UNCLASSIFIED

AD 402 595

Reproduced by the

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

UNEDITED ROUGH DRAFT TRANSLATION

OXIDATION OF URANIUM DIOXIDE

BY: V. G. Vlasov and A. F. Bessonov

English Pages: 14

SOURCE: Russian Periodical, Izvestiya Vysshikh Uchebnykh Zavedeniy, Tsvetnaya Metallurgiya, Nr. 5, 1962, pp 113-122

S/149-62-0-5

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DIVISION.

PREPARED BY:

TRANSLATION DIVISION
FOREIGN TECHNOLOGY DIVISION
WP-AFB, OHIO.

Oxidation of Uranium Dioxide

ру

V. G. Vlasov and A. F. Bessonov

Uranium dioxide plays an important role in the technology of obtaining metallic uranium, and is also used in relector nuclear fuel [1-3]. In reactors it functions in oxidizing-reducing conditions, and that is why the study of the oxidation process of uranium dioxide is of greater practicel importance. On the other hand the reactions of UO₂ oxidation represent extremely interesting examples for studying the kinetics and mechanism of processes in solid state.

The existing viewpoints with respect to the mechanism of uranium dioxide oxidation at a temperature of over 80° and the phase conversions taking place thereat can be approximately divided into four groups:

Perio and co-workers and a number of other investigators [4-7] assure, that in the process of exidation is rapidly formed a new phase, through which diffusion of metal cations does take place, diffusion of cations travelling to the surface. The phase conversion scheme assumed by them has the form of $UO_2 \rightarrow U_4O_9 \rightarrow U_3O_7 \rightarrow U_3O_8$;

Anderson and cowerkers [8-10] assume the following scheme of phase conversions $\alpha UO_2 \rightarrow \alpha UO_{2+x} \rightarrow \beta UO_2 \rightarrow U_3O_7$; Aronson, Roof and Belle[11] evaluating the mechanism of dioxide oxidation assume the scheme $\alpha UO_2 \rightarrow \alpha UO_{2+x} \rightarrow U_3O_7 \rightarrow U_3O_3$; Blackburn and coworkers [12] assume that during the oxidation of uranium dioxide on the surface

is immediately formed a tetragonal phase U_3O_7 . The process is limited by congen diffusion through that phase. They give the following scheme of phase conversions $aUO_2 \longrightarrow U_3O_7 \longrightarrow U_3O_8$.

In this way there is no harmony in the views pertaining to the mechanism of the

oxidation of uranium dioxide and the scheme of phase conversions. In this connection it is necessary to further accumulate experimental data.

It is known [13-15] that, as a rule, the addition of alkali metal carbonates accelerrates the processes of reducing with hydrogen, carbon monoxide and solid carbon.

Informations on the effect of carbonates and foreign oxides on the rate of oxidation of lower oxide into higher, have not been discovered in literature. The knowledge of the mechanism of effect of small additions is of absolute practical and theoretical importance.

In this report are given results of kinetic exidation of uranium diexide in various gaseous media. Simultaneously was investigated the effect of admixtures of alkali metal carbonates and ThO₂. ZrO₂ and TiO₂ exides on the kinetic:

characteristics of UO₂ exidation process.

The properties of powderous uranium dioxide depend to a large extent upon the methods of its obtainment [2,16]. In our experiment was investigated inactive uranium dioxide, stable to air at room temperature. It was prepared by reducing uranoso-uranic oxide with hydrogen (at a pressure of 800 mm Hg) at 600° for a period of ten hours.

After storing in open air at room temperature the composition of the dioxide was $UO_{2,000}$. Accuracy of determining 0:U ratio was 0.01.

The investigation cas made in a high vacuum installation (fig.1) having an arrangement for continuous control of change in weight of the batch. The installation allowed to create in the reaction space in any sequence a vacuum. oxidizing and reducing medium.

