Base de données

Modèle Entité/Association

L3 Informatique

Antoine Spicher antoine.spicher@u-pec.fr

Contexte du cours

Organisation du cours

- □ 1^{ère} partie (C. D.)
 - Modèle et algèbre relationnel
 - Langage SQL (essentiellement les requêtes : SELECT ... FROM ... WHERE ...)
- □ 2^{ème} partie (A. S.) : éléments pour la conception d'une base de données
 - Diagrammes E/A, traduction E/A \rightarrow modèle relationnel (, forme normale)
 - Langage SQL (création et modification de table)

Ressource principale

Database System Concepts

A. Silberschatz & H. F. Korth & S. Sudarshan, 6ème édition, 2010

■ Big Picture...

Processus complexe

- □ Conception du schéma (i.e., des tables)
- Conception des programmes accédant (lecture/écriture) aux données
- Conception du schéma de sécurité pour le contrôle d'accès (vues, permissions, etc.)

Quels outils?

- Cas simple : utilisation directe du modèle relationnel
- Cas complexe (le plus courant)
 - Modèle relationnel : bas niveau (i.e., proche de la BD)
 - peu compréhensible pour le non-initié (non-informaticien)
 - peu adapté à la représentation de relations complexes (utilisateur)
 - peu structuré, hiérarchisé (maintenance et évolutivité)
 - Nécessité d'un modèle de haut-niveau

■ Big Picture...

- Étapes de développement d'un SIA
 - Aspects fonctionnels (spécification)
 - Caractériser complètement les données
 - Interaction avec les experts du domaine concerné et les (futurs) utilisateurs
 - Support : en général textuel parfois diagrammatique (e.g., UML : use case)
 - □ Élaboration d'une structure (conception)
 - Choix d'un modèle de données adapté, traduction des spécifications
 - Prise en compte de toute la spec.
 - Éviter les pièges : redondance et incomplétude
 - Support : présentation diagrammatique (E/A, UML, etc.)
 - Implantation (réalisation)
 - Transformation de la vue abstraite et haut-niveau de la conception dans le modèle de données de l'implantation (e.g., $E/A \rightarrow schéma relationnel$)
 - Réalisation physique de la base de données
- Cf. cours de développement de programmes

- Choix du modèle de données
 - □ Il en existe un grand nombre
 - ☐ Entités/Associations (E/A) et UML
- Modèle de données E/A
 - Repose sur 3 notions
 entité, association (ou relation¹) et attribut
 - □ Il n'y a pas réellement de standard graphique
 - ☐ Conventions de *Database System Concepts*
- Cas d'UML
 - Intersection commune importante avec E/A mais avec quelques différences
 - □ Référence à UML quand cela est possible

(source: Wikipédia – Entity-relationship model)

¹ Attention à ne pas confondre avec la notion de relation en algèbre relationnelle...

Plan

Introduction à la conception de BD

Modèle entités/associations, concepts de base

Modèle entités/associations étendu

Quelques problématiques de conception

Modèle E/A, les bases

Origine

- □ Idées dans l'air du temps des années 1970
 - Représentation abstraite et conceptuelle des données
 - Représentation globale de la structure logique d'une BD
 - Modèle de données sémantique
- □ Peter Chen (1976)

The Entity Relationship Model: Toward a Unified View of Data

Peter Chen (source : computer.org)

Trois concepts fondamentaux ...

- □ (Ensembles/classes d') Entités« chose/objet » du monde réel distinct de tout autre objet
- ☐ (Ensembles/classes d') Associations : lien entre les « choses/objets »
- Attributs : propriétés descriptives d'une entité ou d'une association

… et leur représentation diagrammatique

Modèle E/A, les bases – Entités

Notion d'entité

- □ Définition : « Une **entité** est une chose ou un objet du monde réel **identifiable sans ambiguïté** »
- \square Entité \equiv ensemble de propriétés appelées attributs
 - une valeur est associée à chaque attribut
 - un sous-ensemble des attributs, la clef, caractérise l'entité de façon unique

Notion d'ensemble d'entités

- Définition : « ensemble d'entités partageant les mêmes propriétés »
- □ Entité vs. ensemble d'entités ≡ objet vs. classe

Modèle E/A, les bases – Entités

Exemples d'entités

Université

l'UFR de science et techno., l'UE de BD, la salle P1-015, etc.

