Classical differential geometry

IKHAN CHOI

1. Introduction

1.1. Two ways to represent curves or surfaces.

1.2. Coordinates and parametrizations.

Definition 1.1. A parametrization is a smooth map $U \to \mathbb{R}^d$ such that

- (1) $U \subset \mathbb{R}^c$ is open and connected,
- (2) α is one-to-one,
- (3) $d\alpha$ is nondegenerate; $\{\partial_i \alpha\}_{i=1}^c$ is linearly independent.

Definition 1.2. A regular curve is a subset of \mathbb{R}^d that is the image of some parametrization $\alpha: I \subset \mathbb{R} \to \mathbb{R}^d$.

Definition 1.3. A regular surface is a subset of \mathbb{R}^d that is the image of some parametrization $\alpha: U \subset \mathbb{R}^2 \to \mathbb{R}^d$.

2. Curves in a space

2.1. Arc-length parameterization.

Theorem 2.1. For every regular curve, there is a parametrization α such that $\|\alpha'\| = 1$.

Proof. Suppose we have a parametrization $\beta: I_t \to \mathbb{R}^d$. Define $\tau: I_t \to I_s$ such that

$$\tau(t_0) := \int_0^{t_0} \|\beta'(t)\| \, dt.$$

Then, s is a diffeomorphism. Define $\alpha: I_s \to \mathbb{R}^d$ by $\alpha:=\beta \circ \tau^{-1}$. Then, by the chain rule,

$$\alpha' = \frac{d\alpha}{ds} = \frac{d\beta}{dt} \frac{d\tau^{-1}}{ds} = \beta' \left(\frac{d\tau}{dt}\right)^{-1} = \frac{\beta'}{\|\beta'\|}.$$

Definition 2.1 (Frenet-Serret frame). Let α be a curve such that $\kappa \neq 0$. Define tangent unit vector, normal unit vector, binormal unit vector by:

$$\mathbf{T} := \frac{lpha'}{\|lpha'\|}, \qquad \mathbf{N} := \frac{\mathbf{T'}}{\|\mathbf{T'}\|}, \qquad \mathbf{B} := \mathbf{T} \times \mathbf{N}.$$

Definition 2.2.

$$\kappa := \mathbf{T}' \cdot \mathbf{N}, \quad \tau := -\mathbf{B}' \cdot \mathbf{N}.$$

IKHAN CHOI

Theorem 2.2 (Frenet-Serret formula). Let α be a unit speed curve.

$$\begin{pmatrix} \mathbf{T}' \\ \mathbf{N}' \\ \mathbf{B}' \end{pmatrix} = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{pmatrix}.$$

Proof. The vectors $\mathbf{T}', \mathbf{B}', \mathbf{N}$ are collinear.

Theorem 2.3. Let α be a unit speed curve.

$$\alpha' = \mathbf{T}$$

$$\alpha'' = \kappa \mathbf{N}$$

$$\alpha''' = -\kappa^2 \mathbf{T} + \kappa' \mathbf{N} + \kappa \tau \mathbf{B}$$

Skew-symmetricity is due to the fact the differential of an orthogonal matrix forms a skew symmetric matrix.

Example 2.1. Let α be a curve in \mathbb{R}^3 . If the normal line always passes through a point, then α is contained in a circle.

Proof. Let α be a unit speed curve. By the assumption, there is a constant point $p \in \mathbb{R}^3$ such that the vectors $\alpha - p$ and \mathbf{N} are parallel so that we have

$$\langle \alpha - p, \mathbf{T} \rangle = 0, \qquad \langle \alpha - p, \mathbf{B} \rangle = 0.$$

Our goal is that $\|\alpha - p\|$ is constant and there is a constant vector v such that $\langle \alpha - p, v \rangle = 0$.

$$0 = \langle \alpha - p, \mathbf{T} \rangle' = \langle \alpha', \mathbf{T} \rangle + \langle \alpha - p, \kappa \mathbf{N} \rangle = 1 + \kappa \langle \alpha - p, \mathbf{N} \rangle.$$

$$0 = \langle \alpha - p, \mathbf{B} \rangle' = \langle \alpha - p, -\tau \mathbf{N} \rangle = -\tau \cdot (-\frac{1}{\kappa})$$

$$(\|\alpha - p\|^2)' = \langle \alpha - p, \alpha - p \rangle'$$

$$= 2\langle \alpha - p, \alpha' \rangle$$

$$= 2\langle \alpha - p, \mathbf{T} \rangle$$

$$= 0$$

$$\mathbf{B}' = -\tau \mathbf{N} = 0.$$

3. Surfaces in a space

$$\nu_x = S(\alpha_x) = \kappa_1 \alpha_x$$

4. Curves on a surface