

代数数论 2018 春

考试时间: 2:00 - 4:00 。共 10 题, 每题 10 分。

如下是 $\mathbb{Q}(\zeta_{15})$ 的子域扩张图:

1. 求素数 2 和 5 在 $\mathbb{Q}(\zeta_{15})$ 的分歧指数与惯性指数。

证明. 利用如下事实: 设 p 是个素数, $\mathbb{Q}(\zeta_{p^n})$ 中分歧的只有素数 p,且 p 是完全分歧, $(p)=(1-\zeta_{p^n})^{\phi(p^n)}$.

- 2 在 $\mathbb{Q}(\zeta_3)$, $\mathbb{Q}(\zeta_5)$ 中均不分歧。所以 2 在 $\mathbb{Q}(\zeta_{15})$ 中不分歧。即分歧指数为 1.
- 2 在 $\mathbb{Q}(\zeta_{15})$ 中的惯性指数等于 $2 \bmod 15$ 在 $(\mathbb{Z}/15\mathbb{Z})^{\times}$ 中的阶 4, 所以惯性指数为 4.
- 5 在 $\mathbb{Q}(\zeta_5)$ 中的分歧指数为 4, 在 $\mathbb{Q}(\zeta_3)$ 中不分歧,所以 5 在 $\mathbb{Q}(\zeta_{15})$ 的分歧指数为 4.

5 在 $\mathbb{Q}(\zeta_3)$ 中的惯性指数等于 5 mod 3 在 $(\mathbb{Z}/3\mathbb{Z})^{\times}$ 中的阶 2. 或者利用勒让德符号 $\left(\frac{-3}{5}\right)=-1$ 知 5 在 $\mathbb{Q}(\sqrt{-3})$ 中惯性。所以 5 的惯性指数为 ≥ 2 ,而 5 的分歧指数是 4,而 $[\mathbb{Q}(\zeta_{15}):\mathbb{Q}]=8$ 知 5 的惯性指数为 2.

2. 决定素数 2 和 5 在 $\mathbb{Q}(\zeta_{15})$ 中的分解域与惯性域。

证明. 由于 2 在 $\mathbb{Q}(\zeta_{15})$ 中不分歧,所以它的惯性群平凡,惯性域为 $\mathbb{Q}(\zeta_{15})$.

2 的分解群由 Frob_2 生成,在标准局构 $\mathrm{Gal}(\mathbb{Q}(\zeta_{15})/\mathbb{Q}))\cong (\mathbb{Z}/15\mathbb{Z})^{\times}$ 下, Frob_2 生成的群对应于 $\{2 \bmod 15, 4 \bmod 15, 8 \bmod 15, 1 \bmod 15\} \subset (\mathbb{Z}/15\mathbb{Z})^{\times}$. 它所对应的子域即惯性域是 $\mathbb{Q}(\sqrt{-15})$.

或者利用 2 的分解域是最大的子域使得 2 完全分裂,由于 2 的分裂指数为 2,所以这个域是二次域,由于 2 在 $\mathbb{Q}(\sqrt{-15})$ 中分裂,所以这是它的分解域。

对于 5,在 $\mathbb{Q}(\zeta_5)$ 中完全分歧,在 $\mathbb{Q}(\zeta_3)$ 中不分歧。设 I_5 为 5 的惯性群,则在同构

 $\operatorname{Gal}(\mathbb{Q}(\zeta_{15})) \cong \operatorname{Gal}(\mathbb{Q}(\zeta_3)/\mathbb{Q}) \times \operatorname{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q})$ 下, I_5 的像为 $\operatorname{Gal}(\mathbb{Q}(\zeta_5)/\mathbb{Q})$. 所以 I_5 所确定的域为 $\mathbb{Q}(\zeta_3)$. 即惯性域为 $\mathbb{Q}(\zeta_3) = \mathbb{Q}(\sqrt{-3})$.

也可利用 5 的惯性域是最大的子域 K 使浔 5 在 K/\mathbb{Q} 中不分歧,则从上面的域扩张关系图上知 5 的惯性域是 $\mathbb{Q}(\sqrt{-3})$.

