

RESEARCH MEMORANDUM

for the

Bureau of Ordnance, Department of the Navy

EFFECT OF FIRST-STAGE BLADE DESIGN ON PERFORMANCE

OF MARK 25 TORPEDO POWER PLANT

By Harold J. Schum and Jack W. Hoyt

Lewis Flight Propulsion Laboratory Cleveland, Ohio

CLASSIFIED DOCUMENT

This document contains classified information affecting the National Defense of the Unites States within the meaning of the Espionage Act use of the Contained of the United States within the meaning of the Espionage Act or the Contained of the United States within the meaning of the Espionage Act or the United States within the United States of the United States o

Me Combagger NACA release form #2062

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

for the

Bureau of Ordnance, Department of the Navy

EFFECT OF FIRST-STAGE BLADE DESIGN ON PERFORMANCE

OF MARK 25 TORPEDO POWER PLANT

By Harold J. Schum and Jack W. Hoyt

SUMMARY

The effect of rotor-blade length, inlet angle, and shrouding was investigated with four different nozzles in a single-stage modification of the Mark 25 aerial-torpedo power plant. The results obtained with the five special rotor configurations are compared with those of the standard first-stage rotor with each nozzle. Each nozzle-rotor combination was operated at nominal pressure ratios of 8, 15 (design), and 20 over a range of speeds from 6000 rpm to the design speed of 18,000 rpm. Inlet temperature and pressure conditions of 1000° F and 95 pounds per square inch gage, respectively, were maintained constant for all runs.

The increase in annular flow area, either through greater blade length or wider inlet angle, apparently resulted in the greatest increase in efficiency. The rotor having longer blades showed slightly greater efficiency than the blades with wider inlet angles with each nozzle at the high pressure ratios. Removal of the blade shroud caused a decrease in efficiency as expected. Only part of this decrease in efficiency was recovered when a close-fitting stationary shroud cap was placed over the active part of the blading.

The maximum brake efficiency of 0.54 was obtained when the longest blades (0.45 in.) were used with a cast sharp-edged-inlet nozzle (H). When this configuration was run as a two-stage unit with a standard second-stage rotor, however, the resulting efficiency was less than that observed when both standard rotors were used. This decrease in efficiency was probably caused by less favorable outlet velocities from the 0.45-inch first-stage rotor due to the increase in flow area, thereby reducing the effectiveness of the second stage.

A water-channel investigation of X5-scale models of the standard 17°-inlet-angle blade and the special 20°-inlet-angle blade indicated the presence of a normal shock at the blade inlet, causing both subsonic flow through the blade passages and a loss in total pressure.

INTRODUCTION

At the request of the Bureau of Ordnance, Department of the Navy, the performance of a turbine from the Mark 25 aerial-torpedo power plant is being investigated at the NACA Lewis laboratory. Although the gas turbine is composed of two counterrotating stages, the second rotor is used primarily for balance. For possible application of high-pressure single-stage turbines to rocket accessory drive, a Mark 25 turbine with the second-stage blading removed was investigated. The over-all performance of the standard two-stage turbine and the first-stage turbine with five nozzles is reported in references 1 and 2, respectively, and a study of axial nozzle-rotor clearance in reference 3.

Because of the geometry of the turbine installation in the Mark 25 torpedo, no precise survey measurements could be made near the nozzles and the blades during these previous investigations. Only the over-all performance of various combinations of nozzles and blades could be used to obtain information leading to performance improvements.

The investigation reported herein was undertaken to obtain information regarding the variation of the over-all efficiency of turbines of this type with nozzles designed to vary the weightflow rate and blades designed to change the effective flow area through the passages.

Four different turbine nozzles were investigated in conjunction with modifications to the first-stage blade design. These modifications included special blade heights of 0.35 and 0.45 inch as compared with the standard blade height of 0.40 inch. A third special first-stage rotor was fabricated with a blade-inlet angle of 20° instead of the standard 17°, the blade height being the same as that of the standard blade. When the results obtained with these three rotors are compared with the results previously obtained with the standard rotor, the effect of varying the effective flow area through the blading can be determined. The use of unshrouded blading facilitates turbine manufacture and hence the extent of the change in over-all performance was ascertained with the shroud

NACA SE9G2O 3

事事者 かいかっせいま

removed from the 0.35-inch rotor blading. Turbine performance was also determined with a close-fitting stationary shroud cap installed around the active portion of the blading to reduce the air leakage around the blade tips. Finally, the most efficient combination of nozzle and first-stage rotor was investigated in a two-stage Mark 25 turbine with use of the standard second-stage rotor.

All nozzle-rotor comfigurations were investigated at pressure ratios of 8, 15 (design), and 20 and a range of turbine speeds from approximately 6000 to 18,000 rpm at inlet temperature and pressure conditions of 1000° F and 95 pounds per square inch gage, respectively. In order to evaluate the actual output of the nozzle-rotor combinations, the windage losses of each blade design were determined.

Water-channel investigations applying the hydraulic analogy to supersonic air flow in order to study the flow through the first-stage blades at simulated operating velocities were made of both the 20° - and the standard 17° -inlet-angle blades.

TURBINE MODIFICATIONS AND SETUP

The standard Mark 25 torpedo power plant is a two-stage counterrotating turbine with partial gas admission. The two stages operate at the same rotative speed but in opposite directions in order to eliminate gyroscopic action. Design speed is 18,000 rpm. A description of the turbine and the modifications necessary to convert this unit into a single-stage turbine are described in references 1 and 2.

Blades. - The standard first-stage turbine has an outer diameter of 11.00 inches and 0.40-inch shrouded blades with an inlet angle of 17°. The blades of a standard first-stage rotor were machined to 0.35 inch and a steel shroud was shrunk around the wheel to make one special turbine rotor. The second special rotor had blades 0.45 inch high and was designed so that the pitch diameter was not changed from that of the standard rotor; that is, the tip diameter was increased and the hub diameter was decreased 0.025 inch. The third special rotor used had a 20° inlet angle and the standard blade height of 0.40 inch.

Shrouds. - The effect of shrouding was determined by removing the steel shroud band around the 0.35-inch blades. Because unshrouded turbine wheels are more easily fabricated, determination of the aerodynamic penalty involved in the use of such wheels was considered

desirable. A close-fitting stationary shroud cap was installed around the active part of the unshrouded 0.35-inch blades. The stationary shroud cap is shown with the unshrouded rotor in figure 1.

Nozzles. - The alphabetical notation of the nozzles used in the investigation was arbitrarily selected to distinguish nozzle design. Nozzles A, E, and H are discussed in references 1 and 2. Nozzle A has rounded inlets to the rectangular converging-diverging nozzle ports. Nozzle E has reamed ports with rounded inlets. These ports are cylindrical with no divergence in the nozzle, completed gas expansion occurring in the clearance space between the nozzle and the blades. Nozzle H has rectangular ports with sharp-edge inlets to the throats cast by a different technique from that used for nozzle A. Nozzle I (not previously investigated) is similar to nozzle H in design but has smaller inlets and greater wall divergence in the ports. Both nozzles H and I utilize the gas-jet contraction effect caused by the sharp inlet edges, producing the equivalent of converging-diverging flow. The throat of the two nozzles is thus at the vena contracta, from which the gas expands to the nozzle outlet. All four nozzles have nine ports with 900-arc admission. Additional characteristics of the nozzles are given in the following table:

Nozzle	Total	Observed
	measured	air
	throat	weight
	area	flow
	(sq in.)	(lb/hr)
A	0.183	955
E	.193	972
H	.226	1132
I	.217	995

The nozzle-throat area and the air-weight flow are not proportional, probably because of variance in vena contracta with different nozzle designs.

The axial nozzle-rotor clearances were set to give a running clearance of 0.030 inch at operating temperature. Radial nozzle settings as well as the proper allowances for thermal changes in axial clearances were made to conform with the recommendations of reference 1.

In order to determine what gains in a two-stage Mark 25 torpedo turbine could be realized by using the most efficient single-stage nozzle-rotor configuration, a turbine was assembled to operate with a standard second-stage rotor in combination with the 0.45-inch blading and nozzle H.

The shock pattern and the possible flow separation through the standard 17°-inlet-angle blades and the special 20°-inlet-angle blades were studied by placing X5-scale models of the two pitch-line sections in a water channel similar to that described in reference 4. The water channel essentially consists of a trough of shallow water flowing at the velocity necessary to simulate a given air-flow Mach number. The surface waves caused by the blades in the water channel represent shock waves in air. The waves are photographed by illuminating the channel from underneath and focusing the shadows of the waves on a ground glass. The theory of the hydraulic analogy to compressible air flow is given in references 4 and 5.

PROCEDURE

For each nozzle-rotor combination, the effect of pressure ratio and blade-jet speed ratio on turbine efficiency was investigated. These investigations were made at pressure ratios of 8, 15 (design), and 20 over a speed range from 6000 to 18,000 rpm with a constant inlet temperature of 1000° F and a constant inlet pressure of 95 pounds per square inch gage. Because of flow limitations of the outlet ducting, the maximum pressure ratio obtained with nozzle H was 19.

The rotation losses of the single-stage turbine with the standard rotor are presented in references 1 and 2 and include an individual evaluation of the mechanical friction losses, the disk windage losses, and the losses incurred by the air-pumping effect with partial admission. Rotation losses of the 0.35-inch unshrouded blade were determined by measuring the power required to motor the rotor at speeds from 6000 to 18,000 rpm and at various air densities in the turbine case. Because of stress limitations acquired when the outer shroud was shrunk onto the blades, motoring the shrouded 0.35-inch blades under cold-air conditions for which there would be no compensating thermal effects was considered unsafe. The windage losses for this rotor were therefore calculated from previous data.

