www.TrbTnpsc.com

10th Standard – Maths Formulas

SETS AND FUNCTIONS

- 1. Power set
- $n[P(A)] = 2^{n(A)}$
- 2. Symmetric difference
 - $X\Delta Y = (X \setminus Y) \cup (Y \setminus X)$ i)
 - $X\Delta Y = (X \cup Y) \setminus (X \cap Y)$
- 3. Commutative property
 - a) $A \cup B = B \cup A$
 - b) $A \cap B = B \cap A$
- 4. Associative property
 - a) $A \cup (B \cup C) = (A \cup B) \cup C$
 - b) $A \cap (B \cap C) = (A \cap B) \cap C$
- 5. Distributive property
 - a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 6. De Morgan's laws of set difference
 - a) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
 - b) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$
- 7. De Morgan's laws
 - a) $(A \cup B)' = A' \cap B'$
 - b) $(A \cap B)' = A' \cup B'$
- 8. Cardinality of sets
 - a) $n(A \cup B) = n(A) + n(B) n(A \cap B)$
 - b) $n(A \cup B \cup C) = n(A) + n(B) + n(C) n(A \cap B) n(B \cap A) n(B \cap A)$ $n(A \cap C) + n(A \cap B \cap C)$
- 9. One one function

Every different element of A has a different image in B.

10. Onto function

Every element in B has a pre – image in A.

SEQUENCES AND SERIES

- **Arithmetic progression** I)
- 1. General form a, a+d, a+2d, a+3d...
- nth term 2. General term (or)
- 3. Common difference $d = t_2 - t_1 = \dots = t_n - t_{n-1}$
- $n = \frac{l-a}{d} + 1$ 4. Number of terms in an A.P
- 5. Sum of n terms of an A.P
 - a) $\mathbf{S}_n = \frac{n}{2}[2a + (n-1)d]$
 - b) $S_n = \frac{n}{2}[a+l]$
- 6. If 3 terms in A.P are a-d, a, a+d
 - **Geometric progression** II)
- a, ar, ar^2 , ar^3 , ar^n . 7. General form
- **8.** General term (or) n^{th} term $T_n = ar^{n-1}$.

9. Common ratio

 $r = \frac{t^2}{t^1} = \frac{t^3}{t^2} = \dots = \frac{t^n}{t^{n-1}}$

 $T_n = a + (n-1) d$

- 10. Sum to n terms of a G.P
 - a) If r > 1 $S_n = \frac{a(r^{n}-1)}{r-1}$
 - b) If r < 1 $S_n = \frac{a(1-r^n)}{1-r}$
 - $S_n = na$ c) If r=1
 - d) Sum of infinite series $S_{\infty} = \frac{a}{1-a}$
- 11. If 3 terms in G.P are

 $\frac{a}{a}$, a, ar

- III) Special series
- a) $\sum_{1}^{n} n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$
- b) $\sum_{1}^{n} n^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{4}$
- c) $\sum_{1}^{n} n^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)$

http://www.trbtnpsc.com/2013/09/10th-study-materials.html

www.Padasalai.Net

d)
$$\sum_{1}^{n} (2n-1) = 1+3+5+\ldots+(2n-1) = \left(\frac{l+1}{2}\right)$$

12. Fibonacci sequence

$$F_1 = F_2 = 1$$
 $F_n = F_{n+1} F_{n+1}$ $n = 3, 4, 5 \dots$
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89......

ALGEBRA

1.
$$(a+b)^2 = a^2 + 2ab + b^2$$

2.
$$(a-b)^2 = a^2 - 2ab + b^2$$

3.
$$a^2 - b^2 = (a+b)(a-b)$$

4. i)
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

ii)
$$(a+b)^3 = a^3 + b^3 + 3ab(a+b)$$

5.
$$a^3 + b^3 = (a+b)^3 - 3ab(a+b)$$

6.
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

7. i)
$$(a-b)^3 = a^3 + 3a^2b - 3ab^2 - b^3$$

ii)
$$(a-b)^3 = a^3 - b^3 - 3ab(a+b)$$

8.
$$a^3 - b^3 = (a - b)^3 + 3ab(a - b)$$

9.
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

10.
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac$$

11.
$$(x + a)(x + b) = x^2 + (a + b)x + ab$$

12.
$$(x + a)(x + b)(x + c) = x^3 + (ab + bc + ac)x^2 + (a + b + c)x + abc$$

13. General form of a quadratic equation

$$ax^2 + bx + c = 0$$

ii)
$$x^2 - (\text{sum of roots})x + \text{product of roots} = 0$$

14. Let $ax^2 + bx + c = 0$ be a quadratic equation then the value of x is

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

15. Product rule
$$a^m \times a^n = a^{m+n}$$

16. Division rule
$$\frac{a^m}{a^n} = a^{m-n} \quad \text{m < n: an } \neq 0.$$

17. Power rule
$$(a^m)^n =$$

18.
$$(a \times b)^{m} = a^{m} \times b^{m}$$

19.
$$\left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}$$

www.TrbTnpsc.com

20. Let α and β are the roots of the equation $ax^2 + bx + c = 0$ then

21.
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$

22.
$$\left|\alpha-\beta\right|=\sqrt{\left(\alpha+\beta\right)^2-4\alpha\beta}$$

