Inhaltsverzeichnis

1	Nor	rm und Skalarprodukt	5
	1.1 1.2	Norm	5 5 5
2	Syn	nmetrische, positiv definite Matrix	6
	2.1	Cholesky-Zerlegung	6
	2.2	[?] diagonaldominant und alle Diagonalelemente größer gleich 0	6
	2.3	Eigenwerte	6
	2.4	Eigenvektor	6
3	Mat	trixnormen	7
	3.1	Natürliche Matrixnorm	7
	3.2	Verträglichkeit	7
	3.3	Zeilensummennorm	7
	3.4	Spaltensummennorm	7
	3.5	Spektralnorm	8
4	Spe	ktralradius, Konditionszahl einer Matrix	9
	4.1	Spektralradius [phi]	9
	4.2	Konditionszahl einer Matrix A	9
	4.3	Sonderfall symmetrisch, positiv definite Matrix	9
5	Ähr	alichkeitstransformation, Invarianz der Eigenwerte	10
	5.1	Reduktionsmethoden	10
6	\mathbf{Gle}	itkommazahlen,	11
	6.1	Gleitkommazahl (normalisiert)	11
	6.2	Gleitkommagitter	11
	6.3	Maschienengenauigkeit eps	11
	6.4	Rundungsfehler	11
7	Dar	stellung des Interpolationsfehlers	12
	7.1	Fehler I	12
	7.2	Fehler II	12
8	Kor	nditionierung einer numerischen Aufgabe, Konditionszah-	
	len		13
	8.1	numerische Aufgabe	13

	8.2	Konditionszahl (relativ)					13
9		abilität eines Algorithmus stabiler Algorithmus		•	•	•	14 14
10	Aus	ıslöschung					15
11	Hor	orner-Schema*					16
	11.1	1 Code					16
		2 Auswertung					16
12	Inte	terpolation und Approximation					17
	12.1	1 Grundproblem					17
	12.2	2 Aufgabenstellung					17
	12.3	3 Interpolation					17
		4 Approximation					17
13	Lag	gransche Interpolationsaufgabe					18
	_	1 Aufgabe					18
		2 Eindeutigkeit + Existenz					18
		3 Lagransche Basispolynome					18
		4 Eigenschaften					18
		5 Lagransche Darstellung					18
14	Nev	ewtonsche Basispolynome					19
		1 Newton-Polynome					19
		14.1.1 Auswertung					19
		14.1.2 Vorteil					19
	14.2	2 Newtonsche Darstellung					19
	14.3	3 Dividierte Differenzen*					19
15	Nev	evillsche Darstellung					20
		1 Schema					20
		2 Code					
16	Her	ermite-Interpolation					21
-		1 Aufgabe					$\frac{1}{21}$
	16.2	2 Existenz + Eindeutig					21
		3 Fehler					

17	Extrapolation	22
	17.1 Richardson-Extrapolation	22
	17.2 Lagrange	22
	17.3 Neville	
	17.4 Extrapolationsfehler	22
18	Spline-Interpolation	24
	18.1 Interpolationsnachteil	24
	18.2 Abhilfe	24
	18.3 Lineare Spline	24
	18.4 Kubischer Spline	24
	18.5 Existenz	
	18.6 Approximationsfehler	24
19	Gauß-Approximation	2 5
20	Gram-Schmidt-Algorithmus	26
	20.1 Code	26
21	Interpolatorische Quadraturformeln	27
	21.1 Interpolatorische Quadratur Formel	27
	21.2 Ordnung	
	21.3 Newton-Cotes-Formel*	
	21.4 Abgeschlossene Formeln	
	21.5 Offene Formeln	
	21.6 Code	
	21.7 Problem	
	21.8 Abhilfe: Summierte Quadraturformeln *	
	21.8.1 Fehlerdarstellung	
22	Gaußsche Quadraturformeln *	29
	22.1 Gewichtetes Skalarprodukt	29
	22.2 Gauß-Quadratur	29
	22.3 Wahl der Stützstellen	29
	22.4 Kongergenz der Gauß-Quadraturen	29
	22.5 Code	29
23	Störungssattz	30
	23.1 Störungssatz	30
	23.2 gestörte Matrix	30

24	Lösung von Dreieckssystemen+Aufwand*	31
	24.1 Rückwärtseinsetzen	31
	24.2 Vorwärtseinsetzen	31
	24.3 Aufwend	
25	Gaußsches Eliminationsverfahren	32
	25.1 Gauß-Elimination	32
	25.2 Spaltenpivotisierung	32
	25.3 LR - Zerlegung	32
	25.4 Code	
26	Symmetrisch positiv definite Systeme	33
	26.1 Cholesky-Zerlegung	33
	26.2 Aufwand	
	26.3 Code	
27	Least-Squares-Lösungen, Normalgleichung	34
	27.1 Least-Squares-Lösung	34
	27.2 Eindeutigkeit	34
28	QR-Zerlegung,	35
	28.1 QR-Zerlegung	35
	28.2 Least-Squares mit Vollrang	
	28.3 Aufwand	
	28.4 Code	

1 Norm und Skalarprodukt

1.1 Norm

Definitheit: $||x|| = 0 \Rightarrow x = 0$ absolute Homogenität: $||\alpha x|| = |\alpha| * ||x||$ Dreiecksungleichung: $||x + y|| \le ||x|| + ||y||$

1.2 Skalarprodukt

$$\left. \begin{array}{l} < x+y,z> = < x,z> + < y,z> \\ < x,y+z> = < x,y> + < x,z> \\ < \lambda x,y> = \lambda < x,y> \\ < x,\lambda y> = \lambda < x,y> \end{array} \right\} \text{Linearität}$$

$$\left. \begin{array}{l} < x,y> = < x,x> \geq 0 \\ < x,x> = 0 \Rightarrow x=0 \end{array} \right\} positiv Definitheit$$

