1. Em cada item abaixo, calcule a derivada da função dada.

(a)
$$f(x) = \frac{3}{x^9}$$

(c) $f(x) = x^{-4}$

(c)
$$f(x) = x^{-4}$$

(e)
$$f(x) = (1 + \sqrt{x})^2$$

(g)
$$f(x) = \arccos\left(\frac{x}{\sqrt{1-x^2}}\right)$$

(i)
$$f(x) = \ln(x + \cos(x))$$

(k)
$$f(x) = e^{x^3} - \ln(x^2 + 1)$$

(m) $f(x) = \pi^x$

$$(m) f(x) = \pi^x$$

(o)
$$f(x) = \log_{\pi} x$$

(q)
$$f(x) = \frac{\cos x + \sin x}{x^2 + 1}$$

(s) $f(x) = \frac{x^3 + \sin x}{x^3 - \cos x}$

(s)
$$f(x) = \frac{x^3 + \sin x}{x^3 + \cos x}$$

(u)
$$f(x) = \log_3(x) + 5x^2 \ln x$$

(w)
$$f(x) = \frac{x+4}{x \ln x}$$

(w)
$$f(x) = \frac{x+4}{x \ln x}$$

(y) $f(x) = (\sqrt[3]{x} + \sqrt{x})e^x \cot x$

(b)
$$f(x) = \sqrt[7]{x^3}$$

(d)
$$f(x) = \sqrt[8]{x}$$

(f)
$$f(x) = \arcsin\left(\frac{3x+1}{x}\right)$$

(h) $f(x) = \sqrt{1+\sqrt{1+x}}$

(h)
$$f(x) = \sqrt{1 + \sqrt{1 + x}}$$

(j)
$$f(x) = e^{2x} \ln \left(x \operatorname{sen}(x) + \frac{e^{-x}}{x^5 + 1} \right)$$

(1)
$$f(x) = 11^x$$

$$(n) f(x) = \log_7 x$$

(p)
$$f(x) = \sqrt{x+2} + \frac{6}{x^3 + 2x}$$

$$(r) f(x) = \frac{x^4 + 2x}{x \operatorname{sen} x}$$

(t)
$$f(x) = 5 \operatorname{cossec} x + \operatorname{cotg} x + x^5 \operatorname{tg} x$$

(v)
$$f(x) = \frac{e^x}{x^5 + 2x}$$

(x)
$$f(x) = x^3 \cos x (3 + \ln x + \sin x)$$

2. Calcule a derivada de:

(a)
$$f(x) = \sqrt[4]{\frac{x-2}{x+2}}$$

(c) $y = e^{\frac{t}{2}g^2x}$

(c)
$$y = e^{-\frac{tg^2}{2}x}$$

(e)
$$f(x) = \frac{\cos x}{\sin^4 x}$$

(g)
$$g(x) = e^{x^3} \ln(3 + \sqrt{x})$$

(i)
$$g(x) = (3 + \lg x)^x$$

$$(k) y = (2 + \sec x)^{\cos 3x}$$

(m)
$$y = \sec 2x$$

(o)
$$y = e^{-7x} \sec x^2$$

(b)
$$y = \cos(\sin x)$$

(d)
$$y = \ln(\operatorname{cossec} x + \operatorname{cotg} x)$$

(d)
$$y = \ln(\operatorname{cossec} x + \operatorname{cotg} x)$$

(f) $f(t) = \frac{te^2 \operatorname{sen} t}{\ln(3t+1)}$

(h)
$$y = \sqrt{x^4 + e^{\sqrt{x}}}$$

(j) $y = (1 + x^2)^{e^{-x}}$
(l) $y = \operatorname{tg} 5x$
(n) $y = e^{\operatorname{tg} x^2}$

(i)
$$y = \sqrt{x^2 + 6^2}$$

$$(1) y = tg 5x$$

(n)
$$y = e^{\operatorname{tg} x^2}$$

$$(p) y = \ln(\sec 3x + \tan 3x)$$

3. Determine a reta que é tangente ao gráfico de $f(x)=x^4$ e paralela à reta y=4x+3.

4. Seja r a reta tangente ao gráfico de $f(x) = \frac{1}{x^2}$ no ponto de abscissa p. Verifique que r intercepta o eixo Ox no ponto de abscissa $\frac{3p}{2}$.