CALCULATIONS

The brake, the rotor, and the blade efficiencies were computed according to the method given in reference 1. Brake efficiency is the ratio of the brake power calculated from the torque and the speed at the dynamometer shaft to the available isentropic power based on inlet total temperature and pressure and outlet static pressure; rotor efficiency is the ratio of the brake power plus the mechanical losses in the gears and the bearings to the isentropic power; and blade efficiency is the ratio of the brake power plus the mechanical losses and the disk and blade windage losses to the isentropic power. Blade-jet speed ratio is defined as the ratio of the blade speed at the pitch diameter of the rotor to the ideal nozzle-jet velocity based on isentropic expansion from the inlet total temperature and pressure to the outlet static pressure. Pressure ratio is defined as the ratio of the inlet total pressure to the outlet static pressure to

Charts of the windage and mechanical losses of the single-stage unit prepared from motoring studies of a disk (reference 2) and the complete rotor are based on the analysis and the calculation procedure described in reference 1 for the two-stage turbine. The power required to motor the unshrouded 0.35-inch blades at various turbine speeds and temperatures and pressures in the turbine case is given in table I. Because of stress limitations, the power necessary to motor the 0.35-inch shrouded blades was necessarily computed from data for the 0.40-inch-blade-height rotor (reference 2) by assuming that the blade windage loss was proportional to where l is the length of the turbine blade (reference 6). Data obtained with the shrouded 0.35-inch blades were calculated both with and without this correction and the agreement with the basic data obtained with the 0.40-inch standard rotor was found to be within experimental accuracy. On this basis and because the pitch diameters and the outside diameters of the rotors with the 0.45-inch and the 0.40-inch blades described in reference 2 are almost the same, the two rotors were assumed to have the same windage losses. Because the nozzles had 900-nozzle-arc gas admission, one-fourth of the rotor blades are active and hence not subject to windage or pumping loss. Because windage loss of the unit is the total disk windage (reference 2) plus three-fourths of the windage due to the inactive rotor blades, figure 2 was prepared with the additional loss due to the inactive 0.35-inch shrouded and unshrouded blades considered. This figure may be used directly to find the windage and mechanical losses in the 0.35-inch-blade turbine if the gas density in the turbine case is known. A similar chart for the rotor with 0.40-inch blades is presented in reference 2.

For the water-channel studies of the blade shapes, the inlet Mach number to the blade under turbine operating conditions was calculated for the design pressure ratio of 15 through the nozzle, assuming a nozzle velocity coefficient of 0.96, an inlet temperature of 1000° F, and design turbine speed of 18,000 rpm. This Mach number and the design inlet angle of flow were simulated in the water channel.

RESULTS AND DISCUSSION

Single-Stage Performance with Various

Nozzle-Rotor Combinations

Efficiency data for the rotors having 0.35-inch unshrouded blades, 0.35-inch unshrouded blades with a stationary shroud cap, 0.35-inch shrouded blades, standard 0.40-inch blades and nozzle I, 0.45-inch shrouded blades, and for the runs with the 200-inlet blades are presented in tables II to VII.

Nozzle A. - The brake efficiency of the single-stage turbine with nozzle A and the various blade designs is shown in figure 3. The data of reference 2 for the standard 0.40-inch rotor are also shown for comparison. At a pressure ratio of 8, the standard rotor is the most efficient for this nozzle. When the pressure ratio is increased to the design value of 15 or to 20, the two rotors having a greater flow area (the 0.45-in. blade and the 200-inlet blade) showed improved performance. Figure 3 also shows the reduction in performance when the blade height is reduced to 0.35 inch. The very substantial drop in efficiency when the shroud band is removed is only partly recovered when a close-fitting stationary shroud cap is placed over the active portion of the blading. Because the difference in windage losses in the shrouded and unshrouded 0.35-inch blades is small (fig. 2), the drop in efficiency of approximately 0.04 caused by the two rotor configurations at maximum blade-jet speed ratio and the design pressure ratio of 15 indicates high tip losses when the unshrouded wheel is used. The corresponding drop in efficiency at pressure ratios of 8 and 20 were approximately 0.08 and 0.05, respectively.

Nozzle E. - When nozzle E is used (fig. 4), there is little difference in performance between the standard 0.40-inch rotor, the 0.45-inch rotor, and the 200-inlet-angle rotor, especially at the higher pressure ratios. The performance with the 0.35-inch rotor shows the same trends as those for nozzle A.

Nozzle H. - A gain in performance of approximately 0.03 over the standard 0.40-inch blade was obtained with nozzle H and the 0.45-inch blade (fig. 5). The maximum obtained brake efficiency of 0.54 occurred at a blade-jet speed ratio of 0.295 and a pressure ratio of 8. The peak brake efficiency, which would be at a higher blade-jet speed ratio, could not be determined because of the 18,000-rpm speed limitation of the turbine. The same limitation of peak efficiency occurs with all the nozzle-rotor configurations investigated. The 20°-inlet-angle rotor showed substantially the same performance as the standard rotor with nozzle H. This nozzle handled the largest air flow of the nozzles operated, indicating that a greater flow area through the turbine blade is advantageous for more extraction of power from the single-stage turbine.

Nozzle I. - The results of the various rotor configurations with nozzle I are presented in figure 6. At the higher pressure ratios, the 0.45-inch blade shows the most efficient performance. The unshrouded 0.35-inch blades again had the lowest performance.

In general, the rotor and blade efficiencies presented herein for the various nozzle-rotor configurations follow the same trends as the brake efficiencies.

Two-Stage Turbine with Most Efficient

Nozzle-Rotor Combination

In general, experience with the various types of nozzle and blade in the single-stage turbine indicates that a somewhat larger flow area in the rotor is advantageous for the extraction of greater power from the first stage. Results have shown that the rotor having longer blades than that of the standard rotor had slightly greater efficiency than the blades with increased inlet angles with each nozzle. In the event that the flow leaving the rotor is subsonic, however, the greater area in the first stage may cause the velocity leaving this stage to be insufficient for developing as much useful work from the second stage as that observed during the investigation of the standard Mark 25 two-stage turbine. Study of the standard first-stage turbine blades indicated that the throat area was insufficient to swallow a supersonic air stream under operating conditions. Subsonic flow appeared likely to prevail at the blading outlet. Velocity diagrams based on this premise indicated both low outlet velocity from the first stage and unfavorable inlet angle for the second stage. In order to investigate the possible adverse effects of increasing the flow area of the firststage rotor, the most efficient first-stage combination (0.45-in.blade rotor and nozzle H) was therefore operated with the second

stage. It should be noted, however, that at a blade-jet speed ratio of 0.20, which would be approximately the peak performance point for the two-stage turbine, the 0.45-inch-blade rotor gives only a slight gain in performance over the standard rotor.

In figure 7, the performance of the two-stage turbine with the C.45-inch-blade first-stage rotor and nozzle H is compared with the standard Mark 25 blading with nozzle H. The lower efficiency of the unit with the higher blade-height first stage may be attributed to unfavorable inlet conditions of the second stage. Because the windage losses for the 0.40- and 0.45-inch blade-height first-stage rotors are considered the same, the windage losses for the two-stage units using these rotors are the same. The blade efficiencies therefore bear the same relation to each other as do the brake efficiencies for the two-stage units. The gain in first-stage output is apparently more than outweighed by the drop in second-stage performance. The data for the two-stage unit with the 0.45-inch blade-height first stage is presented in table VIII.

Water-Channel Studies

In order to ascertain if supersonic velocities are maintained through the turbine-blade passages, X5-scale models of the standard 17°- and special 20°-inlet blades were placed in a water channel to investigate the flow by the hydraulic analogy. Photographs of the flow through models of the turbine blades taken in the water channel at an analogous Mach number of approximately 1.6, corresponding to assumed turbine operating conditions at a speed of 18,000 rpm and an inlet temperature of 1000° F, are shown in figure 8. A nozzle pressure ratio of 15 and a nozzle-velocity coefficient of 0.96 were assumed for the Mach number calculations. The leading edge of the 17°-inlet-angle blades was placed at an angle of attack of 0° and the 20°-inlet-angle blades at an angle of attack of 3° in the water stream.

In each set of blades, a wave corresponding to a normal shock in air appears at the inlet to the passage between the blades. The wave appears to be somewhat farther inside the passage in the 20°-inlet-angle design. The occurrence of a normal shock in the inlet of the blade passage is indicative that the throat area is insufficient and that a rise in pressure together with substantial blade losses would result. That the analogous velocity inside the passage is subsonic is evidenced by the apparent inability of the blading to swallow the shock and by the lack of oblique waves inside

the passage. For maximum blade performance in supersonic turbine passages, it would be more advantageous to allow the normal shock to be swallowed completely. This experiment also supports the conjecture that subsonic flow prevailed at the rotor outlet.

SUMMARY OF RESULTS

The performance of the first stage of a Mark 25 two-stage turbine with several blade designs was investigated with each of four nozzles. The most efficient first-stage blade and nozzle combination was operated with a standard second-stage rotor as a two-stage turbine. The first-stage blade designs were examined in a water channel for shock-wave formation. The following results were obtained:

- 1. A somewhat larger flow area in the first-stage blades than that provided in the standard Mark 25 turbine was found to be advantageous for more efficient extraction of power from the first stage. At the high pressure ratios, the rotor having longer blades than that of the standard rotor showed slightly greater efficiency than the blades with increased inlet angles with each nozzle.
- 2. The highest first-stage brake efficiency was obtained with a rotor having blades 0.45 inch high and a cast sharp-edged-inlet turbine nozzle (H). For a pressure ratio of 8 and blade-jet speed ratio of 0.295, the maximum brake efficiency of the combination was 0.54, a gain of 0.03 over the standard Mark 25 first stage under the same conditions.
- 3. Removing the shroud band from the outside of the turbine blades caused a substantial drop in efficiency. Only part of this decrease in efficiency was recovered when a close-fitting stationary shroud cap was placed over the active portion of the blading.
- 4. When the most efficient first-stage rotor and nozzle combination was assembled with a standard second-stage rotor to form a two-stage turbine, the resulting brake efficiency was less than when a standard Mark 25 first-stage rotor was used. This decrease was presumed to be caused by unfavorable outlet velocities from the first stage and inlet angles to the second stage due to the greater bladeheight first-stage wheel, causing the second stage to be of reduced effectiveness.
- 5. Water-channel investigation of X5 models of the standard 170- and the special 200-inlet-angle Mark 25 first-stage blade

designs indicated the presence of a normal shock at the bladepassage inlet caused by insufficient passage area. Such a normal shock caused the flow in the blading to be subsonic and resulted in a loss in total pressure.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, August 4, 1948.

