Gravità #1

4F Liceo Scientifico

14 ottobre 2022

I più antichi modelli celesti elaborati dall'umanità sono di tipo geocentrico. Gli studi degli astronomi e dei filosofi greci (dal IV secolo AEC fino al II secolo EC) culminano nell'opera di Tolomeo, di Alessandria d'Egitto.

I più antichi modelli celesti elaborati dall'umanità sono di tipo geocentrico. Gli studi degli astronomi e dei filosofi greci (dal IV secolo AEC fino al II secolo EC) culminano nell'opera di Tolomeo, di Alessandria d'Egitto.

- La Terra è immobile al centro dell'universo
- Gli altri corpi celesti ruotano intorno alla terra in moto uniforme lungo epicicli e deferenti

I più antichi modelli celesti elaborati dall'umanità sono di tipo geocentrico. Gli studi degli astronomi e dei filosofi greci (dal IV secolo AEC fino al II secolo EC) culminano nell'opera di Tolomeo, di Alessandria d'Egitto.

- La Terra è immobile al centro dell'universo
- Gli altri corpi celesti ruotano intorno alla terra in moto uniforme lungo epicicli e deferenti

Il modello tolemaico rimane indiscusso per 1500 anni.

Il modello copernicano (eliocentrico)

Per superare la complessità del modello tolemaico, lo studioso e sacerdote Niccolò Copernico (1473-1543) propone un modello in cui i pianeti, compresa la Terra, compiono un moto di rivoluzione intorno al Sole.

Il modello copernicano (eliocentrico)

Per superare la complessità del modello tolemaico, lo studioso e sacerdote Niccolò Copernico (1473-1543) propone un modello in cui i pianeti, compresa la Terra, compiono un moto di rivoluzione intorno al Sole.

- Copernico pubblica la sua opera (in contraddizione con le convinzioni della Chiesa) solo nel 1543
- Costruisce le basi per l'unificazione della fisica terrestre con quella celeste [Link]

Johannes Kepler (1571-1630), astronomo e matematico tedesco, è un convinto sostenitore della teoria copernicana.

Johannes Kepler (1571-1630), astronomo e matematico tedesco, è un convinto sostenitore della teoria copernicana.

► Il suo maestro Tycho Brahe dispone di un osservatorio astronomico avanzato e di strumenti di precisione

Johannes Kepler (1571-1630), astronomo e matematico tedesco, è un convinto sostenitore della teoria copernicana.

- ► Il suo maestro Tycho Brahe dispone di un osservatorio astronomico avanzato e di strumenti di precisione
- Le osservazioni di Tycho sono in disaccordo con l'ipotesi del moto circolare uniforme dei pianeti

Johannes Kepler (1571-1630), astronomo e matematico tedesco, è un convinto sostenitore della teoria copernicana.

- ► Il suo maestro Tycho Brahe dispone di un osservatorio astronomico avanzato e di strumenti di precisione
- Le osservazioni di Tycho sono in disaccordo con l'ipotesi del moto circolare uniforme dei pianeti
- Keplero elabora un nuovo modello cosmologico che sia compatibile con i dati sperimentali

Prima legge di Keplero

Prima legge di Keplero

L'orbite di ciascun pianeta è un'ellisse di cui il Sole occupa uno dei fuochi.

Prima legge di Keplero

L'orbite di ciascun pianeta è un'ellisse di cui il Sole occupa uno dei fuochi.

- Perielio: punto dell'orbita più vicino al Sole
- Afelio: punto dell'orbita più distante dal Sole

Seconda legge di Keplero

Il raggio vettore di un pianeta rispetto al Sole descrive aree uguali in tempi uguali.

Seconda legge di Keplero

Il raggio vettore di un pianeta rispetto al Sole descrive aree uguali in tempi uguali.

In altri termini: la velocità areolare $V_A = \frac{\Delta A}{\Delta t}$ è costante per ogni pianeta

Seconda legge di Keplero

Il raggio vettore di un pianeta rispetto al Sole descrive aree uguali in tempi uguali.

- In altri termini: la velocità areolare $V_A = \frac{\Delta A}{\Delta t}$ è costante per ogni pianeta
- La velocità di un pianeta è massima al perielio e minima all'afelio

Terza legge di Keplero

Il rapporto $\frac{a^3}{T^2}$ è lo stesso per tutti i pianeti, dove

- ► a è il semiasse maggiore dell'orbita
- T è il periodo di rivoluzione

Terza legge di Keplero

Il rapporto $\frac{a^3}{T^2}$ è lo stesso per tutti i pianeti, dove

- ► a è il semiasse maggiore dell'orbita
- T è il periodo di rivoluzione

Di conseguenza, i pianeti più distanti dal Sole hanno un periodo di rivoluzione maggiore.