北京工业大学 2016-2017 学年第 一 学期

《概率论与数理统计》(工)课程考试•151151 模拟试卷答案

考试说明: 考试闭卷; 可使用文曲星除外的计算器。 命题人: 赵天朗 承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条 例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做 到不违纪、不作弊、不替考。若有违反, 愿接受相应的处分。

承	诺人	\: _		_	Š	学-	号:	_						班	号	: _		
			<u>6</u> 大题,														 	
			卷	面	成组	责	汇	总	表	(阅]卷载		i填写	()				
						- 1			- 1					- 1				

题号	_		三(1)	三(2)	三(3)	三(4)	三(5)	总成绩
满分	14	15	13	13	13	13	13	
得分								

- 一、选择题(每题2.5分,共20分)
- 1. 设 A, B 是两事件,则下列等式中(C)是不正确的。
- A. P(AB) = P(A)P(B), A, B 相互独立 B. P(AB) = P(B)P(A|B), $P(B) \neq 0$
- C.P(AB) = P(A)P(B), A, B 互不相容 D. P(AB) = P(A)P(B|A), $P(A) \neq 0$
- 2. 当 \overline{A} 与 \overline{B} 互不相容时,则 $P(\overline{A \cup B}) = ($)。 C

A. 1-P(A)

B.1-P(A)-P(B)

 \mathbf{C} . 0

 $D.P.(\overline{A})P.(\overline{B})$

3. 设 ξ 服从参数为 λ 的泊松分布,且 $E(\xi) = 2$,则 $P\{\xi = 1\} = ($ C)

A. $e^{-\lambda}$ B. $e^{-2\lambda}$ C. $2e^{-2}$ D. e^{-2}

4. 设随机变量 $X 与 Y 服从正态分布, X \sim N(\mu,4^2), Y \sim N(\mu,5^2)$, 记

 $P_1 = P\{X \le \mu - 4\}$ $P_2 = P\{Y \ge \mu + 5\}$, \emptyset (A)

A. 对任意 μ 都有 $P_1 = P_2$ B. 对任意实数 μ , 都有 $P_1 < P_2$

C. 只有 μ 的个别值,一才有 $P_1 = P_2$,一曲 D. 对任意实数 μ ,一都有 $P_1 > P_2$

5. 设 X_1, X_2, \cdots 为独立随机变量序列,且 X_i 服从参数为 λ 的泊松分布, $i=1,2,\cdots$,则

(A)
$$\lim_{n\to\infty} P\left\{\frac{\sum_{i=1}^n X_i - n\lambda}{n\lambda} \le x\right\} = \Phi(x);$$

- (B) 当n充分大时, $\sum_{i=1}^{n} X_{i}$ 近似服从标准正态分布;
- (C) 当n 充分大时, $\sum_{i=1}^{n} X_{i}$ 近似服从 $N(n\lambda, n\lambda)$;
- (D) 当n充分大时, $P(\sum_{i=1}^{n} X_i \le x) \approx \Phi(x)$.

 \mathbf{R} : 由独立同分布中心极限定理 $\Rightarrow \sum_{i=1}^{n} X_{i}$ 近似服从 $N(n\lambda, n\lambda)$

- **6.** 设 X_1, X_2, \cdots, X_n 是总体 $N(0, \sigma^2)$ 的样本,则()可以作为 σ^2 的无偏估计量.

(A)
$$\frac{1}{n} \sum_{i=1}^{n} X_i^2$$
; (B) $\frac{1}{n-1} \sum_{i=1}^{n} X_i^2$;

$$(\mathbf{C}) \ \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

(C)
$$\frac{1}{n} \sum_{i=1}^{n} X_i$$
; (D) $\frac{1}{n-1} \sum_{i=1}^{n} X_i$.