Harold J. Schum, Aeronautical Research Scientist.

Jack W. Hoyt, Aeronautical Research Scientist.

Approved:

Robert O. Bullock, Aeronautical Research Scientist.

Oscar W. Schey, Aeronautical Research Scientist.

rl

REFERENCES

- 1. Hoyt, Jack W., and Kottas, Harry: Investigation of Turbine of Mark 25 Torpedo Power Plant with Five Nozzle Designs. NACA RM SE7103, Bur. Ord., 1947.
- 2. Hoyt, Jack W.: Investigation of Single-Stage Modified Turbine of Mark 25 Torpedo Power Plant. NACA RM SE7L15, Bur. Ord, 1948.
- 3. Hoyt, Jack W., and Kottas, Harry: Effect of Turbine Axial Nozzle-Wheel Clearance on Performance of Mark 25 Torpedo Power Plant. NACA RM SE8B04, Bur. Ord., 1948.
- 4. Johnson, R. H., Nial, W. R., and Witbeck, N. C.: Water Analogy to Two-Dimensional Air Flow. Rep. No. 55218, Res. Lab. and Gen. Eng. and Consulting Lab., Gen. Elec. Co. (Schenectady), Aug. 28, 1947. (U.S. Army Ord. Proj. Hermes (TUL-2000).)
- 5. Orlin, W. James, Lindner, Norman J., and Bitterly, Jack G.:
 Application of the Analogy between Water Flow with a Free Surface and Two-Dimensional Compressible Gas Flow. NACA Rep. 875, 1947.
- 6. Stodola, A.: Steam and Gas Turbines. Vol. I. McGraw-Hill Book Co., Inc., 1927, p. 200. (Reprinted, Peter Smith (New York), 1945.)

TABLE I - DATA FOR WINDAGE AND MECHANICAL

LOSSES OF SINGLE-STAGE TURBINE WITH

0.35-INCH UNSHROUDED BLADES

speed (rpm)	Horsepower to motor turbine	Air tem- perature in tur- bine case (°F)	Air pressure in turbine case (in. Hg abs.)
6 069	0.84	129	27.55
	.82	132	22.59
	.78	133	15.65
	.68	132	9.36
8092	1.41	162	27.71
	1.36	165	22.96
	1.28	162	16.01
	1.09	154	9.21
10,115	2.16	195	27.51
	2.07	200	22.96
	1.93	196	15.77
	1.70	186	9.34
12,138	3.20	236	27.31
	2.96	242	22.74
	2.72	234	15.73
	2.40	215	9.24
14,161	4.34	284	27.05
	4.06	297	22.78
	3.68	286	15.81
	3.26	253	9.25
16,184	5.49	353	27.14
	5.17	351	22.76
	4.69	328	15.66
	4.21	286	9.43
18,207	7.32	381	26.81
	6.90	388	22.44
	6.30	351	15.71
	5.52	320	9.44

TABLE II - EFFICIENCY DATA FOR SINGLE-STAGE TURBINE WITH 0.35-INCH UNSHROUDED BLADES

[Inlet temperature, 1000° F; inlet pressure, 95 lb/sq in. gage]

	Nozzie Fres- Bure ratio	Air Weight flow (lb/hr)	Fuel- air ratio	Horsepower available from isentropic	Turbine Bpeed (rpm)	Brake horse- power	Blade- jet speed ratio	Gas den- sity in turbine case	Brake effi- clency	Brake Rotor effi- effi- clency clency	Blade effi- ciency
A	80	957.4	0.0137	61.26	6,079	13.64	0.0985	0.0312	0.223	0.228	0.231
		957.4	.0137		10,135	19.87	.1643	.0321	.324	.339	346
	_	958.4	.0136		14,16	3 K 7.5	.2295	.0330	.387		
	·	957.4	.0137	61.26 61.26	16,174	24.73 24.87	.2621	.0333	*04*	1,33	£74.
4	15	952.5	0.0137	73.	6,099	14.95	0.0900	0.0183	0.203	0.207	0.209
		952.5	.0137	73.56	8,092	18.72	1195	.0186 0186	255	310	314
		952.5	.0137		12,128	24.42	178	.0187	.332	348	.352
		953.6	.0137		14,141	26.38	2088	.0187	.358	.379	38.
		952.5	.0137		16,184	28.11	.2389	.0190	382	10 1 0.	415
		952.5	.0137	73.56	18,237	29.09	.2692	.0192	.396	#S#·	.438
⋖	02	953.6	0.0137	78.73	6,079		0.0868	0.0146	0.191	0.195	0.197
		953.6	.0137	78.73	8,102		.1157	.0153	240	.248	.251
	·- ,	953.6	.0137	78.73	10,125	22.12	9441.	.0155	185.	. 293 293	963
		953.6	.0137	78.73	12,158		.1736	.0154	,315	.330	,333 (5)
		953.6	.0137	78.73	14,141		.2019	.0157	.339	.358	.362
	-	953.6	.0137	78.73	16,194		.2313	.0159	.358	.381	æ.
		953.6	.0137	78.73	18,227	29.25	. 2603	.0162	.372	.399	60 1 .
臼	8	4.176	0.0139		6,079	12.36	0.0985		0.199		
		971.4	.0139		8,072	15.43	.1308		248		An C
		7.076	.0139	62.13	10,095	18.20	1636	.0317	293.	.30 /	355
	_	†.+.'	ACTO.	_	01+62+	VC.04	+ /		200		_

Nozzle Pres- Air	Pres-	Air	Fuel-	Horsepower Turbine	Turbine	Brake	Blade-	Blade- Gas den-	Brake	Rotor	Blade
	Bure	Weight	air	available	speed	horse-	Jet	sity in	eff1-	eff1-	
	OT SET	(1b/hr)		tropic expansion	(mdz)	7 P C C C C C C C C C C C C C C C C C C	ratio	case (1b/cu ft)	crency	crency crency	crency
Ħ	ω	971.4 971.4 971.4	0.0139 .0139 .0139	62.17 62.17 62.17	14,161 16,194 18,197	28.8 8.8 8.0 8.0	0.2295 .2625 .2949	0.0325 .0325 .0326	0.351 .367 .371	0.376 .397 .405	0.388 .415 .433
PA	15	972.3 972.3 972.3 972.3 972.3	0.0139 0139 0139 0139 0139	\$3.55.55 \$1111111	6,059 8,041 10,145 12,148 14,201 16,184	3.2888.84 4.688.44.8	0.0894 .1187 .1497 .1793 .2096 .2389	0.0178 .0181 .0181 .0183 .0184 .0188	0.167 .809 .848 .878 .300 .317	0.171. 0.280. 280. 280. 380. 342.	0.173 .280 .264 .297 .350
E	ଷ	973.1 972.1 972.1 973.1 973.1 973.1	0.0139 .0139 .0139 .0139 .0139	80.28 80.28 80.28 80.37 80.37 80.37	- T	12.42 10.47 10.43 20.85 23.63 24.33	0.0865 1154 11731 2022 2311 2603	0.0149 .0148 .0147 .0155 .0150	0.155 193 259 281 281 333	0.158 .200 .204 .374 .317 .329	0.160 .203 .203 .203 .203 .303 .323 .339
д	ω	1131.8 1131.8 1131.8 1131.8 1131.8	0.0142 0.0410. 0.042 0.042 0.042 0.042 0.042	72.47 72.47 72.47 72.47 72.47 72.47	6,079 8,092 10,115 12,158 14,151 16,144	23.60 23.60 23.60 28.88 30.11	0.0985 .1311 .1639 .1970 .2293 .2616	0.0317 .0320 .0323 .0329 .0336 .0335	0.223 .279 .326 .368 .398 .416	0.227 .287 .338 .384 .419 .419 .454	0.229 .344 .391 .430 .457

TABLE II - EFFICIENCY DATA FOR SINGLE-STAGE TURBINE WITH 0.35-INCH UNSTROUDED BLADES - Concluded [Inlet temperature, 1000° F; inlet pressure, 95 lb/sq in. gage]

Blade effi- y ciency	7. 0.195 6. 249 1. 294 7. 338 7. 358 84 1. 401	28 0.185 23 276 3 276 3 337 3 337 6 376	0.220 2.280 6.333 6.333 6.334 7.209 7.209	90.206
effi- ciency	0.194 2.46 2.891 3.87 3.87 3.89	.232 .232 .273 .307 .333 .353	0.217 .275 .326 .366 .366 .397 .423	0.20 402.0
brake effi- clency	001.0 083. 083. 083. 083. 083. 083. 083.	0.180 .225 .263 .263 .317 .333 .333	0.212 265 312 347 373 398	0.200
stry in turbine case (1b/cu ft)	0.0189 .0190 .0193 .0198 .0198 .0194	0.0166 0.0169 0.0169 0.01710.	0.0315 .0320 .0322 .0324 .0327 .0329	0.0181
Blade- jet speed ratio	0.0893 .1194 .1493 .1792 .2092 .2392	0.0875 .1168 .1457 .1743 .2034 .2326	0.0985 .1308 .1646 .1961 .2289 .2621 .2621	0.0900
borse- power	16.62 24.50 24.50 29.42 31.08	26.66 24.34 27.20 29.31 30.85	13.50 19.89 19.89 23.78 23.78 25.10	15.38
Turbine Speed (rpm)	6,049 8,092 10,115 12,138 14,171 16,204 18,207	6,089 8,132 10,145 12,138 14,161 16,194 18,167	6,079 8,072 10,155 12,098 14,121 16,174	6,099
horsepower available from isentropic expansion	87.47 87.147 87.58 87.58 87.47 87.47	92.45 92.45 92.45 92.54 92.54	63.68 63.68 63.68 63.68 63.68	76.86
ruel- air ratio	2410. 2410. 2410. 2410. 2410.	2410.0 2410. 2410. 2410. 2410. 2410.	0,0140. 0,0140. 0,0140. 0,0140. 0,0140.	0,110.0
Air weight flow (lb/hr)	1131.8 1131.8 1131.8 1133.2 1131.8 1131.8	1131.4 1131.4 1131.4 1131.4 1132.6 1132.6	994.8 994.8 994.8 994.8 994.8	99.4.8
	15	19	ω ,	15
NOZZLE Fres- sure ratio	щ	Ħ	Н	Н

