

Introduction- Terms and Goal

Terms

Eruption: an event where lava is extruded from a volcanic structure

VEI: (Volcanic Explosivity Index) analogous to the Richter scale, the magnitude of an eruption. Log scale from 0-8

Magnitude: (earthquake), in the Richter scale

Type: Refers to the classification of the volcano. This term groups volcanoes based on physical and chemical attributes (ex. Stratovolcano, shield volcano, caldera...)

Extinct: A volcano which has not erupted in 10,000 years and is suspected to no longer have a magmatic supply

Goal:

- Predict seismicity associated with eruptions prior to the invention of seismometers
- Input earthquake magnitudes, volcanic type, location, volcanic name, and VEI
- Output earthquake magnitude

Collecting Data

Volcano World

Data Collection

- Earthquake Data collected from USGS earthquake catalog in CSV format (1990-2023)
- Volcanic locations and eruption data collected from Smithsonian Global Volcanism Program CSV format (1990-2023)

	time	latitude	longitude	depth	mag	magType	ns			
0	2022-01- 15T04:14:45.000Z	-20.546000	-175.390000	0.00	5.8	ms_20	Nai			
1	2018-08- 02T21:55:12.060Z	19.411167	-155.283167	0.55	5.3	mw	34.			
2	2018-07- 31T17:59:46.000Z	19.410333	-155.285667	0.57	5.3	mw	36.			
3	2018-07- 29T22:10:25.570Z	19.406333	-155.282333	1.29	5.3	mw	39.			
4	2018-07- 28T12:37:25.390Z	19.396833	-155.271833	0.21	5.3	mw	37.			
2323	1990-03- 15T09:07:01.160Z	-21.143000	-68.748000	120.00	4.6	mb	Nai			
2324	1990-03- 10T02:04:13.390Z	-22.671000	-68.267000	123.20	4.8	mb	Nai			
2325	1990-03- 08T03:59:35.230Z	-24.625000	-70.263000	59.20	4.5	mb	Nai			
2326	1990-03- 04T16:30:52.060Z	-20.069000	-69.311000	125.00	4.2	mb	Nai			
2327	1990-03- 04T13:24:06.860Z	-21.247000	-67.758000	199.60	4.6	mb	Nai			
440074 sever v 00 selveres										

116671 rows x 22 columns

Data Collection pt. 2

- Eruptions predicted earthquakes for were scraped from Oregon State University website
- Eruptions span roughly 1400 AD to early 1960's
- Contains volcano name, VEI, date, Country, and Type

Cleaning Data

pandas.to_datetime() Convert Strings To Dates

Data Cleaning- Long Process!

Data was in csv format but the time and name columns were not standardized. Further I had to generate multiple columns to create a unique key which I could merge my earthquake and eruptions data frames on

Major steps:

- Normalizing time data to pandas datetime (both df's)
- Normalizing volcanic names and mapping earthquakes to volcanic centers using latitude and longitude
- Mapping earthquakes to eruptions with latitude and longitude (next slide)
- Merging (outer merge)


```
## this function takes in eruption and earthquake data
## using latitude, longitude, and time it rules if a volcanic earthquake happened during an eruption
## if the earthquake happened during an eruption, the time data is re-assigned to the start date of the eruption
## this is because I will merge my data sets on time and volcanic name
## if a volcanic earthquake does not correspond to an eruption it is still kept in the data set
## just the time data is not altered so when I merge it is not matched to an eruption
def eruption matching(earthquake df, eruptions df):
  ind = \{\}
  #empty data frame
  final df = pd.DataFrame()
  #create a list of unique volcanoes that have eruptions
  volcanoes = eruptions_df['Volcano Name'].unique().tolist()
  #loop through
  for volcano in volcanoes:
    #creating mini df's with just earthquakes and eruptions for that specific volcano
    mini df = earthquake df[earthquake df['Volcano Name']==volcano]
    mini_df=mini_df.reset_index()
    eruption df = eruptions df[eruptions df['Volcano Name']==volcano]
    eruption df=eruption df.reset index()
    #creating an artifical eruptions series with the earthquake dates which I will overwrite soon
    eruption series = pd.Series(mini df['Date'])
    #then find the index of earthquakes that match an eruption time
    #but make sure the volcano exists in both data sets
    if len(mini df) > 0 and len(eruption df) > 0:
      #print('yes')
      for i in range(len(mini df)):
        for p in range(len(eruption df)):
         if eruption df['End Date'][p]>=mini df['Date'][i] and eruption df['Start Date'][p]<=mini df['Date'][i]:
         #assigning start date here, may change this to something else later depending on how it looks merged
            eruption series[i] = eruption df['Start Date'][p]
            #print(eruption df['Start Date'][p])
      #make column in our masked data frame
      mini_df['Start Date'] = pd.to_datetime(eruption_series, yearfirst='True', utc=False, unit='ns')
      final df = pd.concat([final df, mini df], axis=0)
  return final df
dummy = eruption matching(volcanoe earthquakes df, eruptions renamed)
```

