Dynamische Systeme

Motivation

Gegeben ist ein zeitabhängiges System $t\mapsto x(t)$. Möchten verstehen, wie sich x(t) über die Zeit entwickelt. Zu festen Zeitpunkten $t_0, \cdots t_n$ lässt sich $x(t_i)$ messen und damit $x'(t_i)\cong \frac{x(t_i)-x(t_{i-1})}{t_i-t_{i-1}}$ näherungsweise bestimmen. Im allgemeinen ist die Ableitung x'(t)=f(x(t),t) eine Funktion in der Zeit und der Funktion selbst.

Dynamische Systeme

Beispiel

(1) $x'(t) = \mu x(t)$. Dann ist $x(t) = ce^{\mu t}$ für alle $c \in \mathbb{R}$ eine Lösung. Ist $x(0) = x_0$, so ist $x(t) = x_0 e^{\mu t}$ eine Lösung von (1) mit $x(0) = x_0$.

Dynamische Systeme

System von Differentialgleichungen

Ein System von Differentialgleichungen 1-ter Ordnung ist ein System von Gleichungen

$$x'_1(t) = f_1(t, x_1, \dots, x_n)$$

$$x'_2(t) = f_2(t, x_1, \dots, x_n)$$

$$\vdots$$

$$x'_n(t) = f_n(t, x_1, \dots, x_n)$$

Werden zusätzlich die Anfanfsbedingungen $x_1(t_0)=x_0^1,\ldots,x_n(t_0)=x_0^n$ vorgegebenen, so spricht man von einem Anfangswertproblem. Eine Lösung ist eine Funktion $x:I\subset\mathbb{R}\to\mathbb{R}^n$, deren Koordinatenfunktionen diese Bedingungen erfüllt.

Dynamische Systeme

System von Differentialgleichungen

Ein Anfangswertproblem *n*-ter Ordnung

$$x^{(n)}(t) = f(t, x^{(n)}, x^{(n-1)}, \cdots, x', x)$$

mit $x(t_0) = x_0$; $x'(t_0) = x_1$; \cdots ; $x^{n-1}(t_0) = x_{n-1}$ ist äquivalent zu dem System von Differentialgleichungen 1-ter Ordnung

$$x'_1(t) = x_2(t)$$

$$x'_2(t) = x_3(t)$$

$$\vdots$$

$$x'_n(t) = f(t, x_1, \dots, x_n)$$

mit den Anfangswertbedingungen

$$x_1(t_0) = x_0, x_2(t_0) = x_1, \dots, x_{n-1}(t_0) = x_{n-1}.$$

Dynamische Systeme

Harmonischer Oszillator

$$x''(t) = -x(t).$$

Harmonischer Oszillator

$$\frac{d}{dt}\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$$

Dynamische Systeme

System von Differentialgleichungen

Für eine vekorwertige Funktion $f:I\to\mathbb{R}^n$; $f(t):=\begin{pmatrix} r_1(t)\\ \vdots\\ f_n(t) \end{pmatrix}$ definieren wir das Integral komponentenweise durch

$$\int_a^b f(t)dt := egin{pmatrix} \int_a^b f_1(t)dt \ dots \ \int_a^b f_n(t)dt \end{pmatrix} \ .$$

Dynamische Systeme

System von Differentialgleichungen

Ein Weg $\varphi: I \subset \mathbb{R} \to \mathbb{R}^n$ ist genau dann Lösung des AWP $\varphi'(t) = F(t, \varphi)$ mit $\varphi(t_0) = x_0$, wenn

$$\varphi(t) = x_0 + \int_{t_0}^t F(t, \varphi) dt$$

gilt.

Beweis

Folgt direkt durch komponentenweise Anwendung des Hauptsatzes der Integral- und Differentialrechnung.

Dynamische Systeme

Volterra-Lotka System

https://de.wikipedia.org/wiki/Lotka-Volterra-Gleichungen

Dynamische Systeme

System von Differentialgleichungen

Ein Vektorfeld ist eine Abbildung

$$v:\Omega\subset\mathbb{R}^n\to\mathbb{R}^n$$
,

die jedem Punkt $x \in \Omega$ einen Vektor $v(x) \in \mathbb{R}^n$ zuordnet.

Figure: Quelle:

Wikipedia:https://en.wikipedia.org/wiki/Vector_field#/media/File:VectorField.s

Dynamische Systeme

System von Differentialgleichungen

Ein Weg $\varphi: I \subset \mathbb{R} \to \mathbb{R}^n$ heißt Integralkurve in dem Vektorfeld $v: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$, falls

$$\varphi'(t) = v(\varphi(t))$$

gilt für alle $t \in I$.

Figure: Quelle:

Wikipedia:https://en.wikipedia.org/wiki/Integral_curve#/media/File:Slope_Field

Dynamische Systeme

System von Differentialgleichungen

Ein dynamisches System ist eine Abbildung $F: U \subset \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, die jedem Punkt $(t, x) \in U$ einen Vektor $F(t, x) \in \mathbb{R}^n$ zuordnet.

