

Section A [45 marks]*Answer all questions.*

- 1** The function f is defined by

$$f(x) = \begin{cases} \frac{64 - x^3}{x - 4}, & x < 4, \\ (1 - m^2)x^2, & x = 4, \\ n\sqrt{x - 1}, & x > 4. \end{cases}$$

Determine the exact value of the constants m and n such that the function f is continuous at $x = 4$. [7]

- 2** A curve is defined parametrically by $x = \frac{9t^2 - 1}{3t}$ and $y = \frac{9t^2 + 9t + 1}{3t}$, where $t \neq 0$.

(a) Find the coordinates of the points where the tangent line to the curve is parallel to x -axis. [7]

(b) Is there any tangent line to the curve which is parallel to y -axis? Justify your answer. [2]

- 3** Find the exact value of $\int_0^{\ln \frac{\pi}{4}} e^x \cot(2e^x) dx$. [6]

- 4** Find the particular solution of the differential equation $x^2 e^{x^4} \frac{dy}{dx} + 5xye^{x^4} = 1$, for $x > 0$, with the condition $y = 0$ when $x = 1$. [8]

- 5** Using Maclaurin series for e^x and $\cos x$, find Maclaurin series for $e^x(1 + \cos 2x)$ up to the terms in x^4 . [3]

Hence, evaluate $\lim_{x \rightarrow 0} \frac{e^x \cos^2 x - 1}{x}$. [4]

- 6** Use differentiation to show that the iteration $x_{n+1} = (2.1 - 4e^{-2x_n})^2 - 1$ converges to the root of the equation $4e^{-2x} + \sqrt{x+1} = 2.1$ in the interval $[3, 4]$. [3]

Hence, find the root using initial approximation $x_0 = 4.0$ correct to three decimal places. [5]

You may answer all the questions, but only the first answer will be marked.

- 7 Two curves with the equations $y = \tan^{-1}(2x)$ and $y = \left(x - \frac{1}{2}\right)^2 + \frac{\pi}{4}$ in the first quadrant are shown in the graph below.

Both curves intersect at two points, P and Q (1.099, 1.144), where P is the minimum point of the curve $y = \left(x - \frac{1}{2}\right)^2 + \frac{\pi}{4}$.

(a) State the coordinates of P . [1]

(b) Calculate the area of the region bounded by the curves $y = \tan^{-1}(2x)$ and $y = \left(x - \frac{1}{2}\right)^2 + \frac{\pi}{4}$. [9]

(c) Calculate the exact volume generated when the region bounded by the curve $y = \tan^{-1}(2x)$, $y = \frac{\pi}{4}$ and the origin O is revolved completely about the y -axis. [5]

- 8 Assume that the rate of elimination of caffeine from the body is k times the mass of caffeine, x mg, of the remaining active amount of caffeine at time t hours, where k is a constant. Once an average-sized cup of coffee is consumed completely, the initial amount of caffeine in the body is x_0 mg.

(a) (i) State a differential equation which describes the above situation. Hence, solve the differential equation. [4]

(ii) If the half-life of caffeine in the body is 5 hours, determine the value of k . [3]

(iii) Sketch the graph of x against t . [2]

(b) Assume that an average-sized cup of coffee contains 95 mg of caffeine and the coffee is consumed 8 hours ago,

(i) how much caffeine remains in the body? [2]

(ii) determine the time taken to eliminate 98% of the caffeine from the body. Can the amount of caffeine totally be eliminated from the body? Justify your answer. [4]