MATH 131A: HOMEWORK 5

Lana Lim 105817312

May 11, 2025

Problem 1. Solution.

Ross 11.2 Let $a_n = (-1)^n$ and $d_n = \frac{6n+4}{7n-3}$

- (a) $\{1, 1, 1, 1, 1\}, \{\frac{10}{4}, \frac{16}{11}, \frac{22}{18}, \frac{28}{25}, \frac{34}{32}\}.$
- (b) $s_n = a_n, S = \{1, -1\}.$
 - $s_n = d_n, S = \{\frac{6}{7}\}.$
- (c) $\limsup a_n = \max\{1, -1\} = 1$, $\liminf a_n = \min\{1, -1\} = -1$.
 - $\limsup d_n = \liminf d_n = \frac{6}{7}$.

Ross 11.8 Use Definition 10.6 and Exercise 5.4 to prove $\liminf s_n = -\limsup (-s_n)$ for every sequence (s_n) .

Recall in Exercise 5.4 that if S is a nonempty subset of \mathbb{R} and $-S = \{-s : s \in S\}$, then inf $S = -\sup(-S)$. Let $V_N = \inf\{s_n : n > N\}$ and $U_N = \sup\{-s_n : n > N\}$. Note $\{s_n : n > N\}$ and $\{-s_n : n > N\}$ are nonempty subsets of \mathbb{R} , therefore we say

$$V_N = -U_N. (1)$$

We are only interested in the case where (s_n) is bounded. This means V_N is a real number for all $N \in \mathbb{N}$. Then (1) implies U_N is a real number for all $N \in \mathbb{N}$. By definition of limit supremum/infimum, the limit is always defined (as a finite real number in this case). So we can send $N \to \infty$ and apply Theorem 9.2:

$$\lim_{N\to\infty} V_N = \lim_{N\to\infty} -U_N$$

$$= -\lim_{N\to\infty} U_N$$
(Theorem 9.2)

$$\implies \lim_{N \to \infty} \inf \{ s_n : n > N \} = -\lim_{N \to \infty} \sup \{ -s_n : n > N \}.$$

Problem 2. Solution.

(a) Let n be arbitrary.

$$|s_{n+1} - s_n| \le r|s_n - s_{n-1}|$$

$$\implies |s_{n+1} - s_n| \le r|s_n - s_{n-1}| \le r^2|s_{n-1} - s_{n-2}| \le \dots \le r^{n-1}|s_2 - s_1|$$

$$\implies |s_{n+1} - s_n| < r^{n-1}|s_2 - s_1|.$$
(*)

Note (*): We write n terms starting from $|s_{n+1} - s_n|$ to reach our final inequality. Given that $|s_{n+1} - s_n| \le r|s_n - s_{n-1}|$, we eventually get $|s_{n+1} - s_n| \le r^{n-1}|s_2 - s_1|$.

Thus we have proven $|s_{n+1} - s_n| \le r^{n-1} |s_2 - s_1|$ for all $n \in \mathbb{N}$.

(b) Let $\epsilon > 0$. We want to find a N such that $m, n \geq N$ implies $|s_m - s_n| < \epsilon$. Without loss of generality, assume m > n. We can write

$$|s_m - s_n| = |(s_m - s_{m-1}) + (s_{m-1} - s_{m-2}) + \dots + (s_{n+1} - s_n)|$$

$$\leq |s_m - s_{m-1}| + |s_{m-1} - s_{m-2}| + \dots + |s_{n+1} - s_n|$$

$$< r^{m-2}|s_2 - s_1| + r^{m-3}|s_2 - s_1| + \dots + r^{n-1}|s_2 - s_1|$$

$$\Rightarrow |s_{m} - s_{n}| \leq (r^{m-2} + r^{m-3} + \dots + r^{n-1})|s_{2} - s_{1}|$$

$$< (r^{n-1} + r^{n} + \dots)|s_{2} - s_{1}|$$

$$= \frac{r^{n-1}}{1 - r}|s_{2} - s_{1}|.$$
(**)

Note (*): Given that $r, |s_2 - s_1| > 0$ and m > n, the sum of an infinite series $\sum_{k=n-1}^{\infty} r^k |s_2 - s_1|$ is larger than the sum of a finite series $\sum_{k=n-1}^{m-2} r^k |s_2 - s_1|$. Note (**): The formula for the sum of an infinite geometric series is denoted $S = \frac{a}{1-r}$ where $a = r^{n-1}$

and r = r.

