DS203 - ROLL NO.22B2153

SIDDHARTH VERMA

Part A

	x	XV	xsq	vcap	e	abs(e)	esa	v-vbar	y_ybarsq					SUMMARY OUTPUT						
238462				6.062387					32.19629											
				6.202188					43.59146					Regression Statistics						
				6.341989					21.13475					Multiple R	0.904994					
				6.48179					66.0231					R Square	0.81901					
				6.621591					53.58725					Adjusted R Square	0.817129					
				6.761392					25.8254					Standard Error	1.888324					
				6.901193					9.060552					Observations	98					
		1.150296				1.433302			53.36225					Observations						
				7.180795					60.31829					ANOVA						
				7.320597			6.4312		66.06477	vbar	12.91264	a	5.452241	ANOVA	df	SS	MS	F	Significar	see E
				7.460398					34.29542	xbar	1.282051	b		Regression		1549.075				ice r
				7.600199					12.37469		19.48212	U	3.522360	Residual		342.3137		434.4257	2.00L-37	
										xy_bar							3.303/0/			
		2.266667		7.74	-0.94		0.883599		37.36436	xsq_bar	2.180583			Total	9,	1891.389				
		1.748849				3.008006			64.65518		5 to 5 o 5				0 000	0				
				8.019602					56.78702	sum('e)	6.42E-05					Standard				Upper 95%
				8.159403					4.827928	SSE	343.7541			Intercept					5.098347	
				8.299204					1.846319	MSE	3.472264			0.02564102	6 5.48119	0.262975	20.84298	2.08E-37	4.959189	6.003194
				8.439005					13.34927	RMSE	1.863401									
097436	0.487179	3.944905	0.237344	8.578806	-0.48137	0.48137	0.231717		23.18618	MAE	1.566883									
2.10256	0.512821	6.206443	0.262985	8.718607	3.383957	3.383957	11.45117		0.656222											
774359	0.538462	4.724655	0.289941	8.858408	-0.08405	0.084049	0.007064	-4.13828	17.12536	mse_sim	19.43347			RESIDUAL OUTPUT					PROBABIL	ITY OUTPUT
612821	0.564103	5.422617	0.318212	8.998209	0.614611	0.614611	0.377747	-3.29982	10.8888	rmse_sin	4.408341									
451282	0.589744	3.804602	0.347798	9.13801	-2.68673	2.686728	7.218508	-6.46136	41.74914					Observation	Predicte	d Residual	Standard	Residual	Percentile	7.238462
.55641	0.615385	7.111637	0.378698	9.277811	2.278599	2.278599	5.192014	-1.35623	1.839357						1 6.154185	0.156071	0.08308		0.510204	4.784615
928205	0.641026	6.364234	0.410914	9.417612	0.510593	0.510593	0.260705	-2.98443	8.906847						2 6.294729	2.020656	1.075638		1.530612	4.787179
7.9	0.666667	5.266667	0.444444	9.557413	-1.65741	1.657413	2.747019	-5.01264	25.12655						3 6.435272	-1.64809	-0.87731		2.55102	4.871795
.77179	0.692308	8.842012	0.47929	9.697214	3.07458	3.07458	9.453045	-0.14084	0.019837						4 6.575816	-0.98351	-0.52354		3.571429	5.146154
.74359	0.717949	4.841552	0.51545	9.837015	-3.09343	3.093426	9.569283	-6.16905	38.05717						5 6.716359	1.11441	0.593224		4.591837	5.376923
882051	0.74359	6.604602	0.552926	9.976816	-1.09477	1.094765	1.198511	-4.03059	16.24564						6 6.856902	3.045662	1.62127		5.612245	5.592308
520513	0.769231	7.323471	0.591716	10 11662	-0.5961	0.596105	0.355341	-3.39213	11.50652						7 6.997446	-1 38975	-0.7398		6.632653	5.607692
				10.25642					32.34195						8 7.137989				7.653061	
				10.39622				0.684797							9 7.27853				8.673469	
				10.53602					3.276372						0 7.419076					6.74359
				10.67582					5.160228						1 7.559619				10.71429	6.8
				10.81562					10.45327						2 7.700163				11.73469	
				10.95542					21.72825						3 7.84070					7.225641
				11.09522					24.2349						4 7.981249					7.830769
									3.937979						5 8.121793				14.79592	
	0.974359			11.23503																7.9
11.8	4.005555	11.8		11.37483					1.237966						6 8.262336				15.81633	
	1.025641	11./6594	1.05194	11.51463	-0.04283	0.042833	0.001835	-1.44084	2.076032					1	7 8.402879	0.856095	U.455/17		16.83673	8.097436

PART B

Work on Training Data

TESTING DATA WORK

The error in both Testing and Training Data is form of Standard Normal Distribution as visible from Histogram and therefore we can say our model has worked quite well in predicting the target label y in testing data.

Although Note the value of R2 HAS REDUCED SIGNIFICANTLY FROM 0.89 to 0.838

i.e relevancy of model has decreased over training data although it has performed well in examining errors but failed in replicating our population