## 宁德市 2024-2025 学年度第一学期期末高一质量检测

## 数学试题参考答案



1-5. DABDB 6-8 CDB

二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分.在每小题给出的四个选项中,有多项是符合题目要求,全部选对得 5 分,部分选对得部分分,有选错得 0 分.

9.ACD 10.ACD 11.AB

三、填空题: 本大题共 3 小题, 每小题 5 分, 共 15 分. 把答案填在答题卡的相应位置

12. 
$$\frac{3\pi}{8}$$
 13. -1 14.  $(2, \frac{1}{2})$ 

四、解答题: 本大题共 5 小题, 共 77 分. 解答应写出文字说明, 证明过程或演算步骤.

15. 解:

当 *y* = 14 时, 3 log <sub>2</sub> *x* + 2 = 14 ,解得, *x* = 16 , … … … … … 14 分 所以,可预测第 16 个月,会员人数达到 14 万人… … … … … … … … … … 15 分

| 解得 tan $\alpha = 2$ 或 tan $\alpha = \frac{1}{2}$                                                                                                       | 15 分  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 解法二: (1) 同解法一                                                                                                                                          |       |
| (2) 因为 A(cos a, sin a)                                                                                                                                 |       |
| 所以 B(-sin a, cos a)                                                                                                                                    | 7分    |
| 则 C (-sin A,-cos A)                                                                                                                                    | 8 分   |
| 所以 $\left x_1 - x_3\right  = \left \cos \alpha + \sin \alpha\right , \left y_1 - y_3\right  = \left \sin \alpha + \cos \alpha\right $                  |       |
| 又 🛭 为锐角                                                                                                                                                |       |
| 所以 $ x_1 - x_3  +  y_1 - y_3  = 2(\sin \alpha + \cos \alpha) = \frac{6\sqrt{5}}{5}$                                                                    |       |
| 即 $\sin \alpha + \cos \alpha = \frac{3\sqrt{5}}{5}$                                                                                                    | 9分    |
| $\begin{cases} \sin \alpha + \cos \alpha = \frac{3\sqrt{5}}{5} \\ \sin^2 \alpha + \cos^2 \alpha = 1 \end{cases}$                                       |       |
| $\sin^2 \alpha + \cos^2 \alpha = 1$                                                                                                                    | رر ۱۵ |
| 联立解得 $\cos \alpha = \frac{\sqrt{5}}{5}$ 或 $\cos \alpha = \frac{2\sqrt{5}}{5}$                                                                          |       |
| 当 $\cos \alpha = \frac{\sqrt{5}}{5}$ 时, $\sin \alpha = \frac{2\sqrt{5}}{5}$                                                                            |       |
| tan $\alpha=2$                                                                                                                                         | 13 分  |
| 当 $\cos \alpha = \frac{2\sqrt{5}}{5}$ 时, $\sin \alpha = \frac{\sqrt{5}}{5}$                                                                            |       |
| $\tan \alpha = \frac{1}{2} \dots$                                                                                                                      | 14 分  |
| 所以 $\alpha = 2$ 或 $\alpha = \frac{1}{2}$                                                                                                               | 15 分  |
| 18. 解法一:<br>(1)因为 f(x) 的定义域为 <b>R</b>                                                                                                                  |       |
| $f(-x) = \frac{-x}{(-x)^2 + 1} = -\frac{x}{x^2 + 1} = -f(x)$                                                                                           |       |
| 所以 f(x) 为奇函数;                                                                                                                                          |       |
| (2) 任取 $x_1, x_2 \in (0, +\infty)$ ,且 $x_1 < x_2$ ,                                                                                                    |       |
|                                                                                                                                                        | 5分    |
| $=\frac{x_1 x_2^2 - x_2 x_1^2 + x_1 - x_2}{(x_1^2 + 1)(x_2^2 + 1)} = \frac{(x_2 - x_1)(x_1 x_2 - 1)}{(x_1^2 + 1)(x_2^2 + 1)} \dots$                    | 7 分   |
| 因为 0 < x <sub>1</sub> < x <sub>2</sub> ,所以 x <sub>2</sub> - x <sub>1</sub> > 0, x <sub>1</sub> <sup>2</sup> +1 > 0, x <sub>2</sub> <sup>2</sup> +1 > 0 |       |
| 当 $x_1, x_2 \in (0,1)$ 时 $x_1, x_2 - 1 < 0$ ,所以 $f(x_1) - f(x_2) < 0$                                                                                  |       |
| 此时, y = f(x) 在区间(0,1)上是增函数;                                                                                                                            | 8分    |

