LES SUITES NUMÉRIQUES

I Quelques définitions

Définition n°1. Suite numérique réelle (deux versions)

Une suite numérique (réelle) est une collection de nombres réels numérotés à partir de zéro.

Une suite numérique (réelle) u est une application de l'ensemble des nombres entiers naturels (\mathbb{N}) dans l'ensemble des nombres réels (\mathbb{R}). Autrement dit:

$$u: \left\{ \begin{array}{l} \mathbb{N} \to \mathbb{R} \\ n \mapsto u(n) \end{array} \right.$$

Remarque n°1. **Notations**

On utilisera la notation classique qui consiste à remplacer u(n) par u_n . Ainsi:

$$u: \left\{ \begin{array}{l} \mathbb{N} \to \mathbb{R} \\ n \mapsto u_n \end{array} \right.$$

 $u: \left\{ \begin{array}{l} \mathbb{N} \to \mathbb{R} \\ n \mapsto u_n \end{array} \right.$ $\left[u \text{ ou } (u_n)_{n \in \mathbb{N}} \text{ ou } (u_n)_{n \geqslant 0} \right] \text{ pour nommer la suite}.$ On pourra noter:

(On s'autorisera parfois (u_n) mais on évitera le plus possible)

On dira que $|u_n|$ est le terme de rang n

Remarque n°2.

À partir de maintenant, on dira « suite » plutôt que « suite numérique réelle ».

Définition n°2. Suite définie de façon explicite

L'application u peut être **définie de façon explicite :**

$$\forall n \in \mathbb{N}, u_n = f(n)$$

(avec f au moins définie pour tous les entiers naturels)

Exemple n°1. Une suite définie de façon explicite

La suite u définie pour tout $n \in \mathbb{N}$, $u_n = 2n-3$

Ses premiers termes sont :

$$u_0 = -3$$
 , $u_1 = -1$, $u_2 = 1$, $u_3 = 3$, ...
Ici $f: x \mapsto 2x - 3$

Définition n°3.

L'application u peut être **définie par une relation de récurrence :**

$$u: \begin{cases} u_0 = k & (k \text{ étant un nombre réel}) \\ u_{n+1} = f(u_n), \forall n \in \mathbb{N} \end{cases}$$

Exemple n°2. Une suite définie par une relation de récurrence

La suite
$$v$$
 définie par :
$$\begin{cases} u_0 = 1 \\ u_{n+1} = 2u_n - 3 \end{cases}$$
, pour tout $n \in \mathbb{N}$

Ses premiers termes sont :

$$v_0 = 1$$
 , $v_1 = 3$, $v_2 = 7$, $v_3 = 15$, ...

Ici $f: x \mapsto 2x - 3$ (Ne pas confordre la fonction f avec l'application u!)

Remarque n°3.

Une suite peut être définie par un énoncé qui peut prendre plusieurs formes :

- un algorithme (suite d'instructions informatiques ou non)
- un motif géométrique : (triangle de Sierpiński)
- une simple phrase : « la suite w est la suite des nombres impairs positifs ».
- ou encore un ensemble (infini) de points du type $M(n, u_n)$.

• ...

Suites arithmétiques II

Définition n°4. Suite arithmétique

Une suite est dite arithmétique, si, en connaissant un terme de la suite, on peut obtenir le suivant en lui ajoutant toujours le même nombre.

Autrement dit:

• Une suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique s'il existe $r\in\mathbb{R}$ tel que :

Pour tout
$$n \in \mathbb{N}$$
, $u_{n+1} = u_n + r$

• Le nombre r est appelé : raison de la suite.

Remarque n°4. Lien avec la définition n°3

La suite u est définie par récurrence (à condition de penser à donner u_0) et on a: $f: x \mapsto x+r$

Exemple n°3.

La suite $u: \begin{cases} u_0 = -1.5 \\ u_{n+1} = u_n + 0.9 \end{cases}$, $\forall n \in \mathbb{N}$

suite arithmétique de raison 0,9 et de premier terme $u_0 = -1.5$.