Allociné

MK2 Bibliothèque, Charlize Theron, UGC les Halles, Star Wars épisode I, Avatar, Jason Statham, Gaumont Opéra, etc.

Exemples d'ensembles d'entités

- Université
 - les UEs (intitulé, nombre d'ECTS, référence Apogée, ...)
 - les salles (nom, nombre de places, ...)
 - les étudiants (numéro, nom, date de naissance, adresse, ...)
- Allociné
 - les cinémas (nom, adresse, nombre de salles, ...)
 - les acteurs (<u>nom</u>, date de naissance, nationalité, ...)
 - les films (<u>titre</u>, <u>année</u>, ...)

Modèle E/A, les bases – Entités

Représentation graphique

□ Des entités, par extension, au sein de tables

nom	date de naissance	nationalité	•••
Charlize Theron	07/08/1975	Afrique du Sud	
Jason Statham	12/09/1972	Angleterre	•••

- D'un ensemble d'entités (modélisation des données)
 - Équivalente à la représentation des classes en UML
 - Les membres représentent les attributs
 - Pas d'opération

Point de vue formel

Propriétés descriptives d'une entité (ou d'une association)

$$e \in E \subseteq D_1 \times D_2 \times \cdots \times D_n$$

□ Un *attribut* est une *fonction* associant une valeur à une entité

$$A_i: E \longrightarrow D_i \cup \{\text{null}\}$$

- lacksquare D_i : domaine de valeurs de l'attribut A_i
- Cas de la valeur spéciale null
 - □ la valeur de l'attribut n'existe pas
 - la valeur de l'attribut existe mais n'est pas connue

Types d'attribut

- Attribut simple ou composite
 - Simple : la valeur est un objet atomique ne pouvant être décomposé
 - Composite : la valeur de l'attribut est structurée

Point de vue formel

Propriétés descriptives d'une entité (ou d'une association)

$$e \in E \subseteq D_1 \times D_2 \times \cdots \times D_n$$

□ Un *attribut* est une *fonction* associant une valeur à une entité

$$A_i: E \longrightarrow D_i \cup \{\text{null}\}$$

- lacksquare D_i : domaine de valeurs de l'attribut A_i
- Cas de la valeur spéciale null
 - □ la valeur de l'attribut n'existe pas
 - la valeur de l'attribut existe mais n'est pas connue

Types d'attribut

- Attribut simple ou composite
- Attribut monovalué ou multivalué
 - Monovalué : l'attribut à une seule valeur pour une entité (cardinalité de 1)
 - Multivalué : l'attribut à plusieurs valeurs à la fois (cardinalité *)

Point de vue formel

□ Propriétés descriptives d'une entité (ou d'une association)

$$e \in E \subseteq D_1 \times D_2 \times \cdots \times D_n$$

Un attribut est une fonction associant une valeur à une entité

$$A_i: E \longrightarrow D_i \cup \{\text{null}\}$$

- lacksquare D_i : domaine de valeurs de l'attribut A_i
- Cas de la valeur spéciale null
 - □ la valeur de l'attribut n'existe pas
 - □ la valeur de l'attribut existe mais n'est pas connue

Types d'attribut

- Attribut simple ou composite
- Attribut monovalué ou multivalué
- Attribut dérivé

La valeur de l'attribut est calculée en fonction des autres attributs (cf. UML)

Exemple

Attribut composite : nom et adresse

Attribut multivalué : numéro de téléphone (num_tel)
 Une personne peut avoir plusieurs numéros de téléphone différents ou aucun

nom	num_tel	•••
Nothalia	0123461711	
Nathalie	0662142315	•••
Nicolas	null	

Attributs clés

- ☐ Hypothèse du modèle E/A : *toutes les entités sont différentes*Les attributs clés assurent l'unicité des entités
- Quelques définitions
 - Super clé (super key) d'un ens. d'entités $E \subseteq D_1 \times D_2 \times \cdots \times D_n$
 - \square Sous-ens. d'attributs $K = \{A_{k_1}, \dots, A_{k_p}\}$ distinguant les entités
 - \Box $\forall e_1, e_2 \in E$ $e_1 \neq e_2 \Leftrightarrow \pi_K(e_1) \neq \pi_K(e_2)$
 - Clé candidate (candidate key) d'un ens. d'entités $E \subseteq D_1 \times D_2 \times \cdots \times D_n$
 - Super clé minimale
 - \square K super clé de $E \Rightarrow \forall K' \subset K$ n'est pas une super clé de E
 - Clé primaire (primary key) d'un ens. d'entités $E \subseteq D_1 \times D_2 \times \cdots \times D_n$
 - Il peut y avoir plusieurs clés candidates
 - Primaire : la clé candidate choisie pour la modélisation
- Cf. les notions de PRIMARY KEY et FOREIGN KEY en SQL

