浙江大学 物理实验报告

实验名称:	测量梯化铟片的磁阻特性实验	
指导教师:		
指导教师:	<u></u> 厉位阳	

专业:竺可桢学院混合班班级:混合 1903 班姓名:徐圣泽学号:3190102721

实验日期: 5 月 29 日 星期 五 下午

一、实验目的

- 1、了解磁阻效应、磁阻大小计算方法和惠斯通电桥原理;
- 2、确定锑化铟传感器的电阻与磁感应强度的关系;
- 3、作出关系曲线图,找出线性区域和非线性区域;
- 4、确定二次系数 K, 一次系数 a 和 b。

二、实验内容

- 1、测量电磁铁的高斯系数;
- 2、记录不同励磁电流下的磁场强度和金属丝长度;
- 3、计算出电阻,比较锑化铟电阻与磁场强度之间的关系;
- 4、作出电阻相对变化率和磁场强度的关系图;
- 5、比较实验结果,分析结果和误差来源。

三、实验原理

(一) 磁阻效应

如图,当导电体处于磁场中时,导电体内的载流子在洛伦兹力的作用下发生偏转,在两端产生积累电荷并产生霍尔电场。

在某一个速度时,载流子受到的洛伦兹力和电场作用刚好抵消,而由于磁场的存在,与该速度不同的载流子将发生偏转,因此沿外加电场方向运动的载流子数量减小,电流密度减小,电阻增大,该现象称为磁阻效应。

(二) 磁阻大小计算

磁阻的大小通常用电阻率的相对改变量来表示,即 $\Delta \rho / \rho_0$,其中 $\Delta \rho = \rho_B - \rho_0$, ρ_B 为磁场强度为 B 时的电阻率, ρ_0 为磁场强度为 0 时的电阻率。

在实际测量的过程中,由于电阻的相对变化率正比于电阻率的变化率,因此常用 $\Delta R/R_0$ 来表示 $\Delta \rho/\rho_0$,与之前同理, R_B 和 R_0 分别为磁场为和零磁场时的磁电阻,以此来代替 ρ_B 和 ρ_0 。

经过多次实验可以发现,随着磁场强弱的变化,电阻相对变化率与磁感应强度有着如图的关系。由图可见:

当外加磁场强度比较小时,电阻相对变化率与磁感应强度 B 的二次方成正比关系,即 $\frac{\Delta R}{R} = KB^2$.

当外加磁场强度比较大时,电阻相对变化率与磁感应强度 B 成线性正比关系,即 $\frac{\Delta R}{R}=aB+b$.

(三) 惠斯通直流电桥法

惠斯通电桥是一种由四个电阻组成用来测量其中一个电阻阻值(其余三个电阻阻值已知)的装置,这四个电阻分别叫做电桥的桥臂,电桥利用电阻的变化来测量物理量的变化,用这种方法可以测量应变、拉力、扭矩、振动频率等。

当 G 无电流通过时, 称电桥达到平衡, 此时四个电阻满足关系式

 $\frac{R_1}{R_2} = \frac{R_0}{R_x}$, 因此有 $R_x = \frac{R_2}{R_1} R_0$, 其中 R_x 为待测电阻。因此依照此方法可以

求得目标电阻锑化铟片电阻值和电阻变化率。

在本实验中,
$$\frac{R_2}{R_1} = \frac{L_2}{L_1} = \frac{100 - L_1}{L_1}$$
,故 R_x 满足公式 $R_x = \frac{100 - L_1}{L_1} \cdot R_0$,其中 L 即为本实验中测得的

金属丝长度。

四、 实验仪器

霍尔测试仪、检流计、电压源、滑线式电桥、霍尔实验仪、滑线变阻器、四线电阻箱、单刀开关等

五、 实验原始数据记录

(一) 记录电桥平衡

选择的标准电阻箱值(单位: Ω)R= 400

电阻箱实验截图

(二) 改变励磁电流大小记录相关数据

电磁铁的高斯系数 G(Gs/A)_____4850___

改变励磁电流的大小值,每次变化 0.05A,相应数据记录于下表:

