TECNOLOGIA DA INFORMAÇÃO - SPRINT 2

Documentação: Detecção de Vazamento de Gás Natural em

Condomínios Residenciais: Prevenção e Segurança

01251089 - ANNE YUKARI YAMASAKI

01251075 - FILIPE DA SILVA SANTANA

01232147 – GUILHERME OLIVEIRA MENDES

01251057 - HYGOR SILVA WANDERLEI

01251096 – JOÃO VICTOR TORELLI DE MATOS

01251080 - VICTOR HUGO LIZ ORENGA

1. CONTEXTO

1.1 Introdução

O gás natural é amplamente utilizado em condomínios residenciais devido à sua eficiência e custo-benefício. No entanto, vazamentos podem levar a explosões, incêndios e intoxicações, especialmente em ambientes fechados. Dados da Associação Brasileira de Gás Natural (ABEGÁS, 2023) mostram que acidentes relacionados a vazamentos aumentaram 18% nos últimos cinco anos, com casos graves em São Paulo, onde explosões destruíram andares inteiros de prédios.

Em condomínios, o risco é amplificado pela alta densidade populacional e pela compartimentação de unidades, dificultando a rápida detecção. Um estudo do Corpo de Bombeiros de São Paulo (2022) revelou que 70% dos acidentes poderiam ver evitados com sistemas de detecção automática.

Contexto Legal em São Paulo:

- Lei nº 11.352, de 22 de abril de 1993: Esta lei estabelece a obrigatoriedade do uso de aparelhos sensores de vazamento de gás em diversos estabelecimentos comerciais, industriais e prédios residenciais no munícipio de São Paulo. Especificamente, determina que todos os prédios residenciais com mais de cinco andares devem equipar cada apartamento com um sensor de gás. Para edificações com até cinco andares e casas térreas, o uso do sensor é facultativo.
- Projeto de Lei nº 768/2019: Este projeto propõe a instalação obrigatória de sensores de monóxido e dióxido de carbono em imóveis residenciais que utilizam equipamento a gás, visando prevenir acidentes por inalação desses gases. Em setembro de 2023, o projeto foi discutido em audiência pública na Comissão de Política Urbana da Câmara Municipal de São Paulo.

1.2 Falhas nos Sistemas Atuais e a Necessidade de Automação

Atualmente, a maioria dos condomínios depende de inspeções manuais ou da percepção humana para identificar vazamentos, o que é ineficiente. Alguns prédios possuem sensores analógicos, que não emitem alertas remotos, limitando sua eficiência na prevenção de acidentes.

Estatísticas Alarmantes:

 Baixa Adoção de Sistemas Automatizados: A pesquisa realizada em 2023 pela Associação Brasileira de Normas Técnicas (ABNT), estima-se que apenas 15% dos condomínios brasileiros possuem detectores de gás automatizados. Esta baixa adesão evidencia uma vulnerabilidade significativa, considerando os riscos associados a vazamentos não detectados. Normas Técnicas e sua Aplicabilidade: A norma NBR 15526, estabelecida pela ABNT, define os requisitos mínimos para o projeto e a execução de redes de distribuição interna para gases combustíveis, incluindo gás natural (GN), em instalações residenciais e comerciais. Contudo, sua implementação não é obrigatória em muitas cidades, resultando em uma aplicação inconsistente a na ausência de sistemas de detecção em diversas edificações.

1.3 Riscos do Gás Natural e seus Componentes

1.3.1 Metano e sua Periculosidade

O gás natural é composto principalmente por metano (CH4), que é altamente inflamável e pode causar explosões em concentrações de apenas 5% no ar atmosférico. Esse percentual representa o Limite Inferior de Explosividade (LIE), tornando qualquer vazamento uma ameaça significativa.

1.3.2 Monóxido de Carbono: Um Risco Invisível

Além do risco de explosões, a queima incompleta do gás natural ode liberar monóxido de carbono (CO), um gás altamente tóxico. O monóxido de carbono se liga à hemoglobina do sangue 200 a 300 vezes mais do que o oxigênio, impedindo a oxigenação adequada do corpo. A exposição pode causar desde sintomas leves como tontura e fadiga até a morte por asfixia em casos mais graves.

1.3.3 Riscos dos Vazamentos de Pequena Escala

Vazamentos de gás de pequena magnitude podem passar despercebidos por longos períodos, acumulando-se em ambientes fechados e aumentando exponencialmente o risco de explosões. A detecção tardia desses vazamentos compromete a segurança dos moradores e pode resultar em dados materiais e humanos significativos.

