JC17 Rec'd PCT/PTO 14 JUN 2005

Please amend page 20, line 1 as follows:

Claims What is claimed is:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Original) A process for the production of an ¹⁸F-labelled tracer which comprises treatment of a solid support-bound precursor of formula (I):

Y-

wherein the TRACER is of formula (A):

$$R^{1}$$
 N
 N
 A
 A
 A

or an amine protected derivative thereof, wherein Y is an anion, preferably trifluoromethylsulphonate (triflate) anion; and

R¹ is either (i) a group CH-NP^{1A}P^{2A} in which P^{1A} and P^{2A} are each independently hydrogen or a protecting group, or (ii) a carbonyl group;

with ¹⁸F⁻ to produce the labelled tracer of formula (II)

or an amine protected derivative thereof, wherein R¹ is as defined for the compound of formula (I);

optionally followed by:

- (i) removal of excess ¹⁸F⁻, for example by ion-exchange chromatography; and/or
- (ii) removal of any protecting groups; and/or
- (iii) removal of organic solvent; and/or
- (iv) formulation of the resultant compound of formula (II) as an aqueous solution.
- 2. (Original) A process according to claim 1 for the production of $5[^{18}F]$ fluorouracil which comprises treatment of a solid support-bound precursor of formula (Ia):

or an amine protected derivative thereof, wherein Y^- is an anion, preferably trifluoromethylsulphonate (triflate) anion;

with ¹⁸F to produce the labelled tracer of formula (IIa)

$$^{18}F$$
 $\stackrel{\text{H}}{\sim}$ $^{\text{C-N}}$ $^{\text{O}}$ (IIa)

or an amine protected derivative thereof, optionally followed by:

- (i) removal of excess ¹⁸F⁻, for example by ion-exchange chromatography; and/or
- (ii) removal of organic solvent; and/or
- (iii) removal of any protecting groups; and/or
- (iv) formulation of the resultant compound of formula (IIa) as an aqueous solution.

3. (Original) A process according to claim 1 for the production of $5[^{18}F]$ fluorocytosine which comprises treatment of a solid support-bound precursor of formula (Ib):

SOLID SUPPORT-LINKER-I*
$$\begin{array}{c} Y^{-} \\ \\ HC - N \\ \\ P^{2A}P^{1A}N \end{array}$$
(Ib)

or an amine protected derivative thereof, wherein Y^- is an anion, preferably trifluoromethylsulphonate (triflate) anion, P^{1A} and P^{2A} are independently hydrogen or a protecting group;

with ¹⁸F to produce the labelled tracer of formula (IIb)

$$\begin{array}{c}
 & HC - N \\
 & HC - N$$

or an amine protected derivative thereof, wherein P^{1A} and P^{2A} are as defined for the compound of formula (Ib), optionally followed by:

- (i) removal of excess ¹⁸F⁻, for example by ion-exchange chromatography; and/or
- (ii) removal of organic solvent; and/or
- (iii) removal of any protecting groups; and/or
- (iv) formulation of the resultant compound of formula (IIb) as an aqueous solution.
- 4. (Currently amended) A process for the production of an ¹⁸F-labelled tracer which comprises treatment of a compound of formula (III), (IIIa), or (IIIb):

$$\begin{array}{c|c}
 & Y \\
\hline
B \\
 & \downarrow \\$$

$$\begin{array}{c|c}
 & Y^{-} & H \\
 & HC - N \\
 & P^{2A}P^{1A}N & H
\end{array}$$
(IIIb)

or an amine protected derivative thereof, wherein R^1 , P^{2A} , P^{1A} , and Y^- are as defined in claim 1, and phenyl ring B is optionally substituted with one to five substituents independently selected from halo, C_{1-6} alkyl, C_{1-6} haloalkyl, hydroxy, C_{1-6} alkoxy, amino, C_{1-6} hydroxyalkyl, and nitro;

with ¹⁸F⁻ to produce the labelled tracer of formula (II), (IIa), or (IIb) respectively as defined in claims 1 to 3 or an amine protected derivative thereof, optionally followed by:

- (i) removal of excess ¹⁸F⁻, for example by ion-exchange chromatography; and/or
- (ii) removal of any protecting groups; and/or
- (iii) removal of organic solvent; and/or
- (iv) formulation of the resultant compound of formula (II), (IIa), or (IIb) as an aqueous solution.
- 5. (Currently amended) A process for the production of a ¹⁸F-labelled tracer of formula (II), (IIa), or (IIb) according to any one of claims 1 to 4 claim 1, for use in PET.
- 6. (Original) A compound of formula (I):

Y-

wherein the TRACER is of formula (A):

$$- \bigvee_{R^{1}-N}^{H} = 0$$
 (A)

or an amine protected derivative thereof, wherein Y is an anion, preferably trifluoromethylsulphonate (triflate) anion; and

 R^1 is either (i) a group $CH-NP^{1A}P^{2A}$ in which P^{1A} and P^{2A} are each independently hydrogen or a protecting group, or (ii) a carbonyl group.

7. (Original) A compound of formula (Ia):

or an amine protected derivative thereof, wherein Y is an anion, preferably trifluoromethylsulphonate (triflate) anion.

8. (Original) A compound of formula (Ib):

or an amine protected derivative thereof, wherein Y^- is an anion, preferably trifluoromethylsulphonate (triflate) anion, P^{1A} and P^{2A} are independently hydrogen or a protecting group.

9. (Currently amended) A radiopharmaceutical kit for the preparation of an ¹⁸F-labelled tracer for use in PET, which comprises:

- (i) a vessel containing a compound of formula (I), (Ia), or (Ib) as defined in any one of claims 1 to 3 claim 1, or a compound of formula (III), (IIIa), or (IIIb) as defined in claim [4] or an amine protected derivative thereof; and
- (ii) means for eluting the vessel with a source of ¹⁸F⁻;
- (iii) an ion-exchange cartridge for removal of excess ¹⁸F; and optionally
- (iv) a cartridge for solid-phase deprotection of the resultant product of formula (II), (Ha), or (Hb), as defined in any one of claims 1 to 3 claim 1.
- 10. (Currently amended) A cartridge for a radiopharmaceutical kit for the preparation of an ¹⁸F-labelled tracer for use in PET which comprises:
- (i) a vessel containing a compound of formula (I), (Ia), or (Ib) as defined in any one of claims 1 to 3 claim 1, [or a compound of formula (III), (IIIa), or (IIIb) as defined in claim 4] or an amine protected derivative thereof; and
- (ii) means for eluting the vessel with a source of ¹⁸F⁻.
- 11. (Currently amended) A method for obtaining a diagnostic PET image which comprises the step of using a radiopharmaceutical kit according to claim 9 or a cartridge for a radiopharmaceutical kit according to claim 10.
- 12. (New) A method for obtaining a diagnostic PET image which comprises the step of using a cartridge for a radiopharmaceutical kit according to claim 10.