

B38EM Introduction to Electricity and Magnetism Lecture 7

Faraday's Law & Displacement Current

Dr. Yuan Ding (Heriot-Watt University)
yuan.ding@hw.ac.uk
yding04.wordpress.com

Outline & Outcome

- Revision
- Faraday's law
- Exercise
- Inductance & mutual inductance
- Displacement current

References & Resources

 Elements of Electromagnetics (7th Edition), by Sadiku, Oxford University Press

Fundamentals of Applied Electromagnetics (7th Edition), by Ulaby and Ravaioli

 Field and Wave Electromagnetics (2nd Edition), by David K. Cheng

•

Electrostatics

Coulomb's Law

 $1/4\pi\varepsilon_0$ = electric constant (AKA k_e) = 9 · 10⁹ N·m² / C² in free-space. ε_0 = dielectric permittivity of free space = 8.85 · 10⁻¹² F/m (a constant)

• Electric Field Intensity (E)

$$E = \hat{R} \frac{q}{4\pi\varepsilon_0 R^2}$$
 (V/m) in free space

force on a unit charge

Magnetostatics

Magnetic field (*H* or *B*) due to electric current

A wire with electric current I, produces an H-field around that wire with direction given by the right-hand thumb rule. Thumb in direction of current \rightarrow 4 fingers curl around in the direction of H-field.

Current flow into away from viewer

$$B = \frac{\mu_0 I}{2\pi r} \qquad \mu_0 = 4\pi \times 10^{-7} \text{ (H/m)}$$

Magnetostatics

Solenoid

Inside a **solenoid**, the resulting **H**-field is uniform (H=NI/l)

"The **right hand** grips the outside of a coil with the fingers in the direction of the current; the **thumb** points in the direction of the **H**-field **inside** the coil".

Observation

- Stationary magnet in or out of a coil
 voltmeter reads zero.
- Magnet moving into the coil,
 - => EMF is induced in the coil and appears as voltmeter reading.
- Magnet moving out of the coil
 - => reverse EMF is induced in the coil.

Changing **H** causes *I*.

Note: electromotive force, also called EMF, refers to voltage generated by a source

Observation

"A changing magnetic flux in one coil (or ckt) produces (induces) a voltage across that coil (or ckt)" given by:

-(Time rate of change of Magnetic Flux Φ linking the coil [Wb/sec])

$$v(t) = -N \frac{d\Phi}{dt} \qquad (volts)$$

"-": The direction of the induced EMF will always tend to setup a current that opposes the motion (or the change of flux) that induces that EMF.

Since the coils 'oppose' to any change, a circuit with a coil will tend to oppose and thus 'delay' any change in its V or I.

Figure 13.1 Magnetic flux produced by a single coil with N turns.

https://phet.colorado.edu/en/simulation/faraday
https://phet.colorado.edu/sims/html/faradays-law/latest/faradays-law en.html

Electromagnetic Induction

The process of using magnetic fields to produce voltage, and in a complete circuit, a current.

$$v(t) = -N\frac{d\Phi}{dt} \qquad (volts)$$

Magnetic Flux is a dot product:

$$\Phi = \vec{B} \cdot \vec{A} = B \cdot A \cdot cos(\theta)$$

How could we CHANGE the flux over a period of time?

- Change B; e.g. we could move the magnet away or towards (or the wire)
- Change A; e.g. we could increase or decrease the area
- Change ϑ ; e.g. we could rotate either field or the area

$$v(t) = -N\frac{d\Phi}{dt} \qquad (volts)$$

Faraday's Law

The induced EMF, V_{emf} (in volts), in any closed circuit is equal to the time rate of change of the magnetic flux through the circuit.

Lenz's Law

The direction of the induced EMF will always tend to setup a current that opposes the motion (or the change of flux) that induces the EMF".

Note: Lenz's law gives the direction of the induced EMF and current resulting from electromagnetic induction.

