Lecture 7: FDDI

Hema Murthy Professor Dept. of CSE, IIT Madras

Short Term Course on "Teaching Computer Networks Effectively". Sponsored by AICTE.

Fibre Distributed Data Interface

- Runs on fibre and not copper
- dual ring
 - two independent rings transmitting data in opposite direction
 - second not used for normal operation
 - used only if primary fails

FDDI Ring

FDDI Ring

- Expensive twice the amount of fibre
 - stations may be allowed to connect on a single cable
 - single attachment station (SAS)
- use concentrator to connect several SASs to dual ring

Concentrator detects failure of SAS

- Optical bypass to isolated failed SAS

FDDI Ring

- Each NE Adapter hosts some number of bits between its input and output interfaces
 - Variable buffer size
 - 9 ≤ buffersize ≤ 80 bit
- Station transmits an amount equal to half buffer
- Total time depends on buffer

Delay in FDDI

- Example: 100 Mbps FDDI
- 10 ns for bit time
- Each station 10 bit buffer waits until buffer half full before transmitting
 - station introduces 50 ns delay into TRT

FDDI –Physical Characteristics

- 500 stations with a maximum distance of 2km between any pair
- maximum network length: 200km
- 100 km connecting all stations (dual ring)

FDDI –Physical Characteristics

- FDDI encoding:
 - 4B/5B encoding
 - Replace 4B with 5B code such that no more than one leading zero,
 - no more than two trailing zeros and no more than 3 consecutive zeros

Asynchronous vs. Synchronous Traffic

- Synchronous traffic
 - Traffic is delay sensitive
 - station transmits data whether token is late or early
 - But synchronous cannot exceed one TTRT in one TRT
- Asynchronous traffic
 - Station transmits only if token is early

Measurement of Token Rotation Time (TRT)

- Target Token Rotation Time (TTRT agreed upon time)
- Time between successive token arrival TRT observed by any node
- TRT > TTRT
 - token late station does not transmit data
- TRT < TTRT
 - station holds token until TTRT
 - down stream station may not be able to transmit

Token Maintenance

- Process of setting up TTRT
- Monitor ring to ensure token has not been lost
- Fix TTRT each node bids for the TTRT
- Idle time between valid transmissions that a given node experiences is
 - ring latency + time to transmit a full frame
 - 2.5 ms maximally sized ring
- If timer expired then claim token
 - TTRT lower used
 - Lower TTRT new node enters the bidding process by

- Worst Case
 - Nodes with asynchronous traffic use one TTRT
 - Next nodes with synchronous traffic in one TTRT
- TRT at a node = 2 * TTRT
 - Synchronous traffic TTRT
 - Next no asynchronous token late

- No back to back transmission of TTRT
 - When does a node transmit asynchronous data
 - TRT + ε = TTRT => Transmit
 - Total TRT = TTRT + full FDDI frame
- if claim frame makes it all the way back to the original sende
 - node knows it is only active bidder => safely claim the token

FDDI Frame Format

7.2 FDDI Analysis

Let TTRT = T (average token interval time)

Let $\alpha_0, \alpha_1, ..., \alpha_{m-1}$ be the THT for each of the m stations

$$\alpha_0 + \alpha_1 + \dots + \alpha_{m-1} \le T$$

Let $t_0, t_1, ..., t_{m-1}$ be the time of arrival of token at stations 0, 1, ..., m-1

 t_i , i > 0 is the time at which token reaches station $i = i \mod m$ in cycle i/m

 t_{-m} ,..., t_{-1} , be the times at which token arrives at m,..., 1 in the previous cycle

If $t_i - t_{i-m} < T$, low priority frames transmitted If $t_i - t_{i-m} > T$, no low priority frames transmitted

