### چکیده گزارش:

برای انجام این پروژه، ابتدا پس از انتخاب مکانیزم شماره ۶، محاسبات موردنیاز با استفاده از روش تحلیلی (اعداد مختلط) –که قابل تعمیم به مکانیزمهای مشابه در اندازهها و با ویژگیهای مختلف است- به صورت پارامتری انجام و با استفاده از نرمافزارهای Wolfram Mathematica کد مربوط به این محاسبات نوشته شد. سپس با استفاده از نرمافزار Adams/View مکانیزمی با اندازههای دلخواه شبیهسازی شد. در پایان نمودار های استخراج شده از دو نرم افزار تطبیق داده شد.

# تشریح مسئله و فرضیات:

فرض: در قسمت شبیهسازی مربوط به نرمافزار Adams برای صرفنظر از وزن لینکها، نیروی گرانش را حذف کردیم.

مکانیزمی که ما انتخاب کردیم دارای یک صفحه ی مثلثی شکل، ۳ لینک شبهاستوانهای و یک لغزنده است که در راستای عمودی حرکت میکند. زاویهی راس صفحهی مثلثی شکل (زاویه A) را نیز به صورت دلخواه و در قالب متغیر beta در نظر گرفتهایم. لینک شماره ۲ را نیز به عنوان لینک ورودی در نظر گرفتیم. تصویر مکانیزم را در شکل زیر مشاهده میکنید که با توجه به راه حل ما تغییراتی در آن ایجاد شده است:



### دادههای ورودی و خروجی:

|        | اندازه | زاویه اولیه | سرعت زاویهای/خطی | شتاب زاویه ای |
|--------|--------|-------------|------------------|---------------|
| لینک ۱ | a      | t1          | w1               | a1            |
| لینک۲  | b      | t2          | w2               | a2            |
| لینک۳  | c      | t3          | w3               | a3            |
| لینک۴  | d      | t4          | w4               | a4            |
| لینک۷  | e      | t7          | w7               | a7            |
| لینک۸  | S      | t8          | sdot             | sddot         |

\*مواردی که با رنگ سیاه مشخص شدهاند دادههای اولیه هستند.

\*مواردی که با رنگ خاکستری مشخص شده است دادههایی هستند که بعد از حل مشخص میشوند.

با استفاده از دادههای موجود در جدول زیر، با معادله دورانی t=3 theta=t=2-0.5\*t=3 و با زاویه راس ۹۰ درجه در صفحه مثلثی شکل نیز نتایج حاصله آزمایش شد:

|        | اندازه | زاويه اوليه | سرعت زاویهای/خطی | شتاب زاویه ای |
|--------|--------|-------------|------------------|---------------|
| لینک ۱ | ٠,٢۵   | Pi/2        | •                | ň             |
| لینک۲  | ٠,١٥   | _7,97       | -٣               | -1            |
| لینک۳  | ٠,٢٢٣۶ | 9,79        | -1,٧٩            | -4,74         |
| لینک۴  | ٠,٢٢٣۶ | ٧,٥٠        | ٠,٥٢             | _7,7          |
| لینک۷  | ٠,٣١٣٢ | ۵,۴۵        | ٠,١٧             | _7,7          |
| لینک۸  | -•,19  | Pi/2        | ٠,٠٧             | ۰,۳۲          |

تمام زوایا با واحد رادیان و تمامی طولها با واحد متر هستند.

#### الگوریتم و ویژگی های برنامه:

برای حل این مکانیزم و به دست آورن اطلاعات مورد نیاز مساله، معادلات به دست آمده در روش تحلیلی به صورت عبارات مختلط به نرم افزار Mathematica داده شده و این نرم افزار با مشتق گرفتن از عبارات اولیه و حل معادلات حاصله، اطلاعات مورد نیاز را به دست میآورد. قابل ذکر است که تمامی اطلاعات به دست آمده از حل معادلات به صورت پارامتری بوده و پس از دریافت اطلاعات اولیه از کاربر، مقدار عددی آنها محاسبه میگردد. همچنین سعی شده است با بهینهسازی ترتیب جایگزینی دادهها و استفاده از تابع محاسبه میگردد. همچنین سعی شده است با بهینهسازی ترتیب جایگزینی دادهها و استفاده از تابع ساده شده در بازهی محدود رسم شده است.

کد نوشته شده با نام Mechanism6 در ضمیمه آمده است.

# تحلیلهای به دست آمده و مقایسه ی نتایج:

در این بخش از گزارش به منظور مقایسه نتایج حاصله، نمودارهای سرعت و شتاب وهمچنین نمودارهای سرعت وشتاب زاویه ای حاصل شده در نرم افزار محاسباتی و نرم افزار مدل سازی در کنار هم آمده است:

#### شتاب زاویهای لینکها:

A2 Matematica:





:A3 :Matematica





### : Matematica





# :A7

### :Matematica





# سرعت زاویه ای لینک ها:

W2

# Mathematica





### Mathematica





### Mathematica





### Mathematica





# سرعت و شتاب لغزنده:

### :Sdot

### :Mathematica





### :sddot

### Mathematica





مشاهده می شود که نمودارها با تقریب خوبی یکسان میباشند. \*در همه ی این نمودار ها محور افقی زمان و محور عمودی تیتر هر قسمت میباشد. \*همه ی زوایا نیز به رادیان می باشند.

# نمودار های سرعت خطی تمام نقاط هر لینک:

( تمامی این نمودار ها با استفاده از نرم افزار Mathematica رسم شده است )

نقاط روی لینک ۲:



نقاط روی لینک ۳:





نقاط روی لینک ۷:



\*در این نمودار ها محور افقی فاصله هر نقطه روی لینک و محور عمودی سرعت خطی هر نقطه است.