МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ» КАФЕДРА №51

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ

к.т.н., ст. преподаватель

должность, уч. степень, звание

В.С. Коломойцев

инициалы, фамилия

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №8

подпись, дата

МНОГОФУНКЦИОНАЛЬНЫЙ ПОИСКОВОЙ ПРИБОР ST 033 «ПИРАНЬЯ»

по курсу: ТЕХНИЧЕСКАЯ ЗАЩИТА ИНФОРМАЦИИ

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ ГР.

5623

подпись, дата

D. TX paulence

инициалы, фамилия

1. Цель работы

Изучение многофункционального поискового прибора ST 033 «Пиранья».

2. Предназначение прибора

ST 033 предназначен для проведения мероприятий по обнаружению и локализации специальных технических средств (СТС) негласного получения информации, а также для выявления естественных и искусственно созданных каналов утечки информации.

Данный прибор позволяет проводить почти полное выявление специальных технических средств (СТС). При помощи ST 033 можно обнаружить и определить: местоположения радиоизлучающих СТС; СТС, работающих с излучением в инфракрасном диапазоне; СТС, использующих для передачи информации проводные линии; местоположения источников электромагнитных полей; наиболее уязвимые места с точки зрения возникновения акустических и виброакустических каналов утечки информации.

3. Описание прибора

На верхней поверхности блока (рисунок 1) расположены: графический индикатор, 16-кнопочная панель управления, переключатель питания, гнездо линейного входа, гнездо подключения головных телефонов. На передней поверхности основного блока размещены три разъема (рисунок 2): разъём «RF ANT» (служит для подключения телескопической либо высокочастотной) антенны), разъем «PROBES» (к нему подключаются все остальные преобразователи), разъем «OSC2» (предназначен для обеспечения работы встроенных осциллографа и анализатора спектра в двухканальном режиме, а также для реализации возможности работы прибора в качестве обычных низкочастотных одноканальных осциллографа и анализатора спектра).

Рисунок 1. Верхняя поверхность блока.

Рисунок 2. Передняя поверхность блока.

Рисунок 3. Нижняя поверхность блока

На нижней поверхности основного блока размещены (рисунок 3): встроенный громкоговоритель, крышка батарейного отсека.

На задней поверхности основного блока размещены (рисунок 4): разъем для подключения блока питания, разъем для сканирующего приёмника или IBM PC-совместимого компьютера, резьбовое отверстие для подключения подставки основного блока.

Рисунок 4. Задняя поверхность блока

4. Периферийные устройства

Устройство	Изображение	Разъем	Описание
Высокоча-		RF ANT	Предназначена для
стотная			работы в режиме вы-
антенна	0		сокочастотного де-
			тектора - частото-
			мера.
Детектор		PROBES	Содержит в себе ло-
СВЧ излуче-			гопериодическую ан-
ний	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		тенну – детектор и
			блок усиления.
Магнитный		PROBES	Состоит из магнит-
датчик			ной антенны и пред-
			варительного усили-
			теля. Переключатель,
			расположенный на

		ручке датчика, обес- печивает работу в двух режимах: маг- нитного датчика и градиентометра.
Инфракрас- ный датчик	PROBES	В состав датчика входит акустический преобразователь и предварительный усилитель.
Виброаку- стический датчик	PROBES	Представляет собой чувствительный акселерометр с встроенным предварительным усилителем.
Контрольное устройство "TECT"	-	Предназначено для контроля работоспособности изделия ST 033.
Акустиче- ский датчик	PROBES	В состав датчика входит акустический преобразователь (микрофон)и предварительный усилитель.

Дифферен- циальный адаптер про- водных ли- ний	PROBES	Представляет собой чувствительный дифференциальный усилитель.
Адаптер сканирующего анализатора проводных линий	PROBES	Представляет собой трансформаторный преобразователь напряжения с переключаемым коэффициентом трансформации. На передней панели адаптера расположены индикаторы наличия напряжения в линии и переключатель аттенюатора.

5. Режимы работы

Высокочастотный детектор-частотомер

В режиме высокочастотного детектора-частотомера прибор обеспечивает приём сигнала в диапазоне от 30 до 2500 МГц, при этом результат показывается на мониторе прибора в виде шкал. В каждый момент времени, на фоне реальной помеховой обстановки, принимается и детектируется наиболее мощный из всех радиосигналов. Для данного режима предусмотрена возможность выбора и установки необходимого порога детектора.

Детектор СВЧ излучений

В режиме детектора СВЧ излучений обеспечивается широкополосный прием и детектирование радиосигналов в частотном диапазоне 2-8 ГГц. Индикация аналогична высокоточному детектора частотомера.

Сканирующий анализатор проводных линий

В режиме анализатора проводных линий прибор обеспечивает приём и отображение параметров сигнала в проводных линиях различного предназначения как обесточенных, так и находящихся под напряжением до 600 В. Прием сигналов осуществляется путем автоматического или ручного сканирования в частотном диапазоне 0,01 – 15 МГц. Классификация сигналов в контролируемых проводных линиях осуществляется на основе анализа автоматически выводимой на экран дисплея панорамы, отображающей частотные составляющие спектра сигнала.

Дифференциальный низкочастотный усилитель

В режиме дифференциального низкочастотного усилителя обеспечивается прием и отображение параметров сигнала в проводных линиях с напряжением до 100 В, в диапазоне звуковых частот 300 – 6000 Гц. В этом режиме можно обнаружить активные и пассивные микрофоны, а также обнаружить «микрофонный эффект» от средств оргтехники, бытовой РЭА, охранно-пожарной сигнализации и т.д.

Детектор низкочастотных магнитных полей

В режиме детектора низкочастотных магнитных полей прибор обеспечивает приём и отображение параметров сигналов от источников низкочастотных электромагнитных волн в диапазоне 300 – 5000 Гц. Классификация сигналов осуществляется анализом выводимых на экран данных, а также прослушиванием с использованием встроенного громкоговорителя или головных телефонов.

Детектор инфракрасных излучений

В режиме детектора инфракрасных излучений прибор обеспечивает приём излучений источников инфракрасного диапазона. Производится их детектирование и вывод для слухового контроля и анализа. Прослушивание обеспечивается как на встроенный громкоговоритель, так и на головные телефоны. В каждый момент времени детектируется самый мощный сигнал.

Акустический преобразователь

В режиме акустического преобразователя прибор осуществляет прием на акустический датчик и отображение параметров акустических сигналов в диапазоне 300 – 6000 Гц. Оценка состояния звукоизоляции помещения осуществляется анализом выводимых на экран данных, а также прослушиванием с использованием встроенного громкоговорителя или головных телефонов.

Виброакустический преобразователь

В режиме виброакустического преобразователя обеспечивается приём от внешнего виброакустического датчика и отображение параметров низкочастотных сигналов в диапазоне 300 – 6000 Гц. Оценка состояния защиты осуществляется анализом выводимых на экран данных, а также прослушиванием с использованием встроенного громкоговорителя или головных телефонов.

6. Исследование режима детектора инфракрасных излучений

В данном режиме прибор обеспечивает прием излучений источников инфракрасного диапазона. То есть с его помощью можно обнаружить СТС, работающие на батареях, так те нагреваются (излучают волны инфракрасного диапазона) во время работы. Так же с его помощью обнаруживаются утечки тепла в конструкциях.

7. Выводы

В ходе лабораторной работы мы ознакомились с многофункциональным поисковым прибором ST 033 «Пиранья» и принципом его работы. Прибор был исследован в режиме детектора инфракрасных излучений: он обеспечивал приём излучений источников инфракрасного диапазона.