Particle Swarm Optimization

- Introduction and basics
- Comparison of GAs and PSO
- Advanced PSO concepts

Particle Swarm Optimization Overview

- Developed with Dr. Jim Kennedy, Bureau of Labor Statistics, Washington,
 DC
- •A concept for optimizing nonlinear functions using particle swarm methodology
- Has roots in artificial life and evolutionary computation
- •Simple in concept
- Easy to implement
- Computationally efficient
- Effective on a wide variety of problems

Evolution of concept and paradigms

- Discovered through simplified social model simulation
- Related to bird flocking, fish schooling and swarming theory
- •Related to evolutionary computation: genetic algorithms and evolution strategies
- Kennedy developed the "cornfield vector" for birds seeking food
- Bird flock became a swarm
- Expanded to multidimensional search
- Incorporated acceleration by distance
- Paradigm simplified

Particle Swarm Optimization Process

- 1. Initialize population in hyperspace
- 2. Evaluate fitness of individual particles
- Modify velocities based on previous best and global (or neighborhood) best
- 4. Terminate on some condition
- 5. Go to step 2

PSO Velocity Update Equations

Original global version:

$$v_{id} = wv_{id} + c_1 rand()(p_{id} - x_{id}) + c_2 rand()(p_{gd} - x_{id})$$
$$x_{id} = x_{id} + v_{id}$$

Where d is the dimension, c_1 and c_2 are positive constants, r and is a random function, and w is the inertia weight.

For the neighborhood version, change p_{ad} to p_{ld} .

Basic Principles of Swarm Intelligence

- •Proximity principle: the population should be able to carry out simple space and time computations
- •Quality principle: the population should be able to respond to quality factors in the environment
- Diverse response principle: the populations should not commit its activities along excessively narrow channels
- •Stability principle: the population should not change its mode of behavior every time the environment changes
- •Adaptability principle: the population must be able to change behavior mode when it's worth the computational price

Adherence to Swarm Intelligence Principles

- •Proximity: *n*-dimensional space calculations carried out over series of time steps
- Quality: population responds to quality factors pbest and gbest (or lbest)
- Diverse response: responses allocated between *pbest* and *gbest* (or *lbest*)
- •Stability: population changes state only when *gbest* (or *lbest*) changes
- Adaptability: population does change state when gbest (or lbest) changes

Applications and Benchmark Tests

- Function optimization
 - •De Jong's test set
 - •Schaffer's f6 function
- Neural network training
 - XOR
 - •Fisher's iris data
 - EEG data
 - •2500-pattern SOC test set
- Benchmark tests
 - •Compare *gbest* and *lbest*
 - Vary neighborhood in *lbest*

Schaffer's F6 Function

VMAX

- •An important parameter in PSO; sometimes the only one adjusted
- •Clamps particles' velocities on each dimension
- Determines "fineness" with which regions are searched
 - •If too high, can fly past optimal solutions
 - •If too low, can get stuck in local minima

PSO Initial Version

- •Fundamental assumptions seem to be upheld: Social sharing of information among agents in swarm provides an evolutionary advantage.
- •PSO has a memory: it is thus related to the "elitist" version of GAs

PSO Introduction

- Inspired by simulating social behavior
- Population of particles flies through the problem space
- How PSO and Gas compare?
- GA uses selection, crossover, mutation

PSO individuals

- Particle is analogous to GA population individual
- Particles are manipulated according to an equation

$$v_{id} = w v_{id} + c_1 rand() (p_{id} - x_{id}) + c_2 rand() (p_{gd} - x_{id})$$
$$x_{id} = x_{id} + v_{id}$$

 Large inertial weight facilitates global exploration, small weight facilitates local exploitation

PSO and crossover / mutation

- Does not explicitly perform crossover
- Acceleration towards personal best and global best is similar in concept

 PSO does not really mutate (random movement is more directed)

PSO and selection

- GA selection supports survival of the fittest (often an elitist strategy)
- There is no selection in PSO; all particles survive
- PSO in the only "EA" (if you can call it that) that does not remove population members

