Corrigé de la feuille d'exercices 4

Logarithme - Exponentielle - Puissances 1

Exercice 1. Montrons que f est bijective de \mathbb{R}_+^* sur \mathbb{R} . Soit $y \in \mathbb{R}_+^*$, soit $x \in \mathbb{R}$.

$$f(x) = y \iff \ln(e^x + 1) = y$$

 $\iff e^x = e^y - 1$
 $\iff x = \ln(e^y - 1)$

 $\ln(e^y - 1)$ est bien définie car $y \in \mathbb{R}_+^*$.

Ainsi, f est bijective de $\mathbb R$ dans $\mathbb R_+^*$ et $f^{-1}: \mathbb R_+^* \to \mathbb R$ $y \mapsto \ln(e^y - 1)$.

Exercice 2. 1. Pour tout $x \in \mathbb{R}_+, \sqrt{x^2 + 1} + x > 0$. Soit $x \in \mathbb{R}_{-}$,

$$\sqrt{x^2 + 1} + x > 0 \iff \sqrt{x^2 + 1} > -x$$

$$\iff \sqrt{x^2 + 1} > |x|$$

$$\iff x^2 + 1 > x^2$$

La dernière inégalité étant trivialement vraie sur \mathbb{R}_{-} , on obtient : $\forall x \in \mathbb{R}, \sqrt{x^2 + 1} + x > 0$. Ainsi, f est définie sur \mathbb{R} .

2. \mathbb{R} est symétrique par rapport à 0.

Soit
$$x \in \mathbb{R}$$
, $f(-x) = \ln(\sqrt{x^2 + 1} - x)$

$$= \ln\left(\frac{(\sqrt{x^2 + 1} - x)(\sqrt{x^2 + 1} + x)}{\sqrt{x^2 + 1} + x}\right)$$

$$= \ln\left(\frac{x^2 + 1 - x^2}{\sqrt{x^2 + 1} + x}\right)$$

$$= \ln\left(\frac{1}{\sqrt{x^2 + 1} + x}\right)$$

$$= -\ln(\sqrt{x^2 + 1} + x)$$

$$= -f(x)$$

Ainsi, f est impaire.

3. f est dérivable sur \mathbb{R} en tant que composée de fonction dérivable sur \mathbb{R} . Soit $x \in \mathbb{R}$, on a:

$$f'(x) = \frac{\frac{2x}{2\sqrt{x^2 + 1} + 1}}{\sqrt{x^2 + 1} + x} = \frac{x + \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}(\sqrt{x^2 + 1} + x)} = \frac{1}{\sqrt{x^2 + 1}}.$$

Ainsi, f'(x) > 0.

Donc f est strictement croissante sur \mathbb{R} .

1. $\lim_{x\to 1} \ln(x) = 0$ et $\lim_{X\to 0} X \ln(X) = 0$ donc par composition, $\lim_{x\to 1^+} \ln(x) \ln(\ln(x)) = 0$ forms in déterminée. On factories par le terme prépardément

2. On a une forme indéterminée. On factorise par le terme prépondérant. Soit
$$x > 0$$
, $\frac{\ln(1+x^2)}{2x} = \frac{\ln\left(x^2\left(1+\frac{1}{x^2}\right)\right)}{2x} = \frac{\ln(x^2) + \ln\left(1+\frac{1}{x^2}\right)}{2x} = \frac{\ln(x)}{x} + \frac{\ln\left(1+\frac{1}{x^2}\right)}{2x}$. Or, $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$, $\lim_{x \to +\infty} \frac{1}{x} = 0$ et $\lim_{x \to +\infty} \ln\left(1+\frac{1}{x^2}\right) = \ln(1) = 0$ (par composition).

Or,
$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$
, $\lim_{x \to +\infty} \frac{1}{2x} = 0$ et $\lim_{x \to +\infty} \ln\left(1 + \frac{1}{x^2}\right) = \ln(1) = 0$ (par composition).

Ainsi, par produit et somme, $\lim_{x\to +\infty}\frac{\ln(1+x^2)}{2x}=0$ 3. On a une forme indéterminée. On factorise par le terme prédominant.

Soit
$$x > 0$$
, $\frac{x+1}{e^x-1} = \frac{x}{e^x} \frac{1+\frac{1}{x}}{1-e^{-x}}$. Or, $\lim_{x \to +\infty} e^{-x} = 0$, donc par quotient, $\lim_{x \to +\infty} \frac{1-\frac{1}{x}}{1-e^{-x}} = 1$. De plus, par croissances comparées, $\lim_{x \to +\infty} \frac{x}{e^x} = 0$. Ainsi, par produit, $\lim_{x \to +\infty} \frac{x+1}{e^x-1} = 0$

4. Soit x > 0, $x^{1/x} = e^{\frac{\ln(x)}{x}}$. Or, $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$ et $\lim_{X \to 0} e^X = 1$ donc par composition, $\lim_{x \to +\infty} x^{1/x} = 1$

5. Soit x > 0, on a

$$\frac{(x^x)^x}{x^{(x^x)}} = \exp(x \ln(x^x) - x^x \ln x) = \exp(x^2 \ln x - x^x \ln x) = \exp(x^2 \ln x (1 - x^{x-2}))$$

Or, $x^{x-2} = e^{(x-2)\ln x} \underset{x \to +\infty}{\to} +\infty$ donc $x^2 \ln x (1 - x^{x-2}) \underset{x \to +\infty}{\to} -\infty$ par produit.

Ainsi, par composition, $\lim_{x \to +\infty} \frac{(x^x)^x}{x^{(x^x)}} = 0.$

6. Soit $x \in \mathbb{R}_+^*$, on a:

$$\frac{a^{(b^x)}}{b^{(a^x)}} = \exp(b^x \ln a - a^x \ln b) = \exp\left(b^x \left(\ln a - \left(\frac{a}{b}\right)^x \ln b\right)\right)$$

Or,
$$\left(\frac{a}{b}\right)^x = e^{x\ln\left(\frac{a}{b}\right)}$$
 et $\frac{a}{b} < 1$ donc $\ln\left(\frac{a}{b}\right) < 0$ donc $\lim_{x \to +\infty} \left(\frac{a}{b}\right)^x = 0$. De même, $b^x = e^{x\ln b}$ et $b > 1$ donc

 $\ln b > 0$ donc $\lim_{x \to +\infty} b^x = +\infty$. Finalement, a > 1 donc $\ln(a) > 0$, ainsi, $\lim_{x \to +\infty} \frac{a^{(b^x)}}{b^{(a^x)}} = +\infty$.

Exercice 4. Posons $f: x \mapsto x^x (1-x)^{1-x}$. Soit $x \in]0,1[$, $f(x) = e^{x \ln x} e^{(1-x) \ln(1-x)} = e^{x \ln x + (1-x) \ln(1-x)}$. f est dérivable sur]0,1[.

Soit $x \in]0,1[, f'(x)] = (\ln x - 1 - \ln(1-x) + 1)f(x) = (\ln x - \ln(1-x))f(x).$

Comme f est positive, f' est du signe de $g: x \mapsto \ln x - \ln(1-x)$.

Méthode 1:

g est dérivable sur]0,1[et on a pour tout $x \in]0,1[$, $g'(x)=\frac{1}{x}+\frac{1}{1-x}=\frac{1}{x(1-x)}>0$. Donc g est strictement croissante sur \mathbb{R}_+^* .

 $g(\frac{1}{2}) \stackrel{\neg}{=} 0$, donc g (et donc f') est négative sur $[0, \frac{1}{2}]$, positive sur $[\frac{1}{2}, 1]$.

Méthode 2 : Soit $x \in]0,1[$.

$$\ln(x) \ge \ln(1-x)$$

$$\iff x \ge 1-x$$

$$\iff x \ge \frac{1}{2}$$

Ainsi, g est négative sur $]0,\frac{1}{2}]$, positive sur $[0,\frac{1}{2}[$.

Ainsi f admet un minimum en $\frac{1}{2}$ valant $f(\frac{1}{2}) = \frac{1}{2}$, ce qui nous donne l'inégalité cherchée.

Exercice 5. 1. Soit $x \in \mathbb{R}$,

$$2^{x+4} + 3^x = 2^{x+2} + 3^{x+2} \iff 2^{x+4} - 2^{x+2} = +3^{x+2} - 3^x$$

$$\iff 12 \times 2^x = 8 \times 3^x$$

$$\iff \left(\frac{3}{2}\right)^x = \frac{12}{8} = \frac{3}{2}$$

$$\iff x = \frac{\ln\left(\frac{3}{2}\right)}{\ln\left(\frac{3}{2}\right)} = 1.$$

L'équation admet donc une unique solution qui est 1.

2. Soit $x \in \mathbb{R}$. On pose $X = 2^x$.

$$4^{x+1} + 2^{2-x} = 65 \iff 4X^2 + \frac{4}{X} = 65$$

 $\iff 4X^3 - 65X + 4 = 0$

4 est racine évidente de cette équation et on a : $4X^3 - 65X + 4 = (X - 4)(4X^2 + 16X - 1)$. Le discriminant de

 $4X^2+16X-1$ vaut 272 et ses racines sont $\frac{-4-\sqrt{17}}{2}$ et $\frac{-4+\sqrt{17}}{2}.$ On a donc

$$\begin{cases} X = \frac{-4 - \sqrt{17}}{2} \\ \text{ou} \\ X = \frac{-4 + \sqrt{17}}{2} \\ \text{ou} \\ X = 4 \end{cases}$$

$$\begin{cases} 2^x = \frac{-4 - \sqrt{17}}{2} \\ \text{ou} \\ 2^x = \frac{-4 + \sqrt{17}}{2} \\ \text{ou} \\ 2^x = 4 \end{cases}$$

$$\begin{cases} e^{x \ln 2} = \frac{-4 - \sqrt{17}}{2} \\ \text{ou} \\ e^{x \ln 2} = \frac{-4 + \sqrt{17}}{2} \end{cases}$$
 (aucune solution à cette équation car $e^{x \ln 2} > 0$).
$$\Leftrightarrow \begin{cases} e^{x \ln 2} = \frac{-4 + \sqrt{17}}{2} \\ \text{ou} \\ e^{x \ln 2} = 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{\ln \left(\frac{-4 + \sqrt{17}}{2} \right)}{\ln 2} \\ \text{ou} x = \frac{\ln 4}{\ln 2} \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{\ln \left(\frac{-4 + \sqrt{17}}{2} \right)}{\ln 2} \\ \text{ou} x = 2 \end{cases}$$

Les solutions de l'équation sont donc : $\left\{2, \frac{\ln\left(\frac{-4+\sqrt{17}}{2}\right)}{\ln(2)}\right\}.$

3. Soit $x \in \mathbb{R}$,

$$4^{x} - 3^{x - \frac{1}{2}} = 3^{x + \frac{1}{2}} - 2^{2x - 1} \iff 4^{x} + \frac{1}{2}4^{x} = 3^{x}\sqrt{3} + \frac{3^{x}}{\sqrt{3}}$$

$$\iff 4^{x} \times \frac{3}{2} = 3^{x}\frac{3 + 1}{\sqrt{3}}$$

$$\iff \left(\frac{4}{3}\right)^{x} = \frac{8}{3\sqrt{3}}$$

$$\iff x = \frac{\ln\left(\frac{8}{3\sqrt{3}}\right)}{\ln\left(\frac{4}{3}\right)}$$