1.2.1 Vom Skalarprodukt induzierte Norm

$$||x|| = \sqrt{\langle x, x \rangle}$$

1.2.2 Cauchy-Schwarzche Ungleichung

$$|\langle x, y \rangle| \le ||x|| * ||y||$$

2 Symmetrische, positiv definite Matrix

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} \begin{pmatrix} a & b & c & d \\ b & e & f & g \\ c & f & h & i \\ d & g & i & j \end{pmatrix}$$

Symmetrische Matrix

insbesonders: Diagonalmatrizen, Einheitsmatrizen

positiv definit: $x^t A x > 0$ (beliebige Matrix)

alle EW > 0 (symmetrische Matrix)

alle Haupt[TODO: ?] > 0 (symetrische Matrix)

$$\begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} \Rightarrow 3 \text{ Hauptminoren}[?] = \det(a), \det\begin{pmatrix} a & b \\ b & d \end{pmatrix}, \det\begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$$

2.1 Cholesky-Zerlegung

 $A = GG^t$ G unter der Matrix, invertierbar (symmetrische Matrix)

[?] diagonal dominant und alle Diagonal elemente größer gleich 0

(symmetrische Matrix)

2.3 Eigenwerte

$$\det(\lambda \operatorname{En} - A) = 0$$

2.4 Eigenvektor

$$f(v) = \lambda v$$

3 Matrixnormen

3.1 Natürliche Matrixnorm

$$\begin{split} ||A||_{\infty} &:= \max_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} = \max_{||x||=1} ||Ax||_{\infty} \\ ||A|| &= 0 \Rightarrow A = 0 \\ ||\lambda A|| &= |\lambda| * ||A|| \\ ||A + B|| &\leq ||A|| + ||B|| \\ ||A * B|| &\leq ||A|| * ||B|| \end{split}$$

3.2 Verträglichkeit

$$||Ax|| \le ||A|| * ||x||$$

3.3 Zeilensummennorm

= natürliche Matrixnorm $||A||_{\infty} = \max_{||x||_{\infty}=1} ||Ax||_{\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}|$ $A = \begin{pmatrix} 1 & -2 & -3 \\ 2 & 3 & -1 \end{pmatrix}$ $||A||_{\infty} = \max\{|1| + |-2| + |-3|, |2| + |3| + |-1|\}$ $= \max\{6, 6\} = 6$

3.4 Spaltensummennorm

$$\begin{split} ||A||_1 &:= \max_{x \neq 0} \frac{||Ax||_1}{||x||_1} = \max_{||x||_1 = 1} ||Ax||_1 = \max_{j = 1, \dots, n} \sum_{i = 1}^m |a_{ij}| \\ A &= \begin{pmatrix} 1 & -2 & -3 \\ 2 & 3 & -1 \end{pmatrix} \\ &\qquad \qquad ||A||_1 = \max\{|1| + |2|, |-2| + |3|, |-3| + |-1|\} \\ &\qquad \qquad = \max\{3, 5, 4\} = 5 \\ &\qquad \qquad ||A^t||_1 = ||A||_{\infty} \end{split}$$

3.5 Spektralnorm

$$A||_{2} := \max_{||x||_{2}=1} ||Ax||_{2}$$

$$= \max_{x \neq 0} \frac{||Ax||_{2}}{||x||_{2}}$$

$$= \max_{||x||_{2}=1} \langle Ax, Ax \rangle$$

$$= \max_{||x||_{2}=1} \langle A^{t}Ax, x \rangle$$

$$= \max_{||x||_{2}=1} \langle A^{t}Ax, x \rangle$$

$$= \max(|A|)_{2} ||A| = 16, 1$$

$$A = \begin{pmatrix} 3 & 2 \\ -2 & 0 \end{pmatrix}, A^{t}A = \begin{pmatrix} 13 & 6 \\ 6 & 4 \end{pmatrix} \det(\mu E_{n} - A^{t}A) = 0 \Leftrightarrow \mu_{1,2} = 16, 1$$

$$||A||_{2} = \sqrt{\max(\mu_{1}, \mu_{2})} = \sqrt{\mu_{1}} = \sqrt{16} = 4$$

4 Spektralradius, Konditionszahl einer Matrix

4.1 Spektralradius [phi]

 $\varphi(A) = \max: 1 \leq i \leq n |\lambda_i(A)| = spr(A)$ der betragsmäßig größte Eigenwert von A

 $||A|| \geq |\lambda|$ (für jede Matrixnorm, die mit einer Vektornorm verträglich ist)

4.2 Konditionszahl einer Matrix A

$$cond(A) = ||A|| * ||A^{-1}||$$

4.3 Sonderfall symmetrisch, positiv definite Matrix

$$cond(A) = \frac{\lambda_{max}}{\lambda_{min}}$$

5 Ähnlichkeitstransformation, Invarianz der Eigenwerte

y = Ax

$$\overline{x} = Cx, \overline{y} = Cy$$
 (det $C \neq 0$), $C \in GL$

$$\begin{array}{l} \underline{y} = Ax \Rightarrow C^{-1}\overline{y} = AC^{-1}\overline{x} \Rightarrow \overline{y} = CAC^{-1}\overline{x} \Rightarrow \overline{y}\overline{A}\overline{x} \\ \overline{A} = CAC^{-1} \Rightarrow \overline{A} \sim A \end{array}$$

 λ EW, v EV zu A

$$\Rightarrow Av = C^{-1}\overline{A}Cv = \lambda v$$

 $\Rightarrow \overline{A}$ und A haben dieselben Eigenwerte, algebraisch und geometrische Vielfalten stimmen überein (Invarianz der Eigenwerte)

5.1 Reduktionsmethoden

A duch Ähnlichkeitstransformationen

$$A=A^{(0)}=T_1^{-1}A^{-1}T_1=Q...=T_i^{-1}A^{(i)}T_i=...$$

auf Form bringen, für welche EW und EV leicht zu berechnen sind (z.B. Jordan-Normalform)

