Critical Review: Improving the Efficacy of Games for Change Using Personalization Models

Persuasion is the act of influencing or reinforcing certain attitudes and behaviours [Khaled et al., 2008]. The use of technology for encouraging behavioural change to benefit its users or the wider community is a long-term area of research [Fogg, 2002]. This review will present a summary and critical analysis of Orji et al. [2017] whose paper explores the use of personalisation models as a persuasive device for improving the efficacy of games which are designed to change user behaviour, as well as putting forward a set of suggestions for future work in this domain of Persuasive Technology.

Summary of Contributions

Orji et al. [2017] highlight the rising prominence of games for change¹ that are designed for purposes other than entertainment, to effectively educate players about certain topics in a way that influences their behaviour [Busch et al., 2015]. The authors raise the issue that many such games are designed with a "one size fits all" philosophy whereby the design of the game itself (and its adopted persuasive strategies) are not tailored to the type of the player. Orji et al. [2017] therefore seek to answer two main research questions to understand the observed efficacy of certain strategies in existing games [Peng, 2009, Kaipainen et al., 2012]. Firstly, whether tailoring games for change to a specific player type increases their persuasiveness. Secondly, if beneficial effects of tailoring are observed, whether these effects are mediated by an improved play experience. If these could be answered, results could inform the future decisions of games designers in which persuasive strategies they adopt to maximise efficacy in certain player types.

Treating user groups in a monolithic way is generally considered dangerous, especially in the domain of games for health [Berkovsky et al., 2010]. To further justify the need to investigate tailoring, the authors then reviewed the persuasive strategies adopted in a range of existing domains of games for change: healthy eating [Kaipainen et al., 2012, Orji et al., 2013b], physical activity [Fujiki et al., 2008] and disease management [Brownson and Kumanyika, 2007]. The authors, by their own admission, comment that this list is by no means exhaustive which gives plenty of scope for future research in other domains.

Initial work by the authors indicated that a strategy shown as effective for one type of gamer could be detrimental to another [Orji et al., 2013a] (Table 1). This table sets out a well-founded taxonomy which maps 7 gamer types defined by the BrainHex model of Nacke et al. [2014] (Achiever, Conqueror, Daredevil, Mastermind, Seeker, Socializer and Survivor) against 8 commonly adopted persuasive strategies selected by Gerling et al. [2014] based on a large-scale online survey of 1108

¹An annual festival exists for workshops and design classes on games for change: www.gamesforchange.org

gamers. Participants responded to indicate how likely each of 10 selected strategies (explained through storyboards) would influence eating decisions, using a validated scale [Drozd et al., 2012] before completing the BrainHex questionnaire to indicate their gamer type. After careful statistical analysis (Exploratory Factor Analysis and PLS-SEM modelling) 8 strategies were chosen which were pairwise distinct. The data collected from this initial experiment therefore forms as valid justification for the later comparison between Achievers (motivated by Reward) and Conquerors (motivated by Competition).

Table 1: β values confusion matrix: Strength of motivation of different players that result from different strategies. Positive β values indicate that gamers of this type are motivated by the corresponding given strategy. Negative β values indicate demotivation, whilst an empty value indicates neither motivation nor demotivation [Orji et al., 2013a].

Strategies	CMPT/	COOP	CUST	PERS	PRAS	SEMT/	SIML	REWD
	CMPR					SUGG		
Gamer type								
Achiever	-	.15	-	-	-	.10	-	.10
Conqueror	.25	-	-	.12	-	.12	.14	-
Daredevil	10	-	-	-	-	14	.11	-
Mastermind	.12	-	.10	.12	-	.14	.12	-
Seeker	.10	-	.19	.11	.10	-	-	-
Socializer	.11	.17	12	-	12	13	-	-
Survivor	.17	20	13	-	-	.27	-	14

CMPT/CMPR = competition and comparison, COOP = cooperation, CUST = customization, PERS = personalization, PRAS = praise, SEMT/SUGG = self-monitoring and suggestion, SIML = simulation, REWD = reward.

As a way of empirically evaluating this model, the authors focus on the domain of games for healthy eating for illustrative purposes and restrict their considerations towards the effects of two persuasive strategies (Competition and Reward) on two types of gamers (Achiever and Conqueror). Whilst somewhat limiting, this approach allowed scope for direct pairwise comparison between two types of gamers that have been shown empirically to be significantly-distinct in their response to these strategies [Orji et al., 2013a]. Further, these strategies are also common to existing games [Bell et al., 2006].

