<u>MATH 391</u> <u>Worksheet 3</u> <u>F2019</u>

Numerical Differentiation - First Derivative

01. Use the difference formula $f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h}$ and the table below to approximate f'(1.3) with h = 0.1 and h = 0.01. Given that the data were generated from $f(x) = 3x e^x - \cos(x)$, find the actual error.

	x	1.20	1.29	1.30	1.31	1.40
f	(x)	11.59006317	13.78176310	14.04275818	14.30741266	16.86187272

02. From the rounded values of $f(x) = \frac{1}{(x+1)^2}$ shown in the table below, determine approximate values of f'(1.0), f'(1.2), and f'(1.4), by use of an appropriate 2-point formula. Compare to the exact values.

Ī	x	1.0	1.1	1.2	1.3	1.4
ĺ	f(x)	0.25	0.22675737	0.20661157	0.18903592	0.17361111

03. Analyze the round-off errors as done in the lecture for the centered difference formula

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - \frac{1}{6}f'''(c)h^2$$

Assuming that the machine error in evaluating $f(x_0 \pm h)$ is $\epsilon = 10^{-14}$, estimate the optimal h. Confirm your findings for the function $f(x) = x + e^x$, with $x_0 = 0$. Take $h = 10^{-1}, \dots, 10^{-14}$

Let $\,\Phi(h)$ be a difference formula that approximates $\,f'\!\left(x_{\scriptscriptstyle 0}\right).\,$ if

$$f'(x_0) - \Phi(h) = O(h^p), \quad p > 0$$

we say that the approximation $f'ig(x_{\scriptscriptstyle 0}ig)pprox\Phi(h)$ has order p.

04. Use the degree 2 polynomial in Lagrange form

$$P_{_{2}}(x) = L_{_{2,0}}(x) \, f\!\left(x_{_{0}}\right) + L_{_{2,1}}(x) \, f\!\left(x_{_{1}}\right) + L_{_{2,2}}(x) \, f\!\left(x_{_{2}}\right)$$

to derive a difference formula based on the values $f(x_0 - h)$, $f(x_0)$ and $f(x_0 + 2h)$, that approximates $f'(x_0)$. Use Taylor Theorem

$$f(x_0 + u) = f(x_0) + \frac{f'(x_0)}{1!}u + \dots + \frac{f^{(k)}(x_0)}{k!}u^k + \frac{f^{(k+1)}(\theta)}{(k+1)!}u^{k+1}, \qquad \theta \in I(x_0, x_0 + u)$$

to find the order of the difference formula.

- Use Taylor Theorem to find the order of convergence of each of the following difference **05**. formulas.

 - ormulas. **a.** $f'(x_0) \approx \frac{-f(x_0 + 2h) + 4f(x_0 + h) 3f(x_0)}{2h}$ **b.** $f'(x_0) \approx \frac{3f(x_0) 4f(x_0 h) + f(x_0 2h)}{2h}$