Verifica del Software - Esercizi parte 2 Università degli Studi di Padova

Mirko Bez

18 febbraio 2017

Indice	
Esercizio 1	2
Esercizio 2	2
Esercizio 3	3
Esercizio 4	3
Esercizio 5	3
Esercizio 6	3
Esercizio 7	4
Esercizio 8	4
Esercizio 9	4

Esercizio 1

Consegna Let (α, C, A, γ) be a Galois connection. Prove that:

- (A) γ is injective, \iff
- (B) $\alpha \circ \gamma = id \iff$
- (C) α is surjective.

Svolgimento

Esercizio 2

Consegna Let C and A be complete lattices and let (α, C, A, γ) be a Galois connection. Prove the following properties:

- 1. $\gamma(\alpha(\top_C)) = \top_C$
- 2. for any $a \in A$, $\gamma(a) = \bigvee_C \{c \in C \mid \alpha(c) \leq_A a\}$
- 3. for any $c_1, c_2 \in C$, $\alpha(c_1 \vee_C c_2) = \alpha(c_1) \vee_A \alpha(c_2)$
- 4. for any $c \in C$, $\gamma(\alpha(\gamma(\alpha(c)))) = \gamma(\alpha(c))$

Svolgimento

1. $\gamma(\alpha(\top_C)) = \top_C$

Dimostrazione. Posso dimostrare le seguenti diseguaglianze per ottenere il risultato cercato:

- a) $\gamma(\alpha(\top_C)) \leq_C \top_C$: Segue direttamente dal fatto che $\gamma: A \to C$. Infatti γ restituisce un valore in C che è sicuramente minore o uguale a \top_C . Il tutto vale perchè α e γ sono funzioni totali.
- b) $\top_C \leq_C \gamma(\alpha(\top_C))$: Segue direttamente dalla proprietà numero (3) $(\forall c \in C.c \leq_C \gamma(\alpha(c)))$ della Galois Connection.

visto che valgono le diseguaglianze 1a e 1b, per l'antisimmetria del poset (C, \leq_C) posso concludere $\gamma(\alpha(\top_C)) = \top_C$.

- 2. $\forall a \in A, \gamma(a) = \bigvee_C \{c \in C \mid \alpha(c) \leq_A a\}$
- 3. $\forall c_1, c_2 \in C, \alpha(c_1 \vee_C c_2) = \alpha(c_1) \vee_A \alpha(c_2)$ Siccome C è un reticolo completo il sottoinsieme $\{c_1, c_2\}$ ha un lub che fa parte di C (in ogni caso \top_C è sempre un ub). Distinguo tre casi:
 - a) $c_1 \leq_C c_2$. Se vale questa relazione $c_1 \vee_C c_2 = c_2$ e quindi:
 - $(1) \quad \alpha(c_1 \vee_C c_2) = \alpha(c_2)$

Inoltre

$$c_1 \leq_C c_2 \implies$$
 Monotonia di α
 $\alpha(c_1) \leq_A \alpha(c_2)$

Dunque il $lub(\{\alpha(c_1), \alpha(c_2)\}) = \alpha(c_2)$. Grazie a quest'ultimo risultato e a 1 l'asserto è dimostrato.

- b) $c_2 \leq_C c_1$ riconducibile al precedente scambiando c_1 con c_2 .
- c) $\neg(c_1 \leq_C c_2) \land \neg(c_2 \leq_C c_1)$. Sia c il lub di $\{c_1, c_2\}$ (Esiste perchè C è un reticolo completo). Siccome c è lub valgono le relazioni:
 - $c_1 \leq_C c \implies \alpha(c_1) \leq_A \alpha(c)$ per la monotonicità di α
 - $c_2 \leq_C c \implies \alpha(c_2) \leq_A \alpha(c)$ per la monotonicità di α .

Dimostro che $lub(\{\alpha(c_1), \alpha(c_2)\}) \leq lub(\{\alpha(c), \alpha(c)\}) = \alpha(c)$ che segue dalle due relazioni precedenti e dalla definizione di lub.

