Orthogonal and Orthonormal Sets

Definition 1

A set of two or more vectors in a real inner product space is said to be *orthogonal* if all pairs of distinct vectors in the set are orthogonal. An orthogonal set in which each vector has norm 1 is said to be *orthonormal*.

EXAMPLE 1 | An Orthogonal Set in \mathbb{R}^3

Let

$$\mathbf{v}_1 = (0, 1, 0), \quad \mathbf{v}_2 = (1, 0, 1), \quad \mathbf{v}_3 = (1, 0, -1)$$

and assume that R^3 has the Euclidean inner product. It follows that $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal set since $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \langle \mathbf{v}_1, \mathbf{v}_3 \rangle = \langle \mathbf{v}_2, \mathbf{v}_3 \rangle = 0$.

EXAMPLE 2 | Constructing an Orthonormal Set

The Euclidean norms of the vectors in Example 1 are

$$\|\mathbf{v}_1\| = 1$$
, $\|\mathbf{v}_2\| = \sqrt{2}$, $\|\mathbf{v}_3\| = \sqrt{2}$

Consequently, normalizing \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 yields

$$\mathbf{u}_{1} = \frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|} = (0, 1, 0), \quad \mathbf{u}_{2} = \frac{\mathbf{v}_{2}}{\|\mathbf{v}_{2}\|} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right),$$

$$\mathbf{u}_{3} = \frac{\mathbf{v}_{3}}{\|\mathbf{v}_{3}\|} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)$$

We leave it for you to verify that the set $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is orthonormal by showing that

$$\langle \mathbf{u}_1, \mathbf{u}_2 \rangle = \langle \mathbf{u}_1, \mathbf{u}_3 \rangle = \langle \mathbf{u}_2, \mathbf{u}_3 \rangle = 0$$
 and $\|\mathbf{u}_1\| = \|\mathbf{u}_2\| = \|\mathbf{u}_3\| = 1$

Theorem 6.3.1

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is an orthogonal set of nonzero vectors in an inner product space, then S is linearly independent.

EXAMPLE 3 | An Orthonormal Basis for P_n

Recall from Example 7 of Section 6.1 that the standard inner product of the polynomials

$$\mathbf{p} = a_0 + a_1 x + \dots + a_n x^n$$
 and $\mathbf{q} = b_0 + b_1 x + \dots + b_n x^n$

is

$$\langle \mathbf{p}, \mathbf{q} \rangle = a_0 b_0 + a_1 b_1 + \cdots + a_n b_n$$

and the norm of **p** relative to this inner product is

$$\|\mathbf{p}\| = \sqrt{\langle \mathbf{p}, \mathbf{p} \rangle} = \sqrt{a_0^2 + a_1^2 + \dots + a_n^2}$$

Using these formulas you should be able to show that the standard basis

$$S = \{1, x, x^2, \dots, x^n\}$$

is orthonormal with respect to this inner product (verify).

EXAMPLE 4 | An Orthonormal Basis

In Example 2 we showed that the vectors

$$\mathbf{u}_1 = (0, 1, 0), \quad \mathbf{u}_2 = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), \quad \text{and} \quad \mathbf{u}_3 = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)$$

form an orthonormal set with respect to the Euclidean inner product on R^3 . By Theorem 6.3.1, these vectors form a linearly independent set, and since R^3 is three-dimensional, it follows from Theorem 4.6.4 that $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthonormal basis for R^3 .

