

RAG Pipeline

Quickstart: Loading

loader = PyMuPDFLoader("example_data/layoutparser-paper.pdf") docs = loader.load()

Quickstart: Splitting

text_splitter = RecursiveCharacterTextSplitter (chunk_size=1000, chunk_overlap=200) splits = text_splitter.split_documents(docs)

Document loaders provide a "load" method for loading data as documents from a configured source

import bs4

from langchain_community.document_loaders import WebBaseLoader

bs4_strainer = bs4.SoupStrainer(class_=("post-title", "post-header", "post-content"))

loader = WebBaseLoader(

Loading

web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/".), bs_kwargs of parse_only": bs4_strainer),)

docs = loader.load()

from langchain_community.document_loaders import PyMuPDFLoader

loader = PyMuPDFLoader("example_data/layoutparser-paper.pdf") data = loader.load()

loader = DirectoryLoader('../', glob="**/*.md", use_multithreading=True) docs = loader.load()

vectorstore = Chroma.from documents (documents=splits, embedding=OpenAlEmbeddings())

Quickstart: Retrieving

Quickstart: Storing

retriever = vectorstore.as_retriever()

prompt = hub.pull("rlm/rag-prompt")

Ilm = ChatOpenAl(model_name="qpt-3.5-turbo". temperature=0)

def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs)

Quickstart: Generation

rag_chain = (("context": retriever | format_docs, "question": RunnablePassthrough()) prompt StrOutputParser())

rag_chain.invoke("What is Task Decomposition?")

Text splitters are tools designed to segment long pieces of text into smaller, manageable chunks while maintaining semantic coherence

from langchain.text_splitter import RecursiveCharacterTextSplitter

Split

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200, add_start_index=True)

all_splits = text_splitter.split_documents(docs)

python_splitter = RecursiveCharacterTextSplitter.from_language(

language=Language.PYTHON, chunk_size=50, chunk_overlap=0) python_docs =

python_splitter.create_documents([PYTHON_CODE]) python_docs

text_splitter = SemanticChunker(OpenAlEmbeddings()) docs = text_splitter.create_documents([File])

Vector stores are databases designed to efficiently store and retrieve high-dimensional vector embeddings of text for fast similarity search and information retrieval tasks.

Vector Store

from langchain_community.vectorstores import Chroma from langchain_openai import OpenAlEmbeddings

vectorstore =

Chroma.from_documents(documents=all_splits, embedding=OpenAlEmbeddings())

docs = vectorstore.similarity_search(query) embedding_vector = OpenAlEmbeddings().embed_query(query) vectorstore.similarity_search_by_vector(embedding_ve

from langchain_community.vectorstores import Qdrant found_docs = await qdrant.amax_marginal_relevance_search(query, k=2, fetch_k=10)

Retrieve

Retrievers are components that fetch relevant information from a database based on a query, to find the most pertinent documents.

retriever = db.as_retriever(search_type="mmr")

retriever = db.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.5}) retriever = db.as_retriever(search_kwargs={"k": 3})

parent document retriever

retriever = ParentDocumentRetriever(

vectorstore=vectorstore, docstore=InMemoryStore(), child_splitter=child_splitter)

Time-weighted retriever

retriever = TimeWeightedVectorStoreRetriever(vectorstore=vectorstore. decay_rate=0.0000000000001, k=1)

Generators are models that produce text content, to create responses, summaries, or other forms of

generated text based on input data or prompts. Prompt Completion

Ilm = Ollama(model="llama2")

Generate

Ilm.invoke("Tell me a joke")

Ilm = HuggingFaceEndpoint(repo_id="mistralai/Mistral-7B-Instruct-v0.2", max_length=128, temperature=0.5, token=HUGGINGFACEHUB_API_TOKEN)

Ilm_chain = LLMChain(prompt=prompt, Ilm=Ilm)

print(Ilm_chain.run(question))

chat = ChatOpenAl(model_name="gpt-3.5-turbo", temperature=0)

for chunk in chat.stream("Write me a song about goldfish on the moon"): print(chunk.content, end="", flush=True)

Adding Sources

rag_chain_from_docs = (RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"]))) prompt

StrOutputParser()

rag_chain_with_source = RunnableParallel({"context": retriever, "question": RunnablePassthrough()}).assign(answer=rag_chain_from_docs) rag_chain_with_source.invoke("What is Task Decomposition*)

Memory

conversation_with_summary = ConversationChain(Ilm=OpenAI(temperature=0), memory=ConversationBufferWindowMemory(k=5), verbose=True) conversation_with_summary.predict(input="Hi, what's up?") conversation_with_kg = ConversationChain(Ilm=Ilm, verbose=True, prompt=prompt,

conversation_with_kq.predict(input="Hi, what's up?")

