2016 年全国硕士研究生招生考试试题

一、选择题(本题共8小题,每小题4分,共32分.在要求,把所选项前的字母填在题后的括号内.)	每小题给出的四个选项中,只有一项符合题目
(1)若反常积分 $\int_0^{+\infty} \frac{1}{x^a(1+x)^b} dx$ 收敛,则()	
(A) a < 1 且 $b > 1$.	(B) $a > 1$ 且 $b > 1$.
(C) $a < 1$ 且 $a + b > 1$.	(D) $a > 1$ 且 $a + b > 1$.
(2)已知函数 $f(x) = \begin{cases} 2(x-1), & x < 1, \\ \ln x, & x \ge 1, \end{cases}$	个原函数是()
$(A) F(x) = \begin{cases} (x-1)^2, & x < 1, \\ x(\ln x - 1), & x \ge 1. \end{cases}$	(B) $F(x) = \begin{cases} (x-1)^2, & x < 1, \\ x(\ln x + 1) - 1, & x \ge 1. \end{cases}$
$(C)F(x) = \begin{cases} (x-1)^2, & x < 1, \\ x(\ln x + 1) + 1, & x \ge 1. \end{cases}$	(D) $F(x) = \begin{cases} (x-1)^2, & x < 1, \\ x(\ln x - 1) + 1, & x \ge 1. \end{cases}$
(3) 若 $y = (1 + x^2)^2 - \sqrt{1 + x^2}, y = (1 + x^2)^2 + \sqrt{1 + x^2}$	$\frac{1}{x^2}$ 是微分方程 $y' + p(x)y = q(x)$ 的两个解,则
q(x) = ()	
(A) $3x(1+x^2)$. (B) $-3x(1+x^2)$.	$(C)\frac{x}{1+x^2}$ $(D) -\frac{x}{1+x^2}$
(4) 已知函数 $f(x) = \begin{cases} x, & x \le 0, \\ \frac{1}{n}, & \frac{1}{n+1} < x \le \frac{1}{n}, n = 1, 2, \dots \end{cases}$.,则()
(A)x = 0 是 $f(x)$ 的第一类间断点.	(B)x = 0 是 $f(x)$ 的第二类间断点.
(C)f(x)在 $x=0$ 处连续但不可导.	(D)f(x)在 $x=0$ 处可导.
(5)设 A , B 是可逆矩阵,且 A 与 B 相似,则下列结论	错误的是()
(A) A ^T 与 B ^T 相似.	(B) A ⁻¹ 与 B ⁻¹ 相似.
$(C)A + A^{T} 与 B + B^{T}$ 相似.	$(D)A + A^{-1} 与 B + B^{-1}$ 相似.
(6)设二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 4x_1x_3$	$(x_3 + 4x_2x_3, y) f(x_1, x_2, x_3) = 2$ 在空间直角坐标
下表示的二次曲面为()	
(A)单叶双曲面. (B)双叶双曲面.	(C)椭球面. (D)柱面.
(7)设随机变量 $X \sim N(\mu, \sigma^2)$ ($\sigma > 0$),记 $p = P\{X \leq \mu\}$	$\iota + \sigma^2$ },则()
$(A)_P$ 随着 μ 的增加而增加.	$(B)_{p}$ 随着 σ 的增加而增加.
$(C)_p$ 随着 μ 的增加而减少.	$(D)p$ 随着 σ 的增加而减少.
(8)随机试验 E 有三种两两不相容的结果 A_1 , A_2 , A_3 ,	且三种结果发生的概率均为 $\frac{1}{3}$,将试验 E 独立
重复做 2 次, X 表示 2 次试验中结果 A_1 发生的次 X 与 Y 的相关系数为()	

 $(C)\frac{1}{3}$.

(B) $-\frac{1}{3}$.

 $(A) - \frac{1}{2}$.

二、填空题(本题共6小题,每小题4分,共24分,把答案填在题中横线上.)

$$(9) \lim_{x \to 0} \frac{\int_0^x t \ln(1 + t \sin t) dt}{1 - \cos x^2} = \underline{\hspace{1cm}}.$$

- (10) 向量场 $A(x,y,z) = (x+y+z)\mathbf{i} + xy\mathbf{j} + z\mathbf{k}$ 的旋度 rot A = ...
- (11)设函数f(u,v)可微,z=z(x,y)由方程 $(x+1)z-y^2=x^2f(x-z,y)$ 确定,则 dz $|_{(0,1)}=$ _____.

