Предел функции и непрерывность

Число A является npedenom функции f g mouke x_0 , если $\forall \varepsilon > 0 \ \exists \delta \in \mathbb{R} : \forall x \in (x_0 - \delta; x_0 + \delta) \cap D(f) \setminus \{x_0\} : |f(x) - A| \leqslant \varepsilon.$

- 1. Вычислите следующие пределы:
 - (a) $\lim_{x \to 2} \frac{3x^2 5}{2x + 1}$; (b) $\lim_{x \to \frac{1}{2}} \frac{4x^2 1}{2x 1}$; (c) $\lim_{x \to 1} \frac{\sqrt[3]{8x} 2x}{x^2 1}$; (d) $\lim_{x \to 0} \frac{\sin x}{x}$.
- 2. Дайте определение $\lim_{x \to \infty} f(x) = A$ и вычислите пределы
 - (a) $\lim_{x \to \infty} \frac{x^2}{x^2 + 1}$; (b) $\lim_{x \to -\infty} \sqrt{5 2x}$; (c) $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$.
- 3. Докажите, что $\lim_{x\to x_0}f(x)=A$ равносильно тому, что для любой последовательности $(x_n)\to x_0$, все элементы которой отличны от x_0 , верно $\lim_{n\to\infty}f(x_n)=A$.

Функция непрерывна в точке x_0 , если $\lim_{x\to x_0} f(x) = f(x_0)$. Функция, непрерывная в каждой точке области $D \subset \mathbb{R}$, называется непрерывной на D, а функция непрерывная на всей области определения называется просто непрерывной.

- 4. Докажите, что дробно-рациональная функция непрерывна во всех точках, не являющихся корнями знаменателя.
- 5. Функция f непрерывна в точке x_0 , а функция g непрерывна в точке $f(x_0)$. Докажите, что их композиция $g \circ f$ непрерывна в точке x_0 .
- 6. Функция f непрерывна на отрезке. Докажите, что на нём
 - (a) f ограничена;
 - (b) f принимает наибольшее и наименьшее значения;
 - (c) f принимает все значения между наибольшим и наименьшим;
 - (d) f равномерно непрерывна, т.е. $\forall \varepsilon > 0 \; \exists \delta > 0 :$ $x_1, x_2 \in [a,b] \; \& \; |x_1-x_2| < \delta \Rightarrow |f(x_1)-f(x_2)| < \varepsilon.$
- 7. Функция $f \colon [0,1] \to [0,1]$ непрерывна. Докажите, что у неё есть неподвижная точка.

Предел функции и непрерывность

- 8. Докажите, что непрерывная инъективная функция является монотонной.
- 9. Докажите, что степенная функция x^n непрерывна $(0, +\infty)$ при всех $n \in \mathbb{Q}$.
- 10. Докажите непрерывность функций $\sin x$, $\cos x$, $\operatorname{tg} x$, $\operatorname{ctg} x$, $\operatorname{arccos} x$, $\operatorname{arccin} x$, $\operatorname{arctg} x$ и $\operatorname{arcctg} x$ во всех точках, где они определены.
- 11. Вычислите пределы
 - (a) $\lim_{x \to 0} \frac{1 \cos 4x}{x \sin 3x}$; (b) $\lim_{x \to \pi} \frac{x \pi}{\operatorname{tg} 2x}$; (c) $\lim_{x \to 0} \frac{1 \cos x}{x^2}$.
- 12. Найдите мощность множества всех непрерывных на отрезке [0;1] функций.
- 13. Существует ли функция $f \colon [0;1] \to [0;1]$, которая
 - (a) разрывна во всех точках отрезка [0;1];
 - (b) непрерывна во всех иррациональных точках и разрывна во всех рациональных точках этого отрезка;
 - (*) разрывна во всех иррациональных точках и непрерывна во всех рациональных точках этого отрезка?