Macchina di Turing

Può esser pensato come un **automa a stati finiti** con memoria **illimatata e senza restrizioni**. Usa un nastro come memoria(**tape**).

Ha inoltre una testina che può leggere, scrivere simboli e spostarsi sul nastro.

All'inizio il nastro(o registro) contiene soltanto la stringa di **input**.

Può poi scriverci sopra se ha bisogna di salvare informazioni. La macchina continua a compuare finchè non entra in uno state di *accept* o *reject*.

Se non entra in nessuno dei due stati, continuerà all'infinito senza mai fermarsi(in questo caso si dice che divergerà)

Definizione formale

E' una 7-upla, $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, dove Q, Σ e Γ sono insiemi finiti.

- 1. Q è l'insieme degli stati della macchina
- 2. Σ è l'alfabeto di input(non comprende il simbolo di blank \Box)
- 3. Γ è l'alfabeto del nastro dove $\underline{\ \ }\in\Gamma$ e $\Sigma\subseteq\Gamma$
- 4. $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ è la funzione di transizione.

La funzione di transizione δ è la parte più importante in una macchina di Turing.

Leggendo un input quando si è in un determinato stato ($Q \times \Gamma$), transito in un altro stato cambiando il simbolo sul registro($Q \times \Gamma$)e poi spostandomi o a sinistra o a destra ($\{L,R\}$)

- 5. q_0 è lo stato iniziale
- 6. q_{accept} è lo stato di accettazione
- 7. q_{reject} è lo stato di rifiuto

Testing del linguaggio di stringhe uguali

Introduciamo un M.T. **M** che testi se una data stringa appartiene al linguaggio $L = \{w \# w | w \in \{0,1\}*\}$ (stringhe uguali separate da #).

 \mathbf{M} accetta la stringa se appartiene a L, altrimenti la rifiuta.

Per fare ciò, M:

- 1. Controlla il primo simbolo e lo crocetta con una "x"
- 2. Scorre tutta la stringa finchè non incontra il #
- 3. Scorre finchè non ci sono più "x"(all'inizio non ci saranno)
- 4. Se i due simboli, a sinistra e a destra di #, sono uguali, ripete il procedimento, altrimenti entra in uno **stato di rifiuto**
- 5. Quando incontra un _, entra in uno stato di **accettazione**
 - Entra in questo stato solo quando ha finito di leggere tutte e due le stringhe.

Configurazioni e accettazioni di input

Durante la computazione di una M.T., avvengono dei cambiamenti nello stato corrente, nel contenuto del nastro e nella posizione della testina.

L'insieme di questri tre cambiamenti viene chiamata **configurazione** della M.T.

Dato uno stato q e due stringhe u e v, la configurazione uqv rappresenta la situazione dove lo stato della M.T. è q, il contenuto del nastro è uv e la posizione della testina è sul primo simbolo di v.

Una M.T. con configurazione $1011q_701111$

Una configurazione C_1 si dice che produce(**yields**) una configurazione C_2 se la M.T. può passare **legalmente** dalla configurazione C_1 alla configurazione C_2 .

Dunque una M.T. **M** accetta un input w se esiste una sequenza di configurazioni C_1, \ldots, C_k dove:

- 1. C_1 è la configurazione iniziale
- 2. Ogni C_i produce una C_{i+1}
- 3. C_k è una configurazione con un stato di accettazione.