励磁电流 Im(A)	磁场强度 B(T)	金属丝长度 L ₁ (cm)
0.00	0.00000	50.06
0.05	0. 02425	49. 60
0.10	0.04850	48. 36
0.15	0.07275	44. 76
0.20	0.09700	44. 01
0. 25	0. 12125	43. 10

0.30	0. 14550	42. 40
0.35	0. 16975	41. 75
0.40	0. 19400	41.05
0. 45	0. 21825	40. 21
0.50	0. 24250	39. 59
0. 55	0. 26675	38. 95
0.60	0. 29100	38. 39
0.65	0. 31525	37. 75
0.70	0. 33950	37. 20
0.75	0. 36375	36. 59

表 1 不同电流下的金属丝长度记录表

实验截图:

六、 实验数据处理和结果分析

(一) 计算过程

利用惠斯通电桥原理,电阻值和金属丝长度满足 $R_{x}=\dfrac{100-L_{1}}{L_{1}}\cdot R_{0}$,计算出电阻值和电阻变化率记录如下:

磁场强度	锑化铟电阻值	电阻变化率
0.00000	399.04	0.00000
0.02425	406. 45	0. 01857
0.04850	427. 13	0. 07039
0.07275	493. 66	0. 23710
0.09700	508. 88	0. 27527
0. 12125	528. 07	0. 32336
0. 14550	543. 40	0. 36176
0. 16975	558. 08	0. 39856
0. 19400	574. 42	0. 43950
0. 21825	594. 77	0. 49052
0. 24250	610. 36	0. 52956
0. 26675	626. 96	0. 57116
0. 29100	641. 94	0. 60870
0.31525	659. 60	0. 65297
0.33950	675. 27	0. 69223
0.36375	693. 19	0. 73715

表 2 不同磁感应强度下的电阻值和电阻变化率

为了更加便捷地处理实验数据,我写了一个简单的程序,程序代码如下:

```
1.
      #include <stdio.h>
2.
3.
      int main(){
4.
          double R,R0,L,k;
5.
          scanf("%1f",&L);
6.
          R=((100-L)/L)*400;
7.
          R0=R;
8.
          k=(R-R0)/R0;
9.
          printf("电阻 R = %1f,电阻变化率 k = %1f\n",R,k);
10.
          while(L!=-1){
11.
              scanf("%lf",&L);
12.
              R=((100-L)/L)*400;
13.
              k=(R-R0)/R0;
14.
              printf("电阻 R = %lf,电阻变化率 k = %lf\n",R,k);
15.
          }
16.
        return 0;
17. }
```

通过运行程序,得到的处理后的实验数据结果截图如下:

```
■ C:\Users\DELL\Desktop\普通物理学实验\测量梯化铟片的磁阻特性实验\未命名1.exe
                                                                                                                      X
50.06
电阻R = 399.041151, 电阻变化率k = 0.000000
49.60
电阻R = 406.451613,电阻变化率k = 0.018571
48.36
电阻R = 427.129859,电阻变化率k = 0.070391
44.76
电阻R = 493.655049, 电阻变化率k = 0.237103
44.01
电阻R = 508.884344, 电阻变化率k = 0.275268
电阻R = 528.074246, 电阻变化率k = 0.323358
42. 40
电阻R = 543. 396226, 电阻变化率k = 0. 361755
41.75
电阻R = 558.083832, 电阻变化率k = 0.398562
41. 05
电阻R = 574. 421437, 电阻变化率k = 0. 439504
40. 21
电阻R = 594. 777419, 电阻变化率k = 0. 490516
电阻R = 610.356151, 电阻变化率k = 0.529557
38.95
电阻R = 626.957638,电阻变化率k = 0.571160
电阻R = 641.938005, 电阻变化率k = 0.608701
37. 75
电阻R = 659. 602649, 电阻变化率k = 0. 652969
37. 20
电阻R = 675. 268817, 电阻变化率k = 0. 692229
```

