Curso: Procesamiento Electrónico de Potencia ANÁLISIS EN ESTADO ESTABLE DE CONVERTIDORES DE POTENCIA

Ing. Sergio A. Morales Hernández

Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

I Semestre 2021

AGENDA

1 CONSIDERACIONES PARA EL CONTROL

AGENDA

1 CONSIDERACIONES PARA EL CONTROL

2 PWM

• Vamos a analizar el control de un convertidor tipo reductor.

- Vamos a analizar el control de un convertidor tipo reductor.
- De definiciones previas sabemos que un convertidor CD/CD se puede analizar como una fuente conmutada.

- Vamos a analizar el control de un convertidor tipo reductor.
- De definiciones previas sabemos que un convertidor CD/CD se puede analizar como una fuente conmutada.
- Por razones prácticas, ubicaremos una resistencia R como carga.

- Vamos a analizar el control de un convertidor tipo reductor.
- De definiciones previas sabemos que un convertidor CD/CD se puede analizar como una fuente conmutada.
- Por razones prácticas, ubicaremos una resistencia R como carga.
- Y por el momento no consideraremos el reservorio de energía.

• Se tomará como estado *encendido*, T_{on} la posición 1 del interruptor, T_{off} corresponderá por su parte a la posición 2 de interruptor.

- Se tomará como estado *encendido*, T_{on} la posición 1 del interruptor, T_{off} corresponderá por su parte a la posición 2 de interruptor.
- ullet Podemos regular el valor de V_{out} cambiando la frecuencia de acción del interruptor.

- Se tomará como estado *encendido*, T_{on} la posición 1 del interruptor, T_{off} corresponderá por su parte a la posición 2 de interruptor.
- ullet Podemos regular el valor de V_{out} cambiando la frecuencia de acción del interruptor.
- Debemos recordar que V_{out} es el **valor promedio** de la tensión de salida.

- Se tomará como estado *encendido*, T_{on} la posición 1 del interruptor, T_{off} corresponderá por su parte a la posición 2 de interruptor.
- ullet Podemos regular el valor de V_{out} cambiando la frecuencia de acción del interruptor.
- Debemos recordar que V_{out} es el **valor promedio** de la tensión de salida.
- ullet Este proceso debe repetirse cíclicamente, con un periodo T_s .

• Este método se conoce como modulación de ancho de pulso (*PWM* por sus siglas en inglés).

- Este método se conoce como modulación de ancho de pulso (*PWM* por sus siglas en inglés).
- El objetivo es variar la relación de conducción (o *ciclo de trabajo*) del interruptor.

- Este método se conoce como modulación de ancho de pulso (PWM por sus siglas en inglés).
- El objetivo es variar la relación de conducción (o *ciclo de trabajo*) del interruptor.
- El ciclo de trabajo "d" es la relación entre el tiempo que el interruptor permanece cerrado T_{on} respecto al periodo de conmutación.

- Este método se conoce como modulación de ancho de pulso (*PWM* por sus siglas en inglés).
- El objetivo es variar la relación de conducción (o *ciclo de trabajo*) del interruptor.
- El ciclo de trabajo "d" es la relación entre el tiempo que el interruptor permanece cerrado T_{on} respecto al periodo de conmutación.
- Los 2 parámetros que determinan la forma de onda de la señal de salida v_{out} es d y la frecuencia de conmutación.

Entonces podemos hacer las siguientes definiciones:

$$d=\frac{T_{on}}{T_s}$$

$$f_s = \frac{1}{T_s}$$

donde f_s es la frecuencia de conmutación que se aplicará al transistor.

• Un convertidor real tiene, además de lo mencionado anteriormente, un filtro paso bajo.

- Un convertidor real tiene, además de lo mencionado anteriormente, un filtro paso bajo.
- Esto con el fin de poder obtener el valor promedio de la tensión rectangular.

- Un convertidor real tiene, además de lo mencionado anteriormente, un filtro paso bajo.
- Esto con el fin de poder obtener el valor promedio de la tensión rectangular.
- Se eliminan tanto la componente fundamental como todos los armónicos presentes.

- Un convertidor real tiene, además de lo mencionado anteriormente, un filtro paso bajo.
- Esto con el fin de poder obtener el valor promedio de la tensión rectangular.
- Se eliminan tanto la componente fundamental como todos los armónicos presentes.
- Es un filtro de potencia.

• Un esquema general de un modulador de ancho de pulso se muestra abajo.

- Un esquema general de un modulador de ancho de pulso se muestra abajo.
- Se debe considerar que hay que sensar la tensión de salida V_{sen} para que el control pueda actuar sobre el convertidor.

- Un esquema general de un modulador de ancho de pulso se muestra abajo.
- Se debe considerar que hay que sensar la tensión de salida V_{sen} para que el control pueda actuar sobre el convertidor.
- Además, hay que establecer una señal de referencia V_{ref} , que sería la que defina cuál es el voltaje de salida que se busca en el convertidor.

Este proceso generará una señal de control, v_{control}, que será comparada con una señal triangular (o diente de sierra), para producir la modulación buscada.

- Este proceso generará una señal de control, v_{control}, que será comparada con una señal triangular (o diente de sierra), para producir la modulación buscada.
- A partir de acá, la comparación producirá un tren de pulsos.

• El ancho del pulso "encendido" será proporcional a la diferencia entre la señal sensada y la de referencia.

- El ancho del pulso "encendido" será proporcional a la diferencia entre la señal sensada y la de referencia.
- Este tren de pulsos es el que se inyecta al transistor para su disparo.

ullet La amplitud V_{tm} debe ser igual que la tensión de salida V_{out} .

- ullet La amplitud V_{tm} debe ser igual que la tensión de salida V_{out} .
- Los pulsos de disparo deben considerarse de una amplitud adecuada para poder polarizar al transistor.

- ullet La amplitud V_{tm} debe ser igual que la tensión de salida V_{out} .
- Los pulsos de disparo deben considerarse de una amplitud adecuada para poder polarizar al transistor.
- Además, hay que considerar todos los elementos de aislamiento entre etapas.

