Étude cinématique des systèmes de solides de la chaîne d'énergie

Analyser, Modéliser, Résoudre

Chapitre 4– Étude des chaînes fermées : Détermination des lois Entrée – Sortie

Sciences
Industrielles de
l'Ingénieur

תד

Prothèse Active Transtibiale

D'après concours Mines-Ponts - 2013.

Savoirs et compétences :

Résoudre : à partir des modèles retenus :

- de choisir une méthode de résolution analytique, graphique, numérique;
- □ mettre en œuvre une méthode de résolution.
- ☐ Rés C1.1 : Loi entrée sortie géométrique et cinématique Fermeture géométrique.

- 1 Mise en situation
- 2 Fonctionnement du treuil
- 3 Conception de l'arbre primaire et du frein à lamelles

Question 1 Quel est le couple de freinage nécessaire pour bloquer la charge maximale avec une marge de sécurité de 30%.

Correction La charge maximale que le treuil doit pouvoir lever est de 7,5 kN. Le diamètre maximal d'enroulement sur l'arbre de sortie est de 500 mm soit 250 mm de rayon. Le couple maximal sur l'arbre de sortie est donc $C_S = 250 \cdot 10^{-3} \cdot 7, 5 \cdot 10^3 = 1875$ Nm.

 $250 \cdot 10^{-3} \cdot 7, 5 \cdot 10^3 = 1875$ Nm. On a : $\frac{\omega_S}{\omega_E} = \frac{1}{k_T} = (-1)^2 \frac{20 \cdot 15}{80 \cdot 70} \simeq 0,0536$ et dans l'hypothèse ou le rendement est unitaire, on a : $C_E = \frac{C_S}{k_T} \simeq 100,5$ Nm.

En tenant compte de le marge de sécurité de 30%, le couple à fournir est de 131 Nm.

Question 2 Les représentations de face des lamelles étant fournies ci-dessous, rechercher un triplet optimal {nombre de ressorts, nombre de lamelles, écrasement de précharge des ressorts}. Le coefficient de frottement au niveau des lamelles sera minoré de 0.08.

Correction Adoptons un facteur de frottement de 0,12 entre les lamelles. Si on opte pour 20 lamelles, il y a n=21 surfaces frottantes. On a alors $fn\frac{2}{3}\frac{R^3-r^3}{R^2-r^2}=0$, $12\cdot 21\cdot \frac{2}{3}\cdot \frac{37,5^3-25^3}{37,5^2-25^2}=0$, 0798. L'effort a fournir est donc de 1641 N.

Les ressorts ont une raideur de 40 N/mm. On a donc une longueur de ressort nécessaire de 41 mm. Il est donc possible d'utiliser 6 ressorts en parallèles avec une longueur d'écrasement de 6,9 mm.

Question 3 Déterminer la section utile du piston pour désactiver le frein avec une pression de 20 bars.

Correction Pour désactiver le frein, 2 MPa sont nécessaires. La section de piston nécessaire est donc $S = \frac{F}{P} \simeq 820,5 \,\text{mm}^2$ soiit un disque de diamètre 33 mm.

1

Question 4 Effectuer le dessin d'ensemble du montage de l'arbre primaire en coupe diamétrale.

Partie fixe Haute pression Arbre primaire

Figure 7 : Schémas des lamelles internes, externes et du frein à lamelles

4 Deuxième étape : Conception de l'arbre intermédiaire et de l'antidévireur

Cette conception se fera sur un forma A3 tenu horizontalement à l'échelle 1. Les exigences à respecter sont données dans le diagramme ci-dessous.

Question 5 Reproduire la figure ci-contre et représenter la condition d'équilibre limite du rouleau en phase d'arc boutement. Déduire l'expression de Hmini conditionnant le dégagement dans la bague interne en fonction de R: rayon de la bague externe, r rayon du rouleau et de φ : angle de frottement. Calculer la valeur de Hmin pour $R=47,5,\,r=5$ et $\tan\varphi=0,07$.

Figure 8 : Étude de la roue libre

Question 6 Quel serait le couple transmis par la roue libre lors du soulèvement d'une charge de 7,5 kN avec une marge de 30%. La roue libre comporte 8 rouleaux de largeur $L=20~m\,m$ et la hauteur du dégagement est $H=37,2~m\,m$. Déterminer la valeur de la densité linéique d'effort de contact entre un rouleau et la bague externe dans les conditions ci-dessus. Proposer des matériaux cohérents pour les rouleaux et les bagues de l'antidévireur.

