Assignment 2

1. Solve the following Recurrence relations using substitution method.

if n=1

a.
$$T(n)=4T(n/2)+n^2$$
, if $n>1$

= 1

b.
$$T(n) = 2T(n/2) + c$$
, if $n > 1$

= c if n = 1

c.
$$T(n)=T(n-1)+1$$
, if $n>1$
= 1 if $n=1$

d.
$$T(n)=T(n-1)+n$$
, if $n>1$
= 1 if $n=1$

e.
$$T(n)= 2T(n/2) + n$$
, if $n>1$
= 1 if $n=1$

f.
$$T(n)= 2T(n/2) + n\log_2 n \text{ if } n>1$$

= 1 if n=1

g.
$$T(n)=T(n-2) + n^2$$
, if $n>2$
= 1 if n=1 or n=2

h.
$$T(n) = 4T(n/2) + n \log(n!)$$

i.
$$T(n)= 3T(sqrt(n)) + log_2n$$

j.
$$T(n)=T(n/2)+n^2$$

2. Solve the following Recurrence relations using Recurrence Tree method.

a.
$$T(n)=3T(n/4)+\Theta(n^2)$$

b.
$$T(n) = T(n/3) + 2T(n/3) + cn$$

c.
$$T(n)=3T(n/2)+n$$

d.
$$T(n)=T(n/2)+n^2$$

e.
$$T(n)=4T(n/2+2)+n$$

f.
$$T(n)=2T(n-1)+1$$

g.
$$T(n)=T(n-1)+T(n/2)+n$$

h.
$$T(n) = T(n/3) + T(2n/3) + cn$$

i.
$$T(n) = 4T(n/2) + cn$$

j.
$$T(n)=T(n-a)+T(a)+cn$$

3. Solve the following Recurrence relations using Master method.

a. T(n) = 9T(n/3) + n

b. T(n) = 2T(n/4) + 1

c. T(n)=2T(n/4) +

d. T(n)=2T(n/4)+n

e. $T(n)= 2T(n/4) + n^2$

f. $T(n)=7T(n/2)+n^2$

g. T(n)=T(n/2)+1

h. $T(n) = 4T(n/2) + n^2 \log_2 n$