Exploring Data

Volcanic Centers

Earthquake Magnitudes

-6.5

-6.0

- 5.5

- 5.0

45

-4.0

- 3.0

Magnitude vs Error

Comparing Magnitude with Error

Volcano Name

- Huila, Nevado del
- Rincon de la Vieja
- Bardarbunga
- Grimsvotn
- Gamalama
- Krakatau
- Papandayan
- Agung
- Paluweh
- Rinjani
- Tara, Batu
- Lokon-Empung
- Kaba
- Peuet Sague
- Popocatepetl
- Monowai
- Rumble III

Earthquake Qualities vs Type

Comparing Magnitude and Depth Over Volcanic Type

Earthquakes During Eruption?

Comparing Magnitude and Depth During Eruptions

Shield Volcano Pattern?

Comparing Depth of Shield Volcanoes

Understanding Eq Behavior

Average Magnitude of Earthquakes

Cont.

Average Depth of Earthquakes

Most Dangerous Volcano?

mag VEI Eruption length

Volcano Name

Huila, Nevado del	6.800000	5.0	1175 days 00:00:00
Hunga Tonga-Hunga Ha'apai	5.800000	5.0	26 days 00:00:00
Popocatepetl	4.100000	3.0	2818 days 00:00:00
Krakatau	4.666667	2.0	487 days 08:00:00
Kama'ehuakanaloa	3.147677	2.0	166 days 00:00:00

Machine Learning

Models and RSME

Models Used:

- Kneighbors (k = 15, metric = cosine) **RSME**: **0.144**
- Linear Regression RSME: 8.1819 x 10^24
- Random Forest Regressor (n_estimators = 31) RSME: 0.367
- Decision Tree Regressor (depth = 2, leaf = 2) **RSME**: **0.136**
- Stacking (all models but LR) **RSME**: **0.365**
- Voting (all models but LR) RSME: 0.367

Decision Trees...

Final Predictions!

	Date	VEI	Volcano Name	Country	Туре	Earthquake Mag							
0	1450C	5	Aniakchak	United States	Caldera	3.170264	12	Oct. 17, 1755	5	Katla	Iceland	Subglacial	6.30000
1	1452	6	Kuwae	Vanuatu	Caldera	6.300000	13	April 5, 1815	7	Tambora	Indonesia	Stratovolcano	6.30000
2	1477	5	Bardarbunga	Iceland	Stratovolcano	6.300000	14	Oct. 8, 1822	5	Galunggung	Indonesia	Stratovolcano	6.3000
3	1480D	5	St. Helens	United States	Stratovolcano	3.170264	15	June 20, 1835	5	Cosiguina	Nicaragua	Stratovolcano	6.3000
4	1540	5	St. Helens	United States	Stratovolcano	3.170264	16	Feb. 17, 1854	5	Sheveluch	Russia	Stratovolcano	6.3000
5	18-May-80	5	St. Helens	United States	Stratovolcano	3.170264	17	March 29, 1875	5	Askja	Iceland	Stratovolcano	6.3000
6	1580C	6	Billy Mitchell	Papua New Guinea	Ash shield	6.300000	18	Aug. 26, 1883	6	Krakatau	Indonesia	Caldera	6.3000
7	1593	5	Raung	Indonesia	Stratovolcano	6.300000	19	Oct., 24, 1902	6	Santa Maria	Guatemala	Stratovolcano	6.3000
8	1600	6	Huaynaputina	Peru	Explosion crater	6.300000	20	March 28, 1907	5	Ksudach	Russia	Shield	6.3000
9	Jan. 4, 1641	6	Parker	Philippines	Stratovolcano	6.300000	21	June 6, 1911	6	Katmai	United States	Stratovolcano	3.1702
10	1660	6	Long Island	Papua New Guinea	Complex volcano	6.300000	22	March 30, 1956	5	Bezymianny	Russia	Stratovolcano	6.3000
11	1673	5	Gamkonora	Indonesia	Stratovolcano	6.300000							

Final Notes & Questions?

- Limited data supply- emerging field and more work needed
- Predicted 2 different magnitudes (6.3 and 3.17)