23.
$$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$$

24.
$$\alpha^3 - \beta^3 = (\alpha - \beta)^3 + 3\alpha\beta(\alpha - \beta)$$

$$25. \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$$

26.
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$$

CO – ORDINATE GEOMETRY

1. Distance between any two points

$$\mathbf{D} = \sqrt{(x^2 - x^2)^2 + (y^2 - y^2)^2}$$
 units

2. Area of a triangle
$$A = \frac{1}{2} \begin{pmatrix} x1 & x2 & x3 & x1 \\ y1 & y2 & y3 & y1 \end{pmatrix}$$
 sq. units

3. Area of a quadrilateral
$$A = \frac{1}{2} \begin{pmatrix} x1 & x2 & x3 & x4 & x1 \\ y1 & y2 & y3 & y4 & y1 \end{pmatrix}$$
 sq. units

4. Section formula internally is
$$P = (\frac{lx2+mx1}{l+m}, \frac{ly2+my1}{l+m})$$

5. Section formula externally is
$$P = (\frac{lx2 - mx1}{l - m}, \frac{ly2 - my1}{l - m})$$

6. **Midpoint formula**
$$M(x, y) = (\frac{x1+x2}{2}, \frac{y1+y2}{2})$$

7. **Centroid of a triangle**
$$G(x, y) = (\frac{x1 + x2 + y3}{3}, \frac{y1 + y2 + y3}{3})$$

8. Slope of a straight line

a)
$$m = \tan \theta$$
 $\theta \neq 90^0$ when θ is given

9.
$$m = \frac{y^2 - y^1}{x^2 - x^1} = \frac{y^1 - y^2}{x^1 - x^2}$$
 $x_{1 \neq x_2}$ when two points given

10.
$$m = \frac{-coefficient\ of\ x}{coefficient\ of\ y}$$
 when $ax + by + c = 0$ is given

11. Equation of a straight line

a) General format
$$ax + by + c = 0$$

b) **Intercept form**
$$y = mx + c$$

www.Padasalai.Net

- c) One point is given $y y_1 = m(x x_1)$
- d) Two points are given $\frac{y-y1}{y2-x1} = \frac{x-y1}{x2-x1}$
- e) x intercept(a), y intercept (b) is given $\frac{x}{a} + \frac{y}{b} = 1$
- 12. Equation of x axis y = 0
- 13. Equation of y axis x = 0
- 14. Parallel to x axis y = k
- 15. Parallel to y axis x = k
- 16. **Parallel to** ax + by + c = 0 **is** ax + by + k = 0.
- 17. **Perpendicular to** ax + by + c = 0 **is** bx ay + k = 0.

TRIGONOMETRY

- 1. $\sin\theta = \frac{Opposite\ side}{Hypotenuse\ side}$
- 2. $\cos\theta = \frac{Adjacent\ side}{Hypotenuse\ side}$
- 3. $\tan\theta = \frac{Opposite\ side}{Adjacent\ side}$
- 4. $\csc\theta = \text{Reciprocal of } \sin\theta = \frac{\text{Hypotenuse side}}{\text{Opposite side}}$
- 5. $\sec \theta = \text{Reciprocal of } \cos \theta = \frac{\text{Hypotenuse side}}{\text{Adjacent side}}$
- 6. $\cot \theta = \text{Reciprocal of } \tan \theta = \frac{\text{Adjacent side}}{\text{Opposite side}}$
- 7. $\tan\theta = \frac{\sin\theta}{\cos\theta}$
- 8. $\cot\theta = \frac{\cos\theta}{\sin\theta}$
- 9. $\csc\theta = \frac{1}{\sin\theta}$
- 10. $\sec\theta = \frac{1}{\cos\theta}$

11. Pythagorean identities

i)
$$\sin^2 \theta + \cos^2 \theta = 1 \implies \cos^2 \theta = 1 - \sin^2 \theta \implies \sin^2 \theta = 1 - \cos^2 \theta$$

www.TrbTnpsc.com

- ii) $\csc^2\theta \cot^2\theta = 1 \Rightarrow \csc^2\theta = 1 + \cot^2\theta \Rightarrow \cot^2\theta = \csc^2\theta 1$
- iii) $\sec^2\theta \tan^2\theta = 1 \Rightarrow \sec^2\theta 1 + \tan^2\theta \Rightarrow \tan^2\theta = \sec^2\theta 1$

