

COMP4434 Big Data Analytics

Lab 6 Logic Gate Neural Network, Multilayer perceptron

HUANG Xiao xiaohuang@comp.polyu.edu.hk

AND Example

■ AND: $y = x_1 \land x_2$

x_1	x_2	$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$
0	0	$g(-30) \approx 0$
0	1	$g(-10) \approx 0$
1	0	$g(-10) \approx 0$
1	1	$g(10) \approx 1$

OR Example

• OR: $y = x_1 \lor x_2$

x_1	x_2	$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$
0	0	$g(-10) \approx 0$
0	1	$g(10) \approx 1$
1	0	$g(10) \approx 1$
1	1	$g(30) \approx 1$

NAND Example

•
$$y = x_1 NANDx_2$$

x_1	x_2	$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$
0	0	$g(30) \approx 1$
0	1	$g(10) \approx 1$
1	0	$g(10) \approx 1$
1	1	$g(-10) \approx 0$

Feature Learning: NOR Example

•
$$y = x_1 NORx_2$$

x_1	x_2	h
0	0	1
0	1	0
1	0	0
1	1	0

NOR Example

•
$$y = x_1 NORx_2$$

x_1	x_2	$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$
0	0	$g(10) \approx 1$
0	1	$g(-10) \approx 0$
1	0	$g(-10) \approx 0$
1	1	$g(-30) \approx 0$

Feature Learning: XOR Example

$$y = x_1 X O R x_2$$

x_1	x_2	h
0	0	0
0	1	1
1	0	1
1	1	0

XOR Example

$$y = x_1 X O R x_2$$

x_1	x_2	(NOR, AND)	NOR
0	0	(1,0)	0
0	1	(0,0)	1
1	0	(0,0)	1
1	1	(0,1)	0

XNOR Example

<i>X</i> ₁			a_2	h
0	0		1	1
0	1	0	0	0
1	0	0	0	0
1	1	1	0	1

$$a_1 = g(-30 + 20x_1 + 20x_2)$$

$$a_2 = g(10^-20x_1^-20x_2)$$

$$h(x) = g(-10 + 20a_1 + 20a_2) = g(-10 + 20g(-30 + 20x_1 + 20x_2) + 20g(10-20x_1-20x_2))$$

Further Practice

Further tasks:

- Implement XOR gate using another different model
- Implement XNOR gate by yourself

Further readings:

- https://towardsdatascience.com/implementing-logic-gates-using-neural-networks-part-2-b284cc159fce
- https://medium.com/@stanleydukor/neural-representation-of-and-or-not-xor-andxnor-logic-gates-perceptron-algorithm-b0275375fea1
- https://towardsdatascience.com/emulating-logical-gates-with-a-neural-network-75c229ec4cc9
- https://en.wikipedia.org/wiki/Logic gate

Recap: Neural Network

Neural Networks consist of the following components:

- An input layer, x
- An arbitrary amount of hidden layers
- An **output layer**, \hat{y}
- A set of weights and biases between each layer, W and b
- A choice of **activation function** for each hidden layer, σ .

In this tutorial, we'll use a Sigmoid activation function.

Architecture of a 2-layer Neural Network

Creating a Neural Network Class

```
In []: class NeuralNetwork:
    def __init__(self, x, y):
        self.input = x
        self.weights1 = np.random.rand(self.input.shape[1],4)
        self.weights2 = np.random.rand(4,1)
        self.y = y
        self.output = np.zeros(y.shape)
```


Input Layer Hidden Layer Output Layer

Architecture of a 2-layer Neural Network

Training the Neural Network

The output \hat{y} of a simple 2-layer Neural Network is:

$$\hat{y} = \sigma(W_2\sigma(W_1x + b_1) + b_2)$$

Each iteration of the training process consists of the following steps:

Feedforward

$$\hat{y} = \sigma(W_2 \sigma(W_1 x + b_1) + b_2)$$

Loss Function and Backpropagation

$$Loss(y, \hat{y}) = \sum_{i=1}^{n} (y - \hat{y})^{2}$$

$$\frac{\partial Loss(y, \hat{y})}{\partial W} = \frac{\partial Loss(y, \hat{y})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z} * \frac{\partial z}{\partial W} \quad \text{where } z = Wx + b$$

$$= 2(y - \hat{y}) * \text{derivative of sigmoid function } * x$$

$$= 2(y - \hat{y}) * z(1-z) * x$$

```
In [ ]: class NeuralNetwork:
           def init (self, x, y):
                self.input
                self.weights1 = np.random.rand(self.input.shape[1],4)
                self.weights2 = np.random.rand(4,1)
                self.v
                self.output = np.zeros(self.y.shape)
            def feedforward(self):
                self.layer1 = sigmoid(np.dot(self.input, self.weights1))
                self.output = sigmoid(np.dot(self.layer1, self.weights2))
            def backprop(self):
                # application of the chain rule to find derivative of the loss function with respe
               d weights2 = np.dot(self.layer1.T, (2*(self.y - self.output) * sigmoid derivative(
               d_weights1 = np.dot(self.input.T, (np.dot(2*(self.y - self.output) * Sigmoid deri
                # update the weights with the derivative (slope) of the loss function
               self.weights1 += d weights1
                self.weights2 += d weights2
```

Putting it all together

<i>X</i> 1	<i>X</i> 2	<i>X</i> 3	Y
0	0	1	0
0	1	1	1
1	0	1	1
1	1	1	0

Results

Predictio n	Y(Actual)
0.0099	0
0.969	1
0.968	1
0.037	0

Further Practice

Further tasks:

- Derive the presentation function weights1's derivative by hand.
- Using 3rd party package to implement the rating prediction model for the individual project.

Further readings:

- https://mattmazur.com/2015/03/17/a-step-by-step-backpropagationexample/
- https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html https://realpython.com/python-ai-neural-network/
- https://machinelearningmastery.com/implement-backpropagation-algorithmscratch-python/
- https://en.wikipedia.org/wiki/Convolutional neural network
- https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53