M: $EX_i = 0$, $DX_i = EX_i^2 - (EX_i)^2 = EX_i^2 = \sigma^2$

$$E(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2})=\frac{1}{n}\cdot n\sigma^{2}=\sigma^{2}$$
 通正态分布的"矩估计"

7. 设总体X服从均匀分布U(0,b),其中b未知, X_1,X_2,\cdots,X_{10} 是来自X的一组样本, \overline{X} 表示

样本均值, S^2 表示样本方差,则下列样本函数是统计量的是(

A.
$$\overline{X} + \frac{b}{2}$$

B.
$$\overline{X} - E(X_1)$$

$$C. \quad S^2 - D(X)$$

B.
$$\overline{X} - E(X_1)$$
 C. $S^2 - D(X)$ D. $\frac{X_2 + X_3}{2}$

答案 D

8. 设随机变量 X 与 Y 服从正态分布, $X \sim N(\mu, 4^2), Y \sim N(\mu, 5^2)$, 记

$$P_1 = P\{X \le \mu - 4\}P_2 = P\{Y \ge \mu + 5\}, \text{ } \emptyset$$

- A. 对任意 μ 都有 $P_1 = P_2$
- B. 对任意实数 μ ,都有 $P_1 < P_2$
- C. 只有 μ 的个别值,才有 $P_1 = P_2$ D. 对任意实数 μ ,都有 $P_1 > P_2$
- 二、填空题(每题1.5分,共15分)
- 1. 设 A, B 为事件,且 $P(A) = 0.2, P(A \cup B) = 0.4$ 。当 A 与 B 相互独立时, $P(B) = ______;$

互斥时,P(B) = ; 0.25 0.2

2. 已知 P(A)=0.7, P(B)=0.4, $P(A\overline{B})=0.5$, 则 P(A|B)=0.5

3. 设连续型随机变量
$$X$$
 的分布函数为 $F(x) = \begin{cases} a + be^{-x^2/2}, & x \ge 0, \\ 0, & x < 0, \end{cases}$

则常数a= ,b= 。 1 -1

4. 若随机变量 X 只取 ± 2, 1 之三个可能值, 且 P(X = -2) = 0.15, P(X = 1) = 0.5。

5. 若随机变量 X_1, X_2 相互独立, X_1 服从正态分布 $N(4, 3^2)$, X_2 服从区间[-1, 2]上均匀分

6. 若随机变量 X_1, X_2 相互独立,且 $X_1 \sim N(3, 3^2)$, $X_2 \sim N(1, 2^2)$,令 $X = X_1 - 2X_2$, $\emptyset X \sim ______$, $P\{-4 < X < 6\} = ______$.

注 1: $\Phi(x)$ 为正态分布 N(0,1) 的分布函数, $\Phi(1)=0.8413$ 。

$$N(1, 5^2)$$
 0.6826

7. 设随机变量 X 的数学期望 E(X) = 7, 方差 Var(X) = 5, 用切比雪夫不等式估计

得
$$P{2 < X < 12} \ge _____$$
。 ______。

根据切比雪夫不等式有: $P(|X-EX| \ge \varepsilon) \le \frac{V \ ar X}{2}$

随机变量X的数学期望 $E\left(X\right)=7$,方差 $D\left(X\right)=5$, $P\{|X-7|\geq 5\}\leq \frac{DX}{5^2}=\frac{1}{5}$ 故有: $P\{2< X<12\}=P\{|X-7|<5\}=1-P\{|X-7|\geq 5\}\geq \frac{4}{5}$

补充: 设某城市供电网有 10000 盏电灯,夜晚每盏电灯开灯 的概率均为0.7,并且彼此开闭与否相互独立,试用切比雪夫不 等式估算夜晚同时开灯数在 6800 到 7200 之间的概率.