Question 7 Effectuer le dessin d'ensemble du montage de l'arbre intermédiaire de la roue libre en coupe diamétrale.

5 Troisième étape : conception de l'arbre de sortie du réducteur

Cette conception se fera sur format A3 en tenant compte des éléments précédents. Les exigences à respecter sont listées dans le diagramme des exigences suivant.

Question 8 Déterminer le nombre de tours N que le câble peut effectuer autour de la poulie. Déterminer la longueur d'enroulement du câble au ième tour à partir du début de l'enroulement de la bobine vide. Déduire la longueur totale L du câble qui peut être enroulé sur la bobine pleine.

Question 9 Effectuer le graphe de la vitesse d'enroulement du câble en fonction du temps pour une vitesse de moteur principal de 1000 tours/min. L'accélération qui en découle a-t-elle une influence importante sur la tension du câble ?

Question 10 Effectuer le dessin d'ensemble du montage de l'arbre de sortie et de la bobine en coupe diamétrale.

6 Quatrième étape : conception de l'articulation du portique par rapport à la flèche

Cette conception se fera sur deux formats A3. Une première vue à l'échelle 1/4 donnera l'allure de l'ensemble de la liaison articulation, mais cette représentation s'avère insuffisante pour fournir les détails structurels et dimensionnels de l'étude. Ces détails seront donc dessinés à l'échelle 1 sur une seconde feuille, pour une partie seulement de la liaison.

La masse de la flèche est évaluée à 260 kg, celle du treuil à 100 kg. Les centres de gravité sont représentés sur la figure 1.

Question 11 Déterminer par une méthode graphique l'effort appliqué sur cette articulation lorsque la grue est en surcharge de 30%.

Question 12 Évaluer alors la pression de contact dans les paliers.

Question 13 Effectuer la cotation fonctionnelle complète de l'ensemble des pièces constituants cette articulation (dimensions linéaires, défauts de forme et de position, états de surface).

Annexes

Couple transmissible par adhérence dans un embrayage à disque ou dans un frein

On donne k la raideur des ressorts, f le facteur de frottement entre les le disque et l'arbre moteur, r le petit rayon de la couronne et R le grand rayon de la couronne. Calculer le couple transmissible par adhérence entre l'arbre moteur et le disque. On fera l'hypothèse que l'action créée par les ressorts sur le plateau de compression est uniforme.

Expression du couple infinitésimal : $d\overrightarrow{\mathcal{M}}$ (Plateau, Disque \rightarrow 0) = $d\overrightarrow{\mathcal{M}}(P, D \rightarrow O) = \overrightarrow{OM} \land d\overrightarrow{R(P \rightarrow D)}$

Expression de la résultante infinitésimale : $d\overrightarrow{R(P \to D)} = d\overrightarrow{N(P \to D)} + d\overrightarrow{T(P \to D)}$

Expression de l'effort normal : $d\overrightarrow{N(P \to D)} = p\overrightarrow{n}d\mathcal{S} = -p\overrightarrow{z}d\mathcal{S}$

Expression de l'unité de surface : $d\mathcal{S} = \rho d\theta d\rho$

Expression de l'effort tangentiel : d'après le modèle de Coulomb, on commence par identifier le vecteur $\overrightarrow{V(M \in D/P)}$. Le vecteur tangentiel est donc opposé à ce dernier. A la limite du glissement on a alors :

$$d\overrightarrow{T(P \to D)} = -f||d\overrightarrow{N(P \to D)}||\overrightarrow{v} = fpd\mathscr{S}\overrightarrow{v}$$

