Chapter 4

Graph algorithms

4.1 BFS

- 1. start with an empty (FIFO) list l and a (random) vertex u_1 ;
- 2. set $pr(u_1) = \emptyset$;
- 3. start with a graph T where $V(T) = u_1$ and $E(T) = \emptyset$
- 4. label vertex u_1 active
- 5. for every edge e = (v, u) incident with the active vertex v do
 - (a) if $u \in V(T)$ skip e and u
 - (b) else if $u \notin V(T)$ add u to the list l;
 - (c) $V(T) = V(T) \cup u$
 - (d) $E(T) = E(T) \cup (v, u)$
 - (e) set pr(u) = v
- 6. remove the vertex v from the list and
 - (a) if l is not empty label the first vertex active and go to Step 5
 - (b) else terminate the algorithm by outputting T

Theorem 4.1.1. The BFS algorithm terminates by outputting a tree T.

Proof by induction. Basic step is OK. Hypothesis: for $k \geq 0$ T Is a tree with k+1 vertices and k edges. Inductive step. If the algorithm terminates as step k+1 we are done. Otherwise, the algorithm adds the same number of edges and vertices, preserves connectivity and does not create cycles.

Corollary 4.1.1. If T has less vertices than G then G is disconnected, otherwise T is a spanning tree.

Definition 4.1.1. A level of a vertex u in a BFS tree is the integer k such that $pr^k(u) = u_0$.

Theorem 4.1.2. Vertices enter a BFS tree in non-decreasing order

Proof. By induction. The first vertex is at level zero. Assume for the first m vertices the result holds. Consider the next vertex v that joins the tree at stage m+1. Then pr(v)=u, where u is the active vertex. level(v)= level(u)+1. Consider any other non-root vertex x in the tree at stage m+1. Let pr(x)=y, hence level(x)= level(y)+1. There are two cases y=u or y was active before u by induction hypothesis level $(y)\leq$ level(u). Then

$$level(v) = level(u) + 1 \ge level(y) + 1 = level(x)$$

hence if x was added before v the level of x is no larger than the level of v.

Theorem 4.1.3. In a connected graph G with a breadth-first search tree T each edge $e \in E(G) \setminus E(T)$ connects vertices that are at most one level apart.

Proof. let e = (u, v) be non-tree edge and without loss of generality let u join the tree before v.

Case 1: v is not in the tree when u is active. Then v and e are added to the growing tree and level(u) + 1 = level(v).

Case 2: v is in the tree when u is active then by Theorem 4.1.2 we have $level(u) \leq level(v)$. Let pr(v) = w and since v is in the tree when u is active then $level(w) \leq level(u)$. Thus

$$level(u) \le level(y) = level(w) + 1 \le level(u) + 1$$

Theorem 4.1.4. A connected graph G with BFS tree T has an odd cycle if and only if there is a non-tree edge that joins vertices at the same level

Proof. Follow the path to the first common ancestor

Theorem 4.1.5. The length of a shortest path from u to v in a connected graph G equals the level of v in any BFS tree of G with u as root

Proof. Homework