DCC read amplifier

TDA1317

FEATURES

- Low-noise amplifier inputs
- Pre-equalization for compensating the MRH characteristic
- Anti-aliasing filters
- Single +5 V supply.

GENERAL DESCRIPTION

The IC is designed to be used with a Magneto-Resistive thin-film Head (MRH) which is suitable for the DCC (Digital Compact Cassette) systems and normal CC (Compact Cassette) systems. The primary function of the IC is to provide preamplification and filtering. However, the IC also incorporates two amplifiers to provide magnetic feedback to the CC heads.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DD}	supply voltage; DCC part		4.5	5.0	5.5	V
V _{CCA}	supply voltage; CC part		4.5	5.0	5.5	V
V _{ССМ}	supply voltage; feedback amplifier		4.5	5.0	5.5	V
I _{DD}	supply current; DCC part		24.5	36.0	47.5	mA
ICCA	supply current; CC part		5.9	9.0	12.1	mA
Іссм	supply current; feedback amplifier	no load	2.3	3.4	4.5	mA
T _{amb}	operating ambient temperature		-30	-	+85	°C

ORDERING INFORMATION

EXTENDED TYPE	PACKAGE				
NUMBER	PINS	PIN POSITION	MATERIAL	CODE	
TDA1317	44	QFP	plastic	SOT307-1	

DCC read amplifier

DCC read amplifier

TDA1317

PINNING

PINNING					
SYMBOL	PIN	DESCRIPTION			
OUTAUX	1	auxiliary data output			
MUXAUX	2	auxiliary multiplexer input			
RDMUX	3	read multiplexer output			
V _{DD}	4	supply voltage (DCC part) +5 V			
RDSYNC	5	read sync input			
RDCLK	6	read clock input			
V _{REFD}	7	voltage reference (digital)			
V_{SS}	8	ground			
REF2	9	reference voltage 2			
REF1	10	reference voltage 1			
INAUX	11	auxiliary data input			
IN0	12	main data input 0			
IN1	13	main data input 1			
IN2	14	main data input 2			
IN3	15	main data input 3			
V _{EED}	16	digital ground			
IN4	17	main data input 4			
IN5	18	main data input 5			
IN6	19	main data input 6			
IN7	20	main data input 7			
V _{CCA}	21	supply voltage (CC part) +5 V			
REF3	22	reference voltage 3			
OUTR	23	analog (CC) output right			
INMFR	24	feedback amplifier input right			
MFR1	25	feedback amplifier output right 1			
INR	26	analog (CC) input right			
MFR	27	feedback amplifier output right 2			
V _{EEA}	28	analog ground			
V _{EEM}	29	ground for feedback amplifier			
MFL2	30	feedback amplifier output left 2			
INL	31	analog (CC) input left			
MFL1	32	feedback amplifier output left 1			
INMFL	33	feedback amplifier input left			
OUTL	34	analog (CC) output left			
REF4	35	reference voltage 4			
V _{CCM}	36	supply voltage (feedback amplifier) +5 V			
OUT7	37	main data output 7			
OUT6	38	main data output 6			
OUT5	39	main data output 5			

SYMBOL	PIN	DESCRIPTION	
OUT4	40	main data output 4	
OUT3	41	main data output 3	
OUT2	42	main data output 2	
OUT1	43	main data output 1	
OUT0	44	main data output 0	

DCC read amplifier

TDA1317

FUNCTIONAL DESCRIPTION

Digital preamplifiers

When being used for DCC the IC employs 8 main data channels and 1 auxiliary channel (see Fig.1). The main data channels use low-noise preamplifiers.

Pre-equalization, for frequencies from 1 kHz to 50 kHz, is obtained using 1st order high-pass filters (-3 dB at 80 kHz). Anti-aliasing is achieved using 2nd order low-pass filters (-6 dB at 135 kHz).