Additions of bicarbonates or oxides of foreign metals in the amount of 6% of uranium dioxide weight were pulverized in an agate mortar and thoroughly mixed with UO₂. The crucible with uranium dioxide batch (\approx 300 mg, specific surface of powder 2,7 m²/g) or a mixture of same with the addition was placed in the reaction tube and from the system was vacated the air at room temperature to 10⁻⁴ mm Hg. The batch was then dries at 120° until the change in weight was stopped and a residual pressure

of the order of 10-4 mm was attained.

uring volumes of system; 13-diffusion pump TSVL-100; 14-Forevacuum rotational pump RVN-20; 15-monoratric 6,7-movable thermocouples to measure temperature of oven and sample; 8-millivoltmetor; 9-electron automatic potentionster EPD-17; 10-circulation pump; ll-current circuit breaker; 12-flask for meas Fig.1. Principal scheme of experimental high vacuum installation: 1-hoisting tubular electric oven; 2-quartz reaction tube; 3- quartz crucible with batch; 4-spring indicator; 5-weight indicator and mica-; 16-vacuummeter; 17- U-shaped pressure control tube; 18-pressure regulator; 19-lab autotransformer; 20-gas consumption flask; 21-mercure pressure gage; 22- trap (for freezing out with liquid nitrogen); 23- three-speed vacuum soreen; 24-two-speed vacuum screen; 25-capacity of pressure regulator; 26-reading microscope. tubes LT-2 and IM-Boreen ;

After this the oven was taken out from the reaction tube, heated to given temperature and again moved into the tube. Temperature was controlled with an accuracy of ± 2°.

When in the reaction space was established a given temperature, into the oven was supplied the gas-excidizer at a certain definite pressure and the reading of weight indication time began. Pressure in the reaction space was kept constant with an accuracy of ± 0.5 mm Hg. The actual rate of the process was determined graphically by the tangent of the angle of inclination of the tangent and dependence curve of the degree of excidation upon time. The apparent energy of activation was calculated by the Arrhenius equation. X-ray structural analysis of intermediate and finite products of excidation was made by the Dabye-Sherer method.

The effect of temperature on the kinetics of uranium dioxide oxidation with air (p=200 mm Hg) with oxidizer-gas circulation in the reaction space, was investigated in the range of from 165 to 800°. At 165-260° uranium dioxide oxidized into UO_{2,36±0.05} and at 270-800° into UO_{2,67} (U₃0₈). Temperatures of 260 and 800° are characteristic by the fact that after the attainment of indicated degrees of oxidation further oxidation has not taken place, in spite of the fact that the experiment continued for another 10 hrs. The results of investigations are shown in fig.2. In the range of from 165 to 200° the initial period of oxidation is quite well described by equation

$$\Delta g = k_1 \tau$$
,

where Ag - gain in weight of batch; 7 time from beginning of experiment; kn-constant.

Starting with a certain moment of time 7 the process is subjected to parabolic time law

$$\Delta g = \Delta g_0 + k_2 \sqrt{\tau}, \quad 2$$

where Δg_0 - gain in weight of batch to the moment of time γ_0 ; k_2 -constant.

At 270-390° on the curves in the coordinates the degree of exidation-time exist horizontal sections at 0:0 = 2,36 ± 0.05. On the rate/degree of exidation dependence curves are observed several minimums: the first one at 50%, second -38%; third - 97%. Finally, approximately at 37% of exidation the curves have weak by pronounced

inflections.

The dependence of the rate of the process upon air pressure was investigated at 340° (fig.3). In the interval of summary compositions of solid phases $00_{2.04}$ - $00_{2.36}$ at an air pressure of 2.5-100 mm Hg, is valid equation.

In this zone of solid phase compositions, at pressures of 100-600 mm Hg the rate of oxidation $v = a_2 \sqrt{p_0}$

At a more complete oxidation the rate/pressure dependence is observed only at values of the latter of less than 30 mm Hg.

See Attach page 5a for Figure 2

Fig. 2. Oxidation isotherms of uranium dioxide with oxygen(a trospheric) At constant air pressure of 200 mm Hg).

The values of apparent energy of activation at various degrees of exidation were:

Degree of Oxidation, % 28 37 52 54 74 88 90

Activation energy 34,6 27,8 43,8 27,8 34,6 45,6 39,4 kcal/mol

The experimentally found uranium dioxide density was found to be equal to 10.8 g/cm³, and of the lower and higher oxides, obtained as result of oxidation = 8.37 g/cm³. The volume of lower and higher oxide in the crucible was 1.3 times great-

FTD-TT-63-102/1+2

er than the volume of the initial dioxide.