1.4 A Necessidade de um Sistema de Monitoramento Inteligente

Acidentes com vazamentos de gás são comum e geram custos elevados, incluindo reparos estruturais, indenizações e processos judiciais. A falta de monitoramento contínuo agrava esse problema, tornando essencial a implementação de uma solução automatizada.

Diante desse cenário, nosso sistema propõe o uso de sensores inteligentes, MQ-2 incialmente para simulações de testes do desenvolvimento da aplicação. Integrados a uma dashboard web. Essa solução permitirá a detecção em tempo real de vazamentos, emitindo alertas automáticos para que decisões rápidas e assertivas possam ser tomadas pelos responsáveis.

Diante do cenário atual, a implementação de um sistema inteligente de detecção de gás é uma necessidade urgente para síndicos e donos de condomínios, que enfrentam riscos constantes de vazamentos, explosões e responsabilidades legais. A ausência de monitoramento automático compromete a segurança e jurídicos, além de desvalorização do imóvel. Com essa demanda crescente e ainda pouco atendida, surge como oportunidade estratégica para o projeto, que pode oferecer soluções tecnológicas inovadoras, seguras e acessíveis, contribuindo para a modernização.

2. OBJETIVOS

2.1 Objetivo Geral

Desenvolver um sistema inteligente de monitoramento e detecção de vazamentos de gás natural em condomínios residenciais, utilizando sensores e uma dashboard web para emissão de alertas em tempo real.

2.2 Objetivos Específicos

- Instalar sensores de detecção de vazamento de gás em apartamentos individuais.
- Integrar sensores de gás a uma plataforma web responsiva.
- Captar e processar dados em tempo real sobre a concentração de gás no ambiente.
- Exibir os dados em uma dashboard web intuitiva e acessível.
- Permitir o acompanhamento contínuo dos níveis de gás por administradores e responsáveis.
- Emitir alertas automáticos em caso de anomalias ou níveis perigosos de gás.

3. JUSTIFICATIVA

O projeto pode reduzir em até 70% os riscos de acidentes relacionados a vazamentos, segundo o Corpo de Bombeiro de SP (2022). Isso representa uma economia de 60% com custos de reparos estruturais, indenizações e processos em caso de sinistros.

4. ESCOPO

4.1 Descrição Resumida do Projeto

Este projeto propõe o desenvolvimento de um sistema inteligente de monitoramento e detecção de vazamento de gás natural voltado especificamente para condomínios residenciais. A ideia central é proporcionar uma solução automatizada, precisa e de resposta rápida para mitigar os riscos relacionados à presença de gás em ambientes fechados. A motivação surge a partir do aumento significativo de acidentes causados por vazamentos e de baixa adesão a sistemas automatizados, conforme dados da ABEGÁS e do Corpo de Bombeiro. A solução apresentada se baseia no uso de sensores de gás MQ-2 integrados a uma dashboard web, permitindo o monitoramento em tempo real, emissão de alertas automáticos.

4.1.1 Delimitação do Escopo: Onde e Como os Sensores Serão Instalados

Local de Instalação	Quantidade Recomendada de Sensores	Medições Sugeridas	Justificativa Técnica
Cozinha	1 sensor por unidade residencial	A 30 cm do teto ou fontes de gás	O gás natural tende a subir. A cozinha é o principal ponto de uso de fogões e aquecedores
Área de serviço	1 sensor (se houver aquecedor a gás)	Próximo ao aquecedor, altura de 1,5 m	Muitos apartamentos usam aquecedores a gás nessa área, sendo um local crítico

0	4	Dufuius - Late	A14
Casa de	1 sensor por	Próximo ao teto,	Alta concentração
máquinas/	ambiente	distante de	de gás pode se
central de gás	confinado	janelas	acumular nesses
			espaços se não
			forem bem
			verificados
Corredores dos	1 a cada 3	Altura média (1,5	Monitoramento
andares	apartamentos	m a 1,8 m)	externo para
			alertas
			preventivos em
			áreas comuns
Portaria	Sem sensor, mas	N/A	Centro de
	com acesso à		monitoramento,
	dashboard		onde os alertas
			serão
			visualizados e
			providências
			serão tomadas

4.2 Resultados Esperados

- Desenvolvimento e implementação de um sistema funcional de monitoramento de gás natural.
- Dashboard web intuitiva para visualização dos dados coletados pelos sensores.
- Sistema de alertas automatizados para administradores e moradores em caso de detecção de vazamentos.
- Registro e armazenamento histórico de dados para acompanhamento de padrões e anomalias.
- Validação do sistema por meio de testes e simulações em ambiente controlado.