Coordinates Relative to Orthonormal Bases

Theorem 6.3.2

(a) If $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ is an orthogonal basis for an inner product space V, and if \mathbf{u} is any vector in V, then

$$\mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 + \frac{\langle \mathbf{u}, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{u}, \mathbf{v}_n \rangle}{\|\mathbf{v}_n\|^2} \mathbf{v}_n$$
(3)

(b) If $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ is an orthonormal basis for an inner product space V, and if \mathbf{u} is any vector in V, then

$$\mathbf{u} = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \dots + \langle \mathbf{u}, \mathbf{v}_n \rangle \mathbf{v}_n \tag{4}$$

Using the terminology and notation from Definition 2 of Section 4.5, it follows from Theorem 6.3.2 that the coordinate vector of a vector \mathbf{u} in V relative to an orthogonal basis $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is

$$(\mathbf{u})_S = \left(\frac{\langle \mathbf{u}, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2}, \frac{\langle \mathbf{u}, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2}, \dots, \frac{\langle \mathbf{u}, \mathbf{v}_n \rangle}{\|\mathbf{v}_n\|^2}\right)$$
(6)

and relative to an orthonormal basis $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is

$$(\mathbf{u})_{S} = (\langle \mathbf{u}, \mathbf{v}_{1} \rangle, \langle \mathbf{u}, \mathbf{v}_{2} \rangle, \dots, \langle \mathbf{u}, \mathbf{v}_{n} \rangle)$$
(7)

EXAMPLE 5 | A Coordinate Vector Relative to an Orthonormal Basis

Let

$$\mathbf{v}_1 = (0, 1, 0), \quad \mathbf{v}_2 = \left(-\frac{4}{5}, 0, \frac{3}{5}\right), \quad \mathbf{v}_3 = \left(\frac{3}{5}, 0, \frac{4}{5}\right)$$

It is easy to check that $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthonormal basis for R^3 with the Euclidean inner product. Express the vector $\mathbf{u} = (1, 1, 1)$ as a linear combination of the vectors in S, and find the coordinate vector $(\mathbf{u})_S$.

Solution We leave it for you to verify that

$$\langle \mathbf{u}, \mathbf{v}_1 \rangle = 1$$
, $\langle \mathbf{u}, \mathbf{v}_2 \rangle = -\frac{1}{5}$, and $\langle \mathbf{u}, \mathbf{v}_3 \rangle = \frac{7}{5}$

Therefore, by Theorem 6.3.2 we have

$$\mathbf{u} = \mathbf{v}_1 - \frac{1}{5}\mathbf{v}_2 + \frac{7}{5}\mathbf{v}_3$$

that is,

$$(1,1,1) = (0,1,0) - \frac{1}{5}(-\frac{4}{5},0,\frac{3}{5}) + \frac{7}{5}(\frac{3}{5},0,\frac{4}{5})$$

Thus, the coordinate vector of \mathbf{u} relative to S is

$$(\mathbf{u})_S = (\langle \mathbf{u}, \mathbf{v}_1 \rangle, \langle \mathbf{u}, \mathbf{v}_2 \rangle, \langle \mathbf{u}, \mathbf{v}_3 \rangle) = (1, -\frac{1}{5}, \frac{7}{5})$$

EXAMPLE 6 | An Orthonormal Basis from an Orthogonal Basis

(a) Show that the vectors

$$\mathbf{w}_1 = (0, 2, 0), \quad \mathbf{w}_2 = (3, 0, 3), \quad \mathbf{w}_3 = (-4, 0, 4)$$

form an orthogonal basis for R^3 with the Euclidean inner product, and use that basis to find an orthonormal basis by normalizing each vector.

(b) Express the vector $\mathbf{u} = (1, 2, 4)$ as a linear combination of the orthonormal basis vectors obtained in part (a).

Solution (a) The given vectors form an orthogonal set since

$$\langle \mathbf{w}_1, \mathbf{w}_2 \rangle = 0$$
, $\langle \mathbf{w}_1, \mathbf{w}_3 \rangle = 0$, $\langle \mathbf{w}_2, \mathbf{w}_3 \rangle = 0$

It follows from Theorem 6.3.1 that these vectors are linearly independent and hence form a basis for \mathbb{R}^3 by Theorem 4.6.4. We leave it for you to calculate the norms of $\mathbf{w}_1, \mathbf{w}_2$, and \mathbf{w}_3 and then obtain the orthonormal basis

$$\mathbf{v}_{1} = \frac{\mathbf{w}_{1}}{\|\mathbf{w}_{1}\|} = (0, 1, 0), \quad \mathbf{v}_{2} = \frac{\mathbf{w}_{2}}{\|\mathbf{w}_{2}\|} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right),$$

$$\mathbf{v}_{3} = \frac{\mathbf{w}_{3}}{\|\mathbf{w}_{3}\|} = \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

