Tensorflow 2.0

학습 목표

- 딥러닝 프레임워크의 역할과 Tensorflow의 사용법을 이해한다.
- .

주요 내용

- 1. 하드웨어
- 2. 소프트웨어
- 3. Tensorflow
- 4. Keras

1 하드웨어

CPU vs GPU

CPU

Control	ALU	ALU	
	ALU	ALU	
Cache			
DRAM			

- Core 개수가 적음
- 각 Core는 매우 빠르고 범용적
- Sequential task에 적합

GPU

Control	ALU								
Cache									
Control	ALU								
Cache									
Control	ALU								
Cache									
Control	ALU								
Cache									
DRAM									

- Core 개수가 매우 많음
- 각 Core는 느리고 제한적
 - Parallel task에 적합

Matrix Multiplication

Stanford CS231n: Convolutional Neural Networks for Visual Recognition

TPU (Tensor Processing Unit)

Deep Learning 전용 Processor

Google Cloud TPU 2.0 = 180 TFLOP! Google Cloud TPU 3.0 = 2.0보다 8배 빨라짐

NVIDIA TITAN V = 14 TFLOP (FP32), 112 TFLOP (FP16)

Stanford CS231n: Convolutional Neural Networks for Visual Recognition

CPU vs GPU vs TPU

	Cores	Clock Speed	Memory	Price	Speed
CPU (Intel Core i7-7700k)	4 (8 threads with hyperthreading)	4.2 GHz	System RAM	\$385	~540 GFLOPs FP32
GPU (NVIDIA RTX 2080 Ti)	3584	1.6 GHz	11 GB GDDR6	\$1199	~13.4 TFLOPs FP32
TPU NVIDIA TITAN V	5120 CUDA, 640 Tensor	1.5 GHz	12GB HBM2	\$2999	~14 TFLOPs FP32 ~112 TFLOP FP16
TPU Google Cloud TPU	?	?	64 GB HBM	\$4.50 per hour	~180 TFLOP

Stanford CS231n: Convolutional Neural Networks for Visual Recognition

CPU / GPU Communication

Data is here

훈련 시 데이터를 읽어서 GPU로 보내는 것이 bottleneck이 될 수 있음.

해결책:

- 전체 데이터를 RAM으로 읽기
- HDD 대신 SSD 사용하기
- 데이터를 읽을 때 여러 CPU thread 사용

Stanford CS231n: Convolutional Neural Networks for Visual Recognition

CPU / GPU Communication

https://www.datascience.com/blog/cpu-gpu-machine-learning

2 소프트웨어

딥러닝 프레임워크

Stanford CS231n: Convolutional Neural Networks for Visual Recognition

딥러닝 프레임워크를 왜 사용해야 하는가?

Quick

새로운 아이디어를 신속하게 개발하고 테스트 할 수 있다

Automatic

복잡한 Gradient 계산을 자동으로 해준다.

Efficient

GPU를 효율적 활용할 수 있다. (cuDNN, cuBLAS, etc Wrapper)

11

딥러닝구현시 NumPy의 한계

```
import numpy as np
np.random.seed(0)
N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)
# Forward Pass
a = x * y
b = a + z
c = np.sum(b)
# Gradient 계산
grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad_y = grad_a * x
```


장점:

- Clean API
- 수치를 다루는 코드를 쉽게 작성 할 수 있음

단점:

- Gradient를 직접 계산해야 함
- GPU에서 실행할 수 없음

참고 Gradient 계산

$$c = \sum_{i} \sum_{j} b_{i,j}$$

$$b = a + z$$

$$a = x * y$$

Local Gradient

$$\frac{\partial c}{\partial b_{i,j}} = 1$$

$$\frac{\partial c}{\partial b} = \begin{bmatrix} \frac{\partial c}{\partial b_{1,1}} & \frac{\partial c}{\partial b_{1,2}} & \dots & \frac{\partial c}{\partial b_{1,D}} \\ \frac{\partial c}{\partial b_{2,1}} & \frac{\partial c}{\partial b_{2,2}} & \dots & \frac{\partial c}{\partial b_{2,D}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial c}{\partial b_{N,1}} & \frac{\partial c}{\partial b_{N,2}} & \frac{\partial c}{\partial b_{N,2}} & \dots & \frac{\partial c}{\partial b_{N,D}} \end{bmatrix} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{bmatrix}$$

