幾何計画法の制御応用

小蔵 正輝

奈良先端大学 情報科学領域

はじめに

TABLE 1 Logarithms of Numbers																							
1000–1500																							
No.	0	d	1	d	2	d	3	d	4	d	5	d	6	d	7	d	8	d	9	d	Pro	p. pa	arts
100 101 102 103 104	00432 00860 01284 01703	43 43 42 42	00903 01326 01745	43 42 42 42	00518 00945 01368 01787	43 43 42 41	00561 00988 01410 01828	43 42 42 42	00173 00604 01030 01452 01870	43 42 42 42	00647 01072 01494 01912	42 43 42 41	00689 01115 01536 01953	43 42 42 42	00732 01157 01578 01995	43 42 42 41	00775 01199 01620 02036	42 43 42 42	01242 01662 02078	43 42 41 41		44 9 13 18 22 26 31 35 40	43 9 13 17 22
105 106 107 108 109	02531 02938 03342	41 41 41	02572 02979	40 40 40	02612 03019 03423	41 41 40	02653 03060 03463	41 40 40	02284 02694 03100 03503 03902	41 41 40	02735 03141 03543	41 40	02776 03181 03583	40 41 40	02816 03222	41 40 40	02857 03262	41 40 40	02490 02898 03302 03703 04100	40 40 40		26 31 35 40 42	22 26 30 34 39
110 111 112 113 114	04532 04922 05308 05690	39 39 38 39	04961	39 38 39 38	04610 04999 05385 05767	40 39 38 38	04650 05038 05423 05805	39 39 38 38	04297 04689 05077 05461 05843	38 38 39 38	04727 05115 05500 05881	39 39 38 37	05154 05538	39 38 38 38	04805 05192 05576 05956	39 39 38 38	04844 05231 05614 05994	39 38 38 38		39 39 38 38	23 4 5 6 7	4 8 13 17 21 25 29 34 38	4 8 12 16 20 25 29 33 37
116 117 118 119	06446 06819 07188 07555 07918	37 37 37 36	06483 06856 07225 07591	38 37 37 37 36	06521 06893 07262 07628 07990	37 36 36 36	06558 06930 07298 07664	37 37 37 36	06595 06967 07335 07700 08063	38 37 37 37	06633 07004 07372 07737	37 37 36 36	06670 07041 07408	37 37 37 36	06707 07078 07445 07809	37 37 37 37	06744 07115 07482 07846	36 36 36	06781 07151 07518	38 37 37 36	1 2 3	40	39 4 8 12 16
121 122 123 124	08636 08991 09342	36 35 35	08672 09026 09377	35 35 35	08707 09061 09412	36 35 35	08743 09096 09447	35 36 35	08422 08778 09132 09482 09830	36 35 35	08814 09167 09517	35 35 35	09202	35 35 35	08884 09237 09587	36 35 34	08920 09272 09621	35 35 35	09656	36 35 35	6 7 8	4 8 12 16 20 24 28 32 36	20 23 27 31 35 37
126 127 128 129	10380 10721 11059	35 34 34	10415 10755 11093	34 34 33	10449 10789 11126	34 34 34	10483 10823 11160	34 34 33	10175 10517 10857 11193	34 33 34	10551 10890 11227	34 34 34		34 34 33	10619 10958 11294	34 34 33	10653 10992 11327	34 33 34	10687 11025 11361	34 34 33	23456	4 8 11 15 19 23 27	4 7 11 15 18 22 26
131 132 133 134	11727 12057 12385 12710	33 33 33 33	11760 12090 12418 12743	33 33 32 32	11793 12123 12450 12775	33 33 33 33	11826 12156 12483 12808	34 33 33 32	11860 12189 12516 12840	33 33 32 32	11893 12222 12548 12872	33 32 33 33	11926 12254 12581 12905	33 32 32	11959 12287 12613 12937	33 33 33 32	11992 12320 12646 12969	32 32 32 32	12024 12352 12678 13001	33 32 32	1 2	30 34 36 4 7	30 33 35 4 7
135 136 137 138 139	13354 13672 13988 14301	32 32 31 32	13386 13704 14019 14333	32 31 32 31	13418 13735 14051 14364	32 32 31 31	13450 13767 14082 14395	31 32 32 31	13162 13481 13799 14114 14426	31 31 31	13513 13830 14145 14457	32 32 31 32	13862 14176 14489	32 31 32 31	13577 13893 14208 14520	32 32 31 31	13609 13925 14239 14551	31 31 31 31	13640 13956 14270 14582	32 32 31 31	4 5 6 7 8	11 14 18 22 25 29	10 14 18 21 24 28
140 141 142 143 144	14922 15229 15534 15836	31 30 30 30	14953 15259 15564 15866	30 31 30 31	14983 15290 15594 15897	31 30 31 30	15014 15320 15625 15927	31 30 30	14737 15045 15351 15655 15957	31 30 30 30	15076 15381 15685 15987	30 31 30 30	15412 15715 16017	31 30 31 30	15137 15442 15746 16047	31 31 30 30	15168 15473 15776	30 30 30	15198 15503 15806	31 31 30	1 2	34 3 7 10 14	33 3 7 10 13
145 146 147 148 149	16435 16732 17026	30 29 30	16761 17056	30 30 29	16495 16791 17085	29 29 29	16524 16820 17114	30 30 29	16256 16554 16850 17143 17435	30 29 30	16584 16879 17173	29 30 29	16909 17202	30 29 29	16643 16938 17231	30 29 29	16967 17260	29 30 29	16702 16997 17289	30 29 30	5 6 7 8	17 20 24 27 31	16 20 23 26 30
150 No.	17609 0	29 d	17638 1	29 d	17667 2	29 d	17696 3	29 d	17725 4	29 d	17754 5	28 d	17782 6	29 d	17811 7	29 d	17840 8	29 d	17869 9	29 d			

