# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

# Дальневосточный федеральный университет

### ШКОЛА ЕСТЕСТВЕННЫХ НАУК

# Кафедра информационной безопасности

### ОТЧЕТ

о прохождении учебной (по получению первичных профессиональных умений и навыков, в том числе первичных умений и навыков научноисследовательской деятельности) практики

|                     |                             | Выполнил студент гр. С8118-10.05.01                       |                              |
|---------------------|-----------------------------|-----------------------------------------------------------|------------------------------|
| Отчет защище        | ен с оценкой                | Руководитель прак<br>Старший преподав<br>информационной б | атель кафедры                |
|                     | С.С. Зотов                  |                                                           | С.С. Зотов                   |
| (подпись)<br>« 31 » | июля 2021 г.                | (подпись)                                                 | (И.О. Фамилия)               |
| Регистрацион        | ный №                       | Практика пройдена                                         | а в срок                     |
| « <u>31</u> »       | июля <u>2021</u> г.         | с « <u>19</u> »<br>по « <u>31</u> »                       | июля 2021 г.<br>июля 2021 г. |
| (подпись)           | E.B. Третьяк (И.О. Фамилия) | на предприятии                                            |                              |
|                     |                             | Кафедра инф                                               | рормационной                 |
|                     |                             | безопасности                                              | т ШЕН ДВФУ                   |
|                     |                             |                                                           |                              |

# Оглавление

| Задание на практику                  | 3  |
|--------------------------------------|----|
| Введение                             | 4  |
| Основные противодействия DDoS атакам |    |
| Заключение                           |    |
| Список используемой источников       | 13 |

# Задание на практику

- Проведение исследования DDoS и способах защиты от него.
- Написание отчета по практике о проделанной работе.

### Введение

Учебная (по получению первичных профессиональных умений и навыков, в том числе первичных умений и навыков научно-исследовательской деятельности) практика проходила на кафедре информационной безопасности ШЕН ДВФУ в период с 19 июля 2021 года по 31 июля 2021 года.

Целью прохождения практики является приобретение практических и теоретических навыков по специальности, а также навыков оформления проведенного исследования в отчетной форме.

### Задачи практики:

- 1. Ознакомиться с DDoS и статистическими данными по его атакам.
- 2. Ознакомиться с типами DDoS атак и защитой от них.
- 3. На основе полученных знаний написать отчет по практике о проделанной работе.

## Основные противодействия DDoS атакам

**Анномация:** В статье предоставлена информация о DDoS. Проанализирована информация о типах DDoS атак, а также предоставлена информация о всех возможных способах зашиты от всех возможных атак.

## Основная информация

DDoS-атака — распределенная атака, направленная на отказ в обслуживании. В результате атаки такого типа атакуемый сетевой ресурс получает лавинообразное количество запросов, которые не успевает обработать. Источником вредоносных запросов являются так называемые зомби-сети, состоящие большей частью из компьютеров обычных пользователей, в силу каких-то причин зараженных вредоносным ПО DDoS-атака похожа на другую распространённую веб-угрозу — «Отказ в обслуживании» (Denial of Service, DoS). Единственное различие в том, что обычное распределенное нападение идет из одной точки, а DDos-атака более

Ботнет –компьютерная сеть, состоящая из некоторого количества хостов с запущенными ботами – автономным программным обеспечением. Доступность – состояние информации (ресурсов автоматизированной информационной системы), при котором субъекты, имеющие права доступа, могут реализовывать их беспрепятственно за удовлетворимое время.

масштабна и идет из разных источников.

IoT устройства — концепция вычислительной сети физических предметов, оснащенных встроенными технологиями для взаимодействия друг с другом или с внешней средой, рассматривающая организацию таких сетей как явление, способное перестроить экономические и общественные процессы, исключающее из части действий и операций необходимость участия человека.

