VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Typografie a publikování – 3. projekt
Tabulky a obrázky

1. dubna 2015 Jakub Švestka

1 Úvodní strana

Název práce umístěte do zlatého řezu a nezapomeňte uvést dnešní datum a vaše jméno a příjmení.

2 Tabulky

Pro sázení tabulek můžeme použít buď prostředí tabbing nebo prostředí tabular.

2.1 Prostředí tabbing

Při použití tabbing vypadá tabulka následovně:

Ovoce	Cena	Množství
Jablka	25,90	3 kg
Hrušky	27,40	2,5 kg
Vodní melouny	35,-	1 kus

Toto prostředí se dá také použít pro sázení algoritmů, ovšem vhodnější je použít prostředí algorithm nebo algorithm2e (viz sekce 3).

2.2 Prostředí tabular

Další monžostí, jak vytvořit tabulku, je použít prostředí tabular. Tabulky pak budou vypadat takto¹:

	Cena							
Měna	nákup	prodej						
EUR	24,501	24,324						
JPY	105,484	105,847						
USD	16,632	16,328						

Tabulka 1: Tabulka kurzů k dnešnímu dni

				B					В					B											
A D	NI	$ A \setminus$	/B	P	X	N	A	$\backslash B$	P	X	N	A -	$\rightarrow B$	P	X	N									
V	V		P	P	P	P		P	P	X	N		P	P	X	N									
A N	A D	A	$\mid A \mid$	$\mid A \mid$	$\mid A \mid$	A	X	P	X	X	A	X	X	X	N	A	X	P	X	X					
IN	Γ		N	P	X	N		N	N	N	N		N	P	P	P									

Tabulka 2: Kleeneho trojhodnotová logika

3 Algoritmy

Pokud budeme chtít vysázet algoritmus, můžeme použít prostředí algorithm 2 nebo algorithm $2e^3$. Příklad použití prostředí algorithm2e viz Algoritmus 1.

¹Kdyby byl problem s cline, zkuste se podívat třeba sem: http://www.abclinuxu.cz/tex/poradna/show/325037.

²Pro nápovědu, jak zacházet s prostředím algorithm, můžeme zkusit tuhle stránku: http://ftp.cstug.cz/pub/tex/CTAN/macros/latex/contrib/algorithms/algorithms.pdf.

³Pro algorithm2e zase tuhle: http://ftp.cstug.cz/pub/tex/CTAN/macros/latex/contrib/algorithm2e/algorithm2e.pdf.

Algoritmus 1: FASTSLAM

```
Input: (X_{t-1}, u_t, z_t)
Output: X_t
              \overline{X_t} = X_t = 0
     1:
               for k=1\ to\ M do
                       \begin{aligned} x_t^{[k]} &= sample\_motion\_model(u_t, x_{t-1}^{[k]}) \\ \omega_t^{[k]} &= measuremen\_model(z_t, x_t^{[k]}, m_{t-1}^{[k]}) \end{aligned}
    3:
     4:
                      \begin{aligned} & m_t^{[k]} &= updated\_occupancy\_grid(z_t, x_t^{[k]}, m_{t-1}^{[k]}) \\ & \overline{X_t} = \overline{X_t} + \langle x_x^{[m]}, \omega_t^{[m]} \rangle \end{aligned}
     5:
    6:
     7:
                for k = 1 to M do
     8:
                       draw i with probability \approx \omega_t^{[i]}
    9:
                       add \langle x_x^{[k]}, m_t^{[k]} \rangle to X_t
  10:
                end for
   11:
                return X_t
   12:
```

4 Obrázky

Do našich článku můžeme samozřejmě vkládat obrázky. Pokud je obrázkem fotografie, m;žeme klidně použít bitmapový soubor. Pokud by to ale mělo být nějaké schéma nebo něco podobného, je dobrým zvykem takovýto obrázek vytvořit vektorově.

Obrázek 1: Malý etiopánek a jeho bratříček

Rozdíl mezi vektorovým...

Obrázek 2: Vektorový obrázek

... a bitmapovým obrázkem

Obrázek 3: Bitmapový obrázek

se projeví například při zvětšení.

Odkazy (nejen ty) na obrázky 1, 2, 3, na tabulky 1 a 2 a také algoritmus 1 jsou udělány pomocí křižových odkazů. Pak je ovšem potřeba zdrojový soubor přeložit dvakrát.

Vektorové obárzky lze vytvořit i přímo v LATeXu, například pomocí prostředí picture. Všechny rozměry jsou uváděny v mm.

Obrázek 4: Vektorový obrázek v prostředí picture