The kinetics of UO₂ exidation with expenses investigated at a range of from 125 to 330° at p_{O2}=100 mm Hg.Results are given in fig.4. At 125-145° exidation coes into UO_{2+x}. where x < 0.25. In the range from 150° to 200° is observed a sudden exidation into UO_{2,60} exide after which the reaction is practically off. At 200-260° Figure is also a sudden occurrence of the time.

Fig. 3. Dependence of rate of oxidation of there is also a suiden occurrence of the granium dioxide upon the concentration of a thospheric oxygen at 340°. Numbers on curprocess with the formation of UO_{2,60} fur- ves designate percentage of oxidation.

ther oxidation takes place at very low rate. In the range from 260-300° the oxidation into UO_{2,67} is rapid (at 300° it is off within one minute). Oxidation of uranium

dioxide, preoxidized by 15-19%, is also sudden, but the value of the jump is somewhat

lower.

Fig.4. Dependence of the degree of uranium dioxide oxidation upon the duration of the experiment at various temperatures (Oxygen pressure 100 mm Hg).

The effect of alkali metal carbonate admixtures on the kinetic characteristics of uranium dioxide oxidation by air was investigated at 195-330°. The air pressure in all experiments was 400 mm Hg. Results are given in fig.5. At 185° the addition of K2CO3 reduces somewhat the rate of the process, the nature of the kinetic curve remains unchanged, just as without the addition-

At 330° additions of carbonates considerably accelerate oxidation after attaining

in solid phases a ratio of 0:U = 2,36 ± 0.05. Similtaneously there is a change in the nature of degree of oxidation/time dependence: the horizontal section disappears.

the section which occurs during exidation without addition. The accelerating effect of carbonate additions rise in the series K2CC3. Ma2CC3. Li2CC3.

In addition the following experiments were made. Fure uranium dioxide and dioxide with an admixture of potassium carbonate was first annealed in vacuo (10⁻⁴ nm Hg) at 900° for a period of two hours. Oxidation followed at 330°. In this case introduction of potassium carbonate slows down the process.

Investigated was also oxidation of uranium dioxide in presence of titanium.zirconium and thorium dioxide admixtures.

At first uranium dioxide with and without admixtures exidized at 330° (fig.6).

The rate of the process in presence of admixture rises considerably from the moment when further oxidation of the UO2.36± 0.05 phase begins; the accelerating effect rises

in the following sequence: ThO_2 , TrO_2 , TrO_2 . In the presence of ThO_2 , TrO_2 additions there is a snarp reduction in horizontal section of the degree of exidation curve. When TrO_2 is added this section disappears completely, and exidation is somewhat accelerated even at 0:U ratios in solid phases of less than 2,36 \pm 0.005.

Fig.5. Isotherms of uranium dioxide oxidation with atmospheric oxygen at 185° (1 and 2) and at 330° (3-6) without additions (2 & 3) with additions: K2CC3 (1 & 4); Na₂CO₃ (5); Li₂CO₃(6)...

In subsequent experiments with uranium dioxide with and without admixtures the sample was first calcined (annealed) in vacuo (10⁻¹⁴ nm Hg) at 900° for a period of two hours. Omidation was also carried out at 330°. In this case the addition of ThO₂

slows down the process of UO_2 omidation into $UO_{2,36\pm0.05}$ and accelerates further oxidation. Addition of TiO_2 reduces somewhat the rate of the process during transformations from $UO_{2,36\pm0.05}$ to $UO_{2,67}$.

Fig. 6. Isotherms of uranium dioxide oxidation with aumospheric oxygen at temperature of 330° without admixture (1), with admixtures: ThO₂ (2); ZrO₂(3); TiO₂(4).

