

Proposal: Klassifikation von respiratorischen Ereignissen mit Earables und maschinellem Lernen

Professor: Prof. Dr. Michael Beigl, Betreuer: Tobias Röddiger

David Laubenstein | 20. November 2019

Problem

Freie Atemwege

Atemfluss

MONOMOM

Normale Atmung

Verengte Atemwege bei einer obstruktiven Hypopnoe

Atemfluss

Hypopnoe

Verengte Atemwege bei einer obstruktiven Apnoe

Atemfluss

Apnoe

Problem

Übersicht zur Nutzerstudie

PIBA

Idee

Vorteil:

- Test kann unkompliziert zuhause durchgeführt werden
- Sensoren bereits heute in Kopfhörern vorhanden (Apple AirPods)

Phasen der Bachelorarbeit

- Nutzerstudie, Datensatz
- Evaluation von maschinellen Lernverfahren
- Schreibphase

5/11

Phasen der Bachelorarbeit

- Nutzerstudie, Datensatz
- Evaluation von maschinellen Lernverfahren
- Schreibphase

Phasen der Bachelorarbeit

- Nutzerstudie, Datensatz
- Evaluation von maschinellen Lernverfahren
- Schreibphase

5/11

Phasen der Bachelorarbeit

- Nutzerstudie, Datensatz
- Evaluation von maschinellen Lernverfahren
- Schreibphase

David Laubenstein - Proposal Bachelorarbeit

Übersicht zur Nutzerstudie

- Welche Informationen über die Probanden sollen gesammelt werden?
 - Art des Earable-Aufsatzes
 - allg. Information über Proband (Größe, Gewicht, allg. Fitness, ...)
 - Interview nach Nutzerstudie (Tragekomfort, Wohlbefinden)
- Welche Informationen sollen persistiert werden?
 - IMU
 - Mikrofon (eSense Earbales)
 - Kamera (Ohraufnahme)
 - PSG-System
- Zeitliche Synchronisation der Daten
- Simulation von zentralem Apnoe durch "Luft anhalten"

Übersicht zu maschinellen Lernverfahren

Maschinelle Lernverfahren zur Klassifikation

- Berechnung von Features auf dem Datensatz
- Evaluation verschiedener Klassifikatoren
 - SVM

David Laubenstein - Proposal Bachelorarbeit

- Random Forest
- Vorherige Datenschlitze einbeziehen/ Features lernen
 - $\blacksquare \ \mathsf{RNN} \to \mathsf{LSTM}$
- Über weiter Ideen/ Vorschläge vom Institut würde ich mich freuen!

7/11

Geplante Evaluation

- Vergleich verschiedener maschineller Lernverfahren
- Vergleich mit aktuellem Industriestandard (Schlaflabor)

Zusammenfassung

- Problem: Diagnose von Schlafstörungen
 - Earables als Schlaflaborersatz
- Nutzerstudie, Datensatz
- Maschinelle Lernverfahren zur Klassifikation
- Evaluation

Nutzerstudie: Definitionen

- Positionen
 - liegend auf dem Rücken
 - liegend auf dem Bauch
 - seitlich liegend
- Simulation Schlafstörung
 - Proband hält Luft an
 - simuliert zentrales Apnoe
- Synchronisation PSG-System mit Earables und Kamera
 - Lichtsignal vom Handy an Lichtsensor von PSG-System
 - Klatschen des Probanden bei Messbeginn

20. November 2019

Nutzerstudie: Ablauf

Pro Liegeposition wird folgender Ablauf durchgeführt:

- 60 Sekunden atmen
- 10 Sekunden Luft anhalten
- Regeneration
- 60 Sekunden atmen
- 20 Sekunden Luft anhalten
- Regeneration
- 60 Sekunden atmen
- 30 Sekunden Luft anhalten
- Regeneration
- 60 Sekunden atmen

References I

- https://www.deutsche-familienversicherung.de/ratgeber/artikel/dasschlafapnoe-syndrom/
- https://www.extratipp.com/bilder/2017/06/16/8406482/1320911264schlaflabor-hofheim-krankenhaus-schlafen-traeumen-atemaussetzerselbsttest-testbericht.jpg

