# Manuál k aplikaci FTA

Aplikace FTA se zabývá stejnojmenným typem analýzy FTA (Fault Tree Analysis – v češtině Analýza stromu poruchových stavů). Jde vesměs o zkoumání vrcholové události, která je rozčleněná do menších podudálostí (viz. Obrázek 1), které tuto událost s určitou pravděpodobností v čase vyvolají.



Obrázek 1: Ukázka diagramu FTA

# Seznámení s objekty

V aplikaci se využívá pouze objektů typu událost a hradlo.

#### Události

Události jsou značky, které značí výskyt určitého děje. Níže jsou popsány vstupní a výstupní hodnoty události.



#### Vstupní hodnoty události

V aplikaci je na výběr z 5 typů vstupních hodnot pro událost popsaných níže.

#### Constant

Pravděpodobnost poruchy nastavená konstantní hodnotou. Na celém časovém intervalu zůstává konstantní (stejná).

#### **MTBF**

Mean Time Between Failures (v češtině) střední doba mezi poruchami) je očekávána doba provozu mezi poruchami. Z MTBF se získává intenzita poruch. Aplikace přijímá hodnotu MTBF v hodinách nebo ji spočte z časů v přiloženém souboru, kde jsou tyto časy také v hodinách. MTBF se spočte přes vzorec:

$$MTBF = \frac{\sum_{i=1}^{N} t_i}{N}$$

#### MTBF and MTTR

Mean Time Between Failures and Mean Time To Repair jsou v překladu střední doba mezi poruchami a střední doba do obnovy. Střední doba do obnovy je očekáváná doba do obnovy systému. Z MTBF

a MTTR se získají hodnoty pro intenzitu poruch ( $\lambda$ ) a obnovitelnost systému ( $\mu$ ). Aplikace přijímá hodnoty MTBF a MTTR v hodinách nebo je spočte z časů v přiložených souborech, kde jsou tyto časy také v hodinách. Spočte se přes vzorec:

$$MTTR = \frac{\sum_{i=1}^{N} t_i}{N}$$

### Failure Rate (λ)

V češtině se jedná o intenzitu poruch (se značením  $\lambda$ ). Jedná se vesměs o přibližnou pravděpodobnost poruchy získanou na základě vstupních dat z MTBF. V aplikaci lze zadat přímo  $\lambda$  nebo zvolit vstupní hodnotu MTBF a nechat vypočítat  $\lambda$ . Spočte se přes vzorec:

$$\lambda(t) = \frac{1}{MTBF} \left[ hod^{-1} \right]$$

### Failure Rate (λ) and Repairable (μ)

V češtině se jedná o intenzitu poruch (se značením  $\lambda$ ) a obnovitelnost systému (se značením  $\mu$ ). Obnovitelnost systému představuje pravděpodobnost, že dojde k opravě (obnově) systému. V aplikaci lze zadat přímo hodnoty  $\lambda$  a  $\mu$  nebo zvolit vstupní hodnotu na MTBF and MTTR a nechat aplikací hodnoty  $\lambda$  a  $\mu$  vypočítat. Hodnota  $\mu$  se z MTTR spočte přes vzorec:

$$\mu(t) = \frac{1}{MTTR} \left[ hod^{-1} \right]$$

## Výstupní hodnoty události

#### Pravděpodobnost bezporuchového provozu

Jedná se pravděpodobnost, že objekt může plnit danou funkci v čase  $(t_1, t_2)$ . Značí se symbolem R(t) a spočte se přes vzorec:

$$R(t) = e^{-\lambda t}$$

### Pravděpodobnost poruchy

Jedná se o pravděpodobnost, že objekt nemůže plnit danou funkci v čase  $(t_1, t_2)$ . Značí se symbolem F(t) a je to doplněk k pravděpodobnosti bezporuchového provozu. Spočte se tedy přes vzorec:

$$F(t) = 1 - R(t)$$

#### Funkce okamžité pohotovosti

Jedná se o pravděpodobnost, že je objekt ve stavu schopném plnit danou funkci v daném čase a podmínkách. Značí se symbolem A(t) a spočte se přes vzorec:

$$A(t) = \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} \cdot e^{-(\lambda + \mu)t}$$

