Chapter 1

Week1

1.1. Tuesday

1.1.1. Difference between ODE and SDE

We first discuss the difference between deterministic differential equations and stochastic ones by considering several real-life problems.

Problem 1: Population Growth Model. Consider the first-order ODE

$$\begin{cases} \frac{dN(t)}{dt} = a(t)N(t) \\ N(0) = N_0 \end{cases}$$

where N(t) denotes the **size** of the population at time t; a(t) is the given (deterministic) function describing the **rate** of growth of population at time t; and N_0 is a given constant.

If a(t) is not completely known, e.g.,

$$a(t) = r(t) \cdot \text{noise}$$
, or $r(t) + \text{noise}$,

with r(t) being a deterministic function of t, and the "noise" term models something random. The question arises: How to *rigorously* describe the "noise" term and solve it?

Problem 2: Electric Circuit. Let Q(t) denote the charge at time t in an electrical circuit, which admits the following ODE:

$$\begin{cases} LQ''(t) + RQ'(t) + \frac{1}{C}Q(t) = F(t), \\ Q(0) = Q_0, \quad Q'(0) = Q'_0 \end{cases}$$

where L denotes the inductance, R denotes the resistance, C denotes the capacity, and F(t) denotes the potential source.

Now consider the scenario where F(t) is not completely known, e.g.,

$$F(t) = G(t) + \text{noise}$$

where G(t) is deterministic. The question is how to solve the problem.

The differential equations above involving non-deterministic coefficients are called the **stochastic differential equations** (SDEs). Clearly, the solution to an SDE should involve the randomness.

1.1.2. Applications of SDE

Now we discuss some applications of SDE shown in the finance area.

Problem 3: Optimal Stopping Problem. Suppose someone holds an asset (e.g., stock, house). He plans to sell it at some future time. Denote X(t) as the price of the asset at time t, satisfying the following dynamics:

$$\frac{\mathrm{d}X(t)}{\mathrm{d}t} = rX(t) + \alpha X(t) \cdot \text{noise}$$

where r, α are given constants. The goal of this person is to maximize the expected selling price:

$$\sup_{\tau>0} \ \mathbb{E}[X(\tau)]$$

where the optimal solution τ^* is the optimal stopping time.

Problem 4: Portfolio Selection Problem. Suppose a person is interested in two types of assets:

• A risk-free asset which generates a deterministic return ρ , whose price $X_1(t)$ follows a deterministic dynamics

$$\frac{\mathrm{d}X_1(t)}{\mathrm{d}t} = \rho X_1(t),$$

• A risky asset whose price $X_2(t)$ satisfies the following SDE:

$$\frac{\mathrm{d}X_2(t)}{\mathrm{d}t} = \mu X_2(t) + \sigma X_2(t) \cdot \text{noise}$$

where $\mu, \sigma > 0$ are given constants.

The policy of the investment is as follows. The wealth at time t is denoted as v(t). This person decides to invest the fraction u(t) of his wealth into the risky asset, with the remaining 1-u(t) part to be invested into the safe asset. Suppose that the utility function for this person is $U(\cdot)$, and his goal is to maximize the expected total wealth at the terminal time T:

$$\max_{u(t), 0 \le t \le T} \mathbb{E}[U(v^u(T))]$$

where the decision variable is the portfolio function u(t) along whole horizon [0,T].

Problem 5: Option Pricing Problem. The financial derivates are products in the market whose value depends on the underlying asset. The European call option is a typical financial derivative. Suppose that the underlying asset is stock A, whose price at time t is X(t). Then the call option gives the option holder the right (not the obligation) to buy one unit of stock A at a specified price (strike price) K at maturity date T. The task is to inference the fair price of the option at the current time. The formula for the price of the option is the following:

$$c_0 = \mathbb{E}[(X(T) - K)^+]$$

which is the famous Black-Sholes-Merton Formula.

1.1.3. Reviewing for Probability Space

Firstly, we review some basic concepts in real analysis.