- Représentation graphique
 - Représentation adoptée dans le cours

Représentation graphique

Comparaison avec UML

Personne <u>NIR</u> nom prénom nom_fam adresse rue numero nom ville code_postal { num_tel } date_naiss age ()

Représentation graphique

Notation alternative arborescente

Personne **NIR** nom prénom nom_fam adresse rue numero nom ville code_postal { num_tel } date_naiss age ()

Notion d'association

- □ Concept proche de la notion d'association en UML « lien entre plusieurs (i.e., au moins 2) entités »
- Formellement
 - Soient n entités e_1 , e_2 , ... et e_n avec $n \ge 2$
 - Soient p attributs a_1 , a_2 , ... et a_p avec $p \ge 0$
 - Le (n+p)-uplet $r=(e_1,e_2,...,e_n,a_1,a_2,...,a_p)$ est une **association**
 - lacksquare n est appelé le *degré* de r
 - Si p > 0, r est appelée une association attribuée

Notion d'ensemble d'associations

Groupement des associations de même type dans un ensemble

- Soient n ensemble d'entités E_1 , E_2 , ... et E_n avec $n \ge 2$
- Soient p domaines d'attributs D_1 , D_2 , ... et D_p avec $p \ge 0$
- $R \subseteq E_1 \times \cdots \times E_n \times D_1 \times \cdots \times D_p$ est un *ensemble d'associations*

Exemple d'associations

- Deux ensembles explicites d'entités : enseignant et étudiant
- ☐ Une *association tuteur* de degré 2

- Exemple d'associations attribuées
 - □ Deux ensembles explicites d'entités : *enseignant* et *étudiant*
 - ☐ Une association tuteur de degré 2 avec 1 attribut

- Représentation graphique : association simple
 - Adoptée pour le cours

Comparaison avec UML

- Représentation graphique : association attribuée
 - Adoptée pour le cours

Comparaison avec UML

- ☐ Exprimer le *nombre* d'entités avec lesquelles une entité peut être en association via un ensemble d'associations
- \square Cas particulier des associations binaires (e.g., entre des ens. A et B)
 - One-to-one

- ☐ Exprimer le *nombre* d'entités avec lesquelles une entité peut être en association via un ensemble d'associations
- \square Cas particulier des associations binaires (e.g., entre des ens. A et B)
 - One-to-one
 - One-to-many et many-to-one

- ☐ Exprimer le *nombre* d'entités avec lesquelles une entité peut être en association via un ensemble d'associations
- \square Cas particulier des associations binaires (e.g., entre des ens. A et B)
 - One-to-one
 - One-to-many et many-to-one
 - Many-to-many

- □ Exprimer le *nombre* d'entités avec lesquelles une entité peut être en association via un ensemble d'associations
- \square Cas particulier des associations binaires (e.g., entre des ens. A et B)
 - One-to-one
 - One-to-many et many-to-one
 - Many-to-many
- Participation
 - Participation d'une entité E à une association $R: R \subseteq \cdots \times E \times \cdots$
 - Contrainte de participation
 - \Box *Total*: toutes les entités de E apparaissent au moins une fois dans R
 - \square Partielle: certaines entités de E apparaissent au moins une fois dans R

Cardinalité

Quatre possibilités de cardinalité

... on retrouve encore une fois des concepts introduits dans UML

Cardinalité

□ Notations graphiques pour les assoc. binaires one-to-one, one-to-many, ...