Eine Integralkurve oder Lösung für F ist eine Weg $\varphi:I \to \mathbb{R}^n$ mit

$$\varphi'(t) = F(t, \varphi(t))$$

für alles $t \in I$.

Lösung Harmonischer Oszillator

$$\frac{d}{dt}\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$$

$$\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Dynamische Systeme

Harmonischer Oszillator

$$\frac{d}{dt}\begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$$

Lösung Harmonischer Oszillator

Anfangswert
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1(t_0) \\ x_2(t_0) \end{pmatrix}$$

$$egin{pmatrix} egin{pmatrix} x_1(t) \ x_2(t) \end{pmatrix} = e^{egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}^t} \cdot egin{pmatrix} x_1 \ x_2 \end{pmatrix}$$

ist.

Dynamische Systeme

Harmonischer Oszillator

$$e^{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^{t}} = \sum_{k=0}^{\infty} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^{k} \frac{t^{k}}{k!}$$

Dynamische Systeme

Harmonischer Oszillator

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^{k} = \begin{cases} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; k = 0 \mod 4 \\ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; k = 1 \mod 4 \\ \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}; k = 2 \mod 4 \\ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}; k = 3 \mod 4$$

Dynamische Systeme

Harmonischer Oszillator

$$\sum_{k=0}^{n} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^{k} \frac{t^{k}}{k!} = \begin{pmatrix} 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} - \frac{t^{6}}{6!} \cdots & t - \frac{t^{3}}{3!} + \frac{t^{5}}{5!} - \frac{t^{7}}{7!} \cdots \\ 1 & 0 \\ -t + \frac{t^{3}}{3!} - \frac{t^{5}}{5!} + \frac{t^{7}}{7!} \cdots & 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} - \frac{t^{6}}{6!} \cdots \end{pmatrix}$$
$$= \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix}$$

Link:Trigonometrische Taylorreihen

Dynamische Systeme

Harmonischer Oszillator Eigenwerte

$$\det(\begin{pmatrix}0&1\\-1&0\end{pmatrix}-\lambda E)=\det\begin{pmatrix}-\lambda&1\\-1&-\lambda\end{pmatrix}=\lambda^2+1\Rightarrow \lambda_{1,2}=\pm i$$

Komplexer Eigenwert.

Dynamische Systeme

Gedämpftes Pendel

$$heta''(t) = -L heta - \underbrace{\mu heta'}_{ ext{drag}}. \ L heta = mg\sin(heta)$$

System gedämpftes Pendel

$$\frac{d}{dt} \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix} = \begin{pmatrix} x_2(t) \\ -\mu x_2(t) - \frac{mg}{l} \sin(x_1(t)) \end{pmatrix} \text{ (nicht linear!)}$$

Euler Verfahren

$$\dot{y} = f(t, y), \quad y(t_0) = y_0$$

$$t_k = t_0 + kh \tag{1}$$

$$y_{k+1} = y_k + hf(t_k, y_k) \tag{2}$$

Approximationsfehler

Ist y eine Lösung des Anfangswertproblems und ist f differenzierbar, so gilt für den Approximationsfehler mit der Taylorreihe $y - y_k = o(h^2)$.

26 / 39

Runge Kuta Verfahren

$$\dot{y} = f(t, y), \quad y(t_0) = y_0$$

$$y_{n+1} = y_n + \frac{h}{6} (k_1 + 2k_2 + 2k_3 + k_4),$$
 (3)

$$t_{n+1} = t_n + h \tag{4}$$

$$k_1 = f(t_n, y_n), (5)$$

$$k_2 = f\left(t_n + \frac{h}{2}, y_n + h\frac{k_1}{2}\right),$$
 (6)

$$k_3 = f\left(t_n + \frac{h}{2}, y_n + h\frac{k_2}{2}\right),$$
 (7)

$$k_4 = f(t_n + h, y_n + hk_3).$$
 (8)

Runge Kuta Verfahren als numerische Integration

$$\dot{y} = f(t, y), \quad y(t_0) = y_0$$

$$y_{n+1} = y_n + \int_{t_n}^{t_{n+1}} f(t, y) dt$$
 (9)

$$\int_{t_n}^{t_{n+1}} f(t, y) dt \approx h \cdot \sum_{i=1}^{4} \gamma_i k_i$$
 (10)

Dynamische Systeme

Lipschitz-Stetig

Eine Abbildung $F:U\subset\mathbb{R}\times\mathbb{R}^n\to\mathbb{R}^n$ heißt Lipschitz-Stetig (in x), falls es eine Konstante $L\geq 0$ gibt mit

$$||F(t,x) - F(t,x')|| \le L||x - x'||$$

für alle (t, x) und (t, x') in U.

Dynamische Systeme

Banachscher Fixpunktsatz

Es sei (X,d) ein vollständiger metrischer Raum und $P:X \to X$ eine Abbildung mit

$$d(P(x),P(y))<\lambda d(x,y)$$

und $\lambda < 1$. Dann besitzt P genau einen Fixpunkt $x^* \in X$ mit $P(x^*) = x^*$.

