1

Integrales Impropias

La definición de integral de Riemann necesita dos hipótesis mínimas que son que la función sea acotada y que esté definida en un intervalo cerrado y acotado. Cuando al menos una de estas condiciones no se cumple debemos usar otros recursos para darle sentido a las integrales. Hablaremos de **integrales impropias** cuando la función no es acotada en el intervalo de integración o cuando el intervalo de integración no es acotado, es decir tiene una de las formas: $]-\infty,a]; [a,+\infty[;]-\infty,+\infty[$.

1.1 Integrales impropias tipo I: Intervalos infinitos

Estas corresponden al caso en que la integración se realiza sobre un intervalo no acotado. Integrales impropias sobre intervalo no acotados o de primera clase.

Definición 1.1

1 Si la función $f:[a,+\infty[\to\mathbb{R}$ es una función integrable en [a,c], para todo $c\in[a,+\infty[$, entonces definimos:

$$\int_{a}^{+\infty} f(x) dx = \lim_{c \to +\infty} \int_{a}^{c} f(x) dx,$$

cuando este límite existe.

2 Si la función $f:]-\infty, a] \to \mathbb{R}$ es integrable en [c,a] para todo $c \in]-\infty, a]$, entonces definimos:

$$\int_{-\infty}^{a} f(x) dx = \lim_{c \to -\infty} \int_{c}^{a} f(x) dx,$$

cuando este límite existe.

3 Si la función $f:]-\infty,+\infty[\to\mathbb{R}$ es tal que para algún $a\in\mathbb{R}$ existen las dos integrales impropias $\int_{-\infty}^a f(x)\,dx$ y $\int_a^{+\infty} f(x)\,dx$, entonces definimos:

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{+\infty} f(x) dx.$$

Esta integral también puede denotarse como $\int\limits_{\mathbb{R}} f(x) dx$.

N Es importante notar que la definición de integral impropia sobre todo \mathbb{R} no depende del punto a elegido. Para ver esto elijamos otro punto b y supongamos para fijar las ideas que $b \le a$. Entonces,

$$\int_{-\infty}^{a} f(x) dx = \int_{-\infty}^{b} f(x) dx + \int_{b}^{a} f(x) dx.$$

Así, $\int_{-\infty}^{b} f(x) dx$ existe, y por lo tanto, la integral $\int_{-\infty}^{a} f(x) dx$ también existe.

Si existe el límite $\lim_{c \to +\infty} \int_a^c f(x) \, dx = \int_a^{+\infty} f(x) \, dx$, diremos que la integral $\int_a^{+\infty} f(x) \, dx$ es convergente. De manera análoga, si existe $\lim_{c \to +\infty} \int_a^c f(x) \, dx = \int_{-\infty}^a f(x) \, dx$, diremos que la integral $\int_{-\infty}^a f(x) \, dx$ es convergente. Cuando los límites que definen las integrales impropias de la definición 1.1, no existen diremos que las integrales divergen.

Ejemplo 1.1

Sea $f:[1,\infty[\to\mathbb{R} \text{ tal que } f(x)=\frac{1}{x^2}]$. Analicemos la existencia de la integral de f sobre su dominio.

$$\int_{1}^{+\infty} f(x) \, dx = \int_{1}^{+\infty} x^{-2} \, dx = \lim_{c \to \infty} \int_{1}^{c} \frac{dx}{x^{2}} = \lim_{c \to +\infty} \left(-\frac{1}{c} + 1 \right) = 1.$$

Ejemplo 1.2

Analicemos la convergencia de la integral $\int_0^\infty e^{-x} dx$.

$$\int_0^{+\infty} e^{-x} dx = \lim_{c \to +\infty} \int_0^c e^{-x} dx = \lim_{c \to +\infty} \left(-e^{-x} \Big|_0^c \right)$$
$$= \lim_{c \to +\infty} [1 - e^{-c}] = 1.$$

Ejemplo 1.3 (Ejemplo de referencia)