$$\frac{\partial c}{\partial a} = \frac{\partial c}{\partial b} \cdot \frac{\partial b}{\partial a} = 1_{[N,D]}$$

$$\frac{\partial c}{\partial a} = \frac{\partial c}{\partial b} \cdot \frac{\partial b}{\partial a} = 1_{[N,D]}$$

$$\frac{\partial b}{\partial a} = 1_{[N,D]} \qquad \frac{\partial b}{\partial z} = 1_{[N,D]}$$

$$\frac{\partial a}{\partial x} = y$$
 $\frac{\partial a}{\partial y} = x$

Global Gradient

$$\frac{\partial c}{\partial b} = 1_{[N,D]}$$

$$\frac{\partial c}{\partial a} = \frac{\partial c}{\partial b} \cdot \frac{\partial b}{\partial a} = 1_{[N,D]}$$

$$\frac{\partial c}{\partial z} = \frac{\partial c}{\partial b} \cdot \frac{\partial b}{\partial z} = 1_{[N,D]}$$

$$\frac{\partial c}{\partial x} = \frac{\partial c}{\partial b} \cdot \frac{\partial b}{\partial a} \cdot \frac{\partial a}{\partial x} = y$$

$$\frac{\partial c}{\partial y} = \frac{\partial c}{\partial b} \cdot \frac{\partial b}{\partial a} \cdot \frac{\partial a}{\partial y} = x$$

딥러닝프레임워크 Gradient 자동 계산

Numpy

import numpy as np np.random.seed(0) N, D = 3, 4 x = np.random.randn(N, D) y = np.random.randn(N, D) z = np.random.randn(N, D) # Forward Pass a = x * y b = a + z c = np.sum(b)

```
# Gradient 계산
grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad_y = grad_a * x
```

TensorFlow

```
import tensorflow as tf
N, D = 3, 4
x = tf.Variable(tf.random.normal((N, D)))
y = tf. Variable(tf.random.normal((N, D)))
z = tf.Variable(tf.random.normal((N, D)))
# Forward Pass
with tf.GradientTape() as tape:
  a = x * y
  b = a + z
  c = tf.reduce_sum(b)
# Gradient 계산
grad_x, grad_y, grad_z = tape.gradient(c, [x, y, z])
```

14

딥러닝프레임워크 GPU 실행

CPU 사용

```
import tensorflow as tf
N, D = 3, 4
with tf.device("CPU:0"):
  x = tf.Variable(tf.random.normal((N, D)))
  y = tf. Variable(tf.random.normal((N, D)))
  z = tf. Variable(tf.random.normal((N, D)))
  # Forward Pass
  with tf.GradientTape() as tape:
     a = x * y
     b = a + z
     c = tf.reduce\_sum(b)
  # Gradient 계산
  grad_x, grad_y, grad_z = tape.gradient(c, [x, y, z])
```

GPU 사용

```
import tensorflow as tf
N, D = 3, 4
with tf.device("GPU:0"):
  x = tf.Variable(tf.random.normal((N, D)))
  y = tf. Variable(tf.random.normal((N, D)))
  z = tf. Variable(tf.random.normal((N, D)))
  # Forward Pass
  with tf.GradientTape() as tape:
     a = x * y
     b = a + z
     c = tf.reduce_sum(b)
  # Gradient 계산
  grad_x, grad_y, grad_z = tape.gradient(c, [x, y, z])
```