非負システム

幾何計画

感染症の制御

その他の例

非負システム

非負の量

確率·統計

化学

経済

数理生物学

プロジェクト管理

非負システム

変数が非負である動的システム

 システム/制御/情報、Vol. 58, No. 12, pp. 524-525, 2014

 アイ・サイ問答教室

 非負システムっておもしろいの?

■ Lotka-Volterra 方程式

$$rac{dx}{dt} = lpha x - eta xy, \ rac{dy}{dt} = \delta xy - \gamma y, {rac{5}{4.5}}$$

Buffer network

Fig. 1. Positive systems are commonly used to model dynamics of buffer networks (1). Each state represents the content of a buffer. Content can be transferred from one buffer to another via the network links. The content of a buffer can also change as a result of local production or consumption.

Rantzer, Valcher, "A tutorial on positive systems and large scale control," 2018 IEEE Conference on Decision and Control, 2018.

AIMDアルゴリズム

- Additive increase multiplicative decreaseの略
- Transmission Control Protocol(TCP)

communication networks

Abraham Berman ^{a,*}, Robert Shorten ^b, Douglas Leith ^b

A Positive Systems Model of TCP-Like Congestion
Control: Asymptotic Results
Robert Shorten, Fabian Wirth, and Douglas Leith

感染症の伝播

ネットワーク上のSISモデル

頂点 = 個体

辺 = 関係性

感染確率, 感染者数 ≥ 0

$$\dot{x}(t) = Ax(t)$$

	通常のシステム
エネルギー関数	x [⊤] Px P∶正定値行列

$$\dot{x}(t) = Ax(t)$$

通常のシステム

$$= \frac{dx^{\mathsf{T}}}{dt} Px + x^{\mathsf{T}} P \frac{dx}{dt}$$
$$= (Ax)^{\mathsf{T}} Px + x^{\mathsf{T}} P (Ax)$$
$$= x^{\mathsf{T}} (A^{\mathsf{T}} P + PA)x$$

■ 安定性 ⇔ A^TP + PA が負定

$$\dot{x}(t) = Ax(t)$$

	通常のシステム
エネルギー関数	x [⊤] Px P∶正定値行列
等高線	
ツール	線形行列不等式

$$\dot{x}(t) = Ax(t)$$

通常のシステム

$$\frac{dV(x(t))}{dt} = \frac{d}{dt}(x^{T}Px)$$

$$= \frac{dx^{T}}{dt}Px + x^{T}P\frac{dx}{dt}$$

$$= (Ax)^{T}Px + x^{T}P(Ax)$$

$$= x^{T}(A^{T}P + PA)x$$

非負システム

$$\frac{dV(x(t))}{dt} = \frac{d}{dt}v^{\mathsf{T}}x$$

$$\frac{dx}{dt} = v^{\mathsf{T}}Ax$$

- 安定性 $\Leftrightarrow A^TP + PA$ が負定 安定性 $\Leftrightarrow v^TA$ が負のベクトル

線形計画によるアプローチ(for 線形システム)