El siguiente ejemplo generaliza el ejemplo 1.1 y constituye una de las bases para usar los criterios de convergencia. Si a > 0 y $p \in \mathbb{R}$, entonces la integral impropia de primera clase

$$\int_{a}^{+\infty} \frac{1}{x^{p}} dx = \begin{cases} \frac{a^{1-p}}{p-1} & \text{si } p > 1\\ +\infty & \text{si } p \leqslant 1 \end{cases}$$

En efecto,

• Si p = 1

$$\int_{a}^{+\infty} \frac{1}{x} dx = \lim_{c \to +\infty} (\ln c - \ln a) = +\infty.$$

■ Si $p \neq 1$.

$$\int_{a}^{c} \frac{1}{x^{p}} dx = \left. \frac{x^{-p+1}}{-p+1} \right|_{a}^{c} = \frac{c^{1-p}}{1-p} - \frac{a^{1-p}}{1-p}.$$

Entonces,

$$\int_{a}^{+\infty} \frac{1}{x^{p}} dx = \lim_{c \to +\infty} \left[\frac{c^{1-p}}{1-p} - \frac{a^{1-p}}{1-p} \right] = \frac{a^{1-p}}{p-1} + \frac{1}{1-p} \lim_{c \to +\infty} c^{1-p}. \tag{1.1}$$

El último límite de la ecuación (1.1) tiene distinto valor según p sea mayor o menor que 1.

• Si p > 1: en este caso 1 - p < 0, así

$$\lim_{c \to +\infty} c^{1-p} = \lim_{c \to +\infty} \frac{1}{c^{p-1}} = 0.$$

• Si p < 1: entonces, 1 - p > 0, así

$$\lim_{c\to +\infty} c^{1-p} = +\infty.$$

Ejemplo 1.4

Casos particulares del ejemplo 1.3 son:

1.1.1 Propiedades de las integrales impropias de primera clase

Las propiedades básicas de la integral Riemann se extienden, mediante procesos de pasar al límite, a las integrales impropias. Por ejemplo:

1 Linealidad: Si f y g son integrables en [a,c[para todo $c \in \mathbb{R}, c \geqslant a$ y si sus respectivas integrales impropias sobre $[a,+\infty[$ son convergentes, entonces también existen, es decir, es convergente la integral impropia de $\lambda f + \mu g$ sobre $[a,+\infty[$ cualquieran sean los números reales λ y μ y se cumple la igualdad:

$$\int_{a}^{+\infty} (\lambda f + \mu g)(x) dx = \lambda \int_{a}^{+\infty} f(x) dx + \mu \int_{a}^{+\infty} g(x) dx.$$

2 Regla de Barrow: Si $f:[a,+\infty[\to\mathbb{R}]]$ es una función continua en $[a,+\infty[]]$ y si $F:[a,+\infty[\to\mathbb{R}]]$ es una primitiva de f en [a,c] para todo $c\in\mathbb{R}$, $c\geqslant a$ y si la integral de f sobre $[a,+\infty[]]$ existe, se cumple que:

$$\int_{a}^{+\infty} f(x) \, dx = \lim_{c \to +\infty} (F(c) - F(a)) = F(x) \Big|_{a}^{+\infty}.$$

3 Cambio de variable: Si $f: [a, +\infty[\to \mathbb{R} \text{ es una función continua en } [a, +\infty[\text{ y si } \phi: [\alpha, \beta[\to \mathbb{R} \text{ es una función con derivada continua en } [\alpha, \beta[; \text{ donde } -\infty < \alpha < \beta \leqslant +\infty; \text{ y si además } \phi(\alpha) = a, \phi(t) \to b^-, \text{ cuando } t \to \beta^- \text{ y si } \phi([\alpha, \beta[) = [a, +\infty[, \text{ entonces }] +\infty[, \text{ cuando }$

$$\int_{\alpha}^{+\infty} f(x) dx = \int_{\alpha}^{\beta^{-}} f(\varphi(t)) \varphi'(t) .$$

4 Integración por partes: Si f, g son dos funciones con derivadas continuas en [a, +∞[y son convergentes dos de los tres términos siguientes, entonces

$$\int_{a}^{+\infty} f(x)g'(x) dx = f(x)g(x) \Big|_{a}^{+\infty} - \int_{a}^{+\infty} f'(x)g(x) dx.$$

N Todas las propiedades anteriores son válidas para integrales sobre intervalos del tipo $]-\infty,a]$.