L'équation admet donc une unique solution qui est $\frac{\ln\left(\frac{8}{3\sqrt{3}}\right)}{\ln\left(\frac{4}{3}\right)}$. Soit $x \in \mathbb{R}$ On remares

4. Soit $x \in \mathbb{R}$. On remarque que $\cos(x) \le 1$ et $(\sin x)^2 \ge 0$ donc $e^{(\sin x)^2} \ge 1$ donc $2^{(\sin(x))^2} \ge 1$. Ainsi,

$$x^{(\sin x)^2} = \cos x \iff \cos(x) = 1 = 2^{(\sin(x))^2}$$

$$\iff \cos(x) = 1 \text{ et } \sin(x) = 0$$

$$\iff x \equiv 0[2\pi] \text{ et } x \equiv 0[\pi]$$

$$\iff x \equiv 0[2\pi]$$

L'ensemble des solutions est donc $\{2k\pi, k \in \mathbb{Z}\}.$

Exercice 6. L'équation est bien définie sur $]1, +\infty[$. Soit x > 1.

$$\ln(x-1) + \ln(x+1) < 2\ln(x) - 1 \iff \ln\left(\frac{(x-1)(x+1)}{x^2}\right) < -1$$

$$\iff \frac{(x-1)(x+1)}{x^2} < e^{-1}$$

$$\iff \frac{x^2 - 1}{x^2} < e^{-1}$$

$$\iff 1 - \frac{1}{x^2} < e^{-1}$$

$$\iff 1 - \frac{1}{e} < \frac{1}{x^2}$$

$$\iff x^2 < \frac{e}{e-1}$$

$$\iff x \in \left[1, \sqrt{\frac{e}{e-1}}\right]$$

Ainsi, l'ensemble des solutions est $\left[1, \sqrt{\frac{e}{e-1}}\right]$.

Exercice 7. 1. f est définie sur \mathbb{R}_+^* et on a pour tout $x \in \mathbb{R}_+^*$, $f(x) = e^{x \ln x}$.

- 2. $\lim_{x\to 0} x \ln x = 0$ par croissances comparées et $\lim_{X\to 0} e^X = 1$. Ainsi, par composition, on a $\lim_{x\to 0} x^x = 0$. On a par produit, $\lim_{x\to +\infty} x \ln x = +\infty$ et $\lim_{X\to +\infty} e^X = +\infty$ donc par composition, $\lim_{x\to +\infty} x^x = +\infty$.

 3. D'après la question précédente, on a $\lim_{x\to 0} x^x = 0$, on peut donc poser f(0) = 0.
- Soit $x \in \mathbb{R}_+^*$.

$$\frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x} = \frac{x^x}{x} = x^{x-1} = e^{(x-1)\ln x}$$

Or, $\lim_{x\to 0} x \ln x = 0$ et $\lim_{x\to 0} \ln x = -\infty$ donc par somme, $\lim_{x\to 0} (x-1) \ln x = +\infty$. Puis par composition avec l'exponentielle, on obtient, $\lim_{x\to 0} \frac{f(x)}{x} = +\infty$. La fonction ainsi prolongée n'est donc pas dérivable en 0. La courbe représentative admet une tangente verticale au point d'abscisse (0,0).

4. f est dérivable sur \mathbb{R}_+^* en tant que composée de fonction composée de fonctions dérivables. Soit $x \in \mathbb{R}_+^*$, $f'(x) = (\ln(x) + 1)e^{x \ln x}.$ Or,

$$ln(x) + 1 > 0 \iff ln(x) > -1$$

 $\iff x > e^{-1}$

Exercice 8. Soit $x \in \mathbb{R}$.

$$\begin{array}{ccc} 1+\frac{1}{x}>0 & \Longleftrightarrow & \frac{x+1}{x}>0 \\ & \Longleftrightarrow & x\in]-\infty,-1[\cup]0,+\infty[\end{array}$$

Ainsi, f est définie sur $\mathcal{D} =]-\infty, -1[\cup]0, +\infty[$ et on $a: \forall x \in \mathcal{D}, f(x) = e^{x \ln(1+\frac{1}{x})}.$ Posons $h(x) = x \ln \left(1 + \frac{1}{x}\right)$, ainsi : $\forall x \in \mathcal{D}, \ f(x) = \exp(h(x))$.

f est dérivable sur son ensemble de définition et on a : $\forall x \in \mathcal{D}, \ f'(x) = h'(x) \exp(h(x)).$ f' est du signe de h' définie par :

$$\forall x \in \mathcal{D}, \ h'(x) = \ln\left(1 + \frac{1}{x}\right) - \frac{1}{x\left(1 + \frac{1}{x}\right)} = \ln\left(1 + \frac{1}{x}\right) - \frac{1}{x+1}.$$

h' est dérivable sur \mathcal{D} et on a : $\forall x \in \mathcal{D}$, $h''(x) = \frac{-1}{x^2 \left(1 + \frac{1}{x}\right)} + \frac{1}{(x+1)^2} = \frac{-1}{x(x+1)^2}$.

De plus, $\lim_{x\to\pm\infty}h'(x)=\ln(1)-0=0$ par composition. Ainsi :

x	$-\infty$ -	-1 ($+\infty$
h''(x)	+		_
h'	0		0

Ainsi : $\forall x \in \mathcal{D}, \ h'(x) > 0$. On a donc : $\forall x \in \mathcal{D}_f, \ f'(x) > 0$. Ainsi, f est croissante sur $]-\infty, -1[$ et sur $]0, +\infty[$. Comme $f = \exp \circ h$, on commence par étudier les limites de h aux bornes de \mathcal{D} .

- en $\pm \infty$: on a pour tout $x \in \mathbb{R}_+^*$, $h(x) = \frac{\ln\left(1 + \frac{1}{x}\right)}{\frac{1}{x}}$. Or, $\lim_{x \to +\infty} \frac{1}{x} = 0$ et $\lim_{X \to 0} \frac{\ln(1 + X)}{X} = 1$. Ainsi, par composition des limites, $\lim_{x \to +\infty} h(x) = 1$ et donc $\lim_{x \to +\infty} f(x) = e$ (toujours par composition).
- en 0 : pour tout $x \in \mathbb{R}_+^*$, $h(x) = x \ln(1+x) x \ln(x)$. Ainsi, par croissances comparées (pour le deuxième terme), $\lim_{x \to 0} h(x) = 0$ et donc $\lim_{x \to 0} f(x) = e^0 = 1$.
- en -1 : $\lim_{x\to(-1)^-} \left(1+\frac{1}{x}\right) = 0$ donc par composition et produit, $\lim_{x\to(-1)^-} h(x) = +\infty$ puis $\lim_{x\to(-1)^-} f(x) = +\infty$ (par composition).

2 Fonctions hyperboliques

Exercice 9. 1. Soit $x \in \mathbb{R}$.

$$\operatorname{sh}(x) \le 2 \quad \Longleftrightarrow \quad \frac{e^x - e^{-x}}{2} \le 2$$

On pose $X = e^x$. On a alors :

$$\operatorname{sh}(x) \le 2 \quad \Longleftrightarrow \quad X - \frac{1}{X} - 4 \le 0$$
 $\iff \quad X^2 - 4X - 1 \le 0$

Le discriminant du polynôme X^2-4X-1 vaut 20. Les racines de ce polynôme sont donc : $2-\sqrt{5}<0$ et $2+\sqrt{5}>0$. Ainsi,

$$\sinh(x) \le 2 \quad \iff \quad 2 - \sqrt{5} < X < 2 + \sqrt{5}$$

$$\iff \quad 2 - \sqrt{5} < e^x < 2 + \sqrt{5}$$

$$\iff \quad 0 \le e^x < 2 + \sqrt{5}$$

$$\iff \quad x < \ln(2 + \sqrt{5})$$

Ainsi, l'ensemble solution est $]-\infty, \ln(2+\sqrt{5})$ [.

2. Soit $x \in \mathbb{R}$. On a :

$$\operatorname{ch}(x) = 3 \quad \Longleftrightarrow \quad \frac{e^x + e^{-x}}{2} = 3$$

On pose $X = e^x$. On a alors :

$$ch(x) = 3 \iff X + \frac{1}{X} - 6 = 0$$
$$\iff X^2 - 6X + 1 = 0$$

Le discriminant du polynôme $X^2 - 6X + 1$ vaut 32. Les racines de ce polynôme sont donc : $3 - 2\sqrt{2} > 0$ et $3 + 2\sqrt{2} > 0$. Ainsi,

$$\operatorname{ch}(x) = 3 \iff \begin{cases} e^x = 3 + 2\sqrt{2} \\ \text{ou} \\ e^x = 3 - 2\sqrt{2} \end{cases}$$

$$\iff \begin{cases} e^x = 3 + 2\sqrt{2} \\ x = \ln(3 + 2\sqrt{2}) \\ \text{ou} \\ x = \ln(3 - 2\sqrt{2}) \end{cases}$$

Ainsi, l'ensemble des solutions est $\{\ln (3 - 2\sqrt{2}), \ln (3 + 2\sqrt{2})\}.$

3. L'équation $\operatorname{ch}(x)=3$ admet deux solutions réelles qui sont $\operatorname{ln}\left(3+2\sqrt{2}\right)$ et $\operatorname{ln}\left(3-2\sqrt{2}\right)$. Or, ch est strictement décroissante sur $]-\infty,0]$ et $3-2\sqrt{2}=\sqrt{9}-\sqrt{8}\leq 0$. Ainsi, pour tout $x\in[\ln(3-2\sqrt{2}),0]$, $\operatorname{ch}(x)\leq 3$ et pour tout $x\in[-\infty,\ln(3-2\sqrt{2})]$, $\operatorname{ch}(x)>3$. De la même manière, ch est croissante sur $[0,+\infty[$ donc pour tout $x\in[0,\ln(3+2\sqrt{2})]$, $\operatorname{ch}(x)\leq 3$ et pour tout $x\in[\ln(3+2\sqrt{2})]$, $\operatorname{ch}(x)>3$. On en déduit que l'ensemble des solutions est $[\ln(3-2\sqrt{2})]$, $\ln(3+2\sqrt{2})$.

Exercice 10. Soit
$$x \in \mathbb{R}^*$$
, on a $\frac{\operatorname{ch}(\ln x) + \operatorname{sh}(\ln x)}{x} = \frac{e^{\ln x}}{x} = 1$.