 $X(1)_{i,j}X(10000)$ 代表每盏灯开关事件,X(i)=1代表开灯,X(i)=0代表关灯,P(X(i)=1)=0.7 $X=\Sigma X(i)$,为n(n=10000)次独立重复事件,p=0.7,则E(X)=np=7000,D(x)=np(1-p)=2100由切比雪夫不等式:

 $P\{|X-E(x)| > = \varepsilon\} = 1 - D(X)/(\varepsilon^*\varepsilon) = 379/400 = 0.9475$

8. 设随机变量 X~B(n, p), 已知 E(X)=3, Var(X)=2. 4, 则 n= 9, p= 。 15 0. 2

9. 若 X_1, X_2, \dots, X_n 为抽自正态总体 $N(\mu, \sigma^2)$ 的随机样本, 记 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,

$$\underline{\hspace{1cm}}$$
, $(n-1)S^2/\sigma^2 \sim \underline{\hspace{1cm}}$, $\underline{\hspace{1cm}}$, $\underline{\hspace{1cm}}$, $\underline{\hspace{1cm}}$, $\underline{\hspace{1cm}}$

补 充 : , μ 与 σ^2 为 未 知 常 数 , 记 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \circ \mathbb{M} \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \underline{\qquad}, \frac{(n-1)S^{2}}{\sigma^{2}} \sim \underline{\qquad}, \frac{\overline{X} - \mu}{\sqrt{S^{2} / n}} \sim \underline{\qquad}$$

10.

一批零件的长度 X(单位: cm) 服从正态分布 $N(\mu,4)$, 随机抽取零件 16 件, 得其长度 的均值为 40, 则 μ 的置信系数为 0.95 的置信区间为 [,].

注:标准正态分布的分布函数值 $\Phi(1) = 0.8413$, $\Phi(1.96) = 0.975$, $\Phi(1.645) = 0.95$.

答案: [39.02, 40.98].

三、解答题(每小题13分,共65分)

注: 每题要有解题过程, 无解题过程不能得分

- 1. (15 分) 设随机变量 X 服从标准正态分布 N(0,1), 记 $Y = e^X$, 求:
 - (1). Y的概率密度函数 $f_v(y)$;
 - (2). Y的期望 E(Y)。

解: (1). 记 Y 的分布函数为 $F_v(y)$,则

当
$$v > 0$$
时,有

$$F_Y(y) = P(Y \le y) = P(e^X \le y) = P(X \le \ln y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\ln y} e^{-x^2/2} dx$$

$$f_Y(y) = \frac{dF_Y(y)}{dy} = \frac{1}{v\sqrt{2\pi}}e^{-(\ln y)^2/2};$$

$$y \le 0$$
 时, $F_Y(y) = 0$, $f_Y(y) = 0$.

故,
$$f_{Y}(y) = \begin{cases} \frac{1}{y\sqrt{2\pi}}e^{-(\ln y)^{2}/2}, & y > 0, \\ 0, & y \leq 0. \end{cases}$$
 资料由公众号 [工大喵] 收集整理并免费分享

(2).
$$EY = \int_{-\infty}^{\infty} e^{x} \cdot \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx = e^{1/2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-(x-1)^{2}/2} dx = e^{1/2}.$$

- 2. (本题 13 分) 有型号相同的产品两箱,第一箱装 12 件产品,其中两件为次品;第二箱装 8 件产品,其中一件为次品。先从第一箱中随机抽取两件产品放入第二箱,再从第二箱中随机抽取一件产品。
 - (1). 求从第二箱中取出次品的概率;
 - (2). 若从第二箱中取出了次品,求从第一箱中未取到次品的概率。

解 以 A_i 表示从第一箱中取到i件次品,i = 0.1,2,B表示从第二箱中取到次品。

则 (1).
$$P(B) = P(A_0B) + P(A_1B) + P(A_2B)$$

$$= P(A_0)P(B \mid A_0) + P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2)$$

$$= \frac{C_{10}^2 C_2^0}{C_{12}^2} \frac{1}{10} + \frac{C_{10}^1 C_2^1}{C_{12}^2} \frac{2}{10} + \frac{C_{10}^0 C_2^2}{C_{12}^2} \frac{3}{10}$$
$$10 \times 9 \qquad 10 \times 8 \qquad 2 \times 3$$

$$= \frac{10 \times 9}{12 \times 11 \times 10} + \frac{10 \times 8}{12 \times 11 \times 10} + \frac{2 \times 3}{12 \times 11 \times 10} = \frac{2}{15};$$

(2).
$$P(A_0 \mid B) = \frac{P(A_0 B)}{P(B)} = \frac{10 \times 9}{12 \times 11 \times 10} \cdot \frac{15}{2} = \frac{45}{88}$$
.