上表中的数据即通过此程序计算得到。

(二) 作曲线图

利用上表中计算出的数据依次描点,作出如下图像:

电阻变化率△R/R与磁感应强度 B 的关系曲线图

①一次部分

由最小二乘法得到,一次系数分别为:

a = 1.7174 b = 0.1112

从图中可以看出,曲线系数为一次的部分的误差比较小,一方面因为数据点较多,另一方面因为线性 关系的计算和比较误差相对较小。

②二次部分

以下分别是取了三个数据点和四个数据点拟合出的曲线:

从图中可见,当选取 3 个数据点和 4 个数据点拟合二次曲线时,确定的表达式差别极大,这说明这些数据点都不是正确的拐点,但由于在本次实验中磁感应强度较弱时测的数据较少,因此无法根据已有的数据确定确切的拐点。

考虑到由于拐点位置的不确定,故选取第 3 个数据点和第 4 个数据点之间的曲线作为二次曲线和线性函数之间"衔接"的曲线,由前 3 个数据点得到二次系数的值为:

K = 28.27

③查阅文献和分析

图 四组磁阻曲线 (汪连城《磁阻效应实验曲线拐点的确定》)

查阅文献资料发现,只有在磁场强度达到一定大小时,才从二次多项式转变为线性函数,但是这个平滑曲线的绘制需要大量数据点。并且,在该篇文献中,对于拐点在不同位置取到时的各种情况都进行了讨论,发现适中时误差最小,但是本次实验可确定二次多项式的数据点只有3(或4)个,不足以确定拐点。

因此在本次实验中,仅仅通过十六组数据是无法准确的绘制出二次多项式部分的图象,也无法确定两个图象之间的拐点到底在磁场强度为多大时达到。

七、实验心得

思考题

1、磁阻效应是怎样产生的?磁阻效应和霍尔效应有何内部联系?

磁阻效应是某些金属或半导体的阻值随外加磁场变化而变化的现象。磁阻效应与霍尔效应相同,也是由于载流子在磁场中受到洛伦兹力而产生的。

- 2、实验时为何要保持霍尔工作电流和流过磁阻元件的电流不变? 遵循单一变量原则,使其他因素不影响目的变量之间关系的比较。
- 3、不同的磁场强度时,磁阻传感器的电阻值与磁感应强度关系有何变化?

外加磁场较弱时,电阻相对变化率正比于磁感应强度的二次方;外加磁场较强时,与磁感应强度呈线性正比关系。

- 4、选用金属电阻丝来调整电桥比例臂有哪些好处?
 - 金属电阻丝比较容易控制,能够较容易地调整至合适的比例。
- 5、磁阻传感器的电阻值与磁场的极性和方向有何关系?

磁场反向时,励磁电流变化,电阻只发生较小的变化,磁阻效应对外加磁场的极性反应不灵敏。

心得体会

在本次实验中,我大致完成了实验内容,达到了实验目的。

这是本学期第二个电磁学实验,与上一个关于霍尔效应的实验有着非常密切的联系,都是关于电和磁的实验。

本次实验考察了数据处理和作图的能力,对分析所得的关系曲线图象的要求比之前几次都更高,尤其 是本次实验中的曲线图象主要分成了两个部分,而对于这两个部分的各自分析和整体分析都需要我们结合 实验数据、实验原理、前人经验进行总结。两个部分的"拐点"更是需要我们分析过不同的情况后才能确 定的。

在本次实验中,由于数据点过少,最后确定的"拐点"存在较大的误差,导致二次曲线部分的多项式表达式也有很大的误差。关于这点,我本应该多测几组数据来求得更加精确地表达式,以此减小实验误差,但因为每次实验的起始条件都不同并且时间有限,我没有进行更加深入的探究,这一点我非常愧疚,我希望在以后的实验中能够秉持"求是"和"创新"的态度,深入思考探究。