| 当 $x_1, x_2 \in [1, +\infty)$ 时 $x_1 x_2 - 1 > 0$ ,所以 $f(x_1) - f(x_2) > 0$                                              |       |
|--------------------------------------------------------------------------------------------------------------------------|-------|
| 比时, y = f(x) 在区间[1,+∞) 上是减函数。                                                                                            |       |
| 宗上:函数 $y = f(x)$ 在区间 $(0,1)$ 上是增函数,在区间 $[1,+∞)$ 上是减函数。.                                                                  | 10 分  |
| (3) 因为 $\forall x_1 \in (1, a), \exists x_2 \in (-1, -\frac{2}{5})$ ,所以 $a > 1$ ,                                        |       |
| $\frac{1}{a^2+1} < \frac{1}{x_1^2+1} < \frac{1}{2}$ ,                                                                    | 11 分  |
| $a^2 + 1  x_1^2 + 1  2$                                                                                                  |       |
| $-1 < \frac{x_2}{x_1} < -\frac{2}{5a} \dots$                                                                             | 12 分  |
| = - <sup>x1</sup> = - 30<br>由 (2) 知,函数 f(x) 为奇函数,在区间(-1,1) 上是增函数,在区间[1,+∞)                                               |       |
|                                                                                                                          |       |
| 所以 $\left(\frac{1}{a^2+1},\frac{1}{2}\right)\subseteq \left(\frac{2}{5a},1\right)$ ,                                     | 14 分  |
| 所以, $\frac{1}{a^2+1} > \frac{2}{5a}$ ,整理得 $2a^2 - 5a + 2 < 0$ ,解得 $\frac{1}{2} < a < 2$                                  | 16 分  |
| 。                                                                                                                        | 17 分  |
| 解法二:(1)(2)同解法一                                                                                                           |       |
| (3) 因为 $x_1 \in (1, a), x_2 \in (-1, -\frac{2}{5})$ ,所以 $a > 1$ ,                                                        |       |
|                                                                                                                          | 11 分  |
| 由(2)知,函数 $f(x)$ 为奇函数,在区间 $(-1,1)$ 上是增函数,在区间 $[1,+\infty)$                                                                | 上是减函数 |
|                                                                                                                          | 12 分  |
| 整理, $-x_2 = \frac{x_1}{x_1^2 + 1}$ ,                                                                                     |       |
| 所以 $\frac{x_1}{x_1^2 + 1} \in \left(\frac{a}{a^2 + 1}, \frac{1}{2}\right), -x_2 \in (\frac{2}{5}, 1)$                    | 14 分  |
| 所以, $\frac{a}{a^2+1} > \frac{2}{5}$ ,整理得 2 $a^2-5a+2<0$ ,解得 $\frac{1}{2} < a < 2$                                        | 16 分  |
| 宗上: 1< <i>a</i> <2                                                                                                       | 17 分  |
| 9.解:                                                                                                                     |       |
| (1) $f(x) = x^2$ 是凸函数                                                                                                    | 1分    |
| $\lambda f(x_1) + (1 - \lambda) f(x_2) - f(\lambda x_1 + (1 - \lambda) x_2)$                                             |       |
| $= \lambda x_1^2 + (1 - \lambda) x_2^2 - (\lambda x_1 + (1 - \lambda) x_2)^2$                                            |       |
| 里由如下: = $\lambda x_1^2 + (1 - \lambda) x_2^2 - \lambda^2 x_1^2 - 2\lambda (1 - \lambda) x_1 x_2 - (1 - \lambda)^2 x_2^2$ |       |
| $= \lambda (1 - \lambda) (x_1^2 - 2x_1x_2 + x_2^2)$                                                                      |       |
| $= \lambda_1(1-\lambda_1)(x_1-x_2)^2$                                                                                    |       |