4.3 Requisitos

Código	Requisito	Descrição	Classificação	Tamanho	Tam(#)	Prioridade	SPRINT
RF0.0	Tela Home	O sistema deve exibir uma tela inicial com opções de entrar, registrar,	Essencial	Pequeno	5	1	2

		menu, fale					
		conosco e					
		simulador.					
RF0.1	Menu de navegação	A tela Home deve ter um menu com: Home, Quem Somos, Serviços, Simulador, Fale Conosco.	Essencial	Pequeno	5	1	2
RF1.0	Tela de Cadastro	O sistema deve ter uma tela específica para cadastro de novos usuários com todos os campos obrigatórios.	Essencial	Pequeno	3	1	2
RF1.1	Registro de usuário	O sistema deve permitir que usuários se registrem com: nome, CEP, número, CNPJ, e-mail, senha e confirmação de senha.	Essencial	Pequeno	5	1	2
RF2.0	Tela de Login	O sistema deve permitir que usuários façam login com e- mail e senha.	Essencial	Pequeno	3	1	2
RF2.1	Validação de login	O sistema deve validar os campos de login e verificar se estão de acordo com os dados cadastrados.	Essencial	Pequeno	3	1	2

RF3.0	Tela de Simulador	O sistema deve exibir uma tela simulador com entradas para valores numéricos para cálculo.	Importante	Médio	8	2	2
RF3.1	Cálculo simulado	O sistema deve permitir que usuários simulem a economia gerada pela redução de riscos com o uso do sistema de monitoramento de vazamentos de gás.	Importante	Médio	8	2	2
RF4.0	Tela de Dashboard	O sistema deve exibir uma dashboard com gráficos de monitoramento em tempo real por apartamento.	Essencial	Grande	13	1	3
RF4.1	Alertas na dashboard	O sistema deve emitir alertas visuais na dashboard em caso de níveis perigosos de gás.	Essencial	Médio	8	1	3
RF4.2	Geração de históricos	O sistema deve gerar históricos com dados de medições e alertas emitidos	Importante	Pequeno	5	3	3

		na tela					
		dashboard.					
RF5.1	Alteração de contato	O sistema deve permitir a edição das informações enviadas pelo formulário de contato.	Essencial	Pequeno	5	3	3
RF5.2	Exclusão de contato	O sistema deve permitir a exclusão de mensagens de contato armazenadas.	Essencial	Pequeno	5	3	3
RF5.3	Restrição de Permissão para Mensagens de Contato	O sistema não deve permitir para usuários alteração e exclusão de mensagens de contato armazenadas.	Importante	Médio	8	2	2
RF6.0	Cadastro de condomínio	O sistema deve cadastrar condomínios com: nome, logradouro, CEP, e-mail, senha.	Essencial	Pequeno	5	1	2
RF6.1	Alteração de condomínio	O sistema deve permitir a alteração dos dados de um condomínio.	Essencial	Pequeno	5	3	3
RF6.2	Exclusão de condomínio	O sistema deve permitir a exclusão de condomínios cadastrados.	Essencial	Pequeno	5	3	3

RF6.3	Restrição de Permissão para edições cadastros de condomínio.	O sistema não deve permitir para usuários alteração e exclusão de cadastros de condomínio.	Importante	Médio	8	2	2
RF7.0	Cadastro de sensor	O sistema deve cadastrar sensores com: nome, tipo e status.	Essencial	Pequeno	3	1	2
RF7.1	Alteração de sensor	O sistema deve permitir alteração de dados de sensores.	Essencial	Pequeno	3	3	3
RF7.2	Exclusão de sensor	O sistema deve permitir exclusão de sensores cadastrados.	Essencial	Pequeno	3	3	3
RF7.3	Restrição de Permissão para edições cadastros de sensor.	O sistema não deve permitir para usuários alteração e exclusão de cadastros de sensor.	Importante	Médio	8	2	2
RF8.0	Cadastro de apartamento	O sistema deve cadastrar apartamentos com: nome do condomínio, número do apartamento, metragem, andar.	Essencial	Pequeno	5	1	2
RF8.1	Alteração de apartamento	O sistema deve permitir	Essencial	Pequeno	3	3	2

