Лабораторная работа № 7 ДО

КЛЮЧЕВЫЕ ЭЛЕМЕНТЫ НА ТРАНЗИСТОРАХ

1. Цель работы

- Изучение принципа работы биполярного транзистора в ключевых схемах, расчет элементов схемы.
- Получение основных характеристик ключевой схемы на биполярном транзисторе и определение ее основных параметров.
- Изучение ключевых схем на основе полевых транзисторов: ключа с линейной нагрузкой, ключа на одноканальных транзисторах и ключа на комплементарных транзисторах.
- Получение основных характеристик схем на основе полевых транзисторов и определение их основных параметров.

2. Методика исследования схем

В работе проводится исследование ключевых схем методом моделирования в среде программы *OrCad*: снимаются передаточные и другие характеристики, а также осциллограммы переходных процессов.

3. Подготовка к работе

- 3.1. Изучить рекомендуемую литературу и материалы к данной лабораторной работе.
- 3.2. Для схемы биполярного транзисторного ключа (рис. 1) рассчитать сопротивления резисторов R_1 и R_2 для обеспечения подключения нагрузки $R_{\rm K}$ к источнику питания $E_{\rm пит}$. Коэффициент усиления транзистора $\beta_{\rm мин}$, порог включения $U^0_{\rm вх \ макс}$ и порог выключения схемы $U^1_{\rm \ вх \ мин}$ заданы в таблице 1 по номеру студента в учебном журнале. Напряжение источника смещения $E_{\rm cm}$ задается по номеру группы.

Группа	A-12	A-8	A-7	A-4	A-1	A-2	A-3	A-6	A-9
$E_{\rm cm}$, B	1,2	1,7	2,2	2,7	3,2	1,5	2,0	2,5	3,0

Рис. 1. Ключевая схема на биполярном транзисторе

Таблица 1.

				1.	шлица
№	$E_{\text{пит}}$, В	$R_{\rm K}$, Om	$U^0_{\text{BX Make}}, B$	$U^{1}_{\text{ BX MUH}}, \mathbf{B}$	βмин
1.	9	100	+2	+6	25
2.	10	150	+1	+7	30
3.	15	200	+3	+8	35
4.	15	250	+4	+10	40
5.	20	300	+5	+15	45
6.	14	100	+1	+10	25
7.	13	200	+2	+8	30
8.	14	300	+3	+8	35
9.	13	400	+4	+10	40
10.	12	300	+5	+8	45
11.	23	400	+6	+15	25
12.	10	100	+1	+6	30
13.	12	200	+2	+7	35
14.	15	300	+3	+8	40
15.	16	400	+4	+10	45
16.	22	500	+5	+15	25
17.	14	100	+2	+9	30
18.	11	150	+2	+6	25
19.	13	200	+1	+7	30
20.	15	250	+3	+8	35
21.	16	300	+4	+10	40
22.	21	100	+5	+15	45
23.	20	200	+1	+10	25
24.	20	300	+2	+8	30
25.	15	400	+3	+8	35
26.	18	300	+4	+10	40
27.	15	400	+5	+8	45
28.	19	100	+6	+15	25
29.	9	200	+1	+6	30

3.3. Для схемы ключа на полевом транзисторе с резистивной нагрузкой (рис. 2,a) рассчитать напряжение $U_{\text{вых}}$ для данных, указанных в таблице 2. Перед расчетом определить, в каком режиме работает транзистор, найдя величину $U_{\text{вх гр}}$ ($U_{\text{вх гр}}$ – входное напряжение, при котором транзистор переходит из пологой области в крутую).

Рис. 2. Ключевые схемы на основе полевых транзисторов

Таблица 2

Данные для расчета схемы рис. 2.а

данные для расчета схемы рис. 2.а								
$N_{\underline{0}}$	$E_{\text{пит}}$, B	$R_{\rm c}$, кОм	$U_{\rm o},{ m B}$	b , мк A/B^2	$U_{\scriptscriptstyle m BX},{ m B}$			
1	10	10	2	200	3,0			
2	12	20	3	300	4,0			
3	15	10	4	400	5,0			
4	12	5	2	500	3,0			
5	10	10	3	600	4,0			
6	12	15	4	700	5,0			
7	15	20	5	800	5,5			
8	10	25	2	900	2,5			
9	12	10	3	200	4,0			
10	15	10	3	300	4,0			
11	12	15	1	400	2,0			
12	10	5	2	500	3,0			
13	12	5	3	600	4,0			
14	15	10	4	700	4,5			
15	10	10	4	800	4,5			
16	12	15	3	900	3,5			
17	10	20	3	200	3,5			
18	12	15	4	300	4,5			
19	15	5	2	400	4,0			
20	12	10	3	500	3,5			
21	10	15	4	600	4,3			
22	12	20	4	700	3,3			
23	15	5	3	800	3,7			
24	10	3	4	900	4,7			
25	12	10	2	200	3,1			
26	15	15	3	300	3,5			
27	12	20	4	400	4,5			
28	10	12	2	500	3,0			
29	15	10	3	600	3,6			
30	18	15	4	600	5,1			

3.4. Для схемы ключа с нелинейной нагрузкой (рис. 2,6) рассчитать напряжение $U^0_{\rm вых}$, если удельная крутизна b нагрузочного транзистора в 10 раз меньше крутизны управляющего транзистора, а их пороговые напряжения одинаковые. Требуемые для расчета параметры транзистора заданы в таблице 3.