To evaluate their research questions, Orji et al. implemented two versions of a custom model-driven online game based on Space Invaders called *Junk Food Aliens* (Figure 1) which targets the domain of healthy eating - players control an avatar and search for fruits and vegetables to save the planet from an invasion of junk foods. The reward-based version (JFA-R) adopted persuasive strategies such as achievement badges (Figure 3) whereas the competition-based version (JFA-C) adopted comparative strategies such as leaderboards (Figure 2). A large-scale randomized controlled study of 272 valid participants (50% Achievers and 50% Conquerors) was carried out to investigate the effects of tailoring and contra-tailoring on these two types of gamer.

Figure 1: "Junk Food Aliens" (JFA): A persuasive game designed to change gamer behaviour towards healthy eating.

Level: 2
Score: 148

FAN CAPTAIN
LEGEND
LEGEND KING HERO
200 Points, Level 2 350 Points, Level 3 600 Points, Level 4

Figure 2: JFA-C: Competition-based version of JFA.

Figure 3: JFA-R: Reward-based version of JFA.

Participants were...

The results showed that tailoring the game to a specific gamer type increased effectiveness (measured by the positive changes in attitudes and intentions towards healthy eating) while contra-tailoring did not.

Main contributions of Orji et al. [2017] are therefore fourfold. First, it is important to tailor games for change in order to observe any efficacy as the main experiment demonstrates by measure of change in attitude, self-efficacy, and intention. Second, tailoring can be achieved by modifying the persuasive strategies adopted, rather than the mechanics of the game which will surely minimise the tailoring costs involved. Thirdly, the resulting positive effect of tailoring was not seen to be mediated purely by an improved player experience which, if it remained untested, would be a very

strong potential confounding factor. Finally, the adoption of a single persuasive strategy is sufficient to observe these effects - combining additional strategies is unpredictable and may be somewhat counter-productive.

Justifications for Conclusions

• • •

Figure 4: Mean values \pm SE for Attitude, Intention, and Self-Efficacy by Gamer type (Achiever, Conqueror) and Game version (Competition, Reward).

Figure 5: Parallel mediation model of tailoring on attitude change with play experience as mediator.

Limitations and Suggested Further Work

. . .

Conclusion

. . .

Word count: 0 words

References

- Marek Bell, Matthew Chalmers, Louise Barkhuus, Malcolm Hall, Scott Sherwood, Paul Tennent, Barry Brown, Duncan Rowland, Steve Benford, Mauricio Capra, and Alastair Hampshire. Interweaving mobile games with everyday life. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, CHI '06, pages 417–426, New York, NY, USA, 2006. ACM. ISBN 1-59593-372-7. doi: 10.1145/1124772.1124835. URL http://doi.acm.org/10.1145/1124772.1124835.
- Shlomo Berkovsky, Mac Coombe, Jill Freyne, Dipak Bhandari, and Nilufar Baghaei. Physical activity motivating games: Virtual rewards for real activity. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, CHI '10, pages 243–252, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-929-9. doi: 10.1145/1753326.1753362. URL http://doi.acm.org/10.1145/1753326.1753362.
- Ross C. Brownson and Shiriki Kumanyika. *Obesity Prevention: Charting a Course to a Healthier Future*, pages 515–528. Springer US, Boston, MA, 2007. ISBN 978-0-387-47860-9. doi: 10.1007/978-0-387-47860-9_22. URL https://doi.org/10.1007/978-0-387-47860-9_22.
- Marc Busch, Elke Mattheiss, Rita Orji, Andrzej Marczewski, Wolfgang Hochleitner, Michael Lankes, Lennart E. Nacke, and Manfred Tscheligi. Personalization in serious and persuasive games and gamified interactions. In *Proceedings of the 2015 Annual Symposium on Computer-Human Interaction in Play*, CHI PLAY '15, pages 811–816, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3466-2. doi: 10.1145/2793107.2810260. URL http://doi.acm.org/10.1145/2793107.2810260.
- Filip Drozd, Tuomas Lehto, and Harri Oinas-Kukkonen. Exploring perceived persuasiveness of a behavior change support system: A structural model. In Magnus Bang and Eva L. Ragnemalm, editors, *Persuasive Technology. Design for Health and Safety*, pages 157–168, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-31037-9.
- B. J. Fogg. Persuasive technology: Using computers to change what we think and do. *Ubiquity*, 2002 (December), December 2002. ISSN 1530-2180. doi: 10.1145/764008.763957. URL http://doi.acm.org/10.1145/764008.763957.
- Yuichi Fujiki, Konstantinos Kazakos, Colin Puri, Pradeep Buddharaju, Ioannis Pavlidis, and James Levine. Neat-o-games: Blending physical activity and fun in the daily routine. *Comput. Entertain.*, 6(2):21:1–21:22, July 2008. ISSN 1544-3574. doi: 10.1145/1371216.1371224. URL http://doi.acm.org/10.1145/1371216.1371224.
- Kathrin Maria Gerling, Regan L. Mandryk, Max Valentin Birk, Matthew Miller, and Rita Orji. The effects of embodied persuasive games on player attitudes toward people using wheelchairs. In *Proceedings of the 32Nd Annual ACM Conference on Human Factors in Computing Systems*, CHI '14, pages 3413–3422, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2473-1. doi: 10.1145/2556288.2556962. URL http://doi.acm.org/10.1145/2556288.2556962.

