Outline

- Apriori improvements
- Closed frequent itemsets (CFI) & Maximal frequent itemsets (MFI)
- Beyond FIM for binary data

Thus far, FIM and ARM for binary, asymmetric data

Binary

• we only model the existence of an item in a transaction, e.g., $t_1 = \{A, B, C\}$

Asymmetric

- outcomes (i.e, {0,1} values) are not equally important
- □ 1, i.e., the existence of an item in a transaction, is the most important

Tid	Transaction items					
1	Butter, Bread, Milk, Sugar					
2	Butter, Flour, Milk, Sugar					
3	Butter, Eggs, Milk, Salt					
4	Eggs					
5	Butter, Flour, Milk, Salt, Sugar					

Beyond FIM for binary data: Categorical attributes

■ How to apply association analysis formulation to non-asymmetric / non-binary data?

Gender	Level of	State	Computer	Online	Chat	Online	Privacy
	Education		at Home	Auction	Online	Banking	Concerns
Female	Graduate	Illinois	Yes	Yes	Daily	Yes	Yes
Male	College	California	No	No	Never	No	No
Male	Graduate	Michigan	Yes	Yes	Monthly	Yes	Yes
Female	College	Virginia	No	Yes	Never	Yes	Yes
Female	Graduate	California	Yes	No	Never	No	Yes
Male	College	Minnesota	Yes	Yes	Weekly	Yes	Yes
Male	College	Alaska	Yes	Yes	Daily	Yes	No
Male	High School	Oregon	Yes	No	Never	No	No
Female	Graduate	Texas	No	No	Monthly	No	No

Example of an association rule:

 $\{Level\ of\ Education=Graduate,\ Online\ Banking=Yes\} \rightarrow \{Privacy\ Concerns=Yes\}$

Handling categorical variables

- Transform categorical attributes into (asymmetric) binary variables
- Introduce a new "item" for each distinct attribute-value pair
 - Avoid generating sets with >1 item of same attribute

Male	Female	Education	Education	Education	 Privacy	Privacy
		= Graduate	= College	= High School	= Yes	= No
0	1	1	0	0	 1	0
1	0	0	1	0	 0	1
1	0	1	0	0	 1	0
0	1	0	1	0	 1	0
0	1	1	0	0	 1	0
1	0	0	1	0	 1	0
1	0	0	0	0	 0	1
1	0	0	0	1	 0	1
0	1	1	0	0	 0	1

Beyond FIM for binary data: Continuous attributes

How to apply association analysis formulation to non-asymmetric / non-binary data?

Gender	 Age	Annual	No of hours spent	No of email	Privacy
		Income	online per week	accounts	Concern
Female	 26	90K	20	4	Yes
Male	 51	135K	10	2	No
Male	 29	80K	10	3	Yes
Female	 45	120K	15	3	Yes
Female	 31	95K	20	5	Yes
Male	 25	55K	25	5	Yes
Male	 37	100K	10	1	No
Male	 41	$65 \mathrm{K}$	8	2	No
Female	 26	85K	12	1	No

Example of an association rule:

 $\{Age \in [21,30), No_of_hours_online \in [10,20)\} \rightarrow \{Chat_Online = Yes\}$

Handling continuous attributes

- Discretization
 - Equal-width binning
 - Equal-depth binning

Source: http://www.saedsayad.com/images/Binning_2.png

Male	Female	 Age	$_{ m Age}$	Age	 Privacy	Privacy
		 < 13	\in [13, 21)	$\in [21, 30)$	 = Yes	= No
0	1	 0	0	1	 1	0
1	0	 0	0	0	 0	1
1	0	 0	0	1	 1	0
0	1	 0	0	0	 1	0
0	1	 0	0	0	 1	0
1	0	 0	0	1	 1	0
1	0	 0	0	0	 0	1
1	0	 0	0	0	 0	1
0	1	 0	0	1	 0	1

Multi-level frequent itemsets

Based on concept hierarchies like

Multi-level frequent itemsets

- Why should we incorporate concept hierarchy?
 - Rules at lower levels may not have enough support to appear in any frequent itemset
 - Rules at lower levels of the hierarchy are overly specific
 - e.g., skim milk \rightarrow white bread, 2% milk \rightarrow wheat bread, skim milk \rightarrow wheat bread, etc. are indicating an association between milk and bread, i.e., {milk} \rightarrow {bread}
 - □ Rules at higher level of hierarchy may be too generic, e.g., {Food} → {Household items}
- Approach 1:
 - Extend current association rule formulation by augmenting each transaction with higher level items
 - Original Transaction: {skim milk, wheat bread}
 - Augmented Transaction: {skim milk, wheat bread, milk, bread, food}
- Approach 2:
 - Generate frequent patterns at highest level of concept hierarchy first
 - Then, generate frequent patterns at the next highest level of the concept hierarchy, and so on