Linear Regression

Dustin Johnson

Applied Quantitative Methods

January 14, 2015

Introduction

INTRODUCTION

SIMPLE LINEAR REGRESSION (SLR)

The Model

Assumptions

Implications

Least Squares Estimation

Sum of Squared Residuals

MULTIPLE REGRESSION

The Model

Assumptions

Multivariate Normal Distribution

Least Square Estimates

ANOVA

Diagnostics - Violation of Model Assumptions

THE MODEL

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
 where $(i = 1, ..., n)$

- $\beta_0 + \beta_1 x_i$ represents the *systematic* relationship.
- ϵ_i represents the *random error* or for finance folks (CAPM), *idiosyncratic risk*.
- ► In simple linear regression, we assume that the random errors are normally distributed.
- ► Simple Linear Regression is a subset of the class of Generalized Linear Models (GLM). GLMs can allow response variables to have error distribution models other than a normal distribution.
 - ► i.e. logistic regression, Poisson regression, models for counts data, etc.

ASSUMPTIONS

For a simple linear regression model, we assume the following:

$$\epsilon \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$$

- 1. $E(\epsilon_i) = 0$ for i = 1, ..., n.
- 2. $\epsilon_1, \ldots, \epsilon_n$ are statistically independent.
- 3. $Var(\epsilon_i) = \sigma^2$ for i = 1, ..., n: constant over the observations.
- 4. ϵ_i is normally distributed for i = 1, ..., n.

IMPLICATIONS

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
 where $(i = 1, ..., n)$

If $\epsilon \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$, then Y_i is also a random variable with the equivalent assumptions.

$$\epsilon \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2) \implies Y_i \stackrel{iid}{\sim} \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$$

LEAST SQUARES ESTIMATION

If we make the previous 4 assumptions, various properties of the estimates can be derived.

- ► In reality, the line $\beta_0 + \beta_1 x_i$ is unknown, hence, so too are the errors ϵ_i .
- ▶ We can estimate β_0 and β_1 by $\hat{\beta_0}$ and $\hat{\beta_1}$, respectively.
- ► Our estimated regression line is therefore $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$, at each x_i .
- ► The least squares criterion chooses $\hat{\beta_0}$ and $\hat{\beta_1}$ to make the residuals $r_i = y_i \hat{y_i}$ as small as possible (fitted values close to y data values) specifically, minimize the sum of square residuals w.r.t. β_0 and β_1 .

THE NORMAL DISTRIBUTION

$$f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

NORMALITY

REPRESENTATION OF SLR

SUM OF SQUARED RESIDUALS

$$SS(Residuals) = \sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (y_i - \hat{y_i})^2 = \sum_{i=1}^{n} [y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2$$

Why is this? Ultimately, we would like to solve the optimization problem

$$\min_{\hat{\beta}_0, \hat{\beta}_1} SS(Residual)$$

to obtain the estimates of $\hat{\beta}_0$ and $\hat{\beta}_1$ (proof and estimates are located in the primer). These estimates are too normally distributed, therefore provide us with the ability to construct confidence intervals for the parameters.

MULTIPLE REGRESSION - THE MODEL

We can easily extend the SLR model to include several explanatory variables as follows:

$$Y_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p} + \epsilon_i$$
 for $(i = i, \dots, n)$ or in matrix notation,

$$\begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

$$\mathbf{Y}_{n\times 1} = \mathbf{X}_{n\times (p+1)}\boldsymbol{\beta}_{(p+1)\times 1} + \boldsymbol{\epsilon}_{n\times 1}$$

ASSUMPTIONS

The assumptions of the simple linear regression still apply to the multiple regression.

$$\boldsymbol{\epsilon} = (\epsilon_1, \dots, \epsilon_n)^T \stackrel{iid}{\sim} \mathcal{MN}(0, \sigma^2) \implies \mathbf{Y} \stackrel{iid}{\sim} \mathcal{MN}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$$

1.
$$E(\epsilon_i) = 0 \implies E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$$
 for $i = 1, ..., n$

2.
$$Var(\epsilon_i) = \sigma^2 \implies Var(Y_i) = \sigma^2 \quad (i = 1, ..., n).$$

3. Independence of ϵ_i and ϵ_j for all $i \neq j$ implies:

$$ightharpoonup Cov(\epsilon_i, \epsilon_j) = 0 \quad (all \quad i \neq j)$$

$$ightharpoonup Cov(Y_i, Y_j) = 0 \quad (all \quad i \neq j)$$

4. ϵ_i is normally distributed for $i = 1, ..., n \implies Y_i$ is also normal (linear function of ϵ).