#### Статистические данные

Рассмотрим Таблицу 1 (здесь и далее "q" обозначает номер квартала), данные собранны из официальных отчетов Kaspersky DDoS Protection, где можно наблюдать следующие скачки DDoS активности. Рассмотрим следующие события:

- 2018 год 4 квартал в США произошли промежуточные выборы;
- 2018 год 1 квартале в Россия проводились выборы президента РФ. Эти данные явно показывают «всплески» активности DDoS атак в связи с значимыми событиями. Из чего следует, что атаки используются не только в коммерческих целях для получения материальной выгоды, но и в геополитике для достижения своих политических целей.

Таблица 1. –Процент DDoS атак на объекты информатизации стран по

квартам

|         | Китай | США   | Гонконг | Великобритания | Канада | Вьетнам | Франция | Россия |
|---------|-------|-------|---------|----------------|--------|---------|---------|--------|
| 2019 q2 | 63,8  | 17,57 | 4,61    | 1,2            | 0,93   | 0,68    |         |        |
| 2019 q1 | 67,89 | 17,17 | 4,81    | 0,66           | 0,86   | 0,62    | 0,66    |        |
| 2018 q4 | 50,43 | 24,9  | 1,84    | 2,18           | 1,94   | 0,85    | 0,93    |        |
| 2018 q3 | 77,67 | 12,57 | 1,72    | 0,53           | 0,82   | 0,39    | 0,39    | 0,37   |
| 2018 q2 | 59,03 | 12,46 | 17,13   | 0,51           | 0,69   | 0,5     | 0,43    | 0,21   |
| 2018 q1 | 59,42 | 17,83 | 3,67    | 1,3            | 1,27   | 0,71    | 0,83    | 4,76   |
| 2017 q4 | 59,18 | 16    | 0,67    | 2,7            | 0,68   | 1,26    | 1,24    | 1,25   |
| 2017 q3 | 63,3  | 12,98 | 1,31    | 1,36           | 0,68   | 0,59    | 1,31    | 1,58   |
| 2017 q2 | 58,07 | 14,03 | 2,38    | 1,38           | 0,79   |         | 0,77    | 1,23   |
| 2017 q1 | 55,11 | 11,37 | 1,37    | 0,77           | 0,66   | 0,83    | 0,64    | 1,6    |

Влияние же на коммерческую составляющую также достаточно очевидно, помимо подрыва репутации из-за недоступности того или иного сервиса, собственники теряют прямую прибыль из-за простоя их оборудования и невозможности проводить операции.

Рассматривая данные по абсолютному количеству атак, приведенное в Таблице 2, количество атак снижается с каждым годом.

Таблица 2. – Абсолютное количество атак

| 2018 q3 | 2018 q4 | 2019 q1 | 2019 q2 |
|---------|---------|---------|---------|
| 46575   | 29161   | 18932   | 17035   |

В тоже время длительность атак с каждым кварталом увеличиваться, эти данные представлены в Таблице 3.

Таблица 3. – Максимальная продолжительность DDoS атаки в часах

| 2016 q4 | 2017 q1 | 2017 q2 | 2017 q3 | 2017 q4 | 2018 q1 | 2018 q2 | 2018 q3 | 2018 q4 | 2019 q1 | 2019 q2 |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 92      | 20      | 77      | 15      | 46      | 97      | 58      | 39      | 89      | 29      | 09      |

Общая тенденция длительности всех атак приведена в Таблице 4, в ней же указаны процентные соотношения длительности атак.