			ı	-		-	I						
Blade	clency		0.348	.381	409	.428	0.194	942.	.293	.328	.357	æ.	† 0†.
Rotor	clency	·	0.345	.376	401	.415	0.193	₹.	8	.326	354	.378	•39 [‡]
Brake	clency		þ	.356	.377	.388	0.189	.236	•279	щ.	.335	•356	.368
Blade- Gas den-	turbine	case (1b/cu ft)	0.0188	.0192	.0195	.0198	0.0151	.0151	.0152	.0153	.0156	.0159	.0161
Blade-		ratio		5080	.2395	.2691	0.0871	1511.	7441.	.1730	.2021	.2311	.2597
Brake	power		25.28	27.35	28.98	29.79	15.52	19.42	5 22.91	25.56	27.56	29.53	30.27
Turbine	(rpm)	-	12,138	191,41	16,224	18,227	8	8	10,135	Ĩ	5	8	126
Horsepower Turbine Brake	from 1sen-	tropic expansion			76.86		82,17	82.17	82,17	82.17	82.17	82,17	82.17
Fuel-	ratio		0.0140	.0140	.0140	0410.	0,0140	0170	0170	.0140	.0140	0170.	.0140
Air weight	flow	(1b/hr)	994.1	8.466	8.466	8.466	8.466		8.466				8.466
	ratio		15				80						
Nozzle			H				Н						

TABLE III - EFFICIENCY DATA FOR SINGLE-STAGE TURBINE WITH 0.35-INCH UNSHROUDED BLADES AND SHROUD CAP

[Inlet temperature, 1000° F; inlet pressure, 95 lb/sq in. gage]

Nozzle Pres sure rati	Pres- sure ratio	Air weight flow (1b/hr)	Fuel- air ratio	Horsepower available from isen- tropic	Turbine speed (rpm)	Brake horse- power	Blade- jet speed ratio	Gas den- sity in turbine case	Brake eff1- clency	Rotor effi- ciency	Blade effi- ciency
A	ω	952.5 953.2 953.2 953.2 954.0 954.0	0.0138 .0138 .0138 .0138 .0138		6,089 8,072 10,135 12,189 14,191 16,174 18,207	13.83 17.16 20.21 22.21 24.37 26.16	0.0987 .1308 .1643 .1976 .2300	0.0328 0.0334 0.0345 0.0343 0.0341 0.0339	0.227 281 332 332 371 399 419	0.232 .291 .346 .391 .424 .424 .463	0.235 297. 354. 399. 438. 438. 493.
4	15	954.0 955.0 955.0 955.0 955.0 955.0	0.0138 .0138 .0138 .0138 .0138	73.63 73.70 73.70 73.70 73.70	6,069 8,072 10,115 12,178 14,151 16,184	15.06 18.99 25.50 27.51 30.27	0.0896 .1191 .1493 .1798 .2089 .2389	0.0181 1810. 1810. 1910. 2010. 2010.	0.205. 258. 305. 345. 373. 396.	0.209 .266 .362 .362 .394 .439	0.211 .269 .322 .365 .399 .429
A	50	953.2 953.2 952.5 954.0 954.0 954.0	0.0138 .0138 .0138 .0138 .0138	78.68 78.63 78.75 78.75 78.75 78.75	6,089 8,102 10,115 12,087 14,110 16,184 18,207	15.17 19.22 25.53 27.85 29.65 30.90	0.0870 .1157 .1445 .1726 .2015 .2311	0.0148 .0151 .0155 .0157 .0159 .0160	0.193 244 286 324 354 377	0.197 .252 .298 .339 .373 .400	0.198 .255 .301 .342 .377 .406
뜀	8	973.5 973.5 973.5	0.0139 .0139 .0139	62.27 62.27 62.27	6,089 8,092 10,095	12.58 15.68 18.43	0.0987 .1311 .1636	0.0323 .0325 .0337	0°.202 .252 .296	0.207 .262 .310	0.210 .267 ,318

	7.487	8 7 7 8 4 5 7	% o & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	りのみけるなる
Blade effi- clency	0.357 .391 .418 .437	0.178 .227 .267 .303 .331 .355	0.166 .210 .249 .281 .305 .326	0.235 .300 .354 .397 .432 .432 .461
Rotor eff1- ciency	0.349 .379 .399 .408	0.176 .284 .289 .385 .387 .374 .354	0,164 207 246 279 301 320 330	0.232 .396 .390 .390 .421 .458
Brake eff1- ciency	0.330 .354 .370 .374	0.172 215 251 251 283 305 323	0.160 .200 .234 .264 .264 .283	0.228 .288 .335 .400 .420
Gas den- sity in turbine case (lb/cu ft)	0.0331 .0329 .0330 .0329	0.0188 0186 0186 0187 0190 0190	0.0152 .0153 .0152 .0153 .0156	0.0315 .0321 .0327 .0328 .0330
	0.1972 .2295 .2623 .2948	0.0895 1198 1198 11792 2088 2396 2885	0.0871 .1156 .1445 .2024 .2316	0.0987 .1312 .1645 .1970 .2296 .2625
Brake horse- power	20.53 22.07 23.04 23.31	12.96 16.17 18.86 21.24 22.93 24.45	12.86 16.00 18.77 21.13 22.65 23.83 24.45	16.66 20.99 24.47 27.26 29.21 30.63
Turbine speed (rpm)	12,168 14,161 16,184 18,187	6,059 8,112 10,095 12,138 14,141 16,224 18,187	6,099 8,092 10,115 12,189 14,171 16,214 18,187	6,089 8,092 10,145 12,148 14,161 16,194
Horsepower available from isen- tropic expansion	62.27 62.27 62.27 62.27	75.16 75.07 75.07 75.07 75.07 75.07	80.15 80.15 80.08 80.15 80.15 80.15	73,02 73.02 73.02 73.02 73.02 73.02
Fuel- air ratio	0.0139 .0139 .0139	0.0139 .0139 .0139 .0139 .0139	0.0139 .0139 .0139 .0139 .0139	0.0141 .0141 .0141 .0141 .01410.
Air weight flow (lb/hr)	973.5 973.5 973.5 973.5	972.8 971.8 971.8 971.8 971.8	971.0 970.1 970.1 971.0 971.0 971.0	1140.6 1140.6 1140.6 1140.6 1140.6
Pres- Air sure wel ratio flo	8	15	0 <u>0</u>	8
Nozzle	色	PA .	A	н

TABLE III - EFFICIENCY DATA FOR SINGLE-STACE TURBINE WITH 0.35-INCH UNSHROUDED BLADES AND SHROUD CAP - Concluded

[Inlet temperature, 1000° F; inlet pressure, 95 lb/sq in. gage]

				
Blade eff1- ciency	0.204 .259 .306 .347 .379 .409	0.195 .248 .333 .364 .393	0 223 228 396 428 484 484 184	0.212 .273 .322
Rotor effi- ciency	0.202 .257 .302 .343 .374 .417	461.0 949. 330. 386. 388. 988.	0.230 .292 .347 .388 .444 .452	0.211 .270
Brake eff1- ciency	0.199 .250 .292 .330 .357 .380	0.190 .239 .239 .317 .343 .367	0 283. 33.3 3.69 3.69 5.14. 7.14.	0.207 .262 .307
Gas den- sity in turbine case (lb/cu ft)	0.0187 .0192 .0194 .0202 .0205 .0208	0.0175 .0178 .0183 .0184 .0186	0.0318 .0321 .0332 .0333 .0332 .0332	0.0179 .0181 .0184
Blade- jet speed ratio	0.0902 11.941 1791 1791 2092 2390 2390	0.0877 .1162 .1455 .1745 .2339	0.0984 1.308 1.308 1.401 1.967 2.298 2.298 2.298	0.0902 1197 1497
Brake horse- power	17.40 21.87 28.59 31.29 33.30 34.44	25.28 26.28 29.49 33.24 33.48 35.48	44.38 23.13.33 24.74.78 88.36.88	15.95 20.21 23.70
Turbine speed (rpm)	6,109 8,092 10,034 12,138 14,171 16,194	6,109 8,092 10,135 12,158 14,171 16,224 18,187	6,069 8,072 10,145 12,138 14,181 16,214 18,167	6,109 8,112 10,145
Horsepower available from isen- tropic expansion	49.78 40.78 40.78 40.78 40.78 40.78 87.78 87.78	92.94 92.94 93.08 93.00 93.00	68.69.99 68.59 68.59 68.59 68.59	77.23 77.23 77.23
Fuel- air ratio	2410.0 2410. 2410. 2410. 2410. 2410.	0.0142 0.0142 0.0141 0.0141 0.0141	0.0140 0.0140 0.0040 0.0040 0.0040 0.0040	0,0140.0410.0
Air veight flow (lb/hr)	1134.0 1134.0 1134.0 1135.1 1134.0 1134.0	1137.5 1137.5 1137.5 1139.3 1138.5 1138.5	999.6 999.6 999.6 999.6 999.6	999.6 999.6 999.6
Pres- sure ratio	15	19	æ	15
Nozzle Pres- Air sure wei ratio flor (lb,	н	н	н	н