memory=ConversationKGMemory(IIm=IIm))

LCEL makes it easy to build complex chains from basic

components

LangChain Expression Language

from langchain_core.prompts import ChatPromptTemplate

StrOutputParser

from langchain_openal import ChatOpenAl

from langchain_core.output_parsers import

prompt = ChatPromptTemplate.from_template("tell me a short joke about {topic}")

model = ChatOpenAl(model="gpt-4")

output_parser = StrOutputParser()

chain = prompt | model | output_parser

chain.invoke({"topic": "ice cream"})

Agents and Tools

from langchain.agents import load_tools from langchain.agents import initialize_agent

tools = load_tools(["wikipedia", "Ilm-math"], Ilm=Ilm) agent = initialize_agent(tools, llm, agent="zero-shot-reactdescription", verbose=True)

agent.run(*Can you tell me the distance between Earth and the moon? And could you please convert it into miles? Thank you.")

from langchain, llms import OpenAI

Ilm = OpenAI(model name="text-davinci-003", temperature=0.01) Ilm("Suggest 3 bday gifts for a data scientist")

- >>> 1. A subscription to a data science magazine
- >>> 2. A set of data science books
- >>> 3. A data science-themed mug or t-shirt

Conversation schemas: History and Instructions

from langchain.chat_models import ChatOpenA from langchain.schema import HumanMessage,AlMessage,SystemMessage chat = ChatOpenAl(model_name="gpt-3.5-turbo", temperature=0.01) conversation history = [

HumanMessage(content="Suggest 3 bday gifts for a data scientist"), AIMessage(content="What is your price range?"),

HumanMessage(content="Under 100\$")]

chat(conversation history).content

- >>> 1. A data science book: Consider gifting a popular and highly ... >>> 2. Data visualization tool: A data scientist often deals with

>>> 3. Subscription to a data science platform: Give them access to system_instruction = SystemMessage(content = """You work as an assistant in an electronics store. Your income depends on the items you sold""") user message = HumanMessage(content="3 bday gifts for a data scientist") chat([system instruction, user message]).content

- >>> 1. Laptop: A high-performance laptop with a powerful processor
- >>> 2. External Hard Drive: Data scientists deal with large datasets
- >>> 3. Data Science Books: Books related to data science can be

Open-source models

from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig from transformers import AutoTokenizer, AutoModelForCausalLM model name = "TheBloke/llama-2-13B-Guanaco-QLoRA-GPTQ" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) # Initialize the AutoGPTOForCausalLM model with appropriate parameters model = AutoGPTQForCausalLM.from quantized(model name, use safetensors=True, trust remote code=True.

device map="auto", quantize config=None)

Tokenize the guery and convert to CUDA tensor

input ids = tokenizer(query, return tensors="pt").input ids.cuda() # Generate text using the model with specified settings output = model.generate(inputs=input_ids, temperature=0.1)

Text generation parameters

The temperature parameter affects the randomness of the token generation Top-k sampling limits token generation to the top k most likely at each step Top-p (nucleus) sampling limits token generation to cumulative probability p The length of generated tokens can be specified by max tokens parameter Ilm = OpenAI(temperature=0.5, top_k=10, top_p=0.75, max_tokens=50)

Quantization

from transformers import BitsAndBytesConfig Configure BitsAndBytesConfig for 4-bit quantization

bnb config = BitsAndBytesConfig(

load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True) model_4bit = AutoModelForCausalLM.from_pretrained(

model_name_or_path, quantization_config=bnb_config, device_map="auto", trust_remote_code=True)

Models Fine-tuning from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training pretrained model = AutoModelForCausalLM.from pretrained(...) pretrained model.gradient checkpointing enable() model = prepare model for kbit training(pretrained model) # Specify LoRa configuration config = LoraConfig(r=16, lora alpha=32, lora dropout=0.05, bias="none", target_modules=["query_key_value"], task_type="CAUSAL_LM") model = get peft model(model, config) # Set training parameters trainer = transformers.Trainer(model=model, train dataset=train dataset, args=transformers.TrainingArguments(num train epochs=10, per device train batch size=8, ...), data collator=transformers.DataCollatorForLanguageModeling(tokenizer)) model.config.use cache = False

Prompt Templates

trainer.train()

Prompts

from langchain, prompts import PromptTemplate

Define the template for SEO description

template = "Act as an SEO expert. Provide a SEO description for (product)" # Create the prompt template

prompt = PromptTemplate(input_variables=["product"], template=template) # Pass in an input to return a formatted prompt

formatted_prompt = prompt.format(product="Electric Scooter") Ilm(formatted prompt)

>>> The Electric Scooter is the perfect way to get around town quickly ... formatted_prompt = prompt.format(product="Perpetuum Mobile") Ilm(formatted prompt)