Data of kinetic investigations, supplemented with results of x-ray structural analysis, allow to suggest the following scheme of phase conversions for the range of 260-390°:

$$UO_{2.04} \rightarrow UO_{2+x_{max}} \rightarrow UO_{2.25} \rightarrow UO_{2.36\pm0.05} \rightarrow UO_{2.6-a_{max}} \rightarrow UO_{2.67}$$

which is found to be in perfect agreement with the sequency principle of chemical conversions as stated by A.A.Baykov [17].

In the first stage of exidation the enrichment of solid phase with exygen takes place without phase conversions, the process develops in the presence of one condensed phase, the composition of which changes continuously from UO2.05 to UO2 to max. (value x_{max} depends upon temperature). Further reaction with exygen leads to origination of new phase UO2.25 and the conversion is realized in the presence of two condensed constant composition phases. From the view point of structural changes on those stages takes place the introduction of exygen into the cubical lattice of urantem

dioxide (orderless in first stage and ordered in second) [18-20]. The third stage of oxidation is connected with the conversion of UO2.25 oxide into UO2.36±0.005.

It is evident from the above mentioned kinetic curves (see fig.2.5.6), that there is a whole series of tetragonal phases ($UO_{2,32}$, $UO_{2,37}$, $UO_{2,41}$) which is in conformity with data of other investigators [8, 11, 12, 21 and 22]. The slight bent at a degree of exidation $\approx 37\%$ is explained, apparently, by the fact, that the tetragonal phase originates by adding exygen atoms into the $UO_{2,25}$ structure ($U_{4}O_{9}$) with considerable crystallostructural changes.

The direct projectionality of the rate of the process to pressure ($v=a_1p$) at p=2.5-100 nm Hg points toward the Knudsen mechanism of oxygen transfer in channels of very small cross section. The appearance at pressures of over 100 nm Hg of a dependence $v=a_2\sqrt{p}$, a parently can be explained by the fact, that the oxygen molecule during conversion into condensed phase dissociates into a toms [23.24].

The physical picture of the following stages of exidation can be given within frames of new phase nuclei formation processes and in processes of their further growth. Herizontal section on curves fig.2, 5 and 6 correspond to the induction period, the drop duration of which rises with in temperature and pressure. The UO2.6tx phase for ming in the process of exidation has lower density, that is why its volume in comparison with the volume of the initial diexide increases and it has greater porosity and better gas permeability which facilitates the delivery of exygen to the place of reaction.

In the range of from 165 to 260° the process of oxidation corresponds to three first stages of the above described scheme, whereby the phase ratios are here less clearly expressed. Above 400° tetragonal phases become disproportioned into UO_{2,25} and UO_{2,6-xmax} [18,25] and consequently the process of uranium dioxide exidation in the zone of from 400-800° can be represented by the following scheme

X-ray structural amplysis data [26] of products of various oxidation stages

are in conformity with the proposed phase conversions schemes.

It was mentioned above that exidation of UO₂ in an exygen atmosphere in the range of from 150-200° transforms into UO_{2,6±x}. The thermal effect of the reaction 3UO₂+ O₂ = U₃O₈ equals 84 kcal/mol O₂[27]. For the purpose of comparison it can be shown that the thermal effect of reaction of carbon combustion into CO₂ equals 94 kcal/mol O₂.

Because of the liberation of a considerable amount of heat during the exidation of uranium dioxide into U₃O₈ there are local everheatings in solid phases, which causes a sharp rise in the rate of the process in these points. Thanks to this several simultaneous phase conversions are jossible. When in the center of the particle develops only the first stage of exidationtal exidation may be concluded on the surface of account of the heat, liberating thereat, the first phase conversion etc is accelerated. This explains the suiden development of the process in the above mentioned range of temperatures. Treliminary low temperature exidation of uranium dioxide into UO_{2,10} = UO_{2,13} reduces the value of the jump, since the thermal effect of transition UO_{2,10} = 2.13 — UO_{2,6±x} is lower than the thermal effect of conversion of UO_{2,04} → UO_{2,6±x}.

The inhibiting effect of a K₂CO₃ addition on the process of UO₂ exidation at 185°, apparently, can be explained by the following. At such a low temperature is highly improbable the migration of potassium ions from the Crystalline lattice of carbonate into the uranium exide lattice. At the same time the addition, being in close contact with uranium diexide, shields a part of its surface and at the same time reduces the area for exygen adsorption from the gaseous phase thus leading to a reduction in the surmary rate of the exidation process.