Criterios de convergencia para integrales de primera clase

Los criterios de convergencia están enunciados para integrales impropias sobre intervalos de la forma $[a, +\infty[$, pero todos ellos valen de la misma forma para intervalos del tipo $]-\infty,a]$.

Teorema 1.1 (Criterio de Comparación)

Sean f(x), g(x) funciones continuas, positivas y tales que $g(x) \le f(x)$ para todo $x \ge a$. Entonces se tiene que:

■ Si
$$\int_{a}^{+\infty} f(x) dx$$
 converge, entonces $\int_{a}^{+\infty} g(x) dx$ converge.

■ Si
$$\int_{a}^{+\infty} g(x) dx$$
 diverge, entonces $\int_{a}^{+\infty} f(x) dx$ diverge.

Demostración. Observemos que si $f: [a, +\infty[\to \mathbb{R} \text{ es creciente y acotada superiormente, entonces <math>\lim_{x \to +\infty} f(x)$ existe. Definimos la funciones $F \setminus G$ mediante las ecuaciones

$$F(x) = \int_{a}^{x} f(t) dt \qquad \text{y} \qquad G(x) = \int_{a}^{x} g(t) dt.$$

Ambas funciones son crecientes. En efecto, si $x_1 < x_2$ entonces

$$F(x_2) = \int_a^{x_2} f(t) dt = \int_a^{x_1} f(t) dt + \int_{x_1}^{x_2} f(t) dt = F(x_1) + \int_{x_1}^{x_2} f(t) dt.$$

Como f es positiva entonces la integral $\int_{x_1}^{x_2} f(t) dt$ es positiva y por lo tanto, $F(x_1) \le F(x_2)$. Del mismo modo se prueba que G es creciente.

Recordemos ahora, que por definición:

$$\lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} \int_{a}^{x} f(u) du = \int_{a}^{+\infty} f(x) dx,$$

$$\lim_{x \to +\infty} G(x) = \lim_{x \to +\infty} \int_{a}^{x} g(u) du = \int_{a}^{+\infty} g(x) dx.$$

Entonces, por hipótesis, $\lim_{x \to +\infty} F(x)$ exise y como además $F(x) \ge G(x)$, la función G es creciente y acotada superiormente. Por lo cual, $\lim_{x \to +\infty} G(x)$ existe. Esto es equivalente a tener la convergencia de la integral impropia de g.

5

Ejemplo 1.5

En los siguientes ejemplos que veremos a continuación usaremos como integral de referencia la vista en el ejemplo 1.4, que es una integral convergente.

1 La integral: $\int_{1}^{\infty} \frac{dx}{1+x^2}$ es convergente. En efecto, $x^2 \ge 0$, luego

$$0 \leqslant x^2 \leqslant 1 + x^2 \Longrightarrow 0 \leqslant \frac{1}{1 + x^2} \leqslant \frac{1}{x^2} \Longrightarrow \int_1^\infty \frac{dx}{1 + x^2} \leqslant \int_1^\infty \frac{dx}{x^2} = 1$$
.

2 La integral $\int_{1}^{+\infty} \frac{|\sin(x)|}{x^2} dx$ es convergente. Usando el criterio de comparación, tenemos:

$$|\operatorname{sen}(x)| \leqslant 1 \Longrightarrow \frac{|\operatorname{sen}(x)|}{x^2} \leqslant \frac{1}{x^2} \Longrightarrow \int_1^{+\infty} \frac{|\operatorname{sen}(x)|}{x^2} dx \leqslant \int_1^{+\infty} \frac{1}{x^2} dx.$$

Como $\int_{1}^{+\infty} \frac{1}{x^2} dx$ es convergente, la integral dada inicialmente también converge.

3 Un ejemplo de divergencia por comparación

La integral $I = \int_{1}^{+\infty} \frac{x}{x^2 + 1} dx$ diverge.