MULTIVARIATE NORMAL DISTRIBUTION

$$f_{\mathbf{x}}(x_1,\ldots,x_k) = \frac{1}{\sqrt{(2\pi)^k |\mathbf{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

MULTIVARIATE NORMAL DISTRIBUTION

MULTIVARIATE NORMAL DISTRIBUTION

REPRESENTATION OF MULTIPLE REGRESSION

LEAST SQUARE ESTIMATES

$$SS(Residual) = \sum_{i=1}^{n} r_i^2 = \mathbf{r}^T \mathbf{r} = (\mathbf{y} - \hat{\mathbf{y}})^T (\mathbf{y} - \hat{\mathbf{y}}) = (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$
$$= \mathbf{v}^T \mathbf{v} - \mathbf{v}^T \mathbf{X}\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}^T \mathbf{X}^T \mathbf{v} + \hat{\boldsymbol{\beta}}^T \mathbf{X}^T \mathbf{X}\hat{\boldsymbol{\beta}}$$

The β that minimizes the SSR is the *least squares estimate*, given by the following explicit expression:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

PROJECTION MATRIX

if
$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$
, and

 $\hat{\mathbf{y}} = \mathbf{X}\hat{oldsymbol{eta}}$ represents the estimated observed \mathbf{Y} then

$$\mathbf{\hat{y}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} = \mathbf{P}\mathbf{y},$$

P is called the *Projection Matrix* (why?). It has many interesting properties, so check them out in the primer!

PRECAUTIONS

Collinearity: A linear relationship between two explanatory variables.

Multicollinearity: A linear relationship between more than two explanatory variables.

ANOVA

$$SS_{total} = SS_{regression} + SS_{error}$$

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} r_i^2$$

Source	df	SS	MS	\overline{F}
Regression	p	$SS_{regression}$	$SS_{regression}/p$	$\frac{SS_{regression}/p}{SS_{total}/n-1}$
Error	n-p-1	SS_{error}	$SS_{error}/n-p-1$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Total	n-1	SS_{total}		

R-SQUARED

$$R^2 = \frac{SS_{Regression}}{SS_{Total}} \quad (0 \le R^2 \le 1)$$

- ▶ Values close to 1 indicate a good fit.
- ► How big should it be? ... depends
- ▶ Downfall: The more variables we add, the better the R^2 , even if they contribute no value to the model.

Improvement: Adjusted R-squared to account for number of parameters added.

$$R_{adj}^2 = 1 - \frac{MS_{Residual}}{MS_{Total}}$$

F TEST

Fisher's F Test collectively assesses x_1, \ldots, x_p for their explanatory utility. Essentially, it tests the overall regression relationship and asks whether the fitted slopes $\hat{\beta}_1, \ldots, \hat{\beta}_p$ are significantly different from zero. The test statistic is given by:

$$F = \frac{MS(\hat{\beta}_1, \dots, \hat{\beta}_p)}{MS_{Residual}}$$

► High F Stat (low p-value) enables us to reject the null hypothesis and claim that at least one of $\hat{\beta}_1, \dots, \hat{\beta}_p$ is nonzero.

ANOVA ACTIVITY IN R

- 1. Import data located on the AQM site.
- 2. Perform a multiple regression in R.
- 3. Output an ANOVA table in R.
- 4. Interpret.

$$E(\epsilon_i) = 0$$

Plot residuals vs. x_j . If $E(\epsilon) = 0$ is violated, we are assuming that the effect of x_j on E(Y) is linear when it is not, or perhaps an x_j was omitted.

CHECKING FOR CONSTANT VARIANCE: $Var(\epsilon_i) = \sigma^2$

CHECKING FOR UNCORRELATED ERRORS:

$$Cov(\epsilon_i, \epsilon_i) = 0$$

990

NORMALITY OF RESIDUALS

R ACTIVITY - DIAGNOSTICS

First, look at your model's R^2 , F Stat, and parameter estimates and comment on your results. Second, analyze the residual and diagnostic plots for breaches in the model assumptions.

- ▶ Do your results indicate a "good" model fit?
- ► How confident are you?
- ► Does anything stand-out?
- ► Are you skeptical? If so, why?