12. Trigonometry θ value table

g					
Θ	0_0	30^{0}	45^{0}	60^{0}	90^{0}
$Sin\theta$	0	1	1	$\sqrt{3}$	1
		$\frac{\overline{2}}{2}$	$\sqrt{2}$	2	
$\cos\theta$	1	$\sqrt{3}$	1	1_	0
		$\frac{\overline{2}}{2}$	$\sqrt{2}$	2	
$Tan\theta$	0	1	1	$\sqrt{3}$	∞
		$\sqrt{3}$			
$Cosec\theta$	∞	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
				$\sqrt{3}$	
$\mathrm{Sec} heta$	1	2	$\sqrt{2}$	2	∞
		$\sqrt{3}$			
$\cot \theta$	∞	$\sqrt{3}$	1	1	0
				$\sqrt{3}$	

MENSURATION

I) Solid right circular cylinder

- 1) Curved surface Area = $2\pi rh$ sq. units
- 2) Total surface Area = $2\pi r(h + r)$ sq. units
- 3) Volume = $\pi r^2 h$ cu. units

II) Right circular hollow cylinder

- 1) Curved surface Area = $2\pi h(R + r)$ sq. units
- 2) Total surface Area = $2\pi(R+r)(R-r+h)$ sq. units
- 3) Volume = $\pi h(R + r)(R r)h$ cu. units

III) Solid right circular cylinder

- 1) Curved surface Area = πrl sq. units
- 2) Total surface Area = $\pi r(l + r)$ sq. units
- 3) Volume $=\frac{1}{3} \pi r^2 h$ cu. units

IV) Sphere

1) Curved surface Area = $4\pi r^2$ sq. units

www.Padasalai.Net

2) Volume = $\frac{4}{3} \pi r^3$ cu. units

V) Hollow sphere Volume = $\frac{4}{3} \pi (R^3 - r^3)$ cu. Units

VI) Solid hemisphere

- 1) Curved surface Area = $2\pi r^2$ sq. units
- 2) Total surface Area = $3\pi r^2$ sq. units
- 3) Volume = $\frac{2}{3} \pi r^3$ cu. Units

VII) Hollow hemisphere

- 1) Curved surface Area = $2\pi(R^2 r^2)$ sq. units
- 2) Total surface Area = $\pi(3R^2 + r^2)$ sq. units
- 3) Volume = $\frac{2}{3} \pi (R^3 r^3)$ cu. Units

VIII) A sector of a circle converted into cone

1) CSA of a cone = Area of the sector

$$\pi r l = \frac{\theta}{360^{\circ}} \times \pi r^2 \text{ cu. Units}$$

IX) Frustum Volume =
$$\frac{1}{3} \pi h(R^2 + r^2 + Rr)$$

Volume of water flows out through a pipe = (cross section area \times Speed \times Time)

STATISTICS

- 1. Range = highest value lowest value
- 2. The coefficient of range = $\frac{L-S}{L+S}$
- 3. Standard deviation
 - i) **Direct method** $\sigma = \sqrt{\frac{\Sigma x^2}{n} (\frac{\Sigma x}{n})^2}$
 - ii) Actual mean method $\sigma = \sqrt{\frac{\Sigma(x-x)^2}{n}}$

iii) Assumed mean method
$$\sigma = \sqrt{\frac{\Sigma d^2}{n} - (\frac{\Sigma d}{n})^2}$$
 $d = x - R$

iv) Step deviation method
$$\sigma = \sqrt{\frac{\sum d^2}{n} - (\frac{\sum d}{n})^2} \times C$$
 $d = \frac{x - A}{C}$

www.TrbTnpsc.com

- v) Standard deviation for first *n* Natural numbers $\sigma = \sqrt{\frac{n^2-1}{n}}$
- vi) **Standard deviation** = $\sqrt{variance}$
- vii) Coefficient of variance $(C.V) = \frac{\sigma}{x} \times 100$

PROBABILITY

- 1. A *random experiment* is one which is the exact outcome cannot be predicted before conducting the experiment.
- 2. The set of all possible outcomes of a random experiment is called its *sample space*. It is denoted by *S*.
- 3. $P(A) = \frac{number\ of\ outcomes\ favourable\ to\ A}{total\ number\ of\ outcomes}$
- $4. \quad P(A) = \frac{n(A)}{n(S)}$
- 5. If A and B are two *mutually exclusive events*, then $A \cap B = \phi$
- 6. The probability of an event A lies between 0 and 1.

$$0 \le P(A) \le 1$$

- 7. P(A) + P(A) = 1.
- 8. Addition theorem on probability

$$\frac{n(A \cup B)}{n(S)} = \frac{n(A)}{n(S)} + \frac{n(B)}{n(S)} - \frac{n(A \cap B)}{n(S)}$$

- 9. Probability of sure event is 1.
- 10. Probability of impossible event is **0**.