 $1 \leqslant x$ implica $x^2 + 1 \leqslant x^2 + x$ entonces $\frac{1}{x^2 + x} \leqslant \frac{1}{x^2 + 1}$. Multiplicando la designaldad por x que es positivo, obtenemos $\frac{x}{x^2 + x} \leqslant \frac{x}{x^2 + 1}$ lo que implica que, $\frac{1}{x + 1} \leqslant \frac{x}{x^2 + 1}$.

La integral $\int_{1}^{+\infty} \frac{1}{x+1} dx$ diverge, por comparación también diverge *I*.

Criterio de comparación al límite

Teorema 1.2 (Criterio de comparación al límite)

Sean f(x), g(x) funciones continuas, positivas y supongamos que

$$K = \lim_{x \to +\infty} \frac{f(x)}{g(x)}.$$

. Entonces, para $x \ge a$ tenemos que:

• Si $K \neq 0$, entonces ambas integrales impropias sobre $[a, +\infty]$

$$\int_{a}^{+\infty} f(x) dx \qquad y \qquad \int_{a}^{+\infty} g(x) dx$$

convergen o ambas divergen.

- Si K = 0, entonces la convergencia de $\int_a^{+\infty} g(x) dx$ implica la convergencia de $\int_a^{+\infty} f(x) dx$.
- Si $K = +\infty$, entonces la divergencia de $\int_a^{+\infty} g(x) dx$ implica la divergencia de $\int_a^{+\infty} f(x) dx$.

Ejemplo 1.6

Si $n \in \mathbb{N}$, $\int_{1}^{+\infty} e^{-x} x^{n} dx$ converge. En efecto, $\int_{1}^{+\infty} \frac{1}{x^{2}} dx$ converge y

$$\lim_{x \to +\infty} \frac{e^{-x} x^n}{\frac{1}{x^2}} = \lim_{x \to +\infty} (e^{-x} x^n \cdot x^2) = \lim_{x \to +\infty} e^{-x} x^{n+2} = \lim_{x \to +\infty} \frac{x^{n+2}}{e^x}.$$

Este último límite, si es evaluado en forma directa, da lugar a una forma indeterminada del tipo $\frac{+\infty}{+\infty}$, por lo cual aplicamos L'Hospital, y obtenemos:

$$\lim_{x \to +\infty} \frac{x^{n+2}}{e^x} = \lim_{x \to +\infty} \frac{(n+2)x^{n+1}}{e^x}.$$

Que vuelve a dar lugar a una forma indeterminada del tipo $\frac{+\infty}{+\infty}$, por tanto, si aplicamos sucesivamente L'Hospital, obtenemos:

$$\lim_{x \to +\infty} \frac{x^{n+2}}{e^x} = \lim_{x \to +\infty} \frac{(n+2)(n+1)\cdots 2 \cdot 1}{e^x} = 0.$$

Así, la convergencia de $\int_1^{+\infty} \frac{1}{x^2} dx$ implica la convergencia de $\int_1^{+\infty} e^{-x} x^n dx$.

Ejemplo 1.7

Si p,q > 0 la convergencia de la integral

$$I = \int_1^{+\infty} \frac{x^p}{1 + x^q} \, dx \,,$$

se puede estudiar usando comparación al límite con la función $\frac{1}{x^{q-p}}$.

$$\lim_{x\to +\infty} \left(\frac{x^p}{1+x^q}: \frac{1}{x^{q-p}}\right) = \lim_{x\to +\infty} \frac{x^q}{1+x^q} = 1.$$

Entonces, como K = 1, ambas integrales convergen o ambas divergen. Luego, como sabemos que $\int_{1}^{+\infty} \frac{1}{x^{q-p}} dx$ converge si q - p > 1 y diverge si $q - p \le 1$, tenemos que:

- I converge cuando q p > 1.
- *I* diverge cuando $qp \leq 1$.

Ejemplo 1.8

Ahora haremos una aplicación del ejemplo anterior.