由于 5 的分解群的阶为分歧指数 \times 惯性指数 =8. 所以分解群为 $\mathrm{Gal}(\mathbb{Q}(\zeta_{15})/\mathbb{Q})$, 对应的分解域为 \mathbb{Q} .

3. 证明扩张 $\mathbb{Q}(\zeta_{15})/\mathbb{Q}(\zeta_{15}+\zeta_{15}^{-1})$ 在每个素理想处均不分歧,在每个无穷素位处均分歧。

证明. 由 $\mathbb{Q}(\zeta_{15})=\mathbb{Q}(\zeta_{15}+\zeta_{15}^{-1})(\zeta_3)$,知只可能在 3 之上的素理想分歧。由 $\mathbb{Q}(\zeta_{15})=\mathbb{Q}(\zeta_{15}+\zeta_{15}^{-1})(\zeta_5)$ 知 只可能在5之上的素理想分歧。故在每个素理想处不分歧。

容易看出这个结论与证明可推广为:当 n 不是个素数幂时, $\mathbb{Q}(\zeta_n)/\mathbb{Q}(\zeta_n+\zeta_n^{-1})$ 中的素理想均不分

由于 $\zeta_{15}+\zeta_{15}^{-1}$ 的共轭根的形式为 $\zeta_{15}^k+\zeta_{15}^{-k}$,均是实数,所以 $\mathbb{Q}(\zeta_{15}+\zeta_{15}^{-1})$ 只有实嵌入,而 $\mathbb{Q}(\zeta_{15})$ 只有复嵌入,所以无穷素位均分歧。

求 $\mathbb{Q}(\sqrt{5})$ 的基本单位, 求 $\mathbb{Q}(\sqrt{-15}), \mathbb{Q}(\sqrt{-3}), \mathbb{Q}(\sqrt{5})$ 的类数。 4.

证明. (1,1) 是 $x^2-5y^2=\pm 4$ 的整数解,且显然是纵坐标最小的正整数解,所以 $\frac{1+\sqrt{5}}{2}$ 是 $\mathbb{Q}(\sqrt{5})$ 的基 本单位。

 $\mathbb{Q}(\sqrt{-3}), \mathbb{Q}(\sqrt{5})$ 的 Minkowski 常数均小于 2,所以类数为 1. $\mathbb{Q}(\sqrt{-15})$ 的 Minkowski 常数小于 3,所以它的类群由 2 之上的素理想 $(2,1+\sqrt{-15})$ 生成,由 $\frac{x^2+15y^2}{4}=2$ 无整数解以及 $\frac{x^2+15y^2}{4}=4$ 有整数解 (1,1) 知 $(2,1+\sqrt{-15})$ 在类群中阶为 2. 故类数为 2.

 $\hat{\nabla} F = \mathbb{O}(\sqrt{5}, \sqrt{-3})$,求 F 的类数。

证明. 由于 $\mathbb{Q}(\sqrt{-5})$, $\mathbb{Q}(\sqrt{-3})$ 的判別式互素,由教材 24 页引理 9,F 的判別式 $d(F)=5^2\times(-3)^2=225$. 显然 F 有两对复嵌入。F 的 Minkowski 常数

$$M_F = (\frac{4}{\pi})^2 \frac{4!}{4^4} \sqrt{|d_F|} < 3$$

设 \mathfrak{p} 是 \mathcal{O}_F 整除 (2) 的素理想,则由 (2) 在 $\mathbb{Q}(\sqrt{5})$ 中惯性在 $\mathbb{Q}(\sqrt{-15})$ 中分裂知 $f(\mathfrak{p}/2)=g(\mathfrak{p}/2)=2.$ 注意到 $\frac{\sqrt{5}+\sqrt{-3}}{2} = \frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{-3}}{2}$ 是代数整数,且

$$N_{F/\mathbb{Q}(\sqrt{5})}(\frac{\sqrt{5}+\sqrt{-3}}{2})=2$$

知 $\mathfrak{p}=(\frac{\sqrt{5}+\sqrt{-3}}{2}),$ 从而 F 的类数是 1.