3 TensorFlow

What is TensorFlow

- TensorFlow 0.5 Release (2015. 11)
- **TensorFlow 2.0** Release (2019. 10)
- C++ core, Python API
- High-level API : Keras
- Community
 - 117,000+ GitHub stars
 - TensorFlow.org: Blogs, Documentation, DevSummit, YouTube talks

http://tensorflow.org

17

TensorFlow 2.0

Ecosystem

- Keras : high-level API
- TensorFlow.js : in the browser
- TensorFlow Lite : on the phone
- Colaboratory: in the cloud
- TPU: optimized hardware
- TensorBoard: visualization
- TensorFlow Hub : graph modules

• Extras

- Swift for TensorFlow
- TensorFlow Serving
- TensorFlow Extended (TFX)
- TensorFlow Probability
- Tensor2Tensor

https://medium.com/tensorflow/tensorflow-2-0-is-now-available-57d706c2a9ab

TensorFlow 2.0

- **Eager execution** (Define by Run)
- Functions, not session
- AutoGraph
- API Cleanup (no more globals)

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

19

Computational Graph

신경망에 필요한 계산 과정을 계산 그래프(Computational Graph)로 정의

실행에 최적화된 Static Graph 생성

세션을 통해 계산 그래프를 실행

계산 그래프 정의

<u>세션 생성</u>

Session

- 세션 (Session):
 계산 그래프를 실행하는 단위
 실행 환경을 추상화 한 개념

<u>세션 실행</u>

22

동일 계산 그래프를 여러 세션으로 동시에 실행 가능

<u>계산 그래프 정의</u>

<u>세션 생성</u>

Session 1

Session 2

Session n

<u>세션 실행</u>

TensorFlow 1.x 코드 형태

```
# Basic computational graph
import numpy as np
np.random.seed(0)
import tensorflow as tf
N, D = 3, 4
x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
z = tf.placeholder(tf.float32)
                                      계산 그래프 정의
c = tf.reduce sum(b)
                                                     Gradient
grad x, grad y, grad z = tf.gradients(c, [x, y, z])
                                                     계산
with tf.Session() as sess:
    values =
        x: np.random.randn(N, D),
       y: np.random.randn(N, D),
        z: np.random.randn(N, D),
                                                        세션
                                                        실행
    out = sess.run([c, grad x, grad y, grad z],
                  feed dict=values)
    c_val, grad_x_val, grad_y_val, grad_z_val = out
```

장점:

- 실행 성능을 최적화 할 수 있다.
- 확장성이 좋다.

단점:

- 프로그램 방식이 익숙하지 않다.
- 디버깅이 어렵다.
- 조건에 따라 동적으로 변화하거나 반복적으로 확장되는 Dynamics Graph를 만들기 어렵다.

25

Static Graph 방식의 한계

Conditional

• 조건에 따라 실행되는 그래프가 변경 되어야 하는 경우

$$y = \begin{cases} w1 * x & \text{if } z > 0 \\ w2 * x & \text{otherwise} \end{cases}$$

Loop

 입력의 크기에 따라 그래프가 재귀적 으로 확장되어야 하는 경우

$$y_t = (y_{t-1} + x_t) * w$$

26

Dynamic Graph 방식이 필요! Eager Execution

Eager Execution

- 1.x : tf.enable_eager_execution()
- 2.x: Default
- Define by Run support (like PyTorch, Chainer)
- Rapid Development
- Easy Debugging (use Python toolchain) → easy to check bottlenecks
- Native Control Flow (if, for etc) → easy to make complex model
- Boost performance by AutoGraph

Eager Execution

TensorFlow 1.x:

TensorFlow 2.x:

Define and Run에서 Define by Run 으로!

import tensorflow as tf import tensorflow as tf a = tf.constant(5)a = tf.constant(5)symbolic concrete b = tf.constant(3)b = tf.constant(3)c = a + bc = a + bwith tf.session() as sess: print(c) print(sess.run(c)) 8 Tensor("add_2:0", shape=(), dtype=int32) Error tf.Tensor(8, shape=(), dtype=int32)

