nd \\ \bar{x} \pm t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} \\ om \ \sigma^{2} \ \ddot{a}r \ ok\ddot{a}nd \end{cases} \qquad d\ddot{a}r \ s_{P}^{2} = \begin{cases} \frac{(n-1)s_{X}^{2} + (m-1)s_{Y}^{2}}{n+m-2} \left(\frac{1}{n} + \frac{1}{m}\right) \\ om \ \min(n, m) \leq 30 \\ \frac{s_{X}^{2}}{n} + \frac{s_{Y}^{2}}{m} \\ om \ \min(n, m) > 30 \end{cases}$$

$$\pi \ \ddot{a}r \ p \pm \lambda_{\alpha/2} \sqrt{\frac{p(1-p)}{n}} \qquad \qquad \pi_1 - \pi_2 \ \ddot{a}r \ p_1 - p_2 \pm \lambda_{\alpha/2} \sqrt{\frac{p(1-p)n_1n_2}{n_1 + n_2}} \quad d\ddot{a}r \ p = \frac{n_1p_1 + n_2p_2}{n_1 + n_2}$$

Definition 18 Hypotestest

Antag x_1, \ldots, x_n är ett stickprov på X fördelad med parametern θ respektive x_1, \ldots, x_{n_1} och y_1, \ldots, y_{n_2} på X och Y fördelade med parametern θ . För att testa

 $\begin{cases} H_0: \theta = \theta_0 & (nollhypotesen) \\ H_1: \theta \in \Theta & (alternativhypotesen) \end{cases}$

används teststatistikan $U = U(X_1, ..., X_n)$ och beslutsregeln A_{α} som svarar mot Θ enligt fördelningen av F_U under H_0 vid signifikansnivån α .

Testregeln är $\left\{ \begin{array}{l} F\ddot{o}rkasta\ H_0\ om\ A_{\alpha} \\ F\ddot{o}rkasta\ inte\ H_0\ om\ inte\ A_{\alpha} \end{array} \right.$

