МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

	КАФЕДРА №25	
ОТЧЕТ ЗАЩИЩЕН С ОЦЕН	КОЙ	
ПРЕПОДАВАТЕЛЬ		
должность, уч. степень, звание	подпись, дата	Н.В.Степанов
ОТЧЕТ О Ј	ПАБОРАТОРНОЙ РАБ	OTE № 1
ИССЛЕДОВАНИЕ ДИС	КРЕТНЫХ СИГНАЛОЕ	В ВО ВРЕМЕННОЙ
	ОБЛАСТИ	
по курсу:	ОБЩАЯ ТЕОРИЯ СВЯ	NEF
СТУДЕНТ ГР. № 3031		И.А.Пастушок

Санкт-Петербург 2022

подпись, дата

номер группы

инициалы, фамилия

Цель работы:

- 1. Получения описания сигнального множества во временной и частной областях
- 2. Получение геометрического представления сигналов
- 3. Получение оценок помехоустойчивости

Вариант I.2

Дано: f0 = 1650 Γ ц; f1 = 1950 Γ ц; $V_{mod} = 300$ Бод; $V_{inf} = 300$ бит/с; частотная модуляция

Определение периода сигнала:
$$V_{mod} = \frac{1}{T} = > T = \frac{1}{300}$$

Определение количества сигналов: $V_{inf} = \frac{\log_2 q}{T} = > q = 2$

Аналитические выражение для сигналов:

Аналитические выражение для сигналов.
$$S1(t) = Acos(2*pi*f0*t)$$

$$S2(t) = Acos(2*pi*f1*t)$$

$$E = \int_0^T \frac{2E}{T} cos^2(2*pi*f*t) dt$$
 Пусть $A = \sqrt{\frac{2E}{T}} -$ амплитуда
$$E = \int_0^T A^2 cos^2((2*pi*f*t)) dt$$

$$E = \int_0^T A^2 \cos^2((2 * pi * f * t)dt)$$

$$= A^2 \int_0^T \frac{(1 + \cos(4 * pi * f * t))}{2} dt = \frac{A^2}{2} (T + \frac{\sin(4 * pi * f * t)}{4 * pi * f * T})$$

Пусть
$$A = 2$$

$$E0 = \frac{4}{2} \left(\frac{1}{300} + \frac{\sin\left(\frac{4pi1650}{300}\right)}{\frac{4pi1650}{300}} \right) = 0,006$$

$$E1 = \frac{4}{2} \left(\frac{1}{300} + \frac{\sin\left(\frac{4pi1950}{300}\right)}{\frac{4pi1950}{300}} \right) = 0,006$$

Вычисление энергии: A = 2

$$A = \sqrt{\frac{2E}{T}} = > E = 0.0067$$

График сигналов:

Рисунок 1: График сигналов: S1(t) и S2(t)

Вычисление энергии при помощи графиков:

- Каждую точку по оси S(t) возвести в квадрат
- Вычислить площадь под полученным графиком Листинг кода (MathLab):

```
infig = 1;
A = 2;
f0 = 1650;
f1 = 1950;
T = 1/300;
Ns = 100;
dt = (1/f0)/Ns;
t = 0:dt:T;
S1 = A*cos(2*pi*f0*t);
S2 = A*cos(2*pi*f1*t);
q = 2;
figure(infig);
hold on;
plot(t, S1);
plot(t, S2);
hold off;
xlabel("t, c");
ylabel("S(t)");
legend("S1", "S2");
E_T = A*A*T/2;
arr1 = S1;
for i = 1:length(S1)
    arr1(i) = arr1(i) * S1(i);
end
E1 = trapz(t, arr1);
arr2 = S2;
for i = 1:length(S2)
    arr2(i) = arr2(i) * S2(i);
end
```

Вычисление энергии используя графики

$$E2 = trapz(t, arr2);$$

При хорошем периоде дискретизации (dt) энергия, которая вычислена теоретически совпадает с практическим вычислением, но при увеличении периода дискретизации точность расчетов падает, потому что бОльшие отрезки на оси «t» для вычисления.

Например:

при
$$dt = \frac{1}{165000} => E1 = E2 = 0.0067$$
, где E1 и E2 — энергия $S1(t)$ и $S2(t)$ соответственно. при $dt = \frac{1}{8250} => E1 = E2 = 0.0065$, где E1 и E2 — энергия $S1(t)$ и $S2(t)$ соответственно.

Вывод:

В ходе лабораторной работы было получено описание сигнального множества во временной и частной областях, получено геометрическое представление сигналов получены оценки помехоустойчивости: при увеличении периода дискретизации точность расчета энергии сигналов по их графическому представлению падает.