Conductor moving in a B-field

(not necessarily carrying current), will experience EMF (Voltage) given by:

$$v(t) = -N\frac{d\Phi(t)}{dt} \qquad N = 1$$

$emf = BvI \sin\theta$

B =flux density

v = velocity of conductor

l = length of conductor

 θ = angle the conductor makes with the B-field (e.g. below: $\theta = 90^{\circ}$)

EMF **max** @ θ =90° (**v** \perp B) and **min** @ θ =0°(**v** // B)

If the conductor **slides** on 2 conducting rails connected with a resistor R:

$$V = -\frac{d\Phi}{dt} = \frac{d(BA)}{dt} = -\frac{d(Blvt)}{dt} = -Bvl$$

This will induce <u>current I</u> \rightarrow Force:

(now we have a 'current-carrying conductor inside B)

 $F = qvB\sin\theta$ This v is the speed of moving particles.

$$I = \Delta q / \Delta t \qquad v \Delta t = \Delta l$$

$$\Rightarrow F = BIL \sin \theta$$

(again max at θ =90° (I \perp B) & min at θ =0°(I // B)

Lifting power of a magnet

Consider the magnetic circuit:

Due to the air-gap we can write:

$$B = \mu_0 H$$

Then:

Energy density:
$$\frac{1}{2}BH = \frac{1}{2}\mu_0H^2 = \frac{1}{2}\frac{B^2}{\mu_0}$$

If S is pulled apart by distance dx, then some work will have to be done against the force of attraction.

If we assume F is the force of attraction between the 2 poles,

the work W is:

N

This must equal the amount of <u>energy</u> stored in the field:

Energy = Energy density × volume =
$$\frac{1}{2} \frac{B^2 A dx}{\mu_0}$$

$$F \cdot dx = \frac{1}{2} \frac{B^2 A dx}{\mu_0} \qquad \Rightarrow F \cdot = \frac{AB^2}{2\mu_0}$$

Newton's 2nd Law says: $F_{gravity} = mg$ (g=acceleration due to gravity, m=mass)

This means that:
$$mg = \frac{AB^2}{2\mu_0}$$

It is now possible to design magnetic lifting machines.

The load *m* to be lifted "completes" the magnetic circuit with the weight divided equally between the 2 poles of the magnet

Example:

What is the flux density B needed to lift a load of 10 kg when the cross section of the magnetic material is 100 mm²?

Solution:

We know that:
$$mg = \frac{AB^2}{2\mu_0}$$
 \Rightarrow $B = \sqrt{\frac{2\mu_0 mg}{A}}$

$$\mu_0 = 4\pi \cdot 10^{-7}$$
 N/A²

$$g = 9.8$$
 m/s^2

$$A = 100 \times 10^{-6} m^2 = 10^{-4} m^2$$

$$\Rightarrow B = \sqrt{\frac{2\mu_0 mg}{A}} = 1.56T$$

- Solenoids produce mechanical motion from electrical signals
- Often used to lift heavy objects and control fluids in pipes (e.g. sprinkler systems)
- A solenoid valve operates electromechanically:
 - Current passes through the coil and the right-hand part moves against the spring.

Electromagnetic Relay

- > A relay is an electrically controlled switch
- A small control voltage on the coil can control a large current through the contacts
- > Applications: wherever we need to
 - control a circuit by a low-power signal, or
 - control several circuits by one signal

What is an electromagnet?

- Electromagnets use electric current to generate a magnetic field which can be turned ON or OFF as needed.
- Electromagnetic strength depends on N, I and μ_r .
- Types include Flat-faced, parallel pole magnets.
- Though all current-carrying conductors produce magnetic fields, an electromagnet is usually constructed in such a way as to maximise the strength of the magnetic field it produces for a special purpose.

Example: Magnetic Flux through a rotating frame in homog. **B:** How can an **AC E**-field be generated from a **B**-field?

Spinning frame inside a magnetic field:

B interacts with the circuit and creates EMF (Basis of EM Generator/Motor)

Applications

AC generators & motors

Transformers

Microphones

DC power supply

1. Let the conductor move with a constant velocity $v=10\ m/s$. The length of the conductor is $w=10\ cm$ and the circuit resistance $R=10\ Ohm$. What is the value of the generated current if the magnetic field is $B=0.1\ T$?

Lorentz force on the moving conductor?

Check:
$$I = B_{VW}/R = 0.1 \cdot 10 \cdot 0.1 \setminus 10 = 0.01 \text{ A}$$

 $F = 10^{-4} (N)$

2. Consider the B-field of the Earth B=50 μ T, and an airplane flying with 1000 km/h as shown in the figure. What is the produced EMF?