Ses quatre premiers termes sont :

$$u_0 = -1.5$$
, $u_1 = -0.6$, $u_2 = 0.3$, $u_3 = 1.2$

La suite $v: \begin{cases} v_0 = 3 \\ v_{n+1} = v_n - 1, 1, \forall n \in \mathbb{N} \end{cases}$ est une suite arithmétique de raison -1,1 et de premier terme

Remarque n°5.

Le 1^{er} terme est u_0 , le deuxième u_1 ...

On restera vigilant face à ce « décalage » ...

Expression de u_n en fonction de nPropriété n°1.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r et u_0 son premier terme.

$$\forall n \in \mathbb{N}, u_n = u_0 + n \times r$$

preuve:

Soit $n \in \mathbb{N}$, on peut écrire les termes suivants à l'aide la définition par récurrence :

$$u_1 = u_0 + r$$

 $u_2 = u_1 + r$
 \vdots
 $u_n = u_{n-1} + r$

Puis, en additionnant membre à membre ces n égalités, on obtient

$$u_1 + u_2 + ... + u_n = u_0 + r + u_1 + r + ... + u_{n-1} + r$$

qui équivaut à :

$$u_1 + u_2 + ... + u_n = u_0 + u_1 + ... + u_{n-1} + n \times r$$

puis en soustayant $(u_1+u_2+...+u_{n-1})$ à chaque membre

$$u_n = u_0 + n \times r$$

Lien avec la définition n°2 Remarque n°6.

Cette fois-ci la suite est définie de façon explicite et on a : $f: x \mapsto u_0 + r \times x$

Propriété n°2. Une généralisation

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r et $p\in\mathbb{N}$.

$$\forall n \in \mathbb{N}, u_n = u_p + (n-p) \times r$$

Laissée en exercice preuve:

Propriété n°3. Sommes des premiers entiers

Soit $n \in \mathbb{N}$, alors

$$\left| \sum_{k=0}^{n} k \right| = \frac{n(n+1)}{2} \right|.$$

(Notation:
$$\sum_{k=0}^{n} k = 0+1+2+3+...+(n-1)+n$$
)

preuve:

Soit $n \in \mathbb{N}$ fixé,

• On remarque que
$$\sum_{k=0}^{n} k = \sum_{k=0}^{n} (n-k)$$

$$(car: 0+1+2+...+(n-2)+(n-1)+n = n+(n-1)+(n-2)+...+2+1+0)$$

• et donc :
$$2 \times \sum_{k=0}^{n} k = (n+1) \times n$$

Ainsi:
$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$$
 cqfd

Propriété n°4. Sommes des premiers termes d'une suite arithmétique

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r et de premier terme u_0 .

Alors, pour tout $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} u_k = (n+1) \frac{u_0 + u_n}{2}$$

(Notation:
$$\sum_{k=0}^{n} u_k = u_0 + u_1 + ... + u_{n-1} + u_n$$
)

preuve:

Soit $n \in \mathbb{N}$ fixé,

$$- \sum_{k=0}^{n} u_k = \sum_{k=0}^{n} (u_0 + kr)$$
 (d'après la propriété n°1)

(car:
$$u_0 + u_1 + ... + u_{n-1} + u_n$$

= $u_0 + 0 \times r + u_0 + 1 \times r + ... + u_0 + (n-1) \times r + u_0 + n \times r$)

• Or

$$\sum_{k=0}^{n} (u_0 + k r) = \sum_{k=0}^{n} u_0 + \sum_{k=0}^{n} k r = \underbrace{\sum_{k=0}^{n} u_0}_{(n+1)u_0} + r \times \underbrace{\sum_{k=0}^{n} k}_{2}$$

d'où:

$$\sum_{k=0}^{n} u_k = (n+1)u_0 + \frac{r \times n(n+1)}{2} = \frac{2(n+1)u_0 + rn(n+1)}{2}$$

$$= \frac{(n+1)(2u_0 + rn)}{2} = \frac{(n+1)(u_0 + u_0 + rn)}{2} = \frac{(n+1)(u_0 + u_n)}{2}$$

$$= (n+1)\frac{u_0 + u_n}{2}$$

Remarque n°7. Une façon de retenir la formule

$$Somme = nombre de termes \times \frac{premier terme + dernier terme}{2}$$

cqfd

Méthode n°1. Calcul de la somme des n premiers termes d'une suite arithmétique

• Soit (v_n) la suite arithmétique de raison r=3 et de premier terme $v_0 = -5$. On veut calculer la somme A des dix premiers termes.