Then we have

$$|s_m - s_n| < \frac{r^{n-1}}{1-r}|s_2 - s_1|.$$

 $m, n \geq N$ implies

$$|s_m - s_n| < \frac{r^{n-1}}{1-r} |s_2 - s_1| < \frac{r^{N-1}}{1-r} |s_2 - s_1|.$$

We want to choose N such that $\frac{r^{N-1}}{1-r}|s_2-s_1|<\epsilon$ holds. Let

$$N < \log_r \left(\epsilon \frac{1-r}{|s_2 - s_1|} \right) + 1$$

$$\implies N - 1 < \log_r \left(\epsilon \frac{1-r}{|s_2 - s_1|} \right)$$

$$\implies r^{N-1} < \epsilon \frac{1-r}{|s_2 - s_1|}$$

$$\implies \frac{r^{N-1}}{1-r} |s_2 - s_1| < \epsilon.$$

Thus choosing $N < log_r(\epsilon \frac{1-r}{|s_2-s_1|}) + 1$ implies $|s_m - s_n| < \epsilon$ (by transitivity) for any $\epsilon > 0$. Therefore we deduce that the sequence is Cauchy.

Problem 3. Solution.

- (a) We will prove that if $v_M = +\infty$ for some $M \in \mathbb{N}$, then $v_N = +\infty$ for all $N \geq M$. Observe that the sequence is not bounded from above given $v_M = +\infty$.
 - The base case N = M is already given.
 - Assume $v_N = +\infty$ is true for some N > M, we want to show that it is also true for N + 1.
 - $v_N = \sup\{s_n : n > N\} = \sup\{s_N, s_{N+1}, s_{N+2}, \dots\}$ $v_{N+1} = \sup\{s_n : n > N+1\} = \sup\{s_{N+1}, s_{N+2}, \dots\}.$

- That is, we obtain v_{N+1} after removing the term s_N from the sequence $\{s_N, s_{N+1}, s_{N+2}, \ldots\}$.
- Let us assume $v_N \neq v_{N+1}$. This implies that removing the term s_N from the sequence is nontrivial, therefore we assume that s_N is an upper bound for $\{s_N, s_{N+1}, s_{N+2}, \ldots\}$. s_N is a real number, therefore this contradicts our first assumption that the sequence is not bounded from above. This is because by definition, there should exist a $s_n > M$ for all $M \in \mathbb{R}$ where $M = s_N$.
- Therefore we have shown $v_{N+1} = +\infty$ is true whenever $v_N = +\infty$ is true, thus we have proven if $v_M = +\infty$ for some $M \in \mathbb{N}$, then $v_N = +\infty$ is true for all $N \geq M$.

Problem 4. Solution.

(a) We are only interested in the case where the 2 sequences are bounded. By the Completeness Axiom, (s_n) and (t_n) have inf's and are real numbers. That is, for all n > N

$$s_n \ge \inf\{s_n : n > N\}$$

$$t_n \ge \inf\{t_n : n > N\}$$

$$\implies s_n + t_n \ge \inf\{s_n : n > N\} + \inf\{t_n : n > N\}.$$

 $\inf\{s_n : n > N\}$ and $\inf\{t_n : n > N\}$ are finite and real, therefore $\inf\{s_n : n > N\} + \inf\{t_n : n > N\}$ is a lower bound for $\{s_n + t_n : n > N\}$. Then there exists a greatest lower bound such that

$$\inf\{s_n + t_n : n > N\} \ge \inf\{s_n : n > N\} + \inf\{t_n : n > N\}.$$

Let $a_N = \inf\{s_n + t_n : n > N\}$ and $b_N = \inf\{s_n : n > N\} + \inf\{t_n : n > N\}$. By definition of limit infimum, the limit is always defined. We want to prove $\lim_{N\to\infty} a_N$ and $\lim_{N\to\infty} b_N$ are finite and real by using MCT:

- a_N and b_N are increasing in N (inf increases as you remove more terms from the sequence).
- a_N is bounded from above given that (s_n) and (t_n) are bounded from above by some $s, t \in \mathbb{R}$ for all $n \in \mathbb{N}$. Therefore this implies $a_N = \inf\{s_n + t_n : n > N\} \le s_n + t_n \le s + t$.
- Similarly, b_N is bounded from above given that $b_N = \inf\{s_n : n > N\} + \inf\{t_n : n > N\} \le s_n + t_n \le s + t$.

By MCT, $a_N \to a$ and $b_N \to b$ where $a, b \in \mathbb{R}$. Then $a_N \ge b_N$ for all $N \in \mathbb{N}$ implies $a \ge b$ (Homework 3 Problem 4). Therefore

$$\lim_{N \to \infty} \inf \{ s_n + t_n : n > N \} \ge \lim_{N \to \infty} (\inf \{ s_n : n > N \} + \inf \{ t_n : n > N \})$$

$$\implies \lim_{N \to \infty} \inf\{s_n + t_n : n > N\} \ge \lim_{N \to \infty} \inf\{s_n : n > N\} + \lim_{N \to \infty} \inf\{t_n : n > N\}.$$

- (b) Let $s_n = (-1)^n$ and $t_n = (-1)^{n+1}$.
 - $(s_n + t_n)$ is a constant sequence $\{0, 0, \ldots\}$
 - $\lim_{N \to \infty} \inf\{s_n : n > N\} = \lim_{N \to \infty} \inf\{t_n : n > N\} = \min\{-1, 1\} = -1.$
 - Then $\lim_{N\to\infty}\inf\{s_n+t_n: n>N\} \ge \lim_{N\to\infty}\inf\{s_n: n>N\} + \lim_{N\to\infty}\inf\{t_n: n>N\}$ implies 0>-2.

Problem 5. Solution.

(a) Let $\epsilon > 0$. We want to find a N such that $m, n \geq N$ implies $|s_m - s_n| < \epsilon$. Without loss of generality, assume m > n. We can write

$$|s_m - s_n| \le \frac{1}{mn} < \frac{1}{n} < \frac{1}{N}.$$

Let $N < \frac{1}{\epsilon}$. Then $\frac{1}{N} < \epsilon$ implies $|s_m - s_n| < \epsilon$. Thus choosing $N < \frac{1}{\epsilon}$ implies $|s_m - s_n| < \epsilon$ for any $\epsilon > 0$.

(b) Given that the sequence is Cauchy, for any $\epsilon>0$ there exists a N such that $m,n\geq N$ implies $|s_m-s_n|<\epsilon$. Fix $n=N_1$. Then for all $m\geq N$ we have $|s_m-s_{N_1}|<\epsilon$. Let $\epsilon=\frac{1}{mN_1}$. For large values of $m,\,s_m$ is getting infinitesimally close to equal s_{N_1} .

Now fix $n = N_2$ such that $s_{N_1} \neq s_{N_2}$. Then for all $m \geq N$ we have $|s_m - s_{N_2}| < \epsilon$. Let $\epsilon = \frac{1}{mN_2}$. We also see that for large values of m, s_m is getting infinitesimally close to equal s_{N_2} . We arrive at a contradiction–convergent sequences cannot be getting arbitrarily close to different values for large m. Therefore this implies $s_{N_1} = s_{N_2}$. Since s_{N_1} and s_{N_2} are arbitrary, it follows that $s_m = s_n$ for all $m, n \in \mathbb{N}$.