Personalization for BERT-based Discriminative Speech Recognition Rescoring

Amazon Alexa(Jari et al)

I. RescoreBERT

(1) BERT VS GPT, RescoreBERT

$$\operatorname{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{softmax}(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d_{\mathrm{K}}}})\mathbf{V}$$

BERT

(Bidirectional Encoder Representations from **Transformer**, masked LM)

GPT

(Generative Pretrained **Transformer**, unidirectional)

RescoreBERT

Transformer

- Encoder: compress source sequence and send
- Decoder: create target sequence
- Self Attention: learning process of contextual relationship using Q, K, V -> Multi-head

Rescoring

- 1st pass in ASR: create a list of hypotheses from acoustic information
- 2nd: Rescore to identify likely transcription
- Final score: 20*1st + 2nd $v_i = \alpha u_i + \beta s_i$

RescoreBERT

- Bidirectional Transformer Rescoring Model
- Predicts a single score from hypothesis to minimize WER trained with discriminative ASR loss,
- FFN attached to CLS token

II. ER in ASR

(1)CSID, Edit Distance, WER, CER, PER, WERR

- CSID: Correct, Substitution, Insertion, Deletion
- ER = Edit Distance / N(words in Reference) = min(S + D + I) / (S + D + C)
 - = {WER(Word), CER(Character), PER(Phoneme), TER(Token), SER(Sentence)...}
 - *WERR: WER Reduction (+: WER ↑ ←→ -: WER ↓ (performance ↑))

Model	Personalized	General
Oracle	-57%	-58%
Tiny RescoreBERT	+3.9%	-5.3%
Big RescoreBERT	+4.8%	-7.1%
Tiny RescoreBERT (fine-tuned)	+2.5%	-5.3%
Big RescoreBERT (fine-tuned)	+1.7%	-6.8%

II. ER in ASR

(2) CSID Algorithm, Example(1) snow VS sunny

* Direction

y +0: Correct

→ +1: Substitution

 \downarrow +1: Deletion

 \rightarrow +1: Insertion

For calculate Edit Distance

```
*CODE

arr[i][j] = min(

    arr[i-1][j]+1, # D

    arr[i][j 1]+1, # I

    arr[i-1][j-1] + cost)

# S(cost=1) or C(cost=0)
```

(2,2): min(1+1(D), 1+1(I), 0+0(C)) = 0

		S	U	N	N	Υ
	0	1	2	3	4	5
S	1	0-	+1	2	3	4
N	2					
0	3					
W	4					

II. ER in ASR

(2) Example(2): kitten VS sitting

		S	L	T	T	I	N	G			S	I	T	T	I	N	G			S	I	T	T	L	Ν	G			S	L	T	T	I	N	G		
	0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7		
Κ	1								K	1	1	2	3	4	5	6	7	K	1	٦,	2	3	4	5	6	7	Κ	1	1	2	3	4	5	6	7		
1	2								1	2								1	2	2	1	2	3	4	5	6	1	2	2	٦	2	3	4	5	6		
Т	3								Т	3								Т	3								Т	3	3	2	1	2	3	4	5		
Т	4								Т	4								Т	4								Т	4									
Е	5								Ε	5								Е	5								Е	5									
Ν	6								N	6								Ν	6								Ν	6									
									S												S	C				SCC											
		S	L	T	T	L	N	G			S	L	T	T	L	N	G			S	I	T	T	L	N	G			S	L	T	T	L	N	G		
	0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7		
Κ	1	٦,	2	3	4	5	6	7	K	1	٦,	2	3	4	5	6	7	K	1	٦,	2	3	4	5	6	7	Κ	1	1	2	3	4	5	6	7		
1	2	2	1	2	3	4	5	6	1	2	2	1,	2	3	4	5	6	1	2	2	ì	2	3	4	5	6	1	2	2	1	2	3	4	5	6		
Т	3	3	2	1	2	3	4	5	Т	3	3	2	1	2	3	4	5	Т	3	3	2	1	2	3	4	5	Т	3	3	2	1	2	3	4	5		
Т	4	4	3	2	1	2	3	4	Т	4	4	3	2	1	2	3	4	Т	4	4	3	2	1	2	3	4	Т	4	4	3	2	1	2	3	4		
Е	5								Ε	5	5	4	3	2	2	3	4	Е	5	5	4	3	2	2	3	4	Е	5	5	4	3	2	2	3	4		
Ν	6								N	6								Ν	6	6	5	4	3	3	2	3	Ν	6	6	5	4	3	3	2-	3		
			S	C	CC	,				SCCCS									SCCCSC								SC	C	C	$SCCCSCI \rightarrow 3(notC)$							

Embeddings

Embeddings

(1-2)Late Fusion

III. Personalized Approaches

Embeddings

(1) Gazetteers

- Original: $s_i = f \circ g(E_t(x_i) + E_p)$.
 - \rightarrow f(FFN), g(BERT layer), x_i = hypothesis token, $E_t(x_i)$ =TE, E_p =PE
- * Ex of slot: theme of movie, title of song

- Gazetteers: Token + Positional + Slot Embedding
 - Early: $s_i = f \circ g(E_t(x_i) + E_p + E_s(y_i)),$
 - Late: $s_i = f \circ g_n (E_s + g_{n-1} \circ \cdots \circ g_1 (E_t + E_p))$.

6

III. Personalized Approaches

(2) NL prompting, (3) Cross Attention based encoder-decoder model

(0)RescoreBERT(baseline)

(2) Natural Language Prompting

Match Condition: sentence includes one in tokenized string set D

Ex) I want you to call Felix(call [entity])

Prompt: original sentence + simple phrase(augmented prompt)

Ex) I want you call to Felix as I need to contact Felix (as I need to contact [Entity])

(3) Cross Attention based encoder-decoder model

z_i: slot token sequence

ex) [CLS] [entity #1] [SEP] [entity #2] [SEP] \cdots [SEP].

$$X_i = g(E_t(x_i) + E_p)$$

$$Z_i = g(E_t(z_i) + E_p)$$

$$s_i = f \circ m(Z_i, X_i),$$

(3) Cross Attention based encoder-decoder model

IV. Result of Experiments

Explanation

- Data: from Alexa with personalized NE
- Object: WER ↓ in personalized content
- X axis(personalized entity data)
- Progress: mixed general data (opp)
- L/R: Personalized entity / General test set

(1) NL Prompting

- Moderate performance between (2) and (3)

(2) Cross Attention

- Sensitive to the Data Fraction(rapid rise in L)
- Degradation in General set

(3) Gazetteers(Early Fusion)

- L: <= -10 % WERR
- R: the only approach with WER reduction in general data

Thankyou

rabit331@naver.com **2024.01.26**