1 La integral $I = \int_{1}^{+\infty} \frac{\sqrt{x}}{1 + \sqrt[3]{x}} dx$ diverge como consecuencia del ejemplo anterior, ya que: $p = \frac{1}{2}$ y $q = \frac{1}{3}$ implica

que
$$q - p = \frac{1}{3} - \frac{1}{2} < 1$$
.

2 En cambio la integral $J = \int_{1}^{+\infty} \frac{\sqrt{x}}{1+x^2} dx$ converge. En este caso $p = \frac{1}{2}$ y q = 2 implican que $q - p = \frac{3}{2} > 1$.

Ejemplo 1.9 (Ejemplo de aplicación del teorema 1.2 cuando K=0)

1 La convergencia de $I = \int_{1}^{+\infty} \exp(x^2) dx$ puede obtenerse por comparación al límite con $g(x) = \frac{1}{x^2}$. En efecto, tenemos

$$\frac{f(x)}{g(x)} = \frac{x^2}{e^{x^2}} \Longrightarrow \lim_{x \to +\infty} \frac{f(x)}{g(x)} = 0.$$

En este caso K = 0 y la función con la cual comparamos tiene integral impropia convergente, por tanto la integral I es convergente.

2 Para ilustrar que en el caso de K=0 la divergencia de g no implica la divergencia de la integral de f, nos inspiramos en el ejemplo anterior. Sea $I=\int_1^{+\infty} \exp(x^2) \, dx$ y aplicaremos el teorema 1.2 con $g(x)=\frac{1}{x}$, cuya integral sobre $[1,+\infty[$ diverge

$$\frac{f(x)}{g(x)} = \frac{x}{e^{x^2}} \Longrightarrow \lim_{x \to +\infty} \frac{f(x)}{g(x)} = 0.$$

Pero, como ya sabemos, la integral de f converge y la de g diverge.

Ejemplo 1.10 (Ejemplo de aplicación del teorema 1.2 cuando $K=+\infty$)

1 La divergencia de $I = \int_{1}^{+\infty} \frac{1}{\sqrt{x}} dx$ puede obtenerse por comparación al límite con $g(x) = \frac{1}{x}$. En efecto,

$$\frac{f(x)}{g(x)} = \frac{x}{\sqrt{x}} = \sqrt{x} \Longrightarrow \lim_{x \to +\infty} \frac{f(x)}{g(x)} = +\infty.$$

En este caso $K = +\infty$ y la función con la cual comparamos tiene integral impropia divergente, por tanto la integral I es divergente.

2 Para ilustrar que en el caso $K=+\infty$ la convergencia de g no implica la convergencia de la integral de f, nos inspiraremos en el ejemplo anteior. Sea $I=\int_1^{+\infty}\frac{1}{x}\,dx$ y aplicaremos el teorema 1.2 con $g(x)=\frac{1}{x^2}$, cuya integral sobre $[1,+\infty[$ converge.

$$\frac{f(x)}{g(x)} = x \Longrightarrow \lim_{x \to +\infty} \frac{f(x)}{g(x)} = +\infty.$$

Pero, como ya sabemos, la integral de f diverge y la de g converge.

1.2 Integrales impropias de tipo II: Integrandos discontinuos

Estas integrales impropias corresponden al caso en que la función no es acotada en el intervalo de integración

Definición 1.2

1 Si $f:]a,b] \to \mathbb{R}$ es una función tal que, para todo $c \in]a,b[$, f es integrable en [c,b], entonces se define

$$\int_{a^+}^b f(x) dx = \lim_{c \to a^+} \int_c^b f(x) dx,$$

cuando este límite existe.

2 Si $f:[a,b[\to \mathbb{R}$ es una función tal que, para todo $c \in]a,b[$, f es integrable en [a,c[, entonces se define

$$\int_{a}^{b^{-}} f(x) dx = \lim_{c \to b^{-}} \int_{a}^{c} f(x) dx,$$

cuando este límite existe.