ロバスト性解析

Briat2012 (IJRNC), Chen2013 (Automatica), Shen2013 (Automatica)

切り替えシステム

■ Gurvitz2007 (IEEETAC), Fornasini2010 (IEEETAC), Bolzern2010 (IEEETAC), Blanchini2012 (IEEETAC), Colaneri2014 (Automatica)

大規模結合系

Ebihara2017 (IEEETAC)

線形計画の限界

■ 非負システム

$$\Sigma$$
: $dx/dt = A(\theta)x$

■有限時間整定問題

最適な θ 集合 T t

パラメータ

幾何計画

幾何計画

Optim Eng (2007) 8: 67–127 DOI 10.1007/s11081-007-9001-7

EDUCATIONAL SECTION

Stephen Boyd · Seung-Jean Kim · Lieven Vandenberghe · Arash Hassibi

Posynomialの最適化

A tutorial on geometric programming

Monomial

$$g(x) = c x_1^{a_1} \cdots x_n^{a_n}$$

- 正の変数 $x_1, ..., x_n > 0$
- 正の係数 c > 0
- 任意の冪 $a_1, ..., a_n \in \mathbb{R}$

Posynomial

$$f(x) = (monomial の有限和)$$

■多項式の「お化け」

幾何計画問題

Posynomial

minimize

subject to

$$f_i(x) \le 1 \ (i = 1, ..., p)$$

$$g_j(x) = 1 \ (j = 1, ..., q)$$

Monomial

■例

■多項式計画の「お化け」

minimize $x^{-1}y^{-1/2}z^{-1} + 2.3xz + 4xyz$ subject to $(1/3)x^{-2}y^{-2} + (4/3)y^{1/2}z^{-1} \le 1$, $x + 2y + 3z \le 1$,

(1/2)xy = 1,

■ 幾何計画問題

minimize $x^{-1/3}y^{-1/4}$

subject to $x^{1/2} + y^{1/2} \le 1$

■ 変数変換: $x = e^t, y = e^s$

minimize $e^{\left(-\frac{t}{3} - \frac{s}{4}\right)}$

subject to $e^{t/2} + e^{s/2} \le 1$

■等価な凸最適化問題

minimize $-\frac{t}{3} - \frac{s}{4}$

subject to $s \le 2 \log(1 - e^{t/2})$

トランジスタ設計

- ■ベースへの不純物添加
- ■ベース走行時間の最小化

デジタル回路設計

- Gate sizing
- Wire sizing
- ■歩留まり最適化

情報理論

- Channel capacity problem
- Optimal permutation codes

非負システムに使えないか?

有限時間整定問題

■ 非負システム

$$dx/dt = \begin{bmatrix} a & b \\ c & d \end{bmatrix} x$$

■有限時間整定問題

対数領域で凸

minimize
$$v^{T}x(T)$$

subject to $a, b, c, d \ge 0$

Posynomial

入出力のある非負システム

$$\Sigma: \begin{cases} dx/dt = A(\theta)x + B(\theta)u \\ y = C(\theta)x + D(\theta)u \end{cases}$$

$A(\theta)$ の対角要素に関する凸性

- 構造的安定性: Colombino2016 (IEEETAC)
- H^2 , H^∞ ノルム: Dhingra 2018 (IEEETCNS)

全ての要素に関する対数凸性 *

^{*} O, Kishida, Lam, "Geometric programming for optimal positive linear systems", under preparation, 2019

感染症の抑え込み

O, Harada, "Resource allocation for containing epidemics from temporal network data," in 23rd International Symposium on Mathematical Theory of Networks and Systems, 2018

感染症

アテネの疫病 429-427 BC

Michiel Sweerts: Plague in an Ancient City

エボラ出血熱 2014

World Health Organization, http://www.who.int/csr/disease/ebola/maps/en/

アントニヌス疫病

The angel of death striking a door during the plague of Rome. Engraving by Levasseur after J. Delaunay.

