Fully Convolutional Network for Semantic Segmentation

Evan Shelhamer et al.

CVPR, 2015 &TPAMI, 2016

Kai Xie

kxie.cs@gmail.com

Outline

- Fully convolutional network
 - Main idea
 - Transpose convolution
 - Skip layers
- Results

Main Idea

Transpose Convolution

Skip layers

Results

Let n_{ij} be the number of pixels of class i predicted to belong to class j, where there are $n_{\rm cl}$ different classes, and let $t_i = \sum_j n_{ij}$ be the total number of pixels of class i. We compute:

- pixel accuracy: $\sum_i n_{ii} / \sum_i t_i$
- mean accuraccy: $(1/n_{\rm cl}) \sum_i n_{ii}/t_i$
- mean IU: $(1/n_{\rm cl}) \sum_{i} n_{ii} / (t_i + \sum_{j} n_{ji} n_{ii})$
- frequency weighted IU: $(\sum_k t_k)^{-1} \sum_i t_i n_{ii} / (t_i + \sum_j n_{ji} n_{ii})$

Results

Table 2. Comparison of skip FCNs on a subset⁷ of PASCAL VOC 2011 segval. Learning is end-to-end, except for FCN-32s-fixed, where only the last layer is fine-tuned. Note that FCN-32s is FCN-VGG16, renamed to highlight stride.

	pixel	mean	mean	f.w.
	acc.	acc.	IU	IU
FCN-32s-fixed	83.0	59.7	45.4	72.0
FCN-32s	89.1	73.3	59.4	81.4
FCN-16s	90.0	75.7	62.4	83.0
FCN-8s	90.3	75.9	62.7	83.2

NYUDv2

Table 4. Results on NYUDv2. *RGBD* is early-fusion of the RGB and depth channels at the input. *HHA* is the depth embedding of [15] as horizontal disparity, height above ground, and the angle of the local surface normal with the inferred gravity direction. *RGB-HHA* is the jointly trained late fusion model that sums RGB and HHA predictions.

	pixel	mean	mean	f.w.
	acc.	acc.	IU	IU
Gupta et al. [15]	60.3	-	28.6	47.0
FCN-32s RGB	60.0	42.2	29.2	43.9
FCN-32s RGBD	61.5	42.4	30.5	45.5
FCN-32s HHA	57.1	35.2	24.2	40.4
FCN-32s RGB-HHA	64.3	44.9	32.8	48.0
FCN-16s RGB-HHA	65.4	46.1	34.0	49.5

PASCAL VOC 2011 and 2012

Table 3. Our fully convolutional net gives a 20% relative improvement over the state-of-the-art on the PASCAL VOC 2011 and 2012 test sets and reduces inference time.

	mean IU VOC2011 test	mean IU VOC2012 test	inference time
R-CNN [12]	47.9	-	-
SDS [17]	52.6	51.6	$\sim 50 \text{ s}$
FCN-8s	62.7	62.2	$\sim 175~ms$

SIFT Flow

Table 5. Results on SIFT Flow⁹ with class segmentation (center) and geometric segmentation (right). Tighe [36] is a non-parametric transfer method. Tighe 1 is an exemplar SVM while 2 is SVM + MRF. Farabet is a multi-scale convnet trained on class-balanced samples (1) or natural frequency samples (2). Pinheiro is a multi-scale, recurrent convnet, denoted RCNN₃ (o³). The metric for geometry is pixel accuracy.

	pixel	mean	mean	f.w.	geom.
	acc.	acc.	TU	IU	acc.
Liu et al. [25]	76.7	-	-	-	-
Tighe et al. [36]	-	-	-	-	90.8
Tighe et al. [37] 1	75.6	41.1	-	-	-
Tighe et al. [37] 2	78.6	39.2	-	-	-
Farabet et al. [9] 1	72.3	50.8	-	-	-
Farabet et al. [9] 2	78.5	29.6	-	-	-
Pinheiro et al. [31]	77.7	29.8	-	-	-
FCN-16s	85.2	51.7	39.5	76.1	94.3

Results

Figure 6. Fully convolutional segmentation nets produce state-ofthe-art performance on PASCAL. The left column shows the output of our highest performing net, FCN-8s. The second shows the segmentations produced by the previous state-ofthe-art system by Hariharan et al. [17]. Notice the fine structures recovered (first row), ability to separate closely interacting objects (second row), and robustness to occluders (third row). The fourth row shows a failure case: the net sees lifejackets in a boat as people.