Calcul final: on note $\overrightarrow{OM} = \rho \overrightarrow{u}$:

$$\begin{split} \overrightarrow{\mathcal{M}}(O,P \to \overrightarrow{D}) &= d \overrightarrow{\mathcal{M}}(O,P \to \overrightarrow{D}) = \int \overrightarrow{OM} \wedge d \overrightarrow{R}(P \to \overrightarrow{D}) = \int \rho \overrightarrow{u} \wedge \left(d \overrightarrow{N}(P \to \overrightarrow{D}) + d \overrightarrow{T}(P \to \overrightarrow{D}) \right) \\ &= \int \rho \overrightarrow{u} \wedge \left(-p \overrightarrow{z} d \mathcal{S} + f p d \mathcal{S} \overrightarrow{v} \right) = \iint p \rho \overrightarrow{v} d \mathcal{S} + \iint p f \rho \overrightarrow{z} d \mathcal{S} \\ &= \iint p \rho \overrightarrow{v} \rho d \theta d \rho + \iint p f \rho \overrightarrow{z} \rho d \theta d \rho \end{split}$$

$$\iint p\rho \overrightarrow{v}\rho d\theta d\rho = \iint p\rho \left(\cos\theta \overrightarrow{y} - \sin\theta \overrightarrow{x}\right)\rho d\theta d\rho = \iint p\rho \cos\theta \overrightarrow{y}\rho d\theta d\rho - \iint p\rho \sin\theta \overrightarrow{x}\rho d\theta d\rho$$

$$= p\overrightarrow{y} \int_{r}^{R} \int_{0}^{2\pi} \cos\theta d\theta \rho^{2} d\rho - p\overrightarrow{x} \int_{r}^{R} \int_{0}^{2\pi} \sin\theta \rho^{2} d\theta d\rho = p \left[\sin\theta\right]_{0}^{2\pi} \left[\frac{1}{3}\rho^{3}\right]_{r}^{R} \overrightarrow{y} - p \left[-\cos\theta\right]_{0}^{2\pi} \left[\frac{1}{3}\rho^{3}\right]_{r}^{R} \overrightarrow{x} = \overrightarrow{0}$$

$$\iint pf\rho^2 \overrightarrow{z} d\theta d\rho = pf[\theta]_0^{2\pi} \left[\frac{1}{3} \rho^3 \right]_r^R \overrightarrow{z} = pf2\pi \frac{R^3 - r^3}{3}$$

Enfin, en notant F_r l'effort (uniformément réparti) exercé par le ressort sur toute la couronne, on a donc :

$$p = \frac{F_r}{\pi \left(R^2 - r^2 \right)}$$

Au final:

$$\overrightarrow{\mathcal{M}}(O, P \to D) = f \frac{2}{3} \frac{R^3 - r^3}{R^2 - r^2} F_r$$

4

Le facteur de frottement ne dépend pas de la pression de contact entre deux solides.

Matériaux	Facteur d'	adhérence	Facteur de glissement			
Wateriaux	Sec	Lubrifié	Sec	Lubrifié		
Acier / Acier	0,2 à 0,3	0,15 à 0,2	0,2	0,12		
Acier / Fonte	0,2	0,12 à 0,2	0,15	0,08		
Acier / Bronze	0,2	0,15 à 0,2	0,2	0,12		
Acier / Métal fritté		0,1 à 0,18	0,1 à 0,12	0,03 à 0,06		
Acier / Garniture de friction	0,3 à 0,4		0,25 à 0,35			
Acier / Graphite		0,1		0,09		
Acier / Palier PTFE	0,08 à 0,4		0,02 à 0,08	0,003 à 0,05		
Pneu neuf / Route	1	0,6	0,5 à 0,6	0,2 à 0,5		

Esquisse du moteur hydraulique et du compte tours

Roues libres Ringspann http://www.ringspann.fr/

Roues libres complètes FR ...

avec liaison frontale par vis dimensions en pouces, à cames, disponibles en 4 versions