记 χ_{-15} 为 $\mathbb{Q}(\sqrt{-15})$ 的非平凡 Dirichlet 特证, $L(s,\chi_{-15})$ 为其 L 函数,求 $L(1,\chi_{-15})$.

证明.

方法 1: 如果做了 Gauss 和符号的习题,可直接按 $L(1,\chi)$ 的公式计算,即教材 211 页。

方法 2: 利用 zeta 函数分解以及类数公式:

$$\zeta_{\mathbb{Q}(\sqrt{-15})}(s) = \zeta(s)L(1,\chi_{-15}),$$

则

$$L(1,\chi_{-15}) = \lim_{s \to 1^+} \frac{\zeta_{\mathbb{Q}(\sqrt{-15})}(s)}{\zeta(s)} = \frac{2\pi \times 2}{2 \times \sqrt{15}} = \frac{2\pi}{\sqrt{15}}$$

最后两个等号用了 $\mathbb{Q}(\sqrt{-15})$ 的复嵌入对数为 1, 实嵌入个数为 0, 类数为 1, 正则子为 1, 单位根个数为 2, 判别式为 -15.

证明 $\mathcal{O}_F^{\times} = \epsilon^{\mathbb{Z}} \times \mu_6$. 其中 μ_6 是 6 次单位根群, $\epsilon = \frac{1+\sqrt{5}}{2}$.

证明. 第一步: 求 F 的单位根群 W_F ,显然 $\mu_6\subset W_F\subsetneq W_{\mathbb{Q}(\zeta_{15})}=\mu_{30}$. 浔 $W_F=\mu_6$.

第二步: 由于 F 的 $r_2=2, r_1=0,$ 存在 $u\in\mathcal{O}_F^{\times}$ 使得 $\mathcal{O}_F^{\times}=u^{\mathbb{Z}}\times\mu_6$. 而 $\epsilon^{\mathbb{Z}}\times\mu_6\subset\mathcal{O}_F^{\times}$. 故 $\epsilon=u^kw,$ $k\in\mathbb{Z},w\in\mu_{6}$. 我们需要证明 k=1. 而 $R_{F}:=\log|\sigma(u)|^{2}=2k\log\frac{1+\sqrt{5}}{2}$,其中 σ 是 F 的一个复嵌入。 k = 1 等价于 $R_F = 2k \log \frac{1+\sqrt{5}}{2}$.

下面来利用类数公式来证明 F 的正则子 $R_F = 2\log rac{1+\sqrt{5}}{2}$:

 $\mathrm{Gal}(F/\mathbb{Q})$ 是 4 阶群,它的 3 个非平凡特证为 $\mathrm{Gal}(\mathbb{Q}(\sqrt{5})/\mathbb{Q}), \mathrm{Gal}(\mathbb{Q}(\sqrt{-3})/\mathbb{Q}), \mathrm{Gal}(\mathbb{Q}(\sqrt{-15})/\mathbb{Q})$ 的 非平凡特证,即三个二次子域的非平凡 Dirichlet 特证,记为 $\chi_5,\chi_{-3},\chi_{-15}$. 根据 zeta 函数的分解有

$$\zeta_F(s) = \zeta(s)L(s,\chi_5)L(s,\chi_{-3})L(s,\chi_{-15}).$$

利用 $\mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{-3}), \mathbb{Q}(\sqrt{-15})$ 的类数公式求浔

$$L(1,\chi_5) = \lim_{s \to 1^+} \frac{\zeta_{\mathbb{Q}(\sqrt{5})}(s)}{\zeta(s)} = \frac{2}{\sqrt{5}} \log \frac{1 + \sqrt{5}}{2}$$
$$L(1,\chi_{-3}) = \lim_{s \to 1^+} \frac{\zeta_{\mathbb{Q}(\sqrt{-3})}(s)}{\zeta(s)} = \frac{\pi}{3\sqrt{3}}$$
$$L(1,\chi_{-15}) = \lim_{s \to 1^+} \frac{\zeta_{\mathbb{Q}(\sqrt{-15})}(s)}{\zeta(s)} = \frac{2\pi}{\sqrt{15}}$$