Solution (b) It follows from Formula (4) that

$$\mathbf{u} = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \langle \mathbf{u}, \mathbf{v}_3 \rangle \mathbf{v}_3$$

We leave it for you to confirm that

$$\langle \mathbf{u}, \mathbf{v}_1 \rangle = (1, 2, 4) \cdot (0, 1, 0) = 2$$

$$\langle \mathbf{u}, \mathbf{v}_2 \rangle = (1, 2, 4) \cdot \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) = \frac{5}{\sqrt{2}}$$

$$\langle \mathbf{u}, \mathbf{v}_3 \rangle = (1, 2, 4) \cdot \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) = \frac{3}{\sqrt{2}}$$

and hence that

$$(1,2,4) = 2(0,1,0) + \frac{5}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right) + \frac{3}{\sqrt{2}} \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right)$$

Question:

10. Verify that the vectors

$$\mathbf{v}_1 = (1, -1, 2, -1), \quad \mathbf{v}_2 = (-2, 2, 3, 2),$$

 $\mathbf{v}_3 = (1, 2, 0, -1), \quad \mathbf{v}_4 = (1, 0, 0, 1)$

form an orthogonal basis for R^4 with respect to the Euclidean inner product, and then use Theorem 6.3.2(a) to express the vector $\mathbf{u} = (1, 1, 1, 1)$ as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$, and \mathbf{v}_4 .

Solution:

$$\langle \mathbf{v}_{1}, \mathbf{v}_{2} \rangle = -2 - 2 + 6 - 2 = 0 \qquad \langle \mathbf{v}_{1}, \mathbf{v}_{3} \rangle = 1 - 2 + 0 + 1 = 0 \qquad \langle \mathbf{v}_{1}, \mathbf{v}_{4} \rangle = 1 + 0 + 0 - 1 = 0$$

$$\langle \mathbf{v}_{2}, \mathbf{v}_{3} \rangle = -2 + 4 + 0 - 2 = 0 \qquad \langle \mathbf{v}_{2}, \mathbf{v}_{4} \rangle = -2 + 0 + 0 + 2 = 0 \qquad \langle \mathbf{v}_{3}, \mathbf{v}_{4} \rangle = 1 + 0 + 0 - 1 = 0$$

Since this is an orthogonal set of nonzero vectors, it follows from Theorem 6.3.1 that the set is linearly independent. Because the number of vectors in the set matches $\dim(R^4) = 4$, this set forms a basis for R^4 by Theorem 4.6.4. We use Theorem 6.3.2(a):

$$\mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} + \frac{\langle \mathbf{u}, \mathbf{v}_{2} \rangle}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{2} + \frac{\langle \mathbf{u}, \mathbf{v}_{3} \rangle}{\|\mathbf{v}_{3}\|^{2}} \mathbf{v}_{3} + \frac{\langle \mathbf{u}, \mathbf{v}_{4} \rangle}{\|\mathbf{v}_{4}\|^{2}} \mathbf{v}_{4}$$

$$= \frac{1 - 1 + 2 - 1}{1 + 1 + 4 + 1} \mathbf{v}_{1} + \frac{-2 + 2 + 3 + 2}{4 + 4 + 9 + 4} \mathbf{v}_{2} + \frac{1 + 2 + 0 - 1}{1 + 4 + 0 + 1} \mathbf{v}_{3} + \frac{1 + 0 + 0 + 1}{1 + 0 + 0 + 1} \mathbf{v}_{4}$$

$$= \frac{1}{7} \mathbf{v}_{1} + \frac{5}{21} \mathbf{v}_{2} + \frac{1}{3} \mathbf{v}_{3} + 1 \mathbf{v}_{4}.$$