The auxiliary channel uses a preamplifier with a 1st order low-pass filter (–3 dB at 400 kHz). All inputs must be AC coupled. The frequency response for the main data and auxiliary data channels is illustrated in Fig.3.

Multiplexer

The IC employs a multiplexer circuit to switch the digital channels, sequentially, to the output. The effective sampling frequency is one tenth of the clock frequency at RDCLK (pin 6). A timing diagram is given in Fig.4.

Analog preamplifiers

When being used for Compact Cassette the IC employs two low-noise preamplifiers and two amplifiers to provide the necessary magnetic feedback current. The analog amplifier inputs must be AC coupled.

Feedback amplifiers

Two feedback amplifiers are provided for driving a coil in the Compact Cassette MRH. This provides a feedback loop in order to improve the linearity of the analog audio response.

DCC read amplifier

DCC read amplifier

TDA1317

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DD}	supply voltage; DCC part		-0.3	+5.5	V
V _{CCA}	supply voltage; CC part		-0.3	+5.5	V
V _{CCM}	supply voltage; feedback amplifier		-0.3	+5.5	V
I _{max}	maximum current on pins 4, 8, 16, 25, 27, 29, 30, 32 and 36		_	80	mA
I _{max}	maximum current on all other pins		-	20	mA
P _{tot}	total power dissipation		_	450	mW
V _{es}	electrostatic handling	note 1	-2000	+2000	V
T _{amb}	operating ambient temperature		-30	+85	°C
T _{stg}	storage temperature		-55	+150	°C

Note

1. Equivalent to discharging a 100 pF capacitor through a 1.5 $k\Omega$ series resistor.

THERMAL RESISTANCE

SYMBOL	PARAMETER	THERMAL RESISTANCE
R _{th j-a}	from junction to ambient in free air	100 K/W

CHARACTERISTICS

Supply voltage = 5 V; T_{amb} = 25 °C; all voltages with respect to ground; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{DD}	supply voltage; DCC part		4.5	5.0	5.5	V
V _{CCA}	supply voltage; CC part		4.5	5.0	5.5	٧
V _{CCM}	supply voltage; feedback amplifier		4.5	5.0	5.5	V
I _{DD}	supply current; DCC part		24.5	36.0	47.5	mA
I _{CCA}	supply current; CC part		5.9	9.0	12.1	mA
Іссм	supply current; feedback amplifier	no load	2.3	3.4	4.5	mA
V _{REFD}	reference voltage (digital)		2.75	2.9	3.05	V

DCC read amplifier

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Digital chann	els		* **			
DIGITAL FIRST	STAGE					
V _I	DC input voltage		640	670	700	mV
V _{OMAIN}	DC output voltage (main)		1.75	2.3	2.65	V
V _{OAUX}	DC output voltage (auxiliary)		1.75	2.6	2.85	V
V _{REF1}	DC reference voltage level 1		1.7	1.9	2.1	V
V _{REF2}	DC reference voltage level 2		640	670	700	mV
G	gain main data output (1st stage)	f = 10 kHz	55	57	59	dB
V _{O(rms)}	maximum AC output voltage (RMS value)	$R_L > 10 \text{ k}\Omega$	0.5	-	_	V
В	bandwidth	at -3 dB				
	main data channels		95	135	175	kHz
	auxiliary channel		300	400	500	kHz
Z _I	input impedance	f = 10 kHz	670	925	_	Ω
N _{ir}	input referred noise		_	1.5	_	nV/√Hz
THD	total harmonic distortion (auxiliary channel)	$V_{OAUX} = 0.5 \text{ V (RMS)};$ f = 10 kHz	-	-33	-26	dB
DIGITAL SECON	ID STAGE PLUS MULTIPLEXER					
V _{RDMUX}	DC output voltage (pin 3)		1.8	2.1	2.4	V
ΔV _{RDMUX}	DC offset voltage between channels (pin 3)		-	-	200	mV
G	gain	excluding filters	24.5	26	27.5	dB
f _{LP}	low-pass filter frequency	at -3 dB	95	135	175	kHz
f _{HP}	high-pass filter frequency	at -3 dB	64	80	96	kHz
V _{O(rms)}	maximum AC output voltage (RMS value)	$R_L > 2 k\Omega$	0.5	-	_	V
THD	total harmonic distortion					
	RDMUX (pin 3)	$V_{MUX} = 0.5 \text{ V (RMS)};$ f = 10 kHz	-	-40	-30	dB
	auxiliary channel	V _{OAUX} = 0.5 V (RMS); f = 10 kHz	-	-33	-26	dB
α _{ct}	overali crosstalk		-	-40	-34	dB
t _s	settling time	C _L = 30 pF (1%)	<u> </u>	100	-	ns
DIGITAL INPUTS	S (PINS 5 AND 6)					
V _{IH}	HIGH level input voltage		3.5	_	5.0	V
V _{IL}	LOW level input voltage		0	1_	1.5	V
f _s	sample frequency		-	3.072	-	MHz
	timing relationship between RDCLK and RDSYNC	note 1		-	-	

