TUTORIAL-11

PRE-TUTORIAL ASSIGNMENT- SOLUTION

Solution:

From Fig. 1(a) we can write,

$$V_{AB} = L_x I_1 + L_z I_1 + L_z I_2$$
$$V_{CD} = L_y I_2 + L_z I_1 + L_z I_2$$

From Fig. 1(b) we can write,

$$V_{AB} = 2I_1 + 3.5I_2$$

 $V_{CD} = 6I_2 + 3.5I_1$

From the above equations we can write,

$$L_x + L_z = 2$$

$$L_z = 3.5 H$$

$$\Rightarrow L_x = -1.5 H$$

$$L_y + L_z = 6$$

$$\Rightarrow L_y = 2.5 H$$

(b) If the dot in the secondary of Fig. 1(b) is reversed than the equations will be,

$$V_{AB} = 2I_1 - 3.5I_2$$

 $V_{CD} = 6I_2 - 3.5I_1$

From the above equations we can write,

$$L_x + L_z = 2$$

$$L_z = -3.5 H$$

$$\Rightarrow L_x = 5.5 H$$

$$L_y + L_z = 6$$

$$\Rightarrow L_y = 9.5 H$$

Solution-1:

Applying KVL in the loop ABCDA

$$\frac{10t^2}{t^2 + 0.01} = 10 \times 10^{-3} \frac{di_1}{dt}$$
$$\Rightarrow \frac{di_1}{dt} = \frac{1000t^2}{t^2 + 0.01}$$

There will be an induced voltage in 40 mH coil due to the current $m{i_1}$ in 10 mH coil. Applying KVL in the loop EFGHE

$$15 \times 10^{-3} \frac{di_1}{dt} = V_x$$
$$\Rightarrow V_x = \frac{15t^2}{t^2 + 0.01}$$

Applying KVL in the loop LKJIL

$$100V_x - \frac{\int i_c dt}{C} = 0$$

$$\Rightarrow i_c = 100C \times \frac{dV_x}{dt} = \frac{0.03t}{(t^2 + 0.01)^2} mA$$

Solution-2:
$$Z_{in} = R_s + j \left(\omega L_s - \frac{1}{\omega C_s} \right)$$
 At $\omega = 45 krad / s$, $Z_{in} = 65.4 \angle - 40.2^\circ$

$$\frac{Z_c}{R} = \frac{1}{\omega CR} = \frac{1}{45 \times 10^{-4} \times 50} = 4.44$$

Maximum value of current will flow when the impedance is minimum. The impedance will be minimum when

$$\left(\omega L_{\rm s} - \frac{1}{\omega C_{\rm s}}\right) = 0$$
, Hence

$$\omega = \frac{1}{\sqrt{LC}} = 50 \text{krad / s}$$
 and the corresponding $f = \frac{\omega}{2\pi} = 7.96 \text{kHz}$

Solution-3:

Decimal	Binary I\P	$y_4 \ y_3 \ y_2 \ y_1 \ y_0$
X	$X_2 X_1 X_0$	
0	0 0 0	0 0 0 1 0
1	0 0 1	0 0 1 0 1
2	0 1 0	0 1 0 0 0
3	0 1 1	0 1 0 1 1
4	1 0 0	0 1 1 1 0
5	1 0 1	1 0 0 0 1
6	1 1 0	1 0 1 0 0
7	1 1 1	1 0 1 1 1

By observation

$$y_0 = x_0$$

$$y_0 = \sum_{n=0}^{\infty} m(0, n)$$

$$y_1 = \sum m(0,3,4,7)$$

$$y_2 = \sum m(1,4,6,7)$$

$$y_3 = \sum m(2,3,4)$$

$$y_4 = \sum m(5, 6, 7)$$

S_1	S_0	MUX
0	0	I_0
0	1	${ m I}_1$
1	0	${ m I}_2$
1	1	I_3

Уз	У2	У1	Уо
x_3	\mathbf{x}_2	x_1	x_0
0	x_3	x_2	\mathbf{x}_1
0	0	x_3	x_2
x_2	\mathbf{x}_1	x_0	0