At 330° the accelerating effect of admixtures of alkali metal carbonates appears in these stages, where considerable readjustment of crystalline lattice takes place.

The second interesting fact is that in the presence of carbonates disappears the induction period during the realization of the phase conversion UO2.06±0.05—, UO2.6-xmax*

It is known[25] that if in the old and new phases there are no convergent areas and

the difference in paremeters is great, the new phace crystallizes independently and does not reproduce the lattice of the initial substance. The most difficult amount in this case is the formation of new phace nuclei. Exactly such a picture hase been observed in the mentioned phase conversion. The catalytic effect of carbonates is brought down to the point, that their particles appear to be crystallization centers of new phase, eliminating the induction period.

at points of close contact of reagents is not excluded the possibility of partial migration of metal ions from the carbonate lattice into the oxide lattice, especially since in the process of oxidation is created a metal deficiency in the oxide phase[21]. The presence of foreign ion in the lattice of the oxide causes its deformation, appearance of these or other types of distortions. The readjustment of such distorted sections into a new phase is realized easier and faster, than the sections with normal lattice.

The inhibiting effect of potassium carbonate after preliminary annealing at 900° is explained, apparently, by the fact, that at this temperature potassium carbonate decomposes with formation of K20 with which the phase UO2.6-xmax phase nuclei originating in the process of oxidation enter into reaction forming potassium diuranate [29]. The formation of potassium diuranate is indicated by the presence of dark-crange grains in the final green-black reaction product.

When evaluating the results of the effect of additions of small amounts of foreign oxides on the kinetics of uranium dioxide oxidation it is necessary first of all to take into consideration, that binary systems, including uranium oxide, are characterized by wide zones of solid solutions, just as the uranium-oxygen system in itself.

[80]. UO2 and ThO2 oxides have a face centered cubical lattice (structure of fluoride compounds) and as shown in report [30] they can form with each other a continuous series of solid solutions. UO2 and ZrO2, as established in this report, below 1900?, at a

zirconium dioxide content of less than 52% (molar) form solid solutions. Titanium dioxide does not form with uranium oxides any solid solutions nor chemical compounds.

The cetalytic effect of ThO₂, 2rO₂ and TiO₂ oxides is particularly noticeable during the : final stages of oxidation (see fig.6), beginning with phase conversion UO_{2,36±0.05} UO_{2,6-Imax}, i.e. when there is a substantial readjustment of crystalline lattice. Evidently, additions of mentioned oxides facilitate the formation of phase UO_{2,6-Xrnx} nuclei, assuming the role of active centers. It is also known, that oxides, capable of dissolving oxygen, catalyze the reaction of oxidation[21]. Solubility of oxygen in oxides rises in the ThO₂, 2rO₂, TiO₂ series. This, most likely, explains the established by us specific effect of additions of given oxides. The inhibiting effect of thorium dioxide during the first stages of oxidation after preliminary annealing at 900° is due to the fact that at the time of annealing UO₂ and ThO₂ form a solid solution. Addition of titanium di xide slows down in these conditions the process, because it sintering of wrantum dioxide [32].

Conclusions

- 1. The exidation kinetics of uranium dioxide with atmospheric coygen in the range of from 165-800° and air pressures of 2.5 600 mm Hg, has been investigated.

 The values of apparent activation energy of the process was calculated at various stages of oxidation.
- 2. Investigated were the kinetic characteristics of UO_2 exidation with pure exygen at a range of from 125 to 330° and p_{O2} = 100 mm Hg.
- 3. Phase conversion schemes have been introduced during the exidation of uranium dioxide at various temperature ranges.
- 4. The effect of additions of alkali metal carbonates and oxides of ThO₂, ZrO₂, TiO₂ on the kinetic characteristics of UO₂ oxidation process with air has been investigated.

 An explanation of thier effects is given.