28

Eager Execution

TensorFlow 1.x

```
z = w * x + b 구현
```

TensorFlow 2.x

```
import tensorflow as tf
## 그래프 정의
g = tf.Graph()
with g.as default():
  x = tf.placeholder(dtype=tf.float32,
                    shape=(None), name='x')
  w = tf. Variable(2.0, name='weight')
  b = tf. Variable(0.7, name='bias')
  z = w * x + b
  init = tf.global_variables_initializer()
## 세션 생성 및 그래프 g 전달
with tf.Session(graph=g) as sess:
  ## w와 b 초기화
  sess.run(init)
  ## z 평가
  for t in [1.0, 0.6, -1.8]:
     print('x=%4.1f --> z=%4.1f'%(
        t, sess.run(z, feed_dict={x:t})))
```

```
import tensorflow as tf
w = tf. Variable(2.0, name='weight')
b = tf.Variable(0.7, name='bias')
### z 평가
for x in [1.0, 0.6, -1.8]:
  z = w * x + b
  print('x=\%4.1f --> z=\%4.1f'\%(x, z))
```

AutoGraph

$tf.Graph() + tf.Session() \rightarrow @tf.function$

```
# TensorFlow 2.x
②tf.function
def simple_func():
    # complex computation with pure python
...
    return z

output = simple_func(input)

# TensorFlow 2.x
②tf.function

# complex computation

# complex computation with pure python
...

* for/while → tf.while_loop

• if → tf.cond
```

- @tf.function를 붙이면 그래프 생성해서 GPU나 TPU를 사용해서 작동
- @tf.function가 붙은 함수로부터 호출된 모든 함수들은 그래프 모드에서 동작
- 조건, 루프와 같은 제어문 사용 시 tf.cond, tf.while_loop와 같은 텐서플로 연산으로 변환

AutoGraph

TensorFlow 1.x

```
# 텐서플로 1.x 방식
g = tf.Graph()
# 그래프에 노드를 추가합니다.
with g.as_default():
g.as_graph_def()
node {
 name: "a"
 op: "Const"
 attr {
  key: "dtype"
  value {
   type: DT_INT32
```

TensorFlow 2.x

```
# 텐서플로 2.x 방식
@tf.function
def simple_func():
  return z
con_func = simple_func.get_concrete_function()
con_func.graph.as_graph_def()
node {
 name: "a"
 op: "Const"
 attr {
  key: "dtype"
  value {
   type: DT_INT32
```

Keras in TensorFlow2.0 by 박해선님

4 Keras

Keras

- High-Level Neural Networks Specification (https://keras.io) (2015. 03)
- Add to tf.contrib.keras at TensorFlow 1.2
- Promote to tf.keras at TensorFlow 1.4 (tf.layers → tf.keras)
- 1st Class Python API for TensorFlow 2.0
- Deprecated tf.layer, tf.contrib.layers(Slim)
- Keras 2.3.x is last major release of multi-backend Keras.
 Instead use tf.keras

Keras in TensorFlow2.0 by 박해선님

Class Hierarchy

변수 컨테이너 (tf.Variable)

variables(), trainable_variables()

계층 정의 (파라미터, Forward Pass)

 $_call__() \Rightarrow build() \Rightarrow add_weights()$ $| \Rightarrow call()$ add_loss()

신경망 계층 통합

layers(), summary(), save()

모델 훈련/검증/테스트

compile(), fit(), evaluate(), predict()

순차 모델 구성 add()

Keras in TensorFlow2.0 by 박해선님

Keras 모델 정의

Sequential API

```
from tensorflow import tf
                                                                                 Dense (64)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(64, activation='relu'))
                                                                                    ReLU
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
                                                                                 Dense (64)
#훈련 설정
                                                                                    ReLU
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
              loss='categorical_crossentropy',
               metrics=['accuracy'])
                                                                                 Dense (10)
#모델 훈련
                                                                                  softmax
model.fit(train_data, labels, epochs=10, batch_size=32)
                                                                        model = tf.keras.Sequential([
#모델 평가
                                                                          tf.keras.layers.Dense(64),
model.evaluate(test_data, labels)
                                                                          tf.keras.layers.Dense(64),
                                                                          tf.keras.layers.Dense(10),
# 샘플 예측
model.predict(new_sample)
```

