Eukaryotic Gene Expression

Examples of Euk Gene Control:

- 1. DNA Structure
- 2. DNA Methylation
- 3. Histone Acetylation
- 4. Pre/Post Transcription Factors
- 5. Pre/Post Translation Factors

Level 1: beads on a string

- chromatin wraps around histone proteins
- together, called a <u>nucleosome</u>

Level 2: chromatin fiber

- nucleosomes fold onto itself
- about 6 nucleosomes per turn

Level 3: looped domains

the 30 nm chromatin fiber forms loops

Level 4: metaphase chromosome

 during metaphase the DNA will further coil & fold

How Coiling Affects Expression

Heterochromatin

 DNA that stays highly condensed during interphase is not able to transcribe; inactive

Euchromatin

 DNA that remains loose during interphase & can transcribe; active

DNA Methylation

- CH₃ groups are added to the C or A bases of DNA
 - causes the DNA to become inactive
 - permanently
- source of genomic imprinting

Histone Acetylation

- attaches acetyl groups to histones
- changes shape, grips DNA less tightly
 - increases transcription

4. Regulation of mRNA degradation

- Life span of mRNA determines amount of protein synthesis
 - mRNA can last from hours to weeks

RNA interference

- NEW!
- Small interfering RNAs (siRNA)
 - short segments of RNA (21-28 bases)
 - bind to mRNA
 - create sections of double-stranded mRNA
 - "death" tag for mRNA
 - triggers degradation of mRNA

<u>siRNA</u>

5. Control of translation

- Block initiation of translation stage
 - regulatory proteins attach to 5' end of mRNA
 - prevent attachment of ribosomal subunits & initiator tRNA
 - block translation of mRNA to protein

6-7. Protein processing & degradation

- Protein processing
 - folding, cleaving, adding sugar groups, targeting for transport
- Protein degradation
 - ubiquitin tagging
 - proteasome degradation

proteasome