Check: $Emf = B \cdot v \cdot W = 50 \cdot 10^{-6} \cdot 50 \cdot 1000 \cdot 1000 \cdot 3600 = Emf = 0.69 \text{ V}$

- **3.** Let B = 1(T), V = 2(V), L = 1(m)
- a. Which direction will the conductor L move when we apply voltage V?
- b. What is the constant velocity v_0 of the conductor in equilibrium?
- c. What is the total current flowing in the conductor when moving at constant velocity v_0 ?

Check:
$$v_0 = V/BL = 2 m/s$$

Solution 1:

According to Fáraday's Low:

$$V = -\frac{d\overline{L}}{dt} = -\frac{d(\overline{B} \cdot \overline{A})}{dt} = -\frac{d[B \cdot (\omega \times)(-\hat{k}) \cdot (-\hat{k})]}{dt} = -\frac{d(B \cdot \omega \times)}{dt}$$

$$= -B \omega \cdot \frac{dx}{dt} = -B \omega V = -0.1 \times 0.1 \times 10 = -0.1 \text{ (V)}.$$

$$I = \frac{|V|}{R} = \frac{0.1}{10} = 0.01 \text{ A}.$$

$$Lorentz \text{ force}$$

$$\overline{I} = \frac{1}{R} = \frac{1}{10} = 0.01 \text{ A}.$$

$$\Delta \overline{I} = \Delta_{\overline{L}} V_{\overline{L}} \times \overline{B} = \Delta_{\overline{L}} V_{\overline{L}} B_{\overline{L}} \times (-\hat{k}) = \frac{1}{2} V_{\overline{L}} B_{\overline{L}} (-\hat{k})$$

$$= -\Delta_{\overline{L}} \Delta_{\overline{L}} B_{\overline{L}} = -I \Delta \omega B_{\overline{L}}$$

$$\overline{I} = \int_{0}^{M} \overline{I} = -\int_{0}^{M} B_{\overline{L}} d\omega = -I B \omega \hat{L} = -0.01 \times 0.1 \times 0.1 \hat{L} = -1 \times 10^{-4} \hat{L} (N)$$

Solution 2:

According that addy's and:

$$V = -\frac{d\bar{E}}{dt} = -\frac{d(\bar{B} \cdot \hat{A})}{dt} = -\frac{d(BA \hat{n} \cdot \hat{A})}{dt} = -\frac{B}{dt} = -\frac{B}{dt} = -\frac{B}{dt}$$
 $= -\frac{BW}{dt} = -\frac{BWV}{-50 \times 10^{4} \times 50 \times 10^{4}} / 3600 = -0.69 (V)$

The equilibrium \longrightarrow no force on the conductor

 \longrightarrow no current flowing through the conductor

 \longrightarrow no current flowing through the conductor

 \longrightarrow no voltage according the conductor

 \longrightarrow Vent = $2(V)$.

 $V = \frac{d\bar{E}}{dt} = \frac{d(\bar{B} \cdot \bar{A})}{dt} = \frac{d(BA \hat{n} \cdot \hat{n})}{dt} = \frac{d(BA)}{dt}$
 $= \frac{dA}{dt} = \frac{d(A - A)}{dt} = \frac{d(A - A)}{dt} = \frac{d(A - A)}{dt}$
 $= \frac{dA}{dt} = \frac{d(A - A)}{dt} = \frac{d(A - A)}{dt} = \frac{d(A - A)}{dt}$
 $= \frac{dA}{dt} = \frac{d(A - A)}{dt} = \frac{d(A - A)}{dt} = \frac{d(A - A)}{dt}$

Inductance of solenoid

"<u>Inductance L</u> = the property of conductors (and solenoids) to oppose to the change of current", by inducing an EMF (voltage) in the conductor ".

$$v(t) = -N\frac{d\Phi}{dt} = -N\frac{d(kNi)}{dt} = -kN^{2}\frac{di}{dt} = -L\frac{di}{dt}$$

$$H=NI/l$$

L determines how much voltage is generated per unit change of current:

<u>E.g.</u>: If a coil has L = 1H & its current changes @ dI/dt = 1 Amp/sec, => produces EMF = 1V that opposes this change in current.