Exercice 11. Soit $x \in \mathbb{R}$,

$$7 \operatorname{ch}(x) + 2 \operatorname{sh}(x) = 9 \iff 7 \left(\frac{e^x + e^{-x}}{2}\right) + 2 \left(\frac{e^x - e^{-x}}{2}\right) = 9$$

On pose $X = e^x$. On a alors :

$$7\operatorname{ch}(x) + 2\operatorname{sh}(x) = 9 \iff 7\left(X + \frac{1}{X}\right) + 2\left(X - \frac{1}{X}\right) - 18 = 0$$
$$\iff 9X^2 - 18X + 5 = 0.$$

Le discriminant du polynôme $9X^2 - 18X + 5$ vaut 12^2 . Les racines de ce polynôme sont donc : $\frac{1}{3}$ et $\frac{5}{3}$. On a alors :

$$7\operatorname{ch}(x) + 2\operatorname{sh}(x) = 9 \iff \begin{cases} e^{x} = \frac{1}{3} \\ \text{ou} \\ e^{x} = \frac{5}{3} \end{cases}$$

$$\iff \begin{cases} x = -\ln(3) \\ \text{ou} \\ x = \ln\left(\frac{5}{3}\right) \end{cases}$$

Ainsi, l'ensemble des solutions est $\{-\ln(3), \ln\left(\frac{5}{3}\right)\}$.

Exercice 12. 1. (a) La fonction sh est strictement croissante sur \mathbb{R} (car dérivable sur \mathbb{R} de dérivée ch, strictement positive) et continue. Elle est donc bijective de \mathbb{R} sur sh $(\mathbb{R}) =$ lim sh (x), lim sh (x)[.

positive) et continue. Elle est donc bijective de \mathbb{R} sur sh $(\mathbb{R}) = \lim_{x \to -\infty} \sinh(x)$, $\lim_{x \to +\infty} \sinh(x)$ [. Or, $\lim_{x \to +\infty} \sinh(x) = -\infty$ et $\lim_{x \to +\infty} \sinh(x) = +\infty$. Ainsi, sh est bijective de \mathbb{R} sur \mathbb{R} .

(b) Comme vu plus haut, sh est bijective de \mathbb{R} dans \mathbb{R} , dérivable, de dérivée de signe strictement positif. Par le théorème de dérivabilité de la fonction réciproque, argsh est dérivable sur \mathbb{R} . Soit $x \in \mathbb{R}$, argsh $(x) = \frac{1}{|x|} = \frac{1}{|x|}$

 $\frac{\operatorname{argsh}'(x) = \frac{1}{\operatorname{sh}'(\operatorname{argsh}(x))} = \frac{1}{\operatorname{ch}(\operatorname{argsh}(x))} }{\operatorname{ch}(\operatorname{argsh}(x)) = \frac{1}{\operatorname{ch}(\operatorname{argsh}(x))} }$ Or $\operatorname{ch}^2(\operatorname{argsh}(x)) = \operatorname{sh}^2(\operatorname{argsh}(x)) = 1$, donc $\operatorname{ch}^2(\operatorname{argsh}(x)) = 1 + x^2$ et comme $\operatorname{ch}(\operatorname{argsh}(x)) > 0$, $\operatorname{ch}(\operatorname{argsh}(x)) = \sqrt{1 + x^2}$. On a donc $\operatorname{argsh}'(x) = \frac{1}{\sqrt{1 + x^2}}$.

(c) Le graphe de argsh est le symétrique de celui de sh par rapport à la droite y=x:

(d) Soit $y \in \mathbb{R}$, soit $x \in \mathbb{R}$. On a :

$$sh(x) = y \iff \frac{e^x - e^{-x}}{2} = y$$

$$\iff e^{2x} - 1 = 2ye^x$$

Posons $X = e^x$. On a alors :

$$\operatorname{sh}(x) = y \iff X^2 - 2yX - 1 = 0$$

 $\iff X = y \pm \sqrt{1 + y^2}$

Or, le produit des racines du polynôme $X^2-2yX-1$ vaut -1 donc une des racines est strictement négative et l'autre est strictement positive. Or, $y+\sqrt{1+y^2} \geq y-\sqrt{1+y^2}$ donc $y+\sqrt{1+y^2}>0$ et $y-\sqrt{1+y^2}<0$. Comme $X=e^x$ doit être positif, on en déduit que

$$\operatorname{sh}(x) = y \quad \Longleftrightarrow e^x = y + \sqrt{1 + y^2}$$

 $\iff x = \ln(y + \sqrt{y^2 + 1})$

Ainsi, sh est bijective de \mathbb{R} dans \mathbb{R} (chaque élément de \mathbb{R} admet un unique antécédent par sh) et on a : $\forall x \in \mathbb{R}$, $\operatorname{argsh}(x) = \ln(x + \sqrt{x^2 + 1})$.

- 2. (a) La fonction ch est strictement croissante sur \mathbb{R}_+ (car dérivable et pour tout $x \in \mathbb{R}_+^*$, $\operatorname{ch}' x = \operatorname{sh} x > 0$) et est continue. Elle est donc bijective de \mathbb{R}_+ dans $[\operatorname{ch}(0), \lim_{x \to +\infty} \operatorname{ch} x[]$. Or, $\operatorname{ch}(0) = 1$ et $\lim_{x \to +\infty} \operatorname{ch}(x) = +\infty$. Ainsi, ch est bijective de \mathbb{R}_+ sur $[1, +\infty[]$.
 - (b) ch : $\mathbb{R}_+ \to [1, +\infty[$ est bijective, dérivable. De plus : $\forall x \in \mathbb{R}_+$, ch' $(x) = \operatorname{sh}(x)$. Ainsi, pour tout $x \in \mathbb{R}_+^*$, ch' $(x) \neq 0$ et ch' $(0) \neq 0$. Donc argch est dérivable sur $]\operatorname{ch}(0)$, $\lim_{x \to +\infty} \operatorname{ch}(x)[=]1, +\infty[$.

Finalement, ch est donc dérivable sur $[1, +\infty[$. Soit $x \in]1, +\infty[$, $\operatorname{argch}'(x) = \frac{1}{\operatorname{ch}'(\operatorname{argch}(x))} = \frac{1}{\operatorname{sh}(\operatorname{argch}(x))}$. Or $\operatorname{ch}^2(\operatorname{argch}(x)) - \operatorname{sh}^2(\operatorname{argch}(x)) = 1$, donc $\operatorname{sh}^2(\operatorname{argch}(x)) = x^2 - 1$ et comme $\operatorname{sh}(\operatorname{argch}(x)) > 0$ (car $\operatorname{argch}(x) > 0$), $\operatorname{sh}(\operatorname{argch}(x)) = \sqrt{x^2 - 1}$. On a donc $\operatorname{argch}'(x) = \frac{1}{\sqrt{x^2 - 1}}$.

(c) La courbe représentative de argch est la symétrique de celle de chi par rapport à la droite d'équation y = x.

(d) Soit $y \in [1, +\infty[$, soit $x \in \mathbb{R}_+$. On a :

$$ch x = y \iff e^x + e^{-x} = 2y$$
$$\iff e^{2x} + 1 = 2ye^x$$

Posons $X = e^x$. On a alors :

$$ch x = y \iff X^2 - 2yX + 1 = 0$$

$$\iff X = y \pm \sqrt{y^2 - 1}$$

Or, $x \ge 0$, donc $X \ge 1$. De plus, le produit des racines X_0 , X_1 du polynôme $X^2 - 2yX + 1$ vaut 1 donc $X_1 = \frac{1}{X_0} < 1$. On en déduit que l'une est strictement supérieur à 1 et l'autre strictement inférieure à 1. Or, $y + \sqrt{y^2 - 1} > y - \sqrt{y^2 - 1}$. Ainsi, $y + \sqrt{y^2 - 1} > 1$ et $y - \sqrt{y^2 - 1} < 1$. On a donc :

$$ch x = y \iff X = y + \sqrt{y^2 - 1}$$

$$\iff e^x = y + \sqrt{y^2 - 1}$$

$$\iff x = \ln(y + \sqrt{y^2 - 1})$$

Ainsi, ch : $\mathbb{R}_+ \to [1, +\infty[$ est bijective et on a : $\forall x \in [1, +\infty[$, $\operatorname{argch}(x) = \ln(x + \sqrt{x^2 - 1})$.

Exercice 13. Soit $(a,b) \in \mathbb{R}^2$. On a :

$$ch(a+b) + sh(a+b) = e^{a+b}$$
 et $(ch(a) + sh(a))(ch(b) + sh(b)) = e^a e^b = e^{a+b}$.

Ainsi, $\operatorname{ch}(a+b) + \operatorname{sh}(a+b) = (\operatorname{ch}(a) + \operatorname{sh}(a))\operatorname{ch}(b) + \operatorname{sh}(b)$. De même,

$$\operatorname{ch}(a+b) - \operatorname{sh}(a+b) = e^{-(a+b)}$$
 et $(\operatorname{ch}(a) - \operatorname{sh}(a))(\operatorname{ch}(b) - \operatorname{sh}(b)) = e^{-a}e^{-b} = e^{-(a+b)}$

Donc ch(a + b) - sh(a + b) = (ch(a) - sh(a))(ch(b) - sh(b)).

En ajoutant ces deux formules, on obtient alors :

$$\begin{aligned} 2\text{ch}\,(a+b) &= (\text{ch}\,(a) + \text{sh}\,(a))(\text{ch}\,(b) + \text{sh}\,(b)) + (\text{ch}\,(a) - \text{sh}\,(a))(\text{ch}\,(b) - \text{sh}\,(b)) \\ &= \text{ch}\,(a)\text{ch}\,(b) + \text{ch}\,(a)\text{sh}\,(b) + \text{sh}\,(a)\text{ch}\,(b) + \text{sh}\,(a)\text{sh}\,(b) \\ &+ \text{ch}\,(a)\text{ch}\,(b) - \text{ch}\,(a)\text{sh}\,(b) - \text{sh}\,(a)\text{ch}\,(b) + \text{sh}\,(a)\text{sh}\,(b) \\ &= 2\text{ch}\,(a)\text{ch}\,(b) + 2\text{sh}\,(a)\text{sh}\,(b) \end{aligned}$$

dont on déduit $\operatorname{ch}(a+b) = \operatorname{ch}(a)\operatorname{ch}(b) + \operatorname{sh}(a)\operatorname{sh}(b)$.

De même en soustrayant les deux formules, on obtient $\operatorname{sh} a + b = \operatorname{sh} a \operatorname{ch} b + \operatorname{sh} b \operatorname{ch} a$.

On a donc $\operatorname{ch}(2a) = \operatorname{ch}(a)^2 + \operatorname{ch}(a)^2 = 1 + 2\operatorname{sh}(a)^2 = 2\operatorname{ch}(a)^2 + 1$, $\operatorname{sh}(2a) = 2\operatorname{sh} a\operatorname{ch} a$. Enfin, comme chest paire et sh est impaire, on a:

$$ch (a - b) = ch (a)ch (-b) + sh (a)sh (-b)$$
$$= ch (a)ch (b) - sh (a)sh (b)$$

 et

$$\operatorname{sh}(a - b) = \operatorname{sh}(a)\operatorname{ch}(-b) + \operatorname{sh}(-b)\operatorname{ch}(a)$$
$$= \operatorname{sh}(a)\operatorname{ch}(b) - \operatorname{sh}(b)\operatorname{ch}(a)$$

Exercice 14. f est définie sur \mathbb{R} .