□ Notations graphiques les contraintes de participation des *assoc. binaires*

- Notations graphiques dans le cas général
 - Chaque ensemble d'entités E_i présente sa cardinalité dans R $e \in E_i$ apparaît dans au moins n_i et au plus m_i associations de R
 - Utilisation autorisée pour le cas binaire

- Comparaison avec UML
 - Notation identique pour les relations n-aires avec $n \geq 3$
 - Inconsistance pour n=2 (inversion de la position des cardinalités)

Exemples

Notation graphique

Équivalence avec UML

- Interprétation
 - Un enseignant peut être tuteur d'un ou plusieurs étudiants
 - Un étudiant peut avoir un ou plusieurs enseignants tuteurs

Exemples

Notation graphique

Équivalence avec UML

- Interprétation
 - Un enseignant peut être tuteur d'au plus un étudiant
 - Un étudiant peut avoir au plus un enseignant tuteur

Exemples

Notation graphique

Équivalence avec UML

- Interprétation
 - Un enseignant doit être tuteur de un ou plusieurs étudiants
 - Un étudiant doit avoir un ou plusieurs enseignants tuteurs

Modèle E/A, les bases – Associations

Exemples

Notation graphique

Équivalence avec UML

- Interprétation
 - Un enseignant **peut** être tuteur d'**un ou plusieurs** étudiants
 - Un étudiant doit avoir au plus un enseignant tuteur (i.e., exactement un)

Modèle E/A, les bases – Associations

Rôle

- Ambiguïtés dans les associations
 lorsque le même ensemble d'entités est utilisé plusieurs fois dans une association
- Utilisation d'alias : les rôles identique à l'approche UML
- Notation graphique sur un exemple

Modèle E/A, les bases – Entités faibles

Ensemble d'entités faible

- Définition : « ensemble d'entités sans clé primaire »
 - Possibilité d'avoir plusieurs entités différentes d'attributs identiques
 - Multi-ensemble d'entités
- Entités autorisées à la condition

Existence d'un ensemble d'associations identifiantes

- □ Lien avec des entités fortes, appelées *ensemble d'entités identifiantes*
- Participation de l'entité faible de cardinalité 1..1
- Clé primaire implicite
 - Soit K_S la clé primaire de l'ensemble d'entités identifiantes¹
 - Soit K_D un discriminant de l'ensemble d'entités faible (souligné en pointillés) Une clé partielle des entités faibles
 - $K_S \cup K_D$ définit une clé primaire de l'ensemble d'entités faible

¹ On suppose qu'il n'y a qu'un seul ensemble d'entités identifiant; s'il y en a plusieurs K_S représente l'union de leurs clés primaires

Modèle E/A, les bases – Entités faibles

Ensemble d'entités faible

- Notation graphique
 - E ensemble d'entités faible (le discriminant apparaît souligné en pointillés
 - R ensemble d'associations identifiant
 - \blacksquare E_S ensemble d'entités identifiant

Pas d'équivalent UML

Modèle E/A, les bases – Entités faibles

Exemple

- UE divisée en sections
- Section décrite par le groupe et le semestre
- □ Exemples : « programmation impérative » et « architecture et système »

Plan

Introduction à la conception de BD

Modèle entités/associations, concepts de base

Modèle entités/associations étendu

Quelques problématiques de conception

Modèle E/A étendu

■ Modèle E/A de base

- □ Modélisation de la plupart des propriétés sur les données...
- ... mais absence des notions apparues plus tard

Deux extensions

- Éléments de modélisation objet (généralisation, spécialisation, héritage)
- Agrégation

Spécialisation

- Processus de modélisation top-down
- Distinguer un sous-ensemble d'entités d'un ensemble d'entités
 - Spécification d'un ensemble d'entités de plus bas niveau
 - Attributs supplémentaires, participations particulières à des associations

Généralisation

- Processus de modélisation bottom-up
- Combiner des ensembles d'entités partageant certaines caractéristiques
 - Spécification d'un ensemble d'entités de plus haut niveau
 - Factorisations d'attributs ou de participations à des associations

Héritage

- \square Généralisation vs. Spécialisation \equiv hiérarchie de classes (modél. objet)
 - Entité de plus haut niveau : regroupe les attributs/associations communes
 - Entité de plus bas niveau : regroupe les attributs/associations propres

- Contraintes sur la généralisation
 - ☐ Généralisation *logique* ou *d'utilisation*
 - Quelles entités sont membres d'un ensemble de plus bas niveau ?
 - Contrainte logique
 - □ Propriété logique sur les éléments du modèle E/A
 - Exemple