>>> Perpetuum Mobile is an innovative product that provides a ...

from langchain.prompts import FewShotPromptTemplate # Define three examples for the 3-shot learning

examples = [

"email_text": "Win a free iPhone!", "category": "Spam"}, "email_text": "Next Sprint Planning Meeting.", "category": "Meetings"},

"email_text": "Version 2.1 of Y is now live", "category": "Project Updates"}] Create a PromptTemplate for classifying emails

prompt_template = PromptTemplate(template="Classify the email:

{email_text}/n{category}", input_variables=["email_text", "category"]) # Create a FewShotPromptTemplate using PromptTemplate and examples

few shot prompt = FewShotPromptTemplate(example prompt = prompt_template, examples = examples, suffix = "Classify the email: {email text}", input variables=["email text"])

Document loaders

Indexes

from langchain.document loaders import csv loader, DirectoryLoader WebBaseLoader, JSONLoader, UnstructuredPDFLoader,

loader = DirectoryLoader('../', glob="**/*.md") loader = csv loader.CSVLoader(...)

loader = WebBaseLoader(...) loader = JSONLoader(...)

loader = UnstructuredPDFLoader(...) loaded documents = loader.load()

Retrievers and Vectorstores

from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import FAISS, Chroma, Pinecone, ... # Split docs into texts

splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=50) texts = splitter.split_documents(loaded_documents)

Embed your texts and store them in a vectorstore db = FAISS.from documents(texts, embeddings)

db = FAISS.from texts(["some string abc", "some string xyz"], embeddings) # Perform similarity search

db.similarity_search(query)

Initialize retriever and ask for relevant documents back

retriever = db.as retriever()

docs = retriever.get_relevant_documents(some_query)

* Templates for summarizing customer feedback and drafting email response feedback summary prompt = PromptTemplate.from template("""You are a customer service manager. Summarize the customer feedback.

Customer Feedback: {feedback}

from langchain.chains import ConversationChain, summarize, question answering

Summary:"""

Chains

email prompt = PromptTemplate.from template(

from langchain.memory import ConversationBufferMemory

memory variables = memory.load memory variables({...})

memory.chat memory.add user message("Hi!")

memory.add_ai_message(chat_response.content)

from langchain.schema import StrOutputParser

memory = ConversationBufferMemory(memory_key="chat_history")

memory.chat_memory.add_ai_message("Welcome! How can I help you?")

"""You are a customer service representative. Given the summary of customer feedback, it is your job to write a professional email response. Feedback Summary: {summary}

Setup Memory

Setup predefined memories

Add response to memory

Email Response:""")
feedback_chain = feedback_summary_prompt | Ilm | StrOutputParser() summary_chain = (["summary": feedback_chain] | email_prompt | Ilm | StrOutputParser()) summary_chain.invoke({"feedback": "Incorrect item has arrived"})

Predefined chains: summarization and O&A

chain = summarize.load summarize chain(llm, chain type="stuff") chain.run(loaded documents)

chain = question answering.load_qa_chain(llm, chain_type="stuff") chain.run(input_documents=loaded_documents, question = <input>)

Use memory

conversation=ConversationChain(Ilm=Ilm.memory=ConversationBufferMemory()) conversation.run("Name the tallest mountain in the world") >>> Everest >>> 8848 m conversation.run("How high is it?")

Tools

Agents and Tools

Chains

from langchain.agents import load_tools tools = load_tools(["serpapi", "llm-math", ...], llm=llm) from langchain.tools import StructuredTool, BaseTool def multiply two numbers(a: float, b: float) -> float: """multiply two numbers""

return a * b

multiplier tool = StructuredTool.from function(multiply two numbers)

Agents

from langchain.agents import initialize_agent, AgentType, BaseSingleActionAgent agent = initialize agent(

tools, Ilm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION) agent.run(("input": "How old would Harry Potter be when Daniel

Radcliffe was born?"})

create own agents and tools class UnitConversionTool(BaseTool):

name = "Unit Conversion Tool"

description = "Converts American units to International units" def _run(self, text: str):

def miles to km(match):

miles = float(match.group(1)) return f"{miles * 1.60934:.2f} km"

return re.sub(r'\b(\d+(\.\d+)?)\s*(miles|mile)\b', miles_to_km, text)

def arun(self, text: str): raise NotImplementedError("No async yet")

agent = initialize agent(

agent='chat-conversational-react-description', tools=[UnitConversionTool()],

IIm=IIm.

memory=memory

agent.run("five miles") >>> 8.05 kilometers

v1.1.1-12.11.2023 latest version (click) →

by Ivan Reznikov medium.com/@ivanrezni

linkedin.com/in/reznikovivan