Nozzle Pres-	Pres-		Fuel-	Horsepower	} ·	Brake	Blade-	Сав den-	Brake	Rotor	Blade
	sure		air	available	speed		jet	sity in	effi-	eff1-	eff1-
	ratio	flow	ratio	from 1sen-	(rpm)	power	speed	turbine	ciency	ciency	clency
		(1b/hr)		tropic			ratio	case			
		.		expansion				(1p/cn ft)			,
Н	15	9.666	0,0140			26.72	0.1794	0.0188	946.0	0.362	0.365
		9.666	.0140		14,161	28.98	.2090	.0189	.375	395	004.
		9.666	.0140			30.59	.2387	.0192	.396	419	428
		9.666	.0140	77.23		31.43	.2681	.0195	704°	434	. ተተ
				1							-
H	ର	1000.5	0,0140	•	6,089	16,91	0.0869	0.0151	0.195	0.199	0.800
		1000.5	0170.	•	_	20.48	.1158	.0154	842.	.255	.258
		1000.5	0110		_	70° 42	4447.	.0155	.29	305°	.305
		1000.5	0170	•	_	27.24	.1733	.0157	330	∄	.347
		1000.5	.0140	\$5.5¢	14,171	29.83	. 2023	.0158	.362	86.	æ. •
		1000.5	.0140	•	_	31.78	.2318	.0160	.385	107	£14.
	- ,	9366	.0140	•	_	32.95	.2595	.0161	•399	.425	.435
											1

TABLE IV - EFFICIENCY DATA FOR SINGLE-STAGE TURBINE WITH 0.35-INCH SHROUDED BLADES

[Inlet temperature, 1000° F; inlet pressure, 95 lb/sq in. gage]

49		1.2.12.52	1	
Blade effi- ciency	0.267 341 1401 524 447 447	0.22.0 .290.34.1390 .390.124.156.1	0.207 265. 316. 362. 398. 398. 431.	0.253
Rotor eff1- clency	0.265 338 336 448 475 503	0.223 288 338 338 387 416 416	0.206 28. 314. 395. 395. 417.	0.251
Brake effi- clency	0.260 .328 .381 .428 .474 .474	0.218 .279 .326 .371 .396 .434	0 2020 2745. 3754. 054.	0.246 .309 .368
Gas den- sity in turbine case (1b/cu ft)	0.0323 .0333 .0346 .0340 .0343 .0338	0.0185 0186 0182 0182 0183 0181 0191	0.0149 0.010.0 0.0148 0.0153 0.0153	0.0326
	0.0987 .1320 .1640 .1976 .2297 .2628	0.0893 .1202 .1496 .1792 .2091 .2395	0.0872 .1156 .1440 .1735 .2027 .2313	0.0982 .1305 .1641
Brake horse- power	15.87 19.99 23.26 26.11 27.50 28.90	16.08 23.98 27.32 29.16 31.22 32.31	23.96 23.96 27.34 23.36 33.30	15.39 19.34 22.99
Turbine speed (rpm)	6,089 8,143 10,115 12,189 14,171 16,214 18,187	6,049 8,143 10,135 12,138 14,161 16,224 18,227	6,109 8,092 10,085 12,148 14,191 16,194 18,207	6,059 8,052 10,125
Horsepover available from isen- tropic expansion	61.02 61.01 61.02 61.02 61.02 61.02	73.66 73.66 73.66 73.66 73.66	19.21 19.24 19.24 19.24 19.16 19.16	62.56 62.54 62.56
Fuel- air ratio	0.0138 .0138 .0138 .0138 .0138	0.0138 .0138 .0138 .0138 .0138	0.0137 .0137 .0137 .0137 .0137	0.0139 .0139 .0139
Air weight flow (lb/hr)	953.6 953.3 953.3 953.6 953.6 953.6	953.6 953.6 953.6 953.6 953.6 953.6	959.3 959.1 959.1 959.1 959.1	977.4 977.1 977.4
	ω	15	&	ω
Nozzle Pres- sure ratio	V	¥	4	Þ

H	Nozzle Pres- Air	Air vetaht	Fuel-	Horsepower	Turbine	Brake	Blade-	Gas den-	Brake	Rotor	Blade
	ratio	flow (1b/hr)	ratio	from 1sen- tropic	(Lpm)	power	speed ratio	turbine case	clency	clency	clency
FLI	8	9777.4 9777.4 9777.4 9777.4	0.0139 .0139 .0139		12,138 14,161 16,194 18,167	26.04 27.67 29.51 30.17	0.1967 .2295 .2625 .2944		0.416 6.414. 6.74. 6.74.	0.436 .501 .501 .516	0.442 .478 .519 .543
	15	977.4 978.3 978.3 978.3 978.3 978.3	0.0139 .0139 .0139 .0139 .0139 .0139	75.57 75.57 75.57 75.57 75.57 75.57	6,039 8,092 10,135 12,138 14,212 16,154	15.84 20.32 24.18 27.48 29.64 32.66	0.0892 1195 1496 1792 2098 2098 2385	0.0178 .0178 .0179 .0181 .0186	012.0 269. 320. 438. 438. 914. 914.	412.0 .332 .380 .380 .380 .441	0.212 .279 .335 .382 .382 .414 .154
	80	978.3 978.3 978.3 978.3 978.3 978.3	0.0139 .0139 .0139 .0139 .0139	8888888	6,109 8,092 10,115 12,148 14,161 16,204 18,197	15.94 24.13 27.58 33.05 33.46	0.0872 11.56 11.571. 1735 2002 4123.	0.0143 .0143 .0144 .0144 .0150	0.197 .250 .341 .372 .399	0.201 .258 .310 .356 .354 .391	0.202 .259 .312 .358 .393 .427
	ω	1131.6 1132.7 1131.6 1135.1 1135.1 1134.0	0.0143 0.0143 0.103 0.143 0.143 0.143	72.47 72.53 72.47 72.68 72.62 72.62	6,079 8,112 10,125 12,189 14,161 16,184 18,207	18.91 23.82 27.59 30.76 32.76 33.86 34.26	0.0985 .1315 .1641 .1976 .2295 .2623	0.0320 .0322 .0320 .0332 .0327 .0328	0.261 .328 .381 .54. 154.	0.265 .337 .393 .440 .472 .491	0.267 .339 .397 .446 .481 .507

TABLE IV - EFFICIENCY DATA FOR SINGLE-STAGE TURBINE WITH 0.35-INCH SHROUDED BLADES - Concluded

Made eff1- ciency	0.218 .279 .332 .378 .378 .114	0.205 .255 .311 .357 .395 .448	07°.0 24°. 24°. 754°. 49°. 49°.	0.225 0.299 1.446.
Rotor eff1- clency	0.217 .277 .330 .376 .376 .413 .439	0.203 .258 .359 .355 .351 .417 .438	0.268 346. 396. 396. 444. 787. 520.	0.223 2883 .342
gage] Brake eff1- clency	0.213 270 319 362 396 396 1419 419	0.200 .251 .299 .342 .375 .375	0.263 .331 .381 .429 .461 .461	0.219
å l 📻	0.0186 .0191 .0191 .0192 .0197 .0196	0.0173 .0171 .0170 .0170 .4710.	0.0336 .0336 .0331 .0327 .0332 .0330	0.0186 .0191 .0189
Blade- jet speed ratio	0.0896 .1199 .1492 .1793 .2092 .2389	0.0873 .1155 .1456 .1743 .2032 .2317	0.0990 1315 1635 1972 28 98 2623 2956	0.0896 .1192 .1493
Brake horse-	18.70 23.61 31.70 34.69 36.69 38.02	18.53 23.26 27.72 31.64 34.74 36.79 38.47	16.65 20.90 24.22 27.27 29.30 30.34 30.89	16.74 21.36 25.16
Turbine Speed (rpm)	6,069 8,122 10,105 12,148 14,171 16,184 18,197	6,079 8,041 10,135 12,138 14,151 16,133	6,109 8,112 10,085 112,168 14,181 16,184 18,237	6,069 8,072 10,115
Horsepower available from 1sen- tropic expension	87.76 87.49 87.49 87.61 87.61 87.61	%.68 88.68 88.68 88.68 88.68 88.68	63.24 63.24 63.52 63.52 63.52 63.52	76.33 76.33 76.33
ratio	0.0143 0.0143 0.0143 0.0143 0.0143 0.0143	0.0143 .0143 .0143 .0143 .0143	0.0139 .0139 .0139 .0139 .0139	0.0139 .0139 .0139
Air Weight flow (lb/hr)	1135.4 1132.0 1132.0 1133.4 1133.4 1133.4	1133.4 1133.4 1133.4 1133.4 1133.4 1133.4	988.1 992.5 992.5 992.5 992.5	988.1 988.1 988.1
Nozzle Pres- sure ratio	£1	61	ω	15
Nozzle	¤	#	н	н