Таблица 4. – Процентное соотношение продолжительности атак

|         | < 4   | 5–9   | 10-19 | 20-49 | > 50 | 50-99 | > 100 | 100-139 | 140  |
|---------|-------|-------|-------|-------|------|-------|-------|---------|------|
| 2019 q2 | 82,69 | 9,78  | 4,71  | 2,03  | 0,78 | 0,54  | 0,24  | 0,11    | 0,13 |
| 2019 q1 | 78,66 | 10,13 | 5,57  | 3,8   | 1,83 | 1,51  | 0,32  | 0,11    | 0,21 |
| 2018 q4 | 83,34 | 9,4   | 3,51  | 2,48  | 1,26 | 1,01  | 0,25  | 0,14    | 0,11 |
| 2018 q3 | 86,94 | 5,49  | 3,79  | 3,07  | 0,69 | 0,5   | 0,19  | 0,09    | 0,1  |
| 2018 q2 | 69,49 | 14,01 | 10,05 | 5,25  | 1,19 | 0,96  | 0,23  | 0,11    | 0,12 |
| 2018 q1 | 80,73 | 10,73 | 4,93  | 2,82  | 0,77 | 0,52  | 0,25  | 0,11    | 0,14 |
| 2017 q4 | 76,76 | 8,28  | 10,2  | 4,65  | 0,11 | 0,08  | 0,03  | 0,02    | 0,01 |
| 2017 q3 | 76,09 | 10,33 | 9,5   | 3,73  | 0,36 | 0,3   | 0,06  | 0,03    | 0,03 |
| 2017 q2 | 85,93 | 8,35  | 3,07  | 2,32  | 0,32 | 0,25  | 0,07  | 0,06    | 0,01 |
| 2017 q1 | 82,21 | 8,45  | 5,03  | 4,05  | 0,25 | 0,24  | 0,01  | 0,01    | 0    |

Из приведенных ниже данных видна общая тенденция. Количество атак становится меньше, а протяженность увеличивается. Одной из причин снижения количества атак является понижение интереса к криптовалюте. Причиной же повышения мощности атак стало использования серверов Метсаched, о чем в первый раз было упомянуто в ноябре 2017 года. Самой мощной DDoS атакой на текущий момент является атака на американский провайдер 1,7 Тб/сек, что почти в три раза мощнее, чем предыдущий рекорд, установленный в 2016 году.

Еще одной причиной увеличения мощности стало повсеместное применение IoT устройств, используемые злоумышленниками при подключении к своим ботнетам. Это заметно при анализе данных процентного соотношения операционных систем ботов из атакующих сетей, которые приведены на Рисунке 1.



Рис. 1.— Статистика операционных систем в ботнетах

Причины уменьшения количества устройств под управлением операционной системы Windows не совсем очевидны. Это может указывать как на резкое включение большого количества устройств Linux, так и на неиспользование зараженных устройств на Windows. Последнее оставляет потенциальный риск рост мощностей атак, из-за возможного подключения дополнительных устройств.

Немалый вклад в развитие DDoS атак вносит и развитие мощностей персональных компьютеров что позволяет использовать злоумышленникам более мощные ботнеты.

#### Типы DDoS атак

**Низкоуровневые** происходят на транспортном и сетевом уровнях OSI-модели. Они используют несовершенство сетевой архитектуры. Защититься от них достаточно просто — подключите услугу, и через пару часов сервер снова будет в строю.

**Высокоуровневые** осуществляются на сеансовом, представительском и прикладном уровнях. Они эмулируют действия пользователей. Защититься от них сложнее, для этого понадобиться специальная настройка сервера.

<u>Наводнения SYN</u> атаки происходят на потребности средств сервера в предоставить огромной структуры данных памяти для аутентификации входящих SYN-пакетов. Во время атак SYN flood злоумышленник отправляет большее количество SYN-пакетов на адреса. В процессе ответа на запрос время, когда сервер отправляет информацию запроса в память стек, он будет ждать подтверждения от клиента, что отправляет запрос. Таким образом, пока запрос ожидает своего установления, он останется в памяти. Поскольку исходные адреса, используемые в атаках SYN flood, могут быть ложные, сервер не будет получать пакеты подтверждения для запросов, созданных атакой SYN flood. Каждая половина - открытое соединение останется в памяти в ожидание ответа.