#### Funkce okamžité nepohotovosti

Jedná se o pravděpodobnost, že objekt není ve stavu schopném plnit danou funkci v daném čase a podmínkách. Značí se symbolem U(t) a je to doplněk k funkci okamžité pohotovosti. Spočte se tedy přes vzorec:

$$U(t) = 1 - A(t)$$

#### Hradla

Hradla značí symbolické značení vazby mezi výstupní událostí a vstupy. V aplikaci jsou na výběr hradla typu OR, AND a K/N, které jsou specifikované blíže níže.

#### OR

Hradlo OR slouží k značení logického součinu. Výstupová událost nastane, nastane-li alespoň jedna vstupní událost.

### Výpočty

Pravděpodobnost bezporuchového provozu přes vzorec:

$$R_{S}(t) = R_{1}(t) \cdot R_{2}(t) \cdot \dots \cdot R_{N}(t) = \prod_{i=1}^{N} R_{i}(t)$$

Pravděpodobnost poruchy přes vzorec:

$$F_s(t) = 1 - \prod_{i=1}^{N} [1 - F_i(t)]$$



#### **AND**

Hradlo AND slouží k značení logického součtu. Výstupová událost nastane, nastanou-li všechny vstupní události.

### Výpočty:

Pravděpodobnost bezporuchového provozu přes vzorec:

$$R_s(t) = 1 - \prod_{i=1}^{N} (1 - R_i(t))$$

Pravděpodobnost poruchy přes vzorec:

$$F_{s}(t) = \prod_{i=1}^{N} [F_{i}(t)]$$



## K/N

Hradlo K/N je speciální typ hradla. Výstupová událost nastane, nastane-li K z N vstupů. U tohoto typu hradla je potřeba při definování nastavit hodnotu K.

#### Výpočty:

Pravděpodobnost bezporuchového provozu přes vzorec:

$$R_s(t) = 1 - \sum_{i=0}^{k-1} \frac{n!}{i! \cdot (n-i)!} \cdot [R_0(t)]^i \cdot [1 - R_0(t)]^{n-i}$$

Pravděpodobnost poruchy přes vzorec:

$$F_s(t) = \sum_{i=0}^{k-1} \frac{n!}{i! \cdot (n-i)!} \cdot [1 - F_0(t)]^i \cdot [F_0(t)]^{n-i}$$



## Nový projekt

Pro nový projekt stačí zvolit z hlavní nabídky položku Project a vybrat možnost New. Aplikace se přesměruje do části s definováním vrcholové události. Pokud nějaký projekt již existuje, uživatel je upozorněn aplikací na možné ztráty předchozího projektu.



### Definování vrcholové události

Nové vrcholové události se nastavuje název (Name), vstupní hradlo události (Gate Type) a popis (Description). Název je povinný atribut, který musí být unikátní. Vstupní hradlo události je nastaveno na výchozí hodnotu AND. Lze ale snad přednastavit zvolením jiného hradla z nabídky. U hradla K/N se ještě musí nastavit parametr K. Popis vrcholové události není povinný. Slouží k detailnějšímu popisu objektu. Po potvrzení formuláře se aplikace vrátí na úvodní stranu, kde už je přidané hradlo.



## Přidání nového potomka objektu

Pro rozvoj diagramu dalšími objekty (hradly, událostmi) se zvolí dané hradlo nebo vrcholová událost a rozklikne se ovládací panel pomocí pravého tlačítka na myši. U mobilních telefonů se k této nabídce dostane dlouhým kliknutím na objekt. Pro přidání hradla se vybere možnost Add Gate, pro přidání události se zvolí možnost Add Event. U hradla se nastavují stejné parametry jako u vrcholové události. O přidání nové vstupní události je napsáno níže.