		alteração de dados de apartamentos.					
RF8.2	Exclusão de apartamento	O sistema deve permitir exclusão de apartamentos cadastrados.	Essencial	Pequeno	3	3	2
RF8.3	Restrição de Permissão para edições cadastros de apartamentos.	O sistema não deve permitir para usuários alteração e exclusão de cadastros de apartamentos.	Importante	Médio	8	2	2
RF9.0	Inserção de medição	O sistema deve armazenar medições com: data, hora e concentração de gases.	Essencial	Pequeno	5	1	2
RF9.1	Inserção de status de alerta	O sistema deve armazenar o status do alerta baseado na medição.	Essencial	Médio	8	1	3
RF10.0	Integração com Banco de Dados	O sistema deve estar conectado a um banco de dados seguro para armazenamento das medições, alertas e dados cadastrais.	Essencial	Médio	8	1	3
RNF11.0	Notificações por SMS	O sistema deve ser estruturado de forma que permita, a integração com	Desejável	Médio	8	2	3

RF12.0	Portaria com funções de síndico	serviços de envio de notificações por e-mail em caso de alerta. A portaria deve ter as mesmas permissões que o síndico, podendo editar e visualizar dados do sistema.	Essencial	Pequeno	3	1	2
RF13.0	Cadastro por parte da portaria	A portaria deve poder cadastrar apartamentos e moradores no sistema.	Desejável	Pequeno	5	3	3
RF14.0	Tela de Administração	O sistema deve possuir uma tela de administração para gerenciar usuários, permissões e configurações gerais.	Essencial	Grande	13	2	3
RF14.1	Permissão máxima para Administradores	Os administradores devem ter permissão máxima (nível 777) para acessar, editar e gerenciar todas as funcionalidades do sistema.	Essencial	Pequeno	3	1	2
RF15.0	Visualização para moradores	O sistema deve permitir que os	Desejável	Médio	8	3	3

		moradores visualizem os dados da dashboard em tempo real para acompanhar o status do condomínio.					
RF15.1	Aumentar o projeto para residencial de casas	O projeto deve englobar também usuários de casas (não apenas apartamentos) para que visualizem a dashboard e seus alertas relacionados.	Desejável	Médio	8	3	3
RNF0.0	Plataforma Web Responsiva	A aplicação deve ser responsiva, permitindo o acesso por diferentes dispositivos e navegadores.	Desejável	Pequeno	5	3	2
RNF1.0	Manter o sistema ininterrupto	O sistema deve operar continuamente sem interrupções.	Desejável	Pequeno	3	3	3
RNF2.0	Usabilidade	A interface da dashboard deve ser intuitiva e de fácil acesso para o usuário final.	Importante	Pequeno	5	1	3

RNF3.0	Segurança - LGPD	O sistema deve estar em conformidade com a LGPD para proteção de dados pessoais.	Importante	Pequeno	3	1	2
RNF4.0	Escalabilidade	O sistema deve permitir integração de novos sensores sem perda de desempenho.	Importante	Grande	13	1	2
RNF5.0	Compatibilidade	O sistema deve ser compatível com diferentes navegadores e sistemas operacionais.	Desejável	Médio	8	3	2

Total	254
Sprint 2	131
Sprint 3	123
Média	127

4.4 Limites e Exclusões

Categoria	Incluído	Excluído
Sensores	Instalação de sensores	Integração com
	MQ-2 para testes e	sensores industriais
	simulações	certificados
Monitoramento	Monitoramento da	Detecção de outros
	concentração de gás	gases como CO2, GLP
	natural (CH4)	
Plataforma	Desenvolvimento de	Aplicativo mobile nativo
	dashboard web	para Android/IOS
	responsiva	
Notificações	Alertas visuais na	Envio de alertas por SMS
	plataforma	ou ligação telefônica

Suporte técnico	Suporte durante a fase de desenvolvimento	Suporte contínuo pós- implementação no cliente
Escopo geográfico	Aplicação em condomínios residenciais na cidade de São Paulo	Expansão em outras cidades

4.5 Macro Cronograma

Etapa	Atividades Principais	Tempo
Planejamento	Redefinição de requisitos, estudo técnico e análise de viabilidade	21 dias
Desenvolvimento do Hardware	Configuração e testes com sensores MQ-2	50 dias
Desenvolvimento da Plataforma	Criação da dashboard, banco de dados, interface web	80 dias
Integração e Testes	Integração sensor + plataforma e testes de funcionamento	21 dias
Documentação e Apresentação	Preparação do relatório final e apresentação do projeto	30 dias

