2.1 Selecting statistical approaches

Overview

1. Normal distribution

- 2. Hypothesis testing
- 3. Summary statistical tests

Recap last week

Mode	Most common value	Nominal (categorical), ordinal, interval/ratio
Median	(most) middle value	Ordinal, interval/ratio
Mean	Sum all values divided by amount of observations	Interval/ratio

Distribution

Normal distribution Mode = median = mean

Distribution: skewness

Positive (right) skew Median < mean E.g. wages, capital

Negative (left) skew Median > mean E.g. age of death

Distribution: boxplot

Distribution: boxplot

Distribution: boxplot

Normal distribution: z-score & standard deviation

About 68% of values 1 standard deviation from mean About 95% of values 2 standard deviations from mean

Standard deviation

- Population σ or samples s
- in same units as the distribution

 (i.e. the unit of the research
 material or the normalised version)
- Problem: how do we compare different units?
 - Normalise by dividing through mean: coefficient of variation

Overview

- 1. Normal distribution
- 2. Hypothesis testing
- 3. Summary statistical tests

Hypothesis testing?

- Is there statistical association between two (or more) variables?
 - If yes → How strong is that association? Is it significant or not?
- First level of analysis for variables
 - Often only one for nominal variables
 - (ordinal & ratio/interval: [rank] correlation and regression analysis)
- Association ≠ causation!!

Hypothesis testing!

- Null hypothesis (H_o)
 - No association between variables x and y
 - Distribution is random
 - What you want to reject (strawman)

- Alternative hypothesis (H₁)
 - Association between variables x and y
 - Distribution is not random, there is a patterns e.g. normal
 - What you actually want or research
- → H_o and H₁ must exclude one another: if H_o is true, then H₁ must be false
- → Together they must cover all possible cases

Hypothesis testing: example

- H₀: "On average, Lisa and Mike produce sentences that have the same length."
- H_1 : "There is a difference in length between the sentences that Lisa and Mike produce on average."
- Non-directional ⇔ directional hypothesis
 - H_o: "On average, Mike produces longer sentences than Lisa."
 - H₁: "On average, Mike does *not* produce longer sentences than Lisa."
- = Two-tailed ⇔ one-tailed test

Hypothesis testing: workflow

Test statistic

 Chi Square, (rank) correlation, regression...

P-value

• < 0,05 → significant association

Reject/accept H₀/H₁

Test statistics

- Brilliant
 - Accept $H_0 \rightarrow$ values are in a known distribution (e.g. normal) \rightarrow we know everything (or at the very least the mean and standard deviation)
- What if we can't accept H_o?
 - Fun (i.e. research) begins

Ethical statistics

- Cherry picking
 - Only showing result that support your hypothesis
- HARKing
 - Hypothesizing After Results are Known
- P-hacking
 - Manipulating results to get a significant result

Overview

- 1. Normal distribution
- 2. Hypothesis testing
- 3. Summary statistical tests

Navigating the flowchart step 1: variables

- 1. Which kind of variables do you have?
 - Categorical (AKA nominal), with levels
 - Ratio-scaled (doubles)
 - Counts/interval (integers)
 - Ordinal

Navigating the flowchart step 2: amount of variables

- 2. How many variables do you have?
 - Univariate (just one)
 - Bivariate (exactly two)
 - Bivariate: are your variables **paired** or **unpaired**? (See later slide)
 - (Multivariate: more than two)

Navigating the flowchart step 3: distribution

- 3. Which distributions (and variance) do your variables have?
 - Often, variables need to have a normal distribution (in fact, we'll also cover how you can test for **normality**)
 - Often, if you want to compare two variables, tests will require that they have a similar degree of variance
 - Variance = how far a set of numbers is spread out from their average value
 - Usually measured in SD because variance is squared

Navigating the flowchart step 4 & 5: size and question

- 4. What's the size of your data?
 - Many tests have a critical lower boundary for n (often 30)
- 5. What's your question?
 - O Means? distributions? variances?
 - O Directional or non-directional?

Navigating the flowchart: terminology

- Monofactorial
 - Involving or controlled by a single factor e.g. time
 - ⇔ multifactorial
- Parametric tests
 - Based on a fixed set of parameters e.g. normal distribution
 - ⇔ non-parametric tests
- Paired vs. unpaired samples (dependent /independent)
 - Paired samples have the same size because one (or more) value "pairs" them e.g. taxes of B.
 Roccoli in 1602 and 1632

Navigating the flowchart: for all test statistics

- 1. Pick (at least) one suitable test, e.g. using the flowchart
- 2. Check the test's requirements (i.e. whether you're allowed to apply it)
 - Goodness-of-fit e.g. check normality with Shapiro-Wilk test for up to 5000 data points or Kolmogorov-Smirnov
 - Independence e.g. F-test for homogeneity of variances (one-tailed vs. two-tailed)
 - O Difference e.g. T-test (or Wilcoxon) for difference in measures of central tendency
- 3. Apply it: get the statistic, p-value, and preferably some other things as well (e.g. confidence interval)
- 4. Report it in proper prose, explicitly adding all relevant numbers