Diskrete Mathematik und Logik

Universität Konstanz, Wintersemester 2022/23

Dozent: Prof. Dr. Sven Kosub

Ausarbeitung: Dr. Matthias Droth

Inhaltsverzeichnis

1	Mat	Iathematische Grundlagen				
	1.1	Zuweisung	5			
	1.2	Iteration	5			
	1.3	Rekursion	6			

Kapitel 1

Mathematische Grundlagen

1.1 Zuweisung

• Zuweisung als Standardform (linke Seite wird durch rechte Seite definiert):

$$x =_{\text{def}} y \quad \text{oder} \quad X := y. \tag{1.1}$$

 \Rightarrow ,x" ist der Name für y.

ullet x und y dürfen beliebig vertauscht werden.

Beispiele:

- 1. $x =_{\text{def}} 2$,
- 2. $x =_{\text{def}} 2n + 1$,
- 3. $f(x) =_{\text{def}} 2n + 1$,
- 4. $p|q \Leftrightarrow_{\text{def}} \exists k : q = k \cdot p \text{ (es gibt ein } k \text{ mit } q = k \cdot p).$

Beachte: "x=y" behauptet eine Gleichheit \Rightarrow Beweis nötig!

1.2 Iteration

• Definitionsform zum Ausdrücken von Wiederholungen in Variablen, aber mit bestimmten Grenzen:

$$\sum_{k=1}^{n} a_k =_{\text{def}} a_1 + a_2 + a_3 + \ldots + a_n, \quad \prod_{k=1}^{n} a_k = a_1 \cdot a_2 \cdot \ldots \cdot a_n.$$
 (1.2)

Beispiel: $n! =_{\text{def}} \prod_{k=1}^{n} k$.

• Typisches Problem: Finde werggleichen Ausdruck onhe die Laufvariable k. Besipiel: $\sum_{k=1}^{n} k = \frac{n \cdot (n+1)}{2}$.

1.3 Rekursion

- Definitionsform, bei der die definierte Seite auf der definierenden Seite vorkommen darf: $x =_{\text{def}} \dots x \dots$
- Um unendliche Schachtelungen auszuschließen werden Abbruchbedingungen festgelegt. Ein paar Beispiele:
 - 1. $n! =_{\text{def}} n \cdot (n-1)!$ für $n \ge 1$ und $0! =_{\text{def}} 1$.
 - 2. Euklid $(m, n) =_{\text{def}} \begin{cases} \text{Euklid } (\text{mod}(n, m), m) & \text{falls } m \nmid n, \\ m & \text{falls } m \mid n. \end{cases}$
 - 3. Fibonacci Reihe: $F_n =_{\text{def}} F_{n-1} + F_{n-2}$ für $n \ge 2$ und mit $F_0 =_{\text{def}} 0$, $F_1 =_{\text{def}} 1$.

$$\Rightarrow F_5 = F_4 + F_3$$

$$= (F_3 + F_2) + (F_2 + F_1)$$

$$= ((F_2 + F_1) + (F_1 + F_0)) + ((F_1 + F_0) + F_1)$$

$$= (((F_1 + F_0) + F_1) + (F_1 + F_0)) + ((F_1 + F_0) + F_1)$$

$$= 5F_1 + 3F_0 = 5 \cdot 1 + 3 \cdot 0 = 5.$$
(1.3)

Merke: Rekursionen werden ausgewertet, indem sie in Iterationen umgewandelt werden.

4. Ackermann Funktion (auf natürlichen Zahlen x, y):

$$A(0, y) =_{\text{def}} y + 1,$$

 $A(x, 0) =_{\text{def}} x,$
 $A(x, y) =_{\text{def}} A(x - 1, A(x, y - 1)), \text{ für } x \ge 1, y \ge 1.$ (1.4)

Literaturverzeichnis

- [1] G. Baym, Lectures on Quantum Mechanics (Addison Wesley, 1993).
- [2] F. Schwabl, Quantenmechanik und Quantenmechanik für Fortgeschrittene (Springer, 2007 und 2005).
- [3] W. Nolting, Grundkurs Theoretische Physik, Bände 4, 5/2 und 7 (Springer, 2005, 2006 und 2005).
- [4] A. Messiah, Quantenmechanik 2 (de Gruyter, 1990).
- [5] H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An Introduction (Oxford, 2004).