Definition 1.1 [σ -Algebra] A set \mathcal{F} containing subsets of Ω is called a σ -algebra if:

- 1. $\Omega \in \mathcal{F}$;
- 2. \mathcal{F} is closed under complement, i.e., $A \in \mathcal{F}$ implies $\Omega \setminus A \in \mathcal{F}$;
- 3. \mathcal{F} is closed under countably union operation, i.e., $A_i \in \mathcal{F}, i \geq 1$ implies $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Definition 1.2 [Probability Measure] A function $\mathbb{P}: \mathcal{F} \to \mathbb{R}$ is called a **probability** measure on (Ω, \mathcal{F}) if

- $\mathbb{P}(\Omega) = 1$;
- $\mathbb{P}(A) \ge 0, \forall A \in \mathcal{F};$
- $\mathbb P$ is σ -additive, i.e., when $A_i \in \mathcal F, i \geq 1$ and $A_i \cap A_j = \emptyset, \forall i \neq j$,

$$\mathbb{P}\bigg(\bigcup_{i=1}^{\infty} A_i\bigg) = \sum_{i=1}^{\infty} \mathbb{P}(A_i).$$

where $\mathbb{P}(A)$ is called the **probability of the event** A.

Definition 1.3 [Probability Space] A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$ defined as follows:

- 1. Ω denotes the sample space, and a point $\omega \in \Omega$ is called a sample point;
- 2. \mathcal{F} is a σ -algebra of Ω , which is a collection of subsets in Ω . The element $A \in \mathcal{F}$ is called an "event"; and
- 3. \mathbb{P} is a probability measure defined in the space (Ω, \mathcal{F}) .

4

[Almost Surely True] A statement S is said to be almost surely (a.s.) true or true with probability 1, if

- $\mathfrak{B}:=\{w:S(w) \text{ is true}\}\in\mathcal{F}$ $\mathbb{P}(F)=1.$

Definition 1.5 [Topological Space] A **topological space** (X, \mathcal{T}) consists of a (non-empty) set X, and a family of subsets of X ("open sets" $\mathcal T$) such that

- 1. \emptyset , $X \in \mathcal{T}$ 2. $U, V \in \mathcal{T}$ implies $U \cap V \in \mathcal{T}$ 3. If $U_{\alpha} \in \mathcal{T}$ for all $\alpha \in \mathcal{A}$, then $\bigcup_{\alpha \in \mathcal{A}} U_{\alpha} \in \mathcal{T}$.

When $A \in \mathcal{T}$, A is called the open subset of X. The \mathcal{T} is called a **topology** on X.

[Borel σ -Algebra] Consider a topological space Ω , with \mathcal{U} being the topology of Ω . The Borel σ -Algebra $\mathcal{B}(\Omega)$ on Ω is defined to be the minimal σ -algebra containing \mathcal{U} :

$$\mathcal{B}(\Omega) \triangleq \sigma(\mathcal{U}).$$

Any element $B \in \mathcal{B}(\Omega)$ is called the **Borel set**.

Definition 1.7 [\mathcal{F} -Measurable / Random Variable]

1. A function $f:(\Omega,\mathcal{F}) \to (\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$ is called \mathcal{F} -measurable if

$$f^{-1}(\mathbf{B}) = \{ w \mid f(w) \in \mathcal{B} \} \in \mathcal{F},$$

for any $\mathbf{B} \in \mathcal{B}(\mathbb{R}^n)$.

2. A random variable X is a function $X:(\Omega,\mathcal{F})\to (\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$ and is \mathcal{F} -measurable.

5

Definition 1.8 [Generated σ -Algebra] Suppose X is a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$. Then the σ -algebra generated by X, say \mathcal{H}_X is defined to be the **minimal** σ -**algebra** on Ω to make X measurable.