θ	H_0	H_1	u	A_{α}	p-värde
π	$\pi = \pi_0$	$\begin{array}{c c} \pi < \pi_0 \\ \hline \pi > \pi_0 \\ \hline \pi \neq \pi_0 \end{array}$	$\frac{\sqrt{n}(p-\pi_0)}{\sqrt{\pi_0(1-\pi_0)}} \qquad \begin{array}{l} \ d\ddot{a}r \; \pi = P(B(X)), \\ p = \frac{\#\{x_i:B(x_i)\}}{n}, \\ villkor: \; n\pi_0(1-\pi_0) > 5 \end{array}$		$ \begin{array}{c c} \Phi(u) \\ \hline 1 - \Phi(u) \\ \hline 2(1 - \Phi(u)) \end{array} $
π_1,π_2	$\pi_1 = \pi_2$	$\begin{array}{c c} \pi_1 < \pi_2 \\ \hline \pi_1 > \pi_2 \\ \hline \pi_1 \neq \pi_2 \end{array}$	$\frac{p_1 - p_2}{\sqrt{p(1-p)(\frac{1}{n_1} + \frac{1}{n_2})}} \qquad \begin{array}{l} d\ddot{a}r \ p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2} \\ Villkor: \\ n_1 \pi_1 (1 - \pi_1) > 5 \\ n_2 \pi_2 (1 - \pi_2) > 5 \end{array}$		$ \begin{array}{c c} \Phi(u) \\ \hline 1 - \Phi(u) \\ 2(1 - \Phi(u)) \end{array} $
$ \begin{array}{ c c c }\hline \mu \\ (\sigma^2 \ k\ddot{a}nd) \\ \hline \end{array} $	$\mu = \mu_0$	$\mu < \mu_0$ $\mu > \mu_0$ $\mu \neq \mu_0$	$rac{\sqrt{n}(ar{x}-\mu_0)}{\sigma}$	$ \begin{aligned} u &< -\lambda_{\alpha} \\ u &> \lambda_{\alpha} \\ u &> \lambda_{\alpha/2} \end{aligned} $	$\begin{array}{c c} \Phi(u) \\ 1 - \Phi(u) \\ 2(1 - \Phi(u)) \end{array}$
μ		$\mu < \mu_0$	$\frac{\sqrt{n}(\bar{x}-\mu_0)}{s}$	$u < -t_{\alpha, n-1}$	$ (\alpha_1, \alpha_2) : t_{\alpha_2} < -u < t_{\alpha_1} $
$(\sigma^2 \ ok\ddot{a}nd)$	$\mu = \mu_0$	$\mu > \mu_0$	s	$u > t_{\alpha, n-1}$	$(\alpha_1, \alpha_2) : t_{\alpha_2} < u < t_{\alpha_1}$
		$\mu \neq \mu_0$		$ u > t_{\alpha/2, n-1}$	$ \begin{array}{c} (\alpha_1, \alpha_2) : \\ t_{\alpha_2/2} < u < t_{\alpha_1/2} \end{array} $
		$\mu_1 < \mu_2$	$ar{x}_1 - ar{x}_2$ $egin{array}{cccc} d\mathring{a} \; \sigma_1 = \sigma_2 \ men \; ok\ddot{a}nda, \end{array}$	$u < -t_{\alpha, n_1 + n_2 - 2}$	$ \begin{array}{c} (\alpha_1, \alpha_2) : \\ t_{\alpha_2} < -u < t_{\alpha_1} \\ (\alpha_1, \alpha_2) : \end{array} $
μ_1,μ_2	$\mu_1 = \mu_2$	$\mu_1 > \mu_2$	$\sqrt{\frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \qquad \text{och } \min(n_1, n_2) \le 30$	$u > t_{\alpha, n_1 + n_2 - 2}$	$t_{\alpha_2} < u < t_{\alpha_1}$
		$\mu_1 \neq \mu_2$		$ u > t_{\alpha/2, n_1 + n_2 - 2}$	$(\alpha_1, \alpha_2): t_{\alpha_2/2} < u < t_{\alpha_1/2}$
		$\mu_1 < \mu_2$	$rac{ar{x}_1 - ar{x}_2}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}} \qquad egin{array}{c} d\mathring{a} \ \sigma_1 = \sigma_2 \ men \ ok\ddot{a}nda, \ och \ \min(n_1, n_2) > 30 \end{array}$	$u < -t_{\alpha, n_1 + n_2 - 2}$	$ (\alpha_1, \alpha_2) : t_{\alpha_2} < -u < t_{\alpha_1} $
μ_1,μ_2	$\mu_1 = \mu_2$	$\mu_1 > \mu_2$	$\sqrt{\frac{s_1}{n_1} + \frac{s_2}{n_2}}$	$u > t_{\alpha, n_1 + n_2 - 2}$	$ (\alpha_1, \alpha_2) : t_{\alpha_2} < u < t_{\alpha_1} $
		$\mu_1 \neq \mu_2$		$ u > t_{\alpha/2, n_1 + n_2 - 2}$	$ \begin{array}{c} (\alpha_1, \alpha_2) : \\ t_{\alpha_2/2} < u < t_{\alpha_1/2} \end{array} $
A, B	$A\bot B$	$A \!\!\perp\!\!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\frac{(n_{11}c_2 - n_{12}c_1)\sqrt{n}}{\sqrt{c_1c_2r_1r_2}} \qquad \begin{array}{c cccc} & A: & A^C: \\ B: & n_{11} & n_{12} & r_1 \\ B^C: & n_{21} & n_{22} & r_2 \\ \hline & c_1 & c_2 & n \end{array}$	$ u >\lambda_{lpha/2}$	$2(1-\Phi(u))$
F_X	$F_X = F_0$	$F_X \neq F_0$	$\sum_{k=1}^{K} \frac{(O_k - E_k)^2}{E_k} \qquad \begin{array}{l} \operatorname{d\"{a}r} E_k = NP(X \in I_k \mid H_0) \\ \operatorname{och} E_k > 2 \ \operatorname{f\"{o}r} \ \operatorname{alla} \ \operatorname{klasser} \ k \end{array}$	$u > \chi^2_{\alpha, K-1}$	$ (\alpha_1, \alpha_2) : \chi^2_{\alpha_2} < u < \chi^2_{\alpha_1} $

Enkel linjär regression

En linjär modell, Y = a + bX, som beskriver sambandet mellan slumpvariablerna X och Y baserad på det parade stickprovet $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ fås med regressionskoefficienten

$$\hat{b} = \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} \quad \text{och interceptet} \quad \hat{a} = \bar{y} - \hat{b}\bar{x}.$$

Den har då förklaringsgraden R^2 där R är korrelationen

$$R = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - (\sum_{i=1}^{n} x_{i})(\sum_{i=1}^{n} y_{i})}{\sqrt{\left(n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}\right) \left(n \sum_{i=1}^{n} y_{i}^{2} - (\sum_{i=1}^{n} y_{i})^{2}\right)}}$$

Normalfördelningsvärden

 $\Phi(x)$

Tabell över värden på $\Phi(x) = P(X \le x)$ där $X \in N(0,1)$. För x < 0 utnyttja relationen $\Phi(x) = 1 - \Phi(-x)$.

x	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
								=		
x	+0.0	+0.1	+0.2	+0.3	+0.4	+0.5	+0.6	+0.7	+0.8	+0.9
3	0.9987	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000

Normal-percentiler:

Några värden på λ_{α} sådana att $P(X > \lambda_{\alpha}) = \alpha$ där $X \in N(0, 1)$