De plus, f est impaire. Il suffit donc de l'étudier sur \mathbb{R}_+ . Lors du tracé de la courbe, on réalisera une symétrie par rapport à l'axe des ordonnées.

f est dérivable sur \mathbb{R}_+ en tant que produit de fonctions dérivables.

Soit $x \in \mathbb{R}_+$, $f'(x) = \operatorname{ch}(x) + x\operatorname{sh}(x)$.

De plus, $\operatorname{ch}(x) > 0$ et $\operatorname{sh}(x) \geq 0$ pour $x \in \mathbb{R}_+$. Ainsi, Donc : $\forall x \in \mathbb{R}_+, f'(x) > 0$.

Ainsi, f est strictement croissante sur \mathbb{R}_+ .

Par imparité, f est strictement croissante sur \mathbb{R}_+ . La tangente au point d'abscisse 0 a pour équation : y = f'(0)(x - 0) + f(0), c'est à dire y = x.

On obtient alors la courbe représentative suivante :

3 Fonctions circulaires

Exercice 15. 1. cos est 2π périodique. Soit $x \in]-\pi,\pi]$,

$$\cos x > 0 \quad \Longleftrightarrow \quad x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[.$$

Ainsi, l'ensemble des solutions réelles de l'équation $\cos x > 0$ est $\bigcup_{k \in \mathbb{Z}} \left] -\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi \right[$.

2. sin est 2π périodique. Soit $x \in]-\frac{3\pi}{2},\frac{\pi}{2}],$

$$\sin x \le \frac{1}{2} \quad \Longleftrightarrow \quad x \in \left] -\frac{7\pi}{6}, \frac{\pi}{6} \right].$$

Ainsi, l'ensemble des solutions réelles de l'équation $\sin x \leq \frac{1}{2}$ est $\bigcup_{k \in \mathbb{Z}} \left] - \frac{7\pi}{6} + 2k\pi, \frac{\pi}{6} + 2k\pi \right]$.

3. tan est π périodique et strictement croissante sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$. De plus, $f\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}$. Soit $x \in \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$,

$$\tan x > \frac{\sqrt{3}}{3} \iff x \in \left] \frac{\pi}{6}, \frac{\pi}{2} \right[.$$

Ainsi, l'ensemble des solutions réelles de l'équation $\tan x > \frac{\sqrt{3}}{3}$ est $\bigcup_{k \in \mathbb{Z}} \left[\frac{\pi}{6} + k\pi, \frac{\pi}{2} + k\pi \right[$.

Exercice 16. 1. Soit $x \in \mathbb{R}$,

$$\cos x = \frac{1}{2} \iff \cos x = \cos \frac{\pi}{3}$$

$$\iff x \equiv \pm \frac{\pi}{3} [2\pi]$$

L'ensemble des solutions est donc $\{\pm \frac{\pi}{3} + 2k\pi, k \in \mathbb{Z}\}.$

2. Soit $x \in \mathbb{R}$,

$$\sqrt{2}\sin(\frac{\pi}{6} - x) = 1 \iff \sin(\frac{\pi}{6} - x) = \sin(\frac{\pi}{4})$$

$$\iff \begin{cases} \frac{\pi}{6} - x \equiv \frac{\pi}{4} \quad [2\pi] \\ \text{ou} \\ \frac{\pi}{6} - x \equiv \pi - \frac{\pi}{4} \quad [2\pi] \end{cases}$$

$$\iff \begin{cases} x \equiv -\frac{\pi}{12} \quad [2\pi] \\ \text{ou} \\ x \equiv -\frac{7\pi}{12} \quad [2\pi] \end{cases}$$

L'ensemble des solutions est donc $\{-\frac{\pi}{12} + 2k\pi ; k \in \mathbb{Z}\} \cup \{-\frac{7\pi}{12} + 2k\pi , k \in \mathbb{Z}\}.$

3. Soit $x \in \mathbb{R}$,

$$2\cos(2x) = \sqrt{3} \quad \Longleftrightarrow \quad \cos(2x) = \cos\frac{\pi}{6}$$

$$\iff \quad 2x \equiv \pm\frac{\pi}{6} \quad [2\pi]$$

$$\iff \quad x \equiv \pm\frac{\pi}{12} \quad [\pi]$$

L'ensemble des solutions est donc $\{\pm \frac{\pi}{12} + k\pi , k \in \mathbb{Z}\}.$

4. Soit $x \in \mathbb{R}$. On pose $X = \cos(2x)$. On a :

$$2\cos^{2}(2x) - 3\cos(2x) = -1 \iff X^{2} - 3X + 1 = 0$$

$$\iff (2X - 1)(X - 1) = 0$$

$$\iff X = \frac{1}{2} \text{ ou } X = 1$$

$$\iff \begin{cases} \cos(2x) = 1 \\ \text{ ou } \\ \cos(2x) = \frac{1}{2} \end{cases}$$

$$\iff \begin{cases} 2x \equiv 0 \quad [2\pi] \\ \text{ ou } \\ 2x \equiv \pm \frac{\pi}{3} \quad [2\pi] \end{cases}$$

$$\iff \begin{cases} x \equiv 0 \quad [\pi] \\ \text{ ou } \\ x \equiv \pm \frac{\pi}{6} \quad [\pi] \end{cases}$$

L'ensemble des solutions est donc $\{k\pi \, ; \, k \in \mathbb{Z}\} \cup \{\pm \frac{\pi}{6} + k\pi \, , \, k \in \mathbb{Z}\}.$

5. Soit $x \in \mathbb{R}$.

$$\cos(2x) = \cos x \quad \Longleftrightarrow \quad 2x \equiv \pm x \quad [2\pi]$$

$$\iff \quad \begin{cases} x \equiv 0 \quad [2\pi] \\ \text{ou} \\ 3x \equiv 0 \quad [2\pi] \end{cases}$$

$$\iff \quad x \equiv 0 \quad [\frac{2\pi}{3}]$$

L'ensemble des solutions est donc $\{\frac{2k\pi}{3}, k \in \mathbb{Z}\}.$

6. Soit $x \in \mathbb{R}$.

$$\sin(2x) + \sin x = 0 \iff 2 \sin x \cos x + \sin x = 0$$

$$\iff \sin x (2 \cos x + 1) = 0$$

$$\iff \begin{cases} \sin x = 0 \\ \text{ou} \\ \cos x = -\frac{1}{2} \end{cases}$$

$$\iff \begin{cases} x \equiv 0 \quad [\pi] \\ \text{ou} \\ x \equiv \pm \frac{2\pi}{3} \quad [2\pi] \end{cases}$$

L'ensemble des solutions est donc $\{k\pi, k \in \mathbb{Z}\} \cup \{\pm \frac{2\pi}{3} + 2k\pi, k \in \mathbb{Z}\}.$

7. Soit $x \in \mathbb{R}$,

$$\sin(2x) + \sin(\frac{\pi}{3} + 3x) = 0 \quad \iff \quad \sin(\frac{\pi}{3} + 3x) = \sin(-2x)$$

$$\iff \quad \begin{cases} \frac{\pi}{3} + 3x \equiv -2x \quad [2\pi] \\ \text{ou} \\ \frac{\pi}{3} + 3x \equiv \pi + 2x \quad [2\pi] \end{cases}$$

$$\iff \quad \begin{cases} x \equiv -\frac{\pi}{15} \quad [\frac{2\pi}{5}] \\ \text{ou} \\ x \equiv \frac{2\pi}{3} \quad [2\pi] \end{cases}$$

L'ensemble des solutions est donc $\{-\frac{\pi}{15} + \frac{2k\pi}{5}, k \in \mathbb{Z}\} \cup \{\frac{2\pi}{3} + 2k\pi, k \in \mathbb{Z}\}.$

8. Soit $x \in \mathbb{R}$,

$$\cos(3x) + \sin x = 0 \iff \cos(3x) = \cos(x + \frac{\pi}{2})$$

$$\iff 3x \equiv \pm (x + \frac{\pi}{2}) \quad [2\pi]$$

$$\iff \begin{cases} 2x \equiv \frac{\pi}{2} \quad [2\pi] \\ \text{ou} \\ 4x \equiv -\frac{\pi}{2} \quad [2\pi] \end{cases}$$

$$\iff \begin{cases} x \equiv \frac{\pi}{4} \quad [\pi] \\ \text{ou} \\ x \equiv -\frac{\pi}{8} \quad [\frac{\pi}{2}] \end{cases}$$

L'ensemble des solutions est donc $\{\frac{\pi}{4} + k\pi, k \in \mathbb{Z}\} \cup \{-\frac{\pi}{8} + \frac{k\pi}{2}, k \in \mathbb{Z}\}.$

9. Soit $x \in \mathbb{R}$,

$$\cos(x) - \cos 2x = \sin(3x) \iff -2\sin\frac{3x}{2}\sin(-\frac{x}{2}) = 2\sin\frac{3x}{2}\cos\frac{3x}{2}$$

$$\iff \sin\frac{3x}{2}\sin\frac{x}{2} = \sin\frac{3x}{2}\cos\frac{3x}{2}$$

$$\iff \begin{cases} \sin\frac{3x}{2} = 0 \\ \text{ou} \\ \sin\frac{x}{2} = \cos\frac{3x}{2} \end{cases}$$

$$\iff \begin{cases} \frac{3x}{2} \equiv 0 \quad [\pi] \\ \text{ou} \\ \cos(\frac{\pi}{2} - \frac{x}{2}) = \cos\frac{3x}{2} \end{cases}$$

$$\iff \begin{cases} x \equiv 0 \quad [\frac{2\pi}{3}] \\ \text{ou} \\ \frac{\pi}{2} - \frac{x}{2} \equiv \pm\frac{3x}{2} \quad [2\pi] \end{cases}$$

$$\iff \begin{cases} x \equiv 0 \quad [\frac{2\pi}{3}] \\ \text{ou} \\ x \equiv -\frac{\pi}{2} \quad [2\pi] \end{cases}$$

$$\Leftrightarrow \begin{cases} x \equiv 0 \quad [\frac{2\pi}{3}] \\ \text{ou} \\ 2x \equiv \frac{\pi}{2} \quad [2\pi] \end{cases}$$

$$\Leftrightarrow \begin{cases} x \equiv 0 \quad [\frac{2\pi}{3}] \\ \text{ou} \\ x \equiv -\frac{\pi}{2} \quad [2\pi] \end{cases}$$

$$\Leftrightarrow \begin{cases} x \equiv -\frac{\pi}{2} \quad [2\pi] \\ \text{ou} \\ x \equiv -\frac{\pi}{2} \quad [2\pi] \end{cases}$$

L'ensemble des solutions est donc $\{\frac{2k\pi}{3}, k \in \mathbb{Z}\} \cup \{-\frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}\} \cup \{\frac{\pi}{4} + k\pi, k \in \mathbb{Z}\}$. 10. On sait que : $\forall x \in \mathbb{R}$, $\cos x \leq 1$ et $\sin x \leq 1$.