(C'est à dire
$$A = \sum_{k=0}^{9} v_k = v_0 + v_1 + ... + v_9$$
)

Comme on « commence à zéro » le $10^{\rm e}$ terme est v_9 , on le calcule :

$$v_9 = v_0 + 9 \times r = -5 + 9 \times 3 = 22$$
.

$$A = 10 \times \frac{v_0 + v_9}{2} = 10 \times \frac{-5 + 22}{2} = 85$$

• Soit (w_n) la suite arithmétique de raison r=1,5 et de premier terme $w_1=2$. On veut calculer la somme B des dix premiers termes.

(C'est à dire
$$B = \sum_{k=1}^{10} w_k = w_1 + w_2 + ... + w_{10}$$
)

Comme on « commence à un» le 10^{e} terme est w_{10} , on le calcule : $w_{10} = w_1 + (10-1) \times r = 2 + 9 \times 1,5 = 15,5$.

$$B = 10 \times \frac{w_1 + w_{10}}{2} = 10 \times \frac{2+15,5}{2} = 87,5$$

Suites géométriques III

Définition n°5. Suite géométrique

Une suite est dite géométrique si, en connaissant un terme de la suite, on peut obtenir le suivant en le multipliant toujours par le même nombre.

Autrement dit:

• Une suite $(u_n)_{n\in\mathbb{N}}$ est géométrique s'il existe $q\in\mathbb{R}$ tel que :

Pour tout
$$n \in \mathbb{N}$$
, $u_{n+1} = u_n \times q$

Le nombre q est appelé : raison de la suite.

Remarque n°8. Lien avec la définition n°3

La suite u est définie par récurrence (à condition de penser à donner u_0) et on a: $f: x \mapsto x \times q$

Exemple n°4.

La suite $u: \begin{cases} u_0 = 0.5 \\ u_{n+1} = u_n \times 1.9 \end{cases}$ est une suite géométrique de raison 1,9 et de premier terme $u_0 = 0.5$.

géométrique de raison 0.5 et de premier terme $v_0 = 3$. Ses quatre premiers termes sont :

Propriété n°5. Expression de u_n en fonction de n

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q et u_0 son premier terme.

$$\forall n \in \mathbb{N}, u_n = u_0 \times q^n$$

preuve:

• Si $u_0 = 0$ ou q = 0 alors tous les termes de la suite sont nuls et l'égalité $u_n = u_0 \times q^n$ (0 = 0) est vraie pour tout $n \in \mathbb{N}$

• Si $u_0 \neq 0$ et $q \neq 0$ alors on admet que tous les termes de la suite sont non nuls et on peut écrire :

$$u_1 = u_0 \times q$$

$$u_2 = u_1 \times q$$

$$\vdots$$

$$u_n = u_{n-1} \times q$$

Puis, en multipliant membre à membre ces n égalités, on obtient :

$$u_1 \times u_2 \times ... \times u_n = u_0 \times q \times u_1 \times q \times ... \times u_{n-1} \times q$$
 qui équivaut à :

$$u_1 \times u_2 \times ... \times u_n = u_0 \times u_1 \times ... \times u_{n-1} \times q^n$$

puis en divisant chaque membre par $(u_1 \times u_2 \times ... \times u_{n-1})$ (qui est non nul...)
 $u_n = u_0 \times q^n$

Propriété n°6. Somme des premiers termes d'une suite géométrique

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison $q\neq 1$ et u_0 son premier terme. Alors, pour tout $n\in\mathbb{N}$:

$$\sum_{k=0}^{n} u_k = u_0 \frac{1 - q^{n+1}}{1 - q} \quad \text{, en particulier si} \quad u_0 = 1 \quad \text{,} \quad \sum_{k=0}^{n} q^n = u_0 \frac{1 - q^{n+1}}{1 - q}$$

preuve:

Nous allons commencer par le cas particulier et nous en déduirons le cas général.

