4 濃度の大小

学籍番号: 名前

A, B, C を集合とする、

- 1. $A \, \mathsf{C} \, B$ の濃度が等しい. $\overset{\mathrm{def}}{\Longleftrightarrow}$ ある全単射 $f : A \to B$ が存在する.
- 2. $A \, \mathsf{C} \, B$ の濃度が等しいとき $A \sim B \, \mathsf{C}$ 書く. 以下の $3 \, \mathsf{条} \, \mathsf{件}$ (同値関係) が成り立つ.
 - (1). $A \sim A$.
 - (2). $A \sim B$ α 5 α 6 α 7.
 - (3). $A \sim B$ かつ $B \sim C$ ならば, $A \sim C$.
- 3. $F(A,B) := \{f : A \to B | f$ は写像 $\}$ とかく. B^A や Map(A,B) などの書き方もある.
- 4. № と濃度が等しい集合を可算集合という. 有限集合と可算集合をまとめて高々可算集合という.
- 5. A は B より濃度が小さい. $\stackrel{\text{def}}{\Longleftrightarrow} A \not\sim B$ かつ単射 $f: A \to B$ が存在する. このとき B は A より濃度が大きいという. 選択公理 (後述) を仮定すれば, A と B の濃度を比較できる.

定理 1. A, B を集合とする.

- 1. $F(A, \{0,1\}) \sim \mathfrak{P}(A)$. ここで $F(A, \{0,1\}) := \{f : A \to \{0,1\} | f$ は写像 $\}$ とする.
- 2. $\mathbb{N} \sim \mathbb{Z} \sim \mathbb{Q}$
- 3. ℚ ✓ ℝ. つまり ℝ は可算ではない (非加算).
- 4. $(0,1) \sim \mathbb{R} \sim \mathbb{R} \times \mathbb{R}$.
- 5. (カントール) $\mathfrak{P}(A) \to A$ となる単射や, $A \to \mathfrak{P}(A)$ となる全射はともに存在しない. 特に $A \not\sim \mathfrak{P}(A)$
- 6. $(カントール・ベルンシュタイン). \ f:A\to B$ なる単射と, $g:B\to A$ なる単射が存在するとき, ある全単射 $h:A\to B$ が存在する. 特に $A\sim B$.

以下, 自然数の集合を $\mathbb{N} := \{$ 自然数の集合 $\} = \{0, 1, 2, ...\}$ とする.

問題 1. 偶数の集合 $2\mathbb{N}:=\{2n|n\in\mathbb{N}\}$ とおく. 「 \mathbb{N} と $2\mathbb{N}$ の濃度が等しい」証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明] 「 $\mathbb N$ と $2\mathbb N$ の濃度が等しい」の定義は, 「全単다」な写像 $f:\mathbb N \to 2\mathbb N$ が存在することである.

$$f: \mathbb{N} \to 2\mathbb{N}$$
$$x \longmapsto 2x$$

とおく. 任意の $y\in 2\mathbb{N}$ について, y=2n となる $n\in \mathbb{N}$ がある. よって y=f(n) となるので, f は する. 一方, 任意の $a,b\in \mathbb{N}$ について, f(a)=f(b) ならば 2a=2b となり, a=b である. よって f は する. 以上より, f は なので, \mathbb{N} と $2\mathbb{N}$ の濃度が等しい.

- 語句群

全射 単射 全単射

[注意] 同様にして、 奇数の集合、 整数全体の集合 ℤ は № の濃度が等しい.

問題 2. 「有理数の集合 \mathbb{Q} , $\mathbb{N} \times \mathbb{N}$ はともに \mathbb{N} と濃度が等しい」証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明] $e: \mathbb{N} \hookrightarrow \mathbb{N} \times \mathbb{N}$ を $n \mapsto (n,0)$ で定義すれば、e は 当分 である. また

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
$$(x,y) \longmapsto 2^{x}(2y+1)$$

とおくと f は である. 以上より へい から $\mathbb{N} \times \mathbb{N}$ への全単射が存在し、 $\mathbb{N} \times \mathbb{N}$ の濃度は等しい.

次に包含写像 $i: \mathbb{N} \hookrightarrow \mathbb{Q}$ を考えるとこれは **単分** である. また

$$g: \quad \mathbb{Q} \quad \to \quad \mathbb{N} \times \mathbb{Z}$$

$$\frac{n}{m} \quad \longmapsto \quad (m, n)$$

今 $\mathbb{N} \sim \mathbb{N} \times \mathbb{N} \sim \mathbb{N} \times \mathbb{Z}$ であるので、 $h: \mathbb{N} \times \mathbb{Z} \to \mathbb{N}$ という かを が存在する。 よって $h \circ g: \mathbb{Q} \to \mathbb{N}$ は である。 よって $i: \mathbb{N} \to \mathbb{Q}$ も $h \circ g: \mathbb{Q} \to \mathbb{N}$ も なので、 から \mathbb{N} から \mathbb{N} から \mathbb{N} から \mathbb{Q} への全単射が存在し、 \mathbb{N} のである。

- 語句群 -

全射 単射 全単射 カントールの定理 ベルンシュタインの定理 (カントール・ベルンシュタインの定理) \sim \leq \geq

問題 3. 「 $\mathbb{N} \times \mathbb{R} \sim \mathbb{R}$ 」の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明]. $\mathbb{N} \times \mathbb{R} \sim \mathbb{R}$ の定義は $\mathbb{N} \times \mathbb{R}$ と \mathbb{R} の間に が存在することである.

 \mathbb{R} (0,1) であるので、全単射 $h:\mathbb{R} \to (0,1)$ が存在する. よって

$$f: \mathbb{N} \times \mathbb{R} \to \mathbb{R}$$

 $(n,x) \longmapsto n + h(x)$

とおけば f は となる.

また

$$g: \mathbb{R} \to \mathbb{N} \times \mathbb{R}$$
$$x \longmapsto (0, x)$$

とおけばgは ullet ullet となる.

よって $f: \mathbb{N} \times \mathbb{R} \to \mathbb{R}$ と $g: \mathbb{R} \to \mathbb{N} \times \mathbb{R}$ はともに なので、 から、 $\mathbb{N} \times \mathbb{R}$ と \mathbb{R} の間に全単射が存在する.

- 語句群 -

全射 単射 全単射 カントールの定理 ベルンシュタインの定理 (カントール・ベルンシュタインの定理) \sim \leq \geq