RINGSPANN®

			Alésages et ra	inures de clave	tte standards [en pouce]			
FR 300	0,500		0,750						
	1/8 x 1/16		3/16 x 3/32						
FR 400	0,500	0,625	0,750	0,875	1,000	1,125			
	1/8 x 1/16		3/16 x 3/32		1/4 x 1/8	1/4 x 1/8			
FR 500	0,875	1,000	1,125	1,250	1,312				
	3/16 x 3/32	1/4 x 1/8			1/4 x 3/32				
FR 550	1,250	1,312		1,625					
1111550	1/4 x 1/8	3/8 x 3/16		3/8 x 1/8					
FR 600	1,250	1,375	1,438	1,500	1,625			1,938	2,000
1 K 000	1/4 x 1/8	3/8 x 3/16	3/8 x 3/16	3/8 x 3/16	3/8 x 3/16	3/8 x 3/16	3/8 x 3/16	3/8 x 1/8	3/8 x 1/8
FR 650	1,938	2,000	2,250	2,438	2,500				
FK 050	1/2 x 1/4	1/2 x 1/4	1/2 x 1/4	5/8 x 1/8	5/8 x 1/8				
FR 700	1,938	2,000	2,250	2,438	2,500	2,750	2,938		
FK 700	1/2 x 1/4	1/2 x 1/4	1/2 x 1/4	5/8 x 5/16	5/8 x 5/16	5/8 x 7/32	5/8 x 1/8		
FR 750	2,438	2,500	2,938	3,000	3,250	3,438			
FK /50	5/8 x 5/16	5/8 x 5/16	3/4 x 3/8	3/4 x 3/8	3/4 x 3/16	3/4 x 1/8			
FR 775	2,750	2,938	3,000	3,250	3,438	3,500	3,750		
FN //3	5/8 x 5/16	3/4 x 3/8	3/4 x 3/8	3/4 x 3/8	7/8 x 5/16	7/8 x 5/16	7/8 x 1/4		
FR 800	3,000	3,250	3,438	3,500	3,750	3,937	4,000	4,250	4,500
FK 800	3/4 x 3/8	3/4 x 3/8	7/8 x 7/16	7/8 x 7/16	7/8 x 7/16	1 x 1/2	1 x 1/2	1 x 3/8	1 x 1/4
FD 000	4,000	4,438	4,500	4,938	5,000	5,438			
FR 900	1 x 1/2	1 x 1/2			1 1/4 x 5/16	1 1/4 x 5/16			
FR1000	5,750	5,938			6,875	7,000			
111000	1 1/2 x 3/4	1 1/2 x 3/4	1 1/2 x 3/4	1 3/4 x 7/16	1 3/4 x 7/16	1 3/4 x 7/16			

Utilisées en

- Antidévireur
- Survireur
- Commande d'avance

Caractéristiques

Les roues libres complètes FR ... sont des roues libres à cames, avec des dimensions en pouces, montées sur roulements à billes et étanches. Elles sont livrées remplies d'huile et prêtes à être montées.

En plus de la version standard, trois autres versions sont disponibles pour une durée de vie prolongée. Couple nominal jusqu'à 27 500 lb-ft.

Alésages jusqu'à 7 pouces. De nombreux alésages standards sont disponibles.

Exemple d'application

Roues libres complètes FRS 600 sur un convoyeur à bande transporteuse avec deux groupes de commande pour sens d'entrainement avant et arrière (action réversible). Pour s'assurer que la bande transporteuse est entraînée sous tension, le mouvement d'avance est assuré par le groupe de commande I, le mouvement inverse par le groupe de commande II. Les roues libres désaccouplent automatiquement le groupe de commande non utilisé, évitant l'utilisation coûteuse d'un embrayage externe ou celle d'un frein.

Dans le mouvement d'avance, le groupe de commande II est démarré avec sa roue libre II en phase roue libre. Ainsi la roue libre II désaccouple le groupe de commande II de la bande transporteuse. Puis le groupe de commande I est démarré avec sa roue libre I en sens blocage; Elle permet le mouvement d'avance de la bande transporteuse entraînée par le groupe de commande I. La vitesse entraînée par le groupe de commande I est inférieure à celle du groupe de commande II. Ainsi, la roue libre II reste en phase roue libre et le groupe de commande II ne génère pas de mouvement impropre.

Pour le mouvement inverse, les groupes de commande sont démarrés dans l'ordre et les sens de rotation inverses avec les vitesses correspondantes.

Conseils de montage

Centrer la pièce de liaison du client sur le diamètre extérieur D et la visser sur la face de la roue libre.

La tolérance de l'arbre doit être +0/-0,001 pouce and la tolérance du diamètre de centrage D de la pièce de liaison doit être -0/+0,002 pouce.

Roues libres complètes FR ...