Proposition 1.1 $\mathcal{H}_X = \{X^{-1}(\mathbf{B}): \mathbf{B} \in \mathcal{B}(\mathbb{R}^n)\}.$

Proof. Since X is \mathcal{H}_X -measurable, for any $\mathbf{B} \in \mathcal{B}(\mathbb{R}^n)$, $X^{-1}(\mathbf{B}) \in \mathcal{H}_X$. Thus $\mathcal{H}_X \supseteq \{X^{-1}(\mathbf{B}) : \mathbf{B} \in \mathcal{B}(\mathbb{R}^n)\}$. It suffices to show that $\{X^{-1}(\mathbf{B}) : \mathbf{B} \in \mathcal{B}(\mathbb{R}^n)\}$ is a σ -algebra to finish the proof, which is true since $\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{U})$, with \mathcal{U} being the topology of X.

1.2. Thursday

Reviewing for Probability Space.

- $(\Omega, \mathcal{F}, \mathbb{P})$;
- Random variable;
- Generated σ -algebra;

1.2.1. More on Probability Theory

Definition 1.9 [Distribution] A probability measure μ_X on \mathbb{R}^n induced by the random variabe X is defined as

$$\mu_X(\mathbf{B}) = \mathbb{P}(X^{-1}(\mathbf{B})),$$

where $\mathbf{\textit{B}} \in \mathcal{B}(\mathbb{R}^n)$. The μ_X is called the distribution of X.

Definition 1.10 [Expectation] The expectation of X is given by

$$\mathbb{E}[X] = \int_{\Omega} X(\omega) \, \mathrm{d}\mathbb{P}(\omega)$$

When $\Omega=\mathbb{R}^n$, the expectation can be written in terms of distribution function:

$$\mathbb{E}[X] = \int_{\mathbb{R}^n} y \, \mathrm{d}\mu_X(y)$$

Note that the expectation of the random variable *X* is well-defined when *X* is integrable:

Definition 1.11 [Integrable] The random variable X is integrable, if

$$\int_{\Omega} |X(w)| \, \mathrm{d} \mathbb{P}(w) < \infty.$$

In other words, X is said to be \mathcal{L}^1 -integrable, denoted as $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$.

■ Example 1.1 If $f: \mathbb{R}^n \to \mathbb{R}$ is Borel measurable, and $\int_{\Omega} |f(X(\omega))| \, d\mathbb{P}(\omega) < \infty$, then

$$\mathbb{E}[f(x)] = \int_{\Omega} f(X(\omega)) \, d\mathbb{P}(\omega) = \int_{\mathbb{R}^n} f(y) \, d\mu_X(y).$$

Definition 1.12 [L^p space] Suppose $X: \Omega \to \mathbb{R}$ is a random variable and $p \ge 1$.

ullet Define L^p -norm of X as

$$||X||_p = \left(\int_{\Omega} |X(\omega)|^p d\mathbb{P}\right)^{1/p}$$

If $p = \infty$, define

$$||X||_{\infty} = \inf\{N \in \mathbb{R} \mid |X(w)| \le N, \text{ a.s.}\}$$

ullet A random variable X is said to be in the L^p space (p-th integrable) if

$$\int_{\Omega} |X(\omega)|^p d\mathbb{P}(\omega) < \infty,$$

denoted as $X \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$.

Proposition 1.2 If $p \ge q$, then $||X||_p \ge ||X||_q$. Thus $\mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P}) \subseteq \mathcal{L}^q(\Omega, \mathcal{F}, \mathbb{P})$.

Proof. The inequality is shown by using Holder's inequality:

$$\|X\|_q^q = \int_{\Omega} |X|^q d\mathbb{P} \le \left(\int_{\Omega} (|X|^q)^{p/q} d\mathbb{P}\right)^{q/p} = \left(\int_{\Omega} |X|^p d\mathbb{P}\right)^{\frac{1}{p} \cdot q} = \|X\|_p^q.$$

Then we discuss how to define independence between two random variables, by the following three steps:

Definition 1.13 [Independence]

- 1. Two events $A_1,A_2\in\mathcal{F}$ are said to be **independent** if $\mathbb{P}(A_1\cap A_2)=\mathbb{P}(A_1)\mathbb{P}(A_2)$.
- 2. Two σ -algebras $\mathcal{F}_1, \mathcal{F}_2$ are said to be **independent** if F_1, F_2 are independent events for $\forall F_1 \in \mathcal{F}_1, F_2 \in \mathcal{F}_2$
- 3. Two random variables X, Y are said to be **independent** if $\mathcal{H}_X, \mathcal{H}_Y$, the σ -algebra generated by X and Y, respectively, are independent.

