	Program Outcomes					
PO1	Engineering knowledge An ability to apply knowledge of mathematics (including probability, statistics and discrete mathematics), science, and engineering for solving Engineering problems and modeling					
PO2	Problem analysis	An ability to design, simulate and conduct experiments, as well as to analyze and interpret data including hardware and software components				
PO3	Design / development of solutions	An ability to design a complex system or process to meet desired specifications and needs				
PO4	Conduct investigations of complex problems	An ability to identify, formulate, comprehend, analyze, design synthesis of the information to solve complex engineering problems and provide valid conclusions.				
PO5	Modern tool usage	An ability to use the techniques, skills and modern engineering tools necessary for engineering practice				
PO6	The engineer and society	An understanding of professional, health, safety, legal, cultural and social responsibilities				
PO7	Environment and sustainability	The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental and demonstrate the knowledge need for sustainable development.				
PO8	Ethics	Apply ethical principles, responsibility and norms of the engineering practice				
PO9	Individual and team work	An ability to function on multi-disciplinary teams.				
PO10	Communication	An ability to communicate and present effectively				
PO11	Project management and finance	An ability to use the modern engineering tools, techniques, skills and management principles to do work as a member and leader in a team, to manage projects in multi-disciplinary environments				
PO12	Life-long learning	A recognition of the need for, and an ability to engage in, to resolve contemporary issues and acquire lifelong learning				

PROGRAM SPECIFIC OUTCOMES (PSOs): The graduates of the department will attain:

PSO1	The ability to analyze, design and implement application specific complex engineering					
	problems by applying the knowledge of basic sciences, engineering mathematics and					
	engineering fundamentals.					
PSO2	The ability to adapt for rapid changes in tools and technology with an understanding of					
	societal and ecological issues relevant to professional engineering practice through life-					
	long learning.					
PSO3	Excellent adaptability to function in multi-disciplinary work environment, good					
	interpersonal skills as a leader in a team in appreciation of professional ethics and societal					
	responsibilities.					

Course No: MA 102	Course Title: Higher Calculus		
Semester: II	LTPC :21 0 3		
Degree: B.Tech COURSE AREA/DOMAIN:	Branch: Civil Engineering, Computer Science Engineering, Electrical and Electronics Engineering, Electrical and Communication Engineering, Data Science & Artificial Engineering, Mechanical Engineering, Mechatronics Lab (if any) NILL		
MATHEMATICS	Lab(if any):NIL		

Prerequisite: Differentiation and Integration of single variable

Instructor In charge: Dr. Rakesh Reddy T

Instructors: Dr. S. Mohan Reddy, Dr.K.Ramesh, Dr.T.Divya

Course Objectives:

• To enable the students to study vector and scalar valued functions

- To learn system of partial derivatives and Tangent planes
- To enable the ways of solving Multiple integrals
- To learn vector differentiation and integration
- To get the exposure to Engineering applications of Green's, Stoke's and Guass Theroems

Text Book T	Thomas G.B. Thomas Calculus, Pearson Education, 14 th ed., 2018.		
Reference book(s)			
R1	Erwin Kreyszig , Advanced Engineering Mathematics, 10th Edition, John Wiley & Sons , 2012.		
R2	Salas S. L., Einar Hille and Garret J. Etgen, Calculus (One and Several variables), John Wiley, 8 th Edition, 1999.		

Lecture-wise plan (Syllabus):

Lecture Nos.	Learning Objective	Topics to be covered	Reference (Chapter/Sec./Page Nos. of Text/Ref. Books)
1	Use calculus to study the paths, velocities, and accelerations of	Limits, Continuity and Differentiability of vector functions	T1: 13.1
2	moving bodies To study the applications of	Velocity & Unit tangent vector	T1: 13.3
3-4	To understand the frame of mutually orthogonal unit vectors	understand the frame of mutually Normal vectors, Curvature, Torsion and the	
5-6	To understand the frame of mutually orthogonal unit vectors	Tangential & normal components of velocity and acceleration	T: 13.5
7-8 To study the functions of more than one independent variable, the way to graph them		Functions of several variables, Limits and continuity in higher dimensions	T: 14.1,14.2

