# 실무 데이터 분석 (상관관계 분석)

인공지능 기반 스마트 설계 컴퓨터 Al공학부 천세진

DATA **SCIENCE** LABS

# 데이터

|    | А       | В        | С       | D        | Е        | F     | G      | Н       |
|----|---------|----------|---------|----------|----------|-------|--------|---------|
| 1  | 순번      | 유형       | 컨테이너빈   | 크기       | 적재상태     | 화주    | 가이드 위  | 실제 위치   |
| 2  | CONTR_K | WRK_TYPE | CONTR_N | CONTR_SI | CONTR_LC | BP_NM | SP_BLK | REL_BLK |
| 3  | 25629   | IN       | FTAU10  | 20       | F        | 한도물류  | Α      | Α       |
| 4  | 25306   | OT       | HDMU68  | 40       | E        | 로드스타  | R      | R       |
| 5  | 24852   | OT       | GCXU57  | 40       | F        | DTC   | В      | В       |
| 6  | 25605   | IN       | OOCU50  | 40       | F        | 태성로지스 | D      | D       |
| 7  | 23610   | OT       | EITU94  | 40       | F        | 태성로지스 | _      | D       |
| 8  | 27967   | IN       | CAAU52  | 40       | F        | 태성로지스 | D      | D       |
| 9  | 27972   | IN       | NYKU36  | 20       | E        | 태성로지스 | Α      | Α       |
| 10 | 27980   | IN       | FCIU55  | 20       | F        | 로드스타  | Α      | Α       |
| 11 | 27979   | IN       | TEMU15  | 20       | F        | 로드스타  | Α      | Α       |
| 12 | 27996   | IN       | FCIU58  | 20       | F        | 에스에이치 | Α      | Α       |
| 13 | 24913   | OT       | MSKU54  | 20       | F        | 태성로지스 | Α      | Α       |
| 14 | 27995   | IN       | TGBU97  | 40       | F        | 한타특수은 | E      | E       |
| 15 | 27982   | IN       | NYKU47  | 40       | F        | 한타특수원 | E      | Е       |
| 16 | 27981   | IN       | TCKU78  | 40       | F        | 한타특수원 | E      | Е       |
| 17 | 27983   | IN       | HMMU64  | 40       | F        | 한타특수원 | E      | Е       |
| 18 | 27991   | IN       | MSCU51  | 40       | F        | 한타특수원 | E      | Е       |
| 19 | 27990   | IN       | KOCU47  | 40       | F        | 한타특수원 | Е      | Е       |
| 20 | 27989   | IN       | TCNU23  | 40       | F        | 한타특수은 | Е      | Е       |
| 21 | 27958   | IN       | TEMU56  | 20       | F        | 삼일익스포 | Α      | Α       |
| 22 | 28001   | IN       | SEKU56  | 40       | F        | 디앤디로잭 | E      | E       |
| 23 | 28000   | IN       | TLLU77  | 40       | F        | 디앤디로잭 | E      | E       |
| 24 | 27971   | IN       | HDMU68  | 40       | F        | 태성로지스 | D      | D       |
| 25 | 25461   | ОТ       | HDMU26  | 20       | F        | 에스에이치 | Α      | Α       |
| 26 | 27937   | ОТ       | TEMU71  | 40       | F        | 한타특수은 | D      | D       |

#### 데이터 처리 단계

1. 데이터 이해 (목적, 구성, 특징) 2. 데이터 전처리 (결측값, 이상치, 중복값)

3. 데이터 탐색 (데이터의 분포, 상관관계, 이 상치 탐색)

4. 통계적인 분석 (Aggregation/Summarization)

5. 시각화

6. 결론 도출

🏥 컨테이너 야드 장치장 (Container yard)

항구나 항만 근처에 위치하며, 컨테이너화된 화물을 일 시적으로 저장하거나 운송 수단에 싣기 위해 사용

양·적하 작업 화물 보관 및 이동



🛟 배후부지 CFS (Container Freight Station)

항만에서 도착한 컨테이너 화물을 잠시 보관하거나 분류, 정리, 출고 등의 작업을 수행

화물 보관 분류 및 정리









#### 🛟 문제점

- 대부분 업장에서 반입일 혹은 화주 단위로 적재
- 무분별한 적재는 이적량을 증가시키고 작업 능률을 낮춤
- 낮은작업 능률은 운송기사 대기시간 및 교통체증 또한 유발
- 일부 업장에선 수기로 사무실에서 컨테이너의 정보로 적절한 적재 위치를 기사에게 제공 -> 시행 이전에 비해 이적량이 감소한 효과



KULS 고객사 컨테이너 적재 모습

| No.      | 컨테이너                 | 유형   | 반출일   | 오더            | 추가정보                           |
|----------|----------------------|------|-------|---------------|--------------------------------|
| 62<br>대기 | CAXU 3292569<br>Full | 20GP | 06-12 | 6621<br>(A7)  | ZIM ANTWERP<br>69E<br>(로드스타)   |
| 61<br>대기 | CMAU 8627455<br>Full | 40GP | 06-12 | 7383<br>(B40) | CMA CGM<br>IGUACU<br>(삼성전자로지텍) |