• Soit $n \in \mathbb{N}$ fixé, on remarque que :

$$\sum_{k=0}^{n} u_{k} = \underbrace{\sum_{k=0}^{n} u_{0} \times q^{k}}_{\text{d'après la propriété n°5}} = \underbrace{u_{0} \times \sum_{k=0}^{n} q^{k}}_{\text{par factorisation par } u_{0}}$$

• Posons $S_n = \sum_{k=0}^n q^k$ et calculons $S_n - q S_n$.

$$S_n - q S_n = \sum_{k=0}^n q^k - q \times \sum_{k=0}^n q^k = \sum_{k=0}^n q^k - \sum_{k=0}^n q^{k+1} = \sum_{k=0}^n (q^k - q^{k+1})$$

(car:

$$S_n = q^0 + q^1 + ... + q^{n-1} + q^n$$

 $q \times S_n = q \times (q^0 + q^1 + ... + q^{n-1} + q^n) = q^{0+1} + q^{1+1} + ... + q^{n-1+1} + q^{n+1})$

• donc, par télescopage (à retenir !): $S_n - q \times S_n = 1 - q^{n-1}$

(car
$$S_n - q \times S_n = q^0 - \underbrace{q^{0+1} + q^1}_{0} + q^{1+1} + \dots + q^{n-1} - \underbrace{q^{n-1+1} + q^n}_{0} - q^{n+1}$$

les termes se télescopent au fur et à mesure et il ne reste que le 1er et le dernier)

• Or:

$$S_n - q \times S_n = (1 - q)S_n$$
 (par factorisation)

• Donc
$$(1-q)S_n = 1-q^{n+1}$$

Comme $q \neq 1$, $1-q \neq 0$ et on peut diviser chaque membre par 1-q pour obtenir :

$$\bullet S_n = \frac{1 - q^{n+1}}{1 - q}$$

(Nous avons obtenu le cas particulier)

■ D'après la remarque du premier point (■)

$$\sum_{k=0}^{n} u_{k} = u_{0} \times \sum_{k=0}^{n} q^{k} = u_{0} \frac{1 - q^{n+1}}{1 - q}$$

(Nous avons obtenu le cas général)

cqfd

Remarque n°9.

Une façon de retenir la formule

La somme des n premiers termes d'une suite géométrique de raison q avec $q \ne 1$ vaut :

Somme = premier terme
$$\times \frac{1-q^{\text{nombre de termes}}}{1-q}$$

Méthode n°2. Calcul de la somme des n premiers termes d'une suite géométrique

• Soit (v_n) la suite géométrique de raison r=3 et de premier terme $v_0=-5$. On veut calculer la somme A des dix premiers termes.

C'est à dire
$$A = \sum_{k=0}^{9} v_k = v_0 + v_1 + ... + v_9$$

$$A = v_0 \times \frac{1 - q^{10}}{1 - q} = -5 \times \frac{1 - 3^{10}}{1 - 3} = -147 620$$

• Soit (w_n) la suite géométrique de raison r=1,5 et de premier terme $w_1=2$. On veut calculer la somme B des 5 premiers termes.

C'est à dire
$$B = \sum_{k=1}^{5} w_k = w_1 + w_2 + w_3 + w_4 + w_5$$

 $B = w_1 \times \frac{1 - q^5}{1 - q} = 2 \times \frac{1 - 1.5^5}{1 - 1.5} = 26,375$

Remarque n°10.

Si q=1 alors la suite est constante et la somme des n premiers termes vaut simplement : $n \times premier terme$

Remarque n°11.

Tant que *n* est fixé, on sait donc faire pas mal de choses sur les suites. Mais *n* peut devenir aussi grand que l'on veut : on dit que *n* peut « tendre vers l'infini ». On aimerait alors savoir comment se comportent les termes de la suite vers cet « infini ». C'est ce qui motive ce dernier paragraphe. Conformément au programme nous resterons dans l'intuition et nous utiliserons parfois des « pseudo-définitions » (cela sera signalé).

