Procedure: (a) Mix in culture tube by shaking 0.5 g pyrolusite + 1 g NaOH + 1 g KNO₃. Project in H-3 and heat until molten. Cool. Shake with 30 ml water, filter equal amounts into the two cells of C-2. Project. (b) Gently add a dropperful of dil. HNO₃ to the liquid in cell 1. (c) Drop a small lump of dry ice into cell 2.

Observations: (a) KNO₃ oxidizes MnO₂ to green manganate, K₂MnO₄. (b) HNO₃ oxidizes the upper portion of the liquid in cell 1 to purple permanganate, MnO₄⁻. (c) Dry ice converts green MnO₄⁻ into purple permanganate, MnO₄⁻ (this is an industrial method).

Reactions: $3K_2MnO_4 + 2CO_2 \rightarrow 2KMnO_4 + 2K_2CO_3 + MnO_2$.

Reference: HARPIN, R. E., J. CHEM. EDUC., **36**, A685, 1959.

Dem. 645—Oxygen from KMnO₄

To show: The preparation of oxygen from heating permanganate.

Materials: H-1, KMnO₄, splint.

Procedure: Project H-1 with the test tube quarterfull of KMnO₄. Heat with the small alcohol burner. Collect the evolved gas and test it for oxygen with a glowing splint.

Observations: Oxygen gas is evolved, the splint bursts into flame.

 $4\mathrm{KMnO_4} \rightarrow 2\mathrm{K_2O} \,+\, 4\mathrm{MnO_2} \,+\, 3\mathrm{O_2}$

Dem. 646—MnO₂ as a Catalyst for H₂O₂ Decomposition

To show: Catalytic action of MnO₂ on hydrogen peroxide.

Materials: C-3, two splints, 3% H₂O₂, detergent, MnO₂.

Procedure: Project C-3 half-filled with H_2O_2 . (a) Wet two sticks, dip into MnO_2 to collect some particles, drop the sticks into cells 2 and 3. (b) Drop some granules of detergent into cell 3.

Observations: (a) Vigorous decomposition of the H_2O_2 occurs on the surface of the MnO₂ particles. (b) As the O_2 gas evolves, it rises with the detergent as a foam.

Dem. 647—Permanganate + Fe(II)

To show: Titration of ferrous salt with standard permanganate solution.

Materials: 0.5 N FeSO₄, $(NH_4)_2SO_4 \cdot 6H_2O$ [98.04 g per 1000 ml solution], dil H_2SO_4 , C-1, stirrer, 0.1 N KMnO₄ (3.16 g KMnO₄ per 1000 ml solution).

Procedure: Project C-1 half-full of water. Add a dropperful of dil. H₂SO₄. Drop in (class counting) 20 drops of 0.1 N KMnO₄. Now drop in (class counting) the FeSO₄ solution until the pink color vanishes.

Reactions: $10\text{FeSO}_4 + 2\text{KMnO}_4 + 8\text{H}_2\text{SO}_4 \rightarrow \text{K}_2\text{SO}_4 + 2\text{MnSO}_4 + 8\text{H}_2\text{O} + 5\text{Fe}_2(\text{SO}_4)_3$

Note: Mohr's salt, $(NH_4)2FeSO_4 \cdot 6H_2O$ can be used in place of $FeSO_4$.

Dem. 648—Permanganate + SO₂ or H₂S

To show: The reduction of MnO₄⁻ by SO₂ or H₂S.

Materials: C-3, KMnO₄, NaHSO₃-aq, Na₂S-aq, H₂SO₄-dil.

Procedure: Project C-3 with cells quarter-full of dilute H₂SO₄. Add varying amounts of dil. KMnO₄ to each cell. Now titrate with NaHSO₃-aq or Na₂S-aq.

Observations: The violet KMnO₄ is reduced to colorless (pink) Mn⁺², according to reaction as

 $5\mathrm{SO_2} + 2\mathrm{KMnO_4} + 2\mathrm{H_2O} \rightarrow \mathrm{K_2SO_4} + 2\mathrm{MnSO_4} + 2\mathrm{H_2SO_4}$

Dem. 649—Permanganate + H₂O₂

To show: Titration of hydrogen peroxide with standard permanganate solution.

Materials: 0.1 N KMnO₄, dil. H_2SO_4 , 3% H_2O_2 , C-1, stirrer.

Procedure: Project C-1 half-full of water. To it add a dropperful of dil. H_2SO_4 + exactly 10 drops of KMnO₄. Now add H_2O_2 dropwise until the pink color disappears.

Reaction: $5H_2O_2 + 2KMnO_4 + 3H_2SO_4 \rightarrow 2M\dot{n}SO_4 + K_2SO_4 + H_2O + 5O_2 \uparrow$.

Calculations: $0.1~N~{\rm KMnO_4}$ contains $3.16~{\rm g}~{\rm KMnO_4}$ per 1000 ml solution. From the volume of solution of ${\rm H_2O_2}$ used, calculate the $\%~{\rm H_2O_2}$ in the original solution.

E. Group VIII. (Fe, Co, Ni)

Dem. 650—Oxidation and Reduction of Iron

Experiment developed by Edwin H. Cooper.

To show: The oxidation of Fe(II) and reduction of Fe(III).

Materials: Soln A: 0.4 g Mohr's salt (Fe(NH₄)₂SO₄,-6H₂O) + 4 ml 6 M H₂SO₄ + 100 ml water. KMnO₄-aq, K₂Cr₂O₇-aq, KSCN-aq, iron picture-wire; H-3.

Procedure: Project culture tubes one-quarter full of $Soln\ A+1$ ml KCNS-aq (mixture should be practically colorless.) (a) Now add dropwise to red color $K_2Cr_2O_7$ -aq to tube 1, KMnO₄-aq to tube 2, and H_2O_2 to tube 3. (b) Put 1-in. lengths of iron picture-wire into each tube and boil 1 min.

Observations: (a) KMnO₄, K₂Cr₂O₇ and H₂O₂ all oxidize Fe⁺⁺ to Fe⁺⁺⁺, which then forms deep red FeCNS⁺⁺. (b) The iron wire reduces the ferric to ferrous; the red FeCNS⁺⁺ disappears and the solutions turn colorless.

(c) $Fe^{+3} + CNS^{-} \rightleftharpoons FeCNS^{++}$ deep red