Soit $x \in \mathbb{R}$, on a alors :

$$\cos x + \sin x = 2 \iff \cos x = \sin x = 1$$

Cette dernière équation n'admet aucune solution. Ainsi, l'équation $\cos x + \sin x = 2$ n'admet aucune solution.

11. Soit $x \in \mathbb{R}$,

$$\sqrt{3}\cos x - \sin x = 1 \quad \iff \quad \frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x = \frac{1}{2}$$

$$\iff \quad \cos\left(\frac{\pi}{6}\right)\cos x - \sin\left(\frac{\pi}{6}\right)\sin x = \cos\left(\frac{\pi}{3}\right)$$

$$\iff \quad \cos(x + \frac{\pi}{6}) = \cos(\frac{\pi}{3})$$

$$\iff \quad x + \frac{\pi}{6} = \pm \frac{\pi}{3} \quad [2\pi]$$

$$\iff \quad \begin{cases} x \equiv \frac{\pi}{6} \quad [2\pi] \\ \text{ou} \\ x \equiv \frac{\pi}{2} \quad [2\pi] \end{cases}$$

L'ensemble des solutions est donc $\left\{\frac{\pi}{6} + 2k\pi, k \in \mathbb{Z}\right\} \cup \left\{\frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}\right\}$.

1. On remarque que $\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$. Exercice 17.

Ainsi, en utilisant les formules d'additions, on trouve $\cos \frac{\pi}{12} = \cos(\frac{\pi}{3})\cos(\frac{\pi}{4}) + \sin(\frac{\pi}{3})\sin(\frac{\pi}{4})$ et $=\frac{1}{2}\times\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}\times\frac{\sqrt{2}}{2}$ $=\frac{\sqrt{2}}{4}(\sqrt{3}+1)$

$$\sin \frac{\pi}{12} = \sin(\frac{\pi}{3})\cos(\frac{\pi}{4}) - \sin(\frac{\pi}{3})\cos(\frac{\pi}{4}).$$

$$= \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} - \frac{1}{2} \times \frac{\sqrt{2}}{2}$$

$$= \frac{\sqrt{2}}{4}(\sqrt{3} - 1)$$
2. Soit $x \in \mathbb{R}$,

$$(\sqrt{3}+1)\cos(2x) + (\sqrt{3}-1)\sin(2x) = \sqrt{2} \iff \frac{\sqrt{2}}{4}(\sqrt{3}+1)\cos(2x) + \frac{\sqrt{2}}{4}(\sqrt{3}+1)\sin(2x) = \frac{1}{2}$$

$$\iff \cos\left(\frac{\pi}{12}\right)\cos(2x) + \sin\left(\frac{\pi}{12}\right)\sin(2x) = \frac{1}{2}$$

$$\iff \cos(2x - \frac{\pi}{12}) = \frac{1}{2}$$

$$\iff 2x - \frac{\pi}{12} \equiv \pm \frac{\pi}{3} \quad [2\pi]$$

$$\iff \begin{cases} x \equiv \frac{5\pi}{24} \quad [\pi] \\ \text{ou} \\ x \equiv -\frac{\pi}{8} \quad [\pi] \end{cases}$$

L'ensemble des solutions est donc $\left\{\frac{5\pi}{24} + k\pi, k \in \mathbb{Z}\right\} \cup \left\{-\frac{\pi}{8} + k\pi; k \in \mathbb{Z}\right\}$.

Exercice 18. Pour tout $n \in \mathbb{N} \setminus \{0, 1\}$, considérons la propriété $\mathcal{P}(n) : \forall x \in \mathbb{R} \setminus \pi\mathbb{Z}, |\sin(nx)| < n|\sin(x)|$.

Montrons par récurrence que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N} \setminus \{0, 1\}$.

Pour n=2: soit $x \in \mathbb{R} \setminus \pi\mathbb{Z}$, $\sin(2x)=2\sin(x)\cos(x)$.

Or, $\cos(x) < 1$. Ainsi, $|\sin(2x)| = 2|\sin(x)||\cos(x)| < 2|\sin(x)|$.

Donc: $\forall x \in \mathbb{R} \setminus \pi \mathbb{Z}$, $|\sin(2x)| < 2|\sin x|$ et $\mathcal{P}(2)$ est vraie.

Soit $n \in \mathbb{N} \setminus \{0, 1\}$, supposons que $\mathcal{P}(n)$ est vraie.

Soit $x \in \mathbb{R} \setminus \pi \mathbb{Z}$, on a alors $\sin((n+1)x) = \sin(nx)\cos(x) + \sin(x)\cos(nx)$.

Or, d'après l'inégalité triangulaire, on a : $|\sin((n+1)x)| \le |\sin(nx)\cos(x)| + |\sin(x)\cos(nx)| \le |\sin(nx)|\cos(x)| +$ $|\sin(x)||\cos(nx)|$.

De plus, on sait que : $|\sin(nx)| < n|\sin(x)|$ et $|\cos(x)| < 1$ donc $|\sin(nx)||\cos(x)| < 1$ et $|\sin(x)||\cos(nx)| \le |\sin(x)|$.

Ainsi, en ajoutant ces 2 termes, on obtient : $|\sin((n+1)x)| < n|\sin(x)| + |\sin(x)| = (n+1)|\sin(x)|$.

Donc: $\forall x \in \mathbb{R} \setminus \pi \mathbb{Z}$, $|\sin((n+1)x)| < (n+1)|\sin(x)|$ et $\mathcal{P}(n+1)$ est vraie.

On a donc montré par récurrence que, pour tout $n \in \mathbb{N}$, P(n) est vraie donc :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R} \setminus \pi \mathbb{Z}, \ |\sin((n+1)x)| < (n+1)|\sin(x)|.$$

Fonctions circulaires réciproques 4

1. $\frac{2\pi}{3} \in [0,\pi]$ donc arccos $\left(\cos\frac{2\pi}{2}\right) = \frac{2\pi}{3}$.

- 2. $\arccos(\cos(4\pi)) = \arccos(\cos(0)) = 0$
- 3. $\arccos\left(\cos\left(-\frac{2\pi}{3}\right)\right) = \arccos\left(\cos\left(\frac{2\pi}{3}\right)\right) = \frac{2\pi}{3} \operatorname{car} \frac{2\pi}{3} \in [0, \pi].$
- 4. $\arctan\left(\tan\left(\frac{3\pi}{4}\right)\right) = \arctan\left(\tan\left(-\frac{\pi}{4}\right)\right) = -\frac{\pi}{4}$ par π périodicité de tan et $\arctan\left(\frac{\pi}{4}\right) = -\frac{\pi}{2}$, $\frac{\pi}{2}$.
- 5. Soit $x \in \mathbb{R}$, on a $\cos^2(\arctan x) = \frac{1}{1 + \tan^2(\arctan x)} = \frac{1}{1 + x^2}$. Comme $\arctan x \in]-\frac{\pi}{2}, \frac{\pi}{2}[, \cos(\arctan x) > 0]$ et $\cos(\arctan x) = \frac{1}{\sqrt{1+x^2}}$
- 6. Soit $x \in \mathbb{R}$. On a $\cos^2(\arctan x) = \frac{1}{1 + \tan^2\arctan x} = \frac{1}{1 + x^2}$. Comme $\arctan x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ et que cos est positive sur cet intervalle, $\cos(\arctan x) = \frac{1}{\sqrt{1 + x^2}}$. Ainsi $\sin(\arctan x) = \tan(\arctan x)\cos(\arctan x) = \frac{x}{\sqrt{1 + x^2}}$. Posons $y = \arctan x$, on a:

$$\sin(3y) = \sin y \cos(2y) + \sin(2y) \cos y = (1 - 2\sin^2 y) \sin y + 2\sin y \cos^2 y$$

Ainsi,

$$\begin{split} \sin(3\arctan x) &= \left(1 - \frac{2x^2}{1 + x^2}\right) \frac{x}{\sqrt{1 + x^2}} + \frac{2x}{\sqrt{1 + x^2}} \times \frac{1}{1 + x^2} \\ &= \frac{(1 - x^2)x + 2x}{(1 + x^2)\sqrt{1 + x^2}} \\ &= \frac{3x - x^3}{(1 + x^2)\sqrt{1 + x^2}} \end{split}$$

- 7. Soit $x \in]-1,1[$, $\arcsin x \in]-\frac{\pi}{2},\frac{\pi}{2}[$, donc $\tan(\arcsin x)$ est bien défini.
- On a $\sin(\arcsin x) = x$ et $\cos(\arcsin x) = \sqrt{1 x^2}$ (comme dans le cours), donc $\tan(\arcsin x) = \frac{x}{\sqrt{1 x^2}}$ 8. Première méthode, en dérivant : Soit $f: x \mapsto \arccos(x) + \arccos(-x)$. f est dérivable sur] 1, 1[. De plus, $\forall x \in]-1,1[,f'(x)=0.$ Ainsi f est constante sur]-1,1[. De plus, f est continue sur [-1,1] donc f est constante sur [-1,1]. En prenant la valeur en 0 on trouve $f(0)=\pi$ donc: $\forall x\in [-1,1], f(x)=\pi$.
 - Seconde méthode, en utilisant la fonction cosinus : Soit $x \in [-1, 1]$, on a :

$$\cos(\arccos(x) + \arccos(-x)) = \cos(\arccos(x))\cos(\arccos(-x)) - \sin(\arccos(x))\sin(\arccos(-x))$$
$$= -x^2 - \sqrt{1 - x^2}\sqrt{1 - (-x)^2} = -x^2 - (1 - x^2) = -1$$

Ainsi, $\cos(\arccos(x)) + \arccos(-x) = \cos(\pi)$. De plus, comme arccos est à valeurs dans $[0, \pi]$, $0 \le \arccos(x) +$ $\arccos(-x) \le 2\pi$. L'équation $\cos(y) = -1$ admet une unique solution dans $[0, 2\pi]$ qui est π . Ainsi, $\arccos(x) + \arccos(-x) = \pi$.

Exercice 20. On a:

•
$$\Rightarrow tan\left(\arctan\frac{1}{239}\right) = \frac{1}{239}.$$

$$\Rightarrow \tan\left(4\arctan\frac{1}{5}\right) = \frac{2\tan\left(2\arctan\frac{1}{5}\right)}{1-\tan^2\left(2\arctan\frac{1}{5}\right)} \text{ et } \tan\left(2\arctan\frac{1}{5}\right) = \frac{2\tan\left(\arctan\frac{1}{5}\right)}{1-\tan^2\left(\arctan\frac{1}{5}\right)} = \frac{\frac{2}{5}}{1-\frac{1}{25}} = \frac{5}{12}.$$

Ainsi,
$$\tan\left(4\arctan\frac{1}{5}\right) = \frac{120}{119}$$

$$\triangleright \text{ D'où } \tan \left(4\arctan \frac{1}{5} - \arctan \frac{1}{239} \right) = \frac{\frac{120}{119} - \frac{1}{239}}{1 + \frac{120}{119} \times \frac{1}{239}} = 1 = \tan \left(\frac{\pi}{4} \right).$$

• On a $0 < \frac{1}{5} < \frac{\sqrt{3}}{3}$ donc comme arctan est strictement croissante sur \mathbb{R} , on a $0 < \arctan \frac{1}{5} < \arctan \frac{\sqrt{3}}{3}$. Donc $0 < \arctan \frac{1}{5} < \frac{\pi}{6}$ puis $0 < 4\arctan \frac{1}{5} < \frac{2\pi}{3}$.