α	λ_{lpha}	α	λ_{lpha}
0.25	0.674490	0.005	2.575829
0.1	1.281552	0.001	3.090232
0.05	1.644854	0.0005	3.290527
0.025	1.959964	0.0001	3.719016
0.01	2.326348	0.00001	4.264891

t-percentiler

 $0 \quad t_{\alpha,df}$

Tabell över värden på $t_{\alpha,df}$.

df	α 0.25	0.10	0.05	0.025	0.02	0.01	0.005	0.001
1	1.0000	3.0777	6.3138	12.7062	15.8945	31.8205	63.6567	318.3088
2	0.8165	1.8856	2.9200	4.3027	4.8487	6.9646	9.9248	22.3271
3	0.7649	1.6377	2.3534	3.1824	3.4819	4.5407	5.8409	10.2145
4	0.7407	1.5332	2.1318	2.7764	2.9986	3.7470	4.6041	7.1732
5	0.7267	1.4759	2.0150	2.5706	2.7565	3.3649	4.0322	5.8934
6	0.7176	1.4398	1.9432	2.4469	2.6122	3.1427	3.7074	5.2076
7	0.7111	1.4149	1.8946	2.3646	2.5168	2.9980	3.4995	4.7853
8	0.7064	1.3968	1.8595	2.3060	2.4490	2.8965	3.3554	4.5008
9	0.7027	1.3830	1.8331	2.2622	2.3984	2.8214	3.2498	4.2968
10	0.6998	1.3722	1.8125	2.2281	2.3593	2.7638	3.1693	4.1437
11	0.6974	1.3634	1.7959	2.2010	2.3281	2.7181	3.1058	4.0247
12	0.6955	1.3562	1.7823	2.1788	2.3027	2.6810	3.0545	3.9296
14	0.6924	1.3450	1.7613	2.1448	2.2638	2.6245	2.9768	3.7874
17	0.6892	1.3334	1.7396	2.1098	2.2238	2.5669	2.8982	3.6458
20	0.6870	1.3253	1.7247	2.0860	2.1967	2.5280	2.8453	3.5518
25	0.6844	1.3163	1.7081	2.0595	2.1666	2.4851	2.7874	3.4502
30	0.6828	1.3104	1.6973	2.0423	2.1470	2.4573	2.7500	3.3852
50	0.6794	1.2987	1.6759	2.0086	2.1087	2.4033	2.6778	3.2614
100	0.6770	1.2901	1.6602	1.9840	2.0809	2.3642	2.6259	3.1737

χ^2 -percentiler

 $\begin{array}{c} \alpha \\ \lambda_{\alpha,df} \end{array}$

Tabell över värden på $\chi^2_{\alpha,df}$.

df	α 0.25	0.10	0.05	0.025	0.02	0.01	0.005	0.001
1	1.3233	2.7055	3.8415	5.0239	5.4119	6.6349	7.8794	10.8276
2	2.7726	4.6052	5.9915	7.3778	7.8240	9.2103	10.5966	13.8155
3	4.1083	6.2514	7.8147	9.3484	9.8374	11.3449	12.8382	16.2662
4	5.3853	7.7794	9.4877	11.1433	11.6678	13.2767	14.8603	18.4668
5	6.6257	9.2364	11.0705	12.8325	13.3882	15.0863	16.7496	20.5150
6	7.8408	10.6446	12.5916	14.4494	15.0332	16.8119	18.5476	22.4577
7	9.0371	12.0170	14.0671	16.0128	16.6224	18.4753	20.2777	24.3219
8	10.2189	13.3616	15.5073	17.5345	18.1682	20.0902	21.9550	26.1245
9	11.3888	14.6837	16.9190	19.0228	19.6790	21.6660	23.5894	27.8772
10	12.5489	15.9872	18.3070	20.4832	21.1608	23.2093	25.1882	29.5883
11	13.7007	17.2750	19.6751	21.9200	22.6179	24.7250	26.7568	31.2641
12	14.8454	18.5493	21.0261	23.3367	24.0540	26.2170	28.2995	32.9095
14	17.1169	21.0641	23.6848	26.1189	26.8728	29.1412	31.3193	36.1233
17	20.4887	24.7690	27.5871	30.1910	30.9950	33.4087	35.7185	40.7902
20	23.8277	28.4120	31.4104	34.1696	35.0196	37.5662	39.9968	45.3147
25	29.3389	34.3816	37.6525	40.6465	41.5661	44.3141	46.9279	52.6197
30	34.7997	40.2560	43.7730	46.9792	47.9618	50.8922	53.6720	59.7031
50	56.3336	63.1671	67.5048	71.4202	72.6133	76.1539	79.4900	86.6608
100	109.1412	118.4980	124.3421	129.5612	131.1417	135.8067	140.1695	149.4493