DCC read amplifier

TDA1317

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
ANALOG CHAN	NELS			.4	1	1
VI	DC input voltage		700	750	800	mV
Vo	DC output voltage		1.65	2.1	2.55	V
V _{REF3}	DC reference voltage level 3		700	760	800	mV
V _{REF4}	DC reference voltage level 4		3.1	3.3	3.5	V
G	gain	f = 1 kHz	42	44	46	dB
Z _I	input impedance	f = 1 kHz	800	1050	_	Ω
V _{O(rms)}	maximum AC output voltage (RMS value)	$R_L > 10 \text{ k}\Omega$	0.5	-	-	V
THD	total harmonic distortion	$V_O = 0.5 \text{ V (RMS)};$ f = 1 kHz	-	-50	_	dB
α_{ct}	crosstalk		1_	-40	1_	dB
N _{ir}	input referred noise		_	2.7	_	nV/√Hz
MAGNETIC FEE	DBACK AMPLIFIERS					
THD	total harmonic distortion	$V_O = 0.5 \text{ V (RMS)};$ $I_O = 25 \text{ mA (top)}; \text{ note 2}$	<u> </u>	-50	_	dB
I _{25/27/30/32}	maximum output current (peak value)		25	1-	-	mA

Notes

- 1. Timing relationship between edges of RDCLK and RDSYNC, see Fig.5.
- 2. Measured from INL/INR (pins 31 and 26) to FB outputs, in accordance with test circuit shown in Fig.6.

Philips Semiconductors

Preliminary specification

DCC read amplifier

DCC read amplifier

Philips Semiconductors

Preliminary specification

DCC read amplifier

TDA1317

PACKAGE OUTLINE

LAE D

DCC read amplifier

TDA1317

SOLDERING

Plastic quad flat-packs

BY WAVE

During placement and before soldering, the component must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder bath is 10 s, if allowed to cool to less than 150 °C within 6 s. Typical dwell time is 4 s at 250 °C.

A modified wave soldering technique is recommended using two solder waves (dual-wave), in which a turbulent wave with high upward pressure is followed by a smooth laminar wave. Using a mildly-activated flux eliminates the need for removal of corrosive residues in most applications.

BY SOLDER PASTE REFLOW

Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be

applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at 45 °C.

REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING IRON OR PULSE-HEATED SOLDER TOOL)

Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to 300 °C. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and 320 °C. (Pulse-heated soldering is not recommended for SO packages.)

For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement.

Philips Semiconductors

Preliminary specification

DCC read amplifier

TDA1317

DEFINITIONS

Data sheet status						
Objective specification	This data sheet contains target or goal specifications for product development.					
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.					
Product specification	This data sheet contains final product specifications.					
Limiting values						
Limiting values given are in	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or					

more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

The Digital Compact Cassette logo is a registered trade mark of Philips Electronics N.V.