Ejemplo 1.11

La función $f(x) = \frac{1}{2\sqrt{x}}$, no está definida para x = 0. Calculamos la integral impropia:

$$\int_{0+}^1 \frac{1}{2\sqrt{x}} \, dx \quad = \quad \lim_{c \to 0^+} \int_c^1 \frac{1}{2\sqrt{x}} \, dx = \quad \lim_{c \to 0^+} \sqrt{x} \bigg|_c^1 = \lim_{c \to 0^+} (1 - \sqrt{c}) = 1 \, .$$

Definición 1.3

Si $f:]a,b[\to \mathbb{R}$ es una función tal que, para todo $c_1 < c_2 \in]a,b[$, f es integrable en $[c_1,c_2]$ entonces se define

$$\int_{a}^{b} f(x) dx = \lim_{c_1 \to a} \int_{c_1}^{x_0} f(x) dx + \lim_{c_2 \to b} \int_{x_0}^{c_2} f(x) dx,$$

para cualquier $x_0 \in]a,b[$, si los límites existen.

Ejemplo 1.12

$$f(x) = \begin{cases} \frac{1}{\sqrt[3]{x}} & x \neq 0\\ 1 & x = 0 \end{cases}$$

Esta función no es acotada en el intervalo [-1,1], debido a que entorno a cero tiende a $\mp \infty$. Usaremos a definición

1.3

$$\begin{split} \int_{-1}^{1} f(x) \, dx &= \lim_{c \to 0^{-}} \int_{-1}^{c} \frac{1}{\sqrt[3]{x}} \, dx + \lim_{c \to 0^{+}} \int_{c}^{1} \frac{1}{\sqrt[3]{x}} \, dx \\ &= \lim_{c \to 0^{-}} \frac{3}{2} x^{2/3} \Big|_{-1}^{c} + \lim_{c \to 0^{+}} \frac{3}{2} x^{2/3} \Big|_{c}^{1} \\ &= \lim_{c \to 0^{-}} \frac{3}{2} \left(c^{2/3} - (-1)^{2/3} \right) + \lim_{c \to 0^{+}} \frac{3}{2} \left(1^{2/3} - c^{2/3} \right) \\ &= -\frac{3}{2} + \frac{3}{2} = 0 \, . \end{split}$$

2 Sea f definida por $f: [-1,1] \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} \frac{1}{x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

Como en el caso anterior esta función no es acotada entorno del cero. Veamos si existe la integral impropia $\int_{-1}^{1} f(x) dx$.

$$\int_{-1}^1 f(x) \, dx = \lim_{c \to 0^-} \int_{-1}^x \frac{1}{x^2} \, dx + \lim_{c \to 0^+} \int_{c}^1 \frac{1}{x^2} \, dx = I_1 + I_2 \, .$$

Según la definición 1.3, para que la integral converga deben converger ambas integrales Veamóslas por separado

$$I_1 = \lim_{c \to 0^-} -x^{-1} \Big|_{-1}^c = \lim_{c \to 0^-} \left(-\frac{1}{c} - 1 \right) = +\infty.$$

Por lo tanto, la integral diverge

(N) También se pueden aplicar estas definiciones cuando hay varios puntos conflictivos $a < c_1 < c_2 < \cdots < c_n < b$

$$\int_{a}^{b} f(x) dx = \int_{a}^{c_{1}} f(x) dx + \int_{c_{1}}^{c_{2}} f(x) dx + \dots + \int_{c_{n-1}}^{c_{n}} f(x) dx + \int_{c_{n}}^{b} f(x) dx,$$

donde cada integral de la derecha se ha obtenido como un límite.

Ejemplo 1.13 (Integral de referencia)

El ejemplo que veremos ahora constituye una integral de referencia para aplicar distintos criterios de convergencia. Si b > 0 y $p \in \mathbb{R}$, la integral impropia de segunda clase:

$$\int_{0+}^{b} x^{-p} dx = \begin{cases} \frac{b^{1-p}}{1-p} & \text{si } p < 1 \\ +\infty & \text{si } p \geqslant 1 \end{cases}$$

En efecto, si $\varepsilon > 0$ tenemos

$$\int_{\varepsilon}^{b} x^{-p} dx = \frac{b^{1-p} - \varepsilon^{1-p}}{1-p}; \qquad p \neq 1.$$