Inductance of solenoid

$$v(t) = -N\frac{d\Phi}{dt} = -N\frac{d(kNi)}{dt} = -kN^2\frac{di}{dt} = -L\frac{di}{dt}$$

For averages of
$$l$$
, Φ or by $\int \Rightarrow N\Phi = Li$ or $L = \frac{N\Phi}{i}$
$$B = \mu H = \mu \frac{Ni}{l}$$
 Length, $l \to L$ and $L = \frac{N\Phi}{i}$ $L = \frac{N\Phi}{i}$ (H) or (Wb/A)

Magnetic Field Energy and Energy Density

Definition:

Magnetic field energy W: $W = \frac{1}{2}Li^2$ (Joules)

$$L = \frac{\mu N H A}{i}$$

$$B = \frac{\mu N i}{l_c} \Rightarrow i = B \frac{l_c}{\mu N}$$

$$W = \frac{1}{2} B H \left(A l_c\right)$$

$$Volume$$

Energy density =
$$\frac{W}{volume} = \frac{1}{2}BH$$

Mutual Inductance (M)

Mutual inductance (M) is the ability of one inductor to induce a voltage across a neighboring inductor.

M exists when:

- → 2 circuits are close to each other,
- \rightarrow one at least has an AC source (I or V). (remember: $L_{@ DC} \rightarrow SC$)

Mutual Inductance (M)

Mutual inductance (M) is the ability of one inductor to induce a voltage across a neighboring inductor.

Assume 2 inductors close to each other (but NOT touching).

The mag. flux ϕ_1 from coil-1 $\begin{pmatrix} \text{couples} \\ \text{links} \\ \text{affects} \end{pmatrix}$ with coil-2 and induces voltage in it.

- $i_2 = 0$ (L_2 is O.C.)
- L_1 provides a total flux \mathcal{O}_1 that has 2 components: \mathcal{O}_{11} and \mathcal{O}_{12}

Assuming flux is uniform & omnidirectional, we can write

$$\Phi_1 = \Phi_{11} + \Phi_{12}$$

Coils are magnetically coupled through Φ_{12}

Mutual Inductance (M)

The entire Φ_1 links L_1 , so it induces in L_1 a voltage:

$$v_1(t) = -N_1 \frac{d\Phi_1(t)}{dt}$$

Only Φ_{12} links L_1 with L_2 . Φ_{12} induces in L_2 a voltage:

$$v_2(t) = -N_2 \frac{d\Phi_{12}(t)}{dt}$$

Mutual Inductance (M)

$$v_1(t) = -N_1 \frac{d\Phi_1(t)}{dt} = -N_1 \frac{d\Phi_1(t)}{di_1(t)} \cdot \frac{di_1(t)}{dt}$$

 L_1 'self'-inductance of coil 1

$$v_{2}(t) = -N_{2} \frac{d\Phi_{12}(t)}{dt} = -N_{2} \frac{d\Phi_{12}(t)}{di_{1}(t)} \cdot \frac{di_{1}(t)}{dt}$$

 M_{21}

Mutual inductance of coil 2 due to current in coil 1

$$M_{21} = N_2 \frac{d\Phi_{12}(t)}{di_1(t)}$$

 v_2 i_1

relates the v_2 with i_1

Mutual Inductance (M)

Now let's move the source to the right, and OC coil L_1 :

$$M_{12} = N_1 \frac{d\Phi_{21}(t)}{di_2(t)}$$

It can be approved that

$$M_{12} = M_{21} = M$$

To measure how much magnetic coupling exists between 2 coils, we use the coupling coefficient: $k = \frac{\Phi_{12}}{\Phi_1} = \frac{\Phi_{21}}{\Phi_2}$.

k represents the fraction of the total flux emanating from one coil that links the other coil, so: $0 \le k \le 1$, so $M \le \sqrt{L_1 L_2}$ M is always positive

Mutual Inductance (M)

Mutual inductance (M) is the ability of one inductor to induce a voltage across a neighboring inductor.

