

MVAPICH2 on Azure HPC: A seamless HPC Cloud Experience

Jithin Jose, Microsoft

Agenda

- ✓ Overview of Azure HPC
- ✓ What's unique in HPC Cloud
- ✓ HPC Software Ecosystem
 - ✓ MVAPICH2-X Azure
- ✓ Performance Characteristics
- ✓ Conclusion

Microsoft Azure HPC

High Speed Networking

- · InfiniBand Network
- Supports OFA verbs and all IB-based MPI Libraries
- Only public cloud to offer IB

Powerful Compute

- Compute Optimized SKUs
- · GPU SKUs

Seamless Integration

- Seamless integration with existing HPC environments
- · Scale out to Cloud

HPC Offerings in Azure

H-Series (InfiniBand)

- H16r (FDR)
- HB60rs (EDR)
- HC44rs (EDR)
- HB120rs_v2 (HDR)

N-Series (GPU + InfiniBand)*

- NC24r (2 x Tesla K80 + FDR)
- NC24rs_v2 (4 x Tesla P100 + FDR)
- NC24rs_v3 (4 x Tesla V100 + FDR)
- ND24rs (4 x Tesla P40 + FDR)
- **ND40rs_v2** (8 x Tesla V100, EDR)

- SKU Name indicates core count
- "r" indicates RDMA support
- "s" indicates Premium Storage support

Outline

- ✓ Overview of Azure HPC
- ✓ What's unique in HPC Cloud
- ✓ HPC Software Ecosystem
- ✓ Performance Characteristics
- ✓ Conclusion

Unique Challenges for HPC in Cloud

Performance/Scalability Challenges

- Noise from Host OS / Host Agents
- Host interrupts
- · Core/NUMA mapping
- · Traffic from other customers
- Guest Agents

Host / VM Partitioning

- Host NUMA Nodes (4 cores per NUMA node)
- VM NUMA Nodes
- Host: AMD Rome with 128 cores
 - 32 NUMA nodes, 4 cores per NUMA node
- HBv2 VM
 - 120 cores for VM
 - 8 cores reserved for host
 - L3 = NUMA
 - No cache pollution

NDv2

- Host Cores
- VM Cores
 - Intel Xeon (Skylake) 48 cores
 - 40 cores for VM
 - 8 cores reserved for host

Efficient Network Virtualization

- Single Root I/O Virtualization (SR-IOV)
 - Expose all NIC features w/o any host intervention
 - Offers bare-metal network performance
- Single VM per host
 - · One VF per Host

Network Features:

- Dynamically Connected Transport (DCT)
 - · Reliable and scalable transport
 - · Lesser Memory footprint
- Hardware collectives (hcoll)
 - · Collectives offload framework
 - Asynchronous execution
 - · Supports blocking/non-blocking collectives
- UD multicast (MCAST)
 - · Unreliable datagram (UD) based multicast
 - · Create a mcast group and broadcast
- Hardware Tag Matching
- Reliability/Congestion Control
 - · SHIELD, Adaptive Routing

Network Security

InfiniBand Partition Keys

- · Only VMs with same partition keys can communicate w/ each other
- · Isolates customer traffic
- Multiple SL's possible within same PKEY

Partition Keys in Azure

- Single PKEY for all VMs in a VMSS (Virtual Machine Scale Set)
- · Single PKEY for all VMs associated with an Availability Set
- · Check PKEY:
 - \$ cat /sys/class/infiniband/mlx5_0/ports/1/pkeys/0
 - \$ 0x801a

Congestion Control

- · Azure HPC InfiniBand Network is non-blocking
 - No oversubscription
- Static Routing may still cause bottlenecks
- · Solution: Adaptive Routing
 - Available on CX5 and later generation NICs
 - Configured per SL, AR enabled on all SLs > 0

NUMA Mapping

- Deterministic pNUMA-vNUMA mapping
- · Distance map shows 1:1 mapping
- Enables NUMA aware designs
 - · Efficient Process mapping
 - NUMA aware MPI collectives

Outline

- ✓ Overview of Azure HPC
- ✓ What's unique in HPC Cloud
- **✓ HPC Software Ecosystem**
 - ✓ MVAPICH2-X Azure
- ✓ Performance Characteristics
- ✓ Conclusion