- 3*1. (本题 13 分)设随机变量 X 有概率密度函数 $f(x) = \begin{cases} 1+x, & x \in (-1,0], \\ 1-x, & x \in (0,1], \\ 0, & 其他, \end{cases}$
 - (1). 求Y的概率密度函数 $f_v(y)$;
 - (2). 求 P(0.25 < Y < 1.96);
 - (3). 求Y的期望E(Y)与方差Var(Y)。
 - \mathbf{M} (1). 记 $F_{Y}(y)$ 为随机变量 Y 的分布函数,则 $y \leq 0$ 时, $F_{Y}(y) = 0$; $y \in (0,1]$ 时,

$$F_{Y}(y) = P(Y \le y) = P(X^{2} \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} f(x) dx = 2\sqrt{y} - y;$$
 $y > 1$ 时, $F_{Y}(y) = 1$ 。于是,

$$f_{Y}(y) = \begin{cases} \sqrt{y^{-1}} - 1, & y \in (0,1], \\ 0, & 其他; \end{cases}$$

(2).
$$P(0.25 < Y < 1.96) = \int_{0.25}^{1.96} f_{Y}(y) dy = \int_{0.25}^{1} f_{Y}(y) dy = F_{Y}(1) - F_{Y}(0.25) = 0.25$$
;

(3).
$$E(Y) = E(X^2) = \int_{-1}^{1} x^2 f(x) dx = \int_{-1}^{0} x^2 (1+x) dx + \int_{0}^{1} x^2 (1-x) dx = \frac{1}{6}$$
;
由 $E(X^4) = \int_{-1}^{1} x^4 f(x) dx = \int_{-1}^{0} x^4 (1+x) dx + \int_{0}^{1} x^4 (1-x) dx = \frac{1}{15}$ 及
$$Var(Y) = E(Y^2) - [E(Y)]^2 = E(X^4) - [E(X^2)]^2,$$
得 $Var(Y) = \frac{1}{15} - \frac{1}{36} = \frac{7}{180}.$

3*2. (本题 13 分)设二维随机向量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} c \cdot e^{-y}, & 0 \le x \le y < \infty, \\ 0, & 其他. \end{cases}$$

- (1). 求常数c;
- (2). 求X和Y的边缘概率密度 $f_X(x)$ 和 $f_Y(y)$;
- (3). 求P(X+Y<1)。

解 (1). 由
$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = \int_{0}^{\infty} dy \int_{0}^{y} c \cdot e^{-y} dx = c \int_{0}^{\infty} y e^{-y} dx = c$$
,
得 $c = 1$;

(2).
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \begin{cases} \int_{x}^{\infty} e^{-y} dy, & x > 0, \\ 0, & x \le 0 \end{cases} = \begin{cases} e^{-x} & x > 0, \\ 0, & x \le 0, \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \begin{cases} \int_0^y e^{-y} dx, & y > 0, \\ 0, & y \le 0 \end{cases} = \begin{cases} y \cdot e^{-y} & y > 0, \\ 0, & y \le 0; \end{cases}$$

(3).
$$P(X+Y<1) = \int_0^{0.5} dx \int_x^{1-x} e^{-y} dy = \int_0^{0.5} (e^{-x} - e^{x-1}) dx = (1 - e^{-1/2})^2$$

4. (本题 13 分)若 $X_1, X_2, \cdots, X_n (n > 2)$ 为抽自总体X的随机样本,总体X有概率密度函

数
$$f_X(x) = \begin{cases} (\theta+1)x^{\theta}, & 0 < x < 1; \\ 0 & 其他. \end{cases}$$

