Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-221. Вариант 22

- 1. Пусть $z = \sqrt{3} i$. Вычислить значение $\sqrt[4]{z^3}$, для которого число $\frac{\sqrt[4]{z^3}}{2\sqrt{3} 2i}$ имеет аргумент $\frac{37\pi}{24}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-6+6i) + y(-7+6i) = 3+37i \\ x(-3+11i) + y(-3+11i) = 30+20i \end{cases}$$

- 3. Найти корни многочлена $3x^6 + 24x^5 + 75x^4 888x^2 1344x + 4080$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1 = -4 + i, x_2 = -2 4i, x_3 = 2$.
- 4. Даны 3 комплексных числа: -10-25i, 15-28i, -30-28i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1=-\frac{1}{2}+\frac{\sqrt{3}i}{2},$ $z_2=-\frac{1}{2}-\frac{\sqrt{3}i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 2 - i| < 3\\ |arg(z - 3 - 5i)| < \frac{3\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-1, 2, 0), b = (5, 1, -7), c = (-6, 9, 2). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(9,12,0) и плоскость P: -8x 2y 10z + 180 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(3, -15, -11), $M_1(-1, -8, 8)$, $M_2(-13, -2, 8)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 12x + 6y + 21z - 558 = 0 \\ 15x + 9y + 15z - 486 = 0 \end{cases} \qquad L_2: \begin{cases} -3x - 3y + 6z - 342 = 0 \\ 16x + 8y - 7z + 456 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.