杨景兰 Yang Jinglan 121090699

Problem 1 (25pts). Suppose that $f: \mathbf{R} \to \mathbf{R}$ is convex, and $a,b \in \text{dom } f$ with a < b, where dom denotes the domain of the function. More specifically, $f: \mathbf{R}^p \to \mathbf{R}^q$ means that f is an \mathbf{R}^p -valued function on some subset of \mathbf{R}^p , and this subset of \mathbf{R}^p is the domain of the function f. Show that

$$f(x) \le \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b)$$
, for all $x \in (a,b)$

 $f(x) \leq \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b), \text{ for all } x \in (a,b)$ Hint: (Jensen's Inequality) If p_1,\dots,p_n are positive numbers which sum to 1 and f is a real continuous function that is convex, then

$$f\left(\sum_{i=1}^{n} p_i x_i\right) \le \sum_{i=1}^{n} p_i f\left(x_i\right)$$

(a) since f is a convex function, (a,b) is a convex set.

Assume X= >a+(1->) b, YE [0,1]

 $f(x) = f(\lambda a + (I - \lambda)b) \leq \lambda f(a) + (I - \lambda)f(b)$

Y XE (a,b)

11 DC b-X < b-a , O < X-a < b-a

$$(\frac{b-x}{b-a} + \frac{x-a}{b-a} = \frac{b-a}{b-a} = 1)$$

let
$$\lambda = \frac{b-x}{b-a}$$
, $1-\lambda = \frac{x-a}{b-a}$

$$(1 f(x) \le \frac{b - x}{b - a} f(a) + \frac{x - a}{b - a} f(b)$$

(b)
$$\frac{f(x)-f(a)}{x-a} \leq \frac{f(b)-f(a)}{b-a} \leq \frac{f(b)-f(x)}{b-x}$$

for all $x \in (a, b)$. Draw a sketch that illustrates this inequality.

f(x)-f(a) is the slop of line ② fibi-ta) is the slop of line () fibi-fix) is the slop of line 3

Hence,
$$\frac{f(x)-f(a)}{x-a} \le \frac{f(b)-f(a)}{b-a} \le \frac{f(b)-f(x)}{b-x}$$

(c) Suppose f is differentiable. Use the result in (b) to show that:

$$f'(a) \le \frac{f(b) - f(a)}{b - a} \le f'(b)$$

Note that these inequalities also follow form:

$$f(b) \ge f(a) + f'(a)(b-a), \quad f(a) \ge f(b) + f'(b)(a-b)$$

(C) From (b), we get
$$\frac{f(x)-f(a)}{x-a} \le \frac{f(b)-f(a)}{b-a} \le \frac{f(b)-f(x)}{b-x}$$

$$f'(a) = \lim_{\Delta h \neq 0} \frac{f(a + \Delta h) - f(a)}{\Delta h}$$

Assume
$$\Delta h = x - a$$
, $x = \Delta h + a$. $\frac{f(x) - f(a)}{x - a} = \frac{f(\Delta h + a) - f(a)}{\Delta h}$

From graph in (b), we get $f'(a) \le \frac{f(x) - f(a)}{x - a}$

In the same way, we get
$$f'(b) > \frac{f(b) - f(x)}{b - x}$$

Hence, $f'(a) \le \frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a} \le \frac{f(b) - f(x)}{b - x} \le f'(b)$
 $\Rightarrow f'(a) \le \frac{f(b) - f(a)}{b - a} \le f'(b)$

(d) Suppose f is twice differentiable. Use the result in (c) to show that $f''(a) \ge 0$ and $f''(b) \ge 0$.