6 Gleitkommazahlen, ...

6.1 Gleitkommazahl (normalisiert)

 $b\in\mathbb{N},b\geq 2,x\in\mathbb{R}$ $x=\pm m*b^{\pm e}$ Mantisse: $m=m_1b^{-1}+m_2b^{-2}+\ldots\in\mathbb{R}$ Exponent: $e=e_{s-1}b^{s-1}+\ldots+e_0b^0\in\mathbb{N}$ für $x\neq 0$ eindeutig

6.2 Gleitkommagitter

A = A(b,r,s) größte Darstellbare Zahl: $(1-b^{-r})*b^{b^s-1}$ mit b als Basis, r als Mantissenlänge, s als Exponentenlänge $(b=10):0,314*10^1=3,14$ $0,123*10^6=123.000$ Beispiel: konvertiere von Basis 8 zu Basis 10: $x=(0,5731*10^5)_8\in A(8,5,1)$ $x=(5*8^{-1}+7*8^{-2}+3*8^{-3}+1*8^{-4})*8^5$ $x=5*8^4+7*8^3+3*8^2+1*8^1=24.264*10^0$

6.3 Maschienengenauigkeit eps

$$eps = \frac{1}{2}b^{-r+1}, IEEE : eps = \frac{1}{2} * 2^{-52} \approx 10^{-16}$$

6.4 Rundungsfehler

 $\begin{array}{l} absolut: |x-rd(x)| \leq \frac{1}{2}b^{-r}b^e \\ relativ: |\frac{x-rd(x)}{x}| \leq \frac{1}{2}b^{-r+1} = eps \end{array}$

7 Darstellung des Interpolationsfehlers

7.1 Fehler I

 $f \in C^{n+1}[a, b], \forall x \in [a, b] \exists \xi_x \in (\overline{x_0, ..., x_n, x}),$ wobei das Intervall das kleinst mögliche Intervall, das alle x_i enthällt, s.d.

mögliche Intervall, das alle
$$x_i$$
 enthällt, s.d.
$$f(x) - p(x) = \frac{f^{(n+1)}(\xi x)}{(n+1)!} \prod_{j=0}^{n} (x - x_j)$$

7.2 Fehler II

$$\begin{split} &f \in C^{n+1}[a,b], \forall x \in [a,b] \ \backslash x_0, ..., x_n gilt: \\ &f(x) - p(x) = f[x_0, ..., x_n, x] \prod_{j=0}^n (x - x_j) \\ &\text{mit } f[x_i, ..., x_{i+k}] = y[x_i, ..., x_{i+k}] \\ &\text{und } f[x_0, ..., x_n, x] = \int\limits_0^1 \int\limits_0^t ... \int\limits_0^t f^{n+1}(x_0 + t_1(x_1 - x_0) + ... + t_n(x_n - x_{n-1} + t(x - x_n)) dt dt_n ... dt_1 \\ &\text{für } x_0 = x_1 = ... = x_n: \\ &f[x_0, ..., x_n] = \frac{1}{n!} f^{(n)}(x_0) \\ &\frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod\limits_{j=0}^n (x - x_j) = f(x) - p(x) = f[x_0, ..., x_n, x] \prod\limits_{j=0}^n (x - x_j) \\ &\Rightarrow f[x_0, ..., x_n, x] = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \end{split}$$

8 Konditionierung einer numerischen Aufgabe, Konditionszahlen

8.1 numerische Aufgabe

 $x_j \in \mathbb{R}$ mit $f(x_1, ..., x_m) \Rightarrow y_i = f_i(x_j)$ fehlerhafte Eingangsgrößen $x_i + \Delta y_i$ $|\Delta y_i|$ ist der absolute Fehler, $|\frac{\Delta y_i}{y_i}|$ ist der relative Fehler

8.2 Konditionszahl (relativ)

$$\begin{split} k_{ij}(x) &= \frac{\partial f_i}{\partial x_i}(x) \frac{\Delta x_j}{x_j} \\ &\frac{\Delta y_i}{y_i} = \sum_{j=1}^m k_{ij}(x) \frac{\Delta x_j}{x_j} \\ &|k_{ij}(x)| >> 1 \Rightarrow \text{schlecht konditioniert} \\ &|k_{ij}(x)| << 1 \Rightarrow \text{gut konditioniert, ohne Fehlerverstärkung} \\ &|k_{ij}(x)| > 1 \Rightarrow \text{Fehlerverstärkung} \\ &|k_{ij}(x)| < 1 \Rightarrow \text{Fehlerdämpfung} \end{split}$$

9 Stabilität eines Algorithmus

9.1 stabiler Algorithmus

akkumulierte Fehler der Rechnung (Rundungsfehler, Auswertungsfehler, etc.) übersteigen den unvermeidbaren Problemfehler der Konditionierung der Aufgabe nicht. Aka Trotz Ungenauigkeiten bei den Eingabe Variablen erhalten wir fast sehr genaue Ergebnisse.