Entonces,

$$I = \int_0^b x^{-p} dx = \lim_{\epsilon \to 0} \int_{\epsilon}^b x^{-p} dx$$
$$= \lim_{\epsilon \to 0} \left(\frac{b^{1-p}}{1-p} - \frac{\epsilon 1 - p}{1-p} \right)$$
$$= \frac{b^{1-p}}{1-p} - \lim_{\epsilon \to 0} \frac{\epsilon^{1-p}}{1-p} .$$

Cuando $\varepsilon \to 0^+$ tenemos:

$$\lim_{\varepsilon \to 0^+} \varepsilon^{1-p} = \begin{cases} \lim_{\varepsilon \to 0^+} \frac{1}{\varepsilon^{p-1}} & \text{si } 1-p < 0 \\ \lim_{\varepsilon \to 0^+} \varepsilon^{1-p} & \text{si } 1-p > 0 \end{cases}$$

Por tanto,

$$\lim_{\epsilon \to 0^+} \epsilon^{1-p} = \left\{ \begin{array}{ll} +\infty & \quad \text{si } 1-p < 0 \\ 0 & \quad \text{si } 1-p > 0 \end{array} \right.$$

Si p = 1, entonces

$$\int_0^b \frac{1}{x} dx = \left| \lim_{\epsilon \to 0^+} \ln(x) \right|_{\epsilon}^b = +\infty.$$

En particular, tenemos que

Propiedades de las integrales impropias de segunda clase

Las propiedades de la integral de Riemann se extienden, mediante procesos de paso al límite, a las integrales impropias. Por ejemplo:

1 Linealidad: Si f y g son integrables en [a,b[y si sus respectivas integrales impropias son convergentes, entonces también existe, es decir, es convergente la integral impropia de cf + dg sobre [a,b[; cualesquiera sea $c,d \in \mathbb{R}$ y se tiene:

$$\int_{a}^{b^{-}} (cf(x) + dg(x)) dx = c \int_{a}^{b^{-}} f(x) dx + d \int_{a}^{b^{-}} g(x) dx.$$

2 Regla de Barrow: Si $f:[a,b[\to \mathbb{R}$ es continua en [a,b[, si $F:[a,b[\to \mathbb{R}$ es una función primitiva de f en [a,b[y si existe el límite:

$$\int_{a}^{b^{-}} f(x) dx = \lim_{t \to b^{-}} (F(t) - F(a)) .$$

Entonces este límite es el valor de $\int_a^{b^-} f(x) dx$ lo cual lo podemos abreviar como: $F(x)\Big|_a^{b^-}$

3 Cambio de variable: Sean $f:[a,b[\to\mathbb{R} \text{ continua}, \varphi:[\alpha,\beta[\to\mathbb{R} \text{ una funci'n con derivada continua}, -\infty < \alpha < \beta \leqslant +\infty$ tal que $\varphi(\alpha) = a$, $\varphi(\beta) \to b^-$ cuando $t \to \beta^-$ y si $\varphi([\alpha,\beta[) = [a,b[$. Entonces

$$\int_a^{b^-} f(x) dx = \int_{\alpha}^{\beta^-} f(\varphi(t)) \varphi'(t) dt.$$

Si una de las integrales es convergente (divergente) la otra también lo es.

1 Integración por partes: Si u y v son funciones con derivada continua en [a,b[y son convergentes dos de los tres términos de la siguiente ecuación, entonces el tercero también lo es y se tiene la igualdad:

$$\int_{a}^{b^{-}} u(x)v'(x) dx = u(x)v(x) \Big|_{a}^{b^{-}} - \int_{a}^{b^{-}} u'(x)v(x) dx.$$

N Todas las propiedades son validas para integrales sobre intervalos de la forma]a,b], cambiando a por a^+ y b^- por b.