HPC Marketplace Images

- CentOS HPC Images
 - Mellanox OFED
 - MPI Libraries
 - Includes MVAPICH2, MVAPICH2X-Azure
 - HPC Libraries
 - Optimization Configurations

- OpenSource GitHub repository
 - https://github.com/Azure/azhpc-images/

MVAPICH2-X Azure

- Available in all Azure CentOS-HPC images
- · Targeted for Azure HB, HBv2, HC VM instances
- Feature Highlights:
 - Enhanced tuning for point-to-point and collectives
 - · XPMEM Support
 - DC Support
 - · Co-operative Protocol
 - Hybrid RC/UD Support

Blog Post: https://techcommunity.microsoft.com/t5/azure-compute/mvapich2-on-azure-hpc-clusters/ba-p/1404305

Outline

- ✓ Overview of Azure HPC
- ✓ What's unique in HPC Cloud
- ✓ HPC Software Ecosystem
- **✓** Performance Characteristics
- ✓ Conclusion

Experiment Setup

- · HBv2 VMs
- · CentOS 7.7 HPC Image
- MPI Libraries
 - · MVAPICH2 2.3.4
 - · MVAPICH2-X 2.3
- · Mellanox OFED 5.1

MPI Latency

- MVAPICH2, MVAPICH2-X achieves < 2us latencies
- MVAPICH2-X offers better large message latencies for intra-node transfers (XPMEM)

MPI Bandwidth / Bi-Bandwidth

- MVAPICH2, MVAPICH2-X close to line rates
- Both versions use same protocols

MPI Allreduce

- MVAPICH2-X XPMEM Collectives offers better large message allreduce latencies
- 8 HBv2 nodes, 120 PPN

GPCNet on HBv2

- Measure Congestion Factor with and without Congestion Control (CC)
- 128 HBv2 VMs, 120 PPN (15,360 MPI ranks)
- Upcoming F/W version

MiniFE

- · Finite Element Mini-Application
- Proxy application for unstructured implicit FE codes
- Strong scaling experiment
- · Version: openmp-opt
- · Problem Size
 - \cdot nx=1024, ny=1024, nz=1024

CloverLeaf

- Hydrodynamics mini0app to solve compressible Euler equations in 2D
- Version: CloverLeaf_MPI
- · DataSet: clover_bm256.in
 - · x_cells: 15360, y_cells: 15360
 - Steps: 2955

WRF

- WRF 3.6
 - https://github.com/hanschen/WRFV3
- Benchmark: 12km resolution case over the Continental U.S. (CONUS) domain
 - https://www2.mmm.ucar.edu/wrf/WG2 /benchv3/# Toc212961288
- Update io_form_history in namelist.input to 102
 - https://www2.mmm.ucar.edu/wrf/users/namelist-best-p rac wrf.html#io form history

* Courtesy: MVAPICH Team

Outline

- ✓ Overview of Azure HPC
- ✓ What's unique in HPC Cloud
- ✓ HPC Software Ecosystem
- ✓ Performance Characteristics
- ✓ Conclusion

Conclusion

- · Azure HPC design offers bare-metal performance
- · SR-IOV efficiently exposes network features
- Out-of-the box HPC VM Images
 - MVAPICH2, MVAPICH2-X
- · MVAPICH2/MVAPICH2-X offers great performance and scalability on Azure

Pointers

- AzureHPC Deployment Scripts
 - https://github.com/Azure/azurehpc
- Azure HPC/GPU VM Sizes
 - https://docs.microsoft.com/azure/virtual-machines/sizes-hpc
 - https://docs.microsoft.com/azure/virtual-machines/sizes-gpu
- HPC Marketplace Images
 - https://techcommunity.microsoft.com/t5/azure-compute/azure-hpc-vm-images/ba-p/977094
- MVAPICH2 on Azure
 - https://techcommunity.microsoft.com/t5/azure-compute/mvapich2-on-azure-hpc-clusters/ba-p/1404305
- Adaptive Routing on Azure HPC
 - https://techcommunity.microsoft.com/t5/azure-compute/adaptive-routing-on-azure-hpc/ba-p/1205217

Thank You!