Euclidean Geometry in Mathematical Olymipads - Evan Chen

Part I: Fundamentals

Table of Contents

Angle Chasing	2
1.1 Triangles and Circles	
1.2 Cyclic quadilaterals	
1.3 The Orthic Triangle	
1.4 The Incenter/Excenter Lemma	
1.4.1 Problem for this Section	3
1.5 Directed Angles	3
1.5.1 Problems for this Section	

1 Angle Chasing

1.1 Triangles and Circles

1.2 Cyclic quadilaterals

1.3 The Orthic Triangle

Example 1.13

Prove that H is the incenter of ΔDEF .

Lemma 1.14 (The Orthic Triangle)

Suppose ΔDEF is the orthic triangle of acute ΔABC with orthocenter H. Then

- (a) Points A, E, F, H lie on a circle with diameter \overline{AH} .
- (b) Points B, E, F, C lie on a circle with diameter \overline{BC} .
- (c) H is the incenter of ΔDEF .

Proof. It can easily be proven that *BCEF*, *AFHE*, *HDCE*, *AEDB*, and *HFBD* are cyclic quadilaterals. Then,

$$\widehat{HFE} = \widehat{HAE} = \widehat{DAE} = \widehat{EBD} = \widehat{HBD} = \widehat{HFD}$$
 (1.1)

and

$$\widehat{FEH} = \widehat{FAH} = \widehat{FCD} = \widehat{HED}$$
 (1.2)

 \Longrightarrow *H* is the incenter $\triangle DEF$.

Lemma 1.17 (Reflecting the Orthocenter)

Let H be the orthocenter $\triangle ABC$, as in Figure 1. Let X be the reflection H over \overline{BC} and Y the reflection over the midpoint of \overline{BC} .

- a. Show that *X* lies on (*ABC*).
- b. Show that \overline{AY} is a diameter of (ABC)

Figure 1.3B: Reflecting the orthocenter.

1.4 The Incenter/Excenter Lemma

Lemma 1.18 (The Incenter/Excenter Lemma)

Let ABC be a triangle with incenter I. Ray AI meets (ABC) again at L. Let I_A be the reflection of I over L. Then,

- a. The points I, B, C and I_A lie on a circle with diameter $\overline{II_A}$ and center L. In particular, $LI = LB = LC = LI_A$
- b. Rays BI_A and CI_A bisect the exterior angles of $\triangle ABC$.

1.4.1 Problem for this Section

Problem 1.19

Fill in the two similar calculations in the proof of Lemma.

1.5 Directed Angles

Defintion 1.20 (Directed angles)

A directed angle XYZ is denoted

xXYZ

and its measure is taken mod 180°.

Given a directed angle $\angle ABC$, it is said to be *positive* if the vertices A, B, C appear in clocwise order and *negative* otherwise.

Theorem 1.22 (Cyclic quadilaterals with Directed Angles)

Points A, B, X, Y are concylic if and only if $\angle AXB = \angle AYB$.

Proposition 1.24 (Directed Angles)

For any distinct points A, B, C, P in the plane, we have the following rules:

- a. $\angle APA = 0$.
- b. $\angle ABC = -\angle CBA$.
- c. $\angle PBA = \angle PBC$ if and only if A, B, C are colinear. Equivalently, if $C \subset \overrightarrow{BA}$, then the A in $\angle PBA$ may be replaced by C.
- d. If $\overline{AP} \perp \overline{BP}$, then $\angle APB = \angle BPA = 90^{\circ}$.
- e. $\angle APB + \angle BPC = \angle APC$.
- f. $\angle ABC + \angle BCA + \angle CAB = 0$.
- q. $\overline{AB} = \overline{BC} \iff \angle ACB = \angle CBA$
- h. If (ABC) has center P, then $\angle APB = 2\angle ACB$.
- i. If $AB \parallel CD$, then $\angle ABC + \angle BCD = 0$.

Worked Example 1.26

Let H be the orthocenter of $\triangle ABC$, acute or not. Using directed angles, show that AEHF, BFHD, CDHE, BEFC, CFDA, and ADEB are cyclic.

Lemma 1.27 (Miquel Point of a Triangle)

Points D, E, F lie on lines BC, CA, and AB of $\triangle ABC$, respectively. Then there exists a point lying on all three circles (AEF), (BFD), (CDE).

1.5.1 Problems for this Section

Problem 1.28

We claimed that $\angle FKD + \angle DKE + \angle EKF = 0$ in the above proof. Verify this using Proposition .

Problem 1.29

Show that for any distinct points A, B, C, D, we have $\angle ABC + \angle BCD + \angle CDA + \angle DAB = 0$.