10 Auslöschung

Verlust von Genauigkeit bei der Subtraktion von Zahlen mit gleichem Vorzeichen

TODO: bei bedarf ein Beispiel

11 Horner-Schema*

$$p(x) = a_0 + x(\dots + x(a_{n-1} + a_n x)\dots)$$

11.1 Code

```
\begin{array}{l} \operatorname{def\ horner}(Ac,\,Ax,\,n,\,x): \\ y = 0.0 \\ \operatorname{for\ i\ in\ reversed\ range}(n): \\ y = y * (x - Ax[i]) + Ac[i] \\ \operatorname{return\ } y \\ \operatorname{Ac:\ Vektor\ mit\ Koeffizienten,\ ist\ ein\ np\ Array} \\ \operatorname{Ax:\ St\"{u}tzstellen,\ ist\ ein\ np\ Array} \\ \operatorname{n:\ Anzahl\ der\ St\"{u}tzstellen,\ ist\ ein\ int} \\ x:\ \operatorname{Auswertungspunkt,\ ist\ ein\ double} \\ \operatorname{Immer\ Horner-Schema\ zur\ Auswertung\ von\ Polynomen\ verwenden.} \end{array}
```

11.2 Auswertung

TODO: subsection

12 Interpolation und Approximation

12.1 Grundproblem

Darstellung und Auswertung von Funktionen

12.2 Aufgabenstellung

f(x) nur auf Diskreter Menge von Argumenten $x_0, ..., x_n$ bekannt und soll rekonstruiert werden

analytisch gegebene Funktion soll auf Reelwerte dargestellt werden, damit jederzeit Werte zu beliebigen ${\bf x}$ berechnet werden können.

Einfach konstruierte Funktionen in Klassen P:

Polynome:
$$p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$$
 rationale Funktion: $r(x) = \frac{a_0 + a_1x + \dots + a_nx^n}{b_0 + b_1x + \dots + b_mx^m}$

trigonometrische Funktion:
$$t(x) = \frac{1}{2}a_0 + \sum_{k=1}^{n} (a_k cos(kx) + b_k sin(kx))$$

Exponential summen:
$$e(x) = \sum_{k=1}^{n} a_k exp(b_k x)$$

12.3 Interpolation

Zuordnung von $g \in P$ zu f durch Fixieren von Funktionswerten $g(x_i) = y_i = f(x_i), i = 0, ..., n$

12.4 Approximation

$$\begin{split} g \in P \text{ beste Darstellung, z.B.} \\ \max_{\substack{a \leq x \leq b \\ b}} |f(x) - g(x)| minimal \\ (\int\limits_{a} |f(x) - g(x)|^2 dx)^{\frac{1}{2}} minimal \end{split}$$

Lagransche Interpolationsaufgabe 13

Aufgabe 13.1

Finde zu n + 1 verschiedene Stützstellen/Knoten $x_0, ..., x_n \in \mathbb{R}$ und Werten $y_0, ..., y_n \in \mathbb{R}$ ein Polynom $p \in P_n mitp(x_i) = y_i$

13.2 Eindeutigkeit + Existenz

Die Lagransche Interpolationsaufgabe ist eindeutig lösbar TODO: bei bedarf Beweis rein kopieren den Ich nicht verstanden hab

Lagransche Basispolynome

$$L_i^{(n)}(x) = \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j} \in P_n, i = 0, ..., n$$

13.4 Eigenschaften

ortogonal: es gilt
$$L_i^{(n)}(x_k) = d_{ik} = \begin{cases} 1 & i = k \\ 0 & sonst \end{cases}$$

bilden Basis von P_n haben Grad n

Lagransche Darstellung

$$p(x) = \sum_{i=0}^{n} y_i L_i^{(n)}(x) \in P_n \text{ mit } p(x_j) = y_j$$

 $p(x)=\sum_{i=0}^ny_iL_i^{(n)}(x)\in P_n\text{ mit }p(x_j)=y_j$ Nachteil: Bei Hinzunahme von (x_{n+1},y_{n+1}) ändert sich das Basispolynom komplett

TODO: Beispiel

14 Newtonsche Basispolynome...

14.1 Newton-Polynome

$$N_0(x) = 1, N_i(x) = \prod_{j=0}^{i-1} (x - x_j) \text{ mit } p(x) = \sum_{i=0}^{n} a_i N_i(x)$$

14.1.1 Auswertung

$$y_0 = p(x_0) = a_0$$

$$y_1 = p(x_1) = a_0 + a_1 * (x_1 - x_0)$$

$$\vdots$$

$$y_n = p(x_n) = a_0 + a_1(x_1 - x_0) + \dots + a_n(x_n - x_0) * \dots * (x_n - x_{n-1})$$

14.1.2 Vorteil

Bei Hinzunahme von (x_{n+1}, y_{n+1}) muss nur eine neue Rechnung durchgeführt werden, und nicht das gesamte Polynom neu berechnet werden

TODO: Beispiel

14.2 Newtonsche Darstellung(stabile Variante)

$$p(x) = \sum_{i=0}^{n} y[x_0, ..., x_i] N_i(x)$$

14.3 Dividierte Differenzen*

$$y[x_i,...,x_{k+1}] = \frac{y[x_{i+1},...,x_{k+1}] - y[x_i,...,x_{i+k-1}]}{x_{i+k} - x_i} \text{ mit } k = 1, ..., j \text{ und } i = k - j$$
 für beliebige [?] $\sigma:0,...,n \to 0,...,n$ gilt $y[\tilde{x_0},...,\tilde{x_n}] = y[x_0,...,x_n]$

15 Nevillsche Darstellung

$$p_{jj}(x) = y_j j = 0, ..., n k = 1, ..., j i = k - j$$

$$p_{i,i+k}(x) = p_{i,i+k-1}(x) + (x - x_i) \frac{p_{i+1,i+k}(x) - p_{i,i+k-1}(x)}{x_{i+k} - x_i}$$

15.1 Schema

TODO: add the diagonal arrows

Hinzunahme von (x_{n+1}, y_{n+1}) ist problemlos

Auswertung von $p_{0,n}(x)$ in $\xi \neq x_i$ ohne vorherige Bestimmung der Koeffizienden der Newton-Darstellung ist einfach und Numerisch stabil möglich