7 b7a

$$f''(a) = \lim_{\Delta h \to 0} \frac{f'(a + \Delta h) - f'(a)}{\Delta h}$$
, $f''(b) = \lim_{\Delta h \to 0} \frac{f'(b + \Delta h) - f'(b)}{\Delta h}$

Problem 2 (30pts) Show that the following functions are convex:

(a)
$$f(x) = -\log\left(-\log\left(\sum_{i=1}^m e^{a_i^Tx+b_i}\right)\right)$$
 on $\operatorname{dom} f = \left\{x \mid \sum_{i=1}^m e^{a_i^Tx+b_i} < 1\right\}$. You can use the fact that $\log\left(\sum_{i=1}^n e^{a_i}\right)$ is convex.

since aitxi+bi is linear, yi is convex.

$$dom \ f = \{x \mid \Xi_{i=1}^m e^{a_i^T x + b_i^m} < \iota\} = \{y \mid \Xi_{i=1}^m e^{y_i^t} < \iota\} \ \ is \ a \ \ \textit{Convex set}.$$

(b)
$$f(x,u,v) = -\log \left(uv - x^Tx\right) \text{ on } \mathrm{dom}\, f = \left\{(x,u,v) \mid uv > x^Tx, u,v > 0\right\}$$

(b) let gix) = uv-xTx, u,v>0.

$$g'(x) = -2x$$
, $g''(x) = -2 < 0$

⇒ gix)= uV-x x is a concave function.

$$f(x,u,v) = -\log(uv - x^Tx) = -\log(g(x))$$

(fix) = - log(x) is a concave function

in $f(x,u,v) = -log(uv - x^Tx)$ is a convex function.

(c) Let $T(x,\omega)$ denote the trigonometric polynomial

$$T(x,\omega) = x_1 + x_2 \cos \omega + x_3 \cos 2\omega + \dots + x_n \cos(n-1)\omega$$

Show that the function

$$f(x) = O \int_{0}^{2\pi} \log T(x, \omega) d\omega$$
 Concave

is convex on $\{x \in \mathbf{R}^n \mid T(x,\omega) > 0, 0 \le \omega \le 2\pi\}$. Hint: Nonnegative weighted sum of convex functions is still convex. Let this property extend to infinite sums and integrals. Assume that f(x,y) is convex in x for each $y \in \mathcal{A}$ and $w(y) \ge 0$ for each $y \in \mathcal{A}$ and integral exists. Then the function g defined as

$$g(x) = \int_{-1}^{1} w(y)f(x, y)dy$$

is convex in x.

(C) Assume wis fixed, TLX, w) = X1+1/2005W+ X2005ZW+(1+ Kn cos(n-1)W is linear.

⇒ T(X,W) is convex in X for each W ∈ [0, ZNJ].

V log(x) is a concave function, TixN) 70

(1-10g T(XW) is convex in x for each w in 10,212].

Since nonnegative weighted sum of convex functions is still convex,

$$f(x) = \int_0^{2\pi} -\log T(x,w) \, dw = -\int_0^{2\pi} \log T(x,w) \, dw \quad \text{is annex}.$$

Problem 3 (20pts). Consider the following function:

- (a) Verify this is a convex optimization problem.
- (b) Use CVX to solve the problem.

 $(a) 0 objective function = f(x) = -X_1 - X_2 + max (X_2, X_4).$

Xx, X4 are linear, max x Xx, X43 is a convex function.

 \Rightarrow f(x) = -X₁-X₂+ max{X₂,X₄} is a convex function.

@ ponstraints=

XI+ZXz+Xs+ZX4≤6 is linear (convex set).

Q(K1, K2,K4,K4) = [Z(X1-K2), -Z(X1-K2), 4(K3+ZX4)³, 8(K3+ZX4)³]

$$\nabla^{2} \mathcal{G}(k_{1}, k_{2}, k_{4}, h_{\psi}) = \begin{bmatrix}
z & -z & 0 & 0 \\
-z & z & 0 & 0 \\
0 & 0 & |z(k_{1}+zk_{4})^{2} | |z(k_{1}+zk_{4})^{2} \\
0 & 0 & |z(k_{1}+zk_{4})^{2} | |k_{1}(k_{1}+zk_{4})^{2}
\end{bmatrix} = A$$

(let (A) = ZXZX [12(K3+2K4)2 48(K3+2K4)2-24(K3+2K4)2 + ZK(-2)X[12(K3+2K4)2 48(K3+2K4)2-[24(K3+2K4)]2]

tria) = 4+bo(x3+2x4)2>0

> Hesslan matrix is PSD.

