Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_0^{\#2} = 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$t_0^{#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha}$	1
$\tau_{1}^{\#2}{}^{\alpha} + 2 i k \ \sigma_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi}$ +	<u>۳</u>
	$2 (\partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi}_{\beta} - \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \sigma^{\alpha \beta \chi} +$	
	$\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\ \ eta}$) == $\partial_{\chi}\partial^{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	8
$\sigma_{1}^{\#1}{}^{\alpha} = \sigma_{1}^{\#2}{}^{\alpha}$	$\partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi}_{\beta} + \partial_{\chi} \partial^{\chi} \sigma^{\alpha \beta}_{\beta} == 0$	8
$\tau_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	e e
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi} t^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	$t_{2}^{\#1}\alpha\beta - 2ik \ \sigma_{2}^{\#1}\alpha\beta == 0 \ -i(4 \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2 \partial_{\delta}\partial^{\delta}\partial^{\alpha}\tau^{\chi} -$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4\ i \ k^{\chi} \ \partial_{\epsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\delta arepsilon}_{\ \delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6\ i\ k^{\chi}\ \partial_{arepsilon}\partial_{\delta}\partial_{\chi}\sigma^{eta\deltalpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} t^{\chi}_{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta \epsilon}) == 0$	
Total constraints/gauge generators:	ge generators:	19

Quadratic (free) action $S == \iiint (\frac{1}{6} (2t_1 \ \omega^{\alpha l}_{\alpha} \ \omega^{\beta}_{l} + 6 \ f^{\alpha \beta} \ \tau_{\alpha \beta} + 6 \ \omega^{\alpha \beta \chi} \ \sigma_{\alpha \beta \chi} - 4t_1 \ \omega^{\beta}_{\alpha} \ \partial_{l} f^{\alpha l} + 4t_1 \ \partial_{l} f^{\beta}_{\alpha} \partial_{l} f^{\alpha}_{\alpha} - 24 \ r_{3} \partial_{l} \omega^{\beta}_{\alpha} \partial_{l} \omega^{\beta}_{\alpha} - 2t_1 \partial_{l} f^{\alpha}_{\alpha} \partial_{l} f^{\alpha}_{\alpha} \partial_{l} f^{\alpha}_{\alpha} - 24 \ r_{3} \partial_{l} \omega^{\beta}_{\alpha} \partial_{l} \omega^{\beta}_{\alpha} + 4t_1 \partial_{l} f^{\alpha}_{\alpha} \partial_{l} f^{\beta}_{l} - 24 \ r_{3} \partial_{\alpha} \omega^{\alpha \beta l} \partial_{l} \omega^{\beta}_{l} + 48 \ r_{3} \partial_{l} \omega^{\alpha \beta}_{\alpha} \partial_{l} \omega^{\beta}_{\alpha} \partial_{l} \partial_$	$a_{\alpha\beta} = \int_{\beta} \int_{\beta} \int_{\beta} \int_{\beta} \int_{\beta} \int_{\alpha} \int_{\beta} \int_{\alpha} \int_{\alpha} \int_{\beta} \int_{\alpha} \int_{\beta} \int_{\alpha} \int_{\beta} \int_{\alpha} \int_{\beta} \int_{\alpha} \int_{\beta} \int_{\alpha} \int_{\alpha} \int_{\beta} \int_{\alpha} \int_{\alpha} \int_{\beta} \int_{\alpha} \int_{\alpha} \int_{\beta} \int_{\alpha} \int$
---	--

-1 α	0	0	0	$\frac{12 i k}{(3+4 k^2)^2 t_1}$	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$	α	
				(3+4	$\frac{12i}{(3+4)}$		2,	$f_{1}^{\#2}$	(
, T.	0	0	0	0	0	0	0	$f_{1}^{\#1}$	(
- 1 α - 1 α	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	$\omega_{1}^{\#2}{}_{lpha}$	Ó
- I a	0	0	0	$\frac{6}{(3+4k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$	$\omega_{1^{-}}^{\#1}{}_{\alpha}$	(
ι αρ	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0	$f_{1}^{\#1}_{\alpha\beta}$	$i k (t_1 - 2 t_2)$
ι αρ	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0	$\omega_{1}^{\#_{2}^{2}}$	t1-2t2
ι αρ	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0	$\omega_{1}^{\#1}{}_{\alpha\beta}$	$= 1 + \alpha \beta $ 1 $+ \alpha + \gamma$
,	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} + ^{lpha}$	$\tau_1^{\#2} + \alpha$		π #1 π

