Solutions and Screenshots

A1

1.1

A data frame is a labeled two-dimensional data structure containing columns that can be of different types.

	price (grands)) bedr oom s	: bathr oom s	s sqft_living	sqft_l o t	1
count	21613. 00000 0	0 21613.000000	21613.000000	0 21613.000000	2.1613 00e+04	
mean	540.088142	3.370842	2.114757	7 2079.899736	1.510697e+04	
std	367.127196	5 0. 93 00 62	0.770163	918.440897	4.142051e+04	
min	75.000000	0.000000	0.000000	290.000000	5.200000e+02	
25%	321.95 000 0	3.000000	1.750000	0 1427.000000	5.040000e+03	
50%	450.000000	3.000000	2.250000	0 1910.000000	7.618000e+03	
75%	645.000000	4.000000	2.500000	a 2550.000000	1.068800e+04	
max	7700.000000	33.000000	8.000000	0 13540.000000	1.651359 e+ 06	
	floors	waterfront	view	condition	grade \	
count	21613.000000	21613.000000	21613.000000	21613.000000	21613 .000000	
mean	1.494309	0.007542	0.234303	3.409430	7.656873	
std	0.5 39989	0.086517	0.766318	0.650743	1.175459	
min	1.000000	0.000000	0.000000	1.000000	1.000000	
25%	1.000000	0.000000	0.000000	3.000000	7.000000	
50%	1.500000	0.000000	0.000000	3.000000	7.000000	
75%	2.000000	0.000000	0.000000	4.000000	8.000000	
max	3.500000	1.000000	4.000000	5.000000	13.000000	
	sqft_ab o ve	sqft_basement	age	renovated_age		
count	21613.000000	21613.000000	21613.000000	21613.000000		
mean	1788.390691	291.509045	45.994864	2.380882		
std	828.090978	442.575043	29.373411	12.359528		
min	290.000000	0.000000	2.000000	0.000000		
25%	1190.000000	0.000000	20.000000	0.000000		
50%	1560.000000	0.000000	42.000000	0.000000		
75%	2210.000000	560.000000	66 .000000	0.000000		
max	9410.000000	4820.000000	117.000000	114.000000		
	sqft_living15	sqft_l o t15				
count	21613.000000	21613 .00000 0				
mean	1986.552492	12768.455652	?			
std	685.391304	273 04. 179631				

1.2 In python file

- **1.3** Best model obtained is with using learning rate 1.0. This wouldn't create a linear line as N dimensional is projected on to 2 d plane.
- 1.4 In Sol1 python file
- 1.5 In sol1 python file

A2

2.1

2.2

2.3

А3

Probability of sensor to be faulty P(faulty) = 0.01

Probability of sensor to be not faulty P (\neg faulty) = 0.99

Probability of getting a reading less than 1 when sensor is faulty = P(<1|faulty) = 1.0

Probability of getting a reading less than 1 when sensor is not faulty = P(<1|-faulty) = .33

P(faulty | < 1) = P(<1|faulty) *P(faulty)

 $P(<1|faulty) *P(faulty) + P(<1|\neg faulty) * P(\neg faulty)$

For 1^{st} reading by the sensor = 1*.01/(1*.01 + 1/3*.99) = .029

For 2^{nd} consecutive reading by the sensor = 1*.01/(1*.01 + 1/3*1/3*.99) = .083

Similarly, for 10^{th} reading = $1*.01/(1*.01 + 1/3^10*.99) = .998$

So, model will be = $1*.01/(1*.01 + 1/3^N*.99)$

Α4

The mean (μ 1) of the first class is 3 and second (μ 2) is 1. The Bell curve will intersect at 2. The standard deviation is 1. The Standard Score (z) is calculated by

$$z = (x - \mu 1)/\sigma$$

So, z will be -1. The probability of area under the curve onto the left is .1587. So, probability of remaining area is 1 - .1587 = 0.8413. That is why the theoretical limit will be around 84%.

Another way to prove that is 68/95/99.7 rule. The first 68% area under the bell curve lies at the first standard deviation from the mean which is 0 and 2. Rest we must find the area between -1 to 0. As bell curves are symmetrical, remaining area will be half of 32% which is 16%. So, theoretical limit will be 68% + 16% = 84%

References

- [1] "Intro to Data Structures pandas 0.20.3 documentation", Pandas.pydata.org, 2017. [Online]. Available: https://pandas.pydata.org/pandas-docs/stable/dsintro.html. [Accessed: 03- Oct- 2017].
- [2] "numpy.random.choice NumPy v1.13 Manual", Docs.scipy.org, 2017. [Online]. Available: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.random.choice.html. [Accessed: 03- Oct- 2017].
- [3] F. Y-scaling?, "Fitting a Gaussian to a histogram with MatPlotLib and Numpy wrong Y-scaling?", Stackoverflow.com, 2017. [Online]. Available: https://stackoverflow.com/questions/23447262/fitting-a-gaussian-to-a-histogram-with-matplotlib-and-numpy-wrong-y-scaling. [Accessed: 03- Oct- 2017].
- [4] 2017. [Online]. Available: http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf. [Accessed: 03- Oct-2017].