⇒ G(K1, K2, K4, K4) is convex.

 $(1/(X_1-X_2)^2+(X_1+(Y_4)^4 \le 5)$ is a convex set.

Hence, this is a convex optimization problem.

From the graph, we get that rcp) is not concave.

Problem 4 (25pts). To model the influence of price on customer purchase probability, the following logit model is often used:

$$\lambda(p) = \frac{e^{-p}}{1 + e^{-p}}$$

where p is the price, $\lambda(p)$ is the purchase probability.

what ρ is the pure, A(p) is the pure large probability. Assume the variable cost of the product is 0 (e.g., iPhone Apps). As the seller, you want to maximize the expected revenue by choosing the optimal price. That is, you want to solve:

$$\text{maximize}_p \quad p\lambda(p)$$

(a) Draw a picture of $r(p) = p\lambda(p)$ (for p from 0 to 10) and use the picture to show that r(p) is not concave (thus maximize r(p) is not a convex optimization problem)

(a)
$$r(p) = p\lambda(p) = \frac{Pe^{-p}}{1+e^{-p}}$$

(b) Write down p as a function of λ (the inverse function of $\lambda(p)$). Show that you can write the objective function as a function of $\lambda: \tilde{r}(\lambda)$, where $\tilde{r}(\lambda)$ is concave in λ .

(b)
$$\lambda(p) = \frac{e^{-p}}{1 + e^{-p}}$$

$$\Rightarrow e^{-P} = \frac{\lambda}{1-\lambda}$$

$$\Rightarrow -p = \ln(\frac{\lambda}{(-\lambda)})$$

$$\Rightarrow P = ln(\frac{l-\lambda}{\lambda})$$

⇒ p= ln (l-)) - ln ())

Objective function= $P\lambda(P) = \lambda [ln(+\lambda) - ln(\lambda)]$

 $\Rightarrow \tilde{r}(\lambda) = \lambda [\ln(-\lambda) - \ln(\lambda)]$

$\widehat{r}'(\lambda) = n(1-\lambda) - (n(\lambda)) + \frac{-\lambda}{1-\lambda} - 1 = n(1-\lambda) - n(\lambda) + \frac{1}{\lambda-1}$	
$\hat{F}^{*}(\lambda) = \frac{1}{1} - \frac{\lambda}{\lambda} - \frac{(\lambda + 1)^{2}}{1} = \frac{\lambda(\lambda + 1)^{2}}{-1}$	
2.7	
ASSUME >70, F"(X)<0	
Hence, $\tilde{r}(\lambda) = \chi [\ln(1-\lambda) - \ln(\lambda)]$ is concave in λ .	
(c) From part 2, write the KKT condition for the optimal λ . Then transform it back to an optimal condition in p .	
(c) $\min \lim_{\lambda \to \infty} -\lambda \ln \frac{(-\lambda)}{\lambda} = (\lambda \ln \frac{\lambda}{(-\lambda)})$	
subject to $\lambda - \frac{1}{2} \leq 0$	
λ-30	
$L(\lambda, V) = \lambda \ln \frac{\lambda}{1 - \lambda} + V(\lambda - \frac{1}{2})$	
kkT condition for optimal λ=	KKT condition for optimal P=
① main condition=	O main condition =
-Inu->>+Inux) + 1-> + > >0	-P+ 1+e-P+ V70
© dual feasibility= V>0	Soual feasibility = 170
© Complementatity =	3 complementatity=
V (ソーラ)=0	$V\left(\frac{e^{-P}}{ te^{-P} } - \frac{1}{2}\right) = 0$
$\lambda \left(-\ln(1-\lambda) + \left(\ln(\lambda) + \frac{1}{1-\lambda} + V\right) = 0$	$e^{-P} + \frac{e^{-P}}{1+e^{-P}}(V-P) = 0$
© Primal teasibility=	@ primal feasibility=
λ-ゼ<0, λ <i>7</i> 0	05 e-P = 5