其中 $\theta > -1$ 为待估参数,求 θ 的矩估计 $\hat{\theta}$ 与极大似然估计 θ^* 。

解 记
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
。 由 $E(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \int_{0}^{1} (\theta + 1) x^{\theta + 1} dx = \frac{\theta + 1}{\theta + 2}$ 。 利用

$$\overline{X} = E(X)$$
,得 $\overline{X} = \frac{\hat{\theta} + 1}{\hat{\theta} + 2}$ 。解该式,得 $\hat{\theta} = \frac{1 - 2\overline{X}}{\overline{X} - 1}$;

记
$$L(\theta) = \prod_{i=1}^{n} f_X(x_i) = (\theta+1)^n (\prod_{i=1}^{n} x_i)^{\theta+1}$$
 为参数 θ 的似然函数。

$$\mathbb{H} \quad \ln L(\theta) = n \ln(\theta + 1) + (\theta + 1) \sum_{i=1}^{n} \ln x_i \quad = \quad \frac{d \ln L(\theta)}{d\theta} = \frac{n}{\theta + 1} + \sum_{i=1}^{n} \ln x_i .$$

解似然方程
$$\frac{d \ln L(\theta)}{d \theta} = 0$$
,得 $\theta = -1 - \frac{n}{\sum_{i=1}^{n} \ln x_i}$ 。故 $\theta^* = -1 - \frac{n}{\sum_{i=1}^{n} \ln X_i}$.

- 5. (本题 13 分)对一批锰的熔点做 5 次测定,测定结果为 1269, 1267, 1271, 1263 和 1265 $^{\circ}$ C, 已知锰的熔点服从正态分布 $N(\mu,\sigma^2)$, 给定检验的显著性水平 $\alpha=0.05$,问
 - (1). 在 σ^2 未知的情况下,可否通过样本推断出"总体均值等于1270.6"?
 - (2). 可否通过样本推断出"总体方差不超过4.25"?

附

t分布与 χ^2 分布表

$t_4(0.025) = 2.7764$	$t_4(0.05) = 2.1318$	$t_5(0.025) = 2.5706$	$t_5(0.05) = 2.0150$
$\chi_4^2(0.025) = 11.143$	$\chi_4^2(0.05) = 9.488$	$\chi_4^2(0.95) = 0.711$	$\chi_4^2(0.975) = 0.484$
$\chi_5^2(0.025) = 12.833$	$\chi_5^2(0.05) = 11.071$	$\chi_5^2(0.95) = 1.145$	$\chi_5^2(0.975) = 0.831$

解 易见: n=5, $\alpha=0.05$ 。由 $x_1=1269$, $x_2=1267$,…, $x_5=1265$, 得

$$\bar{x} = \frac{1}{5} \sum_{i=1}^{5} x_i = 1267$$
, $s^2 = \frac{1}{4} \sum_{i=1}^{5} (x_i - \bar{x})^2 = 10$, $s = \sqrt{10}$.

(1). $\exists H_0: \ \mu = 1270.6(\mu_0) \iff H_1: \ \mu \neq 1270.6(\mu_0).$ $\exists |\overline{x} - 1270.6| = 3.6 < 3.9263 = (s/\sqrt{n}) \cdot t_{n-1}(\alpha/2),$

知:可通过样本推断 H_0 为真,即接受"总体均值等于1270.6";

(2). $\exists H_0': \sigma^2 \le 4.25(\sigma_0^2) \iff H_1': \sigma^2 > 4.25(\sigma_0^2).$ $\exists (n-1)s^2/\sigma_0^2 = 2.2145 < 9.488 = \chi_{n-1}^2(\alpha),$

知:可通过样本推断 H'_0 为真,即接受"总体方差不超过4.25"。

草	稿	纸
7	们可	211

姓名: _____ 学号: _____

资料由公众号【工大喵】收集整理并免费分享