컨테이너 적재위치 안내부분 (오더 내부 A7, B40)

- 순번: 순번 ID
- 유형: 유형 IN/OUT
- 컨테이너번호:
- 크기: 컨테이너 크기
- 적재상태: 적재 상태 (Full,Empty)
- 화주: 화주
- 가이드 위치: 가이드 위치
- 실제 위치: 실제 위치



• 데이터의 수

```
1 # 데이터의 수 (레코드수, 특징수)
2 df.shape
```

(198, 8)

#### • 데이터의 유형

1 df.dtypes # 데이터 유형

CONTR\_KEY int64 WRK\_TYPE object object CONTR\_NO CONTR\_SIZE int64 CONTR\_LOAD\_STS object BP\_NM object SP\_BLK object REL\_BLK object dtype: object

- 특징
  - 기본적인 데이터 통계, 결측값 확인



#### • 문자열 -> 카테고리 데이터 변환

```
1 # 문자열 카테고리값으로 변환
2 categorical_columns = df.select_dtypes(include=['object']).columns
3 df[categorical_columns] = df[categorical_columns].astype('category')
4
5 df.dtypes
```

```
CONTR KEY
                   int64
WRK_TYPE
                category
CONTR NO
                category
CONTR SIZE
                   int64
CONTR_LOAD_STS
              category
BP NM
               category
SP_BLK
               category
REL_BLK
               category
dtype: object
```

#### • 카테고리 값 (고유값들 확인)

```
1 # 모든 카테고리값을 출력
2 category_values = {col: df[col].cat.categories for col in categorical_columns}
3 # category_values
4
5 #
6 df['BP_NM'].cat.categories
```

```
Index(['DTC', 'HK종합운수', 'KCTC부산', 'SITC', 'SKON', '더블피씨', '덕창로지스틱스', '동우로지스틱', '티앤디로직스', '로드스타', '삼일익스프레스', '서중로직스', '에스에이치피물류', '영풍물류', '우진종합물류', '유니온로지스', '지투비', '태성로지스', '트레이스로지스틱스', '한도물류', '한타특수운송'], dtype='object')
```

#### 2. 데이터 전처리

• 카테고리 값에 대한 표현통계



#### 2. 데이터 전처리

• 카테고리 값을 숫자로 변환

```
1 # 카테고리 값을 숫자로 변환
2 df_copy = df.copy()
3 for col in categorical_columns:
4 df_copy[col] = df_copy[col].cat.codes
```

# 3. 데이터 탐색

#### • 카테고리 값을 숫자로 변환

| 1 df_copy.corr() |           |           |           |            |                |           |           | _         |
|------------------|-----------|-----------|-----------|------------|----------------|-----------|-----------|-----------|
|                  | CONTR_KEY | WRK_TYPE  | CONTR_NO  | CONTR_SIZE | CONTR_LOAD_STS | BP_NM     | SP_BLK    | REL_BLK   |
| CONTR_KEY        | 1.000000  | -0.937569 | 0.118860  | 0.227375   | 0.119922       | 0.080604  | 0.384894  | 0.281532  |
| WRK_TYPE         | -0.937569 | 1.000000  | -0.134634 | -0.225095  | -0.068661      | -0.103247 | -0.342967 | -0.286132 |
| CONTR_NO         | 0.118860  | -0.134634 | 1.000000  | 0.100280   | 0.064466       | 0.011712  | 0.070398  | 0.087505  |
| CONTR_SIZE       | 0.227375  | -0.225095 | 0.100280  | 1.000000   | -0.058791      | 0.163479  | 0.785694  | 0.826965  |
| CONTR_LOAD_STS   | 0.119922  | -0.068661 | 0.064466  | -0.058791  | 1.000000       | -0.045351 | -0.128209 | -0.170462 |
| BP_NM            | 0.080604  | -0.103247 | 0.011712  | 0.163479   | -0.045351      | 1.000000  | 0.377021  | 0.409501  |
| SP_BLK           | 0.384894  | -0.342967 | 0.070398  | 0.785694   | -0.128209      | 0.377021  | 1.000000  | 0.950548  |
| REL_BLK          | 0.281532  | -0.286132 | 0.087505  | 0.826965   | -0.170462      | 0.409501  | 0.950548  | 1.000000  |

#### 3. 데이터 탐색

#### • 히트맵을 사용

1 import seaborn as sns

7 # Plot the heatmap

11 plt.show()

8 plt.figure(figsize=(10, 8))

6

2 import matplotlib.pyplot as plt

4 # Calculate the correlation matrix

5 correlation\_matrix = df\_copy.corr()

10 plt.title('Correlation Matrix of the Data')