CISénior est une spécilisation de Client les clients de plus de 65 ans sont des entités de CISénior

- Contrainte d'utilisation
 - La condition est gérée de façon extérieure (lors de l'utilisation de la BD)
 - Exemple

régime alimentaire d'un participant à une conférence lors de l'inscription, le participant désigne son régime alimentaire

- Contraintes sur la généralisation
 - □ Généralisation logique ou d'utilisation
 - ☐ Généralisation *disjointe* ou *chevauchante*
 - Une entité peut-elle appartenir à plusieurs spécialisations ou à une seule ?
 - Disjointe
 - □ Ne peut appartenir qu'à une seule des spécialisations
 - □ Notion des proches des objets en programmation par exemple
 - Chevauchante (overlapping)
 - Peut appartenir à plusieurs spécialisations

- Contraintes sur la généralisation
 - ☐ Généralisation *logique* ou *d'utilisation*
 - ☐ Généralisation *disjointe* ou *chevauchante*
 - ☐ Généralisation *totale* ou *partielle*
 - Une entité doit-elle forcément appartenir à l'une des spécialisations ?
 - Totale
 - Doit appartenir forcément à l'une des spécialisations
 - Analogue au cas où l'entité de plus haut niveau correspond à une classe abstraite
 - Partielle
 - □ Ne doit pas forcément être spécialisée

- Contraintes sur la généralisation
 - ☐ Généralisation *logique* ou *d'utilisation*
 - ☐ Généralisation *disjointe* ou *chevauchante*
 - ☐ Généralisation *totale* ou *partielle*

cardinalité de la généralisation

- Notations graphiques et exemple
 - Proche d'UML
 où les contraintes sur les cardinalités doivent être exprimées en OCL
 - Employés d'une entreprise
 - Classification suivant le type de profil
 - Productif (e.g., consultant technique) ou commercial
 - Sémantique : partielle et chevauchante

 Commercial ∪ Productif ≠ Employé

 Un employé n'est pas forcément un productif
 ou un commercial

 Commercial ∩ Productif ≠ Ø

 Un employé peut être à la fois productif
 et commercial

 Productif

 Commercial

 Commercial

- Notations graphiques et exemple
 - Proche d'UML
 où les contraintes sur les cardinalités doivent être exprimées en OCL
 - Employés d'une entreprise
 - Classification suivant le type de profil
 - Productif (e.g., consultant technique) ou commercial
 - Sémantique : totale et chevauchante
 Commercial U Productif = Employé
 Un employé est forcément un productif
 - ou un commercial
 - Commercial ∩ Productif ≠ Ø
 Un employé peut être à la fois productif et commercial

- Notations graphiques et exemple
 - Proche d'UML
 où les contraintes sur les cardinalités doivent être exprimées en OCL
 - Employés d'une entreprise
 - Classification suivant le type de profil
 - Productif (e.g., consultant technique) ou commercial
 - Sémantique : partielle et disjointe
 Commercial ∪ Productif ≠ Employé
 Un employé n'est pas forcément un productif ou un commercial
 - Commercial ∩ Productif = Ø
 Un employé ne peut pas être à la fois productif et commercial

Employé

NIR
nom

ductif

Productif

Commercial

- Notations graphiques et exemple
 - Proche d'UML
 où les contraintes sur les cardinalités doivent être exprimées en OCL
 - Employés d'une entreprise
 - Classification suivant le type de profil
 - Productif (e.g., consultant technique) ou commercial
 - ☐ Sémantique : *totale* et *disjointe*
 - Commercial U Productif = Employé Un employé est forcément un productif ou un commercial
 - Commercial ∩ Productif = Ø
 Un employé ne peut pas être à la fois productif et commercial

Modèle E/A étendu – Agrégation

Association comme entité

- Par exemple : association entre associations...
- ☐ Limitation du modèle E/A de base Pas « d'ordre supérieur »

Agrégation

- Abstraction où les associations sont considérées comme des entités d'ordre supérieur
- □ Attention

Notion totalement différente des agrégations en UML

Les agrégations UML permettent d'abstraire les notions de collections, tableaux, listes, etc. en programmation

