CptS 415 Big Data

Approximate Query Processing

Srini Badri

Acknowledgement: Tinghui Wang

Make Case for Computationally Efficient Queries

Approximate Query Answering

- Query-driven approximation
 - Rewrite queries to computationally efficient query classes
- Data-drive approximation
 - Compact data synopses, materialized views, compression, summaries, sketches, spanners

Query Driven Approximation: Graph Pattern Matching

- Input: A pattern graph *P*, a data graph *G*, matching semantics
- Output: correspondence from *P* to *G*
 - Matching relation/function
 - Matched nodes, edges, subgraphs
- A "special case" of general graph matching.
 - Difference: semantic of P (as a graph or a pattern)
- Variants of graph (pattern) matching
 - Small pattern vs. large graph matching
 - Single data graph vs. multiple graphs
 - Rich semantics vs. simple label equality
 - Flexible matching semantics vs. strict matching functions
 - Approximate matching vs. exact alignment

Graph Isomorphism

- Graphs *G* and *H* are said to be Isomorphic if:
 - there exists a bijective relation between vertices of G and H:
 - *f*: *V*(*G*) -> *V*(*H*)
 - for any two vertices u and v that are adjacent in G, f(u) and f(v) are adjacent in H
- Subgraph Isomorphism:
 - Graph *G* contains a subgraph *G*_o that is isomorphic to *H*

source: https://en.wikipedia.org/wiki/Graph_isomorphism

Matching by Subgraph Isomorphism

- Input: A direct graph *G* and a graph pattern *P*
- lacksquare Output: All subgraphs of G that are isomorphic to P
- Complexity: NP-Complete
 - Remains NP-Hard even when
 - P is a forest and G is a tree
 - P is a tree and G is acyclic
- lacksquare P-TIME if P is a tree and G is a forest

Ullmann's algorithm

VF₂

- Considering two graphs Q and G, the (sub)graph isomorphism from Q to G is expressed as the set of pairs(n, m) (with $n \in Q$, $m \in G$)
- Idea: finding the (sub)graph isomorphism between Q and G is a sequence of state transition.
- an intermediate state s denotes a partial mapping from Q to G

(1, 1)	(1, 4)
(2, 2)	(2, 2)
(3, 3)	(3, 3)

1) (1 1)

	Intermediate States	
s1	(1,1)	
s2	(1,1) (2,2)	
s3	(1,1)(2,2)(3,3)	

Pattern Matching in Social Graph

Find all matches of a pattern in a graph

Pattern Matching in Social Graphs

Graph Simulation

- A binary relation R on the nodes of Q and the nodes of G:
- For each node u in Q, there exists a node v in G such that (u, v) is in R, and u and v have the same label;
- If there exists an edge (u, u') in Q and each pair (u, v) is in R, then there exists an edge (v, v') in G such that (u', v') is in R

SubGraph Isomorphism Vs. Graph Simulation

- Node label equivalence Vs. Node search constraints
- Bijective function vs. Many-to-many relation

Matching by Graph Simulation

- Input: A directed graph G, a graph pattern Q
- Output: The maximum simulation relation R
- Maximum simulation relation: always exists and is unique
 - If a match relation exists, then there exists a maximum one
 - Otherwise, it is the empty set still maximum

$$\blacksquare \text{ Complexity: } O\bigg(\Big(\Big|V\Big| + \Big|V_Q\Big|\Big)\Big(\Big|E\Big| + \Big|E_Q\Big|\Big)\bigg)$$

■ The output is a unique relation, possibly of size $|Q| \cdot |V|$

Algorithm for Graph Simulation

Similarity (P)

- For all nodes *u* in *Q* do:
 - $sim(u) \leftarrow$ the set of candidate matches w in G
- While there exists (u, v) in Q and w in sim(u) (in G) that violate the simulation condition
 - \blacksquare $sim(u) \leftarrow sim(u) \{w\}$
- Output sim(u) for all u in Q

Initial match:

- With the same label
- If *u* has an outgoing edge, so does *w*
- Simulation Condition: $successor(w) \cap sim(v) = \phi$
 - There exist an edge from u to v in Q, but the candidate w (in G) of u has no corresponding edge to a node w' (in G) that matches v

Pattern matching in social graphs

Bounded Patterns

- Pattern Graph: $Q = (V_Q, E_Q, f_v, f_e)$
 - $f_v(u)$: a conjunction of A op a, op in <, <=, ==, !=, >, >=
 - $f_e(u, u')$: a constant k or a symbol *

Bounded Simulation

- $G = (V, E, f_A)$ matches $Q = (V_Q, E_Q, f_v, f_e)$ via bounded simulation if there exists a binary relation $S \subseteq V_O \times V$ such that
 - S is a total mapping
 - S satisfies search conditions and bounds on edge-to-path mapping

Bounded Simulation

- Total mapping:
 - For each $u \in V_Q$, there exists $v \in V$ such that $(u, v) \in S$
- For each $(u, v) \in S$
 - Attributes $f_A(v)$ satisfies predicate $f_v(u)$
 - Each (u, u') in E_Q is mapped to a path from v to v' of length $f_e(u, u')$ in G, where $(u', v') \in S$

Complexity

- Input: A directed graph G, a graph pattern Q
- Output: Q(G), the unique maximum matching relation

$$Q\Big(\left|V\right|\cdot\left|E\right|+\left|E_{Q}\right|\cdot\left|V\right|^{2}+\left|V_{Q}\right|\cdot\left|V\right|\Big)$$

