Języki formalne i techniki translacji

Felix Zieliński 272336

Zadanie 5 lista 2

Zadanie 5. Czy język $\{\omega\omega^R x : \omega, x \in \{0,1\}^* \wedge \omega, x \neq \varepsilon\}$, gdzie ω^R oznacza odwrócenie kolejności liter w słowie ω , jest regularny?

Rozwiązanie

Lemat o pompowaniu Niech L będzie językiem regularnym. Wtedy istnieje stała n taka, że jeśli z jest dowolnym słowem z L oraz $|z| \geq n$, to z możemy przedstawić w postaci z = uvw, gdzie $|uv| \leq n$ i $|v| \geq 1$ oraz uv^iw należy do L dla każdego $i \geq 0$. n w tym lemacie jest nie większe niż liczba stanów najmniejszego DFA akceptującego L.

Technicznie rzecz biorąc, słowa z języka L spełniają lemat o pompowaniu. Dlaczego? Dla założeń z polecenia:

$$\mathbf{gdy} |\omega| = 1$$

Skoro ω jest długości 1, to ω^R - jego odwrócenie - również będzie tej długości, i w dodatku $\omega = \omega^R$. Wtedy $z = \omega \omega x$, w którym $|x| \geq n-1$. Biorąc z z lematu, mamy $u = \omega \omega$ oraz |vw| = x, gdzie dowolne v spełnia $1 \leq |v| \leq n-2$. Pompujemy wtedy v: dla dowolnego i, $z' = uv^i w = \omega' \omega'^R x'$ w L, gdzie $\omega' = \omega$ oraz $x' = v^i w$. Lemat jest spełniony.

$\mathbf{gdy} \ |\omega| \geq 2$

Niech ω to będzie ab i |a|=1. Ciąg więc zaczyna się palindromem złożonym z dwóch różnych znaków: $z=abb^Rax$. Biorąc z z lematu, mamy: $u=\varepsilon$, v=a i $w=bb^Rax$. Pompując v, otrzymujemy:

dla $i=0, z'=uv^0w=uw=w$, a w z wyżej poczynionych założeń było równe bb^Rax , dalej $bb^Rax=\omega'\omega'^Rx'$ w L, gdzie $\omega'=b$ oraz x'=ax.

dla $i = 1, z' = uv^1w = uvw = z \le L.$

dla $i\geq 2,\ z'=uv^iw=v^iw=a^ibb^Rax=aaa^{i-2}bb^Rax,$ jak widać aa to palindrom, więc dalej $aaa^{i-2}bb^Rax=\omega'\omega'^Rx'$ w L, gdzie $\omega'=a$ oraz $x'=a^{i-1}bb^Rax.$

Lemat jest więc spełniony.

Mimo powyższych rozważań, twierdzę, że ten język **nie jest regularny**. Dowiodę tego używając **uogólnionej wersji lematu o pompowaniu**:

Wersja ogólna lematu o pompowaniu Niech L będzie językiem regularnym. Wtedy istnieje takie $p \geq 1$, że każde uwv, gdzie $|w| \geq p$, należące do L może zostać zapisane w postaci uwv = uxyzv, gdzie $|xy| \leq p$ i $|y| \geq 1$ oraz uxy^izv jest w L dla każdego $i \geq 0$.

Ta wersja lematu o pompowaniu pozwala na udowadnianie nieregularności języków, gdy zwykły lemat o pompowaniu zawodzi, gdyż jego założenia są bardziej rygorystyczne - mogę pompować słowo w jego dowolnym miejscu.