

BIOESTATÍSTICA

PROF^a. KARINA PEREZ MOKARZEL CARNEIRO

× Bibliografia:

Arango HG. Bioestatística: teórica e computacional. 3 ed. Rio de Janeiro: Guanabara Koogan, 2011.

Na estatística descritiva quanto maior a facilidade em transmitir as informações sobre a população em estudo para quem as estiver recebendo, mais eficiente será o meio de transmissão.

<u>Medidas de tendência Central</u>:

Média, Mediana e Moda.

<u>Medidas de Dispersão ou Variabilidade</u>:

Amplitude Total, Variância e Desvio Padrão.

Medidas de Assimetria

- → Valor que seja o mais parecido possível com os demais valores do conjunto.
- → Valor que tende ao centro.
- → É uma primeira caracterização dos conjuntos populacionais ou amostrais.

	Médias (" <i>mean</i> ") - Média aritmética simples, MAS - Média geométrica, G - Média harmônica, H	Valores
MTCs	Mediana, (" <i>median</i> ")	Ordem
	Moda, (" <i>mode</i> ")	Freqüência

Média aritmética

Dado o conjunto de n valores da variável X,

$$X = \{x_1, x_2, \ldots, x_n\}$$

a média aritmética simples desse conjunto pode ser obtida a partir da expressão:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Mediana

- → Estando os valores que compõem o conjunto de observações ordenado de forma crescente ou decrescente (rol), o valor que ocupa a posição equidistante dos extremos é o valor representativo do conjunto.
- → Equivale a pegar o meio da fila.
- → Os valores extremos não afetam o resultado final.

$$\hat{\mathbf{x}} = \mathbf{x}_{\frac{\mathbf{n}+1}{2}}$$
 \rightarrow Se n é impar

$$\hat{\mathbf{x}} = \frac{\mathbf{x}_{\frac{\mathbf{n}}{2}} + \mathbf{x}_{\frac{\mathbf{n}}{2}+1}}{2} \rightarrow \text{Se n \'e par}$$

Moda

- → Outro critério para a escolha do valor típico de um atributo de uma população ou amostra dela é tomar o valor mais frequente deste conjunto.
- → Em outras palavras: o valor mais representativo é aquele que aparece o maior número de vezes.
- →O resultado pode ser <u>amodal</u>, quando não possui moda; bimodal, quando possui dois valores modais; ou multimodal, quando possui mais do que dois valores modais.

Seja X o conjunto dos perímetros cefálicos, em centímetros, de 5 recém-nascidos.

$$X = \{ 34, 30, 33, 32, 33 \}$$

Então, o perímetro cefálico médio dos cinco RN's resulta:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{34 + 30 + 33 + 32 + 33}{5} = 32,4cm$$

Dados em ROL: 30, 32, 33, 33, 34

Mediana: $\hat{x} = 33$

$$\hat{\mathbf{x}} = \mathbf{x}_{\frac{n+1}{2}}$$

Moda (nº que repete com maior frequência): $\tilde{x} = 33$

Gráfico de dispersão dos perímetros cefálicos, em cm.

Gráfico de dispersão dos perímetros cefálicos, em cm.

OBS: a soma dos desvios em relação a Média é zero

d1 =	1.6
d2 =	-2.4
d3 =	0.6
d4 =	-0.4
d5 =	0.6
S =	0.0

Considere os dados, referentes às taxas de potássio de 12 pacientes:

Paciente	1	2	3	4	5	6	7	8	9	10	11	12
Potássio (mg/100ml)	4,8	4,9	4,9	4,9	5,0	5,1	5,4	6,5	6,7	6,7	6,7	7,0

Calcule as medidas de tendência central

Média = 5,72 Mediana = 5,25 Moda = 4,9 e 6,7 (Bimodal)

GRÁFICO DE DISPERSÃO

Figura 1 – Taxa de potássio em mg/100ml

GRÁFICO DE DISPERSÃO

Figura 1 – Taxa de potássio em mg/100ml

Aspectos gerais

Entende-se por dispersão ou variabilidade a diferença observada entre os valores de um conjunto de dados.

Evidentemente, quanto maior for essa diferença, maior será a dispersão ou variabilidade do conjunto, sendo válido o raciocínio inverso.

Desse modo é possível, por simples observação, caracterizar um conjunto qualitativamente em termos de dispersão.

Entretanto, para evitar o julgamento subjetivo associado à aferição qualitativa da dispersão, é conveniente construir um índice que permita efetuar uma análise quantitativa da variabilidade dos dados.

	Amplitude Total, AT (<i>range</i>) Soma dos Desvios Absolutos, SDA Desvio Médio, DM	Lineares
MD's	Soma dos Quadrados dos Desvios, SQD Variância, VAR[X] ou σ² (<i>variance</i>) Desvio Padrão, σ (<i>standard deviation</i>)	Quadráticas
	Taxa de anormalidade	Ordem

→ <u>Amplitude Total</u>:

Uma das formas de se medir a dispersão consiste em calcular a Amplitude Total do conjunto que está sendo observado.

