计算物理 hw17

PB18020616 李明达

December 2020

摘要

这是计算物理第 17 次作业,作业题目是以 $x_{n+1} = \lambda sin(\pi x)$ 为迭代方程进行迭代: (1) 画出系统状态随参数 λ 的变化图,要求在图中体现出定值状态、倍周期分叉和混沌状态。(2) 列出各个倍周期分叉处的 λ 值,求相应的 Feigenbaum 常数。

1 算法和程序

1.1 算法

本题的思路是,先给定一个初始的 x_0 ,经过多步热化以后,此时会出现一个或多个不动点(或混沌),这时**含去热化点**,从后面的点里找出各个 λ 值处的不动点,将其画在图上。

随后我们对这些点先用排序方法 (这里我们采用 quick sort 办法) 进行排序,然后统计有多少个不同的点来记录是二周期分叉,还是四,八,十六,三十二分叉,我的方法是: 对特定 λ 值输出的 x,先进行顺序排序,然后比较相邻的两个点的大小,通过记录相差大于 10^{-5} 的相邻点的个数,来估计分叉点。举个例子,如果排序后的两个相邻点一个为 0.5,一个为 0.8,则说明两个点在两个"分支"里;而如果一个点是 0.500011,另一个是 0.500012,则说明两个点在同一个"分支"。用这种方法我们可以计算出分支的数量,如果分支是 2 个,则为二周期分叉,如果是 4 个则为四分叉,通过搜寻临界点,来找出分叉处,从而计算 Feigenbaum 常数。

对于这个函数,对于 $\lambda = 0.4$ 的情况,可以用图像法画出来两个不动点,如图 1所示

1 算法和程序 2

图 1: $\lambda = 0.4$ 时的不动点

1.2 程序

我的程序包括三个部分:第一个部分是随机数产生器,这个是为了避免初始值不同而对图像的影响;第二个部分是 display 和 QuickSort 函数,用来对数组进行快速排序;第三个部分用来计算不同 λ 的不动点,并且在 quicksort 之后,计算不同 λ 值的时候的分叉个数。

1.2.1 随机数产生器

我们仍然使用 Schrage 随机数产生算法,这个和之前的都一样,所以不过多阐述。

1.2.2 display 和 QuickSort 函数

这两个函数参考网上已经成熟的代码,基本上是标准的了,不仅速度快,而且简单易懂。第一个函数用来把数组表示出来(用来检验是否排序成功),第二个函数用来对数组进行排序。

图 2: 系统状态随 λ 变化图

1.2.3 void diedai() 函数

diedai(float lambda) 函数的作用是在 lambda 值的时候求不动点,并且在 quicksort 之后, 计算不同 lambda 值的时候的分叉个数, 所使用的算法是我在 section 1.1 里提到的,通过"搜寻"临界值来找到分叉点。

2 实验结果

2.1 1. 系统的状态随参数的变化图

通过上述的算法,我们取热化步数 N=1000,种子值在数据文件中。每一个 λ 我们用随机数生成 5 个初始值,分别对 5 个初始值寻找 20 步的迭代,所以每一个 λ 值有 100 个点的数据,画出来如图 2所示。

用随机数来产生初值是很重要的,我们会在最后讨论如果单一初值的 情况。

图 3: 定态时的 λ 值的区域。值为 1 代表有值,值为 0 代表没有值。可以看出,此时中间部分右界为 0.315037

2.2 2. 每个倍周期分叉处的 λ 值

通过我在 Section 1.1 里阐述的算法,我们可以得到定态 (图 3)、二 (图 4),四 (图 5),八 (图 6),十六 (图 7),三十二 (图 8) 个分叉时 λ 的图。由于有四个分叉肯定有两个分叉,所以这些图是又包含关系的,三十二分叉的图包含的 λ 值最多,而我们通过比较不同的图来找出分叉点的位置。这些图如下所示:

所以我们可以总结出,在定态、二、四、八、十六、三十二个分叉临界点 λ 的值为 0.315037、0.718032、0.832030、0.858030、0.863030、0.869030,可以计算成下表??.

表 1: 所计算得出的分叉点和 Feigenbaum 常数

分叉	λ	Feigenbaum 常数
定态	0.315037	null
	0.718032	null
四	0.832030	4.665304
八	0.858030	4.384538
十六	0.863030	5.200000
三十二	0.869030	null

图 4: 有 2 个分叉时的 λ 值的区域。值为 1 代表有值,值为 0 代表没有值。可以看出,此时中间部分右界为 0.718032

图 5: 有 4 个分叉时的 λ 值的区域。值为 1 代表有值,值为 0 代表没有值。可以看出,此时中间部分右界为 0.832030

图 6: 有 8 个分叉时的 λ 值的区域。值为 1 代表有值,值为 0 代表没有值。可以看出,此时中间部分右界为 0.858030

图 7: 有 16 个分叉时的 λ 值的区域。值为 1 代表有值,值为 0 代表没有值。可以看出,此时中间部分右界为 0.863030

图 8: 有 32 个分叉时的 λ 值的区域。值为 1 代表有值,值为 0 代表没有值。可以看出,此时中间部分右界为 0.869030

因为每次我只取了 100 个,所以最多只能做到 64 分叉,但是这个误差会很高,所以我只做到了 32 分叉,前两个值相对比较准确,但最后一个值因为有限个采样,已经不准,因此可以确定 Feigenbaum 常数大概在 4.5 左右。

3 总结

本实验我按照作业要求,首先画出以 $x_{n+1} = \lambda sin(\pi x)$ 为迭代方程的系统状态随参数 λ 的变化图(图中包含了定值状态、倍周期分叉和混沌状态),然后通过我在 Section 1.1 列出的算法,计算了各个倍周期分叉处的 λ 值,据此求了相应的 Feigenbaum 常数。

4 进一步讨论

这里我想讨论一下随机取初值的重要性

一开始我只取了 $x_0 = 1$,但这时我发现,如果给定一个单一的值,在区间 $x \in [0.4, 1.0]$ 只能画出来上半支,如图 9,同时在-1.5 左右的值也是残缺的。所以为了找出所有的不动点,我们要用随机数产生器来进行初值的产生。

4 进一步讨论 8

图 9: 如果只取单一的初值,可能画出来是残缺的图