浙江水学

本科实验报告

课程名称:		计算机逻辑设计基础
姓	名:	王晓宇
学	院:	竺可桢学院
专	业:	计算机
申以	箱:	1657946908@qq.com
QQ	号:	1657946908
电	话:	19550222634
指导教师:		—————————————————————————————————————
报告日期:		2023年11月9日

浙江大学实验报告

课程名称:	计算机逻辑设计基础	实验类型:	综合
体性石机:	1 并加这种以1 至晒	大型 天空:	坏 石

实验项目名称: 加法器、加减法器和 ALU 基本原理与设计

实验地点: __紫金港东四 509 室 __实验日期: _2023 _ 年 _ 11 _ 月 _ 9 _ 日

一、操作方法与实验步骤

A. 任务1: 原理图方式设计 4 位加减法器 1 位全加器:

● 三个输入位:数据位 Ai 和 Bi,低位进位输入 Ci

● 二个输出位:全加和 Si,进位输出 Ci+1

A_i	B_i	C_i	S_{i}	C 1+1
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S_i = A_i \otimes B_i \otimes C_i$$

$$C_{i+1} = A_i B_i + B_i C_i + C_i A_i$$

根据一位全加器的输入输出关系, 得到电路图

多位串行进位加法器 由一位全加器将进位串接构成 低位进位 CO 为 O, Ci 为高位进位输出

四位全加器的生成

1位加减法器

- 用负数补码加法实现,减数当作负数求补码
- 共用加法器
- 用"异或"门控制求反,低位进位 C0 为 1

多位串行进位全减器

4位加减法器

设计按键数据输入模块

```
module CreateNumber(
   input wire [3:0] btn,
   input wire [3:0] sw,
   output reg [15:0] num
   );
   wire [3:0] A1,B1,C1,D1;

initial num <= 16'b1010_1011_1100_1101; // display "AbCd"

AddSub4b a1(.A(num[ 3: 0]),.B(4'b0001),.Ctr1(sw[0]),.S(A1));
   AddSub4b a2(.A(num[ 7: 4]),.B(4'b0001),.Ctr1(sw[1]),.S(B1));
   AddSub4b a3(.A(num[11: 8]),.B(4'b0001),.Ctr1(sw[2]),.S(C1));
   AddSub4b a4(.A(num[15:12]),.B(4'b0001),.Ctr1(sw[3]),.S(D1));

always@(posedge btn[0]) num[ 3: 0]<= A1;
   always@(posedge btn[0]) num[ 7: 4]<= B1;
   always@(posedge btn[0]) num[11: 8]<= C1;
   always@(posedge btn[0]) num[15:12]<= D1;
endmodule</pre>
```

但其中的 C\D 可以不用赋值,在本节中,只需改变 AB 的值即可。 防抖动模块 + 分频器

```
//
// Create Date: 18:27:10 11/08/2023
// Design Name: pbdebounce
// Module Name: pbdebounce
// Project Name:
// Target Devices:
// Tool versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//
// Module pbdebounce (
    input wire clk lms,
    input wire button,
    output reg pdreg
);
reg [7:0] pdshift;
always @(posedge clk lms)begin
    pdshift=pdshift(<1;
    pdshift=0]=button;
    if (pdshift==8'b0)
        pdreg = 0;
if (pdshift==8'hfF)
        pdreg = 1;
    end
endmodule</pre>
```

B. 任务2: 实现4位 ALU 及应用设计

设计8位七段码显示模块

- 1. 用 Arduino Sword-002 子板四位动态扫描扩展
- 2. 用主板调用 P2S 模块输出静态显示

顶层模块名: Hex827Seg sch

- 1. 原理图输入
- 2. 调用模块实现
- 调用 MC14495(Hex27Seg 工程复制)
- 调用辅助时钟分频模块, 符号: clkdiv.sym(制作)
- 修改 4 位七段扫描同步输出模块, 符号: dispsync32.sym
- 或设计八位七段静态译码模块(HexTo8SEG8),调用 P2S 输出

Top 实现:

```
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
// Additional Comments:
//
// Additional Comments:
//
// Additional Comments:
//
//
// Additional Comments:
//
//
// Input wire (lin) BTM,
// Input wire (lin) BTM,
// Input wire (lin) BTM,
// Input wire (lin) SM2,
// Output wire (lin) SM3,
// Output wire (lin) SM3,
// Output wire seg_clk,
// Output seg_clk,
// O
```

引脚设置:

二、实验结果与分析

4 位 ALU 仿真

对于 A 的初值修改了 5 次分别为 4'b0000,4'b0001,4'b0011,4'b0110,4'b1010,每次进行加减与或运算,B 初值为 1010

加法运算			
A/B	C0/C	实验图片	
5/1	0/6	章章章章章章章章章章章章章章章章章章章章章章章章章章章章章章章章章章章章	
8/8	1/0	章 章 章 章 章 章 章 章 章 章 章 章 章 章 章 章 章 章 章	

减法运算		
A/B	C0/C	实验图片
D/A	1/3	

按位与运算			
A/B	C0/C	实验图片	
B/1	0/1	海 東京	
F/1	0/1	10 5111C 10 5	

按位或运算			
A/B	C0/C	实验图片	
F/4	0/F	10 1791C 10 1	

三、讨论、心得

这次的实验是要求先设计 ALU 基础逻辑单元,从底层开始设计,内含一位全加器 Adder (用 Verilog 语言编写)、四位全加器 Adder4b (使用 Adder 画图)、一位加减器 AddSub1b(使用 Adder 画图)、四位加减器 AddSub4b(使用 AddSub1b 画图)、防抖动模块 pbdebounce。在上节课的使用过的代码基础上,即使用CreateNum、clk div、disp num来使得 ABCOC 在七段数码管上刷新出现。

本节架构较为清楚,Top 模块负责统筹输入与输出,调用函数赋值。在本节实验中其他操作基本没有问题,只是在编写 Top 模块的时候报错,显示"对同一寄存器多次赋值",这个确实应该是报 Error,但是最后发现该错误解决不了,只得重新 copy source 去新建 project 来查出哪里出了问题,结果重新编写了一份 Top 就可以正常编译了,有时 ISE 总会报一些离谱的错误,多尝试几次就能发现问题所在了,还有就是要学会去看他的报错提示。

VIVADO > SYNTHESIS

andrew_ruiz (Member) asked a question. 2011年12月18日 at 22:45

Signal is connected to multiple drivers...

I'm trying to synthesize my code but my error leads to the file quad_dec.

The file in question is instantiated here, lab5.

The error I get in synthesis is the following:

ERROR:Xst:528 - Multi-source in Unit <quad_dec> on signal <nxt_re_state_a<2>>; this signal is core ERROR:Xst:528 - Multi-source in Unit <quad_dec> on signal <nxt_re_state_a<1>>; this signal is core.

ERROR:Xst:528 - Multi-source in Unit <quad_dec> on signal <nxt_re_state_a<0>>; this signal is cor