Figure: Quelle: Wikipedia

Figure: Quelle: Wikipedia

Beweis

Wähle beliebiges $x_0 \in X$. Durch wiederholtes Abbilden erhalten wir die Folge $x_n := P(x_{n-1})$. Für diese Gilt nach Voraussetzung an P

$$d(x_{n+1},x_n) < \lambda d(x_n,x_{n-1}) < \lambda^n d(x_1,x_0)$$
.

Mit wiederholtem Anwenden der Dreiecksungleichung gilt

$$d(x_{n+m},x_n) \leq d(x_{n+1},x_n) + d(x_{n+2},x_{n+1}) + \cdots + d(x_{n+m},x_{n+m-1}).$$

Damit erhalten wir

$$\lim_{n\to\infty} d(x_{n+m}, x_n) \leq \lim_{n\to\infty} \lambda^n \left(\sum_{i=0}^m \lambda^i d(x_1, d_0) \right)$$
$$= \frac{\lambda^n (1-\lambda^m)}{1-\lambda} d(x_1, x_0) \leq \frac{\lambda^n}{1-\lambda} d(x_1, x_0)$$

und da $\lambda < 1$ ist x_n eine Cauchyfolge. Da (X,d) vollständig ist, konvergiert die Folge in X gegen einen Grenzwert x^* . Für diesen gilt $P(x^*) = P(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} P(x_n) = \lim_{n \to \infty} x_{n+1} = x^*$ und damit ist x^* ein Fixpunkt von P.

Dynamische Systeme

Lokaler Existenzsatz von Picard-Lindelöf

Das dynamisches System

$$F: U \subset \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$$

sei lokal Lipschitz-Stetig. Dann gibt es zu jedem Punkt $(t_0,x_0)\in U$ ein Intervall $I_\delta(t_0):=(t_0-\delta,t_0+\delta)\subset \mathbb{R}$ auf dem das AWP

$$x' = F(t, x), x(t_0) = x_0$$

eine eindeutoge Lösung Lösung besitzt.

Beweis

Betrachte die Menge $M:=\{\psi:I_{\delta}(t_0)\to\mathbb{R}^n\mid ||\psi(t)-x_0||\leq b\}$ von Wegen in der Nähe von x_0 und die Abbildung

$$P: M \to M$$

$$(P\psi)(t) := x_0 + \int_{t_0}^t F(t, \psi(t)) dt$$

Wähle b so klein, dass P eine Kontraktion ist. Dann besitzt P einen Fixpunkt φ und dieser ist eine Lösung des AWPs.

Beweis

Die Eindeutigkeit zeigen wir folgendermassen. Sei I das intervall auf dem eine Lösung exisitert und $I' \subset I$ ein Intervall, auf dem zwei Lösungen $\varphi_1(t) = \varphi_2(t)$ übereinstimmen. Da für den Startwert $\varphi_1(t_0) = \varphi_2(t_0)$ auf jeden Fall gilt, ist I' nicht leer. Wegen der Stetigkeit ist I' abgeschlossen in I. Wir zeigen, dass I auch offen ist in I. Sei dazu $\xi(t) = \varphi_1(t) - \varphi_2(t)$. Da $\xi(t_0) = 0$ ist erhalten wir

$$||\xi(t)|| = \int_{t_0}^t ||F(t,\varphi_1(t)) - F(t,\varphi_2(t))||dt \le L \int_{t_0}^t ||\xi(t)||dt$$

Mit dem Lemma von Gronwall erhalten wir $||\xi(t)||=0$ und damit $\varphi_1=\varphi_2$ auf ganz I.

Dynamische Systeme

Lemma von Gronwall

Es sei $g: I \to \mathbb{R}$ eine stetige Funktion mot $g(t) \ge 0$. Gibt es Konstanten $A, B \ge 0$ mit

$$g(t) \le A \left| \int_{t_0}^t g(s) ds \right| + B$$

dann gilt $g(t) \leq Be^{A|t-t_0|}$

Dynamische Systeme

Lineare (gewöhnliche) Differentialgleichung.

Eine Differentialgleichung der Form

$$x'(t) := A(t)x(t) + b(t)$$

mit $A:I\subset\mathbb{R}\to\mathbb{R}^{n\times n}$ und $b:I\subset\mathbb{R}\to\mathbb{R}^n$ heißt lineare (gewöhnliche) Differentialgleichung.

Dynamische Systeme

Existenz und Eindeutigkeit]

Ist x'(t) := A(t)x(t) + b(t) eine lineare Differentialgleichung und A und b stetig, so besitzt das AWP

$$x'(t) := A(t)x(t) + b(t); x(t_0) = x_0$$

genau eine auf ganz / definierte Lösung.

Beweis

F(t,x) := A(t)x(t) + b(t) ist Lipschitz-Stetig mit Konstanten $L := \max_{t \in J} ||A(t)||$ für jedes kompakte Intervall $J \subset I$.