Nate Whybra AMATH 561 Homework 5 1) To show $(x_n)_{n\geq 0}$ is a martingale with respect to the filtration $(F_n)_{n\geq 0}$ we need to show

(i) E[1X~1] < ∞ Y~≥ O

(ii) XneFn Ynzo

(iii) E[Xn+1/Fn] = Xn Yn=0

For (i), using Jensen's inequality with the absolute value function (who's convexity is easily seen by a 1 line application of the triangle inequality), we can say, as $X_{N} = E[X|F_{N}]$

 $E[IX_{N}] \leq E[E[IX|IF_{N}]]$ $= E[IXI] < \infty$

For (ii), E[X|Fn] & Fn by definition of conditional expectation.

For (iii),

E[Xn+1 |Fn] = E[E[X|Fn+1]|Fn]

Since FN = Fn+1

= E[XIFn] = XN

which concludes that (Xn) nzo is a martingale.

2) To Show Zn is a martingale with respect to the filtration defined by $F_n = \sigma(X_0, X_1, ..., X_n)$, we must show (i) E[1Zn] < ∞ Y N ≥ 0 (ii) ZneFn Ynzo (iii) E[ZNI | Fn] = Zn YNZO For (i), as $Z_n = \left(\frac{1-p}{p}\right)^{25n-n}$ and q = $\frac{1-P}{P} > 0$, $Z_{n} > 0$ $\forall n \geq 0$, hence $|Z_{n}| = Z_{n}$. So, $E[17n] = E[q^{25n-n}]$ $= q^{-n} E \left[\left(q^2 \right)^{S_n} \right]$ $= q^{-n} G_{SN}(q^2)$ $= q^{-n} (G_X(q^2))^n$ $= \sin S_n \text{ is a sum of iid}$ $= -n (G_X(q^2))^n$ $= -n (G_X(q^2))^n$ = -n (G $= q^{-n} \left[\sum_{K \geq 0} p_K q^{2K} \right]^n$ = $q^{-n} [(1-p)q^{0} + pq^{2}]^{n}$ $= q^{-n} \left[(1-p) + p \cdot \frac{(1-p)^2}{\rho^2} \right]^n$

$$= q^{-n} \left[1 - p + \frac{1}{p} - 2 + p \right]^{n}$$

$$= q^{-n} \left[-1 + \frac{1}{p} \right]^{n}$$

$$= q^{-n} \left[\frac{1 - p}{p} \right]^{n} = q^{-n} q^{n} = 1 < \infty$$

$$\forall n \ge 0$$
For (iii),

$$Z_{n} = q^{-n} q^{2S_{n}}$$

$$= q^{-n} q^{2(X_{1} + \dots + X_{n})}$$

$$= q^{-n} \frac{1}{11} q^{2X_{0}}$$
Since $F_{n} = \sigma(X_{0}, X_{1}, \dots, X_{n})$, and the product of F_{n} measurable functions is
$$F_{n} \text{ measurable}, \text{ be cause } q^{2X_{0}} \in F_{n} \quad \forall 0 \le i \le N,$$
we can say $Z_{n} \in F_{n}$.

For (iii),
$$E[Z_{n+1} | F_{n}] = E[q^{2S_{n+1} - (n+1)} | F_{n}]$$

$$= q^{2S_{n} - n} E[q^{-1} q^{2X_{n+1}} | F_{n}] \quad \text{since } X_{n+1} \notin F_{n}$$

$$= Z_{n} E[q^{-1} q^{2X_{n+1}} | F_{n}] \quad \text{since } X_{n+1} \notin F_{n}$$

$$= q^{-1}G(q^{2}) \cdot Zn$$

$$= Z_{n} q^{-1}((1-p)\cdot q^{0} + p\cdot q^{2})$$

$$= Z_{n} q^{-1}q$$

as desired. So Zn is a martingule under this filtration.

3) Put
$$E_i = X_i - X_{i-1}$$
, then notice $E[E:|F:-1] = E[X_i - X_{i-1}|F:-1]$

since $X_i \in F_i$:
 $= E[X_i |F_{i-1}] - E[X_{i-1}|F_{i-1}]$

and X_i is $= X_{i-1} - X_{i-1}$
 $= O$

(if j)

We want to show $E[E_i \in j] = E[E_i]E[E_j]$

or equivalently $E[E_i \in j - E_i \cdot E[E_j]] = O$.

The above can be written as $E[E_i (E_j - E[E_j])]$.

Now consider (and WLOG take $j \in i$)

 $E[E_i(E_j - E[E_j]) |F_{i-1}]$

(con supplied $E[E_i \in j] = E[E_i]$)

 $E[E_i(E_j - E[E_j]) |F_{i-1}]$

(since $E[E_i \in j] = E[E_i]$)

 $E[E_i(E_j - E[E_j]) |F_{i-1}]$
 $E[E_i(E_j - E[E_j]) |F_{i-1}] = O$

Taxing the expectation now on both $E[E_i(E_j - E[E_j])] = O$

which by earlier discussion yields the desired result.

4) This is equivalent to computing the extinction probability of the branching process, so if
$$\phi(s) = \sum_{k \geq 0} p_k s^k$$
, we need to solve

$$p = \phi(p)$$

$$p = \frac{1}{8} + \frac{3}{8}p + \frac{3}{8}p^{2} + \frac{1}{8}p^{3}$$

$$\leftrightarrow p^{3} + 3p^{2} - 5p + 1 = 0$$

$$\leftrightarrow (p-1)(p^{2} + 4p - 1) = 0$$

$$\downarrow p^{2} \qquad \downarrow p^{2$$

However p=1 is non-sensical, and $p=-2-\sqrt{5}<0$ is also not possible, hence $p=\sqrt{5}-2>0$. If each family has exactly 2 children, then the above formula becomes

50 p=1 is the only solution, hence the family name will die with probability 1.