Deep Learning

Ian Goodfellow Yoshua Bengio Aaron Courville

Contents

Website Acknowledgments Notation			vii	
			vii	
			xi	
1	Intro 1.1 1.2	Oduction Who Should Read This Book?		
Ι	Appl	lied Math and Machine Learning Basics	29	
2	Linear Algebra		31	
	2.1	Scalars, Vectors, Matrices and Tensors	31	
	2.2	Multiplying Matrices and Vectors		
	2.3	Identity and Inverse Matrices		
	2.4	Linear Dependence and Span		
	2.5	Norms	39	
	2.6	Special Kinds of Matrices and Vectors	40	
	2.7	Eigendecomposition	42	
	2.8	Singular Value Decomposition		
	2.9	The Moore-Penrose Pseudoinverse	45	
	2.10	The Trace Operator	46	
	2.11	The Determinant	47	
	2.12	Example: Principal Components Analysis	48	
3	Probability and Information Theory			
	3.1	Why Probability?	. 54	

	3.2	Random Variables	56
	3.3	Probability Distributions	56
	3.4		58
	3.5		59
	3.6	The Chain Rule of Conditional Probabilities	59
	3.7	Independence and Conditional Independence	60
	3.8		60
	3.9		62
	3.10		67
	3.11	Bayes' Rule	70
	3.12		71
	3.13		73
	3.14	Structured Probabilistic Models	75
4	Nun	nerical Computation	80
	4.1	_	80
	4.2		82
	4.3		82
	4.4		93
	4.5		96
5	Mac	hine Learning Basics	98
	5.1		99
	5.2	Capacity, Overfitting and Underfitting	10
	5.3	Hyperparameters and Validation Sets	
	5.4	Estimators, Bias and Variance	
	5.5	Maximum Likelihood Estimation	.31
	5.6	Bayesian Statistics	35
	5.7	Supervised Learning Algorithms	40
	5.8	Unsupervised Learning Algorithms	
	5.9	Stochastic Gradient Descent	.51
	5.10	Building a Machine Learning Algorithm	.53
	5.11	Challenges Motivating Deep Learning	55
	Б		.
II	Dee	p Networks: Modern Practices 1	66
6	Deep	p Feedforward Networks 1	68
	6.1	Example: Learning XOR	71
	6.2	Gradient-Based Learning	77

	6.3	Hidden Units			
	6.4	Architecture Design			
	6.5	Back-Propagation and Other Differentiation Algorithms 204			
	6.6	Historical Notes			
7	Regularization for Deep Learning 228				
	7.1	Parameter Norm Penalties			
	7.2	Norm Penalties as Constrained Optimization			
	7.3	Regularization and Under-Constrained Problems			
	7.4	Dataset Augmentation			
	7.5	Noise Robustness			
	7.6	Semi-Supervised Learning			
	7.7	Multi-Task Learning			
	7.8	Early Stopping			
	7.9	Parameter Tying and Parameter Sharing			
	7.10	Sparse Representations			
	7.11	Bagging and Other Ensemble Methods			
	7.12	Dropout			
	7.13	Adversarial Training			
	7.14	Tangent Distance, Tangent Prop, and Manifold Tangent Classifier 270			
8	Optimization for Training Deep Models 274				
	8.1	How Learning Differs from Pure Optimization			
	8.2	Challenges in Neural Network Optimization			
	8.3	Basic Algorithms			
	8.4	Parameter Initialization Strategies			
	8.5	Algorithms with Adaptive Learning Rates			
	8.6	Approximate Second-Order Methods			
	8.7	Optimization Strategies and Meta-Algorithms			
9	Con	volutional Networks 330			
	9.1	The Convolution Operation			
	9.2	Motivation			
	9.3	Pooling			
	9.4	Convolution and Pooling as an Infinitely Strong Prior			
	9.5	Variants of the Basic Convolution Function			
	9.6	Structured Outputs			
	9.7	Data Types			
	9.8	Efficient Convolution Algorithms			
	9.9	Random or Unsupervised Features			

