Lecture 10.1: Analytic geometry in 3D

Let (x, y, z) be Cartesian coordinates:

- P = (x, y, z) and Q = (x, y, 0) is a projection of P on the xy-plane; O = (0, 0, 0) is the origin
- ullet distance between O and Q

$$OQ = \sqrt{x^2 + y^2} \equiv s$$

 \bullet distance between O and P

$$r = \sqrt{s^2 + z^2} = \sqrt{x^2 + y^2 + z^2}$$

Distance between two points:

$$P_1 = (x_1, y_1, z_1), \qquad P_2 = (x_2, y_2, z_2)$$

 \Longrightarrow

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Properties:

• if
$$d(P_1, P_2) = 0 \Longrightarrow P_1 = P_2$$

- $d(P_1, P_2) = d(P_2, P_1)$
- $d(P_1, P_2) \le d(P_1, P_3) + d(P_3, P_2)$
- ⇒ Definition of the distance determines the geometry of the space
 - ⇒ Distance defined as above determines the Euclidean geometry

Example 1: coordinate planes in 3D Euclidean geometry

Example 2: other surfaces in 3D Euclidean geometry:

• y=2 — the plane \perp y-axis, intersecting it y=2 (the red dot)

This plane is parallel to xz-plane (y = 0)

• x + y + z = 1:

Axis intercept (red dots):

- $y = z = 0 \implies x = 1$
- $x = y = 0 \implies z = 1$

Note: planes indefinitely extend in all directions

Example 3: Consider the equation

$$x^2 + y^2 = 9$$

- In 2D (Euclidean geometry) \implies a circle of radius 3 centered at 0
- In 3D (Euclidean geometry) \Longrightarrow a cylinder of radius 3, with the axis being z-axis

Example 4: Consider the equation

$$z = x^2$$

- In 2D (Euclidean geometry) on xz-plane \Longrightarrow a parabola
- In 3D (Euclidean geometry) \Longrightarrow parabolic cylinder

Example 5: Consider the equation

$$x^2 + y^2 + z^2 = 9$$

• In 3D (Euclidean geometry) \implies sphere of radius 3, centered at the origin

Example 6: Consider the equation

$$(x-1)^2 + (y-2)^2 + (z-3)^2 = 0$$

ullet sphere of radius 0, centered at $(1,2,3)\Longrightarrow$ equivalently a single point

$$P = (1, 2, 3)$$

Example 7: Consider the equation

$$y^2 + (z - 1)^2 = 4$$

• In 2D (Euclidean geometry) on yz-plane \Longrightarrow a circle of radius 2 centered at (0,1)

• In 3D (Euclidean geometry) \Longrightarrow a cylinder with axis parallel to x-axis, passing through the point (0,0,1):

Regions in 3D space can be specified:

- by inequalities
- by systems of equations

"Inequality" example: Consider a region defined as

$$x^2 + y^2 \ge 4$$

- In 2D (Euclidean geometry) on xy-plane \implies this is set of all points including and outside the circle of radius 2 centered at the origin
- In 3D (Euclidean geometry) \Longrightarrow points outside, and including the surface, of the cylinder $x^2 + y^2 = 4$

"System of equations" example: Consider a region defined as

$$\begin{cases} x^2 + y^2 = 1\\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- The first equation defines a cylinder $x^2 + y^2 = 1$
- The second equation defined a sphere of radius 2, centered at the origin
- ullet The system \Longrightarrow the intersection of the cylinder and the sphere:

these are the two red circles, parallel to xy-plane, each centered about the z-axis and is of radius 1. The planes of the circles intersect the z-axis at

$$eq.2 - eq.1 \implies z^2 = 3 \implies z = \pm\sqrt{3}$$