

Ethics in NLP

Bias

Privacy

Ethical Research

Ethics in NLP - Bias

Consequences of Sociodemographic Bias in NLP Models:

 Outcome Disparity: Predicted distribution given A, are dissimilar from ideal distribution given A

Error Disparity: Predicts less accurate for authors of given demographics.

Two Examples

distance from "standard" WSJ author demographics

Two Examples

distance from "standard" WSJ author demographics

Two Examples

distance from "standard" WSJ author demographics

Our data and models are (human) biased.

"Outcome Disparity"

Person-level

- attribute = 1
- attribute = 2

"Error Disparity"

Our data and models are (human) biased.

"Outcome Disparity"

Person-level

- attribute = 1
- attribute = 2

"Error Disparity"

Our data and models are (human) biased.

Conceptual Framework:

Conceptual Framework:

Outcome Disparity

outcome disparity The distribution of outcomes, given attribute A, is dissimilar than the ideal distribution: $Q(\hat{Y}_t|A) \not\sim P(Y_t|A)$ **Target Population** biased features outcomes predict target target (Application Side) error disparity The distribution of error (ϵ) over at least two different values of an attribute (A) are unequal: $Q(\epsilon_t|A_i) \neq Q(\epsilon_t|A_i)$

Outcome Disparity

Error Disparity

Error Disparity

Disparities

outcome disparity

The distribution of outcomes, given attribute A, is dissimilar than the *ideal distribution*:

$$Q(\hat{Y}_t|A) \neq P(Y_t|A)$$

error disparity

The distribution of error (ϵ) over at least two different values of an attribute (A) are unequal: $Q(\epsilon_t|A_i) \neq Q(\epsilon_t|A_i)$

Disparities

 $Q(\epsilon_t|A_i) \neq Q(\epsilon_t|A_i)$

Origins of Bias

different values of an attribute (A) are unequal: $Q(\epsilon_i|A_i) \neq Q(\epsilon_i|A_i)$

Selection Bias

of the application population.

 $Q(\epsilon_t|A_i) \neq Q(\epsilon_t|A_i)$

Selection Bias

Label Bias

Label Bias

Label Bias - Example: Label word with drawing

Devin Coldeway. 2017. TechCrunch: Google releases millions of bad drawings for you (and your AI) to paw through https://techcrunch.com/2017/08/25/google-releases-millions-of-bad-drawings-for-you-and-your-ai-to-paw-through/

Label Bias

Overamplification

Overamplification

Overamplifiction - Model Amplifies Bias

Overamplification

Semantic Bias

Semantic Bias

E.g. Coreference resolution:

connecting entities to references (i.e. pronouns).

"The doctor told Mary that she had run some blood tests."

semantic bias

Non-ideal associations between attributed lexeme (e.g. gendered pronouns) and non-attributed lexeme (e.g. occupation).

selection bias

The sample of observations themselves are not representative of the application population.

error disparity

The distribution of error (ϵ) over at least two different values of an attribute (A) are unequal: $Q(\epsilon_i|A_i) \neq Q(\epsilon_i|A_i)$

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In

Predictive Bias Framework for NLP

 $Q(\epsilon_t|A_i) \neq Q(\epsilon_t|A_i)$

Summary of Countermeasures

Source	Origin	Countermeasures
annotation	Label Bias	Post-stratification, Re-train annotators
data selection	Selection Bias	Stratified sampling, Post-stratification or Re-weighing techniques
KIP	Overamplification	Synthetically match

Overamplification

Synthetically match distributions, add outcome disparity to cost function

Semantic Bias

Synthetically match distributions, add outcome disparity to cost function

Use above techniques and re-train embeddings

Bias - Takeaways

Bias, as outcome and error **disparities**, can result from many **origins**:

- the embedding model
- the feature sample
- the fitting process
- the **outcome** sample

Our understanding is evolving:

This is an active area of work, both theoretically and technically!

Bias

Privacy

Ethical Research

Privacy

- Risk Categories:
 - Revealing unintended private information
 - Targeted persuasion

Privacy

- Risk Categories:
 - Revealing unintended private information
 - Targeted persuasion
- Mitigation strategies:

Privacy

- Risk Categories:
 - Revealing unintended private information
 - Targeted persuasion
- Mitigation strategies:
 - Informed consent -- let participants know and opportunity to opt-in/-out
 - Do not share / secure storage
 - Federated learning -- obfuscate to the point of preserving privacy
 - Transparency in information targeting
 - "You are being shown this ad because ..."

Bias

Privacy

Ethical Research

ACM Code of Ethics; General Ethical Principles:

• Contribute to society and to human well-being, acknowledging that all people are stakeholders in computing.

ACM Code of Ethics; General Ethical Principles:

- Contribute to society and to human well-being, acknowledging that all people are stakeholders in computing.
- Avoid harm.

ACM Code of Ethics; General Ethical Principles:

- Contribute to society and to human well-being, acknowledging that all people are stakeholders in computing.
- Avoid harm.
- Be honest and trustworthy.

ACM Code of Ethics; General Ethical Principles:

- Contribute to society and to human well-being, acknowledging that all people are stakeholders in computing.
- Avoid harm.
- Be honest and trustworthy.
- Be fair and take action not to discriminate.

ACM Code of Ethics; General Ethical Principles:

- Contribute to society and to human well-being, acknowledging that all people are stakeholders in computing.
- Avoid harm.
- Be honest and trustworthy.
- Be fair and take action not to discriminate.
- Respect the work required to produce new ideas, inventions, creative works, and computing artifacts.

ACM Code of Ethics; General Ethical Principles:

- Contribute to society and to human well-being, acknowledging that all people are stakeholders in computing.
- Avoid harm.
- Be honest and trustworthy.
- Be fair and take action not to discriminate.
- Respect the work required to produce new ideas, inventions, creative works, and computing artifacts.
- Respect privacy.
- Honor confidentiality.

Human Subjects Research

Observational versus Interventional

Human Subjects Research

Observational versus Interventional

(The Belmount Report, 1979)

- (i) Distinction of research from practice.
- (ii) Risk-Benefit criteria
- (iii) Appropriate selection of human subjects for participation in research
- (iv) Informed consent in various research settings.

Human Subjects Research

Observational versus Interventional (modeling) (models interact)

Human Subjects Research

Observational versus Interventional (modeling) (models interact)

Deploying a model within an application often shifts the works from being simply observational (privacy harms) to interventional (consideration for additional harms).