A amplitude total é obtida do seguinte modo:

Seja
$$X = \{x_1, x_2, ..., x_n\}$$
 com $x_1 < x_2 < ... < x_n$

Então
$$AT = x_n - x_1$$

→ <u>Amplitude Total</u>:

Apesar de ter a vantagem da simplicidade, a amplitude total é considerada um indicador inadequado para a mensuração da variabilidade pois:

- A amplitude total não considera a totalidade dos dados do conjunto e sim apenas dois deles (o maior e o menor). Dessa forma, o indicador não é sensível à posição que os "n-2" valores restantes ocupam no conjunto.
- No caso de dados agrupados em tabelas, os limites abertos não permitem o cálculo da amplitude total.

→ <u>Amplitude Total</u>:

Sejam os conjuntos:

$$A = \{1, 7, 7, 8, 8, 8, 9, 9, 12, 15\}$$

 $B = \{3, 3, 4, 4, 8, 11, 13, 13, 14, 14\}$

Dispersão [A] =
$$AT_A = 15 - 1 = 14$$

Dispersão [B] = $AT_B = 14 - 3 = 11$

Entretanto, uma simples análise visual dos valores dos dois conjuntos, devidamente desenhados em uma escala graduada, mostra que a amplitude total reflete mal a dispersão dos conjuntos, tal como definido anteriormente.²³

→ Amplitude Total:

Embora tenha-se mostrado que a amplitude total do conjunto A é maior que a do conjunto B (ATA > ATB), percebe-se uma dispersão menor dos valores do conjunto A em relação à do conjunto B.

→ Variância:

O desvio quadrático médio, ou, como é comumente conhecido, a Variância é calculado pela equação:

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

→ <u>Desvio Padrão</u>:

Como a variância é obtida somando-se valores elevados ao quadrado, expressa a variabilidade dos dados como uma grandeza também ao quadrado.

Para solucionar esse incômodo, basta extrair a raiz quadrada da Variância, obtendo-se assim um outro indicador de variabilidade, denominado Desvio Padrão.

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$$

→ Correção para amostras:

Quando se trata de amostras extraídas de uma população, o cálculo da Variância e do Desvio Padrão sofre uma pequena alteração, denominada correção amostral, que consiste em retirar uma unidade do denominador.

Ainda é preciso lembrar que, quando se quer indicar um parâmetro amostral, é usada a letra latina correspondente à letra grega utilizada no caso de populações. Assim, as expressões para o cálculo da Variância e do Desvio Padrão amostral passam a ser, respectivamente:

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

$$s = \sqrt{s^{2}} = \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}}$$

27

No Exercício 1

Seja X o conjunto dos perímetros cefálicos, em centímetros, de 5 recém-nascidos.

$$X = \{ 34, 30, 33, 32, 33 \}$$

Então, o perímetro cefálico médio dos cinco RN's resulta:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{34 + 30 + 33 + 32 + 33}{5} = 32,4cm$$

OBS: a soma dos desvios em relação a Média é zero

d1 =	1.6
d2 =	-2.4
d3 =	0.6
d4 =	-0.4
d5 =	0.6
S =	0.0

Xi	$x_i - \overline{x}$	$(x_i - \overline{x})^2$
34	1,6	2,56
30	-2,4	5,76
33	0,6	0,36
32	-0,4	0,16
33	0,6	0,36
		9,2

soma dos desvios

Xi	$x_i - \overline{x}$	$(\mathbf{x}_{i} - \overline{\mathbf{x}})^{2}$
34	1,6	2,56
30	-2,4	5,76
33	0,6	0,36
32	-0,4	0,16
33	0,6	0,36
		9,2

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1} = \frac{9.2}{4} = 2.3 \text{ cm}^{2}$$

soma dos desvios

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}} = \sqrt{\frac{9,2}{4}} = \sqrt{2,3} = 1,52 \text{ cm}$$

EQUAÇÕES

Medidas de Tendência Central

$$\rightarrow \underline{\text{M\'edia}}: \quad \overline{\mathbf{x}} = \frac{\sum_{i=1}^{n} \mathbf{x}_{i}}{n} = \frac{\mathbf{x}_{1} + \mathbf{x}_{2} + \dots + \mathbf{x}_{n}}{n}$$

$$ightarrow \underline{\text{Mediana}}$$
: $\hat{\mathbf{x}} = \mathbf{x}_{\frac{\mathbf{n+1}}{2}}$ Se n é impar

$$\hat{\mathbf{x}} = \frac{\mathbf{x}_{\frac{\mathbf{n}}{2}} + \mathbf{x}_{\frac{\mathbf{n}}{2}+1}}{2}$$
 Se n é par

→ <u>Moda</u>: Número que mais aparece no rol

 \rightarrow Amplitude Total: AT = Maior Valor – Menor Valor

$$\Rightarrow \underline{\text{Desvio Padrão}}: \quad s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

FIM