Modèle E/A étendu – Agrégation

- Notations graphiques et exemple
 - □ Pas d'équivalent en UML
 - □ Exemple : tutorat entre enseignants et étudiants
 - Ajout d'une entité Projet : tutorat est une association ternaire
 - Entité Evaluation

« l'évaluation d'un tutorat dépend du projet, de l'enseignant et de l'étudiant »

Modèle E/A étendu – Agrégation

- Notations graphiques et exemple
 - Pas d'équivalent en UML
 - □ Exemple : tutorat entre enseignants et étudiants
 - Ajout d'une entité Projet : tutorat est une association ternaire
 - Entité Evaluation

« l'évaluation d'un tutorat dépend du projet, de l'enseignant et de l'étudiant »

Plan

Introduction à la conception de BD

Modèle entités/associations, concepts de base

Modèle entités/associations étendu

Quelques problématiques de conception

- Ensemble d'entités vs. attribut ?
 - Exemple : employé et numéro de téléphone

Employé

NIR
nom
salaire
tel_num

- ☐ Aucune réponse simple...
- Préconisations
 - L'attribut est un objet en soi, a une importance dans la BD
 Par exemple, utiliser la BD pour générer un annuaire
 - L'attribut a lui-même des attributs
 - Un attribut composite ou multivalué
 cache souvent une entité non explicitée dans les spec.

Employé

NIR

nom

salaire
{ telephone

num

type }

- Ensemble d'entités vs. ensemble d'associations ?
 - Exemple : étudiant et UE

- Aucune réponse simple...
- Préconisation

Désigner une relation par un verbe décrivant l'action entre les entités

- \blacksquare Association n-aire vs. association binaire ?
 - \square Transformation d'une association n-aire en associations binaires...
 - Exemples : enfant et parent

- \blacksquare Association *n*-aire vs. association binaire?
 - \square Transformation d'une association n-aire en associations binaires...
 - Cas général (pour n=3)
 - \square Ajout d'un attribut identifiant pour E_R (pas indiqué sur le schéma) utilisation possible d'une entité faible pour E_R
 - \square Pour chaque association $(a_i, b_i, c_i) \in R$
 - création d'une entité $e_i \in E_R$
 - avec $(e_i, a_i) \in R_A$, $(e_i, b_i) \in R_B$, $(e_i, c_i) \in R_C$

- \blacksquare Association n-aire vs. association binaire?
 - \square Transformation d'une association n-aire en associations binaires...
 - ... mais parfois non désirée
 - Complexifie le shéma
 Traduction E/A => schéma relationnel, moins de jointure
 - Certains cas de cardinalité ne peuvent être traduit
 - Considérer le cas R many-to-one de A et B vers C chaque paire (a,b) est associé à au plus un c

- Validation d'un modèle E/A
 - Vérification de la complétude du modèle
 - □ Vérification de la cohérence du modèle
 - ☐ Simplification du modèle

- Validation d'un modèle E/A
 - Vérification de la complétude du modèle
 - Vérification de la cohérence du modèle
 - ☐ Simplification du modèle
- Complétude du modèle
 - Objectifs : vérifier que l'ensemble des spécifications sont présentes
 - □ Présentation de chaque élément du modèle E/A
 - Entité

Nom	Enseignant
Définition	Personnel de l'université délivrant une quantité d'enseignement non nulle
Liste des attributs	NIR, nom, prénom, grade, section
Clé primaire	NIR

- Validation d'un modèle E/A
 - □ Vérification de la complétude du modèle
 - Vérification de la cohérence du modèle
 - ☐ Simplification du modèle
- Complétude du modèle
 - Objectifs : vérifier que l'ensemble des spécifications sont présentes
 - Présentation de chaque élément du modèle E/A
 - Association

Nom	Tutorat
Définition	Représente le suivi d'un étudiant sur un projet par un enseignant
Liste des entités (cardinalité+rôle)	Enseignant (0N, tueur), Etudiant (11, tutoré), Projet (1N)
Liste des attributs	-

- Validation d'un modèle E/A
 - Vérification de la complétude du modèle
 - Vérification de la cohérence du modèle
 - □ Simplification du modèle
- Complétude du modèle
 - Objectifs : vérifier que l'ensemble des spécifications sont présentes
 - Présentation de chaque élément du modèle E/A
 - Attribut

