Detection and Attribution of Arctic Climate Change

Jen Kay University of Colorado-Boulder

Plus many collaborators especially Ariel Morrison (defends her Ph.D. next Wednesday!), Helene Chepfer, Tristan L'Ecuyer, Drew Camron, and Jan Lenaerts

Thin (40 cm) first-year ice, clouds, and a seal near Barrow, Alaska – June 2016

Observed Arctic Sea Ice Loss

Summer absorbed shortwave radiation is increasing.

Summer Arctic sea ice concentrations are decreasing.

Figure from Kay et al. 2016 Review Paper DOI: 10.1007/s40641-016-0051-9

Observations show small impact of cloud-sea ice feedbacks on observed warming

No evidence for summer cloud-sea ice feedback

Weak cloud-sea ice feedback in Fall – shortwave and longwave compensate.

MODIS Visible Image September 30, 2007

CESM1 matches observations: no change in summer, more clouds over open water than over sea ice in fall

Summer

Fall

What tools are best for Detection and Attribution of humancaused Arctic change?

THE COMMUNITY EARTH SYSTEM MODEL (CESM) LARGE ENSEMBLE PROJECT

A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability

BY J. E. KAY, C. DESER, A. PHILLIPS, A. MAI, C. HANNAY, G. STRAND, J. M. ARBLASTER, S. C. BATES, G. DANABASOGLU, J. EDWARDS, M. HOLLAND, P. KUSHNER, J.-F. LAMARQUE, D. LAWRENCE, K. LINDSAY, A. MIDDLETON, E. MUNOZ, R. NEALE, K. OLESON, L. POLVANI, AND M. VERTENSTEIN

By simulating climate trajectories over the period 1920–2100 multiple times with small atmospheric initialization differences, but using the same model and external forcing, this community project provides a comprehensive resource for studying climate change in the presence of internal climate variability.

https://journals.ametsoc.org/doi/10.1175/BAMS-D-13-00255.1

Introduce CESM1 1850 control run

CESM Large Ensemble

Fig. 2. Global surface temperature anomaly (1961–90 base period) for the 1850 control, individual ensemble members, and observations (HadCRUT4; Morice et al. 2012).

Let's use climate models to understand Arctic sea ice trends

Assumption: Climate models represent the key processes affecting sea ice trends.

Modeled vs. Observed September sea ice trends

- 1. Observed sea ice loss cannot be explained by natural variability alone.
- 2. Individual climate model simulations can reproduce the observed ice loss, but the ensemble spread is large.

Arctic Sept Ice Extent Trend (million sq km/decade)

Figure from A. Jahn based on the CESM-CAM5 large ensemble.

Results consistent with CCSM4 (Kay et al. 2011 GRL)

Arctic sea ice loss

Adapted from Figure 1 Kirchmeier-Young et al. 2017

September Arctic Sea Ice Extent

September Arctic Sea Ice Extent

Can we detect the emergence of forced change with current and future satellites?

Context from the 2018 NASA Decadal Survey...

TARGETED	SCIENCE &	SCI/APPS PRIORITIES	RELATED ESAS 2007	IDENTIFIED	CANDIDATE MEASUREMENT	ESAS 2017 DISPOSITION
OBSERVABLE	APPLICATIONS SUMMARY	(MI, VI, I)	and POR	NEED/GAP	APPROACH	
TO-5 Clonds, Convection, & Precipitation	Cloud coverage & optical properties Solid & liquid precipitation rate Liquid and ice water path Convection & cloud dynamics Diurnal cycle of clouds and precipitation	- W-1a, 2a, W3a, 4a, 9a, 10a	ESAS 2007: ACE POR: CPR/EarthCARE, GPM, CloudSat, MODIS, VIIRS, SSMI, TROPICS	POR does not address diurnal cycle and does not cover precipitation after EarthCARE, GPM and SSMI, or snowfall, convection, and cloud dynamics after EarthCARE	Radar(s) and multi-frequency microwave radiometer Sampling with 1-4 km horiz & 250 m yest resolution & 0.2 mm/hr.	DESIGNATED PROGRAM ELEMENT Maximum development cost \$800M; considerable synergistic value in TO-5 being coordinated in time with TO-1 and TO-2

CloudSat (radar) measures Arctic precipitation

Comparing modeled and observed clouds and precipitation is difficult...

why?

Let's discuss!

Simulators help to reliably compare remote sensing observations to models

Take Home Message: When satellite simulators accurately mimic the observational process, they enable "apple-to-apple" comparisons between models and observations.

Established Example: Satellite simulators for clouds and precipitation ("COSP")

COSP Description Paper – Bodas-Salcedo et al. 2011 https://journals.ametsoc.org/doi/10.1175/2011BAMS2856.1

Demonstrating the importance of simulators for model evaluation

Figure from Kay et al. 2016 - DOI: 10.1007/s40641-016-0051-9

Can we detect the emergence of forced change in clouds and precipitation with current and future satellites?

Results from a single ensemble member offshoot experiment from the CESM Large Ensemble.

Also works for precipitation E.g., summer Arctic rain

Summary – Kay et al.

- 1) Forced Arctic climate change is currently emerging above internal climate variability. Timing depends on the metric for emergence and the physical variable under consideration.
 - 2) Large initial condition ensembles and simulators provide essential tools for connecting models and observations to understand the emergence of forced climate change in the Arctic.

EXTRA

Notes on Variables –

Variables in red are from the satellite simulators

CLDTOT is the model total cloud cover.

CLDLOW is the model low cloud cover.

CLDTOT_CAL is the total cloud fraction detected by a lidar (like CALIPSO)

CLDLOW_CAL is the low cloud fraction detected by a lidar (like CALIPSO)

SNOW is the annual mean snow amount.

RAIN is the annual mean rain amount.

RADAR_SNOW is the average annual frequency of snow detected by a 94 GHz radar (like CloudSat).

RADAR_RAIN is the average annual frequency of rain detected by a 94 GHz radar (like CloudSat).

Challenge: How can you leverage a large ensemble if you only have one member with your diagnostics?

CloudSat (radar) and CALIOP (lidar) measure Arctic clouds/precipitation and their vertical structure

Can Arctic sea ice extent increase in a warming world?

Yes.

Figure modified from Kay, Holland, Jahn (2011)

What has happened and what will happen under large increases in greenhouse gases (1000 ppm CO2 equivalent by 2100)?

How predictable is the timing of a summer ice-free Arctic?

Internal
variability
introduces ~20
year uncertainty
in the exact year
when the Arctic
goes ice-free in
September.

Arctic (70-90 N) Surface Air Temperature in the CESM-LE When does a detectable forced climate change signal emerge?

Figure courtesy Marika Holland/NSF 2018 Polar Modeling Workshop

CESM-LE Monthly Mean Arctic Surface Air Temperature

1850 histograms vs. 2006-2015 histograms

Figure courtesy Marika Holland/NSF 2018 Polar Modeling Workshop

MODIS Visible Image July 23, 2007