Topological Difference

- In Gas, there is interaction between randomly-selected population members
- In PSO, topology is constant (not always);
 a neighbor is a neighbor

Inertia Weight w

- We can get rid of Vmax by setting it equal to dynamic range of each variable
- Then, w must be selected carefully and/or decreased over the run
- Inertia weight then seems to have attribute like temperature in simulated annealing

Roles in the PSO Equation and the Inertia Weight

- Without changes, particles fly at constant speed to boundary
- •Without *v* term, the best particle would have 0 velocity, and other particles would statistically contract to optimum
- •Originally, set c1 and c2 to 2.0, then tried values between 1 and 2.
- •A parameter that balances global and local search was introduced: an inertia weight w.

PSO Equations with Inertia Weight

$$v_{id} = w v_{id} + c_1 rand() (p_{id} - x_{id}) + c_2 rand() (p_{gd} - x_{id})$$
$$x_{id} = x_{id} + v_{id}$$

where w is the inertia weight.

Inertia Weights and Constriction Factors in Particle Swarm Optimization: Introduction

- •Compare the performance of particle swarm optimization using an inertia weight versus using a constriction factor
- Several benchmark functions are used

PSO Update Equations Using Constriction Factor Method

$$v_{id} = K*[wv_{id} + c_{1}* rand()*(p_{id}-x_{id}) + c_{2}* rand()*(p_{gd}-x_{id})]$$

$$K = \frac{2}{\left|2 - \varphi - \sqrt{\varphi^2 - 4\varphi}\right|}$$

where
$$\varphi = c_1 + c_2$$
, $\varphi > 4$

Phi was set to 4.1, so that K = 0.729; multiplier is thus 1.49445.

Benchmark Functions

- Parabolic function
 - 30 dimensions, Xmax = 100, error < 0.01</p>
- Rosenbrock function
 - -30 dimensions, Xmax = 30, error < 100
- Rastrigrin function
 - 30 dimensions, *Xmax* = 5.12, error < 100
- Griewank function
 - 30 dimensions, Xmax = 600, error < 0.05</p>
- Schaffer's f6 function
 - 2 dimensions, Xmax = 100, error < 0.00001</p>

Each version of each function was run 20 times for each benchmark function.

Parabolic Function

	Average No. of Iterations	Range (No. of Iter.)
Inertia Weight	1538	130
Constriction F. Vmax=100K	552	96
Constriction F. Vmax=Xmax	530	78

Rosenbrock Function

	Average No. of Iterations	Range (No. of Iter.)
Inertia Weight	3517	1640
Constriction F. Vmax=100K	1424	4318
Constriction F. Vmax=Xmax	669	992

Rastrigrin Function

	Average No. of Iterations	Range (No. of Iter.)
Inertia Weight	1321	961
Constriction F. Vmax=100K	943*	6823
Constriction F. Vmax=Xmax	213	175

Michigantech

Griewank Function

	Average No. of Iterations	Range (No. of Iter.)
Inertia Weight	2901	1335
Constriction F. Vmax=100K	437*	279
Constriction F. Vmax=Xmax	313	84

^{*} Note: Target error not achieved for three runs; error

Michigantech

Schaffer f6 Function

	Average No. of Iterations	Range (No. of Iter.)
Inertia Weight	512	409
Constriction F. Vmax=100K	431	794
Constriction F. Vmax=Xmax	532*	1952

^{*} Note: Avg. = 453, range=803 with one outlier

Some Ideas

- Elitist concept from GA might be helpful in PSO (carry global best particle into next generation?)
- Incorporate Gaussian distribution into stochastic velocity changes
- Assign Vmax on a parameter-byparameter basis

Conclusions

- "Best" approach is to use constriction factor, limiting the maximum velocity *Vmax* to the dynamic range *Xmax*
- Performance on benchmark functions is superior to any other results known to the authors
- Method has been incorporated into several applications

