Module 04: Surface Water Hydraulics Unit 01: Gradually Varied Flow

Anirban Dhar

Department of Civil Engineering Indian Institute of Technology Kharagpur, Kharagpur

National Programme for Technology Enhanced Learning (NPTEL)

Dr. Anirban Dhar NPTEL Computational Hydraulics 1 /

Learning Objective

• To solve gradually varied flow problem for open channels.

Problem Definition to Solution

Governing Equation for Gradually Varied Flow in prismatic channel can be written as,

Initial Value Problem

$$\frac{dy}{dx} = \frac{S_0 - S_f}{1 - Fr^2} \tag{1}$$

Governing Equation for Gradually Varied Flow in prismatic channel can be written as,

Initial Value Problem

$$\frac{dy}{dx} = \frac{S_0 - S_f}{1 - Fr^2} \tag{1}$$

Initial Condition:

$$y|_{x=0} = y_0 (2)$$

Governing Equation for Gradually Varied Flow in prismatic channel can be written as,

Initial Value Problem

$$\frac{dy}{dx} = \frac{S_0 - S_f}{1 - Fr^2} \tag{1}$$

Initial Condition:

$$y|_{x=0} = y_0 (2)$$

where

y = depth of flow

x = coordinate direction

 $S_0 = \mathsf{bed} \; \mathsf{slope}$

$$S_f$$
= friction slope = $\left(\frac{n^2Q^2}{R^{4/3}A^2}\right)$

$$Fr =$$
Froude number $= \left(\sqrt{\frac{Q^2T}{gA^3}}\right)$

Q = discharge

T = top width

g= acceleration due to gravity

R= hydraulic radius

A = cross-sectional area.

Problem Definition Gradually Varied Flow in Open Channel

From Lecture 7, in general format

$$\frac{dy}{dx} = \Psi(x, y)$$

where

$$\Psi(x,y) = \frac{S_0 - S_f}{1 - Fr^2}$$
$$= \frac{S_0 - \frac{n^2 Q^2}{R^{4/3} A^2}}{1 - \frac{Q^2 T}{gA^3}}$$

Trapezoidal Cross-section

where P = wetted perimeter.

 $T = B + (m_1 + m_2)y$

Circular Cross-section

$$A = \frac{1}{8}(\theta - \sin \theta)D^{2}$$

$$P = \frac{1}{2}\theta D$$

$$R = \frac{A}{P}$$

$$T = D\sin\left(\frac{\theta}{2}\right)$$

Problem Definition Critical Depth

For critical depth, Fr = 1

$$Fr = \sqrt{\frac{Q^2T}{gA^3}} = 1$$

In case of rectangular channel, A = By and T = B

$$\sqrt{\frac{Q^2T}{gA^3}} = 1$$

$$\sqrt{\frac{Q^2T}{gA^3}} = 1$$
$$y_c = \left(\frac{Q^2}{gB^2}\right)^{\frac{1}{3}}$$

Problem Definition Normal Depth

Normal depth can be calculated from Manning's equation (uniform flow),

$$Q = \frac{1}{n} R^{\frac{2}{3}} S_0^{\frac{1}{2}} A$$

In case of rectangular channel, $A = By_n$ and $P = B + 2y_n$

$$Q = \frac{1}{n} \left(\frac{By_n}{B + 2y_n} \right)^{\frac{2}{3}} S_0^{\frac{1}{2}} By_n$$

In function form,

$$G(y_n) = \frac{S_0^{\frac{1}{2}} B^{\frac{5}{3}}}{n} \left(\frac{y_n}{B + 2y_n}\right)^{\frac{2}{3}} y_n - Q = 0$$

Problem Definition Normal Depth

From Newton-Raphson method,

$$y_n|^{(p)} = y_n|^{(p-1)} - \frac{G(y_n|^{(p-1)})}{G'(y_n|^{(p-1)})}$$

where

$$G'(y_n) = \frac{S_0^{\frac{1}{2}} B^{\frac{5}{3}}}{3n} \frac{y_n^{\frac{2}{3}} (5B + 6y_n)}{(B + 2y_n)^{\frac{5}{3}}}$$