(12) 设函数
$$f(x) = \arctan x - \frac{x}{1 + ax^2}$$
, 且 $f'''(0) = 1$,则 $a = \underline{\qquad}$.

(13) 行列式
$$\begin{vmatrix} \lambda & -1 & 0 & 0 \\ 0 & \lambda & -1 & 0 \\ 0 & 0 & \lambda & -1 \\ 4 & 3 & 2 & \lambda + 1 \end{vmatrix} = \underline{\qquad}.$$

(14)设 X_1, X_2, \dots, X_n 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本,样本均值X = 9.5,参数 μ 的置信度为 0.95 的双侧置信区间的置信上限为 10.8,则 μ 的置信度为 0.95 的双侧置信区间为_____.

三、解答题(本题共9小题,共94分,解答应写出文字说明、证明过程或演算步骤.)

(15)(本题满分10分)

已知平面区域
$$D = \left\{ (r, \theta) \mid 2 \le r \le 2(1 + \cos \theta), -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \right\}$$
, 计算二重积分 $\iint_{D} x dx dy$.

(16)(本题满分10分)

设函数 y(x)满足方程 y'' + 2y' + ky = 0,其中 0 < k < 1.

(I)证明:反常积分
$$\int_{0}^{+\infty} y(x) dx$$
 收敛;

(II) 若
$$y(0) = 1, y'(0) = 1, 求 \int_0^{+\infty} y(x) dx$$
 的值.

(17)(本题满分10分)

设函数 f(x,y) 满足 $\frac{\partial f(x,y)}{\partial x} = (2x+1)e^{2x-y}$, 且 f(0,y) = y+1, L_t 是从点 (0,0) 到点 (1,t) 的光滑曲线. 计算曲线积分 $I(t) = \int_{L_t} \frac{\partial f(x,y)}{\partial x} \mathrm{d}x + \frac{\partial f(x,y)}{\partial y} \mathrm{d}y$, 并求 I(t) 的最小值.

14

淘宝店铺:筑梦教育

(18)(本题满分10分)

设有界区域 Ω 由平面 2x + y + 2z = 2 与三个坐标平面围成, Σ 为 Ω 整个表面的外侧, 计算曲面积分 $I = \iint_{\Sigma} (x^2 + 1) dy dz - 2y dz dx + 3z dx dy.$

(19)(本题满分10分)

已知函数f(x)可导,且 $f(0) = 1,0 < f'(x) < \frac{1}{2}$. 设数列 $\{x_n\}$ 满足 $x_{n+1} = f(x_n) (n = 1,2,\cdots)$. 证明:

(I)级数
$$\sum_{n=1}^{\infty} (x_{n+1} - x_n)$$
 绝对收敛;

(
$$II$$
) $\lim_{n\to\infty} x_n$ 存在,且 $0 < \lim_{n\to\infty} x_n < 2$.

(20)(本题满分11分)

设矩阵
$$A = \begin{pmatrix} 1 & -1 & -1 \\ 2 & a & 1 \\ -1 & 1 & a \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 2 \\ 1 & a \\ -a-1 & -2 \end{pmatrix}$. 当 a 为何值时, 方程 $AX = B$ 无解、有唯一

15

解、有无穷多解? 在有解时,求解此方程.

淘宝店铺:筑梦教育

(21)(本题满分11分)

已知矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & -1 & 1 \\ 2 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

(I)求A⁹⁹:

(II)设3阶矩阵 $\mathbf{B} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)$ 满足 $\mathbf{B}^2 = \mathbf{B}\mathbf{A}$. 记 $\mathbf{B}^{100} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3)$,将 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3$ 分别表示为 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 的线性组合.

(22)(本题满分11分)

设二维随机变量 (X,Y) 在区域 $D=\{(x,y)\mid 0< x<1, x^2< y<\sqrt{x}\}$ 上服从均匀分布,令 $U=\begin{cases} 1, & X\leqslant Y,\\ 0, & X>Y. \end{cases}$

- (I) 写出(*X*,*Y*) 的概率密度;
- (II)问U与X是否相互独立?并说明理由;
- (\mathbb{II})求Z = U + X的分布函数F(z).

(23)(本题满分11分)

设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{3x^2}{\theta^3}, & 0 < x < \theta, \\ 0, & 其中 \theta \in (0, +\infty)$ 为未知参数 X_1, X_2, X_3

16

为来自总体 X 的简单随机样本,令 $T = \max\{X_1, X_2, X_3\}$.

- (I)求 T 的概率密度;
- (II)确定 a,使得 aT 为 θ 的无偏估计.

淘宝店铺:筑梦教育