PRAKTIK INSTRUMENTASI

Dosen: - Gilang Nugraha Putu Pratama M.Eng.

Laporan disusun guna memenuhi salah satu tugas mata kuliah

Praktik Instrumentasi

JOB 8:

"Penguat Inverting dan Non-Inverting"

Disusun Oleh:

Nama : Nabilla Rifdah Qushoyyi

NIM: 20507334034

Kelas: GK1

Program Studi DIV Teknik Elektronika

Jurusan Pendidikan Teknik Elektronika dan Informatika

Falkutas Teknik

Universitas Negeri Yogyakarta 2021

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA

LAB SHEET PRAKTIK INSTRUMENTASI

	2.12 01121			_
Semester 3	PRAKTIKUM INVERTING DAN NON-INVERTING		200 menit	
NA	MA	NIM/KELAS	Tgl:	
M.NURDIN PRASTYA.H		20507334047/GK1	20/11/2021	Hal 1 dari 5.

File inverting

Komponen:

- 1. MINRES1K
- 2. MINRES10K
- 3. 741 (Op-Amp)

Langkah Kerja:

1. Check pada properties dari tegangan sumber tegangan DC, pastikan tegangan masukan tidak bernilai 0 volt.

No.	Sumber	Tegangan
1.	Tegangan sumber Op-Amp Positif	12 volt
2.	Tegangan sumber Op-Amp Negatif	-12 volt
3.	Tegangan masukan	1 volt

2. Amati besarnya tegangan keluaran dan isi tabel berikut.

Tegangan keluaran	Vout = -(Rf/Rin) * Vin Vout = -(10k/1k) * 1 Vout = -10 volt
Penguatan tegangan	T.peguatan = vout/vin = 10/1 = 10 kali kali

3. Ganti DC voltmeter dengan Digital Oscilloscope dan sumber tegangan DC dengan sumber tegangan SINE AC, seperti pada gambar berikut.

- 4. Sumber AC dapat diakses dari menu Generators lalu pilih SINE.
- 5. Check properties sumber SINE lalu atur Frequency ke 1 kHz.
- 6. Simulasikan dan amati tampilan oscilloscope.
- 7. Ambil screenshot tampilan oscilloscope.
- 8. Amati berapa volt/div parameter pada oscilloscope untuk channel A dan B.
- 9. Hitung tegangan peak-to-peak pada channel A dan B, lalu isi tabel berikut.

Channel	Volt/Div	Peak-to-peak
Channel A Input	0,5 volt/div	T.gelombang x volt/div = 4div x 0,5 volt/div = 2 volt Peak-to-peak
Channel B Output	2 volt/div	T.gelombang x volt/div = 5div x 2volt/div = 10 volt Peak-to-peak

10. Buat analisis dan kesimpulan.

Jawab:

Analisis dan kesimpulan setelah melakukan Pratik tersebut adalah besarnya penguatan inverting berbanding dengan besarnya Rf terhadap Rin yaitu jika Rf semakin besar maka penguatan semakin besar juga begitu juga sebaliknya, Penguat inverting bekerja dengan cara membalikan contohnya apabila input positif maka output akan negative dan sebaliknya, penguat inverting berfungsi sebagai menguatkan sinyal akan tetapi sinyal yang dikuatkan akan berbanding terbalik dengan sinyal masukkannya.

File noninverting

Komponen:

- 1. MINRES1K
- 2. MINRES10K
- 3. 741 (Op-Amp)

Langkah Kerja:

2. Check pada properties dari tegangan sumber tegangan DC, pastikan tegangan masukan tidak bernilai 0 volt.

No.	Sumber	Tegangan
1.	Tegangan sumber Op-Amp Positif	12 volt
2.	Tegangan sumber Op-Amp Negatif	-12 volt
3.	Tegangan masukan	1 volt

3. Amati besarnya tegangan keluaran dan isi tabel berikut.

Tegangan keluaran	Vout = $(1 + Rf/RG) * Vin$ Vout = $(1 + 10k / 1k) * 1volt$ Vout = $(1 + 10) * 1 volt$ Vout = 11 volt
Penguatan tegangan	T.peguatan = vout/vin = 11/1 = 11 kali kali

4. Ganti DC voltmeter dengan Digital Oscilloscope dan sumber tegangan DC dengan sumber tegangan SINE AC.

- 5. Sumber AC dapat diakses dari menu Generators lalu pilih SINE.
- 6. Check properties sumber SINE lalu atur Frequency ke 1 kHz.
- 7. Simulasikan dan amati tampilan oscilloscope.
- 8. Ambil screenshot tampilan oscilloscope.
- 9. Amati berapa volt/div parameter pada oscilloscope untuk channel A dan B.
- 10. Hitung tegangan peak-to-peak pada channel A dan B, lalu isi tabel berikut.

Channel	Volt/Div	Peak-to-peak
Channel A Input	2 volt/div	T.gel x volt/div = 2div x 1volt/div = 2 volt Peak-to-peak
Channel B Output	2,5 volt/div	T.gel x volt/div = 2,5 div x 5 volt/div = 12,5 volt Peak-to-peak

11. Buat analisis dan kesimpulan.

Jawab

analisis dan kesimpulan setelah melakukan Pratik adalah pada penguat non inverting besarnya output keluaran lebih besar dari satu tetapi tidak melebihi besar satu daya yang masuk ke Op-Amp, fungsi penguat non inverting adalah menguatkaan sinyal dan hasil sinyal yang dikuatkan tetap sefasa dengan sinyal inputannya, hasil dari sinyal input dan output.