M exists when:

- 2 circuits are close to each other
- \triangleright and one at least has an AC source (I or V). (remember: $L_{@DC} \rightarrow SC$)

M is always positive: M > 0

Obviously,
$$v(t)$$
 can be $\begin{cases} > 0 \\ < 0 \end{cases}$ because $v(t) = -M \begin{cases} \frac{dI}{dt} \end{cases}$ (same as $-L \frac{di}{dt}$)

Name	Integral equations	Differential equations
Gauss's law	$\iint_{\partial\Omega}\mathbf{E}\cdot\mathrm{d}\mathbf{S}=rac{1}{arepsilon_0}\iint_{\Omega} ho\mathrm{d}V$	$ abla \cdot \mathbf{E} = rac{ ho}{arepsilon_0}$
Gauss's law for magnetism	$\iint_{\partial\Omega}\mathbf{B}\cdot\mathrm{d}\mathbf{S}=0$	$ abla \cdot {f B} = 0$
Maxwell–Faraday equation (Faraday's law of induction)	$\oint_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d}m{\ell} = -rac{\mathrm{d}}{\mathrm{d}t} \iint_{\Sigma} \mathbf{B} \cdot \mathrm{d}\mathbf{S}$	$ abla imes \mathbf{E} = -rac{\partial \mathbf{B}}{\partial t}$
Ampère's circuital law (with Maxwell's addition)	$\oint_{\partial \Sigma} \mathbf{B} \cdot \mathrm{d}m{\ell} = \mu_0 \iint_{\Sigma} \mathbf{J} \cdot \mathrm{d}\mathbf{S} + \mu_0 arepsilon_0 rac{\mathrm{d}}{\mathrm{d}t} \iint_{\Sigma} \mathbf{E} \cdot \mathrm{d}\mathbf{S}$	$ abla imes \mathbf{B} = \mu_0 \left(\mathbf{J} + arepsilon_0 rac{\partial \mathbf{E}}{\partial t} ight)$

$$\oint \mathbf{Edl} = -\frac{d}{dt} \iint \mathbf{BdS}$$

The circulation of the E-field over a closed path is proportional to the timederivative of the magnetic flux through the surface enclosed by the path.

Name	Integral equations	Differential equations
Gauss's law	$\iint_{\partial\Omega}\mathbf{E}\cdot\mathrm{d}\mathbf{S}=rac{1}{arepsilon_0}\iint_{\Omega} ho\mathrm{d}V$	$ abla \cdot \mathbf{E} = rac{ ho}{arepsilon_0}$
Gauss's law for magnetism	$\iint_{\partial\Omega}\mathbf{B}\cdot\mathrm{d}\mathbf{S}=0$	$ abla \cdot {f B} = 0$
Maxwell–Faraday equation (Faraday's law of induction)	$\oint_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d}m{\ell} = -rac{\mathrm{d}}{\mathrm{d}t} \iint_{\Sigma} \mathbf{B} \cdot \mathrm{d}\mathbf{S}$	$ abla imes \mathbf{E} = -rac{\partial \mathbf{B}}{\partial t}$
Ampère's circuital law (with Maxwell's addition)	$\int_{\partial \Sigma} \mathbf{B} \cdot \mathrm{d}oldsymbol{\ell} = \mu_0 \iint_{\Sigma} \mathbf{J} \cdot \mathrm{d}\mathbf{S} + \mu_0 arepsilon_0 rac{\mathrm{d}}{\mathrm{d}t} \iint_{\Sigma} \mathbf{E} \cdot \mathrm{d}\mathbf{S}$	$oxed{ abla imes \mathbf{B} = \mu_0 \left(\mathbf{J} + arepsilon_0 rac{\partial \mathbf{E}}{\partial t} ight)}$

$$\oint \mathbf{B} \cdot \mathbf{dl} = \mu_0 \iint \mathbf{J} \cdot \mathbf{dS} + \mu_0 \varepsilon_0 \frac{d}{dt} \iint_S \mathbf{E} \cdot \mathbf{dS}$$
Ampere's law

The circulation of the **Magnetic Field B** over a closed path is proportional to the flux of the current density **J**, and the time derivative of the flux of the electric field through the surface enclosed by the path.

$$\oint \mathbf{B} \cdot \mathbf{dl} = \mu_0 \iint \mathbf{J} \cdot \mathbf{dS} + \mu_0 \varepsilon_0 \frac{d}{dt} \iint_S \mathbf{E} \cdot \mathbf{dS}$$

Maxwell's contribution to Ampere's law

In a capacitor there is no *J* between the plates, so how can we 'complete' the circuit?

$$\oint \mathbf{B} \cdot d\mathbf{l} = 2\pi r B = \mu_0 \varepsilon_0 \frac{dE}{dt} A$$

$$J_D = \frac{dE}{dt} \quad \text{`complete' the circuit.}$$

Displacement current