

heap算法

瞿绍军湖南师范大学

Heap算法

heap是一种特殊的元素组织方式,可以被视为二叉树 第一个元素总是最大 总是能够在对数时间那增加或移除一个元素

Heap算法

- **★**heap算法
 - **★**make_heap()一将某区间内的元素转化为heap
 - ★push_heap(beg, end)—[beg, end-1)原本就是heap,将end之前的那个元素加入使区间[beg, end)]重新成为heap
 - ★pop_heap(beg, end)一从区间[beg, end)取出第一个元素,放到最后位置,区间[beg, end-1) 重新组成heap
 - ★sort_heap()一将heap转换为一个有序集合
 - ★可以用<运算符或op(elem1,elem2)作为排序准则
- ★示例: heap

push_heap 算法

图 4-21 所示的是 push_heap 算法的实际操演情况。为了满足 complete binary tree 的条件,新加入的元素一定要放在最下一层作为叶节点,并填补在由左至右的第一个空格,也就是把新元素插入在底层 vector 的 end() 处。

		1			. –						-	_ ··	
- 1	Ι ΄	امدا	la i	15	21	24	20	20	IΛ	12	122	ĒΛ	l
- 1	 1	081	131	כסו	121	24	32	40	19	OI	[13	50	
- 1	 												

68 31 65 21 50 32 26 19 16 13 24	<u></u>	. —-	_				-	_	_	. –	· -	г -	_	
			68	31	65	21	50	32	26	19	16	13	24	, i

pop_heap 算法

图 4-22 所示的是 pop heap 算法的实际操演情况。既然身为 max-heap, 最大值必然在根节点。pop 操作取走根节点(其实是移至底部容器 vector 的最后一个元素)之后,为了满足 complete binary tree 的条件,必须将最下一层最右边的叶节点拿掉,现在我们的任务是为这个被拿掉的节点找一个适当的位置。

注意, pop_heap 之后,最大元素只是被置放于底部容器的最尾端,尚未被取走、如果要取其值,可使用底部容器(vector)所提供的 back()操作函数。如果要移除它,可使用底部容器(vector)所提供的 pop_back()操作函数。

sort_heap 算法

既然每次 pop_heap 可获得 heap 中键值最大的元素,如果持续对整个 heap 做 pop_heap 操作,每次将操作范围从后向前缩减一个元素(因为 pop_heap 会把键值最大的元素放在底部容器的最尾端),当整个程序执行完毕时,我们便有了一个递增序列。图 4-23 所示的是 sort_heap 的实际操演情况。

