DISTRIBUTED COMPUTING IN SENSOR NETWORKS

James Long ¹ Anupa Murali² Zihao Wang ³

¹PhD Candidate Civil Engineering MIT ²Affiliation Harvard University ²Affiliation Harvard University

BACKGROUND

- Mode shapes describe the dynamic response of mechanical systems to their environment
- Material properties (mass, stiffness, damping), can be inferred from these responses
- Changes in modal responses may indicate defects

COMPUTATION

Given time series x(t) from n sensor locations:

Compute $X_n(\omega)$ for each of the n locations

For a specific ω_i form $G_{n \times n}(\omega_i)$ where:

$$G_{jk}(\omega_i) = X_j(\omega_i) imes X_k(\omega_i)^*$$

Then decompose $G_{n imes n} = U_{n imes n} \Sigma_{n imes n} V_{n imes n}^*$

The first singular vector (column) of U is the mode shape estimate

MOTIVATION: TECHNOLOGY CAN OVERWHELM TRADITIONAL ALGORITHMS

Example 1: high-res cameras can produce huge data sets (e.g one time series per pixel)

MOTIVATION: TECHNOLOGY CAN OVERWHELM TRADITIONAL ALGORITHMS

Example 2: Networks of wirelessly connected sensor devices

- Devices have built in accelerometers and microcontrollers
- Very low cost enables large scale, dense deployment
- Communication out of the network drains battery, and we are forced to perform computation on slow (100MHz), memory constrained (128kB RAM) devices

APPROACH & SECRET WEAPON

- Recall that we use only the first singular vector as an estimate of the mode shape
- Because our matrix is normal, we can use a power method to estimate the largest eigenvector (PageRank!)

Algorithm:

$$i=0$$
; init v_0

while
$$(i < N)$$
:

$$v_{i+1}=Gv_i$$

$$v_{i+1} = rac{v_{i+1}}{\|v_{i+1}\|}$$

$$i = i + 1$$

APPROACH & SECRET WEAPON

Rate of convergence: $\frac{\lambda_1}{\lambda_2}$

 λ_1 is the largest eigenvalue, λ_2 the next largest

RESULTS: SERIAL COMPARISON

1217 individual time series of length 1000

1900x speed increase

$$\lambda_1 = 3.9 imes 10^5 \ \lambda_2 = 1.2 imes 10^{-9}$$

RESULTS: SERIAL COMPARISON

54 individual time series of length 180000

RESULTS: PARALLELISATION IN MPI

- MPI offers a solution to very large data sets, as well as a good simulation of a sensor network (using send/recv)
- We can exploit embarrasing parallelism of FFT calculation: One process for every time series
- Then collect FFT values at a subset of processes ('reduce'), otherwise communication will kill us
- Question: What is the right number of 'reduce' nodes

RESULTS: MPI ODYSSEY BENCHMARKING

Note: A realistic serial implementation would be orders of magnitude more costly

EVALUATION

- Using the power method to estimate mode shapes, instead of SVD saves orders of magnitudes in execution time on CPU ($1900 \times$ on 1217×1217 matrix)
- No meaningful decrease in accuracy
- Successfully parallelised the algorithm using MPI4py:
 Simulation of a wireless network
- More work required to prove concept with wireless communication and microcontroller

MAIN LESSON

- Parallelism can help immensely or hurt
- We need to decide prudently how much parallelism to use (MapReduce is a good example)
 - Arithmetic intensity is important!
 - Good algorithms are crucial