#### Přidání nové události

Nové vstupní události se nastavuje název (Name), typ výpočtu (Calculation Type), vstupní hodnoty pro vybraný typ výpočtu a popis události. Název je povinný atribut, který musí být unikátní. Typ výpočtu je nastaven na výchozí hodnotu Constant (viz Události). Popis události není povinný.



### Načtení MTBF a MTTR ze vstupního souboru

Vstupní hodnoty pro MTBF a MTTR lze načíst z textového souboru, ve kterém jsou uložené údaje o poruchách nebo obnovách zapsané v hodinách. Mezi jednotlivými hodnotami musí být středník (";").



## Editace vybraného objektu

Pro editaci hradla nebo události stačí vybrat z nabídky objektu možnost Edit. Aplikace se poté přesměruje buď k editaci hradla nebo události. Lze upravit veškeré parametry objektu.



# Smazání objektu

K smazání hradla nebo události stačí vybrat z nabídky objektu možnost Delete. Dané hradlo nebo událost se smažou a zobrazí se informační zpráva o úspěšném smazání. Pokud má hradlo potomky, tak při smazání tohoto hradla se smažou i jeho potomci.



## Analýza

Samotná analýza se nachází v hlavní nabídce v sekci Analysis v položce Start. Analyzovat lze pouze kompletní diagram. Pokud diagram není úplný, aplikace na to upozorní. V nastavení analýzy se musí nastavit typ výpočtu (Calculation Type), který je nastaven na výchozí hodnotu R(t). Vybrat lze ze všech výstupních funkcí zmíněných v části Výstupní hodnoty události, pokud jsou nastaveny správné hodnoty. Pokud nějaká událost nemá nastavené správné hodnoty, aplikace na to upozorní. Nadále je zde zapotřebí zvolit jednotku času (Unit) a krok výpočtu (Step). Výchozí hodnoty jsou nastaveny na hodiny a u kroků je zvolen krok 1. Poslední parametr zadání celkového času (Time), ve kterém se má provést analýza. Po provedení analýzy se aplikace přesměruje do části s výsledky (Results), která je popsaná níže.



# Výsledky

Do sekce s výsledky lze pouze po dokončené analýze systému, jinak není přístupná. Nachází se zde graf, který zobrazuje průběh zadané analýzy systému v čase. Obsahuje 2 přepínače pro lepší orientaci. Horní přepínač slouží k zobrazování výsledků daného objektu (události nebo hradla) v daném čase. Druhý přepínač je mezi typy analýz, kdy u analýzy typu R(t) lze tak snadno zobrazit doplňkové hodnoty pro analýzy F(t) (u A(t) hodnoty U(t)). Pod přepínači se nachází tlačítko pro stažení grafu.

### Ukládání dat

#### Výsledky

Výsledky analýzy lze stáhnout do textového souboru zvolením položky Save Results v sekci Project hlavní nabídky. Název souboru obsahuje informaci o typu analýzy, ze které jsou dané výsledky. V souboru se nachází výsledky jednotlivých hradel a událostí v daných časech.

K výsledkům lze stáhnout také graf průběhu pomocí ikonky pro stažení v sekci Results.



#### Diagram

Stáhnout lze i vytvořený diagram do formátů SVG nebo PNG a to výběrem v sekci Project a zvolením daného formátu.



## Generování náhodného systému

Aplikace umožňuje pro testování vygenerovat systém náhodně. Systém se vygeneruje zvolením položky Generate Random Tree z hlavní nabídky v sekci Project. Zobrazí se vstupní okénko pro zapsání počtu hradel v systému. Náhodně vygenerovat lze systém až o 30 hradlech. Po potvrzení počtu hradel se vytvoří náhodný systém.

