IN THE CLAIMS

 (Previously Presented) A method of forming quantum dots, the method comprising:

forming an In_xGa_{1-x}As strained layer on a buffer layer; and forming the In₍Ga)As quantum dots on the In_xGa_{1-x}As strained layer.

- 2. (Original) The method of forming quantum dots of claim 1, wherein the buffer layer is made of InAIAs, InAIGaAs, InP, InGaAsP or is a hetrojunction layer of at least two of these four materials.
- 3. (Original) The method of forming quantum dots of claim 1, wherein in the In Ga_{1-x}As strained layer, "x" is 0.05 ~ 0.45.
- 4. (Original) The method of forming quantum dots of claim 1, wherein the thickness of the In_xGa_{1.x}As strained layer is in a range of 0.5 nm ~ 10 nm.
- 5. (Original) The method of forming quantum dots of claim 1, wherein In(Ga)As quantum dots are formed by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxial (MBE), or chemical beam epitaxial (CBE).
- 6. (Previously Presented) The method of forming quantum dots of claim 1, wherein the thickness of the In(Ga)As quantum dots is 3 ~ 10 monolayers.
- 7. (Previously Presented) The method of forming quantum dots of claim 1, wherein the $In_xGa_{1-x}As$ strained layer and the In(Ga)As quantum dots can be stacked 1 to 30 sets on top of one another.

002013.P139 2 10/734,543

8. (Previously Presented) A method of forming quantum dots, the method comprising:

forming a lattice-matched buffer layer on an InP substrate; forming an In, Ga1. As strained layer on the lattice-matched buffer layer; and forming the In(Ga)As quantum dots on the In, Ga, As strained layer; wherein the In_xGa_{1-x}As strained layer changes the surface structure of the latticematched buffer layer and alters a strain energy that is necessary to grow the In(Ga)As quantum dots.

- 9. (Previously Presented) The method of forming quantum dots of claim 8, wherein the buffer layer is made of InAlAs, InAlGaAs, InP, InGaAsP or is a hetrojunction layer of at least two of these four materials.
- 10. The method of forming quantum dots of claim (Previously Presented) 8, wherein in the $In_xGa_{1-x}As$ strained layer, x is 0.05 0.45.
- 11. (Previously Presented) The method of forming quantum dots of claim 8, wherein the thickness of the In_xGa_{1.x}As strained layer is in a range of 0.5 nm⁻10nm.

002013.P139 3 10/734,543