Аналогично для дифференциала dn (uv) получаем:

$$d^{n}(uv) = \sum_{i=0}^{n} C_{n}^{i} d^{n-i} u d^{i} v_{s}$$

где положено $d^0u = u$ и $d^0v = v$.

Найти y'', если:

1111.
$$y = x\sqrt{1+x^2}$$
. 1112. $y = \frac{x}{\sqrt{1-x^2}}$.

1113.
$$y = e^{-x^2}$$
. 1114. $y = \lg x$.

1115.
$$y = (1 + x^2) \arctan x$$
. 1116. $y = \frac{\arcsin x}{\sqrt{1 - x^2}}$.

1117.
$$y = x \ln x$$
. 1118. $y = \ln f(x)$.

1119.
$$y = x [\sin (\ln x) + \cos (\ln x)].$$

1120. Найти
$$y$$
 (0), y' (0) и y' (0), если $y = e^{\sin x} \cos (\sin x)$.

Пусть $u = \varphi(x)$ и $v = \psi(x)$ — дважды дифференцируемые функции. Найти y'', если:

1121.
$$y = u^2$$
. 1122. $y = \ln \frac{u}{v}$.

1123.
$$y = \sqrt{u^3 + v^2}$$
. 1124. $y = u^p$ $(u > 0)$.

Пусть f(x) — трижды дифференцируемая функция. Найти g' и g''', если:

1125.
$$y = f(x^2)$$
. 1126. $y = f(\frac{1}{x})$.

1127.
$$y = f(e^x)$$
. 1128. $y = f(\ln x)$.

1129. $y = f(\varphi(x))$, где $\varphi(x)$ — достаточное число раз дифференцируемая функция.

1130. Найти d^3y для функции $y = e^x$ в двух случаях: а) x — независимая переменная; б) x — промежуточный аргумент.

Считая x независимой переменной, найти d^2y , если:

1131.
$$y = \sqrt{1 + x^2}$$
. 1132. $y = \frac{\ln x}{x}$. 1133. $y = x^2$.