

23MT2014

THEORY OF COMPUTATION

Topic:

COMPUTING FUNCTIONS WITH TM, UNDECIDABILITY, UTM

Session – 18-19

AIM OF THE SESSION

The aim of this session is to provide an understanding of recursively enumerable and recursive languages, the computation of functions using Turing Machines, and the concept of combining multiple Turing Machines.

INSTRUCTIONAL OBJECTIVES

This Session is designed to:

- •To define and differentiate recursively enumerable and recursive languages.
- •To explain how Turing Machines can be used to compute functions and solve computational problems.
- •To demonstrate the process of combining multiple Turing Machines to perform complex computations.

LEARNING OUTCOMES

At the end of this session, you should be able to:

- 1. Differentiate between recursively enumerable and recursive languages.
- 2. Analyze the computational complexity of functions and evaluate their computability using Turing Machines.
- 3. Design and implement a combined Turing Machine to solve a given computational problem.

Recursively Enumerable and Recursive Languages

Definition:

A language is recursively enumerable if some Turing machine accepts it

Let L be a recursively enumerable language and M the Turing Machine that accepts it

For string W:

if $w \in L$ then M halts in a final state

if $w \notin L$ then M halts in a non-final state or loops forever

Definition:

A language is recursive if some Turing machine accepts it and halts on any input string

In other words:

A language is recursive if there is a membership algorithm for it

Let L be a recursive language

and M the Turing Machine that accepts it

For string W:

if $w \in L$ then M halts in a final state

if $w \notin L$ then M halts in a non-final state

Computing Functions with Turing Machines

A function

f(w)

has:

Domain: D

Result Region: S

A function may have many parameters:

Example:

Addition function

$$f(x,y) = x + y$$

Integer Domain

Decimal: 5

Binary: 101

Unary: 11111

We prefer unary representation:

easier to manipulate with Turing machines

A. Senting Professor CS Pro

Definition:

A function f is computable if there is a Turing Machine $\,M\,$ such that:

Initial configuration

Final configuration

$$\begin{array}{c|c} \hline & \Diamond & f(w) & \Diamond \\ \hline & \uparrow \\ q_f & \text{final state} \\ \hline \end{array}$$

$$w \in D$$

In other words:

A function f is computable if there is a Turing Machine $\,M\,$ such that:

$$q_0 w \succ q_f f(w)$$

Initial Configuration

Final Configuration

Example.

The function f(x, y) = x + y is computable

x, y are integers

Turing Machine:

Input string:

x0y

unary

Output string:

xy0

unary

The 0 is the delimiter that separates the two numbers

The 0 helps when we use the result for other operations

Turing machine for function f(x, y) = x + y

Execution Example:

Time 0

$$x = 11$$
 (2)

$$y = 11$$
 (2)

Final Result

$$1 \rightarrow 1, R$$

 $1 \rightarrow 1, R$

CATEGORY 1 UNIVERSITY

 q_4

 $1 \rightarrow 1, R$

CATEGORY 1 UNIVERSITY

 q_4

$$1 \rightarrow 1, R$$

$$1 \rightarrow 1, R$$

$$1 \rightarrow 1, L$$

CATEGORY 1 UNIVERSITY

$$1 \rightarrow 1, R$$

$$1 \rightarrow 1, R$$

$$1 \rightarrow 1, L$$

HALT & accept

43 YEARS OF EDUCATIONAL

Another Example The function f(x) = 2x is computable

$$f(x) = 2x$$
 is computable

is integer

Turing Machine:

Input string:

unary

Output string:

 $\chi\chi$

unary

Turing Machine Pseudocode for f(x) = 2x

- Replace every 1 with \$
- Repeat:
 - Find rightmost \$, replace it with 1

Go to right end, insert 1

35

Until no more \$ remain

Turing Machine for f(x) = 2x

Example

Start

Finish

$$1 \rightarrow \$, R$$

$$1 \rightarrow 1, L$$

$$1 \rightarrow 1, R$$

Another Example

is computable

The function
$$f(x,y) = \begin{cases} 1 & \text{if } x > y \\ 0 & \text{if } x \leq y \end{cases}$$
 is computable

38

Turing Machine for

$$f(x,y) = \begin{cases} 1 & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$

x0yInput:

Output:

39

Turing Machine Pseudocode:

· Repeat

Match a 1 from x with a 1 from y

Until all of x or y is matched

• If a 1 from x is not matched erase tape, write 1 (x > y)else

Combining Turing Machines

Block Diagram

Example:

$$f(x,y) = \begin{cases} x + y & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$

Team - TOC