			2												_
Blade eff1-	ciency		10			.489		0.210	.270	.323	.368	707	.431	.450	
Rotor eff1-	ciency ciency		0,389	7,426	459	774.		900.0	88.	320	366	.399	.425	144.	
Brake eff1-	clency		0.373	904.	.435	644.		0.205	.261	309	.351	381	.403	415	
Gas den- sity in	turbine	(lb/cm ft)	0.0189	.0190	.0191	.0194		0.0154	.0158	.0158	.0157	.0156	.0158	.0161	
Blade- jet	speed		0.1798	.2088	.2397	.2688		0.0867	.1157	.1450	.1738	.2025	2311	.2605	
Brake horse-	power		28.49	30.99	33°55	34.26	,	16.8	21.38	25,33	28.75	31.21	33.01	34.01	
Turbine speed	(mdr)		12,178	14,141	16,235	18,207	,	690,9	8,102	10,155	12,168	14,181	16,184	18,237	
Horsepower Turbine Brake Blade- Gas den- available speed horse- jet sity in	from 1sen-	tropic expansion	76.33	76.33	76.33	76.33			-			81.94	_	_	
Fuel- air	ratio		0.0139	.0139	.0139	.0139		0.0139	.0139	.0139	.0139	.0139	.0139	.0139	
Air wei <i>g</i> ht	flow	(1b/hr)	988.1	988.1	988.1	988.1		992.2	992.2	992.2	992.2	992.2	992.2	365.2	
Pres-	ratio		15					ଧ							
Nozzle Pres- Air sure weig			I					Н							

1

TABLE V - EFFICIENCY DATA FOR SINGLE-STACE TURBINE WITH STANDARD SHROUDED 0.40-INCH BLADES AND NOZZLE I [Inlet temperature, 1000° F; inlet pressure, 95 lb/sq in. gage]

i			
Blade eff- ciency	0.270 345. 214. 274. 282.	0.233 .361 .413 .455 .455	0.218 .278 .336 .386 .428 .465
Rotor effi- ciency	0.268 342.342 4.654. 509. 146. 558	0.231 .357 .410 .450 .450 .510	0.217 .276 .334 .383 .425 .459
Brake eff1- ciency	0.263 .333 .393 .447 .513	0.227 .290 .346 .394 .431 .460 .483	0.213 269 .329 .369 .407 .437
Gas den- sity in turbine case (lb/cu ft)	0.0320 .0329 .0334 .0335 .0335 .0334	0.0179 0.0177 0.178 0.177 0.0179 0.0180	0.0158 .0152 .0149 .0150 .0148 .0148
Blade- jet speed ratio	0.0977 1315 1635 1955 2622 2622	0.0897 11.96 1493 1796 2093 2389 2684	0.0871 .1152 .1448 .1730 .2022 .2318
Brake horse- power	16.95 21.44 25.32 28.81 31.31 33.10	22.56 26.87 33.46 37.45	17.63 22.21 26.71 30.55 33.74 36.27
Turbine speed (rpm)	6,029 8,112 10,085 12,158 14,161 16,174	6,079 8,102 10,115 12,168 14,181 16,184 18,187	6,099 8,072 10,145 12,118 14,161 16,235
Horsepower available from isentropic expansion	\$	77.69 77.69 77.69 77.69 77.69	82.73 82.73 82.81 82.96 82.96
Fuel- air ratio	0410.0 0410. 0410. 0410. 0410. 0410.	0410. 0410. 0410. 0410. 0410.	0410.0 0410. 0410. 0410. 0410.
Air weight flow (lb/hr)	1007.5 1007.5 1007.5 1007.5 1007.5	1005.5 1005.5 1005.5 1005.5 1005.5 1005.5	1001.5 1002.5 1002.5 1002.5 1004.3 1004.3
Pressure ratio	ထ	15	50

TABLE VI - EFFICIENCY DATA FOR SINGLE-STAGE TURBINE WITH SHROUDED 0.45-INCH BLADES

[Inlet temperature, 1000° F; inlet pressure, 95 lb/sq in. gage]

Nozzle Pres- gure ratio	∢	Æ	₹ .	M
	ω	<u>2</u> 1	ର	ω
Air Weight flow (lb/hr)	958.1 957.2 958.1 958.1 958.1 957.2	957.2 956.4 958.1 957.2 957.2 957.2	957.2 957.2 956.4 956.4 956.4 956.4	971.9 972.7 973.6
ruel- air ratio	0.0137 .0137 .0137 .0137 .0137	0.0137 .0137 .0137 .0137 .0137	0.0157 .0137 .0137 .0137 .0137	0.0138 .0138 .0138
Horsepower available from isen- tropic expansion		73.92 73.98 73.99 73.92 73.92 73.92	79.03 78.96 78.96 78.96 78.96	62.24 62.24 62.30
Turbine speed (rpm)	6,089 8,112 10,145 12,098 14,212 16,133	6,069 8,072 10,135 12,178 14,171 16,184 18,167	6,069 8,072 10,075 12,199 14,161 16,214 18,207	6,109 8,122 10,145
horse- power	15.19 19.30 22.75 23.75 29.88 30.61	16.60 21.14 25.25 28.81 31.57 34.02 35.68	17.00 21.73 25.89 29.54 32.71 35.37 37.44	14.98 18.98 22.37
Made- jet speed ratio	0.0987 .1315 .1644 .1961 .2304 .2615	0.0896 11.92 11.96 17.98 2092 23.89 2682	0.0867 .1152 .11438 .1742 .2022 .2315	0.0990 .1317 .1645
das den- sity in turbine case (lb/ou ft)	0.0330 .0314 .0352 .0350 .0356 .0350	0.0172 .0173 .0183 .0185 .0185 .0185	0.0133 0.0135 0.0135 0.0139 0.0139	6,6330 8480. 8480.
brake effi- ciency	848. 3115. 3714. 164. 164.	0.225 286. 390. 390. 724. 724. 760. 884.	0.215 275 .328 .328 .374 .414	0.241 .305 .359
Rotor effi- ciency	0.253 385 388 146 147 717 753	0.22. 42. 42. 43. 63. 63. 63. 63. 63. 63. 63. 63. 63. 6	0.219 .283 .339 .390 .433 .471	0.246 .315 .374
offi- ciency	0.25. 328. 44. 567. 757.	0.23 293. 204. 204. 203. 203.	0.220 284. 342. 392. 392. 1,36.	0.248 .318 .379

Flow ratio from separation from from separation from from	Nozzle Pres- Air	Pres-	Air	Fuel-	Horsepower Turbine	Turbine		Blade-	Gas den-	Brake	Rotor	Blade
8 972.7 0.0138 62.24 12,178 25.24 0.1975 971.9 .0138 62.19 14,121 27.31 .2289 971.9 .0138 62.19 16,144 29.15 .22617 971.9 .0138 62.19 16,144 29.15 .2950 .0139 75.08 10,155 24.16 .1499 971.9 .0139 75.08 12,118 27.55 .1789 971.9 .0139 75.08 12,118 27.55 .1789 971.9 .0139 75.08 14,161 30.57 .2384 971.9 .0139 75.08 14,161 30.57 .2384 971.9 .0139 75.08 16,154 32.90 .2592 971.0 .0139 80.18 6,120 16.23 0.0874 970.1 .0139 80.18 12,189 28.36 .1740 971.0 .0139 80.18 12,189 28.36 .1740 971.0 .0139 80.18 12,189 28.36 .1740 971.0 .0139 80.18 12,189 28.36 .1317 1128.6 0.0142 72.27 8,122 24.60 .1317 1128.6 .0143 72.27 8,123 36.10 35.88 .1633 1128.6 .0143 72.27 12,138 37.92 .2596 1127.6 .0143 72.20 14,161 35.88 .2296 1127.6 .0143 72.20 16,184 37.92 .2963 1127.6 .0143 72.20 16,184 37.92 .2963 1127.6 .0143 72.20 16,184 37.92 .2948 1127.6 .0143 72.20 16,184 37.92 .2948 1127.6 .0143 72.20 16,184 37.92 .2948 1127.6 .0143 72.20 16,184 37.92 .2948 1127.6 .0143 72.20 16,184 37.92 .2948 1127.6 .0143 72.20 16,184 37.92 .2948 .0143 72.20 16,184 37.92 .2948 .0143 72.20 16,184 37.92 .2948 .0143 72.20 16,184 37.92 .2948 .0143 72.20 16,184 37.92 .2948 .0143 72.20 16,184 37.92 .2948 .0143 72.20 16,184 37.92 .2948 .0143 72.20 16,184 37.92 .2948 .0143 72.20 16,184 37.92 .2948 .0143 72.20 16,184 37.92 .2948 .0143 72.20 16,184 37.92 .2948 .0143 72.20 16,184 37.92 .2948 .0143 72.20 16,184 37.92 .2948 .0143 72.20 16,184 37.92 .2948 .0143 72.20 16,184 37.92 .2948 .0143 72.20 16,184 37.92 .2948 .0143 72.20 .0143 72.20 16,184 37.92 .2948 .0143 72.20 .0143 72.20	4	ratio	flow (lb/hr)	ratio	available from 18en- tropic expansion	(md.)	power	jet speed ratio	sity in turbine case (1b/cu ft)	olency	olency clency	clency
20 972.7 0.0139 75.14 6,109 15.93 0.0902 10.159 0.139 75.08 10,155 24.16 14.99 1.202 971.9 0.0139 75.08 12,118 20.34 1.499 1.199 0.0139 75.08 12,118 27.55 1.1789 1.199 0.0139 75.08 16,154 32.50 2.384 971.9 0.0139 80.18 6,120 16.23 0.0874 971.0 0.0139 80.18 6,120 16.23 0.0874 1.197 0.0139 80.18 10,145 24.74 1.1448 971.0 0.0139 80.18 12,189 28.36 1.157 971.0 0.0139 80.18 12,189 28.36 1.157 971.0 0.0139 80.18 16,164 34.04 23.08 971.0 0.0139 80.18 16,164 34.04 23.08 971.0 0.0139 80.18 16,164 34.04 23.08 129.6 0.0142 72.27 8,122 24.60 13.17 129.6 0.0143 72.27 8,128 32.92 1.938 129.6 1128.6 0.0143 72.27 12,138 32.92 1.938 127.0 0.139 80.18 18,197 36.10 2.296 1127.6 0.0143 72.20 14,161 35.88 22.26 1127.6 0.0143 72.20 14,161 35.88 22.20 1127.6 0.0143 72.20 14,161 35.88 22.20 1127.6 0.0143 72.20 14,161 35.83 32.92 1127.6 0.0143 72.20 14,161 35.83 32.92 1127.6 0.0143 72.20 14,161 35.83 32.92 1127.6 0.0143 72.20 14,161 35.83 32.92	闰	ထ		0.0138 .0138 .0138 .0138	62.24 62.19 62.19 62.19		25.24 27.31 29.15 30.28	0.1975 .2289 .2617 .2950	0.0349 .0343 .0339	0.406 439 469 469	0.425 .463 .498 .521	0.433 .477 .519 .552
20 971.0 0.0139 80.18 6,120 16.23 0.0874 970.1 0139 80.11 8,102 20.61 11.57 971.0 0.0139 80.18 10,145 24.74 1448 971.0 0.0139 80.18 12,189 28.36 1.740 971.0 0.0139 80.18 14,191 31.47 2026 971.0 0.0139 80.18 16,164 34.04 2308 971.0 0.0139 80.18 16,164 34.04 2598 1128.6 0.0142 72.33 6,089 19.36 0.0987 1128.6 0.0143 72.27 8,122 28.98 1128.6 0.0143 72.27 8,122 38.92 19.38 122.95 1127.6 0.0143 72.20 14,161 35.88 2295 1127.6 0.0143 72.20 16,184 37.92 2623 1127.6 0.0143 72.20 16,184 37.92 2623	떠	15	972.7 971.9 971.9 971.9 971.9	0.0139 .0139 .0139 .0139 .0139			15.93 20.34 24.16 27.55 30.57 32.90 34.98	0.0902 .1202 .1499 .1789 .2090 .2384 .2692	0.0170 .0172 .0179 .0179 .0179	0.212 2.22. 3.322 3.67 4.07 4.38	0.216 .334 .383 .462 .462	0.218 .281 .337 .386 .432 .471
8 1129.6 0.0142 72.33 6,089 19.36 0.0987 1128.6 0.0143 72.27 8,122 24.60 .1317 1129.6 0.0143 72.27 12,138 132.92 .1968 1127.6 .0143 72.20 14,161 157.88 .2296 1127.6 .0143 72.20 16,184 17.92 .2623 1127.6 .0143 72.20 18,187 139.13 .2948	P	8	971.0 970.1 971.0 971.0 971.0	0.0139 .0139 .0139 .0139 .0139				0.0874 1157 1448 1740 2026 2308 2598	0.0138 .0137 .0140 .0141 .0139 .0138	0.202 .309 .304 .393 .455	0.207 .265 .320 .369 .411 .411	0.208 .267 .322 .371 .414 .453
	щ		1129.6 1128.6 1129.6 1128.6 1127.6 1127.6	0.0142 .0143 .0143 .0143 .0143	72.33 72.27 72.27 72.20 72.20			0.0987 .1317 .1633 .1968 .2296 .2623 .2948	0.0328 .0347 .0342 .0333 .0334 .0328	0.268 340 .340 .456 .457 .527	0.272 349 413 412 518 550	0.274 .352 .418 .479 .568 .568