TODO dimostra
$$\alpha(c) \leq lub(\{\alpha(c_1), \alpha(c_2)\})$$

- 4. $\forall c \in C, \gamma(\alpha(\gamma(\alpha(c)))) = \gamma(\alpha(c))$ Dimostro le due diseguaglianze separatamente:
 - a) $\forall c \in C. \gamma(\alpha(c)) \leq_C \gamma(\alpha(\gamma(\alpha(c))))$ segue direttamente dalla proprietà (4) e dalla totatilità di α e γ .
 - b) $\forall c \in C.\gamma(\alpha(\gamma(\alpha(c)))) \leq_C \gamma(\alpha(c))$ Per la proprietà (5) della Galois Connection (e la totalità di α e γ) vale la seguente relazione

$$\alpha(\gamma(\alpha(c))) \leq_A \alpha(c)$$

vale per ogni c perchè ogni c viene mappato ad un a. Per via della monotonia di γ ottengo:

$$\gamma(\alpha(\gamma(\alpha(c)))) \leq_C \gamma(\alpha(c))$$

che era la relazione da dimostrare.

Ora siccome valgono le due relazioni, per l'antisimmetria di \leq_C vale anche l'uguaglianza.

Esercizio 3

Consegna Let C and A be complete lattices, (α, C, A, γ) be a Galois insertion, $op : C^2 \to C$ be a monotone concrete operation and $op^a : A_2 \to A$ be a monotone abstract operation. Prove the following equivalence:

$$\forall (a_1, a_2) \in A^2 : \alpha(op(\gamma(\alpha_1), \gamma(\alpha_2))) \leq_A op^a(a_1, a_2) \iff \\ \forall (c_1, c_2) \in C^2 : op(c_1, c_2) \leq_C \gamma(op^a(\alpha(c_1), \alpha(c_2)))$$

Svolgimento

Esercizio 4

Consegna Let $\langle C, \leq_C \rangle$ be a complete lattice and let $S \subseteq C$ be a subset of C which is meet-closed, that is:

$$\forall Y \subseteq S. \land_C Y \in S$$

Prove that $\langle S, \leq_C \rangle$ can be viewed as an abstract domain of C where the concretization map $\gamma: S \to C$ is the identity.

Svolgimento

Esercizio 5

Consegna Let C and A be complete lattices, (α, C, A, γ) be a Galois insertion, $f: C \to C$ be a monotone concrete operation and $f^{\sharp}: A \to A$ be a monotone abstract operation such that: $f \circ \gamma = \gamma \circ f^{\sharp}$. Prove that $\alpha(gfp(f)) = gfp(f^{\sharp})$.

Svolgimento

Esercizio 6

Consegna Let C and A be complete lattices, (α, C, A, γ) be a Galois insertion, $f: C \to C$ be a monotone concrete operation and $f^{\sharp}: A \to A$ be a monotone abstract operation such that: $\alpha \circ f = f^{\sharp} \circ \alpha$.

- 1. Prove that $\alpha(lfp(f)) = lfp(f^{\sharp})$.
- 2. Give a counterexample to the equality $lfp(f) = \gamma(lfp(f^{\sharp}))$.

Svolgimento

Esercizio 7

Consegna Let $(\alpha, \langle A, \leq_A \rangle, \langle \wp(Z), \subseteq \rangle, \gamma)$ be a Galois connection. Let Let \mathbb{S}^A , $Var \to A$ and consider the standard pointwise order \sqsubseteq between functions: $s_1^{\sharp} \sqsubseteq s_2^{\sharp}$ when for any $x \in Var$, $s_1^{\sharp}(x) \leq_A s_2^{\sharp}(x)$. Prove that $(\alpha_s, wp(State), \mathbb{S}^A, \gamma_s)$ is a Galois connection, where:

- $\alpha_s(T) \triangleq \lambda x. \alpha(\{s(x)|s \in T\})$
- $\gamma_s(s^{\sharp}) \triangleq \{s \in State | \forall x \in Var.\alpha(\{s(x)\}) \leq_A s^{\sharp}(x)\}$

Svolgimento

Esercizio 8

Consegna Consider the following abstract domain of $\langle \wp(\mathbb{Z}, \subseteq) \rangle$

Svolgimento

Esercizio 9

Svolgimento