 $\begin{array}{l} \text{De même, } 0 < \frac{1}{239} < \frac{\sqrt{3}}{3} \text{ donc } 0 < \arctan \frac{1}{239} < \arctan \frac{\sqrt{3}}{3} \text{ donc } 0 < \arctan \frac{1}{239} < \frac{\pi}{6} \\ \text{Puis } 0 > -\arctan \frac{1}{239} > -\frac{\pi}{6}. \\ \text{Ainsi, } 4\arctan \frac{1}{5} -\arctan \frac{1}{239} \in \left] -\frac{\pi}{6}, \frac{2\pi}{3} \right[\subset \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[. \\ \text{Donc } 4\arctan \frac{1}{5} -\arctan \frac{1}{239} = \frac{\pi}{4}. \end{array}$

Exercice 21. 1. • L'équation a un sens pour $x \in [-1, 1]$.

• Analyse : supposons qu'il existe $x \in [-1, 1]$ tel que $\arcsin \frac{4}{5} + \arcsin \frac{5}{13} = \arcsin x$. Alors, $\sin \left(\arcsin \frac{4}{5} + \arcsin \frac{5}{13}\right) = \sin(\arcsin x)$.

$$\sin(\arcsin x) = \sin\left(\arcsin\frac{4}{5} + \arcsin\frac{5}{13}\right) \iff x = \sin\left(\arcsin\frac{4}{5}\right)\cos\left(\arcsin\frac{5}{13}\right) + \sin\left(\arcsin\frac{5}{13}\right)\cos\left(\arcsin\frac{4}{5}\right)$$

$$\iff x = \frac{4}{5} \times \sqrt{1 - \left(\frac{5}{13}\right)^2} + \frac{5}{13}\sqrt{1 - \left(\frac{4}{5}\right)^2}$$

$$\iff x = \frac{4}{5}\sqrt{\frac{169 - 25}{13^2}} + \frac{5}{13}\sqrt{\frac{25 - 16}{5^5}}$$

$$\iff x = \frac{4}{5} \times \frac{12}{13} + \frac{5}{13} \times \frac{3}{5}$$

$$\iff x = \frac{48 + 15}{65}$$

$$\iff x = \frac{63}{65}$$

Donc $x = \frac{63}{65}$.

• Synthèse : Posons $x = \frac{63}{65}$. Alors, $\sin(\arcsin x) = \sin\left(\arcsin\frac{4}{5} + \arcsin\frac{5}{13}\right)$, d'après l'équivalence de la phase d'analyse.

• Or, $\arcsin(x) \in [0, \frac{\pi}{2}]$ car $x \ge 0$

• De plus, on a $0 \le \frac{4}{5} \le \frac{\sqrt{3}}{2}$ car $\frac{16}{25} \le \frac{3}{4}$ (car $64 \le 75$) donc $0 \le \arcsin\left(\frac{4}{5}\right) \le \arcsin\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$ (croissance de l'arcsinus).

De même, $0 \le \frac{5}{13} \le \frac{1}{2}$ car 10 < 13 donc $0 \le \arcsin\left(\frac{5}{13}\right) \le \frac{\pi}{6}$.

On en déduit que arcsin $\left(\frac{4}{5}\right)$ + arcsin $\left(\frac{5}{13}\right) \in \left[0, \frac{\pi}{2}\right]$.

Donc $\arcsin x = \arcsin \frac{4}{5} + \arcsin \frac{5}{13}$.

• En conclusion, l'ensemble des solutions est $\left\{\frac{63}{65}\right\}$.

2. • L'équation a un sens pour $x \in [-1, 1]$.

• Analyse : supposons qu'il existe $x \in [-1, 1]$ tel que $\arccos x = \arcsin x$. Alors, $\cos(\arccos x) = \cos(\arcsin x)$. Or :

$$\cos(\arccos x) = \cos(\arcsin x) \iff x = \sqrt{1 - x^2}$$

$$\iff \begin{cases} x \ge 0 \\ x^2 = 1 - x^2 \end{cases}$$

$$\iff \begin{cases} x \ge 0 \\ x^2 = \frac{1}{2} \end{cases}$$

$$\iff x = \frac{\sqrt{2}}{2}$$

Donc
$$x = \frac{\sqrt{2}}{2}$$
.

- Synthèse : Posons $x = \frac{\sqrt{2}}{2}$. On a $\arccos \frac{\sqrt{2}}{2} = \frac{\pi}{4}$ et $\arcsin \frac{\sqrt{2}}{2} = \frac{\pi}{4}$ donc $\arccos \frac{\sqrt{2}}{2} = \arcsin \frac{\sqrt{2}}{2}$.
- En conclusion, l'ensemble des solutions est $\left\{\frac{\sqrt{2}}{2}\right\}$.
- 3. L'équation a un sens pour $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$.
 - Analyse : supposons qu'il existe $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ tel que $\arccos x = \arcsin 2x$. Alors, $\cos (\arccos x) = \cos (\arcsin 2x)$.

$$\cos(\arccos x) = \cos(\arcsin 2x) \iff x = \sqrt{1 - 4x^2}$$

$$\iff \begin{cases} x \ge 0 \\ x^2 = 1 - 4x^2 \end{cases}$$

$$\iff \begin{cases} x \ge 0 \\ x^2 = \frac{1}{5} \end{cases}$$

$$\iff x = \frac{\sqrt{5}}{5}$$

- Donc $x = \frac{\sqrt{5}}{5}$.
- Synthèse : Posons $x = \frac{\sqrt{5}}{5}$. Alors, $\cos(\arccos x) = \cos(\arcsin 2x)$, d'après l'équivalence de la phase d'analyse.
 - Or, $\arccos(x) \in [0, \pi]$
 - De plus, on a $0 \le \frac{2\sqrt{5}}{5} \le 1$ donc $0 \le \arcsin(2x) \le \frac{\pi}{2}$ (croissance de l'arcsinus). On en déduit que arcsin $(2x) \in \left[0, \frac{\pi}{2}\right] \subset [0, \pi]$.

Donc $\arccos x = \arcsin 2x$.

- En conclusion, l'ensemble des solutions est $\left\{\frac{\sqrt{5}}{5}\right\}$.
- 4. Soit $x \in [-1, 1]$,

$$-1 \le \sqrt{1 - x^2} \le 1 \quad \Longleftrightarrow \quad \sqrt{1 - x^2} \le 1$$

$$\iff \quad 1 - x^2 \le 1$$

$$\iff \quad 0 \le x^2$$

Ainsi, pour tout $x \in [-1,1]$, $\sqrt{1-x^2} \in [-1,1]$ et l'équation a un sens pour $x \in [-1,1]$.

• Analyse: supposons qu'il existe $x \in [-1, 1]$ tel que $\arcsin x + \arcsin \sqrt{1 - x^2} = \frac{\pi}{2}$. Alors, $\sin (\arcsin x) = \sin \left(\frac{\pi}{2} - \arcsin \sqrt{1 - x^2}\right)$. Or:

$$\sin\left(\arcsin x\right) = \sin\left(\frac{\pi}{2} - \arcsin\sqrt{1 - x^2}\right) \iff x = \cos\left(\arcsin\sqrt{1 - x^2}\right)$$

$$\iff x = \sqrt{1 - (\sqrt{1 - x^2})^2}$$

$$\iff x = \sqrt{1 - (1 - x^2)}$$

$$\iff x = |x|$$

$$\iff x \ge 0$$

Donc $x \in [0,1]$.

• Synthèse : Soit $x \in [0, 1]$. Alors, $\sin(\arcsin x) = \sin\left(\frac{\pi}{2} - \arcsin\sqrt{1 - x^2}\right)$, d'après l'équivalence de la phase d'analyse.

- Or, $\arcsin(x) \in [0, \frac{\pi}{2}]$ car $x \ge 0$
- De plus, on a $0 \le \sqrt{1-x^2}$ donc arcsin $(\sqrt{1-x^2}) \in [0, \frac{\pi}{2}]$ (croissance de l'arcsinus). D'où $\frac{\pi}{2} - \arcsin \sqrt{1 - x^2} \in \left[0, \frac{\pi}{2}\right].$

Donc $\arcsin x = \frac{\pi}{2} - \arcsin \sqrt{1 - x^2}$.

- En conclusion, l'ensemble des solutions est [0,1]. L'équation a un sens pour $\left\{ \begin{array}{l} x \in [-1,1] \\ |2x^2 1| \in [-1,1] \end{array} \right.$ Soit $x \in \mathbb{R}$

$$|2x^2 - 1| \in [-1, 1]$$
 \iff $-1 \le 2x^2 - 1 \le 1$
 \iff $0 \le 2x^2 \le 2$
 \iff $x \in [-1, 1]$

Finalement, l'équation a un sens pour $x \in [-1, 1]$.

• Analyse: supposons qu'il existe $x \in [-1,1]$ tel que $2\arcsin x = \arccos |2x^2 - 1|$. Alors, $\cos(2\arcsin x) = \cos(\arccos|2x^2 - 1|)$. Or:

$$\cos(2\arcsin x) = \cos\left(\arccos|2x^2 - 1|\right) \iff 1 - 2\sin^2(\arcsin x) = \|2x^2 - 1|$$

$$\iff 1 - 2x^2 = \|2x^2 - 1|$$

$$\iff 2x^2 - 1 \le 0$$

$$\iff x^2 \le \frac{1}{2}$$

$$\iff x \in \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$$

Donc $x \in \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right]$.

• Synthèse : Soit $x \in \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right]$.

Alors, $\cos(2\arcsin x) = \cos(\arccos|2x^2 - 1|)$, d'après l'équivalence de la phase d'analyse.

- Or, $\arccos |2x^2 1| \in [0, \pi]$.
- De plus, si $x \ge 0$, $\arcsin(x) \in \left[0, \frac{\pi}{2}\right]$ donc $2\arcsin(x) \in [0, \pi]$. Donc $2\arcsin x = \arccos|2x^2 1|$. x est
- Si x < 0. $\arcsin(x) \in \left[-\frac{\pi}{2}, 0\right]$ donc $2\arcsin(x) \in [-\pi, 0[$ et $\arccos|2x^2 1| \in [0, \pi]$ donc x n'est pas
- En conclusion, l'ensemble des solutions est $\left|0, \frac{\sqrt{2}}{2}\right|$.
- Soit $x \in [-1, 1]$. 6.

$$-1 \le 2x\sqrt{1-x^2} \le 1 \quad \Longleftrightarrow \quad |2x|\sqrt{1-x^2} \le 1$$

$$\iff \quad 4x^2(1-x^2) \le 1$$

$$\iff \quad -4\left(x^2 - \frac{1}{2}\right)^2 \le 0$$

Ainsi, pour tout $x \in [-1, 1], 2x\sqrt{1 - x^2} \in [-1, 1].$ L'équation a finalement un sens pour $x \in [-1, 1]$.