Both case high priority traffic transmitted

Time at which token reaches next node is

$$t_{i+1} = t_{i-m} + T + \alpha_i$$
, for $t_i - t_{i-m} < T$, $i \ge 0$

$$t_{i+1} = t_i + \alpha_i$$
, for $t_i - t_{i-m} > T$, $i \ge 0$

where $\alpha_i = \alpha_{i \mod m}$ is the allocated transmission plus propagation time for node (i mod m)


```
Special case : \alpha_i = 0, for all i t_{i+1} \leq \max (t_i, t_{i-m} + T), i \geq 0
Since t_{i-m} \leq t_i t_{i+1} \leq t_i + T
Similarly for 1 \leq j \leq m+1 t_{i+j} \leq t_i + T
Hence t_{i+m+1} \leq t_i + T, for all i \geq 0
```



```
Iterate over multiples of m+1 t_i \leq t_{i \bmod (m+1)} + i/(m+1)T all i>0 The m+1 occurs to ensure that when stations are heavily loaded every cycle a different transmits First cycle station 0 transmits Next cycle station 1 transmits , ... t_m - station 0 transmits T t_{2m} = T \Rightarrow station 0 cannot transmit - token late station 1 transmits \Rightarrow fair share to all stations
```

Utilisation

$$U = \frac{1}{1 + a/N}$$

N - number of stations

a - propagation delay

1 - time take to transmit a packet

$$N \to \infty U \to 1$$

Wireless LANs

- Infrared, radio
 - Within room → Satellite communication
- IEEE 802.11
 - Limited geography
 - Primary challenge
 - Mediate access to a shared medium

Physical Properties

- Three different mechanisms
- Two based on spread spectrum
 - Up to 2 Mbps
- One on diffused infrared
 - ½ Mbps

Transmission in Wireless Media

- Spread spectrum:
 - frequency hopping (randomly choose frequencies)
 - direct sequence
- Direct sequence:
 - represent each bit by multiple bits in the transmitted signal

n-Bit Chipping sequence based transmission

XOR of sequence

n-Bit Chipping Sequence

- n bit chipping code spreads the signal across frequency band
- that is n time 3 bit chipping sequence.
- 802.11: 79 MHz wide frequency bandwidths
 - 2.4 GHz frequency range
 - 11 bit chipping sequence
- Collision Avoidance in 802.11
 - similar to Ethernet problem

Hidden Nodes

- Each node has a finite range
- A can reach B, C can also reach B
- A and C want to communicate with B
- A and B are unaware of each other
- Collision can happen at B
- A and C are hidden nodes

Exposed Nodes

- Transmission from B to A
 - C is aware of this
 - Since C in the range of B
 - But C can transmit to D

Multiple Access Collision Avoidance

- Sender and receiver exchange control frames:
- Request to Send (RTS) Sender → Receiver
 - (includes the time for which it wants to hold the medium)
- Clear to Send (CTS) Receiver → Sender
 - (echoes length field back)
- Any node sees CTS
 - close to Receiver therefore cannot access medium for time
 length of frame

Multiple Access Collision Avoidance

- Node sees RTS but not CTS
 - It is not close to receiver
 - It can transmit to some other node
- Two or more nodes send RTS, donot hear CTS
 - Collision, therefore backoff
- Include Ack (MACAW)
 - Receiver to sender after frame successfully received
- Issues: Nodes mobile require a distributed system

- Problem of mobility
 - Some nodes are mobile, some are connected to a wired infrastructure
 - Access points (AP)
 - Each AP connected to a distribution system
 - Each node selects its own AP

Scanning for AP

- Node sends a Probe frame
- All APs nodes within reach reply with a probe response frame
- Node selects one and sends that AP an associate request
- AP responds with association response
- Node uses this when it moves / changes
- New AP notifies old AP
- Nodes scan APs and APs also send Beacon frames

Ctrl	Duration	Addr 1	Addr 2	Addr 3	Seq ctrl	Addr 4	Payload	CRC
16	16	48	48	48	16	48	0-18, 496	32

- •Addr1 destination AP
- •Addr 2 destination address
- •Addr 3 source AP
- •Addr 4 source address

- •Ctrl
 - •Type 6 bit (CTS, RTS, Scanning)
 - •ToDS 1 bit
 - •From DS 1bit