참고 tf.keras.layers

- class Conv2D: 2D convolution layer (e.g. spatial convolution over images).
- class Dense: Just your regular densely-connected NN layer.
- class Flatten: Flattens the input. Does not affect the batch size.
- class Reshape: Reshapes an output to a certain shape.
- class InputLayer: Layer to be used as an entry point into a Network (a graph of layers).
- class MaxPool2D: Max pooling operation for spatial data.
- class AveragePooling2D: Average pooling operation for spatial data.
- class GlobalAveragePooling2D: Global average pooling operation for spatial data.
- class BatchNormalization: Normalize and scale inputs or activations. (loffe and Szegedy, 2014).
- class Dropout: Applies Dropout to the input.
- class Embedding: Turns positive integers (indexes) into dense vectors of fixed size.
- class SimpleRNN: Fully-connected RNN where the output is to be fed back to input.
- class LSTM: Long Short-Term Memory layer Hochreiter 1997.
- class GRU: Gated Recurrent Unit Cho et al. 2014.

Layer

모양 변경

Pooling

정규화

RNN 계열

37

https://www.tensorflow.org/api_docs/python/tf/keras/layers

참고 tf.keras.layers

- class Softmax: Softmax activation function.
- class ReLU: Rectified Linear Unit activation function.
- class LeakyReLU: Leaky version of a Rectified Linear Unit.
- class ELU: Exponential Linear Unit.

Activation Function

38

https://www.tensorflow.org/api_docs/python/tf/keras/layers

Functional API

```
from tensorflow import tf
# 입력과 출력을 연결해서 임의의 모델 그래프 생성
input = tf.keras.Input(shape=(784,), name='img') # 입력 플레이스 홀더 반환
h1 = tf.keras.layers.Dense(64, activation='relu')(inputs) # 각 계층 별로 Tensor를 전달하고 리턴 받음
h2 = tf.keras.layers.Dense(64, activation='relu')(h1)
output = tf.keras.layers.Dense(10, activation='softmax')(h2)
#모델생성
model = tf.keras.Model(input, output) # 입력 Tensor와 Output Tensor를 모델에 지정
#훈련 설정
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
             loss='categorical_crossentropy',
             metrics=['accuracy'])
```

Keras in TensorFlow2.0 by 박해선님

© 2020 CRAS Lab Co., Ltd. All Rights Reserved.

39

Functional API

"Inception module"

"Residual block"

40

- 다중 입력 모델
- 다중 출력 모델
- 층을 공유하는 모델 (동일한 층을 여러 번 호출합니다)
- 데이터 흐름이 차례대로 진행되지 않는 모델 (예를 들면 잔차 연결(residual connections)).

Custom Layer

```
from tensorflow import tf
class MyLayer(tf.keras.layers.Layer):
  def __init__(self, units, activation=None, **kwargs):
     self.units = units
     self.activation = keras.activations.get(activation)
     super().__init__(**kwargs)
  def build(self, input_shape):
     self.weight = self.add_weight(name='kernel',
                                    shape=(input_shape[1], self.units),
                                   initializer='uniform')
     self.bias = self.add_weight(name='bias',
                                 shape=(self.units,),
                                 initializer='zeros')
     super().build(input_shape)
  def call(self, X):
     z = tf.matmul(X, self.weight) + self.bias
     return self.activation(z)
```

Keras in TensorFlow2.0 by 박해선님

Custom Model

```
from tensorflow import tf
class MyModel(tf.keras.Model):
  def __init__(self, **kwargs):
     self.hidden = MyLayer(10, activation="relu")
     self.output = MyLayer(1)
     super().__init__(**kwargs)
  def call(self, input):
     h = self.hidden(input)
     return self.output(h)
model = MyModel()
```