Nom	Grade
Définition	Corps auquel appartient un enseignant
Structure	Simple – monovalué
Domaine de valeur	{ MCF, Pr, PRAG, }
Appartenance à la clé	Non

- Validation d'un modèle E/A
 - Vérification de la complétude du modèle
 - Vérification de la cohérence du modèle
 - ☐ Simplification du modèle
- Complétude du modèle
 - Objectifs : vérifier que l'ensemble des spécifications sont présentes
 - □ Présentation de chaque élément du modèle E/A
 - Contrainte d'intégrité

Nom	Tutorat de recherche
Éléments E/A impliqués	Association Tutorat, Attribut Grade (Enseignant) Attribut Type (Projet)
Assertion	Seuls les enseignants de grade MCF et Pr, peuvent encadrer un projet de type de Recherche

Validation d'un modèle E/A

- Vérification de la complétude du modèle
- □ Vérification de la cohérence du modèle
- ☐ Simplification du modèle

Cohérence du modèle

- □ Existe-t-il des contraintes contradictoires ?Ex: niveau BD, vérifier s'il est possible de peupler les tables
- Aucune approche systématique

- Validation d'un modèle E/A
 - □ Vérification de la complétude du modèle
 - Vérification de la cohérence du modèle
 - □ Simplification du modèle
- Simplification du modèle
 - Objectifs
 - Élimination de la redondance et des ambiguïtés
 - Clarté
 - Concision
 - Stabilité du schéma (limiter les besoins de restructuration lors de l'ajout d'entités/associations)
 - Facilité de mise-à-jour (éviter l'introduction d'anomalies lors de l'exploitation de la BD)
 - Application d'une série de règles de simplification
 Différent d'une mise sous forme normale (rien d'automatique)

Absence d'homonyme et de synonyme

- Homonymie
 - Noms identiques pour différents éléments E/A¹
 introduction d'ambiguïtés (e.g., penser aux jointures naturelles)
 - Transformation
 - Éléments de sémantiques différentes : renommage
 - Éléments de sémantiques identiques (modélisation redondante)
 supprimer un des éléments et restructurer le modèle E/A

Synonymie

- Éléments E/A de sémantiques équivalentes nommés différemment
 Redondance dans le schéma et ambiguïté
- Transformation
 Supprimer un des éléments et restructurer le modèle E/A

¹ On appelle « élément E/A » une entité, une association, un attribut ou une contrainte d'intégrité

Minimalité des clés primaires

- Définition (cf. déf. clé minimale)
 « Si la clé d'une entité (faible ou non) est constituée de plus d'un attribut alors il n'existe pas au sein de ce groupe d'attributs un sous-groupe qui forme une clé »
- Transformation
 - Utiliser le sous-groupe comme clé primaire (ou discriminant)
 - Attention, le choix de la clé est primordial pour la future BD
- Exemple

Personne Personne Personne NIR NIR NIR nom nom nom ou prénom prénom prénom nom_fam nom_fam nom_fam

- Mise en évidence des attributs dérivables
 - Définition (cf. attribut dérivable)
 « Un attribut est dérivable si sa valeur peut être calculée à partir de la valeur d'autres attributs »
 - Transformation
 - Créer une contrainte d'intégrité donnant la règle de calcul

- Élimination des éléments redondants
 - Définition

« unicité de l'obtention structurelle d'une information »

- Transformation
 - Supprimer la redondance et restructurer le diagramme
 - Deux types possibles
 - Attribut redondant à travers une association

- Élimination des éléments redondants
 - Définition

« unicité de l'obtention structurelle d'une information »

- Transformation
 - Supprimer la redondance et restructurer le diagramme
 - Deux types possibles
 - ☐ Attribut redondant à travers une association
 - □ Association redondante à travers d'autres associations

Désagrégation d'une entité

Définition

« Une entité est *désagrégeable* lorsqu'au moins un de ses attributs exprime un objet de la réalité perçue représentable sous la forme d'une association ou d'une entité »

Transformation

Cas d'un attribut composite ou multivalué

Désagrégation d'une entité

Définition

« Une entité est *désagrégeable* lorsqu'au moins un de ses attributs exprime un objet de la réalité perçue représentable sous la forme d'une association ou d'une entité »

Transformation

- Cas d'un attribut composite ou multivalué
- Cas d'une dépendance entre attributs (autre que la clé)

