The University Interscholastic League Number Sense Test ◆ HS District 2 ◆ 2016

			Final
Contestant's Number			2nd
Read directions carefully before beginning test		UNFOLD THIS SHEET L TOLD TO BEGIN	1st Initials
Directions: Do not turn this page until 80 problems. Solve accurately and quick SOLVED MENTALLY. Make no caeach problem. Problems marked with a five percent of the exact answer will be The person conducting this contest s	kly as many as you can in alculations with paper and a (*) require approximates scored correct; all other	n the order in which they appear. ALL d pencil. Write only the answer in the ate integral answers; any answer to a sproblems require exact answers.	PROBLEMS ARE TO BE the space provided at the end of
		WAIT FOR SIGNAL!	
(1) 1865 — 1492 =		(19) If 9 *'s cost \$15.45 then	12 * 's cost \$
(2) 9.05 × 8 =	(decimal)	*(20) 796854 ÷ 395 =	
(3) 357 + 1944 =		$(21) \ 2^5 + 3^3 + 5^2 = \underline{\hspace{1cm}}$	
(4) 1948 ÷ 11 =	(mixed number)	(22) The additive inverse of	— ³ / ₈ is
(5) 64% =	(proper fraction)	(23) The sum of the prime nu	
(6) $1\frac{1}{16} = $	(decimal)	(24) $2 - 3 - 5 + 8 - 1 -$	_3=
(7) $26^2 = $		$(25) \ \ 27 \times 33 = \underline{\hspace{1cm}}$	
(8) $6102723 \div 9$ has a remainder of		$(26) \sqrt[3]{1728} = \underline{\hspace{1cm}}$	
$(9) \ 2\frac{4}{9} - \frac{2}{3} = \underline{\hspace{1cm}}$		(27) $109\frac{1}{11}\%$ of $66 = $	
*(10) $572 - 2016 + 1812 - 897 = $		(28) The number of proper d	
$(11) \ 4\frac{2}{3} + 3\frac{4}{9} = \underline{\hspace{1cm}}$	(mixed number)	(29) Set $A = \{a,c,u,t,e\}, O = \{a,c,u,t,e\}$	
(12) 72 × 25 =	production of the second of th	$\mathbf{R} = \{\mathbf{r}, \mathbf{i}, \mathbf{g}, \mathbf{h}, \mathbf{t}\}. \ \mathbf{O} \cap (\mathbf{A} \cup$	
(13) $1965 \div 3$ has a remainder of		*(30) $4\frac{7}{8} \times 3198 \div 13 = $	
(14) $3 \text{ yards} + 2 \text{ feet} - 8 \text{ inches} =$	inches	(31) If $x = 39$ and $y = 13$ then	
$(15) 1 + 2 + 3 + 4 + 5 + \dots + 24 + \dots$		(32) The LCM of 54 and 24 i	
(16) MXCVI =	_ (Arabic numeral)	(33) 0.181818 =	
(17) The GCD of 24, 54, and 72 is	, , , , , , , , , , , , , , , , , , ,	$(34) \ 4\frac{3}{5} \times 4\frac{2}{5} = \underline{\hspace{1cm}}$	
(18) 15% of \$14.00 = \$		(57) 75 ^ 75 =	(minted number)

(35)	35% of 30 minus 25 is
(36)	(60 × 38 — 16) ÷ 7 has a remainder of
(37)	135 base 6 in base 10 is
(38)	54 × 35 =
	37 × 43 + 9 =
	$\sqrt{61027} = $
	65% of 65 — 45% of 45 is
(42)	Let $A^k \times A^{-2} \div A^{-3} = A^5$. If $A > 1$, then $k = $
(43)	22 × 26 + 4 =
(44)	The sum of the roots of $3x^2 - 2x = 5$ minus the product of the roots of $3x^2 - 2x = 5$ is
(45)	The perimeter of a right triangle with a base of 7" and a hypotenuse of 25" is inches
(46)	2016 ₈ × 7 ₈ =8
(47)	How many pentagons meet at each vertex of a Platonic dodecahedron?
(48)	How many subsets containing 3 or 4 elements does the set {n,u,m,b,e,r} have?
(49)	$1\frac{3}{7} \div 4\frac{2}{3} = $
*(50)	$24^2 \times 6^3 =$
	The midpoint of the segment with endpoints $(6, 1)$ and $(-5, 4)$ is (x, y) . Find $x + y$.
(52)	7 + 12 + 19 + 31 + 50 + 81 + 131 + 212 =
(53)	$_6$ C ₄ × $_5$ P ₃ =
	If $\frac{7!}{5!} = \frac{(x+2)!}{(x+1)!}$, then $x = $
(55)	The probability of selecting an abundant number from the set of positive digits is
(56)	(-2+5i)(7+3i) = (a+bi). Find $a+b$.
(57)	314 × 319 =
(58)	If $3^{-1} + x^{-1} + 2^{-1} = 1$ then $x = $

