THOMAS GROW NAME:

1. (6 P) How much energy in Joules does a 20 V battery has if it contains 5 C of charges?

V= = = > J= VC J= (20V)(5C) = 100

2. (6 P) A car electric heater consumes 120W of power and works with 12 V. How much current does it draw from the source?

T= 120W

- 3. (18 P) Complete the table below by determining the resistor values and tolerances from the color codes and by applying the color-codes for the values and tolerances of the given resistors.

BANDA	BAND B	BAND C	BAND D	VALUE	TOLERANCE
BROWN	YELLOW	BROWN	NONE	1401	20%
RED	ORANGE	BLACK	GOLD	33 tz	5%
GREEN	BROWN	GOLD	SILVER	5,12	100/0
OBANGE	BUACK	GREEN	SILVER	$3.0 \mathrm{M}\Omega$	10%
RED	GREEN	60W	NONE	2.5 Ω	20%
DRANGE	ORANGE	BROWN	LOLD	330 Ω	5%

4. (5 P) A 10K Ω resistor has a tolerance of 10%. What is the range of resistance value?

9K2 - 11Ka

10,000 10,000

5. (15 P) Calculate V_1 , V_2 , and V_3 in the circuit below.

$$V_1 = I \cdot R_1 = (2000A)(3Ke) = 60V$$

$$V_2 = I \cdot R_2 = (2000A)(1Kn) = 20V$$

$$V_3 = I \cdot R_3 = (2000A)(2kn) = 40V$$

$$V_{1} = 60V$$
 $V_{2} = 80V$
 $V_{3} = 40V$

6. (25 P) Find R₁, R₂, I, and E in the figure below

$$P = \stackrel{\vee}{R} = 7 \quad \stackrel{\vee}{V} = P \cdot R$$

$$\stackrel{\vee}{V_3} = \sqrt{\frac{1}{7} \cdot \frac{1}{7}}$$

$$= \sqrt{\frac{1}{7} \cdot \frac{1}{7}}$$

$$R = \frac{P_1}{I^2} = \frac{8W}{(2A)^2} = \frac{8}{4} = 2 \Lambda$$

$$R_1 + R_2 + R_3 = R_1 = 7$$

 $R_2 = R_1 - R_1 - R_3 = 162 - 29 - 19 = 132$

- 7. (25 P)The total power dissipated in the circuit of Figure below is 60 Watts. Find
 - a. The current in the circuit
 - b. The resistance of R₂
 - c. The voltage across each resistor

8. (10P) An electric pencil sharpener rated 240mW, 6V is connected to a 9-V battery as shown in the Figure below. Calculate the value of the series resistor R_x needed to power the sharpener. Hint: the pencil sharpener will be damaged if consumes more than 240mW.

$$P = \frac{v^2}{R} = 0$$

$$R = \frac{v^2}{P} = \frac{9v^2}{240\pi W} = 337.5 \text{ r}$$