淂

$$\lim_{s \to 1^+} \frac{\zeta_F(s)}{\zeta(s)} = \frac{2^{r_1} (2\pi)^{r_2} h_F R_F}{|W_F| \sqrt{|d_F|}} = L(1, \chi_5) L(1, \chi_{-3}) L(1, \chi_{-15})$$

其中 $r_2=2, |W_F|=6, |d_F|=225$ 是易算的 $(d_F$ 的计算可用教材 24 页引理 9), 而第 5 题计算了 $h_F = 1$,

证明 x^3-2 在 \mathbb{Q}_5 中只有一个根。写出它 (5 进展开下,精确到 5^2 位)。 8.

证明. 记 $f(x) = x^3 - 2$. 由于 $f(x) = 0 \mod 5$ 只有一个解 $3 \mod 5$,且 $f'(3) \not\equiv 0 \mod 5$. 所以根据 Hensel 引理存在唯一的解 $a\in\mathbb{Z}_5$ 使浔 f(a)=0 且 $a\equiv 3\bmod 5$. 令一方面若 f(b)=0,则 $b\equiv 3\bmod 5$. 所以根据 Hensel 引理的唯一性知 b=a.

解的近似值可通过 Hensel 引理的证明来求:

设 $a_1 = a_0 + t_0 5$, $f(a_1) = f(a_0) + f'(a_0) 5t_0 = 25 + 27 \times 5t_0 \equiv 0 \mod 5^2$. 浔 t = 0.

设 $a_2 = a_1 + t_1 5^2$, $f(a_2) = f(a_1) + f'(a_1) 5^2 t_1 \equiv 0 \mod 5^3$

 $f(x+3) = (x+3)^3 - 2 = x^3 + 9x^2 + 27x + 25$

在 $\mathbb{F}_5[x]$ 中, x^3-2 的不可约分解为 $(x-3)(x^2+3x+4)$.

根据 Hensel 引理, (教材 274 页定理 8.6.) 在 $\mathbb{Z}_5[x]$ 中, $x^3-2=g(x)h(x)$, 且 $g(x)\equiv x 3 \mod 5, h(x) \equiv x^2 + 3x + 4 \mod 5$,显然 h(x) 不可约。所以 $x^3 - 2 = 0$ 在 \mathbb{Z}_5 中有且只有一个根。

根的近似值可由 Hensel 引理的证明中浔到, 记 $f(x) = x^3 - 2$.

 $a_0 = 3$, 则 $f(a_0) \mod 0 \equiv 5$.

设 $a_2 = a_1 + t_1 5^2$, $f(a_2) = f(a_1) + f'(a_1) 5^2 t_1 \equiv 0 \mod 5^3$ 浔 $t_1 = 2$. 卽 $a_2 = 3 + 2 \times 5^2$.

也可用牛顿逼近法定理 8.9(227 页),

$$-\frac{f(a_0)}{f(a_0)}, \frac{f(a_0)}{f(a_0)} =$$

$$a_1 = a_0 - \frac{f(a_0)}{f'(a_0)}, \frac{f(a_0)}{f'(a_0)} = \frac{25}{27}$$

 $a_0 = 3$

$$a_2 = a_1 - \frac{f(a_1)}{f'(a_1)} = \frac{195299}{127008}, \frac{f(a_1)}{f'(a_1)} = \frac{68125}{127008}$$

则 $v_5(a-a_1) \geq v_5(\frac{f(a_1)}{f'(a_1)}) = v_5(68125/127008) = 4.$ 所以 a 的 5 进展开的前 4 位与 $\frac{195299}{127008}$ 的 5 进展开前四位相同。由于 $\frac{195299}{127008} = 3 + 2 \cdot 5^2 + 2 \cdot 5^3 + \cdots$ 所以 $a=3+2 \cdot 5^2 + 2 \cdot 5^3 + \cdots$.