Criterios de convergencia para integrales de segunda clase

Teorema 1.3 (Criterio de comparación)

Si f y g son funciones positivas, integrales en [x,b], para todo $x \in]a,b[$ tales que $f(x) \le g(x)$ para todo $x \in]a,b[$. Entonces,

■ Si $\int_a^b g(x) dx$ converge, entonces $\int_a^b f(x) dx$ converge. Además, se cumple que

$$\int_{a}^{b} f(x) dx \leqslant \int_{a}^{b} g(x) dx.$$

■ Si $\int_a^b f(x) dx$ diverge, entonces $\int_a^b g(x) dx$ diverge.

N La demostración del criterio de comparación está basado en las propiedades de la integral de Riemann y de los límites. En particular de la propiedad siguiente: Si $h:]a,b[\to \mathbb{R}$ es creciente y acotado superiormente, entonces $\lim_{x \to b^-} h(x)$ existe.

Teorema 1.4 (Criterio de comparación en el límite)

Si las funciones f, g son positivas e integrables en [x,b] para todo $x \in]a,b[$, tales que

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = L.$$

- Si $L \neq 0$, entonces las integrales impropias $\int_a^b f(x) dx$ y $\int_a^b g(x) dx$ ambas convergen o ambas divergen.
- Si L = 0, entonces la convergencia de $\int_a^b g(x) dx$ implica la convergencia de $\int_a^b f(x) dx$.
- Si $L = +\infty$, entonces la divergencia de $\int_a^b g(x) dx$ implica la divergencia de $\int_a^b f(x) dx$.

Ejemplo 1.14

1 La integral $I = \int_1^2 \frac{dx}{x^3 - x^2 + 4x - 4}$ diverge. En efecto, como el integrando tiene una discontinuidad en x = 1 y usando el criterio de comparación al límite, escogeremos como g la función $\frac{1}{x-1}$.

$$\frac{f(x)}{g(x)} = \frac{\frac{1}{x^3 - x^2 + 4x - 4}}{\frac{1}{x - 1}} = \frac{x - 1}{x^3 - x^2 + 4x - 4} = \frac{x - 1}{(x - 1)(x^2 + 4)} = \frac{1}{x^2 + 4}.$$

Por lo tanto,

$$\lim_{x \to 1} \frac{1}{x^2 + 4} = \frac{1}{5} \neq 0.$$

Como $\int_{1}^{2} \frac{dx}{x-1}$ diverge, la integral dada inicialmente también diverge.

2 La integral $\int_0^{\pi/2} \frac{dx}{\sqrt{\sin(x)}}$ es convergente ya que:

$$\lim_{c \to 0^+} \frac{1}{\sqrt{\text{sen}(x)}} : \frac{1}{\sqrt{x}} = \lim_{x \to 0^+} \sqrt{\frac{x}{\text{sen}(x)}} = 1.$$

Así, como el cociente es 1, sabemos que ambas integrales convergen, o ambas integrales divergen. Por lo tanto, usando la convergencia de $\int_0^{\pi/2} \frac{dx}{\sqrt{x}}$, podemos concluir que $\int_0^{\pi/2} \frac{dx}{\sqrt{\sin(x)}}$ converge.

3 La integral $\int_0^\infty \frac{e^x}{\sqrt{x^3}}$ diverge. Ya que,

$$\frac{e^x}{\sqrt{x^3}} : \frac{1}{x^{3/2}} = e^x.$$

Por lo tanto,

$$\lim_{x \to 0^+} \frac{\frac{e^x}{\sqrt{x^3}}}{\frac{1}{x^{3/2}}} = \lim_{x \to 0^+} e^x = 1.$$

13

Implica que el límite del cociente cuando $x \to 0$ es 1, por tanto, ambas integrales convergen, o ambas divergen; y como la integral $\int_0^1 \frac{1}{x^{3/2}}$ es divergente; pues el exponente de x es mayor que 1, podemos concluir que $\int_0^1 \frac{e^x}{\sqrt{x^3}} dx$ diverge. Notemos que como ya hemos estudiado la convergencia en un intervalo del tipo $S =]0, a[; a \in \mathbb{R}, y$ hemos concluido que la integral allí es divergente, no es necesario estudia que ocurre en todo \mathbb{R}^+ , por cuanto si diverge en $S \subseteq \mathbb{R}^+$, diverge en todo \mathbb{R}^+ .