5. Seja $g: \mathbb{R} \to \mathbb{R}$ uma função diferenciável tal que g(-1) = 3 e g'(-1) = 5. Calcule f'(0), sendo fdada por

$$f(x) = e^x g(4x - 1).$$

6. Seja g uma função derivável. Verifique que

- (a) $[\tan q(x)]' = \sec^2 q(x) \cdot q'(x)$
- (b) $[\sec g(x)]' = \sec g(x) \operatorname{tg} g(x) \cdot g'(x)$
- (c) $[\cot g(x)]' = -\csc^2 g(x) \cdot g'(x)$
- (d) $[\operatorname{cossec} g(x)]' = -\operatorname{cossec} g(x) \operatorname{cotg} g(x) \cdot g'(x)$
- 7. Encontre, em cada um dos ítens abaixo, $\frac{dy}{dx}$, onde y = y(x) é dada implicitamente pelas equações abaixo:
 - (a) $\cos^2(x+y) = \frac{1}{4}$

(c) $(y^2 - 9)^4 = (4x^2 + 3x - 1)^2$

(b) $y^3 = \frac{x-y}{x+y}$ (d) $x^3 + x^2y - 2xy^2 + y^3 - 1 = 0$

(e) $sen(xy) + y - x^2 = 0$

(g) $x \arctan(x) + y^2 = 4$

- (h) $\sqrt{2x+y} + \sqrt{x+2y} = 6$
- 8. Nos correspondentes itens do exercício acima, encontre o valor de $\frac{dy}{dx}(x_0)$, onde:
 - (a) $x_0 = 0 \ e \ 0 \le y \le \pi$
- (b) $x_0 = 0 \text{ e } y \neq 0$
- (c) $x_0 = -1 \text{ e } y \geqslant 0$ (f) $x_0 = -2$

(d) $x_0 = 1 e y \neq 0$

(e) $x_0 = 0$

(g) $x = 0 e y \ge 0$

(h) x = 0

- (i) $x = 0 \text{ e } y \leq 0.$
- 9. Considere $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \begin{cases} x, & \text{se } x < 1 \\ x^2, & \text{se } 1 \leqslant x \leqslant 9. \\ 27\sqrt{x}, & \text{se } x > 9. \end{cases}$
 - (a) Determine os pontos $x \in \mathbb{R}$ onde f é diferenciável.
 - (b) Onde existe f^{-1} , isto é, a função inversa de f?
 - (c) Determine os pontos onde f^{-1} é diferenciável e calcule $(f^{-1})'$ nesses pontos.
- (a) Para que valores de M a reta y = Mx é tangente ao círculo $y^2 + x^2 4x + 3 = 0$?
 - (b) Encontre as equações das retas tangentes à elipse $4x^2 + 9y^2 = 40$ cujos coeficientes angulares valem $-\frac{2}{9}$.
- 11. Considere a função $f(x) = \begin{cases} x^2 \operatorname{sen}\left(\frac{1}{x}\right), & \operatorname{se} x \neq 0 \\ 0, & \operatorname{se} x = 0 \end{cases}$. Encontre f'(x), para todo $x \in \mathbb{R}$. Verise
- 12. Em quais pontos da curva $y = \sin x + \cos x$, $0 \le x \le 2\pi$, a reta tangente é horizontal?
- 13. Seja $f(x) = x + e^x$, $x \in [a, b] \subset \mathbb{R}$, e seja g a inversa de f. Mostre que g é derivável e que $g'(x) = \frac{1}{1 + e^{g(x)}}$, para todo $x \in [a, b]$. [: Sugestão: observe que f é estritamente crescente no intervalo fechado [a,b], e portanto f é invertível com inversa $g:[f(a),f(b)]\to [a,b]$ contínua
- 14. A função $f(x) = \sec x$, $0 \le x < \frac{\pi}{2}$ é invertível e sua inversa é a função $f^{-1}(x) = \operatorname{arcsec} x$, $x \ge 1$. Calcule $\operatorname{arcsec}' x$.