TABLE VI - EFFICIENCY DATA FOR SINGLE-STAGE TURBINE WITH SHROUDED 0.45-INCH BLADES - Concluded

gage
in.
,sq
95 lb/sq :
95
pressure,
inlet
Œ
1000
temperature,
[Inlet

· ·	•			
Blade eff1- clency	0.240 .307 .366 .418 .418 .504	0.229 .291 .350 .444 .485	0.266 .343 .410 .410 .467 .553 .583	0.236 .305 .368 .419
Stile effi-	0.238 .306 .363 .415 .457 .496	0.228 .289 .348 .401 .441 .479	0.263 .341 .404 .459 .459 .532	0.235 .303 .365 .416
Brake effi- clency	0.235 .299 .353 .401 .401 .475	0.825 .283 .338 .387 .425 .460	0.259 .331 .390 .390 .474 .704 .518	0.231 .295 .353 .401
Gas den- sity in turbine case (lb/cu ft)	0.0173 .0172 .0177 .0179 .0179	0.0148 .0147 .0150 .0152 .0152 .0147	0.0325 .0336 .0341 .0340 .0340	0.0168 .0171 .0183 .0182
Blade- jet speed ratio	0.0896 11.94 1495 1789 2393 2693	0.0877 .1156 .1452 .1749 .2027 .2319	0.0984 .1320 .1641 .1970 .2288 .2626	0.0896 1911. 1941. 1789
Brake horse- power	26.02 30.76 34.94 41.46 43.65	20.69 26.05 31.16 35.67 35.67 42.37 44.88	16.48 21.09 24.86 28.05 32.09 32.09	17.74 22.72 27.14 30.83
Turbine speed (rpm)	6,069 8,092 10,125 12,118 14,131 16,214 18,247	6,109 8,052 10,115 12,178 14,121 16,154	6,069 8,143 10,125 12,158 14,121 16,204 18,227	6,069 8,072 10,105 12,118
Horsepower available from isentropic tropic expansion	87.16 87.16 87.16 87.16 87.16 87.23	92.07 92.15 92.15 92.07 92.07 92.15	63.75 63.75 63.69 63.69 63.69 63.69	76.88 76.96 76.88 76.96
Fuel- air ratio	0.0143	0.0143 0.0143 0.043 0.043 0.043	0.0141 .01410. 1410. 1410. 1410. 2410.	0.0142 .0141 .0142
Air Weight flow (lb/hr)	1127.6 1127.6 1127.6 1127.6 1127.6 1127.6	1126.6 1127.6 1127.6 1126.6 1126.6 1127.6	995.8 995.8 995.8 994.8 994.8	994.8 995.8 994.8 995.8
Pres- sure ratio	15	19	ω	15
Nozzle	щ	#	н	н

		۰	:									
Blade effi-		0.469	510	.539	0.222	.29	.349	101	844.	884.	.522	
Rotor Beffi-	-	1910	.501	.525	0,221	8	.347	.398	·手	7 85	515	
Brake effi- ciency		711.0	.478	86tr.	0.217	282	.336	±8€.	124.	94.	.487	
Gas den- sity in turbine	case (lb/cu ft)	0.0185	.0187	.0186	0.0137	.0138	.0138	9410.	.0143	7410.	9410.	
Blade- jet speed	ratio	0.2092	.2387	.2680	0.0865	1 911.	7441.	.1729	.2022	.2314	.2593	
Brake horse- pover		34.18	36.78	38.29	17.95	23.32	27.72	31.68	35.19	37.91	40.15	
Turbine speed (rpm)		14,171	16,174	18,156	6,059	8,153	10,135	12,108	14,161	16,204	18,156	
Horsepover available from isen-	tropic expansion	96.91	96•92	96.97	82.	82	82	82.56	82	82.	82	
Fuel- air ratio		0,0141	.0141	.0141	0,0141	.0141	.0141	.0141	.0141	.0141	1410.	
Air Weight flow	(lb/hr)	995.8	995.8	995.8	1000.3	1000.3	4.666	4.666	998.5	998.5	998.5	
Pres- sure ratio	-	15			8							
Nozzle	-	I			H							

.

TABLE VII - EFFICIENCY DATA FOR SINGLE-STAGE TURBINE WITH 200-INLET BLADES [Inlet temperature, 1000° F; inlet pressure, 95 lb/sq in. gage]

	10 -1 m m m 1010	110 - 10 - 10 - 10 - 10 - 10 - 10 - 10		
Elade effi- ciency	0.265 341. 463. 503. 545.	0 20 20 20 20 20 20 20 20 20 20 20 20 20	0.216 289 336 338 384 488 468 163	0.254 .325 .387 .387
Rotor effi- ciency	0.263 338 337 450 490 547	0.229 .293 .350 .414 .707	0.215 .278 .333 .382 .423 .462	0.251 .322 .381 .437
Brake eff1- ciency	0.258 .328 .328 .431 .455 .465 .510	0.225 285 338 338 385 422 473	0.211 .270 .322 .367 .404 .439	0,246 .312 .366 .366
Gas den- sity in turbine case (lb/cu ft)	0.0349 0.0349 0.0345 0.0344 0.0335 0.0331	0.0168 2710. 2710. 2710. 1710.	0.0135 .0137 .0143 .0142 .0142 .0137	0.0329 .0344 .0345 .0341
Blade- jet speed ratio	0.0988 .1321 .1644 .1967 .2295 .2295	0.0899 .1189 .1496 .1792 .2091 .2382	0.0871 1158 11445 1739 2015 2015 2600	0.0984 .1320 .1639 .1970
Brake horse- power	15,68 19,94 23,20 26,16 28,23 30,01 30,99	16.49 20.86 28.78 28.24 30.94 33.02	16.50 23.17 31.62 31.66 34.35	15.24 19.29 22.67 25.84
Turbine speed (rpm)	6,099 8,153 10,145 12,138 14,161 16,204 18,187	6,089 8,052 10,135 12,138 14,161 16,133	6,099 8,112 10,115 12,178 14,110 16,184 18,207	6,069 8,143 10,115 12,158
Horsepover available from isentropic expansion		73.31 73.31 73.31 73.25 73.25	78.38 78.32 78.38 78.38 78.32 78.32	61.89 61.89 61.89 61.89
Fuel- air ratio	0.0138 0.0138 0.0138 0.0138 0.0138	0.0138 0.0138 0.0138 0.0138 0.0138	0.0138 .0138 .0138 .0138 .0138 .0138	0.0138 .0138 .0138 .0138
Air veight flow (lb/hr)	950.1 950.1 949.2 949.2 949.2	949 949 949 949 949 948 948 948 948 948	2.646 4.849 6.049 7.849 7.849 7.849 7.849	967.1 967.1 967.1 967.1
Nozzle Pres- Air sure vei ratio flo (lb		51	02	8
Nozzle	V	⋖	⋖	Ħ