RINGSPANN®

avec liaison frontale par vis dimensions en pouces, à cames, disponibles en 4 versions

19-1

nde d'avance Survireur Antidévireur	Version standard Pour usage courant	Version standard - lubrifiée à la graisse Pour usage courant	Soulèvement centrifuge X Pour plus de durée de vie grâce au soulèvement des cames par rotation rapide de la bague intérieure	Soulèvement centrifuge Z Pour plus de durée de vie grâce au soulèvement des cames par rotation rapide de la bague extérieure		
Commar						

	Vitesse maxi			Vitesse maxi					Vitesse de la	Vitess	maxi			Vitesse de la	Vitesse	e maxi		
	Couple	Bague	Bague ex-			Couple	Bague	Bague ex-		Couple	bague exté-	Bague	Bague		Couple	bague exté-	Bague ex-	Bague
Type de	nominal	intérieure en		Туре		nominal	intérieure en	térieure en	Type de	nominal	rieure pour	intérieure en	extérieure	Type de	nominal	rieure pour	térieure en	intérieure
roue libre	M _N	survirage	survirage	roue	libre	MN	survirage	survirage	roue libre		soulèvement		motrice	roue libre	M _N	soulèvement	survirage	motrice
	lb-ft	min ⁻¹	min ⁻¹			lb-ft	min ⁻¹	min ⁻¹		lb-ft	min ⁻¹	min ⁻¹	min ⁻¹		lb-ft	min ⁻¹	min ⁻¹	min ⁻¹
FRS 300	210	2 5 0 0	2600	FRSG	300	210	3 600	3600										
FRS 400	335	1 900	2100	FRSG	400	335	3 600	3600	FRX 400	125	860	4000	340	FRZ 400	280	800	2600	320
FRS 500	800	1 400	1900	FRSG	500	800	3 600	3600	FRX 500	425	750	4000	300	FRZ 500	535	1 400	2050	560
FRS 550	1525	1 175	1600	FRSG	550	1525	3 600	3600	FRX 550	750	700	4000	280	FRZ 550	1 380	1550	1800	620
FRS 600	1950	1 100	1500	FRSG	600	1950	3 600	3600	FRX 600	1 000	670	4000	265	FRZ 600	1765	1 450	1650	580
FRS 650	2700	900	1 250	FRSG	650	2700	3 600	3600	FRX 650	1750	610	4000	240	FRZ 650	2500	1 300	1 400	520
FRS 700	5 5 2 5	790	1150	FRSG	700	5 5 2 5	1800	1800	FRX 700	4050	350	3 600	140	FRZ 700	5 250	1160	1 200	465
FRS 750	9350	790	1150	FRSG	750	9350	1800	1800	FRX 750	7 500	320	2 400	125	FRZ 750	8750	1160	1 200	465
FRS 775	8500	750	1050	FRSG	775	8500	1800	1800	FRX 775	7 400	320	2 100	125	FRZ 775	6500	950	1 050	380
FRS 800	11100	700	950	FRSG	800	11100	1800	1800	FRX 800	14500	250	1 800	100	FRZ 800	8700	880	975	350
FRS 900	16800	700	950	FRSG	900	16800	1 200	1200	FRX 900	15 000	250	650	100	FRZ 900	13 000	720	925	288
FRS 1000	27500	630	800	FRSG	1000	27500	1 200	1200										

Le couple maximal est égal au double du couple nominal indiqué. Voir page 14 pour la détermination du couple de sélection.

Type de					Alésa		D	F	G	L	Н	0	T	Z*	Poids				
roue libre		Alésages standards											filetage						
		en pouces												pouce	pouce	pouce	pouce		lbs
FR 300	0,500	0,650	0,750							0,750	3,000	0,063	0,250-28	2,500	0,375	0,750	2,625	4	3,5
FR 400	0,500	0,625	0,750	0,875	1,000	1,125				1,125	3,500	0,032	0,312-24	2,750	0,500	0,750	2,875	4	6,0
FR 500	0,875	1,000	1,125	1,250	1,312					1,312	4,250	0,063	0,312-24	3,500	0,625	1,000	3,625	4	10,0
FR 550	1,250	1,312	1,500	1,625						1,625	4,750	0,063	0,312-24	3,250	0,540	0,750	4,250	6	12,0
FR 600	1,250	1,375	1,438	1,500	1,625	1,688	1,750	1,938	2,000	2,000	5,375	0,063	0,312-24	3,750	0,625	1,000	4,750	6	19,0
FR 650	1,938	2,000	2,250	2,438	2,500					2,500	6,500	0,063	0,375-24	3,500	0,750	1,000	5,750	8	24,0
FR 700	1,938	2,000	2,250	2,438	2,500	2,750	2,938			2,938	7,125	0,063	0,375-24	5,000	0,750	1,000	6,250	8**	42,0
FR 750	2,438	2,500	2,938	3,000	3,250	3,438				3,438	8,750	0,063	0,500-20	6,000	0,875	1,250	7,000	8**	83,0
FR 775	2,750	2,938	3,000	3,250	3,438	3,500	3,750			3,750	9,750	0,063	0,500-20	6,000	0,875	1,250	8,500	8	96,0
FR 800	3,000	3,250	3,438	3,500	3,750	3,937	4,000	4,250	4,500	4,500	10,000	0,063	0,500-20	6,000	0,875	1,250	8,937	8	102,0
FR 900	4,000	4,438	4,500	4,938	5,000	5,438				5,438	12,000	0,063	0,625-18	6,375	1,000	1,375	9,750	10	156,0
FR1000	5,750	5,938	6,000	6,750	6,875	7,000				7,000	15,000	0,063	0,625-18	6,625	1,000	1,375	11,750	12	250,0