15.2 Code

```
\begin{array}{l} \operatorname{def} \operatorname{divDiffs}(xi,\,yi,\,x) \colon \\ n = \operatorname{len}(xi) \\ p = n \ ^* [0] \\ \operatorname{for} \ k \ \operatorname{in} \ \operatorname{range}(n) \colon \\ & \operatorname{for} \ i \ \operatorname{in} \ \operatorname{range}(n - k) \colon \\ & \operatorname{if} \ k == 0 \colon \\ & p[i] = yi[i] \\ & \operatorname{else} \colon \\ & p[i] = \left( (x - xi[i + k]) \ ^* p[i] + (xi[i] - x) \ ^* p[i + 1] \right) / \left( xi[i] - xi[i + k] \right) \\ & \operatorname{return} \ p[0] \end{array}
```

16 Hermite-Interpolation

16.1 Aufgabe

$$Gegeben: \quad x_i \qquad i=0,...,m \qquad paarweiseverschieden \\ y_i^{(k)} \qquad i=0,...,m \qquad k=0,...,\mu_i(\mu_i \geq 0) \\ Gesucht: \, p \in P_n, \, n=m+\sum_{i=0}^m \mu_i: \, p^{(k)}(x_i)=y_i^{(k)} \\ x_i \, \text{sind} \, (\mu_i+1)\text{-fache Stützstellen} \\ x_0=-1, \, x_1=1, \, m=1, \, y_0^{(0)}=0, \, y_1^{(0)}, \, y_1^{([l?])}=2 \\ \Rightarrow \mu_0=0, \, \mu_1=1 \\ \Rightarrow n=1+0+1=2 \\ \Rightarrow p(\mathbf{x})=x^2$$

16.2 Existenz + Eindeutig

analog zur Lagrange-Interpolation

16.3 Fehler

$$f \in C^{n+1}[a,b] : \forall x \in [a,b] \exists \xi_x \in (\overline{x_0, ..., x_m, x}), \text{ s.d.}$$

$$f(x) - p(x) = f[x_0, ..., x_0, ..., x_m, ..., x_m, x] \prod_{i=0}^m (x - x_i)^{\mu_i + 1}$$

$$= \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) \prod_{i=0}^m (x - x_i)^{\mu_i + 1}$$

Extrapolation zum Limes + Fehler 17

17.1Richardson-Extrapolation

nicht direkt berechenbare Größe

$$a(0) = \lim_{k \to 0} a(k), \qquad k \in \mathbb{R}_+$$

berechne $a(k_i)$ für gewisse k_i , i = 0, ..., n und [?] $p_n(0)$ des Interpolations Polynoms zu $(h_i,a(h_i))$ als Schätzung für a
(0)

$$a(0) := \lim_{x \to 0^+} \frac{\cos(x) - 1}{\sin(x)} \quad (= 0)$$

$$a(x) := \frac{(\cos(x) - 1)}{\sin(x)}$$

Interpolation a(x) an Stützstellen
$$k_i$$
 nahe bei 0:
 $k_0 = \frac{1}{8}$ $a(k_0) = -6,258151 * 10^{-2}$
 $k_1 = \frac{1}{16}$ $a(k_1) = -3,126018 * 10^{-2}$
 $k_2 = \frac{1}{32}$ $a(k_2) = -1,562627 * 10^{-2}$

17.2 Lagrange

$$p_2(x) = a(k_0) \frac{(x - \frac{1}{16})(x - \frac{1}{32})}{(\frac{1}{8} - \frac{1}{16})(\frac{1}{8} - \frac{1}{32})} + a(k_1) \frac{(x - \frac{1}{8})(x - \frac{1}{32})}{(\frac{1}{16} - \frac{1}{8})(\frac{1}{16} - \frac{1}{32})} + a(k_2) \frac{(x - \frac{1}{8})(x - \frac{1}{16})}{(\frac{1}{32} - \frac{1}{8})(\frac{1}{32} - \frac{1}{16})}$$

$$\Rightarrow a(0) \sim p_2(0) = -1, 02 * 10^{-5}$$

17.3 Neville

$$p_{i,i+k}(0) = p_{i,i+k-1}(0) + \frac{p_{i,i+k-1}(0) - p_{i+1,i+k}(0)}{\frac{x_{i+k}}{x_{i-1}}}, k = 1, 2$$

$$\frac{i \mid x_i \mid p_{i,i}(0) = a(k_i) \mid p_{i,i+1}(0) \mid p_{i,i+2}(0)}{0 \mid x_0 = \frac{1}{8} \mid -6, 258151 * 10^{-2} \mid 6, 115 * 10^{-5} \mid -1, 02 * 10^{-5}}$$

$$1 \mid x_1 = \frac{1}{16} \mid -3, 126018 * 10^{-2} \mid 7, 64 * 10^{-6}$$

$$2 \mid x_2 = \frac{1}{32} \mid -1, 562627 * 10^{-2} \mid$$

Extrapolationsfehler

a(n) habe die Entwickling:

$$a(h) = a_0 + \sum_{j=1}^n a_j h^{jq} + a_{n+1}(h) h^{(n+1)q}$$
 mit $q > 0$, Koeffizienten a_j und $a_{n+1}(h) = a_{n+1} + a(1[?????])$ $(h_k)_{k \in \mathbb{N}}$ erfülle: $0 \le \frac{h_{k+1}}{h_k} \le p < 1 \ (\Rightarrow h_k \text{ positiv monoton fallend})$ Dann gilt für $p_1^{(k)} \in P_n \ (\text{in } h^q) \ \text{durch } (h_k^q, a(h_k)), \dots, (h_{k+n}^q, a(h_{k+1}))$

$$a(0) - p_n^{(k)}(0) = O(h_k^{(n+1)q})$$
 $(k \to \infty)$

Spline-Interpolation 18

18.1 Interpolationsnachteil

Starke Oszillation von Polynomen höheren Grades

Abhilfe 18.2

Spline-Interpolation, d.h. stückweise polynomielle Interpolation mit (n - 1)mal stetig diff.baren Knoten

18.3 Lineare Spline

alle Abschnitt-Splines sind lineare Funktionen

Kubischer Spline

 $s_n : [a, b] \to \mathbb{R}$ kubischer Spline bezüglich $a = x_0 < x_1 < ... < x_n = b$, wenn gillt