H1N1インフルエンザ 2009

ネットワーク科学

THU, June 14

International School and

8.30am	Opening	8.15-8.45am	Chat with the experts	Con	fore	n	ce on Netwo	rk Science
9am Sarrat Y. Barrat	Fil Menczer - The spread of misinformation in social media [PLOS Lecture] Miriah Meyer – Designing effective	9am Olair. Y. Woren	Mason Porter - Centrality in Tim Networks [Springer Complexity Lecture] Sonia Kéfi - Diversity of interaction		9.45am	Chair: V. Colizz	the network of cattle movements in Great Britain to understand a complex multi-host pathogen system Claudia Wagner - Minorities in social networks	- Science
	visualizations	10.15am	functioning of ecological communities Sam Scarpino - Network heteroge entropy barriers in social contagion	neity induces	10.15am		Amy Wesolowski - Understanding the role of human connectivity on the spatial dynamics of malaria	
10.30-11.15am	Coffee break in the poster area	10.45-11.30am	Coffee break in the poster area		10.45-11.30	am	Coffee break in the poster area	
11.15am	Epidemics-1 Theory-1 Social systems-1 Brain-1 Structures-1	11.30am	Epidemics-3 Theory-3 Social systems-3 Biology Economics-1		11.30am		Spread-1 Theory-4 Social systems-4 Theory-5 Economics-2	
1-2.30pm	Lunch break in the poster area	1-2.30pm	twitt	areYourCode er chat with OSONE	1-2.30pm 1.30-2.1		Lunch break in the poster area Ask me anything w/ Physical Review editors	
2.30pm	Epidemics-2 Theory-2 Social systems-2 Ecology Structures-2	2.30рт	Lightning talks		2.30pm		Epidemics-4 Spread-2 Social systems-5 Brain-2 Structures-3	
4.30-5.15pm	Coffee break in the poster area	3.35-3.50pm	Short break		4.15-5pm		Coffee break in the poster area	
Chair: F.Menczer	Brooke Foucault Welles - Network Science, Activism, and Social Change: The Rise of Networked Counterpublics	3.50pm	Erdős-Rényi Award		5pm	Chair: M. Porter	Brenda McCowan - Characterizing social stability and its effects on individual and societal health using network dynamics	
5.45pm	Stefano Battiston - The price of complexity in financial networks [Chaos, Solitons & Fractals Lecture]	5.10-6.15pm 5.30-6.15	and communication –	Society Board Meeting	5.45		Sophie Achard - Assessing reliability of resting- state fMRI graph analysis: challenges in measuring brain connectivity networks alterations for clinical applications	
6.15-7pm	Poster Session 1	6.15-7pm	Poster Session 2		6.15-6.30pm		Awards & Closure	

ネットワーク上のSISモデル

グラフ+確率過程

頂点 = 個体

辺 = 関係性

Preciado et al., "Optimal resource allocation for network protection against spreading processes," *IEEE Transactions on Control of Network Systems*, 2014.

ノード+枝+時間

技術の進展→データの取得が容易に 例(フランスの小学校)

J. Stehl'e *et al.*, "High-resolution measurements of face-to-face contact patterns in a primary school," *PLoS ONE*, 2011.

静的ネットワーク

感染者数 減衰率を最小化 時間

テンポラルネットワーク

- ■漸近安定化問題
- 評価指標=最大固有値

- 有限時間整定問題!
- 幾何計画に帰着

シミュレーション

その他の例

データセンターの省電力化

- 空調とサーバーの別個制御が一般的
- ✓ 空調温度と可動サーバー数を幾何計画で同時最適化
- ✓ ベースラインから18%の消費電力削減

O, Wan, Kasahara, "Model predictive control for energy-efficient operation of data centers with cold aisle containments," in 6th IFAC Conference on Nonlinear Model Predictive Control, 2018.

- 3G通信の電力制御アルゴリズム
- 干渉ゲインの不確定性への頑健性は未解決課題
- ✓ロバスト安定性解析

❷ ロバスト安定化

資源配置とPageRankの関係

O, Kishida, Hayashi, Lam, "Resource allocation for robust stabilization of Foschini-Miljanic Algorithm," in 2019 American Control Conference (accepted), 2019.

製品開発のマネジメント

- 相互依存しあう開発コンポーネント
- 投資戦略:コンポーネント vs 依存性
- 既存の手法: 経験則に依存
- →予算を考慮した最適資源配置
- ❷設計完了時間を最小化

40 提案法 短縮 **短縮 従来法**

設計完了時刻の分布

依存関係のネットワーク

O, Harada, Kishida, Yassine, "Resource optimization of product development projects with time-varying dependency structure," submitted to Research in Engineering Design

「静的」な写像

通信・デジタル回路・情報理論...

ダイナミクスを含む 写像→制御系設計