Personne

NIR
nom
codePostal
localité

Désagrégation d'une entité

Définition

« Une entité est *désagrégeable* lorsqu'au moins un de ses attributs exprime un objet de la réalité perçue représentable sous la forme d'une association ou d'une entité »

- Cas d'un attribut composite ou multivalué
- Cas d'une dépendance entre attributs (autre que la clé)
- Cas d'un attribut prenant la valeur null suivant la valeur d'autres attributs

- Désagrégation d'une association
 - □ DéfinitionAnalogue à celle d'une association
 - Transformation
 - Processus plus complexe
 - Création de nombreuses entités

- Décomposition d'une association
 - Définition

« La *décomposition* d'une association consiste à remplacer, *sans perte d'information*, une association de degré $n \geq 3$ par plusieurs associations dont le degré sera au plus égal à n-1 »

- Uniquement si le modèle s'en trouve simplifié
- Deux types de décomposition
 - □ Pas de cardinalité [?..1] et au moins une dépendance entre rôles traduit souvent la présence d'une imbrication deux associations

- Décomposition d'une association
 - Définition

« La *décomposition* d'une association consiste à remplacer, *sans perte d'information*, une association de degré $n \geq 3$ par plusieurs associations dont le degré sera au plus égal à n-1 »

- Uniquement si le modèle s'en trouve simplifié
- Deux types de décomposition
 - □ Pas de cardinalité [?..1] et au moins une dépendance entre rôles traduit souvent la présence d'une imbrication deux associations

- Décomposition d'une association
 - Définition

« La *décomposition* d'une association consiste à remplacer, *sans perte d'information*, une association de degré $n \geq 3$ par plusieurs associations dont le degré sera au plus égal à n-1 »

- Transformation
 - Uniquement si le modèle s'en trouve simplifié
 - Deux types de décomposition
 - □ Pas de cardinalité [?..1] et au moins une dépendance entre rôles traduit souvent la présence d'une imbrication deux associations

Soit un ensemble d'associations $R(E_1, ..., E_n)$ $\forall i$ la cardinalité maximale de E_i dans R est \mathbb{N} \Rightarrow $\begin{cases} R_1(E_i, E_j) \\ R_2(E_1, ..., E_{j-1}, E_{j+1}, ..., E_n) \end{cases}$ Soit i, j tel que E_j dépend de E_i dans R

Décomposition d'une association

Définition

« La *décomposition* d'une association consiste à remplacer, *sans perte d'information*, une association de degré $n \geq 3$ par plusieurs associations dont le degré sera au plus égal à n-1 »

- Uniquement si le modèle s'en trouve simplifié
- Deux types de décomposition
 - □ Pas de cardinalité [?..1] et au moins une dépendance entre rôles
 - \square Un rôle avec cardinalité [?..1] et n-1 dépendances avec les autres rôles

Décomposition d'une association

Définition

« La *décomposition* d'une association consiste à remplacer, *sans perte d'information*, une association de degré $n \ge 3$ par plusieurs associations dont le degré sera au plus égal à n-1 »

- Uniquement si le modèle s'en trouve simplifié
- Deux types de décomposition
 - □ Pas de cardinalité [?..1] et au moins une dépendance entre rôles
 - \square Un rôle avec cardinalité [?..1] et n-1 dépendances avec les autres rôles

- Décomposition d'une association
 - Définition

« La *décomposition* d'une association consiste à remplacer, *sans perte d'information*, une association de degré $n \geq 3$ par plusieurs associations dont le degré sera au plus égal à n-1 »

- Transformation
 - Uniquement si le modèle s'en trouve simplifié
 - Deux types de décomposition
 - □ Pas de cardinalité [?..1] et au moins une dépendance entre rôles
 - \square Un rôle avec cardinalité [?..1] et n-1 dépendances avec les autres rôles

Soit un ensemble d'associations
$$R(E_1, ..., E_n)$$

$$\exists i \text{ la cardinalité maximale de } E_i \text{ dans } R \text{ est 1}$$

$$\forall j \neq i E_j \text{ dépend de } E_i \text{ dans } R$$

$$\vdots$$

$$R_{i-1}(E_i, E_{i-1})$$

$$R_{i+1}(E_i, E_{i+1})$$

$$\vdots$$

$$R_n(E_i, E_n)$$

-- FIN --