Exemple de commande

Roue libre type FR ... 700, á soulèvement centrifuge Z et alésage 2 pouces:

• FRZ 700, d = 2 pouces

^{*}Z = Nombre de trous de fixation G sur le diamètre de perçage T.

** Six trous à égale distance tous les 60° et 2 trous additionnels, l'un à 30° et l'autre à 180° de ce dernier.

Facteurs de conversion: 1 lb-ft = 1,35 Nm, 1 pouce =25,4 mm, 1 lbs = 0,453 Kg.

Roues libres complètes FBF

avec liaison par flasque à cames, disponibles en 4 versions

RINGSPANN®

Utilisées en

- Antidévireur
- Survireur
- Commande d'avance

Caractéristiques

Les roues libres complètes FBF avec liaison par flasque sont des roues libres à cames, montées sur roulements à billes et étanches. Elles sont livrées complètes, prêtes à être montées et remplies d'huile.

En plus de la version standard, trois autres versions sont disponibles pour une durée de vie prolongée.

Couples nominaux jusqu'à 160 000 Nm.

Alésages jusqu'à 300 mm. De très nombreux diamètres d'alésages standards sont livrables dans un délai court.

Exemple d'application

Roue libre complète FBF 72 DX utilisée en survireur dans l'entraînement d'une machine de transformation de viande (cutter). Lors de l'opération de malaxage, le motoréducteur entraîne la cuve via l'engrenage, et en même temps l'arbre portecouteaux via la courroie et la roue libre en phase blocage. Lors de l'opération de découpe, l'arbre porte-couteaux est entraîné à grande vitessse par un deuxième moteur. La baque intérieure est alors en survirage par rapport à la bague extérieure entraînée par le motoréducteur qui est ainsi automatiquement désaccouplé. Compte tenu de la vitesse élevée de la bague intérieure en phase roue libre, on utilise la version avec soulèvement X des cames qui, en phase roue libre, sont sans contact et donc sans usure.

Conseils de montage

Centrer la pièce de liaison du client sur le diamètre extérieur D et la visser par sa face frontale.sur le flasque.

Prévoir pour l'ajustement de l'arbre la tolérance ISO h6 ou j6 et pour l'ajustement du diamètre de centrage D de la pièce de liaison la tolérance ISO H7 ou J7.

Exemple de commande

Roue libre du type FBF 72, en version avec soulèvement X des cames, avec alésage 40 mm:

• FBF 72 DX, d = 40 mm

Prière d'indiquer en plus à la commande le sens de rotation en roue libre de la bague intérieure, vu

- libre dans le sens anti-horaire, ou
- libre dans le sens horaire

Roues libres complètes FBF

RINGSPANN®

avec liaison par flasque à cames, disponibles en 4 versions

23-2

Soulèvement centrifuge X
Pour plus de durée de vie grâce au soulèvement des cames par rotation rapide de la bague intérieure Soulèvement centrifuge Z
Pour plus de durée de vie grâce au soulèvement des cames par rotation rapide de la bague extérieure Version RIDUVIT® Version standard Pour usage courant Pour plus de durée de vie grâce au traitement anti-usure des cames