• Analyse: supposons qu'il existe $x \in [-1, 1]$ tel que $2\arcsin x = \arcsin(2x\sqrt{1-x^2})$. Alors, $\sin(2\arcsin x) = \sin(\arcsin(2x\sqrt{1-x^2}))$.

$$\sin\left(2\arcsin x\right) = \sin\left(\arcsin\left(2x\sqrt{1-x^2}\right)\right) \quad \Longleftrightarrow \quad 2\cos(\arcsin x)\sin(\arcsin x) = 2x\sqrt{1-x^2}$$

$$\iff \quad 2x\sqrt{1-x^2} = 2x\sqrt{1-x^2}$$

Donc $x \in [-1, 1]$.

- Synthèse : Soit $x \in [-1, 1]$. Alors, $\sin(2\arcsin x) = \sin(\arcsin(2x\sqrt{1-x^2}))$, d'après l'équivalence de la phase d'analyse.
 - Or, $\arcsin(2x\sqrt{1-x^2}) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
 - $\bullet \quad \bullet \ \text{Si} \ x \in \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right], \arcsin x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \\ \text{donc } 2\arcsin x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]. \ \text{Ainsi}, \ 2\arcsin x = \arcsin \left(2x\sqrt{1-x^2}\right).$
 - Si $x \in \left[-1, -\frac{\sqrt{2}}{2}\right[$, $\arcsin x \in \left[-\frac{\pi}{2}, -\frac{\pi}{4}\right[$ donc $2\arcsin x \in \left[-\pi, -\frac{\pi}{2}\right[$. Ainsi, $2\arcsin x \neq \arcsin(2x\sqrt{1-x^2})$.
 - Si $x \in \left[\frac{\sqrt{2}}{2}, 1\right]$, $\arcsin x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ donc $2\arcsin x \in \left[\frac{\pi}{2}, \pi\right]$. Ainsi, $2\arcsin x \neq \arcsin(2x\sqrt{1-x^2})$.
- En conclusion, l'ensemble des solutions est $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$.
- 7. L'équation a un sens pour $x \in \mathbb{R}$.
 - Analyse: supposons qu'il existe $x \in \mathbb{R}$ tel que $\arctan x + \arctan 2x = \frac{\pi}{4}$. Alors, $\tan (\arctan x + \arctan 2x) = \tan \left(\frac{\pi}{4}\right)$. Or:

$$\tan(\arctan x + \arctan 2x) = \tan\left(\frac{\pi}{4}\right) \iff \frac{\tan(\arctan x) + \tan(\arctan 2x)}{1 - \tan(\arctan x) \tan(\arctan 2x)} = 1$$

$$\iff \frac{3x}{1 - 2x^2} = 1$$

$$\iff x = \frac{-3 - \sqrt{17}}{4} \text{ ou } x = \frac{-3 + \sqrt{17}}{4}$$

Donc
$$x \in \{\frac{-3 - \sqrt{17}}{4}, \frac{-3 + \sqrt{17}}{4}\}.$$

- Synthèse : Soit $x \in \{\frac{-3-\sqrt{17}}{4}, \frac{-3+\sqrt{17}}{4}\}$. Alors, $\tan(\arctan x + \arctan 2x) = \tan\left(\frac{\pi}{4}\right)$, d'après l'équivalence de la phase d'analyse.
 - Si $x = \frac{-3 \sqrt{17}}{4}$. On a x < 0 et 2x < 0 donc $\arctan x < 0$ et $\arctan 2x < 0$ car $\arctan 0 = 0$ et (croissance de l'arcsinus) donc $\arctan x + \arctan 2x < 0$. Ainsi, x n'est pas solution.
 - Si $x = \frac{-3 + \sqrt{17}}{4}$. x > 0 donc $\arctan x \in \left[0, \frac{\pi}{2}\right[\text{ et } 2x > 0 \text{ donc } \arctan 2x \in \left[0, \frac{\pi}{2}\right[\text{ . Ainsi, } \arctan x + \arctan 2x \in \left[0, \pi\right[.] \text{ Or, l'équation } \tan x = 1 \text{ admet une unique solution sur } \left[0, \pi\right[\text{ qui est } \frac{\pi}{4} \text{ . Ainsi, } \arctan x + \arctan 2x = \frac{\pi}{4} \text{ .}$
- En conclusion, l'ensemble des solutions est $\left\{ \frac{-3 + \sqrt{17}}{4} \right\}$.
- 8. L'équation a un sens pour $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$
 - Analyse: Supposons qu'il existe $x \in \left[\frac{-1}{2}, \frac{1}{2}\right]$ tel que $\arcsin(2x) \arcsin(x\sqrt{3}) = \arcsin(x)$. On a alors, $\sin\left(\arcsin(2x) - \arcsin(x\sqrt{3})\right) = \sin(\arcsin x)$. Or:

$$\sin\left(\arcsin\left(2x\right) - \arcsin\left(x\sqrt{3}\right)\right) = \sin(\arcsin x) \quad \Longleftrightarrow \quad \sin(\arcsin\left(2x\right))\cos(\arcsin\left(x\sqrt{3}\right)) - \sin(\arcsin\left(x\sqrt{3}\right))\cos(\arcsin\left(2x\right)) = x$$

$$\iff \quad 2x\sqrt{1 - 3x^2} - \sqrt{3}x\sqrt{1 - 4x^2} = x$$

$$\iff \quad x = 0 \text{ ou } 2\sqrt{1 - 3x^2} - \sqrt{3}\sqrt{1 - 4x^2} = 1$$

De plus,
$$2\sqrt{1-3x^2} - \sqrt{3}\sqrt{1-4x^2} = 1$$
 \iff $2\sqrt{1-3x^2} = 1 + \sqrt{3}\sqrt{1-4x^2}$ \Leftrightarrow $4(1-3x^2) = 1 + 2\sqrt{3}\sqrt{1-4x^2} + 3(1-4x^2)$ car ≥ 0 \Leftrightarrow $4-12x^2 = 1 + 2\sqrt{3}\sqrt{1-4x^2} + 3 - 12x^2$ \Leftrightarrow $0 = 2\sqrt{3}\sqrt{1-4x^2}$ \Leftrightarrow $1-4x^2 = 0$ \Leftrightarrow $x = \pm \frac{1}{2}$

Ainsi, $x \in \{0, -\frac{1}{2}, \frac{1}{2}\}.$

- Synthèse : On vérifie si nos éventuelles solutions sont bien solutions : $\arcsin(2\times 0) - \arcsin(\sqrt{3}\times 0) = 0 = \arcsin(0)$ donc 0 est bien solution. $\arcsin\left(-1\right) - \arcsin\left(\frac{-\sqrt{3}}{2}\right) = \frac{-\pi}{2} - \left(\frac{-\pi}{3}\right) = -\frac{\pi}{6} = \arcsin\left(-\frac{1}{2}\right)$ donc $-\frac{1}{2}$ est bien solution. $\arcsin(1) - \arcsin(\frac{\sqrt{3}}{2}) = \frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6} = \arcsin(\frac{1}{2}) \text{ donc } \frac{1}{2} \text{ est bien solution.}$
- Ainsi, l'ensemble des solutions est : $S = \{-\frac{1}{2}, 0, \frac{1}{2}\}.$

1. Cette formule sera v
raie pour tout $x \in [-1,1]$. Posons $\begin{array}{ccc} h: & [-1,1] & \to & \mathbb{R} \\ & x & \mapsto & \arcsin x + \arccos x \end{array}.$ Exercice 22. $h \text{ est d\'erivable sur }]-1,1[\text{ et pour tout } x \in]-1,1[,h'(x)=\frac{-1}{\sqrt{1-x^2}}+\frac{1}{\sqrt{1-x^2}}=0. \text{ Ainsi, } h \text{ est constante sur }]-1,1[\text{ et } h \text{ est continue sur } [-1,1] \text{ donc } h \text{ est constante sur } [-1,1]. \text{ Ainsi, pour tout } x \in [-1,1], h(x)=h(0)=0+\frac{\pi}{2}=\frac{\pi}{2}.$ 2. Soit $x \in \mathbb{R} \setminus \{-1\}.$

$$\frac{1-x}{1+x} \ge 0 \quad \Longleftrightarrow \quad x \in]-1,1]$$

(faire un tableau de signes). Ainsi, cette formule a un sens pour $x \in]-1,1]$.

$$g:]-1,1] \rightarrow \mathbb{R}$$

$$x \mapsto 2\arctan\left(\sqrt{\frac{1-x}{1+x}}\right) + \arcsin x$$
. g est dérivable sur $]-1,1[$.

Soit
$$x \in]-1, 1[, g'(x) = \frac{2}{1 + \frac{1-x}{1+x}} \times \frac{1}{2\sqrt{\frac{1-x}{1+x}}} \times \frac{-2}{(1+x)^2} + \frac{1}{\sqrt{1-x^2}} = \frac{-(1+x)\sqrt{1+x}}{\sqrt{1-x}(1+x)^2} + \frac{1}{\sqrt{1-x}\sqrt{1+x}} = 0.$$

Ainsi, g est constante sur]-1,1[. Or, g est continue en 1 donc g est constante sur]-1,1[. Ainsi, pour tout $x \in [-1,1], g(x) = g(0) = \frac{\pi}{2}.$

3. Cette formule a un sens pour tout $x \in \mathbb{R}$. Posons $\begin{array}{ccc} f: & \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & 2\arctan\left(\sqrt{1+x^2}-x\right)+\arctan x \end{array}$ f est dérivable sur \mathbb{R} . Soit $x \in \mathbb{R}$.

$$f'(x) = \frac{2}{1 + \left(\sqrt{1 + x^2} - x\right)^2} \times \left(\frac{x}{\sqrt{1 + x^2}} - 1\right) + \frac{1}{1 + x^2} = \frac{2}{2 + 2x^2 - 2x\sqrt{1 + x^2}} \times \left(\frac{x}{\sqrt{1 + x^2}} - 1\right) + \frac{1}{1 + x^2}.$$

$$= \frac{x - \sqrt{1 + x^2}}{(1 + x^2)(\sqrt{1 + x^2} - x)} + \frac{1}{1 + x^2}$$

$$= 0$$

Ainsi, f est constante sur \mathbb{R} et on a : $\forall x \in \mathbb{R}$, $f(x) = f(0) = \frac{\pi}{2}$.