### Smurf атака типа ICMP Flood, где

злоумышленники используют пакеты эхо-запроса ICMP, направленные на IP широковещательные адреса из удаленных мест для генерации атаки отказа в обслуживании. В этих атаках участвует: злоумышленник, посредник и жертва. Сначала злоумышленник отправляет один пакет эхо-запроса ICMP на сетевой широковещательный адрес и запрос перенаправляется на все хосты в промежуточной сети.

Во-вторых, все хосты в промежуточной сети отправиляют эхо-ответы ICMP для флудинга жертве. Настоящее время, smurf-атаки довольно редки в Интернете, так как защита против таких атак не составит труда.

<u>ННТР потоп</u> относится к атаке, которая бомбардирует веб серверы с НТТР-запросами. НТТР-флуд - обычное дело функция в большинстве программ ботнетов. Чтобы отправить НТТР-запрос, должно быть установлено действующее ТСР-соединение, которое требуется подлинный IP-адрес. Злоумышленники могут добиться этого

используя IP-адрес бота. Более того, злоумышленники могут создавать HTTP-запросы по-разному, чтобы максимизировать силу атаки или избегая обнаружения.

Еще одна важная DDoS-атака - это атака SIP flood. Широко поддерживаемый открытый стандарт настройки вызова в передача голоса по IP (VoIP) - протокол инициирования сеанса (SIP). Как правило, прокси-серверы SIP требуют общедоступного доступа в Интернет для приема запросов на установку вызова от любого клиента VoIP. Более того, для достижения масштабируемости SIP обычно реализуется поверх UDP, чтобы быть без гражданства. В одном сценарии атаки злоумышленника могут затопить SIP-прокси с множеством пакетов SIP INVITE, которые имеют поддельные исходные IP-адреса. Злоумышленники также могут запустить флуд из ботнета с использованием незарегистрированного IP-адреса источника адреса. Второй тип жертвы - получатели звонков. Они будут поражены поддельными звонками VoIP с невозможность дозвониться истинным абонентам.

### Способы защиты

Защита от DoS и DDoS атак сильно зависит от модели сети и типа атаки. Было предложено несколько механизмов для решения этой проблемы. Однако у большинства из них есть слабости и терпят неудачу при атаках.

Методы <u>переупорядочения</u> и <u>улучшения протокола</u> сделают протоколы безопасности более надежными и менее уязвимыми к атакам на ресурсы жертвы.

<u>Фильтрация входящего сетевого трафика</u> - это механизм, предлагаемый для предотвращать атаки, использующие поддельные адреса. Это включает настройку маршрутизаторов на отбрасывание пакетов, ложные IP-адреса. Одна из серьезных ловушек, он не может остановить атаку, которая исходит с поддельного IP-адреса изнутри сети.

Сообщения *трассировки ICMP* полезны для распознавания путь, по которому проходят пакеты через Интернет. Это требует, чтобы маршрутизатор использовал очень низкую вероятность, с которой сообщения трассировки отправляются вместе с трафиком. Следовательно, при достаточно большом количестве сообщений можно завершить маршрут, пройденный транспортным потоком во время атаки. Это позволяет локализовать агрессивный хост.

Подход к решению проблем, связанных с проверкой действительности IPадресов при входящей фильтрации заключается в последовательном использовании маршрутизации. *IP-трассировка* предлагает надежный способ выполнения поэтапного отслеживания пакета до атакующего источника от откуда он возник. Однако для этого требуется скоординированные усилия всех маршрутизаторов в сети от жертвы к злоумышленнику, и проверка журналов пакетов.

<u>Детерминированная маркировка пакетов (DPM)</u> - другое средство для обнаружения DoS-атак. Он полагается на информацию вписываемой в заголовок пакета маршрутизаторами при прохождении пакета по сети.

Вероятностная маркировка пакетов (PPM) для IP-трассировки метод, который пытается улучшить DPM. Это устраняет подделку IP-адреса, позволяя каждому маршрутизатору вероятностно вписать информацию о локальном пути в пакет, который его проходит. Это позволяет хосту-жертве локализовать атакующий источник, сохранив фиксированный размер заголовка пакетов. Механизм зависит от стабильности маршрута между злоумышленником и жертвой для локализации злоумышленника. Похожий механизм, известный как основанный на маршрутах фильтрация пакетов, в которой используется адреса источника и назначения в заголовке пакета для прочности маршрута.