- 1. $s_n \in C^2[a, b]$
- 2. $S_n|_{I_i} \in P_3$, i = 1, ..., n

natürlicher Spline:

3.
$$s_n''(a) = s_n''(b) = 0$$

18.5 Existenz

Der interpolierende kubische Spline existiert und ist eindeutig bestimmt durch zusammen Vorgabe von $s_n''(a), s_n''(b)$

für natürlichen Spline
$$s_n$$
 durch $x_0, ..., x_n, y_0, ..., y_n$ gilt:
$$\int_a^b |s'(x)|^2 dx \le \int_a^b |g''(x)|^2 dx$$
 bezüglich $g \in C^2[a, b]$ mit $g(x_i) = y_i$, $i = 1, ..., n$

Approximationsfehler 18.6

$$f \in C^4[a, b], s_1''(a) = f''(a) \land s_n''(b) - f''(b):$$

$$\max_{x \in [a, b]} |f(x) - s : n(x)| \le \frac{1}{2} h^4 \max_{x \in [a, b]} |f^{(4)}(x)|$$

19 Gauß-Approximation

$$< f,g> := \int\limits_a^b f(t)\overline{g(t)}dt \qquad ||f|| = \sqrt{< f,f>}$$
 H Prähilbertraum, $\delta \subset H$ endlich Dimensional $\exists f \in H$ eindeutig bestimmte "beste Approximation" $g \in S$ $||f-g|| = \min_{\varphi \in S} ||f-\varphi||$ bes. einfache Lösung, wenn $\{\varphi_1,...,\varphi_n\}$ eine ONB ist, d.h. $(\varphi_i,\varphi_j) = \delta_{i,j} \Rightarrow \alpha_i = < f,\varphi_i> \qquad \text{i} = 1, ..., n$ $\Rightarrow g = \sum\limits_{i=1}^n < f,\varphi_i> \varphi_i \text{ ist beste Approximation}$

20 Gram-Schmidt-Algorithmus

$$w_1 := \frac{v_1}{||v_1||} \quad \tilde{w_k} := v_k - \sum_{i=1}^{k-1} \gamma < v_k, w_i > w_i, \quad w_k := \frac{\tilde{w_k}}{||\tilde{w_k}||}$$

20.1 Code

```
\begin{split} n &= size(v,\,1) \\ k &= size(v,\,2) \\ u &= np.zeros(n,\,k) \\ u[:,\,1] &= v[:,\,1]/sqrt(v[:,\,1] \,\,{}^*\,\,v[:,\,1]) \\ for \,\,i\,\,in\,\,range(2,\,k): \\ u[:,\,i] &= v[:,\,i] \\ for \,\,j\,\,in\,\,range(1,\,i\,-\,1): \\ u[:,\,i] &= u[:,\,i] \,-\,\,(u[:,\,i] \,\,{}^*\,\,u[:,\,j]) \,\,/\,\,(u[:,\,j] \,\,{}^*\,\,u[:,\,j]) \,\,{}^*\,\,u[:,\,j] \\ u[:,\,i] &= u[:,\,i] \,\,/\,\,sqrt(u[:,\,i] \,\,{}^*\,\,u[:,\,i]) \end{split}
```

21 Interpolatorische Quadraturformeln

$$I(f) = \int_{a}^{b} f(x)dx \approx I^{(n)}(f) = \sum_{i=1}^{n} \alpha_{i} f(x_{i})$$

Stützstellen a $\leq a_{0} < x_{1} < \dots < x_{n} \leq b$ und Gewichte $\alpha_{i} \in \mathbb{R}$

21.1 Interpolatorische Quadratur Formel

$$I^{(n)}(f) = \int_{a}^{b} p_{n}(x)dx = \sum_{i=0}^{n} f(x_{i}) \int_{a}^{b} L_{i}^{(n)}(x)dx^{1}$$
Lagrange:
$$I(f) - I^{(n)}(f) = \int_{a}^{b} f[x_{0}, ..., x_{n}, x] \prod_{i=0}^{n} (x - x_{i})dx$$

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} p_{0}(x)dx = (b - a) * \sum_{i=0}^{n} w_{i}f(x_{i})$$

$$w_{i} = \frac{1}{(b-a)} \int_{a}^{b} L_{i}(x)dx$$

21.2 Ordnung

$$I^{(n)}vonderOrdnungm \Leftrightarrow \forall p \in P_{m-1}$$

$$\int_{a}^{b} p(x)dx = I^{(n)}(p) \qquad \text{exakt}$$

 \Rightarrow Interpolatorische Quadraturformel zu (n + 1)-Stützstellen sind mindestens von der Ordnung n + 1

 \Rightarrow höchstens Ordnung 2n + 2, mindestens n + 1

21.3 Newton-Cotes-Formel*

äquidistante Stützstellen

21.4 Abgeschlossene Formeln

$$\begin{split} H &= \frac{b-a}{n}, x_i = a+iH, a = x_0, b = x_n \\ &\text{Trapezregel: } I^{(1)}(f) = \frac{b-a}{2}[f(a)+f(b)] \\ &\text{Simpsonregel: } I^{(2)}(f) = \frac{b-a}{6}[f(a)+4f(\frac{a+b}{2})+f(b)] \\ &^3/_8 - Regel: I^{(3)}(f) = \frac{b-a}{8}[f(a)+3f(a+H)+3f(b-h)+f(b)] \end{split}$$

