Лабораторная работа № 6

Сбалансированные и цифровые деревья

Цель работы: изучить основные принципы построения сбалансированных и цифровых деревьев, их свойства и назначение, закрепить навыки структурного программирования.

Общие сведения

Существует большое количество способов поддержания сбалансированности деревьев, основное назначение которой состоит в обеспечении гарантированно высокой производительности операций поиска, причем базовые операции добавления и удаления ключей должны оставаться достаточно эффективными, а дополнительные затраты памяти быть небольшими. Цифровые деревья поиска не обеспечивают сбалансированности в строгом смысле, однако их свойства в среднем достаточно хороши. В следующей таблице приведены некоторые из используемых способов построения сбалансированных и цифровых деревьев.

Таблица 1

Сбалансированные и цифровые деревья поиска

Название дерева поиска	Краткое описание
(метода построения)	краткое описание
Рандомизированное	Основано на классическом бинарном дереве поиске (БДП). Вставка
дерево	новых ключей осуществляется с вероятностью $p = N^{-1}$ в корень дерева,
(randomized tree)	иначе — в лист (N — текущее количество узлов).
АВЛ-дерево	Разность высот поддеревьев любого узла в таком БДП не должна
(AVL tree)	1
(AVL nee)	превышать 1. Балансировка дерева осуществляется при вставке новых ключей и удалении за счет операций одинарных и двойных левых и
	правых поворотов.
Красно-черное дерево	Каждый узел такого БДП считается либо красным, либо черным. Если
(red-black tree)	узел красный, то его потомки обязательно черные. Количество черных
(red-black tree)	узов, встречающихся на пути из корня к листьям («черная» высота),
	должно быть одинаковым. Из последнего следует, что все фиктивные
	NULL-узлы (внешние узлы) должны быть черными. Поддержание
	свойств осуществляется путем изменения цвета узлов и/или одинарных
	поворотов при выполнении операций вставки и удаления ключей.
Скошенные деревья	Классическое БДП, в котором узлы с ключами, наиболее часто
(splay tree)	востребованными в операциях поиска, перемещаются ближе к корню за
(spiny tree)	счет операций поворотов.
Сбалансированное по	БДП, в котором, в отличие от АВЛ-дерева, поддерживается баланс не
весу или ВВ-дерево	высот поддеревьев, а вес – количество узлов.
(scapegoat tree)	, , , ,
В-дерево	Сильноветвящееся (многопутевое) дерево поиска, построенное на
(B-tree)	основе k -узлов — узлов, содержащих упорядоченный набор k -1 ключей и
	соответствующих им k указателей на дочерние k -узлы. Если
	$v_0, v_1,, p_{k-2}$ – ключи, $p_0, p_1,, p_{k-1}$ – указатели, то $p_i, i \in [0; k-2]$
	указывает на узлы, ключи которых меньше v_i , а p_i , $i \in [1; k-1]$ указывает
	на узлы, ключи которых больше v_{i-1} . В-дерево порядка M – это дерево,
	содержащее k -узлы, $k \in [M/2; M]$ (для корня $k \in [2; M]$), длина пути от
	корня до любого листа в котором одинакова.
2-3-4 дерево	Частный случай В-дерева порядка $M = 4$.
Цифровое дерево поиска	Цифровое дерево поиска (ЦДП) – это бинарное дерево, в котором, в
(digital search tree)	отличие от БПД, ветвление осуществляется не в соответствии с

	результатом сравнения полных ключей, а в соответствии с выбранными
	разрядами ключа.
Бор, словарь	ЦДП, в котором ключи хранятся в листьях, а внутренние узлы содержат
(trie-дерево)	ссылки на левое и правое поддеревья, с ключами, начинающимися
	соответственно с 0 или 1 разряда.
Patricia-деревья	ЦДП схожее с бором, но каждый узел этого дерева хранит информацию
	о проверяемом разряде. Кроме того, листья patricia-деревьев имеют
	ссылки на себя и узлы верхних уровней, а не на внешние узлы (за
	исключением одного узла).

Задание

- 1. Реализовать один из вариантов задания в соответствии с таблицей 2 и тестовое приложение. При необходимости реализовать вспомогательные структуры данных и функции, например, функции вывода на дерева на экран, удаления одного узла и т.п.
- 2. Составить отчет, в котором привести листинги реализованных функций, свойства и отличительные особенности дерева, для которого были реализованы функции и выводе по работе.

Таблица 2

Варианты заданий No Задание 1 Вставка ключа в АВЛ-дерево Удаление ключа из АВЛ-дерева

Вставка ключа в красно-черное дерево

- Вставка ключа в скошенное дерево 5 Вставка ключа в сбалансированное по весу дерево
 - Вставка ключа в 2-3-4 дерево
 - Удаление ключа из 2-3-4 дерева
 - Вставка ключа в цифровое дерево поиска
 - Вставка ключа в бор

3

4

11

- Преобразование 2-3-4 дерева в красно-черное 10
 - Вставка ключа в В-дерево порядка М.
- Удаление ключа из В-дерева порядка М 12
- 13 Вставка ключа в patricia-дерево