Submitted: April 22,1961

Literature

```
1. I. Vard. I. Johnson. Problems of Nuclear Energetics No.4.39.(1957).
2. O. Runnols. Nucleonics, 17, Nov., 104 (1959).
3. B. Goshiki. J. Geram. Assoc., Japan, 65, 741, 289, (1957).
4. P. Perio. Bull. Soc. Chim. France 9, 840, (1954).
5. P. Perio. Mem. Pres. Soc. chim., 39, 256, (1953).
 6. I. Johnson, S. Curtis; Transactions of the First International Conference on Poace-
    ful Utilization of Atomic Emergy, vol.9, rep. No. 559 (1958).
7. P. Gronvold, H. Haroldson, Nature, 69, 162, (1948).
8. J. Anderson. Bull. Soc. chim. France, 2, 303, (1949)
9. J. Anderson, K. Alberman, J. chem. Soc., 9, 781, (1953).
10. J. Anderson, L. Roberts, E. Harper. J. chem. Phys., 3946, 1955.
11. S. Aronson, R. Roof, Ir. u. i. Pelle. J. chem. Phys. 27, 137, (1957).
12. R. Blackburn. J. Phys. chem., 62, 8, 897, (1958).
13. F.V.Cel'd. O.A.Yesin. Doklady Almdemii Nauk SSCR vol.74.ed.3.(1950)
14. F.V.Gel'd, O.A.Yesin; N.N.Serebrennikov, Trudy UPI, collection 49,61 (1954).
15. S.S.Lisnyak; C.I.Chufarov, Doklady Akad. Tauk SSSR, vol. 126, ed. 4, 831, (1959)

    D.Kats; Ye.Rabinovich. Chemistry of Uranium.Foreign Fublication. Moscow (1954)

17. A.A.Baykov, Metallurg No.3.5 (1926)
18. G.Khukstra; S.Saygl Transactions of First International Conference on Peaceful
    Utilization of Atomic Energy vol.7.483 (1957)
19. R.Willardson, I.Moody, H.Goering. J. Inorg. and Mucl. chem., 6,1,19,(1958).
20. A. Arrot, J. Goldman. Phys. Rev., 108, 4, 948, (1954).
21. P. Perio. Bull. Soc. chem. France, No. 7-8, 776, (1953).
22. F. Gronvold. J. Inorg. and Nucl. chem., 1, 357, (1955).
22. F. Gronvold. J. Inorg. and Nucl. chem., 1, 357, (1955).
23. R.Berrer. Diffusion in Solid Bodies. Foreign Aubl. Foscow (1948)
24. K. Smittels; Cases and retals, retallurgized, Foscow-Leningrad (1940)
25. Atomic Energy 4,2,215 (1958).
26. V.N. Strekalovskiy; A.F. Bessonov; V.G. Vlasov; F.A. Sidorenko; Physics of Metals
    and Retallographyvol. 11, ed.3,400 (1961)
27. H. Hockstra, I. Katz J. chem. Phys. 25, 6, 1089, (1956)
28. P.D. Dankov, Izvestiya Sektora Fiziko-Khimicheskogo Analiza 61,16,82,(1943)
29. K.M. Yefremova; Ye.A. Ippolitova; Yu.P. Simonov, Vik. Spitsyn, Doklady Akad. Nauk. SSSR
    vcl.124.ed.5.1057 (1959)
30. W.Lambertson, M. Maller, F. Gunzel, J. Amer. ceram. Soc., 36, 12, 397 (1953).
```

- 31. A.Riz. Chemistry of Crystals with Defects. Foreign Publ. Noscow (1956)
- 32. J.Belle.Reports at the Second Geneva Conference on Feaceful Utilization of Atomic Energy.vol.6,233 (1959).

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE	Nr. Copies	MAJOR AIR COMMANDS	Nr. Copies
HEADQUARTERS USAF	·	AFSC SCFDD DDC TDBTL	1 25 5
		TOBOP	• 5
AFCIN-3D2 ARL (ARB)	1	AEDC (AEY) ASD (ASYIM)	1
OTHER AGENCIES		,	
C1A NSA	1 6		
DIA AID OTS	9. 2 2		
AEC PWS NASA	2 2 1 1 3 3		
army (PSTC) Navy	3		
NAFEC RAND	1		