Таблица 3

Данные для расчета схемы рис. 2.б

No॒	$E_{\text{пит}}$, В	<i>U</i> _{o 1} , B	b_1 , мк A/B^2	<i>U</i> _{o 2} , B	B_2 , мк A/B^2	$U_{\mathrm{BX}},\mathrm{B}$
1	10	2	200	2	20	8
2	12	3	300	3	30	9
3	15	4	400	4	40	11
4	12	2	500	2	50	10
5	10	3	600	3	60	7
6	12	4	700	4	70	8
7	15	5	800	5	80	10
8	10	2	900	2	90	8
9	12	3	200	3	20	9
10	15	3	300	3	30	12
11	12	1	400	1	40	11
12	10	2	500	2	50	8
13	12	3	600	3	60	9
14	15	4	700	4	70	11
15	10	4	800	4	80	6
16	12	3	900	3	90	9
17	10	3	200	3	20	7
18	12	4	300	4	30	8
19	15	2	400	2	40	13
20	12	3	500	3	50	9
21	10	4	600	4	60	6
22	12	4	700	4	70	8
23	15	3	800	3	80	12
24	10	4	900	4	90	6
25	12	2	200	2	20	10
26	15	3	300	3	30	7
27	12	4	400	4	40	8
28	10	2	500	2	50	8
29	15	3	600	3	60	12
30	18	4	600	4	60	14

- 3.5. Доказать, что в схеме ключа с комплементарными транзисторами (рис. 2,в) напряжение переключения $U_{\text{пер}} = \frac{E_{\text{пит}}}{2}$. Напряжение переключения определяется в точке, где $U_{\text{вх}} = U_{\text{вых}}$. При доказательстве учесть, что в режиме переключения токи через нагрузочный и управляющий транзисторы одинаковы.
- 3.6. Подготовить бланк отчета, который должен включать:
 - принципиальные электрические схемы ключей со всеми элементами, включая источники питания,
 - характеристики, осциллограммы и сравнительные таблицы расчетных/заданных и измеренных параметров.

4. Рабочее задание

Электронный ключ на биполярном транзисторе

- 4.1. В операционной системе «Windows» под управлением программы «Schematics» собрать схему ключевого элемента на биполярном транзисторе (рис. 1).
- 4.2. Проверить работоспособность схемы, сняв передаточную характеристику схемы.
- 4.4. Сравнить порог включения схемы $U^0_{_{\rm BX\ Make}}$ и порог выключения схемы $U^1_{_{\rm BX\ MUH}}$ с заданием. Сделать и заполнить таблицу сравнения.

Исследование инвертора с резистивной нагрузкой

- 4.5. В операционной системе «Windows» под управлением программы «Schematics» собрать схему инвертора с резистивной нагрузкой (рис.2,а).
- 4.6. Проверить работоспособность схемы, сняв передаточную характеристику схемы.
- 4.7. По передаточной характеристике определить порог включения схемы $U^0_{_{\mathrm{BX}\;\mathrm{Makc}}}$ и порог выключения схемы $U^1_{_{\mathrm{BX}\;\mathrm{MuH}}}.$
- 4.8. Исследовать переходные процессы.

Исследование инвертора с нелинейной нагрузкой

4.9. Собрать схему инвертора на одноканальных полевых транзисторах (рис. 2,б). Параметры транзисторов установить в соответствии с подготовкой к работе.

- 4.10. Получить график передаточной характеристики. По передаточной характеристике определить порог включения схемы $U^0_{\rm \, BX \, \, Makc}$ и порог выключения схемы $U^1_{\rm \, BX \, \, Muh}$.
- 4.11. Снять переходной процесс $u_{\text{вых}}(t)$ при C_{H} =10пФ. Определить длительности фронтов выходного импульса при включении и выключении схемы (длительности определять по уровням 0.1 и 0.9 от U_m).

Исследование КМОП инвертора

4.12. Собрать схему инвертора на КМОП транзисторах (рис. 2,в). Установить следующие параметры моделей транзисторов:

.model nnMOS NMOS Level=1 Gamma= 0 Xj=0 Tox=1200n Phi=.6 Rs=0 Kp=111u Vto=2.0 Lambda=0.01 Rd=0 Cbd=2.0p Cbs=2.0p Pb=.8 Cgso=0.1p Cgdo=0.1p Is=16.64p N=1

.model ppMOS PMOS Level=1 Gamma= 0 Xj=0 Tox=1200n Phi=.6 Rs=0 Kp=55u Vto=-1.5 Lambda=0.04 Rd=0 Cbd=4.0p Cbs=4.0p Pb=.8 Cgso=0.2p Cgdo=0.2p Is=16.64p N=1

- 4.13. Получить совмещенные графики передаточной характеристики и характеристики тока потребления. По передаточной характеристике определить порог включения $U^0_{\rm вх~макс}$ и выключения $U^1_{\rm вх~мин}$ схемы. По линии равной передачи определить напряжение переключения инвертора $U_{\rm пер}$.
- 4.14. Снять переходной процесс $u_{\text{вых}}(t)$ при C_{H} =10пФ. Определить длительности фронтов выходного импульса при включении и выключении схемы (длительности определять по уровням 0.1 и 0.9 от U_m).