Possible Flow Conditions

Problem Definition Summary of the Flow Conditions

Channel Category	Symbol	Characteristic Condition	Remark
Mild slope	М	$y_n > y_c$	Subcritical flow at normal depth
Steep slope	S	$y_n < y_c$	Supercritical flow at normal depth
Critical Slope	С	$y_n = y_c$	Critical flow at normal depth
Horizontal Bed Slope	Н	$S_0 = 0$	Cannot sustain uniform flow
Adverse slope	А	$S_0 < 0$	Cannot sustain uniform flow

Forward Euler Method

Euler Method

$$y_{n+1} = y_n + \Delta x \Psi(x_n, y_n)$$

Order of Euler's method: $\mathcal{O}(\Delta x)$

Modified Euler Method First Approach

Modified Euler Method

$$y_{n+1} = y_n + K_2$$

with

$$K_2 = \Delta x \Psi \left(x_n + \frac{\Delta x}{2}, y_n + \frac{1}{2} K_1 \right)$$

$$K_1 = \Delta x \Psi (x_n, y_n)$$

Modified Euler Method First Approach

Modified Euler Method

$$y_{n+1} = y_n + K_2$$

with

$$K_2 = \Delta x \Psi \left(x_n + \frac{\Delta x}{2}, y_n + \frac{1}{2} K_1 \right)$$

$$K_1 = \Delta x \Psi (x_n, y_n)$$

Order of Modified Euler method: $\mathcal{O}(\Delta x^2)$

Euler-Cauchy method Second Approach

Modified Euler Method

$$y_{n+1} = y_n + \frac{1}{2} [K_1 + K_2]$$

with

$$K_2 = \Delta x \Psi(x_n + \Delta x, y_n + K_1)$$

$$K_1 = \Delta x \Psi(x_n, y_n)$$

Order of Modified Euler method: $\mathcal{O}(\Delta x^2)$

Second Order RK Method (RK2)

RK2

$$y_{n+1} = y_n + \frac{1}{4} \left[K_1 + 3K_2 \right]$$

with

$$K_1 = \Delta x \Psi(x_n, y_n)$$

$$K_2 = \Delta x \Psi(x_n + \frac{2}{3}\Delta x, y_n + \frac{2}{3}K_1)$$

Order of RK2 method: $\mathcal{O}(\Delta x^2)$

Third Order RK Method (RK3)

RK3

$$y_{n+1} = y_n + \frac{1}{6}(K_1 + 4K_2 + K_3)$$

with

$$K_{1} = \Delta x \Psi(x_{n}, y_{n})$$

$$K_{2} = \Delta x \Psi(x_{n} + \frac{1}{2}\Delta x, y_{n} + \frac{1}{2}K_{1})$$

$$K_{3} = \Delta x \Psi(x_{n} + \Delta x, y_{n} - K_{1} + 2K_{2})$$

Order of RK3 method: $\mathcal{O}(\Delta x^3)$

Fourth Order RK Method (RK4)

 RK_4 can be presented as,

RK4

$$y_{n+1} = y_n + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4)$$

with

$$K_1 = \Delta x \Psi(x_n, y_n)$$

$$K_2 = \Delta x \Psi(x_n + \frac{1}{2} \Delta x, y_n + \frac{1}{2} K_1)$$

$$K_3 = \Delta x \Psi(x_n + \frac{1}{2} \Delta x, y_n + \frac{1}{2} K_2)$$

$$K_4 = \Delta x \Psi(x_n + \Delta x, y_n + K_3)$$

Order of RK3 method: $\mathcal{O}(\Delta x^4)$

List of Source Codes

Gradually Varied Flow

- Forward Euler approach
 - forward_euler.sci
- Modified Euler approach
 - modified_euler_1st.sci
 - modified_euler_2nd.sci
- RK2 approach
 - RK2.sci
- RK3 approach
 - RK3.sci
- RK4 approach
 - RK4.sci

Thank You