Formal Definition of ε -NFA

An NFA with ε transition is a five-tuple,

such as
$$M = (Q, \Sigma, \delta, q_0, F)$$

Where Q is a finite set of states,

 Σ is a finite set of input symbols s,

 q_0 is start state,

F is a set of final state,

 δ is transition function, which is a mapping

from
$$Q \times (\Sigma \cup \{\epsilon\})$$
 to 2^Q .

Example 4. 1

Describe the language accepted by this NFA:

What about the NFA just accept decimal numbers?

An ε - NFA for decimal numbers

Example 4.2 Design an ε -NFA for following language

The set of strings of 0's and 1's such that at least one of the last ten positions is a 1.

start q_0 q_1 q_2 q_3 q_{10} $10 9 8 \dots 2 1$

How about this NFA

How about this ε - NFA

ε- transition

$$\delta(r,a) = ?$$
 $\delta(q,b) = ?$

ε- closure

BASIS: State q is in ECLOSE(q)

INDUCTION: If state p is in ECLOSE(q), and there is a transition from state p to state r labeled ϵ , then r is in ECLOSE(q).

Extending transition to strings

BASIS:
$$\hat{\delta}(q,\varepsilon) = ECLOSE(q)$$
.

INDUCTION:

Surpose
$$w = xa$$
, $\hat{\delta}(q, x) = \{p_1, p_2, \dots, p_k\}$

Let
$$\bigcup_{i=1}^{k} \delta(p_i, a) = \{r_1, r_2, \dots, r_m\}$$

Then
$$\hat{\delta}(q, w) = \bigcup_{i=1}^{m} Eclose(r_i)$$

The language of ε -NFA

Definition The language of an ε -NFA A is denoted L(A), and defined by

$$L(A) = \{ w \mid \hat{\mathcal{S}}(q_0, w) \cap F \neq \emptyset \}$$

There is at least a path, labeled with w, from start state to final state.

Example 4.3

Compute : $\hat{\delta}(q_0,5.6)$

Equivalence of DFA and NFA

If a DFA and an NFA accepts the same language, then we say that they are equivalent.

Equivalence: NFA \Rightarrow DFA

Given an NFA: $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$

Construct a DFA: $A = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$

Such that:

$$Q_{D} = 2^{Q_N}$$

$$\delta_D(S,a) = \bigcup_{p \text{ in } S} \delta_N(p,a)$$

$$F_D = \{ S \mid S \subseteq Q_N \text{ and } S \cap F_N \neq \emptyset \}$$

Example 4.4

 L_{x01} ={x01 | x is any strings of 0's and 1's}
0,1

0,1

Eliminate the states which can't be reached from start state.

"Lazy evaluation":

Bad case

 $L = \{w \mid w \text{ consists of 0's and 1's, and the }$ tenth symbol from the right end is 1 \}

Equivalence: $DFA \Rightarrow NFA$

Given a DFA:
$$A = (Q_D, \Sigma, \delta_D, q_0, F_D)$$

Construct an NFA :
$$N = (Q_N, \Sigma, \delta_N, q_0, F_N)$$

Such that:

$$Q_N = Q_D$$

$$\delta_N(q,a) = \{\delta_D(q,a)\}$$

$$F_N = F_D$$

Good good study day up.