effi- y ciency	3 0.491 9 .539 2 .573	286 286 286 1 344 1 394 1 394 5 439 5 472 8 515	269 269 321 321 370 370 413 644	0.269 246.4 404.665.539 553.9
effi- clency	0.478 .519 .542	0.221 285 341 391 435 435	0.204 .267 .319 .368 .410 .410 .480	0.267 .339 .254 .252 .047
effi- ciency	0.453	0.216 .276 .329 .375 .375 .414 .439	0.200 .259 .307 .353 .391 .426	0.262 .331 .387 .435 .468 .497
cas cen- sity in turbine case (lb/cu ft)	0.0335 .0329 .0327	0.0167 .0173 .0173 .0173 .0171 .0176	0.0133 .0132 .0131 .0131 .0132 .0132	0.0301 .0306 .0316 .0314 .0314
Jet Speed ratio	0.2292 .2626 .2626	0.0905 .1202 .1498 .1791 .2091 .2382	0.0867 .1163 .1446 .1736 .2022 .2603	0.0984 .1308 .1634 .1967 .2825 .2620
horse- power	28.05 30.28 31.43	16.16 20.63 28.02 30.94 32.80 35.36	16.00 24.52 28.13 31.22 34.02	19.02 23.99 28.05 31.52 33.93 36.01
speed (rpm)	14,141 16,204 18,167	6,130 8,143 10,145 12,128 14,161 16,133	6,069 8,143 10,125 12,158 14,161 16,204 18,227	6,069 8,072 10,085 12,138 14,161 16,164
available from isen- tropic expansion	61.89 61.89 61.89	74.70 74.70 74.70 74.70 74.70 74.70	79.87 79.88 79.88 79.88	72.48 72.48 72.48 72.48 72.42
alr ratio	0.0138 .0138 .0138	0.0138 .0138 .0138 .0138 .0138	0.0138 .0138 .0138 .0138 .0138	0.0142 .0142 .0142 .0142 .0142
weight flow (1b/hr)	967.1 967.1 967.1	967.1 967.1 967.1 967.1 967.1 967.1	967.1 967.1 966.3 966.3 966.3 967.1	1132.0 1132.0 1132.0 1132.0 1132.0 1131.0
Nozzre Free- Air Sure : Wei ratio flo (1b)	ထ	15	50	ω
NOZZTE	된	臼	闰	Ħ

TABLE VII - EFFICIENCY DATA FOR SINGLE-STAGE TURBINE WITH 20°-INLET BLADES - Concluded

		1 .			
	Blade effi- clency	0.22 280 346 395 397 476 907	0.214. 273. 375. 377. 134. 164.	0,267 .346 .411 .464 .510 .553	0.225 .292 .349 .396
	Rotor eff1- clency	0.225 288 288 343 392 464 464	0.213 .272 .329 .377 .54. .54.	0.264 343 405 456 456 533 533	0.223 0.290 3.346 3.392
lb/sq in. gage	Brake eff1- ciency	0.02.0 281.333 333 378.333 417.74.73	015.0 625. 635. 436. 634. 654.	0.260 .333 .391 .437 .505 .505	0.219 .282 .334 .377
95 lb/sq i	Gas den- sity in turbine case (lb/cu ft)	0.0175 .0178 .0188 .0186 .0187 .0188	0.0160 0.0159 0.0158 0.0158 0.0159	0.0308 .0333 .0332 .0328 .0324 .0324	0.0180 .0192 .0190 .0185
essure,	Blade- jet speed ratio	0.0899 11.98 11.89 1789 2095 2389 2691	0.0879 11.64 1457 1743 1743 2041 2320	0.0980 .1311 .1639 .1976 .2303 .2630	0.0895 .1199 .1494. .1791
nlet pr	Brake horse- power	19.32 29.11 33.02 36.43 39.04 41.33	29.46 29.49 29.49 33.60 37.28 40.24 42.42	16.50 21.20 24.87 27.80 30.16 32.08	16.83 21.63 25.67 28.90
000 F; j	Turbine speed (rpm)	6,089 8,112 10,085 12,118 14,191 16,184	6,120 8,102 10,145 12,138 14,212 16,154	6,049 8,092 10,115 12,189 14,212 16,224 18,227	6,059 8,122 10,115 12,128
[Inlet temperature, 1000° F; inlet pressure,	Horsepower available from isen- tropic	87.10 87.10 87.10 87.34 87.34 87.34 87.34	92.41 92.34 92.41 92.41 92.41	63.59 63.59 63.59 63.59 63.59	76.81 76.74 76.81 76.81
et tempe	Fuel- air ratio	0.0142 0.0140 0.0410 0.0410 0.0410	0.0142 9410. 9410. 9410. 9410.	0.0141 .0141 .0141 .0141 .0141	0,0141 .0141 .01410. 1410.
[III]	Air weight flow (lb/hr)	1131.0 1131.0 1130.0 1130.0 1130.0	1131.0 1130.0 1130.0 1131.0 1131.0	993.2 993.2 993.2 993.2 993.2	994.1 993.2 994.1 993.2
	Pres- sure ratio	15	13	ω	15
	Nozzle	щ	p	н	н

	Ī	
Blade effi- ciency	0.438	0.209 .272. .324. .374. .418. .418. .452.
Brake Rotor Blade effi- effi- effi- clency clency ciency	0.433 .469 .491	0 208 322 372 41,141
Brake effi- ciency	0.413 464 464	0.200. 2863. 337. 3396. 424.
Blade- Gas den- jet sity in speed turbine ratio case (1b/ou ft)	0.0183 .0183 .0184	0.0149 .0146 .0146 .0145 .0149 .0147
Blade- jet speed ratio	0.2091 .2392 .2690	0.0870 0.0870 1,447 1,733 2030 2030 2597
Brake horse- power	31.69 34.12 35.54	16.74 21.52 25.48 29.24 32.46 34.77 36.56
Turbine speed (rpm)	14,161 16,204 18,217	6,089 8,122 10,135 12,138 14,212 16,184 18,187
Horsepower Turbine Brake available speed horse-from isen-tropic expansion	76.74 76.67 76.67	81.98 81.98 81.98 81.98 81.98
Fuel- air ratio	0.0141	0.0141 .0141 .0141 .0141 .0141 .0141
Air Weight flow (1b/hr)	993.2 992.3 992.3	992.3 991.4 992.3 991.4 991.4 992.3
Pres- sure ratio	15	82
Nozzlo Pres- sure ratio	H	H

TABLE VIII - EFFICIENCY DATA FOR TWO-STAGE TURBINE WITH NOZZLE H FIRST STAGE, 0.45-INCH BLADES; SECOND STAGE, STANDARD TURBINE

[Inlet temperature, 1000° F; inlet pressure, 95 lb/sq in. gage]

p	f :	, 	
Blade effi- ciency	0.387 196. 196. 1982 1982 1982 1983	0.362 1499 1550 1575	03.0 93.4 93.5 93.5 93.5 93.5 93.5 93.5 93.5 93.5
Rotor effi- ciency	0.384 459 554. 553 576. 674.	0.361 .437 .520 .528 .529 .510	0.35. 7.44. 0.17. 0.17. 8.87. 8.18.
Brake eff1- clency	0.373 4413 407, 407, 403 462 714	0.358 4.234 6.544 6.500 6.500 7.600 7.600	0.341 1412 1489 1495 1493 1493
Gas den- sity in turbine case (lb/cu ft)	0.0335 .0340 .0338 .0340 .0354 .0354	0.0203 .0202 .0203 .0203 .0203	0.0174 .0173 .0172 .0172 .0178
Blade- Jet speed ratio	0.0990 1311 1646 1967 2895 2625 29446	0.0905 1189 1496 1792 2091 2389	0.0873 .1167 .1454 .1751 .2037 .2324 .2324
Brake horse- power	27.02 32.08 34.97 36.44 35.70 33.46	30°78 37.12 41.32 43.56 43.68 43.04 40.54	31.49 38.09 42.51 45.19 45.75 45.60 43.81
Turbine speed (rpm)	6,109 8,092 10,155 12,138 14,161 16,194 18,167	6,130 8,052 10,135 12,138 14,161 16,184	6,079 8,122 10,125 12,189 14,181 16,184 18,237
Horsepower available from 18cn- tropic expansion	72.36 72.36 72.36 72.36 72.36	87.52 87.45 87.45 87.45 87.45 87.45	92.37 92.37 92.37 92.37 44.56
Fuel- air ratio	0.0141 .0141 .0141 .0141 .0141	0.0141 .0141 .0141 .0141 .0141 .0141	0.0141 0.01410. 1410. 1410. 1410.
Air weight flow (lb/hr)	1131.2 1130.2 1130.2 1130.2 1130.2	1132.5 1131.6 1131.6 1131.6 1131.6 1131.6	1130.6 1130.6 1130.6 1130.6 1131.6
Pres- sure ratio	ω	15	19

Figure 1. - Front view of first-stage turbine of Mark 25 power plant with nozzle removed to show unshrouded 0.35-inch rotor blade and shroud cap.

Figure 2. - Windage and mechanical losses of first-stage turbine with 90° -arc admission and 0.35-inch shrouded and unshrouded rotor blades.

Figure 3. - Effect of blade design on performance of singlestage turbine with nozzle A.

Figure 4. - Effect of blade design on performance of single-stage turbine with nozzle E .

.. . ..

Figure 5. — Effect of blade design on performance of single-stage turbine with nozzle ${\sf H.}$

Figure 6. - Effect of blade design on performance of single-stage turbine with nozzle ${\bf I}$.

<u>_</u> first-stage rotor and with rotor having 0.45-inch blades - Performance of two-stage turbine with standard combination with nozzle H. Figure 7.

(a) Standard blades with 170 inlet angle.

NACA C-23776 7-15-49

(b) Special blades with 20° inlet angle.

Figure 8. - Water-channel photographs of flow through pitch section of blades at analogous Mach number of 1.6.

NASA Technical Library
3 1176 01437 9490

· 通過