- Kirsikka Kaipainen, Collin R Payne, and Brian Wansink. Mindless eating challenge: Retention, weight outcomes, and barriers for changes in a public web-based healthy eating and weight loss program. *Journal of medical Internet research*, 14:e168, 11 2012. doi: 10.2196/jmir.2218.
- Rilla Khaled, Ronald Fischer, James Noble, and Robert Biddle. A qualitative study of culture and persuasion in a smoking cessation game. In Harri Oinas-Kukkonen, Per Hasle, Marja Harjumaa, Katarina Segerståhl, and Peter Øhrstrøm, editors, *Persuasive Technology*, pages 224–236, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-68504-3.
- Lennart E. Nacke, Chris Bateman, and Regan L. Mandryk. Brainhex: A neurobiological gamer typology survey. *Entertainment Computing*, 5(1):55 62, 01 2014. ISSN 1875-9521. doi: https://doi.org/10.1016/j.entcom.2013.06.002. URL http://www.sciencedirect.com/science/article/pii/S1875952113000086.
- Rita Orji, Regan L. Mandryk, Julita Vassileva, and Kathrin M. Gerling. Tailoring persuasive health games to gamer type. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, CHI '13, pages 2467–2476, New York, NY, USA, 2013a. ACM. ISBN 978-1-4503-1899-0. doi: 10.1145/2470654. 2481341. URL http://doi.acm.org/10.1145/2470654.2481341.
- Rita Orji, Julita Vassileva, and Regan L. Mandryk. Lunchtime: a slow-casual game for long-term dietary behavior change. *Personal and Ubiquitous Computing*, 17(6):1211–1221, Aug 2013b. ISSN 1617-4917. doi: 10.1007/s00779-012-0590-6. URL https://doi.org/10.1007/s00779-012-0590-6.
- Rita Orji, Regan L. Mandryk, and Julita Vassileva. Improving the efficacy of games for change using personalization models. *ACM Trans. Comput.-Hum. Interact.*, 24(5):32:1–32:22, October 2017. ISSN 1073-0516. doi: 10.1145/3119929. URL http://doi.acm.org/10.1145/3119929.
- Wei Peng. Design and evaluation of a computer game to promote a healthy diet for young adults. *Health Communication*, 24(2):115–127, 2009. doi: 10.1080/10410230802676490. URL https://doi.org/10.1080/10410230802676490. PMID: 19280455.

Critical Review: Exploring Interactions with Physically Dynamic Bar Charts

Scientific studies investigating how data can be effectively presented to, explored and interpreted by users forms the core part of Information Visualisation ('InfoVis'). This research is under the guise of supporting users in the decision-making process. This review will present a summary and critical analysis of Taher et al. [2015] whose paper explores the use of physically dynamic bar chart as a device for exploring user interactions with visualisations of data, as well as putting forward a set of suggestions for future work in this domain of Information Visualisation.

Summary of Contributions

Figure 1: EMERGE: Exploring Interactions with Physically Dynamic Bar Charts using actuating physical rods and RGB LEDs to display international export data.

Task Overview **Interaction Techniques** Annotation Selecting and marking Point, pull, press. (Process & individual data points. provenance) Filtering (Data Hiding and refining Swipe away, manual press, view & data for enhanced assisted press, press shortcut, perception and and press to compare. specification) comparison. Organization Data arrangement by Drag and drop with (View moving rows and immediate transition and columns. hide-all with transition, press manipulation) with instant transition and hide-all with transition. Controlling the view Navigation Scroll, directional arrows, (View of large data sets. directional press, and paging. manipulation)

Table 1: Task-sets and interaction techniques explored during the user study.

Justifications for Conclusions

Figure 2: Annotation (Point technique).

Figure 3: Organisation (Drag and Drop technique).

Figure 4: Likert scale ratings for helpfulness of interaction techniques. Range = 1: Strongly Disagree, 5: Strongly Agree.

Limitations and Suggested Further Work

Conclusion

Word count: 0 words

References

Faisal Taher, John Hardy, Abhijit Karnik, Christian Weichel, Yvonne Jansen, Kasper Hornbæk, and Jason Alexander. Exploring interactions with physically dynamic bar charts. In *Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems*, CHI '15, pages 3237–3246, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3145-6. doi: 10.1145/2702123.2702604. URL http://doi.acm.org/10.1145/2702123.2702604.