	9.10	The Neuroscientific Basis for Convolutional Networks		
	9.11	Convolutional Networks and the History of Deep Learning 37		
10	Sequence Modeling: Recurrent and Recursive Nets 373			
	10.1	Unfolding Computational Graphs		
	10.2	Recurrent Neural Networks		
	10.3	Bidirectional RNNs		
	10.4	Encoder-Decoder Sequence-to-Sequence Architectures 396		
	10.5	Deep Recurrent Networks		
	10.6	Recursive Neural Networks		
	10.7	The Challenge of Long-Term Dependencies		
	10.8	Echo State Networks		
	10.9	Leaky Units and Other Strategies for Multiple Time Scales 406		
	10.10	The Long Short-Term Memory and Other Gated RNNs 408		
	10.11	Optimization for Long-Term Dependencies		
	10.12	Explicit Memory		
11	Pract	tical Methodology 42		
	11.1	Performance Metrics		
	11.2	Default Baseline Models		
	11.3	Determining Whether to Gather More Data 426		
	11.4	Selecting Hyperparameters		
	11.5	Debugging Strategies		
	11.6	Example: Multi-Digit Number Recognition		
12	Applications 443			
		Large-Scale Deep Learning		
		Computer Vision		
	12.3	Speech Recognition		
	12.4	Natural Language Processing		
	12.5	Other Applications		
	ъ			
III	Dee	ep Learning Research 486		
13		ar Factor Models 489		
	13.1	Probabilistic PCA and Factor Analysis		
	13.2	Independent Component Analysis (ICA)		
	13.3	Slow Feature Analysis		
	13.4	Sparse Coding 496		

	13.5	Manifold Interpretation of PCA	499
14	Autoencoders 50		
	14.1	Undercomplete Autoencoders	503
	14.2	Regularized Autoencoders	
	14.3	Representational Power, Layer Size and Depth	
	14.4	Stochastic Encoders and Decoders	
	14.5	Denoising Autoencoders	510
	14.6	Learning Manifolds with Autoencoders	
	14.7	Contractive Autoencoders	
	14.8	Predictive Sparse Decomposition	
	14.9	Applications of Autoencoders	
15	Rep	resentation Learning	52 6
-	15.1	Greedy Layer-Wise Unsupervised Pretraining	528
	15.2	Transfer Learning and Domain Adaptation	
	15.3	Semi-Supervised Disentangling of Causal Factors	
	15.4	Distributed Representation	
	15.5	Exponential Gains from Depth	
	15.6	Providing Clues to Discover Underlying Causes	
16	Structured Probabilistic Models for Deep Learning 5		
	16.1	The Challenge of Unstructured Modeling	559
	16.2	Using Graphs to Describe Model Structure	
	16.3	Sampling from Graphical Models	580
	16.4	Advantages of Structured Modeling	
	16.5	Learning about Dependencies	582
	16.6	Inference and Approximate Inference	584
	16.7	The Deep Learning Approach to Structured Probabilistic Models	585
17	Mon	te Carlo Methods	59 0
	17.1	Sampling and Monte Carlo Methods	590
	17.2	Importance Sampling	592
	17.3	Markov Chain Monte Carlo Methods	595
	17.4	Gibbs Sampling	599
	17.5	The Challenge of Mixing between Separated Modes	
18	Conf	fronting the Partition Function	605
	18.1	The Log-Likelihood Gradient	606
	18.2	Stochastic Maximum Likelihood and Contrastive Divergence	607

	18.3	Pseudolikelihood	615	
	18.4	Score Matching and Ratio Matching	617	
	18.5	Denoising Score Matching	619	
	18.6	Noise-Contrastive Estimation	620	
	18.7	Estimating the Partition Function	623	
19	Appr	eoximate Inference	631	
	19.1	Inference as Optimization	633	
	19.2	Expectation Maximization	634	
	19.3	MAP Inference and Sparse Coding	635	
	19.4	Variational Inference and Learning	638	
	19.5	Learned Approximate Inference	651	
20	Deep	Generative Models	654	
	20.1	Boltzmann Machines	654	
	20.2	Restricted Boltzmann Machines	656	
	20.3	Deep Belief Networks	660	
	20.4	Deep Boltzmann Machines	663	
	20.5	Boltzmann Machines for Real-Valued Data	676	
	20.6	Convolutional Boltzmann Machines	683	
	20.7	Boltzmann Machines for Structured or Sequential Outputs	685	
	20.8	Other Boltzmann Machines	686	
	20.9	Back-Propagation through Random Operations	687	
	20.10	Directed Generative Nets	692	
	20.11	Drawing Samples from Autoencoders	711	
		Generative Stochastic Networks		
	20.13	Other Generation Schemes	716	
	20.14	Evaluating Generative Models	717	
	20.15	Conclusion	720	
Bib	Bibliography 72			
Inc	\mathbf{lex}		777	

Website

www.deeplearningbook.org

This book is accompanied by the above website. The website provides a variety of supplementary material, including exercises, lecture slides, corrections of mistakes, and other resources that should be useful to both readers and instructors.