SEARCH INDEX DETAIL JAPANESE MENU

1/1

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-074023

(43) Date of publication of application: 15.03.1994

(51)Int.Cl.

F01N 3/08 F02M 63/00

(21)Application number : **04-229586**

(71)Applicant: ISUZU MOTORS LTD

(22)Date of filing:

28.08.1992

(72)Inventor: TASHIRO YOSHIHISA

(54) EXHAUST GAS PURIFYING DEVICE OF INTERNAL COMBUSTION ENGINE

(57)Abstract:

PURPOSE: To improve elimination efficiency of NOx in an engine in which fuel is injected to a cylinder head.

CONSTITUTION: Fuel is directly injected to a cylinder by a fuel injection device 20 in an engine 10. Fuel utilized as a reductant is added to intake air flow by means of a first injector 110 mounted in an intake air pipe 50. Fuel is added to an exhaust gas by means of a second injector 120 mounted in an exhaust gas pipe 60. A catalyst 70 by which NOx is reduced is arranged, downstream from the exhaust gas pipe 60. The optimum quantity of HC is supplied by controlling two injectors in response to rotational speed of an engine and/or the condition of load by means of a controller 40.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-74023

(43)公開日 平成6年(1994)3月15日

(51)Int.CL.5

識別記号

庁内整理番号

FΙ

技術表示箇所

F01N 3/08

В

G

F 0 2 M 63/00

P 7825-3G

審査請求 未請求 請求項の数2(全 5 頁)

(21)出願番号

(22)出願日

特願平4-229586

平成 4年(1992) 8月28日

(71)出願人 000000170

いすゞ自動車株式会社

東京都品川区南大井6丁目26番1号

(72)発明者 田代 欣久

神奈川県藤沢市土棚8番地 株式会社い

すず中央研究所内

(74)代理人 弁理士 沼形 義彰 (外2名)

(54) 【発明の名称 】 内燃機関の排気ガス浄化装置

(57)【要約】

【目的】 シリンダヘッドに燃料を噴射するエンジンにおけるNOxの除去効率の向上を図る。

【構成】 エンジン10は、燃料噴射装置20によりシリンダヘッドに直接に燃料が噴射される。吸気管50に設けた第1のインジェクタ110は、還元剤として利用される燃料を吸入気流中に添加する。排気管60に設けた第2のインジェクタ120は排気ガス中に燃料を添加する。排気管60の下流側にはNOxを還元する触媒70が配設される。コントローラ40は、エンジンの回転数や負荷の状況に応じて2つのインジェクタを制御して最適な量のHCを供給する。

1

【特許請求の範囲】

【請求項1】 内燃機関のシリンダヘッドに燃料を噴射 する装置と、シリンダヘッドの吸気ポートに連結される 吸気管に設けられて還元剤として燃料を添加する第1の インジェクタと、シリンダヘッドの排気ボートに連結さ れる排気管に設けられて還元剤として燃料を添加する第 2のインジェクタと、第2のインジェクタの下流側の排 気管内に設けられる還元触媒と、内燃機関の運転状態に 応じて第1及び第2のインジェクタを制御するコントロ ーラを備えてなる内燃機関の排気ガス浄化装置。

【請求項2】 コントローラは、内燃機関の回転数と負 荷を検知するセンサからの情報を入力信号として、負荷 が予め設定された値より大きい第1の領域にあっては第 2のインジェクタを作動制御する信号を出力し、負荷が 予め設定された値より小さい第2の領域にあっては第1 のインジェクタを作動制御する信号を出力し、負荷が第 1および第2の領域の間の第3の領域にあっては、第1 及び第2のインジェクタを同時に作動制御する信号を出 力する請求項1記載の内燃機関の排気ガス浄化装置。

[0001]

【発明の詳細な説明】

【産業上の利用分野】本発明は内燃機関の排気ガス中に 含まれる窒素酸化物 (NOx)の除去装置に関する。 [0002]

【従来の技術】ガソリンエンジンやディーゼルエンジン 等の内燃機関から排出されるガス中のNOxの除去手段 として、活性アルミナ (r-アルミナ)やS1O2とA1 2O3から合成されたゼオライト系の触媒が有効であるこ とが知られ、例えば特開昭63-283727号公報や 特開平3-253713号公報に開示されている。ゼオ 30 ライト系の触媒は、例えばモルデナイトやH-ZSM5 が用いられるが、この触媒はNOx還元剤として炭化水 素 (HC) がNOxとほぼ等量存在する際に効果を発揮 する。通常、排気ガス中に含まれるHCの量はNOxの 量に比べて少ない。エンジンのシリンダ内に直接に燃料 を噴射する機関にあっては、吸気側や排気側に選択的に HCの添加用のインジェクタを配設することができる。 本出願人は、特願平3-160088号として、エンジ ンの筒内に噴射する燃料を還元剤として吸気側に噴射す るインジェクタを配設したNOxの低減装置を提案し た。

[0003]

【発明が解決しようとする課題】図3は吸気側にインジ ェクタを配設したエンジンの回転数NとトルクT、HC 噴射量Qの関係を示すグラフである。エンジンが高速回 転(N1)する高負荷時にあって、多量のHCを添加し ようとすると、燃焼音が過大となってしまい、ディーゼ ルエンジンの場合にはスモークが多量に発生しHCを必 要量添加することができない不具合があった。 図4は排

の構成にあっては、エンジンの低負荷時で排気温度が低 い状態(N2)では、添加したHCが充分に気化され ず、還元剤として有効に機能することができない不具合 があった。本発明は上述した従来の不具合を解消する内 燃機関の排気ガスの浄化装置を提供するものである。

