

Problem R-12H ($C_{11}H_{12}O_3$). 25 MHz ¹³C NMR Spectrum in CDCI₃.

Source: Sadtler

Problem R-12H $(C_{11}H_{12}O_3)$.

IR Spectrum neat. Source: Sadtler

Problem R-12G ($C_{11}H_{12}O_3$). R-12G and R-12H are two stereoisomers. For R-12G only the ¹ H spectrum is provided, R-12H has in addition ¹³ C and IR spectra. The compounds each contain a Ph group.
(a) DBE
(b) What can you learn from the IR spectrum of R-12H ?
(b) Identify significant peaks in the ¹³ C NMR spectrum of R-12H and describe the structural information you obtained from them.
(c) Draw the structures of R-12G and R-12H below. Label the structures with ¹ H chemical shifts and coupling constants.
(e) What feature(s) of the spectra allowed you to make the distinction between the isomers?

Problem R-12G ($C_{11}H_{12}O_3$). **R-12G** and **R-12H** are two stereoisomers. Only the ¹H spectrum of R-12G is provided, R-12H has in addition ¹³C and IR spectra. The compounds each contain a Ph group.

- 2 (a) DBE 6
 - (b) What can you learn from the IR spectrum of R-12H?

1730 cm⁻¹ possible ester C=O, not 4 or 5 ring

1490, 1460, 1420 aromatic

No OH stretch (not acid or alcohol)

1030 cm⁻¹ C-O

(b) Identify significant peaks in the ¹³C NMR spectrum of **R-12H** and describe the structural information you obtained from them.

14.2: CH₃

61.6: CH₂-O

6

10

57.8, 61.6: two CH-O

135.5: quat aromatic

128.9, 128,7, 126.0: aromatic p, o, m

168.0: Ester carbonyl

(c) Draw the structures of **R-12G** and **R-12H** below. Label the structures with ¹H chemical shifts and coupling constants.

Assign the downfield epoxide proton to the PhCH because it is a little broader (not so tall) due to coupling to Ph protons Also, α -Ph (CH) is 1.35, α -CO₂R (CH) is 0.95.

4.25, d,
$${}^{3}J = 5 Hz$$

H
O
H

1.0 t, $J = 7 Hz$

R-12G

4.0, AB of ABX₃

4.25, AB of ABX₃ 4.05, d, ³J = 2 Hz H O CO₂-CH₂-CH₃ Ph 6 H 3.5, d, ³J = 2 Hz **R-12H**

(e) What feature(s) of the spectra allowed you to make the distinction between the isomers?

In 3-membered rings J_{cis} is <u>always</u> larger than J_{trans} for a given system

In 4-membering rings J_{cis} is usually larger than J_{trans}