## 4. 랜덤포레스트(분류기)

• 결정 트리(Decision tree)



## 4. 랜덤포레스트(분류기)

• 다양한 결정 트리를 이용



| 자격증 | 결혼여부 | 경력년수 | 합격여부 |
|-----|------|------|------|
| Yes | Yes  | 7    | No   |
| Yes | No   | 12   | No   |
| No  | Yes  | 18   | Yes  |
| No  | Yes  | 35   | Yes  |
| Yes | Yes  | 38   | Yes  |
| Yes | No   | 50   | No   |
| No  | No   | 83   | No   |



| 자격증 | 결혼여부 | 경력년수 | 합격여부 |                       |
|-----|------|------|------|-----------------------|
| Yes | Yes  | 7    | No   | Ye                    |
| Yes | No   | 12   | No   | 합격여부                  |
| No  | Yes  | 18   | Yes  | Yes (1) No (3         |
| No  | Yes  | 35   | Yes  |                       |
| Yes | Yes  | 38   | Yes  |                       |
| Yes | No   | 50   | No   |                       |
| No  | No   | 83   | No   |                       |
|     |      |      | VA.  | A <b>SCIENCE</b> LABS |



| 자격증 | 결혼여부 | 경력년수 | 합격여부 |
|-----|------|------|------|
| Yes | Yes  | 7    | No   |
| Yes | No   | 12   | No   |
| No  | Yes  | 18   | Yes  |
| No  | Yes  | 35   | Yes  |
| Yes | Yes  | 38   | Yes  |
| Yes | No   | 50   | No   |
| No  | No   | 83   | No   |



| 자격증 | 결혼여부 | 경력년수 | 합격여부 |
|-----|------|------|------|
| Yes | Yes  | 7    | No   |
| Yes | No   | 12   | No   |
| No  | Yes  | 18   | Yes  |
| No  | Yes  | 35   | Yes  |
| Yes | Yes  | 38   | Yes  |
| Yes | No   | 50   | No   |
| No  | No   | 83   | No   |



지니 불순도: 분류된 케이스에 데이터가 불순한 정도.

$$Gini(D) = 1 - \sum_{i=1}^k p_i^2$$

그외 Information Gain, 엔트로피





| 자격증 | 결혼여부 | 경력년수 | 합격여부 |
|-----|------|------|------|
| Yes | Yes  | 7    | No   |
| Yes | No   | 12   | No   |
| No  | Yes  | 18   | Yes  |
| No  | Yes  | 35   | Yes  |
| Yes | Yes  | 38   | Yes  |
| Yes | No   | 50   | No   |
| No  | No   | 83   | No   |



| 자격증 | 결혼여부 | 경력년수 | 합격여부 |
|-----|------|------|------|
| Yes | Yes  | 7    | No   |
| Yes | No   | 12   | No   |
| No  | Yes  | 18   | Yes  |
| No  | Yes  | 35   | Yes  |
| Yes | Yes  | 38   | Yes  |
| Yes | No   | 50   | No   |
| No  | No   | 83   | No   |



#### 4. 랜덤포레스트



#### 4. 랜덤포레스트(분류기)

```
[26] 1 from sklearn.model_selection import train_test_split
2 from sklearn.ensemble import RandomForestClassifier
3 from sklearn.metrics import accuracy_score, classification_report
```

```
[27] 1 # Prepare the data
2 X = df_copy.drop('REL_BLK', axis=1) # Features
3 y = df_copy['REL_BLK'] # Target
4
5 # Split the data into training and test sets
6 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

#### 4. 랜덤포레스트(분류기)

```
1 # Initialize the RandomForestClassifier
2 rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
 3
4 # Train the model
5 rf_classifier.fit(X_train, y_train)
7 # Predict on the test set
8 y_pred = rf_classifier.predict(X_test)
10 # Evaluate the model
11 accuracy = accuracy_score(y_test, y_pred)
12 class_report = classification_report(y_test, y_pred)
13
14 accuracy, class_report
```

#### 4. 결과 확인

- Confusion Matrix
  - 실제와 예측의 결과를 비교

```
1 from sklearn.metrics import confusion_matrix
2 import numpy as np

1 cm_rel_blk = confusion_matrix(y_test, y_pred)
2
3 # Plot the confusion matrix as a heatmap for REL_BLK
4 plt.figure(figsize=(12, 10))
5 sns.heatmap(cm_rel_blk, annot=True, fmt='d', cmap='Blues', xticklabels=np.unique(y), yticklabels=np.unique(y))
6 plt.title('Confusion Matrix for REL_BLK')
7 plt.ylabel('Actual')
8 plt.xlabel('Predicted')
9 plt.show()
```

#### 4. 결과 확인

#### Confusion Matrix

- 실제와 예측의 결과를 비교
- X축은 예측된결과
- Y축은 실제



#### **Further work**

- 서포트 벡터 머신(SVM)
- KNN 최근접이웃
- 그라디언트 부스팅(Gradient Boosting)