MASx52: Assignment 1

- 1. Recall the one-period market, and its parameters r, u, d, p_u, p_d and s. We assume that d < 1 + r < u.
 - (a) At time t = 0 our portfolio contains 2 unit of cash and 3 units of stock. What is the value of our portfolio at time t = 0? If we hold this portfolio until time t = 1, what is its new value?
 - (b) A rival investor holds a portfolio containing 3 units of cash and 2 unit of stock. Under what condition (on the parameters) can we be *certain* that our own portfolio will have a strictly greater value at time t = 1?
- 2. Let $\Omega = \{HH, HT, TH, TT\}$, representing two coin tosses each of which may show either H (head) or T (tail). Let $X : \Omega \to \mathbb{R}$ be the toss in which the first head occurred, or zero if no heads occurred:

$$X = \begin{cases} 0 & \text{if } \omega = TT \\ 1 & \text{if } \omega = HT \text{ or } \omega = HH \\ 2 & \text{if } \omega = TH. \end{cases}$$

Let Y be the total number of heads that occurred in both tosses.

- (a) Write down the sets $X^{-1}(0)$, $X^{-1}(1)$ and $X^{-1}(2)$.
- (b) State the definition of $\sigma(X)$, and list its elements.
- (c) Is Y measurable with respect to $\sigma(X)$? Why, or why not?
- 3. Let $\Omega = \{1, 2, 3, 4, 5\}$, representing one roll of a five sided dice. Let \mathcal{F} be the set of all subsets of Ω . Describe, in words, the information contained within the following sub- σ -fields of \mathcal{F} .

1

- (a) $\mathcal{G}_1 = \{\emptyset, \Omega, \{1\}, \{2, 3, 4, 5\}\}$
- (b) $\mathcal{G}_2 = \{\emptyset, \Omega, \{1, 3, 5\}, \{2, 4\}\}$
- (c) $\mathcal{G}_3 = \{\emptyset, \Omega, \{1\}, \{2, 3, 4\}, \{5\}, \{1, 2, 3, 4\}, \{2, 3, 4, 5\}, \{1, 5\}\}$
- 4. Let X be a random variable.
 - (a) Show that $Y = \cos X$ is also a random variable.
 - (b) For which $p \in [1, \infty)$ do we have $Y \in L^p$?