			Vitesse maxi			Vites		e maxi			Vitesse de	Vitess	maxi			Vitesse de	Vitess	e maxi
		Couple	Bague	Bague		Couple	Bague	Bague		Couple	la bague in-	Bague	Bague		Couple	la bague exté-	Bague	Bague
Type de	Ver-	nominal	intérieure en	extérieure en	Ver-	nominal	intérieure en	extérieure en	Ver-	nominal	térieure pour	intérieure en	extérieure	Ver-	nominal	rieure pour	extérieure	intérieure
roue libre	sion	MN	survirage	survirage	sion	MN	survirage	survirage	sion	MN	soulèvement	survirage	motrice	sion	MN	soulèvement	en survirage	motrice
		Nm	min ⁻¹	min ⁻¹		Nm	min ⁻¹	min ⁻¹		Nm	min ⁻¹	min ⁻¹	min ⁻¹		Nm	min ⁻¹	min ⁻¹	min ⁻¹
FBF 24	CF	45	4800	5 5 0 0	CFT	45	4800	5 500										
FBF 29	CF	80	3 5 0 0	4000	CFT	80	3500	4000										
FBF 37	SF	200	2500	2600	SFT	200	2500	2600						CZ	110	850	3 0 0 0	340
FBF 44	SF	320	1 900	2200	SFT	320	1900	2 2 0 0	DX	130	860	1 900	344	CZ	180	800	2600	320
FBF 57	SF	630	1 400	1750	SFT	630	1400	1750	DX	460	750	1 400	300	LZ	430	1400	2100	560
FBF 72	SF	1 250	1120	1600	SFT	1250	1120	1600	DX	720	700	1 150	280	LZ	760	1220	1800	488
FBF 82	SF	1800	1 0 2 5	1450	SFT	1800	1025	1 450	DX	1 000	670	1 050	268	SFZ	1 700	1450	1600	580
FBF 107	SF	2500	880	1250	SFT	2500	880	1 250	DX	1 500	610	900	244	SFZ	2500	1300	1350	520
FBF 127	SF	5 000	800	1150	SFT	5000	800	1150	SX	3 400	380	800	152	SFZ	5 000	1 200	1200	480
FBF 140	SF	10 000	750	1100	SFT	10000	750	1100	SX	7 5 0 0	320	750	128	SFZ	10 000	950	1150	380
FBF 200	SF	20 000	630	900	SFT	20000	630	900	SX	23 000	240	630	96	SFZ	20 000	680	900	272
FBF 270	SF	40 000	510	750	SFT	40 000	510	750	UX	40 000	210	510	84	SFZ	37 500	600	750	240
FBF 340	SF	80 000	460	630	SFT	80000	460	630										
FBF 440	SF	160 000	400	550	SFT	160000	400	550										

Le couple maximal est égal au double du couple nominal indiqué. Voir page 14 pour la détermination du couple de sélection.

Туре		Alésa	ľ	A	D	F	G**	L	N	T	Z**	Poids
roue	oue libre Standard		max.									
		mm	mm	mm	mm	mm		mm	mm	mm		kg
FBF	24	12	14*	85	62	1,0	M 5	50	10	72	3	1,1
FBF	29	15	17*	92	68	1,0	M 5	52	11	78	3	1,3
FBF	37	20	22*	98	75	0,5	M 5	48	11	85	8	1,5
FBF	44	25*	25*	118	90	0,5	M 6	50	12	104	8	2,3
FBF	57	30	32*	128	100	0,5	M 6	65	12	114	12	3,2
FBF	72	40	42*	160	125	1,0	M 8	74	14	142	12	5,8
FBF	82	50*	50*	180	135	2,0	M 10	75	16	155	8	7,0
FBF	107	60	65*	214	170	2,5	M 10	90	18	192	10	12,6
FBF	127	70	75*	250	200	3,0	M 12	112	20	225	12	21,4
FBF	140	90	95*	315	250	5,0	M 16	150	22	280	12	46,0
FBF	200	120	120	370	300	5,0	M 16	160	25	335	16	68,0
FBF	270	140	150	490	400	6,0	M 20	212	32	450	16	163,0
FBF	340	180	240	615	500	7,5	M 24	265	40	560	18	300,0
FBF	440	220	300	775	630	7,5	M 30	315	50	710	18	564,0

Les roues libres dont le diamètre d'alésage apparaît en bleu dans le tableau sont livrables dans un délai court.
Rainure de clavette selon DIN 6885 page 1 · Tolérance de largeur de clavette JS10.

* Rainure de clavette selon DIN 6885 page 3 · Tolérance de largeur de clavette JS10.

* Z = Nombre de trous pour vis G (DIN EN ISO 4762) sur le diamètre de perçage T.