9-10	To calculate partial derivatives and find the linearization using differentiability	Partial derivatives, differentials,	T: 14.3,
11-14	To find the derivative of a composite function	Chain rule for derivative, linearization, Tangent planes, Error for Linear approximation.	T: 14.4, 14.6
15-16	To understand the idea of directional derivatives and the equations of tangent planes and normal lines	Directions derivatives, Gradient	T: 14.5
17-19	Approximation of f(x, y),To find extreme values of functions of several variable	Taylor's formula for two variables Maxima, Minima with application	T:: 14.9,14.7
20-22	To integrate a continuous function of two or three variables over abounded region in xy-plane	Double integrals, Polar coordinates,	T:15.1-15.4
23-27	To find the volume of three dimensional shapes using triple integrals	Triple integrals in rectangular, cylindrical and spherical coordinates (moments, masses and centroids)	T:15.5-15.7
28	To evaluate multiple integrals by substitution	Substitutions in multiple integrals, Jacobian	T:15.8
29-32	To calculate the work done by variable forces along paths in space and rates at which fluids flow along curves and cross boundaries	Line integrals of scalar and vector fields, Path Independence, Potential functions & Conservative fields,	T:16.1-16.3
33-43	To describe the relationship between the way an incompressible fluid flows across the boundary of a plane region and the way it moves inside the region	Green's theorem, Surface area and surface integrals and Curl, Stokes theorem Divergence ,Gauss theorem (theorems without proofs).	T:16.4-16.8

COURSE OUTCOMES:

COURSE OUTCOME	EXPLANATION		
CO1	Able to learn basic concepts of Vector calculus		
CO2	Able to perform basic operations of several variable functions		
CO3	Able to find tangent planes, Maxima and Minima of multi variable functions		
CO4	Able to learn multiple integrals		
CO5	Able to learn differentiation of vector valued functions		
CO6	Able to learn vector integration		

CO-PO MAPPING:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1								
CO2	3	3	2	1								
CO3	3	3	2	1								
CO4	3	3	2	1								
CO5	3	3	2	1								
CO6	3	3	2	1								

GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

SNO	DESCRIPTION	PROPOSED ACTIONS
1	Lagrange's Multipliers	Assignment
2	Some more applications on Multiple integrals	Assignment
3	Some more applications on Vector integrations	Assignment

TOPICS BEYOND SYLLABUS/ADVANCED TOPICS/DESIGN:

S.No.	ADVANCED TOPICS			
1	Partial derivatives with constrained variables			
2	Quadratic surfaces			
3	Unified Theory			
4	Applications to Probability			

WEB SOURCE REFERENCES:

S.No.	Web links
1	https://swayam.gov.in
2	https://nptel.ac.in

DELIVERY/INSTRUCTIONAL METHODOLOGIES:

√	√	√
BOARD	STUD. ASSIGNMENT	WEB RESOURCES
STUD. SEMINARS	√ ICT ENABLED CLASSES	√ LCD

ASSESSMENT METHODOLOGIES-DIRECT:

√ TESTS/COMPRE. EXAMS	√ ASSIGNMENT	MINI/MAJOR PROJECTS
STUD. SEMINARS	STUD. LAB PRACTICES	STUD. VIVA

ASSESSMENT METHODOLOGIES-INDIRECT:

ASSESSMENT OF COURSE OUTCOMES (BY FEEDBACK, ONCE)	√ STUDENT FEEDBACK ON FACULTY (TWICE)
ASSESSMENT OF MINI/MAJOR PROJECTS	OTHERS

Justification for CO-PO MAPPING:

CO/PO				<u> </u>	CO3 K E E					CO4 K H H H H H H H H H					CO5 A E E E E E E E E E E E E E E E E E E					CO6 K						
P01	Able to apply Mathematics	knowledge for solving Engineering problems	and modeling	Able to apply	Mathematics	knowledge for solving	Engineering problems and modeling	Able to apply	Mathematics	knowledge for solving	Engineering problems	and modeling	Able to apply	Mathematics	knowledge for solving	Engineering problems	and modeling	Able to apply	Mathematics	knowledge for solving	Engineering problems	and modeling	Able to apply	Mathematics	knowledge for solving	Engineering problems and modeling
PO2	An ability to analyze and	interpret data including software	and hardware	An ability to	analyze and	interpret data	including software and hardware	An ability to	analyze and	interpret data	including software	and hardware	An ability to	analyze and	interpret data	including software	and hardware	An ability to	analyze and	interpret data	including software	and hardware	An ability to	analyze and	interpret data	including software and hardware
PO3	Able to design a complex system or process to meet	desired specifications and needs		Able to design a complex	system or process to meet	desired specifications and	needs	Able to design a complex	system or process to meet	desired specifications and	needs		Able to design a complex	system or process to meet	desired specifications and	needs		Able to design a complex	system or process to meet	desired specifications and	needs		Able to design a complex	system or process to meet	desired specifications and	needs
PO4	An ability to identify, formulate and solve	complex engineering problems and provide	valid conclusions	An ability to identify,	tormulate and solve	complex engineering	problems and provide valid conclusions	An ability to identify,	formulate and solve	complex engineering	problems and provide	valid conclusions	An ability to identify,	formulate and solve	complex engineering	problems and provide	valid conclusions	An ability to identify,	formulate and solve	complex engineering	problems and provide	valid conclusions	An ability to identify,	formulate and solve	complex engineering	problems and provide valid conclusions
PO5																										
PO6																										
PO7																										
PO8 PO9																										
PO10 PO11 PO12																										
PO11																										
PO12																										