实验07

微控制器实验

实验目的与要求

- 掌握微指令的编码结构和编码方法
- 掌握微程序的执行方式 (宏观和微观)
- 掌握机器指令与微程序的关系

• 机器程序如下,请指出运行过程(在关键路径上标记序号):

机器指令2 机器指令n 机器指令1 机器指令1 机器指令2 机器指令n

实验原理——机器程序一般运行过程: 程序计数器PC

• 多字节指令

实验原理——机器程序一般运行过程: 指令散转

- 微指令有11位下址字段,可能参与决定下一条要执行的微指令地址
- 但
 - 指令分析如何转到多个微程序入口?

实验原理——微程序的执行过程

- 机器程序一般按顺序执行
- 跳转指令产生分支

• 微程序如何确定下一条微指令?

实验原理——微程序的执行过程

- 微程序中,有时需要跳转
 - 计算结果是0时
 - 中断时
 -
- 跳转
 - 本质上是产生分支

- 在机器程序中
 - 称为"跳转"
- 在微程序中
 - 称为"散转"

实验原理——散转

- 取指周期散转
 - Mem操作数→IR时
 - 即,取指时
- 执行周期散转
 - 其他时候

- 注意:
 - 不同厂商散转策略不同

实验原理——散转: 取指周期散转

- 散转依据
 - IR (指令寄存器) 的值

• 全8位散转

• 高4位散转(IR4=0) (参考P117取指)

• 高4位散转(IR4=1)

uPC=uPC+1

取指周期散转

IR[4]=0的情况

全8位散转

高4位散转

IR[4]=1的情况

- 增量计数变址
 - 在当前执行的微指令地址基础上增1
 - 即:uPC=uPC+1
- 绝对变址
 - 跳转到当前微指令下址指定的地址执行
 - 即: uPC=下址
- 进位标志变址
 - 在当前微指令下址基础上修改
 - 根据进位标志修改
- 零标志变址
 - 在当前微指令下址基础上修改
 - 根据零标志修改

- 中断变址
 - 在当前微指令下址基础上修改
 - 根据中断标志位修改
- 指令微变址A
 - 根据IR的值
- 指令微变址B
 - 根据IR的值

- 增量计数变址
 - uPC = uPC+1
 - 微指令下址段忽略
 - 实验箱上手动在线模式(P77)
 - lulczlds=100

- 绝对变址
 - uPC=下址
 - 直接以微指令下址作为下址
 - 实验箱上手动在线模式(P77)
 - lulczlds=110

- 进位标志变址
 - 在下址基础上修改
 - 先 uPC=下址
 - •后 uPC[0]=CY
 - 实验箱上手动在线模式(P77)
 - lulczlds=010

ud10 ud9 ud8 ud7 ud6 ud5 ud4 ud3 ud2 ud1 CY

- 零标志变址
 - 在下址基础上修改
 - 先 uPC=下址
 - •后 uPC[0]=ZI
 - 实验箱上手动在线模式(P77)
 - lulczlds=011

ud10 ud9 ud8 ud7 ud6 ud5 ud4 ud3 ud2 ud1 ZI

- 中断变址
 - 在下址基础上修改
 - 先 uPC=001
 - •后 uPC[1]=/INQ
 - 实验箱上手动在线模式(P77)
 - lulczlds=111

- 指令微变址A
 - 实验箱上无相应实验
 - lulczldsIE的特定组合

ud10	ud9	ud8	ud7	ud6	ud5	ud4	ud3	ud2	ud1	ud0
1	1	IR[7:4]			0	0	0	0	0	

- 指令微变址B
 - 实验箱上无相应实验
 - lulczldsIE的特定组合
 - 用于设计特殊寻址 (例如P97中不同的寻址方式)

ud10	ud9	ud8	ud7	ud6	ud5	ud4	ud3	ud2	ud1	ud0
1	1	0	0	0	0	IR[3:2]	0	0	0

实验原理——跳转机器指令的实现过程

• JMP指令的实现过程 (示意)

时刻	PC值 (地址)	当前执行 (地址)	动作			
1	addr1+3	addr1+2	OUT DR			
2.1	addr1+4	addr1+3	JMP			
2.2	addr2	addii+3	addr2			
3	addr2+1	addr2	机器指令			
•••••						

	内存
addr1+0	IN DR
addr1+1	INC DR
addr1+2	OUT DR
addr1+3	JMP [addr2]
addr2	机器指令

18

实验要求

- P76-P78
 - 指令微地址的形成实验
 - 后续微地址的形成实验