| 由于 $\lambda \in [0,1]$ ,所以 $\lambda f(x_1) + (1-\lambda) f(x_2) - f(\lambda x_1 + (1-\lambda) x_2) \le 0$ ,即 $f(x) = x^2$ 是凸                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 函数4分                                                                                                                                                                                                                                                                                                                              |
| (2) 任取 $x_1, x_2 \in [-b, -a]$ ,所以 $-x_1, -x_2 \in [a, b]$ ,因为 $g(x)$ 在 $[a, b]$ 上的凸函数,所以                                                                                                                                                                                                                                         |
| $g(-\lambda x_1 - (1-\lambda) x_2) \le \lambda g(-x_1) + (1-\lambda) g(-x_2)$ , 6 \(\frac{\partial}{2}\)                                                                                                                                                                                                                          |
| 又因为 $g(x)$ 是偶函数,所以 $g(\lambda x_1 + (1 - \lambda) x_2) \le \lambda g(x_1) + (1 - \lambda) g(x_2)$ , 所以 $g(x)$ 在                                                                                                                                                                                                                   |
| [-b,-a] 上也是凸函数8 分                                                                                                                                                                                                                                                                                                                 |
| (3) 因为 $\lambda_i \in [0,1]$ , $\lambda_1 + \lambda_2 + \lambda_3 = 1$ ,                                                                                                                                                                                                                                                          |
| 由对称性不妨设当 $\lambda_1=1$ 时,则 $\lambda_2=\lambda_3=0$ ,                                                                                                                                                                                                                                                                              |
| 此时 $f(\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3) \le \lambda_1 f(x_1) + \lambda_2 f(x_2) + \lambda_3 f(x_3)$ 显然成立, ————————————————————————————————————                                                                                                                                                                       |
| 当 ϟ ≠1 时,因为 ƒ ( x) 在[a, b] 是凸函数,                                                                                                                                                                                                                                                                                                  |
| 所以 $f(\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3) = f\left(\lambda_1 x_1 + (1 - \lambda_1) \frac{\lambda_2 x_2 + \lambda_3 x_3}{1 - \lambda_1}\right) \le \lambda_1 f(x_1) + (1 - \lambda_1) f\left(\frac{\lambda_2 x_2 + \lambda_3 x_3}{1 - \lambda_1}\right)$                                                                |
|                                                                                                                                                                                                                                                                                                                                   |
| 而 $f\left(\frac{\lambda_2 x_2 + \lambda_3 x_3}{1 - \lambda_1}\right) = f\left(\frac{\lambda_2 x_2 + \lambda_3 x_3}{\lambda_2 + \lambda_3}\right)$ ,再次根据凸函数的定义,                                                                                                                                                                    |
| 则 $f\left(\frac{\lambda_2 x_2 + \lambda_3 x_3}{\lambda_2 + \lambda_3}\right) = f\left(\frac{\lambda_2}{\lambda_2 + \lambda_3} x_2 + \frac{\lambda_3}{\lambda_2 + \lambda_3} x_2\right) \le \frac{\lambda_2}{\lambda_2 + \lambda_3} f(x_2) + \frac{\lambda_3}{\lambda_2 + \lambda_3} f(x_3)$ ————————————————————————————————————  |
| 所以                                                                                                                                                                                                                                                                                                                                |
| $\lambda_{1} f(x_{1}) + (1 - \lambda_{1}) f\left(\frac{\lambda_{2} x_{2} + \lambda_{3} x_{3}}{1 - \lambda_{1}}\right)$                                                                                                                                                                                                            |
| $= \lambda_{1} f(x_{1}) + (\lambda_{2} + \lambda_{3}) f\left(\frac{\lambda_{2} x_{2} + \lambda_{3} x_{3}}{\lambda_{2} + \lambda_{3}}\right) \leq \lambda_{1} f(x_{1}) + (\lambda_{2} + \lambda_{3}) \left[\frac{\lambda_{2}}{\lambda_{2} + \lambda_{3}} f(x_{2}) + \frac{\lambda_{3}}{\lambda_{2} + \lambda_{3}} f(x_{3})\right]$ |
| $= \lambda_1 f(x_1) + \lambda_2 f(x_2) + \lambda_3 f(x_3)$                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                   |