【課題を解決するための手段】本発明はシリンダヘッド に燃料を噴射する内燃機関の排気ガス浄化装置であっ て、シリンダヘッドの吸気ボートに連結される吸気管に 10 設けられて還元剤として燃料を添加する第1のインジェ クタと、シリングヘッドの排気ポートに連結される排気 管に設けられて還元剤として燃料を添加する第2のイン ジェクタと、第2のインジェクタの下流側の排気管内に 設けられる還元触媒と、内燃機関の運転状態に応じて第 1及び第2のインジェクタを制御するコントローラを備 えたものである。

[0005]

[0004]

【作用】コントローラは、エンジンの回転数や負荷を入 力情報として2つのインジェクタの燃料噴射量を最適に 20 制し、NOxの還元効率を最大に保つ。

[0006]

【実施例】図1は、本発明の内燃機関の排気ガス浄化装 置の概要を示す説明図である。エンジン本体10は、デ ィーゼルエンジンや燃料噴射装置を備えたガソリンエン ジンであって、シリンダ内の燃料室内に直接に燃料を噴 射するインジェクタ22を備える。燃料タンク30の燃 料は、パイプライン32を介して燃料噴射ポンプ20へ 送られ、燃料噴射ポンプ20で加圧され燃料は、インジ ェクタ22により筒内へ噴射される。燃料噴射ポンプ2 0は、回転センサ42とコントローラレバーセンサ44 を有し、現在のエンジン回転数と負荷状態を検知し、ラ イン43、45を介してコントローラ40へ送る。 【0007】エンジン10に連結される吸気管50は、 クリーナ55を介して外気をとり入れて、エンジン10 の筒内へ供給する。吸気管50には還元剤添加用の第1 のインジェクタ110が設けられる。 遠元剤は炭化水素 (HC) が用いられるが、本装置にあっては、エンジン 10の燃料が還元剤として転用される。燃料タンク30 に連通する第1のパイプ34は燃料を第1のHC添加用 40 インジェクタ110へ送る。コントローラ40は、エン ジン回転数や負荷の状態に基づいてライン112に制御 信号を出力する。この制御信号により第1のインジェク タ110は吸気管50内へHCを添加する。 【0008】エンジン10の筒内で燃焼した排気ガス

は、排気管60へ送り出される。排気管60は触媒コン バータ70を有し、排気ガス中のNOxは触媒により還 元除去される。浄化された排気ガスは排出口62から大 気側へ排出される。エンジン10の排気ポートと触媒コ ンバータ70を連結する排気管60には還元剤添加用の 気側にHCの噴射インジェクタを設けた場合を示す。こ 50 第2のインジェクタ120がとりつけられる。第2のイ

ンジェクタ120はパイプライン36を介して燃料タン ク30に連結され、還元剤としての燃料の供給を受け る。 コントローラ40の出力はライン122を介して第 2のインジェクタ120を制御し、必要な量のHCを排 気管60内へ添加する。 還元剤であるHCの添加用のイ ンジェクタを吸気管と排気管に設け、コントローラは各 インジェクタを独立して、または、同時に操作すること ができる。

【0009】そこで図2に示すように、高負荷時である 領域A1にあっては、第2のインジェクタ120のみを 作動して排気側に還元剤であるHCを添加する。高負荷 時には排気ガス温度が高いので、排気側に添加されたH Cは充分に気化される。また、HC添加による燃焼音も 発生しない。この状態から負荷が軽減されると、添加す べきHCの量は領域A3に移行する。この領域にあって は、排気ガス温度も低下傾向となるので、第1のインジ ェクタ110も作動して、吸気側へもHCを添加する。 吸気側に添加されたHCは、筒内で加熱、気化し、第2 のインジェクタ120により排気側へ添加されるHCと 合体して、排気ガス中のNOxを還元するのに最適な量 20 40 コントローラ の還元剤が供給される。したがって、この領域にあって は、第1のインジェクタ110と第2のインジェクタ1 20がコントローラ40により同期して制御される。こ の状態からさらに負荷が軽減し、領域A2となると、排 気ガス温度もさらに低下する。そこで、第1のインジェ クタ110により吸気側にのみHCを添加し、気筒内で 加熱、気化させ、還元効率を向上させる。

[0010]

【発明の効果】本発明は以上のように、筒内に燃料を暗

射する内燃機関にあって、還元触媒と還元剤としてHC を添加するインジェクタを備えて排気ガスを浄化する装 置において、インジェクタを機関の吸気側と排気側に設 け、コントローラにより各インジェクタを独立して、ま たは同時に制御するものである。この構成により、エン ジンの運転状態に応じて最適な還元剤の添加を達成する ことができる。したがって、排気ガス中のNOxを最も 効果的に還元除去することができる。

【図面の簡単な説明】

- 【図1】本発明の実施例を示す説明図。
 - 【図2】本発明の作用を示す説明図。
 - 【図3】 従来技術の作用を示す説明図。
 - 【図4】従来技術の作用を示す説明図。

【符号の説明】

- 10 エンジン本体
- 20 燃料噴射ポンプ
- 22 インジェクタ
- 30 燃料タンク
- 32 パイプライン
- 42 回転センサ
 - 44 コントローラレバーセンサ
 - 50 吸気管
 - 55 クリーナ
 - 60 排気管
 - 62 排出口
 - 70 触媒コンバータ
 - 110 第1のインジェクタ
 - 120 第2のインジェクタ

【図2】

【図1】