The independence defined above can be generalized from two events into finite number of events.

Proposition 1.3 If X and Y are two independent random variables, and $\mathbb{E}[|X|] < \infty$, $\mathbb{E}[|Y|] < \infty$, then

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] < \infty.$$

Proof. The first step is to simplify the probability distribution for the product random variable (X,Y), i.e., $\mu_{X,Y}$.

R From now on, we also write the event $\{X^{-1}(\mathbf{B})\}$ as $\{X \in \mathbf{B}\}$ for $\mathbf{B} \in \mathcal{B}(\mathbb{R}^n)$.

By the definition of independence, we have the following:

$$\mu_{X,Y}(A_1 \times A_2) \triangleq \mathbb{P}(\{(X,Y) \in (A_1 \times A_2)\}) = \mathbb{P}(\{X \in A_1, Y \in A_2\})$$
$$= \mathbb{P}(\{X \in A_1\})\mathbb{P}(\{Y \in A_2\}) = \mu_X(A_1)\mu_Y(A_2).$$

Now we begin to simplify the expectation of product:

$$\mathbb{E}[XY] = \int xy \, \mathrm{d}\mu_{X,Y}(x,y) = \iint xy \, \mathrm{d}\mu_X(x)\mu_Y(y)$$
$$= \int y \left[\int x \, \mathrm{d}\mu_X(x) \right] \mu_Y(y) = \int \mathbb{E}[X]y \mu_Y(y) = \mathbb{E}[X]\mathbb{E}[Y].$$

1.2.2. Stochastic Process

Consider a set T of time index, e.g., a non-negative integer set or a time interval $[0,\infty)$. We will discuss a discrete/continuous time stochastic process.

Definition 1.14 [Stochastic Process] A collection of random variables $\{X_t\}_{t\in T}$, defined on $(\Omega, \mathcal{F}, \mathbb{P})$ and taking values in \mathbb{R}^n , is called a **stochastic process**.

A stochastic process $\{X_t\}_{t\in T}$ can also be viewed as a random function, since it is a mapping $\Omega \times T \to \mathbb{R}^n$. Sometimes we omit the subscript to denote a stochastic process $\{X_t\}$.

Definition 1.15 [Sample Path] Fixing $\omega \in \Omega$, then $\{X_t(\omega)\}_{t \in T}$ (denoted as $X_t(\omega)$) is called a sample path, or trajectory.

Definition 1.16 [Continuous] A stochastic process $\{X_t\}$ is said to be **continuous** (right-cot, left-cot, resp.) a.s., if $t \to X_t(\omega)$ is **continuous** (right-cot, left-cot, resp.) a.s., i.e.,

$$\mathbb{P}igg(\{\omega:t o X_t(\omega) \text{ is continuous (right-cot, left-cot, resp.)}\}igg)=1.$$

■ Example 1.2 [Poisson Process] Consider $(\xi_j, j=1,2,...)$ a sequence of i.i.d. random variables with Possion distribution with intensity $\lambda>0$. Let $T_0=0$, and $T_n=\sum_{j=1}^n \xi_j$. Define $X_t=n$ if $T_n\leq t< T_{n+1}$. Verify that $\{X_t\}$ is a stochastic process with right-continuity and left-limit exists. Instead of giving a mathematical proof, we provide a numerical simulation of $\{X_t\}$ plotted in Figure. 1.1. a

https://github.com/WalterBabyRudin/CourseWare/tree/master/MAT4500/week1

^aThe corresponding matlab code can be found in

Figure 1.1: One simulation of $\{X_t\}$ with intensity $\lambda=1.2$ and 500 samples