9. 证明多项式 $f(x)=1+x^2+\frac{x^3}{3}+3x^4$ 在 \mathbb{Q}_3 中有根 α 使得 $v_3(\alpha)=-2$. 求一个有理数 a 使得 $v_3(\alpha-a)\geq 2$.

证明. 如下是 f(x) 的牛顿曲线图:

由上图知存在 f(x) 的根 α 使浔 $v_3(\alpha)=-2$,另外两个根的加法 (指数) 赋值均为 $-\frac{1}{2}$. 从而 α 是 f(x) 在 \mathbb{Q}_3 中唯一的根。

令 $g(x)=9f(x/9)=x^4+x^3+27x^2+2187,$ 对 g(x) 使用 Hensel 引理 (或者牛顿逼近定理) 浔解 $2+2\cdot 3+2\cdot 3^2+3^6+3^7+2\cdot 3^9+\cdots,$

所以 f(x) 在 \mathbb{Q}_3 中的一个解是 $3^{-2}(2+2\cdot 3+2\cdot 3^2+3^6+3^7+2\cdot 3^9+\cdots)$. 取有理数 $a=3^{-2}(2+2\cdot 3+2\cdot 3^2)$ 即可。

10. 设 $f(x)=a_0+a_1x+\cdots a_nx^n\in\mathbb{Z}[x],\,a_0a_n\neq 0.$ 记 α_1,\cdots,α_n 是 f(x) 的 n 个根(计重数),证明对任意 $S\subset\{1,2,\cdots,n\},$

$$a_n \prod_{k \in S} \alpha_k$$
 是代数整数.

 $(n, v_p(a_n))$

证明. 设 F 为 f(x) 的分裂域,则 $a_n\prod_{k\in S}\alpha_k$ 是代数整数 当且仅当对任意的 \mathcal{O}_F 非零素理想 $\mathfrak p$ 有 $v_{\mathfrak{p}}(a_n \prod_{k \in S} \alpha_k) \ge 0.$

而 p 之上的素理想与 $\mathrm{Hom}(F,\overline{\mathbb{Q}}_p)$ 存在一一对应,我们有 $v_{\mathfrak{p}}(a_n\prod_{k\in S}\alpha_k)\geq 0$ 当且仅当 $v_p(a_n\prod_{k\in S}\alpha_k)\geq 0$ 0,这里 v_p 是 $\overline{\mathbb{Q}}_p^{\times}$ \longrightarrow \mathbb{Q} 的加法 (指数) 赋值。 只需证明对任意的 $p, \, a_n \prod_{k \in S} \alpha_k$ 的 p 进加法 (指数) 赋值 ≥ 0 . 考察 $f(x) \in \mathbb{Q}_p[x]$ 的牛顿曲线,不妨设它的牛顿折线图如下,以坐标 $(k, v_p(a_k))$ 为起点的折线斜率

为正, 它左边的折线斜率均为负:

设 $v_p(\alpha_1) \ge v_p(\alpha_2) \ge \cdots \ge 0 > v_p(\alpha_{k+1}) \ge \cdots \ge v_p(\alpha_n)$,我们只需证明 $v_p(a_n\alpha_{k+1}\cdots\alpha_n)\geq 0$, 设

$$v_p(\alpha_{k+1}) = \dots = v_p(\alpha_t) > v_p(\alpha_{t+1}) \ge \dots > v_p(\alpha_{s+1}) = \dots = v_p(\alpha_n)$$

根据牛顿折线定理知

$$v_p(lpha_{k+1})=\cdots=v_p(lpha_t)=-$$
红色折线的斜率 $=-rac{v_p(a_t)-v_p(a_k)}{t-k}$

$$v_p(\alpha_{s+1})=\cdots=v_p(\alpha_n)=-$$
蓝色折线的斜率
$$=-\frac{v_p(a_n)-v_p(a_s)}{n-s}$$
 所以
$$v_p(a_n\alpha_{k+1}\cdots\alpha_n)=v_p(a_n)-(v_p(a_n)-v_p(a_s)+\cdots+v_p(a_t)-v_p(a_t))=v_p(a_k)\geq 0.$$
 浔证。