4.6 Recursos Necessários

Categoria	Item	Descrição
Recursos Humanos	Desenvolvedores	Responsáveis pela
	Frontend	interface gráfica da
		aplicação e experiência
		do usuário
	Desenvolvedores	Responsáveis pelo
	Backend	processamento dos
		dados, banco de dados e
		API
	Técnico de Instalação	Realiza a instalação
		física dos sensores nos

		apartamentos e locais estratégicos.
Hardware	Sensor de Gás (MQ-2)	Sensor utilizado para detectar a presença de gás inflamável no ambiente.
	Arduino UNO	Microcontrolador que lê os dados dos sensores e os envia para o servidor.
	Fonte de Alimentação 5V	Alimenta os sensores e o microcontrolador de forma segura e contínua
	Cabos e conectores	Responsáveis pelas conexões físicas entre os componentes eletrônicos
	Computador	Equipamento utilizado para programação, testes e operação do sistema
	Servidor	Responsável por hospedas a aplicação web e o banco de dados
Software	Trello	Organização e gestão das tarefas e etapas do projeto
	Plataforma Web (Dashboard)	Interface online para visualização dos dados e alertas em tempo real
	API de Aquisição de Dados, DAQino	Interface que coleta os dados dos sensores e os envia para o sistema
	Visual Studio Code (VSCode)	Ambiente de desenvolvimento utilizado para programar os microcontroladores e a dashboard
	MySQL Workbench	Ferramenta para modelagem e

		gerenciamento do banco de dados da aplicação
	Backend/API Node.js	Responsável pelo processamento de dados e comunicação entre frontend e sensores
Outros Recursos	Ambiente de Testes	Espaço controlado para validar o funcionamento dos sensores e da plataforma antes da instalação
	Acesso à Internet	Essencial para a comunicação em tempo real entre sensores e a dashboard

4.7 Riscos

(I) = Impacto	(P) = Probabili	dade $(F) = Fa$	ator de Risco
Alto (3)	3	6	9
Médio (2)	2	4	6
Baixo (1)	1	2	3
(F) = (P) x (I)	Pouco provável (1)	Provável (2)	Muito provável (3)

ID	Descrição	(P)	(I)	(F)	Ação	Como?
1	Perder um membro da equipe	1	3	3	Mitigar	Manter sempre uma relação transparente entre os membros comunicando todos os passos, sejam eles positivos ou negativos. Além de comunicar as ideias vigentes.
2	Procrastinação	2	3	6	Evitar	Sempre planejar os próximos passos do projeto, incluindo as tarefas e as pessoas designadas para tal, sempre respeitando o prazo estabelecido.
3	Falta de documentação	2	3	6	Evitar	Sempre realizar atas e documentar tudo o que foi feito pelos membros, tendo assim um maior controle do andamento do projeto.
4	Falta de organização	2	2	4	Evitar	Manter uma documentação detalhada do que foi feito e do que será realizado, além de utilizar com frequência uma ferramenta de gestão (Trello), para maior compreensão do grupo.

5	Procrastinação	2	3	6	Evitar	Sempre planejar os próximos passos do projeto, incluindo as tarefas e as pessoas designadas para tal, sempre respeitando o prazo estabelecido.
6	Datas mal administradas	1	2	2	Evitar	Seguir o cronograma projetado para cada entrega do grupo, deixando os membros sempre a par de como está o andamento, e caso aconteça, avisar que não irá entregar no tempo estipulado.
7	Falta de comunicação no grupo	2	2	4	Evitar	Prezar pela comunicação entre todos os membros do grupo, porém, caso sinta necessidade comunicar um membro para que repasse ao restante do grupo. Estar sempre presente na Daily.
8	Problemas técnicos	1	2	2	Mitigar	Problemas técnicos acontecem, porém é vital estar sempre testando a fim de ter noção se as funções estão funcionando corretamente e caso não, comunicar o grupo para que os integrantes tenham ciência e possam auxiliar para que o problema seja resolvido.
9	Conflitos entre membros do grupo	1	3	3	Evitar	Manter um diálogo claro e aberto com os integrantes, a fim de que qualquer conflito seja resolvido o quanto antes, e assim não prejudique no desenrolar do projeto. Estar aberto a críticas e feedbacks.
10	Problemas de saúde ou imprevistos pessoais	2	1	2	Mitigar	Comunicar sempre o grupo caso qualquer imprevisto ou acidente aconteça, prezar pela realização das tarefas dentro do prazo, para caso algo aconteça o grupo tenha tempo hábil de terminar a tarefa.
11	Escopo não claro	3	3	9	Mitigar	Estar lendo com frequência a documentação do trabalho, a fim de minimizar os "erros" ou possíveis falhas na interpretação do projeto. Se atentar com o objetivo do projeto.
12	Contexto Confuso	3	3	9	Mitigar	Estar lendo com frequência a documentação do trabalho, a fim de minimizar os "erros" do projeto. Todos devem ler a documentação e realizar reuniões para discutir o que deve ou não ser melhorado, além de cada um dizer o que entendeu após a leitura da documentação.
13	Falta de experiência técnica da equipe com sensores IoT	2	2	4	Mitigar	É preciso comunicação entre os integrantes para o conhecimento geral caso haja dúvidas ou falta de conhecimento por algum dos integrantes, podendo ser solucionada através de estudos e

