

SEABORN CHEAT-SHEETS

Seaborn is a Python data visualization library based on Matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics.

import the libraries

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

load the dataset

tips = sns.load_dataset('tips') tips.head()

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

METHOD 2

sns.barplot(x="sex", y="total_bill", hue="day", data=tips);

B) COUNTPLOT

sns.countplot(x='day',order=tips.day.value_counts().index,data=tips);

1- DISTRIBUTION PLOT

A) DISPLOT

sns.distplot(tips['total_bill'], hist_kws=dict(edgecolor="k",li newidth=1), bins=15, kde=False);

C) BOXPLOT

sns.boxplot(x="day", y="total_bill", hue="smoker", data=tips);

sns.set(style="darkgrid")

Set up the matplotlib figure

f, axes = plt.subplots(2, 2, figsize=(7, 7), sharex=True)

sns.despine()

Generate a random univariate dataset

rs = np.random.RandomState(10)

d = rs.normal(size=100)

Plot a simple histogram with binsize determined automatically

sns.distplot(d, kde=False, hist_kws=dict(edgecolor="k", linewidth=1), color="b", ax=axes[0, 0]) # Plot a kernel density estimate and rug plot

sns.distplot(d, hist=False, rug=True, color="r", ax=axes[0, 1])

Plot a filled kernel density estimate

sns.distplot(d, hist=False, color="g", kde_kws={"shade": True}, ax=axes[1, 0])

Plot a histogram and kernel density estimate sns.distplot(d, color="m", ax=axes[1, 1])

plt.tight layout()

D) VIOLINPLOT

E) STRIPPLOT

sns.violinplot(x="day", y="total_bill", data=tips);

sns.stripplot(x="day", y="total_bill", hue="sex", data=tips);

2- CATEGORICAL PLOT

A) BAR PLOT - METHOD 1

sns.barplot(tips["sex"], tips["total_bill"]);

F) SWARMPLOT (VIOLINPLOT + STRIPPLOT)

sns.swarmplot(x="day", y="total_bill", hue="sex", data=tips);

G) CATPLOT (FORMER NAME: FACTOR PLOT)

sns.catplot(x='sex',y='total_bill', data=tips, kind='bar') # kind options: bar, swarm, strip(default), box, violin, point andcount.

H) POINTPLOT

sns.pointplot(x="time", y="total_bill", data=tips)

3- Matrix and Grid Plots

A-Heat Map

sns.heatmap(tips.corr(), cmap="coolwarm", annot=True);

B) PAIR PLOT

sns.pairplot(tips);

C) FACETGRID

tips.head()

ı		total_bill	tip	sex	smoker	day	time	size
ı	0	16.99	1.01	Female	No	Sun	Dinner	2
ı	1	10.34	1.66	Male	No	Sun	Dinner	3
ı	2	21.01	3.50	Male	No	Sun	Dinner	3
ı	3	23.68	3.31	Male	No	Sun	Dinner	2
	4	24.59	3.61	Female	No	Sun	Dinner	4

g = sns.FacetGrid(tips, col="time", row="smoker")g.map(plt.hist, "total_bill")

4- JOINPLOT

sns.jointplot(x="total_bill", y="tip", kind="scatter", data=tips); # kind options =scatter (default), reg, resid, kde, hex.

5- LMPLOT

sns.lmplot(x="total_bill", ci=95, y="tip", data=tips, row="sex",col="time", aspect=1, height=5)