 $^{^{1}\}alpha_{i}$

21.5 Offene Formeln

$$(H = \frac{b-a}{n+2}, x_i = a + (i+1)H, a < x_0, x_n < b)$$

$$I^{(0)}(f) = (b-a)f(\frac{a+b}{2}) \qquad \text{Mittelpunktregel}$$

$$I^{(1)}(f) = \frac{(b-a)}{2}(f(a+H) + f(b-H))$$

$$I^{(2)}(f) = \frac{(b-a)}{3}(2f(a+H) - f(\frac{a+b}{2}) + 2f(b-H))$$

21.6 Code

21.7 Problem

negative Gewichte $\alpha_i \Rightarrow$ Auslöschungsgefah Oszilationen des Lagrange Interpolanten (Runge-Phänomen) $\Rightarrow I^{(n)}(f) \xrightarrow{n \to \infty} I(f)$

21.8 Abhilfe: Summierte Quadraturformeln *

$$I - n^{(n)}(f) = \sum_{i=1}^{N-1} I_{[x_i, x_i+1]}^{(n)}(f)$$
 $h = \frac{b-a}{N}, x_i = a + iH$

21.8.1 Fehlerdarstellung

$$I_{[x_i,x_{i+1}]}(f) - I_{[x_i,x_{i+1}]}^{(n)}(f) = w_n h^{n+2} f^{(m+1)}(\xi_i), \qquad \xi_i \in [a,b]$$

$$m \ge n : I(f) - I_n^{(n)}(f) = w_n h^{(m+1)}(b-a) f^{(m+1)}(\xi)$$

22 Gaußsche Quadraturformeln *

22.1 Gewichtetes Skalarprodukt

$$\langle f, g \rangle_{\omega} = \int_{a}^{b} f(x)g(x)\omega(x)dx, \qquad \omega(x) \ge 0, x \in (a, b)$$

22.2 Gauß-Quadratur

 \exists ! interpolierte Quadraturformel [?] (n + 1) paarweise verschiedene Stützstellen auf [-1, b] mit Ordnung 2n + 2. Stützstellen = Nullstellen

$$\alpha_{i} = \int_{-1}^{1} \prod_{j=0, j \neq i} (\frac{x - \lambda_{j}}{\lambda_{i} - \lambda_{j}})^{2} dx > 0^{2}, \qquad i = 0, ..., n$$

$$f \in C^{2n+2}([-1, 1]) Restglied :$$

$$R^{(n)} = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \int_{-1}^{1} \prod_{j=0}^{n} (x - \lambda_{j})^{2} dx, \qquad \xi \in (-1, 1)$$

22.3 Wahl der Stützstellen

Nullstellen $\lambda_0,...,\lambda_n\in(-1,1)$ des (n + 1)-sten Legendre-Polynomes $L_{n+1}\in P_{n+1}$

22.4 Kongergenz der Gauß-Quadraturen

Sei $I^{(n)}(f)$ die (n + 1) punktige [?] Gauß-Formel zu $I(f) = \int_{-1}^{1} f(x)dx \forall f \in C[-1,1]: I^{(n)}(f) \xrightarrow{n \to \infty} I(f)$

22.5 Code

²Positivität der Gewichte

23 Störungssattz...

23.1 Störungssatz

 $A \in \mathbb{K}^{nxn}$ regulär mit $||\delta A|| \leq \frac{1}{||A^{-1}||},$ dann gilt für die

gestörte Matrix 23.2

 $\tilde{A} = A + \delta A$ ist regulär

Für den relativen Fehler der Lösung gilt mit Konditionszahl von A:

$$cond(A) = ||A|| * ||A^{-1}||$$

$$cond(A) = ||A|| * ||A^{-1}||$$
die Ungleichung:
$$\frac{||\delta_x||}{||x||} \leq \frac{cond(A)}{1-cond(A)\frac{||\delta_A||}{||A||}} \left[\frac{||\delta b||}{||b||} + \frac{||\delta A||}{||A||}\right]$$

24 Lösung von Dreieckssystemen+Aufwand*

24.1 Rückwärtseinsetzen

$$x_{j} = \begin{cases} \frac{b_{n}}{a_{nn}} & j = n\\ \frac{1}{a_{jj}} (b_{j} - \sum_{k=j+1}^{n} a_{jk} x_{k}) & j = n-1, ..., 1 \end{cases}$$

24.2 Vorwärtseinsetzen

$$x_{j} = \begin{cases} \frac{b_{n}}{a_{nn}} & j = n\\ \frac{1}{a_{jj}} (b_{j} - \sum_{k=j+1}^{n} a_{jk} x_{k}) & j = 1, ..., n-1 \end{cases}$$

24.3 Aufwend

$$\sum_{j=1}^{n} j = \frac{(n+1)n}{2} = \frac{n^2}{2} + O(n)$$

25 Gaußsches Eliminationsverfahren...

25.1 Gauß-Elimination

Umformen von Ax = b auf Rx = c, R ist eine rechte obere Dreieck Matrix

25.2 Spaltenpivotisierung

$$|a_{r_{k,k}}^{(k-1)}| = \max_{j=k,\dots,n} |a_{jk}^{(k-1)}|$$

25.3 LR - Zerlegung

Ax = b

$$\begin{pmatrix} 2 & 1 & 7 \\ 8 & 8 & 33 \\ -4 & 10 & 4 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 15 \\ 73 \\ 12 \end{pmatrix} \begin{pmatrix} (-4)* \\ 2* \end{pmatrix} \begin{pmatrix} 8 & 8 & 33 \\ 2 & 1 & 7 \\ -4 & 10 & 4 \end{pmatrix} P_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Eliminierung
$$\begin{pmatrix} 8 & 8 & 33 \\ 2 & 1 & 7 \\ -4 & 10 & 4 \end{pmatrix} L_1 = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{4} & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 8 & 8 & 33 \\ 0 & 4 & 5 \\ 0 & 28 & 41 \end{pmatrix} P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 8 & 8 & 33 \\ 0 & 28 & 41 \\ 0 & 4 & 5 \end{pmatrix} L_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{7} & 1 \end{pmatrix} \leadsto \begin{pmatrix} 8 & 8 & 33 \\ 0 & 28 & 41 \\ 0 & 0 & 6 \end{pmatrix} = R$$

$$PA = LR \Rightarrow L_2L_1P_2P_1A = F \Rightarrow P_2P_1A = L_1^{-1}L_2^{-1}R, P_2P_1 = P$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$L_2L_1 = (\dot{}\cdot\dot{}\cdot), (L_2L_1)^{-1} = L = ([linkeunteredreiecksmatrix])$$