						compartilhamento de ideias, sempre prezando pelo prazo da entrega.
14	Rotatividade de membros durante o projeto	1	1	1	Mitigar	O objetivo do grupo é que todos tenham conhecimento do projeto, sendo assim, caso alguém saia e outra pessoa entre no lugar, as informações devem ser passadas rápidas e as tarefas atribuídas sem perda de foco ou atrasos no andamento do trabalho.
15	Bugs ou falhas na IDE (VSCode, Workbench)	2	1	2	Mitigar	Todos da equipe contam com todas as ferramentas necessárias para que o projeto seja feito e concluído, portanto, caso haja falha em alguma ferramenta de qualquer pessoa, ainda haverá outros computadores que poderão ser usados para finalizar as tarefas.
16	Limitações da API na aquisição dos dados	2	2	4	Mitigar	Caso haja falha, trabalhar rapidamente para o conserto necessário e avisar os integrantes do grupo.
17	Sobrecarga da equipe	2	3	6	Mitigar	É necessário um planejamento bem-feito e com metas realistas, visando a conclusão completa por todos os integrantes em suas tarefas. Além disso a comunicação e a presença nas Dailys são essenciais.
18	Mudanças durante o projeto	2	2	4	Mitigar	Mudanças e ou novas funcionalidades irão acontecer, é necessário boa comunicação entre todos, trabalho em equipe e objetivos/planejamentos claros. Focando sempre na conclusão das tarefas no tempo estipulado.
19	Queda de energia ou falhas na infraestrutura	2	2	2	Mitigar	Comunicação é fundamental. É preciso sempre ter backups das versões anteriores para diminuir possíveis bugs e buscar alternativas como a utilização de um computador por vez, para economizar energia e ter disposto sempre um celular que possa rotear internet.
20	Falta de conhecimento sobre o tema	1	3	3	Evitar	Estar sempre realizando buscas e pesquisas sobre o tema, a fim de aprender mais e poder contribuir com o projeto.

4.8 Restrições

Categoria Restrição Descrição

Ferramentas Dependência de Ferramentas como Arduino, VSC	ode,
ferramentas e MySQL Workbench limitam a	
específicas flexibilidade de mudança de	
aplicação	
Software Compatibilidade A integração entre API e a dashb	oard
entre plataformas dependem da compatibilidade e	ntre
sistemas e bibliotecas	
Escopo Foco exclusivo O projeto não abordará outros tip	oos
em vazamento de de sensores ou riscos (como inc	êndio
gás ou eletricidade)	
Foco exclusivo O projeto não abordará outros tip	oos
em gás natural de gases	
Integração Conectividade em A solução depende de conexão	
**************************************	de
tempo real estável com a interne para envio	uc
alertas e dados	uc
	uo
alertas e dados	

4.9 Partes Interessadas (Stakeholders)

Stakeholder	Papel e Responsabilidade
Empresa Desenvolvedora	Responsável pelo desenvolvimento
	técnico, implementação e testes do
	sistema completo
Dono do Condomínio	Cliente direto; responsável pela
	contratação, acompanhamento e
	validação da solução
Síndico do Condomínio	Usuário final que receberá os alertas e
	toda monitoração com o sistema
	funcional
Moradores do Condomínio	Usuários que beneficiarão da
	segurança proporcionada