	*
(59)	The number of positive integral divisors of 64 is
*(60)	123581 ÷ 321 =
(61)	The sum of the reciprocals of all of the positive divisors of 15 is
(62)	The Greatest Integer Function is written as $f(x) = [x]$. Find $\left[\sqrt{2} + \sqrt{3} + \sqrt{5}\right]$.
(63)	If $\begin{vmatrix} 1 & 15 \\ 6 & -28 \end{vmatrix} = 6k$, then $k = $ (mixed number)
(64)	$\cos(\frac{5\pi}{6})\cos(\frac{5\pi}{6}) - \sin(\frac{5\pi}{6})\sin(\frac{5\pi}{6}) = \underline{\hspace{1cm}}$
(65)	If $2\log_4(x-5) = 3$ then $x > 0$ is
(66)	Change 0.1222 base 3 to a base 3 fraction.
(67)	The volume of a rectangular pyramid with a base width of 2.4", a base length of 2.5", and a height 7" is in ³
(68)	$F(x) = x^3 - 4x^2 + x + 6$. $F(F(-1)) =$
(69)	The first four digits of the decimal for $\frac{23}{450}$ is 0

*(70) $1^2 + 2^2 + 3^2 + 4^2 + \dots 11^2 + 12^2 =$

(71) The 3rd hexagonal number plus the 3rd pentagonal number plus the 3rd triangular number is _____

(72) Let $f(x) = x^3 - 4x^2 + x + 6$. Find f''(-2).

(73) $12^{10} \div 8$ has a remainder of _____

(74) If $6x - 4 \equiv 2 \pmod{8}$, $2 \le x \le 7$, then x =_____

(75) If $f(x) = \sqrt[3]{2x-1}$, then $f^{-1}(4) =$

(76) Truncate $(\frac{\sqrt{5}+1}{2} \times \pi)$ to the nearest whole. ____

 $(77) \int_0^2 (3x - 5) \, dx = \underline{}$

(78) The range of the function $y = e^{(-x)}$ is y >

(-3,4) is

compounded semiannually is ____ dollars (integer)

(79) The dot product of the vectors (2, -1) and

*(80) The interest on \$2000 for 4 years at 6%

University Interscholastic League - Number Sense Answer Key HS • District 2 • 2016 *number) x - y means an integer between x and y inclusive

NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1)	373
(±)	910

(4)
$$177\frac{1}{11}$$

(5)
$$\frac{16}{25}$$

(9)
$$\frac{16}{9}$$
, $1\frac{7}{9}$

$$*(10) - 555 - -502$$

(11)
$$8\frac{1}{9}$$

$$(15)$$
 325

$$(17)$$
 6

(22) .375,
$$\frac{3}{8}$$

$$(33) \frac{2}{11}$$

(34)
$$20\frac{6}{25}$$

$$(35) -14.5, -\frac{29}{2}, \\ -14\frac{1}{2}$$

$$-14\frac{1}{2}$$

$$(42)$$
 4

$$(44) \frac{7}{3}, 2\frac{1}{3}$$

$$(49) \frac{15}{49}$$

$$(51)$$
 3

$$(54)$$
 40

$$(58)$$
 6

(61) 1.6,
$$\frac{8}{5}$$
, $1\frac{3}{5}$

$$(63) - 19\frac{2}{3}$$

(64) .5,
$$\frac{1}{2}$$

(66)
$$\frac{2}{10}$$
 (not reducible)

$$(68)$$
 6

$$*(70)$$
 618 $-$ 682

$$(71)$$
 33

$$(72) - 20$$

$$(75) \ 32.5, \frac{65}{2}, 32\frac{1}{2}$$

$$(77) - 4$$

$$(79) - 10$$

$$*(80)$$
 507 $-$ 560