				3			#1				+	α	0	
0	0	0	0	0	0	0	$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2$	$\omega_2^{\#1}$		
			lla			. kt ₁	$f_{0}^{#2}$	0	0	0	0	$f_{2}^{\#1}$	$-\frac{ikt_1}{}$	(
0	0	0	$\frac{t_1}{3\sqrt{2}}$	£1 3	0	$\frac{1}{3}$ l $\sqrt{2}$	$f_{0}^{\#1}$	r ₃ 0	0	0	0	$\omega_2^{\#1}$	$\overline{\Gamma_{2}}$	(
0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$\frac{1}{3}$ \overline{l} kt_1 -	$\omega_{0}^{\#1}$	$\pm 6 k^2 r_3$	0 +	0 +	0 +		$\omega_{2}^{#1} + \alpha \beta$	_
		_		·		1		$\omega_0^{\#1}$ †	$f_0^{\#1}$	$f_{0}^{\#2}$	$\omega_{0}^{\#1}$ \dagger		#3	
- <u>2 (2)</u> \[\sqrt{2}\]	$i k (t_1 + t_2)$	$k^2 \left(t_1 + t_2 \right)$							$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$		1	
$-\frac{(\kappa(t_1-2t_2))}{3\sqrt{2}}$	$\frac{1}{3}$ \vec{i} k (t_1	$\frac{1}{3} k^2 (t_1)$	0	0	0	0	$\sigma_{0}^{\sharp 1}$		$\frac{1}{k^2 r_3}$	0	0	0		
							$ au_{0^{+}}^{\#1}$	†	0	0	0	0		
$\frac{c_{1}-c_{1}2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$i k (t_1 + t_2)$	0	0	0	0	" ~		0	0	0	0		
<u>- 1</u>	<u>t1</u>	$-\frac{1}{3}\bar{l}k$ ($\sigma_0^{\#1}$	†	0	0	0	$\frac{1}{k^2 r_2}$		
$ t_2 $	7.5									$\sigma_{2}^{\#1}$	β	$ au_{2}^{\#1}$	αβ	
$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0	$\sigma_2^{\#}$	¹ † ^α	β <u> </u>	2 +2 k ²) ²	$\frac{1}{2t_1}$	$-\frac{2i}{(1+2k)}$	$\sqrt{2} k$ $(x^2)^2 t$	
-1 9 2	8		χ	χ	χ	χ	$ au_{2}^{\#1}\dagger^{lphaeta}$		$+\alpha\beta$ $2i\sqrt{2}k$		<u>k</u>	4 k ²		
$+^{\alpha}$	$+^{\alpha\beta}$	$+^{\alpha\prime}$	$\frac{1}{1} + \alpha$	$\omega_1^{\#^2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$	$\tau_2^* + \tau_3^*$		$(1+2k^2)^2 t_1$		$^{2}t_{1}$	$(1+2k^2)^2t$		1
$\omega_1^{\#1} +^{lphaeta}$	$\omega_1^{\#2}$ \pm	$f_{1}^{#1} + \alpha \beta$	$\omega_{1}^{\#1} \dagger$	$\omega_{1^{\bar{-}}}^{\#}$	$f_1^{\#}$	$f_1^{\#}$	$\sigma_2^{\#1}$	$\dagger^{\alpha\beta}$	X	0		C)	
														-

 $\begin{array}{c}
0\\
\frac{i k t_1}{3}\\
\frac{i}{3} \sqrt{2} k t_1\\
0\\
\frac{2k^2 t_1}{3}\\
3
\end{array}$

Massive and massless spectra

	Massive particle							
	Pole residue: $-\frac{1}{r_2} > 0$							
)	Polarisations:	1						
	Square mass:	$-\frac{t_2}{r_2} > 0$						
	Spin:	0						
	Parity:	Odd						

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$