<u>Путем идентификатор (Pi)</u> - отпечаток следа встроен в каждый пакет, что позволяет жертве идентифицировать пакеты проходя по тем же путям через Интернет на каждой пакетной основа, независимо от подмены IP-адреса источника. Рі позволяет жертве играть практическую роль в защита от DDoS-атаки с помощью знака Рі для отфильтрования атакующих пакетов.

PushBack подходы были предложены для извлечения сигнатуры атак путем ограничения скорости сомнительного трафика предназначенного для перегруженного сети. С момента DDoS, ход атаки не соответствует сквозному контролю потока протокола в пути, поэтому можно найти скопление пакетов с использованием статистики отбрасывания пакетов.

<u>MULTOPS</u> - маршрутизаторы замечают атаки на полосу пропускания, используя\_эвристику, основанную на скорости отправки пакетов. Путем расчета скорости пакетов по разным маршрутам. Как только это состояние нарушено, предполагается, что произошло нападение. Однако, эффективность MULTOPS снижается с рандомизированным IP исходных адресов.

<u>D-WARD</u> - выполняет статистическое профилирование трафика на краю сети, чтобы заметить новые типы DDoS-атак. Путем мониторинга номинального типа для каждого пункта назначения скорости прихода и отправления трафика TCP, UDP, ICMP пакетов, а также при обнаружении любых нерегулярных асимметричных поведений двустороннего трафика на

граничном маршрутизаторе подключаясь к тупиковой сети, D-WARD стремится остановить DDoS-атаки возле их источников.

### Вывод

С развитием телекоммуникационных сетей DDoS атаки стали повсеместны и приносят вред как мелким предпринимателям, так и целым государствам. Подводя итог изложенному, можно констатировать тот факт, что защита информации является важной и достижимой задачей для обеспечения защиты, как коммерческих предприятий так и государственных структур. Хотя на сегодняшний день существует большое количество средств и методов обеспечения защиты от DDoS атак, подход к защите должен быть комплексным и включать в себя несколько способов защиты от них, а также организационно-техническая подготовка персонала.

### Заключение

Для достижения данной цели, в процессе прохождения учебной (по получению первичных профессиональных умений и навыков, в том числе первичных умений и навыков научно-исследовательской деятельности) практики ознакомился с DDoS атаками и основными способами противодействия им.

Также были изучены требования к написанию отчета по практике. В результате прохождения практики был составлен отчет по практике, соответствующий предъявленным требованиям.

В ходе прохождения практики все задачи были выполнены, а цель достигнута.

### Список используемых источников

- 1. Saravanan Kumarasamy, R. Asokan «An Efficient Detection Mechanism for Distributed Denial of Service (DDoS) Attack» [Электронный ресурс] Электрон. дан. Режим доступа: https://arxiv.org/abs/1302.5158
- 2. Терновой Олег Степанович «Методика и средства раннего выявления и противодействия угрозам нарушения информационной безопасности при DDoS-атаках» [Электронный ресурс] Электрон. дан. Режим доступа: <a href="https://elibrary.ru/item.asp?id=20879286">https://elibrary.ru/item.asp?id=20879286</a>
- 3. Артемьев Д.С., Якушина А.П. «Анализ данных по DDoS атакам» [Электронный ресурс] Электрон. дан. Режим доступа: https://www.elibrary.ru/item.asp?id=42794429
- 4. Saravanan Kumarasamy, R. Asokan, «Distributed Denial of Service (DDoS) Attacks Detection Mechanism» [Электронный ресурс] Электрон. дан. Режим доступа: <a href="https://arxiv.org/abs/1201.2007">https://arxiv.org/abs/1201.2007</a>