Keras in TensorFlow2.0 by 박해선님

Training 방식

model.compile

훈련에 필요한 Optimizer, Loss, Metric을 설정하는 단계

```
기 모델 예시

model.compile(optimizer=tf.keras.optimizers.Adam(0.01),
loss='mse', # 평균 제곱 오차
metrics=['mae']) # 평균 절댓값 오차
```

분류 모델 예시

- 2. 객체를 생성해서 전달 (파라미터를 지정할 필요가 있을 때)

model.compile(optimizer=tf.keras.optimizers.RMSprop(0.01), loss=tf.keras.losses.CategoricalCrossentropy(), metrics=[tf.keras.metrics.CategoricalAccuracy()])

참고 tf.keras.optimizers

- class SGD: Stochastic gradient descent and momentum optimizer.
- class Adagrad: Optimizer that implements the Adagrad algorithm.
- class RMSprop: Optimizer that implements the RMSprop algorithm.
- class Adam: Optimizer that implements the Adam algorithm.

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers

참고 tf.keras.losses

- class MeanSquaredError: Computes the mean of squares of errors between labels and predictions.
- class MeanAbsoluteError: Computes the mean of absolute difference between labels and predictions.
- class BinaryCrossentropy: Computes the cross-entropy loss between true labels and predicted labels.
- class CategoricalCrossentropy: Computes the crossentropy loss between the labels and predictions.
- class SparseCategoricalCrossentropy: Computes the crossentropy loss between the labels and predictions.

https://www.tensorflow.org/api_docs/python/tf/keras/losses

참고 tf.keras.metrics

- class Accuracy: Calculates how often predictions matches labels.
- class MeanAbsoluteError: Computes the mean absolute error between the labels and predictions.
- class MeanSquaredError: Computes the mean squared error between y_true and y_pred.

https://www.tensorflow.org/api_docs/python/tf/keras/metrics

model.fit

모델을 고정된 epoch 수로 훈련

```
history = model.fit( normed_train_data, train_labels,
epochs=1000, validation_split = 0.2, verbose=0,
callbacks = [Earlystopping(),
Tensorboard(),
ModelCheckpoint()])
```

- batch_size: 배치 크기 (default 32)
- **epochs**: 총 epoch 수 (epoch는 training set을 한번 실행하는 단위)
- validation_split: training set에서 validation set으로 사용할 비율 ((0,1) 사이의 값)
- verbose: 훈련 진행 상황 모드 0 = silent, 1 = progress bar, 2 = one line per epoch
- callbacks: 훈련하면서 실행할 콜백 리스트

차고 tf.keras.callbacks

- class EarlyStopping: Stop training when a monitored quantity has stopped improving.
- class ModelCheckpoint: Save the model after every epoch.
- class TensorBoard: Enable visualizations for TensorBoard.
- class LearningRateScheduler: Learning rate scheduler.

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks

tf.GradientTape

```
@tf.function
def train_step(input, target):
 with tf.GradientTape() as tape:
  # forward Pass
  predictions = model(input)
  # compute the loss
                                                                        Forward Pass
  loss = tf.reduce_mean(
        tf.keras.losses.sparse_categorical_crossentropy(
        target, predictions, from_logits=True))
 # compute gradients
                                                                        Gradient 계산
 grads = tape.gradient(loss, model.trainable_variables)
 # perform a gradient descent step
 optimizer.apply_gradients(zip(grads, model.trainable_variables))
                                                                        Parameter Update
 return loss
```

Keras + eager mode

Keras use @tf.function by default.

```
class CustomModel(tf.keras.models.Model):

    @tf.function
    def call(self, input_data):
    if tf.reduce_mean(input_data) > 0:
        return input_data
    else:
        return input_data // 2
```

- For using eager mode,
 - model = Model(dynamic=True) or
 - model.compile(..., run_eagerly=True)

Keras in TensorFlow2.0 by 박해선님

Thank you!