 $Ax = b \Rightarrow LRx = Pb, Pb = \tilde{b}$
 $\Rightarrow Ly = \tilde{b}, Rx = y$

A regulär + diagonaldominant \Rightarrow A = LR kann ohne Pivot bezeichnet werden

25.4 Code

26 Symmetrisch positiv definite Systeme

26.1 Cholesky-Zerlegung

Jede symmetrische positiv definite Matrix A hat eine sogenannte Cholesky - Zerlegung:

$$A = LDL^{t} = \tilde{L}\tilde{L}^{t}, \ \tilde{L} := LD^{\frac{1}{2}}$$

$$\begin{pmatrix} \tilde{l}_{1,1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ \tilde{l}_{n,1} & \dots & \tilde{l}_{n,n} \end{pmatrix} \begin{pmatrix} \tilde{l}_{1,1} & \dots & \tilde{l}_{n,1} \\ \vdots & \ddots & \vdots \\ 0 & \dots & \tilde{l}_{n,n} \end{pmatrix} = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix}$$

$$i \ge j : a_{i,j} = \sum_{k=1}^{j} \tilde{l}_{i,k} \tilde{l}_{j,k} = \sum_{k=1}^{j-1} \tilde{l}_{i,k} \tilde{j}, k + \tilde{l}_{i,j} \tilde{l}_{j,j}$$

$$i = 1, \dots, n \qquad \tilde{l}_{i,i} = \sqrt{a_{i,i} - \sum_{k=1}^{i-1} \tilde{l}_{i,k}^{2}}$$

$$j = i + 1, \dots, n \qquad \tilde{l}_{i,j} = \frac{1}{\tilde{l}_{i,i}} (a_{i,j} - \sum_{k=1}^{i-1} \tilde{l}_{i,k} \tilde{l}_{j,k})$$

Dandmatrizen: Nullen nicht speichern/berechnen Diagonal-Dominante: keine Pivotisierung notwendig symmetrisch positiv definite: keine Pivotisierung notwending

26.2 Aufwand

$$N_{Cholesky}(n) = \frac{n^3}{6} + O(n^2)$$
 (billiger als A = LR)

26.3 Code

27 Least-Squares-Lösungen, Normalgleichung

$$A \in \mathbb{R}^{m \times n} Ax = b$$

keine Lösung, $b \notin im(A)$
unendlich viele Lösungen $\bar{x} + \delta x \Leftrightarrow A\bar{x} = b, \ \delta x \in ker(A) \neq \{0\}$

27.1 Least-Squares-Lösung

Es existiert immer eine "Lösung" $\bar{x} \in \mathbb{R}^n$ mit kleinsten Fehlerquadraten

27.2 Eindeutigkeit

$$R(A) = n \Leftrightarrow \bar{x} \text{ eindeutig, jede weitere L\"osung: } \bar{x} + y, y \in ker(A)$$

$$Gerade: b = C + Dt \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \begin{pmatrix} x_3 \\ y_3 \end{pmatrix}$$

$$\Rightarrow C + x_1 D = y_1$$

$$C + x_2 D = y_2$$

$$C + x_3 D = y_3$$

$$\Rightarrow A = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \end{bmatrix} x = \begin{bmatrix} C \\ D \end{bmatrix} b = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

$$1. C = A^t A = [\], b' = A^t b = [\]$$

$$2. Cholesky Zerlegung: G^t G = C \Rightarrow G = [\]$$

$$3. G^t y = b' \Rightarrow y = [\], Gx = y \Rightarrow x = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$\Rightarrow Gerade: b = a_1 + a_2 t$$

$$\Rightarrow Gerade : b = a_1 + a_2t$$
Alternativ: $Q^t A = R = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}, Gx = y \Rightarrow x = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$

$$R_1 x = \tilde{b}_1 \Rightarrow D = a_1, C = A_2$$

QR-Zerlegung, ... 28

28.1 QR-Zerlegung

$$A \in \mathbb{K}^{m \times n}, Rang(A) = n \le m$$

 $\exists \text{eindeutig bestimmte Matrix Q} \in \mathbb{K}^{m \times n} \quad \begin{array}{l} Q^tQ = En(\text{für } \mathbb{K} = \mathbb{R}) \\ \overline{Q}^tQ = En(\text{für } \mathbb{K} = \mathbb{C}) \\ \text{und eindeutig bestimmte obere Dreiecks Matrix } R \in \mathbb{K}^{n \times n} r_{i,i} < 0 \text{ reell,} \\ \end{array}$

s.d.

 $\begin{cases} -1 & v_1 < 0 \\ 1 & v_1 > 0 \end{cases}$ Householder Matrix $H = E_n - 2\frac{uu^t}{u^t u}$

Least-Squares mit Vollrang

$$A = Q_1 R = (Q_1 | Q_2) \quad \binom{R}{0} \quad , \ Q = (Q_1 | Q_2) \in \mathbb{R}^{m \times n}$$

$$Rx = Q^t b \qquad \qquad R = \binom{R}{0} \in \mathbb{R}^{m \times n}$$

$$Rang(A) = n$$

$$||Ax - b||_2^2 = ||Rx - Q_1^t b||_2^2 + ||Q_2^t b||_2^2 \text{ minimal für } x = R^{-1} Q_1^t b$$

28.3 Aufwand

Doppelter Aufwand für QR wie für LR $N_{QR}(n) = \frac{2}{3}n^3 + O(n^2)$

28.4 Code