- Query driven approximation:
 - Use bounded simulation instead of subgraph isomorphism
- Criteria:
 - Lower complexity
 - Effectiveness: The query answers are sensible

Edge Relations

(Alice, Facebook)

(Alice, Sunita)

(Jose, Twitter)

(Jose, Sunita)

(Mikhail, Facebook)

(Mikhail, Twitter)

(Sunita, Facebook)

(Sunita, Alice)

(Sunita, Jose)

Edge Relations

(Alice, fan-of, Facebook)

(Alice, friend-of, Sunita)

(Jose, fan-of, Twitter)

(Jose, friend-of, Sunita)

(Mikhail, fan-of, Facebook)

(Mikhail, fan-of, Twitter)

(Sunita, fan-of, Facebook)

(Sunita, friend-of, Alice)

(Sunita, friend-of, Jose)

Edge Relations

(Alice, fan-of, 0.5, Facebook)

(Alice, friend-of, 0.9, Sunita)

(Jose, fan-of, 0.5, Twitter)

(Jose, friend-of, 0.3, Sunita)

(Mikhail, fan-of, 0.8, Facebook)

(Mikhail, fan-of, 0.7, Twitter)

(Sunita, fan-of, 0.7, Facebook)

(Sunita, friend-of, 0.9, Alice)

(Sunita, friend-of, 0.3, Jose)

Regular Patterns

- Pattern Graph: $Q = (V_Q, E_Q, f_v, f_e)$
 - $f_v(u)$: a conjunction of A op a, op in <, <=, ==, !=, >, >=
 - $f_e(u, u')$: a regular expression of the form:

$$f_e \coloneqq c \mid c^{\leq k} \mid c^+ \mid FF$$

Complexity:

$$Q\Big(\left|V\right|\cdot\left|E\right|+m\cdot\left|E_{Q}\right|\cdot\left|V\right|^{2}+\left|V_{Q}\right|\cdot\left|V\right|\Big)$$

- Bounded simulation is a special case:
 - Single color c, hence m = 1

Limitation of Graph Simulation

- A disconnected graph matches a connected pattern
- The yellow node in the pattern has 3 parents, in contrast to 1 in the graph
- An undirected cycle matches a tree
- Issue Identified: Simulation does not preserve the topology well in matching

Limitation of Graph Simulation

- A cycle with two nodes matches a cycle of unbounded length
- The match relation may be excessively large
- When social distances increase, the closeness of relationship decrease
- Issues identified: The need for revising simulation to enforce locality

Dual Simulation

- $G = (V, E, f_A)$ matches $Q = (V_Q, E_Q, f_v, f_e)$ via bounded simulation if there exists a binary relation $S \subseteq V_O \times V$ such that
 - S is a total mapping
 - S satisfies search conditions
 - S preserves both "child" and "parent" relationships

Preserve "parent" relationships and connectivity

Locality

- Diameter *d_O*
 - The maximum shortest distance (undirected path)

• d_Q -radius subgraph $G[v, d_Q]$, centered at v, with d_Q hops

Strong Simulation

- G matches Q via strong simulation, if there exists a node v in G such that $G[v,\ d_Q]$ matches Q via dual simulation
 - Duality
 - Local

Complexity: cubic time

$$O\left(\left|V\right|\left(\left|V\right|+\left(\left|V_{Q}\right|+\left|E_{Q}\right|\right)\left(\left|V\right|+\left|E\right|\right)\right)\right)$$

Summary

exact pattern matching

- G matches Q via subgraph isomorphism
- G matches Q via strong simulation
- G matches Q via dual simulation
- G matches Q via graph simulation

Preserve topology, but not bounded match

Does not preserve parents, connectivity, undirected cycles, bounded match

Summary

matching	complexity	match size
subgraph isomorphism	NP-complete	
graph simulation	quadratic time	
bounded simulation	cubic time	
regular matching	cubic time	
strong simulation	cubic time	

Paper to Review

- J. Lee, W. Han, R. Kasperovics, J. Lee. An In-depth Comparison of Subgraph Isomorphism Algorithms in Graph Databases, VLDB, 2012. http:// www.vldb.org/pvldb/vol6/p133-han.pdf
- L. P. Cordella, P. Foggia, C. Sansone, M. Vento. A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs, IEEE Trans. Pattern Anal. Mach. Intell. 26, 2004 (search Google scholar)
- W. Fan. Graph Pattern Matching Revised for Social Network Analysis. ICDT 2012, March 26–30, 2012, Berlin, Germany. ACM 2012. https:// homepages.inf.ed.ac.uk/wenfei/papers/icdt12.pdf
- S. Ma, Y. Cao, W. Fan, J. Huai, T. Wo: Strong simulation: Capturing topology in graph pattern matching. TODS 39(1): 4, 2014.

Summary and Review

- Query-driven approximation
- What is subgraph isomorphism? Complexity? Algorithm? Name a few applications
- What is graph simulation? Complexity? Understand its algorithm. Name a few applications
- Why do we need to revise conventional graph pattern matching for social network analysis? How should we do it? Why?
- Understand bounded simulation. Read its algorithm. Complexity?
- What is strong simulation? Complexity? Name a few applications in which strong simulation is useful.
- Find other revisions of conventional graph pattern matching that are not covered in the lecture.