4. Par étude de fonction.

On pose
$$f: \mathbb{R}^* \to \mathbb{R}$$
 $x \mapsto \arctan(x) + \arctan(\frac{1}{x})$

f act définie et définie et désirable sur \mathbb{R}^* et en $x \mapsto \mathbb{R}^*$

f est définie et dérivable sur \mathbb{R}^* et on a : $\forall x \in \mathbb{R}^*$, f'(x) = 0. Ainsi, il existe $C_1, C_2 \in \mathbb{R}$ tels que :

$$\forall x \in \mathbb{R}_{-}^{*}, \ f(x) = C_1$$

$$\forall x \in \mathbb{R}_{+}^{*}, \ f(x) = C_2$$

De plus,

•
$$f(1) = 2\arctan(1) = \frac{\pi}{2} \text{ Donc } C_1 = \frac{\pi}{2}$$

= C_1

•
$$f(-1) = 2\arctan(-1) = -\frac{\pi}{2}$$
 Donc $C_2 = -\frac{\pi}{2}$.

Ainsi,

$$\arctan(x) + \arctan(\frac{1}{x}) = \begin{cases} -\frac{\pi}{2} & \text{si } x \in \mathbb{R}_{-}^{*} \\ \frac{\pi}{2} & \text{si } x \in \mathbb{R}_{+}^{*} \end{cases}$$

Méthode directe:

Soit $x \in \mathbb{R}_+^*$. Montrons que $\arctan(x) = \frac{\pi}{2} - \arctan\left(\frac{1}{x}\right)$.

$$\tan\left(\frac{\pi}{2} - \arctan\left(\frac{1}{x}\right)\right) = \frac{1}{\tan(\arctan\left(\frac{1}{x}\right))} = x = \tan(\arctan\left(x\right)).$$

De plus,
$$\arctan(x) \in \left]0, \frac{\pi}{2}\right[\text{ et }\arctan\left(\frac{x}{x}\right) \in \left]0, \frac{\pi}{2}\right[(\operatorname{car} x > 0 \text{ et } \frac{1}{x} > 0) \operatorname{donc} \frac{\pi}{2} - \arctan\left(\frac{1}{x}\right) \in \left]0, \frac{\pi}{2}\right[(\operatorname{car} x > 0 \text{ et } \frac{1}{x} > 0) \operatorname{donc} \frac{\pi}{2} - \arctan\left(\frac{1}{x}\right) \in \left]0, \frac{\pi}{2}\right[(\operatorname{car} x > 0 \text{ et } \frac{1}{x} > 0) \operatorname{donc} \frac{\pi}{2} - \arctan\left(\frac{1}{x}\right) \in \left]0, \frac{\pi}{2}\right[(\operatorname{car} x > 0 \text{ et } \frac{1}{x} > 0) \operatorname{donc} \frac{\pi}{2} - \arctan\left(\frac{1}{x}\right) \in \left[0, \frac{\pi}{2}\right]$$

Ainsi,
$$\arctan(x) = \frac{\pi}{2} - \arctan\left(\frac{1}{x}\right)$$
.

Soit $x \in \mathbb{R}_{-}^*$. La fonction arctan étant impaire, on a : $\arctan(x) + \arctan(\frac{1}{x}) = -\left(\arctan(-x) + \arctan(\frac{1}{(-x)})\right)$ avec $-x \in \mathbb{R}_{+}^{*}$. Ainsi, $\arctan(x) + \arctan(\frac{1}{x}) = -\frac{\pi}{2}$.

Exercice 23. Soit $x \in \mathbb{R}_+$ (pour que la racine carrée soit bien définie)

$$-1 \le \frac{2\sqrt{x}}{1+x} \le 1 \quad \Longleftrightarrow \quad \left\{ \begin{array}{l} \frac{1+x+2\sqrt{x}}{1+x} \ge 0\\ \frac{2\sqrt{x}-1-x}{1+x} \le 0 \end{array} \right.$$

$$\iff \quad \left\{ \begin{array}{l} \frac{(1+\sqrt{x})^2}{1+x} \ge 0\\ \frac{-(1-\sqrt{x})^2}{1+x} \le 0 \end{array} \right.$$

Ainsi, f est définie sur \mathbb{R}_+ . Soit $x \in \mathbb{R}_+$,

$$-1 < \frac{2\sqrt{x}}{1+x} < 1 \iff x \neq 1$$

(d'après les calculs précédents). Ainsi, f est dérivable sur $\mathbb{R}_+ \setminus \{1\}$.

Soit
$$x \in \mathbb{R}_+ \setminus \{1\}$$
, $f'(x) = \frac{1}{\sqrt{1 - \frac{4x}{(1+x)^2}}} \times \frac{\frac{1}{\sqrt{x}}(1+x) - 2\sqrt{x}}{(1+x)^2}$

$$= \frac{(1+x)}{\sqrt{(1-x)^2}} \times \frac{(1-x)}{\sqrt{x}(1+x)^2}$$

$$= \frac{(1-x)}{|1-x|} \times \frac{1}{\sqrt{x}(1+x)}$$
Soit $x \in \mathbb{R}_+$, $\frac{\sqrt{x}}{1+x} = \frac{\sqrt{x}}{x} \left(\frac{1}{\frac{1}{x}+1}\right) = \frac{1}{\sqrt{x}} \left(\frac{1}{1+\frac{1}{x}}\right)$. Or, $\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$ et $\lim_{x \to +\infty} \frac{1}{1+\frac{1}{x}} = 1$. Donc $\lim_{x \to +\infty} \frac{2\sqrt{x}}{1+x} = 0$. De plus, $\lim_{x \to 0} \arcsin(x) = \arcsin(0) = 0$ donc par composition, $\lim_{x \to +\infty} f(x) = 0$.

On a
$$f(0) = \arcsin(0) = 0$$
 et $f(1) = \arcsin(1) = \frac{\pi}{2}$.

x	$0 1 +\infty$
f'(x)	+ -
f	$\frac{\pi}{\sqrt{2}}$
	0

Exercice 24. On sait que f est définie sur \mathbb{R} . De plus, f est 2π périodique. Il suffit donc de l'étudier sur un intervalle de longueur 2π . Choisissons ce l'étudier sur $\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$. Pour tout $x\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, f(x)=x. De plus, pour tout $x\in\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$, f(x)=x. De plus, pour tout $x\in\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$, f(x)=x. Il suffit ensuite d'utiliser la 2π périodicité. On trace la courbe représentative de f sur $\left[-\frac{\pi}{2},\frac{3\pi}{2}\right]$ puis on effectue des translations de vecteurs $(2k\pi,0)$, $k\in\mathbb{Z}$.

Exercice 25. Posons

$$\begin{array}{ccc} & \mathbb{K}_{+}^{*} & \to & \mathbb{K} \\ & x & \mapsto & \arctan(x) - \frac{x}{1 + x^{2}} \end{array}$$

f est définie et dérivable sur \mathbb{R}_+^* en tant que combinaison linéaire de fonctions dérivables. Soit $x \in \mathbb{R}_+^*$,

$$f'(x) = \frac{1}{1+x^2} - \frac{1+x^2-2x^2}{(1+x^2)^2} = \frac{1+x^2-1+x^2}{(1+x^2)^2} = \frac{2x^2}{(1+x^2)^2}$$

Ainsi, f est strictement croissante sur \mathbb{R}_+^* : $\forall x \in \mathbb{R}_+^*$, f'(x) > 0. De plus, on a : $\lim_{x \to 0} f(x) = \arctan(0) = 0$. Ainsi, on a : $\forall x \in \mathbb{R}_+^*$, \mathbb{R}_+^* , $f(x) > \lim_{x \to 0} f(x)$. Donc : $\forall x \in \mathbb{R}_+^*$, f(x) > 0. Ce qui permet de conclure.

Exercice 26. 1. Posons $g: x \mapsto \frac{x}{\sqrt{x^2+1}}$. g est définie sur \mathbb{R} . Soit $x \in \mathbb{R}$,

$$g(x) \in [-1, 1] \quad \Longleftrightarrow \quad -1 \le \frac{x}{\sqrt{x^2 + 1}} \le 1$$

$$\iff \quad \frac{|x|}{\sqrt{x^2 + 1}} \le 1$$

$$\iff \quad |x| \le \sqrt{x^2 + 1}$$

$$\iff \quad x^2 < x^2 + 1$$

Ainsi, f est définie sur \mathbb{R} .

2. Pour tout $x \in \mathbb{R}$, on a $|x| < \sqrt{x^2 + 1}$ (car $0 \le x^2 < x^2 + 1$ et la fonction racine carrée est strictement croissante sur \mathbb{R}_+), donc $0 \le \frac{|x|}{\sqrt{x^2 + 1}} < 1$. Ainsi, $-1 < \frac{x}{\sqrt{x^2 + 1}} < 1$. La fonction g est donc définie sur \mathbb{R} et à valeurs dans]-1,1[. De plus, g est dérivable sur \mathbb{R} et arcsin est dérivable sur]-1,1[. Ainsi, $f=\arcsin\circ g$ est dérivable sur \mathbb{R} par composition. Soit $x \in \mathbb{R}$, on a :

$$f'(x) = \frac{1}{\sqrt{1 - \left(\frac{x}{\sqrt{x^2 + 1}}\right)^2}} \times \frac{\sqrt{x^2 + 1} - \frac{2x^2}{2\sqrt{x^2 + 1}}}{x^2 + 1} = \frac{1}{1 + x^2}$$

- 3. D'après la question précédente, on a : $\forall x \in \mathbb{R}$, $f'(x) = \arctan'(x)$. Ainsi, il existe $C \in \mathbb{R}$ tel que : $\forall x \in \mathbb{R}$, $f(x) = \arctan(x) + C$. Or, $f(0) = \arcsin(0) = 0$ et $f(0) = \arctan(0) + C = C$. Ainsi, C = 0. On en déduit que f est la fonction arc tangente.
- On en déduit que f est la fonction arc tangente.

 4. Soit $x \in \mathbb{R}$, $\sin(f(x)) = \frac{x}{\sqrt{x^2 + 1}}$ donc $\sqrt{x^2 + 1}\sin(f(x)) = x$ et $(x^2 + 1)\sin^2(f(x)) = x^2$.

 Ainsi, $x^2(1 \sin^2(f(x))) = \sin^2(f(x))$. Donc $x^2\cos^2(f(x)) = \sin^2(f(x))$.

 Or, $\frac{x}{\sqrt{x^2 + 1}} \in]-1, 1[$ donc $f(x) \in]-\frac{\pi}{2}, \frac{\pi}{2}[$. Ainsi, $\cos(f(x)) \neq 0$.

On obtient alors :
$$x^2 = \frac{\sin^2(f(x))}{\cos^2(f(x))} = \tan^2(f(x)).$$

D'où $\tan(f(x)) = x$ ou $\tan(f(x)) = -x$. Ainsi, $\tan(f(x)) = \tan\arctan x$ ou $\tan(f(x)) = \tan(\arctan(-x))$. Or, f(x), $\arctan(x)$, $\arctan(x) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ donc $f(x) = \arctan(x)$ ou $f(x) = \arctan(-x) = -\arctan(x)$ (par imparité de la fonction arc tangente). Or, on sait que arcsin est strictement croissante sur [-1,1] et arcsin (0) = 0. Ainsi, f(x) est du signe de x. De même, arctan est strictement croissante \mathbb{R} et arctan (0) = 0 donc arctan x est du signe de x. Ainsi, on retrouve $: f(x) = \arctan(x)$.