IV Comportement de suite

Définition n°6. Suite Croissante, suite décroissante

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

- $(u_n)_{n\in\mathbb{N}}$ est croissante si et seulement si $\forall n\in\mathbb{N}$, $u_{n+1}\geqslant u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est strictement croissante si et seulement si $\forall\,n\in\mathbb{N}$, $u_{n+1}>u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est décroissante si et seulement si $\forall n\in\mathbb{N}$, $u_{n+1}\leqslant u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante si et seulement si $\forall\,n\in\mathbb{N}$, $u_{n+1}< u_n$

Remarque n°12.

$$u_{n+1} \geqslant u_n \Leftrightarrow u_{n+1} - u_n \geqslant 0$$

En pratique, c'est surtout la partie de droite de l'équivalence qui sera utilisée.

Exemple n°5.

La suite $(v_n)_{n\in\mathbb{N}}$ définie par : Pour tout $n\in\mathbb{N}$, $v_n=n^2+3n+2$ est strictement croissante. En effet :

- Soit $n \in \mathbb{N}$.
- Étudions la différence $v_{n+1} v_n$

$$v_{n+1} - v_n = \underbrace{(n+1)^2 + 3(n+1) + 2}_{v_{n+1}} - \underbrace{(n^2 + 3n + 2)}_{u_n}$$

$$= n^2 + 2n + 1 + 3n + 3n + 2 - n^2 - 3n - 2$$

$$= 2n + 1$$

- Or n est un entier naturel donc $n \ge 0$ d'où $2n \ge 0$ et enfin $2n+1 \ge 1 > 0$
- Ainsi, $v_{n+1}-v_n > 0$ qui équivaut à $v_{n+1} > v_n$.
- En conclusion : la suite $(v_n)_{n\in\mathbb{N}}$ est strictement croissante.

Définition n°7. Convergence, divergence, limite (pseudo-définition)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite et l un nombre réel.

On dira que:

- la suite $(u_n)_{n\in\mathbb{N}}$ converge vers l si les termes de la suite tendent vers l, On dira alors que la limite de $(u_n)_{n\in\mathbb{N}}$ vaut l et on notera $\lim_{n\to\infty}u_n=l$.
- la suite $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$ si les termes de la suite tendent vers
- $+\infty$, la suite $(u_n)_{n\in\mathbb{N}}$ diverge vers $-\infty$ si les termes de la suite tendent vers
- la suite $(u_n)_{n\in\mathbb{N}}$ diverge si les termes de la suite ne tendent vers rien.

Remarque n°13.

L'arnaque vient du fait qu'on a pas défini ce que « tendre » veut dire... Donnons tout même une précision :

- Dire qu'une suite tend vers l signifie qu'à partir d'un certain rang **tous** les termes de suite seront aussi proches que l'on veut de l.
- Dire qu'une suite tend vers $+\infty$ signifie qu'à partir d'un certain rang **tous** les termes de suite seront aussi grands que l'on veut.

Exemple n°6.

- La suite $(v_n)_{n \in \mathbb{N}}$ définie par $v_0 = 10$ et $\forall n \in \mathbb{N}$ $v_{n+1} = \frac{v_n}{5}$ converge vers zéro. (l=0)
- La suite $(w_n)_{n \in \mathbb{N}}$ définie par $w_0 = 10$ et $\forall n \in \mathbb{N}$ $w_{n+1} = w_n + 5$ diverge vers $+\infty$.
- La suite $(t_n)_{n\in\mathbb{N}}$ définie par $t_0=10$ et $\forall\,n\in\mathbb{N}$ $t_{n+1}=t_n-5$ diverge vers $-\infty$.
- La suite $(a_n)_{n \in \mathbb{N}}$ définie par $a_0 = 10$ et $\forall n \in \mathbb{N}$ $a_{n+1} = a_n + (-1)^n$ diverge.