Лабораторная работа № 3.4.2 "Закон Кюри-Вейеса (Температура Кюри)"

Петров Артём Антонович, группа 721

19 октября 2018 г.

Экспериментальная установка

Рис. 2. Схема экспериментальной установки

Рис. 1: Схема установки: 1 - образец из гадолиния, 2 - ёмкость с маслом, 3 - термостат (объём с водой) и 5 - его управляющий блок, 4 - термометр (соединён с термостатом), 6 - термопара (для оценки процессов установления теплового равновесия). Период колебаний автогенератора без образца $t_0 = 6,9092\mu s$, коэф. термопары $k = 24^{\circ}C/mV$.

Ход работы

Была получена зависимость периода колебаний автогенератора от температуры в термостате и показаний термопары (таблица 2).

По этой зависимости была рассчитана зависимость величины обратной разности квадратов периодов колебаний с присутствием образца гадолиния и без него $1/(t^2-t_0^2)$ (эта величина пропорциональна $1/\chi$) от температуры T (таблица 3, график 4).

С помощью экстраполяции было получено значение $\theta_p = 18,0\pm0,4^{\circ}C.$ (из теории известно, что этот график пропорционален зависимости $1/\chi(T)$ и точка его пересечения с осью абсцисс есть θ_p)

T, celsium	dT, celsium	t, mksec	dt, mksec	delta U, mV	d(deltaU), mV
14,18	0,01	7,912	0,001	-0,005	0,001
16,16	0,01	7,844	0,001	-0,005	0,001
18,14	0,01	7,726	0,001	-0,005	0,001
20,14	0,01	7,534	0,001	-0,007	0,001
22,11	0,01	7,341	0,001	-0,012	0,001
24,1	0,01	7,18	0,001	-0,011	0,001
26,1	0,01	7,11	0,001	-0,015	0,001
28,09	0,01	7,068	0,001	-0,015	0,001
30,1	0,01	7,042	0,001	-0,016	0,001
32,08	0,01	7,024	0,001	-0,02	0,001
34,07	0,01	7,009	0,001	-0,02	0,001
36,08	0,01	6,999	0,001	-0,019	0,001
38,07	0,01	6,991	0,001	-0,02	0,001

Рис. 2: Зависимость периода от температура, полученная при измерениях.

1/(t^2-t_0^2),	d(1/(t^2-t_0^2)),	T_real,	dT_real,
1/mksec^2	1/mksec^2	celsium	celsium
0,067	0,000	14,06	0,01
0,073	0,000	16,04	0,01
0,084	0,000	18,02	0,01
0,111	0,000	19,97	0,01
0,163	0,001	21,82	0,01
0,262	0,002	23,84	0,01
0,355	0,004	25,74	0,01
0,451	0,006	27,73	0,01
0,540	0,008	29,72	0,01
0,625	0,011	31,60	0,01
0,720	0,015	33,59	0,01
0,801	0,018	35,62	0,01
0,879	0,022	37,59	0,01

Рис. 3: Зависимость величины обратной разности квадратов периодов колебаний с присутствием образца гадолиния и без него $1/(t^2-t_0^2)$ от температуры T_{real} , полученной с учётом показаний термопары.

Итог

С помощью экстраполяции полученных данных было получено значение $\theta_p=18,0\pm0,4^{\circ}C,$ что совпадает с табличным значением $19^{\circ}C.$ А также форма полученного графика совпадает с теоритическими предсказаниями, а значит закон Кюри-Вейеса выполняется.

Рис. 4: Зависимость величины обратной разности квадратов периодов колебаний с присутствием образца гадолиния и без него $1/(t^2-t_0^2)$ от температуры T_{real} , полученной с учётом показаний термопары.