Esame scritto ALAN 10-02-2022, prima parte.

1) Siano
$$\lambda \in \mathbb{R}$$
 e $A = \begin{pmatrix} 1 & 2 & 3 & \lambda \\ \lambda & 4 & 6 & 0 \\ 0 & 5 - \lambda & 9 & -1 \end{pmatrix} \in M_{3,4}(\mathbb{R})$

- a) stabillre il numero di soluzioni del sistema omogeneo associato AX = 0 al variare di $\lambda \in \mathbb{R}$.
- b) al variare di $\lambda \in \mathbb{R}$ dire se esiste, ed eventualmente determinarne uno, un vettore dei termini noti $B \in \mathbb{R}^3$ tale che il sistema AX = B non abbia soluzioni.

2) Sia A la matrice
$$\begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ 3 & -2 & 1 \end{pmatrix} \in M_3(\mathbb{R}).$$

- a) stabilire se A è invertibile e, in caso affermativo, determinarne l'inversa verificando il risultato.
 - b) stabilire se esiste un vettore $X \in \mathbb{R}^3$ di lunghezza 2 tale che $AX = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.
- 3) Dire, motivando la risposta, se le seguenti affermazioni sono vere o false:
 - a) Se una matrice invertibile $A \in M_n(\mathbb{R})$ è tale che $A^2 = A$, allora detA = 1.
 - b) Esistono 5 vettori di \mathbb{R}^4 che formano una base di \mathbb{R}^4 .
- c) Una matrice $A = (a_{ij}) \in M_4(\mathbb{R})$ tale che $a_{ij} = 0 \ \forall i \geq j$ è nilpotente (cioè esiste un intero positivo n tale che $A^n = 0$).

4) Dati i vettori
$$v_1 = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} \in \mathbb{R}^3$$
:
a) stabilire se $\begin{pmatrix} -\frac{\pi}{2} \\ 3\pi \\ \frac{7\pi}{2} \end{pmatrix}$ appartiene a $\langle v_1, v_3 \rangle$.

- b) trovare un vettore $v \in \mathbb{R}^3$ ortogonale sia a v_1 che a v_2 . I vettori v_1, v_2, v formano una base di \mathbb{R}^3 ? Se si, si tratta di una base ortogonale?