CS480 – Assignment 5 Assigned: Friday, 10/18/2019

Due: 9:59pm (Chicago) on Sunday, 10/27/2019

Please submit your solutions through blackboard assignment page.

- 1. Convert each of the following FOL sentences into CNF form.
 - **a.** $\forall x P(x) \Rightarrow Q(x)$
 - **b.** $\forall x \forall y P(x,y) \Rightarrow Q(x)$
 - c. $\exists x P(x) \land Q(x)$
 - **d.** $\exists x \exists y \ P(x,y) \land Q(y,x)$
 - **e.** $\exists x \forall y P(x,y)$
 - **f.** $\forall x \exists y P(x,y)$
 - **g.** $\forall x \forall y \exists z P(x,y,z)$
 - **h.** $\exists x \forall y \forall z P(x,y,z)$
 - i. $\forall x(\exists y P(x,y) \land Q(y)) \Rightarrow R(x)$
 - j. $\forall x(\forall y P(x,y) \Rightarrow Q(y)) \Rightarrow R(x)$
- **2.** We are given the following pairs of FOL sentences. For each pair of sentences, provide a substitution to unify the sentences. If no such substitution exists, please write so.
 - **a.** P(x)
 - **b.** P(A)
 - c. $P(x) \vee Q(x, A)$
 - **d.** $P(B) \vee Q(x, A)$
 - e. $P(x) \vee Q(A, x)$
 - **f.** $P(x) \vee Q(A, B)$
 - **g.** $P(x, A) \vee Q(A, x)$
 - **h.** $P(B, y) \vee Q(y, B)$
 - i. $P(x) \vee Q(F(x))$
 - **j.** $P(A) \vee Q(F(A))$
 - **k.** $P(x, A) \vee Q(F(x), x)$
 - I. $P(B, y) \vee Q(F(B), B)$
 - **m.** $P(x, A) \vee Q(F(x), x)$
 - **n.** $P(B, y) \vee Q(F(A), A)$

o.
$$P(x, y) \vee Q(F(A), B)$$

p.
$$P(x, y) \vee Q(x, y)$$

q.
$$P(x, y) \vee Q(F(A), A)$$

r.
$$P(x, y) \vee Q(x, y)$$

s.
$$P(x, y) \vee Q(F(x), y)$$

t.
$$P(z, y) \vee Q(z, y)$$

3. We are given the following joint distribution for variables A, B, and C. Please compute the requested probabilities. Show each probability distribution as a table/vector. Feel free to use a calculator.

Α	В	С	P(A, B, C)
Т	Т	Т	0.014
T	T	F	0.126
Т	F	Т	0.012
Т	F	F	0.048
F	Т	T	0.392
F	Т	F	0.168
F	F	Т	0.144
F	F	F	0.096

- **a.** P(A, C)
- **b.** P(C)
- **c.** P(A|C)
- **d.** P(A, B | C)
- **e.** P(B | A, C)
- **4.** We are given random variables X_2 , X_3 , ..., X_n , where n>2. (There is no X_1). Please answer the following questions.
 - **a.** Assuming all variables are binary, how many <u>independent</u> parameters are needed to represent
 - i. $P(X_2)$?
 - ii. $P(X_n)$?
 - iii. $P(X_2, X_3, ..., X_n)$?
 - iv. $P(X_2 | X_3, ..., X_n)$?
 - v. $P(X_2, X_3, ..., X_{n-1} | X_n)$?

- **b.** Assuming the size of the domain of X_i is i for all $i \in \{2, 3, ..., n\}$, how many <u>independent</u> parameters are needed to represent
 - i. P(X₂)?
 - ii. $P(X_n)$?
 - iii. $P(X_2, X_3, ..., X_n)$?
 - iv. $P(X_2 \mid X_3, ..., X_n)$?
 - v. $P(X_2, X_3, ..., X_{n-1} | X_n)$?